PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-171205

(43) Date of publication of application: 17.06.2004

(51)Int.CI.

G06K 13/06 G07D 9/00

(21)Application number: 2002-335296

(71)Applicant: OMRON CORP

(22)Date of filing:

19.11.2002

(72)Inventor: YOSHII MASAHIRO

(54) CARD PROCESSOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a card processor having improved operability, securing security to illegal reading of magnetic data recorded in a card, and suppressing an incongruity feeling imparted to a user.

SOLUTION: Until a card 10 is pinched between a pair of carrier rollers 14 closest to an insertion port in a card carrying path, since a card carrying control part 4 rotates the carrier rollers 14 in the direction in which the card 10 is taken into a main body, when the user inserts the card 10, the incongruity feeling such that the tip of the card 10 abuts on the stopping carrier rollers 14 to block the card 10 is not imparted to the user. When the card 10 is pinched between the carrier rollers 14, the card carrying control part 4 takes the card 10 into the main body while intermittently carrying the card 10. Accordingly, even if an illegal card reader is installed to the front face of the insertion port 11, the card data cannot be illegally read.

LEGAL STATUS

[Date of request for examination]

27.01.2004

Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

BEST AVAILABLE COPY

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-171205 (P2004-171205A)

(43) 公開日 平成16年6月17日(2004.6.17)

(51) Int. C1. 7 GOGK 13/08 GO7D 9/00 FI GO6K 13/06 テーマコード(参考)

GO 6 K 13/06 C GO 7 D 9/00 4 1 6 Z 3E040 5B023

GO7D 9/00 461Z

審査請求 有 請求項の数 9 OL (全 14 頁)

(21) 出願番号 (22) 出願日 特願2002-335296 (P2002-335296) 平成14年11月19日 (2002.11.19)

(71) 出願人 000002945

オムロン株式会社

京都市下京区塩小路通堀川東入南不動堂町

801番地

(74) 代理人 100084548

弁理士 小森 久夫

(72) 発明者 芳井 昌浩

京都府京都市下京区塩小路通堀川東入南不動堂町801番地 オムロン株式会社内

F ターム(参考) 3E040 AA03 BA07 DA01 FA06 FG04 5B023 CA05 CA06 FA03

(54) 【発明の名称】カード処理装置

(57) 【要約】

【課題】カードに記録されている磁気データの不正な読み取りに対するセキュリティを確保し、且つ利用者に与える違和感を抑えることによって操作性を改善したカード処理装置を提供する。

【解決手段】カード搬送制御部4がカード搬送路において挿入口に最も近い一対の搬送ローラ14にカード10が挟持されるまで、この搬送ローラ14をカード10を本体内部に取り込む方向に回転させているので、利用者がカード10を挿入したときには、このカード10の先端が停止している搬送ローラ14に当たって、カード10が支えたような違和感を利用者に与えることがない。また、カード搬送制御部4が、搬送ローラ14にカード10が挟持されると、カード10を間欠的に搬送しながら本体に取り込むので、挿入口11の前面に、不正カード読取機が取り付けられていても、カードデータが不正に読み取られることがない。

【選択図】図2

【特許請求の範囲】

【請求項1】

カードを挟持して搬送する一対の搬送ローラをカードの搬送方向に複数並べたカード搬送 路と、

上記搬送ローラの回転を制御して、上記カード搬送路におけるカードの搬送を制御するカード搬送制御手段と、

上記カード搬送路を搬送されているカードに記録されているカードデータを読み取るカードデータ読取手段と、を備え、

上記カード搬送制御手段は、挿入口からカード搬送路に挿入されたカードが、挿入口に最 も近い一対の搬送ローラに挟持されるまで、カードを本体内部に向けて搬送する方向であ る正方向に搬送ローラを回転させ、

カードが挿入口に最も近い一対の搬送ローラに挟持された後、搬送ローラの正方向への回転、停止を繰り返して、カードの所定長さを本体に取り込み、

カードの所定長さを本体に取り込んだ後、搬送ローラを正方向に回転させて本体内部の貯留部までカードを搬送するカード処理装置。

【請求項2】

カードを挟持して搬送する一対の搬送ローラをカードの搬送方向に複数並べたカード搬送 路と、

上記搬送ローラの回転を制御して、上記カード搬送路におけるカードの搬送を制御するカード搬送制御手段と、

上記カード搬送路を搬送されているカードに記録されているカードデータを読み取るカードデータ読取手段と、を備え、

上記カード搬送制御手段は、挿入口からカード搬送路に挿入されたカードが、挿入口に最も近い一対の搬送ローラに挟持されるまで、カードを本体内部に向けて搬送する方向である正方向に搬送ローラを回転させ、

