Latent Factor Model I

STAT3009 Recommender Systems

by Ben Dai (CUHK-STAT) on August 13, 2022

» Recall: RS

- * Training dataset: [userID, itemID, rating]
- * Testing dataset: [userID, itemID, ?]
- * **Evaluation:** Given a testing index set Ω^{te} (set of user-item pairs we want to predict),

$$extit{RMSE} = \Big(rac{1}{|\Omega^{ ext{te}}|}\sum_{(u,i)\in\Omega^{ ext{te}}} ig(\hat{r}_{ui} - r_{ui}ig)^2\Big)^{1/2}.$$

- * **Goal:** Find predicted ratings $(\hat{r}_{ui})_{(u,i)\in\Omega^{\text{te}}}$ such that minimizes RMSE
- Baseline methods: Global-average, user-average, item-average, user-item average
- * Correlation-based RS: User-correlation-based RS, item-correlation-based RS, and correlation-based + baseline

» Machine learning (ML): RS

Using ML methods to build RS:

- Step 1. Introduce a model with some parameters
- Step 2. Estimate the parameters by minimizing (maximizing) the Evaluation Loss in Training Set
- Step 3. Use the estimated model to predict
 - Idea Learning from Data: A model works well in Training Set, tend to work well in Testing Set

» Machine learning (ML): RS

1 MATH

- * Training dataset (feat_i, label_i) $_{i=1}^n$
- * Testing dataset (feat_j) $_{j=1}^m$:
- Step 1. Introduce a model with some parameters: f_{θ}
- Step 2. Estimate the parameters by minimizing (maximizing) the Evaluation Loss in Training Set

$$\widehat{f}_{ heta} = \mathop{\mathrm{argmin}}_{f_{ heta}} \ rac{1}{n} \sum_{i=1}^n Lig(\mathsf{label}_i, f_{ heta}(\mathsf{feat}_i) ig) + \lambda \mathsf{Reg}(f_{ heta}).$$

Step 3. Use the estimated model to predict

$$\widehat{\mathsf{label}}_j = \widehat{f}_{\theta}(\mathsf{feat}_j).$$

» Components in ML

- Data (feat, label) is a pair of input features and its outcome
- Model $f_{ heta}$: a parameterized function to map features to label
 - Loss $L(\cdot,\cdot)$: The measure of how good the predicted outcome compared with the true outcome
 - Reg $\mathsf{Reg}(f_{ heta})$: regularization term in ERM to prevent overfitting
 - Opt The algorithm for solving the problem

Can we use this learning paradigm to find the best parameters for baseline models?

* **Step 1.** Introduce a method with some **parameters**

		<u>. </u>
method	math formula	parameters
Global Average	$\hat{r}_{ui}=\mu_0$	μ_0
User Average	$\hat{r}_{ui} = a_u$	$\mathbf{a}=(a_1,\cdots,a_n)^{\intercal}$
Item Average	$\hat{r}_{ui} = b_i$	$oldsymbol{b} = (b_1, \cdots, b_m)^{\intercal}$
User-Item Average	$\hat{r}_{ui} = \mu_0 + a_u + b_i$	$\mu_0, \boldsymbol{a}, \boldsymbol{b}$

Step 2. Estimate the parameters by minimizing RMSE
 Global Average.

$$\min_{\mu_0 \in \mathbb{R}} \left(\frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (\mu_0 - r_{ui})^2 \right)^{1/2} \Longleftrightarrow \min_{\mu_0 \in \mathbb{R}} \sum_{(u,i) \in \Omega} (\mu_0 - r_{ui})^2$$

Step 2. Estimate the parameters by minimizing RMSE
 Global Average.

$$\min_{\mu_0 \in \mathbb{R}} \left(\frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (\mu_0 - r_{ui})^2 \right)^{1/2} \iff \min_{\mu_0 \in \mathbb{R}} \sum_{(u,i) \in \Omega} (\mu_0 - r_{ui})^2$$

Taking the derivative to μ_0 :

$$2\sum_{(u,i)\in\Omega}(\mu_0-r_{ui})=0, \implies \mu_0=rac{1}{|\Omega|}\sum_{(u,i)\in\Omega}r_{ui}=ar{r}$$

- Step 2. Estimate the parameters by minimizing RMSE
 - * User Average.

$$\min_{\boldsymbol{a}\in\mathbb{R}^n}\sum_{(u,l)\in\Omega}(a_u-r_{ui})^2\iff \min_{\boldsymbol{a}\in\mathbb{R}^n}\sum_{u=1}^n\sum_{i\in I_u}(a_u-r_{ui})^2$$

