マルチエージェントシステム レポート課題 (藤井先生担当分)

03-170963 町田 公佑

(A) PSO (粒子群最適化)

関数は指定されたままのものを 2 次元で使用し、各関数について粒子数 100、ステップ数 1000 で実験した。

① Sphere 関数

最適値: 0.0 (python の float が表せる正の最小値より小さかった) $x_1 = 6.105772426224511e - 163, x_2 = -6.480636157931836e-163$

② Rastrigin 関数

最適値: 0.0(python の float が表せる正の最小値より小さかった)

 $x_1 = -2.7195672216826355e - 09, x_2 = -6.544159924921054e - 10$

③ Rosenbrock 関数

最適値: 0.0 (python の float が表せる正の最小値より小さかった)

$$x_1 = 1.0$$
 , $x_2 = 1.0$

④ Griewank 関数

最適値: 0.0 (python の float が表せる正の最小値より小さかった)

$$x_1 = -1.0110623226797558e - 08, x_2 = -5.592943438648632e - 09$$

⑤ Alpine 関数

最適値: 2.0865757940092503e-184

 $x_1 = \ 1.3156314386641418e - 183, x_2 = -7.709443553451086e - 184$

⑥ 2ⁿ minima 関数

最適値: -156.6646628150857

 $x_1 = -2.903534025421506, x_2 = -2.903534029702768$

(B) ABC (人口蜂コロニー)

PSO 同様、関数は指定されたままのものを 2 次元で使用し、各関数について粒子数 100、ステップ数 1000 で実験した。

① Sphere 関数

最適值: 3.4668978758394374e-43

 $x_1 = 5.42149464435861e - 23, x_2 = -5.863024195464853e - 22$

② Rastrigin 関数

最適值: 7.537564634674254e-07

 $x_1 = 3.7196312950501425e - 05, x_2 = 4.9150397450032875e - 05$

③ Rosenbrock 関数

最適値: 5.589665262689542e-19

 $x_1 = 0.9999999994425944$, $x_2 = 0.99999999989350151$

④ Griewank 関数

最適値: 0.00017783521046943473

 $x_1 = -0.018854472345463336, x_2 = 0.00015536449158526366$

⑤ Alpine 関数

最適値: 1.6090276554257737e+20

 $x_1 = \, -3.514239433919043e + 20, x_2 = -9.960800994992416e + 19$

⑥ 2ⁿ minima 関数

最適值: -156.66466281508565

 $x_1 = -2.9035340121133935$, $x_2 = -2.9035340365220077$

