Dataframes, tablas de datos, pandas

Un dataframe es una estructura bidimensional, con filas y columnas, esto es, una tabla de datos. El *dataframe* es el tipo de datos esencial de la librería pandas .

Te ofrezco un recorrido por esta librería con el siguiente contenido:

- · Operaciones básicas
- · Ejemplos de aplicación
- Series

En el apartado *Operaciones básicas*, usamos tablas pequeñas, de juguete, no muy realistas pero claras y que fácilmente manejables, a mano, para facilitar tu experimentación.

En el segundo apartado, *Tablas de mayor tamaño*, cargamos algunas tablas desde un archivo de disco para ofrecer un repaso del manejo de tablas más grandes y poner ejemplos de manejo de datos un poco nás realista.

El tercer apartado trata de una clase especial de tablas, las series.

Para trabajar con estas tablas, se ha de empezar cargando esta librería, y es habitual hacerlo con el alias pd :

```
In [1]: ▶ import pandas as pd
```

1. Operaciones básicas

1.a. Construcción de tablas

Veamos algunas operaciones básicas con tablas pequeñas.

Podemos construir un DataFrame de muchas formas. Empezamos creando tablas pequeñas, a mano. Los ejemplos siguientes hablan pos sí mismos.

```
# El valor `None` permite forzar un dato missing (`NaN`, *Not A Number*
In [3]:
            tabla_b = pd.DataFrame({"B": [2, 4], "C": [20, None]})
            print(tabla_b)
               В
                     C
               2 20.0
              4
                   NaN
In [4]:
         | # A veces, necesitaremos crear un dataframe con números aleatorios:
            import numpy as np
            np.random.seed(0) # damos una semilla concreta para que la ejecución sea
            # Se generan 3x4 números aleatorios N(0, 1):
            tabla_c = pd.DataFrame(np.random.randn(3, 4), columns=["A", "B", "C", "D
            tabla_c
   Out[4]:
                     Α
                              В
                                      С
                                               D
             0 1.764052 0.400157 0.978738
                                         2.240893
             1 1.867558 -0.977278 0.950088 -0.151357
             2 -0.103219  0.410599  0.144044  1.454274
            # Creación de un dataframe a partir de una lista de tuplas
In [5]:
            # y sin dar los nombres de las columnas:
            tuplas = [
                (1, 2, 3),
                (4, 5, 6)
            tabla_d = pd.DataFrame(tuplas)
            tabla_d
   Out[5]:
               0 1 2
             0 1 2 3
             1 4 5 6
       # Ahora podemos renombramos las columnas:
In [6]:
            tabla_d.columns = ["Una", "Dos", "Tres"]
            tabla d
   Out[6]:
               Una Dos Tres
                      2
                           3
             1
                      5
                           6
                 4
```

```
In [7]:  # Los dos pasos anteriores a un tiempo:
    # - Creación de La tabla (con una lista de listas esta vez),
    # - y nombrabdo las columnas desde el principio:

listas = [
      [1, 2, 3],
      [4, 5, 6]
]

tabla_e = pd.DataFrame(listas, columns=["Una", "Dos", "Tres"])

tabla_e
```

Out[7]:

	Una	Dos	Tres
0	1	2	3
1	1	5	6

1.b. Modificación de tablas

```
In [8]:  # Añadir (o modificar) una fila:
    otra_fila = {"Una": 100, "Dos": 200, "Nueva": 300}
    tabla_e.loc[2] = otra_fila
    tabla_e
```

Out[8]:

```
        Una
        Dos
        Tres

        0
        1
        2
        3.0

        1
        4
        5
        6.0

        2
        100
        200
        NaN
```

Out[9]:

	Una	Dos	Tres
0	1	2	3.0
1	4	1000	6.0
2	100	200	NaN

```
In [10]:  # Modificar los valores de una fila:
    tabla_e.loc[1] = [-1, -2, -3]
    tabla_e
```

Out[10]:

	Una	Dos	Tres
0	1	2	3.0
1	-1	-2	-3.0
2	100	200	NaN

In [11]: ▶ # Modificar los valores de una columna:

tabla_e["Dos"] = [20, 50, 90] tabla_e

Out[11]:

	Una	Dos	Tres
0	1	20	3.0
1	-1	50	-3.0
2	100	90	NaN

tabla_e["Nueva"] = [-2, -3, -5] tabla_e

Out[12]:

	Una	Dos	Tres	Nueva
0	1	20	3.0	-2
1	-1	50	-3.0	-3
2	100	90	NaN	-5

In [13]: # Suprimir una columna:

del tabla_e["Tres"]
tabla_e

Out[13]:

	Una	Dos	Nueva
0	1	20	-2
1	-1	50	-3
2	100	90	-5

```
In [14]: ▶ # Otra manera de suprimir columnas...
             tabla_e.drop(["Una", "Dos"], axis="columns")
             # Pero 0J0...
   Out[14]:
                Nueva
                   -2
              0
              1
                   -3
              2
                   -5
In [15]:
          🔰 # Cuidado, se ha calculado la eliminación de la columna,
             # pero la operación no se ha realizado in place:
             tabla_e
   Out[15]:
                Una Dos Nueva
                      20
                            -2
                  1
              1
                  -1
                      50
                            -3
              2 100
                      90
                            -5
          tabla_e.drop(["Una", "Dos"], axis="columns", inplace=True)
In [16]:
             tabla_e
   Out[16]:
                Nueva
              0
                   -2
              1
                   -3
              2
                   -5
         1.c. Operaciones in place
In [17]:

₩ Una tabla para los ejemplos de este apartado:
             tabla = pd.DataFrame({"A": [1, 3, 5, 7, 9, 11], "B": [2, 4, 6, 1, 2, 3]}
             tabla
   Out[17]:
                 A B
                 1 2
                3 4
              2
                5 6
              3 7 1
                9 2
              5 11 3
```

```
In [18]: ▶ # Ordenamos las filas de un dataframe
            tabla.sort_values("B")
            tabla
            # 0J0: no parece haber funcionado
   Out[18]:
               A B
               3 4
             2 5 6
             3 7 1
             4 9 2
             5 11 3
In [19]: ▶ # La operación, en realidad, sí funciona...
            tabla.sort_values("B")
   Out[19]:
               A B
               7 1
             0 1 2
               9 2
             5 11 3
               3 4
             2 5 6
In [20]: ▶ # Pero para que la tabla se actualice...
            tabla.sort_values("B", inplace=True)
            tabla
   Out[20]:
               A B
               7 1
             0 1 2
               9 2
             5 11 3
             1 3 4
             2 5 6
```

```
In [21]:  
# Y para que el indice también se reinicie:
    tabla.reset_index(inplace=True)
    tabla
```