カードが挿入口に最も近い一対の搬送ローラに挟持された後、搬送ローラの正方向への回転、逆方向への回転を繰り返して、カードの所定長さを本体に取り込み、

カードの所定長さを本体に取り込んだ後、搬送ローラを正方向に回転させて本体内部の貯留部までカードを搬送するカード処理装置。

【請求項3】

カードを挟持して搬送する一対の搬送ローラをカードの搬送方向に複数並べたカード搬送 路と、

上記搬送ローラの回転を制御して、上記カード搬送路におけるカードの搬送を制御するカード搬送制御手段と、

上記カード搬送路を搬送されているカードに記録されているカードデータを読み取るカードデータ読取手段と、を備え、

上記カード搬送制御手段は、挿入口からカード搬送路に挿入されたカードが、挿入口に最も近い一対の搬送ローラに挟持されるまで、カードを本体内部に向けて搬送する方向である正方向に搬送ローラを回転させ、

カードが挿入口に最も近い一対の搬送ローラに挟持された後、搬送ローラの回転速度を変 更しながら、カードの所定長さを本体に取り込み、

カードの所定長さを本体に取り込んだ後、搬送ローラを正方向に回転させて本体内部の貯留部までカードを搬送するカード処理装置。

【請求項4】

揮入口に最も近い一対の搬送ローラに対して挿入口側に設けたカードを検出する第 1 の検 出センサを備え、

上記カード搬送制御手段は、上記第1の検出センサがカードを検出すると、搬送ローラの正方向への回転を開始する請求項1~3のいずれかに記載のカード処理装置。

【請求項5】

挿入口に最も近い一対の搬送ローラに対して挿入口と反対側の隣に設けたカードを検出す

20

30

40

る第2の検出センサを備え、

上記カード搬送制御手段は、第2の検出センサがカードを検出したときに、前記一対の搬送ローラにカードが挟持されたと判断する請求項1~4のいずれかに記載のカード処理装置。

【請求項6】

挿入口に最も近い一対の搬送ローラに対して挿入口側に設けたカードを検出する第 1 の検 出センサと、

挿入口に最も近い一対の搬送ローラに対して挿入口と反対側の隣に設けたカードを検出する第2の検出センサと、を備え、

上記カード搬送制御手段は、上記第1のセンサがカードを検出すると、搬送ローラの正方向への回転を開始し、第2の検出センサがカードを検出したときに、挿入口に最も近い一対の搬送ローラにカードが挟持されたと判断し、さらに上記第1の検出センサがカードを検出しておらず、上記第2の検出センサがカードを検出しているときに、カードを本体に所定長さ取り込んだと判断する請求項1~3のいずれかに記載のカード処理装置。

【請求項7】

カードを挟持して搬送する一対の搬送ローラをカードの搬送方向に複数並べたカード搬送 路と、

上記搬送ローラの回転を制御して、上記カード搬送路におけるカードの搬送を制御するカード搬送制御手段と、

上記カード搬送路を搬送されているカードに記録されているカードデータを読み取るカードデータ読取手段と、を備え、

上記カード搬送制御手段は、カードの排出時に挿入口に最も近い一対の搬送ローラにカードが挟持されているときに、カードを排出する方向への搬送ローラの回転、停止を繰り返して、カードを本体から所定長さ排出するカード処理装置。

【請求項8】

カードを挟持して搬送する一対の搬送ローラをカードの搬送方向に複数並べたカード搬送 路と

上記搬送ローラの回転を制御して、上記カード搬送路におけるカードの搬送を制御するカード搬送制御手段と、

上記カード搬送路を搬送されているカードに記録されているカードデータを読み取るカー ドデータ読取手段と、を備え、

上記カード搬送制御手段は、カードの排出時に挿入口に最も近い一対の搬送ローラにカードが挟持されているときに、カードを排出する方向への搬送ローラの回転、カードを本体に取り込む方向への搬送ローラの回転、を繰り返して、カードを本体から所定長さ排出するカード処理装置。

【請求項9】

上記カード搬送制御手段は、カードの排出時にカードを本体から所定長さ排出すると、搬送ローラをカードを排出する方向に回転させる請求項7または8に記載のカード処理装置

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、挿入口から本体に挿入されたカードに記録されているカードデータを読み取るカード処理装置に関し、特に本体に挿入されたカードに記録されているカードデータが 不正に読み取られるのを防止する不正読取防止機能を有するカード処理装置に関する。

[0002]

【従来の技術】

従来、銀行に設置されているATMやCD等、種々の装置に、カードに記録されている磁気データ(カードデータ)を読み取るカード処理装置が適用されている。カード処理装置は、周知のように、挿入口から本体に挿入されたカードを搬送しながら、このカードの磁

20.

