Heller Flux Reactor Overview 4-11-23

Operating Principle

- Flux laden gas is exhausted from process chamber of a reflow oven.
- Gas is heated to approximately 500C.
- Heated gas is passed over wire mesh trap catalysts and then thru a ceramic honeycomb support /filter coated with non-precious or precious metal catalyst, with base metal promoters.

Cross Section Showing Configuration of Traps and Ceramic Substrate

Oven Diagram with Reactor

Wire Mesh Traps

Un-coated wire mesh trap

Coated trap

Ceramic Substrate with Catalyst

Focal Points

- Technical goals
- Flux Compound
- Reactor operation
- Catalyst & filter technology
- Contamination & characterization
- Reaction chemistry
- Novel aspects
- Summary

Technical Goals

- 1. Primary
 Reduce maintenance time & cost in the operation of a commercial flux reactor
- Secondary
 Utilize O2 more effectively in the catalyst bed thereby minimizing unused O2 existing the reactor, while reducing catalyst cost

Tertiary

3. Unify technology, if possible, for both formic and flux reactor tools

Analysis of flux reactor starting materials & contamination FTIR, Raman and GPC

Background: internal research indicates a typical flux composition may contain the following components

- Rosin (resin) content is upward of 50-60% of a typical flux compound, eg, Abietic acid
- Abietic acid is a primary carboxylic acid in flux that serves to remove oxide formation from surfaces.
- Rheological modifiers & binders
- Solvent linear glycols, + possibly some H20
- Small molecules, eg, ethers, alcohols, ketones
- Amines

Pyrolysis or devolatilization of flux occurs at elevated temperatures often in an inert or (02) deprived environment. In general, heating flux compounds elutes lower molecular weight species that can undergo condensation producing small and larger molecular weight components that enter a reactor. Remaining materials in the crucible not volatilized are higher in aromatics content.

HC pyrolysis and oxidation are considered the early steps in the gasification of hydrocarbons.

FTIR analysis of starting material flux, aged flux before and after the catalyst

Result

Crucible sample, pre-catalyst after aging.
Aromatic structures, with H2O loss
More condensate compared to reference

Base plate sample following Zeolite extrude aging, post reactor Phenyl-imidazole detected at reactor inlet with lower molecular weight species, observed post reactor compared to the reference

Flux Laboratory Reactor & Operating Conditions

Flux Test

C contamination poorly distributed on aged zeolite extrudate GPF contamination more evenly distributed

Result of a single aging cycle of zeolite extrudate

GPF w/ Cu-Chabazite technology
Flux reactor Trap 1 upstream, ~25% volume wire mesh LPA-Cu catalyst
downstream, 75% volume Cu-Chabazite

Full scale furnace

zeolite extrudate

GPF w/ Cu-Chabazite with pre-cats

Previous 10KG Flux Test Picture in 2020

This time 10KG Flux Test Picture in 2023

Cu-Chabazite A – beginning of run, 10% Cu -zeolite and wire mesh Cu coating on pre-catalysts FTIR results show more CO, CO2 and water generated in outlet compared to the inlet

For A, inlet in red, water is detected as well as CO2 and some hydrocarbons.

For the outlet in blue, CO is forming and increasing and a new hydrocarbon at 1300cm-1. (unknown). CO2 is increasing at the outlet.

HC's - 2800cm-1

Water - 3750 & 1600cm-1

CO - 2100cm-1

CO2 - 2300cm-1

Reactive HC Species

Promyristyl-PM-3 C23H48O4 (compound identified at reactor inlet)

Physical properties

BP 354 to 355C @ 760mm Hg FP > 200F

Gas phase reactants eluted from crucible

Promyristyl-PM-3 C23H48O4 formed at reactor inlet

O2 measurements before and after catalyst utilizing MFC & RapidOx Analyzer

O2 measurement on Cu-Chabazite on GPF, w/ no PM w/ 4 new wire mesh Cu catalyst traps, second aging

target	<u>baseline</u>	inlet	<u>oulet</u>	<u>time</u>
20	19.5	30	0	<1m
50	52	60.5	0	<1m
100	101	103.5	0	<1m
300	249.2	254	0	<2m
500				
high	1725	1731	1200+	

