Aula 19

Conversores A/D e D/A

SEL 0414 – Sistemas Digitais

Prof. Dr. Marcelo Andrade da Costa Vieira

PAE: Lucas Rodrigues Borges

Analógico × Digital

Analógico

Variação em uma faixa contínua de valores.

Digital

Variação discreta de valores (passos, degraus).

Conversores AD/DA

 A maioria dos sinais encontrados na natureza são analógicos

• Para processá-los em um sistema digital deve-se:

Conversores AD/DA

• Interface entre o mundo analógico e o digital

Conversores AD/DA

Conversor Digital – Analógico (DAC)

DAC - 4 bits, saída em tensão

D	С	В	А	V _{OUT}
0	0	0	0	0 volts
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15 volts

(b)

$$Analog_{out} = K * Digital_{in}$$

Fator de Proporcionalidade = Resolução

DAC - Sobreposição

D_3	D_2	D_1	D_0	Saída [V]
0	0	0	1	1V (K)
0	0	1	0	2V (2K)
0	1	0	0	4V (4K)
1	0	0	0	8V (8K)

$$1001 = 8V + 1V = 9V$$

$$0110 = 4V + 2V = 6V$$

Resolução

Resolução:

$$K = Res = \frac{A_{fs}}{2^{N} - 1}$$
 $Res[\%] = \frac{K}{A_{fs}} * 100\%$

Exemplo

 Calcule o fundo de escala e a resolução de um conversor D/A de 8 bits com saída de 1,0V para a entrada (00110010)₂.

$$K = 0.02V e FS = 5.10V$$

 Calcule a resolução em % para este mesmo conversor.

DAC - BCD, saída em tensão

• Qual o valor de K e FS se para $(01011000)_{BCD}$ a saída é 11,6V?

$$K = 0.2V \ e \ FS = 19.8V$$

Circuitos D/A

DAC por rede proporcional

Código	de	entrada	
	_		

D	С	В	Α	V _{OUT} (volts)	
0 0 0	0 0 0	0 0 1 1	0 1 0 1	0 -0,625 < -1,250 -1,875	LSB
0 0 0	1 1 1	0 0 1 1	0 1 0 1	-2,500 -3,125 -3,750 -4,375	
1 1 1	0 0 0	0 0 1 1	0 1 0 1	-5,000 -5,625 -6,250 -6,875	
1 1 1	1 1 1	0 0 1 1	0 1 0 1	-7,500 -8,125 -8,750 -9,375 ←	Fundo de escala
		(h)			

(b)

FIGURA 11.5

DAC simples usando um amplificador operacional na configuração amplificador somador com resistores com ponderação binária.

DAC por rede proporcional

DAC por rede proporcional

Problemas:

 Conversores com muitos bits exigem valores o elevados de R;

Correntes reduzidas para os LSB (ruído);

 Necessidade de precisão nos valores de resistência.

Conversor por rede R-2R

•
$$V_S(D_{n-1}) = \frac{V_{cc}}{3}$$

$$V_S(D_{n-2}) = \frac{V_{cc}}{6}$$

$$V_S(D_{n-3}) = \frac{V_{cc}}{12}$$

•

•
$$V_S(D_0) = \frac{V_{cc}}{(2^{n-1})*3}$$

- Elimina a variação de valores de resistência do conversor de rampa proporcional;
- Somente 2 valores de resistores.

Conversor Analógico – Digital (ADC)

Conversor ADC contador (rampa simples)

Conversor ADC contador (rampa simples)

- Realiza a comparação a cada iteração;
- Valor contado é armazenado quando a entrada alcança o valor do contador.

- Problemas:
 - Tempo de conversão elevado;
 - Tempo dependente do valor convertido.

Conversor de Aproximação

FIGURA 11.18

ADC de aproximações sucessivas: (a) Diagrama em bloco simplificado; (b) Fluxograma de operação.

Conversor de Aproximação Sucessiva

FIGURA 11.19

Ilustração da operação de um DAC de aproximações sucessivas usando um tamanho de degrau de 1 V e $V_A = 10,4$ V.

- $V_{out} \leq V_{in}$
- Tempo de conversão constante!
 - Igual à multiplicação entre N e Clk

Conversor de Aproximação Sucessiva

- Calcular o máximo tempo de conversão e o valor digital para V=3,728V considerando os seguintes conversores A/D:
 - Rampa simples, 10 bits, 1,0kHz de clock e 10,23V de fundo de escala;

$$T_{max} = 1024 * 1ms = 1024ms$$
 (0101110101)

 Aproximação sucessiva, 10 bits, 1,0kHz de clock e 10,23V de fundo de escala.

$$T = 10 * 1ms = 10ms$$

$$(0101110100)$$

Conversor Paralelo ("Flash")

FIGURA 11.22

- (a) ADC flash de três bits;
- (b) Tabela-verdade.
- Rápido;
- Muitos comparadores
 - 3 bits = 7 comp.;
 - 10 bits = 1023 comp.;

analógica	Saídas dos comparadores								Saídas digitais		
V _A	C ₁	C_2	C3	C_4	C_5	C ₆	C ₇	С	В	Α	
0-1 V	1	1	1	1	1	1	1	0	0	0	
1–2 V	0	1	1	1	1	1	1	0	0	1	
2-3 V	0	0	1	1	1	1	1	0	1	0	
3-4 V	0	0	0	1	1	1	1	0	1	1	
4–5 V	0	0	0	0	1	1	1	1	0	0	
5–6 V	0	0	0	0	0	1	1	1	0	1	
6–7 V	0	0	0	0	0	0	1	1	1	0	
> 7 V	0	0	0	0	0	0	0	1	1	1	

(b)

Circuitos Sample and Hold (S/H)

 Mudanças bruscas na entrada dos conversores afeta o processo de conversão;

FIGURA 11.24 Diagrama simplificado de um circuito S/H.

FIM