Indices	
S	Raw material supplier ,raw_supplier
р	product
i	Raw material supplied ,raw_material
T	Interval time of which the raw material supplied ,time
X	Method used to refurbishment $\forall x$ refurbishment_meth
k	Method used to re design $\forall k$, redesign_method
ı	value of inventory inventory
sc	Storage center storage_center
dr	Distribution center distribution_center
ds	Disassembly center disassembly center
m	Method used of manufacturing manufacture_method
0	Severity class of injury (o,O) severity(o)

Decision variables	
S _s	Binary variable, if the raw supplier s is selected =1, otherwise =0, $\forall s$ supplier_selected(raw_supplier)
Y _{Tsi}	Binary variable, if the interval selected is a discount interval =1, otherwise =0, $\forall T, s$ interval_selected (time, raw_supplier, $\frac{raw_material}{raw}$)
f_x	Binary variable , if the refurbishment method x is selected =1 , otherwise =0, $\forall x$
	refurbishment_selected(refurbishment_meth)
Gk	Binary variable , if the redesigning method k is selected =1 , otherwise =0, $\forall k$ redesign_selected(redesign_method)
ps _s	Portion of new product of raw material supplied for each supplier $\forall s$ portion_raw(raw_supplier)
mq _{sip}	Manufacture qunatity of raw materials in different intervals , \forall S , T , p , i $manufacture_raw_qunatity(time, raw_supplier, raw_material, product$
Qs	Capacity of each raw material suppliers , $\forall s$ raw_capacity(raw_supplier)
рсх	Portion of refurbishment products of each refurbishment method $\forall x$ portion_refurb(refurbishment_meth)
Pf _k	Portion of redesigning products of each redesigning method $\forall k$ portion_redesign(redesign_method)
M _m	Binary variable, if the manufacturing method is used =1, otherwise =0, $\forall m$ manufacture_selected(manufacture_method)
SC _{sc}	Binary variable for storage center, if the sc is selected =1, otherwise =0, $\forall sc$ storage_selected(storage_center)
DR _{dr}	Binary variable for Distribution center, if the dr is selected =1, otherwise =0 $\forall dr$ distribution_selected(distribution_center)
DC _{ds}	Binary variable for Disassembly center , if the dc is selected =1 , otherwise =0 $\forall ds$ disassembly _selected(disassembly_center)

Parameters	
MPp	Market price for different products made by raw materials supplied , $\forall \ p$ market_price(product)
AC_p	Assembly cost of products $\forall \ p$ assembly_cost (product)
CSp	cost of shipping the products to the storage centers. $\forall \ p$ shipping_storage_cost (product)
t ^p sc	Transportation cost of shipping the products to the storage centers. $\forall p, sc$ transp_storage_cost (product, storage_center)
d_{sc}	Distance travelled to the storage centers, $\forall sc$ distance_storage(storage_center)
cd _p	cost of shipping the products to the distribution centers. $\forall p$ shipping_distribution_cost (product)
t ^p dr	Transportation cost of shipping the products to the distribution centers $\forall p, dr$ transp_ distribution_cost (product, distribution_center)
\mathbf{d}_{dr}	Distance travelled to the distribution centers , $\forall \ dr$ distance_distribution (distribution_center)
H ^p _m	# of hours needed to made products using raw materials supplied ,for $\forall p, m$ hours_raw(product, manufacture_method)
Į	Labor cost per hour . labor_cost
cm _p	Manufacture cost of new products $\forall p$ manufacture_raw_cost(product)
Rs	Variable cost of products made using raw materials supplies $\forall s$ variable_raw_cost(raw_supplier)
Q ,	Capacity of each raw material suppliers , ∀ s raw_capacity(raw_supplier)
OC sI	Manufacture cost of raw materials in different intervals , $\forall s, T$ manufacture_raw_cost(time, $raw_supplier$, $raw_material$)
n_i^p	# of each raw material needed to make product p $\forall i, p$
_	number_raw(raw_material,product)
Cs	Ordering cost from each supplier, ∀ s order raw cost(raw_supplier)
MP ['] p	Market price for different products made by Refurbishment , $\forall p$
P	market_price_refurb(product)
R _x	Variable cost of products made by Refurbishment method $\forall \ x$
	variable_refurbished_cost(refurbishment_meth)
cds _p	cost of shipping the products to the disassembly centers $\forall \ p, ds$ shipping_ disassembly _cost (product)
t ^p _{ds}	Transportation cost of shipping the products to the disassembly centers. $\forall p, ds$ transp_ disassembly _cost (product, disassembly center)
D _{ds}	Distance travelled to the disassembly centers., $\forall \ ds$ distance_ disassembly(disassembly center)
df	Defective percentage of returned disassembled products . defective_percentage
h' _p	# of hours needed for Refurbished products $\forall p$ hours_refurbished(product)
cm' _p	Manufacture cost of Refurbished products $\forall \ p$ manufacture_refurbished_cost(product)
Qx	Capacity of xth refurbishing methods , $\forall x$ refurbish_method_capacity(refurbishment_meth)
c_x	Ordering Cost of refurbishment method x selected , $\forall x$ order_refurbish _cost(refurbishment_meth)
MP" _p	Market price for different products made by redesigning . $\forall p$ market_price_redesign (product)
h"p	# of hours needed for redesigning $\forall p$ hours_redesigned(product)

