

US Army Corps of Engineers_®

Engineer Research and Development Center

Assessment of Training Noise Impacts on the Red-cockaded Woodpecker: 1999 Results

by David K. Delaney, Larry L. Pater, Timothy J. Hayden, Linton Swindell, Tim Beaty, Larry Carlile, and Eric Spadgenske

May 2000

20000710 126

Engineer Research and Development Center

Assessment of Training Noise Impacts on the

Red-cockaded Woodpecker: 1999 Results

by David K. Delaney, Larry L. Pater, Timothy J. Hayden, Linton Swindell, Tim Beaty, Larry Carlile, and Eric Spadgenske

May 2000

Executive Summary

This report is submitted as partial fulfillment of the terms of the Strategic Environmental Research and Development Program (SERDP)-funded project CS-1083. The purpose of this research is to assess the effects of military training noise on the endangered Red-cockaded Woodpecker (RCW) and to develop assessment methodology. The results of this research will provide a scientific basis for RCW management protocols, and will partially satisfy requirements of a 1996 U.S. Fish and Wildlife Service (USFWS) biological opinion that requires the Army to assess effects of implementing the 1996 "Management Guidelines for the RCW on Army Installations." These new guidelines significantly reduce restrictions on training for military installations on which RCWs are present. These installations include Fort Stewart, GA; Fort Bragg, NC; Fort Benning, GA; Fort Polk, LA; Fort Gordon, GA; Fort Jackson, SC; Camp Lajeune, NC; Eglin Air Force Base (AFB), FL; and Camp Blanding, FL. This research is being conducted jointly by the U.S. Army Construction Engineering Research Laboratory (CERL), an element of the U.S. Army Engineer Research and Development Center (ERDC); Fort Stewart, and the U.S. Army Forces Command (FORSCOM). The project was developed by CERL in coordination with FORSCOM, the USFWS RCW Recovery Coordinator and Region 4 office, the Fort Stewart Director of Training, the Fort Stewart Department of Public Works (DPW) Fish and Wildlife Branch, and the Army Threatened and Endangered Species (TES) User Group.

During this second year of the study, we experimentally tested RCW response to controlled military training noise events under realistic conditions, namely .50-caliber blank fire and artillery simulators. We measured both proximate response behavior and nesting success, while continuing to measure baseline behavioral data from undisturbed sites. Measured levels of experimental noise did not affect RCW nesting success or productivity. RCW flush response was shown to increase as stimulus distance decreased, regardless of stimulus type. Woodpeckers returned to their nests relatively quickly after being flushed. Noise levels within RCW nest cavities were substantially louder than levels recorded at the base of the tree. It is important to note that the data collected to this point are sufficient to confirm statistical power to make strong conclusions or to establish reliable noise dose-response relationships or thresholds. The data collected to this point are sufficient to confirm that the project technical approach is appropriate and that the research objectives will be achieved.

Foreword

This study was conducted for the Strategic Environmental Research and Development Program (SERDP) under an FY98 Conservation Project, No. CS-1083, "Assessment of Training Noise Impacts on the Red-cockaded Woodpecker." The technical monitor was Dr. Robert Holst.

The work was performed by the Ecological Processes Branch (CN-N) of the Installations Division (CN), Construction Engineering Research Laboratory (CERL) in cooperation with Jones Technologies, Inc. The CERL Principal Investigator was Dr. Larry L. Pater. The technical editor was Gloria J. Wienke. Steve Hodapp is Chief, CEERD-CN-N, and Dr. John T. Bandy is Chief, CEERD-CN. The Acting Director of CERL is Dr. Alan W. Moore.

CERL is an element of the U.S. Army Engineer Research and Development Center (ERDC), U.S. Army Corps of Engineers. The Acting Director of ERDC is Dr. Lewis E. Link and the Commander is COL Robin R. Cababa, EN.

This work could not have been accomplished without the very able field assistance of (alphabetical) Tim Brewton, Michelle Huffman, Margaret Klich, Ronald Knopik, Brian Platt, Aaron Rinker, and Andrew Walde. We particularly appreciate the skill, support, and cooperation of the 10th Engineer Battalion; the 3rd Battalion, 7th Infantry; and the 3rd Squadron, 7th Cavalry for providing personnel, equipment, and supplies to assist us in conducting our experimental trials. We thank the Director of Training Office on Fort Stewart, particularly Howard Bullard, Tony Tellames, and Joe Caligiure for logistical support and close cooperation in the day-to-day operation of this study. We would also like to thank Linton Swindell and his staff at the Department of Public Works Fish and Wildlife Office for all their assistance during this project.

DISCLAIMER

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners.

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

Contents

Executive Summary3						
Fo	reword	4				
Lis	t of Figures and Tables	7				
1	Introduction	9				
	Background	9				
	Objectives	11				
	Approach	11				
	Scope	11				
	Mode of Technology Transfer	12				
2	Literature Review	13				
3	Technical Approach	16				
	Null Hypotheses	16				
	Study Area	16				
	Sample Cluster Selection	17				
	Impact Measures	19				
	Behavior and Proximate Response Measurement Protocols	21				
	Demographic and Nesting Success Data					
	Video Surveillance	23				
	Sound Instrumentation and Recording	24				
	Sound Metrics	24				
	Statistical Data Analysis	26				
4	Results	27				
	Initiation Dates for each Nesting Phase	27				
	Overall Population Dynamics	27				
	Sample Cluster Population Dynamics	28				
	Noise and Response Monitoring Summary					
	Passive Monitoring					
	Experimental Testing					
	Noise Measurement Testing					
	Distance and Noise Level Thresholds for Response					

	Experimen	ntal Tests	30
	Passive E	vents	32
5	Discussion		38
		ccess	
		onse and Related Behaviors	
		oonse	
		ehaviors	
	Distance ar	nd Sound Thresholds	39
	Noise Measurement Test		
6	Plans and (Conclusions	41
	Plans		41
	Conclusion	S	41
Re	ferences		43
110	101011003		
Appendix A:		Significant Legal Requirements	50
Ар	pendix B:	Summary Data Tables	51
Appendix C:		Source Spectra Examples	54
Appendix D:		Detailed Noise Event and RCW Response Data	59
CE	RL Distribut	ion	143
Re	port Docume	entation Page	144

Figures

List of Figures and Tables

	1	Adult Red-cockaded Woodpecker delivering prey to the nest10			
	2	Location of Fort Stewart within the state of Georgia17			
	3	Locations of training areas and RCW clusters on Fort Stewart18			
	4	Artillery simulator blast			
	5	.50-caliber machine gun			
	6	Assessment hierarchy for training impact on threatened and endangered species20			
	7	Examples of audiograms and frequency weighting26			
	8	RCW flush frequency by stimulus type and distance31			
	9	Mean return time for RCWs in response to experimental testing31			
	10	Noise levels from M-16 live fire events at cluster 103 on May 12, 199933			
	11	Noise levels from M-16 live fire events at cluster 103 on May 13, 199933			
	12	Noise levels from M-16 live fire events at cluster 103 on May 13, 199935			
	13	SEL weighting comparison for M-16 live fire on May 17, 1999, from range and tree impact noise near a RCW nest site35			
	C-1	SEL weighting comparison for experimental artillery simulator blast at cluster 172 on June 4, 1999			
	C-2	SEL weighting comparison for experimental .50-caliber blank fire at cluster 151 on June 24, 1999			
	C-3	SEL weighting comparison for a passive grenade simulator blast at cluster 41 on June 2, 199956			
	C-4	SEL weighting comparison for a passive helicopter flight at cluster 6 on April 29, 199957			
	C-5	SEL comparison of passive large-caliber live fire at cluster 172 on April 27, 1999			
Tables					
	В1	Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise levels of experimental artillery simulator testing on Fort Stewart, GA, 1999			
	B2	Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise levels of experimental .50-caliber blank fire testing on Fort Stewart, GA, 1999.			

B3	Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise levels of passive M-16 live fire on Fort Stewart, GA, 1999.	53
B4	Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise levels of passive grenade simulator blasts on Fort Stewart, GA, 1999.	53
B5	Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise levels of passive helicopter flights on Fort Stewart, GA, 1999. Stimulus distances represent the closest estimated approach distance by a helicopter	53
B6	Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise level of passive large-caliber live fire on Fort Stewart, GA, 1999	53
D1	Summary data for experimental artillery simulator blast noise on Fort Stewart, GA, 1999.	60
D2	Representative unweighted noise spectra for experimental artillery simulators on Fort Stewart, GA	67
D3	Summary data for experimental .50 caliber blank fire on Fort Stewart, GA	74
D4	Representative unweighted spectra for experimental .50-caliber blank fire on Fort Stewart, GA.	94
D5	Summary data for passive M-16 live fire noise on Fort Stewart, GA1	11
D6	Representative unweighted noise spectra for passive M-16 live fire on Fort Stewart, GA1	20
D7	Summary data for passive helicopter flights on Fort Stewart, GA1	31
D8	Representative unweighted noise spectra for passive helicopter flights on Fort Stewart, GA1	32
D9	Summary data for passive large-caliber live fire noise on Fort Stewart, GA1	33
D10	Representative unweighted noise spectra for passive large-caliber live fire events on Fort Stewart, GA1	34
D11	Summary data for ambient sound levels on Fort Stewart, GA1	35
D12	Representative unweighted noise spectra for ambient sound levels on Fort Stewart, GA1	39

1 Introduction

Background

The Endangered Species Act requires that all Federal agencies carry out programs to conserve threatened and endangered species (TES) and to evaluate the impacts of Federal activities on listed species (Scott et al. 1994). TES management on military installations, particularly that involving the Red-cockaded Woodpecker (RCW), has raised questions about the interaction between Army training and the conservation of Red-cockaded Woodpeckers on military lands. The goal of RCW management on Fort Stewart is to recover the population while eliminating conflicts with the training mission by eliminating the need for training restrictions (Fort Stewart Endangered Species Management Planning [ESMP] Team 1998). A brief summary of legal requirements is presented in Appendix A. Because noise management has traditionally focused on minimizing human annoyance, loud activities have often been relocated to sparsely populated areas where wildlife resides. This has led to increased interactions between military activity and wildlife (Holland 1991). Increasing importance has been placed on determining the extent of noise impacts on wildlife (Bowles 1995), especially threatened and endangered species (Delaney et al. 1999; Pater et al. 1999).

The Red-cockaded Woodpecker (*Picoides borealis*) is an endangered species that inhabits mature, open pine forests of the southeastern United States (Figure 1; Jackson 1994). Historically, RCW populations were distributed throughout the South from eastern Texas to the Atlantic coast, and north to New Jersey (Jackson 1987). The distribution has been reduced with the extirpation of RCWs from New Jersey (Lawrence 1867), Missouri (Cunningham 1946 as cited in Jackson 1987), and most recently Maryland (Devlin et al. 1980). The majority of RCWs are currently restricted to public lands, namely National Forests, military installations, and National Wildlife Refuges (Jackson 1978, Lennartz et al. 1983). Military installations, in particular, are gaining recognition as a valuable resource in the recovery of TES (Jordan et al. 1995). It has been estimated that nearly a quarter of the remaining RCWs are located on nine military installations in the southeast (Costa 1992), which includes the Fort Stewart population. Such a close association has led to increased conflicts between TES conservation

requirements and the military's mission of maintaining a high degree of combat readiness (Jordan et al. 1995).

10

Figure 1. Adult Red-cockaded Woodpecker delivering prey to the nest.

In 1984 the Army initially established a 200-ft (61-m) buffer zone around all RCW cavity trees to protect nesting habitat and identify RCW management units. In 1996, the Department of the Army (DA) issued revised guidelines for the management of RCWs on military lands, to reduce training restrictions, and increase adaptive management of the RCW and its habitat. These guidelines are scheduled to go in to effect by early 2000. Under the revised guidelines, certain transient military activities are permitted within 50 ft (15 m) of RCW cavity trees. These include: (1) military vehicle and personnel travel, including armor; (2) .50-caliber machine gun blank fire and 7.62-mm blank fire and below; (3) artillery/hand grenade simulators and Hoffman type devices; (4) hand digging of hasty individual fighting positions; (5) use of smoke grenades and star cluster/parachute flares; and (6) smoke and haze operation (see Hayden 1997 for a more detailed description of past and current Army guidelines for RCWs). A 1996 USFWS biological opinion requires the Army to assess effects due to implementing the 1996 guidelines (Jordan et al. 1997). The current project will provide an important aspect of this required assessment.

The Fort Stewart Fish and Wildlife Directorate prepared an Endangered Species Management Plan (Fort Stewart ESMP Team 1998) for the installation that detailed changes under these revised guidelines: (1) consideration will be given jointly to training mission requirements and RCW biological requirements when implementing ESMP; (2) reduction in off-limit area for thru-cluster maneuver traffic around cluster trees from 200 ft (61 m) to 50 ft (15 m); and (3) the types of training activities allowed within RCW clusters will be expanded.

Objectives

The primary research objective of this multiyear study is to determine the impact of certain types of training noise on the endangered Red-cockaded Woodpecker. This will require that we develop dose-response threshold relationships for quantifying RCW responses to noise levels and stimulus distances, and relate these to nesting success. A second objective is to develop and disseminate costeffective techniques for documenting the effects of training noise on TES populations. These techniques include the capability to characterize noise stimuli, to document behavioral responses, and to determine resulting population effects due to military noise. Achieving these objectives will provide a means to manage impact on both military training capability and TES, and will provide a factual basis for mitigation and management protocols and guidelines. This research directly addresses the #1 Army Conservation Pillar User Requirement, which is concerned with impacts of military operations on threatened and endangered species. The results of this research will partially satisfy requirements of the 1996 USFWS biological opinion (Jordan et al. 1997) that requires the Army to assess effects due to implementing the 1996 "Management Guidelines for the RCW on Army Installations."

Approach

Chapter 3 presents details of the technical approach used in this research. The chapter includes discussions of the study area, cluster selection, impact measures, response protocols, nesting success, video surveillance, sound instrumentation and recording, sound metrics, and statistical analysis.

Scope

All aspects of the research plan were reviewed and approved by the USFWS and Fort Stewart before monitoring activity began. Results from this research apply

directly to Fort Stewart, but may also be applicable to other installations in the southeastern United States where RCWs are exposed to similar noise. This study will use population data collected at Fort Stewart and other installations under a Forces Command (FORSCOM) program. Specific evaluation of impact of maneuver training activities is being conducted under a separate coordinated research effort. Training noise sources examined during this study include artillery simulators, .50-caliber blank fire, large-caliber live fire, small-arms live fire, grenade simulators, and helicopter flights. RCW response to other military activity, such as vehicle noise associated with maneuver training, aircraft overflights, and Multiple Launch Rocket System (MLRS) fire, will be documented opportunistically, but is not of high priority in this study.

Mode of Technology Transfer

Products of this research will be provided directly to the Military Services for use during consultation with the USFWS and for development of management protocols. This aspect of the transition plan will directly help to alleviate impacts on military training capability and will provide information to the military that will guide effective management of impacts on endangered species populations. Other technology transfer methods will include technical papers and journal articles and TES and noise workshops. The information will also be disseminated through the Environmental Noise Program Office of the U.S. Army Center for Health Promotion and Preventive Medicine, the Army TES User Group, and the U.S. Air Force (USAF) International Bibliography on Noise (IBON). Other forums for dissemination include the North Atlantic Treaty Organization (NATO) Committee for Challenges to Modern Society (CCMS) subcommittees for noise effects, the International Committee on the Biological Effects of Noise (ICBEN), the Acoustical Society of America Animal Bioacoustics technical committee, and the Department of Defense (DoD) Committee on Environmental Noise.

2 Literature Review

Noise disturbance studies have often been anecdotal and fail to quantitatively measure either the stimulus or the behavioral response related to the animal's fitness. Predictive models for the relationship between disturbance dosage and quantifiable effects are even more scarce (Awbrey and Bowles 1990; Grubb and King 1991; Grubb and Bowerman 1997). Although many types of human disturbance have been reported as affecting birds (Fyfe and Olendorff 1976), very little research has addressed the effects of human activity on woodpeckers, especially the endangered Red-cockaded Woodpecker (Charbonneau et al. 1983; Jackson 1983; Beaty 1986; Jackson and Parris 1995; The Nature Conservancy [TNC] 1996; Pater et al. 1999).

Few researchers have directly compared differences in bird responsiveness between aerial and ground-based disturbances (Bowles et al. 1990). Studies that have examined the effects of aircraft activity on nesting birds (e.g., Platt 1977; Windsor 1977; Ellis 1981; Anderson et al. 1989) have often noted a slight but nonsignificant decrease in nesting success and productivity for disturbed versus undisturbed nests. Anderson et al. (1989) noted a slight decline in the nesting success of experimental Red-tailed Hawk (*Buteo jamaicensis*) nests versus control nests (80 percent experimental versus 86 percent control success) after helicopter disturbances.

In contrast, ground-based disturbances appear to have a greater effect than aerial disturbances on the nesting success of some bird species. In their classification tree model of Bald Eagle (*Haliaeetus leucocephalus*) responses to various anthropogenic disturbances, Grubb and King (1991) determined that Bald Eagles in Arizona showed the highest response frequency and severity of response toward ground-based disturbances, followed by aquatic, and lastly by aerial disturbances. Delaney et al. (1999) reported similar findings for Mexican Spotted Owl (*Strix occidentalis lucida*) response to military helicopter activity and chain saws, observing that chain saws elicited a greater flush response rate than helicopters at comparable distances and noise levels.

A bird's behavior during the nesting season is an important determinant of its ultimate nesting success or failure (Hohman 1986). Various bird species have been reported to abandon their nests after being exposed to ground-based and

aerial disturbances. White and Thurow (1985) reported that approximately 30 percent of Ferruginous Hawks (*Buteo regalis*) abandoned their nests after being exposed to various ground-based disturbances, but there were no controls for comparison. Anderson et al. (1989) reported that 2 of 29 Red-tailed Hawk nests were abandoned after being flushed by helicopter flights, compared with 0 of 12 control nests. Ellis et al. (1991) found only 1 of 19 Prairie Falcon (*Falco mexicanus*) nests were abandoned when exposed to frequent low-altitude jet flights during the nesting season (no control sites used). Platt (1977) reported similar rates with only 1 of 11 Gyrfalcon (*F. rusticolus*) nests failing (reportedly due to snow damage), compared with 0 of 12 control nests. Of the 6 Peregrine Falcon (*F. Peregrinus*) nests exposed to helicopter flights, only 1 was abandoned (also apparently due to inclement weather) compared with 0 of 3 control sites (Windsor 1977).

Birds may be more susceptible to disturbance-caused nest abandonment early in the nesting season, possibly because parents have less energy invested in the nesting process (Knight and Temple 1986). Some animals appear reluctant to leave the nest later in the nesting season (Anderson et al. 1989; Ellis et al. 1991; Delaney et al. 1999). Steenhof and Kochert (1982) reported that Golden Eagles (Aquila chrysaetos) and Red-tailed Hawks exposed to human intrusions during early incubation had significantly lower nesting success than individuals exposed later in the season (45 percent success for Golden Eagles and 57 percent for Red-tailed Hawks within experimental groups versus 71 percent and 74 percent success with control groups, respectively). Although reactions of adult birds at the nest can influence hatching rates and fledgling success (Windsor 1977), flush behavior of adult birds from the nest is poorly quantified (Fraser et al. 1985; Holthuijzen et al. 1990; Delaney et al. 1999). In the few studies that have examined bird responses to specific disturbance types (e.g., aircraft approach distance), flush rates were higher if birds were naive (i.e., not previously exposed; Platt 1977). Some birds are more reluctant to flush off the nest during incubation and early nestling phases than later in the season (Grubb and Bowerman 1997; Delaney et al. 1999). Animal responsiveness has been shown to increase as the nesting season progresses (Grubb and Bowerman 1997). Delaney et al. (1999) found that Mexican Spotted Owls were more responsive to helicopters later in the reproductive cycle, which suggests that adult defensive behavior may decrease as the young mature. In contrast, Holthuijzen et al. (1990) found Prairie Falcon responsiveness to nearby blasting activity decreased as the nesting season progressed.

Few studies have documented the threshold distance that causes birds to flush in response to noise disturbance events. In those studies that reported stimulus distance, it was rare for birds to flush when the stimulus distance was greater than 60 m (Carrier and Melquist 1976; Edwards et al. 1979; Craig and Craig 1984; Delaney et al. 1999). Similar findings were reported by Carrier and Melquist (1976) for Osprey (*Pandion haliaetus*), and Ellis (1981) for Peregrine Falcons. Many disturbance study reports imply that animal response increases with decreasing stimulus distance (Platt 1977; Grubb and King 1991; McGarigal et al. 1991; Stalmaster and Kaiser 1997), though only a few studies have experimentally tested this relationship (Delaney et al. 1999; Pater et al. 1999). Delaney et al. (1999) found that the proportion of owls flushing in response to a disturbance was strongly and negatively related to stimulus distance and positively related to noise level. Pater et al. (1999) found similar results when they experimentally exposed Red-cockaded Woodpeckers to military training noise.

Even fewer examples are available for noise response thresholds. Snyder et al. (1978) reported that Snail Kites (Rostrhamus sociabilis) did not flush even when noise levels were up to 105 decibels, A-weighted (dBA) from commercial jet traffic. This result was qualified by the fact that test birds were living near airports and may have habituated to the noise. Edwards et al. (1979) found a doseresponse relationship for flush responses of several species of gallinaceous birds when approach distances were between 30 and 60 m and noise levels approximated 95 dBA. Delaney et al. (1999) reported that Mexican Spotted Owls did not flush during the nesting season when the sound exposure level (SEL) for helicopters was \leq 92 dBA and the Equivalent Average Sound Level (LEQ) for chain saws was \leq 46 dBA. Noise response thresholds were fairly comparable with data from the nonnesting season (SEL of 92 dBA for helicopters and LEQ of 51 dBA for chain saws).

Distance has been described as the most commonly used surrogate for noise disturbance in the literature on animal response to noise, and has been proposed to be the best representative for quantifying the relationship between stimulus and response measures (Awbrey and Bowles 1990). The reason appears to be that distance is more conveniently implemented into management practices (i.e., establishing buffer zones) than other variables. However, use of a properly measured noise level as the stimulus measure facilitates broader application of response results, in particular to sources of similar aural character but different acoustic power emission.

3 Technical Approach

Null Hypotheses

Data collection, summary, and statistical analyses to assess and characterize military training noise in RCW clusters, and to evaluate the relationship between noise levels and RCW demographic data, are based on the following formal null hypotheses:

- Ho: There is no difference in the nesting success, productivity, or nesting behavior between disturbed and undisturbed RCW nest sites.
- Ho: There is no relationship between stimulus distance or noise level and RCW response behavior.
- Ho: There is no difference in RCW response between types of training activities.

Study Area

Fort Stewart is located in southeast Georgia (Figure 2), within Liberty, Long, Bryon, Tattnall, and Evans counties, and is the largest Army Installation east of the Mississippi River. Physiographically, this area lies within the Atlantic Coastal Flatwoods Province, within a humid, semi-tropical latitude, and averages 50 in. (127 cm) of rain per year. The average temperature in January is 62 °F (44 °C) with a relative humidity of 70 percent, while July averages 91 °F (32 °C) with a relative humidity of 76 percent. Approximately 66 percent of the 112,745 ha of the installation are terrestrial and cover three main forest types: upland pine stands composed primarily of longleaf (*Pinus palustris*), loblolly (*P. taeda*), and slash pine (*P. elliottii*); mixed pine-hardwood sites; and hardwood stands. The remaining habitats include various wetland types and open water (Fort Stewart ESMP Team 1998).

The primary mission of Fort Stewart is training and operational readiness of the 3rd Infantry Division (Mech.) and other nondivision units. The 3rd Infantry Division (previously the 24th) was activated in 1975 and redesignated as a mechanized division in 1979 (Hayden 1997). Training activities are conducted year-round at Fort Stewart to maintain a combat ready fighting force. The installa-

tion also supports training of regional National Guard and Reserve units, as well as joint training exercises with troops from other installations and DoD Branches (Fort Stewart ESMP Team 1998).

Figure 2. Location of Fort Stewart within the state of Georgia.

Fort Stewart contains a variety of impact and firing areas (Figure 3). The central feature of the installation is the Artillery Impact Area (AIA; about 5,200 ha), which is surrounded by dozens of artillery firing points varying in distance from a few hundred meters to thousands of meters from the impact area. On the western border of the AIA is the Red Cloud Multipurpose Range Complex (MPRC) containing eight separate ranges. Just south of the AIA is the Explosive Ordnance Disposal Area (EOD), the Demolition Area (DEMO), and the Small Arms Impact Area (13 live-fire ranges, about 2,300 ha). To the east and northeast of the AIA are the Calfax and Luzon Ranges, and three smaller Aerial Gunnery Ranges (AGRs). There are also seven drop zones located throughout the installation (Hayden 1997).

Sample Cluster Selection

There are 294 known RCW clusters distributed across Fort Stewart (Figure 3). None are known to be in the AIA because this area has not been surveyed due to safety concerns. Of the approximately 165 reproductively active (mated pair present) RCW clusters in 1999, we chose 48 sample clusters for experimentation during the second field season. This was a substantial increase over 1998 for

Figure 3. Locations of training areas and RCW clusters on Fort Stewart.

which we were able to collect experimental data at only four sample clusters (Pater et al. 1999). We intend to use these same clusters insofar as practical throughout this multiyear study. We classified clusters according to type and level of training noise, based on the number, distance, and noise levels of stimulus events that each cluster typically receives. Three types of sample sites were chosen: passive disturbed, undisturbed, and experimental. "Passive disturbed" sites were those sites that received potentially significant noise disturbance as part of normal training operations; we had no direct control over time, number, or level of noise events at these sites. Noise types include large-caliber live fire, small arms live fire, grenade and artillery simulators, and helicopter flights. We attempted to choose sites that received predominantly one type of noise, but this was sometimes impossible if we were to also use the highest noise level clusters. "Undisturbed" or "low disturbance" sites (the two terms are equivalent and are used interchangeably in this report) are sites where noise levels were judged likely to be consistently low or absent for all of the noise types. At these sites we observed behavior and measured success as a baseline for judging impact at disturbed sites. It is likely that at least some level of military noise of some type can be perceived at every RCW cluster on Fort Stewart. Our criterion for low disturbance is noise levels at or near ambient noise levels. At "experimental" sites we exposed birds to either artillery simulators (Figure 4) or .50-caliber blank fire (Figure 5) under controlled conditions at distances of 15.2, 30.5, 61,

76.2, 91.5, 122, and 244 m from the nest tree (Appendix B, Tables B1 and B2). Not all distances were tested for each noise source because bird response dictated which distances would be used for developing a distance-response threshold. The experimental sites were chosen from among cluster sites that had low to moderately low disturbance levels. This implies that birds at these sites were not habituated to the noise stimulus. Sample size was limited by the number of clusters that fit each of the foregoing selection protocol criteria and by available field observation resources.

Figure 4. Artillery simulator blast. Figure 5. .50-caliber machine gun.

Impact Measures

Selection of noise impact criteria is a critical issue. For humans the response criterion is typically annoyance. For domesticated species the issue may be damage to individual animals or impacts on profits. For TES, the ultimate concern is long-term survival of the species. The challenge is to develop a relatively short-term procedure for inferring impact on long-term survival. The conceptual approach used in this study is depicted in Figure 6. First, proximate responses to the noise stimulus are measured. A proximate response is the direct and immediate response of the animal to the stimulus; for example a behavioral (e.g., flight) or a physiological (e.g., change in heart rate) response. This tracks with the first regulatory decision criterion of the Endangered Species Act (ESA), that is, whether the action or activity "may affect" the species. Next, we examine whether the stimulus that elicited the proximate response affects "individual fitness," which is typically evaluated in terms of adult and juvenile mortality or reduced nesting success. Mortality and nesting success are established by field monitoring of many individuals throughout the nesting season. This level of effect tracks with the next decision criterion of the ESA, namely whether the action or activity is "likely to jeopardize the continued existence" of the species. Population effects will be inferred from measures of individual fitness by application of population viability analysis (PVA) models. Current applications of PVA do not capture the temporal and spatial variability of training events, and thus cannot model the resulting effects on endangered species' demographic parameters. Researchers at the Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC/CERL) currently are developing PVA modeling approaches capable of capturing training effects in predictive population models. This is a shared effort under this project and a related ERDC/CERL research effort to evaluate effects of maneuver training (vehicles and troops) on RCWs.

Figure 6. Assessment hierarchy for training impact on threatened and endangered

In summary, the research paradigm is that proximate effects can be linked to individual fitness, which in turn can be linked to population effects. As a specific example, consider that a bird might flush from a nest (a proximate response) in response to a noise event. It is possible that this could lead to failure of the nest, especially if the noise and flush response occurred repeatedly. Monitoring is required to determine nesting success of disturbed and undisturbed nests. A population model is required to determine if such failure of some percentage of nests has an effect on survival of the population.

Behavior and Proximate Response Measurement Protocols

We documented woodpecker behavior at low and high noise disturbance nest sites by direct observation (camouflaged blinds more than 30 m from the nest) and through video surveillance. We divided the nesting cycle into three stages: incubation (eggs present 0 to 11 days), brooding (small chicks attended by adults: days 12 through 22), and nestling (larger chicks typically unattended in nest: day 23 until fledging). A "data session" consisted of behavioral observations of at least one adult RCW, typically for 1 hour or longer. At disturbed sites we attempted to observe behavior for some period of time before and after each noise event. This was sometimes not possible at passive disturbed sites because noise events were so frequent that we could not document undisturbed behavior for extended periods of time.

To evaluate RCW baseline behavior and responses to military training activities, we measured several parameters:

- 1. Alert RCW moves to the cavity mouth, head movements, orient to noise source;
- 2. Flush from nest RCW departs from the nest in response to the stimulus, and remains away from the nest for a measured period of time;
- Recovery time length of time an adult is away from the nest after being flushed;
- Nest attentiveness proportion of time that the adults spend on the nest through the nesting season (calculated for diurnal, 24-hour periods, and for each nesting phase);
- 5. Prey deliveries number and rate of prey deliveries to the nest;
- 6. Trips number and duration of times the attending adult left the nest.

RCW behavior categories 4 through 6 will be presented in a future report after the data have been fully analyzed.

Demographic and Nesting Success Data

RCW demographic data (population size, growth, density, and distribution) were collected in accordance with established protocols used by the Fish and Wildlife Branch DPW on Fort Stewart. Demographic data included the following parameters for each cluster:

- 1. Cluster occupancy cluster occupied by one or more RCWs. Most individuals are identified by unique leg band combinations (provides a measure of population size, growth, and stability);
- 2. Mated status presence of both an adult male and an adult female RCW;
- 3. Active nest at least one egg was laid;
- 4. Nesting success at least one fledgling was produced (provides a measure of the proportion of RCW clusters that are reproductively successful);
- 5. Nesting productivity number of young fledged per nest (provides a measure of fecundity);
- 6. Number of eggs produced;
- 7. Number of nestlings hatched;
- 8. Group size (provides a possible measure of territory quality and availability).

These data enable several trends to be detected:

- Reproductive loss mortality rate of eggs, nestlings, and fledglings during nesting;
- 2. Annual nest reoccupancy rates provides a potential measure of RCW response to disturbance. Sites with heavy disturbance levels may be abandoned in subsequent years in favor of other sites further from specific disturbances;
- Site tenacity turnover rate of adult and helper RCWs within a cluster site across years;
- Nesting success rates at disturbed and undisturbed sites;
- 5. Mean number of young fledged at disturbed and undisturbed sites;
- 6. Mean clutch and brood size at disturbed and undisturbed sites;
- 7. Reproductive potential total number of young that could be produced if all eggs and nestlings survived to fledge successfully.

Most of the demographic data for Red-cockaded Woodpecker clusters was collected by DPW Fish and Wildlife personnel from Fort Stewart. Each active (at least one RCW present) cluster was initially visited to determine the cluster occupancy. Adult RCWs were banded to determine group size and affiliation using methods similar to Walters et al. (1988). A 25 percent random sample of all RCW clusters were then monitored approximately every 7 to 9 days to record clutch and brood size. Nestlings were uniquely color banded approximately 5 to 10 days after hatching. Clusters were visited 20 to 25 days after nestlings were banded to determine the number and sex of fledglings (Walters et al. 1988). The 25 percent sample included many of our sample clusters. We augmented the DPW Fish and Wildlife sample by monitoring demographic data (particularly the number of young fledged) for additional cluster sites to provide more complete coverage of our sample clusters.

Video Surveillance

Video cameras are being used as a means to record RCW behavior over prolonged periods, to reduce costs, and to avoid potentially disruptive effects of human presence. The camera systems can also be used to document response in areas that cannot be safely monitored (e.g., downrange from firing positions). Cameras were attached to tree trunks with adjustable, jointed angle-brackets and screws. Cameras were mounted at the same level or slightly above nest height in the nearest practical tree and at least 5 m from the nest tree so as not to disturb incubating woodpeckers. Power and coaxial cables were covered with camouflaged cloth and were attached to a 10.5-cm, DC (direct current) monitor and battery so camera placement could be directed from the base of the camera tree. At least two people are required for camera placement: a climber to position the camera and a person on the ground to check the video signal and placement. Then, a trunk line is attached at the base of the tree (covered by a camouflaged 1.2-cm diameter hose for protection against rodents), allowing the power/recording station to be placed 60 m from the tree to minimize potential disturbance to the woodpeckers. We put the recorder, twin batteries, and all connectors inside a weatherproof bin concealed under a camouflaged tarpaulin. Freshly recharged batteries are used for each set of recordings. We used chargecoupled device (CCD) video-board cameras (both black and white and color) to document RCW behavior at 8 nest sites during the 1999 nesting season. The solid state, 12-volt, flexible circuit-board black and white cameras were equipped with 12.0-mm lenses, while the color cameras had 75-mm lenses. The cameras provide a minimum of 380 lines of resolution and have a minimum sensitivity of 0.45 Lux. Black and white cameras are mounted in waterproof heavy-gauge plastic switch boxes with transparent covers (12.9 x 6.7 x 4.1 cm) which, except for the lens and LED (light-emitting diode) area, are painted black. Color cameras were housed in metal weatherproof containers. Two ports are threaded into the protective housing: one for the power supply and the second for the video signal (Delaney, Grubb, and Garcelon 1998). Panasonic Model AG-1070DC Professional/Industrial VHS video recorders, connected to cameras via coaxial cable (RG-59), provided approximately 24 hours of coverage per tape. These 12-volt, DC-powered recorders were designed for surveillance applications. Cameras and video recorders are powered by two 12-volt, 33.0-amp-hour, Power-Sonic Model PS-12330 sealed rechargeable batteries connected in parallel (a 24-hour taping would draw a single battery below operational limits). These "gel-cell" type batteries (weighing 11.3 kg each) reduce the risk of battery damage, and eliminate the potential for spillage during backpack transport.

Sound Instrumentation and Recording

Sony TCD-D7, Digital Audio Tape (DAT) recorders were used to continuously record all noise events, along with the exact time and date. We attached Bruel & Kjaer (B&K) Type 4149 1.3-cm Condenser Microphones with 7.5-cm wind screens to B&K Model 2639 Preamplifiers, mounting the microphone on a 1-m stick, and placing the unit directly under a woodpecker's nest about 1-m from the tree trunk. The power supply and DAT recorder were also placed at the base of the nest tree in a small camouflaged container. A 1.0-kHz, 94-dB calibration signal (20 micropascals reference) from a B&K Type 4250 Sound Level Calibrating System was recorded before and after each noise event recording. This signal provides a reference for sound levels and spectra when data are later analyzed using a B&K Type 2144 Frequency Analyzer. All noise data were analyzed at ERDC/ CERL. In addition to recording noise levels at the base of the nest tree, we also recorded noise levels within nest cavities during the postnesting season and at nonnesting sites.

Sound Metrics

Noise is defined as sound that is undesirable or constitutes an unwarranted disturbance, and can alter behavior or normal functioning (ANSI S1.1-1994). The types of military noise that are within the scope of this study vary widely in instantaneous transient amplitude, duration, spectral energy content, and suddenness of onset. Appropriate noise metrics and frequency weighting are essential to adequately quantify noise impact for each type of noise. Noise metrics are chosen to measure the noise dose in a way that meaningfully correlates with subject response. Frequency weighting is an algorithm of frequency-dependent attenuation that simulates the hearing sensitivity and range of the study subjects. Frequency weighting discriminates against sound that, while easily measured, is not heard by the study subjects. The current project requires specialized metrics and techniques to meaningfully measure noise impacts on animals. Our paradigm is to measure noise events in terms of unweighted one-third-octave-band levels, apply frequency weighting to the resultant spectra, and calculated appropriate overall metrics.

Only noise that is audible to the study species should be accounted for in the metric used to quantify noise level. Frequency weighting designed for humans may not be appropriate for animal species. The commonly used "A" frequency weighting (ANSI S1.4-1983) attenuates noise energy according to human hearing range and sensitivity. For human response to blast noise, "C" frequency weighting is often applied to received blast noise signals, rather than "A" weighting

which is more representative of human hearing response (ANSI S1.4-1983). This is done to retain low frequency energy that, while not heard by humans, causes a secondary rattle in buildings which does evoke response (ANSI S12.4-1986). This is not appropriate for wildlife. An audiogram, which describes hearing range and sensitivity, provides guidance regarding appropriate frequency weighting for the species of interest and also aids in interpretation of noise response data. Figure 7 shows a composite average audiogram of seven orders of birds, with an approximate representation of a human audiogram and the "A" weighting curve included for comparison. The differences are substantial. The "owl" audiogram further illustrates how audiograms can vary among species. We searched the literature and consulted several leading experts on bird hearing without finding an audiogram for the RCW or for any species in RCW's order, Piciformes. Thus, as part of this project we will obtain an audiogram that will be used to develop a frequency weighting function that is appropriate for woodpeckers. Information on the current RCW audiogram work can be found in Pater et al. (1999). It is well-established (ANSI S12.40-1990; S12.9-1996; S12.17-1996; Homans 1974; NAS 1977, 1981; Rice 1983; Rice et al. 1986; Schomer et al. 1994) that the appropriate metric for blast noise is SEL, which is essentially the time integral of the square of the acoustic pressure. We measured blast noise as unweighted 1/3-octave band SEL, to which frequency weighting appropriate for the RCW will be applied (when available from the audiogram portion of this study, described in Appendix B) to obtain appropriately weighted overall levels. The same metric and procedure was also used with small arms noise (Buchta 1990; Hede and Bullen 1982; Hoffman et al. 1985; Luz 1982; Sorenson and Magnusson 1979; Vos 1995). Two metrics, the SEL and the maximum 1-second equivalent average (LEQ) level, were used for helicopter noise, airplane noise, and vehicle pass-by noise, since both are meaningful in terms of correlation with response (Environmental Protection Agency [EPA] 1974, 1982; Federal Interagency Committee on Urban Noise [FICUN] 1980; Fidell et al. 1991; Schomer 1994; Schultz 1978; U.S. Code of Federal Regulations 1980). Ambient noise was measured as LEQ for various appropriate time periods (EPA 1982). In all cases, the noise signals were recorded on digital audio tapes and preserved for possible further analysis.

Figure 7. Examples of audiograms and frequency weighting.

Statistical Data Analysis

We used SPSS 8.0 for Windows (SPSS Inc. 1998) to perform all descriptive statistics; for example, one-way ANOVA for comparing the mean number of eggs, nestlings, and young fledged between the first through third nesting attempts. Independent sample t-tests were used to compare nest productivity data between experimental and control sites. Whenever appropriate, multiple observations at single nests were averaged before inferential tests were performed so that the sample sizes are the number of nests examined. We used a one-tailed Fisher Exact Test to assess 2x2 contingency tables for variability in nesting success between disturbed and undisturbed nest sites (Zar 1984). Alpha levels of 0.05 will be required to reject a null hypothesis for all tests. Means ± standard error (SE) are presented throughout this document.

4 Results

Initiation Dates for each Nesting Phase

The first woodpecker clutches were initiated on approximately 13 April through 16 May, while secondary clutches (clusters that renested after initial nest failure) were initiated on 3 May through 14 June. Third clutches were initiated on 16 May through 23. Eggs from initial nesting attempts hatched on approximately 23 April through 26 May, while nests from second nesting attempts hatched on 13 May through 24 June. Third nesting attempts hatched on approximately 5 June through 3 July. We observed young fledging from initial nesting attempts on 22 May through 21 June, and from 8 June through 20 July for fledglings from secondary nesting attempts. Third nesting attempts fledged on approximately 21 June through 9 July.

Overall Population Dynamics

Of the 198 potential breeding pairs on Fort Stewart, 165 nested during the 1999 nesting season (83.3 percent). This was a 20 percent increase over the number of potential breeding pairs (165) and a 17 percent increase in the number of clusters that nested (141) on Fort Stewart in 1998. Of the clusters that nested, 86.1 percent fledged young successfully. Thirty-three of the 47 clusters that initially failed to nest were found renesting within the following 2 weeks, with 72.7 percent of these sites successfully fledging young. Clusters that renested were found to be as successful (Fisher Exact Test, P = 0.15; 72.7 percent for sites that renested versus 70.2 percent for initial nesting attempts) and productive as sites that nested only once. We observed no statistically significant difference in number of eggs ($F_{2200} = 0.98$, P = 0.38), nestlings ($F_{2202} = 0.64$, P = 0.53), or the number of young fledged ($F_{2.199} = 1.20$, P = 0.30) between sites that renested and those that nested only once. We then pooled these data to determine mean rates for the overall population. Mean clutch size for RCW nests was 2.75 ± 0.07 eggs/nest; mean brood size was 2.22 ± 0.07 nestlings/nest; and the number of young fledged was 1.76 ± 0.08 young/occupied nest (2.04 ± 0.07) young/successful nest). Occupied nests include sites that are successful as well as sites that are not. Successful nests include only those sites that are successful in fledging young. Approximately 290 young fledged from RCW nest sites during 1999, with

53.0 percent of those young being male. There was a 35.9 percent decline in the reproductive potential of RCW nests from the incubation phase to the nestling phase (P < 0.001). The decline was not as dramatic from the nestling phase to the fledgling phase (16.9 percent), but was still significant (P = 0.04). Overall, we observed a significant decline of 53.2 percent in the reproductive potential from incubation through the fledgling phase $(F_{2,492} = 61.8, P < 0.001)$. Of the 23 clusters that failed to produce young during 1999, it appears as if at least one site failed due to nest predation by a rat snake (*Elaphe obsoleta*), while a second nest may have been lost to southern flying squirrels (*Glaucomys volans*). In another case, a rat snake was taken by Fort Stewart Fish and Wildlife personnel from a cluster that had produced a second clutch. The snake later passed identification bands for the young of that cluster confirming that it had consumed the nestlings. Two other sites had partial brood loss due to flooding of the nest cavity.

Sample Cluster Population Dynamics

As was the case for the population as a whole, the project sample clusters that renested after initial nest failure were as successful and productive as sites that nested only once. Therefore, data were pooled before determining overall sample group fitness rates. Disturbed and undisturbed nest sites did not differ significantly in the number of eggs ($F_{1.72} = 1.65$, P = 0.20), number of nestlings ($F_{1.72} =$ 3.52, P = 0.07), or number of young fledged ($F_{1.72} = 3.09$, P = 0.08). Forty-two of the 48 disturbed RCW nest sites were successful in producing an average of 3.47 \pm 0.16 eggs/nest, 2.27 \pm 0.16 nestlings/nest, and 1.84 \pm 0.16 young/occupied nest $(2.14 \pm 0.14 \text{ young/successful nest})$, while 23 of 25 undisturbed sites were successful in producing an average of 3.56 ± 0.31 eggs/nest, 2.28 ± 0.17 nestling/nest, and 1.80 ± 0.17 young/occupied nest (1.96 ± 0.15 young/successful nest). The number of disturbed sites that successfully nested was not significantly different from undisturbed sites (Fisher Exact Test, P > 0.05). For disturbed sites, 8 of the 48 nesting attempts were second attempts. One disturbed site produced and successfully fledged a second clutch, though experimental testing was only done during the first clutch. For undisturbed sites, 8 of 25 nesting attempts were second attempts. The number of disturbed cluster sites that renested was not significantly different from undisturbed sites (Fisher Exact Test, P > 0.05). One undisturbed site attempted to nest for a third time, but did not successfully fledge young. We found no difference in the reproductive success (Fisher Exact Test, P > 0.05) or productivity ($F_{1.47} = 2.49$, P = 0.12) for RCW cluster sites exposed with artillery simulator blast noise versus sites that received .50-caliber blank fire.

Noise and Response Monitoring Summary

During the 1999 field season we documented RCW response to experimental noise from controlled artillery simulators and .50-caliber blank fire. Passive noise from large-caliber live fire (25-mm M2A2 Bradley Fighting Vehicles, 120-mm M1A1-Tanks, and 155-mm M109 Howitzers), grenade simulators, small-arms live fire (5.56 mm M-16 and Saw, 7.62-mm, and .50-caliber machine guns), and military helicopters was recorded as it occurred. Passive noise was monitored during all nesting phases, while experimental tests were performed only during the incubation and early portions of the brooding phase when adults were present at the nest for extended periods of time.

We made noise measurements and behavioral response observations at a total of 48 experimental and 14 passive sample clusters (9 of the 14 passive sample clusters were also used in experimental testing). Detailed results are described below and are presented in the data tables and figures in Appendices B, C, and D. The tables of Appendix B present summaries of the noise level measurements and RCW responses. A typical spectrum for the most prevalent noise sources is presented in Appendix C. Appendix D presents noise level summaries for each noise stimulus type and detailed noise measurements in terms of one-third-octave-band SEL levels. These are the data to which future adjustments for cavity resonance and woodpecker frequency weighting will be applied to obtain single-number overall noise levels. We also made behavioral observations at a total of 25 undisturbed sample clusters for the purpose of obtaining a baseline against which to judge proximate response at the disturbed clusters.

Passive Monitoring

We recorded 691 passive noise events in 34 data sessions at 14 RCW clusters during the 1999 nesting season. Small-arms live fire events (M-16 rifles) were recorded most frequently, followed by large-caliber live fire events (greater than 20 mm in diameter), helicopters, and grenade simulators. Multiple noise events and stimulus types were usually recorded during each data session. Stimulus type, frequency, and noise level varied for each cluster and are shown in the tables of Appendix B.

Experimental Testing

We conducted 105 experimental tests at 48 cluster sites (24 for each noise type) during the 1999 nesting season (Tables B1 and B2, Appendix B).

Noise Measurement Testing

In addition to recording noise levels at the base of active RCW nest sites, we also measured noise levels in nest cavities before or after the nesting season. Both natural and artificial cavities were tested in 1999. Nest cavities were found to act as sound resonators, emphasizing the 125 to 250-Hz portion of the frequency band, and varying by individual tree. In the examples presented in Figures C1 and C2 (Appendix C), artillery simulators and .50-caliber blank fire events had maximum spectral noise levels 13 and 13.1 dB louder, respectively, inside the nest cavity compared with recordings for the same events measured at the base of the nest tree.

Distance and Noise Level Thresholds for Response

Experimental Tests

Artillery Simulators

As stimulus distance decreased, RCWs flush frequency increased (Figure 8), regardless of stimulus type (Tables B1 and B2). RCWs did not flush when artillery simulator blasts were ≥ 244 m away from nest sites and SEL noise levels < 84 dBA (89 dB, unweighted). Only one flush response was documented at a distance of 122 m. RCWs returned to their nests on average within 4.6 minutes after being flushed, while returning no later than 10 minutes overall (Figure 9). Data collection during the 2000 field season will emphasize the distance between 122 and 244 m to better develop the distance and noise thresholds for RCW response, as well as replicate those distances tested during the 1999 season.

.50-Caliber Blank Fire

Similarly, we only recorded one flush response due to .50-caliber blank fire at 122 m. We attempted to test RCW response to .50-caliber blank fire at distances > 122 m, but due to weather and other logistical constraints we were not able to develop a distance-response threshold for the cluster that flushed at 122 m. Data collection during the 2000 field season will emphasize this distance. Blank fire testing consistently elicited higher response rates than artillery simulators at similar distances (Figure 8). At distances ≤ 122 m, .50-caliber blank fire elicited a significantly greater flush response (49.1 percent) than comparably distance artillery simulators (31.3 percent; Fisher's Exact Test: P < 0.05, Appendix B: Tables B1 and B2).

Figure 8. RCW flush frequency by stimulus type and distance.

RCWs flushed only once when .50-caliber blanks were fired at distances of 122 m from nest sites and did not flush when SEL noise levels were < 72 dBA (82 dB, unweighted). Ambient sound levels were substantially lower than experimental noise events during all tests. On average, RCWs returned to their nests within 6.3 minutes after being flushed (within 12 minutes overall; Figure 9). Data collection during the 2000 field season will emphasize areas greater than 122 m to develop the distance and noise thresholds for RCW response, as well as replicate those distances tested during the 1999 season.

Figure 9. Mean return time for RCWs in response to experimental testing.

Passive Events

Small-Caliber Live Fire

There was only one RCW nest site, cluster 103, that received small-caliber live fire noise at distances less than 400 m. Noise levels at cluster 103 were louder than other clusters due to supersonic bullet noise ("sonic boom") and ricocheting bullets from an M-16 range (Small Arms — Golf) hitting trees in close proximity to the nest tree. The two other clusters monitored for passive noise in the Small Arms Impact Area (clusters 3 and 25) were between ranges and much further downrange than cluster 103 and therefore received lower noise levels. These sites were monitored remotely during firing periods via video camera and audio recording equipment.

RCWs did not appear to flush in response to small-caliber noise at cluster 103, but their flight activities may have been influenced. On 3 separate days, over a 6-day period, RCWs were only observed arriving and departing from the nest during inactive periods at the range (Figures 10 through 12). Data points for Figures 10 through 12 represent individual bullet noise events or groups of muzzle blast events that were separated in time from other shots. Red lines represent times when RCWs returned to the nest and blue lines represent times that birds departed the nest. Noise levels from bullet "sonic booms" and ricocheting bullets were substantially louder than rifle muzzle noise coming from the range (Figure 13). Further analysis will reveal whether the "bullet noise" is due to sonic booms and/or bullets impacting trees. When we compared the frequency spectra for muzzle blast noise versus bullet noise we found that most of the noise energy for muzzle blast noise occurred at 630 Hz, while the bullet noise occurred at higher frequency levels, around 1600 to 2000 Hz. Bullet noise is identified on Figures 10 through 12 by the similarities between the unweighted and "A" weighted noise levels, and account for all data points above 78 dB. "A" weighted noise levels were very close to their corresponding unweighted noise levels. Bullet noise reached levels 30 dB louder than muzzle blast noise within the 1600 to 2000 Hz range and around 15 dB louder when peak levels for both noise events were compared (Figure 13). Bullet noise represented 15.6 percent (102 noise events, Table B3) of the noise events that were documented at cluster 103. Cluster 103 successfully fledged two young in 1999.

Overall, RCWs did not flush when small-arms live fire was more than 400 m from active nest sites and SEL noise levels were < 77 dBA (79 dB, unweighted; Appendix B, Table B3). Small-arms live fire events < 100 m did not represent shots from rifles themselves, but were from bullet noise. We were not able to determine the exact distances that bullets were hitting surrounding trees, but due

termine the exact distances that bullets were hitting surrounding trees, but due to the received noise levels and the fact that we have seen bullets lodged in nearby trees, distances appear to be relatively close. Rifle noise from Small Arms — Golf M-16 range was approximately 430 m from the nest. We did not locate any other active RCW nest sites < 400 m from any small arms ranges to which we had access for testing purposes.

Figure 10. Noise levels from M-16 live fire events at cluster 103 on May 12, 1999.

Figure 11. Noise levels from M-16 live fire events at cluster 103 on May 13, 1999.

Figure 12. Noise levels from M-16 live fire events at cluster 103 on May 13, 1999.

Figure 13. SEL weighting comparison for M-16 live fire on May 17, 1999, from range and tree impact noise near a RCW nest site.

Grenade Simulators

RCWs flushed once during eight grenade simulator blasts recorded during passive noise events. This flush event occurred during a realistic training maneuver when a grenade simulator was detonated approximately 100 m from the nest (Figure C3, Appendix C). A bird was observed returning to the nest within 8 minutes after the flush had occurred (this site was successful in fledging one young). Overall, RCWs did not flush when grenade simulators were detonated ≥ 200 m from nest sites and SEL noise levels were < 84 dBA (91 dB, unweighted;

Appendix B, Table B4). We did not record any grenade simulators < 100 m or between 100 and 200 m and therefore could not test for response within those ranges.

Helicopters

RCWs did not flush when military helicopters were ≥ 100 m from nest sites and SEL noise levels were < 88 dBA (104 dB, unweighted; Appendix B, Table B5). Due to the low probability of encountering helicopters, we were unable to test for RCW response at distances < 100 m.

Large-Caliber Live Fire

Large-caliber live fire events on Fort Stewart were dramatically reduced from numbers documented in 1998, therefore our ability to record RCW responses to such passive noise events was also limited. The 1999 field season data show that RCWs did not flush when large-caliber guns were fired at distances ≥ 700 m from nest sites and SEL noise levels were < 85 dBA (103 dB, unweighted; Appendix B, Table B6). We did not record any large-caliber gun fire < 700 m from any active RCW nest site, therefore, we could not test for response within that range.

5 Discussion

Nesting Success

38

The preliminary findings, based on 1999 experimental testing data, suggest that measured levels of training noise did not affect RCW nesting success or productivity. We believe the small but nonsignificant decrease in reproductive success between disturbed (N=48) and undisturbed (N=25) sites was attributable to natural attrition inherent in the larger disturbed sample. Through further investigation over the next year we will be able to make more definitive conclusions regarding RCW fitness as a function of training noise.

Flush Response and Related Behaviors

Flush Response

The proportion of Red-cockaded Woodpeckers that flushed in response to experimental training noise was negatively related to stimulus distance. The dose-response relationship for RCWs based on flush frequency with distance and noise level indicated that .50-caliber blank fire elicited a greater response than artillery stimulators. RCWs apparently perceive artillery simulators as less threatening than .50-caliber blank fire because of their shorter duration (total event duration), minimal visibility, and lessened association with human activity. It is possible that disturbances in closer proximity to an RCW's location may also be more visible and therefore elicit a greater response than a disturbance farther away, regardless of noise level. It is important to consider all aspects of a stimuli when examining an animal's response to a disturbance. Although season and nesting phase influence avian response to disturbance (Thiessen 1957; Knight and Temple 1986; Delaney et al. 1999), habituation, prior experience, and animal temperament are important factors that should be taken into account (Hart 1985; Manci et al. 1988).

RCWs flushed infrequently in response to passive military training noise during the 1999 nesting season. Most of the passive noise events that we recorded were distant and had relatively low noise levels. Woodpeckers returned to their nests relatively quickly after being flushed. Return times by RCWs were comparable with times reported for bird species in other noise disturbance studies (Awbrey and Bowles 1990; Holthuijzen et al. 1990), and were comparable with 1998 RCW response data (Pater et al. 1999). The amount of time that an attending adult is away from the nest has important consequences when we consider the role that nest predation and nest competition has on this species. There are a number of species that are capable of usurping nesting cavities from the RCW. Both redbellied woodpeckers (Melanerpes carlinus) and red-headed woodpeckers (Melanerpes erythrocephalus) have been shown to remove and eat eggs, usually in the process of usurping the cavity from the RCW. Southern flying squirrels (Glaucomys volans) have also been documented to eat eggs or young when competing with RCWs for nest cavities (Jackson 1994).

Nesting Behaviors

Through audio and video surveillance it appears that noise from Small Arms — Golf may have influenced RCW behavior at cluster 103 during the 1999 nesting season. RCWs were not observed arriving or departing from the nest during the nestling phase when the range was firing, only during inactive periods. It is possible that small arms fire from the range is influencing the timing, frequency, and duration of RCW flights from the nest. Noise levels for that range were louder than other comparably distant ranges due to the orientation of the rifles and because of bullet noise from sonic booms and ricocheting bullets. We are currently analyzing the remainder of the video data to determine if nest attentiveness, trip frequency, timing, and duration, or the number of prey deliveries are influenced by experimental or passive training activities on Fort Stewart.

We did not observe any nest abandonment relative to camera use. Birds were observed using camera trees for foraging and perch sites when coming and going from the nest tree.

Distance and Sound Thresholds

Despite the aggressive nature of our testing regime (i.e., close proximity and repeated exposure), RCW behavioral responses were minimal when experimental stimuli were ≥ 122 m away. We did not observe RCWs flushing from the nest when noise stimuli were ≥ 244 m away. Stimulus distances > 122 m will be tested in more detail during the 2000 field season for the development of more definitive distance and sound thresholds based on RCW response parameters. A similar pattern was present during passive disturbances. We observed no flush responses by RCWs when passive stimuli were ≥ 200 m away. Due to the varied nature and location of maneuver training activities on Fort Stewart, it is highly

unlikely that woodpeckers would receive as much disturbance activity during the nesting season within any year as the experimentally disturbed RCW sites received during this year's study.

An examination of the data presented in Appendices B and D reveals a wide range of received noise levels at a given distance. One reason is that different types of noise sources of course have different acoustic emissive power. For a given noise source, received noise level also depends on differences in propagation conditions, a result of differences in atmospheric wind and temperature structure. It is well known that at distances of several kilometers, received noise level can vary by as much as 20 dB above and below the mean due to changes in meteorological conditions (Embleton 1982; Li et al. 1994; Larsson and Israelsson 1991; Pater 1981; Piercy et al. 1977; White and Gilbert 1989; White et al. 1993). Differences in received noise level can also be due to orientation of the weapon relative to the receiver. Many weapons exhibit substantial directivity; some as much as 15 dB louder downrange (Pater 1981; Pater et al. (DRAFT); Schomer et al. 1976a and 1976b [Vol I and II]: Schomer et al. 1979; Schomer et al. 1981; Schomer 1982; Schomer 1984; Schomer and Goebel 1985; Schomer 1986a, 1986b; Walther 1972). Some other important factors that should be taken into account are the orientation of the nest cavity relative to the noise source and any barriers between the noise source and the birds position.

Noise Measurement Test

Noise levels within RCW nest cavities were substantially louder than noise levels recorded at the base of the nest tree. Due to differences in cavity and weapon orientation, presence or absence of barriers, and weapon directivity, we were not able to extrapolate noise levels recorded at the base of the tree to received levels within RCW nest cavities. Noise measurements will therefore have to be taken inside each nest cavity before or after the nesting season for each noise source to determine the noise levels that birds may actually be experiencing. We will investigate this in more detail in 2000. We will also continue testing for differences between artificial and natural cavities during the 2000 field season. Data comparing natural and artificial cavities are currently being analyzed to determine if there is a variation in the resonant frequency of the nest trees and if there are any differences in the noise level or duration of the noise event from comparably distant stimulus events.

6 Plans and Conclusions

Plans

The results of the second year of this project have shown that the basic technical approach is appropriate and effective. The primary need is for more data, which we will collect during the 2000 field season by replicating the research protocol from 1999. In particular, we will obtain more data for experimental manipulations and passive disturbance events, such as small arms blanks, artillery, and helicopters. We will search for reproductively active clusters that are located in areas that will fill in the blanks in the data in terms of stimulus distance and noise level.

The matter of cavity resonance effect on the noise level perceived by the RCWs will continue to be investigated. We cannot measure noise levels in the cavity being used by an endangered species during the nesting season; therefore, we will make cavity measurements during pre- and post-nesting periods. The investigation of woodpecker hearing is beginning to return useful results; the current effort will be continued. An expanded effort may be appropriate.

One aspect of the technical approach that has not yet been executed is to use available noise models and training activity data to calculate noise dose for each cluster, and to examine these data for correlation with nesting success data. Fort Stewart installed the updated version of the Range Facility Management Support System (RFMSS) early in 1998. This system includes detailed data regarding training activity. These data will be used in 2000 to examine said correlation.

Conclusions

During the second year of this study of the impacts of training noise on the RCW, we observed and documented experimental training noise events and the resulting RCW responses under realistic conditions. We measured both proximate response behavior and nesting success. We also observed RCW behavior and nesting success at clusters where noise stimuli were absent or minimal (near or below ambient sound levels), to provide an undisturbed behavior baseline

against which to judge response and impact. No significant difference in nesting success was found between experimentally disturbed and relatively undisturbed nest sites. The second year data are limited in number and statistical power and are not sufficient to make strong conclusions or to establish reliable noise doseresponse relations or thresholds. The results are however sufficient to confirm that the project technical approach is appropriate and needs only minor revision, and that the project objectives will be achieved.

References

- Anderson, D.E., O.J. Rongstad, and W.R. Mytton. 1989. "Response of nesting red-tailed hawks to helicopter flights." *Condor* 91:296-299.
- ANSI, American National Standards Institute S1.1-1994, "American National Standard: Acoustical Terminology," 1994.
- ANSI, American National Standards Institute S1.4-1983, "American National Standard Specification for Sound Level Meters," 1983.
- ANSI, American National Standards Institute S12.17-1996, "Impulse Sound Propagation for Environmental Noise Assessment," August 1996.
- ANSI, American National Standards Institute S12.40-1990, "Sound Level Descriptors for Determination of Compatible Land Use," 1990.
- ANSI, American National Standards Institute S12.4-1986, "American National Standard Method for Assessment of High-Energy Impulsive Sounds with Respect to Residential Communities," 1986.
- ANSI, American National Standards Institute S12.9-1996, "Quantities and Procedures for Description and Measurement of Environmental Sound Part 4: Noise Assessment and Prediction of Long-term Community Response," September 1996.
- Awbrey, F.T., and A.E. Bowles. 1990. The effects of aircraft noise and sonic booms on raptors: a preliminary model and a synthesis of the literature on disturbance. Noise and Sonic Boom Impact Technology, Technical Operating Report 12. Wright-Patterson Air Force Base (AFB), OH.
- Beaty, T.A. 1986. Response of Red-cockaded Woodpeckers to habitat alteration. Directorate of Engineering and Housing, Fish and Wildlife Section, Fort Stewart, GA.
- Bowles, A.E. 1995. "Responses of wildlife to noise." Pages 109-156 in R.L. Knight and K.J. Gutzwiller, editors. Wildlife Recreationists, Island Press, Washington, DC.
- Bowles, A.E., F.T. Awbrey, and R. Kull. 1990. "A model for the effects of aircraft overflight noise on the reproductive success of raptorial birds." Noise and Sonic Boom Impact Technology, Inter-Noise 90. Wright-Patterson AFB, OH.
- Buchta, E. 1990. "A field survey of annoyance caused by sounds from small firearms," J. Acoust. Soc. Am., 88, 1459-1467.
- Carrier, W.D., and W.E. Melquist. 1976. "The use of a rotor-winged aircraft in conducting nesting surveys of ospreys in northern Idaho." J. Raptor Res. 10:77-83.

Charbonneau, D., L. Swindell, E.J. Moore, T.A. Beaty, and A. Eaton. 1983. "Preliminary report of the effects of forage habitat reduction on Red-cockaded Woodpecker reproduction in the CALFAX Range Facility at Ft. Stewart, Georgia." Directorate of Engineering and Housing, Fish and Wildlife Section, Fort Stewart, GA.

- Costa, R. 1992. "Challenges for recovery," pp 37-44 in *Proceedings from Sandhills Red-cockaded Woodpecker conference*. D.J. Case and Assoc., Mishawaka, Inc.
- Craig, T.H., and E.H. Craig. 1984. "Results of a helicopter survey of cliff nesting raptors in a deep canyon in southern Idaho." Journal of Raptor Research 18:20-25.
- Delaney, D.K., T.G. Grubb, and D.K. Garcelon. 1998. "An infrared video camera system for monitoring diurnal and nocturnal raptors." J. Raptor. Res. 33:290-296
- Delaney, D.K., T.G. Grubb, P. Beier, L.L. Pater, and M.H. Reiser. 1999. "Effects of helicopter noise on Mexican Spotted Owls." Journal of Wildlife Management 63:60-76.
- Devlin, W.J., J.A. Mosher, and G.J. Taylor. 1980. "History and present status of the Red-cockaded Woodpecker in Maryland." Am. Birds 34:314-316.
- Edwards, R.G., A.B. Broderson, R.W. Barbour, D.F. McCoy, and C.W. Johnson. 1979. Assessment of the environmental compatibility of differing helicopter noise certification standards. Final Report for the Department of Transportation, WA. Report #FAA-AEE-19-13. Contract #78419000000000.
- Ellis, D.H. 1981. Responses of raptorial birds to low level military jets and sonic booms: Results of the 1980-81 Joint U.S. Air Force-U.S. Fish and Wildlife Service Study. Institute for Raptor Studies Report NTIS ADA108-778.
- Ellis, D.H., C.H. Ellis, and DP. Mindell. 1991. "Raptor responses to low-level jet aircraft and sonic booms." *Environmental Pollution* 74:53-83.
- Embleton, T. 1982. "Sound Propagation Outdoors Improved Prediction Schemes for the 80's," Noise Control Engineering Journal, 18/1, 30-39.
- EPA. 1974. Information on Levels of Environmental Noise Requisite to Protect Health and Welfare with an Adequate Margin of Safety, U.S. Environmental Protection Agency, Report No. 550/9-74-004, March 1974.
- EPA. 1982. Guidelines for Noise Impact Analysis, U.S. Environmental Protection Agency, Report No. 550/9-891-105, April 1982.
- FICUN. 1980. Federal Interagency Committee on Urban Noise, Guidelines for Considering Noise in Land Use Planning and Control.
- Fidell, S. et al. 1991 "Revision of a Dosage Effect Relationship for the Prevalence of Annoyance Due to General Transportation Noise," J. Acoust. Soc. Am., 89, 221-233.
- Fort Stewart Endangered Species Management Planning Team. 1998. Endangered Species Management Plan. 116 pages.

- Fraser, J.D., L.D. Frenzel, and J.E. Mathisen. 1985. "The impact of human activities on breeding bald eagles in north-central Minnesota." *Journal of Wildlife Management* 49:585-592.
- Fyfe, R.W., and R.R. Olendorff. 1976. "Minimizing the dangers of studies to raptors and other sensitive species." Canadian Wildlife Service Occasional Paper 23.
- Grubb, T.G. and R.M. King. 1991. "Assessing human disturbance of breeding bald eagles with classification tree models." *Journal of Wildlife Management* 55:501-512.
- Grubb, T.G., and W.W. Bowerman. 1997. "Variations in breeding bald eagle response to jets, light planes, and helicopters." *Journal of Raptor Research* 31:213-222.
- Hart, B.L. 1985. The behavior of domestic animals. W.H. Freeman, New York, New York, USA.
- Hayden, T.J. 1997. Biological assessment of the effects of the proposed revision of the 1994 management guidelines for the Red-cockaded Woodpecker on Army installations. Special Report (SR) 97/48, ADA322086 (U.S. Army Construction Engineering Research Laboratory [CERL] January 1997).
- Hede and Bullen. 1982. "Community reaction to noise from a suburban rifle range," Journal of Sound and Vibration, 82, 39-49.
- Hoffman, R., A. Rosenheck, and U. Guggenbuehl. 1985. Assessment Procedure for Rifle Firing Noise from 300 Meter Facilities, EMPA Department for Acoustics and Noise Abatement, Swiss Federal Office for Environmental Protection, February 1985.
- Hohman, W.L. 1986. "Incubation rhythms of Ring-necked Ducks." Condor 88:290-296.
- Holland, E.D. 1991. "The environment can ground training." Naval Proceedings, October 1991: 71-75.
- Holthuijzen, A.M.A., W.G. Eastland, A.R. Ansell, M.N. Kochert, R.D. Williams, and L.S. Young. 1990. "Effects of blasting on behavior and productivity of nesting prairie falcons." Wildlife Society Bulletin 18:270-281.
- Homans, B. 1974. User Manual for the Acquisition and Evaluation of Operational Blast Noise Data, CERL TR E-42, AD782911, June 1974.
- Jackson, J.A. 1978. "Analysis of the distribution and population status of the Red-cockaded Woodpecker," pp 101-111 in R.R. Odum and L. Landers, eds. Proceedings of the rare and endangered wildlife symposium. Georgia Dep. Nat. Res., Game Fish Div., Tech Bull., WL 4.
- Jackson, J.A. 1983. "Possible effects of excessive noise on post-fledging Red-cockaded Woodpeckers," pp 38-40 in D.A. Wood, ed. Red-cockaded Woodpecker symposium II proceedings, Florida Game Fresh Water Fish Commission, Tallahassee, FL.
- Jackson, J.A. 1987. "The Red-cockaded Woodpecker," pp 479-493 in R.L. DiSilvestro, ed. Audubon wildlife report 1987, Academic Press, New York.

Jackson, J.A. 1994. "Red-cockaded woodpecker (*Picoides borealis*)," pp 1-19 in A. Poole and F. Gill, eds. *The Birds of North America*, No. 85. The Academy of Natural Sciences, Washington, DC, The American Ornithologists Union.

- Jackson, J.A., and S.D. Parris. 1995. "The ecology of Red-cockaded Woodpeckers associated with construction and use of a multi-purpose range complex at Ft. Polk, Louisiana," pp 277-282 in D.L. Kulhavy, R.G. Hooper, and R. Costa, eds. Red cockaded Woodpecker: recovery, ecology, and management. Center for Applied Studies in Forestry, College of Forestry, Stephen F. Austin State University, Nacogdoches, TX.
- Jordan, R.A., K.S. Wheaton, and W.M. Weiher. 1995. Integrated endangered species management recommendations for Army Installations in the Southeastern United States: Assessment of the potential effects of Army-wide management guidelines for the Red-cockaded Woodpecker on associated endangered, threatened, and candidate species. Final Report, The Nature Conservancy Southeast Regional Office, North Carolina.
- Jordan, R.A., K.S. Wheaton, W.M. Weiher, and T.J. Hayden. 1997. Integrated endangered species management recommendations for Army Installations in the Southeastern United States. CERL SR 97/94, ADA286931 (CERL, June 1997).
- Knight, R.L., and S.A. Temple. 1986. "Why does intensity of avian nest defense increase during the nesting cycle?" Auk 103:318-327.
- Larsson, C., and S. Israelsson. 1991. "Effects of Meteorological Conditions and Source Height on Sound Propagation near the Ground," Applied Acoustics 33 (1991), 109-121.
- Lawrence, G.N. 1867. "Catalogue of birds observed in New York, Long and Staten Islands and the adjacent parts of New Jersey," Annual Lyceum of the Natural History of New York 8:279-300.
- Lennartz, M.R., P.H. Geissler, R.F. Harlow, R.C. Long, K.M. Chitwood, and J.A. Jackson. 1983. "Status of the Red-cockaded Woodpecker on federal lands in the south," pp 7-12 in D.A. Wood, ed. Red-cockaded Woodpecker symposium II Proceedings. Florida Game Fresh Water Fish Commission, Tallahassee, FL.
- Li, Y.L., M.J. White, and S.J. Franke. 1994. "New fast field programs for anisotropic sound propagation through a wind velocity profile," J. Acoust. Soc. Am. 95, 718-726, February 1994.
- Luz, G. 1982. "An improved procedure for evaluating the annoyance of small arms ranges," J. Acoust. Soc. Am., 72, Suppl. 1, S26.
- Manci, K.M., D.N. Gladwin, R. Villella, and M.G. Cavendish. 1988. Effects of aircraft noise and sonic booms on domestic animals and wildlife: a literature synthesis. U.S. Fish and Wildlife Service Technical Report NERC 88.
- McGarigal, K., R.G. Anthony, and F.B. Isaacs. 1991. "Interactions of humans and bald eagles on the Columbia River estuary." Wildlife Monograph 115:1-47.
- NAS, National Academy of Sciences. 1977. Committee on Hearing, Bioacoustics, and Biomechanics, Working Group 69 Report, Guidelines for Preparing Environmental Impact Statements on Noise.

- NAS, National Academy of Sciences. 1981. Committee on Hearing, Bioacoustics, and Biomechanics, Working Group 84 Report, Assessment of Community Response to High-Energy Impulsive Sounds.
- Pater, L. 1981. Gun Blast Far Field Overpressure Contours, Naval Surface Weapons Center, TR-79-442. March 1981.
- Pater, L., Walter Alvendia, Raman Yousefi, and James Wilcoski. DRAFT. "Acoustic Spectral Emission Data for Several Small Weapons," Draft CERL Technical Report.
- Pater, L.L., D.K. Delaney, and T.J. Hayden. 1999. Assessment of training noise impacts on the Red-cockaded Woodpecker: Preliminary results. CERL Technical Report (TR) 99/51(CERL, June 1999).
- Piercy, J.E., T. Embleton, and L. Sutherland. 1977. "Review of Noise Propagation in the Atmosphere," J. Acoust. Soc. Am., 61, 1403-1418, June 1977.
- Platt, J.B. 1977. "The breeding behavior of wild and captive gyrfalcons in relation to their environment and human disturbance." Ph.D. dissertation. Cornell University, Ithaca, NY.
- Rice, C. 1983. "CEC Joint Research on Annoyance due to Impulse Noise: Laboratory Studies," Noise as a Public Health Problem: Proceedings of the Fourth International Congress, Volume 2, G. Rossi, Editor, Cetnro Ricerche E Studi Amplifon, Milan, Italy, pp 1073-1084.
- Rice, C., I. Flindell, and J. John. 1986. "Annoyance due to Impulse Noise: Laboratory Studies, Final Report, CEC Third Programme, Phase 2, 1984-85," Contract Report 86/13, Institute of Sound and Vibration Research, University of Southampton, July 1986.
- Schomer, P. 1994. "New Descriptor for High-Energy Impulsive Sounds," *Noise Control Eng. J.* 42(5), 179-191.
- Schomer, P.D. 1982. Acoustic Directivity Patterns for Army Weapons: Supplement 1, CERL TR N-60, ADA121665, September 1982.
- Schomer, P.D. 1984. Acoustic Directivity Patterns for Army Weapons: Supplement 2, CERL TR N-60, ADA145643, August 1984.
- Schomer, P.D. 1986a. Acoustic Directivity Patterns for Army Weapons: Supplement 4: The Multiple Launch Rocket System, CERL TR N-60, ADA166490, February 1986.
- Schomer, P.D. 1986b. "High-energy Impulsive Noise Assessment," J. Acoust. Soc. Am., 79(1), 182-186, January 1986b.
- Schomer, P.D., and S.S. Goebel. 1985. Acoustic Directivity Patterns for Army Weapons: Supplement 3: The Bradley Fighting Vehicle, CERL TR N-60, ADA155219, April 1985.
- Schomer, P.D., D. Effland, V. Pawlowska, and S. Roubik. 1981. Blast Noise Prediction Volume 1: Data Bases and Computational Procedures, CERL TR N-98, ADA099440, March 1981.

