Beschreibende Statistik

Lageparameter

Arithmetisches Mittel

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + \dots + a_n)$$

Geometrisches Mittel

$$\bar{x}_{geom} = \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}$$

Median

$$\tilde{x} = \begin{cases} x_{\frac{n+1}{2}} \\ \frac{1}{2} (x_{\frac{n}{2}} + x_{\frac{n}{2}+1}) \end{cases}$$

Der Median \tilde{x} minimiert die Funktion $\sum |x_i - \bar{x}|$

Streungsmaße

(empirische) Varianz

$$var = \sigma^2 = s_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Standardabweichung

$$\sigma = s_n = \sqrt{\sigma^2}$$
$$\sigma = s_n = \sqrt{s_n^2}$$

mittlere absolute Abweichung

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-\tilde{x}|$$
 für Median

 $\frac{1}{n}\sum_{i=1}^{n}|x_i-\bar{x}|$ für arithmetisches Mittel

Kovarianz und Korrelationskoeffizient

Kovarianz

$$cov(x,y) = S_{xy} = \frac{1}{n-1} \sum_{i=1}^{n-1} (x_i - \bar{x}) \cdot (y_i - \bar{y})$$

Korrelationskoeffizent

$$r_{xy} = \frac{S_{xy}}{S_x \cdot S_y}$$

Der Korrelationskoeffizent liegt immer zwischen $-1 \le r \le +1$. Je näher r_{xy} bei -1 (negative Korellation/Steigung), oder +1 (positive Steigung/Korrelation) liegt, desto genauer schmiegen sich die Messwerte an eine Gerade an. Bei r_{xy} nahe 0 gibt es keinen *linearen* Zusammenhang zwischen den Merkmalen.

Regressionsrechnung

Regressionsgerade

Variante 1
$$y = \bar{y} + \frac{S_{xy}}{\sigma_x^2} \cdot (x - \bar{x})$$
Variante 2
$$y = b + a \cdot x$$

$$a = \frac{S_{xy}}{\sigma_x^2} \text{ und } b = \bar{y} - a \cdot \bar{x}$$

Kleinste quadratische Abweichung

Die Parameter a, b, c, \dots werden so gewählt,

$$Q(a, b, c, \dots) = \sum_{i=1}^{\text{dass}} (y_i - f_{a,b,c,\dots}(x_i))^2$$
minimal ist

Nullsetzen der partiellen Ableitungen:

$$\frac{\delta}{\delta a}Q(a,b) = 0$$
$$\frac{\delta}{\delta b}Q(a,b) = 0$$

Über die Ableitungen lassen sich die Parameter finden welche die vorgegebene Funktion ambesten annähern

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitsräume

Der Wahrscheinlichkeitsbegriff

$$Ergebnismenge = \Omega$$
 Beispiel Würfel $\Omega = \{1, 2, 3, 4, 5, 6\}$ Ein Ereignis ist eine Teilmenge der Ergebnismenge $\varnothing \subseteq \Omega = \text{unm\"{o}gliches}$ Ereignis $\Omega \subseteq \Omega = \text{Ereign}$

 $A = \{1, 2, 3\}$ Ereignis

 $\bar{A} = \{4, 5, 6\}$ Gegenereignis

Elementarereignis

einelementige Teilmenge von Ω Ereignis, eine 3 werfen

$$B = \{3\} \\ P(\{3\}) = \frac{1}{6}$$

Laplace-Versuch

Jedes Elementarereignis ist gleich wahrscheinlich

$$P(\{\omega_i\}) = \frac{1}{|\Omega|}$$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{3}{6} = \frac{1}{2}$$

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit

Wahrscheinlichkeit für A unter der Bedingung B $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $P(\bar{A}|B) = 1 - P(\bar{A}|B)$

