2. gaia: Eremu magnetikoa

Indar eta eremu magnetikoa

- Aintzinarotik ikusi izan da burdinazko zenbait mineralek burdinazko objektuak erakartzen dituztela
- Erakarpen horren intentsitatea handia da muturretan (poloetan) eta zentroan zero
- Bi poloek, halaber, portaera desberdina dute: polo desberdinekiko indar erakarlea eta polo berdinekiko indar aldaratzailea

Indar eta eremu magnetikoa

- Lurra, iman bat da. Iman guztiei eragiten die indarra, ipar poloa iparralderantz orientatuta
- Poloak ezin dira banatu
- XIX. mendean, *Oersted*-ek korronte elektrikoak indar magnetikoa eragiten duela konprobatu zuen

 Ampèrek apur bat beranduago imanek korronte elektrikoei indarra eragiten dietela konprobatu zuen, eta korronte elektrikoen artean indar magnetikoak agertzen direla

- Eroale baten barruan, \vec{E} eremu elektrikoa existitzen denean, kargak mugitzen dira
- Atomoen arteko talken ondorioz, esan daiteke kargen abiadura konstantea dela, eroalearen sekzio bakoitzeko
- v abiadura hori, eroalean zehar mugitzen diren karga guztien abiaduren arteko batazbesteko abiadura da
- Egoera horretan, karga bat dt denbora batean dl luzera ibiltzen da:

$$dl = v \cdot dt$$

• Suposatuta, eroalearen zati bat, *A* sekzioduna eta *L* luzeraduna, bolumen horretan dagoen karga elektriko kopurua:

$$dq = \rho \cdot A \cdot v \cdot dt$$

• Eta A sekzioa zeharkatuko duen karga, denbora unitateko $\rightarrow i$: da

 ΛV

$$i = \frac{dq}{dt} = \rho \cdot A \cdot v$$

• Korronte dentsitatea da intentsitatea, azalera unitateko:

$$\vec{J} = \frac{i}{A} = \rho \cdot \vec{v}$$

- Intentsitatea: C/s [Coulomb/segundo] → Ampere
- Baliteke karga dentsitatea ez izatea uniforme A azaleran zehar, beraz, A gainazala zeharkatzen duen korronte dentsitatearen fluxua dela intentsitatea esango dugu:

 $i = \int_{A} \vec{J} \cdot \vec{dS}$

• Eroaleetan, korronte dentsitatea aplikatutako eremuarekiko proportzionala da

$$\vec{J} = \sigma \cdot \vec{E}$$

 $\sigma \rightarrow$ eroalearen eroankortasuna.

• Eremu elektrikoa eta potentzial elektrikoaren erlazioa aplikatuta, *x* ardatzaren norabideko eremu elektrikoaren kasuan, eta *l* luzeradun eroale lerrozuzen bat norabide berdinera jarrita:

$$E = -\frac{dV}{dx}$$
; $J = \frac{i}{A}$; $J = \sigma \cdot E \Rightarrow \frac{i}{A} = -\sigma \cdot \frac{dV}{dx}$

• Bertatik, i eta V-ren arteko erlazioa ateratzen da:

$$i \int_{A}^{B} dx = -\sigma \cdot A \int_{A}^{B} dV \Rightarrow i \cdot l = \sigma \cdot A \cdot (V_{A} - V_{B})$$

$$V_{A} - V_{B} = \frac{l}{\sigma \cdot A} \cdot i \quad Erresistentzia elektrikoa : R = \frac{l}{\sigma \cdot A}$$

• Erlazio horrek zera esan nahi du: Eroale bat zeharkatzen duen intentsitate elektrikoa eroale horren muturren arteko potentzial diferentziarekin erlazionatzen dela, *R* erresistentzia elektrikoa deritzon konstante baten bidez (Ohm legea)

$$\Delta V = R \cdot i$$

• Erresistentzia elektrikoa eroalearen izaera eta dimentsioen menpekoa da (azalera, luzera). $R \to \Omega$ [Ohm]

Indar eta eremu magnetikoa

- Indar magnetikoak korronteengan dute eragina, hau da, mugitzen diren kargengan.
- q karga bat, \vec{v} abiaduraz mugituta, \vec{B} eremu magnetiko batean, \vec{F} indar bat pairatzen du:

$$\vec{F} = q \cdot \vec{v} \times \vec{B}$$

- \vec{B} bektorea eremu magnetikoaren intentsitatea deritzo, edota Indukzio Magnetikoa. Bere moduloa [N·s / C·m], [N /A·m] edo *tesla* [T] unitatean da
- Tesla unitatea handiegia da, eta azpimultiplo bat erabili ohi da, gauss (G). $1T = 10^4$ G

