SWISS CONFEDERATION

Federal Agency for Intellectual Property

(11) CH 681687 A5

(51) Int.Cl.5: A61F 2/14

Patent for an invention for Switzerland and Liechtenstein

Swiss-Liechtenstein patent protection agreement dated December 22, 1978

(12) PATENT SPECIFICATION A5

(21)	Application No.:	689/91	(73)	Patentee:
(22)	Application date:	03.07.1991		Dr.med. Helmut Payer, Chur
()			(72)	Inventor:
(24)	Patent granted on:	05.14.1993		Dr.med. Helmut Payer, Chur
(45)	Patent specification published on:	05.14.1993	(74)	Representative: Patent Attorneys Schaad, Balass & Partner, Zurich

(54) Artificial Lens for a Human Eye

(57) The artificial lens (1) provided for implantation into the natural phacocyst has an elastically deformable lens body (2) enveloped by an also elastically deformable force transmission section (3), and designed as a single piece with the latter. The force transmission section (3) has a bead-like edge area (4), which is connected with the lens body (2) via a connecting section (5). When implanted, the bead-like edge area (4) of the artificial lens (1) engages the phacocyst in the area of its zonula lamella. Dimensional changes in the phacocyst during accommodation are hence conveyed to the lens body (2) via the edge area (4) and connecting section (5), thereby changing the refractive power of the lens body (2).

Specification

This invention relates to an artificial lens for implantation into a human eye.

The object of this invention is to provide an artificial lens of the aforementioned type that permits a certain adjustment during near and far viewing, similar to a natural lens.

This object is achieved according to the invention by the features in Claim 1.

An exemplary embodiment of the subject matter of the invention will be described in greater detail based on the drawing. Diagrammatically shown on:

- Fig. 1 is a sectional view of the artificial lens in cross section;
- Fig. 2 is a top view of the back side of the artificial lens, and
- Fig. 3 is a sectional view of a human eye with inserted artificial lens according to Fig. 1 and 2.

The elastically deformable artificial lens 1 shown on the figures has an elastically deformable lens body 2, which is enveloped by a force transmission section 3 that forms a single piece with the latter, and is also elastically deformable. The lens body 2 is roughly cylindrical in this embodiment, and has a forwardly bent, convex front surface 2a. The force transmission section 3 is curved in the backward direction, yielding a plate-like design of the artificial lens 1. The force transmission section 3 has a bead-like edge area 4, which is connected with the lens body 2 via a connecting section 5.

The shape, size and optical properties of the lens body 2 are tailored to the shape, size and optical properties of the natural lens to be replaced in the non-accommodated state.

Two opposing, flat notches 7, 8 can be provided in the edge area to facilitate insertion of the artificial lens 1. Through holes 9 can be provided in the connecting section 5 for the same purpose.

In addition to elastic deformability, the following requirements are placed on the material to be used as the artificial lens: biocompatible, chemically inert, no material changes during contact with tissue, good tolerance without irritation or reaction to foreign bodies, no carcinogenic or allergic effect, good resistance to mechanical stress while being rolled or folded during implantation.

Materials that exhibit the aforementioned properties include hydrogels and silicones.

The described artificial lens 1 is inserted in the natural phacocyst after the natural lens has been surgically removed, e.g., given a gray cataract, in which case the zonula apparatus and phacocyst are preserved on its front side except for a window. The inserted artificial lens 1 is now intended to fill and relax the phacocyst similarly to the healthy natural lens, so that the zonula fibers have a tonicity resembling the natural tonicity with the ciliary muscle at rest, and the forces acting on the elastically deformable artificial lens, which are triggered by changes in the shape of the phacocyst during accommodation, result in corresponding dimensional changes in the lens body 2. This will now be illustrated based in Fig. 3.

In Fig. 3, the individual parts of the human eye are denoted as follows: cornea 10, selera 11, iris 12, ciliary body 13, zonula fibers 14, and phacocyst 15. The front side of the phacocyst 15 has a window 16 with a diameter of about 4.5 mm, through which the artificial lens 1 is inserted into the phacocyst 15.

The zonula fibers 14 engage the zonula lamella 17, which are comprised of two thickened zones front and back on the phacocyst 15 near the equator 18. The artificial lens 1 inserted into the phacocyst 15 now rests against the phacocyst 15 with the edge area 4 of the force transmission section 3 in the area of this zonula lamella 17. The shape of the artificial lens 1 illustrated in Fig. 1 and 2 along with its elastic deformability causes the artificial lens 1 to relax the phacocyst 15, as already mentioned, so that its rear wall 15a is approximately flat. This yields a cavity 19 between this rear wall 15a and the lens body 16, which makes it possible to also burn out a window in this rear wall 15a when required without damaging the artificial lens 1.

