[50 points]

Iris flower dataset (iris_dataset.dat)

- Introduced by Ronald Fisher in 1936 (sometimes called Anderson's Iris dataset)
- The first four columns list the measurements in centimeters of the variables sepal length, sepal width, petal length and petal width.
- The last column shows the class label of each example (1=setosa, 2=versicolor, 3=virginica)

Fisher Iris (sepal length, sepal width, petal length, petal width, class)

5.3000	3.7000	1.5000	0.2000	setosa
5.0000	3.3000	1.4000	0.2000	setosa
7.0000	3.2000	4.7000	1.4000	versicolor
6.9000	3.1000	5.4000	2.1000	virginica

In this coding assignment you are to implement a Minimum Risk Bayes Decision Theoretic classifier and use it to classify the test examples in the provided datasets.

Assume the following:

- All conditional density functions are multivariate Gaussian
- Each class has its own covariance matrix
- Equally likely prior probabilities
- 0-1 loss function
- 10-fold cross validation for training & testing

The suggested MATLAB commands are included. You don't have to use these commands. Type "doc <command>" at the MATLAB prompt to see more information on the commands.

- 1. Read "iris dataset.dat" and randomly shuffle the data to avoid class imbalance
- 2. Using the training data, estimate the parameters by MLE method
 - MATLAB commands: mean, inv
- 3. Classify test data
- 4. Show the classification accuracy per iteration.
- 5. Show the average classification accuracy after the 10-fold CV is completed.
- 6. Repeat 1-5 with "corrupted_iris_dataset.dat". This data set is corrupted by Gaussian noise. You should see some reduction in the classification accuracy

Expected output:

"iris_dataset.dat"

"corrupted_iris_dataset.dat"