Σημειώσεις Διαφορικές Εξισώσεις

Καναβούρας Κωνσταντίνος http://users.auth.gr/konkanant

2016, Εαρινό εξάμηνο

Μέρος Ι

Σεβαστιάδης

Χρήστος Σεβαστιάδης

Κεφάλαιο 1

Ορισμός: Διαφορική εξίσωση

Μια εξίσωση που αποτελείται από μια συνάςτηση και τις παραγώγους της

Langrange's $x', x'', x''', x^{(4)}, \dots$

Newton's $\dot{x}, \ddot{x}, \ddot{x}$

Leibniz' $\frac{dx}{dt}$, $\frac{d^2x}{dt^2}$, $\frac{d^3x}{dt^3}$

π.χ.

$$x(t)\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x(t)}{\mathrm{d}t} = x(t)\sin(t)$$

Ορισμός 1.1: Τάξη

Τάξη ονομάζεται ο μεγαλύτερος βαθμός παραγώγου που εμφανίζεται στην εξίσωση

Ορισμός 1.2: Βαθμός

Βαθμός ονομάζεται η μεγαλύτερη δύναμη παραγώγου που εμφανίζεται στην εξίσωση

Κεφάλαιο 2 Διαφορική εξίσωση 1ης τάξης

Ορισμός

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x)$$

2.1 Χωριζόμενες διαφορικές εξισώσεις

Τυπική μορφή:

$$f(t,x) = \frac{-M(t,x)}{N(t,x)} = \frac{\mathrm{d}x}{\mathrm{d}t} \implies \underbrace{N(t,x)}_{N(x)} \mathrm{d}x + \underbrace{M(t,x)}_{M(t)} \mathrm{d}t = 0$$

Αν δηλαδή τα N(t,x), M(t,x) εξαρτώνται μόνο από τα x και t αντίστοιχα, η εξίσωση ονομάζεται χωριζόμενη, και το αποτέλεσμά της μπορεί να βρεθεί με ολοκληρώματα:

$$\int N(x) \, \mathrm{d}x + \int M(t) \, \mathrm{d}t = c$$

1

$$x \, \mathrm{d}x - t^2 \, \mathrm{d}t = 0$$

$$N(x) = x$$
, $M(t) = -t^2$

$$\int x \, dx + \int (-t^2) \, dt = c \implies$$

$$\frac{1}{2}x^2 - \frac{1}{3}t^3 = c \implies$$

$$x = \pm \sqrt{\frac{2}{3}t^3 + 2c} \implies$$

$$x = \pm \sqrt{\frac{2}{3}t^3 + \kappa}$$

$$με κ = 2c$$

Άσκηση: 2.2

$$x' = x^2 t^3$$

$$\Rightarrow \frac{dx}{dt} = x^{2}t^{3}$$

$$\Rightarrow \frac{1}{x^{2}} dx - t^{3} dt = 0$$

$$\Rightarrow \int \frac{1}{x^{2}} dx + \int (-t^{3}) dt = c$$

$$\Rightarrow -\frac{1}{x} - \frac{t^{4}}{4} = c$$

$$\Rightarrow -\frac{1}{x} = c + \frac{t^{4}}{4}$$

$$\Rightarrow -\frac{4}{x} = 4c + t^{4}$$

$$\Rightarrow x = \frac{-4}{t^{4} + \kappa}, \quad \text{ue } \kappa = 2c$$

Άσκηση: 2.3

$$x' = \frac{t+1}{x^4+1}$$

$$\Rightarrow \frac{dx}{dt} = \frac{t+1}{x^4+1}$$

$$\Rightarrow (x^4+1) dx + (-t-1) dt = 0$$

$$\Rightarrow \int (x^4+1) dx + \int (-t-1) dt = c$$

$$\Rightarrow \frac{x^5}{5} + x - \frac{t^2}{2} - t = c$$

Παρατηρούμε ότι, χωρίς αρχική συνθήκη, βρίσκουμε γενικές λύσεις ως αποτέλεσμα. Με τη χρήση μιας αρχικής συνθήκης, μπορούμε να βρούμε και την ειδική λύση της εξίσωσης.

$$e^t dt - x dx = 0;$$
 $x(0) = 1 \leftarrow$ αρχική συνθήκη

$$\implies \int x \, dx + \int (-e^t) \, dt = c$$

$$\implies \frac{x^2}{2} - e^t = c$$

$$\implies x^2 = 2e^t + 2c$$

$$\implies x^2 = 2e^t + \kappa, \quad \text{ue } \kappa = 2c$$

Όμως x(0) = 1, άρα:

$$\begin{cases} x^2 = 2e^t + \kappa \\ x(0) = 1 \end{cases} \implies x(0)^2 = 2e^0 + \kappa \implies \boxed{\kappa = -1}$$

Επομένως τελικά:

$$x^2 = 2e^t - 1 \implies x = \pm \sqrt{2e^t - 1} \implies \boxed{x = \sqrt{2e^t - 1}}$$

Η αρχική συνθήκη πράγματι επαληθεύει το αποτέλεσμα x. Πρέπει όμως και $x \in \mathbb{R}, \ 2e^t - 1 \ge 0$.

Από τη διαφορική εξίσωση έχουμε $x' = \frac{e^t}{x}$, άρα πρέπει $2e^t - 1 > 0 \implies t > \ln \frac{1}{2}$

$$\int_{x_0}^x N(x) \, \mathrm{d}x + \int_{t_0}^t M(t) \, \mathrm{d}t = 0, \quad x(t_0) = x_0$$

Άσκηση: 2.5

$$x \cos x \, dx + (1 - 6t^5) \, dt = 0; \quad t(\pi) = 0$$

$$x_0 = \pi$$
, $t_0 = 0$

$$\implies \int_{\pi}^{x} x \cos x \, dx + \int_{0}^{t} (1 - 6t^{5}) \, dt = 0$$

$$\implies x \sin x \Big|_{\pi}^{x} + \cos x \Big|_{\pi}^{x} + (t - t^{6}) \Big|_{0}^{t} = 0$$

$$\implies x \sin x + \cos x + 1 + t - t^{6}$$

$$\implies \left[x \sin x + \cos x + 1 = t - t^{6} \right]$$

2.2 Ομοιογενείς

$$f(t,x) = \frac{-M(t,x)}{N(t,x)}$$

Ορισμός 2.1

An $\forall a \in \mathbb{R} : f(at, ax) = f(t, x)$, léme óti n exíswsn eínsi omoiogenás.

Θεώοημα

Αν μια εξίσωση είναι ομοιογενής, μπορούμε να την λύσουμε μειώνοντάς/μετατρέποντάς την σε χωριζόμενη, εφαρμόζοντας το μαθηματικό κόλπο που ονομάζεται "αντικατάσταση μεταβλητής", δηλαδή, όπου u συνάρτηση:

$$x = ut \implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}u}{\mathrm{d}t}t + u$$

Аσкпоп: 2.6

$$x' = \frac{x+t}{t}$$

$$\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x+t}{t}$$
, μη χωριζόμενη.

$$f(t,x) = \frac{\mathrm{d}x}{\mathrm{d}t}$$
, $f(at,ax) = \frac{ax+at}{at} = \frac{x+t}{t}$ ομοιογενής

