

1/1 points

1.

Merging with smaller auxiliary array. Suppose that the subarray a[0] to a[n-1] is sorted and the subarray a[n] to a[2*n-1] is sorted. How can you merge the two subarrays so that a[0] to a[2*n-1] is sorted using an auxiliary array of length n (instead of 2n)?

Note: these interview questions are ungraded and purely for your own enrichment. To get a hint, submit a solution.

Your answer cannot be more than 10000 characters.

Thank you for your response.

Hint: copy only the left half into the auxiliary array.

1/1 points

2.

Counting inversions. An *inversion* in an array $a[\,]$ is a pair of entries a[i] and a[j] such that i < j but a[i] > a[j]. Given an array, design a linearithmic algorithm to count the number of inversions.

a			
G			
			//

Your answer cannot be more than 10000 characters.

Thank you for your response.

Hint: count while mergesorting.

1/1 points

3.

Shuffling a linked list. Given a singly-linked list containing n items, rearrange the items uniformly at random. Your algorithm should consume a logarithmic (or constant) amount of extra memory and run in time proportional to $n\log n$ in the worst case.

Your answer cannot be more than 10000 characters.

Thank you for your response.

Hint: design a linear-time subroutine that can take two uniformly shuffled linked lists of sizes n_1 and n_2 and combined them into a uniformly shuffled linked lists of size $n_1 + n_2$.