First Half of the Course

- 1. Understand the importance and relevance to cosmology of the following
 - The night sky is dark
 - the universe contains stuff
 - galaxies are moving away
 - The universe if filled with a background radiation
 - The universe is isotropic and homogeneous
- 2. What are the meanings of and the mathematical expressions for:
 - Redshift
 - Scale Factor
 - Hubble parameter and Hubble law
- 3. From general relativity, give the meaning of, and where appropriate, the mathematical expression for:
 - Euclidean space
 - Curvature
 - Metric
 - Robertson-Walker metric and when its the appropriate metric to use
 - Null geodesic
 - Proper distance
 - The relationship between Redshift and scale factor.

- 4. The Friedmann equation
 - Write the general Friedmann equation in all its different forms and discuss the advantage of each form
 - What is the fluid equation and how does the w parameter come into play.
 - What is the acceleration equation.
 - Write the Friedmann equation in terms of the density parameters. What is the meaning of the critical density and what is it's mathematical expression. How is Ω_0 related to the curvature of the universe.
 - Write down the Friedmann equation for single component uni- verses and discuss some of the behavior for each component.
 - Write down the Friedmann equation for examples of multi-component toy universes and discuss the physical consequences of these universes. Compare the toy universes to the one we seem to live in.

From second half of the course

- 1. The search for two numbers, H_o and q_o
 - Proper distance
 - Luminosity distance
 - Angular diameter distance
- 2. Cosmic Microwave Background
 - Observational characteristics of CMB
 - Recombination and Decoupling
 - Photon scattering and number density of photons and baryons
 - The physics of recombination
 - The temperature fluctuations and their causes

3. Dark Matter

- Observational evidence for dark matter in galaxies—rotation curves
- Observational evidence for dark matter in clusters of galaxies—the virial theorem
- Observational evidence for dark matter via gravitational lensing

4. Inflation

- The problems with the Friedmann model that lead to the postulating of inflation
- The general idea behind how inflation solves the problems
- The physics of inflation

5. Structure formation

- Definition of density perturbations
- Growth of over-densities in a static universe—The Jeans length
- Growth of over-densities in an expanding universe
- The Power Spectrum
- Hot versus Cold matter
- Baryon Acoustic Oscillations