대기열역학적 분석을 통한 효율적 전기 정책 제언

지구환경과학부 15' 김하늘 지구환경과학부 15' 박준석 지구환경과학부 15' 윤지나

01 문제 제기

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

01 문제 제기

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

01 문제 제기

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

02 사용 증가량 계산

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

02 사용 증가량 계산

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

계산을 위한 대표가정

- 개편안 적용 시 사용량이 증가하는 전열기구는 에어컨 뿐
- 개편안 적용 뒤 감소한 전기로만큼 에어컨을 사용한다고 가정

EX) 개편 전 : 10000원, 개편 후 : 6000원 → 4000원만큼 에어컨 사용량 증가

- 각 계급 가정들의 전기 사용량은 적당한 값을 선정함

EX) 201~300kWh 가정은 중앙값인 250kWh을 사용한다고 가정

02 사용 증가량 계산

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

사용 증가량 계산

자료:한국전력

누진단계	사용량 구간(kWh)	가구 비중	사용량 비중	전기요금 비중
1	100 이하	18.2%	3.3%	2.3%
2	101~200	22.6%	15.3%	10.5%
3	201~300	30.6%	34.1%	29.6%
4	301~400	23.2%	35.1%	37.6%
5	401~500	4.4%	8.4%	12.3%
6	501 이상	1.1%	3.7%	7.7%

2015 1-7	37,837,568
7	5,217,451
8	6,385,766
9	5,531,462
10	4,975,092
11	5,325,858
12	5,562,863
2016 1 7	20.520.050
2016 1-7	38,630,938
2016 1-7	
	5,957,341
1	5,957,341 6,078,474
1 2	38,630,958 5,957,341 6,078,474 5,427,628 5,420,167
1 2 3	5,957,341 6,078,474 5,427,628
1 2 3 4	5,957,341 6,078,474 5,427,628 5,420,167

02 사용 증가량 계산

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

계산 결과

```
4108 $ 1.28766456 X10
               3276000.
                          910 2 = 9.28179288 x10 00.
              2068000
             5508000 , => 4.08949228 X 1011
             4176000 => 4.91617753621011
              792000 => 1,784688048x10"
             198000 =) 1.007/1896 x 101
~000 2104 => 9.63864×10'0 => 93081744009E => 6297134400 => 60549369 KWh
>0( 400 -) 130 =) 4, 4955528×10 (=) 3.570077016×10 2 -) 3.415127016×10 =) 2627025397 kwh
 401~600 → 312=> 2,2765288 X10"=> 5,51528208 X10"0 € =>4.79258208 X10"0
                                                             =) 153608480 kuh
         60.7 与 建殖水配元
         125.9 3. 法征让如名
                                     $ 3.272078992×1011 => 1720105903
                      910 =7.7347512×10° 21 -72.83470624×10° 23×10 = 2.440004×10°
           (1.619026992 -) ((9070011x10"=) 1.09676016x10"
                                                        =) 390862443
```

개편 1안 2,841,183,166kWh의 추가 전기량

개편 2안 1,720,105,903kWh의 추가 전기량

개편 3안 1,425,942,127kWh의 추가 전기량

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

가구들의 에어컨 모델

- 에어컨의 소비전력은 1.8kW
- 에어컨의 냉매는 시간당 이동량이 13kg/hour인 R-22 를 사용한다.
- 모든 에어컨은 Vapor Condensation Cycle을 따라 이상적인 COP값을 가진다.
- *COP? 에어컨이 흡수하는 열/에어컨이 받은 일
- 냉매로 인한 열의 유입과 방출은 Condenser 와 Evaporator 에서만 일어난다.

