데모공장 IIoT 시스템 및 실습과정

디지털 트윈을 위한 머신비전 기반 제품 불량 탐지

조명: Safety Guard

소속: 성균관대

조원: 곽수정, 유지수, 윤종필,

이윤형, 이중언, 이찬혁, 홍정민

데모공장 IIoT 시스템 및 실습과정 **디지털 트윈을 위한 머신비전 기반 제품 불량 탐지**

CONTENTS

- 1. 팀 소개 2. 프로젝트 개요 3. 프로젝트 배경 및 필요성 4. 대상 설비 및 환경 5. 시스템 프레임워크/아키텍처
- 6. 프로젝트 구현 7. 검증 및 시연 결과 8. 의의 및 기대효과 9. 한계 및 보완점

1. 팀 소개

- Safety Guard

홍정민

성균관대/산업공학과

• 연구분야: 이상치 탐지, 딥러닝

• 역할 : 모델 구현 및 결과 분석

윤종필

• 성균관대/산업공학과

연구분야: Digital Twin,
 Smart Manufacturing

역할 : 시뮬레이션 및 CPS 구축

유지수

• 성균관대/산업공학과

• 연구분야: 데이터 마이닝, 딥러닝

• 역할: 모델 구현 및 결과 분석

• 이윤형

• 성균관대/산업공학과

• 연구분야: Continual learning

역할: 모델 구현 및 결과 분석

곽수정

• 성균관대/산업공학과

• 연구분야: 시계열 분석, 머신러닝

역할: 모델 구현 및 결과 분석

이찬혁

• 성균관대/산업공학과

연구분야: CPS, Digital Twin,
 Smart Manufacturing

• 역할: 시뮬레이션 및 CPS 구축

이중언

• 성균관대/산업공학과

• 연구분야: PHM, 3D 프린팅

역할: 모델 구현 및 결과 분석

2. 프로젝트 개요

- 디지털 트윈을 위한 머신비전 기반 제품 불량 탐지

• 목표

- 제품의 이미지를 딥러닝 모델을 통해 판별하여 불량 판단
- 제품 불량 판단 결과를 반영할 가상 환경 구현
- 실제 환경과 가상 환경을 실시간 연동하는 디지털 트윈 기반 기술 마련

방법

- 제품의 이미지를 통해 제품의 불량을 판단하는 Pick-and-Place 로봇 구현
- One-Class Classification 알고리즘에 기반하여 정상 데이터만으로 제품 불량 판단
- Visual Components를 통해 실제 환경과 유사한 가상 환경 구현
- 제품 불량 판단 결과를 OPC UA를 통해 가상 환경에 연동하여 가상 환경 내 로봇에 반영

아ne-Class Classification 기반 불량 탐지 카메라 모듈 One-Class Classification 실제 로봇 제품 이미지 전송 불량 판단 및 동작 명령

3. 프로젝트 배경 및 필요성 (1/2)

- 현장 문제를 고려한 스마트팩토리 기술 연구: 불량 데이터 부족 문제
 - 연구 배경 및 필요성

- 제조업의 기술적 성장에 힘입어 불량률은 점점 낮아지는 추세
- 충분한 양의 불량 데이터를 확보하기 어려움
 - → class imbalance 문제 발생

 최적의 의사결정을 위해 현장 문제를 고려한 스마트팩토리 기술 적용 필요

- 제조과정을 미리 시뮬레이션함으로
 써 결과를 효율적으로 예측하는 기술
- 제품 불량 판단 결과를 분석하여 제조 와 물류 전반에 걸친 최적의 의사결정 을 도움

머신 비전 기반 불량 판단 알고리즘 및 실제 로봇을 통해 불량에 대처하는 테스트베드를 구축, 이를 디지털 트윈과 접목시켜 스마트팩토리 구현 핵심 기술 개발에 기여하고자 함

3. 프로젝트 배경 및 필요성 (2/2)

- 스마트팩토리 구현의 핵심 기술 연구: 제조 지능화 및 디지털 트윈
 - 제조 지능화 개념을 적용하여 불량 판단 지능화 기술을 개발
 - 1. 상황인지 (Cognition): 데이터 수집을 통한 제조 현장의 상황 인지 (IIoT 기술)
 - 2. 판단 (Decision): 제조 데이터 관리 및 분석 (빅데이터/AI 기술)
 - 3. 실행 (Action): 지능화된 제조 실행 및 설비 제어 (제조 응용 솔루션)

