

A Good Fishman Knows All the Angles: A Critical Evaluation of Google's Phishing Page Classifier

Changqing Miao, Jianan Feng, Wei You, Wenchang Shi, **Jianjun Huang**, Bin Liang 2023.11.29

Phishing Webpage

- Left: An example phishing page for Microsoft Login.
- **Right:** The phishing page is blocked by the browser.

Background

- Google's phishing page detection in Chrome/Chromium
 - URL blacklist & Logistic regression classifier: Evaded in 2016¹.
 - **CNN-based image classifier**: Evaded in this paper.

¹ Bin Liang, Miaoqiang Su, Wei You, Wenchang Shi, Gang Yang. *Cracking Classifiers for Evasion: A Case Study on the Google's Phishing Pages Filter*. In Proceedings of the 25th International World Wide Web Conference (**WWW 2016**).

Background: CNN-based Image Classifier

- The workflow of the image classifier-based phishing detection:
 - Capturing a screenshot of the webpage,
 - Downsampling it to a very small image (48*48 px),
 - Upsampling the small image to a larger one (224*224 px),
 - Feeding the image to the classifier,
 - Emitting a classification score with 18 dimensions for phishing categories plus one dimension for benign category,
 - If any of the phishing categories exceeds a threshold, the page would be potentially reported as a phishing page.

Research Problem & Challenges

Research Problem

Can the new-gen phishing detection mechanism in Chrome/Chromium be bypassed, i.e., can we effectively evade the image classifier-based phishing detection and generate adversarial phishing page?

- **Practical Evasion**: visual utility of the page should be preserved, the introduced perturbation should be imperceptible, and successful evasion should be reflected in real webpages.
- Optimizable Model: iterative optimization is not supported by the classification model in the browsers.
- Feasible Computation: search space is extremely large for generating a full-size adversarial image.

Model Extraction

- Locating model use in source code
 - Searching the source code of Chromium and identifying candidate functions that contain related keywords, e.g, *phishing*, *classifier*, *classification*, etc;
 - Recompiling Chromium and running it in a debug mode, setting breakpoints on the candidate functions;
 - Visiting phishing webpages and collecting execution traces;
 - Analyzing the traces to identify the functions that are invoked in each triggering of the block pages.

- Extracting model data
 - Dumping the model data from the memory with the help of the debugger.

Model Extraction

- Locating model use in source code
 - Searching the source code of Chromium and identifying candidate functions that contain related keywords, e.g, *phishing*, *classifier*, *classification*, etc;
 - Recompiling Chromium and running it in a debug mode, setting breakpoints on the candidate functions;
 - Visiting phishing webpages and collecting execution traces;
 - Analyzing the traces to identify the functions that are invoked in each triggering of the block pages.

- Extracting model data
 - Dumping the model data from the memory with the help of the debugger.

Model Extraction

- Locating model use in source code
 - Searching the source code of Chromium and identifying candidate functions that contain related keywords, e.g, *phishing*, *classifier*, *classification*, etc;
 - Recompiling Chromium and running it in a debug mode, setting breakpoints on the candidate functions;
 - Visiting phishing webpages and collecting execution traces;
 - Analyzing the traces to identify the functions that are invoked in each triggering of the block pages.

Model Reconstruction

- The **TF-Lite model**: lightweight, storage and computing resource efficient, discarding most functions irrelevant to classification, *impossible to implement gradient-based evasion attacks* as gradient calculations are not supported.
- Reconstructing TF-Lite model to a standard TensorFlow model
 - A **Dequantization** layer and a **Quantization** layer is added before and after each hidden layer in the TF model, to simulate the quantized computation in the TF-Lite model.
 - Gradient calculations are now supported in the TF model.
- A **Resize** layer is added to upsample the input (48*48px) to a 224*224px image.

Model Reconstruction

- The **TF-Lite model**: lightweight, storage and computing resource efficient, discarding most functions irrelevant to classification, *impossible to implement gradient-based evasion attacks* as gradient calculations are not supported.
- Reconstructing TF-Lite model to a standard TensorFlow model
 - A **Dequantization** layer and a **Quantization** layer is added before and after each hidden layer in the TF model, to simulate the quantized computation in the TF-Lite model.
 - Gradient calculations are now supported in the TF model.
- A Resize layer is added to upsample the input (48*48px) to a 224*224px image.

