

Julien Schmaltz

Lecture 03 (continued):
Symbolic reachability with BDDs

Tue Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

Course content - Covered so far

Previously ...

- » Sequential equivalence checking
- » Reachability
 - » forward/backward

Basic Model Finite State Machines

 $M(X,Y,S,S_0,\delta,\lambda)$:

X: Inputs

Y: Outputs

S: Current State

S₀: Initial State(s)

 δ : X × S \rightarrow S (next state function)

 $\lambda: X \times S \rightarrow Y$ (output function)

Delay element(s):

- Clocked: synchronous
 - single-phase clock, multiple-phase clocks
- Unclocked: asynchronous

Finite State Machines Equivalence

Build Product Machine $M_1 \times M_2$:

Definition:

 M_1 and M_2 are functionally equivalent iff the product machine $M_1 \times M_2$ produces a constant 0 for all valid input sequences $\{X_1, ..., X_n\}$.

Bwd image - Example.

sequential circuit

Another sequential circuit

Product machine states

Symbolic reachability

Let's ook at BDDs once more

(RO)BDD's (Reduced Ordered) Binary Decision Diagrams

[Bryant 1986]

- Canonical form representation for Boolean functions
- Substantially more compact than CNF or DNF
- Efficient manipulation of BDD's

Shannon and Binary Decision Trees

Shannon expansion for Boolean function f

$$f = (\neg a \land f|_{a=0}) \lor (a \land f|_{a=1})$$

- Using this expansion and a variable ordering, one can build a binary decision tree
- Binary Decision Trees are not very compact (same size as truth tables)

Bryant's rules for ROBDD

- » (1) Remove duplicate terminals
- » (2) Remove duplicate non-terminals
- » (3) Remove redundant tests

Binary Decision Tree for a 2-bit comparator

$$f(a_1,a_2,b_1,b_2)=(a_1\Leftrightarrow b_1)\wedge(a_2\Leftrightarrow b_2)$$

$$a_1 < b_1 < a_2 < b_2$$

$$a_1 < a_2 < b_1 < b_2$$

Logical operations on ROBDD's (1)

- Logical negation $\neg f(a, b, c, d)$ Replace each leaf by its negation
- Logical conjunction $f(a, b, c, d) \land g(a, b, c, d)$
 - Use Shannon's expansion as follows

$$f \wedge g = \neg a \wedge (f|_{\neg a} \wedge g|_{\neg a}) \vee a \wedge (f|_{a} \wedge g|_{a})$$

to break the problem into two sub-problems. Solve sub-problems recursively.

- Always combine isomorphic subtrees and eliminate redundant nodes
- Hash tables stores previously computed sub-problems
- Number of sub-problems bounded by $|f| \cdot |g|$

Simple exercise

- » a + bc
- » Ordering 1: a < b < c</pre>
- » Ordering 2: b < a < c

Simple example

Transition relation as characteristic function

$$T(a,b,a',b') = (a \& !b \& a' \& b') | (a \& b \& a' \& !b')$$

Represent as a ROBDD!

Do it on the black board?

Transition relation as characteristic function

$$T(a,b,a',b') = (a \& !b \& a' \& b') | (a \& b \& a' \& !b')$$

Represent as a ROBDD!

ROBDD for the example

Ordering = b b' a a'

Forward image as existential quantifier

$$Fwd(P,T) = \{s' | \exists s.s \in P \land (s',s) \in T\}$$

Operation on ROBDD:

- By definition: Exists a: f = f | !a or f | a
- Replace all a-nodes by negative sub-tree
- Replace all a-nodes by positive sub-tree

States in current & in transition relation

States in current & in transition relation

Existential quantifier on a and b

Exercise compute one more

As an exercise, compute the set of states reached from this state.

Summary

We looked at combinational and sequential equivalence.

We looked at reachability analysis: forward, backward, symbolic.

We looked at different representations for Boolean functions: AIGs, BDDs.

Generalising equivalence to properties

Intuition: In all (reachable) states, Machine M1 satisfies property P.

Another good reference on BDD

http://www.cs.utexas.edu/~isil/cs389L/bdd.pdf

More about benchmarks

http://ddd.fit.cvut.cz/prj/Benchmarks/index.php? page=download