NUMERICAL ANALYSIS ASSIGNMENT 1 - PART 2

14 May 2019

FLOWCHART

1. Gaussian-elimination

i Describe how gauss elimination method works:

Analysis and conclusion for the behavior of Gauss Elimination:

Gauss Elimination finds the roots of linear equation by eliminating the lower elements in the coefficient matrix then applying backward substitution to get the roots.

Gauss Elimination always converges to the roots of the equation in O(n³).

2. LU decomposition

Analysis and conclusion for the behavior of LU Decomposition:

LU Decomposition finds the roots by splitting the coefficient matrix into lower and upper matrices multiplied together, applying forward substitution on the lower matrix the applying backward substitution on the upper matrix.

LU Decomposition always converges to the roots of the equation in O(n³).

3. Gaussian-Jordan

i Describe how Gaussian Jordan method works: function [timeElapsed,system_matrix,steps,lastMatrix,solution] = gauss_jordan(coeff_matrix, constants_matrix, num_of_unknowns) %create_system_matrix for index=1 to length(constants matrix) coeff_matrix(index, length(constants_matrix)+1) <-- constants_matrix(index)</pre> system_matrix <-- coeff_matrix result <-- system_matrix %forward_elimination steps(1) <-- result for pivot_index=1 to num_of_unknowns %normalize pivot <-- result(pivot_index, pivot_index) for col=1 to num_of_unknowns+1 result(pivot_index, col) <-- result(pivot_index, col)/pivot steps(pivot_index) <-- result %apply elimination for row=1 to num_of_unknowns if row equals pivot_index continue row_pivot <-- result(row,pivot_index)</pre> for col=pivot_index to num_of_unknowns+1 result(row,col) <-- result(row,col)-row_pivot*result(pivot_index,col) end end end lastMatrix <-- result %back_substitution solution <-- [0,0] for i=1 to num_of_unknowns solution(i) <-- lastMatrix(i, num_of_unknowns+1)</pre> end

Analysis and conclusion for the behavior of Gauss Jordan:

Its two main purposes are to solve system of linear equations and calculate the inverse of a matrix.

Similar to the Gauss elimination except

- 1. Elimination is applied to all equations (excluding the pivot equation) instead of just the subsequent equations.
- 2. All rows are normalized by dividing them by their pivot elements.
- 3. No back substitution is required.

4. Gauss-Seidel

Describe how Gauss Seidel method works: function [numOfIterations,final,errorArray,answers] = GaussSeidel(numberOfFunctions,coeff matrix,constants matrix,initialGuess,maxIterations,epsil answers = double.empty previous = double.empty for i = 1 to numberOfFunctions answers <-- [answers;initialGuess(i)] iteration = 1, error = 100errorArray = double.empty final = double.empty while (iteration less than or equal maxIterations & error greater than epsilon) for i = 1 to length(answers) i = 1previous(i) <-- answers(i) answers(i) <-- constants_matrix(i) for k = 1 to length(answers) - 1 if (j equal i) j < --j + 1end answers(i) <-- answers(i) - coeff_matrix(i,j)*answers(j)</pre> j = j + 1end answers(i) <-- answers(i) / coeff_matrix(i,i)</pre> error <-- abs(((answers(i) - previous(i)) / answers(i)) * 100) errorArray(i, iteration) <-- error final(i,iteration) <-- answers(i) end iteration <-- iteration + 1 numOfIterations <-- iteration - 1

Analysis and conclusion for the behavior of Gauss Seidal:

It is an iterative method used to solve a linear system of equations of n linear equations with unknown x: A x = B

Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either diagonally dominant, or symmetric and positive definite.

PROBLAMATIC FUNCTIONS

In Gauss Seidel method:

One class of system of equations always converges: One with a diagonally dominant coefficient matrix, with non-zero elements on the diagonals. If a system of linear equations is not diagonally dominant, check to see if rearranging the equations can form a diagonally dominant matrix. Not every system of equations can be rearranged to have a diagonally dominant coefficient matrix.

SAMPLE RUNS AND SNAPSHOTS

EnterEquations2	_	□ ×
Number of Equation :	3	
Equation_1:	25*x1 + 5*x2 + x3 = 106.8	Add
		NEXT
■ EnterEquations2	_	□ ×
■ EnterEquations2 Number of Equation:	3	□ X
	3 64*x1 + 8*x2 + x3 = 177.2	□ ×
Number of Equation :		

Gaussian-elimination

LU Decomposition

Gauss Jordan

Gauss Seidel Method

Which converges:

Gauss Seidel Method

Which diverges:

EnterEquations2	_	\Box ×
Number of Equation :	3	
Equation_1:	3*x1 + 7*x2 + 13*x3 = 76	Add
		NEXT
▲ EnterEquations2	-	υх
♣ EnterEquations2 Number of Equation :	3	X
	x1 + 5*x2 + 3*x3 = 28	Add
Number of Equation :		

Error of each		
ErrX1	ErrX2 ErrX3	00 0060
95.2381	100.0000	98.0268
110.7063		110.9626
109.8320	112.4304	109.7983
109.9010	109.6314	109.9046
109.8947	109.9221	109.8944
109.8953	109.8926	109.8954
109.8953	109.8956	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953
109.8953	109.8953	109.8953

TEAM

Name	ID
ايمان رفيق عبد القادر محمد على	11
تقى علاء احمد الجندى	14
ميرنا محمد مصطفى اسماعيل مصطفى	٥٣
ندی سلامهِ محمد علی	00
يمنى جمال الدين محمود السيد	60