Problem 0.1. Let F be the homotopy fibre of the map $S^n \to S^n$ of degree k, for $n \ge 2$.

- (1) Show that $H^i(F) = 0$ for 0 < i < n.
- (2) Using the Serre spectral sequence, compute that

$$H^{i}(F) = \begin{cases} \mathbb{Z}, & i = 0\\ \mathbb{Z}/k, & i = 1 + m(n-1), m > 0\\ 0, & \text{otherwise} \end{cases}.$$

(3) Show that for $x, y \in H^*(F)$, if $\deg(x), \deg(y) > 0$, then $x \smile y = 0$.

Proof. (1) Since $\pi_1 S^n = 0$, the Serre spectral sequence to the homotopy fiber sequence

$$F \to S^n \to S^n$$

gives the following double complex:

r

We apply the LSSS for cohomology and find that $H^i(S^n) = F_0^n$, and since $H^i(F)$ is the only nontrivial entry on the antidiagonal in degree i, and since there are no maps to kill off $H^i(F)$ for 0 < i < n-1, we obtain that $H^i(F) = H^i(S^n) = 0$ for 0 < i < n-1.