

书面作业 第5次 参考解答或提示

第1部分基础

无

第2部分 理论

无

第3部分 综合应用 (T2 可选做)

- T1. 形式化并证明下列自然语言推理是有效的. 个体域均为全总域.
- (1) 所有的玫瑰和蔷薇都是芳香带刺的,因此,所有的玫瑰都是带刺的.
- (2) 三角函数都是周期函数;一些三角函数是连续函数;所以,一些周期函数是连续函数.
- (3)每个科学工作者都是勤奋的,每个既勤奋又聪明的人在他的事业中都将获得成功,王大志是科学工作者并且是聪明的,所以,王大志在他的事业中将获得成功.
- (4) 如果一个人长期吸烟或酗酒, 那么他身体绝不会健康; 如果一个人身体不健康, 那么他就不能参加体育比赛; 有人参加了体育比赛. 所以, 有人不长期酗酒.
- (5) 小王是一年级生理科生;每个非文科的一年级生都有辅导员;凡小王的辅导员都是理科生;所有的理科生都不是文科生.所以,至少有一个不是文科生的辅导员.
- (1) 设S(x):x是三角函数; T(x):x是周期函数; P(x):x是连续函数, 则推理可以形式化为:

 $\forall x(S(x) \rightarrow T(x)), \exists x(S(x) \land P(x)) \Rightarrow \exists x(T(x) \land P(x)).$

证明:

(1) $\exists x(S(x) \land P(x))$ P

(2) $S(c) \land P(c)$ ES(1)

(3) $\forall x (S(x) \rightarrow T(x))$ P

 $(4) S(c) \rightarrow T(c) \qquad US(3)$

(5) S(c) $T_{r}I(2)$

(6) T(c) $T_1(4)(5)$

(7) P(c) $T_{r}I(2)$

(8) $T(c) \land P(c)$ T, I(6)(7)

(9) $\exists x(T(x) \land P(x))$ EG(8)

(2) 设P(x):x是玫瑰; Q(x):x是蔷薇; R(x):x是芳香的; S(x):x是带刺的, 则推理可以形式化为: $\forall x((P(x) \lor Q(x)) \to (R(x) \land S(x))) \Rightarrow \forall x(P(x) \to S(x))$

证明:可以直接证明,也可以用CP规则,以及反证法.

直接法

(1) $\forall x((P(x)\lor Q(x))\rightarrow (R(x)\land S(x)))$ P

(2) $P(x) \lor Q(x) \rightarrow R(x) \land S(x)$ US(1)

(3) $(\neg P(x) \land \neg Q(x)) \lor (R(x) \land S(x))$ T,I(2)

 $(4) (\neg P(x) \lor S(x)) \land (\neg P(x) \lor R(x)) \land (\neg Q(x) \lor S(x)) \land (\neg Q(x) \lor S(x))$ T,I(3)

 $(5) \neg P(x) \lor S(x)$ T,I(4)

(6) $P(x) \rightarrow S(x)$ T,I(5)

 $\forall x(P(x) \rightarrow S(x)) UG,5$

CP规则

 $(1) \ \forall x((P(x) \lor Q(x)) \rightarrow (R(x) \land S(x)))$ P

(2) $P(x) \lor Q(x) \rightarrow R(x) \land S(x)$ US(1)

(3) P(x) P(附加, for: $P(x) \rightarrow S(x)$)

 $(4) P(x) \lor Q(x)$ T,I(3)

(5) $R(x) \land S(x)$ $T_{,}I(2)(4)$

(6) S(x) T,I(5)

 $(7) P(x) \rightarrow S(x)$ CP(3)(6)

(8) $\forall x(P(x) \rightarrow S(x))$ UG(7)

反证法(略).

