Tianxiang (Adam) Gao

September 16, 2024

Outline

- Universal Approximation Theorem
- Review of Derivatives
- Optimization and Gradient Descent
- Backpropogation

- Universal Approximation Theorem

Recap: Definition of MLPs

An MLP with L layers computes an output $\hat{y} = x^L$, where each layer $\ell \in [L]$ is defined recursively as:

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1} + oldsymbol{b}^\ell, \ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), \end{aligned}$$

where the initial input is $x^0 = x$.

Conclusion

MLPs can solve nonlinear problems like XOR that a single perceptron cannot handle.

Universal Approximation Theorem (UAT) of MLPs

- An MLP can be expressed as a **parameterized** function $f(x; \theta)$ or $f_{\theta}(x)$, where θ is the collection of all weights and biases.
- We assume the existence of a **true** function $f^*(x): x \mapsto y$ maps the input x to the target y.
- ullet The goal of the parameterized function $f_{m{ heta}}$ is to approximate f^* by finding optimal values for $m{ heta}$.

Universal Approximation Theorem (UAT):

- Theorem: MLPs f_{θ} can approximate "any" function f^* with arbitrarily small errors, given sufficient parameters (or neurons).
- ullet The UAT holds because of the hierarchical structure and the nonlinear activation function ϕ ,
- Existence: the UAT implies the existence of suitable parameter values.

Key Question

How can we find the appropriate values of θ in practice?

Outline

Universal Approximation Theorem

•0000000

- Review of Derivatives

Definition of Derivative

Definition: Given a real-valued function f(x), the **derivative** of f measures how the output of the function changes w.r.t. changes in the input x.

- If x changes from x_1 to x_2 , the change in x is $\Delta x = x_2 x_1$.
- Consequently, the change in the output is $\Delta y := f(x_2) f(x_1)$.
- The derivative of f at x_1 is the rate of change of f w.r.t. x, as Δx approaches zero:

$$f'(x_1) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

• The derivative $f'(x_1)$ is equal to the slope of the tangent line to the curve at the point $P(x_1, f(x_1))$.

Notation: We often denote the derivative of f at x as

$$f'(x) = \frac{df}{dx},$$

where df and dx represent infinitesimal changes in f and x, respectively.

Properties of Derivatives

Universal Approximation Theorem

Here are some important properties of derivatives:

• Linearity: The derivative of a linear combination of two functions h(x) = af(x) + bg(x) is

$$h'(x) = \frac{d}{dx} \left[af(x) + bg(x) \right] = af'(x) + bg'(x)$$

• Chain Rule: The derivative of a composition of two functions h(x)=g(f(x)) is

$$h'(x) = \frac{d}{dx}g(f(x)) = g'(f(x)) \cdot f'(x)$$

• Partial Derivatives: Consider a multivariate function f(x,y). The input change can come from either x or y.

If we fix y and only vary x, we obtain the **partial derivative of** f **w.r.t** x:

$$\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \approx \frac{\Delta_x f}{\Delta x}$$

where $\Delta_x f$ denotes the change in f caused **only** by changes in x.

Similarly, the partial derivative of f w.r.t. y is:

$$\frac{\partial f}{\partial y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y} \approx \frac{\Delta_y f}{\Delta y}$$

Backpropogation

Gradient Vector

Consider a multivariate function $f(x) = f(x_1, ..., x_n)$, where $x \in \mathbb{R}^n$.

• Gradient: The gradient of f(x) is a vector of partial derivatives, defined as:

$$\nabla f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f(\boldsymbol{x})}{\partial x_1} & \cdots & \frac{\partial f(\boldsymbol{x})}{\partial x_n} \end{bmatrix}^{\top}.$$

• Output Change Approximation: The output change Δf can be approximated by the dot product of the gradient vector $\nabla f(x)$ and Δx :

$$\Delta f = \Delta_{x_1} f + \dots + \Delta_{x_n} f \approx \frac{\partial f}{\partial x_1} \cdot \Delta x_1 + \dots + \frac{\partial f}{\partial x_n} \cdot \Delta x_n = \nabla f(\boldsymbol{x}) \cdot \Delta \boldsymbol{x},$$

where the approximation becomes exact if $\Delta x \rightarrow 0$.

