0.1 Lecture 4

0.1.1 Topics

- Continue discussion of convergence of sequences and series.
- Discuss exponential, sine, and cosine function.

0.1.2 Class Exercises

- (i) Show that $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ converges for all z.
- (ii) Show that $\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$ converges for all z.
- (iii) Show that $\sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$ converges for all z.

Definition (Exponential, Cosine, and Sine). We define

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}.$$

Our main goal for this lecture is to show that $\exp(z+w) = \exp(z)\exp(w)$.

0.1.3 Cauchy Multiplication Theorem

Theorem (Cauchy Multiplication Theorem). Assume that $\sum_{n=0}^{\infty} z_n$ and $\sum_{n=0}^{\infty} w_n$ converges absolutely. Then

$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} z_k w_{n-k} \right) = \left(\sum_{n=0}^{\infty} z_n \right) \left(\sum_{n=0}^{\infty} w_n \right)$$
 (1)

where the series on the left-hand side of (1) converges absolutely.

Proof. We will show that the sequence of partial sums of (1) satisfy the conditions of the monotone convergence theorem so that it converges. Why is (1) monotone? First, we show that (1) is bounded. Observe that

$$\sum_{n=0}^{N} \left| \sum_{i+j=n} z_{i} w_{j} \right| \leq \sum_{n=0}^{N} \sum_{i+j=n} |z_{i} w_{j}|$$

$$= \sum_{0 \leq i+j \leq N} |z_{i} w_{j}|$$

$$\leq \sum_{0 \leq i,j \leq N} |z_{i} w_{j}|$$

$$= \sum_{i=0}^{N} |z_{i}| \sum_{i=0}^{N} |w_{j}|.$$

By our assumption, we can see that the sequence of partial sums of $\sum_{n=0}^{\infty}$ and $\sum_{n=0}^{\infty} w_n$ are bounded,

1

and thus the left side of the equation above is bounded. Thus, we see that

$$\sum_{n=0}^{N} \Big| \sum_{i+j=n} z_i w_j \Big|$$

converges by the monotone convergence theorem. Next, we will show that

$$\alpha_n = \Big| \sum_{n=0}^{2N} \sum_{i+j=n} z_i w_j - \sum_{i=0}^{N} z_i \sum_{j=0} w_j \Big| \to 0$$

as $N \to \infty$. Let us define the following sets

$$T_N = \{(i, j) \in \mathbb{Z} \times \mathbb{Z} : i \ge 0, j \ge 0, 0 \le i + j \le N\}$$

 $t_n = \{(i, j) \in \mathbb{Z} \times \mathbb{Z} : 0 \le i \le N, 0 \le j \le N\}.$

Observe that $T_N \subseteq t_n$ and $t_N \subseteq T_{2N} \subseteq t_{2N}$. Thus,

$$\begin{split} \alpha_N &= \Big| \sum_{(i,j) \in T_{2N} \backslash t_N} z_i w_j \Big| \leq \sum_{(i,j) \in T_{2N} \backslash t_N} |z_i w_j| \\ &\leq \sum_{(i,j) \in t_{2N} \backslash t_N} |z_i w_j| \\ &= \sum_{i=0}^{2N} \sum_{j=0}^{2N} |z_i w_j| - \sum_{i=0}^{N} \sum_{j=0}^{N} |z_i w_j| \\ &= \sum_{i=0}^{2N} |z_i| \sum_{j=0}^{2N} |w_j| - \sum_{i=0}^{N} |z_i| \sum_{j=0}^{N} |w_j| \to 0 \text{ as } N \to \infty. \end{split}$$

Corollary. For any $z, w \in \mathbb{C}$, we have $\exp(z) \cdot \exp(w) = \exp(z + w)$.

Proof. Let

$$C_n = \sum_{k=0}^{n} \frac{z^k}{k!} \cdot \frac{w^{n-k}}{(n-k)!}.$$

Then multiplying by n! on both sides of the equation above, we see that

$$n!C_n = \sum_{k=0}^n \binom{n}{k} z^k w^{n-k} = (z+w)^n$$

by the binomial formula where

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Now, observe that

$$\sum_{n=0}^{N} C_n = \sum_{n=0}^{N} \frac{n!C_n}{n!} = \sum_{n=0}^{N} \frac{(z+w)^n}{n!}.$$

Let $n \to \infty$. Then we have

$$\sum_{n=0}^{\infty} C_n = \sum_{n=0}^{\infty} \frac{(z+w)^n}{n!} = \exp(z+w).$$

2

0.2 Lecture 5

0.2.1 Topics

- Continue discussion of some important functions.
- Go over some topological notion briefly.

