

Page 1 of 70 Report No.: EED32l00251304

TEST REPORT

Product : HANDHELD VITALSIGNS MONITORING

SYSTEM

bewell Trade mark

Model/Type reference BW-X07HD

Serial Number N/A

Report Number EED32I00251304 FCC ID : 2AF8T-BW-X07HD

Date of Issue Jun. 14, 2017

47 CFR Part 2(2015)

Test Standards 47 CFR Part 24 subpart E(2015)

Test result PASS

Prepared for:

BEWELL CONNECT CORP SUITE 410, 185 ALEWIFE BROOK PARKWAY CAMBRIDGE, Massachusetts, United States

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom chen (Test Project)

Reviewed by:

Kevin yang (Reviewer)

ReJm (an

Date: Jun. 14, 2017

even lan Kevin Ian (Project Engineer)

Sheek Luo (Lab supervisor)

Check No.: 2392125448

Report No. : EED32I00251304 **2 Version**

Page 2 of 70

/ersion No.	Date	Description
00	Jun. 14, 2017	Original

Page 3 of 70

3 Test Summary

WCDMA(Band II)			
Test Item	Test Requirement	Test method	Result
Conducted output power	Part 2.1046(a) /Part 24.232(c)	TIA-603-D-2010&KDB 971168 D01v02r02	PASS
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 24.232(c)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
peak-to-average ratio	Part 24.232(d)	KDB 971168 D01v02r02	PASS
99% &26dBOccupied Bandwidth	Part 2.1049(h)	Part 24.238(b) &KDB 971168 D01v02r02	PASS
Band Edge at antenna terminals	Part 2.1051/ Part 24.238(a)	Part 24.238(b) &KDB 971168 D01v02r02	PASS
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 24.238(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Field strength of spurious radiation	Part 2.1053 /Part 2.1057 / Part 24.238(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS
Frequency stability	Part 2.1055/Part 24.235	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS

Remark:The tested samples and the sample information are provided by the client.

1 COVER PAGE		4
2 VERSION	 •••••	2
3 TEST SUMMARY	 	3
4 CONTENT	 	4
F TEST DECLUDEMENT		_

4 CONTENT	4
5 TEST REQUIREMENT	
5.1 Test setup 5.1.1 For Radiated Emissions test setup 5.2 Test Environment 5.3 Test Condition	5 5
6 GENERAL INFORMATION	
6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION OF EUT. 6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD. 6.4 DESCRIPTION OF SUPPORT UNITS. 6.5 TEST LOCATION. 6.6 TEST FACILITY. 6.7 DEVIATION FROM STANDARDS. 6.8 ABNORMALITIES FROM STANDARD CONDITIONS	
7 EQUIPMENT LIST	
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A)RF Power Output	

Appendix H): Field strength of spurious radiation......63

PHOTOGRAPHS OF TEST SETUP......69
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS.......70

Page 4 of 70

5 Test Requirement

5.1 Test setup

5.1.1 For Radiated Emissions test setup

Radiated Emissions setup:

Horn Antenna Tower

Base station

Test Receiver Grand Reference Plane

Controller

Figure 1.30MHz to 1GHz

Figure 2. above 1GHz

Figure 1. 30MHz to 1GHz

Figure 2. above 1GHz

5.2 Test Environment

Operating Environment:			
Temperature:	23°C		6
Humidity:	51% RH		
Atmospheric Pressure:	1010mbar		-9%
		7474	

5.3 Test Condition

Test channel:

T	T. (D.)	RF Channel			
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)	
Band II Rx		Tx	Channel 9262	Channel 9400	Channel 9538
	MA (1850 MHz ~1910 MHz)	1852.4 MHz	1880.0 MHz	1907.6 MHz	
	Rx (1930 MHz ~1990 MHz)	Channel 9662	Channel 9800	Channel 9938	
		1932.4 MHz	1960.0 MHz	1987.6 MHz	

Pre-scan all mode and data rates and positions, find worse case mode are chosen to the report , the worse case mode as below:

band	Radiated	Conducted
	1) RMC 12.2Kbps Link	1) RMC 12.2Kbps Link
WCDMA Band II	2) HSDPA	2) HSDPA
	3) HSUPA	3) HSUPA

Test mode:

Test Mode	Test Modes description	
UMTS/TM1	WCDMA system, QPSK modulation	
UMTS/TM2	HSDPA system, QPSK modulation	
UMTS/TM3	HSUPA system, QPSK modulation	(6,0)

6.1 Client Information

Applicant:	BEWELL CONNECT CORP	
Address of Applicant:	SUITE 410, 185 ALEWIFE BROOK PARKWAY CAMBRIDGE,Massachusetts,United States	
Manufacturer:	Visiomed Technology Co., Ltd	
Address of Manufacturer:	2 Floor of No.1 Building, Jia An Technological Industrial Park, 67 District Bao An, 518101 Shenzhen China	
Factory:	Visiomed Technology Co., Ltd	
Address of Factory:	2 Floor of No.1 Building, Jia An Technological Industrial Park, 67 Dis Bao An, 518101 Shenzhen China	