• Vector Field: The gradient ∇f is a vector field that comprises both magnitude and direction, where the magnitude is the Euclidean norm defined by $\|a\| = \sqrt{\sum_{i=1}^{n} a_i^2}$.

Steepest Descent Direction

Descent Direction

The gradient direction is the steepest ascent direction for the function f. Hence, the **negative** gradient is the steepest **descent** direction.

ullet For simplicity, assume $\|\Delta x\|=1$. From the *output change approximation*, we have

$$\Delta f \approx \nabla f(\boldsymbol{x}) \cdot \Delta \boldsymbol{x} = \|\nabla f(\boldsymbol{x})\| \cdot \|\Delta \boldsymbol{x}\| \cdot \cos \alpha = \|\nabla f(\boldsymbol{x})\| \cdot \cos \alpha,$$

where α is the angle between $\nabla f(x)$ and Δx .

- The steepest ascent in Δf is obtained when $\alpha=0$, i.e., $\Delta x=\frac{\nabla f(x)}{\|\nabla f(x)\|}$.
- The steepest descent in Δf is obtained when $\alpha=\pi$, i.e., $\Delta x=-\frac{\nabla f(x)}{\|\nabla f(x)\|}$.

- ullet The derivative f' of a function f is the rate of change of the outputs w.r.t. to its input.
- Linearity, Chain rule, partial derivatives, gradient
- The output change can be approximated by the inner product of ∇f and Δx , i.e., $\Delta f \approx \nabla f(x) \cdot \Delta x$.
- The **negative** gradient direction is the steepest **descent** direction.

00000000

Discussion Questions

Compute the gradients of the following functions:

•
$$f(x) = \frac{1}{2}(x-y)^2$$

•
$$f(x) = 1$$
 $\{x \ge 0\}$, i.e., the step function: $f(x) = 1$ if $x \ge 0$, and $f(x) = 0$ otherwise

•
$$f(x) = \frac{1}{1+e^{-x}}$$
, i.e., sigmoid function. **Hint**: use the chain rule by $z := 1 + e^{-x}$.

$$ullet$$
 $f(oldsymbol{x}) = oldsymbol{a}^ op oldsymbol{x}, \$ where $oldsymbol{a}, oldsymbol{x} \in \mathbb{R}^n.$ Hint: write the dot product as summation.

Instructions: Discuss these questions in small groups of 2-3 students.

Solutions to the Discussion Questions

Compute the derivatives of the following functions:

- $f(x) = \frac{1}{2}(x-y)^2$, f'(x) = x y
- $f(x) = \tilde{1}\{x \ge 0\}$, f'(x) = 0 for all x, except x = 0 where f'(x) is not defined.
- $f(x) = \frac{1}{1+e^{-x}}$, $f'(x) = \frac{e^{-x}}{(1+e^{-x})^2} = f(x)(1-f(x))$
- $f(x) = a^{\top}x$, the partial derivative is $\frac{\partial f}{\partial x_i} = a_i$, and the gradient is $\nabla f(x) = a$.

Zero Derivative

The step function's derivative, $\phi'(x)$, is zero (everywhere except at x=0).

•00000

Outline

- Universal Approximation Theorem
- Optimization and Gradient Descent

Training Process

For a general machine learning (ML) model including MLPs f_{θ} , it is almost impossible to assign parameter values manually. Instead, we rely on the process called training:

- The **training set** is a collection of input-output pairs, i.e., $\{(x_i, y_i)\}_{i=1}^n$
- A ML model f_{θ} computes $\hat{y}_i = f_{\theta}(x_i)$ as an estimate to y_i . Our goal is to find θ such that

$$\hat{y}_i \approx y_i, \quad \forall i \in [n] := \{1, 2, \cdots, n\},$$

- To measure the divergence between \hat{y} and y, we use a loss function $\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$.
- The objective or **cost** is the average of divergence among the training data:

$$\mathcal{L}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{y}_i, y_i) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i)$$

• The training process aims to iteratively update the parameters θ by gradually reduce the cost \mathcal{L} .

