IIC2343-1 - Arquitectura de Computadores (I/2022)

Interrogación 3

Respuestas sin desarrollo o justificación no tendrán puntaje.

Miércoles 6 de Julio a las 10:00 horas

Instrucciones

Lea atentamente los enunciados. Responda solo 3 de las 4 preguntas, cada una en hojas separadas. Ponga su nombre, número de alumno y número de lista. Siga el código de honor.

Código de Honor de la UC

"Como miembro de la comunidad de la Pontificia Universidad Católica de Chile me comprometo a respetar los principios y normativas que la rigen. Asimismo, prometo actuar con rectitud y honestidad en las relaciones con los demás integrantes de la comunidad y en la realización de todo trabajo, particularmente en aquellas actividades vinculadas a la docencia, el aprendizaje y la creación, difusión y transferencia del conocimiento. Además, velaré por la integridad de las personas y cuidaré los bienes de la Universidad."

Pregunta 1: GPU (6 ptos.)

- (a) Respecto a las GPUs, indique cuál es su principal ventaja frente a una CPU tradicional y en que tipos de problemas estas obtienen una ventaja. Además explique cómo las GPUs mantienen un alto rendimiento, frente a la relativa alta latencia de acceso a memoria principal y baja capacidad de sus cachés.
- (b) Considere el arreglo X = [65,78,12,98,128,233,167,201], y el siguiente pseudocódigo, que va a ejecutar en una GPU SIMT en 2 thread blocks de 4 threads cada uno, sobre las variables 0-4 y 4-8 del arreglo:

```
uint8 x;
if (threadIdx.X < 128) {
    x = threadIdx.X
    A(x);
} else {
    x = threadIdx.X
    B(x);
}
C(x);</pre>
```

(3)

(3)

Indique cuál de las siguientes 4 figuras corresponde a un diagrama de la ejecución de estos bloques, donde cada flecha representa un thread para un índice del arreglo, y justifique brevemente su elección en base a sus conocimientos sobre GPUs y el snippet ejecutado.

Pregunta 2: MESI (6 ptos.)

Considere la siguiente cache, esta es compartida por 3 CPUs con paralelismo UMA. Para mantener la entre sus caches se usa el protocolo MESI.

Dirección	Label	Valor
0xCD	i	5
0xCE	temp	-45
0xCF	var1	2
0xD0	var2	9
0xD1	Arr	20
0xD2		-10
0xD3		3
0xD4		9

```
CPU 0:
                                     CPU 1:
                                                                           CPU 2:
                                     MOV A, Arr
                                                                           MOV B, (i)
MOV A, (var1)
MOV B, (var2)
                                      ADD A, 1
                                                                           MOV A, (Arr)
ADD A, B
                                     MOV (temp), A
                                                                           ADD A, B
MOV (Arr), A
                                     MOV B, (temp)
                                                                           MOV (i), A
ADD A, (i)
                                     MOV B, (B)
                                                                           INC B
                                      MOV (var1), B
MOV (temp), A
                                                                           MOV (var2), B
```

- (a) Indique los valores finales de las variables para la cache privada de cada CPU, considerando que el valor de estas en cache solamente se actualiza cuando ocurre una escritura.
- (b) Complete la siguiente tabla. En cada entrada indique si el valor fue modificado (M), es exclusivo (E), compartido (S) o invalido (I).

(2)

(4)

	Cache - CPU0							
Inst	i	temp	var1	var2	Arr[0]	Arr[1]	Arr[2]	Arr[3]
1								
2								
3								
4								
5								
6								

	Cache - CPU1							
Inst	i	temp	var1	var2	Arr[0]	Arr[1]	Arr[2]	Arr[3]
1								
2								
3								
4								
5								
6								

	Cache - CPU2							
Inst	i	temp	var1	var2	Arr[0]	Arr[1]	Arr[2]	Arr[3]
1								
2								
3								
4								
5								
6								

Le Bonus (Bonus 5 décimas)

(a)	¿Qué aplicación real crítica se le ha dado a los super computadores en los últimos años?	(1 bonus)
(b)	¿Qué significa que un algoritmo sea quantum safe?	(1 bonus)
(c)	En el año 2019 Google publicó un $paper$ donde afirmaba alcanzar la supremacía cuántica. ¿De que compañía era el equipo que demostró que esta proclamación era incorrecta?	(1 bonus)
	\square Meta \square D-Wave \square IBM \square Microsoft \square Rigetti \square Xanadu \square Honeywell \square Otro:	
(d)	¿Cuál es el problema matemático que los computadores cuánticos buscan resolver rápidamente, amenazando la ciberseguridad moderna?	(1 bonus)
(e)	¿Porqué el problema de la decoherencia hace imposible tener computadores cuánticos personales?	(1 bonus)