	$P(y=1 \mathbf{x}) = \frac{p(\mathbf{x} y=1)P(y=1)}{p(\mathbf{x} y=1)P(y=1) + p(\mathbf{x} y=0)P(y=0)} = \frac{1}{1 + \frac{p(\mathbf{x} y=0)P(y=0)}{p(\mathbf{x} y=1)P(y=1)}}$ We model these probabilities by a suite of assumptions as follows. $1. \ y \sim \text{Bern}(p), \text{ i.e. the class prior follows a Bernoulli distribution with } P(y=1) = p \text{ and } P(y=0) = 1 - p.$ $2. \ x_j _{y=1} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_{j,1}, \sigma_j^2) \text{ and } x_j _{y=0} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_{j,0}, \sigma_j^2), \ j=1,2,\ldots,d, \text{ i.e. the features are conditionally independent given the class label, and the class-conditional distributions are both Gaussian. Note that the variance \sigma_j^2 is shared by both classes. We simplify the notation by writing \mathbf{x} _{y=1} \sim \mathcal{N}(\mu_1, \Sigma) and \mathbf{x} _{y=0} \sim \mathcal{N}(\mu_0, \Sigma).$	(2)
	$P(y=1 \mathbf{x}) = \frac{1}{1+\exp\left(\log\frac{p(\mathbf{x} y=0)P(y=0)}{p(\mathbf{x} y=1)P(y=1)}\right)} = \frac{1}{1+\exp\left(\log\frac{p(\mathbf{x} y=0)}{p(\mathbf{x} y=1)} + \log\frac{1-p}{p}\right)}$ By substituting the Gaussian class-conditional distributions, we have the log likelihood ratio $\log\frac{p(\mathbf{x} y=1)}{p(\mathbf{x} y=0)} = \log\frac{\mathcal{N}(\mathbf{x};\mu_1,\Sigma)}{\mathcal{N}(\mathbf{x};\mu_0,\Sigma)} = \Sigma^{-1}(\mu_1-\mu_0)\mathbf{x} + \frac{1}{2}(\mu_0^\top\Sigma^{-1}\mu_0-\mu_1^\top\Sigma^{-1}\mu_1)$ Plugging Eq. (4) into Eq. (3), we obtain the posterior in the form of Eq. (1) with $\mathbf{w} = \Sigma^{-1}(\mu_1-\mu_0)$	(3) (4)
	$b = \frac{1}{2}(\mu_0^\top \Sigma^{-1} \mu_0 - \mu_1^\top \Sigma^{-1} \mu_1) + \log \frac{p}{1-p}$ In a nutshell, the logistic regression model makes predictions with the minimum error rate principle and a linear decision boundary by assuming that the log likelihood ratio is linear in \mathbf{x} . Learning the Parameters As the parameters of the involved distributions are usually unknown and our assumptions of the Gaussian likelihood may not hold in many real applications, we cannot directly apply Eq. (5) and Eq. (1) to predict the label of a new dainstance. Instead, we need to learn the parameters \mathbf{w} and b from the training data, via the maximum likelihood estimation (MLE).	
	estimation (MLE). $ \hat{\mathbf{w}}, \hat{b} = \operatorname*{argmax}_{\mathbf{w},b} \prod_{i=1}^n P(y_i \mathbf{x}_i; \mathbf{w}, b) = \operatorname*{argmax}_{\mathbf{w},b} \sum_{i=1}^n \log P(y_i \mathbf{x}_i; \mathbf{w}, b) \\ = \operatorname*{argmax}_{\mathbf{w},b} \sum_{i=1}^n \left(y_i \log P(y_i = 1 \mathbf{x}_i; \mathbf{w}, b) + (1 - y_i) \log P(y_1 = 0 \mathbf{x}_i; \mathbf{w}, b) \right) \\ = \operatorname*{argmax}_{\mathbf{w},b} \sum_{i=1}^n \left(y_i \log \sigma(\mathbf{w}^\top \mathbf{x} + b) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^\top \mathbf{x} + b)) \right) \\ = \operatorname*{argmin}_{\mathbf{w},b} L(\mathbf{w},b) $ where we let $L(\mathbf{w},b) = -\sum_{i=1}^n \left(y_i \log \sigma(\mathbf{w}^\top \mathbf{x} + b) + (1 - y_i) \log(1 - \sigma(\mathbf{w}^\top \mathbf{x} + b)) \right)$ for notational simplicity	(6)
	where we let $L(\mathbf{w},b) = -\sum_{i=1} \left(y_i \log \sigma(\mathbf{w}^\top \mathbf{x} + b) + (1-y_i) \log (1-\sigma(\mathbf{w}^\top \mathbf{x} + b))\right)$ for notational simplicity. This convex optimization problem can be viewed equivalently as minimizing the cross entropy or the Kullback-Leib divergence between the empirical distribution of the labels and the predicted distribution by our model. It can be proved that Eq. (6) admits a solution when the data is NOT linearly separable. Alternatively, we can add a regularization term to ensure the existence of a solution. To keep things simple, we will not discuss this issue in the experiment. Gradient Descent To apply gradient descent to find the optimal parameters, we first compute the gradient of the loss $L(\mathbf{w},b)$ with respect to \mathbf{w} and b . Note that $\sigma'(x) = \sigma(x)(1-\sigma(x))$. Therefore,	oler