Out[21]:

	index	Α	В
0	3	7	1
1	0	1	2
2	4	9	2
3	5	11	3
4	1	3	4
5	2	5	6

1.d. Modificación genérica de columnas

Out[22]:

	Zona	Dorms	Precio
0	B.Pilar	3	450
1	Chueca	2	600
2	Moncloa	4	750
3	B.Pilar	4	550
4	Chueca	3	850
5	Chueca	1	300
6	Moncloa	2	500

```
In [23]:
          ▶ # Modificamos la columna "Precio", subiendo un 10%:
             viviendas["Precio"] = viviendas["Precio"] * 1.10
             viviendas
   Out[23]:
                   Zona Dorms Precio
                  B.Pilar
                             3
                                495.0
              1 Chueca
                             2
                                660.0
                                825.0
              2 Moncloa
                             4
                  B.Pilar
                               605.0
              4 Chueca
                                935.0
              5 Chueca
                             1
                                330.0
                                550.0
              6 Moncloa
                             2
In [24]: ▶ # De otro modo, modificamos la columna "Precio", subiendo un 10%:
             viviendas["Precio"] = viviendas["Precio"].apply(lambda valor: valor*1.10
             viviendas
   Out[24]:
                   Zona Dorms Precio
                  B.Pilar
                             3 544.5
                             2
                               726.0
                 Chueca
                               907.5
              2 Moncloa
                  B.Pilar
                             4 665.5
                             3 1028.5
              4 Chueca
                                363.0
                 Chueca
                             1
                                605.0
                             2
              6 Moncloa
In [25]:
          # Observa que, sin la asignación, parece que la tabla se actualiza...
             viviendas["Precio"].apply(lambda valor: 0)
   Out[25]: 0
                   0
             1
                   0
             2
                   0
             3
             4
                   0
```

Name: Precio, dtype: int64

In [26]: ▶ # Pero no, la operación no es in place y por eso hace falta realizar la
viviendas

Out[26]:

	Zona	Dorms	Precio
0	B.Pilar	3	544.5
1	Chueca	2	726.0
2	Moncloa	4	907.5
3	B.Pilar	4	665.5
4	Chueca	3	1028.5
5	Chueca	1	363.0
6	Moncloa	2	605.0

In [27]: ► # Modificación condicional:

Los inmuebles de Chueca bajan su precio en 100 euros exactamente:

viviendas["Precio"] = viviendas.loc[viviendas["Zona"] == "Chueca", ["Pre viviendas["Precio"] - 100

viviendas

Out[27]:

	Zona	Dorms	Precio
0	B.Pilar	3	444.5
1	Chueca	2	626.0
2	Moncloa	4	807.5
3	B.Pilar	4	565.5
4	Chueca	3	928.5
5	Chueca	1	263.0
6	Moncloa	2	505.0

Out[28]:

		Zona	Dorms	Precio
	0	B.Pilar	3	494.5
	1	Chueca	2	726.0
	2	Moncloa	4	907.5
;	3	B.Pilar	4	665.5
	4	Chueca	3	1028.5
;	5	Chueca	1	313.0
	6	Moncloa	2	605.0

In [29]: # Cálculo de una columna nueva con una fórmula:

viviendas["P.p.d."] = viviendas["Precio"] / viviendas["Dorms"]
viviendas

Out[29]:

	Zona	Dorms	Precio	P.p.d.
0	B.Pilar	3	494.5	164.833333
1	Chueca	2	726.0	363.000000
2	Moncloa	4	907.5	226.875000
3	B.Pilar	4	665.5	166.375000
4	Chueca	3	1028.5	342.833333
5	Chueca	1	313.0	313.000000
6	Moncloa	2	605.0	302.500000

```
In [30]:  # Modificación de una columna:
    viviendas["P.p.d."] = round(viviendas["P.p.d."], 2)
    viviendas
```

Out[30]:

	Zona	Dorms	Precio	P.p.d.
0	B.Pilar	3	494.5	164.83
1	Chueca	2	726.0	363.00
2	Moncloa	4	907.5	226.88
3	B.Pilar	4	665.5	166.38
4	Chueca	3	1028.5	342.83
5	Chueca	1	313.0	313.00
6	Moncloa	2	605.0	302.50

1.e. Agrupamiento de datos

Out[31]:

	Zona	Dorms	Precio
0	B.Pilar	3	450
1	Chueca	2	600
2	Moncloa	4	750
3	B.Pilar	4	550
4	Chueca	3	850
5	Chueca	1	300
6	Moncloa	2	500

```
In [32]: | viviendas.groupby("Zona").mean()
```

Out[32]:

