Cryptography Lecture 25

Arkady Yerukhimovich

December 2, 2024

Outline

- Lecture 24 Review
- 2 Public-Key Crypto Protocol Review
- 3 Secure Multi-Party Computation (MPC)
- 4 A Simple MPC Protocol
- MPC Based on Secret Sharing
- 6 Defining MPC Security

Lecture 24 Review

- Signatures from private-key primitives
- One-time signatures
- Going from one-time to standard signatures

Outline

- Lecture 24 Review
- Public-Key Crypto Protocol Review
- Secure Multi-Party Computation (MPC)
- 4 A Simple MPC Protocol
- MPC Based on Secret Sharing
- 6 Defining MPC Security

Public-Key Protocols

El Gamal Encryption: $\Pi = (Gen, Enc, Dec)$ with $\mathcal{M} = G$

- Gen(1ⁿ): $(G, q, g) \leftarrow \text{Gen}(1^n)$, $x \leftarrow \mathbb{Z}_q$, $h = g^x$, pk = (G, q, g, h) and sk = x
- $\operatorname{Enc}_{pk}(m)$: $y \leftarrow \mathbb{Z}_q$, compute $c = (g^y, h^y \cdot m)$
- Dec_{sk}(c): Compute $\hat{m} = c_2/c_1^x$

5 / 25

Arkady Yerukhimovich Cryptography December 2, 2024

Public-Key Protocols

El Gamal Encryption: $\Pi = (Gen, Enc, Dec)$ with $\mathcal{M} = G$

- Gen(1ⁿ): $(G, q, g) \leftarrow \text{Gen}(1^n)$, $x \leftarrow \mathbb{Z}_q$, $h = g^x$, pk = (G, q, g, h) and sk = x
- $\operatorname{Enc}_{pk}(m)$: $y \leftarrow \mathbb{Z}_q$, compute $c = (g^y, h^y \cdot m)$
- $\operatorname{Dec}_{sk}(c)$: Compute $\hat{m} = c_2/c_1^x$

Plain RSA Encryption

- $Gen(1^n)$: $(N, e, d) \leftarrow GenRSA(1^n)$, pk = (N, e), sk = (N, d)
- $\operatorname{Enc}_{pk}(m)$: For $m \in \mathbb{Z}_N^*$, compute $c = [m^e \mod N]$
- $Dec_{sk}(c)$: Compute $m = [c^d \mod N]$

Public-Key Protocols

El Gamal Encryption: $\Pi = (Gen, Enc, Dec)$ with $\mathcal{M} = G$

- Gen(1ⁿ): $(G, q, g) \leftarrow \text{Gen}(1^n)$, $x \leftarrow \mathbb{Z}_q$, $h = g^x$, pk = (G, q, g, h) and sk = x
- $\operatorname{Enc}_{pk}(m)$: $y \leftarrow \mathbb{Z}_q$, compute $c = (g^y, h^y \cdot m)$
- $\operatorname{Dec}_{sk}(c)$: Compute $\hat{m} = c_2/c_1^x$

Plain RSA Encryption

- $Gen(1^n)$: $(N, e, d) \leftarrow GenRSA(1^n)$, pk = (N, e), sk = (N, d)
- $\operatorname{Enc}_{pk}(m)$: For $m \in \mathbb{Z}_N^*$, compute $c = [m^e \mod N]$
- $Dec_{sk}(c)$: Compute $m = [c^d \mod N]$

Plain RSA Signature

- Gen: $(N, e, d) \leftarrow \text{GenRSA}(1^n)$, pk = N, e, sk = d
- Sign_{sk} $(m \in \mathbb{Z}_N^*)$: $\sigma = [m^d \mod N]$
- Verify_{pk} $(m \in \mathbb{Z}_N^*, \sigma \in \mathbb{Z}_N^*)$: Output 1 if and only if $m = [\sigma^e \mod N]$

Outline

- Lecture 24 Review
- 2 Public-Key Crypto Protocol Review
- 3 Secure Multi-Party Computation (MPC)
- 4 A Simple MPC Protocol
- MPC Based on Secret Sharing
- 6 Defining MPC Security

The Need for Collaboration

Yao's Millionaire Problem

Who is the richest?

