Г. ФИЛИППОВСКИЙ,

Архимед. Худож. Доменико Фетти. 1620

«ОЛИМПИАДНАЯ» ЛЕММА АРХИМЕДА

Начнем с того, что в трудах Архимеда такой леммы нет. Возможно, леммой Архимеда эта задача стала (с чьейто легкой руки) потому, что одно из ее красивых решений получается с помощью другой леммы Архимеда — о параллельных диаметрах. Удивительно, что популярность задачи превзошла настоящие леммы Архимеда: о центре окружности (когда центр одной окружности лежит на другой), о перпендикуляре из точки касания, о параллельных диаметрах и другие. Если сегодня участника геометрических олимпиад спросить о лемме Архимеда, то он почти наверняка назовет эту, которую у Архимеда не найти.

Ну что ж, поскольку так сложилось, пусть так и будет! Тем более что эта задача действительно помогает при решении ряда задач олимпиадного уровня. И предлагаемая статья как раз об этом. Разве что рискнем добавить к главной задаче статьи еще один титул: «олимпиадная» лемма Архимеда.

Лемма. Окружности ω и s касаются внутренним образом в точке K. Хорда AB окружности ω касается s в точке F (рис. 1). Докажите, что KF — биссектриса угла AKB ($\angle 1 = \angle 2$).

 \mathcal{A} оказательство. Пусть точки O и Q — центры окружностей ω и s соответственно. Очевидно, точки K, Q и O лежат на одной прямой. Пусть луч KF вторично пересекает ω в точке T. Нетрудно показать, что отрезки QF и OT параллельны, а треугольники KQFи КОТ равнобедренные (лемма Архимеда о параллельных диаметрах — об этом). Но отрезок QF перпендикулярен AB, тогда и прямая OT перпендикулярна AB, а дуга AT равна дуге BT. Значит, $\angle 1 = \angle 2$ (вписанные, опираются на равные дуги).

- 1. Существуют и другие способы доказательства леммы, например, с помощью гомотетии или проведения общей касательной к окружностям ω и s в точке K.
- 2. Далее в статье «олимпиадную» лемму Архимеда будем называть просто леммой.

1. Дана полуокружность с диаметром AB. Окружность s касается ее внутренним образом в точке K, а диаметра AB — в точке F (рис. 2). Найдите величину угла AKF.

Рис. 2

Решение. Поскольку AB — диаметр, то $\angle AKB$ = 90° . Тогда, согласно лемме, $\angle 1$ = $\angle 2$ = 45° . Следовательно, $\angle AKF$ = 45° .

2. Окружности ω и s касаются внутренним образом в точке K. Из произвольной точки X окружности ω проведены касательные XF и XN к окружности s, которые при продолжении пересекают ω в точках T и P соответственно (рис. 3). Найдите величину угла TKP, если известно, что $\angle FKN = \varphi$.

Рис. 3

Pешение. Соединим точки K и X. Согласно лемме

$$\angle 1 = \angle 2 \text{ и } \angle 3 = \angle 4.$$

Но по условию $\angle 2 + \angle 3 = \varphi$. Значит, $\angle TKP = 2\varphi$.

3. (А. Карлюченко) Окружности s_1 и s_2 касаются друг друга внешним образом в точке F. Каждая из них касается внутренним образом окружности ω в точках M и N. Лучи NF и MF вторично пересекают ω соответственно в точках A и B. Докажите, что AB — диаметр ω .

 \mathcal{L} оказательство. Проведем через F общую касательную DE к окружностям s_1 и s_2 (рис. 4).

Пусть (по лемме)

$$\angle 1 = \angle 2 = \alpha$$
 и $\angle 3 = \angle 4 = \beta$.

Тогда

$$\cup$$
 $BE = \cup BD = 2\alpha$ и $\cup DA = \cup AE = 2\beta$.

Так как

 $\cup BD + \cup DA = \cup BE + \cup EA = 2\alpha + 2\beta,$ то, очевидно, AB — диаметр ω .

4. Окружности s_1 и s_2 касаются внутренним образом окружности ω . Хорда AB окружности ω касается s_1 и s_2 в точках F и N соответственно. Докажите, что касательные к s_1 и s_2 из точки T — середины дуги AB окружности ω — равны.

