What will the following commands do?

- echo "Hello, World!"
- →It will print Hello, World to the console
- name="Productive"
- →it will store the String "Productive" in name variable
- touch file.txt
- →it will create a file.txt file
- Is -a
- →it will display all files including hidden
- rm file.txt
- →it will remove file.txt
- cp file1.txt file2.txt
- →it will copy the contents of the file1.txt to file2.txt
- mv file.txt /path/to/directory/
- →it will move the file.txt to directory directory
- chmod 755 script.sh
- →gives full permission to the owner and only read, execute permission to others
- grep "pattern" file.txt
- → checks pattern word in file.txt
- kill PID
- → kills a process
- mkdir mydir && cd mydir && touch file.txt && echo "Hello, World!" > file.txt && cat file.txt
- make a directory named 'mydir' and jumps into it. In that creates a file named 'file.txt' and add contents "Hello, World!" to the file.txt and prints the contents of the file to the console.

- Is -I | grep ".txt"
- → list owner information of .txt files
- cat file1.txt file2.txt | sort | uniq
- → will display the contents of both files which are unique in sorted way
- Is -I | grep "^d"
- →list all the directories
- grep -r "pattern" /path/to/directory/
- > recursively searches for the pattern word in a directory
- cat file1.txt file2.txt | sort | uniq -d
- → will display the contents of both files which are duplicate in sorted way
- chmod 644 file.txt
- →The owner can only read and write, and other can only read the file.txt
- cp -r source_directory destination_directory
- →it will copy files recursively.
- find /path/to/search -name "*.txt"
- → it will find all the .txt files into the provided path
- chmod u+x file.txt
- →it will add permission to the owner to execute the file.txt
- echo SPATH
- it allows to check the current value of PATH variable

Identify True or False:

- 1. Is is used to list files and directories in a directory.
- →True
- 2. my is used to move files and directories.
- →True

- 3. cd is used to copy files and directories.
- → False, cp is used to copy
- 4. pwd stands for "print working directory" and displays the current directory.
- →True
- 5. grep is used to search for patterns in files.
- →True
- 6. chmod 755 file.txt gives read, write, and execute permissions to the owner, and read and execute permissions to group and others.
- →True
- 7. mkdir -p directory1/directory2 creates nested directories, creating directory2 inside directory1 if directory1 does not exist.
- →True
- 8. rm -rf file.txt deletes a file forcefully without confirmation.
- →True

Identify the Incorrect Commands:

- 1. chmodx is used to change file permissions.
- → chmod is used to change file permissions
- 2. cpy is used to copy files and directories.
- →cp is to copy files and directories
- 3. mkfile is used to create a new file.
- >touch is used to create new files
- 4. catx is used to concatenate files.
- →cat is used to concatenate the files
- 5. rn is used to rename files.
- → mv is used to rename the files

Question 1: Write a shell script that prints "Hello, World!" to the terminal.

→ echo "Hello, World!"

```
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p1
Hello, World!
```

Question 2: Declare a variable named "name" and assign the value "CDAC Mumbai" to it. Print the value of the variable.

→ name="CDAC, Mumbai"

echo \$name

```
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ hand p2
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p2
CDAC, Mumbai
```

Question 3: Write a shell script that takes a number as input from the user and prints it.

→ echo "Enter a Number:"

read num

echo "Entered Number=\$num"

```
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p3
Enter a Number:

12
Entered Number=12

prithviraj@Windows pisate/LinuxAssignment/Scripts$ page p3
```

Question 4: Write a shell script that performs addition of two numbers (e.g., 5 and 3) and prints the result.

 \rightarrow X=5

Y=3

echo "Addition="\$((\$X+\$Y))

```
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p4
Addition=8
```

Question 5: Write a shell script that takes a number as input and prints "Even" if it is even, otherwise prints "Odd".

```
→ echo "Enter a Number:"

read num

if [$(($num % 2)) == 0]

then

echo "$num is Even"

else

echo "$num is Odd"

fi

prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p5

Enter a Number:

34
```

```
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p5
Enter a Number:
34
34 is Even
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p5
Enter a Number:
35
35 is Odd
```

Question 6: Write a shell script that uses a for loop to print numbers from 1 to 5.

```
→ for (( a=1; a<=5; a++))
do
echo $a
```

done

```
prithviraj@windows-rise:~/LinuxAssignment/Scripts$ bash p6
1
2
3
4
5
```

Question 7: Write a shell script that uses a while loop to print numbers from 1 to 5.

```
→ a=1

while [$a -le 5]

do

echo $a

a=$(($a+1))

done

prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p7
```

Question 8: Write a shell script that checks if a file named "file.txt" exists in the current directory. If it does, print "File exists", otherwise, print "File does not exist".