40

気記録面 (磁気ストライプ) に磁気ヘッドを当接させて、記録されている磁気データを読み取る。

[0003]

ところで、利用者がカード処理装置に挿入したカードの磁気データが、以下に示す方法で 不正に読み取られることがあり、この磁気データの不正な読み取りに対する対策が要望さ れている。

[0004]

[磁気データの不正読取方法]

カード処理装置におけるカード挿入口の前面に、磁気ヘッドとメモリとを有する不正カード読取機を取り付ける。この不正カード読取機は、前面にカード挿入口が形成されており、前面から挿入されたカードが本体内部を通過して、背面から排出される構成である。不正カード読取機は、本体を通過するカードに記録されている磁気データを磁気ヘッドで読み取り、これをメモリに記憶する。

[0005]

カード処理装置の前面に上記不正カード読取機が取り付けられていることを知らずに、利用者が不正カード読取機のカード挿入口からカードを挿入すると、挿入されたカードは、この不正カード読取機を通過して、カード処理装置のカード挿入口から本体内部に取り込まれる。このとき、利用者のカードに記録されている磁気データが、不正カード読取機によって不正に読み取られる。

[0006]

一方、カード処理装置は、不正カード読取機で磁気データが不正に読み取られたカードであるかどうかにかかわらず、(本体前面に不正に取り付けられた不正カード読取機を通過してきたカードであっても)、本体の挿入口から取り込んだカードを搬送しながら、このカードに記録されている磁気データを読み取り、ここで読み取った磁気データを用いて取引等を処理する。その後、カード処理装置は本体に取り込んだカードを排出する。本体前面に不正カード読取機が取り付けられている場合、カードはこの不正カード読取機を通過し、利用者に返却される。

[0007]

なお、不正カード読取機は、カード処理装置からのカードの排出時に、このカードに記録 されている磁気データを不正に読み取ることもできる。

[0008]

したがって、利用者はカードを使用した取引等が正常に処理されるので、自分のカードから磁気データが不正に読み取られたことに気づかない。

[00.09]

不正カード読取機を取り付けた者は、この不正カード読取機をカード処理装置から取り外し、メモリに記憶されているカードデータを用いてカードを偽造する。

[0010]

従来、上述の磁気データの不正読取に対する対策として、本体へのカードの取り込み時や、排出時に、カードの一部が本体外部に露出しているとき、カードを間欠搬送する技術(例えば、非特許文献 1)や、さらにセキュリティを高めるためにランダムに間欠搬送する技術(例えば、特許文献 1)が提案されている。

[0011]

【非特許文献1】

Svigals, J: "Unauthorized Card Stripe Reading Inhibitor",

IBM TECHNICAL DISCLOSURE BULLETIN,

vol 26, No6, Nov. 1, 1983 (1983-11-1), page 2707 XP002145300, New York

【特許文献1】

米国特許第6460771 B 1 号明細書

10

20

30

[0012]

【発明が解決しようとする課題】

しかしながら、従来のカード処理装置は、利用者がカードを挿入するとき、カードを挟持 して搬送する搬送ローラを間欠的に回転させていた(回転、停止を繰り返していた。)。 このため、搬送ローラが停止しているときに、利用者がカードを挿入することがあった。

通常、搬送ローラはカードを確実に搬送するために、摩擦力の高い材質で構成されている。このため、カードを挿入したときに、搬送ローラが停止していると、カードの先端が停止している搬送ローラに当たり、利用者のカード挿入動作を一時的に停止させる。このとき、カードの挿入路に異物が入っていて、カードが支えたような違和感を利用者に与える

[0014]

また、搬送ローラの回転が開始されると、挿入していたカードが搬送ローラに挟持されて 本体に取り込まれるので、これまでの支えた感じから一転してカードの挿入がスムーズに なり、利用者にさらに違和感を与える。

[0015]

このように、従来のカード処理装置は、カードに記録されている磁気データの不正な読み取りに対するセキュリティを向上させるための対策しか施されておらず、利用者に与える違和感を抑えることについては何ら考慮されておらず、操作性が良くないという問題があった。

[0016]

この発明の目的は、カードに記録されている磁気データの不正な読み取りに対するセキュ リティを確保し、且つ利用者に与える違和感を抑えることによって操作性を改善したカー ド処理装置を提供することにある。

[0017]

【課題を解決するための手段】

この発明のカード処理装置は、上記課題を解決するために以下の構成を備えている。

[0018]

(1) カードを挟持して搬送する一対の搬送ローラをカードの搬送方向に複数並べたカード搬送路と、

上記搬送ローラの回転を制御して、上記カード搬送路におけるカードの搬送を制御するカード搬送制御手段と

上記カード搬送路を搬送されているカードに記録されているカードデータを読み取るカードデータ読取手段と、を備え、

上記カード搬送制御手段は、挿入口からカード搬送路に挿入されたカードが、挿入口に最も近い一対の搬送ローラに挟持されるまで、カードを本体内部に向けて搬送する方向である正方向に搬送ローラを回転させ、

カードが挿入口に最も近い一対の搬送ローラに挟持された後、搬送ローラの正方向への回転、停止を繰り返して、カードの所定長さを本体に取り込み、

カードの所定長さを本体に取り込んだ後、搬送ローラを正方向に回転させて本体内部の貯留部までカードを搬送する。

[0019]

