K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS MULTI TRANSISTOR CIRCUITS

16th July, 2020 Numericals

1. Calculate the voltage gain of each stage and the overall AC voltage gain for the BJT cascade amplifier shown in Figure 1. Also calculate Z_i and Z_o for the given circuit Given: $\beta = 140$, $V_T = 26$ mV

Figure 1: Circuit 1

Solution: The given circuit is a 2-stage RC-coupled CE-CE amplifier.

DC Analysis:

Assumption: $V_{BE_1} = V_{BE_2} = 0.7 \text{ V}$

Due to R-C coupling, the Q-points of both the stages are isolated.

Since, both stages are symmetric in parameters and resistor values, DC analysis of one stage is sufficient.

The capacitors act as open circuit. f = 0, $X_C = \frac{1}{2\pi fC} = \infty$

Applying Thevenin's equivalent at base,

$$V_{th} = \frac{R_2}{R_1 + R_2} \times V_{CC} = \frac{6.2k}{24k + 6.2k} \times 15$$

$$V_{th} = 3.07947 \text{ V}$$

$$R_{th} = R_1 || R_2 = 6.2k || 24k$$

$$\therefore R_{th} = 4.92715 \ k\Omega$$

Figure 2: Thevenin's equivalent circuit

Applying KVL to input base-emitter loop

$$I_{B_1Q} = \frac{V_{th} - V_{BE}}{R_{th} + (1+\beta)R_{E_1}} = \frac{3.079 - 0.7}{4.927k + (141 \times 1.5k)}$$

$$\therefore I_{B_1Q} = 10.9943 \ \mu \text{A}$$

Since both stages have same parameters, $I_{B_1Q}=I_{B_2Q}=10.9943~\mu\mathrm{A}$

$$I_{C_1Q} = \beta I_{B_1Q} = 140 \times 10.9943 \times 10^{-6}$$

$$I_{C_1Q} = I_{C_2Q} = 1.539205 \text{ mA}$$

$$V_{CEQ} = V_{CC} - I_C R_C - (I_B + I_C) R_E$$

$$V_{CE_1Q} = V_{CE_2Q} = 4.8261 \text{ V}$$

Small-signal parameters: Assuming $r_{d1} = r_{d2} = \infty \Omega$

$$r_{\pi_1} = \frac{\beta_1 V_T}{I_{C_1 Q}} = \frac{140 \times 26mV}{1.539205mA} = 2.364857 \ k\Omega$$
$$g_{m_1} = \frac{I_{C_1 Q}}{V_T} = \frac{1.539205mA}{26mV} = 59.20019 \frac{mA}{V}$$

Since both stages are identical, we have,

$$r_{\pi_1} = r_{\pi_2} = 2.364857 \ k\Omega$$

$$g_{m1} = g_{m2} = 59.20019 \frac{mA}{V}$$

The mid-band AC equivalent circuit is shown in Figure 3

Figure 3: Mid frequency equivalent circuit

$$A_{V_1} = \frac{V_1}{V_{in}}, A_{V_2} = \frac{V_o}{V_1}, A_{V_T} = A_{V_1} \times A_{V_2}$$

Input impedence $Z_i = R_1 ||R_2|| r_{\pi_2} = 4.927k ||2.3648k|$

$$\therefore Z_i = 1.5979 \text{ k}\Omega$$

Output impedence $Z_o = R_{C_2} || R_L = 5.1k || 10k$

$$\therefore Z_o = 3.37748~k\Omega$$

$$A_{V_2} = \frac{V_o}{V_1} = \frac{-g_{m_2}V_{\pi_2}(R_{C_2}||R_L)}{V_{\pi_2}} = -g_m(R_{C_2}||R_L)$$

$$A_{V_2} = -199.947$$

$$A_{V_1} = \frac{V_1}{V_{in}} = \frac{-g_{m_1}V_{\pi_1}(R_{C_1}||R_3||R_4||r_{\pi_2})}{V_{\pi_1}} = -g_{m_1}(R_{C_1}||R_{th_2}||r_{\pi_2})$$

$$\therefore A_{V_1} = -59.20019 \times 10^{-3} \times (5.1k||3.37k) = -72.08977$$

$$A_{V_T} = A_{V_1} \times A_{V_2} = -72.08977 \times -199.947$$

$$A_{V_T} = 14402.019$$

$$|A_{V_T}|$$
 (in dB) = $20log_{10}(14402.019) = 83.1684 dB$

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 4: Circuit schematic

The input and output waveforms for voltage gain A_{V_1} are shown in Figure 5

Figure 5: Input and output waveforms for voltage gain A_{V_1}

The input and output waveforms for voltage gain ${\cal A}_{V_2}$ are shown in Figure 6