48

Schomer, P.D., L. Wagner, L. Benson, E. Buchta, K.-W. Hirsch, and D. Krahe. 1994. "Human and community response to military sounds: Results from field-laboratory tests of small-arms, tracked-vehicle, and blast sounds," *Noise Control Engineering Journal*, Vol 42, 71-84.

- Schomer, P.D., L.M. Little, and A.B. Hunt. 1979. Acoustic Directivity Patterns for Army Weapons, CERL TR N-60, ADA066223, January 1979.
- Schomer, P.D., R.J. Goff, and L.M. Little. 1976a. The Statistics of Amplitude and Spectrum of Blasts Propagated in the Atmosphere Vol. I, CERL TR N-13, ADA033475, November 1976.
- Schomer, P.D., R.J. Goff, and L.M. Little. 1976b. The Statistics of Amplitude and Spectrum of Blasts Propagated in the Atmosphere Vol. II: Appendices C through E, CERL TR N-13, ADA033361, November 1976.
- Schultz, T.J. 1978. "Synthesis of Social Surveys on Noise Annoyance," J. Acoust. Soc. Am., 64, 377-405.
- Scott, J.M., S.A. Temple, D.L. Harlow, and M.L. Shaffer. 1994. "Restoration and management of endangered species," pp 531-539 in T.A. Bookhout, ed. Research and management techniques for wildlife and habitats. Fifth ed. The Wildlife Society, Bethesda, MD.
- Snyder, N.F.R., H.W. Kale II, and P.W. Sykes, Jr. 1978. An evaluation of some potential impacts of the proposed Dade County training jetport on the endangered Everglade Kite. FWS, Patuxent Wildl. Res. Cent., MD.
- Sorenson and Magnusson. 1979. "Annoyance caused by noise from shooting range," Journal of Sound and Vibration, 62, 437-442.
- SPSS, Inc. 1998. SPSS 8.0 for Windows: base, professional statistics, and advanced statistics. SPSS, Inc., Chicago, IL.
- Stalmaster, M.V., and J.L. Kaiser. 1997. "Flushing responses of wintering bald eagles to military activity." Journal of Wildlife Management 61:1307-1313.
- Steenhof, K., and M.N. Kochert. 1982. "An evaluation of methods used to estimate raptor nesting success." Journal of Wildlife Management 46:885-893.
- The Nature Conservancy (TNC). 1996. Effects of military training on the Red-cockaded Woodpecker. Final Report for Fort Benning Army Installation.
- Thiessen, G. 1957. "Acoustic irritation threshold of ring-billed gulls." Journal of Acoustical Society of America 29:1307-1309.
- U.S. Code of Federal Regulations. 1980. Title 14, Part 150. "Airport Noise Compatibility Planning."
- Vos, J. 1995. "A review of research on the annoyance caused by impulse sounds produced by small firearms," Proceedings of INTER-NOISE 95: Vol 2, Noise Control Foundation: New York, 875-878.

- Walters, J.R., P.D. Doerr, and J.H. Carter, III. 1988. "The cooperative breeding system of the red-cockaded woodpecker." *Ethology* 78:275-305.
- Walther, M.F. 1972. Gun Blast from Naval Guns, NWL Technical Report TR-2733, Naval Weapons Laboratory, August 1972.
- White, C.M., and T.L. Thurow. 1985. "Reproduction of ferruginous hawks exposed to controlled disturbance. *Condor* 87:14-22.
- White, M.J., and K.E. Gilbert. 1989. "Application of the parabolic equation to the outdoor propagation of sound," *Applied Acoustics* 27(3), 227-238.
- White, M.J., C.R. Shaffer, and R. Raspet. 1993. Measurements of Blast Noise Propagation over Water at Aberdeen Proving Ground, MD, CERL TR EAC-93/02, ADA280383, September 1993.
- Windsor, J. 1977. The response of Peregrine Falcons (Falco peregrinus) to aircraft and human disturbance. Mackenzie Valley Pipeline Investigations, Report for Environmental Social Programs. Canadian Wildl. Serv.
- Zar, J.H. 1984. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey.

Appendix A: Significant Legal Requirements

The Endangered Species Act (ESA) requires Federal agencies to carry out programs for the conservation of threatened and endangered species. Agencies are further required to ensure that their actions do not jeopardize the continued existence of listed species or result in the destruction or adverse modification of the critical habitat of these species. These requirements fall under provisions of Section 7 of the Act, which also requires agencies to conduct biological assessments to evaluate the impacts of their activities on listed species. This assessment serves as the primary basis for coordination with the U.S. Fish and Wildlife Service which, in turn, issues a biological opinion and specific endangered species management recommendations. Implementation of these recommendations can place constraints on execution of the military mission. To avoid possible penalties resulting from findings of "take" due to harassment or harm resulting from exposure to military-related noise, a capability is needed to evaluate and monitor the impact of noise on both behavior and breeding success of affected species. Under the ESA it is the responsibility of the land owner, not of the U.S. Fish and Wildlife Service, to evaluate effects of land use activities on threatened and endangered species.

The ESA prohibits take of endangered species, where "take" means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or attempt to engage in any such conduct. Within the definition of take, the term "harm" has been subject to significant judicial scrutiny. "Harm" is clearly an act that actually kills or injures wildlife, but it may also include actions that significantly impair essential behavioral patterns, including breeding, feeding, or sheltering.

The National Environmental Policy Act (NEPA) requires Federal agencies to assess the impact of planned activities on the environment and to make the assessment available to the general public. The decision making procedures are documented by either an Environmental Assessment (EA) or an Environmental Impact Statement (EIS). Noise and threatened and endangered species are often important issues in these documents, particularly as reviewers place a stronger emphasis on cumulative effects of activities.

Appendix B: Summary Data Tables

Table B 1. Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise levels of experimental artillery simulator testing on Fort Stewart. GA. 1999.

Stimulus Distance (m)	Cluster Tested	Number of	Number of	Number of	Noi	Noise Levels, SEL (dB)	(dB)	Typical Ambient LEQ
		Noise Events	Data Sessions	Flushes	Cavity level unweighted		"A" weighted	(dB) "A" weighted
15.2	79, 137, 183	3	3	2	109.0-114.9	109.0-114.9 100.8-107.4	95.9-100.8	40.5-40.7
30.5	1,41,47,79,80,81,86, 87,107,126,137,159,	17	17	ω	106.0-111.3	106.0-111.3 101.9-104.9	90.6-98.9	38.0-43.0
61.0	2,41,47,48,75,80,86,87,107,126,159,172,177,197,197,198,218	17	17	5	103.9-108.9	103.9-108.9 94.4-103.8	89.5-94.5	38.1-56.5
91.5	2,75,218	3	3	0	105.3	99.1-100.9	85.9-89.0	38.9-41.1
122.0	2,47,48,71,75,87,172,179,184,198,218	11	11		98.0-104.1	93.7-99.1	75.4-83.9	41.0-44.2
244.0	184	-	1	0	-	97.7	77.9	41.3
Totals	24	52	52	91				

Table B 2. Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise levels of experimental .50-caliber blank fire testing on Fort Stewart, GA, 1999.

23, 53, 61, 151 Noise Events Data Sessions Flushes Cavity level unweighted " 23, 32, 36, 51, 53, 61, 88, 120, 129, 148, 151, 63, 134, 206 39 15, 118.9 115, 1-118.9 115, 2-108.3 6, 10, 36, 51, 57, 120, 129, 133, 139, 148, 163, 176, 205, 228 114 16 7 99, 6-108.9 85, 7-98.8 6, 36, 57, 129, 133, 139, 176, 205, 228 66 9 6 93, 6-102.5 84, 3-95.0 12, 23, 51, 57, 133, 148, 176, 205, 228 63 9 6 93, 6-102.5 84, 3-95.0 12, 23, 51, 57, 133, 148, 176, 205, 228 63 9 6 93, 6-102.5 86, 4-89.4 24 380 53 26 86, 4-89.4 86, 4-89.4	Stimulus Distance (m)	Clusters Tested	Number of	Number of	Number of	No	Noise Levels, SEL (dB)	(dB)	Typical Ambient LEQ
23, 25, 51, 151 39 4 3 115.1-118.9 115.2-108.3 23,32,36,51,53,61, 88,120,129,148, 151, 163,194,206 16 15 9 108.7-113.7 94.4-105.1 6,10,36,51,57,120, 129,133,139,148, 163,176,205,228 114 16 7 99.6-108.9 85.7-98.8 6,36,57,129,133,139,176,205,228 66 9 6 93.6-102.5 84.3-95.0 12,23,51,57,133,148, 176,205,228 63 9 6 93.4-96.4 86.4-89.4 24 380 53 26 93.4-96.4 86.4-89.4			Noise Events	Data Sessions	Flushes	Cavity level		"A" weighted	(dB) "A" weighted
23,32,36,51,53,61, 88,120,129,148, 151, 98 15 9 108.7-113.7 9 163,194,206 103,134,206 114 16 7 99.6-108.9 9 6.10,36,51,57,120,133,139,148,176,205,228 66 9 6.36,57,129,133,148,176,205,228 66 9 6 93.6-102.5 93.6-102.5 12,23,51,57,133,148,176,205,228 63 9 1 93.4-96.4 93.4-96.4	15.2	23, 53, 61, 151	39	4	3	115.1-118.9		101.6-103.1	41.5-53.7
6,10,36,51,57,120, 129,133,139,148, 114 16 7 99.6-108.9 163,176,194,205, 206,227, 66 9 6 93.6-102.5 6,36,57,129,133,139, 176,205,228 63 9 1 93.4-96.4 12,23,51,57,133,148, 176,205,228 63 9 1 93.4-96.4	30.5	23,32,36,51,53,61, 88,120,129,148, 151, 163,194,206	86	15	6	108.7-113.7		90.7-99.9	40.8-41.2
6,36,57,129,133,139, 176,205,228 66 9 6 93.6-102.5 12,23,51,57,133,148, 176,205,228 63 9 1 93.4-96.4 24 380 53 26 38.0 53 56	61.0	6,10,36,51,57,120, 129,133,139,148, 163,176,194,205, 206,227,	114	16	7	99.6-108.9	85.7-98.8	78.9-88.9	37.0-42.7
12,23,51,57,133,148, 176,205,228 63 9 1 93.4-96.4 24 380 53 26	91.5	6,36,57,129,133,139, 176,205,228	99	6	9	93.6-102.5	84.3-95.0	78.3-87.4	39.2-42.7
24 380 53	122.0	12,23,51,57,133,148, 176,205,228	63	6	-	93.4-96.4	86.4-89.4	79.5-82.7	38.2-41.5
	Totals	24	380	53	56				

Table B 3. Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise levels of passive M-16 live fire on Fort Stewart, GA, 1999.

Stimulus Distance (m)	Cluster Tested	Number of Noise Events	Number of Data Sessions	Number of Flushes	Noise Leve Unweighted	els, SEL (dB) "A" weighted	Typical Ambient LEQ (dB) "A" weighted
N/A	103	102	3	0	78.2-87.9	77.7-88.1	49.4-58.3
400-450	3, 103	484	4	0	63.5-79.4	55.5-77.4	49.2-59.5
1200	25	68	1	0	66.3-76.0	50.2-69.8	46.9
Totals	3	654	8	0			

Table B 4. Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise levels of passive grenade simulator blasts on Fort Stewart, GA, 1999.

Stimulus Distance (m)	Cluster Tested	Number of Noise Events	Number of Data Sessions	Number of Flushes	Noise Leve Unweighted	els, SEL (dB) "A" weighted	Typical Ambient LEQ (dB) "A" weighted
100	41	1	1	1	95.0	89.5	42.3
200	41	1	1	0	91.6	84.8	42.5
300	103	1	1	0	80.4-83.3	58.5-61.8	49.4
400	103	5	5	0	78.2-78.7	60.0-68.2	49.4
Totals	2	8	8	1			

Table B 5. Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise levels of passive helicopter flights on Fort Stewart, GA, 1999. Stimulus distances represent the closest estimated approach distance by a helicopter.

Stimulus Distance (m)	Cluster Tested	Number of Noise Events	Number of Data Sessions	Number of Flushes	Noise Leve Unweighted	els, SEL (dB) "A" weighted	Typical Ambient LEQ (dB) "A" weighted
100-150	6	2	2	0	104.4	88.0	
200-250	23, 44, 83	4	3	0	95.3-99.2	78.7-84.9	38.14-53.7
300	6, 10, 143, 151, 218	5	5	0	90.3-93.8	75.0-84.1	37.0-56.5
400	25, 218	2	2	0	84.8-85.1	71.6-74.5	46.9-56.5
Totals	9	13	12	0			

Table B 6. Flush response of nesting Red-cockaded Woodpeckers versus the number, distance and noise level of passive large-caliber live fire on Fort Stewart, GA, 1999.

Stimulus Distance (m)	Cluster Tested	Number of Noise Events	Number of Data Sessions	Number of Flushes	Noise Leve unweighted	els, SEL (dB) "A" weighted	Typical Ambient LEQ (dB) "A" weighted
700-800	172	2	1	0	101.8-103.0	83.5-85.6	41.4
3000-3500	25,83	10	2	0	68.0-91.3	53.3-65.1	39.8-46.9
5000-6000	10,143,159	4	3	0	79.6-86.4	50.1-71.3	38.1-46.2
Totals	6	16	6	0			

Appendix C: Source Spectra Examples

Figure C-1. SEL weighting comparison for experimental artillery simulator blast at cluster 172 on June 4, 1999.

Figure C-2. SEL weighting comparison for experimental .50-caliber blank fire at cluster 151 on June 24, 1999.

Figure C-3. SEL weighting comparison for a passive grenade simulator blast at cluster 41 on June 2, 1999.

Figure C-4. SEL weighting comparison for a passive helicopter flight at cluster 6 on April 29, 1999.

Figure C-5. SEL comparison of passive large-caliber live fire at cluster 172 on April 27, 1999.

Appendix D: Detailed Noise Event and RCW Response Data

Table D 1. Summary data for experimental artillery simulator blast noise on Fort Stewart, GA, 1999.

Cluster	Date	Nesting	Event	Event	RCW	Recovery	Remarks	Mic	SEL (dB) a	t mic
		Phase	Туре	Dist.	Re-	time (min)		Pos.		
		& Day		(m)	sponse				Flat	Α
1	05-May-99	1-4	Art. Sim.	30.5	0	0		Base	104.5	96.8
1	08-Jun-99	i-7	Art. Sim.	30.5	0	0		Base	102.8	96.7
2	28-Apr-99	1-3	Art. Sim.	122	0	0		Base	89.4	84.5
2	03-May-99	I-8	Art. Sim.	61	0	1.5		Base	102.1	92.7
2	06-May-99	1-9	Art. Sim.	91.5	0	0		Base	100.9	89.0
2	21-May-99	I-1	Art. Sim.	61	0	0		Base	102.1	92.2
2	27-May-99	Incubation	Art. Sim.	61	0	0		Base	100.5	91.0
2	08-Jun-99	N-9	Art. Sim.	30.5	0	0		Base	107.0	99.7
6	27-May-99	Post-fled.	Art. Sim.	30.5	0	0		Base	105.0	98.1
6	27-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	110.6	101.3
6	27-May-99	Post-fled.	Art. Sim.	61	0	0		Base	100.9	93.3
6	27-May-99	Post-fled.	Art. Sim.	61	0	0		Cavity	105.7	96.7
6	27-May-99	Post-fled.	Art. Sim.	122	0	0		Base	88.7	79.3
6	27-May-99	Post-fled.	Art. Sim.	122	0	0		Cavity	102.6	92.2
41	26-May-99	I-1	Art. Sim.	30.5	0	0		Base	104.0	96.6
41	02-Jun-99	I-8	Clay.	0	0	7.95		Base	95.0	89.5
41	02-Jun-99	1-8	Clay.	0	0	7.95		Base	91.6	84.8
41	02-Jun-99	I-8	Art. Sim.	61	0	1.48		Base	101.0	91.2
44	27-May-99	Post-fled.	Art. Sim.	61	0	0		Cavity	112.2	103.4
44	27-May-99	Post-fled.	Art. Sim.	61	0	0		Base	103.9	94.9
44	27-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	113.9	105.9
44	27-May-99	Post-fled.	Art. Sim.	30.5	0	0		Base	105.0	99.2
44	27-May-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	112.8	105.1
44	27-May-99	Post-fled.	Art. Sim.	15.2	0	0		Base	106.8	100.1
47	26-Apr-99	Egg laying	Art. Sim.	30.5	0	0		Base	100.3	85.2
47	30-Apr-99	1-3	Art. Sim.	61	0	0		Base	102.9	92.6
47	03-May-99	I-6	Art. Sim.	30.5	0	0		Base	104.9	97.7
47	04-Jun-99	Post-fled.	Art. Sim.	15.2	0	0		Base	106.3	100.7
47	04-Jun-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	112.7	107.0
47	04-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	104.8	96.5
47	04-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	112.3	104.3
47	04-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	111.6	103.4
47	04-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	102.1	92.1
47	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	112.7	103.8
47	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	103.9	96.0
47	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	103.3	93.1
47	11-Jun-99	Post-fled.	Art. Sim.	-	0	0		Cavity	112.8	104.0

Cluster	Date	Nesting	Event	Event	RCW	Recovery	Remarks	Mic	SEL (dB) a	t mic
		Phase	Туре	Dist.	Re-	time (min)		Pos.		
		& Day		(m)	sponse				Flat	Α
47	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	110.5	104.4
47	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	102.5	94.3
47	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	100.1	89.1
47	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	108.1	99.9
48	23-Apr-99	1-3	Art. Sim.	122	0	0		Base	101.5	86.7
48	23-Apr-99	1-3	Art. Sim.	244	0	0		Base	97.9	83.2
48	27-Apr-99	1-7	Art. Sim.	61	0	0		Base	103.6	92.8
48	02-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	104.0	95.5
48	02-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	112.1	104.0
48	02-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	111.4	102.5
48	02-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	102.8	93.1
51	26-May-99	Post-fled.	Art. Sim.	15.2	0	0		Base	109.0	103.8
51	26-May-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	113.0	107.5
51	26-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	113.3	106.3
51	26-May-99	Post-fled.	Art. Sim.	30.5	0	0		Base	106.4	100.1
52	13-May-99	Post-fled.	Art. Sim.	15.2	0	0		Base	107.8	101.4
52	13-May-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	108.2	100.9
52	13-May-99	Post-fled.	Art. Sim.	30.5	0	0		Base	104.1	97.1
52	13-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	105.6	98.0
52	13-May-99	Post-fled.	Art. Sim.	61	0	0		Base	99.8	90.1
52	13-May-99	Post-fled.	Art. Sim.	61	0	0		Cavity	104.7	93.4
52	13-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	101.8	96.0
52	13-May-99	Post-fled.	Art. Sim.	30.5	0	0		Base	95.9	91.6
52	13-May-99	Post-fled.	Art. Sim.	61	0	0		Cavity	96.8	92.2
52	13-May-99	Post-fled.	Art. Sim.	61	0	0		Base	91.6	90.0
71	07-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	98.0	84.2
71	07-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	100.8	86.8
71	07-Jun-99	Post-fled.	Art. Sim.	122	0	0		Cavity	99.1	83.2
71	07-Jun-99	Post-fled.	Art. Sim.	122	0	0		Base	94.3	78.5
75	28-Apr-99	I-3	Art. Sim.	122	0	0		Base	99.8	86.1
75	03-May-99	1-8	Art. Sim.	61	0	0		Base	101.7	90.6
75	06-May-99	N-0	Art. Sim.	91.5	0	0		Base	100.4	86.3
75	07-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	101.2	90.0
75	07-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	109.8	99.3
75	07-Jun-99	Post-fled.	Art. Sim.	91.5	0	0		Cavity	105.3	93.7
75	07-Jun-99	Post-fled.	Art. Sim.	91.5	0	0		Base	106.0	94.3
79	06-May-99	1-3	Art. Sim.	30.5	0	0		Base	103.3	96.7
79	13-May-99		Art. Sim.	30.5	0	0		Base	104.1	97.5
79	14-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	107.4	100.8

Cluster	Date	Nesting	Event	Event	RCW	Recovery	Remarks	Mic	SEL (dB) a	t mic
		Phase	Туре	Dist.	Re-	time (min)		Pos.		
		& Day		(m)	sponse				Flat	Α
79	14-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	114.6	107.9
79	17-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	95.3	85.3
80	17-May-99	I-1	Art. Sim.	61	0	0		Base	94.4	89.5
80	21-May-99	1-5	Art. Sim.	30.5	0	0		Base	103.6	95.1
81	06-May-99	I-1	Art. Sim.	30.5	0	0		Base	103.5	94.4
86	04-May-99	1-6	Art. Sim.	30.5	0	2.917		Base	103.6	96.9
86	04-May-99	I-6	Art. Sim.	30.5	0	0.1208333 3		Base	104.0	97.2
86	09-May-99	N-0	Art. Sim.	61	0	3.717		Base	96.7	89.5
86	12-May-99	N-3	Art. Sim.	30.5	0	13.667		Base	102.5	93.3
87	23-Apr-99	I-1	Art. Sim.	122	0	5.467		Base	96.8	83.1
87	27-Apr-99	I-5	Art. Sim.	61	0	0		Base	104.1	95.1
87	30-Apr-99	I-8	Art. Sim.	30.5	0	1.567		Base	106.3	98.9
87	03-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	105.5	94.2
87	03-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	109.2	103.0
87	03-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	102.7	94.1
87	03-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	106.8	101.1
103	13-May-99	N-3	Clay.	0	0	0		Base	80.4	61.8
103	13-May-99	N-3	Clay.	0	0	0		Base	81.4	58.5
103	13-May-99	N-3	Clay.	0	0	0		Base	82.7	59.7
103	13-May-99	N-3	Clay.	0	0	0		Base	78.8	60.0
103	13-May-99	N-3	Clay.	0	0	0		Base	83.3	60.3
103	13-May-99	N-3	Clay.	0	0	0		Base	78.7	68.2
103	13-May-99	N-3	Clay.	0	0	0		Base	84.8	85.6
103	13-May-99	N-3	Clay.	0	0	0		Base	78.4	55.5
107	05-May-99	1-9	Art. Sim.	30.5	2	5.067		Base	104.5	98.9
107	10-May-99	N-0	Art. Sim.	61	0	0		Base	101.9	92.5
107	12-May-99	1-7	Art. Sim.	30.5	2	5.15		Base	105.1	98.6
107	17-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	103.8	97.8
107	17-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	112.3	106.3
107	17-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	99.3	90.1
107	17-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	111.3	103.5
107	17-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	101.9	94.6
107	17-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	94.9	88.2
107	17-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	108.6	99.4
107	17-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	117.8	108.9
107	17-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	103.8	97.8
107	17-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	112.3	106.3
125	13-May-99	Post-fled.	Art. Sim.	15.2	0	0		Base	103.0	97.6
125	13-May-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	107.1	99.7

Cluster	Date	Nesting	Event	Event	RCW	Recovery	Remarks	Mic	SEL (dB)	at mic
		Phase	Туре	Dist.	Re-	time (min)		Pos.		
		& Day		(m)	sponse				Flat	A
125	13-May-99	Post-fled.	Art. Sim.	30.5	0	0		Base	97.9	93.0
125	13-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	100.3	93.7
125	13-May-99	Post-fled.	Art. Sim.	61	0	0		Base	91.3	87.8
125	13-May-99	Post-fled.	Art. Sim.	61	0	0		Cavity	94.7	89.1
125	13-May-99	Post-fled.	Art. Sim.	15.2	0	0		Base	103.3	96.6
125	13-May-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	106.1	99.4
125	13-May-99	Post-fled.	Art. Sim.	30.5	0	0		Base	101.9	96.1
125	13-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	104.3	96.7
125	13-May-99	Post-fled.	Art. Sim.	61	0	0		Base	89.8	83.9
125	13-May-99	Post-fled.	Art. Sim.	61	0	0		Cavity	95.7	89.2
126	04-May-99		Art. Sim.	30.5	0	0		Base	105.4	98.2
126	09-May-99	1-8	+	61	0	0		Base	102.1	90.5
126	13-May-99	N-1	Art. Sim.	30.5	0	0		Base	104.2	97.6
137	04-May-99	1-7	Art. Sim.	30.5	0 .	0		Base	103.4	93.7
137	26-May-99	1-7		30.5	2	3.483		Base	103.6	94.3
137	01-Jun-99	N-1	Art. Sim.	15.2	0	0		Base	100.8	95.9
137	01-Jun-99	0	Art. Sim.		0	0		Base	100.8	95.9
143	27-May-99	Post-fled.	Art. Sim.	30.5	0	0		Base	102.7	95.4
143	27-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	110.9	103.7
143	27-May-99	Post-fled.	Art. Sim.	15.2	0	0		Base	105.6	98.7
143	27-May-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	109.8	102.7
159	03-May-99	I-3	Art. Sim.	61	0	0		Base	102.5	94.2
159	06-May-99	I-5	Art. Sim.	30.5	2	2.7		Base	111.6	104.7
159	17-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	106.8	99.7
159	17-Jun-99	Post-fled.	Art. Sim.	30.5	Ó	0		Cavity	114.5	106.8
159	17-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	115.2	105.5
159	17-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	103.0	94.4
172	23-Apr-99	1-7	Art. Sim.	122	0	0		Base	100.5	86.8
172	27-Apr-99	N-0	Art. Sim.	61	0	0		Base	101.4	91.9
172	03-May-99	N-6	Art. Sim.	61	0	0		Base	103.9	96.6
172	04-Jun-99	Post-fled.	Art. Sim.	15.2	0	0		Base	106.7	100.1
172	04-Jun-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	113.5	106.8
172	04-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	104.6	99.1
172	04-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	113.0	106.4
172	04-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	102.9	93.3
172	04-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	112.4	104.6
177	09-May-99	1-3	Art. Sim.	61	0	0		Base	96.4	90.6
177	11-May-99		Art. Sim.		2	3.367		Base	104.8	97.5
177	17-May-99		Art. Sim.		0	0		Base	104.4	96.2

Cluster	Date	Nesting	Event	Event	RCW	Recovery	Remarks	Mic	SEL (dB) a	t mic
		Phase	Туре	Dist.	Re-	time (min)		Pos.		
		& Day		(m)	sponse				Flat	Α
177	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	110.4	102.8
177	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	103.5	95.1
177	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	101.3	90.8
177	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	109.5	99.1
177	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	109.3	102.8
177	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	105.8	100.1
177	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	98.8	86.5
177	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	104.1	93.7
179	23-Apr-99	1-4	Art. Sim.	122	0	0		Base	100.0	86.3
179	28-Apr-99	1-9	Art. Sim.	61	0	0		Base	99.8	92.0
179	07-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	113.7	103.5
179	07-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	103.0	91.4
179	07-Jun-99	Post-fled.	Art. Sim.	122	0	0		Cavity	108.4	97.2
179	07-Jun-99	Post-fled.	Art. Sim.	122	0	0		Base	99.6	81.5
183	04-May-99	I-6	Art. Sim.	30.5	0	0		Base	101.9	90.6
183	10-May-99	N-1	Art. Sim.	15.2	0	0		Base	103.6	98.0
183	07-Jun-99	Post-fled.	Art. Sim.	15.2	0	0		Base	105.8	97.5
183	07-Jun-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	109.0	103.7
183	07-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	108.6	102.1
183	07-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	104.0	97.1
183	07-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	101.2	90.8
183	07-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	108.8	100.1
184	23-Apr-99	l-1	Art. Sim.	244	0	0		Base	97.7	77.9
184	27-Apr-99	1-5	Art. Sim.	122	0	0		Base	99.1	83.9
194	26-May-99	Post-fled.	Art. Sim.	15.2	0	0		Base	107.3	99.6
194	26-May-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	113.8	106.0
194	26-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	114.5	105.2
194	26-May-99	Post-fled.	Art. Sim.	30.5	0	0		Base	106.4	99.0
197	06-May-99	I-7	Art. Sim.	30.5	2	5.983		Base	103.2	95.1
197	10-May-99	N-0	Art. Sim.	61	0	0		Base	97.7	86.3
197	12-May-99	N-2	Art. Sim.	30.5	0	0		Base	101.0	93.5
197	18-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	103.6	94.0
197	18-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	104.1	94.5
197	18-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	107.8	100.3
197	18-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	101.6	92.6
197	18-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	105.0	98.3
197	18-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	107.8	101.0
198	23-Apr-99	I-5	Art. Sim.	122	0	0		Base	100.3	88.2
198	27-Apr-99	1-9	Art. Sim.	61	0	0		Base	103.3	93.8

Cluster	Date	Nesting	Event	Event	RCW	Recovery	Remarks	Mic	SEL (dB) a	t mic
		Phase	Туре	Dist.	Re-	time (min)		Pos.		
		& Day		(m)	sponse				Flat	Α
198	30-Apr-99	N-1	Art. Sim.	30.5	0	0		Base	104.6	97.6
198	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	102.7	95.7
198	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	108.7	100.3
198	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	107.6	95.4
198	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	98.3	87.9
198	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Base	105.6	95.5
198	11-Jun-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	110.7	103.4
198	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Base	102.1	91.2
198	11-Jun-99	Post-fled.	Art. Sim.	61	0	0		Cavity	109.2	99.1
199	11-May-99	Inactive	Art. Sim.	15.2	0	0		Base	113.5	105.8
199	11-May-99	Inactive	Art. Sim.	15.2	0	0		Cavity	117.5	110.7
199	11-May-99	Inactive	Art. Sim.	30.5	0	0		Base	103.6	97.0
199	11-May-99	Inactive	Art. Sim.	30.5	0	0		Cavity	109.7	104.0
199	11-May-99	Inactive	Art. Sim.	61	0 .	0		Base	94.9	85.0
199	11-May-99	Inactive	Art. Sim.	61	0	0		Cavity	101.5	95.0
199	11-May-99	Inactive	Art. Sim.	61	0	0		Base	103.1	95.7
199	11-May-99	Inactive	Art. Sim.	61	0	0		Cavity	104.3	97.1
199	11-May-99	Inactive	Art. Sim.	30.5	0	0		Base	104.0	99.3
199	11-May-99	Inactive	Art. Sim.	30.5	0	0		Cavity	102.5	96.4
206	12-May-99	1-10	Art. Sim.	30.5	0	0		Base	103.6	97.3
208	11-May-99	Post-fled.	Art. Sim.	15.2	0	0		Base	102.4	97.2
208	11-May-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	104.6	97.4
208	11-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	107.5	98.9
208	11-May-99	Post-fled.	Art. Sim.	30.5	0	0		Base	103.3	96.5
208	11-May-99	Post-fled.	Art. Sim.	61	0	0		Cavity	106.5	96.0
208	11-May-99	Post-fled.	Art. Sim.	61	0	0		Base	101.0	90.2
211	13-May-99	Post-fled.	Art. Sim.	15.2	0	0		Base	102.3	96.6
211	13-May-99	Post-fled.	Art. Sim.	15.2	0	0		Cavity	106.7	99.0
211	13-May-99	Post-fled.	Art. Sim.	30.5	0	0	,	Base	96.0	90.3
211	13-May-99	Post-fled.	Art. Sim.	30.5	0	0		Cavity	102.6	95.4
211	13-May-99	Post-fled.	Art. Sim.	61	0	0	i	Base	92.7	89.0
211	13-May-99	Post-fled.	Art. Sim.	61	0	0		Cavity	97.3	91.4
218	23-Apr-99	1-4	Art. Sim.	244	0	0		Base	93.7	75.4
218	27-Apr-99	1-8	Art. Sim.	61	2	1.7		Base	103.8	94.2
218	30-Apr-99	N-0	Art. Sim.	91.5	0	0		Base	99.1	85.9
218	26-May-99	Post-fled.	Art. Sim.	15.2	0	0		Base	107.0	100.8
218	26-May-99		Art. Sim.	15.2	0	0		Cavity	110.1	102.2
218	26-May-99		Art. Sim.	30.5	0	0		Base	106.1	98.3
218	26-May-99		Art. Sim.	30.5	0	0		Cavity	110.4	101.9

Cluster	Date	Nesting	Event	Event	RCW	Recovery	Remarks	Mic	SEL (dB) a	t mic
		Phase	Туре	Dist.	Re-	time (min)		Pos.		
		& Day		(m)	sponse				Flat	Α
231	11-May-99	Inactive	Art. Sim.	15.2	0	0		Base	104.5	97.0
231	11-May-99	Inactive	Art. Sim.	15.2	0	0		Cavity	109.9	104.5
231	11-May-99	Inactive	Art. Sim.	30.5	0	0		Cavity	107.3	100.6
231	11-May-99	Inactive	Art. Sim.	30.5	0	0		Base	105.4	97.8
231	11-May-99	Inactive	Art. Sim.	61	0	0		Base	101.7	91.4
231	11-May-99	Inactive	Art. Sim.	61	0	0		Cavity	105.4	98.6
236	11-May-99	Inactive	Art. Sim.	15.2	0	0		Base	101.4	93.9
236	11-May-99	Inactive	Art. Sim.	15.2	0	0		Cavity	105.8	98.0
236	11-May-99	Inactive	Art. Sim.	30.5	0	0		Cavity	104.8	97.1
236	11-May-99	Inactive	Art. Sim.	30.5	0	0		Base	102.0	94.5
236	11-May-99	Inactive	Art. Sim.	61	0	0		Base	102.1	90.1
236	11-May-99	Inactive	Art. Sim.	61	0	0		Cavity	105.4	97.7

g
ヹ
Š
Ste
Fort St
Ľ
5
SIS
ă
TI I
ŝ
ery
₽
ā
ıta
ne
e <u>r</u> i
ğ
or e
afc
ectra
se st
oj:
hted no
te
ğ
We
ă
ive
ital
ser
ore.
Rec
0
Table D
Ta

- ·	13																																		
	Calc.	SE SE	104.5	102.8	89.4	102.1	100.9	102.1	100.5	107.0	105.0	110.6	100.9	105.7	88.7	102.6	104.0	95.0	91.6	101.0	112.2	103.9	113.9	105.0	112.8	8.901	100.3	102.9	104.9	100.3	112.7	104.8	112.3	111.6	102.1
	00000	2000	83	99	51	55	53	58	99	71	74	89	64	64	25	39	74	43	29	59	73	65	9/	11	9/	8	21	72	2 6	2 1	6/	73	74	72	19
	16000	\neg	Τ						99										49	99	75	1.1	78	82	62	3 3	22	90	0 0	2	181	8	92	74	67
	10500	7	72	72	52	89	61	20	70	77	80	72	75	68		46	79	99	57	69	92	75	79	84	8	84	26	2 2	2 2	2	85	8	77	9/	7
	0000	$\overline{}$			Г				72						41	51	62	69	09	72	77	77	80	82	æ	82	25	<	5 0	£	84	82	78	9/	73
	0000	2000	77	76	69	9/	68	75	74	85	82	75	6/	71	46	99	81	۲	83	74	78	78	81	84	8	82	3	ۍ د	28 28	98	82	83	62	79	75
	0000	2000	8	78	92	78	71	9/	75	84	85	76	6/	7.3	51	29	83	72	99	75	8	80	83	88	8	98	64	2 2	2 2	98	98	84	₩	29	92
		2000	\top		П	П			76									74	29	9/					98	П	\neg		П	П	П				
		4	88	8	33	62	72	79	1	87	84	79	8	9/	29	64	83	9/	02	77	88	8	8	98	87	8	8 1	2 3	8	8	8	8	8	8	<u></u>
۱		200	88	8	74	8	11	8	%	88	88	8	81	72	છ	65	83	77	72	62	8	83	88	98	87	8	8	8 3	8	8	91	8	8	8	8
	2010	2000	25	28	72	82	11	8	29	87	88	8	<u>~</u>	79	65	2	84	79	73	65	88	8	8	88	8	88	2	<u></u>	8	8	5	82	88	8	8
Ì	000	2002	98	88	75	8	78	28	62	88	84	82	82	88	89	75	84	62	75	62	88	83	16	28	91	ස	23	æ	8	8	8	82	88	87	8
		200	بي	98	23	=	82	22	88	88	8	98	22	62	20	73	85	99	75	79	89	83	85	88	93	စ္ဆ	2	<u>س</u>	88	8	94	82	8	88	81
		000			Т	Т			98	Г	Π	П		Г	Г	Г	П		75	Т	Т	Т	Г	Г	94									1	8
		3		Т	Т	Т	Т	Г	Г	Г	Г	П	П		Г	Г				Т	Т	Т	П	П	35								35		8
ŀ	\neg	_	\top	 	1	\top	1	Т	8	1	Т	Т	П	Г	Г	Т	Г		2/9	T		Т	T	\Box			П		\neg						П
	_ r	8	- #	188	3	<u>~</u>	1	Г	79	П	Т	Т	Г	Г	Г	Г	Г		74	Т	8	\top	1		95			\neg	\neg				95	\vdash	
	r	830	8	8 8	2	200	77	8	8	88	8	8	8	82	7	8	82	77	52	Т	T	Т	T	П	97									[
	1	8	8	8 8	1	8	92	8	8	8	88	8	8	8	2	8	8	75	72	1	\top	1		Т	96								66		82
	1	8	æ	8 8	8	8	1	8	79	8	8	8	2	8	98	188	88	75		+-	<u> </u>	$\overline{}$	_	$\overline{}$	흔							г	_	Т	8
		33	2	8	8	88	₩	88	8	8	8	8	8	92	8	8	87	9/	72	Į.	1		ē		88				- 1			i .			88
		SS	ð	8	8	8	8	8	8	5	8	83	8	8	83	87	8	F	76	8	1 2	8	ē	8	흗	98	82	83	8	92			T	Ι	8
		ន្ត	S	3 2	3 2	8	8	8	8	96	8	22	6	88	99	83	89	<u>~</u>	62	8	8	8	6	96	6	96	85	8	91	84	흔	5	흔	9	88
		篦	g	3 8	; E	82	88	88	88	8	83	2	68	52	88	100	8	88	62	g	9 6	6	: <u> </u> 2	8	9	8	9/	35	6	93	2	97	E	운	8
		22	g	8 8	74	5	25	6	8	66	8	88	8	88	75	8	96	8	84	8	5 5	8	8	83	€	96	68	35	26	62	6	8	8	8	8
	(FZ)	8	90	8 8	3 8	26	35	88	88	5	98	94	35	8	82	62	94	87	83	g	3 8	<u>بر</u>	<u>8</u>	83	8	92	92	86	92	95	88	96	87	8	ક
_	encies	8	8	3 2	3 8	8 8	98	16	ક્ક	26	9	68	06	98	83	88	93	98	82	8	3 8	3 6	: @	15	87	35	35	96	96	8	88	88	8	98	96
	ᅜ	83		\top	\top	Т	Т	Т	8	Т	Т	88	Т	\top	Т	8	Т	Γ	83	ŏ	. K	3 8	88	68	87	92	93	91	90	95	88	83	88	83	8
	enter	22	Т	2 2	\top	Т	Т	Т	87	Т	T	Т	6		Т	1	T	78	74	8	\top	Т	98	1	Т	Г		91			П	91	88	81	96
	Trum (6	\top	8 8	Т	Т	Т	Т	98	Т	Т	3 6	Т	Т	Т		1		2	4	Т	Т	3 8	Т	T	Г	Г	_	Г	Г	T	Т	98	Т	
-	Spec	\neg	Т		Т	Т						Т	Т	Т	Т	Т	Т	69	66	Т	1 K	Т	\neg		87	П	Г	Ι'''		Г	-	1	1	88	
	ctave	33		8 8	\top	Т		Т	8 8	1	Т	Т	Т	Т	Т	T	Т	1		Т	Т					L	1	i i	1	1	84	1	Т	88	
	1/30	22	\neg	8 6	Т	Т	\top	\top	2 2	Т	Т	Т	T	- E		Т	Т	99	62	ě	\neg	Т	Т	8 8	Т	Т	85	П		Т	П	T		Т	
	dB) al	20	\neg	2 8	T	Т	Т		Т	Т	5 g	-	Т	8 8	Т	T		8	57	Т	‡ <u>6</u>	Т	\top	8	T	Т	Т	82	Г	П	Т	Т	Т	Т	8
5	SEL (9	-	8 8	8 8	Т		Т	2 8		Т	\top	Т	Т	3 22	Т	_	8	49	F	? გ	Т	1		8	1	1	П	Г	Т	8		Т	Т	2
	Band	10 13		5 G	à 14	2 8	8 8	3 2	7			5 2	2	2	3 15	3 8	3 8	26 58	49		6 6		8 8	8 8	8 8	8	2	67 73					2 2	1 28	182
3	\vdash	유	\Box	Т	Т	5 5		5 5	1	1	$\overline{}$	\neg	┰			٠.			49	7	$\overline{}$	6 5		$\overline{}$		<u>@</u>	_	Т	Т	Т	$\overline{}$				68
	t Mic	Pos.	\Box	T	Base	Dase	Т		Bace a		Т	Cavity	Т		Boo	Dasa	Т	Base	Base	- 4	Pase	Cavity		Т		Base		T	Base	T	Т	Т	Cavity		Base
2010	Event	Dist.	_	_	30.5		0 0	31.0	<u>.</u>			im 30.5					1111.	0_	0		im.	E C	E S	in 30.5	im 152	im 15.2	im. 30.5	im. 61	im. 30.5	im 15.2	im 15.2	30.5	30.5	im 30.5	30.5 Sim. 30.5
ianie v z. nepieseniau	e Event	Type	-		Art. Sim.		Art Sim	- 1	Art Sim	-	- 1	Art Cim.				- 1	$\neg r$			Т	٦.	_	Art Sim.		7 Art Sim					Art Sim					Art. Sim.
1			Ц	5/5	8/9	4/2	20 0	0/0	5/21	900	8 6	12/0	2 0 0	12/0	12/0	2/0	77/0	6/2	6/2	4	6/2	2/2/	2/2	5/5	5/07	5	4/26	4/3	5/3	9	8/9	73	0 0	6/4	6/4
ğ	3	1	П	_	_	., .	, l	١,	7 0	، ا	٠,	ه ا ه	٥			٥	: ا ہ	4 4	4		4	4	4:	‡ 3	\$ 2	1	7.4	: 4	14	: 4	- 2	- 1	7 7	÷ [} ₩

																	_																			_			
Calc.	Overall	SEL	112.7	103.9	103.3	112.8	110.5	102.5	100.1	108.1	101.5	97.9	103.6	104.0	112.1	111.4	102.8	109.0	113.0	113.3	106.4	107.8	108.2	104.1	105.6	93.8	104.7	101.8	95.9	96.8	91.6	98.0	100.8	99.1	94.3	83.8	101.7	100.4	101.2
٠	20000		73	99	29	72	75	99	55	64	26	51	65	72	75	73	64	78	81	77	74	20	49	45	42	36	30	20	29	99	09	42				37	22		22
	16000		74	71	63	74	77	69	69	99	09	54	65	75	22	22	70	79	82	80	75	74	70	89	99	53	20	71	89	29	63	49	44	35	4	51	29	49	85
	12500		76	74	29	75	78	73	63	89	63	58	89	77	78	9/	74	84	83	81	78	81	77	75	73	62	59	72	20	88	99	53	41			55	99	54	69
	10000		76	77	20	92	79	74	67	69	65	62	71	79	80	78	77	85	85	81	81	82	78	76	75	99	63	81	74	77	2	9	44	45	48	61	89	8	7
	9000		79	79	73	78	81	9/	69	20	89	64	92	80	81	80	62	98	98	83	82	84	79	78	75	69	63	08	75	92	72	63	20	47	52	92	71	2	73
	6300		78	8	75	79	85	11	71	72	69	29	78	81	85	81	79	87	87	82	83	87	85	81	77	7.5	99	81	77	1	74	65	25	43	22	29	23	8	74
	00 2000		8	81	77	81	84																												1		75	ı	
	3150 4000	П				14 82																													54 64		78 76	72	
	2500	П																												- 1	- 1		1	- 1			78		
	1600 2000	П	П																				ı		1 1			1	1	- 1							88	1	
	1250 16	П	\neg																			_						1		- 1					99		79 79	1	78 79
L	1000		6	82	82	91	94	8	78	87	75	71	81	88	94	91	81	93	46	88	88	91	96	87	82	81	78	98	85	ಜ	80	72	70	64	92	75	79	74	
	630 800																									Г		87 85							63 64		80 79	73 74	79 78
	200				81			$\overline{}$																		Г								99	65	74	79	9/	11
	315 400	H	0		82 85				83 80								$\overline{}$	94 93	_	1	$\overline{}$	$\overline{}$						84 85					85 78	$\overline{}$	20 02		83 82	83 75	
	250		8	91	85	88	102			ē		74	88	88	26	97	88	98	83	ಜ		Г															82		
	160 200		1		90 93	-	91 108	93	86 85	91 106		_	١	_				100 100		110 105					98 93	$\overline{}$		84 99				П	88				93 85	П	
	125						П		93					$\overline{}$	Γ	-	Γ	$\overline{}$		T	1		١_	l	Г		1	78				Г			98				
ancies (H;	80 100		85 86	97 94	98 94		83 84	93 94	94 94	84 89	94 87		97 93				93 94	96		90 91	96 96	100	Т	95 98	П	92 89	93 88		85 86		77 67	6 6	89 95	90	88 88	92 92		94 94	
ter Fredu	63					83				08	88		35				Г	96		П				T	П	\vdash		8				8		32	98	Г	93	35	94
trum Cen	40 50	П			16 28		Г	83 82	Г	76 78	91 94		92 92	Г	84 87	Г	Г	93 95	П		88 91	Г	П	90 92	92 88	89		Г	17 17		75 75	98	81 84	78 81	81 84	89 91		98 88	87 90
tave Spec	32	Т				85			Г		88	П	68		87		Т	35	Г	8	98	Т	Т	П	8	Г	Π	8	_	Г		98	П		62	98	88	98	83
at 1/3 Oc	20 25	Т	87 86		82 84	18 87	86 87	85 85	П	74 76	Г	80 82	Г	Г	88 88	T	86 87	П	88 87	91 91	85 86	Π	Г	81 82	П	83 85		П	75 78	75 71	Г	82 84	П	Ι	74 79	81 84	П		83
Rand SEI (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	16	T	85		81	П	91	Г	79	74 7			П	Г	88	П	П	85	П	T	85	Т	88	T	Г	Г	Г	1	75	75		62	П	75		79	П	П	8
Band	10 13		78 85	83 85	78 79	84 86	89	80		78 77	_	69 73	80 82	94	_	_	_	81 81	71 89	87 93	81 84	88 89		80 81	91 91			_	70 74			64 75		_	8	74 74	79 82		78 80
Mic	Pos.		Cavity	Base	Base	Cavity	Cavity	Base	Base	Cavity	Base	Base	Base	Base	Cavity	Cavity	Base	Base	Cavity	Cavity	Base	Base	Cavity	Base	Cavity	Base	Cavity	Cavity	Base	Cavity	Base	Base	Cavity	Cavity	Base	Base	Base	Base	Base
Fvent	Dist	Œ	_	30.5	- 61	_	30.5	_			122	244		30.5	30.5				15.2					30.5			. 61	30.5		. 61	61			1122	1, 122	1. 122	61	1. 91.5	Art. Sim. 61
Fvent			Art. Sim.		Art. Sim.	Art. Sim.	Art. Sim.	Art. Sim	Art. Sim.	Art. Sim.	Art. Sim.	Art. Sim.		\mathbf{T}	1		Art. Sim.		Art. Sim.		7		₹	A.	$\overline{}$	Ą	Ā	Art. Sim.	Art. Sim.	Art. Sim.	¥	Ą	Art. Sin	Art. Sin					
Oato	\neg	\perp	6/11	6/11	6/11	Γ	Γ	6/11		11/9	4/23			Т	6/2	Т	Т	Т	Γ	T	Т	Т	Т	T	Т	Т	Т	Т	Т	Т	2 5/13	T	1/9		Г	Т	T		
3	5 [1	4	4	4	4	4	14	14	4	쓩	8	8	8	8	8	8	5	5	120	2	13	133	123	L ₂ 2	13	18	S	122	ည်ရှိ	122	7	7	1	1	120	135	T <u>r.</u>	22

HU	0-	-																			_		_							
Calc.	Overall	SEL 109.8	105.3	106.0	103.3	104.1	107.4	114.6	95.3	94.4	103.6	103.5	103.6	104.0	96.7	102.5	8.96	104.1	106.3	105.5	109.2	102.7	106.8	80.4	01.4	5 60	70.0	0.0	95.5	/0./
	20000	47	45	45	71	71	75	81	51	29	20	9 8	23 1	9	26	89	35	80	79	19	74	99	75							
	16000	52	52	53	75	75	11	82	52	88	25	/9	2/	2	28	72	5	78	79	89	9/	72	9/	28	-	90	8	2 8	7 6	5
	12500	53	28	22	78	79	62	83	28	2	68		22	2	91	75	49	77	78	72	75	75	79							
	10000	28	8 8	150	81	85	82	94	29	72	22	74	1		72	9/	22	77	8	75	77	9/	78	23	_			/2	3 8	/3
1 5	0008		Т	ಚಿ							\neg	T	7		T۱									<u>સ</u>	٤	8 8	3 8	g ;	\$ 8	8
1 [000			59	Γ																				+					8
	4000 2000			99 29	Г							Т	П												丁					16
	3150			69	T																				900	587-	97	8	8 8	8
	0 2500	- 1	: 6	2	8	83	8	93	73	78	8	8	8	8	78	8	71	8	88	82	8	82	98	43	-					22
1 1	0 2000		\top	72	T	Т						П	_												-	4 6				88
	30 1600		\top	12	П		Г					П								•	ı				_					29
	00 1250		1	92	Т	П	Г												Г			П			\neg					88
Н	0 1000	_	_	82	1	1		$\overline{}$				\neg	\neg			г				П	Г	T	П							69
	008 0		1	8				1			1	- 1	- 1				i I				1	1		1						55 57
	200 630		\neg	08	T	T	П	Ι.,	1										1		1	1	ı	1	\neg					88
	400		\top	98	Т	Т	Т	П	П								Г		Γ		Ι	Г			\neg			83		22
	315 4	\Box		8 8	Т	Т	Т	T	П										Г	Г	П				\neg					5
	250		\neg	2 52	\top	1	т	Т	_								i .		1	4	ł	1	1	1	\neg			99		ಜ
	200		\neg	88							1					1	ŧ	ĺ	1		I	1	1	1		29	61	56	9	8
	160	$\overline{}$	_	3 5		7	-		_																	26	9	69	8	64
	125	Į	6 6	34	8	88	88	8	8	82	35	8	96	96	68	8	8	ક્ક	96	8	86	8	83	8		8	29	62	28	99
ss (Hz)	8		3 6	6 8	8	8	8	88	88	98	83	26	92	98	88	8	8	8	8	8	g	88	68	छ		67	æ	99	ន	29
quencie	8	L	8 8	3 8	8	8	8	5	87	8	8	97	35	88	8	8	8	95	89	5	8	8	5	67		92	69	99	69	98
ter Fre	æ		3 8	3 8	8	5	8	8	8	8	8	8	8	8	8	83	88	8	8	98	æ	88	82	8	_	99	89	49	89	69
m Cen	23		5 S	3 2	Т	\top	Т	Т	Т	88	Т		88	П	П	Т	Т	П	Т	Т	Т	Т	Т	\top		72	74	7	74	69
Spectru	8	П	2 8	Т	7	Т	Т	T	1	8		_			1		1	ł	1		Т	6	Т		_	75	78	55	78	69
ctave	32	П	2 1	\top	2 8	Т	Т	Т	Т	Т	6	32		88	Π	Т	Т	Г	Т	Т	T	8 8	Т			75	9/ 1	8	9/	69
11/30	125	П	2 3	\top	Т		Т	5	Т	T	T	П	98	Г	27	Т	8	Т	Т	Т	Т	8 8	Т			2 74	1 74	69	74 75	99
Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	8	П	7		2 2	T	Т	8	Т	T	98 98	П	П	Г	Т	Т	77 78	35	T	84 87	Т	2 2	Т	99		69 72	99	49 52	70	64 6
nd SEL	3 16	П	74 74	5 5	\top	87 86	Т	Т	Т	65	Т		T	Г	Т	Т	73	Т	Т	2 2	Т	\top	e e			65	9	38	2 29	9
Ba	10 13			6 8	_	8 2		88	79	99		78	82 8					_			-	67	\neg			19	49	4	8	54
Mic	Pos.		Cavity	Cavity	Baco	Race	Raco	Cavity	Base	Base	Base	Base	Base	Base	Base	Rase	Base	Race	Rase	Race	Aires C	Baco	Covity	Base		Base	Base	Base	Base	Base
Event	Dist			C 1		30.5	3 5	30.5	2	5	30.5	30.5	30.5	30.5	9	30.5	122	2	30.5	30.5	2 6	200.5				0	0	0	0	0
Event			Art. Sim.	Art. Sim.	Art. Olli.	Art Sim	Art Cim	Art Sim	Art Sim	Art Sim	Art. Sim.	Art. Sim.	Art. Sim.	Art. Sim.	Art Sim				Art City		1 1 1	Art Cim	- 1		nore -					
Date		Ш	2/9	200	1/0	5/13	2/4	6/14	6/17	5/17	5/21	9/9	5/4	5/4	0,1	2/43	4/23	4/97	7/30	2 2	3 3	300	3 8	5/13		5/13	5/13	5/13	5/13	5/13
3			75	2	5 5	2 2	2 6	2 2	2 2	2 8	8	<u>~</u>	98	8	8	3 8	3 &	3 6	2 6	3 6	à	0	ò	÷ 63		103	103	55	<u>5</u>	103

					_												_					_		_								_		_	_	
Calc.	Overall	SEL	84.8	78.4	104.5	101.9	105.1	103.8	112.3	99.3	111.3	101.9	94.9	108.6	117.8	103.0	107.1	67.6	100.3	91.3	94.7	103.3	106.1	101.9	104.3	83.8	95.7	105.4	102.1	104.2	103.4	103.6	100.8	100.8	102.7	110.9
	20000		43	50	20	54	72	71	75	29	70	63	63	89	75	29	72	69	29	09	09	72	71	71	7	51	19	72	55	74	51	62	71	71	71	74
	16000		09	20	74	69	75	9/	78	65	73	65	29	74	73	7.1	72	71	89	61	61	73	72	72	7	23	39	75	90	77	61	72	7.5	72	92	92
	12500		23		92	64	78	79	79	89	74	99	69	18	75	74	72	72	69	64	63	75	73	74	73	22	8	76	62	79	92	75	75	75	78	11
	10000		67		11	29	80	80	8	71	75	89	20	80	28	81	85	22	81	69	73	81	83	80	8	99	74	78	99	83	8	77	92	9/	79	62
	8000		69	8	8	71	85	81	82	72	92	20	72	85	83	81	84	22	79	20	72	81	82	80	<u>~</u>	29	33	81	69	83	7.5	79	9/	9/	88	8
	6300		2		83	74	83	85	83	74	78	20	75	83	84	83	84	2/8	80	11	73	85	83	85	ᡖ	88	74	81	71	8	25	78	79	79	81	18
	0009 00		72	\$																						\neg	_							81		
	3150 4000		77 75	37																														83 82		
	2500		7 7	40																														84		
	2000		77	40	68	85	88	98	35	78	87	28	11	88	06	87	98	85	85	78	9/	88	98	82	8	73	9/	84	6/	87	88	82	82	88	82	88
	1250 1600		75	37																														8		
	1000 129		73	3 47							_						П						38		П						П			83		
\vdash	800		66 74	45 48					98					Г								П												87 87		
	630	П	99	47				87				88										Г												82		
	200		62	48		П	98		66				ļ.				П						68											98		88
	400	П	62	43	91	83	87	91	100	79	96	9	79	68	94	88	83	81	87	74	8	81	93	83	88	71	80	8	81	87	98	84	87	87	83	88
	315		55	49	06	84	91	35	86	84	96	84	8	83	8	88	8	83	84	72	78	88	89	83	85	72	78	94	82	68	98	98	87	87	82	9
	250		53	49				92		84				93	П	П						П	92				84							85		83
	200		47	54	35	88	94	92	108	28	107	100	87	8	117	88	88	82	84	9/	8	87	103	98	102	75	93	86	8	85	87	88	98	98	87	91
	160		47	51	94	35	94	93	901	98	107	8	98	92	105	8	102	98	8	11	8	9	8	68	92	29	82	88	83	94	6	94	87	87	93	109
	125		20	53	97	88	83	94	85	91	35	82	87	5	9	8	103	88	32	81	87	91	91	8	68	8	80	32	85	98	93	85	8	8	83	8
S (Hz)	100		45	09	92	35	26	32	87	93	87	81	82	102	8	94	35	8	ક્ર	8	82	88	88	95	88	85	79	26	91	8	96	26	8	8	94	8
Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	8		46	62	94	8	91	91	98	91	8	£	85	\$	91	8	87	87	82	78	73	97	8	83	88	8	11	8	ક્ક	32	8	8	88	88	83	<u></u>
er Fred	63		49	29	9	85	91	98	98	98	88	73	8	8	8	88	88	88	8	8	78	8	8	35	82	8	75	35	94	88	16	91	88	88	8	88
Cente	20			89	9	93	85	88	82	87	<u>8</u>	11	83	8	87	8	82	8	62	11	9/	8	98	ક્ર	82	74	73	98	8	87	85	8	88	88	88	8
ectrun	8		6	2	88	91	66	68	84	84	28	79	81	8	83	8	98	76	12	22	7	83	98	82	83	71	72	79	8	8	88	88	8	8	98	≅
ave Sp	33	L	20	2	88	88	8	88	83	83	8	78	11	8	<u>8</u>	8	<u>8</u>	78	75	2	72	87	8	<u>8</u>	79	69	69	81	87	8	84	88	88	8	98	8
/3 Oct	52			72	88	98	9	88	98	82	83	88	35	5	82	62	8	92	8	88	8	88	8	79	92	89	70	80	8	87	82	8	87	8	84	<u>~</u>
B) at 1	ಣ		£	7	98	82	8	87	84	8	æ	8	8	8	88	8	88	7	65	29	74	87	83	8	98	69	20	83	8	88	71	87	88	8	8	8
SEL (c	9		46	98	8	85	8	88	8	9/	88	82	9	84	12	8	88	75	88	7	69	8	8	8	98	17	2	8	8	88	L	88	8	8	88	8
Band	13			20		8	88	_	8		88								83	9			8	8	8				8	8		83		8		8
-	유	-	·	4	92		87	Т	88		88		П	П	1	62	_	1	_	29	y 71	т	79	75	y 77	69	$\overline{}$		88	Т	П	75	T	8	1	.¥
H. Mic	Т		Base	Base	Base	Г	Base	Г	Cavity	Base	Cavity	Cavity	Base	Т	Т	T	Cavity	П	1	Т	Cavity	Т	T	Base	Cavity	Base	Cavity		Base			Base	Т	\top	Т	П
Event	Dist.	Ē	0	0	30.5		30.5		$\overline{}$	_	61	n.	. 61	30.5	30.5		n. 15.2		30.5	<u>.</u>	1 61	15.2		n. 30.5	n. 30.5	٦.	n.	30.5	<u>.</u>	n. 30.5	30.5	n. 30.5	٦ 15.2	n. 15.2	30.5	n. 30.5
Event			Live Clay- more		Art. Sim.	1	Art. Sim.		Æ	Art.	Art.						$\overline{}$	A.	¥		Art. Sim.		Art. Sim.					Art. Sin	Art. Sim.	Ą		1	•	Art. Sim.	Art. Sin	Art. Sim. 30.5
Date	L	L	5/13	5/13	5/2	5/10	5/15	6/17	6/17	6/17	6/17	6/17	6/17	6/17	6/17	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/4	52	5/13	5/4	5/26	2	1/9	5/27	5/27
3			<u>5</u>	55	20	107	107	101	107	107	20	107	107	107	202	125	55	23	125	125	52	125	125	125	2 5	125	125	156	92	126	137	137	137	137	143	₹ 2

10	0-1	<u> </u>																						-	-					_								
Calc.	Overall	105.6	109.8	102.5	111.6	106.8	114.5	115.2	103.0	100.5	101.4	103.9	106.7	113.5	104.6	113.0	102.9	112.4	96.4	104.8	104.4	110.4	103.5	101.3	109.5	109.3	105.8	98.8	104.1	0.00	88.8	113.7	103.0	108.4	93.6	101.9	103.6	105.8
	20000		73		77	76	76	73	99	49	29	29	2 1	£	9/	11	64	74	57	59	70	73	64	29	22	74	72	26	25	90	9 !	4/	22	36			75	22
	16000	79	9/	61	79	80	78	75	71	22	99	69	23 5	81	8	6/	20	77	61	73	73	92	69	62	59	9/	92	29	75	0 2	19	S	9	46	88	25	9/	150
	12500	26	11	99	83	83	80	22	75	28	29	7	84	84	85	81	73	78	65	79	75	22	72	99	09	77	78	62	2 2	0	65	28	92	45	88	22	92	28
	10000	83	8	71	85	83	81	11	77	29	69	74	88	84	83	85	75	79	74	80	78	78	75	69	62	78	08	65	75	8	9/	19	88	2	49	63	62	85
1 P	8	83	8	9/	87	84	84	11	62	92	7	92	82	83	84	84	77	8	74	18	79	79	9/	71	99	6/	85	89	88	25	76	65	7	24	22	29	62	84
	830	25	200	82	88	82	98	8	79	67	74	28	8	88	8	84	78	82	75	84	8	8	78	72	66	81	88	69	E 8	3	11	69	33	8	22	=	8	84
	2000	\top	88									Т										1		1			1 1	ı	- 1	- 1	- 1	- 1	- 1	- 1		i I		
	2500 3150 4000	T	85 84	T		$\overline{}$										1								ı	1				- 1		- 1	- 1	- 1	- 1		lΙ		- 1
			88	T	Г	Г	П	Г											1				ı	ı	1	l	1 1	- 1			- 1	- I	- 1	ı	- 1	1 1		
	2000		88	Т	Τ-								\neg						-				_	1	1	ı				ı	- 1	- 1				ı	1	
	1250 1600 2000		8 8	Т	Т		Т	П	П											1				ı		l l			- 1	- 1	ı					l		
	1000	g	3 83	æ	88	88	88	8	æ	76	81	85	68	ક્ષ	98	96	84	91	181	87	82	83	82	8	98	93	9	75	62	75	82	88	6/	9/	29	79	88	98
	630 800	7	94 6	Т	Т	_	T	Т	Т	1							1	ľ			i			1	1					- 1			1				ıı	
	200	\neg	3 6	T	T	1		$\overline{}$	T										1	1	ı	1	1	1	1	1	1		- 1					1		1	1 1	
	315 400		8 6		-		•	1	1					i	1	ı	1		1	1		1		1	1	ŀ							ı			1	ıı	
	250 3	ž	, g	88	26	93	8	98	87	82	79	88	92	87	8	88	83	88	77	96	87	88	88	83	82	91	35	9/	85	83	84	93	98	88	83	87	87	8
	60 200		5 G																																		90 91	
	125 1	2	8 8 8 5	1	1_	+	T	\top	Т		88	63	66	92 1	Г		8	Г	Т	1	Т		Т	Т	T	T	Τ.	89		8 68	88 8	94 1	94	88	1		Г	
cies (Hz)	100	\Box		8	Τ_	T	T	Т	86	T	\Box	98			6		T	T	Т	Т	Т	8	Т		Т	Т	8	Т			Г	36	Г	Г	Γ	8		П
Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	63 80	\sqcap	S 28	\top	Т		T	Т	T	Т	92 94	П	Г	83 83	Т	П	96 96	T	Т	93 97	Т	\top	86	Т	89	Т	Т	92 93	84 85		68	68	94		П	95 94	T	
um Cente	20	П	3 4		Т	8	Т	Т	Т	88	1	8	П	Г	T	Т	Т	Т	Т	8	Т	8	Т	Т		T	क	Г	78		Г	88	Т	Т	Т	Т	Т	3 94
/e Spectr	32 40	П	92 92	Т	Т	Т	Т		Т	89	87 87			86 84	Т	Г	99	83 80	Т	87 89	Т	Т	82	T	Т	Т	Т	82 86	74 76	85 86	81 81	83	Т	Т	85 8		T	П
1/3 Octa	52	П	33 18	_	7	Т	8 8	7	Т	8	П	T		Г	Г	Г	88	Т	Т	8	Т	Т	Т	3 2	Т	T	Т	Т		П	11	Т	Т	8	T	Т	8	
L (dB) at	16 20	П	88 88	Т	Т	Т	Т	Т	T	1 62	П	П		Г	П	Г	80	Т		Т	20	Т	Т	2 2	Т	Т	Т		77 77	79 80	Т	77 74	Т	76 78	Т	7 79	T	89 95
Band S	10 13		98	\$ 6	8 8	, g	3 8	3 8	2 2	77	200	8	86	84	88	66	74	92	2 2	2 &	į į	2 2	; g	2 2	3 8	3 8	3 %	77	74	Т	76	67 76	69	_				98 98
Mic	Г	П		Cavily 90	\top	\top	Τ.	-	\top		Т	Т	Т	Τ.	_	Τ	$\overline{}$	Cavity 55	\neg	Т	Т	Cavity	┰	1	Т.	_	$\overline{}$	\top		1	Т	T	\neg	1	Т	T	T	Base 8
Fvant	1	П		T	30.5	T	30.5	54.5	5 4		T	9	2	Τ	30.5	30.5	2.5		3 6	3 5	200	20.0	2000	000	5 6	2 2	30.5	2	159	122	9	9		120	T	30.5	15.2	15.2
Front	Т	$\overline{}$	Sim.		Art Sim.			rt Cim	Ar Cill	Art Sim.					Art Sim.	Art Sim	Art Sim		Art Cim		2 2	Art Cilli.	AL CHIL	All Sill.	Art. SIM.	All. Olli.	Art Sim	Art Sim	Art. Sim.	Art Sim.		Art Sim	Art Cim	Art Sim	Art Cim	Art Sim	Art. Sim.	Art. Sim. 15.2
Date 1		Т		Т	5/3	٦,	7			- 1	1		Т	Т	\top		1		1	5/44		/1/6		- 1	11/9	- 1	- 1			4/23	80/4	67	200	2	22	2/4	5/10	6/7
Č	3		143	5	20 0	6	200	8 9	2 9	2 2	12	12	172	5	12	į	1 5	1 5	11.	1		= [<u> </u>	<u> </u>	<u> </u>	= =	1	11	5	2	2	2 6	2 2	19	2 2	3 2	8 8

																				_																	<u>U</u>	En	IL T
Calc.	Overall	SEL	109.0	108.6	104.0	101.2	108.8	97.7	99.1	107.3	113.8	114.5	106.4	103.2	97.7	101.0	103.6	104.1	107.8	101.6	105.0	107.8	100.3	103.3	104.6	102.7	108.7	107.6	98.3	105.6	110.7	102.1	109.2	113.5	117.5	103.6	109.7	94.9	101.5
	20000		92	73	72	61	29	37	37	69	78	75	71	89	52	99	56	58	89	99	92	11	22	63	69	69	1.1	51	26	29	74	58	68	78	81	69	74	45	63
	16000		78	75	92	29	70	38	20	74	80	78	74	72	69	20	09	9	02	71	79	73	29	92	71	73	73	51	29	20	9/	63	70	82	84	72	9/	53	82
	12500		13	92	62	1.1	71	35	54	77	81	80	75	75	61	73	62	63	7.1	74	81	74	62	89	74	74	74	52	62	72	77	99	71	82	85	74	78	22	99
	10000		81	11	80	73	72	41	23	80	83	81	79	80	64	6/	63	64	73	9/	82	92	9	72	81	9/	22	26	65	74	78	69	72	98	82	9/	73	99	89
	8000		85	6/	81	74	73	47	အ	8	84	83	80	80	29	78	92	65	74	77	85	11	29	74	81	9/	9/	29	89	22	79	72	73	88	87	78	8	64	69
	9300		83	29	₩.	75	75	21	64	8	82	84	81	181	89	62	29	29	75	11	83	6/	20	11	85	79	11	9	20	79	8	73	74	88	88	78	82	29	2
	0 2000																																				84	ł	
	0 4000	Н	98	83	84	11	78	28	69	8	87	98	84	85	74	81	69	2	82	79	82	85	73	79	84	181	80	29	73	81	83	11	9/	35	93	85	84	69	73
	0 3150	Н	88	83	82	77	79	28	2	88	68	87	98	83	75	81	23	74	ಹ	8	98	85	75	81	82	83	81	69	75	83	88	178	79	8	35	83	8	7	76
	0 2500	Ц	88	98	82	62	85	19	7	87	8	8	88	83	75	81	74	75	8	8	87	81	77	85	98	82	84	72	75	83	87	79	85	8	94	84	87	72	1/6
	0 2000		96	87	98	79	84	61	2	8	35	8	88	84	75	83	76	11	88	85	88	82	77	8	98	83	怒	75	92	84	88	8	81	8	96	32	8	74	78
	0 1600		35	88	82	6/	æ	61	2	88	93	8	88	85	74	85	65	8	8	81	87	87	78	85	98	84	98	78	11	84	88	81	83	8	46	82	9	74	73
	0 1250		94	91	82	79	87	છ	2	8	94	35	68	83	74	85	82	85	8	81	88	88	77	83	98	84	87	8	11	82	91	8	98				အ	74	₩
-	1000	Ц	35	35	98	79	88	62	2	8	95	85	8	84	74	83	85	85	8	85	87	6	9/	85	98	84	8	84	9/	84	94	8	88	86	100	87	8	73	84
	800		96	93	82	79	6	အ	69	87	88	96	87	83	73	8	87	87	8	85	87	92	9/	8	88	84	91	81	76	84	94	79	8	6	66	87	33	74	8
	630	Н	95	93	98	8	8	62	69	8	86	86	82	83	74	8	29	62	\Box										77	82	96	79	8		102		П	74	187
	200		_			_	_	64	⇈	-	2					81	Г	9												82						_		75	
	2 400					Г				П	102						Г	Г									П			98		_	8	Г				62	
	0 315	H				Г		$\overline{}$	_	\Box	3 94						П	Г	Г					Г			П									8		75	
	0 250	\vdash	4 87	_		<u>~</u>		$\overline{}$	$\overline{}$	$\overline{}$	103		\vdash						\vdash	8									_	88			82		113	1	105	79	\Box
	200	_	104	_	_	_					6						$\overline{}$								$\overline{}$	-						_				83		88	
	125 160										112 95																										96 06		
(F	_						$\overline{}$		$\overline{}$		97 1		_		_	_		$\overline{}$	1				$\overline{}$		$\overline{}$	_						$\overline{}$		_	Γ			84 8	
sucies	80		85 8		6 86	1			3	6 4	9	9	6	3	6	6	=	-8	5 8	5 8	9	6 4	2	5	9	0	9	3 8	88	99	88	26	80	8	98	26	98	88	
Freque	63	Ħ	$\overline{}$	_	$\overline{}$	$\overline{}$	-	$\overline{}$	5	96	87 9	8	93	<u>8</u>	35	83	2	8	35	83	35	88	26	3	5,	37	*	31	98	8	33	**************************************	4	201	35		87 8		
Center	20				8	ı	ı	88			87 (8				2										ı										88	П		83	
ctrum (8				_		_	Г	Т	П	87	Г	\Box	Г			Т		1				П		П		Г							П	8			81	
e Spe	32					1	T-	Ι	Г	1	88						1		1										l					T	Т		88	_	\Box
3 Octa	52				Г	П	П		Т	Г	8	П		Г			Г	Г	Г	П	Г	1			Г	1									102			78	1 1
Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	20		83	$\overline{}$			_	84	Т	Г	82	Г	П	Г	Г		П	П	П	Г			1				П	Г			87			$\overline{}$	Τ.	Т-	91	92	8
EF (GB	16		88	91	8	79	71	47	T		87	Г			Г	П	П	Т	П	Г		Г		Т		Т	Γ.			1	1	Г	Ε.	8	102	æ	93	74	82
3and S	10 13		91	87	85	76	69	37		1	Ι				1	T	1	П	1					1	1	1	i	•	i	1			l l	88	8	æ	68	7	93
	9		8	74	8	89	ಔ	ਲ	_		93 91						1													8	8	88	79				8		1 1
Mic			Cavity	Cavity	Base	Base	Cavity	Base	Base		1	Ι	Base		Γ.	Г	Г	П	П	Base					Base	Base	Cavity	Cavit	Base		Г		1	Base	Cavity	Base	П		
Event			n. 15.2	n. 30.5	n. 30.5	n. 61	п. 61	n. 244	n. 122	n. 15.2	n. 15.2	n. 30.5	n. 30.5	n. 30.5	n. 61	л. 30.5	n. 61	n. 61	n.	n. 61	n. 30.5	п. 30.5	n. 122	n. 61	n. 30.5	n. 30.5	n. 30.5	п. 61	n. 61	n. 30.5	n. 30.5	n. 61	n. 61	n. 15.2	n. 15.2	n. 30.5	n. 30.5	m.	п. 61
Event	Type		Art. Sin			Art. Sin	Art. Sim.	Art. Sin	Art. Sin	Art. Sin	Art. Sin	Art. Sin	Art. Sin													1		Art. Sim.											
Date			6/7	677	677	6/7	2/9	4/23	4/27	5/26	97/5	5/26	5/26	2/6	5/10	5/12	6/18	6/18	6/18	81/9	6/18	6/18	4/23	4/27	4/30	6/11	6/11	6/1	6/11	6/11	6/11	6/11	6/11	5/11	5/13	5/11	5/11	5/11	5/11
8			183	183	183	183	183	184	184	194	194	194	194	197	197	197	197	197	197	197	197	197	198	198	198	198	86	198	2	198	198	88	86	8	8	199	65	89	85

	_		_										-		_	_		_		-												_	_	_	_	\equiv		$\overline{}$
Calc.	Overall	SEL	103.1	104.3	104.0	102.5	103.6	102.4	104.6	107.5	103.3	106.5	101.0	102.3	100.7	96.0	102.6	92.7	97.3	93.7	103.8	99.1	107.0	110.1	106.1	110.4	104.5	109.9	5./01	105.4	101.7	105.4	101.4	105.8	104.8	102.0	102.1	105.4
	20000			. 29	73	67	67	65	68	69	99	09	25	72	/4	20	69	79	49		22	99	71	72	71	29	88	9/ 50	23	1	25	71	69	72	7	69	64	89
	16000		64	69	9/	69	74	71	71	71	70	20	29	75	ç)	64	29	\$	92	32	69	28	79	76	75	9	7.	78	2	4	22	73	7	23	23	71	<u>\$</u>	2
	12500		69	70	80	69	75	74	72	72	73	69	64	82	/4	89	/9	29	29		83	91	82	69	22	71	23	æ i	5	9/	64	23	23	74	74	73	8	7
	10000																-1	-		34	71	ဌ	80	22	78	22	76	62	7.5	78	69	8	75	75	75	75	88	72
	8000	Т	Г									- 1	- 1	- 1	ŀ	1	- 1	- 1									H		- 1	- 1	- 1	1			i	28		
	6300	L	28	17	84	73	85	6/	9/	9/	79	74	23	8	8	9/	8	23	9/	44	72	69	#	83	84	75	8	ᡖ	12	8	74	76	78	11	77	79	22	75
	0 2000		T	$\overline{}$	1				1		1 1	- 1					- 1				1 1				•			- 1	- 1	ı						8		1
	1250 1600 2000 2500 3150 4000	-	1	П		Т			1							1	ı	- 1					1	ı	١.				- 1	١						80		80 77
	31	-	$\overline{}$	T	_	1	Γ			1	1												•					9 87	- 1						\Box	88		
	200		$\overline{}$	П	Т	1		T	Г	П												ı	1	ŀ	1		l I						1	1		8	ı	
	600 2		1	1	1	_	1	\vdash	1	$\overline{}$	Т													1	1		1	ı						1	ı	83	1	1 1
	250 11		_	$\overline{}$	т	$\overline{}$		\Box	Т	П	Г								1	1	l		1	ı		ı					ı	1		ı	1	88	1	l I
	1000		1	$\overline{}$	$\overline{}$	Т	Т	T	Т	1	П								l		1	ı	1		1	ŀ	1	H			l			1	1	81	1	1 1
r	ê	_	_	_	_	$\overline{}$	$\overline{}$	_	$\overline{}$	1	$\overline{}$								1	ı				1		1		1 1			1	1		1		83	1	1 1
	630	3	$\overline{}$	\mathbf{T}	$\overline{}$		1		т			1							1	•	1	1	1	1	1		1	1			١	1		1		88	1	1 1
	500	3	83	8	8	8	88	88	8	8	88	68	62	82	8	11	87	9/	8	89	88	4	6	88	88	16	87	26	91	98	<u>@</u>	8	8	8	8	84	83	88
	400	_																																		8	83	88
	345	\neg																														9				8	\top	
	1950	7	_	_	$\overline{}$	_	_	_		_	1		T		•			ł.								1										8		
	000	8	_	7	$\overline{}$	_	_	$\overline{}$	$\overline{}$	$\overline{}$	_	1	_	1									-		1						ı				1	80		
	F	+	1	1	1	1	Ť	1	T	12	1	1	Т	Т					84	Т	Τ.	Т	Т	Т	Т	T	Т	89	8	Г		68			1			86
14.7	400 495	3	7	8 8	Т	1		88	Т	Т	Т	93	91 86	Т	8	89 88	88	П	92	Т	Т	Т	3 8	Т	T	T		Т	92	Т	Т	88	Т	Т	Т		T	88
ncioe	4	8	Т	3 8	Т	\top	Т	6	Т	Т	Т	Т	Т	Т	1	T	Т	Т	62	Т	Т	Т	Т	3 8	Т	T	Т	8	Т	Т	Т	T	Т	Т	Т	\top	7	68
From		3	8	Т	Т	Т	Т	T	3 8	Т	T	88	Т	Т	88	Т	Г	Т	Т	Т	Т	Т	Т	Т	Т	Т	T	T	88	Т	Т	Т	Т	3 83	Т		Т	68
(H2)	201100	8	ō	T	Т	Т	Т		3 8	Т	\top	T	Т	8	Т	92	Т	Т	Т	E	8	8	2 8	5 8	8 8	s 8	3 6	8	87	8	8	2 2	g	8	8	3 2	3 8	8
milion		€	aa	8 8	3 8	3 2	ű	3 %	3 8	3 8	87	8	62	8	128	72	35	12	7	į	8	1 5	8	8 8	5 3	5 8	3 6	8	8	88	8	8	ä	3 8	8	2 2	3 8	8 62
0	0 0	3	8	8 8	3 8	3 8	3 2	5 8	3 8	3 8	3 8	12	æ	=	88	1	82	8	8	2 8	8	3 2	8 8	g a	5 8	8 8	1 5	8	82	8	g	3 8	3 6	8	3 8	3 6	3 8	8 8
200	3 2	8	g	8 8	8 8	3 2	3 2	5 3	8	3 8	3 15	1	2	8	2	82	2	2	2 2	<u> </u>	2 2	5 2	5 8	8 8	g a	3 2	, g	2	8	Т	Т	Т	Т	Т	Т	5 6	Т	\top
1	(g) a	2	8	3 8	8	8 8	3 2	8 8	5 6	3 8	8 E	2 12	Т	8	Т	Т	Т	3	Т	Т	Т	Т	Т	Т	\neg	8 8	Т	\top	Т	Т	3 8	Т	Т	Т	Т		\top	8 8
120	7	9	\neg	8 8	8 8	\neg	8 8	Т	Т	Т	Т	Т	Т	8 8	T	Т	Т	Т	Т	Т	Т	Т	ह ह	T	Т	8 8	1	Т	Т	Т	5 8	Т	Т	Т	T	\$ 8	T	Т
,	ă l	₽			_	07 04	_	\$ 00 00 00 00 00 00 00 00 00 00 00 00 00			3 2			2 8				2 5	3 4	2 2	8 6	3 5	3 S	5 8 5 8	8 8	3 8	8 8	3 %	3 6			8 8		8 8		8 8 8 8	3 S	8 8
	1	Pos.	\neg	_				\neg	_			Savity Savity	_	T	Т.	_	Т.	_	- 1		pase	Т	Т	$\overline{}$			Cavity	1.	-		Т	_		base	_	T	- 1	Cavity
Г	_	Dist.	Ē.	19	-	30.5	30.5	30.5	79.5	70	30.5	200	5 2	18.0	15.0	30.5	30.00	2.5	5	5	4	0	91.5	15.2	15.2	5.5	30.5	13.6	300	200	0.0	5 6	5	15.2	7.01	30.5	30.5	ē ē
1				Art. Sim. 6	Art. Sim. 61	Art. Sim.	Ar. cim.	Art. Sim.	Art. Sim.			Art Cim	AL CITE .	Art Cim		Art Cim	A 0 0 0	100	Art. Sim.	r. oim.	Art. Sim. 244	E S		Art. Sim.		Art. Sim.	E C	Art. Olli.	1. Olli.	Art. Silli.	Art. SIM.				E C	Sim.	Art. Sim.	Art. Sim. 61
	_	Туре		$\overline{}$	_	_											- 1	- 1								5/26 Ar					- 1	- 1	- 1	- 1	- 1	$\neg \tau$		5/11 A
	. Date			\neg	_	\neg	\neg	_		\neg	Т	Т	Т	Т	Т	2/2	Т	\neg	\neg	_	\neg	_	_	\neg	\neg	\neg	$\neg \tau$	Т	Т	Т	\neg	Т	Т	Т	\neg	_		236 5/
	ই		Ш	<u>8</u>	8	<u>8</u>	33	<u>జ</u>	8 8	8	8	3 8	8 8	3		7 6		5 3	5	5	28	2	88 88	38	8	28	5 3	3 8	3 3	<u>ارة</u>	N	ন্ত্ৰ ব	3	N	N	જો	તાં	N 8

Table D 3. Summary data for experimental .50 caliber blank fire on Fort Stewart, GA.

