豊田	 工業高等	専門学校	開講年度	令和02年度 (2020年度)	授	業科目	 コンピュータアーキテクチャ			
科目基礎	計報		·		•	,					
科目番号		34214			科目区分	科目区分 専門 / 道		R必修2			
授業形態		講義		単位の種別と単位	位数	学修単位:	2				
開設学科		情報工学	科	対象学年	対象学年 4						
開設期		後期			週時間数						
教科書/教	材	科書、お	コンビュータアーキ Sよび教材用プリン		5著(オーム社)IS 	著(オーム社)ISBN:978-4-274-20849-2/コンピュータエ学Ⅱの教					
担当教員		仲野 巧									
目的・到											
(ウ)MIPS	<u> カコンピュ</u>	ータアーキ トが理解で ータが理解	テクチャか埋解でき き、アセンブリ言語 でき、VHDLで設計	、説明できる。 Eでプログラムでき [、] できる。	ა .						
ルーブリ	<u> リック</u>										
				ノベルの目安(優)	標準的な到達レ		, ,	未到達レベルの目安(不可)			
評価項目(ア)		RISCのコンピュ ャが理解でき、	RISCのコンピュータアー: ヤが理解できる。		ーキテクナ	RISCのコンピュータアーキテクチャが理解できない。				
評価項目(-	イ)		MIPSの命令セッ	MIPSの命令セットが理解でき、ア センブリ言語でプログラムできる MIPSの命令セ			解できる。	MIPSの命令セットが理解できない。			
評価項目('	ウ)			MIPSのコンピュータが理解でき、 MIPSのコンピュ VHDLで設計できる。 。			ータが理解できる MIPSのコンピュータが到 い。				
学科の到	達目標項	目との関	月係								
	到達度目標	票 A1 ハート	ベウェアの基本動作		ごきるとともに, ソ	フトウ	ェア的手法を	を利用してハードウェアを設計でき			
る. JABEE d st 本校教育目	当該分野に 目標 ① もの	おいて必要)づくり能力	とされる専門的知識	載とそれらを応用する	る能力						
教育方法	等										
概要		に、アt SPIMで	zンブリ言語とハー 動作させながら、I	いて学習する。ま	E理解することが必要不可欠である。そこで、RISCのコンピュータを例 Nて学習する。また、代表的なMIPSのアセンブリ言語をシミュレータ ついて学習する。さらに、実践的なMIPSをVHDLで設計しながら、コン						
M S		この科	タアーキテクチャについて学習する。 科目は企業で組込みシステムの設計を担当していた教員が、その経験を活かし、ハードウェアの技術、特徴、 一タの設計等について講義・演習形式で授業を行うものである。								
授業の進め 容・方法	方と授業内	対講義でノ	ノートに書く代わり	に、説明した内容を	整理してパソコン	でテキス	ストにまとぬ	か、電子的に提出する。			
注意点		コンピニ	L ータ工学 II の単位: こ、および小テスト:	 を修得していること などを行う。	が望ましい。なお	、ノー	-パソコン を	を利用した演習、学習レポート・課			
授業計画											
		週	授業内容・方法			週ごと	の到達目標				
	3rdQ	1週		ンラバスの説明(評価基準)、ハーバードアーキテク チャ(4)、メモリアーキテクチャ(7)、キャッシュメモ Jと仮想メモリ(8)			ハーバードアーキテクチャ、メモリアーキテクチャ、 キャッシュメモリと仮想メモリが理解できる				
		2週	マイクロプロセッ (1.1)、MIPSプロ (1.2)	マイクロプロセッサの歴史と身近な組込みプロセッサ 1.1)、MIPSプロセッサのレジスタ構成と命令セット 1.2)				MIPSのレジスタ構成と命令セットが理解できる			
後期		3週	MIPSシミュレータ	・ AIPSシミュレータとアセンブリ言語の基礎(2.1)(自 学自習でアセンブリ言語演習)				MIPSのアセンブリ言語とシミュレータが理解できる			
		4週	アセンブリ言語に 習でアセンブリ言	己述(2.2)(自学自	アセンブリ言語によるアルゴリズム記述が理解できる						
		5週	サブルーチンコー (1.4)、メモリの利 学自習でアセンブ	令による実現 の動作(2.3)(自	サブルーチンコールが理解できる						
		6週	小テスト、まとめ	小テスト、まとめ			5回の授業の内容が理解できる				
		7週	MIPSの構成部品と ユータの構成部品 でVHDL設計演習)	MIPSの構成部品と代表的な命令の動作(1.3)、コンピュータの構成部品とVHDLによる設計(3.2)(自学自習でVHDI 設計演習)			MIPSの命令の動作が理解できる				
		8週		MIPSのマイクロプログラム制御信号(3.3)(自学自習			MIPSのマイクロプログラム制御信号が理解できる				
	4thQ	9週	MIPSのIF部、IDE VHDL設計演習))(自学自習で	MIPS0.	PSのIF部、ID部が理解できる					
		10週	MIPSのEX部、ME	MIPSのEX部、MEM部、WB部のVHDL設計(3 学自習でVHDL設計演習)			DEX部、MEM部、WB部が理解できる				
		11週	割込みアーキテクチャ(9)、パイプラインアーキテクチャ(10)、 入出力アーキテクチャ(11)			割込みとパイプライン処理が理解できる					
		12週	小テスト、まとめ			5回の授業の内容が理解できる					
		13週	再帰呼出しと浮動 ブリ言語演習)	自学自習でアセン	再起呼	再起呼び出しと浮動小数点演算が理解できる					
		14週	(自学自習でアセ	9帰呼び出しによる階乗計算におけるオーバーフロー (自学自習でアセンブリ言語演習)			再帰呼び出しによる階乗計算が理解できる				
		15週	ハードウェアによる乗算命令の追加と性能比較(自学 自習でVHDL設計演習)			ハードウェアによる乗算命令が理解できる					
	<u> </u>	16週 		±							
モデルニ]アカリキ	Fユラムの)学習内容と到達	達目標							

分類		分野	学習内容	学習内容の到達目標			到達レベル	授業週				
専門的能力	分野別の専 門工学	情報系分野	計算機工学	コンピュータアーキテクチャにおけるトレードオフについて説明 できる。			4					
				ハードウェア記述言語など標準的な手法を用いてハードウェアの 設計、検証を行うことができる。			4					
				要求 を用	要求仕様に従って、標準的なプログラマブルデバイスやマイコンを用いたシステムを構成することができる。							
評価割合												
		定期試験			課題	小テスト	合計					
総合評価割合		50		20	30	100						
専門的能力		50		20	30	100						