この構成では、カード搬送制御手段がカード搬送路において挿入口に最も近い一対の搬送ローラにカードが挟持されるまで、この搬送ローラをカードを本体内部に取り込む方向(正方向)に回転させるので、利用者がカードを挿入したときには、このカードの先端が停止している搬送ローラに当たって、カードが支えたような違和感を利用者に与えることがない。

[0020]

また、カード搬送制御手段が、カード搬送路において挿入口に最も近い一対の搬送ローラにカードが挟持されると、この搬送ローラの回転、停止を繰り返してカードを間欠的に搬

10

20

・送するので、カード処理装置の挿入口の前面に、不正カード読取機が取り付けられていて も、この不正カード読取機にカードデータが不正に読み取られることがなく、カードに記 録されている磁気データの不正な読み取りに対するセキュリティを確保できる。

[0021]

その後、カード搬送制御手段は、カードを所定長さ本体に取り込むと、例えばカードの一部が外部に露出していない状態までカードを取り込むと、搬送ローラを正方向に回転させて本体内部の貯留部までカードを略定速で搬送する。この定速搬送時にカードに記録されているカードデータを読み取ることで、カードデータの読取エラーの発生も抑えられる。

[0022]

したがって、カードに記録されている磁気データの不正な読み取りに対するセキュリティ を確保し、且つ利用者に与える違和感を抑えて操作性の改善を図ることができる。

[0023]

(2)カードを挟持して搬送する一対の搬送ローラをカードの搬送方向に複数並べたカー ド搬送路と、

上記搬送ローラの回転を制御して、上記カード搬送路におけるカードの搬送を制御するカード搬送制御手段と、

上記カード搬送路を搬送されているカードに記録されているカードデータを読み取るカードデータ読取手段と、を備え、

上記カード搬送制御手段は、挿入口からカード搬送路に挿入されたカードが、挿入口に最も近い一対の搬送ローラに挟持されるまで、カードを本体内部に向けて搬送する方向である正方向に搬送ローラを回転させ、

カードが挿入口に最も近い一対の搬送ローラに挟持された後、搬送ローラの正方向への回転、逆方向への回転を繰り返して、カードの所定長さを本体に取り込み、

カードの所定長さを本体に取り込んだ後、搬送ローラを正方向に回転させて本体内部の貯留部までカードを搬送する。

[0024]

この構成は、上記(1)と略同じであるが、カード搬送制御手段が、カード搬送路において挿入口に最も近い一対の搬送ローラにカードが挟持されると、この搬送ローラの正回転、逆回転を繰り返して、カードを本体内部に取り込む方向、カードを本体外部に排出する方向、に搬送を繰り返して、カードを所定長さ本体に取り込む。例えば、カードの一部が外部に露出していない状態までカードを取り込む。このように、カードの一部が本体外部に露出しているとき、本体内部に取り込む方向、本体外部に排出する方向、にカードを繰り返し搬送するので、カード処理装置の挿入口の前面に、取り付けられた不正カード読取機によるカードデータの不正な読み取りに対するセキュリティを一層向上させることができる。

[0025]

(3)カードを挟持して搬送する一対の搬送ローラをカードの搬送方向に複数並べたカー ド搬送路と、

上記搬送ローラの回転を制御して、上記カード搬送路におけるカードの搬送を制御するカード搬送制御手段と、

上記カード搬送路を搬送されているカードに記録されているカードデータを読み取るカードデータ読取手段と、を備え、

上記カード搬送制御手段は、挿入口からカード搬送路に挿入されたカードが、挿入口に最も近い一対の搬送ローラに挟持されるまで、カードを本体内部に向けて搬送する方向である正方向に搬送ローラを回転させ、

カードが挿入口に最も近い一対の搬送ローラに挟持された後、搬送ローラの回転速度を変更しながら、カードの所定長さを本体に取り込み、

カードの所定長さを本体に取り込んだ後、搬送ローラを正方向に回転させて本体内部の貯留部までカードを搬送する。

[0026]

50

40

10

10

30

40

50

・この構成は、上記(1)と略同じであるが、カード搬送制御手段が、カード搬送路において挿入口に最も近い一対の搬送ローラにカードが挟持されると、この搬送ローラの回転速度を変更しながら、カードを所定長さ本体に取り込む。具体的には、カードの搬送速度が変更しながら、カードを所定長さ本体に取り込む。磁気ヘッドでカードに記録されている磁気データを読み取る場合、カードの搬送速度を低くすると、磁気ヘッドにおいて発生する起電力が小さくなるので、カードの搬送を完全に停止しなくても、カードの搬送速度をある程度低くすれば、カードに記録されている磁気データの読み取りができなくなる。したがって、カード処理装置の挿入口の前面に、取り付けられた不正カード読取機によるカードデータの不正な読み取りに対するセキュリティを向上させることができる。

[0027]

