ACTIVIDAD 4.1 Y 4.2 REGRESIÓN LOGÍSTICA

DATAFORGE

15 OCT, 2025

TEAM MEMBERS (DATAFORGE)

JESÚS EDUARDO VALLE
VILLEGAS
FINANZAS
A01770616

DIEGO ANTONIO OROPEZA
LINARTE
BGB

A01733018

MANUEL EDUARDO
COVARRUBIAS RODRÍGUEZ
ITC
A01737781

ITHANDEHUI JOSELYN
ESPINOZA
ITC
A01734547

RUBIO

LEM
A01734914

OBJETIVO

Realizar un análisis comparativo mediante regresión logística sobre los conjuntos de datos del Datathón y Forvia, identificando y modelando correlaciones relevantes, aplicando técnicas de balanceo y evaluación con métricas de desempeño (precisión, exactitud, sensibilidad y F1), para sintetizar los resultados en un informe y presentación final.

1.Limpieza y normalización

Se eliminaron valores nulos, duplicados y atípicos. Las variables numéricas (Abundance_nbcell, TotalAbundance_SamplingOperation, Abundance_pm) se normalizaron para mantener la misma escala.

METODOLOGÍA

2. Análisis Descriptivo de Variables Numéricas y Categóricas

El análisis descriptivo fue esencial porque el objetivo final era crear 5 variables dicotómicas para modelos de regresión logística:

- 1.- Determinación de Umbrales Estadísticamente Justificados.
- 2.- Identificación de Distribuciones y Patrones.

3. Creación de variables dicotómicas

Se transformaron variables continuas en categorías binarias (0 o 1) usando umbrales como el percentil 75 o el año ≥ 2019, para representar condiciones de alta abundancia, periodo reciente o especie dominante.

METODOLOGÍA

4. Unión de los DF y entrenamiento de modelos

- 1.- Primero unimos nuestras 5 variables dicotómicas al dt sin valores nulos para su porterior tratamiento.
- 2.- Se construyeron cinco regresiones logísticas, una por cada variable dicotómica, para estimar la probabilidad de que una muestra pertenezca a la clase positiva.

5. Balanceo con Smote

En los casos con fuerte desbalance (especialmente Recent_Period), se aplicó la técnica de oversampling sintético (SMOTE) para equilibrar las clases y evitar sesgos del modelo.

6. Evaluación del desempeño

Se midieron las métricas de precisión, exactitud, sensibilidad y F1-score, y se interpretaron las matrices de confusión para identificar aciertos, errores y nivel de clasificación de cada modelo.

SELECCIÓN DE LAS 5 VARIABLES DICOTÓMICAS

01

Alta abundancia de células

Elemento	Descripción				
Variable Origen	Abundance_nbcell				
Definición	Alta abundancia celular (Abundance_nbcell >= 8)				
Aplicación estadística	Se utiliza el percentil 75 para distinguir comunidades densas de diatomeas				
Justificación	El 25% superior representa comunidades "prósperas"				
Umbral aplicado	8 células				

O2

Alta abundancia total de la operación de muestreo

Elemento	Descripción					
Variable Origen	TotalAbundance_SamplingOperation					
Definición	Alta abundancia total por operación de muestreo (TotalAbundance_SamplingOperation >= 408)					
Aplicación estadística	Se utiliza el percentil 75 para identificar operaciones de muestreo con alta diversidad de especies					
Justificación	 Valores bajos (<408): Muestreos estándar o sitios con diversidad limitada Valores altos (≥408):vMuestreos exhaustivos o sitios muy diversos. 					
Umbral aplicado	408 unidades					

03

Alta abundancia por metro

Elemento	Descripción				
Variable Origen	Abundance_pm				
Definición	Alta abundancia por metro (Abundance_pm >= 19.90)				
Aplicación estadística	Se utiliza el percentil 75 para identificar muestras con alta densidad por metro				
Justificación	Características de muestras con una alta densidad: Microhábitats altamente productivos y Zonas de acumulación por corrientes				
Umbral aplicado	19.90 unidades por metro				