The choice of loss functions depends on the **learning task**:

- If the output $y \in \mathbb{R}$ is real-valued, the learning problem is called **regression**
- If the output $y \in \{0,1\}$ is binary value, it is called **(binary) classification** and y is called **label**.
- Square loss: as a common loss function in regression problem, defined

$$\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$$

• Cross entropy loss: as a broadly used loss function in classification, defined

$$\ell(\hat{y}, y) = -(y \log \hat{y} + (1 - y) \log(1 - \hat{y})),$$

where $\log(\cdot)$ is the (natural) log function.

Example

Generally, our estimate \hat{y} is not binary value but a positive number between 0 and 1, e.g., $\hat{y} = 0.6$:

- If y = 1, then $\ell(\hat{y}, y) = -[1 \cdot \log 0.6 + (1 1) \log(1 0.6)] = -\log 0.6 \approx 0.22$
- If y = 0, then $\ell(\hat{y}, y) = -[0 \cdot \log 0.6 + (1 0) \log (1 0.6)] = -\log 0.4 \approx 0.40$

Gradient Descent

Given an objective function $\mathcal{L}(\theta)$, the learning problem of finding θ to best fit each y_i by $f_{\theta}(x_i)$ in the training set is equivalent to solving the following optimization problem:

$$\min_{\boldsymbol{\theta}} \quad \mathcal{L}(\boldsymbol{\theta}),$$

which can be interpreted as:

"Minimize the objective function $\mathcal L$ with respect to (w.r.t.) the variable $\boldsymbol \theta$."

To solve this optimization problem, the gradient descent method iteratively updates θ by moving in **steepest descent direct**. For each iteration $k = 0, 1, 2, \ldots$, the update rule is:

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^k),$$

where:

- $\theta^k \in \mathbb{R}^p$ is the current value of the parameters, assuming θ has p components.
- $\theta^{k+1} \in \mathbb{R}^p$ is the updated value.
- $\theta^0 \in \mathbb{R}^p$ is the **initial value** chosen by the practitioner.
- $\eta > 0$ is the **learning rate**, controlling the step size of each update.
- $\nabla_{\theta} \mathcal{L}(\theta)$ is the **gradient** of \mathcal{L} w.r.t. θ :

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_1} & \cdots & \frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}_p} \end{bmatrix}^{\top}$$

with each $\partial \mathcal{L}(\theta)/\partial \theta_i$ representing the partial derivative of \mathcal{L} w.r.t. θ_i for all $i \in [p]$.

Gradient Descent:

$$\boldsymbol{\theta}^{k+1} = \boldsymbol{\theta}^k - \eta \nabla \mathcal{L}(\boldsymbol{\theta}^k).$$

Warning

Learning rate η and initialization θ^0 are crucial to the performance of gradient descent.

Summary of Gradient Descent

- MLPs are **parameterized** functions $f_{\theta}(x)$, where θ represents the weights and biases.
- Given a **training set**, our goal is to find the optimal θ that best fits the training samples.
- The divergence between the estimate $\hat{y}_i = f_{\theta}(x_i)$ and the true value y_i is measured by the loss function ℓ .
- The **cost** \mathcal{L} is the average loss over the training samples.
- Finding the optimal θ is equivalent to solving an **optimization problem** that minimizes the cost \mathcal{L} with respect to θ .
- The gradient descent method iteratively updates θ to reduce the cost \mathcal{L} .

