Analysis III

Wintersemester 2014/2015

Prof. Dr. D. Lenz

Blatt 1

Abgabe Dienstag 28.10.2014

(1) Sei $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ definiert durch

$$\Phi(r,\theta,\varphi) := (r\sin\theta\cos\varphi, r\sin\theta\sin\varphi, r\cos\theta).$$

Finden Sie die Punkte (r, θ, φ) , in denen Φ lokal umkehrbar ist und berechnen Sie dort die Ableitung der jeweiligen Umkehrfunktionen. Geben Sie in einer Umgebung von $(0, 1, 0) = \Phi(1, \frac{\pi}{2}, \frac{\pi}{2})$ eine lokale Umkehrfunktion an.

(2) Sei $E := \mathbb{R}^2 \setminus \{(0,0)\}$ die gelochte Ebene und $f : E \to E$ definiert durch

$$f(x,y) := \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right).$$

Zeigen Sie, dass f in allen Punkten lokal umkehrbar ist. Zeigen Sie, dass f auch global umkehrbar ist und bestimmen Sie die Umkehrfunktion.

- (3) Zeigen Sie, dass durch folgende Gleichungen in einer Umgebung von (x_0, y_0, z_0) implizit eine Funktion z = f(x, y) gegeben ist. Ermitteln Sie die Gleichung der Tangentialebene von f(x, y) im Punkt (x_0, y_0) .
 - a) $2^{\frac{x}{z}} + 2^{\frac{y}{z}} = 8$, $(x_0, y_0, z_0) = (2, 2, 1)$.
 - **b)** $z^3 + 3xyz = 1$, $(x_0, y_0, z_0) = (0, 1, 1)$.
 - c) $xy^2 + yz = z^3 + 2$, $(x_0, y_0, z_0) = (2, 1, 1)$.
- (4) Bestimmen Sie für die Funktion $f(x,y):=(x^2+2y^2)e^{-(x^2+y^2)}$ alle lokalen Minima und lokalen Maxima.