Θέτω $x=ut, \ \frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\mathrm{d}u}{\mathrm{d}t}t+u,$ άρα
 η διαφορική εξίσωση γίνεται:

$$\frac{du}{dt}t + u = \frac{ut + t}{t}$$

$$\Rightarrow \frac{du}{dt}t + u = u + 1$$

$$\Rightarrow t \frac{du}{dt} = 1$$

$$\Rightarrow \frac{1}{t}dt - du = 0 \text{ councy of the norm}$$

$$\Rightarrow \int \frac{1}{t}dt + \int (-1) du = c$$

$$\Rightarrow \ln|t| - u = c$$

$$\Rightarrow u = \ln|t| - c \text{ the } c = -\ln|\kappa|$$

$$\Rightarrow u = \ln|\kappa t|$$

$$\Rightarrow \frac{x}{t} = \ln|\kappa t| \Rightarrow x = t \ln|\kappa t|$$

$$x' = \frac{2x^4 + t^4}{tx^3}$$

$$\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2x^4 + t^4}{tx^3}$$
, μη χωριζόμενη.

$$f(t,x) = \frac{\mathrm{d}x}{\mathrm{d}t}, \quad f(at,ax) = \frac{2(ax)^4 + (at)^4}{(at)(ax)^3} = \frac{a^42x^4 + a^4t^4}{a^4tx^3} = \frac{2x^4 + t^4}{tx^3} \text{ omogenés}$$

Θέτω $x=ut, \ \frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\mathrm{d}u}{\mathrm{d}t}t+u,$ άρα η διαφορική εξίσωση γίνεται:

$$\frac{du}{dt}t + u = \frac{2(ut)^4 + t^4}{t(ut)^3}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{2u^4t^4 + t^4}{u^3t^4}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{2u^4 + 1}{u^3}$$

$$\Rightarrow \frac{du}{dt}t = \frac{2u^4 + 1}{u^3} - u = \frac{u^4 + 1}{u^3}$$

$$\Rightarrow \frac{u^3}{u^4 + 1} du - \frac{1}{t} dt = 0 \text{ gargisomen}$$

$$\Rightarrow \int \frac{u^3}{u^4 + 1} du + \int \frac{-1}{t} dt = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln|t| = c$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) - \ln($$

$$x' = \frac{t^2 + x^2}{tx}$$
; $x(1) = -2$

 $\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{t^2 + x^2}{tx}$, μη χωριζόμενη.

$$f(t,x) = \frac{\mathrm{d}x}{\mathrm{d}t}, \quad f(at,ax) = \frac{(at)^2 + (ax)^2}{(at)(ax)} = \frac{a^2t^2 + a^2x^2}{a^2tx} = \frac{t^2 + x^2}{tx}$$
 ομοιογενής

Θέτω $x=ut, \ \frac{\mathrm{d}x}{\mathrm{d}t}=\frac{\mathrm{d}u}{\mathrm{d}t}t+u,$ άρα η διαφορική εξίσωση γίνεται:

$$\frac{du}{dt}t + u = \frac{t^2 + (ut)^2}{t(ut)}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{t^2 + t^2u^2}{t^2u}$$

$$\Rightarrow \frac{du}{dt}t + u = \frac{1 + u^2}{u}$$

$$\Rightarrow \frac{du}{dt}t = \frac{1 + u^2 - u^2}{u} = \frac{1}{u}$$

$$\Rightarrow u \, du - \frac{1}{t} \, dt = 0 \, \text{constant}$$

$$\Rightarrow \int u \, du + \int \frac{-1}{t} \, dt = c$$

$$\Rightarrow \frac{u^2}{2} - \ln|t| = c$$

$$\Rightarrow u^2 = 2\ln|t| + 2c$$

$$\Rightarrow u^2 = 2\ln|t| + 2c$$

$$\Rightarrow u^2 = \ln t^2 + \kappa \text{ we } \kappa = 2c$$

$$x = ut \implies u = \frac{x}{t} \implies \frac{x^2}{t^2} = \ln t^2 + \kappa$$

$$\Rightarrow x^2 = t^2 \ln t^2 + \kappa t^2$$

Επειδή x(1) = 2, έχουμε:

$$(-2)^2 = 1^2 \ln 1^2 + \kappa 1^2 \implies 4 = 0 + \kappa \implies \kappa = 4$$

Επομένως τελικά:

$$x^2 = t^2 \ln t^2 + 4t^2 \implies \boxed{x = -\sqrt{t^2 \ln t^2 + 4t^2}}$$

2.3 Ακριβείς

Ορισμός

Όταν:

$$\frac{\partial M(t,x)}{\partial x} = \frac{\partial N(t,x)}{\partial t}$$

τότε η εξίσωση λέγεται ακριβής η πλήρης.

Υπάρχει dF(t, x) = N(t, x) dx + M(t, x) dt με Γενική Λύση F(t, x) = c.

$$(t + \sin x) dt + (t \cos x - 2x) dx = 0$$

$$\underbrace{(t+\sin x)\,\mathrm{d}t}_{M(t,x)\,\mathrm{d}t} + \underbrace{(t\cos x - 2x)\,\mathrm{d}x}_{N(t,x)\,\mathrm{d}x} = 0$$

Δοκιμή:

$$\begin{cases} M(t,x) &= t + \sin x \\ N(t,x) &= t \cos x - 2x \end{cases} \implies \frac{\partial M(t,x)}{\partial x} = \cos x = \frac{\partial N(t,x)}{\partial t} = \cos x$$

Άρα

 ΔΕ είναι ακριβής, επομένως υπάρχει F(t,x) τέτοια ώστε:

$$dF = N(t,x) \, \mathrm{d}x + M(t,x) \, \mathrm{d}t$$

$$dF = \frac{\partial F}{\partial x} \, \mathrm{d}x + \frac{\partial F}{\partial t} \, \mathrm{d}t \qquad \leftarrow \quad \text{ολικό διαφοφικό της } F$$

$$\frac{\partial F(t,x)}{\partial x} = N(t,x), \quad \frac{\partial F(t,x)}{\partial t} = M(t,x) \xrightarrow{\text{olokliqwan ws pags } t} F(t,x)$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t \qquad = \int (t+\sin x) \, \mathrm{d}t \implies 0$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t \qquad = \int (t+\sin x) \, \mathrm{d}t \implies 0$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t \qquad = \int (t+\sin x) \, \mathrm{d}t \implies 0$$

Έχουμε:

$$\frac{\partial F(t,x)}{\partial x} = t \cos x + h'(x)$$

$$\implies t \cos x - 2x = t \cos x + h'(x)$$

$$\implies h'(x) = -2x$$

$$\implies \int h'(x) \, dx = \int (-2x) \, dx$$

$$\implies h(x) = -x^2 + c_1$$

Επομένως:

$$F(t,x) = \frac{1}{2}t^2 + t\sin x - x^2 + c_1 = c \xrightarrow{c_2 = c - c_1}$$

$$\implies \boxed{\frac{1}{2}t^2 + t\sin x - x^2 = c_2}$$
 Γενική λύση

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2 + xe^{tx}}{2x - te^{tx}}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2 + xe^{tx}}{2x - te^{tx}} \xrightarrow{\text{διαφορική μορφή}} \underbrace{(2 + xe^{tx})}_{M(t,x) = 2 + xe^{tx}} \mathrm{d}t + \underbrace{(te^{tx} - 2x)}_{N(t,x) = te^{tx} - 2x} \mathrm{d}x = 0$$

Δοκιμή:

$$\frac{\partial M(t,x)}{\partial x} = e^{tx} + xte^{tx} = \frac{\partial N(t,x)}{\partial t} = xte^{tx} + e^{tx}$$

συνεπώς είναι ακριβής, οπότε υπάρχει F(t,x), με $dF=M(t,x)\,\mathrm{d}t+N(t,x)\,\mathrm{d}x$, με λύση F(t,x)=c.