Indar eta eremu magnetikoa

- Indarra \vec{v} eta \vec{B} -rekiko elkarzuta da, gorantzako norazkoa \vec{v} -tik \vec{B} -raino biratuz erlojuaren orratzeko noranzkoen kontra bagoaz
- Modulua da: $F = q \cdot v \cdot B \cdot sen \alpha$
- V bolumena duen eroalea zeharkatzen duen \vec{J} korronte dentsitatearengan eragiten duen indarra kontuan hartuta:

$$\vec{F} = \int \vec{J} \times \vec{B} \cdot dV$$

• Eta intentsitatea ^V konstantea bada, eroalearen L luzera guztian zehar:

$$\vec{F} = i \cdot \int_{I} \vec{dl} \times \vec{B}$$

Biot-Savart legea

$$\vec{dB} = \frac{\mu_0}{4\pi} \cdot \frac{i \, \vec{dl} \times \vec{e_r}}{r^2}$$

- i intentsitate konstantea duen korronte elektriko batek eragiten duen

 ^B eremu magnetikoaren adierazpena da
- L eroaleatik i korronte elektrikoa badoa, dl elementuak r distantziara kokatutako P puntu batean sortutako indukzio magnetikoa da:

Hutsaren iragazkortasun magnetikoa: $\mu_0 = 4\pi \cdot 10^{-7} \frac{N}{A^2}$

Biot-Savart legea

• Modulua da:

$$dB = \frac{\mu_o}{4\pi} \frac{i \, dl \, sen \, \theta}{r^2}$$

• Lege hau esperimentala da, luzaera infinitu duen eroale lerrozuzen baten aplikatzen badugu, d distantziara: μ_o i

 $B = \frac{\mu_o}{2\pi} \frac{i}{d}$

• Eremuaren noranzkoa eroalearengandik perpendikularra den plano batean dagoenez, indarlerroak eroalearekiko zentrokideak diren zirkunferentziak izango dira

Eremu magnetikoen Gauss legea

• S gainazal bat zeharkatzen duen fluxu magnetikoak beti da zeroa:

$$\Phi_{mag} = \oint_{S} \vec{B} \cdot d\vec{S} = 0$$

- Honen arabera, indar-lerro magnetikoak beti ixten dira, ez daukate ez hasierarik ezta bukaerarik ere
- Fluxu magnetikoa eremu magnetikoaren ezaugarri garrantzitsu bat da, unitatea *weber* da (Wb)→T·m²
- B adierazteko askotan erabiltzen da Wb/m² unitatea

Ampère-Maxwell legea

• *i* korronte konstante batek sortzen duen eremu magnetikoak, *L* ibilbide itxi baterako, betetzen du:

$$\oint_L \vec{B} \cdot \vec{dl} = \mu_0 i$$

- Simetria duten eroaleetan \vec{B} kalkulatu dezakegu adierazpen honen bidez, zeren eta L aukeratuko dugu, integrala erraz ebazteko
- Adierazpen honetan baita ere erakusten da nola *i* da eremu magnetikoaren iturria

Ampère-Maxwell legea

 Maxwell-ek proposatu zuen zuzenketa bat Ampère legerako, korronte aldakorra denean:

$$\oint_{L} \vec{B} \cdot \vec{dl} = \mu_{0} i + \mu_{0} \cdot \epsilon_{0} \cdot \frac{d \Phi_{elek}}{dt}$$

$$\Phi_{elek} = \int_{S} \vec{E} \cdot \vec{dS}$$

 Denboran fluxu aldakorra duen eremu elektriko bat eremu magnetikoen iturria da baita ere

Faraday-Lenz legea

- Eremu magnetiko baten aldaketak eragiten ditugunean, inguruan dagoen begizta baten korronteak agertzen dira→Indukzioa
- Begizta edo imana mugitzen denean, indukzioa agertzen da
- Eremu magnetikoa aldakorra denean, indukzioa agertzen da baita ere (eroale baten korronte aldakorra denean)

Faraday-Lenz legea

$$\epsilon_{ind} = \oint_{L} \vec{E} \cdot \vec{dl} = -\frac{d \Phi_{mag}}{dt}$$

Indukzio korrontea adierazteko, indukzituko potentzial diferentziaren (indar elektroeragilea i.e.e.) bidez azaltzen da:

$$\epsilon_{ind} = -\frac{d\Phi_{mag}}{dt}$$

Zeinuaren esanahia da: i.e.e.
 beti sartutako eremu magnetikoaren kontra jokatzeko behar den noranzkoa izango du

