Introduction to Computational Techniques in Physics/Data Science Applications in Physics

Numerical Differentiation

Definition

•
$$\frac{df(x)}{dx} = \lim_{x \to a} \frac{df(x)}{dx}$$

Approximation

$$\frac{df(x)}{dx} =$$

Similarly

•
$$\Delta^n f(x) =$$

Numerical Differentiation

- The difference of a , and the difference is
 - .

of degree is a constant,

• Let's take $f(x) = x^2$ as an example

\mathcal{X}_i	$f(x_i)$	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$
2	f(2) =			
		$\Delta f(2) =$		
3	f(3) =		$\Delta^2 f(2) =$	
		$\Delta f(3) =$		$\Delta^3 f(2) =$
4	f(4) =		$\Delta^2 f(3) =$	
		$\Delta f(4) =$		$\Delta^3 f(3) =$
5	f(5) =		$\Delta^2 f(4) =$	
		$\Delta f(5) =$		
6	f(6) =			

Taylor Series

• Expand any function f(x)

•
$$f(x_0 + kh) =$$

• Rearrange to solve for f'(x)

• Backward difference (k =)

• Forward difference (k =)

Taylor Series: Central Difference

•
$$f(x_0 + kh) = f(x_0) + khf'(x_0) + \frac{(kh)^2h''(x_0)}{2!} + \dots + \frac{(kh^n)f^n(x_0)}{n!}$$

$$\bullet f(x_0 - kh) =$$

• Subtract the two and set k = 1:

•

Higher Order Approximations

- Ist order f'(x) =
- 2nd order f'(x) =
- Ist order f''(x) =
- 2n order f''(x) =

Numerical Integration

- Consider the integral
 - *I* =
- The integral can be by
 - *I* ≈
- The ω_i are , and the x_i are
- Assuming that f is and on the interval [,] numerical integration leads to a solution
- The goal of any numerical integration method is to choose and such that are for the smallest n possible for a given function

Numerical Integration

- How can we choose the points, , and
 - the , , such that

- In general, there are sets of
 - The of the
 - The importance of

Numerical Integration Methods

- Upper and Lower Sums
- Newton-Cotes Methods:
 - a) Trapezoid Rule
 - b) Simpson Rules
- Romberg Method
- Gauss Quadrature

Upper and Lower Sums

Partition the

into

- *P* =
- Define
 - Minimum: $m_i =$
 - Maximum: $M_i =$
- Lower Sum
 - L(f, P) =
- Upper Sum
 - U(f, P) =
- Estimate of the integral =
- Error ≤

Example

$$\int_0^1 x^2 dx =$$

- Partition P =
- n =

i		
m_i		
M_i		

$$\bullet \ x_{i+1} - x_i =$$

Example (cont)

Lower Sum

$$L(f, P) = \sum_{i=0}^{n-1} m_i (x_{i+1} - x_i)$$

- =
- =
- Upper Sum

•
$$U(f, P) = \sum_{i=0}^{n-1} M_i(x_{i+1} - x_i)$$

- =
- =
- $\cdot \mid = \frac{L + U}{2} =$
- Error $\leq \frac{U-L}{2} =$

Upper and Lower Sums

• Estimates based on and sums are easy to obtain for functions

functions that are always

For functions, finding the and are

Newton-Cotes Methods

• In

, the function is

by a

Computing the

of polynomial is

•
$$\int_{a}^{b} f(x)d(x) \approx \int_{a}^{b}$$

• ≈

Newton-Cotes Methods

- Method
 - Uses polynomials

- Simpson's 1/3 Rule
 - Uses

polynomials

•
$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b}$$

Trapezoid Method

•
$$I = \int_{a}^{b} f(x)dx \approx$$

• ~

Numerical Integration

Composite Trapezoid Rule

Trapezoid Rule

Approximate

using the areas of the

$$\int_{a}^{b} f(x)dx \approx \sum_{a}$$

=

For this to

$$\int_{a}^{b} f(x)dx \approx$$

Numerical Integration

Trapezoid Rule

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n-1} \frac{f(x_{i+1}) + f(x_{i})}{2} \Delta x_{i}$$

