6.874, 6.802, 20.390, 20.490, HST.506 Computational Systems Biology Deep Learning in the Life Sciences

Lecture 3: Convolutional Neural Networks

Prof. Manolis Kellis

Slides credit: 6.S191, Dana Erlich, Param Vir Singh,

David Gifford, Alexander Amini, Ava Soleimany

Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)

- Scene/object recognition challenge. Illusions reveal primitives, conflicting info
- Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution

- Spatial structure primitives: edge detectors & other filters, feature recognition
- Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing

- Key ideas: *learn* features, hierarchy, re-use parameters, back-prop filter learning
- CNN formalization: representations(Conv+ReLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers

- Feature invariance is hard: apply perturbations, learn for each variation
- ImageNet progression of best performers
- AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), ReLU
- VGGNet: simpler but deeper (8 \rightarrow 19 layers), 140M parameters, ensembles
- GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
- ResNet: 152 layers, vanishing gradients → fit residuals to enable learning

5. Countless applications: General architecture, enormous power

 Semantic segmentation, facial detection/recognition, self-driving, image colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics 1a. What do you see, and how? Can we teach machines to see?

What do you see?

How do you see?

How can we help computers see?

W hat computers 'see': Images as Numbers

W hat you see

Input Image

W hat you both see

Input Image + values

W hat the computer "sees"

157	159	174	168	150	152	129	151	172	161	155	156
156	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	33	31	62	22	148
199	168	191	199	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

Pixel intensity values ("pix-el"=picture-element)

An image is just a matrix of numbers [0,255]. i.e., 1080x1080x3 for an RGB image.

Question: is this Lincoln? Washington? Jefferson? Obama?

How can the computer answer this question?

Can I just do classification on the 1,166400-long image vector directly? No. Instead: exploit image spatial structure. Learn patches. Build them up

1b. Classical machine vision roots in study of human/animal brains

General "learning machine", reused widely

 Hearing, taste, smell, sight, touch all reuse similar learning architecture

- Motor Cortex Interchangeable circuitry
 - Auditory cortex learns to 'see' if sent visual signals
 - Injury area tasks shift to uninjured areas

 Massive recent expanse of human brain has re-used a relatively simple but general learning architecture

- Not fully-general learning, but well-adapted to our world
- Humans co-opted this circuitry to many new applications
- Modern tasks accessible to any homo sapiens (<70k years)
- ML primitives not too different from animals: more to come?

Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)

- Scene/object recognition challenge. Illusions reveal primitives, conflicting info
- Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution

- Spatial structure primitives: edge detectors & other filters, feature recognition
- Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing

- Key ideas: *learn* features, hierarchy, re-use parameters, back-prop filter learning
- CNN formalization: representations(Conv+ReLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers

- Feature invariance is hard: apply perturbations, learn for each variation
- ImageNet progression of best performers
- AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), ReLU
- VGGNet: simpler but deeper (8 \rightarrow 19 layers), 140M parameters, ensembles
- GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
- ResNet: 152 layers, vanishing gradients → fit residuals to enable learning

5. Countless applications: General architecture, enormous power

 Semantic segmentation, facial detection/recognition, self-driving, image colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics

2a. Spatial structure for image recognition

Using Spatial Structure

Input: 2D image.
Array of pixel values

Using Spatial Structure

Connect patch in input layer to a single neuron in subsequent layer.

Use a sliding window to define connections.

How can we weight the patch to detect particular features?

Feature Extraction with Convolution

- Filter of size 4x4:16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This "patchy" operation is convolution

- 1) Apply a set of weights a filter to extract local features
 - 2) Use multiple filters to extract different features
 - 3) Spatially share parameters of each filter

Fully Connected Neural Network

Input:

- 2D image
- Vector of pixel values

Fully Connected:

- Each neuron in hidden layer connected to all neurons in input layer
- No spatial information
- Many, many parameters

Key idea: Use **spatial structure** in input to inform architecture of the network

High Level Feature Detection

Let's identify key features in each image category

Nose, Eyes, Mouth

Wheels, License Plate, Headlights

Door, Windows, Steps

Fully Connected Neural Network

2b. Convolutions and filters

Convolution operation is element wise multiply and add

1	0	1
0	1	0
1	0	1

Filter / Kernel

1,	1,0	1,	0	0
0,0	1 _{×1}	1,0	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

Producing Feature Maps

Original

Sharpen

Edge D etect

"Strong" Edge
Detect

A simple pattern: Edges How can we detect edges with a kernel?

Simple Kernels / Filters

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

X or X?

