Package 'WaMaSim'

October 12, 2022

00000112, 2022
Type Package
Title Simulate Rehabilitation Strategies for Water Distribution Systems
Version 1.0.0
Date 2019-05-02
Author Andreas Scheidegger [aut], Rachel Barrett [aut], Christian Foerster [cre]
Maintainer Christian Foerster <christian.foerster@eawag.ch></christian.foerster@eawag.ch>
Description The outcome of various rehabilitation strategies for water distribution systems can be modeled with the Water Management Simulator (Wa-MaSim). Pipe breaks and the corresponding damage and rehabilitation costs are simulated. It is mainly intended to be used as educational tool for the Water Infrastructure Experimental and Computer Laboratory at ETH Zurich, Switzerland.
Encoding UTF-8
<pre>URL https://github.com/scheidan/WaMaSim</pre>
BugReports https://github.com/scheidan/WaMaSim/issues
License GPL-3
RoxygenNote 6.1.1
Depends magrittr (>= 1.5)
Suggests testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2019-05-03 15:50:13 UTC
R topics documented:
costs.per.year

2 costs.per.year

	fail	4
	failure.cost	5
	failures.per.year	5
	initiate.network	6
	pipes.built.per.year	6
	pipes.inservice.per.year	
	replace.more.failures.than	7
	replace.n.highest.risk	8
	replace.n.oldest	9
	replace.n.random	10
	replace.older.than	11
	replacement.value	12
	sample.diameter	
	simulate_network	13
	simulate_network.period	15
	WaMaSim	18
	\$.statelist	18
Index		19

costs.per.year

Calculate the total costs per year

Description

The annual total costs are calculated. The total costs consist of damage, failure and rehabilitation costs.

Usage

```
costs.per.year(statelist, income)
```

Arguments

statelist a state list

income the same values as passed to simulate_network. Either a scalar or vector.

Value

a vector of the total cost per year

Author(s)

do.nothing 3

do.nothing

Rehabilitation strategy: no pipe replacement, repairs only

Description

Dummy strategy to model no rehabilitation at all.

Usage

```
do.nothing(state)
```

Arguments

state

a state list

Value

a state list

Author(s)

Andreas Scheidegger

See Also

replace.n. highest.risk, replace.n. oldest, replace.n. random, replace.older. than, replace.more.failures.than, replace.failures.than, replace

Examples

```
## define a strategy function that can be passed to simulate_network(): mystrategy <- . %>% do.nothing
```

expand

Model expansion of the network

Description

Expand the network with additional pipes. The diameter of these pipes is sampled.

Usage

```
expand(state, n.new, separate.budget = FALSE)
```

4 fail

Arguments

state a state object

n.new number of new pipes

separate.budget

boolean, if TRUE then expansion costs are not deducted from the normal budget

Value

the expanded inventory

Author(s)

Andreas Scheidegger

fail

Model failures of the network

Description

Allows pipes to randomly fail. If a failure occurs, the failure costs (repair + damage) are calculated and subtracted from the budget. Note, that this may result in a negative budget.

Usage

```
fail(state, prob.failure)
```

Arguments

state a state object

prob. failure function returning the annual failure rate; i.e. the probability of a pipe failing in

the current year of simulation. prob. failure must take age, age.last.failure, n. failure as input arguments. Note that in the case of a pipe with zero previous

failures (i.e. n.failure=0), age.last.failure=NA.

Value

inventory with new failures

Author(s)

failure.cost 5

failure.cost

Calculate the (random) cost of a failure

Description

Calculate the costs caused by a failure according to Section 7.1 in "The Water Network Management Challenge", Max Maurer 2017.

Usage

```
failure.cost(diameter, mean = FALSE)
```

Arguments

diameter d

diameter [mm]

mean

boolean. Should the expected cost be returned? Random otherwise.

Value

if mean=FALSE, the failure costs [CHF] are sampled randomly. If mean=TRUE, the expected average costs are returned.