Outline

- Universal Approximation Theorem

- Backpropogation

Perceptron

Perceptron

Gradient Computation for Perceptron

• **Perceptron**: Recall $\hat{y} = f_{\theta}(x)$ with $\theta = \{w, b\}$ is defined as follows:

$$z = \boldsymbol{w}^{\top} \boldsymbol{x} + b, \quad a = \phi(z), \quad f_{\boldsymbol{\theta}}(\boldsymbol{x}) = a.$$

• Given a training sample (x, y), with $\hat{y} = a$, the loss is

$$\ell(a,y) = \frac{(\hat{y} - y)^2}{2} = \frac{(f_{\theta}(x) - y)^2}{2} = \frac{(a - y)^2}{2}$$

• Using the **chain rule**, the derivative of loss ℓ w.r.t. to each parameter θ is given by

$$\frac{\partial \ell(a, y)}{\partial \theta} = \frac{\partial \ell(a, y)}{\partial a} \cdot \frac{\partial a}{\partial \theta}$$

Specifically, we have

$$\frac{\partial \ell(a,y)}{\partial \boldsymbol{w}} = \frac{\partial \ell(a,y)}{\partial a} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial \boldsymbol{w}}, \qquad \frac{\partial \ell(a,y)}{\partial b} = \frac{\partial \ell(a,y)}{\partial a} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial b},$$

where

$$\frac{\partial \ell(a,y)}{\partial a} = a - y, \qquad \frac{\partial a}{\partial z} = \phi'(z), \qquad \frac{\partial z}{\partial w} = x, \qquad \frac{\partial z}{\partial b} = 1$$

Question: Have you seen any common terms involved in the computation?

Computational Graph in Perceptron

Computation:

- Denote $d\theta := \partial \ell(a,y)/\partial \theta$, where θ represents any variable involved, e.g., a, z, w, and b.
- Rewrite gradient computation using $d\theta$ notation:

$$\frac{\partial \ell(a,y)}{\partial \boldsymbol{w}} = \underbrace{\frac{\partial \ell(a,y)}{\partial a}}_{\substack{d\boldsymbol{a}\\ \\ d\boldsymbol{z}\\ \\ d\boldsymbol{w}}} \cdot \frac{\partial a}{\partial z} \cdot \frac{\partial z}{\partial \boldsymbol{w}},$$

$$\frac{\partial \ell(a,y)}{\partial b} = \underbrace{\frac{\partial \ell(a,y)}{\partial a}}_{\substack{da \\ \underline{db}}} \cdot \underbrace{\frac{\partial a}{\partial z}}_{\substack{db}} \cdot \underbrace{\frac{\partial a}{\partial t}}_{\substack{db}}$$

Optimization and Gradient Descent

• Using this relation, compute the gradients of the perceptron in a backward order:

$$da = a - y,$$
 $dz = da \cdot \phi'(z),$ $dw = dz \cdot x,$ $db = dz$

Computational graph:

Information Propagation in Perceptron

Forward propagation to compute the loss:

$$z = \boldsymbol{w}^{\top} \boldsymbol{x} + \boldsymbol{b}, \qquad a = \phi(z), \qquad \ell = (a - y)^2 / 2$$

Backward propagation to compute the gradients:

$$da = a - y$$
, $dz = da \cdot \phi'(z)$, $d\mathbf{w} = dz \cdot \mathbf{x}$, $db = dz$

Observations

- For gradient computation, perform one forward-backward pass and store intermediate variables.
- By the chain rule, break down the gradient computation into smaller computational units.
- The same concept applies to MLPs, where each perceptron or layer acts as a computational unit.

Training Perceptron using Gradient Descent

• Backward propagation for gradient computation:

$$da = a - y,$$
 $dz = da \cdot \phi'(z),$ $dw = dz \cdot x,$ $db = dz$

- Recall that the cost is given by $\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(a_i, y_i)$.
- Using linearity, the gradient is

$$\frac{\partial \mathcal{L}}{\partial \theta} = \frac{\partial}{\partial \theta} \left[\frac{1}{n} \sum_{i=1}^{n} \ell(a_i, y_i) \right] = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \ell(a_i, y_i)}{\partial \theta}$$

That is the **average** of $d\theta = \partial \ell(a, y)/\partial \theta$ over all training samples.

