FAKULTA MATEMATIKY FYZIKY A INFORMATIKY UNIVERZITA KOMENSKÉHO

Záverečná správa

Softvér na podporu výučby predmetu Komplexné Siete

zimný semester 2014/2015 Jakub Sedláček Peter Floch Marek Kužel Marián Jonis

Obsah

Obsah	1
Úvod	4
1. Požiadavky	4
1.1 Rozsah projektu a funkcie systému	4
1.2 Odkazy	4
1.3 Kontext systému	4
1.4 Systémové rozhrania	4
1.5 Používateľské rozhrania	4
1.6 Hardvérové rozhrania	4
1.7 Funkcie systému	5
1.8 Triedy používateľov a ich vlastnosti	5
1.7 Funkčné požiadavky	5
1.7.1 Generovanie Renyiho grafu	5
N-M-model	5
N-P-model	5
Popis prípadu použitia	5
1.7.2 Generovanie grafu – B-A model	5
Popis prípadu použitia	5
Funkčné požiadavky	5
1.8 Vizualizácia grafu	6
Popis prípadu použitia	6
Funkčné požiadavky	6
1.9 Vizualizácia XY grafu	6
Popis prípadu použitia	6
Funkčné požiadavky	6
1.10 Export	6
Popis prípadu použitia	6
Funkčné požiadavky	6
1.11 Ďalšie požiadavky	6
Časové požiadavky	6
Doplňujúce Funkcie *	6
2. Konceptuálna analíza	6
2.1 Analýza používateľov	6

	2.2 Používateľské rozhranie	6
	2.3 Generovanie Renyiho grafu náhodné a s pravdepodobnosťou	7
	2.4 Generovanie grafu – B-A model	7
	2.4 Vizualizácia grafu	7
	2.5 Vizualizácia XY grafu	8
	2.6 Uloženie súboru	8
	2.6 Use-case diagram	9
	2.7 Entitno-relačný diagram	9
	2.8 Stavový diagram	. 10
3.	Analýza technológií	. 11
	3.1. Možné použite technológie a postupy	. 11
	Prístupy:	. 11
	Výhody desktopovej aplikácie	. 11
	Nevýhody desktopovej aplikácie	. 11
	Výhody webovej aplikácie	. 11
	Nevýhody webovej aplikácie	. 11
	Zhrnutie	. 11
	3.2 Technológie	. 11
	3.3 Komponenty systému	. 12
	Komponent: Generovanie grafu B-A Model	. 12
	Komponent : Generovanie Renyiho grafu	. 12
	Komponent: Export do Network Workbench	. 12
	Komponent : Vizualizácia Grafu	. 12
	Komponent : Vizualizácia XY grafu	. 12
	Komponent : Dáta	. 12
4.	Triedny diagram	13
	4.1 časti triedneho diagramu	13
	Trieda Export	. 13
	Trieda GraphXY	. 13
	Trieda Graph	13
	Trieda Node	. 13
	Trieda GraphBarabasiAlbert	. 13
	Trieda GraphNM	. 13
	Trieda GraphNP	. 13

	Trieda Graph_Log	13
	4.2 Diagram	14
5.	. Používateľská príručka	15
6.	. Záznam z odovzdania a predvedenia diela zadávateľovi	19
	6.1 Priebeh stretnutia	19
7.	. Zhodnotenie	19
	7.1 Spokojnosť s výsledným dielom a ťažkosti počas vývoja	19
	7.2 Zmeny ďalších verzií	19
	7.3 Priebeh tímovej komunikácie, spolupráce a rozdelenie úloh	19

Úvod

Tento dokument obsahuje kompletnú dokumentáciu projektu vývoja softvéru na podporu predmetu komplexné siete.

1. Požiadavky

1.1 Rozsah projektu a funkcie systému

Softvér na podporu výučby predmetu Komplexné Siete bude dopĺňať funkcie programu Network Workbench . Vyvinutý softvér bude mať nasledujúce funkcie : Bude v ňom umožnená vizualizácia vytvárania modelu komplexných sietí , generovanie modelov komplexných sietí podľa zadných parametrov , možnosť exportovať vygenerované modely komplexných sietí vo formáte, ktorý program Network Workbench podporuje.

