Esercizio 1

- 1) Descrivere e sintetizzare (come rete SP a costo minimo) un moltiplicatore per interi ad una cifra in base 3. Individuare, classificare e rimuovere eventuali alee sulle singole uscite.
- 2) Descrivere e sintetizzare (come rete SP a costo minimo) la rete che prende in ingresso l'uscita della rete precedente e produce, su ? bit, il corrispondente numero in base due.

Esercizio 2

Descrivere il l'unità **XXX** che si evolve come segue:

- 1) Preleva un una Codifica ASCII a 7 bit dal Produttore, sostenendo un **handshake** *soc*, *eoc*,
- 2) Se la Codifica è quella di una cifra decimale, invia al Trasmettitore la rappresentazione binaria della cifra e torna al punto 1, altrimenti torna immediatamente al punto 1.

Per verificare se la codifica è o non è quella buona, si usi una struttura combinatoria del tipo:

che genera 1 se il test ha successo, 0 altrimenti.

Trovare l'espressione algebrica minima per la sottorete testL

Fare un diagramma temporale che illustri l'evoluzione di XXX, supponendo che il Produttore presenti la codifica 'B011_0101. Affinché il diagramma sia di dimensioni ragionevoli, smettere di tracciarlo quando XXX ha attivato il Trasmettitore e supporre anche che la risposta del Produttore durante l'handshake sia abbastanza veloce (tra i uno e due cicli del clock di XXX).

000	001	010	011	100	101	110	111	
NUL	DLE	SP	0	@	Р	`	р	0000
SOH	XON	!	1	Α	Q	а	q	0001
STX	DC2	=	2	В	R	b	r	0010
ETX	XOFF	#	3	С	S	С	s	0011
EQT	DC4	\$	4	D	Т	d	t	0100
ENQ	NAK	%	5	E	כ	е	a	0101
ACK	SYN	&	6	F	>	f	٧	0110
BEL	ЕТВ	•	7	G	W	g	W	0111
BS	CAN	(8	Н	Х	h	Х	1000
НТ	EM)	9	1	Υ	i	у	1001
LF	SUB	*		J	Z	j	z	1010
VF	ESC	+	,	K	[k	{	1011
FF	FS	,	٧	L	١	I		1100
CR	GS	-	=	М]	m	}	1101
so	RS		^	N	۸	n	~	1110
SI	US	/	?	0		o	DEL	1111

Codifica (originale) ASCII dei caratteri

Esercizio 1 – Una soluzione

Il moltiplicatore per interi a 1x1 cifra ha un'uscita a due cifre in base 3. Detti x e y i numeri interi da moltiplicare, z il risultato, X, Y, Z le loro rappresentazioni in base 3 in complemento alla radice, e $x_1x_0, y_1y_0, z_3z_2 \mid z_1z_0$ le codifiche in base due delle rappresentazioni di X, Y e Z, si ottiene la seguente mappa di Karnaugh (sono riportati in rosso i numeri interi x e y, ed in blu Z per comodità di lettura):

· ·	y ₁ ;	y o	+1	_	-1				
X ₁ >	6 0 /	00	01	11	10				
0	00	00 00	00 00		00 00				
		0 0	0 0		0 0				
+1	01	00 00	00 01		10 10				
	11								
-1	10	00 00	10 10		00 01				
		$z_3z_2z_1z_0$							

Pertanto si ottiene:

$$z_3 = z_1 = x_1 \cdot y_0 + y_1 \cdot x_0$$

$$z_2 = 0$$

$$z_0 = y_1 \cdot x_1 + y_0 \cdot x_0$$

Gli implicanti usati sono tutti essenziali, e non esistono alee di alcun tipo sulle singole uscite.

2) Il moltiplicatore in base 3 ad una cifra produce uno dei seguenti numeri: 0, +1, -1. In base due l'intervallo di numeri [-1; +1] può essere rappresentato su due bit $w_i w_0$. La mappa di Karnaugh della rete è quindi la seguente:

Pertanto, $w_1 = z_3$, $w_0 = z_0 + z_1$.

Esercizio 2 - UNA SOLUZIONE


```
module XXX (soc,eoc,ascii, dav ,rfd,cifra, p,reset );
 input
              p,reset ;
               soc;
output
 input
              eoc;
       [6:0] ascii;
 input
output
              dav ;
               rfd;
 input
 output [3:0] cifra;
          SOC;
                  assign soc=SOC;
 rea
          DAV_;
                   assign dav_=DAV_;
 reg [3:0] CIFRA; assign cifra=CIFRA;
                   parameter S0=0, S1=1, S2=2, S3=3, S4=4;
 reg [2:0] STAR;
wire testM ; assign testM=(ascii[6:4]=='B011)?1:0;
 wire testL ; assign testL=(ascii[3:0]<10)?1:0;</pre>
wire test ; assign test=testM&testL;
 always @(posedge p or negedge reset )
 if (reset ==0) begin SOC<=0; DAV <=1; STAR=S0; end
 else #3
   casex (STAR)
          begin SOC<=1; STAR<=(eoc==1)?S0:S1; end
    S0:
   S1:
          begin SOC<=0; CIFRA<=ascii[3:0]; STAR<=(eoc==0)?S1:S2; end
          begin STAR<=(test==1)?S3:S0; end
   S2:
          begin DAV <=0; STAR<=(rfd==1)?S3:S4; end
   S3:
          begin DAV <=1; STAR<=(rfd==0)?S4:S0; end
   S4:
   endcase
endmodule
```

Forma minima di testL (indicando con c_1 la variabile ascii[i]): test $L = \overline{c}_1 + \overline{c}_2 \cdot \overline{c}_1$

