四川大学平时测验试题 (2021~2022 - 1)

课程号:3	04131030	_课序号:	课程	名称: _	数字逻辑 (双语)	任课教师:	吴志红
适用专业年级	&: 计算机	<u> </u>	绝周: <u>8</u>	学号:		姓名:	

- 1. Covert the following numbers to the indicated radix numbers. (12p)
 - a). $(27.4)_8 = ($ $)_2 = ($ $)_{16} = ($ $)_{10} = ($ $)_{8421BCD}$
 - b). $(01000101.011000100101)_{BCD} = ()_{10} = ()_{2} = ()_{16}$
- 2. Calculate the following: (8p)
 - a) 1101 + 1011
- b) 11010 10111
- c) 1011×101
- d) 1001÷11
- 3. Complete the following table of equivalent values. Use binary numbers with a sign bit and 7 bits for the value. (12p)

Decimal	Sign-magnitude	1's complement	2's complement
123			
-98			

4. For the input waveforms below, determine the output for the NAND gate and draw the timing diagram. (8p)

5. Write the Boolean expression for the logic gate: (6p)

- 6. Apply DeMorgan's theorems to the following and simplify it: $\overline{(A+\overline{B}\overline{\overline{C}}+CD)}+\overline{\overline{BC}}(12p)$
- 7. Using Boolean algebra, simplify the following expression: $\overline{A}B + \overline{A}B\overline{C} + \overline{A}BCD + \overline{A}B\overline{C}\overline{D}E(4p)$
- 8. Convert the following expression to standard SOP forms and develop its truth table: $\overline{A}(B + \overline{C})$ + $A(B \oplus C)(10p)$
- 9.Use a Karnaugh map to reduce each expression:(18p)
- a) $F(a,b,c,d) = \sum m(2,4,6,8,9,12,13,14,15)$ b) $F(x,y,z,w) = \sum m(2,4,6,8,13,14,15) + \sum d(0,7,9,10)$

10.Use AND gates, OR gate, and inverters as needed to implement the following logic expressions as stated.(10p)