

Background

this project is about historical weather around Szeged, Hungary, from 2006 to 2016, we build model that predict will it rain or snow.

Dataset

Public source from Kaggle.

Size

- 96000 records
- 12 columns

Target

PRECIP TYPE

Methodology

Understanding the data (

Gathering data

Exploratory Data Analysis

Data preparation

Classification models

Technologies and libraries

Exploratory Data Analysis

feature importance

According to bar chart, these featurs:

- TEMPERATURE
- 2. APPARENT TEMPERATURE
- 3. SEASON
- 4. WIND SPEED
- 5. VISIBILTY
- 6. MONTH
- 7. PRESSURE
- 8. YEAR

Are the most important features in weather predict.

Data Preparation

Feature Selection

Drops both the 'loud cover' and the 'week_day' columns

Feature Engineering

- Add new column ('SEASON').
- Encoding the columns into categorical values.
- Scaling using standard Scaler.

Imbalanced dataset

- SMOTE was use for handling the imbalanced
- **Voting Classifier**

Imbalance

There were snow (11.102%) and rain (88.898%).

SMOTE

SNOW: 83010 RAIN: 83010

ADA

SNOW: 81040 RAIN: 81348

RANDOM OVER SAMPLER

SNOW: 81348 RAIN: 81348

Classification models

Comparison the Models

Classification models

	Precision	Recall	FI	Accuracy
Logistic Regression	1.00	0.9927	0.9963	0.9935
Nearest Neighbors	0.9939	0.9891	0.9915	0.9848
Decision Tree	1.00	1.00	1.00	1.00
Gradient Boosting	1.00	1.00	1.00	1.00
Random Forest	1.00	1.00	1.00	1.00

ROC Curve

Gradient Boosting Model

Gradient Boosting (test)

	Precision	Recall	F1	Accuracy
Gradient Boosting	1.0	1.0	1.0	1.0

Voting Classifier (test)

	Precision	Recall	FI	Accuracy
Voting Classifier	1.0	1.0	1.0	1.0

