臺北市立松山高級中學 105 學年度第二學期 第一次期中考

三年級自然組 數學科試題卷

一、單選題

說明:第1題至第4題,每題有5個選項,其中只有一個是正確的選項,請將正確選項填寫在答案卷上。 各題答對者,得6分;答錯、未作答或填寫多於一個選項者,該題以零分計算。

() 1. 請問極限 $\lim_{x\to 1} \frac{2x^5 - 4x^4 + 2x^3 - x^2 + 2x + 1}{x^2 - 1}$ 為下列哪一個選項?

- (1) 1
- (2) 2
- (3)-1
- (4) 0
- (5) 不存在

() 2. 請問極限 $\lim_{n\to\infty} \frac{3^{2n}-4^{2n}}{2^{4n}+9^n}$ 為下列哪一個選項?

- (1) 1
- (2) 0
- (3)-1
- $(4) \frac{4}{9}$
- (5) 不存在

) 3. 已知搭乘臺北市捷運票價區間計費方式如下:

搭乘里程數(單位:公里)	< 5	5~8	8~11	11~14	14~17	17~20	20~23	23~26	26~31	> 31
票價(單位:元)	20	25	30	35	40	45	50	55	60	65
使用悠遊卡票價×0.8	16	20	24	28	32	36	40	44	48	52

小松使用悠遊卡搭乘捷運,搭乘里程數 x 公里 (x<31) 與所付票價 f(x) 元之間的關係,應該如何以函數來表示最為適當?(下列各選項中的[]皆為高斯符號)

(1)
$$f(x)=16+4\left[\frac{x}{3}\right]$$

(2)
$$f(x)=16+4\left[\frac{x-2}{3}\right]$$

(3)
$$f(x)=16+4\left[\frac{x-4}{3}\right]$$

(4)
$$f(x)=16+4\left[\frac{x-5}{3}\right]$$

(5)
$$f(x)=16+4\left[\frac{x-8}{3}\right]$$

() 4. 下列各選項皆為區間,何者為函數 $f(x) = \log_2(16 - x^2)$ 的值域?

- (1)[0,4]
- (2)(0,4]
- $(3)(0, \infty)$
- $(4) (-\infty, 4]$
- $(5)(-\infty, 4)$

二、多選題

說明:第5題至第7題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項填寫在答案卷上。

各題之選項獨立判定,所有選項均答對者,得8分;答錯1個選項者,得5分;答錯2個選項者,得2分;答錯多於2個選項或所有 選項均未作答者,該題以零分計算。

) 5. 設函數 $f: [0,4] \to \mathbb{R}$,下圖是 y = f(x) 的函數圖形:

關於此函數 f(x) 的敘述,請選出正確的選項。

- (1) 在 x = 1 的右極限存在,且 $\lim_{x \to 1^+} f(x) = 2$
- (2) 在 x = 2 的極限存在,且 $\lim_{x \to 2} f(x) = 2$
- (3) 此函數 f(x) 在 x=2 處連續
- (4) 此函數 f(x) 在 x=3 處連續
- (5) 此函數 f(x) 在 x = 3.5 處連續。
- () 6. 關於下列函數的運算與其定義域、值域等敘述,請選出正確的選項。
 - (1) 若函數 $f(x) = x^2 3x + 4$ 的定義域為 $\{x \in \mathbb{R} \mid 0 \le x \le 2\}$,則其值域為 $\{y \in \mathbb{R} \mid 2 \le y \le 4\}$
 - (2) 若 $f(x) = \sqrt{x}$ 與 $g(x) = \sqrt{1-x}$,則函數 f+g 的定義域為 $\{x \in \mathbb{R} \mid 0 \le x \le 1\}$
 - (3) 若 f(x) = x 與 $g(x) = \frac{1}{x}$,則函數 $f \cdot g$ 的定義域為 \mathbb{R}
 - $(4) ~ \text{ } \\ {\it if}(x)=\sqrt{x} ~ \text{ } \\ {\it if}(x)=x-2 ~ , \\ {\it if}(x)=\sqrt{x} ~ \text{ } \\ {\it if}(x)=\sqrt{x} ~ \text$
 - (5) 若 $f(x) = \sqrt{x}$ 與 $g(x) = 4 x^2$,則函數 $g \circ f$ 的定義域為 $\{x \in \mathbb{R} \mid -2 \le x \le 2\}$