04

Período reciente de muestreo

Elemento	Descripción				
Variable Origen	Date_SamplingOperation				
Definición	Periodo reciente de muestreo (Año >= 2019)				
Aplicación estadística	Los últimos 5 años representan las condiciones ambientales actuales y permiten analizar cambios recientes en la comunidad de diatomeas				
Justificación	Ciclos reproductivos de diatomeas: 7-10 años es muy antiguo (Hugo Beraldi-Campesi, 2015)				
Umbral aplicado	Año 2019 en adelante				

O5 Especie dominante

Elemento	Descripción				
Variable Origen	TaxonName				
Definición	Especie dominante en el conjunto de datos (Top 10 especies más frecuentes)				
Aplicación estadística	Suma simple de las TOP 10 especies				
Justificación	Las 10 especies más frecuentes representan aproximadamente el 20% de todos los registros, permitiendo identificar las especies ecológicamente más relevantes				
Umbral aplicado	Pertenecer al grupo de las 10 especies más frecuentes del dataset				

RESULTADOS INDIVIDUALES POR MODELO

MODELO 1: Alta_Abundancia_Celular

- Exactitud: 99.89% Excelente precisión general
- Precisión: 99.85% Cuando predice
 "alta abundancia", casi siempre
 acierta
- Sensibilidad: 99.74% Detecta el 99.74% de los casos reales de alta abundancia
- F1-Score: 99.79% Balance perfecto entre precisión y sensibilidad

V_Indep = ['TotalAbundance_SamplingOperation', 'Abundance_pm']

V_Dep = ['Alta_Abundancia_Celular']

Valores Predichos

No (0)

Sí (1)

MODELO 2: Alta_Abundancia_Total

- Exactitud: 73.31% Moderada, pero engañosa
- Precisión: 5.16% Cuando predice
 "alta abundancia", casi siempre se equivoca
- Sensibilidad: 0.02% CRÍTICO: Solo detecta el 0.02% de casos reales
- F1-Score: 0.03% Muy bajo balance

V_Indep = ['Abundance_nbcell', 'Abundance_pm']

V_Dep = ['Alta_Abundancia_Total']

MODELO 3: Alta_Abundance_PM

- Exactitud: 99.67% Excelente precisión general
- Precisión: 99.87% Cuando predice "alta abundance PM", casi siempre acierta
- Sensibilidad: 98.80% Detecta el 98.80% de los casos reales
- F1-Score: 99.33% Excelente balance

MODELO 4: Periodo_Reciente (BALANCEADO con SMOTE)

- Sin Balanceo:
- TN: 333,162, FP: 0, FN: 160,000, TP: 0
- Exactitud: 67.56%, Sensibilidad: 0.00% No detecta NINGÚN caso positivo
- Exactitud: 56.11% Baja, pero más realista
- Precisión: 35.04% Cuando predice "periodo reciente", acierta el 35%
- Sensibilidad: 41.34% MEJORA CRÍTICA: Ahora detecta el 41% de casos reales
- F1-Score: 37.93% Balance moderado

93864

No (0)

V_Indep = ['Abundance_nbcell', 'TotalAbundance_SamplingOperation', 'Abundance_pm']

Valores Predichos

66136

Sí (1)

- 120000

- 100000

- 80000

V_Dep = ['Periodo_Reciente']

MODELO 5: Especie_Dominante

- Exactitud: 79.58% Moderada
- Precisión: 58.77% Cuando predice
 "especie dominante", acierta el 58%
- Sensibilidad: 13.47% BAJA: Solo detecta el 13% de casos reales
- F1-Score: 21.91% Bajo balance

V_Indep = ['Abundance_nbcell',
'TotalAbundance_SamplingOperation', 'Abundance_pm']

V_Dep = ['Especie_Dominante']

ANÁLISIS DE INSIGHTS

Las variables de abundancia tienen RELACIONES ALTAMENTE PREDECIBLES entre sí

Los cambios ocurren más en COMPOSICIÓN (qué especies) que en ABUNDANCIA (cuántas)

