1. Multimea soluțiilor inecuației $|x+1| \le 3$ este: (5 pct.)

a)
$$\{-4\}$$
; b) \emptyset ; c) $\{2\}$; d) $[-4,2]$; e) $[-3,3]$; f) $[-4,0]$.

Soluţie. Metoda~1. Distingem cazurile (i) $x+1\geq 0~(x\geq -1)$, când inecuaţia devine $x+1\leq 3\Leftrightarrow x\leq 2$, cu soluţiile $S_1=[-1,\infty)\cap (-\infty,2]=[-1,2]$, şi (ii) x+1<0~(x<-1), când inecuaţia devine $-(x+1)\leq 3\Leftrightarrow x\geq -4$, cu soluţiile $S_2=(-\infty,-1)\cap [-4,\infty)=[-4,-1)$, deci inecuaţia dată are soluţiile $S_1\cup S_2=[-1,2]\cup [-4,-1)=[-4,2]$. Metoda~2. Folosim echivalenţă $|a|\leq b\Leftrightarrow -b\leq a\leq b$, $\forall a\in\mathbb{R},~\forall b\geq 0$. Inecuaţia se rescrie $-3\leq x+1\leq 3\Leftrightarrow \begin{cases} -3\leq x+1\\ x+1\leq 3\end{cases}\Leftrightarrow \begin{cases} x\geq -4\\ x\leq 2\end{cases}\Leftrightarrow x\in [-4,2]$. Metoda~3. Folosim echivalenţa $|x|\leq b\Leftrightarrow x^2\leq b^2,~\forall x\in\mathbb{R},~\forall b\geq 0$. Inecuaţia se rescrie $(x+1)^2\leq 9\Leftrightarrow (x+1)^2-3^2\leq 0\Leftrightarrow (x+4)(x-2)\leq 0$. Semnul trinomului de grad doi produce soluţia $x\in [-4,2]$.

2. Multimea soluțiilor ecuației $x^3 - 3x^2 + 2x = 0$ este: (5 pct.)

a)
$$\{0,1,2\}$$
; b) $\{0,2\}$; c) $\{-1,0,1\}$; d) $\{1,2,3\}$; e) $\{-2,0,1\}$; f) $\{1,2,4\}$.

Soluție. Dând factor comun x, ecuația se rescrie $x^3 - 3x^2 + 2x = 0 \Leftrightarrow x(x^2 - 3x + 2) = 0$. Dar $x^2 - 3x + 2 = 0 \Leftrightarrow x \in \{\frac{3 \pm \sqrt{9-8}}{2}\} = \{1, 2\}$, deci soluțiile ecuației sunt $\{0, 1, 2\}$.

3. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} x^2 + m, & x \le 1 \\ 2x + 1, & x > 1 \end{cases}$. Să se afle $m \in \mathbb{R}$, astfel încât funcția f să fie continuă. (5 pct.)

a)
$$m = 2$$
; b) $m = \frac{1}{3}$; c) $m = \frac{1}{2}$; d) $m = -2$; e) $m = 4$; f) $m = -5$.

Soluție. Continuitatea funcției f în x=1 revine la satisfacerea condițiilor $\lim_{x \nearrow 1} f(x) = f(1) = \lim_{x \searrow 1} f(x) \Leftrightarrow \lim_{x \nearrow 1} (x^2+m) = 1 + m = \lim_{x \searrow 1} (2x+1) \Leftrightarrow m+1 = m+1 = 3 \Leftrightarrow m=2.$

4. Dacă $E = \log_2 20 - \log_4 25$, atunci: (5 pct.)

a)
$$E = 2$$
; b) $E = 4$; c) $E = 0$; d) $E = -2$; e) $E = 3$; f) $E = -3$.

Soluție. Folosind proprietățile logaritmilor, în particular regula de schimbare de bază, obținem: $E = \log_2 20 - \log_4 25 = \log_2 (2^2 \cdot 5) - \frac{\log_2 5^2}{\log_2 2^2} = \log_2 2^2 + \log_2 5 - \frac{2\log_2 5}{2} = 2 + \log_2 5 - \log_2 5 = 2$, deci E = 2.

5. Să se rezolve ecuația $\sqrt{2x+1}+2x=5$. (5 pct.)

a)
$$x = 11$$
; b) $x \in \{\frac{3}{2}, 4\}$; c) $x = 4$; d) $x = \frac{3}{2}$; e) $x = \frac{1}{6}$; f) $x = 15$.

