1.適用範囲

クラス II器として、後述する性能を満足すること。

2.適用規格

P.5参照

3.外観図

外観詳細は、別途指示

適用安全規格に準拠した内容を機名板に記入すること。

重複のない固有の指定形式のバーコードを貼り付けること。

5.適用安全規格

•取得安全規格 IEC 60950-1:2005 (Second Edition); Am1:2009 + Am2:2013

IEC 62368-1:2014 (Second Edition)
UL 60950-1.2nd Edition 2014-10-14

CSA C22.2 No.60950-1-07,2nd Edition 2014-10

EN 60950-1:2006 + A11:2009 + A1:2010 + A12:2011 + A2:2013

EN 62368-1:2014 +A11:2017

K60950-1(2011-12)…韓国向け規格は末尾-12より対応

GB4943.1-2011(Safety)に基づいたCQC認証…中国向け規格は末尾-12より対応 ※GB17625.1-2012(Harmonic)、GB/T9254-2008(EMI) は取得しない。

IEC62368-1 Ed.2に対しては、Test Report発行までを、当該PSU の量産時までに行い、UL、EN他地域のCortificate発行に対しては時期を含めて別途協議。国際スキームに基づいたCB Test Reportをは発行してもらい、将来Cortificate発行時に再テスト行わないでいいようなものとすること。

•高地要求 2000m

仅适用于海拔2000m以下地区安全使用…中国向け規格は末尾-12より対応

・トロピカル対応 対応

・設置方法 下記設置状態を満足する安全規格適合とすること。

*LPS対応 5VSB系統(4.8V±4%/定格1.5A)は、LPS対応とすること。

・温度センサー 温度センサーは、部品単体での認証を取得し、安規申請時に取り外すことなく 認証機関で試験を行い規格を満足すること。

6.適用電波妨害規格

※特記なき場合は、該当規格に合わせたAC入力にて確認すること。

※各々、最新の規格要求で満足すること。

【適用規格】 VCCI-B,FCC Part15 B

IT規格: EN55022, EN55024, EN61000-3-2, EN61000-3-3, CISPR22, CISPR24

AV規格: EN55020, EN61000-3-2, EN61000-3-3, CISPR20

マルチメディア規格: EN55032

KN32, KN35…韓国向け規格は末尾-12より対応

[EMI]

搭載機および単体において該当規格を満足すること

[EMS]

・静電気放電 IEC61000-4-2に基き、搭載機および単体にて試験を行う。

【試験条件】

試験プローブ:150pF/330Ω

気中:~±8kV 接触:~±6kV

上記静電印加時に、誤動作・破壊なきこと。

試験後の動作復帰に、AC OFF⇒ONを必要とする異常モードは破壊とみなす。

• 放射無線周波数磁界

IEC61000-4-3に基き、搭載機および単体にて試験を行う。

【試験条件】

3V/m

上記条件にて、誤動作・破壊なきこと。

試験後の動作復帰に、AC OFF⇒ONを必要とする異常モードは破壊とみなす。

•EFT/B

IEC61000-4-4に基き、搭載機および単体にて試験を行う。

【試験条件】

1kV

上記条件にて、誤動作・破壊なきこと。

試験後の動作復帰に、AC OFF⇒ONを必要とする異常モードは破壊とみなす。

・雷サージ

IEC61000-4-5に基き、搭載機および単体にて試験を行う。

【試験条件】

コモン: ±2kV ノーマル: ±1kV

※印加相:+側0° & 90° -側180 & 270°

上記条件にて、誤動作・破壊なきこと。

試験後の動作復帰に、AC OFF⇒ONを必要とする異常モードは破壊とみなす。 (電気的仕様にある雷サージとは異なり、CRボックスは使用しない)