Image is represented as matrix of pixel values... and computers are literal! We want to be able to classify an X as an X even if it's shifted, shrunk, rotated, deformed.

There are three approaches to edge cases in convolution

$$S(i,j) = (I*K)(i,j) = \sum_m \sum_n I(i+m,j+n)K(m,n).$$

Zero Padding Controls Output Size

- Same convolution: zero pad input so output is same size as input dimensions
- Valid-only convolution: output only when entire kernel contained in input (shrinks output)
- •Full convolution: zero pad input so output is produced whenever an output value contains at least one input value (expands output)

$$S(i,j) = (I*K)(i,j) = \sum_m \sum_n I(i+m,j+n)K(m,n)$$

x = tf.nn.conv2d(x, W, strides=[1,strides,strides,1],padding='SAME')

1 Input

- TF convolution operator takes stride and zero fill option as parameters
- Stride is distance between kernel applications in each dimension
- Padding can be SAME or VALID

Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)

- Scene/object recognition challenge. Illusions reveal primitives, conflicting info
- Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution

- Spatial structure primitives: edge detectors & other filters, feature recognition
- Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing

- Key ideas: *learn* features, hierarchy, re-use parameters, back-prop filter learning
- CNN formalization: representations(Conv+ReLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers

- Feature invariance is hard: apply perturbations, learn for each variation
- ImageNet progression of best performers
- AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), ReLU
- VGGNet: simpler but deeper (8 \rightarrow 19 layers), 140M parameters, ensembles
- GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
- ResNet: 152 layers, vanishing gradients
 fit residuals to enable learning

5. Countless applications: General architecture, enormous power

 Semantic segmentation, facial detection/recognition, self-driving, image colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics

3a. Learning Visual Features de novo

Key idea:

learn hierarchy of features directly from the data

(rather than hand-engineering them)

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

Key idea: re-use parameters

Convolution shares parameters Example 3x3 convolution on a 5x5 image

Feature Extraction with Convolution

- 1) Apply a set of weights a filter to extract local features
 - 2) Use multiple filters to extract different features
 - 3) Spatially share parameters of each filter

LeNet-5

- Gradient Based Learning Applied To Document Recognition Y. Lecun, L. Bottou, Y. Bengio, P. Haffner; 1998
- Helped establish how we use CNNs today
- Replaced manual feature extraction

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeNet-5

[LeCun et al., 1998]

LeNet-5

- Only 60K parameters
- As we go deeper in the network: $N_H \downarrow$, $N_W \downarrow$, N_C t
- General structure: conv->pool->conv->pool->FC->FC->output
- Different filters look at different channels
- Sigmoid and Tanh nonlinearity

Backpropagation of convolution

3b. Convolutional Neural Networks (CNNs)

An image classification CNN

Representation Learning in Deep CNNs

CNNs for Classification

- 1. Convolution: Apply filters to generate feature maps.
- 2. Non-linearity: Often ReLU.
- 3. Pooling: Downsampling operation on each feature map.

Train model with image data. Learn weights of filters in convolutional layers.

Example – Six convolutional layers

Convolutional Layers: Local Connectivity

For a neuron in hidden layer:

- Take inputs from patch
- Compute weighted sum
- Apply bias

Convolutional Layers: Local Connectivity

For a neuron in hidden layer:

- Take inputs from patch
- Compute weighted sum
- Apply bias

4x4 filter: matrix of weights w_{ii}

$$\sum_{i=1}^{4} \sum_{j=1}^{4} w_{ij} \, x_{i+p,j+q} + b$$

- for neuron (p,q) in hidden layer
- 1) applying a window of weights
- 2) computing linear combinations
- 3) activating with non-linear function

CNNs: Spatial Arrangement of Output Volume

Layer Dimensions:

 $h \cdot w \cdot d$

where h and w are spatial dimensions d (depth) = number of filters

Stride:

Filter step size

Receptive Field:

Locations in input image that a node is path connected to

Introducing Non-Linearity

- Apply after every convolution operation (i.e., after convolutional layers)
- ReLU: pixel-by-pixel operation that replaces all negative values by zero.
- Non-linear operation

Input Feature Map

Rectified Feature Map

RelU

Black = negative; white = positive values

Only non-negative values

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

Pooling

Max Pooling, average pooling

The REctified Linear Unit (RELU) is a common non-linear **detector** stage after convolution

```
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
x= tf.nn.relu(x)
```


 $f(x) = \max(0, x)$

When will we backpropagate through this? Once it "dies" what happens to it?

