Multiplicação de inteiros

Fundamentos de Arquitetura de Computadores

Prof. John Lenon C. Gardenghi

Engenharia de Software Faculdade do Gama Universidade de Brasília

Multiplicação de inteiros sem sinal

Multiplicação de inteiros sem sinal

Algoritmo básico de multiplicação

- 1. Inicialize P = 0 e contador = 1.
- 2. Faça $P = P + q_0 \times M$.
- 3. Faça o deslocamento lógico de um bit à esquerda em M.
- 4. Faça o deslocamento lógico de um bit à direita em Q.
- 5. Se contador = 32, pare. Senão, contador = contador +1 e volte ao Passo 2.

Otimizando a multiplicação

- É possível otimizar o algoritmo básico:
 - 1. E se, ao invés de deslocar o multiplicando à esquerda, deslocarmos o produto para a direita?

Otimizando a multiplicação

- É possível otimizar o algoritmo básico:
 - 1. E se, ao invés de deslocar o multiplicando à esquerda, deslocarmos o produto para a direita?
 - 2. E se salvarmos o multiplicador na porção menos significativa do produto?

Otimizando a multiplicação

- É possível otimizar o algoritmo básico:
 - 1. E se, ao invés de deslocar o multiplicando à esquerda, deslocarmos o produto para a direita?
 - 2. E se salvarmos o multiplicador na porção menos significativa do produto?
- Com isso,
 - O registrador para o multiplicador não é mais necessário
 - O registrador para o multiplicando não precisa mais ter 64 bits, mas apenas 32

Algoritmo otimizado para multiplicação

- 1. P[63..32] = 0.
- 2. P[31..0] = Q.
- 3. Se P[0] = 1, P[63..32] = P[63..32] + M.
- 4. Faça um deslocamento de 1 bit à direita em P.
- 5. Se não for a 32ª repetição, volte ao Passo 3.

Exemplo: $8_{\rm dec} \times 9_{\rm dec} = 1000_{\rm bin} \times 1001_{\rm bin}$.

Multiplicação de inteiros com sinal

- Há algumas alternativas:
 - 1. Converter M e Q para positivo sem sinal, e negar P se o sinal de M for differente de Q.

Multiplicação de inteiros com sinal

- Há algumas alternativas:
 - 1. Converter M e Q para positivo sem sinal, e negar P se o sinal de M for differente de Q.
 - 2. Usar o Algoritmo de Booth.

- Dois registradores de 32 bits para o produto:
 - HI: 32 bits mais significativos
 - L0: 32 bits menos significativos

- Dois registradores de 32 bits para o produto:
 - HI: 32 bits mais significativos
 - LO: 32 bits menos significativos
- Instruções
 - mult rs, rt / multu rs, rt
 - produto de 64 bits nos registradores HI/LO

- Dois registradores de 32 bits para o produto:
 - HI: 32 bits mais significativos
 - LO: 32 bits menos significativos
- Instruções
 - mult rs, rt / multu rs, rt
 - produto de 64 bits nos registradores HI/LO
 - mfhi rd / mflo rd
 - move dos registradores HI e LO para o rd

- Dois registradores de 32 bits para o produto:
 - HI: 32 bits mais significativos
 - LO: 32 bits menos significativos
- Instruções
 - mult rs, rt / multu rs, rt
 - produto de 64 bits nos registradores HI/LO
 - mfhi rd / mflo rd
 - move dos registradores HI e LO para o rd
 - mul rd, rs, rt
 - os 32 bits menos significativos do produto em rd