

Fakultät Informatik, Institut für Technische Informatik, Professur VLSI-Entwurfssysteme, Diagnostik und Architektur

Einführung in die Technische Informatik VLSI-Systementwurf

Field-Programmable Gate-Arrays (2)

Rainer G. Spallek Martin Zabel

TU Dresden, 07.08.2013

Gliederung

- 1 Wiederholung
- 2 Speicherelemente
- 3 IP-Cores
- 4 Konfigurierbarkeit
- 5 Konfigurationsmodi
- 6 Zusammenfassung

1 Wiederholung

Grundlegende FPGA-Architektur:

- Funktionsblöcke (FB):
 - angeordnet als Matrix,
 - Multiplexer- oder LUT-basiert.
- I/O-Zellen als spezielle FB.
- Allgemeine lokale Verdrahtung, sowie globale und dedizierte Signalleitungen.
- Spezielle Hard-Makros.

Funktionsblöcke

Multiplexer-basiert:

- Shannon'sche Expansionstheorem
- Programmierbare Verdrahtung der Eingänge → typ. Antifuse

I/O-Zellen als spezielle FB

LUT-basiert:

- K-LUT mit K Eingängen, direkte Abbildung der Wahrheitstabelle
- SRAM-Zellen

Verdrahtung

Typen:

- Globale Signale: Takt, Reset, 0 und 1
- Dedizierte Verbindungen: Carry-Chain, Register-Chain, LUT-Erweiterung.
- Allgemeine Verbindungen:
 - Topologie: Abwägung zwischen Flexibilität, Chipfläche und Signalverzögerung.
 - Technologie: Antifuse oder SRAM-basiert.

Antifuse-Verbindungen:

Beispiel: Actel Axcelerator (vereinfacht)

SRAM-basierte Verbindungen:

Switch-Box

Connection-Box

Switch-Matrix (allg.)

Xilinx: Spartan and Spartan-XL FPGA Families Data Sheet, v1.8, 2008. Xilinx: XC3000 Series Field Programmable Gate Arrays, v3.1, 1998

Beispiel: Allgemeine Verdrahtung im Stratix-5

Altera: Stratix 5 Device Handbook, Volume 1, Juni 2012, S. 1-1

Martin Zabel

2 Speicherelemente

FPGA-spezifisch

LUT-RAM:

- Nur bei SRAM-Konfigurationsspeicher.
- Allgemeiner Zugriff auf die LUT-Schreiblogik.

Block-RAM:

- RAM zusätzlich auf FPGA integriert.
- Hohe Speicherdichte.
- Anzahl Datenbits pro Block fest vorgegeben.
- Organisation konfigurierbar.
- Beispiel Xilinx RAMB18: 18 kBit

16K x 1	8K x 2	4K x 4
2K x 9	1K x 18	512 x 36

Beispiel: Block SelectRAM im Virtex-II

Xilinx: DS031 Virtex-II Platform FPGAs Complete Datasheet, v3.5, 2007

Vergleich

	FF	LUT-RAM	Block-RAM
Power-Up-Wert	Ja	Ja	Ja
Reset	Ja	Nein	Nein
Größe (typisch)	1 Bit	16 – 64 Bit	576 – 589536 Bit
Speicherdichte	Niedrig	Mittel	Hoch
Organisation		x 1	Verschiedene konfigur.
Schreib-/Lese-Ports	Single	Single Simple-Dual	Single Simple-Dual True-Dual

576 Bit = 32 x 18 Bit 589536 = 4K x 144 Bit

Konfiguration der Schreib-/Leseports

Single-Port: Lesen/Schreiben an derselben Adresse

Simple Dual-Port:

- 1 Schreib- und 1 Leseport.
- Zugriff auf verschiedene Adressen.
- Konfliktbehandlung bei gleichzeitigem Lesen und Schreiben an derselben Adresse.

True Dual-Port:

- 2 Schreib- / Leseports.
- Zugriff auf verschiedene Adressen.
- Konfliktbehandlung beim Lesen an der Schreibadresse des anderen Ports.

