Lista de exercícios - Estatística Inferencial

Estatística Inferencial

Wagner Hugo Bonat

Verossimilhança e Log-verossimilhança

- 1. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$. Escreva a verossimilhança e log-verossimilhança para μ e verifique se as condições de regularidade estão satisfeitas.
- 2. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança $\mu = 10$ e variância conhecida σ^2 . Escreva a verossimilhança e log-verossimilhança para σ^2 e verifique se as condições de regularidade estão satisfeitas.
- 3. Sejam Y_1, \ldots, Y_n v.a iid de uma população Poisson com esperança μ . Escreva a verossimilhança e log-verossimilhança para μ e verifique se as condições de regularidade estão satisfeitas.
- 4. Sejam Y_1, \ldots, Y_n v.a iid de uma população Binomial com n=1 e esperança μ . Escreva a verossimilhança e log-verossimilhança para μ e verifique se as condições de regularidade estão satisfeitas.
- 5. Sejam Y_1, \ldots, Y_n v.a iid de uma população Binomial com n = 10 e esperança $n\mu$. Escreva a verossimilhança e log-verossimilhança para μ e verifique se as condições de regularidade estão satisfeitas.
- 6. Sejam Y_1, \ldots, Y_n v.a. iid de uma população Uniforme com parâmetros a=0 e b desconhecido. Escreva a função de verossimilhança e log-verossimilhança para b e verifique se as condições de regularidade estão satisfeitas.
- 7. Considere as quatro observações $y_1 < 10$, $y_2 > 10$, $5 < y_3 < 10$ e $y_4 = 10$, escreva a função de verossimilhança e log-verossimilhança supondo que elas são iid provenientes de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$. Use o R ou qualquer outro software para desenhar a função de verossimilhança em cada caso.
- 8. Repita o exercício (7) para uma população Poisson com esperança μ .
- 9. Caso você tivesse que escolher entre apenas uma das quatro observações qual você escolheria? Explique.
- 10. Demonstre a desigualdade de Jensen.

Função escore e Informação de Fisher

- 1. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$.
- a) Obtenha a função escore e a matriz de informação de Fisher para μ .
- b) Mostre que a esperança da função escore é zero.
- c) Mostre que a variância da função escore corresponde a esperança da segunda derivada da logverossimilhança de μ .
- 2. Sejam Y_1, \ldots, Y_n v.a iid de uma população Binomial com esperança μ e n conhecido.
- a) Obtenha a função escore e a matriz de informação de Fisher para μ .
- b) Mostre que a esperança da função escore é zero.
- c) Mostre que a variância da função escore corresponde a esperança da segunda derivada da logverossimilhança de μ .
- 3. Sejam Y_1, \ldots, Y_n v.a iid de uma população Poisson com esperança μ .
- a) Obtenha a função escore e a matriz de informação de Fisher para μ .
- b) Mostre que a esperança da função escore é zero.
- c) Mostre que a variância da função escore corresponde a esperança da segunda derivada da logverossimilhança de μ .

- 4. Sejam Y_1, \ldots, Y_n v.a iid de uma população exponencial com esperança μ .
- a) Obtenha a função escore e a matriz de informação de Fisher para μ .
- b) Mostre que a esperança da função escore é zero.
- c) Mostre que a variância da função escore corresponde a esperança da segunda derivada da logverossimilhança de μ .
- 5. Sejam Y_1, \ldots, Y_n v.a iid de uma população geométrica de parâmetro μ .
- a) Obtenha a função escore e a matriz de informação de Fisher para μ .
- b) Mostre que a esperança da função escore é zero.
- c) Mostre que a variância da função escore corresponde a esperança da segunda derivada da logverossimilhança de μ .
- 6. Sejam Y_1, \ldots, Y_n v.a iid de uma população uniforme com parâmetros a=0 e b.
- a) Discuta como o estimador de máxima verossimilhança para b pode ser obtido neste caso.
- b) Obtenha a função e escore e verifique se as igualdades de Bartlett são válidas.
- 7. Sejam Y_1, \ldots, Y_n amostras iid com $E(Y_i) = \mu$ e $V(Y_i) = \sigma^2$. Considere os estimadores

$$\bar{Y} = \sum_{i=1}^{n} Y_i$$
, para μ e $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu)^2$, para σ^2 .

