WE CLAIM:

co mposition

1. A standard for calibrating an instrument comprising:

- (a) one or more viscosity changing polymers; and
- (b) at least one dye.
- 2. The standard of claim 1, wherein the viscosity changing polymer is a pH responsive polymer, a temperature responsive polymer, or any mixture thereof.
- 1 3. The standard of claim 2, wherein the viscosity changing polymer is a pH responsive polymer.
- 4. The standard of claim 3, wherein the pH responsive polymer is a liquid at a pH of less than about 4.5.
- 5. The standard of claim 3, wherein the pH responsive polymer is a hydrophobically-modified alkali-swellable emulsion polymer.
- 1 6. The standard of claim 5, wherein the hydrophobically-modified alkali-2 swellable emulsion is an acrylic carboxylate emulsion polymer.
- 7. The standard of claim 5, wherein the hydrophobically-modified alkaliswellable emulsion is an alkali-swellable emulsion urethane-modified emulsion polymer.
- 8. The standard of claim 1, wherein the viscosity changing polymer has a viscosity of at least about 10,000 cP.
- 9. The standard of claim 8, wherein the viscosity changing polymer has a viscosity of at least about 100,000 cP.

1	10. The standard of claim 1, wherein the viscosity changing polymer is
2	transparent to light at a wavelength ranging from about 300 to about 1,000 nm.
1	11. The standard of claim 1, wherein the dye is a fluorescent dye.
1	12. The standard of claim 1, wherein the instrument is a spectrometer, multi-
2	well plate reader, or imager.
1	13. A container for calibrating a spectrometer comprising:
2	(a) a container; and
3	(b) a standard of claim 1 in or on the container.
1	14. The container of claim 13, wherein the container is a plate.
1	15. The plate of claim 14, wherein the plate is a micro-well plate and the
2	standard is in at least one micro-well of the plate.
1	16. The container of claim 13, wherein the container is a cuvette.
1	17. A process for preparing a standard comprising the steps of:
2	(a) mixing one or more viscosity changing polymers and at least
3	one dye; and
4	(h) gelling the mixture

1	18. A process for preparing a container for calibrating an instrument
2	comprising the steps of:
3	(a) dispensing one or more viscosity changing polymers and at
4	least one dye into a container to form a mixture; and
5	(b) gelling the mixture.
1	19. The process of claim 18, wherein step (a) comprises the steps of:
2	
3	and (ii) dispensing the mixture into the container.
1	20. The process of claim 18, wherein the viscosity of the viscosity changing
2	polymer being dispensed ranges from about 1 to about 1,000 cP.
1	21. The process of claim 18, wherein the viscosity changing polymer is a pH
2	responsive polymer.
1	22. The process of claim 21, wherein step (b) comprises increasing the pH
2	of the mixture sufficiently to gel the mixture.
1	23. The process of claim 22, wherein the mixture in step (a) has a pH of less
2	than about 4.5 and step (b) comprises increasing the pH to at least about 5.
1	24. The process of claim 22, wherein step (b) comprises diffusing an alkaline
2	gas through the mixture.
1	25. The process of claim 24, wherein the alkaline gas is ammonia gas

1	26. The process of claim 22, further comprising the step of:
2	(c) neutralizing the gel formed in step (b) to a pH of from about
3	6 to about 8.
1	27. The process of claim 18, wherein the viscosity of the viscosity changing
2	polymer in the gel in step (b) is at about 10,000 cP.
1	28. A method for calibrating an instrument comprising the step of calibrating
2	the instrument with the standard of claim 1.
1	29. The method of claim 28, wherein the instrument is a spectrometer, multi-
2	well plate reader, or imager.