# Notes for High-Dimensional Probability Second Edition by Roman Vershynin

Gallant Tsao

 $July\ 1,\ 2025$ 

## Contents

| 0 | Appetizer: Using Probability to Cover a Set  0.1 Covering Geometric Sets                                                                                                                                                                                                                                                                                                                                                                                                                | <b>2</b><br>3                                    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1 | A Quick Refresher on Analysis and Probability  1.1 Convex Sets and Functions 1.2 Norms and Inner Products 1.3 Random Variables and Random Vectors 1.4 Union Bound 1.5 Conditioning                                                                                                                                                                                                                                                                                                      | 5<br>7<br>7                                      |
|   | 1.6       Probabilistic Inequalities         1.7       Limit Theorems                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |
| 2 | Concentration of Sums of Independent Random Variables  2.1 Why Concentration Inequalities?  2.2 Hoeffding Inequality  2.3 Chernoff Inequality  2.4 Application: Median-of-means Estimator  2.5 Application: Degrees of Random Graphs  2.6 Subgaussian Distributions  2.6.1 The Subgaussian Norm  2.7 Subgaussian Hoeffding and Khintchine Inequalities  2.7.1 Subgaussian Hoeffding Inequality  2.7.2 Subgaussian Khintchine Inequality  2.7.3 Maximum of Subgaussians  2.7.4 Centering | 7<br>9<br>11<br>12<br>12<br>14<br>14<br>15<br>15 |
|   | 2.8 Subexponential Distributions 2.8.1 Subexponential Properties 2.8.2 The Subexponential Norm 2.9 Bernstein Inequality                                                                                                                                                                                                                                                                                                                                                                 | 17<br>17<br>19                                   |
| 3 | Random Vectors in High Dimensions 3.1 Concentration of the Norm                                                                                                                                                                                                                                                                                                                                                                                                                         | 23<br>23                                         |

### 1 A Quick Refresher on Analysis and Probability

#### 1.1 Convex Sets and Functions

**Definition 1.1.1.** A subset  $K \subseteq \mathbb{R}^n$  is a <u>convex set</u> if, for any pair of points in K, the line segment connecting these two points is also contained in K, i.e.

$$\lambda x + (1 - \lambda)y \in K \quad \forall x, y \in K, \lambda \in [0, 1].$$

Let  $K \in \mathbb{R}^n$  be a convex subset. A function  $f: K \to \mathbb{R}$  is a <u>convex function</u> if

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \quad \forall x, y \in K, \lambda \in [0, 1].$$

f is concave if the inequality above is reversed, or equivalently, if -f is convex.

#### 1.2 Norms and Inner Products

**Definition 1.2.1.** The Euclidean norm of a vector  $x \in \mathbb{R}^n$  is

$$||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}.$$

**Definition 1.2.2.** The inner product (dot product) of two vectors  $x, y \in \mathbb{R}^n$  is

$$\langle x, y \rangle = x^T y.$$

**Definition 1.2.3.** For  $p \in [1, \infty]$ , the  $\underline{\ell}^p$  norm of a vector  $x \in \mathbb{R}^n$  is

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 for  $p \in [1, \infty)$ ,  $||x||_\infty = \max_{i=1,\dots,n} |x_i|$ .

**Theorem 1.2.4** (Minkowski's inequality). For any vector  $x, y \in \mathbb{R}^n$ ,

$$||x+y||_p \le ||x||_p + ||y||_p.$$

It follows that the  $\ell^p$  norm defines a norm on  $\mathbb{R}^n$  for every  $p \in [1, \infty]$ .

**Theorem 1.2.5** (Cauchy-Schwartz inequality). For all vectors  $x, y \in \mathbb{R}^n$ ,

$$|\langle x, y \rangle| \le ||x||_2 ||y||_2.$$

**Theorem 1.2.6** (Hölder's inequality). For all vectors  $x, y \in \mathbb{R}^n$ ,

$$|\langle x, y \rangle| \le ||x||_p ||y||_{p'} \text{ if } \frac{1}{p} + \frac{1}{p'} = 1$$

where p, p' are called conjugate exponents.