1.2 Odkazy

Network workbench - http://nwb.cns.iu.edu/

Komplexné siete - http://dai.fmph.uniba.sk/courses/ComNet/index.html

1.3 Kontext systému

Podporný software pre výučbu predmetu Komplexné siete predstavuje softvér, ktorého účelom je názorne ukázať študentom vizualizáciu procesov, ktoré tvoria komplexné siete. Výstupné dáta z tohto programu sú kompatibilný s vstupovými dátami softvéru Network Workbench.

1.4 Systémové rozhrania

- SR-1 Generovanie grafov
- SR-1.1 Generovanie náhodných grafov
- SR-1.2 Generovanie nenáhodných grafov
- SR-2 Vizualizácia
- SR-2.1 Animácia procesu tvorenia siete
- SR-2.1 Animácia procesu tvorenia siete
- SR-3 Exportovanie do súboru kompatibilného so softvérom Network Workbench

1.5 Používateľské rozhrania

PR-1 Používateľské rozhranie je vytvorené formou Windows aplikácie.

1.6 Hardvérové rozhrania

Systém neobsahuje žiadne hardvérové rozhrania.

1.7 Funkcie systému

Prehľad funkcií, ktoré podporný softvér pre predmet Komplexné siete poskytuje je znázornený diagramom prípadov použitia na Obrázku 1.

1.8 Triedy používateľov a ich vlastnosti

Užívateľ – Obyčajný používateľ môže pristupovať ku všetkým funkcionalitám aplikácie

1.7 Funkčné požiadavky

1.7.1 Generovanie Renyiho grafu

N-M-model

Popis prípadu použitia

Popis: Používateľ zadá počet vrcholov a počet hrán a program vygeneruje podľa príslušných kritérií graf .

Funkčné požiadavky

Popis: Kontrola či boli správne zadané vstupné parametre. Parametrami sa rozumie počet zadaných uzlov(N) a hrán(M) musí byť kladné celé číslo.

N-P-model

Popis prípadu použitia

Popis: Používateľ zadá počet vrcholov a parameter ktorý určí pravdepodobnosť pridávania hrán na grafe.

Funkčné požiadavky

Popis: Kontrola či boli správne zadané vstupné parametre. Parametrami sa rozumie počet zadaných uzlov(N) a správny číselný formát pravdepodobnosti(P).

(počet uzlov = kladné celé číslo, pravdepodobnosť = reálne číslo z intervalu (0,1))

1.7.2 Generovanie grafu - B-A model

Popis prípadu použitia

Popis: Používateľ zadá počet vrcholov a stupeň novo prichádzajúceho vrcholu a program vygeneruje graf na základe zadaných hodnôt a kritérií pre vygenerovanie B-A modelu grafu.

Funkčné požiadavky

Popis: Kontrola či boli správne zadané vstupné parametre. Parametrami sa rozumie počet zadaných uzlov, musí byť kladné celé číslo a počet stupňa nového vrcholu.

1.8 Vizualizácia grafu

Popis prípadu použitia

Popis: Program znázorní generovanie 10-20 krokov grafu

Funkčné požiadavky

Popis: Vizualizácia pre lepšie pochopenie tvorby grafu

1.9 Vizualizácia XY grafu

Popis prípadu použitia

Popis: Program vykreslí do grafu závislosti na číselných hodnotách v radách údajov

Funkčné požiadavky

Popis: Kompletná vizualizácia grafu

1.10 Export

Popis prípadu použitia

Popis: Program uloží graf vo formáte spracovateľnom pre program Network workbench pre ďalšie spracovanie grafu

Funkčné požiadavky

Popis: Pre funkčnosť musí byť korektne vygenerovaný graf

1.11 Ďalšie požiadavky

Časové požiadavky

Čas generovanie modelu komplexnej siete nesmie presiahnuť 60 sekúnd.

Doplňujúce Funkcie *

Program bude priamo spolupracovať s programom Network workbench.

2. Konceptuálna analíza

2.1 Analýza používateľov

Ako vyplýva z katalógu požiadaviek program bude mať len jednu triedu používateľov. Používateľ bude využívať celú funkcionalitu programu bez obmedzenia.