Figure 6: Input and output waveforms for voltage gain A_{V_2}

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
Stage 1: Q-point (I_{C_1Q}, V_{CE_1Q})	(1.539205 mA, 4.826 V)	(1.52268 mA, 4.93401 V)
Stage 2: Q-point (I_{C_2Q}, V_{CE_2Q})	(1.539205 mA, 4.826 V)	(1.52268 mA, 4.934014 V)
Voltage gain of 1^{st} stage A_{V_1}	-72.08977	-71.18462
Voltage gain of 2^{nd} stage A_{V_2}	-199.947	-186.97077
Overall voltage gain (A_{V_T})	83.1684 dB	82.48319 dB
Input impedence(Z_i) of 1^{st} stage	$1.5979~\mathrm{k}\Omega$	_
Output impedence (Z_o) of 2^{nd} stage	$3.37748~\mathrm{k}\Omega$	_

Table 1: Numerical 1

2. For the JFET cascade amplifier shown in Figure 7, using identical JFETs with $I_{DSS}=8$ mA and $V_P=-4.5$ V, calculate the voltage gain of each stage, the overall gain of the amplifier and the output voltage V_o

Figure 7: Circuit 2

Solution: The above circuit is a CS-CS cascade amplifier and both the stages are symmetric, hence, DC analysis of single stage is sufficient.

DC Analysis:

Figure 8: DC equivalent circuit

$$V_{G_1} = V_{GS_1} - V_{S_1}$$

$$V_{G_1} = 0 - I_{D_1} R_{S_1} = 0 - 390 I_{D_1}$$

$$V_{G_1} = -390I_{D_1}$$
(1)

Substituting the value of I_{D_1} from equation (2) in equation (1), we get

$$V_{GS_1} = -390 \times 8 \times 10^{-3} \times \left(1 + \frac{V_{GS_1}}{4.5}\right)^2$$
$$V_{GS_1} = -3.12 \times \left(1 + \frac{V_{GS_1}}{4.5}\right)^2$$

$$V_{GS_1} = -3.12 \times (1 + 0.44V_{GS_1} + 0.0491V_{GS_1}^2)^2$$

$$\therefore 0.015406V_{GS_1}^2 + 2.3728V_{GS_1} + 3.12 = 0$$

$$\therefore V_{GS_1} = -1.4517 \text{ V or } V_{GS_1} = -13.9505 \text{ V}$$

Since
$$V_{GSQ} > V_P$$
, : $V_{GS_1} = -1.4517 \text{ V}$

$$\therefore V_{GS_1Q} = V_{GS_2Q} = -1.4517 \text{ V}$$

From equation (2),
$$I_{DQ} = 8 \times 10^{-3} \left(1 + \frac{-1.4517}{4.5} \right)^2$$

$$I_{D_1Q} = I_{D_2Q} = 3.722 \text{ mA}$$

Small-signal parameters:

$$g_{m_1} = \frac{2I_{DSS}}{|V_P|} \left(1 - \frac{V_{GSQ}}{V_P} \right)$$

$$g_{m_1} = \frac{2 \times 8 \times 10^{-3}}{4.5} \times \left(1 - \frac{(-1.4517)}{(-4.5)} \right)$$

$$\therefore g_{m_1} = g_{m_2} = 2.408533 \frac{mA}{V}$$

$$r_d = 0 \ \Omega$$

The mid-band AC equivalent circuit is shown in Figure 9

Figure 9: Mid frequency equivalent circuit

$$Z_i = R_G = 10 \text{ M}\Omega$$

$$Z_o = R_{D_2}||R_L = 2.2k||10k$$

$$\therefore Z_o = 1.803 \text{ k}\Omega$$

$$A_{VT} = A_{V_1} \times A_{V_2} = \frac{V_1}{V_S} \times \frac{V_{out}}{V_1}$$

$$A_{V_1} = \frac{V_1}{V_S} = \frac{-g_{m_1}V_{gs_1}(R_{D_1}||R_{G_2})}{V_{gs_1}}$$

$$A_{V_1} = -g_{m_1}(R_{D_1}||R_{G_2}) = -2.408533 \times 10^{-3} \times (2.2k||10M)$$

$$\therefore A_{V_1} = -4.6366$$

$$A_{V_2} = \frac{V_{out}}{V_S} = \frac{-g_{m_2}V_{gs_2}(R_{D_2}||R_L)}{V_{gs_2}}$$

