Previously.

- Division Algorithm

- GCD

Bézout's Identity

– Euclidean Algorithm

- Prime Factorization Theorem

This Section.

- Congruence modulo n

- Relations and Equivalence Classes

– Integers and Arithmetic modulo n

– Arithmetic Modulo n

- Inverses Modulo n

Definition. Let $a, b, n \in \mathbb{Z}$ with $n \geq 2$. We say that a and b are congruent modulo n if

$$n \mid (a-b)$$
.

In that case, we write $a \equiv b \pmod{n}$.

Theorem 1.3.1. Congruence modulo n is an equivalence relation on \mathbb{Z} .

Exercise 1. Write the equivalence classes of $(\mathbb{Z}, \equiv \pmod{2})$.

Exercise 2. Write the equivalence classes of $(\mathbb{Z}, \equiv \pmod{3})$.

Definition. If $a \in \mathbb{Z}$, then its equivalence class, [a], with respect to congruence modulo n is called its residue class modulo n and we write \overline{a} for convenience.

$$\overline{a} = \{x \in \mathbb{Z} : x \equiv a \pmod{n}\}.$$

Definition. The set of integers modulo n is denoted \mathbb{Z}_n and is given by

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}.$$

Example. $\mathbb{Z}_7 =$

Exercise 3. What is $\overline{47}$ in \mathbb{Z}_7 ? What is $\overline{-16}$?

Claim. Addition and multiplication in \mathbb{Z}_n , as defined below, are well-defined:

$$(1) \ \overline{a} + \overline{b} = \overline{a+b}$$

$$(2) \ \overline{a}\overline{b} = \overline{ab}$$

Note. The important point here is that any well-defined arithmetic operation on \mathbb{Z}_n should NOT depend on the choice of residue class representative.

Example. In
$$\mathbb{Z}_7$$
, $\overline{48} = \overline{6}$ and $\overline{3} = \overline{10}$. Is it true that $\overline{48} + \overline{3} = \overline{6} + \overline{10}$?

Proof. It suffices to show that if
$$\overline{a_1} = \overline{a_2}$$
 and $\overline{b_1} = \overline{b_2}$ in \mathbb{Z}_n , then

$$\overline{a_1 + b_1} = \overline{a_2 + b_2}$$
 and $\overline{a_1b_1} = \overline{a_2b_2}$.

Exercise 4. Fill out the addition and multiplication tables for \mathbb{Z}_4 .

$+_{4}$	$\overline{0}$	1	$\overline{2}$	3
$\overline{0}$				
1				
2				
3				

\times_4	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$
0				
$\overline{1}$				
$\overline{2}$				
3				

Example. We can show that an integer $n \in \mathbb{Z}$ is divisible by 9 if and only if the sum of its digits is divisible by 9, using arithmetic mod 9!

Summary.. • The set of integers modulo n is

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}.$$

• If r is the remainder you get when dividing a by n, then

$$a \equiv r \pmod{n}$$
 or equivalently $\overline{a} = \overline{r}$.

• Addition in \mathbb{Z}_n is defined by:

$$\overline{a} + \overline{b} = \overline{a+b}.$$

• Multiplication in \mathbb{Z}_n is defined by

$$\overline{a}\overline{b} = \overline{ab}.$$

Theorem 1.3.4. Let $n \geq 2$ be a fixed modulus and let a, b and c denote arbitrary integers. Then the following hold in \mathbb{Z}_n .

1. $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ and $\overline{a}\overline{b} = \overline{b}\overline{a}$.

2. $\overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}$ and $\overline{a}(\overline{b}\overline{c}) = (\overline{a}\overline{b})\overline{c}$.

3. $\overline{a} + \overline{0} = \overline{a}$ and $\overline{a}\overline{1} = \overline{a}$.

4. $\overline{a} + \overline{-a} = \overline{0}$.

5. $\overline{a}(\overline{b} + \overline{c}) = \overline{a}\overline{b} + \overline{a}\overline{c}$.

Note. The proof of (5) is in the book. And (2) is proved in a video.

Moral from last Theorem:

Arithmetic in \mathbb{Z}_n behaves very similarly to arithmetic in $\mathbb{Z}!$

There's a zero, $\overline{0}$, and unity, $\overline{1}$, in \mathbb{Z}_n .

Every $\overline{a} \in \mathbb{Z}_n$ has an negative or additive inverse, $\overline{-a}$, in \mathbb{Z}_n , which we write as $-\overline{a}$ and satisfies

$$\overline{a} + \overline{-a} = \overline{0}.$$

Subtraction is then naturally defined as

$$\overline{a} - \overline{b} = \overline{a} + \overline{-b} = \overline{a - b}.$$

Exercise 5. What is the additive inverse of $\overline{6}$ in \mathbb{Z}_8 ?

Definition. We call a class $\overline{a} \in \mathbb{Z}_n$ invertible if there is some $\overline{b} \in Z_n$ such that $\overline{a}\overline{b} = \overline{1}$. **Example.** Consider \mathbb{Z}_4 .

Exercise 6. Show $\overline{6} \in \mathbb{Z}_8$ has no multiplicative inverse.

Note. Looking at the question of whether $\overline{6} \in \mathbb{Z}_8$ has a multiplicative inverse, we can rephrase it by saying there is no solution to the congruence equation $\overline{6}x = \overline{1}$ in \mathbb{Z}_8 .

Exercise 7. (a) Solve $\overline{5}x = \overline{1}$ in \mathbb{Z}_8 , if possible.

- (b) Solve $\overline{5}x = \overline{2}$ in \mathbb{Z}_8 , if possible.
- (c) Solve $\overline{6}x = \overline{2}$ in \mathbb{Z}_8 , if possible.

