SÉRIE SUR LES SUITES NUMÉRIQUES

EXERCICE 1.

Soit $(u_n)_{n \in \mathbb{N}^*}$ la suite numérique définie par : $\begin{cases} u_1 = \frac{1}{3} \\ (\forall n \in \mathbb{N}^*), \ u_{n+1} = \frac{2u_n}{1 + (n+2)u_n} \end{cases}$ Soit $(v_n)_{n \in \mathbb{N}^*}$ la suite $(v_n)_{n \in \mathbb{N}^*}$ définie par : $(\forall n \in \mathbb{N}^*), \ v_n = \frac{1}{u_n} - n$

- Montrer que la suite (v_n)_{n∈N*} est géométrique.
- a) Déterminer v_n et u_n en fonction de n.
 - b) Calculer en fonction de n la somme : $S_n = v_1 + v_2 + ... + v_n$

EXERCICE 2.

Soit $(u_n)_{n \in \mathbb{N}^*}$ la suite numérique définie par : $\begin{cases} u_1 = 1 \\ (\forall n \in \mathbb{N}^*), u_{n+1} = \frac{5u_n}{3u_n + 5} \end{cases}$

- Montrer que : (∀n ∈ N*), u_n > 0.
- On pose pour tout n ∈ N*, v_n = ⁵⁄_{u_n}.
 - a) Montrer que la suite (v_n) est une suite arithmétique dont on déterminera la raison et le premier terme.
 - b) Déterminer v_n et u_n en fonction de n.

EXERCICE 3.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0 = 13 \\ (\forall n \in \mathbb{N}), \ u_{n+1} = \frac{1}{2}u_n + 7 \end{cases}$

- Montrer que : (∀n ∈ N) , u_n < 14.
- Soit (v_n)_{n∈N} la suite définie par : v_n = 14 − u_n pour tout n ∈ N.
 - a) Montrer que la suite (v_n)_{n∈N} est géométrique de raison ¹/₂ puis écrire v_n en fonction de n.

b) En déduire que :
$$(\forall n \in \mathbb{N})$$
, $u_n = 14 - \left(\frac{1}{2}\right)^n$.

EXERCICE 4.

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 la suite numérique définie par :
$$\begin{cases} u_0 = 2 \\ (\forall n \in \mathbb{N}), u_{n+1} = \frac{7u_n - 25}{u_n - 3} \end{cases}$$

- 1. Montrer que : $(\forall n \in \mathbb{N})$, $u_n \neq 5$.
- On considère la suite (v_n)_{n∈N} définie par : v_n = 1/(u_n − 5 pour tout n ∈ N.
 - a) Montrer que (v_n)_{n∈N} est une suite arithmétique.
 - b) Déterminer v_n puis u_n en fonction de n.
- 3. a) Calculer: $S_n = v_0 + v_1 + ... + v_n$ en fonction de n.
 - b) On pose : $P_n = 2^{v_0} \times 2^{v_1} \times ... \times 2^{v_n}$ déterminer P_n en fonction de n.

EXERCICE 5.

Soit
$$(u_n)_{n \in \mathbb{N}}$$
 la suite numérique définie par :
$$\begin{cases} u_0 = 3 \\ (\forall n \in \mathbb{N}), \ u_{n+1} = \frac{2u_n^2 + u_n - 2}{u_n^2} \end{cases}$$

- Montrer que : (∀n ∈ N), u_n ≥ 2.
- 2. a) Montrer que : $(\forall n \in \mathbb{N})$, $u_{n+1} 2 \le \frac{1}{4}(u_n 2)$.
 - b) En déduire que : $(\forall n \in \mathbb{N})$, $0 \le u_n 2 \le \left(\frac{1}{4}\right)^n$.

EXERCICE 6.

Soit
$$(u_n)_{n \in \mathbb{N}}$$
 la suite numérique définie par :
$$\begin{cases} u_0 = 1 \\ (\forall n \in \mathbb{N}), u_{n+1} = \frac{2u_n^3}{3u_n^2 + 1} \end{cases}$$

- a) Montrer que : (∀n ∈ N), u_n > 0.
 - b) Étudier la monotonie de la suite (u_n)_{n∈N}.
- a) Montrer que : (∀n ∈ N), u_{n+1} ≤ ½u_n.
 - b) Déduire que : $(\forall n \in \mathbb{N})$, $u_n \le \left(\frac{1}{2}\right)^n$.

EXERCICE 7.

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 la suite numérique définie par :
$$\begin{cases} u_0 = 1 \\ (\forall n \in \mathbb{N}), u_{n+1} = \frac{2u_n + 3}{u_n + 2} \end{cases}$$

- a) Montrer par récurrence que la suite (u_n)_{n∈N} est strictement croissante.
 - b) Montrer que la suite (u_n)_{n∈N} est majorée par 2.

2. On pose :
$$(\forall n \in \mathbb{N})$$
, $v_n = \frac{u_n - \sqrt{3}}{u_n + \sqrt{3}}$.

- a) Montrer que (v_n)_{n∈N} est une suite géométrique en déterminant sa raison et son premier terme.
- b) Déterminer u_n en fonction de n.

EXERCICE 8 .

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 la suite numérique définie par :
$$\begin{cases} u_0 = 0 \\ (\forall n \in \mathbb{N}), u_{n+1} = \sqrt{3u_n + 4} \end{cases}$$

- 1. Montrer que : $(\forall n \in \mathbb{N})$, $0 \le u_n \le 4$.
- Montrer que la suite (u_n)_{n∈N} est croissante.
 - a) Montrer que : $(\forall n \in \mathbb{N})$, $4 u_{n+1} \le \frac{1}{2} (4 u_n)$.
 - b) En déduire que : $(\forall n \in \mathbb{N})$, $4 u_n \le 4 \left(\frac{1}{2}\right)^n$.

EXERCICE 9 .

Soit
$$(u_n)_{n\in\mathbb{N}}$$
 la suite numérique définie par :
$$\begin{cases} u_0 = 3 \\ (\forall n \in \mathbb{N}), u_{n+1} = \frac{8(u_n - 1)}{u_n + 2} \end{cases}$$

- 1. a) Calculer u₁.
 - b) Vérifier que : $(\forall n \in \mathbb{N})$, $u_{n+1} 4 = \frac{4(u_n 4)}{u_n + 2}$ et $u_{n+1} 2 = \frac{6(u_n 2)}{u_n + 2}$.

