Floating Point

Today: Floating Point

- **■** Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-i}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value Representation

5 3/4
2 7/8
101.11₂
10.111₂

63/64 0.111111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations

Value Representation

- **1/3** 0.01010101[01]...2
- **1/5** 0.001100110011[0011]...2
- **1/10** 0.000110011[0011]...2

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes *E* (but is not equal to E)
- frac field encodes M (but is not equal to M)

The state of the s		S	exp	frac
--	--	---	-----	------

Precisions

■ Single precision: 32 bits

■ Double precision: 64 bits

Extended precision: 80 bits (Intel only)

Normalized Values

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- **■** Exponent coded as *biased* value: E = Exp Bias
 - Exp: unsigned value exp
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
■ Value: Float F = 15213.0;
```

```
■ 15213_{10} = 11101101101101_2
= 1.1101101101101_2 \times 2^{13}
```

Significand

```
M = 1.101101101_2
frac= 101101101101_000000000_2
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:

0 10001100 11011011011010000000000 s exp frac

Denormalized Values

- **Condition:** exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: *M* = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- **Condition: exp** = 111...1
- **Case:** exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s	ехр	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512
numbers	•••				
	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0	0001	001	-6	9/8*1/64 = 9/512
	•••				
	0	0110	110	-1	14/8*1/2 = 14/16
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Interesting Numbers

■ Double $\approx 1.8 \times 10^{308}$

{single,double}

Description	exp	frac	Numeric Value		
Zero	0000	0000	0.0		
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$		
■ Single $\approx 1.4 \times 10^{-45}$					
■ Double $\approx 4.9 \times 10^{-324}$					
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$		
■ Single $\approx 1.18 \times 10^{-38}$					
■ Double $\approx 2.2 \times 10^{-308}$					
Smallest Pos. Normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$		
Just larger than largest denormalized					
One	0111	0000	1.0		
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$		
■ Single $\approx 3.4 \times 10^{38}$					

Special Properties of Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

■ Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider –0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

■ What are the advantages of the modes?

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

FP Multiplication

- \blacksquare $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand *M*: *M1* x *M2*
 - Exponent E: E1 + E2

Fixing

- If $M \ge 2$, shift M right, increment E
- If *E* out of range, overflow
- Round M to fit frac precision

■ Implementation

Biggest chore is multiplying significands

Floating Point Addition

- - **A**ssume *E1* > *E2*
- Exact Result: $(-1)^s M 2^E$
 - ■Sign *s*, significand *M*:
 - Result of signed align & add
 - ■Exponent *E*: *E1*

Fixing

- If $M \ge 2$, shift M right, increment E
- •if M < 1, shift M left k positions, decrement E by k
- ■Overflow if *E* out of range
- Round *M* to fit **frac** precision

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- **■** Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

- •float single precision
- **double** double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int → double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int → float
 - Will round according to rounding mode

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Machine-Level Programming I: Basics

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Intro to x86-64

Intel x86 Processors

Totally dominate laptop/desktop/server market

Evolutionary design

- Backwards compatible up until 8086, introduced in 1978
- Added more features as time goes on

Complex instruction set computer (CISC)

- Many different instructions with many different formats
 - But, only small subset encountered with Linux programs
- Hard to match performance of Reduced Instruction Set Computers (RISC)
- But, Intel has done just that!
 - In terms of speed. Less so for low power.

Intel x86 Evolution: Milestones

Name Date Transistors MHz

■ 8086 1978 29K 5-10

■ First 16-bit processor. Basis for IBM PC & DOS

1MB address space

■ 386 1985 275K 16-33

- First 32 bit processor, referred to as IA32
- Added "flat addressing"
- Capable of running Unix
- 32-bit Linux/gcc uses no instructions introduced in later models
- Pentium 4F 2004 125M 2800-3800
 - First 64-bit processor, referred to as x86-64
- Core i7 2008 731M 2667-3333
 - Our shark machines

Intel x86 Processors: Overview

IA: often redefined as latest Intel architecture

Intel x86 Processors, contd.

Machine Evolution

386	1985	0.3M
Pentium	1993	3.1M
Pentium/MMX	1997	4.5M
PentiumPro	1995	6.5M
Pentium III	1999	8.2M
Pentium 4	2001	42M
Core 2 Duo	2006	291M
Core i7	2008	731M

Added Features

- Instructions to support multimedia operations
 - Parallel operations on 1, 2, and 4-byte data, both integer & FP
- Instructions to enable more efficient conditional operations

■ Linux/GCC Evolution

■ Two major steps: 1) support 32-bit 386. 2) support 64-bit x86-64

More Information

- Intel processors (Wikipedia)
- **Intel** microarchitectures

New Species: ia64, then IPF, then Itanium,...

Name Date Transistors

■ Itanium 2001 10M

- First shot at 64-bit architecture: first called IA64
- Radically new instruction set designed for high performance
- Can run existing IA32 programs
 - On-board "x86 engine"
- Joint project with Hewlett-Packard
- Itanium 2 2002 221M
 - Big performance boost
- Itanium 2 Dual-Core 2006 1.7B
- Itanium has not taken off in marketplace
 - Lack of backward compatibility, no good compiler support, Pentium
 4 got too good

x86 Clones: Advanced Micro Devices (AMD)

Historically

- AMD has followed just behind Intel
- A little bit slower, a lot cheaper

Then

- Recruited top circuit designers from Digital Equipment Corp. and other downward trending companies
- Built Opteron: tough competitor to Pentium 4
- Developed x86-64, their own extension to 64 bits

Intel's 64-Bit

- Intel Attempted Radical Shift from IA32 to IA64
 - Totally different architecture (Itanium)
 - Executes IA32 code only as legacy
 - Performance disappointing
- AMD Stepped in with Evolutionary Solution
 - x86-64 (now called "AMD64")
- Intel Felt Obligated to Focus on IA64
 - Hard to admit mistake or that AMD is better
- 2004: Intel Announces EM64T extension to IA32
 - Extended Memory 64-bit Technology
 - Almost identical to x86-64!
- All but low-end x86 processors support x86-64
 - But, lots of code still runs in 32-bit mode

Our Coverage

■ IA32

The traditional x86

■ x86-64/EM64T

The emerging standard

Presentation

- Book presents IA32 in Sections 3.1—3.12
- Covers x86-64 in 3.13
- We will cover both simultaneously
- Some labs will be based on x86-64, others on IA32

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Intro to x86-64

Definitions

- Architecture: (also instruction set architecture: ISA) The parts of a processor design that one needs to understand to write assembly code.
 - Examples: instruction set specification, registers.
- Microarchitecture: Implementation of the architecture.
 - Examples: cache sizes and core frequency.
- Example ISAs (Intel): x86, IA, IPF

Assembly Programmer's View

- Register file
 - Heavily used program data
- Condition codes
 - Store status information about most recent arithmetic operation
 - Used for conditional branching

Memory

- Byte addressable array
- Code, user data, (some) OS data
- Includes stack used to support procedures

Turning C into Object Code

- Code in files p1.c p2.c
- Compile with command: gcc -01 p1.c p2.c -o p
 - Use basic optimizations (-O1)
 - Put resulting binary in file p

Compiling Into Assembly

C Code

```
int sum(int x, int y)
{
  int t = x+y;
  return t;
}
```

Generated IA32 Assembly

```
pushl %ebp
movl %esp,%ebp
movl 12(%ebp),%eax
addl 8(%ebp),%eax
popl %ebp
ret
```

Some compilers use instruction "leave"

Obtain with command

/usr/local/bin/gcc -O1 -S code.c

Produces file code.s

Assembly Characteristics: Data Types

- "Integer" data of 1, 2, or 4 bytes
 - Data values
 - Addresses (untyped pointers)
- **■** Floating point data of 4, 8, or 10 bytes
- No aggregate types such as arrays or structures
 - Just contiguously allocated bytes in memory

Assembly Characteristics: Operations

- Perform arithmetic function on register or memory data
- Transfer data between memory and register
 - Load data from memory into register
 - Store register data into memory
- Transfer control
 - Unconditional jumps to/from procedures
 - Conditional branches

Object Code

Code for sum

0x401040 <sum>: 0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x45 0x08 0x5d 0xc3 • Total of 11 bytes

1, 2, or 3 bytes

Starts at address

 0×401040

- Assembler
 - Translates .s into .o
 - Binary encoding of each instruction
 - Nearly-complete image of executable code
 - Missing linkages between code in different files

Linker

- Resolves references between files
- Combines with static run-time libraries
 - E.g., code for malloc, printf
- Some libraries are dynamically linked
 - Linking occurs when program begins execution

Machine Instruction Example

```
int t = x+y;
```

```
addl 8(%ebp),%eax
```

Similar to expression:

x += y

```
More precisely:
int eax;
int *ebp;
eax += ebp[2]
```

0x80483ca: 03 45 08

C Code

Add two signed integers

Assembly

- Add 2 4-byte integers
 - "Long" words in GCC parlance
 - Same instruction whether signed or unsigned
- Operands:

x: Register %eax

y: Memory M[%ebp+8]

t: Register %eax

- Return function value in %eax

Object Code

- 3-byte instruction
- Stored at address 0x80483ca

Disassembling Object Code

Disassembled

```
080483c4 <sum>:
80483c4:
          55
                    push
                            %ebp
80483c5: 89 e5
                            %esp,%ebp
                    mov
80483c7: 8b 45 0c mov
                            0xc(%ebp),%eax
80483ca: 03 45 08 add
                            0x8(%ebp), %eax
80483cd: 5d
                            %ebp
                    pop
80483ce:
          c3
                     ret
```

Disassembler

```
objdump -d p
```

- Useful tool for examining object code
- Analyzes bit pattern of series of instructions
- Produces approximate rendition of assembly code
- Can be run on either a .out (complete executable) or .o file

Alternate Disassembly

Object

0x401040: 0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x45 0x08 0x5d 0xc3

Disassembled

```
Dump of assembler code for function sum:
0x080483c4 < sum + 0 > :
                                %ebp
                        push
0x080483c5 < sum + 1>:
                                %esp,%ebp
                        mov
0x080483c7 < sum + 3>:
                                0xc(%ebp),%eax
                        mov
0x080483ca < sum + 6>: add
                                0x8(%ebp), %eax
0x080483cd < sum + 9>:
                                %ebp
                        pop
0x080483ce < sum + 10>:
                        ret
```

Within gdb Debugger

```
gdb p
disassemble sum
```

Disassemble procedure

```
x/11xb sum
```

Examine the 11 bytes starting at sum

What Can be Disassembled?

```
% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386
No symbols in "WINWORD.EXE".
Disassembly of section .text:
30001000 <.text>:
30001000: 55
                        push
                              %ebp
30001001: 8b ec
                               %esp,%ebp
                        mov
30001003: 6a ff
                     push
                              $0xffffffff
30001005: 68 90 10 00 30 push
                               $0x30001090
3000100a: 68 91 dc 4c 30 push
                               $0x304cdc91
```

- Anything that can be interpreted as executable code
- Disassembler examines bytes and reconstructs assembly source

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Intro to x86-64

Integer Registers (IA32)

Origin (mostly obsolete)

accumulate

counter

data

base

source index

destination index

stack pointer base pointer

Moving Data: IA32

Moving Data

mov1 *Source*, *Dest*:

Operand Types

- Immediate: Constant integer data
 - Example: \$0x400, \$-533
 - Like C constant, but prefixed with \\$'
 - Encoded with 1, 2, or 4 bytes
- **Register:** One of 8 integer registers
 - Example: %eax, %edx
 - But %esp and %ebp reserved for special use
 - Others have special uses for particular instructions
- Memory: 4 consecutive bytes of memory at address given by register
 - Simplest example: (%eax)
 - Various other "address modes"

%eax	
%ecx	
%edx	
%ebx	
%esi	
%edi	
%esp	
%ebp	

movl Operand Combinations

```
Source Dest Src, Dest
              C Analog
```

Cannot do memory-memory transfer with a single instruction

Simple Memory Addressing Modes

- Normal (R) Mem[Reg[R]]
 - Register R specifies memory address

```
movl (%ecx), %eax
```

- Displacement D(R) Mem[Reg[R]+D]
 - Register R specifies start of memory region
 - Constant displacement D specifies offset

Using Simple Addressing Modes

```
void swap(int *xp, int *yp)
{
  int t0 = *xp;
  int t1 = *yp;
  *xp = t1;
  *yp = t0;
}
```

```
swap:
 pushl %ebp
                          Set
 movl %esp,%ebp
 pushl %ebx
 movl 8(%ebp), %edx
       12(%ebp), %ecx
 movl
 movl (%edx), %ebx
                          Body
 movl (%ecx), %eax
 movl %eax, (%edx)
 movl
       %ebx, (%ecx)
 popl
       %ebx
 popl
       %ebp
  ret
```

Using Simple Addressing Modes

```
void swap(int *xp, int *yp)
{
  int t0 = *xp;
  int t1 = *yp;
  *xp = t1;
  *yp = t0;
}
```

swap:

```
pushl %ebp
                        Set
movl %esp,%ebp
pushl %ebx
mov1 8(%ebp), %edx
movl 12(%ebp), %ecx
movl (%edx), %ebx
                        Body
movl (%ecx), %eax
movl %eax, (%edx)
movl %ebx, (%ecx)
popl %ebx
popl %ebp
ret
```

```
void swap(int *xp, int *yp)
{
  int t0 = *xp;
  int t1 = *yp;
  *xp = t1;
  *yp = t0;
}
```

Register	Value
%edx	хp
%ecx	УP
%ebx	t0
%eax	t1


```
movl 8(%ebp), %edx # edx = xp
movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (t1)
movl %eax, (%edx) # *xp = t1
movl %ebx, (%ecx) # *yp = t0
```

Understanding Swap

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104


```
movl 8(%ebp), %edx # edx = xp
movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (t1)
movl %eax, (%edx) # *xp = t1
movl %ebx, (%ecx) # *yp = t0
```

Understanding Swap

%edx 0x124

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104


```
movl 8(%ebp), %edx # edx = xp
movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (t1)
movl %eax, (%edx) # *xp = t1
movl %ebx, (%ecx) # *yp = t0
```

Understanding Swap

%edx 0x124

%ecx 0x120

%ebx

%esi

%edi

%esp

%ebp 0x104


```
movl 8(%ebp), %edx # edx = xp
movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (t1)
movl %eax, (%edx) # *xp = t1
movl %ebx, (%ecx) # *yp = t0
```

0x124

Understanding Swap

%ebx 123

•esı

%esp

%edi

%ebp 0x104

```
456
                       0x120
                       0x11c
                       0x118
     Offset
                       0x114
         12
             0x120
yр
                       0x110
          8
             0x124
хp
                       0x10c
          4
             Rtn adr
                       0x108
%ebp
                       0x104
         -4
                       0x100
```

