### AspenDocs 1.0

| User Manual                                                 | ▼        |
|-------------------------------------------------------------|----------|
| Architecture                                                | •        |
| Formulas                                                    | <b>A</b> |
| Delta Z (form_deltaz.html)                                  |          |
| Dew Point (form_dp.html)                                    |          |
| Dew Point Depression (form_dpdep.html)                      |          |
| Equivalent Potential Temperature (form_thetae.html)         |          |
| Geopotential Altitude (form_altitude.html)                  |          |
| LCL Pressure (form_lclpres.html)                            |          |
| LCL Temperature (form_lcltemp.html)                         |          |
| Mixing Ratio (form_wsat.html)                               |          |
| Number of Time Constants (form_numtc.html)                  |          |
| Potential Temperature (form_theta.html)                     |          |
| Potential Temperature (Taylor series) (form_theta_old.html) |          |
| Relative Humidity (form_rh.html)                            |          |
| Saturation Vapor Pressure (PAM II) (form_esw.html)          |          |
| Saturation Vapor Pressure (Hardy) (form_esw_hardy.html)     |          |
| Sat Vapor Pres WRT Water (form_qsatw.html)                  |          |
| Virtual Temperature (form_tv.html)                          |          |
| Virtual Temperature (from MR) (form_tv_old.html)            |          |
| PAM II Derived Parameters (form_pam.html)                   |          |
| PAM II Derived Parameter Constants (form_constants.html)    |          |
| Temperature of Dry Air (form_thetatot.html)                 |          |
| Temperature of Saturated Air (form_tmr.html)                |          |
| QC Algorithms                                               | ▼        |
| WMO Message Algorithms                                      | •        |

# Virtual Temperature

Table of Contents

Description

- Formula
- Source

## Description

Calculate the virtual temperature  $T_v(K)$  from temperature T(C), pressure P(mb) and relative humidity rh(%).  $E_{sw}(P,T)$  (/aspendocs/form\_esw\_hardy.html) is the Hardy equation for saturation vapor pressure.

Used in Aspen starting with V3.4.5.

#### Formula

$$T_v = rac{T + 273.15}{1 - h2omr*(1 - \eta)}$$

where:

$$h2omr = rac{e}{P-e} \ e = E_{sw} * (rac{rh}{100}) \ mh2o$$

$$\eta = rac{mh2o}{mdry}$$

$$mh2o = 18.105(g)$$

$$mdry = 28.966(g)$$

#### Source

Wikipedia 🗹



Tags: formulas (tag\_formulas.html)



National Center for Atmospheric Research • 2025