

팬심M 고객 세분화 프로젝트

AI_14_최유진

CONTENTS

프로젝트 개요

• 프로젝트 목적

마케팅을 보다 효과적으로 할 순 없을까?

구매 행동을 기반으로 고객을 분류하는

효과적인 맞춤 마케팅

프로모션 효과가 클 것 같은 고객을 타겟팅 하고싶은데..

VIP 고객들을 어떻게 파악하지?

새로운 서비스를 구매력이 좋은 고객에게 먼저?

Customer Segmentation

고객의 행동 유형을 기반으로 고객을 분류하는 것

고객 개인의 특성에 맞춘 세밀한 마케팅으로 효과를 증대시키고 매출을 극대화하는 개인화 마케팅에 활용

RFM Analysis

CRM 마케팅 분야에서 가장 널리 사용되는 고객 세분화 모델 RFM

Recency (최근 구매 여부): 고객이 얼마나 최근에 구매했는 가?

Frequency (구매 빈도): 고객이 얼마나 자주 방문했는가?

Monetary (구매 **금액**) : 고객이 돈을 얼마나 썼는가?

Analysis Method

분석 방법

- 가설 검증
- RFM 세분화
- 시계열 분석을 통해 주차 별 서비스 사용량 파악 및 시각화
- 등급 별 필요한 action item or 등급을 상승시키기 위한 action item 도출

데이터 :

데이터 소개

02.데이터 소개

셀럽 활동 데이터

channel_url_x

- 메시지가 전송된 채팅방 url 입니다.

id_type

- 팬과 셀럽의 구분입니다.

message

- 전송된 메시지 내용입니다.

Message_count

- sender_id 기준 총 메시지의 수 입니다..

created_at

- 메시지 전송 시간입니다.

트위치, 아프리카, 유투브 수

-각 채널 팔로워의 수 입니다.

02.데이터 소개

셀럽 활동 데이터

채널주인

- 본인 채팅방 url 입니다.

sender_id

- 메시지 전송자의 이메일 입니다.

sender_nickname

- 메시지 전송자의 nickname 입니다.

channel_name

- 현재 채팅방 name 입니다.

데이터 프레임

데이터 프레임

일 글 서뮤니티 링크 성 공 열 7 야 특

채널주인 channel_name_secured sender_nickname_secured sender_id_secured read_receipt_secured

https://tgd.kr/s/witching_ 여 지 O sendbird_group_channel_38649690_0c2f6fa0c6fd20	김위*	[pdk****ol@gma******, 위칭 wit****g_@dau***** hye*****27@gma*******, ho
https://tgd.kr/s/witching_ 여 지 o sendbird_group_channel_38649690_0c2f6fa0c6fd20	김위*	[pdk****ol@gma******, 위칭 wit****g_@dau***** hye*****27@gma******, ho
https://tgd.kr/s/witching_ 여 O sendbird_group_channel_38649690_0c2f6fa0c6fd20	김위*	[pdk****ol@gma******, 위칭 wit****g_@dau***** hye*****27@gma******, ho
https://tgd.kr/s/witching_ 여 지 o sendbird_group_channel_38649690_0c2f6fa0c6fd20	김위*	[pdk****ol@gma******, 위칭 wit****g_@dau***** hye*****27@gma******, ho
https://tgd.kr/s/witching_ 여 지 O sendbird_group_channel_38649690_0c2f6fa0c6fd20	김위*	[pdk****ol@gma******, 위칭 wit****g_@dau***** hye*****27@gma******, ho