Ολικό διαφοφικό
$$\rightarrow dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial t} dt$$

Άρα:

$$\frac{\partial F(t,x)}{\partial x} = N(t,x), \quad \frac{\partial F(t,x)}{\partial t} = M(t,x) = 2 + xe^{tx} \xrightarrow{\text{ολοκλήρωση ως προς } t}$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} \, \mathrm{d}t = \int \left(2 + xe^{tx}\right) \mathrm{d}t \implies$$

$$\implies F(t,x) = 2t + e^{tx} + h(x)$$

Παραγώγιση ως προς
$$x \to \frac{\partial F(t,x)}{\partial x} = te^{tx} + h'(x) \implies te^{tx} + h'(x) = te^{tx} - 2x \implies$$

$$\implies h'(x) = -2x \implies$$

$$\implies h(x) = \int (-2x) \, \mathrm{d}x \implies$$

$$\implies h(x) = -x^2 + c_1$$

Άρα τελικά:

$$F(t,x) = 2t + e^{tx} - x^2 + c_1$$

$$\implies 2t + e^{tx} - x^2 + c_1 = c$$

$$\implies 2t + e^{tx} - x^2 = c_2, \qquad c_2 = c - c_1$$

$$(2x^{2}t - 2x^{3}) dt + (4x^{3} - 6x^{2}t + 2xt^{2}) dx = 0$$

$$\underbrace{\left(2x^2t - 2x^3\right)}_{M(t,x) = 2x^2t - 2x^3} dt + \underbrace{\left(4x^3 - 6x^2t + 2xt^2\right)}_{N(t,x) = 4x^3 - 6x^2t + 2xt^2} dx = 0$$

 $\frac{\partial M(t,x)}{\partial x}=4xt-6x^2=\frac{\partial N(t,x)}{\partial t}=0-6x^2+4xt$, ΔΕ ακριβής, οπότε υπάρχει F(t,x) με $\mathrm{d}F(t,x)=M(t,x)\,\mathrm{d}t+N(t,x)\,\mathrm{d}x$ με λύση F(t,x)=c.

$$dF(t,x) = \frac{\partial F(t,x)}{\partial t} dt + \frac{\partial F(t,x)}{\partial x} dx$$

$$\frac{\partial F(t,x)}{\partial x} = N(t,x), \quad \frac{\partial F(t,x)}{\partial t} = M(t,x) = 2x^2t - 2x^3 \qquad \Longrightarrow$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} dt = \int (2x^2t - 2x^3) dt \qquad \Longrightarrow$$

$$\implies F(t,x) = x^2t^2 - 2x^3t + h(x)$$

$$\frac{\partial F(t,x)}{\partial x} = 2xt^2 - 6x^2t + h'(x) \implies$$

$$\implies 2xt^2 - 6x^2t + h'(x) = 4x^3 - 6x^2t + 2x + 2 \implies$$

$$\implies h'(x) = 4x^3 \xrightarrow{\text{олокл.}} h(x) = x^4 + c_1$$

Άρα:

$$F(t,x) = x^{2}t^{2} - 2x^{3}t + x^{4} + c_{1} \implies$$

$$\implies x^{2}t^{2} - 2^{3}t + x^{4} + c_{1} = c \implies$$

$$\implies x^{2}t^{2} - 2x^{3}t + x^{4} = c - c_{1} \implies$$

$$\implies \begin{cases} (x^{2} - xt)^{2} &= c_{2} \\ c_{2} &= c - c_{1} \end{cases}$$

$$\stackrel{c_{3}=\pm\sqrt{c_{2}}}{\longrightarrow} x^{2} - xt = c_{3} \xrightarrow{\frac{ax^{2} + bx + c = 0}{2a}}$$

$$\implies x = \frac{t \pm \sqrt{t^2 + 4c_3}}{2}, \qquad c_3 = \pm \sqrt{c_2}$$

$$2tx dt + (1 + t^2) dx = 0; \quad x(2) = -5$$

$$\underbrace{2tx}_{M(t,x)} dt + \underbrace{(1+t^2)}_{N(t,x)} dx = 0; \quad x(2) = -5$$

$$M(t, x) = 2tx, \quad N(t, x) = 1 + t^2$$
 (1)

F(t, x), $\mu \varepsilon dF(t, x) = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial t} dt$. dF(t, x) = N(t, x) dx + M(t, x) dt

$$\frac{\partial F(t,x)}{\partial x} = N(t,x) \tag{2}$$

$$\frac{\partial F(t,x)}{\partial t} = M(t,x) = 2tx \implies$$

$$\implies \int \frac{\partial F(t,x)}{\partial t} dt = \int (2tx) dt \implies$$

$$\implies F(t,x) = t^2 x + h(x)$$
(3)

$$\begin{cases} \frac{\partial F(t,x)}{\partial x} = t^2 + h'(x) \\ (2), (1) \end{cases} \implies t^2 + h'(x) = 1 + t^2 \implies h'(x) = 1 \implies \begin{cases} h(x) = x + c_1 \\ (3) \end{cases} \implies \begin{cases} F(t,x) = t^2 x \\ (4) \end{cases} \implies t^2 + x + c_1 \end{cases} \implies t^2 + x + c_1$$

$$\implies t^2 x + x = c_2(c_2 = c - c_1) \implies x = \frac{c_2}{t^2 + 1} \implies (x(2) = 5)5 = \frac{c_2}{2^2 + 1} \implies x = \frac{-25}{t^2 + 1}$$

$$\implies F(t,x) = t^2x + x + c_1 \tag{4}$$

Κεφάλαιο 3 Overview

3.1 Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ - Ordinary Differential Equations)

Ορισμός 3.1

Εμπλέκουν:

- μία ανεξάρτητη μεταβλητή (π.χ. t, x)
- μια εξαρτημένη και τις παραγώγους της (π.χ. i, y, u)

$$F(t, x, x', \dots, x^{(n)}) = 0$$

Μη συνήθεις είναι οι Μερικές Διαφορικές Εξισσώεις (Partial Differential Equations - PDE) που εμπλέκουν:

• πολλές ανεξάρτητες μεταβλητές (π.χ. x, y, z)

• μία εξαρτημένη μεταβλητή και τις μερικές παραγώγους της

1^{nς} τάξης ΔΕ

Ορισμός 3.2

όταν

$$x' = \frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x)$$

Ορισμός 3.3: Τυπικής μορφής

$$f(t,x) = \frac{-M(t,x)}{N(t,x)}$$

Διαφορική μορφή

$$N(t, x) dx + M(t, x) dt = 0$$

Ορισμός 3.4: Χωριζόμενη

όταν

$$\begin{cases} N(t, x) &= N(x) \\ M(t, x) &= M(t) \end{cases}$$

τότε

$$N(x) dx + M(t) dt = 0$$

με λύση

$$\int N(x) \, \mathrm{d}x + \int M(t) \, \mathrm{d}t = c$$

ń

$$\int_{x_0}^x N(x) \, \mathrm{d}x + \int_{t_0}^t M(t) \, \mathrm{d} = 0$$

Ορισμός 3.5: Ομογενής - Ομοιογενής

όταν ∀a ∈ ℝ

$$F(at, ax) = f(t, x)$$

τότε θέτω x = ut, άρα $\frac{dx}{dt} = \frac{du}{dt}t + u$

Κεφάλαιο 4

4.1 ΔΕ 1^{nς} τάξης

TM (Τυπική μορφή):
$$x' = \frac{\mathrm{d}x}{\mathrm{d}t} = f(t,x)$$

$$\boxed{\Delta M \; (\Delta ιαφορική μορφή): \; N(t,x) \, \mathrm{d}x + M(t,x) \, \mathrm{d}t = 0}$$
Ακριβής: $\frac{\partial M(t,x)}{\partial x} = \frac{\partial N(t,x)}{\partial t} \to \mathrm{d}F(t,x)$

