Introduction to Deep Learning Methodology and Applications

Course Overview:

Deep learning has transformed a wide range of fields, with applications in life sciences, finance, manufacturing, automation systems, etc. The advancements in neural networks (aka "deep learning") have significantly improved the performance of many real-world applications, from data analysis to prediction systems. This course introduces the fundamental concepts and methodologies behind deep learning architectures, focusing on developing end-to-end models that can be applied to a variety of tasks.

Learning Objectives:

After taking this course, students will learn to implement, train, and fine-tune their own deep neural networks, gaining a solid understanding of key techniques in model design, optimization, and regularization. Students will also explore cutting-edge research in the field of deep learning and apply their knowledge to real-world problems. Through multiple hands-on assignments and the final course project, students will acquire the toolset for setting up deep learning tasks and practical engineering tricks for training and fine-tuning deep neural networks.

Course Schedule:

Chapter 1: Introduction to Deep Learning (1 week)

- Overview of Deep Learning:
 - o Brief History of Deep Learning
 - o Introduction and Key Concepts in Deep Learning
- Course Logistics:
 - o Overview of Course Structure, Assessments, and Tools

Chapter 2: Fundamentals of Deep Learning (3 weeks)

- Linear Classification:
 - o The Data-Driven Approach
 - o K-Nearest Neighbor
 - Linear Classifiers
 - SVM and Softmax Loss
- Regularization and Optimization:
 - o Regularization
 - Stochastic Gradient Descent
 - o Momentum, AdaGrad, Adam
 - Learning Rate Schedules
 - Neural Networks and Backpropagation:
 - o Multi-Layer Perceptron
 - Backpropagation
 - Activation Functions

Chapter 3: Neural Network Architectures (4 weeks)

- Convolutional Neural Networks (CNNs):
 - o Higher-Level Feature Representations
 - Convolution and Pooling
 - o AlexNet, VGG, GoogLeNet, ResNet
- Recurrent Neural Networks (RNNs):

- o RNN, LSTM, GRU
- Language Modeling
- o Image Captioning
- o Sequence-to-Sequence
- Attention and Transformers:
 - o Self-Attention Mechanism
 - Transformers
 - o Word2Vec, BERT, GPT Models
- Transfer Learning:
 - o Reuse of Pre-Trained Models for New Tasks
 - o Fine-Tuning

Chapter 4: Generative and Interactive Deep Learning (3 weeks)

- Self-Supervised Learning:
 - Pretext Tasks
 - Contrastive Learning
- Generative Models:
 - o Generative Adversarial Networks
 - o Diffusion Models
- Robot Learning:
 - o Deep Reinforcement Learning
 - Model Learning

Chapter 5: State-of-the-Art AI+X (Tentative Topics) (2 weeks)

- Few-Shot and Zero-Shot Learning for Image Classification
- Semi-Supervised Learning for Precision Medicine
- Graph Neural Networks (GNNs) for Drug Discovery
- Knowledge-Informed Neural Networks for Genetic Status Prediction

Final Project Presentations (1 - 2 weeks)

- Project Overview:
 - Students will present their final projects, showcasing the application of deep learning techniques to a specific problem or dataset. This project will demonstrate the practical implementation of the methodologies and concepts covered throughout the course.
- Dataset Selection:
 - A dataset will be provided for students to use, but they also have the option to select their own dataset for the project.

Grading:

Assignments: 20%In-Class Midterm: 30%

• Final Project: 50%

Project Proposal: 5%Presentation: 20%Final Report: 25%

Prerequisites:

- Basic understanding of Python programming.
- Familiarity with linear algebra, calculus, and probability theory.

• No prior deep learning knowledge required, though familiarity with machine learning is beneficial.

Course Tools and Frameworks:

- Programming in Python using libraries such as PyTorch, TensorFlow, and Keras.
 Jupyter Notebooks for interactive coding and visualization.