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

Saturated

Liquid

Liquid + Vapor

04 인공열의 영향 계산

05 결론 및 제언

Vapor Compression Cycle

Vapor Compression Cycle (T-S diagram)

Superheated

Vapor

Saturated

—Isobars

2->3 등압 응축 과정

<u>3->4</u> 등온, 등압의 <mark>상변이</mark> (액화)

4->5 단열팽창

<u>5->1</u> 등온, 등압의 <mark>상변이</mark> (기화)

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

에어컨의 COP 공식 유도

Vapor Compression Cycle (P-H diagram)

$Q=q(H_f-H_i)$

$$COP = rac{Q_{in}}{W_{in}}$$

$$W_{in} = Q_{out} - Q_{in} = q(H_2 - H_3) - q(H_1 - H_4)$$
 $(q$ 는 냉매 유출량)
$$COP = rac{(H_1 - H_4)}{(H_2 - H_1)}$$

출처:

http://www.et.byu.edu/~rowley/ChEn273/Topics/Energy_Balances/Energy_Balance_Open_Systems/Ex_Four.htm

http://www.arca53.dLl.pipex.com/index_files/phrefrig.htm

http://terms.naver.com/entry.nhn?docId=2279999&cid=42419 &categoryId=42419

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

에어컨의 COP 계산

몰리에르 선도

$$COP = \frac{H_4 - H_1}{H_2 - H_1}$$
$$= \frac{272 - 97}{317 - 272} = 3.89$$

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

인공열 발생 계산

$$\begin{split} &\Delta Q_{anth} = \Delta EC + \Delta \left(H_{out} + E_{out} \right) \\ &\Delta EC = \Delta \left(H_{out} + E_{out} \right) / COP \end{split}$$

$$&1 \mathfrak{P} \\ &\Delta \left(H_{out} + E_{out} \right) = 2.841.183.166 \times 3.89 = 11.052.202.520 kWh \\ &\Delta Q_{anth} = 2.841.183.166 + 11.052.202.520 = 13.893.385.680 kWh \\ &2 \mathfrak{P} \\ &\Delta \left(H_{out} + E_{out} \right) = 1.720.105.903 \times 3.89 = 6.691.211.963 kWh \\ &\Delta Q_{anth} = 1.720.105.903 + 66.912.111.963 = 8.411.317.866 kWh \\ &3 \mathfrak{P} \\ &\Delta \left(H_{out} + E_{out} \right) = 1.425.942.127 \times 3.89 = 554.691.4874 kWh \\ &\Delta Q_{anth} = 1.425.942.127 + 5.546.914.874 = 6.972.857.001 kWh \end{split}$$

<u>출처 :</u>

Influence of air-conditioning waste heat on air temperature in Tokyo during summer, Ohashi, Journal of applied meteorology and climatology, 2014.

04 인공열의 영향계산

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

4.1. 인공열의 영향계산

- ▶ 가정
- 실내외의 공기는 같은 조성을 가지며, 이상기체로 간주.
- 계산의 편의를 위해 공기는 건조공기라고 가정!
- 실내 공기의 온도는 27℃라 하자.
- 인공열이 영향을 주는 곳은 우리나라 내기 뿐이라고 가정!
- 피드백 과정은 고려하지 않고 Only 인공열에 의한 효과 만!

- 01 문제 제기
- 02 사용 증가량 계산
- 03 인공열의 발생 계산
- 04 인공열의 영향 계산
- 05 결론 및 제언

인공열의 영향 계산

▶ (1) 에어컨에 의해 데워진 공기

$$\delta Q = C_V dT = c_v m dT$$
 로부터
$$Q = c_v m \Delta T$$

- 위 식에 아래 값 대입하여 $m \triangle T$ 를 구할 수 있음

$$Q = \Delta Q_{anth}$$
 $m = m_{atm} \simeq 1031033571.43 \times 10^6 \text{ (kg)}$ $c_v = c_{vd} = 718 \text{ (Jkg}^{-1} \text{K}^{-1} \text{)}$

(where ΔQ_{anth} : 에어컨 사용에 의하여 추가로 발생한 열량 c_{vd} : 정적 비열)