【雷サージを保証するにあたって実施する試験】

評価試験としては、実力確認のため下記の電圧まで実施。

コモン: ±4kV ノーマル: ±2kV

コモン±2kVを保証するため、4kVまで誤動作・破壊無きこと。 ノーマル±1kVを保証するため、2kVまで誤動作・破壊無きこと。

•伝導性妨害

IEC61000-4-6に基き、搭載機および単体にて試験を行う。

【試験条件】

3V

AM変調 1kHz 80% 0.15~80MHz

掃引速度:1.5x10-3 decade/s

上記条件にて、誤動作・破壊なきこと。

試験後の動作復帰に、AC OFF⇒ONを必要とする異常モードは破壊とみなす。

・電源周波数磁界イミュニティ IEC61000-4-8に基き、搭載機および単体にて試験を行う。

【試験条件】

1A/m

x,y,z方向

上記条件にて、誤動作・破壊なきこと。 試験後の動作復帰に、AC OFF⇒ONを必要とする異常モードは破壊とみなす。

・電圧ディップ/瞬断イミュニティIEC61000-4-11に基き、搭載機および単体にて試験を行う。

【試験条件】

95%以上, 0.5周期: 誤動作・破壊なきこと。

30%以上, 25周期: AC復帰後に正常起動し、誤動作・破壊なきこと。 95%以上, 250周期: AC復帰後に正常起動し、誤動作・破壊なきこと。 試験後の動作復帰に、AC OFF⇒ONを必要とする異常モードは破壊とみなす。

7. 入力性能

	項目	条件		規格
1	定格電圧			100 ~ 240V a.c.
2	入力電圧			85 ~ 276V a.c.
3	入力電流	AC100V入力 ①5VSB/1.5A 12V/ ②5VSB/0A 12V/		2.5A
4	定格周波数			50Hz/60Hz
5	入力周波数	参考値: EIAJ 規格では 47 ~ 63 Hz		47 ~ 63Hz
6		85 ∼ 276V a.c.	Ta=25℃ コールドスタート時	140A以下 判断条件:指定条件下において突入電流が上記以下となり、品質事故を含む危険な状態に至らないこと。
0	入力突入電流	サーミスタが最も独玩値か下かった状態 ただ AC ON ⇔ OFF 繰り返しけ		180A/2msec以下 判断条件:指定条件下において突入電流が上記以下となり、品質事故を含む危険な状態に至らないこと。

8. 出力

8-1. 出力系統 制御信号(入力):12VをON/OFFする /ACDC_STBY。 制御信号(出力):ACをモニタし、SystemI=ACの有り/無しおよび異常状態のステータスを知らせる信号。 電源出力:常時通電の5VSB。ACDC_STBYでON⇔OFF制御される12Vからな2系統出力。

8-2. 出力性能
・各スペックは、下記出力容量(最小容量)を付け満足すること。
12V : 22uF(セラシウコンデンサ)
5VSB : 10uF(セラミックコンデンサ)

【况恰】									
	出力電圧		出力電圧 出力電流		リプル・リプルノイズ 【注】定格荷状態で満足すること	過電流保護 (ピーク値~ピーク値x1.25)	過電圧保護		
	定格	許容差	ピーク	定格	最小	Ta=-5~40°C	(C) [C C] [EX1.20)		
5VSB	4.8V	±4% (4.608~4.992V)	3A	1.5A	0A	50mVp-p以下	3.0<設定値≦3.75A	6.00Vを超えないこと	
12V	12V	+5% -4% (11.52~12.6V)	19.5A/30msec	13A	0A	150mVp-p以下	19.5<設定値≦24.375A	15.6Vを超えないこと	

8-3. 他の出力性能

	項目	試験条件と規格				
1	無負荷運転	入力範囲:85~276V a.c. 破壊・誤動作なく、出力電圧に異常なきこと。				
2	オーバー/アンダーシュート	入力範囲:85~276 定格出力電圧の10				
3	起動容量	各出力の外部に取 入力範囲:85~276		8量が下記の値以下で安定して起動でき ※他の仕様に関しても、この容量を取		
		過電流	允保護	異常検出後、5VSBおよび12Vの動作を	・停止(ラッチ)し、発煙・発火・感電のなきこと。	
		過電圧	E保護	12V系の異常により全系統停止する場 入力範囲:85~276V a.c.	合は、12Vが先に停止すること。	
4	保護機能	サーマル保護		内部部品の定格温度を超える前に、サーマル異常検出を行い、すみやかに5VSBおよび12Vの動作を停止(ラッチ)し、発煙・発火・感電のなきこと。 12V系の異常により全系統停止する場合は、12Vが先に停止すること。 入力範囲:85~276V a.c.		
,	体。政策是	保護機能動作時の 信号出力および電源出力		異常を検知し、ラッチする際は、ACIN DETをLow出力すること。 12V系の異常検出の場合は、ACIN DET: Lowlになった後、可能な限り、 5VSB出力を維持すること。		
		AC OFF時のラッチ機能		AC OFF時の出力(全系統)の放電に関しては ラッチをかけないこと。(瞬断動作中のAC再投入時の起動に支障が出るため)		
5	保護動作からの復帰	ACの再投入によってラッチを解除する。 ラッチはAC OFF後、3分以内に解除すること。				
	18 allert of	5VSB	変動周波数:1	件】 D100%~60%,90%~50%,80%~40% I0Hzおよび1kHz レーレート:0.01A/usec	【判定基準】 4.8V±4%以内に電圧が収まること。	
6	過渡応答	12V	変動周波数:1	カ100%~80%、90%~70%、80%~60% 0Hzおよび1kHz レーレート: 0.3A/usec	【判定基準】 12V +5% -4% 以内に電圧が収まること。	

