Mouse reflection is equiconsistent with weakly compacts

DAN SAATTRUP NIELSEN

Abstract. We show that every uncountable regular cardinal κ satisfying mouse reflection is weakly compact in L.

DEFINITION 0.1. Let κ be a cardinal. Then **mouse reflection** holds at κ , written $MR(\kappa)$, if every mouse operator F which is total on H_{κ} is also total on H_{κ^+} .

THEOREM 0.2 (N.). Let κ be an uncountable regular cardinal satisfying $MR(\kappa)$. Then κ is weakly compact in L.

PROOF. We show that κ has the tree property in L, which by a result of Jensen is equivalent to being weakly compact in L. Let therefore $T \in L$ be a tree of height κ where every level has cardinality $< \kappa$. Define a mouse operator F_T as

 $F_T(x) := L_{\gamma}$, where γ is least such that $L_{\gamma} \models {}^{\mathsf{T}}T \upharpoonright |x|$ has a branch.

Note that this is indeed a mouse operator as L_{γ} is a sound and (trivially) countably iterable premouse. Since T has height κ we see that F_T is total on H_{κ} , so by $\mathsf{MR}(\kappa)$ it's also total on H_{κ^+} . Since regularity of κ implies that $|T| = \kappa$, $F_T(T)$ exists, so that T has a branch in L.