$$dF(t, x) = N(t, x) dx + M(t, x) dt$$

F(t, x) = c

$$G(t,x)\cdot (N(t,x)\,\mathrm{d} x + M(t,x)\,\mathrm{d} t) = 0$$

Μπορεί να υπάρχει τέτοια συνάρτηση

Άσκηση: 2.23 Ολοκληρωτικός παράγοντας, επίλυση μέσω ελέγχου

$$x\,\mathrm{d}t-t\,\mathrm{d}x=0$$

$$M(t,x)=x,\ N(t,x)=t$$

$$\frac{\partial M(t,x)}{\partial x}=1,\ \frac{\mathrm{d}N(t,x)}{\mathrm{d}t}=-1\ \mathrm{den}\ \mathrm{exchange}$$
 examples
$$\widetilde{G(t,x)}=-\frac{1}{t^2}$$

$$-\frac{1}{t^2}(x\,\mathrm{d}t-t\,\mathrm{d}x)=0 \implies -\frac{x}{t^2}\,\mathrm{d}t+\frac{\frac{1}{t}}{t^2}\,\mathrm{d}x=0$$

$$M(t,x)=-\frac{x}{t^2}m\ N(t,x)=\frac{1}{t}$$

$$\frac{\partial M(t,x)}{\partial x}=-\frac{1}{t^2}=\overbrace{\frac{\partial N(t,x)}{\partial t}}^{\mathrm{exching}}=-\frac{1}{t^2}$$

$$\mathrm{An}\ \overline{\left(\frac{\partial M}{\partial x}-\frac{\partial N}{\partial t}\right)}\equiv g(t) \implies G=e^{\int g(t)\,\mathrm{d}t}$$

Με διαφορά μερικών παραγώγων:

Av
$$\frac{1}{N} \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial t} \right) = h(x) \implies G = e^{\int g(t) \, dx}$$

Άσκηση: 2.25

$$x^{2} dt + tx dx = 0$$
, $M(t, x) = x^{2}$, $N(t, x) = tx$

$$\begin{split} &\frac{\partial M(t,x)}{\partial x} = 2x \neq \frac{\partial N(t,x)}{\partial t} = x \text{ όχι ακριβής} \\ &\frac{1}{M} \left(\frac{\partial M}{\partial x} - \frac{\partial N}{\partial t} \right) = \frac{1}{x^2} (2x - x) = \frac{1}{x} = h(x) \\ &G(t,x) = e^{-\int h(x) \, \mathrm{d}x} = e^{-\int \frac{1}{x} \, \mathrm{d}x} = e^{-\ln x} = \frac{1}{x} \end{split}$$

$$\frac{1}{x}(x^2 dt + tx dx) = 0 \implies x dt + t dx = 0$$

$$\frac{\partial M}{\partial x} = 1 = \frac{\partial N}{\partial t} = 1 \text{ ακριβής}$$

Μορφή των όρων N,M αν M = xf(tx) και N = tg(tx), τότε:

$$G(t,x) = \frac{1}{tM - xN}$$

$$x' = \frac{tx^2 - x}{t}$$

$$\implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{tx^2 - x}{t} \implies t \, \mathrm{d}x - (tx^2 - x) \, \mathrm{d}t = 0 \implies x(1 - tx) \, \mathrm{d}t) + t \, \mathrm{d}x = 0$$

$$M(t, x) = x \cdot (1 - tx) \implies \frac{\partial M(t, x)}{\partial x} = 1 - 2tx \neq \frac{\partial N(t, x)}{\partial t} = 1 \text{ όχι ακριβής}$$

αλλά:M = xf(t) και N = tg(tx).

Επομένως:

$$G(t,x) = \frac{1}{tM - xN} = \frac{1}{tx(1 - tx) - xt} = \frac{1}{-t^2x^2} = -\frac{1}{(tx)^2}$$

Είναι:

$$-\frac{1}{(tx)^2} \left(x(1-tx) dt + t dx \right) = 0 \implies$$

$$\frac{tx-1}{t^2x} dt - \frac{1}{tx^2} dx = 0$$

και συνεχίζω με τη μέθοδο της ακριβούς.

Κεφάλαιο 5 Θεωρία των Λύσεων

Μορφή ΔΕ ηης τάξης:

$$b_n(t) \cdot x^{(n)} + b_{n-1}(t) \cdot x^{(n-1)} + \dots + b_2(t)x'' + b_1(t)x' + b_0(t)x = g(t)$$

όπου: $g(t), b_j(t)$ (j = 1, 2, ..., n) εξαρτώνται αποκλειστικά από το t.

Aν $g(t) \equiv 0$, τότε η ΔΕ είναι ομογενής (OM - homogenous).

Aν $g(t) \neq 0$, τότε η ΔΕ είναι μη ομογενής (MO - non-homogenous.

Όταν όλοι οι συντελεστές $b_j(t)$ είναι σταθερές, τότε $\Delta \text{E}\Sigma\Sigma$ (σταθερών συντελεστών).

Όταν ένας τουλάχιστον $b_i(t)$ δεν είναι σταθερά, $\Delta \text{EM}\Sigma$ (μεταβλητών συντελεστών).

Θεώρημα 5.1

ΔΕ η τάξης με η ΑΣ (αρχικές συνθήκες):

$$x(t_0) = c_0, x'(t_0) = c_1, x''(t_0) = c_2, \dots, x^{(n-1)}(t_0) = c_{n-1}$$

 $\Delta E \ b_n(t)x^{(n)} + b_{n-1}(t)x^{(n-1)} + \dots + b_2(t)x'' + b_1(t)x' + b_0(t)x = g(t)$

Αν g(t) και b_i συνεχείς σε διάστημα ϕ που περιλαμβάνει το t_0 και $b_n(t) \neq 0$ στο ϕ , τότε το πρόβλημα εχει μία μοναδική λύση (ορισμένη στο ϕ .

Ορισμός 5.1

Το σύνολο $\{x_1(t), x_2(t), \dots, x_n(t)\}$ είναι ΓΕ (γραμμικά εξαρτημένο) για ένα διάστημα Δ ότανν υπάρχουν συντελεστές όχι όλοι μηδενικοί τέτοιοι ώστε:

$$c_1x_1(t) + c_2x_2(t) + \dots + c_nx_n(t) \equiv 0 \quad \Delta$$

Θεώρημα 5.2

Έστω η ομογενής n-οστής τάξης γραμμική διαφορική εξίσωση $\mathbf{L}(x)=0$.

Αν $x_1(t)$, $x_2(t)$,..., $x_n(t)$ είναι λύσεις, τότε και ο γραμμικός τους συνδυασμός είναι γενική λύση της ομογενούς:

$$x(t) = c_1x_1(t) + c_2x_2(t) + \cdots + c_nx_n(t)$$
 ΓΛ (Γενική Λύση)

Θεώρημα 5.3: Βροσκιανή

Ορίζουσα
$$W(x_1, x_2, \ldots, x_n)$$

 $W \neq 0$ έστω σε ένα σημείο $\in \Delta$ → ΓΑ (Γραμμικά Ανεξάρτητες)

 $W\equiv 0$ και κάθε συνάςτηση είναι λύση της ίδιας $\Delta E \to \Gamma E$ (Γραμμικά Εξαςτημένες)

Θεώρημα 5.4

$$\widetilde{\mathbf{L}(x)} = \phi(t)$$

Έστω $\begin{cases} x_n(t) & \Gamma \Lambda \text{ ths OM (Ομογενούς)} \\ x_p(t) & E \Lambda \text{ ths MO (Mn ομογενούς)} \end{cases}$

