Year 11 Mathematics Methods (AEMAM)

Test 5 2016

Time Allowed: 30 minutes Calculator Assumed

Marks / 32

I page of notes one side allowed. Wame:

6. [5 marks] Circle Your Teachers Name: McRae Friday Mackenzie

and the corresponding values of x and y. Give exact answers. Given that the maximum value of solutions and solution method to determine the maximum value of A Since t = x + x and t = x + x and t = x + x for the maximum value of A Since t = x + x for the

The total cost of producing x blankets per day is $\frac{1}{4}x^2 + 8x + 20 \ dollars$ and each blanket may be sold at

 $(23 - \frac{1}{2}x)$ dollars.

Use a calculus method to determine how many blankets should be produced each day to maximise the total profit.

10. [1,1,3,4 marks]

The displacement s (in metres) at time t (in seconds) of a particle moving in a horizontal straight line is given by:

$$s(t) = (t - 3)(2t + 3)(t - 6)$$

Determine

- (a) The initial displacement of the particle.
- (b) the displacement of the particle when t=4.
- (c) When the particle changes direction, using calculus.
- (b) The total distance travelled in the first four seconds (to the nearest metre).

End of Section 2

8.	[1,2,1,2,2 marks]
A bulle	t is fired upwards. After t seconds the height of the bullet is found from the rule
$H(t) = 150t - 4.9t^2 + 2$ where t is measured in seconds and H in metres.	
(a)	Find the height of the bullet after 5 seconds.
(b)	Determine the average speed of the bullet during the fifth second. Indicate your method.
	red of the bullet is the instantaneous rate of change of the height of the bullet. Find the speed of the bullet after 5 seconds.
(d)	Find the maximum height of the bullet, to the nearest metre.

(e) Determine the bullet's speed as it hits the ground, on the way down correct to two decimal places.

9. [2,1,3 marks]

A piece of wire, 300cm long is used to make the 12 edges of the frame of a rectangular box. The length of the rectangular frame is three times that of the width of the frame, x cm.

(a) Show that the height, h, of the rectangular box is given by, h = 75 - 4x.

- (b) Show that the volume , V, of the box is given by $V=225x^2-12x^3$
- (c) Use a calculus method to determine the dimensions of the frame that will maximize the volume of the box.