# The Arithmetic of Elliptic Curves

### Luca NOTARNICOLA

PhD Away Days 2017

September, 2017



## Elliptic curve

### Definition

An elliptic curve E over a field K of  $\mathrm{char}(K) \neq 2,3$  is a non-singular algebraic plane curve given by an equation of the form

$$Y^2 = X^3 - AX - B \quad ; \ A, B \in K \ .$$

## Elliptic curve

#### Definition

An elliptic curve E over a field K of  $char(K) \neq 2,3$  is a non-singular algebraic plane curve given by an equation of the form

$$Y^2 = X^3 - AX - B$$
 ;  $A, B \in K$ .





# Elliptic curve

- Discriminant  $\Delta$  of E: discriminant of the cubic polynomial
- E elliptic curve  $\iff \Delta \neq 0$
- Homogeneous equation of *projective curve* E in  $\mathbf{P}^2(K)$ :

$$y^2z = x^3 - Axz^2 - Bz^3$$

- For  $z \neq 0$ ,  $[x:y:z] \in \mathbf{P}^2(K) \longleftrightarrow (X,Y) = (x/z,y/z)$
- Unique point with z = 0: point at infinity  $\mathcal{O} = [0:1:0]$

### Other definition encountered

An elliptic curve over a field K is a smooth projective curve of genus 1 together with a distinguished point  $\mathcal{O}$ .



■ Elliptic curves define group varieties: The set of points on E is an abelian group for + with neutral element  $\mathcal O$ 

 $\blacksquare$  Elliptic curves define group varieties: The set of points on E is an abelian group for + with neutral element  ${\cal O}$ 



 $\blacksquare$  Elliptic curves define group varieties: The set of points on E is an abelian group for + with neutral element  ${\cal O}$ 



lacktriangleright Elliptic curves define group varieties: The set of points on E is an abelian group for + with neutral element  $\mathcal O$ 



lacktriangleright Elliptic curves define group varieties: The set of points on E is an abelian group for + with neutral element  $\mathcal O$ 



## Torsion points on elliptic curves

#### Consider:

- E elliptic curve over  $K = \mathbb{Q}$
- $lackbox{\blacksquare} E(\mathbb{Q})$  group of points of E with coordinates in  $\mathbb{Q}$

## Torsion points on elliptic curves

#### Consider:

- $\blacksquare$  E elliptic curve over  $K=\mathbb{Q}$
- $lackbox{ } E(\mathbb{Q})$  group of points of E with coordinates in  $\mathbb{Q}$

### Definition

For  $n \in \mathbb{N}_{\geq 2}$ , the *n*-th torsion group of E is defined by

$$E[n] = \{ P \in E(\mathbb{Q}) : [n]P := \underbrace{P + \dots + P}_{n \text{ times}} = \mathcal{O} \}$$

## Torsion points on elliptic curves

#### Consider:

- $\blacksquare$  E elliptic curve over  $K=\mathbb{Q}$
- $\blacksquare$   $E(\mathbb{Q})$  group of points of E with coordinates in  $\mathbb{Q}$

### Definition

For  $n \in \mathbb{N}_{\geq 2}$ , the *n*-th torsion group of E is defined by

$$E[n] = \{ P \in E(\mathbb{Q}) : [n]P := \underbrace{P + \dots + P}_{n \text{ times}} = \mathcal{O} \}$$

■ Important fact:  $E[n] \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$  as abelian groups



Consider E elliptic curve over  $K = \mathbb{Q}$ 

Consider E elliptic curve over  $K = \mathbb{Q}$ 

lacktriangle field of algebraic numbers

Consider E elliptic curve over  $K = \mathbb{Q}$ 

- $\blacksquare$   $\overline{\mathbb{Q}}$  field of algebraic numbers
- Galois group of the field extension  $\overline{\mathbb{Q}}/\mathbb{Q}$

$$\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) = \{ \sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}) : \sigma(x) = x , \forall x \in \mathbb{Q} \}$$

### Consider E elliptic curve over $K = \mathbb{Q}$

- $\blacksquare$   $\overline{\mathbb{Q}}$  field of algebraic numbers
- Galois group of the field extension  $\overline{\mathbb{Q}}/\mathbb{Q}$

$$\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) = \{ \sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}) : \sigma(x) = x , \forall x \in \mathbb{Q} \}$$

lacksquare  $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$  acts on  $E[n] \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ 



### Consider E elliptic curve over $K = \mathbb{Q}$

- Galois group of the field extension  $\overline{\mathbb{Q}}/\mathbb{Q}$

$$\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) = \{ \sigma \in \operatorname{Aut}(\overline{\mathbb{Q}}) : \sigma(x) = x , \forall x \in \mathbb{Q} \}$$

- $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$  acts on  $E[n] \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$
- Obtain a Galois representation

$$\rho_n : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Aut}(E[n]) \simeq \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$$



