Lecture 2: Derivatives

August 29, 2019

Formal Definition of a Derivative

labman.phys.uk.edu

f'(a) is the derivative of a function f at a if

$$f'(a) = \lim_{x \to a} \frac{f(a+h) - f(a)}{h}$$

Example:

(a) Given $f(x) \frac{x}{2x-1}$ find f'(a).

2/9

Derivative Laws

$$1. f(x) = c \implies f'(x) = 0$$

2.
$$f(x) = x^n \implies f'(x) = nx^{n-1}$$

3.
$$F(x) = f(x)g(x) \implies F'(x) = f(x)g'(x) + g(x)f'(x)$$

4.
$$F(x) = \frac{f(x)}{g(x)} \implies F'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$
 if $g(x) \neq 0$

5.
$$F(x) = f(x) + g(x) \implies f'(x) + g'(x)$$

6.
$$F(x) = f(x) - g(x) \implies f'(x) - g'(x)$$

7.
$$f(x) = e^x \implies f'(x) = e^x$$

8.
$$f(x) = \log(x) \implies f'(x) = 1/x$$

Examples:

Find the derivative of the following functions

(a)
$$f(t) = \frac{6}{\sqrt[3]{t^5}}$$

(b)
$$f(x) = \frac{x}{x + c/x}$$

Using Derivatives to Find Max & Min

Let *F* be a function of *x* and *A* a set of numbers contained on the domain of *F*.

- (i) A point x in A is a maximum for F on A if $F(x) \ge F(y)$ for every y on A. F(x) is called the maximum of F on A.
- (ii) A point x in A is a minimum for F on A if $F(x) \le F(y)$ for every y on A. F(x) is called the minimum of F on A.

Theorem

Let F be any function defined on (a,b). If x is a max or min point for F on (a,b) and F is differentiable, then F'(x)=0

Using Derivatives to Find Max & Min

A critical or stationary point of a function F is a number x such that F'(x) = 0. F(x) itself is called the critical value of F.

Finding a Max or Min

Consider a function on a closed interval [a, b]. In order to locate the max and/or min three kinds of points must be considered.

- 1. The critical points of F in [a,b].
- 2. The end points of [a, b].
- 3. The points in [a,b] such that F is not differentiable at x.

Examples:

Find the max and min of each of the following

- (a)
- (b)
- (c)

Rolle's Theorem

Theorem (Rolle's Theorem)

If F is continuous on [a,b] and differentiate on (a,b) and F(a) = F(b) then there is a number x in (a,b) such that F'(x) = 0.

Mean Value Theorem

Theorem (Mean Value Theorem)

If F is continuous on [a,b] and differentiable on (a,b) then there is a number in (a,b) such that

$$F'(x) = \frac{F(b) - F(a)}{b - a}$$

Cauchy Mean Value Theorem

Theorem (Cauchy Mean Value Theorem)

If F and g are continuous on [a,b] and differentiable on (a,b) then there is a number x in (a,b) such that

$$\frac{F'(x)}{g'(x)} = \frac{F(b) - F(a)}{g(b) - g(a)} \implies [F(b) - F(a)]g'(x) = [g(b) - g(a)]F'(x)$$

L'Hopitals Rule

Theorem (L'Hopitals Rule)

Suppose that $\lim_{x\to a} F(x) = 0$ and $\lim_{x\to a} g(x) = 0$ and

- (i) F' and g' exist for each x of an interval about x = a except possibly a itself.
- (ii) $g' \neq 0$ for $x \neq a$ in this interval.
- (iii) $\lim_{x \to a} \frac{F'(x)}{g'(x)} = A$

Then $\lim_{x\to a} \frac{F(x)}{g(x)} = A$.

Example:

(a) $\lim_{x\to 0} \frac{e^x - 1}{\ln(1+x)}$