The Need for Collaboration

Name	Age	Smokes	Cancer
Jane Doe	25	Υ	Υ
John Doe	45	N	Υ

Name	Age	Smokes	Cancer
Jane Smith	35	Υ	N
John Smith	85	Υ	Υ

Name	Age	Smokes	Cancer
Joe Smith	50	N	N
Jim Doe	60	Υ	Υ

Will Get Cancer?

The Security Challenge

Question

How do parties who *do not trust each other* work together to compute joint functions on their private data?

- Without revealing their data or intermediate results to each other
- Without relying on a mutually-trusted third party

The Security Challenge

Question

How do parties who *do not trust each other* work together to compute joint functions on their private data?

- Without revealing their data or intermediate results to each other
- Without relying on a mutually-trusted third party

Secure Multi-Party Computation (MPC or SMC) gives a solution:

- Originally developed in the 1980's
- Originally believed to be purely of theoretical interest
- But, since 2004 there have been many implementations showing real-world value
- Protocol and engineering improvements have yielded 6+ orders of magnitude speed up

MPC in the Real World

Gender Pay Equity

Cryptographic Key Control

Federated Keyboard Prediction

Outline

- Lecture 24 Review
- 2 Public-Key Crypto Protocol Review
- Secure Multi-Party Computation (MPC)
- 4 A Simple MPC Protocol
- MPC Based on Secret Sharing
- 6 Defining MPC Security

Additive One-Time Pad

Given an Integer $x \in \mathbb{Z}_N$, consider the following scheme:

- Choose $r \leftarrow \mathbb{Z}_N$ at random
- Compute $y = x + r \mod N$
- Can recover x from y if know r

Arkady Yerukhimovich

Additive One-Time Pad

Given an Integer $x \in \mathbb{Z}_N$, consider the following scheme:

- Choose $r \leftarrow \mathbb{Z}_N$ at random
- Compute $y = x + r \mod N$
- Can recover x from y if know r

Hiding

Given y, the value of x is perfectly hidden:

• Every value of $x \in \mathbb{Z}_N$ is equally likely

An MPC Protocol

Secure Summation

5 parties $\{P_1,\ldots,P_5\}$ each with private input $x_i\in\mathbb{Z}_{100}$ want to compute

$$y = \sum_{i=1}^{5} x_i$$

13 / 25

Outline

- Lecture 24 Review
- 2 Public-Key Crypto Protocol Review
- Secure Multi-Party Computation (MPC)
- 4 A Simple MPC Protocol
- 5 MPC Based on Secret Sharing
- 6 Defining MPC Security

Goal

We wish to distribute a secret value $x \in \mathbb{Z}_N$ among n parties s.t.:

- All n parties together can recover x
- Any set of $\leq n-1$ parties has no information about x

Goal

We wish to distribute a secret value $x \in \mathbb{Z}_N$ among n parties s.t.:

- All n parties together can recover x
- Any set of $\leq n-1$ parties has no information about x

Share: Suppose P_1 wants to secret-share $x \in \mathbb{Z}_N$

Goal

We wish to distribute a secret value $x \in \mathbb{Z}_N$ among n parties s.t.:

- All n parties together can recover x
- Any set of $\leq n-1$ parties has no information about x

Share: Suppose P_1 wants to secret-share $x \in \mathbb{Z}_N$

• P_1 chooses random x_1, x_2, \ldots, x_n s.t $\sum_{i=1}^n x_i = x \mod N$ and sends x_i to P_i

Goal

We wish to distribute a secret value $x \in \mathbb{Z}_N$ among n parties s.t.:

- All n parties together can recover x
- Any set of $\leq n-1$ parties has no information about x

Share: Suppose P_1 wants to secret-share $x \in \mathbb{Z}_N$

- P_1 chooses random x_1, x_2, \ldots, x_n s.t $\sum_{i=1}^n x_i = x \mod N$ and sends x_i to P_i
- P_j 's share of x is denoted as $[x]_j$

Goal

We wish to distribute a secret value $x \in \mathbb{Z}_N$ among n parties s.t.:

- All n parties together can recover x
- Any set of $\leq n-1$ parties has no information about x

Share: Suppose P_1 wants to secret-share $x \in \mathbb{Z}_N$

- P_1 chooses random x_1, x_2, \ldots, x_n s.t $\sum_{i=1}^n x_i = x \mod N$ and sends x_i to P_i
- P_j 's share of x is denoted as $[x]_j$

Reconstruct:

• All parties send their shares to P_1 , who computes $x = \sum_{i=1}^n [x]_i$

Goal

We wish to distribute a secret value $x \in \mathbb{Z}_N$ among n parties s.t.:

- All n parties together can recover x
- Any set of $\leq n-1$ parties has no information about x

Share: Suppose P_1 wants to secret-share $x \in \mathbb{Z}_N$

- P_1 chooses random x_1, x_2, \ldots, x_n s.t $\sum_{i=1}^n x_i = x \mod N$ and sends x_i to P_i
- P_j 's share of x is denoted as $[x]_j$

Reconstruct:

- All parties send their shares to P_1 , who computes $x = \sum_{i=1}^n [x]_i$
- Can send shares to all parties to open publicly

Goal

We wish to distribute a secret value $x \in \mathbb{Z}_N$ among n parties s.t.:

- All n parties together can recover x
- Any set of $\leq n-1$ parties has no information about x

Share: Suppose P_1 wants to secret-share $x \in \mathbb{Z}_N$

- P_1 chooses random x_1, x_2, \ldots, x_n s.t $\sum_{i=1}^n x_i = x \mod N$ and sends x_i to P_i
- P_j 's share of x is denoted as $[x]_j$

Reconstruct:

- All parties send their shares to P_1 , who computes $x = \sum_{i=1}^n [x]_i$
- Can send shares to all parties to open publicly

Security

Easy to see that any set of n-1 parties has no info about x

15/25

Suppose parties hold two secret shared values:

- $[x] = ([x]_1, [x]_2, \dots, [x]_n)$
- $[y] = ([y]_1, [y]_2, \dots, [y]_n)$
- Each party P_i holds $[x]_i, [y]_i$

Arkady Yerukhimovich Cryptography December 2, 2024 16 / 25

Suppose parties hold two secret shared values:

- $[x] = ([x]_1, [x]_2, \dots, [x]_n)$
- $[y] = ([y]_1, [y]_2, \dots, [y]_n)$
- Each party P_i holds $[x]_i, [y]_i$

Addition

• Party P_i computes $[x + y]_i = [x]_i + [y]_i$

Suppose parties hold two secret shared values:

- $[x] = ([x]_1, [x]_2, \dots, [x]_n)$
- $[y] = ([y]_1, [y]_2, \dots, [y]_n)$
- Each party P_i holds $[x]_i, [y]_i$

Addition

- Party P_i computes $[x + y]_i = [x]_i + [y]_i$
- Correctness: $\sum_{i=1}^{n} ([x]_i + [y]_i) = \sum_{i=1}^{n} ([x]_i + \sum_{i=1}^{n} ([x]_i + [y]_i) = \sum_{i=1}^{n} ([x]_i + [y]_i)$

Suppose parties hold two secret shared values:

- $[x] = ([x]_1, [x]_2, \dots, [x]_n)$
- $[y] = ([y]_1, [y]_2, \dots, [y]_n)$
- Each party P_i holds $[x]_i, [y]_i$

Addition

- Party P_i computes $[x + y]_i = [x]_i + [y]_i$
- Correctness: $\sum_{i=1}^{n} ([x]_i + [y]_i) = \sum_{i=1}^{n} [x]_i + \sum_{i=1}^{n} [y]_i = x + y$
- Cost: 0 communication, 1 local addition

Suppose parties hold two secret shared values:

- $[x] = ([x]_1, [x]_2, \dots, [x]_n)$
- $[y] = ([y]_1, [y]_2, \dots, [y]_n)$
- Each party P_i holds $[x]_i, [y]_i$

