

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2009; month=1; day=22; hr=12; min=45; sec=12; ms=146;]

=====

Reviewer Comments:

Leu Glu Phe

30

Tyr Thr Lys Arg Leu Phe Gln Ser Val Ser Pro Ser Phe Leu Ser Ile
35 40 45

Please correct invalid amino acid numbering shown above in sequence id# 48. Please check the remaining sequences for similar errors.

Application No: 10785116

Version No: 3.0

Input Set:**Output Set:**

Started: 2009-01-07 15:10:48.392
Finished: 2009-01-07 15:10:52.884
Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 492 ms
Total Warnings: 33
Total Errors: 9
No. of SeqIDs Defined: 49
Actual SeqID Count: 49

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
E 201	Mandatory field data missing in <223> in SEQ ID (11)
E 201	Mandatory field data missing in <223> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)
W 213	Artificial or Unknown found in <213> in SEQ ID (23)
W 213	Artificial or Unknown found in <213> in SEQ ID (24)
W 213	Artificial or Unknown found in <213> in SEQ ID (25)
W 213	Artificial or Unknown found in <213> in SEQ ID (26)

Input Set:

Output Set:

Started: 2009-01-07 15:10:48.392
Finished: 2009-01-07 15:10:52.884
Elapsed: 0 hr(s) 0 min(s) 4 sec(s) 492 ms
Total Warnings: 33
Total Errors: 9
No. of SeqIDs Defined: 49
Actual SeqID Count: 49

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (27)
W 213	Artificial or Unknown found in <213> in SEQ ID (28) This error has occurred more than 20 times, will not be displayed
E 201	Mandatory field data missing in <223> in SEQ ID (45)
E 323	Invalid/missing amino acid numbering SEQID (48) at Protein (35)
E 323	Invalid/missing amino acid numbering SEQID (48) POS (36)
E 323	Invalid/missing amino acid numbering SEQID (48) at Protein (40)
E 323	Invalid/missing amino acid numbering SEQID (48) POS (41)
E 323	Invalid/missing amino acid numbering SEQID (48) at Protein (45)
E 323	Invalid/missing amino acid numbering SEQID (48) POS (46)

SEQUENCE LISTING

<110> Pecker, Iris
Vlodavsky , Israel
Feinstein, Elena

<120> POLYNUCLEOTIDE ENCODING A POLYPEPTIDE HAVING HEPARANASE ACTIVITY AND EXPRESSION OF SAME IN GENETICALLY MODIFIED CELLS

<130> 27674

<140> 10785116
<141> 2004-02-25

<160> 49

<170> PatentIn version 3.1

<210> 1
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 1
ccatcctaat acgactca ct ataggc

27

<210> 2
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 2
gtatgtatgc catgttaacty aatc

24

<210> 3
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 3
acttcactata gggctcgagc ggc

23

<210> 4
<211> 22
<212> DNA

<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 4
gcatcttagc cgtttttt cg

22

<210> 5
<211> 15
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 5
ttttttttt tttt

15

<210> 6
<211> 23
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 6
ttcgatccca agaaggaaatc aac