6.2 General Description of EUT

Product Name:	HANDHELD VITALSIGNS MONITORING SYSTEM		
Test Model No.(EUT):	BW-X07HD		
Trade mark:	bewell connect		
EUT Supports Radios application:	LTE Band 2: TX:1850 MHz to 1910 MHz RX:1930 MHz to 1990 MHz. LTE Band 4: TX:1710 MHz to 1755 MHz RX:2110 MHz to 2170 MHz. LTE band 7: TX:2500 MHz to 2570 MHz RX:2620 MHz to 2690 MHz. LTE band 12: TX: 699 MHz to 716 MHz RX: 729 MHz to 746 MHz. WCDMA1900: TX:1850 MHz to 1910 MHz RX:1930 MHz to 1990 MHz. WIFI 802.11b/g/n(20)/n(40): TX/RX:2412 MHz to 2462 MHz BT4.0 Dual mode: 2402 MHz to 2480 MHz.		
Power Supply:	MODEL No.:UE10WCP1-050200SPA PART No.:UE160106HKWY1-P INPUT:100-240V~50/60Hz, 500mA OUTPUT:5.0V—2.0A Battery: 2500mAh 3.7V (Rechargeable Li-ion Ba		
Hardware Version:	(manufacturer declare)H.VS.MSM8909.02		
Software Version:	(manufacturer declare)Visiocheck_1.0.6	Z*2	
Sample Received Date:	Oct. 19, 2016		
Sample tested Date:	Oct. 19, 2016 to Jun. 13, 2017		

Page 7 of 70

Report No. : EED32I00251304 Page 8 of 70

6.3 Product Specification subjective to this standard

Frequency Band:	WCDMA1900:		
Frequency Band.	TX:1850 MHz to 1910 MHz RX:1	930 MHz to 1990 MHz.	
	QPSK for WCDMA		.0
Modulation Type:	QPSK for HSDPA		
	QPSK for HSUPA		
Sample Type:	Portable production		
Antenna Type:	Internal antenna		
Antenna Gain:	WCDMA1900: 2dBi		
Test Voltage:	AC 120V, 60Hz	(0,	(0,

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

6.7 Deviation from Standards

None

6.8 Abnormalities from Standard Conditions

None

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE source conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
	Dedicted Country and size at the	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
6		3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

Communication RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Spectrum Analyzer	Agilent	E4440A	MY46185649	12-16-2016	12-15-2017		
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018		
Communication test set	Agilent	E5515C	GB47050534	03-14-2017	03-13-2018		
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018		
Communication test set	R&S	CMW500	152394	03-14-2017	03-13-2018		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2017	01-11-2018		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(4)	01-12-2017	01-11-2018		
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2017	01-11-2018		
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2017	01-11-2018		
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2017	01-11-2018		
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2017	01-11-2018		
DC Power	Keysight	E3642A	MY54426112	03-14-2017	03-13-2018		
DC Power	Keysight	E3642A	MY54426115	03-14-2017	03-13-2018		
PC-2	Lenovo	R4960d		04-01-2017	03-31-2018		
PC-3	Lenovo	R4960d		04-01-2017	03-31-2018		
RF control unit	JS Tonscend	JS0806-1	158060004	03-14-2017	03-13-2018		
DC power Box	JS Tonscend	JS0806-4	158060007	04-01-2017	03-31-2018		
LTE Automatic test software	JS Tonscend	JS1120-1		04-01-2017	03-31-2018		
WCDMA Automatic test software	JS Tonscend	JS1120-3		04-01-2017	03-31-2018		
GSM Automatic test software	JS Tonscend	JS1120-3	(4)	04-01-2017	03-31-2018		

Radiated Spurious Emission & Radiated Emission							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019		
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-618	07-28-2016	07-27-2017		
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018		
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018		
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017		
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017		
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017		
Multi device Controller	maturo	NCD/070/10711 112	(C.)	01-12-2017	01-11-2018		
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017		
Signal Generator	Agilent	E4438C	MY45095744	03-14-2017	03-13-2018		
Signal Generator	Keysight	E8257D	MY53401106	03-14-2017	03-13-2018		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-08-2017	05-07-2018		
Communication test set	Agilent	E5515C	GB47050534	03-14-2017	03-13-2018		
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2017	01-11-2018		
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2017	01-11-2018		
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2017	01-11-2018		
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2017	01-11-2018		
Communication test set	R&S	CMW500	152394	03-14-2017	03-13-2018		
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2017	01-11-2018		
High-pass filter(6- 18GHz)	MICRO-TRONICS	SPA-F-63029-4		01-12-2017	01-11-2018		
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	(B)	01-12-2017	01-11-2018		
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001	(a)	01-12-2017	01-11-2018		
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2017	01-11-2018		
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001	(01-12-2017	01-11-2018		

Page 11 of 70

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	PART 24	PART 24 – PERSONAL COMMUNICATIONS SERVICES Subpart E – Broadband PCS
2	PART 2	Frequency allocations and radio treaty matters; general rules and regulations
3	TIA-603-E-2016 Land Mobile FM or PM -Communications Equipment -Measurement and Performance Standards	
4	KDB 971168 D01	KDB971168 D01 Power Meas License Digital Systems v02r02

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part 2.1046(a)/ part 24.232(c)	TIA-603-D&KDB 971168 D01v02r02	Conducted output power	PASS	Appendix A)
Part 24.232(d)	KDB 971168 D01v02r02	peak-to-average ratio	PASS	Appendix B)
Part 2.1049(h)	Part 24.238(b)&KDB 971168 D01v02r02	99% &26dBOccupied Bandwidth	PASS	Appendix C)
Part 2.1051/ Part 24.238(a)	Part 24.238(b)&KDB 971168 D01v02r02	Band Edge at antenna terminals	PASS	Appendix D)
Part 2.1051/ Part 2.1057/ Part 24.238(a)(b)	TIA-603-D &KDB 971168 D01v02r02	Spurious emissions at antenna terminals	PASS	Appendix E)
Part 2.1055/ Part 24.235	TIA-603-D &KDB 971168 D01v02r02	Frequency stability	PASS	Appendix F)
Part 2.1053/ Part 2.1057/ Part 24.238(a)(b)	TIA-603-D &KDB 971168 D01v02r02	Field strength of spurious radiation	PASS	Appendix G)
Part 2.1046(a)/ Part 24.232(c)	TIA-603-D &KDB 971168 D01v02r02	Effective Radiated Power of Transmitter(ERP)	PASS	Appendix H)