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

인공열의 영향 계산

▶ (1) 에어컨에 의해 데워진 공기

```
1안
-\Delta Q_{anth} = 13893385680 \text{ kWh} = 5.00 \times 10^{16} \text{ J}
-m\Delta T \approx 6.96 \times 10^{13} \text{ kgK}
2안
- \Delta Q_{anth} = 8411317866 kWh = 3.03×10<sup>16</sup> J
- m\Delta T \simeq 4.22 \times 10^{13} \text{ kgK}
391
-\Delta Q_{anth} = 6972857001 \text{ kWh} = 2.51 \times 10^{16} \text{ J}
- m\Delta T \simeq 3.50 \times 10^{13} kgK
```

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

인공열의 영향 계산

- ▶ (2) 에어컨에 의해 생각된 공기
- ▶ 총 실내 부피 계산

평균 가구 평 수 : 29.26평

가구의 기준 높이 : 2.4m

1평 : 3.305785m²

29.26평의 면적 : $29.26 \times 3.305785m^2 = 96.7272691m^2$

평균 가구 평 수 출처 : 한국 부동산 정보 협회

- 위 식에 에어컨 사용 가구 수 2천만을 곱하면 <mark>총 내부 면적</mark> 1934545382 m² 얻어짐.
- 따라서 실내공기의 총 부피는 $1934545382 \times 2.4 = 4642908916.8m^3$

- 01 문제 제기
- 02 사용 증가량 계산
- 03 인공열의 발생 계산
- 04 인공열의 영향 계산
- 05 결론 및 제언

인공열의 영향계산

- ▶ (2) 에어컨에 의해 생각된 공기
- ▶ 대기 분자의 총 질량 계산
- 총 부피에 있는 대기 분자의 🌞 개수

$$PV = nR^*T$$
 of $\frac{\Theta}{\Theta}$
 $101300 \times 4642908916.8 = n \times 8.31449 \times 300$
 $n = 188557034775$ (mol)

- 대기 분자의 총 질량

건조 공기의
$$\overline{M} = 28.97g/mol$$

 $m_1 \approx 5.46 \times 10^9 \text{ (kg)}$

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

인공열의 영향계산

- ▶ (2) 에어컨에 의해 생각된 공기
- ▶ 한 대의 에어컨이 실내에서 흡수하는 열(Q) 계산

$$q$$
 : 냉매 유출량
$$q=13kg/hour$$

$$H_1-H_4=175kcal/kg$$

$$Q=q(H_1-H_4)=9518kJ/hour$$

냉매 유출량 출처 : 에어컨 스티커

From. 몰리에르 선도

▶ 각 개편안을 통해 증가된 에어컨 가동 시간

증가한 전력량 에어컨의 소비전력

1안: 1,578,435,092시간

2안: 955,614,391시간

3안: 792,190,071시간

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

인공열의 영향 계산

▶ (2) 에어컨에 의해 생각된 공기

```
1안
-\Delta Q = 9518 \times 1578435092 = 1.50 \times 10^{16} \text{ J}
- m\Delta T = 2.09 \times 10^{13} \text{ kgK}
2안
-\Delta Q = 9518 \times 955614391 = 0.91 \times 10^{16} \text{ J}
- m\Delta T = 1.27 \times 10^{13} \text{ kgK}
3안
-\Delta Q = 9518 \times 792190071 = 0.75 \times 10^{16} \text{ J}
- m\Delta T = 1.04 \times 10^{13} \text{ kgK}
```

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

인공열의 영향 계산

- ▶ 에어컨에서 냉각된 공기와의 Mixing 계산
- 에어컨 작동 → 실내공기 온도 하강 & 인공열 방출
- 교과서 식 (7.76) $T = \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2}$

$$T = \frac{m_1 T_1 + m_2 T_2}{m_1 + m_2}$$

아래첨자 1:에어컨에 의해 생각된 공기, 아래첨자 2:에어컨에 의해 데워진 공기

- 누진세 적용 이후 온도의 변화량 더해주기

$$T + \Delta T = \frac{m_1(T_1 + \Delta T_1) + m_2(T_2 + \Delta T_2)}{m_1 + m_2}$$