23

<210> 7
<211> 24
<212> DNA
<213> Artificial sequence

<220>
<223> Synthetic oligonucleotide

<400> 7
gtatgtatgc catgtaactg aatc

24

<210> 8
<211> 9
<212> PRT
<213> Artificial sequence

<220>
<223> Peptide derived from tryptic digestion of human heparanase

<400> 8

Tyr Gly Pro Asp Val Gly Gln Pro Arg

1 5

<210> 9
<211> 1721
<212> DNA
<213> Homo sapiens

<400> 9
cttagacgtt cgaacttcgg ctgcgcggca gctggcgccc ggagcagcca ggtgagccca 60
agatgtgtgt gtgttcgaag cttgcgtgtgc cggcgccgtc gtgtgtgtc ttctggggc 120
cgctgggtcc ctctccccct ggccgcctgc cccgaacctgc gcaaggcacacg gacgtcggtg 180
acctggaaatt ctccaccccg gagecgctgc acctggtag gcccctcggtc ctgtccgtca 240
ccattgacgc caaccgtggc acggcccccgg tttccatcgtt ctctctgggtt ttcacaaggc 300
ttcgtaacctt ggccagggc ttgtctccgtt cgtacctggat gtttggggc accaagacag 360
acttccataat ttgcgtatccc aagaaggaaat caaccttgc agagagaagt tactggcaat 420
ctcaaggtaaa ccaggatatt tgcataatgtt gatccatccc tctgtatgtt gaggagaagt 480
tacgggttggaa atggccctac caggagcaat tgcgtactccg agaaacactac cagaaaaaagt 540
tcaagaacag caccatctca agaagctctg tagatgtgtc atacactttt gcaaaactgtc 600
caggactggat ttgtatctttt ggccatataatggat cgttattaaatggaa aacagcagat ttgcgttgaa 660
acagttctaa tgcgtcaggat tccctggact actgtcttc caaggggtat aacattttt 720
ggaaactagg caatgaacct aacagtttc ttaagaaggc tgatattttc atcaatgggt 780
cgcagttagg agaaaggattt attcatttcg ataaacttct aagaaaggcc accttcaaaaa 840
atgcaaaaact ctatggctt gatgtgggtc agccctcgaa agaaacggct aagatgtgtca 900
agagettctt gaaggcttgtt ggagaaggatgtt ttgattcgtt tacatggcat cactactattt 960
tgaatggacg gactgttacc agggaaaggat ttctaaatccc tgatgttattt gacattttt 1020
tttcatctgtt gcaaaaaggat ttccagggtgg ttgagagcac caggectggc aagaagggtct 1080
gtttaggaga aacaagcttgc gatatggac gggggcccttgcgttacc gacacctttt 1140
cagctggctt tatgtggctt gataaatggat gctgtcaggcc cccaaatggaa atagaaggatgg 1200
tgatgaggca agtatttttggagcaggaa actaccattt agtggatgaa aacttcgtatc 1260
ctttacctgtt ttatggctt tctcttctgtt tcaagaattt ggtggccacc aagggtgtttaa 1320
tggcaaggctt gcaagggttca aagagaaggaa agcttcggatc ataccttcat tgcacaaaaca 1380
ctgacaatccaa aaggtataaa gaaggagatgtt taactctgtt tggccataaaatccatcaacg 1440
tcaccaagttt ctgcgggttca ccctatccatttttcttcaaaa gcaaggatggat aaataaccc 1500

taaagacctt gggacccat ggattacttt ccaaattctgt ccaactcaat ggtctaaactc 1560
taaaagatggt ggatgatcaa accttgccac cttaatgga aaaacctctc cggccagggaa 1620
gttcaactggg cttgccagct ttctcatata gttttttgt gataagaat gccaaaggta 1680
ctgcttgcat ctgaaaataa aataactag tccr gagact g 1721

<210> 10
<211> 543
<212> PRT
<213> Homo sapiens

<400> 10

Met Leu Leu Arg Ser Lys Pro Ala Leu Pro Pro Pro Leu Met Leu Leu
1 5 10 15

Leu Leu Gly Pro Leu Gly Pro Leu Ser Pro Gly Ala Leu Pro Arg Pro
20 25 30

Ala Gln Ala Gln Asp Val Val Asp Leu Asp Phe Phe Thr Gln Glu Pro
35 40 45

Leu His Leu Val Ser Pro Ser Phe Leu Ser Val Thr Ile Asp Ala Asn
50 55 60

Leu Ala Thr Asp Pro Arg Phe Leu Ile Leu Leu Gly Ser Pro Lys Leu
65 70 75 80

Arg Thr Leu Ala Arg Gly Leu Ser Pro Ala Tyr Leu Arg Phe Gly Gly
85 90 95

Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Lys Lys Glu Ser Thr Phe
100 105 110

Glu Glu Arg Ser Tyr Trp Gln Ser Gln Val Asn Gln Asp Ile Cys Lys
115 120 125

Tyr Gly Ser Ile Pro Pro Asp Val Glu Glu Lys Leu Arg Leu Glu Trp
130 135 140

Pro Tyr Gln Glu Gln Leu Leu Leu Arg Glu His Tyr Gln Lys Lys Phe
145 150 155 160

Lys Asn Ser Thr Tyr Ser Arg Ser Ser Val Asp Val Leu Tyr Thr Phe
165 170 175

Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe Gly Leu Asn Ala Leu Leu
180 185 190