2.2 Používateľské rozhranie

Táto podkapitola obsahuje jednoduché náčrtky, ako by mali vyzerať jednotlivé časti systému. Pri týchto náčrtkoch sú aj popisy a špecifikácie jednotlivých elementov nachádzajúcich sa na týchto náčrtkoch.

2.3 Generovanie Renyiho grafu náhodné a s pravdepodobnosťou

Pre náhodné generovanie grafu bude vyhradený jeden text-box a jedno tlačidlo. Do text-boxu používateľ zadá počet vrcholov a počet hrán čím sa rozumie kladné celé číslo. Potom Klikne na tlačidlo Generovať a ak bol správne zadaný údaj program vygeneruje graf.

Zadaita assaira as Xatarahaa asafa.
Zadajte prosím počet uzolv v grafe:
Počet uzlov : Počet hrán :
Generovať
Obr1. Návrh vstupu pre zadávanie parametrov grafu.
Pre generovanie s pravdepodobnosťou budú vyhradené dva text-boxy kde v jednom zadá
počet uzlov čím sa rozumie kladné celé číslo a v druhom používateľ zadá parameter ktorý urč
pravdepodobnosť pridávania hrán na grafe čím sa rozumie číslo z intervalu (0,1). Potom
Klikne na tlačidlo Generovať a ak bol správne zadaný údaj program vygeneruje graf.
7-d-th
Zadajte prosím počet uzlov a pravdepodobnosť:
Počet uzlov : Pravdepodobnosť:
Generovať
Obr2. Návrh vstupov pre zadávanie parametrov grafu.
2.4 Generovanie grafu – B-A model
Pre generovanie grafu B-A model budú vyhradené dva text-boxy kde v jednom používateľ
zadá počet uzlov čím sa rozumie kladné celé číslo a v druhom používateľ zadá počet stupňa
nového vrcholu. Potom Klikne na tlačidlo Generovať a ak bol správne zadaný údaj program
vygeneruje graf.
Zadajte prosim počet uzlov a počet stupňa vrchola :

Obr3. Návrh vstupov pre zadávanie parametrov grafu

Počet stupňa vrchola:

2.4 Vizualizácia grafu

Počet uzlov:

Používateľ bude mať možnosť si vizuálne pozrieť generovanie grafu. Bude sa jednať o prvých 10-20 krokov.

Generovať

Obr4. Návrh vizualizácie grafov.

2.5 Vizualizácia XY grafu

Používateľ bude mať možnosť si pozrieť graf v číselných hodnotách a radách údajov vo forme XY grafu.

Obr5. Návrh vyzualizácie XY grafov.

2.6 Uloženie súboru

Používateľ si bude môcť uložiť graf ktorý bol korektne vygenerovaný a bude uložený vo formáte spracovateľnom aplikáciou Network workbench.

*Používateľ bude mať na výber 4 check-boxy kde si bude môcť zvoliť ktoré z údajov budú vyexportované do programu Network workbench. Po kliknutí na tlačidlo Exportovať sa automaticky graf načíta v programe Network workbench so zvolenými údajmi.

2.6 Use-case diagram

Obr6. Use-case digram popisuje jednotlivé možnosti ktoré má požívateľ

2.7 Entitno-relačný diagram

Obr7. Entity diagram popisuje jednotlivé entity ich vzťahy a atribúty

2.8 Stavový diagram

Obr8. Stavový diagram popisuje stavy ktoré môže aplikácia dosiahnuť

3. Analýza technológií

3.1. Možné použite technológie a postupy

Pristupy:

Pre aplikáciu softvér na výučbu komplexných sietí sme zvažovali medzi dvomi možnými formami aplikácií. Webovou aplikáciou a desktopovou aplikáciou. Uvažovali sme jazyky JavaScript alebo Java, Python, C#.

