Convex optimization Exercises

Luis Antonio Ortega Andrés Antonio Coín Castro

March 21, 2021

Exercise 1. Show that if S is an open set, its complement S^c is closed, and viceversa.

Solution. Given that S is open, we got that $\forall x \in S \ \exists \delta > 0 : B(x, \delta) \subset S$. By definition $S^c \subset \bar{S}^c$, where

$$\bar{S}^c = \{x : \forall \delta \ B(x, \delta) \cap S^c \neq \emptyset\}.$$

Let $x \in \bar{S}^c$, then $\forall \delta > 0$,

$$B(x,\delta) \cap S^c \neq \emptyset \implies B(x,\delta) \not\subset S \implies x \notin S \implies x \in S^c$$
.

Therefore, we have shown that $\bar{S}^c \subset S^c \implies \bar{S}^c = S^c$.

Exercise 2. If S_1 , s_2 are convex subsets, prove that $S_1 \cup S_2$, $S_1 + S_2$ and $S_1 - S_2$ are also convex sets.

Solution. Let us begin with $S_1 \cup S_2$, let $x, x' \in S_1 \cup S_2$ and $\lambda \in (0, 1)$. We got that

$$x, x' \in S_1 \cup S_2 \implies \lambda x + (1 - \lambda)x' \in S_1 \text{ and } \lambda x + (1 - \lambda)x' \in S_2$$

Therefore, $\lambda x + (1 - \lambda)x' \in S_1 \cup S_2$, meaning the set is convex.

Consider now $x, x' \in S_1 + S_2$, we can decompose them as $x = x_1 + x_2$ and $x' = x'_1 + x'_2$, such that

$$\lambda x + (1 - \lambda)x' = \lambda x_1 + (1 - \lambda x_2) + \lambda x_1' + (1 - \lambda x_2') \in S_1 + S_2.$$

Lastly, consider the set $S_1 - S_2$, using the same reasoning used in the previous set, it is convex.

Exercise 3. If $f: S \to \mathbb{R}$ is a convex function on the convex set S, the set $\{x: x \text{ is a minimum of } f\}$ is a convex set.

Solution. Let $A = \{x \in S : x \text{ is a minimum of } f\}$ and consider $x, x' \in A$, $\lambda \in (0,1)$, since f is convex, there is only one minimal value, ie, f(x) = f(x') = c. Using this, $x \in A \iff f(x) = c$ and $\exists x \in S$ such that f(x) < c. Therefore

$$f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x') = f(x) \implies \lambda x + (1 - \lambda)x' \in A.$$

As a result A is a convex subset of S.

Exercise 4. Let $f: S \subset \mathbb{R}^d \to \mathbb{R}$ be a convex function on the convex set S and we extend it to an $\hat{f}: \mathbb{R}^d \to \mathbb{R}$ as

$$\bar{f}(x) = \begin{cases} f(x) & \text{if } x \in S, \\ +\infty & \text{if } x \notin S \end{cases}$$

Show that \hat{f} is a convex function on \mathbb{R}^D .

Solution: Let $x, x' \in \mathbb{R}^d$ and $\lambda \in (0, 1)$,

- If $x, x' \in S$, $\hat{f}(\lambda x + (1 \lambda)x') \le \lambda \hat{f}(x) + (1 \lambda)\hat{f}(x') = f(x)$.
- If $x \notin S$, $\lambda \hat{f}(x) + (1 \lambda)\hat{f}(x) = +\infty$ and the save happens for $x' \notin S$.

Exercise 5. If Q is a symmetric, positive definite $d \times d$ matrix, show that $f(x) = x^T Q x$, $x \in \mathbb{R}^d$, is a convex function.

Solution. We know that f is convex given that its Hessian its semi-definite positive

$$\nabla^2 f(x) = 2Q \ge 0.$$