• The gradient descent update rules for training the perceptron are:

$$\mathbf{w}^+ = \mathbf{w} - \frac{\eta}{n} \sum_{i=1}^n (a_i - y_i) \cdot \phi'(z_i) \cdot \mathbf{x}_i,$$

$$b^+ = b - \frac{\eta}{n} \sum_{i=1}^n (a_i - y_i) \cdot \phi'(z_i).$$

Choice of Activation Function

The sigmoid function is chosen as the activation function, since the step function has a zero derivative.

Vectorization for Perceptron

Forward propagation: $z = \boldsymbol{w}^{\top} \boldsymbol{x} + b \Longrightarrow a = \phi(z) \Longrightarrow \ell = (a - y)^2/2$

Backward propagation: $da = a - y \Longrightarrow dz = da \cdot \phi'(z) \Longrightarrow dw = dz \cdot x$ and db = dz

Cost function: $\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (a_i - y_i)^2$.

• Define data matrix $X \in \mathbb{R}^{n_x \times n}$ and output vector $y \in \mathbb{R}^n$:

$$m{X} = egin{bmatrix} m{x}_1 & m{x}_2 & \cdots & m{x}_n \end{bmatrix}$$
 and $m{y} = egin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}$

ullet The pre-activation z can be computed as follows:

$$z = [z_1 \quad \cdots \quad z_n] = [\boldsymbol{w}^{\top} \boldsymbol{x}_1 + b \quad \cdots \quad \boldsymbol{w}^{\top} \boldsymbol{x}_n + b] = \boldsymbol{w}^{\top} \boldsymbol{X} + [b \quad \cdots \quad b] = \boldsymbol{w}^{\top} \boldsymbol{X} + b \boldsymbol{e}^{\top}$$

where \boldsymbol{e} is a vector whose entries are all ones.

The forward propagation becomes

$$oldsymbol{z} = oldsymbol{w}^{ op} oldsymbol{X} + b oldsymbol{e}^{ op}, \qquad oldsymbol{a} = \phi(oldsymbol{z}), \qquad \mathcal{L} = rac{1}{2n} \|oldsymbol{a} - oldsymbol{y}\|^2$$

Accordingly, the backpropagation becomes

$$d\boldsymbol{a} = (\boldsymbol{a} - \boldsymbol{y})/n, \qquad d\boldsymbol{z} = d\boldsymbol{a} \odot \phi'(\boldsymbol{z}), \qquad d\boldsymbol{w} = d\boldsymbol{z} \cdot \boldsymbol{X} = \boldsymbol{X} d\boldsymbol{z}, \qquad d\boldsymbol{b} = d\boldsymbol{z} \cdot \boldsymbol{e} = \boldsymbol{e}^{\top} d\boldsymbol{z}.$$

where \odot is the element-wise product.

Pseudocode for Training Perceptron with Square Loss

```
Initialize weights vector w and bias b
Set learning rate eta
Set number of iterations E
For epoch = 1 to E do:
    # Forward Propagation
    z = w.T * X + b * e.T
    a = phi(z) # Apply activation function element-wise
    L = ||a - v||^2 / (2 * n) # Compute the cost function
    # Backward Propagation
    da = (a - y)/n # Derivative of the loss w.r.t. a
    dz = da * phi'(z) # Derivative of the loss w.r.t. z (element-wise product)
    dw = X * dz # Derivative of the loss w.r.t. w
    db = sum(dz) # Derivative of the loss w.r.t. b (sum over all training samples)
    # Gradient Descent Update
    w = w - eta * dw
    b = b - eta * db
```

