Rapport du projet de programmation linéaire

Maxence Ahlouche Martin Carton Maxime Arthaud Thomas Forgione Korantin Auguste Thomas Wagner

21 octobre 2013

Table des matières

1	Présentation de l'équipe						
2	Prol	blème (du sac à dos	2			
	2.1	Résolu	ution exacte	. 2			
	2.2	Résolu	ution approchée	. 2			
3	Problème d'optimisation						
	3.1	Simple	exe	. 3			
		3.1.1	Forme standard et tableau canonique	. 3			
		3.1.2	Algorithme	. 4			
		3.1.3	Tests	. 4			
		3.1.4	Dégénérescence	. 4			
4	Ann	exe		4			

1 Présentation de l'équipe

Cette équipe a été menée par Maxence Ahlouche, assisté de son Responsable Qualité Thomas Wagner. Les autres membres de l'équipe sont Martin Carton, Thomas Forgione, Maxime Arthaud, et Korantin Auguste.

	TD1	TD2	TD3	TP1	TP2	TP3
Maxence Ahlouche (CPC)				Abs.		
Maxime Arthaud					Abs.	
Korantin Auguste	Retard	Retard	Retard	Retard	Retard	Retard
Carton Martin						
Thomas Forgione						
Thomas Wagner (RQ)						

Il est à noter qu'en comptant tout ses retards Korantin a loupé au moins 1h45 de $\mathrm{TD}/\mathrm{TP}:\mathrm{D}$

2 Problème du sac à dos

2.1 Résolution exacte

Nous avons implémenté un algorithme de programmation dynamique, qui permet de résoudre le problème du sac à dos. Toutefois, il fonctionne uniquement si les poids des objets sont des entiers.

Sa complexité en temps est en O(nW) et celle en mémoire en O(W), avec n le nombre d'objets et W le poids maximum du sac.

Nous l'avons testé ¹ sur plusieurs instances du problème (jusqu'à X objets et un poids maximal de X), et l'algorithme est rapide.

2.2 Résolution approchée

Nous avons aussi implémenté l'algorithme glouton : celui-ci consiste à choisir les « meilleurs » objets jusqu'à que la masse maximale soit dépassée. Le critère déterminant quels sont les meilleurs objets peut être la masse faible, le prix élevé, ou le rapport prix/masse élevé.

Cet algorithme est beaucoup plus rapide que le précédent, mais n'est qu'un algorithme approché. La table 1 montre quelques-uns des résultats obtenus.

On remarque qu'en général, la résolution approchée en considérant le ratio prix/masse donne de très bon résultats, voire le meilleur résultat. Le résultat que fournit cet algorithme est le moins bon quand la masse maximale autorisée est faible comparée à l'amplitude des valeurs que peuvent prendre le prix et la masse des objets.

En utilisant le générateur de problèmes trouvé à l'adresse suivante : http://www.diku.dk/~pisinger/codes.html.

Paramètres du générateur/	Résultat	Prix le	Masse la	Meilleur ratio
masse maximale autorisée	optimum	plus élevé	plus faible	prix/masse
50 25 1 1 1000/20	85	49/42.4%	67/21.2%	81/4.7%
500 25 1 1 1000/500	2016	1125/44.2%	1725/14.4%	1983/1.6%
5000 25 1 1 1000/500	5540	1175/79%	4577/17.4%	5540/0%
50000 25 1 1 1000/500	11195	1175/90%	6684/40.3%	11195/0%
50000 1000 1 1 1000/500	118260	5959/95%	101857/13.9%	118147/0.1%
50000 5000 1 1 1000/100	100847	14931/85.2%	93532/7.3%	100282/0.6%

Table 1 – Résultats de l'algorithme glouton

Toutefois cet algorithme est beaucoup plus rapide, et a une complexité en temps de $O(n \log n)$ (pour le tri des objets), et ne nécessite en mémoire que la liste des objets.

3 Problème d'optimisation

Le but est maximiser une fonction linéaire sous certaines contraintes (inéquations linéaires).

3.1 Simplexe

L'algorithme du simplexe a une complexité dans le pire des cas exponentielle, mais en pratique, cet algorithme est efficace.

3.1.1 Forme standard et tableau canonique

Pour résoudre le problème, la première étape est le mettre sous forme standard. Pour cela on ajoute à chaque inéquation j de la forme $\sum a_{j,i}x_i \leq 0$ une variable dite d'écart pour la transformer en égalité : $\sum a_{j,i}x_i + s_j = 0$ où $s_j \geq 0$.

Les inéquations de la forme $\sum a_i x_i \ge 0$ sont d'abord multipliées par -1 avant cette étape.