Author(s)

Andreas Scheidegger

failures.per.year

Calculate number of failures per year

Description

The number of failures per year is calculated from a state list produced by simulate_network.

Usage

```
failures.per.year(statelist)
```

Arguments

statelist

a state list

Value

vector containing the number of failures per year

Author(s)

6 pipes.built.per.year

initiate.network

creates the initial network

Description

Creates the initial network that can be used with simulate_network.

Usage

```
initiate.network(inventory = 0, budget = Inf)
```

Arguments

inventory if inventory is an integer it specifies the number of initial pipes, or alternatively

it can be a data. frame containing the initial inventory of pipes.

budget initial budget

Value

a state list

Author(s)

Andreas Scheidegger

pipes.built.per.year Calculate number of newly built pipes for each year

Description

The number of newly built pipes per year is calculated from a state list produced by simulate_network.

Usage

```
pipes.built.per.year(statelist)
```

Arguments

statelist a state list

Value

vector containing the number of newly built pipes for each year

Author(s)

```
pipes.inservice.per.year
```

Returns the number of pipes in service for each year

Description

The number of pipes in service is calculated for every year based on a state list produced by simulate_network.

Usage

```
pipes.inservice.per.year(statelist)
```

Arguments

statelist a state list

Value

vector containing the number of pipes in service

Author(s)

Andreas Scheidegger

```
replace.more.failures.than
```

Rehabilitation strategy: replace pipes with too many failures

Description

Replace pipes with a high number of failures. Pipes are only replaced if the budget remains positive.

Usage

```
replace.more.failures.than(state, failures, max.costs = Inf)
```

Arguments

state a state list

failures maximal allowed number of failures

max.costs maximal amount of money allowed to be spent on this strategy

Value

a state list

Author(s)

Andreas Scheidegger

See Also

```
replace.n.highest.risk,replace.n.oldest,replace.n.random,replace.older.than,do.nothing
```

Examples

```
## define a strategy function that can be passed to simulate_network():
mystrategy <- . %>% replace.more.failures.than(max.failure=3, max.costs=20000)

## or define a more complex strategy by combining multiple strategies
## into a prioritized sequence:
mystrategy <- . %>%
  replace.more.failures.than(failures=2) %>%
  replace.n.oldest(n=3) %>%
  replace.n.highest.risk(n=2, prob.failure=prob.failure.exp) %>%
  replace.older.than(age=8) %>%
  replace.n.random(n=4)
```

```
replace.n.highest.risk
```

Rehabilitation strategy: replace the n pipes with the highest risk

Description

Strategy to prioritize pipes with the highest risk. Pipes are only replaced if the budget remains positive.

Usage

```
replace.n.highest.risk(state, n, prob.failure, max.costs = Inf)
```

Arguments

state a state list

n number of highest risk pipes to replace

prob.failure failure rate function. Typically the same as passed to simulate_network.

max.costs maximal amount of money allowed to be spent on this strategy

Details

The risk is defined as the product of the failure probability in the next year and the expected failure costs.

replace.n.oldest 9

Value

a state list

Author(s)

Andreas Scheidegger

See Also

```
replace.n.oldest,replace.n.random,replace.older.than,replace.more.failures.than,do.nothing
```

Examples

```
## define a strategy function that can be passed to simulate_network():
mystrategy <- . %>% replace.n.highest.risk(n=2, prob.failure=prob.failure.exp, max.costs=30000)

## or define a more complex strategy by combining multiple strategies

## into a prioritized sequence:
mystrategy <- . %>%
    replace.more.failures.than(failures=2) %>%
    replace.n.oldest(n=3) %>%
    replace.n.highest.risk(n=2, prob.failure=prob.failure.exp) %>%
    replace.older.than(age=8) %>%
    replace.n.random(n=4)
```

replace.n.oldest

Rehabilitation strategy: replace the n oldest pipes

Description

Prioritize the oldest pipes for replacement. Pipes are only replaced if the budget remains positive.