Soluție. Metoda 1. Ecuația se rescrie $\sqrt{2x+1}=5-2x$ (*). Condiția de existență a radicalului este $2x+1\geq 0 \Leftrightarrow x\geq -\frac{1}{2}$. Membrul stâng fiind nenegativ, rezultă că și cel drept are aceeași proprietate, deci $5-2x\geq 0 \Leftrightarrow 2x\leq 5 \Leftrightarrow x\leq \frac{5}{2}$. Prin urmare avem condiția $x\in [-\frac{1}{2},\frac{5}{2}]$. Ridicând la pătrat ecuația (*) și apoi împărțind-o la 2, obținem

$$2x + 1 = (5 - 2x)^2 \Leftrightarrow 2x^2 - 11x + 12 = 0 \Leftrightarrow x \in \left\{ \frac{11 \pm \sqrt{121 - 96}}{4} \right\} = \left\{ \frac{11 \pm 5}{4} \right\},$$

deci $x \in \{\frac{3}{2}, 4\}$. Dar $4 \notin [-\frac{1}{2}, \frac{5}{2}]$, deci nu convine ca soluție, spre deosebire de $\frac{3}{2} \in [-\frac{1}{2}, \frac{5}{2}]$. Răspuns corect $x = \frac{3}{2}$. Metoda 2. Condiția de existență a radicalului este (ca mai sus) $x \ge -\frac{1}{2}$. Rezolvarea ecuației prin ridicare la pătrat conduce la $x \in \{\frac{3}{2}, 4\}$. Dar ecuația din enunț este satisfăcută doar de $x = \frac{3}{2}$, unica soluție a ecuației.

6. Să se rezolve ecuația $5^{\frac{x+1}{2}} = \sqrt{5}$. (5 pct.)

a)
$$x = -1$$
; b) $x = 1$; c) $x = -3$; d) $x = 0$; e) $x = 4$; f) $x = 2$.

Soluție. Ecuația se rescrie $5^{\frac{x+1}{2}}=5^{\frac{1}{2}}$. Aplicăm ambilor membri ai ecuației funcția logaritmică de bază 5 (inversa funcției exponențiale de bază 5) și obținem $\frac{x+1}{2}=\frac{1}{2}$, deci $x+1=1 \Leftrightarrow x=0$.

- 7. Într-o progresie geometrică de numere pozitive $(a_n)_{n\geq 1}$ se cunosc $a_2=3$ și $a_4=12$. Să se calculeze a_3 . (5 pct.)
 - a) $\frac{5}{3}$; b) $\frac{1}{6}$; c) 8; d) 9; e) 4; f) 6.

Soluție. Metoda 1. Notăm termenii progresisi geometrice cu a_1,a_2,\ldots ; termenii fiind pozitivi, rezultă că și rația progresiei, $r=\frac{a_{k+1}}{a_k}~(k\geq 1)$ este de asemenea strict pozitivă. Folosind formula $a_n=a_1\cdot r^{n-1}$ rezultă $\frac{a_4}{a_2}=r^2$, deci $r^2=\frac{12}{3}=4$, deci $r\in\{\pm 2\}$. Dar r>0, deci r=2. Atunci $a_3=a_2\cdot r=3\cdot 2=6$. Metoda 2. Folosind pozitivitatea termenilor progresiei și relația $a_3^2=a_2a_4$, rezultă $a_3=\sqrt{a_2a_4}=\sqrt{3\cdot 12}=6$.

- 8. Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x + e^{2x}$. Să se calculeze f'(0). (5 pct.)
 - a) -1; b) $\frac{1}{2}$; c) 4; d) $-\frac{3}{2}$; e) 3; f) -2.

Solutie. $f'(x) = 1 + 2e^{2x}$, deci $f'(0) = 1 + 2e^{2 \cdot 0} = 3$.

- 9. Să se calculeze $E = C_3^0 + C_3^1 + C_3^2 + C_3^3$. (5 pct.)
 - a) E = 3; b) E = 8; c) E = 11; d) E = 14; e) E = 10; f) E = 16.