Addition

- Party P_i computes $[x + y]_i = [x]_i + [y]_i$
- Correctness: $\sum_{i=1}^{n} ([x]_i + [y]_i) = \sum_{i=1}^{n} [x]_i + \sum_{i=1}^{n} [y]_i = x + y$
- Cost: 0 communication, 1 local addition

Multiplication

• Party P_i computes $[xy]_i = [x]_i \cdot [y]_i$

Suppose parties hold two secret shared values:

- $[x] = ([x]_1, [x]_2, \dots, [x]_n)$
- $[y] = ([y]_1, [y]_2, \dots, [y]_n)$
- Each party P_i holds $[x]_i, [y]_i$

Addition

- Party P_i computes $[x + y]_i = [x]_i + [y]_i$
- Correctness: $\sum_{i=1}^{n} ([x]_i + [y]_i) = \sum_{i=1}^{n} [x]_i + \sum_{i=1}^{n} [y]_i = x + y$
- Cost: 0 communication, 1 local addition

Multiplication

- Party P_i computes $[xy]_i = [x]_i \cdot [y]_i$
- Correctness: $xy = (\sum [x]_i)(\sum [y]_i) = ([x]_1 + [x]_2 + \dots)([y]_1 + [y]_2 + \dots) = [x]_1[y]_1 + [x]_2[y]_2 + [x]_1[y]_2 + [x]_2[y]_1 + \dots \neq \sum x_i y_i$

Suppose parties hold two secret shared values:

- $[x] = ([x]_1, [x]_2, \dots, [x]_n)$
- $[y] = ([y]_1, [y]_2, \dots, [y]_n)$
- Each party P_i holds $[x]_i, [y]_i$

Addition

- Party P_i computes $[x + y]_i = [x]_i + [y]_i$
- Correctness: $\sum_{i=1}^{n} ([x]_i + [y]_i) = \sum_{i=1}^{n} ([x]_i + \sum_{i=1}^{n} ([x]_i + [y]_i) = \sum_{i=1}^{n} ([x]_i + [y]_i)$
- Cost: 0 communication, 1 local addition

Multiplication

- Party P_i computes $[xy]_i = [x]_i \cdot [y]_i$
- Correctness: $xy = (\sum [x]_i)(\sum [y]_i) = ([x]_1 + [x]_2 + \dots)([y]_1 + [y]_2 + \dots) = [x]_1[y]_1 + [x]_2[y]_2 + [x]_1[y]_2 + [x]_2[y]_1 + \dots \neq \sum x_i y_i$
- Problem: We need to compute the cross-terms (e.g., $[x]_1[y]_2$)

16/25

Suppose parties additionally hold shares of random multiplication triples:

• Random values [a], [b], [c] such that $c = a \cdot b$

Arkady Yerukhimovich Cryptography December 2, 2024

Suppose parties additionally hold shares of random multiplication triples:

• Random values [a], [b], [c] such that $c = a \cdot b$

Multiplication: Given [x], [y] compute [xy]

• Parties compute [x + a] and [y + b] and open these values to everyone

Arkady Yerukhimovich Cryptography December 2, 2024 17

Suppose parties additionally hold shares of random multiplication triples:

• Random values [a], [b], [c] such that $c = a \cdot b$

Multiplication: Given [x], [y] compute [xy]

- Parties compute [x + a] and [y + b] and open these values to everyone
- Each party computes (x + a)[y] + (y + b)[x] (x + a)(y + b) + [c]

$$[x] \rightarrow [2x]$$

$$x_{i+}x_{i+}x_{j-} \times \lambda x_{i} + 2x_{i} + 2x_{i} + 2x_{i} + 2x_{i}$$

$$[x] \rightarrow [x + c] \quad \text{for patter} \quad C$$

$$[x]_{i} \rightarrow [x]_{i} = c$$

Suppose parties additionally hold shares of random multiplication triples:

• Random values [a], [b], [c] such that $c = a \cdot b$

Multiplication: Given [x], [y] compute [xy]

- Parties compute [x + a] and [y + b] and open these values to everyone
- Each party computes (x + a)[y] + (y + b)[x] (x + a)(y + b) + [c]
- Correctness:

$$(x + a)[y] + (y + b)[x] - (x + a)(y + b) + [c] =$$

Suppose parties additionally hold shares of random multiplication triples:

• Random values [a], [b], [c] such that $c = a \cdot b$

Multiplication: Given [x], [y] compute [xy]

- Parties compute [x + a] and [y + b] and open these values to everyone
- Each party computes (x + a)[y] + (y + b)[x] (x + a)(y + b) + [c]
- Correctness:

$$(x+a)[y] + (y+b)[x] - (x+a)(y+b) + [c] = x[y] + a[x] + b[x] - (xy + ay + bx + ab) + [ab]$$

Suppose parties additionally hold shares of random multiplication triples:

• Random values [a], [b], [c] such that $c = a \cdot b$

Multiplication: Given [x], [y] compute [xy]

- Parties compute [x + a] and [y + b] and open these values to everyone
- Each party computes (x + a)[y] + (y + b)[x] (x + a)(y + b) + [c]
- Correctness:

$$(x+a)[y] + (y+b)[x] - (x+a)(y+b) + [c] =$$

 $x[y] + a[y] + y[x] + b[x] - (xy + ay + bx + ab) + [ab] = [xy]$

Suppose parties additionally hold shares of random multiplication triples:

• Random values [a], [b], [c] such that $c = a \cdot b$

Multiplication: Given [x], [y] compute [xy]

- Parties compute [x + a] and [y + b] and open these values to everyone
- Each party computes (x + a)[y] + (y + b)[x] (x + a)(y + b) + [c]
- Correctness:

$$(x+a)[y] + (y+b)[x] - (x+a)(y+b) + [c] =$$

 $x[y] + a[y] + y[x] + b[x] - (xy + ay + bx + ab) + [ab] = [xy]$

• Cost: 2 openings, and three local multiplications

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩

Suppose parties additionally hold shares of random multiplication triples:

• Random values [a], [b], [c] such that $c = a \cdot b$

Multiplication: Given [x], [y] compute [xy]

- Parties compute [x + a] and [y + b] and open these values to everyone
- Each party computes (x + a)[y] + (y + b)[x] (x + a)(y + b) + [c]
- Correctness:

$$(x+a)[y] + (y+b)[x] - (x+a)(y+b) + [c] =$$

 $x[y] + a[y] + y[x] + b[x] - (xy + ay + bx + ab) + [ab] = [xy]$

- Cost: 2 openings, and three local multiplications
- Security: Since a and b are random (x + a), (y + b) reveal nothing about x, y

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀

Outline

- Lecture 24 Review
- 2 Public-Key Crypto Protocol Review
- Secure Multi-Party Computation (MPC)
- 4 A Simple MPC Protocol
- MPC Based on Secret Sharing
- **6** Defining MPC Security

• *n* parties run an interactive protocol to compute function *f*

- n parties run an interactive protocol to compute function f
- Each party P_i gives input x_i and receives output y_i

- n parties run an interactive protocol to compute function f
- Each party P_i gives input x_i and receives output y_i
- We assume private, authenticated channels between each pair of parties
- Often, also assume a secure broadcast channel

$$(y_1,\ldots,y_5)=f(x_1,\ldots,x_5)$$

- n parties run an interactive protocol to compute function f
- Each party P_i gives input x_i and receives output y_i
- We assume private, authenticated channels between each pair of parties
- Often, also assume a secure broadcast channel
- Adversary (A) controls some of the parties

• Privacy: Player P_i learns his input x_i , output y_i , and nothing else

- Privacy: Player P_i learns his input x_i , output y_i , and nothing else
- Correctness: The output should be a correct evaluation of f on provided inputs

- Privacy: Player P_i learns his input x_i , output y_i , and nothing else
- Correctness: The output should be a correct evaluation of f on provided inputs
- Fairness: If one player learns the output, all players learn the output

- Privacy: Player P_i learns his input x_i , output y_i , and nothing else
- Correctness: The output should be a correct evaluation of f on provided inputs
- Fairness: If one player learns the output, all players learn the output
- Independence of inputs: Each player must choose his input independently from other players' inputs

- Privacy: Player P_i learns his input x_i , output y_i , and nothing else
- Correctness: The output should be a correct evaluation of f on provided inputs
- Fairness: If one player learns the output, all players learn the output
- Independence of inputs: Each player must choose his input independently from other players' inputs
- Many more ...