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Type	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	A
3	4/21	1-1	.50 cal.	61	90	2	1.7		Base	90.1	84.3
6	4/21	l-1	.50 cal.	61	90	2	1.7		Base	89.1	83.7
3	4/21	1-1	.50 cal.	61	90	2	1.7		Base	90.8	84.8
6	4/29	N-0	.50 cal.	91.5	90	2	10.8		Base	94.9	79.4
6	4/29	N-0	.50 cal.	91.5	90	2	10.8		Base	84.3	77.6
6	4/29	N-0	.50 cal.	91.5	90	2	10.8		Base	83.1	74.5
6	4/29	N-0	.50 cal.	91.5	90	2	10.8		Base	85.1	78.4
6	4/29	N-0	.50 cal.	91.5	90	2	10.8		Base	85.5	78.1
6	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	100.8	95.7
6	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	100.5	94.7
6	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	107.9	98.0
6	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	108.0	97.9
6	5/27	Post-fled.	.50 cal.	61	90	Post-fled.			Base	92.5	87.6
6	5/27	Post-fled.	.50 cal.	61	90	Post-fled.			Base	91.0	85.8
6	5/27	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	103.3	92.4
6	5/27	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	101.9	91.0
6	5/27	Post-fled.	.50 cal.	122	90	Post-fled.			Base	84.8	79.5
6	5/27	Post-fled.	.50 cal.	122	90	Post-fled.			Base	85.3	79.5
6	5/27	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	95.0	83.9
6	5/27	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	95.2	84.1
10	5/24	I-10	.50 cal.	30.5	90	2	13.6		Base	101.1	96.6
10	5/24	I-10	.50 cal.	30.5	90	2	13.6		Base	102.3	97.8
10	5/24	I-10	.50 cal.	30.5	90	2	13.6		Base	101.0	96.5
10	5/24	I-10	.50 cal.	30.5	90	2	13.6		Base	101.0	95.9
10	6/23	Post-fled.	.50 cal.	15.2	0	Post-fled.			Base	103.2	98.6
10	6/23	Post-fled.	.50 cal.	15.2	0	Post-fled.			Cavity	107.8	97.8
10	6/23	Post-fled.	.50 cal.	15.2	0	Post-fled.			Base	103.7	98.9
10	6/23	Post-fled.	.50 cal.	15.2	0	Post-fled.			Cavity	108.1	98.1
10	6/23	Post-fled.	.50 cal.	30.5	0	Post-fled.			Cavity	107.1	96.2
10	6/23	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	100.7	93.7
10	6/23	Post-fled.	.50 cal.	30.5	0	Post-fled.			Cavity	107.9	96.7
10	6/23	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	101.4	94.1
10	6/23	Post-fled.		45.7	0	Post-fled.			Base	96.8	88.7
10	6/23	Post-fled.		45.7	0	Post-fled.			Cavity	104.2	92.4
10	6/23	Post-fled.	.50 cal.	45.7	0	Post-fled.			Cavity		
10	6/23	Post-fled.		45.7	0	Post-fled.			Cavity		
10	6/23	Post-fled.	.50 cal.	45.7	0	Post-fled.	 		Base	89.6	

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day	,,	(m)	DOF	·				Flat /	4
10	6/23	Post-fled.	.50 cal.	45.7	0	Post-fled.			Base	95.4	87.0
10	6/23	Post-fled.	.50 cal.	61	0	Post-fled.			Cavity	102.3	90.6
10	6/23	Post-fled.	.50 cal.	61	0	Post-fled.			Cavity	108.6	96.9
10	6/23	Post-fled.	.50 cal.	61	0	Post-fled.			Base	92.8	84.5
10	6/23	Post-fled.	.50 cal.	61	0	Post-fled.			Base	99.3	91.2
10	6/23	Post-fled.	.50 cal.	122	0	Post-fled.			Base	84.7	76.9
10	6/23	Post-fled.	.50 cal.	122	0	Post-fled.			Base	81.7	73.9
10	6/23	Post-fled.	.50 cal.	122	0	Post-fied.			Cavity	93.7	81.4
10	6/23	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	91.1	83.2
12	4/28	1-1	.50 cal.	122	90	0			Base	84.9	80.1
12	4/28	I-1	.50 cal.	122	90	0			Base	84.1	79.5
12	4/28	I-1	.50 cal.	122	90	0			Base	84.6	79.5
12	4/28	I-1	.50 cal.	122	90	0			Base	83.8	78.2
12	6/11	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	107.3	104.3
12	6/11	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	114.4	105.3
12	6/11	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	100:5	96.2
12	6/11	Post-fled.	.50 cal.	61	90	Post-fled.			Base	97.8	92.7
12	6/11	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	112.1	105.1
12	6/11	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	106.8	96.8
12	6/11	Post-fled.	.50 cal.	122	90	Post-fled.			Base	87.2	80.4
23	4/28	I-3	.50 cal.	122	90	0			Base	86.5	79.6
23	4/28	I-3	.50 cal.	122	90	0		·	Base	87.4	80.7
23	4/28	1-3	.50 cal.	122	90	0		,	Base	87.4	80.2
23	4/28	1-3	.50 cal.	122	90	0			Base	88.4	81.6
23	5/3	I-8	.50 cal.	30.5	90	0			Base	90.2	82.7
23	5/3	I-8	.50 cal.	30.5	90	0			Base	93.0	84.8
23	5/3	I-8	.50 cal.	30.5	90	0			Base	92.9	83.9
23	5/3	1-8	.50 cal.	30.5	90	0			Base	95.3	86.6
23	5/3	I-8	.50 cal.	30.5	90	0			Base	96.3	87.6
23	5/3	1-8	.50 cal.	30.5	90	0			Base	97.0	87.9
23	5/3	I-8	.50 cal.	30.5	90	0			Base	99.4	90.7
23	5/3	1-8	.50 cal.	30.5	90	0			Base	98.5	89.6
23	5/6	N-0	.50 cal.	15.2	90	2	5.6		Base	96.8	92.5
23	5/6	N-0	.50 cal.	15.2	90	2	5.6		Base	108.3	102.6
23	5/6	N-0	.50 cal.	15.2	90	2	5.6		Base	101.8	96.1
23	5/6	N-0	.50 cal.	15.2	90	2	5.6		Base	108.0	102.4
23	6/14	Post-fled	.50 cal.	15.2	0	Post-fled			Base	106.3	102.8
23	6/14	Post-fled	.50 cal.	15.2	0	Post-fled			Base	107.3	104.0
23	6/14	Post-fled	.50 cal.	15.2	0	Post-fled			Base	108.2	104.8

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	Α
23	6/14	Post-fled.	.50 cal.	15.2	0	Post-fled.			Cavity	117.2	107.0
23	6/14	Post-fled.	.50 cal.	15.2	0	Post-fled.			Cavity	118.1	107.9
23	6/14	Post-fled.	.50 cal.	15.2	0	Post-fled.			Cavity	118.9	108.7
23	6/14	Post-fled.	.50 cal.	30.5	0	Post-fled.			Cavity	116.8	105.4
23	6/14	Post-fled.	.50 cal.	30.5	0	Post-fled.			Cavity	119.4	108.0
23	6/14	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	102.4	95.7
23	6/14	Post-fled.	.50 cal.	30.5	0	Post-fied.			Base	101.3	94.0
23	6/14	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	103.2	95.7
23	6/14	Post-fled.	.50 cal.	61	0	Post-fled.			Base	94.8	86.6
23	6/14	Post-fled.	.50 cal.	61	0	Post-fled.			Base	95.5	87.7
23	6/14	Post-fled.	.50 cal.	61	0	Post-fled.	<u> </u>		Base	93.8	86.0
23	6/14	Post-fled.	.50 cal.	61	0	Post-fled.			Cavity	116.8	104.3
23	6/14	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	96.0	83.8
23	6/14	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	99.5	86.9
23	6/14	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	100.9	88.2
23	6/14	Post-fled.	.50 cal.	122	0	Post-fled.			Base	81.6	75.3
23	6/14	Post-fled.	.50 cal.	122	0	Post-fled.			Base	84.0	77.3
23	6/14	Post-fled.	.50 cal.	122	0	Post-fled.			Base	85.0	78.4
30	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Base	91.0	85.9
30	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Base	91.7	86.5
30	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	104.1	95.1
30	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	105.0	96.7
30	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	112.5	104.3
30	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	104.6	102.2
30	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	95.1	90.5
30	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	98.1	93.6
30	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	104.5	96.4
30	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	107.7	99.8
36	5/19	N-1	.50 cal.	61	90	2	2.1		Base	89.6	82.9
36	5/19	N-1	.50 cal.	61	90	2	2.1		Base	90.9	84.2
36	5/19	N-1	.50 cal.	61	90	2	2.1		Base	90.8	83.6
36	5/19	N-1	.50 cal.	61	90	2	2.1		Base	90.8	84.1
36	5/19	N-1	.50 cal.	61	90	2	2.1		Base	91.4	84.8
36	5/21	I-8	.50 cal.	91.5	90	1			Base	89.4	84.6
36	5/21	1-8	.50 cal.	91.5	90	1			Base	89.5	84.8
36	5/21	1-8	.50 cal.	91.5	90	1			Base	90.1	84.9
36	5/21	1-8	.50 cal.	91.5	90	1			Base	89.4	84.4
36	5/21	1-8	.50 cal.	91.5	90	1			Base	92.2	86.9
36	5/21	I-8	.50 cal.	91.5	90	1			Base	91.8	86.7

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day	,,,,	(m)	DOF	•	<u> </u>			Flat /	4
36	6/15	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.8	100.3
36		Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	113.3	107.0
36	6/15	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	110.9	103.4
36	6/15	Post-fled.	.50 cal.	30.5	90	Post-fled.	 		Base	101.1	95.2
36	6/15	Post-fled.	.50 cal.	61	90	Post-fled.			Base	91.0	83.8
36	6/15	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	101.0	94.6
36	6/15	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	95.3	89.0
36	6/15	Post-fled.	.50 cal.	122	90	Post-fled.			Base	85.1	79.0
36	6/15	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	107.9	104.4
36	6/15	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.9	103.3
36	6/15	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	100.0	95.7
36	6/15	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	102.9	100.1
36	6/15	Post-fled.	.50 cal.	61	90	Post-fled.	<u> </u>		Base	94.4	92.3
36	6/15	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	98.7	96.7
36	6/15	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	92.5	89.3
36	6/15	Post-fled.	.50 cal.	122	90	Post-fled.			Base	87.9	81.5
44	5/27	Post-fled.	.50 cal.	61	90	Post-fled.			Base	95.4	88.7
44	5/27	Post-fled.	.50 cal.	61	90	Post-fled.			Base	93.7	86.5
44	5/27	Post-fled.	.50 cal.	61	90	Post-fled.			Base	93.3	86.3
44	5/27	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	110.2	96.5
44	5/27	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	108.6	94.7
44	5/27	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	108.5	94.4
44	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	102.1	96.0
44	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	101.3	95.0
44	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	98.7	92.5
44	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity		102.9
44	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity		102.2
44	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity		99.9
44	5/27	Post-fled.	.50 cal.	15.2	90	Post-fled			Base	106.2	. 101.8
44	5/27	Post-fled.	.50 cal.	15.2	90	Post-fled			Base	105.8	101.1
44	5/27	Post-fled.		15.2	90	Post-fled			Base	104.7	99.8
44	5/27	Post-fled.	.50 cal.	15.2	90	Post-fled			Cavity		104.3
44	5/27	Post-fled.		15.2	90	Post-fled			Cavity		103.9
44	5/27	Post-fled.	.50 cal.	15.2	90	Post-fled			Cavity		103.0
51	4/27	N-0	.50 cal.	122	90	1			Base	85.2	80.8
51	4/27	N-0	.50 cal.	122	90	1			Base	82.4	77.4
51	4/27	N-0	.50 cal.	122	90	1			Base	75.7	70.6
51	4/27	N-0	.50 cal.	122	90	1			Base	79.9	74.9
51	4/27	N-0	.50 cal.	122	90	1			Base	82.5	78.6

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	Α
51	4/27	N-0	.50 cal.	122	90	1			Base	82.4	78.0
51	4/29	N-2	.50 cal.	61	90	0			Base	93.4	85.8
51	4/29	N-2	.50 cal.	61	90	0			Base	93.7	86.1
51	4/29	N-2	.50 cal.	61	90	0			Base	93.5	86.0
51	4/29	N-2	.50 cal.	61	90	0			Base	93.3	86.0
51	4/29	N-2	.50 cal.	61	90	0			Base	93.5	86.0
51	4/29	N-2	.50 cal.	61	90	0			Base	93.0	85.8
51	4/29	N-2	.50 cal.	61	90	0			Base	93.7	86.1
51	4/29	N-2	.50 cal.	61	90	0			Base	93.6	86.3
51	5/3	N-3	.50 cal.	30.5	90	2	1.9		Base	94.4	88.2
51	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.9	102.2
51	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.8	102.2
51	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.4	102.1
51	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	117.6	108.3
51	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	117.5	108.3
51	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	116.8	107.8
51	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	114.7	106.3
51	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	114.4	106.0
51	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	114.5	105.7
51	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	102.3	98.7
51	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	101.7	95.8
51	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	101.6	95.5
52	5/13	Inactive	.50 cal.	15.2	90	Inactive			Cavity	110.5	101.5
52	5/13	Inactive	.50 cal.	15.2	90	Inactive			Base	105.3	102.1
52	5/13	Inactive	.50 cal.	30.5	90	Inactive			Cavity	107.4	97.6
52	5/13	Inactive	.50 cal.	61	90	Inactive			Cavity	99.6	91.1
52	5/13	Inactive	.50 cal.	61	90	Inactive			Base	93.7	88.6
52	5/13	Inactive	.50 cal.	15.2	90	Inactive			Base	100.4	97.9
52	5/13	Inactive	.50 cal.	15.2	90	Inactive			Cavity	105.8	101.4
52	5/13	Inactive	.50 cal.	30.5	90	Inactive			Base	92.6	90.0
52	5/13	Inactive	.50 cal.	30.5	90	Inactive			Cavity	99.5	94.8
52	5/13	Inactive	.50 cal.	61	90	Inactive			Cavity	97.9	92.9
52	5/13	Inactive	.50 cal.	61	90	Inactive			Base	92.9	88.3
53	5/4	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	103.9	101.6
53	5/4	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	113.0	105.3
53	5/4	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	113.7	105.4
53	5/4	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	99.5	94.7
53	5/4	Post-fled.	.50 cal.	61	90	Post-fled.			Base	90.4	85.8
53	5/4	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	110.1	101.1

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF				,	Flat	A
53	5/4	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	112.0	103.6
53	5/4	Post-fled.	.50 cal.	15.2	90	Post-fled.	ļ		Base	103.5	100.5
53	5/4	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	98.7	95.6
53	5/4	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	110.2	101.1
53	5/4	Post-fied.	.50 cal.	61	90	Post-fled.			Base	108.7	98.3
53	5/4	Post-fled.	.50 cal.	61	90	Post-fled.			Base	91.2	84.5
53	5/5	1-1	.50 cal.	30.5	90	0			Base	106.0	99.2
53	5/5	1-1	.50 cal.	30.5	90	0			Base	100.0	93.0
53	5/10	1-6	.50 cal.	15.2	90	0			Base	106.7	102.2
53	5/10	1-6	.50 cal.	15.2	90	0			Base	107.2	102.5
53	5/10	1-6	.50 cal.	15.2	90	0			Base	107.4	102.2
53	5/10	1-6	.50 cal.	15.2	90	0			Base	107.2	102.5
53	5/12	I-8	.50 cal.	30.5	90	0		Replication of 1st 30.5 m trial	Base	98.3	93.4
53	5/12	I-8	.50 cal.	30.5	90	0		Replication of 1st 30.5 m trial	Base	101.1	94.7
53	5/12	1-8	.50 cal.	30.5	90	0		Replication of 1st 30.5 m trial	Base	101.6	94.7
53	5/12	1-8	.50 cal.	30.5	90	0		Replication of 1st 30.5 m trial	Base	103.1	96.5
53	5/12	1-8	.50 cal.	30.5	90	0		Replication of 1st 30.5 m trial	Base	103.7	97.4
53	5/12	1-8	.50 cal.	30.5	90	0		Replication of 1st 30.5 m trial	Base	105.3	98.7
57	4/21	I-6	.50 cal.	61	90	2	2.8		Base	86.8	81.7
57	4/21	1-6	.50 cal.	61	90	2	2.8		Base	85.2	79.8
57	4/21	1-6	.50 cal.	61	90	2	2.8		Base	85.8	80.5
57	4/21	1-6	.50 cal.	61	90	2	2.8		Base	86.0	80.2
57	4/21	1-6	.50 cal.	61	90	2	2.8		Base	86.4	81.5
57	4/21	1-6	.50 cal.	61	90	2	2.8		Base	87.4	83.3
57	4/21	I-6	.50 cal.	61	90	2	2.8		Base	91.4	86.7
57	4/21	I-6	.50 cal.	61	90	2	2.8		Base	91.3	
57	4/21	1-6	.50 cal.	61	90	2	2.8		Base	90.7	
57	4/21	1-6	.50 cal.	61	90	2	2.8		Base	91.1	86.4
57	4/21	1-6	.50 cal.	61	90	2	2.8		Base	91.3	
57	4/21	1-6	.50 cal.	61	90	2	2.8		Base	91.3	
57	4/21	1-6	.50 cal.	61	90	2	2.8		Base	91.4	
57	4/26	N-0	.50 cal.	122	90	0			Base		1
57	4/26	N-0	.50 cal.	122	90	0			Base		1
57	4/26	N-0	.50 cal.	122	90	0			Base		
57	4/26	N-0	.50 cal.	122	90	0			Base		
57	4/26	N-0	.50 cal.	122	90	0			Base		
57	4/26	N-0	.50 cal.	122	90	0			Base	82.4	75.8

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	Α
57	4/26	N-0	.50 cal.	122	90	0			Base	81.9	75.0
57	4/30	N-4	.50 cal.	91.5	90	2	10.9		Base	85.9	81.2
57	4/30	N-4	.50 cal.	91.5	90	2	10.9		Base	84.3	78.3
57	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Base	87.3	81.3
57	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	98.1	86.6
57	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	97.8	86.7
57	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.		No.	Base	87.0	80.8
57	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Base	90.5	84.8
57	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Base	93.4	87.5
57	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	100.7	90.1
57	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	104.1	92.8
57	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	114.0	101.7
57	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	105.4	100.8
57	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.0	101.6
57	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.7	102.1
57	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	111.1	99.2
57	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	112.8	101.5
57	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	94.4	84.0
57	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	95.1	84.5
57	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Base	84.9	79.5
57	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Base	84.8	79.3
57	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	62.7	48.4
57	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	87.2	81.3
57	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	87.2	81.4
57	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	98.6	87.9
57	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	98.5	88.3
57	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	103.7	93.6
57	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	104.5	94.3
57	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Base	93.5	87.8
57	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Base	94.3	88.9
57	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	100.9	96.8
57	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	100.7	96.3
57	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	108.6	98.9
57	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	108.7	99.0
57	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	102.0	92.6
57	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	109.1	99.7
57	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	110.1	100.7
57	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	95.5	92.3
57	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	102.9	100.0

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day	,,	(m)	DOF					Flat A	
57	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	103.7	100.1
61	5/17	1-3	.50 cal.	30.5	90	0			Base	96.9	94.9
61	5/17	1-3	.50 cal.	30.5	90	0			Base	94.3	91.8
61	5/17	1-3	.50 cal.	30.5	90	0			Base	98.4	95.3
61	5/17	1-3	.50 cal.	30.5	90	0			Base	97.5	94.0
61	5/17	1-3	.50 cal.	30.5	90	0			Base	97.3	93.7
61	5/17	1-3	.50 cal.	30.5	90	0			Base	98.7	95.4
61	5/17	1-3	.50 cal.	30.5	90	0			Base	97.9	94.7
61	5/17	1-3	.50 cal.	30.5	90	0			Base	99.2	96.2
61	5/17	I-3	.50 cal.	30.5	90	0			Base	97.6	93.7
61	5/17	I-3	.50 cal.	30.5	90	0			Base	93.5	90.1
61	5/21	1-7	.50 cal.	15.2	90	0	 		Base	107.3	103.8
61	5/21	1-7	.50 cal.	15.2	90	0			Base	107.1	103.3
61	5/21	1-7	.50 cal.	15.2	90	0			Base	105.9	102.0
61	5/21	1-7	.50 cal.	15.2	90	0			Base	105.2	101.6
61	6/15	1-9	.50 cal.	30.5	0	0		Data replication. Not used in response analysis	Base	106.5	102.2
61	6/15	1-9	.50 cal.	30.5	0	0		Data replication. Not used in response analysis	Base	103.3	98.7
88	5/26	1-4	.50 cal.	30.5	90	2	14.6		Base	100.0	92.7
88	5/26	1-4	.50 cal.	30.5	90	2	14.6		Base	99.7	92.3
88	5/26	1-4	.50 cal.	30.5	90	2	14.6		Base	100.7	92.8
88	5/26	1-4	.50 cal.	30.5	90	2	14.6		Base	99.8	92.1
88	5/26	1-4	.50 cal.	30.5	90	2	14.6		Base	101.2	94.0
120	5/13	1-1	.50 cal.	30.5	90	2	5.9		Base	104.1	98.5
120	5/13	I-1	.50 cal.	30.5	90	2	5.9		Base	105.1	99.9
120	5/13	1-1	.50 cal.	30.5	90	2	5.9		Base	103.2	98.0
125	5/13	Inactive	.50 cal.	15.2	90	Inactive			Cavity		96.1
125	5/13	Inactive	.50 cal.	15.2	90	Inactive			Cavity		97.6
125	5/13	Inactive	.50 cal.	15.2	90	Inactive			Base	95.1	91.2
125	5/13	Inactive	.50 cal.	15.2	90	Inactive			Base	96.7	92.1
125	5/13	Inactive	.50 cal.	30.5	90	Inactive			Cavity		96.4
125	5/13	Inactive	.50 cal.	30.5	90	Inactive			Base	97.2	94.5
125	5/13	Inactive	.50 cal.	61	90	Inactive			Cavity		91.2
125	5/13	Inactive	.50 cal.	61	90	Inactive			Base	93.8	90.4
125	5/13	Inactive	.50 cal.	15.2	90	Inactive			Cavity		102.8
125	5/13	Inactive	.50 cal.	15.2	90	Inactive			Base	100.4	98.2
125	5/13	Inactive	.50 cal.	30.5	90	Inactive			Base	93.1	90.2
125	5/13	Inactive	.50 cal.	30.5	90	Inactive			Cavity		90.2
125	5/13	Inactive	.50 cal.	61	90	Inactive			Cavity	96.4	91.3

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	Α
125	5/13	Inactive	.50 cal.	61	90	Inactive			Base	90.5	87.7
127	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	102.5	96.7
127	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	104.5	97.8
127	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Base	88.3	81.7
127	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Base	90.9	84.7
127	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	88.9	82.6
127	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	90.3	84.8
127	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	102.4	91.8
127	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	103.1	92.6
127	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	114.0	104.5
127	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	113.8	104.6
127	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	103.3	101.4
127	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	103.1	101.0
129	5/17	N-0	.50 cal.	30.5	90	2	3.0	**************************************	Base	108.2	103.0
129	5/19	N-2	.50 cal.	61	90	2	2.6		Base	93.9	86.7
129	5/19	N-2	.50 cal.	61	90	2	2.6		Base	95.3	88.3
129	5/19	N-2	.50 cal.	61	90	2	2.6		Base	95.2	87.8
129	5/19	N-2	.50 cal.	61	90	2	2.6		Base	. 98.8	91.7
129	5/24	N-7	.50 cal.	91.5	90	2	1.8		Base	95.0	87.4
133	4/21	I-1	.50 cal.	61	90	0			Base	92.8	85.8
133	4/21	I-1	.50 cal.	61	90	0			Base	93.3	85.9
133	4/21	I-1	.50 cal.	61	90	0			Base	93.7	86.0
133	4/21	1-1	.50 cal.	61	90	0			Base	94.3	86.8
133	4/26	1-5	.50 cal.	122	90	1			Base	84.8	79.2
133	4/26	I-5	.50 cal.	122	90	1			Base	85.1	79.6
133		I-5		122	90	1			Base	84.6	79.0
133		1-5	.50 cal.	122	90	1			Base	84.4	79.2
133		I-5	.50 cal.	122	90	1			Base	77.5	71.8
133	4/29	1-8	.50 cal.	91.5	90	0			Base	88.0	81.9
133	4/29	1-8	.50 cal.	91.5	90	0			Base	87.0	80.7
133		1-8	.50 cal.	91.5	90	0			Base	86.2	79.8
133	4/29	1-8	.50 cal.	91.5	90	0			Base	87.0	80.6
133	4/29	I-8	.50 cal.	91.5	90	0			Base	86.0	78.9
133	6/2	Post-fled.	.50 cal.	15.2	0	Post-fled.			Base	105.3	102.7
133	6/2	Post-fled.	.50 cal.	15.2	0	Post-fled.			Cavity	114.2	103.5
133	6/2	Post-fled.	.50 cal.	30.5	0	Post-fled.			Cavity	113.7	102.5
133	6/2	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	102.4	98.3
133	6/2	Post-fled.	.50 cal.	61	0	Post-fled.			Base	93.8	87.5
133	6/2	Post-fled.	.50 cal.	61	0	Post-fled.			Cavity	110.3	100.3

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day	,,	(m)	DOF	·				Flat	A
133	6/2	Post-fled.	.50 cal.	91.5	0	Post-fled.			Cavity	102.9	94.7
133	6/2	Post-fled.	.50 cal.	91.5	0	Post-fled.			Base	89.3	84.7
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Base	78.5	71.7
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Base	74.1	70.4
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Base	77.0	71.9
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Base	76.7	71.4
133	6/2	Post-fied.	.50 cal.	122	0	Post-fled.			Base	76.0	71.4
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Base	76.2	71.5
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Base	81.6	75.9
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	92.5	82.0
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	91.2	81.8
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	91.2	82.1
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	90.8	81.7
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	91.1	82.9
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	96.9	87.1
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	101.9	94.4
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	101.1	93.6
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Base	87.5	82.1
133	6/2	Post-fled.	.50 cal.	122	0	Post-fled.			Base	86.7	80.8
133	6/2	Post-fled.	.50 cal.	91.5	0	Post-fled.			Base	92.5	85.9
133	6/2	Post-fled.	.50 cal.	91.5	0	Post-fled.			Base	93.4	86.7
133	6/2	Post-fled.	.50 cal.	91.5	0	Post-fled.		·	Cavity	110.9	101.7
133	6/2	Post-fled.	.50 cal.	91.5	0	Post-fled.			Cavity	112.2	103.5
139	5/4	1-6	.50 cal.	61	90	2			Base	93.0	85.9
139	5/4	1-6	.50 cal.	61	90	2			Base	93.0	86.0
139	5/4	I-6	.50 cal.	61	90	2			Base	92.9	85.9
139	5/4	1-6	.50 cal.	61	90	2			Base	93.7	86.7
139	5/4	1-6	.50 cal.	61	90	2			Base	92.9	85.8
139	5/4	1-6	.50 cal.	61	90	2			Base	93.0	86.2
139	5/4	I-6	.50 cal.	61	90	2			Base	92.9	85.9
139	5/4	I-6	.50 cal.	61	90	2			Base	93.6	86.4
139	5/9	N-0	.50 cal.	91.5	90	2	5.2		Base	89.0	82.6
139	5/9	N-0	.50 cal.	91.5	90	2	5.2		Base	89.7	82.8
139	5/9	N-0	.50 cal.	91.5	90	2	5.2		Base	90.4	83.5
139	5/9	N-0	.50 cal.	91.5	90	2	5.2		Base	91.0	84.2
139	6/14	Post-fled.	.50 cal.	15.2	90	Post-fled			Cavity		104.2
139	6/14	Post-fled.	.50 cal.		90	Post-fled			Base	106.2	103.7
139	6/14	Post-fled.		30.5	90	Post-fled			Base	103.4	100.4
139	6/14	Post-fled.	50 cal.	30.5	90	Post-fled			Cavity	112.5	103.9

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day	"	(m)	DOF	·				Flat	Α
139	6/14	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	106.0	96.1
139	6/14	Post-fled.	.50 cal.	61	90	Post-fled.			Base	92.7	88.0
139	6/14	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	86.3	81.6
139	6/14	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	99.7	90.1
139	6/14	Post-fled.	.50 cal.	122	90	Post-fled.		49.4	Cavity	98.5	87.6
139	6/14	Post-fled.	.50 cal.	122	90	Post-fled.			Base	83.6	78.5
139	6/14	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	107.2	104.7
139	6/14	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	118.2	111.9
139	6/14	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	116.0	110.3
139	6/14	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	103.4	100.4
139	6/14	Post-fled.	.50 cal.	61	90	Post-fled.			Base	94.0	89.2
139	6/14	Post-fled.	.50 cal.	61	90	Post-fled.			Base	109.3	102.8
139	6/14	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	104.2	97.7
139	6/14	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	87.1	83.1
139	6/14	Post-fled.	.50 cal.	122	90	Post-fled.			Base	85.9	78.9
139	6/14	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	104.2	97.0
139	6/17	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	103.7	100.7
139	6/17	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	112.8	105.0
139	6/17	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	108.9	98.6
139	6/17	Post-fled.	.50 cal.	61	90	Post-fled.			Base	97.6	92.6
139	6/17	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	89.6	84.7
139	6/17	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	101.2	94.3
139	6/17	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	99.5	89.8
139	6/17	Post-fled.	.50 cal.	122	90	Post-fled.			Base	84.9	78.8
143	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	113.9	102.3
143	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	113.8	102.1
143	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	114.9	103.3
143	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	98.9	93.9
143	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	99.0	93.9
143	5/27	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	100.2	94.0
143	5/27	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	114.7	104.2
143	5/27	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	110.8	100.1
143	5/27	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	113.7	103.1
143	5/27	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	104.0	101.4
143	5/27	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	99.8	96.8
143	5/27	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	103.0	100.5
148	4/23	1-3	.50 cal.	122	90	1			Base	81.5	76.3
148	4/23	I-3	.50 cal.	122	90	1			Base	88.3	84.0
148	4/23	1-3	.50 cal.	122	90	1			Base	85.1	79.5

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	A
148	4/23	1-3	.50 cal.	122	90	1			Base	88.8	83.8
148	4/23	1-3	.50 cal.	122	90	1			Base	84.5	78.9
148	4/27	1-7	.50 cal.	61	90	1			Base	90.6	87.2
148	4/27	1-7	.50 cal.	61	90	1			Base	90.6	87.1
148	4/27	1-7	.50 cal.	61	90	1			Base	90.4	86.7
148	4/27	1-7	.50 cal.	61	90	1			Base	85.7	81.9
148	5/3	N-2	.50 cal.	30.5	90	2	3.2		Base	103.0	94.6
151	5/10	N-1	.50 cal.	15.2	90	2	4.4		Base	105.2	101.6
151	5/10	N-1	.50 cal.	15.2	90	2	4.4		Base	105.9	102.3
151		N-1	.50 cal.	15.2	90	2	4.4		Base	106.9	103.1
151	5/10	N-1	.50 cal.	15.2	90	2	4.4		Base	106.8	102.9
151	6/14	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	106.5	102.1
151	6/14	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	115.1	106.3
151	6/14	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	111.4	104.6
151	6/14	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	100.4	97.2
151	6/14	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	109.0	100.7
151	6/14	Post-fled.	.50 cal.	61	90	Post-fled.			Base	85.7	78.5
162	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Base	94.2	87.1
162	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Base	93.9	86.7
162	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	111.9	103.7
162	6/3	Post-fled.	.50 cal.	61	90	Post-fled.	1		Cavity	112.7	104.7
162	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.	 		Cavity	113.9	106.3
162	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.	<u> </u>		Cavity	114.6	106.5
162	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	100.1	96.0
162	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	109.4	104.6
162	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	117.6	109.8
162	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	118.4	110.5
163	5/17	I-6	.50 cal.	30.5	90	2	1.2		Base	96.1	92.7
163	5/17	1-6	.50 cal.	30.5	90	2	1.2		Base	97.8	93.9
163	5/17	1-6	.50 cal.	30.5	90	2	1.2		Base	97.4	93.5
163	5/17	1-6	.50 cal.	30.5	90	2	1.2		Base	97.5	93.8
163	5/17	1-6	.50 cal.	30.5	90	2	1.2		Base	98.4	95.0
163	5/17	I-6	.50 cal.	30.5	90	2	1.2		Base	99.5	95.4
163	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled			Base	109.1	106.1
163	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled			Base	109.4	106.4
163	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled			Cavity	116.3	106.8
163	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled			Cavity	117.0	107.3
163	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled			Cavity	110.9	103.8
163	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled			Cavity	113.4	105.5

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	A
163	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	101.0	98.3
163	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	101.7	98.8
163	6/21	Post-fled.	.50 cal.	61	0	Post-fled.			Base	98.7	94.9
163	6/21	Post-fled.	.50 cal.	61	0	Post-fled.			Cavity	111.8	102.3
163	6/21	Post-fled.	.50 cal.	91.5	0	Post-fled.			Cavity	107.6	97.3
163	6/21	Post-fled.	.50 cal.	91.5	0	Post-fled.			Cavity	105.9	95.3
163	6/21	Post-fled.	.50 cal.	91.5	0	Post-fled.			Base	90.8	84.7
163	6/21	Post-fled.	.50 cal.	91.5	0	Post-fled.			Base	89.3	83.4
163	6/21	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	106.0	97.8
163	6/21	Post-fled.	.50 cal.	122	0	Post-fled.			Base	88.4	84.6
163	6/21	Post-fled.	.50 cal.	122	0	Post-fled.			Base	88.3	84.9
163	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled.			Cavity	109.7	103.2
163	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled.			Cavity	109.4	102.7
163	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled.			Base	103.0	100.3
163	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled.			Base	103.6	100.7
163	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	96.6	90.1
163	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	96.5	89.7
163	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled.			Cavity	107.2	100.2
163	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled.			Cavity	107.2	100.4
163	6/21	Post-fled.	.50 cal.	61	0	Post-fled.			Cavity	103.9	97.4
163	6/21	Post-fled.	.50 cal.	61	0	Post-fled.			Base	90.7	85.8
163	6/21	Post-fled.	.50 cal.	91.5	0	Post-fled.			Cavity	103.4	96.9
163	6/21	Post-fled.	.50 cal.	91.5	0	Post-fled.			Base	89.9	85.1
163	6/21	Post-fled.	.50 cal.	122	0	Post-fled.			Base	87.1	81.9
163	6/21	Post-fled.	.50 cal.	122	0	Post-fled.			Base	87.1	81.9
163	6/21	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	99.1	92.6
163	6/21	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	99.5	93.1
176		1-3	.50 cal.	122	90	2	11.7		Base	89.4	82.7
176	4/28	1-3	.50 cal.	122	90	2	11.7		Base	88.2	81.8
176	4/28	I-3	.50 cal.	122	90	2	11.7		Base	87.0	80.2
176		1-3	.50 cal.	122	90	2	11.7		Base	86.4	79.5
176		N-7	.50 cal.	15.2	90	2	7.1		Base	88.0	81.5
176		N-7	.50 cal.	15.2	90	2	7.1		Base	88.8	82.2
176		N-7	.50 cal.	15.2	90	2	7.1		Base	85.3	78.8
176	1	N-8	.50 cal.	61	90	2	5.5		Base	91.1	88.0
176	· .	N-8	.50 cal.	61	90	2	5.5		Base	92.2	89.3
176		N-8	.50 cal.	61	90	2	5.5		Base	91.6	87.1
176	5/27	N-8	.50 cal.	61	90	2	5.5		Base	93.1	88.4
194	4/19	1-5	.50 cal.	61	90	0			Base	87.4	82.4

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	Α
194	4/19	1-5	.50 cal.	61	90	0			Base	96.5	91.0
194	4/19	I-5	.50 cal.	61	90	0			Base	95.5	88.9
194	4/19	I-5	.50 cal.	61	90	0			Base	94.7	88.9
194	4/19	I-5	.50 cal.	61	90	0			Base	90.7	83.9
194	4/19	I-5	.50 cal.	61	90	0			Base	92.9	85.5
194	4/19	1-5	.50 cal.	61	90	0			Base	98.1	91.4
194	4/19	I-5	.50 cal.	61	90	0			Base	94.0	86.5
194	4/28	N-3	.50 cal.	30.5	90	0			Base	99.7	94.3
194	4/28	N-3	.50 cal.	30.5	90	0			Base	100.9	95.1
194	4/28	N-3	.50 cal.	30.5	90	0			Base	101.1	94.8
194	4/28	N-3	.50 cal.	30.5	90	0			Base	101.9	95.6
194	4/28	N-3	.50 cal.	30.5	90	0			Base	93.6	87.0
194	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.8	101.5
194	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.7	101.1
194	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	108.0	103.2
194	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	116.6	104.5
194	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	116.5	104.3
194	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	118.6	106.3
194	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.	1		Cavity	116.7	102.8
194	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	116.7	102.6
194	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	116.9	102.7
194	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	104.1	97.4
194	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	104.0	97.1
194	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	103.8	96.4
199	5/11	Inactive	.50 cal.	15.2	90	Inactive			Base	106.7	102.7
199	5/11	Inactive	.50 cal.	15.2	90	Inactive			Base	111.1	106.2
199	5/11	Inactive	.50 cal.	15.2	90	Inactive			Base	114.8	109.8
199	5/11	Inactive	.50 cal.	15.2	90	Inactive			Cavity	111.8	103.9
199	5/11	Inactive	.50 cal.	15.2	90	Inactive			Cavity	115.3	107.8
199	5/11	Inactive	.50 cal.	30.5	90	Inactive			Base	95.2	89.5
199	5/11	Inactive	.50 cal.	30.5	90	Inactive			Base	100.6	
199	5/11	Inactive	.50 cal.	30.5	90	Inactive			Cavity	105.5	1
199	5/11	Inactive	.50 cal.	30.5	90	Inactive			Cavity	110.8	
199	5/11	Inactive	.50 cal.	61	90	Inactive			Base	103.0	
199	5/11	Inactive	.50 cal.	61	90	Inactive			Cavity		
201	6/17	Post-fled	.50 cal.	15.2	90	Post-fled			Base	107.1	
201	6/17	Post-fled	50 cal.	15.2	90	Post-fled			Cavity		
201	6/17	Post-fled	50 cal.	30.5	90	Post-fled	1.		Cavity	/ 105.0	
201	6/17	Post-fled	50 cal.	30.5	90	Post-fled	1.		Base	102.8	97.2

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	A
201	6/17	Post-fled.	.50 cal.	61	90	Post-fled.			Base	96.8	90.1
201	6/17	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	99.7	89.5
201	6/17	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	93.7	85.2
201	6/17	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	91.6	85.2
201	6/17	Post-fled.	.50 cal.	122	90	Post-fled.		, , , , , , , , , , , , , , , , , , , ,	Base	90.4	83.6
201	6/17	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	92.7	85.7
201	6/17	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.8	102.4
201	6/17	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	113.3	104.8
201	6/17	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	111.2	101.5
201	6/17	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	99.3	94.1
201	6/17	Post-fled.	.50 cal.	61	90	Post-fled.			Base	93.4	87.6
201	6/17	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	107.3	97.2
201	6/17	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	105.6	95.1
201	6/17	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	89.7	82.4
201	6/17	Post-fled.	.50 cal.	122	90	Post-fled.			Base	86.1	79.2
201	6/17	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	100.2	90.5
205	4/22	I-1	.50 cal.	61	90	2	5.0		Base	85.7	78.9
205	4/26	I-5	.50 cal.	122	90	1			Base	85.3	76.4
205	4/26	1-5	.50 cal.	122	90	1			Base	85.7	77.3
205	4/26	1-5	.50 cal.	122	90	1			Base	84.5	75.5
205	4/26	1-5	.50 cal.	122	90	1			Base	85.3	76.9
205	4/26	1-5	.50 cal.	122	90	1			Base	85.2	76.5
205	4/26	I-5	.50 cal.	122	90	1			Base	82.5	74.2
205	4/29	1-8	.50 cal.	91.5	90	1			Base	85.8	78.1
205	4/29	1-8	.50 cal.	91.5	90	1			Base	85.9	78.6
205	4/29	I-8	.50 cal.	91.5	90	1			Base	86.2	80.6
205	4/29	1-8	.50 cal.	91.5	90	1			Base	85.6	79.4
205	4/29	1-8	.50 cal.	91.5	90	1			Base	85.3	79.8
205	4/29	I-8	.50 cal.	91.5	90	1			Base	85.8	79.0
205	4/29	1-8	.50 cal.	91.5	90	1			Base	86.7	79.3
205	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	106.1	97.3
205	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Base	84.8	78.6
205	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Base	84.5	78.3
205	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	84.9	78.1
205	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	86.6	79.9
205	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	102.4	93.6
205	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	106.2	97.4
205	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	112.0	103.7
205	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	112.3	104.1

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day	,,	(m)	DOF					Flat /	4
205	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Base	95.2	86.9
205	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Base	95.6	86.9
205	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	98.1	91.7
205	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	101.2	94.6
205	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	113.0	105.2
205	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	113.0	105.3
205	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	115.3	107.6
205	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	104.4	101.6
205	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.3	102.2
205	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Base	85.6	79.6
205	6/2	Post-fled.	.50 cal.	122	90	Post-fled.			Cavity	106.5	94.7
205	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	110.3	97.7
205	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Cavity	108.8	96.6
205	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	88.1	80.8
205	6/2	Post-fled.	.50 cal.	91.5	90	Post-fled.			Base	87.6	80.5
205	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Base	94.9	88.7
205	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Base	94.1	87.1
205	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	112.2	100.4
205	6/2	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	110.8	99.1
205	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	118.1	107.3
205	6/2	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	102.7	97.5
205	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.		·	Base	109.8	104.7
205	6/2	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	119.9	109.9
206	5/4	I-2	.50 cal.	61	90	0			Base	103.2	95.8
206	5/9	1-7	.50 cal.	30.5	90	2	3.3		Base	96.9	89.7
206	5/9	1-7	.50 cal.	30.5	90	2	3.3		Base	103.2	95.5
206	5/9	1-7	.50 cal.	30.5	90	2	3.3		Base	104.6	96.8
206	5/9	1-7	.50 cal.	30.5	90	2	3.3		Base	103.4	95.7
206	6/14	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	107.0	103.5
206	6/14	Post-fled.	.50 cal.	15.2	90	Post-fled.	1		Cavity	-	109.1
206	6/14	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity		108.0
206	6/14	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	102.5	96.8
206	6/14	Post-fled.		61	90	Post-fled.			Base	93.6	84.9
206	6/14	Post-fled.		61	90	Post-fled.			Cavity		99.7
206	6/14	Post-fled.		122	90	Post-fled.			Cavity		92.4
206	6/14	Post-fled.		122	90	Post-fled		191144, 1	Base	85.2	79.4
206	6/14	Post-fled.		15.2	90	Post-fled			Base	103.6	100.4
206		Post-fled.		15.2	90	Post-fled			Cavity		101.4
206	6/14	Post-fled.	.50 cal.	30.5	90	Post-fled			Cavity	110.4	103.0

90

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat A	
208	5/11	Inactive	.50 cal.	61	90	Inactive			Cavity	97.5	86.0
211	5/13	Inactive	.50 cal.	15.2	90	Inactive			Cavity	106.6	100.7
211	5/13	Inactive	.50 cal.	15.2	90	Inactive			Base	99.9	96.3
211	5/13	Inactive	.50 cal.	30.5	90	Inactive			Cavity	99.2	94.5
211	5/13	Inactive	.50 cal.	30.5	90	Inactive			Base	93.1	91.8
211	5/13	Inactive	.50 cal.	30.5	90	Inactive			Cavity	94.6	90.1
211	5/13	Inactive	.50 cal.	30.5	90	Inactive			Base	90.9	89.0
218	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.	1		Base	106.5	101.8
218	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	107.7	103.3
218	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	111.4	103.5
218	5/26	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	112.4	104.3
218	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	111.6	101.7
218	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	111.6	101.7
218	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	112.0	102.3
218	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	103.3	99.5
218	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	103.2	99.2
218	5/26	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	103.7	100.0
227	4/29	1-9	.50 cal.	61	90	0			Base	95.4	86.4
227	4/29	1-9	.50 cal.	61	90	0			Base	95.8	87.9
227	4/29	1-9	.50 cal.	61	90	0			Base	93.1	85.3
227	4/29	I-9	.50 cal.	61	90	0			Base	93.7	87.0
227	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.		·	Base	106.7	102.3
227	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	107.4	102.9
227	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	119.5	108.2
227	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity		107.7
227	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	106.6	100.0
227	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	106.4	99.6
227	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity		109.2
227	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	118.6	108.0
227	6/3	Post-fled.	.50 cal.	61	90	Post-fled			Base	91.7	85.4
227	6/3	Post-fled.	.50 cal.	61	90	Post-fled			Base	84.0	76.7
227	6/3	Post-fled.	.50 cal.	61	90	Post-fled			Cavity	111.1	100.2
227	6/3	Post-fled.	.50 cal.	61	90	Post-fled			Cavity		91.9
228	4/26	1-4	.50 cal.	122	90	1			Base	86.2	78.2
228	4/26	1-4	.50 cal.	122	90	1			Base	93.0	85.2
228	4/29	1-7	.50 cal.	91.5	90	2	3.7		Base	89.2	86.0
228	4/29	1-7	.50 cal.	91.5	90	2	3.7		Base	84.4	81.3
228	4/29	1-7	.50 cal.	91.5	90	2	3.7		Base	83.9	80.6
228	4/29	1-7	.50 cal.	91.5	90	2	3.7		Base	89.0	85.9

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	Α
228	4/29	1-7	.50 cal.	91.5	90	2	3.7		Base	84.8	82.0
231	5/11	Inactive	.50 cal.	15.2	90	Inactive			Cavity	113.6	107.4
231	5/11	Inactive	.50 cal.	15.2	90	Inactive			Cavity	114.2	108.0
231	5/11	Inactive	.50 cal.	15.2	90	Inactive			Cavity	115.7	109.4
231	5/11	Inactive	.50 cal.	15.2	90	Inactive			Base	107.9	103.8
231	5/11	Inactive	.50 cal.	15.2	90	Inactive			Base	108.5	104.8
231	5/11	Inactive	.50 cal.	15.2	90	Inactive			Base	109.9	105.9
231	5/11	Inactive	.50 cal.	30.5	90	Inactive			Base	105.1	100.3
231	5/11	Inactive	.50 cal.	30.5	90	Inactive			Base	105.7	100.0
231	5/11	Inactive	.50 cal.	30.5	90	Inactive	<u> </u>		Base	101.6	98.2
231	5/11	Inactive	.50 cal.	30.5	90	Inactive		<u> </u>	Cavity	110.0	103.3
231	5/11	Inactive	.50 cal.	30.5	90	Inactive			Cavity	110.6	104.1
231	5/11	Inactive	.50 cal.	30.5	90	Inactive			Cavity	106.0	99.3
231	5/11	Inactive	.50 cal.	61	90	Inactive			Cavity	102.4	95.6
231	5/11	Inactive	.50 cal.	61	90	Inactive			Cavity	96.9	90.1
231	5/11	Inactive	.50 cal.	61	90	Inactive			Base	95.2	89.5
231	5/11	Inactive	.50 cal.	61	90	Inactive			Base	89.4	83.4
236	5/11	Inactive	.50 cal.	15.2	90	Inactive			Base	108.0	103.2
236	5/11	Inactive	.50 cal.	15.2	90	Inactive			Base	104.2	99.4
236	5/11	Inactive	.50 cal.	15.2	90	Inactive			Base	109.2	103.6
236	5/11	Inactive	.50 cal.	15.2	90	Inactive			Base	106.2	100.1
236	5/11	Inactive	.50 cal.	15.2	90	Inactive			Cavity	112.6	104.0
236	5/11	Inactive	.50 cal.	15.2	90	Inactive			Cavity	109.0	100.6
236	5/11	Inactive	.50 cal.	15.2	90	Inactive			Cavity	114.1	105.7
236	5/11	Inactive	.50 cal.	15.2	90	Inactive			Cavity	110.4	101.9
		Inactive	.50 cal.	30.5	90	Inactive			Base	102.2	94.8
236	5/11	Inactive	.50 cal.	30.5	90	Inactive			Base	102.6	95.2
	5/11	Inactive	.50 cal.	30.5	90	Inactive			Base	105.6	98.5
	5/11	Inactive	.50 cal.	30.5	90	Inactive			Cavity	110.0	101.1
	5/11	Inactive	.50 cal.	30.5	90	Inactive			Cavity	110.0	101.3
	5/11	Inactive	.50 cal.	30.5	90	Inactive			Cavity	112.8	104.1
236	5/11	Inactive	.50 cal.	61	90	Inactive			Cavity	104.5	94.4
236	5/11	Inactive	.50 cal.	61	90	Inactive			Cavity	108.5	98.5
236	5/11	Inactive	.50 cal.	61	90	Inactive			Cavity	106.4	96.2
236	5/11	Inactive	.50 cal.	61	90	Inactive			Cavity	105.5	95.9
236	5/11	Inactive	.50 cal.	61	90	Inactive			Base	92.7	83.2
236	5/11	Inactive	.50 cal.	61	90	Inactive			Base	95.1	85.6
236	5/11	Inactive	.50 cal.	61	90	Inactive			Base	92.8	82.5
236	5/11	Inactive	.50 cal.	61	90	Inactive			Base	92.6	82.7

Col.	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Rem.	Mic .	SEL (dB)	
		Phase	Туре	Dist.	re.	Resp.	(min)		Pos.		
		& Day		(m)	DOF					Flat	A
271	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	106.5	103.5
271	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Base	105.8	103.2
271	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	118.6	108.3
271	6/3	Post-fled.	.50 cal.	15.2	90	Post-fled.			Cavity	118.0	107.8
271	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	115.1	103.6
271	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Cavity	115.5	103.9
271	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	99.5	95.3
271	6/3	Post-fled.	.50 cal.	30.5	90	Post-fled.			Base	100.2	97.1
271	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	111.5	99.7
271	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Cavity	112.3	100.3
271	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Base	94.5	91.1
271	6/3	Post-fled.	.50 cal.	61	90	Post-fled.			Base	95.0	91.3
294	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled.			Base	104.0	101.6
294	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled.		,	Base	105.0	102.3
294	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled.			Cavity	111.3	104.8
294	6/21	Post-fled.	.50 cal.	15.2	0	Post-fled.			Cavity	112.0	105.7
294	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled.			Cavity	109.6	103.8
294	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled.	1		Cavity	109.9	104.3
294	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	101.1	96.5
294	6/21	Post-fled.	.50 cal.	30.5	0	Post-fled.			Base	101.5	97.5
294	6/21	Post-fled.	.50 cal.	61	0	Post-fled.			Base	96.7	90.5
294	6/21	Post-fled.	.50 cal.	61	0	Post-fled.			Base	96.2	91.0
294	6/21	Post-fled.	.50 cal.	61	0	Post-fled.			Cavity	107.5	100.6
294	6/21	Post-fled.	.50 cal.	61	0	Post-fled.			Cavity	106.8	100.9
294	6/21	Post-fled.	.50 cal.	91.5	0	Post-fled.			Base	88.4	83.9
294	6/21	Post-fled.	.50 cal.	91.5	0	Post-fled.			Cavity	103.2	95.1
294	6/21	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	99.3	92.1
294	6/21	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	100.2	94.2
294	6/21	Post-fled.	.50 cal.	122	0	Post-fled.			Cavity	86.4	81.7
294	6/21	Post-fled.	.50 cal.	122	0	Post-fled			Cavity	87.1	82.5

Calc.	Overall	90.1	89.1	8.06	94.9	84.3	83.1	85.1	85.5	100.8	100.5	107.9	108.0	92.5	91.0	103.3	6.101	84.8	85.3	95.0	95.2	101.1	102.3	101.0	101.0	103.2	107.8	103.7	108.1	107.1	100.7	107.9	4.101.4	90.0	2.401	5.57	1.03.1	0.70	102.3	108 6	97.8	99.3	84.7	81.7
	20000	49	49	46						76	92	47	45	59	57	53	32	34	56	29		70	73	89	69	78	62	8	99	29	62	19	\$ 3	8 2	100	64 5	75 95	3	\$ 00	64	5 5	50	47	43
	16000	52	53	54	45	40	33	38	40	81	81	54	23	29	65	4	42	45	45	34	<u>~</u>	73	77	72	72	82	63	84	19	59	£ (79	8	5	25	÷ 2	5 5	25	00 00	3	5 5	63	47	43
	12500	58	59	19	33					82	82	29	59	17	69	84	47	52	52	35	37	76	62	76	75	28	63	88	63	99	63	19	6	2 5	25	3 2	2 2	5	3 8	27	3	3 9	84	45
	10000	64	64	9	54	52	53	53	54	83	82	3	3	72	71	99	54	57	57	44	45	8	82	8	08	85	99	87	29	63	2	2 5	7/	8 %	3 5	\$ C	3 5	5 5	3 8	3 9	3 2	8	53	20
	8000	19	99	70	59	58	99	57	59	83	82	89	8	74	72	63	62	09	8	22	53	18	83	<u>~</u>	08	82	7	87	7	99	72	40 5	7, 00	00	ر د د	44	2 6	3 3	8 7	3	2 2	72	29	54
	6300	89	89	70	09	59	58	9	59	82	81	17	F	74	73	49	64	62	62	57	57	82	84	82	8	85	8	98	20	65	74	\$ 5	0/6	2 5	60	20	65	70	60	2	5 3	73	09	57
	2000	70	69	71	63	62	09	62	63	83	82	73	72	76	74	89	29	63	64	28	09	83	84	83	82	84	73	8	73	69	92	9 7	6 5	7/	3	S S	3 2	3 6	2 3	9 9	62	74	19	59
	4000	72	72	75	99	63	19	63	64	83	82	74	2	75	73	5	69	99	99	59	09	84	88	83	82	87	77	87	76	75	77	2 5	+	+	+	+	-	+	+	+	+	╫	æ	+
	3150	+	74	-	-	_	Н	-	99	_	\dashv	75	-	-+		-	\dashv	-	\dashv	-	3	-	-	\dashv	\dashv	ᅪ		\dashv	-	-	-	+	+	5 5	+	-	2 07	+	+	2 2	+	1 02	+	63
	0 2500		74				Ш	_	99		_	78	-	-	-	-	-	_	70		-	-	87	-	-	-+		-	-	-		20	+	+	+	+	+	+		+	+	2	╀	63
	1600 2000	+	Н	-	Н	_	Н		\dashv	-	\vdash	-+		-+	\dashv	-	-1	-		-	\dashv	-	-+	-+	-		\dashv	-	\dashv	-+	\rightarrow	0 2	+	-	+	+		+	\neg	┰	+		+	64 64
ان	1250 160	+-	Н	74 74	Н	_		-	89 89	_	81 82		-	\dashv	_	-	-	_	_		-	-	-			-	\dashv	-	-	-	-	84 80	+	0 2	+	8 5	+	+	+	10	+	70 70	9 19	┿
1, GA	1000	+	Н		Н		63 6	Н	\vdash		\vdash	-+	+	\dashv	\dashv	┪	-				\dashv	-	-	-	-	-	\dashv	+	\dashv	-	-+	8 8	十	5 5	+	+	+	+	+	+	3 6	+	+	62 (
Stewart,	800 10										8 18			_										_		_	_	_			_	8 8	_	77/	4	4	_	4	4	0/ 6	1	4	\perp	99
1 21	630	-	-		70	89	64		-	_	8 82	_		25	73	78	77	99	65	29	29	79	83	<u>8</u>	82	8	85	68	_	85	%	82	-	7/ 8	2 5	7.7	2	3 ;	= {	7 0	2 5	14	. 19	288
בס	0 200	17 17	-	Н	-	99 69	-	99 89	Н		82 83	-	91			83 79	_	63 65		-	73 69	90 84	-	89 84	- 84	88 88	$\overline{}$	_		-	-+	_	87 84	-	-	-		-+	-	10 /4	-	-	+	56 56
0	315 400	70 7		71 7	-	_	₩	Н	Н	_	8 68	-+	_	_	-	8 8	_	-		_	80 7	_	-	_	\rightarrow	_	_		-	-	-	-+	-+	-+	-	-+	-	+	-	6/	-+-	-	-	57 6
.5U-Callber Diank Tire on trum Center Frequencies (Hz)		_	-	_	_		-	_	-	_	96		_	_	_	_		_	9	-	\vdash	8	-	\rightarrow	8	$\overline{}$		\rightarrow	-	-	\rightarrow	-+			-	\rightarrow	-	-	8 8	_	26 9	+	-	-
ectra for experimental .50-caliber blank fil Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (H2)	100 125 160 200 250	81 78	80 77	32 79	-	_	77 72	_	79 73	-	_	105 103	_	_	_	101	_	-		8 8	93 89	$\overline{}$	94 92	_	_	90 92	105 97	$\overline{}$	_		_		92 93	-	-+	_	200 8	-	98 8	- 1	_		+	73 1
Fred	125 1	-	82	-	17	9/	77	78	78	68	68	95	25	8	79	16	68	74	74	83	83	93	94	33	93	16	102	92	102	101	16	102	25	82	86	68	26	2 3	8	2 3	20 8	-	-	-
Cente	0 100	-	7 81	-	-	-	-	-	-	-	98 9	-	-	-	_		_	-	$\overline{}$	-	-	_			_	_	-		\vdash	-	-	83 92	\rightarrow	_	_			-	83	_	_	70 00	-	72 74
	25 32 40 50 63 80	76 79	75 77	77 80	77 74	72 73	69 72	72 74	74 74	84 86		_	$\overline{}$	_	_	_	79 82	74 76	75 77	73 7	-	_	_	_	$\overline{}$		81 81	_	-	_	\rightarrow			_	-	-	_	-+		_	S 8	_		_
ve Spe	20	75		9/	79	71	65		70	82	82	\rightarrow	79	_	16	9/	74	11	72	100	71	83	84	82	83	85		98	\vdash		_	_	\rightarrow	_			-	-	_	-	2 5			-
Octa	2 40	70 73	_	70 74	80 81	69 9	63 64	69 29	68 70	08 64	77 80	78 78	77 78	73 75	72 74	72 74	70 73	68 71	11 89	02 89	68 71	80 81	79 82		\blacksquare	83 83	_	84 84	_	-			_	-	_		-	-+		-+	-	7 02		7/ 0/
at 1/3	25 3	67 7	-	68 7	818	9 09	48	64	63 6	72 7	71 7	\rightarrow	75 7	88	2 29	99	42	62	65	62	65 (80	. 62	75	73 8	83 8	. 8/	83 8	82	. 11	-	\rightarrow	\rightarrow	\rightarrow	72		-	-+	-	-	-	6 7	_	_
	20	62	+	65	87	9	51	59	63	73	69	-	73	70	65	. 68	09	19	58	62	61	9/	80	177	78	73	11	77	72	89	-	\rightarrow	\rightarrow		-	_	-	-+	\rightarrow	-	-	-	8 8	
nd SE	3 16	57 59	-		68 88	51	25	54	58	68 67	65 67	$\overline{}$	99	62 63	50 60	56 62	54	53 56	51 58	53 58	51 57	99	70 73	71 72	69 99	18 99	99	72 82	61 73	59 72	\vdash		_	-	19	\rightarrow	_	-	_	_	_	5 6	+-	-
B B	10 13	50		-	85 8	19	\vdash		19	9	Г		_	29	4,	64 3	20	99	48	53	47	69	75	92	72 (99	99	64	-	-	-	\rightarrow	_	-	2		5		-	-	_	7 2	_	
Mic	Pos.	Base	1	Base	1	1	Base	Base	Base	Base	Base	Cavity	Cavity	Base	Base	Cavity	Cavity	Base	Base	Cavity	Cavity	Base	Base	Base	Base	Base	Cavity	Base	Cavity	Cavity	Base	Cavity	Base	Base	Cavity	Cavity	Cavity	Base	Base	Cavity	Cavity	Base	Base	Dasc
weign Rec,	—{	1.7	\vdash	1.7	8.01	8.01		8.01	H			.pq.			ed.						Г	13.6	Н	13.6	13.6	.pa							ed.			1		eq.		1		eg.	- G	7
RCW F		+	2	2	2	2	2	2	2	Post-fled	Post-fled	Post-fled	Post-fled.	Post-fled	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	2	2	2	2	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled	Post-fled.	Post-fled.	Post-fled	Post-fled	Post-fled	Post-fled.
ntativ		+	+	\vdash	\vdash	2	5	5	5	5	5	5	5			_		2	2	2	2	\vdash	-	-	\vdash	2	2	2	2	5	.5	5	S	7	7.	.7	7		7.			1	1,	1,
Representative unweignted spectra for experimental Event Event RCW Rec, Mic Band SEL (dB) at 13 Octave Spec		Î) [9		19	91.5	91.5	\vdash	H	-	-	-	H	30.5	. 61	. 61	. 61	. 61	122	. 122	122	122	L	30.5	_	30.5	. 15.2	. 15.2	. 15.2	. 15.2	-	_	Н		4	\dashv		-	-	`	_	1	-	12 01	1
1	Type	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal	.50 cal.	.30 Cai								
Table D 4.		4/21	4/21	4/21	4/29	4/29	4/29	4/29	4/29	5/27	5/27	5/27	5/27	5/27	5/27	5/27	5/27	5/27	5/27	5/27	5/27	5/24	5/24	5/24	5/24	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	6/23	67/0
Col.		9	و	۰	9	9	9	9	٥	9	9	9	9	9	9	٥	9	9	9	9	9	10	0	10	2	2	2	2	9	0	2	10	10	0	01	10	2	01	9	9	2	01	2 2	2 9