#### 1.3 Random Variables and Random Vectors

We'll do a brief review of some important concepts about random variables first:

**Definition 1.3.1.** The expectation (mean) of a random variable X is

$$\mathbb{E}[X] = \sum_{k=-\infty}^{\infty} k p_X(k) = \int_{-\infty}^{\infty} x f_X(x) \ dx.$$

Its variance is

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$$

The expectation is linear:

$$\mathbb{E}[a_1X_1 + \dots + a_nX_n] = a_1\mathbb{E}[X_1] + \dots + a_n\mathbb{E}[X_n].$$

For variance this is not the case. However, if the random variables are independent (or even uncorrelated):

$$\operatorname{Var}(a_1X_1 + \dots + a_nX_n) = a_1^2\operatorname{Var}(X_1) + \dots + a_n^2\operatorname{Var}(X_n).$$

The simplest example of a random variable is the indicator of a given event E, which is

$$\mathbf{1}_{E}(x) = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{if } x \notin E. \end{cases}$$

Its expectation is given by

$$\mathbb{E}[\mathbf{1}_E] = P(E).$$

**Definition 1.3.2.** The moment generating function (mgf) of a random variable X is given by

$$M_X(t) = \mathbb{E}[e^{tX}], t \in \mathbb{R}.$$

**Definition 1.3.3.** For p > 0, the <u>pth moment</u> of a random variable X is  $\mathbb{E}[X^p]$ , and the <u>pth absolute moment</u> is  $\mathbb{E}[|X|^p]$ . By taking the *pth* root of the absolute moment, we get the  $\underline{L^p}$  norm of a random variable:

$$||X||_{L^p} = (\mathbb{E}[|X|^p])^{1/p}$$
, and  $||X||_{\infty} = \operatorname{ess\,sup}|X|$ ,

where esssup denotes the essential supremum.

The normed space consisting of all random variables on a given probability space that have finite  $L^p$  norm is called the  $L^p$  space:

$$L^p = \{X : ||X||_{L^p} < \infty\}.$$

**Definition 1.3.4.** The standard deviation of a random variable X is

$$\sigma = \sqrt{\operatorname{Var}(X)} = \|X - \mathbb{E}[X]\|_{L^2}.$$

The covariance of two random variables X and Y is

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \langle X - \mathbb{E}[X], Y - \mathbb{E}[Y] \rangle_{L^2}.$$

**Definition 1.3.5.** A random vector  $X = (X_1, \dots, X_n)$  is a vector whose all n coordinates  $X_i$  are random variables. Its expected value is

$$\mathbb{E}[X] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_n]).$$

Its covariance matrix is

$$Cov(X) = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^T].$$

which is a  $n \times n$  matrix whose (i, j)-th entry is  $Cov(X_i, X_i)$ .

#### 1.4 Union Bound

**Lemma 1.4.1** (Union bound). For any events  $E_1, \ldots, E_n$ , we have

$$P\left(\bigcup_{i=1}^{n} E_i\right) \le \sum_{i=1}^{n} P(E_i).$$

*Proof.* If the event  $\bigcup_{i=1}^n$  occurs, at least of the events  $E_i$  has to occur. Therefore their respective indicator random variables satisfy

$$\mathbf{1}_{\bigcup_{i=1}^n E_i} \leq \mathbf{1}_{E_i}$$
.

Taking expectations and using the linearity of expectation completes the proof.

**Example 1.4.2** (Dense random graphs have no isolated vertices). Consider the G(n,p) graph from the Erdos-Renyi model, with  $n \ge 2$ . Show that if  $p \ge 4 \ln n/n$  then there are no isolated vertices with probability at least 1 - 1/n.

*Proof.* Call the vertices  $1, \ldots, n$  and let  $E_i$  denote the event that vertex has no neighbors. This means that none of the other n-1 vertices are neighbors with vertex i, and these n-1 events are independent and have probability 1-p each. Thus  $P(E_i)=(1-p)^{n-1}$ . Therefore, by union bound, we have

$$P\left(\bigcup_{i=1}^{n} E_i\right) \le \sum_{i=1}^{n} P(E_i)$$
$$= n(1-p)^{n-1}$$

#### 1.5 Conditioning

**Definition 1.5.1.** Given a probability space, the <u>conditional probability</u> of an event E given an event F is

$$P(E|F) = \frac{P(E \cap F)}{P(F)}.$$

#### 1.6 Probabilistic Inequalities

**Theorem 1.6.1** (Jensen's Inequality). For any random variable X and a convex function  $f: \mathbb{R} \to \mathbb{R}$ ,

$$f(\mathbb{E}[X]) \le \mathbb{E}[f(X)].$$

This also holds for any random vector taking values in  $\mathbb{R}^n$  and any convex function  $f:\mathbb{R}^n\to\mathbb{R}$ .

In particular, since any norm on  $\mathbb{R}^n$  is convex, we get

$$\|\mathbb{E}[X]\| \le \mathbb{E}[\|X\|].$$

**Theorem 1.6.2** (Inequalities for random variables). Minkowski inequality states that for any  $p \in [1, \infty]$  and any random variables  $X, Y \in L^p$ ,

$$||X + Y||_{L^p} \le ||X||_{L^p} + ||Y||_{L^p}.$$

#### 1.7 Limit Theorems

**Theorem 1.7.1** (Strong law of large numbers). Let  $X_1, X_2, \ldots$  be a sequence of i.i.d. random variables with mean  $\mu$ . Let  $S_N = X_1 + \cdots + X_N$ . Then as  $N \to \infty$ ,

$$\frac{S_N}{N} \to \mu$$
 almost surely.