Vergleich zwischen FPGA-Familien

3 IP-Cores

- Intellectual Property
- Vom FPGA-Hersteller oder Dritten angebotene Module.
- Bereitstellung spezieller, häufig komplexer, Funktionen.
 - Multiply-Accumulate,
 - Ethernet MAC,
 - Prozessorkern.

Bereitstellung von IP-Cores

Soft-Makro:

- Synthetisierbares RTL-Modell.
- Abbildung auf (universellen) FB im FPGA.

Firm-Makro:

- Basis: Gattermodell.
- (Verschlüsselte) Netzliste + Constraints für Technologiesynthese.
- Abbildung auf (universellen) FB im FPGA.

Hard-Makro:

Physisch im FPGA vorhanden.

C. Maxfield: FPGAs World Class Designs, Elsevier Oxford, 2009

Vergleich

	Soft IP	Firm IP	Hard IP
Ebene	RTL	Gatter	Schaltkreis
Vom Anwender konfigurierb.	Ja	Nur ir	ndirekt.
Instanzen	Beliebi	g viele.	Vorgegeb.
Chipflächenbedarf	Nur wenr	benutzt.	Immer
Fehlerkorrektur möglich	J	a	Nein
Effiziente Realisierung hinsichtlich Chipfläche, Zeitverhalten, Verlustleistung	Nein	Optimiert für einen FPGA.	Sehr effizient.*

^{*} Vielfältigere Optimierungsmöglichkeiten vor der Herstellung.

Beispiele für Hard-Makros

	Virtex-6	Spartan-6	Stratix-IV	Cyclone-IV
Multiplizierer	X	X	X	X
DSP-Blöcke	X	X	X	-
Taktgenerator	Χ	X	X	X
Ethernet PHY	Χ	-	X	-
Ethernet MAC	Χ	-	-	-
PCIe Endpoint	X	X	X	X
Memory Controller	-	X	-	-

Beispiel: Altera Stratix-IV (Half) DSP-Block

Altera: Stratix-IV Device Handbook, Volume 1, 2009

Vergleich zwischen FPGA-Familien

4 Konfigurierbarkeit

Klassen

Klassen:

- Konfigurierbar:
 - Programmierbare Schaltkreise.
 - Funktion kann vom Anwender festgelegt werden.
- Rekonfigurierbar:
 - Funktion kann mehrfach / beliebig oft geändert werden.
 - Komplette oder teilweise Rekonfiguration des Systems.
- Partiell Rekonfigurierbar:
 - System kann auch teilweise rekonfiguriert werden.
 - Statisch oder dynamisch partiell.
- Dynamisch Rekonfigurierbar:
 - Ein Teil des Systems kann zur Laufzeit des Systems rekonfiguriert werden.
 - Dynamisch partiell.

Dynamische Rekonfiguration

Konzept:

- Ausführung verschiedener "Programme" in Hardware.
- Co-Prozessor / Hardware-Plugin.
- Reconfigurable Computing.

Anwendungen:

- Rechenintensive Aufgaben:
 - Digitale Signalverarbeitung (Funk u.a.).
 - Video(de-)kodierung.
- Komplexe / Zeitkritische Aufgaben:
 - Steuerung.
 - Ver-/Entschlüsselung.

Typische Aufbau-Varianten:

- PC-System mit FPGA-Board.
- SoPC (System-on-a-Programmable-Chip):
 Vorraussetzung: Konfigurationsspeicher segmentweise beschreibbar.

Probleme:

- Scheduling.
- Rekonfigurationszeiten → Ansatz: Multi-Context-FPGAs
- Partitionierung in HW-/SW-Module.

5 Konfigurationsmodi

- In-System-Programming (ISP) eines SRAM-basierten FPGAs.
- Primär: Konfiguration zum Systemstart.
- Sekundär: Dynamische Rekonfiguration.

Techniken

	Seriell	Parallel
Master	X	Χ
Slave	X	X
Peripherie	(X)	X
JTAG	X	-

Hinweise:

- Auswahl eines Modus anhand von Konfigurationspins am FPGA.
- Exakte Bezeichnungen unterscheiden sich je nach Hersteller.
- Folgende Beispiele anhand Virtex-5 FPGA.