Calc.	Overall SEL	93.7	91.1	84.9	84.6	83.0	107.3	114.4	100.5	8.76	112.1	106.8	87.2	86.5	47.78	4.70	90.2	93.0	92.9	95.3	96.3	97.0	99.4	8.96	108.3	101.8	108.0	107.3	108.2	117.2	118.1	116.8	119.4	102.4	101.3	103.2	94.8	95.5	93.8	110.8
-	20000 O	47	42	42	2 5	30	32	╁	╁	99	78	47	4 ;	46	9 5	# 14	-	1				+	+	+	\vdash	\dashv	2 %	+	\vdash	99	99 89	8 8	65	89	64	65	52	8	52	ž į
	000		H	+	141	+-	2 2	\vdash	-	-	. 62	\dashv	92	+	+	+	7 4	48	41	43	48	41	84 48	-	Н	\dashv	87	+	\vdash	\vdash	1 5	1 2	57	17	89	89	55	36	55	2
	12500 16000	Н	H	+	+	+	+	\vdash	\vdash	-	\vdash	-	\dashv	+	+	+	+	+	\vdash	4	4	4	4	+-	\vdash	-	+	╀	\vdash	\dashv	+	+	+	+	-	\vdash	\vdash	+	+	4
		43	4	45	+	+	95	╀	-	_	Н	-	-	+	+	+	+	38	\vdash			-	1	+	\vdash	\vdash	8 6	+	+-	\vdash	+	+	+	+	+	7.	9	9	35	0
	10000	45	20	59	8 6	3 %	95	76	82	75	81	57	8	19	10	2 0	3 8	53	51	52	55	55	57	8 8	96	82	& &	8	8	75	2/2	289	2 2	76	73	74	64	65	8	64
	0008	47	50	59	8	20 05	94	8	84	11	83	63	8	8	2 2	\$ 3	3 5	59	59	19	63	63	99	5 82	90	83	& &	68	91	77	8 6	0 89	3 2	- 82	92	92	67	89	99	60
	6300	47	59	62	2 0	3 3	93	82	83	78	83	29	49	40	3	8 3	3 8	62	19	64	65	99	69	8 8	89	83	∞ =	6	92	78	62	200	74	18	11	78	70	70	89	6
	2000	52	64	2	3 8	3 8	2 2	83	82	62	98	72	65	99	99	8 5	/0	67	99	69	70	20	72	7/ 18	68	83	\$ 5	16	93	80	<u>∞</u> 8	75	77	. 120	78	79	71	71	70	9/
	4000	09	89	99	99 7	3 5	3 6	87	83	128	87	9/	67	9 3	/9	8 5	6	6	89	71	72	73	75	18	68	84	8 8	92	92	80	82	74	78	85	81	81	73	73	72	2
	3150	99	77	89	89	6 5	22 2	87	83	28	68	78	29	19	80	80	6 8	3 2	69	72	73	74	77	5 6	16	84	8 8	² [6	93	82	84	77	08	84	82	18	74	75	74	74
	2500	29	75	89	89	67	93	85	84	82	90	75	69	89	69	66	2 09	2	17	74	75	75	77	0 2	16	84	8 8	93	92	84	87	× = ×	83	83	81	83	75	92	74	78
	2000	49	19	71	2 6	2 89	92	88	83	81	92	81	69	89	2 5	5 6	5 5	74	72	74	92	75	79	28	91	84	9 2	94	95	87	8	84	86	8 48	18	85	9/	77	76	98
	1600	64	71	71	0,00	2 8	68	68	82	08	92	84	69	S :	7 6	2 ;	1,	74	70	75	75	75	2	/ 81	92	85	16	5 8	96	06	25	76	8	83	82	85	9/	11	75	91
	1250	11	72	71	2 5	2 89	8 8	8	83	79	94	83	69	69	7 8	2 5	77	73	72	75	75	74	78	//	16	85	16	3 6	92	93	8	3 2	6	8	8	83	75	77	76	84
	1000	71	69	70	8	2 03	8 6	94	83	79	96	88	69	69	2 2	2 5	1/2	74	72	75	76	74	79	> 18	06	84	90	80	90	90	16	26	8	8 8	81	8	75	76	74	83
	800	-	-	20	-	_	_	-	+-	08		-	\vdash	17	-	7 6		4	4	+-	-	-	-		-	-	8 8		8 8	-	-	3 2	-	+-	+	+		-	-	92
	0 630	2 65	-	89 2	-		-	+=	-	+	-	76 80	\mapsto	99	_	-	00 09	-	+-	74 74	-	\vdash		74 77	-	-	88 88		92 89	1		106 93	-	-	80	82 82	-	I .		81 84
	005 001	60 62	+		-	+	07 00	+-	+-	+	94	74 7	-	-+	\rightarrow	62	-	+	+	+-	76 7	-	\rightarrow	/83 /8	+	-	94 8	+		90 10	-	92 1	-	+	+	8 98	-	_	$\overline{}$	82
	315 400	49	09	19	_	-	8 8		32	-	-	-		8	19	9 5			-	-	\leftarrow	-	98	& &	+-	90	96	_	┯	+	95	2 2	7, 70	ç %	88	8	77	77	\vdash	83
S (Hz)	3 250	69	-	-	_	-	8 8	-	-	+-	+-	84	-	2	-	-			+	+	88	-	-	3 2	+-		66 2	+	-	-	\rightarrow	95	-	2 2	25	+-	-	╌	-	105 94
enter Frequencies (Hz)	100 125 160 200 250	91 78	+	-	-		7 30	-	_	-	-	-	84 73		_	_	_	_			_	-	-+	91 98	-	95 91		80 00	-	+		118 106		04 0	93 9	95 97	+	88 87		116 10
Frequ	125 16		+	1	22	_	1 6		_	-	-	-	-	\rightarrow	_	_	-		-	-	_	-	-	3 8	+=	_	-	7 8	_	-	_	$\overline{}$	7 2	-		+	+		${} \rightarrow$	103
enter	8	-	┅	77	. 1.		_1_					_	1			_				_		_		£ %	86	92	86	7, 6	5 2	68	16	93	3 2	¥ 8	7 16	93	88	98	88	95
		77				_	C 2	_	5 98	_					_			0 6						87				76	_						8				-	92
ectru	50 63	76	+	•	\rightarrow	-	् ६	_	_	-	+	-	_	_			-	0 6	_	-	82	-	\rightarrow	8 8	_	-	-	2 5	_	+-			-+-	8 0	-		-	-		88
ve Sp	92	74	_	-	\rightarrow		7 8	-		-	+	72	-	\rightarrow	-		$\overline{}$	1 4	-	-	-	-	1 83	_	-	+-	\rightarrow	8 8	_	+	-			8 8	—	-	+-	-	-	84 86
Octa	32 40	172	+-	1	-	→	99 00		_	-	-	-	69 29	-	\rightarrow	\rightarrow	\rightarrow	2/ 2/			75 78	74 79		80 80	-	_	_	8 8	_	-	\rightarrow	\rightarrow	-	83 84		+-	+-	76 79	-	8
at 1/3	25 3	17 69	-	-	-	-	63 6	-		-	_	+	-	_	-	-	_	10	_	-				_	_	-	_	2 2		+	-	_	_	2 2	_	_	-	75	_	70
dB)	20 7	99	-	-	-	-	5 6	-	_	+-	-	+-	62	-		-	_	_	2	70				4 5	_	-	-	2 8		+	-		-	2 5	-	_	-	_	-	73
SEL	91	99	-	1-	-	-	1 2	+	+	-	_	+	52	-	\rightarrow	-+	8		6 8	3	73	-		8 5	-	+-		$\overline{}$	2 E	62	8	83	- 5	5 5	7 2	73	29	89	99	74
Band SEL (dB) at 1/3 Octave Spectrum C	10 13 16	2	4	99	53	99	36	2 6	2 5	3,9	62	42	49	49	49	52	_	(3	Ι				7				8		_		_		-	ē 5			_	_	99
1	2	49	5	52	26	57	2 5	` 6	73	500	8	49	52	20	46	41	48	Ţ,	3 8	3 5			64	3 6	73	99	78	22	8 8		-	80	2	82	200	9	49	55	51	99
Mic		Cavity	Cavity	Base	Base	Base	Base	pase	Race	Bace	Cavity	Cavity	Base	Base	Base	Base	Base	Base	Dase	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Cavity	Cavity	Cavity	Cavity	Cavity	Bace	Base	Base	Base	Base	Cavity
\vdash	— <u> </u>		0	-	H	7	+	- 0	+	+	+		F	H			+	+	+	+	-		H	\dagger	+	+	Н	-	+	+	H	+	7	+	+	+	+	+		-
Rec.	Time		fled.				-	riled.	fled.	fled fled	fled.	fled.	fled.											9 9	5.6	5.6	5.6	-fled	fled.	fled.	-fled.	-fled.	-fled.	-fled.	Fed .	fled	-fled.	fled.	Post-fled.	flad
3		Post-fled	Post-fled.	-	H	_		Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled.	0	0	0		0	5			0	0	0 ,	7 6	2	2	Post-fled	Post-fled.	Post-fled	Post-fled.	Post-fled.	Post-fled	Post-fled.	Post-fled.	Post-fled	Post-fled	Post-fled	Post	Doct-fled
RCW		\downarrow	+	P	0	0		+	+	+	+	-	-		\dashv		-	7	1	1	1	+	\vdash	- 1	1	1	1	+	+	+	_	H		+	+	+	+	+	+	H
Event	Dist.	(E)	122	122	122	122	122	15.2	30.5	19	19	122	122	122	122	122	122	30.5	30.5	30.5	30.5	30.5	30.5	30.5	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	9	19	19	7
Event	Type	le o	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.30 cal.	S0 cal	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	So cal	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	SO cal.	.50 cal.	.50 cal.	.50 cal.	100 03
1 12		- 1				. 1							-	+	-	-	\vdash	+	-+	+	+	+-	+	\vdash	+	+	1	1	+	+	T	Н		\dashv	十	+	+	+	1	T.
Date		+	6/23	4/28	4/28	4/28	4/28	6/11	11/9	0/11	11/9	11/9	11/9	4/28	4/28	4/28	4/28	23	2/3	5 5	3 5	5/3	5/3	5/3	8 8	2,6	9/9	6/14	6/14	6/14	6/14	6/14	6/14	6/14	6/14	6/14	6/14	6/14	6/14	11/7

8	Calc.	SEL	100.9	91.6	84.0	85.0	91.0	7.16	104.1	105.0	112.5	104.6	95.1	98.1	104.5	107.7	9.68	6.06	8.06	8.06	91.4	89.4	89.5	90.1	89.4	92.2	81.8	105.8	113.3	110.9	101.1	91.0	95.3	85.1	107.9	105.9	100.0	102.9	94.4	98.7	92.5	87.9	95.4	93.7	93.3	110.2	108.6
-	1000		43	43	43	43			41	48	64	08	57	09	46	99			1					30		<u>۾</u>	1	77	99	19	29	23	48	49	63	84	6	54	S i	2	36	32	28	55	26	\$ 8 1	46 1
	10000		71	42	43	43	61	61	21	4	65	25	65	89	99	19	46	48	84	8 5	47	4	4	46	4	45	94	<u>_</u>	2	2	23	2 :	47	8	89	37	74	00	2 2	2	5	4	2	63	53	23	
	12500 10		-	H	45 '	\dashv	-	-		-	-		-	72	_	Н	\dashv	\dashv	\dashv	+	+	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	+	45	Н		+	\dashv	+	+	+	+	46	+	+	\dashv	88	\dashv
			-	-	Н	\dashv	\dashv	-		-	-	-		\vdash		-	\dashv	\dashv	\dashv	+	\dashv	+	\dashv	-	\dashv	\dashv	\dashv	\dashv	-	+	+	+	+	Н	\vdash	-	+	+	+	+	\dashv	\dashv	\dashv	-	+	\dashv	-
	10000		44	Н	5 51	\dashv	-	-	Н	_	5 75		1 72	H	7 62	Н	-	4	62	4	4	-	4	4	\dashv	-	4	\dashv	78	4	4	+	94	Н	7 75	+	4	+	2 2	+	+	-	\dashv	2	+	63	\dashv
	0000		\vdash	Н	55	\dashv	\dashv	\dashv	Н				14		19 1		5 65	+	\dashv	+	┪	┪	\dashv	+	99 6	+	67	+	+	75	+	\dashv	8 2	Н		+	\dashv	+	73	+	+	61	+	\dashv	+	59 5	9 89
١	0002		8 51	H	1 59	\dashv	-	-	_	_		<u>_</u>	<u> </u>	62 6		Н	99 6	4	0	+	4	-	-	4	-	-	\dashv	-	-	-	+	+	09	Н		-	4	4	75 74	4	4	66 64	-	73 72	-	17 69	4
l	4000 5000		52 5	Н	63 61			-	75 67	H	\vdash	\vdash		81 79	-	-	9 69	-	-	\dashv	+	\dashv	\dashv	73 7.	-	\dashv	-	\dashv	-	+	\dashv	69 68		Н	87 84	\dashv	\dashv	-+	+	+	+	67 6	\dashv	73	+	9 5	\dashv
	2150 40)+ 	5 5	-	9 59	\dashv	-1	\dashv	_	H	-	-	-			Н	2	-	-	-	+	-	-	-	-	-	+	-	-	+	+	+	63	Н	\dashv	-	-+	+	78	+	\dashv	8	-	75	-	22 5	-
	2500 2	2000	09	Н	99	\dashv		-	-	-	H	H		_		-	\dashv	\dashv	\dashv	\dashv	+	-	\dashv	-+	-	\dashv	-	-	-	+	+	-	69	Н		-	\dashv	\dashv	82	-	-	-	-	76	\dashv	69	-
	0000	70007	10	64	29	89	75	9/	87	68	93	65	08	83	98	06	73	74	74	73	22	74	74	75	75	77	92	88	8	98	88	5 5	67	89	93	16	84	88	8 8	2	6/	2	78	75	75	73	9/
	1600	1000	74	99	89	69	77	9/	75	75	06	16	62	82	80	83	74	74	74	74	75	75	75	74	74	77	77	88	2	25	8	73	78	69	- 64	32	82	8	98	2 2	25	=	76	74	73	29	99
	1350	DC71	19	19	89	70	76	9/	62	80	92	16	78	83	85	68	74	74	74	75	75	76	9/	75	75	77	77	87	92	8	83	73	72	71	96	8	84	35	83	£ 5	82	72	74	72	72	73	
	1000	1000	29	65	29	69	75	78	84	85	92	88	79	18	83	98	72	74	74	74	75	75	74	74	73	26	77	68	95	2	8	4	80	70	93	88	83	82	08	ž	73	-	5	17	17	74	1/
	0000		-	-	99 9	-				-	-	_	18 0	-	4 91		9 70	\rightarrow	\rightarrow	-	-+	_	2 74		-+	-	\rightarrow	66 80		88	-	73	_	-	\vdash	-+	-	16		-+	2 78	\rightarrow	-	-	_	2 79	_
١	067 002	000	-	Н	Н	\dashv	73 77	_			95 9.	88 81	_	80 82		_	89 89	-	-	-		69	-	-	-+	\rightarrow	70 72	\rightarrow	-	-	-	70 74	70 72	Н	\vdash	-	-	8 8	_	-	-	-	-+	\rightarrow	\rightarrow	82 82	\dashv
	400	400	9	\vdash	-	28	-	-	13	-	06	-	74	_	$\overline{}$	\dashv	-+	-	\rightarrow	-	-	→	2	-	-		\rightarrow	-	-	8 3	-	2 5	_	-	-	-	-	\rightarrow	-	\rightarrow	\rightarrow			-	-	8,	
	(nz)	310 00	69 92	\vdash	62 29	-	-	$\overline{}$	82 83		-	_	84 80	-	85 82		74 69	_	22 69	-	-	-	71 65	-	-+		\rightarrow		_	_	\rightarrow	-	84 76	-	-	-	-	-+	-+	84 84	-		-	-+	-+	86 83	—
	125 169 200 350	7007	68	\vdash			-		\vdash	_	_	-	-	68	_	96	77	\dashv	\rightarrow	-	\rightarrow	\rightarrow	_	-	-+	-	-	-		-	\rightarrow	08	_	-		-	-+	-	-	-	-	-+	-	\rightarrow	82	22	8
	125 169 200	100		-	-	73	-	_	-	104	111	-	98	-	103	$\overline{}$	-	-	-	-+	79	-+	-		-+		+		-	88	\rightarrow	83	_	-	-		-	_	-+	-	82	-+		-		7 107	
	13 00	00	88 18	72 72	75 74	-	7	33 83	9	37 94	_	2	4	82 89	3	9	82 80	84 81	_	m	4	=1	0	<u>=</u>		-	33	S	0	8	_	7	8 8	92 92	39 95	\rightarrow	98 88	37 90	33 8	-+	8 02	-		\rightarrow		90 107	
0	10 11 12 12 20 20 12 Octave Spectrum Center	200	8 62	74 7	-	77 7	81	82 8	83 8	84	84 9	6 68	82 8	8 98	79 8	82 8	_	-	-	-		78 8	79 8	62	78	-	∞	92	84	82	\rightarrow	6/ 5	2 12	75	87 8	68	98	24	20	2	28	79	8	82	_	8 8	-
ŀ		3	92	73	75	92	79	79	80	18	_	85	28	83	79	80	80	_	-	· 8	<u>~</u>	79	78	6/	6	≅	-	_	82	82	98	œ (5 52	73	\vdash	\rightarrow	84	<u>.</u>	œ :	28	75	26	82	8	_	≅ 3	-
5	2 2	2	73	10	_	-	-	78	18	78	8	84		08	73	1			_	_	-+	\rightarrow	-	\rightarrow	\rightarrow	-	\rightarrow	_	-	-		-	9 7	71	-	_			\rightarrow	\rightarrow	-	-	2			79	
į		7	68 71	99	-	_	-	2 76	74 76	74 77	80 83	84 84	16 71	80 80	76 75	78 79	-	-		\rightarrow	\rightarrow	73 75	\rightarrow	-	\rightarrow	78 78		-	_	-	_	$\overline{}$	69 89	69 29	_	-		77 79	-+	_	_	-+	74 76			76 77	4 75
2	2 2	c C	9 19	63 6	Н	$\overline{}$	_	69 72	70 7	74 7	9/	818	7	73 8	76 7	73 7	$\overline{}$	-	-		_	-		_	-	-	-		_	_	-+	_	62 68	-	-	-	\rightarrow	-	\rightarrow	-	-		-			68 7	
É		,	_	55 (57 (_	_	64	. 59	99	73	82 8	2	. 02	. 62	71	_	\neg	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow		-	\rightarrow	-	\rightarrow	-	-+	-	-	8 3	_	-	_	-	-	\rightarrow	$\overline{}$	$\overline{}$	\rightarrow	\dashv	_		73	
3	125	0	89		$\overline{}$	_	_	_	28	69	74	62	73					\rightarrow	\rightarrow	-		\rightarrow	$\overline{}$	_	\rightarrow	63	-	-	27	3	R	\rightarrow	_	99	-	1	62	89	22	2	89	25	22	3		83	
	DIE C	L3	71	47	46	59		19				7.5										48	51	26	54	62	9	72	2	25	55	19	52	52	\$	72			62	88		62	25	53		28	
ľ	9	1 10	89	46	49	57	65	69	99	19	92	71	78	70	y	,		2	9	6	28		28	98		57	29	79	73	<u></u>	9	8	8 8	57	77	23	65	જ	B	۶	63	28	22	%	ಜ	8	_
	MIC	n) n)	Cavity	Base	Base	Base	Base	Base	Cavity	Cavity	Cavity	Base	Base	Base	Cavity	Cavity	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Cavity	Cavity	Base	Base	Cavity	Base	Cavity	Base	Base	Cavity	Base	Cavity	Cavity	Base	Base	Base	Base	Cavity	Cavity
í		me (min)	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	2.1	2.1	2.1	2.1	2.1							Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.
2000	K K	Kesp.	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Pos	Po	Pos	Pos	Pos	2	2	2	2	2	-	-	-	-	-	-	Po:	Po.	Po	Po	Po	Po. Po.	Po	Po	Po:	Po.	Po	Po	Po	Po	Po.	Po.	Po.	Po	P.	Po
,	Event	(m)	122	122	122	122	19	19	19	19	15.2	15.2	30.5	30.5	30.5	30.5	19	19	19	19	19	91.5	91.5	91.5	91.5	91.5	91.5	15.2	15.2	30.5	30.5	19	122	122	15.2	15.2	30.5	30.5	19	19	122	122	19	19	19	19	19
,	Event	lype	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.
	Date		6/14	6/14	6/14	6/14	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/3	61/5	61/5	61/5	8/19	61/9	5/21	5/21	5/21	5/21	5/21	5/21	6/15	6/15	6/15	6/15	6/15	6/15	6/15	6/15	6/15	6/15	51/9	91/9	6/15	6/15	6/15	5/27	5/27	5/27	5/27	5/27
ŀ			23	23	23	23	30	30	30	30	30	30	30	30	30	30	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	36	44	4	4	4	4

This panel Thi	Calc.	Overall	SEL	108.5	102.1	5.101	18.7	140	112.9	106.2	05.8	104.7	116.4	115.7	114.8	85.2	82.4	75.7	6.61	62.7 V C8	93.4	93.7	93.5	93.3	93.5	93.0	93.7	94.4	105.9	105.8	105.4	117.6	8'911	114.7	114.4	114.5	102.3	101.7	110.5	105.3	107.4	9.66	****
This	_		+	+	+	+	+	╁	+	+	+	\vdash	-	Н		-	\dashv	+	8 6	2 02	3 8	900	20	20	51	\dashv	+	+	╫	\vdash	\dashv	+	6 2	63	63	64	2 3	00 00	y 4	23	39	36	
This Data Care Care Care Data Care Data Data Care Data		00 20	+	+	+	+	+	+	+	+	+	╁		-	\dashv		-	+	+	+	+	╁	+	4	.5	3	20	2 12	6	120	00	2 2	1 4	57	99	88	2 5	2 5	2 8	2 12	2 5	53	
Type December Record December Record December Decemb			+	+	+	+	+	+	+	+	+	╀	-		\vdash	-		+	+	+	+	+	-	╀	Н	\dashv	-	+	+-	Н	+	+	+	╀	Н	\dashv	+	+	+	+	+	+	
Type December Record December Record December Decemb		1250	;	2 8	82	8 8	8/	99	62	93	93	92	70	69	69	48	46	4	45	£ 14	5.0	199	58	59	99	58	59	8	81	83	82	74	76	71	70	71	7.5	-	7 2	- 2	7 2	2	
Type December Record December Record December Decemb		10000	1	8	83	2 8	5 03	89	67	93	92	91	89	29	89	54	52	46	05	7 2	7 6	3 3	63	62	63	63	63	3 3	83	85	84	78	08	75	75	75	76	4	24 68	85	24	89	
This color Thi		0008	1	62	83	S 8	2 5	2 5	2 %	3 6	35	06	71	71	72	58	55	20	54	2 5	3 %	3 99	99	99	99	99	99	90	85	86	85	200	82	77	77	77	78	9/2	76	87	74	99	
Page		300	,		28 8	£ 8	2 4	0 5	ţ -	: 8	68	88	9/	75	77	19	59	23	57	8 8	۶ g	8	89	89	89	89	89	8 8	87	87	98	82	7 8	18	80	81	81	8 2	78	8	77	71	
Part			1	67	£	£ 5	2 2	1, 14	5 6	8	68	88	76	74	74	63	09	54	65 5	2 5	3 8	9 2	69	69	0/2	70	69	2 5	88	88	87	\$ 5	87	88	85	85	82	2 8	67 8	200	90	92	
Part		000	-	-	+	+	+	+	+-	+	+	╀	⊢	74	74	64	62	26	9 9	2 5	70 02	2 2	17	17	17	70	11	3 3	1 8	8	96	98	/8	8	84	83	% :	=	200	60	84 8	2	
		150 4	\dashv	\dashv	+	+	+	+	2 2	+-	+-	+	┿	-	77	19	64	28	29	3 3	3 2	74	73	74	73	73	73	73	16	16	92	88	6 8	8	98	98	28	2 8	2 2	6 8	84 9	282	
Part	1	500 3	-	\dashv	82	+	+	+	70	88	87	98	08	78	80	89	65	28	63	3	6 2	74	74	74	74	75	74	73	2 6	16	16	8 3	16	8	16	68	68	84	888	000	83	2 %	
Prop. Prop		000	\dashv		-	\dashv	+	+	+	+	+	╁	╀	╀	\vdash	H	-	-	+	+	+	╫	77	75	75	77	76	77	916	92	16	93	3 3	1 5	16	16	8	28	\$ 8	3 8	2 8	2 4	
Part		600 2	-	-	+	-+	+		+	+	+	+-	╀	╀	-	-	Н	\dashv	-+	+	+	+-	╀	┿	+-	75	\vdash		92	92	92	93	5,6	1 0	16	91	88	84	28 8	000	8 8	3 8	
Part		250 1	\dashv	\dashv	-+	-	+	+	+	╁	+	╁	┾╌	+	H	-	\vdash	\dashv	\dashv	+	+	+-	+	╁	╀	74	75	76	+	+	-	96	9 8	26	16	16	98	84	48	8 8	5 5	74	
Polymorphy Polymorphy Read No. Dist. Read Bit Dist. Polymorphy Read Bit Dist. Bit D			\dashv	-		+	+	+	+	+	+	+	╁	╁	-	H	\vdash	\vdash	-+	+	+	+-	+	╫	╁	├	Н	+	+	+		00	3 8	3 2	00	66	98	85	83	2 3	17 8	3 2	
Part		L	_	_	_	_	4		\perp	4	\bot	4	_	1	⊢	_	_		4	_	1	_	1	1		ļ_	Ш	1	_	+	\Box		_	1	+	\vdash	\vdash	-	-	+	+	+	
Page		630 80	-			-	-	-	-	-	-	-		+-	-	╄	-	\vdash	\rightarrow		-	-		+	+	+	\vdash	-			-	_	-	3 6	16	-	-	-	83		-	3 8	
Part		200		42	83	83	œ !	22	2 8	00	ò 08	82	93	93	92	29	63	99	09	4 (3	g 9	69	69	69	19	89	69	0 6	87	88	103	103	701	36	₩		-	-		+	3 8	
Part		400		82	90	_	-	2 2	5 5	_	_		-1-	-	+=	19	╌	-	-		-	-	+	+	-	+	-	-	<u> 8</u>	8	88	╌	-+	-	+-	+			_	-	+	-	
Date Event Cvent Resp. Time Pos. Inc.		315		\vdash	-	-	\dashv	-+	-	+	-	-	+	+-	+-	+	-	-	-	-	-+	+	+	+-		+	-	-	-	+	-	\vdash	-	2 0	9 5	2 91	1-1		-	\rightarrow	-	+	
Date Event FreeLind Trime Post-Ibed. Carbit FreeLind Anne Sep. Trime Post-Ibed. Carbit 54 55 65 68 70 75 75 75 76 78 80 82 84 86 88 87 87 87 87 87 87 87 87 87 87 87 87	S (Hz	0 250		\vdash	-	-	-		-	-	-	+	+-	-	-	+	-		\rightarrow	_	-	+	-	-	-	+	-	\rightarrow			-			0 2	96	9,	-		\rightarrow	-	-	+	
Date Event Free (nt) Resp. Time Post-Ibed. Base GS 15 GS 16 GS 17 GS 18	encie	0 20	_		\vdash	-	-	-	-	_	-	-	-	12	11 9	+	+-		-	-+	-+			-	-		-		_	-	-			_			1-1			_			
Date Event FreeLind Trime Post-Ibed. Carbit FreeLind Anne Sep. Trime Post-Ibed. Carbit 54 55 65 68 70 75 75 75 76 78 80 82 84 86 88 87 87 87 87 87 87 87 87 87 87 87 87	regu	25 16			_		\rightarrow	13	_		-	+	-	12	12 1	╂	-	-	\rightarrow	-	-	-	-	-	+	+-	+-	_			+	-	_		-	-	-	-	_	_	_	-	
Date Event FreeLind Trime Post-Ibed. Carbit FreeLind Anne Sep. Trime Post-Ibed. Carbit 54 55 65 68 70 75 75 75 76 78 80 82 84 86 88 87 87 87 87 87 87 87 87 87 87 87 87	nter 1	100		-	_	\vdash	-+	33	-	-	-		4=	2 2	93 1	+	+-	-	\rightarrow					_	_		_	_		_	_		_		-	+		06	8	-+	\rightarrow	-	
Date Pyper Dist. Resp. Time Pros. Idl 13 16 20 25 32 40 50 65 75 75 75 76 78 80 52 73 40 76 <td>" Cel</td> <td>88</td> <td>_</td> <td>-</td> <td>-</td> <td>_</td> <td></td> <td>\rightarrow</td> <td>_</td> <td>_</td> <td></td> <td>-</td> <td>+-</td> <td>-</td> <td>-</td> <td>+</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>_</td> <td></td> <td></td> <td>8 8</td> <td>8</td> <td>-</td> <td>-</td> <td>_</td> <td>_</td> <td>_</td> <td>-</td> <td>88</td> <td>8</td> <td>ò 5</td> <td>, 98 80</td> <td>98</td> <td>68</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	" Cel	88	_	-	-	_		\rightarrow	_	_		-	+-	-	-	+	-	-	-	-	_			8 8	8	-	-	_	_	_	-	88	8	ò 5	, 98 80	98	68				_		
Date Event Event Resp. Time Mit Post-fled. Post-fled. Base 56 5/27 .50 cal. 61 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 67 5/27 .50 cal. 30.5 Post-fled. Base 74 5/27 .50 cal. 15.2 Post-fled. Base 55 4/27 .50 cal. 15.2 Post-fled. Base 55 5/27 .	ctrur	63			_							_						_	20	73	73	200	10	78	2 8	78			2 08	68	88	98	98	3 8	2 68	84	98	_	\rightarrow	-	-	_	
Date Event Event Resp. Time Mit Post-fled. Post-fled. Base 56 5/27 .50 cal. 61 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 67 5/27 .50 cal. 30.5 Post-fled. Base 74 5/27 .50 cal. 15.2 Post-fled. Base 55 4/27 .50 cal. 15.2 Post-fled. Base 55 5/27 .	Spe	92				_	_			_		_	_	_			-	-		_	_	-	-	-	-	+	+	-	-	-	88	-	-		-	-	-	-	-	\rightarrow	\rightarrow	-+	
Date Event Event Resp. Resp. Time MI 5/27 .50 cal. 61 Post-fled. Base 56 5/27 .50 cal. 30.5 Post-fled. Base 57 5/27 .50 cal. 30.5 Post-fled. Base 74 5/27 .50 cal. 15.2 Post-fled. Base 74 5/27 .50 cal. 15.2 Post-fled. Base 74 5/27 .50 cal. 15.2 Post-fled. Base 44 5/27 .50 cal. 15.2 Post-fled. Base 55 5/27 .50 cal. 15.2 Post-fled. Base 55 5/27 .50 cal. 15.2 Post-fled. B	ctav	5		-	-		-			_		_	_				_	_		$\overline{}$	\rightarrow	_	_	_	_	-	-	-	-	_	-	-			-	-			-	-	\rightarrow	-	
Date Event Event Resp. Resp. Time MI 5/27 .50 cal. 61 Post-fled. Base 56 5/27 .50 cal. 30.5 Post-fled. Base 57 5/27 .50 cal. 30.5 Post-fled. Base 74 5/27 .50 cal. 15.2 Post-fled. Base 74 5/27 .50 cal. 15.2 Post-fled. Base 74 5/27 .50 cal. 15.2 Post-fled. Base 44 5/27 .50 cal. 15.2 Post-fled. Base 55 5/27 .50 cal. 15.2 Post-fled. Base 55 5/27 .50 cal. 15.2 Post-fled. B	1/3	32		-	_	-		-	-	_	-	-	~	-	_	-	-	_	-	_		-	-	-	+-	-	_	\rightarrow	_	_	+	-	_	_	_				+	_	_	-	
Date Event Event Resp. Time Mit Post-fled. Str 10 5/27 .50 cal. 61 Post-fled. Base 66 Str Str 5/27 Str .50 cal. 30.5 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 66 Str 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 6 8 6 6 8 6 6 8 6 8 6	R) at	0 25		-	-	-	-	$\overline{}$	_	_			_	-	-	-	-	-	-	_	\rightarrow	_		-	-		+-	\rightarrow	_		-	-	_	-	-	-	_	-	-	\rightarrow		_	
Date Event Event Resp. Time Mit Post-fled. Str 10 5/27 .50 cal. 61 Post-fled. Base 66 Str Str 5/27 Str .50 cal. 30.5 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 66 Str 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 66 8 6 8 6 6 8 6 6 8 6 8 6	FT. (6	9	_								-	-	-	_	-	_				_	\rightarrow	-	\rightarrow	_	_	-	-	-	_	_	_	_	-	-	-	-	-	-	-	-	-	-	
Date Event Event Resp. Time Post-fled. Aut For Int 5/27 .50 cal. 61 Post-fled. Base 65 5/27 .50 cal. 30.5 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 66 5/27 .50 cal. 30.5 Post-fled. Base 87 5/27 .50 cal. 15.2 Post-fled. Base 84 5/27 .50 cal. 15.2 Post-fled. Base 84 4/27 .50 cal. 15.2 Post-fled. Base 84 5/27 .50 cal. 15.	Spu	13 1		_						_	_	_	_								_	_	_			_	_		_			-		-	_	-	-		-	_	\rightarrow		
Date Event Rept RCVM Rec, MIC 5727 .50 cal. 61 Post-fled. Base 5727 .50 cal. 30.5 Post-fled. Cavity 5727 .50 cal. 30.5 Post-fled. Cavity 5727 .50 cal. 15.2 Post-fled. Base 4727 .50 cal. 15.2 Post-fled. Base 4727 .50 cal. 15.2 1 Base 4727 .50 cal. 15.2	ä	101		_			_	\rightarrow	\rightarrow			_			_	-	_	-		-	\rightarrow	_	-	_	_	-	_	-		_	-	+	\rightarrow	_	2 F	: 28	19	19	2	70	8	9	
Date Event Frent RCW Rep, Time 5/27 50 cal. 61 Post-fled. 65/27 7 5/27 50 cal. 61 Post-fled. 65/27 7 5/27 50 cal. 30.5 Post-fled. 65/27 65/27 5/27 50 cal. 30.5 Post-fled. 65/27 65/27 5/27 50 cal. 30.5 Post-fled. 65/27 65/27 5/27 50 cal. 15.2 Post-fled. 65/27 65/27 5/27 50 cal. 15.2 Post-fled. 65/27 60/24 65/27 5/27 50 cal. 15.2 Post-fled. 6 6 6 5/27 50 cal. 15.2 Post-fled. 6 6 6 5/27 50 cal. 15.2 Post-fled. 6 6 6 5/27 50 cal. 15.2 1 1 1 1 4/27 50 cal.	fi.		_	$\overline{}$	+		Н	_	-+		\neg	_	_	\neg	_	-	+	1 0	Base		\neg	_	\neg	\neg	+	+	1	sase	Sase	Sase	Sase	avity	avity	avity	avity	avity	Base	3ase	3ase	avity	3ase	Cavity	
Date Event Fvent RCW Resp. Tim 5/27 50 cal. 61 Post-fled. 5/27 1/20 5/27 50 cal. 61 Post-fled. 5/27 1/20 5/27 50 cal. 30.5 Post-fled. 5/27 1/20 5/27 50 cal. 30.5 Post-fled. 5/27 1/20 5/27 50 cal. 30.5 Post-fled. 5/27 1/20 5/27 50 cal. 15.2 Post-fled. 5/27 5/27 5/27 50 cal. 15.2 Post-fled. 5/27 5/27 5/27 50 cal. 15.2 Post-fled. 5/27 5/27 5/20 1 1 5/27 50 cal. 15.2 Post-fled. 5/27 5/20 1 1 1 4/27 50 cal. 15.2 Post-fled. 5/27 5/20 1 1 1 1 1 1 1 1 1 1 <td> </td> <td></td> <td>-힅</td> <td>ပြီ</td> <td>m</td> <td>m</td> <td>B</td> <td>೦</td> <td>ರ</td> <td>ٽ '^ڊ</td> <td>m /</td> <td></td> <td>10</td> <td>ک ک</td> <td>5 0</td> <td>-</td> <td>1</td> <td>-</td> <td>-</td> <td>B</td> <td>В</td> <td>Ξ </td> <td>415</td> <td>4</td> <td>- "</td> <td>1</td> <td>1 4</td> <td></td> <td>1</td> <td>+</td> <td>1</td> <td>O</td> <td>Ö</td> <td></td> <td>ا د</td> <td>ک اد</td> <td>1</td> <td>1</td> <td></td> <td>0</td> <td></td> <td></td> <td>֡</td>			-힅	ပြီ	m	m	B	೦	ರ	ٽ ' ^ڊ	m /		10	ک ک	5 0	-	1	-	-	B	В	Ξ	415	4	- "	1	1 4		1	+	1	O	Ö		ا د	ک اد	1	1		0			֡
Date Event Frent RCW 7ype Dist. Resp. 5/27 .50 cal. 61 Post-1 5/27 .50 cal. 30.5 Post-1 5/27 .50 cal. 15.2 Post-1 4/27 .50 cal. 15.2 Post-1 4/27 .50 cal. 15.2 Post-1 4/29 .50 cal. 61 0 4/29 .50 cal. 61 0 4/29 .50 cal.	Dog	lime	5		å.	ed.	ed.	ed.	ed.	ġ.	ed.	g.		. E	5														6:1	led.	ed :	ed.	led.	led.	ed.	ed Ct.	led.	led.	led.	ive	ive	<u> </u>	
Date Event Fvent Rent Rent Rent Rest <	L			ost-fic	ost-fi	ost-fle	ost-fl	ost-fl	ost-fl	ost-fl	ost-fl	ost-ti	OST-II	OST-III	ost-fi	-	+	-	L	\sqcup		-	+	+	+	+	+	H	-	1-1so	ost-f	ost-fl	ost-f	J-tsoc	Post-f	Post-f	ost-fi	ost-f	ost-f	Inacti	Inact	Inactive	
Date Event F Type 1 1 5/27 .50 cal. 5/27 5/2 cal. 5/27 .50 cal. 5/2 cal. 5/2 cal. 5/27 .50 cal. 4/2 cal. 4/2 cal. 5/27 .50 cal. 4/2 cal. 4/2 cal. 4/27 .50 cal. 4/2 cal. 4/2 cal. 4/27 .50 cal. 4/2 cal. 4/2 cal. 4/29 .50 cal. 4/2 cal. 5/2 cal. 4/29 .50 cal. 4/2 cal. 5/2 cal. 4/29 .50 cal. 5/2 cal. 5/2 cal. 4/29 .50 cal. 5/2 cal. 5/26 .50 cal. 5/2 cal. 5/26 .50 cal. 5/2 cal. 5/26 .50 cal.	NO a	Resp.		a.	Ā	ď	P	Ь	P	۵	۱ ا	ٔ ا	- -	٩	٩	-	-	-	_	-	-	0	9	۰ (9	9	0	0	7	<u> </u>											Ц		
Date 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 4/29 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26	20.00	Dist.	Œ	19	30.5	30.5	30.5	30.5	30.5	30.5	15.2	15.2	15.2	15.2	15.2	12.2	122	122	122	122	122	19	19	19	19	10	61	19	30.5	15.2	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	30.5	15.2	15.2	30.5	
Date 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 4/29 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26 5/26		Type		50 cal.	50 cal.	50 cal.	50 cal.	50 cal.	50 cal.	50 cal.	50 cal.	50 cal.	50 cal.	SU cal.	So cal.	So cal.	50 Cal.	50 cal.	50 cal.	50 cal.	50 cal.	50 cal.	50 cal.	50 cal.	50 cal.	So cal.	50 cal.	50 cal.	50 cal.	50 cal.	50 cal	50 cal.	50 cal.	.50 cal.	.50 cal.	So cal.	50 cal.	50 cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.	
	-			+	╁	+	-	-	Н		-	\dashv	+	+	+	+	+	+	+	\vdash	\vdash	\vdash	+	+	+	+	+	+	\vdash	+	+	+	\vdash	-	\dashv	+	+	+	+	╁	H	Н	
Q 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	⊢			+	+	+	╀	\vdash	Н		\dashv	-	+	+	+	+	+	+	+	╁	-	Н	-	\dashv	+	+	+	╁	Н	+	+	+	\vdash	-	+	+	+	╁	+	\vdash	+	52 5	

S S	Overall	SEL	105.8	92.6	99.5	97.9	92.9	03.9	113.0	13.7	99.5	90.4	10.1	12.0	03.5	7.86	10.2	08.7	91.2	0.90	0.00	106.7	107.2	107.4	107.2	98.3	101.1	9.101	03.1	103.7	05.3	80.8	85.2	82.8	86.4	87.4	91.4	91.3	7.06	91.1	91.3	91.3	91.4	81.9	79.5	81.7	82.0
F	20000 O	\dashv	\dashv	\dashv	69	+	\dashv	┪	\dashv	-		-	-	-	-	9/			\dashv	-	-	-	\dashv	9/	-	\dashv	\dashv	99	+	+	-	+	+	+	+	+	╀	+	⊢	\vdash	99	Н	58	24	+	1	27
	16000 20	\dashv	+	\dashv	92	\dashv	19	-	75	-	-	\dashv			\dashv	_		-	-	-	-	-	\dashv		-	65	+	+	-	\dashv	+	+	57	+	+	+	+	╁	\vdash	63	_	Н	64	38	39	88	9
		+	+	\dashv	-	4	\dashv	\dashv	\dashv	-		-		\dashv	-	\dashv	-	-	\dashv	4	-	-	-	\dashv	\dashv	\dashv	-	+	+	+	+	+	29	+	+	+	+	89	-	\vdash		Н	-		44	\dashv	45 6
	0 12500	\dashv	-	-	17	\dashv	\dashv	-	78	\dashv		-		71	\dashv		69	-	\dashv	\dashv	\dashv	\dashv	-	\dashv	-	+	-	+	\dashv	┥	+	+	+	+	+	+	+	╁	⊢	+-	H	Н	-		\dashv	+	-
	8000 10000	\dashv	-	-	_	-	4	-	8	_	Ш			75	_			-	\dashv	-	-	_	4	84	-	-	-	-	4	4	\dashv	4	+	70 2	+	+	+	+	┞	0,	ļ	89			51		4
	_	\dashv	\dashv	\dashv	79	-	\dashv	\dashv	8	\dashv	\vdash	\dashv	\dashv				\dashv	\dashv	2		\dashv	\dashv	\dashv	Н	-	74	\dashv	-	+	+	2 1	+	8 3	+	9 8	+	+	73	╁	+-	-	Н	-	-	55 55	\dashv	26
	0 6300	\dashv	8	-	79	\dashv	_	_	8			_		_	\dashv		78	_	\dashv	\dashv	4	_	_	\vdash	4	3 75	4	3 76	4	-	+	+	+	+	6 6	+	+	+	╀	5 74	<u> </u>				58 56	-	\dashv
	3150 4000 5000	-	-	-	1 79	-	\dashv	-	88 84	\dashv	\dashv	\dashv	-		-	-	\dashv	-			8 77	\neg	0 00	Н	-	78 78	-	-	-	-	+	+	+	50 /9	70 07	╀	┿	+-	╀	76 75	-	\vdash	75 74		59 5	\dashv	62 61
	50 40	-	\dashv	\dashv	-	79	\dashv	-	87 8	\dashv	\dashv	-	\dashv	-	-	-	\dashv	-	-	-	80 7	-	-	Н	-	79	-	-+	-	-	\dashv	-+		89 07	+	1 5	╁	╁	-	75 7	-	76 7	_	-	\vdash	+	64
	2500 31	-	\dashv	-	\vdash	-	-	5	-+	-	83	-	\dashv	\dashv	-		-	-	73	-	 	-	-	Н	\dashv	83	⊣	-		\dashv	\dashv	+	+	+	+	+	+-	11	+-	╀	-	\vdash		Н	09	\dashv	2
	2000	-	68	-	83		-	-	68	\dashv	Н	-	\vdash	98		-	\dashv	-		-	82	-	-	Н	\dashv	84		+	-	\dashv	88	72	2 2	2 2	3 5	7, 2,	12	78	26	9/	18	79	78	99	19	63	65
	1600 2000		88	79	82	62	78	92	16	88	85	11	83	98	96	84	83	78	73	68	83	91	16	16	16	84	8	83	84	98	87	2	29	69	8 8	5 5	1 1/2	75	75	75	92	75	92	2	09	\$	65
	1250		88	79	83	8	79	16	92	32	84	9/	88	68	06	85	85	9/	73	16	85	90	16	90	8	83	85	82	87	88	8	89	67	80	8 0	3 5	1 1/2	75	73	74	74	74	75	64	09	\$	65
	1000		93	79	85	84	8	88	94	35	87	92	98	91	06	84	85	92	74	68	82	88	06	68	68	84	98	98	88	68	16	89	65	67	80	5 5	74	23	72	74	73	75	15	63	89	64	8
	630 800	-		_	\vdash	-	_	-	96 6		81 83				68 88	_	_	_	_	_	_	-	-	-	-	79 83	\rightarrow	\rightarrow	-	+	-		-	99	90 99			71 72	70 72	+	1 72	2 73	2 74	63 65	57 59	_	62 64
ı	500 63	-	-	75 78	\vdash	-		_	66 06	_	_	_	_	_	_	_	-	_	-		-	85 8	$\overline{}$	-	85 8	\rightarrow	77 8	-		\rightarrow	-	\rightarrow	-		0 27		+	+	+	+	70 7	717	70 7	62 6	-	_	9
	315 400	\rightarrow	_		-	_	\rightarrow			_	-	89 /	_	68 (_		84	_	_		_	_	-	-	16 8	-	-	83 77	_	-			-	90 02	69 69	+	+	+	+	+	75 70	+	74 70	-	09 99	\rightarrow	68 62
H	250 31		_	76 78	91 83	_	74 74	_	97 85	88 86		-	-	94 90			-	_	-	_	-		-	96 06	89 95	\vdash	91 8	\rightarrow		93 8	\rightarrow	-+	_		0 0 0	-	-	-	+	+	╌	80 7	-	71 6	1	-	71 6
oncioe	0 200	\Box	5 102		Н	-	7.5	_	5 112		88 7			4 110						_	-	9 95	-	96 66	\vdash	68 6		2 92		_	_		74 72		4 /3			_	-	79 78	-	-	6 4	-	╌	-	71 71
From	125 16		84 85		76 81	-	-	-	89 95		_	Į		93 104		_	_			86 66		66 86	66 66	6 001	\vdash	\vdash		_	95 9	$\overline{}$	-		_	77	/ //	-	+	+	+	+-	┼	+	_	-	5	73	73
Contor	50 63 80 100 125 160 200 250		83 82	7	7	7	3 84	8	∞	8	80	-	62 92	1 86	88 92	-	-		~	5	89 92	94 97	95 97	95 97	95 97	86 90	_	90 94	_		-	77 78	-	76 77	76 77	10/1	01 03	+	+	82 82	81 82	+-	82 82	72 73	-	72 73	72 74
1	63 8		-	77 77	-	-	85 83	8 98	_		86 87	18 80	77 7	78 81	87 8	85 87	18 64	78 81	79 82	6 86	87 8	93 9	93 9	93 9	93 9	-	88 9	6 68	_	_	-	-	-	_	747	7.0		_	-	-	+		79	707	89	70	70
Dand SEL (4D) of 1/3 Octobe Secretarine Con	05		83	_	Н	-	98 9	28 8	\vdash	9/ 7	2 84	2 77	2 76	5 77	5 87	83	4 74	5 77	92 9	8	2 84	96 6	16 6	9 91	16 6	0 82	2 85	2 85	-	5 88	\vdash	70 72	-	-+	-	77 0/	-	75 77	73 77	75 77	75 78	+	73 77	69 99	-	\rightarrow	69 99
/2 Oats	10 13 16 20 25 32 40			92 82	-	-	74 76	85 85	_	74 72	80 82	74 75	72 72	74 75	85 85	80 81	74 74	73 75	74 76	_	79 82	85 89	68 98	88	88 89	26 80	80 82	79 82	82 84	83 85	-	68		. 1	-	2 6	+	+	+	72 7	72 7	+-	71 7	63		-	9 79
100	25		_	74	-	72	74	82	77 3	1 72	5 75	99	69	9/ 1	3 81	5 74	69 1	8 65	8 65	08 0	4 73	5 84	8 84	5 82	6 83	2 76	3 78	0 78	4 81		$\boldsymbol{\vdash}$	\rightarrow	\rightarrow	-	-	-	6 6	-	+	-	+-	+	89 85	58 63	_	-	65 65
133	16 2		_	92 02	78 76	71 72	71 75	75 82	73 75	72 74	92 89	61 74	67 75	73 81	74 83	64 76	68 71	53 68	89 99	71 80	64 74	76 85	76 85	74 85	73 86	69 72	73 73	70 70	76 74	77 75	\vdash	57 60	-	\rightarrow	_	-	\$ 3	-		_	-	-	55 5	51 5	_	_	56 5
Page	13		08	19	-	72	-	92	-	74	65	99	89	177	78	63	70	55	53	-		99 9	1	89	75	65 1	1 62	1 59	63	29 9		-	\rightarrow	-+	_	38	_	_	-		-	-	4 47	-		45	54
-		-	_	e 72	-	ity 76	se 71	Je 73	ity 74	ity 78	e 69	se 59	ity 72	ity 83	se 81	99 es	se 72	se 56	se 61	se 71	9e es	se 76	se 77	se 77	80 80	se 64	se 64	se 51	99 as	99 as	se 67	se 46			7	\dashv	Se 74	_	+	+	T	+	Base 44	Base	Base	101	Base 5
7	Pos.	(min)	Cavity	Base	Cavity	Cavity	Base	Base	Cavity	Cavity	Base	Base	Cavity	Cavity	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Bace	Base	E E	Ba	Ba	\vdash	L	H	Ba
۽	Time	Ē	tive	tive	tive	tive	tive	fled.	fled.	fled.	fled.	fled.	fled.	fled.	fled.	fled.	fled.	fled.	fled.			0.0	0.0	0.0	0.0							2.8	2.8	2.8	2.8	5.8	8.7	0.7	0,7	2 0	28	2.8	2.8				
73.00	Resp.	-	Inactive	Inactive	Inactive	Inactive	Inactive	Post-fled.	Post-fled	Post-fled.	Post-fled	Post-fled	Post-fled.	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	2	7	7 0	7 0	1,	1,	2	. ~	2	0	0	0	0						
┢	Dist.		15.2	30.5	30.5	19	19	15.2	15.2	30.5	30.5	19	19	15.2	15.2	30.5	30.5	19	19	30.5	30.5	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	30.5	30.5	19	19	19	19	19	19	10	10	10	19	19	19	122	122	122	122
	Type		.50 cal.	50 cal.	.50 cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	50 cal.	50 cal.	So cal	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	50 cal.				
H	Date		5/13 .5	5/13 .5	╁	┢	5/13 .5	5/4	5/4	H	+	5/4	\vdash	\vdash	5/4	+	╁	-	-	╁	5/5	+	╁	+	╁	5/12	5/12	5/12	5/12	5/12	5/12	4/21	4/21	H		\dashv	+	+	+	4/21	+	+		1.5	+	+	4/26
H	- 5		\vdash	┝	52	╁	-	\vdash	53	┞	╀	\vdash	╀	╀	\vdash	╀	\vdash	╀	53	╀	\vdash	╀	╀	╁	╁╴	53	╀	53	53	╀╌	\vdash	57	\vdash	Н	\dashv	\dashv	+	57	+	+	╁	+	╁	53	+	57	Н

Calc.	Overall	SEL	81.8	82.4	6.18	85.9	87.3	1 00	90.1	0.76	87.0	90.5	93.4	100.7	104.1	114.0	105.4	105.0	105.7	111.1	112.8	94.4	95.1	84.9	84.8	62.7	87.2	87.2	9.86	98.5	103.7	104.5	93.5	94.3	100.9	100.7	100.0	100.7	1001	110.1	95.5	102.9	103.7	6.96	94.3	98.4	97.5	
	20000	+	24	+	+	+	+	45	+	+	+	-	-	-	_	Н		-		-	63	42	42	43	43	14	47	47	45	45	50	52	59	59	74	4 2	+	+	19	19	74	85	84	19	58	62	63	
	16000 2		28	£ ;	9 ;	4 4	44	7 7	# 4	£ :	15	9	19	55	54	99	83	93	93	62	64	40	40	44	43	40	20	20	44	44	54	54	99	29	08	2 5	2	8 5	3 8	3 3	78	88	68	19	64	29	89	
	12500 1	1	45	9 !	4	2 8	8 6	2 4	9 00	40	26	65	29	54	55	99	85	93	94	63	29	39	40	49	49	38	99	55	44	43	99	54	69	71	82	18	9 5	8 5	5 6	3 4	79	68	68	5	89	11	11	
	100001		25	25	53	4 2	45 55	3 5	2 5	2	19	89	70	19	62	69	87	93	93	65	89	42	43	55	55	37	09	09	48	47	59	28	72	74	84	83	3 8	2 00	3 5	6 6		68	16	73	11	74	73	
	8000 1		26	20	98	3 3	2 6	8 8	3 3	6	49	69	72	64	19	73	88	92	66	69	72	48	48	09	09	40	63	63	53	52	63	63	74	92	85	8	9 5	ò 5	3 9	3 8	8	68	06	75	73	92	75	
	6300		28	59	59	79	79	3	6	04	99	70	73	<i>L</i> 9	70	77	06	06	65	70	92	54	56	63	62	33	65	65	57	28	69	89	75	77	98	82	2 :	1/29	3 5	5 5	2 &	8	68	78	92	79	78	
	2000	_	-	-	-		99 33	+	-	-	\dashv	_	_	-	├	-	⊢	⊢	-	┼	╀	╀	┿	+	┼-	+	╀	29	59	⊢	89	89	9/	Н	98	+	2 5	+	3 8	╫	+	8	+	\vdash	┢	78	78	
	0 4000	-	-	-	\dashv	-	59 89	-	-	-+	-	_	_	⊢	-	⊢	ļ	⊢	├	┼	╌	+	+-	+-	┰	+	+-	┰	99	┾	77	Н		-	Н	-	2 2	+	+	+	+	+	+	╁	\vdash	-	3 81	
	00 3120	4	63	-	+	+	8 6	-	-	-	-		_	-		⊢	├	-	-	+	╂	+	┿	+-	+	┿	+-	71 70	+	+	-	\vdash	78 78	-	85 85	\dashv	+	19 10	+	+	+	+-	+	╀	-	84 84	Н	
	2000 2500	_	\dashv	-+	+	+	69 68	+	74 6	-+			_	⊢	┞—	-	-	₩-	⊢	-	+	+-	+-	+-	┿	+-	-	70 7	+	+-	⊢		-	\vdash	85 8	-	+	+	+	-	+	+	+	+	╀	88	-	
	1600 20	-	\dashv	\dashv	+	+	67 6	+	+	\dashv	\dashv		L.	↓_	⊢	-	┞	┺	⊢	⊢	╄	+	+	+-	+	+	┰	+	+-	+-	₩	3 99	_	\vdash	Н	-	+		+	+	╁	+	+-	87	+	+-	-	
	1250 10				_		2 5	_	_	_	_			_	┖	<u> </u>	_	-	١	 -	₩	+	-	╌	+	-	╄	+-	╄-	+-	+-	-	-		-	\rightarrow		-	+	-	3 2	2 6	98	98	82	88	84	
	1000		63	65	63	19	2 8	2 1	2	99	69	72	75	73	75	83	98	84	88	8	98	85	8	89	69	37	8	8	09	62	89	89	75	75	81	82	≅	≅ €	8/ 2	2 8	3 5	, 84	28	82	8	83	82	
	630 800		-		-	99	-	8		65	-	71	73	17	73	+	98	+-	╌	88	+-	+-	-	+	-	37	_		_		_	82		-		$\overline{}$	_	_	_	_	_	-	-	8	+	+	-	
	500 630		-	_	_	-	9 09		\rightarrow	_	99 99		74 73	17 71	75 74	92 88	89 87	+	-	88	-		-	63 68		39 39	+	02 29	-	-	+	75 80		-	80 80	-	\rightarrow	\rightarrow	_		_	2 08	8 8	+-	┿	+	-	
	400 5		19	_	_	-	63	69	73	89	29	75	77	73	77	95	88	87	68	96	86	2	1, 5	1 49	3	9	129	89	74	75	08	200	74	74		$\overline{}$	_	_	-	2 8		-	-	+	+-	+-	-	
(z)	100 125 160 200 250 315 400		Н		72 67	\dashv	-	73 72	79 75	_		-	84 81	83 75	╄	95 90	96 86	+	95 94	+	+-	+	-	-	+	-	+	_	+-	+-	+-	91 84	96 76	+	-	88 66	\rightarrow	-+	-	26 8	-	8 8	+	+	+	-	86 78	
enter Frequencies (Hz)	200 2		11	71	71	78	77	74	8	84	75	81	8	68	16	86	+-	92	93	94	š	ि	: 8	1 2	1,5	+		+	+		+-	+	98	+	7 92	-		_	-	_	-	00 00	-+-	+	┰	+-	+	-1
Freque	25 160		73 71	73 72			73 76		93 95								95 97	92 96	93 96				20 68			_	_		_			91 98		_	87 87	-	_	$=$ \downarrow	_		_	_	26 24	8 8	+	+-	+	4
			74	74	73	75	73	76	82	84	75	78	81	88	6	96	16	88	87	9	S		70	7, 7	2,4	7 4	2 0	78	68 08	2	88	98	83	2 84	68 9	88 9	88 5	2 87	8	1 87	2 0	00 00	80 0	28	. 0	84 85		_
strum (63 80				_	$\overline{}$			_	26 80	74 76	77 77	92	-	-	_	88	_	98 98		-	-	2 7	74 7	17	47 4	1 7	75	_			_	+	┪		85 8	_	_	_	$\overline{}$			0 20					
Band SEL (dB) at 1/3 Octave Spectrum C	10 13 16 20 25 32 40 50 63 80		89	69	69	73	71	75	75	74	73	9/	+-	+	-	98	87	98	87		-	-	-	_	-			_	+		_	_	76 79	_	0 83	1 83	$\boldsymbol{\vdash}$	\rightarrow	-	\rightarrow	78 80		82 64	-	75 77	-		
3 Octa	32 40	-	63 66	63 66	-	\vdash	_	-	70 72	11 29	67 71	71 74	77 77	69 72	73 7	83 85	-	_	-	-	-	-+-	-+-	-	+	-		-	+		+	-	+	-	79 80	79 81	79 80	\rightarrow	-	_	-	-	8 6			77	192	
B) at 1	1 25			9 9	19 /	63	\rightarrow	-	89 8	19 7	3 67	89	+	-	-		-	_	-		-			-					+	-	+	+	-		+	82 89	68 78	\rightarrow	\rightarrow	$\overline{}$	\neg		2 8	-			67 73	
SEL (d	16 20		_	55 55		57 57	-	$\overline{}$	63 63	58 62	59 63	61 60	+	-	-	-	-	-	_	_		_	2 2	-	-	-	-	_	-	-	_		+	+	+-	74 6	72 6	_	-	\rightarrow	-+	_	200		-	3 89	99	
Band	13		45		-	1 48	\vdash	_	5 64	84 2	2 47	1 52	-	-	-			-		-	-	-	SC 2	-	40 40	_	~-	1 40	+	_		-	+	-	+	62 59	65 61		-	$\overline{}$	-	_	1/9	6 6	2	19	60 58	
ي.		-	Base	se 48	1	se 34	Н	se 51	/ity 65	ity 52	se 52	se 54	+	+-	+	+-	+	+	+-	-	+	_	-	\neg	+	\dashv	-	-	+	-	Cavity	-	+	+	+	+	1	-	Cavity 5	-+	J	\rightarrow	-	-	Dasc	Base	Base	-
Σ	Pos.	- 道	1	Base	Base	Base	Base	Base	Cavity	Cavity	Base	Base	Race	Cavity	Cavife	Cavity	Bace	Baca	Race	Dasc	3 6	3 0	3	5 6	Dasc	Pase	ž (2 2	ă c	3 6	3 8	2 2	i la		m	m	రి	ပီ	Ca	ర	ర్	m	m r	0	1	+	+	+
Rec	Time	٥				10.9	10.9	fled.	fled.	fled.	fled.	fled.	fled	fled	Pod	1 6	fled	iled.	900	Flod	ilon.	-1eg.	iled.	-fled.	Post-ried.	Post-fled.	Post-ried.	Post-fled.	Fost-lied.	Post-ried.	Post-fled.	Post-fled	Poet-fled	Poet-fled	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.				
W.C.W	Resp.		0	0	0	7	2	Post-fled	Post-fled	Post-fled.	Post-fled	Post-fled.	Poet-fled	Post-fled	Doct-fled	Post-fled	Doct fled	Doct flad	Doct flad	Post-fled	Los	Post-fled	Post-fled	Post-fled	FOSE	Post	Fost	Post	Los	Post	Lost	Post	Poet	Post	Post	Post	Post	Post	Post	Post	Posi	Post	Post	Posi	0	0	0	,
Fyont			122	122	122	91.5	91.5	122	122	91.5	91.5	19	5 5	5 3	5 5	302	30.5	50.5	15.0	77.01	7.61	15.2	122	122	771	122	51.5	91.5	51.7	91.5	5.17	10 19	5 3	10 3	30.5	30.5	30.5	30.5	15.2	15.2	15.2	15.2	15.2	15.2	30.5	30.5	30.5	2,00
-	Tyne		50 cal.	+	.50 cal.			L	L	Ļ	+	+	cai.	.30 cal.	cal.	.30 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	SO cal.	50 ool	50 cal.	50 cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	O car.
\vdash		•	+	╁	╁	+	-	H	-	\vdash	$^{+}$	+	+	+	+	+	+	+	$^{+}$	+	+	+	+	\dashv	+	\dashv	+	\dashv	+	+	+	+	+	+	+	+-	+	-	\vdash	9. 5/9	\vdash	Н	\dashv	+	+	+	+	\dashv
⊢	. Date		4/26	╁	+	+	+-	6/2	-	6/2	+	+	+	7/0	+	7/0	+	7/0	+	+	+	-	4	+	\dashv	\dashv	\dashv	+	+	+	+	7/9	+	+	7/0	+	+	\vdash	7 6/2	\vdash	7 6/2	Н	\dashv	+	+	+	+	\dashv
3	3		52	15	57	57	57	5	57	57	: 5-	5 5	2 و	٦١٤	ام	ءَ إ	ا آ	ا آ	ا آ	<u>ک</u> ا	ñ	57	2	57	57	57	57	57	27	's	2	2 2	۰ ۱	2 2	ا ا	2 2	ارم	52	57	ابي	l,v	S	8	2	۱۰	ء ء	5 5	2

alc.	Overall SEL	7.3	8.7	6.7	9.2	9.7	3.5	17.3	17.1	15.9	15.2	9.9	13.3	0.0	9.7	70.7	8.6	1.2	14.1	1.5.1	13.2	12.6	0.40	5.1	6.7	11.3	7.2	6.9	3.8	6.8	4.0	3.1	5.4	0.5	12.5	14.5	8.3	6.0	6.8	90.3	72.4	3.1	114.0	13.8	103.3	13.1
_	0		_	\neg		$\overline{}$															\vdash	П						\neg	_		\neg	89	\top	_			∞		\neg		-		1 29	\dashv	+	\dashv
	9		\dashv	-	_	_	62	Н	_			\vdash	Н	\dashv	-	-			-	-	-	Н	Н	Н			-	\dashv	+	+	+	2 5	+	\vdash	H	54	12	\dashv	-	\dashv	\dashv			\dashv	+	\dashv
	0	_		-	-	_	Н	Н	Н				Н	-	\dashv	-		_	H	_	-	Н	_	\vdash	-	\dashv	\dashv	\dashv	+	+	+	2/ 2	╀	+	Н	Н			\dashv	-	\dashv	\dashv	74	+	\dashv	\dashv
	0	-	-	-	_	_		Н		_	-	H	Н	-	-	_	_	_	-	H	-	Н	\dashv	H	-	\dashv	\dashv	\dashv	+	+	+	4 1	+	╀	Н	Н	\dashv	-	\dashv	\dashv	\dashv		-	+	+	\dashv
		75 7	4	\dashv		_	9 0/		Н	-	Н		Н	4	-	_	_	-	_	_	_	\square		\sqcup	-	\dashv	-1	-	\dashv	+	4	9/ 1/2	+-	╄-	_	Н	\dashv	_	_	-	-		78 7	-	98	-
	_	\dashv	-	\dashv	-	Н	Н	\dashv			Н	-	H	-	-	\dashv	-		H	Н	\vdash	Н	Н	Н	\dashv	\dashv	\dashv	-	+	+	+	11	+	╁	Н	Н		\dashv	\dashv	-	-	\dashv	\dashv	\dashv	+	\dashv
- L		_	_	_		_	Ш			_		Щ	Ц	_	_	\dashv	_		_	L.	_	\square			_	\Box	_	_	\dashv	4	4	6 6	4	ļ.,	Н	Н	\dashv	\Box	-	\dashv	\dashv			-	-	-
		-	-	\dashv	-	-	Н	-	-	-	Н	Н	-	-	-	-	_	,	-	-	-	\vdash	\vdash	-	-	\dashv	\dashv	-	-	\rightarrow	+	200	+-	+-	Н	Н	\dashv	-	-	-			85	-+	-+	-
	3150	82	88	84	84	82	81	92	16	91	06	68	98	8	8	8	79	83	88	88	87	84	85	81	81	82	84	78	œ (8 8	8	08	77	9/	62	80	69	72	72	74	75	76	98	83	88	'n
	2500	81	84	83	84	82	79	93	93	91	91	65	88	79	8	8	79	83	87	68	87	80	82	80	80	82	84	77	œ	87	2 8	70	26	77	68	68	71	74	7	75	78	8	90	6	8 8	3
	7		-	\dashv	_	_	80	-	-	-			Н	\dashv	-	\dashv	-	_	-	H	-	Н	Н	Н	-	\dashv	\dashv	\dashv	\dashv	+	+	7 6	+	╀	-	Н	\dashv	\dashv	-	-	-	\dashv	\dashv	\dashv	\dashv	9
	-	_	-	98 9			08	_	Н	06 0	Н	Н	\vdash	-	-	-		_	<u> </u>	H	-	Н		\vdash	-	-	-	-	+	+	+	7 7	+	+-	-	3 75	\dashv	Н	-	-	-	\dashv	\dashv	\dashv	+	0 93
	_		\dashv	\dashv	-	-	Н	-	Н	-	Н	Н	\vdash	\dashv	-	\dashv	-	_	\vdash	\vdash	\vdash	Н	Н	Н	-	\dashv	-	\dashv	\dashv	\dashv	+	80 80	+	╀	\vdash	Н	\dashv	\vdash	\dashv	\dashv	-	-	3 90	\dashv	\dashv	8
																											1	$_{\perp}$			\perp	7 02									_			_	_	_
	630	77	78	78	79	11	73	88	87	87	98	68	98	8	8	8	79	80	87	88	98	98	88	08	80	68	83	83	75	96	2	5 5	£ 2	75	82	82	71	74	2	70	76	92	06	8	87	87
			76 76	_	78 77					_			80 82	_	_	_	_	_	_		_	_	_	_	_	$\overline{}$	\rightarrow	_	_	_	_	76 76	-	-	-	-		65 72	-	_	78 84	_	94 100		_	88 06
	315		2				2 76	_	-	7 93	_		3 87			_	_	_	-			-	8 87	-	_	-		-			-	2 2	-	-	74 71	-	_	<i>L</i> 9 99	5 74	\rightarrow	76 77		88 28		-	92 91
Frequencies (Hz)			28 06			_	85 8						95 93	94	93	94	93	94	16	16	06	85	85	84	86	68	85	82	92	<u>6</u>	16	83 79	3 6	92	83	85	70	72	79	81	98	87	94	95	-+	6 16
requen	25 160	68 9					2 85						3 94	16 61	16 61	9 92	19 91	0 92	7 95	96 80	94	66 9	8 99	88 41	8 89	3 94	4 87	9 92	77 91	2 96	88	78 80	83	8 78	101 20	3 103	17 77	13 79	81 81	82 82	88 102				92	
enter F		85	98	85	98	85	81	63	63	92	06	94 9	16	68	88	8	89	5 06		97 9	95	98	88	82	85	85	84	_	88	8	85	2 €	76	78	98	87	82	84		83	79	81	87	8	\$	88
trum	63 80	_	_	-	84 85	83 84	18 6/	-	\vdash	-	06 88	92 94	. 	\dashv		88 60	87 89	16 68	90 92	90 92	87 91	-	-	-	81 85	18 64		74 77		-	-	80 8	+	+	79 82	-	08 92	79 83	73 77	74 78	72 74	72 76		\rightarrow	85 85	83 85
Band SEL (dB) at 1/3 Octave Spectrum Center	20 25 32 40 50 63 80 100	81	82	81	85	82	11	68	68	88	87	06	87	82	88	98	85	87	68	68	87	79	83	75	28	. 11	79	74	78	82	æ	6 6	-	26	78	42	74	11	70	11	69	89	92	78	8	8
3 Octa	32 40	26 79		26 80	78 81	62 92	73 74	87 89	88 88	87 88	86 87	85 87	-	-	_	81 84	80 82	82 85	85 87	86 87	83 85	79 82	80 81	75 75	77 78	81 81	79 80	77 74	-	-+	\rightarrow	78 78	74 71	+-	73 76	74 77	68 73	73 76	66 71	71 72	89 69	69 89	92 62	\rightarrow	81 79	79 81
B) at 1/	25	74	74	92	92	75	71	83	18	_	-	-	80	78	_	8	77	92 9	8	84	08	75	77	11 9	72	75	3 76	_	19	6	-	_	2 5	+	19	71	62	69 9	85 8	99 9	99	52	$\overline{}$	9/	79	79
SEL (d		_	$\overline{}$	71 70	71 72	70 73	69 69	_	98 94		98 92	78 74	-	$\overline{}$	\rightarrow	70 76	72 72	92 12	79 80	90 29	77 78	17 79	75 80	67 75	68 77	79 81	$\overline{}$	-	\rightarrow	\rightarrow	-	-	71 7	+-	19	68 64	98 65	99 89	65 53	99 19	69 89	69 99	78 78		76 78	26 80
Band	10 13 16	4		8 63	0 54	99	63	6 79	69 2	0 74	3 77	99 7	\vdash	_		3 64	63	6 8	9 72	8 73	3 74	5 71	80 71	75 62	_	08 0	_	1 76	-		\rightarrow	89 5	-	+		3		4	80		9	64 58	72	70	72	7
_	_	Base 64	0	$\overline{}$	Base 60	Base	Base	Base 86	Base 77		Base 83	Base 62	Н	Base 63	ပ္သ	Base 73	Base 59	Base 59	Base 59	Base 68	Base 73	Cavity 75	Cavity 8	\vdash	Base 77	Cavity 90	Base 75		\rightarrow	\rightarrow	\neg		Cavity 82	+	1.≧	Cavity 63	Base	Base 64	Base 68	Base	Cavity 66	Cavity 6	Cavity 7	_	_	Base 6
-	— ∄	Ba		Ba	Ba	_	L	Ba	Ba	Ba	Ba	Ba	Ba	Ba		Ba	Ba	Ba	Ba	Ba	Ba	Ca	Ca	Ba	Ba	Ca	Ba	Ca	Ã,	ပ်ိ	E P	B G	3 8	Ba	Ľ	Ca		Ba	Be	L	Ca	Ca	Ca	Ca	B.	R
Rec,	Time (r													14.6	14.6	14.6	14.6	14.6	5.9	5.9	5.9	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.
RCW	Resp.	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	2	2	2	2	2	Ina	Ina	Ina	Ina	Ina	Ina	Ina	Ina	Ina	Ina	Ina	Ina	Ina	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Posi	Post
		30.5	30.5	30.5	30.5	30.5	30.5	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	30.5	30.5	30.5	30.5	30.5	30.5	15.2	15.2	15.2	15.2	30.5	30.5	19	61	15.2	15.2	30.5	50.5	19	19	19	19	61	30.5	30.5	30.5	30.5	15.2	15.2	15.2	15.2
Event	Type	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	So cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.
Date		5/17	5/17	\vdash	5/17	5/17	╁	5/21	5/21	5/21	5/21	6/15	Н	-	-		5/26	5/26	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13		5/13		\dashv	\dashv	\dashv	5/13	+	╁	-	-	6/3	6/3	6/3	6/3	6/3	6/3	Н		6/3
Col.		-	19	-	H	├	╀	-	19	\vdash	\vdash	19	Н	_	88		88	88	┡	-	╄	┝	⊢	-	-	┝	-	_	\dashv	\dashv	\dashv	125	2 2	125	127	127	127	127	127	127	127	127	127	127	127	127