()7. 下列關於數列與函數的極限,請選出正確的選項。

(1) 若
$$f(x) = \frac{[2x]-[x]}{x}$$
, 其中 [] 為高斯符號,則 $\lim_{x\to 0} f(x)$ 不存在

(2) 若
$$f(x) = \frac{|2x| - |x|}{x}$$
 ,則 $\lim_{x \to 0} f(x)$ 不存在

(3) 若級數
$$S_n = \sum_{k=1}^n \frac{1}{k(k+2)} = \frac{1}{1\times 3} + \frac{1}{2\times 4} + \frac{1}{3\times 5} + \dots + \frac{1}{n(n+2)}$$
,則 $\lim_{n\to\infty} S_n$ 存在且 $\lim_{n\to\infty} S_n = \frac{3}{4}$

(4) 若級數
$$S_n = \sum_{k=1}^n (-1)^{k+1} = 1 - 1 + 1 + \dots + (-1)^{n+1}$$
,則 $\lim_{n \to \infty} S_n$ 存在且 $\lim_{n \to \infty} S_n = \frac{1}{1 - (-1)} = \frac{1}{2}$

(5) 若任意正整數
$$n$$
 皆滿足 $1 \le \sqrt[n]{n} \le 1 + \sqrt{\frac{2}{n}}$,則可推得 $\lim_{n \to \infty} \sqrt[n]{n}$ 存在且 $\lim_{n \to \infty} \sqrt[n]{n} = 1$ 。

三、填充題

說明:第A題至第D題,請將正確選項填寫在答案卷上。

每題完全答對給6分,答錯不倒扣,未完全答對不給分。

A. 設多項式函數 f(x) = (x-10)(x-11)(x-12) + 2x,已知方程式 f(x) = 30 恰有一解 x = c,且 c 介於兩整數 k 和 k+1 之間,試求此整數 k=?

B. 設
$$a,b,c$$
 為實數,若函數 $f(x) = \begin{cases} \frac{x^3-1}{x-1}, & x>1 \\ c, & x=1 \text{ 在實數系上任一點皆連續,求實數序組 } (a,b,c)=? \\ \frac{ax^2-b}{x-1}, & x<1 \end{cases}$

C. 已知實數
$$a, b$$
 滿足 $\lim_{n\to\infty} (\frac{1^2+2^2+...+n^2}{n^2}-an)=b$, 試求數對 $(a,b)=?$

D. 已知一無窮等比級數的首項為 $0.\overline{3}$,第二項為 $-0.\overline{09}$,求此無窮級數之和。

四、計算證明題

說明:本部分共有甲、乙二大題,分別配 16、12分,答案必須寫在答案卷上指定格內,並標明子題號,超出格外不予計分,同時必須 寫出演算過程或理由、**註明所引用之定理**,依步驟給分,演算過程或理由不清楚將酌予扣分。

甲、在實數線上有三動點 A,B,C,動點 A 從原點開始往正向移動,動點 B 從 4 的位置開始往負向移動。兩個動點 每一秒移動一次,已知第一秒 A 移動的距離為 2,且 A 每次移動的距離為其前一次移動距離的 $\frac{1}{3}$ 倍;而 B 在 第 n 秒時的位置為 $b_n = \frac{6n+4}{2n+1}$;另外,動點 C 總是介於 A 、 B 兩動點之間。

- 1.(4 分) 設在第 n 秒時,A 的位置為 a_n ,請寫出 a_n 的一般項 (即以 n 來表示 a_n);
- 2.(4 分) 承 1, 試說明數列 $\langle a_n \rangle$ 收斂, 並求其極限 $\lim_{n \to \infty} a_n$;
- 3.(4 分) 試求極限 $\lim_{n\to\infty} b_n$;
- $4.(4\, \mathcal{G})$ 設動點 C 在第 n 秒時的位置為 c_n ,試運用上面 $1\sim3$ 的結果,證明 $\lim_{n\to\infty}c_n$ 存在。

