# Homework 3 Report - Image Sentiment Classification

學號: R06942018, 姓名: 何適楷, 系級: 電信碩一

## 1 Problem 1

1. (1%) 請說明你實作的 CNN model,其模型架構、訓練參數和準確率為何?

| Layer (type)                      | Output Shape  | Param # |
|-----------------------------------|---------------|---------|
| ZeroPadding2D                     | (50, 50, 1)   | 0       |
| Conv2D                            | (48, 48, 32)  | 320     |
| Conv2D                            | (48, 48, 32)  | 9248    |
| MaxPooling2D                      | (24, 24, 32)  | 0       |
| Conv2D                            | (24, 24, 64)  | 18496   |
| Conv2D                            | (24, 24, 64)  | 36928   |
| MaxPooling2                       | (12, 12, 64)  | 0       |
| Conv2D                            | (12, 12, 128) | 73856   |
| Conv2D                            | (12, 12, 128) | 147584  |
| Conv2D                            | (12, 12, 128) | 147584  |
| MaxPooling2                       | (6, 6, 128)   | 0       |
| Flatten                           | (4608)        | 0       |
| Dense                             | (196)         | 903364  |
| Dropout(0.5)                      | (196)         | 0       |
| Dense                             | (196)         | 38612   |
| Dropout(0.5)                      | (196)         | 0       |
| Dense                             | (7)           | 1379    |
| Total params: 1,377,371           |               |         |
| optimizer: Adam                   |               |         |
| Learning Rate: $3 \times 10^{-4}$ |               |         |
| epochs: 69(early stopping)        |               |         |
| batch size: 128                   |               |         |
| training accuracy: 0.73953        |               |         |
| public accuracy: 0.69155          |               |         |
| private accuracy: 0.68069         |               |         |

#### 2 Problem 2

(1%) 請嘗試 data normalization, data augmentation, 說明實行方法並且說明對準確率有什麼樣的影響?

|                    | public accuracy | private accuracy |
|--------------------|-----------------|------------------|
| Raw data           | 0.55363         | 0.53970          |
| data normalization | 0.58818         | 0.58484          |
| data argmentation  | 0.66759         | 0.67205          |
| nor+arg            | 0.69155         | 0.68069          |

在 data normalization 中,我把所有資料減去所有資料平均然後再除以所以資料的標準差,得到的結果馬上就比沒有做 data normalization 的高 3-5%。

在 data augmentation 中,我加入了轉了 10 度、20 度、30 度的 data 然後這三筆 data 與原始 資料各 train 20 epochs,得到顯著的成長,可以比原始增加 14% 左右之多,實在非常驚人。

## 3 Problem 3

(1%) 觀察答錯的圖片中,哪些 class 彼此間容易用混?[繪出 confusion matrix 分析] (Collaborators: )

我們可以發現到 4(難過) 和 2(恐懼) 這兩種表情互相的猜錯率較高於其他情形,這也蠻合理



Figure 1: confusion matrix

的,以人類的角度來看,這兩種表情確實還蠻神似的。

#### 4 Problem 4

(1%) 從 (1)(2) 可以發現,使用 CNN 的確有些好處,試繪出其 saliency maps,觀察模型在做 classification 時,是 focus 在圖片的哪些部份?

可以看出這個 model 主要都是 focus 在臉上面,似乎嘴巴也有稍微被強化,背景則是被弱化。



Figure 2: saliency map

## 5 Problem 5

(1%) 承 (1)(2),利用上課所提到的 gradient ascent 方法,觀察特定層的 filter 最容易被哪種圖片 activate。

我取的是 conv2D 的第二層 filter,可以觀察到,很多 filter 是在觀察直條紋,斜條紋,有粗有細,方向也不盡相同,有趣的是 filter19 和 filter11 似乎有抓到臉部和眼睛的輪廓,這兩個 filter 是比較接近人類的常識。



Figure 3: filter activated