Projeto 5: A equação de Schrodinger dependente do tempo

Anderson Araujo de Oliveira 11371311

1 1° Parte

1.1 Parte A e B

A função de onda que estamos trabalhando para o Hamiltoniano apresentado no projeto é.

$$\phi_n(x) = \sqrt{\frac{1}{2^n \pi^2 n!}} e^{-\frac{x^2}{2}} H_n(x) \tag{1}$$

Onde os polinômios de Hermite $(H_n(x))$, são.

$$H_n(x) = (-1)^n \frac{d^n e^{-x^2}}{dx^n}$$
 (2)

E o espectro da energia é, sendo n um valor inteiro.

$$E_n = \left(n + \frac{1}{2}\right) \tag{3}$$

Os coeficiente para evolução temporal será encontrada.

$$C_n = \int_{-\infty}^{\infty} \frac{e^{-2x^2} e^{-x^2 0.5} (H_n(x))}{\sqrt{\pi^2 2^n n!}}$$
(4)

Os coeficientes $C_{2m+1} = 0$, onde m=0,1,2,3,.., isso ocorre pela simetria dos polinômios de Hermite calculando nesse intervalo os coeficientes diferente de zero está na tabela abaixo.

n	C_n
0	0,3568
2	0,1513
4	0,0786
6	0,0430
8	0,0241
10	0,0137
12	0,0073
14	0,0045

Tabela 1: Coeficientes para evolução temporal diferente de zero.

Utilizamos os primeiros três coeficientes, o critério foi a razão entre o primeiro coeficiente com os demais ao quadrado, sendo $(\frac{C_n}{C_0})^2$, assim saberemos quanto os outros contribuição com a evolução temporal para $|\psi(x)|^2$, a primeira razão será correspondente à $\frac{C_2}{C_0} \approx 18\%$ e $\frac{C_4}{C_0} \approx 5\%$, portanto valores menores que esse não contribuiu satisfatoriamente.

1.2 Parte C

[H] Podemos ver a densidade de probabilidade se diluir até um certa região e voltando como um movimento harmônico.

Figura 1: Evolução temporal do pacote quântico no estado inicial e^{-2x^2}

1.3 Parte D

Consideramos o valor esperado da energia igual a < n >= 2.5. O estado que estamos observando é um pacote de densidade de probabilidade bem definida, sendo esse o estado coerente é o estado com uma trajetória clássica.

Figura 2: Evolução temporal do pacote quântico

2 2° Parte

Observação uma pequena mudança ocorreu na região do potencial em vez $0 \le x \le 1$, foi alterado para $|x| \le 0.5$.

2.1 Parte A

Podemos ver como função de onda é se comporta em cada trecho. Utilizaremos uma função de onda simples para ver o comportamento.

$$\Psi(x) = e^{kx} + e^{-kx} \tag{5}$$

Temos que $k_0 = \sqrt{-2E}$ considerando $m = \hbar = 1$ no potencial ele toma essa forma $k_0' = \sqrt{2(V-E)}$, chegamos que $k_0' = \sqrt{2(2-\frac{1}{2})}$, portanto um valor real a função de onda terá a seguinte forma $\psi(x) = e^{(kx)}$ probabilidade de começa diminuir dentro da barreira.

Figura 3: evolução temporal da função de onda em diversos tempo com uma barreira V=2 na região |x|<0,5

Era esperado classicamente que a partícula ao encontrar a barreira fosse ricocheteada ou parada, porem é visto na simulação uma probabilidade da partícula ser encontrada no outro lado.

2.2 Parte B

Usando a mesma analise da parte A temos que o $k=\sqrt{2(-2-\frac{1}{2})}$, portanto imaginário único fator que altera é frequência da função de onda nessa região.

Figura 4: evolução temporal da função de onda em diversos tempo com uma barreira V=-2 na região |x|<0.5

Quando encontrar o potencial ela deveria ser atraída para ela, porem podemos ver que onda foi refletida no instante que atravessou.