Usage

```
replace.n.oldest(state, n, max.costs = Inf)
```

Arguments

state a state list

n number of oldest pipes to replace

max.costs maximal amount of money allowed to be spent on this strategy

Value

a state list

10 replace.n.random

Author(s)

Andreas Scheidegger

See Also

replace.n.highest.risk,replace.n.random,replace.older.than,replace.more.failures.than,do.nothing

Examples

```
## define a strategy function that can be passed to simulate_network():
mystrategy <- . %>% replace.n.oldest(n=10)

## or define a more complex strategy by combining multiple strategies
## into a prioritized sequence:
mystrategy <- . %>%
    replace.more.failures.than(failures=2) %>%
    replace.n.oldest(n=3) %>%
    replace.n.highest.risk(n=2, prob.failure=prob.failure.exp) %>%
    replace.older.than(age=8) %>%
    replace.n.random(n=4)
```

replace.n.random

Rehabilitation strategy: replace n randomly selected pipes

Description

Replace a certain number of randomly chosen pipes. Pipes are only replaced if the budget remains positive.

Usage

```
replace.n.random(state, n, max.costs = Inf)
```

Arguments

state a state list

n number of random pipes to replace

max.costs maximal amount of money allowed to be spent on this strategy

Value

a state list

Author(s)

replace.older.than

See Also

replace.n.highest.risk,replace.n.oldest,replace.older.than,replace.more.failures.than,do.nothing

Examples

```
## define a strategy function that can be passed to simulate_network():
mystrategy <- . %>% replace.n.random(n=10)

## or define a more complex strategy by combining multiple strategies
## into a prioritized sequence:
mystrategy <- . %>%
    replace.more.failures.than(failures=2) %>%
    replace.n.oldest(n=3) %>%
    replace.n.highest.risk(n=2, prob.failure=prob.failure.exp) %>%
    replace.older.than(age=8) %>%
    replace.n.random(n=4)
```

replace.older.than

Rehabilitation strategy: replace pipes older than age

Description

Strategy to replace pipes older than a given age. Pipes are only replaced if the budget remains positive.

Usage

```
replace.older.than(state, age, max.costs = Inf)
```

Arguments

state a state list

age pipes older than age are replaced

max.costs maximal amount of money allowed to be spent on this strategy

Value

a state list

Author(s)

Andreas Scheidegger

See Also

replace.n.highest.risk, replace.n.oldest, replace.n.random, replace.more.failures.than,
do.nothing

12 replacement.value

Examples

```
## define a strategy function that can be passed to simulate_network():
mystrategy <- . %>% replace.older.than(age=85, max.costs=20000)

## or define a more complex strategy by combining multiple strategies
## into a prioritized sequence:
mystrategy <- . %>%
    replace.more.failures.than(failures=2) %>%
    replace.n.oldest(n=3) %>%
    replace.n.highest.risk(n=2, prob.failure=prob.failure.exp) %>%
    replace.older.than(age=8) %>%
    replace.n.random(n=4)
```

replacement.value

Calculate replacement value

Description

Based on Eq(14) of "The Water Network Management Challenge, Max Maurer 2017", assuming a pipe length of 100m.

Usage

```
replacement.value(diameter)
```

Arguments

diameter diameter of the pipe [mm]

Value

replacement value [CHF]

Author(s)

sample.diameter 13

sample.diameter

Sample a diameter of a new pipe.

Description

The diameter distribution is based on a real data set from Lisa Scholten (pipe_data.csv). Refer to the old exercise on watermain break modelling in the ETH Infrastructure Systems course by Max Maurer.

Usage

```
sample.diameter(n = 1)
```

Arguments

n

number of samples

Value

a vector of diameters

Author(s)

Andreas Scheidegger

simulate_network

Simulate the failures, expansion, rehabilitation, and costs of a network

Description

Simulates failures, expansion, rehabilitation, and costs of a water supply pipe network. The simulation is stochastic.

