Learning how to play 2048 using $TD(\lambda)$ learning over *n*-tuple networks

Maadhav Gupta

Ashoka University

March 2025

Actions and States

- Actions = {up, down, left, right}
- States = $\{s_0, s_1, s_2, \dots\}$ # $\{\text{States}\} \approx 10^{16}$

Figure: s_0

Figure: $s_1 = s_0$ after left

Figure: $s_2 = s_1$ after down

2048 Heuristics

- Monotonicity
- High Corner Value
- High number of blank tiles

n-Tuple Networks

- Uses fixed groups of tile positions (tuples).
- Each tuple maps observed tile patterns to a value.
- Multiple overlapping tuples are used.
- Captures local board structures and generalizes across similar configurations.
- Fast to evaluate and effective for learning non-linear patterns.

n-Tuple Networks

Some states

Network of tuples

16 128 8 32

Value Function Approximation

- The value function V(s) estimates expected future reward from state s.
- Approximated as:

$$V(s) = \sum_{i=1}^{n} w_i [f_i(s)]$$

- $f_i(s)$: index in the lookup table for tuple i based on observed pattern.
- w_i : weight table storing values for tuple i.
- Enables generalization by sharing weights across states with similar features.

$TD(\lambda)$ with Eligibility Traces

- Temporal Difference learning with eligibility traces updates value estimates across sequences.
- TD error: $\delta_t = r_{t+1} + \gamma V(s_{t+1}) V(s_t)$
- Eligibility trace update:

•
$$e_t(f) \leftarrow \gamma \lambda e_{t-1}(f) + 1$$
 (if feature f is active)

• Weight update:

•
$$V(f) \leftarrow V(f) + \alpha \cdot \delta_t \cdot e_t(f)$$

- Assigns credit to both recent and earlier features, improving long-term learning.
- Suits 2048 as reward is delayed and survival is crucial.

ϵ -Greedy Policy with Decay

- Balances exploration and exploitation during training.
- At each decision point:

$$a = \begin{cases} \text{random action} & \text{with probability } \epsilon \\ \arg \max_{a} Q(s, a) & \text{with probability } 1 - \epsilon \end{cases}$$

- ϵ decays from 1.0 to 0.01 over episodes.
- Encourages exploration early and stable policies later.

Experimentation

- TD(0) attempt: $\alpha = 0.01$, $\epsilon = 0.01$ fixed, $\gamma = 0.99$, rows only in *n*-tuple network
 - Episodes observed: 50000
 - Average score: below 600
 - Runtime: 6 hours
- TD(λ) attempt 1: $\alpha = 0.1$, $\epsilon = 0.1$ fixed, $\gamma = 1.0$, $\lambda = 0.9$, set of 30 *n*-tuples considered
 - Episodes observed: 50000
 - Average score: below 400, (as much as the random agent would score (or worse))
 - Runtime: 18 hours

Experimentation

- TD(λ) attempt 2: $\alpha = 0.01$, $\epsilon = 0.01$ decaying to 0.1, $\gamma = 0.99$, $\lambda = 0.5$, n-tuple network = {rows, columns, diagonals}
 - Episodes observed: 100000
 - Average scores: reached 1200
 - 2048 achieved 5% of the times
 - Runtime 10 hours
 - ϵ decays to 0.01 in 11,500 episodes

Improvements

- Can use more *n*-tuples and try different parameters or for more episodes
- Introduce exploration again after a few, say 10000, episodes
- Need to encourage corner points, present value function focusing on sum of grid