

C*-Algebras of Discrete Groups

Daniel Dunmore
Supervised by Arnaud Brothier
University of New South Wales

Outline

The topics we would like to talk about today are related to the C^* -algebras of discrete groups and the theory of amenability. In particular, we would like to introduce

- the definition of a (discrete) group C*-algebra;
- the classical characterization of amenability;
- the connection between amenability and group *C**-algebras;
- alternative characterizations of amenability.

Motivation

can also mention use in proofs out non-simply connected manifolds

Applications of group C^* -algebras:

- · representation theory we will see this shortly
- topology all compact spaces admit

Applications of amenability:

 ergodic theory - involves the action of a group on something,
 measurable actions of amenable groups are unique

Unitary Representations

Complexs Hilbert space

A unitary representation is a homomorphism $\pi: G \to \mathcal{U}(H)$.

Left regular representation: unitary rep λ taking g to λ_g , where

$$\lambda_g: \ell^2(G) \to \ell^2(G)$$

 $\xi \mapsto g \cdot \xi.$

Group C*-Algebras [Murray-von Neumann 36-43; Segal 47]

First define the group algebra, $\mathbb{C}G$: elements are $\sum_{g \in G} a_g g$, for finitely many non-zero $a_g \in \mathbb{C}$.

Unitary reps of G extend bijectively to <u>unital</u> reps of $\mathbb{C}G$.

(unit-preserving)

Two most significant group C^* -algebras:

and to "reps of \mathbb{C}^*

- Reduced, $C_r^*(G)$: norm completion wrt $\|\cdot\|_r := \|\lambda(\cdot)\|$.
- *Universal*, $C^*(G)$: $\|\cdot\|_U := \sup\{\|\pi(\cdot)\| : \text{ unitary rep } \pi\}$.

Hierarchy: $G \subset \mathbb{C}G \subseteq C_r^*(G) \subseteq C^*(G)$.

Langer completion!

Finite:
$$C^*(\mathbb{Z}_n) \cong C(\mathbb{Z}_n)$$
,
 $C^*(S_3) \cong M_2(\mathbb{C}) \oplus \mathbb{C} \oplus \mathbb{C}$

Abelian: $C^*(\mathbb{Z}) \cong C(\mathbb{T})$

In general, $C^*(G) = C^*(G)$ for finite on Abelian groups.

Free group
$$F_2:=\langle a,b\rangle$$
, $C_*^*(G) \not= C^*(G)$!

The reduced group C^* -algebra is easy, while the universal one can be quite unfriendly. Can we study $C^*(G)$ by means of $C^*(G)$?

Amenability [von Neumann 29]

A discrete group G is amenable if it admits a G-invariant mean; a linear functional $m: \ell^{\infty}(G) \to \mathbb{C}$ satisfying

•
$$m(\chi_G) = 1$$
;

$$\chi_{G}(q) = 1, \forall q \in G$$

- $m(f) \ge 0$ for all $f \ge 0$;
- $m(g \cdot f) = m(f)$.

Amenability is inherited by subgroups and preserved under group homomorphisms.

G-invariant mean for finite group (it really is just a mean):

$$m: f \mapsto \frac{1}{|G|} \sum_{g \in G} f(g)$$

More examples: Abelian groups, infinite dihedral group, etc.

Non-examples: braid groups, free groups, etc.

:: contains free subgroup (ping pang lemma)

Amenability via Weak Containment [Hulanicki-Reiter, 66]

Let G be a discrete group. Then the following are equivalent:

- *G* is amenable:
- $\|\lambda(a)\| \geq \|\chi_G(a)\|$, $\forall a \in \mathbb{C}G$;
- $\|\lambda(a)\| \ge \|\pi(a)\|$, \forall unitary reps π of G and $a \in \mathbb{C}G$.

Immediate corollary: G is amenable iff $\|\cdot\|_r = \|\cdot\|_U$. That is, amenability is equivalent to saying that $C^*(G) = C^*_r(G)!$

Banach-Tarski Paradox

Gacts on S2 is the same as Gacting on G.

Banach-Tarski paradox: a 2-sphere S^2 can be decomposed into a finite number of disjoint subsets, which can be rearranged by rotation only (actions of SO(3)) to form two exact copies of S^2 .

A discrete group admits such a paradoxical decomposition iff it is not amenable. [Neumann 29]

 $\underline{\text{not}}$ amenable. [Neumann 29] Rotation group SO(3) has Do we observe this paradox on the circle? free subgroup.

SO(z) is obviously Meeting, so no.

This concludes the presentation. I hope you found this brief look into the theory of group C^* -algebras as enjoyable and insightful as I have.

Thank you very much for your attention!

VACATIONRESEARCH SCHOLARSHIPS **2021–22**

Get a taste for Research this Summer

CONNECT