Appendix A)RF Power Output

Test Band	Test Mode	Test Channel	Measured (dbm)	Limit (dbm)	Verdict
		LCH	23.59	33	PASS
WCDMA1900	UMTS/TM1	МСН	23.51	33	PASS
		НСН	23.40	33	PASS
Test Band	Test Mode	Test Channel	Measured (dbm)	Limit (dbm)	Verdict
		LCH_SubTest-1	22.23	33	PASS
		LCH_SubTest-2	22.56	33	PASS
		LCH_SubTest-3	22.43	33	PASS
•)		LCH_SubTest-4	22.42	33	PASS
		MCH_SubTest-1	22.61	33	PASS
	UMTS/TM2	MCH_SubTest-2	2 22.80		PASS
WCDMA1900		MCH_SubTest-3 22.87		33	PASS
		MCH_SubTest-4	22.78	33	PASS
	(T)	HCH_SubTest-1 22.29		33	PASS
		HCH_SubTest-2 22.60		33	PASS
		HCH_SubTest-3	22.60	33	PASS
(3)		HCH_SubTest-4	22.60	33	PASS
Test Band	Test Mode	Test Channel	Measured (dbm)	Limit (dbm)	Verdict
		LCH_SubTest-1	22.41	33	PASS
		LCH_SubTest-2	22.26	33	PASS
		LCH_SubTest-3	21.43	33	PASS
1960	UMTS/TM3	LCH_SubTest-4	LCH_SubTest-4 22.58		PASS
WCDMA1900		LCH_SubTest-5	-5 22.45		PASS
		MCH_SubTest-1	22.33	33	PASS
		MCH_SubTest-2	22.06	33	PASS
		MCH_SubTest-3	21.77	33	PASS

Report No.: EED32I00251304 Page 13 of 70 22.80 33 **PASS** MCH_SubTest-4 23.37 33 MCH_SubTest-5 **PASS** 22.97 33 HCH_SubTest-1 **PASS** 22.47 33 HCH_SubTest-2 **PASS** 22.18 33 HCH_SubTest-3 **PASS** 22.64 33 HCH_SubTest-4 **PASS** 23.11 33 HCH_SubTest-5 **PASS**

Appendix B)Peak-to-Average Ratio

		J-17	J-1 10 7 mg	200	
Test Band	Test Mode	Test Channel	Measured(db)	Limit (db)	Verdict
		LCH	3.13	13	PASS
WCDMA1900	UMTS/TM1	MCH	3.18	13	PASS
	(0,)	НСН	3.19	13	PASS
Test Band	Test Mode	Test Channel Measured(db)		Limit (db)	Verdict
		LCH	3.25	13	PASS
WCDMA1900	WCDMA1900 UMTS/TM2		3.18	13	PASS
	(3)	НСН	3.24	13	PASS
Test Band	Test Mode	de Test Channel Measured(db)		Limit (db)	Verdict
		LCH	4.49	13	PASS
WCDMA1900	0MA1900 UMTS/TM3 MC		4.55	13	PASS
		НСН	4.68	13	PASS

1 For WCDMA

1.1 Test Band=WCDMA1900

1.1.1 Test Mode=UMTS/TM1

1.1.1.1 Test Channel=LCH

1.1.1.2 Test Channel=MCH

1.1.1.3 Test Channel=HCH

1.1.2 Test Mode=UMTS/TM2

1.1.2.1 Test Channel=LCH

1.1.2.2 Test Channel=MCH

1.1.2.3 Test Channel=HCH

1.1.3 Test Mode=UMTS/TM3

1.1.3.1 Test Channel=LCH

1.1.3.2 Test Channel=MCH

(SI)

1.1.3.3 Test Channel=HCH

Page 20 of 70

Appendix C)BandWidth

		200	200	200	_
Test Band	Test Mode	Test Channel	Occupied Bandwidth (KHZ)	Emission Bandwidth (KHZ)	Verdict
WCDMA 1900	UMTS/TM1	LCH	4161.1	4757	PASS
		мсн	4159.9	4757	PASS
		нсн	4167.9	4747	PASS
WCDMA 1900	UMTS/TM2	LCH	4184.5	4764	PASS
		MCH	4185.4	4773	PASS
		нсн	4128.4	4747	PASS
WCDMA 1900	UMTS/TM3	LCH	4179.2	4750	PASS
		MCH	4161.5	4752	PASS
	(4)	нсн	4155.9	4756	PASS