(4) 挿入口に最も近い一対の搬送ローラに対して挿入口側に設けたカードを検出する第 1の検出センサを備え、

上記カード搬送制御手段は、上記第1の検出センサがカードを検出すると、搬送ローラの 正方向への回転を開始する。

[0028]

この構成では、挿入口に最も近い一対の搬送ローラに対して挿入口側に設けた第1の検出 センサによりカードが検出されたときに、搬送ローラを正方向に回転させるようにしたの で、利用者がいないときに搬送ローラを無駄に回転させ続けることがない。

[0029]

(5) 挿入口に最も近い一対の搬送ローラに対して挿入口と反対側の隣に設けたカードを 検出する第2の検出センサを備え、

上記カード搬送制御手段は、第2の検出センサがカードを検出したときに、前記一対の搬送ローラにカードが挟持されたと判断する。

[0030]

この構成では、挿入口に最も近い一対の搬送ローラに対して挿入口と反対側の隣に設けた第2のセンサによりカードが検出されたときに、最も挿入口側に配置された一対の搬送ローラにカードが挟持されたと判断する。

[0031]

(6) 挿入口に最も近い一対の搬送ローラに対して挿入口側に設けたカードを検出する第 1の検出センサと、

挿入口に最も近い一対の搬送ローラに対して挿入口と反対側の隣に設けたカードを検出する第2の検出センサと、を備え、

上記カード搬送制御手段は、上記第1のセンサがカードを検出すると、搬送ローラの正方向への回転を開始し、第2の検出センサがカードを検出したときに、挿入口に最も近い一対の搬送ローラにカードが挟持されたと判断し、さらに上記第1の検出センサがカードを検出しておらず、上記第2の検出センサがカードを検出しているときに、カードを本体に所定長さ取り込んだと判断する。

[003,2]

この構成は、上記(3)と(4)の構成に加えて、第1の検出センサがカードを検出して おらず、上記第2の検出センサがカードを検出しているときに、カードを本体に所定長さ 取り込んだと判断するように構成した。

[0033]

(7)カードを挟持して搬送する一対の搬送ローラをカードの搬送方向に複数並べたカード搬送路と、

上記搬送ローラの回転を制御して、上記カード搬送路におけるカードの搬送を制御するカード搬送制御手段と、

上記カード搬送路を搬送されているカードに記録されているカードデータを読み取るカードデータ読取手段と、を備え、

上記カード搬送制御手段は、カードの排出時に挿入口に最も近い一対の搬送ローラにカードが挟持されているときに、カードを排出する方向への搬送ローラの回転、停止を繰り返

して、カードを本体から所定長さ排出する。

[0034]

この構成では、カードの排出時に、上記(1)の動作の逆を行うことによって、不正カード読取機にカードデータが不正に読み取られるのを防止できる。

[0035]

(8) カードを挟持して搬送する一対の搬送ローラをカードの搬送方向に複数並べたカード搬送路と、

上記搬送ローラの回転を制御して、上記カード搬送路におけるカードの搬送を制御するカード搬送制御手段と、

上記カード搬送路を搬送されているカードに記録されているカードデータを読み取るカードデータ読取手段と、を備え、

上記カード搬送制御手段は、カードの排出時に挿入口に最も近い一対の搬送ローラにカードが挟持されているときに、カードを排出する方向への搬送ローラの回転、カードを本体に取り込む方向への搬送ローラの回転、を繰り返して、カードを本体から所定長さ排出する。

[0036]

この構成では、カードの排出時に、上記 (2)の動作の逆を行うことによって、不正カー ド読取機にカードデータが不正に読み取られるのを防止できる。

[0037]

(9)上記カード搬送制御手段は、カードの排出時にカードを本体から所定長さ排出すると、搬送ローラをカードを排出する方向に回転させる。

[0038]

これにより、利用者に対して違和感を与えることなく、カードを返却することができる。

[0039]

【発明の実施の形態】

以下、この発明の実施形態であるカード処理装置について説明する。

[0040]

図1は、この発明の実施形態であるカード処理装置の構成を示すブロック図である。この実施形態カード処理装置1は、本体の動作を制御する制御部2と、本体に挿入されたカードに記録されているカードデータを読み取るカードデータ読取部3と、本体に挿入されたカードの搬送を制御するカード搬送制御部4と、搬送路におけるカードの有無を検出するカード検出部5と、挿入口に設けられたシャッタの開閉を制御するシャッタ制御部6と、本体に挿入されたカードから読み取ったカードデータを出力する出力部7とを備えている

[0041]

図2は、この発明の実施形態であるカード処理装置の内部構成を示す概略図である。この実施形態のカード処理装置1は、ATMやCD等の装置に内蔵される。図2において、10はカードであり、11がカード10を挿入する挿入口である。挿入口11は、このカード処理装置1が適用された装置の前面に位置する。12は、挿入口11においてカード10が挿入されたことを検出するセンサ(この発明で言う第1のセンサに相当)である。センサ12は、押圧センサであり、挿入されたカード10によって押圧される位置に配置されている。13はシャッタであり、シャッタ制御部6により挿入口11の開閉状態が制御される。

