CMOS SRAM

32K x 8 Bit Static RAM

FEATURES

- Fast Access Time: 80,100,120 ns (max.)
- Low Power Dissipation Standby (CMOS): 10µW (typ.) L/LL-Version Operating: 247.5mW (max.)
- Single 5V ± 10% Power Supply
- TTL compatible inputs and outputs
- Fully Static Operation
 - -No clock or refresh required
- Three State Output
- Low Data Retention Voltage: 2V (min.)
- · JEDEC Standard pin Configuration KM62256AP/ALP/ALP-L: 28-pin DIP (600 mil.) KM62256AG/ALG/ALG-L: 28-pin SOP (330 mil.)

GENERAL DESCRIPTION

The KM62256A/AL/AL-L is 262,144-bit high-speed Static Random Access Memory organized as 32,768 words by 8 bit.

The device is fabricated using Samsung's advanced CMOS technology with polyresistors.

The KM62256A/AL/AL-L has an output enable input for precise control of the data outputs. It also has a chip select input for the minimum current power down mode. The KM62256A/AL/AL-L has been designed for high speed and low power applications.

It is particularly well suited for battery back-up nonvolatile memory applications.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

		_			
A14 1	0	/	ノ	28	Vcc
A12 2					WE
A7 [3					A13
A6 4					A8
A5 5				T	Α9
A4 6					A11
A3 [7]				1	ŌĒ
A2 _8				21	A10
A1 [9]					cs
A0 10	İ				1/08
1/01 11				18	
1/02 [12				17	1/06
1/03 [13				16	1/05
V _{SS} [14]				Ĩ5,	1/04
	L			 j	

Pin Name	Pin Function
A ₀ -A ₁₄	Address Inputs
WE	Write Enable
CS	Chip Select
ŌĒ	Output Enable
I/O ₁ -I/O ₈	Data Input/Outputs
V _{cc}	Power (+ 5V)
V _{ss}	Ground

ABSOLUTE MAXIMUM RATINGS*

Item	Symbol	Rating	Unit	
Voltage on Any Pin Relative to V _{ss}	V _{IN} , V _{OUT}	- 0.5 to 7.0	V	
Voltage on V _{CC} Supply Relative to V _{SS}	V _{cc}	-0.5 to 7.0	٧	
Power Dissipation	· P _D	1.0	W	
Storage Temperature	T _{stg}	- 65 to + 150	°C	
Operating Temperature	T _A	0 to 70	°C	
Soldering Temperature and Time	T _{soider}	260°C, 10 sec (Lead only)		

^{*}Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS (TA = 0 to 70°C)

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	4.5	5.0	5.5	٧
Ground	V _{ss}	0	0	0	V
Input High Voltage	V _{IH}	2.2		V _∞ + 0.5	٧
Input Low Voltage	V _{IL}	- 0.5*		0.8	٧

^{*} $V_{IL}(min.) = -3.0V$ for ≤ 50 ns pulse

DC AND OPERATING CHARACTERISTICS

(Ta = 0 to 70°C, $V_{CG} = 5V \pm 10\%$, unless otherwise specified)

Item	Symbol	Test Conditions	Min	Тур*	Max	Unit	
Input Leakage Current	lu	V _{IN} = V _{SS} to V _{CC}		-1		1	μΑ
Output Leakage Current	ILO	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{INO} = V_{SS} \text{ to } V_{CC}$	-1		1	μΑ	
Operating Power Supply Current	I _{CC1}	$\overline{CS} = V_{IL}, V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{I-O} = OmA$			45	mA	
Average Operating Current	I _{CC2}	Min Cycle, 100% Duty, $\overline{CS} = V$		35	70	mA	
	I _{SB}	CS = V _{IH}				2	mA
Standby Power						1	mA
Supply Current	I _{SB1}	CS≥V _{CC} =0.2V, V _{IN} ≥V _{CC} =0.2Vor V _{IN} ≤0.2V	L		2	100	μΑ
		VINSVCC-U.2VOF VINSU.2V			2	50	μΑ
Output Low Voltage	VoL	I _{OL} = 2.1mA				0.4	٧
Output High Voltage	V _{OH}	I _{OH} = -1mA		2.4			٧

^{*} Typ.: V_{CC} = 5V, Ta = 25°C

CMOS SRAM

CAPACITANCE (f = 1MHz, T_A = 25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	C _{IN}	V _{IN} = 0V	_	6	pF
Input/Output Capacitance	C _{1/0}	V _{1/O} = 0V	_	8	pF

^{*} Note: Capacitance is sampled and not 100% tested.

