ETR0321-026

28V Low Power Consumption 150mA Voltage Regulators (with Stand-by Function)

■GENERAL DESCRIPTION

XC6216/XE6216 series are positive voltage regulator ICs with 28V of operation voltage. The series consists of a voltage reference, an error amplifier, a current limiter, a thermal shutdown circuit and a phase compensation circuit plus a driver transistor.

The output voltage is selectable in 0.1V increments within the range of 1.8V to 12V using laser trimming technologies. With external resistors, the output voltage range can be expanded from 2.0V to 23V. The output stabilization capacitor (CL) is also compatible with low ESR ceramic capacitors.

The over current protection circuit and the thermal shutdown circuit are built-in. These two protection circuits will operate when the output current reaches current limit level or the junction temperature reaches temperature limit level.

The CE function enables the output to be turned off and the IC becomes a stand-by mode resulting in greatly reduced power consumption.

APPLICATIONS

- Car audio, Car navigation systems
- Note PCs / Tablet PCs
- Mobile devices / terminals
- Digital still cameras / Camcorders
- Smart phones / Mobile phones
- Multi-function power supplies

■ FEATURES

Max Output Current : More than 150mA (200mA limit)

(VIN=VOUT+3.0V)

Dropout Voltage : 300mV@Iout=20mA

Input Voltage Range : 2.0V~28.0V

Output Voltage Range : 1.8V~12.0V (0.1V increments)

2.0V~23V with external resistors

Fixed Output Accuracy :±2%

±1% (V_{out}≥2.00V) ± 20 mV (V_{out} ≤ 1.9 V)

Low Power Consumption : 5 μ A

Stand-by Current : Less than 0.1μ A **High Ripple Rejection** : 30dB@1kHz

Operating Temperature -40°C~+85°C Ceramic Capacitor Compatible

Low ESR Capacitor **Built-in Protection**

Current Limit Circuit

Thermal Shutdown Circuit

Packages

Operating Ambient Temperature : -40°C ~ +85°C

SOT-25, SOT-89, SOT-89-5, USP-6C, SOT-223, TO-252

USP-6B06, SOT-23

Environmentally Friendly : EU RoHS Compliant, Pb Free

■ TYPICAL APPLICATION CIRCUIT

■ TYPICAL PERFORMANCE CHARACTERISTICS

Output Voltage vs. Input Volatage

■ BLOCK DIAGRAMS

- ●XC6216 Series
- ●XC6216 Series B Type

●XC6216 Series C Type

●XC6216 Series D Type

- ●XE6216 Series
- ●XE6216 Series B Type

*Diodes inside the circuit are an ESD protection diode and parasitic diodes.

■ PRODUCT CLASSIFICATION

Ordering Information

 $XC6216 \cdot 123 \cdot 456 \cdot 7^{(*1)}$: CE function (Active High) Fixed output voltage 1.8V ~ 12.0V(0.1V increments)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
•	Type and Options of	В	Fixed output voltage
(1)	Regulators	С	Output voltage externally set (Vofb=2.0V) (*3)
23	Output Voltage	18 ~ C0	For the voltage within 1.8V \sim 9.9V (0.1V increments); e.g. 2.5V \Rightarrow 25, 5.0V \Rightarrow 50 For the voltage within 10.0V \sim 12.0V (0.1V increments); e.g. 10.6V \Rightarrow A6, 11.2V \Rightarrow B2, 12.0V \Rightarrow C0
		20	For C type (output voltage externally set), Vofb=2.0V only
4	Output Voltage	2	±2%
4)	Accuracy (*2)	1	V _{OUT} ≥ 2.00V : ±1%, V _{OUT} ≤ 1.9V : ±20mV (*3)
		MR	SOT-25 (3,000pcs/Reel)
		MR-G	SOT-25 (3,000pcs/Reel)
	D 1 (0.1	PR	SOT-89-5 (1,000pcs/Reel)
⑤ ⑥-⑦ ^(*1)	Packages (Order	PR-G	SOT-89-5 (1,000pcs/Reel)
	Unit)	ER	USP-6C (3,000pcs/Reel)
		ER-G	USP-6C (3,000pcs/Reel)
		8R-G	USP-6B06 (5,000pcs/Reel)

^(*1) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

 $\underline{XC6216D(1)(2)(3)(4)(5)-6}(^{(1)})$: 3 pin regulator (No CE function), Fixed output voltage 1.8V ~ 12.0V(0.1V increments)

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
12	Output Voltage	20 ~ C0	For the voltage within 1.8V \sim 9.9V (0.1V increments); e.g. 2.5V \Rightarrow 25, 5.0V \Rightarrow 50 For the voltage within 10.0V \sim 12.0V (0.1V increments); e.g. 10.6V \Rightarrow A6, 11.2V \Rightarrow B2, 12.0V \Rightarrow C0
3	Output Voltage	2	±2%
<u> </u>	Accuracy	1	Vout≧2.00V : ±1%,Vout≦1.9V : ±20mV
	Output Voltage Accuracy	PR	SOT-89 (1,000pcs/Reel)
		PR-G	SOT-89 (1,000pcs/Reel)
4(5)-6(*1) Packa	Deelsense (Onder	FR	SOT-223 (1,000pcs/Reel)
	• ,	FR-G	SOT-223 (1,000pcs/Reel)
	Offit)	JR	TO-252 (2,500pcs/Reel)
		JR-G	TO-252 (2,500pcs/Reel)
		MR-G	SOT-23 (3,000pcs/Reel)

^(*1) The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

 $\underline{XE6216B}(\underline{)}(\underline{2})(\underline{3})(\underline{4})(\underline{5})(\underline{6})^{(+1)}$: CE function (Active High), Fixed output voltage 2.0V ~ 12.0V(0.1V increments) Characteristics are guaranteed over the temperature range of -40°C to 85°C.

DESIGNATOR	ITEM	SYMBOL	DESCRIPTION
1)2)	Output Voltage	20 ~ C0	For the voltage within 2.0V \sim 9.9V (0.1V increments); e.g. 2.5V \Rightarrow 25, 5.0V \Rightarrow 50 For the voltage within 10.0V \sim 12.0V (0.1V increments); e.g. 10.6V \Rightarrow A6, 11.2V \Rightarrow B2, 12.0V \Rightarrow C0
3	Output Voltage Accuracy	2	±2%
4 5-6 ^(*1)	Dookogo (Ordor I Init)	PR	SOT-89-5 (1,000pcs/Reel)
40-60	Package (Order Unit)	PR-G	SOT-89-5 (1,000pcs/Reel)

⁽¹¹⁾ The "-G" suffix denotes Halogen and Antimony free as well as being fully EU RoHS compliant.

 $^{^{(2)}}$ For the Type C, the accuracy is based on V_{OFB} voltage. The actual output voltage accuracy is depended on the external resistances. $^{(3)}$ For the Type C and Output Voltage Accuracy±1% (±20mV) do not haveUSP-6B06 package

■PIN CONFIGURATION

■ PIN ASSIGNMENT

●XC6216 Series B Type

PIN NUMBER				PIN NAME	ELINICTIONS	
SOT-25	SOT-89-5	USP-6C	USP-6B06	PIN NAIVIE	FUNCTIONS	
1	5	6	6	V _{IN}	Power Input	
2	2	5	5	Vss	Ground	
3	4	2,4	2,4	NC	No connection	
4	3	3	3	CE	ON/OFF Control	
5	1	1	1	Vout	Output	

●XC6216 Series C Type

PIN NUMBER			PIN NAME	FUNCTIONS	
SOT-25	SOT-89-5	USP-6C	FIN INAIVIE	FUNCTIONS	
1	5	6	Vin	Power Input	
2	2	5	V _{SS}	Ground	
3	4	4	4	\/o	Output Voltage
3	4	4 V _{OFB}		Adjustment	
4	3	3	CE	ON/OFF Control	
5	1	1	V _{OUT}	Output	
-	-	2	NC	No connection	

●XC6216 Series D Type

	71 -				
	PIN NU	PIN NAME	FLINCTIONS		
SOT-89	SOT-223	TO-252	SOT-23	PIN NAIVIE	FUNCTIONS
3	3	1	2	Vin	Power Input
2	2	2	3	Vss	Ground
1	1	3	1	Vouт	Output

■ PIN ASSIGNMENT

●XE6216 Series B Type

PIN NUMBER SOT-89-5	PIN NAME	FUNCTIONS
1	V_{OUT}	Output
2	Vss	Ground
3	CE	ON/OFF Control
4	NC	No connection
5	Vin	Power Input