Note. Here's some Sage code for some brute force that will print it nicely.

```
sage: Zmod8=Integers(8)
sage: for a in Zmod8:
sage: print(f"5*{a}={5*a} mod 8")
```

Use at https://sagecell.sagemath.org/.

Mckenzie West Last Updated: February 9, 2024

Question 8. What do you notice about the relationship between n and the values in \mathbb{Z}_n that have inverses?

Here we have multiplication tables for \mathbb{Z}_7 , \mathbb{Z}_8 , \mathbb{Z}_9 , and \mathbb{Z}_{10} . Identify the rows that have a 1 in them - these are the classes with inverses.

Multiplication in \mathbb{Z}_7							
×	0		2		4	5	6
0	0	0 1 2	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4 6 1	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3		6	4	2
6	0	6	5	4	3	2	1

Multiplica	tion	in	\mathbb{Z}_9
------------	------	----	----------------

111 (11	orb.	LICU	OIOI.		9					
\times	0	1	2	3	4	5	6	7	8	
0	0	0	0	0	0	0	0	0	0	
1	0	1	2	3	4	5	6	7	8	
2	0	2	4	6	8	1	3	5	7	
3	0 0 0	3	6	0	3	6	0	3	6	
4	0	4	8	3	7	2	6	1	5	
5	0	5	1	6	2	7	3	8	4	
6	0	6	3	0	6	3	0	6	3	
7	0	7	5	3	1	8	6	4	2	
8	0	8	7	6	5	4	3	2	1	

Multiplication in \mathbb{Z}_8

	×	0	1	2	3	4	5	6	7
	0	0	0	0	0	0	0	0	0
	1	0	1	2	3	4	5	6	7
	2	0	2	4	6	0	2	4	6
	3	0	3	6	1	4	7	2	5
	4	0	4	0	4	0	4	0	4
	5	0	5	2	7	4	1	6	3
	6	0	6	4	2	0	6	4	2
	7	0 0 0 0 0 0 0	7	6	5	4	3	2	1
-		٠		_	_				

Multiplication in \mathbb{Z}_{10}

	. I.					LU				
0	0	1	2	3	4	5	6	7	8	9
0			0							
1	0	1	2	3	4	5	6	7	8	9
2			4							
3	0									
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6			2							4
7	0	7	4	1	8	5	2	9	6	3
8	0		6				8			
9	0	9	8	7	6	5	4	3	2	1

Theorem 1.3.5. Let $a, n \in \mathbb{Z}$ with $n \geq 2$. Then \overline{a} has a multiplicative inverse in \mathbb{Z}_n if and only if a and n are relatively prime.

Before starting the proof of Theorem 1.3.5, we recall two important Theorems:

Theorem 1.2.4. Let $m, n \in \mathbb{Z}$ not both zero. Then

m, n relatively prime $\Leftrightarrow \exists r, s \in \mathbb{Z}$ such that 1 = rm + sn

Theorem 1.3.2. Given $n \ge 2$, $\overline{a} = \overline{b} \Leftrightarrow a \equiv b \pmod{n}$.

Theorem 1.3.5. Let $a, n \in \mathbb{Z}$ with $n \geq 2$. Then \overline{a} has a multiplicative inverse in \mathbb{Z}_n if and only if a and n are relatively prime.

Note. The proof of the reverse direction of Theorem 1.3.5 helps us to find inverses.

Example. Find the inverse of $\overline{16}$ in \mathbb{Z}_{35} .

	- 50
Euclidean Algorithm:	Bézout:
35 = 2(16) + 3	1 = 16 - 5(3)
16 = 5(3) + 1	= 16 - 5(35 - 2(16))
3 = 3(1) + 0	= 11(16) - 5(35)
1	

The equation 1 = 11(16) - 5(35) modulo 35 gives:

$$1 \equiv 11 \cdot 16 \pmod{35}.$$

Therefore, the multiplicative inverse of $\overline{16}$ in \mathbb{Z}_{35} is $\overline{11}$.

Exercise 9. Solve the equation $\overline{16}x = \overline{9}$, in \mathbb{Z}_{35} .

Exercise 10. Solve the system of equations in \mathbb{Z}_{13}

$$\begin{cases} \overline{5}x + \overline{2}y = \overline{1} \\ \overline{2}x + \overline{10}y = \overline{2}. \end{cases}$$

Theorem 1.3.6 (The Chinese Remainder Theorem). Let m and n be relatively prime integers. If s and t are arbitrary integers, then there is an integer b for which

$$b \equiv s \pmod{m}$$
 and $b \equiv t \pmod{n}$.

Note. How do we find this b?

Since gcd(m, n) = 1, we can find $p, q \in \mathbb{Z}$ such that 1 = mp + nq. why? Set b = (mp)t + (nq)s. why does this work???

Theorem 1.3.7. The following are equivalent for any integer $n \geq 2$.

- 1. Every element $\overline{a} \neq \overline{0}$ in \mathbb{Z}_n has a multiplicative inverse.
- **2.** If $\overline{a}\overline{b} = \overline{0}$ in \mathbb{Z}_n , then either $\overline{a} = \overline{0}$ or $\overline{b} = \overline{0}$.
- **3.** The integer n is prime.

Wilson's Theorem - A Corollary to 1.3.7. If p is prime then $(p-1)! \equiv -1 \pmod{p}$.

Note. Think about how numbers and their inverses mod p appear in the product

$$1 \cdot 2 \cdot 3 \cdots (p-1)$$
.

Theorem 1.3.8 (Fermat's Theorem). If p is prime then $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$. Moreover, if $\gcd(a, p) = 1$, then $a^{p-1} \equiv 1 \pmod{p}$.