Τότε είναι ΓΛ ΜΟ (Γενική Λύση Μη Ομογενούς) η:

$$x(t) = x_n(t) + x_p(t)$$

Άσκηση: 3.2

$$\{1-t, 1+t, 1-3t\}$$

$$W(1-t, 1+t, 1-3t) = \begin{vmatrix} 1-t & 1+t & 1-3t \\ \frac{d(1-t)}{dt} & \frac{d(1+t)}{dt} & \frac{d(1-3t)}{dt} \\ \frac{d^2(1-t)}{dt^2} & \frac{d^2(1+t)}{dt^2} & \frac{d^2(1-3t)}{dt^2} \end{vmatrix}$$
$$= \begin{vmatrix} 1-t & 1+t & 1-3t \\ -1 & 1 & -3 \\ 0 & 0 & 0 \end{vmatrix} = 0$$

(B)

$$\underbrace{c_1(1-t) + c_2(1+t) + c_3(1-3t)}_{0} = 0$$

$$\underbrace{(c_1 + c_2 - 3c_3)}_{0} t + \underbrace{(c_1 + c_2 + c_3)}_{0} \equiv 0$$

$$\begin{cases} -c_1+c_2-3c_3 &= 0 \\ c_1+c_2+c_3 &= 0 \end{cases} \Longrightarrow \begin{cases} c_1 &= -2c_3c_2 \\ c_2 &= c_3 \\ c_3 &\text{auhaíreth staberá} \end{cases} \Longrightarrow \begin{cases} c_3 &= 1 \\ c_1 &= -2 \implies \Gamma E \\ c_2 &= 1 \end{cases}$$

Άσκηση: 3.3

Βοείτε την Βοοσκιανή:

$$\left\{t, t^2, t^3\right\}$$

$$W(t, t^{2}, t^{3}) = \begin{vmatrix} t & t^{2} & t^{3} \\ \frac{d(t)}{dt} & \frac{d(t^{2})}{dt} & \frac{d(t^{3})}{dt} \\ \frac{d^{2}(t)}{dt^{2}} & \frac{d^{2}(t^{2})}{dt^{2}} & \frac{d^{2}(t^{3})}{dt^{2}} \end{vmatrix}$$
$$= \begin{vmatrix} t & t^{2} & t^{3} \\ 1 & 2t & 3t^{2} \\ 0 & 2 & 6t \end{vmatrix} = 2t^{3}$$

 $(-\infty, \infty)$, t = 3, $W = 54 \neq 0 \implies \Gamma A$, θαυμάσια!

Άσκηση: 3.4

$$\left\{t^3, \left|t^3\right|\right\} \quad [-1, 1]$$

$$c_1 t^3 + c_2 \left| t^3 \right| \equiv 0$$

$$\left| t^3 \right| = t^3, \ t \ge 0 \quad / \quad \left| t^3 \right| = -t^3, \ t \le 0$$

$$\begin{cases} c_1 t^3 + c_2 t^3 & \equiv 0 \quad t \ge 0 \\ c_1 t^3 \cdot c_2 t^3 & \equiv 0 \quad t < 0 \end{cases} \implies c_1 = c_2 = 0 \text{ } \Gamma \text{A}$$

$$\frac{\mathrm{d}|t^{3}|}{\mathrm{d}t} = \begin{cases} 3t^{2} & \text{av } t > 0 \\ 0 & \text{av } t = 0 \\ -3t^{2} & \text{av } t < 0 \end{cases} \implies \begin{cases} \gamma |\alpha| t > 0 : & W(t^{3}, |t^{3}|) = \begin{vmatrix} t^{3} & t^{3} \\ 3t^{2} & 3t^{2} \end{vmatrix} \equiv 0 \\ \gamma |\alpha| t < 0 : & W(t^{3}, |t^{3}|) = 0 \\ \gamma |\alpha| t < 0 : & W(t^{3}, |t^{3}|) = \begin{vmatrix} t^{3} & -t^{3} \\ 3t^{2} & -3t^{2} \end{vmatrix} \equiv 0 \end{cases}$$

Άσκηση: 3.5

$$x'' - 2x' + x = 0$$
$$e^t, te^t Λύσεις$$

Ο γραμμικός συνδυασμός $X = c_1 e^t + c_2 t e^t$ είναι λύση της εξίσωσης;

$$W(e^t, te^t) = \begin{vmatrix} e^t & te^t \\ e^t & e^t + te^t \end{vmatrix} = e^{2t} \not\equiv 0$$

Άρα οι εξισώσεις είναι γραμμικά ανεξάρτητες, άρα, επειδή είναι λύσεις της διαφορικής, ο γραμμικός συνδυασμός τους είναι γενική λύση.

Mn ομογενής: $x'' - 2x' + x = e^{3t}$

Ειδική λύση: $\frac{1}{4}e^{3t} \rightarrow x_p = \frac{1}{4}e^{3t}$

Γενική λύση μη ομογενούς: $\underline{x(t)} = \underbrace{x_h(t)}_{\text{MO}} + \underbrace{x_p(t)}_{\text{MO}}$

Άρα:

$$x(t) = c_1 e^t + c_2 t e^t + \frac{1}{4} e^{3t}$$

Κεφάλαιο 6

6.1 $\Gamma P/\Delta E/1^{n\varsigma}$

• $\frac{dx}{dt} + p(t)x = q(t)$ $n\underbrace{f(t, x)}_{f(t, x) = \frac{dx}{dt}} = q(t) - p(t)x$

Τότε ΟΠ (Ολοκληφωτικός Παράγοντας) $G(t)=e^{\int p(t)\,\mathrm{d}x}$. Πολλαπλασιάζοντας με τον ολοκληφωτικό παράγωντα παίρνουμε:

$$G(t)\frac{\mathrm{d}x}{\mathrm{d}t} + G(t)p(t)x = G(t)q(t)$$

ń

$$\frac{\mathrm{d}(Gt)}{\mathrm{d}t} = Gq(t)$$

που είναι μια ακριβής διαφορική εξίσωση.

Λύση:

$$x(t) = e^{-\int p(t) dt} \left(\int e^{\int p(t) dt} q(t) dt + c \right)$$

Aν τα p(t) = a και q(t) = b είναι σταθερά:

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = b, \ x(t) = e^{-at} \left(\frac{b}{a} e^{at} + c \right) = \frac{b}{a} + ce^{-at}$$

6.1.1 Bernoulli

$$\frac{\mathrm{d}x}{\mathrm{d}t} + p(t)x = q(t)x^n, \quad \text{if } n \neq 1, 0$$

Αντικατάσταση μεταβλητών: $u = x^{1-n} \rightarrow x$, x'

Άσκηση: 4.1

 $\Gamma P/\Delta E/1^{n\varsigma}$

$$x' - 3x = 6$$

$$\frac{dx}{dt} + ax = b$$

$$a = -3, b = 6$$

$$x(t) = \frac{b}{a} + ce^{-at} = \frac{6}{-3} + ce^{3t} \implies x(t) = ce^{3t} - 2$$

Άσκηση: 4.2

 $\Gamma P/\Delta E/1^{n\varsigma}$

$$\frac{\mathrm{d}x}{\mathrm{d}t} - 2tx = t$$

$$\frac{\mathrm{d}x}{\mathrm{d}} + p(t)x = q(t) \implies \begin{cases} p(t) &= -2t \\ q(t) = t \end{cases}$$

$$O\Pi \ G(t) = e^{\int p(t) \, \mathrm{d}t} = e^{\int (-2t) \, \mathrm{d}t}$$

$$\int (-2t) \, \mathrm{d}t = -t^2 \, \operatorname{dog} G(t) = e^{-t^2}$$

$$e^{-t^2} \frac{\mathrm{d}x}{\mathrm{d}t} - 2te^{-t^2}x = te^{-t^2} \implies \frac{\mathrm{d}}{\mathrm{d}t} \left(xe^{-t^2} \right) = te^{-t^2} \implies \int \frac{\mathrm{d}}{\mathrm{d}t} \left(xe^{-t^2} \right) \mathrm{d}t = \int te^{-t^2} \, \mathrm{d}t \implies$$

$$\implies xe^{-t^2} = -\frac{1}{2}e^{-t^2} + c \implies \boxed{x = ce^{t^2} - \frac{1}{2}}$$