따라서

$$\Delta T = \frac{m_1 \Delta T_1 + m_2 \Delta T_2}{m_1 + m_2}$$

단, 냉각된 열량은 은도 하강에 기여하므로

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

인공열의 영향계산

- ▶ 에어컨에서 냉각된 공기와의 Mixing 계산
- 앞의 식에 $m_1 = 5.46 \times 10^9 \; \mathrm{kg}$, $m_2 = 10.31 \times 10^{14} \; \mathrm{kg}$ 대입

 \rightarrow 1안 : $\Delta T = 0.047 \text{ K/월}$

2안 : $\Delta T = 0.029 \text{ K/월}$

 $3안: \Delta T = 0.024 \text{ K/월}$

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

4.2. 온실기체의 영향 계산

- ▶ Radiative Forcing (RF)를 고려하여 영향을 계산
- ▶ 가정
- 1. 온실기체는 **CO2만** 고려한다.
- 2. 해양 등의 피드백 과정은 고려하지 않는다.
- 3. Climate Sensitivity λ = 3(℃)로 가정한다.

(Knutti, Reto; Hegerl, Gabriele C. (2008-10-26). "The equilibrium sensitivity of the Earth's temperature to radiation changes". Nature Geoscience. 1 (11): 735–743. Bibcode:2008NatGe...1...735K. doi:10.1038/ngeo337. Retrieved 2010-07-03.)

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

온실기체의 영향 계산

▶ CO2의 복사 강제력 계산

$$\Delta F = 6.3 \times \ln \frac{C}{C_0}$$

F: Radiative Forcing

C: Concentration

C0: Reference Concentration

ightharpoonup 복사강제력에 의한 ightharpoonup 증가량 계산 $\Delta T_s = \lambda \Delta F$

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

온실기제의 영향계산

▶ 한반도의 대기에 이미 존재하는 CO_2 의 분자 수 계산

$$\begin{split} N &= \frac{m_{atm}}{M} \cdot N_A = \frac{1}{M_{atm}} \cdot \frac{P_s A}{g} \cdot N_A \\ M_{atm} &= 28.97 \; (g/m \, ol) = 28.97 \times 10^{-3} \; (kg/m \, ol) \\ P_s &= 1013.25 \; (h \, Pa) = 101325 \; (kg/m \, s^2) \\ A &= 99720 (km^2) = 99720 \times 10^6 (m^2) \\ g &= 9.8 \; (m/s^2) \; , \; N_A = 6.022 \times 10^{23} \; (m \, ol^{-1}) \\ \therefore N &= 214321165.6 \times 10^{32} \approx 2.14 \times 10^{40} \end{split}$$

즉, 한반도 대기 중 CO₂는 2.14×10^{40} 개 존재한다.

▶ 에어컨에 의해 방출된 CO₂의 분자 수 계산 ^{월간CO₂배출량} ×NA

$$\frac{$$
월간 C O $_2$ 배출량 $}{M} imes N_A$

▶ 에어컨에 의해 방출된 CO₂개수 한반도 대기 중 총 대기분자 개수 ×10 (ppm)

01 문제 제기

- 02 사용 증가량 계산
- 03 인공열의 발생 계산
- 04 인공열의 영향 계산
- 05 결론 및 제언

온실기체의 영향계산 - 1안

- ► 에어컨 1시간 가동 시 방출되는 CO₂의 배출량: 258g (에어컨 스티커 참조)
- ▶ 한반도 전체에서 월간 에어컨 사용 증가 시간 : 2841183166/1.8

= 1,578,435,092시간

- ▶ 월간 에어컨에 의한 CO₂의 배출량 : 407,236,253,736g
- ▶ 그 개수는 무려 $55,735,834,545.41 \times 10^{23}$ 개
- ▶ 그 농도는 0.26ppm
- $\triangle F = 6.3 \times \ln \frac{C}{C_0}$ 의 C_0 : 현재 한국 대기 중 CO_2 농도 = 404.8ppm
- ▶ C는 현재 한국 대기 중 CO₂ 농도 + 0.26ppm = 405.06ppm
- ▶ $\Delta F = 0.0040446$, $\Delta T_s = 3 \times 0.0040446 = 0.0121338°C/월$