Доказательство. Пусть K и L — точки касания s_1 и s_2 с ω соответственно, T — середина дуги AB; TC и TD — касательные к s_1 и s_2 (рис. 5).

Рис. 5

Согласно *лемме* лучи KF и LN проходят через точку T — середину дуги AB. Покажем, что точки K, L, N, F лежат на одной окружности. Для этого проведем через точку L общую касательную к s_2 и ω . Она пересечет луч AB в точке P.

Очевидно, $\angle 1 = \angle 2$ (касательные PL и PN равны). Но $\angle 1 = \angle 3$ (угол между касательной и хордой и вписанный угол). Поскольку $\angle 3 = \angle 2$, то точки K, L, N, F принадлежат одной окружности. Для нее выполняется равенство

$$TK \cdot TF = TL \cdot TN.$$

Но, по теореме о квадрате касательной, для окружности s_1 :

$$TK \cdot TF = TC^2$$
.

По той же теореме для s_2 :

$$TL \cdot TN = TD^2$$
.

Следовательно, TC = TD.

5. AB — хорда окружности ω . Окружности s_1 и s_2 касаются внутренним образом ω , хорды AB

и пересекаются в точках C и D. Докажите, что прямая CD проходит через середину дуги AB.

Доказательство. Эта задача во многом перекликается с предыдущей. Пусть точки K, L, N, F, T такие же, как в задаче 4. Очевидно, точки K, F, T лежат на одной прямой, и точки L, N, T тоже (по лемме). Пусть луч TD пересекает вторично s_1 и s_2 соответственно в точках Q и P (рис. 6).

Рис. 6

Покажем, что точки Q и P совпадают с точкой C. Проведя в точке L касательную к ω и s_2 , доказываем, что точки K, L, N, F лежат на одной окружности (аналогично задаче 4). Отсюда

$$TK \cdot TF = TL \cdot TN.$$

Поскольку для s_1

$$TK \cdot TF = TQ \cdot TD$$
,

а для s_{2}

$$TL \cdot TN = TP \cdot TD$$

(по теореме о квадрате касательной), то получаем:

$$TQ \cdot TD = TP \cdot TD$$
.

Или TQ = TP, что возможно только в том случае, когда P и Q совпадают с точкой C. Таким образом, прямая CD проходит через точку T — середину дуги AB.

6. Окружность s касается окружности ω в точке K, а хорды AB этой окружности в точке F. Луч KF вторично пересекает ω в точке T. Докажите, что TA = TB = TP, где TP — касательная к окружности s.

Доказательство. Точка T — середина дуги AB (по лемме), $\angle 1 = \angle 2$ (рис. 7).

Очевидно, TA = TB (равные дуги стягиваются равными хордами), $\angle 3 = \angle 2$ (вписанные, опираются на одну дугу окружности ω). Тогда треугольники ATF и KTA подобны (по двум углам) и

$$\frac{AT}{TK} = \frac{TF}{AT},$$

откуда

$$AT^2 = TK \cdot TF.$$

По теореме о квадрате касательной, для окружности s имеем:

$$TP^2 = TK \cdot TF$$
.

Следовательно,

$$TP = TA = TB$$
.

7. CL — биссектриса в треугольнике ABC, ω — описанная окружность этого треугольника. Окружность s касается AB, ω , а также биссектрисы CL в точке P. Докажите, что P — точка пересечения биссектрис (инцентр) в треугольнике ABC.

Доказательство. Пусть окружность s касается ω в точке K, а AB в точке F. Тогда, согласно лемме, луч KF пересекает ω в точке T — середине дуги AB (рис. 8).

Рис. 8

Но и луч CL при продолжении проходит через точку T ($\angle 1 = \angle 2$ и $\cup AT = \cup BT$).

По задаче 6 в таком случае

$$TA = TB = TP$$
.

Так как CT — биссектриса, то, по лемме о трезубце, точка P совпадает с инцентром треугольника ABC.

8. Окружность s касается сторон AB и AC треугольника ABC соответственно в точках F и N, а также описанной около треугольника ABC окружности ω — в точке K. Докажите, что середина отрезка FN совпадает с инцентром треугольника ABC.

Доказательство. Очевидно,

$$\angle BKC = 180^{\circ} - \angle A$$

(четырехугольник ABKC вписан в окружность).

Пусть биссектриса угла BKC пересекает FN в точке P (рис. 9).