123

```
movl 8(%ebp), %edx # edx = xp
movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (t1)
movl %eax, (%edx) # *xp = t1
movl %ebx, (%ecx) # *yp = t0
```



```
123
                       0x124
             456
                       0x120
                       0x11c
                       0x118
     Offset
                       0x114
         12
             0x120
yр
                       0x110
          8
             0x124
хp
                       0x10c
          4
             Rtn adr
                       0x108
%ebp
                       0x104
         -4
                       0x100
```

```
movl 8(%ebp), %edx # edx = xp
movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (t1)
movl %eax, (%edx) # *xp = t1
movl %ebx, (%ecx) # *yp = t0
```

%eax	456
%edx	0x124
%ecx	0x120
%ebx	123
%esi	
%edi	
%esp	

```
456
                       0x124
             456
                       0x120
                       0x11c
                       0x118
     Offset
                       0x114
         12
             0x120
yp
                       0x110
          8
             0x124
хp
                       0x10c
          4
             Rtn adr
                       0x108
%ebp
                       0x104
         -4
                       0x100
```

```
movl 8(%ebp), %edx # edx = xp
movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (t1)
movl %eax, (%edx) # *xp = t1
movl %ebx, (%ecx) # *yp = t0
```

%eax	456
%edx	0x124
%ecx	0x120
%ebx	123
%esi	
%esi %edi	

```
456
                       0x124
             123
                       0x120
                       0x11c
                       0x118
     Offset
                       0x114
         12
             0x120
yр
                       0x110
          8
             0x124
хp
                       0x10c
          4
             Rtn adr
                       0x108
%ebp
                       0x104
         -4
                       0x100
```

```
movl 8(%ebp), %edx # edx = xp
movl 12(%ebp), %ecx # ecx = yp
movl (%edx), %ebx # ebx = *xp (t0)
movl (%ecx), %eax # eax = *yp (t1)
movl %eax, (%edx) # *xp = t1
movl %ebx, (%ecx) # *yp = t0
```

Complete Memory Addressing Modes

Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]

- D: Constant "displacement" 1, 2, or 4 bytes
- Rb: Base register: Any of 8 integer registers
- Ri: Index register: Any, except for %esp
 - Unlikely you'd use %ebp, either
- S: Scale: 1, 2, 4, or 8 (*why these numbers?*)

Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]

D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]

(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Today: Machine Programming I: Basics

- History of Intel processors and architectures
- C, assembly, machine code
- Assembly Basics: Registers, operands, move
- Intro to x86-64

Data Representations: IA32 + x86-64

Sizes of C Objects (in Bytes)

C Data Type	Generic 32-bit	Intel IA32	x86-64
unsigned	4	4	4
• int	4	4	4
long int	4	4	8
char	1	1	1
short	2	2	2
float	4	4	4
double	8	8	8
long double	8	10/12	16
• char *	4	4	8

⁻ Or any other pointer

x86-64 Integer Registers

%rax	%eax	%r8	%r8d
%rbx	%ebx	%r9	%r9d
%rcx	%ecx	%r10	%r10d
%rdx	%edx	%r11	%r11d
%rsi	%esi	%r12	%r12d
%rdi	%edi	%r13	%r13d
%rsp	%esp	%r14	%r14d
%rbp	%ebp	%r15	%r15d

- Extend existing registers. Add 8 new ones.
- Make %ebp/%rbp general purpose

Instructions

New instructions:

- movl → movq
- addl → addq
- sall → salq
- etc.
- 32-bit instructions that generate 32-bit results
 - Set higher order bits of destination register to 0
 - Example: addl

32-bit code for swap

```
void swap(int *xp, int *yp)
{
  int t0 = *xp;
  int t1 = *yp;
  *xp = t1;
  *yp = t0;
}
```

swap:

```
pushl %ebp
                       Set
movl %esp,%ebp
pushl %ebx
      8 (%ebp), %edx
movl
      12(%ebp), %ecx
movl
movl (%edx), %ebx
                       Body
movl (%ecx), %eax
      %eax, (%edx)
movl
movl
      %ebx, (%ecx)
      %ebx
popl
popl
      %ebp
ret
```

64-bit code for swap

swap:

```
void swap(int *xp, int *yp)
{
  int t0 = *xp;
  int t1 = *yp;
  *xp = t1;
  *yp = t0;
}
```

```
movl (%rdi), %edx
movl (%rsi), %eax
movl %eax, (%rdi)
movl %edx, (%rsi)
Body
ret
Finish
```

- Operands passed in registers (why useful?)
 - First (xp) in %rdi, second (yp) in %rsi
 - 64-bit pointers
- No stack operations required
- 32-bit data
 - Data held in registers %eax and %edx
 - mov1 operation

64-bit code for long int swap

swap_1:

```
void swap(long *xp, long *yp)
{
  long t0 = *xp;
  long t1 = *yp;
  *xp = t1;
  *yp = t0;
}

ret

Set
Up

Movq (%rdi), %rdx
  movq (%rsi), %rax
  movq %rax, (%rdi)
  movq %rdx, (%rsi)
Finish
```

64-bit data

- Data held in registers %rax and %rdx
- movq operation
 - "q" stands for quad-word

Machine Programming I: Summary

- History of Intel processors and architectures
 - Evolutionary design leads to many quirks and artifacts
- C, assembly, machine code
 - Compiler must transform statements, expressions, procedures into low-level instruction sequences
- Assembly Basics: Registers, operands, move
 - The x86 move instructions cover wide range of data movement forms
- Intro to x86-64
 - A major departure from the style of code seen in IA32

Machine-Level Programming II: Arithmetic & Control

Today

- Complete addressing mode, address computation (leal)
- Arithmetic operations
- **■** Control: Condition codes
- **■** Conditional branches
- While loops

Complete Memory Addressing Modes

- Most General Form
- D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+D]
 - D: Constant "displacement" 1, 2, or 4 bytes
 - Rb: Base register: Any of 8 integer registers
 - Ri: Index register: Any, except for %esp
 - Unlikely you'd use %ebp, either
 - S: Scale: 1, 2, 4, or 8 (why these numbers?)
- Special Cases
- (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
- D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
- (Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Address Computation Instruction

■ leal *Src,Dest*

- Src is address mode expression
- Set Dest to address denoted by expression

Uses

- Computing addresses without a memory reference
 - E.g., translation of p = &x[i];
- Computing arithmetic expressions of the form x + k*y
 - k = 1, 2, 4, or 8

Example

```
int mul12(int x)
{
   return x*12;
}
```

Converted to ASM by compiler:

```
leal (%eax,%eax,2), %eax ;t <- x+x*2
sall $2, %eax ;return t<<2</pre>
```

Today

- Complete addressing mode, address computation (leal)
- Arithmetic operations
- **■** Control: Condition codes
- Conditional branches
- While loops

Some Arithmetic Operations

■ Two Operand Instructions:

Format	Computation		
addl	Src,Dest	Dest = Dest + Src	
subl	Src,Dest	Dest = Dest – Src	
imull	Src,Dest	Dest = Dest * Src	
sall	Src,Dest	Dest = Dest << Src	Also called shill
sarl	Src,Dest	Dest = Dest >> Src	Arithmetic
shrl	Src,Dest	Dest = Dest >> Src	Logical
xorl	Src,Dest	Dest = Dest ^ Src	
andl	Src,Dest	Dest = Dest & Src	
orl	Src,Dest	Dest = Dest Src	

- Watch out for argument order!
- No distinction between signed and unsigned int (why?)

Some Arithmetic Operations

One Operand Instructions

```
incl Dest Dest = Dest + 1

decl Dest Dest = Dest - 1

negl Dest Dest Dest = - Dest

notl Dest Dest = \simDest
```

See book for more instructions

Arithmetic Expression Example

```
int arith(int x, int y, int z)
{
  int t1 = x+y;
  int t2 = z+t1;
  int t3 = x+4;
  int t4 = y * 48;
  int t5 = t3 + t4;
  int rval = t2 * t5;
  return rval;
}
```

```
arith:
 pushl %ebp
                             Set
        %esp, %ebp
 movl
 movl 8(%ebp), %ecx
 movl 12(%ebp), %edx
  leal (%edx,%edx,2), %eax
 sall $4, %eax
                             Body
  leal 4(%ecx,%eax), %eax
 addl %ecx, %edx
 addl 16(%ebp), %edx
  imull %edx, %eax
        %ebp
 popl
  ret
```

Today

- Complete addressing mode, address computation (leal)
- Arithmetic operations
- **■** Control: Condition codes
- Conditional branches
- Loops

Processor State (IA32, Partial)

- Information about currently executing program
 - Temporary data (%eax, ...)
 - Location of runtime stack (%ebp,%esp)
 - Location of current code control point (%eip, ...)
 - Status of recent tests(CF, ZF, SF, OF)

Condition Codes (Implicit Setting)

Single bit registers

```
*CF Carry Flag (for unsigned)*ZF Zero Flag*OF Overflow Flag (for signed)
```

Implicitly set (think of it as side effect) by arithmetic operations

```
Example: addl/addq Src,Dest ↔ t = a+b

CF set if carry out from most significant bit (unsigned overflow)

ZF set if t == 0

SF set if t < 0 (as signed)

OF set if two's-complement (signed) overflow

(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)
```

- Not set by lea instruction
- **Full documentation** (IA32), link on course website

Condition Codes (Explicit Setting: Compare)

- Explicit Setting by Compare Instruction
 - -cmp1/cmpq Src2, Src1
 - **cmpl b**, **a** like computing **a**-**b** without setting destination
 - **CF** set if carry out from most significant bit (used for unsigned comparisons)
 - "ZF set if a == b
 - "SF set if (a-b) < 0 (as signed)</pre>
 - ■OF set if two's-complement (signed) overflow
 (a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

Condition Codes (Explicit Setting: Test)

- Explicit Setting by Test instruction
 - test1/testq Src2, Src1
 test1 b, a like computing a&b without setting destination
 - Sets condition codes based on value of Src1 & Src2
 - Useful to have one of the operands be a mask
 - "ZF set when a&b == 0
 - **SF** set when a&b < 0

Reading Condition Codes

SetX Instructions

Set single byte based on combinations of condition codes

SetX	Condition	Description
sete	ZF	Equal / Zero
setne	~ZF	Not Equal / Not Zero
sets	SF	Negative
setns	~SF	Nonnegative
setg	~ (SF^OF) &~ZF	Greater (Signed)
setge	~(SF^OF)	Greater or Equal (Signed)
setl	(SF^OF)	Less (Signed)
setle	(SF^OF) ZF	Less or Equal (Signed)
seta	~CF&~ZF	Above (unsigned)
setb	CF	Below (unsigned)

%al

%cl

용dl

Reading Condition Codes (Cont.)

SetX Instructions:

 Set single byte based on combination of condition codes

%ah

용ch

용dh

%eax

%ecx

%edx

One of 8 addressable byte registers

- Does not alter remaining 3 bytes
- Typically use movzbl to finish job

```
int gt (int x, int y)
{
  return x > y;
}
```

%ebx %bh %bl

%esi

%edi

Body

```
movl 12(%ebp),%eax # eax = y
cmpl %eax,8(%ebp) # Compare x : y
setg %al # al = x > y
movzbl %al,%eax # Zero rest of %eax
```

%esp

Reading Condition Codes: x86-64

SetX Instructions:

- Set single byte based on combination of condition codes
- Does not alter remaining 3 bytes

```
int gt (long x, long y)
{
  return x > y;
}
```

```
long lgt (long x, long y)
{
  return x > y;
}
```

Bodies

```
cmpl %esi, %edi
setg %al
movzbl %al, %eax
```

```
cmpq %rsi, %rdi
setg %al
movzbl %al, %eax
```

Is %rax zero?

Yes: 32-bit instructions set high order 32 bits to 0!

Today

- Complete addressing mode, address computation (leal)
- Arithmetic operations
- x86-64
- Control: Condition codes
- Conditional branches & Moves
- Loops

Jumping

■ jX Instructions

Jump to different part of code depending on condition codes

jX	Condition	Description
jmp	1	Unconditional
je	ZF	Equal / Zero
jne	~ZF	Not Equal / Not Zero
js	SF	Negative
jns	~SF	Nonnegative
jg	~(SF^OF) &~ZF	Greater (Signed)
jge	~(SF^OF)	Greater or Equal (Signed)
j1	(SF^OF)	Less (Signed)
jle	(SF^OF) ZF	Less or Equal (Signed)
ja	~CF&~ZF	Above (unsigned)
jb	CF	Below (unsigned)

Conditional Branch Example

```
int absdiff(int x, int y)
{
   int result;
   if (x > y) {
     result = x-y;
   } else {
     result = y-x;
   }
   return result;
}
```

```
absdiff:
   pushl
          %ebp
                            Setup
   movl
          %esp, %ebp
   movl
          8(%ebp), %edx
          12(%ebp), %eax
   movl
   cmpl %eax, %edx
                            Body1
   jle
         .L6
   subl
          %eax, %edx
                            Body2a
   movl
          %edx, %eax
   jmp .L7
.L6:
   subl %edx, %eax
                            Body2b
.L7:
   popl %ebp
   ret
```

Conditional Branch Example (Cont.)

```
int goto_ad(int x, int y)
{
   int result;
   if (x <= y) goto Else;
   result = x-y;
   goto Exit;
Else:
   result = y-x;
Exit:
   return result;
}</pre>
```

- C allows "goto" as means of transferring control
 - Closer to machine-level programming style
- Generally considered bad coding style

```
absdiff:
   pushl
          %ebp
                            Setup
   movl
          %esp, %ebp
   movl
          8(%ebp), %edx
          12(%ebp), %eax
   movl
   cmpl %eax, %edx
                            Body1
   jle
          .L6
   subl
          %eax, %edx
                            Body2a
   movl
          %edx, %eax
   jmp .L7
.L6:
   subl %edx, %eax
                            Body2b
.L7:
   popl %ebp
   ret
```

Using Conditional Moves

Conditional Move Instructions

- Instruction supports: if (Test) Dest ← Src
- Supported in post-1995 x86 processors
- GCC does not always use them
 - Wants to preserve compatibility with ancient processors
 - Enabled for x86-64
 - Use switch -march=686 for IA32

■ Why?

