

U.C. Sistemas & Automação

Controlo e Supervisão de Misturador Industrial utilizando FEUPAutomGrafcet

Armando Jorge Sousa asousa@fe.up.pt

(versão 15-04-2018)

1. Objetivos e Introdução

Este trabalho é a continuação do misturador industrial.

O caderno de encargos é comum e abstrato à ferramenta utilizada. No final das 2 aulas de trabalho (exceto feriados) deve ter o controlo e supervisão em ambas as ferramentas.

Durante este trabalho deve produzir um sistema de Controlo e Supervisão para o sistema anterior.

Um sistema com Controlo e Supervisão é um sistema que observa e altera o sistema subordinado, lidando com situações ortogonais ao funcionamento normal do sistema.

Considere de novo as ligações (ao lado, fig. 2) e o sinótico (fig. 1).

Figura 1 - Sinótico do simulador (não utilizado no FEUPAutom)

2. Procedimentos e Trabalho

Recupere o seu trabalho anterior da misturadora FEUPAutomGrafecet.

Teste e garanta que todas as funcionalidades são cumpridas.

Este trabalho produzirá especificação adicionais para o sistema da misturadora.

Terá que alterar os programas para a nova variável "Externo" (ver fig. 2, ao lado).

3. Caderno de encargos completo do misturador industrial

Repete-se de seguida, para referência, o C.E. anterior:

O misturador industrial para o qual se pretende desenvolver o sistema de controlo produz uma mistura constituída à base de dois produtos A e B e de um solvente S, contidos respetivamente nos silos S_A , S_B e no tanque T.

O seu modo de funcionamento é descrito de seguida.

Saídas		
	1/0	Terminal
Esquerda	Q2.1	22
Direita	Q2.2	23
Bomba	Q2.3	24
Motor_pá	Q2.4	26
V7	Q2.5	27
V6	Q2.6	28
V5	Q2.7	29
V4	Q2.8	31
V3	Q2.9	32
V2	Q2.10	33
V1	Q2.11	34
Entradas		
	1/0	Terminal
M_max	11.0	1
M_min	11.1	2
Prato2	11.2	3
Prato1	11.3	4
Inicia	11.4	5
Paragem	I1.5	6
Ciclo	11.6	7
Externo	11.7	8
	Vcc	17, 25, 30, 35
	Gnd	18

Figura 2 - Ligações

A. Especificação Base (trabalho laboratorial anterior)

Inicialização

No arranque do sistema, é executada a seguinte sequência de inicialização:

- 1. Após a ordem de arranque do sistema (botão Início premido), o misturador é esvaziado até ao nível mínimo, através da válvula V6.
- 2. Ao mesmo tempo, e para evacuar eventuais resíduos, é acionado o motor do tapete no sentido da direita, durante 5 segundos.

Ciclo de funcionamento normal

Depois de concluída a inicialização, o ciclo de funcionamento normal do misturador é o seguinte:

- 3. Após o operador dar ordem de início de um novo ciclo (botão Ciclo premido), é fechada a válvula V7, são abertas as válvulas V1, V3 e V5, e é acionada a Bomba.
- 4. Quando a quantidade B1 (B2) de produto A (B) para dissolver for depositada no Prato1 (2), é fechada a válvula V1 (V3).
- 5. Quando o nível máximo (M_max) do misturador for atingido, a Bomba pára e a válvula V5 é fechada
- 6. De seguida, o motor da pá do misturador é acionado, bem como o motor do tapete no sentido esquerdo. Ao mesmo tempo que são abertas as válvulas V2 e V4.
- 7. Após o intervalo de tempo T1 (10 segundos), o tapete pára e as válvulas V2 e V4 são fechadas.
- 8. Após o intervalo de tempo T2 (5 segundos), pára o motor do misturador, estando então concluído o processo de mistura.
- 9. Então, a válvula V7 é aberta para se iniciar o consumo do produto.
- 10. Quando o produto tiver sido todo consumido (M_min ativo), o ciclo estará completo e um novo ciclo pode ser iniciado

B. Especificações adicionais - Controlo e Supervisão da misturadora

Para simplificar a resolução destas questões, considere que os requisitos abaixo só podem ser ativados quando o misturador se encontra a executar as operações descritas nos pontos 3, 4 e 5 do ciclo de funcionamento normal. Nas outras fases do ciclo, as atuações dos botões são ignoradas.

Implemente <u>cumulativamente</u> os requisitos abaixo listados, mas admitindo a simplificação dos requisitos B1a), B1b) e B2a), B2b) e B3 só acontecerem um de cada vez:

- **B1a)** Se o botão <u>Ciclo</u> for premido de novo na fase em causa, o Grafcet subordinado fica bloqueado na situação atual, mantendo-se as saídas ativas. Quando o botão <u>Ciclo</u> for desativado, o Grafcet é desbloqueado.
 - b) Se, enquanto o botão de <u>Ciclo</u> estiver ativo (tal como mencionado em B1) e o botão <u>Externo</u> for premido, mantém-se o Grafcet subordinado bloqueado e desliga-se ainda todas as saídas. Quando o interruptor <u>Externo</u> voltar a ficar inativo, as saídas que anteriormente estavam ligadas devem ligar de novo.
- **B2a)** Se o botão de <u>Paragem</u> for premido, todas as etapas e saídas são desativadas. Depois do botão ser desativado, o Grafcet retorna à situação em que se encontrava antes da atuação do botão Paragem.
 - b) Se, enquanto o botão de <u>Paragem</u> estiver ativo, o botão <u>Inicia</u> for premido, então desligar todas as etapas e saídas. Após isso, quando os botões <u>Inicia</u> e <u>Paragem</u> ficarem inativos, o Grafcet deve arrancar do estado inicial (e pode evoluir normalmente).
- **B3** Se o nível máximo de líquido demorar mais do que 6 segundos a ser atingido, desligar todas as saídas e arrancar o processo a partir do estado inicial do Grafcet (inicialização).

4. Preparação

Como preparação, o estudante deve garantir que entende o funcionamento da ferramenta que irá utilizar na semana em causa, o FEUPAutom, centrando-se claro nas partes que permitem fazer controlo hierárquico.

Deve ainda levar uma proposta de solução (obrigatoriamente em papel) do modelo do controlador para a ferramenta da semana:

• Para o FEUPAutomGrafcet, um Grafcet adequado (com zonas e páginas adequadas).

5. Relatório final da aula

Até ao instante indicado no Moodle, submeter o projeto e um "relatório", documento de processador de texto (PDF, word ou outro), com os seguintes elementos: *Título*: S&A - Lab1011 - i00x (i004 ou i005 conforme o caso); *Turma*: ...; *Autores*: ... e incluir ainda a informação abaixo mencionada.

Submeta ficheiros com os nomes (não se preocupe com as extensões dos ficheiros):

- Lab1011_FAGr7_Txx_Byy_PrimNomeUltNomeAAA+PrimNomeUltNomeBBB.xml.FA5
- Lab1011_FAGr7_Txx_Byy_PrimNomeUltNomeAAA+PrimNomeUltNomeBBB.PDF (print screens com todo o código visível)

Obs: No final dos Lab10 e Lab11, deve ter submetido, ao todo, 4 ficheiros

- Fim do Guião, continua com os anexos -