

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to E-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formuła 2015

INFORMATYKA Poziom rozszerzony Część I WYPEŁNIA ZDAJĄCY WYBRANE: (system operacyjny) (program użytkowy) (środowisko programistyczne)

DATA: 16 czerwca 2023 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- 1. Sprawdź, czy nauczyciel przekazał Ci **właściwy arkusz egzaminacyjny**, tj. arkusz we **właściwej formule**, z **właściwego przedmiotu** na **właściwym poziomie**.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin: system operacyjny, program użytkowy oraz środowisko programistyczne.
- 4. Odpowiedzi i rozwiązania zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 5. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 9. Możesz korzystać z kalkulatora prostego.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. Liczby "przyjaciółki"

Dwie dodatnie liczby całkowite a i b nazwiemy przyjaciółkami, jeśli suma cyfr liczby a jest taka sama jak suma cyfr liczby b. Natomiast parę liczb a i b nazwiemy dobrymi przyjaciółkami, jeżeli są przyjaciółkami oraz pierwsza cyfra w zapisie dziesiętnym liczby a jest taka sama jak ostatnia cyfra w zapisie dziesiętnym liczby b lub odwrotnie (pierwsza cyfra w zapisie dziesiętnym liczby b jest taka sama jak ostatnia cyfra w zapisie dziesiętnym liczby a).

Przyjaciółkami są liczby 15 i 24, ale nie są dobrymi przyjaciółkami. Dobrymi przyjaciółkami są natomiast liczby 124 i 61 oraz 431 i 17.

Zadanie 1.1. (0-2)

Uzupełnij poniższą tabelę.

а	b	Suma cyfr liczby <i>a</i>	Suma cyfr liczby <i>b</i>	Przyjaciółki (PRAWDA/FAŁSZ)	Dobre przyjaciółki (PRAWDA/FAŁSZ)
433	352	10	10	PRAWDA	PRAWDA
131	50				
416	84				
32	221				

Zadanie 1.2. (0-4)

Zapisz w pseudokodzie lub w wybranym języku programowania algorytm, który dla danych liczb *a* i *b* sprawdzi, czy są *dobrymi przyjaciółkami*, zgodnie z regułami podanymi wcześniej.

Uwaga: Twój algorytm może używać wyłącznie zmiennych przechowujących liczby całkowite oraz może operować wyłącznie na liczbach całkowitych. W zapisie algorytmu możesz korzystać tylko z instrukcji sterujących, operatorów arytmetycznych: dodawania, odejmowania, mnożenia, dzielenia, dzielenia całkowitego i reszty z dzielenia; operatorów logicznych, porównań i instrukcji przypisywania lub samodzielnie napisanych funkcji i procedur wykorzystujących powyższe operacje. **Zabronione** jest używanie funkcji wbudowanych oraz operatorów innych niż wymienione, dostępnych w językach programowania. Nie wolno w szczególności korzystać z żadnych funkcji zamiany z typu znakowego lub napisowego na liczbowy i odwrotnie.

Specyfikacja:

Dane:

a, b - dodatnie liczby całkowite

Wynik:

PRAWDA, gdy liczby *a* i *b* są dobrymi przyjaciółkami, albo FAŁSZ – w przeciwnym przypadku

Miejsce na zapis algorytmu:

Zadanie 2. Mnożenie

Następujący rekurencyjny algorytm mnożenia dwóch liczb całkowitych dodatnich *x*, *y* jest realizowany z użyciem operacji arytmetycznych dodawania i dzielenia całkowitego przez 2.

Uwaga: *x mod y* oznacza resztę z dzielenia *x* przez *y*, natomiast *x* div *y* oznacza wynik dzielenia całkowitego *x* przez *y*.

Dla danych liczb x, y interesuje nas **liczba wykonywanych operacji dodawania** podczas obliczania wyniku funkcji iloczyn(x, y).

Przykład 1.

Dla liczb x = 9 i y = 11 algorytm wykonuje 5 dodawań. Działanie funkcji *iloczyn*(9, 11) można zilustrować w następujący sposób (w nawiasach obok wskazano liczbę wykonywanych operacji dodawania):

```
iloczyn(9, 11) = 9 + z + z, (dwa dodawania)
gdzie z = iloczyn(9, 5)
iloczyn(9, 5) = 9 + z + z, (dwa dodawania)
gdzie z = iloczyn(9, 2)
iloczyn(9, 2) = z + z, (jedno dodawanie)
gdzie z = iloczyn(9, 1)
iloczyn(9, 1) = 9
```

Poniższa tabela ilustruje obliczenia wykonywane podczas wywołania iloczyn(9, 11).

Numer	Parametry wywołania		Obliczo	one <i>k</i> , <i>z</i>	Wynik
wywołania	x	у	k	z	
1	9	11	5	45	99 (9+45+45)
2	9	5	2	18	45 (9+18+18)
3	9	2	1	9	18 (9+9)
4	9	1	_	_	9

Zadanie 2.1. (0-2)

Uzupełnij poniższą tabelę tak, aby ilustrowała obliczenia wykonywane podczas wywołania iloczyn(10, 45).