Άσκηση: 4.3

$$x' + \left(\frac{4}{t}\right) = t^4$$

$$x' + p(t)x = t^{4} \qquad p(t) = \frac{4}{t}, \ q(t) = t^{4}$$

$$G(t) = e^{\int p(t) dt} = e^{\int \frac{4}{t} dt} = e^{4\ln|t|} = e^{\ln t^{4}} = t^{4}$$

$$t^{4} \frac{dx}{dt} + t^{4} \left(\frac{4}{t}\right) x = t^{4} \cdot t^{4} \implies \frac{dx}{dt} \left(t^{4} x\right) = t^{8} \implies$$

$$\implies \int \frac{d}{dt} \left(t^{4} x\right) dt = \int t^{8} dt \implies t^{4} x = \frac{1}{9} t^{9} + c \implies \boxed{x = \frac{1}{9} t^{5} + \frac{c}{t^{4}}}$$

Άσκηση: 4.4

$$x' + x = \sin t$$
$$x(\pi) = 1$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} + p(t)x = q(t) \qquad p(t) = 1, \ q(t) = \sin t$$

 $G(t) = e^{\int p(t) dt} = e^{\int 1 dt} = e^t$

$$e^{t}(x'+x) = e^{t} \sin t \implies$$

$$\implies \int \frac{d}{dt}(e^{t}x) = \int e^{t} \sin t \, dt \implies$$

$$\implies e^{t}x = \frac{e^{t}}{2}(\sin t - \cos t) + c \implies$$

$$\implies x(t) = ce^{-t} + \frac{1}{2}\sin t - \frac{1}{2}\cos t$$

$$1 = ce^{-\pi} + \frac{1}{2}\sin \pi - \frac{1}{2}\cos \pi \implies c = e^{\pi}$$

$$E\Lambda \quad x(t) = \frac{1}{2}e^{\pi}e^{-t} + \frac{1}{2}\sin t - \frac{1}{2}\cos t \implies$$

Άσκηση: 4.6

$$\frac{\mathrm{d}z}{\mathrm{d}x} - xz = -x; \quad z(0) = 4$$

 $p(x) = -x, \ q(x) = -x$

 $\implies x(t) = \frac{1}{2} \left(e^{\pi - t} + \sin t - \cos t \right)$

$$G(x) = e^{\int p(x) dx} = e^{\int (-x) dx} = e^{-\frac{x^2}{2}}$$

$$e^{-\frac{x^2}{2}} \left(\frac{dz}{dx} - xz\right) = e^{-\frac{x^2}{2}} (-x) \implies$$

$$\frac{d}{dx} \left(e^{-\frac{x^2}{2}}z\right) = e^{-\frac{x^2}{2}}z \implies$$

$$\int \frac{d}{dx} \left(e^{-\frac{x^2}{2}}z\right) dx = \int \left(e^{-\frac{x^2}{2}}x\right) dx \implies$$

$$e^{-\frac{x^2}{2}}z = e^{-\frac{x^2}{2}} + c \implies$$

$$z = ce^{\frac{x^2}{2}+1} \Gamma \Lambda$$

$$-4 = ce^{\frac{0^2}{2}} + 1 \implies c = -5 \implies z(x) = -5e^{\frac{x^2}{2}} + 1 \implies \Delta$$

Άσκηση: 4.7

$$z' - \frac{2}{x}z = \frac{2}{3}x^4$$

$$p(x) = -\frac{2}{x}$$

$$G(x) = e^{\int \left(\frac{-2}{x}\right)} = e^{-2\ln|x|} = e^{\ln x^{-2}}$$

$$G(x) = x^{-2}$$

$$x^{-2}(z' - \frac{2}{x}z) = \frac{2}{3}x^4x^{-2} \implies \dots \implies z(x) = cx^2 + g^2x^5$$

Άσκηση: 4.10

$$y' + xy = xy^2$$

Bernoulli

$$u = y^{1-n} = y^{1-2} = y^{-1} \Longrightarrow$$

$$u = \frac{1}{y} \Longrightarrow y = \frac{1}{u} \kappa \alpha y' = -\frac{1}{u^2} \frac{du}{dx} = -\frac{1}{u^2} u'$$

$$-\frac{1}{u^2} \frac{du}{dx} + x \frac{1}{u} = x \left(\frac{1}{u}\right)^2 \Longrightarrow u' - xu = -x$$

$$G(x) = e^{\int (-x) dx} = e^{-\frac{x^2}{2}}, e^{-\frac{x^2}{2}} u' - e^{-\frac{x^2}{2}} xu = e^{-\frac{x^2}{2}} x \Longrightarrow$$

$$\frac{d}{dx} \left(u e^{-\frac{x^2}{2}} \right) = -x e^{-\frac{x^2}{2}}$$

$$\int \frac{d}{dx} \left(u e^{-\frac{x^2}{2}} \right) dx = \int \left(-x e^{-\frac{x^2}{2}} \right) dx \Longrightarrow$$

$$u = c e^{\frac{x^2}{2}} + 1 \Longrightarrow y(x) = \frac{1}{c e^{\frac{x^2}{2}} + 1}$$

Μέρος ΙΙ

Κεχαγιάς: Ολοκληρωτικοί μετασχηματισμοί

(Fourier, Laplace) Τετάρτη 17:00-18:30

Κεφάλαιο 7 Κεφάλαιο 7: Εισαγωγή στην ανάλυση του Φουριερ

Η συμπεριφορά του κυκλώματος μπορεί να περιγραφεί με μια διαφορική εξίσωση. Q(t): Το φορτίο του πυκνωτή σε χρονική στιγμή t

$$v_1 = R \cdot i(t) = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

$$v_2 = \frac{Q(t)}{C}$$

$$v_1 + v_2 = V(t) \implies \frac{\mathrm{d}Q}{\mathrm{d}t} + \frac{Q(t)}{RC} = \frac{1}{R}V(t), \quad \text{με αρχική συνθήκη } Q(0) = 0$$

Θα προσπαθήσω να λύσω την εξίσωση για τρεις περιπτώσεις:

7.0.2
$$V(t) = V_0$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = b$$

Θα εξετάσω τη γενική λύση $x_0(t)$ της ομογενούς ΔΕ, και θα ψάξω μία ειδική λύση της μη ομογενούς ΔΕ.

Omogenic:
$$b = 0 \implies \frac{dx}{dt} = -ax \implies x(t) = ce^{-at}$$
. $x(0) = 0 \implies c = 0 \implies x_0(t) = 0$.

Mn ομογενής: $\frac{dx}{dt} + ax = b$.

$$x(t) = k \implies \frac{\mathrm{d}x}{\mathrm{d}t} + ak = b \implies k = \frac{b}{a} \implies x(t) = k = \frac{b}{a}$$

Θεώοημα

Η γενική λύση της μη ομογενούς είναι:

$$x(t) = x_h(t) + x_i(t)$$

Άρα

$$\begin{cases} x(t) = ce^{-at} - \frac{b}{a} \\ x(0) = 0 \end{cases} \implies 0 = x(0) = c + \frac{b}{a} \implies x(t) = \frac{b}{a} - \frac{b}{a}e^{-at} \text{ if } \ker x(t) = \frac{b}{a}(1 - e^{-at})$$

 $a = \frac{1}{RC}, \quad b = \frac{V_0}{R}$

7.0.3 $V(t) = V_0 \sin(nt)$

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = b\sin(nt)$$

Eívou $x_h(t) = ce^{-at}$.

