TD 1 : Différentiabilité, gradient, points extrémaux

Exercice 1. Un réel $\varepsilon > 0$ étant fixé, on définit

$$\forall x \in \mathbb{R}^n, \quad J_{\varepsilon}(x) = \sum_{i=2}^{n-1} N_{\varepsilon}(x_{i+1} + x_{i-1} - 2x_i), \quad \text{où} \quad N_{\varepsilon}(t) = \sqrt{\varepsilon + t^2}.$$

Prouver que J_{ε} est différentiable et calculer sa différentielle $\mathrm{d}J_{\varepsilon}$.

Exercice 2. [Interprétation géométrique du gradient]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . Pour $\lambda \in \mathbb{R}$, on note L_{λ} la ligne de niveau d'équation $f(x) = \lambda$.

On considère $a \in \mathbb{R}^2$ tel que $\nabla f(a) \neq 0$ et $\gamma : \mathbb{R} \to \mathbb{R}^2$ de classe \mathcal{C}^1 tel que $\gamma(0) = a$ et $\|\gamma'(t)\| = 1$ pour tout $t \in \mathbb{R}$.

- 1. Définir γ de sorte que $f \circ \gamma$ décroît le plus vite au voisinage de 0. En déduire que $-\nabla f(a)$ donne la direction de la plus forte pente de f en a.
- 2. On suppose maintenant que $f \circ \gamma$ est constante au voisinage de 0. Démontrer que $\nabla f(a)$ est orthogonale à la tangente à L_{α} où $\alpha = f(a)$.
- 3. On suppose que $\gamma'(0)$ est colinéaire et de même sens que $\nabla f(a)$. Montrer alors qu'il existe une fonction $x:\lambda\mapsto x(\lambda)\in\mathbb{R}^2$ définie au voisinage de $\alpha=f(a)$ telle que $x(\lambda)\in L_\lambda$. En déduire un équivalent de $\|x(\lambda)-a\|$ lorsque $\lambda\to\alpha$. Interpréter.

Exercice 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x_1, x_2) = x_1^3 + x_2^3 - 6(x_1^2 - x_2^2).$$

- 1. Montrer que f admet quatre points critiques.
- 2. Calculer f(0,t) et f(t,0) et dire si f admet un extremum en (0,0).
- 3. Pour les trois autres points critiques, calculer la hessienne de f en ces points.
- 4. Modifier la fonction *plot_fonction* du TP1 pour qu'elle donne également le maximum de la fonction sur la grille et l'utiliser pour afficher *f* au voisinage de ces points critiques. Préciser la nature des points critiques (maximum local, minimum local, point selle).
- 5. Commenter en prenant en compte la question 3.

Exercice 4. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x_1, x_2) = x_1^2 + x_2^3.$$

Déterminer ses points critiques. Admet-elle des extrema locaux? Globaux?

1

Exercice 5. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x_1, x_2) = x_1^3 - 3x_1x_2^2.$$

- 1. Montrer que f admet un unique point critique en (0,0).
- 2. Préciser la nature de ce point critique.
- 3. En utilisant la fonction $plot_fonction$ du TP1 pour afficher f au voisinage de (0,0), dire si (0,0) est un minimum local, maximum local ou point col.
- 4. Démontrer que f est positivement homogène de degré 3 et en remarquant que $f(x_1, x_2) = Re\left((x_1 + ix_2)^3\right)$, on démontrera que f admet 3 "creux" comme observé numériquement.
- 5. On pourra tracer $f_k(x_1, x_2) = Re\left((x_1 + ix_2)^k\right)$ et observer le nombre de creux pour $k \geqslant 2$.

~