

A Strong Underwater Soft Manipulator With Planarly-Bundled Actuators and Accurate Position Control

Kailuan Tang^{1,2}, Chenghua Lu², Yishan Chen², YinXiao², Shijian Wu², Shaowu Tang², Hexiang Wang^{1,2}, Binbin Zhang², Zhong Shen³, Juan Yi², Sicong Liu², Zheng Wang²

¹Harbin Institute of Technology ²Southern University of Science and Technology ³The University of Hong Kong

The Underwater Manipulator System Prototype

The Planarly-Bundled Over-Constraint Joint Design Concept

The Flow-Controllable Open-Circulation (FOC) Actuation

Modeling of the PBOC Joint and the Control Method

Basic Performance of the DSHO Actuator and the PBOC Joint

Pressure Difference / kPa

Lateral Rigidity Ratio:

$$\frac{k_{PBOC}}{k_{DSHO}} = 10.67 > 4$$

Characteristics of the FOC Hydraulic Control System

Accurate Kinematic Model of the PBOC Joint

Accurate Kinematic Model of the PBOC Joint

CCA Compliance:

Smooth Trajectory Tracking with the FOC System

Summary

- **Mechanical characteristics:** The proposed PBOC joint was proposed with outstanding payload capability, excellent structural stiffness, and accurate kinematic operation. The maximum payload capacity of a single joint achieved 559N without buckling, and the manipulator system weighs 5.83 kg with a load-to-weight ratio of 9.78. The middle constraint plate could sharply decreased the prediction deviation by CCA-based kinematic model from 51.6% to 0.27% under lateral payload.
- **FOC actuation and control:** the actuation system could keep consistent performance within 60 meter depth without depth compensation. And the pressure oscillations on pressure regulating progress are reduced by 93.49% with flow control.
- Based on the developed kinematic models and semi-open-loop controller, the manipulator system achieved accurate trajectory tracking in validation experiment.

Future Work

- Focusing on fully close-loop position control in the underwater manipulator system.
- Exploring multi-modal sensing to recognize the interaction with environment to improve control accuracy.

Thank You!

tangkl@mail.sustech.edu.cn