- $\Delta x_i =$
- So the are

•
$$w_i =$$

Simpson's Rule

- Trapezoidal rule was based on by a polynomial, and then integrating
- Simpson's is an of the trapezoidal rule where the by a polynomial

$$I = \int_{a}^{b} f(x)dx \approx$$

Here, is a polynomial

•
$$f_2(x) =$$

Simpson's Rule

Simpson's rule:

$$\int_{a}^{b} f(x)dx =$$

- where $\Delta x =$
- Simpson's rule can be number of an

$$\int_{x_1}^{x_n} f(x) dx \approx \sum_{x_1}^{x_2} f(x) dx$$

when there are

Composite Simpson's Rule

• Simpson's rule for

is given as:

$$\int_{x_0}^{x_2} p_1(x) dx =$$

• We can do the same on

to get

$$\int_{x_2}^{x_4} p_1(x) dx =$$

Hence on the

region

$$\int_{x_0}^{x_4} f(x) dx =$$

In general for an

number of intervals

Composite Simpson's Rule

Applicable

if the number of segments is

Weights in Simpson's Rule

• For I/3 Simpson' Rule the weights are:

•
$$w_i =$$

Simpson's Rule

Composite Simpson's 1/3 Rule

Higher order fits

- Can increase the order of the fit to cubic, quartic etc.
- For a cubic fit over x₀,x₁,x₂,x₃ we find

$$\int_{x_0}^{x_3} f(x)dx \approx \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3) \right]$$

• For a quartic fit over x_0,x_1,x_2,x_3,x_4 Simpson's 3/8th Rule

$$\int_{x_0}^{x_4} f(x)dx \approx \frac{2h}{45} \left[7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4) \right]$$

Boole's Rule

In practice these higher order formulas are not that useful, we can devise better methods if we first consider the errors involved

Error in the Trapezoid Rule

Consider a

of
$$f(x)$$

$$f(x) =$$

• The integral of f(x) written in this form is then

$$\int_{a}^{b} f(x)dx =$$

=

Error in the Trapezoid Rule

Perform the same expansion about

$$\int_{a}^{b} f(x)dx =$$

If we take an average of (1) and (2) then

$$\int_{a}^{b} f(x)dx =$$

are

Notice that derivatives are while derivatives

Error in the Trapezoid Rule

 We also make Taylor expansions of and around both which allow us to for terms in and and to derive

$$\int_{a}^{b} f(x)dx =$$

- It takes quite a bit of work to get to this point, but the key issue is that we have now created
 are all
- If we now use this formula in the there will be a large number of

rule

Error in the Composite Trapzoid

We now sum over a series of trapezoids to get

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \Big[\Big(f(a) + f(x_{1}) \Big) + \Big(f(x_{1}) + f(x_{2}) \Big) + \dots + \Big(f(x_{n-2}) + f(x_{n-1}) \Big) + \Big(f(x_{n-1}) + f(b) \Big) \Big]
+ \frac{h^{2}}{12} \Big[\Big(f'(a) - f'(x_{1}) \Big) + \Big(f'(x_{1}) - f'(x_{2}) \Big) + \dots + \Big(f'(x_{n-2}) - f'(x_{n-1}) \Big) + \Big(f'(x_{n-1}) - f'(b) \Big) \Big]
+ \frac{h^{4}}{720} \Big[\Big(f'''(a) - f'''(x_{1}) \Big) + \Big(f'''(x_{1}) - f'''(x_{2}) \Big) + \dots + \Big(f'''(x_{n-2}) - f'''(x_{n-1}) \Big) + \Big(f'''(x_{n-1}) - f'''(b) \Big) \Big]
+ \dots
= \frac{h}{2} \Big[f(a) + f(b) \Big] + h \sum_{i=1}^{n-1} f(a+ih) + \frac{h^{2}}{12} \Big[f'(a) - f'(b) \Big] + \frac{h^{4}}{720} \Big[f'''(a) - f'''(b) \Big] + \dots$$
(11)

- Note now
- The expansion is in powers of

Error in estimating the integral

Assumption: f'(x) is continuous on [a,b]

Equal intervals (width = h)