[0042]

14~17は、カードを挟持して搬送する一対の搬送ローラであり、カード10の搬送方向に並べられている。搬送ローラ14が、この発明で言う挿入口に最も近い一対の搬送ローラである。一対の搬送ローラ14~17は、それぞれ一方がモータの回転力が伝達される駆動ローラであり、他方がこの駆動ローラに従動して回転する従動ローラである。搬送ローラ14~17を駆動するモータは、1つである。カード搬送制御部4は、このモータの回転(回転方向、回転速度を含む)、停止を制御する。21~24は、搬送路における

カードの有無を検出するセンサである。センサ21~24は、発光部と受光部とからなる 光センサであり、搬送路を挟んで発光部と受光部とを対向させて配置している。センサ2 1が、この発明で言う第2のセンサに相当する。センサ21は、挿入口11に最も近い搬送ローラ14にカード10が挟持されたことを検出するための構成である。センサ24は、本体に挿入されたカード10が貯留部に達したことを検出するためのセンサである。カード検出部5は、センサ12、および21~24の検出結果により、本体にカード10が挿入されているかどうか、および搬送路におけるカード10の位置を検出する。18は、本体に挿入されたカード10に記録されている磁気データを読み取る磁気ヘッドである。磁気ヘッド18は、カードデータ読取部3に接続されている。

[0043]

挿入口11からセンサ21までの長さは、カード10の搬送方向の長さ(約86 m m)の略1/3 (30 m m 程度)である。また、センサ12 から磁気ヘッド18までの長さは、カード10の搬送方向の長さよりも少し長い(90 m m 程度)。

[0044]

なお、ここではカード10は表面に形成された磁気ストライプにカードデータ(磁気データ)を記録した磁気カードを例にしているが、この磁気ストライプに加えてカードデータを記録したICチップを設けた複合カードであってもよい。この場合、貯留部に搬送したカード10のICチップに電気的に接続でき、ICチップに記録されているカードデータを読み取るための接点をカード処理装置1本体に設ければよい。

[0045]

不正カード読取機は、図3に示すように、挿入口11の前面に取り付けられる。不正カード読取機が取り付けられている場合、カードは不正カード読取機を通過して、挿入口11 から本体に取り込まれる。この不正カード読取機には、磁気ヘッドおよびメモリが設けられている。

[0046]

以下、この実施形態のカード処理装置の動作について説明する。まず、挿入口11において挿入されたカードを本体に取り込むときの動作(取り込み動作)について説明する。図4は、この取り込み動作を示すフローチャートである。

[0047]

カード処理装置1は、センサ12により本体にカード10が挿入されたことを検出すると(s1)(図5(a)参照)、搬送ローラ14~17の正方向(カード10を本体内部に取り込む方向)への回転を開始する(s2)。s2では、カード搬送制御部4がモータ(不図示)の回転を制御して、搬送ローラ14~17を正方向に回転させる。

[0048]

なお、カード処理装置1は、s1でカードの挿入を検出するまで、搬送ローラ14~17を停止している。また、シャッタ13は挿入口11を閉じておらず、利用者によるカード10の挿入を妨げない。

[0049]

利用者により、図 5 (a)に示す状態から、カード 1 0 が本体にさらに押し込まれると、このカード 1 0 の先端が一対の搬送ローラ 1 4 (挿入口 1 1 に最も近い搬送ローラ)の間に入り込む。このとき、搬送ローラ 1 4 は正方向に回転しているので、本体へのカード 1 0 の挿入がスムーズに行え、利用者に違和感を与えることがない。カード 1 0 の先端が搬送ローラ 1 4 に挟持され、カード 1 0 の先端が搬送ローラ 1 4 の隣(挿入口 1 1 と反対側)に配置されたセンサ 2 1 により検出されると(s 3)(図 5 (b)参照)、カード 1 0 の間欠搬送を開始する(s 4)。

[0050]

このように、間欠搬送を開始するタイミングを、センサ21がカード10の先端部を検出したタイミングとしているので、カード10が挿入口11から2/3程度外部に露出しているタイミングで間欠搬送が開始される。

[0051]

10

.20

ここで、s 4 で開始される間欠搬送について説明する。ここで言う、間欠搬送とは、搬送ローラ 1 4 \sim 1 7 を第 1 の時間(例えば、2 0 m s)正方向に回転させ、その後第 2 の時間(例えば、4 0 m s)停止する動作を繰り返して、カード 1 0 を搬送する(本体に取り込む)動作である。カード 1 0 は、搬送、停止を繰り返しながら本体に取り込まれる。また、第 1 の時間におけるカードの搬送速度は、例えば 1 0 0 m m / s である。

[0052]