_		
Zona		
B.Pilar	3.5	500.000000
Chueca	2.0	583.333333
Moncloa	3.0	625.000000

Dorms Precio

```
▶ viviendas.groupby("Zona").count()
In [33]:
   Out[33]:
                       Dorms Precio
                 Zona
                B.Pilar
                           2
                                 2
               Chueca
                           3
                                 3
              Moncloa
                                 2
In [34]:
         # Una manera de evitar la duplicidad de columnas anterior:
             viviendas.groupby("Zona").size()
   Out[34]: Zona
             B.Pilar
                         2
             Chueca
                         3
             Moncloa
                         2
             dtype: int64
In [35]:
          # Otra manera de evitar la duplicidad de columnas:
             props = viviendas[["Zona", "Dorms"]]
             props.groupby("Zona").count()
   Out[35]:
                      Dorms
                 Zona
                B.Pilar
                           2
               Chueca
                           3
              Moncloa
                           2
             viviendas.groupby(["Zona", "Dorms"]).mean()
In [36]:
   Out[36]:
                             Precio
                 Zona Dorms
                B.Pilar
                              450.0
                           3
                           4
                              550.0
                              300.0
               Chueca
                           1
                              600.0
                           2
                           3
                              850.0
```

Moncloa

2

500.0 750.0

```
In [37]:  viviendas.groupby(["Zona", "Dorms"]).agg(["mean", "count"])
   Out[37]:
                             Precio
                             mean count
                 Zona Dorms
                B.Pilar
                           3 450.0
                           4 550.0
                                       1
               Chueca
                              300.0
                           2 600.0
                           3 850.0
                           2 500.0
              Moncloa
                           4 750.0
                                      1
          1.f. Estadísticos básicos
In [38]:
          # Estadísticos básicos con datos cuantitativos:
             viviendas.describe()
             # Obsérvese que la columna "Zona" no se está incluyendo
   Out[38]:
                                Precio
                      Dorms
              count 7.000000
                               7.000000
              mean 2.714286 571.428571
                std 1.112697 184.519969
                min 1.000000 300.000000
                25% 2.000000 475.000000
                50% 3.000000 550.000000
                75% 3.500000 675.000000
                max 4.000000 850.000000
In [39]:
          # Si deseamos limitarnos a una columna:
             viviendas["Dorms"].describe()
   Out[39]: count
                       7.000000
             mean
                       2.714286
                       1.112697
              std
             min
                       1.000000
             25%
                       2.000000
              50%
                       3.000000
             75%
                       3.500000
```

4.000000

Name: Dorms, dtype: float64

max

Out[41]:

	Zona	Dorms	Precio
count	7	7.000000	7.000000
unique	3	NaN	NaN
top	Chueca	NaN	NaN
freq	3	NaN	NaN
mean	NaN	2.714286	571.428571
std	NaN	1.112697	184.519969
min	NaN	1.000000	300.000000
25%	NaN	2.000000	475.000000
50%	NaN	3.000000	550.000000
75%	NaN	3.500000	675.000000
max	NaN	4.000000	850.000000

Obvérvense los valores NaN

Explicación rápida:

· Con datos cualitativos:

count : cuántas filas tiene la tabla

unique : cuántos valores distintos

top: la moda

• freq : frecuencia absoluta de la moda

· Con datos cuantitativos:

mean : media

std: desviación típica

■ min , max : mínimo y máximo

■ 25%, 50%, 75%: cuartiles

Obsérvese cada valor NaN inadecuado con datos cuantitativos y cualitativos.

1.g. Combinación de tablas

```
In [43]:
          # Combinación vertical de dos tablas:
            tabla1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
            print(tabla1, "\n")
            tabla2 = pd.DataFrame({"A": [7, 8, 9], "B": [10, 11, 12]})
            print(tabla2, "\n")
            tabla3 = pd.concat([tabla1, tabla2], ignore_index=True)
            print(tabla3)
               Α
                  В
            0 1
                  4
            1 2
                  5
            2
               3 6
               Α
                   В
            0
              7 10
            1 8 11
            2 9
                  12
                   В
               Α
            0
               1
                   4
            1
               2
                   5
            2
               3
                   6
            3
              7 10
            4 8 11
               9
                  12
```

```
In [44]:  

# Otra situación:
            tabla1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
            print(tabla1, "\n")
            tabla2 = pd.DataFrame({"B": [7, 8, 9], "C": [10, 11, 12]})
            print(tabla2, "\n")
            tabla3 = pd.concat([tabla1, tabla2], ignore_index=True)
            print(tabla3)
            # Observa que, al no coincidir el nombre de *todas* las columnas,
            # la operación completa los valores desconocidos,
            # sin tener en cuenta si hay valores coincidentes.
               A B
            0
              1
                  4
            1 2 5
            2 3 6
                   C
               В
            0 7 10
            1 8 11
            2
              9
                  12
                 A B
                          C
            0 1.0 4
                        NaN
            1
               2.0
                    5
                        NaN
            2 3.0 6
                        NaN
            3 NaN 7 10.0
            4 NaN 8 11.0
            5 NaN 9 12.0
In [45]:
         # Merge:
            tabla1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
            print(tabla1, "\n")
            tabla2 = pd.DataFrame({"B": [4, 5, 6], "C": [7, 8, 9]})
            print(tabla2, "\n")
            tabla3 = pd.merge(tabla1, tabla2, on="B")
            print(tabla3)
               Α
                 В
               1
            0
                  4
            1
               2
                  5
            2
              3 6
                 C
               В
            0
              4
                  7
            1 5 8
            2 6
                  9
               Α
                 В
                     C
                    7
              1 4
            1 2
                 5 8
            2
              3
                  6
                     9
```

```
In [46]:
            # Es el join interno de SQL.
            # Observa el funcionamiento cuando algún valor no coincide:
            tabla1 = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
            print(tabla1, "\n")
            tabla2 = pd.DataFrame({"B": [4, 5, 60], "C": [7, 8, 9]})
            print(tabla2, "\n")
            tabla3 = pd.merge(tabla1, tabla2, on="B")
            print(tabla3)
               A B
            0 1 4
            1 2 5
            2 3 6
                в с
                   7
            0
                4
                5
            1
                   8
             2 60 9
               A B C
                  4 7
            0
               1
               2 5 8
            1
```

La columna que juega el papel de bisagra se llama *pivote*. En este ejemplo, ha sido la coumna B . Esta columna no se duplica. En esta unión, únicamente se tiene en cuenta las filas de tabla1 y tabla2 cuyos valores coinciden en la columna B .

