

Master in Computer Vision Barcelona

Week 7:

MULTI-MODALITY

MCV - C6

Team 3:

Iker García Fernández Georg Herodes Pablo Vega Gallego Sígrid Vila Bagaria

0. Contents

- 1. Week 5 Multi-view inference I
- 2. Week 6 Multi-view inference II
- 3. Week 7 Multimodality
 - **a.** Alternative modality
 - **b.** Multimodal approach
- 4. Conclusions

A crab doing pull-ups

Week 5

Multi-view inference I

1. Week 5: Multi-view inference I - Task 1 & 2 Baseline

Initial conditions:

We use the default parameters of the model (X3D-XS):

• **Crop Size:** 128

• Temporal Stride: 12

Clip length: 4Batch Size: 16Patience: 3

Also, we added the Early Stopping.

Results:

Test accuracy is: 0.17996 Train accuracy is: 0.35897

Week 5 Pablo - 4

1. Week 5: Multi-view inference I - Task 3 Inference

Temporal Inference - parameter search:

• **Clip Length:** [4, 8, 16]

• Crop Size: [150, 182, 200, **250**]

• **N**_.: [**1**, 2, 4, 8, 16]

• Temporal stride: [4, 8, 12, 16]

Spatio-Temporal Inference - parameter search:

• Clip Length: [4, 8, 16]

• Crop Size: [150, **182**, 200, 250]

N_₊: [1, 2, 4, 8, 16]

Temporal stride: [4, 8, 12, 16]

• N_s: [1, 2, **3**, 4, 8, 16]

Week 5 Pablo - 5

1. Week 5: Multi-view inference I - Task 4 TSN Training

Split each video into N equally sized segments.

The last frame is duplicated to create equally sized clip tensors.

Results:

Test accuracy 0.186

LR	Test accuracy	Train accuracy
1e-4 (BL)	0.176	0.342
5e-5	0.163	0.259
1e-5	0.11	0.1275

N. of segments	Test accuracy	Train accuracy
2	0.164	0.335
3 (BL)	0.176	0.342
5	0.186	0.373

Week 5 Pablo - 6

Week 6

Multi-view inference II

2. Week 6: Multi-view inference II - Task 1 Changing the model

Hyperparameters:

• Batch size: 16

Crop size: 182Clip length: 4

• Temporal stride: 12

• Optimizer: Adam

Loss: CrossEntropy

LR: 1e-4Epochs: 50

Pretrained: True

TSN: No

Multi-Clip testing: 1x1

	Params (M)	FLOPs (G)	Train Acc. (%)	Valid. Acc. (%)	Test Acc. (%)
BL	0.31	0.09	39.02	16.53	19.25
BEST	0.06	0.02	57.25	37.71	41.79

Big Model

Original decoded frame

Frame with improved decoding

Hyperparameters:

Model: X3D-M

Batch size: 16Crop size: 256

• Clip length: 16

• Temp. stride: 5

• TSN: No

Loss: CrossEntropy

LR: 1e-3

Multi-Clip testing: 1x1

Data augm.:

RandomResizedCropRandomHorizCrop

ColorJitter

FLOPs Valid. **Params** Train Test Acc. (M) (G) Acc. (%) Acc. (%) (%) BL 0.31 0.67 39.2 24.2 22.0 **BEST** 0.31 0.67 99.8 69.3 71.8

Week 6 Pablo - 8

2. Week 6: Multi-view inference II - Task 2 Temporal dynamics

Week 6 Pablo - 9

2. Week 6: Multi-view inference II - Experiments

Some tests we did with videos of us:

No temporal information Max class → laugh Wave: 0.0412

No temporal information Max class → laugh Wave: 0.0129

S: laugh: 0.99 **B:** wave: 0.95

No temporal information Max class → drink Pour: 0.2871

S: talk: 0.43 **B:** pour: 0.55 drink: 0.38

No temporal information Max class → smile Smile: 1.0

S: wave: 0.41 **B:** brush_hair: 1.00

No temporal information Max class → brush_hair Brush hair: 0.6777

S: brush_hair: 0.99 **B:** brush_hair: 1.00

No temporal information Max class → pour Chew: 0.3653

S: wave: 0.32 **B:** wave: 1.00

Week 6 Pablo - 10

Week 7

Multimodality

3. Week 7: Multimodal - Alternative modality

[1] Haofei Xu1, Jing Zhang2 et al. "GMFlow: Learning Optical Flow via Global Matching". arXiv preprint arXiv:2111.13680v4 17 Jul 2022

[1] Haofei Xu1, Jing Zhang2 et al. "GMFlow: Learning Optical Flow via Global Matching". arXiv preprint arXiv:2111.13680v4 17 Jul 2022

Method 1

- Approach 1: Use OF values and adapt the net to use 2 input channels.
- Approach 2: Fill the 3rd channel with the mean of the vert. and horiz. OF.
- Approach 3: 0-pad the 3rd channel.
- Approach 4: Convert the OF values into an RGB representation and use it.

• Approach 5: Use RGB visualizations, as in approach 4.