	$egin{aligned} abla_{\mathbf{w}} L(\mathbf{w}, b) &= -\sum_{i=1}^n \left(y_i (1 - \sigma(\mathbf{w}^ op \mathbf{x}_i + b)) - (1 - y_i) \sigma(\mathbf{w}^ op \mathbf{x}_i + b) ight) \mathbf{x}_i \ &= -\sum_{i=1}^n \left(y_i - \sigma(\mathbf{w}^ op \mathbf{x}_i + b) ight) \mathbf{x}_i \ abla_b L(\mathbf{w}, b) &= -\sum_{i=1}^n \left(y_i (1 - \sigma(\mathbf{w}^ op \mathbf{x}_i + b)) - (1 - y_i) \sigma(\mathbf{w}^ op \mathbf{x}_i + b) ight) \ &= -\sum_{i=1}^n \left(y_i - \sigma(\mathbf{w}^ op \mathbf{x}_i + b) ight) \end{aligned}$	
	The update rule of gradient descent is then given by $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \alpha \nabla_{\mathbf{w}} L(\mathbf{w}^t, b^t) \\ b^{t+1} \leftarrow b^t - \alpha \nabla_b L(\mathbf{w}^t, b^t)$ where α is a hyperparameter denoting the learning rate.	(7)
	$\nabla^2_{\mathbf{w}} L(\mathbf{w},b) = \sum_{i=1}^n \sigma(\mathbf{w}^\top \mathbf{x}_i + b) (1 - \sigma(\mathbf{w}^\top \mathbf{x}_i + b)) \mathbf{x}_i \mathbf{x}_i^\top$ $\nabla^2_b L(\mathbf{w},b) = \sum_{i=1}^n \sigma(\mathbf{w}^\top \mathbf{x}_i + b) (1 - \sigma(\mathbf{w}^\top \mathbf{x}_i + b))$ The update rule of Newton's method is then given by $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \alpha (\nabla^2_{\mathbf{w}} L(\mathbf{w}^t,b^t))^{-1} \nabla_{\mathbf{w}} L(\mathbf{w}^t,b^t)$ $b^{t+1} \leftarrow b^t - \alpha (\nabla^2_b L(\mathbf{w}^t,b^t))^{-1} \nabla_b L(\mathbf{w}^t,b^t)$ It can be shown that the Newton's method converges quadratically to the optimal solution if the Hessian matrix is positive definite (which see the optimal depends on the optimal solution if the Hessian matrix is	(8)
	positive definite (which can be achieved by regularization) and the initial point is sufficiently close to the optimal solution. However, the computation of the Hessian matrix is expensive for large-scale problems. In real-world applications, some approximations are often used to reduce the computational cost, leading to quasi-Newton methods such as limited-memory BFGS (L-BFGS) method. In this experiment, we will use the standard Newton's method for simplic Experiment Initialization	
In []:	<pre>import os import numpy as np import pandas as pd import tensorflow as tf import matplotlib.pyplot as plt from tqdm import tqdm os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' Dataset Description The dataset we use in this experiment is the Pima Indians Diabetes Database from Kaggle. The dataset consists of eight medical predictor variables and one target variable, i.e., whether the patient has diabetes. The detailed</pre>	f
In []: Out[]:	mean 3.845052 120.894531 69.105469 20.536458 79.799479 31.992578 std 3.369578 31.972618 19.355807 15.952218 115.244002 7.884160	eFuncti 68.0000 0.4718 0.3313
	min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 25% 1.000000 99.000000 62.000000 0.000000 0.000000 27.300000 50% 3.000000 117.000000 72.000000 23.000000 32.000000 32.000000 75% 6.000000 140.250000 80.000000 32.000000 127.250000 36.600000 max 17.000000 199.000000 122.000000 99.000000 846.000000 67.100000 Imputing Missing Values Observing that the minimum values of six features (i.e., Glucose, BloodPressure, SkinThickness, Insulin, BMI, and Age) are zeros, we can infer that the missing values are encoded as zeros. Common strategies for handling missin	0.2437 0.3725 0.6262 2.4200