Výhody desktopovej aplikácie

- aplikácia pobeží bez nutnosti inštalácie ďalších platforiem, technológií alebo softvéru
- aplikácia nepotrebuje server
- ukladanie dát zabezpečí aplikácia

Nevýhody desktopovej aplikácie

- aplikácia bude mať pri viac vrcholových modeloch komplexných sietí väčšiu časovú náročnosť
- dá sa zavírovať
- nebude multiplatformová

Výhody webovej aplikácie

- bezpečnejšia pre používateľa
- používateľ nie je nútený sťahovať program

Nevýhody webovej aplikácie

- problém s časovo náročným generovaním veľkých modelov
- zložitejší systém exportu súborov

Zhrnutie

Na základe predložených dôvodov sme sa rozhodli si zvoliť desktopovú aplikáciu na základe toho ,že aplikácia bude vykonávať časovo náročné operácie a jednoduchosti exportu súborov. Hlavným prostriedkom pre dosiahnutie najlepšej kvality a výkonu bude pre našu aplikáciu programovací jazyk C#. Poskytne nám jednoduchú tvorbu GUI a relatívne rýchle spracovanie dát oproti jazyku Python. Nerozhodli sme sa pre webovú aplikáciu pretože program bude vykonávať časovo náročné operácie.

3.2 Technológie

Hlavnou technológiou bude programovací jazyk C#, pretože v súčasnej dobe sa obľúbil medzi väčšou skupinou ľudí hlavne kvôli knižniciam .NET framework, ktorá sa neustále rozširuje

o nové funkcionality a uľahčujú programátorom vývoj jednotlivých aplikácií. Aplikáciu budeme vyvíjať v prostredí Microsoft Visual Studio, ktoré disponuje obľúbenými nástrojmi ako InteliSense a podobne.

3.3 Komponenty systému

Komponenty popísané ďalej v dokumente sú poprepájané podľa obrázku 1

Obr9. Diagram vzťahov medzi komponentmi

Komponent: Generovanie grafu B-A Model

Zabezpečí generovanie modelov komplexných sietí na princípe B-A modelu.

Komponent: Generovanie Renyiho grafu

Zabezpečí generovanie modelov komplexných sietí na princípe N-M modelu a N-P modelu.

Komponent: Export do Network Workbench

Zabezpečí export vygenerovaných modelov komplexných do formátu ktorý dokáže program Network Workbench importovať.

Komponent: Vizualizácia Grafu

Zabezpečí vizualizáciu niekoľkých úvodných krokov vytvárania Grafu.

Komponent : Vizualizácia XY grafu

Zabezpečí vizualizáciu grafu v číselných hodnotách a radách údajov vo forme XY grafu.

Komponent: Dáta

Zahŕňa triedy Node a Graph ktoré uchovávajú informácie o modeloch komplexných sietí.

4. Triedny diagram

4.1 časti triedneho diagramu

Trieda Export

Bude zabezpečovať pretransformovanie modelov komplexných sietí uložených vo vnútornej štruktúre programu a ich následný zápis XML súbor . Vygenerovaný XML súbor musí mať takú štruktúru akú dokáže program Network Workbench importovať.

Trieda GraphXY

Bude zabezpečovať vytváranie štatistiky vygenerovaného modelu komplexnej siete , vytvorenie a zobrazenie XY grafu.

Trieda Graph

Bude slúžiť ako nad trieda triedam pre generovanie jednotlivých typov grafov pričom si uchováva atribúty grafu.

Trieda Node

Bude slúžiť na uchovávanie informácií o vrchole grafu.

Trieda GraphBarabasiAlbert

Bude dediť od triedy Graph pričom bude slúžiť na generovanie a vizualizáciu B-A modelov.

Trieda GraphNM

Bude dediť od triedy Graph pričom bude slúžiť na generovanie a vizualizáciu N-M modelov.

Trieda GraphNP

Bude dediť od triedy Graph pričom bude slúžiť na generovanie a vizualizáciu N-P modelov.

Trieda Graph_Log

Bude uchovávať údaje o vytváraní grafu.

4.2 Diagram

Obr10. Triedny diagram popisuje triedy a vzťahy medzi nimi

5. Používateľská príručka

5.1 Menu

Obr11. Menu aplikácie

Súbor -> Generuj nový ->

5.1.1 Barabási-Albert graf

Otvorí okno pre zadanie parametrov na vygenerovanie Barabási-Albert grafu.