1 For WCDMA

1.1 Test Band=WCDMA1900

1.1.1 Test Mode=UMTS/TM1

1.1.1.1 Test Channel=LCH

Page 21 of 70

1.1.1.2 Test Channel=MCH

1.1.1.3 Test Channel=HCH

1.1.2 Test Mode=UMTS/TM2

1.1.2.1 Test Channel=LCH

1.1.2.2 Test Channel=MCH

1.1.2.3 Test Channel=HCH

Report No. . EED32100251304

1.1.3 Test Mode=UMTS/TM3

1.1.3.1 Test Channel=LCH

1.1.3.2 Test Channel=MCH

1.1.3.3

Report No.: EED32I00251304

Appendix D)Band Edges Compliance

1 For WCDMA

1.1 Test Band=WCDMA1900

1.1.1 Test Mode=UMTSTM1

1.1.1.1 Test Channel=LCH

1.1.1.2 Test Channel=HCH

1.1.2 Test Mode=UMTS/TM2

1.1.2.1 Test Channel=LCH

1.1.2.2 Test Channel=HCH

1.1.3 Test Mode=UMTS/TM3

1.1.3.1 Test Channel=LCH

1.1.3.2 Test Channel=HCH

Appendix E)Spurious Emission at Antenna Terminal

1.1 Test Band=WCDMA1900

1.1.1 Test Mode=UMTS/TM1

1.1.1.1 Test Channel=LCH

#Avg Log 10

dB/

0ffst 14.7

dΒ

DI -13.0

dBm

PAvg

M1 S2 S3 FC

£(f):

FTun

Swp

Center 515.0 MHz

#Res BW 1 MHz

Agilent

Ref 30 dBm

Span 970 MHz

Sweep 2.997 ms (1000 pts)

#VBW 3 MHz

#Atten 30 dB

DI

1.1.1.2 Test Channel=MCH

#Avg Log 10

dB/

0ffst 14.7

dΒ

DI -13.0

dBm

PAvg

M1 S2 S3 FC

£(f):

FTun

Swp

Center 515.0 MHz

#Res BW 1 MHz

Agilent

#Atten 30 dB

Ref 30 dBm

1.1.1.3 Test Channel=HCH

1.1.2.1

1.1.2 Test Mode=UMTS/TM2

Test Channel=LCH

1.1.2.2 Test Channel=MCH

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

#Avg Log 10

dB/

0ffst 14.7

dΒ

DI -13.0

dBm

PAvg

M1 S2 S3 FC

£(f):

FTun

Swp

Center 515.0 MHz

#Res BW 1 MHz

Agilent

#Atten 30 dB

Ref 30 dBm

Span 970 MHz

Sweep 2.997 ms (1000 pts)

#VBW 3 MHz

#Avg Log 10

dB/

DI -13.0

dBm

PAvg

S3 FC

£(f):

FTun

Swp

S2

Center 10.300 GHz

#Res BW 1 MHz

Offst 18 dB

Agilent

#Atten 30 dB

Ref 30 dBm

Span 6.6 GHz

Sweep 19.94 ms (6800 pts)

#VBW 3 MHz

1.1.3.1

1.1.3 Test Mode=UMTS/TM3

Test Channel=LCH

#Avg Log 10

dB/

0ffst 14.7

dΒ

DI -13.0

dBm

PAvg

M1 S2 S3 FC

£(f):

FTun

Swp

Center 515.0 MHz

#Res BW 1 MHz

Agilent

#Atten 30 dB

Ref 30 dBm

Sweep 2.997 ms (1000 pts)

#VBW 3 MHz

1.1.3.2 Test Channel=MCH

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

1.1.3.3 Test Channel=HCH

#Avg Log 10

dB/

0ffst 14.7

dΒ

DI -13.0

dBm

PAvg

M1 S2 S3 FC

£(f):

FTun

Swp

Center 515.0 MHz

#Res BW 1 MHz

Agilent

Ref 30 dBm

Sweep 2.997 ms (1000 pts)

#VBW 3 MHz

Page 56 of 70

Appendix F)Frequency Stability

Frequency Error vs. Voltage:

VL is 3.5V, VN is 3.6V, VH is 3.7V

VL is 3.5V,	VN IS 3.	6V, VH is 3	3.7V.					
Test Band	Test Mode	Test Channel	Test	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
Dana	IVIOGC	Onamici	TN	VL VL	15.20	0.008204	±2.5	PASS
		1.011		- 1				(m)
		LCH	TN	VN	15.24	0.008229	±2.5	PASS
			TN	VH	14.80	0.007990	±2.5	PASS
WCDMA	0		TN	VL	9.31	0.004951	±2.5	PASS
1900	TM1	MCH	TN	VN	15.24	0.005430	±2.5	PASS
1900			TN	VH	9.08	0.004829	±2.5	PASS
			TN	VL	1.14	0.000600	±2.5	PASS
		HCH	TN	VN	15.24	0.000456	±2.5	PASS
7		(6)	TN	VH	-2.47	-0.001296	±2.5	PASS
Test	Test	Test	Test	Test	Freq.Error	Freq.vs.rated	Limit	Marillat
Band	Mode	Channel	Temp.	Volt.	(Hz)	(ppm)	(ppm)	Verdict
CA.	9		TN	VL	-64.15	-0.034630	±2.5	PASS
10	\mathcal{I}	LCH	TN	VN	66.59	0.035948	±2.5	PASS
			TN	VH	-33.40	-0.018031	±2.5	PASS
		-0-	TN	VL	-26.50	-0.014098	±2.5	PASS
WCDMA	TM2	мсн	TN	VN	66.59	-0.035574	±2.5	PASS
1900		6	TN	VH	21.21	0.011282	±2.5	PASS
			TN	VL	60.76	0.031852	±2.5	PASS
		нсн	TN	VN	66.59	0.029860	±2.5	PASS
(e)	(3)		TN	VH	83.45	0.043746	±2.5	PASS

Page 57 of 70

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
(6)	7		TN	VL	-93.63	-0.050544	±2.5	PASS
		LCH	TN	VN	-13.47	-0.007274	±2.5	PASS
			TN	VH	41.29	0.022290	±2.5	PASS
MODMA			TN	VL	-46.55	-0.024763	±2.5	PASS
WCDMA	TM3	мсн	TN	VN	-13.47	0.047400	±2.5	PASS
1900			TN	VH	33.10	0.017604	±2.5	PASS
			TN	VL	-3.25	-0.001704	±2.5	PASS
(25	9	НСН	TN	VN	-13.47	-0.074086	±2.5	PASS
6	/		TN	VH	9.84	0.005159	±2.5	PASS