- Branches are very disruptive to instruction flow through pipelines
- Conditional move do not require control transfer

C Code

```
val = Test
    ? Then_Expr
    : Else_Expr;
```

Goto Version

```
tval = Then_Expr;
result = Else_Expr;
t = Test;
if (t) result = tval;
return result;
```

Conditional Move Example: x86-64

```
int absdiff(int x, int y) {
   int result;
   if (x > y) {
      result = x-y;
   } else {
      result = y-x;
   }
   return result;
}
```

```
x in %edi
y in %esi
```

Today

- Complete addressing mode, address computation (leal)
- Arithmetic operations
- x86-64
- **■** Control: Condition codes
- Conditional branches and moves
- Loops

"Do-While" Loop Example

C Code

```
int pcount_do(unsigned x)
{
  int result = 0;
  do {
    result += x & 0x1;
    x >>= 1;
  } while (x);
  return result;
}
```

Goto Version

```
int pcount_do(unsigned x)
{
  int result = 0;
loop:
  result += x & 0x1;
  x >>= 1;
  if (x)
    goto loop;
  return result;
}
```

- Count number of 1's in argument x ("popcount")
- Use conditional branch to either continue looping or to exit loop

"Do-While" Loop Compilation

Goto Version

```
int pcount_do(unsigned x) {
  int result = 0;
loop:
  result += x & 0x1;
  x >>= 1;
  if (x)
    goto loop;
  return result;
}
```

```
■ Registers:
%edx x
%ecx result
```

```
movl $0, %ecx # result = 0
.L2:  # loop:
  movl %edx, %eax
  andl $1, %eax # t = x & 1
  addl %eax, %ecx # result += t
  shrl %edx # x >>= 1
  jne .L2 # If !0, goto loop
```

General "Do-While" Translation

C Code

```
do

Body

while (Test);
```

```
■ Body: {

Statement<sub>1</sub>;
Statement<sub>2</sub>;
...
Statement<sub>n</sub>;
}
```

Goto Version

```
loop:

Body

if (Test)

goto loop
```

■ Test returns integer

- = 0 interpreted as false
- ≠ 0 interpreted as true

"While" Loop Example

C Code

```
int pcount_while(unsigned x) {
  int result = 0;
  while (x) {
    result += x & 0x1;
    x >>= 1;
  }
  return result;
}
```

Goto Version

```
int pcount_do(unsigned x) {
  int result = 0;
  if (!x) goto done;
loop:
  result += x & 0x1;
  x >>= 1;
  if (x)
    goto loop;
done:
  return result;
}
```

Is this code equivalent to the do-while version?

General "While" Translation

While version

Do-While Version

```
if (! Test)
    goto done;
    do
    Body
    while(Test);
done:
```


Goto Version

```
if (! Test)
    goto done;
loop:
    Body
    if (Test)
        goto loop;
done:
```

"For" Loop Example

C Code

```
#define WSIZE 8*sizeof(int)
int pcount_for(unsigned x) {
   int i;
   int result = 0;
   for (i = 0; i < WSIZE; i++) {
      unsigned mask = 1 << i;
      result += (x & mask) != 0;
   }
   return result;
}</pre>
```

Is this code equivalent to other versions?

"For" Loop Form

General Form

```
for (Init; Test; Update)

Body
```

```
for (i = 0; i < WSIZE; i++) {
   unsigned mask = 1 << i;
   result += (x & mask) != 0;
}</pre>
```

Init

```
i = 0
```

Test

```
i < WSIZE
```

Update

```
i++
```

Body

```
{
  unsigned mask = 1 << i;
  result += (x & mask) != 0;
}</pre>
```

"For" Loop → While Loop

For Version

```
for (Init; Test; Update)

Body
```


While Version

```
Init;
while (Test) {
    Body
    Update;
}
```

"For" Loop $\rightarrow ... \rightarrow$ Goto

For Version

```
for (Init; Test; Update)

Body
```


While Version

```
Init;
while (Test) {
    Body
    Update;
}
```

```
init;
if (! Test)
  goto done;
loop:
Body
Update
if (Test)
  goto loop;
done:
```

```
Init;
if (! Test)
    goto done;
do
    Body
    Update
    while (Test);
done:
```


"For" Loop Conversion Example

C Code

```
#define WSIZE 8*sizeof(int)
int pcount_for(unsigned x) {
   int i;
   int result = 0;
   for (i = 0; i < WSIZE; i++) {
      unsigned mask = 1 << i;
      result += (x & mask) != 0;
   }
   return result;
}</pre>
```

Initial test can be optimized away

Goto Version

```
int pcount for gt(unsigned x) {
  int i;
  int result = 0;
                    Init
  i = 0:
  if (!(i < WSIZE))
   geto done
 loop:
                      Body
    unsigned mask = 1 << i;</pre>
    result += (x \& mask) != 0;
  i++; Update
  if (i < WSIZE) Test
    goto loop;
 done:
  return result;
```

Summary

Today

- Complete addressing mode, address computation (leal)
- Arithmetic operations
- Control: Condition codes
- Conditional branches & conditional moves
- Loops

Next Time

- Switch statements
- Stack
- Call / return
- Procedure call discipline

Machine-Level Programming III: Switch Statements and IA32 Procedures

Today

- Switch statements
- IA 32 Procedures
 - Stack Structure
 - Calling Conventions
 - Illustrations of Recursion & Pointers

```
long switch eg
   (long x, long y, long z)
    long w = 1;
    switch(x) {
    case 1:
        w = y*z;
        break;
    case 2:
        w = y/z;
        /* Fall Through */
    case 3:
        w += z;
        break;
    case 5:
    case 6:
        w = z;
        break;
    default:
        w = 2;
    return w;
```

Switch Statement Example

- Multiple case labels
 - Here: 5 & 6
- Fall through cases
 - Here: 2
- Missing cases
 - Here: 4

Jump Table Structure

Switch Form

Jump Table

Jump Targets

Targ0: Code Block 0

Targ1: Code Block

Targ2: Code Block 2

Approximate Translation

```
target = JTab[x];
goto *target;
```

Targ*n*-1:

Code Block n-1

Switch Statement Example (IA32)

```
long switch_eg(long x, long y, long z)
{
    long w = 1;
    switch(x) {
        . . .
    }
    return w;
}
```

Setup:

```
switch_eg:
    pushl %ebp  # Setup
    movl %esp, %ebp # Setup
    movl 8(%ebp), %eax # eax = x
    cmpl $6, %eax # Compare x:6

Indirect ja .L2 # If unsigned > goto default
jump jmp *.L7(,%eax,4) # Goto *JTab[x]
```

Jump table

```
.section
           .rodata
  .align 4
.L7:
  .long
           .L2 \# x = 0
 .long
           .L3 \# x = 1
           .L4 \# x = 2
  .long
  .long
           .L5 \# x = 3
           .L2 \# x = 4
  .long
           .L6 \# x = 5
  .long
  .long
           .L6 \# x = 6
```

Assembly Setup Explanation

■ Table Structure

- Each target requires 4 bytes
- Base address at .L7

Jumping

- Direct: jmp .L2
- Jump target is denoted by label .L2
- Indirect: jmp *.L7(,%eax,4)
- Start of jump table: .L7
- Must scale by factor of 4 (labels have 32-bits = 4 Bytes on IA32)
- Fetch target from effective Address .L7 + eax*4
 - Only for $0 \le x \le 6$

Jump table

```
.section
           .rodata
 .align 4
.L7:
  .long .L2 \# x = 0
          .L3 \# x = 1
 .long
          .L4 \# x = 2
 .long
          .L5 \# x = 3
 .long
          .L2 \# x = 4
 .long
          .L6 \# x = 5
 .long
          .L6 \# x = 6
  .long
```

x86-64 Switch Implementation

- Same general idea, adapted to 64-bit code
- Table entries 64 bits (pointers)
- Cases use revised code

```
.L3:

movq %rdx, %rax

imulq %rsi, %rax

ret
```

Jump Table

```
.section .rodata
 .align 8
.L7:
 . quad
         .L2 \# x = 0
         .L3 \# x = 1
 . quad
 .quad .L4 \# x = 2
         .L5 \# x = 3
 . quad
 .quad .L2 \# x = 4
         .L6 \# X = 5
 . quad
         .L6
               \# x = 6
 . quad
```

IA32 Object Code

Setup

- Label .L2 becomes address 0x8048422
- Label .L7 becomes address 0x8048660

Assembly Code

Disassembled Object Code

Summarizing

C Control

- if-then-else
- do-while
- while, for
- switch

Assembler Control

- Conditional jump
- Conditional move
- Indirect jump
- Compiler generates code sequence to implement more complex control

Standard Techniques

- Loops converted to do-while form
- Large switch statements use jump tables
- Sparse switch statements may use decision trees

Today

- Switch statements
- IA 32 Procedures
 - Stack Structure
 - Calling Conventions
 - Illustrations of Recursion & Pointers

IA32 Stack

- Region of memory managed with stack discipline
- Grows toward lower addresses
- Register %esp contains lowest stack address
 - address of "top" element

Stack Pointer: %esp → Stack "Top"

IA32 Stack

IA32 Stack: Push

■ pushl *Src*

- Fetch operand at Src
- Decrement %esp by 4
- Write operand at address given by %esp

Stack Pointer: %esp_______Stack "Top"

Stack "Bottom"

Increasing Addresses

Stack Grows Down

IA32 Stack: Pop

- popl Dest
 - Read operand at address %esp
 - Increment %esp by 4
 - Write operand to Dest

Stack "Bottom"

Increasing

Procedure Control Flow

- Use stack to support procedure call and return
- Procedure call: call label
 - Push return address on stack
 - Jump to label
- Return address:
 - Address of the next instruction right after call
 - Example from disassembly

```
804854e: e8 3d 06 00 00 call 8048b90 <main> 8048553: 50 pushl %eax
```

- Return address = 0x8048553
- Procedure return: ret
 - Pop address from stack
 - Jump to address

Procedure Call Example

804854e: e8 3d 06 00 00 call 8048b90 <main> 8048553: 50 pushl %eax

%eip: program counter

Procedure Return Example

8048591: c3 ret

%eip: program counter

Stack-Based Languages

Languages that support recursion

- e.g., C, Pascal, Java
- Code must be "Reentrant"
 - Multiple simultaneous instantiations of single procedure
- Need some place to store state of each instantiation
 - Arguments
 - Local variables
 - Return pointer

Stack discipline

- State for given procedure needed for limited time
 - From when called to when return
- Callee returns before caller does

■ Stack allocated in *Frames*

state for single procedure instantiation

Stack Frames

Contents

- Local variables
- Return information
- Temporary space

Previous Frame Frame Pointer: %ebp Frame for proc Stack Pointer: %esp

Management

- Space allocated when enter procedure
 - "Set-up" code
- Deallocated when return
 - "Finish" code

IA32/Linux Stack Frame

Current Stack Frame ("Top" to Bottom)

- "Argument build:"Parameters for function about to call
- Local variablesIf can't keep in registers
- Saved register context
- Old frame pointer

Caller Stack Frame

- Return address
 - Pushed by call instruction
- Arguments for this call

Today

- Switch statements
- IA 32 Procedures
 - Stack Structure
 - Calling Conventions
 - Illustrations of Recursion & Pointers

IA32/Linux+Windows Register Usage

■ %eax, %edx, %ecx

 Caller saves prior to call if values are used later

■ %eax

also used to return integer value

■ %ebx, %esi, %edi

Callee saves if wants to use them

■ %esp, %ebp

- special form of callee save
- Restored to original values upon exit from procedure

Today

- Switch statements
- IA 32 Procedures
 - Stack Structure
 - Calling Conventions
 - Illustrations of Recursion & Pointers

Recursive Function

```
/* Recursive popcount */
int pcount_r(unsigned x) {
  if (x == 0)
    return 0;
  else return
    (x & 1) + pcount_r(x >> 1);
}
```

Registers

- ***eax**, ***edx** used without first saving
- %ebx used, but saved at beginning & restored at end

```
pcount r:
   pushl %ebp
   movl %esp, %ebp
   pushl %ebx
    subl $4, %esp
   movl 8 (%ebp), %ebx
   movl $0, %eax
   testl %eax, %ebx
    ie .L3
   movl %ebx, %eax
    shrl %eax
    mov1 %eax, (%esp)
    call pcount r
   movl %ebx, %edx
    andl $1, %edx
    leal (%edx, %eax), %eax
.L3:
    add1$4, %esp
    popl %ebx
   popl %ebp
    ret
```

Recursive Call #1

```
/* Recursive popcount */
int pcount_r(unsigned x) {
  if (x == 0)
    return 0;
  else return
    (x & 1) + pcount_r(x >> 1);
}
```

Actions

- Save old value of %**ebx** on stack
- Allocate space for argument to recursive call
- Store x in %**ebx**

```
%ebx x
```

```
pcount_r:
    pushl %ebp
    movl %esp, %ebp
    pushl %ebx
    subl $4, %esp
    movl 8(%ebp), %ebx
    • • •
```


Observations About Recursion

Handled Without Special Consideration

- Stack frames mean that each function call has private storage
 - Saved registers & local variables
 - Saved return pointer
- Register saving conventions prevent one function call from corrupting another's data
- Stack discipline follows call / return pattern
 - If P calls Q, then Q returns before P
 - Last-In, First-Out

Also works for mutual recursion

P calls Q; Q calls P

Pointer Code

Generating Pointer

```
/* Compute x + 3 */
int add3(int x) {
  int localx = x;
  incrk(&localx, 3);
  return localx;
}
```

Referencing Pointer

```
/* Increment value by k */
void incrk(int *ip, int k) {
   *ip += k;
}
```

add3 creates pointer and passes it to incrk

Creating and Initializing Local Variable

```
int add3(int x) {
  int localx = x;
  incrk(&localx, 3);
  return localx;
}
```

- Variable localx must be stored on stack
 - Because: Need to create pointer to it
- Compute pointer as -4(%ebp)

First part of add3

```
add3:
   pushl%ebp
   movl %esp, %ebp
   subl $24, %esp # Alloc. 24 bytes
   movl 8(%ebp), %eax
   movl %eax, -4(%ebp)# Set localx to x
```


Creating Pointer as Argument

```
int add3(int x) {
  int localx = x;
  incrk(&localx, 3);
  return localx;
}
```

 Use leal instruction to compute address of localx

Middle part of add3

```
movl $3, 4(%esp) # 2<sup>nd</sup> arg = 3
leal -4(%ebp), %eax# &localx
movl %eax, (%esp) # 1<sup>st</sup> arg = &localx
call incrk
```


Retrieving local variable

```
int add3(int x) {
  int localx = x;
  incrk(&localx, 3);
  return localx;
}
```

Retrieve localx from stack as return value

IA 32 Procedure Summary

■ Important Points

- Stack is the right data structure for procedure call / return
 - If P calls Q, then Q returns before P
- Recursion (& mutual recursion) handled by normal calling conventions
 - Can safely store values in local stack frame and in callee-saved registers
 - Put function arguments at top of stack
 - Result return in %eax
- Pointers are addresses of values
 - On stack or global

