Storage Spaces Direct

Le géo-cluster SQL Server simplifié Christophe LAPORTE SQL Server MVP / MCM

Christophe Laporte

~ since 1997 SQL Server <= 2016

christophe_laporte@hotmail.fr

http://conseilit.wordpress.com/

Christophe Laporte

SQL Server <= 2016

christophe_laporte@hotmail.fr

http://conseilit.wordpress.com/

- Migrations
- **Formations**
- Remote DBA
- Hébergement BDD

- Conseil
 - Infrastructure / Architecture
 - Virtualisation / Cloud
 - Haute disponibilité / Montée en charge
 - Optimisation / Dépannage
- Audit

Agenda

- Rappel sur la haute disponibilité
- Le cluster de basculement
- Solution pour éviter le point de défaillance unique
 - Espaces de stockage direct / Storage Spaces Direct
 - Groupes de disponibilité / AlwaysOn Availability Groups

Pourquoi la HA?

- Définition basique
 - Etre capable d'accéder à une donnée lorsque l'on en a besoin dans un laps de temps acceptable!
- BD point central dans le SI
 - Sharepoint, sites Web de paris ou commerce en ligne
 - Progiciels (RH, Compta, production, CRM)
 - Logiciels « maison »
- La non disponibilité a un coût
 - Chiffre d'affaire ...
 - Coût en temps
 - Salaires d'employés ...
- La haute disponibilité peut affecter les performances
 - Mise à jour synchrone des données sur un réplica
 - SAN Mirroring
 - Cluster (SAN: mutualisation et flexibilité)
- Ne pas confondre PCA et PRA
 - HA et DR

Disponibilité en %	Indisponibilité par année	Indisponibilité par mois	Indisponibilité par semaine
90 % (« un neuf »)	36,5 jours	72 heures	16,8 heures
95 %	18,25 jours	36 heures	8,4 heures
98 %	7,30 jours	14,4 heures	3,36 heures
99 % (« deux neuf »)	3,65 jours	7,20 heures	1,68 heures
99,5 %	1,83 jours	3,60 heures	50,4 minutes
99,8 %	17,52 heures	86,23 minutes	20,16 minutes
99,9 % (« trois neuf »)	8,76 heures	43,2 minutes	10,1 minutes
99,95 %	4,38 heures	21,56 minutes	5,04 minutes
99,99 % (« quatre neuf »)	52,56 minutes	4,32 minutes	1,01 minutes
99,999 % (« cinq neuf »)	5,26 minutes	25,9 secondes	6,05 secondes
99,9999 % (« six neuf »)	31,5 secondes	2,59 secondes	0,605 secondes

Causes de non disponibilité

- Coupure de service planifiée
 - · Changement de matériel
 - Application de Service Packs
- Coupure de service non planifiée
 - Perte du Datacenter (électricité, réseau, catastrophe naturelle)
 - Perte du serveur (alimentation, CPU, mémoire, réseau, OS crash)
 - Problème disque (corruption d'I/O, panne contrôleur disque, panne disque, panne carte RAID)
 - Problème sur le serveur / VM
 - Problème sur l'instance SQL
 - Problème sur la base
 - Problème sur une table
- Tâches de maintenance
 - Réindexation

HA et DR, \forall Stratégie

Définition d'une stratégie PCA/PRA

Chiffre d'affaire Quantifier l'indisponibilité Salaires Datacenter -> Instance -> Groupe de bases -> Granularité Base -> Table -> Traitement Perte maximale de données autorisée RPO Durée maximale de non disponibilité autorisée RTO 24 H / 24 , 7 J /7 Période ouvrée Entre 8h00 et 18h00 les jours ouvrés ... Même niveau de performance requis ? En cas de panne Dégradation acceptable ?

Les solutions intégrées dans SQL Server

- Cluster de basculement
- Groupes de disponibilité

WolfPack ...