Arg Thr Ala Asp Leu Gln Trp Asn Ser Ser Asn Ala Gln Leu Leu Leu
195 200 205

Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile Ser Trp Glu Leu Gly Asn
210 215 220

Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp Ile Phe Ile Asn Gly Ser
225 230 235 240

Gln Leu Gly Glu Asp Tyr Ile Gln Leu His Lys Leu Leu Arg Lys Ser
245 250 255

Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro Asp Val Gly Gln Pro Arg
260 265 270

Arg Lys Thr Ala Lys Met Leu Lys Ser Phe Leu Lys Ala Gly Gly Glu
275 280 285

Val Ile Asp Ser Val Thr Trp His His Tyr Tyr Leu Asn Gly Arg Thr
290 295 300

Ala Thr Arg Glu Asp Phe Leu Asn Pro Asp Val Leu Asp Ile Phe Ile
305 310 315 320

Ser Ser Val Gln Lys Val Phe Gln Val Val Glu Ser Thr Arg Pro Gly
325 330 335

Lys Lys Val Trp Leu Gly Glu Thr Ser Ser Ala Tyr Gly Gly Ala
340 345 350

Pro Leu Leu Ser Asp Thr Phe Ala Ala Gly Phe Met Trp Leu Asp Lys
355 360 365

Leu Gly Leu Ser Ala Arg Met Gly Ile Glu Val Val Met Arg Gln Val
370 375 380

Phe Phe Gly Ala Gly Asn Tyr His Leu Val Asp Glu Asn Phe Asp Pro
385 390 395 400

Leu Pro Asp Tyr Trp Leu Ser Leu Leu Phe Lys Lys Leu Val Gly Thr
405 410 415

Lys Val Leu Met Ala Ser Val Gln Gly Ser Lys Arg Arg Lys Leu Arg
420 425 430

Val Tyr Leu His Cys Thr Asn Thr Asp Asn Pro Arg Tyr Lys Glu Gly
435 440 445

Asp Leu Thr Leu Tyr Ala Ile Asn Leu His Asn Val Thr Lys Tyr Leu
450 455 460

Arg Leu Pro Tyr Pro Phe Ser Asn Lys Gln Val Asp Lys Tyr Leu Leu
465 470 475 480

Arg Pro Leu Gly Pro His Gly Leu Leu Ser Lys Ser Val Gln Leu Asn
485 490 495

Gly Leu Thr Leu Lys Met Val Asp Asp Gln Thr Leu Pro Pro Leu Met
500 505 510

Glu Lys Pro Leu Arg Pro Gly Ser Ser Leu Gly Leu Pro Ala Phe Ser
515 520 525

Tyr Ser Phe Phe Val Ile Arg Asn Ala Lys Val Ala Ala Cys Ile
530 535 540

<210> 11
<211> 1721
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (63)..(1691)
<223>

<400> 11
ctagagetttt cgaactcttccg ctgcggggca gctggggggg ggagcagcca ggtgagccca 60
ag atc ctg ctg cgc tcc aag cct gcg ctg cgg ccc ctg atc ctg 107
Met Leu Leu Arg Ser Lys Pro Ala Leu Pro Pro Leu Met Leu