Multilayer Perceptron

Information Propagation in MLP

Let $\hat{y} = f_{\theta}(x) = x^L$ be an L-layer MLP. Given a training sample (x, y), where $x \in \mathbb{R}^{n_x}$ and $y \in \mathbb{R}^{n_y}$:

• Forward Propagation: Starting with $x^0 = x$, the output $\hat{y} = x^L$ is computed as:

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1} + oldsymbol{\mathrm{b}}^\ell, & orall \ell \in \{1, 2, \dots, L\}, \ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), & orall \ell \in \{1, 2, \dots, L\}. \end{aligned}$$

• Backpropagation: Given the loss $\ell(\hat{y}, y) = \frac{1}{2} \|\hat{y} - y\|^2$, start with $dz^L = (x^L - y) \odot \phi'(z^L)$ and propagate gradients backward:

$$\begin{split} d\boldsymbol{z}^{\ell} &= \left[\boldsymbol{W}^{(\ell+1)\top} d\boldsymbol{z}^{\ell+1} \right] \odot \phi'(\boldsymbol{z}^{\ell}), & \forall \ell \in \{1, 2, \dots, L-1\}, \\ d\boldsymbol{W}^{\ell} &= d\boldsymbol{z}^{\ell} \boldsymbol{x}^{\ell \top}, & \forall \ell \in \{1, 2, \dots, L-1\}, \\ d\mathbf{b}^{\ell} &= d\boldsymbol{z}^{\ell}, & \forall \ell \in \{1, 2, \dots, L-1\}. \end{split}$$

Derivation of Gradient Descents in MLP

Universal Approximation Theorem

ullet Using the chain rule, the derivative of loss $\ell(x,y)$ w.r.t. $oldsymbol{W}^\ell$ and $oldsymbol{b}^\ell$ are given by

$$\begin{split} &\frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{b}_{i}^{\ell}} = \sum_{\alpha=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\alpha}^{\ell}} \frac{\partial \boldsymbol{z}_{\alpha}^{\ell}}{\partial \boldsymbol{b}_{i}^{\ell}} = \sum_{\alpha=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\alpha}^{\ell}} \cdot \delta_{\alpha, i} = \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{i}^{\ell}} \\ &\frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{W}_{ij}^{\ell}} = \sum_{\alpha=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\alpha}^{\ell}} \frac{\partial \boldsymbol{z}_{\alpha}^{\ell}}{\partial \boldsymbol{W}_{ij}^{\ell}} = \sum_{\alpha=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\alpha}^{\ell}} \cdot \delta_{\alpha, i} \boldsymbol{x}_{j}^{\ell-1} = \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{i}^{\ell}} \boldsymbol{x}_{j}^{\ell-1} \end{split}$$

where $\delta_{i,j} = 1$ if i = j and 0 otherwise.

• Using the $d\theta$ notation, we can put the derivatives in a matrix form:

$$doldsymbol{b}^\ell = doldsymbol{z}^\ell, \quad ext{and} \quad doldsymbol{W}^\ell = doldsymbol{z}^\ell oldsymbol{x}^{\ell \, op}$$

• By the computational graph, we can compute dz^{ℓ} backward through a recurrent relation:

$$d\boldsymbol{z}^{\ell} = \left[\boldsymbol{W}^{(\ell+1)\top} d\boldsymbol{z}^{\ell+1} \right] \odot \phi'(\boldsymbol{z}^{\ell}),$$

which is derived from

$$\frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\alpha}^{\ell}} = \sum_{\beta=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\beta}^{\ell+1}} \frac{\partial \boldsymbol{z}_{\beta}^{\ell+1}}{\partial \boldsymbol{z}_{\alpha}^{\ell}} = \sum_{\beta=1}^{m} \frac{\partial \ell(\boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{z}_{\beta}^{\ell+1}} \boldsymbol{W}_{\beta\alpha}^{\ell+1} \phi'(\boldsymbol{z}_{\alpha}^{\ell}), \quad \text{where} \quad \frac{\partial \boldsymbol{z}_{\beta}^{\ell+1}}{\partial \boldsymbol{z}_{\alpha}^{\ell}} = \boldsymbol{W}_{\beta\alpha}^{\ell+1} \phi'(\boldsymbol{z}_{\alpha}^{\ell}).$$