$$A_{V_2} = -g_{m_2}(R_{D_2}||R_L) = -2.408533 \times 10^{-3} \times 1.803k$$

$$\therefore A_{V_2} = -4.34258$$

$$A_{V_T} = A_{V_1} \times A_{V_2} = -4.6366 \times -4.34258$$

$$\therefore A_{V_T} = 20.135$$

$$|A_{V_T}| \text{ (in dB)} = 20log_{10}(20.135) = 26.079 \text{ dB}$$

$$A_{V_T} = \frac{V_o}{V_S}$$

$$\therefore V_o = A_{V_T} \times V_S = 20.135 \times 20 \times 10^{-3}$$

 $V_o = 402.7 \text{ mV}$

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 10: Circuit schematic

The input and output waveforms for voltage gain A_{V_1} are shown in Figure 11

Figure 11: Input and output waveforms for voltage gain A_{V_1}

The input and output waveforms for voltage gain ${\cal A}_{V_2}$ are shown in Figure 12

Figure 12: Input and output waveforms for voltage gain A_{V_2}

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
Stage 1: Q-point (I_{D_1Q}, V_{GS_1Q})	(3.722 mA, -1.4517 V)	(3.69599 mA, -1.4413267 V)
Stage 2: Q-point (I_{D_2Q}, V_{GS_2Q})	(3.722 mA, -1.4517 V)	(3.69599 mA, -1.4413267 V)
Voltage gain of 1^{st} stage A_{V_1}	-4.6366	-5.282845
Voltage gain of 2^{nd} stage A_{V_2}	-4.34258	-4.2928
Overall voltage gain (A_{V_T})	26.079 dB	27.109 dB
Input impedence(Z_i) of 1^{st} stage	$10~\mathrm{M}\Omega$	_
Output impedence (Z_o) of 2^{nd} stage	1.803 kΩ	_
Output voltage	402.7 mV	$453.5~\mathrm{mV}$

Table 2: Numerical 2

- 3. For each transistor in the circuit shown in Figure 13, the parameters are:
 - $\beta=125,\,V_{BE}(on)=0.7$ V and $r_o=\infty$ Ω
 - a) Determine the Q-points of each transistor
 - b) Determine the input resistance R_i and output resistance R_o
 - c) Find the overall voltage gain A_V

Figure 13: Circuit 3

Solution:

DC Analysis:

The capacitors act as open circuit. $f = 0, :: X_C = \frac{1}{2\pi fC} = \infty$

$$V_{th} = \left[\frac{R_2}{R_1 + R_2} \times (V_{CC} + V_{EE})\right] - 5 = \left[\frac{6k}{70k + 6k} \times 10\right] - 5$$

$$V_{th} = -4.21015 \text{ V}$$

$$R_{th} = R_1 || R_2 = 70k || 6k$$

$$\therefore R_{th} = 5.526 \ k\Omega$$

Figure 14: DC equivalent circuit

Applying KVL to input base-emitter loop

$$I_{B_1} = \frac{V_{th} - V_{BE} + V_{EE}}{R_{th} + (1+\beta)R_{E_1}} = \frac{-4.21015 - 0.7 + 5}{5.526k + (126 \times 0.2k)}$$

$$\therefore I_{B_1Q} = 10.9943~\mu\mathrm{A}$$

Since both stages have same parameters, $I_{B_1Q} = I_{B_2Q} = 2.924 \ \mu\text{A}$

$$I_{C_1Q} = \beta I_{B_1Q} = 125 \times 2.924 \times 10^{-6}$$

$$\therefore I_{C_1Q} = 0.365 \text{ mA}$$

$$I_{E_1Q} = I_{B_1Q} + I_{C_1Q}$$

$$I_{E_1Q} = 0.3684 \text{ mA}$$

$$V_{C_1} = V_{CC} - I_C R_{C_1} = 5 - (0.3655 \times 10^{-3} \times 5k)$$

$$\therefore V_{C_1} = 3.1725 \text{ V}$$

$$V_{E_1} = I_E R_{E_1} - V_{EE}$$

$$V_{E_1} = -4.926 \text{ V}$$

For stage 2, $V_{B_2} = V_{C_1}$

$$V_{B_2} = V_{E_2} + V_{BE} + V_{EE}$$

$$\therefore V_{E_2} = V_{B_2} - 0.7 + V_{EE} = 3.1725 - 0.7 + 5$$

$$V_{E_2} = 2.5275 \text{ V}$$

$$I_{E_2} = \frac{V_{E_2} + V_{EE}}{R_{E_2}} = 1.648 \text{ mA}$$

$$I_{C_2} = \alpha I_{E_2} = \left(\frac{\beta}{1+\beta}\right) \times I_E = \frac{125}{126} \times 1.648 \times 10^{-3}$$