 3

- c) Montrer que : $(\forall n \in \mathbb{N})$, $2 < u_n < 4$.
- a) Montrer que (u_n)_{n∈N} est strictement croissante.
 - b) En déduire que : $(\forall n \in \mathbb{N})$, $3 \le u_n < 4$.
- a) Montrer que : (∀n ∈ N), 0 < 4 − u_{n+1} ≤ ⁴/₅ (4 − u_n).
 - b) En déduire que : $(\forall n \in \mathbb{N})$, $0 < 4 u_n \le \left(\frac{4}{5}\right)^n$.

4. On pose $v_n = \frac{u_n - 4}{u_n - 2}$ pour tout $n \in \mathbb{N}$.

a) Montrer que (v_n)_{n∈N} est une suite géométrique de raison ²/₃.

b) Déterminer v_n et u_n en fonction de n.

c) Calculer en fonction de n la somme : $S_n = \frac{2}{u_0 - 2} + \frac{2}{u_1 - 2} + ... + \frac{2}{u_n - 2}$.

EXERCICE 10 .

1. Soit $(u_n)_{n \in \mathbb{N}}$ la suite numérique définie par : $\begin{cases} u_0 = \frac{10}{3} \\ (\forall n \in \mathbb{N}), u_{n+1} = \frac{u_n^2 - 3u_n + 9}{u_n} \end{cases}$

a) Montrer que : (∀n ∈ N), u_n ≥ 3.

b) En déduire que la suite (u_n)_{n∈N} est décroissante et que : (∀n ∈ N), 3 ≤ u_n ≤ 10/3.

2. On considère la suite $(v_n)_{n \in \mathbb{N}}$ définie par : $\begin{cases} v_0 = \frac{1}{2} \\ (\forall n \in \mathbb{N}), v_{n+1} = \frac{2v_n^2}{1 + v_n^2} \end{cases}$

a) Montrer que : $(\forall n \in \mathbb{N})$, $v_n > 0$ et $v_n \leq \frac{1}{2}$.

b) Montrer que : $(\forall n \in \mathbb{N})$, $\frac{v_{n+1}}{v_n} \le 1$. En déduire que $(v_n)_{n \in \mathbb{N}}$ est décroissante.

3. Soit $(t_n)_{n\in\mathbb{N}}$ la suite définie par : $\left\{ \begin{array}{c} t_0=1 \\ \\ (\forall n\in\mathbb{N})\,,\ t_{n+1}=\sqrt{\frac{1}{2}t_n+\frac{3}{2}} \end{array} \right.$

Montrer que $(t_n)_{n \in \mathbb{N}}$ est strictement croissante.

4. Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie par : $\begin{cases} w_0 = 1 \\ (\forall n \in \mathbb{N}), \ w_{n+1} = f(w_n) \end{cases}$ où $f(x) = x^2 - 2x$.

a) Montrer que : $(\forall n \in \mathbb{N})$, $w_n \ge 3$.

b) Montrer que la suite (w_n)_{n∈N} est croissante.

FIN

Série d'exercices sur les suites numériques

Exercice 1 .

Calculer en fonction de n le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ dans chacun des cas suivants

$$u_n = \sum_{k=0}^{n} \frac{3^k - 5^{2k}}{\pi^{k+1}}$$
 et $u_n = \prod_{k=1}^{n} 2^k . \pi^{3-k}$

Exercice 2 On considère la suite numérique $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 0$$
 et $u_{n+1} = \frac{5u_n + 4}{u_n + 2}$, pour tout $n \in \mathbb{N}$.

- Calculer u₁ et u₂.
- 2. Montrer que : $\forall n \in \mathbb{N}, 0 \le u_n < 4$.
- Étudier le monotonie de la suite (u_n)_{n∈N}.
- On considère la suite numérique (v_n)_{n∈N} définie par :

$$v_n = \frac{u_n - 4}{u_n + 1}$$
, pour tout $n \in \mathbb{N}$

- a) Montrer que (v_n)_{n∈N} est une suite géométrique, on déterminera son raison.
- b) Exprimer v_n puis u_n en fonction de n pour tout $n \in \mathbb{N}$.

5. Pour tout
$$n \in \mathbb{N}$$
, on pose : $S_n = \sum_{k=0}^n \frac{1}{u_k+1}$.

Déterminer l'expression de S_n en fonction de n.

Exercice 3 On considère les suites numériques $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par :

$$u_0 = 2$$
, $u_1 = \frac{4}{9}$ et $u_{n+2} = \frac{1}{27} (12u_{n+1} - u_n)$ et $v_n = u_n - \frac{1}{3^n}$, pour tout $n \in \mathbb{N}$.

1. Montrer que :

$$\forall n\in\mathbb{N},\ u_{n+1}=\frac{1}{9}u_n+\frac{2}{3^{n+2}}$$

Montrer que (v_n)_{n∈N} est une suite géométrique, puis exprimer u_n en fonction de n.

1

3. Exprimer en fonction de n la somme $S_n = \sum_{k=0}^{n} u_k$.

Exercice 4 Soit $(u_n)_{n\in\mathbb{N}}$ la suite numérique définie par :

$$u_0=1 \quad et \quad u_{n+1}=2u_{n+1}+n+1, \ \ pour \ tout \ n \in \mathbb{N}.$$

- Calculer u₁ et u₂.
- 2. Montrer par récurrence que :

$$\forall n \in \mathbb{N}^*, \ u_n = 2^n \left(1 + \sum_{k=1}^n \frac{k}{2^k}\right)$$

3. Montrer par récurrence que :

$$\forall n \in \mathbb{N}^*, \sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$$

4. En déduire que :

$$\forall n \in \mathbb{N}, \ u_n = 3 \times 2^n - n - 2$$

Exercice 5 Soit $(u_n)_{n \in \mathbb{N}^*}$ la suite numérique définie par :

$$u_n = \sum_{k=1}^n \frac{1}{k\sqrt{k}}$$

- Calculer u₁ et u₂.
- Étudier la monotonie de la suite (u_n)_{n∈N*}.
- 3. Montrer que :

$$\forall p \in \mathbb{N}^* \setminus \{1\}, \quad \frac{1}{\sqrt{p-1}} - \frac{1}{\sqrt{p}} \ge \frac{1}{2p\sqrt{p}}$$