Calc.	Overall SEL	108.2	93.9	95.3	95.2	98.8	95.0	92.8	93.3	93.7	94.3	84.8	85.1	84.6	84.4	77.5	88.0	87.0	86.2	87.0	0.98	105.3	114.2	113.7	102.4	93.8	110.3	102.9	28.3	74.1	77.0	76.7	16.0	76.2	0.10	61.2	91.2	8.06	91.1	6.96	101.9	101.1	87.5	86.7	92.5	
	20000	69	+	37		37	33	45	43	44	46	43	43	43	41	39	42	41	40	40	40	78	99	8	5 6	79	63	2 2	¥ 5	2 6	45	42	42	42	74	9 %	65	59	28	65	62	63	49	47	55	
	16000 20	+	48	0	49		_	-	-	55	7.5	9	46	9	46	40	45	44	4	44	44	18	89	99	78	5	4 (2	7 =	40	43	40	40	4 :	7 2	1 5	8	88	79	59	20	63	47	45	53	
	90	+	+	+	-		-	-		H	-	53	\vdash	┞	-		20	-			-	_	73	\dashv	+	+	+	+	+	200	+	╁	H	9 5	7 0 2	6 6	62	1 8	9	19	49	49	47	46	55	
	0 12500	7	4	53	\vdash		51	09	-		-	\vdash	\vdash	┝		\vdash	-			_		Н		-	+	+	+	+	+	+	+	+	H	+	+	+	+	+	╁	+	78	-			09	
	8000 10000	8	19	63	L	_	L	-	⊢	┡	-	╀	58	28	-		55		54				\dashv	-	\dashv	1	+	+	8 5	+	+	╀	Н	\dashv	+	8 9	+	42	╀	╀	┡	-	H	L	Н	
		83	8	88	99	70	89	89	89	89	69	19	19	09	19	53	09	09	58		Н		Н	+	98	+	+	2 (╅	╅	+	╁	Н	48	+	+	+	3	╁╌	+	26	┢	28	28	64	
. 1	9300	98	8	9	89	73	70	70	5	70	7	64	49	63	63	55	64	63	62	62	19	6	79	77	87	۶	7	3	8 2	7 8	52	52	15	22	2 5	66	3 4	+	╀	+	╀	┝	62		89	
	2000	88	8 8	73	17	75	72	72	17	72	72	8	65	49	4	27	<u> </u>		_	H	-		80		-	72	+	+	+	<u>د</u> اد	+-	-	Н	54	+	+	+-	+	+-	+	╁	+	65	-	69	
	4000	8	7	7 5	73	₩	╄	┼-	⊢	73	⊢	+-	19	99	99	59	-	-	-	-	⊢	-	83	\dashv	\dashv	-	8	\dashv	-	× ×	+	+	57	\dashv	+	80 13	+	6	╁	+-	╀	78	19	⊢	72	
	2500 3150	6	1/5	28	77	83	75	╁	⊢	75	╀	+-	╀	╀	╁	8	-	69	-	_	-	-	88	\vdash	\dashv	-	87	\dashv	\dashv	3 3	+	+	╁	\vdash	+	2 5	╁	╀	+	+-	+	╀	╁	\vdash	74	
	0 2500	6	╫	+	\vdash	+-	92	╀	╀	-	77	+	╀	+-	\vdash	-	├	├-	-	\vdash	⊢	├-	Н	Н	98	-	-	-	-	9	+	+	\vdash	\vdash	+	7 7	+	+	+	╀	╀	╁┈	2 71	\vdash	75 75	
	0 2000	6	+	+	+-	\vdash	76	╀	╄	┼-	╀	+	+	69	+-	╀	┝	71	20	71	_	1	88	Н	-	\dashv	88	-	-	-		+	+	\vdash	-+	69	╁	+	╁	74 75	╀	+	╀╌	+	76 7	
	0 1000	+	75	+	╄	+-	77	+	╀	╁	77	+-	╄	╀	69	╀	⊢	71	17	71	⊢	+	-	-	98 9	-	-	\dashv	+	-	+	+	╄	\vdash	+	63	+	+	┿	+	╁	79 7	╁	╀	75 7	
	0 1250	08	+	2,5	+	+	77	H	+-	H	+	69	╁	╁╌	69	╂	⊢	\vdash	-	-	\vdash	\vdash	-	\vdash	98		-	+	+	9	+	+-	╫	Н	+	\dashv	8 3	+	+	+	+	+	+	+	74 7.	
	1000	5	_	7 4	\perp		77	L	L	1		89			İ.,		1_			L.	L	L		L					_	_		\perp	09	Ш	_	2 3	_	_	4	\perp	1	83 80	\perp	╄	75 7	
	30 800	08		7 7 7	-	_	_	_	_	+	-	67	+-	89	+-	19	_	-	12 70	-	_	-	_	_	_	_	_			9 09			09		\rightarrow	66 73	65 73	-		71 2	+-	84 8	+-		↤	ı
	500 630	_	# F	-	+	-	+-	72	-	+	+-	+-	+	-	2	+	+	-	4	65	62	68	68	68	Н	_	78	9/	73	59	60	3 %	29	-	-	59	-	6	+		-	+	+-	+-	-	ı
	315 400		-	0 2/2	-	+	-	-	+-	+	-	9	-	-	-	-	62 64	╀	+-	+	+-	93 87	87 100	96 88	-	76 73	$\boldsymbol{\vdash}$	-	-	56 57	52 55		-	-	-	-	-	20 20	+	67 74	+	+-	-	-	+	İ
Hz)	250 31	_	-	8 8	+	91 85	+-	72 6		73 67	-	50	-	-	-	+	+	+-	+	+	+-	-	-	-	1	\vdash	8 98		\rightarrow	63		-	19			\rightarrow	-	3 5	+	-	+-	+	+	+-	+	
ncies (200	5	3 8	S 5		8		_		_	_		_	_	_	-	-	74	-	74	+-	96	_	4 93	1			83	\rightarrow	99		6 2	_	-	_	_	-	-	0 0	+	-	+	+	+-		
reque	25 160		-	84 83	-	-	_					75 77		_	75 76		_	+-	-	+	_		113 103	_	-	83 85			_	89 65	_		_	65 62		_	-+	3 8	+		+	-	+	-		i
enter 1	100			ς 3				_	_	_	_		_	_	_	_	-	_	_		77	_		16	68	84	94	16	81	2	28	$\overline{}$	+-	29	_	-				` 5	-	-	-		-	
rum C	80		_	81 84	_	-	_	_	-	_	-	-	_		-		+-	7 79	76 78	+	+	+	-	+	-	82 83	82 86	79 83	-	-	\rightarrow	9 19		-		_	$\overline{}$	67 70	-	50 50	-+-	_	_	_	_	
Spect	50 6		_	79 81			-	_	-	-	_	-	-		-	-	+	75 7	+	-	+	-	_		-		8 64	192	-	-1	→	40	-	+	-		_		3 5		-	-	-	_	79	
Octave	8	-	$\overline{}$	77	—	+	-	-	-	-	-	-	-	-+-		-	+-	+	┿	-	+-	-	+-	-	+-	4 76	4 75	1 73	-	_	_	0 0		_	65 67	\rightarrow	-	_	20 20	2 0			70 77		_	
at 1/3	25 32		\rightarrow	70 73		-	┿	-	+	-	-	0/ 0/	_	_	-	-	-	+	-	+-	+	-	+	78 79	+	71 74	70 74	68 71	-	-	-	20 00	_	-	9 09	55 5	\rightarrow	-	3 5		3 5	_	-	_		
(qB)	20	- 1	8	88	3 6	7,7	2 5	2 5	3 5	5 5	3 5	ò	<u>ب</u> و	3 7	3 5	5 6	5	13	3		9	83	47	92	73	62	-	19	-	-	\rightarrow	23		-	09	52	-	-+	-	-	5 0	-	-	_	_	
nd SEI	10 13 16 20 25 32 40 50 63 80 100 125 160 200 250		74 76	19	8 2	5 89	-	-	-		_	6 6		-	-	-	+-	-	-	+	+	+-	-		+	56 68	_	55 62			\rightarrow	46 51	46 30	_	53 55	51 49		_	54 59	-	10	8 8	_	_	54 67	-
Bai	101	\rightarrow	6	+		10		-	-	-	-	700	-	-	_	_	-	_	-	_	+	+	+	+-	-	55	-	-	-	-	\rightarrow	-	30	-	42	53	-	29	20	28	40	i o	ဂ င	_	9	
Μįς	Pos.		Base	Base	Pase	Base	Dasc	Dase	Dase	Dage	Dase	Base	pase	Dase	Dase	Dase	Race	Race	Race	Race	Bace	Race	Cavity	Cavity	Base	Base	Cavity	Cavity	Base	Base	Base	Base	Base	Base	Base	Cavity	Cavity	Cavity	Cavity	Cavity	Cavity	Cavity	Cavity	Dase	Base	
\vdash	_		1		+	+	\dagger	\dagger	+	+	+	+	+	+	+	1	\dagger	+	t	\dagger	\dagger	+										+		\dagger	\vdash					1	1	1	1	\dagger	T	1
/ Rec.			3.0	2.6	2.0	2.0	7.0	-	1	1	\downarrow	1	4	-	1	-	6	5	3 3	200	2.0	Doct flad	Post-fled	Post-fled	Post-fled.	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled.	Post-fled	Post-fled.	Post-fled	Post-fled	Post-fled.	Post-fled.	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-ried	Post-fled	Post-fled.	
RCW	Resp.		2	2	7 0	7 (7 (7	- c	> <	> °	- ·	- -	- -	- -	- -	-						1	1	1	1			_					-		F			7	-		-	4	1	\perp	1
Event	Dist.	(m)	30.5	19	19	19	10 3	516	19	19	19	19	122	777	77	771	771	21.7	71.7	21.7	2 2	5.17	15.2	205	30.5	19	19	91.5	91.5	122	122	122	122	122	122	122	122	122	122	122	122	122	771	127	91.5	
Fyont	Type		.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.30 cai.	So cal.	.50 cal.	.50 cal.	50 cal.	So cal.	So cal	50 cal	So cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	So cal.	
Poto	*		2/12	61/5	5/19	5/19	5/19	5/24	4/21	4/21	4/21	4/21	4/26	4/26	4/26	97/5	4/20	4/29	67/4	67/4	67/4	67/5	7/0	7/0	7/0	673	6/2	619	6/2	6/2	6/2	6/2	6/2	2/0	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2	5
200			129	129	129	129	129	129	133	133	133	133	133	133	133	5	5 5	3 3	5 5	5	55	133	133	2 2	133	133	5 5	13	133	133	133	133	133	33	33	133	133	133	133	133	133	133	133	133	33	

Calc. 00 20000 Overal		2		- 1	93.0	93.0	يا او	93.7	22.7	ج اج	92.9	93.6	89.0	89.7	90.4	91.0	112.3	90	2	2 2	3 5	2 5	99.7	8.5	33.6	2.70	116.0	03.4	94.0	109.3	104.2 87.1	85.9	104.2	103.7	12.8	08.0	0.17	101.2	99.5	84.9	13.9
	ξI	7	-	+	+	+	+	+	+	+	+	\dashv		+	\dashv	42 9	+	+	+	28	+	+	44	Н	+	+	59	-	Н	+	4/ 48	+	Н	\exists	+	57 5	+	+	\vdash	Н	26
		Н	\dashv	+	+	4 8	+	+	+	+	\dashv	-	\dashv	\dashv	\dashv	+	-	+	+	+	╁	+	+-	H	\dashv	+	+	-	H	\dashv	+	+	Н		+	+	+	+	\vdash	H	
160	1	55	55	55	٦	57	2	28	5 8	×	28	28	43	43	4	4	8	93	8	62	3 3	2 2	45	39	\$	1 8	8	85	99	53	53 4	4	44	82	8	2 2	5 5	47	42	45	59
12500 16000	00071	99	26	\$	8	59	5 3	2 2	5	g	\$	65	49	48	20	20	89	23	8	3 2	5 9	57	48	38	20	8 2	99	87	70	57	ş %	49	45	84	89	26	3 5	20	42	46	63
		09	82	98	8	69 9	8 6	69	3 (5	3 5	8	69	99	55	57	52	72	93	87	6 8	5 -	. 63	53	40	26	8	3 2	87	74	99	£ 6	55	47	85	72	\$ 5	7, 5	55	47	54	99
8000 10000	2	9	120	\$8	-	17	7 2	7.2	: ;	-	72	72	62	09	62	2	92	5	88	2/ 5	3 5	£ 2	55	44	09	9 8	47	88	76	\$:	2 2	89	50	87	75	17	1 3	88	20	58	70
6300 8		H	-	8	+	+	+	4 5	1 2 1	2 :	73	74	\dashv	\dashv	\dashv	\dashv	\dashv	+	+	27	+	╁	99	Н	63	+	192	\vdash	\vdash	99	+	+	Н	87	6	0/4	2 03	63	56	19	2
_		Н	-	\$8	+	-	ţ ;	+	+	-	_	4	4	4	\dashv	-	4	+	4	4	+	+	26	\vdash	\dashv	+	282	-	\vdash	69	+	3			-	17 17	+	+	⊢	H	_
2500 3150 4000 5000	3	\vdash	\dashv	98	+	+	+	-	+	+	\dashv	-	-	\dashv	-	\dashv	\dashv	\dashv	+	+	+	+	68	Н	\dashv	+	+	\vdash	Н	9 02		+-	58 5	\vdash	\dashv	78 2	+	73 6	╁	\vdash	73 71
50 40	2	Н	-	98	+	+	+	76 7	+	+	-+	\dashv	\dashv	-	⇥	\dashv	-	-	+		+-		17	╌	-	+	+	+	Н	75	+	+	63	-	+	18 5	+	+	\vdash	Н	74
00 31	3	\vdash	-	-	+	+	+	+	+	+	\dashv	-	-	\dashv	-	\dashv	-	\dashv	\dashv	+	+	+	82 7	Н	\dashv	+	+	\vdash	Н	-	200	+-	-	\dashv	\dashv	+	+	+	-	\vdash	77 77
00 25	3	Н		+	-+	+	+	+	+	+	\dashv	\dashv	-	-	-	-	\dashv	+	-	+	+	+	8 08	Н	\dashv	+	+-	⊢	Н	82 7	-	+-	-	88	\dashv		╫	+	\vdash	Н	28
00 2000	2	\vdash		82	+	+	+	+	+	+	+	3 74	\dashv	-	-	\dashv	-	+	\dashv	+	+	+	+	Н		+	3 92	\vdash	Н	\dashv	+		\vdash	\vdash	\dashv	-	+	82 8	╀	H	-
20 1600		\vdash	8	+	+	2 2	+	73	+	+	+	-	-	\dashv	┥	\dashv	┥	-	+	+	+	╁	5 73	\vdash	+	+	+	⊢	Н	+	+	89 6	Н	Н	88	+	+	╫	╁	Н	
0 1250	_	╢	\dashv	98	+	+	+	75	+	+	+	-	-	-	-	72	┥	92	+	+	7 6	+	╫	Н	-	+	8	╁	Н	\dashv	18	+		Н	\dashv	8 8	+	+	+	Н	83
1000		Ш		\perp		7 2	_	\perp	1	\perp	74	_	71	_	_	_	_	4	4	86 2	1	1	8	Ш	_	_	01	<u> </u>		93	+	69	\vdash	88	_	4	3 6	1			83
30 800	000	↦	\rightarrow	-		74 73	-	7 7	2/2			74 73	_		-		-		\rightarrow	_	-	_	72 82		-	-	_	-	_	87 95	+	+	82 87	\vdash	-	82 92	+	+	+	-	86 90
500 630	000	-	87 8	\rightarrow	74 7	73 7	2 2	75 7	+	-	-	-		72 7.	71 7	-	-	-+	-+	91 8	-	_	70 7	! !	63	_	-	84	72 7	\rightarrow	85 6	+-	-	╌	\rightarrow	08 8	-		67 7	+	98 86
315 400 5	3	77	88	-	4	74	7 2	75	: ;	4	-		_	72	72	73	96	35	-	3 5	2 5	2 9	5	29	62	25		82	71	-	8 3	-	84	Н	-	5 5	` F	3 5	æ	+	90
(z)	210			106 91	8 72	7 71	-	78 71	-	7 7	7	78 71	-	-	-+	-		-	-	-	-	2 8	+-	74 73	99 9	-	3 [2	3 91	82 75	107 104	102 97		+=-	-		87 86	0/ 02	-	+-	68 89	88 92
anter Frequencies (Hz) 100 125 160 200 250	7007	84 79		_	83 78	82 77	-+	83 78	-+-	78	-	-		_		_	\rightarrow	\rightarrow	-	\rightarrow	0 40	+	82 7	-	989	-	97	+	-		92 10	+-	-	Н		918	+	-	-	+	95 8
lequen 1160	201	98	94	33	g :	£ 5	_	98	-	-	\rightarrow		-	\dashv	-	\dashv	_	-+	\rightarrow	_	0 70	-	-	-	73	-	92	+-	-	98	-	-	28	-	_	101	-		+-	75	113
nter Frequencies (Hz)	17	_	_	_	_		_	85 86	_	_	_	_	8 81	\rightarrow	\rightarrow	82 83	$\overline{}$	-	68	_	22 24	-	86 98	-	\rightarrow	_	_			-	81 83	-	82	-	-	=+	6 6		+	+	86 06
n Cen		\vdash	_		-	828	-	83	+	-		$\overline{}$	-	\rightarrow	-			-+	-+	06	-			77 8	-	94 9	-	+	84 8	\rightarrow	77 8	-	+	_	$\overline{}$	8 8	-	-	-	-	84 9
e Spectrum C	3	81	79	8	S :	8 5	2 3	≅ 8	3 8	200	2	8	77	77	78	79	84	88	98	88	8 6	74	76	73	72	2 8	2 %	68	82	79	77	2 92	74	85	83	% %	g e	6 1	73	74	84
ave Sp	2	_			-	76 79	_	77 79	-	_		$\overline{}$	73 75	\rightarrow	-		_	+	-		0/ 0/	-		69 72	_	89 91	2 8	-	77 79	\rightarrow	76 76	-	71 72	82 84		80 83	-	2 2 75	+-		78 81
Band SEL (dB) at 1/3 Octav	70	75 77	72 7	-	_	73 7	-	747	-	-	-+	73 7	71 7		$\overline{}$	-	_	-	-	\rightarrow	-	, 0,	-	9 69	-	_	2 8	_	76 7	\rightarrow	77 7	_	-	-		77 8	-	707	+-		1 61
3) at 1.	C7	73	71	25	8	કે ફ	-	7 9	-	-	\rightarrow	70	63	19	9	29	9/	18	7	%	8 9	9 5	છ	19	79	2 5	2 %	77	69	69	2 3	\$ 3	-	79	78	$\overline{}$	-	89	-	65	92
Band SEL (dB) at 1/3 Octave Spectrum Ce	07	99 69	1 71		-+	-	-	99 99	-	-	-	-		\rightarrow	_	89 89	72 80		-		-	23 75	-	49 64	-		2 04	+	17 72	\vdash	71 74	_	58 64	77 72	81 73	\rightarrow	80 :		+-	+-	77 80
and S	2	9 09	67 71	717	_	_	3	9 9	-		-	$\overline{}$	48 5	-		-	-	\rightarrow	\rightarrow	_	20 2	-	-	52 4	-	\rightarrow	2 6	+-	-	-	_	53 5	+	68 7	\vdash	_	2 6	_	-		
=	_	63	73	72	å			9 5	2	%	22	51	99	46	43	\dashv		8	-		3 8	ý 3	-	51	53	-	\$ 6	+-	62	\rightarrow	99	+-	+	-	\vdash	_	7	52	+	4	78
Mic Pos.	ŝ	Base	Cavity	Cavity	Base	Base	Pase	Base	Dase	Base	Base	Base	Base	Base	Base	Base	Cavity	Base	Base	Cavity	Cavity	Base	Cavity	Cavity	Base	Base	Cavity	Base	Base	Base	Cavity	Base	Cavity	Base	Cavity	Cavity	Base	Cavity	Cavity	Base	Cavity
	-2	П	П		-	+	+	+	+	+				Н						+	+	\dagger	T	Ť		+	+	+		П		\dagger	-		Ħ			\top	T		
Rec, Time		Post-fled.	Post-fled.	Post-fled.									5.2	5.2	5.2	5.2	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.
RCW Resp.	deab.	Pos	Pos	Pos	7	7,	7	7 (7	7	2	2	2	2	2	2	Pos	Pos	Pos	Pos	200	S S	Pos	Pos	Pos	Pos	S S	Pos	Pos	Pos	Pos	Po	Pos	Pos	Pos	Pos	od !	g g	Pos	Pos	Pos
		5	5	5	_	_	1	1	†	1			5	.5	.5	.5	2	.2	.5	N.	_		2 0	2	2	7,	, v	5 2			2	2 2	2	s.	S		_	م أد	2	2	5.
Event	(E)	91.5	91.5	91.5	9	19	0	19	ō	19	19	19	91.5	Н		Н	15.2	15.2	30.5	30.5	0	10	91.5	122	122	15.2	30.5	30.5	19	19	91.5	122	122	30.5	30.5	\sqcup	4	2.19	+	+	30.5
Event	lype	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.ou cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	So cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	So cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	S0 cal.	.50 cal.	.50 cal.
<u> </u>		6/2	6/2	6/2	5/4	5/4	5/4	5/4	7	5/4	5/4	5/4	6/5	6/5	6/5	6/9	6/14	6/14	6/14	6/14	6/14	41/0	6/14	6/14	6/14	6/14	6/14	6/14	6/14	6/14	6/14	6/14	6/14	21/9	21/9	21/9	6/17	6/17	21/9	21/9	5/27
Date		10		. 1	- 1	- 1			-1	ı		ıl	ı				Ĺ			آ_	<u> </u>	Ľ		Ľ	1	- [1	T	Ĺ			Ţ	1	Ļ	لَــا		1		ľ	Ĺ	Ľ

Part Part	Calc.	Overall	6.86	0.66	100.2	114.7	110.8	113.7	104.0	8.66	103.0	81.5	88.3	85.1	88.8	84.5	90.6	90.6	90.4	85.7	103.0	105.2	105.9	106.9	106.8	106.5	115.1	111.4	100.4	85.7	94.2	93.9	111.9	112.7	113.9	1001	109.4	117.6	118.4	96.1	97.8	97.4	97.5	98.4	99.5	109.1
Part Part			73	74	73	49	09	3	82	150	84	37	44	38	41	37	48	52	47	45	4	77	77	77	77	84	99	9 1	5 2	t 14			99	57	79	3 8	3 €	9	17	99	19	99	19	89	89	4
Dec. 1982 Part	-		78	78	78	69	2	1.9	æ	84	84	38	15	38	42	æ,	53	2	22	69	27	8		- -		87	20	8	£ 8	47	15	20	19	19	19	3 6	2 2	74	192	72	12	72	73	74	74	96
Part Part		2500 1	08	80	08	72	67	69	88	88	87	4	22	44	84	5	59	9	65	55	19	82	83	83	83	88	75	99	10 0	24 20	53	51	64	65	1 -	76	2 6	92	62	75	76	75	92	78	11	26
Part Part			81	81	81	73	89	7	88	84	87	47	79	52	200	5	89	88	29	83	92	28	84	88	85	8	77	2 3	46	6 6	63	63	89	69	75	2 8	3 8	8	2 2	77	78	77	78	80	79	62
Page Page			81	81	82	75	2	74	68	88	88	22	65	57	8	2	70	69	69	2	74	84	88	8	85	8	79	73	S	6 6	1.9	29	72	73	6/ 0/	0/ 1%	6	2 2	83	282	79	79	79	18	18	26
			18	81	81	26	73	75	68	84	8	88	5	62	3	8	71	22	7	29	77	85	98	98	8	68	<u>.</u>	92	ò	1/ 1/	8	69	75	76	8 8	82 8	3 5	. 28	98	78	262	78	80	82	81	95
The part The part	L		18	81	80	77	72	77	88	82	87	9	17	99	99	63	73	73	72	67	79	88	98	87	83	88	83	8	\$ 1	0/ 59	2 12	71	81	2	2 2	63	3 8	2 6	8	79	. 08	79	81	84	82	94
The control of the		4000	81	81	82	79	75	79	88	85	88	63	72	29	69	99	74	75	74	9	8	98	83	88	8	88	-	-	+	+	+	+	83	83	88	8	3 8	1 8	1 6	- -	+	+-	╁	⊢	Н	94
Part Part		3150	84	82	83	82	77	<u>~</u>	8	84	\dashv	┥	-	-	-	-	-	-	-					-	-	-		+	+	-	+	+		\dashv	+	+	╁	╁	╁	+	+	+	+		Н	92
The parameter The paramet	-	0 2500	-	-	\vdash	-	-		-	-	-	\dashv		H	-	+	-		\dashv	\dashv	-	-		-	\dashv	-	_	\dashv	+		+	+	-	\vdash	+	+	+	+	+	+-	+	-	+	-	Н	6 94
The control The control		<u> </u>	├	⊢	Н	-	-	\vdash	-	-	-	-		\vdash	-+	-	-	\dashv	\dashv	-	-	-	\dashv	\dashv		-	_	\vdash	+		+	+-	-	\vdash	-	+	╁	╫	+	+	+	+	+	+	\vdash	-
		20 16	\vdash	┢	-	\dashv	\dashv	\dashv	\dashv	\dashv	┥	-	_	Н	-	-	\dashv	\dashv		\dashv	Н		-		\dashv	Н	_	\vdash	+	+	+	+	H		+	+	+	+	+	+	+	+	+	-	Н	94
	г	`	\vdash	-	\vdash	\dashv	Н	Н	\dashv	\vdash	-	-	_	Н	\dashv	\dashv	\dashv	\dashv	\dashv	-	\vdash	Н	\dashv	-					+	+	+	+		Н	+	+	+	+	+	+	+	+-	+	\vdash	\vdash	10
Miss Part No. 9 Rev Miss Bank (1) 15 (a) 15 (b) 15 (a)	- 1		┡	L	Ш									Ш				_	_				Ц	_				Ш	4	_	1	_	_	Ш	_	4	_	_	_	_	+	+	\perp	丨	_	00
Principal Pr		630	78	78	78	90	85	68	68	98	90	29	72	89	73	$\overline{}$	-	75	11	71	81	88	87	68	68	16	94	87	8	82	77	77	-	88	35	77 5	2 8	3 5	2 2	12	-		+-	-	-	⊢
Dist. Rev.		0 200	+	+-	-			\vdash	_	_			_	-	\rightarrow	_	1 75	1 75	_		_	H-		-	-	-	-	\vdash	-		-	┿	╂	-	-	-+-	-	-	-	-	-	7 76	7 76	7 76	+-	₩
Dys. Dys. Rev. Rev. <th< td=""><td></td><td>15 40</td><td>+-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>59 7</td><td>70 7</td><td></td><td>\vdash</td><td>_</td><td>-</td><td>_</td><td>-</td><td>-</td><td>-</td><td>\vdash</td><td>-</td><td>-+</td><td>-</td><td>-</td><td></td><td>+</td><td>-</td><td>-</td><td>-+</td><td>-</td><td>96</td><td>2, 0</td><td>70,</td><td>+</td><td>2 08</td><td>8 2</td><td>80 7</td><td>+</td><td>00</td></th<>		15 40	+-	-	-							_	_	_	_	_	59 7	70 7		\vdash	_	-	_	-	-	-	\vdash	-	-+	-	-		+	-	-	-+	-	96	2, 0	70,	+	2 08	8 2	80 7	+	00
Dist. Rep. NAC Mace Dist. Rep. Alice Pand SBL (dl) at 173 Column. Alice (dl) at		250 3	+-	+-	Н	-	-	Н	Н	—	_	-	-	-		\neg		-	75 (0/	-	-	-	_	100	-	-	↤	-	-	-	+-	-	-	-	-+	-	3 2	2 5	1,0		+	+	+-	+	90
Date Event RCM Rec. Internal Post-Head. Base 64 65 13 15 15 13 15 13 14 15 <t< td=""><td>cies (</td><td>200</td><td>98</td><td>88</td><td>68</td><td>86</td><td>93</td><td>26</td><td>16</td><td>98</td><td>68</td><td>69</td><td>74</td><td>72</td><td>92</td><td>73</td><td>79</td><td>79</td><td>79</td><td>74</td><td>94</td><td>96</td><td>16</td><td>86</td><td>86</td><td>001</td><td>95</td><td>-</td><td></td><td>_</td><td>7/8</td><td>83</td><td>ᆂ</td><td>108</td><td>100</td><td>0 2</td><td>7,5</td><td>88 .</td><td>114</td><td>. 80</td><td>2 8</td><td>₹ &</td><td>8</td><td>8</td><td>92</td><td>5</td></t<>	cies (200	98	88	68	86	93	26	16	98	68	69	74	72	92	73	79	79	79	74	94	96	16	86	86	001	95	-		_	7/8	83	ᆂ	108	100	0 2	7,5	88 .	114	. 80	2 8	₹ &	8	8	92	5
Date Event Rech Rech Nec. Alic Band SRJ (dB) at 10 Cells at	dnen	160	_	_		114	110	_	_		_	$\overline{}$	-	-	-		-		_	<u> </u>		88	-	\vdash	_		3 113	_		_		-	+-	2		_	-	-+-		4	-	+	-		+	8
Date Event Rech Rech Nec. Alic Band SRJ (dB) at 10 Cells at	er Fr	125	-	-	_	_	_	_	_	-	-	-	_	-	-		_	_	-	<u> </u>	-	-	-				L .		_				_			_	_		_	_	_	_	_	-	-	+
Opie Fvent Poet Recy Mec, All Poet Intervent	Cente		+-	+	-	-	_	1.5			15	3 73		76		2		~	_	7 76	~	_	7	3	5	6	7	-																		
Date Event RCW Resp. Time Post-fled. Base 6 5/27 .50 cal. 30.5 Post-fled. Base 5 5/27 .50 cal. 30.5 Post-fled. Base 5 5/27 .50 cal. 30.5 Post-fled. Base 6 5/27 .50 cal. 15.2 Post-fled. Cavity 7 5/27 .50 cal. 15.2 Post-fled. Cavity 7 5/27 .50 cal. 15.2 Post-fled. Cavity 6 5/27 .50 cal. 15.2 Post-fled. Base 6 5/27 .50 cal. 15.2 Post-fled. Base 6 5/27 .50 cal. 15.2 Post-fled. Base 4 5/27 .50 cal. 15.2 Post-fled. Base 4 5/27 .50 cal. 15.2 1 Base 4 4/23 .50 cal. 61 1	rum	36				_	_	_		-	-	2 7.	-	6 7	$\overline{}$	_	_					-	-	_		_		•	_	_		_										2 2	, &	24	35 8	١
Date Event Resp Time Post-fled. Mic 5/27 30 cal. 30.5 Post-fled. Base 5 5/27 30 cal. 30.5 Post-fled. Base 5 5/27 30 cal. 30.5 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Cavity 7 5/27 30 cal. 15.2 Post-fled. Cavity 6 5/27 30 cal. 15.2 Post-fled. Cavity 6 5/27 30 cal. 15.2 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Base 4 5/27 30 cal. 11.2 1 Base 4 4/23 30 cal. 11.2 1 Base 4	spect	9 0	$\overline{}$	_		_	-	-	-	-	-	-	-	+-	1 1	_	_			_		+−	_	-	-	+	-	-	-	-	_	_	-	+-	-		-	-	_	_	-	_				-
Date Event Resp Time Post-fled. Mic 5/27 30 cal. 30.5 Post-fled. Base 5 5/27 30 cal. 30.5 Post-fled. Base 5 5/27 30 cal. 30.5 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Cavity 7 5/27 30 cal. 15.2 Post-fled. Cavity 6 5/27 30 cal. 15.2 Post-fled. Cavity 6 5/27 30 cal. 15.2 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Base 4 5/27 30 cal. 11.2 1 Base 4 4/23 30 cal. 11.2 1 Base 4	ave	9	+-	-		8 9/	-	-	-	-	-		•	-	74 7		_	-	_	-	-	-	-	-	-		-	-	-	-	_	_	+	+		\rightarrow		-+	-	+		-		_	_	-
Date Event RCW Resp. Time Post-fled. Base 6 5/27 .50 cal. .0.5 Post-fled. Base 5 5/27 .50 cal. .30.5 Post-fled. Base 5 5/27 .50 cal. .30.5 Post-fled. Base 6 5/27 .50 cal. .15.2 Post-fled. Cavity 7 5/27 .50 cal. .15.2 Post-fled. Cavity 6 5/27 .50 cal. .15.2 Post-fled. Cavity 6 5/27 .50 cal. .15.2 Post-fled. Base 6 4/23 .50 cal. .12. .1 Base 6 4/23 .50 cal. .61 .1	200	32 '	-	-	-	. 82	-	+-	-		-	-	+-	+		_	-	-		_	+	+	-	-	-	-	-	+	_			_		+	-	-+		-	_		_	_	_	_	$\overline{}$	-
Date Event RCW Resp. Time Post-fled. Base 6 5/27 .50 cal. .0.5 Post-fled. Base 5 5/27 .50 cal. .30.5 Post-fled. Base 5 5/27 .50 cal. .30.5 Post-fled. Base 6 5/27 .50 cal. .15.2 Post-fled. Cavity 7 5/27 .50 cal. .15.2 Post-fled. Cavity 6 5/27 .50 cal. .15.2 Post-fled. Cavity 6 5/27 .50 cal. .15.2 Post-fled. Base 6 4/23 .50 cal. .12. .1 Base 6 4/23 .50 cal. .61 .1	at [25	+	+	-	-	+	-	-	-	-	-	+	-	-	62	89	-		-	+	+	+	_	_	_	-	-	$\overline{}$	8	-+	-	25	74		65	72	82	82	3 8	3 6	5 6	7, 2,	; 52	12	1
Date Event RCW Resp. Time Post-fled. Base 6 5/27 .50 cal. 30.5 Post-fled. Base 5 5/27 .50 cal. 30.5 Post-fled. Base 5 5/27 .50 cal. 30.5 Post-fled. Base 6 5/27 .50 cal. 15.2 Post-fled. Cavity 7 5/27 .50 cal. 15.2 Post-fled. Cavity 7 5/27 .50 cal. 15.2 Post-fled. Cavity 6 5/27 .50 cal. 15.2 Post-fled. Base 6 5/27 .50 cal. 15.2 Post-fled. Base 6 5/27 .50 cal. 15.2 Post-fled. Base 4 5/27 .50 cal. 15.2 Post-fled. Base 4 5/27 .50 cal. 15.2 1 Base 4 4/23 .50 cal. 61 1	9	20	73	72	75	₩	69	72	82	73	92	57	63	09	4	26	63	63	63	99	78	84	85	87	98	83	76	71	75	19	99	8 8	72	-	₩	_		-	\rightarrow	_		-	_	: 2		-
Date Event RCW Resp. Time Post-fled. Base 6 5/27 .50 cal. 30.5 Post-fled. Base 5 5/27 .50 cal. 30.5 Post-fled. Base 5 5/27 .50 cal. 30.5 Post-fled. Base 6 5/27 .50 cal. 15.2 Post-fled. Cavity 7 5/27 .50 cal. 15.2 Post-fled. Cavity 7 5/27 .50 cal. 15.2 Post-fled. Cavity 6 5/27 .50 cal. 15.2 Post-fled. Base 6 5/27 .50 cal. 15.2 Post-fled. Base 6 5/27 .50 cal. 15.2 Post-fled. Base 4 5/27 .50 cal. 15.2 Post-fled. Base 4 5/27 .50 cal. 15.2 1 Base 4 4/23 .50 cal. 61 1	SE	16	89	19	89	72	89	99	75	77	74	52	62	58	19	53	65	63		-	=	77	-	28	+	+	-	-	_	-	_	_	_	-	-	26	_	_	_		-+	-	8 5		: 8	1
Date Event Resp Time Post-fled. Mic 5/27 30 cal. 30.5 Post-fled. Base 5 5/27 30 cal. 30.5 Post-fled. Base 5 5/27 30 cal. 30.5 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Cavity 7 5/27 30 cal. 15.2 Post-fled. Cavity 6 5/27 30 cal. 15.2 Post-fled. Cavity 6 5/27 30 cal. 15.2 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Base 6 5/27 30 cal. 15.2 Post-fled. Base 4 5/27 30 cal. 11.2 1 Base 4 4/23 30 cal. 11.2 1 Base 4	3and	13	2	8	120	75	62	19	74	99	65	ಜ	8	56	59	47	63	22	-	54	L	L	+	L	-	+	+	+	64	-		_	+-	+	1	4	-+	-+	-		_		1	_		
Date Event Event RCW RCW RCC, Import Import	_	9	99	54	19	28	89	19	73	65	8	38	65	4	8	45	19	5	55	49	62	8	14	77	73	2	8	62	71	\rightarrow	22 5		· —	_	-	-	7	-	-+	_		2 5	- 2	18	18	
Date Event Event RCW Resp. Tim 5/27 50 cal. 30.5 Post-fled. 5/27 50 cal. 30.5 Post-fled. 5/27 50 cal. 30.5 Post-fled. 5/27 50 cal. 15.2 1 4/23 50 cal. 61 1 4/23 50 cal. 61 1 4/23 50 cal. 12.2 1 4/23 50 cal. 61 1 4/23 50 cal. 61 1 4/23 50 cal. 61 1 <	Mic	Pos.	Base	Base	Base	Cavity	Cavity	Cavity	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Cavity	Cavity	Base	Cavity	Base	Base	Cavity	Cavity	Cavity	Cavity	Base	Base	Cavity	Cavity	Bas	Base	Base	Rase	Base	
Date Event Event Resp. Type Dist. Resp. 5/27 .50 cal. 30.5 Post- 5/27 .50 cal. 30.5 Post- 5/27 .50 cal. 15.2 Post- 4/23 .50 cal. 11.2 1 4/23 .50 cal. 11.2 1 4/23 .50 cal. 11.2 1 4/23 .50 cal. 61.1 1 4/23 .50 cal. 61.1 1 4/24 .50 cal. 61.1 1 4/27 .50 cal. 61.1 1 4/27 .50 cal. 15.2 2 5/10 .50 cal. 15.2	Rec,	Time Time (min		ed	led.	led.	1	1.	led.	led.	led.										3.2	4.4	4.4	4.4	4.4	led.	Jed.	led.	led.	fled.	fled.	Ted.	Jed.	led.	fled.	fled.	fled.	fled.	fled.	fled.	1.2	1.2	2:1	1.7	1.2	:
Date Event Event Type (m) 5/27 .50 cal. 30.5 5/27 .50 cal. 15.2 4/23 .50 cal. 15.2 4/23 .50 cal. 15.2 4/23 .50 cal. 15.2 4/23 .50 cal. 61 4/23 .50 cal. 61 4/23 .50 cal. 61 4/24 .50 cal. 15.2 5/10 .50 cal. 15.2 5/10 .50 cal. 15.2 5/10 .50 cal. 15.2 6/14 .50 cal. 15.2 6/14			Post-f	Post-f	Post-fi	Post-fi	Post-fi	Post-fi	Post-fi	Post-f	Post-f	-	-	-	-	-	-	-	-	-	2	2	2	2	2	Post-f	Post-f	Post-1	Post-1	Post-1	Post-1	Post-	Post-1	Post-1	Post-	Post-1	Post-	Post-	Post-	Post-	2	7	7 6	7 6	10	,
Date Event 7/Pe Type 7/27 50 cal. 5/27 50 cal. 4/23 50 cal. 4/24 50 cal. 5/10 50 cal. 6/14 50 cal. 6/3 50 cal. 6/3 50 cal. <			30.5	30.5	30.5	15.2	15.2	15.2	15.2	15.2	15.2	122	122	122	122	122	19	19	19	19	30.5	15.2	15.2	15.2	15.2	15.2	152	30.5	30.5	19	19	19	10	19	30.5	30.5	30.5	15.2	15.2	15.2	30.5	30.5	30.5	20.0	30.5	20.5
Date 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 5/27 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/23 4/24 5/10 5/10 6/3 6/3 6/3 6/3 6/3 6/3 6/3 6/3 6/3 6/3 6/3 6/3 6/3 <tr< td=""><td>H</td><td></td><td>+</td><td>╁</td><td>+</td><td>╀</td><td>\perp</td><td>+</td><td>-</td><td>\perp</td><td>cal.</td><td>Cal.</td><td>Cal</td><td>cal.</td><td>) cal.</td><td>) cal.</td><td>) cal.</td><td>) cal.</td><td>) cal.</td><td>) cal.</td><td>) cal</td><td>) cal</td><td>0 cal.</td><td>0 cal.</td><td>) cal.</td><td>) cal</td><td>) cal</td><td>0 cal.</td><td>0 cal.</td><td>0 cal.</td><td>0 cal.</td><td>0 cal.</td><td>O cal.</td><td>0 cal</td><td>0 cal.</td><td>0 cal.</td><td>0 cal.</td><td>0 cal.</td><td>0 cal.</td><td>0 cal.</td><td>0 cal.</td><td>0 cal.</td><td>0 cal.</td><td>Cai.</td><td>O Call.</td><td>Cai.</td></tr<>	H		+	╁	+	╀	\perp	+	-	\perp	cal.	Cal.	Cal	cal.) cal.) cal.) cal.) cal.) cal.) cal.) cal) cal	0 cal.	0 cal.) cal.) cal) cal	0 cal.	0 cal.	0 cal.	0 cal.	0 cal.	O cal.	0 cal	0 cal.	0 cal.	0 cal.	0 cal.	0 cal.	0 cal.	0 cal.	0 cal.	0 cal.	Cai.	O Call.	Cai.
▊ ▗ ▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▃▗▄▗▗▃▗▃▗▃▗▃	L		+	+	+	+-	+	+	┿	+	+	+	+	+	╁	+	╁	+	╁	+	+	+	╁	╁	+	┿	+	+	╁	Н	\dashv	+	+	+	+	-		H	Н	┪	Н	-		1	+	1
	⊢		+	+	+	+	+-	+	+	+-	+	+	+	╁	+	+-	╀	╁	╀	+	+	+	+	+	+	+	+	+	+		H	-	+	\perp	+	-	L		Н	\dashv	\vdash	\vdash	+	+	-	4

5	Calc.	SEL	109.4	116.3	117.0	110.9	113.4	1.0	101.7	7.86	1.8	9.701	105.9	8.06	89.3	0.901	88.4	88.3	109.7	109.4	103.0	103.6	9.96	96.5	107.2	107.2	103.9	90.7	103.4	6.68	87.1	87.1	99.5	4.0	88.2	87.0	86.4	88.0	88.8	85.3	91.1	7	91.6	93.1	87.4	96.5	
			\vdash	Н	\dashv	-	\dashv	\dashv	Н		Н		Н	Н	\dashv	+	+	┥	\dashv	\dashv	\dashv	\dashv	-	-	-	\dashv	-	\dashv	\dashv	\dashv	\dashv	+	+	80	88	\dashv	-	\dashv	80	\dashv	-	+	+	+	55 8	+	-
	טטטטנ טנ		94			-	65	-			28		Н	Н	52	\dashv	3	\dashv	\dashv	\dashv	\dashv	-	-	\dashv	-	\dashv	\dashv	55	-	\dashv	+	+	45			Н	30	\dashv	_	+	+	\dashv	\dashv	+	+	+	\dashv
	1,5000	100	6	Н	-	\dashv	89	4	98		19	Н	52	Н	-	+	+	+	\dashv	+	87	\dashv	\dashv	71	-	-	-	+	\dashv	-	8 8	+	+	47	Н	Н	+	\dashv	+	+	+	+	+	+	29 8	+	\dashv
	12500		6	79	80	2	72	88	88	18	99	57	55	64	63	57	63	8	8	88	88	8	2	73	52	52	47	99	4	62	55	55	4 4	52	20	47	47	23	23	25	B	<u>a</u> :	2	+	65	2 8	3
	8000 10000	1000	_	82	\dashv	-	_	_	Н		82		Н	Н	\dashv	+	+	+	\dashv	\dashv	-	4	-	74	4	4	4	_	47	-	+	+	+	L	59	\dashv	_	4	4	+	4	4	4	+	-	4 5	4
			-	84		+	\dashv	-	Н		Н		Н	-		+	+	+	+	+	8	\dashv	\dashv	75	\dashv	\dashv	ᅥ	\dashv	2	-	+	62	+	┢	63	Н	+	+	+	+	+	7	+	+	+	- 6	\dashv
	0 6300		94	Н	87	4	_	_			\Box	Щ	Н	Н	-	+	4	+	-	8	-	4	26	4	4	4	4	-	-	-	4	S :	-	-	_	Н	_	-	4	-	2	+	+	+	60 8	+	-
	4000 5000	200	93 94		88 88	-	\dashv	-	87 86		7 85	-	Н	\vdash	\dashv	\dashv	-	-	75 73	-	-	-	-	77 76	\dashv	-	19 99	\dashv	62 61	-	-	+	57 56	+	1-	\vdash	\dashv	70 68	\dashv	\dashv	78 72	-+	-	76 74	+	80 79	4
	2150 40	001	94 9	Н	8 06	-	\dashv	-		_	85 8		Н	-	-	84	+	-	+	-	-		-	-	-	-	-	-	-	-	\dashv	+	2 5	-	-	\vdash	\dashv	-	+	2	+	\dashv	-+	+	+	Ω :	\dashv
l	500	0000		95	-	-		-	Н		Н	Н	Н	-	73	-+	+	-	-+	-+	-	\dashv		4	-	-1			-	-	-+	\dashv	9 9	╀	\vdash	\vdash	\dashv	-1	-+	+	8	\dashv	\dashv	-	+	2 8	0/
	2000 2500	0007	95	94	94	92	93	87	68	84	68	98	98	74	72	98 i	14	73	85	84	88	8	79	8/	8	82	81	74	-8	75	7 5	7 5	74	72	71	20	9	=	72	89	62	62	78	62	69	% !	``
	1600	1000	93	96	16	88	68	98	87	84	84	80	77	73	73	- - -	4/	75	88	8	16	16	78	28	≅	82	8	76	79	76	73	72	72	72	11	69	9	7	72	89	78	20	78	æ i	+	<u>۾</u>	-
	1250		94	92	93	3	93	87	98	84	84	80	78	74	72	8	4	92	82	88	68	8	79	28	8	8	77	75	77	76	73	2	72	7	72	70	89	2	71	63	77	2	8	2	7	2 2	
	1000			96		_	94						84			4	4	_	3	_	_	_	28	_	82	_	_	_	_	74	4	4	2 62	L	<u> </u>	89		_	4	4	4	4		1			
	000 000	200	-	92 99	93 99	-			84 84		90 97		98 92	-	\rightarrow	84 92				-	-	-	\rightarrow	\rightarrow	\rightarrow	-	_	\rightarrow	-	74 76	71 72	-+	82 89	-	70 70	20 68	\rightarrow	\rightarrow	-	65 65	-+	72 73	-+			75 77	
١	0 500	200	93	100	-	-		_		-	7 87	-	-	-	69	-	-	-+	-+	\rightarrow	\rightarrow	S8.	-		-	-			-	-	-	-+	8 /8	+	-	89 9	-		-	99		2	-+	-	-	70 73	_
	215 40	210	97 92	-	95 98	-			-		87 8	-	80 80	Н	-	-	-	-		-	-	\rightarrow	-	-	\rightarrow	-	-	-		-	-	-+	84 78	┿	-	9 29	\rightarrow	-	-	-	-+	-+	-+	-+	-	74 7	\dashv
	es (HZ)	007 00	-	\vdash	98 86		-	_	93 89	\vdash	94 85	-	-	Н	\dashv	87 82	7 72	-	\rightarrow	-	-	-	-	_		-	$\overline{}$	-	$\overline{}$	\rightarrow	-	-	86 06	+-	74 74	-	\rightarrow	\rightarrow	-+	-	-	-1		_	76 70	96 2	_
ľ	sand SEL (db) at 1/3 Octave Spectrum Center Frequencies (Hz)	7 001	66	115	116	<u>e</u>	112	90	16	06	Ξ.			\vdash		-	2	-	-	-	87	87	\rightarrow	-	88	88	-	_	-		-	_ +	8 8	┿	75	73	73	77	-	-	8	≅	<u></u>	8	28	88	8/
1	11 00 136	001	87 91	91 105	_	86 06	92 101	98 98	88 88	87 85	87 101	84 97	83 96	81 80	80 78	85 96	78 78	77 77	85 87	82 89	88 88	-	-	88	82 86	80 85	81 83	82 81	80 82	81 79	79 75	79 75	78 78	82 79	80 78	80 77	\vdash	_	80	77 77	81 79	-	-+	84 82	_	88 8	88
(E S	00	68	87	87	87	88			7 87	-	-	-	-	-	-+	\rightarrow	\rightarrow	-	\neg	-	\rightarrow	-	-	_	-	-	-	_	-	_	_	2 76	-	_	-		_		_	_	-	\rightarrow			84 86	
	pade a	00	06 68	80 83	-	85 89	_	83 84	85 87	85 87	78 81	75 76	70 72	77 80	76 78	-+		-	-+					-	80 78	78 77	75 76	78 79	75 77	$\overline{}$	-	-	73 75	+	+	76 78	$\overline{}$		_	74 7		-	-	-	_	≅ ₹	·
	Octav	40	68 68	1 81	-	80 80	84 83	78 81	81 83	1 83	74 75	71 72	67 68	73 75	\vdash	-	-+	_	-	\dashv	_	83 84	_	-	82 82	78 78	69 73	70 75	70 73	-	\rightarrow	69 74	67 71	73 76	73 74	70 72	70 73	70 75	71 75	67 71	_	74 76		-+			74 78
	6) at 1/3	3	98	77 81	8 8/	77 8	8 08	192	-	78 81	72 7	69	62	71 7	69	72	99	8	≅	79	82	82	92	92	79	79	69	71 7	69	11	70	69	67 6	89	99	99	2	100	71	63	69	73	89	F	द्ध	25	74
	15 CO	07	83 87	78 86	81 84	69 75	75 77	22 29	74 78	69 75	73 73	64 65	99 09	65 61	-		-	-	-	78 77		_			75 74	75 69	69 73	19	62 65	64 66	\rightarrow	-	58 63	+	+-	59 63	Ê	-	_	_	_	-	_	_	_	69 99	69 99
	Band SEL (db) at 1/3 Octave Spectrum Cen	2	75	74	73	89	74	19	74	69	75	62	54	20	20	2	જ્	49	84	73	99	72	55	54	71	09	62	46	53	53	53	15	\$ 6	5	28		51	18	15		63	5 54	_	28	20	23	26
ŀ			se 83	rity 84	/ity 84	/ity 69	rity 72	99 es	se 61	se 54	ity 67	rity 57	ity 54	se 51	\vdash	-	-	-	-	\neg	-	Base 70		Base 54	vity 64	Cavity 60	Cavity 69	se 52	Cavity 53	Н		\neg	vity 53	+-	+		Base	Base 64	Base	Base 51		Base 55	e l	\dashv	_	_	Base 59
H	Mic	− :≣	Base	Cavity	Cavity	Cavity	Cavity	Base	Base	Base	Cavity	Cavity	Cavity	Base	Base	Cavity	B	Ba	ပ်	Ś	Ba	Ba	Ba	Ba	Cavity	Ca	Ca	Base	Ča	Base	Ba	Ba	Cavity	E E	Ba	Ba		Ba		Ba	Ba	Ba		B	B	Be	P
	Kec,		Post-fled.	Post-fled.	Post-fled.	Post-fled.	-fled.	-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	12	11.7	11.7	11.7	7.1	7.1	7.1	5.5	5.5	5.5	5.5			
	K C	resp.	Post	Post	Post	Post	Post-fled	Post-fled	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Post	Posi	Post	,	2	7	2	2	2	2	2	2	2	2	0	0	0
ı	Event		15.2	15.2	15.2	30.5	30.5	30.5	30.5	19	19	91.5	91.5	91.5	91.5	122	122	122	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	19	19	91.5	91.5	122	122	122	133	122	122	122	15.2	15.2	15.2	19	19	19	19	19	19	19
ł		- Appe	.50 cal.	.50 cal.	0 cal.	0 cal.	.50 cal.	.50 cal.	0 cal.	.50 cal.	.50 cal.	50 cal.	o cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	50 cal.	.50 cal.	50 cal.	.50 cal.	50 cal.	.50 cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.	50 cal	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	SO cal.	.50 cal.	50 cal.	.50 cal.	.50 cal.	50 cal.				
ŀ	Date		5. 12/9	6/21 .5		6/21 .5	.5	6/21 .5	6/21 .5	-	-	\vdash	\vdash	\vdash	Н	\dashv	-		-	6/21 .5	. 12/9	6/21 .5	\vdash	.5 12/9	6/21 .5	6/21 .5	6/21 .5	-	╁	┢	Н		5. 129	1	╁	+	4/28 .5	5/26 .5	5/26 .5	5/26 .5			5.27	Н	Н	Н	4/19
ŀ			163	163	-	-	H	H	┝	\vdash	╀	╀	⊢	⊢	-	\dashv	\dashv	\dashv	_		163	-	163	163	163	163	163	163	┡	├	Н	Н	163	╀	╀	╁	⊢	⊢	176	176	176	_	176	Н	Н	Н	<u>8</u>
I	_		1-	1-	ı —	-	; -	1	1-	1	1	1	1-	1	1-1		-1		- 1	, —	, –	-	1	-	1	1-	1	1	1	1	1			1-	1-	1	1-	1-	1-	1	1	1		1	. !	. 1	,

Calc. 2500 3150 4000 5000 5000 6300 8000 10000 12500 16000 20000 Overall		65 58	+	S 8	8 8	2 2	98	4	5			1	+	+	+			- 1							+	-	-	+	1		1	1	_	1	1	T	T.,	T	T	_
4000 5000 6300 8000 10000 12500 16000		65	1	_			′1~	10	65	5	5	5	5 3	3 3	89	8	57	8	8 8	2	62	81	83	5	8	99	7 5	46	59	83	3 3	8 8	6 2	5 5	3 8	&	84	4	3	3
4000 5000 6300 8000 10000 12500		4	io I	2 2	ا اه	2 8	=	69	71	62	83		83	2 2	73	65	7	79 5	7 1-	6	83	98	68	4 2	99	72	7 5	3 9	63	98	89	2 7	7 19	10 5	42	54	84	47		000
4000 5000 6300 8000 10000		ماہ	+	+	+	22	+	2	-		Н	-	+	+	-	\vdash	\dashv	+	+	4	82	87	92	+	69	5	2 3	99	55	88	02	98	- Y	20 05	وا	2 -	22	77 23	3 9	ç
4000 5000 6300 8000	- 1	-	+	2 2	+	+	+	-	\vdash	-	Н		+	+	╁		\dashv	+	+	+-	╁	-	\dashv	+	+	Н	+	+	-	H	+	+	+	+	+	╁	+	+	+	_
4000 5000 6300	_	_	4	4	_	74	1	↓_	╄	_		-	\dashv	4	╄	Н	4	+	+	+	╀	H	4	-	72	\sqcup	+	72	L	\vdash	-	+	2 83		64	+	5	+	5 8	_
4000 5000		73	8 8	2/ 2/	Ç 9	7 69	78	78	79	70	88	98	8 8	3 8	<u>∞</u>	26	75	2 3	ō ∞	79	68	93	96	75	73	8	3 5	75	75	90	74	69 68	2 8	2 3	2 5	39	19	85	3 3	3
4000		75	2	72	7 2	7/ 08	20	79	80	11	87	98	88	8	82	77	92	4 2	3 8	82	68	93	96	77	47	82	<u>و</u>	7.	11	68	79	2 2	3 8	73 2	5 6	3 2	2	5 %	3 8	76
4000		77	20	72	8/ 52	7 68	83	82	83	74	68	87	68	70	84	79	77	9/	\$ 84 84	82	68	93	26	8 8	7 7	81	8 7	7 62	62	68	2 8	8 8	2 2	2 2	2 4	5 2	2 99	8 8	3	2
500 3150		77	71	73	18	0 8	82 8	83	84	73	88	87	90	00	88	79	77	77	84	82	8	95	86	81	75	82	69	2 8	79	8	20 €	5 2	2 2	74	1 5	2 5	: 8	90 22		3
200		62	72	74	72	2 8	88	84	85	75	68	68	91	8	98	80	79	78	84	83	68	95	86	7	75	83	7	0 28	8	91	27 5	73	7,	2 %	8 0	72	1 8	9 2	5 3	6
. 10		78	22	74	25	C &	88	84	85	77	96	68	16	2 6	16	87	98	48	84	83	16	94	46	83	77	82	20	83	79	06	62	75	24	2 2	c / 99	3 2	5 5	5 2		9
2000		11	5	74	2 2	ç %	8 8	82	84	75	92	16	93	3 8	95	06	96	88	84	83	92	94	26	85	76	82	73	83	80	68	85	82	83	9/	70	74	1,	7 8	8	ŝ
1600 2000		78	75	75	18	97 88	83	83	84	75	16	06	92	88	98	85	98	8	8 8	82	16	94	76	87	76	18	28	æ 8	87	68	83	S 8	83	70	٥/ ٢/	2 2	2 12	1/	2	6
1250		78	74	75	3 2	17	83	22	83	75	88	68	06	80 88	8	83	82	22	8 8	8 8	16	94	6	8	77	82	81	84	68	90	08	08	₩ F	77	C 12	74	1 5	7/	â	S
1000		78	72	74	2 1	75	82	28	83	74	87	87	8	8 8	8	87	85	8	2 2	83	8	93	6	8	76	82	83	88	06	88	18	92	83	200 5	7/ 09	73	5 5	7 3	3	8
008		74	7	4 6	6/2	4 8	7 8	83	8	75	87	98	88	7, 6	1 8	06	88	87	\$ 2	2 48	8	92	96	68	ζ %	82	98	2 8	94	68	78	77	82	67	6 9	3 8	1 5	7 5	3	27
630			69	22	-	72	+	+	82	╌	-	Н	8	-	-	-	\vdash	-	æ 8	+	+	+	86	86	_	84	-	83 8	-	-	-	-		-	0	-		-	-	5
005		╌┤	-	-	-	6 5	+	∞	┰	╌	+		94		-	+	\vdash	-	S 8	+	+	+	1 99	-	2 8	+	84		8	-	98 9	-	+	7 83	C/ 67	0 2/2		-	00 7/	5
315 400		1-1	-	72 68	76 73	2 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	+	+	+-	-	-	-	92 102	-1-	+-	Н	-	94 84	_	-	+	102 10	93 88	7 85	83 90	-+	92 89	+=	1	-		-+	+	83	78 7		-	-+	2
		-	74 6	-	80 5	-	2 5	+	+	+-	+	-	-	2 2		+-	-	-+	3 6	1.	+	100	107	601	86	+	-	801	+=	6	\vdash		-	-	-	70 6	+	-	-	2
cies (-	08	-	-		2 8	+	+	+-	+	6	-	2 8	+	+-	-	-	86 9		-	-	106	107	2 8	94	<u>=</u>	107	112	100	-		8	8 8	7,6	/8	3 3	_	-	00
enter Frequencies (Hz) 100 125 160 200 250	3	╌	-	28	68	æ 8	è 5	10	-	+-	+	-		8					33	-	-	+	-	94	-	+-	91		_	92		$\overline{}$	-	-+	47 8	-	+	-	8	20
er Fre		_	_	_	-	-	2 8	-	-	+-	-	-		0 116	_	_	_	\rightarrow	8 8	_		+-	3 102	-	8 8	+	-		+	3 92	\rightarrow	-	-	88	-+-	8 8	٠.	-+	-	0
		4 86	-	-	-	-	2 6	-		+-	+	-	_	89 100		-		\rightarrow	93		7 6	-	86	86 87	80 91	_	\rightarrow	93 94	89	$\overline{}$		95 96		85 86		81 82	-	-	-	00
ectrum C	2						82 88	$\overline{}$	_	-		_		8 8					88				\vdash		2 8		ightarrow	22 5		8	93	6	98	18	28 8	5 2		_		0
Band SEL (dB) at 1/3 Octave Spectrum C	3	-			-	-	2 %	-		+-	+	68	\rightarrow	\$ 3		+	-	-	22	-	-	-	16	_	3 5			08 g	_	$\overline{}$		88		8		- 1		_	75	00
/3 Octave	}	-	-	-	₩ I	7	<u> </u>	3 &	3 8	75	88	88	8	84	8	83	83	18	88	S %	S &	_	-		2 2	2	74	8 2	_	68	87		_	_			_	_	_	0.0
1/3 0	36		_	\rightarrow	%		2 8			_	-	-	-	ଛ 8			+		\$ 8			8	66	-	2 2	+-	$\overline{}$	8 2		_	-	$\overline{}$	-	75	\rightarrow	2 8		_	_	100
Band SEL (dB) at 1 10 13 16 20 25	3	_	-	-	\rightarrow	-	7 %	-	-	+	-	+-	\rightarrow	2 1	-	-	+	-	$\overline{}$	2 0		1	6	1-1	91 82		_	8 6	_	_		_	-	_		19 8		69		
EL (d	-	-	-	\vdash	_	-	17 27	+	-	+	-	98 44	-	76 83	73 84	+-	70 82	73 81	-	60 03		98	-		96 91	_	$\overline{}$	74 80	+	-	-	-	\rightarrow	_	-	62	_	_		
I3 1	- -	_	-	\rightarrow	_		3 2	-		-	-	47	-		1 2	-	17	_	_	3 5	-	+				62	-	02	_	-	-	-	_	\rightarrow		$\overline{}$		99		-
10 Bg	2	57		_		_	2 2	_		8	-	-	-	_	2 2	28	78			2 3	_	6	55	93	1	20	09	77	1 79	92	_	99	19	55	53	22	23	99	64	0,
Mic Pos.	_	Base		\Box	_	Base	ase	Dase	Base	Base	Base	Base	Base	Cavity	Cavity	Cavity	Cavity	Cavity	Base	Base	Base	Base	Base	Cavity	Cavity	Base	Cavity	Cavity	Dase	Base	Cavity	Cavity	Base	Base	Cavity	Cavity	Base	Base	Cavity	,
-	-돌	_	B	<u> </u>	Н		H 10	4 10		-	-	F		<u>ت</u> ا	3 0	10	0	2		-	+	+	-	2	+	+	0	5	-	,	С	0				9	7		0	ľ
Rec, Time											fled.	fled.	fled.	Ed.	fled.	<u> </u>	fled.	fled.	fled.	fled.	ried.	ike live	tive	Inactive	Inactive	i s	Inactive	Inactive	Inactive	fled.	fled.	fled.	fled.	fled.	fled.	fled.	-fled.	fled.	-fled.	
} ;	.ds	-					1	+		,	Post-fled	Post-fled.	Post-fled.	Post-fled	Post-fled	Post-fled.	Post-fled	Post-fled	Post-fled	Post-fled.	Post-fled.	Inactive	Inactive	Inac	Inac	Inactive	Inac	lnac	Inac	Post-fled	Post-fled	Post-fled	Post-fled							
RCW		P	0	0	0	0	0 0		+	7	+	+		-	+	+	-			+	+	+	+		+	+	-		+	+	\vdash		H	H			-	H		
Event	(m)	19	19	19	61	19	30.5	30.5	30.5	30.5	15.2	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	30.5	30.5	15.2	15.2	15.2	15.2	30.5	30.5	30.5	5	15.2	15.2	30.5	30.5	19	19	19	91.5	122	122	
Event	Type	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cat.	.30 Cal.	.50 cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.	SO cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	So cal.	.30 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	So cal	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	
Date		4/19	\vdash	\vdash	. 61/4	Н	\dashv	+	4/28	+	+	+	╁	\vdash	+	5/26	╫	╁	Н	-	+	. 11/6	+	+		5/11	╁	\vdash	+	11/6	+-	+	+	\vdash	Н	Н	\vdash		6/17	1
Col. D		194 4	+	-		Н	-	+	194	+	+	+	+	\vdash	+	107	+	⊢	\vdash	-	+	661	╀	+	661	+	+-	H	+	-	201	╀	+	╄	<u> </u>		Н	├-	H	1

3	Calc	SEL	99.3	93.4	107.3	105.6	89.7	86.1	100.2	85.7	85.3	85.7	84.5	85.3	85.2	82.5	85.8	85.9	86.2	85.6	85.3	85.8	86.7	106.1	84.8	84.5	84.9	9.98	102.4	106.2	112.0	112.3	95.2	95.6	1.86	77101	113.0	0.511	104.4	104.4	5.50	85.6	106.5	110.3	108.8	88.1	97/8	74.7
	2000		89	55	-2	4	45	47	46	43			П				42	42	45	42	43	42	43	37		27	28		34	38	4 5	43	۶	95	3	ā	7 5	200	6 %	00 %	3 8	3 5	25	22	41		1	'n
			71	99	X Z	45	69	46	44	45	41	39	39	40	8	37	44	44	47	45	47	43	46	42	37	36	39	42	36	42	47	45	¥ :	4	9 5	3 3	2 2	5	8 8	6 8	6 :	3 :	\$ 3	8	54	9 9	ş ;	5
	12500 15000		74	63	28	22	55	49	46	51	45	44	43	43	4	43	6	69	53	52	2	84	2	4	41	9	45	46	9	45	2 2	2 8	3 3	2 6	2 6	2 8	2 5	60	80 5	1 00		4 5	£ /	છ	8	25	7 8	80
			92	65	09	54	59	54	48	99	52	52	51	52	15	20	2	23	59	57	26	22	26	46	20	20	54	99	43	20	25	8	9	g E	5, 5	2 5	70 5	70 17	= 8	7, 00	2 3	8 5	2 1	67	63	3 3	2 5	2
	2000 10000		42	29	8	5	62	28	54	09	99	57	55	99	99	χ.	65	28	62	62	8	89	3	49	57	56	88	09	48	26	65	3 8	2 9	3 3	2 :	=	90	8 6	2 8	7,6	;	3 5	2	6	65	63	2 6	2
	6300		80	71	69	19	99	19	19	63	59	58	28	59	28	2	62	19	99	65	3	æ	62	21	99	59	19	63	20	SS	8 2	\$ i	=	=	2 8	× 6	9	6 %	0 2	1, 10	;	3 8	79	2	69	65	\$ 1	2
			80	73	29	99	29	62	09	99	09	19	09	19	99	22	49	63	29	29	65	99	65	23	62	62	63	65	51	57	\$ 5	g	27	7/	9 6	2 ;	7 5	2 6	2 5	2 20		g ţ	29	22	75	29	g	0/
	4000		84	76	75	7	20	65	68	99	61	63	61	62	19	59	99	64	67	89	89	89	99	54	65	64	65	29	20	57	88 8	3 6	2 3	2 2	9 8	5 5	5 5	5 8	70 00	8		٥	<u>a</u> :	7	7	88	8 8	2
	2500 3150 4000 5000	2	-			-	-	-	_	_	Н	H	Н	-	63		-	-	-	\dashv		-		-	-			\vdash	-	-	= =	-	+	+	\dashv	+	+	+		+	+	+	-+		\dashv	+	S E	-
	0 2500	1	82	\dashv	-	-	-	-			63	-	Н	\dashv	\dashv	+	\dashv	-	-	\dashv	-	-	\dashv	-	-	-		-	\dashv	\dashv	2 2	+	+	+	+	+	+	+	+			+	74	\dashv	-	+	+	«
	0006 00	2	3 84	\dashv			\dashv		-		2 62	┝	Н	\vdash	2	\dashv	-		\dashv	8	-	\dashv	\dashv	-	\dashv			69 6	-	\dashv	75	+	+	+	+	+	+	+	+	+	+	69 69	-	\dashv		+	0/ 0	_
	1250 1600		83	\dashv	78 75			_	Н	_	61 62		-		-	60 62	-	-	-	67 68	-	-	-	\dashv	-	89 89		69 69	\dashv	+	+	+	74 74	+	+	+	26 26	+	74	+	+	3 3	-	\dashv	-	+	+	0/
	1000 12		\vdash		-	\dashv	\dashv	-		_	Н	H			-	+	-	\dashv	\dashv	-	\dashv	\dashv		┥				H	-	\dashv	8 8	+	+	+	+	+	+	+	+	+	+	+	+	┪	+	+	+	0
I	900 10				- 1											_							_	_					_	\perp	8 3		\perp		_	_	_	4	4		4	_	_	_	_	4	1	0
	029	020	79	72	85	17	20	89	9/	19	63	99	62	99	\$	3	63	65	64	\$	9	2	65	77	99	9	64	29	72	77	8 3	4 5	73	2 3	∞ 8	82	4 5	ž 5	2 5	2 8	7,	g	9 1	7	-	-	-	2
	000 000		83 83		83 84	-+	-	_	78 78		29 69	┝-	-	-		-	-	-	\rightarrow	-	\rightarrow	68 64	-	-	_	70 64			-	-	-+	-+	_	-	\dashv	-+	68 68	-	24 25	+	-	68 67	71 68	73 76		-	20 02	6
	0 315 400		98	-	82	-	-	_	81	_	-	Ŀ	-			73	-	-	\rightarrow		89		_			1 70				_	6 2		-	-+	-	\rightarrow	2 95	7 2	3 5	-+-	7 1	7		2 29	80	7	-+	83
110	125 160 200 250	700	94 88	-	106 92	103 92	_	_	98 66	-	92 92	-	76 75	\vdash	-	73 73		_	78 76	\dashv	_	78 76	\rightarrow	_	_	_	_	80 74	_	100 105	20 S	-	-	-	25	-	102	50 5	208	2 2	* ·	72 74	93	98 86	95 86	77 77	-	8 08
	uanba.	100	16	_	-	-	\rightarrow	_		⊢	_	⊢	-		_	_	_	_	_	_	_	_	_			_	$\overline{}$	$\boldsymbol{\vdash}$	-	\rightarrow	25 25	_		-	-	_		-	76 5	-	2 2	-	8	-	_	-	8	-
	100 13	71			84 89						77 78																				98											_	_	_	84 93	_		84 83
Ċ				82	_	8	8 79	5 75	27 3	9/ 1	73	74	73	74	74	\rightarrow	-	9/	5 75	1 75	1 75	2 76	177	3 76	3 74	3 73	3 75	1 77	2 76	-	-	_	-	$\overline{}$	\rightarrow		-	-	_	-	-	_	-	8 78	-	-	-	78
	Special 63	20	82 84	78 80	_	75 79	75 78	72 76	72 76	72 74	02 29	69 73	99	69 72	-	\rightarrow	72 75	72 74	72 75	72 74	71 74	72 75	73 74	-	70 73	69 73	71 73	73 74	71 72			-	-+	\rightarrow	\rightarrow	-	-	-	-	_	-+	-	-	75 78	74 77	-	-	8 8
	Octave	}	80	174	92 9	72	1 73	11 (0/	69 8	64	1 67	63	29 9	-		\dashv	69	69 9	69 9	69 9	69 9	5 70	_	_	_	69 9	-	69 /	\rightarrow	8 78	-+	-+	-+	$\overline{}$	-	-		-	-	-	_	-	1 72	_		\rightarrow	74 77
5	Band SEL (db) at 1/3 Octave Spectrum Ce	67	75 78	70 73	73 75	68 70	69 71	99	69 99	89 59	54 62	65 67	51 59	62 65	$\overline{}$	-	99 19	63 65	99 19	62 65	62 65	99 69	64 66	65 67	99 89	62 66	99 59	99 99	64 67	-	-	-+	-	\rightarrow	\rightarrow	-	_	-+	-	-	-+	-	-	67 71	\vdash	_	_	74 7
1	L (ab)		69 7	5 62	69 (-	4 59	09 7	5	19 7	5 54	5 54	4 52	-	8 56	-	\rightarrow	3 59	4 62	5 60	5 61	5 62	19 2	2 60	59 65	09 2	7 63	09 09	7 62		-	-	-+	-+	\rightarrow	\rightarrow	-	-	_	_	-	-	\rightarrow	59 68	-	-	_	99
1	10 12 16	3	61 72	53 66	62 70	60 63	51 64	54 62	64 66	53 52	35	56	54	47 60	28		42 51	42 53	51 54	45 55	50 55	48 55	48 57	62	5	57	57	9 09	57	\rightarrow	_	67 71	19		-	\rightarrow	\rightarrow	_		-	-	_	-	51 5	_		53	ے
ŀ	5	_	53	51	_	, 57	49	54	19 /	46	se	57	Se	53	59	_	38	41	49	33	50	38	48	/ 53	53	54	54	59	/ity	\rightarrow		-	_	-	\neg	-	-+	-+	-+	+	_	-	y 47	vity		_	22	Base
į	Mic	n) Les	Base	Base	Cavity	Cavity	Base	Base	Cavity	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Base	Cavity	Base	Base	Base	Base	Cavity	Cavity	Cavity	Cavity	Base	Base	Base	Base	Cavity	Cavity	Cavity	Base	pase	Base	Cavity	Cavity	Cavity	Base	Base	R
ļ	Kec,	min (min)	ed.	led.	ed.	led.	led.	led.	led.	5.0														led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	led.	Jed.	led.	led.	led.	Jed.
L		resp.	Post-fled	Post-fled.	Post-fled.	Post-fled	Post-fled	Post-fled	Post-fled	2	-	-	-	-	-	-	-	1	1	-	1	1	1	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled.	Post-fled	Post-fled.	Post-fled	Post-fled.	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled.	Post-fled.	Post-fled.
r		ii (iii	30.5	19	61	91.5	91.5	122	122	19	122	122	122	122	122	122	91.5	91.5	91.5	91.5	5.16	91.5	5.19	122	122	122	91.5	91.5	91.5	91.5	19	19	19	19	30.5	30.5	30.5	30.5	15.2	15.2	15.2	122	122	91.5	91.5	91.5	91.5	61
,	Event	i ype	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.
ŀ	Date		21/9	6/17	6/17	21/9	6/17	6/17	6/17	4/22	╁	4/26	+	4/26	\vdash	-	_	4/29	4/29	4/29	4/29	-	4/29	6/2	6/2	6/2	6/2	6/2	6/2	6/2	2/9	6/2	6/2		6/2		6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2	6/2
Н	<u>.</u>		201	201	201	201	201	201	201	205	205	205	205	205	205	205	205	205	205	205	205	205	205	202	205	205	205	205	205	205	202	205	205	205	205	205	205	202	205	205	205	205	205	205	205	205	205	202