Method 2

- The similar results of the first 4 approaches shows that the model is able to extract the same information from the different inputs.
- Computing the optical flow between distant frames has produced noisy estimations which led to worse results.

Best Approach: 0-padding 3rd Channel

	RGB	FLOW	
# Params (M)	3.1	3.1	
GFLOPs	0.9	0.9	
Train Acc. (%)	99.8	85.9	
Val. Acc. (%)	69.3	32.2	
Test Acc. (%)	71.8	38.1	

Hyperparameters:

Model: X3D-XS
Clip length: 16
Crop size: 256
Batch size: 16

Optimizer: ADAM

LR: 1e-4

Temporal stride: 8

Conclusions:

Optical flow data with X3D performs worse than RGB.

This finding is perfectly expected, OF data encodes:

- a) different information than RGB images
- information in a different format than RGB images

X3D still somewhat successfully performs action classification.

Week 7 Georg - 16

Week 7 Georg - 17

Early Fusion Approach

First Early Fusion Test:

Combine 2D Optical Flow data with greyscale frames:

- 3D data to use with X3D
- Combines OF and visual modalities

Test accuracy increases by 18%.

Ablation study:

Evaluate the contribution of optical flow modality to this task.

Adding OF data in this way actually made the model perform worse.

Approach	Train Acc	Val Acc	Test Acc
Early Fusion (Flow + Gray)	0.995	0.519	0.564
Ablation Study (Zeroes + Gray)	0.998	0.532	0.587

Ablation Study

Week 7 Georg - 18

Early fusion pipeline

- **1.** Tokenize the **last layer** (before logits) of each of the previously trained models.
- 2. Concatenate the tokens.
- **3.** Transformer + MLP to fusion the predictions.
- **4.** Predict the final class.

Motivation

- Transformer very suitable because of the self-attention.
- We think (and hope!) that early fusion will work better than late fusion.
- Enables better integration of complementary features from the start.

Hyperparameter search:

• **Epochs:** 20, 30, 40, **50**.

• Optimizer: Adam, SGD.

• **LR:** 1e-5, 5e-5, **1e-4**, 5e-4, 1e-3.

• Batch size: 4, 8, 16.

Weights & Biases

- Overfitting.
- Improvement regarding baseline.
- More than 1 day to train \rightarrow 1d 35m 15s.

Train acc: 0.3589

Val acc: 0.1779

Baseline

Train acc: 0.8636

Validation acc: 0.5543

Early Fusion

Quantitative results:

- Improved performance regarding baseline.
- Some classes are better represented.
- The model confuses some classes.

Quantitative results:

- Improved performance regarding baseline.
- Some classes are better represented.
- The model confuses some classes.

- Both are jumps!
- Kind of makes sense that the model confuses them.

Somersault Flic Flac

Late Fusion pipeline

- 1. Concatenate the **logits** of the two previously trained models for each modality.
- **2.** MLP to fusion the predictions.
- **3.** Predict the final class.

Motivation

- Simple approach.
- Way not to hardcode weights to aggregate the two modalities: w1 * modality1 + w2 * modality2.

W1 and W2 are 51 dim vectors

Hyperparameter search:

• **Epochs:** 20, **30**, 40, 50.

• Optimizer: Adam, SGD.

• **LR:** 1e-5, 5e-5, **1e-4**, 5e-4, 1e-3.

• Batch size: 4, 8,16.

Weights & Biases

• Overfit on the train dataset.

Not a good decreasing of the test loss.

Bad performance in general.

• Slow to train \rightarrow 9h 9m 29s.

Train acc: 0.3589

Val acc: 0.1779

Baseline

Train acc: 0.8636

Validation acc: 0.5543

Early Fusion

Train acc: 0.2092

Validation acc: 0.1208

Late Fusion

Week 7

Sígrid - 25

Quantitative results:

- Poor performance, worse than baseline.
- General confusion, not biased towards one class.

Quantitative results:

- Poor performance, worse than baseline.
- General confusion, not biased towards one class.

Shoot ball vs swing baseball

- Both are related to balls and sports!
- Kind of makes sense that the model confuses them.

Shoot ball

Swing baseball

3. Week 7: Multimodal - Comparison

Early Fusion - Multimodal

Can be used with pretrained weights.

- A day to train the model.
- The most data hungry model.
- No improvement from baseline.
- Didn't learn relations from data.

Late Fusion - Multimodal

Can be used with pretrained weights.

- X A long time to train.
- X Very data hungry model.
- Improvement from baseline.
- Learnt relations from data.

Optical Flow

- Need to train from scratch or from a checkpoint.
- 35 ms to compute OF/ frame
- X Data hungry.
- Improvement from baseline.
- Learnt relations from data.

4. Conclusions

- A lot of computational power needed to train all the models.
- Long time needed to train all the models.
- A lot of **memory** needed to save all the information to train the models.
- Not always adding a **new modality helps** to improve the model performance.
- Action classification is a very hard task as we can misclassify some of the tasks (jumping and flic flac).
- Overfitting has been present in some of the lasts experiments.

Bing Image Generator

THANK YOU!

