Length Scales

Length Scales

Length Scales (In principle) Standard Model (After Higgs Discovery) Standard Model (Before Higgs Discovery) Failure WW scattering -> X ~unexplored LHC Directly Probed Experimentally $10^{-20} \text{ GeV}^{-1}$ 10^{41} GeV^{-1} (10^{-36} m) (10^{25} m) weak-scale nuclei Planck scale atoms $(\sqrt{G_N})$ cells animals planets stars solar systems galaxies

observable universe

(In principle)

Length Scales

Standard Model (After Higgs Discovery)

All intermediate scales directly set by basic fundamental physical parameters (Seen explicit examples of some of these)

observable universe

(In principle) Fundamental Length Scales

Fundamental Length Scales

Standard Model (After Higgs Discovery)

Planck scale

(In principle)

weak scale

observable universe

Weak scale: Fundamental scale in physics

- Scale associated with fundamental particle masses
- Typical at which massive particles interact with Higgs field
- The first time start seeing the forces have same underlying structure

Fundamental Length Scales

Standard Model (After Higgs Discovery)

Weak scale: Fundamental scale in physics

(In principle)

- Scale associated with fundamental particle masses
- Typical at which massive particles interact with Higgs field
- The first time start seeing the forces have same underlying structure

(In principle) Fundamental Length Scales

- Large range, but not infinite.
- <u>Claim</u>: Everything we know, *and can possibly know*, within this range
- Upper bound set by finite upper speed limit (finite age of universe)
- Talk about lower bound, next. Believed to really be hard lower bound
- Deep mysteries/problems with SM directly associated with each fundamental scale

Problem with the Planck Scale

Relative Strength of Gravity

Electromagnetic Interaction

Pure number: α

Gravitational Interaction

$$F_{G} = \underbrace{G_{N} \frac{m_{p}^{2}}{r^{2}}}$$

Dimensionful number

$$G_N \sim (l_{\rm Pl})^2 \sim (10^{-20} \ {\rm GeV}^{-1})^2$$

Relative Strength of Gravity

Electromagnetic Interaction

$$F_{EM} = \underbrace{\frac{e^2}{4\pi} \frac{1}{r^2}}_{\bullet}$$

Pure number: α

Gravitational Interaction

$$F_{G} = \underbrace{G_{N} \frac{m_{p}^{2}}{r^{2}}}$$

Dimensionful number

$$G_N \sim (l_{\rm Pl})^2 \sim (10^{-20} \ {\rm GeV}^{-1})^2$$

Relative Strength of Gravity

Electromagnetic Interaction

 \mathbf{F}_{-} = $e^2 1$

At short distances, (comparable to ℓ_{Pl}) gravitational interaction dominates - ℓ_{PL} the scale at which gravity is becoming strong

Pure number: α

Gravitational Interaction

$$F_{G} = G_{N} \frac{m_{p}^{2}}{r^{2}}$$

Dimensionful number

$$G_N \sim (l_{Pl})^2 \sim (10^{-20} \text{ GeV}^{-1})^2$$

Probing Smaller Distance Scales

- Say we decided to probe smaller and smaller distance scales
- Build collider, go to higher and higher energies
- Eventually reach point where gravitational interaction dominates
- Continue to smaller distance ... then something new happens...

Create Black Holes!

Some point put so much energy into collisions that you create black hole Estimate scale when this happens:

$$G_N \frac{m^2}{r} \sim mc^2$$

 $G_N {m^2 \over r} \sim mc^2$ At high energies, mass dominated by E associated w/uncertainty principle

$$m \sim \frac{1}{r}$$

$$G_N \frac{1}{r^3} \sim \frac{1}{r}$$

$$r \sim \sqrt{G_N} \sim l_{Pl}$$

Probing Smaller Distance Scales

- Go to higher-higher energies... Gravity begins to dominate
- At lPl make blackhole / Cant tell whats happening in blackhole
- Even higher energies gives bigger blackhole
- Nothing can do (in principle) to get information about smaller scales
 - Physics telling us that smaller scales dont exist

(Seen kind of thing before in QM and Relativity)

Probing Smaller Distance Scales

Lower Limit to Spacetime

Notion of space-time breaking down ℓPl /Not clear what replaces it.

Major issue:

- Understanding of these short scales needed for:
 - Early universe: What happened when universe curvature ℓPl
 - Details of blackholes
- Physics is about what happens in space-time

Other hints that some dramatic need ("Holographic Principle")

- Black hole information scales like area
- Observables with QM can in principle perfectly predict
- Toy models where see space emerging
- . . .

(Seen kind of thing before in QIVI and Relativity)

rse