Measure and Integration I (MAA5616), Fall 2020 Homework 5, due Thursday, Oct. 8

- 1. Consider sequences $\{a_j\}_{j=1}^{\infty} \subset (0,1)$. Prove $\prod_{j=1}^{\infty} (1-a_j) > 0$ iff $\sum_{j=1}^{\infty} a_j < \infty$. (Apply log to the product and use a comparison test for $\sum_{j} \log(1 - a_{j})$ and $-\sum_{j} a_{j}$.)

 • Given a $b \in [0, 1)$, construct a sequence $\{a_{j}\}_{j=1}^{\infty} \subset (0, 1)$ for which $\prod_{1}^{\infty} (1 - a_{j}) = b$.

Consider the construction of the 1/3-Cantor set. The j-th step of it involves removing the open middle 1/3 subinterval from each connected component $[a_{k,j},b_{k,j}]$, obtained on the j-1-st step. The removed interval is $(\frac{2a}{3} + \frac{b}{3}, \frac{a}{3} + \frac{2b}{3})$. There is a single interval before the first step: [0,1].

Removing 1/3 of length on each step resulted in $\lambda(C) = 0$. Removing any fixed fraction of the length on each step gives the same effect.

- 2. Construct Cantor-like sets of positive Lebesgue measure.
 - (a) Using #1, verify that for any $b \in (0,1)$, removing $a_i \in (0,1)$ of length on the j-th step of the construction results in a closed set of Lebesgue measure b, for an appropriate sequence $\{a_i\}_i$.
 - (b) Show that removing middle subintervals of length α^{j} (not fraction of length) for $0 < \alpha < 1/3$ from each connected component on the j-th step also results in a closed set of positive Lebesgue measure.
- **3.** As shown in HW4, the 1/3-Cantor set C consists precisely of the elements of [0,1] which have only the digits 0 and 2 in their ternary expansion, $C = \{x : x = \sum_{i \ge 1} \frac{t_i}{3^i}, t_i \in \{0, 2\}\}.$ Consider the following function:

$$f(x) = \begin{cases} \sum_{i \ge 1} \frac{t_i/2}{2^i}, & x \in C, \\ f(\max\{y < x, y \in C\}), & \text{otherwise.} \end{cases}$$

Prove:

- f is increasing on [0,1];
- f([0,1]) = [0,1];
- conclude that f is continuous;
- prove that x + f(x) is a homeomorphism (continuous 1-1 function with a continuous inverse).

Both f and f(x) + x map C to a set of positive measure! By the next problem, this gives a homeomorphism between a measurable subset of C and a non-measurable set.

- **4.** Suppose $E \subset [0,1)$ is a Lebesgue-measurable set. Recall the set $V \subset [0,1)$ we constructed using the axiom of choice. This V must be non-measurable, otherwise we would have a contradiction to the definition of measure. Prove:
 - If $E \subset V$, $\lambda(E) = 0$.
 - If $\lambda(E) > 0$, E contains a non-measurable set. We have $E = \bigcup_r E \cap V_r$, where $V_r = V + r \mod 1$ and $r \in [0,1) \cap \mathbb{Q}$. If all $E \cap V_r$ are measurable, $\lambda(E) = 0$ because r runs over a countable set, a contradiction.