4. En déduire que :

$$\forall n \in \mathbb{N}^*, \quad 1 \le u_n \le 3 - \frac{2}{n}$$

DEVOIR

Exercice 1 $\left(U_{n}\right)_{n}$ is une suite réelle telle que : $U_{0}=1$ et $U_{n+1}=\frac{6U_{n}}{1+15U_{n}}$

- 1) Montrer que $(\forall n \in \mathbb{N})$ $U_n > \frac{1}{3}$
- 2) Etudier la monotonie de $(U_n)_n$ en déduire que $(\forall n \in \mathbb{N})$ $U_n \leq 1$
- $3 \ \,) \ \, \text{montrer que} \ \, \left(\forall n \in \mathbb{N} \right) \quad U_{_{n+1}} \frac{1}{3} \leq \frac{1}{6} \bigg(U_{_{n}} \frac{1}{3} \bigg) \ \, \text{en déduire que} \, \left(\forall n \in \mathbb{N} \right) \quad U_{_{n}} \frac{1}{3} \leq \frac{2}{3} \bigg(\frac{1}{6} \bigg)^{n}$
- 4) on pose $V_n = 1 \frac{1}{3U}$ pour tout entier naturel n
- a) montrer que $\left(V_{_{n}}\right)_{_{n}}$ est une suite géométrique de raison $\frac{1}{6}$
- b) calculer $V_{_{n}}$ puis $U_{_{n}}$ en fonction de n
- c) on pose $S_n = \sum_{k=0}^{k=n} V_k$ et $T_n = \sum_{k=0}^{k=n} \frac{1}{U_k}$ déterminer S_n en fonction de n

en déduire que $T_n = 3n + \frac{3}{5} + \frac{12}{5} \left(\frac{1}{6}\right)^{n+1}$

Exercice 2 Soit la suite $(U_n)_n$ définie par $U_1 = 5$ et $U_{n+1} = 3U_n + 4^n$ on pose $V_n = 4U_n - U_{n+1}$

- 1) calculer U_0 , U_2 et V_0
- 2) montrer que $(V_n)_n$ est géométrique de raison q=3 et calculer V_n en fonction de n
- 3) on pose $T_n = \sum_{k=0}^{k-n} V_k$ et $S_n = \sum_{k=0}^{k-n} U_k$
 - a) déterminer T_n en fonction de n
 - b) montrer que $V_n = U_n 4^n$ en déduire que $U_n = 4^n + 3^{n-1}$
 - c) montrer que $T_n 3S_n = U_0 U_{n+1}$ puis déterminer S_n en fonction de n

Exercice 3 On considère la suite $(U_n)_n$ telle que $U_0 = 0$; $U_1 = 1$ et $U_{n+2} = \frac{1}{6}U_{n+1} + \frac{1}{6}U_n$

- On pose $V_n = U_{n+1} \frac{1}{2}U_n$ et $W_n = U_{n+1} + \frac{1}{3}U_n$
- 1) a) montrer que $(V_n)_n$ est géométrique et calculer V_n en fonction de n
 - b) montrer que $(W_n)_n$ est géométrique et calculer W_n en fonction de n
- 2) on pose $S_n = \sum_{k=0}^{k-n} W_k$ et $T_n = \sum_{k=0}^{k-n} U_k$
- a) calculer $S_{_{n}}$ en fonction de n et déterminer $U_{_{n}}$ en fonction de n
- c) prouver que $T_n = \frac{3}{2} \frac{3}{10} \left(-\frac{1}{3} \right)^n \frac{6}{5} \left(\frac{1}{2} \right)^n$

Suites numériques

Exercice 1

Soit $(U_n)_{n\geq 1}$ la suite définie par :

$$U_n = \sum_{k=1}^{k=n} \frac{1}{\sqrt{n^2 + k}}$$

a) Montrer que:

$$(\forall n \in \mathbb{N}^*)$$
 $\frac{n}{\sqrt{n^2 + n}} \le U_n \le \frac{n}{\sqrt{n^2 + 1}}$

b) En déduire que (U,), est bornée

Exercice 2

On considère la suite (U,), définie par

:
$$U_0 = -1$$
 , $U_1 = \frac{1}{2}$ et $U_{n+2} = U_{n+1} - \frac{1}{4}U_n$

- 1) on pose $V_n = U_{n+1} \frac{1}{2}U_n$ et $W_n = 2^n U_n$
- a) montrer que $(V_n)_n$ est une suite géométrique puis calculer V_n en fonction de n
- b) montrer que $(W_n)_n$ est une suite arithmétique puis calculer W_n en fonction de n
 - 2) en déduire que $(\forall n \in \mathbb{N})$ $U_n = \frac{2n-1}{2^n}$
 - 3) on pose $S_n = \sum_{k=0}^{k-n} U_k$ prouver que:

$$(\forall n \in \mathbb{N})$$
 $S_n = 2 - \frac{2n+3}{2^n}$

Exercice 3

Soit $(U_n)_{n\in\mathbb{N}}$ la suite telle que :

$$U_0 = 2$$
 et $U_{n+1} = \frac{1}{2} + \sqrt{\frac{1}{2} \left(U_n^2 - U_n + \frac{1}{2}\right)}$

On pose $V_n = U_n^2 - U_n$ pour tout entier n de \mathbb{N}

- montrer que (∀n∈ N) U_n≥1
- 2) a) montrer que (V_n)_n est une suite géométrique
 - b) en déduire que :

$$(\forall n \in \mathbb{N})$$
 $U_n = \frac{1}{2} + \frac{1}{2} \sqrt{1 + \frac{8}{2^n}}$

3) démontrer que :

$$(\forall n \in \mathbb{N})$$
 $0 < U_n - 1 \le \left(\frac{1}{2}\right)^{n-1}$

Exercice 4

On considère la suite (U,), définie

par:
$$U_0 = 1$$
 et $U_{n+1} = \frac{7U_n + 6}{U_n + 2}$

- 1) a) montrer que $(\forall n \in \mathbb{N})$ $0 < U_n < 6$
- b) étudier la monotonie de (U,)
- 2) on pose $V_n = \frac{U_n 6}{U_n + 1}$ pour tout

entier naturel n

- a) montrer que $(V_n)_n$ est une suite géométrique
- b) déterminer U_n en fonction de n
- 3) montrer que:

$$\left(\forall n \in \mathbb{N}\right) \quad \left|U_{_{n+1}}-6\right| \leq \frac{1}{2} \left|U_{_{n}}-6\right|$$