Calc.	rall	SEL	94.1	112.2	110.8	100.1	86	1199	103.2	0 90	103.7	104.6	104.0	. 6	2 6	8.0	2.5	3.6	111.0	3.0	5.2	3.6	108.2	0.4	3.1	94.6	104.8	100.7	00.7	103.5	102.2	103.7	102.4	8.001	106.0	107.1	1083	07.0	95.7	97.2	9 66	7.6	101.7	103.3	, , ,
L_	0	-	+	+	+	+	+	+	+	╁	+	+	+	+	+	+	+	╁	┝	-	├		-	\dashv	+	+	+	+	+	+	-	H	+	+	+	+	+	-	+	+	+	+	-	⊢	t
	20000		45	57	2 3	3 5	92	7	5, 18	3 5	6	3 8	3 5	2 8	2 2	99	75	54	49	41	4	87	59	57	8	20 1	9 5	2 2	74	78	73	78	75	3 2	- 19	15	3 8	57	49	5 5	8	\$	46	46	
	16000		28	8	9 8	3 5	56	16	3 2	3 8	70	3 8	8 2	5 5	5	17	79	19	52	40	49	90	63	9	84	S	49	4 2	2 02	82	77	83	79	\$ 8	3 3	3 2	2 6	3 3	5	8	64	8	53	53	
	12500		63	s :	55 22	C 08	8 8	2 2	3 8	3 3	8 8	3 5	2 9	8 6	: 6	75	08	65	56	41	55	90	99	99	98	69	55	44	2 6	83	79	82	81	99	3 8	3 5	3 8	89	3	49	89	2	56	57	
	100001	7	19	<u> </u>	69 5	2 2	1 8	₹ 5	147		8 5	2 5	2 5	7 10	- 2	100	81	89	63	48	59	68	89	69	87	=	9 5	46	3 2	8 8	81	98	83	89	\$ 8	3 3	5 7	69	5	6 6	92	2 19	88	59	•
	8000 10	-	69	+	0/ 3/	+	+	+	+	+	1/2/	+	+	+	+	+-	+	╀	89	-	-	06	\vdash	-	88	4	\dashv	+	+	87	84	87	84	2 3	13 00	5 5	1,1	71/2	129	92	15	2 2	63	63	
	_	-	\dashv	-	+	+	+	╁	+	+	4 0 0	+	+	: 8	+	+	╁	╁	74	\vdash	\vdash		Н		87	+	\dashv	+	+	87	\vdash	\vdash	-	73	+	+	+	+	+	+	+	+	62	+	
	0 6300	-	-	26	4	+	+	+	+	+	+	4	4	+	+	+	+	+	╄	-	-	_	Н	-	-	4		+	+	+	-	\vdash	\vdash	-	+	+	+	-	15	+	+	+	+	╀	
	0 2000	-	-	78	+	0 0	+	+	+	+	5 5	+	+	+	+	+	+	+	╀	╀	\vdash	⊢	-		8 85	\dashv	\dashv	+	+	87	╀	6 85	\vdash	+	1/ 0/	+	+	+	+	+	+-	+	╀	╁	
	0 4000		\dashv	75	+	0 0	+	╁	+	╫	2 8	+	+	+	7 0	+	+	+	╁╌	\vdash	₩	2 88	Н	\vdash	\dashv	+	+	+	+	85	\vdash		5 84	+	+	+-	+	+	╁	+	+	+	╀	╀	
	0 3150		-	-	77	+	╁		+	+	+	+	+	+	2 0	+	+	╁	8	╀	\vdash	-	80	Н	-	\dashv	\dashv	+	+	8 8			5 85	+	2 5	+	+	+	+	+	+	+	╀	70	
	0 2500		\dashv	82	+	3 8	+	8	+	+	+	+	+	Z 2	+	+	+	╁	8	╀╌	-	-	84	Н	\vdash	-	\dashv	+	+	8 8	╁	-	Н	-	3 5	+	0 22	+	+	+	+	+	+-	+	
	0002		\dashv	78	28	8 8	8 8	7 10	+	+	+	+	+	+	7 8	+	╀	╀	8	╀	69	\vdash	\vdash	-	Н	-	-	\dashv		\$ 8	-	╄	85	\dashv	+	4	+	7 6	+	-	00		72	+-	•
	0091			-	-+	8 3	+	+	+	+	+	+	+	+	7 0	+	╁	╀	+	+-	+-	╁	\vdash	Н	Н	-	\dashv	\dashv	+	83 %	+	+-	Н	-		+	-		+	+	+	+	┰	╁	
	1250		74	88	87	3 3	8 8	2 5	7 8	to it	76	2 8	2 8	2 8	60	5 6	+	+	83	╁	╁	╁		87	87	79	2	75	+	28	+	\vdash	83	\dashv	+	+	+	+	+	+	+	+	+	+	
	1000		73	87	8	3	S S	6 8	8 8	8	8 2	2 3	\$ 8	2 8	8	_	┸	12	68	82	89	87	98	88	68	80	8	76	2 2	8 8	╄	╄	82	_	+	4	နှု န	4	+	_	+	\perp	4	1	_
	008 0		-	_	8		_	_	_	-	-	78	-+	+	1 2	-	_	-	-	+	+	+	9 93	1 94			\rightarrow	-	-		-	-	85 82		-	_	9 8		_	_	-	-	80 %	+	
	500 630		-	-	83 79	-	8 8	-1:	-	-	-	8 8	\rightarrow	-+	26 26	20 20		+	-	+-	+-	-	-	-	_		83 81		-	S 8	+	+	1-1	_	-+	-	8 8		00	-			+-	+-	
	400 5		77 7	\vdash		-	-	2 2	-	+	\rightarrow	-	-	-	4 5	-	+-	+-	-	+-		+-	88	16	-	-		-+		2 5	+-		68	-	-+	-+	-	Z 8	+	× 8	-	70 00	_	+	
	315		82	98	98	93	93	3	2 2	4 8	88	44	96	35	3 5	7 20	2 8	5 6	, %	73	63	8	86	66	87	69	\vdash	8	2 3	9	96	92	96	88	84	8	88	8 8	8 8	\$ 2	+	8 8	-+-	-	
(Hz)	250		\vdash	\vdash	\rightarrow	-	95	-	_	8	-	-+	-		2 3	_	_	+	_	_	+	+-	107	109		_	\vdash	-	-	2 8	-	+	-	\vdash	-	-	-+	2 5	+	2 8	-	-	+	+	
enter Frequencies (Hz	100 125 160 200 250		86 84	_	110 98		92 28	_	_	89	-	96 97	\rightarrow	-	88	01 1	7 6	┿	-		-	+-	+-	92 99	-	-	89 95	\rightarrow	-	92 93	+-	+-	1	-	-	\rightarrow	-	-	-	-	-	26 2	98 91	+.	
Frequ	25/16		⊢	96	\rightarrow	-	93	_	-	-	-	-	\rightarrow	-	-	1 2	7 5	+	+	-	+	+-	+	-	88	_	-	81	-	S S	+	+	-		-	_	_	_		48 9	-	8 8	-	-	
nter	1001		-	_	\rightarrow	_	_		_	_	83			_	g	2	-	-		-	12	-	-	٠	-	$\overline{}$	\vdash	8	2	8 %	\$ 2	88	88	8	82	8	8	_	8	\$ 9	2 8	-	_	-	
Im Ce	63 80		82	82		-		_	_	-+	-	68	-	68	32	\$ 3		_						82		_	_	$\overline{}$	_	S S	_	$\overline{}$	-	-			_			\$ 3			S S		
pectri	63		81	_	-	_	-	_	_	-	_	-	-	_	-	\$ 8	-	-	_	-	-		+-	9 78	+	18 64	7 79		_	86 87			+			$\overline{}$	_		-	_	-	_	20 24	+	
Band SEL (dB) at 1/3 Octave Spectrum Co	40 50		77 79	76 78	\rightarrow	\rightarrow		_		-		_	_	_	-	36 28	83	-	_	-		-	+	80 79	-	76 7	74 7	71 73	\rightarrow	8 %			+-	-		\rightarrow		-	-	_	-	_	6 26	-	
3 Oct	32 4		75 7			_	_	\rightarrow		-	\rightarrow	\rightarrow	_	$\overline{}$		20 0			_	_		+-	-	-	-	74	73	_		8 2	-	-	_	_	_	_	-	-	-	- 1:	-	<u>ء</u> ا	1 1	-+	
) at 1/	10 13 16 20 25 32		20	9/	9/	08	28	94	8	98	72	62	8	9/	-	-	_	9 6	-	_		3 ≅	-	-	77	99	65	89		28 8	-	_	-			_	-	-	-	-	_		4 5	-	•
r (dB	70	}	99			-		-		-	-	-	\rightarrow		$\overline{}$	-	-		3 8		+-	+-	-	-	+-	9	69	62	-	8 8	-		-	-	_	-	-	-	-	\rightarrow	-	-+	7 2	-	
d SE	116		69	1 71	74	\rightarrow	_	_		_	_	-	-	\rightarrow	\rightarrow	\rightarrow	-	2 3	55 00	-		_		+	63 73	56 56	57 56	50 61		69 74	_	+	+-	69	70	67		72 68	-	_	-+	_	59 62	-	
Ban		:	65	-	-	-	89	-+	-	67 80	61	-+		-	-	_	-	_	00	_	_	_	_	_		-		_		72 6	_	79 77	_	\vdash	73	Ε	_		8		-		63	_	
-		_	\vdash	1.≧		_		43 P	$\overline{}$	\neg	Base			\neg	-	-+	-+	\top		-	-	+	+-	+	_	_	_	-		\dashv	+		-	Cavity	_	-	-	-+	_	Base	0	\rightarrow		-	
Mic	Pos	_ ≘	Base	రా	Cavity	Cavity	Base		Cavity	Base	В	Base	Base	Base	Base	Cavity	Cavity	Base	pase	Cavity	Page	Base	Cavity	Cavity	Base	Base	Cavity	Cavity	Base	Base	Dase	Base Base	Base	Ö	Cavity	Cavity	Cavity	Cavity	Cavity			Base	Base	Cavity	
Rec	Time			1	-j-	j.	-j-	ا.	آ نے		3.3	3.3	3.3	3.3	ای	Ġ.	ان	ا پ	ا پ	j		۔ ان		-	ė.	j	d.	Ġ.	انو	ړو	, ا ر	ا و	0	e e	رو	رو	ē	စ္	စ္	٥	و	e e	e	اپ	
L			Post-fled.	Post-fled	Post-fled.	Post-fled	Post-fled	Post-fled	Post-fled.			6	"		Post-fled.	Post-fled.	Post-fled	Post-fled	Post-fled	Post-ned	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled.	Post-fled	Post-fled	Post-fled	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	
N)	Reen	deau	l _o	Po	Pc	Pc	Pc	F.	Ä	0	2	2	2	2	P	ď	ď	٠ آ	2 6	- e	ءَ اءُ	٩	ď	ď	۳	امّ	P	ď	ď														ľ		
Fvonf] [9	19	19	30.5	30.5	15.2	15.2	61	30.5	30.5	30.5	30.5	15.2	15.2	30.5	30.5	19	10	771	771	15.2	30.5	30.5	19	19	122	122	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	30.5	1
Pyont			50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cai.	.50 cal.	.50 cal.	.50 cal.	SO cal.	SO cal.	50 cal	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	
H		-	+	+	+-	H	Н	Н	Н	\vdash	\vdash	-	╁	\vdash	Н		┪	+	+	+	+	+	+	+	+	+	+	╁	6/14 .50	H	+	+	+	+	-	H	-	Н	5/11 5/5		Н	Н			
Doto			1/9	6/2	\vdash		Н		6/2		<u> </u>	<u> </u>	5/9	┞			_	\dashv	-	+	+	+	+	+	+-	+	+	+	-	\vdash	+	+	2/1/2	+	┾	5/11	5/11	\vdash	_	Н	5/11	Н	\vdash	-	
3	į		205	205	202	205	205	205	202	206	206	206	506	506	206	206	206	706	200	200	206	8 8	207	300	206	206	206	206	206	208	8 8	8 8	208	8 8	208	208	208	208	208	208	708	208	208	708	

Calc,	Overall	SEL	103.7	82.7	87.0	89.0	88.7	88.0	88.4	88.9	0.68	91.8	95.9	98.3	98.1	97.9	7.76	97.3	97.5	9.901	6.66	99.2	93.1	94.6	6.06	106.5	107.7	111.4	112.4	111.6	0.11.0	103.3	103.2	103.7	95.4	95.8	93.1	93.7	106.7	107.4	119.5	118.9	9.901	106.4	120.3	118.6	71.7
	20000		20								34				¥		33		53	72	75	20	29	65	59	80	82	69	69	88	ر د د	3 5	72	72	99	57	8	55	8	96	19	\$	92	26	1.9	79	76
	16000		99	40	38	8	42	8	45	43	47	38	40	41	4	5	5	89	99	74	79	72	2	99	62	83	85	73	17	\$9	8 3	3 5	16	77	59	19	29	29	93	2	69	8		-	17	٥	70
	12500 1	_	59	38	14	4	4	\$	20	51	53	48	20	46	22	69	2	69	46	75	81	72	74	19	99	85	87	9/	75	69	5 6	2 2	2 62	79	62	99	62	63	93	8	74	23	83	8	75	=	8
	100001		9	22	54	26	55	26	28	59	59	84	50	20	22	23	22	23	8	85	83	79	9/	73	71	87	88	9/	78	22	2 5	7 58	2 E	82	29	69	99	29	33	26	-	92	85	8	8/ 5	4 6	90
	8000 10	-	65	55	58	29	29	29	62	62	63	51	54	55	55	26	88	57	55	84	83	78	78	72	73	88	68	78	79	75	2 7	2 78	83	84	69	7.1	89	11	93	94	82	79	87	84	22 :	<u> </u>	=
	6300 8		99	57	19	2	62	62	42	42	9	22	99	57	57	8	85	9	28	85	84	79	78	73	75	87	68	83	82	92	2 7	2 %	3 %	85	20	73	70	72	32	93	83	82	87	8	28 8	2 5	7/
	2000		69	59	62	49	4	8	65	99	29	8	19	63	62	2	65	63	3	84	84	78	79	73	9/	88	68	85	83	8 8	2 6	6.4	8 8	85	70	74	17	73	16	32	84	83	87	82	98	2 6	?
	4000		29	59	63	83	9	65	29	89	89	54	99	28	57	29	28	29	28	85	82	79	80	74	77	68	06	83	84	88	8 2	5 %	87	88	72	9/	72	75	92	8	88	98	88	87	88	8 8	2
	2500 3150		68	59	99	99	99	99	69	71	70	52	99	55	26	28	8	21	22	87	85	8	81	92	78	68	16	Н	-	\dashv	+	+	8	\vdash	H	Н	74	77	5	91	8	87	88	88	8 3	8	2
	2500		70	59	65	67	67	65	2	71	71	98	09	62	62	9	3	63	62	87	84	81	8	78	_	Н	_	Н	-	+	+	+	8	-	-	Н	-	77		\dashv	\dashv	88		\dashv	2 3	+	2
	0 2000			-	-	\dashv	-		-		\dashv	_	Н	-	-	-	\dashv	\dashv	\dashv	-	\vdash		-	-	-	-	_	Н		+	-	+	8 8	H	\vdash	Н	75	\vdash	-	-	-	\dashv	Н	-	8 8	+	2
	0091 0		_	_	-	\dashv	\dashv	\dashv	\dashv	-		-	Н	-	-	\dashv	\dashv	\dashv	\dashv	_				-		-		Н	\dashv	\dashv	+	00 00	+	88	-	Н	-		-	-	-	-	\dashv	\dashv	+	3 92	,
	0 1250		19	-		-	\dashv	\dashv		-	Н	-	Н	Н	\dashv	65	-	1 67	-		-		Н	\vdash	-		-	Н	\vdash	16 /	+	+	+	┝	5 75	Н	Н	\vdash	-	\dashv	\dashv	-	-	\dashv	+	2 93	7 7
	0001 0		5 79				5 65	_		89 8		3 68		Щ	9 74	_	_	_				7 84	Ш			Ш				7 87	_	0 0	8 8	L				Ш	98 98	_	98 92	-				99 92	7
	630 800	-	81 85		\vdash		65 65	-		67 68	-	68 7.	\vdash	-	72 79	74 8	-	\dashv	_	_		-	-	81 84	-	88 06	91 9			8 06	_		88		74 7	75 7		\vdash	-	85 8	\dashv	-	-	$\overline{}$	\rightarrow	93	/ 5/
	125 160 200 250 315 400 500		_	19	99	99	-	-		_	Н	67	71	72	73	72	72	71	71	94	⊢	_	92	81	75	92	93	16	\vdash	\rightarrow	-	3	+	⊢	72	72	70	Н	-	\vdash	103	-	Н		-+	103	7
	5 400		88	_	\vdash	69	-	99	64			_	73	_	92		75	74	3 74	16	\vdash	82		-	7 70	94	93	-	_	88	-+	88 6	+	7 82	-	89 6	_	-	1 92	2 93	94	6 93	3 89	-	6 95	-	90
<u>E</u>	31		-	1 67	5 72	7 75	-	76 73	74 71		16 71	_			-	\vdash		-		6 06	-	-	74 72	7 79	.9 89	001	101	105		94 89	88 8	-	94 87	⊢	75 69	75 69	73 67	73 68	6 46	6 86	6 5	94 9	6 6	98 92	97	2	2
ies (H	00 25		63 87	17 71	81 7	83 7			82 7	-	\vdash	8 98	-		н				-	6 101	8 68	8 26	-	\vdash	_	-		100			-	_	2 2	95 9	83 7	-	80 7	Н	\vdash	_	_	=	101	101	8	90	\$
nter Frequencies (Hz)	160 2		\vdash	_	79	_		-	_	_	Н	_			Н	_		_	_	_	_		28	\vdash	-	16	_	66	_	-	\rightarrow	_	-	93	+		-	98		94	119	118	16	_	120	<u></u>	82
Fre	125	_		73	9/	79	78	78	78	13	62	85	68	16	91	06	90	16	91	06	68	83	78	74	75	35	45	8	92	66	8 8	3 5	26	93	68	96	87	87	16	16	101	100	95	95	103	103	∞
enter	8		_	$\overline{}$	77	79	\vdash	$\overline{}$	78	78	-	-	82	84	-	84	84	84	_	87	-	-	-	71	-	-	-	-		16	-	-	$\overline{}$	+	88	-	-	-	_	94	-	Н	-	93	\rightarrow	\rightarrow	8
E C	8		82	_	92	13	18	-	17	18	18	14	77	8	13	78	79	79	62	82	98	5 79	3 78	11 8	8	8	3 91	88	88	-	-	\rightarrow	8 8	8	3 85	3 85	1 83	0 83	-	-	_	-	_	1 94	_	-	80 82
Band SEL (dB) at 1/3 Octave Spectrum Ce	50 63 80	_	7 78	68 72	73 75	74 77	\vdash	_	75 78	16 78	75 78	02 99	1 74	73 77	72 75	70 75	73 77	74 77	74 77	81 81	83 82	92 92	78 78	20 68	62 62	88 98	87 88	83 85	84 85	-		\rightarrow	85 88	88 88	80 83	80 83	7 81	78 80	-	-	_	-	89 91	-	-	-	78 8
ave	0 5		76 77	-	69 7	72 7	71 7	68 72	71 7	73 7	74 7	57 6	11 69	717	68 7		70 7	72 7	_	80	84 8	77 7	77 7	717	76 7	98	87 8	83 8	83	\vdash	\rightarrow	-	2 2	+	+	77	74	75	-		86 8	-	87 8	_	_	_	72
30c	20 25 32 40		. 92	09	1.9	. 0/	. 89	99	. 69	71	71	56	65	69	65	63	89	10	70	08	84	78	77	72	75	98	98	74	78	-	-+	-	2 28	82	76	75	73	73	-	87	83	-	-	-	-	-	17
at 1/	25		73	46	99			64	65	69	29		62	99	2	28	9	99	89	82	83	62	74	72	71	77	81	82	83	75	72	- 1	74	92	29	70	89	29	82	84	85	81	80	82		-	2
(dB	92		72	46	59	99	61	_	99	29	99	52	63	R		_	54	64	19	85	83	8	75	92	7	8	83	12	73	-	92	-	4 2	+	72	92	89	69	-	84	83	-	8	8	-	_	2
SEI	10 13 16		67		63	19	49	25	53	62	19	9	-	53	19	28	20	64	09	83	8	176	19	72	65	+	92	69	172	\vdash	છ	-	3 8	+-	65	9	28	9	-	88	-	-	-	1 76	_	_	99
Ban	13		89	150	9	8	2		9	L	6	0	89	95 0		7		0	28	3 77	1 75	5 76	1 63	78 71	66 61	+-	81 75	6 78	6 74	99	\$	-+	63 69	┿	+-	63 58	62 61	56 57	74 76	92	77 82	72 68	92 89	72 77	75 83	_	62
\vdash	_	-	y 69	55	26	_	55	Base	26	Base	-	y 50	+-	 	Cavity	y 57	Cavity	y 50	Cavity	y 83	∞	y 85	12	-	┼	+-	+	+	-	-	-+	-	_	1	+	1	1	1	1	Base	_	-	+	_	-	-	
Mic	Pos.	(min)	Cavity	Base	Base	Base	Base	B	Base	B	Base	Cavity	Cavity	Cavity	చ	Cavity	స	Cavity	ర	Cavity	Base	Cavity	Base	Cavity	Base	Base	Base	Cavity	Cavity	Cavity	Cavity	Cavity	Base	Base	Base	Base	Base	Base	Base	_	Cavity	Cavity	Base	Base	Cavity	Cavity	Base
Rec.	Time	٥		.ve	ve	ve	ive	ive	š	.ve	ive	ive	ive .	ive	ive	ive	ive	ive	ive.	ive	ive	ive	ive	ive	ive	Jed.	led.	led.	led.	Jed.	fled.	led.	led.	١					fled.	fled.	fled.	fled.	fled.	fled.	fled.	fled.	fled.
RCW			Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Post-fled	Post-fled	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled	Post-fled	Post-fled	-	0	0	0	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.
				-	\vdash				-	-	-		H	\vdash	\vdash	_	_	-	H		_			 	5	_	2	_	2	2	2	5			+	\vdash	\vdash	\vdash	2	_	2	2	2	2	2	5	\dashv
Event	Dist	E	30.5	19	19	19	19	61	19	19	19	19	L	19	19	19	9	9	19	15.2	L	30.5	30.5	30.5	30.5	15.2	15.2	15.2	15.2	30.5	\vdash	\dashv	30.5	+	\perp	19	\vdash	igdash		1	15.2	-	\vdash	L	\vdash		19
Event	Tyne	136	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	\$0 ca	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.
Date			5/11	11/5	5/11	5/11	5/11	5/11	5/11	5/11	5/11	5/11	5/11	5/11	5/11	5/11	11/5	5/11	5/11	5/13	5/13	5/13	5/13	5/13	5/13	5/26	5/26	5/26	5/26	5/26	5/26	5/26	5/26	303	4/29	4/29	4/29	4/29	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/3
3	}		208	208	208	208	708	208	208	208	208	208	208	208	208	208	208	208	208	211	211	211	211	211	211	218	218	218	218	218	218	218	218	210	227	227	227	227	227	227	227	227	227	227	227	227	227

Calc.	Overall	SEL 840	111	104.1	86.2	93.0	89.2	84.4	83.9	89.0	84.8	113.6	114.2	115.7	108 5	100.0	105.1	105.7	101 6	1100	110.6	106.0	102.4	6.96	95.2	89.4	108.0	104.2	109.2	106.2	112.6	109.0	114.1	110.4	102.2	0.70	105.6	110.0	110.0	112.8	104.5	108.5	106.4	105.5	1.76	75.1
	20000	2	F 07	2 2	39	48	45	14	41	4	41	65	65	98	3 8	3 2	74	72	12	9	99	55	55	515	55	52	84	80	85	62	99	62	6	3 8	79	3 3	8	နှ ;	54	59	53	55	53	53	24	45
	16000	90	2 4	3 95	4	49	51	46	48	51	48	70	17	73	t 8	8 8	3 2	78	77	1.9	89	29	35	22	88	99	88	84	68	82	29	29	80	8 9	8 2	3 6	2 5	2 :	25	62	22	54	22	22	2 2	¥.
	12500	S	2 3	53	46	52	57	52	53	88	54	73	74	27 2	6 6	2 2	: 6	3 8	2%	2 2	2	: 49	- T-	57	49	19	06	98	96	83	2	9 1	7 5	8 8	2/ 12	- 1	2 (3	62	29	49	23	15	22	2 5	'n
	100001	- 5	2 5	5.7	15	88	19	56	57	62	28	74	2/6	92	3 6	7 8	7 7 7	2 2	2	1 5	1 -	. 99	9	57	9	65	93	87	91	84	23	2	4 :	-	5 5	t 6	5 5	/0	67	=	22	26	22	2 2	2	5
	0008	9	3 2	2 63	55	62	64	09	9	49	62	78	78	Q 2	1, 20	2 2	2 8	2 %	2 %	3 2	72 2	69	89	59	72	89	94	90	92	98	75	73	1-1	2 1	77	2 3	- S	60	69	72	54	28	57	88	7 5	3
	8 0069	5	3 7	5 2	28	99	99	62	63	19	49	80	42	28 82	7 2	, y	8 8	3 5	5 %	3 5	12, 22	2 89	99	9	74	02	92	87	91	98	78	75	2 i	4	% F		83	74	74	1	28	62	8	19	\$ 2	/0
	2000	-	j 6	2 9	3 3	19	69	2	99	69	99	82	82	8 8	7 2	ŧ 2	* 8	3 6	3 8	3 4	76	2 2	9	3 3	75	72	16	98	06	98	78	76	22	9/	8/ 0/	0 8	83	7.7	73	26	65	8	62	62	9	9
	4000	37	2 8	26	63	0,	70	65	99	70	99	83	84	88	7 8	2, 20	00	00	8 8	8 8	202	74	75	89	78	74	91	87	68	85	8	78	8 °	× 1	79	0,	£ 1	73	74	77	65	29	65	99	9	=
	2500 3150	77	4 6	74	, 99	74	73	89	19	72	99	98	87	88	30	3 5	01	. 00	8) S	3 8	76	77	71	78	72	68	87	68	98	- 8	79	8	2	6 8	8	25	74	74	78	69	69	89	2 5	2 2	7
	2500	3	8 8	3 2	67	75	75	2	89	73	70	68	90	5 6	5 5	3 5	1 8	6 8	\$ 12 2	2 2	5 ×	8 8	S &	3 5	2 2	71	87	85	88	85	82	81	98	+	78	0/	+	26	-	-		\dashv	9	2 8	2 8	7/
	1600 2000		8 8	3 6	+	+	-	+-	╁	╁	╌	┝	\vdash	+	3 2	+	7 0	+	╫	+	+	+-	+	+	+	+	98	-	-	Н	\dashv	\dashv	\dashv	\dashv	+	+	+	+	\dashv	\dashv	-	\dashv	9	+	67	-
	091 09	+	\$ 6	+	+	+	┝	+-	╁	+	⊢	-	\vdash	+	7 2	+	2 00	+	+	+	+	+	╁	+	╁	╁	98	-	-	Н	-	\dashv	\dashv	82	1 77	+	\dashv	+	-	98 98	\dashv	76 71	\dashv	99 92	8 67	5
	0 1250	+	3 3	+	+	+	\vdash	+	+	╁	74	\vdash	Н	+	2 8	$^{+}$	+	+	+	+	+	+	+	+	+	+	8			Н			+	\dashv	+	+	+	\dashv	\dashv	-		\dashv	-	-	+	\dashv
	0 1000	\dashv	2 3	_	1	-	7 76	2 71	7	+	1	8 93		1	3 8	+	70 20	+	+	+	_	98 00	_	+	78 70	1	16 68	85 87	_	83 88			_		-	4	4	68 98		88 93	2 72		70 70	\perp	99 69	9 89
	630 800	-	79 /9	-	-	-	74 7	69	69	73 74	69 71	94 98	-	-+	3 3	-	20 20		-	+	2 0	-	60	-	76 7	-	87 8	85 8	16 16	8 98	6 26	-	6 86	\dashv	\rightarrow	-	-+	-	\dashv	-	192	-	74 7	-	_	17
	200	-+	9 8	-		-	┰	99	┿	+	+	3 95	-	_	2 2	-+	3 2	+	+	+	+	+	+	+	+	-	4 94	1 91	96 9	3 95	4 96	0 93	86 9		\rightarrow	-	-	-	\vdash	94 96	8 82	\vdash	Н	88 84	-+	92 62
	125 160 200 250 315 400	-	62 61	30 27	-	-	63 66	+-	+-	+	+-	108 103	109 104	_	-+	-1.	001	+	+	+	-	-	-	6 6	+	99 19	101	97 9	102 96	96 93	98 94	Н		-	\rightarrow	-	-+	-	96 93	6 86	93 8	97 9	95 8		-	83 7
S (Hz)	0 250	-+	-	2 8		74	64	+-	+	+	+-	4 110	4 110	_	-+	3	7 2	7 5	-	+	-	_	-	+	+	+	8	1 95	101	3 101	0 103	001 9	1 105	_		\dashv	-	7 103	7 103	1 105	1 97	5 102	3 99	-	-	88 9
Frequencies (Hz)	60 20	-	\rightarrow	86 101	-	62 08	┿	1.	+	+	+-	93 104	94 104	-	66 8	-1	001	2 2	2 2	1	-		76 00	-		80 76	86 96	92 94	66 86	86 06	106 110			=		-+	-	101	100 107	103 11	97 10	101	99 103	97 102		83 86
	125 1		22	કે ક	8 2		┰	72	12	77	72	8	93	92	25	8	7 8	2 8	2 5	ž 8	7 8	7, 00	8 8	80 6	70	82	93	68	95	92	16	87	92	88	2	35	4	93	93	94	16	95	93	╌	-+	82
Center		_	_	9 9		98 98	-	_	_	8 2	-	_	-	68 51	93 95	_	26 29	-	2 8	-	7 S	_	0 10	00 00		-	-	89		+-	84 87	79 83		79 85	_	-	-	_	84 87	86 87	84 87	-	98	84 87	\rightarrow	84 85
Band SFI. (dB) at 1/3 Octave Spectrum C	63		73	80 %	0 0	84 8	20	747	74	62	74	82	85 8	84			4 8	₹ 2	7 9	00	18	S 6	6	S E	, 6	28	16	87	8	8	84	80	85	80	87	87	68	83	84	98	81	83	82	8	8	82
ve Spe	32 40 50 63	-	-	-	_	28 6	+		-	+-	+	+	+-	\rightarrow	16 68	_	93	-	68 69	_	60 00	\$ 8	0/ 0/		0/ 7/	_	+-	_	+	+	83 84	79 80	84 85	_	-		-	81 82	81 82	84 86	78 79	81 81	26		76 77	6 81
/3 Octs	32 4	_	_			7/ 60		_	-	72 73	+	+	-	-	-	-	-	_	S S	_	7 6		_	_	-	69	+	-	+	-	808	78 7	818	-	-	$\overline{}$	_		-	818	80 7	8 08	78 7	-	$\overline{}$	78 7
8) at 1,	25	_	65	88	_	73 00	199	3 5	3	3	9	92	-	\rightarrow	83	84	98	_	78	_			_	-	_	7 89	_	_	-	$\overline{}$	08	-	82	_	-	_	_	_	1 78	8	5 78	3 84	5 72	-		3 74
E1. (d)	16 20	\dashv		62 72	-	67 68	+-	-	-		+-	+-		-	_	-	-	-	-+	-	-	-	+		-	09	-	-	-	+	72 79	73 72	27 77	74 78	-	71 73	75 79	70 74	72 74	75 79	86 85	.88 93	86 76	_		78 78
Rand S	10 13 16				_	57	3	-	; ;	3 %	\$	+	69	72	77	76	- E	7	F	= !	9	7	Z (79	ત :	\$ 55	12	89	77	72	89	49	69	29	65	62	89	99	63	89	+	82	78	+	73	80
L	1=	٠ ١	62	~		56	+	2 0	_	+	+-	+-	y 73	1	\neg		-+	-	\neg	-	-+			-		\$ 5	+	+-	+-	╈	y 76	y 57	y 73	y 67	Н	2	5 73	y 67	89 X	y 74	75 Y	y 75	ty 73	+-1		277
Mic	Pos.	(min)	Base	Cavity	Cavity	Base	Page 1	Bace	Deno	Base	Base	Cavity	Cavity	Cavity	Base	Base	Base	Base	Base	Pase	Cavity	Cavity	Cavity	Cavity	Cavity	Bace	Base	Base	Base	Base	Cavity	Cavity	Cavity	Cavity	Base	Base	Base	Cavity	Base	Base						
Rec	Time	- 1	fled.	fled.	-fled.		2.7	3.7	2.7	3.7	3.7	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	Inactive	ctive
W) d	Resp.		Post-fled	Post-fled.	Post-fled.	- -	. ,	7 0	1,	7 6	2	Inac	Inac	Inac	Inac	Inac	Ina	Inac	Inac	Inac	Inac	Inac	Ina	Inac	Ina	Ina	Ina	Inac	Inac	Ina	Inac	Inac	Ina	Ina	Ina	Ina	Ina	Ina	Ina	lna	Ina	Ina	Ina	Ina	Ina	Ina
Evont		(m)	19	19	19	122	771	510	21.5	510	01.5	15.2	15.2	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	30.5	30.5	19	19	19	15,7	15.2	15.2	15.2	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	30.5	30.5	19	19	19	19	19	19
Priont	Type		.50 cal.	.50 cal.	.50 cal.	.50 cal.	.30 car.	.50 cal.	.30 cal.	.50 cal.	SO cal.	50 cal	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.30 cai.	So cal.	50 cal	So cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	So cal	50 cal.	50 cal.	50 cal.	.50 cal.	.50 cal.	.50 cal.
Doto	The state of the s		6/3		-	4/26	╁	4/29	+	67/4	+	+	+	╁	Н	5/11	5/11	5/11	5/11	5/11	5/11	5/11	5/11	5/11	+	5/11	+	5/11	+	t	t	5/11	+	5/11	\vdash	5/11	\vdash	5/11	5/11	11/5	5/11	5/11	2/11	5/11	5/11	5/11
- 3			227	227	-	228	+	+	+	+	+	+	╁	╀	-		\vdash	-	┥	-	-	-+	\dashv	231	-	+	157	+	+	+	+	╀	+	236	236	236	236	236	236	336	236	236	236	236	236	236

Calc.	Overall SEL	92.8	97.6	106.5	105.8	118.6	118.0	115.1	115.5	99.5	100.2	111.5	112.3	94.5	95.0	104.0	105.0	111.3	112.0	9.601	6.601	101.1	101.5	2.96	96.2	107.5	8.901	88.4	103.2	99.3	100.2	86.4	87.1
T	20000	54	21	16	68	54	51	45	46	78	79	36	33	63	9	98	16	69	11	62	64	75	74	19	19	59	19	20	45	45	45	44	4
	16000 2	53	51	94	93	63	62	54	54	83	84	51	52	69	7.1	68	93	72	74	99	89	80	80	89	29	\$	<i>L</i> 9	28	47	43	45	20	51
	12500	99	54	94	94	89	99	09	28	83	84	55	57	72	74	06	93	92	11	72	73	82	82	11	71	99	70	63	55	47	20	57	58
	10000	09	59	93	94	69	89	62	79	83	85	9	62	74	75	06	93	81	81	77	62	83	84	73	73	72	75	99	65	59	62	19	62
	8000	64	62	93	93	73	71	4	2	83	98	19	63	76	92	06	92	84	83	08	82	85	85	7.5	75	75	77	69	69	63	99	26	65
	6300	99	R	92	92	9/	74	69	29	84	98	99	69	78	28	16	92	81	83	28	80	85	98	9/	92	9/	17	70	49	09	09	29	29
	2000	89	99	91	92	92	75	69	89	83	98	4	29	79	80	06	06	83	83	81	82	85	98	78	77	79	80	71	70	89	89	89	69
	4000	69	29	91	93	79	78	72	72	82	85	69	72	80	80	06	68	85	98	84	88	84	98	78	79	81	82	17	74	74	74	69	92
	3150	70	89	92	92	82	81	73	72	84	85	70	73	81	82	68	90	87	88	84	84	84	87	78	79	84	84	73	73	71	74	71	17
	2500	70	89	92	92	82	84	92	16	84	82	11	8	82	82	91	92	88	68	87	87	83	98	79	82	82	98	73	74	72	74	11	72
	2000	70	69	93	91	88	98	79	78	84	98	75	77	83	82	16	91	92	63	16	65	82	98	80	82	90	16	73	82	79	81	72	72
	1600	70	89	68	88	16	88	83	83	84	87	73	73	79	79	88	90	06	16	88	68	98	98	80	79	84	98	73	78	77	80	71	72
	1250	69	69	68	88	93	93	84	84	82	83	77	77	77	28	90	06	96	6	95	96	83	85	79	80	65	63	73	85	82	68	72	73
	1000	99	29	68	88	93	92	88	87	81	82	81	81	92	78	88	88	66	66	66	100	85	84	79	78	94	66	72	06	87	68	20	72
	100 125 160 200 250 315 400 500 630 800	-					-	_		1 82	_	86 91	-	75 76	18 28	\vdash	84 87	93 94	92 95		90 93	84 86		78 79	78 78	88 88	84 87	72 72	76 83	11 79	71 79	-	70 71
	900 63	-	-	-				_	-	80	-	8 98	87 8	74 7	74 7	8 2	8 8	6 96	6 16	\vdash	6 26	-	-	-	79 7	84 8	83 8	72 7	76 7	72 7	72 7	\rightarrow	67 7
	400	73	-		$\overline{}$	_	-		-	_	-	85	85	69	69	88	68	88	06	_	84	85	85	17	78	18	18	89	75	72	72	\rightarrow	64
L	315	77	79	62	96	95	94	16	16	87	88	98	98	77	92	98	88	06	16	84	98	84	84	82	78	82	82	70	82	12	92	62	63
(Hz)	250	81	85	96				93	94	91	91	91	16	81	81	94	94	95	96	06	16	06	90	83	83	90	68	70	85	84	83	69	72
cies	200	82	84	92		110				88	88	105	105	82	82	94	94	108	109	901	106	65	93	88	87	104	103	11	100	96	96	73	75
dae	160	82	82	88	98	117	111	114	115	82	85	110	111	82	18	90	90	501	106	105	105	92	92	88	87	103	102	78	66	94	95	\vdash	77
nter Frequencies (Hz)	125		84	-	_	_		94		_		94	94	88	98	87	87	92	92	16	93	-		88	87	65	16	75	98	87	87		77
ente		85		_	16		16	_	68	\vdash	\vdash		68	98	$\overline{}$	\vdash	-	_	68	\vdash	\vdash	90	_	-	-	\vdash	98	11	_	82	-	_	77
Band SEL (dB) at 1/3 Octave Spectrum Ce	8	83	82	65	16	87	98	83	82	81	8.1	84	98	84	82	87	88	08	82	83	8	68	68	18	88	82	<u>∞</u>	8	18	80	80		92 9
pectr	63	18	80	90	-		-	1 84	85	85	85	l 82	83	18 6	82	5 87	2 87	82	82	08 /	80	5 87	87	82	84	08	62	5 78	5 78	1 76	1 76		2 76
ve S	02	08	2 78	88 /	2 87	88 /	28 9	84	3 85	9 83	1 83	0 81	2 82	6/ 9	8 79	3 86	85 86	08 4	7 81	11 1	79 78	3 85	4 85	0 82	0 82	8 79	7 79	4 76	73 75	72 74	72 74		73 75
Octs	40	9 79	6 75	87	7 87	1 87	98 5	79 82	0 83	79 80	19 81	08 6	80 82	73 76	74 78	2 83	83 8	73 77	75 77	78 77	79 7	1 83	1 84	08 84	7 80	7 78	7 77	71 74	71 7.	70 7.	70 7.	70 7.	71 7.
t 1/3	5 32	72 79	72 76	85 86	84 87	80 87	80 85	83 7	81 80	75 7	74 7	62 92	8 9/	2 89	71 7	82 82	82 8	79 7	79 7	79 7	80 7	78 81	78 81	74 7	73 77	75 77	72 77	65 7	64	65 7	63 7	65 7	64 7
(B)	20 25	75 7	69 7	818	84 8	8 8/	82 8	8 9/	82 8	70 7	73 7	75 7	74 7	9 29	707	92	818	75 7	80 7	73 7	808	69	76 7	72 7	72 7	74 7	75 7	9 89	9 19	9 59	9 99	9 99	9 99
EL (16 2	75 7	62 6	85 8	82 8	80 7	80 8	81 7	80 8	74 7	72 7	72 7	75	09	2	08	3 62	83	18	. 62	74 8	75 (69	19	2	71	19	55 (99	55 (57 (55 (28 (
Spu	13	72	20	70	78	72	_	72	73	. 22	. 99	72	69	Ē	-	20	92	71	78	69	08	62	73	55	53	63	62	52	52	48	25	49	20
ĕ	01	77	63	73	20	74	17	11/	73	57		99	89	99	99	=	99	73	19	65	19	9	85	28	19	62	2	59	09	57	55	99	20
Mic	Pos.	Base	Base	Base	Base	Cavity	Cavity	Cavity	Cavity	Base	Base	Cavity	Cavity	Base	Base	Base	Base	Cavity	Cavity	Cavity	Cavity	Base	Base	Base	Base	Cavity	Cavity	Base	Cavity	Cavity	Cavity	Cavity	Cavity
Rec,	Time (min)						_;		:	1.	ı,	<u>.</u> ;	i	:	Ŧ.	÷	-i	÷.	Ţ.i	-ti	÷.	Ŧ.i	Ę.	Ę.	Ę.	÷.	Ŧ.	Ţ.	Ţ.	÷.	÷.	÷.	
		Inactive	Inactive	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled	Post-fled.	Post-fled	Post-fled.	Post-fled	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled	Post-fled.	Post-fled.	Post-fled	Post-fled	Post-fled	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled.	Post-fled	Post-fled.	Post-fled.
RCW	Resp.	٦	_	P	ď	P	ď	P	P.	Pe	ď	P	P.	Ā	P.	Ā	P	ă	Ā	ď	Ā	ă	ď	P.	ď	P.	ď	P	P.	Ğ.	Ā	P	å
Event	Dist.	19	19	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	19	19	19	19	15.2	15.2	15.2	15.2	30.5	30.5	30.5	30.5	19	19	19	19	91.5	91.5	122	122	122	122
Event	Type	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.	.50 cal.
Date		5/11	5/11	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/3	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21	6/21
<u>.</u>		236	236	271	271	172	271	271	271	271	271	271	271	271	172	294	294	294	294	294	294	294	294	294	294	294	294	294	294	294	294	294	294

Table D 5. Summary data for passive M-16 live fire noise on Fort Stewart, GA.

Cluster	Date	Nesting	Event	Event	Azimuth	RCW	Recovery	Remarks	Mic	SEL (dB)	at mic
		Phase & Day	Туре	Dist. (m)	re. DOF	Response	time (min)		Pos.	Flat	Α
	5/17/99	1-8	M-16		90	0	0	0	Base	71.5	63.2
		I-8	M-16		90	0.	0	0	Base	72.0	63.6
	5/17/99	1-8	M-16		90	0	0	0	Base	75.2	66.5
3	5/17/99	1-8	M-16	 	90	0	0	0	Base	73.9	65.7
}	5/17/99	I-8	M-16		90	0	0	0	Base	70.1	61.5
25	5/5/99	1-2	M-16		20	0	0	0	Base	66.3	63.2
25	5/5/99	1-2	M-16		20	0	0	0	Base	74.7	72.2
25	5/5/99	1-2	M-16		20	0	0	0	Base	67.8	63.7
25 25	5/5/99	1-2	M-16	 	20	0	0	0	Base	72.1	69.8
25 25	5/5/99	1-2	M-16	<u> </u>	20	0	0	0	Base	68.1	65.6
25 25	5/5/99	1-2	M-16	 	20	0	0	0	Base	68.7	65.8
25 25	5/5/99	1-2	.50 cal	-	0	0	0	0	Base	76.0	50.2
			M-16		20	0	0	0	Base	67.6	63.6
25	5/5/99	1-2	M-16	-	20	0	0	0	Base	71.4	69.5
25	5/5/99	I-2 I-9		-	0	0	0	0	Base	74.9	50.2
25			.50 cal M-16	20-434	280	0	0	0	Base	68.3	61.7
103 103	5/12/99	N-2 N-2	M-16	20-434	280	0	0	0	Base	67.2	61.8
		N-2	M-16	20-434	280	0	0	0	Base	68.6	61.8
103 103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	68.0	62.5
103		N-2	M-16	20-434	280	0	0	0	Base	69.4	62.1
	1	N-2	M-16	20-434	280	0	0	0	Base	71.3	64.9
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	76.2	70.9
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	69.2	62.9
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	75.2	69.4
103 103	5/12/99 5/12/99	N-2	M-16	20-434	280	0	0	0	Base	70.3	66.0
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	68.3	62.0
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	69.6	64.7
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	77.3	73.9
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	74.6	67.9
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	69.7	65.3
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	71.0	64.1
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	72.8	66.6
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	71.0	64.2
103	5/12/99		M-16	20-434	280	0	0	0	Base	67.7	61.5
103	5/12/99		M-16	20-434	280	0	0	0	Base	82.8	82.9
103	5/12/99		M-16	20-434	280	0	0	0	Base	78.8	78.7
103	5/12/99		M-16	20-434	280	0	0	0	Base	72.8	64.9
103	5/12/99		M-16	20-434	280	0	0	0	Base	71.7	62.5
103	5/12/99		M-16	20-434	280	0	0	0	Base	69.6	62.3
103	5/12/99		M-16	20-434	280	0	0	0	Base	83.9	84.0
103	5/12/99		M-16	20-434	280	0	0	0	Base	86.0	86.3
103	5/12/99		M-16	20-434	280	0	0	0	Base	72.3	69.3
103	5/12/99		M-16	20-434	280	0	0	0	Base	70.4	64.4
103	5/12/99		M-16	20-434	280	0	0	0	Base	73.2	67.2
103	5/12/99		M-16	20-434	280	0	0	0	Base	74.6	74.0
	5/12/99		M-16	20-434	280	0	0	0	Base	70.2	63.8
103	5/12/99		M-16	20-434	280	0	0	0	Base	71.3	66.1
103						0	0	0	Base	72.4	68.5
103	5/12/99		M-16	20-434	280			0		75.5	69.8
103	5/12/99		M-16	20-434	280	0	0		Base	70.9	64.4
103 103	5/12/99 5/12/99		M-16	20-434	280	0	0	0	Base	81.9	82.2
	IE/19/00	INL9	M-16	20-434	280	0	0	10	Base	101.9	104.4

Cluster	Date	Nesting Phase	Event Type	Event Dist.	Azimuth re.	RCW Response		Remarks	Mic Pos.	SEL (dB)	at mic
		& Day	.,,,,	(m)	DOF	Поброно				Flat	Α
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	68.3	61.9
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	75.3	68.7
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	69.9	63.4
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	67.5	60.1
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	68.5	61.4
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	69.7	61.0
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	84.2	83.9
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	77.5	72.6
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	75.8	70.9
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	73.8	66.4
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	85.1	85.5
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	79.4	76.2
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	76.1	70.6
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	75.9	70.5
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	75.0	69.6
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	73.9	67.8
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	76.0	68.4
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	73.6	67.7
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	67.6	62.8
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	73.4	71.4
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	75.8	74.8
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	75.1	68.9
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	74.4	69.8
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	78.8	76.4
			M-16	20-434	280	0	0	0	Base	73.9	68.2
103	5/12/99	N-2	M-16	20-434	280	0		0	Base	72.0	65.5
103	5/12/99	N-2					0			74.5	69.8
103	5/12/99	N-2	M-16 M-16	20-434	280	0	0	0	Base	71.5	66.1
103	5/12/99	N-2		20-434	280		0	0	Base	76.0	71.4
103	5/12/99	N-2	M-16		280	0	0	0	Base	74.4	73.8
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base Base	77.0	74.5
103	5/12/99	N-2	M-16		280	0	0		+		69.9
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	74.1	
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	73.0	66.0
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	71.2	70.3
103	5/12/99		M-16		280	0	10	0	Base	71.4	65.6
103	5/12/99		M-16	20-434	280	0	0	0	Base	73.1	67.0
103	5/12/99		M-16	20-434	280	0	0	0	Base	76.7	69.9
103	5/12/99		M-16	20-434	280	0	0	0	Base	74.7	67.9
103	5/12/99		M-16	20-434	280	0	0	0	Base	76.5	74.5
103	5/12/99		M-16	20-434	280	0	0	0	Base	73.3	65.7
103	5/12/99		M-16	20-434	280	0	0	0	Base	69.0	60.7
103	5/12/99		M-16	20-434	280	0	0	0	Base	67.3	57.6
103	5/12/99		M-16	20-434	280	0	0	0	Base	67.0	60.5
103	5/12/99		M-16	20-434	280	0	0	0	Base	70.2	60.8
103	5/12/99		M-16	20-434	280	0	0	0	Base	78.4	72.7
103	5/12/99		M-16	20-434	280	0	0	0	Base	78.0	75.8
103	5/12/99		M-16	20-434	280	0	0	0	Base	74.8	72.2
103	5/12/99		M-16	20-434	280	0	0	0	Base	72.6	67.0
103	5/12/99		M-16	20-434	280	0	0	0	Base	70.3	65.8
103	5/12/99		M-16	20-434	280	0	0	0	Base	72.1	67.5
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	70.1	65.8
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	72.1	67.3
103	5/12/99	N-2	M-16	20-434	280	0	0	0	Base	77.2	74.7

103 5/12 103 5/12 103 5/13	8 12/99 12/99 12/99 12/99 13/9	R Day N-2 N-2 N-2 N-2 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16 M-16	Dist. (m) 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434	re. DOF 280 280 280 280 280 280 280 280 280 28	Response 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	Pos. Base Base Base Base Base Base Base Bas	Flat 72.0 70.3 72.3 73.2 76.4 71.4 76.7 70.6 77.5 72.5 78.3 75.2 75.0	A 65.4 63.4 66.9 67.4 71.7 61.6 71.5 63.6 74.0 63.5 75.9 67.0 66.6
103 5/12 103 5/13	12/99 12/99 12/99 13/99	N-2 N-2 N-2 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434	280 280 280 280 280 280 280 280 280 280	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	Base Base Base Base Base Base Base Base	70.3 72.3 73.2 76.4 71.4 76.7 70.6 77.5 72.5 78.3 75.2	63.4 66.9 67.4 71.7 61.6 71.5 63.6 74.0 63.5 75.9 67.0
103 5/12 103 5/13	12/99 12/99 12/99 13/99	N-2 N-2 N-2 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434	280 280 280 280 280 280 280 280 280 280	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	Base Base Base Base Base Base Base Base	72.3 73.2 76.4 71.4 76.7 70.6 77.5 72.5 78.3 75.2	66.9 67.4 71.7 61.6 71.5 63.6 74.0 63.5 75.9 67.0
103	12/99 12/99 12/99 13/99	N-2 N-2 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434	280 280 280 280 280 280 280 280 280 280	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	Base Base Base Base Base Base Base Base	73.2 76.4 71.4 76.7 70.6 77.5 72.5 78.3 75.2	67.4 71.7 61.6 71.5 63.6 74.0 63.5 75.9 67.0
103 5/1: 103 5/1:	12/99 12/99 13/99	N-2 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434	280 280 280 280 280 280 280 280 280 280	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	Base Base Base Base Base Base Base Base	76.4 71.4 76.7 70.6 77.5 72.5 78.3 75.2	71.7 61.6 71.5 63.6 74.0 63.5 75.9 67.0
103	12/99 13/99	N-2 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434	280 280 280 280 280 280 280 280 280 280	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0	Base Base Base Base Base Base Base	71.4 76.7 70.6 77.5 72.5 78.3 75.2	61.6 71.5 63.6 74.0 63.5 75.9 67.0
103 5/1: 103 5/1:	13/99 13/99	N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434	280 280 280 280 280 280 280 280 280 280	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	Base Base Base Base Base Base	76.7 70.6 77.5 72.5 78.3 75.2	71.5 63.6 74.0 63.5 75.9 67.0
103 5/1: 103 5/1:	13/99 13/99	N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434	280 280 280 280 280 280 280 280 280	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	Base Base Base Base Base	70.6 77.5 72.5 78.3 75.2	63.6 74.0 63.5 75.9 67.0
103 5/1: 103 5/1:	13/99 13/99	N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434 20-434 20-434 20-434	280 280 280 280 280 280 280 280	0 0 0 0 0	0 0 0 0	0 0 0	Base Base Base Base	77.5 72.5 78.3 75.2	74.0 63.5 75.9 67.0
103 5/1: 103 5/1:	13/99 13/99	N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434 20-434	280 280 280 280 280 280 280	0 0 0 0	0 0 0 0	0	Base Base Base	72.5 78.3 75.2	63.5 75.9 67.0
103 5/1: 103 5/1:	13/99 13/99	N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434 20-434	280 280 280 280 280	0 0 0 0	0 0 0	0	Base Base	78.3 75.2	75.9 67.0
103 5/1: 103 5/1: 103 5/1: 103 5/1: 103 5/1: 103 5/1: 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1	13/99 13/99	N-3 N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434 20-434	280 280 280 280	0 0 0	0		Base	75.2	67.0
103 5/1 103 5/1	13/99 13/99	N-3 N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16 M-16	20-434 20-434 20-434 20-434	280 280 280	0		0			1
103 5/1 103 5/1	13/99 13/99	N-3 N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16 M-16	20-434 20-434 20-434	280 280	0	0		Raco	75 O	66.6
103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1	13/99 13/99 13/99 13/99 13/99 13/99 13/99	N-3 N-3 N-3 N-3 N-3	M-16 M-16 M-16	20-434 20-434	280			0	Dase	10.0	
103 5/1 103 5/1	13/99 13/99 13/99 13/99 13/99 13/99	N-3 N-3 N-3 N-3	M-16 M-16	20-434		0	0	0	Base	72.1	62.2
103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1	13/99 13/99 13/99 13/99 13/99	N-3 N-3 N-3	M-16	/	280	0	0	0	Base	71.8	63.4
103 5/1 103 5/1	13/99 13/99 13/99 13/99 13/99	N-3 N-3		20-434	280	0	0	0	Base	71.9	64.4
103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1	13/99 13/99 13/99 13/99	N-3	171 10	20-434	280	0	0	0	Base	72.9	66.9
103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1	13/99 13/99 13/99	NI O	M-16	20-434	280	0	0	0	Base	73.4	63.2
103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1	13/99 13/99	N-3	M-16	20-434	280	0	0	0	Base	75.6	73.5
103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1 103 5/1		N-3	M-16	20-434	280	0	0	0	Base	73.7	73.2
103 5/1 103 5/1 103 5/1 103 5/1 103 5/1	13/99	N-3	M-16	20-434	280	0	0	0	Base	74.5	71.7
103 5/1 103 5/1 103 5/1 103 5/1	10/00	N-3	M-16	20-434	280	0	0	0	Base	75.7	71.5
103 5/1 103 5/1 103 5/1	13/99	N-3	M-16	20-434	280	0	0	0	Base	70.4	63.4
103 5/1	13/99	N-3	M-16	20-434	280	0	0	0	Base	73.0	67.2
	13/99	N-3	M-16	20-434	280	0	0	0	Base	75.4	73.5
103 5/1	13/99	N-3	M-16	20-434	280	0	0	0	Base	77.8	72.9
1.00	13/99	N-3	M-16	20-434	280	0	0	0	Base	70.9	64.1
103 5/1	13/99	N-3	M-16	20-434	280	0	0	0	Base	72.0	63.5
103 5/1	13/99	N-3	M-16	20-434	280	0	0	0	Base	72.0	62.1
103 5/1	/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.5	62.4
		N-3	M-16	20-434	280	0	0	0	Base	71.5	64.5
		N-3	M-16	20-434	280	0	0	0	Base	72.3	67.6
		N-3	M-16	20-434	280	0	0	0	Base	73.8	66.6
		N-3	M-16	20-434	280	0	0	0	Base	75.6	66.3
	/13/99		M-16	20-434	280	0	0	0	Base	70.9	64.4
	/13/99		M-16	20-434	280	0	0	0	Base	72.3	63.2
	/13/99		M-16	20-434	280	0	0	0	Base	73.7	66.9
	/13/99		M-16	20-434	280	0	0	0	Base	70.5	63.9
	/13/99		M-16	20-434	280	0	0	0	Base	73.4	62.9 62.6
	/13/99		M-16	20-434	280	0	0	0	Base	71.7 79.1	79.6
	/13/99		M-16	20-434	280	0	0	0	Base	83.4	83.2
	/13/99		M-16	20-434	280	0	0	0	Base	72.6	68.9
	/13/99		M-16	20-434	280	0	0	0	Base	85.0	85.4
	/13/99		M-16	20-434	280	0	0	0	Base	73.4	66.7
	/13/99		M-16	20-434	280	0	0	0	Base	76.0	68.2
	/13/99		M-16	20-434	280	0	0	0	Base	76.1	68.7
	/13/99		M-16	20-434	280	0	0	0	Base	76.0	70.4
	/13/99		M-16	20-434	280	0	0	0	Base	74.6	69.8
	/13/99		M-16	20-434	280	0	0	0	Base	76.9	75.5
		N-3	M-16	20-434	280	0	0	0	Base	73.2	70.5
	/13/99		M-16	20-434	280	0	0	0	Base		72.4
	5/13/99 5/13/99		M-16 M-16	20-434	280 280	0	0	0	Base Base	74.0 80.5	81.3

Cluster	Date	Nesting Phase	Event Type	Event Dist.	Azimuth re.	RCW Response	Recovery time (min)	Remarks	Mic Pos.	SEL (dB)	at mic
		& Day		(m)	DOF		, , ,			Flat	Α
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.1	65.2
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	79.8	79.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.0	59.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.2	63.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	80.8	80.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	78.2	78.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	69.9	66.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.9	63.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.3	61.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	75.1	64.8
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.0	64.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.6	64.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	69.2	69.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.2	63.2
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	78.1	74.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.7	64.7
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.2	63.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.0	61.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	76.0	66.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.9	66.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.2	64.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	81.0	80.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.1	65.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.9	66.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	81.8	81.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.6	62.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.4	63.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.1	64.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.9	62.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.6	64.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.4	65.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	84.9	85.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.2	62.8
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.6	64.5
103	5/13/99		M-16		280	0	0	0	Base	80.6	79.5
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.8	64.2
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.5	62.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	84.4	84.9
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.0	68.1
103	5/13/99		M-16	20-434	280	0	0	0	Base	74.8	68.6
103	5/13/99		M-16	20-434	280	0	0	0	Base	74.7	65.2
103	5/13/99		M-16	20-434	280	0	0	0	Base	85.7	86.3
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.9	68.9
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.7	66.3
103	5/13/99		M-16	20-434	280	0	0	0	Base	82.1	82.1
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.0	71.7
103	5/13/99		M-16	20-434	280	0	0	0	Base	71.4	69.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	81.4	82.1
103	5/13/99		M-16	20-434	280	0	0	0	Base	82.5	83.3
103	5/13/99		M-16	20-434	280	0	0	0	Base	83.0	83.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	82.6	83.5
103	5/13/99		M-16	20-434	280	0	0	0	Base	75.0	71.6
103	5/13/99		M-16	20-434	280	0	0	0	Base	74.1	66.8
103	13/13/99	114-0	TIVI- 10	120-434	1200	10	10	10	Dase	[/ 7.1	100.0

Cluster	Date	Nesting	Event	Event	Azimuth	RCW	,	Remarks	Mic	SEL (dB)	at mic
		Phase	Туре	Dist.	re. DOF	Response	time (min)	ı	Pos.	Flat	Α
		& Day		(m)				0	Dece	73.7	66.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	75.2	70.3
103		N-3	M-16	20-434	280	0	0	0	Base	76.7	72.7
103		N-3	M-16	20-434	280	0	0	0		73.3	64.1
103		N-3	M-16	20-434	280	0	0		Base	75.8	66.8
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base Base	73.4	66.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.1	68.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0		72.4	64.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	76.2	66.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.3	63.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	77.2	72.6
103		N-3	M-16	20-434	280	0	0	0	Base	73.3	64.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.3	63.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	77.0	67.8
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	81.3	82.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	76.8	70.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	76.1	67.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	75.3	66.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.9	74.3
103	5/13/99	N-3	M-16 M-16	20-434	280	0	0	0	Base	73.4	64.9
103	5/13/99	N-3		20-434	280	0	0	0	Base	73.6	64.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	80.5	80.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	77.5	71.2
103	5/13/99	N-3	M-16 M-16	20-434	280	0	0	0	Base	71.0	61.4
103	5/13/99 5/13/99	N-3 N-3	M-16	20-434	280	0	0	0	Base	71.3	61.7
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.1	65.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.6	70.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.5	70.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.1	65.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.2	63.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	75.7	69.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	76.0	72.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.7	70.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.6	62.2
103	5/13/99		M-16	20-434	280	0	0	0	Base	85.0	85.6
103	5/13/99		M-16	20-434		0	0	0	Base	78.5	77.4
103	5/13/99		M-16	20-434	280	0	0	0	Base	71.3	65.7
103	5/13/99		M-16	20-434	280	0	0	0	Base	82.2	82.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	74.5	67.7
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.6	64.4
103	5/13/99		M-16	20-434	280	0	0	0	Base	75.7	74.2
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.8	62.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	83.3	84.1
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.8	70.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.7	72.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	77.5	76.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.1	69.8
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.4	65.8
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.2	62.7
103	5/13/99		M-16	20-434	280	0	0	0	Base	75.8	75.1
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.2	66.0
103	5/13/99		M-16	20-434	280	0	0	0	Base	75.4	75.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.3	68.5

Cluster	Date	Nesting Phase	Event Type	Event Dist.	Azimuth re.	RCW Response	Recovery time (min)	Remarks	Mic Pos.	SEL (dB)	at mic
		& Day		(m)	DOF		(******)			Flat	Α
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	82.1	82.7
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	78.9	78.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.5	62.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.5	63.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	78.2	77.8
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.7	69.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.5	67.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.5	66.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.1	66.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.2	64.9
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	84.4	84.7
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	82.8	83.2
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.5	74.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	75.5	69.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.8	68.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.5	67.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	77.8	75.9
103	5/13/99	N-3		20-434	280	0	0	0	Base	72.8	68.1
	5/13/99	N-3	M-16 M-16	20-434	280	0	0	0	Base	76.8	76.1
103	5/13/99			20-434	280	0	0	0	Base	63.5	55.5
103		N-3	M-16			0	0	0	Base	66.9	56.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.0	63.9
103	5/13/99	N-3	M-16	20-434		0		0	Base	74.0	65.9
103	5/13/99	N-3	M-16	20-434	280		0	0	Base	71.2	63.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.9	76.0
103	5/13/99	N-3	M-16	20-434	280	0		0	Base	70.1	62.7
103	5/13/99	N-3	M-16	20-434	280		0			75.6	73.1
103	5/13/99	N-3	M-16	20-434	280	0		0	Base	73.0	65.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.2	63.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.0	63.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.4	66.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base		67.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.1	67.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.7	69.7
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.8	0.4.0
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.1	64.9
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.6	64.6 84.3
103	5/13/99		M-16	20-434	280	0	0	0	Base	83.8 75.0	74.2
103	5/13/99		M-16	20-434	280	0	0	0	Base		
103	5/13/99		M-16	20-434	280	0	0	0	Base	77.7	77.7
103	5/13/99		M-16	20-434	280	0	0	0	Base	82.0	81.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	71.9	64.6
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.1	63.4
103	5/13/99		M-16	20-434	280	0	0	0	Base	82.9	83.0
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.2	68.2
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.3	67.0
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.8	70.3
103	5/13/99		M-16	20-434	280	0	0	0	Base	71.6	63.7
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.4	68.0
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.5	70.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	68.6	57.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.2	68.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	75.1	72.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.0	69.9

Cluster	Date	Nesting	Event	Event	Azimuth	RCW		Remarks	Mic	SEL (dB)	at mic
		Phase	Туре	Dist.	re.	Response	time (min)		Pos.	Flat	Α
		& Day		(m)	DOF						
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.6	73.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.1	64.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	78.6	78.5
103		N-3	M-16	20-434	280	0	0	0	Base	70.1	61.7
103		N-3	M-16	20-434	280	0	0	0	Base	82.2	82.7
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	74.6	73.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	80.7	80.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	83.7	83.8
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.4	69.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.6	62.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.8	65.7
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.6	70.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	76.9	75.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	69.7	64.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.4	66.0 65.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.3 69.2	58.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	69.1	57.8
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.9	67.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.7	63.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.7	70.5
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	75.0	66.6
103	5/13/99		M-16	20-434	280	0	0	0	Base Base	68.8	60.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.8	71.1
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.4	71.1
103	5/13/99	N-3	M-16	20-434	280 280	0	0	0	Base	73.3	67.7
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.2	64.6
103	5/13/99		M-16 M-16	20-434	280	0	0	0	Base	78.0	77.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	70.8	67.8
103 103	5/13/99		M-16	20-434	280	0	0	0	Base	72.4	67.2
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.6	70.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	87.2	87.9
103	5/13/99		M-16	20-434	280	0	0	0	Base	70.2	68.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	70.4	63.5
103	5/13/99		M-16	20-434	280	0	0	0	Base	80.9	81.0
103	5/13/99		M-16	20-434	280	0	0	0	Base	83.9	84.4
103	5/13/99		M-16	20-434	280	0	0	0	Base	78.2	78.6
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.6	69.9
103	5/13/99		M-16	20-434	280	0	0	0	Base	71.9	69.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.6	69.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	72.4	67.6
103	5/13/99		M-16	20-434	280	0	0	0	Base	81.5	81.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	70.3	68.5
103	5/13/99		M-16	20-434	280	0	0	0	Base	69.6	59.8
103	5/13/99		M-16	20-434	280	0	0	0	Base	83.7	84.1
103	5/13/99		M-16	20-434		0	0	0	Base	77.0	74.4
103	5/13/99		M-16	20-434		0	0	0	Base	73.8	66.0
103	5/13/99		M-16	20-434		0	0	0	Base	70.2	65.4
103	5/13/99		M-16	20-434		0	0	0	Base	68.3	61.3
103	5/13/99		M-16	20-434		0	0	0	Base	71.9	65.9
103	5/13/99		M-16	20-434		0	0	0	Base	70.0	62.4
103	5/13/99		M-16	20-434	280	0	0	0	Base	73.4	69.4
103	5/13/99		M-16	20-434	280	0	0	0	Base	69.6	61.9

Cluster	Date	Nesting Phase	Event Type	Event Dist.	Azimuth re.	RCW Response	Recovery time (min)	Remarks	Mic Pos.	SEL (dB)	at mic
		& Day	Type	(m)	DOF	response	time (iiiii)		03.	Flat	Α
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.0	68.6
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	73.2	65.3
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	70.8	65.4
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	72.7	70.0
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	71.5	63.8
103	5/13/99	N-3	M-16	20-434	280	0	0	0	Base	77.3	77.4
103		N-3	M-16	20-434	280	0	0	0	Base	68.4	60.1
103	5/17/99	N-7	M-16	20-434	280	2	0	0	Base	81.4	80.7
103	5/17/99	N-7	M-16	20-434	280	2	0	0	Base	84.0	84.4
103	5/17/99	N-7	M-16	20-434	280	2	0	0	Base	79.1	75.2
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	72.2	68.8
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	76.3	70.3
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	72.6	66.4
103	5/17/99	N-7	M-16	20-434	280	2	0	0	Base	76.3	71.0
103	5/17/99	N-7	M-16	20-434	280	2	0	0	Base	79.0	76.4
	5/17/99	N-7	M-16	20-434	280	2	0	0	Base	74.0	73.1
103 103	5/17/99	N-7	M-16	20-434	280	2	0	0	Base	78.3	73.4
						0	0	0		73.5	69.7
103	5/17/99	N-3	M-16	20-434	280		-		Base		
103	5/17/99	N-7	M-16	20-434	280	0	0	0	Base	83.4	82.8 73.2
103	5/17/99	N-7	M-16	20-434	280	0	0	0	Base	77.2	
103	5/17/99	N-7	M-16	20-434	280	0	0	0	Base	74.7	70.8
103	5/17/99	N-7	M-16	20-434	280	0	0	0	Base	75.7	72.4
103	5/17/99	N-7	M-16	20-434	280	0	0	0	Base	74.5	71.1
103	5/17/99	N-7	M-16	20-434	280	0	0	0	Base	71.7	67.7
103	5/17/99	N-7	M-16	20-434	280	0	0	0	Base	84.8	85.3
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	76.6	72.9
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	73.1	69.7
103	5/17/99	N-7	M-16	20-434	280	0	0	0	Base	87.9	88.1
103	5/17/99	N-7	M-16	20-434	280	0	0	0	Base	75.2	69.5
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	87.4	87.8
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	84.0	83.8
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	73.5	68.9
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	72.6	68.4
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	78.2	74.1
103	5/17/99		M-16	20-434	280	0	0	0	Base	86.0	86.4
103	5/17/99		M-16	20-434	280	0	0	0	Base	87.9	88.1
103	5/17/99		M-16	20-434	280	0	0	0	Base	79.2	75.9
103	5/17/99		M-16	20-434	280	0	0	0	Base	75.4	74.0
103	5/17/99		M-16	20-434	280	0	0	0	Base	74.3	70.6
103	5/17/99		M-16	20-434	280	0	0	0	Base	74.1	68.8
103	5/17/99		M-16	20-434	280	0	0	0	Base	83.2	83.2
103	5/17/99		M-16	20-434	280	0	0	0	Base	83.4	83.1
103	5/17/99	N-7	M-16	20-434	280	0	0	0	Base	76.3	73.3
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	73.8	68.4
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	77.9	74.3
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	75.6	71.2
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	71.6	64.0
103	5/17/99		M-16	20-434	280	0	0	0	Base	73.8	70.6
103	5/17/99		M-16	20-434	280	0	0	0	Base	70.4	64.8
103	5/17/99		M-16	20-434	280	0	0	0	Base	72.7	66.0
103	5/17/99		M-16	20-434	280	0	0	0	Base	79.6	79.2
103	5/17/99		M-16	20-434	280	0	0	0	Base	75.8	70.4
103	5/17/99		M-16	20-434	280	0	0	0	Base	72.5	65.9

Cluster	Date	Nesting Phase & Day	Event Type	Event Dist. (m)	Azimuth re. DOF	RCW Response	Recovery time (min)	Remarks	Mic Pos.	SEL (dB) Flat	Α
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	75.8	69.2
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	80.3	79.3
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	80.7	79.0
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	79.2	73.7
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	76.7	71.7
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	76.8	73.0
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	72.7	70.2
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	76.2	71.1
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	72.8	68.2
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	77.3	72.7
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	72.9	68.3
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	75.5	70.1
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	76.7	75.4
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	78.6	78.5
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	70.2	65.9
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	73.3	67.0
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	72.5	66.7
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	77.6	77.2
103	5/17/99	N-3	M-16	20-434	280	0	0	0	Base	70.5	66.0

Table D 6. Representative unweighted noise spectra for passive M-16 live fire on Fort Stewart, GA.

