A.03.04 – Modelos de Propriedades Energéticas

(Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-06-03 16h34m15s UTC

- Modelos de Propriedades Energéticas
 - Energia Interna
 - Entalpia

2 Tópicos de Leitura

O sistema fechado de massa *m*, ilustrado:

• Recebe uma diferencial de calor a volume constante: $(\delta q)_V$;

O sistema fechado de massa m, ilustrado:

- Recebe uma diferencial de calor a volume constante: $(\delta q)_V$;
- $m \in V$ constantes implicam em $v \equiv V/m$ constante, tal que $(\delta q)_V = (\delta q)_V$;

O sistema fechado de massa m, ilustrado:

- Recebe uma diferencial de calor a volume constante: $(\delta q)_V$;
- m e V constantes implicam em $v \equiv V/m$ constante, tal que $(\delta q)_V = (\delta q)_v$;
- A temperatura experimenta uma variação de $(dT)_{y}$.

O balanço de energia na forma diferencial do sistema fica:

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$

(2)

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist} \quad \neg \tag{1}$$

(2)

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist} \quad \neg \tag{1}$$
$$(\delta q)_{v} = du. \tag{2}$$

$$(\delta q)_{v} = du. \tag{2}$$

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist} \quad \neg$$
 (1)

$$(\delta q)_{v} = du. \tag{2}$$

Assim, o calor transferido a volume constante a um sistema fechado é a variação de sua energia interna!

Entalpia – Relação com Temperatura

Filler...

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A.

Termodinâmica 7ª Edição. Seções 4-3 a 4-5.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