■LOGIC CONDITION FOR THE PIN

PIN NAME	DESIGNATOR	CONDITIONS	IC OPERATION
	L	0V≦V _{CE} ≦0.35V	OFF
CE	Н	1.1V≦V _{CE} ≦28.0V	ON
	OPEN	CE=OPEN	Undefined state

^{*} Please avoid the state of OPEN, and make CE Pin arbitrary fixed potential. (XC6216 Series B Type, XE6216 Series B Type, XC6216 Series C Type)

■ PIN FUNCTION ASSIGNMENT

SERIES	CHIP ENABLE PIN
XC6216 Series B Type/XE6216 Series B Type	Available
XC6216 Series C Type	Available
XC6216 Series D Type	Not Available

■ ABSOLUTE MAXIMUM RATINGS

●XC6216 Series B Type

PARAMETER		SYMBOL	RATINGS	UNITS
Input Voltage		V _{IN}	V _{SS} -0.3 ~ +30	V
Output Cur	Output Current		300 (*1)	mA
Output Volt	age	Vouт	Vss-0.3 ~ Vin+0.3	V
CE Input Vo	Itage	Vce	Vss-0.3 ~ 30	V
			250	
	SOT-25		600 (40mm x 40mm Standard board) (*2)	mW
		Pd	760 (JESD51-7 board)*2)	
	SOT-89-5		500	
Power Dissipation			1300 (40mm x 40mm Standard board) (*2)	
(Ta=25°C)			1750 (JESD51-7 board)*2)	
	USP-6C		120	
			1000 (40mm x 40mm Standard board) (*2)	
			1250 (JESD51-7 board)*2)	
	USP-6B06		900 (40mm x 40mm Standard board) (*2)	
Operating Ambient	Temperature	Topr	-40 ~ +85	°C
Storage Tempo	erature	Tstg	-55 ~ +125	°C

 $^{^{(*1)}}Pd > (V_{IN}-V_{OUT}) \times I_{OUT}$

The mounting condition is please refer to PACKAGING INFORMATION.

 $[\]ensuremath{^{(\mbox{\tiny{}}2)}}$ The power dissipation figure shown is PCB mounted and is for reference only.

■ ABSOLUTE MAXIMUM RATINGS (Continued)

●XC6216 Series C Type

PARAMETER		SYMBOL	RATINGS	UNITS
Input Voltage		Vin	V _{SS} -0.3 ~ +30	V
Output Current		Іоит	300 (*1)	mA
Output \	/oltage	V _{OUT}	V _{SS} -0.3 ~ V _{IN} +0.3	V
CE Input	Voltage	Vce	Vss-0.3 ~ +30	V
FB Vo	Itage	Vofb	Vss-0.3 ~ +30	V
			250	
	SOT-25		600 (40mm x 40mm Standard board) (*2)	
			760 (JESD51-7 board) ^(*2)	
Dawer Dissipation			500	
Power Dissipation	SOT-89-5	Pd	1300 (40mm x 40mm Standard board) (*2)	mW
(Ta=25°C)			1750 (JESD51-7 board) ^(*2)	
			120	
	USP-6C		1000 (40mm x 40mm Standard board) (*2)	
			1250 (JESD51-7 board) (*2)	
Operating Ambie	ent Temperature	Topr	-40 ~ +85	°C
Storage Te	mperature	Tstg	-55 ~ +125	°C

 $[\]overline{\text{(*1)}} \text{ Pd} > (V_{\text{IN}} - V_{\text{OUT}}) \times I_{\text{OUT}}$

The mounting condition is please refer to PACKAGING INFORMATION.

●XC6216D Series

PARAMETER		SYMBOL	RATINGS	UNITS
Input Vo	Input Voltage		Vss-0.3 ~ +30	V
Output C	urrent	Іоит	300 (*1)	mA
Output V	oltage o	V _{OUT}	V _{SS} -0.3 ~ V _{IN} +0.3	V
	COT 00		500	
	SOT-89		1000 (40mm x 40mm Standard board) (*2)	mW
	SOT-223	Pd	300	
Danie Biasia stian			1500 (40mm x 40mm Standard board) (*2)	
Power Dissipation	TO-252		500	
(Ta=25°C)			1800 (40mm x 40mm Standard board) (*2)	
	SOT-23		250	
			730 (JESD51-7 board) (*2)	
			500 (40mm x 40mm Standard board) (*2)	
Operating Ambier	Operating Ambient Temperature		-40 ~ +85	°C
Storage Temperature		Tstg	-55 ~ +125	°C

 $^{^{(*1)}}$ Pd > $(V_{IN}-V_{OUT}) \times I_{OUT}$

The mounting condition is please refer to PACKAGING INFORMATION.

XE6216 Series B Type

PARAMET	ER	SYMBOL	RATINGS	UNITS
Input Volta	age	VIN	V _{SS} -0.3 ~ +30	V
Output Current		Іоит	300 (*1)	mA
Output Vol	tage	Vout	Vss-0.3 ~Vin+0.3	V
CE Input Vo	CE Input Voltage		V _{SS} -0.3 ~ +30	V
Dawer Dissipation	nn		500	
Power Dissipation	SOT-89-5	Pd	1300 (40mm x 40mm Standard board) (*2)	mW
(Ta=25°C)			1750 (JESD51-7 board) (*2)	
Operating Ambient	Operating Ambient Temperature		-40 ~ +85	°C
Junction Temperature		TJ	-40 ~ +125	°C
Storage Temp	erature	Tstg	-55 ~ +125	°C

 $^{^{(*1)}}$ Pd > $(V_{IN}-V_{OUT}) \times I_{OUT}$

^(°2) The power dissipation figure shown is PCB mounted and is for reference only.

^(*2) The power dissipation figure shown is PCB mounted and is for reference only.

^(°2) The power dissipation figure shown is PCB mounted and is for reference only.

The mounting condition is please refer to PACKAGING INFORMATION.

■ELECTRICAL CHARACTERISTICS

●XC6216 Series B Type

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	V _{OUT(E)} ^(*2)	IOUT=20mA, VCE=VIN		E-0		V	1
Maximum Output Current	I _{OUTMAX}	$V_{IN}=V_{OUT(T)}+3.0V$, $V_{CE}=V_{IN}^{(*1)}$ ($V_{OUT(T)} \ge 3.0V$)	150	ı	ı	mA	1
waximum Output Current	IOUTMAX	$V_{IN}=V_{OUT(T)}+3.0V, V_{CE}=V_{IN}^{(*1)}$ ($V_{OUT(T)}<3.0V$)	100	-	-	mA	1
		$1mA \le I_{OUT} \le 50mA, V_{CE} = V_{IN}$ $(1.8V \le V_{OUT(T)} \le 7.0V)$	-	50	90	mV	1
Load Regulation	ΔV _{OUT}	1mA≦I _{OUT} ≦50mA, V _{CE} =V _{IN} (7.0 <v<sub>OUT(T)≦12.0V)</v<sub>	-	110	140	mV	1
Dropout Voltage 1	Vdif1 ^(*3)	I _{OUT} =20mA, V _{CE} =V _{IN}	-	E.	-1	mV	1
Dropout Voltage 2	Vdif2 ^(*3)	IOUT=100mA, VCE=VIN	-	E	-2	mV	1
Supply Current	I _{SS}	V _{CE} =V _{IN}	1	5	9	μΑ	2
Stand-by Current	Іѕтв	V _{CE} =V _{SS}	-	0.01	0.10	μΑ	2
Line Regulation 1	ΔV _{OUT} / (ΔV _{IN} • V _{OUT})	V _{OUT(T)} +2.0V≦V _{IN} ≦28.0V ^(*1) I _{OUT} =5mA, V _{CE} =V _{IN}	-	0.05	0.10	%/V	1
Line Regulation 2	ΔV _{OUT} / (ΔV _{IN} • V _{OUT})	V _{OUT(T)} +2.0V≦V _{IN} ≦28.0V ^(*1) I _{OUT} =13mA, V _{CE} =V _{IN}	- 0.15		0.30	%/V	1
Input Voltage	Vin		2.0	-	28.0	V	-
Output Voltage Temperature Characteristics	ΔV _{OUT} /	I _{OUT} =20mA, V _{CE} =V _{IN} -40°C≦Topr≦85°C	-	±100	-	ppm/°C	1
Power Supply Rejection Ratio	PSRR	V _{IN} =[V _{OUT} (T)+2.0]V+0.5Vp-pAC(*1) I _{OUT} =20mA, f=1kHz, V _{CE} =V _{IN}	-	30	-	dB	3
Short Current	Ishort	V _{CE} =V _{IN} (*1)	-	30	-	mA	1
CE "H" Level Voltage	V _{CEH}	-	1.1	-	28.0	V	1
CE "L" Level Voltage	V _{CEL}	-	0	-	0.35	V	1
CE "H" Level Current	Ісен	V _{IN} =V _{CE} =28.0V	-0.1	-	0.1	μΑ	1
CE "L" Level Current	ICEL	VIN=28.0V, VCE=VSS	-0.1	-	0.1	μΑ	1
Thermal Shutdown Detect Temperature	T _{TSD}	V _{CE} =V _{IN} Junction Temperature	-	150	ı	ိင	1
Thermal Shutdown Release Temperature	T _{TSR}	V _{CE} =V _{IN} Junction Temperature	-	125	-	°C	1)
Hysteresis Width	T _{TSD} -T _{TSR}	V _{CE} =V _{IN} Junction Temperature	-	25	-	°C	-

Unless otherwise stated, $V_{IN}=V_{OUT(T)}+2.0V$.