- 20 ans déjà
 - Windows NT 4 Wolfpack
 - SQL Server 6.5
 - HCL réduite

- Cluster de basculement
 - Stockage partagé (historiquement)
 - SAN FC / FCoE
 - SAN iSCSI
 - Nœuds
 - Réseau privé
 - Réseau public
 - Services (Rôles) en HA
 - Serveur de fichiers
 - DHCP
 - SQL Server
 - Chaque rôle dispose de
 - Ressources propres
 - Point d'accès (@IP, Nom réseau)

Failover Cluster Instance PROS 1 CONS

- Granularité instance
- Point d'accès réseau
 - Nom DNS & Adresse IP
- Tolérance à la panne
 - Matérielle
 - Logicielle

- Réputation de complexité
- Stockage centralisé
 - Point défaillance unique
 - Ne facilite pas le Géo Cluster
 - Performances discutables

Pourquoi préférer le cluster de basculement ?

- AGs comblent les lacunes
- Mais
 - Modèle de récupération complet sey
 - Seulement les bases util
 - Agent SQL Sec
 - Seulement les base
 FCI encore d'actualité malgré le stockage centralisé !!!
 - MSDTC ?
 - Nombre de word

 - Edition entreprise (BAGs equivalent Database Mirroring)

Les solutions pour contourner le stockage centralisé

- Utiliser un stockage local
 - + méchanisme de "replication"
- Solutions constructeur
 - San Mirroring
 - EMC, HP, Unisys, ...
- Editeurs tiers
 - DoubleTake
 - SIOS Datakeeper

Les solutions pour contourner le stockage centralisé

- Stretch Cluster
 - Storage Replica (Windows 2016)
- (Convergence)
 - Partage SMB3 sur SOFS
 - Virtualisation : Shared VHDX
- Hyper convergence
 - Storage Spaces Direct (Windows 2016)

Démo

- Ajout de disques locaux
- Ajout des fonctionalités
- Test du cluster
- Création du cluster
- Ajout du File Share Witness
- Activation de Storage Spaces Direct

```
# Add Features
Install-WindowsFeature -Name Failover-Clustering, File-Services -IncludeAllSubFeature -IncludeManagementTools -ComputerName srv1
Install-WindowsFeature -Name Failover-Clustering, File-Services -IncludeAllSubFeature -IncludeManagementTools -ComputerName srv2
# Test cluster, else SQL Server won't install
Test-Cluster -Node srv1, srv2 -Include "Storage Spaces Direct", "Inventory", "Network", "System Configuration"
# Create the Cluster and add a File Share Witness
New-Cluster -Name ClustS2D -Node srv1, srv2 -NoStorage -StaticAddress 10.0.0.10
Start-Sleep -s 2
Get-Cluster | Set-ClusterQuorum -FileShareWitness "\\AD\FSW"
# enable Storage Spaces Direct
Enable-ClusterS2D
```


Storage spaces

- Storage pool
 - Collection de disques
 - Combiner HDD et SSD
- Storage spaces
 - Solution de stockage hautement disponible et flexible
 - Fournit la "tolérance de panne" aux "disques" virtuels, créés à partir d'espace libre du storage pool
- Volume
 - Espace de stockage où l'on dépose des fichiers
 - Visible dans c:\ClusterStorage

Clustered Storage Spaces

- Combinaison des fonctionnalités
 - Cluster de basculement
 - Storage spaces
 - => Tous les volumes sont accessibles depuis tous les nœuds à tout moment
- Prérequis
 - SAS ou JBOD attaché aux nœuds du cluster
- Scénarii
 - Cluster de fichier hautement disponible (SOFS)
 - Pas de coupure en cas de bascule (SMB3)

Windows 2016 - Storage spaces direct

- Approche alternative au problème du stockage centralisé
 - Première solution réelle de type Software-Defined Storage
- Système hyper convergé
 - Nœuds multi rôles
 - Stockage
 - Calcul
 - Acteurs du marché
 - Nutanix
 - VMware Virtual San
 - Simplivity (HPE)
- Idée maitresse
 - Eliminer le stockage centralisé
 - Totalement indépendant du matériel
 - SAS limite le Scale-Out par le coût
 - SAS n'est pas adapté aux grandes distances
 - Utilisation de matériel "standard" voire peu onéreux

