Prvi međuispit iz Linearne algebre

30. ožujka 2009.

- 1. [3 boda] (a) (1 bod) Definirajte polje F. (b) (2 boda) Neka je $A = \begin{bmatrix} 1 & 3 \\ 5 & 4 \end{bmatrix}$ s koeficijentima iz polja \mathbb{Z}_7 . Izračunajte matricu A^{-1} .
- 2. [5 bodova] (a) (1 bod) Definirajte unitarni prostor X.
 - (b) (2 boda) Dokažite da u unitarnom prostoru vrijedi nejednakost Cauchy-Schwarz-Buniakowskog.
 - (c) (2 boda) U prostoru $X = \mathbb{R}^4$ sa standardnim skalarnim produktom izračunajte dim $L(e_1,e_2,e_3)^{\perp}$, ako je $e_1 = (0,1,2,-1), e_2 = (-1,0,1,1), e_3 = (-1,2,5,-1).$
- 3. [3 boda] Zadan je skup X svih matrica oblika $A = \begin{bmatrix} \lambda + \mu & 3\lambda \\ -\mu & \lambda \mu \end{bmatrix}$, gdje su λ i μ iz \mathbb{R} . Dokažite da je X vektorski potprostor prostora $M_{2,2}$. Odredite neku bazu i nađite dimenziju od X.
- 4. [3 boda] (a) (2 boda) Izvedite formulu za ortogonalnu projekciju vektora \vec{b} na vektor $\vec{a} \neq \vec{0}$ u unitarnom prostoru X.
 - (b) (1 bod) Nađite ortogonalnu projekciju funkcije f(x)=x+1 na funkciju $g(x)=\cos 2x$ u unitarnom prostoru $L^2(0,2\pi)$ s uobičajenim skalarnim produktom.
- 5. [**2 boda**] Na skupu svih matrica $M_{2,2}$ s realnim koeficijentima definiramo ||A|| = |a| + 3|b| + 2|c| + |d|, gdje je $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Dokažite da je to norma na vektorskom prostoru $M_{2,2}$. Izračunajte međusobnu udaljenost matrica $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$ i $B = \begin{bmatrix} 3 & 0 \\ -1 & 1 \end{bmatrix}$ s obzirom na tu normu.

- 6. [3 boda] (a) (1 bod) Dokažite da slične matrice imaju isti karakteristični polinom.
 - (b) (1 bod) Neka je A kvadratna matrica reda n s koeficijentima iz \mathbb{C} . Rabeći Schurov teorem dokažite da je determinanta od A jednaka umnošku svih njenih vlastitih vrijednosti, tj. det $A = \lambda_1 \dots \lambda_n$.
 - (c) (1 bod) Za matricu $A = \begin{bmatrix} 1 & -2 \\ 3 & 1 \end{bmatrix}$ odredite njen spektar.
- 7. [2 boda] Odredite matricu linearnog operatora $A: P_3 \to M_{2,2}$ definiranog sa

$$A(a_0 + a_1x + a_2x^2 + a_3x^3) = \begin{bmatrix} a_0 + a_1 & a_1 - 2a_2 \\ a_3 & a_0 + 2a_1 - 2a_2 + a_3 \end{bmatrix}$$

u paru kanonskih baza prostora P_3 i $M_{2,2}$, gdje su a_i realni koeficijenti. Odredite rang i defekt tog linearnog operatora.

- 8. [4 boda] (a) (2 boda) Zadan je vektor \vec{x} iz vektorskog prostora X, i dvije baze $e = \{\vec{e}_1, \dots, \vec{e}_n\}$ i $e' = \{\vec{e}_1', \dots, \vec{e}_n'\}$ u X. Neka je $\vec{x} = x_1\vec{e}_1 + \dots + x_n\vec{e}_n$ i $\vec{x} = x_1'\vec{e}_1' + \dots + x_n'\vec{e}_n'$. Dokažite da za $x = (x_1, \dots, x_n)^{\top}$ i $x' = (x_1', \dots, x_n')^{\top}$ vrijedi x = Tx' pri čemu je T matrica prijelaza iz baze e u bazu e'.
 - (b) (2 boda) Zadan je linearni operator $A:\mathbb{R}^2\to\mathbb{R}^2$ koji u kanonskoj bazi ima matricu

$$\left[\begin{array}{cc} 2 & 1 \\ -1 & 5 \end{array}\right].$$

Odredite matricu istog operatora u novoj bazi $\{(1,2), (-1,3)\}$. Je li operator A regularan?