

```
26.
27. # 输出计算结果
28. print(f"平均自然周期 To: {average_T0:.4f} sec")
29. print(f"To的标准偏差: {std_T0:.5f} sec")
30. print(f"自然频率 ω<sub>o</sub>: {omega_0:.4f} rad/sec")
31.
32. print("======="")
33.
34. #实验 2
35. print("实验 2 数据")
36. # 导入所需库
37. import pandas as pd
39. # 定义实验二的振幅数据和对数衰减值
40. experiment_data = {
      "theta i": [139, 127, 116, 107, 98], # 前五个振幅值
41.
42.
      "ln_decay": [0.434664263, 0.437468, 0.436102, 0.438722, 0.441833]
43.}
44.
45. #将数据转换为 DataFrame 格式
46. df_experiment = pd.DataFrame(experiment_data)
47.
48. average_T0 = 1.5703
49.
50. # 根据公式计算每组数据的阻尼系数 β
51. df_experiment["Ex2_beta"] = df_experiment["ln_decay"] / (5 * average_
   T0)
52.
53. # 计算阻尼系数 β 的平均值
54. beta_average_updated = df_experiment["Ex2_beta"].mean()
55.
56. # 输出β的平均值和完整的实验数据
57. print(f"阻尼系数 β 的平均值: {beta_average_updated:.5f}")
58. print(df_experiment)
59.
60.
61. print("======="")
62.
63. #实验 3
64. print("实验 3 数据")
65.
66.
67. import pandas as pd
```

```
68. import numpy as np
69.
70.# 使用实验 1 中的自然频率 omega 0 和实验 2 中的阻尼系数 beta average
71. omega_0 = 4.0013 # 从实验 1 的结果中获取
72. beta_average = 0.05575 # 从实验 2 的结果中获取
73.
74. # 实验 3 的数据,根据你的实际数据进行了填充
75. experiment_3_data = {
76.
       "potentiometer scale": np.arange(0, 10.5, 0.5), # 电位器刻度
77.
       "T_sec": [1.5101, 1.5129, 1.5137, 1.5253, 1.5323, 1.5359, 1.5449,
    1.5516, 1.5570, 1.5638, 1.5703, 1.5769, 1.5839, 1.5902, 1.5984, 1.60
   31, 1.6087, 1.6101, 1.6232, 1.6299, 1.6381], # 电机振动周期 T (sec)
78.
       "theta_deg": [34, 34, 36, 40, 44, 49, 56, 62, 71, 83, 101, 117, 1
   28, 131, 126, 119, 107, 96, 85, 77, 77], #振幅θ (deg)
79.
       "phi_deg": [168, 167, 167, 165, 164, 162, 160, 155, 153, 148, 142
   , 128, 114, 90, 81, 72, 60, 55, 46, 40, 39], # 相位 φ (deg)
80.}
81.
82. # 创建 DataFrame
83. df_experiment_3 = pd.DataFrame(experiment_3_data)
84.
85. # 计算每个刻度下的驱动频率 ω
86. df_experiment_3['omega'] = 2 * np.pi / df_experiment_3['T_sec']
87.
88.
89. # 计算稳态振动振幅 θs
90. df_experiment_3['theta_s'] = 1 / np.sqrt((omega_0**2 - df_experiment_
   3['omega']**2)**2 +
91.
                                           (4 * beta average**2 * df e
   xperiment_3['omega']**2))
92.
93. # 将振幅从弧度转换为度
94. df_experiment_3['theta_s_deg'] = np.degrees(df_experiment_3['theta_s'
   ])
95.
96.
97.
98. # 打印结果
99.
100.
101.
      T_average = np.mean(df_experiment_3['T_sec']
102.
      )
103.
104. # 根据 T 的平均值计算 omega (驱动频率)
```