O2 measurement on DOC on DPF, 30.gPt/ft3 w/ 4 new wire mesh Cu catalyst traps, third aging

target	<u>baseline</u>	<u>inlet</u>	<u>oulet</u>	<u>time</u>
20	19.0	26.4	0	<1m
50	50.1	63.7	0	<1m
100	101.2	114.8	0	<1m
300	244.4	260.5	0	<1m
500				
high	1638	1646	42.1	1m

Competing reaction chemistry, small chain volatile species formed in the gas phase in the crucible with larger chain species formed at catalyst inlet, not exclusive

- 1. Steam reforming production of H2 and CO by reacting HC with H2O at temperatures above 400C CH4 + H2O (steam) → CO + 3H2 (strongly endothermic)
- Water-gas shift reacting CO + H2O (steam) in the formation of CO2 + H2 (mildly exothermic)
 CO + H2O (steam) → CO2 + H2
- 3. Partial oxidation with limited O2 in the feed (exothermic)

 2HC + O2 → 2CO + H2
- 4. Condensation (polymerization) from reactor crucible to reactor inlet is exothermic (molecules losing potential and kinetic energy)

$$CO + H_2O \rightleftharpoons CO_2 + H$$

^{*}The water-gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen:

Aged Cu-LPA Wire Mesh Catalyst Traps

- 5 wire mesh Cu-catalysts in the gas inlet position.
- Black color throughout matrices suggesting C capture
- Mesh matrix remains open, not blocked

Catalytic Technologies to include - DOC, SCR, Zeolite and TWC Substrates to include - SiC, metallic honeycomb and Cordierite, DPF & GPF

Material	Formula	Monolith Suppliers
Cordierite	2MgO-2Al ₂ O ₃ -5SiO ₂	Corning, NGK, Denso, Hitachi Metals
Silicon carbide	SIC	Ibiden, NGK, Saint-Gobain, LiqTech
Aluminum titanate	Al ₂ TIO ₅	Corning

Zeolites – Pore Size

Pore Size	Number of Tetrahedra (MR 1)	Pore Diameter (Å)	Example
Small	8	4	PST-1 (NAT)
Medium	10	5.5	ZSM-5 (MFI)
Large	12	7.5	ZSM-12 (MTW)
Extra-large	>12	>7.5	CIT-5 (CFI)

¹ MR: Members of the ring.

Classification of zeolites according to their pore size.

"some reactions can occur on the outer surface/pore mouth of a zeolite. reactive molecules don't always need to fit in the pore"

10% Cu-Chabazite Zeolite (ion exchange/impregnation)

Framework Type CHA

Framework 1

Cell Parameters: trigonal R -3 m (# 166)

a = 13.6750 Å b = 13.6750 Å c = 14.7670 Å $\alpha = 90.000^{\circ}$ $\beta = 90.000^{\circ}$ $y = 120.000^{\circ}$

Volume = 2391.6 A^3 R_{DLS} = 0.0015

Framework density (FD_{Si}): 15.1 T/1000 Å³

Topological density: \bigcirc TD = 0.566667

Ring sizes (# T-atoms): 8 6 4

Channel dimensionality: Topological (pore opening > 6-ring): 3-dimensional

Maximum diameter of a sphere:

that can be included 7.37 Å

that can diffuse along a: 3.72 Å b: 3.72 Å c: 3.72 Å

Accessible volume: 17.27 %

ABC sequence AABBCC sequence of 6-rings

Secondary Building Units: 0 6-6 or 6 or 4-2 or 4

Composite Building Units: 0

d6r (t-hpr)

Natural Tiling (1) t-cha t-hpr

cha (t-cha)

Framework images (click on icon for larger image)

Viewed normal to [001]

projection along [001]

Competing reaction chemistry, small chain volatile species formed in the gas phase in the crucible with larger chain species formed at catalyst inlet, not exclusive