R _k	Variable cost of products made by redesigning method $\forall \ k$
	variable redesigned cost(redesign method)
Qk	Capacity of kth redesigning methods , $\forall k$
	redesign_method_capacity(redesign_method)
Cf _k	Ordering Cost of redesigning method k selected , $\forall k$
	order_redesign _cost(redesign_method)
Pe	Penalty of excess production penalty_excess
I ₀	Initial value of inventory initial_inventory
D	Demand demand
lf	Final value of inventory final_inventory
invCO	Inventory cost inventory_cost
PDC _p	Pollution of shipping to the disassembly center per unit of distance $\forall~oldsymbol{p}$
	pollution_shipping_dissasembly(product)
Ph ^p _m	Pollution caused for manufacturing new products using different methods $\forall m, p$
	pollution_manufacturing (manufacture_method,product)
PSC _p	Pollution of shipping to the storage center per unit of distance
	pollution_shipping_storage(product)
Ph' _p	Pollution caused for refurbished $\forall p$
Dhii	pollution_refuribshed(product)
Ph" _{p;}	Pollution caused for redesigning products $\forall p$ pollution_dissasembly(product)
PDR _p	Pollution of shipping to the distribution center per unit of distance $\forall p$
r DN _p	pollution_shipping_distribution(product)
SE°m	Severity function for new products for different methods , $\forall m, o$
9 - III	severity_function_new(manufacture_method,severity)
SE' _o	Severity function of refurbished methods for each severity index , $\forall o$
	severity_function_refurbished (severity)
SE" _o	Severity function of redesigning methods for each severity index $\forall \ o$
	severity_function_redesign (severity)
CSC	Capacity of storage centers .
CDB	capacity_storage
CDR	Capacity of distribution center centers . capacity_distribution
CDS	Capacity of disassembly center centers .
353	capacity_disassembly
Α	Returning goal returning_goal
\boldsymbol{b}_d	Uncertain demand uncertain_demand
$C *_T^S$	upper bound of the discount interval T offered by supplier s , $\forall T, s$ up bound(time,
- L	raw_supplier,raw_material)
C_s^T	slightly smaller than $C*_T^s$. $\forall T, s$ bound(time, raw_supplier, raw_material)
	<u>I</u>