Windows S2D & SQL Server

- Cluster sans baie de disque ...
 - Baie de disque virtuelle
 - Stockage local
 - Répliqué sur tous les noeuds
 - Volume(s) disponible dans le cluster
- Fiablité
 - Pas de point de défaillance unique
- 2 <= Serveurs <= 16
- CPU / RAM
- Réseau inter nœuds rapide
 - Ethernet 10 Gb+ + RDMA
 - SMB3

Azure:

- S2D supporté
- SIOS DataKeeper

Démo

Création d'un volume

2 way mirroring

attach iso to VM

New-Volume -StoragePoolFriendlyName 'S2D on ClustS2D' ` -FriendlyName 2wmVolume

> -PhysicalDiskRedundancy 1 -FileSystem CSVFS_REFS

-Size 20GB

-ResiliencySettingName 'Mirror'

Résilience – Miroir 2 nœuds

- 2 way mirroring
 - Equivalent Raid 1
 - Nombre de nœuds : 2
 - Défaillances possibles : 1
 - Efficacité de stockage : 50%

Résilience – Miroir 3 nœuds

- 3 way mirroring
 - Nombre de nœuds : 3
 - Défaillances possibles : 2
 - Efficacité de stockage : 33%

Résilience – Simple parité

We discourage using single parity because it can only safely tolerate one hardware failure at a time: if you're rebooting one server when suddenly another drive or server fails, you will experience downtime. If you only have three servers, we recommend using three-way mirroring. If you have four or more, see the next section.

- Single parity
 - Equivalent Raid 5
 - Nombre de nœuds : 3
 - Défaillances possibles : 1
 - Efficacité de stockage : >=66% <=87%

Résilience – Double parité

- Dual parity
 - Equivalent Raid 6
 - Nombre de nœuds : >=4
 - Défaillances possibles : 2
 - Efficacité de stockage : >=50% <=80%

Gestion de la capacité

(2x) (1) (50%) Two-way mirroring

(3x) (2) (33%) Three-way mirroring

(3x) (1) (66.7-87.5%) Single parity

(4x) (2) (50-80%) Dual parity

(4x) (2) (33.3-80%) Mixed

Two-way mirroring Three-way mirroring	Performance Tier
Single parity	
Dual parity	Capacity Tier
Mixed	

Storage Pool $(64 \times 2 \text{ TB HDD})$

Baie de disques- Performances

Operation 🔽	Duration 	IOSize 🔽	IOType 🔽	PendingIO 💌	FileSize 💌	IOPS VNX7500	MBs/Sec 🔽	Min_Lat(ms)	Avg_Lat(ms)	Max_Lat(ms)
Read	30	8	Random	8	16000	28 578,81	223,27	0	1	170
Write	30	8	Random	8	16000	17 697,72	138,26	0	3	579
Read	30	8	Sequential	8	16000	16 509,39	128,97	0	3	123
Write	30	8	Sequential	8	16000	26 184,05	204,56	0	1	198
Read	30	32	Random	8	16000	23 369,09	730,28	0	2	44
Write	30	32	Random	8	16000	7 250,18	226,56	0	8	499
Read	30	32	Sequential	8	16000	18 001,49	562,54	0	3	40
Write	30	32	Sequential	8	16000	7 156,32	223,63	0	8	84
Read	30	64	Random	8	16000	10 570,81	660,67	0	5	156
Write	30	64	Random	8	16000	5 294,93	330,93	0	11	108
Read	30	64	Sequential	8	16000	10 215,73	638,48	0	5	27
Write	30	64	Sequential	8	16000	3 511,60	219,47	1	17	41
Read	30	128	Random	8	16000	6 047,07	755,88	0	10	171
Write	30	128	Random	8	16000	2 882,85	360,35	0	21	119
Read	30	128	Sequential	8	16000	5 113,71	639,21	0	12	47
Write	30	128	Sequential	8	16000	1 762,32	220,29	2	35	82
Read	30	256	Random	8	16000	3 040,23	760,05	0	20	182
Write	30	256	Random	8	16000	1 478,31	369,57	0	42	152
Read	30	256	Sequential	8	16000	2 535,46	633,86	0	24	125
Write	30	256	Sequential	8	16000	880,84	220,21	8	72	143