각 요소에 적합한 기술을 적용하여 불량 판단 지능화 구현

OPC UA연동을 통한 가상 공정 구현

4. 대상 설비 및 환경

- 제품의 불량을 판단하는 실제 환경 및 불량 판단 결과를 받는 가상 환경

실제 환경

- 대상 설비
 - Pick-and-Place 로봇
- 실제 환경
 - 스마트폰 카메라
 - 정상과 불량 제품
 - 컨베이어 벨트가 포함된 제조 플랫폼 실증 테스트베드

통신 환경

OPC UA Server

제품 불량 판단 결과 전송

가상 환경

- 대상 설비
 - Pick-and-Place 가상 로봇
- 시뮬레이션 환경
 - Visual Components 4.2
 - 가상 윈도우

5. 시스템 프레임워크/아키텍처 (1/3)

- 현재 디지털 트윈 성숙도 수준 및 구현 단계 설정

디지털 트윈 성숙도 및 현재 구현 단계

성숙도 수준	디지털 트윈 명칭	요구사항
Level 5	자율 (Autonomous)	- 현실의 물리 트윈과 다수 디지털 트윈들 간의 실시간, 통합적, 자율 동기화 동작 - 자가 진단 및 자율 제어가 이루어지고, 사람의 개입이 불필요
Level 4	상호작 용 (Interactive)	- Digital Twins 간의 연계, 동기화 및 상호 작용 작업 - 동작 수행을 위해 사람의 개입이 요구
Level 3	동적 (Dynamic)	- 동작 모델에 대한 입력 변수의 변화를 통해 변화되는 동작 시뮬레이션 가능 - 현실 대상의 로그 데이터를 바탕으로 동작 모델을 통해 문제를 재현하여 원인 분석을 할 수 있음 - 최종적인 실행 단계에서 관리자의 확인과 결정을 통한 개입이 필요할 수 있음
Level 2 (현재 수준)	정적 (Static)	- 행동 및 역학 모델은 없지만, 프로세스 논리가 적용되어 운영 - 실시간 모니터링 - 부분 자동 제어, 그러나 주로 인간의 개입을 통한 동작
Level 1	형상모사 (Look-alike)	- 2D 또는 3D로 모델링되어 시각화된 현실 - 외부 시스템과 연계되어 있지 않음

5. 시스템 프레임워크/아키텍처 (2/3)

- 머신 비전 기반 제품 불량 탐지 및 공정 제어 시스템 아키텍처

5. 시스템 프레임워크/아키텍처 (3/3)

- 머신 비전 기반 제품 불량 탐지 및 공정 제어 프레임워크

6. 프로젝트 구현 – 제품 불량 탐지 (1/2)

- One-Class Classification 알고리즘 기반의 제품 불량 탐지 모델 생성
 - One-Class Classification : 정상 데이터의 특징만으로 불량 탐지
 - 개념
 - 학습 단계에서, Neural Network 기반의 딥러닝 모델에 정상 데이터만으로 구성된 데이터셋을 넣어 정상 데이터만을 포함하는 특징을 추출
 - 평가 단계에서, 입력 데이터가 정상 데이터의 특징과 맞지 않으면 불량이라고 판단
 - 장점
 - 불량이 희소한 상황에서 사용하기 용이함
 - 정상의 범주를 벗어나는 다양한 유형의 불량을 검출할 수 있음

<One-Class Classification 개념 개요>

6. 프로젝트 구현 – 제품 불량 탐지 (2/2)

- One-Class Classification 알고리즘 기반의 제품 불량 탐지 모델 생성
 - Patch SVDD (Patch-level Support Vector Data Description)
 - 미세한 불량을 찾기 위해 patch 단위의 이미지로 학습하는 One-Class Classification 알고리즘 기반 모델
 - 학습 단계에서, patch 단위로 분할된 정상 데이터로 학습하여 미세한 특징 학습
 - 평가 단계에서, 입력된 분할된 이미지를 학습된 정상 특징과의 차이를 통해 Anomaly score를 계산하여 불량 탐지
 - 학습된 정상 데이터와 입력된 이미지의 차이가 크면 불량으로 판단

<Patch SVDD의 불량 판단 과정>

6. 프로젝트 구현 – 시뮬레이션 (1/2)