Formel von Bayes

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Satz der totalen Wahrscheinlichkeit

$$P(A) = \sum_{i=0}^{n} (P(A|B_i) \cdot P(B_i))$$

Allgemeine Regeln

$$P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(\bar{A}) = 1 - P(A)$$

$$P(A \cup B) = P(\bar{A} \cap \bar{B})$$

$$P(A \cap B) = P(\bar{A} \cup \bar{B})$$

Wenn A und B unabhängig, dann gilt $P(A \cap B) = P(A) \cdot P(B)$

Zufallsvariablen

Eine Zufallsvariable ist eine Zuordnungsvorschrift die jedem möglichen Ergebnis eines Zufallsexperiments eine Größe zuordnet

$$X = k = \{\omega \in \Omega | X(\omega = k) \}$$

$$X = 3 = \{\omega \in \Omega | X(\omega = 3) \}$$

$$X < k = \{\omega \in \Omega | X(\omega < k) \}$$

Diskrete Verteilungen

Binomialverteilung

Mit zurücklegen, Wahrscheinlichkeit für jedes Ereignis gleich $X \sim B(n, p)$ n =: Stichprobenumfang

p =: Wahrscheinlichkeit(p muss bei Binomialverteilung fest bleiben) $P(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n-k}$

$$P(X \le k) = \sum_{i=0}^{k} {n \choose i} \cdot p^i \cdot (1-p)^{n-i}$$
$$P(X > k) = 1 - P(X \le k)$$

Eingabe Taschenrechner $\binom{n}{l} = n |nCr| k$

Binomialverteilung kann mit der Normalverteilung approximiert werden, bedingung ist

$$X \sim B(n, p) \stackrel{a}{=} N(n \cdot p, n \cdot p \cdot (1 - p))$$
falls gilt
$$n \cdot p \cdot (1 - p) > 9$$

Hypergeometrische Verteilung

Ohne zurücklegen, Wahrscheinlichkeit ändert sich nach jedem Ereignis $X \sim H(N, M, n)$ n =: Stichprobenumfang

N=: Gesamtzahl M=: Anzahl der Elemente mit der Eigenschaft

$$P(X = k) = \frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{n}}$$

$$P(X \le k) = \sum_{i=0}^{k} \frac{\binom{M}{i} \cdot \binom{N-M}{n-i}}{\binom{N}{n}}$$

$$P(X > k) = 1 - P(X \le k)$$

Poisson Verteilung

$$X \sim Pois(\lambda)$$

$$P(X = k) = \pi_{\lambda}(k) = \frac{\lambda^{k}}{k!} \cdot e^{-\lambda}$$

Geometrische Verteilung

$$X \sim Geom(n, p)$$

$$P(X = n) = (1 - p)^{n-1} \cdot p^n$$

Beispiel: Ein Würfel wird so lange gewürfelt bis eine 6 Auftritt. Die Zufallsvariable X ist gleich Anzahl der Würfe

Stetige Verteilungen

Normalverteilung

$$X \sim N(\mu, \sigma^2)$$

Ist $X \sim N(0, 1)$ dann heißt sie

Standardnormalverteilt Jede Normalverteilung kann standardisiert werden, das heißt die Mitte der Kurve wird auf den Nullpunkt gesetzt

Wenn $X \sim N(\mu, \sigma^2)$ verteilt ist dann ist die standardisierte Zufallsvariable $Z = \frac{x-\mu}{z} \sim N(0,1)$ standardnormalverteilt Ist die Zufallsvariable standardverteilt kann die Wahrscheinlichkeit aus der Tabelle

> abgelesen werden $P(X \le k) = \Phi(k)$ $P(X = k) = \Phi(k) = 0$ $P(X < -k) = 1 - \Phi(+k)$

allgemein gilt

$$X \sim N(\mu, \sigma^2)$$

$$P(X \le k) = \Phi(\frac{k-\mu}{\sigma})$$

Quantile der Normalverteilung

Tabelliert ist das β -Quantil z_{β} der Normalverteilung N(0,1) $P(X \leq z_{\beta} = \beta)$

$$z_{1-\beta} = -z_{\beta}$$

Beispiel

$$\beta = 0.9 = z_{\beta} = 1.28155$$

Exponentialverteilung

Eine exponentialverteilte Zufallsvariable T hat die Dichte

$$f(t) = \begin{cases} \lambda \cdot e^{-\lambda \cdot t}, t \ge 0\\ 0, t < 0 \end{cases}$$

und daraus eribt sich die Verteilungsfunktion $F(x) = P(T \le x)$

$$P(T \le x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 1 - e^{-\lambda \cdot x}, x \ge 0\\ 0, x < 0 \end{cases}$$