Theorem: If Trapezoid Method is used to

approximate $\int_{a}^{b} f(x)dx$ then

Error =

 $|Error| \leq$

Estimating error for trapezoid rule

$$\int_0^{\pi} \sin(x) dx, \quad \text{find h so that } \left| \text{error} \right| \le \frac{1}{2} \times 10^{-5}$$

$$|Error| \leq$$

$$b = a = f'(x) =$$

$$|f'(x)| \le \Longrightarrow |Error| \le$$

$$\Rightarrow h^2 \leq$$

Gaussian Quadrature

map

• So far, we've considered spaced

We've also only looked at formulae

Gaussian quadrature achieves and by the

We generally apply a

to make the

There are a number of look at

• Slides were adapted from http://numericalmethods.eng.usf.edu/topics/gauss_quadrature.html

See <u>here</u> for further details

Theory of Gaussian Quadrature

Recall the trapezoid method

• Let's express it as

$$\int_{a}^{b} f(x)dx = \sum_{a}^{b} f(x)dx$$

where

Basis of Gaussian Quadrature Rule

- Previously we discussed how the the method
- rule was developed using

 $\int_{a}^{b} f(x)dx \approx c_{1}f(a) + c_{2}f(b)$

- The Gaussian Quadrature Rule is an of the Trapezoidal Rule approximation
 - where the and , but as
 - $I = \int_{a}^{b} f(x)dx \approx$

of the function are not predetermined as and

Basis of the Gaussian Quadrature Rule

We can find our formula gives

by assuming that the for integrating a general polynomial

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

Then we find that

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} (a_0 + a_1x + a_2x^2 + a_3x^3)dx$$

• Recalling that $I \approx c_1 f(x_1) + c_2 f(x_2)$

•
$$\Rightarrow I =$$

Basis of the Gaussian Quadrature Rule

• Equating the two expressions yields

•
$$a_0(b-2) + a_1(\frac{b^2 - a^2}{2}) + a_2(\frac{b^3 - a^3}{3}) + a_3\frac{b^4 - a^4}{4})$$

=

As the constants

are

•

•

Only one solution to the four equations

•
$$x_1 =$$

$$; x_2 =$$

•
$$c_1 =$$

;
$$c_2 =$$

Gaussian Quadrature

• In conclusion, the

Gaussian Quadrature Rule is

$$\int_{a}^{b} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2)$$

• =

Higher Point Gaussian Quadrature Formulae

$$\int_{a}^{b} f(x)dx \approx c_{1}f(x_{1}) + c_{2}f(x_{2}) + c_{3}f(x_{3})$$

• is called the

Gaussian Quadrature Rule

As for the two-point rule, one can calculate the and the by assuming that the formula gives for integrating a polynomial

$$\int_{a}^{b} (a_0 + a_1 + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5) dx$$

General

rules would approximate the integral

•
$$\int_{a}^{b} f(x)dx \approx$$

Arguments and Weighing Factors

• In handbooks, the and are given for Gaussian quadrature rules for integrals of the form

$$\int_{-1}^{+1} g(x)dx \approx$$

Weighting factors c and function arguments x used in Gaussian Quadrature Formulae.

Points	Weighting Factors	Function Arguments		
2	$c_1 = 1.0000000000$ $c_2 = 1.0000000000$	$x_1 = -0.577350269$ $x_2 = 0.577350269$		
3	$c_1 = 0.555555556$ $c_2 = 0.888888889$ $c_3 = 0.555555556$	$x_1 = -0.774596669$ $x_2 = 0.000000000$ $x_3 = 0.774596669$		
4	$c_1 = 0.347854845$ $c_2 = 0.652145155$ $c_3 = 0.652145155$ $c_4 = 0.347854845$	$x_1 = -0.861136312$ $x_2 = -0.339981044$ $x_3 = 0.339981044$ $x_4 = 0.861136312$		

Arguments and Weighing Factors

- Now that we have a table for $\int_{-1}^{1} g(x)dx$ integrals,
 - how can we use it for

integrals:

 Recall that converted into with limits with limits

can be

- Let *x* =
 - If $x = a \Rightarrow$
 - If $x = b \Rightarrow$
- $\Rightarrow m =$

and c =

• i.e. *x* =

; dx =

• Substituting x and dx yields

Recap: MC Integration

• Suppose we want to compute a

$$Z = \int$$

- Generate a (e.g. distributed in space)
- If is within , increment sum
- Repeat times
- Uncertainty on typically scales as

Example

https://en.wikipedia.org/wiki/Monte_Carlo_method Link to gif

Error Estimate

Example: Compute π by MC

https://en.wikipedia.org/wiki/Monte_Carlo_method