/2			13		700		_	
Test Band	Test Mode	Test Channel	Test Volt.	Test Temp	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
36			VN	-30	14.40	0.007776	±2.5	PASS
(1)			VN	-20	10.64	0.005741	±2.5	PASS
			VN	-10	18.39	0.009926	±2.5	PASS
			VN	0	17.14	0.009250	±2.5	PASS
WCDMA	TM1	LCH	VN	10	15.18	0.008196	±2.5	PASS
1900			VN	20	18.34	0.009901	±2.5	PASS
			VN	30	10.03	0.005412	±2.5	PASS
			VN	40	14.72	0.007949	±2.5	PASS
			VN	50	13.95	0.007529	±2.5	PASS
		(C)	VN	-30	6.27	0.003336	±2.5	PASS
			VN	-20	7.80	0.004147	±2.5	PASS
			VN	-10	12.39	0.006591	±2.5	PASS
wonvie			VN	0	13.15	0.006996	±2.5	PASS
WCDMA	TM1	мсн	VN	10	6.68	0.003555	±2.5	PASS
1900			VN	20	8.18	0.004350	±2.5	PASS
			VN	30	7.25	0.003855	±2.5	PASS
(*)			VN	40	11.09	0.005901	±2.5	PASS
			VN	50	11.11	0.005909	±2.5	PASS
			VN	-30	-0.15	-0.000080	±2.5	PASS
1			VN	-20	1.28	0.000672	±2.5	PASS
(63)			VN	-10	3.42	0.001792	±2.5	PASS
WOE			VN	0	2.30	0.001208	±2.5	PASS
WCDMA	TM1	нсн	VN	10	0.76	0.000400	±2.5	PASS
1900			VN	20	1.17	0.000616	±2.5	PASS
			VN	30	3.23	0.001696	±2.5	PASS
			VN	40	4.07	0.002136	±2.5	PASS
			VN	50	3.57	0.001872	±2.5	PASS

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
			VN	-30	24.17	0.013048	±2.5	PASS
			VN	-20	-12.91	-0.006969	±2.5	PASS
			VN	-10	44.74	0.024152	±2.5	PASS
)		0,	VN	0	-66.82	-0.036071	±2.5	PASS
WCDMA	TM2	LCH	VN	10	-74.11	-0.040009	±2.5	PASS
1900			VN	20	5.42	0.002924	±2.5	PASS
	D		VN	30	36.39	0.019646	±2.5	PASS
10)		VN	40	108.18	0.058403	±2.5	PASS
			VN	50	-98.79	-0.053328	±2.5	PASS
			VN	-30	6.65	0.003539	±2.5	PASS
			VN	-20	24.86	0.013222	±2.5	PASS
	6	6	VN	-10	18.91	0.010056	±2.5	PASS
		ГМ2 MCH	VN	0	52.83	0.028099	±2.5	PASS
WCDMA	TM2		VN	10	-116.90	-0.062180	±2.5	PASS
1900	2)		VN	20	-54.37	-0.028919	±2.5	PASS
6	/		VN	30	-172.93	-0.091983	±2.5	PASS
			VN	40	47.32	0.025169	±2.5	PASS
		1	VN	50	-44.75	-0.023805	±2.5	PASS
")		(3)	VN	-30	65.64	0.034411	±2.5	PASS
			VN	-20	-10.01	-0.005247	±2.5	PASS
			VN	-10	115.86	0.060736	±2.5	PASS
			VN	0	-65.64	-0.034411	±2.5	PASS
WCDMA	TM2	НСН	VN	10	7.48	0.003919	±2.5	PASS
1900			VN	20	88.97	0.046642	±2.5	PASS
			VN	30	21.84	0.011446	±2.5	PASS
			VN	40	31.22	0.016366	±2.5	PASS
		6,	VN	50	-33.16	-0.017382	±2.5	PASS

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp	Freq.Error (Hz)	Freq.vs.rated (ppm)	Limit (ppm)	Verdict
			VN	-30	-48.84	-0.026368	±2.5	PASS
			VN	-20	93.63	0.050544	±2.5	PASS
0			VN	-10	10.35	0.005585	±2.5	PASS
		(0)	VN	0	-66.33	-0.035808	±2.5	PASS
WCDMA	TM3	LCH	VN	10	20.69	0.011170	±2.5	PASS
1900			VN	20	26.37	0.014234	±2.5	PASS
(A)			VN	30	0.92	0.000494	±2.5	PASS
(0)			VN	40	11.66	0.006293	±2.5	PASS
			VN	50	41.93	0.022636	±2.5	PASS
			VN	-30	-0.79	-0.000422	±2.5	PASS
			VN	-20	1.42	0.000755	±2.5	PASS
/			VN	-10	66.64	0.035444	±2.5	PASS
			VN	0	77.55	0.041247	±2.5	PASS
WCDMA	TM3	мсн	VN	10	60.75	0.032311	±2.5	PASS
1900			VN	20	60.20	0.032019	±2.5	PASS
			VN	30	-58.36	-0.031045	±2.5	PASS
			VN	40	-64.77	-0.034454	±2.5	PASS
			VN	50	1.22	0.000649	±2.5	PASS
(*)		(3)	VN	-30	34.48	0.018078	±2.5	PASS
			VN	-20	118.47	0.062104	±2.5	PASS
			VN	-10	64.15	0.033628	±2.5	PASS
			VN	0	70.79	0.037107	±2.5	PASS
WCDMA	TM3	НСН	VN	10	124.83	0.065439	±2.5	PASS
1900			VN	20	61.89	0.032444	±2.5	PASS
			VN	30	-78.87	-0.041347	±2.5	PASS
			VN	40	37.26	0.019533	±2.5	PASS
		6.	VN	50	59.20	0.031036	±2.5	PASS