Die Exponentialverteilung ist Gedächtnislos

Erwartungswert und Varianz

Erwartungswert

Zufallsvariable mit diskreter Verteilung

$$\mu = E(X) = \sum_{i=0}^{n} (x_i \cdot p_i)$$

Zufallsvariable mit Dichtefunktion f

$$\mu = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

Exponentialverteilung mit Zufallsvariable T

$$E(T) = \sigma_T = \frac{1}{\lambda}$$

Für Binomialverteilung

$$\mu = E(X) = n \cdot p$$

Für geometrische Verteilung

$$\mu = E(X) = \frac{1}{p}$$

Für Poissonverteilung

$$\mu = E(X) = \lambda$$

Für Hypergeometrischeverteilung

$$E(S_n) = E(X_1 + ... + X_n) = n \cdot E(X_1) = n \cdot \frac{M}{N}$$

Allgemeine Regeln für den Erwartungswert $a, b \in \mathbb{R}$

$$E(aX + b) = a \cdot E(X) + b$$

$$E(X + Y) = E(X) + E(Y)$$

$$E(aX + bY) = a \cdot E(X) + b \cdot E(Y)$$

Varianz

Zufallsvariable mit diskreter Verteilung

$$\sigma^2 = Var(X) = \sum (x_i - \mu)^2 \cdot p_i$$

Zufallsvariable mit Dichtefunktion f

$$Var(X) = E(X^2) - (E(X))^2$$

Exponentialverteilung mit Zufallsvariable T

$$Var(T) = \frac{1}{\lambda^2}$$

Für Binomialverteilung

$$\sigma^2 = n \cdot p \cdot (1 - p)$$

Für geometrische Verteilung

$$\sigma^2 = \frac{1}{p^2} - \frac{1}{p}$$

Für Poissonverteilung

$$\sigma^2 = Var(X) = E(X^2) - E(X)^2 = \lambda$$

Für Hypergeometrischeverteilung

$$Var(S_n) = n \cdot \frac{M}{N} \cdot (1 - \frac{M}{N}) \cdot \frac{N-n}{N-1}$$

Allgemeine Regeln für Varianz

$$Var(X + Y) = Var(X) + Var(Y) + 2 \cdot cov(X, Y)$$

Unabhängiger Zufallsvariablen

Allgemeine Regeln

$$E(X \cdot Y = E(X) \cdot E(Y)$$

$$Var(X + Y) = Var(X) + Var(Y)$$

Allgemeine Matheregeln

Ableitungen und Integrale	
Grundlegende Ableitungsregeln	
f(x)	f'(x)
c = const	0
x^n	$n \cdot x^{n-1}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
e^x	e^x
a^x	$\ln a \cdot a^x$
$\ln x$	$\frac{1}{x}$
$\log_a x$	$\frac{1}{\ln a \cdot x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\frac{1}{\cos^2 x}$
$\cot x$	$\frac{1}{\sin^2 x}$
Verknüpfte Ableitungsregeln	

verknupite Abieitungsregein

f(x)	f'(x)
(f(x) + g(x))	(f'(x) + g'(x))
$(f(x) \cdot g(x))$	$(f'(x)\cdot g(x)) + (f(x)\cdot g'(x))$
$\frac{f(x)}{g(x)}$	$\frac{(f'(x)\cdot g(x)) - (f(x)\cdot g'(x))}{g(x)^2}$
[f(g(x))]	$f'(g(x)) \cdot g'(x)$

wichtige Stammfunktionen

f(x)	F(x)
$x^n, n \neq 1$	$\frac{1}{n-1} \cdot x^{n+1} + c$
$\frac{1}{x}, x \neq 0$	$ \ln x + c$
\sqrt{x}	$\frac{2}{3} \cdot x^{\frac{3}{2}} + c$
e^x	$e^x + c$