-rise:~/LinuxAssignment/Scripts\$ nano n7

```
→ if [-f "file.txt"]

then

echo "File Exists"

else

echo "File does not Exist"

fi
```

```
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p8
File does not Exist
```

```
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ touch file.txt
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ ls
file.txt p1 p2 p3 p4 p5 p6 p7 p8
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p8
File Exists
```

Question 9: Write a shell script that uses the if statement to check if a number is greater than 10 and prints a message accordingly.

```
→ echo "Enter a number:"
read num
if [$num -gt 10]
then
echo "$num is greater than 10"
else
echo "$num is less than 10"
fi
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p9
Enter a number:
11
11 is greater than 10
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p9
Enter a number:
9
9 is less than 10
```

Question 10: Write a shell script that uses nested for loops to print a multiplication table for numbers from 1 to 5. The output should be formatted nicely, with each row representing a number and each column representing the multiplication result for that number.

```
→for (( i=1; i<=5; i++ ))

do

echo "----Table of $i------"

for (( j=1; j<=10; j++ ))

do

echo "$i * $j = $(($i*$j))"

done
```

done

```
orithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p10
 --Table of 1-----
 * 1 = 1
* 2 = 2
   8 = 8
 * 9 = 9
* 10 = 10
---Table of 2-----
 * 2 = 4
  4 = 8
  5 = 10
 * 6 = 12
* 7 = 14
* 8 = 16
* 9 = 18
 * 10 = 20
---Table of 3-----
* 2 = 6
* 3 = 9
* 4 = 12
```

Question 11: Write a shell script that uses a while loop to read numbers from the user until the user enters a negative number. For each positive number entered, print its square. Use the break statement to exit the loop when a negative number is entered.

```
→while [1]

do
echo "Enter a number:"
read num
if (($num < 0))
then
break
else
```

```
echo "Sqaure of number:"$(($num*$num))
```

fi

done

```
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p11
Enter a number:
-10
prithviraj@Windows-rise:~/LinuxAssignment/Scripts$ bash p11
Enter a number:
10
Sqaure of number:100
Enter a number:
20
Sqaure of number:400
Enter a number:
3
Sqaure of number:9
Enter a number:
-5
```

017	Using First-Corre First & 1 00									
	Using First-Corru, First-Served (FCFS) using mon-Precinge									
	Gants Chart.									
	Praces AT BT (T)									
	De DI CT WT TAT (Turn around stone)									
	00 5 5 0 05									
	3 8 4 7									
	14 6 12									
	ganti chart									
	P1 P2 P3									
	0 5 8 14									
15	The average wait time: 0+4+6/no. of process									
	= 10/3									
	= 3.333									
12)	Par+€									
7 1	Process Arrival Time Burstfine CT WT TAT									
	P ₁ 0									
	P2 1 5									
	P3 0 1									
	P4 2 4 0									
	3 1 5									
	Gantt Chaet									
	0 2 3 4 8 13									
	TOTA									
3	TAT = ETAT / no. of process									
-	= 2214									
	= 5-5									

93	PY OCESS	AT	31		12	ω T 6	TAT	
	Pz	0	6	3	5	0		
	P2	2	7	4	19	10		
ā	Pu	3	2	2	7	2		
	Gartt	Charr	-					
		0		0.	10-			
	P1			P1 7		19		
	2-6	Aver	ge u	vait t		wT/ NO.		
					- 18	14 = 0	1.5	20

	01	1						
	+	Proce	35	AT	BT			
	1	P,		^	0:	CT	WT	
	1	02		0	4	10	6	
	+	P2		1	5	15	7	
	4	P3		2	2	4	0	
		PY	-	3	3		2	
					_	13		
	1	o, P2	1P3	Pu	PI	P2 1	Parant	F
p		2	4	6	8		12	10
1		O A	verag	e I	T Asset	Turn a	round	4
1					38/4			
				_ 9	.5			