NOTE:

(i.e. the output voltage when "V_{OUT(T)}+2.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.)

 $V_{\text{OUT}1}$: $V_{\text{OUT}(T)} < 3.0 \text{V}$, A voltage equal to 98% of the output voltage whenever an amply stabilized $I_{\text{OUT}}\{V_{\text{OUT}(T)} + 3.0 \text{V}\}$ is input. $V_{\text{OUT}(T)} \ge 3.0 \text{V}$, A voltage equal to 98% of the output voltage whenever an amply stabilized $I_{\text{OUT}}\{V_{\text{OUT}(T)} + 2.0 \text{V}\}$ is input. $V_{\text{IN}1}$: The input voltage when $V_{\text{OUT}1}$ appears as input voltage is gradually decreased.

^{*1:} V_{OUT(T)}: Nominal output voltage

^{*2:} V_{OUT(E)}: Effective output voltage

^{*3:} $Vdif=\{V_{IN1} - V_{OUT1}\}$

■ ELECTRICAL CHARACTERISTICS (Continued)

●XC6216 Series C Type

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (Accuracy±2%)	V _{OUT(E)} (*2)	V _{IN} =4.0V, I _{OUT} =20mA , V _{CE} =V _{IN} , V _{OFB} =V _{OUT}	1.96	2.00	2.04	V	1)
Output Voltage (Accuracy±1%)	V _{OUT(E)} ^(*2)	V _{IN} =4.0V, I _{OUT} =20mA , V _{CE} =V _{IN} , V _{OFB} =V _{OUT}	1.98	2.00	2.02	V	Θ
Divided Resistor	R _{FB}	V _{IN} =V _{OUT} =5.0V, V _{CE} =V _{SS} V _{OFB} =V _{OUT}	1.70	4.10	6.30	МΩ	4
Maximum Output Current	louтмах	V _{IN} =5.0V, V _{CE} =V _{IN} , V _{OFB} =V _{OUT}	100	-	-	mA	1
Load Regulation	ΔVоυт	V _{IN} =4.0V 1mA≦I _{OUT} ≦50mA, V _{CE} =V _{IN} , V _{OFB} =V _{OUT}	-	50	90	mV	1
Dropout Voltage1	Vdif1 ^(*3)	I _{OUT} =20mA, V _{CE} =V _{IN} , V _{OFB} =V _{OUT}	-	450	600	mV	1)
Dropout Voltage2	Vdif2 ^(*3)	I _{OUT} =100mA, V _{CE} =V _{IN} , V _{OFB} =V _{OUT}	-	1900	2600	mV	1
Supply Current	Iss	VIN=4.0V, VCE=VIN, VOFB=VOUT	1	5	9	μΑ	2
Stand-by Current	I _{STB}	V _{IN} =4.0V, V _{CE} =V _{SS} , V _{OFB} =V _{OUT}	-	0.01	0.10	μΑ	2
Line Regulation1	ΔV _{OUT} / (ΔV _{IN} • V _{OUT})	4.0V≦V _{IN} ≦28.0V, Iout=5mA, V _{CE} =V _{IN} ,V _{OFB} =V _{OUT}	-	0.05	0.10	%/V	1
Line Regulation2	ΔV _{OUT} / (ΔV _{IN} • V _{OUT})	4.0V≦V _{IN} ≦28.0V, I _{OUT} =13mA, V _{CE} =V _{IN} , V _{OFB} =V _{OUT}	-	0.15	0.30	%/V	1
Input Voltage	VIN		2.0		28.0	V	-
Output Voltage Temperature Characteristics	∆V _{ОUТ} / (∆Торг • V _{ОUТ})	V _{IN} =4.0V, I _{OUT} =20mA , V _{CE} =V _{IN} , V _{OFB} =V _{OUT} , -40°C≦Topr≦85°C	-	±100	-	ppm/°C	1
Power Supply Rejection Ratio	PSRR	V _{IN} =4.0V+0.5Vp-pAC, I _{OUT} =20mA, f=1kHz, V _{CE} =V _{IN} V _{OFB} =V _{OUT}	-	30	-	dB	3
Short Current	I _{SHORT}	V _{IN} =4.0V, V _{CE} =V _{IN} , V _{OFB} =V _{OUT}	-	30	-	mA	1
CE "H" Level Voltage	V _{CEH}	V _{IN} =4.0V, V _{OFB} =V _{OUT}	1.1	•	28.0	V	1
CE "L" Level Voltage	V _{CEL}	V _{IN} =4.0V, V _{OFB} =V _{OUT}	0	-	0.35	V	1
CE "H" Level Current	Ісен	V _{IN} =V _{CE} =28.0V, V _{OFB} =V _{OUT}	-0.1	-	0.1	μΑ	1
CE "L" Level Current	I _{CEL}	V _{IN} =28.0V, V _{CE} =V _{SS} V _{OFB} =V _{OUT}	-0.1		0.1	μΑ	1
Thermal Shutdown Detect Temperature	T _{TSD}	V _{IN} =4.0V , V _{CE} =V _{IN} Junction Temperature	1	150	-	°C	1
Thermal Shutdown Release Temperature	T _{TSR}	V _{IN} =4.0V , V _{CE} =V _{IN} Junction Temperature	-	125	-	°C	1
Hysteresis Width	T _{TSD} -T _{TSR}	V _{IN} =4.0V , V _{CE} =V _{IN} Junction Temperature	-	25	-	°C	-

NOTE:

(i.e. the output voltage when " $V_{OUT(T)}$ +2.0V" is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.)

 $V_{\text{OUT(1)}} \!\!<\! 3.0 \text{V}, \text{A voltage equal to 98\% of the output voltage whenever an amply stabilized } I_{\text{OUT}\{V_{\text{OUT(1)}} \!\!+\! 3.0 \text{V}\}} \text{ is input.} \\ V_{\text{OUT(1)}} \!\! \geq \! 3.0 \text{V}, \text{A voltage equal to 98\% of the output voltage whenever an amply stabilized } I_{\text{OUT}\{V_{\text{OUT(1)}} \!\!+\! 2.0 \text{V}\}} \text{ is input.} \\ V_{\text{IN1}} \!: \text{The input voltage when } V_{\text{OUT}} \!\! 1 \text{ appears as input voltage is gradually decreased.}$

^{*1:} $V_{OUT(T)}$: Nominal output voltage C type is 2.0V.