Vectorization for MLPs

• Define data matrix $X \in \mathbb{R}^{d_x \times n}$ and target matrix $Y \in \mathbb{R}^{d_y \times n}$:

$$X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}, \qquad Y = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}.$$

With the square loss, the cost function becomes

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{m} \frac{1}{2} ||\hat{\boldsymbol{y}}_i - \boldsymbol{y}_i||^2 = \frac{1}{2n} ||\hat{\boldsymbol{Y}} - \boldsymbol{Y}||_F^2,$$

where $\|\cdot\|_F$ is the Frobenius norm.

• With $X^0 = X$ and $\hat{Y} = X^L$, the forward propagation becomes

$$egin{align} oldsymbol{Z}^\ell &= oldsymbol{W}^\ell oldsymbol{X}^{\ell-1} + oldsymbol{b}^\ell e^ op, & orall \ell \in [L] \ oldsymbol{X}^\ell &= \phi(oldsymbol{Z}^\ell), & orall \ell \in [L] \ \end{pmatrix}$$

• With $d\mathbf{Z}^L = \frac{1}{n}(\mathbf{X}^L - \mathbf{Y}) \odot \phi'(\mathbf{Z}^L)$, the backpropagation is given by

$$\begin{split} d\boldsymbol{Z}^{\ell} &= \phi'(\boldsymbol{Z}^{\ell}) \odot \left[\boldsymbol{W}^{(\ell+1)\top} d\boldsymbol{Z}^{\ell+1} \right], & \forall \ell \in [L-1] \\ d\boldsymbol{W}^{\ell} &= d\boldsymbol{Z}^{\ell} \boldsymbol{X}^{(\ell-1)\top}, & \forall \ell \in [L] \\ d\boldsymbol{b}^{\ell} &= d\boldsymbol{Z}^{\ell} \boldsymbol{e}, & \forall \ell \in [L] \end{split}$$

Optimization and Gradient Descent

```
1 Initialize weights W and biases b for all layers
2 Set learning rate eta and number of epochs E
3
4 For epoch = 1 to E do:
      # Forward Propagation
     Set A[0] = X
      For l = 1 to l do:
          Z[1] = W[1] * A[1-1] + b[1] # Linear transformation
           A[1] = phi(A[1]) # Apply activation function
Q
10
      # Compute the cost function
      C = |A[L] - Y||^2 / (2 * n) # Square loss between predicted and true output
13
      # Backward Propagation
14
      dZ[L] = (A[L]-Y) * \phi'(Z[L]) # Gradient of the loss w.r.t to Z[L]
15
      dW[L] = dZ[L] * A[L-1] # Gradient of w.r.t. W[L]
16
      db[L] = sum(dZ[L]) # Gradient of w.r.t. b[L]
      for 1 = 1.-1 to 1 do:
18
          dZ[1] = W[1+1].T * dZ[1+1] * \phi'(Z[1])
19
          dW[1] = dZ[1] * A[1-1].T # Gradient with respect to W[1]
20
          db[1] = sum(dZ[1]) # Gradient with respect to b[1]
21
22
23
      # Gradient Descent Update
      for l = 1 to L do:
24
          W[1] = W[1] - eta * dW[1]
25
26
          b[1] = b[1] - eta * db[1]
27
28 End For
```

Problematic Zero Initialization

Forward Propagation (biases omitted): Start with $x^0 = x$

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1}, & orall \ell \in \{0, 1, 2, \dots, L\} \ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), \end{aligned}$$

