MICROARRAYS vs. RNA-SEQ

Elena Sánchez Luis

Departamento de Bioinformática y Genómica Funcional

LABORATORY 19

MICROARRAYS VS. RNA-SEQ

- What I want to search and what genome information is available for my samples of interest?
- How much data analisis expertise do I have or have access to?
- Which is my budget?

EXPERIMENTAL DESIGN

MICROARRAYS

 Microarrays are a collection of DNA probes (oligonucleotides) that are usually bound in defined positions to a solid surface, to which sample DNA fragments can be hybridized

MICROARRAYS FLOW CHART

- Two oligonucleotides with different sequences are immobilized on a DNA chip.
- Hybridization of the fluorophorelabelled DNA with the immobilized oligonucleotides.
- One oligonucleotide is perfectly bound while the other forms a mispair.

Fluorescence detection of the hybrid on the chip surface. Stringent wash of the chip.

MICROARRAYS FLOW CHART

- RNA extraction
- 2. labeled with a detectable marker
- 3. hybridize to to complementary gene
- 4. laser scanning
- Calculation of relative level of expression

Analyses are expression measures for each gene in each sample

MICROARRAYS

Advantages	Disadvantages
✓ Robust, reliable method	X Dependent on prior sequence knowledge
✓ Streamlined handling-can be	
easily automated	X Cannot detect structural variations
✓ Straightforward data analysis	
	X Cannot detect isoforms
✓ Short turn- around time (5 days)	
	X Hybridization and sample
✓ Lower cost	labeling biases
	X Not an absolute quantification method

RNA-SEQ

• RNA-sequencing is a technique that can examine the quantity and sequences of RNA in a sample using next generation sequencing (NGS)

Illumina HiSeq

RNA-SEQ FLOW CHART

RNA-SEQ FLOW CHART

With Reference Genome

- No knowledge of the set of transcribed regions or which exons are spliced together
- Unannotated transcripts

Without Reference Genome

- reads need to be assembled first into longer -> contig
- contigs are remapped for quantification

RNA-SEQ

	Advantages	Disadvantages
✓	Provides a comprehensive view of the transcriptome	X Technology is new to most researchers
✓	Not dependent on any prior sequence knowledge	X Data storage is more challenging
✓	Tuneable sensivity	X Analysis is more complex (not standard protocol)
✓	Can detect structural variations as gene fusions or alternative splicing	X Specialized computing infrastructure and personel are required
✓	A truly digital solution (absolute vs. Relative abundance)	X More expensive

MICROARRAYS VS. RNA-SEQ

SIMILARITIES

- Reproducible
- High correlation
- Background noise
- Statistical principles
- Biases
- Detect genomic information

DIFFERENCES

- Technique
- Sensivity
- Accuracy
- Detection of SNPs
- New DNA sequences
- Prize

ACKNOWLEDGMENTS

Group CIC-IBMCC Javier De Las Rivas

Diego Alonso Óscar González Santiago Bueno Elena Sánchez Alberto Berral Fernando Bueno

Departamento Estadística – Universidad de Salamanca

José Manuel Sánchez Santos Departamento de Terapia Celular- Hospital Universitario de Salamanca Fermín Sánchez-Guijo Martín

TRANSCRIPTION: DNA -> RNA

RNA -> CDNA

MICROARRAYS VS. RNA-SEQ

SUPP1

Comparisons of microarrays