9. 制御端子特性

 [/ACDC_STBY制御信号レベル] Vin_max : 3.465V Vih : Min 2.2V Vil : Max 0.6V Iin_max : 0.15mA 【ACIN_DET制御信号レベル】 下記のSpecを満たす信号出力で、ACDC側に100kΩ のP-D抵抗内臓。 Voh: Min=4.5V、Max=5.1V Vol: Min=0V、Max=0.3V

10. 電源ON/OFFシーケンスとタイミング

※特記なき場合は、入力条件は85~276V a.c./全負荷範囲とする。

	スペックおよび条件	説明	備考
t_5vsb_on	300ms以内に出力が4.8V±4%に立ち上がること。 ただし、起動時の/ACDC_STBY:Lowとする。	AC投入後の5VSB立上り時間	
t_5vsb_off	立下りの途中の再起動などにより、誤動作しない立下り時間であること。	5VSBの立下り時間。	
t_acin_det_delay	Min値 :5VSBが立ち上がり安定後にACIN_DETをHiにすること。	ACIN_DET Low⇒Hi時の遅延時間。	
t_acin_det_delay2	一度、ACIN DETがHi⇒Lowlこなった後、10msecはLow⇒Hi にしないこと。 10msec経過後に、ACIN DETをHiにする条件が整っている 場合は、すみやかにACIN DET がLow⇒Hiとすること。	ACIN_DET Low⇒Hi時の遅延時間。	5VSBが出力されていないときにACIN_DETがHi になるような状態があってはならない。
t_ac_off	以下の条件を満たしてからACIN_DETをLowIにすること。また、ACIN_DETがLowIになった後は、t_dur2の5VSB保持条件を満たすこと。 【条件で満たすこと。 【条件で満たすこと。 【条件で満たすこと。 【条件で満たすこと。 【条件であれている場合】 「SVSB、12VだけでなくACIN_DETも、40msecの間 HIレベルを保持すること。 その後、12Vが落ち始める前に、ACIN_DETをLowIにすること。 【条件②: 12VがONで負荷がt_dur1の負荷条件より多い場合】 SVSB/12Vの出力を可能な限り維持し、仕様電圧範囲を外れる前にACIN_DETをLowIにすること。 (ただし制御上園兼な場合を除く) 【条件③: 12VがOFFしていた場合】 40msecの間は、5VSBを保持し、ACIN_DETをHiレベルを維持すること。40msec経過後は、ACIN_DETをLowIにしてよい。	5VSBおよび12Vが保持できない瞬断 が発生した場合に、ACIN_DETをLow にするまでの時間。	
t_main_on	400ms以内に12V±5%に立ち上がること。 ★できるだけ早く立ち上がることが望ましい	ACDCSTBからの12V立ち上がり時間	
t_main_on2	出力が10Vから12Vに立ち上がるまで150msec以内である こと。	12Vの10Vからの立ち上がり時間	
t_main_on3	出力が0Vから12Vに立ち上がるまで 2~20msec以内であること。	12Vの0Vからの立ち上がり時間	
t_main_off	立下りの途中の再起動などにより、誤動作しないこと。 12V 8A負荷において、立下りの100%(=立下り前のavg電圧)~10% 250msec以下	12Vの立下り時間。	
t_dur1	負荷条件等条件は、共通仕様の表参照。	12VがON時の瞬断保持時間 (5VSBは無負荷)	
t_dur2	負荷条件等条件は、共通仕様の表参照。	5VSBの瞬断保持時間 (12VはOFF)	