데이터 프레임 정보

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 152285 entries, 0 to 541749
Data columns (total 25 columns):
# Column
                            Non-Null Count
                                             Dtype
    channel_url_x
                             152285 non-null
                                            object
    type
                            152285 non-null
                                            object
                            152285 non-null
                                            object
    message
                             152285 non-null
                                            object
    created at
    id type
                            152285 non-null
                                             object
                            152285 non-null float64
    channel_member_count_x
                             152285 non-null float64
    message count
    channel created at
                            152285 non-null float64
    registration date
                            152285 non-null object
    total shot
                             152285 non-null float64
                               144615 non-null float64
10 트위치
                                      144615 nor<mark>-null object</mark>
11 아프리카(애청자/팬클럽)
 12 유튜브 수
                                144615 non-null object
    메인 플랫폼 링크
                                   144615 non-null object
```

```
14 콘텐츠 카테고리
                                144615 non-null object
15 메인 평균 방송시간(9개)/업로드주기
                                      144615 non-null object
   평균 시청 횟수/최근 조회수
                                   144615 non-null object
   커뮤니티 링크
                               144615 non-null object
   성별
18
                           144615 non-null object
   얼굴 공개 여부
                               144615 non-null object
20 채널주인
                             151319 non-null object
                          152285 non-null object
   channel_name_secured
22 sender_nickname_secured 152285 non-null object
                         152285 non-null object
23 sender_id_secured
24 read_receipt_secured
                          152285 non-null object
dtypes: float64(5), object(20)
memory usage: 30.2+ MB
```

- 수가 다른 데이터가 존재(붉은 박스)
- 결측치가 있을 것으로 보여 추후 확인 후 제거
- 데이터 자료형을 바꿔주어야 하는 컬럼 확인(푸른 박스)

기준(index) Feature 설정

sender_nickname_secured	sender_id_secured
유메*	ezu***ll@nav*****
정다**	jda***ol@gma*****
반달*	ban*******15@gma*****
정다**	jda***ol@gma*****
후_*	np242@kor******

마스킹 처리가 되어도 중복이 발생하지 않는 sender_id_secured를 기준 id로 활용

컬럼 추가(own_channel)

celeb_df.insert(21, 'own_channel', celeb_df['channel_url_x']==celeb_df['채널주인'])

own_channel	channel_name_secured	sender_nickname_secured	sender_id_secured	read_receipt_secured
True	김선*	김선*	wng****33@nav*****	[pdk****ol@gma******, hye*****27@gma******, ho
True	정다**	정다**	jda***ol@gma*****	[pdk****ol@gma******, hye****27@gma*****, ho
True	김쨰	김쨰	kim***e0@gma*****	[pdk****ol@gma******, hye*****27@gma******, ho
True	찡스	찡스	yoo****36@nav*****	[pdk****ol@gma******, hye****27@gma******, ho
False	소누*******	유완*	yas******to@nav*****	[pdk****ol@gma*****, hye****27@gma*****, ho

- 'channel_url_x' 컬럼과 '채널주인' 값이 **일치**할 경우 **본인의 채팅방에서 팬들과 대화**하고 있는 셀럽 해당 정보를 'own_channel'(**자신의 채널)** 컬럼 추가를 통해 구분 가능하도록 하였음.
- True(자신의 채팅방) False(다른 셀럽의 채팅방)

셀럽 간 대화 데이터 제거

```
| len(celeb_df.loc[celeb_df['own_channel'] == True])
| 147101 ← 자신의 채팅방에서 대화
| len(celeb_df.loc[celeb_df['own_channel'] == False])
| 5184 ← 타 셀럽의 채팅방에서 대화
| print(float(5184/152285))
| 0.034041435466395244
```

타 셀럽의 채팅방에서 행한 채팅은 전체 의 약 3.4%

•팬심은 팬과 소통하는 것이 핵심인 플랫폼이기에 **셀럽끼리 대화한 데이터는 제** 거

제거 후 셀럽 수 확인

셀럽 간 대화 데이터 제거 후 데이터 내 셀럽의 수가 421명에서 225명으로 감소

→ 팬과 대화하지 않고 셀럽들과의 메시지만 주고받는 회원 존재

결측치 제거