Pooling reduces dimensionality by giving up spatial location

- max pooling reports the maximum output within a defined neighborhood
- Padding can be SAME or VALID

Dilated Convolution

CNNs for Classification: Feature Learning

- 1. Learn features in input image through convolution
- 2. Introduce **non-linearity** through activation function (real-world data is non-linear!)
- 3. Reduce dimensionality and preserve spatial invariance with **pooling**

CNNs for Classification: Class Probabilities

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as **probability** of image belonging to a particular class

Putting it all together

```
import tensorflow as tf
def generate model():
   model = tf.keras.Sequential([
       tf.keras.layers.Conv2D(32, filter size=3, activation='relu'),
       tf.keras.layers.MaxPool2D(pool size=2, strides=2),
       tf.keras.layers.Conv2D(64, filter size=3, activation='relu'),
       tf.keras.layers.MaxPool2D(pool size=2, strides=2),
     tf.keras.layers.Flatten(),
     tf.keras.layers.Dense(1024, activation='relu'),
     tf.keras.layers.Dense(10, activation='softmax')
  1)
  return model
                                                                                  CONNECTED SOFTMAX
                                         CONVOLUTION + RELU
                                                          CONVOLUTION + RELU POOLING
                                                      FEATURE LEARNING
                                                                                  CLASSIFICATION
```

Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)

- Scene/object recognition challenge. Illusions reveal primitives, conflicting info
- Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution

- Spatial structure primitives: edge detectors & other filters, feature recognition
- Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing

- Key ideas: learn features, hierarchy, re-use parameters, back-prop filter learning
- CNN formalization: representations(Conv+ReLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers

- Feature invariance is hard: apply perturbations, learn for each variation
- ImageNet progression of best performers
- AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), ReLU
- VGGNet: simpler but deeper (8 \rightarrow 19 layers), 140M parameters, ensembles
- GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
- ResNet: 152 layers, vanishing gradients
 fit residuals to enable learning

5. Countless applications: General architecture, enormous power

 Semantic segmentation, facial detection/recognition, self-driving, image colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics

4a. Real-world feature invariance is hard

How can computers recognize objects?

How can computers recognize objects?

Challenge:

- Objects can be anywhere in the scene, in any orientation, rotation, color hue, etc.
- •How can we overcome this challenge?

Answer:

- Learn a ton of features (millions) from the bottom up
- Learn the convolutional filters, rather than pre-computing them

Feature invariance to perturbation is hard

Next-generation models explode # of parameters

LeNet-5

- Gradient Based Learning Applied To Document Recognition Y. Lecun, L. Bottou, Y. Bengio, P. Haffner; 1998
- Helped establish how we use CNNs today
- Replaced manual feature extraction

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- ImageNet Classification with Deep Convolutional Neural Networks - Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton; 2012
- Facilitated by GPUs, highly optimized convolution implementation and large datasets (ImageNet)
- One of the largest CNNs to date
- Has 60 Million parameter compared to 60k parameter of LeNet-5

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- The annual "Olympics" of computer vision.
- Teams from across the world compete to see who has the best computer vision model for tasks such as classification, localization, detection, and more.
- 2012 marked the first year where a CNN was used to achieve a top 5 test error rate of 15.3%.
- The next best entry achieved an error of 26.2%.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Architecture

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

AlexNet

- Input: 227x227x3 images (224x224 before padding)
- First layer: 96 11x11 filters applied at stride 4
- Output volume size?

Number of parameters in this layer?
 (11*11*3)*96 = 35K

Architecture

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

AlexNet

- Input: 227x227x3 images (224x224 before padding)
- After CONV1: 55x55x96
- Second layer: 3x3 filters applied at stride 2
- Output volume size?

$$(N-F)/s+1 = (55-3)/2+1 = 27 -> [27x27x96]$$

Number of parameters in this layer?0!

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- 7 CNN ensemble

- Trained on GTX 580 GPU with only 3 GB of memory.
- Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.
- CONV1, CONV2, CONV4, CONV5:
 Connections only with feature maps on same GPU.
- CONV3, FC6, FC7, FC8:
 Connections with all feature maps in preceding layer,
 communication across GPUs.

