Limits and continuous functions

Textbook Reading: [JL] Sections 3.1, 3.2 (Lebl)

Exercise 3.1.1: Find the limit (and prove it of course) or prove that the limit does not exist

a)
$$\lim \sqrt{x}$$
, for $c \ge 0$

a)
$$\lim_{x \to c} \sqrt{x}$$
, for $c \ge 0$ b) $\lim_{x \to c} x^2 + x + 1$, for $c \in \mathbb{R}$ c) $\lim_{x \to 0} x^2 \cos(1/x)$ d) $\lim_{x \to 0} \sin(1/x) \cos(1/x)$ e) $\lim_{x \to 0} \sin(x) \cos(1/x)$

c)
$$\lim_{x \to 0} x^2 \cos(1/x)$$

$$d) \lim_{x \to 0} \sin(1/x) \cos(1/x)$$

e)
$$\lim_{x\to 0} \sin(x) \cos(1/x)$$

Exercise 3.1.8: Find example functions f and g such that the limit of neither f(x) nor g(x) exists as $x \to 0$, but such that the limit of f(x) + g(x) exists as $x \to 0$.

- Prove the following:

Corollary 3.1.11. Let $S \subset \mathbb{R}$ and let c be a cluster point of S. Suppose $f: S \to \mathbb{R}$, $g: S \to \mathbb{R}$, and $h: S \to \mathbb{R}$ are functions such that

$$f(x) \le g(x) \le h(x)$$
 for all $x \in S \setminus \{c\}$.

Suppose the limits of f(x) and h(x) as x goes to c both exist, and

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x).$$

Then the limit of g(x) as x goes to c exists and

$$\lim_{x \to c} g(x) = \lim_{x \to c} f(x) = \lim_{x \to c} h(x).$$

Exercise 3.1.10: Suppose that $f: \mathbb{R} \to \mathbb{R}$ be a function such that for every sequence $\{x_n\}_{n=1}^{\infty}$ in \mathbb{R} , the sequence $\{f(x_n)\}_{n=1}^{\infty}$ converges. Prove that f is constant, that is, f(x) = f(y) for all $x, y \in \mathbb{R}$.

Exercise 3.2.1: Using the definition of continuity directly prove that $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) := x^2$ is continuous.

Exercise 3.2.2: Using the definition of continuity directly prove that $f:(0,\infty)\to\mathbb{R}$ defined by f(x):=1/xis continuous.

Exercise **3.2.3**: *Define* $f: \mathbb{R} \to \mathbb{R}$ *by*

$$f(x) := \begin{cases} x & \text{if } x \text{ is rational,} \\ x^2 & \text{if } x \text{ is irrational.} \end{cases}$$

Using the definition of continuity directly prove that f is continuous at 1 and discontinuous at 2.

Exercise 3.2.4: *Define* $f : \mathbb{R} \to \mathbb{R}$ *by*

$$f(x) := \begin{cases} \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Is f continuous? Prove your assertion.

Exercise **3.2.5**: *Define* $f: \mathbb{R} \to \mathbb{R}$ *by*

$$f(x) := \begin{cases} x \sin(1/x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Is f continuous? Prove your assertion.

Exercise 3.2.9: Give an example of functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ such that the function h, defined by h(x) := f(x) + g(x), is continuous, but f and g are not continuous. Can you find f and g that are nowhere continuous, but h is a continuous function?

Exercise 3.2.10: Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be continuous functions. Suppose that f(r) = g(r) for all $r \in \mathbb{Q}$. Show that f(x) = g(x) for all $x \in \mathbb{R}$.

Exercise 3.2.11: Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Suppose f(c) > 0. Show that there exists an $\alpha > 0$ such that for all $x \in (c - \alpha, c + \alpha)$, we have f(x) > 0.