Elementos de Sistemas

Aritmética Binária Álgebra Booleana

Renan Trevisoli

Engenharia da Computação

12/02/2025

Tais coisas simples, e nós fazemos delas algo tão complexo que nos derrota, quase. Such simple things, and we make of them something so complex it defeats us, almost. John Ashbery (1927) poeta americano

Objetivos

- Realizar operações matemáticas com números binários
- Operar em Álgebra Booleana

Aritmética binária

Soma binária

• É realizada de maneira similar a soma de decimais

```
Exemplo:
Soma 87 + 51:
01010111
00110011 +
10001010
```


Aritmética binária

- Como podemos representar números negativos em binário?
 - Complemento de 1.
 Bit mais significativo indica o sinal.

```
Exemplo com 8 bits 00000001 representa +1 10000001 representa -1
```

Quais são os problemas dessa representação?

Aritmética binária

- Como podemos representar números negativos em binário?
 - Complemento de 2.
 Para obter o negativo de um número, deve-se inverter o número positivo bit-a-bit e adicionar 1.

```
Exemplo com 8 bits 00000001 representa +1 11111111 representa -1
```


Exemplo

- Como é a representação dos seguintes números em complemento de 2 com 8 bits:
 - -99
 - **B** -14
 - **9** -86
- Faça a conta em binário: 50 14

Multiplicação/Divisão

• Como ficaria a multiplicação 6x6 em binário?

Ponto fixo/flutuante

- Até o momento vimos operações com números inteiros.
- Como podemos representar um número fracionado?

• Portas lógicas

Quiz

Qual a negação da proposição:

"Sexta começa o carnaval e sábado tem blocos na rua".

- Sexta não começa o carnaval e sábado não tem blocos na rua
- Sexta não começa o carnaval
- Sábado não tem blocos na rua
- Sexta não começa o carnaval ou sábado não tem blocos na rua

• Tabela verdade

Α	В	C	Q
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Propriedades

Lei da identidade	$\frac{A = A}{\overline{A} = \overline{A}}$	
Lei da comutatividade	$A \cdot B = B \cdot A$ $A + B = B + A$	
Lei da associatividade	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$ $A + (B + C) = (A + B) + C$	
Lei da idempotência	$A \cdot A = A$ $A + A = A$	
Lei do complemento duplo	$A = \overline{\overline{A}}$	
Lei da complementariedade	$A \cdot \overline{A} = 0$ $A + \overline{A} = 1$	
Lei da intersecção	$A \cdot 1 = A$ $A \cdot 0 = 0$	
Lei da união	A+1=1 $A+0=A$	
Lei da distributividade	$A \cdot (B+C) = (A \cdot B) + (A \cdot C)$ $A + (B \cdot C) = (A+B) \cdot (A+C)$	
Teorema de DeMorgan	$\frac{\overline{AB} = \overline{A} + \overline{B}}{\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}}$	
Absorção	$A + A \cdot B = A$ $A \cdot (A + B) = A$	
	$A + \overline{A} \cdot B = A + B$	
	$A \cdot (\overline{A} + B) = A \cdot B$	

Próxima aula

Estudar: Teoria → Álgebra booleana (minimização)