En resumen, y en el lenguaje de las bases de datos, la combinación de tablas por defecto es el inner join clásico, la unión interna. Pero hay otras pobibilidades:

```
In [47]:

★ | tabla4 = tabla1.merge(tabla2, how="outer")

             print(tabla4)
             tabla5 = tabla1.merge(tabla2, how="left")
             print(tabla5)
             tabla6 = tabla1.merge(tabla2, how="right")
             ## Aplicación: *realstate*
             print(tabla6)
                  Α
                      В
                           C
               1.0
                      4 7.0
             1 2.0
                      5 8.0
             2 3.0
                      6 NaN
             3 NaN 60 9.0
                A B
                        C
                     7.0
                1
                   4
                2
                  5
                      8.0
             1
                  6 NaN
             2
                3
                  Α
                      B C
                      4 7
             0
                1.0
                      5
             1
                2.0
                         8
```

2 NaN 60 9

2. Ejemploa de aplicación

2.1. Agencia inmobiliaria Realstate

Vamos con un ejemplo un poco más realista. Cargamos ahora una tabla a partir de un archivo cvs , que contiene datos de una inmobiliaria.

Out[48]:

	street	city	zip	state	beds	baths	sqft	type	sale_
									Wed
0	3526 HIGH ST	SACRAMENTO	95838	CA	2	1	836	Residential	00:(EDT
									Wed
1	51 OMAHA CT	SACRAMENTO	95823	CA	3	1	1167	Residential	00:(EDT
	2796 BRANCH								Wed
2	ST	SACRAMENTO	95815	CA	2	1	796	Residential	00:(EDT
	2805 JANETTE								Wed
3	WAY	SACRAMENTO	95815	CA	2	1	852	Residential	00:(EDT
	6001								Wed
4	MCMAHON DR	SAMBAILA		CA	2	1	797	Residential	00:(EDT
	9169							D ::	Thu
980	GARLINGTON CT	SACRAMENTO	95829	CA	4	3	2280	Residential	00:(EDT
	6932 RUSKUT								Thu
981	WAY	SACRAMENTO	95823	CA	3	2	1477	Residential	00:(EDT
	7933 DAFFODIL	CITRUS							Thu
982	WAY	HEIGHTS	95610	CA	3	2	1216	Residential	00:(EDT
	8304 RED FOX								Thu
983	WAY	ELK GROVE	95758	CA	4	2	1685	Residential	00:(EDT
	3882								Thu
984	YELLOWSTONE LN	EL DORADO HILLS	95762	CA	3	2	1362	Residential	00:(EDT
985 r	ows × 12 columr	ıs							
4.6					_				

```
In [49]:

    type(realestate)

   Out[49]: pandas.core.frame.DataFrame
In [50]:
            realestate.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 985 entries, 0 to 984
            Data columns (total 12 columns):
                Column
                          Non-Null Count Dtype
            ---
                -----
                           -----
             0
                           985 non-null
                                         object
                street
             1
                          985 non-null
                city
                                         object
             2
                          985 non-null
                                         int64
                zip
             3
                          985 non-null
                                         object
                state
             4
                beds
                          985 non-null
                                         int64
             5
                                         int64
                baths
                          985 non-null
                sq__ft
                         985 non-null
                                        int64
             6
                        985 non-null
             7
                                         object
                type
             8
                sale_date 985 non-null
                                         object
             9
                price
                          985 non-null
                                         int64
             10 latitude
                          985 non-null
                                         float64
             11 longitude 985 non-null
                                         float64
            dtypes: float64(2), int64(5), object(5)
            memory usage: 92.5+ KB
```

Vamos a comentar a continuación cómo podemos acceder a los diferentes elementos de la tabla

Acceso a columnas

```
realestate['price']
In [51]:
    Out[51]: 0
                      59222
              1
                      68212
              2
                      68880
              3
                      69307
              4
                      81900
              980
                     232425
              981
                     234000
              982
                     235000
              983
                     235301
                     235738
              Name: price, Length: 985, dtype: int64
```

```
In [52]:  realestate[['price','zip']]
   Out[52]:
                    price
                          zip
                   59222 95838
                0
                   68212 95823
                   68880 95815
                   69307 95815
                   81900 95824
              980 232425 95829
                  234000 95823
              981
              982 235000 95610
              983 235301 95758
              984 235738 95762
             985 rows × 2 columns
In [53]:  ▶ | selcols = realestate.columns[2:6]
             selcols
   Out[53]: Index(['zip', 'state', 'beds', 'baths'], dtype='object')
In [54]:
          ▶ realestate[selcols]
   Out[54]:
                    zip state beds baths
                0 95838
                          CA
                                 2
                                       1
                1 95823
                          CA
                                 3
                                       1
                2 95815
                          CA
                                 2
                                       1
                3 95815
                          CA
                                 2
                                       1
                4 95824
                          CA
                                 2
                                       1
              980 95829
                          CA
                                 4
                                       3
              981 95823
                          CA
                                 3
              982 95610
                          CA
                                 3
              983 95758
                          CA
              984 95762
                          CA
                                 3
                                       2
             985 rows × 4 columns
In [55]: M mixed = list(selcols)+['price']
             mixed
   Out[55]: ['zip', 'state', 'beds', 'baths', 'price']
```

In [56]: ▶ realestate[mixed]

Out[56]:

	zip	state	beds	baths	price
0	95838	CA	2	1	59222
1	95823	CA	3	1	68212
2	95815	CA	2	1	68880
3	95815	CA	2	1	69307
4	95824	CA	2	1	81900
980	95829	CA	4	3	232425
981	95823	CA	3	2	234000
982	95610	CA	3	2	235000
983	95758	CA	4	2	235301
984	95762	CA	3	2	235738

985 rows × 5 columns

Acceso a filas

In [57]: ▶ realestate.iloc[3]