(3) 令M(x): x是人; K(x): x是科学工作者; Q(x): x勤奋; T(x): x聪明; S(x): x将获得成功; a: 王大志,则推理可以形式化为:

 $\forall x((M(x)\land K(x))\rightarrow Q(x)), \ \forall x((M(x)\land Q(x)\land T(x))\rightarrow S(x)), \ M(a)\land K(a)\land T(a)\Rightarrow S(a)$

证明:

1) $M(a) \wedge K(a) \wedge T(a)$

2) $\forall x((M(x) \land K(x)) \rightarrow Q(x))$ P

3) $(M(a)\land K(a))\rightarrow Q(a)$ US,(2)

4) M(a)∧K(a) T,I,(1)

5) Q(a) $T_1I_2(2)_2(4)$

6) M(a)∧T(a) T,I,(1)

7) $M(a) \wedge Q(a) \wedge T(a)$ $T_{1}(5),(6)$

8) $\forall x((M(x) \land Q(x) \land T(x)) \rightarrow S(x))$ P

9) $(M(a) \land Q(a) \land T(a)) \rightarrow S(a)$ US,(8)

10) S(a) $T_{r}I_{r}(7)_{r}(9)$

(4) 令M(x): x是人; C(x): x长期吸烟; K(x): x长期酗酒; J(x): x身体健康; P(x): x能参加体育比赛,则推理可以形式化为:

$\forall x((M(x)\land(C(x)\lorK(x)))\rightarrow\neg J(x)),\ \forall x((M(x)\land\neg J(x))\rightarrow\neg P(x)),\ \exists x(M(x)\land P(x))\Rightarrow\exists x(M(x)\land\neg K(x))$

证明:

- 1) $\exists x (M(x) \land P(x))$ P
- 2) M(c)∧P(c) ES,(1)
- 3) $\forall x((M(x) \land \neg J(x)) \rightarrow \neg P(x))$
- 4) $(M(c) \land \neg J(c)) \rightarrow \neg P(c)$ US,(3)
- 5) P(c) T,I,(2)
- 6) $\neg (M(c) \land \neg J(c))$ T,I,(4),(5)
- 7) $\neg M(c) \lor J(c)$ R,E,(6)
- 8) M(c) T,I,(2)
- 9) J(c) T,I,(7),(8)
- 10) $\forall x((M(x)\land(C(x)\lorK(x)))\rightarrow\neg J(x))$ P
- 11) $(M(c)\land(C(c)\lor K(c)))\rightarrow \neg J(c)$ US,(10)
- 12) $\neg (M(c) \land (C(c) \lor K(c)))$ T,I,(9),(11)
- 13) $\neg M(c) \lor (\neg C(c) \land \neg K(c))$ R,E,(12)
- 14) $\neg C(c) \land \neg K(c)$ T,I,(8),(13)
- 15) $\neg K(c)$ T,I,(14)
- 16) $M(c) \land \neg K(c)$ T, I, (8), (15)
- 17) $\exists x(M(x) \land \neg K(x))$ EG,(16)
- (5) 令a: 小王; S(x): x是一年级生; L(x): x是理科生; W(x): x是文科生; F(x,y): x是y的辅导员,则推理可以形式化为:

 $\forall x (S(x) \land \neg W(x) \rightarrow \exists y F(y,x)), \ S(a), \ L(a), \ \forall x (F(x,\ a) \rightarrow L(x)), \ \forall x (L(x) \rightarrow \neg W(x)) \Rightarrow \exists x \exists y (\neg W(x) \land F(x,\ y)).$

证明:

- (1) $\forall x(L(x) \rightarrow \neg W(x))$
- (2) $L(a) \rightarrow \neg W(a)$ US,(1)
- (3) L(a) P
- (4) $\neg W(a)$ T,I,(2),(3)
- (5) S(a) P
- (6) $S(a) \land \neg W(a)$ T, I, (4), (5)
- (7) $\forall x(S(x) \land \neg W(x) \rightarrow \exists y F(y,x))$ P
- (8) $S(a) \land \neg W(a) \rightarrow \exists y F(y, a)$ US,(7)
- (9) $\exists y F(y, a)$ T,I,(6),(8)

Р

- (10) F(c, a) ES,(9)
- (11) $\forall x(F(x, a) \rightarrow L(x))$

13	-	20	1
/7/			7
- 60	_	-	81
a w			ш
(. V			B

(12) $F(c, a) \rightarrow L(c)$	US,(11)
(13) L(c)	T,I,(10),(12)
$(14) L(c) \rightarrow \neg W(c)$	US,(1)
(15) ¬W(c)	T,I,(13),(14)
(16) ¬W(c)∧F(c, a)	T,I,(10),(15)
(17) $\exists y(\neg W(c) \land F(c, y))$	EG,(16)
(18) $\exists x \exists y (\neg W(x) \land F(x, y))$	EG,(17)

因此,该推理是有效的.