4) montrer par récurrence que :

$$(\forall n \in \mathbb{N})$$
 $|U_n - 6| \le 5 \times (\frac{1}{2})^n$

Exercice 5

Soit $(U_n)_n$ la suite telle que :

$$U_0 = 1$$
 et $U_{n+1} = U_n^2 + U_n$

- 1) montrer que $(\forall n \in \mathbb{N})$ $U_n \ge 1$
- montrer que (U_n)_n est croissante
- 3) a) vérifier que $(\forall n \in \mathbb{N})$ $U_{n+1} \ge 2U_n$
 - b) en déduire que (∀n∈ N) U_n≥2ⁿ

Exercice 6

 $(U_*)_*$ une suite telle que :

$$U_0 = -2$$
 et $U_{n+1} = \frac{U_n^2 + 2}{U_n - 2}$

- 1) montrer que $(\forall n \in \mathbb{N})$ $U_n \leq -1$
- 2) montrer que (U_{*}), est croissante

Suites numériques

3) a) montrer que : $(\forall n \in \mathbb{N}) |U_{n+1} + 1| \le \frac{1}{2} |U_n + 1|$

6) montrer que $(\forall n \in \mathbb{N}) |U_n + 1| \le \left(\frac{1}{2}\right)^n$

Exercice 7

On considère la suite $(U_n)_n$ définie par : $U_{n+1} = \frac{2U_n}{1 + (n+2)U_n}$ et $U_0 = \frac{1}{3}$

- 1) calculer U1
- 2) on pose $V_n = \frac{1}{U_n} n$
- a) montrer que (V_n)_n est une suite arithmétique
 - b) exprimer U_n en fonction de n
- 3) calculer en fonction de n

la somme $T_n = \frac{1}{U_0} + \frac{1}{U_1} + \dots + \frac{1}{U_n}$

Exercice 8

Soit la suite (U,), telle que :

$$U_0 = 0$$
 $U_1 = 1$ et $U_{n+2} = \frac{1}{6}U_{n+1} + \frac{1}{6}U_n$

on pose :

$$V_n = U_{n+1} - \frac{1}{2}U_n$$
 et $W_n = U_{n+1} + \frac{1}{3}U_n$

- a) montrer que $(V_n)_n$ est géométrique puis déterminer V_n en fonction de n
- b) montrer que (W_n)_nest géométrique puis calculer W_n en fonction de n
- en déduire l'expression de U_n en fonction de n

Exercice 9

On considère les suites $(U_n)_{n\geq 1}$ et $(V_n)_{n\geq 1}$ et $(V_n)_{n\geq 1}$ telles que $U_n = \sum_{k=1}^{k-2n} \frac{(-1)^k}{k}$, $V_n = \sum_{k=1}^{k-2n+1} \frac{(-1)^k}{k}$

- 1) montrer que $(\forall n \in \mathbb{N}^*)$ $V_n < U_n$
- 2) montrer que $(U_n)_{n\geq 1}$ est

décroissante et que $(V_n)_{n\geq 1}$ est croissante

Exercice 10

(suite de Fibonacci)

On considère la suite $(U_n)_n$ définie par : $\begin{cases} U_0 = U_1 = 1 \\ U_{n+1} = U_{n+1} + U_n \end{cases}$

- a) montrer que U_n > 0 (∀n∈ N)
 b) étudier la monotonie de la
- 2) montrer que $U_n \ge n \quad (\forall n \in \mathbb{N})$
- 3) montrer que $U_n U_{n+2} + (-1)^{n+1} = (U_{n+1})^2$
- 4) on pose $x_n = \frac{U_{2n-1}}{U_{2n}}$ et $y_n = \frac{U_{2n}}{U_{2n+1}}$

pour tout 🛭 de 🛚 N'

a) montrer que :

$$(\forall n \in \mathbb{N}^*)$$
 $y_n - x_n = \frac{1}{U_{2n}U_{2n+1}}$

en déduire $(\forall n \in \mathbb{N}^*)$ $0 < y_n - x_n < \frac{1}{n}$

b) montrer que :

$$(\forall n \in \mathbb{N}^*) \quad x_{n+1} - x_n = \frac{1}{U_{2n} U_{2n+2}}$$

$$et \quad (\forall n \in \mathbb{N}^*) \quad x_n = \frac{1}{v} - 1$$

- b) montrer que (x_n)_n est croissante et (y_n)_n décroissante
- 5) on pose $S_n = \sum_{k=0}^{k-n} \frac{U_k}{3^k}$
- a) calculer $3S_n$ puis $3(3S_n S_n)$
- b) en déduire la relation liant U_n ; S_{n-2} , S_n
- 6) prouver que:

$$(\forall n \in \mathbb{N})$$
 $U_n = \frac{(1+\sqrt{5})^{n+1} - (1-\sqrt{5})^{n+1}}{2^{n+1}\sqrt{5}}$

le nombre d'or : $\phi = \frac{\sqrt{5} + 1}{2}$

1^{ère} bac SM

suites numériques

Exercice Nº4

Soit $(u_n)_n$ la suite telle que :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{8u_n - 8}{u_n + 2} \end{cases}$$

- 1) Montrer que $\forall n \in \mathbb{N}$ $2 < u_n < 4$
- 2) Etudier la monotonie de $(u_n)_n$

Pour tout n de \mathbb{N} on pose $v_n = \frac{u_n - 4}{u_n - 2}$

- 3) Prouver que $\left(v_n\right)_n$ est une suite géométrique
- Déterminer v_n en fonction de n
- 5) déduire que $\forall n \in \mathbb{N}$ $u_n = \frac{4 \times 3^n + 2^{n+1}}{3^n + 2^n}$

exercice 5

Soit $(u_n)_n$ la suite définie par :

$$\begin{cases} u_0 = u_1 = 1 \\ u_{n+2} = u_{n+1} - \frac{1}{4} \, u_n \;\; ; \;\; n \in \mathbb{N} \end{cases}$$