Adversarial Screenshot Generation

- **Input**: downsampled webpage screenshot (48*48 px)
- Output: downsampled adversarial webpage screenshot (48*48 px)
- Method:
 - Selecting candidate pixels for modification,
 - Modifying candidate pixels.

Adversarial Screenshot Generation

- **Input**: downsampled webpage screenshot (48*48 px)
- Output: downsampled adversarial webpage screenshot (48*48 px)
- Method:
 - Selecting candidate pixels for modification,
 - Modifying candidate pixels.

Goal: Visual Utility

Low visual saliency: browser users may not notice the changes.

➤ **High classification contribution**: modifying a few pixels can succeed the evasion.

Adversarial Screenshot Generation

- **Input**: downsampled webpage screenshot (48*48 px)
- Output: downsampled adversarial webpage screenshot (48*48 px)
- Method:
 - Selecting candidate pixels for modification,
 - Modifying candidate pixels.

Iterative optimization or Stop

Inverse Downsampling

- Search space for generating a full-size adversarial screenshot from the downsampled adversarial webpage screenshot (48*48 px) is super large, and combinatorial explosion problem leads to unacceptable computation overhead.
- **Input**: downsampled adversarial webpage screenshot (48*48 px)
- Output: full-size adversarial webpage screenshot
- Goal: Efficiency & Visual utility
- Method:
 - Converting inverse downsampling to a integer linear programming problem,
 - Leveraging GUROBI optimizer² to solve the problem.

² GUROBI optimization, https://www.gurobi.com/

Inverse Downsampling – Variable Choice

- Variables: pixels in the full-size adversarial screenshot, which are corresponding to the modified pixels in the downsampled adversarial screenshot.
- Question: which pixels to choose for modification, to *deceive browser users*?
- Strategy: changing the shape of the modified zone from a rectangle to the inscribed ellipse.

- **Rectangle**: sharp corners may attract the users about the abnormality.
- Ellipse: smooth edges make the modified zone look like a dripping stain on the monitor.

Inverse Downsampling – Objective Function

- Goal: optimizing the visual utility.
 - As small perturbation as possible (left) ---- The difference between a modified pixel in the adversarial screenshot and the counterpart in the original screenshot is imperceptible.
 - As non-obtrusive perturbation as possible (right) ---- The modified pixel looks close to surrounding pixels.

$$Dist_1 = |r - r'| + |g - g'| + |b - b'|$$

$$|x_{adv} - x_{origin}|$$

$$\min Z = C_{origin} \cdot |x_{adv} - x_{origin}| + C_{surrounding} \cdot |x_{adv} - x_{surrounding}|$$

Inverse Downsampling – Constraints

• Validity:

• (1) pixel values should be in the valid range,

$$0 \le x_{adv} \le 255$$

• (2) the constructed full-size screenshot should be downsampled to the input, i.e., the adversarial downsampled screenshot (48*48 px).

$$P_{downsized} = K \cdot x_{adv}$$

Inverse Downsampling – Constraints

• Visual Utility: "flattening" the perturbations by forcing all pixels in the shape to be altered.

$$\delta \le |x_{adv} - x_{origin}|$$

- Full-size SVG with modified pixels kept and the others transparent.
- Modified pixels overlapping with input fields are cut out as small PNG images.
- **Three layers** by the CSS *z-index* property:
 - Bottom: all HTML elements except the overlapped input fields in the original phishing webpage;
 - *Middle*: full-size SVG as the background of a *div*, with click operations going through the image and reaching the bottom layer;
 - *Top*: perturbated input fields with the corresponding PNG images as the background.

- Full-size SVG with modified pixels kept and the others transparent.
- Modified pixels overlapping with input fields are cut out as small PNG images.
- **Three layers** by the CSS *z-index* property:
 - Bottom: all HTML elements except the overlapped input fields in the original phishing webpage;
 - *Middle*: full-size SVG as the background of a *div*, with click operations going through the image and reaching the bottom layer;
 - *Top*: perturbated input fields with the corresponding PNG images as the background.

- Full-size SVG with modified pixels kept and the others transparent.
- Modified pixels overlapping with input fields are cut out as small PNG images.
- **Three layers** by the CSS *z-index* property:
 - *Bottom*: all HTML elements except the overlapped input fields in the original phishing webpage;
 - *Middle*: full-size SVG as the background of a *div*, with click operations going through the image and reaching the bottom layer;
 - *Top*: perturbated input fields with the corresponding PNG images as the background.