2805 JANETTE WAY Out[57]: street city SACRAMENTO zip 95815 state $\mathsf{C}\mathsf{A}$ beds 2 baths 1 sq__ft 852 type Residential sale_date Wed May 21 00:00:00 EDT 2008 price 69307 latitude 38.616835 -121.439146 longitude

Name: 3, dtype: object

In [58]: ▶ realestate.iloc[[3,6]]

Out[58]:

		city	Zip	state	beas	baths	sqft	type	sale_date	р
3	2805 JANETTE WAY	SACRAMENTO	95815	CA	2	1	852	Residential	Wed May 21 00:00:00 EDT 2008	69
6	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	2	1104	Residential	Wed May 21 00:00:00 EDT 2008	90

In [59]: ▶ realestate.iloc[3:6] Out[59]: street city zip state beds baths sq_ft type sale_date Wed May 2805 21 JANETTE 2 3 SACRAMENTO 95815 CA 1 852 Residential 00:00:00 WAY **EDT 2008** Wed May 6001 21 MCMAHON SACRAMENTO 95824 CA 2 797 Residential 00:00:00 DR **EDT 2008** Wed May 5828 21 **5** PEPPERMILL SACRAMENTO 95841 CA 3 1122 Condo 00:00:00 CT EDT 2008 In [60]: ► list(range(3,8,2)) Out[60]: [3, 5, 7] ▶ realestate.iloc[range(3,8,2)] In [61]: Out[61]: street city zip state beds baths sq_ft type sale_date Wed May 2805 21 3 JANETTE SACRAMENTO 95815 CA 2 1 852 Residential 00:00:00 WAY **EDT 2008** Wed May 5828 21 5 PEPPERMILL SACRAMENTO 95841 CA 3 1 1122 Condo 00:00:00 CT **EDT 2008** Wed May 2561 19TH 21 SACRAMENTO 95820 CA 1177 Residential **AVE** 00:00:00 EDT 2008 realestate.iloc[3]['city'] Out[62]: 'SACRAMENTO' realestate.iloc[3][1] In [63]: Out[63]: 'SACRAMENTO'

Operaciones globales

157

Out[66]:

315 JUMEL CT

El módulo pandas nos afrece una amplísima variedad de funciones para trabajar con los DataFrame, a continuación, a modo de ejemplo te mostramos algunas.

realestate.sort_values(by='price', ascending=False) In [65]: Out[65]: street city zip state beds baths sq_ft type 9401 BARREL 864 **WILTON 95693** CA 4400 Residential RACER CT EL DORADO 2982 95762 3 863 CA Residential ABERDEEN LN HILLS 3935 EL MONTE 334 LOOMIS 95650 CA 1624 Residential DR I

In [66]: ▶ realestate.describe()

EL DORADO

HILLS

zip	beds	baths	sqft	price	latitude	
985.000000	985.000000	985.000000	985.000000	985.000000	985.000000	9
95750.697462	2.911675	1.776650	1314.916751	234144.263959	38.607732	-1
85.176072	1.307932	0.895371	853.048243	138365.839085	0.145433	
95603.000000	0.000000	0.000000	0.000000	1551.000000	38.241514	-1
95660.000000	2.000000	1.000000	952.000000	145000.000000	38.482717	-1
95762.000000	3.000000	2.000000	1304.000000	213750.000000	38.626582	-1
95828.000000	4.000000	2.000000	1718.000000	300000.000000	38.695589	-1
95864.000000	8.000000	5.000000	5822.000000	884790.000000	39.020808	-1
	985.000000 95750.697462 85.176072 95603.000000 95660.000000 95762.000000	985.000000 985.000000 95750.697462 2.911675 85.176072 1.307932 95603.000000 0.0000000 95660.000000 2.000000 95762.000000 3.000000 95828.000000 4.000000	985.000000 985.000000 985.000000 95750.697462 2.911675 1.776650 85.176072 1.307932 0.895371 95603.000000 0.000000 0.000000 95660.000000 2.000000 1.000000 95762.000000 3.000000 2.000000 95828.000000 4.000000 2.0000000	985.000000 985.000000 985.000000 985.000000 95750.697462 2.911675 1.776650 1314.916751 85.176072 1.307932 0.895371 853.048243 95603.000000 0.000000 0.000000 0.000000 95660.000000 2.000000 1.000000 952.000000 95762.000000 3.000000 2.000000 1718.000000 95828.000000 4.000000 2.000000 1718.000000	985.000000 985.000000 985.000000 985.000000 985.000000 95750.697462 2.911675 1.776650 1314.916751 234144.263959 85.176072 1.307932 0.895371 853.048243 138365.839085 95603.000000 0.000000 0.000000 1551.000000 95660.000000 2.000000 1304.00000 213750.00000 95828.000000 4.000000 2.000000 1718.000000 300000.000000	985.000000 985.0000000 985.000000 985.000000 985.00

95762

CA

5

6

Residential

```
In [67]:
          M | cond = realestate['baths'] == 2
             cond
   Out[67]: 0
                    False
                    False
             1
                    False
             2
             3
                    False
             4
                    False
                    ...
             980
                    False
             981
                     True
             982
                     True
             983
                     True
             984
                     True
             Name: baths, Length: 985, dtype: bool
```

