MA 214 - Introduction to Numerical Analysis

Vishal Neeli

January 17, 2021

1 Interpolation Theory

1.1 Introduction

- Given finite set of points, reconstructing the original curve is interpolation.
- There will be obviously infinitely many curve.
- Interpolation problem Given n+1 real distinct points: x_0, x_1, \ldots, x_n and real numbers: y_0, y_1, \ldots, y_n Find a function $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x_i) = y_i$$
 for $i = 0, 1, ..., n$

Such a function is called **interpolant** and points x_i are called **interpolation points**. We attempt to rebuild original function using polynomial functions. This is called polynomial interpolation and function is polynomial interpolant.

• A polynomial is function of the form

$$p(x) = a_0 + a_1 x + \ldots + a_n x^n$$

• \mathbb{P}_n is the set of polynomials consisting of all polynomials of degree $\leq n$

1.2 Polynomial Interpolation

Theorem (Joseph-Louis Lagrange Theorem). Given n+1 data points with unique $x_i s$, then there exists a unique polynomial $p_n \in \mathbb{P}_n$ such that

$$p(x_i) = y_i$$
 for $i = 0, 1, ..., n$

Proof. (1) This can be shown by linear algebra. In a n degree polynomial, we substitute the points and get n+1 equations in n+1 variables (coeff) and all the rows are unique (since x_0, x_1, \ldots, x_n are unique), hence in AX = b, $|A| \neq 0$.

Proof. (2) Part 1: Uniqueness: If there is an interpolant, then the interpolant is unique Let there be 2 interpolants, p_n and q_n and let r(x) = p(x) - q(n),

$$r(x) = 0 \text{ for } i = 0, 1, \dots, n$$

This contradicts the fundamental theorem of Algebra. (A polynomial of degree n can have at most n real roots). Therefore

$$r(x) = 0 \quad \forall x \in \mathbb{R}$$

 $p(x) = q(x) \quad \forall x \in \mathbb{R}$

Part 2: Existence (construction):

Given n+1 data points, build n+1 Langrange polynomials

$$L_k^n(x_i) = \begin{cases} 0 & \text{for } i \neq k \\ 1 & \text{for } i = k \end{cases}$$

$$L_k^n(x) = \frac{(x - x_0)...(x - x_{k-1})(x - x_{k+1})...(x - x_n)}{(x_k - x_0)...(x_k - x_{k-1})(x_k - x_{k+1})...(x_k - x_n)}$$

$$p(x) = \sum_{k=0}^n y_k L_k^n(x)$$

1.3 Closeness between functions

Given two continuous functions $f, g : [a, b] \to \mathbb{R}$, to evaluate how close the functions are consider the following

$$\max_{x \in [a,b]} |f(x) - g(x)|$$

1.4 Set of continuous Functions

C[a, b] is the set of all continuous functions on [a,b] C[a, b] is a infinite dimensional vector space

$$f, g \in C \Longrightarrow f + g \in C \text{ and } \lambda f \in C$$

We define norm on C[a, b] as

$$||f|| = \max_{x \in [a,b]} |f(x)|$$

 $C^{k}[a,b]$ denotes the set of all functions which are continuously k-times differentiable

1.5 Polynomial Approximation and Error

Theorem (Weierstrass approximation Theorem). Given a function $f \in C[a,b]$ and given $\epsilon > 0$, there exists a polynomial p(x) such that,

$$||f(x) - p|| < \epsilon$$

Using Langrange's recipe to approximate

Take n+1 interpolation points in the [a,b] and collect the function values at all the points. We have n+1 data points. Using Lagrange polynomials, find the interpolant

Theorem (Error equation). Let $f \in C^k[a,b]$, $x_0, x_1, \ldots, x_n \in [a,b]$ and $p \in \mathbb{P}_n$ be the interpolant using these points, then for all x, there exists a $\zeta = \zeta(x) \in (a,b)$ such that

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\zeta) \prod_{k=0}^{n} (x - x_k)$$

Note: Here ζ is dependent on the x, i.e, for every x you choose, ζ generally changes.

