Теортест-1 (Вариант 101)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. Верхняя сумма Дарбу является наибольшей из всех интегральных сумм для данного разбиения;
- 2. Верхняя сумма Дарбу не меньше любой интегральной суммы для данного разбиения;
- 3. При измельчении разбиения верхняя сумма Дарбу уменьшается;
- 4. При измельчении разбиения верхняя сумма Дарбу уменьшается или не изменяется;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. площадь графика любой функции равна нулю;
- 2. площадь одной точки равна нулю;
- 3. площадь A всегда положительна;
- 4. если $A \subset B$, то площадь A меньше площади B;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна на [a,b] и f((a+b)/2)=1;
- 2. f((a+b)/2) = 1;
- 3. f > 0 на [a, b];
- 4. f(a) > 0, f(b) > 0;

Задача 4

Выберите все верные утверждения:

- 1. Гладкая кривая это кривая, все параметризации которой гладкие;
- 2. Спрямляемы только кусочно-гладкие кривые;
- 3. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 4. Длины противоположных путей равны;
- 5. Длина спрямляемой кривой конечна;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть $f \in R[a,b]$, $F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];
- 2. F имеет разрывы в точках разрыва функции f;
- 3. Если $f \ge 0$ на [a, b], то F не убывает на [a, b];
- 4. F непрерывна на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^9}{x^5+1}$;
- 2. $\frac{x}{x^2-1}$;
- 3. $\frac{x^2-x+1}{x^2+x}$;
- 4. $\frac{x^2-1}{x^2+1}$;

Задача 7

Пусть функции $f, g \colon [a,b] \to \mathbb{R}$. Выберите все верные утверждения:

- 1. Если функция f + g интегрируема на [a, b], то f и g тоже интегрируемы на [a, b];
- 2. Если f интегрируема на [a,b], то |f| тоже интегрируема на [a,b];
- 3. Если f и g интегрируемы на [a,b], то f+g тоже интегрируема на [a,b];
- 4. Если f и g интегрируемы на [a,b], то $f \cdot g$ тоже интегрируема на [a,b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_e^{e^3} \frac{f(x)}{x} dx$:

- 1. [-2, 10];
- 2. [-1, 20];
- 3. [-2, 20];
- 4. [0, 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v = u';
- 2. v = u' + C;
- 3. u = v';
- 4. v' = u + C:

Задача 10

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

1.
$$\int \frac{f'(x)}{x} dx = \frac{f(x)}{x} + \int \frac{f(x)}{x^2} dx;$$

2.
$$2 \int f'(x) \sqrt{x} dx = 2 \sqrt{x} f(x) - \int \frac{f(x)}{\sqrt{x}} dx;$$

3.
$$2 \int x f(x) dx = x^2 f'(x) - \int x f'(x) dx;$$

4.
$$\int f'(x) \sin x dx = \cos x \cdot f(x) - \int f(x) \cos x dx$$
;