Soluţie. *Metoda 1.* Folosim formula $C_m^n = \frac{m!}{(m-n)! \, n!} \ (m,n \geq 0, \ m \geq n)$ şi obţinem $C_3^0 = \frac{3!}{3!0!} = 1$, $C_3^1 = \frac{3!}{2!1!} = 3$, $C_3^2 = \frac{3!}{1!2!} = 3$, $C_3^3 = \frac{3!}{0!3!} = 1$, deci E = 1+3+3+1=8. *Metoda 2.* Folosim binomul lui Newton, $(a+b)^3 = C_3^0 a^3 + C_3^1 a^2 b + c_3^2 ab^2 + c_3^3 b^3$ pentru a=b=1. Obţinem $(1+1)^3 = C_3^0 + C_3^1 + C_3^2 + C_3^3 = E$, deci 8=E. Răspuns corect: E=8. *Metoda 3.* Folosim formulele $C_m^k = C_m^{m-k}$ pentru m=3 şi $k \in \{0,1\}$, deci $C_3^0 = C_3^3$ şi $C_3^1 = C_3^2$. De asemenea, folosim $C_m^0 = 1$, $C_m^1 = m$, deci $C_3^0 = 1$ şi respectiv $C_3^1 = 3$. Atunci $E=C_3^0 + C_3^1 + C_3^2 + C_3^3 = 2(C_3^0 + C_3^1) = 2(1+3) = 8$.

- 10. Să se calculeze modulul numărului complex $z = \frac{1+i}{1-i}$. (5 pct.)
 - a) 1; b) 2; c) $\frac{2}{3}$; d) $\frac{1}{2}$; e) 0; f) $\frac{3}{2}$.

Soluţie. Metoda~1. Amplificăm fracția cu conjugata numitorului: $z=\frac{(1+i)^2}{1-i^2}=\frac{2i}{2}=i$. Folosind formula $|a+ib|=\sqrt{a^2+b^2}$, rezultă $|z|=|i|=\sqrt{0^2+1^2}=1$. Metoda~2. Folosim formula $\left|\frac{z_1}{z_2}\right|=\frac{|z_1|}{|z_2|}$, rezultă $|z|=\frac{|1+i|}{|1-i|}=\frac{\sqrt{1^2+1^2}}{\sqrt{1^2+(-1)^2}}=\frac{\sqrt{2}}{\sqrt{2}}=1$.

- 11. Fie sistemul $\begin{cases} x-2y=m\\ 2x+y=n \end{cases}$. Să se determine numerele reale m și n astfel încât $x=2,\,y=1$ să fie soluție a sistemului. (5 pct.)
 - a) m = 2, n = 1; b) m = 0, n = 5; c) m = 1, n = 4; d) m = -1, n = 3; e) m = 3, n = 1; f) m = 4, n = 3.

Soluţie. Înlocuind valorile x=2 şi y=1 în sistem, rezultă $\begin{cases} 2-2\cdot 1=m \\ 2\cdot 2+1=n \end{cases} \Leftrightarrow \begin{cases} m=0 \\ n=5. \end{cases}$

- 12. Să se rezolve inecuația $3x 1 \ge 2x$. (5 pct.)
 - a) $x \ge 1$; b) $x \in \emptyset$; c) $x \ge 5$; d) $x \in [-1, 0]$; e) $x \le \frac{1}{5}$; f) $x \le \frac{1}{3}$.

Soluţie. $3x - 1 \ge 2x \Leftrightarrow x \ge 1$.

- 13. Să se calculeze $\lim_{\substack{\varepsilon \to 0 \\ \varepsilon > 0}} \int_{\varepsilon}^{1} x^{2015} \ln x \, dx$. (5 pct.)
 - a) $-\infty$; b) $-\frac{1}{2016^2}$; c) $-\frac{1}{2015}$; d) $-\frac{1}{2014}$; e) $-\frac{1}{2015^2}$; f) 0.

Soluție. Notăm $I_{\varepsilon}=\int_{\varepsilon}^{1}x^{2015}\ln x\,dx$. Calculăm I_{ε} integrând prin părți:

$$I_{\varepsilon} = \int_{\varepsilon}^{1} \left(\frac{x^{2016}}{2016}\right)' \ln x \, dx = \left(\frac{x^{2016}}{2016}\right) \ln x \bigg|_{\varepsilon}^{1} - \int_{\varepsilon}^{1} \frac{x^{2016}}{2016} \cdot \frac{1}{x} \, dx = \left(\frac{x^{2016}}{2016}\right) \ln x \bigg|_{\varepsilon}^{1} - \frac{1}{2016} \int_{\varepsilon}^{1} x^{2015} \, dx$$

deci

$$I_{\varepsilon} = \left(\frac{x^{2016}}{2016} \ln x - \frac{1}{2016^2} x^{2016}\right) \Big|_{\varepsilon}^{1} = -\frac{1}{2016} \varepsilon^{2016} \ln \varepsilon - \frac{1}{2016^2} (1 - \varepsilon^{2016}).$$