 The loss function is separable, thus it suffices to consider user-wise minimization:

$$egin{aligned} a_u &= \operatornamewithlimits{argmin}_{a_u \in \mathbb{R}} \sum_{i \in \overline{I}_u} (a_u - r_{ui})^2 \ &= rac{1}{|I_u|} \sum_{i \in \overline{I}_u} r_{ui} = ar{r}_u, \quad ext{for } u = 1, \cdots, n \end{aligned}$$

- » Rethink baseline methods: RS
 - Step 2. Estimate the parameters by minimizing RMSE
 - * Item Average.

$$\min_{\boldsymbol{b} \in \mathbb{R}^m} \sum_{(u,i) \in \Omega} (b_i - r_{ui})^2 \iff \min_{\boldsymbol{b} \in \mathbb{R}^m} \sum_{i=1}^m \sum_{u \in \mathcal{U}_i} (b_i - r_{ui})^2$$

 The loss function is separable, thus it suffices to consider item-wise minimization:

$$egin{aligned} b_i &= \operatornamewithlimits{argmin}_{b_i \in \mathbb{R}} \sum_{u \in \mathcal{U}_i} (b_i - r_{ui})^2 \ &= rac{1}{|\mathcal{U}_i|} \sum_{u \in \mathcal{U}_i} r_{ui} = ar{r}_i, \quad ext{for } i = 1, \cdots, m \end{aligned}$$

- Step 2. Estimate the parameters by minimizing RMSE
 - * User-Item Average.

$$\min_{\boldsymbol{a}\in\mathbb{R}^n,\boldsymbol{b}\in\mathbb{R}^m}\sum_{(u,i)\in\Omega}(\mu_0+a_u+b_i-r_{ui})^2$$

* The loss is **non-separable**, taking the gradient w.r.t. $(\mu_0, \mathbf{a}, \mathbf{b})$ and eqaul to zeros

$$\sum_{(u,i)\in\Omega}(\mu_0+a_u+b_i-r_{ui})=0$$

* Specify μ_0 , \boldsymbol{a}_u , and \boldsymbol{b}_i sequentially.

» Prediction: Baseline Methods

- * Step 3. Use the estimated model to do prediction
 - * Global Average: $\hat{r}_{ui} = \hat{\mu}_0$
 - * User Average: $\hat{r}_{ui} = \hat{a}_{ui}$
 - * Item Average: $\hat{r}_{ui} = \hat{b}_i$
 - * User-Item Average: $\hat{r}_{ui} = \hat{\mu}_0 + \hat{a}_u + \hat{b}_i$

» Discussion: baseline methods

"All models are wrong, but some are useful." — George E. P. Box

We need to figure out the assumptions for each method!

- Global average assumes that all users and items are essentially same
- User average assumes that a user has equal preference to all items
- * Item average assumes that all users like "good" items
- User-item average assume that additive effects from users and items, no interaction

Example: I just don't like Action movies, even their ratings is quit high.

We need to model the user-item interaction.

» Motivation: Latent Factor Mode

» Motivation: Latent Factor Mode

- Step 1. Introduce a method with some parameters (latent factors)
 - * Introduce K-length latent factors p_u for the user u:

$$\boldsymbol{p}_u = (p_{u1}, \cdots, p_{uK})^{\mathsf{T}}$$

* Introduce K-length latent factors q_i for the item i:

$$\mathbf{q}_i = (q_{i1}, \cdots, q_{iK})^{\mathsf{T}}$$

* Model the user-item interaction as inner production

$$\hat{r}_{ui} = oldsymbol{p}_u^{\intercal} oldsymbol{q}_i
ightarrow r_{ui}$$

- * K is pre-specified number: #Latent Factors
- * We tend to learn the latent factors from the data

» Loss: Latent Factor Model

* Step 2. Estimate the parameters by minimizing RMSE

$$\min_{\boldsymbol{P} \in \mathbb{R}^{n \times K}, \boldsymbol{Q} \in \mathbb{R}^{m \times K}} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_u^{\mathsf{T}} \boldsymbol{q}_i)^2 \tag{1}$$

- K is a pre-specified #Latent Factor, can NOT be solved by (3). In ML, we call it tuning parameter or hyperparameter.
- * *K* increases \Longrightarrow more parameters \Longrightarrow lower training loss
- * Lower training loss is always better? NO!