Report No. : EED32I00251304 Page 61 of 70

Appendix G): Effective Radiated Power of Transmitter (ERP/EIRP)

Receiver Setup:	Frequen	cv Dete	ector RE	3W	VBW	Remark	
	30MHz-10	~ 1	(100)		300kHz	Peak	
	Above 10				3MHz	Peak	
Measurement Procedure:	Anechoic Ch length. modu of the transm 2) The EUT was interference-antenna town 3) The disturbal raising and lot the turntable measuremer 4) Steps 1) to 3 and horizonts 5) The transmitt the antenna 6) A signal at the radiating cab polarized, the at the test refield strength 7) The output polarized in the companion of the	s powered ON and amber. The antendation mode and thitter under test. It is set 3 meters (aboreceiving antennation. After the fundament was made. In wering from 1m to a polarization. It was made. If were performed was approximately the disturbance and the substant of the	na of the trans he measuring we 18GHz the which was maximored 4m the receivental emission with the EUT at the same I fed to the substitution and was raised and the signal ge obtained for the titution antenn with both anter following form ble loss (dB) +	distance ounted on the ve antenna was max and the reced with an ocation as ostitution and the reced lowered nerator was set of ca was the nas polar aula:	s extended shall be to shall be to shall be to shall be to the top of the test real and by imized, a ceive anternable to obtain as adjust conditions on measurized. gain (dBo g	ed to its maximun uned to the frequency) away from the of a variable-heig ceiver display by rotating through field strength enna in both verticatena. The center of the transminy means of a normal properties of the transminus horizontally a maximum real ed until the measured.	enc ht 360 ical er of tter. n-
	10) Test the EUT 11) The radiation operation mo	or output power in the lowest chan measurements and de, And found the e procedures until	e performed in X axis position	le channe n X, Y, Z a ning which	I the High axis positi n it is wor	ioning for EUT se case.	
_imit:	10) Test the EUT 11) The radiation operation mo	in the lowest char measurements arode, And found the	nnel, the midd re performed in X axis position all frequencies	le channe n X, Y, Z a ning which s measure	I the High axis positi n it is wors ed was co	ioning for EUT se case.	
Limit:	10) Test the EUT 11) The radiation operation moderation and 12) Repeat above	in the lowest char measurements arode, And found the e procedures until	nnel, the midd re performed in X axis position all frequencies	le channe n X, Y, Z a ning which s measure Band II 10MHz	I the High axis positi a it is worked was co WCDM. 1710 –	ioning for EUT se case. omplete.	

Measurement Data

			HSD	PA band I	I		
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
0.	150	342	11.77	33.01	-21.24	Pass	Н
9262/1852.4	150	15	19.70	33.01	-13.31	Pass	V
	151	124	-0.30	33.01	-33.31	Pass	Н
9400/1880.0	150	20	6.72	33.01	-26.29	Pass	V
	150	61	2.05	33.04	-30.99	Pass	н 🐷
9538/1907.6	152	114	5.23	33.01	-27.78	Pass	V

	((3)	HSL	JPA band II			
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
	150	336	12.20	33.01	-20.81	Pass	Н
9262/1852.4	150	61	19.7	33.01	-13.31	Pass	V
(2)	151	72	0.16	33.01	-32.85	Pass	Н (ССС)
9400/1880.0	150	200	4.87	33.01	-28.14	Pass	V
	152	58	2.07	33.01	-30.94	Pass	Н
9538/1907.6	150	316	4.93	33.01	-28.08	Pass	V

			RM	IC band II			
Channel/fc (MHz)	Height (cm)	Azimuth (deg)	EIRP (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
(4)	151	342	11.53	33.01	-21.48	Pass	н
9262/1852.4	154	151	18.85	33.01	-14.16	Pass	V
	150	60	-0.46	33.01	-33.47	Pass	Н
9400/1880.0	151	87	6.47	33.01	-26.54	Pass	V
	150	227	2.50	33.01	-30.51	Pass	Н
9538/1907.6	150	10	5.07	33.01	-27.94	Pass	V