Machine-Level Programming IV: Data

Today

Arrays

- One-dimensional
- Multi-dimensional (nested)
- Multi-level

Structures

- Allocation
- Access

Today

- Procedures (x86-64)
- Arrays
 - One-dimensional
 - Multi-dimensional (nested)
 - Multi-level
- Structures

Basic Data Types

Integral

- Stored & operated on in general (integer) registers
- Signed vs. unsigned depends on instructions used

Intel	ASM	Bytes	C
byte	b	1	[unsigned] char
word	W	2	[unsigned] short
double word	1	4	[unsigned] int
quad word	q	8	[unsigned] long int (x86-64)

■ Floating Point

Stored & operated on in floating point registers

Intel	ASM	Bytes	С
Single	s	4	float
Double	1	8	double
Extended	t	10/12/16	long double

Array Allocation

Basic Principle

```
T \mathbf{A}[L];
```

- Array of data type T and length L
- Contiguously allocated region of L * sizeof (T) bytes

Array Access

■ Basic Principle

```
T A[L];
```

- Array of data type T and length L
- Identifier **A** can be used as a pointer to array element 0: Type *T**

■ Reference	Type	Value
val[4]	int	3
val	int *	X
val+1	int *	x + 4
&val[2]	int *	<i>x</i> + 8
v al[5]	int	??
*(val+1)	int	5
val + <i>i</i>	int *	x + 4i

Array Example

```
#define ZLEN 5
typedef int zip_dig[ZLEN];

zip_dig cmu = { 1, 5, 2, 1, 3 };
zip_dig mit = { 0, 2, 1, 3, 9 };
zip_dig ucb = { 9, 4, 7, 2, 0 };
```


- Declaration "zip_dig cmu" equivalent to "int cmu[5]"
- Example arrays were allocated in successive 20 byte blocks
 - Not guaranteed to happen in general

Array Accessing Example


```
int get_digit
  (zip_dig z, int dig)
{
  return z[dig];
}
```

IA32

```
# %edx = z
# %eax = dig
movl (%edx,%eax,4),%eax # z[dig]
```

- Register %edx contains starting address of array
- Register %eax contains array index
- Desired digit at 4*%eax + %edx
- Use memory reference (%edx, %eax, 4)

Multidimensional (Nested) Arrays

Declaration

 $T \mathbf{A}[R][C];$

- 2D array of data type T
- R rows, C columns
- Type T element requires K bytes

Array Size

• *R* * *C* * *K* bytes

Arrangement

Row-Major Ordering

int A[R][C];

A [0] [0]	• • •	A [0] [C-1]	A [1] [0]	• • •	A [1] [C-1]		•	•	A [R-1] [0]	• (• •	A [R-1] [C-1]
-----------------	-------	-------------------	-----------------	-------	-------------------	--	---	---	-------------------	-----	-----	---------------------

4*R*C Bytes

A[0][0] • • • A[0][C-1]

• • • • A[0][C-1]

A[R-1][0] • • • A[R-1][C-1]

Today

- Structures
 - Allocation
 - Access

Structure Allocation

```
struct rec {
  int a[3];
  int i;
  struct rec *n;
};
```

Memory Layout

```
a i n 0 12 16 20
```

Concept

- Contiguously-allocated region of memory
- Refer to members within structure by names
- Members may be of different types

Structure Access

```
struct rec {
  int a[3];
  int i;
  struct rec *n;
};
```


Accessing Structure Member

- Pointer indicates first byte of structure
- Access elements with offsets

IA32 Assembly

```
# %edx = val
# %eax = r
movl %edx, 12(%eax) # Mem[r+12] = val
```

Generating Pointer to Structure Member

```
struct rec {
  int a[3];
  int i;
  struct rec *n;
};
```


Generating Pointer to Array Element

- Offset of each structure member determined at compile time
- Arguments
 - Mem[%ebp+8]: **r**
 - Mem[%ebp+12]: idx

```
int *get_ap
  (struct rec *r, int idx)
{
   return &r->a[idx];
}
```

```
movl 12(%ebp), %eax # Get idx
sall $2, %eax # idx*4
addl 8(%ebp), %eax # r+idx*4
```

Following Linked List

C Code

```
void set_val
  (struct rec *r, int val)
{
  while (r) {
    int i = r->i;
    r->a[i] = val;
    r = r->n;
  }
}
```

```
struct rec {
  int a[3];
  int i;
  struct rec *n;
};
```


Element i

Register	Value		
%edx	r		
%ecx	val		

Summary

Arrays

- One-dimensional
- Multi-dimensional (nested)

Structures

- Allocation
- Access

The Memory Hierarchy

Today

- Storage technologies and trends
- Locality of reference
- Caching in the memory hierarchy

Random-Access Memory (RAM)

Key features

- RAM is traditionally packaged as a chip.
- Basic storage unit is normally a cell (one bit per cell).
- Multiple RAM chips form a memory.

Static RAM (SRAM)

- Each cell stores a bit with a four or six-transistor circuit.
- Retains value indefinitely, as long as it is kept powered.
- Relatively insensitive to electrical noise (EMI), radiation, etc.
- Faster and more expensive than DRAM.

Dynamic RAM (DRAM)

- Each cell stores bit with a capacitor. One transistor is used for access
- Value must be refreshed every 10-100 ms.
- More sensitive to disturbances (EMI, radiation,...) than SRAM.
- Slower and cheaper than SRAM.

SRAM vs DRAM Summary

	Trans. per bit	Access time	Needs refresh?	Needs EDC?	Cost	Applications
SRAM	4 or 6	1X	No	Maybe	100x	Cache memories
DRAM	1	10X	Yes	Yes	1X	Main memories, frame buffers

Conventional DRAM Organization

- d x w DRAM:
 - dw total bits organized as d supercells of size w bits

Reading DRAM Supercell (2,1)

Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

Reading DRAM Supercell (2,1)

Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to the CPU.

Memory Modules

Enhanced DRAMs

- Basic DRAM cell has not changed since its invention in 1966.
 - Commercialized by Intel in 1970.
- DRAM cores with better interface logic and faster I/O :
 - Synchronous DRAM (SDRAM)
 - Uses a conventional clock signal instead of asynchronous control
 - Allows reuse of the row addresses (e.g., RAS, CAS, CAS, CAS)
 - Double data-rate synchronous DRAM (DDR SDRAM)
 - Double edge clocking sends two bits per cycle per pin
 - Different types distinguished by size of small prefetch buffer:
 - DDR (2 bits), DDR2 (4 bits), DDR4 (8 bits)
 - By 2010, standard for most server and desktop systems
 - Intel Core i7 supports only DDR3 SDRAM

Nonvolatile Memories

DRAM and SRAM are volatile memories

Lose information if powered off.

Nonvolatile memories retain value even if powered off

- Read-only memory (ROM): programmed during production
- Programmable ROM (PROM): can be programmed once
- Eraseable PROM (EPROM): can be bulk erased (UV, X-Ray)
- Electrically eraseable PROM (EEPROM): electronic erase capability
- Flash memory: EEPROMs with partial (sector) erase capability
 - Wears out after about 100,000 erasings.

Uses for Nonvolatile Memories

- Firmware programs stored in a ROM (BIOS, controllers for disks, network cards, graphics accelerators, security subsystems,...)
- Solid state disks (replace rotating disks in thumb drives, smart phones, mp3 players, tablets, laptops,...)
- Disk caches

Traditional Bus Structure Connecting CPU and Memory

- A bus is a collection of parallel wires that carry address, data, and control signals.
- Buses are typically shared by multiple devices.

Memory Read Transaction (1)

CPU places address A on the memory bus.

Memory Read Transaction (2)

Main memory reads A from the memory bus, retrieves word x, and places it on the bus.

Memory Read Transaction (3)

CPU read word x from the bus and copies it into register %eax.

Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and waits for the corresponding data word to arrive.

Memory Write Transaction (2)

CPU places data word y on the bus.

Memory Write Transaction (3)

Main memory reads data word y from the bus and stores it at address A.

I/O Bus

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

Solid State Disks (SSDs)

- Pages: 512KB to 4KB, Blocks: 32 to 128 pages
- Data read/written in units of pages.
- Page can be written only after its block has been erased
- A block wears out after 100,000 repeated writes.

SSD Performance Characteristics

Sequential read tput250 MB/sSequential write tput170 MB/sRandom read tput140 MB/sRandom write tput14 MB/sRand read access30 usRandom write access300 us

Why are random writes so slow?

- Erasing a block is slow (around 1 ms)
- Write to a page triggers a copy of all useful pages in the block
 - Find an used block (new block) and erase it
 - Write the page into the new block
 - Copy other pages from old block to the new block

SSD Tradeoffs vs Rotating Disks

Advantages

■ No moving parts → faster, less power, more rugged

Disadvantages

- Have the potential to wear out
 - Mitigated by "wear leveling logic" in flash translation layer
 - E.g. Intel X25 guarantees 1 petabyte (10¹⁵ bytes) of random writes before they wear out
- In 2010, about 100 times more expensive per byte

Applications

- MP3 players, smart phones, laptops
- Beginning to appear in desktops and servers

Storage Trends

SRAM

Metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB	19,200	2,900	320	256	100	75	60	320
access (ns)	300	150	35	15	3	2	1.5	200

DRAM

Metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
\$/MB access (ns) typical size (MB)	8,000	880	100	30	1	0.1	0.06	130,000
	375	200	100	70	60	50	40	9
	0.064	0.256	4	16	64	2,000	8,000	125,000

Disk

Metric	1980	1985	1990	1995	2000	2005	2010	2010:1980
l '	500 87	100 75 10	8 28 160	0.30 10 1,000	0.01 8 20,000	0.005 4 160,000	0.0003 3 1,500,000	1,600,000 29

4(

CPU Clock Rates

Inflection point in computer history when designers hit the "Power Wall"

	1980	1990	1995	2000	2003	2005	2010	2010:1980
CPU	8080	386	Pentium	P-III	P-4	Core 2	Core i7	
Clock rate (MHz)) 1	20	150	600	3300	2000	2500	2500
Cycle time (ns)	1000	50	6	1.6	0.3	0.50	0.4	2500
Cores	1	1	1	1	1	2	4	4
Effective cycle time (ns)	1000	50	6	1.6	0.3	0.25	0.1	10,000

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

Locality to the Rescue!

The key to bridging this CPU-Memory gap is a fundamental property of computer programs known as locality

Today

- Storage technologies and trends
- Locality of reference
- Caching in the memory hierarchy

Locality

Principle of Locality: Programs tend to use data and instructions with addresses near or equal to those they have used recently

 Items with nearby addresses tend to be referenced close together in time

Locality Example

```
sum = 0;
for (i = 0; i < n; i++)
    sum += a[i];
return sum;</pre>
```

Data references

- Reference array elements in succession (stride-1 reference pattern).
- Reference variable sum each iteration.

Instruction references

- Reference instructions in sequence.
- Cycle through loop repeatedly.

Spatial locality

Temporal locality

Spatial locality

Temporal locality

Qualitative Estimates of Locality

- Claim: Being able to look at code and get a qualitative sense of its locality is a key skill for a professional programmer.
- Question: Does this function have good locality with respect to array a?

```
int sum_array_rows(int a[M][N])
{
   int i, j, sum = 0;

   for (i = 0; i < M; i++)
        for (j = 0; j < N; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

Locality Example

Question: Does this function have good locality with respect to array a?

```
int sum_array_cols(int a[M][N])
{
   int i, j, sum = 0;

   for (j = 0; j < N; j++)
        for (i = 0; i < M; i++)
            sum += a[i][j];
   return sum;
}</pre>
```

Memory Hierarchies

- Some fundamental and enduring properties of hardware and software:
 - Fast storage technologies cost more per byte, have less capacity, and require more power (heat!).
 - The gap between CPU and main memory speed is widening.
 - Well-written programs tend to exhibit good locality.
- These fundamental properties complement each other beautifully.
- They suggest an approach for organizing memory and storage systems known as a memory hierarchy.

Today

- Storage technologies and trends
- Locality of reference
- Caching in the memory hierarchy

An Example Memory Hierarchy

Caches

- Cache: A smaller, faster storage device that acts as a staging area for a subset of the data in a larger, slower device.
- Fundamental idea of a memory hierarchy:
 - For each k, the faster, smaller device at level k serves as a cache for the larger, slower device at level k+1.
- Why do memory hierarchies work?
 - Because of locality, programs tend to access the data at level k more often than they access the data at level k+1.
 - Thus, the storage at level k+1 can be slower, and thus larger and cheaper per bit.
- Big Idea: The memory hierarchy creates a large pool of storage that costs as much as the cheap storage near the bottom, but that serves data to programs at the rate of the fast storage near the top.

General Cache Concepts

General Cache Concepts: Hit

General Cache Concepts: Miss

General Caching Concepts: Types of Cache Misses

■ Cold (compulsory) miss

Cold misses occur because the cache is empty.

Conflict miss

- Most caches limit blocks at level k+1 to a small subset (sometimes a singleton) of the block positions at level k.
 - E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.
- Conflict misses occur when the level k cache is large enough, but multiple data objects all map to the same level k block.
 - E.g. Referencing blocks 0, 8, 0, 8, ... would miss every time.

Capacity miss

 Occurs when the set of active cache blocks (working set) is larger than the cache.

Examples of Caching in the Hierarchy

Cache Type	What is Cached?	Where is it Cached?	Latency (cycles)	Managed By
Registers	4-8 bytes words	CPU core	0	Compiler
TLB	Address translations	On-Chip TLB	0	Hardware
L1 cache	64-bytes block	On-Chip L1	1	Hardware
L2 cache	64-bytes block	On/Off-Chip L2	10	Hardware
Virtual Memory	4-KB page	Main memory	100	Hardware + OS
Buffer cache	Parts of files	Main memory	100	os
Disk cache	Disk sectors	Disk controller	100,000	Disk firmware
Network buffer cache	Parts of files	Local disk	10,000,000	AFS/NFS client
Browser cache	Web pages	Local disk	10,000,000	Web browser
Web cache	Web pages	Remote server disks	1,000,000,000	Web proxy server

Summary

- The speed gap between CPU, memory and mass storage continues to widen.
- Well-written programs exhibit a property called locality.
- Memory hierarchies based on caching close the gap by exploiting locality.

Cache Memories

Today

- Cache memory organization and operation
- Performance impact of caches
 - The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware.
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.
- Typical system structure:

General Cache Organization (S, E, B)

What about writes?

- Multiple copies of data exist:
 - L1, L2, Main Memory, Disk
- What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)
- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - No-write-allocate (writes immediately to memory)

Typical

- Write-through + No-write-allocate
- Write-back + Write-allocate

Intel Core i7 Cache Hierarchy

Processor package

L1 i-cache and d-cache:

32 KB, 8-way, Access: 4 cycles

L2 unified cache:

256 KB, 8-way, Access: 11 cycles

L3 unified cache:

8 MB, 16-way, Access: 30-40 cycles

Block size: 64 bytes for

all caches.

Knights Landing (KNL): 2nd Generation Intel® Xeon Phi™ Processor (2016)

Intel Xeon Scalable processors

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)
 = 1 hit rate
- Typical numbers (in percentages):
 - 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - 1-2 clock cycle for L1
 - 5-20 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Lets think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider: cache hit time of 1 cycle miss penalty of 100 cycles
 - Average access time:

```
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
```

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

■ This is why "miss rate" is used instead of "hit rate"

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories.

Concluding Observations

Programmer can optimize for cache performance

- How data structures are organized
- How data are accessed
 - Nested loop structure
 - Blocking is a general technique

All systems favor "cache friendly code"

- Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
- Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)

Linking

Example C Program

main.c

```
int buf[2] = {1, 2};
int main()
{
   swap();
   return 0;
}
```

swap.c

```
extern int buf[];
int *bufp0 = &buf[0];
static int *bufp1;
void swap()
  int temp;
 bufp1 = \&buf[1];
  temp = *bufp0;
  *bufp0 = *bufp1;
  *bufp1 = temp;
```

Static Linking

- Programs are translated and linked using a compiler driver:
 - unix> gcc -02 -g -o p main.c swap.c
 - unix> ./p

Why Linkers?

- Reason 1: Modularity
 - Program can be written as a collection of smaller source files, rather than one monolithic mass.
 - Can build libraries of common functions (more on this later)
 - e.g., Math library, standard C library

Why Linkers? (cont)

- Reason 2: Efficiency
 - Time: Separate compilation
 - Change one source file, compile, and then relink.
 - No need to recompile other source files.
 - Space: Libraries
 - Common functions can be aggregated into a single file...
 - Yet executable files and running memory images contain only code for the functions they actually use.

What Do Linkers Do?

Step 1. Symbol resolution

Programs define and reference symbols (variables and functions):

```
void swap() {...} /* define symbol swap */
swap(); /* reference symbol a */
int *xp = &x; /* define symbol xp, reference x */
```

- Symbol definitions are stored (by compiler) in symbol table.
 - Symbol table is an array of structs
 - Each entry includes name, size, and location of symbol.
- Linker associates each symbol reference with exactly one symbol definition.

What Do Linkers Do? (cont)

Step 2. Relocation

- Merges separate code and data sections into single sections
- Relocates symbols from their relative locations in the .o files to their final absolute memory locations in the executable.
- Updates all references to these symbols to reflect their new positions.

Three Kinds of Object Files (Modules)

Relocatable object file (. o file)

- Contains code and data in a form that can be combined with other relocatable object files to form executable object file.
 - Each . o file is produced from exactly one source (.c) file

Executable object file (a.out file)

 Contains code and data in a form that can be copied directly into memory and then executed.

Shared object file (.so file)

- Special type of relocatable object file that can be loaded into memory and linked dynamically, at either load time or run-time.
- Called Dynamic Link Libraries (DLLs) by Windows

Executable and Linkable Format (ELF)

- Standard binary format for object files
- Originally proposed by AT&T System V Unix
 - Later adopted by BSD Unix variants and Linux
- One unified format for
 - Relocatable object files (.o),
 - Executable object files (a.out)
 - Shared object files (.so)
- Generic name: ELF binaries

ELF Object File Format

- Elf header
 - Word size, byte ordering, file type (.o, exec, .so), machine type, etc.

Segment header table

- Page size, virtual addresses memory segments (sections), segment sizes.
- . text section
 - Code
- .rodata section
 - Read only data: jump tables, ...
- . data section
 - Initialized global variables
- .bss section
 - Uninitialized global variables
 - "Block Started by Symbol"
 - "Better Save Space"
 - Has section header but occupies no space

ELF header Segment header table (required for executables) . text section . rodata section . data section .bss section .symtab section .rel.txt section .rel.data section .debug section Section header table

0

ELF Object File Format (cont.)

. symtab section

- Symbol table
- Procedure and static variable names
- Section names and locations

rel.text section

- Relocation info for . text section
- Addresses of instructions that will need to be modified in the executable
- Instructions for modifying.

.rel.data section

- Relocation info for .data section
- Addresses of pointer data that will need to be modified in the merged executable

debug section

■ Info for symbolic debugging (gcc -g)

Section header table

Offsets and sizes of each section

ELF header
Segment header table (required for executables)
. text section
.rodata section
. data section
. bss section
.symtab section
.rel.txt section
.rel.data section
. debug section
Section header table

Linker Symbols

Global symbols

- Symbols defined by module m that can be referenced by other modules.
- E.g.: non-static C functions and non-static global variables.

External symbols

 Global symbols that are referenced by module m but defined by some other module.

Local symbols

- Symbols that are defined and referenced exclusively by module m.
- E.g.: C functions and variables defined with the static attribute.
- Local linker symbols are not local program variables

Resolving Symbols

Relocating Code and Data

Relocatable Object Files

Executable Object File

Even though private to swap, requires allocation in .bss

Relocation Info (main)

main.c

```
int buf[2] =
    {1,2};

int main()
{
    swap();
    return 0;
}
```

```
main.o
```

```
0000000 <main>:
  0: 8d 4c 24 04
                       lea
                              0x4(%esp),%ecx
  4: 83 e4 f0
                       and
                              $0xfffffff0,%esp
  7: ff 71 fc
                       pushl
                              0xfffffffc(%ecx)
  a: 55
                              %ebp
                       push
  b: 89 e5
                              %esp,%ebp
                       mov
  d: 51
                       push
                              %ecx
  e: 83 ec 04
                       sub
                              $0x4,%esp
 11:
      e8 fc ff ff ff call
                              12 < main + 0 \times 12 >
              12: R 386 PC32 swap
 16: 83 c4 04
                              $0x4,%esp
                       add
 19:
      31 c0
                              %eax,%eax
                       xor
 1b:
       59
                              %ecx
                       pop
 1c: 5d
                       pop
                              %ebp
 1d: 8d 61 fc
                       lea
                              0xfffffffc(%ecx),%esp
 20:
       c3
                       ret
```

```
Source: objdump -r -d
```

Relocation Info (swap, .text)

swap.c

swap.o

```
Disassembly of section .text:
extern int buf[];
                       00000000 <swap>:
int
                              8b 15 00 00 00 00
                          0:
  *bufp0 = \&buf[0];
                                      2: R 386 32
                              a1 04 00 00 00
                          6:
static int *bufp1;
                                      7: R 386 32
                              55
                         b:
void swap()
                          c: 89 e5
                         e:
                              00 00 00
                         15:
  int temp;
  bufp1 = \&buf[1];
                         18:
                              8b 08
  temp = *bufp0;
                         1a:
                              89 10
  *bufp0 = *bufp1;
                         1c:
                              5d
  *bufp1 = temp;
                         1d:
                              89 0d 04 00 00 00
                                      1f: R 386 32
                         23:
                              c3
```

```
0x0, %edx
                       mov
                       buf
                              0x4, %eax
                       mov
                       buf
                       push
                              %ebp
                       mov
                              %esp,%ebp
c7 05 00 00 00 00 04
                              $0x4,0x0
                       movl
       10: R 386 32
                       .bss
       14: R 386 32
                       buf
                              (%eax), %ecx
                       mov
                              %edx, (%eax)
                       mov
                              %ebp
                       pop
                              %ecx,0x4
                       mov
                       buf
                       ret
```

Relocation Info (swap, .data)

swap.c

```
extern int buf[];
int *bufp0 =
           &buf[0];
static int *bufp1;
void swap()
  int temp;
  bufp1 = \&buf[1];
  temp = *bufp0;
  *bufp0 = *bufp1;
  *bufp1 = temp;
```

```
Disassembly of section .data:

00000000 <bufp0>:
    0: 00 00 00 00

0: R_386_32 buf
```

Executable Before/After Relocation (.text)

```
0x8048396 + 0x1a
= 0x80483b0
```

```
08048380 <main>:
8048380:
              8d 4c 24 04
                                     lea
                                            0x4(%esp),%ecx
8048384:
                                            $0xfffffff0,%esp
              83 e4 f0
                                     and
8048387:
                                            0xfffffffc(%ecx)
              ff 71 fc
                                     pushl
804838a:
                                            %ebp
              55
                                     push
804838b:
              89 e5
                                            %esp,%ebp
                                     mov
804838d:
              51
                                     push
                                            %ecx
              83 ec 04
804838e:
                                     sub
                                            $0x4,%esp
8048391:
              e8 1a 00 00 00
                                     call
                                            80483b0 <swap>
8048396:
              83 c4 04
                                     add
                                            $0x4, %esp
8048399:
              31 c0
                                            %eax,%eax
                                     xor
              59
804839b:
                                            %ecx
                                     pop
804839c:
              5d
                                            %ebp
                                     pop
              8d 61 fc
804839d:
                                     lea
                                            0xfffffffc(%ecx),%esp
80483a0:
              c3
                                     ret
```

```
0:
     8b 15 00 00 00 00
                                  0x0, %edx
                           mov
            2: R 386_32
                           buf
     a1 04 00 00 00
 6:
                           mov
                                  0x4, %eax
            7: R 386 32
                           buf
     c7 05 00 00 00 00 04
                           movl
                                  $0x4,0x0
e:
15:
     00 00 00
             10: R 386 32
                           .bss
            14: R 386 32 buf
1d: 89 0d 04 00 00 00
                                  %ecx,0x4
                           mov
            1f: R 386 32
                           buf
23:
     c3
                           ret
```

```
080483b0 <swap>:
 80483b0:
               8b 15 20 96 04 08
                                     mov
                                             0x8049620, %edx
               a1 24 96 04 08
 80483b6:
                                             0x8049624, %eax
                                     mov
 80483bb:
               55
                                             %ebp
                                     push
 80483bc:
               89 e5
                                             %esp,%ebp
                                     mov
 80483be:
               c7 05 30 96 04 08 24
                                             $0x8049624,0x8049630
                                     movl
               96 04 08
 80483c5:
               8b 08
 80483c8:
                                             (%eax), %ecx
                                      mov
 80483ca:
               89 10
                                             %edx, (%eax)
                                     mov
 80483cc:
               5d
                                             %ebp
                                     pop
 80483cd:
               89 0d 24 96 04 08
                                             %ecx, 0x8049624
                                     mov
 80483d3:
               c3
                                      ret
```

Executable After Relocation (.data)

```
Disassembly of section .data:

08049620 <buf>:
8049620:
01 00 00 00 02 00 00 00

08049628 <buf>>:
8049628:
20 96 04 08
```

Strong and Weak Symbols

- Program symbols are either strong or weak
 - Strong: procedures and initialized globals
 - Weak: uninitialized globals

Linker's Symbol Rules

- Rule 1: Multiple strong symbols are not allowed
 - Each item can be defined only once
 - Otherwise: Linker error
- Rule 2: Given a strong symbol and multiple weak symbol, choose the strong symbol
 - References to the weak symbol resolve to the strong symbol
- Rule 3: If there are multiple weak symbols, pick an arbitrary one
 - Can override this with gcc -fno-common

Linker Puzzles

```
int x;
p1() {}
```

Link time error: two strong symbols (p1)

```
int x;
p1() {}
```

References to **x** will refer to the same uninitialized int. Is this what you really want?

```
int x;
int y;
p1() {}
```

Writes to **x** in **p2** might overwrite **y**! Evil!

```
int x=7;
int y=5;
p1() {}
```

Writes to **x** in **p2** will overwrite **y**! Nasty!

References to **x** will refer to the same initialized variable.

Nightmare scenario: two identical weak structs, compiled by different compilers with different alignment rules.

Role of .h Files

c1.c

```
#include "global.h"
int f() {
  return g+1;
}
```

c2.c

global.h

```
#ifdef INITIALIZE
int g = 23;
static int init = 1;
#else
int g;
static int init = 0;
#endif
```

```
#include <stdio.h>
#include "global.h"

int main() {
   if (!init)
      g = 37;
   int t = f();
   printf("Calling f yields %d\n", t);
   return 0;
}
```

Running Preprocessor

```
global.h
c1.c
                              #ifdef INITIALIZE
#include "global.h"
                              int g = 23;
                              static int init = 1;
int f() {
                              #else
  return g+1;
                              int q;
                              static int init = 0;
                              #endif
     -DINITIALIZE
                          no initialization
int g = 23;
                              int q;
static int init = 1;
                              static int init = 0;
int f() {
                              int f() {
  return g+1;
                                return g+1;
```

Role of .h Files (cont.)

c1.c

```
#include "global.h"
int f() {
  return g+1;
}
```

global.h

```
#ifdef INITIALIZE
int g = 23;
static int init = 1;
#else
int g;
static int init = 0;
#endif
```

c2.c

```
#include <stdio.h>
#include "global.h"

int main() {
   if (!init)
      g = 37;
   int t = f();
   printf("Calling f yields %d\n", t);
   return 0;
}
```

What happens:

```
gcc -o p c1.c c2.c
    ??
gcc -o p c1.c c2.c \
    -DINITIALIZE
    ??
```

Global Variables

Avoid if you can

Otherwise

- Use static if you can
- Initialize if you define a global variable
- Use extern if you use external global variable

Packaging Commonly Used Functions

- How to package functions commonly used by programmers?
 - Math, I/O, memory management, string manipulation, etc.
- Awkward, given the linker framework so far:
 - Option 1: Put all functions into a single source file
 - Programmers link big object file into their programs
 - Space and time inefficient
 - Option 2: Put each function in a separate source file
 - Programmers explicitly link appropriate binaries into their programs
 - More efficient, but burdensome on the programmer

Solution: Static Libraries

- Static libraries (.a archive files)
 - Concatenate related relocatable object files into a single file with an index (called an archive).
 - Enhance linker so that it tries to resolve unresolved external references by looking for the symbols in one or more archives.
 - If an archive member file resolves reference, link it into the executable.

Creating Static Libraries

- Archiver allows incremental updates
- Recompile function that changes and replace .o file in archive.

Commonly Used Libraries

libc.a (the C standard library)

- 8 MB archive of 1392 object files.
- I/O, memory allocation, signal handling, string handling, data and time, random numbers, integer math

libm. a (the C math library)

- 1 MB archive of 401 object files.
- floating point math (sin, cos, tan, log, exp, sqrt, ...)