- 1. Steam reforming production of H2 and CO by reacting HC with H2O at temperatures above 400C CH4 + H2O (steam) → CO + 3H2 (strongly endothermic)
- 2. Water-gas shift reacting CO + H2O (steam) in the formation of CO2 + H2 (mildly exothermic) CO + H2O (steam) → CO2 + H2
- 3. Partial oxidation with limited O2 in the feed (exothermic)

 2HC + O2 → 2CO + H2
- 4. Condensation (polymerization) from reactor crucible to reactor inlet is exothermic (molecules losing potential and kinetic energy)

$$CO + H_2O \rightleftharpoons CO_2 + H$$

^{*}The water-gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen:

Summary & Remarks - Materials Characterization

- 1. Reference virgin flux sample characterization by FTIR suggests this material is chemically similar to a non-ionic surfactant
- 2. Aged flux from the reactor crucible shows the presence of aromatic rings, more condensate and less H2O compared to the reference
- 3. Post reactor sample shows the presence of lower molecular weight species compared to reference
- 4. Reference flux and aged flux collected from the reactor crucible show similar chemical properties to PEG, ethylene oxide, fatty acid condensate, alcohols and propylene
- 5. Reference flux material analysis by GPC shows light volatile fractions are ~ 4X as higher in concentration by number as compared to heavier molecular weight species
- 6. Aged crucible flux sample shows growth in size for the smaller and larger weight species
- 7. GPC analysis refinement of the reference flux, shows the lighter fraction exist over a range in molecular weight
- 8. HC's exiting the reactor on base plate 1 are largely smaller molecular weight species, very possibly the species contaminating furnaces
- 9. Four distinct retention volumes visualized. Overlay results suggest the aged crucible sample have the highest molecular weight species while those detected post catalyst have the lowest molecular weight

Novel - Unique Features

- None-PM solution demonstrated
- Pre-cat wire mesh base metal catalyst
- SOF capture on wire mesh catalysts
- Surface and bulk chemistry
- Minimal bypass
- Ready access to active sites
- Regenerable
- Cost effective
- Acceptable operating back pressure
- Different substrate types
- Flexibility in integration
- Wider choice in catalytic materials
- Multiple coatings
- Layering, zone and gradient coating
- Higher surface areas, (materials & substrates)
- Substrate wall filtration

S3 – <u>reference flux</u> – virgin material analysis by GPC shows light volatile fractions are ~ 4X as high in concentration by number as heavier molecular weight species

Sample Description	Preparation		Peak 1				Peak 2					
		Injection	Мр	Mn	Mw	Mz	PD	Мр	Mn	Mw	Mz	PD
S 3	7040	1	2,376	2,000	2,166	2,328	1.08	395	165	346	475	2.10
	1	2	2,376	1,991	2,164	2,334	1.09	395	166	346	475	2.08
	2	1	2,393	2,001	2,176	2,349	1.09	399	169	351	479	2.08
		2	2,376	1,996	2,170	2,340	1.09	395	172	353	478	2.05
	Avera	ige	2,380	1,997	2,169	2,338	1.09	396	168	349	477	2.08
	Standard Deviation		9	5	5	9	0.00	2	3	4	2	0.02
	% RSD		0	0	0	0	0	1	2	1	0	1

M_P – peak average molecular weight; M_n – number average molecular weight; M_N – weight average molecular weight; M₂ – z-average molecular weight; PD – polydispersity index; Molecular weight (M) units = Dalton (g/mol).

GPC results S2 crucible sample following aging

Sample Description	Peak	Preparation	Injection	Μp	MN	Mw.	Μz	PD
C (S2)	1	1	1	1,946	1,870	2,390	3,251	1.28
			2	1,955	1,877	2,406	3,265	1.28
		2	1	1,958	1,894	2,436	3,397	1.29
		2	2	1,944	1,878	2,434	3,382	1.30
		Average		1,951	1,880	2,417	3,324	1.29
		Std. Dev.		7	10	22	76	0.01
		% R	SD	0	1	1	2	1
	2		1	532	491	560	618	1.14
		1	2	534	502	566	619	1.13
		2	1	645	496	567	626	1.14
			2	648	492	560	618	1.14
		Average		590	495	563	620	1.14
		Std. Dev.		66	5	4	4	0.01
		% R	SD	11*	1	1	1	1