^{*2:} V_{OUT(E)}: Effective output voltage

^{*3:} Vdif={V_{IN1} - V_{OUT1}}

■ ELECTRICAL CHARACTERISTICS (Continued)

●XC6216 Series D type

Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	$V_{OUT(E)}^{(*2)}$	I _{OUT} =20mA		E-0		V	1
M : 0 : 10		V _{IN} =V _{OUT(T)} +3.0V ^(*1) (V _{OUT(T)} ≧3.0V)	150	-	-	mA	1
Maximum Output Current	Іоитмах	$V_{IN}=V_{OUT(T)}+3.0V^{(^{1})}$ ($V_{OUT(T)}<3.0V$)	100 -		-	mA	1
Load Regulation	ΔV_OUT	1mA≦I _{OUT} ≦50mA (1.8V≦V _{OUT(T)} ≦7.0V)	1	50	90	mV	1
Load Regulation	∆ vou1	1mA≦I _{ОUТ} ≦50mA (7.0V <v<sub>ОUТ(Т)≦12.0V)</v<sub>	ı	110	140	mV	1
Dropout Voltage1	Vdif1 ^(*3)	_{lоuт} =20mA	-	E-	-1	mV	1
Dropout Voltage2	Vdif2 ^(*3)	І _{оит} =100mA	-	E	-2	mV	1
Supply Current	Iss		1	5	9	μΑ	2
Line Regulation1	ΔV _{OUT} / (ΔV _{IN} • V _{OUT})	V _{OUT(T)} +2.0V≦V _{IN} ≦28.0V ^(*1) I _{OUT} =5mA	-	0.05	0.10	%/V	1
Line Regulation2		V _{OUT(T)} +2.0V≦V _{IN} ≦28.0V ^(*1) I _{OUT} =13mA	-	0.15	0.30	%/V	1
Input Voltage	VIN		2.0	-	28.0	V	-
Output Voltage Temperature Characteristics		l _{ouτ} =20mA -40°C≦Topr≦85°C	-	±100	-	ppm/°C	①
Power Supply Rejection Ratio	PSRR	$V_{IN}=[V_{OUT(T)}+2.0]V+0.5Vp-pAC^{(*1)}]$ $I_{OUT}=20mA, f=1kHz$	-	30	-	dB	3
Short Current	I _{SHORT}	$V_{IN}=V_{OUT(T)}+2.0V^{(*1)}$	-	30	-	mA	1
Thermal Shutdown Detect Temperature	T _{TSD}	Junction Temperature	-	150	-	°C	1
Thermal Shutdown Release Temperature	T _{TSR}	Junction Temperature	-	125	-	°C	1
Hysteresis Width	T _{TSD} -T _{TSR}	Junction Temperature	-	25	-	°C	-

Unless otherwise stated, $V_{IN}=V_{OUT(T)}+2.0V$.

NOTE:

(i.e. the output voltage when " $V_{OUT(T)}+2.0V$ " is provided at the V_{IN} pin while maintaining a certain I_{OUT} value.)

 $V_{\text{OUT(T)}} \!\!<\! 3.0\text{V}, \text{A voltage equal to 98\% of the output voltage whenever an amply stabilized } I_{\text{OUT}\{V_{\text{OUT(T)}} \!+\! 3.0\text{V}\}} \text{ is input.} \\ V_{\text{OUT(T)}} \!\!\geq\! 3.0\text{V}, \text{A voltage equal to 98\% of the output voltage whenever an amply stabilized } I_{\text{OUT}\{V_{\text{OUT(T)}} \!+\! 2.0\text{V}\}} \text{ is input.} \\$

 V_{IN1} : The input voltage when V_{OUT1} appears as input voltage is gradually decreased.

^{*1:} $V_{\text{OUT}(T)}$: Nominal output voltage

^{*2:} $V_{OUT(E)}$: Effective output voltage

^{*3:} $Vdif=\{V_{IN1} - V_{OUT1}\}$

■ ELECTRICAL CHARACTERISTICS (Continued)

● Voltage Chart (XC6216 Series)

PARAMETER	`		-0		Е	-1	E-2		
NOMINAL	OUTPUT	VOLTAGE	OUTPUT	VOLTAGE	DROPOUT	VOLTAGE 1	DROPOUT	VOLTAGE 2	
OUTPUT	(\	/)	(/)	(m	ıV)		nV)	
VOLTAGE(V)		URACY		URACY	I _{OUT} =20mA		I _{OUT} =100mA		
V	Vol	JT(E)	V _{OUT(E)}		Vdif1		Vdif2		
$V_{OUT(T)}$	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	
1.8	1.764	1.836	1.780	1.820	550	710	2200	2700	
1.9	1.862	1.938	1.880	1.920	550	710	2200	2700	
2.0	1.960	2.040	1.980	2.020	450	600	1900	2600	
2.1	2.058	2.142	2.079	2.121	450	600	1900	2600	
2.2	2.156	2.244	2.178	2.222	390	520	1700	2200	
2.3	2.254	2.346	2.277	2.323	390	520	1700	2200	
2.4	2.352	2.448	2.376	2.424	390	520	1700	2200	
2.5	2.450	2.550	2.475	2.525	310	450	1500	1900	
2.6	2.548	2.652	2.574	2.626	310	450	1500	1900	
2.7	2.646	2.754	2.673	2.727	310	450	1500	1900	
2.8	2.744	2.856	2.772	2.828	310	450	1500	1900	
2.9	2.842	2.958	2.871	2.929	310	450	1500	1900	
3.0	2.940	3.060	2.970	3.030	260	360	1300	1700	
3.1	3.038	3.162	3.069	3.131	260	360	1300	1700	
3.2	3.136	3.264	3.168	3.232	260	360	1300	1700	
3.3	3.234	3.366	3.267	3.333	260	360	1300	1700	
3.4	3.332	3.468	3.366	3.434	260	360	1300	1700	
3.5	3.430	3.570	3.465	3.535	260	360	1300	1700	
3.6	3.528	3.672	3.564	3.636	260	360	1300	1700	
3.7	3.626	3.774	3.663	3.737	260	360	1300	1700	
3.8	3.724	3.876	3.762	3.838	260	360	1300	1700	
3.9	3.822	3.978	3.861	3.939	260	360	1300	1700	
4.0	3.920	4.080	3.960	4.040	220	320	1100	1500	
4.1	4.018	4.182	4.059	4.141	220	320	1100	1500	
4.2	4.116	4.284	4.158	4.242	220	320	1100	1500	
4.3	4.214	4.386	4.257	4.343	220	320	1100	1500	
4.4	4.312	4.488	4.356	4.444	220	320	1100	1500	
4.5	4.410	4.590	4.455	4.545	220	320	1100	1500	
4.6	4.508	4.692	4.554	4.646	220	320	1100	1500	
4.7	4.606	4.794	4.653	4.747	220	320	1100	1500	
4.8	4.704	4.896	4.752	4.848	220	320	1100	1500	
4.9	4.802	4.998	4.851	4.949	220	320	1100	1500	

■ ELECTRICAL CHARACTERISTICS (Continued)

● Voltage Chart (XC6216 Series) (Continued)

PARAMETER		Е	-0		Е	-1	Е	E-2		
NOMINAL	OUTPUT	VOLTAGE	OUTPUT	VOLTAGE	DROPOUT	VOLTAGE 1	DROPOUT	VOLTAGE 2		
OUTPUT	()	√)		√)	(m	nV)	(m	nV)		
VOLTAGE(V)		ÛRACY	-	URACY	,	20mA	•	00mA		
	Vol	JT(E)	Vol	JT(E)	Vo		Vo	lif2		
V _{OUT(T)}	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.		
5.0	4.900	5.100	4.950	5.050	190	280	1000	1300		
5.1	4.998	5.202	5.049	5.151	190	280	1000	1300		
5.2	5.096	5.304	5.148	5.252	190	280	1000	1300		
5.3	5.194	5.406	5.247	5.353	190	280	1000	1300		
5.4	5.292	5.508	5.346	5.454	190	280	1000	1300		
5.5	5.390	5.610	5.445	5.555	190	280	1000	1300		
5.6	5.488	5.712	5.544	5.656	190	280	1000	1300		
5.7	5.586	5.814	5.643	5.757	190	280	1000	1300		
5.8	5.684	5.916	5.742	5.916	190	280	1000	1300		
5.9	5.782	6.018	5.841	5.959	190	280	1000	1300		
6.0	5.880	6.120	5.940	6.060	190	280	1000	1300		
6.1	5.978	6.222	6.039	6.161	190	280	1000	1300		
6.2	6.076	6.324	6.138	6.262	190	280	1000	1300		
6.3	6.174	6.426	6.237	6.363	190	280	1000	1300		
6.4	6.272	6.528	6.336	6.464	190	280	1000	1300		
6.5	6.370	6.630	6.435	6.565	170	230	800	1150		
6.6	6.468	6.732	6.534	6.666	170	230	800	1150		
6.7	6.566	6.834	6.633	6.767	170	230	800	1150		
6.8	6.664	6.936	6.732	6.868	170	230	800	1150		
6.9	6.762	7.038	6.831	6.969	170	230	800	1150		
7.0	6.860	7.140	6.930	7.070	170	230	800	1150		
7.1	6.958	7.242	7.029	7.171	170	230	800	1150		
7.2	7.056	7.344	7.128	7.272	170	230	800	1150		
7.3	7.154	7.446	7.227	7.373	170	230	800	1150		
7.4	7.252	7.548	7.326	7.474	170	230	800	1150		
7.5	7.350	7.650	7.425	7.575	170	230	800	1150		
7.6	7.448	7.752	7.524	7.676	170	230	800	1150		
7.7	7.546	7.854	7.623	7.777	170	230	800	1150		
7.8	7.644	7.956	7.722	7.878	170	230	800	1150		
7.9	7.742	8.058	7.821	7.979	170	230	800	1150		
8.0	7.840	8.160	7.920	8.080	170	230	800	1150		