T2. Consider the following problem. We know that horses are faster than dogs and that there is a greyhound that is faster than every rabbit. We know that Harry is a horse and that Ralph is a rabbit. Our job is to derive the fact that Harry is faster than Ralph (可以应用直接证明方法与归结法. 注意要增加两个公认的事实: Greyhound是Dog, 速度可以传递比较的).

Problem translated in FOPL:

```
\forall x \ \forall y \ ((\mathsf{Horse}(x) \land \mathsf{Dog}(y)) \ {\boldsymbol{\rightarrow}} \ \mathsf{Faster}(x,y))
```

 $\exists y (Greyhound(y) \land (\forall z Rabbit(z) \rightarrow Faster(y,z)))$

Horse(Harry)

Rabbit(Ralph)

Derive the following fact:

Faster(Harry, Ralph)

Added axioms to represent commonsense knowledge:

```
\forall y (Greyhound(y) \rightarrow Dog(y))
```

 $\forall x \ \forall y \ \forall z \ ((Faster(x,y) \land Faster(y,z)) \rightarrow Faster(x,z))$

Proving using Proof Theory and a set of inference rules

1. $\forall x \ \forall y \ \text{Horse}(x) \ \land \ \text{Dog}(y) \ \rightarrow \ \text{Faster}(x, y)$	Premise
2. $\exists y \; Greyhound(y) \land (\forall z \; Rabbit(z) \rightarrow Faster(y, z))$	Premise
3. $\forall y \text{ Greyhound}(y) \rightarrow \text{Dog}(y)$	Premise
4. $\forall x \forall y \forall z \text{ Faster}(x, y) \land \text{ Faster}(y, z) \rightarrow \text{Faster}(x, z)$	Premise
5. Horse (Harry)	Premise
6. Rabbit(Ralph)	Premise
7. Greyhound(Greg) \land (\forall z Rabbit(z) \rightarrow Faster(Greg, z))	ES (2)
8. Greyhound (Greg)	T, I (7)
9. $\forall z \; \text{Rabbit}(z) \rightarrow \text{Faster}(\text{Greg}, z))$	T, I (7)
10. Rabbit(Ralph) → Faster(Greg, Ralph)	US (9)
11. Faster (Greg, Ralph)	T, I (6) (10)
12. Greyhound (Greg) → Dog (Greg)	US (3)
13. Dog(Greg)	T, I (12) (8)
14. Horse(Harry) \land Dog(Greg) \rightarrow Faster(Harry, Greg)	US (1)
15. Horse(Harry) ∧ Dog(Greg)	T, I (5) (13)
16. Faster (Harry, Greg)	T, I (14) (15)
17. Faster(Harry, Greg) ∧ Faster(Greg, Ralph) → Faster	(Harry, Ralph) US (4)


```
18. Faster(Harry, Greg) ^ Faster(Greg, Ralph) T, I (11) (16)
19. Faster(Harry, Ralph) T, I (17) (19)
QED.
```

Using Resolution(归结法) to determine logical entailment

1. $\{\neg Horse(x), \neg Dog(y), Faster(x, y)\}$	Premise
2. {Greyhound(Greg)}	Premise
3. $\{\neg Rabbit(z), Faster(Greg, z)\}$	Premise
4. {¬Greyhound(y), Dog(y)}	Premise
5. $\{\neg Faster(x, y), \neg Faster(y, z), Faster(x, z)\}$	Premise
6. {Horse(Harry)}	Premise
7. {Rabbit (Ra1ph)}	Premise
8. {¬Faster(Harry, Ralph)}	Negated Goal
9. {Dog(Greg)}	(2)(4)归结
10. $\{\neg Dog(y), Faster(Harry, y)\}$	(6)(1)归结
11. {Faster (Harry, Greg)}	(9)(10)归结
12. {Faster(Greg, Ralph)}	(7)(3)归结
13. {¬Faster(Greg, z), Faster(Harry, z)}	(11)(5)归结
14. {Faster (Harry, Ralph)}	(12)(13)归结
15. {}	(14)(8)归结
QED.	