```
celeb_df['아프리카(애청자/팬클럽)'].isna().sum()
7070

celeb_df['유튜브 수'].isna().sum()
7070

celeb_df['트위치'].isna().sum()
7070
```


아프리카, 트위치, 유튜브 수 컬럼 결측치 확인 및 제거

컬럼 추가(total_follower)

df_celeb_sum = celeb_df[['트위치', '아프리카(애청자/팬클럽)', '유튜브 수']].apply(lambda series:series.sum(), axis=1)

celeb_df.insert(13, 'total_follower', df_celeb_sum)

아프리카, 트위치, 유튜브 팔로워 수 합 산

컬럼 추가(total_follower)

	created_at	message_count	total_follower	sender_id_secured
0	2022-02-27 01:03:05	2792.0	16620.0	wit****g_@dau*****
1	2022-02-27 01:03:06	2792.0	16620.0	wit****g_@dau*****
2	2022-03-01 13:43:28	2792.0	16620.0	wit****g_@dau*****
3	2022-03-01 22:03:24	2792.0	16620.0	wit****g_@dau*****
4	2022-03-01 22:03:32	2792.0	16620.0	wit****g_@dau*****
5	2022-03-01 22:03:37	2792.0	16620.0	wit****g_@dau*****
6	2022-03-02 23:04:45	2792.0	16620.0	wit****g_@dau*****
7	2022-03-02 23:04:50	2792.0	16620.0	wit****g_@dau*****
8	2022-03-02 23:04:55	2792.0	16620.0	wit****g_@dau*****
9	2022-03-02 23:05:00	2792.0	16620.0	wit****g_@dau*****

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 140031 entries, 0 to 541749
Data columns (total 4 columns):
    Column
                       Non-Null Count
                                        Dtype
    created_at
                       140031 non-null
                                        datetime64[ns]
                       140031 non-null
                                       float64
    message_count
   total_follower
                       140031 non-null float64
    sender_id_secured 140031 non-null
                                       object
dtypes: datetime64[ns](1), float64(2), object(1)
memory usage: 5.3+ MB
```

RFM 분석을 위하여 필요한 특성만 추출

- Created_at(메시지 전송 시간)
- Message_count(총 메시지 수)
- Total_follower(총 팔로워 수)
- Sender_id_secured(셀럽 id)

가설 설정

	가설
R (메시지 전송 날짜)	셀럽의 가장 최근 메시지 전송 날짜의 분포가 가장 오래된 메시지부터 가장 최근 메시지까지 상위 25% 단위로 잘라 점수를 산정해도 될 만큼 골고루 분포해 있을 것이다.
F	셀럽의 메시지 총량을 상위 25% 단위로 잘라 점수를 산정해도 될 만큼 골고
(총 메시지 수)	루 분포해 있을 것이다.
M	셀럽의 <mark>총 팔로워</mark> 수를 상위 25% 단위로 잘라 점수를 산정해도 될 만큼 골고
(총 팔로워 수)	루 분포해 있을 것이다.

- 셀럽 데이터에 RFM모델을 적용하여 상위 25% 단위로 나누어 R,F,M 각각 1점부터 4점까지 점수를 부여해 고객 세분화
- 위의 가설 검증을 통해 기준과 데이터가 적절한지 확인하고 근거를 제시

데이터 분석 및 가설 검정

1. R(메시지 전송 날짜)

df3 = df.groupby('sender_id_secured')['created_at'].max().reset_index()

	sender_id_secured	created_at
0	0ga**a0@nav*****	2022-09-14 18:53:12
1	2sa**am@gma*****	2022-09-17 22:39:28
2	382**73@nav*****	2022-09-11 23:56:54
3	595**15@nav*****	2022-09-02 20:55:09
4	982***71@nav*****	2022-09-17 19:29:33
5	MAM***44@gma*****	2022-09-10 21:06:37
6	Npi****dy@gma*****	2022-09-14 22:07:48
7	a03**14@nav*****	2022-09-14 00:59:31
8	abx***17@gma*****	2022-09-17 16:33:16
9	ado*****te@gma*****	2022-09-16 20:20:29
10	alz****31@nav*****	2022-09-17 23:11:05