In []:	<pre>values include dropping the corresponding samples or imputing them with the mean or median of the corresponding feature values. While the former strategy may lead to insufficient training data, the latter strategy may introduce b to the resulting model. Here, we choose to replace the missing values with the corresponding median values. impute_cols = [</pre>	-
Out[]:	df.fillna(df.median(), inplace=True) Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigree count 768.000000	0.4718 0.3313 0.0780 0.2437
In []:	75% 6.000000 140.250000 80.000000 32.000000 127.250000 36.600000 max 17.000000 199.000000 122.000000 99.000000 846.000000 67.100000 Standardization To avoid the features with larger values dominating the training process, we standardize each feature by subtracting its mean and dividing by its standard deviation. from sklearn.preprocessing import StandardScaler feature_cols = [0.6262 2.4200 ng
0+[.].	<pre>'Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age',] scaler = StandardScaler() df[feature_cols] = scaler.fit_transform(df[feature_cols]) df.mean(), df.std()</pre>	
Out[]:	(Pregnancies 1.110223e-16 Glucose 4.625929e-18 BloodPressure 5.782412e-18 SkinThickness -1.526557e-16 Insulin 1.503427e-17 BMI 2.613650e-16 DiabetesPedigreeFunction 2.451743e-16 Age 1.931325e-16 Outcome 3.489583e-01 dtype: float64, Fregnancies Glucose 1.000652 BloodPressure 1.000652 SkinThickness 1.000652 Insulin 1.000652	
	Insulin 1.000652 BMI 1.000652 DiabetesPedigreeFunction 1.000652 Age 1.000652 Outcome 0.476951 dtype: float64) Splitting into K Folds To evaluate the performance of the trained model, we split the dataset into 5 folds and use one fold for validation at the remaining folds for training in each iteration. The final performance is reported as the average of the performance on the 5 validation sets.	
<pre>In []: Out[]:</pre>	<pre>from sklearn.model_selection import StratifiedKFold kf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) df['Fold'] = -1 for fold, (train_idx, val_idx) in enumerate(kf.split(df[feature_cols], df['Outcome'])): df.loc[val_idx, 'Fold'] = fold df.groupby('Outcome')['Fold'].value_counts()</pre> Outcome Fold	
	0	
	Handling Imbalanced Data Since the number of healthy samples is much larger than the number of diabetes samples in the dataset, the mode may be biased towards the healthy class. To address this issue, we assign a larger weight to the diabetes samples the loss function to make them more important during training. In this experiment, we treat the weight as a hyperparameter. Alternative approaches include oversampling, undersampling, generating synthetic samples or using a different log function such as the Focal Loss. Using the Scikit-Learn Library	in
In []:	For convenience of checking the correctness of our implementation, we compare the results with those obtained to the LogisticRegression class in the Scikit-Learn library. from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score accuracy_scores = [] f1_scores = [] recall_scores = [] precision_scores = []	ру
	<pre>def get_fold(fold): X_train = df[df['Fold'] != fold][feature_cols].values y_train = df[df['Fold'] != fold]['Outcome'].values X_val = df[df['Fold'] == fold][feature_cols].values y_val = df[df['Fold'] == fold]['Outcome'].values return X_train, y_train, X_val, y_val def evaluate(y_true, y_pred, fold=4, print_results=True): accuracy = accuracy_score(y_true, y_pred) f1 = f1_score(y_true, y_pred) recall = recall_score(y_true, y_pred) precision = precision_score(y_true, y_pred) if print_results:</pre>	
