פתרון לוגיקה מתמטית - תרגיל 3

 $A_{1} = (p_{1} \wedge p_{2}) \vee (p_{1} \wedge p_{3}) \vee (p_{1} \wedge p_{4}) \vee (p_{2} \wedge p_{3}) \vee (p_{2} \wedge p_{4}) \vee (p_{3} \wedge p_{4}) \text{ .A. 1}$ $A_{2} = (p_{1} \wedge p_{2} \wedge \neg p_{3} \wedge \neg p_{4}) \vee (p_{1} \wedge p_{3} \wedge \neg p_{2} \wedge \neg p_{4}) \vee \text{ .2.}$ $(p_{1} \wedge p_{4} \wedge \neg p_{2} \wedge \neg p_{3}) \vee (p_{2} \wedge p_{3} \wedge \neg p_{1} \wedge \neg p_{4}) \vee \text{ .2.}$ $(p_{2} \wedge p_{4} \wedge \neg p_{1} \wedge \neg p_{3}) \vee (p_{3} \wedge p_{4} \wedge \neg p_{1} \wedge \neg p_{2})$

 $A_3 = (p_1 \equiv p_2) \equiv (p_3 \equiv p_4)$

- . $\{\neg p \to \neg q, q\} \vdash p$ כפול במשפט הדדוקציה רואים שדי להראות כי 2. ע"י שימוש כפול במשפט הדדוקציה רואים שדי להראות כי $\{\neg p \to \neg q, q\}$ מתוך מתוך מתוך
 - (1) $(\neg p \to \neg q) \to ((\neg p \to q) \to p)$ (A3) (2) $\neg p \to \neg q$ $\neg q$ (1),(2) ない。 (A1) (5) q $\neg q \to q$ (4),(5) $\neg q \to q$ $\neg q \to q$ (3),(6) $\neg q \to q$ $\neg q \to q$

.3

ډ.

- א. תהי \mathcal{L}_{-3} במערכת של A במערכת הוכחה $B_1,B_2,\dots,B_m=A$ א. תהי באינדוקציה על i כי עבור B_i^+ , $i=1,\dots,m$ נתבונן בי B_i^+ כלשהו. קיימות שתי ובכך נסיים כי $B_m=A$ נתבונן בי אפשרויות:
 - אקסיומה B_i .i
 - .ii מפסוקים ע"י כלל היסק. B_i .ii

במקרה B_i , גם B_i^+ אקסיומה (כי אם B_i מתקבל מהצבת פסוקים כלשהם באחת הסכמות (A1), (A2), (A2) מתקבל מהצבת ה־ים של אותם פסוקים באותה סכמה). ראינו שכל אקסיומה היא טאוטולוגיה, לכן B_i^+ טאוטולוגיה.

- $B_j^+ = B_k^+ o B_i^+$ אז $B_j = B_k o B_i$ כך ש־ j,k < i במקרה וו, קיימים קיימים j,k < i כך ש־ j,k < i טאוטולוגיות, ולכן, לפי תרגיל לפי הנחת האינדוקציה B_j^+, B_k^+ טאוטולוגיה.
- ב. די להצביע על פסוק A שהוא טאוטולוגיה, כך ש־ A^+ איננו ב. די להצביע על פסוק A יכי איננו יכיח במערכת $(\mathcal{L}_{-3}$ איננו יכיח במערכת $(\neg p \to \neg q) \to ((\neg p \to q) \to p)$ דוגמה לפסוק כזה:

$$\begin{array}{llll} (1) & (A \to (B \to C)) \to ((A \to B) \to (A \to C)) & (A2) & .4 \\ (2) & (B \to C) \to (A \to (B \to C)) & (A1) \\ (3) & B \to C & & \text{папа} \\ (4) & A \to (B \to C) & (2), (3) & \text{китр ститр ститр ститр } \\ (5) & (A \to B) \to (A \to C) & (1), (4) & \text{китр ститр ститр } \\ (6) & A \to B & & \text{папа} \\ (7) & A \to C & (5), (6) & \text{китр ститр } \end{array}$$