Classification

4. Classification.ipynb

How machine learns from data?

- Define a function to be learned: y = f(x)
- Define a loss function $\mathcal L$ to describe the error between $\hat y = f(x)$ and y
- Find the optimal parameters of f that minimize \mathcal{L}

How machine learns from data?

$$L = \frac{1}{N} \sum_{i=1}^{N} (y^{i} - \hat{y}^{i})^{2}$$

• Regression
$$y = f(x)$$
• Classification

$$L = \frac{1}{N} \sum_{i=1}^{N} CE(p, \hat{p})$$

$$CE(p, \hat{p}) = -\sum_{k=1}^{C} p_k ln(\hat{p}_k)$$

Cross entropy

Measures the differences between the true probability p_i and the predicted probability \hat{p}_i

$$CE(p, \hat{p}) = -\sum_{k=1}^{C} p_k ln(\hat{p}_k)$$

Use Excel to verify

Excel formula: =LN(x)

動物	實際機率分佈	預測機率分佈	Entropy
Cat	0%	2%	0% * -log(2%) = 0
Dog	0%	30%	0% * -log(30%) = 0
Fox	0%	45%	0% * -log(45%) = 0
Cow	0%	0%	0% * -log(0%) = 0
Red Panda	100%	25%	100% * -log(25%) = 1.386
Bear	0%	5%	0% * -log(5%) = 0
Dolphin	0%	0%	0% * -log(0%) = 0
總計: cross-entropy = 1.386			

Entropy

More information → more uncertain → larger entropy

$$Entropy = -\sum_{i} p_{i}log_{2}(p_{i})$$

Calculate the entropy:

Sun shine: 50%

Cloudy: 25%

Rain: 25%

Softmax

```
tensor([[-0.0180, 0.0855],
                       [-0.0244, 0.0741],
                       [-0.0187, 0.0850],
                       [-0.0258, 0.0687],
                       [-0.0267, 0.0617]],
                  torch.softmax(tensor, 1)
                : # apply softmax
                  tensorY = torch.softmax(tensorY, 1)
                  print(tensorY.shape,"\n", tensorY)
                  torch.Size([5, 2])
                   tensor([(0.4742)(0.5258])
e^{y_1} + e^{y_2}
                                                        e^{y_1} + e^{y_2}
                           [0.4754, 0.5246],
                           [0.4741, 0.5259],
                           [0.4764, 0.5236],
                           [0.4779, 0.5221]], device='cu
```

Torch.max

```
tensor([[0.4742, 0.5258],
                                              0: 1:
                      [0.4754, 0.5246],
                      [0.4741, 0.5259],
                      [0.4764, 0.5236],
                      [0.4779, 0.5221]],
                       torch.max(tentor, 1)
         MaxOfEachRow = torch.max(tensorY, 1)
In [17]:
         print(MaxOfEachRow)
         torch.return_types.max(
         values=tensor([0.5258, 0.5246, 0.5259, 0.5236, 0.5221], device='c
                grad_fn=<MaxBackward0>),
         indices=tensor([1, 1, 1, 1, 1], device='cuda:0'))
                        torch.max(tentor, 1)[1]
```

Classification

4. Classification.ipynb

- 1. $x_{1,i}$ and $x_{2,i}$ are sampled from the same distribution
- 2. One attribute is from different distribution
- 3. $x_{1,i}$ and $x_{2,i}$ are sampled from the close distribution

Bayesian's rule to understand $y_1 = p(C_1|x)$

$$y_1 = P(C_1|x) = \frac{P(x|C_1)P(C_1)}{P(x|C_1)P(C_1) + P(x|C_2)P(C_2)}$$

Generative Model
$$P(x) = P(x|C_1)P(C_1) + P(x|C_2)P(C_2)$$

Probabilistic generative model

If $P(C_1|x) > 0.5$

Reference: 李弘毅 ML Lecture 4 https://youtu.be/fZAZUYEelMg

Represent $y_1 = p(C_1|x)$ as a sigmoid function of z

$$y_{1} = P(C_{1}|x) = \frac{P(x|C_{1})P(C_{1})}{P(x|C_{1})P(C_{1}) + P(x|C_{2})P(C_{2})}$$

$$= \frac{1}{1 + \frac{P(x|C_{2})P(C_{2})}{P(x|C_{1})P(C_{1})}} = \frac{1}{1 + exp(-z)} = \sigma(z)$$
Sigmoid function
$$z = \ln \frac{P(x|C_{1})P(C_{1})}{P(x|C_{2})P(C_{2})}$$