- a) Mosque que ambos são não viciados.
- b) Obtenha a variância de \bar{Y} e $\hat{\sigma}^2$.
- c) Mosque que ambos são consistentes.
- d) Considere o estimador

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2,$$

mostre que este estimador é viciado. d) Proponha uma correção para o estimador em c) de modo a torná-lo não viciado.

- 8. Sejam Y_1,Y_2,Y_3 uma amostra iid de uma v.a. com $E(Y_i)=\mu$ e $V(Y_i)=\sigma^2$ em que σ^2 é conhecido. Considere os estimadores $\hat{\mu}_1=\frac{Y_1+Y_2+Y_3}{3}$ e $\hat{\mu}_2=\frac{1}{2}Y_1+\frac{1}{4}Y_2+\frac{1}{4}Y_3$.
- a) Mostre que ambos são não viciados para μ .
- b) Obtenha a variância de $\hat{\mu}_1$ e $\hat{\mu}_2$.
- c) Mosque que ambos são consistente para μ .
- d) Qual estimador você prefere? Explique.
- 9. Sejam Y_1, \ldots, Y_n uma amostra iid de uma v.a. com $E(Y_i) = \mu$ e $V(Y_i) = \sigma^2$ em que σ^2 é conhecido. Considere os estimadores lineares $Y_L = \sum_{i=1}^n l_i Y_i$ em que $l_i \geq 0, i = 1, \ldots, n$ são constantes conhecidas.
- a) Sob quais condições Y_L é não viciado?
- b) Sob quais condições Y_L é eficiente?
- c) Sob quais condições Y_L é consistente?
- 10. Para cada um dos modelos abaixo, encontre o limite inferior de Cramér-Rao.
- a) Normal média μ e variância σ^2 com σ^2 conhecido.
- b) Normal média μ e variância σ^2 com μ conhecido.
- c) Poisson média μ .
- d) Binomial n conhecido e probabilidade de sucesso μ .
- e) Geométrica com parâmetro μ .
- f) Exponencial de média μ .

Distribuição assintótica da função escore

- 1. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$. Encontre a função escore para μ mostre que sua esperança é zero e obtenha a sua distribuição assintótica.
- 2. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança $\mu = 10$ e variância desconhecida σ^2 . Encontre a função escore para σ^2 mostre que sua esperança é zero e obtenha a sua distribuição assintótica.
- 3. Sejam Y_1, \ldots, Y_n v.a iid de uma população Poisson com esperança μ . Encontre a função escore para μ mostre que sua esperança é zero e obtenha a sua distribuição assintótica.
- 4. Sejam Y_1, \ldots, Y_n v.a iid de uma população exponencial de esperança μ . Encontre a função escore para μ mostre que sua esperança é zero e obtenha a sua distribuição assintótica.
- 5. Sejam Y_1, \ldots, Y_n v.a. iid de uma população Uniforme com parâmetros a = 0 e b desconhecido. Encontre a função escore para b, obtenha sua esperança e se possível sua distribuição assintótica.

Estimador de máxima verossimilhança

- 1. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$. Encontre o estimador de máxima verossimilhaça para μ e obtenha sua distribuição assintótica.
- 2. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança $\mu = 10$ e variância desconhecida σ^2 . Encontre o estimador de máxima verossimilhaça para σ^2 e obtenha sua distribuição assintótica.
- 3. Sejam Y_1, \ldots, Y_n v.a iid de uma população Poisson com esperança μ . Encontre o estimador de máxima verossimilhaça para σ^2 e obtenha sua distribuição assintótica.
- 4. Sejam Y_1, \ldots, Y_n v.a iid de uma população Binomial com n=1 e esperança μ . Encontre o estimador de máxima verossimilhaça para σ^2 e obtenha sua distribuição assintótica.
- 5. Sejam Y_1, \ldots, Y_n v.a iid de uma população Binomial com n = 1 e esperança μ . Encontre o estimador de máxima verossimilhaça para σ^2 e obtenha sua distribuição assintótica.
- 6. Sejam Y_1, \ldots, Y_n v.a iid de uma população exponencial com esperança μ . Encontre o estimador de máxima verossimilhaça para μ e obtenha sua distribuição assintótica.
- 7. Sejam Y_1, \ldots, Y_n v.a. iid de uma população Uniforme com parâmetros a=0 e b desconhecido. Encontre o estimador de máxima verossimilhaça para b e obtenha sua distribuição.
- 8. Considere quatro observações $y_1 < 10$, $y_2 > 10$, $5 < y_3 < 10$ e $y_4 = 10$, provenientes de uma população Normal com esperança μ e variância conhecida $\sigma^2 = 1$. Obtenha o estimador de máxima verossimilhança para μ . Dica use um otimizador numérico como a optim() em R.
- 9. Considere quatro observações $y_1 < 10$, $y_2 > 10$, $5 < y_3 < 10$ e $y_4 = 10$, provenientes de uma população Poisson com esperança μ . Obtenha o estimador de máxima verossimilhança para μ . Dica use um otimizador numérico como a optim() em R.