Obr12. Dialóg pre generovanie BA grafu

Po správnom zadní parametrov a stlačení tlačidla Generuj, spustí generovanie grafu a zaradí ho do zoznamu grafov.

5.1.2 NP Graf

Otvorí okno pre zadanie parametrov na vygenerovanie Rényiho(n,p) grafu.

Obr13. Dialóg pre generovanie NP grafu

Po správnom zadní parametrov a stlačení tlačidla Generuj, spustí generovanie grafu a zaradí ho do zoznamu grafov.

5.1.3 NM Graf

Otvorí okno pre zadanie parametrov na vygenerovanie Rényiho(n,m) grafu.

Obr14. Dialóg pre generovanie NM grafu

Po správnom zadní parametrov a stlačení tlačidla Generuj, spustí generovanie grafu a zaradí ho do zoznamu grafov.

5.1.4 Pomoc

Obr15. O programe – Zobrazí okno s informáciami o aplikácií

5.2 Zoznam grafov

Obr16. Menu vygenerovaných grafov

5.2.1 Vizualizovať

Otvorí okno pre zadanie parametru pre vizualizáciu grafu.

Obr17. Dialóg pre vizualizáciu grafu

Po zadaní parametru a stlačení tlačidla Vizualizuj sa otvorí okno s vizualizáciou grafu.

- 1. Štart Spustí vizualizáciu grafu
- 2. Pozastaviť/Pokračovať Umožňuje pozastaviť vizualizáciu grafu. Po pozastavení ponúkne možnosť pokračovať vo vizualizácií.
- 3. ScrollBar Slúži na zrýchlenie a spomalenie vizualizácie.

5.2.2 XY graf

Otvorí okno s vizuálnym spracovaním grafu vo forme X,Y.

Obr19. Okno vizualizácie x/y grafu

1.x/y / Log x/y –Umožní prepínať medzi vizualizáciami grafu s pôvodnými hodnotami x,y a medzi zlogaritmovanými hodnotami x,y

5.2. 3 Exportovať

Umožní vyexportovať/uložiť graf vo formáte .xml pre ďalšie použitie.

6. Záznam z odovzdania a predvedenia diela zadávateľovi

6.1 Priebeh stretnutia

Na stretnutí sme zadávateľke predviedli všetky funkcie aplikácie a oboznámili sme ju so spôsobmi ako ju používať. Zadávateľka bola s aplikáciu spokojná, jediné čo v aplikácii chýbalo bola logaritmická škála xy – grafu. Tú sme následne do aplikácie pridali a odovzdali kompletnú aplikáciu zadávateľke.

7. Zhodnotenie

7.1 Spokojnosť s výsledným dielom a ťažkosti počas vývoja

Podarilo sa nám splniť všetky špecifikované požiadavky na softvér okrem jednej ktorá bola špecifikovaná ako dobrovoľná a tou bola priama komunikácia našej aplikácie s programom Network Workbench . Z tohto dôvodu sme s výsledným dielom spokojný.

Ťažkosti počas vývoja softvéru spočívali predovšetkým v tom ,že nikto z týmu na začiatku projektu nemal vedomosti v problematike komplexných sietí a preto bolo sme museli ešte pred návrhom venovať množstvo času štúdiu danej problematiky. Ťažkosti sa vyskytli aj pri implementácií projektu pretože niektorý členovia týmu nemali predchádzajúce skúsenosti s použitými technológiami.

7.2 Zmeny ďalších verzií

Vývoj aplikácie by mohol smerovať k optimalizácii výkonu pri generovaní väčších grafov a implementovaniu komunikácie aplikácie s programom Network Workbench.

7.3 Priebeh tímovej komunikácie, spolupráce a rozdelenie úloh

Tímové stretnutia sa konali vrždi v pondelok po obede. Okrem nich väčšina tímovej komunikácie prebiehala cez sociálnu sieť. Tímová komunikácie prebiehala bez závažnejších problémov respektíve nedorozumení. Rovnako tímová spolupráca a zadeľovanie úloh prebiehalo bez problémov.

Záver

Záverečná správa obsahuje všetky dokumenty ktoré boli vytvorené počas vývoja nášho softvéru a preto je východiskom pre jeho ďalší vývoj.