Atunci, folosind proprietate
a $\lim_{a > 0} a^n \ln a = 0$ (demonstrabilă cu regula lui l'Hospital), obținem

$$\lim_{\varepsilon \searrow 0} I_\varepsilon = \lim_{\varepsilon \searrow 0} \left[-\frac{1}{2016} \varepsilon^{2016} \ln \varepsilon - \frac{1}{2016^2} (1 - \varepsilon^{2016}) \right] = 0 - \frac{1}{2016^2} + 0 = -\frac{1}{2016^2}.$$

- 14. Fie $A = \begin{pmatrix} 1 & 2 & 3 \\ m & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$. Să se determine $m \in \mathbb{R}$ astfel încât matricea A să fie inversabilă. (5 pct.)
 - a) $m \neq -\frac{1}{3}$; b) $m \neq 0$; c) $m \neq \frac{1}{2}$; d) $m \neq 1$; e) $m \neq -\frac{1}{4}$; f) $m \neq \frac{1}{4}$.

Soluţie. Matricea A este inversabilă doar dacă deterinantul matricei este nenul. Cu ajutorul regulii Sarrus (de exemplu, sau dezvoltând după ultima linie), calculăm det $A = \begin{bmatrix} 1 & 2 & 3 \\ m & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} = 1 - 2m$. Atunci det $A \neq 0 \Leftrightarrow 1 - 2m \neq 0 \Leftrightarrow m \neq \frac{1}{2}$.

- 15. Fie funcția $f:(0,\infty)\to\mathbb{R}, f(x)=x^2-\ln x.$ Să se determine abscisa punctului de extrem local al funcției f. (5 pct.)
 - a) $\frac{1}{e}$; b) $-\frac{\sqrt{2}}{2}$; c) $\frac{1}{3}$; d) $\frac{\sqrt{2}}{2}$; e) $\frac{1}{2}$; f) 1.

Soluţie. Prin derivare, obţinem: $f'(x) = 2x - \frac{1}{x} = \frac{2x^2 - 1}{x}$. Atunci (ţinănd cont că x > 0), $f'(x) = 0 \Leftrightarrow 2x^2 = 1 \Leftrightarrow x = \frac{1}{\sqrt{2}} > 0$. Examinând semnul polinoamelor care formează fracţia f'(x), se observă că:

- * f'(x)<0 (decifeste descrescătoare) pentru $x\in(0,\frac{1}{\sqrt{2}});$
- * f'(x) > 0 (deci f este crescătoare) pentru $x \in (\frac{1}{\sqrt{2}}, \infty)$.

Prin urmare $x = \frac{1}{\sqrt{2}}$ este punct de minim pentru f.

- 16. Să se calculeze $\int_0^1 (x^3 + x) dx$. (5 pct.)
 - a) $\frac{3}{5}$; b) $\frac{1}{2}$; c) $\frac{3}{4}$; d) $\frac{4}{3}$; e) $\frac{1}{3}$; f) $\frac{4}{5}$.

Soluţie. Folosind formula Leibnitz-Newton şi $\int x^a = \frac{x^{a+1}}{a+1} + c$, $\forall a > -1$, rezultă $\int_0^1 (x^3 + x) dx = \frac{x^4}{4} + \frac{x^2}{2} \Big|_0^1 = (\frac{1}{4} + \frac{1}{2}) - (0+0) = \frac{3}{4}$.

- 17. Câte soluții reale are ecuația |||x-1|-1|-1|=1? (5 pct.)
 - a) o infinitate; b) cinci; c) patru; d) şase; e) trei; f) două.

$$y^{2} - 2y = 0 \Leftrightarrow y(y - 2) = 0 \Leftrightarrow ||x - 1| - 1| \cdot (||x - 1| - 1| - 2)) = 0 \Leftrightarrow \{|x - 1| - 1 = 0 \text{ sau } ||x - 1| - 1| = 2\} \Leftrightarrow \{|x - 1| = 1 \text{ sau } (\underbrace{|x - 1|}_{z} - 1)^{2} = 4\} \Leftrightarrow \{(x - 1)^{2} = 1 \text{ sau } z^{2} - z - 3 = 0\} \Leftrightarrow \{x^{2} - 2x = 0 \text{ sau } (z + 1)(z - 3) = 0\}$$

0} $\Leftrightarrow \{x \in \{0,2\} \text{ sau } |x-1|=-1 \text{ sau } |x-1|=3\} \Leftrightarrow \{x \in \{0,2\} \text{ sau } x \in \emptyset \text{ sau } (x-1)^2=9\} \Leftrightarrow \{x \in \{0,2\} \text{ sau } x^2-2x-8=0\} \Leftrightarrow \{x \in \{0,2\} \text{ sau } x \in \{-2,4\}\} \Leftrightarrow x \in \{-2,0,2,4\}.$ Răspuns corect: 4. **Metoda 3.** Explicităm succesiv modulele, pe subcazuri și folosim |-a|=|a|:

- 1. $x \ge 1 \Rightarrow ||x-1-1|-1|=1 \Leftrightarrow ||x-2|-1|=1$; subcazuri:
- 1.1. $x \ge 2 \Rightarrow |x-2-1| = 1 \Leftrightarrow |x-3| = 1$; subcazuri:
- 1.1.1. $x \ge 3 \Rightarrow x 3 = 1 \Leftrightarrow x = 4$ (satisface conditiile subcazului);
- 1.1.2. $x < 3 \Rightarrow 3 x = 1 \Leftrightarrow x = 2$ (satisface condițiile subcazului);
- 1.2. $x < 2 \Rightarrow |2 x 1| = 1 \Leftrightarrow |1 x| = 1 \Leftrightarrow |x 1| = 1$; dar $x \ge 1$, deci $x 1 = 1 \Leftrightarrow x = 2$, nu convine (contradictie cu x < 2);
- 2. $x < 1 \Rightarrow ||1 x 1| 1| = 1 \Leftrightarrow ||-x| 1| = 1 \Leftrightarrow ||x| 1| = 1$; subcazuri:
- 2.1. $x \ge 0 \Rightarrow |x-1| = 1$; dar x < 1, deci $1-x = 1 \Leftrightarrow x = 0$ (satisface condițiile subcazului);
- 2.2. $x < 0 \Rightarrow |-x-1| = 1 \Leftrightarrow |x+1| = 1$; subcazuri:
- 2.2.1. $x \ge -1 \Rightarrow x+1=1 \Leftrightarrow x=0$ (aceeeaşi soluție ca la subcazul 2.1.);
- 2.2.2. $x < -1 \Rightarrow -x 1 = 1 \Leftrightarrow x = -2$ (satisface condițiile subcazului).

În concluzie, reunind soluțiile, obținem $x \in \{-2, 0, 2, 4\}$. Răspuns corect: 4.

18. Fie polinomul $f = X(X+1)^{2n+1} + (m-1)X^n$, unde $n \ge 3$ este număr natural, iar $m \in \mathbb{C}$. Să se determine m astfel încât f să fie divizibil cu $X^2 + X + 1$. (5 pct.)

a)
$$m = -2$$
; b) $m = 2i$; c) $m = 18$; d) $m = 2$; e) $m = 4$; f) $m = -2i$.

Soluție. Rădăcinile polinomului X^2+X+1 sunt $\{\omega=\frac{-1+i\sqrt{3}}{2}, \bar{\omega}=\omega^2=\frac{-1-i\sqrt{3}}{2}\}\subset\mathbb{C}\backslash\mathbb{R}$, rădăcinile complexe ne-reale ale ecuației $X^3-1=0$. Asadar avem $\omega^3=1$ și $\omega^2+\omega+1=0$. Divizibilitatea din concluzia problemei este echivalentă cu $f(\omega)=f(\bar{\omega})=0$. Folosind proprietățile rădăcinilor ω și $\bar{\omega}=\omega^2$, obținem succesiv:

$$\begin{split} f(\omega) &= \omega(\omega+1)^{2n+1} + (m-1)\omega^n = \omega(-\omega^2)^{2n+1} + (m-1)\omega^n = -\omega(\omega)^{4n+2} + (m-1)\omega^n \\ &= -\omega^{4n+3} + (m-1)\omega^n = -\omega^n + (m-1)\omega^n = \omega^n(-1+m-1) = \omega^n(m-2), \\ f(\bar{\omega}) &= \omega^{2n}(\bar{m}-2). \end{split}$$

Însă
$$\omega^k \in \{1, \omega, \omega^2\} \not\ni 0, \ \forall k \in \mathbb{N}, \, \mathrm{deci} \, \left\{ \begin{array}{l} f(\omega) = 0 \\ f(\bar{\omega}) = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m-2 = 0 \\ \bar{m}-2 = 0 \end{array} \right. \Leftrightarrow m = 2.$$