

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа

«Исследование нелинейных динамических систем на плоскости»

Студент 315 группы А.В. Горбачев

Руководитель практикума к.ф.-м.н., доцент И.В. Востриков

Содержание

L	Динамические системы с непрерывным временем	3
1	Постановка задачи	3
2	Биологическая интерпретация	4
3	Замена переменных	5
4	Неподвижные точки	5
5	Устойчивость неподвижных точек	6
6	Фазовые портеты системы	7
7	Предельные циклы	8
R	Биологическая интерпретация полученных результатов	Q

Часть І

Динамические системы с непрерывным временем

1 Постановка задачи

Дана динамическая система:

$$\begin{cases} \dot{x} = \frac{ax(K-x)}{K} - \frac{bxy}{N+x}, \\ \dot{y} = dxy - \frac{cy^2}{N+y}. \end{cases}$$

Рассматриваемая область: $(x,y) \in \mathbb{R}^2_+$. Параметры системы положительны.

Необходимо:

- 1. Дать биологическую интерпретацию характеристик системы.
- 2. Ввести новые безразмерные переменные, максимально уменьшив число входящих параметров. Выбрать два свободных параметра. Если число параметров больше двух, то считать остальные параметры фиксированными.
- Найти неподвижные точки системы и исследовать их характер зависимости от значений параметров. Результаты исследования представить в виде параметрического портрета системы.
- 4. Для каждой характерной области параметрического портрета построить фазовый портрет. Дать характеристику поведения системы в каждом из этих случаев.
- 5. Исследовать возможность возникновения предельного цикла. В положительном случае найти соответствующее первое ляпуновское число. Исследовать характер предельного цикла (устойчивый, неустойчивый, полуустойчивый).
- 6. Дать биологическую интерпретацию полученным результатам.

2 Биологическая интерпретация

Система (1) является системой, описывающей модель «хищник-жертва», в общем случае описываемой системой:

$$\begin{cases} \dot{u} = A(u) - B(u, v), \\ \dot{v} = -C(v) + D(u, v), \end{cases}$$

где

u, v — численность жертв, хищников соответственно,

A(u) — функция, описывающая размножение жертв при отсутствии хищников,

B(u,v) описывает выедание жертв хищниками,

C(v) — функция, описывающая вымирание хищников при отсутствии жертв,

D(u,v) — эффективность поедания жертв хищниками.

Тогда для нашей системы получим:

$$A(x) = \frac{ax(K-x)}{K}, B(x,y) = B_1(x) * B_2(y), B_1(x) = \frac{bx}{N+x}, B_2(y) = y,$$

$$C(y) = \frac{cy^2}{N+y}, D(x,y) = D_1(x) * D_2(y), D_1(x) = cx, D_2(y) = y;$$

Функция A(x) представляет собой скорость размножения жертв в отсутствие хищников. В рассматриваемой задаче эта скорость задается логистическим законом. Это значит, что модель учитывает внутривидовую конкуренцию жертв. Максимальное возможное число жертв задается числом К. Параметр а отвечает за интенсивность размножения жертв.

Функцию B1(x,y) называют трофической функцией хищника. Она отражает степень насыщения хищника, так как $\lim_{x\to\infty} B_1(x) = b = const > 0$. Степень насыщения хищника значит, что при фиксированной численности хищников с ростом популяции жертв выедание жертв растет не бесконечно и не превысит некоторого фиксированного числа (в нашем случае, не превысит b);

 $B_2(y)$ показывает, как скорость выедания жертв зависит от численности популяции хищников (численность жертв фиксирована). Данная функция, в нашем случае, линейная, что говорит об отсутствии конкуренции за жертв. Это, в свою очередь, может быть только при небольшой численности популяции хищников;

Функция C(y) отвечает за смертность хищников при отсутствии популяции жертв. В нашем случае зависимость C(y) от численности y нелинейная. Заметим, что учитывается нелинейность вымирания хищника при малых плотностях популяции ($\lim_{y\to\infty} C(y)=0$).

Функция D(x,y) отражает эффективность потребления жертв хищниками. Здесь $D_1(x)$ есть мера пользы для хищников от потребления жертв в зависимости от числа жертв, а $D_2(y)$ — влияние численности популяции хищников на эффективность потребления ими жертв. Обе зависимости линейные.

3 Замена переменных

Возьмем $x = mu(\tau), y = pv(\tau), t = l\tau$,

Тогда

$$\begin{cases} \dot{u} = \frac{lau(K - mu)}{K} - \frac{lbpuv}{m(\frac{N}{m} + u)}, \\ \dot{v} = ldmuv - \frac{cv^2}{\frac{N}{p} + v}, \end{cases}$$

Из этой системы, с помощью некоторых замен, получим:

$$\begin{cases} \dot{u} = \alpha u (1 - u) - \frac{\beta u v}{(1 + \gamma u)}, \\ \dot{v} = u v - \frac{\delta v^2}{1 + v}, \end{cases}$$

4 Неподвижные точки

Определение 1 Неподвижными точками (положениями равновесия) динамической системы $\dot{u} = f(u)$, называются такие точки фазового пространства u^* , что $f(u^*) = 0$.

Тогда для нахождения неподвижных точек решим систему:

$$\begin{cases} \alpha u(1-u) - \frac{\beta uv}{(1+\gamma u)} = 0, \\ uv - \frac{\delta v^2}{1+v} = 0, \end{cases}$$

Из нее следует, что есть три неподвижные точки: Заметим, что неподвижная точка (u,v)=(0,0) существует независимо от значений параметров. Далее положим u=0, тогда из второго уравнения следует v=0. Теперь положим $v=0, u\neq 0$, из первого уравнения следует, что u(1-u)=0, следовательно вторая неподвижная точка (u,v)=(1,0) так же не зависит от параметров системы. Теперь остались случаи, когда $uv\neq 0$:

$$\begin{cases} \alpha(1-u) - \frac{\beta v}{(1+\gamma u)} = 0, \\ u - \frac{\delta}{1+v} = 0, \end{cases}$$

Данную систему нетривиально решить даже с помощью символьных вычислений в системе matlab, поэтому мы не будем ее рассматривать.