Because the edge area 4 of the artificial lens 1 engages the phacocyst 15 in the area of the zonula lamella 17 as described, changes in the shape of the phacocyst 15 that arise during accommodation are transferred to the lens body 2, which then correspondingly undergoes a dimensional change, and hence a modification of its optical properties, i.e., refractive power. This process can be easily traced based in Fig. 3, in

which the right half represents the non-accommodated state, and the left half represents the accommodated state.

In the non-accommodated state, the ciliary muscle of the ciliary body 13 is relaxed. The zonula fibers 14 are tensed, as a result of which the plate-like artificial lens 1 flattens. This produces a sharp image of the objects located a greater distance away.

In the accommodated state (left half of Fig. 3), the ciliary muscle is contracted, and the zonula fibers 14 are relaxed. The phacocyst 15 contracts along the equator 18, resulting in a corresponding reduction in diameter of the phacocyst 15. This means that the artificial lens 1 is also compressed, causing a thickening, i.e., more intensive curving, of the lens body 2. This produces a sharper image of the nearby objects.

Claims

- 1. An artificial lens for use in the phacocyst (15) of a human eye, with an elastically deformable lens body (2) enveloped by an also elastically deformable force transmission section (3), the bead-like edge area (4) of which is designed to engage the phacocyst (15) in the area of its zonula lamella (17), and which conveys the changes in the shape of the phacocyst (15) that arise during accommodation to the lens body (2), thereby correspondingly changing its shape, and hence refractive power.
- Artificial lens according to Claim 1, characterized in that the lens body (2) and force transmission section (3) are designed as a single piece.
- Artificial lens according to Claim 1, characterized in that it has a plate-like design, and exhibits a backwardly curved force transmission section (3).
- 4. Artificial lens according to one of Claims 1-3, characterized in that the optical properties of the lens body (2) are adjusted to those of the natural lens to be replaced in the non-accommodated state.
- Artificial lens according to one of Claims 1-4, characterized in that two
 opposing notches (7 and 8) are present in the edge area (4) of the force transmission
 section (3).
- Artificial lens according to one of Claims 1-5, characterized in that through holes (9) are provided in the force transmission section (3) between its edge area (4) and the lens body (2).
- Artificial lens according to one of Claims 1-6, characterized in that it consists
 of a biocompatible material, e.g., hydrogel or silicone.

SCHWEIZERISCHE EIDGENOSSENSCHAFT BUNDESAMT FÜR GEISTIGES EIGENTUM

6) Int. Cl.5: A 61 F 2/14

Erfindungspatent für die Schweiz und Liechtenstein Schweizerisch-liechtenstelnischer Patentschutzvertrag vom 22. Dezember 1978

12 PATENTSCHRIFT A5

689/91 (21) Gesuchsnummer:

(73) Inhaber:

Dr. med. Helmut Payer, Chur

(2) Anmeldungsdatum: 07.03.1991

(72) Erfinder:

Payer, Helmut, Dr. med., Chur

24 Patent erteilt: 14.05.1993

45 Patentschrift

veröffentlicht:

14.05,1993

(74) Vertreter: Patentanwäite Schaad, Balass & Partner, Zürich

64 Kunstlinse für ein menschliches Auge.

Die für die Implantation in die natürliche Linsenkapsel vorgesehene Kunstlinse (1) weist einen elastisch verformbaren Linsenkörper (2) auf, der von einem ebenfalls eisstisch deformierbaren Kraftübertragungsteil (3) umgeben ist und mit diesem einstückig ausgebildet ist. Der Kraftübertragungsteil (3) weist einen wulstartigen Randbereich (4) auf, der über einen Verbindungsteil (5) mit dem Linsenkörper (2) verbunden ist. Der wulstartige Randbereich (4) der Kunstlinse (1) greift im Implantierten Zustand an der Linsenkapsel im Bereich deren Zonulalamelle an. Formänderungen der Linsenkapsel beim Akkommodationsvorgang werden somit über den Randbereich (4) und den Verbindungsteil (5) auf den Linsenkörper (2) übertragen, wodurch die Brechkraft des Linsenkörpers (2) eine Änderung erfährt.

