

IN THE CLAIMS

- 1 1. (Original) A computer-implemented method for monitoring variations in the
2 film build thickness of workpieces on which a film build process has been performed,
3 comprising the steps of:
 - 4 measuring the film build thickness of a group of workpieces, the
5 group comprising at least two subgroups of workpieces, each subgroup including at
6 least two workpieces;
 - 7 calculating the range of the film build thickness measurements of
8 each subgroup, each range comprising the difference between the greatest thickness
9 measurement and the least thickness measurement of the subgroup;
 - 10 selecting data from at least two of said subgroups having the
11 smallest of the calculated ranges; and
 - 12 monitoring variations of the film build thickness of subsequent
13 workpieces coated in the film build by processing the data from the selected subgroups.

1 2. (Canceled)

1 3. (Canceled)

1 4. (Canceled)

1 5. (Canceled)

1 6. (Canceled)

1 7. (Canceled)

1 8. (Canceled)

1 9. (Canceled)

1 10. (Canceled)

1 11. (Canceled)

1 12. (Canceled)

1 13. (Canceled)

1 14. (Previously Added) A computer-implemented method for
2 monitoring variations in the film build thickness of workpieces on which a film
3 build process has been performed, comprising the steps of:

4 measuring the film build thickness of a group of workpieces,
5 the group comprising at least two subgroups of workpieces, each subgroup
6 including at least two workpieces;

7 calculating the range of the film build thickness
8 measurements of each subgroup, each range comprising the difference between
9 the greatest thickness measurement and the least thickness measurement of the
10 subgroup;

11 selecting data from at least two of said subgroups having the
12 smallest of the calculated ranges;

13 monitoring variations of the film build thickness of
14 subsequent workpieces coated in the film build by processing the data from the
15 selected subgroups; and

16 including the step of calculating C_{pk} based on the ranges of
17 the selected subgroups.

1 15. (Previously Added) A computer-implemented method for monitoring
2 variations in the film build thickness of workpieces, based on process capability

Applicant: Stephen N. Gaiski

3 analysis on which a film build process has been performed, comprising the steps
4 of:

5 measuring the film build thickness of a group of workpieces,
6 the group comprising at least two subgroups of workpieces, each subgroup
7 including at least two workpieces;

8 calculating the range of the film build thickness
9 measurements of each subgroup, each range comprising the difference between
10 the greatest thickness measurement and the least thickness measurement of the
11 subgroup;

12 selecting data from at least two of said subgroups having the
13 smallest of the calculated ranges; and

14 monitoring variations of the film build thickness of
15 subsequent workpieces coated in the film build by processing the data from the
16 selected subgroups; and

17 including the steps of calculating the difference in C_{pk} for the
18 new process control limits and the existing process control limits, and then
19 calculating the change in film build material usage from said difference in C_{pk} .

1 16. (Previously Added and Currently Amended) A method for
2 monitoring the film build thickness of workpieces on which a first film build
3 process has been performed, comprising the steps of:

4 calculating a first C_{pk} of [the] workpieces on which [the] a first
5 film build process has been performed;

Applicant: Stephen N. Gaiski

6 acquiring data relating to parameters of a second film build
7 process in which at least one of the parameters of the first film build process has
8 been changed;

9 calculating a second C_{pk} of the second film build process
10 from said acquired data; and

11 calculating the difference between the first C_{pk} and the
12 second C_{pk} to ascertain the relationship between said difference and the
13 changed parameter.

1 17. (Previously Added) A method as defined in claim 16, including the
2 step of acquiring cost data relating to said first film build process and cost data
3 relating to said second film build process; and

4 generating a cost difference utilizing the first film build
5 process and the second film build process utilizing the first C_{pk} and the second
6 C_{pk} .

1 18. (Previously Added) A method as defined in claim 16, including the
2 step of calculating the C_{pk} of at least one of said film build processes from range
3 values of the film build thickness of the corresponding film build process.