Pour tout entier n de \mathbb{N} on pose $v_n = 2^n u_n$

- 1. montrer que $\left(v_{n}\right)_{n}$ est arithmétique
- 2. déterminer v_n puis u_n en fonction de n on pose $S_n = \sum_{k=1}^n u_k$ et $T = \prod_{k=1}^n u_k$; $\forall n \in \mathbb{N}^*$
- 3. montrer que $S_n = 3 \frac{n+3}{2^n}$ et $T_n = \frac{(n+1)!}{2^{\frac{n(n+1)}{2}}}$

exercice Nº6

 $\left(u_n\right)_n$ une suite telle que $\begin{cases} u_0=0\\ u_{n+1}=4n-u_n \end{cases}$

- 1. calculer u_1 ; u_2 ; u_3 et u_4
- 2. montrer que $(u_{2n})_n$ est arithmétique
- déterminer u_{2n} puis u_{2n+1} en fonction de n pour tout n de N on pose v_n = u_n +1−2n
- 4. prouver que $\binom{v_n}{n}$ est géométrique
- 5. déterminer v_n et u_n en fonction de n

Exercice 1

On considère la suite $\left(u_n\right)_n$ définie par :

$$u_0=1\ et\ u_{n+1}=2u_n+1\ (\forall n\!\in\mathbb{N})$$

Pour tout $n \operatorname{de} \mathbb{N} \ \ \text{ on pose } v_n = u_n - \alpha$

- 1- Montrer que $(\forall n \in \mathbb{N})$ $u_n \ge n$
- 2- Déduire que (u_n) n'est pas majorée
- 3- déterminer α pour que $\binom{v_n}{n}$ soit géométrique
- 4. on prend $\alpha=-1$ et on pose $S_n=\sum_{k=0}^n u_k$ déterminer v_n et u_n en fonction de n

puis S_n en fonction de n

exercice N°2

On considère la suite $(u_n)_n$ définie par :

$$u_0 = 2 \text{ et } u_{n+1} = \frac{2u_n - 1}{u_n} \quad (\forall n \in IN)$$

On pose $v_n = \frac{1}{u_n - 1} \quad \forall n \in \mathbb{N}$

- 1. montrer que $\forall n \in IN$ $1 < u_n \le 2$
- 2. montrer que $(u_n)_n$ est décroissante
- 3. montrer que $(v_n)_n$ est une suite arithmétique
- 4. déterminer u_n en fonction de n puis calculer

$$S_{2017} = \sum_{k=0}^{2016} v_k$$

exercice 3

$$\left(u_n\right)_n \text{ une suite telle que }: \begin{cases} u_0 = 2 \\ u_{n+1} = \frac{2u_n - 3}{4 - u_n} \end{cases}$$

Pour tout $n \ \text{de} \ \mathbb{N} \quad \text{on pose} \ \ v_n = \frac{u_n - 3}{u_n + 1}$

- 1. montrer que $\forall n \in \mathbb{N} \quad -1 \leq u_n \leq 3$
- 2. étudier la monotonie de $(u_n)_n$
- 3. a) montrer que $(v_n)_n$ est géométrique
- b) calculer u_n en fonction de n
- c) déterminer:

$$S_n = \sum_{k=0}^n v_k$$
 et $P_n = \prod_{k=0}^n v_k$ en fonction de n

Exercice 14

Soit (u_n) la suite numérique définie par : $u_0=1$ et $u_{n+1}=\frac{7u_n}{4u_n+7}$ pour tout $n\in\mathbb{N}$

- (1) a) Calculer u1 et u2.
- b) Montrer que: $(\forall n \in \mathbb{N}) u_n > 0$.
- c) Montrer que la suite(u_n) est strictement décroissante.
- d) En déduire que la suite (u_n) est majorée par 1.
- ② Pour tout $n \in \mathbb{N}$, on pose: $v_n = \frac{7}{u_n}$.
- a) Montrer que la suite (v_n) est arithmétique et préciser sa raison et son premier terme.
- b) Exprimer v_n et u_n en fonction de n.
- c) Pour tout $n \in \mathbb{N}^+$, on pose : $S_n = v_1 + v_2 + ... + v_n$.

Exprimer S_n en fonction de n.

Exercice 35

Soit (u_n) la suite numérique définie par : $u_0=0$ et $u_{n+1}=\frac{5u_n-3}{3u_n-1}$ pour tout $n\in\mathbb{N}$.

- ① Montrer par récurrence que : $(\forall n \in \mathbb{N})$ $u_n \neq 1$.
- ② Pour tout $n \in \mathbb{N}$, on pose : $v_n = \frac{u_n + 1}{u_n 1}$.
- a) Montrer que la suite (v_n) est arithmétique dont on précisera la raison et le premier terme.
- b) Exprimer v_n puis u_n en fonction den.
- c) Pour tout $n\in\mathbb{N}$, on pose : $S_n=\sum_{k=0}^n v_k$.

Exprimer la somme S_n en fonction de n.

Exercice 38

Soit (u_n) la suite numérique définie par : $u_0 = \sqrt{2}$ et $u_{n-1} = \frac{3u_n}{\sqrt{9+u_n^2}}$ pour tout $n \in \mathbb{N}$.

- ① a) Calculer u_1 et u_2 .
- b) Montrer que : $(\forall n \in \mathbb{N}) u_n > 0$.
- c) Montrer que la suite(u_n) est décroissante.
- ② Pour tout $n \in \mathbb{N}$, on pose: $v_n = \frac{18}{u_n^2}$.
- a) Montrer que la suite (v_n) est arithmétique et préciser sa raison et son premier terme.
- b) Exprimer $v_n \operatorname{et} u_n$ en fonction $\operatorname{de} n$.
- c) Pour tout $n \in \mathbb{N}$, on pose : $S_n = \frac{1}{u_0^2} + \frac{1}{u_1^2} + \dots + \frac{1}{u_n^2}$.

Exprimer S_n en fonction den.

