Indução

Método de Prova por Indução

Referência: Language, Proof and Logic

Jon Barwise e John Etchemendy, 2008

Capítulo: 16

Indução

- Métodos de prova já vistos
 - relacionam-se diretamente com as propriedades das conetivas e quantificadores
- Exceções
 - Prova por contradição: usa-se para qualquer tipo de fórmula
 - Provas para afirmações numéricas
- Provar afirmações da forma

$$\forall x \ [P(x) \to Q(x)]$$

- Prova condicional geral já usada para este efeito
- Indução necessária quando P(x) tem definição indutiva

Métodos indutivos e indução matemática

■ No raciocínio científico

- indução usada para retirar uma conclusão geral a partir de um número finito de observações
 - o em termos lógicos: inferência não é justificada
 - novas observações podem invalidar a conclusão

Indução matemática

conclusão geral, válida para um número infinito de instâncias, é justificada com uma prova finita

Aplicação mais usual

- domínio dos inteiros
- indução aplicável porque a definição dos inteiros é naturalmente indutiva
- uso n\(\tilde{a}\) restrito a este dom\(\tilde{n}\)io

Imagem para a indução

- Cadeia de dominós
 - quando se derruba o primeiro: todos caem
- □ Arranjo dos dominós -- definição indutiva
- □ Fazer cair todos -- provar teorema por indução
- □ Requisitos para que os dominós caiam todos:
 - posições tais que quando um cai faz cair o seguinte --passo indutivo
 - o primeiro cai -- passo de base
- □ Número de peças que uma peça faz cair: sem restrições
 - podem montar-se esquemas complexos

Definições indutivas

- Exemplos anteriores
 - definição de wff
 - definição de termos aritméticos
- Esquema geral
 - dizer como são os elementos "simples"
 - dizer como gerar novos elementos partindo dos que já se têm
- Exemplo: definir *ambig-wff*

```
A_1, A_2, ..., A_n símbolos proposicionais \neg \land \lor \rightarrow \longleftrightarrow conetivas
```

- (1) Cada símbolo proposicional é uma ambig-wff
- (2) Se p é ambig-wff, também ¬p é ambig-wff
- (3) Se p e q são ambig-wff, $p \land q$, $p \lor q$, $p \rightarrow q$, $p \leftrightarrow q$ também o são
- (4) As únicas ambig-wff são as geradas por aplicação repetida de (1), (2) e (3)

Definição indutiva

Cláusula de base

especifica os elementos básicos do conjunto a definir

Uma ou mais cláusulas indutivas

descrevem a forma de gerar novos elementos

Cláusula final

estabelece que os elementos ou são básicos ou gerados pelas cláusulas indutivas

Verificação de definições indutivas

- \blacksquare A1 \vee A2 $\land \neg$ A3 é ambig-wff
- □ Prova:

A1, A2 e A3 são ambig-wff pela cláusula (1)

¬A3 é ambig-wff pela cláusula (2)

A2 ∧¬A3 é ambig-wff pela cláusula (3)

A1 ∨ A2 ∧¬A3 é ambig-wff pela cláusula (3)

□ Porque se chamará esta linguagem ambig-wff?

Inferência sobre definição indutiva

- **Proposição 1**: Toda a ambig-wff tem pelo menos 1 símbolo proposicional
- □ Prova:
 - Base:
 - o cada símbolo proposicional contém 1 símbolo proposicional
 - Indução:
 - o p e q são ambig-wff que contêm pelo menos 1 símbolo proposicional
 - o as ambig-wff geradas por (2) e (3) a partir destas também têm pelo menos 1 símbolo proposicional:
 - − p tem os símbolos proposicionais de p
 - p∧q, p∨q, p→q, p↔q têm os símbolos proposicionais de p e de q
 - Cláusula (4) justifica a conclusão: nada é ambig-wff exceto os elementos base e as fórmulas geradas a partir deles aplicando (2) e (3)

Princípio da indução matemática

- □ Forma da afirmação: condicional geral
- □ Antecedente: definido indutivamente (Dom)

$$\forall p [(p \in Dom) \rightarrow Q(p)]$$

- □ Forma da prova
 - Passo base: mostrar que os elementos base satisfazem Q
 - Passo indutivo: admitindo que alguns elementos satisfazem Q
 mostrar que os elementos que são gerados a partir deles pelas cláusulas indutivas também satisfazem Q