Performances & capacité : mix de résiliences

- Pour un seul et même volume
 - Miroir : un cache performant
 - Parité : stockage capacitif

Performances & capacité : mix de résiliences

- Maximiser la performance
 - Uniquement des disques Flash
 - Charge de travail intensive
 - 1Tb/sec 6 000 000 IOPS

- 160 GB /Sec
- EN Wikipedia: 11,5
 GB
- => 14 transferts /sec

- Balance entre capacité et performance
 - Possibilité d'utiliser du cache
 - 2 disques par serveur
 - Ratio de 1:2 disque capacité

La fin des disques rotatifs?

- 1956
 - IBM
 - "Super" computer 305 RAMAC
 - HDD 5 MB
 - > 1 000 kg
 - > 50 000 \$
- Actuellement
 - SSD Samsung: 16 TB
 - HDD Seagate: 10 TB

Disques SSD

- Interface
 - SAS
 - SATA
 - PCI
 - NVMe
- Repères
 - Ram : $6 \text{ ns} = 6 \times 10^{-9} \text{ sec}$
 - CPU à 3,5 GHz : 10⁻⁹ sec
 - HDD rotatif : $7 \text{ ms} = 7 \times 10^{-3} \text{ sec}$
 - 1 000 000 de fois plus lent !!!!
 - 1 IO prends autant de temps que 1 000 000 cycle CPU
 - SSD : $50 \mu s = 10^{-6} sec$
 - 1 000 fois plus lent que RAM
 - 1 000 fois plus rapide que HDD rotatif ...
 - ≈ escargot (0,0275 m/s) et guépard (28 m/s)

http://fr.wikipedia.org/wiki/Ordre_de_grandeur_(vitesse)

Performance DAS: SSD SAS

Operation 	Duration	IOSize 🔽 IOType 🔽	PendingIO 🔽	FileSize 🔽	IOPS RAID SSD 🕶	MBs/Sec 🔽	Min_Lat(ms)	Avg_Lat(ms)	Max_Lat(ms)
Read	10	8 Random	8	20000	161 955,10	1 265,27	0	0	47
Write	10	8 Random	8	20000	61 224,10	478,31	0	1	36
Read	10	8 Sequentia	8	20000	168 954,60	1 319,95	0	0	26
Write	10	8 Sequentia	8	20000	101 239,40	790,93	0	0	25
Read	10	32 Random	8	20000	65 572,70	2 049,14	0	1	4
Write	10	32 Random	8	20000	29 222,20	913,19	0	3	89
Read	10	32 Sequentia	8	20000	67 405,39	2 106,41	0	1	10
Write	10	32 Sequentia	8	20000	21 447,70	670,24	0	5	94
Read	10	64 Random	8	20000	35 722,19	2 232,63	1	3	24
Write	10	64 Random	8	20000	14 956,80	934,80	0	8	150
Read	10	64 Sequentia	8	20000	35 990,60	2 249,41	2	3	24
Write	10	64 Sequentia	8	20000	16 425,11	1 026,56	0	7	163
Read	10	128 Random	8	20000	18 734,99	2 341,87	3	6	35
Write	10	128 Random	8	20000	8 152,81	1 019,10	0	15	330
Read	10	128 Sequentia	8	20000	19 285,48	2 410,68	1	6	18
Write	10	128 Sequentia	8	20000	8 745,72	1 093,21	0	14	326
Read	10	256 Random	8	20000	9 989,40	2 497,35	2	12	21
Write	10	256 Random	8	20000	4 381,64	1 095,41	1	28	610
Read	10	256 Sequentia	8	20000	8 394,52	2 098,63	2	14	38
Write	10	256 Sequentia	8	20000	4 183,70	1 045,92	1	30	599

