

Computer Science Year 2

Algorithms & Data

Estimation, Regression, Classification Prof Alin Achim

Last time ...

- Least squares (LS) estimation
 - Minimizes sum of squares between measurements and a model
 - Generally applicable estimator as no assumption is made about the data
 - Best for linear models
- Method of Moments (MoM)
 - Based on equating sample and population moments
 - Simplest estimation approach, intuitive, works well in straightforward cases
 - Not always leading to good results, especially in small sample sizes

- Bayesian Estimation
 - Motivation
 - The Bayesian paradigm
 - The MMSE estimator
 - The MAE estimator
 - The MAP estimator
 - Examples

Classical vs Bayesian estimation

- Classical methods
 - The assumptions leading to asymptotic results may not apply sometimes;
 - Asymptotic approximations are not always reliable, even for medium sample sizes. For small sample sizes, estimators like the MLE (asymptotically justified) can even lead to absurd results;
 - Frequentist estimators work well on average, but not necessarily for the data at hand;
 - They are not able to account for any kind of extrainformation that may be available;
 - Classical approach to estimation assumes that the parameter to be determined is a deterministic but unknown constant.

Classical vs Bayesian estimation

- Bayesian methods
 - In Bayesian approach the unknown parameter is assumed to be a random variable;
 - They enable prior information about the parameters to be incorporated in the estimation procedure;
 - They do not need to be justified by any asymptotic approximation;
 - Bayesian techniques are based on modelling the uncertainty with respect to the parameter θ through a probability distribution.

The Bayesian MSE

Remember the DC level in WGN example:

$$x[n] = A + w[n]$$
, where $n = 0,1,...,N-1$ and $w[n] \sim N(0,\sigma^2)$

- The MVUE of A was found to be the sample mean, assuming -∞<A<∞ (deterministic unknown) ...
- However, by assigning a particular PDF to the random variable (!) A:

 We can attempt to find an estimator of A that would minimize the MSE:

$$B_{MSE}(\hat{A}) = E\left[\left(A - \hat{A} \right)^2 \right]$$

The Bayesian MSE

Classical MSE:

$$mse(\hat{A}) = \int (\hat{A} - A)^2 p(x; A) dx$$

Bayesian MSE:

$$Bmse(\hat{A}) = \iint (A - \hat{A})^{2} p(x, A) dx dA$$

 Whereas the classical MSE depends on A (and hence estimators that attempt to minimize it will usually depend on A), the Bayesian MSE does not! That's because the parameter dependence is integrated away!

Elements of Bayesian analysis

Bayes rule:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$$

where: $p(\theta|x)$ - posterior $p(x|\theta)$ - likelihood $p(\theta)$ - prior

$$p(x|\theta)$$
 – likelihood

$$p(\theta)$$
 – prior

p(x) – evidence

Definition: Bayesian statistical model

A statistical model composed of a data generation model, $p(x|\theta)$, and a prior distribution on the parameters, $p(\theta)$.

• Joint distribution: $p(x,\theta) = p(x|\theta)p(\theta)$

Marginal distributions:
$$p(x) = \int p(x|\theta) p(\theta) d\theta$$
$$p(\theta) = \int p(x|\theta) p(\theta) dx$$

Example: DC level in WGN (continued)

$$Bmse(\hat{A}) = \iint (A - \hat{A})^{2} p(x, A) dx dA$$

$$p(x, A) = p(A|x)p(x)$$

$$Bmse(\hat{A}) = \iint (A - \hat{A})^{2} p(A|x) dA$$

$$p(x, A) = p(A|x)p(x)$$

- The Bayesian MSE will be minimized if the integral in brackets can be minimized for each x.

Taking the derivative:
$$\frac{\partial}{\partial \hat{A}} \int (A - \hat{A})^2 p(A|x) dA = \int \frac{\partial}{\partial \hat{A}} (A - \hat{A})^2 p(A|x) dA$$
$$= \int -2(A - \hat{A}) p(A|x) dA$$
$$= -2 \int A p(A|x) dA + 2\hat{A} \int p(A|x) dA$$

Example: DC level in WGN (continued)

Setting to zero

$$-2\int Ap(A|x) dA + 2\hat{A}\int p(A|x)dA = 0$$

And since the conditional PDF must integrate to 1

$$\hat{A} = \int Ap(A|x)dA$$

Finally

$$\hat{A} = E(A|x)$$

Bayesian estimators

 In general, a Bayesian estimator minimizes the conditional risk, which is the loss (cost function) averaged over the conditional (posterior) distribution of θ, given the observation (measurement) x:

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmin}} \int C[\theta, \hat{\theta}(x)] p(\theta|x) d\theta$$