5 Устойчивость неподвижных точек

Рассмотрим динамическую систему с непрерывным временем

$$\dot{u} = f(u), \quad u \in U \subseteq \mathbb{R}^n, \quad f: U \to \mathbb{R}^n,$$

Пусть u^* — ее положение равновесия. Обозначим $J(u^*)$ матрицу Якоби функции f(u) в точке u^* . Пусть n_+, n_0, n_- — число собственных значений $J(u^*)$ (с учетом их кратности) с положительной, равной нулю и отрицательной вещественной частью соответственно.

Определение 2 Положение равновесия системы (5) называется гиперболическим, если $n_0=0$. Гиперболическое положение равновесия называется гиперболическим седлом, если $n_+n_-\neq 0$.

Теорема 1 Пусть u^* — гиперболическое положение равновесия (5). Тогда, если $n_+ = 0$, то положение равновесия ассимптотически устойчиво, если $n_+ > 0$, то неустойчиво

Для нашей системы якобиан выглядит так

$$J(u,v) = \begin{bmatrix} -\alpha u + \alpha(1-u) - \frac{\beta v(1+\gamma u) - \gamma \beta uv}{(1+\gamma u)^2} & \frac{\beta u}{1+\gamma u} \\ v & u - \frac{2\delta v(1+v) - \delta v^2}{(1+v)^2} \end{bmatrix}.$$

Рассмотрим точку (0,0):

$$J(0,0) = \begin{bmatrix} \alpha & 0 \\ 0 & 0 \end{bmatrix}.$$

Тогда $\lambda_1=0, \lambda_2=\alpha$. Так как существует нулевое собственное значение, то мы не можем оценить устойчивость точки по теореме.

Рассмотрим точку (1,0):

$$J(1,0) = \begin{bmatrix} -\alpha & \frac{\beta}{1+\gamma} \\ 0 & 1 \end{bmatrix}.$$

Тогда $\lambda_1 = 1, \lambda_2 = -\alpha$, так как $\lambda_1 > 0$, то точка неустойчива. Параметрический портрет системы тривиален.

6 Фазовые портеты системы

Приведем фазовые портреты системы вблизи каждой рассматриваемой неподвижной точки.

Рис. 1: Фазовый портрет точки (0,0) при параметрах $\alpha=1,\beta=1,\gamma=2,\delta=1.$ Видно, что при данных параметрах точка неустойчива.

Рис. 2: Фазовый портрет точки (1,0) при параметрах $\alpha=1, \beta=1, \gamma=1, \delta=1.$ Точка при любых значениях параметров неустойчива, что и показано на данном фазовом портрете.

7 Предельные циклы

Определение 3 Бифуркацией Андронова-Хопфа называется бифуркация положения равновесия, соответствующая появлению собственных чисел $\lambda_{1,2} = \pm i\omega_0$.

Рассмотрим систему

$$\dot{u} = f(u; \alpha),$$

имеющую при $\alpha=0$ положение равновесия u=0 и $\lambda_{1,2}=\pm i\omega_0,\ \omega_0>0.$ Тогда система представима в виде

$$\dot{u} = A(\alpha) + F(u; \alpha),$$

где F — функция, в разложении в ряд Тейлора которой входят только члены $\frac{2}{\lambda(\alpha)}$ порядка и выше. Пусть матрица $A(\alpha)$ имеет собственные значения $\lambda(\alpha) = \mu(\alpha) + i\omega(\alpha)$ и $\overline{\lambda(\alpha)}$. Кроме того, $\mu(0) = 0$, $\omega(0) = \omega_0 > 0$. Пусть $q(\alpha)$ — собственный вектор $A(\alpha)$, отвечающий собственному значению λ , а $p(\alpha)$ — собственный вектор $A^T(\alpha)$, отвечающий собственному значению $\overline{\lambda}$. В нашем случае собственые значения вида $\lambda_{1,2} = \pm i\omega_0$, $\omega_0 > 0$ не возникают ни про каких значениях параметров, следовательно, система предельных циклов не имеет.

8 Биологическая интерпретация полученных результатов

Перечислим основные возможные пути развития системы:

- 1. Если в начальный в начальный момент времени хищников существенно больше чем жертв, то хищники слишком интенсивно выедают жертв, что приводит к вымиранию сначала жерт, а потом и самих хищников.
- 2. Если же хищников меньше (или не радикально больше), чем жертв то наблюдается постепенный прирост как численности жертв так и хищников. Причем на небольшой прирост хищников приходится существенный прирост численности жертв.
- 3. Когда жертв слишком много, из-за конкуренции внутри жертв, их количество возрастает, следовательно, количество хищников, которые начинают активно поедать жертв, увеличивается. Получаем неустойчивый цикл, в результате которого один из видов вымирает.

Список литературы

- [1] А.С. Братусь, А.С. Новожилов, А.П. Платонов «Динамические системы и модели биологии», М.: «Физматлит», 2010 г.
- [2] И.В. Востриков курс лекций «Динамические системы и биоматематика», 2022 г.
- [3] В.Д. Горяченко «Элементы теории колебаний: учебное пособие для студентов высших учебных заведений», М.: «Высшая Школа», 2001 г.