Υποθέτω $x(t) = c_2 \sin(nt) + c_3 \cos(nt)$. Τότε $\frac{dx}{dt} = nc_2 \cos(nt) - nc_3 \sin(nt)$:

$$\frac{\mathrm{d}x}{\mathrm{d}t} + ax = (ac_2 - nc_3)\sin(nt) + (ac_3 + nc_2)\cos(nt) = b\sin(nt) \implies$$

$$\Longrightarrow \begin{cases} ac_2 - nc_3 &= b \\ nc_2 + ac_3 &= 0 \end{cases} \Longrightarrow \cdots \Longrightarrow \begin{cases} c_2 &= \frac{ab}{a^2 + n^2} \\ c_3 &= -\frac{bn}{a^2 + n^2} \end{cases}$$

Θυμάμαι ότι $x(t) = x_h(t) + x_i(t) = c_1 e^{-at} + \frac{ab}{a^2 + n^2} \sin(nt) - \frac{bn}{a^2 + n^2} \cos(nt)$ και από το x(0) = 0 βρίσκω $c_1 = \frac{bn}{a^2 + n^2}$. Άρα:

$$x(t) = \frac{bn}{a^2 + n^2} + \frac{ab}{a^2 + n^2} \sin(nt) - \frac{bn}{a^2 + n^2} \cos(nt)$$

Για το RC κύκλωμα, $a=\frac{1}{RC}$ \leftarrow χρονική σταθερά κυκλώματος, $b=\frac{V_0}{R}$, άρα:

$$Q(t) = \frac{V_0 C^2 R n}{C^2 R^2 n^2 + 1} e^{-\frac{t}{RC}} + \frac{C V_0 \sin(nt) - C^2 R n V_0 \cos(nt)}{C^2 R^2 n^2 + 1}$$

$$p\cos(\omega t) + q\sin(\omega t) =$$

$$\sqrt{p^2 + q^2} \left(\frac{p}{\sqrt{p^2 + q^2}} \cos \omega t + \frac{q}{\sqrt{p^2 + q^2}} \sin \omega t \right) =$$

$$\sqrt{p^2 + q^2} \left(\sin \phi \cos \omega + \cos \phi \sin \omega t \right) =$$

$$\sqrt{p^2 + q^2} \sin(\omega t + \phi), \quad \phi = \arctan \frac{p}{q}$$

Παρατηρούμε ότι ο πυκνωτής φορτίζει περισσότερο αν είναι μικρότερη η συχνότητα του εναλλασσόμενου ρεύματος.

7.0.4 V(t) = square(t)

$$V(t) = \sum_{n=(1,3,5,\dots)} \frac{4}{n\pi} \sin(nt) = \frac{4}{\pi} \sin(nt) + \frac{4}{3\pi} \sin(3t) + \frac{4}{5\pi} \sin(5t) \frac{4}{7\pi} \sin(7t) + \dots$$

Έτσι γίνεται η ανάλυση Fourier, και αυτό θα το δούμε την επόμενη Τετάρτη, που θα πάμε στο Κεφάλαιο 8, που λέει σειρές Fourier.

$$V_N(t) = \sum_{n=(1,3,5,...)}^{N} \frac{4}{n\pi} \sin(nt)$$

$$V(t) = \sum_{n=(1,3,5,...)}^{\infty} \frac{4}{n\pi} \sin(nt) = \lim_{t \to \infty} V_N(t)$$

Άρα:

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{V_0 \sin(nt)}{R} \implies Q_n(t) = \frac{V_0 C^2 R n}{C^2 R^2 n^2 + 1} e^{\frac{t}{RC}} + \frac{C V_0 \sin(nt) - C^2 R n V_0 \cos(nt)}{C^2 R^2 n^2 + 1}$$

Οπότε αν:

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{4}{\pi} \frac{\sin(nt)}{R} \implies Q_1(t) = \frac{4}{\pi} \left(\frac{C^2R}{C^2R^1 + 1} e^{-\frac{1}{RC}} + \cdots \right)$$

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{4}{3\pi} \frac{\sin(3t)}{R} \implies Q_3(t) = \frac{4}{3\pi} \left(\frac{3C^2R}{9C^2R^1 + 1} e^{-\frac{1}{RC}} + \cdots \right)$$

$$\frac{dR}{dt} + \frac{1}{RC}Q(t) = \frac{4}{5\pi} \frac{\sin(5t)}{R} \implies Q_5(t) = \cdots$$

Άρα:

$$Q(t) = \sum_{n \in \{1,3,5,\dots\}} Q_n(t)$$

Γιατί όμως, αν $V_1(t) \rightarrow Q_1(t)$, $V_2(t) \rightarrow Q_2(t)$, τότε $k_1V_1 + k_2V_2 = k_1Q_1 + k_2Q_2$ σε αυτό το κύκλωμα (αρχή επαλληλίας/γραμμικότητα);

Κεφάλαιο 8 Κεφάλαιο 8: Σειρές Φουριερ

Ορισμός

Μία συνάρτηση f(t) λέγεται τμηματικά συνεχής στο $[t_1, t_2]$ ανν μπορώ να διαμερίσω:

$$[t_1, t_2] = [\tau_0, \tau_1] \cup [\tau_1, \tau_2] \cup \cdots \cup [\tau_{n-1}, \tau_n]$$

όπου $\tau_0=t_1$, $\tau_n=t_2$, τέτοια ώστε f(t) συνεχής στο κάθε (τ_{i-1},τ_i) , και υπάρχουν $\lim_{t\to \tau_i^+} f(t)$, $\lim_{t\to \tau_i^+} f(t) \forall i$

π.χ

Η f(t) είναι τμηματικά συνεχής στο $[-\pi, 3\pi]$, επειδή, για $t_1 = -\pi, t_2 = 3\pi$:

$$[-\pi, 3\pi] = [-\pi, 0] \cup [0, \pi] \cup [\pi, 2\pi] \cup [2\pi, 3\pi]$$

Στα $(-\pi,0)$, $(0,\pi)$, $(\pi,2\pi)$, $(2\pi,3\pi)$ n f είναι συνεχής, και υπάρχουν τα αντίστοιχα πλευρικά όρια, άρα n f είναι τμηματικά συνεχής.

8.0.5 Συνθήκες του Dirichlet

- 1. Η f(t) είναι ορισμένη στο (-L, L)
- 2. Η f(t) είναι τμηματικά συνεχής στο (-L, L)
- 3. Η f(t) είναι περιοδική με περίοδο 2L.

Θεώρημα

Έστω f(t) η οποία ικανοποιεί τις συνθήκες Dirichlet στο (-L, L). Τότε:

1. Για κάθε σημείο συνέχειας της f(t):

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$

όπου:

$$a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} dt$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n\pi t}{L} dt$$

2. Σε κάθε σημείο ασυνέχειας τ:

$$\frac{1}{2} \left(\lim_{t \to \tau^{-}} f(t) + \lim_{t \to \tau^{+}} f(t) \right) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$

Παρ. f(t) = τετραγωνικός παλμός

Λύση Η f(t) ικανοποιεί τις Σ.D με $L = \pi$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt = \frac{1}{\pi} \int_{-\pi}^{0} (-1) dt + \frac{1}{\pi} \int_{-\pi}^{0} 1 dt = -1 + 1 = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin \frac{n\pi t}{\pi} dt = \frac{2}{\pi} \int_{0}^{\pi} 1 \sin(nt) dt$$

$$= \frac{2}{\pi} \cdot \left(\frac{-\cos nt}{n}\right)_{t=0}^{\pi} = \frac{2}{\pi} \cdot \left(\frac{1 - \cos n\pi}{\pi}\right) = \frac{2}{\pi} \left(\frac{1 - (-1)^n}{n}\right) = \frac{2}{n\pi} \text{ yia áqtia } n$$

