3D- Riduzione Gerarchica di Modello con le basi istruite

Matteo Aletti & Andrea Bortolossi

Politecnico di Milano

16 Ottobre 2013

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite

Motivazione

esistenza di una direzione dominante

Vogliamo risolvere un certo tipo di problemi: quelli che presentano una direzione preferenziale

Impostazione geometrica

il dominio

- Fibra di supporto rettilinea Ω_{1D} dove avviene la dinamica dominante.
- Suddivisione del dominio in slices γ_x ortogonali alla fibra di supporto.

Processo di riduzione

mapping e serie di Fourier

Idea:

• mappare Ω in un dominio di riferimento $\widehat{\Omega}$ in modo che

$$\hat{\gamma}_{\hat{x}} = \hat{\gamma} \ \forall \hat{x} \in \widehat{\Omega}_{1D}$$

 espandere, in direzione trasversale, la soluzione rispetto alla base di Fourier generalizzata

$$\{\varphi_k(y,z)\}_{k\in\mathbb{N}}$$

Noi lavoreremo direttamente in un riferimento, quindi non utilizzeremo la notazione con i cappelli.

Spazi in direzione trasversale

$$V_{\gamma}^{\infty} = \left\{ v(y, z) = \sum_{k=1}^{\infty} v_k \varphi_k(y, z) \right\}$$
 $V_{\gamma}^m = \left\{ v(y, z) = \sum_{k=1}^{m} v_k \varphi_k(y, z) \right\}$

Lungo la direzione principale usiamo uno spazio V_{1D} di tipo $H^1(\Omega_{1D})$ che consideri correttamente le condizioni al bordo. Possiamo ora definire gli spazi ridotti come spazi prodotto:

Spazi ridotti

$$V^{\infty}(\Omega) = V_{1D} \otimes V_{\gamma}^{\infty} := \left\{ v(x, y, z) = \sum_{k=1}^{\infty} v_k(x) \varphi_k(y, z), v_k \in V_{1D} \right\}.$$

$$V^m(\Omega) = V_{1D} \otimes V_{\gamma}^m := \left\{ v(x, y, z) = \sum_{k=1}^m v_k(x) \varphi_k(y, z), v_k \in V_{1D} \right\}.$$

Modelli ridotti

Problemi 1D accoppiati

una equazione tipo questa più qualche spiegazione

$$\sum_{k=1}^m \int_{\Omega_{1D}} \left[\hat{\underline{f}}_{k,j}^{11} \frac{\hat{u}_k}{\hat{\underline{\chi}}} \frac{\theta}{\hat{\underline{\chi}}} + \underbrace{\hat{f}_{k,j}^{10} \frac{\hat{u}_k}{\hat{\underline{\chi}}} \theta}_{\text{Advection}} + \underbrace{\hat{f}_{k,j}^{01} \hat{u}_k \frac{\theta}{\hat{\underline{\chi}}}}_{\text{One-order term}} + \underbrace{\hat{f}_{k,j}^{00} \hat{u}_k \theta}_{\text{Reaction}} d\hat{\underline{\chi}} \right] = \int_{\Omega_{1D}} \theta \hat{f}_k d\hat{\underline{\chi}}.$$

Basis choice

The sinusoidal basis

- Letteratura: in perotto:2008, dirichlet, base di soli seni (2D).
- Letteratura: legendre polynomials $\times (1 x^2)$.
- Educated basis x condizioni al bordo più generali.

Base teorica

Teorema spettrale per forme bilineari

• teorema spettrale solito (salsa)

Ipotesi geometriche

Dominio parallelepipedo

- si può fare anche con il cerchio
- condizioni al bordo a coefficienti costanti su ogni lato del quadrato

Separazione di variabili

Due sottoproblemi agli autovalori

- i conti
- la tabella con i risultati

Un problema di ordinamento

Esempio caso condizioni di Dirichlet

facciamo qui un esempio numerico con Ly diverso da Lz e i conti proprio questa ultima slide ci da il la per la seconda sezione