### The Tate module

lacktriangle Consider a prime number  $\ell$  and the projective system

$$\dots \to E[\ell^n] \to \dots \to E[\ell^2] \to E[\ell]$$
 (1)

with transition maps given by  $P\mapsto [l]P$ 

### The Tate module

lacktriangle Consider a prime number  $\ell$  and the projective system

$$\dots \to E[\ell^n] \to \dots \to E[\ell^2] \to E[\ell]$$
 (1)

with transition maps given by  $P\mapsto [l]P$ 

### Definition

The Tate module is defined as the projective limit of (1)

$$T_{\ell}E = \lim_{\leftarrow} E[\ell^n]$$



### The Tate module

■ Recall the ring of  $\ell$ -adic integers  $\mathbb{Z}_{\ell}$ 

$$\mathbb{Z}_{\ell} = \lim_{\leftarrow} \mathbb{Z}/\ell^n \mathbb{Z}$$

■ From  $E[\ell^n] \simeq \mathbb{Z}/\ell^n\mathbb{Z} \times \mathbb{Z}/\ell^n\mathbb{Z}$  it follows

$$T_{\ell}E \simeq \mathbb{Z}_{\ell} \times \mathbb{Z}_{\ell}$$

- lacksquare  $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$  acts on  $T_{\ell}E$
- Obtain a Galois representation

$$\rho_{\ell^{\infty}}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}_{\ell})$$



Consider an elliptic curve E over  $\mathbb Q$  given by  $Y^2=X^3-AX-B$ 

- Without loss of generality coefficients A, B lie in  $\mathbb Z$
- lacktriangle Reduction of E modulo prime number q

Consider an elliptic curve E over  $\mathbb Q$  given by  $Y^2=X^3-AX-B$ 

- Without loss of generality coefficients A, B lie in  $\mathbb Z$
- Reduction of E modulo prime number q
- lacksquare Obtain a cubic curve  $\hat{E}$  over finite field  $\mathbb{F}_q$

Consider an elliptic curve E over  $\mathbb Q$  given by  $Y^2=X^3-AX-B$ 

- Without loss of generality coefficients A, B lie in  $\mathbb Z$
- Reduction of E modulo prime number q
- Obtain a cubic curve  $\hat{E}$  over finite field  $\mathbb{F}_q$  not necessarily elliptic curve, may have singular points!

Consider an elliptic curve E over  $\mathbb Q$  given by  $Y^2=X^3-AX-B$ 

- Without loss of generality coefficients A, B lie in  $\mathbb Z$
- Reduction of E modulo prime number q
- Obtain a cubic curve  $\hat{E}$  over finite field  $\mathbb{F}_q$  not necessarily elliptic curve, may have singular points!

#### Definition

- lacksquare q is called a good prime if  $\hat{E}$  is non-singular
- q is called a bad prime otherwise



- For good primes  $q \neq \ell$ ,  $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$  acts on  $T_\ell \hat{E}$ ,  $\ell$ -adic Tate module of E modulo q
- Galois representation  $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q) \to \operatorname{GL}_2(\mathbb{Z}_\ell)$
- We define integers  $a_q \in \mathbb{Z}$  by the relation

$$|E(\mathbb{F}_q)| = q + 1 - a_q \tag{2}$$

■ Theorem (Hasse):  $|a_q| \le 2\sqrt{q}$ 



# The L-series of an elliptic curve

#### Definition

For  $s \in \mathbb{C}$ , the <u>L</u>-series of an elliptic curve E is defined by

$$L(E,s) = \prod_{q \text{ good}} \frac{1}{1 - a_q q^{-s} + q^{1-2s}} \prod_{q \text{ bad}} \frac{1}{1 - a_q q^{-s}} = \sum_{n \ge 1} \frac{a_n}{n^s}$$

## The L-series of an elliptic curve

### Definition

For  $s \in \mathbb{C}$ , the <u>L</u>-series of an elliptic curve E is defined by

$$L(E,s) = \prod_{q \text{ good}} \frac{1}{1 - a_q q^{-s} + q^{1-2s}} \prod_{q \text{ bad}} \frac{1}{1 - a_q q^{-s}} = \sum_{n \ge 1} \frac{a_n}{n^s}$$

- Compute  $a_q$  as follows
  - If q good prime, use (2)
  - $\blacksquare$  If q bad prime, look at the unique singular point P of E modulo q

 $a_q = \begin{cases} \pm 1 & \text{if } P \text{ is an ordinary double point (node)} \\ 0 & \text{if } P \text{ is not an ordinary double point (cusp)} \end{cases}$ 



Consider 
$$E: y^2 = x^3 + 3$$
 over  $\mathbb{Q}$ 

lacktriangle Look for reduction modulo prime q

Consider 
$$E: y^2 = x^3 + 3$$
 over  $\mathbb Q$ 

- Look for reduction modulo prime q

Consider 
$$E: y^2 = x^3 + 3$$
 over  $\mathbb Q$ 

- Look for reduction modulo prime q
- lacksquare E modulo 7 defines an elliptic curve  $\hat{E}$  over  $\mathbb{F}_7$ 
  - $|\hat{E}(\mathbb{F}_7)| = 13$
  - Compute  $a_7$  using (2):  $a_7 = 7 + 1 13 = -5$



Consider 
$$E: y^2 = x^3 + 3$$
 over  $\mathbb Q$ 

- Look for reduction modulo prime q
- lacksquare E modulo 7 defines an elliptic curve  $\hat{E}$  over  $\mathbb{F}_7$ 
  - $|\hat{E}(\mathbb{F}_7)| = 13$
  - Compute  $a_7$  using (2):  $a_7 = 7 + 1 13 = -5$
- E modulo 3 given by  $y^2 = x^3$  is not an elliptic curve
  - $\bullet$  (0,0) is a cusp  $\implies a_3=0$



Thank you for your attention.