図は、別紙。

11. 共通仕様

※設計基準Box・・・当該電源にとって温度がワースト状態となる箱(FAN空冷あり) 項目 条件 規格 ①スタンバイ電源(5VSB): 40kHz(参考値) ②PFC :80kHz(参考値) ③共振部 :65kHz(参考値) スイッチング周波数 AC100V入力 定格負荷 力率 IEC61000-3-2 高調波規制に対応 2 設計基準BOXおよび搭載機へ実装し、常温環境下で動作させた状態で、70,000時間 常温常湿環境下 定格入力 寿命 ⇒20,000時間は12V、5VSBともに定格負荷時(FAN冷却)。 ⇒50,000時間は12V OFF、5VSB 定格負荷時(自然空冷)。 保証値 参考實力 参考實力 **9100Vao 9240Vao** 12V Efficiency Spec. (4.8V: no load) 13A 89.0% 90.06% 91.87% 87.5% \$9.0% 89.5% 90.0% 90.5% 90.0% 90.0% 89.5% 89.0% 11A 89.5% 90.52% 92.18% 9A 90.0% 91.16% 92.10% 8A 90.0% 9130% 92.05%

4	12'	V_ON時効率	定格入力 常温常温環境下 5VSB負荷=0A FAN空冷あり 58% 68% 68% 68% 68% 68% 68% 68% 68% 68% 6	5 6 7 8 9 10 11 12 13 Load (A)	8A 7A 6A 5A 4A 3A 2A 1A 0.3A 0.2A	90.0% 90.5% 90.0% 89.5% 89.0% 87.5% 84.0% 75.0% 60.0% 52.0% Pin < 1.7W	91.30% 91.50% 91.51% 91.20% 90.53% 89.42% 86.48% 78.64% 66.06% 57.90% Pin < 1.3W	92.05 92.03 91.86 92.33 92.95 92.52 90.67 85.99 68.18 59.27		
5	12\	/_OFF時効率		ciency Spec. (12V:OFF) 50.5% 60.5% 60.5% 60.6% 60.6 60.8 60.9 60.6 60.8 6	Loading 1.5A 1A 0.75A 0.6A 0.37A 0.3A 0.1A 0.06A 0.05A	##### 80.0% 80.5% 80.0% 79.5% 80.0% 78.0% 78.0% 78.0% 66.5% 63.0% 63.0% Fin < 0.085W	参考変力 9考変力 9100Vao 81.50% 82.10% 82.40% 82.40% 81.70% 77.60% 73.60% 71.70% 63.80% Pin < 0.04W	82.26 82.26 82.26 81.86 81.10 75.76 70.76 68.26 60.76 Pin < 0		
6	内	部温度上昇	搭載器のTa=40°C時。	搭載器の動作に異常なきこと。 また、通常動作だけでなく保護機能が働いた	使用部品の定格を超えないこと。 搭載器の動作に異常なきこと。 また、通常動作だけでなく保護機能が働いた場合(加熱保護検出直前/OverLoad試験 時の動作停止直前状態と含む)も、使用部品の定格を超えないこと。					
7	#温環境下の定格入力で、下記の負荷状態 (1)5VSB: 定格以下(12VはOFF) (2)12V:6.5A以下(5Vは無負荷) 全温度範囲で全入力範囲内において、下記の負荷状態 【必須】5VSB:1.5A以下 12V:OFFを含む全負荷範囲		①5VSB:定格以下(12VはOFF) ②12V:6.5A以下(5Vは無負荷)	50Hz時の2サイクル(=40msec)以上保持する (50Hz時の1サイクル(=20ms)を保持できる実		DA(参考値	i))			
			【必須】 5VSB:1.5A以下	ACIN_DETがLowになった後は、5VSB を 可能な限り保持すること						
9	源洩電流 定格入力 常温常湿環境下			100uArms以下(必須)						
10	入	力放電時間	ACをOFFしてから入力電圧が放電するまでの時間。 ①入力121V以下のとき、AC OFFから37%になるまで ②入力122V以上のとき、AC OFFから45Vになるまで	①1秒以内 ②1秒以内						
11	入力片切り試験 (暫定名称)		85~276V a.c./全負荷範囲/全温度範囲において、下部 (20)操作を実施。 ①AG ON — LiveのみOpen → 正常なAC再投入 ②AG ON — NeutralのみOpen → 正常なAC再投入 上記。『正学なAC再投入』は、 A) ブロックコンデンサによって、出力保持している間 B) 出力が保持できなくなり、出力がOVまで落ちる前 C) 出力がOVまで落ちて、ACDC内部の電荷が残ってい 間 D) 出力がOVまで落ちて、ACDC内部が完全放電した行う。	A) ロガ水物を止帯に味得すること。 B~C)電源出力は行わない。 『正常なAC再投入』時には、通常のAC投入さ 発生無きこと。						
12	400V印加保護 AC400Vを2秒間印加		AC400Vを2秒間印加	危険な状態にならないこと。 危険な状態とは、発火、発煙および感電など、人体や財産に危機的問題を起こすこと 指す。コンデンサ防爆弁作動も不可。						
13			抜き取り:1次-2次間 3.0kVAC50/60Hz) 60秒印加 量産全数:1次-2次間 3.0kVAC50/60Hz) 1秒印加	IEC60950-1 5.2項 耐電圧を満足するため、 破壊なきこと。 ただし、全数条件を保証するため、工程での a.c(50/60Hz) 3.0秒印加とする。				以下で		
14		絶縁抵抗		DC 500 Vにて、1次~2次間 10MΩ以上。						
15	絶縁距離			該当安全規格要求距離+0.5mmを満足すること。						