셀럽 별 **가장 최근 메시지를 기준**으로 데이터 프레임 생성

에이터 분석 및 가설 검정

1. R(메시지 전송 날짜)

가설 기각

• 가장 최근 메시지 전송 일자를 기준으로 했을 때, 특정 구간(9/16~17)에만 분포가 밀집되어 변별력이 떨어지는 것을 확인

따라서, R(메시지 전송 날짜)에 대하여 설계한 가설은 기각 새로운 기준 설계 필요

새로운 가설 설정 및 컬럼 추가

	sender_id_secured	created_at	month_cnt
0	0ga**a0@nav*****	2022-09-14 18:53:12	12
1	2sa**am@gma*****	2022-09-17 22:39:28	256
2	382**73@nav*****	2022-09-11 23:56:54	151
3	595**15@nav*****	2022-09-02 20:55:09	8
4	982***71@nav*****	2022-09-17 19:29:33	77
5	MAM***44@gma*****	2022-09-10 21:06:37	4
6	Npi****dy@gma*****	2022-09-14 22:07:48	1
7	a03**14@nav*****	2022-09-14 00:59:31	1
8	abx***17@gma*****	2022-09-17 16:33:16	32
9	ado*****te@gma*****	2022-09-16 20:20:29	61
10	alz****31@nav*****	2022-09-17 23:11:05	688

← 가장 최근 한 달간 총 메시지 수

기존 R 측정 기준 : 가장 최근 메시지 전송 일자

변경 R 측정 기준 : 최근 한 달간 총 메시지 수

가설 검정을 위한 데이터 통합

	sender_id_secured	created_at	month_cnt	message_count	total_follower
0	0ga**a0@nav*****	2022-09-14 18:53:12	12	198.0	2855.0
1	2sa**am@gma*****	2022-09-17 22:39:28	256	3011.0	5537.0
2	382**73@nav*****	2022-09-11 23:56:54	151	832.0	0.0
3	595**15@nav*****	2022-09-02 20:55:09	8	8.0	0.0
4	982***71@nav*****	2022-09-17 19:29:33	77	114.0	0.0
5	MAM***44@gma*****	2022-09-10 21:06:37	4	5.0	5495.0
6	Npi****dy@gma*****	2022-09-14 22:07:48	1	1.0	195000.0
7	a03**14@nav*****	2022-09-14 00:59:31	1	1.0	0.0
8	abx***17@gma*****	2022-09-17 16:33:16	32	32.0	1095.0
9	ado*****te@gma*****	2022-09-16 20:20:29	61	248.0	0.0
10	alz****31@nav*****	2022-09-17 23:11:05	688	7481.0	8758.0

새로운 가설 검정 및 R,F,M 관련 특성을 한 번에 다루기 위해 통합 데이터프레임 생성

데이터 분석 및 가설 검정

1. R(한 달간 메시지 총량)

➤ 분포가 적절하여 가설 True

데이터 분석 및 가설 검정

2. F(메시지 총량)

➤ 분포가 적절하여 가설 True

데이터 분석 및 가설 검정

3. M(총 팔로워 수)

➤ 분포가 적절하여 가설 True

RFM 기반 분석

with Tableau

RFM 분석 기법

각각의 기준에 따라 고객을 4분위로 분류하고 점수 부여

Score	Recency	Frequency	Monetary
특징	작을수록 거래일이 최근	클수록 거래 빈도 많음	클수록 구매 금액 큼
4	0%-25%	75%-100%	75%-100%
3	20%-50%	50%-75%	50%-75%
2	50%-75%	25%-50%	25%-50%
1	75%-100%	0%-25%	0%-25%