0.2.2 Sine and Cosine Functions

Recall that we defined

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \text{ for } z \in \mathbb{C}$$
$$\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \text{ for } z \in \mathbb{C}.$$

We also know,

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Lemma. For any $z \in \mathbb{C}$, observe that

- $\exp(iz) = \cos z + i \sin z$
- $\cos(z) = (\exp(iz) + \exp(-iz))/2$
- $\bullet \sin(z) = (\exp(iz) \exp(-iz))/2.$

Proof. Let $z \in \mathbb{C}$. We know the series

$$\sum_{n=0}^{\infty} \frac{(iz)^n}{n!}$$

converges absolutely. Thus, we see that

$$\sum_{n=0}^{\infty} \frac{(iz)^n}{n!} = \sum_{n=0}^{\infty} \frac{(i)^{2n+1}z^{2n+1}}{(2n+1)!} + \sum_{n=0}^{\infty} \frac{(i)^{2n}z^{2n}}{(2n)!}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$
$$= \cos z + i \sin z.$$

Take the real and imaginary part the formulas stated in the lemma will follow.

Corollary. For any $z \in \mathbb{C}$, we see that

- $\exp(x+iy) = e^x(\cos y + i\sin y)$.
- $\Re(\exp(z)) = e^x \cos y$.
- $\Im(\exp(z)) = e^x \sin y$, $|\exp(z)| = e^x$.
- $\sin(z+w) = \sin z \cos w + \cos z \sin w$.
- $\cos(z+w) = \cos z \cos w \sin z \sin w$.

Proposition. Show that $\exp(z) = \exp(w)$ if and only if $z - w \in 2\pi i \mathbb{Z}$. Hint: Let z = x + iy and

w = u + iv. Then

$$\exp(z) = e^{x}(\cos y + i\sin y)$$
$$\exp(w) = e^{v}(\cos v + i\sin v)$$

and show that u = x and $u - v \in 2\pi \mathbb{Z}$.

Remark. This exercise shows that $\exp: \mathbb{C} \to \mathbb{C}^{\cdot}$ is not injective.

• Note that $\exp: \mathbb{C} \to \mathbb{C}$ is a group homomorphism. From this exercise, we know that $\ker(\exp) = 2\pi i \mathbb{Z}$. This means that \exp is periodic with period $2\pi i$.

Our next goal is find an "inverse" of exp. We just learned that it is not possible unless we change the "domain" of exp.

Let $S = \{z \in \mathbb{C} : -\pi < \Im(z) \le \pi\}.$

Lemma. exp : $S \to \mathbb{C}^{\cdot}$ is a bijective map.

Proof. Let $z \in \mathbb{C}^{\cdot}$ and z = x + iy. Let $z = \gamma(\cos \varphi + i\sin \varphi)$ be the polar representation of z such that $-\pi < \varphi \le \pi$. Define $w = \ln \gamma + i\varphi$. Then $\exp(w) = z$ and so, exp is surjective. Moreover, exp is injective (on S) as well.

Corollary. For any $z \in \mathbb{C}$, we can find a unique $w \in S$ such that $\exp(w) = z$.

Definition. Given $z \in \mathbb{C}^{\bullet}$, the unique $w \in S$ is called the principal value of the logarithm of z and we write w = Log(z).

Theorem. There exists a mapping

$$\text{Log}: \mathbb{C}^{\bullet} \to \mathbb{C}$$

such that

- (i) $\exp(\text{Log }z) = z$
- (ii) $-\pi < \Im(\operatorname{Log} z) \le \pi$.

Definition (Principal Branch). The function Log Z is called the principal branch of the logarithm.

Problem 1. Let $z \in \mathbb{C}^{\bullet}$. Find all possible solutions of $\exp(w) = z$.

Solution. Taking the log of both sides of $\exp(w) = z$, we see that

$$w = \log(z) = \ln|z| + i\left(\operatorname{Arg}(z) + 2\pi k\right), \ k \in \mathbb{Z}.$$

Lemma. For $z \in \mathbb{C}^{\bullet}$, we have

$$Log(z) = \ln|z| + i Arg(z).$$

0.2.3 Notion of logarithm

For the proposition above, we can now see that the solutions given by the equation $\exp(w) = z$ are given by

$$w = \text{Log}(z) + 2\pi i k \text{ for } z \in \mathbb{Z}$$

where

$$\log z = \operatorname{Log} z + 2\pi i k$$

is a **multivalued function** and $\log z = \operatorname{Log} z$ if we want the solution to be in S.