Faraday-Lenz legea

$$\vec{F} = i \cdot \int_{L} \vec{dl} \times \vec{B}$$

- I.e.e.-k erabili daiteke energia mekanikoa energia elektrikoan bihurtzeko
- Eremu magnetiko baten barruan, begizta baten mugimenduak, fluxu aldaketaren bat sortzen du→ Begiztan potentzialak indukzitzen da→Begiztaren zirkuituan korronte bat mugitzen da
- Zirkuituaren korronteak indarra sortzen du begiztan→Motor elektrikoa

- Faraday-Lenz legean agertzen da fluxu magnetikoaren aldaketaren eragina eroale baten, baina badago eragina fluxuak berak sortzen duen eraolean, bere barruko gainazalaren gainean → Autoinduktantzia
- Biot-Savart legeagatik dakigu badagoela propotzionaltasuna intentsitate eta berak sortutako fluxu magnetikoa:

$$\Phi_{mag} = \int_{S} \vec{B} \cdot \vec{dS} = \frac{\mu_{o} i}{4 \pi} \int_{S} \int_{L} \frac{\vec{dl} \times \vec{e_{r}}}{r^{2}} \cdot \vec{dS}$$

• Integrala eroaleren formaren mempekoa da solik, beraz:

$$\Phi_{mag} = L \cdot i$$

L induktantzia deitzen den konstante bat da eta unitatea henry da (H)

• Faraday-Lenz legean sartzen badugu induktantzia:

$$\epsilon_{ind} = -\frac{d\Phi_{mag}}{dt} \Rightarrow \epsilon_{ind} = -\frac{d}{dt}(L \cdot i) = -L\frac{di}{dt}$$

- Autoinduktantziagatik, eroale guztiak badaukate induktantzia balio bat
- Badago beste eroaleetan agertzen den eragina \rightarrow Elkar-induktantzia (M)
- Zirkuituko diagrametan, induktantzia daukaten elementuen ikurra hauxe da:

eta gainean idazten da bere induktantzia, normalean milihenry unitatean (mH)

• Iblibide itxi guztietan, potentzial diferentzia zeroa da:

$$\oint \vec{E} \cdot \vec{dl} = V_i - V_i = 0$$

• Ekuazioan sartzen badugu erresistentzia, kapazitatea eta induktantzia:

$$\oint_{L} \vec{E} \cdot \vec{dl} = Ri + \frac{i}{C} \int_{C} i \, dt + L \frac{di}{dt} = 0$$

• L ibilbidea v(t) tentsio iturri bat daukan zirkuitu bat bada:

$$\frac{dv}{dt} = R \frac{di}{dt} + \frac{1}{C}i + L \frac{d^2i}{dt^2}$$

Magnetizazioa

• Kanpo eremu magnetiko baten eraginagatik, atomoak lerrokatzen dira eta atomo barruen dauden korronteagatik, eremu magnetiko berri bat sortzen da; *magnetizazioa*:

$$\vec{B}_{totala} = \vec{B}_{kan} + \mu_0 \vec{M}$$
 \vec{M} : magnetizazioa

- Kanpo eremua \vec{H} bektore berri baten bidez adierazten da: $B_{totala} = \mu_o \vec{H} + \mu_0 \vec{M}$
- Ferromagnetiko ez diren materialetan betetzen da:

$$\vec{M} = \chi_m \vec{H} \Rightarrow \vec{B_{total}} = \mu_o (1 + \chi_m) \vec{H}$$

Suszeptibilitzte magnetikoa: X_m

Iragazkortasun magnetikoa: $\mu = \mu_o (1 + \chi_m)$

Magnetizazioa

$$\vec{B_{totala}} = \mu \vec{H}$$

- Materiaren inguruan, eremu magnetikoaren adierazpenean μ_0 -ren lekuan μ agertzen da
- Material ferromagnetikoetan magnetizazioa agertzen da, nahiz eta kanpo eremu magnetikorik ez dago
- Gaiera, \vec{M} ez da \vec{H} -rekiko proportzionala, erlazioa ezlineala da eta *histeresia* deitzen da

Magnetizazioa

- Kanpo eremu magnetiko bat aplikatzen badugu, magnetizazioa handitzen da saturaziora heldu arte
- Kanpo eremua kentzen badugu, magnetizazioa ez da desagertzen