■ ELECTRICAL CHARACTERISTICS (Continued)

● Voltage Chart (XC6216 Series) (Continued)

PARAMETER	11 (7100210	eries) (Cont	-0		E	-1	E-2		
NOMINAL	OUTPUT	VOLTAGE		VOLTAGE		VOLTAGE 1		VOLTAGE 2	
OUTPUT		/)		V)	(mV)			ıV)	
VOLTAGE(V)		URACY		URACY	I _{OUT} =20mA		I _{OUT} =100mA		
. ,		JT(E)		JT(E)		lif1		lif2	
V _{OUT(T)}	MIN.	MAX.	MIN.	MAX.	TYP.	MAX.	TYP.	MAX.	
8.1	7.938	8.262	8.019	8.181	130	190	700	950	
8.2	8.036	8.364	8.118	8.282	130	190	700	950	
8.3	8.134	8.466	8.217	8.383	130	190	700	950	
8.4	8.232	8.568	8.316	8.484	130	190	700	950	
8.5	8.330	8.670	8.415	8.585	130	190	700	950	
8.6	8.428	8.772	8.514	8.686	130	190	700	950	
8.7	8.526	8.874	8.613	8.787	130	190	700	950	
8.8	8.624	8.976	8.712	8.888	130	190	700	950	
8.9	8.722	9.078	8.811	8.989	130	190	700	950	
9.0	8.820	9.180	8.910	9.090	130	190	700	950	
9.1	8.918	9.282	9.009	9.191	130	190	700	950	
9.2	9.016	9.384	9.108	9.292	130	190	700	950	
9.3	9.114	9.486	9.207	9.393	130	190	700	950	
9.4	9.212	9.588	9.306	9.494	130	190	700	950	
9.5	9.310	9.690	9.405	9.595	130	190	700	950	
9.6	9.408	9.792	9.504	9.696	130	190	700	950	
9.7	9.506	9.894	9.603	9.797	130	190	700	950	
9.8	9.604	9.996	9.702	9.898	130	190	700	950	
9.9	9.702	10.098	9.801	9.999	130	190	700	950	
10.0	9.800	10.200	9.900	10.100	130	190	700	950	
10.1	9.898	10.302	9.999	10.201	120	160	650	850	
10.2	9.996	10.404	10.098	10.302	120	160	650	850	
10.3	10.094	10.506	10.197	10.403	120	160	650	850	
10.4	10.192	10.608	10.296	10.504	120	160	650	850	
10.5	10.290	10.710	10.395	10.605	120	160	650	850	
10.6	10.388	10.812	10.494	10.706	120	160	650	850	
10.7	10.486	10.914	10.593	10.807	120	160	650	850	
10.8	10.584	11.016	10.692	10.908	120	160	650	850	
10.9	10.682	11.118	10.791	11.009	120	160	650	850	
11.0	10.780	11.220	10.890	11.110	120	160	650	850	
11.1	10.878	11.322	10.989	11.211	120	160	650	850	
11.2	10.976	11.424	11.088	11.312	120	160	650	850	
11.3	11.074	11.526	11.187	11.413	120	160	650	850	
11.4	11.172	11.628	11.286	11.514	120	160	650	850	
11.5	11.270	11.730	11.385	11.615	120	160	650	850	
11.6	11.368	11.832	11.484	11.716	120	160	650	850	
11.7	11.466	11.934	11.583	11.817	120	160	650	850	
11.8	11.564	12.036	11.682	11.918	120	160	650	850	
11.9	11.662	12.138	11.781	12.019	120	160	650	850	
12.0	11.760	12.240	11.880	12.120	120	160	650	850	

■ ELECTRICAL CHARACTERISTICS (Continued)

●XE6216 Series B Type

DADAMETED	0)/4/00/	CONDITIONS		Ta=25°0	C	Ta=-	40°C ~ 8	35°C	LINUTO	OLDOLUT
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage	V _{OUT(E)} (*2)	I _{OUT} =20mA , V _{CE} =V _{IN}		E-0-1			E-0-2		V	1
Maximum Output	Гоитмах	$V_{IN} = V_{OUT(T)} + 3.0V, V_{CE} = V_{IN}^{(^{*}1)}$ $(V_{OUT(T)} \ge 3.0V)$	-	-	-	150	-	-	mA	1
Current ^(*)	TOUTMAX	$V_{IN} = V_{OUT(T)} + 3.0V$, $V_{CE} = V_{IN}^{(*1)}$ ($V_{OUT(T)} < 3.0V$)	-	-	-	100	-	-	mA	1
Load Regulation ^(*)	ΔV_{OUT}	$V_{CE}=V_{IN}$, $1mA \le I_{OUT} \le 50mA$	1	E-	1-1	-	E-1	1-2	mV	1
Dropout Voltage1	Vdif1 ^(*3)	I_{OUT} =20mA, V_{CE} = V_{IN}	-	E-:	2-1	-	E-2	2-2	mV	1
Dropout Voltage2(*)	Vdif2 ^(*3)	I _{OUT} =100mA, V _{CE} =V _{IN}	-	E∹	3-1	-	E-3	3-2	mV	1
Supply Current	Iss	V _{CE} =V _{IN}	1	5	9	0.5	5	10	μΑ	2
Stand-by Current	I _{STB}	V _{CE} =V _{SS}	-	0.01	0.1	-	0.01	4	μΑ	2
Line Regulation1(*)	ΔV _{OUT} / (ΔV _{IN} • V _{OUT})	V _{OUT(T)} +2.0V≦V _{IN} ≦28.0V ^(*1) I _{OUT} =5mA, V _{CE} =V _{IN}	1	0.05	0.10	1	0.05	0.12	%/V	1
Line Regulation2 ^(*)	ΔV _{OUT} / (ΔV _{IN} • V _{OUT})	$\begin{split} &V_{OUT(T)}\text{+}2.0V \leqq V_{IN} \leqq 28.0V^{(*1)} \\ &I_{OUT}\text{=}13\text{mA}, \ V_{CE}\text{=}V_{IN} \end{split}$	ı	0.15	0.30	-	0.15	0.32	%/V	1
Input Voltage	Vin		2.0		28.0	2.0		28.0	V	
Output Voltage Temperature Characteristics	ΔV _{OUT} / (ΔTopr • V _{OUT})	I _{OUT} =20mA, V _{CE} =V _{IN} -40°C≦Topr≦85°C	-	±100	±350	-	-	-	ppm/°C	1
Power Supply Rejection Ratio	PSRR	$V_{IN}=[V_{OUT(T)}+2.0]V+0.5Vp-pAC^{(^{*}1)}$ $I_{OUT}=20mA, f=1kHz, V_{CE}=V_{IN}$	ı	30	-	1	30	-	dB	3
Short Current	Ishort	VCE=VIN	-	30	-	-	30	-	mA	1
CE "H" Level Voltage	V _{CEH}	-	-	-	-	1.1	-	28.0	V	1
CE "L" Level Voltage	Vcel	-	-	-	-	0	-	0.35	V	1
CE "H" Level Current	Ісен	V _{IN} =V _{CE} =28.0V	-0.1	-	0.1	-0.1	-	0.7	μΑ	2
CE "L" Level Current	I _{CEL}	V _{IN} =28.0V, V _{CE} =V _{SS}	-0.1	-	0.1	-0.2	-	-0.2	μΑ	2
Thermal Shutdown Detect Temperature	T _{TSD}	V _{CE} =V _{IN} , Junction Temperature	-	150	-	-	150	-	°C	1
Thermal Shutdown Release Temperature	T _{TSR}	V _{CE} =V _{IN} , Junction Temperature	-	125	-	-	125	-	°C	1
Hysteresis Width	T _{TSD} - T _{TSR}	V _{CE} =V _{IN} , Junction Temperature	-	25	-	-	25	-	°C	-

Unless otherwise stated, VIN=VOUT(T)+2.0V.

NOTE:

*1: Vout(t): Nominal output voltage

*2: Vout(E): Effective output voltage

(i.e. the output voltage when "Vout(T)+2.0V" is provided at the VIN pin while maintaining a certain lout value.)