```
% ar -t /usr/lib/libc.a | sort
...
fork.o
...
fprintf.o
fpu_control.o
fputc.o
freopen.o
fscanf.o
fscanf.o
fseek.o
fstab.o
...
```

```
% ar -t /usr/lib/libm.a | sort
...
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
e_asin.o
e_asinf.o
e_asinf.o
e_asinl.o
...
```

Linking with Static Libraries

Using Static Libraries

Linker's algorithm for resolving external references:

- Scan .o files and .a files in the command line order.
- During the scan, keep a list of the current unresolved references.
- As each new .o or .a file, obj, is encountered, try to resolve each unresolved reference in the list against the symbols defined in obj.
- If any entries in the unresolved list at end of scan, then error.

Problem:

- Command line order matters!
- Moral: put libraries at the end of the command line.

```
unix> gcc -L. libtest.o -lmine
unix> gcc -L. -lmine libtest.o
libtest.o: In function `main':
libtest.o(.text+0x4): undefined reference to `libfun'
```

Loading Executable Object Files

Shared Libraries

Static libraries have the following disadvantages:

- Duplication in the stored executables (every function need std libc)
- Duplication in the running executables
- Minor bug fixes of system libraries require each application to explicitly relink

Modern solution: Shared Libraries

- Object files that contain code and data that are loaded and linked into an application dynamically, at either load-time or run-time
- Also called: dynamic link libraries, DLLs, .so files

Shared Libraries (cont.)

- Dynamic linking can occur when executable is first loaded and run (load-time linking).
 - Common case for Linux, handled automatically by the dynamic linker (ld-linux.so).
 - Standard C library (libc.so) usually dynamically linked.
- Dynamic linking can also occur after program has begun (run-time linking).
 - In Linux, this is done by calls to the dlopen() interface.
 - Distributing software.
 - High-performance web servers.
 - Runtime library interpositioning.
- Shared library routines can be shared by multiple processes.
 - More on this when we learn about virtual memory

Dynamic Linking at Load-time

Dynamic Linking at Run-time

```
#include <stdio.h>
#include <dlfcn.h>
int x[2] = \{1, 2\};
int y[2] = \{3, 4\};
int z[2];
int main()
   void *handle;
    void (*addvec)(int *, int *, int *, int);
    char *error;
    /* dynamically load the shared lib that contains addvec() */
    handle = dlopen("./libvector.so", RTLD LAZY);
    if (!handle) {
       fprintf(stderr, "%s\n", dlerror());
       exit(1);
```

Dynamic Linking at Run-time

```
/* get a pointer to the addvec() function we just loaded */
addvec = dlsym(handle, "addvec");
if ((error = dlerror()) != NULL) {
   fprintf(stderr, "%s\n", error);
   exit(1);
/* Now we can call addvec() just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);
/* unload the shared library */
if (dlclose(handle) < 0) {</pre>
   fprintf(stderr, "%s\n", dlerror());
   exit(1);
return 0;
```

Exceptional Control Flow: Exceptions and Processes

Today

- Exceptional Control Flow
- Processes

Control Flow

- Processors do only one thing:
 - From startup to shutdown, a CPU simply reads and executes (interprets) a sequence of instructions, one at a time
 - This sequence is the CPU's control flow (or flow of control)

Altering the Control Flow

- Up to now: two mechanisms for changing control flow:
 - Jumps and branches
 - Call and return

Both react to changes in *program state*

- Insufficient for a useful system:Difficult to react to changes in system state
 - data arrives from a disk or a network adapter
 - instruction divides by zero
 - user hits Ctrl-C at the keyboard
 - System timer expires
- System needs mechanisms for "exceptional control flow"

Exceptional Control Flow

- Exists at all levels of a computer system
- Low level mechanisms
 - Exceptions
 - change in control flow in response to a system event (i.e., change in system state)
 - Combination of hardware and OS software

Higher level mechanisms

- Process context switch
- Signals
- Nonlocal jumps: setjmp()/longjmp()
- Implemented by either:
 - OS software (context switch and signals)
 - C language runtime library (nonlocal jumps)

Exceptions

 An exception is a transfer of control to the OS in response to some event (i.e., change in processor state)

■ Examples: div by 0, arithmetic overflow, page fault, I/O request completes, Ctrl-C

Interrupt Vectors

- Each type of event has a unique exception number k
- k = index into exception table (a.k.a. interrupt vector)
- Handler k is called each time exception k occurs

Asynchronous Exceptions (Interrupts)

Caused by events external to the processor

- Indicated by setting the processor's interrupt pin
- Handler returns to "next" instruction

Examples:

- I/O interrupts
 - hitting Ctrl-C at the keyboard
 - arrival of a packet from a network
 - arrival of data from a disk
- Hard reset interrupt
 - hitting the reset button
- Soft reset interrupt
 - hitting Ctrl-Alt-Delete on a PC

Synchronous Exceptions

Caused by events that occur as a result of executing an instruction:

Traps

- Intentional
- Examples: system calls, breakpoint traps, special instructions
- Returns control to "next" instruction

Faults

- Unintentional but possibly recoverable
- Examples: page faults (recoverable), protection faults (unrecoverable), floating point exceptions
- Either re-executes faulting ("current") instruction or aborts

Aborts

- unintentional and unrecoverable
- Examples: parity error, machine check
- Aborts current program

Trap Example: Opening File

- User calls: open (filename, options)
- Function open executes system call instruction int

- OS must find or create file, get it ready for reading or writing
- Returns integer file descriptor

Fault Example: Page Fault

- User writes to memory location
- That portion (page) of user's memory is currently on disk

```
int a[1000];
main ()
{
    a[500] = 13;
}
```

```
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
```


- Page handler must load page into physical memory
- Returns to faulting instruction
- Successful on second try

Fault Example: Invalid Memory Reference

```
int a[1000];
main ()
{
    a[5000] = 13;
}
```

```
80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360
```


- Page handler detects invalid address
- Sends SIGSEGV signal to user process
- User process exits with "segmentation fault"

Exception Table IA32 (Excerpt)

iption	Exception Class
e error	Fault
ral protection fault	Fault
fault	Fault
ine check	Abort
fined	Interrupt or trap
n call	Trap
fined	Interrupt or trap
1	e error ral protection fault fault ine check efined m call efined

Check Table 6-1:

http://download.intel.com/design/processor/manuals/253665.pdf

Today

- Exceptional Control Flow
- Processes

Processes

- Definition: A process is an instance of a running program.
 - One of the most profound ideas in computer science
 - Not the same as "program" or "processor"

Process provides each program with two key abstractions:

- Logical control flow
 - Each program seems to have exclusive use of the CPU
- Private virtual address space
 - Each program seems to have exclusive use of main memory

How are these Illusions maintained?

- Process executions interleaved (multitasking) or run on separate cores
- Address spaces managed by virtual memory system
 - we'll talk about this in a couple of weeks

Concurrent Processes

- Two processes run concurrently (are concurrent) if their flows overlap in time
- Otherwise, they are sequential
- Examples (running on single core):
 - Concurrent: A & B, A & C
 - Sequential: B & C

User View of Concurrent Processes

- Control flows for concurrent processes are physically disjoint in time
- However, we can think of concurrent processes are running in parallel with each other

Context Switching

- Processes are managed by a shared chunk of OS code called the kernel
 - Important: the kernel is not a separate process, but rather runs as part of some user process
- Control flow passes from one process to another via a context switch

fork: Creating New Processes

- int fork(void)
 - creates a new process (child process) that is identical to the calling process (parent process)
 - returns 0 to the child process
 - returns child's pid to the parent process

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

Fork is interesting (and often confusing) because it is called *once* but returns *twice*

Understanding fork

Process n

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

Child Process m

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

- Parent and child both run same code
 - Distinguish parent from child by return value from fork
- Start with same state, but each has private copy
 - Including shared output file descriptor
 - Relative ordering of their print statements undefined

```
void fork1()
{
    int x = 1;
    pid_t pid = fork();
    if (pid == 0) {
        printf("Child has x = %d\n", ++x);
    } else {
        printf("Parent has x = %d\n", --x);
    }
    printf("Bye from process %d with x = %d\n", getpid(), x);
}
```

Both parent and child can continue forking

```
void fork2()
{
    printf("L0\n");
    fork();
    printf("L1\n");
    fork();
    printf("Bye\n");
}
```


Both parent and child can continue forking

```
void fork3()
{
    printf("L0\n");
    fork();
    printf("L1\n");
    fork();
    printf("L2\n");
    fork();
    printf("Bye\n");
}
```


The parent can continue forking

```
void fork4()
{
   printf("L0\n");
    if (fork() != 0) {
      printf("L1\n");
       if (fork() != 0) {
           printf("L2\n");
           fork();
    printf("Bye\n");
```


Both parent and child can continue forking

```
void fork5()
{
   printf("L0\n");
    if (fork() == 0) {
      printf("L1\n");
       if (fork() == 0) {
           printf("L2\n");
           fork();
    printf("Bye\n");
```


exit: Ending a process

- void exit(int status)
 - exits a process
 - Normally return with status 0
 - atexit() registers functions to be executed upon exit

```
void cleanup(void) {
   printf("cleaning up\n");
}

void fork6() {
   atexit(cleanup);
   fork();
   exit(0);
}
```

Zombies

Idea

- When process terminates, still consumes system resources
 - Various tables maintained by OS
- Called a "zombie"
 - Living corpse, half alive and half dead

Reaping

- Performed by parent on terminated child
- Parent is given exit status information
- Kernel discards process

What if parent doesn't reap?

- If any parent terminates without reaping a child, then child will be reaped by init process
- So, only need explicit reaping in long-running processes
 - e.g., shells and servers

Zombie Example

```
linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY
                  TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY
                  TIME CMD
             00:00:00 tcsh
6585 ttyp9
6642 ttyp9
              00:00:00 ps
```

- **ps** shows child process as "defunct"
- Killing parent allows child to be reaped by init

Nonterminating Child Example

```
linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY
                   TIME CMD
 6585 ttyp9
               00:00:00 tcsh
 6676 ttyp9
               00:00:06 forks
               00:00:00 ps
 6677 ttyp9
linux> kill 6676
linux> ps
  PID TTY
                   TIME CMD
 6585 ttyp9
               00:00:00 tcsh
 6678 ttyp9
               00:00:00 ps
```

- Child process still active even though parent has terminated
- Must kill explicitly, or else will keep running indefinitely

wait: Synchronizing with Children

- int wait(int *child status)
 - suspends current process until one of its children terminates
 - return value is the pid of the child process that terminated
 - if child_status!= NULL, then the object it points to will be set to a status indicating why the child process terminated

wait: Synchronizing with Children

```
void fork9() {
   int child status;
   if (fork() == 0) {
     printf("HC: hello from child\n");
   else {
     printf("HP: hello from parent\n");
     wait(&child status);
     printf("CT: child has terminated\n");
  printf("Bye\n");
   exit();
```


wait() Example

- If multiple children completed, will take in arbitrary order
- Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

```
void fork10()
   pid t pid[N];
    int i;
    int child status;
    for (i = 0; i < N; i++)
       if ((pid[i] = fork()) == 0)
           exit(100+i); /* Child */
    for (i = 0; i < N; i++) {
       pid t wpid = wait(&child status);
       if (WIFEXITED(child status))
           printf("Child %d terminated with exit status %d\n",
                  wpid, WEXITSTATUS(child status));
       else
           printf("Child %d terminate abnormally\n", wpid);
```

waitpid(): Waiting for a Specific Process

- waitpid(pid, &status, options)
 - suspends current process until specific process terminates
 - various options (see textbook)

```
void fork11()
   pid t pid[N];
    int i;
    int child status;
    for (i = 0; i < N; i++)
       if ((pid[i] = fork()) == 0)
           exit(100+i); /* Child */
    for (i = N-1; i >= 0; i--) {
       pid t wpid = waitpid(pid[i], &child status, 0);
       if (WIFEXITED(child status))
           printf("Child %d terminated with exit status %d\n",
                  wpid, WEXITSTATUS(child status));
       else
           printf("Child %d terminated abnormally\n", wpid);
```

execve: Loading and Running Programs

- int execve(
 char *filename,
 char *argv[],
 char *envp[]
)
- Loads and runs in current process:
 - Executable filename
 - With argument list argv
 - And environment variable list envp
- Does not return (unless error)
- Overwrites code, data, and stack
 - keeps pid, open files and signal context
- Environment variables:
 - "name=value" strings
 - getenv and putenv

execve Example

```
if ((pid = Fork()) == 0) { /* Child runs user job */
    if (execve(argv[0], argv, environ) < 0) {
        printf("%s: Command not found.\n", argv[0]);
        exit(0);
    }
}</pre>
```


Summary

Exceptions

- Events that require nonstandard control flow
- Generated externally (interrupts) or internally (traps and faults)

Processes

- At any given time, system has multiple active processes
- Only one can execute at a time on a single core, though
- Each process appears to have total control of processor + private memory space

Summary (cont.)

Spawning processes

- Call fork
- One call, two returns

Process completion

- Call exit
- One call, no return

Reaping and waiting for Processes

Call wait or waitpid

Loading and running Programs

- Call execve (or variant)
- One call, (normally) no return

Exceptional Control Flow: Signals and Nonlocal Jumps

ECF Exists at All Levels of a System

- Exceptions
 - Hardware and operating system kernel software
- Process Context Switch
 - Hardware timer and kernel software
- Signals
 - Kernel software
- Nonlocal jumps
 - Application code

Previous Lecture

This Lecture

Today

- Multitasking, shells
- Signals
- Nonlocal jumps

The World of Multitasking

- System runs many processes concurrently
- Process: executing program
 - State includes memory image + register values + program counter
- Regularly switches from one process to another
 - Suspend process when it needs I/O resource or timer event occurs
 - Resume process when I/O available or given scheduling priority
- Appears to user(s) as if all processes executing simultaneously
 - Even though most systems can only execute one process at a time
 - Except possibly with lower performance than if running alone

Programmer's Model of Multitasking

Basic functions

- fork spawns new process
 - Called once, returns twice
- exit terminates own process
 - Called once, never returns
 - Puts it into "zombie" status
- wait and waitpid wait for and reap terminated children
- execve runs new program in existing process
 - Called once, (normally) never returns

Unix Process Hierarchy

Shell Programs

- A shell is an application program that runs programs on behalf of the user.
 - Sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
 - csh BSD Unix C shell (tcsh: enhanced csh at CMU and elsewhere)
 - bash "Bourne-Again" Shell

```
int main() {
    char cmdline[MAXLINE];
    while (1) {
       /* read */
       printf("> ");
       Fgets(cmdline, MAXLINE, stdin);
       if (feof(stdin))
           exit(0);
       /* evaluate */
       eval(cmdline);
```

Execution is a sequence of read/evaluate steps

Simple Shell eval Function