Marrier Self. (Align) at 13 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Γ		Т	Т	7							Γ																																
	Calc	Overall	SE	71.5	72.0	75.2	73.9	70.1	66.3	74.7	67.8	72.1	68.1	68.7	76.0	9.79	71.4	74.9	68.3	67.2	9.89	68.0	69.4	71.3	76.2	69.2	75.2	70.3	68.3	9.69	77.3	74.6	69.7	71.0	72.8	71.0	67.7	82.8	78.8	72.8	71.7	9.69	83.9	86.0
		20000	,	9	6	=	12		80		8	8																					ಜ					53					32	83
		16000	8	S	22	21	24		11	18		17	16	13	8	16	50	15	28	56	23	25	27	25	28	31	23	25	23	23	29	20	දැ	25	20	23	23	40	34	31		23	49	25
Figure F		12500	1	58	27	24	25		ဆ	13	13	8		8		11	13								20	20	23				50					25		49	44				53	88
No. No.		0000	-	8	34	30	59	32	13	21	17	21	19	21	13	13	25	14	23	23		52	50	31	31		31	28	56	56	35	23	32	52	56	23	20	25	20	58	27	23	55	83
No. No.		9008	-	88	40	37	37	42	8	56	21	25	23	25	17	24	56	19	32	32	33	32	25	35	39	35	38	39	35	33	41	37	6	34	35	33	33	28	52	33	3	31	တ္သ	29
		_	-	2	2	22	48	41	19	24	19	23	50	18		5	56		23	50	37	50	50	35	44	æ	45	46	53	58	45	40	47	35	36	37	38	83	99	88	62	31	23	72
		2000		41	42	41	48	46	98	36	98	37	35	35	28	30	35	32	37	39	36	37	37	41	50	43	20	53	42	42	51	48	49	45	44	43	42	65	22	46	39	39	ន	75
		4000	1	4	-	43	47	49	41	88	98	36	34	34	31	32	37	39	42	42	43	41	45	46	53	45	22	53	46	46	54	51	20	48	48	46	44	33	26	49	4	43	49	72
	5		1	6	8	49	52	47	41	40	45	37	98	99		98	40	33	45	41	44	43	45	47	22	47	28	49	48	49	28	55	54	51	20	47	47	73	99	25	47	45	69	۲
No. No.	,		9	£	89	51	54	51	88	45	88	43	45	6	53	41	47	30	47	47	49	47	49	51	61	51	28	22	51	54	61	23	53	54	54	23	51	75	71	54	25	51	75	74
No. No.		2000	9	89	49	53	51	20	33	49	44	49	47	45	82	45	51	30	20	48	51	20	48	51	62	22	9	22	53	22	64	59	55	22	57	54	52	69	89	22	જ	25	74	78
No. No.	2	1600	1	22	21	55	53	20	46	54	48	51	49	49	52	49	54	87	51	25	52	25	52	23	63	52	09	22	51	95	29	29	26	99	28	26	22	74	2	22	જ	25	75	%
No. Column Colu			1	23	54	58	26	20	49	22	47	54	25	25	34	25	29	34	25	23	54	54	53	54	61	23	8	22	25	99	99	28	99	54	28	22	25	92	7	જ	જ	ಜ	11	28
No.	5		-	26	55	59	58	51	20	29	20	22	24	22	32	54	62	34	24	22	24	26	54	09	62	22	99	26	23	22	99	29	22	22	29	28	જ	73	2	95	જ	32	75	22
No.			_	23	33	57	25	48	51	99	99	62	23	æ	⊢	⊢	-	⊢	⊢	\vdash	-	⊢	\vdash	\vdash	⊢	⊢	⊢	⊢	-	-		-	_	\vdash		-		8	98	23	8	51	Н	Н
No.	2	-	\rightarrow	-			_	_	⊢	_	-	├	├	⊢	-	⊢	⊢	├	-	_	-	\vdash	-	_	⊢	⊢	-	├-	-	-	├	-	\vdash	\vdash	-	-	-	⊢	⊢	┞	├	├	-	Н
No.		-	\rightarrow	\dashv				⊢	⊢	-	-	-	⊢	-	-	┢	-	-	⊢	-	ļ	-		_	-	-	-	₩	-	-	⊢	-	\vdash	-	-	-	-	⊢	-	-	₩	⊢	-	Н
No.			-	-				-	⊢	⊢	₩-	├	├-	⊢	-	\vdash	\vdash	\vdash	⊢	⊢	-	\vdash	-	⊢	-	-	-	╌	-	-	├	-	\vdash	\vdash	-	⊢	Η-	-	⊢	-	+-	├-	-	Н
No.	2		_	-			_	-	⊢	-	┼	\vdash	⊢	-		-	\vdash	-	-	-	-	├	-	\vdash	├	-	-		├-	⊢	⊢	-	-	-	⊢	⊢	-	-	-	⊢	+-	┢		Н
			\rightarrow	-+			_	⊢	⊢	_	! —	!	٠.	⊢	⊢	├-	⊢	—	┞	-	_	┡	<u> </u>		-	⊢		₽-	-	ļ	-	-	\vdash			⊢	-	├-	-	⊢	+	⊢	-	Н
	2					_	-	⊢	₩		₩	_	-		-	-	-	-	-	-	-	-	-		-	-	⊢	-	-	-	-	-	-	-	├	-		-	-	-	-	-	-	
	2 E	125		22	99	9	99	19	49	51	9	46	47	49	52	જ	45	54	28	£	28	22	29	61	99	29	29	5	8	8	89	65	19	အ	\$	61	8	98	æ	જ	2	æ	83	88
	3 18	3		23	61	25	83	28	44	51	49	47	23	51		┺	-		_	-		_		_	-	┺-		-	-	-	⊢	┺	_	_		-		-	-	-	╄-	╄	-	-
		8		-	-						_				_	_			_		_				1		·		_	_		<u> </u>			_	_	_	┺-	-	-	-	٠	-	-
		8	_	-+	-		-	-	┅	-	-	+-	-		+				_				_			1		_	_	_	_	_					-	_	-	_	-	-	-	_
		8					_	_	₽-	ـــ	-	⊢	⊢	┡-	-	-	-	_	_	_	_	_	_		-	-	-	-	_	_	_	-	-		-	-	-	-	-	-	-	-	_	_
	3	4	-	-	_	_	-	╌	⊢																																_	_	-	-
	ז פ	3 3	\dashv					⊢	_	-	-	-	-	_	-	-	-	-	-	-	-	-			-		-		-	_	_	-	_	-		-	-	+	+-	-	_	-		
	2 2	8	-	-	_	_	├-	├-	-	-	-	+-	-	-	-	-	_	-	-	╌	╄	+-	₩	₩	┿	-	+-	-	┺	+	-	+-	٠	+-	-	+-	+-	+-	+-	+-	+-	₩	+	+
	5 6	19		-	_	_	⊢	₽	╄		_	_	٠	-	_	-	-	-				_	_	_		_	_	_	-	-	_	-	₩	-	-	-	-	-	╄	+-	+	-	_	_
	100 6	13	\neg	8	20	48	51	85	4				_		_	_	_	_	_	-	-	T		Γ	T	T	T	T	T	T	T	T	Γ						T	T	T		Γ	П
		9		ន	20		-	—	-	-	-	-	-	-	-	-	+	-	+-	4	4	_	20	46	_	44	_		52	4	8	14	4		-		1	5	_		46		46	84
	1000	Pos.		Base	Base	Base	Base	Ваѕе	Base	Base	Base	Base	Base	Base	Base	Base	Base				Base	Base	Base	Base				1	100				L	1		8		ä		ä			ä	
25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 25 5.55 M-16 26 5.55 M-16 27 M-16 28 5.72 M-16 28 5.72 M-16 28 5.72 M-16 29 5.72 M-16 20 5.72 M-		Dist.	Œ	200	200	200	200	200	1200	٠-	+	_	_					0	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434								20-434	20-434	20-434	20-434	20-434	20-434
25. 5/17 201 2	ن اد	Type	:	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	50 ca	M-16	M-16	50 cal	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		200	_	_	_	_	₩	+						5/5	5/5	5/5	5/5	5/5	5/12	5/12	5/12	5/12	5/12	3/12	5/12	5/12	5/12	3/12	5/12	5/12	3/12													
	<u>ן מ</u>	į							R	25	52	25	83	25	33	52	52	52	55	103	<u>5</u>	<u> </u>	50	8	50	8	8	8	8	55	5	53	55	103	5	8	103	503	50	5	富	2	इ	ਛ

Calc.	Overall SEL	72.3	70.4	73.2	74.6	70.2	71.3	72.4	75.5	6.07	81.9	9.02	68.3	75.3	69.9	67.5	68.5	69.7	84.2	77.5	75.8	73.8	85.1	79.4	76.1	75.9	75.0	73.9	76.0	73.6	67.6	75.0	75.1	74.4	78.8	73.9	72.0	74.5	71.5	76.0	74.4	0.77	74.1	73.0
	20000	23																	23				93			20																		
	16000	56	27	28	92	27	20	56			41	27	20	27	23	52	25		36	28	78	59	20	83	83	ន	23	22	8	88	28	R3 2	8 %	2 %	83	30	27	27	53	22		30	56	56
	12500				හ		23	23	27		25								43	56	8		57	52		8	20					3 8	R		33			8	20	20	31	35		
	10000	33	50	22	36	೫	37	35	38	28	99	25	50	53	25		36	ಣ	51	36	ස	27	61	37	33	32	28	62	R	93	23	8	30	27	45	28	22	30	27	31	37	45	30	32
	8000	33	32	34	43	83	41	6	44	32	26	36	28	37	33	31	28	31	53	46	99	37	63	44	37	41	37	37	88	88	31	45	£ 2	3 8	2 2	88	31	8	34	88	4	49	98	36
	9300	40		37	20		45	44	48	34	61	88	56	40	34		56		69	47	6	41	99	48	£3	9	42	4	42	4	8	47	\$ 5	F 89	23	45	35	45	34	14	49	22	41	98
1	2000	48	42	46	99	39	84	84	53	5	61	47	41	47	44	37	38	38	65	52	48	48	71	53	ಜ	51	22	47	49	46	8	22	3 8	47	28	20	44	49	43	47	51	57	47	47
	4000	25	45	20	62	44	25	51	22	47	49	22	45	25	47	42	43	43	29	22	53	51	75	1.9	54	25	25	22	22	69	5	123	8 7	2 12	65	51	8	25	47	25	51	99	53	20
	3150 4	55	48	સ્	63	46	25	22	28	49	65	54	45	22	49	43	43	43	29	09	28	54	73	09	22	28	32	26	29	25	46	8	82 1	8 2	£ 6	55	25	55	20	25	88	19	54	23
	2500	88	25	28	92	25	32	26	28	54	89	55	21	22	53	48	49	48	74	62	61	26	74	64	59	61	58	57	58	26	25	9	3 2	8 12	3 8	88	83	83	55	8	28	64	28	22
	2000	_	_	Ь.	L.	L_	-	٠.	-	╀—	╀	-	⊢	┡-	⊢-	₩	-	⊢	⊢		_	_	┡	-	-	-	\vdash	_	\vdash	-	-	-		+		+	+	+	+-	+-	+	+-	8	\vdash
	1600	<u> </u>	_	╙		╙	╄	4-	╄	╄	1_	↓_	╄-	_		-	⊢	⊢	⊢	\vdash	_	⊢	┡	-	\vdash	_	\vdash			-	\dashv	-	-	+	-	+	+-	┰	+-	+-	+-	+	62	
L	0 1250	-	⊢	╙	!	╙	┺-	+-	+	+	╄	+-	⊢	├-	├-	-	-	⊢	⊢	-	⊢	⊢	╄-	-	-		\vdash		\vdash	-	\vdash	-	-+	-		+	+	┿	╁	+-	+	+	2 62	1-1
	800 1000	1	1	1				1		1_			_			1	_	_	_	_	_	_	_	_	_	_	\vdash	_	_	-	-	\rightarrow		-		-	+	+	-	-	+	+-	59 65	
	98 80		L										_	_	_	_	_		_	-	_		-	-	_	_		-	-		_	\rightarrow	_	_	_	_	+	-	-	+	-	-	999	$\overline{}$
	200	_			L				_	_	_	_	-	-	-	₩	-	-	-	-	⊢	-	-		-	_	-	-	-	-	\vdash	-	\rightarrow	-	-	-	-	+	-	-	+-	+	29	
	8		_		1	_	_		_	_	_	-	-	-	₩		-	-	+	-	_	-	-	+		$\overline{}$	-	-		_	_	$\overline{}$	-	-	-	_	_	+-	$\overline{}$		_	$\overline{}$	29	1
	315		_			_				_	_	1-	_	-	_	_	-	-	+-	-	-	-	-	—	-	-	_	_		-	-	-	28	_	-	-		┿	+		+-	+	0 57	+
	00 220	+	-	+-	1-	+	-	+-	64	+-	-	+-	+	-	+-	+-	+	+	+	_	-	•	+	+	_	_	64 62	_				58		_	7 2	8 8	3 6	84	33	1 15 2 6	3 15	88	8	l
	160 200	+	58	+-	-	╌	+	-	65	+	┯		56	+-	69	+	+-	+	+	99	+-	+	+	-	₩	-	-	├	-		┺	-	-	8 8	_	8 8	_	8	_	3 4	_	88	_	\vdash
(F	-	+	83	╫	15	1-	8	+	98	+	+-	S	-	+-	+-	+-	+-	₽-	+-	89	-	-	+-	+	₩	⊢	-	65	29	25	29	61	82	8 1	۵ و	8 2	5 8	i ii	3 8	8 8	3 8	99	25	ಚ
Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	2	63	8	83	29	50	62	8	88	ē	89	5	8	29	8	22	ß	19	69	29	29	83	ន	7	89	29	29	99	69	99	28	62	အ	67	8	8 4	3 8	8	3 8	+	+-	99	+	99
Freque	8	29	+-	+	+-	┿	+	+	8		+-	+-	+	┰	╌	┿	+-	+-	+-	8	┼	╄	+-	8	+	⊢		98	+	┼-	╀	-		-	-	8 8	-	+	-	+	+-	+	+-	-
enter	63	8	+-	+	+-	+-	8	+	+-	+-	+	+-	+-	+	+	+	+-	+	+-	99	-	+-	+-	+-	+	⊢	62 64	-	+-	┼	53 55	-	58 61	8	-+	2 2	2 2	+	+	+	+		+	57 64
trum	65 52	8	57 59	+-	54	+-	57 57		5 6	+-	+-	+-	+	99	+-	+-	+	┰	+	62 62	+	+-	+-	+	61 62	-	56	+-	┰	+-	+-	-	56 5	-	-	-		+	-	-	+	+	+-	20
e Spec	32	50	+	-	┰	+-	_		3 2	-		+		25	-	+-	+-	+	+-	22	+	+	+-	32	+-	35	+	-	+	+-	┅	├	55	-+	-	200		-	3 2	+		+	+	53
Octav	53	-	47	+	+	+-	3 2	_		+	-	3 4	+-	+	4	+-	\dagger	47	-	25	╌	22	+	-	69	+		₩	+	+	+-	₩	32		-	g :	4 4	2 9	£ 4	2 4	5 4	2 2	1 23	45
at 1/3	8	-	-	15		A.	5 5	3	8	3	5	3 8	2 22	SS.	23	17		22	2	23	25	8	5 4	46	9	54	25	8	4	T	8	84	44	69	2	2	9 6	ç	g g	ရှင်	2 0	g q	\$ £3	88
L (dB)	9	64	25	4	47	45	8	2	5 6	3 8	2 8	5 8	8	14	41	84	88	4	46	8	89	63	64	84	22	46	9		64	88	46	4	20	47	8	£ ,	£ 7	5 5	3 8	3 4	₽ £	7 6	\$ 65	50
and SE	5				I				44	-	52	3,	47			67		55			4					L							43		9	1			1	1	1	1		$oxed{oxed}$
100	9	و	50	3	9	44	-	٦,	40 P	Н,	<u>⊶</u> g	3 5	+-	-l <u>a</u>	7	+	+-	+	+	+-	-l a	9	3 9	48	+	+-	╌	+-	+	+-	+	- l	\vdash	41	as l	4	๛⊢	-	base	base	base	20 I	} g	48
Mic	Pos.	Ras	Bace	Ray	Base	Baco	Dago	Dasa	å		å				å	_L.		ட						æ				1	Base	_		_	Base	Ba		8	_	B				٥	Bace	æ
Fvent	Dist.	20.434	20.434	20.434	20.434	767 06	40-404 00 404	_	_	+C+-07	404-00	10.404	20-434		_	20.434		_									20-434					_	-	-	_		-	_	_	$\overline{}$	20-434		20-434	
Event	Type	M.16	N 4	M-16	M-16	M 46	M-10	O - W	M-10	Q .	01-M	W-W	M-16	M. 46	N A	M. 16	M-16	M 46	N 45	M-16	M 18	M. 16	M 46	M.46	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	2 ×	M-16	M-16	9-1₽	9 -19 -19	M-16	M-16
		5/19	_		+	+	-	-	-	-	-	21/6	+		-	-		-	+	-	+	-	-	-	1 5		_	┿		-	5/12	5/12	5/12	5/12	5/12	2/12	5/12	2/2	2/12	21/2	2/12	21/6	2/12	5/12
Col Date	-		3 8	-	+	+	-	-	3 8	-	-	3 8	-	+	-+-	-	-	-	-	_	-	-	-1-	-	-	-	3 5	-	-		+	2	+	-	-		ន	-+	-	2	<u> </u>	3 8	3 5	3 2

Calc	Overall SEL	71.2	71.4	73.1	7.97	7.4.7	76.5	73.3	0.69	67.3	0.79	70.2	78.4	78.0	74.8	72.6	70.3	72.1	70.1	72.1	77.2	72.0	70.3	72.3	73.2	76.4	71.4	76.7	70.6	77.5	72.5	75.9	75.0	72.1	71.8	71.9	72.9	73.4	75.6	73.7	74.5	/3./
	20000						20														20									52	25			L						23		
	16000	30	23	12	23	52	53	50	23	23	20	25	28	35	59	23	56	52	25	23	56	8	25	8	88	83	8	53	20	33	8	3 8	ន	27	23	52	28	27	83	56	82	3 8
	12500	23		50	31	33	31						20	41	33						32				2	8		દ્ધ		34		7							56	34		5
	10000	33	59	56	59	56	40	30	23				31	47	38	58	22	28	56	20	42	52	53	27	8	37	52	æ	28	\$	92	40	8	56	23	22	25	25	41	38	30	38 8
l	9008	41	34	37	98	37	47	33	31	53	30	32	39	51	44	98	32	35	36	34	47	34	32	34	용	£	33	£	33	æ	5 3	33	98	32	83	88	38	83	49	49	8	\$ 8
ı	9300	44	31	38	43	33	51	37					42	55	49	9	34	36	33	32	49	37	33	8	33	8	7	4		22	8 3	5 g	37			23	27	ន	55	48	45	72
	2000	51	43	46	49	47	54	44	39	35	37	37	50	58	52	47	42	45	44	45	54	43	44	44	46	28	89	52	39	26	£ 2	47	46	41	63	43	45	43	54	52	69	3
	4000	54	47	20	53	51	58	49	43	40	45	42	54	61	55	25	49	49	47	51	26	48	47	ф Ф	တ္တ	88	4	82	4	19	φ (2 3	82	46	47	64	89	46	19	64	23	3 :
	3150	29	51	53	99	22	63	51	44	41	14	9	28	64	29	22	23	20	51	22	19	51	25	24	25	8	5	28	45	99	8 8	3 %	SS SS	84	48	23	69	47	9	69	28	<u>ء</u>
	1250 1600 2000 2500 3150	23	26	99	61	25	64	55	47	46	47	47	09	29	63	22	22	99	54	29	62	55	54	27	22	8	25	8	25	8	25 25	3 8	8	25	54	53	54	53	19	65	8	3
İ	2000	62	22	28	09	28	62	22	49	45	84	48	61	29	64	59	28	22	55	28	2	22	54	eg Eg	22	82	22	19	54	8	8	8 %	88	ន	55	28	28	53	65	22	8	25
	99	62	22	22	19	28	65	26	20	45	25	8	62	89	83	22	22	28	26	57	29	29	53	82	83	<u>.</u>	22	64	22	8	8	2 2	8 8	ES	53	22	8	54	જ	53	8	eg i
	1250	19	99	22	09	28	29	26	51	47	25	5	49	99	64	22	26	09	28	28	89	22	23	88	82	8	25	8	99	8	23	2 8	8	25	ន	25	59	જ	99	20	8	22
1	<u>8</u>	88	29	28	59	23	29	26	23	49	જ	23	29	65	63	26	53	09	09	22	29	26	53	22	82	8	21	8	25	8	22	2 2	: 8	69	ន	ಜ	25	55	49	20	19	8
	800	55	25	26	22	54	64	54	64	45	48	69	63	63	19	54	25	28	25	26	64	54	20	33	25	8	48	8	23	22	49	\$ &	ន	84	49	ß	32	SS.	8	47	82	2
	630	25	51	52	99	53	61	53	51	48	21	54	26	29	22	51	52	54	22	53	61	21	49	51	5	22	47	26	69	ಬ	4	3 6	2	45	49	47	25	84	92	45	54	22
	200	51	53	ಬ	26	55	28	સ્ટ	51	6	25	જ	22	28	53	52	20	51	54	51	22	20	49	21	25	27	49	54	48	25	æ :	ន	23	84	49	8	49	49	25	42	જ	25
- 1	400	47	25	22	25	22	26	22	20	47	84	49	26	29	54	20	2	25	51	53	99	51	47	25	83	જ	46	54	49	83	9 !	ន	8	5	84	22	69	49	49	46	22	21
	315	51	54	22	69	28	28	28	22	48	51	51	29	ೞ	55	54	51	55	20	52	57	54	23	54	26	88	25	59	53	88	22	1 8	S 88	55	22	33	54	æ	23	જ	8	8
	250	51	22	99	65	65	ន	62	54	54	53	22	64	65	28	61	22	5	53	29	61	9	99	29	8	8	25	83	22	82	8	3 8	18	8	8	89	8	19	23	92	හු	5
	200	51	29	61	29	65	62	62	29	28	22	29	29	64	62	62	9	82	54	69	63	62	22	29	64	8	82	65	99	အ	8	\$ 2	29	19	29	ß	8	8	8	88	8	8
	9	26	19	8	99	છ	62	62	28		-	22	\vdash	65	\vdash	-	⊢	-	98		Н		-	9	-	-	9		83	-	\rightarrow	8 2	83	8	-	+	+	+	8	88	-	ळ
	100 125	+-	ន	⊢	89	25	ಚಿ	4	-	-	26	-	\vdash	49	Н	_	-	-	82	_	\vdash		-	-	-		\vdash	_	62	-	-	9 6	+	┿	+	-	+-	+	65	8	-	8
		99	╌	8	29	29	93	65	├	├	8	⊢	2	88	_	_	8	-	-	-	-	_	Н	-	\dashv	-1	\vdash		-	-	-	2 2	+-	+-	┿	+-	+-	+	99	9	-	8
2	8	88	 -	⊢	88	99	╌	65	├	├	22	æ	71	99	-	63	9	⊢	Н		99	\vdash	-		-	-	64	-	62	-	-+	8 8	+	+-	+-	+-	+-	+-		-	\rightarrow	8
	50 63	8	1	62	3 67	7	-	0 64	⊢	⊢	₩	⊢	-	5 64	-		9 2	-	-		-		Н	_	\vdash	-	8 62		9	\dashv		8 8	-	8	+-	┰	┿	+-	60	99	-	S P
	8 R	53	55 58	58 62	58 63	55 57	58 61	92 29	├	-	₩	55 59	-	-	\vdash	\vdash	54 57	4	54 5	\vdash	-	-	-		-		55 58	-	22 28	-	-+	3 8	-	28	+-	55	-	+-	55 6	+	-	9 8
3	32 4	+-	-	╌	57 5	53	-	55 5	48 5	├	╂	50	⊢	-	\vdash	_	⊢	53	-	50 5		\vdash	Н		-	-	55 5	-	\vdash	\rightarrow	-	96 3	+-	25	+	+	+-	+-	52	+	53	
	25	8	├-	55	├-	20	-	47	40	45	₩	8	┼	-		35 5	4,	⊢	\vdash	\vdash	-	\vdash	Н	51 4	-	-	25		Н	\rightarrow	-	9 5	-	+-	+	+	+-	┼	83	+	\rightarrow	<u>છ</u>
	8	45	├-	┢	52	49	₩-	₩	49	H	-	74	┼	53	۳,	├-	47	⊢	-	\vdash	-	\vdash	Н	47		46	\vdash	_	\vdash	\rightarrow	-+	8 4	-	8	+-	+-	+	+-	8	+-	\vdash	43
/	92	+	-	├-	49	46	20	Ť	\vdash	25	\vdash	╌		-	88	-	-	49	-	-	46	-	\vdash		-	_	Н		38	\vdash	+	+	-	15	+-	+-	+	┿	8	+-	\vdash	د
Dally SEL (up) at 1/3 Octave Specifical Center I requestions (112)	13			H			\vdash	14	t		H	47	┼─			<u> </u>		H	51	\vdash						_	П	Г	П		1	4	+	2 =	+-	46	+	14	╆	5	П	٦
200	2	4	\vdash	14	46		1	47	4	T	46		-	51			25	=	20		25	\vdash	H	41	84		41	20		44	-	22	-	2	+-		T	=	T	4	9	46
+	Pos.	Base	1 00	Base	Base	Base	Base	١	╆	Base	Base	Base	Base	-	Base	Base	⊢	₩	Base	Base	Base	Base	Base	-		Base	Base	Base	Ваѕе	\vdash	\dashv	Base	+	+-	+-	Base	Base	Base	Base	Base	Base	Base
Event	Dist.	4	_	20-434	20-434	20-434	20-434		L.		20-434		20-434	20-434	20-434	20-434	I			20-434	20-434	20-434	20-434		20-434			20-434	20-434		20-434	20-434			_	20-434	20,434	20-434	20-434		20-434	20-434
COL. Date Evelit Evelit	Type	M-16	_	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	_	+	M-16	M-16		_	M-16		M-16	M-16	M-16		M-16		M-16	M-16	M-16	M-16		$\overline{}$	9-19	_			_	_		+-			M-16
Date		5/12		5/12	5/12	5/12	₩	-	-	-	-	٠	-	5/12	5/12	_	5/12		5/12	5/12	-	5/12	-	5/12	-	5/12	5/13	5/13	5/13	5/13	-	-	5/13	+	5/13	5/13	+	+-	5/13	5/13	5/13	5/13
-		+	103	50	103	5	103	-	-	503	+-	53	-	103	-	-	-	+-	103	103	103	53	-	-	_	-	83	53	+	_	-	<u>ස</u>	-	+	-	+	+	+-	+	+	-	103

Calc.	Overall SEL	73.0	75.4	77.8	70.9	72.0	72.0	71.5	71.5	72.3	73.8	75.6	6.07	72.3	73.7	70.5	73.4	71.7	79.1	83.4	72.6	85.0	73.4	76.0	76.1	76.0	74.6	76.9	73.2	74.0	80.5	73.1	79.8	74.0	7.1.6	00.00	9.09	200	70.3	75.3	1.07	0.27	73.6	2.60	7.0.7
	20000				1		8				56									59		56						20			SZ	1	1		7.0	3 6			1	\dagger	1	1	1	1	
	16000	27	59	56	23	88	27	56	52	56	56	52		52	22		56	30	36	49	56	46	56	28	59	56	28	32	52	31	£ 8	8 8	g	e c	3 2	5	3,6	8	9 6	3 8	83 2	3 8	23 25	97 87	07
	12500		30	ន						28									43	54		53					23	25	33	33	48	ç	54		2	2 2	2000	3							
	10000	23	38	37	27	8	27	50	31	31	ಜ	58	36		33	28	23		48	22	53	99	30	30	33	32	34	33	40	42	20	83	æ 8	9, 8	S	8 8	8 8	300	9 5	3 5	3 2	25	e 2	2 6	23
	8000	32	45	44	34	8	33	63	38	39	36	33	9	32	88	34	36	33	20	09	88	29	38	38	40	40	42	45	45	47	25	8	5	20 20	\$ [6 8	8 8	3 4	8 8	25 6	95	36	37	75	40
	9300	50	20	69	æ	83	27		45	33	36	38	43	52	45	30	34		25	63	99	19	33	41	45	43	48	20	25	49	8	88	88		5	20 02	9 6	2 9	₹	٤	3 8	£ 3	8	٤	श
	2000	43	54	54	42	42	14	9	46	46	45	46	49	41	49	43	43	41	29	92	47	64	46	48	51	20	23	99	21	53	5	5	25	9	± 8	3 8	70 4	2 5	÷	3	44	45	45	\$ 6	45
	400	48	28	28	8	47	46	44	25	49	49	49	52	46	49	46	46	47	99	99	21	29	49	25	53	54	52	29	22	54	29	49	£ 5	42	φ l	3 3	ē 5	3 2	5	£ :	46	æ (6	4	4/
	3150	25	63	23	21	£	46	45	53	54	53	54	99	48	54	20	48	47	9	65	53	20	25	54	22	22	28	63	22	09	19	25	99	37	4 (8 3	20	3 2	2	5 5	25	49	22	£ 5	\$
	2200				-		-			-	\vdash	\vdash		_	-	-	-	-	⊢		\vdash	┡	⊢	-	├	-	-	\vdash		\vdash	-+	-	-	+	-	-+		+	\rightarrow	-	-	-	8	\rightarrow	\dashv
	5000				-	_	_		_	_	⊢		<u> </u>	-		-	-	-	⊢	⊢	-	┡	\vdash	⊢	-	-	⊢	-	-	\vdash	-	-	-+	-+	+	-+	+	+	+	\rightarrow	-	-	22	-+	-
	1250 1600 2000	_	Н	-				-		\vdash	-	\vdash	⊢	<u> </u>		<u> </u>	-		⊢	-	-	-	-	⊢	⊢	⊢	├-	┢	 	Н	-	\dashv	-		+	+	-	+	-+	-	\rightarrow	-	53 55	\dashv	
	1000	-	\vdash	-				-		-	-		⊢	⊢	<u> </u>	_		١	-	-	-		-	-	⊢	⊢	-		├	-	-	-	\dashv	-	-+	+	+	-	-+	-	-	-	8	-+	\dashv
	900	_			_	_	_	ш		-	L	-		<u> </u>	_	_	!	-	₩.	-	٠.	┡-	↓_	-	├-	╄	₩	₩	-	-	-	-+	-	-	-	-+	-	+	-+	-	-+	\rightarrow	8	-	_
	930	_						\vdash		_	└	ļ		_		_	_	_	-	_	-	-	-	-	-	1	-	-	₩	-	-	-	\rightarrow	\rightarrow	-+	-	-	-	-	-		-+	쯍	-	-
	200	_		ш	_					-	-	_	_	_	┡-	_	_	┡-	-	₩	-	↓_	-	+-	⊢	+-	-	-	-	-	\rightarrow			-	-+	-		-+	-	\rightarrow	-	-	ය	\rightarrow	_
	400		_	\mathbf{H}	_		_	_			-	-	-	-	-	-	-	_	-	-	+	-	-	+	-	-	-	-	-	-	\vdash	_	-	-		-	-	-+-	\rightarrow	\rightarrow	-	-	8	-+	_
	250 315		_	_				_	-	_	_	_	_			┺-	_	-	┺	-	-	-	-	-	٠	4-	↓	-	-		-		-	\rightarrow	-	-+	-	-	-	-	-	-	61 56	-	-
	200	+	-	64 6	_	_																																					63		
	160	9	61	Н		_	09	8	61	62	19	8	8	83	83	53	62	61	⊢	61	╁	æ	-	╁	╌	49	-	62	19	8	26	-	\dashv	-		\dashv	\dashv	+	-	-		\rightarrow	\vdash	-	8
(ZE)	100 125	8	64	89	ೞ	99	65	ೞ	64	19	8	88	အ	ಚ	92	23	65	64	8	49	63	65	98	89	88	99	જ	64	ಚ	æ	28	65	64	83	8	-	-	-		\rightarrow	\dashv	\vdash	⊢	53	8
encies	8	8	╌	_	-	⊢	65	æ	છ	જ	-	-	8	-	98	8	-	2	+	-	2	┿	+	-	+	╀	+	+	╌	-	Н	-	Н	-	-	-+	-	-	-	\rightarrow	\vdash	-	Н	_	98
Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	63 80	99	62 64	-		-	62 64	62 64	62 63	╌	65 66	₩.	23	62 65	-	+-	+	+	+	-	62 62	+-	+-	+	+-	╄~	+-	+-	+	┰	Н	\vdash	\vdash	-	-1	-	-	28 28	-	64 65	\vdash	Н		48 50	63
Cente	& @	55 6	╌	\vdash	_	9 /9	9 69	9 09	-	61	⊢	63	╄	+-	-	55	┰	9	+	+	+	+	+-	+-	+-	┿	┿	+	-	+	-	\vdash		-	\dashv	-	-	45	$\overline{}$	09	Н	-	Н	\vdash	19
ectrun	8	+	26	-	જ	22	28	88	-	25	+	╌	99	↤	28	₩	+-	+-	+-	88	+-	+-	+-	+-	+-	+	+-	88	+		-	\vdash	Н	22		28	46	8	25	25	29	22	22	20	28
ave Sp	32 40	쟠	54	22	25	25	23	25	24	25	28	28	33	54	જ	47	တ္ထ	55	84	52	29	-	-	57	28	82	25	23	5	54	-	_	49	20	52	26	9	22		25	1-	-	\vdash	45	_
1/3 Oct	22	83	25	33	22	4	49	25	8	+-	+	┿	2	+-	+-	+-	+-	+-	+-	33	+-	94	+-	+	+-	+-	+-	22	+	+	88	-		44	-	5	4	\dashv	_	\vdash	-	-	46	38	\vdash
dB) at	8	_	5	┼	25	45	49	48	2	+-	+	+-	+-	+-	46	╀	╌	+	88	+-	+-	1	49	+-	+-	+	+	47	┿		┼	47	-	88	_	_	합	8	1 41	Н	-	జ	_	-	8 51
SEL (13 16	43	+-	49	84	41 54	48	88	43	49	43	51	4	45	47	4	4	84	47	23	4	4	89	55	48	64	200	65	88	47	4	41 51	43 47	53	2(49		-	41	22	49	\vdash	41	44	88
Band	5	49	+-	14	44	46 4	-	47	8	+	+	+	+	4	+	46	14	+	+	5	2 4	+	47	+	8	9	+	+	46	+	48	⊢	51 4			44	47		44	46	\vdash	84	41	20	46
Mic	 	Base 4	+	+	Base 4	Base 4	Base	Base 4	-	-l <u>o</u>	Base	Base	Base	Base 4	-l a	Base 4	+-	Ⅎ໘	Ваѕе	Rase	+	⊣ ფ	Race 4	_1 ~	Rase /		-10	Base		ے ا	Base	Base	Base	Base	Base	-	Base	Base	Base	Base	Base	Base	-	-	Base
Event	Dist.	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	_	_		20-434	. Ł	20-434	20.434	20-434	20.434	20.434	20-434		_	20.434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434
Event		M-16	_	_	M-16		M-16	-	-	_	_		_							_	_	~	_				_	_	_	_	_	_	_	M-16	M-16	M-16		M-16	M-16	M-16		-			
Date		5/13		+-	5/13	₽	+	-	-	-	-	-		-	5/13	-	-	-		-	-	-	-			-		-	-	_		-	_	_	5/13	5/13	_	5/13	5/13	-	-	-		5/13	5/13
50		-		ŝ	+-	+-	+	+	+-	+-	+	+	-		103	-	-	_	_	+	-		3 5		_	_	-	_	-	-	සි	-	+-	-	103	50	_	_	-			ਛ			<u>5</u>

ن	=	-	7.	رې	0	0.	6	2	0.	-	6	ω,	9	4.	-	6	9.	4.	6.	.2	9.	9	89	5.	4	0	89	7	.7	6	.7		٠ , ,		+ u	, _	9	0	_	7.	75.2	7	3
Sa Se	Overall SEL	78.1	72	71.2	2	9/	73	74	81	73	73	200	70	73	74	7	73	74	84	70	71	80	73	72	84	73	74	74	88	72	23	82.1	7 5	100	5 8	3 8	8	150	74	73	152	76	73
	2000	33							50			32						50	38					50	36				33			88		33	3 8	3 8	88	20					
	16000	90	20	ຂ		28	52	22	37	30	27	49	23	28	56	50	52	27	51	20	52	36		23	49	50	53	53	55	22		£	/2	8 2	5 0	£ 12	25	8	28	26	22	52	26
Ī	12500	22							47			99							22			45			54	52			09			92	8 6	2 2	8 2	3 85	65	30		20	20	ន	
-	10000	54	25	23		20	36		50	50	30	58	20	27	56	52	50	56	61	27	59	20	30	50	59	90	31	27	62	31	22	88	£ 5	* S	9 5	3 6	20	41	23	30	33	37	29
- 1	9000		-	_	53	32	41	33	L									-						_		_	L		H	\dashv	4	19 !	+	+	+	+	+	+	+	\vdash	\vdash	-	+
Į.	_	83	\dashv	4	_		_	_	_	_	33		_	_	_	27		L			Н	Н	Ш		L	L		_	Н	\dashv	-	8	+	+	+	+	╀	+	+	╀	┝	-	+
	2000	59	43	£	40	43	20	43	64	43	46	61	38	43	48	40	41	45	65	43	45	61	44	42	99	48	47	45	89	49	48	98	ន	5	3 5	y 99	55	25	46	47	51	54	45
Ì	4000	28	47	46	44	48	53	47	83	89	22	29	45	47	49	44	46	48	29	48	49	89	48	47	70	51	25	49	7.5	53	5	8	8 8	3 8	2 1	2 8	9	25	25	51	25	잫	å
Ì	3150	62	20	84	5	25	35	20	8	51	ಜ	65	42	49	51	42	49	25	11	51	25	63	51	48	74	55	53	51	77	26	23	22	8 8	3 8	3 %	2 12	2	88	53	53	99	S	ន
	2200	65	55	23	S S	22	26	23	2	22	55	83	49	25	54	22	23	55	75	54	99	70	54	25	9/	82	22	54	73	88	28	74	5 6	8 4	9 8	2 19	1	8	88	57	8	5	33
	1600 2000 2500	29	99	54	25	99	26	54	74	99	22	73	51	53	22	25	32	26	78	54	26	71	54	53	11	99	9	સ્ટ	78	28	8	22	3 8	8 8	7 5	2/2	14	2 5	88	88	150	E	22
	99	65	99	22	25	26	22	53	73	22	22	73	52	25	54	25	26	26	9/	54	22	72	54	53	9/	22	61	26	77	99	25	23	2 8	3 8	2 8	y	: 2	8	88	89	82	83	2
	1250	09	22	22	25	22	88	23	72	22	99	75	22	20	54	51	22	સ્ટ	75	25	54	71	54	15	74	8	99	55	75	62	22	52	2 2	3 7	=	2 8	2 2	100	83	28	62	65	63
	900	59	53	53	21	54	57	53	20	57	26	75	26	51	23	51	54	54	75	52	52	69	53	25	73	9	28	22	72	09	92	7	2 2	3 5	2 8	8 2	g	8	55	55	19	25	5
	88	56	49	20	47	25	54	51	29	55	25	72	52	48	92	20	25	51	71	46	51	89	49	22	23	65	26	53	69	59	53	29	19	3 6	١٥	2 6	: E	3 23	5	25	88	19	1
	93	23	48	69	46	20	51	49	62	25	જ	29	49	48	20	47	8	က	29	47	49	64	8	64	29	28	23	22	69	22	ည	8	g !	2	8 8	ន្ត	3 8	2 2	S	6	26	88	3
- 1	20	54	51	48	46	25	20	51	22	22	51	62	69	51	25	21	2	51	63	49	20	59	20	49	62	25	23	53	63	25	25	5	5	3 8	3 3	ž 2	2	3 23	21	જ	જ	33	5
Ī	400	25	20	48	48	53	51	ಬ	22	ည	53	22	47	25	જ	င္သ	25	53	29	45	47	28	ည	49	8	48	20	53	99	21	25	26	£ 6	g G	3 5	÷ 2	5	22	51	20	54	ß	
	315	28	99	54	25	69	26	28	29	22	22	23	23	28	22	22	25	22	28	21	21	22	26	22	22	54	22	26	62	53	22	82	69	7 5	7 5	5 7	3	57	55	54	88	28	
	250	64	29	28	59	63	62	62	63	29	62	61	23	19	Ь.	_	_	⊢	_	_	⊢	62	63	29	61	23	62	8	85	82	8	8	3	3 3	8 5	3 R	; £	8	8	29	9	9	1
	200	65	62	29	29	64	62	ಔ			62				$\overline{}$	9	_	-	_	_	-	_	-	-	61	-		-	-	-	_	8	-	-	-	-	-	-	+-	+-	83	+	+
	160	29	\vdash	23	_	99	┺	-	-	-	ន	-	-	_	_	9	_	_	_	_	-	99	_	⊢	_	-	╄~	-	-	-	-	ස	-	-	\rightarrow	-	-	4	-	-	╄	+-	4
(117)	100 125	-	-	62	_	\vdash	-	છ	-	-	99	-	-	-	-	8	-	-	-	-		-	-	-		+	-	-	-	-	-	29	-	-	-	8 8	+-	8	+-	+-	+-	-	4
i i cia	5	-	Н	မွှ	_	⊢	├	⊢	88	₩	99	-	ន	-	⊢	64		29	⊢	-	-	89	-	-	65		-	-	-	-	_	67	-	3 8	-	ន	-	+	+	+-	99	+	4
3	8	ļ	-	ន		-	⊢	જ	88	⊢	8	⊢	62	-		ន	$\overline{}$	99		-	-	-	-	_	-	-		-	-	-	_	99	-	8 8	-+	8 2	+		+-	+-	99	╄	4
enter	63	-	-	62	_	88	├	₩	-	-	64	-	-	┡-	_	62	-	⊢	-	-	_	89	_	_	_	_	_	┺	-	-	_	99	-	3 3	-	-	-	-		+-	+	+-	+
	20	8	\vdash	29		-	-	23	-		9	-	-	_	-	9		-	-	28		8	ļ	-		-	-	-	-	-	_	63	-	Z :	-	3 8	+		+-	+-	9	+	4
2000	2 40	-	-	3 26		88	₩	╄	29	╌	╌	53	-	-	89	2	-	₩	⊢	⊢	⊢	-	-	-	+	-	-	-	-	-	$\overline{}$	22 9	\rightarrow	-+	-	6 u	+	+	54 55	+-	55	╄	+
e 1	22	╄		48 53		├	20	+-	-	-	49 54	-	-		├-	51 52		-	-	-	-	53 57	-	⊢	—	-	55	-	-	-	_	20 26	-	200	\$ 6	-	2 4	-	_	-	42	-	4
2	22	₩	\vdash	51 4	-	⊢	╌	-	50	-	+-	+	-	45 4	2	43 5	_	50	-	48	38	51 5	+	-	+-	47 4	+-	+	-	38	-	_	\rightarrow	-	-+	8 6	2 9	-	8	-	+	+-	+
(an)	16 2	₽	\vdash	52 5	_	4	-	52 5	┿	_	-	45	-	₩	84	45 4		_	_	-	38	-	╄	-	-	-	44	-	-	-	-	48	-	4	-	4 5	-		3 6	+	+	+	4
135	13	1	-	-	7	-	-	"	"	-	-	-	4	17	7	1	-	-		7			-	-	-	-	Ť	-	\vdash	-	-		1	+	+	+	+	+	+	-	14	+-	+
Dail	9		-	44	41	\vdash		4	47	46	\vdash	\vdash	ಜ	⊢	47	52	H	\vdash	H	\vdash	=	4	\vdash		14	8	4	1	1	41	-	Н	8	+	+	+	\dagger	+	4	:	+	T	1
-	Pos.	Base	Base	-	Base	Base	Base	Base	_	-	Base	Base	Base	Base	-	Base	Base	Base	Base	Base	—	Base	Base	Base	Base	_	+	- as	Base	Base	Base	Base	Base	Base	Base	Base	Dasa	Baco	Race		Base	Base	0000
Event	Dist.	20-434	20-434	1	20-434	20-434	20-434		20-434	I		20-434	1_	1	,	20-434		20-434	20-434	20-434	•	20-434		20-434		1	_	1	20-434	20-434		1 1	1	20-434	20-434	20-434	200	20.424			20-434	20-434	
Event	Туре		M-16 2		M-16 2	M-16 2	M-16 2	M-16 2						M-16 2	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16 2	M-16	M-16	M-16		M-16	M-16	M-16	M-16	M-16				M-16	0 4	M-10	M.th	M-16			
Date		-	-	_	5/13	5/13	5/13	5/13	-	5/13	+	-	-	-	-	5/13	-	-	-	-		5/13		_	_	-	-	-	-	5/13	-	-	\rightarrow	\rightarrow	-+	-	2 6	_	2/13	5/13	5/13	5/13	;
<u>8</u>		+	103	-	-	-	+-	╌	103	+	+	+	-	-	-	-	-	-	-	-	-	103	-	-	-	+	-	+	_	5	-	-	-	-	-	<u> </u>	-		_	_	-	-	-

Calc.	Overall SEL	75.8	73.4	74.1	72.4	76.2	72.3	77.2	73.3	72.3	0.77	81.3	76.8	76.1	75.3	74.9	73.4	73.6	80.5	77.5	71.0	71.3	72.1	73.6	71.5	73.1	72.2	75.7	0.92	74.7	71.6	85.0	/8.5	71.3	74.5	79.6	75.7	70.0	0.57	83.3	72.8	73.7	77.5	72.1	71.4
	20000					-		23	59			45				8	27		35								50					39		S	3	\dagger	36	3	8	33	1				ន
lŀ	0	52	50	25	27	27	23	27		28	52	54	ន	20	83	33		27	43	25	23	56	58	56	52	25	23	27	52	29	52	54	87	72	2 8	8	90	3 8	3 5	84	92	31	25	22	52
	12500							56				29	ຮ			41			52	50				31		23			27	32		19	32	G	3				1	26		8	37	22	
	10000	52	56	56	25	ន	59	39	23		32	09	33	92	20	47	53	59	99	37	23	56	92	37	30	31	20	31	37	39	50	63	14	83 53	3 6	S	22	ò		26	33	34	44	34	27
		32	37	34	34	32	34	46	32	34	33	61	93	37	34	52	33	34	28	44	34	53	35	44	35	38	33	စ္တ	44	46	32	64	46	8 2	3 8	8 8	3 5	3 6	3	29	37	41	25	\$	34
1 1		31	ક્ક		56	32	59	51	န္တ	92	37	62	44	32	31	99	33	53	29	48	27	52	37	46	35	41	22	4	47	49	27	65	25	\$ 8	8 8	3 8	3 5	÷ 6	3	8	40	45	54	44	88
	2000	45	45	43	44	44	42	52	45	41	48	64	48	47	45	22	43	45	62	25	45	39	46	5	45	47	9	49	25	52	41	69	26	47	8	£ 5	4 5	3 8	9	8	47	53	28	49	5
	900	22	49	47	48	0	46	26	84	46	52	64	54	20	49	64	47	48	65	55	47	44	20	54	48	51	44	53	29	54	44	29	න	2	8	£ £	3	*	44	69	25	54	29	54	48
	3150	52	53	51	51	23	49	8	25	47	55	69	22	54	23	29	51	20	73	28	20	45	52	28	51	22	44	54	9	22	64	9/	22	52	١	2	9	3 4	£	25	24	22	65	99	23
	2500	22	56	57	24	26	23	8	55	23	28	75	23	22	29	29	35	54	89	8	25	S	26	23	88	26	51	57	09	28	49	9/	64	54	2	22	20	3 3	2	2	82	છ	88	89	22
	2000 2200	88	82	83	55	99	54	64	55	54	88	75	62	28	22	65	26	22	69	09	52	22	26	99	61	55	53	57	29	99	51	79	69	32	9	8	7 8	8	22	78	9	64	69	88	26
	1600	22	88	8	55	22	54	64	55	54	28	75	63	28	22	64	26	22	73	62	2	21	22	છ	ន	92	54	8	25	8	25	92	7	92	2	8	8	اة	Z,	٤	64	99	8	8	22
	1250	92	55	9	22	26	54	63	55	54	26	71	62	26	22	61	54	54	72	83	49	20	22	æ	83	28	55	8	8	8	ß	72	8	88	2	8	8	8	S	75	ၽ	83	29	ಜ	27
П	90	22	26	8	23	55	25	64	ಜ	54	26	88	61	54	54	29	54	52	2	62	47	ಬ	26	83	39	ß	25	29	જ	ಔ	ಜ	75	29	24	2	88	8	3	25	2	9	æ	8	8	22
	8	1		1		1	1		_	1	1	1					1						_	_	_	_	-	-	_	-	_	-	_	\rightarrow				_	_	_	-	-	-	8	_
1 1	630		1_		<u> </u>				4	_	_	_		_			-	-	-	-		-	-	-		+	-	-	-	-	+-	_	-	_		-+	-	$\overline{}$	_	_	-	$\overline{}$	_	26	$\overline{}$
	200	ł		1	J	1_	_	1			1		1	_			_	_	_	-	-	_	-	-	-	-	-	-	-	-	+-	-	_	-	\rightarrow	_	-	_		_	_	-	_	52 54	
	315 400	1	1	_	_						_	_	_		-	-	_	-	-	+-	-	-	-	-	-	-	-	-	-	-	+	+	-	5 51	-	_	_	_			-	_	$\overline{}$	54 5	-
	250 31			1		_	J										_	_			_	_	-	-	_	-	-	-	-	-	-	-	_	\rightarrow		-	\rightarrow	_	_	-	_	+	+	22	_
	8											1			_			_	_		_	_	_	_	_		_	_	_	_	-	-	_	_	$\overline{}$	$\overline{}$	_	_	_		_	_	_	26	
	160	+-	83	4-	+	98	23	+	╫	┰	+-	83	98	99	8	83	19	83	+-	+-	+-	┰	+	+	+-	+-	+	+	+	+-	+	+	45	Н	5	-	\dashv	\rightarrow	છ	_	19	82	+		29
(HZ		29	83	83	64	29	49	88	64	25	8	8	29	29	98	છ	25	98	89	8	ន	94	83	8	29	65	64	99	99	83	83	61	98	63	အ	89	94	8	25	SS	83	8	63	8	83
ncies	80 100 125	69	99	83	65	69	65	69	65	65	2	8	89	69	67	છ	65	99	65	69	64	8	64	83	61	65	65	89	67	65	64	61	29	64	63	-	-	_	8	83	+-	19	8	+-	82
Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	8	99	-	+-	+	69	+-	+-	┿	+-	+-	+	╌	29	88	+-	+	+	+-	+-	-	+-	+	+-	+-	+-	+	+-	-	+-	╫	+	99	-	_	\vdash	-	\dashv	99	49	⊢	+-	┿	+-	29
enter	63	67	+	+-	+	-	+-	+-	+-	+-	+-	+-	+-	99	+-	9	+-	┿	┿	┿	+	+-	+-	+-	+	+		+	+	+	+-	+-	6	-	_	63		63	$\overline{}$	22	+-	+-	+	+-	\vdash
I'm C	20	83	+	+	+-	┿	┿	+	+	+-	+-	+-	+-	+-	╌	+	+	+	+	+	+	-	+-	+-	+	9	+-	-	+-	+	+	+-	58 62	53 57	9		\dashv	-	22 60	46 45	+-	+-	+-	┰	55 58
Speci	40	59		╫	+	┼-	╌	+-	+-	55	+-	+-	┿	+-	+-	┺	+	+-		+-	+	+-	+			┿	+	+-	+-	┰	+	+-	52	-		54 5	_	56 5	_	+	51	┿		+-	49
Ctave	25 32	54	+	┰	+-	╌	+-	-	47	+	+-	+-	54	+	+-	-	55	+	-	+-	+-	+	+-	+-	+-	46	+	+	+		+-	+-	22	-	46	-	_	_	┝	-	47	+-		+-	\vdash
at 1/3	8	48	+	+	+-	+-	+	+-	88	+	╌	┰	┰	┿	+	+-	47	+-	+-	┿	+	+	+	+	+	+	+	-		+	+-	+	+-	45	47	-	_	20	17	43	+	47	+-	+-	\mathbf{H}
(gg)	16	8	+-	+	+	+	+-	+	+	+	+	-	+-	+	+-	+	6	+-	+	-	+	┿	-	74	+	+-	+	+	+	+-	+-	+	+-	23	_	-	20	\vdash	-	+-	5	2	;	B	-
d SEL	13	+	\dagger	t	\dagger	T	1	8	-	\dagger	T	t	T	T	T	T	+	1	T	Ť	T	T	T	†	1	T	T	T	Ť	T	T	T	T		41	41	48	44		Γ					
Bar	10 13		44	F	20			47		1				41	47	1			_ 1 -	Q						3	3 5	Ŧ			44			44	0		41	46	60		4	_	_ 0		55
Mic	Pos.	Baco	Baca	Baca	Base	Bace	Race	Race	Race	Baco	Base	Base	Base	Race	Base	Race	Base	Baco	Baca	Boco		å	1	Baco	Baca	Daco	0000				å		L	ä	Base		Base	Base	_		å				B.
Event		20.434	20.434	_			_				_	_			20.434	20.434		V67 06				104.02	104.00					20-434	404-02	20.434	20.434			_	20-434		20-434	20-434	20-434			_			
Event	Type	M 16	M-10	M-10	M-16	M-16	4	- N	M-10	M 45	M-16	A 4	M.16	M. IS	M-16	M 46	N 45	2 4	2 2	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N 45	2 4	M-10	M-10	M 46	M-10	2 5	M-10	W-10	M-10	- W	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M. 16	_	_	
Date		5/40	2/12	2 2	2/13	2/13	2 6	2 2	2 2	2 6	5/43	5/13	2 6	2 6	2 6	2 6	2 5	2 6	2 5	2 5	2 674	2 6	2 0	2 6	2 6	2 6	21.0	202	5/13	5/3	5/42	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	2/12	5/13	5/13	5/13
8		_		_	3 2	-	-		-		_	_	3 5		_	-	3 8	3 5	3 5	3 5	3 5	3 5	3 8	3 5	3 5	3 5	2 3	3	3 3	3 5	3 5	3 5	3 5	5	503	<u>s</u>	50	5	103	Ē	3 5	3 5	3 5	3 5	103

Calc	Overall SEL	71.2	75.8	73.2	75.4	73.3	82.1	78.9	70.5	70.5	78.2	71.7	71.5	74.5	72.1	70.2	84.4	82.8	74.5	75.5	71.8	71.5	77.8	72.8	76.8	63.5	6.99	74.0	74.2	71.2	6.4.9	75.6	79.0	70.5	70.0	73.4	73.1	72.7	73.8	73.1	73.6	83.8	75.0
	20000				50		33			50						20	34	53							ಜ					,	3											98	
	16000		31	56	41	23	44	33	20	23	32	25	25	27	56	27	47	47	32	20	53	23	32	82	88	22	88	52	23	8	5	8, 8	3 8	2 8	23	23	22	22	53	53		46	೪
	12500		35		49		51	43			36	50					22	55	43		33		8		58						es.	ac	3						20			22	ಜ
	10000	20	43	53	54	32	55	46	30	50	44	35	32	56	28	27	22	22	47	32	38	31	33	8	33			32	충	52	46	52 5	3 %	27		30	ಜ	52	36	52	23	61	46
	8	28	48	32	88	38	82	53	83	စ္က	48	41	38	36	34	8	9	61	52	39	44	9	45	37	46	35	27	37	8	8	£ 5	₹ ₹	32	3 8	32	33	34	\$	42	34	8	62	22
L	9300	53	49	30	9	43	19	99		-	54	48	41	88	36	33	19	64	54	4	44	42	20	33	64			ຂ	g	4	8	2 4	2 2	3 8	34	4	20	44	45	20	33	99	54
١	2000	42	25	45	99	48	62	62	42	40	56	51	48	47	46	44	99	62	61	49	48	49	54	46	26	39	88	44	45	45	B I	4 4	5 4	44	43	48	43	49	20	41	£	99	22
1	4000	45	54	49		20	88	9	8	45	62	28	20	22	20	48	92	89	28	25	20	20	57	20	g;	စ္တ	용	8 4	\$ 6	8	3	/4/	5 5	8 8	94	51	84	54	53	48	47	20	28
	3150	48		_	_	_	⊢	_	-	├-	<u> </u>	Н	-	Н		-	_	H	-	-	_	\dashv	\dashv	-	\dashv		-	\dashv	4	-	+		+	+	╀	+	┼-	⊢	\vdash	\vdash	20	-	┝
	2200	-	_	-	-	_	⊢	\vdash	⊢	⊢	⊢	Н	Н			-	-	-	-	-		-	\rightarrow	-	\rightarrow	\dashv	-	\dashv	-	\rightarrow	+	3 8	┿		╀	╁	╁	┢	-	\vdash	53		-
	5000 2000	\vdash	_			-	-	⊢	⊢	\vdash		Н	Н		_	-	\dashv	Н	-	-		-	-	-	-	-	-	\dashv	-	-	+	23	+	┿	╁	╀	╀	⊢		22	54	77	y
	99	⊢		_		_	-	_	⊢	⊢	⊢	\vdash	Н			_		\vdash				-	-						-	-	-	-	+	+		╄	+	╀	-	⊢	જ	77	9
	1250	-	\vdash	\vdash	-	H	├	-	-	╀	-	-	Н	\vdash			_	-	\dashv	-	-	-	\dashv	-		\dashv		\dashv	\rightarrow	-	-	-	+		┿	╀	┼-	┼	-	\vdash	54		ž.
	<u>8</u>			Н	_	<u> </u>	├-	-	-	\vdash	\vdash	\vdash	Н	_	_		_	-	\vdash	-	-	-	\rightarrow	\dashv	-	-		-	-	-	+	+	+	+	+-	┿	╀	⊢	├		55		73
	88	_				_	_	_	\vdash	_	_					\neg	_	_	_				_	_	_	_	\rightarrow	_	_	_	_	-	-			-	↓_	ļ.,	-	!	52		⊢
-	89	-	_	_	_	⊢	-	╌	-	-	-	-	-		-	_	-	-	_	_	-		\rightarrow	-	_	\rightarrow	\rightarrow	\neg	_	-	-	-		-	-	+-	+	+	-	-	25	_	+-
-	8	52	54	54	22	25	22	23	25	25	22	21	52	53	51	20	65	99	52	54	51	51	59	54	99	48	48	54	22	25	44	52	3 2	5 6	3 5	20	53	25	\$	54	25	61	¥
	§	<u>. </u>					_	_	_	_	_	-	-		_	_	_		-								-		-	_	_		-	-	-	-	+-	-	-		54	_	₽
- 6	315	-	╌	-		-	-	-	-	←	-	-	-	_	_	-	_	-	\vdash	-	\vdash	-	\vdash	_	-	-	_	_	-	-	\rightarrow	-	-+-	-	-	-	+-	+	-	_	ଞ		•
-	220	-	-	_	-	_	-	-	1	•	-	_	-	-	$\overline{}$	-	-	_	$\boldsymbol{\vdash}$	-	\vdash	-	-	_		_	-	_	-	\rightarrow	-	-	_	-	-	_	+-	+	-		છ	_	•
-	8	-	82	_	H	⊢	-	9	- 61	╄	+	-	_	-	\vdash	25	-	-	\vdash	63	Н	_	\vdash	-	\vdash	-	99	-	-	-	-	22	-			┿	+	8	+	61	-	9	╄
- 1	2 160	8	┞	-	\vdash	19	+	83	-	89	-	-	-	-	_	60 58	-	9 62	\vdash	_			-	_	\vdash	-	25 7		3 61	-	-	g 8	2 2	-	-	+-	+	65 62	-	-	\vdash	_	₽
20) 60	100 125	62	⊢	64 66	\vdash	65 64	┼	99 99	-	64 62	+	62 61	62 62	\vdash	⊢	\vdash	\vdash	99 99	Н		\vdash		Н	-	\vdash		60 57		99	\rightarrow	-	-	-+-	2 2	+	┿	+-	64	64	65	-	_	₽
anh.	8	-	63	63	\vdash	63	-	64	-	8	-	\vdash	-		\vdash	\vdash	$\overline{}$	65	\vdash		Н	\vdash	Н	-	-	_	9 69			\rightarrow	-	-		8 8	+	+-	+-	+-	╀	┰	-	_	╀
בו	83	₩	١	62	_	⊢	-	83	-	8	+-	 	-	_	-	61	-	-	\vdash	-	Н		Н	-	\vdash	_	25	-	99	\vdash	⊕	-	-	3 8	+	+	+-	19	⊢	⊢	-	_	+
2	25	29	26	8	49	8	19	8	23	25	62	29	28	64	9	27	61	19	26		\vdash	99	83		-	25	99	61	છ	28		8	5 8	2 6	5 12	8	5	88	19	8	19	88	1
	\$	28	26	22	51	28	28	23	49	25	28	22	22	99	22	53	29	22	23	69	99	51	09	22	54	64	48	29	28	99	88	32	õ	2 8	3 12	22	19	22	29	æ	28	29	į
ave o	32	54	53	53	25	26	53	25	20	23	55	53	53	28	22	49	26	54	51	23	52	25	99	53	49	47	22	22	59	52	44	25	à	ខ្ល	3 6	55	26	55	53	5	-	_	+
300	52	+-	49	2	\$	22	+-	25	8	25	55	74	-	22		33	\vdash	-		51	-		22	_	20		44	-	-	49	-		-	7	-	-	+-	+	8	+	45	용	+
10	20	+	8	48	47	8	╫	5	+	5	+	4	45	├-	ន	47	6	46	47	55	_	⊢	Н	-	49	38		84		Н	4	-	-+	4 6	+	+-	+	8	+	25		49	+
100	16	49	47	4	요		4	+-	8	48	4	L	43	4	ಜ	14	8	46	4	8	45	47	45	51	25	_	20	43		4	5	-	₹	-	5 4	3 8	1 23	8	\vdash	20	+	49	!
	13	\vdash	L	L		_		22	+-	\vdash	L	H	L	L	-		4	L		-	_	_		_	L	H		L	51		-	-	_	4	- (-	-	47	-	46	1
4	Pos. 10	Base	Base	Base	Base	Base 50	+-	Base	Base 41	- 0	Base 53	Base	Base	Base	Base 46	Base 41	Base 46	+	Base	Base	Base 53	Base 46	-	Base 41	Base	Base	Base	Base	Base	-	Base 52	as L	Pase 44	Hase	acpo d	-	+-	+	+	-le		⊢	t
- 1		1-434	20-434	20-434	20-434	ــــــــــــــــــــــــــــــــــــــ		7-434	20-434 E		_	1	20-434	20-434					20-434	20-434	1		20-434 E	L	7-434	7-434	0-434	20-434	20-434				1.	20-434			_		1	_	1	20-434	1
all L	Type Dist.	M-16 20	_	_	M-16 20	M-16 20	_	_			Т		M-16 20			M-16 20	M-16 20	_		M-16 20	M-16 20	M-16 20	M-16 20				M-16 20	M-16 20	M-16 20		ı					M-16	_	_	_	_		M-16 20	
E E	F		5/13 M	1	5/13 M	+	-	+	+-	-	+	-	5/13 M	5/13 M	5/13 M	5/13 M	5/13 M	-	5/13 M	5/13 M	5/13 M	5/13 M	-	5/13 M	5/13 M	5/13 M	5/13 M	5/13 M	5/13 M		-	\rightarrow	-	-	-	5/13 M	_	+	+	-	-	5/13 M	-
Co.		103 5/1	+-	+-	103 5/1	+	-	+	103 5/1	+-	+-	+	+	-	103 5/1	103 5/1	103 5/1	+	+-	103 5/1	-	-	103 5/1	-	+-	103 5/1	-	103 5/1	103	103 5/1		-		-	-	3 2		+	+-	+-	+	103 5/	+

Calc.	Overall SEL	7.77	82.0	71.9	72.1	82.9	72.2	72.3	73.8	71.6	72.4	72.5	9.89	72.2	75.1	74.0	74.6	71.1	78.6	70.1	82.2	74.6	80.7	83.7	71.4	70.6	71.8	72.6	76.9	69.7	73.4	70.3	27.69	1.00	74.7	73.7	75.0	68.8	20.0	73.4	73.3	72.2	78.0	70.8
	20000		59			44									50				50		53	-	52	59					50				+	5	3	\dagger		\dagger	+					70
	16000	30	43	22	56	47	27	31	92	53	30	59	27	53	28	25	27	23	34	27	44	88	88	44	20	25	22	23	53	88	ಜ	23	S	/7	8 8	3	S.	8	3 8	27	: 83	27	53	23
1	12500	39	52			55			23			27			23		30		40		53		47	49	28			23	42			1	1	1	\dagger	5	3		S	8 8	3		88	
	10000	_	L	9	.7	11	6	32	4	8	<u>=</u>	68	83	30	98	32	96	58	82	93	25	34	54	54	36	53	34	35	46	20	33	83	2	8 8	200	3 6	23 33	2 6	3 5	35.	34		45	32
	8000	L				_	L		L	-	L	-	_	_	_			_	_	_	┡	┡	L	┞	_	-	L	-			\dashv	-	+	+	+	+	S &	+	+	╀	+	╀	51	38
	9300	55	_	Н			_	-	-	62	-	\vdash		_	L	ļ	<u> </u>	_	_		\vdash	-	-	├-	L	-	-	47	H	Н	99	\dashv	+	+	24 6	+	14	\dagger	+	+	5 4	╀	+-	H
	2000	-	⊢	43	42	64	49	46	52	4	46	52	34	49	20	47	53	46	62	41	8	51	8	29	52	41	49	51	28	33	45	£	32	ક્કુ ક	δ ¢	2 5	2 2	8	8 8	3 2	2 8	44	55	22
	4000	83	99	48	47	99	54	51	54	46	20	54	37	22	54	51	55	48	99	45	8	25	67	66	22	46	51	54	19	43	49	48	9	용 :	3 8	9 ;	40 04	2 5	\$ 5	3 15	3 5	47	09	21
			1			_		ــــ	_	_	┺-	-	_	┞-		⊢	┡	٠	₩	╄	-	-	-	╄-	├	↤	⊢	+	-	\vdash	_	-	-	-		-	2 2	+		+	-	-	_	-
	2500 3150		_				_	_	1	_	_	_	_	-	-	┺	-	+	-		+	-	+-	-	-	-	+	-			_	$\boldsymbol{\vdash}$		_		-	8 8	-	$\overline{}$		_	\neg	_	
	0 2000	Ļ	-	\vdash	L-	⊢	-	-	-	+	+	+	⊢	-	₩	⊢	-	-	+-	+-	+-	+	+	+-	+	+	-	+	┿	-		\vdash		-	-+	-+	62 62	-	\rightarrow		_	_	+	+-1
	1250 1600	_	_	1_	┕	L	₽-	╙	-	╄-	+-	+-	╀-	+-	-	-	-	╌	╄	+-	-	+-	+-	+-	₩	┰	+-	-	₩		-	Н	\dashv	-+	-	-	2 6	+		+	+	+-	+	+
H	1000	╄	-	22	\vdash	-	-	╄	+-	+-	┺	+-	٠.	╄	↓	-	⊢	╄	+-	+-	-	+-	+	┰	-	+	+-	+-	-	-		-	-		-	-+	5 5	+	-+	+	-+-	+	+	1
	8	1		1	S	_	1	1	1				_			1	-	_	-	-	_	_	-	_	-	_	-	_	-	-	-	_		$\overline{}$		-	3		$\overline{}$	-	_	_	_	$\overline{}$
	500 630	55 58	╀						_						_	_	_	-	-	-	_		-	-	-	-	-	-	+	-		-	_		\rightarrow	-+	24 26		_	_	_	_	_	_
	400	1	L	1	1	L	_		1	1			_	_	_	٠.	-	-	-	-	_		-	-	-	-	-	-	+-	-	-	_		$\overline{}$	-	\rightarrow	22 5	-	\rightarrow		_	_		$\overline{}$
	315	+	+-	1	L .									_	_	_		-	_	-	_		-	-	-	-		_	-	-	-	-	_	-	-		25 25	-	\rightarrow	_	_	_	_	\neg
	200 220		62		_				_	_		_	_	-	-	_	-		-	-	-	-	-	+-	+	_	-	-	_	-	-	+	_	_	\rightarrow		8 29	_	_	_		_	_	3 53
	160	g	33	159	19	19	88	150	8	8	ē.	3 123	15	æ	+-	+	+	+	+-	+-	-	-	+-	+-	+-		┿	+	+	+	150	29	ස	H	-	-	-	+	-+	-+	+	ā 8	-	+
es (Hz)	80 100 125	64 62	+-	┿	64	+-	+	+	+-	+-	8	+-	8	+	+-	+	+-	+	+	+	+	+	┿	+-	+-	+-	+	+-	+	+-	╁	+-	61 60	61 61		\dashv	-+	-	-	20	-	6 6	2 2	+
Band SEI (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	8	9	+-	+	64	┰	+-	+	┿	+	┿		+	+	+-	+	+	+-	+-	+	+	+	+	+-	+-	+	+		+-	+-	65	-	99	91	\vdash	ន	-	-+	-	-	\rightarrow	+	8 8	+
enter Fr	63	62	+-	+	+-	+-	+	+	+	+-	+	╃~		+	┿	+	┰	+	+	+	+-		+	+-	+-	+	+	+	+-	+-	+	+	63	8	Н		\vdash		\dashv	-	-+	+	2 2	+
Ctrum	40 50	54 54	+-	+	+-	┿	┰	+-	+-	+-	┰	+	+-	+	+	+	+-	+	+	+	-		+	_	+-	3 2	+	+-	+-	+-		┰	51 53	52 56	Н		\vdash	59 64	\dashv	42	-	-+	20 22	
Sons Suc	33	150	+	+	╌	+-	+	+-	1.2	-	+-	+-	+-	+	+	┿	+	+	+	+			+	5 8	+-				+-	-	┿	+-	8	5	Н		⊢	-	-	4	25	3	¥ 8	
1/3 Oct	52	44	+	+	45	+-	+	+	3 6	+	2	+	+-		┰	+	+	+	+	+	+	-	+	3 12	+	+	ž	-	+	+-	+	+-		42	-	6	-	23	5		-+	-+	8 9	-
(AR) at	16	49	+-	+-	+-	┿	+	+	2 2	-	-	+	+	+	47	+	+	4	36	+	-	+	-	50 4		-	+	-	+-	52 49	┿	+	47 50	51 46	38 46	47 51	\vdash	43 44	38	-	-	-	\$ 5 \$ 8	-
I U	13	1	· ·	4	14	14	1	47 4	+	, ,	+	- 4	,	+	1	1	+	\dagger	+		-	1	+	7	-		+		+	+	45	╁	-		4	-		,						
Dan	9	Q	2 2	4	4	4	. 7	+	+	5 9	-	#				41		=	F 5	3 8	2	4 4	g q	₽ .		4 9			40	2	4		25	_	48	25		41	44		8	4	₹ 5	2 1 1 1
, with	Pos.	Baco	Race	Base	Bace	Race	Baca	Race	Dasc	Dasa	Dase	ASPO	Dasa	Baca	Baco	Race	Dag	Dong				- 1	- 1	aseg	ć	aseq	B	Base	à		å			Base	Base	Base		Base	Base					Base
Front	Dist.	00 434	20.434	20.434	20.434	20.434	20,00	20.434	10,404	10.404	+0+-07	20-434		20.434	20 424	20.434	101 00		_	_	_	_	_	20-434	_	20-434	_	20.434	_		_	$\overline{}$	20-434	20-434	_	20-434	_	20-434	20-434					20-434
Frank	Type	34.70	M 4	M.16	M.16	M 46	N 45	M 16	OI -IM	M-10	O - W	M-10	Wi-To	M-10	01-10	N 46	2	W-10	01-W	M-10	ol-M	9-I9	2 5	W-10	M-10	٥ <u>۷</u>	Q .	W-16	2 2	M 4	M 18	M 16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	_	ш	_	-	M-16
1	age	64/4	2 2	_	-	_	-	2 5	2 6	2 2	2/2	2/13	2/2	2 6	2 6	-+-	-	-	-	-	-+	-+	-	-	-		-+	5/13	-	5 5	+		-	+	+-	5/13	+-	5/13	5/13	-	 -	_	+	5/13
ā		8	3 5	3 5	Ę	3 5	3 8	3 5	3 8	3 3	3 3	3 3	3 8	3 5	3 8	3 5	3 5	3 3	3 3	3 3	3	<u>ප</u> පු	3 3	3 3	3 3	2 3	3	3 3	3 5	3 5	3 5	3 2	<u> </u>	5	5	5	103	ន	5	5	5	50	호	ස් සි

Calc.	Overall SEL	72.4	73.6	87.2	70.2	70.4	80.9	83.9	78.2	73.6	71.9	72.6	72.4	81.5	70.3	9.69	83.7	0.77	73.8	70.2	68.3	71.9	70.0	73.4	9.69	73.0	73.2	70.8	72.7	71.5	77.3	68.4	4.18	20,02	72.2	76.3	72.6	76.3	79.0	74.0	78.3	73.5
	20000			48			23	31			20			28	50		52	50													92		1		T						1	6
	16000	56	26	59	23	20	34	43	34	25	59	32	27	49	30	23	45	28	23	56	23	23	28		8	52	28	20	27	29	31	20	5 of	3 8	34 5	34	29	53	38	39	္က	200
	12500		25	64	23		42	52	43		31		20	57	34		51	25									20				6	į	\$ ¢	2					45	37	27	9
	10000	50	34	65	32	20	20	57	47	59	39	34	88	90	49	25	26	35		28	23	25	50	53	52	98	58	56	56	20	47	92	\$ E	3 5	38	33	98	32	41	40	32	12
İ	0008	32	42	89	36	30	20	29	51	37	44	40	36	64	51	35	28	43	31	37	27	32	88	37	8	14	34	34	37	33	25	8	7 2	3 8	8	42	용	£3	47	46	+	S !
	9300	30	45	71	40		25	64	22	40	48	43	42	99	90		20	47		33	50	34	22	88		45	37	38	40		8	-	8 2	3 4	4	45		41	જ	20	9	25 5
	2000	44	51	70	49	42	65	89	22	48	53	49	46	67	48	37	61	53	42	47	39	44	38	47	용	25	44	43	47	42	8	88	<u>ت</u> ا ة	3 2	5 64	51	46	51	58	57	23	£ (
Ì	900	46	54	72	25	45	09	89	64	51	54	52	5	2	53	41	2	99	47	90	45	49	44	25	44	54	48	48	25	46	23	£ 5	0 4	3 8	3 25	54	22	22	99	88	88	25 1
	2500 3150	52	26	11	22	47	69	69	အ	54	22	99	ည	73	99	40	72	9	49	23	47	54	44	52	42	RS.	49	49	25	20	£	£ 5	3 8	2 2	8	57	4	88	82	28	19	8
	2200	\vdash	Н	\dashv	\dashv	Н	\vdash	\vdash	H	Н	Н	Н	-	\dashv	_	\vdash	-	Н	\vdash	Н	_		-	-	-		_	_	Н	Н	-	+	+	+	+-	┼	\vdash	⊢		\vdash	8	+
ŀ	2000	\vdash	\vdash	\dashv	_	\vdash	_	-	-	-		-	-	-		\dashv	-	-	Н	Н		-	-		-	\dashv	\vdash	\vdash	Н	Н	\dashv	-	-+-	+	8	╁	-	⊢	Н	\vdash	25	+
	1250 1600	-	-	-	_	-		\vdash	-	-	Н		-	-	_	\dashv	\dashv			-				-	-	-	-	_		-	-	+	+	+	3 8	╁	\vdash	-	-		63	9 :
+	1000	\vdash	-	-	-		Н	-	_	-	-	\vdash	-	_	_	\vdash	\dashv	-	-		_	-	-	-	-	\dashv	_	\vdash	-	\vdash	\rightarrow	-	+	+	+	+	+-	⊢	Н	\vdash	8	+
	98	-	\vdash	-	_		-	\vdash	\vdash	-	Н	\vdash	-	_	_	\dashv	-	-		Н	_	Н	\vdash	_	-	-			Н	\vdash	-	+	+	+	22	+	-	⊢	64	-	-	8
- 1	000	-	Н	\vdash	-	\vdash	-	-	-	-	-	H	-	_		-		-	-	-		-		-		_	_		Н	Н	-	-	-	+	3 12	+-	-	╌	-	-	88	25
	8	-		-		-	_	_	\vdash	Н	Н	\vdash	\dashv	_	_	-	-	_	_	-	_	-	-	_	-	_	_	\vdash	\vdash	\vdash	-	-+	-	+	+-	+-	╄	-	\vdash	54	8	33
·	8	-	53	-	-	-	-	\vdash	\vdash	Н	\vdash	51	-	-	-	\vdash	-	\vdash	-	\vdash	_	\vdash	\vdash		-	_	-	_	\vdash	\vdash	-+	-+	-+-	+	3 12	+	╂	├-	Н	\vdash	8	-
	3	54	55	62	49	53	25	57	25	28	99	83	33	63	23	51	8	61	61	99	53	22	28	22	ಜ	54	28	53	99	22	જ	25	2 2	5 8	3 12	19	88	23	63	99	\$	22
	220	22	22	62	23	28	61	88	92	8	29	83	29	62	24	29	15	64	62	28	22	22	62	19	54	63	29	99	29	23	88	က္ဆ	ة ۾	3	5 12	88	23	ಜ	49	66	8	85
- 1	8	88	59	9	24	29	09	29	26	90	28	22	83	9	22	99	9	အ	62	59	55	29	25	29	92	62	62	25	09	23	22	92	3 8	3 5	3 8	29	8	49	99	99	8	5
	160	61	61	61	22	91	09	\vdash	-	-	_	8	-	_	_	-	_	$\overline{}$	-	-	_	-	22	_	_	-	_	-		91	-		-	-	9 6	98	88	8	88	99	19	29
- 1		63	63	62	28	62	63	62	62	63	61	63	83	61	28	62	B	99	9	09	90	63	09	64	8	64	64	62	62	83	5	88	ا ۾	3 8	2 8	29	19	99	29	62	2	8
655	100 125	64	64	62	28	61	99	62	62	65	09	9	65	61	28	62	49	99	65	61	09	63	19	64	19	64	65	63	63	အ	19	8	8 8	3 8	₹ 5	29	62	88	69	8	8	3
2	8	64	63	61	29	61	63	62	62	62	09	61	64	09	09	61	SS	65	65	29	29	62	09	63	62	62	64	09	62	83	5	19	3 6	3 8	2 2	99	63	99	29	28	88	ន
	S S	ಔ	62	61	22	99	62	90	29	62	28	61	62	62	28	61	62	99	64	29	22	99	23	62	9	9	63	61	09	62	<u>5</u>	8	3 8	3 8	3 8	8	æ	જ	99	જ	29	8
3	S S	28	29	28	જ	28	28	57	23	9	56	22	32	22	24	28	8	63	09	54	54	29	88	59	22	28	62	55	28	29	22	ဗ္ဗ	3 8	3 2	\$ 8	ន	8	જ	9	22	8	8
	\$	22	99	55	49	54	99	55	53	22	54	22	22	52	54	54	8	29	54	53	54	28	53	58	24	22	60	99	22	22	25	SS :	3 2	5 8	2 2	8	ಔ	8	8	57	24	57
200	32	55	23	55	22	24	54	54	49	22	51	53	22	53	45	54	99	22	53	52	49	54	52	53	54	53	22	53	49	53	ន	20	3 8	5 8	2 2	53	22	29	98	21	69	27
3	8	51	46	46		48	41	48	41		41	40	48	48		20	21	51	49	20		55	47	47	21	20	52	35	48	25	54	84	T	T	S.		Γ	2				69
10/	0 13 16 20 25 32 40 50 63 80 100 125	47	53	41	43	47	47	49	45		38	48	49					46	54	38	47	53	51	49	88	45	19	47		45	44	49	1	5	5	25	25	જ		55	92	જ
3	9		49	48	38	38	47	48	38	47	43	£	47	48	46	38	49	38	46		જ	47	50	47	51	43	44	38	88	38	47		æ ?	3 5	8 2		51	55	22	09	20	22
200	5					47																£3		49										T								I
ă	9	44	6	41	_	46			-	44			47	48	51	41	41	_	44	44	-	47	47	48	44	47	41	46		52	46	4	ğ				54	_		_		
3	Pos.	Base 4	Base	Base	Base	Base		Base		æ					Base		æ		Base	Base 4	Base	Base			1				Base	B			ñ	Odse			ä		Base		Base	
Evelli	Dist.	20-434										20-434		20-434			20-434	20-434	20-434	20-434	20-434	20-434	20-434			20-434	20-434	20-434	20-434						20.434					20-434	20-434	20-434
Evell	Туре	M-16	-		_	M-16	_	_	M-16	_		-	M-16	M-16	M-16	M-16	M-16	M-16		M-16	_	_	M-16	M-16	M-16	M-16	M-16	-	_	-	M-16	₩-16	¥-16	W-10	M. 45	₩-16	M-16	M-16	M-16	M-16	M-16	M-16
COI. Dale		5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/13	5/17	100	7/12	5/17	5/17	5/17	5/17	5/17	2/17	5/17
į		සි	103	103	103	£03	103	5	<u>≅</u>	ξ E	5	ا	103	103	103	103	103	103	<u>≅</u>	55	103	ន	ਣ	103	103	103	£	5	5	55	<u>≅</u>	ន	<u> </u>	3 8	3 5	5	8	इ	53	ਛ	ස	ន

Calc.	SEL	77.2	74.7	75.7	74.5	7.7	84.8	9.92	73.1	87.9	75.2	87.4	84.0	73.5	72.6	78.2	86.0	87.9	79.2	75.4	74.3	74.1	83.2	83.4	76.3	73.8	77.9	75.6	71.6	73.8	70.4	72.7	7.0	79.5	25.0	90.0	80.7	70.0	73.5	76.7	76.8	72.7	76.2	72.8	6.77
	20000				1	1	77	8		53		27					g S	35					27									8	8					I							
	00091	32	35	30	23	55	84	8	37	20	35	49	99	35	8	34	14	22	35	30	30	30	36	40	27	33		32	37	32	္က	35	8 8	8 8	3 6	s K	3 8	5 8	35	33	22	32	35	37	3
	12500						22			58		57	42			46	48	62	30	35			45	47									34			33	3 6	5			37				
	10000			34	25	25	29	37	34	61		61	51		33	88	25	64	40	42	27	32	53	52	35		34	34	27	34	က	27	£ 1	7 8	3	AF.	3 6	2	8	88	32	34	33	8	24
	8000	45	41	43	42	39	83	£3	37	99	41	99	29	\$	32	41	62	65	45	44	88	36	65	28	39	38	41	45	33	37	32	37	S (37 28	5 8	3 2	5 1	# C	33	40	9	43	14	8	9
	9300	42	45	69	S	37	99	9	ક્ષ	73	41	72	61	37	41	45	90	29	20	54	38	34	9	အ	46	38	46	45	32	41	83	34	29	24 %	5 8	8 2	5 6	8	44	£	\$	45	4	37	14
	2000	51	21	54	2	47	20	25	45	72	20	72	69	47	47	25	89	2/3	26	09	49	47	64	29	23	48	25	20	44	20	47	46	છ	3 5	\$	\$ G	8 8	5 2	ត	25	20	51	49	47	25
	900	55	54	26	54	25	69	56	21	75	54	75	70	21	25	22	89	72	88	29	23	51	92	20	22	51	26	54	49	25	49	22	25	\$ 6	₽ :	25	5 8	3 8	જ	54	55	24	52	22	33
	3150	28	28	61	29	25	23	29	25	78	54	78	74	20	20	9	73	74	83	26	55	53	2	74	99	54	61	28	49	22	20	48	69	සු	8	2 2	8 8	3 8	5	22	99	26	99	29	88
	2500 3150	61	09	63	8	22	22	63	28	79	28	78	73	59	22	ೞ	77	78	65	83	99	සු	73	7	အ	28	83	61	53	59	55	56	7	8 1	8	57	8 8	2 8	7.9	8	62	9	9	99	-
	2000	62	62	63	62	83	77	64	09	2	61	79	71	9	23	92	79	79	99	29	82	29	75	7	64	23	65	23	24	64	99	55	2	<u>ت</u> ا	8	88 F	= [2 3	64	82	63	28	61	88	8
	99	53	61	64	63	ස	62	65	91	8	29	8	72	09	61	99	79	ಹ	8	29	5	159	11	74	25	29	99	83	53	62	99	99	8	5 5	S	8	2 8	3	2	ន	65	62	85	22	49
	1250	83	61	63	63	8	77	64	62	82	8	11	9/	09	29	65	11	8	88	જ	83	8	22	76	ES	23	99	62	83	23	99	25	2	8 8	g	23 i	=	23	64	85	65	83	23	22	8
	<u>8</u>	99	63	63	62	8	74	63	29	92	8	92	75	09	09	99	75	92	99	61	19	8	22	22	53	98	59	19	જ	19	54	99	69	8 1	٦	8 8	28	22 1	92	23	63	62	æ	82	22
	800	L_							_		<u> </u>		_		_	_	_	_	_	-	_	-	-	۰.	_	-	┺	+-	-	-		-		88 8	-+		-	-		-	-	-	-	-	
	99	8	22	99	28	25	65	22	26	73	જ	72	67	54	25	88	29	72	8	28	54	51	88	88	88	54	88	28	25	54	51	53	61	25	3	22	ğ	3	8	88	59	22	22	24	23
	20	හි	22	28	28	22	61	22	22	89	28	29	8	SS.	28	19	99	29	19	56	26	25	ß	92	57	22	28	57	\$	25	53	22	29	ස	ន	ස	7	83	8	61	29	54	8	22	82
	<u>§</u>	54	53	88	26	26	28	22	32	65	25	65	63	22	22	82	છ	94	62	23	55	25	8	62	59	26	8	26	20	57	25	99	25	88	ဌ	83	8	83	83	83	9	25	8	29	83
	315		<u> </u>								1	-	_		_	_	_	-	-	-	-	-	-	-	-	-	+-	-	+	-	-	-	-	8		-	\rightarrow	-	_	_	-	_	_	_	
	220	9	29	19	09	29	63	63	ଞ୍ଚ	69	59	99	99	8	29	8	8	98	29	8	9	8	9	20	8	59	ß	8	8	8	88	8	62	8	5	65	\$	99	88	67	62	8	29	9	8
	200	_	_	$\overline{}$	63		64		8						$_{\rm I}$														1					8		8	9							8	29
	80 100 125 160	26	+-	64	63		64	62	62	+-	╫	98	╌	63	82	65	29	+-	╀	-	+	-	+	+-	┿	+	-		┿	+-	8	-	-	+	9	-		-	20	65	+	83	+	62	-
s (Hz)	125	88	+	99	-	61	64	88	62	+-	+-	+	+-	83	8	69	99	+	+-	+	+	+-	67	+-	+-	+	+	+-	+-	+	9	+-	65	-	3 62	-	\rightarrow		0/ 0	29 99	+	1 61	+	63 62	H
uencie	Ď	29	+-	99	63		5 64	9 67	9	-	+	+	+-	83	62	89	99	+-	┿	+-	65 63	-	+-	┿	+	+	+	25	+-	+	61 59	┼	64 65	\vdash	_	\vdash		69	02	-	╄	+-	-	-	29 99
Fred	8	99 99	₩	65 63	63 64		62 65	65 66	60 64	+-	+-	+	+	63 62	+-	88	68 67	₩		+-	+-	+	+	+	+-	+-	+	+	+	+-	-	+	64 6	-	62 6	9 9	-		9 29	64	+	+	+-	+	99
Cente	8	62 6	┿	58	9	55 6	9 09	61 6	+	28	+-	+-	+-	+	╌	╄-	19	┿	+	+	125	┿	+-	+-	+	+	+	9	+	+-	999	+-	62	₩		09	-	-	64	-	+	+-	+-	-	-
ctrum	各 元	19	+	┿	69	⊢	59	29	+	+	+-	+-	+	+-	┿	+-	+	┰	+-	+-	+-	+	+-	+	+	┥	+-	+-	+	+-	+-	+	19	⊢⊹		\vdash			19	+	+	+	+	+-	19
e Spe	35	22	+	-	28	25	22	26	+-	8	+-	4-	+	+	+	+-	╌	-	-	+-	45	-		-	+-	3 55	+-	3 53	+	3 33	-	-	-	ES.		Н	_	-	8	25	83	8	조	SS	22
Octav	52	t	T	T	T	r		t	T	\dagger	T	25	+-	╀	┰	+-	┿	+-	45	+	T	Ť	£	+-	45	+	64	+	+-	T		T	42	\$		32		52	45	45	25	1			П
Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	ន	25		83	T		23	21	T	88	1	25	23	48	25	T	65	150	15	5	3 4		č.	3 45	3 2	5 65	2	3 2	3	45	22		8	П	32	29	ટ		5	48	51		99	25	45
L (dB)	16	55	85	T	28	55	22	25	48	:	84	84		T	53	55	85	4	2	8	3	ä	3	3	1 2	3 8	22	5 62	3 8	3 23	82		45	45	26	26	20	52	28	45	22	3 28	8 8	54	25
nd SE	55			Γ								48	23									I							I											L			L		Ц
æ	9		33				_	51	_	-1 a	120		84	48		3	55	24	3 2	3	2	_ (25	3 4	-	┙	4	_	⊸ @	a	0	0	48	-	e)	Ф	9	54	-	- 1 9	⊳ —	8	25
Mic	Pos.	Rase	æ	L				ä	_		à		8			à			_1_		à				هٔ	Bace	_		à			Base			Base	_	Base	Base	L	ä			Ba		Base
Event		10	_	20-434			-	_															_			20.434	_	_	-	_	_	_	_	_	20-434		20-434	20-434	-	_		20.434			20-434
Event	Type	M-16	M-16	M-16	M-16	M-16	M-16	M-16	N 4	MA A	2 4	M.16	M.16	M.16	M.16	M	A A	1 4	2 2	4	01-M	2 4	2 5	0 -M	2 2	- N	2 4	M-10	2 4	4 F	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M.15	M. 15	¥-16 16	M-16	M-16
Date		5/17	+	+-		+	+-	+	┰	5/17	+	+	┰		2/17	+	+	+	-	1 1 1	2 2	71/0	+	71/0	11/0	7170	1 1	2/1/2	2 12	21/2	5/17	2/12	5/12	5/17	5/17	2/1/9	5/17	5/17	5/17	717	5/17	2/17	5/17	5/17	5/17
3			_		8	-	-	-	-	-	3 5	-	-	-	-	-	-	-		-	3 8	_		3 5	-	3 5	_			3 5				_	103	_	-	-	-		3 5		_	_	-

										_
Calc.	Overall SEL	72.9	75.5	76.7	9'8'	70.2	73.3	72.5	9'22	5.07
	20000	27			27					
	16000	32	32	33	46	32	30		32	
	12500			42	51	41			43	
	10000	34		52	49	27	30	22	47	27
	0008	39	39	54	53	35	33	35	22	22
	9300	39	42	22	53	27	37	32	99	32
	2000	46	49	22	55	45	49	44	59	44
	4000	51	25	09	61	49	52	48	28	20
	3150	53	54	63	63	47	51	50	64	47
	2200	22	29	65	65	54	22	26	89	54
	2000	26	69	29	69	25	22	22	0/	22
	1600	29	09	70	73	22	22	28	20	28
	1250	99	61	65	72	25	25	22	29	58
	<u>8</u>	99	61	63	69	28	59	57	65	28
	8	22	69	69	99	92	54	54	62	51
	930	53	22	28	62	23	23	54	9	5
	28	88	29	28	09	23	99	25	23	S
	<u></u>	25	29	28	23	23	29	22	35	ಜ
	315	28	63	61	29	26	9	29	29	28
	520	49	92	19	19	29	63	09	19	88
	500	89	99	63	63	8	65	63	19	28
	160	23	99	64	8	29	83	83	ಜ	8
3 (Hz)	125	62	65	49	28	8	83	8	49	19
encies	8	19	89	83	8	88	95	19	ន	29
Frequ	8	9	9	64	61	8	63	61	83	8
enter	63	29	63	62	9	88	9	62	9	8
rum C	20	47	8	29	RS SS	\$	22	જ	55	꿏
Spect	8	25	22	88	8	83	22	88	28	72
ctave.	32	55	25	农	5	28	85	89	20	\$
1/30	25	-	20	1.5	1.5		_	_	45	_
dB) at	20	25	51	45	45	45	52		45	5
Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	16	25	8	S	53	83	83	SS.	55	55
Band	13	-	-		_	_	-	_	-	-
Mic	Pos. 10	Base 54	Base 51	Base	Base 48	Base 48	Base 51	Base 48	Base	Base
Event	Dist.	4	20-434	20-434	20-434	20-434	20-434	20-434	20-434	20-434
Event	Type	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16	M-16
Date		5/17	5/17	5/17	5/17	5/17	5/17	5/17	5/17	5/17
3	-	103	83	50	50	8	5	50	50	103

Table D 7. Summary data for passive helicopter flights on Fort Stewart, GA.

Col.	Date	Nesting	Event	Event	RCW	Rec. time	Mic	SEL (dB)	
		Phase	Туре	Dist.	Resp.	(min)	Pos.		
		& Day		(m)				Flat	Α
6	4/21/99	1-2	Helicopter	150	0		Base	100.2	87.6
6	4/26/99	1-6	Helicopter	300	0		Base	92.9	75.0
6	4/29/99	1-9	Helicopter	100	0		Base	104.4	88.0
10	5/27/99	N-2	Helicopter	300	0		Base	90.3	82.5
23	4/28/99	I-3	Helicopter	250	0		Base	97.7	78.7
25	5/5/99	1-9	Helicopter	400	0		Base	84.8	71.6
44	4/21/99	I-2	Helicopter	200	0		Base	98.5	86.1
44	4/21/99	1-2	Helicopter	250	0		Base	95.3	85.4
56	4/15/99	Inactive	Helicopter	300	0		Base	93.6	84.3
56	4/15/99	Inactive	Helicopter	300	0		Cavity	102.5	91.2
83	5/19/99	1-2	Helicopter	250	0		Base	99.2	84.9
143	4/21/99	1-6	Helicopter	300	0		Base	93.3	84.1
151	5/4/99	I-6	Helicopter	300	0		Base	91.0	82.7
218	4/20/99	1-1	Helicopter	400	0		Base	85.1	74.5
218	4/20/99	I-1	Helicopter	300	0		Base	93.8	82.7

Table D 8. Representative unweighted noise spectra for passive helicopter flights on Fort Stewart, GA.

	_											_				Г	_
Calc.	Overall	SEL	100.2	92.9	104.4	90.3	97.7	84.8	98.5	95.3	93.6	102.5	99.5	93.3	91.0	85.1	93.8
	20000		29	32		31	22		30	53	22	99	52	23	38	81	92
	12500 16000		57	46	51	51	22	53	37	37	33	37	36	34	99	31	36
	12500		55				49		34	32	28	36	31	27			34
	10000		55	45	49	46	20	53	40	40	33	43	40	æ	23	93	43
	8000		28	49	26	23	20	35	43	45	42	44	43	45	61	36	84
	9300		61				25	36	49	46	44	46	46	41		24	23
	2000		65	28	အ	9	25	20	28	25	20	22	54	48	89	41	22
	4000		89	09	8	29	51	25	61	28	22	51	29	23	69	42	61
	3150		1.1	37	47	31	20	37	99	63	09	99	63	29	38	48	64
	2500 3150		74	61	02	99	92	48	69	29	64	29	99	64	20	22	29
	2000		74	62	7	89	25	49	2	69	99	99	89	99	20	59	69
	1600		5/	54	7	99	61	23	73	1.2	69	63	71	02	99	62	71
	1250 1600		9/	99	9/	73	63	29	74	74	1.2	မွှ	73	72	74	64	73
	1000		78	99	78	9/	67	09	9/	77	75	64	74	74	75	29	74
	800		79	28	78	9/	70	63	80	79	79	89	78	77	71	89	75
	089		8	29	8	12	75	99	8	80	81	69	22	8	9/	89	75
	0 200		81	9 9	82	3 75	71	89 8	98	78	6/ 1	71	6/	79	9/ 1	. 67	11
	315 400		1 82	95 8	0 81	22 69	02 6	89 9	74 75	1 77	0 75	0 75	0 82	3 78	26 63	4 67	74 76
	50		82 81	71 68	83 80	74 7	74 69	62 65	2 92	77 77	71 70	89 80	75 80	70 73	1 11	67 64	74 7
(2)	200 250		84	71 17	98	71 7	78 7	9 9	80	79 7	1 92	101	74 7	74 7	99	9 69	72 7
) seic	160		84	92	87	81	08	92	82	. 84	83	96	. 8/	08	92	72	9/
ectrum Center Frequencies (Hz)	125		81	79	91	9/	84	99	85	81	8	82	78	9/	8	64	9/
r Fre	100		82	81	94	74	98	11	84	98	83	79	83	52	71	67	82
Cente	8		83	82	88	83	88	9/	83	82	78	72	85	9/	83	92	98
ILI	63		8	98	6	11	8	11	68	85	8	9/	88	8	8	74	8
Spec	20		9	87	ജ	4	8	72	68	84	84	80	88	84	99	75	85
tave	49		06	3 85	95	72	2 87	11	6	82	84	- 84	68	83	8	7 64	20/
1/30	25 32		91 84	82 73	93 90	83 80	89 87	65 70	88	78 72	76 73	76 71	88 79	85 74	08 69	80 77	87 87
B) at	20		32 6	71 8	87 5	72 8	83	9 9/	92 8	206	87 7	98	96	85	9 6/	29 8	89
EL (d	16		84	02	75	71	64	2	87	11	83	85	84	85	85	99	22
Band SEL (dB) at 1/3 Octave Sp	_		29	8/	88		84	29	64	62	09	09	62	23		99	8
	10 13		89	89	87	99	81	26	65	65	22	29	29	53	8/	54	23
Mic	Pos.		Base	Base	Base	Base	Base	Base	Base	Base	Base	Cavity	Base	Base	Base	Base	Base
Rec.	time	(min.)									L						
MOH	Resp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Event	Dist.	(E)	150	300	<u>5</u>	300	250	400	200	250	300	300	250	300	300	400	300
Event	Type		Helo	Helo	Helo	Helo	Helo	Helo	Helo	Helo	Helo	Helo	Helo	Hefo	Helo	Helo	Helo
Nesting	Phase	& Day	7-1	9-1	6-1	N-2	1-3	62	1.2	1.2	Inactive	Inactive	1.5	9-	9-	Ξ	Ξ
Date			4/21	4/26	4/29	5/27	4/28	2/2	4/21	4/21	4/15	4/15	5/19	4/21	5/4	4/20	4/20
S S			ဖ	ဖ	9	2	ន	છ	4	44	99	99	æ	143	151	218	218
_				_	-	_		_	_	_		-	_	_		_	

Table D 9. Summary data for passive large-caliber live fire noise on Fort Stewart, GA.

Cluster	Date	Nesting	Event	Event	Azim.	RCW	Rec. time	Remarks	Mic	SEL (dB) at	mic
		Phase		Dist.	re.	Response	(min)		Pos.		
		& Day	1	(m)	DOF					Flat	Α
10	5/27	N-2	Artillery	0	0	0	0		Base	79.6	50.1
25	5/5	1-9	Artillery	0	0	0	0		Base	90.6	62.2
25	5/5	1-9	Artillery	0	0	0	0		Base	90.3	62.3
25	5/5	1-9	Artillery	0	0	0	0		Base	91.1	62.0
25	5/5	1-9	Artillery	0	0	0	0		Base	91.3	65.1
25	5/5	1-9	Artillery	0	0	0	0		Base	90.5	61.6
83	5/2	1-2	25 mm	0	0	0	0		Base	68.8	53.3
83	5/2	1-2	25 mm	0	0	0	0		Base	68.0	56.5
83	5/2	1-2	25 mm	0	0	0	0		Base	69.8	58.1
83	5/2	1-2	25 mm	0	0	0	0		Base	70.3	57.9
83	5/2	1-2	25 mm	0	0	0	0		Base	72.8	62.1
83	5/19	1-2	25 mm	0	0	0	0		Base	60.1	45.1
83	5/19	1-2	25 mm	0	0	0	0		Base	59.5	45.2
143	4/21	1-6	Artillery	0	0	0	0		Base	79.5	49.0
159	5/6	1-5	Tank blast	0	0	0	0		Base	86.3	70.8
159	5/6	1-5	Tank blast	0	0	0	0		Base	86.4	71.3
172	4/27	N-0	Artillery	0	0	0	0		Base	101.8	85.6
172	4/27	N-0	Artillery	0	0	0	0		Base	103.0	83.5

Table D 10. Representative unweighted noise spectra for passive large-caliber live fire events on Fort Stewart, GA. [Col. | Date | Nesting | Event | RCW | Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)

_										_									
Calc.	Overall SEL	79.6	90.6	90.3	91.1	91.3	90.5	68.8	68.0	8.69	70.3	72.8	60.1	59.5	79.5	86.3	86.4	101.8	103.0
	2000	0	80	Ξ												40	37	20	20
	16000	21	21	17	17	<u>6</u> 2	17	12	9	8	12	16	13	17	13	43	45	89	89
	12500	0	∞		5	21										45	44	99	99
	10000	20	22	22	21	21	6	7	12	13	9	16	15	13	15	47	47	65	65
	8000	24	31	24	24	56	27	15	14	21	17	22	20	20	18	48	48	64	63
	9300	0	31	50	14	56	33					15				20	20	63	62
	2000	93	33	30	32	38	32	24	53	27	56	28	21	56	28	51	51	63	61
		32	98	31	41	88	98	82	62	30	56	30	28	33	53	52	53	63	61
	3150	0	28	53	36	31	33	21	28	22	21	25	56	36		54	54	92	61
	2500	34	35	34	33	98	34	8	ၕ	33	31	34	36	32	32	55	25	89	62
	2000	8	32	34	33	98	35	31	83	35	34	37	30	30	32	26	25	20	63
	1600	0	35	36	36	4	34	35	39	40	40	45	20	56	20	22	28	74	65
	1250	36	33	37	38	44	38	40	44	46	44	48	34	33	35	29	29	73	89
	100	38	41	38	41	45	40	43	47	48	47	51	33	35	38	09	19	22	71
	8	ၕ	45	39	41	47	45	45	49	51	20	55	29	56	98	62	62	79	75
	930	88	84	43	47	23	44	48	52	54	54	69	34	32	41	62	64	79	75
	200	41	20	47	49	22	48	47	51	23	25	99	32	32	44	63	64	79	11
ŀ	315 400	40 35	57 53	58	57 53	62 60	55 50	47 48	52 52	53 51	54 53	99 89	37 29	36 31	43 42	66 64	67 65	92 22	92 82
	250 31	42 4	61	83	61	64	29	48 4	52 5	54	53	999	39	39	45 4	9 89	9 /9	78 7	78
ŀ	200	44	63	63	9	65	119	45 4	84	84	51	54	43	43	7 7	89	69	2 08	. 08
	160 2	23	29	91	65	89	09	48	20	25	25	29	49	47	48	89	20	84	84
(¥	125	28	69	99	69	2	89	09	26	22	55	62	53	23	53	70	71	98	35
Band SEL (dB) at 1/3 Octave Spectrum Center Frequencies (Hz)	홍	19	17	74	89	73	75	25	29	65	65	61	23	51	22	74	72	82	98
Freque	8	64	9/	75	75	11	9/	51	51	54	22	99	48	48	24	74	9/	35	88
Center	63	1 61	9 75	1 79	4 78	7 81	92 92	2 62	49	0 55	5 58	3 58	5 44	7 44	99 (1 76	3 76	96	7 93
ctrum	40 50	70 61	79 79	79 81	83 74	77 62	78 7	57 62	98	61 60	63 65	63 63	40 46	39 47	28 60	78 74	78 73	93 90	93 97
ve Spe	35	69	29	æ	8	82	8	22	22	23	28	9	43	35	64	79	11	35	35
/3 Octa	23	99	8	85	8	77	79	જ	57	83	26	26	49	20	11	72	72	91	94
B) at 1	ଛ	20	8	8	8	8	80	29	88	23	22	8	5	S	74	72	74	66	68
SEL (d	13 16	72 72	83 83	78 83	84 81	86 81	84 83	55 58	55	92 29	55 58	58 61	43 50	46 48	71 74	76 76	92 92	88 28	88 87
Band	5	73 7	82	73 7	78	81	82 8	99	48	49	47 5	50	4	37 4	68	99	2	82	87 8
RCW	Resp.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Event R			_	_	_	_	_	25 mm	25 mm	25 mm	25 mm	25 mm	25 mm	25 mm		Tank	Tank	_	
		Art	Ā	Art	Art	ΑH	Ā	8	35	8	23	32	25	Si .	Art	F.	F.	Art	Art
Nesting	Phase & Day	5/27 N-2	6-1 9/2	6/2 -9	6-19	6-1-2	6-1 9/9	5/2 1-2	5/2 1-2	5/2 1-2	5/2 1-2	5/2 1-2	5/19 1-2	5/19 1-2	9-	2-1 9/9	9/9	4/27 N-0	4/27 N-0
Date					2/2	5/2									4/21				
Col. Date		9	25	25	25	25	25	83	83	æ	æ	83	83	æ	143	159	159	172	172

Table D 11. Summary data for ambient sound levels on Fort Stewart, GA.

Cluster	Date	Nesting	Event	Mic	AVG. LE	Q (dB)
		Phase	Туре	Pos.		
		& Day			Flat	Α
179	07-Jun-99	Post-fled.	Ambient	Cavity	53.6	43.0
179	07-Jun-99	Post-fled.	Ambient	Base	48.8	44.2
71	07-Jun-99	Post-fled.	Ambient	Cavity	62.4	41.2
71	07-Jun-99	Post-fled.	Ambient	Base	49.2	41.0
35	07-Jun-99	N-12	Ambient		49.2	43.8
107	17-Jun-99	Post-fled.	Ambient	Base	50.1	43.0
107	17-Jun-99	Post-fled.	Ambient	Cavity	62.7	46.9
216	18-Jun-99	Post-fled.	Ambient	Base	53.7	43.6
216	18-Jun-99	Post-fled.	Ambient	Cavity	66.5	45.8
129	24-May-99	N-7	Ambient	Base	64.8	56.9
159	06-May-99	1-5	Ambient	Base	52.5	41.5
159	21-May-99	N-9	Ambient	Base	50.2	41.9
162	03-Jun-99	Post-fled.	Ambient	Base	52.7	41.6
162	03-Jun-99	Post-fled.	Ambient	Cavity	61.3	50.8
30	03-Jun-99	Post-fled.	Ambient	Base	48.0	39.9
30	03-Jun-99	Post-fled.	Ambient	Cavity	47.9	40.0
127	03-Jun-99	Post-fled.	Ambient	Base	61.6	51.6
127	03-Jun-99	Post-fled.	Ambient	Cavity	56.9	45.8
134	15-Jun-99	I-7	Ambient	Base	49.5	40.7
23	03-May-99	I-8	Ambient	Base	60.4	53.7
103	17-May-99	0	Ambient	Base	66.2	58.3
41	02-Jun-99	1-8	Ambient	Base	50.2	42.3
3	22-Jun-99	N-17	Ambient	Base	67.4	59.5
103	12-May-99	N-2	Ambient	Base	59.3	51.4
103	12-May-99	N-2	Ambient	Base	59.4	51.8
70	20-May-99	1	Ambient	Base	57.7	50.0
218	23-Apr-99	1-4	Ambient	Base	64.8	56.5
189	23-Apr-99	I-1	Ambient	Base	53.0	42.3
118	18-Jun-99	N-14	Ambient	Base	53.7	46.0
174	01-Jun-99	N-22	Ambient	Base	49.4	41.5
41	01-Jun-99	1-7	Ambient	Base	49.5	42.5
17	01-Jun-99	I-1	Ambient	Base	49.5	41.6
120	17-May-99	I-5	Ambient	Base	48.2	41.5
36	17-May-99	1-4	Ambient	Base	48.8	41.1
194	17-May-99	N-21	Ambient	Base	47.8	41.2
271	03-Jun-99	Post-fled.	Ambient	Base	50.4	42.3

Cluster	Date	Nesting	Event	Mic	AVG. LE	Q (dB)
		Phase	Туре	Pos.		
		& Day			Flat	Α
227	03-Jun-99	Post-fled.	Ambient	Base	49.9	42.0
227	03-Jun-99	Post-fled.	Ambient	Cavity	48.9	41.0
87	03-Jun-99	Post-fled.	Ambient	Base	51.0	41.3
87	03-Jun-99	Post-fled.	Ambient	Cavity	48.8	41.0
172	04-Jun-99	Post-fled.	Ambient	Base	49.7	41.3
172	04-Jun-99	Post-fled.	Ambient	Cavity	48.7	40.9
47	04-Jun-99	Post-fled.	Ambient	Base	48.8	41.2
47	04-Jun-99	Post-fled.	Ambient	Cavity	48.8	41.0
183	07-Jun-99	Post-fled.	Ambient	Base	48.7	42.6
183	07-Jun-99	Post-fled.	Ambient	Cavity	48.6	40.7
75	07-Jun-99	Post-fled.	Ambient	Base	49.9	43.0
75	07-Jun-99	Post-fled.	Ambient	Cavity	49.0	41.1
10	27-May-99	N-2	Ambient	Base	53.4	42.7
137	28-May-99	1-8	Ambient	Base	49.3	40.5
294	28-May-99	N-6	Ambient	Base	49.2	41.6
176	28-May-99	N-9	Ambient	Base	48.8	42.7
35	19-May-99	1-4	Ambient	Base	50.2	41.6
165	26-May-99	I-1	Ambient	Base	51.2	41.2
165	26-May-99	1-1	Ambient	Cavity	48.5	40.8
44	27-Apr-99	1-8	Ambient	Base	49.7	41.4
189	27-Apr-99	I-5	Ambient	Base	50.2	41.2
35	16-May-99	I-1	Ambient	Base	47.2	42.9
36	16-May-99	1-8	Ambient	Base	46.5	40.1
129	16-May-99	l-10	Ambient	Base	47.4	39.8
137	18-May-99	Pre-nest.	Ambient	Base	49.4	40.5
7	18-May-99	Between	Ambient	Base	50.4	39.5
163	18-May-99	1-6	Ambient	Base	47.3	39.7
41	28-May-99	1-5	Ambient	Base	47.9	41.2
80	28-May-99	N-0	Ambient	Base	49.7	42.9
2	28-May-99	I-7	Ambient	Base	46.7	38.9
10	28-May-99	N-3	Ambient	Base	49.0	41.2
67	28-Apr-99	1-4	Ambient	Base	52.3	44.0
13	14-May-99	N-4	Ambient	Base	51.8	40.0
31	14-May-99	N-6	Ambient	Base	48.4	39.1
32	16-May-99	N-0	Ambient	Base	49.5	40.8
5	16-May-99	1-4	Ambient	Base	50.1	40.4
141	16-May-99	N-5	Ambient	Base	49.5	40.0

Cluster	Date	Nesting	Event	Mic	AVG. LEG	Q (dB)
		Phase	Туре	Pos.		
		& Day			Flat	Α
177	16-May-99	N-2	Ambient	Base	48.7	39.4
120	16-May-99	1-4	Ambient	Base	46.6	38.9
80	16-May-99	Egg laying	Ambient	Base	47.4	41.1
1	10-May-99	1-7	Ambient	Base	47.8	39.1
122	13-May-99	N-1	Ambient	Base	47.9	39.4
132	13-May-99	1-7	Ambient	Base	48.5	40.8
73	13-May-99	N-8	Ambient	Base	49.6	39.6
37	13-May-99	I-5	Ambient	Base	50.0	40.2
189	03-May-99	N-0	Ambient	Base	51.0	40.8
82	29-Apr-99	1-8	Ambient	Base	49.7	41.5
159	29-Apr-99	Egg laying	Ambient	Base	48.7	41.6
71	02-May-99	1-3	Ambient	Base	15.3	11.9
68	02-May-99	Egg laying	Ambient	Base	15.3	11.9
38	02-May-99	I-9	Ambient	Base	48.5	39.3
34	02-May-99	Egg laying	Ambient	Base	51.8	40.9
174	03-May-99	1-5	Ambient	Base	47.0	41.0
174	28-Apr-99	I-5	Ambient	Base	47.9	39.8
89	28-Apr-99	1-4	Ambient	Base	51.5	42.1
203	16-Jun-99	Non-nest.	Ambient	Base	50.7	38.0
118	16-Jun-99	N-12	Ambient	Base	47.2	37.1
159	17-Jun-99	Post	Ambient	Base	47.1	38.1
159	17-Jun-99	Post	Ambient	Cavity	58.5	46.2
44	21-Apr-99	1-2	Ambient	Base	50.2	38.1
41	04-Jun-99	I-10	Ambient	Base	49.0	38.1
135	09-Jun-99	Incubation	Ambient	Base	53.5	38.6
130	09-Jun-99	Incubation	Ambient	Base	50.8	37.7
112	09-Jun-99	N-3	Ambient	Base	49.6	38.4
1	09-Jun-99	1-8	Ambient	Base	47.3	38.0
129	15-Jun-99	Post	Ambient	Base	46.2	39.4
129	15-Jun-99	Post	Ambient	Cavity	48.3	39.2
8	04-May-99	N-4	Ambient	Base	48.6	38.1
194	13-Apr-99	Pre-nest.	Ambient	Cavity	52.5	42.6
194	13-Apr-99	Pre-nest.	Ambient	Base	51.7	40.5
56	15-Apr-99	Inactive	Ambient	Base	55.1	42.2
56	15-Apr-99	Inactive	Ambient	Cavity	60.6	48.4
51	29-Apr-99	N-2	Ambient	Base	50.6	41.5
61	28-May-99	N-3	Ambient	Base	48.3	41.5

Cluster	Date	Nesting	Event	Mic	AVG. LE	(dB)
		Phase	Туре	Pos.		
		& Day			Flat	Α
88	28-May-99	Incubation	Ambient	Base	47.4	41.4
82	28-May-99	N-0	Ambient	Base	48.7	42.3
48	01-Jun-99	Post-fled.	Ambient	Base	48.6	40.6
48	01-Jun-99	Post-fled.	Ambient	Cavity	54.8	42.6
57	02-Jun-99	Post-fled.	Ambient	Base	46.8	40.3
57	02-Jun-99	Post-fled.	Ambient	Cavity	45.9	38.2
205	02-Jun-99	Post-fled.	Ambient	Base	47.3	40.0
205	02-Jun-99	Post-fled.	Ambient	Cavity	47.2	40.4
132	11-May-99	I-5	Ambient	Base	52.3	43.4
17	11-May-99	Incubation	Ambient	Base	47.7	41.6
122	11-May-99	I-10	Ambient	Base	45.9	38.1
189	29-Apr-99	1-7	Ambient	Base	50.2	39.7
17	11-May-99	Incubation	Ambient	Base	47.7	41.6
122	11-May-99	I-10	Ambient	Base	45.9	38.1
36	15-Jun-99	Post-fled.	Ambient	Base	46.3	42.6
36	15-Jun-99	Post-fled.	Ambient	Cavity	47.8	40.7
296	20-Jun-99	N-9	Ambient	Base	47.0	39.8
83	23-Jun-99	Post-fled.	Ambient	Base	49.5	41.9
83	23-Jun-99	Post-fled.	Ambient	Cavity	55.3	43.9
143	21-Apr-99	I-6	Ambient	Base	46.5	38.8
83	02-May-99	1-2	Ambient	Base	50.9	42.2
25	26-May-99	1-9	Ambient	Base	55.6	46.9
103	13-May-99	N-3	Ambient	Base	57.4	49.4
83	19-May-99	1-2	Ambient	Base	48.0	39.8
151	14-Jun-99	Post-fled.	Ambient	Base	51.3	43.7
151	14-Jun-99	Post-fled.	Ambient	Cavity	54.3	43.7
206	14-Jun-99	Post-fled.	Ambient	Base	57.4	51.2
88	18-Jun-99	Post-fled.	Ambient	Base	47.5	40.6
216	22-Jun-99	1-8	Ambient	Base	47.1	39.3
118	22-Jun-99	N-18	Ambient	Base	47.0	41.0
10	14-Jun-99	N-20	Ambient	Base	49.4	37.0

Table D 12. Representative unweighted noise spectra for ambient sound levels on Fort Stewart, GA.

										_									_		_								_		_	_		_	_	T-	_	_			-	_
Salc.	Overall LEQ	47.8	47.3	46.7	67.4	50.1	50.4	48.6	53.4	49.0	49.4	51.8	47.7	47.7	49.5	60.4	929	48.0	47.9	48.4	49.5	51.8	47.2	50.2	49.2	46.5	48.8	46.3	47.8	50.0	40.3	49.5	50.2	49.0	50.2	49.7	48.8	48.8	48.6	54.8	9.09	55.1
				-	-		_	Н		H		_	Н	_	-	\dashv		-	-	\dashv		\forall	_	-	-	\dashv	-	\dashv	+	+	+	+	+	╁	\vdash	H	\vdash	\vdash		Н	-	-
	2000			-	16				0	L	25		-	-								\dashv	3					6	4	1	1	1	_	╀	2	\vdash	L	5		2	4	_
	16000	15	91	16	34	12	15	15	16	15	54	14	16	91	9	7	14	14	16	4	13	9	16	17	15	16	14	1	2	2 1	- 4	2 8	9	5	9	92	7	5	16	12	16	4
	12500										15		=	=																=			24		-		16					
		2	3	4	6	0	4	0	2	2	8	0	9	9	4	2	4	3	က	2	2	0	4	2	0	0:	4	2	2	e ;	-		9	4	=	4	65	2	13	=	13	=
	10000								L	L		_												Ш		_		\dashv	4	-		-	╨	+	╀-	+-	╄	<u> </u>	L		_	6
	0008	-		22	Н			⊢	-	-	⊢	\vdash	-	-	Н	_	21	22	23	53	_	=	20	21	21		-	-	-	-+	- 6	+-	24 5	+	+-	2	1	1	18 2	-	2	-
	0 6300		56				24	_	_	L	<u> </u>	<u> </u>	14			34	_	_			23	L	_			54	\vdash	33	-	-		+	2 =	+	+	1	8	-	1	-	7	#
	2000				ш		_	┡	L	↓_	-	+	-		\vdash	-	_	_	_	_	-	_	⊢-	Н	-	-	-		-		+	+	3 8	+	+-	+	+	+-	1	-		
	4000	92	92	53	49	8	22	├	 —	⊢	╁	-	╌	⊢	-	_	_	53	30	-	┝	-	┝	58	56	-	-	\vdash		-		-	3 8	+-		+	+	+	8	27	3	22
	3150		ន		\Box	27	_	_	<u> </u>	_	1_	-	2			19				_	L	15	<u> </u>			├	_	ш	-	-	-	-	3 5	+-	+-	+-	12	╀	2		Ц	_
	2500	_	_	<u>_</u>		_	┞	L	_	-	٠	-	-	┡		_	⊢	┡	<u> </u>	_	⊢	⊢		-	\vdash		├	Н		-	-	-	3 8	+	+-	+	+-	+-	+-	-	\vdash	\vdash
	2000	_	_		ш	\vdash	_	ـــ	_	<u> </u>	٠	₩	-	-	ļ	<u> </u>	<u> </u>	<u> </u>	⊢	⊢	⊢	↓	-	\vdash	-	₩	⊢	Н	-	\dashv		-	8 8	-	+	+	+-	+-	+	+	-	\vdash
	1600	\vdash	_	_	\vdash	_	١	₩	┺	┺-		╄	┺	-	⊢	⊢	<u> </u>	├-	⊢	├-	⊢	-	⊢	-	⊢	┼	⊢	Н		-	-+	-+	2 8	+-	-	+	+-	+	+-	+-		\vdash
	1250	_	_	L		_	_	ļ	┺-	1		+-	╄	┺	-	⊢	⊢-	┡-	-	├	\vdash	┼	-	-	⊢	╀	┼	Н	_		+	+	3 8	-	+-	+-	+-	+	+-	+-	-	\vdash
	1000	_	Ь.	1_	_	L.	1_	-	↓_	╄	-	+-	₩	⊢		⊢	⊢	ļ.,	-	-	⊢	┼	├	╌	⊢	+	+-	-	-	-	\rightarrow	-	3 8	+	┰	╌	+-	+-	+	+	+	\vdash
	8				1			i	1		1		1	1						L.	L	1	I		L.,		_						8 8	_		-	_	-	-	-	-	$\overline{}$
	89	-	-	-	-	╌	-	-	-	-	-	-	-	+-	-			-	-	_	-	_	_	+	_	_	$\overline{}$	_			_	$\overline{}$	S 5		$\overline{}$		\neg	_	-1	1	1	
	200	_	_	ـــ	_	_	┺	-	-		┿	+-	4-	₩	-	₩	-	-	⊢	-	-	+-	₩	+-	╄	╌	┿	⊢	-	\vdash	-	-+	8 8	-	+	+	+-	+	+-	+-	-	\vdash
	400		_	L	_	ட	_		_		_	_	_	_	_	₩	ļ	-	1	╄-	┺	╀	+-	╀	┺	+	+-	+-	├	-	-	-	2 8	-		+	+	+-	+-	+	+	\vdash
	315		_	_	↓	-	-	_	-	_	_	4-	-	+	+	-	↓	₩	╌	+	+-	+-	+	+-	+-	+-	+-	+-	-	\vdash	-+	-	8 8		+	┥~	+	+		+	+-	
	550	١.,	_	_	┸-	١	\perp	_	4	4	-	-	-	-	╄	╄	٠.	↓_	₩	╄	+-	-	+-	┿	+-	+	+-	+-	-	\vdash	\rightarrow	-+	37	-	-+-	+		+	+-	+	+-	
	500	1		1		1						1				1				,		1				1				L			2 5			_		_	_	_	-	-
ing (Hz		+	+-	+	+	+-	+	1	1-	+	+	-		+	1			39	39		T		1	-	39	_	$\overline{}$	Т	37 36				36	ې د د	\neg				1		1	1
Pollipa	00 125	22 37	-	╄	-	33 37	-	+	+	4	+		_	+	27 40	42 46	42 41	╀	-	25 37	_	+	╀	┺	20 3	+	+	╀	<u></u>	\perp	\rightarrow	-	56 26	٠.	_	8 8	+	+	+	+	+-	\vdash
ntor Fr	63 80 100	35	-	+-	+	88	-	+-	+	-	+	-			+	47	46	+	+-	+	+-	+-	+-	-	-	-	+-	-	33	-	\rightarrow		-	3 8	-	-	-	+	_	-	-	42
Band I EO (48) at 1/3 Octave Spectrum Center Erequencies	8	88	+	+-	-	+-	-	-	_	-	_	-		-	+	45	+-	+-	-	-	+-	-	-	-	-	-	-	+	36	-	\vdash	_	-	-	2 5	-	3 5	+	+	-	+	—
Speck	40 50	37 31	+-	-	-	_	-	+	-	-		+	-	_	-	+-	-	-	-	-	+-	-	+	-	-	-	-	-	35 26	37 27	Н	-	\rightarrow	-	-	7 8		5 8 2 8	-	-	-	
Potavo	32 4	39	+-	+-		+	-			-	-	-			+	+-	-	+	-	-	-		32	-	-	-	+-	+	35		Н	_	-	-	-	-	8 8		-	-		-
14/20	52	e	-			-	_	_	-	-	-	_		+-	+	-	-	-	-	99	-	-	-	_	_	-		-	-	-	32	\rightarrow	-	-	_	-	7 2	-		-	-	
(40)	20	7		+		-	-	-	-	-	_	43 49		-	-	-	+	_	+-	-	_		35 37	_	-	-	-	33 3	+	-	-	\rightarrow	-		-		3 8 8	3 6		-	-	_
100	13 16	34 37	+	+-	-	98	-		-	-	-	-	_		-	52		-		28	-	-	-	_	-	16	<u>σ</u>	-	(6)	38	_	56	7	-	_	-+	7		3 6	-	+-	-
6	유	S.		+	+	+-	+	-	-		_	-	-		98	-	-	-	_		-	-	-	-	z,		-	31		_	-	$\overline{}$	\rightarrow	-	-	-	3 5	_	_	_	-	+
I.E.	Pos.	Raco	Base	Race	Base	Bace	Bace	Bace	Raco	Dase	Baco	Dase	Pace	Bago	Rase	Rase	Base	Race	Cavity	Rase	Base	Base	2000	Base	Baco	Baco	Bace of a	Base	Cavity	Base	Base	Base	Base	Base	Base	Pase	Pase	Rase		Day of	Base	Base
1		+	+	+	+	╁	†	+	+	+	\dagger	\dagger	+	\dagger	T	$^{+}$	†	†	T	\top	†		+	+	\dagger	\dagger	Ť	T	1	\top				듵	E .	=	+	\top	_	\top	\top	Ę
T.	Type	Ambiont	Amhien	Amhion	Ambient	Ambient	Ambiant	Ambiont	Ambiont	Ambigat	Ambie	Ambiont	Ambient	Ambie	Ambient	Ambient	Ambient	Ambiont	Ambiont	Amhient	Ambiont	Ambion	Ambion	Ambient	Ambion	Ambiont	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambiont	Amhient	Ambient
1	2 e	Γ	Т		Т	T	T	Т	T	Т	Т	Т	18	Incubation Ambient	-	T	T	ı			2 2	5	-	T		Т	Т	8	_		Г		П	\neg	٦	T		_		Post-fled.	_	9
	Phase	2 2	2 2		N-17		Dobasoon	PEIME	ż Z	7-2	Ż	N-20	2 4	1000	1.1	α.		Doct-flod	Doct flod	3 2	2	2 2	8	2 3	- -	ż	-	Post	Post		Ė			_		_		Pos	Z S	Post Post	3 2	ina
	- Cale	00/07/00	96/01/00	00/00/30	99/22/90	02/46/00	02/10/22	02/10/20	02/04/33	88//	05/28/99	06/14/99	05/14/99	02/11/32	06/11/00	05/03/00	06/06/00	00/00/00	00/00/00	05/14/00	00/14/00	00/10/30	00/07/30	05/10/05	00/10/00	06/10/90	02/12/00	06/15/99	06/15/99	05/13/99	05/02/99	05/28/99	06/01/99	06/05/99	06/04/99	04/21/99	04/27/99	06/04/99	06/04/99	66/01/99	00/00/00	04/15/99
ľ	š	7,30	L CO	9 6	08/3	7	200	200	200	S S	7/00	9	S	3 2	0,90	9,30	S S	7,90	30	9	3 2	200	VCO C	g y	3 8	9	i i	3 8	8 8	05/	95/	05/	V90	90	9	8	9	99	90	8	3 3	8
	<u>.</u>	Ţ.	-[-	-	2 6		0 1	- 0	o S	2	2 3	2 9	2 5	= =	=	3	3 4	3 8	3 8	3 2	5 8	8 8	3 6	3 4	3	8 8	8 8	8 8	3 8	3 8	88	4	41	41	4	4	4	47	4	\$ 6	3	28
L				_		_		_						_	_		_	-	_			_							-			-	_						_			

Ca 25.	Overall	9.09	46.8	45.9	48.3	52.3	57.7	62.4	49.2	49.6	49.9	49.0	47.4	49.7	49.7	48.7	50.9	48.0	49.5	55.3	51.0	48.8	47.4	47.5	51.5	59.3	59.4	57.4	66.2	20.1	62.7	49.6	2./4	47.0	46.6	48.2	45.9	45.9	47.9	61.6	56.9	47.4
	20000	4	91	1			ი				10					2	0			-		2		23	თ	11	8	2			1			>	T	-				15		
	16000	15	ಜ	15	16	13	92	14	4	16	6	15	14	50	17	17	12	15	12	5	16	16	18	22	21	88	28	52	ಜ	=	و	2 3	1 2	- 4	5 5	4	4	14	55	30	15	91
-	12500		56			Ξ					17			18										4	23										T					23		
- 1-	10000	14	52	Ξ	17	14	24	13	6	4-	82	13	12	23	17	∞	6	13	4	12	13	13	21	19	54	24	22	8	8	2	5	<u> </u>	4 ¢	2 4	2 2	9	4	14	=	30	=	13
-	0008	50	32	18	35	51	က္က	6	82	19	27	50	21	56	23	34	16	21	22	6	ຂ	20	39	24	30	ಕ	31	g R	ဗ္က	2	2	5 8	3 8	3 8	3 8	E	24	24	19	41	19	18
	6300		52		34	20					82		27	58		ဗ္ဗ			2				50	23	33				1		1	13	22	35	3 6		6	က		36		44
	2000	52	52	52	೫	38	37	25	27	52	53	27	27	33	53	27	22	52	ಜ	53	56	24	56	22	36	\$	36	છ	69	22	8	25	42 6	2 6	3 8	33	24	24	24	37	56	83
	4000	83	28	27	31	33	38	27	27	27	32	28	27	38	53	32	52	53	33	33	88	27	30	53	31	45	41	æ	8	82	88	/2	/7	3 8	27	8	56	56	56	40	88	31
	3150		18		24	31					20		25	27	2	24	12		23	18			56	13	56				24		1	5 7	,			17			ځ	40		23
	~	30	27	27	88	32	38	53	53	27	30	28	29	28	29	32	27	28	31	30	28	28	29	27	30	40	38	37	48	82	31	3	3 8	35	27	88	22	32	56	40	31	83
	.4	31	27	27	27	31	38	53	30	22	30	53	53	28	30	53	28	27	53	53	29	28	28	28	28	40	33	37	48	8	32	97	3 8	3 6	27	88	52	52	88	38	31	22
	1600	24	19	18	22	31	83	97	21	18	53	19	22	19	19	16	23	56	23	21	23	20	10	20	21	53	31	32	88	ສ	92	13	2 8	8 8	13	52	9	16	19	31	24	17
	_	34	93	29	8	32	41	35	32	31	34	32	31	30	32	8	33	31	32	34	32	32	28	30	53	41	43	40	48	34	37	₹ 8	2 CS	3 8	3 8	32	೪	೫	31	38	34	83
	1000	35	30	29	೫	32	41	33	32	31	32	33	32	31	32	၉	32	31	31	34	33	33	29	32	53	42	43	4	8	32	\$	8 3	8	3 8	3 8	31	ဓ	೫	3	40	35	3
Ł		83	52	23	R	22	32	22	56	52	53	88	27	27	56	ಣ	32	52	21	33	56	24	50	30	54	33	34	33	5	ଝ	္က	3 :	- 8	8 8	3 8	12	83	83	ಜ	9	32	56
Н		98						-	-	-	-	34	-			-	-			\dashv		\vdash	\vdash	-	-		45	-	-	-	-	+	-	+	+	8	-	-	35		32	
Н	200	37	_	_	-		\vdash	-	-	Н	\vdash	35	-	-	-	-		Н	-	\dashv		Н	Н	\vdash	Н	\vdash	\vdash	\dashv	\dashv	+	-	+	+	+	+	8	\vdash	-	├	Н	36	_
ŀ		32		-	-		-	-	-	<u> </u>	-	-			-	-	-		_	\dashv	-	Н	Н	_				-	\dashv	\dashv	-	+	+	+	+-	2	╁	┝	┢	\vdash	92	_
ŀ	315	Н	-	\vdash	-		H	\vdash	\vdash	Н	\vdash	Н	-	-		-	_	Н		\dashv	\vdash	\vdash	Н		Н	-	\dashv	\dashv	-	-	\dashv	+	+	+	+	34	-	3.	\vdash	\vdash	88	-
ŀ	0 220 0	Н	33		_	_	\vdash	⊢	⊢	H	H	Н	-	_	Н	_	_	_		-		_	Н	_	Н	-	\vdash	-		-	-	-	+	+	+	98	+	⊢	-		\$	-
٠L	160 200	-							-	-	_	\vdash		_	_	_	_	_		_		\vdash	\vdash	_	_		_			-		-	-	-	-	35 20	-	-	-	Ь	-	11 18
	125	46 4				37 3	49 4	\vdash	 	-	-	39	-	$\overline{}$		\neg		38 3		\neg			\vdash				\vdash	\neg	-	-	-	-+	9 8	-	\top	+	+-		-		_	98
-	<u>8</u>	44				34	8	_	ـــ	—			20		_			56					Ш		36		Н	-	9	_	_	_	_	_	_	1 150	-	_	ಣ	51	38	31
	8	44				ဇ္ဌ	—	-	8	-	_	-	-	-	_	-	-	_	88	-	_	_	_	_	40	_	_	\rightarrow	\rightarrow	\rightarrow	\rightarrow	_	_	8 8	_	88	+	-	_	53	_	37
	8 8	_	25 37	13 37		42 41	-	44 42	33	38	38 40	-	-	_	_	_	_	31 39	$\overline{}$	-	36 44	\vdash	$\overline{}$	31 38	-	$\overline{}$	$\boldsymbol{\vdash}$	$\overline{}$	-		-		-	3 5	-	-	_	-	38	╌	_	37 40
	\$	-	_		37 2	41 4	45	_	38	송	_	_		_	$\overline{}$		-		_		_	_				_	47	_	\rightarrow	\rightarrow	_	_	99				-	1	_		36	_
	8	_	_	$\overline{}$	37	41	_	-	5	စ္တ	88	-	_	_		_	_	38	40	33	$\overline{}$	-	$\overline{}$				49	_	$\overline{}$		-	-	_	3 8	-	+-	+-	-		51		98
-	22	49 46	_	-		41 45	-		35 30	98 68	7	_	_	_	_		_	37 29			7 24		_	34 31	41 43	_	47	_	-	-		_	32	3 5	2 2	38	_			49 51		32 27
	16	49 4					-		9	39	_		_		-			-		37 3		_	_		40 4	$\overline{}$	_				\rightarrow	\rightarrow	_	ξ (c		37	_		_		39	
iL	 5 7	47 4	_		_	41 3	4		37 4	-	_	_	35 3	3					ಜ		63		_	_	38 4		4	37 4	-	-		8	_	40	246	_	2	-	32			-
ŀ	2	20	_	-	-	66	4	55	8	35			-	34	_	$\overline{}$	$\overline{}$	_	_	-	35	_	-	_	_	46	47	$\overline{}$	\rightarrow	\rightarrow	-	-	_	£ 8	-+-	-	+	_	37		_	8
_	Pos.	Cavity	$\overline{}$	-	-	Base	⊢	Cavity	-	Base	-	-	-	_	_	_	_	-	-			Н	-	\vdash	Н	_	\vdash	_	\vdash	-	-	Base	-	-	Race	-	+	+	Base	+	-	Base
	Type	П					1		1			П		Т			\vdash	Н		П				Т	Н		Н	П	\forall		┪	\dashv	+	+	\top	\top	T	1				-
_	_		led. Ambient	led. Ambient	3 Ambient		Ambient	led. Ambient	ed. Ambient	Ambient	led. Ambient	led. Ambient					Ambient	Ambient	led. Ambient	-	led. Ambient	ed. Ambient	tion Ambient	led. Ambient		Ambient					\neg	П	Т	Т	Ambient	Τ	Т	T	Ambient	led. Ambient		Ambient
	Phase Day	Inactive	_	Post-fled.		1-4	-	Post-fled.	+-	1	Post-fled.	Post-fled.	Eg			N-0				Н	_	-	-	Post-fled.		N-2		N-3	Н	$\overline{}$	a.	2.3	4	4	2 2	1	\downarrow	L	ž	Post-fled.	P.	-19
Care		04/15/99	06/05/99	06/05/99	05/28/99	04/28/99	05/20/99	66/20/90	66/20/90	05/13/99	66/20/90	66/20/90	05/16/99	05/28/99	04/29/99	05/28/99	05/02/99	05/19/99	06/23/99	06/23/99	66/03/90	66/60/90	05/28/99	06/18/99	04/28/99	05/12/99	05/12/99	05/13/99	05/17/99	06/11/99	06/11/99	66/60/90	06/16/99	66,00,00	06/16/99	05/17/99	05/11/99	05/11/99	05/13/99	06/03/99	06/03/99	05/16/99
 3		99	25	22	91		2	7.	7	23	75	75	80	8	82	82	83	ಜ	8	83	87	87	88	88	88	103	103	103	103	107	107	12	138	2 5	2 5	2 2	22	22	123	127	127	129

Calc.	Overall LEQ	46.2	48.3	50.8	52.3	48.5	49.5	53.5	49.4	49.3	49.5	46.5	51.3	54.3	48.7	52.5	50.2	47.1	58.5	52.7	61.3	47.3	51.2	48.5	49.7	48.7	47.9	47.0	4.64	48.7	53.6	48.8	48.7	48.6	53.0	50.2	50.2	51.0	52.5	51.7	47.8	50.7	47.3	47.2
L	20000	6	2		\dashv		_	2			\vdash	က	-			-	60		_	-					ଛ			\dagger	\dagger	\dagger	2				2				က	-		4	_	
	16000	54	16	16	15	15	15	15	16	9	4	9	83	9	14	14	16	16	14	14	12	14	17	15	26	16	9	2 4	و پ	2 2	1 9	16	16	15	17	14	15	15	9	91	5	9	<u>@</u>	5
	12500 16	ន			5			_	_		\vdash	\vdash	26	\vdash		-		4							24		7	+	+	+	7		5						15				ಣ	
	10000 12	27	=	15	15	14	4	44	12	16	12	=	R	14	=	14	12	19	=	7	12	12	14	14	22	13	4	2 ;	4 6	3 9	9	17	15	13	14	16	13	12	12	16	19	12	6	4
	8000		8	23	24	18	21	22	22	28	ຂ	69		_		_	_		L	L	<u> </u>					Ш	_	4	4	4	9	_	_	Ш		-			_	\vdash	_	\dashv	ន	23
	9 0009	-	\vdash	10	-			⊢	-	╀	2	╁	62	+	+	82	-	15	\vdash	T					50	\vdash	ຂ	\dashv	_	19	+-	27								4	34	9	24	28
	2000	83	24	56	58	24	88	62	53	8	62	27	3	83	83	93	27	24	ಜ	24	56	24	27	28	22	27	83	82	27	7 2	27	33	32	29	56	27	54	58	24	58	9	24	88	8
	4000	88	58	58	27	56	8	දි	31	83	3	8	g	8	88	දැ	ಣ	27	27	8	83	27	88	88	Н	Н		\dashv	\dashv	+	3 8	+	\vdash	၉	-	88	56	-		83		58	-	34
	3150	=		L	18		L	7	7		-	15	1_	L	8	_		1-	5	╀	24		∞	_	14		19	-	+	+	8	+	-		18		"	9 19	8	_	-	8	\vdash	11
	00 2500	_		\vdash	\vdash		┺	<u> </u>		+-	-	4-	-	-	+	ļ	┺	+-	+	+-	+-	\vdash	⊢	-	-	\vdash	_	-	\rightarrow	-	8 8	+	+-	-	-	_	-	+-	_	_	-	_		\vdash
	1600 2000	_	<u> </u>	_		_	_	_	1	—	_	_	_	-	-	-	-	-	┿-	-	+-	-	-	-	-	-	\vdash		-	_	2 8	+	-	-	_	-		_	1	_	_			
	1250 16	I		1	1		_		_			_	-	٠	-	-	-	-		+-	-	₩	-	-	-		-	\rightarrow	-		5 8	-	+-	-	-	+	-	-	1	+		_		ಕ
	1000	_	_	_		_	٠.	_	-	٠.	-		-	+	+-	╄	-	4-	-		+-	+-		├-	⊢	⊢		-	\rightarrow	-	2 5	+-	+-	-	-	+-	-	+	+	┿	-		-	—
	800	1			•					1					. L.	1				_L			1	I	ł			-			S K		-	_	_	-	-	+	+	-	-	-	-	
	0 630	_	_	_	_	_	-	-	-	-	_	-	-	-	-	+	-	-	-	-	_	_	-	_	-	-	_	_	$\overline{}$	_	S 25	$\overline{}$	_	$\overline{}$		$\overline{}$	_	_	_	_	1			
	400 500	7	_	╄-	_	_	-	٠.	4	_	+	-	-	+	┺	+-	+-	+-	+	+-	+-	+-	╌	-	╌	+-	_	\vdash	-+	$\boldsymbol{+}$	3 8	+-	+	-	+	+	+	+	+	+	+-	_	82	\Box
	315 4	88			1		_		_	_				-	-	-	-	-	-			+	-	-	-	-	-	↤	-	-	के क	+	+	+-	+-	+-	+	+	+-	+	+	_	88	83
	550		_		_	_	_	_	_	_	-	-	_			-	-		-	-	-	-	-	-	╌	-	+	-	\rightarrow	-	8 8		-	-	+	+	+-	+	_	+	1	-	1	_
	200		4		1	ł.		1			-	- 1	- 1			1	1		_	_					1						3 4	_		-	-	-	-	-	-	-	-	-	-	-
ies (Hz)	9 160	_	$\overline{}$	3	31	35	98	33	35	3 %	3 8	3 8	3 6	\neg	$\overline{}$	$\overline{}$	_	\neg	_	_	_		98	35	88	33	33	30	36	8 8	88 6	8 3	38	37	37	38	38	33	643	88	9	7	833	7 33
Band I EO (dB) at 1/3 Octave Spectrum Center Frequenc	100 125	23 35	4-	4	27 35	30	+	+	+	+	_	-	+	4-	38	_	┿	3 8	-	-	-	_	_	╄~	-	-	-	-	\blacksquare	-+	5 6	-	+-	+	+	+-		-	-	-	+-	+	24 3	22
enter Fr	8	8	3	ළ	8	37	8	5 62	8	3 8	3 %	3 5	ţ	₹ ₹	8	A	æ	3 6	5 8	3 4	3 2	88	37	98	88	37	ક્ક	34	37	8	88 4	3 %	98	8	88	-	+		-	-	-	-		33
frum C	50 63	8	2 2 2	_	-	+	+	+	-	-	_	-	-	-	-	-	-	-	-		-	-	+	-	+	+-	+	-	-	-	3 40	-	-	+	-	+	-	-	-	+-		+-	+-	20 37
ve Spe	8	25	5 25	14	8	37	g	3 4	2 8	3 8	3 6	જે જે	8 8	?	3 2	; \$	1 8	3 8	3 8	3 5	3 =	- 25	eg eg	37	æ	88	æ	98	88		33	ું હ	3 6	34	4	89	+	+	-		-	-	+-	34
3 Octa	25 32	_	3 6		-	+-		-	-	-	-		2	¥ 5	_	_	3 2	-	20 00	_	S 25	_	-	-	-		_	-	26 39	\rightarrow	8 8	-	2 8	-	+	-		-	+	3 8	-	_	-	31
R) at	202	-	3 8	-	-	+-	-	-			-	-	\$ 8	-	-	-	-	_	-	-	-	+	-	-	+-	-	-		-	_	-	± 2	_		-		-	-		8		3 8	_	æ
FO (c	92	ĸ	3 %	3 8	-	-	3 8	-	-	-	-	€ 5	9	-	-	+	_			-	3 6	_		8 89	-	_	33	-	-	-	\rightarrow	3 8		3 8	+	-	-	-	-	_	-	+	-	
Rand	10 13	-	3 8	-	-	-	_	-	_	-		4 6	P	9 1	-	2 2	-		-	-	45 6	-		-	2 2	+	8	+	38 29	\vdash	-	40 40 40 40	-	5 8	45 44	-	-	3 8	_	_	_	8 8	_	38
Mic		0000	Cauthy 20	-	+	+	+	-	+	-		-	Pase 29	-	-	+	+	-+-	-	-	Pase	-		+	+	Cavity 37	+-	+	-	-	-	Cavity	$\overline{}$	+	-	-		_	+	_	+	-	-	—
H		+	\top	\top	+	十	+	+	+	+	+	1	\dagger	+	+	+	+	+	\top	十	十		+	+	\top	1	+	+	\vdash	Н		+	+	\top	+	十	1	\top	十	+	\dagger	+	+	\Box
From		Ambio	Ambiont	_		Ambiont	Ambiont			-	Ambient	Ambient			Ambigat	יוויין	Ambient	Amblen	Amolent	$\overline{}$	Ambient		Ambia	Ambiant	- 1		. T	Ambient	Ambient	Ambient		. Ambient	7		_	Ambiont	Ambiont	Ambion	\neg	Ambiont		_		Ambient
Monting	Phase	nay	Post	POSI	Incubation L.S.	2 -	<u>-</u>	1-1	Illogogilo	Pre-nest.	2	ج ج	9	Post-fled.	Dall-Iso-	Egg layılığ	2 2	P C	Pos	Post	Post-fled.	Post-lled.	2 2	Ξ Ξ	Don't flod	Post-fled	1.5	5	N-22	6-N	N-2	Post-fled.	Post-flee	Post-fled.	1031-1102	- 4	2 2	<u> </u>	7-20	Pre-riest.	LIGHES	Non-noct	Post-flad	Post-fled.
4		00,21,00	66/12/90	66/01/90	06/09/99	00/45/00	66/21/00	06/01/90	66/60/90	05/18/99	05/28/99	05/16/99	04/21/99	06/14/99	06/14/99	04/23/33	66/90/60	05/21/99	06/1/99	06/17/99	06/03/99	06/03/88	66/01/00	02/20/38	00/70/00	06/04/00	PD/86/170	05/03/99	06/01/99	05/28/99	05/16/99	66/20/90	66/10/90	66//0/90	00/00/00	04/23/99	04/2//99	04/29/99	02/03/33	04/13/33	04/13/33	00/1/00	06/01/90	06/02/99
-	į	+	+	+	35	+	+	+	+	+	\dashv	-	+	+	+	+	+	22	\dashv	128	+	+	+	20 3	2 5	2/1	1,5	174	174	176	177	179	£ 5	20 5	3 5	20 5	20 5	£ 5	20 3	\$ 3	561	45	300	S02 P3

Cafc.	Overail	LEQ	57.4	53.7	66.5	47.1	64.8	49.9	48.9	50.4	49.2	47.0
	20000		5				18	3		8	8	-
	16000		56	17	16	15	32	17	17	19	17	13
	12500		34							13	22	
	10000		48	15	14	16	32	15	13	17	50	13
	8000		46	25	20	56	38	21	20	24	36	22
	9300		23			30				18	23	19
	2000		32	22	56	53	33	56	56	28	22	27
	4000		36	53	28	58	43	53	58	31	53	35
	3150					4				30		18
	2500		36	31	31	56	45	53	82	31	53	27
	2000		37	31	31	56	43	53	53	31	53	27
	1600		30	23	52	18	40	17	50	56	21	21
	1250		39	35	37	59	47	33	32	35	31	e
	1000		39	98	38	53	48	34	33	33	35	8
	88		28	32	32	24	36	28	28	22	23	22
	930		40	37	98	31	09	36	34	34	33	32
	200		75	38	28	35	19	28	32	32	34	33
	\$		28	56	25	17	38	25	22	23	20	16
	315		42	98	37	33	51	36	35	36	34	33
	220		44	37	39	33	53	37	36	37	32	34
	200		30	ಜ	Q	18	40	24	25	59	23	19
icies (Hz)	160		43	98	23	32	52	35	36	36	34	32
uencie	125		47	\$	5	37	25	40	40	40	33	37
Band LEQ (dB) at 1/3 Octave Spectrum Center Frequen	8		32	හ	9	54	44	22	25	28	53	18
enter	8		47	8	4	34	52	37	32	33	37	33
E I	63		48	4	\$	37	28	9	40	45	49	37
Spect	22		35	33	44	19	31	3 25	22 2	31	33	3 15
tave	32 40		46 45	40	49 47	98 98	54 52	39 39	39 37	40 39	39 40	36 33
30	25	-	36	38	51	25	S.	8	23	36	34	36
3) at	ឧ		42	4	99	36	23	39	37	39	36	88
р О	19	-	45	45	61	93	54	99	38	33	88	38
핕	13			\$	8	88		ಜ	27	34	92	33
ä	9		5	47	9	34	53	93	88	37	32	34
Mic	Pos.		Base	Base	Cavity	Base	Base	Base	Cavity	Base	Base	Base
Event	Type	:	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient	Ambient
Nesting	Phase	Day	Post-fled.	Post-fled.	Post-fled.	8-	1-4	Post-fled.	Post-fled.	Post-fled.	9-N	6-N
Date			06/14/99	06/18/99	06/18/99	06/22/99	04/23/99	06/03/99	66/03/90	66/03/90	05/28/99	06/50/99
ટું			508	216	216	216	218	227	227	271	294	536

CERL DISTRIBUTION

Chief of Engineers

ATTN: CEHEC-IM-LH (2) ATTN: CEHEC-IM-LP (2)

ATTN: CEMP ATTN: CEMP-CE ATTN: CEMP-EA (2) ATTN: CEMP-ZM ATTN: CERD-ZA

Engineer Research and Development Center

(Libraries)

ATTN: ERDC, Vicksburg, MS

ATTN: Cold Regions Research, Hanover, NH ATTN: Topographic Engineering Center,

Alexandria, VA

SERDP (3)

ACS(IM) 22060 ATTN: DAIM-FDP

CEISC 22310-3862 ATTN: CEISC-E ATTN: CEISC-FT ATTN: CEISC-ZC

HQ USAREUR & 7th Army

ATTN: AEAEN-EH ATTN: Unit 29351

US Military Academy ATTN: MAEN-A

ATTN: Civil Div Director ATTN: Dept of Geo & Env Engr ATTN: Facilities Engineer

Commander FORSCOM ATTN: FCEN-RDF 30330-6000

US Army ARDEC 07806 ATTN: SMCAR-ISE

Linda Hall Library 10017 ATTN: Acquisitions

US Army Environmental Center ATTN: SFIM-AEC-NR 21010 ATTN: SFIM-AEC-CR 64152 ATTN: SFIM-AEC-SR 30335-6801 ATTN: AFIM-AEC-WR 80022-2108

National Guard Bureau 20310

ATTN: NGB-ARI

Naval Facilities Engr Command ATTN: Facilities Engr Command Code 20YAZ (2)

US Army CHPPM ATTN: MCHB-DC-EEN

US Gov't Printing Office 20401 ATTN: Rec Sec; Dep Sec (2)

Nat'l Institute of Standards & Tech

ATTN: Library 20899

Defense Supply Center Columbus ATTN: DSCC-WI 43216

Defense Tech Info Center 22304 ATTN: DTIC-O (2)

> 41 5/00

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of Information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

Management and budget, i aperwork i	teddettorr roject (0704 0100); vrasimis			
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE May 2000	3. REPORT TYPE AND DATES C Final	COVERED	
4. TITLE AND SUBTITLE			5. FUNDING NUMB	ERS
Assessment of Training Noise	Impacts on the Red-cockaded We	oodpecker: 1999 Results	CS 1083	
6. AUTHOR(S) David K. Delaney, Larry L. Pa	ater, and Timothy J. Hayden			
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES) neering Research Laboratory (CE)	RL)	8. PEFORMING OR REPORT NUMBE	
P.O. Box 9005	, (,	TR 00-13	
Champaign, IL 61826-9005			1100-13	
7				
9. SPONSORING / MONITORING AGENC			10. SPONSORING / I	
0	arch and Devleopment Program		AGENCY REPOR	T NUMBER
ATTN: Holst/ Program Manag	ger			
901 N Stuart St., Suite 303 Arlington, VA 22203-1853				
9. SUPPLEMENTARY NOTES				
Copies are available from the	ne National Technical Information	Service, 5385 Port Royal	Road. Springfield	l. VA 22161
copies are available from a	io i tational i common information	. 201 . 100, 02 00 2 01 . 100 ,	, - _F	,
			12b. DISTRIBUTION C	CODE
12a. DISTRIBUTION / AVAILABILITY STATE		,	12B.DISTRIBUTION C	JODE
Approved for public release	; distribution is unlimited.			
13. ABSTRACT (Maximum 200 words)				
installations in the southeas training and the conservation determining how noise affects of certain kinds of tr	quarter of the remaining Red-cool tern United States. Such a close an of Red-cockaded Woodpeckers of these species. This report presaining noise on the endangered R	association has raised quest on military land. Increase sents second year results of ed-cockaded Woodpecker.	tions about the int ed importance has a multiyear study	eraction between been placed on to determine the
Preliminary data suggest the	at: measured levels of experiment	al noise from .50-caliber b	lank fire and artill	ery simulators did
not affect RCW nesting suc	cess or productivity; Red-cockade	ed Woodpecker flush frequ	ency increased as	stimulus distance
decreased, regardless of stir	nulus type; woodpeckers returned	to their nests relatively qu	ickly after being	flushed; and noise
levels in Red-cockaded Wo	odpecker nest cavities were subst	antially louder than levels	recorded at the ba	ise of the nest tree.
14. SUBJECT TERMS				15. NUMBER OF PAGES
threatened and endangered sp				144
Red-cockaded woodpecker		tary training		16. PRICE CODE
range management	·	DP	\\\\	20. LIMITATION OF
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	/N	ABSTRACT
Unclassified	Unclassified	Unclassified		SAR