1st Students Dynamic Macro Workshop Business Cycles Analysis

Rousalis Stylianos

December 12, 2024

The Business Cycle

 Business cycles represent fluctuations in economic activity over the trend over time.

Analysis of the Cycle

We are interested in how the cycle of a specific variable behaves in relation to the cycle of real GDP:

- Orrelation: procyclical, countercyclical, or acyclical
- 2 Timing: leading, lagging, or coincident
- Relative Volatility

Procyclical vs Countercyclical

Leading vs Lagging

Stylized Facts

Kydland and Prescott (1990) report stylized business cycle facts for the US:

Variable	Correlation	Timing	Relative Volatility
Consumption	procyclical	coincident	smaller
Investment	procyclical	coincident	larger
Money Supply	procyclical	leading	smaller
Unemployment	countercyclical	lagging	smaller

Time Series Detrending

Any time series $y_t = \ln Y_t$ can be decomposed such that

$$y_t = y_t^T + y_t^C$$

where y_t^T is the trend and y_t^C is the cycle.

Thus, the cycle can be written as:

$$\begin{aligned} y_t^C &= y_t - y_t^T = \ln Y_t - \ln Y_t^T \\ &= \ln \left(\frac{Y_t}{Y_t^T} \right) = \ln \left(1 + \left(\frac{Y_t}{Y_t^T} - 1 \right) \right) \\ &= \ln \left(1 + \left(\frac{Y_t - Y_t^T}{Y_t^T} \right) \right) \approx \frac{Y_t - Y_t^T}{Y_t^T} \end{aligned}$$

Detrend in practice

- First differences in logs
- Filters
 - ► Hodrick-Prescott filter
 - ▶ Band-Pass filter (e.g. Baxter-King)

The Hodrick-Prescott Filter

- Originated in the engineering literature, where it is known as the Whitaker–Henderson filter.
- Very popular in the macro literature
- The idea is to generalize the linear trend and allow the slope of the "trend" to vary — but not too much.

Mathematics of the Hodrick-Prescott Filter

$$\min_{\{y_t^T\}_{t=1}^T} \ \sum_{t=1}^T (y_t - y_t^T)^2 + \lambda \sum_{t=2}^{T-1} \left((y_{t+1}^T - y_t^T) - (y_t^T - y_{t-1}^T) \right)^2$$

- The first term, $\sum_{t=1}^{T} (y_t y_t^T)^2$, penalizes deviations of the trend Y_t from the actual data y_t , ensuring that y_t^T stays close to y_t .
- The second term, $\lambda \sum_{t=2}^{T-1} \left((y_{t+1}^T y_t^T) (y_t^T y_{t-1}^T) \right)^2$, penalizes changes in the slope of y_t^T , enforcing smoothness in the trend.
 - $(y_{t+1}^T y_t^T) \approx \frac{Y_{t+1}^T Y_t^T}{Y_t^T}$: growth rate of the trend between periods t+1 and t
 - $(y_t^T y_{t-1}^T) \approx \frac{Y_t^T Y_{t-1}^T}{Y_{t-1}^T}$: growth rate of the trend between periods t and t-1

The role of λ

- ullet λ is the smoothing parameter
- Measures the relative weight attached to smoothness as against close tracking.
- Trade-off:
 - ▶ Closeness to Data: how closely the trend T_t fits the actual data y_t .
 - ▶ Smoothness of Trend: how gradual the changes in T_t are over time.
- **High** λ : smoother trend by restricting fluctuations
 - $\lambda \to \infty$, the trend approaches a linear trend
- Low λ : more volatile trend
 - $\lambda = 0$, the trend is equal to the original series $(y_t = y_t^T, y_t^C = 0)$

Macro History Database

- Released by MacroFinance and MacroHistory Lab hosted at the Kiel Institute for the World Economy and affiliated with the ECONtribute Excellence Cluster.
- Covers 18 advanced economies since 1870 on an annual basis.
- Comprises 48 real and nominal variables.

Figure: GDP TREND

The black dotted line is the log of real GDP per capita and the blue line is the trend obtained from the HP filter for $\lambda = 100$

Figure: GDP CYCLE

Table: Volatility of the Cycle of GDP

Country	Volatility	
France	0.0567	
Germany	0.1204	
Netherlands	0.0699	
Italy	0.0458	
Portugal	0.0339	
Spain	0.0463	

Figure: GDP CYCLE VOLATILITY PER 30 YEARS PERIOD

I divide 150 years (1870–2020) into five 30-year periods, using the final year of each period as x-axis ticks, and calculate cycle volatility for each.

December 12, 2024

Table: Volatility relative to GDP, 2000-2020

Country Consumption		Investment
France	0.7494	1.7274
Germany	0.7142	1.7136
Netherlands	0.8957	2.8870
Italy	0.9893	1.4946
Portugal	1.1890	2.5844
Spain	1.0671	2.4610

References

- Baxter, Marianne Robert G. King (1999). "Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series", The Review of Economics and Statistics, Vol. 81, No. 4 (Nov.), pp. 575-593.
- Hodrick, Robert Edward Prescott (1981). "Post-War U.S. Business Cycles: An Empirical Investigation", Discussion Papers 451, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Jordà, Òscar, Moritz Schularick, Alan M. Taylor (2017). "Macrofinancial History and the New Business Cycle Facts", NBER Macroeconomics Annual 2016, vol. 31, edited by Martin Eichenbaum and Jonathan A. Parker, University of Chicago Press.
- Kydland, Finn Edward C. Prescott (1990). "Business cycles: real facts and a monetary myth", Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 14(Spring), pages 3-18.
- Mohr, Matthias (2005). "A trend-cycle(-season) filter", Working Paper Series 499, European Central Bank.
- Uribe, Martín Stephanie Schmitt-Grohé (2017). "Open Economy Macroeconomics", Princeton University Press.