Out[68]:

	street	city	zip	state	beds	baths	sqft	type	sale_
6	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	2	1104	Residential	Wed 00:0
									EDT
8	11150 TRINITY RIVER DR Unit 114	RANCHO CORDOVA	95670	CA	2	2	941	Condo	Wed 00:0 EDT
									Wed
9	7325 10TH ST	RIO LINDA	95673	CA	3	2	1146	Residential	00:(EDT
	645 MORRISON								Wed
10	AVE	SACRAMENTO	95838	CA	3	2	909	Residential	00:(EDT
44	4005 FAVANI OID	CACRAMENTO	95823	0.4	0	0	4000	Desidential	Wed
11	4085 FAWN CIR	SACRAMENTO	93023	CA	3	2	1289	Residential	00:(EDT
•••									
979	1909 YARNELL WAY	ELK GROVE	95758	CA	3	2	1262	Residential	Thu 00:(EDT
									Thu
981	6932 RUSKUT WAY	SACRAMENTO	95823	CA	3	2	1477	Residential	00:(EDT
	7022 DAFFODII	CITPLIC							Thu
982	7933 DAFFODIL WAY	CITRUS HEIGHTS	95610	CA	3	2	1216	Residential	00:(EDT
	8304 RED FOX								Thu
983	WAY	ELK GROVE	95758	CA	4	2	1685	Residential	00:(EDT
	3882	EL DORADO			_				Thu
984	YELLOWSTONE LN	HILLS	95762	CA	3	2	1362	Residential	00:(EDT
544 r	ows × 12 columr	ıs							
4 6									

```
In [69]: N two_baths = realestate['baths'] == 2
three_beds = realestate['beds'] == 3
realestate[two_baths & three_beds]
```

Out[69]:

	street	city	zip	state	beds	baths	sqft	type	sale_
6	6048 OGDEN NASH WAY	SACRAMENTO	95842	CA	3	2	1104	Residential	Wed 00:0 EDT
9	7325 10TH ST	RIO LINDA	95673	CA	3	2	1146	Residential	Wed 00:0 EDT
10	645 MORRISON AVE	SACRAMENTO	95838	CA	3	2	909	Residential	Wed 00:0 EDT
11	4085 FAWN CIR	SACRAMENTO	95823	CA	3	2	1289	Residential	Wed 00:0 EDT
19	113 LEEWILL AVE	RIO LINDA	95673	CA	3	2	1356	Residential	Wed 00:0 EDT
976	2400 INVERNESS DR	LINCOLN	LINCOLN 95648 CA 3 2 1358 R		Residential	Thu 00:(EDT			
979	1909 YARNELL WAY	ELK GROVE	95758	CA	3	2	1262	Residential	Thu 00:(EDT
981	6932 RUSKUT WAY	SACRAMENTO	95823	CA	3	2	1477	Residential	Thu 00:(EDT
982	7933 DAFFODIL WAY	CITRUS HEIGHTS	95610	CA	3	2	2 1216 Resider		Thu 00:(EDT
984	3882 YELLOWSTONE LN	EL DORADO HILLS	95762	CA	3	2	1362	Residential	Thu 00:(EDT
311 r	ows × 12 column	ıs							

```
realestate[two_baths & three_beds]['zip'].value_counts()
In [70]:
   Out[70]: zip
             95823
                       33
             95828
                       19
             95843
                       17
             95838
                       16
             95758
                       14
             95757
                       14
             95835
                       12
             95678
                       12
             95621
                       11
                       9
             95632
             95822
                        9
             95624
                        8
                        8
             95832
                        8
             95660
             95834
                        8
                        7
             95608
             95670
                        7
             95833
                        6
             95762
                        6
             95630
                        6
             95648
                        6
             95673
                        5
             95610
                        5
                        5
             95842
             95667
                        5
             95826
                        5
                        4
             95827
             95662
                        4
                        4
             95747
             95682
                        3
                        3
             95626
             95829
                        3
                        3
             95628
                        2
             95765
             95831
                        2
                        2
             95677
                        2
             95661
                        1
             95663
             95614
                        1
             95825
                        1
             95864
                        1
             95821
                        1
             95619
                        1
                        1
             95633
             95817
                        1
             95635
                        1
             95819
                        1
             95623
                        1
             95815
                        1
             95820
                        1
                        1
             95841
             95655
                        1
                        1
             95726
             95693
                        1
```

Name: count, dtype: int64

```
▶ | realestate.groupby(['zip','baths']).size()
In [71]:
   Out[71]: zip
                     baths
             95603
                               2
                    2
                     3
                               3
             95608
                    1
                               4
                     2
                              15
                     3
                               1
             95843
                    2
                              24
                     3
                               8
             95864
                    1
                               3
                     2
                               1
             Length: 185, dtype: int64
             realestate.groupby(['zip','baths']).size().unstack()
In [72]:
   Out[72]:
              baths 0
                         1
                              2
                                             5
                                   3
                zip
              95603 NaN NaN
                               2.0
                                    3.0 NaN NaN
              95608 NaN
                          4.0
                              15.0
                                   1.0 NaN
                                            NaN
              95610 NaN NaN
                               5.0
                                    1.0
                                         1.0 NaN
              95614 NaN
                         NaN
                               1.0 NaN NaN
                                            NaN
              95619 NaN
                         NaN
                               1.0
                                   NaN NaN
                                            NaN
              95838
                     1.0
                         11.0 24.0
                                    1.0 NaN NaN
```

68 rows × 6 columns

95841 NaN

95842 NaN

95843 NaN

95864 NaN

4.0

3.0

7.0 14.0

1.0 24.0

1.0

3.0 NaN NaN NaN

1.0 NaN NaN

8.0 NaN NaN

1.0 NaN NaN

```
In [73]:
         # Mejor sin NaN (que son ceros realmente) y con tipo de datos entero:
             tabla = realestate.groupby(['zip','baths']).size().unstack()
             tabla = tabla.fillna(0)
             tabla[tabla.columns] = tabla[tabla.columns].astype(int)
             tabla
   Out[73]:
              baths 0 1 2 3 4 5
                zip
              95603
              95608
                          15
              95610
                    0
                           5
              95614
                    0
                       0
                                0
                              0
              95619
                    0
                       0
                           1
                              0
              95838
                    1 11
                          24
                                0
              95841
                    0
                           3
                              0
              95842
                          14
                                0
                    0
                       7
              95843 0
                       1 24 8 0 0
```

Visualización

Matplotlib

Out[76]:

	beds	price
0	2	59222
1	3	68212
2	2	68880
3	2	69307
4	2	81900
980	4	232425
981	3	234000
982	3	235000
983	4	235301
984	3	235738