Família exponencial

- 1. Escreva as seguintes distribuições na forma da família exponencial:
 - a) Normal (variância conhecida).
 - b) Exponencial.
 - c) Poisson.
 - d) Binomial.
 - e) Normal inversa.
 - f) Geométrica.

Vetor de parâmetros

- 1. Sejam Y_1, \ldots, Y_n v.a iid de uma população Normal com esperança μ e variância desconhecida σ^2 . Encontre o estimador de máxima verossimilhaça para μ e σ^2 . Obtenha a distribuição assintótica e um intervalo de confiança para ambos.
- 2. Sejam Y_1,\ldots,Y_n v.a iid de uma população Gamma com esperança μ e dispersão desconhecida λ . Neste caso a fdp é dada por

$$f(y; \mu, \lambda) = \frac{\lambda^{\lambda} e^{-\lambda}}{\Gamma(\lambda)} y^{-1} \exp\left\{-\lambda \left(\frac{y}{\mu} - \log \frac{y}{\mu} - 1\right)\right\}.$$

Suponha que a seguinte amostra foi observada: $y_i = 35.81, 8.21, 0.02, 8.31, 14.43, 11.48, 20.88, 2.81, 40.03$. Encontre o estimador e estimativa de máxima verossimilhaça para μ e λ baseado na amostra observada. Numericamente quando necessário. Obtenha a distribuição assintótica e um intervalo de confiança para μ e λ .

3. Sejam Y_1, \ldots, Y_n v.a iid de uma população von Mises de parâmetros μ e λ . Neste caso a fdp é dada por

$$f(y; \mu, \lambda) = \frac{1}{2\pi I_0(\lambda)} \exp\left\{\lambda \cos(y - \mu)\right\}, \quad \text{para} \quad 0 \le y \le 2\pi, \quad \text{e} \quad \mu \in [0, 2\pi), \lambda > 0.$$

A função $I_0(\lambda)$ é a função Bessel modificada dada por

$$I_0(\lambda) = \int_0^{2\pi} \exp(\lambda \cos y) dy.$$

Suponha que a seguinte amostra foi observada: $y_i = 1.17, 0.64, 0.59, 0.38, 0.20, 0.63, 0.67, 0.38, 0.69, 0.72.$ Encontre o estimador e estimativa de máxima verossimilhaça para μ e λ baseado na amostra observada. Numericamente quando necessário. Obtenha a distribuição assintótica e um intervalo de confiança para μ e λ .

4. Sejam Y_1, \ldots, Y_n v.a iid de uma população Simplex de parâmetros μ e σ^2 . Neste caso a fdp é dada por

$$f(y;\mu,\sigma) = [2\pi\sigma^2\{y(1-y)\}^3]^{-1/2} \exp\left\{-\frac{1}{2\sigma^2}\frac{(y-\mu)^2}{y(1-y)\mu^2(1-\mu)^2}\right\},$$

onde $0 < y, \mu < 1$ e $\sigma^2 > 0$. Suponha que a seguinte amostra foi observada: $y_i = 0.48, 0.48, 0.50, 0.51, 0.50, 0.49, 0.51, 0.52, 0.50, 0.48.$ Encontre o estimador e estimativa de máxima verossimilhaça para μ e σ^2 baseado na amostra observada. Numericamente quando necessário. Obtenha a distribuição assintótica e um intervalo de confiança para μ e σ^2 .

5. Sejam Y_1, \ldots, Y_n v.a iid de uma população Beta de parâmetros α e β . Neste caso a fdp é dada por

$$f(y; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} y^{\alpha - 1} (1 - y)^{\beta - 1},$$

onde B é a função beta definida por

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

Suponha que a seguinte amostra foi observada: $y_i = 0.48, 0.48, 0.50, 0.51, 0.50, 0.49, 0.51, 0.52, 0.50, 0.48.$ Encontre o estimador e estimativa de máxima verossimilhaça para μ e σ^2 baseado na amostra observada. Numericamente quando necessário. Obtenha a distribuição assintótica e um intervalo de confiança para α e β .

