TEA010 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P01A, 11 ago 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] O programa onda1d-ins.py apresentado em sala de aula calcula 1/0.0005 = 2000 passos de tempo n da solução numérica u_i^n da equação da onda cinemática; no entanto, a linha

$$u = zeros((2,nx+1),float)$$

aloca apenas 2 linhas para o tempo. Explique, em Português claro e correto, por que apenas 2 são suficientes.

SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

No esquema de diferenças finitas utilizado pelo programa onda1d-ins.py, os valores da função u no tempo n+1 dependem apenas dos valores no tempo n. Portanto, partindo de n=0, podemos calcular numericamente

passo de tempo
$$n = 1$$
: $u[1] = f(u[0])$,

onde $f(\cdot)$ representa genericamente o esquema de diferenças finitas explícito para todos os pontos da malha, e u[1] guarda os valores de $u^{(n=1)}$. Depois que os valores de u[0] foram escritos em disco, eles não são mais necessários para o algoritmo, *e podem ser sobrescritos*. Portanto, no próximo passo de tempo podemos fazer

passo de tempo
$$n = 2$$
: $u[0] = f(u[1])$,

e utilizar u[0] para guardar os valores de $u^{(n=2)}$. Agora, é a linha u[1] que não é mais necessária; após escrevê-la em disco, podemos reutilizá-la:

passo de tempo
$$n = 3$$
: $u[1] = f(u[0])$,

e assim sucessivamente. A forma simples de implementar a troca de índices é fazer

$$(old,new) = (0,1)$$

inicialmente e depois trocar a cada passo de tempo:

$$\frac{\partial \phi}{\partial t} + c \frac{\partial \phi}{\partial x} = k\phi,$$

onde c e k são constantes positivas, com o esquema numérico

$$\frac{\phi_i^{n+1}-\phi_i^n}{\Delta t}+c\frac{\phi_i^n-\phi_{i-1}^n}{\Delta x}=k\phi_i^n$$

Faça uma análise de estabilidade de von Neumann, e mostre que a condição de estabilidade é do tipo

$$\alpha \text{Co}[\text{Co} - (\text{Ka} + 1)] + \beta (\text{Ka} + 1)^2 \le 1$$

onde Co = $c\Delta t/\Delta x$ e Ka = $k\Delta t$, ou seja: **encontre** α e β . Note que α depende de $C_k \equiv \cos(k_l\Delta x)$ na notação padrão utilizada nesta disciplina.

SOLUÇÃO DA QUESTÃO:

Sabemos que a mesma equação de diferenças finitas se aplica para os erros de arredondamento; portanto,

$$\frac{\epsilon_i^{n+1} - \epsilon_i^n}{\Delta t} + c \frac{\epsilon_i^n - \epsilon_{i-1}^n}{\Delta x} = k \epsilon_i^n.$$

Expandimos em série de Fourier,

$$\epsilon_i^n = \sum_{i=1}^{N/2} \xi_l e^{at_n} e^{ik_l x_i},$$

e substituímos na equação de diferenças. Cada harmônico agora obedece a

$$\frac{\xi_{l}e^{a(t_{n}+\Delta t)}e^{ik_{l}x_{i}}-\xi_{l}e^{at_{n}}e^{ik_{l}x_{i}}}{\Delta t}+c\frac{\xi_{l}e^{at_{n}}e^{ik_{l}x_{i}}-\xi_{l}e^{at_{n}}e^{ik_{l}(x_{i}-\Delta x)}}{\Delta x}=k\xi_{l}e^{at_{n}}e^{ik_{l}x_{i}}$$

$$\xi_{l}e^{a(t_{n}+\Delta t)}e^{ik_{l}x_{i}}-\xi_{l}e^{at_{n}}e^{ik_{l}x_{i}}+\underbrace{\frac{c\Delta t}{\Delta x}}_{\text{Co}}\left(\xi_{l}e^{at_{n}}e^{ik_{l}x_{i}}-\xi_{l}e^{at_{n}}e^{ik_{l}(x_{i}-\Delta x)}\right)=\underbrace{k\Delta t}_{\text{Ka}}\xi_{l}e^{at_{n}}e^{ik_{l}x_{i}}$$

$$e^{a\Delta t}-1+\text{Co}\left(1-e^{-ik_{l}\Delta x}\right)=\text{Ka}$$

Portanto devemos ter

$$e^{a\Delta t} = 1 - \text{Co}\left(1 - e^{-ik_l\Delta x}\right) + \text{Ka},$$

= $(1 + \text{Ka} - \text{Co}) + \text{Co}\cos(k_l\Delta x) - i\text{Co}\sin(k_l\Delta x);$

Desejamos que o módulo do fator de amplificação $e^{a\Delta t}$ seja menor que 1. O módulo (ao quadrado) é

$$\left| e^{a\Delta t} \right|^2 = (1 + \text{Ka} - \text{Co} + \text{Co}\cos(k_l \Delta x))^2 + (\text{Co}\sin(k_l \Delta x))^2$$
.