01 문제 제기

- 02 사용 증가량 계산
- 03 인공열의 발생 계산
- 04 인공열의 영향 계산
- 05 결론 및 제언

온실기체의 영향계산 - 2안

- ► 에어컨 1시간 가동 시 방출되는 CO₂의 배출량: 258g (에어컨 스티커 참조)
- ▶ 한반도 전체에서 월간 에어컨 사용 증가 시간 : 1720105903/1.8

= 955,614,391시간

- ▶ 월간 에어컨에 의한 CO₂의 배출량 : 246,548,512,878g
- ▶ 그 개수는 무려 33,743,526,012 × 10²³ 개
- ▶ 그 농도는 0.16ppm
- $\triangle F = 6.3 \times \ln \frac{C}{C_0}$ 의 C_0 : 현재 한국 대기 중 CO_2 농도 = 404.8ppm
- ▶ C는 현재 한국 대기 중 CO_2 농도 + 0.16ppm = 404.96ppm
- ▶ $\Delta F = 0.0024885$, $\Delta T_s = 3 \times 0.0024885 = 0.0074655$ °C/월

01 문제 제기

- 02 사용 증가량 계산
- 03 인공열의 발생 계산
- 04 인공열의 영향 계산
- 05 결론 및 제언

온실기체의 영향계산 - 3안

- ► 에어컨 1시간 가동 시 방출되는 CO₂의 배출량: 258g (에어컨 스티커 참조)
- ▶ 한반도 전체에서 월간 에어컨 사용 증가 시간 : 1425942127/1.8

= 792,190,071시간

- ▶ 월간 에어컨에 의한 CO₂의 배출량 : 204,385,038,318g
- ▶ 그 개수는 무려 $27,972,879,562.52 \times 10^{23}$ 개
- ▶ 그 농도는 0.13ppm
- $\triangle F = 6.3 \times \ln \frac{C}{C_0}$ 의 C_0 : 현재 한국 대기 중 CO_2 농도 = 404.8ppm
- ▶ C는 현재 한국 대기 중 CO_2 농도 + 0.13ppm = 404.93ppm
- ▶ $\Delta F = 0.0020223$, $\Delta T_s = 3 \times 0.0020223 = 0.0060669$ °C/월

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

총 영향 계산

○ <u>인공열로인한기온증가량</u> 에어컨사용증가량 으로계산!

$$\rightarrow$$
 1안: $\frac{0.047 + 0.0121338}{2,841,183,166} = 2.08 \times 10^{-11} \text{K/kWh}$

2만:
$$\frac{0.029 + 0.0074655}{1,720,105,903} = 2.11 \times 10^{-11} \text{K/kWh}$$

3안:
$$\frac{0.024 + 0.0060669}{1,425,942,127} = 2.10 \times 10^{-11} \text{K/kWh}$$

05 결론 및 제언

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

결론

가장 효율적인 정책

- 개편안 1안이 사용량 증가 대비 기온 증가량이 낮았다.

연구의 한계

- 가정이 정말 많았다.
- 그 외 피드백 과정을 고려하지 않았다.
- 인공열 방출의 영향을 우리나라에만 국한시켰다.
- 낮과 발의 효과를 고려하지 않았다.

05결론 및 제언

01 문제 제기

02 사용 증가량 계산

03 인공열의 발생 계산

04 인공열의 영향 계산

05 결론 및 제언

결론 및 제언

앞으로 나아가야 할 방향

- 현재 선택되어 시행되고 있는 정책은 3만 → 환경적인 면은 고려되지 않았음!

환경적인 면도 정책 수립에 필요하다!

THANK YOU

대기열역학적 분석을 통한 효율적 전기 정책 제언

지구환경과학부 15' 김하늘 지구환경과학부 15' 박준석 지구환경과학부 15' 윤지나