Hipótese indutiva

Conclusão: todos os elementos do domínio satisfazem Q

Indução na complexidade da fórmula

- □ S conjunto de fórmulas ambig-wff, construído a partir de definição indutiva (admitindo que só há 2 símbolos proposicionais A e B)
- $\square | S(0) = \{A, B\}$ caso base
- $S(1) = S(0) \cup \{ \neg A, \neg B, A \land A, A \land B, B \land A, B \land B, A \lor A, A \lor B, B \lor A, B \lor B, A \rightarrow A, A \rightarrow B, B \rightarrow A, B \rightarrow B, A \leftrightarrow A, A \leftrightarrow B, B \leftrightarrow A, B \leftrightarrow B \}$
- □ ... passo indutivo
- \square $S(n) = {...}$ (fórmulas com n níveis de operadores)
- \square $S(n+1) = {...}$ (fórmulas com n+1 níveis de operadores)
- **...**

Árvore de análise

- \Box A1 \vee A2 $\wedge \neg$ A3
 - Duas árvores de análise possíveis
 - Nível 3 e nível 2

Uso de indução

□ Proposição 2:

Nenhuma ambig-wff tem o símbolo \neg imediatamente antes de uma das conetivas \land , \lor , \rightarrow , \leftrightarrow

 $\forall p [(p \in ambig-wff) \rightarrow Q(p)]$

□ Prova:

- -Passo base: Q(p) verifica-se para as ambig-wff dadas por (1)
- -Passo indutivo:
 - o Caso 1: por (2), se p tem propriedade Q, também ¬p
 - Caso 2: por (3) se p tem propriedade Q, também $p \land q$, $p \lor q$, $p \rightarrow q$, $p \leftrightarrow q$
- Problema: nenhum dos casos se pode provar

Paradoxo do inventor

- □ Caso 1: não se pode provar
 - →A1 verifica Q e \neg →A1 não verifica
- □ Caso 2: não se pode provar
 - A1¬ e A2 verificam Q e A1¬ ∨A2 não verifica
- Caso em que uma prova indutiva encrava
 - Afirmação a provar é verdadeira
 - Para prová-la tem de se provar algo mais forte
- Nova condição na Proposição 2:
 - Q': não começar por conetiva binária, não terminar em ¬ nem ter ¬ imediatamente antes de uma conetiva binária
 - Caso 1: óbvio
 - Caso2: por considerações acerca das propriedades de p e q

Cláusula final da definição indutiva

- Qual o estatuto da cláusula
 - (4) Nada é ambig-wff a menos que seja gerado por aplicações sucessivas de (1), (2) e (3)
 - Refere, para além de objetos que estão a ser definidos, as outras cláusulas da definição
 - usa noção de "aplicação repetida"
- Expressão em LPO:
 - Direta para as cláusulas (1), (2) e (3)

 - \square (2) $\forall p \text{ [ambig-wff(p)} \rightarrow \text{ambig-wff(concat('¬', p))]}$

 - Não existe tradução deste tipo para (4)

Definições indutivas em Teoria de Conjuntos

- □ Definições indutivas: podem exprimir-se na linguagem da Teoria de Conjuntos
- Ambig-wff
 - O conjunto S das ambig-wff é o menor conjunto que verifica
 - (1) Cada símbolo de proposição está em S
 - (2) Se p está em S, ¬p está em S
 - (3) Se p e q estão em S, p∧q, p∨q, p \rightarrow q, p \leftrightarrow q também estão
- □ (4) foi substituída pela referência a "o menor conjunto que satisfaz (1), (2) e (3)"

Provas

- □ Para provar que todas as ambig-wff estão em Q
 - conjunto S das ambig-wff é subconjunto de Q $S \subseteq Q$
 - Se Q satisfaz (1) (3)
 - S \subseteq Q pela definição
- □ Problema na prova da Proposição 2
 - Q não satisfaz (2) ou (3)
 - Q' é conjunto mais restrito, verifica (1) (3)
 - $-S \subseteq Q' \subseteq Q$
 - logo S \subseteq Q : resultado pretendido
 - O paradoxo do inventor significa ter que inventar uma condição mais forte para provar, que é satisfeita por menos elementos, mas que permite avançar no raciocínio

