

Softwareprojektpraktikum Maschinelle Übersetzung

Matthias Huck, Markus Freitag {huck,freitag}@i6.informatik.rwth-aachen.de

Vorbesprechung 4. Aufgabe 26. Mai 2011

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

1	Wiederholung	3
2	Phrasenbasierte Übersetzung	5
3	Phrasenextraktion: Implementierung	12
4	Erweiterung des Decoders und der A*-Suche auf Phrasen	21
5	Log-lineare Modellkombination	23
6	Übuna 4	26

1 Wiederholung

$$egin{aligned} \hat{e}_1^{\hat{I}} &= rg\max_{e_1^I} \left\{ p(e_1^I|f_1^J)
ight\} \ &= rg\max_{e_1^I} \left\{ p(e_1^I) \cdot p(f_1^J|e_1^I)
ight\} \end{aligned}$$

Wo stehen wir?

Verlauf des Praktikums

- 1. Extraktion einer Wort-zu-Wort-Übersetzungstabelle (Alignment vorgegeben)
- 2. Implementieren eines einzelwortbasierten Decoders, A^* -Suche für n-best Listen
- 3. Automatische Metriken WER, PER und BLEU
- 4. Phrasenextraktion, phrasenbasiertes Decoding, log-lineare Modellierung
- 5. Optimierung der Modellgewichte: Downhill-Simplex und MERT
- 6. Reranking mit *n*-gram Sprachmodell

2 Phrasenbasierte Übersetzung

- **▶** Segmentierung in zweidimensionale Blöcke
 - Wörter innerhalb einer Phrase können nicht zu Wörtern außerhalb der Phrase aligniert sein
- ▶ Ziel: Zerlegung eines Satzpaares (f_1^J, e_1^I) in Phrasenpaare $(\tilde{f}_k, \tilde{e}_k), k = 1, ..., K$:

$$p(e_1^I|f_1^J) \ = \ p(ilde{e}_1^K| ilde{f}_1^K) \ = \ \prod_k p(ilde{e}_k| ilde{f}_k)$$

Extraktion: Gültige Phrasen

- lacktriangle Gegeben: ein Quellsatz f_1^J , ein Zielsatz e_1^I und ein zugehöriges Alignment A.
- lacktriangle Eine Phrasenpaar $(f_{i1}^{j2},e_{i1}^{i2})$ wird als gültig angesehen, wenn
 - > es mindestens ein Alignment zwischen den Phrasen gibt
 - > alle Alignments nur innerhalb der Phrasen liegen, und
 - > keines links, rechts, oben oder unten außerhalb
- ▶ Formal: Menge der bilingualen Phrasen $\mathcal{BP}(f_1^J,e_1^I,A)$ des Satzpaares (f_1^J,e_1^I) bei gegebener Alignment-Matrix $A\subseteq J\times I$ ist definiert als:

$$\mathcal{BP}(f_1^J, e_1^I, A) \ = \ \left\{ (f_{j_1}^{j_2}, e_{i_1}^{i_2}) \ : \ orall (j, i) \in A \ : \ j_1 \leq j \leq j_2 \leftrightarrow i_1 \leq i \leq i_2
ight. \ \wedge \ \exists (j, i) \in A \ : \ j_1 \leq j \leq j_2 \wedge i_1 \leq i \leq i_2
ight\}$$

► Beispiel-Alignment für das Sprachpaar Italienisch-Englisch (IWSLT)

► Einzelwort-Paare wie in Übung 1

▶ Jetzt ungültige Einzelwort-Paare

▶ Gültiges Phrasenpaar

▶ Ungültiges Phrasenpaar

3 Phrasenextraktion: Implementierung

- ► Verschachtelte Schleife (j1, j2) über den Quellsatz
- ► Ermitteln des minimalen (i1) und maximalen (i2) Wortes auf Zielseite
- ▶ Überprüfen, ob i1 und i2 ihrerseits nicht über j1 und j2 hinausgehen

```
for j1 := 0 to J-1
  for j2 := j1 to J-1
    i1 = getMinZielAlignment(j1, j2)
    i2 = getMaxZielAlignment(j1, j2)
    if (getMinQuellAlignment(i1, i2) == j1 &&
        getMaxQuellAlignment(i1, i2) == j2)
    outputGueltigePhrase(j1, j2, i1, i2)
```


lacksquare Beispiel für $j_1=0$ und $j_2=2$

- lacksquare Beispiel für $j_1=0$ und $j_2=2$
- ightharpoonup Ermitteln von i_1 und i_2

