Vectorizing Logistic Regression

The $Sigmoid\ Function\$ of $\frac{1}{1+e^{-z}}$ is used when computing the hypothesis for logistic regression which means that the normal vectorized compute of $\theta^T X$ is not going to work in this case since the $Sigmoid\ Function$ would not be applied. Using victor math this can be achieved using the following:

$$ec{Z} = w^T X + ec{b}$$

Where

$$X = egin{bmatrix} x_1^{(1)} & x_2^{(1)} & x_3^{(1)} & x_n^{(1)} \ x_1^{(2)} & x_2^{(2)} & x_3^{(2)} & x_n^{(2)} \ x_1^{(3)} & x_2^{(3)} & x_3^{(3)} & x_n^{(3)} \ \end{bmatrix} \ w^T = egin{bmatrix} heta_1 & heta_2 & heta_3 & heta_n \end{bmatrix} \ ec{b} = egin{bmatrix} heta_0 & heta_0 & heta_0 & \dots \end{bmatrix}$$

From there we can take \vec{Z} and pass to our Sigmoid Function:

$$h_{ heta}(x) = S(\vec{Z})$$