Information Theory University of Cambridge

Jasmeet Bhatia

Contents

Chapter 1	Lectures 1 and 2	Page 2
1.1	Introduction to Information Theory	2
1.2	Shannon Plot of Information	2
1.3	Entropy $H(x)$	3
Chapter 2	Lecture 3	Page 4
2.1	Submarine	5
2.2	Bent Coin Lottery	5
Chapter 3	Lecture 4	Page 6
3.1	File Compression	
9.1	T. HE COHIDIESSION	0

Chapter 1

Lectures 1 and 2

1.1 Introduction to Information Theory

Definition 1.1.1: Shannon's Definition of Information (h)

Let an ensemble, X, have input (x, A_x, P_x) where x is a random variable, A_x is a set of possible outcomes $(a_1, a_2, a_3, ...a_1)$ and where P_x is the set of possibilities $P_x = (P_1, P_2, ...P_i)$ such that $P(x=a_i) = P_i$, we define Shannon's information content as the following:

$$x = a_i h(x = a_i) = log_2$$

$$\therefore h(x=a_i) = log_2 \frac{1}{P(x=a_i)}$$

1.2 Shannon Plot of Information

Claim 1.2.1 Additive Property

h is additive for independent random variable

Example 1.2.1 (XY)

x, y = P(x, y) = P(x)P(y) and x, y. Then $h(x, y) = \log_2 \frac{1}{P(x, y)} = \log_2 \frac{1}{P(x)} + \log_2 \frac{1}{P(y)}$. Based on this definition and graph above, we see that the Shannon information theory shows that the h is largest for outcomes that are the most improbable.

1.3 Entropy H(x)

Definition 1.3.1: Entropy H(X)

Entropy of an ensemble is the average Shannon Information Content (h)

$$H(x) = -\sum P(X)log_2 \frac{1}{P(x)}$$

Note:-

Entropy H(x) is in units of bits

Example 1.3.1 (Applying Entropy to Weighing Ball Problem)

Comparing 6 Balls against 6 Balls with 12 Balls Total

$$H(x) = 0.5log_2 \frac{1}{0.5} = 1bit$$

Comparing 5 balls against 5 balls with 2 balls on the table

$$H(x) = (1/6)log_2 \frac{1}{12/2} +$$

	Left Ball is Heavier	Balls is Balanced	Right Ball is Heavier
Probability	1/6	4/6	1/6
-p * log2(p)	$-(1/6) * \log 2(1/6)$	-(4/6) * log2(4/6)	$-(1/6) * \log 2(1/6)$

Based on this,

$$H(x) = -(1/6)log_2(1/6) - (4/6)log_2(4/6) - (1/6)log_2(1/6) = 1.251bits$$

Chapter 2

Lecture 3

Claim 2.0.1 Source Coding Theorem

N outcomes from a source X can be compressed into roughly NH(X) bits.

Example 2.0.1 (Bent Coin Lotter)

A coin with p_1 will be tossed N=1000 times. The outcome is $\mathbf{x}=x_1,x_2,...x_n$ e.g $\mathbf{x}=00000100100...00010$ You can buy 2^n possible tickers for \$1 each, before the coin-tossing. If you own ticket \mathbf{x} , you win \$1,000,000,000.

Question 1: problem

To have a 99% chance of winning, at lowest possible cost, which tickets would you buy? And how many tickets is that? Express your answer in the form $2^{(...)}$

Example 2.0.2 (Sixty-Three)

 $x \in \{0, 1, 2, 3, 4, 5, 6..., 63\}$

How can one play the game? One strategy is to split the numbers in half and ask questions that give the most information.

 $X\%32 \ge 16$?

 $X\%16 \ge 8?$

 $X\%8 \ge 4?$

$$h(c_i) = log_2 \frac{1}{P(c_i)}(2) = 1bit$$

Total Shannon Information Content gained = 6 bits. The string $c_1...c_6$ is an encoding of x, defined as c(x) where c(42) - 10100.

Question 2: Generalize

If there are S possible outcomes, how many bits long must each name be, if each outcome has a unique name? Answer: $\lceil log_2(S) \rceil$ An outcome from a set of size S can be communicated in $\lceil log_2(S) \rceil$ bits

2.1 Submarine

Example 2.1.1 (Submarine)

$$P(r_1 = n) = \frac{63}{64}$$

= 0.0227 bits

$$P(r_1 = n) = \frac{63}{64}$$

= 0.0227 bits

2.2 Bent Coin Lottery

Example 2.2.1 (Bent Coin Lottery)

A coin with p_1 will be tossed N = 1000 times. The outcome is x = $x_1, x_2, ...x_N$. e.g. x = 000001001000100...00010 You can buy any of the 2^N possible tickets for \$1 each, before the coin tossing. If you own ticket x, you win \$1,000,000,000.

Question 3: 1

If you are forced to buy one ticket, which would you buy? The all zeroes ticket has the highest chance

Question 4

To have a 99% chance of winning at lowest possible cost, which tickets would you buy? And how many tickets is that? Express your answer in the form $2^{(...)}$

Number of tickets (in order to acquire 99% probability to win) = $1 + 1000 + \binom{1000}{2} + ... + \binom{1000}{101} + \binom{1000}{102} + ... + \binom{1000}{122} + ... + \binom{1000}{123}$

5

Chapter 3

Lecture 4

3.1 File Compression

Claim 3.1.1 Source Coding Theorem

 ${\color{red}N}$ outcomes from a source ${\color{red}X}$ can be compressed into roughly ${\color{red}NH(X)}$ bits.

Proved by counting the typical set When a source X produces N indpendent outcomes $x=x_1x_2...x_N$ this string is very likely to be one of the $2^{NH(X)}$ typical outcomes all of which have probability $2^{-NH(X)}$