Unit No. 10

Graphs of Functions

Exercise No. 10.1

Question No. 1

To sketch a linear function y = m x + c:

c is the y-intercept (where the line crosses the y-axis, i.e., when x = 0).

m is the slope (rise over run). Sketch the graph of the following linear functions:

(i)
$$y = 3 x - 5$$

Solution:

$$y = 3 x - 5$$
 (i)

P). Let;
$$x = -2$$

Put in given equation (i):

$$y = 3(-2) - 5$$

$$y = -6 - 5$$

$$y = -11$$

Ordered Pair P: (-2, -11)

Q). Let;
$$x = -1$$

Put in given equation (i):

$$y = 3(-1) - 5$$

$$y = -3 - 5$$

$$y = -8$$

Ordered Pair Q: (-1, -8)

R). Let;
$$x = 0$$

Put in given equation (i):

$$y = 3(0) - 5$$

$$y = 0 - 5$$

$$y = -5$$

Ordered Pair R: (0, - 5)

S). Let;
$$x = 1$$

Put in given equation (i):

$$y = 3(1) - 5$$

$$y = 3 - 5$$

$$y = -2$$

Ordered Pair S: (1, - 2)

T). Let; x = 2

Put in given equation (i):

$$y = 3(2) - 5$$

$$y = 6 - 5$$

$$y = 1$$

Ordered Pair P: (2, 1)

	P	Q	R	S	T
x-axis	-2	-1	0	1	2
y-axis	-11	-8	-5	-2	1

Graphical Representation:

(ii)
$$y = -2 x + 8$$

Solution:

$$y = -2 x + 8$$
 (i)

P). Let;
$$x = -2$$

Put in given equation (i):

$$y = -2(-2) + 8$$

$$y = 4 + 8$$

$$y = 12$$

Ordered Pair P: (-2, 12)

Q). Let;
$$x = -1$$

Put in given equation (i):

$$y = -2(-1) + 8$$

$$y = 2 + 8$$

$$y = 10$$

Ordered Pair Q: (-1, 10)

R). Let; x = 0

Put in given equation (i):

$$y = -2(0) + 8$$

$$y = 0 + 8$$

$$y = 8$$

Ordered Pair R: (0, 8)

S). Let; x = 1

Put in given equation (i):

$$y = -2(1) + 8$$

$$y = -2 + 8$$

$$y = 6$$

Ordered Pair S: (1, 6)

T). Let; x = 2

Put in given equation (i):

$$y = -2(2) + 8$$

$$y = -4 + 8$$

$$y = 4$$

Ordered Pair P: (2, 4)

	P	Q	R	S	T
x-axis	-2	-1	0	1	2
y-axis	12	10	8	6	4

Graphical Representation:

(iii)
$$y = 0.5 x - 1$$

Solution:

$$y = 0.5 x - 1$$
 (i)

P). Let;
$$x = -2$$

Put in given equation (i):

$$y = 0.5 (-2) - 1$$

$$y = -1 - 1$$

$$y = -2$$

Ordered Pair P: (-2, -2)

Q). Let;
$$x = -1$$

Put in given equation (i):

$$y = 0.5 (-1) - 1$$

$$y = -0.5 - 1$$

$$y = -1.5$$

Ordered Pair Q: (-1, -1.5)

R). Let;
$$x = 0$$

Put in given equation (i):

$$y = 0.5(0) - 1$$

$$y = 0 - 1$$

$$y = -1$$

Ordered Pair R: (0, -1)

S). Let;
$$x = 1$$

Put in given equation (i):

$$y = 0.5(1) - 1$$

$$y = 0.5 - 1$$

$$y = -0.5$$

Ordered Pair S: (1, - 0.5)

T). Let;
$$x = 2$$

Put in given equation (i):

$$y = 0.5(2) - 1$$

$$y = 1 - 1$$

$$y = 0$$

Ordered Pair P: (2, 0)

	P	Q	R	S	T
x-axis	-2	-1	0	1	2
y-axis	-2	-1.5	-1	-0.5	0

Question No. 2

Plot the graph of the following quadratic and cubic functions:

(i)
$$y = x^3 + 2 x^2 - 5 x - 6$$
; $-3.5 \le x \le 2.5$

Solution:

Type: Cubic function.