12. 環境仕様

	1114	※設計基準Box・・・当該電源にとって温度がワースト状態となる箱(FAN空冷あり)				
	項目	試験条件と規格				
1	使用保証範囲	-5 ~ +40°C(湿度20~90% Rh) 上記環境下で設計基準Boxおよび搭載機への実装状態に組み込み問題なきこと。				
2	保存保証範囲	-35 ~ +80°C(湿度10 ~ 90% R.h)				
3	高温・高湿での連続運転	+40°C/90% Rhにて設計基準Boxおよび搭載機に組み込み1000時間の連続運転を行った後、電気的性能を満足すること。				
4	高温高湿保存	最高保存温度/最高湿度中に96時間以上放置後、常温常湿中に1時間以上放置し、電気的性能を満足すること。				
5	低温保存	最低保存温度中に96時間以上放置後、常温常湿中に1時間以上放置し、電気的性能を満足すること。				
6	低温動作	使用保証最低温度中にて無通電で5時間放置後、電源を投入し、電気的性能を満足すること。				
7	低温起動	定格入力電圧±10%。定格負荷にて以下の試験を行い、電気的性能を満足すること。 外観その他に異常のないこと。 25°C 放置				
8	耐湿性	温度40±2°C、湿度90~95%中に48時間放置後、水滴をぬぐい、常温常湿中に30分放置し、耐電圧、絶縁抵抗を試験し問題の無いこと。				
9	熱衝擊試験	-20°C、80°C/各4時間 -20~80°Cを10°C/分で変更する。これを1サイクルとし5サイクル放置し、電気的性能を満足すること。外観その他に異常の無いこと。				
10	ヒートサイクル	非通電(保存)状態で温度/湿度を80°C90% ~ -20°Cで下図のように変化させたのち、定格電圧/定格負荷で動作させ、電気的性能を満足すること。また、外観その他に異常の無いこと。 80°C1 80°C 25°C -20°C				

13. その他 仕様

	項目	試験条件と規格
1	外観	異物や汚れ・指紋の付着の無いこと。 また、製造時に使用するオイルなどによる、製品の異臭なきこと。
2	接着剤	クロロプレンを主成分とする、接着剤を使用しないこと。
3	質量	310g(参考値)
4	異音	動作中、異音無きこと。

14. 耐久性能

※設計基準Box・・・当該電源にとって温度がワースト状態となる箱(FAN空冷あり)