	<pre>print(f'Fold {fold} Accuracy: {accuracy}') print(f'Fold {fold} F1 Score: {f1}') print(f'Fold {fold} Recall: {recall}') print(f'Fold {fold} Precision: {precision}') print() return accuracy, f1, recall, precision for fold in range(5): X_train, y_train, X_val, y_val = get_fold(fold) # model = LogisticRegression(penalty=None, class_weight='balanced') model = LogisticRegression(penalty=None)</pre>	
	<pre>model.fit(X_train, y_train) y_pred = model.predict(X_val) accuracy, f1, recall, precision = evaluate(y_val, y_pred, fold) accuracy_scores.append(accuracy) f1_scores.append(f1) recall_scores.append(recall) precision_scores.append(precision) print(f'Accuracy: {np.mean(accuracy_scores)}') print(f'F1 Score: {np.mean(f1_scores)}') print(f'Recall: {np.mean(recall_scores)}') print(f'Precision: {np.mean(precision_scores)}') print(f'Precision: {np.mean(precision_scores)}')</pre>	
	# Weights of last fold print(f"Coefficients: {model.coefflatten()}") print(f"Intercept: {model.intercept_[0]}") Fold 0 Accuracy: 0.7662337662337663 Fold 0 F1 Score: 0.63999999999999999999999999999999999999	
	Accuracy: 0.7720906544435957 F1 Score: 0.6392649121466984 Accall: 0.5785464709993012 Precision: 0.7248920950307902 Coefficients: [0.35864773	
	<pre>z = tf.matmul(X, self.w) + self.b return tf.sigmoid(z) def predict(self, X): return self(X) > 0.5 def train_step(self, data): X, y = data y = tf.cast(tf.reshape(y, (-1, 1)), tf.float32) # # w/ GradientTape # with tf.GradientTape() as tape: # y_pred = self(X) # loss = tf.reduce_mean(# -self.class_weight * y * tf.math.log(y_pred) # - (1 - y) * tf.math.log(1 - y_pred) #)</pre>	
	<pre># grads = tape.gradient(loss, [self.w, self.b]) # self.w.assign_sub(self.alpha * grads[0]) # self.b.assign_sub(self.alpha * grads[1]) # w/o GradientTape y_pred = self(X) loss = tf.reduce_mean(</pre>	
	<pre>self.w.assign_sub(self.alpha * grad_w) self.b.assign_sub(self.alpha * grad_b) return {'loss': loss} def test_step(self, data): X, y = data y = tf.cast(tf.reshape(y, (-1, 1)), tf.float32) y_true = tf.cast(y, tf.bool) y_pred = self(X) cross_entropy = tf.reduce_mean(</pre>	
	<pre>X_train, y_train, X_val, y_val = get_fold(4) model = LRGradientDescent(len(feature_cols)) model.fit(X_train, y_train, validation_data=(X_val, y_val,), epochs=500, verbose=0,)</pre>	
	<pre>y_true = y_val y_pred = model.predict(X_val) evaluate(y_true, y_pred) print(f"Coefficients: {model.w.numpy().flatten()}") print(f"Intercept: {model.b.numpy()[0]}") logs = model.history.history plt.figure(figsize=(6, 4)) plt.plot(logs['val_cross_entropy'], color='r', linestyle='-') plt.xlabel('Epochs') plt.ylabel('Loss') plt.tight_layout()</pre>	
	<pre>plt.figure(figsize=(6, 4)) plt.plot(logs['val_accuracy'], color='b', linestyle='-') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.tight_layout() Fold 4 Accuracy: 0.738562091503268 Fold 4 F1 Score: 0.6296296296296297 Fold 4 Recall: 0.6415094339622641 Fold 4 Precision: 0.61818181818182</pre> Coefficients: [0.35736817 1.1774452 -0.04242215 0.03389401 -0.13434482 0.66379285 0.30392352 0.22746299] Intercept: -0.8180754780769348	
	0.68 - 0.66 - 0.64 - 0.62 - 0.60 - 0.58 -	
	0.56 -	
	0.54 - 0 100 200 300 400 500 Epochs	
	0 100 200 300 400 500 Epochs	
In []:	0 100 200 300 400 500 Epochs 0.76 - 0.74 - 0.72 - 0.68 -	
In []:	0 100 200 300 400 500 Epochs 0.76 0.74 0.68 0.66 0.64 0.64 0.69 Epochs Implementation of Gradient Descent with NumPy X_bar_train = np.concatenate([X_train, np.ones((X_train.shape[0], 1))], 1) X_bar_val = np.concatenate([X_val, np.ones((X_val.shape[0], 1))], 1)	
In []:	Description	
In []:	Implementation of Gradient Descent with NumPy Martian	
	100 300 300 400 500	
	Description	
	Epochs E	
	Implementation of Gradient Descent with NumPy Spart	
In []:	100 200	
In []:	Depth	
In []:	### 190	
In []:	The content of the	
In []:	10	
In []:	Section Sect	
In []:	Triple T	
In []:	Section Sect	