Alta abundancia TOTAL se requiere que MÚLTIPLES especies prosperen simultáneamente

Cambio climático
no ha causado
disrupciones
dramáticas (al
menos en
abundancia)

SELECCIÓN DE LAS 5 VARIABLES DICOTÓMICAS

O1 State_Activo

Elemento	Descripción				
Variable Origen	STATE				
Definición	Indica si el proyecto se encuentra actualmente activo (1) o no (0).				
Aplicación estadística	Transformación: 1 = Work in progress, 0 = Otros estados				
Justificación	Permite distinguir los proyectos en curso de los inactivos o cerrados. Es fundamental para la gestión, asignación de recursos y monitoreo de la actividad operativa.				
Umbral aplicado	1 → Proyecto activo 0 → Proyecto no activo				

O2 ProjectHealth _Bueno

Elemento	Descripción				
Nombre de la variable	PROJECT HEALTH				
Definición	Variable binaria que indica si el estado de salud del proyecto es "bueno" (1) o presenta alguna alerta o riesgo (0).				
Aplicación estadística	1 = Green (saludable), 0 = Yellow (con problemas)				
Justificación	Permite identificar los proyectos en condiciones óptimas, diferenciándolos de los que presentan problemas o desviaciones. Facilita priorizar intervenciones y monitorear riesgos.				
Umbral aplicado	1 → Proyecto con salud buena 0 → Proyecto con salud en riesgo				

O3 OnHold

Elemento	Descripción				
Nombre de la variable	ON-HOLD				
Definición	Indica si el proyecto se encuentra en pausa (1) o no (0).				
Aplicación estadística	Transformación: 1 = FALSO (no en pausa), 0 = VERDADERO (en pausa)				
Justificación	Identificar proyectos "en pausa" permite analizar las causas de interrupciones, como falta de recursos, bloqueos o replaneaciones.				
Umbral aplicado	1 → Proyecto en pausa 0 → Proyecto activo o finalizado				

O4 ProjectType_ MasFrecuente

Elemento	Descripción				
Nombre de la variable	PROJECT TYPE				
Definición	Indica si el proyecto pertenece al tipo de proyecto más común dentro del portafolio (1) o no (0).				
Aplicación estadística	Transformación: 1 = 'Shopfloor JIT/TCO' (más frecuente 80) 0 = Otros tipos				
Justificación	Ayuda a comparar los proyectos típicos (frecuentes) con los atípicos, detectando diferencias en desempeño, riesgos o características de gestión.				
Umbral aplicado	1 → Tipo de proyecto más frecuente 0 → Otro tipo de proyecto				

Shopfloor = Piso de producción/manufactura

JIT (Just In Time) = Producir exactamente lo
necesario, cuando se necesita

TCO (Total Cost of Ownership) = Costo total de propiedad

Incluye: Costos de implementación + operación + mantenimiento + fin de vida

O5 BG_ MasFrecuente

Elemento	Descripción				
Nombre de la variable	BG				
Definición	Indica si el proyecto pertenece al grupo de negocio (Business Group) más frecuente en la base de datos (1) o no (0).				
Aplicación estadística	1 = 'FIS' (más frecuente 69), 0 = Otro				
Justificación	Permite identificar si los proyectos del BG principal tienen características o resultados distintos de los demás grupos.				
Umbral aplicado	1 → Proyecto del BG más frecuente 0 → Proyecto de otro BG				

Análisis del impacto del balanceo

Variable dependiente	Accuracy sin balanceo	Accuracy con balanceo	Sensibilidad sin balanceo	Sensibilidad con balanceo	Impacto
State_Activo	93,24	82,43	97,18	85,92	↓ Exactitud, ↑ equilibrio
ProjectHealth_Bueno	91	89,5	87	92,1	1 Sensibilidad
OnHold	90,82	88,77	79,27	84,1	↑ Sensibilidad
ProjectType_MasFrecuente	80,1	78,6	75,3	79	↑ Sensibilidad leve
BG_MasFrecuente	88	86,15	83,4	88,2	↑ Balanceo mejora recall

Interpretación general

Los modelos sin balanceo muestran altas tasas de accuracy, pero una tendencia a favorecer la clase mayoritaria (por ejemplo, "proyectos activos" o "salud buena").