1	5	10	15	
cgt ctc ctg ggg ccg ctg ggt ccc ctc tcc cct ggc gcc ctc ccc cga				155
Leu Leu Leu Gly Pro Leu Gly Pro Leu Ser Pro Gly Ala Leu Pro Arg				
20	25	30		
cct gcg caa gca cag gac gtc gtg gac ctg qac ttc acc cag gag				203
Pro Ala Gln Ala Gln Asp Val Val Asp Leu Asp Phe Phe Thr Gln Glu				
35	40	45		
ccg ctg cac ctg gtg agc ccc tcc tcc gtc acc att gac gcc				251
Pro Leu His Leu Val Ser Pro Ser Phe Leu Ser Val Thr Ile Asp Ala				
50	55	60		
aac ctg gcc acg gac ccg cgg ttc ctc atc ctc ctg ggt tct cca aag				299
Asn Leu Ala Thr Asp Pro Arg Phe Leu Ile Leu Leu Gly Ser Pro Lys				
65	70	75		
ctt cgt acc ttg gcc aca ggc ttg tct cct ggc tac ctg agg ttt ggt				347
Leu Arg Thr Leu Ala Arg Gly Leu Ser Pro Ala Tyr Leu Arg Phe Gly				
80	85	90	95	
ggc acc aag aca gac ttc cta att ttc gat ccc aag aag gaa tca acc				395
Gly Thr Lys Thr Asp Phe Leu Ile Phe Asp Pro Lys Lys Glu Ser Thr				
100	105	110		
ttt gaa gag aca agt tac tgg caa tct caa gtc aac cag gat att tgc				443
Phe Glu Glu Arg Ser Tyr Trp Gln Ser Gln Val Asn Glu Asp Ile Cys				
115	120	125		
aaa tat gga tcc atc cct cct gat gtg gag gag aag tta cgg ttg gaa				491
Lys Tyr Gly Ser Ile Pro Pro Asp Val Glu Glu Lys Leu Arg Leu Glu				
130	135	140		
tgg ccc tac cag gac caa ttg cta ctc cga gaa cac tac cag aaa aag				539
Trp Pro Tyr Gln Glu Gln Leu Leu Arg Glu His Tyr Gln Lys Lys				
145	150	155		
ttc aag aac agc acc tac tca aca agc tct gta gat gtg cta tac act				587
Phe Lys Asn Ser Thr Tyr Ser Arg Ser Ser Val Asp Val Leu Tyr Thr				
160	165	170	175	
ttt gca aac tgc tca gga ctg gac ttg atc ttt ggc cta aat gcg tta				635
Phe Ala Asn Cys Ser Gly Leu Asp Leu Ile Phe Gly Leu Asn Ala Leu				
180	185	190		
tta aga aca gca gat ttg cag tgg aac agt tct aat gct cag ttg ctc				683
Leu Arg Thr Ala Asp Leu Gln Trp Asn Ser Ser Asn Ala Gln Leu Leu				
195	200	205		
cgt gac tac tgc tct tcc aag ggg tat aac att tct tgg gaa cta ggc				731
Leu Asp Tyr Cys Ser Ser Lys Gly Tyr Asn Ile Ser Trp Glu Leu Gly				
210	215	220		
aat gaa cct aac agt ttc ctt aag aag gct gat att ttc atc aat ggg				779
Asn Glu Pro Asn Ser Phe Leu Lys Lys Ala Asp Ile Phe Ile Asn Gly				
225	230	235		

tcg cag tta gga gaa gat tat att caa ttg cat aaa ctt cta aga aag Ser Gln Leu Gly Glu Asp Tyr Ile Gln Leu His Lys Leu Leu Arg Lys 240 245 250 255	827
tcc acc ttc aaa aat gca aaa ctc tat ggt cct gat gtt ggt cag cct Ser Thr Phe Lys Asn Ala Lys Leu Tyr Gly Pro Asp Val Gly Glu Pro 260 265 270	875
cga aga aag acg gct aag atg ctg aag agc ttc ctg aag gct ggt gga Arg Arg Lys Thr Ala Lys Met Leu Lys Ser Phe Leu Lys Ala Gly Glu 275 280 285	923
gaa gtg att gat tca gtt aca ttg cat cac tac tat ttg aat gga cgg Glu Val Ile Asp Ser Val Thr Trp His His Tyr Tyr Leu Asn Gly Arg 290 295 300	971
act gct acc agg gaa gat ttt cta aac cct gat gta ttg gac att ttt Thr Ala Thr Arg Glu Asp Phe Leu Asn Pro Asp Val Leu Asp Ile Phe 305 310 315	1019
att tca tct ttg caa aaa gtt ttc cag ttg gtt gag agc acc agg cct Ile Ser Ser Val Gln Lys Val Phe Gln Val Val Glu Ser Thr Arg Pro 320 325 330 335	1067
ggc aag aag gtc ttg tta gga gaa aca agc tct gca tat gga ggc gga Gly Lys Lys Val Trp Leu Gly Glu Thr Ser Ser Ala Tyr Gly Gly Glu 340 345 350	1115
gcg ccc ttg cta tcc gac acc ttt gca gct ggc ttt atg ttg ctg gat Ala Pro Leu Leu Ser Asp Thr Phe Ala Ala Gly Phe Met Trp Leu Asp 355 360 365	1163
aaa ttg ggc ctg tca gcc cga atg gga ata gaa gtg gtg atg agg caa Lys Leu Gly Leu Ser Ala Arg Met Gly Ile Glu Val Val Met Arg Gln 370 375 380	1211
gta ttc ttt gga gca gga aac tac cat tta ttg gat gaa aac ttc gat Val Phe Phe Gly Ala Gly Asn Tyr His Leu Val Asp Glu Asn Phe Asp 385 390 395	1259
cct tta cct gat tat ttg cta tct ctt ctg ttc aag aaa ttg ttg ggc Pro Leu Pro Asp Tyr Trp Leu Ser Leu Leu Phe Lys Lys Leu Val Gly 400 405 410 415	1307
acc aag gtg tta atg gca agc gtg caa ggt tca aag aga agg aag ctt Thr Lys Val Leu Met Ala Ser Val Gln Gly Ser Lys Arg Arg Lys Leu 420 425 430	1355
cga gta tac ctt cat tgc aca aac act gac aat cca agg tat aaa gaa Arg Val Tyr Leu His Cys Thr Asn Thr Asp Asn Pro Arg Tyr Lys Glu 435 440 445	1403
gga gat tta act ctg tat gcc ata aac ctc cat aac gtc acc aag tac Gly Asp Leu Thr Leu Tyr Ala Ile Asn Leu His Asn Val Thr Lys Tyr 450 455 460	1451

