Assignment 5: Relational Database design

1. R1(A, B, C, D) F1 = $\{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$

1)
$$A^+$$
 {A} $A \rightarrow B$ {AB}
{AB} $B \rightarrow C$ {ABC}
 $A^+ = \{ABC\}$

- 2) $AB \rightarrow C$. Yes because of the transitive property $A \rightarrow B$ and $B \rightarrow C$ so $A \rightarrow C$. Since $B \rightarrow C$ and $A \rightarrow C$, $AB \rightarrow C$ exists.
- 3) No sets with one attribute are candidate keys

$$A^+ = \{A B C\}, B^+ = \{A B C\}, C^+ = \{A B C\}, D^+ = \{D\}$$

3 sets with two attributes are candidate keys

$$(AD)^+ = \{A B C D\}, (BD)^+ = \{A B C D\}, (CD)^+ = \{A B C D\}$$

Sets with more than two attributes are repetitive therefore (AD), (BD), (CD) are candidate keys.

2. R2(A, B, C, D) F2 = {A
$$\rightarrow$$
 B, C \rightarrow D, D \rightarrow AC}

1) (AD)⁺ Yes AD contains all attributes

$$AD A \rightarrow B ADB$$

$$ADB C \rightarrow D$$
 ADB

2) Check if LHS of FD is a super key

$$A \rightarrow B$$
 $A^+ = \{A,B\}$ no

R2 is not in BCNF because $A \rightarrow B$ A^+ is not a super key

3) $A \rightarrow B$ not a super key

$$R_1(A,B)$$
 $R_2(A,C,D)$

Check if decompostion is in BCNF

$$R_1$$
 $A^+ = \{A,B\}$ $R^+ = \{B\}$ $R^+ = \{B\}$

$$B^{+} = \{B\}$$
 $B^{+} \cap (R_{1} - B) = \text{empty set}$

$$(AB)^{+} = \{A,B\}$$

R₁ is in BCNF

 R_2 $A^+ = \{A,B\}$ $A^+ \cap (R_2 - A) = \text{empty set all other subsets are super keys so } R_2 \text{ is in BCNF}$

This decomposition dependency is not preserving, not all FD's can be used in a single relations instance.

3. R3(A,B,C,D,E) F3 = {A
$$\rightarrow$$
 BC, AC \rightarrow BD}

1)
$$(AC)^+ = \{A, B, C, D\}$$

$$(AE)^+ = \{A, B, C, D, E\}$$

- 2) $AB \rightarrow C$. No because B cannot reach C from any point
- 3) F_c of F3

C?
$$A^+ = \{A,B,C,D\}$$
 C is extraneous, therefore $A \rightarrow BD$

$$A \rightarrow BC$$
 $F^1 = (F - (A \rightarrow BC)) \cup (A \rightarrow (BC-B))$

$$F^1 = \{A \rightarrow BD, A \rightarrow C\}$$

 $A^+ = \{A, B, C, D\}$ B is extraneous, therefore $A \rightarrow C$

$$F_C = \{A \rightarrow C, A \rightarrow BD \}$$

4)
$$A^+ = \{A,B,C,D\}$$
 $(AC)^+ = \{A,B,C,D\}$

$$BC - A = BC$$
 $BD - AC = BD$

It is not in 3NF because the attributes of $\beta - \alpha$ are not candidate keys of R3.

$$F_C = \{A \rightarrow C, A \rightarrow BD\}$$

$$R_1(A, C) R_2(A,B,D)$$

Both don't contain candidate keys so:

 $R_3(A, C, E)$ and R_1 can be removed

$$R_3(A, C, E) R_2(A,B,D)$$