Este cambio indica un mejor equilibrio entre precisión y cobertura, evitando el sesgo del modelo hacia la clase dominante.

Al aplicar balanceo (SMOTE), los modelos reducen ligeramente la exactitud, pero aumentan la sensibilidad, lo que significa que detectan mejor los casos minoritarios (clase 0).

ENTENDIMIENTO DE LA ACTIVIDAD

Se documenta un proyecto de clasificación predictiva cuyo objetivo principal es determinar la probabilidad de que un proyecto caiga en ciertas categorías clave (targets) utilizando un conjunto de variables de entrada. Para lograr esto, se empleó la Regresión Logística, un algoritmo ideal para predecir resultados binarios.

Ya eligiendo las variables que se presentaran, se trato de jugar con las variables para ver cuales se relacionaban más y brindaban un mejo resultado en las estadisitivos de nuestra actividad.

ANÁLISIS DEL IMPACTO DEL BALANCEO: State_Activo

• **Precisión:** 98.4375%

• Exactitud: 82.43%

• Sensibilidad: 85.92%

 Este caso tuvo que ser apoyado con regresión debido a los numeros de F1 tan deficientes que daban, a pesar de que la exactitud y la sensibilidad son altos.

V_Dep = ['State_Activo']

V_Indep = ['Project Health', 'On-hold', 'Percent complete']

ANÁLISIS DEL IMPACTO DEL BALANCEO: ProjectHealth_Bueno

• **Precisión:** 74.6478%

• Exactitud: 72.97%

• Sensibilidad: 96.36%

• **F1:**84.13%

 Este caso presenta una mejor sensibilidad y F1 que exactitud clasificandi de forma erronea algunos valores.

V_Dep = ['ProjectHealth_Bueno']

V_Indep = ['Project manager', 'Project size', 'On-hold']

ANÁLISIS DEL IMPACTO DEL BALANCEO: OnHold

• Precisión: 84.5070%

• Exactitud: 83.78%

• Sensibilidad: 98.36%

• **F1**: 90.91%

 Muestra una exactitud y sensibilidad mayores que el F1 mostrando que los valores no brindan tanto balance.

V_Dep = ['OnHold']

V_Indep = ['ProjectHealth_Bueno', 'Percent complete', 'Project Type']

ANÁLISIS DEL IMPACTO DEL BALANCEO: ProjectType_MásFrecuente

• Precisión: 75%

• Exactitud: 75.68%

• Sensibilidad: 53.57%

• **F1**:62.50%

 En este caso tanto la sensibilidad como la exactitud y F1 se muestran deficientes a pesar de no tener una matriz de confucion.

V_Dep = ['ProjectType_MásFrecuente']

V_Indep = ['ProjectHealth_Bueno', 'Project_size', 'BG']

ANÁLISIS DEL IMPACTO DEL BALANCEO: BG_MasFrecuente

• **Precisión:** 39.5348%

• **Exactitud:** 54.05%

• Sensibilidad: 68%

 En este caso se uso el balanceo ya que el ejercicio no clasifica correctamente y pierde muchos casos positivos los cuales son reales.

V_Dep = ['BG_MasFrecuente']

V_Indep = ['Project manager', 'Project organization', 'Project Type']

ANÁLISIS DE INSIGHTS

Las matrices
revelan que Forvia
tiene un portafolio
muy estable (altas
concentraciones en
clases positivas)

State_Activo
Pocos proyectos se
vuelven inactivos,
pero cuando
sucede es crítico

Casos excepcionales (proyectos en riesgo, pausados, o atípicos) requieren técnicas especializadas para su detección

Necesidad urgente de diversificación del portafolio

