Heroes Of Pymoli Data Analysis

- Of the 1163 active players, the vast majority are male (84%). There also exists, a smaller, but notable proportion of female players (14%).
- Our peak age demographic falls between 20-24 (44.8%) with secondary groups falling between 15-19 (18.60%) and 25-29 (13.4%).

Note

• Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [1]: # Dependencies and Setup
import pandas as pd
import numpy as np

# File to Load (Remember to Change These)
file_to_load = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
purchase_data = pd.read_csv(file_to_load)
```

Player Count

Display the total number of players

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

Out[3]:

Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0 183	\$3.05	780	\$2,379.77

Gender Demographics

- Percentage and Count of Male Players
- Percentage and Count of Female Players
- Percentage and Count of Other / Non-Disclosed

```
In [4]: # Group purchase_data by Gender
gender_stats = purchase_data.groupby("Gender")

# Count the total of screen names "SN" by gender
total_count_gender = gender_stats.nunique()["SN"]

# Total count by gender and divivde by total players
percentage_of_players = total_count_gender / total_players * 100

# Create data frame with obtained values
gender_demographics = pd.DataFrame({"Percentage of Players": percentage_of_players, "Total Count": total_count_gender})

# Format the data frame with no index name in the corner
gender_demographics.index.name = None

# Format the values sorted by total count in descending order, and two decimal places for the percentage
gender_demographics.sort_values(["Total Count"], ascending = False).style.form
at({"Percentage of Players":"{:.2f}"})
```

Out[4]:

	Percentage of Players	Total Count
Male	84.03	484
Female	14.06	81
Other / Non-Disclosed	1.91	11

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

```
In [5]: # Count the total purchases by gender
        purchase_count = gender_stats["Purchase ID"].count()
        # Average purchase prices by gender
        avg_purchase_price = gender_stats["Price"].mean()
        # Average purchase total by gender
        avg_purchase_total = gender_stats["Price"].sum()
        # Average purchase total by gender divivded by purchase count by unique shoppe
        rs
        avg_purchase_per_person = avg_purchase_total/total_count_gender
        # Create data frame with obtained values
        gender demographics = pd.DataFrame({"Purchase Count": purchase_count,
                                             "Average Purchase Price": avg_purchase pri
        ce,
                                             "Average Purchase Value":avg_purchase_tota
        1,
                                             "Avg Purchase Total per Person": avg purch
        ase per person})
        # Provide index in top left as "Gender"
        gender_demographics.index.name = "Gender"
        # Format with currency style
        gender_demographics.style.format({"Average Purchase Value":"${:,.2f}",
                                           "Average Purchase Price": "${:,.2f}",
                                           "Avg Purchase Total per Person":"${:,.2f}"})
```

Out[5]:

	Purchase Count	Average Purchase Price	Average Purchase Value	Avg Purchase Total per Person
Gender				
Female	113	\$3.20	\$361.94	\$4.47
Male	652	\$3.02	\$1,967.64	\$4.07
Other / Non- Disclosed	15	\$3.35	\$50.19	\$4.56

Age Demographics

- · Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- Calculate the numbers and percentages by age group
- Create a summary data frame to hold the results
- Optional: round the percentage column to two decimal points
- Display Age Demographics Table

```
In [6]: # Establish bins for ages
        age_bins = [0, 9.90, 14.90, 19.90, 24.90, 29.90, 34.90, 39.90, 99999]
        group_names = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "4
        0+"]
        # Segment and sort age values into bins established above
        purchase_data["Age Group"] = pd.cut(purchase_data["Age"],age_bins, labels=grou
        p names)
        purchase_data
        # Create new data frame with the added "Age Group" and group it
        age_grouped = purchase_data.groupby("Age Group")
        # Count total players by age category
        total_count_age = age_grouped["SN"].nunique()
        # Calculate percentages by age category
        percentage_by_age = (total_count_age/total_players) * 100
        # Create data frame with obtained values
        age_demographics = pd.DataFrame({"Percentage of Players": percentage_by_age,
        "Total Count": total_count_age})
        # Format the data frame with no index name in the corner
        age_demographics.index.name = None
        # Format percentage with two decimal places
        age_demographics.style.format({"Percentage of Players":"{:,.2f}"})
```

Out[6]:

	Percentage of Players	Total Count	
<10	2.95	17	
10-14	3.82	22	
15-19	18.58	107	
20-24	44.79	258	
25-29	13.37	77	
30-34	9.03	52	
35-39	5.38	31	
40+	2.08	12	

Purchasing Analysis (Age)

- Bin the purchase_data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [7]: # Count purchases by age group
        purchase_count_age = age_grouped["Purchase ID"].count()
        # Obtain average purchase price by age group
        avg_purchase_price_age = age_grouped["Price"].mean()
        # Calculate total purchase value by age group
        total purchase_value = age_grouped["Price"].sum()
        # Calculate the average purchase per person in the age group
        avg_purchase_per_person_age = total_purchase_value/total_count_age
        # Create data frame with obtained values
        age_demographics = pd.DataFrame({"Purchase Count": purchase_count_age,
                                          "Average Purchase Price": avg_purchase_price_
        age,
                                          "Total Purchase Value":total_purchase_value,
                                          "Average Purchase Total per Person": avg_purc
        hase_per_person_age})
        # Format the data frame with no index name in the corner
        age_demographics.index.name = None
        # Format with currency style
        age_demographics.style.format({"Average Purchase Price":"${:,.2f}",
                                        "Total Purchase Value": "${:,.2f}",
                                        "Average Purchase Total per Person":"${:,.2f}"
        })
```