Backward Propagation (biases omitted): Start with $dz^L = (x^L - y) \odot \phi'(z^L)$

$$d\mathbf{z}^{\ell} = \left[(\mathbf{W}^{\ell+1})^{\top} d\mathbf{z}^{\ell+1} \right] \odot \phi'(\mathbf{z}^{\ell}), \quad \forall \ell \in \{1, 2, \dots, L-1\}$$
$$d\mathbf{W}^{\ell} = d\mathbf{z}^{\ell} \mathbf{x}^{(\ell-1)\top}$$

Zero Initialization Issues:

- If $W^\ell=0$, then $z^\ell=0$ and $x^\ell=\phi(z^\ell)$ will have identical coordinates across all layers.
- Since ϕ is applied element-wise, $\phi'(z^{\ell})$ and dz^{ℓ} will also have **identical** coordinates.
- Consequently, dW^{ℓ} will have **identical** rows.
- After one gradient step, W^{ℓ} will contain **identical** rows, resulting in z^{ℓ} and x^{ℓ} having **identical** coordinates in subsequent iterations.
- This leads to only one active neuron per layer, drastically reducing the network's capacity.

Symmetric Activation Patterns

Zero initialization in DNNs results in symmetric activation patterns problem in deep learning models.

Random Initialization

To address this problem, we use random initialization for the weights.

For example, $W_{i,i}^{\ell}$ is i.i.d. according to a Gaussian distribution with mean zero and standard deviation $\sigma > 0$:

$$\boldsymbol{W}_{ij}^{\ell} \overset{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2)$$

ullet Notably, σ is usually a small number to prevent large values in $oldsymbol{W}^\ell$. Large weights can cause z to fall into the **flat** regions of the activation function ϕ .

- When z is in the flat region of ϕ , $\phi'(z)$ becomes small, so as small gradients and slowing down training.
- A common choice for σ is proportional to $1/\sqrt{m}$, where m is the input dimension of current layer.
- This choice helps maintain the scale of gradients as they propagate through the network.

Summary: Neural Network Training

We use a training process iteratively update the parameters in MLPs:

- MLPs are parameterized function f_{θ} , where $\theta = \{ \mathbf{W}^{\ell}, \mathbf{b}^{\ell} \}$
- Given a training set $\{x_i, y_i\}_{i=1}^{\ell}$ and a loss function ℓ , the training problem can be formulated as an optimization problem:

$$\min_{\boldsymbol{\theta}} \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

 This optimization problem can be solved using gradient descent, which gradually reduces the cost \mathcal{L} along the steepest descent direction:

$$\boldsymbol{\theta}^+ = \boldsymbol{\theta} - \eta \nabla \mathcal{L}(\boldsymbol{\theta})$$

where $\eta > 0$ is the **learning rate**.

• The gradients in MLPs can be computed using the chain rule backward from the total cost.

- By using the computational graph, the gradients can be effectively computed through backpropagation:
 - ullet Forward Propagation (biases omitted): Start with $oldsymbol{x}^0 = oldsymbol{x}$

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1}, & orall \ell \in \{0, 1, 2, \dots, L\} \ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), \end{aligned}$$

ullet Backward Propagation (biases omitted): Start with $dm{z}^L = (m{x}^L - m{y}) \odot \phi'(m{z}^L)$

$$d\mathbf{z}^{\ell} = \left[(\mathbf{W}^{\ell+1})^{\top} d\mathbf{z}^{\ell+1} \right] \odot \phi'(\mathbf{z}^{\ell}), \quad \forall \ell \in \{1, 2, \dots, L-1\}$$
$$d\mathbf{W}^{\ell} = d\mathbf{z}^{\ell} \mathbf{x}^{(\ell-1)\top}$$

• Random initialization is preferred over zero initialization to avoid the issue of symmetric patterns.

Questions

- What other activation functions are available?
- How do I choose the right learning rate?
- How do I determine the appropriate width and depth of the network?
- Does gradient descent (GD) always converge?
- How can I speed up the training process?
- If I have good training performance, does that guarantee good performance on the test set?