Build a Personalized Online Course Recommender System with Machine Learning

Tao Shan 2022-08-10

Outline

- Introduction and Background
- Exploratory Data Analysis
- Content-based Recommender System using Unsupervised Learning
- Collaborative-filtering based Recommender System using Supervised learning
- Conclusion
- Appendix

Introduction

- Massive Open Online Courses (MOOCs) startup Al Training Room
- Recommendation system for people select courses
- Assume we know people's interest such as python, Cloud Computing

Exploratory Data Analysis

Course counts per genre

20 most popular courses

	TITLE	Enrolls
0	python for data science	14936
1	introduction to data science	14477
2	big data 101	13291
3	hadoop 101	10599
4	data analysis with python	8303
5	data science methodology	7719
6	machine learning with python	7644
7	spark fundamentals i	7551
8	data science hands on with open source tools	7199
9	blockchain essentials	6719
10	data visualization with python	6709
11	deep learning 101	6323
12	build your own chatbot	5512
13	r for data science	5237
14	statistics 101	5015
15	introduction to cloud	4983
16	docker essentials a developer introduction	4480
17	sql and relational databases 101	3697
18	mapreduce and yarn	3670
19	data privacy fundamentals	3624

Word cloud of course titles

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using user profile and course genres

Evaluation results of user profile-based recommender system

Dot product value threshold for recommendation: I tried threshold value = 10,15,20,40 found 20 should be great.

Average number of recommendation

Threshold value = 10: 61.8 recommendations

15: 28.3 recommendations

20: 19.1 recommendations

40: 2.0 recommendations

What are the most frequently recommended courses? For Threshold value = 20: TITLE Count analyzing big data with sql foundations for big data analysis with sql 322 getting started with the data apache spark ma... 318 analyzing big data in r using apache spark 309 spark overview for scala analytics 292 cloud computing applications part 2 big data... 283 270 introduction to data science in python applied machine learning in python 270 spark fundamentals ii 268 accelerating deep learning with gpu

Flowchart of content-based recommender system using course similarity

- Raw data: user rated history, and which course user enrolled or not
- We need to find the cosine similarity (or using other distance matrics) between chosen course and unchosen course, to check if there is any unknown course can recommend to the person.
- Preprocessing method similar as before

Evaluation results of course similarity based recommender system

similarity threshold: 0.6

On average, 11.4 courses have been recommended per user (in the test user dataset)

What are the most frequently recommended courses?

	TITLE	Count
0	introduction to data science in python	579
1	introduction to data science in python	579
2	data science with open data	562
3	a crash course in data science	555
4	data science fundamentals for data analysts	555
5	foundations for big data analysis with sql	551
6	big data modeling and management systems	550
7	fundamentals of big data	539
8	introduction to big data	539
9	sql access for hadoop	506

Flowchart of clustering-based recommender system

- Raw data: user rated history, and which course user enrolled or not
- We need to find the clusters among all the users, to find similar users to recommend new courses.
- Preprocessing method similar as before

Evaluation results of clustering-based recommender system

K means hyper parameter: choose k = 30, since sum of square distance is the smallest.

On average, 4 courses have been recommended per user (in the test user dataset)

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

- Raw data: user preference profile
- We are using KNN to find the nearest neighbors for users. For these nearest neighbors for users, We can find the similar user's choice for courses, then recommend to our users
- Preprocessing method similar as before

Flowchart of NMF based recommender system

- Raw data: user preference profile
- We are using NMF to find the user and item matrixes for users. The advantages is to reduce the high dimension for previous user matrix in KNN.
- Preprocessing method similar as before

Flowchart of Neural Network Embedding based recommender system

- Raw data: user preference profile
- We are using neural networks to learning patterns from data and extract latent features.
- Preprocessing method similar as before

Compare the performance of collaborative-filtering models

Conclusions

- Popular Courses are all relates to data analytics
- content-based recommender system, user profile-based recommender system, course similarity based recommender system are all great recommendation systems. A essential number of courses are recommended to users
- Among KNN, NMF, Neural network, and other modeling strategies, Neural networks has the best performance, Extra Tree Regressor and Random forest also has great performance

Appendix

• Project Codes: https://github.com/davidshan0814/Recommendation-System