Рис. 9

При этом

$$\angle 1 = \angle 2 = \frac{180^{\circ} - \angle A}{2} = 90^{\circ} - \frac{\angle A}{2}.$$

Луч KF пересекает дугу AB в ее середине — точке T (согласно nemme). Тогда, поскольку

$$\cup AB = 2\angle C, \cup AT = \cup TB = \angle C,$$

$$\angle 3 = \frac{\angle C}{2}$$

(вписанный, опирается на дугу TB),

$$\angle 4 = \angle 5 = \frac{180^{\circ} - \angle A}{2} = 90^{\circ} - \frac{\angle A}{2}$$

(AN = AF -касательные).

Так как $\angle 5 = \angle 1$, то точки F, P, K, B лежат на одной окружности. Соединив B и P, получим:

$$\angle 6 = \angle 3 = \frac{\angle C}{2}$$

(вписанные, опираются на одну дугу в этой окружности).

$$\angle 7 = 180^{\circ} - \angle 5 = 180^{\circ} - \left(90^{\circ} - \frac{\angle A}{2}\right) = 90^{\circ} + \frac{\angle A}{2}.$$

Найдем \angle 8 в треугольнике \overrightarrow{BFP} :

$$\angle 8 = 180^{\circ} - \left(90^{\circ} + \frac{\angle A}{2}\right) - \frac{\angle C}{2} = \frac{\angle B}{2}.$$

В таком случае BP — биссектриса угла ABC. Аналогично покажем, что и CP — биссектриса угла ACB. Следовательно, точка P — инцентр в треугольнике ABC, а AP — третья биссектриса в нем.

Но треугольник AFN равнобедренный, тогда AP также и медиана: FP=PN. Таким образом, точка P — середина отрезка FN — инцентр в треугольнике ABC.

9. (А. Афанасьев) На хорде AB окружности ω указана точка F. Впишите в образовавшийся сегмент окружность s, которая проходит через точку F и касается ω .

Решение. Анализ показывает, что если мы такую окружность *s* построим, касающуюся ω в точке K, то $\angle 1 = \angle 2$ по *лемме* (рис. 10).

Тогда, по свойству биссектрисы,

$$\frac{AK}{KB} = \frac{AF}{FB}$$

Множество точек, удовлетворяющих этому условию, — это окружность Аполлония для точек A, B и отношения, равного $\frac{AF}{FD}$.

Рис. 10

Для этого на продолжении AB за точку B строим точку Q такую, чтобы выполнялось равенство $\frac{AF}{FB} = \frac{AQ}{QB}$. Затем на отрезке FQ как на диаметре строим окружность Аполлония. Точка ее пересечения с ω — точка K. Отрезок KO (O — центр окружности ω) и перпендикуляр к AB в точке F в пересечении дадут центр искомой окружности s.

Заметим, что задача может иметь два решения, так как окружность s можно вписать как в верхний, так и в нижний сегмент.

10. (А. Кузнецов, И. Богданов, С. Берлов) Окружность ω описана около равностороннего треугольника ABC. Окружность s касается стороны AB в точке F, а окружности ω — в точке K на дуге BC. Докажите, что из отрезков AF, CK и BF можно составить треугольник, у которого разность каких-то двух углов равна 60° .

Доказательство. Согласно лемме луч KF пересекает дугу AB в ее середине — точке T (рис. 11).

В таком случае $\angle 1=30^\circ$ (вписанный, опирается на дугу BT, равную 60°). Выбираем на BC точку N такую, что BN=BF. Тогда CN=AF.

Очевидно, треугольник BNF равносторонний (он равнобедренный с углом 60°) и $\angle 2 = 60^\circ$. Так как BN = NF и $\angle 2$ в два раза больше $\angle 1$ (60° и 30°), то точка N — центр окружности q, описанной около треугольника KBF, и

$$NK = NB = BF$$
.

Значит, треугольник CKN имеет стороны, равные нашим отрезкам: CN = AF, NK = BF и CK.

Покажем, что разность углов CKN и KCN равна 60° :

$$\angle BKC = 120^{\circ}(180^{\circ} - \angle A)$$
,

тогда \angle $3+\angle$ $4=60^\circ$ (из треугольника BKC). Но \angle $NKB=\angle$ 3 (NK=NB). Значит,

$$\angle CKN = 120^{\circ} - \angle 3$$
.