 Definition: The Bayes risk R is the average cost E[C(ε)] and measures the performance of a given estimator.

$$R = E[C(\varepsilon)]$$

The Minimum Mean Square Error (MMSE) estimator

Quadratic error cost function

$$C[\theta, \hat{\theta}(x)] = C(\varepsilon) = \varepsilon^2$$

 The corresponding optimal estimator is the mean of the posterior PDF

$$\hat{\theta} = \int \theta p(\theta|x) d\theta = E(\theta|x)$$

The Minimum Absolute Error (MAE) estimator

Absolute error cost function

$$C[\theta, \hat{\theta}(x)] = C(\varepsilon) = |\varepsilon|$$

General Bayesian estimator

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmin}} \int C[\theta, \hat{\theta}(x)] p(\theta|x) d\theta$$

Using the two equations above, the MAE is obtained as

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmin}} \int |\theta - \hat{\theta}| p(\theta|x) d\theta$$

The MAE estimator

The integral can be split into

$$g(\hat{\theta}) = \int_{-\infty}^{\hat{\theta}} (\hat{\theta} - \theta) p(\theta|x) d\theta + \int_{\hat{\theta}}^{-\infty} (\theta - \hat{\theta}) p(\theta|x) d\theta$$

In order to differentiate one can use Leibnitz's rule yielding

$$\frac{dg(\hat{\theta})}{d\hat{\theta}} = \int_{-\infty}^{\hat{\theta}} p(\theta|x)d\theta - \int_{\hat{\theta}}^{-\infty} p(\theta|x)d\theta$$

And setting to 0 :-

$$\int_{-\infty}^{\widehat{\theta}} p(\theta|x)d\theta = \int_{\widehat{\theta}}^{-\infty} p(\theta|x)d\theta$$

that is by definition the median of the posterior PDF.

The Maximum a Posteriori (MAP) Estimator

Hit-or-miss cost function

$$C(\varepsilon) = \begin{cases} 0, & |\theta - \hat{\theta}| < \delta \\ 1, & \text{otherwise} \end{cases}$$

General Bayesian estimator

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmin}} \int C[\theta, \hat{\theta}(x)] p(\theta|x) d\theta$$

Using the two equations above, the MAP is obtained as

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmin}} \int_{|\theta - \hat{\theta}| \ge \delta} p(\theta|x) d\theta$$

★ The MAP Estimator

Or

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmin}} \left[1 - \int_{|\theta - \hat{\theta}| < \delta} p(\theta|x) d\theta \right]$$

 In order to minimize the expected cost, when δ →0 one should select (the MAP equation)

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmax}} p(\theta|x)$$

that is, the mode of the posterior pdf.

 Using Bayes theorem together with the last equation, we can also write the MAP equation as (more useful in practice)

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmax}} p(x|\theta)p(\theta)$$

• Assume that
$$p(x|\theta) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\theta)^2}{2\sigma^2}\right)$$

and that the prior pdf is
$$p(\theta) = \frac{\gamma}{\pi(\theta^2 + \gamma^2)}$$

The MAP estimator can be found as follows:-

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmax}} [\ln p(x|\theta) + \ln p(\theta)]$$

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmax}} \left[-\frac{(x-\theta)^2}{2\sigma^2} + \ln \frac{\gamma}{\pi(\theta^2 + \gamma^2)} \right]$$

Example (continued)

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmax}} \left[-\frac{(x-\theta)^2}{2\sigma^2} + \ln \frac{\gamma}{\pi(\theta^2 + \gamma^2)} \right]$$

Differentiating with respect to θ

$$\frac{d}{d\theta} \left[-\frac{(x-\theta)^2}{2\sigma^2} + \ln \frac{\gamma}{\pi(\theta^2 + \gamma^2)} \right] = \frac{x-\theta}{\sigma^2} - \frac{2\theta}{\theta^2 + \gamma^2}$$

Setting equal to 0 yields

$$\frac{x-\theta}{\sigma^2} = \frac{2\theta}{\theta^2 + \gamma^2}$$

Finally, rearranging

$$\theta^3 - x\theta^2 + (\gamma^2 + \sigma^2)\theta - \gamma^2 x = 0$$

Summary of Bayesian Estimation

- The Bayesian approach to estimation is fundamentally different from the classical (frequentist) approach;
- It consists of modelling the uncertainty with respect to the parameter θ through a probability distribution;
- It is able to provide answers to any statistical question in terms of probabilities.
 - Disadvantages:-
 - A prior distribution must be specified. This presupposes more work and can be subjective
 - Except for some special cases of prior distributions (e.g. Gaussian, Cauchy, exponential, Laplacian), the derivation of the posterior distribution is cumbersome and requires numerical methods.