Reference: 李弘毅 ML Lecture 4 https://youtu.be/fZAZUYEel**M**g

Represent $y_1 = p(C_1|x)$ as a sigmoid function of z

$$P(C_1|x) = \sigma(z)$$

Assuming the covariance matrices of $P(C_1|x) = \sigma(z)$ the two classes are the same

$$z = \ln \frac{|\Sigma^{2}|^{1/2}}{|\Sigma^{1}|^{1/2}} = \frac{1}{2} x^{T} (\Sigma^{1})^{-1} x + (\mu^{1})^{T} (\Sigma^{1})^{-1} x - \frac{1}{2} (\mu^{1})^{T} (\Sigma^{1})^{-1} \mu^{1}$$
$$+ \frac{1}{2} x^{T} (\Sigma^{2})^{-1} x - (\mu^{2})^{T} (\Sigma^{2})^{-1} x + \frac{1}{2} (\mu^{2})^{T} (\Sigma^{2})^{-1} \mu^{2} + \ln \frac{N_{1}}{N_{2}}$$

$$\Sigma_{1} = \Sigma_{2} = \Sigma$$

$$z = (\mu^{1} - \mu^{2})^{T} \Sigma^{-1} x - \frac{1}{2} (\mu^{1})^{T} \Sigma^{-1} \mu^{1} + \frac{1}{2} (\mu^{2})^{T} \Sigma^{-1} \mu^{2} + \ln \frac{N_{1}}{N_{2}}$$

$$b$$

$$y_1 = P(C_1|x) = \sigma(w \cdot x + b)$$
 How about directly find **w** and b?

In generative model, we estimate N_1 , N_2 , μ^1 , μ^2 , Σ

Then we have **w** and b

Logistic regression

If we use gradient decent to find optimal w and b for the posterior probability $y_1 = p(C_1|x) = \sigma(w \cdot x + b)$, then the problem becomes logistic regression.

We want to find $P_{w,b}(C_1|x)$

If
$$P_{w,b}(C_1|x) \ge 0.5$$
, output C_1

Otherwise, output C₂

$$P_{w,b}(C_1|x) = \sigma(z)$$

$$z = w \cdot x + b$$

Logistic regression vs regression

Logistic Regression

$$f_{w,b}(x) = \sigma\left(\sum_{i} w_i x_i + b\right)$$
 $f_{w,b}(x) = \sum_{i} w_i x_i + b$

Output: between 0 and 1

Linear Regression

$$f_{w,b}(x) = \sum_{i} w_i x_i + b$$

Output: any value

Maximum likelihood

Assuming the training data is generated from $y_1 = P_{w,b}(C_1|x) = \sigma(w \cdot x + y)$

Training
$$x^1$$
 x^2 x^3 x^N
Data C_1 C_2 C_1

$$\max \ L(w,b) = f_{w,b}(x^1) f_{w,b}(x^2) \left(1 - f_{w,b}(x^3) \right) \cdots f_{w,b}(x^N)$$

$$\min \ -\ln L(w,b) = \ln f_{w,b}(x^1) - \ln f_{w,b}(x^2) - \ln \left(1 - f_{w,b}(x^3) \right) \cdots$$

$$\hat{y}^n : 1 \text{ for class 1, 0 for class 2}$$

$$= \sum_{n} -\left[\hat{y}^{n} ln f_{w,b}(x^{n}) + (1 - \hat{y}^{n}) ln \left(1 - f_{w,b}(x^{n})\right)\right]$$
Cross entropy between two Bernoulli distribution

Reference: 李弘毅 ML Lecture 5 https://youtu.be/hSXFuypLukA

Loss function

Training data: (x^n, \hat{y}^n)

 \hat{y}^n : 1 for class 1, 0 for class 2

$$L(f) = \sum_{n} C(f(x^{n}), \hat{y}^{n})$$

Training data: (x^n, \hat{y}^n)

 \hat{y}^n : a real number

$$L(f) = \sum_{n} C(f(x^{n}), \hat{y}^{n}) \qquad L(f) = \frac{1}{2} \sum_{n} (f(x^{n}) - \hat{y}^{n})^{2}$$

Cross entropy:

$$C(f(x^n), \hat{y}^n) = -[\hat{y}^n ln f(x^n) + (1 - \hat{y}^n) ln (1 - f(x^n))]$$

Multi-class classification

