

De Cifris incontra Torino Politecnico di Torino – 14 Ottobre 2019

Boolean cryptographic functions and related combinatorial constructions

Alberto Leporati

Università degli Studi di Milano – Bicocca Dip. di Informatica, Sistemistica e Comunicazione (DISCo) Viale Sarca 336/14 – Milano - Italy

About me

- Associate Professor at the Department of Informatics, Systems and Communication (DISCo) of the University of Milan – Bicocca
- Founder and current director of Bicocca Security Lab
 - interests also in Cybersecurity
 - inside the lab, Luca Mariot and me have competencies on Cryptography
- Teacher of a course on Information Theory and Cryptography for the Master Degree on Computer Science, since 2008
- Supervisor of many bachelor (100+) and master (30+) theses
- Supervisor of two Ph.D. theses on Cryptography
- Supervisor of a post-doc research project on Cryptography
- Member of CINI Cybersecurity Lab (Milan Bicocca node)

Research in Cryptography

- Theoretical foundations of cryptographic primitives
- Search for Boolean functions with good cryptographic properties:
 k-resiliency, nonlinearity, balancedness
- Relations with Secret Sharing Schemes, Orthogonal Arrays, combinatorial designs, linear codes
- Relations with parallel models of computation, mainly Boolean circuits and Cellular Automata

Boolean functions

We search for Boolean functions:

$$f: \{0,1\}^n \to \{0,1\}$$

(and we extend them to multi-output Boolean functions: $F: \{0,1\}^n \to \{0,1\}^m$) with good cryptographic properties:

- balancedness: f(x) = 0 for half of the inputs $x \in \{0,1\}^n$
- nonlinearity: high distance from affine functions
- correlation immunity of order k: every subset of at most k variables is statistically independent of the value of f(x)
- k-resiliency: both balanced and correlation immune of order k

Boolean functions

- Functions that do not have these properties lead to known attacks
- All these properties can be expressed in terms of the Walsh transform

$$W_f(\omega) = \sum_{x \in \{0,1\}^n} (-1)^{f(x) \oplus \omega \cdot x}$$
, where $\omega \cdot x = \bigoplus_{i=1}^n \omega_i \cdot x_i$

(in practice, it computes the projection of the truth table vector of f wrt the basis composed of the XORs of all possible subsets of the input variables)

Some upper bounds for the properties are known (for example, on nonlinearity), and also relationships/constraints between them

Cellular Automata (CA)

- One-dimensional Cellular Automaton (CA): a discrete parallel computation model composed of a finite array of n cells
- Each cell updates its state $s \in \{0,1\}$ by applying a local rule $f: \{0,1\}^d \to \{0,1\}$ of diameter d to itself and to the d-1 neighboring cells to its right
- Example: n = 6, d = 3, $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$

Note: No-boundary CA

It shrinks in size at each step

Use of CA in Cryptography

Example: as a PRNG in stream ciphers

 Sometimes CA are used but not explicitly mentioned: see, for example, Keccak

Use of CA in Cryptography

• CA-based block cipher design:

From local rules (Boolean functions) to

global rules (multi-output Boolean functions)

- global rules can be seen as S-boxes
- goal: find S-boxes with high nonlinearity and with low differential uniformity

In search of Boolean functions

- The number of Boolean functions grows in a double exponential way wrt to the number n of inputs: 2^{2^n} . Exhaustive search becomes impossible
- Evolutionary techniques: Genetic Algorithms, and Genetic Programming
- Search spaces:
 - truth tables of Boolean functions
 - Walsh spectra of pseudo-Boolean real functions
 - trees of Boolean operators
- Example of encoding in GP:

In search of Boolean functions

- Results obtained:
 - for n = 4 and n = 5, we obtained CA rules inducing S-boxes with optimal crypto properties, and with implementation cost similar to or slightly better than the state of the art in the literature
 - for n > 5, GP finds S-boxes with optimal cryptographic properties up to n = 7, but with too high implementation costs
- In general, Genetic Programming seems to work better than Genetic Algorithms, both with truth table and Walsh spectrum representations (Why???)

Latin squares and SSS

- A Latin square (LS) is a $N \times N$ matrix where each row and each column permutes $[N] = \{1, ..., N\}$
- Example, with N = 4:

		\downarrow		
1	4	2	3	
3	2	4	1	-
4	1	3	2	
2	3	4	1	

- Latin squares are examples of combinatorial designs
- They can be used as perfect (2,2)-threshold Secret Sharing Schemes (SSS)
 - secret: $s \in [N]$
 - shares: number of row, number of column

Latin squares and CA

• Any CA with a bipermutive rule:

$$f(x_1, ..., x_d) = x_1 \oplus \varphi(x_2, ..., x_{d-1}) \oplus x_d$$

$$(generating function)$$

of diameter d = b + 1 can be used to generate a LS of order $N = 2^b$

Latin squares and CA

Example, with the so-called rule 150:

$$f(x_1, x_2, x_3) = x_1 \oplus x_2 \oplus x_3$$

with the encoding:

$$00 \rightarrow 1$$
 $10 \rightarrow 2$ $01 \rightarrow 3$ $11 \rightarrow 4$

1	4	3	2
2	3	4	1
4	1	2	3
3	2	1	4

(b) Latin square L_{150}

⁽a) Rule 150 on 4 bits

- The LS L_1 , ..., L_n are mutually orthogonal (n-MOLS) if their pairwise superposition yields all the pairs $(x, y) \in [N] \times [N]$
- Example, with n = 2 and N = 4:

1	3	4	2
4	2	1	3
2	4	3	1
3	1	2	4

,	`	
10	۱ د	Ι.
10	ユ 丿	L 1
١.		