6. Sejam Y_1, \ldots, Y_n v.a iid de uma população Power exponencial de parâmetros μ , σ^2 e ρ . Neste caso a fdp é dada por

$$f(y; \mu, \sigma, \rho) = \frac{\rho(2\sigma^2)^{-1/\rho}}{2\Gamma(1/\rho)} \exp\left\{-\frac{1}{2\sigma^2}|y - \mu|^\rho\right\},\,$$

onde $y, \mu \in \Re$ e $\sigma, \rho > 0$. Suponha que a seguinte amostra foi observada: $y_i = \$$. Encontre o estimador e estimativa de máxima verossimilhaça para μ e σ^2 baseado na amostra observada fixando o $\rho = 1$ e $\rho = 2$. Proponha uma estratégia para estimar o parâmetro ρ . Numericamente quando necessário. Obtenha a distribuição assintótica e um intervalo de confiança para μ e σ para os casos anteriores.

Suficiência

- 1. Sejam Y_1, \ldots, Y_n uma amostra iid de uma população B(1, p). Verifique se a estatística $T = \sum_{i=1}^n Y_i$ é suficiente para p.
- 2. Considere a mesma situação do Exercício 1, com n=3 e $T=Y_1+2Y_2+Y_3$. Verifique se T é suficiente para p.
- 3. Sejam Y_1, \ldots, Y_n uma amostra iid de uma população Poisson $P(\theta)$. Verifique se $T = \sum_{i=1}^n Y_i$ é suficiente para θ .
- 4. Sejam Y_1, \ldots, Y_n uma amostra iid de uma população $U(0, \theta)$. Encontre uma estatística suficiente para θ usando o Critério da fatorização.
- 5. Sejam Y_1, \ldots, Y_n uma amostra iid de uma população $G(\alpha, \beta)$. Encontre uma estatística conjuntamente suficiente para $\alpha \in \beta$.

Testes de hipóteses

1. Sejam Y_1, \ldots, Y_n uma amostra de uma v.a com função densidade

$$f(y,\theta) = \theta^2 y e^{-\theta y}, \quad y,\theta > 0.$$

Obtenha a estatística dos testes LRT, Wald e Score para testar $H_0: \theta = 1$ vs $H_1: \theta = 2$.

- 2. Sejam Y_1, \ldots, Y_n uma amostra iid de uma população $N(\mu, 1)$. Obtenha a estatística dos testes LRT, Wlad e Score para testar $H_0: \mu = 4$ vs $H_1: \mu \neq 4$. Suponha que a seguinte amostra foi observada $y_i = 4.36, 4.47, 7.01, 5.59, 6.61, 5.09, 5.57, 7.99, 6.11, 4.84. Qual a sua conclusão aos níveis 10%, 5% e 1% de significância.$
- 3. Sejam Y_1, \ldots, Y_n uma amostra iid de uma população $Exp(\theta)$. Encontre o LRT, Wald e score testes para testar $H_0: \theta = 1$ vs $H_1: \theta \neq 1$. Se você observar $y_i = 0.8, 1.3, 1.8, 0.9, 1.0$ qual a sua decisão ao nível de 5%.
- 4. Sejam Y_1, \ldots, Y_n uma amostra iid de uma população $Y \sim N(\mu_Y, 9)$ e X_1, \ldots, X_m uma amostra iid de uma população $X \sim N(\mu_X, 25)$. Sendo as amostras independentes construa um teste para avaliar $H_0: \mu_Y = \mu_X$ vs $H_1: \mu_Y \neq \mu_X$. Sendo n = 9, $\sum y_i = 3.4$ e m = 16 e $\sum x_i = 4.3$. Qual a sua conclusão a um nível de significância de 5%?
- 5. Sejam X_1, \ldots, X_n uma amostra iid de uma população $X \sim P(\theta_1)$ e Y_1, \ldots, Y_m uma amostra iid de uma população $Y \sim N(\theta_2)$. Sendo as amostras independentes construa um teste para avaliar $H_0: \theta_1 = \theta_2$ vs $H_1: \theta_1 \neq \theta_2$. Sendo n = 5, $\sum x_i = 3.8$ e m = 8 e $\sum y_i = 4.8$. Qual a sua conclusão a um nível de significância de 5%?