Development of Novel Quantum Algorithms:

Classically verifiable quantum advantage from a computational Bell test

Filippo Tramonto (Italy)

Ban Tran (USA)

Nahid Binandeh Dehaghani (Portugal)

Womanium Quantum+Al 2024

Classiq <> Womanium

AUGUST 2024

Problem Statement

Whether the correctness of the quantum computation is efficiently verifiable by a classical computer?

- Sampling from entangled quantum many-body wavefunctions.
- Solving a deterministic problem via a quantum algorithm.
- Proving quantumness through interactive protocols.

Project Solution

Objective 1: Implement a toy problem of the algorithm: Phase Circuit "fast", in Qmod/Classiq Python SDK from the original paper code in Cirq.

Objective 2: Implement the whole protocol, including writing from scratch the quantum and classical functions

Objective 3: Estimate quantum resources and comparing them for different hardwares

Objective 4: Improve the implementation of the key quantum algorithm, for a better optimization

Image from: Kahanamoku-Meyer, Gregory D., et al. "Classically verifiable quantum advantage from a computational Bell test." *Nature Physics* 18.8 (2022).

- Quantum Algorithm: Prepares the quantum state
- $|\psi\rangle = \sum_{x} |x\rangle_{x} |f_{N}(x)\rangle_{y}$ where $f_{N}(x) = x^{2} \mod N$ s the Rabin's TCF.
- Quantum Circuits: Utilizes phase circuits (working in Quantum Fourier space) for implementation.
- Verification Protocol: Implementing the paper's verification protocol, that is an interactive proof that relies on computational Bell tests, simplifying the cryptographic requirements while ensuring efficient verification by classical means.

Project Step 1: implementation of the key quantum algorithm

We implemented the Gate-optimized Phase Circuit of the paper with Qmod/Classiq Python SDK

The circuit implement $f_N(x) = x^2 \mod N$ in the state superposition $|\psi\rangle = \sum_x |x\rangle_x |f_N(x)\rangle_y$ using Quantum Phase Estimation

Image from: Kahanamoku-Meyer, Gregory D., et al. "Classically verifiable quantum advantage from a computational Bell test." Nature Physics 18.8 (2022).

Paper ➤ 4 quantum circuits: 2 digital, 2 phase circuits

We ➤ Gate optimized Phase Circuit

Key components of the algorithm:

- 1. Controlled Phase Rotations of pairs of qubits
- **2.** The <u>Counter</u> is used to reduce the gate counts exploiting ancilla qubits and performing counts in the phases
- 3. **IQFT** transfers the the phases into output register

Implemented with the functions

- x2_mod_N_phase() , x2modN_fast()
- count(), phase_add(), MCZPhase()
- qft(), iqft()

Project Step 2: extension of the implementation

We implemented the whole protocol with Qmod/Classiq Python SDK

11b. If b was likely given $|\psi\rangle_b$ return Accept

Prover (quantum) Verifier (classical) Round 1 1. Sample $(f_i, t) \leftarrow \text{Gen } (1^n)$ 2. Generate state $\Sigma_{\mathbf{x}} | \mathbf{x} \rangle_{\mathbf{x}} | f_i(\mathbf{x}) \rangle_{\mathbf{y}}$ 3. Measure y register, yielding bitstring y State is now $(|x_0\rangle + |x_1\rangle)_x |y\rangle_y$; 4. Using trapdoor t compute x_0 and x_1 y register can be discarded Choice 5. Randomly choose to request a preimage If preimage requested: or continue 6a. Projectively measure x register, yielding x 7a. If $x \in \{x_0, x_1\}$ return Accept Otherwise, continue: Round 2 6b. Choose random bitstring r 7b. Add one ancilla b; use CNOTs to compute $|r \cdot x_0\rangle_b |x_0\rangle_x + |r \cdot x_1\rangle_b |x_1\rangle_x$ where $r \cdot x$ is bitwise inner product 8b. Measure x register in Hadamard basis, yielding a string d. Discard x, state is now 9b. Using r, x_0 , x_1 , d, determine $|\psi\rangle_h$ $|\psi\rangle_{\rm b} \in \{|0\rangle, |1\rangle, |+\rangle, |-\rangle\}$ Round 3 10b. Choose random $\theta \in \left\{\frac{\pi}{4}, -\frac{\pi}{4}\right\}$ 11b. Measure ancilla b in the rotated basis $\begin{cases} \cos\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)|1\rangle \\ \cos\left(\frac{\theta}{2}\right)|1\rangle - \sin\left(\frac{\theta}{2}\right)|0\rangle \end{cases}$, yielding a bit b

Round 1:

- gen 1lambda()
- x2_N_mod_phase()
- compute_x0x1()

Round 2:

- classical bitwise dot prod mod2()
- bitwise_inner_product_mod2()
- determine_state_psi_b()

Round 3:

- measure_ancilla_in_rotated_basis()
- final_verifier_validation()

All measurements actually are performed at the end of the quantum side

Classiq's Generated Circuit Samples

Challenges in Implementation

During the project development we met some challenges due to:

- Classiq's Qmod language is a developing language
 → Documentation and functions are changing and updating and in some case the documentation is missing
- Different characteristics between Cirq and Qmod such as the endianness.
- The APIs are changing → Versions are increased in a short time. For example, we had to update our previous source code.
- Integration with other current Quantum Tools such QREs are still in the air.

Project Step 2: Resource Estimation

Quantum resources were measured by synthesizing the quantum program of the phase circuit. The data presented here pertains to the transpiled information, independent of specific hardware constraints.

Future Scope

- Improve our implementation in Qmod/Classiq Python SDK
- Implement the three alternative quantum circuits proposed in the paper using Qmod/Classiq Python SDK.
- Implement variants of the Phase circuits, that differ in terms ancillas utilizations and gate counts.
- Perform further Quantum Resource Estimation of the quantum program developed with Qmod/Classiq Python SDK.

Thank YOU.