If
$$x = -3.5$$
,

$$y = (-3.5)^3 + 2(-3.5)^2 - 5(-3.5) - 6 = -42.875 + 24.5 + 17.5 - 6 = -6.875$$

If
$$x = -3$$
, $y = (-3)^3 + 2(-3)^2 - 5(-3) - 6 = -27 + 18 + 15 - 6 = 0$

If
$$x = -1$$
, $y = (-1)^3 + 2(-1)^2 - 5(-1) - 6 = -1 + 2 + 5 - 6 = 0$

If
$$x = 0$$
, $y = 0^3 + 2(0)^2 - 5(0) - 6 = -6$

If
$$x = 1$$
, $y = (1)^3 + 2(1)^2 - 5(1) - 6 = 1 + 2 - 5 - 6 = -8$

If
$$x = 2$$
, $y = 2^3 + 2(2)^2 - 5(2) - 6 = 8 + 8 - 10 - 6 = 0$

If
$$x = 2.5$$
, $y = 2.5^3 + 2(2.5)^2 - 5(2.5) - 6 = 15.625 + 12.5 - 12.5 - 6 = 9.625$

Table:

Points	P	Q	R	S	T	U	V
x-axis	-3.5	-3	-1	0	1	2	2.5
y-axis	-6.875	0	0	-6	-8	0	9.625

(ii)
$$y = x^2 + x - 2$$

Solution:

Type: Quadratic function (parabola).

If
$$x = -2$$
, $y = (-2)^2 + (-2) - 2 = 4 - 2 - 2 = 0$

If
$$x = -1$$
, $y = (-1)^2 + (-1) - 2 = 1 - 1 - 2 = -2$

If
$$x = 0$$
, $y = 0^2 + 0 - 2 = -2$

If
$$x = 1$$
, $y = 1^2 + 1 - 2 = 0$

If
$$x = 2$$
, $y = (2)^2 + (2) - 2 = 4 + 2 - 2 = 4$

Table:

Points	P	Q	R	S	T
x-axis	-2	-1	0	1	2
y-axis	0	-2	-2	0	4

Graphical Representation:

(iii)
$$y = x^3 + 3x^2 + 2x$$
; $-2.5 \le x \le 0.5$

Solution:

Type: Cubic function.

For example:

If
$$x = -2$$
, $y = (-2)^3 + 3(-2)^2 + 2(-2) = -8 + 12 - 4 = 0$

If
$$x = -1$$
, $y = (-1)^3 + 3(-1)^2 + 2(-1) = -1 + 3 - 2 = 0$

If
$$x = 0$$
, $y = (0)^3 + 3(0)^2 + 2(0) = 0 + 0 + 0 = 0$

If
$$x = 1$$
, $y = (1)^3 + 3(1)^2 + 2(1) = 1 + 3 + 2 = 6$

If
$$x = 2$$
, $y = (2)^3 + 3(2)^2 + 2(2) = 8 + 12 + 4 = 24$

Table:

Points	P	Q	R	S	T
x-axis	-2	-1	0	1	2
y-axis	0	0	0	6	24

Graphical Representation:

(iv)
$$y = 5 x^2 - 2 x - 3$$

Solution:

Type: Quadratic function (parabola).

If
$$x = -2$$
, $y = 5(-2)^2 - 2(-2) - 3 = 20 + 4 - 3 = 21$

If
$$x = -1$$
, $y = 5(-1)^2 - 2(-1) - 3 = 5 + 2 - 3 = 4$

If
$$x = 0$$
, $y = 5(0)^2 - 2(0) - 3 = 0 - 0 - 3 = -3$

If
$$x = 1$$
, $y = 5(1)^2 - 2(1) - 3 = 5 - 2 - 3 = 0$

If
$$x = 2$$
, $y = 5(2)^2 - 2(2) - 3 = 20 - 4 - 3 = 13$

Table:

Points	P	Q	R	S	T
x-axis	-2	-1	0	1	2
y-axis	21	4	-3	0	13

Question No. 3

Plot the graph of the following functions:

(i)
$$y = 4^x$$

Solution:

Type: Exponential function.

If
$$x = -2$$
, $y = 4^{-2} = 1/16$

If
$$x = -1$$
, $y = 4^{-1} = 1/4$

If
$$x = 0$$
, $y = 4^0 = 1$ (y-intercept)

If
$$x = 1$$
, $y = 4^1 = 4$

If
$$x = 2$$
, $y = 4^2 = 16$

Table:

Points	P	Q	R	S	T
x-axis	-2	-1	0	1	2
y-axis	1/16	1/4	1	4	16

Graphical Representation:

(ii)
$$y = 5^{-x}$$

Solution:

Type: Exponential function.