- Full-size SVG with modified pixels kept and the others transparent.
- Modified pixels overlapping with input fields are cut out as small PNG images.
- **Three layers** by the CSS *z-index* property:
 - *Bottom*: all HTML elements except the overlapped input fields in the original phishing webpage;
 - *Middle*: full-size SVG as the background of a *div*, with click operations going through the image and reaching the bottom layer;
 - *Top*: perturbated input fields with the corresponding PNG images as the background.

- Full-size SVG with modified pixels kept and the others transparent.
- Modified pixels overlapping with input fields are cut out as small PNG images.
- **Three layers** by the CSS *z-index* property:
 - *Bottom*: all HTML elements except the overlapped input fields in the original phishing webpage;
 - *Middle*: full-size SVG as the background of a *div*, with click operations going through the image and reaching the bottom layer;
 - *Top*: perturbated input fields with the corresponding PNG images as the background.

- Full-size SVG with modified pixels kept and the others transparent.
- Modified pixels overlapping with input fields are cut out as small PNG images.
- **Three layers** by the CSS *z-index* property:
 - *Bottom*: all HTML elements except the overlapped input fields in the original phishing webpage;
 - *Middle*: full-size SVG as the background of a *div*, with click operations going through the image and reaching the bottom layer;
 - *Top*: perturbated input fields with the corresponding PNG images as the background.

Evaluation

- phishing webpages that can be identified by the CNN-based image classifier.
 - PhishBank: 50 phishing webpages
 - OpenPhish: 85 phishing webpages
- Target: Chromium 105