Page 63 of 70

Appendix H): Field strength of spurious radiation

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-30MHz	Peak	10kHz	30kHz	Peak	
	30MHz-1GHz	Peak	120kHz	300kHz	Peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
Measurement	1. Scan up to 10 th harmor	nic, find the ma	ximum radia	ation freque	ncy to measu	re.
Procedure:	 The technique used to antenna substitution m actual ERP/EIRP emis Test procedure as below: The EUT was powered Anechoic Chamber. The length. modulation modulation modulation 	ethod. Substitusion levels of the ON and place on antenna of the	ition method ne EUT. d on a 1.5m ne transmitte	I was perfor hight table er was exte	rmed to deterr at a 3 meter nded to its ma	mine the fully eximum
	frequency of the transr 2) The EUT was set 3 me interference-receiving antenna tower.	nitter under tes ters(above 180 antenna, which	t. GHz the distance was mount	ance is 1 m ed on the to	eter) away fro op of a variabl	m the e-height
	 3) The disturbance of the raising and lowering from 360° the turntable. After the measurement was made. 4) Steps 1) to 3) were per 	om 1m to 4m ther the fundamende.	ne receive an ntal emissio	ntenna and n was maxi	by rotating the mized, a field	rough strength
	 and horizontal polariza The transmitter was the the antenna was approx A signal at the disturba radiating cable. With be polarized, the receive a reading at the test received the polarized of the test received and the test received the polarized of the test received the test received the polarized of the test received the test rece	en removed and eximately at the eximately at the existing to the substitute antenna was rasiver. The level	same locat the substitu- tion and the ised and low of the signa	ion as the oution antenne receive and wered to obtain the contraction and the contraction are the contraction and the contraction are the contraction and the contraction are the contract	enter of the tree to be means of tennas horizo tain a maximu was adjusted	ansmitte f a non- ntally m until the
	measured field strengtl 7) The output power into the strengtl 8) Steps 6) and 7)were re 9) Calculate power in dBn ERP(dBm) = Pg(dBB) EIRP(dBm) = Pg(dBB) EIRP=ERP+2.15dBB	the substitution peated with bo n by the followi Bm) – cable los Bm) – cable los	antenna wa th antennas ng formula: s (dB) + ant	as then mea polarized. enna gain (asured. dBd)	
	where: Pg is the generator ou 10) Test the EUT in the low 11) The radiation measure operation mode,And fo 12) Repeat above procedu	vest channel, the ments are perforund the X axis	ne middle chormed in X, positioning	nannel the H Y, Z axis po which it is v	lighest channositioning for E vorse case.	
Limit:	Attenuated at least 43+10ld	~ ~ (D)				

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Data: Above 1GHz

	Н	SDPA band	d II 9262 channel/18	352.4MHz(lowest channe	el)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1118.517	153	197	-50.15	-13.00	-37.15	Pass	Н
1399.353	155	360	-51.94	-13.00	-38.94	Pass	Н
3700.260	154	279	-43.69	-13.00	-30.69	Pass	Н
4736.600	150	30	-48.94	-13.00	-35.94	Pass	н 🕔
6396.125	145	337	-45.70	-13.00	-32.70	Pass	Н
9157.857	150	345	-45.32	-13.00	-32.32	Pass	Н
1118.517	150	249	-53.15	-13.00	-40.15	Pass	V
1498.912	153	360	-53.06	-13.00	-40.06	Pass	V
3709.691	154	151	-47.30	-13.00	-34.30	Pass	V
5560.500	159	100	-46.30	-13.00	-33.30	Pass	V
6428.771	155	57	-45.87	-13.00	-32.87	Pass	V
8659.098	150	10	-46.43	-13.00	-33.43	Pass	V

	ŀ	HSDPA ban	d II 9400 channel/1	880MHz(m	niddle channe	l)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1118.517	155	282	-49.63	-13.00	-36.63	Pass	Н
1498.912	154	284	-51.65	-13.00	-38.65	Pass	Н
3766.785	148	61	-42.70	-13.00	-29.70	Pass	H
5776.922	160	70	-47.88	-13.00	-34.88	Pass	Н 💉
6428.771	155	17	-45.18	-13.00	-32.18	Pass	н
9251.580	154	59	-45.89	-13.00	-32.89	Pass	Н
1118.517	150	71	-51.88	-13.00	-38.88	Pass	V
1498.912	151	207	-53.23	-13.00	-40.23	Pass	V
2920.248	150	49	-51.75	-13.00	-38.75	Pass	V
3757.208	155	218	-45.71	-13.00	-32.71	Pass	V
5646.079	150	67	-47.28	-13.00	-34.28	Pass	V
6412.427	150	201	-45.95	-13.00	-32.95	Pass	V

	Н	SDPA band	I II 9538 channel/19	07.6MHz(h	nighest chann	el)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1118.517	149	220	-53.18	-13.00	-40.18	Pass	Н
1238.405	152	360	-53.09	-13.00	-40.09	Pass	Н
3738.129	151	15	-49.86	-13.00	-36.86	Pass	Н
4736.600	149	271	-49.68	-13.00	-36.68	Pass	н (А
6412.427	150	100	-45.45	-13.00	-32.45	Pass	н
8022.456	158	189	-47.11	-13.00	-34.11	Pass	Н
1118.517	148	210	-50.93	-13.00	-37.93	Pass	V
1498.912	151	220	-52.45	-13.00	-39.45	Pass	V
3192.366	156	105	-51.21	-13.00	-38.21	Pass	V
3738.129	153	154	-50.15	-13.00	-37.15	Pass	V
5297.966	148	157	-48.91	-13.00	-35.91	Pass	V
6412.427	150	48	-45.53	-13.00	-32.53	Pass	V

	Н	ISUPA band	d II 9262 channel/18	352.4MHz(lowest channe	el)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1118.517	155	58	-53.43	-13.00	-40.43	Pass	Н
1399.353	151	100	-52.35	-13.00	-39.35	Pass	Н
3700.260	150	221	-43.91	-13.00	-30.91	Pass	Н
5311.469	145	162	-49.16	-13.00	-36.16	Pass	н
6445.156	152	100	-45.61	-13.00	-32.61	Pass	н 🥨
9088.188	151	240	-46.63	-13.00	-33.63	Pass	Н
1118.517	156	21	-52.32	-13.00	-39.32	Pass	V
1498.912	151	328	-52.58	-13.00	-39.58	Pass	V
3709.691	153	15	-46.64	-13.00	-33.64	Pass	V
5560.500	150	100	-46.96	-13.00	-33.96	Pass	V
6428.771	150	360	-45.36	-13.00	-32.36	Pass	V
7981.717	149	70	-46.80	-13.00	-33.80	Pass	V