Deterministic model:

```
F1 = MAX \sum_{raw\_supplier} (\sum_{product} (market\_price(product) - assembly\_cost (product)) - \sum_{storage\_cost} ((shipping_{storage\_cost}(product) + transp\_storage\_cost (product, storage\_center))
                                               * distance_storage(storage_center)) * storage_selected(storage_center))
                                                    \sum_{\text{distribution}_{\text{center}}} ((shipping_{\textit{distribution}_{cost}(product)}) + \text{transp\_distribution\_cost} (product, \text{distribution\_center})
                                               * distance_distribution(distribution_center)) * distribution_selected(distribution_center))
                                                          \sum_{s} \qquad \left( hours_{raw(product, manufacture_{method})} * labor_{cost} \right) * manufacture_{selected(manufacture_{method})} 
                                               - manufacture_raw_cost(product) - variable_raw_cost(raw_supplier))
                                                   \sum_{i} \sum_{product} \sum_{product} \sum_{manufacture_{raw}_{qunatity}(time, raw_{supplier}, raw_{material}, product)} \sum_{i} \sum_{product} \sum_{product} \sum_{product} \sum_{manufactur} \sum_{product} \sum_{pr
                                               * portion_raw(raw_supplier)))
                                                                                 order_raw_cost(raw_supplier) * supplier_selected( raw_supplier)
                                               -\sum_{\text{refurbishment\_meth}}^{\text{order\_raw\_cost(tan\_s)}} (\sum_{\text{product}}^{\text{market\_(price\_refurb(product))}} - \text{assembly\_cost (product)})
                                              - variable_refurbished_cost(refurbishment_meth) - \sum_{storage_center} ((shipping_(storage_cost (product) + transp_storage_cost (product))
                                               + transp_storage_cost (product, storage_center) * distance_storage(storage_center))
                                              * storage_selected(storage_center)) -\sum_{distribution\_center} ((shipping\_(distribution\_cost\ (product))))
                                               + transp_distribution_cost (product, distribution_center) * distance_distribution(distribution_center))
                                              *\ distribution\_selected(distribution\_center)) - \sum_{disassembly\ center} ((shipping\_\ disassembly\_cost\ (product)) - \sum_{disassembly\ center} ((shipping\_\ disassembly\_\ cost\ (product)) - \sum_{disassembly\ center} ((shipping\_\ 
                                               + transp_ disassembly _cost (product, disassembly center) * distance_ disassembly(disassembly center))
                                               * disassembly_selected(disassembly_center)) + defective_percentage/(1 - defective_percentage)
                                                                                            ((shipping_disassembly_cost (product)
                                               + transp_ disassembly _cost (product, disassembly center) * distance_ disassembly(disassembly center))
                                               * disassembly _selected(disassembly_center)) - (hours_refurbished(product) * labor_cost)
                                               - manufacture_refurbished_cost(product)) * ((1 - defective_percentage)
                                               * portion_refurb(refurbishment_meth) * refurbish_method_capacity(refurbishment_meth)))
                                                                                                (order_ refurbish _cost(refurbishment_meth )
                                               * refurbishment_selected(refurbishment_meth ) )
                                                    \sum_{\text{redesign\_method product}} (\sum_{\text{product}} (\text{market\_(price\_redesign (product})}
                                                                                               ((shipping_(distribution_cost (product)
                                               + transp_distribution_cost (product, distribution_center) * 2 * distance_travelled(distribution_center))
                                               * distribution_selected(distribution_center)) - (hours_redesigned(product) * labor_cost)))
                                               - variable_refurbished_cost(redesign_method) * (portion_redesign(redesign_method))
                                               * redesign_method_capacity(redesign_method)))
                                                                                        (order_redesign_cost(redesign_method) * redesign_selected(redesign_method))
                                               - penalty_excess * ( initial_inventory
                                               + \sum_{n} (portion_raw(raw_supplier) * raw_capacity(raw_supplier)) + ((1 - defective_percentage)
```

```
(portion\_refurb(refurbishment\_meth)
                                  * refurbish_method_capacity(refurbishment_meth))
                                                                       (portion_redesign(redesign_method) * redesign_method_capacity(redesign_method))
                                  - demand - final_inventory) - inventory_cost * final_inventory
F2 = MIN \left( \sum_{sraw\_supplier} (\sum_{product} (\sum_{storage\_center} (pollution\_(shipping\_storage(product) * storage\_selected(storage\_center) * storage\_selected(storage\_selected(storage\_center) * storage\_selected(storage\_center) * storage\_selected(storage\_center) * storage\_selected(storage\_selected(storage\_center) * storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_selected(storage\_s
                                  * \ distance\_storage(storage\_center)) + \sum \qquad (pollution_{shipping_{distribution(product)}})
                                  * distance_travelled(distribution_center) * distribution_selected(distribution_center)))
                                  * portion_raw(raw_supplier) * raw_capacity(raw_supplier))
                                                                                             \(\sum_{\text{rage center}}\) (pollution_shipping_storage(product)
                                  * distance_storage(storage_center) * storage_selected(storage_center))
                                                                     (pollution_shipping_distribution(product)
