Chapitre 0 : Logique

1 Assertions

Définition 1.1. Une assertion est une phrase mathématique qui peut être vraie ou fausse.

1.1 Connecteurs logiques

Définition 1.2. Soit *P* et *Q* deux assertions.

On définit:

- * La négation non(P) ($\neg P$) qui est vraie si P est fausse, et réciproquement.
- * La conjonction P et Q ($P \wedge Q$) qui est vraie uniquement si P et Q sont vraies.
- * La disjonction P ou Q ($P \lor Q$) qui est vraie si P est vraie ou si Q est vraie (ou les deux).
- * L'implication $P \implies Q$ qui est vraie si P est fausse ou si Q est vraie (ou les deux).
- * L'équivalence $P \iff Q$ qui est vraie si P et Q ont la même valeur de vérité.

On résume souvent ces définitions par des tables de vérité.

P	Q	P et Q	P ou Q	$P \Longrightarrow Q$	$P \iff Q$
F	F	F	F	V	F
F	V	F	V	V	F
V	F	F	V	F	F
V	V	V	V	V	V

Proposition 1.3. Soit *P*, *Q*, *R* trois assertions.

Alors:

- * P et (Q ou R) équivaut à (P et Q) ou (P et R)
- * P ou (Q et R) équivaut à (P ou Q) et (P ou R)

(on parle de double distributivité et / ou)

1.2 Négation des connecteurs

Proposition 1.4. Soit *P* une assertion.

Alors non(non(P)) équivaut à P

Théorème 1.5. Soit *P* et *Q* deux assertions. On a :

Lois de De Morgan:

- * non(P et Q) équivaut à non(P) ou non(Q)
- * non(P ou Q) équivaut à non(P) et non(Q)

 $non(P \implies Q)$ équivaut à P et non(Q).

1.3 Quantificateurs

Définition 1.6. Soit P(x) une assertion dépendant d'un objet $x \in X$

On définit :

- * La \forall -assertion $\forall x \in X$, P(x) qui est vraie quand P(x) est vraie quelque soit l'élément x de X
- * La \exists -assertion $\exists x \in X : P(x)$ qui est vraie quand P(x) est vraie pour au-moins un élément $x \in X$

Théorème 1.7. Soit P(x) une assertion dépendante d'un objet $x \in X$

Alors:

- * non $(\forall x \in X, P(x))$ équivaut à $\exists x \in X : non(P(x))$
- * non $(\exists \in X, P(x))$ équivaut à $\forall n \in X : non(P(x))$

2 Canevas de preuves

2.1 Preuve d'un conjonction *P* et *Q*

Principe : Pour démontrer P et Q on démontre successivement P, puis Q

Montrons *P* et *Q*[arg / calc] donc *P*[arg / calc] donc *Q*

2.2 Preuve d'une implication

 $\underline{Principe}$: Pour montrer $P \implies Q$ on suppose P et on montre Q

Montrons $P \implies Q$ Supposons P[arg / calc utilisant probablement P] donc Q

2.3 Preuve d'une équivalence

 $\frac{\text{Principe}}{\text{On dit qu'on procède par double implication.}} \colon \text{L'assertion } P \iff Q \text{ équivaut à } ((P \implies Q) \text{ et } (Q \implies P))$

Montrons $P \iff Q$ par double implication

Sens direct : Supposons P

[arg / calc utilisant probablement P] donc Q

Sens réciproque : Supposons Q

[arg / calc utilisant probablement Q] donc P

2.4 Preuve d'une disjonction

Principe : P ou Q équivaut à $(non P) \implies Q$

Montrons P ou Q, ou plutôt $(\operatorname{non} P) \implies Q$ Supposons $\operatorname{non} P$ [arg / cal utilisant probablement $\operatorname{non}(P)$] donc Q

2.5 Preuve d'une ∀-assertion

Principe : Pour montrer $\forall x \in X$, P(x), on "invoque" un $x \in X$ quelconque et on montre P(x)

Montrons $\forall x \in X$, P(x)Soit $x \in X$

[arg / calc] donc P(x)

2.6 Preuve d'une ∃-assertion

<u>Principe</u>: Pour montrer $\exists x \in X : P(x)$, on exhibe un élément bien choisi $x_0 \in X$ et on note $P(x_0)$

Montrons $\exists x \in X : P(x)$

Candidat : x_0 = [choix intelligent]

[arg / calc] donc $x_0 \in X$

[arg / calc] donc $P(x_0)$

2.7 Utilisation d'un ∀-assertion

Pour utiliser $\forall x \in X$, P(x) on identifie un (ou plusieurs) élément(s) $x_0 \in X$: on sait alors que $P(x_0)$ est vrai.

