Anyag- és molekulaszerkezeti kutatásokkal sokan foglalkoznak Magyarországon, és tevékenységük differenciálódott, amit szerkezetvizsgálati módszerekre speializálódott munkabizottságok megalakulása követzett. Az AMMB igyekszik összefogni a különféle szerkezetvizsgálati módszerekkel foglalkozó kutatókat, olyan rendezvényeket tartani, amelyeken dominálnak a project-orientált kutatások, és amelyeken előtérben vannak a többféle szerkezetvizsgálati módszert használó kutatási témák.

Rendezvények

A Kémiai Osztály Sohár Pál szervezésében 2007. május 9-én előadói ülést tartott "Molekulaspektroszkópia a szerkezetkutatásban" címmel, amelyen az AMMB-hez tartozó kutatók is beszámoltak eredményeikről.

Emellett, az AMMB keretében 2007-ben a "Szerkezeti kémiai előadások" sorozatban hat előadói ülést tartottunk, négy hazai és két külföldi előadó részvételével. Az előadások listáját mellékeljük.

Az AMMB területén elért új eredmények

- Az elméleti kémikusok új algoritmusokat dolgozták ki, amelyek segítségével a számítások gyorsabbá és pontossabbá tehetők, [1,2] ill. elősegítik a molekuláris folyamatok, pl. elektrongerjesztések szemléltetését [3]. Kritikusan értékelték kvantumkémiai módszerek alkalmazását [4].
- Együttműködve szintetikus kémikusokkal új szerves vegyületcsaládok jellemző szerkezeti sajátságait (elektronszerkezet, kiralitás) határozták meg [5,6,7], reakciómechanizmusokat tártak fel [8].
- Kristályokban fellépő szupramolekuláris kölcsönhatásokat [9,10,11], önszerveződő rendszerek kristályos fázisait [12] írták le diffrakciós és spektroszkópiai mérések, ill. elméletei kémiai számítások alapján. A kísérleti módszerek között Magyarországon újdonságnak számít a szilárd-fázisú NMR.
- Folyadékok rendezettségét jellemezték röntgendiffrakciós kísérletek és molekulamechanikai számítások alapján [13].
- Fehérjekémikusokkal közös kutatások során spektroszkópiai mérésekkel és molekulamechanikai számításokkal tanulmányozták peptidek kötőhelyeit [14], fehérjék konformációs sajátságait [15].

- Lézeres kísérletekkel rövid élettartamú részecskék (gyökök [16], gerjesztett festékpróbák [17], szennyező fémionok [18]) tulajdonságait határozták meg.
- 1. A. Tajti, P. G. Szalay, J. Gauss, J. Chem. Phys. 127, 014102 (2007)
- 2. J. Gauss, K. Ruud, M. Kállay: J. Chem. Phys. 127, 074101 (2007)
- 3. I. Mayer: Chem. Phys. Lett. 437, 284 (2007)
- 4. Z. Varga, M. Hargittai: J. Phys. Chem. A 111, 6 (2007)
- 5. P. Sohár, A. Csámpai, R. Sillanpaa, F. Fülöp, G. Stajer: Heterocycles 71, 1315 (2007)
- 6. F. Ullah, G. Bajor, T. Veszprémi, P. G. Jones, J. W. Heinicke: Angew. Chem. Internat. Ed. 46, 2697 (2007)
- 7. K. Pál, M. Kállay, M. Kubinyi, P. Bakó, A. Makó: Tetrahedron: Asymmetry 18, 1521 (2007)
- 8. J. Kaizer J, I. Ganszky, G. Speier, A. Rockenbauer, L. Korecz, M. Giorgi, M. Reglier, S. Antonczak:
- J. Inorg. Biochem. 101, 893 (2007)
- 9. M. Czugler, T. Körtvélyesi, L. Fábian L, M. Sípos, G. Keglevich: Crystengcomm 9, 561 (2007)
- 10. I. Lois I, E. Holló-Sitkei, L. Párkányi, G. Keresztury, I. Sajó, G. Besenyei, Inorg. Chim. Acta 360, 2686 (2007)
- 11. F. Billes, I. Mohammed-Ziegler, P. Bombicz: Vibrat. Spectrosc. 43, 193 (2007)
- 12. A. Deák, T. Tunyogi, G. Tárkányi, P. Király, G. Pálinkás: Crystengcomm 9, 640 (2007)
- 13. T. Megyes, S. Bálint, T. Grósz T, T. Radnai, I. Bakó, L. Almási: J. Chem. Phys. 126, Art. No. 164507 (2007)
- 14. O. Tőke, R. Tugyi, K. Uray, F. Hudecz: Biochem. Biophys. Res. Comm. 358, 739 (2007)
- 15. V. Horváth, A. Kovács, D. K., Menyhárd: J. Mol. Struct. THEOCHEM 804, 9 (2007)
- 16. L. Nemes, A. M. Keszler, C. G. Parigger, J. O. Hornkohl, H. A. Michelsen, V. Stakhursky, Appl. Opt. 46, 4032 (2007)
- 17. Z. Miskolczy, L. Biczok, I. Jablonkai: Chem. Phys. Lett. 440, 92 (2007)
- 18. M. Ignatovych, V. Holovey, T. Vidozy, P. Baranyai P, A. Kelemen: Radiat. Chem. Phys. 76, 1527 (2007)

Budapest, 2007. november 14.

titkár elnök

Dr Simon Kalman Kalman

2007

Január 16.	Lendvay György	Hogyan mozognak az atomok gázfázisú
	MTA KK SZKI	reakciókban?
		Elemi reakciók dinamikájának elmélete
Március 5.	Paul Reinhard	Coherent lasers in the research of ultrafast processes
	COHERENT GmbH.	_
Június 7.	Tőke Orsolya	Stratégiák a biomolekulák NMR vizsgálatában
	MTA KK SZKI	
Szeptember 18.	Bacsik Zoltán	Infravörös mikrospektroszkópia: Légköri
	MTA KK SZKI	aeroszolok és zeolit mikrokristályok vizsgálata
Október 16.	Susan A. Bourne	Supramolecular coordination chemistry: designing
	Dept. of Chemistry, Univ. of	functional compounds
	Cape Town, South Africa	
November 20.	Kamarás Katalin	Átlátszó szén nanocső vékonyrétegek
	MTA Szilárdtest Fizikai és	
	Optikai Kutatóintézet	