ID	Category	Bypass	AUC	Time	ID	Category	Bypass	AUC	Time	ID	Category	Bypass	AUC	Time
8120157	Outlook	✓	0.996	5.0	7945622	Shared Document	✓	0.995	16.5	op041	Shared Document	✓	0.963	6.1
8101033	Paypal	✓	0.996	2.4	7973561	Microsoft	✓	0.85	6.5	op042	Netflix	✓	0.994	11.4
8100905	Microsoft	✓	0.958	23.9	7969583	Shared Document	✓	0.994	4.3	op043	Microsoft	✓	0.959	3.7
8082292	Microsoft	✓	0.732	2.1	7958598	Netflix	✓	0.995	8.5	op044	Microsoft	✓	0.904	5.0
8082216	Facebook	✓	0.989	13.8	7897335	Shared Document	✓	0.988	4.1	op045	Microsoft	✓	0.998	1.8
8082078	Netflix	✓	0.998	19.8	op001	Microsoft	✓	0.946	3.0	op046	Microsoft	✓	0.998	1.9
8080988	Microsoft	✓	0.953	4.6	op002	Microsoft	\checkmark	0.973	3.3	op047	Facebook	✓	0.997	0.4
8080214	Microsoft	✓	0.905	14.6	op003	Microsoft	✓	0.966	3.5	op048	Netflix	✓	0.993	53.8
8078574	Paypal	✓	0.996	2.9	op004	Microsoft	✓	0.977	14.5	op049	Outlook	✓	0.946	6.9
8052357	Outlook	✓	0.949	6.0	op005	Microsoft	\checkmark	0.964	11.6	op050	Facebook	✓	0.998	7.5
8052355	Shared Document	✓	0.987	33.7	op006	Shared Document	\checkmark	0.993	3.1	op051	Facebook	✓	0.998	7.4
8052333	Microsoft	✓	0.963	4.7	op007	Microsoft	✓	0.974	22.0	op052	Microsoft	✓	0.968	5.6
8042311	Microsoft	✓	0.964	3.9	op008	Microsoft	✓	0.9	87.8	op053	Outlook	✓	0.963	7.0
8042296	Netflix	✓	0.997	44.1	op009	Microsoft	✓	0.95	8.6	op054	Microsoft	✓	0.879	9.0
8042295	Netflix	✓	0.996	21.8	op010	Microsoft	✓	0.923	44.7	op055	Outlook	✓	0.963	6.0
8042290	Microsoft	✓	0.809	44.3	op011	Microsoft	✓	0.933	7.7	op056	Netflix	✓	0.998	11.3
8042289	Microsoft	✓	0.843	8.1	op012	Microsoft	✓	0.915	3.3	op057	Microsoft	✓	0.952	2.4
8040774	Paypal	✓	0.984	8.1	op013	Microsoft	✓	0.977	6.1	op058	Facebook	✓	0.997	5.5
8040771	Outlook	✓	0.952	6.2	op014	Facebook	✓	0.992	9.5	op059	Microsoft	✓	0.966	7.0
8040761	Shared Document	✓	0.987	32.0	op015	Microsoft	✓	0.958	1.4	op060	Microsoft	✓	0.944	9.5
8040752	Microsoft	✓	0.954	5.8	op016	Microsoft	✓	0.933	4.5	op061	Netflix	✓	0.998	12.4
8040698	Facebook	✓	0.987	12.0	op017	Microsoft	✓	0.939	6.8	op062	Microsoft	✓	0.950	11.2
8039424	Microsoft	✓	0.862	12.4	op018	Microsoft	✓	0.955	6.4	op063	Microsoft	✓	0.975	2.2
8039340	Microsoft	✓	0.956	7.0	op019	Microsoft	✓	0.956	5.5	op064	Shared Document	✓	0.998	3.7
7998977	Microsoft	✓	0.957	2.4	op020	Microsoft	✓	0.734	5.9	op065	Amazon	✓	0.993	14.7
7989793	Shared Document	✓	0.983	8.4	op021	Microsoft	✓	0.949	6.1	op066	Facebook	✓	0.997	6.2
7989787	Netflix	✓	0.997	46.8	op022	Microsoft	✓	0.997	6.0	op067	Microsoft	✓	0.965	17.5
7989781	Microsoft	✓	0.922	4.2	op023	Netflix	✓	0.992	20.4	op068	Netflix	✓	0.997	11.7
7989779	Microsoft	✓	0.939	5.7	op024	Microsoft	✓	0.954	5.6	op069	Microsoft	✓	0.965	7.7
7989777	Microsoft	✓	0.826	7.5	op025	Netflix	✓	0.992	50.6	op070	Amazon	✓	0.983	6.9
7984500	Microsoft	✓	0.955	19.8	op026	Outlook	✓	0.972	7.2	op071	Amazon	✓	0.993	8.5
7984484	Microsoft	✓	0.974	4.2	op027	Microsoft	✓	0.97	3.7	op072	Microsoft	✓	0.848	5.2
7983855	Outlook	✓	0.959	6.3	op028	Microsoft	✓	0.973	3.7	op073	Facebook	✓	0.998	8.2
7983589	Netflix	✓	0.997	7.9	op029	Microsoft	✓	0.965	3.2	op074	Microsoft	✓	0.960	6.4
7983585	Shared Document	✓	0.982	71.1	op030	Outlook	✓	0.965	6.7	op075	Microsoft	✓	0.972	0.9
7983549	Microsoft	✓	0.918	3.5	op031	Microsoft	✓	0.96	3.3	op076	Facebook	✓	0.987	7.5
7983503	Microsoft	✓	0.929	3.7	op032	Shared Document	✓	0.975	13.1	op077	Outlook	✓	0.983	6.8
7983245	Microsoft	✓	0.979	16.8	op033	Facebook	✓	0.995	6.1	op078	Facebook	✓	0.987	8.5
7982619	Shared Document	✓	0.992	3.3	op034	Microsoft	✓	0.926	4.1	op079	Facebook	✓	0.973	4.0
7981210	Microsoft	✓	0.899	3.3	op035	Facebook	✓	0.991	4.7	op080	Microsoft	✓	0.964	14.3
7949021	Microsoft	✓	0.903	7.5	op036	Facebook	✓	0.998	6.2	op081	Microsoft	✓	0.971	3.4
7949019	Microsoft	✓	0.968	7.0	op037	Microsoft	✓	0.947	5.3	op082	Outlook	✓	0.970	9.8
7949016	Microsoft	✓	0.997	6.4	op038	Netflix	\checkmark	0.998	12.4	op083	Microsoft	✓	0.985	4.9
7948992	Shared Document	✓	0.984	8.2	op039	Microsoft	\checkmark	0.907	23.3	op084	Outlook	✓	0.964	5.1
7948941	Microsoft	✓	0.850	6.6	op040	Microsoft	\checkmark	0.971	3.6	op085	Outlook	\checkmark	0.963	5.2
Average													0.959	10.7