AlexNet was the coming out party for CNNs in the computer vision community. This was the first time a model performed so well on a historically difficult ImageNet dataset. This paper illustrated the benefits of CNNs and backed them up with record breaking performance in the competition.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

VGGNet

- Very Deep Convolutional Networks For Large Scale Image Recognition - Karen Simonyan and Andrew Zisserman; 2015
- The runner-up at the ILSVRC 2014 competition
- Significantly deeper than AlexNet
- 140 million parameters

Input 3x3 conv, 64 3x3 conv, 64 Pool 1/2 3x3 conv, 128 3x3 conv, 128 Pool 1/2 3x3 conv, 256 3x3 conv, 256 Pool 1/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 1/2 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 1/2 FC 4096 FC 4096 FC 1000 Softmax

VGGNet

Smaller filters
 Only 3x3 CONV filters, stride 1, pad 1
 and 2x2 MAX POOL, stride 2

Deeper network

AlexNet: 8 layers

VGGNet: 16 - 19 layers

- ZFNet: 11.7% top 5 error in ILSVRC'13
- VGGNet: 7.3% top 5 error in ILSVRC'14

VGGNet

Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has the same effective receptive field as one 7x7 conv layer.

What is the effective receptive field of three 3x3 conv (stride
 1) layers?

7x7

But deeper, more non-linearities

And fewer parameters: 3 * (3²C²) vs. 7²C² for C channels per layer

Input 3x3 conv, 64 3x3 conv, 64 Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 256 3x3 conv, 256 3x3 conv, 256 Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool FC 4096 FC 4096 FC 1000 Softmax

VGGNet

VGG16:

TOTAL memory: 24M * 4 bytes ~= 96MB / image

TOTAL params: 138M parameters

[Simonyan and Zisserman, 2014]

```
Input
                  memory: 224*224*3=150K
                                              params: 0
                  memory: 224*224*64=3.2M
3x3 conv, 64
                                              params: (3*3*3)*64 = 1,728
3x3 conv, 64
                  memory: 224*224*64=3.2M
                                              params: (3*3*64)*64 = 36,864
                  memory: 112*112*64=800K
Pool
                                             params: 0
                  memory: 112*112*128=1.6M
                                                      params: (3*3*64)*128 = 73,728
3x3 conv, 128
                  memory: 112*112*128=1.6M
                                                      params: (3*3*128)*128 =
3x3 conv, 128
147,456
Pool
                  memory: 56*56*128=400K
                                              params: 0
3x3 conv, 256
                  memory: 56*56*256=800K
                                              params: (3*3*128)*256 = 294,912
3x3 conv, 256
                  memory: 56*56*256=800K
                                              params: (3*3*256)*256 = 589,824
                                              params: (3*3*256)*256 = 589,824
3x3 conv, 256
                  memory: 56*56*256=800K
                  memory: 28*28*256=200K
Pool
                                              params: 0
3x3 conv, 512
                  memory: 28*28*512=400K
                                              params: (3*3*256)*512 = 1,179,648
3x3 conv, 512
                  memory: 28*28*512=400K
                                              params: (3*3*512)*512 = 2,359,296
3x3 conv, 512
                  memory: 28*28*512=400K
                                              params: (3*3*512)*512 = 2,359,296
Pool
                  memory: 14*14*512=100K
                                              params: 0
3x3 conv, 512
                  memory: 14*14*512=100K
                                              params: (3*3*512)*512 = 2,359,296
3x3 conv, 512
                  memory: 14*14*512=100K
                                              params: (3*3*512)*512 = 2,359,296
3x3 conv, 512
                  memory: 14*14*512=100K
                                              params: (3*3*512)*512 = 2,359,296
                  memory: 7*7*512=25K
Pool
                                              params: 0
                                   params: 7*7*512*4096 = 102,760,448
FC 4096
                  memory: 4096
                                    params: 4096*4096 = 16,777,216
FC 4096
                  memory: 4096
FC 1000
                  memory: 1000
                                    params: 4096*1000 = 4,096,000
                                                          [Simonyan and Zisserman, 2014]
Slide taken from Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9.
```

VGGNet

Details/Retrospectives:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as AlexNet
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks
- Trained on 4 Nvidia Titan Black GPUs for two to three weeks.

VGGNet

VGG Net reinforced the notion that convolutional neural networks have to have a deep network of layers in order for this hierarchical representation of visual data to work.

Keep it deep.