» Overfitting in ML: Latent Factor Model

Source¹

- * Overfitting: fit the noise
- Too many parameters (model complexity) leads to overfitting

 $^{^{1}} https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42$

» Overfitting in ML: Latent Factor Model

Source²

* Complexity too large ⇒ Low Training loss but high
 Testing loss

 $[\]frac{2}{\text{https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42}$

» Overfitting in ML: Latent Factor Model

Source³

 $^{^3 \\ \}text{https://hackernoon.com/memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-machine-learning-820b091dc42}$

» Tuning: Latent Factor Model

- * Q1: How to quantify the Model Complexity:
 - * #Parameters: (n+m)K
 - * Magnitude of Parameters: $\sum_{u=1}^{n} \|\boldsymbol{p}_u\|_2^2, \sum_{i=1}^{m} \|\boldsymbol{q}_i\|_2^2$
- * **A1:** Control (#Parameters by K, Magnitude by l_2 -norm).
- * Regularized Latent Factor Model:

$$\min_{\boldsymbol{P},\boldsymbol{Q}} \underbrace{\frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_{u}^{\mathsf{T}} \boldsymbol{q}_{i})^{2}}_{\text{Training loss}} + \underbrace{\lambda \left(\sum_{u=1}^{n} \|\boldsymbol{p}_{u}\|_{2}^{2} + \sum_{i=1}^{m} \|\boldsymbol{q}_{i}\|_{2}^{2}\right)}_{\text{Params magnitude}}$$
(2)

where K and $\lambda > 0$ are tuning parameters to balance the model complexity and training loss.

* Why the later term can control the magnitude?

- » Tuning: Latent Factor Model
 - * **Q2:** How to find the **best** tuning parameters (K, λ)
 - * A2: Cross-validation (CV) based on Training/Validation splitting

» Tuning: Latent Factor Model

- * **Q2:** How to find the **best** tuning parameters (K, λ)
- * A2: Cross-validation (CV) based on Training/Validation splitting

» **k**-Fold Cross-Validation

* Typical splitting method: k-fold CV

Source⁵

 $^{^{5}} https://cambridgecoding.wordpress.com/2016/04/03/scanning-hyperspace-how-to-tune-machine-learning-models/$

* Step 2. Estimate the parameters by minimizing RMSE

$$\min_{\boldsymbol{P},\boldsymbol{Q}} \frac{1}{|\Omega|} \sum_{(\boldsymbol{u},\boldsymbol{h} \in \Omega)} (r_{ui} - \boldsymbol{p}_u^{\mathsf{T}} \boldsymbol{q}_i)^2 + \lambda \left(\sum_{u=1}^n \|\boldsymbol{p}_u\|_2^2 + \sum_{i=1}^m \|\boldsymbol{q}_i\|_2^2 \right)$$

- Using Cross-Validation to determine the optimal tuning parameters (K, λ), denote as K* and λ*
- * Refit the model based on full training data with K^* and λ^* .
- * The final estimator is denoted as $(\hat{\pmb{p}}_u)_{u=1}^n$ and $(\hat{\pmb{q}}_i)_{i=1}^m$

» Prediction: Latent Factor Model

* **Step 3.** Using the **estimated model** with the best tuning parameters to do prediction

$$\hat{r}_{ui} = \hat{\boldsymbol{p}}_{u}^{\intercal} \hat{\boldsymbol{q}}_{i}, \text{ for } (u, i) \in \Omega^{\mathsf{te}}$$

» Summary: Latent Factor Model

- Step 1. Introduce a method with some parameters (latent factors)
 - * Model the user-item interaction as inner production

$$\hat{r}_{ui} = oldsymbol{p}_u^{\intercal} oldsymbol{q}_i
ightarrow r_{ui}$$

Step 2. Estimate the parameters by minimizing RMSE

$$\min_{\boldsymbol{P},\boldsymbol{Q}} \frac{1}{|\Omega|} \sum_{(u,i) \in \Omega} (r_{ui} - \boldsymbol{p}_{u}^{\mathsf{T}} \boldsymbol{q}_{i})^{2} + \lambda \left(\sum_{u=1}^{n} \|\boldsymbol{p}_{u}\|_{2}^{2} + \sum_{i=1}^{m} \|\boldsymbol{q}_{i}\|_{2}^{2} \right) \quad (3)$$

- * Using Cross-Validation to determine the optimal tuning parameters (K, λ) , denote as K^* and λ^*
- * Refit the model based on full training data with K^* and λ^* .
- Step 3. Using the estimated model with the best tuning parameters to do prediction