HKDSE MATH M2 2012

1. HKDSE Math M2 2012 Q1

Let $f(x) = e^{2x}$. Find f'(0) from first principles. (3 marks)

2. HKDSE Math M2 2012 Q2

It is given that

$$(1+ax)^n = 1 + 6x + 16x^2 + \text{terms involving higher powers of } x$$
,

where n is a positive integer and a is a constant. Find the values of a and n. (5 marks)

3. HKDSE Math M2 2012 Q3

Prove, by mathematical induction, that for all positive integers n, $1 \times 2 + 2 \times 5 + 3 \times 8 + \cdots + n(3n-1) = n^2(n+1)$. (5 marks)

4. HKDSE Math M2 2012 Q4

(a) Find
$$\int \frac{x+1}{x} dx$$

(b) Using the substitution
$$u = x^2 - 1$$
, find $\int \frac{x^3}{x^2 - 1} dx$.

(5 marks)

5. HKDSE Math M2 2012 Q5

Find the minimum point(s) and asymptote(s) of the graph of $y = \frac{x^2 + x + 1}{x + 1}$. (6 marks)

6. HKDSE Math M2 2012 Q6

A frustum of height H is made by cutting off a right circular cone of base radius r from a right circular cone of base radius R (See Figure 1). It is given that the volume of the frustum is $\frac{\pi}{3}H(r^2+rR+R^2)$.

Ån empty glass is in the form of an inverted frustum described above with height 10 cm, the radii of the rim and the base 4 cm and 3 cm respectively. Water is being poured into the glass. Let h cm $(0 \le h \le 10)$ be the depth of the water inside the glass at time t s (see Figure 2).

Figure

- (a) Show that the volume V cm³ of water inside the glass at time t s is given by $V = \frac{\pi}{300}(h^3 + 90h^2 + 2700h).$
- (b) If the volume of water in the glass is increasing at the rate 7π cm³ s⁻¹, find the rate of increase of depth of water at the instant when h = 5.

(6 marks)

7. HKDSE Math M2 2012 Q7

Figure 3 shows a parallelepiped $\overrightarrow{OADBECFG}$. Let $\overrightarrow{OA} = 6\mathbf{i} + 2\mathbf{j} - \mathbf{k}$, $\overrightarrow{OB} = 2\mathbf{i} + \mathbf{j}$ and $\overrightarrow{OC} = 5\mathbf{i} - \mathbf{j} + 2\mathbf{k}$.

Figure 3

- (a) Find the area of the parallelogram *OADB*.
- (b) Find the distance between point C and the plane OADB.

(5 marks)

8. HKDSE Math M2 2012 Q8

(a) Solve the following system of linear equations:

$$\begin{cases} x + y + z = 0 \\ 2x - y + 5z = 6 \end{cases}$$

(b) Using (a), or otherwise, solve the following system of linear equations:

$$\begin{cases} x + y + z = 0 \\ 2x - y + 5z = 6 \\ x - y + \lambda z = 4 \end{cases}$$
, where λ is a constant.

(5 marks)

9. HKDSE Math M2 2012 Q9

(a) Using integration by parts, find $\int x \sin x \, dx$.

(b) Figure 4 shows the shaded region bounded by the curve $y = \sqrt{x \sin x}$ for $0 \le x \le \pi$ and the x-axis. Find the volume of the solid generated by revolving the region about the x-axis.

(4 marks)

10. HKDSE Math M2 2012 Q10

In Figure 5, OAB is an isosceles triangle with OA = OB, AB = 1, AY = y, $\angle AOY = \theta$ and $\angle BOY = 3\theta$.

- (a) Show that $y = \frac{1}{4} \sec^2 \theta$.
- (b) Find the range of values of y. [Hint: you may use the identity $\sin 3\theta = 3\sin \theta 4\sin^3 \theta$.]

 (6 marks)

11. HKDSE Math M2 2012 Q11

- (a) Solve the equation $\begin{vmatrix} 1-x & 4 \\ 2 & 3-x \end{vmatrix} = 0 (*).$ (2 marks)
- (b) Let x_1, x_2 $(x_1 < x_2)$ be the roots of (*). Let $P = \begin{pmatrix} a & c \\ b & 1 \end{pmatrix}$. It is given that $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = x_1 \begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} c \\ 1 \end{pmatrix} = x_2 \begin{pmatrix} c \\ 1 \end{pmatrix}$ and |P| = 1, where a, b and c are constants.
 - (i) Find P.
 - (ii) Evaluate $P^{-1}\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} P$.

(iii) Using (b)(ii), evaluate $\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}^{12}$. (11 marks)

12. HKDSE Math M2 2012 Q12

Figure 6 shows an acute angled scalene triangle ABC, where D is the mid-point of AB, G is the centroid and O is the circumcentre. Let $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$.

- (a) Express \overrightarrow{AG} in terms of **a**, **b** and **c**. (3 marks)
- (b) It is given that E is a point on AB such that CE is an altitude. Extend OG to meet CE at F.
 - (i) Prove that $\triangle DOG \sim \triangle CFG$. Hence find FG: GO.
 - (ii) Show that $\overrightarrow{AF} = \mathbf{b} + \mathbf{c}$. Hence prove that F is the orthocentre of $\triangle ABC$.
 - (9 marks)

13. HKDSE Math M2 2012 Q13

- (a) (i) Suppose $\tan u = \frac{-1 + \cos \frac{2\pi}{5}}{\sin \frac{2\pi}{5}}$, where $\frac{-\pi}{2} < u < \frac{\pi}{2}$. Show that $u = \frac{-\pi}{5}$.
 - (ii) Suppose $\tan v = \frac{1 + \cos \frac{2\pi}{5}}{\sin \frac{2\pi}{5}}$. Find v, where $\frac{-\pi}{2} < v < \frac{\pi}{2}$. (4 marks)
- (b) (i) Express $x^2 + 2x \cos \frac{2\pi}{5} + 1$ in the form $(x+a)^2 + b^2$, where a and b are constants.

(ii) Evaluate
$$\int_{-1}^{1} \frac{\sin \frac{2\pi}{5}}{x^2 + 2x \cos \frac{2\pi}{5} + 1} dx$$
.

(6 marks)

(c) Evaluate
$$\int_{-1}^{1} \frac{\sin \frac{7\pi}{5}}{x^2 + 2x \cos \frac{7\pi}{5} + 1} dx$$
. (3marks)

14. HKDSE Math M2 2012 Q14

Consider the curve $\Gamma: y = kx^p$, where k > 0, p > 0. In Figure 7, the tangent to Γ at $A(a, ka^p)$ cuts the x-axis at B(-a, 0), where a > 0.

Figure 7

- (a) Show that $p = \frac{1}{2}$. (3 marks)
- (b) Suppose that a=1. As shown in Figure 8, the circle C, with radius 2 and centre on the y-axis, touches Γ at point A.

Figure 8

(i) Show that
$$k = \frac{2\sqrt{3}}{3}$$
.

(ii) Find the area of the shaded region bounded by Γ , C and the y-axis.

(9 marks)