$$\therefore I_{C_2} = 1.635 \text{ mA}$$

$$I_{B_2} = \frac{I_{E_2}}{1+\beta} = 1.3185 \times 10^{-5} = 13.184 \ \mu\text{A}$$

$$V_{C_1 new} = V_{CC} - I_C R_{C_1} = 5 - 5k(I_{C_1} + I_{B_2})$$

:
$$V_{C_1 new} = 5 - 5k(0.378 \times 10^{-3}) = 3.11 \text{ V}$$

$$V_{E_2new} = V_{C_1new} - 0.7 = 2.41 \text{ V}$$

$$I_{E_2new} = \frac{V_{E_2new}}{R_{E_2}} = \frac{2.41 + 5}{1.5k}$$

$$I_{E_2new} = 4.94 \text{ mA}$$

$$I_{B_2 new} = \frac{I_{E_2}}{1+\beta} = 39.206 \ \mu A$$

$$I_{C_2new} = \beta I_{B_2new} = 4.9 \text{ mA}$$

$$V_{C_2} = 5 \text{ V}$$

Small-signal parameters:

$$r_{\pi_1} = \frac{\beta V_T}{I_{C_1 Q}} = 8.8919 \text{ k}\Omega$$

$$r_{\pi_2} = \frac{\beta V_T}{I_{C_2 Q}} = 663.26 \text{ k}\Omega$$

$$g_{m_1} = \frac{I_{C_1Q}}{V_T} = 14.038 \frac{mA}{V}$$

$$g_{m_2} = \frac{I_{C_2Q}}{V_T} = 188.46 \frac{mA}{V}$$

The mid-band AC equivalent circuit is shown in Figure 15

Figure 15: Mid frequency equivalent circuit

$$A_{V_T} = \frac{V_o}{V_S} = \frac{V_o}{V_1} \times \frac{V_1}{V_S}$$

$$A_{V_2} = \frac{V_o}{V_1} = \frac{(R_{E_2}||R_L)}{\frac{1}{g_{m_2}} + (R_{E_2}||R_L)}$$

$$\therefore A_{V_2} = \frac{1.304k}{\frac{1}{188.46 \times 10^{-3}} + 1.304k} = 0.9959$$

$$A_{V_1} = \frac{V_1}{V_S} = \frac{-g_{m_1}V_{m_1}R_{C_1}}{r_{\pi} + (1 + \beta_1)R_{E_1}}$$

$$\therefore A_{V_1} = \frac{-\beta R_{C_1}}{r_{\pi_1} + (1 + \beta)R_{E_1}} = -18.33$$

$$A_{V_T} = A_{V_1} \times A_{V_2} = -18.33 \times 0.9959$$

$$\therefore A_{V_T} = -18.257$$

Input impedence $Z_i = R_1 ||R_2||[r_{\pi_1} + (1+\beta)R_E] = 5.526k||[8.8919k + (126 \times 0.2k)]|$

$$\therefore Z_i = 4.7552 \, \mathrm{k}\Omega$$

Output impedence $Z_o = [R_{E_2}||R_L|||\frac{1}{g_{m_2}} = [1.5k||10k|||\frac{1}{188.46 \times 10^{-3}} = 1.304k||5.3061||$

$$\therefore \mathbf{Z_o} = 5.28459~\Omega$$

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 16: Circuit schematic

The input and output waveforms for voltage gain A_{V_1} are shown in Figure 17

Figure 17: Input and output waveforms for voltage gain A_{V_1}

The input and output waveforms for voltage gain \mathcal{A}_{V_2} are shown in Figure 18

Figure 18: Input and output waveforms for voltage gain ${\cal A}_{V_2}$

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
I_{B_1}	$2.924 \ \mu A$	$3.20448~\mu{ m A}$
I_{C_1}	0.3655 mA	0.400561 mA
I_{E_1}	0.3684 mA	0.403766 mA
I_{B_2}	$39.206 \mu A$	$37.33 \ \mu A$
I_{C_2}	4.9 mA	/ 4.667 mA
I_{E_2}	4.94 mA	4.70401 mA
V_{C_1}	3.11 V	2.81053 V
V_{C_2}	5 V	5 V
V_{E_1}	-4.926 V	-4.91925 V
V_{E_2}	2.5275 V	2.05601 V
V_{B_1}	-4.21015 V	-4.22824 V
V_{B_2}	3.1725 V	2.81053 V
A_{V_T}	-18.257	-18.077

Table 3: Numerical 3