Performance DAS: SSD PCI

Operation 🔽	Duration 🔽	IOSize 🔽	IOType 	PendingIO 	FileSize 🔽	IOPS Fusion IO	MBs/Sec	Min_Lat(ms)	Avg_Lat(ms)	Max_Lat(ms)
Read	60	8	Random	8	20000	117 814,33	920,42	0	0	33
Write	60	8	Random	8	20000	120 789,28	943,66	0	0	4
Read	60	8	Sequential	8	20000	166 328,68	1 299,44	0	0	38
Write	60	8	Sequential	8	20000	120 665,68	942,70	0	0	1
Read	60	32	Random	8	20000	43 461,68	1 358,17	0	2	44
Write	60	32	Random	8	20000	30 691,76	959,11	0	3	5
Read	60	32	Sequential	8	20000	44 263,06	1 383,22	0	2	29
Write	60	32	Sequential	8	20000	30 348,49	948,39	0	3	6
Read	60	64	Random	8	20000	22 055,58	1 378,47	0	5	30
Write	60	64	Random	8	20000	15 181,68	948,85	0	7	10
Read	60	64	Sequential	8	20000	22 253,76	1 390,86	1	5	31
Write	60	64	Sequential	8	20000	15 268,36	954,27	0	8	19
Read	60	128	Random	8	20000	11 114,45	1 389,30	1	11	65
Write	60	128	Random	8	20000	7 571,43	946,42	0	16	18
Read	60	128	Sequential	8	20000	11 158,85	1 394,85	0	10	82
Write	60	128	Sequential	8	20000	7 519,90	939,98	1	16	26
Read	60	256	Random	8	20000	5 568,75	1 392,18	0	22	114
Write	60	256	Random	8	20000	3 828,96	957,24	1	32	35
Read	60	256	Sequential	8	20000	5 579,71	1 394,92	0	22	110
Write	60	256	Sequential	8	20000	3 811,18	952,79	0	33	44

Performance DAS: SSD PCI NVMe

Operation -	Duration 🔽	IOSize IOType	PendingIO 🔽	FileSize 🔽	IOPS P3700 🔽	MBs/Sec 🔽	Min_Lat(ms)	Avg_Lat(ms)	Max_Lat(ms)
Read	30	8 Random	8	5000	293 653,32	2 294,16	0	0	3
Write	30	8 Random	8	5000	131 564,20	1 027,84	0	0	9
Read	30	8 Sequential	8	5000	306 275,90	2 392,78	0	0	3
Write	30	8 Sequential	8	5000	134 100,13	1 047,65	0	0	8
Read	30	32 Random	8	5000	72 990,33	2 280,94	0	1	8
Write	30	32 Random	8	5000	33 383,44	1 043,23	0	3	12
Read	30	32 Sequential	8	5000	81 879,53	2 558,73	0	1	10
Write	30	32 Sequential	8	5000	33 786,90	1 055,84	0	3	15
Read	30	64 Random	8	5000	35 157,48	2 197,34	0	3	10
Write	30	64 Random	8	5000	16 764,46	1 047,77	0	7	23
Read	30	64 Sequential	8	5000	41 034,10	2 564,63	0	2	10
Write	30	64 Sequential	8	5000	16 919,96	1 057,49	0	7	22
Read	30	128 Random	8	5000	17 898,67	2 237,33	0	6	20
Write	30	128 Random	8	5000	8 459,16	1 057,39	0	14	36
Read	30	128 Sequential	8	5000	20 528,22	2 566,02	0	5	15
Write	30	128 Sequential	8	5000	8 454,67	1 056,83	0	14	37
Read	30	256 Random	8	5000	9 006,46	2 251,61	1	13	24
Write	30	256 Random	8	5000	4 248,64	1 062,16	0	29	52
Read	30	256 Sequential	8	5000	9 765,34	2 441,33	1	12	24
Write	30	256 Sequential	8	5000	4 220,13	1 055,03	0	29	51

Coûts en baisse ...