周知のように、磁気ストライプに記録されている磁気データを読み取るには、磁気ストライプに対して連続的に磁気ヘッドを移動させる必要があり、磁気データの読取途中において、磁気ヘッドが磁気ストライプに対して停止すると、磁気データを読み取ることができない。したがって、挿入口11の前面に不正カード読取機が取り付けられていても、この不正カード読取機においてカード10の磁気ストライプに記録されている磁気データが半分程度読み取られたときに、上記間欠搬送が開始されるので、カード10の磁気ストライプの後半部分に記録されている磁気データが不正カード読取機に読み取られることがない

[0053]

なお、一般的な磁気データの記録においては、磁気ストライプの前半部分、または後半部分の一方に暗号化したデータを記録し、他方に復号するためのカギを記録しているので、 磁気ストライプの前半部分に記録されている磁気データのみ読み取っても、この磁気データを不正に利用することはできない。

[0054]

カード処理装置 1 は、センサ 1 2 によりカード 1 0 が検出されなくなるまで、s 4 で開始した間欠搬送を継続する(s 5)(図 5 (c) 参照)。カード 1 0 の後端部がセンサ 1 2 よりも本体内部に位置したときに、センサ 1 2 においてカード 1 0 が検出されなくなる。カード処理装置 1 は、センサ 1 2 によりカード 1 0 が検出されなくなると(カード 1 0 がカード処理装置 1 本体内部に完全に取り込まれると)、s 4 で開始した間欠搬送を停止し(s 6)、カード 1 0 を定速で搬送する定速搬送を開始する(s 7)。s 7 で定速搬送が開始されるときカード 1 0 の先端部は、磁気ヘッド 1 8 に達していない。この定速搬送では、カード 1 0 を例えば 3 0 0 m m / s 程度の搬送速度で搬送する。

[0055]

カード処理装置1は、s7で定速搬送を開始すると、シャッタ13を閉して(s8)、新たなカード10が挿入口11から挿入されないようにする。カード処理装置1は、定速搬送後に、カード10の磁気ストライプが磁気ヘッド18に当接する。カード処理装置1は、定速搬送されているカード10の磁気ストライプに記録されている磁気データを磁気ヘッド18で読み取る。

[0056]

カード処理装置1は、カード10が貯留部に達したことを検出すると(s9)(図5(d)参照)、カード10の搬送を停止し(搬送ローラを停止)(s10)、カード10の取り込み動作を終了する(図5(d)参照)。カード処理装置1は、センサ24によりカード10の先端部が検出されたとき、カード10が貯留部に達したと判断する。

[0057]

なお、カード10が貯留部に達したとき、図5 (d)に示すように、カード10の後端部は磁気ヘッド18を通過しており、カード処理装置1はこのカード10に記録されている磁気データを読み取ることができる。

[0058]

カード処理装置1は、本体に取り込んだカード10から読み取った磁気データを出力部7から出力する。この磁気データは、カード処理装置1が適用されている装置で使用される。例えば、ATMやCDでの取引処理に使用される。

[0059]

次に、貯留部に搬送したカード10を利用者に返却する、カード10の排出動作について 説明する。図6は、排出動作を示すフローチャートである。カード処理装置1は、貯留部 10

20

40

・に位置しているカード10を排出方向に定速、例えば300mm/s、で搬送する(定速排出を開始する)(s11)(図7(a)参照)。このとき、搬送ローラ14~17はカード搬送制御部4によりカード10を排出する方向(逆方向)に回転される。カード処理装置1は、センサ21によりカード10が検出されると(s12)、シャッタ13を開する(s13)(図7(b)参照)。この時点では、排出方向へのカード10の定速搬送は継続されている。カード処理装置1は、センサ12がカード10を検出すると(カード10の端部がセンサ12に達すると)(s14)(図7(c)参照)、間欠排出を開始する(s15)。

[0060]

s15にかかる間欠排出とは、搬送ローラ14~17を第3の時間(例えば、20ms)逆方向に回転させ、その後第4の時間(例えば、40ms)停止する動作を繰り返して、カード10を排出する動作である。カード10は、搬送、停止を繰り返しながら本体から排出される。また、第3の時間におけるカードの搬送速度は、例えば100mm/sである。間欠排出が開始されるとき、カード10全体が本体内部に位置している(外部に露出している部分がない。)。

[0061]

カード処理装置 1 は、 s 1 5 で間欠排出を開始すると、センサ 2 1 によりカードが検出されなくなるまで(s 1 6)、この間欠排出を継続する。センサ 2 1 によりカードが検出されなくなると(カード 1 0 がセンサ 2 1 より挿入口 1 1 側に位置すると)(図 7 (d)参照)、カード 1 0 は挿入口 1 1 から 2 / 3 程度排出されている。したがって、挿入口 1 1 の前面に不正カード読取機が取り付けられていても、間欠排出動作で本体から排出されたカード 1 0 の磁気ストライプに記録されている磁気データを不正カード読取機に読み取られることがない。また、この部分に記録されている磁気データは、上記取り込み動作においても不正カード読取機に読み取られなかった磁気データである。