05. RFM 기반 분석

기준 별 점수를 합산하여 동일한 점수의 고객들을 하나의 그룹으로 분류함

Segment	특징	Recency Score	Frequency Score	Monetary Score
VIP 고객	최근에 구매했고, 자주 그리고 큰 금액을 소비하는 고객	4	4	4
충성 고객	많은 금액을 소비하고, 프로모션에 잘 반응하는 고객	2 - 4	3 - 4	4
잠재 충성 고객	최근 고객이고, 많은 금액을 소비하며, 1번 이상 구매한 고객	3 - 4	1-3	1-3
신규 고객	최근에 구매했으나 자주 오지 않은 고객	4	< 2	< 2
잠재 고객	최근에 구매했으나 많이 소비하지 않는 고객	3 - 4	< 2	< 2
관심 필요 고객	최근성, 빈도, 구매 금액이 모두 평균 이상인 고객	3 - 4	3 - 4	3 - 4
잠드려는 고객	최근성, 빈도, 구매 금액이 모두 평균 이하인 고객	2 - 3	< 3	< 3
이탈 우려 고객	많은 금액을 소비하고, 자주 구매했으나 오래 방문하지 않은 고객	< 3	2 - 4	2 - 4
놓치면 안될 고객	매우 큰 금액을 소비하고, 매우 자주 구매했으나 오래 방문하지 않은 고객	< 2	4 - 4	4 - 4
겨울잠 고객	적은 금액을 소비하고, 방문 빈도가 낮으며, 오래 전에 방문한 고객	2 - 3	2 - 3	2 - 3
이탈 고객	최근성, 빈도, 구매 금액이 모두 가장 낮은 고객	< 2	< 2	< 2

RFM 점수에 따른 고객 세분화 기준 적용

총 5가지 기준으로 고객 세분화

- 1. 잠재 충성 고객(Potential Loyalist) 38.21%
- 2. 이탈 우려 고객(At Risk) 35.85%
- 3. 일반 고객(General) 14.62%
- 4. 충성 고객(Loyal Customers) 7.55%
- 5. 잠드려는 고객(About to sleep) 3.77%

데이터 시각화

(Tableau)

마케팅 시나리오

RFM Celeb Segmentation

마케터가 직접 분석할 수 있도록 인터랙티브 기능 활용 분석형 대시보드 >세그먼트 선택 후 해당고객 데이터 보도록

마케팅 시나리오

RFM Celeb Segmentation

비즈니스 목표

효율적인 개인화 마케팅을 통한 매출 증대

기능목표

- 1. 고객 세그먼트 별 비중을 한눈에 볼 수 있도록
- 2. 해당하는 고객 리스트와 정보를 보여줄 것
- 3. 서비스 사용량 트렌드 시계열 그래프 표시

06. 데이터 시각화 (Tableau) - 대시보드 제작

마케팅 시나리오

RFM Celeb Segmentation

View & Data & Calc

RFM Score

STR([Recency Score]) + STR([Frequency Score]) + STR([Monetary Score])

Recency (최근성)

{FIXED [Sender Id Secured], YEAR([Created At]) : MAX([Month Cnt])}

Frequency (구매 빈도)

{FIXED [Sender Id Secured], YEAR([Created At]) :

MAX([Message Count])}

Monetary (구매 금액)

{FIXED [Sender Id Secured], YEAR([Created At]) : MAX([Total Follower])}

06. 데이터 시각화 (Tableau) - 대시보드 제작

마케팅 시나리오

RFM Celeb Segmentation

3 디자인

컬러

파스텔 핑크 계열 Pink, Red, Purple

글꼴

Trebuchet MS (웹 호환)