Keep it simple.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- Going Deeper with Convolutions Christian Szegedy et al.; 2015
- ILSVRC 2014 competition winner
- Also significantly deeper than AlexNet
- x12 less parameters than AlexNet
- Focused on computational efficiency

- 22 layers
- Efficient "Inception" module strayed from the general approach of simply stacking conv and pooling layers on top of each other in a sequential structure
- No FC layers
- Only 5 million parameters!
- ILSVRC'14 classification winner (6.7% top 5 error)

"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

Details/Retrospectives:

- Deeper networks, with computational efficiency
- 22 layers
- Efficient "Inception" module
- No FC layers
- 12x less params than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

Introduced the idea that CNN layers didn't always have to be stacked up sequentially. Coming up with the Inception module, the authors showed that a creative structuring of layers can lead to improved performance and computationally efficiency.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- Deep Residual Learning for Image Recognition -Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; 2015
- Extremely deep network 152 layers
- Deeper neural networks are more difficult to train.
- Deep networks suffer from vanishing and exploding gradients.
- Present a residual learning framework to ease the training of networks that are substantially deeper than those used previously.

ILSVRC'15 classification winner (3.57% top 5 error, humans generally hover around a 5-10% error rate)
 Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

 What happens when we continue stacking deeper layers on a convolutional neural network?

- 56-layer model performs worse on both training and test error
- -> The deeper model performs worse (not caused by overfitting)!

- Hypothesis: The problem is an optimization problem. Very deep networks are harder to optimize.
- **Solution**: Use network layers to fit residual mapping instead of directly trying to fit a desired underlying mapping.
- We will use skip connections allowing us to take the activation from one layer and feed it into another layer, much deeper into the network.
- Use layers to fit residual F(x) = H(x) x
 instead of H(x) directly

Residual Block

Input x goes through conv-relu-conv series and gives us F(x). That result is then added to the original input x. Let's call that H(x) = F(x) + x.

In traditional CNNs, H(x) would just be equal to F(x). So, instead of just computing that transformation (straight from x to F(x)), we're computing the term that we have to add, F(x), to the

input, x.

H(x)

"Plain" layers

relu

Short cut/ skip connection
$$a^{[l]} \xrightarrow{\hspace*{0.5cm}} \textbf{RLLLU} \xrightarrow{\hspace*{0.5cm}} \textbf{RLLLU} \xrightarrow{\hspace*{0.5cm}} \textbf{RLLLU} \xrightarrow{\hspace*{0.5cm}} \textbf{a}^{[l+2]}$$

$$a^{[l+1]}$$

$$2^{+1} = VVV^{+1} a + 10^{+1}$$

$$aa^{[+11]} = gg(zz^{[+11]})$$

$$2^{+2} = VV^{+2} + 1 + 1 + 2$$

$$aa^{[1+22]} = gg(zz^{[1+22]})$$

$$a^{+2} = g \quad (z^{+2} + a^{-1}) = gWV^{+2}a^{+1} + b^{+2} + a$$

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (in each dimension)
- Additional conv layer at the beginning
- No FC layers at the end (only FC 1000 to output classes)

- Total depths of 34, 50, 101, or 152 layers for ImageNet
- For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

Experimental Results:

- Able to train very deep networks without degrading
- Deeper networks now achieve lower training errors as expected

The **best** CNN architecture that we currently have and is a great innovation for the idea of residual learning. Even better than human performance!

Accuracy comparison

Forward pass time and power consumption

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Today: Convolutional Neural Networks (CNNs)

1. Scene understanding and object recognition for machines (and humans)

- Scene/object recognition challenge. Illusions reveal primitives, conflicting info
- Human neurons/circuits. Visual cortex layers==abstraction. General cognition

2. Classical machine vision foundations: features, scenes, filters, convolution

- Spatial structure primitives: edge detectors & other filters, feature recognition
- Convolution: basics, padding, stride, object recognition, architectures

3. CNN foundations: LeNet, de novo feature learning, parameter sharing

- Key ideas: *learn* features, hierarchy, re-use parameters, back-prop filter learning
- CNN formalization: representations(Conv+ReLU+Pool)*N layers + Fully-connected

4. Modern CNN architectures: millions of parameters, dozens of layers

- Feature invariance is hard: apply perturbations, learn for each variation
- ImageNet progression of best performers
- AlexNet: First top performer CNN, 60M parameters (from 60k in LeNet-5), ReLU
- VGGNet: simpler but deeper (8 \rightarrow 19 layers), 140M parameters, ensembles
- GoogleNet: new primitive=inception module, 5M params, no FC, efficiency
- ResNet: 152 layers, vanishing gradients → fit residuals to enable learning

5. Countless applications: General architecture, enormous power

 Semantic segmentation, facial detection/recognition, self-driving, image colorization, optimizing pictures/scenes, up-scaling, medicine, biology, genomics

Countless applications

An Architecture for Many Applications

Semantic Segmentation: Fully Convolutional Networks

FCN: Fully Convolutional Network.

Network designed with all convolutional layers, with downsampling and upsampling operations