Numer wywołania	Parametry wywołania		Obliczone <i>k</i> , <i>z</i>		Wynik
-	X	У	k	Z	•
1	10	45	22		
2					
3					
4					
5					
6		1	_	_	

Miejsce na obliczenia:

Zadanie 2.2. (0-2)

Dla liczb x, y wymienionych w poniższej tabeli podaj liczbę operacji dodawania, jaka zostanie wykonana podczas obliczania wyniku funkcji iloczyn(x, y).

х	у	Liczba dodawań
9	11	5
8	32	
2	47	
112	112	

Miejsce na obliczenia:

Zadanie 2.3. (0-2)

Poniżej znajduje się iteracyjny algorytm realizujący funkcję *iloczyn*(*x*, *y*). Uzupełnij trzy luki w algorytmie, tak aby był zgodny z poniższą specyfikacją.

UWAGA: spośród operacji arytmetycznych możesz użyć tylko: dodawania, odejmowania, dzielenia całkowitego i reszty z dzielenia. Nie możesz użyć zwłaszcza operacji mnożenia.

Specyfikacja:	
Dane:	
	x, y – liczby całkowite dodatnie
Wynik:	
	z – wartość iloczynu <i>x</i> * <i>y</i>
Algorytm:	
z←	
donáki	wykonui
аорокі	wykonuj
jeżeli <u>j</u>	/ mod 2 = 1
	$Z \leftarrow Z + X$
<i>X</i> ← <i>X</i>	+ X

Zadanie 3. Test

Oceń prawdziwość podanych zdań. Zaznacz \mathbf{P} , jeśli zdanie jest prawdziwe, albo \mathbf{F} – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

1.	101 ₁₆ = 11001011 ₂	Р	F
2.	101 ₁₆ = 401 ₈	P	F
3.	401 ₈ = 100000001 ₂	Р	F
4.	101 ₈ = 41 ₁₆	Р	F

Informacja do zadań 3.2. i 3.3.

W bazie danych znajdują się tabele zwierzeta oraz osoby.

Tabela *zwierzeta* zawiera dane: identyfikator zwierzęcia (*id* – klucz podstawowy), gatunek (*gatunek*), imię zwierzęcia (*imie*) oraz identyfikator właściciela zwierzęcia (*id_osoby*).

Tabela *osoby*, z danymi właścicieli zwierząt, zawiera dane: identyfikator osoby (*id_osoby* – klucz podstawowy), imię i nazwisko osoby (*imie*, *nazwisko*).

Poniżej podano kilka przykładowych danych z obu tabel.

Tabela zwierzeta

id	gatunek	imie	id_osoby
1	pies	Azor	1
2	kot	Mruczek	2
3	kot	Kicia	3
4	pies	Pimpek	2

Tabela osoby

id_osoby	imie	nazwisko
1	Jan	Nowak
2	Adam	Kowalski
3	Anna	Nowakowska

Zadanie 3.2. (0-1)

1.	W wyniku zapytania: SELECT DISTINCT nazwisko FROM osoby; otrzymamy listę różnych nazwisk osób z tabeli <i>osoby</i> (nazwiska nie będą się powtarzać).	Р	F
2.	W wyniku zapytania: SELECT nazwisko FROM osoby WHERE nazwisko LIKE "A"; Otrzymamy listę nazwisk zaczynających się od litery A.	Р	F
3.	W wyniku zapytania: SELECT imie FROM osoby WHERE imie BETWEEN "A" AND "C"; otrzymamy listę imion zaczynających się od litery A lub B.	Р	F
4.	W wyniku zapytania: SELECT imie, nazwisko FROM osoby WHERE imie IN ("Ala","Ula"); otrzymamy listę imion i nazwisk wszystkich osób mających imiona, które w kolejności alfabetycznej znajdują się pomiędzy "Ala" a "Ula".	Р	F

Zadanie 3.3. (0-1)

	W wyniku zapytania:		
1.	SELECT count(DISTINCT gatunek) FROM zwierzeta;	Р	F
	otrzymamy liczbę różnych nazw gatunków zwierząt z tabeli <i>zwierzeta</i> .		
	W wyniku zapytania:		
2.	SELECT count(gatunek) FROM zwierzeta WHERE gatunek = "pies";	Р	F
	otrzymamy liczbę psów w tabeli <i>zwierzeta.</i>		
	W wyniku zapytania:		
3.	SELECT count(*) FROM zwierzeta INNER JOIN osoby ON zwierzeta.id_osoby = osoby.id_osoby WHERE gatunek = "pies";	Р	F
	otrzymamy liczby psów z podziałem na różnych właścicieli.		
	W wyniku zapytania:		
4.	SELECT nazwisko, count(*) FROM zwierzeta INNER JOIN osoby ON zwierzeta.id_osoby = osoby.id_osoby GROUP BY osoby.id_osoby;	Р	F
	otrzymamy zestawienie z nazwiskami osób i liczbami ich zwierząt.		

BRUDNOPIS (nie podlega ocenie)

INFORMATYKA Poziom rozszerzony

Formula 2015

INFORMATYKA Poziom rozszerzony

Formula 2015

INFORMATYKA Poziom rozszerzony

Formula 2015