Beschreibung

Die vorliegende Erfindung betrifft eine Kunstlinse für die Implantation in ein menschliches Auge.

Der vorliegenden Erfindung liegt die Aufgebe zugrunde, eine Kunstlinse der vorstehend genannten Art zu schaffen, die ähnlich einer natürlichen Linse eine gewisse Anpassung beim Sehen in die Nähe und in die Ferne zulässt.

Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Anspruches 1 gelöst.

Im folgenden wird anhand der Zeichnung ein Ausführungsbeispiel des Erfindungsgegenstandes näher erläutert. Es zeigt rein schematisch:

Fig. 1 eine Kunstlinse im Querschnitt,

Fig. 2 eine Draufsicht auf die Rückseite der Kunstlinse, und

Fig. 3 Im Schnitt einen Teil eines menschlichen Auges mit eingesetzter Kunstlinse gemäss den Fig. 1 und 2

Die In den Figuren gozeigte elastisch deformlabere Kunstlinse i weist einen leastisch verformbaren Linsenkörper 2 auf, der von einem mit letztreen enstückigen Kraftibertragungstell 3 umgeben ist, der ebenfalls eilastisch verformbar ist. Der Linsender benfalls eilastisch verformbar ist. Der Linsensterak reteizenflichen und weist eine mangbespiel erbar kreizenflichen und weist eine mangbespiel erbar kreizenflichen und weist eine mangbespiel erbar kreizenflichen und weist eine mangbespiel krümmte, konvoxe Vorderfläche 2a auf. Der Kontkrümmte, konvoxe Vorderfläche 2a auf. Der Kunstlinse in ergibt. Der Kraftübertragungstell 3 weist einen wulstartigen Randbereich 4 auf, der über einen verbründungstell 3 mit dem Linsenkörper 2 verbun-

Die Form, die Grösse und die optischen Eigenschaften des Linsenkörpers 2 werden auf die Form, die Grösse bzw. die optischen Eigenschaften der zu ersetzenden natürlichen Linse im akkommodationslosen Zustand abgestimmt.

Im Randbereich können zwei sich gegenüberliegende flache Einkerbungen 7, 8 vorgeschen werden, die zur Erleichterung des Einsetzens der Kunstlinse 1 dienen. Zu demselben Zwecke können auch Durchgangslächer 9, die im Verbindungsteil 5 vorgesehen werden können, dienen.

Än das für die Kunstlinse 1 zu verwendende Materfall werden neben der deslässichen Verformbarkeit noch die folgenden Anforderungen gestellt biokompatibel, demistor inert, keine Meterfallvoränderungen bei Kontlakt mit Gewebe, gute Verträglichkeit ohne Entzündunge- oder Frennichgementächen, keiderstandstähligkeit gegen mechanische Beansymtung beim Rohen oder Falten bei der Implantation.

Materialien, die die vorstehend erwähnten Eigenschaften aufweisen, sind z.B. Hydrogele und Siliko-

Die beschriebene Kunstlinse 1 wird nach operativer Entfernung der natürlichen Linse, z.B. bei Grauem Star, bei der der Zonula-Appart und die Linsenkapsel mit Ausnahme eines Fensters an deren Vorderseite erhalten bleiben, in die natürlichsenkapsel eingesetzt. Die eingesetzte Kunstlin-Linsenkapsel eingesetzt. Die eingesetzte Kunstlinse 1 sell nun die Linsenkapsel ähnlich der gesunden natürlichen Linse austillien und auspennen, so dass die Zonduffassem im Fluhezusland des Zillarmuskels einen dem natürlichen Spannungszustand haben und de alatisch deformierbare Kunstlinse einwiktenden Kräfte, walebe bei der Aktommodation durch Veränderungen der Form der Linsenkapsel verursacht werden, entsprechende Formweränderungen des Linsenköpers 2 zur Folgo haben. Dies soll nun anhand der Fig. 3 werdeutlicht werden.

In der Fig. 3 sind die einzelnen Teile des meraschichen Auge wie folgt bezeichnet: Hornhaut 10, Lederhaut 11, Repenbogenhaut (frie) 12, Zillankfoprer 13, Zonudalbazen 14, Linsenkapsel 15, an frier Vorderseite weist die Linsenkapsel 15 ein Fenster 16 mit einem Durchmesser von etwa 4,5 mm auf, durch das die Kunstlinse 1 in die Linsenkapsel 15 eingesert wird.