А разность углов равна:

$$\angle CKN - \angle KCN =$$
 $120^{\circ} - \angle 3 - \angle 4 = 120^{\circ} - (\angle 3 + \angle 4) =$
 $= 120^{\circ} - 60^{\circ} = 60^{\circ}.$

Несколько задач на «олимпиадную» лемму Архимеда предложим для самостоятельного решения.

11. Окружности ω и s имеют общую точку K. Хорда AB окружности ω касается s в точке F. Известно, что KF — биссектриса угла AKB. Докажите, что в таком случае K — точка касания ω и s.

- 12. Окружности ω и s касаются внутренним образом в точке K. Из центра Q окружности ω проведен радиус QP, который касается s в точке F. Найдите величину угла PKF. ($Omsem: 45^{\circ}$.)
- 13. Окружность ω описана около треугольника ABC, D произвольная точка на стороне BC. Окружность s касается AD в точке N, BD в точке F и окружности ω в точке K. Докажите, что прямая FN проходит через инцентр треугольника ABC.
- **14.** Дан отрезок AB с точкой F внутри него, являющейся точкой касания данной окружности s радиусом r. Проведите через точки A и B окружность, касающуюся окружности s.
- 15. Окружность ω описана около остроугольного треугольника ABC. Окружность s касается ω внутренним образом в точке K, а также сторон AB и AC в точках F и N соответственно. Луч KI (I инцентр треугольника ABC) вторично пересекает ω в точке T. Докажите, что TB = TC.

ХИ ТВОРЧЕСКИЙ КОНКУРС УЧИТЕЛЕЙ МАТЕМАТИКИ

Окончание. Начало на с. 31.

Победители очного тура конкурса

Андрей Юрьевич Воробьев, Президентский физико-математический лицей № 239, г. Санкт-Петербург

 ${\it Tumyp\, Axcap бекович\, \Gamma yes},\, {\it «Новая школа», г. Москва$

Константин Георгиевич Евдокимов, школа № 58, г. Ярославль

Алексей Валерьевич Ламтюгин, школа № 1568, г. Москва

Дмитрий Александрович Павлов, Президентский физико-математический лицей № 239, г. Санкт-Петербург

Антон Евгеньевич Панкратьев, «Новая школа», школа № 171, г. Москва

Александр Леонидович Попович, «Школа на Юго-Востоке» им. Маршала В.И.Чуйкова, г. Москва

Стелла Леонидовна Синякова, школа № 315,

г. Москва

Ольга Дмитриевна Телешева, школа № 179, г. Москва

Алексей Леонидович Федулкин, школа № 171, г. Москва

Призеры очного тура конкурса

Ярослав Владимирович Абрамов, «Школа на Юго-Востоке» им. маршала В.И. Чуйкова, г. Москва

Антон Борисович Акимов, Центр педагогического мастерства, г. Москва

Егор Владимирович Бакаев, школа «Летово»,

Анна Геннадъевна Бондарцева, школа № 281, г. Москва

Михаил Олегович Бурмистров, школа № 554, г. Москва

Жанна Кареновна Калишевич, школа № 548, пос. Совхоз им. Ленина

Алексей Викторович Каплиев, школа № 83, г. Ногинск

Алексей Иванович Лаптиев, школа № 171, г. Москва

Юлия Робертовна Латыпова, «Школа на Юго-Востоке» им. маршала В.И.Чуйкова, г. Москва

Ольга Сергеевна Малышева, «Пятьдесят седьмая школа», г. Москва

Aндрей Борисович Меньщиков, СУНЦ МГУ, г. Москва

Вероника Геннадьевна Молчанова, Академическая гимназия, г. Химки, Московская обл.

Иван Сергеевич Никитин, «Школа на Юго-Востоке» им. маршала В.И.Чуйкова, г. Москва

Леонид Виктрович Пантелеев, школа № 1580, г. Москва

Александр Михайлович Пешнин, лицей «Вторая школа», г. Москва

Елена Игоревна Писаренко, школа № 192, г. Москва

Михаил Игоревич Толовиков, общеобразовательный лицей АМТЭК, г. Череповец

Алексей Иванович Сотников, школа № 224, г. Москва

Дмитрий Валерьевич Чумаченко, школа № 2101, г. Москва

Игорь Александрович Эльман, школа № 218, г. Москва