Usage

```
simulate_network(n.years, expansion, rehabilitation, prob.failure,
  income = 0, initial.budget = Inf, initial.inventory = NULL,
  free.expansion = TRUE)
```

14 simulate_network

Arguments

n. years number of years to simulate

expansion either a scalar describing the number of pipes added every year to expand the

pipe network, or a vector of length n. years. Negative values are not allowed.

rehabilitation a (combination of) rehabilitation strategy function(s). See details below.

prob.failure a function describing the probability of a pipe failing in the next year given its

age, number of previous failures, and the age at the last failure (if any).

income either a scalar describing the annual income, or a vector of length n. years.

initial.budget initial budget

initial.inventory

if it is an integer it specifies the number of initial pipes, or alternatively it can be

a data. frame containing the initial inventory of pipes.

free.expansion if TRUE costs for network expansion are not deducted from the budget.

Details

The rehabilitation is defined by combining different simple replacement strategies. See the example for how this can be done using the mystrategy function input. If the strategies vary over time, see initiate.network and simulate_network.period.

The failure behavior is defined by the function prob.failure. It calculates the probability of a pipe failing within the next year based on pipe age, pipe age at the last failure, and the number of failures. Note, the model makes the assumption that a pipe cannot fail more than once per year.

The costs are calculated as a function of the pipe diameter, assuming all pipes have a length of 100 meters.

Value

an updated state list

Author(s)

Andreas Scheidegger

See Also

For more fine-grained control see initiate.network and simulate_network.period. Different replacement strategies are implemented: replace.n.highest.risk, replace.n.oldest, replace.n.random, replace.older.than, replace.more.failures.than, do.nothing.

Examples

```
## -----
## define model parameters

## Define the annual probability of a failure
prob.failure.exp <- function(age, age.last.failure, n.failure) {
   if(n.failure==0){</pre>
```

15

```
return(1/30)
 } else {
   return(1/10)
 }
}
## define a complicated (and probably useless) rehabilitation strategy
mystrategy <- . %>%
 replace.n.highest.risk(n=2, prob.failure=prob.failure.exp) %>%
 replace.more.failures.than(failures=5) %>%
 replace.older.than(age=70, max.cost=2e6) %>%
 replace.n.oldest(n=3) %>%
 replace.n.random(n=2)
## This means: every year (if we have enough budget!), replace first the 2 pipes
## with the highest risk, then all pipes with more than 5 failures,
## then all pipes older then 70 years (up to costs of 2e6), then the 3
## oldest pipes remaining, and finally replace 2 randomly selected pipes.
## -----
## run the simulation
result <- simulate_network(
   n.years = 100,
                                     # run it for 100 years
   expansion = 10,
                                     # build 10 pipes per year (if money is available)
    rehabilitation = mystrategy,
                                     # use the strategy defined above
   prob.failure = prob.failure.exp, # use the probability function defined above
    income = 1e6,
                                     # the annual income
    initial.budget = 1e7,
    initial.inventory = 50,
                                     # start the simulation with 50 new pipes
   free.expansion = FALSE
    )
## look at some results
## str(result)
## str(result$time.100)
```

simulate_network.period

Simulate the network for a period of time

Description

Simulates failures, expansion, rehabilitation, and costs of a water supply pipe network. The simulation is stochastic.

Usage

```
simulate_network.period(statelist, n.years, expansion, rehabilitation,
  prob.failure, income = 0, free.expansion = TRUE)
```

Arguments

n.years number of years to simulate

expansion either a scalar describing the number of pipes added every year to expand the pipe network, or a vector of length n. years. Negative values are not allowed.

rehabilitation a (combination of) rehabilitation strategy function(s). See details below.

prob.failure a function describing the probability of a pipe failing in the next year given its age, number of previous failures, and the age at the last failure (if any).

income either a scalar describing the annual income, or a vector of length n.years.

free.expansion if TRUE costs for network expansion are not deducted from the budget.

Details

The rehabilitation is defined by combining different simple replacement strategies. See the example for how this can be done using the mystrategy function input.