Indução sobre os naturais

- Definição indutiva dos números naturais
 - 1. 0 é um número natural
 - 2. Se n é natural, n+1 é natural
 - 3. Nada é um natural excepto os resultados da aplicação repetida de (1) e (2)
- Em teoria de conjuntos

N, o conjunto dos naturais, é o conjunto mais pequeno que satisfaz

- $(1) 0 \in \mathbb{N}$
- (2) Se $n \in \mathbb{N}$, $n+1 \in \mathbb{N}$
- □ Prova indutiva sobre N

$$\forall x [(x \in \mathbb{N} \to x \in Q)]$$

De:

$$(1) 0 \in \mathbf{Q}$$

(2) Se $n \in Q$ então $n+1 \in Q$ pode concluir-se $\mathbb{N} \subseteq Q$

Exemplo: soma de n naturais

- □ Para todo o número natural n, a soma dos n primeiros naturais é n(n+1)/2
- □ Prova:

Q(n): a soma dos n primeiros naturais é n(n+1)/2

Caso base: a soma dos 0 primeiros naturais é 0

____hipótese

afirmação a provar

Passo indutivo: Seja um número natural k para o qual Q(k) se verifica

Soma dos k primeiros naturais é k(k+1)/2

Soma dos primeiros k+1 naturais:

$$1+2+...+k + k+1 =$$

usar a hipótese

$$k(k+1)/2 + k+1 = (k+1)(k/2+1) = (k+1)(k+2)/2$$

portanto Q(k+1) também se verifica.

conclusão

Exemplo: fatorial

Definição de fatorial

$$- n! = \begin{cases} 1 & se \ n = 0 \\ n(n-1)(n-2) \dots 2.1 & se \ n \ge 1 \end{cases}$$

Exemplos

$$-0! = 1$$
 $1! = 1$ $3! = 3.2.1 = 6$ $6! = 6.5.4.3.2.1 = 720$

Propriedade do fatorial

- Use indução para mostrar que o fatorial cresce mais rápido que a exponencial: $n! \ge 2^{n-1}$ para todo o $n \ge 1$
- □ Estrutura indutiva: números naturais
- □ Afirmação Q(n): $n! \ge 2^{n-1}$
- **Passo base:** Q(1): $1! \ge 2^{1-1} = 2^0 = 1$
- □ **Passo indutivo**: provar que $(n+1)! \ge 2^n$

$$(n+1)! = (n+1)n(n-1)(n-2)...2.1$$
 descobrir $Q(n)$ em $Q(n+1)$ para usar a hipótese $\geq (n+1) \ 2^{n-1}$ pela hipótese $\geq 2.2^{n-1}$ $(n+1) \geq 2$ $= 2^n$.

Exponencial e fatorial

O fatorial aumenta mais rapidamente que a exponencial

Provar propriedades de programas

Programa

```
void Funtion(int n)
   {int x,y,z;}
          x = n;
          z = 1;
          y = 0;
      while (x>0)
          y = z+y;
          z = z+2;
          x = x-1;
      printf("n^2 = %d, 2n+1 = %d", y, z);
```

□ Provar: quando executado, o programa imprime os valores de n² e 2n+1 para uma entrada n

Prova

- Para provar a propriedade do programa
- **Lema 1**: Dada uma entrada n, haverá exatamente n iterações do ciclo while
 - Prova: por indução

 \forall n [(n é entrada \rightarrow Q(n)]

Q: há exatamente n iterações do ciclo

Caso base: n= 0 para x=0 não se entra no ciclo while

<u>Passo indutivo</u>: Seja um número natural k para o qual Q(k) se verifica

Se a entrada for k+1: x fica com k+1

Entra-se no ciclo, é executado 1ª vez e x decrementado

Agora x=k e o ciclo é executado k vezes

No total: ciclo executado k+1 vezes

Prova

- Lema 2: Depois de k iterações do ciclo while, y e z têm os valores k² e 2k+1, respetivamente
 - Prova: por indução