- Privacy: Player P_i learns his input x_i , output y_i , and nothing else
- Correctness: The output should be a correct evaluation of f on provided inputs
- Fairness: If one player learns the output, all players learn the output
- Independence of inputs: Each player must choose his input independently from other players' inputs
- Many more ...

Defining Security

We could give a security definition for each of these, but instead take a different approach.

Real-Ideal Paradigm

Security Definition

MPC protocol emulates ideal-world execution

- Whatever security holds in ideal world holds in the real world
- ullet Formally: Can build an ideal-world adversary (Simulator) that produces same view as real-world adversary (\mathcal{A})

Arkady Yerukhimovich Cryptography December 2, 2024 21/25

Real-Ideal Paradigm

Security Definition

MPC protocol emulates ideal-world execution

- Whatever security holds in ideal world holds in the real world
- ullet Formally: Can build an ideal-world adversary (Simulator) that produces same view as real-world adversary (\mathcal{A})

Arkady Yerukhimovich Cryptography December 2, 2024 22 / 25

Simulating the Sharing-based MPC protocol

ullet Assume that ${\mathcal A}$ corrupts t < n parties

Simulating the Sharing-based MPC protocol

- Assume that A corrupts t < n parties
- ullet Then, all ${\cal A}$ even sees are random shares sent to parties he corrupts
- Since he never sees all *n*, these are completely random
- Simulator, can just send random values to $\mathcal A$ to simulate his view (distributed the same as real protocol)

Correctness of inputs

- MPC allows adversary to choose his own inputs
- No notion of "valid" input
- If you want to restrict inputs to have some properties need additional tools

Correctness of inputs

- MPC allows adversary to choose his own inputs
- No notion of "valid" input
- If you want to restrict inputs to have some properties need additional tools

Output may leak private information

- MPC guarantees that adversaries learn nothing more than the output
- But, MPC does not consider what the output reveals
- In particular, output may reveal parties' inputs: e.g. C(x,y) = x+y
- Deciding what functions are safe to compute is orthogonal to MPC this is studied by differential privacy

24 / 25

Correctness of inputs

- MPC allows adversary to choose his own inputs
- No notion of "valid" input
- If you want to restrict inputs to have some properties need additional tools

Output may leak private information

- MPC guarantees that adversaries learn nothing more than the output
- But, MPC does not consider what the output reveals
- In particular, output may reveal parties' inputs: e.g. C(x,y) = x+y
- Deciding what functions are safe to compute is orthogonal to MPC this is studied by differential privacy

Why does this not break security?

Correctness of inputs

- MPC allows adversary to choose his own inputs
- No notion of "valid" input
- If you want to restrict inputs to have some properties need additional tools

Output may leak private information

- MPC guarantees that adversaries learn nothing more than the output
- But, MPC does not consider what the output reveals
- In particular, output may reveal parties' inputs: e.g. C(x,y) = x+y
- Deciding what functions are safe to compute is orthogonal to MPC this is studied by differential privacy

Why does this not break security?

Both of these limitations also happen in the ideal world

Arkady Yerukhimovich Cryptography December 2, 2024

Adversary Types

Adversary type:

- Semi-honest (honest but curious) follows protocol, but tries to learn more
- Malicious may deviate from protocol arbitrarily
- Covert Malicious, but does not want to be caught

Adversary Types

Adversary type:

- Semi-honest (honest but curious) follows protocol, but tries to learn more
- Malicious may deviate from protocol arbitrarily
- Covert Malicious, but does not want to be caught

Adversary Types

Adversary type:

- Semi-honest (honest but curious) follows protocol, but tries to learn more
- Malicious may deviate from protocol arbitrarily
- Covert Malicious, but does not want to be caught

Adversary threshold:

- t < n/2 honest majority
- t < n dishonest majority (particularly important for 2PC)
- t < n/3 allows highly optimized protocols