Out[7]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Average Purchase Total per Person
<10	23	\$3.35	\$77.13	\$4.54
10- 14	28	\$2.96	\$82.78	\$3.76
15- 19	136	\$3.04	\$412.89	\$3.86
20- 24	365	\$3.05	\$1,114.06	\$4.32
25 - 29	101	\$2.90	\$293.00	\$3.81
30- 34	73	\$2.93	\$214.00	\$4.12
35 - 39	41	\$3.60	\$147.67	\$4.76
40+	13	\$2.94	\$38.24	\$3.19

Top Spenders

- Run basic calculations to obtain the results in the table below
- Create a summary data frame to hold the results
- Sort the total purchase value column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [8]: # Group purchase data by screen names
        spender_stats = purchase_data.groupby("SN")
        # Count the total purchases by name
        purchase_count_spender = spender_stats["Purchase ID"].count()
        # Calculate the average purchase by name
        avg_purchase_price_spender = spender_stats["Price"].mean()
        # Calculate purchase total
        purchase_total_spender = spender_stats["Price"].sum()
        # Create data frame with obtained values
        top_spenders = pd.DataFrame({"Purchase Count": purchase_count_spender,
                                      "Average Purchase Price": avg_purchase_price_spen
        der,
                                      "Total Purchase Value":purchase_total_spender})
        # Sort in descending order to obtain top 5 spender names
        formatted_spenders = top_spenders.sort_values(["Total Purchase Value"], ascend
        ing=False).head()
        # Format with currency style
        formatted_spenders.style.format({"Average Purchase Total":"${:,.2f}",
                                          "Average Purchase Price":"${:,.2f}",
                                          "Total Purchase Value": "${:,.2f}"})
```

Purchase Count Average Purchase Price Total Purchase Value

Out[8]:

SN			
Lisosia93	5	\$3.79	\$18.96
ldastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

Most Popular Items

- Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value
- Create a summary data frame to hold the results
- Sort the purchase count column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [9]: | # Create new data frame with items related information
        items = purchase_data[["Item ID", "Item Name", "Price"]]
        # Group the item data by item id and item name
        item_stats = items.groupby(["Item ID","Item Name"])
        # Count the number of times an item has been purchased
        purchase_count_item = item_stats["Price"].count()
        # Calcualte the purchase value per item
        purchase_value = (item_stats["Price"].sum())
        # Find individual item price
        item_price = purchase_value/purchase_count_item
        # Create data frame with obtained values
        most_popular_items = pd.DataFrame({"Purchase Count": purchase_count_item,
                                            "Item Price": item_price,
                                            "Total Purchase Value":purchase_value})
        # Sort in descending order to obtain top spender names and provide top 5 item
        popular formatted = most popular items.sort values(["Purchase Count"], ascendi
        ng=False).head()
        # Format with currency style
        popular formatted.style.format({"Item Price":"${:,.2f}",
                                         "Total Purchase Value": "${:,.2f}"})
```

Out[9]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77
82	Nirvana	9	\$4.90	\$44.10
19	Pursuit, Cudgel of Necromancy	8	\$1.02	\$8.16

Most Profitable Items

- Sort the above table by total purchase value in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the data frame

Out[10]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
82	Nirvana	9	\$4.90	\$44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22
92	Final Critic	8	\$4.88	\$39.04
103	Singed Scalpel	8	\$4.35	\$34.80