Laboratorio N.2

Introduccion a Los Metodos Estadisticos Generacion de Estimadores

Diana Carolina Arias Sinisterra Cod. 1528008 Kevin Steven Garcia Chica Cod. 1533173 Cesar Andres Saavedra Vanegas Cod. 1628466

Universidad Del Valle

Facultad De Ingenieria Estadistica Octubre 2017

${\bf \acute{I}ndice}$

1.	Situación 1	3
	1.1. Punto a	3
	1.2. Punto b	
	1.3. Punto c	
2.	Situación 2	5
	2.1. Punto a	5
	2.2. Punto b	5
	2.3. Punto c	5
3.	Situación 4	6
	3.1. Punto a	6
	3.2. Punto b	
	3.3. Punto c	
4.	Situación 5	7
	4.1. Punto a	7
5.	Situación 7	8
	5.1. Punto a	8
	5.2. Punto b	

1.1. Punto a.

Un estimador maximo verosimil de λ para una funcion Poisson(λ) esta dado por.

$$f_{(x)}(x) = \frac{\exp^{-\lambda} \lambda^X}{X!}$$

$$L(x,\lambda) = \prod_{i=1}^{n} \frac{\exp^{\lambda} \lambda^{X}}{X!}$$

$$L(x,\lambda) = \frac{\exp^{\lambda n} \lambda^{\sum X}}{X!}$$

$$Ln(L(x,\lambda)) = Ln(\frac{\exp^{\lambda n} \lambda^{\sum X}}{X!})$$

$$L(x,\lambda) = (-\lambda n) + Ln(\lambda \sum_i x_i) - (Ln \sum_i x_i)$$

$$L(x,\lambda) = -(\lambda n) + \sum_i x_i Ln(\lambda) - (Ln \sum_i x_i)$$

$$\frac{dL(x;\lambda)}{d\lambda} = \frac{d}{d\lambda}(-\lambda n + \sum x_i Ln(\lambda) - (Ln\sum x_i))$$

$$L(x,\lambda) = \frac{\sum x_i}{\lambda} - n$$
$$\frac{\sum x_i}{\lambda} - n = 0$$

$$\frac{\sum x_i}{\lambda} = n$$

$$\hat{\lambda} = \frac{\sum x_i}{n}$$

Donde $\hat{\lambda}$ es un estimador maximo verosimil e insesgado para la funcion de distribucion poisson.

$$\hat{\lambda} = \bar{x}$$

1.2. Punto b.

En un estimador insesgado puesto que la esperanza es igual al parametro;

$$E[\hat{\lambda}] = E\left[\frac{\sum x_i}{n}\right]$$

$$E[\hat{\lambda}] = \frac{1}{n}E\left[\sum x_i\right]$$

$$E[\hat{\lambda}] = \frac{1}{n}(\sum)E[x]$$

$$E[\hat{\lambda}] = E[x]$$
$$\hat{\lambda} = \bar{x}$$

Donde $\hat{\lambda}$ es un estimador insesgado para la funncion poisson de parametro (λ) .

La varianza esta dada por:

$$Var[\hat{\lambda}] = var[\frac{\sum x_i}{n}]$$

$$Var[\hat{\lambda}] = \frac{1}{n^2}var[\sum x_i]$$

$$Var[\hat{\lambda}] = \frac{1}{n}var[x_i]$$

$$Var[x_i] = \frac{\lambda}{n}$$

1.3. Punto c.

Para clacular la probabilidad de que en un dia particular se reciban maximo 2 quejas, es decir $P[x < 2|\hat{y} = 3]$ a partir de la muestra que que cuenta con una media de $\hat{y} = 3$ se usa la funcion de densidad de la distribucion de poisson con parametro $\lambda = 3$.

$$\begin{split} P[x \leq 2] &= \frac{\exp^{-\lambda} \lambda^{X}}{X!} \\ P[x \leq 2] &= \frac{\exp^{-3} 3^{0}}{0!} + \frac{\exp^{-3} 3^{1}}{1!} + \frac{\exp^{-3} 3^{2}}{2!} \\ P[x \leq 2] &= 0.4231 \end{split}$$

Por lo cual la probabilidad que la tiene oficina de recibir como maximo dos que
jas en un dia es del $42.31\,\%$

- 2.1. Punto a.
- 2.2. Punto b.
- 2.3. Punto c.

3.1. Punto a.

$$f(y;\theta) = e^{-(y-\theta)}; y > \theta$$

ESTIMACION POR MOMENTOS:
$$M_1' = \mu_1'$$

 $M_1' = \frac{1}{n} \sum_{i=1}^n y_i = \bar{y}$
 $\mu_1' = E[Y] = \int_{\theta}^{\infty} y f(y) \cdot dy$
 $= \int_{\theta}^{\infty} y e^{-(y-\theta)} \cdot dy = \int_{\theta}^{\infty} y e^{-y} e^{\theta} \cdot dy = e^{\theta} \int_{\theta}^{\infty} y e^{-y} \cdot dy$

Aplicando integración por partes:
$$u = y$$
, $dv = e^{-y}$, $du = dy$ y $v = -e^{-y}$ Nos queda:
$$E[Y] = e^{\theta}[-ye^{-y} + \int\limits_{\theta}^{\infty} e^{-y} \cdot dy] = e^{\theta}[-ye^{-y} - e^{-y}|_{\theta}^{\infty}]$$
$$= e^{\theta}(\theta e^{-\theta} + e^{-\theta}) = \theta e^{\theta}e^{-\theta} + e^{\theta}e^{-\theta} = \theta + 1$$

Entonces, por el metodo de los momentos obtenemos el siguiente estimador:

$$\mu_1' = \theta + 1 = \bar{y} = M_1'$$
$$\hat{\theta} = \bar{y} - 1$$

ESTIMACION POR EL METODO DE MAXIMA VEROSIMILITUD:

- 3.2. Punto b.
- Punto c. 3.3.