The failure behavior is defined by the function prob.failure. It calculates the probability of a pipe failing within the next year based on pipe age, pipe age at the last failure, and the number of failures. Note, the model makes the assumption that a pipe cannot fail more than once per year.

The costs are calculated as a function of the pipe diameter, assuming all pipes have a length of 100 meters.

Value

an updated state list

Author(s)

Andreas Scheidegger

See Also

simulate_network provides a slightly more convenient interface.

Examples

```
## -----
## define model parameters

## Define the annual probability of a failure
prob.failure.exp <- function(age, age.last.failure, n.failure) {
   if(n.failure==0){
      return(1/30)
   }
}</pre>
```

```
} else {
   return(1/10)
 }
}
## define a complicated (and probably useless) rehabilitation strategy
mystrategy <- . %>%
 replace.n.highest.risk(n=2, prob.failure=prob.failure.exp) %>%
 replace.more.failures.than(failures=5) %>%
 replace.older.than(age=70, max.cost=2e6) %>%
 replace.n.oldest(n=3) %>%
 replace.n.random(n=2)
## This means: every year (if we have enough budget!), replace first the 2 pipes
## with the highest risk, then all pipes with more than 5 failures,
## then all pipes older then 70 years (up to costs of 2e6), then the 3
## oldest pipes remaining, and finally replace 2 randomly selected pipes.
## -----
## run the simulation in steps
statelist <- initiate.network(inventory = 50, budget = 1e7)</pre>
statelist <- simulate_network.period(</pre>
  statelist,
                                    # state list to update
  n.years = 20,
                                    # run it for 20 years
                                   # build 10 pipes per year (if money is available)
  expansion = 10,
  rehabilitation = mystrategy,  # use the strategy defined above
  prob.failure = prob.failure.exp, # use the probability function defined above
   income = 1e6
                                    # the annual income
  )
statelist <- simulate_network.period(</pre>
                                    # state list to update
   statelist,
  n.years = 10,
                                    # run it for 10 more years
                               # now, build only 2 pipes per year (if money is available)
  expansion = 2,
  rehabilitation = mystrategy,
                                  # use the strategy defined above
  prob.failure = prob.failure.exp, # use the probability function defined above
  income = 1e6
                                    # the annual income
  )
## look at some results
## str(statelist)
## str(statelist$time.30)
```

18 \$.statelist

WaMaSim

WaMaSim - Water Management Simulator

Description

WaMaSim is a package that simulates the effect of different rehabilitation strategies for water distribution systems. It is an education tool used for the Water Infrastructure Experimental and Computer Laboratory at ETH Zurich, Switzerland. See the documentation for simulate_network to get started.

Author(s)

Andreas Scheidegger

\$.statelist

Extract time or budget as vectors

Description

Convenient functions to extract the time or budget.

Usage

```
## S3 method for class 'statelist' xname
```

Arguments

x a state list

name of the element to extract

Value

a vector of the time or budget, or a state

Author(s)

Andreas Scheidegger

Examples

```
## Not run:
str(result)  # result is a 'statelist' returned from simulate_network
result$budget  # vector of budget
result$time  # vector of time
result$time.22  # state list of time 22
## End(Not run)
```

Index

```
$.statelist, 18
costs.per.year, 2
do.nothing, 3, 8–11, 14
expand, 3
fail, 4
failure.cost, 5
failures.per.year, 5
initiate.network, 6, 14
pipes.built.per.year, 6
pipes.inservice.per.year, 7
replace.more.failures.than, 3, 7, 9–11,
replace.n.highest.risk, 3, 8, 8, 10, 11, 14
replace.n.oldest, 3, 8, 9, 9, 11, 14
replace.n.random, 3, 8-10, 10, 11, 14
replace.older.than, 3, 8-11, 11, 14
replacement.value, 12
sample.diameter, 13
simulate_network, 5-8, 13, 16, 18
simulate_network.period, 14, 15
WaMaSim, 18
WaMaSim-package (WaMaSim), 18
```