- 제품 투입, 결과 수신, 제어 3단계로 구성된 가상 공정 구현
 - 대상 공정 및 물류 흐름
 - 로봇 1대, 컨베이어 라인, 카메라 1대, 제품 상자(정상, 불량)으로 가상 공정 구현

6. 프로젝트 구현 – 시뮬레이션 (2/2)

- 실시간 연동 Digital Twin 모델 생성
 - 시뮬레이션
 - OPC-UA 통신을 활용하여 OPC-UA Server와 시뮬레이션 모델 실시간 연동
 - 공정 상태 모니터링과 부분 자동 제어의 기능 구현을 위해 디지털 트윈 모델 생성
 - OPC-UA Server를 통한 제품 불량 판단 결과값이 시뮬레이션 내부 ProdID에 반영

판별 전 타일 ProdID 보유

판별 결과 수신 후 ProdID 불량으로 변경

<OPC-UA 서버와 시뮬레이션 모델 연동>

7. 검증 및 시연 결과 (1/3)

- 실제 환경 내 제품 불량 판별 결과 및 가상 환경 연동 결과
 - 실제 환경 내 제품 불량 판별 결과

가상 환경에 반영

<실제 환경> <가상 환경>

7. 검증 및 시연 결과 (2/3)

- 제품 불량 판별을 위한 판단 근거 시각화
 - 불량 판단 근거 시각화
 - 내용
 - 딥러닝 모델이 불량이라고 판단한 부분을 시각화
 - 불량의 정도가 높아질수록 색깔이 진해짐
 - 의의
 - 모델의 판단 근거를 시각화하여 모델의 판단에 대한 신뢰성 확보
 - 불량이 발생한 위치를 쉽게 파악 가능
 - 불량의 위치 파악을 통해 불량 유형에 대한 판단력 제공

<Patch SVDD의 타일 불량 판단 근거 시각화>

7. 검증 및 시연 결과 (3/3)

- 시뮬레이션을 통한 공정 상태 모니터링 시스템 구현
 - 공정 진행 중 실시간으로 시뮬레이션을 통해 공정 상태 모니터링 가능
 - 로봇 관절 데이터, 불량 판별 결과, 공정 효율성, 공정 시간 등 다양한 지표 확인 가능
 - 현 공정의 문제 상황 파악 및 개선점 확인 가능

< 시뮬레이션 통계 분석 >

8. 의의 및 기대 효과

1. 제조 지능화 구현

 머신비전 기반 제품 불량 탐지를 통한 자동 프로세스 구축 으로 제조 지능화 구현

3. 시뮬레이션을 통한 공정 상태 모니터링

 시뮬레이션을 통해 얻은 공정 상태 정보를 바탕으로 공정 개선점 파악 가능

2. 소수의 불량 데이터 수집 비용 감소

- 다수의 정상데이터만으로 불량 탐지 가능한 모델 구축
- 소수의 불량 데이터 확보에 필요한 시간 및 비용 감소

4. 디지털 트윈 기반 마련

• 시뮬레이션 구축을 통한 실제 환경과 가상 환경의 연동을 통한 디지털 트윈의 기반 마련

보완점

• 잘못된 제품 불량 판단을 모델에 반영하지 못하여 모델을 개선하기 위해 사람의 개입이 필요함

 강화학습을 통해 잘못된 제품 불량 판단에 패널티를 부여하는 방향으로 모델이 스스로 개선하는 알고리즘 추가

- 시뮬레이션 내에서 기계설비의 물리적 성질을 반영하지 못함
- 대부분의 시뮬레이션 프로세스가 인간의 개입을 통해 동작

- 현실의 물리 트윈과 다수 디지털 트윈들 간의 실시간, 통합 적, 자율 동기화 동작
- 자가 진단 및 자율제어가 이루어져서 사람의 개입이 불필요 한 시스템 구축

데 모 공 장 | | ㅇ T 시 스 템 및 실 습 과 정 **디지털 트윈을 위한 머신비전 기반 제품 불량 탐지**

감사합LICI

Appendix 4. 대상 설비 및 환경

- 실제 환경 구성 요소
 - 실제 환경 구성 요소
 - Cyber layer : 노트북 [가상 윈도우, 카메라 모듈, OPC UA, Visual Components 4.2]
 - Physical layer: Dobot [Pick-and-Place 로봇, Conveyor belt, Camera holder]
 - Others: 카메라, 타일(정상 및 불량)

<Conveyor belt 및 타일>

<Camera holder>

<Dobot>