*3: Vdif={VIN1- VOUT1}

Vout1: $V_{OUT(T)} \le 3.0V$, A voltage equal to 98% of the output voltage whenever an amply stabilized $I_{OUT(T)} + 3.0V$ is input. $V_{OUT(T)} \ge 3.0V$, A voltage equal to 98% of the output voltage whenever an amply stabilized $I_{OUT(T)} + 2.0V$ is input.

VIN1: The input voltage when Vout1 appears as input voltage is gradually decreased.

(*) Junction temperature range is Tj=-40 \sim 125 $^{\circ}$ C for this table.

■ ELECTRICAL CHARACTERISTICS (Continued)

●Voltage Chart 1 (XE6216 Series)

MBOL	E-C)-1	E-()-2			
Temperature / Ta	25	°C	-40 ~	85°C			
PARAMETER							
NOMINAL OUTPUT VOLTAGE(V)	OUTPUT VO	, ,	OUTPUT VOLTAGE (V) Accuracy +3% , -3.5%				
V	Vou	T(E)	Vol	IT(E)			
V _{OUT(T)}	MIN.	MAX.	MIN. MAX.				
2.0	1.960	2.040	1.930	2.060			
2.1	2.058	2.142	2.027	2.163			
2.2	2.156	2.244	2.123	2.266			
2.3	2.254	2.346	2.220	2.369			
2.4	2.352	2.448	2.316	2.472			
2.5	2.450	2.550	2.413	2.575			
2.6	2.548	2.652	2.509	2.678			
2.7	2.646	2.754	2.606	2.781			
2.8	2.744	2.856	2.702	2.884			
2.9	2.842	2.958	2.799	2.987			
3.0	2.940	3.060	2.895	3.090			
3.1	3.038	3.162	2.992	3.193			
3.2	3.136	3.264	3.088	3.296			
3.3	3.234	3.366	3.185	3.399			
3.4	3.332	3.468	3.281	3.502			
3.5	3.430	3.570	3.378	3.605			
3.6	3.528	3.672	3.474	3.708			
3.7	3.626	3.774	3.571	3.811			
3.8	3.724	3.876	3.667	3.914			
3.9	3.822	3.978	3.764	4.017			
4.0	3.920	4.080	3.860	4.120			
4.1	4.018	4.182	3.957	4.223			
4.2	4.116	4.284	4.053	4.326			
4.3	4.214	4.386	4.150	4.429			
4.4	4.312	4.488	4.246	4.532			
4.5	4.410	4.590	4.342	4.635			
4.6	4.508	4.692	4.439	4.738			
4.7	4.606	4.794	4.535	4.841			
4.8	4.704	4.896	4.632	4.944			
4.9	4.802	4.998	4.728	5.047			

SYMBOL	E-0)-1	E-0-2			
Temperature / Ta	25	°C	-40 ~ 85°C			
PARAMETER NOMINAL OUTPUT VOLTAGE(V)	OUTPUT VC Accuracy		OUTPUT VOLTAGE (V) Accuracy +3% , -3.5%			
	Vou	T(E)	$V_{OUT(E)}$			
V _{OUT(T)}	MIN.	MAX.	MIN.	MAX.		
5.0	4.900	5.100	4.825	5.150		
5.1	4.998	5.202	4.921	5.253		
5.2	5.096	5.304	5.018	5.356		
5.3	5.194	5.406	5.114	5.459		
5.4	5.292	5.508	5.211	5.562		
5.5	5.390	5.610	5.307	5.665		
5.6	5.488	5.712	5.404	5.768		
5.7	5.586	5.814	5.500	5.871		
5.8	5.684	5.916	5.597	5.974		
5.9	5.782	6.018	5.693	6.077		
6.0	5.880	6.120	5.790	6.180		
6.1	5.978	6.222	5.886	6.283		
6.2	6.076	6.324	5.983	6.386		
6.3	6.174	6.426	6.079	6.489		
6.4	6.272	6.528	6.176	6.592		
6.5	6.370	6.630	6.272	6.695		
6.6	6.468	6.732	6.369	6.798		
6.7	6.566	6.834	6.465	6.901		
6.8	6.664	6.936	6.562	7.004		
6.9	6.762	7.038	6.658	7.107		
7.0	6.860	7.140	6.755	7.210		
7.1	6.958	7.242	6.851	7.313		
7.2	7.056	7.344	6.948	7.416		
7.3	7.154	7.446	7.044	7.519		
7.4	7.252	7.548	7.141	7.622		
7.5	7.350	7.650	7.237	7.725		
7.6	7.448	7.752	7.334	7.828		
7.7	7.546	7.854	7.430	7.931		
7.8	7.644	7.956	7.527	8.034		
7.9	7.742	8.058	7.623	8.137		

■ ELECTRICAL CHARACTERISTICS (Continued) • Voltage Chart 2 (XE6216 Series)

SYMBOL	E-0		E-()-2			
Temperature							
/Ta	25	°C	-40 ~ 85°C				
PARAMETER							
	OUTPUT VO	N TAGE (\/)	OUTPUT VOLTAGE (V) Accuracy +3%, -3.5%				
NOMINAL	Accurac	` '					
OUTPUT	7 toodi do	,	Accuracy +3 /6 , -3.5 /6				
VOLTAGE(V)							
V _{OUT(T)}	Vou		Vol				
	MIN.	MAX.	MIN.	MAX.			
8.0	7.840	8.160	7.720	8.240			
8.1	7.938	8.262	7.816	8.343			
8.2	8.036	8.364	7.913	8.446			
8.3	8.134	8.466	8.009	8.549			
8.4	8.232	8.568	8.106	8.652			
8.5	8.330	8.670	8.202	8.755			
8.6	8.428	8.772	8.299	8.858			
8.7	8.526	8.874	8.395	8.961			
8.8	8.624	8.976	8.492	9.064			
8.9 9.0	8.722 8.820	9.078 9.180	8.588 8.685	9.167 9.270			
9.0							
9.1	8.918	9.282	8.781	9.373			
9.2	9.016 9.114	9.384 9.486	8.878 8.974	9.476 9.579			
9.4	9.114	9.588	9.071	9.682			
9.5	9.310	9.690	9.167	9.785			
9.6	9.408	9.792	9.264	9.888			
9.7	9.506	9.894	9.360	9.991			
9.8	9.604	9.996	9.457	10.094			
9.9	9.702	10.098	9.553	10.094			
10.0	9.800	10.200	9.650	10.300			
10.1	9.898	10.302	9.747	10.403			
10.2	9.996	10.404	9.843	10.506			
10.3	10.094	10.506	9.940	10.609			
10.4	10.192	10.608	10.036	10.712			
10.5	10.290	10.710	10.133	10.815			
10.6	10.388	10.812	10.229	10.918			
10.7	10.486	10.914	10.326	11.021			
10.8	10.584	11.016	10.422	11.124			
10.9	10.682	11.118	10.519	11.227			
11.0	10.780	11.220	10.615	11.330			
11.1	10.878	11.322	10.712	11.433			
11.2	10.976	11.424	10.808	11.536			
11.3	11.074	11.526	10.905	11.639			
11.4	11.172	11.628	11.001	11.742			
11.5	11.270	11.730	11.098	11.845			
11.6	11.368	11.832	11.194	11.948			
11.7	11.466	11.934	11.291	12.051			
11.8	11.564	12.036	11.387	12.154			
11.9	11.662	12.138	11.484	12.257			
12.0	11.760	12.240	11.580	12.360			
		_ · - · - · · ·					

■ ELECTRICAL CHARACTERISTICS (Continued) • Voltage Chart 3 (XE6216 Series)

● Voltage Cha					_	0.4			_		_	
SYMBOL	E-	1-1	E-	1-2	E-:	2-1	E-2	2-2	E-3	3-1	E-:	3-2
Temperature /Ta	25	5°C	-40 ~	- 85°C	25	s°C	-40 ~	85°C	25	°C	-40 ~	85°C
PARAMETER NOMINAL OUTPUT VOLTAGE(V)	REGU	OAD LATION nV)	REGU	DAD LATION nV)	(m	VOLTAGE 1 nV) 20mA	DROPOUT (m	V)	DROPOUT (m	V)	(m	VOLTAGE 2 nV) 00mA
V _{OUT(T)}	Δ٧	OUT	Δ٧	OUT	Vo	lif1	Vd	if1	Vd	if2	Vo	lif2
(V)	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.
2.0					450	600	450	735	1900	2600	1900	3060
2.1												
2.2					200	500	200	675	1700	2200	4700	2700
2.3					390	520	390	675	1700	2200	1700	2760
2.4												
2.6												
2.7					310	450	310	620	1500	1900	1500	2620
2.8					310	450	310	020	1300	1900	1300	2020
2.9												
3.0												
3.1												
3.2												
3.3												
3.4												
3.5	50	90	50	103	260	360	260	520	1300	1700	1300	2370
3.6												
3.7												
3.8												
3.9												
4.0												
4.1												
4.2												
4.3												
4.4					220	320	220	410	1100	1500	1100	2045
4.5					220	320	220	710	1100	1300	1100	2040
4.6												
4.7												
4.8												
4.9												