	※設計基準Box・・・当該電源にとって温度がワースト状態となる箱(FAN空冷あり)						
	項目 試験条件と規格 5VSB 定格入力にて出力端子を1秒間ショートしラッチした後、AC OFF(ラッチ解除)し 特性を満足する。						
1	負荷オープン/ショート	12V 定村	格入力にて出力		LACを再投入を1サイクルとし、これを100サイクル行った後、電気的		
2		1次ON/OFF 負荷	カ:定格入力電原	SB 定格相当の抵抗負荷	【判断基準】 1次側のON/OFFを10万回繰り返し(5秒ON、5秒OFF)その後、電気 的特性を満足すること。		
2	電源ON/OFF	2次ON/OFF 負荷	カ:定格入力電原 苛:12V、5VSB と 印条件:設計基準		【判断基準】 ACDC、STBYを制御し、2次側のON/OFFを10万回繰り返し(5秒 ON、5秒OFF)その後、電気的特性を満足すること。		
3	O/S試験	ショート・オープン後、電影終了。	品 : すべての端 ⁻ 間 巻線 間 態で、ショート・; 能値や温度が安	子間の組み合わせ ナーブン試験を開始する。 定し危険な状況にいたらないと判断できる場合は15分で ずつ上昇したり、異常に発熱していたりする場合は最大で4	【判断基準】 破壊に至らないこと。 もし、破壊に至うた場合、危険な状態になることが無くFuse切れなどにより安全に動作停止する場合は、問題なしと判断する。 ・危険な状態 ・危険な状態 ・角を発火・感電(部品の発火・燃焼・発熱・赤熱 /基板の炭化・過電流によるパターン切れ) 2)異常・破裂音・異臭やキャでの変形など、ユーザーに 不安感を与えるような状況 (破裂音や異臭に関してはそれほど酷いものでなく、 その状態がすぐに終了するような場合は、そのレベル に 応じ判定可否の判定を行う		
	静電試験			【気中故電試験条件】 -ブローブ先端:丸型 -6kVから2kVステップで試験を実施 -印可電圧はよ6~15kV -各電圧にで50即可 -印可毎に、IEC61000-4-2に基づき試料のディスチャージを行う。 【放電箇所】 -手の触れることができる全ての表面(吸気口は除く)	【判断基準】 (7) 誤動作なきこと。		
4		【全項目共通の試験条件】 - IEC61000-4-2準拠の試験環境にて、150pf-7330の試験プロープを使用(先端形状は、各試験条件を参照)・定格電圧にて実施・単体(定格人力電圧/定格負荷時)および搭載機への実装状態	[間接放電試験条件] - プロープ先端:円離型 - 4kVから2kVステップで試験を実施 - 印可電圧はエ4~15kV - 各電圧にで50回印 - 印可毎に、IEC61000-4-2に基づき試料のディスチャージを行う。 「放電箇所] - 諸裁機に実装された状態の縦置き4方向/模置き4方向。 - 単体試験時には、搭載機の縦置き4方向/模置き4方向を 想定して試験。	【判断基準】 ①誤動作保証/破壊保証 ~土8kVにて原動作・破壊なきこと。 ②品質事故※保証 ~土15kVにて品質事故※なきこと。			
				【接触放電試験条件】 ・プロープ先端・円錐型 ・4kVから2kVステップで試験を実施 ・印可電には土4~15kV ・各電圧にて5回印可 ・印可毎に、IEC61000-4-2に基づき試料のディスチャージを行う。 【放電箇所】 ・金属部分で指で触ることが可能な箇所。 ・電源を信号入出力部。	【判断基準】 ①誤動作保証/破壊保証 ~±12kVにて誤動作・破壊なきこと。 ②品質事故※保証 ~±15kVにて品質事故※なきこと。		
5	ACトランジェント試験	±5kVから1kVステップで て満足すること。 モニタ未接続試験:~±1	モニタ未接続試験:~±10kVまで誤動作無きこと/~±15kVまで破壊無きこと。				
6	電源ノイズ試験	王二夕接続試験。~土10kVまで誤動作無きこと/~土13kVまでLatos無きこと/~土15kVまで破壊無さこと(Latohは除く)。 バルス幅 10msおよび1000msにおいて±1kVまで破壊および誤動作無きこと。ACプラグを抜かないと復帰しない誤動作は破壊とみなす。 ±200Vから200Vステップで試験。 単体(定格入力電圧/定格負荷時)および、搭載機実装状態にて満足すること。					

※品質事故・・・破裂音/焼損痕/ユーザーがわずかでも認識できる煙/ユーザーがわずかにでも感じ取れる臭い。試験中破壊した場合は、SIEも含めて合否判定すること。

※品質事故・・・・破裂音/焼損痕/ユーザーがわずかでも認識できる煙/ユーザーがわずかにでも感じ取れる臭い。試験中破壊した場合は、SIEも含めて合否判定すること。