```
void eval(char *cmdline) {
   char *argv[MAXARGS]; /* argv for execve() */
   int bg;
                 /* should the job run in bg or fg? */
                       /* process id */
   pid t pid;
   bg = parseline(cmdline, argv);
   if (!builtin command(argv)) {
       if ((pid = Fork()) == 0) { /* child runs user job */
           if (execve(argv[0], argv, environ) < 0) {</pre>
              printf("%s: Command not found.\n", argv[0]);
              exit(0);
       if (!bg) { /* parent waits for fg job to terminate */
          int status;
           if (waitpid(pid, &status, 0) < 0)
              unix error("waitfg: waitpid error");
              /* otherwise, don't wait for bg job */
       else
          printf("%d %s", pid, cmdline);
```

What Is a "Background Job"?

- Users generally run one command at a time
 - Type command, read output, type another command
- Some programs run "for a long time"
 - Example: "delete this file in two hours"

```
unix> sleep 7200; rm /tmp/junk # shell stuck for 2 hours
```

A "background" job is a process we don't want to wait for

```
unix> (sleep 7200 ; rm /tmp/junk) &
[1] 907
unix> # ready for next command
```

Problem with Simple Shell Example

Our example shell correctly waits for and reaps foreground jobs

But what about background jobs?

- Will become zombies when they terminate
- Will never be reaped because shell (typically) will not terminate
- Will create a memory leak that could run the kernel out of memory
- Modern Unix: once you exceed your process quota, your shell can't run any new commands for you: fork() returns -1

```
unix> limit maxproc  # csh syntax
maxproc  202752
unix> ulimit -u  # bash syntax
202752
```

ECF to the Rescue!

Problem

- The shell doesn't know when a background job will finish
- By nature, it could happen at any time
- The shell's regular control flow can't reap exited background processes in a timely fashion
- Regular control flow is "wait until running job completes, then reap it"

Solution: Exceptional control flow

- The kernel will interrupt regular processing to alert us when a background process completes
- In Unix, the alert mechanism is called a signal

Today

- Multitasking, shells
- Signals
- Nonlocal jumps

Signals

- A signal is a small message that notifies a process that an event of some type has occurred in the system
 - akin to exceptions and interrupts
 - sent from the kernel (sometimes at the request of another process) to a process
 - signal type is identified by small integer ID's (1-30)
 - only information in a signal is its ID and the fact that it arrived

ID	Name	Default Action	Corresponding Event
2	SIGINT	Terminate	Interrupt (e.g., ctl-c from keyboard)
9	SIGKILL	Terminate	Kill program (cannot override or ignore)
11	SIGSEGV	Terminate & Dump	Segmentation violation
14	SIGALRM	Terminate	Timer signal
17	SIGCHLD	Ignore	Child stopped or terminated

Sending a Signal

- Kernel sends (delivers) a signal to a destination process by updating some state in the context of the destination process
- Kernel sends a signal for one of the following reasons:
 - Kernel has detected a system event such as divide-by-zero (SIGFPE) or the termination of a child process (SIGCHLD)
 - Another process has invoked the kill system call to explicitly request the kernel to send a signal to the destination process

Receiving a Signal

- A destination process receives a signal when it is forced by the kernel to react in some way to the delivery of the signal
- Three possible ways to react:
 - Ignore the signal (do nothing)
 - Terminate the process (with optional core dump)
 - Catch the signal by executing a user-level function called signal handler
 - Akin to a hardware exception handler being called in response to an asynchronous interrupt

Pending and Blocked Signals

- A signal is *pending* if sent but not yet received
 - There can be at most one pending signal of any particular type
 - Important: Signals are not queued
 - If a process has a pending signal of type k, then subsequent signals of type k that are sent to that process are discarded
- A process can block the receipt of certain signals
 - Blocked signals can be delivered, but will not be received until the signal is unblocked
- A pending signal is received at most once

Signal Concepts

- Kernel maintains pending and blocked bit vectors in the context of each process
 - pending: represents the set of pending signals
 - Kernel sets bit k in pending when a signal of type k is delivered
 - Kernel clears bit k in pending when a signal of type k is received
 - **blocked**: represents the set of blocked signals
 - Can be set and cleared by using the sigprocmask function

Process Groups

Every process belongs to exactly one process group

Sending Signals with /bin/kill Program

/bin/kill program sends arbitrary signal to a process or process group

Examples

- /bin/kill -9 24818 Send SIGKILL to process 24818
- /bin/kill -9 -24817
 Send SIGKILL to every process
 in process group 24817

```
linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817
linux> ps
  PID TTY
                   TIME CMD
24788 pts/2
               00:00:00 tcsh
24818 pts/2
               00:00:02 forks
24819 pts/2
               00:00:02 forks
24820 pts/2
               00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY
                   TIME CMD
24788 pts/2
               00:00:00 tcsh
24823 pts/2
               00:00:00 ps
linux>
```

Sending Signals from the Keyboard

- Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the foreground process group.
 - SIGINT default action is to terminate each process
 - SIGTSTP default action is to stop (suspend) each process

Example of ctrl-c and ctrl-z

```
bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w
 PID TTY
              STAT
                     TIME COMMAND
27699 pts/8 Ss
                     0:00 -tcsh
28107 pts/8
                     0:01 ./forks 17
28108 pts/8
                     0:01 ./forks 17
28109 pts/8
                     0:00 ps w
             R+
bluefish> fq
./forks 17
<types ctrl-c>
bluefish> ps w
  PID TTY
              STAT
                     TIME COMMAND
27699 pts/8 Ss
                     0:00 -tcsh
28110 pts/8
                     0:00 ps w
           R+
```

STAT (process state) Legend:

First letter:

S: sleeping

T: stopped

R: running

Second letter:

s: session leader

+: foreground proc group

See "man ps" for more details

Sending Signals with kill Function

```
void fork12()
   pid t pid[N];
    int i, child status;
    for (i = 0; i < N; i++)
        if ((pid[i] = fork()) == 0)
            while(1); /* Child infinite loop */
    /* Parent terminates the child processes */
    for (i = 0; i < N; i++) {
        printf("Killing process %d\n", pid[i]);
        kill(pid[i], SIGINT);
    /* Parent reaps terminated children */
    for (i = 0; i < N; i++) {
        pid t wpid = wait(&child status);
        if (WIFEXITED(child status))
            printf("Child %d terminated with exit status %d\n",
                    wpid, WEXITSTATUS(child status));
        else
            printf("Child %d terminated abnormally\n", wpid);
```

Receiving Signals

- Suppose kernel is returning from an exception handler and is ready to pass control to process p
- Kernel computes pnb = pending & ~blocked
 - The set of pending nonblocked signals for process p
- If (pnb == 0)
 - Pass control to next instruction in the logical flow for p
- Else
 - Choose least nonzero bit k in pnb and force process p to receive signal k
 - The receipt of the signal triggers some action by p
 - Repeat for all nonzero k in pnb
 - Pass control to next instruction in logical flow for p

Default Actions

- Each signal type has a predefined default action, which is one of:
 - The process terminates
 - The process terminates and dumps core
 - The process stops until restarted by a SIGCONT signal
 - The process ignores the signal

Installing Signal Handlers

- The signal function modifies the default action associated with the receipt of signal signum:
 - handler_t *signal(int signum, handler_t *handler)

Different values for handler:

- SIG_IGN: ignore signals of type signum
- SIG_DFL: revert to the default action on receipt of signals of type signum
- Otherwise, handler is the address of a signal handler
 - Called when process receives signal of type signum
 - Referred to as "installing" the handler
 - Executing handler is called "catching" or "handling" the signal
 - When the handler executes its return statement, control passes back to instruction in the control flow of the process that was interrupted by receipt of the signal

Signal Handling Example

```
void int handler(int sig) {
    safe printf("Process %d received signal %d\n", getpid(), sig);
    exit(0);
                                                         linux> ./forks 13
void fork13() {
                                                         Killing process 25417
    pid t pid[N];
                                                         Killing process 25418
    int i, child status;
                                                         Killing process 25419
                                                         Killing process 25420
    signal(SIGINT, int handler);
                                                         Killing process 25421
    for (i = 0; i < N; i++)
                                                         Process 25417 received signal 2
         if ((pid[i] = fork()) == 0) {
                                                         Process 25418 received signal 2
             while(1); /* child infinite loop
                                                         Process 25420 received signal 2
                                                         Process 25421 received signal 2
                                                         Process 25419 received signal 2
    for (i = 0; i < N; i++) {
                                                         Child 25417 terminated with exit status 0
         printf("Killing process %d\n", pid[i]);
                                                         Child 25418 terminated with exit status 0
                                                         Child 25420 terminated with exit status 0
         kill(pid[i], SIGINT);
                                                         Child 25419 terminated with exit status 0
                                                         Child 25421 terminated with exit status 0
    for (i = 0; i < N; i++) {
                                                         linux>
         pid t wpid = wait(&child status);
         if (WIFEXITED(child status))
             printf("Child %d terminated with exit status %d\n",
                      wpid, WEXITSTATUS(child status));
         else
             printf("Child %d terminated abnormally\n", wpid);
```

Signals Handlers as Concurrent Flows

- A signal handler is a separate logical flow (not process) that runs concurrently with the main program
 - "concurrently" in the "not sequential" sense

Another View of Signal Handlers as Concurrent Flows

Signal Handler Funkiness

```
int ccount = 0;
void child handler(int sig)
    int child status;
    pid t pid = wait(&child status);
    ccount--;
    safe printf(
           "Received signal %d from process %d\n",
           sig, pid);
void fork14()
    pid t pid[N];
    int i, child status;
                               linux> ./forks 14
    ccount = N;
                               Received SIGCHLD signal 17 for process 21344
    signal(SIGCHLD, child_ham Received SIGCHLD signal 17 for process 21345
    for (i = 0; i < N; i++)
         if ((pid[i] = fork()) == 0) {
             sleep(1); /* deschedule child */
             exit(0); /* Child: Exit */
    while (ccount > 0)
        pause(); /* Suspend until signal occurs */
```

- Pending signals are not queued
 - For each signal type, just have single bit indicating whether or not signal is pending
 - Even if multiple processes have sent this signal

Living With Nonqueuing Signals

- Must check for all terminated jobs
 - Typically loop with wait

```
void child handler2(int sig)
    int child status;
   pid t pid;
    while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {
       ccount--;
       safe printf("Received signal %d from process %d\n",
                     sig, pid);
               greatwhite> forks 15
void fork15()
               Received signal 17 from process 27476
               Received signal 17 from process 27477
               Received signal 17 from process 27478
    signal(SIGC Received signal 17 from process 27479
               Received signal 17 from process 27480
               greatwhite>
```

More Signal Handler Funkiness

- Signal arrival during long system calls (say a read)
- Signal handler interrupts read call
 - Linux: upon return from signal handler, the read call is restarted automatically
 - Some other flavors of Unix can cause the read call to fail with an EINTER error number (errno)
 in this case, the application program can restart the slow system call

- Subtle differences like these complicate the writing of portable code that uses signals
 - Consult your textbook for details

A Program That Reacts to Externally Generated Events (Ctrl-c)

```
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
void handler(int sig) {
  safe printf("You think hitting ctrl-c will stop the bomb?\n");
  sleep(2);
  safe printf("Well...");
                                 linux> ./external
 sleep(1);
                                 <ctrl-c>
 printf("OK\n");
                                 You think hitting ctrl-c will stop
  exit(0);
                                 the bomb?
                                 Well...OK
                                 linux>
main() {
  signal(SIGINT, handler); /* installs ctl-c handler */
 while(1) {
```

external.c

A Program That Reacts to Internally Generated Events

```
#include <stdio.h>
#include <signal.h>
int beeps = 0;
/* SIGALRM handler */
void handler(int sig) {
  safe printf("BEEP\n");
  if (++beeps < 5)
    alarm(1);
  else {
    safe printf("BOOM!\n");
    exit(0);
```

internal.c

```
linux> ./internal
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
bass>
```

Async-Signal-Safety

- Function is *async-signal-safe* if either reentrant (all variables stored on stack frame, CS:APP2e 12.7.2) or non-interruptible by signals.
- Posix guarantees 117 functions to be async-signal-safe
 - write is on the list, printf is not
- One solution: async-signal-safe wrapper for printf:

Today

- Multitasking, shells
- Signals
- Nonlocal jumps

Nonlocal Jumps: setjmp/longjmp

- Powerful (but dangerous) user-level mechanism for transferring control to an arbitrary location
 - Controlled to way to break the procedure call / return discipline
 - Useful for error recovery and signal handling
- int setjmp(jmp_buf j)
 - Must be called before longjmp
 - Identifies a return site for a subsequent longjmp
 - Called once, returns one or more times

Implementation:

- Remember where you are by storing the current register context, stack pointer, and PC value in jmp buf
- Return 0

setjmp/longjmp (cont)

- void longjmp(jmp buf j, int i)
 - Meaning:
 - return from the setjmp remembered by jump buffer j again ...
 - ... this time returning instead of 0
 - Called after setjmp
 - Called once, but never returns

■ longjmp Implementation:

- Restore register context (stack pointer, base pointer, PC value) from jump buffer j
- Set %eax (the return value) to i
- Jump to the location indicated by the PC stored in jump buf j

setjmp/longjmp Example

```
#include <setjmp.h>
jmp buf buf;
main() {
   if (setjmp(buf) != 0) {
      printf("back in main due to an error\n");
   else
      printf("first time through\n");
   p1(); /* p1 calls p2, which calls p3 */
} () Eq
   <error checking code>
   if (error)
      longjmp(buf, 1)
```

Limitations of Nonlocal Jumps

Works within stack discipline

 Can only long jump to environment of function that has been called but not yet completed

```
jmp buf env;
P1()
  if (setjmp(env)) {
    /* Long Jump to here */
  } else {
    P2();
P2()
{ . . . P2(); . . . P3(); }
P3()
  longjmp(env, 1);
```


Limitations of Long Jumps (cont.)

Works within stack discipline

Can only long jump to environment of function that has been called

but not yet completed

```
jmp buf env;
P1()
  P2(); P3();
}
P2()
{
   if (setjmp(env)) {
    /* Long Jump to here */
}
P3()
  longjmp(env, 1);
```


Putting It All Together: A Program That Restarts Itself When ctrl-c'd

```
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
sigjmp buf buf;
void handler(int sig) {
  siglongjmp(buf, 1);
main() {
  signal(SIGINT, handler);
  if (!sigsetjmp(buf, 1))
    printf("starting\n");
  else
    printf("restarting\n");
  while(1) {
     sleep(1);
     printf("processing...\n");
  }
```