■ ELECTRICAL CHARACTERISTICS (Continued) • Voltage Chart 4 (XE6216 Series)

SYMBOL		1-1		1-2	E-:	2-1	E-2	2-2	E-3	3-1	E-	3-2
Temperature / Ta	25	5°C	-40 ~	- 85°C	25	5°C	-40 ~	85°C	25	°C	-40 ~	85°C
PARAMETER NOMINAL OUTPUT VOLTAGE(V)	REGU	OAD LATION nV)	LOAD REGULATION (mV)		DROPOUT VOLTAGE 1 (mV) Iout=20mA		DROPOUT VOLTAGE 1 (mV) Iout=20mA		DROPOUT VOLTAGE 2 (mV) I _{OUT} =100mA		DROPOUT VOLTAGE 2 (mV) lout=100mA	
V _{OUT(T)}	Δ٧	OUT	Δ٧	′оит	Vo	lif1	Vd	lif1	Vd	if2	Vo	lif2
(V)	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.
5.0												
5.1												
5.2												
5.3												
5.4												
5.5												
5.6												
5.7					190	280	190	380	1000	1300	1000	1730
5.8												
5.9												
6.0	50	90	50	103								
6.1												
6.2												
6.3												
6.4												
6.5												
6.6												
6.7												
6.8												
6.9												
7.0												
7.1												
7.2					470	000	470	242	000	4450	000	4500
7.3					170	230	170	340	800	1150	800	1580
7.4												
7.5	440	440	440	450								
7.6	110	140	110	150								
7.7												
7.8												
7.9												
8.0												

■ ELECTRICAL CHARACTERISTICS (Continued)

●Voltage Chart 5 (XE6216 Series)

SYMBOL		1-1		1-2	E-:	2-1	E-2	2-2	E-3	3-1	E-:	3-2
Temperature					25°C				25°C		-40 ~ 85°C	
/ Ta	25	5°C	-40 ~	85°C	25	C C	-40 ~	85°C	25	°C	-40 ~	85℃
PARAMETER NOMINAL OUTPUT VOLTAGE(V)	REGU	OAD LATION nV)	LOAD REGULATION (mV)		DROPOUT VOLTAGE 1 (mV) I _{OUT} =20mA		DROPOUT VOLTAGE 1 (mV) Iout=20mA		DROPOUT VOLTAGE 2 (mV) Iout=100mA		DROPOUT VOLTAGE 2 (mV) lout=100mA	
V _{OUT(T)}	ΔV	оит	ΔV	оит	Vo	lif1	Vd	lif1	Vd	if2	Vo	lif2
(V)	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX.	TYP.	MAX
8.1												
8.2												
8.3												
8.4												
8.5												
8.6												
8.7												
8.8												
8.9												
9.0												
9.1					130	190	130	320	700	950	700	1460
9.2												
9.3												
9.4												
9.5												
9.6												
9.7												
9.8												
9.9												
10.0	4.40	4.40	440	450								
10.1	110	140	110	150								
10.2												
10.3												
10.4												
10.5												
10.6												
10.7												
10.8												
10.9												
11.0					465	465	465	05-	055	05-	05-	4455
11.1					120	160	120	285	650	850	650	1160
11.2												
11.3												
11.4												
11.5												
11.6												
11.7												
11.8												
11.9												
12.0												
.2.0		l	l		l		<u> </u>	<u> </u>				

■ TEST CIRCUITS

 $\textbf{Circuit} \ \ \textcircled{1}$

●XC6216B/XE6216B Type

●XC6216C Type

●XC6216D Type

Circuit 2

●XC6216B/XE6216B Type

●XC6216D Type

Circuit ③

●XC6216B/XE6216B Type

●XC6216C Type

●XC6216D Type

Circuit 4

●XC6216C Type

■ OPERATIONAL EXPLANATION

<Output Voltage Control>

The voltage divided by resistors R11 & R12 is compared with the internal reference voltage by the error amplifier. The P-channel MOSFET which is connected to the Vout pin is then driven by the subsequent controlled signal. The output voltage at the Vout pin is controlled and stabilized by a system of negative feedback. The current limit circuit and short protect circuit operate in relation to the level of output current and heat dissipation. Further, the IC's internal circuitry can be shutdown via the CE pin's signal.

<Short-Circuit Protection>

The XC6216/XE6216 series includes a current fold-back circuit as a short circuit protection. When the load current reaches the current limit level, the current fold-back circuit operates and output voltage drops. The output voltage drops further and output current decreases. When the output pin is shorted, a current of about 30mA flows.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6216/XE6216 series. In shutdown mode, output at the Vout pin will be pulled down by R11 and R12 to the Vss level. Note that as the XC6216/XE6216 series has no pull down resistor so that it will become unstable with the CE pin open. We suggest that you use this IC with either a VIN voltage or a Vss voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the operational logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry if a medium voltage is applied.

<Thermal Protection>

When the junction temperature of the built-in driver transistor reaches the temperature limit, the thermal shutdown circuit operates and the driver transistor will be set to OFF. The IC resumes its operation when the thermal shutdown function is released and the IC's operation is automatically restored because the junction temperature drops to the level of the thermal shutdown release voltage.

<Minimum Operating Voltage>

For the stable operation of the IC, over 2.0V of input voltage is necessary. The output voltage may not be generated normally if the input voltage is less than 2.0V.

NOTES ON USE

- 1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded.
- 2. Where wiring impedance is high, operations may become unstable due to the noise and/or phase lag depending on output current. Please strengthen VIN and Vss wiring in particular.
- 3. Phase compensation inside the IC is performed in the XC6216/XE6216 series. Therefore, an abnormal oscillation does not occur even if there is no output capacitor CL. An input capacitor CIN around $0.1\,\mu\,F\sim1.0\,\mu\,F$ between the power input pin (V_{IN}) and the ground pin (V_{SS}) is required for input stability. Also, the output voltage fluctuation such as under shoot or over shoot, which occurs because of the load change can be controlled by placing the output capacitor C_L around $0.1\,\mu\,F\sim1.0\,\mu\,F$ between the VouT pin and Vss pin. The input capacitor (CIN) and the output capacitor (CL) should be placed to the IC as close as possible with a shorter wiring.

NOTES ON USE

4. Notes on setting output voltage externally (C type) Ta=25°C

The output voltage can be set externally by the following equation: $I_{21}=I_{FB}+I_{22}$ (1) $I_{22}=2.0V/R_{22}$ (2) $I_{21}=I_{FB}+2.0V/R_{22}$ If the equation (3) is assigned to the equation (2), the equation becomes as below: Vout=2.0V+R21 • I21 (3)For this, the following equation can be used for setting output voltage externally: Vout=2.0V+R21 • I21 (4) And the equation (4) will be; $V_{OUT}=2.0V+R_{21} \cdot (I_{FB}+2.0V/R_{22})$ $=2.0V \cdot (R_{21} + R_{22}) / R_{22} + R_{21} \cdot I_{FB}$ (5) The second term of the equation (6), $R_{21} \cdot I_{FB}$, is the cause of the output accuracy error. The IFB can be calculated by the following equation: I_{FB}=2.0V / R_{FB} (6)..... The cause of the output accuracy error, $R_{21} \cdot I_{FB}$ can be calculated by the equation below; $R_{21} \cdot I_{FB} = R_{21} \cdot 2.0 \text{V/ } R_{FB}$ $=2.0V \cdot R_{21} / R_{FB}$ (7) Accordingly, if R₂₁<< R_{FB}, the output voltage error becomes minute.

Setting Resistance-Dependent of XC6216 Series C type's Output Voltage

5. Torex places an importance on improving our products and its reliability.

However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.

■ TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(1) Output Voltage vs. Output Current (Continued)

(2) Output Voltage vs. Input Voltage

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(2) Output Voltage vs. Input Voltage (Continued)

(3) Dropout Voltage vs. Output Current

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(3) Dropout Voltage vs. Output Current (Continued)

(4) Supply Current vs. Input Voltage

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(4) Supply Current vs. Input Voltage (Continued)

(5) Output Voltage vs. Ambient Temperature

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(5) Output Voltage vs. Ambient Temperature (Continued)

(6) Line Transient Response

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(6) Line Transient Response (Continued)

(7) Load Transient Response

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(7) Load Transient Response (Continued)

(8) Input Rise Time

XC6216B/C/D 202

XC6216B/C/D 202

XC6216B/D 332

XC6216B/D 332

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(8) Input Rise Time (Continued)

6

5

4 3 5 1 Output Voltage : V_{OUT} (V)

0

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(9) CE Rise Time (Continued)

-10

-15

3

time(1ms/div)

-15

time(1ms/div)

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(10) Ripple Rejection Rate

■ TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(10) Ripple Rejection Time (Continued)

■PACKAGING INFORMATION

For the latest package information go to, www.torexsemi.com/technical-support/packages

PACKAGE	OUTLINE / LAND PATTERN	THERMAL CHARACTERISTICS					
SOT-23	SOT-23 PKG	Standard Board	SOT-23 Power Dissipation				
SOT-25	COT OF DIVO	Standard Board	COT 25 Dower Discipation				
501-25	SOT-25 PKG	JESD51-7 Board	SOT-25 Power Dissipation				
SOT-89	SOT-89 PKG	Standard Board	SOT-89 Power Dissipation				
SOT-89-5	20T 90 5 DVC	Standard Board	SOT 90 5 Power Dissingtion				
301-69-5	<u>SOT-89-5 PKG</u>	JESD51-7 Board	SOT-89-5 Power Dissipation				
SOT-223	SOT-223 PKG	Standard Board	SOT-223 Power Dissipation				
TO-252	<u>TO-252 PKG</u>	Standard Board	TO-252 Power Dissipation				
USP-6C	USP-6C PKG	Standard Board	LISP 6C Power Dissination				
03F-6C	USF-0C PRO	JESD51-7 Board	USP-6C Power Dissipation				
USP-6B06	USP-6B06 PKG	Standard Board	USP-6B06 Power Dissipation				

■MARKING RULE (XC6216 Series)

●SOT-25, SOT-89,SOT-89-5,USP-6C,SOT-223,TO-252,USP-6B06, SOT-23

(mark header : $\textcircled{1}\sim \textcircled{3}$) *Mark header does not change with a lot.

① represents the product series

MARK	PRODUCT SERIES
2	XC6216xxxxxx

2 represents the output voltage range

MARK	VOLTAGE (V)	PRODUCT SERIES
0	1.8~3.0	
1	3.1~6.0	XC6216Bxxxxx
2	6.1~9.0	AC0210DXXXXX
3	9.1~12.0	
4	1.8~3.0	
5	3.1~6.0	XC6216Dxxxxx
6	6.1~9.0	AC6216DXXXXX
7	9.1~12.0	
8	2.0	XC6216Cxxxxx

■MARKING RULE (XC6216 Series) (Continued)

3 represents the output voltage

MARK		VOLTA	AGE(V)		MARK	VOLTAGE(V)			
0	-	3.1	6.1	9.1	F	-	4.6	7.6	10.6
1	-	3.2	6.2	9.2	Н	-	4.7	7.7	10.7
2	-	3.3	6.3	9.3	K	1.8	4.8	7.8	10.8
3	-	3.4	6.4	9.4	L	1.9	4.9	7.9	10.9
4	-	3.5	6.5	9.5	М	2.0	5.0	8.0	11.0
5	1	3.6	6.6	9.6	N	2.1	5.1	8.1	11.1
6	-	3.7	6.7	9.7	Р	2.2	5.2	8.2	11.2
7	1	3.8	6.8	9.8	R	2.3	5.3	8.3	11.3
8	ı	3.9	6.9	9.9	S	2.4	5.4	8.4	11.4
9	-	4.0	7.0	10.0	Т	2.5	5.5	8.5	11.5
Α	1	4.1	7.1	10.1	U	2.6	5.6	8.6	11.6
В	ı	4.2	7.2	10.2	V	2.7	5.7	8.7	11.7
С	-	4.3	7.3	10.3	Х	2.8	5.8	8.8	11.8
D	-	4.4	7.4	10.4	Υ	2.9	5.9	8.9	11.9
E	-	4.5	7.5	10.5	Z	3.0	6.0	9.0	12.0

45 represents assembly lot number

01 to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to AZ, B1 to ZZ repeated (G, I, J, O, Q, W excluded) Note: No character inversion used.

■MARKING RULE (XE6216 Series)

●SOT-89-5

① represents the product series

MARK	PRODUCT SERIES
2	XE6216xxxxxx

2 represents the output voltage range

MARK	VOLTAGE (V)	PRODUCT SERIES
0	2.0~3.0	
1	3.1~6.0	VE6246Dyangay
2	6.1~9.0	XE6216Bxxxxx
3	9.1~12.0	

MARK		VOLTA	GE(V)		MARK	VOLTAGE(V)			
0	-	3.1	6.1	9.1	F	-	4.6	7.6	10.6
1	-	3.2	6.2	9.2	Н	-	4.7	7.7	10.7
2	ı	3.3	6.3	9.3	K	1	4.8	7.8	10.8
3	-	3.4	6.4	9.4	L	-	4.9	7.9	10.9
4	-	3.5	6.5	9.5	М	2.0	5.0	8.0	11.0
5	ı	3.6	6.6	9.6	N	2.1	5.1	8.1	11.1
6	-	3.7	6.7	9.7	Р	2.2	5.2	8.2	11.2
7	-	3.8	6.8	9.8	R	2.3	5.3	8.3	11.3
8	-	3.9	6.9	9.9	S	2.4	5.4	8.4	11.4
9	-	4.0	7.0	10.0	Т	2.5	5.5	8.5	11.5
Α	-	4.1	7.1	10.1	U	2.6	5.6	8.6	11.6
В	-	4.2	7.2	10.2	V	2.7	5.7	8.7	11.7
С	-	4.3	7.3	10.3	Х	2.8	5.8	8.8	11.8
D	-	4.4	7.4	10.4	Y	2.9	5.9	8.9	11.9
Е	-	4.5	7.5	10.5	Z	3.0	6.0	9.0	12.0

4 represents assembly lot number

 $0, \cdots, 9, A, B, \cdots, Z, \boxed{0}, \cdots, \boxed{0}, \boxed{A, B}, \cdots, \boxed{Z}, 0, \cdots$ repeated (G, I, J, O, Q, W excluded)

Bar marking of a-b-c-d combination represents production year.

Production Year	а	b	С	d
xxx0		-	-	-
xxx1	-		-	-
xxx2	-	-		-
xxx3	-	-	-	
xxx4			-	-
xxx5		-		-
xxx6		-	-	
xxx7	-			-
8xxx	-		-	
xxx9	-	-		

Bar marking of e-f-g-h combination represents production month.

Production Month	е	f	g	h
January		=	=	=
February	=		=	=
March	=	=		=
April	=	=	=	
May			=	=
June		=		=
July		=	-	
August	=			=
September	=		-	
October	=	=		
November				=
December			-	

- 1. The product and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. The information in this datasheet is intended to illustrate the operation and characteristics of our products. We neither make warranties or representations with respect to the accuracy or completeness of the information contained in this datasheet nor grant any license to any intellectual property rights of ours or any third party concerning with the information in this datasheet.
- Applicable export control laws and regulations should be complied and the procedures required by such laws and regulations should also be followed, when the product or any information contained in this datasheet is exported.
- 4. The product is neither intended nor warranted for use in equipment of systems which require extremely high levels of quality and/or reliability and/or a malfunction or failure which may cause loss of human life, bodily injury, serious property damage including but not limited to devices or equipment used in 1) nuclear facilities, 2) aerospace industry, 3) medical facilities, 4) automobile industry and other transportation industry and 5) safety devices and safety equipment to control combustions and explosions. Do not use the product for the above use unless agreed by us in writing in advance.
- 5. Although we make continuous efforts to improve the quality and reliability of our products; nevertheless Semiconductors are likely to fail with a certain probability. So in order to prevent personal injury and/or property damage resulting from such failure, customers are required to incorporate adequate safety measures in their designs, such as system fail safes, redundancy and fire prevention features.
- 6. Our products are not designed to be Radiation-resistant.
- 7. Please use the product listed in this datasheet within the specified ranges.
- 8. We assume no responsibility for damage or loss due to abnormal use.
- All rights reserved. No part of this datasheet may be copied or reproduced unless agreed by Torex Semiconductor Ltd in writing in advance.

TOREX SEMICONDUCTOR LTD.