                                  * distance_distribution(distribution_center) * distribution_selected(distribution_center))
                                                                     (pollution_shipping_dissasembly(product)
                                  * distance_disassembly(disassembly center) * disassembly _selected(disassembly_center))
                                  - defective\_percentage/(1 - defective\_percentage)
                                                                    (pollution_shipping_dissasembly(product)
                                  * distance_disassembly(disassembly center) * disassembly_selected(disassembly_center))) * ((1
                                  - defective_percentage ) * portion_refurb(refurbishment_meth )
                                  * refurbish_method_capacity(refurbishment_meth) ))
                                                  \sum_{\text{gn\_method}} \left( \sum_{\text{product } distribution\_center} (pollution\_shipping\_distribution(product) * 2 \right)
                                  * distance_travelled(distribution_center) * distribution_selected(distribution_center)))
                                  * (portion_redesign(redesign_method) * redesign_method_capacity(redesign_method))
                                  + \sum\nolimits_{\text{raw\_supplier}} (\sum\limits_{\text{product } manufacture_{method}} (\text{pollution\_manufacturing (manufacture\_method, product)})
                                  * portion_raw(raw_supplier) * raw_capacity(raw_supplier)
                                  * manufacture_selected(manufacture_method))))
                                                              ( \sum pollution_refuribshed(product) * portion_refurb(refurbishment_meth)
                                      \sum_{\text{redesign\_method product}} (\sum_{\text{product}} \text{pollution\_dissasembly(product)} * portion\_redesign (redesign\_method)
                                  * refurbish_(method_capacity(refurbishment))
                                  * redesign_method_capacity(redesign_method)
```

```
=\sum_{o=1}^{o}\sum_{manufacture\_method}(manufacture\_selected(manufacture\_method)*e^{o-\sum_{\overline{O}}^{o}}*Severity\_function\_new(manufacture\_method,severity)
*\sum_{\substack{raw.supplier \text{ product} \\ * severity(function\_refurbished (severity))}} \sum_{o=1}^{20000} \frac{20000}{\text{hours\_raw(product, manufacture\_method)} * portion\_raw(raw\_supplier)} * raw\_capacity(raw\_supplier)}) + \sum_{o=1}^{o} e^{o-\sum_{o=1}^{o}} e^{o-\sum
* \sum_{refurbishment\_meth} \sum_{product} \frac{20000}{hours\_refurbished(product) * (1 - df) * portion\_refurb(refurbishment\_meth) * refurbish\_method\_capacity(refurbishment\_meth) } + \sum_{o=1}^{Q} e^{o-\sum_{o}^{o}} severity\_(function\_redesign (severity))
 * \sum_{\substack{redesign\_method}} \sum_{\text{product}} \frac{20000}{\textit{hours\_redesigned(product)} * \textit{portion\_redesign(redesign\_method)} * \textit{redesign\_method\_capacity (redesign\_method)}}
 S.T
  raw\_capacity(raw\_supplier) = (\sum_{T} \sum_{i} \sum_{product} (manufacture\_raw\_qunatity(time, raw\_supplier, raw\_material, product) / (manufacture\_raw\_qunatity(time, raw\_supplier, raw\_supp
  number_raw(raw_material, product) /number_raw(raw_material, product)) \forall raw_supplier, time, raw_material
                                                                                                                                                                                                                                                                         raw_capacity(raw_supplier )
                                                                                                 \leq up_{bound(time,raw_{supplier,raw_{material}})}/number\_raw(raw\_material,product)
                                                                                                 * interval_selected (time,raw_supplier,raw_material) \(\forall \taw_supplier,time,raw_material \)
                                                                                                                                                                                                                                                                    raw capacity(raw supplier)
  \geq bound(time -1, raw_supplier, raw_material)/number_raw(raw_material, product))
    * interval_selected (time, raw_supplier, raw_material) \(\forall \) raw_supplier, time, raw_material
                                                                                                                                                                    interval_selected (time, raw_supplier, raw_material) = 1 if selected, otherwise = 0
                                                                                                                                                                                    \sum_{\textit{raw supplier}} \sum_{\textit{timel}} \textit{interval\_selected (time, raw\_supplier)} \leq 1 \; \forall \textit{raw\_supplier, time}
                       \mbox{capacity\_storage} \geq \sum_{\mbox{raw\_supplier}} portion\_raw(raw\_supplier) * \mbox{raw\_capacity(raw\_supplier)} + (1 \\ - \mbox{defective\_percentage}) \sum_{\mbox{refurbishment\_meth}} portion\_refurb(refurbishment\_meth) * \mbox{refurbish\_menthod\_capacity(refurbishment}) \\ + \mbox{refurbishmentmeth} + (1 \\ + \mbox{defective\_percentage}) \sum_{\mbox{refurbishment\_meth}} portion\_refurb(refurbishment\_meth) \\ + \mbox{refurbishmentmeth} + (1 \\ + \mbox{defective\_percentage}) \\ + \mbox{defective\_percentage} + (1 \\ + \mbox{defective\_percentage}) \\ + \mbox{defective\_percentage}) \\ + \
                                                                          capacity_distribution
                                                                                                                                                                   \geq \sum_{\substack{\text{raw\_supplier}\\ *}} portion\_raw(raw\_supplier) * raw\_capacity(raw\_supplier) + (1 - \text{defective\_percentage}) \\ * \sum_{\substack{\text{refurbishment\_meth}\\ *}} portion\_refurb(refurbishment\_meth) * refurbish\_method\_capacity(refurbishment + \sum_{\substack{\text{redesign\_method}}} portion\_redesign(redesign\_method) * redesign\_method\_capacity(redesign\_method)
```

```
{\it capacity\_disassembly} \geq \sum_{{\it refurbishment\_meth}} portion\_refurb(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_meth~)~*~refurbish\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_capacity(refurbishment\_method\_cap
```