1 19. (Previously Added and Currently Amended) A method as defined
2 in claim 16, including the step of acquiring selected coating millages relating to

Applicant: Stephen N. Gaiski

3 said first film build process and selected coated millages relating to said second
4 film build process; and

5 generating a cost difference between the first film build
6 process and the second film build process utilizing the first Cpk and the second
7 Cpk to ascertain the mean shift in Film Build millages.

1 20. (Previously Added and Currently Amended) A method as defined
2 in claim 16, including the step of acquiring target range values relating to said
3 first film build process and target range values relating to said second film build
4 process; and

5 generating a cost difference between the first film build
6 process and the second film build process utilizing the first C_{pk} and the second
7 C_{pk}.

1 21. (Previously Added) A method as defined in claim 16, including the
2 step of acquiring data of the cost difference between the first and the second film
3 build processes in which both of said film build processes have the same film
4 thickness averages but with a different C_{pk} for the first and the second film build
5 processes.

1 22. (Previously Added and Currently Amended) A method as defined in
2 claim 16, including the step of acquiring data of the first film build process
3 including Coating Minimum Specifications, Actual Film Thickness Average,

Applicant: Stephen N. Gaiski

4 Actual Film Thickness Range, the C_{pk} of the first film process, and a subgroup
5 size.

1 23. (Previously Added and Currently Amended) A method as defined in
2 claim 16, including the step of acquiring data regarding film build usage, of the
3 first film build process and film build usage data of the second film build process,
4 and in which the changed parameter is the film build material usage of said first
5 film process, and then calculating the difference in film build material usage from
6 the difference in the first C_{pk} value and the second C_{pk} value.

1 24. (Previously Added and Currently Amended) A method as defined in
2 claim 16, in which the changed parameter is the process control limits of the
3 second film build process and then calculating the change in film build material
4 usage from the difference in the first C_{pk} value and the second C_{pk} value.

1 25. (Previously Added) A method as defined in claim 22, including the
2 step of selecting target range values for the first film process and the second film
3 process, and then calculating the differences in the film build material usage from
4 the difference between the first C_{pk} value and the second value C_{pk}.

1 26. (Previously Added and Currently Amended) A method as defined in
2 claim 16, including the step of acquiring data of the film build material usage of
3 the first film build process, then selecting coating millages for at least one of said

Applicant: Stephen N. Gaiski

4 film build processes, and then calculating the change in film build material usage
5 from the difference between said first C_{pk} value and the second C_{pk} value.

1 27. (Previously Added and Currently Amended) A method as defined in
2 claim 16, including the step of acquiring data regarding the material usage values
3 of the first film build process and the film usage of the second film bùild process
4 based on using the same film thickness with different variability for the first and
5 the second film build processes and then calculating the change in film build
6 usage from the difference between said first C_{pk} value and the second C_{pk} value.

1 28. (Previously Added and Currently Amended) A method as defined in
2 claim 16, including the step of calculating the optimal variability of the first film
3 build process by adjusting the film millage average thereof, using said first C_{pk},
4 and in which optimal variability is defined as the lowest standard deviation in a
5 run of seven or more units in the film build process.

1 29. (Previously Added and Currently Amended) A method as defined in
2 claim 16, including the step of calculating the optimal variability of said first film
3 build process by adjusting the film millage costs thereof utilizing said first C_{pk} and
4 in which optimal variability is defined as the lowest standard deviation in a run of
5 seven or more units in the build process.

Applicant: Stephen N. Gaiski

1 30. (Previously Added and Currently Amended) A method as defined in
2 claim 16, including the step of adjusting the variability of the first film build
3 process to optimize the film millage average.

31. (Previously Added and Currently Amended) Apparatus for
monitoring the film build thickness of workpieces on which a first film build
process has been performed, comprising:

4 computer-implemented means for calculating a first C_{pk} of
5 the workpieces on which the first film build process has been performed;
6 means for acquiring data relating to parameters of a second
7 film build process in which at least one of the parameters thereof has been
8 changed;

9 computer-implemented means for calculating a second C_{pk}
10 of the second film build process; and

computer-implemented means for calculating the difference between the first C_{pk} and the second C_{pk} to develop a relationship between said difference and the changed parameter.