实验一: 逻辑回归实现糖尿病预测

where $\sigma(\cdot)$ is the sigmoid function. Then, our prediction rule is equivalent to

Suppose that we are going to solve a binary classification problem given a set of data $D=\{(\mathbf{x}_i,y_i)\}_{i=1}^n$, where the features $\mathbf{x}=(x_1,\ldots,x_d)\in\mathbb{R}^d$ and the class label $y\in\{0,1\}$ are generated from probability distributions. Following the minimum error rate principle, we can predict the class label as follows:

 $\hat{y} = egin{cases} 1 & ext{if } P(y=1|\mathbf{x}) > P(y=0|\mathbf{x}) \ 0 & ext{if } P(y=1|\mathbf{x}) < P(y=0|\mathbf{x}) \end{cases}$

 $\{\mathbf{x} \in \mathbb{R}^d: P(y=1|\mathbf{x}) = P(y=0|\mathbf{x})\}$ is a hyperplane (\mathbf{w},b) in the feature space by modeling the following class

 $P(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-(\mathbf{w}^{\top}\mathbf{x} + b))} = \sigma(\mathbf{w}^{\top}\mathbf{x} + b)$

 $\hat{y} = egin{cases} 1 & ext{if } \mathbf{w}^ op \mathbf{x} + b > 0 \ 0 & ext{if } \mathbf{w}^ op \mathbf{x} + b < 0 \end{cases}$

To see the rationality behind this model, we first rewrite the posterior probability in Eq. (1) by the Bayes rule

(1)

As a commonly-used linear classifier, the logistic regression model simply assumes that the decision boundary

朱云沁 PB20061372

Introduction

posterior probability:

A Probabilistic Derivation