1	4	2	3
3	2	4	1
4	1	3	2
2	3	4	1

1,1	3,4	4,2	2,3
4,3	2,2	1,4	3,1
2,4	4,1	3,3	1,2
3,2	1,3	2,1	4,4

(c)
$$(L_1, L_2)$$

- (*n*-MOLS) can be used as perfect (2, *n*)-threshold Secret Sharing Schemes
 - secret: *s* is the pair (row number, column number)
 - shares: the entries at that (row, column), for each LS

- Bipermutive linear rule: $f(x) = x_1 \oplus a_2 x_2 \oplus \cdots \oplus a_{n-1} x_{n-1} \oplus x_n$
- Associated polynomial: $P_f(X) = a_1 + a_2X + \cdots + a_nX^{n-1}$

Theorem: Bipermutive linear rules f, g: $\{0,1\}^n \to \{0,1\}$ generate orthogonal Latin squares if and only if $P_f(X)$ and $P_g(X)$ are coprime

- Enumeration of OLS in the linear case → enumeration of pairs of coprime polynomials (but that's another story...)
- ... What about the nonlinear case?
- MOLS arising from nonlinear constructions have relevance in cheaterimmune Secret Sharing Schemes
- Goal: Exhaustive enumeration of pairs of bipermutive rules of size *n* generating orthogonal Latin squares, classified by nonlinearity

Pairs of bipermutive rules of n variables:

n	3	4	5	6	7
\mathcal{B}_{n}	16	256	65536	4294967296	$\approx 1.84 \cdot 10^{19}$

- Exhaustive enumeration possible up to n = 6
- By considering some symmetries, we can divide the search space size by 8
- f, g are pairwise balanced (PWB) if each pair (0,0), (0,1), (1,0), (1,1) occurs 2^{n-2} times in the superposition of the two truth tables
- Property: if f, g are bipermutive and generate OLS, then they are PWB
 - sufficient but not necessary condition!
 - \blacksquare counterexamples already available for n=4
- We thus consider balanced quaternary strings of length 2^{n-2} (= $BalG_n$)

We have:

n	$\#\mathcal{B}_{n}$	#BalG _n	$\# \mathit{Bal}\mathcal{B}_{n}$
3	16	0	8
4	256	24	96
5	65536	2520	17920
6	4294967296	63006300	843448320
7	$\approx 1.84 \cdot 10^{19}$	$\approx 9.96 \cdot 10^{15}$	$\approx 2.58 \cdot 10^{18}$

- Even by focusing on $BalB_n$, we cannot exhaustively search beyond n = 6
- We used a 40-core machine to span $BalB_n$, and it took 22 hours to complete

• Classification results:

n	LS_size	#total	#linear	#nonlinear	(NI(f), NI(g), #pairs)
3	4×4	1	1	0	_
4	8×8	9	5	4	(4,4,4)
5	16×16	213	21	192	(4,4,96),
					(8,8,96)
					(4,4,512),
					(12, 12, 17992),
					(8, 8, 4020),
					(16, 16, 28388),
6	32×32	66685	85	66600	(20, 20, 14384),
					(4, 12, 8),
					(8, 16, 160),
					(12,20,128),
					(16,24,88)

Summing up:

- we considered the problem of exhaustively enumerating pairs of bipermutive CA generating orthogonal Latin squares, and classify them wrt nonlinearity
- we proved that pairwise balancedness is a necessary condition for two rules to generate OLS
- we used this condition to enumerate pairs up to size n = 6

• Future directions:

- find sufficient conditions for two rules to generate OLS
- combinatorial encoding to evolve pairs of PWB bipermutive rules through Genetic Algorithms (work in progress)

Blockchains

- Design of blockchain-based applications
 - supply chain management
 - definition of utility (crypto) tokens backed by tangible assets
 - development of smart contracts with Ethereum (Solidity) and Hyperledger (Node.js)

 Analysis of Ethereum smart contracts, for security and correcteness properties

Blockchains

Two examples of use cases:

- Anti-counterfeiting of luxury clothes and accessories, using a blockchain
 + RFIDs
 - each cloth / accessory has a unique RFID
 - every production / assembly / transportation / sell operation is written on the blockchain
 - it becomes incredibly difficult to sell counterfeit items!
- Storage of sensor data from (non-autonomous) vehicles
 - hashes of contents of the car's black box are regularly saved on the blockchain
 - when needed, the driver can prove that his/her data have not been altered

Thanks for your attention!

Alberto Leporati alberto.leporati@unimib.it