MESSAGE AUTHENTICATION CODE AND HASH FUNCTIONS

- □ For a secure communication
 - Authentication
 - Confidentiality
 - □ Integrity
 - Non repudiation

Symmetric Encryption

- □ None of the above system provides data integrity aka message authentication.
- □ Solution to problem : USING CHECKSUM (FCS)

MAC

- □ Another solution is message authentication code knows as cryptographic checksum
 - □ Involves using a second key.

```
M = input message

C = MAC function

K = shared secret key

MAC = message authentication code = C(K, M),
```

MAC cont'd

(c) Message authentication and confidentiality; authentication tied to ciphertext

 $C(K_1, E(K_2, M))$

Compare

MAC cont'd

- □ Similar to encryption function
 - Only non reversible.
- □ It is many-to-one function.
 - If an *n*-bit MAC is used, then there are 2^n possible MACs, whereas there are N possible messages with $N >> 2^n$. Furthermore, with a *k*-bit key, there are 2^K possible keys.

For example, suppose that we are using 100-bit messages and a 10-bit MAC. Then, there are a total of 2^{100} different messages but only 2^{10} different MACs. So, on average, each MAC value is generated by a total of 2^{100} / 2^{10} = 2^{90} different messages. If a 5-bit key is used, then there are 2 5= 32 different mappings from the set of messages to the set of MAC values.

□ It turns out that because of the mathematical properties of the authentication function, it is less vulnerable to being broken than encryption.

HASH FUNCTION

- □ A Hash Function is a well-defined procedure or mathematical function that converts a large, possibly variable-sized amount of data "m" into a small datum called HashValue defined by h:=h(m)
- □ IV is the initial value given as input to the hash function [Initial/Group key]

HASH FUNCTIONS

- □ The Cryptographic hash function has Some significant properties :
 - The input can be of a variable length while The output has a fixed length
 - Easy to compute the hash value for any given message.
 - The description of h must be publicly known and should not require any secret information for its operation
 - □ One Way Function: it is infeasible to extract a message from its given hash.
 - □ It is infeasible to modify a message without changing its hash .
 - □ Collision Resistant: There are NO two different distinct messages with the same hash result.

□ There are a series of well know hash functions . Most commonly used in Cryptography is MD "Message Digest Algorithm" [MD4, MD5, MD6, RIPE-MD]And the SHA "Secure Hash Algorithm" series (1,224, 256, 384, 512)

	SHA-1	SHA-256	SHA-384	SHA-512
Message digest size	160	256	384	512
Message size	<2 ⁶⁴	<2 ⁶⁴	<2128	<2128
Block size	512	512	1024	1024
Word size	32	32	64	64
Number of steps	80	64	80	80
Security	80	128	192	256