If
$$x = -2$$
, $y = 5^{-(-2)} = 5^2 = 25$

If
$$x = -1$$
, $y = 5^{-(-1)} = 5^1 = 5$

If
$$x = 0$$
, $y = 5^0 = 1$ (y-intercept)

If
$$x = 1$$
, $y = 5^{-1} = 1/5$

If
$$x = 2$$
, $y = 5^{-2} = 1/25$

Table:

Points	P	Q	R	S	T
x-axis	-2	-1	0	1	2
y-axis	25	5	1	1/5	1/25

Graphical Representation:

(iii)
$$y = \frac{1}{x-3}, x \neq 3$$

Solution:

Type: Rational function.

If
$$x = -2$$
, $y = 1/(-2 - 3) = 1/-5 = -1/5$

If
$$x = -1$$
, $y = 1/(-1 - 3) = 1/-4 = -1/4$

If
$$x = 0$$
, $y = 1/(0 - 3) = 1/-3 = -1/3$

If
$$x = 1$$
, $y = 1/(1 - 3) = 1/-2 = -1/2$

If
$$x = 2$$
, $y = 1/(2 - 3) = 1/-1 = -1$

Table:

Points	P	Q	R	S	T
x-axis	-2	-1	0	1	2
y-axis	-1/5	-1/4	-1/3	-1/2	-1

(iv)
$$y = \frac{2}{x} + 3, x \neq 0$$

Solution:

Type: Rational function (reciprocal function).

If
$$x = -2$$
, $y = \frac{2}{-2} + 3 = -1 + 3 = 2$

If
$$x = -1$$
, $y = \frac{2}{-1} + 3 = -2 + 3 = 1$

If
$$x = 1$$
, $y = \frac{2}{1} + 3 = 2 + 3 = 5$

If
$$x = 2$$
, $y = \frac{2}{2} + 3 = 1 + 3 = 4$

Table:

Points	P	Q	R	S
x-axis	-2	-1	1	2
y-axis	2	1	5	4

Graphical Representation:

$$(\mathbf{v})\ \mathbf{y}=\chi^{\frac{1}{2}}$$

Solution:

Type: Square root function.

If
$$x = 0$$
, $y = (0)^{\frac{1}{2}} = 0$

If
$$x = 1$$
, $y = (1)^{\frac{1}{2}} = 1$

If
$$x = 4$$
, $y = (4)^{\frac{1}{2}} = 2$

If
$$x = 9$$
, $y = (9)^{\frac{1}{2}} = 3$

If
$$x = 16$$
, $y = (16)^{\frac{1}{2}} = 4$

Table:

Points	P	Q	R	S	T
x-axis	0	1	4	9	16
y-axis	0	1	2	3	4

Graphical Representation:

(vi)
$$y = 3x^{\frac{1}{3}}$$

Solution:

Type: Cube root function.

If
$$x = -1$$
, $y = 3(-1)^{\frac{1}{3}} = -3$

If
$$x = 0$$
, $y = 3(0)^{\frac{1}{3}} = 0$

If
$$x = 1$$
, $y = 3(1)^{\frac{1}{3}} = 3$

If
$$x = 8$$
, $y = 3(8)^{\frac{1}{3}} = 6$

If
$$x = 27$$
, $y = 3(27)^{\frac{1}{3}} = 9$

Table:

Points	P	Q	R	S	T
x-axis	-1	0	1	8	27
y-axis	-3	0	3	6	9

Graphical Representation:

(vii)
$$y = 2x^{-2}$$

Solution:

Type: Rational function.

If
$$x = -2$$
, $y = 2(-2)^{-2} = 1/2$

If
$$x = -1$$
, $y = 2(-1)^{-2} = 2$

If
$$x = 1$$
, $y = 2(1)^{-2} = 2$

If
$$x = 2$$
, $y = 2(2)^{-2} = 1/2$

If
$$x = 3$$
, $y = 2(3)^{-2} = 2/9$

Table:

Points	P	Q	R	S	T
x-axis	-2	-1	1	2	3
y-axis	1/2	2	2	1/2	2/9