985 rows × 2 columns

```
In [77]: If from scipy import stats
    import numpy as np
    import matplotlib.pyplot as plt

xs = tabla_habs_precios['beds']
    ys = tabla_habs_precios['price']
    slope, intercept, r_value, p_value, std_err = stats.linregress(xs, ys)
    recta_regres = lambda x: intercept + slope*x

plt.plot(xs, ys, 'o', label='(hab, precio)')
    plt.plot(xs, recta_regres(xs), 'r', label='recta de regresión')
    plt.legend(loc = 'upper left')
    plt.xlabel('número de dormitorios')
    plt.ylabel('precio')
    plt.show()
```



```
In [78]: N
tabla_habs_superficie = realestate[['beds','sq__ft']]
xs = tabla_habs_superficie['beds']
ys = tabla_habs_superficie['sq__ft']
slope, intercept, r_value, p_value, std_err = stats.linregress(xs, ys)
recta_regres = lambda x: intercept + slope*x

plt.plot(xs, ys, 'o', label='(hab, superficie)')
plt.plot(xs, recta_regres(xs), 'r', label='recta de regresión')
plt.legend(loc = 'upper left')
plt.xlabel('número de dormitorios')
plt.ylabel('superficie')
plt.show()
```


Seaborn

https://seaborn.pydata.org/ (https://seaborn.pydata.org/)

```
In [79]:  import seaborn
    import warnings
    warnings.filterwarnings('ignore')
```

In [80]: M %matplotlib inline
 seaborn.pairplot(realestate)

Out[80]: <seaborn.axisgrid.PairGrid at 0x2a4cd91c210>


```
In [81]:  price = realestate["price"]
  seaborn.distplot(price)
```

Out[81]: <Axes: xlabel='price', ylabel='Density'>

2.2. Películas

Vamos a plantear un ejemplo con una tabla de películas:

```
In [ ]: M
```

In [82]: # Carga de un dataframe desde un archivo csv

peliculas = pd.read_csv("data/film.csv", encoding="latin1", delimiter=";

Observa Los parámetros usados: La codificación y el delimitador

peliculas

Out[82]:

	Year	Length	Title	Subject	Actor	Actress	Director	Popularity	Awa
0	1990	111.0	Tie Me Up! Tie Me Down!	Comedy	Banderas, Antonio	Abril, Victoria	Almodóvar, Pedro	68.0	
1	1991	113.0	High Heels	Comedy	Bosé, Miguel	Abril, Victoria	Almodóvar, Pedro	68.0	
2	1983	104.0	Dead Zone, The	Horror	Walken, Christopher	Adams, Brooke	Cronenberg, David	79.0	
3	1979	122.0	Cuba	Action	Connery, Sean	Adams, Brooke	Lester, Richard	6.0	
4	1978	94.0	Days of Heaven	Drama	Gere, Richard	Adams, Brooke	Malick, Terrence	14.0	
1654	1932	226.0	Shadow of the Eagle, The	Action	Wayne, John	NaN	NaN	19.0	
1655	1989	103.0	Blood & Guns	Action	Welles, Orson	NaN	NaN	43.0	
1656	1988	78.0	Hot Money	Drama	Welles, Orson	NaN	NaN	19.0	
1657	1977	75.0	Comedy Tonight	Comedy	Williams, Robin	NaN	NaN	18.0	
1658	1991	65.0	Robin Williams	Comedy	Williams, Robin	NaN	NaN	4.0	

1659 rows × 9 columns

In [83]: # Si un dataframe es muy largo, puede interesarnos ver sólo un fragmento
peliculas.head()

Out[83]:

	Year	Length	Title	Subject	Actor	Actress	Director	Popularity	Awards
0	1990	111.0	Tie Me Up! Tie Me Down!	Comedy	Banderas, Antonio	Abril, Victoria	Almodóvar, Pedro	68.0	No
1	1991	113.0	High Heels	Comedy	Bosé, Miguel	Abril, Victoria	Almodóvar, Pedro	68.0	No
2	1983	104.0	Dead Zone, The	Horror	Walken, Christopher	Adams, Brooke	Cronenberg, David	79.0	No
3	1979	122.0	Cuba	Action	Connery, Sean	Adams, Brooke	Lester, Richard	6.0	No
4	1978	94.0	Days of Heaven	Drama	Gere, Richard	Adams, Brooke	Malick, Terrence	14.0	No
4									-

```
In [84]:
             import matplotlib.pyplot as plt
             %matplotlib inline
             peliculas_por_annos = peliculas["Year"].value_counts().reset_index()
             print(peliculas_por_annos)
             peliculas_por_annos.sort_values("Year", inplace=True)
             print(peliculas_por_annos)
             peliculas_por_annos.plot(x="Year", y="count")
                 Year count
             0
                 1991
                        129
                        105
             1
                1990
             2
                1987
                        102
             3
                 1989
                        101
             4
                1988
                         96
             69 1925
                          1
             70 1996
                          1
             71 1923
                          1
                          1
             72 1997
             73 1920
                          1
             [74 rows x 2 columns]
                 Year count
             73 1920
                          1
             71 1923
                          1
             65 1924
                          3
             69 1925
                          1
             64 1926
                          4
             . .
                 . . .
                         . . .
             0
                1991
                        129
             6
                1992
                         88
             22 1993
                         21
             70 1996
                          1
             72 1997
                          1
             [74 rows x 2 columns]
```

Out[84]: <Axes: xlabel='Year'>

In [85]: Peliculas_1990 = peliculas[peliculas["Year"] == 1990]
 peliculas_1990.head()

Out[85]:

	Year	Length	Title	Subject	Actor	Actress	Director	Popularity	Awaı
0	1990	111.0	Tie Me Up! Tie Me Down!	Comedy	Banderas, Antonio	Abril, Victoria	Almodóvar, Pedro	68.0	
9	1990	149.0	Camille Claudel	Drama	Depardieu, Gérard	Adjani, Isabelle	Nuytten, Bruno	32.0	
25	1990	97.0	Zandalee	Drama	Cage, Nicolas	Anderson, Erika	Pillsbury, Sam	80.0	
118	1990	123.0	Misery	Horror	Caan, James	Bates, Kathy	Reiner, Rob	48.0	`
121	1990	101.0	Act of Piracy	Mystery	Busey, Gary	Bauer, Belinda	NaN	74.0	
4									•

Out[86]: <Axes: ylabel='count'>

Referencias

Uno de los objetivos de pandas es dar una funcionalidad de análisis de datos parecida a la proporcionada por R. Podemos encontrar una comparación en la documentación de pandas: https://pandas.pydata.org/pandas-docs/stable/comparison_with_r.html)
https://pandas.pydata.org/pandas-docs/stable/comparison_with_r.html)

http://pandas.pydata.org/pandas-docs/stable/ (http://pandas.pydata.org/pandas-docs/stable/ (http://pandas.pydata.org/pandas-docs/stable/ (http://pandas.pydata.org/pandas-docs/stable/ (http://pandas.pydata.org/pandas-docs/stable/)

3. Series

Ejemplo 1 de series

Una serie es un caso particular de un dataframe, en el que únicamente tenemos una columna de datos.

```
notas = [3.5, 5.0, 4.1, 4.5, 6.8, 8.0, 6.0, 8.9, 7.5, 9.0, 10.0, 8.5, 9.
            serie_de_notas = pd.Series(notas)
            print(serie_de_notas)
            0
                   3.5
                   5.0
            1
            2
                   4.1
            3
                   4.5
            4
                   6.8
            5
                   8.0
            6
                   6.0
            7
                   8.9
                   7.5
            8
            9
                   9.0
            10
                  10.0
                   8.5
            11
                   9.0
            12
            13
                   8.5
            14
                   9.5
            dtype: float64
In [88]:
            print("La primera nota: ", serie_de_notas[0])
            num_notas = serie_de_notas.count()
            print("Cuantas notas tengo: ", num_notas)
            print("La última nota: ", serie_de_notas[num_notas-1])
            serie_de_notas.describe()
            La primera nota: 3.5
            Cuantas notas tengo: 15
            La última nota: 9.5
   Out[88]: count
                     15.000000
            mean
                     7.253333
                      2.131353
            std
            min
                      3.500000
            25%
                      5.500000
            50%
                      8.000000
            75%
                      8.950000
                     10.000000
            max
            dtype: float64
```

```
▶ serie_de_notas.plot()
   Out[89]: <Axes: >
              10
               9
               8
               7
               6
               5
               4
                            2
                                            6
                                                     8
                                                            10
                                                                     12
                                                                             14
          serie_de_notas.to_csv("./data/notas.csv", sep = ';')
In [90]:
```

He aquí la imagen del archivo generado, notas.csv, visto desde excel:

Α	В
	0
0	3.5
1	5.0
2	4.1
3	4.5
4	6.8
5	8.0
6	6.0
7	8.9
8	7.5
9	9.0
10	10.0
11	8.5
12	9.0
13	8.5
14	9.5

```
In [91]: ▶ # Lectura de la tabla de datos, seleccionando sólo la segunda columna:
            notas_cargadas = pd.Series(pd.read_csv("./data/notas.csv", sep = ';', he
             notas_cargadas
   Out[91]: 0
                    3.5
             1
                    5.0
                    4.1
             2
             3
                    4.5
             4
                    6.8
             5
                    8.0
             6
                    6.0
             7
                    8.9
             8
                    7.5
             9
                   9.0
             10
                   10.0
             11
                   8.5
                    9.0
             12
             13
                    8.5
```

9.5

Name: 1, dtype: float64

14

Ejemplo 2 de series, con un índice definido por el usuario

```
In [92]: ▶ import matplotlib.pyplot as plt
             # https://www.ine.es
             madrid = {
                1998: 5091336,
                 1999: 5145325,
                2000: 5205408,
                 2001: 5372433,
                 2002: 5527152,
                 2003: 5718942,
                2004: 5804829,
                 2005: 5964143,
                 2006: 6008183,
                2007: 6081689,
                 2008: 6271638,
                 2009: 6386932,
                 2010: 6458684,
                 2011: 6489680,
                 2012: 6498560,
                 2013: 6495551,
                 2014: 6454440,
                 2015: 6436996,
                 2016: 6466996,
                 2017: 6507184,
                 2018: 6578079,
                 2019: 6663394,
                 2020: 6779888
             }
             madrid_pob = pd.Series(madrid)
             print(madrid_pob)
```

```
1998
        5091336
1999
        5145325
2000
        5205408
2001
        5372433
2002
        5527152
2003
        5718942
2004
        5804829
2005
        5964143
2006
        6008183
2007
        6081689
2008
        6271638
2009
        6386932
2010
        6458684
2011
        6489680
2012
        6498560
2013
       6495551
2014
        6454440
2015
        6436996
2016
        6466996
2017
        6507184
2018
        6578079
2019
        6663394
2020
        6779888
dtype: int64
```

In [93]: M madrid_pob.describe()

El año se asume como índice, y no se tiene en cuenta para las estadíst

Out[93]: count 2.300000e+01 mean 6.104672e+06 std 5.266173e+05 min 5.091336e+06 25% 5.761886e+06 50% 6.386932e+06

75% 6.492616e+06 max 6.779888e+06

dtype: float64

```
In [94]:
          ▶ madrid_pob.plot()
   Out[94]: <Axes: >
                    1e6
              6.75
              6.50
              6.25
              6.00
              5.75
              5.50
              5.25
                          2000
                                       2005
                                                                  2015
                                                    2010
                                                                               2020
In [95]:
             # Crecimiento medio:
             crecimiento_medio = (madrid_pob[2020] - madrid_pob[1998]) / (2020 - 1998
             print(crecimiento_medio)
             76752.36363636363
```

Out[96]: 2002