乙、 $\frac{N}{2}$ 想要計算 $\lim_{x\to 1} \frac{x^3-2x+1}{x^2-3x+2}$,但卻發現分子和分母的極限皆為0,因此想透過因式分解求得極限:

- 1. (4 分) 設 $f(x) = x^3 2x + 1 \cdot g(x) = x^2 3x + 2$, 請說明為何 f(x) 與 g(x) 皆有一次因式 x 1?
- 2. (4 分) 請寫出 $f(x) = x^3 2x + 1$ 與 $g(x) = x^2 3x + 2$ 的因式分解後的結果;
- 3. (4 分) 試運用 2 的結果求出 $\lim_{x\to 1} \frac{x^3-2x+1}{x^2-3x+2}$ 。

臺北市立松山高級中學 105 學年度第二學期 第一次期中考 三年級自然組 數學科答案卷

		班約	級: 座號:_	姓名:		
一、耳	單一選擇題(每題6)	分,共4題,共24	分)			
	1	2	3	4		
-、多重選擇題(每題8分,共3題,共24分)						

三、填充題(每題6分,共4題,共24分)

A	В	С	D

四、計算證明題(甲占16分、乙占12分,共28分)

甲	乙

臺北市立松山高級中學 105 學年度第二學期 第一次期中考

三年級自然組 數學科答案卷

班級:_____ 座號:____ 姓名:__参考答案__

一、單一選擇題(每題6分,共4題,共24分)

1	2	3	4
5	3	2	4

二、多重選擇題(每題8分,共3題,共24分)

答對選項數	5	4	3
得分	8	5	2

5	6	7
245	24	235

三、填充題(每題6分,共4題,共24分)

A	В	С	D
12	$(\frac{3}{2}, \frac{3}{2}, 3)$	$(\frac{1}{3},\frac{1}{2})$	$\frac{11}{42}$

四、計算證明題(甲占16分、乙占12分,共28分)

下 1. 依題意, $a_n = 2 + 2 \times \frac{1}{3} + 2 \times (\frac{1}{3})^2 + 2 \times (\frac{1}{3})^{n-1}$ $= \frac{2\left(1 - (\frac{1}{3})^n\right)}{1 - \frac{1}{n}} = 3 - (\frac{1}{3})^{n-1}$

2. 因為等比級數 a_n 之公比 $r=\frac{1}{3}$ 滿足-1 < r < 1,所以

$$< a_n >$$
 收斂,且 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (3 - (\frac{1}{3})^{n-1}) = 3$

3.
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{6n+4}{2n+1} = \lim_{n \to \infty} \frac{6+\frac{4}{n}}{2+\frac{1}{n}} = \frac{6}{2} = 3$$

4. 依題意有 $a_n \le c_n \le b_n$ 且由上面 2,3 的結果有

$$\lim_{n\to\infty} a_n = 3 = \lim_{n\to\infty} b_n$$
,由**夾擠定理**可知 $\lim_{n\to\infty} c_n$ 存在。

2

由於f(1)=1³-2·1+1=0、g(1)=1²-3·1+2=0,由
 因式定理可知雨者皆有 x-1之因式。

2.
$$f(x) = x^3 - 2x + 1 = (x - 1)(x^2 + x - 1)$$

 $g(x) = x^2 - 3x + 2 = (x - 1)(x - 2)$

3. 當 x 在 1 附近但不等於 1 時,

$$\frac{x^3 - 2x + 1}{x^2 - 3x + 2} = \frac{(x - 1)(x^2 + x - 1)}{(x - 1)(x - 2)} = \frac{x^2 + x - 1}{x - 2}$$

$$\Re \lim_{x \to 1} (x^2 + x - 1) = 1^2 + 1 - 1 = 1$$

且
$$\lim (x-2) = -1 \neq 0$$
,極限皆存在且分母部分非 0

從而所求
$$\lim_{x \to 1} \frac{x^3 - 2x + 1}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{x^2 + x - 1}{x - 2} = \frac{\lim_{x \to 1} (x^2 + x - 1)}{\lim_{x \to 1} (x - 2)}$$

$$=\frac{1^2+1-1}{1-2}=-1$$