AC CHARACTERISTICS

TEST CONDITIONS (Ta = 0 to 70°C, $V_{CC} = 5V \pm 10\%$, unless otherwise specified)

Parameter	Value
Input Pulse Level	0.8 to 2.4V
Input Rise and Fall Time	5ns
Input and Output Timing Reference Levels	1.5V
Output Load	C _L =100pF+1 TTL

TEST CIRCUIT

* Including Scope and Jig Capacitance

READ CYCLE

Parameter	Symbol	KM62256A-8 KM62256AL-8 KM62256AL-8L		KM62256A-10 KM62256AL-10 KM62256AL-10L		KM62256A-12 KM62256AL-12 KM62256AL-12L		Unit
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	t _{RC}	80		100		120		ns
Address Access Time	t _{AA}		80		100		120	ns
Chip Select to Output	tco		80	1	100		120	ns
Output Enable to Valid Output	toE		40		50		60	ns
Chip Enable to Low-Z Output	t _{LZ}	5		10		10		ns
Output Enable to Low-Z Output	toLZ	5		5		5		ns
Chip Disable to High-Z Output	t _{HZ}	0	30	0	35	0	40	ns
Output Disable to High-Z Output	t _{OHZ}	0	30	0	35	0	40	ns
Output Hold from Address Change	t _{он}	5		10		10		ns

CMOS SRAM

WRITE CYCLE

Parameter	Symbol	KM62256A-8 KM62256AL-8 KM62256AL-8L		KM62256A-10 KM62256AL-10 KM62258AL-10L		KM62256A-12 KM62256AL-12 KM62256AL-12L		Unit
		Min	Max	Min	Max	Min	Max	1
Write Cycle Time	twc	80		100		120		ns
Chip Select to End of Write	tow	70		80		85		ns
Address Set-Up Time	t _{AS}	0		0		0		ns
Address Valid to End of Write	t _{AW}	70		80		85		ns
Write Pulse Width	t _{WP}	55		60		70		ns
Write Recovery Time	twe	0		0		0		ns
Write to Output High-Z	twz	0	30	0	35	0	40	ns
Data to Write Time Overlap	tow	40		50		60		ns
Data Hold from Write Time	t _{DH}	0		0		0		ns
End Write to Output Low-Z	tow	5	1	10		10		ns

TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE NO: 1

 $(\overline{CS} = \overline{OE} = V_{IL}, \ \overline{WE} = V_{IH})$

CMOS SRAM

TIMING WAVEFORM OF READ CYCLE NO. 2 (WE = V_H) (Note 1, 2, 3, 4)

TIMING WAVEFORM OF WRITE CYCLE NO. 3 (OE Clocked) (Note 5, 6, 7, 8)

CMOS SRAM

TIMING WAVEFORM OF WRITE CYCLE NO. 4 (OE Low Fixed) (Note 5, 6, 7, 8, 9)

- Notes: 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to the V_{OH} or V_{OL} Level.
 - At any given temperature and voltage condition, t_{HZ}(max) is less than t_{LZ}(min) both for a given device and from device to device.
 - 3. WE is high for Read Cycle.
 - 4. Address valid prior to or coincident with $\overline{\text{CS}}$ transition Low.
 - 5. A write occurs during the overlap (t_{WP}) of a low \overline{CS} and low \overline{WE} .
 - 6. During this period, I/O pins are in the output state. The input signals out of phase must not applied.
 - 7. CS or WE must be high during address transition state.
 - 8. If OE is high, I/O pins remain in a high-impedance state.
 - 9. \overline{OE} is continuously low. ($\overline{OE} = V_{IL}$)

FUNCTIONAL DESCRIPTION

cs	WE	ŌĒ	Mode	I/O Pin	V _{CC} Current
Н	X*	Х	Power Down	High-Z	I _{SB} , I _{SB1}
L	Н	Н	Output Disable	High-Z	Icc
L	Н	L	Read	D _{OUT}	Icc
L	L	×	Write	D _{IN}	Icc

^{*} Note: X means Don't Care.

DATA RETENTION CHARACTERISTICS (TA = 0 to 70°C)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
V _{cc} for Data Retention	V _{DR}	CS≥V _{CC} 0.2V	2.0		5.5	٧	
Data Retention Current	I _{DR}	$\frac{V_{CC} = 3V}{CS} \ge V_{CC} - 0.2V$	L		1	50	μА
			LL		1	20 *	μA
Data Retention Set-up Time	t _{SDR}	See Data Retention		0			ns
Recovery Time	t _{RDR}	Wave forms (below	/)	t _{RC} **			ns

^{*} $3\mu A$ (max.) at $0^{\circ}C \sim 40^{\circ}C$

DATA RETENTION WAVEFORM (CS Controlled)

^{**} t_{RC} = Read cycle time

CMOS SRAM

PACKAGE DIMENSIONS 28 PIN PLASTIC DUAL IN LINE PACKAGE

Unit: Inches (Millimeters)

28 PIN PLASTIC SMALL OUT LINE PACKAGE