Proof. Consider the function,

$$\psi(t) = (f(t) - p(t)) \prod_{k=0}^{n} (x - x_k) - (f(x) - p(x)) \prod_{k=0}^{n} (t - x_k)$$

This n+2 roots (n+1 data points and x), applying rolle theorem's gives us that $\phi^{(1)}(t)$ has at least n+1 roots. Applying like this repeatedly on its derivatives, we get that $f^{(n+1)}$ has at least 1 root in [a,b]. Assuming the root to be ζ . We have,

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\zeta) \prod_{k=0}^{n} (x - x_k)$$

Approximating the error:

Taking norm on both the sides of error equation, we have,

$$\max_{x \in [a,b]} |f(x) - p(x)| = \frac{1}{(n+1)!} ||f^{(n+1)}(\zeta) \prod_{k=0}^{n} (x - x_k)||$$
 (1)

$$\max_{x \in [a,b]} |f(x) - p(x)| \le \frac{1}{(n+1)!} ||f^{(n+1)}|| \max_{x \in [a,b]} \prod_{k=0}^{n} (x - x_k)$$
 (2)

Chebyshef interpolation points:

$$x_k = \frac{a+b}{2} + \frac{b-a}{2}cos\left(\frac{j\pi}{n}\right)$$

These points minimise $\max_{x \in [a,b]} \prod_{k=0}^{n} (x-x_k)$ and therefore prefered over equally spaced points on real line. These points can be visualised as projections of equally spaced points on the arc of the semicircle with $\frac{a+b}{2}$ as center and $\frac{(b-a)}{2}$ as radius.

1.6 Another method for calculating interpolant

This is similar to the linear algebra method (given as proof(1) to Joseph-Louis Lagrange Theorem) for finding the interpolant.

Consider the polynomial

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)\dots(x - x_{n-1})$$

Find the coefficients a_0, a_1, \ldots, a_n by substituting the data points. On substituting x_0 , we get a_0 , again on substituting x_1 and using a_0 , we get a_1 and so on.

1.7 Divided difference - recursion relation

• **Divided difference**: It is the coefficient of x_n in the interpolant $p \in \mathbb{P}_n$ and denoted by $f[x_0, x_1, \dots, x_n]$.

Using Langrange polynomials, we have

$$p(x) = \sum_{k=0}^{n} f(x_k) \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j}$$

So the divided difference is

$$f[x_0, x_1, \dots, x_n] = \sum_{k=0}^n f(x_k) \prod_{j=0, j \neq k}^n \frac{1}{x_k - x_j}$$

• interpolant p(x) of x_0, x_1, \ldots, x_n can be calculated using interpolants a(x) and b(x) of x_1, x_2, \ldots, x_n and $x_0, x_1, \ldots, x_{n-1}$ respectively as

$$p(x) = \frac{(x - x_0)a(x) - (x - x_n)b(x)}{x_n - x_0}$$

Note: If replace the data point x_n in a(x) with x_0 , we get b(x)

Theorem (Divided difference recursion theorem).

$$f[x_0, x_1, \dots, x_{m+1}] = \frac{[f[x_1, x_2, \dots, x_{m+1}] - f[x_0, x_1, \dots, x_m]}{x_{m+1} - x_0}$$

Proof. Let p(x) be the interpolant for x_0, x_1, \ldots, x_m and q(x) be the interpolant for $x_1, x_2, \ldots, x_{m+1}$. Then,

$$L(x) = \frac{(x - x_0)q(x) + (x_{m+1} - x)p(x)}{x_{m+1} - x_0}$$

is an interpolant. Since, interpolant is unique, considering coeff of x_m we have,

$$f[x_0, x_1, \dots, x_m] = \frac{f[x_1, x_2, \dots, x_{m+1}] - f[x_0, x_1, \dots, x_m]}{x_{m+1} - x_0}$$

Theorem (Interpolant using divided differences). Suppose x_0, x_1, \ldots, x_n be the data points. Then interpolant $p \in \mathbb{P}_n$ is

$$p(x) = f[x_0] + f[x_0, x_1](x - x_0) + \ldots + f[x_0, x_1, \ldots, x_n] \prod_{j=0}^{n-1} (x - x_j)$$

Proof. We prove this by induction. Base case n=0 is trivially satisfied. Assume that this is satisfied for p_k ,

$$p_k(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j)$$

Consider the polynomial $p_{k+1}(x) - p_k(x) \in \mathbb{P}_{k+1}$ which has x_0, x_1, \dots, x_k as roots. Hence,

$$p_{k+1}(x) - p_k(x) = c \prod_{j=0}^{k} (x - x_j)$$

Comparing leading coefficient on both sides, we have $c = f[x_0, x_1, \dots, x_k]$. Hence,

$$p_{k+1}(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_{k+1}] \prod_{j=0}^{k} (x - x_j)$$

By PMI,

$$p(x) = f[x_0] + f[x_0, x_1](x - x_0) + \ldots + f[x_0, x_1, \ldots, x_n] \prod_{i=0}^{n-1} (x - x_i)$$