MET-576-4 Modelagem Numérica da Atmosfera

Introdução;

Cronograma: Os métodos numéricos, formulação e parametrizações utilizados nos modelos atmosféricos serão descritos em detalhe. Dinâmica: Métodos numéricos amplamente utilizados na solução numérica das equações diferencias parciais que governam os movimentos na atmosfera serão o foco, mas também serão analisados os novos conceitos e novos métodos. Métodos de diferenças finitas, acurácia, consistência, estabilidade, convergência, métodos espectrais, métodos de volume finito, métodos semi-Lagrangeanos, conservação de massa local, domínio de influência e domínio de dependência, dispersão numérica e dissipação, definição de filtros monótono e positivo, esquemas explícitos versus semi-implícitos, grades de Arakawa A, B, C e E, métodos semi-implícitos. A hierarquia de modelos será discutida, variando de modelos simples de Água Rasa até os Modelos de Circulação Geral da Atmosfera (MCGA). Física: Formulação matemática e sua solução numérica das parametrizações de superfície, camada limite planetária (PBL), convecção rasa e profunda, microfísica, radiação de onda curta e longa, ondas de gravidade e fracção de nuvens. Interações PBL-convecção, aerossóis-radiação, aerossóis-nuvens e radiação-nuvens. Ferramentas para o desenvolvimento e avaliação das parametrizações: Single-Column and Cloud-Resolvind models. Discussão de tópicos especiais: Stochastic and scale-aware convective parameterization and unified cloud parameterization.

Bibliografia:

Kalnay, E. 2003: Atmospheric modeling: data assimilation and predictability. Cambridge, UK. Cambridge University Press. Warner, T. T. 2011: Numerical Weather and Climate Prediction, 512pp.

Washington W.M. Barkinson Cl. L. 1096: An introduction to three dimensional climate modeling. Oxford University Press, 422nn

MET-348-3 Previsão Numérica de Tempo e Clima Docente Responsável: Paulo Kubota

Introdução;

Bibliografia:

Stensrud, D. (2007). Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511812590Røed, Lars Petter:

Atmospheres and Oceans on Computers, Fundamental Numerical Methods for Geophysical Fluid Dynamics, ISBN 978-3-319-93864-6 By Dale R. Durran.

Numerical Methods for Fluid Dynamics. Second Edition. 2010, XV, 516 p. 110 illus.ISBN: 978-1- 4419-6411-3. Furthermore, additional material to replace parts of book will be available on the home page of the course.

Washington and Parker, 3-D climate modeling, A comprehensive treatment of the numerical techniques used in coupled models, Academic Presshttps://ocw.mit.edu/courses/earth-atmospheric-and-planetary-sciences/12-950-atmospheric-and-oceanic-modeling-spring-2004/lecture-notes/http://www.springer.com/mathematics/numerical+and+computational+mathematics

	JUNHO					
DOM	SEG	TER	QUA	QUI	SEX	SÁB
						1
2	3	4	5	6	7	8
9	(10)	11	12	(13)	14	15
16	17	18	19	(20)	21	22
23	24	25	26	27	28	29
30						

JULHO						
DOM	SEG	TER	QUA	QUI	SEX	SÁB
		2	3	4	5	6
7	(8)	9	10		12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

AGOSTO						
DOM	SEG	TER	QUA	QUI	SEX	SÁE
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	(19)	20	21	(22)	23	24
25	26	27	28	29	30	31

data	Tópicos			
10/06/2024	Revisão dinâmica			
13/06/2024	Métodos de diferenças finitas: Acurácia, consistência, estabilidade, convergência.			
17/06/2024	Métodos de diferenças finitas: Acurácia, consistência, estabilidade, convergência			
20/06/2024	Métodos espectrais			
24/16/2024	Métodos de volume finito			
27/06/2024	Métodos de volume finito			
01/07/2024	A hierarquia de modelos será discutida, variando de modelos simples de Água Rasa até os Modelos de Circulação Geral da Atmosfera (MCGA).			
04/07/2024	Parametrizações de superfície			
08/07/2024	Parametrizações da camada limite planetária (PBL),			
11/07/2024	Parametrizações da camada limite planetária (PBL),			
15/07/2024	Parametrizações de nuvens e radiação de onda curta e longa			
18/07/2024	Parametrizações de nuvens e radiação de onda curta e longa			
22/07/2024	Parametrizações de ondas de gravidade			
25/07/2024	Parametrizações de Microfísica			
29/07/2024	Parametrizações de Microfísica			
01/08/2024	Avaliação1			
05/08/2024	Parametrizações de Convecção profunda			
08/08/2024	Parametrizações de Convecção rasa			
12/08/2024				
15/08/2024				
19/08/2024	Single-Column and Cloud-Resolvind models. Discussão de tópicos especiais (teoria)			
22/08/2024	Single-Column and Cloud-Resolvind models. Discussão de tópicos especiais (pratica)			
26/08/2024	Stochastic and scale-aware convective parameterization and unified cloud parameterization			
29/08/2024	Avaliação2			