레이아웃 & 디테일

트렌드 지표: 최저, 최고, 강조 + 전월 대비 비교 간트 차트

Ternary Plot : 세그먼트 클릭 시 해당 고객 하이라이트

CELEB Segmentation RFM Analysis for Target Marketing

CELEB List ▶ | By CELEB Segment

Year

Customer ID

ang***55@gma***.. 2022

ara**80@nav***** 2022

ari******ng@gma.. 2022

asm****id@gma**.. 2022

aud*****30@nav**.. 2022

bae***37@gma***.. 2022

ban*******15@g.. 2022

bbo*****rl@gma**.. 2022

bes**20@nav***** 2022

bic****04@nav***.. 2022

bom*****30@gma.. 2022

bon****** @nav*.. 2022

Celeb Segment

Loyal Customers

Potential Loyalist 432

Potential Loyalist 313

Potential Loyalist 322

Potential Loyalist 321

At Risk

At Risk

At Risk

General

General

At Risk

At Risk

■ Potential Lo.. ■ Loval Custo.. ■ At Risk ■ About to Sle.. ■ General

RFM Score | The R-F-M scores we...

AVG RFM Score

평균 Recency Score: 2.5

평균 Frequency Score: 2.5

평균 Monetary Score: 2.5

CELEB Segmentation ▶ | with RFM Analysis

RFM

223

224

144

231

231

143

244

243

RFM 세그멘테이션		Total Follower
365	152	21,000
722	1,294	21,000
95	260	0
0	337	1,847
124	329	0
316	1,421	6,992
186	1,313	11,000
40	40	6,301
207	770	3,438
33	197	1,736
54	67	0

3 디자인 / 대시보드 액션

Ternary Chart ► | Each dot represents one Celeb.

Frequency

LEFT : Recency | RIGHT : Frequency | TOP : Monetary

Action Item 도출

07. Action Item 도출

Action Item

그렇다면 등급을 높이려면 어떻게 해야 할까?

07. Action Item 도출

0.50

1967

7856

Name: total_follower, dtype: int32

Action Item

```
rr_df['month_cnt'].quantile(q=(0.25, 0.5, 0.75), interpolation='nearest')
                                                            Recenecy (최근 한달 메시지 수)
0.25
       10
                                                            1점: 10↓ 2점: 10↑ 3점: 57↑ 4점: 228↑
       57
0.50
0.75
      228
Name: month_cnt, dtype: int32
rr_df['message_count'].quantile(q=(0.25, 0.5, 0.75), interpolation='nearest')
                                                            Frequency (전체 기간 메시지 수)
0.25
       52
                                                            1점:52↓ 2점:52↑ 3점:217↑ 4점:678↑
0.50
      217
0.75
      678
Name: message_count, dtype: int32
rr_df['total_follower'].quantile(q=(0.25, 0.5, 0.75), interpolation='nearest')
                                                            Monetary (총 팔로워 수)
0.25
       391
                                                            1점:391↓ 2점:391↑ 3점:1967↑ 4점:7856↑
```

마무리

프로젝트 결과 정리

- 팬과의 소통이라는 서비스 취지에 맞지 않는 사용자 데이터 확인 및 제거
- RFM 모델 적용하여 5가지 기준으로 고객 세분화
- 추후 고객 세분화 등급 업데이트를 위한 액션 아이템 제시

프로젝트 회고

- 실무 데이터를 접해본 결과 깔끔하게 정제된 교육 데이터와 다르게, 전처리 과정에 따라 분석 결과가 크게 달라지겠다는 생각이 들었습니다.
- 데이터가 프로젝트에서 추구하는 방향에 100% 적합할 수 없고, 모자란 부분을 채우는 것이 데이터 분석가의 역량이라는 것을 배웠습니다.
- 시간 또는 데이터가 더 풍족했더라면 하는 아쉬움이 남았습니다. Feature 간의 상관관계 분석, 디테일한 RFM 가중치 설정, 다양한 관점에서의 전처리에 대한 아쉬움이 있어 이후 프로젝트 진행 시 참고할 것입니다.
- 서비스 담당자 분과 의사소통 기회가 좀 더 있었으면 서비스 운영에 더 유의미한 분석을 할 수 있었겠다는 생각이 들었습니다.

Thanks!

<u>Tableau_Link</u>