- lacksquare Beispiel für $j_1=0$ und $j_2=2$
- ▶ Ermitteln von i_1 und i_2
- ► Gültige Phrase: ha ordinato un # did you order a

► Nächste Iteration:

$$j_1=0$$
 und $j_2=j_2+1=3$

► Nächste Iteration:

$$j_1=0$$
 und $j_2=j_2+1=3$

ightharpoonup Ermitteln von i_1 und i_2

► Nächste Iteration:

$$j_1=0$$
 und $j_2=j_2+1=3$

- ightharpoonup Ermitteln von i_1 und i_2
- Ungültige Phrase: ha ordinato un piatto # did you order a toddler meal

Präfixbaum

▶ Die Counts der Phrasen werden in Präfixbäumen abgespeichert

▶ Die Phrase A-A wurde 5 mal gesehen

Präfixbaum von Präfixbäumen

▶ Die Counts der Phrasenpaare werden in Präfixbäumen von Präfixbäumen abgespeichert

- ▶ Das Phrasenpaar A-E # Y wurde 3 mal gesehen
- ► Erinnerung: Template-Mechanismus in C++!

4 Erweiterung des Decoders und der A*-Suche auf Phrasen

Wenn ihr alles richtig gemacht habt, ist das trivial :-)

Phrasenbasiertes Decoding: Expansion von Teilhypothesen

Zwei Varianten:

(Illustration von Philipp Koehn)

Besser: Variante 2

▶ Warum?

Hinweis: Pruning

5 Log-lineare Modellkombination

Motivation:

- ▶ möglichst viele Wissensquellen hinzunehmen
- ▶ aber: nicht alle Modelle werden gleich zuverlässig sein
- ► Gewichtung der einzelnen Modelle durch Skalierungsfaktoren

Mathematisch:

$$\hat{e}_1^{\hat{I}} = \arg\max_{e_1^{I}} \left\{ p(e_1^{I}|f_1^{J}) \right\} \tag{1}$$

$$= \arg \max_{e_1^I} \left\{ \frac{\exp\left(\sum_{m=1}^M \lambda_m h_m(e_1^I, f_1^J)\right)}{\sum_{\tilde{e}_1^I} \exp\left(\sum_{m=1}^M \lambda_m h_m(\tilde{e}_1^I, f_1^J)\right)} \right\} \tag{2}$$

$$= \arg \max_{e_1^I} \left\{ \sum_{m=1}^M \lambda_m h_m(e_1^I, f_1^J) \right\}$$
 (3)

für Skalierungsfaktoren λ_m und Funktionen $h_m(e_1^I,f_1^J),\,m=1,\ldots,M$. Algorithmen zur Optimierung der Skalierungsfaktoren: nächstes Blatt

Einfache Zusatzmodelle

- ► Anzahl der bei der Übersetzung benutzten Phrasen (Phrase Penalty)
- ► Anzahl der Wörter auf Ziel-Seite (Word Penalty)
- **▶** Count-Heuristiken (z.B. Phrasenvorkommen >1, >2, >5)
- ► Source-Target Ratio
- Signifikanztests
- **...**

6 Übung 4

- ► Extraktion einer Phrasen-Übersetzungstabelle mit relativen Häufigkeiten, Implementierung eines (einfachen) phrasenbasierten Übersetzers
 - > Präfixbaum zur Speicherung der Phrasentabelle
 - phrasenbasiertes Decoding
 - > monoton von links nach rechts, keine Umordnungen in der Phrasenabfolge
 - ▶ log-lineare Kombination mehrerer Einzelmodelle
- ► Eingabe: unbekannte Sätze in Französisch
- ► Ausgabe: Übersetzung in Englisch

Fragen?

Viel Erfolg!