[0062]

カード処理装置1は、センサ21によりカード10が検出されなくなると、搬送ローラ14を逆方向に定速で一定時間回転させ、その後搬送ローラを停止して、本処理を終了する(s 1 7 ~ s 1 9)。これにより、利用者が挿入口11から一部が排出されたカード10を掴んで、本体から引き抜くときに、搬送ローラ14が逆方向に回転しているので、違和感を与えることなく利用者にカード10を本体から取り出させることができる。

[0063]

以上のように、この実施形態のカード処理装置1においては、本体へのカード10の挿入時、および本体からのカードの排出時に、挿入口11の前面に取り付けられた不正カード 読取機に磁気データが不正に読み取られることがない。また、利用者が挿入口11から挿入しているカード10を掴んでいるときには、搬送ローラ14を正方向に回転しているので利用者に違和感を与えることがなく、さらに挿入口11から排出されたカード10を利用者が掴んで引き抜くとときには、搬送ローラ14を逆方向に回転しているので利用者に違和感を与えることがない。したがって、カード10に記録されている磁気データの不正な読み取りに対するセキュリティを確保し、且つ利用者における操作性の改善が図れる。

[0064]

また、上記実施形態では、挿入口11から挿入されたカード10の取り込み動作では、2つのセンサ12、21がカード10を検出している間、カード10の搬送、停止を繰り返す間欠搬送により、カード10を本体に取り込むとしたが(s4に係る処理)、カード10を本体に取り込む方向に搬送、停止、排出する方向に搬送、停止、を繰り返しながら、本体にカードを取り込むようにしてもよい。例えば、20msカード10を本体に取り込む方向に搬送、40ms停止、5msカード10を本体から排出する方向に搬送、40ms停止、とする動作を繰り返して、カード10を本体に取り込むようにしてもよい。このようにすることで、挿入口11の前面に取り付けられた不正カード読取機に取り込み時にカード10に記録されている磁気データが不正に読み取られるのを一層確実に防止できる

10

20

30

[0065]

同様に、カード10の排出動作においても、2つのセンサ12、21がカード10検出している間、カード10を本体から排出する方向に搬送、停止、取り込む方向に搬送、停止、を繰り返しながら、本体からカード10を排出するようにしてもよい。例えば、20m s カード10を本体から排出する方向に搬送、40m s 停止、5m s カード10を本体に取り込む方向に搬送、40m s 停止、とする動作を繰り返して、カード10を本体から排出するようにしてもよい。このようにすることで、挿入口11の前面に取り付けられた不正カード読取機に排出時にカード10に記録されている磁気データが不正に読み取られるのを一層確実に防止できる。

[0066]

また、2つのセンサ12、21がカード10を検出している間、カード10の搬送を完全に停止させるのではなく、カード10の搬送速度を変更しながら、カード10を本体に取り込むようにしてもよい。磁気ヘッド18でカードに記録されている磁気データを読み取る場合、カード10の搬送速度を低くすると、磁気ヘッド18において発生する起電力が小さくなるので、カード10の搬送を完全に停止しなくても、カード10の搬送速度をある程度低くすれば、カード10に記録されている磁気データの読み取りができなくなる。したがって、挿入口11の前面に取り付けられた不正カード読取機に取り込み時にカード10に記録されている磁気データが不正に読み取られるのを防止できる。また、カード10の搬送を完全に停止しないので、2つのセンサ12、21がカード10を検出している時間を短縮することができ、結果的に処理時間を短縮することができる。

[0067]

【発明の効果】

以上のように、この発明によれば、挿入口の前面に取り付けられた不正カード読取機に、カードに記録されているカードデータが不正に読み取られるのを防止でき、またカードの挿入時や、排出時に利用者に違和感を与えることがなく、操作性を改善できる。

【図面の簡単な説明】

- 【図1】この発明の実施形態であるカード処理装置の構成を示すブロック図である。
- 【図2】この発明の実施形態であるカード処理装置の内部構成を示す概略図である。
- 【図3】この発明の実施形態であるカード処理装置に不正カード読取機を取り付けた状態を示す概略図である。
- 【図4】取り込み動作を示すフローチャートである。
- 【図5】取り込み時における状態の変化を示す図である。
- 【図6】排出動作を示すフローチャートである。
- 【図7】排出時における状態の変化を示す図である。

【符号の説明】

- 1 カード処理装置
- 2 一制御部
- 3 カードデータ 読 取 部
- 4-カード搬送制御部
- 5 ーカード検出部
- 6 シャッタ制御部
- 7 出力部
- 10-カード
- 11一挿入口
- 12、21~24-センサ
- 1 4 ~ 1 7 搬送ローラ
- 18-磁気ヘッド

10

20

30

·`【図1】

【図2】

[図3]

【図4】