Invariante do ciclo

$$\forall k \ [k \in \mathbb{N} \to Q(k)]$$

Q: depois de k iterações do ciclo while, y e z têm os valores k² e 2k+1

Caso base: k=0 ciclo não é executado, $y=0=k^2$ e z=1=2k+1

<u>Passo indutivo</u>: Seja um número natural k para o qual Q(k) se verifica Após mais uma iteração do ciclo while:

$$y = z+y = k^2 + 2k+1 = (k+1)^2$$

$$z = z+2 = 2k+1 +2 = 2(k+1) +1$$

Cálculo do fatorial

```
Fatorial(n){
i=1
fat=1
while (i<n) {
 i=i+1
 fat= fat*i
```

- Mostrar que, no final, fat=n!
- □ Invariante (afirmação a provar): no final de cada ciclo fat=i!
- \square Base: antes do ciclo i=1 e fat =1=i!
- Indutivo: assumir que fat=i!; se i<n executa-se outro ciclo e i passa a i+1 e fat passa a fat*(i+1)=i!*(i+1)= (i+1)!</p>

Exemplo

□ Prove que 5ⁿ-1 é divisível por 4, para n≥1.

- ☐ Afirmação Q(n): $5^n-1 = 4k$ (k inteiro)
- □ Passo base: n=1, $5^1-1=4$ é divisível por 4
- □ Passo indutivo:

$$5^{n+1}-1 = 5.5^{n}-1$$

= $(4+1)5^{n}-1$
= $4(5^{n}) + 5^{n}-1$
= $4(5^{n})+4k$ pela hipótese
= $4(5^{n}+k)$ é divisível por 4

Números harmónicos

Número harmónico de ordem k

- Mostre que $H_{2^n} \ge 1 + \frac{n}{2}$
 - isto é, os números harmónicos podem ser arbitrariamente grandes

$$\Box H_1 = 1$$

$$\Box H_2 = 1 + \frac{1}{2}$$

- Analisar alguns exemplos iniciais para mais tarde abstrair
- Manter a estrutura toda para evidenciar relações

Números harmónicos (cont.)

□ Afirmação Q(n):
$$H_{2^n} \ge 1 + \frac{n}{2}$$

- □ Passo base: $H_{2^0} = 1 \ge 1 = 1 + \frac{0}{2}$
- Passo indutivo

$$= H_{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}}$$

$$\geq 1 + \frac{n}{2} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}}$$
 pela hipótese

$$\geq 1 + \frac{n}{2} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}}$$
 porque $\frac{1}{2^{n+1}} \geq \frac{1}{2^{n+1}}$

$$= 1 + \frac{n}{2} + 2^n \frac{1}{2^{n+1}} = 1 + \frac{n}{2} + \frac{1}{2} = 1 + \frac{n+1}{2}$$

Números harmónicos (cont.)

□ Afirmação Q(n): $H_{2^n} \le 1 + n$

- □ Passo base: $H_{2^0} = 1 \le 1 = 1 + 0$
- Passo indutivo

$$= H_{2^n} + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}}$$

$$\le 1 + n + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}}$$
 pela hipótese

$$\leq 1 + n + \frac{1}{2^{n+1}} + \dots + \frac{1}{2^{n+1}} \text{ porque } \frac{1}{2^{n+1}} \geq \frac{1}{2^{n+1}}$$

$$= 1 + n + 2^n \frac{1}{2^{n+1}} \le 1 + (n+1)$$

Forma forte da indução matemática

- □ Dada uma afirmação Q(n) suponha que
- 1. Q é verdade para um inteiro n_0
- 2. Se $k > n_0$ é um inteiro qualquer e P é verdade para todos os inteiros l na gama $n_0 \le l < k$, então também é verdade para k

Então Q(n) é verdade para todos os inteiros $n \ge n_0$.

- □ Aplica-se por exemplo nas expressões ambig-wff para permitir usar numa prova subexpressões de todas as iterações anteriores da definição indutiva
- □ Prova-se que esta forma é **equivalente** à forma normal do princípio da indução matemática

Princípio da boa ordenação

Princípio da boa ordenação para inteiros não negativos

Qualquer conjunto de inteiros não negativos tem um elemento mínimo

□ É também equivalente às duas formas da indução, usando a definição indutiva na forma de conjunto de inteiros