```
greatwhite> ./restart
starting
processing...
processing...
restarting
processing...
processing...
restarting
processing...
restarting
processing...
restarting
processing...
processing...
processing...
```

restart.c

Summary

- Signals provide process-level exception handling
 - Can generate from user programs
 - Can define effect by declaring signal handler
- Some caveats
 - Very high overhead
 - >10,000 clock cycles
 - Only use for exceptional conditions
 - Don't have queues
 - Just one bit for each pending signal type
- Nonlocal jumps provide exceptional control flow within process
 - Within constraints of stack discipline

BBM341 Systems Programming

Kayhan İmre

Overview

- Course theme
- **■** Five realities

Course Theme:

Abstraction Is Good But Don't Forget

Reality

- Most CS and CE courses emphasize abstraction
 - Abstract data types
 - Asymptotic analysis

These abstractions have limits

- Especially in the presence of bugs
- Need to understand details of underlying implementations

Useful outcomes

- Become more effective programmers
 - Able to find and eliminate bugs efficiently
 - Able to understand and tune for program performance
- Prepare for later "systems" classes in CS & ECE
 - Compilers, Operating Systems, Networks, Computer Architecture,
 Embedded Systems

Great Reality #1: Ints are not Integers, Floats are not Reals

- Example 1: Is $x^2 \ge 0$?
 - Float's: Yes!

- Int's:
 - 40000 * 40000 <1600000000
 - 50000 * 50000 **©**??
- **Example 2:** Is (x + y) + z = x + (y + z)?
 - Unsigned & Signed Int's: Yes!
 - Float's:
 - (1e20 + -1e20) + 3.14 --> 3.14
 - 1e20 + (-1e20 + 3.14) --> ??

Great Reality #2: You've Got to Know Assembly

- Chances are, you'll never write programs in assembly
 - Compilers are much better & more patient than you are
- But: Understanding assembly is key to machine-level execution model
 - Behavior of programs in presence of bugs
 - High-level language models break down
 - Tuning program performance
 - Understand optimizations done / not done by the compiler
 - Understanding sources of program inefficiency
 - Implementing system software
 - Compiler has machine code as target
 - Operating systems must manage process state
 - Creating / fighting malware
 - x86 assembly is the language of choice!

Great Reality #3: Memory MattersRandom Access Memory Is an Unphysical Abstraction

Memory is not unbounded

- It must be allocated and managed
- Many applications are memory dominated

Memory referencing bugs especially pernicious

Effects are distant in both time and space

Memory performance is not uniform

- Cache and virtual memory effects can greatly affect program performance
- Adapting program to characteristics of memory system can lead to major speed improvements

Memory Referencing Errors

■ C and C++ do not provide any memory protection

- Out of bounds array references
- Invalid pointer values
- Abuses of malloc/free

Can lead to nasty bugs

- Whether or not bug has any effect depends on system and compiler
- Action at a distance
 - Corrupted object logically unrelated to one being accessed
 - Effect of bug may be first observed long after it is generated

How can I deal with this?

- Program in Java, Ruby or ML
- Understand what possible interactions may occur
- Use or develop tools to detect referencing errors (e.g. Valgrind)

Memory System Performance Example

```
 \begin{array}{lll} \mbox{void copyij(int src[2048][2048],} \\ & \mbox{int dst[2048][2048])} \\ \{ & \mbox{int i,j;} \\ & \mbox{for (i = 0; i < 2048; i++)} \\ & \mbox{dst[i][j] = src[i][j];} \\ \} \end{array}
```

21 times slower (Pentium 4)

- Hierarchical memory organization
- Performance depends on access patterns
 - Including how step through multi-dimensional array

Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh

Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW

DDR4: 6 channels @ 2400 up to 384GB

IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset

Node: 1-Socket only

Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops

Scalar Perf: ~3x over Knights Corner

Streams Triad (GB/s): MCDRAM: 400+; DDR: 90+

Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change without notice. His change without notice. His change with intel Xeon processors using Haswell believe to Sci. (expect TeX). Beduidth numbers are based on STREAM-like memory access pattern when METERAL pages only. Any otherwise line system

Intel® Xeon® Processor Scalable (2018)

Intel[®] Xeon[®] Processor Scalable (2018)

Great Reality #4: There's more to performance than asymptotic complexity

- Constant factors matter too!
- And even exact op count does not predict performance
 - Easily see 10:1 performance range depending on how code written
 - Must optimize at multiple levels: algorithm, data representations, procedures, and loops
- **■** Must understand system to optimize performance
 - How programs compiled and executed
 - How to measure program performance and identify bottlenecks
 - How to improve performance without destroying code modularity and generality

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision) Gflop/s

- Standard desktop computer, vendor compiler, using optimization flags
- Both implementations have exactly the same operations count (2n³)
- What is going on?

Great Reality #5: Computers do more than execute programs

- They need to get data in and out
 - I/O system critical to program reliability and performance

■ They communicate with each other over networks

- Many system-level issues arise in presence of network
 - Concurrent operations by autonomous processes
 - Coping with unreliable media
 - Cross platform compatibility
 - Complex performance issues

Course Perspective

Most Systems Courses are Builder-Centric

- Computer Architecture
 - Design pipelined processor in Verilog
- Operating Systems
 - Implement large portions of operating system
- Compilers
 - Write compiler for simple language
- Networking
 - Implement and simulate network protocols

Course Perspective (Cont.)

Our Course is Programmer-Centric

- Purpose is to show how by knowing more about the underlying system,
 one can be more effective as a programmer
- Enable you to
 - Write programs that are more reliable and efficient
 - Incorporate features that require hooks into OS
 - E.g., concurrency, signal handlers
- Not just a course for dedicated hackers
 - We bring out the hidden hacker in everyone
- Cover material in this course that you won't see elsewhere

Textbooks

Randal E. Bryant and David R. O'Hallaron,

- "Computer Systems: A Programmer's Perspective, Second Edition" (CS:APP2e), Prentice Hall, 2011
- http://csapp.cs.cmu.edu/2e/home.html
- This book really matters for the course!
 - How to solve labs
 - Practice problems typical of exam problems

Brian Kernighan and Dennis Ritchie,

"The C Programming Language, Second Edition", Prentice Hall, 1988

Programs and Data

Topics

- Bits operations, arithmetic, assembly language programs
- Representation of C control and data structures
- Includes aspects of architecture and compilers

The Memory Hierarchy

- Memory technology, memory hierarchy, caches, disks, locality
- Includes aspects of architecture and OS

Performance

- Co-optimization (control and data), measuring time on a computer
- Includes aspects of architecture, compilers, and OS

Exceptional Control Flow

- Hardware exceptions, processes, process control, Unix signals, nonlocal jumps
- Includes aspects of compilers, OS, and architecture

Virtual Memory

- Virtual memory, address translation, dynamic storage allocation
- Includes aspects of architecture and OS

Bits, Bytes, and Integers

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Binary Representations

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex Decimanary

0	0000
1	
	0001
2	0010
3	0011
4	0100
	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
	3 4 5 6 7 8 9 10 11 12 13 14

Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular "process"
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- All allocation within single virtual address space

Machine Words

Machine Has "Word Size"

- Nominal size of integer-valued data
 - Including addresses
- Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8 X 10¹⁹ bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes

Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

Data Representations

C Data Type	Typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?
- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address

Byte Ordering Example

Big Endian

Least significant byte has highest address

Little Endian

Least significant byte has lowest address

Example

- Variable x has 4-byte representation 0x01234567
- Address given by &x is 0x100

Big Endian		0x100	0x101	0x102	0x103	
		01	23	45	67	
Little Endia	ın	0x100	0x101	0x102	0x103	
		67	45	23	01	

Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

Address	Instruction Code	Assembly Rendition
8048365:	5b	pop %ebx
8048366:	81 c3 ab 12 00 00	add \$0x12ab,%ebx
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)

Deciphering Numbers

- Value:
- Pad to 32 bits:
- Split into bytes:
- Reverse:

0x12ab

0x000012ab

00 00 12 ab

ab 12 00 00

Representing Integers

Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

int A = 15213;

int B = -15213;

long int C = 15213;

Two's complement representation (Covered later)

Representing Strings

char S[6] = "18243";

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character "0" has code 0x30
 - Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

Byte ordering not an issue

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

■ A&B = 1 when both A=1 and B=1

&	0	1
0	0	0
1	0	1

Or

■ A|B = 1 when either A=1 or B=1

ı	0	1
0	0	1
1	1	1

Not

~A = 1 when A=0

~	
0	1
1	0

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101 00111100 1010101
```

All of the Properties of Boolean Algebra Apply

Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w-1}
- $\bullet \quad a_j = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

- &	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
~	Complement	10101010	{ 1, 3, 5, 7 }

Bit-Level Operations in C

■ Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- -0x41 = 0xBE
 - ~01000001₂ = 101111110₂
- -0x00 = 0xFF
 - $\sim 0000000002 = 11111111112$
- \bullet 0x69 & 0x55 = 0x41
 - 01101001₂ & 01010101₂ = 01000001₂
- 0x69 | 0x55 = 0x7D
 - 01101001₂ | 01010101₂ = 011111101₂

Contrast: Logic Operations in C

Contrast to Logical Operators

- **&** &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 = 0x00
- !0x00 = 0x01
- | !!0x41 = 0x01
- \bullet 0x69 && 0x55 = 0x01
- 0x69 || 0x55 = 0x01

Shift Operations

■ Left Shift: x << y

- Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right

Right Shift: x >> y

- Shift bit-vector x right y positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0's on left
- Arithmetic shift
 - Replicate most significant bit on right

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	<i>00</i> 101000
Arith. >> 2	<i>11</i> 101000

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Encoding Integers

Unsigned
$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two's Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

Sign Bit

C short 2 bytes long

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
У	-15213	C4 93	11000100 10010011	

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

23

Encoding Example (Cont.)

x = 15213: 00111011 01101101y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Sum 15213 -15213

Values for Different Word Sizes

	W			
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- \blacksquare | TMin | = TMax + 1
 - Asymmetric range
- UMax = 2 * TMax + 1

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Conversion Visualized

2's Comp.

Unsigned **UMax Ordering Inversion** UMax - 1Negative ☐ Big Positive TMax + 1Unsigned TMax **TMax** Range 2's Complement Range

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffixOU, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;

uy = ty;
```

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

■ Constant ₁	Constant ₂	Relation	Evaluation
0	OU	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Sign Extension

■ Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

Make k copies of sign bit:

W

Sign Extension Example

```
short int x = 15213;
int        ix = (int) x;
short int y = -15213;
int        iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

Negation: Complement & Increment

Claim: Following Holds for 2's Complement

$$~x + 1 == -x$$

Complement

```
• Observation: \sim x + x == 1111...111 == -1

x = 10011101

+ \sim x = 01100010

-1 = 111111111
```

Complete Proof?

Complement & Increment Examples

$$x = 15213$$

	Decimal	Hex	Binary	
x	15213	3B 6D	00111011 01101101	
~x	-15214	C4 92	11000100 10010010	
~x+1	-15213	C4 93	11000100 10010011	
У	-15213	C4 93	11000100 10010011	

$$x = 0$$

	Decimal	Hex	Binary	
0	0	00 00	0000000 00000000	
~0	-1	FF FF	11111111 11111111	
~0+1	0	00 00	0000000 00000000	

Unsigned Addition

Operands: w bits

u

True Sum: w+1 bits

u + v

Discard Carry: w bits

$$UAdd_{w}(u, v)$$

Standard Addition Function

- Ignores carry output
- Implements Modular Arithmetic

$$s = UAdd_w(u, v) = u + v \mod 2^w$$

$$UAdd_{w}(u,v) = \begin{cases} u+v & u+v < 2^{w} \\ u+v-2^{w} & u+v \ge 2^{w} \end{cases}$$

Two's Complement Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

u

 $TAdd_{w}(u, v)$

TAdd and UAdd have Identical Bit-Level Behavior

Signed vs. unsigned addition in C:

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v
```

Will give s == t

TAdd Overflow

Functionality

- True sum requires w+1 bits
- Drop off MSB
- Treat remaining bits as 2's comp. integer

True Sum

Multiplication

- Computing Exact Product of w-bit numbers x, y
 - Either signed or unsigned

Ranges

- Unsigned: $0 \le x * y \le (2^w 1)^2 = 2^{2w} 2^{w+1} + 1$
 - Up to 2w bits
- Two's complement min: $x * y \ge (-2^{w-1})^*(2^{w-1}-1) = -2^{2w-2} + 2^{w-1}$
 - Up to 2*w*−1 bits
- Two's complement max: $x * y \le (-2^{w-1})^2 = 2^{2w-2}$
 - Up to 2w bits, but only for (*TMin_w*)²

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by "arbitrary precision" arithmetic packages

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$

Signed Multiplication in C

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

k

Power-of-2 Multiply with Shift

Operation

- $\mathbf{u} \ll \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
- Both signed and unsigned

Operands: w bits

Examples

- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Compiled Multiplication Code

C Function

```
int mul12(int x)
{
   return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

 C compiler automatically generates shift/add code when multiplying by constant

Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - $\mathbf{u} \gg \mathbf{k}$ gives $\left[\mathbf{u} / 2^{k}\right]$
 - Uses logical shift

	Division	Computed	Hex	Binary
x	15213	15213	3B 6D	00111011 01101101
x >> 1	7606.5	7606	1D B6	00011101 10110110
x >> 4	950.8125	950	03 B6	00000011 10110110
x >> 8	59.4257813	59	00 3B	00000000 00111011

Compiled Unsigned Division Code

C Function

```
unsigned udiv8(unsigned x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>

Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $\mathbf{x} \gg \mathbf{k}$ gives $\left[\mathbf{x} / 2^k \right]$
 - Uses arithmetic shift
 - Rounds wrong direction when u < 0

	Division	Computed	Hex	Binary
У	-15213	-15213	C4 93	11000100 10010011
y >> 1	-7606.5	-7607	E2 49	1 1100010 01001001
y >> 4	-950.8125	-951	FC 49	11111100 01001001
у >> 8	-59.4257813	-60	FF C4	1111111 11000100

Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want $\begin{bmatrix} x \\ \end{pmatrix}$ (Round Toward 0)
 - Compute as $\left[(x+2^k-1)/2^k \right]$
 - In C: (x + (1 << k) -1) >> k
 - Biases dividend toward 0

Biasing has no effect

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Biasing adds 1 to final result

Compiled Signed Division Code

C Function

```
int idiv8(int x)
{
  return x/8;
}
```

Compiled Arithmetic Operations

```
testl %eax, %eax
  js L4
L3:
  sarl $3, %eax
  ret
L4:
  addl $7, %eax
  jmp L3
```

Explanation

```
if x < 0
  x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int
- **For Java Users**
 - Arith. shift written as >>

Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary