

Dye Sensitized Solar Cells (DSSCs): Materials and Perspectives

Xú, Hóng^{1,2}

27th Nov. 2015

¹Technische Universität München

²Ludwig-Maximilians-Universität München

New Type Third Generation Dye-sensitized Solar Cells

Outline...

I. Introductions

- a. Historical Review
- b. Principle of DSSC

II. Materials

- a. Anode
- b. Cathode
- c. Dye
- d. Electrolyte

III. Specific Example

a. Bachelor Thesis

IV. Summary and Outlook

- a. Summary of DSSC
- b. Promising Application

1. Introductions

Historical Review & Principle

Historical Review of DSSC

1. Pre-concept

1960 - 1972

- At UC Berkeley
- Demonstrated
- Instability Problem
- Prototype of DSSC

2. Grätzel cell

1988 - 1991

- UC Berkeley & EPFL
- Fist publication of hight efficiency DSSC
- M. Grätzel was awarded Millennium Tech
 Prize in 2010 for this invention

Transparent Conducting Oxide TiO2 Class Platinum Dye

3. Modified DSSC

1991-2015

- Enhanced Anode, Cathode
- New Dyes and Electrolytes
- Greatly Improved Effienciency •
- Large Area

4. Furture DSSC

2016-2050

- Integration
- Flexibility
- Manufacturing
- Commercialization

"

"Dye-sensitized solar cells are a special kind of a low-cost thin films solar cell that efficiently converts visible light into electrical energy."

11/28

2. Materials

Anode, Cathode, Dye and Electrolyte

Anode

Materials

Nanoparticles, wires TiO₂/SnO₂/ZnO/Nb₂O₅

Specific Surface Area

Nanocomposites

TiO₂/SnO₂/ZnO/Ag...

Specific Surface Area

Semiconductors

TiO₂/SnO₂/ZnO/Nb₂O₅

Electron transfer

Multi-layers Anode

TiO₂/SnO₂; Opal

Reflectivity and Absorption

¹http://www.chem.umass.edu/~rbmetz/CHEM891/Energy3.pdf ²Fan-Tai Kong et al. Advances in OptoElectronics [J] Volume 2007, doi:10.1155/2007/75384

Cathode

Materials

Carbonbased

Carbon Composites

Pt-Pb

Graphene

(Catalyst)

(a)

Carbon Nanotubes Copper

Copper Oxides

Platinum

http://wiesner.mse.cornell.edu/res_energy.htm; https://www.princeton.edu/~cml/assets/pdf/pu_10_4roy-mayhew.pdf

Dye

Materials

Inorganic Dye **Sensitizers**

Metal Polypyridyl complexes of Ru & Os

Metal Porphyrin

Phthalocyanine

Quantum Dots

Natural Organics

COONBu₄-n

Ru-dye N945

Indoline dye D149

Synthetical Organics

²Fan-Tai Kong et al. Advances in OptoElectronics [J] Volume 2007, doi:10.1155/2007/75384

Organic

Electrolyte

31⁻

Materials

Liquid State

Organic Solvent

Redox Couples:

I₃-/I-Br-/Br₂ SCN-/(SCN)₂ SeCN-/(SeCN)₂

Ionic Liquid

1-methyl-3-alkylimidazolium iodide R = C₃-C₉ alkyl. η_a/mPa·s: C₃, 865, C₄, 963, C₅, 1362 C₆, 1439, C₇, 1792, C₈, 1976, C₉, 2099

Quasi-solid State

Solid State

PNR4VPI

Stabilization

Framework Materials:

- -Polymer
- -Low-molecular-weight gelator
- -Silica nanoparticles

Leakage and Vaporization Problems

NRPI

All solid

3. Specific Examples

My Bachelor Thesis

Bachelor Thesis, 2013, Beijing

Mesoporous SnO₂ Microsphere

Advantages

Bandgap Mesoporous Reflectivity Surface Area 3.5-4.0eV 2-50nm >2.0 46.92m²/g

Mesoporous SnO₂

Commercial P25 TiO₂

FTO Conductive Glass

Commercial P25 TiO₂

Commercial P25 TiO₂

FTO Conductive Glass

Synthesis

Prepared by Atomization reaction with calcination at different temperature

DSSC

Using mesoporous SnO2 as the reflective layer of TiO2 anode.

Doctor blade method Screen printing method

Morphology of mesoporous SnO2, SEM pictures

Calcination Temp. (°C)	500	600	700	800
Average Crystal Size (nm)	5.3	10.6	22.3	12.8

I-V Curve Test of DSSC Samples

DSSC I-V Curve

Light Scattering Test of DSSC Samples

DSSC UV Spec.

Efficiency of DSSC Samples

4. Summary and Outlook

Summary of DSSC & Applications

highest 11%

Photo Conversion Efficiency of DSSC, 2014 Achieved by M. Grätzel Group at EPFL

Published on Nature Chemistry 6, 242–247 (2014) doi:10.1038/nchem.1861

Silicon Solar Cells

20.5%

Perovskite Solar Cells

12%

Organic Thin Film Solar Cells

11%

Dye Sensitized Solar Cells

Best Research-Cell Efficiencies

https://en.wikipedia.org/wiki/Solar_cell_efficiency#/media/File:PVeff(rev150806).jpg

Worldwide installed photovoltaic capacity

Estimated figures for year 2014

Smart, Sustainable, Solar,

Search

search

Consumer electronics

Sensors & Actuators

Retail

Outlook Applications

Thank you for your Appreciation... Any QUESTIONS?

Xu, Hong

Email: hong.xu@ph.tum.de

Mobi: +49 (0) 15905350792

Dye Sensitized Solar Cells (DSSCs): Materials and Perspectives

Xú, Hóng^{1,2}

27th Nov. 2015

¹Technische Universität München

²Ludwig-Maximilians-Universität München