	I	HSUPA ban	d II 9400 channel/1	880MHz(m	niddle channe	l)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1118.517	158	100	-50.75	-13.00	-37.75	Pass	Н
1399.353	150	360	-51.85	-13.00	-38.85	Pass	Н
3766.785	146	70	-42.84	-13.00	-29.84	Pass	H /
5297.966	150	69	-49.06	-13.00	-36.06	Pass	Н (г
6527.712	155	58	-46.29	-13.00	-33.29	Pass	н
8063.403	151	100	-47.20	-13.00	-34.20	Pass	Н
1118.517	159	124	-51.22	-13.00	-38.22	Pass	V
1498.912	154	127	-53.65	-13.00	-40.65	Pass	V
3757.208	146	210	-46.55	-13.00	-33.55	Pass	V
5646.079	150	46	-47.27	-13.00	-34.27	Pass	V
6428.771	148	70	-45.84	-13.00	-32.84	Pass	V
7941.185	148	360	-46.93	-13.00	-33.93	Pass	V

	Н	SUPA band	II 9538 channel/19	07.6MHz(l	nighest chann	el)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1118.517	146	10	-50.18	-13.00	-37.18	Pass	/ н
1498.912	150	70	-52.72	-13.00	-39.72	Pass	Н
3738.129	151	360	-49.52	-13.00	-36.52	Pass	Н
4736.600	150	15	-49.50	-13.00	-36.50	Pass	H C
6396.125	148	100	-45.65	-13.00	-32.65	Pass	н
8527.851	150	254	-46.64	-13.00	-33.64	Pass	Н
1118.517	151	88	-52.82	-13.00	-39.82	Pass	V
1498.912	150	61	-52.43	-13.00	-39.43	Pass	V
3728.625	153	288	-49.18	-13.00	-36.18	Pass	V
4724.558	150	360	-49.47	-13.00	-36.47	Pass	V
6445.156	156	162	-45.44	-13.00	-32.44	Pass	V
8022.456	148	189	-45.54	-13.00	-32.54	Pass	V

		RMC band	II 9262 channel/185	52.4MHz(lo	west channel))	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1118.517	158	180	-49.48	-13.00	-36.48	Pass	Н
1498.912	149	246	-51.58	-13.00	-38.58	Pass	Н
3700.260	146	10	-44.96	-13.00	-31.96	Pass	H /
5560.500	150	70	-47.78	-13.00	-34.78	Pass	Н (с.
6445.156	151	360	-45.53	-13.00	-32.53	Pass	Н
9181.198	150	15	-46.15	-13.00	-33.15	Pass	Н
1118.517	148	215	-52.78	-13.00	-39.78	Pass	V
1336.682	151	247	-54.94	-13.00	-41.94	Pass	V
2500.251	150	336	-50.39	-13.00	-37.39	Pass	V
3709.691	150	107	-46.95	-13.00	-33.95	Pass	V
5560.500	150	60	-46.17	-13.00	-33.17	Pass	V
6428.771	150	321	-45.81	-13.00	-32.81	Pass	V

		RMC band	I II 9400 channel/18	80MHz(mi	ddle channel)		
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1118.517	152	15	-50.37	-13.00	-37.37	Pass	И
1498.912	150	178	-51.95	-13.00	-38.95	Pass	Н
3757.208	150	126	-42.32	-13.00	-29.32	Pass	Н
5462.297	149	258	-48.76	-13.00	-35.76	Pass	н
6428.771	152	36	-45.65	-13.00	-32.65	Pass	н 🌀
8571.377	148	360	-46.74	-13.00	-33.74	Pass	Н
1118.517	150	36	-52.14	-13.00	-39.14	Pass	V
1498.912	149	180	-52.99	-13.00	-39.99	Pass	V
3757.208	151	360	-45.88	-13.00	-32.88	Pass	V
5646.079	152	168	-47.34	-13.00	-34.34	Pass	V
6445.156	153	94	-45.64	-13.00	-32.64	Pass	V
9065.084	150	30	-46.18	-13.00	-33.18	Pass	V

Dogo	60	٦.	70
Page	OO	OI	10

		RMC band I	I 9538 channel/190	7.6MHz(hi	ghest channel)	
Frequency (MHz)	Height (cm)	Azimuth (deg)	Spurious Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result	Antenna Polaxis.
1399.353	150	18	-57.39	-13.00	-44.39	Pass	Н
3225.037	149	180	-51.74	-13.00	-38.74	Pass	Н
4712.547	151	297	-51.21	-13.00	-38.21	Pass	H
6561.030	152	168	-46.86	-13.00	-33.86	Pass	Н (А
8002.061	153	94	-47.46	-13.00	-34.46	Pass	Н
9181.198	150	30	-46.51	-13.00	-33.51	Pass	Н
1118.517	150	179	-51.97	-13.00	-38.97	Pass	V
1498.912	151	100	-52.54	-13.00	-39.54	Pass	V
3883.622	150	25	-50.05	-13.00	-37.05	Pass	V
4760.776	152	360	-49.51	-13.00	-36.51	Pass	V
6428.771	148	236	-45.89	-13.00	-32.89	Pass	V
8104.559	153	271	-46.96	-13.00	-33.96	Pass	V

Note:

Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 1GHz are attenuated more than 20 dB below the applicable limit and not required to be reported, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Page 69 of 70

PHOTOGRAPHS OF TEST SETUP

Test model No.: BW-X07HD

Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Page 70 of 70

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32I00251301 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