On considère les suites $(U_n)_n$ et $(V_n)_n$ telles que : $\begin{cases} V_0 = 2 \\ V_{n+1} = \frac{U_n + V_n}{2} \end{cases}$ el $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{2U_nV_n}{U_n + V_n} \end{cases}$ 1) prouver que $(\forall n \in \mathbb{N}) \quad 0 < U_n < V_n$ 1.5pt 2) montrer que (U,), est croissante et (V,), décroissante 1.5pt 3) (a) montrer que $(\forall n \in \mathbb{N})$ $0 < V_{n+1} - U_{n+1} < \frac{1}{2}(V_n - U_n)$ 1.5pt b) déduire que $(\forall n \in \mathbb{N})$ $0 < V_n - U_n \le \frac{1}{2^n}$ 1.5pt 4) (a) montrer que par récurrence que $(\forall n \in \mathbb{N})$ $U_n V_n = 2$ 1.5pt b) en déduire que $(\forall n \in \mathbb{N})$ $U_n < \sqrt{2} < V_n$ 1pt EXERCICE (2) 6.5pts Toil un réel de a]0,+ ∞ [on considère la suite $(U_n)_n$ définie par : $U_0 = b < a$ et $U_{n+1} = \frac{a^2}{2a - U_n}$ 1) a) vérifier que $U_{n+1} - a = \frac{a(U_n - a)}{a + (a - U_n)}$ $(\forall n \in \mathbb{N})$ 1pt (b) montrer que $(\forall n \in \mathbb{N})$ $U_n < a$ 1.5pt $(U_n)_n$ est une suite croissante 1pt 3) on pose $V_n = \frac{a}{a - U_n}$ pour tout entier naturel n 1.5pt $ec{V}$ a) montrer que $(V_n)_n$ est une suite arithmétique puis calculer U_n en fonction de n ;b et a1.5pt \sqrt{b} déterminer la somme $S_n = \sum_{k=0}^{k=n} \frac{1}{a - U_k}$ en fonction de n; b et aEXERCICE (3) 3pts
On considère la suite $(U_n)_n$ définie par : $U_0 = 1$ et $U_{n+1} = \frac{U_n}{1 + 2^n U_n}$ V1) calculer U1 et U2 1.5pt 2)\(\lambda\) montrer que $\frac{1}{U_{n+1}} = \frac{1}{U_n} + 2^n \quad (\forall n \in \mathbb{N})$ 1.5pt b) déduire l'éxpression de U_n en fonction de n **EXCERCICE (4)** Soit $(U_n)_n$ une suite arithmétique de raison r. On $(\forall n \in \mathbb{N}^*)$ $S_n = U_0 + U_1 + \dots + U_{n-1}$

1.5pt

1pt

m et n deux entiers naturels différents

2) en déduire que $S_m = S_n \implies S_{m+n} = 0$

1) démontrer que $S_m = S_n \Leftrightarrow (m+n-1)r = -2U_0$

Question de cours soit $(V_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\neq 1$.

Montrer que $(\forall n \in N)$ $S_n = \sum_{k=0}^n V_k = V_0 \frac{1-q^{n+1}}{1-q}$

(Opts)

Exercice 1 Soient
$$(U_n)_{n\in\mathbb{N}}$$
 et $(V_n)_{n\in\mathbb{N}}$ deux suites définies par :

$$\begin{cases} U_0 = 2 \end{cases}$$

$$U_{n+1} = 2U_n - 1$$
 et $(\forall n \in \mathbb{N})$ $V_n = U_n - 1$

(1pts)

Monter que les deux suites (∀n ∈ N) U_n ≥ 2.

1,5pts)

✓ 2. Montrer que $(\forall n \in \mathbb{N})$ $U_{n+1} \ge \frac{3}{2}U_n$ et déduire la monotonie de (U_n) .

(1pts)

√ 3. Montrer que $(\forall n \in \mathbb{N})$ $U_n \ge 2(\frac{3}{2})^n$

1,5pts)

4. Montrer que la suite (V_n) est géométrique de raison q puis donner V_n et U_n en fonction de n.

(Inte)

5. On pose
$$T_n = \sum_{k=0}^n U_k$$
 montrer que $T_n = 2^{n+1} + n$

6. Soit $(S_n)_n$ la suite définie par : $S_n = \sum_{k=0}^n \frac{(-1)^k}{U_k}$ et On pose $X_n = S_{2n}$ et $Y_n = S_{2n+1}$ pour tout $n \in \mathbb{N}$

(1pts)

(a) Montrer que $(\forall n \in \mathbb{N})$ $Y_n \leq X_n$

1,5pts)

 \checkmark (b) Montrer que (X_n) est décroissante et que (Y_n) est croissante. $) \le \underbrace{\mathbb{Z}}_{\mathcal{U}} \le \underbrace{\mathbb{Z}}_{\mathcal{U}}$

i,opts)

(c) Montrer que
$$(\forall n \in \mathbb{N}) |X_n - S_n| \le (\frac{2}{5})^n - (\frac{2}{3})^{2n}$$

(9pts)

Exercice 2

Partie I: On pose $(\forall n \in \mathbb{N})$ $T_n = \sum_{k=1}^{n} 2^{2k+4}$ et $R_n = \sum_{k=1}^{n} 2^{k+3}$

(1pts)

(1pts)

1) Montrer que $(\forall n \in \mathbb{N})$ $T_n = \frac{4}{3}(2^{2n+4}-4)$

 \checkmark 2) Montrer que $(\forall n \in \mathbb{N})$ $R_n = 4(2^{n+2} - 2)$

Partie II : Soient $(U_n)_{n\in\mathbb{N}}$ et $(V_n)_{n\in\mathbb{N}}$ deux suites définies par :

$$\begin{cases} U_0 = 2 \\ U_{n+1} = \sqrt{4U_n + 1} + 4U_n + 1 \end{cases} \text{ et } (\forall n \in \mathbb{N}) \ V_n = \sqrt{4U_n + 1} \qquad \bigvee_{\mathfrak{G}} = \mathcal{F}$$

(1pts)

(1) Monter que $(\forall n \in \mathbb{N})$ $U_n \ge 0$.

(1pts)

(2) Montrer que la suite (U_n) est croissante.

(3) Montrer que $(\forall n \in \mathbb{N})$ $V_{n+1}^2 = 4\left(V_n + \frac{1}{2}\right)^2$ en déduire V_{n+1} en fonction de V_n

(1pts)

4) Soit $(W_n)_n$ la suite définie par : $(\forall n \in \mathbb{N})$ $W_n = 1 + V_n$ $W_0 = \mathcal{U}$

1,5pts)

 \sqrt{a} Montrer que la suite (W_n) est géométrique de raison q puis donner W_n en fonction de n.

(1pts)

Vb) Montrer que $(\forall n \in \mathbb{N})$ $U_n = \frac{1}{4}(W_n^2 - 2W_n)$

0,5pts)

c) En déduire que $(\forall n \in \mathbb{N})$ $U_n = \frac{1}{4}(2^{2n+4} - 2^{n+3})$.

(1pts)

d) On pose $(\forall n \in \mathbb{N})$ $S_n = \sum_{k=0}^n U_k$ Montrer que $(\forall n \in \mathbb{N})$ $S_n = \frac{1}{3}2^{2n+4} - 2^{n+2} - \frac{2}{3}$

Exercice 1. On considère les suites (u_n) et (v_n) définies

$$\begin{cases} u_{n+1} = 5 - \frac{9}{u_n + 1} & (\forall n \in \mathbb{N}) \\ u_0 = 3 & \text{et } v_n = \frac{1}{u_n - 2} \end{cases}$$

montrer que (v_n) est une suite arithmétique et calculer v_n

Exercice 2. On considère la suite numérique (un) définie

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{u_n}{3u_n+1} & (\forall n \in \mathbb{N}) \\ \text{er } u_1 \text{ et } u_2. \end{cases}$$

√ 1. Calculer u₁ et u₂

 $\int 2$. Montrer que $u_n > 0 \ (\forall n \in \mathbb{N}^*)$.

Montrer par récurrence que (∀n ∈ №):

$$\frac{u_{n+1}}{u_n} \leq \frac{1}{4}$$

Déduire que (∀n ∈ N*) : u_n ≤ 8 (1/4)ⁿ.

Exercice 3. On considère la suite numérique (u.,) définie

$$\begin{cases} u_0 = 1, u_1 = 4 \\ u_{n+1} = \frac{3}{2}u_n - \frac{1}{2}u_{n-1} & (\forall n \in \mathbb{N}^*) \end{cases}$$

Calculer u₂ et u₃.

 On considère la suite numérique (v_n) définie par $v_n = u_{n+1} - u_n \ (\forall n \in \mathbb{N}).$

(a) Calculer v_0 et v_1 .

 \downarrow (b) Montrer que (v_n) est une suite géométrique de raison 2

d(c) Écrire le terme général v_n en fonction de n.

(d) Déterminer la somme $S_n = v_0 + v_1 + \cdots + v_n$ en fonction de n.

3. Montrer que $(\forall n \in \mathbb{N})$: $u_{n+1} = 7 - \frac{3}{2n}$.

Exercice 4. On considère la suite numérique (u_n) définie par:

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{u_n+1}{\sqrt{2u_n^2+2}} & (\forall n \in \mathbb{N}) \end{cases}$$

1.(a) Calculer u1 et u2.

J(b) Montrer que $(\forall n \in \mathbb{N})$

$$1 - u_{n+1} = \frac{(1 - u_n)^2}{\left(\sqrt{2u_n^2 + 2}\right)\left(\sqrt{2u_n^2 + 2} + u_n + 1\right)}$$

(c) Montrer que (∀n ∈ N) : 0 ≤ u_n < 1.</p>

2. (a) Montrer que $(\forall n \in \mathbb{N})$: $\frac{|u_n - 1|}{\sqrt{u^2 + 1}} \le 1$.

(b) Déduire que (∀n ∈ N) :

$$|u_{n+1}-1| \leq \frac{1}{\sqrt{2}}|u_n-1|$$

(c) Montrer que (∀n ∈ N) :

$$|u_n-1| \leq \left(\frac{1}{\sqrt{2}}\right)^n$$

puis déduire un encadrement du terme u4.

Exercice 5. On considère les suites (u_n) et (v_n) définies

$$\begin{cases} u_{n+1} = \frac{5v_n - u_n}{2} & (\forall n \in \mathbb{N}) \\ u_0 = 3 & \text{et} \\ v_{n+1} = \frac{4v_n - u_n}{3} & (\forall n \in \mathbb{N}) \\ v_0 = 0 & \end{cases}$$

On pose : $A_n = 5v_n - 2u_n$ et $B_n = 3v_n - u_n$ $(\forall n \in \mathbb{N})$

 Montrer que (A_n) et (B_n) sont deux suites géométriques et déterminer leurs raisons.

Déterminer A_n et B_n en fonction de n.

Déterminer en fonction de n, les termes u_n et v_n.

Calculer en fonction de n la somme

$$S_n = v_0 + v_1 + \dots + v_n$$

Exercice 6. On considère la suite numérique (u_n) définie

$$\begin{cases} u_0 = 1 \\ u_{n+1} = 2u_n - \frac{1}{2}n + \frac{1}{2} \quad (\forall n \in \mathbb{N}) \end{cases}$$

$$n = 2u_n - n \ (\forall n \in \mathbb{N})$$

on pose $v_n = 2u_n - n \ (\forall n \in \mathbb{N}).$

1. Calculer u_1 et montrer par récurrence que $u_n \geq \frac{u}{2}$

Étudier la monotonie de (u_n).

 Montrer que (v_n) est une suite géométrique en déterminant sa raison.

4. (a) Montrer que $u_n = 2^n + \frac{1}{2}n$

(b) Montrer que

$$u_0 + u_1 + \cdots + u_{n-1} = 2^n - 1 + \frac{n(n-1)}{4}$$

Exercise 1. On considére la suite numérique (u_n) définie par

$$\begin{cases}
 u_0 = 20 \\
 u_{n+1} = 4n - u_n, & (\forall n \in \mathbb{N})
\end{cases}$$

Montrer que (u_{2|a}) est une suite arithmétique.

Déterminer u_{2n} puis u_{2n+1} en fonction de n.

Exercice-2. On considère les suites (u_n) et (v_n) définies

$$\begin{cases} \mathbf{U}_{n-1} = \frac{1}{2}\mathbf{U}_n + 2n, & (\forall n \in \mathbb{N}) \\ \mathbf{U}_0 = 2 \end{cases}$$
 et $\mathbf{V}_n = \mathbf{V}_n - 4n + 8$

 $\sqrt{1}$. Calculer u_1 et montrer par récurrence que $u_n \ge n$

 $(\forall n \in \mathbb{N}^*).$ 2. Montrer que (v_n) est une suite géométrique en déterminant sa raison.

3. Ca'cuier u_n en fonction de n.

Calcule: $S_n = v_0 + v_1 + \cdots + v_{n-1}$ en fonction de n, et déduire que $T_n = u_0 + u_1 + \cdots + u_{n-1}$ en fonction de n.

Exercice 3.

On considère la suite numérique (un) définie par :

$$\begin{cases} u_0 = u_1 = 1 \\ u_{n+2} = u_{n+1} - \frac{1}{4}u_n, & (\forall n \in \mathbb{N}) \end{cases}$$

et on pose $(\forall n \in \mathbb{N}) : v_n = 2^n u_n$.

1. Montrer que (vn) est une suite géométrique en déterminant sa raison.

Déterminer v_n puis v_n en fonction de n.

/3. Soit n ∈ N*, on pose

$$S_n = \sum_{k=1}^n u_k$$
 et $P_n = \prod_{k=1}^n u_k$

Montrer que $S_n = 3 - \frac{n+3}{2^n}$ et que $P_n = \frac{(n+1)!}{2^{\frac{n(n+1)}{2}}}$

On rappel que $n! = 1 \times 2 \times 3 \times \cdots \times n$, se lit factorielle n.

Exercice 4. On considère la suite numérique (un) définie par:

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{2u_n - 3}{4 - u_n}, & (\forall n \in \mathbb{N}) \end{cases}$$

et on pose $(\forall h \in \mathbb{N}) : v_n = \frac{u_n - 3}{u_n + 1}$.

Montrer par récurrence que : −1 ≤ un ≤ 3

2. Étudier la monotonie de la suite (un)

J 3. (a) Montrer que (vn) est une suite géométrique en déterminant sa raison

(b) Déterminer vn puis un en fonction de n.

Calculer
$$S_n = \sum_{k=1}^n u_k$$
 et $P_n = \prod_{k=1}^n u_k$

Exercice 5. (A) On considère la fonction réelle / définie sur R par

$$f(x) = \frac{x^2 + x}{x^2 + 1}$$

et on pose i = [0, 1]

Montrer que f (f) ⊂ I.

2. Montrer que $f(x) \ge x$, $(\forall x \in I)$.

(B) Soit (un) une suite numérique définie par

$$\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = f(u_n) \quad (\forall n \in \mathbb{N}) \end{cases}$$

Montrer oue 0 < u_n < 1, ∀n ∈ N)

Mon rer que la suite (un) est croissante

3. (a) Montrer que | 1/2-1 - 1 < $(7n \in \mathbb{N})$

(b) Montrer que $|u_n - 1| \le \frac{1}{3} \left(\frac{4}{5}\right)^n$, $(\forall n \in \mathbb{N})$.

Exercice 6. On considère la suite numérique (un) définie par:

$$\begin{cases} u_0 = 5 \\ u_{n+1} = \frac{4u_n+2}{u_n+1}, & (\forall n \in \mathbb{N}) \end{cases}$$

Montrer que u_n > 2 (∀n ∈ N).

2. (a) Vérifier que $u_{n+1} - 2 = \frac{2(u_n - 2)}{v_n + 1}$ ($\forall n \in \mathbb{N}$).

(b) Montrer que $u_{n+1} - 2 \le \frac{2}{3} (u_n - 2) (\forall n \in \mathbb{N})$.

(c) Déduire que $u_n - 2 \le 3 \times \left(\frac{2}{3}\right)^n \ (\forall n \in \mathbb{N}).$

3 On pose $v_n = \frac{u_n - 2}{u_n - 1} (\forall n \in \mathbb{N})$

 (a) Montrer que (v_n) est une suite géométrique de raison q = 2 et déterminer vo.

(b) Calculer vn en fonction de 11, puis déduire que

$$u_n = \frac{\frac{3}{4} \times \left(\frac{2}{3}\right)^n - 2}{\frac{3}{4} \times \left(\frac{2}{3}\right)^n - 1}$$

(c) Calculer la somme $S_n = v_0 + v_1 + \cdots + v_n$

YNEN; O < U - 1 < (2) 4) Montrer que: pour tout n E IN": n < = Uk (n+ (1-(1))) Exercice (5): Soit (Un) la suite numérique définie par: (YnEN; Un+1 = 1 Un + n-1 On considère la suite On pose; pour tout nEN: Vn = 4 Un - 6 n + 15 1) Montrer que (Vn) est une suite géométrique; et déterminer sa raison et son premier terme. 2)a-Ecrile Un en fonction den b. En déduire que : pour tout nEN; Un = tm + Wm avec: t = 19 x 1 et w = 3 n - 1/5 c-Montrel que (tn) est une suite gérmétrique de laison 1 jet que (wn) est une 3 suite arithmétique de raison 3

3) Pour tout nEN; on pose:

Tn = to + tn + te + + tn

et UV = w + w + w + + ... + w , et 5 = U. + U, + U2 + + Un a) Calculer To et W en fonction de m: b) Déduire Sn en fonction

Exercice 6: (Un) définie par: Vn∈N"; Un = 2 - 1+k Etudiel la monotonie de la suite (Un).

> Yof: Asma OULBAZ

numériques 31. Boc. SM { Les suites Exercice (1) 1 4 nEM; Hn+1 = 1 (4n+= On considére la suite YNEN; Up = 4 - 3 numérique (Un) définie par: 1) Montrer que (Vn) est U= 3 et YnEN; Un= U-2Un+2 une suite géométrique; et déterminer sa raison 2) Montrer que la suite et son plemic terme. 2) En déduire que: (Un) est décroissante. 4,6N: Un = 3+ 3) Montrer que: Exercice 2: On considère la suite (Un) est une suite décloissante et minorée numérique (Un) définie par: par 3. $U_0 = 2$ 4) On pose; pour tout nEN; [Vn EN; Un+ = 1 Un + 1 n+1 S= U+ U+ U+ U+ + . Montrer que: On pose: Yn EN; Vn = Un -n VIEN; 5 = 31+5-1 1) Montrel que (Vn) est une suite géométrique jet Exercice 4: déterminer sa raison et son On considére la suite premier 2) Calculer Vn en fonction de numérique (Un) définie par: 1 = 3 n, puis en déduire un en [Vnen; Un+1 = Un+ Un+ 1 fonction de n. 3) On pose; pour tout nEM: So = Un + Uz + Uz + ... + Un 1) Montrel que: Calculer S, en fonction de n Ynen; Un >1 2) Etudier la monotonie de Exercice (3): la suite (ll) On considère les deux suites 3) a)- Montrer que: numériques (lh) et (Vn) 4 n ∈ N; Un+1 - 1 (1 1) définies par: b) En déduire que;