https://github.com/WilsonShinn/Bohr-resonance

```
105.
      omega = 2 * np.pi / T_average
106.
      # 打印结果
107.
      print(f"电机振动周期 T 的平均值: {T_average} sec")
108.
      print(f"根据平均值计算出的 omega (驱动频率): {omega} rad/sec")
109.
110.
111.
112.
      print("=======")
113.
114.
      import math
115.
116.
      # 己知的自然频率和阻尼系数
117.
      omega_0 = 4.0013 # 自然频率 (rad/sec)
      beta = 0.05575 # 阻尼系数
118.
119.
120.
     # 计算 omega(r)
121.
      omega_r = math.sqrt(omega_0**2 - 2*beta**2)
122.
      # 输出结果
123.
      print("omega(r):", omega_r)
124.
125.
126.
127.
      df_experiment_3['omega_R'] = omega_r
128.
     df_experiment_3['omega / omega_r'] = df_experiment_3['omega'] / om
   ega_r
     print(df_experiment_3[['potentiometer_scale', 'T_sec', 'theta_deg'
129.
   , 'phi_deg', 'omega', 'omega / omega_r']])
130.
131.
132.
      # 生成幅频特性曲线和相频特性曲线
133.
      plt.figure(figsize=(12, 6))
134.
135.
136.
      plt.subplot(1, 2, 1)
      plt.plot(df_experiment_3['omega']/df_experiment_3['omega_R'], df_e
   xperiment_3['theta_s_deg'], 'r-')
138.
      plt.title('Amplitude Frequency Characteristics')
139.
      plt.xlabel('Frequency ratio (omega/omega_r)')
      plt.ylabel('Amplitude')
140.
141.
142.
     plt.subplot(1, 2, 2)
      plt.plot(df_experiment_3['omega']/df_experiment_3['omega_R'], -
   (df_experiment_3['phi_deg']), 'b-')
     plt.title('Phase Frequency Characteristics')
```

https://github.com/WilsonShinn/Bohr-resonance

```
145.
      plt.xlabel('Frequency ratio (omega/omega_r)')
146.
      plt.ylabel('Phase (degrees)')
147.
148.
149.
      # 在图表中添加纵坐标为 1.0 的水平线
150.
      plt.axhline(y=1.0, color='k', linestyle='--', label='y=1.0')
151.
152. # 显示图例
      plt.legend()
153.
154.
155.
      plt.tight layout()
156.
      plt.show()
```

实验1数据

平均自然周期 T_0 : 1.5703 sec T_0 的标准偏差: 0.00092 sec 自然频率 ω_0 : 4.0013 rad/sec

实验2数据

阻尼系数 β 的平均值: 0.05575

theta_i ln_decay Ex2_beta
0 139 0.434664 0.055361
1 127 0.437468 0.055718
2 116 0.436102 0.055544
3 107 0.438722 0.055877
4 98 0.441833 0.056274

实验3数据

电机振动周期 T 的平均值: 1.570490476190476 sec

根据平均值计算出的 omega (驱动频率): 4.000778993846973 rad/sec

omega(r): 4.000523161412767

	potentiometer_scale	T_sec	theta_deg	phi_deg omega	omega / omega_r
0	0.0	1.5101	34	168 4.160774	1.040058
1	0.5	1.5129	34	167 4.153074	1.038133
2	1.0	1.5137	36	167 4.150879	1.037584
3	1.5	1.5253	40	165 4.119311	1.029693
4	2.0	1.5323	44	164 4.100493	1.024989
5	2.5	1.5359	49	162 4.090882	1.022587
6	3.0	1.5449	56	160 4.067050	1.016629
7	3.5	1.5516	62	155 4.049488	1.012240
8	4.0	1.5570	71	153 4.035443	1.008729

https://github.com/WilsonShinn/Bohr-resonance

9	4.5	1.5638	83	148	4.017896	1.004343
10	5.0	1.5703	101	142	4.001264	1.000185
11	5.5	1.5769	117	128	3.984517	0.995999
12	6.0	1.5839	128	114	3.966908	0.991597
13	6.5	1.5902	131	90	3.951192	0.987669
14	7.0	1.5984	126	81	3.930922	0.982602
15	7.5	1.6031	119	72	3.919397	0.979721
16	8.0	1.6087	107	60	3.905753	0.976311
17	8.5	1.6101	96	55	3.902357	0.975462
18	9.0	1.6232	85	46	3.870863	0.967589
19	9.5	1.6299	77	40	3.854951	0.963612
20	10.0	1.6381	77	39	3.835654	0.958788