cgg tta ccc tat cct ttg tct aac aag caa gtg gat aaa tac ctt	1499
Leu Arg Leu Pro Tyr Pro Phe Ser Asn Lys Gln Val Asp Lys Tyr Leu	
465 470 475	
 cta aga cct ttg gga cct cat gga tta ctt tcc aaa tct gtc caa ctc	1547
Leu Arg Pro Leu Gly Pro His Gly Leu Leu Ser Lys Ser Val Gln Leu	
480 485 490 495	
 aat ggt cta act cta aag atg gtg gat gat caa acc ttg cca cct tta	1595
Asn Gly Leu Thr Leu Lys Met Val Asp Asp Gln Thr Leu Pro Pro Leu	
500 505 510	
 atg gaa aaa cct ctc cgg cca gga agt tca ctg ggc ttg cca gct ttc	1643
Met Glu Lys Pro Leu Arg Pro Gly Ser Ser Leu Gly Leu Pro Ala Phe	
515 520 525	
 tca tat agt ttt ttg ata aga aat gcc aaa gtt gct gct gct tgc atc	1691
Ser Tyr Ser Phe Phe Val Ile Arg Asn Ala Lys Val Ala Ala Cys Ile	
530 535 540	
 tgaaaataaa atatactagt cctgactactg 1721	
 <210> 12	
<211> 824	
<212> DNA	
<213> Mus musculus	
 <400> 12	
ctggcaagaa gggtctggttg ggagagacga gtcagaccca cgggggggt gcacccttgc 60	
 tgtccaacac cttgcagct ggctttatgt ggctggataa attggggctg tcagccccaga 120	
 tggccataga agtcgtatgt aggcaagggtgt tcttcggagc aggcaactac cacttagtgg 180	
 atgaaaaactt tgagcttta cttgtattttt ggtcttcttctt tctgttcaag aaactggtag 240	
 gtccccgggtt gttactgtca agagtggaaag gcccagacag gagcaaaactc cgagtgtata 300	
 tccactgcac taacgtctat caccacatc atcaggaaagg agatcttact ctgtatgttcc 360	
 tgaaccttca taatgttcaac aacgacttga aggttacccgc tccgttggttt aggaaaaccag 420	
 tggatacgta ctttctgttggaaatccggggc cggatggattt actttccaaa tctgttcaac 480	
 tgaacgttca aattttgttggat atgggtggatc agcagacccctt gcaatgtttt acagaaaaac 540	
 ctctccccgcg aggaagtgcac ttaagctgc ctgcctttt ctatggttt tttgttataaa 600	
 gaaatggccaa aatcgctgtc tttatgttggaaataaaaaggc atacgggttttcc	