- Disques
 - Sous système le plus lent
 - Disques lent = système peu optimisé
 - => Impossible de rentabiliser les licences
- Privilégier les technologies flash
- <u>Toujours</u> choisir en fonction de la performance et non du volume
 - IOPS vs GB

\$6.16 / 1K IOPS

Intel S3700 800GB SATA SSD

Vs

\$1,425

\$14.90 / 1K IOPS

Avantages du S2D ?

- Forte tolérance à la panne
- Simplification du Géo Clustrer
- Bascule du cluster plus rapide qu'un SAN
- Performance disque : élimine le problème du "voisin bruyant"
- Migration facilities
- Pas de nécessité de lettre de volume
 - Pas de dépendance sur une ressource de type disque
 - Plus de limite à 25 instances virtuelles
 - Plusieurs instances sur un seul volume

Les solutions intégrées dans SQL Server

- Cluster de basculement
- Groupes de disponibilité

Groupes de disponibilité

- Disponible depuis SQL Server 2012 Entreprise
- Couvre les besoins en HA et DR
- Potentiellement indépendant d'un domaine AD
- Disponible en édition standard (restrictions)

Groupes de disponibilité distribués

- Disponible depuis SQL Server 2016 Entreprise
- Mise en oeuvre
 - Création de l'AG1
 - Création de l'AG2
 - Création d'un "super" groupe de disponibilité
 - Dont les bases sont des AG
- Tire profit de l'amorçage direct (Direct Seeding)
- Chaque cluster possède
 - Son propre quorum
 - Sa propre configuration de vote
- Transferts réseau efficace
 - Un seul envoi des données sur le réseau
- Scénario de migration
 - Chaque cluster peut avoir des versions d'OS différentes
- Seul le basculement manuel est supporté

Azure

- Réplica asynchrone
- Scénario disaster recovery
- Scénario reporting / sites internet
- Assistant intégré à SSMS

Mixer les solutions

- Un groupe de disponibilité peut s'étendre
 - Sur un ou plusieurs FCI
 - Et sur une ou plusieurs instance SQL

Conclusion

- Différentes techniques de haute disponibilité
 - Peuvent être combinées
 - Evolution constante
- Points de défaillance unique
 - Tendent à disparaitre pour SQL
 - Ne pas négliger l'application
- Ne remplace pas une stratégie
 - De sauvegarde
 - D'archivage

Windows 2012 SQL Server 2012

- WSFC
 - Quorum dynamique
 - Multi subnet failover cluster
- FCI
 - TempDB locale
 - Data sur share SMB3
- Groupes de disponibilité
 - Edition entreprise
 - 1 + 4 replicas
 - 2 replicas failover auto
 - 3 replicas synchrones
 - · Backup on secondary

Windows 2012 R2 SQL Server 2014

- WSFC
 - AD detatched
- FCI
 - Témoin dynamique
 - Data sur disque CSV
- Groupe de disponibilité
 - 1 + 8 replicas
 - Replica sur Azure
 - Secondary readable even if primary unavailable

Windows 2016 SQL Server 2016

- WSFC
 - Domain Agnostic
 - Site awareness
 - Cloud witness
 - Rolling upgrade
- FCI
- Storage spaces direct
 - · Stretch Cluster
- Groupe de disponibilité
 - Distributed AGs
 - DTC Support
 - Auto seeding
 - 3 replicas auto failover
 - · RO Load balancing
 - AG Standard edition
 - Performances

Conclusion

- SQL Server v.Next ?
 - Les 2 techniques sont mises en oeuvre
 - Gage de pérénité
 - Instance SQL sur un cluster de basculement
 - Groupes de disponibilités

Services

Cluster Software

Synchronization

Synchronization

SQL

Linux Server

Pacemaker 1

Corosync

Shared Storage

SQL

Linux Server

Q & A

- Q & A
- Merci pour votre attention