4.1. Punto a.

$$f(x;\theta) = \frac{2\theta^2}{x^3}; \theta < x < \infty$$

$$\begin{split} M1' &= \sum_{i=1}^n \frac{x_i}{n} = \bar{x} \\ \mu_1' &= ? \\ \mu_1' &= E[X] = \int_{\theta}^{\infty} x f(x) \cdot dx \\ E[X] &= \int_{\theta}^{\infty} x \frac{2\theta^2}{x^3} \cdot dx = \int_{\theta}^{\infty} \frac{2\theta^2}{x^2} \cdot dx \\ E[X] &= 2\theta^2 \int_{\theta}^{\infty} \frac{1}{x^2} \cdot dx = 2\theta^2 [-\frac{1}{x}|_{\theta}^{\infty}] = 2\theta^2 (\frac{1}{\theta}) = 2\theta \\ \mu_1' &= E[X] = 2\theta = \bar{X} = M1' \\ \hat{\theta} &= \frac{\bar{X}}{2} \end{split}$$

En conclusion, el estimador por el metodo de los momentos para θ de la funcion de densidad $f(x;\theta)=\frac{2\theta^2}{x^3}; \theta < x < \infty$ es $\hat{\theta}=\frac{\bar{X}}{2}$

Sean $Y_1, Y_2, Y_3, ..., Y_n$ una muestra aleatoria extraida de una población con función de densidad:

$$f(y) = \frac{1}{2\theta + 2}; -1 < Y < 2\theta + 1$$

Donde; f(y) Uniforme $(a = -1, b = 2\theta + 1)$

5.1. Punto a.

Un estimador maximo verosimil para θ y σ^2 son:

Para θ :

$$\begin{split} L(y;\theta) &= \prod_{i=1}^n \big(\frac{1}{2\theta+2}\big) \\ L(y;\theta) &= \big(\frac{1}{2\theta+2}\big)^n \\ Ln(L(y;\theta)) &= Ln\big(\big(\frac{1}{2\theta+2}\big)^n\big) \\ L(y;\theta) &= n[Ln\big(\big(\frac{1}{2\theta+2}\big)\big] \\ L(y;\theta) &= n[Ln(1) - Ln(2\theta+2)] \\ L(y;\theta) &= n[-Ln(2\theta+2)] \\ \frac{dL(y;\theta)}{\theta} &= \frac{d}{\theta}\big(n[-Ln(2\theta+2))\big] \\ \hat{\theta} &= \frac{n}{\theta+1} \end{split}$$

Donde el parametro es el limite superior de la variacion de la funcion de distribucion.

$$\therefore \hat{\theta} = Maximo = [Y_1, Y_2, Y_3, ..., Y_n]$$

Para σ^2 :

$$\sigma^{2} = Var(Y) = \frac{(b-a)^{2}}{12}$$

$$Var(Y) = \frac{(2\theta+1-(-1))^{2}}{12}$$

$$Var(Y) = \frac{(2\theta+2))^{2}}{12}$$

$$L(y;\sigma^{2}) = \prod_{i=1}^{n} \frac{(2\theta+2))^{2}}{12}$$

$$L(y;\sigma^{2}) = (\frac{(2\theta+2))^{2}}{12})^{n}$$

$$Ln(L(y;\sigma^{2})) = Ln(\frac{(2\theta+2))^{2}}{12})^{n}$$

$$L(y;\sigma^{2}) = n(\frac{(2\theta+2))^{2}}{12})$$

Segun lo anterior podemos concluir que $n(\frac{(2\theta+2))^2}{12})$ Maximizaria la funcion de L.

$$Var(Y) = \frac{(2\theta+1-(-1))^2}{12}$$

$$Var(Y) = 4\frac{(\theta+2)^2}{12}$$

$$Var(Y) = \frac{(\theta+2)^2}{3}$$

Sin embargo no es posible medir sus varianzas puesto que θ es la Y_n muestra de $[Y_1,Y_2,Y_3,...,Y_n]$ por lo cual.

$$Var(Y) = \frac{(Y_{(n)}+2)^2}{3}$$

5.2. Punto b.

Un estimador por el metodo de los momentos para θ esta dado por:

$$E[Y] = E\left[\frac{(a+b)}{2}\right]$$

$$E[Y] = E\left[\frac{(-1+(2\theta+1))}{2}\right]$$

$$E[Y] = E\left[\frac{(2\theta)}{2}\right]$$

$$E[Y] = E[\theta]$$

$$\theta = \frac{\sum (Y_i)}{n}$$
$$\hat{\theta} = \hat{Y}$$

$$\hat{\theta} = \hat{Y}$$