1. Introduction

Purpose of the Analysis

The goal of this exploratory data analysis (EDA) is to understand patterns and relationships in the Titanic dataset, with a focus on the factors that influenced passenger survival. Through visual and statistical techniques, we aim to gain insights that could guide predictive modeling or decision-making.

Description of the Dataset

The Titanic dataset contains data about passengers aboard the Titanic, including demographic features (age, sex, class), ticket and fare information, family size, and whether the passenger survived. It is a widely used dataset for classification and survival prediction tasks.

2. Data Overview

.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
            Non-Null Count Dtype
# Column
    PassengerId 891 non-null
                                 int64
    Survived 891 non-null
                                int64
    Pclass
                891 non-null
                                int64
              891 non-null object
891 non-null object
714 non-null float64
891 non-null int64
3 Name
4 Sex
5 Age
                                float64
5 Age
6 SibSp
7 Parch
               891 non-null int64
8 Ticket
               891 non-null object
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
               891 non-null float64
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
            count unique
                                         top freq
                                                        mean
                                                                     std \
                                                       446.0 257.353842
PassengerId 891.0 NaN
                                         NaN NaN
                                         NaN NaN 0.383838 0.486592
Survived
           891.0 NaN
Pclass
           891.0 NaN
                                         NaN NaN 2.308642 0.836071
Name
            891 891 Dooley, Mr. Patrick 1 NaN
                                                                    NaN
             891
Sex
                                        male 577
                                                       NaN
                                                                    NaN
    644
    168
     77
Name: count, dtype: int64
```

3. Missing Value Analysis

Missing Data Heatmap

A heatmap from seaborn helps visually identify columns with missing values, such as Age, Cabin, and Embarked.

Observations

- Age and Cabin have significant missing values.
- Cabin has the most missing data it may be dropped or imputed with care.
- Embarked has a few missing values and can be imputed with the most frequent port.

4. Univariate Analysis

Histograms (age, fare, etc.)

Histograms of Numerical Columns

- Age is right-skewed; many passengers are in their 20s and 30s.
- Fare is highly skewed with a few very large values.

Countplots (gender, survival, class)

Survival by Embarkation Point

- More males than females on board.
- Higher survival rate for females.
- Most passengers were in third class.

Observations

- Survival is not uniformly distributed across gender and class.
- Fare distribution shows a long tail some passengers paid significantly more.

5. Bivariate Analysis

Boxplots (age vs survived, fare vs class)

- Survivors tend to be younger.
- Higher-class passengers paid more on average.

Scatterplots

• Useful to explore relationships between numerical variables (e.g., age vs. fare, age vs. sibsp).

Observations

- First-class passengers generally have higher fares and better survival rates.
- Some outliers exist in both age and fare.

6. Multivariate Analysis

sns.pairplot()

- Shows pairwise relationships between multiple numeric variables.
- Trends between fare, age, and survival start to emerge.

sns.heatmap() (correlation)

- Shows correlation matrix between numerical variables.
- Fare and class have strong negative correlation.
- Survival has positive correlation with being in higher class and being female.

Observations

- Some variables like Pclass, Sex, and Fare show a stronger link to survival.
- Features like SibSp and Parch may have some influence, but are weaker indicators.

7. Summary of Findings

Key Trends

- Females had significantly higher survival rates.
- First-class passengers were more likely to survive.
- Younger passengers had better survival odds.

Anomalies

- Some passengers paid extremely high fares.
- A few older passengers also survived, contrary to the general age trend.

Interesting Insights

- Family size (combination of SibSp and Parch) may play a role in survival.
- Embarkation point may influence survival slightly, with C (Cherbourg) having a higher rate.