 Xilinx: UG191 Virtex-5 FPGA Configuration Guide, v3.8, 2009

Master-Modi:

FPGA gibt Steuerung vor.

Flash

Enable

Konfig.-daten

Takt

FPGA

Master

Flash

Enable

Konfig.-daten

FPGA

Master

Xilinx: UG191 Virtex-5 FPGA Configuration Guide, v3.8, 2009

Master-Serial-Timing

Xilinx: UG191 Virtex-5 FPGA Configuration Guide, v3.8, 2009

Slave-Modi:

- Bei Ganged Configuration oder Daisy-Chain.
- Ein anderer FPGA (o.ä.) gibt Steuerung vor.

Ganged Serial Mode (analog Ganged Parallel Mode)

Serial Mode Daisy-Chain

Parallel Mode Daisy-Chain

Xilinx: UG191 Virtex-5 FPGA Configuration Guide, v3.8, 2009

Xilinx: UG191 Virtex-5 FPGA Configuration Guide, v3.8, 2009

Martin Zabel

Peripherie-Modi:

- μProcessor gibt Steuerung vor.
- Erweiterung auf Daisy-Chain möglich.
- Typisch: Parallele Datenübertragung.

Xilinx: UG191 Virtex-5 FPGA Configuration Guide, v3.8, 2009

JTAG

- Analog CPLD-Konfiguration.
- Beschreiben eines speziellen Konfigurationsregisters.

Weitere

- Bisherige Speichertypen: Platform Flash von Xilinx.
- Zusätzliche Unterstützung für Industrie-Standards:
 - SPI-Flash (Serial Peripheral Interface).
 - Lese-/Schreibkommandos.
 - BPI-Flash (*Byte Peripheral Interface*).
 - Adresse + Daten.
 - Auch: Programmierung des Flash durch den FPGA.

Xilinx: UG191 Virtex-5 FPGA Configuration Guide, v3.8, 2009

Xilinx: UG191 Virtex-5 FPGA Configuration Guide, v3.8, 2009

Schutzmechanismen

Szenario 1:

- Konfiguration muss bei Verlust der Betriebsspannung erhalten bleiben.
- Lsg. 1: Antifuse-FPGA.
- Lsg. 2: SRAM-FPGA + Puffer-Batterie.
- Lsg. 3: SRAM-FPGA + Neukonfiguration aus Speicher.

Szenario 2:

- Konfiguration soll bei Verlust der Betriebsspannung verloren gehen.
- Lsg.: SRAM-basierte FPGAs.
- Typ. Anwendung: Militärische Zwecke.

Szenario 1: Erhalt der Konfiguration

- Problem:
 - Reverse Engineering durch Dritte.
 - FPGA-Konfiguration soll nicht zugänglich sein.
- Lsg. 1: Antifuse-FPGA:
 Konfiguration kann prinzipiell nicht ausgelesen werden.
- Lsg. 2: SRAM-FPGA + Puffer-Batterie:
 - Kein Konfigurationsspeicher

 FPGA einmal programmieren.
 - Auslese-Fkt. (*Readback*) im FPGA deaktivieren.
 - Nachteil: Ruheströme akt. FPGAs zu hoch für Langzeitüberbrückung.

- Lsg. 3: SRAM-FPGA + Neukonfiguration aus Speicher
 - FPGA-Konfiguration verschlüsselt im Speicher ablegen.
 - Schlüssel im FPGA permanent programmierbar.
 - Auslese-Fkt. Im FPGA deaktiviert.

6 Zusammenfassung

- Speicherelemente: FPGA-spezifisch sind LUT-RAM und Block-RAM.
- IP-Cores: Soft-, Firm- und Hard-Makro.
- Klassen der Konfigurierbarkeit:
 - konfigurierbar,
 - rekonfigurierbar,
 - partiell rekonfigurierbar,
 - dynamisch rekonfigurierbar.
- Konfigurationsmodi:
 - Master, Slave, Peripherie, JTAG. ⇔ Seriell, Parallel.
 - Schutzmechanismen:
 - Kein externer Konfigurationsspeicher.
 - Verschlüsselung der Konfiguration.