Effectiveness & Efficiency

- **Effectiveness**: all the 135 adversarial phishing webpages evade the CNN-based image classifier.
- **Efficiency**: About ten minutes are required to generate the adversarial downsampled screenshot and the full-size adversarial screenshot.
 - Python 3.7.11, TensorFlow 2.7.0
 - Intel Core i7-10870H CPU @ 2.20 GHz
 - >92.6% samples take no more than half an hour

#Samples	#Successfully Evaded	Success Rate	Average Time Cost (Adv. Screenshot Generation + Inverse Downsampling)				
135	135	100%	10.7 minutes				

Visual Utility

- Quantitative analysis: average AUC is 0.959, indicating low page-wide saliency change between fullsize adversarial screenshot and the original screenshot.
- User study: 23 CS students to identify abnormal or incongruent regions on the displayed pages.
 - Randomly displaying 100 phishing webpages, 50 adversarial + 50 original
 - 1700 valid feedback entries
 - Around half of the samples are inaccurately recognized;
 - None of the samples achieve unanimous correct identification across all participants;
 - Differentiating between the adversarial and original samples is challenging for the participants.
- **Conclusion**: the visual utility of adversarial samples is well preserved.

	Original	Adversarial
Total (1700)	858	842
Correctly Identified (860)	574 (66.9%)	286 (34.0%)
Incorrectly Identified (840)	284 (33.1%)	556 (66.0%)

Case Study - Original

Classification score:

0.91 (phishing)

Case Study - Adversarial

Classification score:

0.20 (benign)

Case Study – Perturbed Regions

Case Study – Perturbation Detail

• Smooth and flattened perturbations lead to a little saliency deviation and will not cause marked shift in attentional focus of browser users.

Conclusion

- Proposing a feasible approach to bypassing Google's new-generation CNN-based phishing webpage detector;
- Bypassing the phishing image classifier with a success rate of 100%, with visual utility well preserved in the adversarial webpages;
- Generating the adversarial webpage is fast.
- Artifacts: https://github.com/GoodPhishman/A-Good-Fishman-Knows-All-the-Angles

Q & A

Adversarial Screenshot Generation

- **Input**: downsampled webpage screenshot (48*48 px)
- Output: downsampled adversarial webpage screenshot (48*48 px)
- Method:
 - Selecting candidate pixels for modification,
 - Modifying candidate pixels.

- Attacker chosen high-risk pixels, e.g., input box
- ➤ Medium-risk pixels, e.g., logo
- ➤ Low-risk pixels, e.g., bg images

Iterative optimization or Stop

Adversarial Screenshot Generation

- **Input**: downsampled webpage screenshot (48*48 px)
- Output: downsampled adversarial webpage screenshot (48*48 px)
- Method:
 - Selecting candidate pixels for modification,

Iterative optimization or Stop

Adversarial Screenshot Generation

- **Input**: downsampled webpage screenshot (48*48 px)
- Output: downsampled adversarial webpage screenshot (48*48 px)
- Method:
 - Selecting candidate pixels for modification,
 - Modifying candidate pixels.
 Relaxing upper/lower limits, or
 Modifying more pixels

 Calculating upper/lower limit

 Calculating gradient & Modifying and clipping modification degree

 Iterative optimization or Stop

An Example – Adversarial Screenshot Generation

Original downsampled screenshot (48*48 px)

Adversarial downsampled screenshot (48*48 px)

Perturbated pixels

An Example – Inverse Downsampling

Full-size adversarial screenshot

Original phishing page is blocked.

Adversarial phishing page is NOT blocked.

Perturbated regions.

Original phishing page is blocked.

Adversarial phishing page is NOT blocked.

Perturbated regions.

Original phishing page is blocked.

Adversarial phishing page is NOT blocked.

Perturbated regions.

Lightweight Defense against the Evasion

- Adversarial Training: 50 random samples as training set and the remaining 85 as testing set.
 - Fortunately, all the 85 in the testing set are able to be detected.
- Noise Filtering: treating perturbations as noise and applying a filtering technique.
 - 5*5 median filter and 9*9 Gaussian filter
 - 92 samples (68.1%) can be detected after the filtering.