**Definition 1.7.2.** A random variable X is a standard normal random variable, denoted  $X \sim N(0,1)$ , if its density is

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, x \in \mathbb{R}.$$

X has mean zero and variance 1.

More generally, X as a normal distribution with mean  $\mu$  and variance  $\sigma^2$  if its density is

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, x \in \mathbb{R}.$$

**Theorem 1.7.3** (Lindeberg–Lévy CLT). Let  $X_1, X_2, \ldots$  be a sequence of i.i.d. random variables with mean  $\mu$  and variance  $\sigma^2$ . Consider the sum  $S_N = X_1 + \cdots + X_N$ . Normalize this sum so that it has zero mean and unit variance:

$$Z_N := \frac{S_N - \mathbb{E}[S_N]}{\sqrt{\operatorname{Var}(S_N)}} = \frac{1}{\sigma\sqrt{N}} \sum_{i=1}^N (X_i - \mu).$$

Then as  $N \to \infty$ ,

$$Z_N \to N(0,1)$$
 in distribution,

meaning the CDF of  $Z_N$  converges pointwise to the CDF of N(0,1).

**Example 1.7.4** (Bernoulli and binomial distributions). When  $X_i \sim \text{Ber}(p)$ ,  $S_N \sim \text{Binom}(N, p)$ . In particular, theorem 1.7.3 gives us

$$\frac{S_N - Np}{\sqrt{Np(1-p)}} \to N(0,1)$$
 in distribution.

The special case above is called the de Moivre-Laplace theorem.

There is also a version of the CLT used for the Poisson distribution, when  $p \to 0$  for the Bernoulli random variables:

**Definition 1.7.5.** A random variable X has the <u>Poisson distribution</u> with parameter  $\lambda > 0$ , denoted  $X \sim \text{Pois}(\lambda)$ , if

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \ k \in \mathbb{N}_0.$$

**Theorem 1.7.6** (Poisson limit theorem). Consider independent random variables  $X_{N,i}, p_{N,i}$  for  $N \in \mathbb{N}$  and  $1 \leq i \leq N$ . Let

$$S_N = X_{N,1} + \cdots + X_{N,N}$$
.

Assume that as  $N \to \infty$ ,

$$\max_{i\leq N} p_{N,i} \to 0 \text{ and } \mathbb{E}[S_N] = \sum_{i=1}^N p_{N,i} \to \lambda < \infty.$$

8

Then as  $N \to \infty$ ,

$$S_N \to \operatorname{Pois}(\lambda)$$
 in distribution.

To approximate the Poisson distributions, we often have to deal with factorials. Here are a few useful tools for approximations:

Lemma 1.7.7 (Stirling approximation).

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + o(1))$$
 as  $n \to \infty$ .

In particular, for  $X \sim \text{Pois}(\lambda)$ ,

$$P(Z=k) = \frac{e^{-\lambda}}{\sqrt{2\pi k}} \left(\frac{e\lambda}{k}\right)^k (1+o(1)) \text{ as } k \to \infty.$$

Of course, there are also non-asymptotic results:

**Lemma 1.7.8** (Bounds on the factorial). For any  $n \in \mathbb{N}$ , we have

$$\left(\frac{n}{e}\right)^n \le n! \le en \left(\frac{n}{e}\right)^n.$$

*Proof.* For the lower bound, we use the Taylor series for  $e^x$  and drop all terms except the nth one, which gives

$$e^x \ge \frac{x^n}{n!}.$$

Substitute x = n and rearranging gives the inequality. For the upper bound,

$$\ln(n!) \le \sum_{k=1}^{n} \ln k \le \int_{1}^{n} \ln x \, dx + \ln n = n(\ln n - 1) + 1 + \ln n.$$

Exponentiating and rearranging gives the upper bound.

Remark 1.7.9 (Gamma function). The gamma function extends the notion of the factorial to all real numbers, even to all complex numbers with positive real part. It is defined as

$$\Gamma(z) := \int_0^\infty t^{z-1} e^{-t} dt.$$

Repeated integration by parts gives

$$\Gamma(n+1) = n!, \ n \in \mathbb{N}_0.$$

Stirling approximation (lemma 1.7.7) is also valid for the gamma function:

$$\Gamma(z) = \sqrt{2\pi z} \left(\frac{z}{e}\right)^z (1 + o(1)) \text{ as } z \to \infty.$$