Appunti sparsi di Analisi Funzionale Errata corrige

De Donato Paolo

Questo documento contiene tutti gli errori trovati e segnalati nella seconda edizione degli appunti di analisi funzionale. Nel caso vengano riscontrati altri errori si prega di scrivere a pdd.math@gmail.com.

1 Errori

• Pagina 13, teorema di Weierstrass generalizzato: sia l'enunciato che la dimostrazione fanno confusione tra f e un'ipotetica norma $\|\cdot\|$. La formulazione corretta è la seguente:

Teorema 1.1 (Weierstrass generalizzato). Sia X spazio topologico sequenzialmente compatto $e f: X \to \mathbb{R} \cup \{+\infty\}$ sequenzialmente semicontinua inferiormente, allora f possiede un minimo in X.

Dimostrazione. Posto $m = \inf_{x \in K} f(x)$ se $m = +\infty$ allora ogni suo punto è di minimo, altrimenti esisterà a meno di passare ad un'estratta una successione $x_n \in X$ e un elemento $x \in X$ tale che $x_n \to x$ e $f(x_n) \to m$. Segue immediatamente che

$$m \le f(x) \le \liminf_{n \to +\infty} f(x_n) = m$$

e quindi $f(x) = m \le f(y)$ per ogni $y \in X$ e x è un punto di minimo per f.

• Pagina 46, dimostrazione del lemma 4.8.1: la disuguaglianza tra f e p_K è valida se entrambe le funzioni sono valutate in v_0 e non in v. Quindi l'espressione corretta è

$$f(v_0) \le p_K(v_0)$$

e non

$$f(v) \le p_K(v)$$

- Sempre nella stessa pagina è stato usato più volte il simbolo al posto della differenza insiemistica \, le formule vanno corrette allora in $v_0 \in V \setminus K$ e $f \in V^+ \setminus \{0\}$.
- Pagina 60, definizione di norma più debole: nella seconda parte della definizione sono state invertite le due norme. L'enunciato corretto è

Definizione 1.2. Poniamo ora X spazio vettoriale e $\|\cdot\|_1$, $\|\cdot\|_2$ due norme di X. Allora $\|\cdot\|_1$ è più debole di $\|\cdot\|_2$ se e solo se ogni successione limitata in $(X, \|\cdot\|_2)$ ammette un'estratta di Cauchy in $(X, \|\cdot\|_1)$

oppure in questa forma, più facile da memorizzare

Definizione 1.3. Poniamo ora X spazio vettoriale e $|\cdot|$, $\|\cdot\|$ due norme di X. Allora $|\cdot|$ è più debole di $\|\cdot\|$ se e solo se ogni successione limitata in $(X,\|\cdot\|)$ ammette un'estratta di Cauchy in $(X,|\cdot|)$