Die Zonulatasen 14 grafen an der Zonulatanselle 17 an, die durch zwei verdickte Zonen vom und hinhen an der Linsenkepsel 15 nahe des Aquattors 18 ausgebüldet sich. Die in die Linsenkapsel 15 eingesetzte Kuraffinso 1 stützt sich nun mit dem Ranchseich 4 des Kraff-Übertragungstelles 3 im Bereich dieser Zonulatamelle 17 an der Linsenkspel 15 an. Durch die anhand der Fig. 1 und 2 erfäuterte Form-

Well die Kurstlinse 1, wie beschrieben, mit Ihren nandersch4 an der Linseringsel 15 im Brench 10 der Zonulalsmelle 17 angreift, werden Anderungen der Form der Linserlageel 16, die beim Aktonumodationsvorgang aufreten, auf den Linserkörper 2 übertragen, der dann entsprechend eine Formänderjurg und damit eine Veränderung seiner optischen Eigenschaffen, dh. der Brechricht erfährt. Dieser Vorgang ist anhand der Fig. 3 ohne welteres nachvollziehbar, in der in der rechten Hälfte der akkommodatlomslose Zustand und in der linken Hälfte der Zustand der Akkommodation dangseitelt ist.

60 Im akkommodationslosen Zustand ist der Ziliarmuskel des Ziliarkörpers 13 erschlaftt. Die Zorulafasern 14 sind gespannt, was zur Folge hat, dass sich die tellerartig ausgebildete Kunstlinse 1 abflacht. Damitt werden die In grösserer Entfernung 55 befindlichen Obiekte scharf shorebilden.

Im Zustand der Aktommodiation (linke Hältle ein Fig. 3) ist der Züllermussfe kontrahlert und die Zonulaftssem 14 sind erschiellt. Die Linemkopsei 15 kontrahlert sich ertläng des Auguton 15, was zu einer ertsprachenden Verfingerung des Durchmassens der Linemkopsei 15 führt. Das bedeutet, des auch die Kunstlinse 1 zussammengedrückt wird, was zu einer Verdickung, d.h. einer stäfteren Wölbung des Lineenkörpers 2 führt. Dadurch werden die neibesdesenen Obeides scharf banabilidet.

Patentansprüche

1. Kunstlinse für den Einsatz in die Linsenkapsel (15) eines menschlichen Auges, mit einem elsatisch verformbaren Linsenkörper (2) und einem diesen umgebenden, ebenfalls elsäsisch delormierbaron Kraitibertragungstell (3), dessen wulstartiger Pandbereich (4) zum Angreifen an der Linsenkopes (15) im Bereich deren Zonulalamelle (17) bestimmt ist und der die beim Aktormodationsvorgang auftretende Änderung der Form der Linsenkapsel (15) auf den Linsenkapsel (15) auf den Linsenkapsel (15) auf den Linsenkapsel (15) auf den Linsenkapsel (15) eine entsprechende Änderung der Form und damit der Frenchiernt dies eletzteren bewirkt.

 Kunstlinse nach Anspruch 1, dadurch gekennzeichnet, dass Linsenkörper (2) und Kraftübertragungsteil (3) einstückig ausgebildet sind.

 Kunstlinse nach Anspruch 1, dadurch gekennzeichnet, dass sie tellerförmig ausgebildet ist und einen nach hinten gewölbten Kraftübertragungstell (3) aufweist.

4. Kunstlinse nach einem der Ansprüche 1–3, dadurch gekennzelchnet, dass die optischen Eigenschaften des Linsenkörpers (2) auf diejerigen der zu ersetzenden natürlichen Linse im akkommodationslosen Zustand abbestimmt sind.

5. Kunstlinse nach einem der Ansprüche 1–4, dadurch gekennzeichnet, dass im Randbereich (4) des Kraftübertragungstells (3) zwei sich gegenüberliegende Einkerbungen (7 und 8) vorhanden sind.

8. Kunstlinse nach einem der Ansprüche 1–5, dadurch gekennzeichnet, dass im Kraft-Übertragungsteil (3) zwischen dessem Randbereich (4) und dem Linsenkörper (2) Durchgangsföcher (9) vorgesehen sind.

7. Kunstlinse nach einem der Ansprüche 1--6, dadurch gekennzeichnet, dass eie aus einem biokompatiblen Werkstoff, z.B. aus Hydrogel oder Silikon, besteht. 16

25

35

40

45

50 55

60