portion_raw(raw_supplier) ≤ supplier_selected(raw_supplier), ∀ raw_supplier

 $portion_refurb(refurbishment_meth\)\ \leq\ refurbishment_selected(refurbishment_meth\)\ , \forall\ refurbishment_meth$

portion_redesign(redesign_method) ≤ redesign_selected(redesign_method)

∀ redesign_method

$$initial_inventory + \sum_{\substack{\text{raw_supplier} \\ *}} portion_raw(raw_supplier) * raw_capacity(raw_supplier) + (1 - defective_percentage) \\ * \sum_{\substack{\text{refurbishment_meth} \\ \text{refurbishment_meth}}} portion_refurb(refurbishment_meth) * refurbish_method_capacity(refurbishment \\ + \sum_{\substack{\text{redesign_method} \\ \text{portion_redesign}(redesign_method)}} portion_redesign(redesign_method) * redesign_method_capacity(redesign_method) - final_inventory \ge demand$$

(1 – defective_percentage)

 $* \sum_{\substack{\text{refurbishment_meth}}} \text{portion_refurb}(\text{refurbishment_meth}) \ \text{refurbish_method_capacity}(\text{refurbishment} \\ + \sum_{\substack{\text{redesign_method}}} \text{portion_redesign}(\text{redesign_method}) * \text{redesign_method_capacity}(\text{redesign_method}) \geq \text{returning_goal} * \textit{demand}$

 $defective_percentage \leq 1$

 $\begin{aligned} & portion_raw(raw_supplier), portion_refurb(refurbishment_meth), portion_redesign(redesign_method) \\ & \geq 0 \text{ ,} \forall raw_supplier, refurbishment_meth, redesign_method \end{aligned}$

 $supplier_selected(\ raw_supplier), refurbishment_selected(\ refurbishment_meth)\ , redesign_selected(\ redesign_method)$ $, manufacture_selected(\ manufacture_method), \in \{0,1\}$

Multiple objectives will be solved by the weighted sum model

$$\max w_1 \theta_1 F_1 - w_2 \theta_2 F_2 - w_3 \theta_3 F_3$$

$$w_i \geq 0, \forall i$$

$$\sum_{0}^{i=3} w_i = 1$$