Hausaufgabe 2

Sommersemester 2018

Automatentheorie und Formal Sprachen

Deckblatt

Abgabe/Besprechung: bis 9.4.2018 - 12:30

J. Padberg

HINWEISE zur Bearbeitung des Blattes:

- Bearbeiten Sie bitte das Blatt zu zweit (ggf auch zu dritt).
- Geben Sie bitte Ihren Name und Ihre Gruppe an:

Gruppe und Team	
Name	
Name	
Name	

- Drucken Sie sich die Hausaufgabe einseitig aus.
- Bitte geben Sie Ihre Lösungen **gut lesbar** auf den ausgedruckten Hausaufgaben an.
- Jede/r Student/in muss ihre/seine eigene Kopie haben und gebe Sie ihren Namen auf jeder Seite mit an.

Aufgabe A : Sei dies der deterministische endliche Automat A über dem Alphabet $\Sigma = \{a, b\}$.

1. Welche Sprache erkennt er? Kreuzen Sie bitte ${\cal L}(A)$ an:

$L(A) = \{(aa)^n b \mid n \ge 1\}$	
$L(A) = \{ \text{ alle W\"{o}rter, die } a^n b \text{ beinhalten, mit } n > 1 \}$	
$L(A) = \{v_1 \circ aab \circ v_2 \mid v_1, v_2 \in \{a, b, c\}^*\}$	
$L(A) = \{a, b\}^* \circ \{aab\} \circ \{a, b\}^*$	
$L(A) = \{ w \mid w = v_1 \circ aab \circ v_2 \text{ wobei } v_1, v_2 \in \{a, b\}^* \}$	

Fortsetzung der Aufgabe A:

2. Geben Sie bitte eine Berechnung für das Wort baabaan.

3. Berechnen Sie bitte $\widehat{\delta}(q0, baab)$.

 $\bf Aufgabe~B:~$ Für die deterministischen, endlichen Automaten ist der Zusammenhang zwischen der Berechnung der Folgekonfigurationen und der erweiterten Übergangsfunktion dadurch gegeben, dass:

$$\widehat{\delta}(q_0,w) = q$$
genau dann, wenn $(q0,w) \stackrel{*}{\mapsto} (q,\epsilon)$

1. Geben Sie bitte dafür drei Beispiele an:

Fortsetzung der Aufgabe B:

Fortsetzung der Aufgabe B:

3. Beweisen Sie bitte für beliebige DEA $A=(Q,\Sigma,\delta,q_0,F)$:

$$(q0, w) \stackrel{*}{\mapsto} (\widehat{\delta}(q_0, w), \epsilon)$$

Hinweis: Induktion über Länge von w

Aufgabe C : Gegeben dieser NEA:

- 1. Ist $bbbab \in L(A)$? Geben Sie bitte die Berechnung der Folgekonfigurationen an.
- 2. Ist $bba \in L(A)$? Berechnen Sie die erweiterte Übergangsfunktion $\widehat{\delta}(q0, bba)$.
- 3. Welches Verfahren benutzen Sie, um zu zeigen, dass ein Wort nicht in der Sprache eine NEA ist? Bitte begründen Sie Ihre Antwort.

Aufgabe D : Gegeben dieser NEA A

über $\{a, b, c\}$:

