- 21 -

<u>CLAIMS</u>

: claim:

1	;. A welding power source capable of
2	receiving a range of input voltages, comprising:
3	an input restifier configured to receive an ac
4	input and providing a first dc signal;
5	a do voltage stage configured to receive the
6	firet do signal and providing a second do signal;
7	an inverter configured to receive the second do
8	signal and providing a second ac signal and
9	configured to receive at least one control input;
. 0	an output transformer configured to receive the
. 1	sector ac signal and $providing$ a third ac signal
. 2	having a current suitable for welding;
_ 3	an output circuit configured to receive the
. 4	third ac signal and providing a welding signal;
1.5	a controller configured to provide at least one
16	control signal to the inverter; and
17	an auxiliary power controller configured to
18	receive a range of input voltages and providing a
19	control power signal to the controller.
1	2. The apparatus of claim 1, wherein the
2	auxiliary power controller is capable of providing the
3	control power signal at a preselected control signal
4	voltage, regardless of the magnitude of the ac input
5	signal.
1	The apparatus of claim 2, further
2	including an auxiliary transformer with a plurality of
3	primary caps, wherein the auxiliary power controller is
4	in electrical communication with the plurality of primary
5	taps.
-	. The apparatus of claim 1, wherein the do

voltage stage includes a boost circuit.

- 22 -

:	The apparatus of claim 1, wherein the
2	inverter includes a pulse width modulator.
1	ϵ . The apparatus of claim 1, wherein the
2	range of input voltages is 230 volts to 575 volts.
1	7. The apparatus of claim 1 wherein the
2	output cimenit includes a rectifier.
:	E. The apparatus of claim I wherein the
2	output carcuit includes a cycloconverter.
1	A method of providing a welding current
2	from a range of input woltages, comprising:
3	rectifying an act input and providing a first do
4	signal:
5	converting the dc signal to a second ac signal;
6	transforming the second ac signal into a third
7	ac signal having a current suitable for welding; and
8	receiving the ac imput and providing an
9	auxiliary power signal source at a preselected
10	control power signal voltage, regardless of the
11	magnitude of the ac input signal.
1	The method of claim 9, wherein the step of
2	converting the dc signal includes the steps of converting
3	the do signal to a second do signal and inverting the
4	second do signal to provide the second ac signal.
	11. The method of claim 9 further including
1	the step of providing control signals to an inverter.
2	THE Step of broatding common prantile
1	12. The method of claim 9, wherein the step of
2	providing the auxiliary power signal includes the step of
3	transforming the ac input signal.
,	

	The method of claim 10, wherein the step
÷	of converging the first do signal to a second do signal
2	includes consting the voltage of the first do signal.
3	includes sposting the voltage of the fillst do signar.
	$_{ m Color}$. The $\sqrt{ m rethod}$ of claim 10, wherein the step
2	of inverting includes the step of pulse width modulating.
1	15. The method of claim 10 further including
2	the step of rectifying the third ac signal.
1	16. The method of claim 10 further includes
2	the step of cycloconverting the third ac signal.
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1	A welding hower source for providing a
2	welding current from a range of input voltages,
3	comprising:
4	rectifier means for receiving an ac input and
5	providing a first do signal;
5	converting means for converting the dc signal
7	to a second ac signal;
8	cransforming means for transforming the second
9	ac signal into a third ac bignal having a current
10	suitable for welding;
11	output means for providing a welding current;
12	and con magnitude the ac
13	muxiliary power means for receiving the ac
14	input and providing an auxiliary power signal at a
15	preselected control power signal voltage, regardless
16	of the magnitude of the ac input signal.
1	.3. The apparatus of claim 17, wherein the
2	means for sonverting includes means for converting the do
3	signal to a second do signal and means for inverting the
4	second do signal to provide the second ac signal.
1	19. The apparatus of claim 17 further
2	including means for providing control signals to an
_	· · · · · · · · · · · · · · · · · · ·

3

inverter

	- 24 -
:	1). The apparatus of claim 17, wherein the
2	means for providing the auxiliary power signal includes
3	means for transforming the ac input signal into the
4	auxiliary power signal.
1	71. The apparatus of claim 17, wherein the
2	means for converting the dc signal to a second dc signal
3	includes means for boosting the voltage.
3	
1	22. The apparatus of claim 17, wherein the
2	means for inverting includes means for pulse width
3	modulating
1	73. The apparatus of claim 17, wherein the
2	output means includes means for rectifying the third ac
3	signal.
1	24. The apparatus of claim 17, wherein the
2	output means includes means for cycloconverting the third
3	ac signal.
w	