Домашнє завдання 1

Завдання 1:

• Записати наступні означення/формули в конспект: матеріальна точка, шлях, переміщення, закон додавання швидкостей (принцип відносності Галілея)

Домашнє завдання 2

Завдання 1:

• Записати наступні означення/формули в конспект: миттєва швидкість, прискорення, рівняння руху (рівняння координати) рівноприскореного прямолінійного руху

Завдання 2 (95 км та 95 км/год):

Автомобіль рухається по прямій зі швидкістю 120 км/год протягом 20 хв, потім зі швидкістю 80 км/год протягом 30 хв, і, зрештою, зі швидкістю 90 км/год протягом 10 хв. Знайти загальну пройдену відстань (км) та середню швидкість (км/год).

Завдання 3 (13.23 $\mathrm{M/c^2}$ та 29.17 м):

Розгін автомобіля Tesla Model S Plaid від 0 до 100 км/год відбувається за 2.1 секунди. Припускаємо, що цей рух є рівноприскореним прямолінійним рухом. Вирахувати прискорення (в ${\rm M}/{\rm c}^2$) та шлях (в метрах) пройдений під час цього розгону.

Домашнє завдання 3

Завдання 1:

• Записати наступні означення/формули в конспект: вільне падіння, прискорення вільного падіння

Завдання 2 (5 с та 50 м/с):

Тіло кидають вертикально вниз із повітряної кулі з висоти 125 метрів. Початкова швидкість нульова. Прискорення вільного падіння вважати рівним $10~{\rm M/c^2}$. Розрахувати час падіння тіла та швидкість в момент зіткнення із землею. Опором повітря знехтувати

Завдання 3 (20 м):

Маленький квадрокоптер злітає вертикально вгору з початковою швидкістю 20 м/с. Уявімо, що одразу після старту його двигуни вимкнулись. На яку максимальну висоту він зможе піднятися за інерцією?

Домашнє завдання 4

Завдання 1:

• Записати наступні означення/формули в конспект: період обертання, обертова частота (або частота обертання), кутова швидкість, доцентрове прискорення та формула для доцентрового прискорення при рівномірному русі по колу.

Завдання 2 (70 Гц та 0.0143 с):

Жорсткий диск (HDD) у ноутбуці обертається зі сталою частотою 4200 обертів за хвилину. Визначте обертову частоту диска в герцах (Гц). Знайдіть період обертання диска.

Завдання 3 (113.1 м/с або 407.2 км/год):

Лопать квадрокоптера має довжину 15 см. Під час польоту вона обертається з частотою 120 Гц. Знайдіть лінійну швидкість точки, що знаходиться на самому кінці лопаті.