Algoritmi avansați

Laborator 7 (săpt. 13 și 14)

1. (1p) Intersecții de semiplane orizontale și verticale.

Input. Numărul n de semiplane, coeficienții care determină inecuația fiecărui semiplan. Astfel, pentru semiplanul i (i = 1, ..., n) sunt citiți coeficienții a_i, b_i, c_i corespunzători unei inecuații de forma $a_i x + b_i y + c_i \le 0$.

Output. Programul afișează natura intersecției, conform următoarelor situații: (a) intersecție vidă; (b1) intersecție nevidă și nemărginită; (b2) intersecție nevidă și mărginită.

Precizare. Pentru testare semiplanele vor fi orizontale şi verticale (ambele situații sunt posibile, iar acest lucru nu mai trebuie verificat). Algoritmul va avea complexitatea-timp liniară.

Exemple. (i) n = 3, $(a_1, b_1, c_1) = (1, 0, -1)$, $(a_2, b_2, c_2) = (-1, 0, 2)$, $(a_3, b_3, c_3) = (0, 1, 3)$. Cele trei semiplane au inecuațiile $x - 1 \le 0$, $-x + 2 \le 0$, respectiv $y + 3 \le 0$. Inecuațiile pot fi rescrise $x \le 1$, $x \ge 2$, $y \le -3$. Se afișează intersectia este vidă.

(ii) n=3, $(a_1,b_1,c_1)=(-1,0,1)$, $(a_2,b_2,c_2)=(1,0,-2)$, $(a_3,b_3,c_3)=(0,1,3)$. Cele trei semiplane au inecuațiile $-x+1\leq 0$, $x-2\leq 0$, respectiv $y+3\leq 0$. Inecuațiile pot fi rescrise $x\geq 1$, $x\leq 2$, $y\leq -3$. Se afișează intersecția este nevidă, nemărginită.

(iii) n = 4, $(a_1, b_1, c_1) = (-1, 0, 1)$, $(a_2, b_2, c_2) = (1, 0, -2)$, $(a_3, b_3, c_3) = (0, 1, 3)$, $(a_4, b_4, c_4) = (0, -2, -8)$. Cele patru semiplane au inecuațiile $-x + 1 \le 0$, $x - 2 \le 0$, $y + 3 \le 0$, respectiv $-2y - 8 \le 0$. Inecuațiile pot fi rescrise $x \ge 1$, $x \le 2$, $y \le -3$, $y \ge -4$. Se afișează intersecția este nevidă, mărginită.

2. (2p) Poziția unui punct față de semiplane orizontale și verticale.

Input. Coordonatele x_Q, y_Q ale punctului Q, numărul n de semiplane, coeficienții care determină inecuația fiecărui semiplan. Pentru semiplanul i $(i=1,\ldots,n)$ sunt citiți coeficienții a_i,b_i,c_i corespunzători unei inecuații de forma $a_ix+b_iy+c_i\leq 0$.

Output. Programul stabilește (a) dacă punctul Q este situat în interiorul unui dreptunghi ale cărui vârfuri sunt exact intersecții ale dreptelor suport ale semiplanelor iar laturile sunt incluse în dreptele suport corespunzătoare; (b) dacă răspunsul de la (a) este afirmativ, determină valoarea minimă a ariilor tuturor dreptunghiulor cu această proprietate.

Precizare. Pentru testare semiplanele vor fi orizontale și verticale (ambele situații sunt posibile, iar acest lucru nu mai trebuie verificat). Algoritmul va avea o complexitate-timp cât mai bună.

Exemple. (i) $Q=(1.5,-4),\ n=3,\ (a_1,b_1,c_1)=(-1,0,1),\ (a_2,b_2,c_2)=(1,0,-2),\ (a_3,b_3,c_3)=(0,1,3).$ Cele trei semiplane au inecuațiile $-x+1\leq 0,\ x-2\leq 0,$ respectiv $y+3\leq 0.$ Inecuațiile pot fi rescrise $x\geq 1,\ x\leq 2,\ y\leq -3.$ Puncte de intersecție între dreptele suport sunt $(1,-3),\ (2,-3).$ Nu există un dreptunghi (nedegenerat) ale cărui vârfuri să fie exact intersecții ale dreptelor suport ale semiplanelor date, chiar dacă punctul Q aparține intersecției semiplanelor. Se afișează (a) nu există un dreptunghi cu proprietatea cerută.

(ii) $Q=(0,0), n=4, (a_1,b_1,c_1)=(-1,0,1), (a_2,b_2,c_2)=(1,0,-2), (a_3,b_3,c_3)=(0,1,3), (a_4,b_4,c_4)=(0,-2,-8).$ Cele patru semiplane au inecuațiile $-x+1\le 0, x-2\le 0, y+3\le 0$, respectiv $-2y-8\le 0$. Inecuațiile pot fi rescrise $x\ge 1, x\le 2, y\le -3, y\ge -4$. Există un dreptunghi cu vârfurile date de intersecția dreptelor suport (vârfurile sunt (1,-3), (1,-4), (2,-4), (2,-3), dar punctul Q nu este situat în interiorul acestuia. Se afișează (a) nu există un dreptunghi cu proprietatea cerută.

(iii) $Q=(1.25,-3.5),\ n=4,\ (a_1,b_1,c_1)=(-1,0,1),\ (a_2,b_2,c_2)=(1,0,-2),\ (a_3,b_3,c_3)=(0,1,3),\ (a_4,b_4,c_4)=(0,-2,-8).$ Cele patru semiplane au inecuațiile $-x+1\leq 0,\ x-2\leq 0,\ y+3\leq 0,$ respectiv $-2y-8\leq 0.$ Inecuațiile pot fi rescrise $x\geq 1,\ x\leq 2,\ y\leq -3,\ y\geq -4.$ Există un singur dreptunghi cu vârfurile date de intersecția dreptelor suport (vârfurile sunt (1,-3),(1,-4),(2,-4),(2,-3), aria este 1), iar punctul Q este situat în interiorul acestuia. Se afișează (a) există un dreptunghi cu proprietatea cerută, (b) valoarea minimă a ariilor dreptunghiurilor cu proprietatea cerută este 1.

(iv) $Q=(2,1),\ n=11,\ (a_1,b_1,c_1)=(-1,0,-1),\ (a_2,b_2,c_2)=(0,-3,-6),\ (a_3,b_3,c_3)=(0,2,-6),\ (a_4,b_4,c_4)=(1,0,-3),\ (a_5,b_5,c_5)=(0,1,-2),\ (a_6,b_6,c_6)=(2,0,-10),\ (a_7,b_7,c_7)=(0,-1,-3),\ (a_8,b_8,c_8)=(-4,0,0),\ (a_9,b_9,c_9)=(-1,0,1),\ (a_{10},b_{10},c_{10})=(0,-1,-1),\ (a_{11},b_{11},c_{11})=(1,0,-4).$ Inecuaţiile semiplanelor sunt, respectiv: $x\geq -1,\ y\geq -2,\ y\leq 3,\ x\leq 3,\ y\leq 2,\ x\leq 5,\ y\geq -3,\ x\geq 0,\ x\geq 1,\ y\geq -1,\ x\leq 4.$ Există mai multe dreptunghiuri ca în enunț astfel ca punctul Q să fie situat în interiorul acestora. Valoarea minimă a ariilor acestora este 8. Se afișează (a) există un dreptunghiurilor cu proprietatea cerută, (b) valoarea minimă a ariilor dreptunghiurilor cu proprietatea cerută este 8.