MID-SEMESTER EXAMINATION MTH-204, MTH-204A ABSTRACT ALGEBRA Spring-2023

Time Allowed: 2 hrs Max. Marks: 30

1. Give **complete** and **precise** definitions for the following.

[5]

- a. Group b. Quotient Group c. Isomorphism of Groups d. Direct Product of Groups e. Group action
- 2. Give an example of each of the following.

[4]

a. A non-abelian group of order 38.

And: $D_{19} = \{1, x, x^2, \dots, x^{18}, y, xy, x^2y, \dots, x^{18}y\}, x^{19} = y^2 = 1$ and $yx = x^{-1}y$, the dihedral group of order 38.

b. A group G and two elements x, y in G such that o(x) and o(y) are finite but o(xy) is infinite.

Ans: Take $G = GL_2(\mathbb{R})$, and two elements A and B such that

$$A = \left(\begin{array}{cc} -1 & 1 \\ 0 & 1 \end{array} \right), \qquad B = \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array} \right).$$

A and B each have order 2, but there product AB is of infinite order:

$$AB = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

To see this, note that

$$(AB)^n = \left(\begin{array}{cc} 1 & n \\ 0 & 1 \end{array}\right)$$

which is the identity matrix only for n = 0.

c. A subgroup of index 6 in S_4 .

Ans: $\{1, (12)(34), (13)(24), (14)(23)\}.$

d. A non-identity automorphism of Q_8 .

Ans: $i \mapsto j$, $j \mapsto i$ and $k \mapsto -k$ is a non-identity automorphism.

3. State the following theorems and prove any one of them.

[10]

- a. Lagrange's theorem.
- b. First isomorphism theorem for groups.
- c. Sylow's theorems.
- d. Cayley's theorem.
- e. Burnside's lemma.
- 4. Find all the subgroups of D_4 and determine which are normal.

[4]

Ans: The subgroups of $D_4 = \{1, x, x^2, x^3, y, xy, x^2y, x^3y\}$ are: $D_4, \{e\}, \{1, y\}, \{1, x^2y\}, \{1, x^3y\}, \{1, x^2\}, \{1, x, x^2, x^3\}, \{1, x^2, y, x^2y\}, \{1, x^2, xy, x^3y\}.$

The normal subgroups are D_4 , $\{e\}$, $\{1, x^2\}$, $\{1, x, x^2, x^3\}$, $\{1, x^2, y, x^2y\}$, $\{1, x^2, xy, x^3y\}$.

 $Z(D_4) = \{1, x^2\}$ and hence it is normal whereas $\{1, x, x^2, x^3\}, \{1, x^2, y, x^2y\}, \{1, x^2, xy, x^3y\}$ are of index 2, hence normal.

5. Prove that in a group of odd order a non identity element is not conjugate to its inverse. [4]

Ans: Suppose $x \neq 1$ is conjugate to x^{-1} . If $x = x^{-1}$, then $x^2 = 1$. Hence |G| is divisible by 2. This is a contradiction. Hence $x \neq x^{-1}$. Since $|C_x|$ is odd, C_x contains an element y which is neither x nor x^{-1} . Since x is conjugate to y, x^{-1} is conjugate to y^{-1} . Hence $y^{-1} \in C_x$. Since $y \neq y^{-1}$, we must conclude that $|C_x|$ is even. This is a contradiction.

6. Let S_3 act on the set $A = \{(i, j) : 1 \le i, j \le 3\}$ by $\sigma(i, j) = (\sigma(i), \sigma(j))$ for $\sigma \in S_3$ and $(i, j) \in A$. [4] Compute the orbits and stabilizers of this action.

Ans: $O_{(1,1)} = O_{(2,2)} = O_{(3,3)} = \{(1,1), (2,2), (3,3)\}.$

If $i \neq j$ the orbit $O_{(i,j)} = \{(k,l) : 1 \leq k, l \leq 3 \text{ and } k \neq l\}$.

The stabilizer of (1,1) is the set $\{id,(23)\}$ where id is the identity element in S_3 .

The stabilizer of (2,2) is the set $\{id,(13)\}$.

The stabilizer of (3,3) is the set $\{id,(12)\}$.

If $i \neq j$ then the stabilizer of (i, j) contains only the identity element.