2.8 Utilisation d'une ∃-assertion

Pour utiliser $\exists x \in X : P(x)$ il suffit d'écrire "on peut trouver $x_0 \in X$ tel que $P(x_0)$ " : on peut alors parler de x_0 dans la suite.

2.9 Exemples

Montrons que le carré d'un entier pair est pair, càd : $\forall n \in \mathbb{Z}$, n pair $\implies n^2$ pair.

Soit $n \in \mathbb{Z}$. Montrons n pair $\implies n^2$ pair.

Supposons n pair, càd $\exists k \in \mathbb{Z} : n = 2k$

On peut donc trouver $k \in \mathbb{Z}$ tel que n = 2k

Montrons n^2 pair, càd $\exists l \in \mathbb{Z} : n^2 = 2l$

Candidat : $l = 2k^2$

On a bien $l \in \mathbb{Z}$

On a $n^2 = (2k)^2 = 4k^2 = 2l$, ce qui conclut.

3 Autres modes de raisonnement

3.1 Contraposée

Principe : $P \implies Q$ équivaut à non $Q \implies \text{non } P$

3.2 Raisonnement par l'absurde

Principe : Pour montrer P, on peut supposer non(P) et aboutir à une assertion fausse (une contradiction).

3.3 Disjonction de cas

Principe : On peut montrer *P* en montrant :

$$H \implies P, H_2 \implies P, H_3 \implies P, \dots, H_n \implies P, (H_1 \text{ ou } H_2 \text{ ou } \dots \text{ ou } H_n)$$

3.4 Démonstration par chaîne d'équivalences

 $\frac{\text{Principe}}{1}: \text{Si } P_1 \iff P_2, P_2 \iff P_3, \dots, P_{n-1} \iff P_n$

donc $P_1 \iff P_n$

3.5 Raisonnement par analyse et synthèse

Pour identifier tous les objets vérifiant une certaine propriété:

- * <u>Analyse</u>: On considère un objet possédant cette propriété et on en tire des conséquences : on trouve de nouvelles propriétés.
- * Synthèse : Parmi des objets possédant ces nouvelles propriétés, on identifie ceux qui possédaient la propriété initiale.

3.6 Preuve d'un résultat d'unicité

<u>Principe</u>: Pour montrer qu'il existe au plus un objet $x \in X$ tel que P(x), on montre $\forall x_1, x_2 \in X$, $(P(x_1) \text{ et } P(x_2)) \implies x_1 = x_2$

On invoque deux objets ayant la propriété et on montre qu'ils sont égaux.

4 La raisonnement par récurrence

Ce mode de raisonnement sert à démontrer des assertions de la forme $\forall n \geq n_0, P(n)$ où :

- $* n_0 \in \mathbb{Z}$
- * P(n) est une assertion qui dépend de $n \ge n_0$ entier.
- * $\forall n \geq n_0$ est une abréviation de $\forall n \in \mathbb{Z}, n \geq n_0 \implies P(n)$

4.1 La récurrence simple

Principe : Pour montrer $\forall n \geq n_0$, P(n) il suffit de montrer $P(n_0)$ et $\forall n \geq n_0$, $P(n) \implies P(n+1)$

Notons, pour tout $n \ge n_0$, P(n) l'assertion [...]

Montrons $\forall n \geq n_0$, P(n) par récurrence.

Initialisation : [arg / calc] donc $P(n_0)$

Hérédité : Soit $n \ge n_0$ tel que P(n). Montrons P(n+1)

[arg / calc] donc P(n + 1), ce qui clôt la récurrence.

4.2 La récurrence double

<u>Principe</u>: Pour montrer $\forall n \geq n_0$, P(n) il suffit de montrer $P(n_0)$ et $P(n_0 + 1)$ et $\forall n \geq n_0$, (P(n) et $P(n + 1)) \implies P(n + 2)$

4.3 La récurrence forte

<u>Principe</u>: Pour montrer $\forall n \geq n_0$, P(n) il suffit de montrer $P(n_0)$ et $\forall n \geq n_0$, $(P(n_0)$ et ... et $P(n)) \implies P(n+1)$