VERMES MIKLÓS Fizikaverseny 2015. április 17. II. forduló

3 p

4 p

3 p

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

XI. osztály

I. feladat

Egy $m_1 = 200 \ g$ tömegű, anyagi pontnak tekinthető testet egy ideális, vízszintes helyzetű, $k = 20 \ \text{N/m}$ rugalmassági állandójú rugóhoz kapcsolunk a mellékelt ábra szerinti elrendezésben. A rugó-test rendszer kezdetben nyugalomban van az O egyensúlyi pontban. A testet súrlódásmentesen elmozdítjuk a felületen a B pontig, amely $x_0 = 4 \ cm$ távolságra van az O ponttól. Az x_0 távolság felezési pontjában (A) emelt merőleges mentén, h magasságban az m_1 -től egy másik $m_2 = 2 \ m_1$ testet helyezünk el (C pont). Kezdetben az m_2 test is nyugalomban van. Ha mindkét testet egyszerre engedjük szabadon (a B és C pontokból), akkor rugalmatlanul ütköznek abban a pillanatban, amikor az m_1 először halad át az A ponton. (Az ütközés nagyon gyorsan játszódik le). Határozzátok meg:

- a) milyen magasságban volt kezdetben az m2 tömegű test?
- b) mennyi hő szabadul fel a két test rugalmatlan ütközésekor?
- c) milyen mozgást végez a két testből álló rendszer? Adott $g = 10 \text{ m/s}^2 \cong \pi^2$

II. feladat

Két azonos méretű és tömegű (m) testet, két egyforma, k rugalmassági állandójú rugóra függesztünk fel, az ábra szerint. A rendszer csak függőleges irányban mozoghat. A mozgás során egy adott pillanatban az 1-es test elmozdulása a saját egyensúlyi helyzetéhez képest x_1 , a 2-es test elmozdulása szintén a saját egyensúlyi helyzetéhez képest x_2 . Feltételezve, hogy a testek rezgési egyenlete $x_1 = A_1 \sin(\omega t)$, illetve $x_2 = A_2 \sin(\omega t)$ alakú, határozzuk meg:

- a.) az ω körfrekvencia lehetséges értékeit (ismert k és m), 6 p
- b.) a testek kitérései közötti kapcsolatot, 2 p
- c.) milyen rezgések felelnek meg ω különböző értékeinek. 2 p

III. feladat

Az ábrán látható áramkört $u(t)=141,4\sin(2\pi t)\ V$ váltakozó feszültséggel tápláljuk. Az R ellenállás értéke 40Ω , a kondenzátor kapacitása $C=\frac{1}{\pi}\mu F$. A szolenoid $l=10\ cm$ hosszú, keresztmetszete $S=0,98\ cm^2$, menetszáma N=300. Amikor a szolenoidban levő l hosszúságú vasmag a tekercs felét foglalja el, az áramkört alkotó elemek között fennáll az $\omega^2 LC=1$ összefüggés, ha a tápfeszültség frekvenciája 10kH. Ismert $\mu_0=4\ \pi\cdot 10^{-7}\ \frac{H}{m}$ és $\pi^2=10$.

2 p

Határozzuk meg:

- a.) a vasmag relatív permittivitását,
- b.) az áramkör fő ágában a pillanatnyi áramerősség *i*(*t*) kifejezését, amikor a vasmag a tekercs felét foglalja el,

 3 p
- c.) a pillanatnyi teljesítmény maximális és minimális értékét, amikor a vasmag a tekercs belsejének teljes térfogatát kitölti. 5 p