On construit ensuite un tableau dit canonique représentant le problème comme suit :

- la première ligne de la matrice est $[m_0, m_1, \dots, m_n, 0, \dots, 0]$ où les (m_i) sont les coefficients du problème min $\sum m_i x_i$ et auquel on ajoute autant de 0 qu'on a ajouté de variables d'écart.
- les autres lignes de la matrice sont $[a_{j,0}, \dots, a_{j,n}, 0, \dots, 0, 1, 0, \dots, 0]$ où les 1 sont placés de manière à former une matrice identité (ils correspondent aux variables d'écart ajoutées).

3.1.2 Algorithme

3.1.3 Tests

3.1.4 Dégénérescence

Un problème du simplexe est dit dégénéré si plus de deux contraintes vont devoir être nulles en un sommet. Graphiquement (en 2D), cela veut dire qu'au moins 3 droites vont se rencontrer en un sommet.

Ceci va empêcher l'algorithme du simplexe de progresser entre deux itérations : il va simplement changer de base. Le problème étant que sur des cas particuliers, il pourra changer de base sans progresser, puis boucler à l'infini en faisant un cycle sur des bases qui n'améliorent pas la solution.

Pour éviter cela, on peut utiliser des règles d'anti-cyclage, dont la règle de Bland, qui consiste à choisir judicieusement les variables qu'on fera entrer et sortir de la base, dans le cas où il y aurait plusieurs possibilités autant intéressantes les unes que les autres. Elle consiste simplement à se baser sur l'indice des variables.

4 Annexe

Listings

Listing 1 – Codes relatifs au problème du sac à dos

```
#!/usr/bin/python
# -*- coding: UTF-8 -*-
def knapsack(objects, max_mass):
    Résoud le problème du sac à dos avec de la programmation dynamique.
    Fonctionne seulement avec des valeurs entières.
    objects est une liste de couple (masse, prix) représentant les objets.
    >>> objects = ((2,3),(3,4),(4,5),(5,6))
   >>> knapsack(objects, 5)
    assert is instance(max\_mass, int) and all(isinstance(x[0], int)) for x in
    current_line = [0 for i in range(max_mass+1)]
    prev line = current line[:]
    for i in range(0, len(objects)):
        object\_mass \;,\;\; price \; = \; objects \, [\; i \; ]
        for masse in range (\max_{mass} + 1):
             if object_mass <= masse:</pre>
                 current_line[masse] = max(prev_line[masse],
                     prev_line[masse-object_mass] + price)
             else:
```

```
current_line[masse] = prev_line[masse]
        prev_line = current_line[:]
    return current_line[max_mass]
def best_ratio(x): return x[1]/x[0]
def less_mass(x): return -x[0]
def best_price(x): return x[1]
def greedy(objects, max_mass, key):
        Algorithme approché du glouton.
        Nécessite de trier les objects selon un critère 'key'.
        Par exemple
            \verb|greedy| (\verb|obj|, \verb|max_mass|, \verb|less_mass|)
       choisit les objects en commençant par les moins lourds.
    cost, mass = 0, 0
    objects = sorted(objects, key=key, reverse=True)
    for o in objects:
        if o[0] + mass <= max_mass:
            mass += o[0]
            cost += o[1]
            if mass == max_mass:
                break
    return cost
def read_testfile(path):
        Lit un fichier généré par le générateur trouvé ici:
            http://www.diku.dk/~pisinger/codes.html
        Retourne une liste de couples (masse, valeur) considérée comme bon
    exemple.
    with open(path, 'r') as f:
        objects = []
        line = f.readline()
        nb_objs = int(line)
        for i in range(0, nb_objs):
            line = f.readline()
            dummy, a, b = map(int, line.split())
            objects.append((b, a))
        return objects
```

Listing 2 – Codes relatifs au simplexe

```
#!/usr/bin/python2
# -*- coding: utf-8 -*-
from __future__ import division
import numpy as np

"""

Fonction utilisée par la fonction simplexe, elle ne devrait pas être appelée
directement.
La matrice d'entrée doit avoir la forme suivante :
    Les premières colonnes correspondent aux produits :
    [bénéfice du produit, cout en ressource 1, cout en ressource 2, ...]
    (ce sont les variables libres)
```

```
Les dernières colonnes correspondent aux variables de base :
    [0, \ldots, 0, 1, 0, \ldots, 0]
    sachant que le carré des variables de base forme une matrice identité.
    Et sur la toute dernière colonne :
    [0, stock en ressource 1, stock en ressource 2, ...]
Attention: la matrice doit être une matrice flottante pour numpy!
\label{eq:caded} \begin{array}{ll} {\rm C\`ad}\ d\'eclar\'ee\ avec\ np.array} \; (\,[\,\dots]\ ,\ d{\rm type}{=}{\rm `f'}) \end{array}
Retourne un triplet de la forme (gain, [a_produire...], [restes...]) où :
    - a_produire[n] est la quantité de produit n à produire;
                     est ce qu'il reste en ressource m.
def simplexe_aux(matrice):
    size\_y, size\_x = matrice.shape
    # variables de base
    base = list(range(size_x-1-(size_y-1), size_x-1))
    # indice de colonne (pour le x à ajouter de la base)
    a\_ajouter = np.argmax(matrice[0,])
    while matrice [0, a\_ajouter] > 0:
        # indice de ligne (pour le x à retirer de la base)
        a\_retirer = None
         meilleur ratio = 0
        # la première ligne est pour z, on n'y cherche pas le ratio
         for y in range(1, size_y):
             if matrice[y,a\_ajouter] == 0: \#todo:comp float?
             ratio \ = \ matrice \left[ \, y \, , -1 \right] \ / \ matrice \left[ \, y \, , a\_ajouter \, \right]
             if a_retirer is None or ratio < meilleur_ratio:
                 a retirer = y
                  meilleur\_ratio \, = \, ratio
         base[a\_retirer-1] = a\_ajouter
        # opérations sur les lignes
         for y in range(size_y):
             if y == a_retirer:
                 matrice[y,] /= matrice[y,a_ajouter]
                  ratio = matrice[y,a_ajouter] / matrice[a_retirer, a_ajouter]
                  matrice[y,] -= ratio * matrice[a_retirer,]
         a_ajouter = np.argmax(matrice[0,])
    # recherche des quantités à produire (au début de la liste)
    # et des restes (à la fin)
    a_produire_et_restes = [0]*(size_x-1)
    for n in range(len(base)):
        m=base[n]
        a_produire_et_restes[m] = matrice[n+1,-1]
    return -\text{matrice}[0,-1],
            a_produire_et_restes[0:size_x-size_y],
            a_produire_et_restes[size_x-size_y:-1]
```

```
def simplexe (contraintes, profit):
     Cette fonction prend en entrée la matrice contenant les
    inéquations définissant le problème, telle que définie dans le
     slide 3 des séances 2 et 3. Elle prend également la fonction
     profit, les variables devant être dans le même ordre que dans
     l'autre matrice.
     Elle transforme cette matrice en une matrice utilisable par la
     fonction simplexe_aux.
    nb_mat, nb_pdt = contraintes.shape
    nb\_pdt -= 1 \# Contraintes contient également les stocks
    m = np.array([[0] * (nb_pdt + nb_mat + 1)] * (nb_mat + 1), dtype='f')
    # Ajout du profit
    m[0,] = profit + [0] * (nb_mat + 1)
    for i in range (nb mat):
         # Ajout des contraintes sur les variables libres
         m[i+1,:nb\_pdt] = contraintes[i,:nb\_pdt]
         # Ajout des variables de base
         m[i+1,nb\_pdt+i] = 1
    # Ajout des stocks
    m[1:,-1] = contraintes[:,-1]
    return simplexe_aux(m)
def recherche_initial(matrice):
     Retourne un sommet initial, ou None s'il n'y a pas de solution
    size_y, size_x = matrice.shape
     {\tt prob\_artificiel = np.zeros((size\_y\,,\ size\_x\,+\,(size\_y\,-\,1)))}
    \verb|prob_artificiel|[1:, size_x-1:-1]| = \verb|np.identity|(size_y-1)
     solution\;,\;\; benef\_max\;=\; simplexe\,(\;prob\_artificiel\,)
     if benef_max != 0:
         return None
     else:
         return solution [:size_x-1]
if _{\underline{\underline{\underline{\underline{\underline{nane}}}}} = '\underline{\underline{\underline{\underline{main}}}':
    np.set_printoptions(precision=2, suppress=True)
    m = np.array([
           \begin{bmatrix} 7, & 9, & 18, & 17, & 0, & 0, & 0, & 0 \end{bmatrix}, \\ \begin{bmatrix} 2, & 4, & 5, & 7, & & 1, & 0, & 0, & 42 \end{bmatrix}, \\ \begin{bmatrix} 1, & 1, & 2, & 2, & & 0, & 1, & 0, & 17 \end{bmatrix}, \\ \begin{bmatrix} 1, & 2, & 3, & 3, & & 0, & 0, & 1, & 24 \end{bmatrix} 
    ], dtype='f')
     direct = simplexe_aux(m)
    print(direct)
     contraintes = np.array([[2,4,5,7,42],[1,1,2,2,17],[1,2,3,3,24]])
     profit = [7,9,18,17]
     assert (direct = simplexe (contraintes, profit))
```