Turma 2024

Aluno	E-mail	Nível	
Ádria Martins Pereira	amp.fis18@uea.edu.br	Mestrado	1
Alberto Afonso Júnior	alberto.junior@inpe.br	Doutorado	2
Ana Vitória Padilha Mendes	anamendofc@gmail.com	Mestrado	3
Arthur Wendell Duarte Silva	arthurweendell@gmail.com	Mestrado	4
Augusto Gabriel da Costa Pereira	costapereira620@gmail.com	Mestrado	5
Bárbara Silva Souza	barbarasouza3397@gmail.com	Doutorado	6
Breno Tramontini Steffen	brenosteffen@outlook.com	Mestrado	7
Davidson Lima de Melo	davidson.lima.melo@gmail.com	Doutorado	8
Fabiana da Rocha Bartolomei	fabi.bartolomei@gmail.com	Mestrado	9
Gisele nunes da silva	giza.ns@gmail.com	Mestrado	10
Guilherme Machado Farache Silva	guilhermefarache@gmail.com	Mestrado	11
Linda Muzareli da Cruz	lindamuzarelic@gmail.com	Mestrado	12
Luana Oliveira Barros	luanabarros476@gmail.com	Mestrado	13
Maria Isabel Silva Dantas	isabeldantas 76@gmail.com	Mestrado	14
Matheus Gomes Tavares	matheus.tavares@inpe.br	Doutorado	15
Michelly Glayce Dos Santos Queiroz	michelly.glayce@gmail.com	Mestrado	16
Nedilson Sanches Ferreira	nedilsonlive@gmail.com	Mestrado	17
Otavio Medeiros Feitosa	otaviomf123@gmail.com	Doutorado	18
Raimundo Vitor santos Pereira	vitorspereira2010@gmail.com	Mestrado	19
Roseli de Oliveira	rooliveira32@gmail.com	Doutorado	20
Sindy Samantha de Sousa Almeida	sialmeteoro@gmail.com	Mestrado	21
Teofilo Mateus Pio Ferraz Joao	teofilo.ferraz@uem.ac.mz	Doutorado	22
Thaísa Giovana Lopes	thaisagglopes@gmail.com	Mestrado	23

Turma 2024

- Alunos (23)
- Enviar as seguintes informações:
 - Nome, e-mail
 - Mestrando
 - Doutorando
 - Outros
 - Área de formação/Faculdade
 - Meteorologia
 - Física
 - Outro
 - Área de interesse

Áreas de interesse

- Modelagem numérica
- Estudos observacionais
- Modelo/observações
- Não definido (?)

Avaliação:

- 1 Exercícios em sala, homework, participação nas aulas (30% da nota final)
- 2 Avaliação (40% da nota final)
- 3 Trabalho de Conclusão de Curso. Máximo 10 páginas (30% da nota final)

grupos	Total de alunos	Baseado no slide 5
Grupo-1	3 alunos	1,5,16
Grupo-2	4 alunos	6,3,4,7
Grupo-3	4 alunos	8,9,11,12
Grupo-4	4 alunos	18,13,14,19
Grupo-5	4 alunos	20,17,21,23
Grupo-6	4 alunos	15,22,2,10

Regras

• Os alunos desenvolverão um trabalho (dados, documento e apresentação)

Trabalho de Conclusão de Curso

- 1. Grupo-1 Fontes de Erros na Discretização das equações governantes do escoamento atmosférico
- 2. Grupo-2 Relação Entre as condições Iniciais e não linearidade das equações do escoamento atmosférico
- 3. Grupo-3 As Principais Limitações das parametrizações de superfície e camada limite planetária e seus impactos nas simulações numéricas
- 4. Grupo-4 As fontes de incertezas na modelagem de radiação solar e terrestre e suas influências nas simulações climáticas
- 5. Grupo-5 Caracterização das limitações da modelagem de convecção atmosférica e a importância na propagação de ondas atmosféricas.
- 6. Grupo-6 Discuta a "grey zone" entre a microfísica e a convecção profunda e a sua relação com a "scale-aware parameterization"

Ética

- Trabalho em equipe é bem-vinda
- Listas e provas individuais, suas interpretações e palavras
- Referenciar as fontes de dados e pesquisa
- Copia implicará desaprovação no curso

Aos Alunos

•Duvidas, perguntas?

An Introduction to Global Spectral Modeling

2nd Revised and Enlarged Edition

T.N. Krishnamurti H.S. Bedi

V.M. Hardiker

L. Ramaswamy

Atmospheric and Oceanographic Sciences Library