Para aliviar a notação, façamos

$$C_k \equiv \cos(k_l \Delta x),$$

 $S_k \equiv \sin(k_l \Delta x).$

Então,

$$\begin{aligned} \left| \mathbf{e}^{a\Delta t} \right|^2 &= (\mathbf{Co}S_k)^2 + (1 + \mathbf{Ka} - \mathbf{Co} + \mathbf{Co}C_k)^2 \\ &= \mathbf{Ka}^2 + 2C_k\mathbf{Co}\mathbf{Ka} - 2\mathbf{Co}\mathbf{Ka} + 2\mathbf{Ka} + C_k^2\mathbf{Co}^2 - 2C_k\mathbf{Co}^2 + 2C_k\mathbf{Co}^2$$

A condição para que o esquema de diferenças finitas seja estável é, então,

$$\begin{split} 2\text{Co}^2(1-C_k) + 2\text{Co}(C_k-1)(\text{Ka}+1) + (\text{Ka}+1)^2 &\leq 1, \\ 2\text{Co}\left[\text{Co}(1-C_k) + (C_k-1)(\text{Ka}+1)\right] + (\text{Ka}+1)^2 &\leq 1, \\ 2(1-C_k)\text{Co}\left[\text{Co} - (\text{Ka}+1)\right] + (\text{Ka}+1)^2 &\leq 1, \end{split}$$

donde

$$\alpha = 2(1 - C_k),$$

$$\beta = 1 \blacksquare$$

3 [25] Calcule, por integração a partir da definição,

$$\mathscr{L}\left\{t\mathrm{e}^{-t}\right\}$$
.

SOLUÇÃO DA QUESTÃO:

$$\mathcal{L}\left\{te^{-t}\right\} = \int_{t=0}^{\infty} e^{-st} t e^{-t} dt$$
$$= \int_{t=0}^{\infty} t e^{-(1+s)t} dt$$
$$= \frac{1}{(s+1)^2} \blacksquare$$

Em detalhe,

$$\mathscr{L}\left\{t\mathrm{e}^{-t}\right\} = \frac{1}{-(1+s)} \int_{t=0}^{\infty} \underbrace{t}_{u} \underbrace{\mathrm{e}^{-(1+s)t} \left[-(1+s)\right] \mathrm{d}t}_{\mathrm{d}v}$$

Então

$$u = t,$$
 $du = dt,$ $dv = e^{-(1+s)t} [-(1+s)] dt$ $v = e^{-(1+s)t}.$

Agora,

$$\mathcal{L}\left\{te^{-t}\right\} = \frac{1}{-(1+s)} \left[uv\Big|_{0}^{\infty} - \int_{0}^{\infty}vdu\right]
= \frac{1}{-(1+s)} \left[\lim_{t \to \infty} \left(te^{-(1+s)t}\right)^{-0} - \lim_{t \to 0} \left(te^{-(1+s)t}\right)^{-0} \int_{0}^{\infty} e^{-(1+s)t} dt\right]
= \frac{1}{1+s} \int_{0}^{\infty} e^{-(1+s)t} dt
= \frac{-1}{(1+s)^{2}} \int_{0}^{\infty} e^{-(1+s)t} \left[-(1+s)\right] dt
= \frac{-1}{(1+s)^{2}} \left[\lim_{t \to \infty} e^{-(1+s)t} - \lim_{t \to 0} e^{-(1+s)t}\right]
= \frac{1}{(1+s)^{2}} \blacksquare$$

$$y'' + y = sen(x),$$
 $y(0) = 1,$ $y'(0) = 1.$

Simplifique ao máximo.

SOLUÇÃO DA QUESTÃO:

$$\mathcal{L}\{y''+1\} = \mathcal{L}\{sen(x)\},\$$

$$[s^{2}\overline{y} - sy(0) - y'(0)] + \overline{y} = \frac{1}{s^{2} + 1}$$

$$[s^{2}\overline{y} - s - 1] + \overline{y} = \frac{1}{s^{2} + 1}$$

$$\overline{y}(s^{2} + 1) = (s + 1) + \frac{1}{s^{2} + 1}$$

$$\overline{y}(s^{2} + 1) = \frac{s^{3} + s^{2} + s + 2}{s^{2} + 1}$$

$$\overline{y}(s) = \frac{s^{3} + s^{2} + s + 2}{(s^{2} + 1)^{2}} \blacksquare$$