Άρα:

$$a_0 = a_1 = a_2 = \dots = 0$$

 $b_1 = \frac{4}{\pi}, \quad b_3 = \frac{4}{3\pi}$
 $b_2 = 0, \quad b_4 = 0, \dots$

Απόδειξη (Μερική)

Θα δεχτούμε ότι n f(t) γράφεται στη μορφή $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$, και θα δείξουμε τους τύπους $a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} \, \mathrm{d}t$, $b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin \frac{n\pi t}{L} \, \mathrm{d}t$ Έστω $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$. Τότε:

$$\int_{-L}^{L} f(t) dt = \int_{-L}^{L} f(t) \cdots t = \int_{-L}^{L} \frac{a_0}{2} dt + \int_{-L}^{L} a_1 \cos \frac{\pi t}{L} dt + \int_{-L}^{L} a_2 \cos \frac{2\pi t}{L} + \cdots = a_0 \cdot L + 0 + 0 + \dots$$

Άρα:

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(t) \, \mathrm{d}t$$

Συνέχεια απόδειξης Υποθέτω ότι υπάρχει κάποια σειρά της μορφής *, θα δείξω ότι οι συντελεστές δίνονται από τους τύπους **. ί
ό Παρνω τυχόν $m \in \mathbb{N}$ και εξετάζω το

$$\begin{split} \int_{-L}^{L} f(t) \cos \frac{m\pi t}{L} \, \mathrm{d}t &= \\ &= \int_{-L}^{L} \left(\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L} \right) \cos \frac{m\pi t}{L} \, \mathrm{d}t \\ &= \underbrace{\int_{-L}^{L} \frac{a_0}{2} \cos \frac{m\pi t}{L} \, \mathrm{d}t}_{=0 \text{ olokangónu tatwo se } m \text{ tregiódous}}_{=0 \text{ olokangónu tatwo se } m \text{ tregiódous}} + \sum_{n=1}^{\infty} \int_{-L}^{L} a_n \cos \frac{n\pi t}{L} \cos \frac{m\pi t}{L} \, \mathrm{d}t + \sum_{n=1}^{\infty} \int_{-L}^{L} b_n \sin \frac{n\pi t}{L} \cos \frac{m\pi t}{L} \, \mathrm{d}t \\ &= \sum_{n=1}^{\infty} \left(\int_{-L}^{L} \sin \frac{n\pi t + m\pi t}{L} \, \mathrm{d}t + \int_{-L}^{L} \sin \frac{n\pi t - m\pi t}{L} \, \mathrm{d}t \right) = 0 \end{split}$$

$$&= \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \cos \frac{n\pi t}{L} \cos \frac{m\pi t}{L} \, \mathrm{d}t$$

$$&= \sum_{n=1}^{\infty} \left\{ \sum_{n=1}^{\infty} a_n \int_{-L}^{L} \left(\cos \frac{(n+m)\pi t}{L} + \cos \frac{(n-m)\pi t}{L} \right) \right\} \, \mathrm{d}t$$

$$&= \sum_{n=1}^{\infty} \left\{ 0, \quad n \neq m \right\}$$

$$&= \sum_{n=1}^{\infty} \left\{ 0, \quad n \neq m \right\}$$

$$&= a_n L, \quad n = m \end{split}$$

Επομένως:

$$a_m = \frac{1}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} dt$$

Αντιστοίχως αποδεικνύεται και η σχέση για το b_m .

Να σημειωθεί ότι οι συνθήκες του Dirichlet είναι ικανές, αλλά όχι αναγκαίες.

8.0.6

$$f(t) = \sum_{-\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$$
$$c_n = \frac{1}{2L} \int_{-L}^{L} e^{-in\pi t} L \, dt$$

Απόδειξη

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L} = \frac{a_0}{2} +$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} \cdots e^{\frac{in\pi t}{L}} + \sum_{n=1}^{\infty} \frac{a_n - ib_n}{2} e^{\frac{in\pi t}{L}} + + \sum_{n=-1}^{-\infty} \frac{a_{-n} + ib_{-n}}{2} e^{\frac{in\pi t}{L}}$$

Άρα

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$$

όπου:

$$c_n = \begin{cases} \frac{a_n - ib_n}{2}, & n \in \mathbb{Z}^+ \\ \frac{a_{-n} + ib_{-n}}{2}, & n \in \mathbb{Z}^- \\ \frac{a_0 + ib_0}{2}, & n = 0 \end{cases}$$

Αφήνεται ως άσκηση για τον αναγνώστη να αποδειχθεί ότι:

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(t) e^{\frac{-in\pi t}{L}} dt$$

8.1 Παράδειγμα

V(t) τετραγωνική συνάρτηση

Θα βρω την εκθετική σειρά της f(t).

$$c_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{0} (-1) \cdot e^{-int} dt + \int_{0}^{0} (\pi)1 \cdot e^{-int} dt$$

$$= \frac{1}{2\pi} \left(-\int_{-\pi}^{0} e^{-int} dt + \int_{0}^{\pi} e^{-int} dt \right)$$

$$= \frac{1}{2\pi} \left(\frac{e^{-int}}{in} \Big|_{-\pi}^{0} + \frac{e^{-int}}{in} \Big|_{0}^{\pi} \right)$$

$$= \frac{1}{2\pi} \left(\frac{1}{in} - \frac{e^{-in\pi}}{in} - \frac{e^{-in\pi}}{in} + \frac{1}{in} \right)$$

$$= \frac{1}{2\pi} \left(\frac{2}{in} - \frac{2\cos(n\pi)}{in} \right)$$

$$c_{n} = \frac{i}{n\pi} \cdot (1 - \cos n\pi)$$

$$\begin{array}{c|cc}
n & c_n \\
-2 & 0 \\
-1 & \frac{2i}{\pi} \\
0 & 0 \\
1 & \frac{-2}{\pi} \\
2 & 0 \\
3 & \frac{-2i}{3\pi} \\
\end{array}$$

Άρα:

$$f(t) = \cdots + \frac{2i}{3\pi}e^{i3t} + \frac{2i}{\pi}e^{-it} - \frac{2i}{\pi}e^{it} - \frac{2i}{3\pi}e^{i3t} + \cdots$$

Ερωτήματα για τον αναγνώστη:

- 1. Πότε έχει η τριγωνομετρική σειρά μόνο ημίτονα/μόνο συνημίτονα;
- 2. Πότε έχει η εκθετική σειρά μόνο πραγματικούς/μόνο εκθετικούς όρους;

8.2

Ορισμός

Συμβολίζω με \mathfrak{F}_L το σύνολο των συνα
ρτήσεων που ικανοποιούν τις συνθήκες Dirichlet (με ημιπερίοδο L)

Θεώρημα

Το \mathfrak{F}_L είναι διανυσματικός χώρος.

Απόδειξη Έστω $f, g \in \mathfrak{F}_L$ και $\kappa, \lambda \in \mathbb{C}$. Θα δείξω ότι $\kappa f + \lambda g \in \mathfrak{F}_L$.

Πράγματι

1. An oi f,g eínai origiénes sto [-L,L] tóte kai n $\kappa f + \lambda g$ eínai origién sto [-L,L].

2.

$$\begin{split} (\kappa f + \lambda g)(t + 2L) &= \kappa f(t + 2L) + \lambda g(t + 2L) \\ &= \kappa f(t) + \lambda g(t) \\ &= (\kappa f + \lambda g)(t) \end{split}$$

Άρα η $\kappa f + \lambda g$ έχει περίοδο 2L.

3. An n f kai n g eínai t μ . suneceís sto [-1,1], tóte kai n $\kappa f + \lambda g$ eínai t μ . suneceís.

Από τα 1,2,3, n $\kappa f + \lambda g \in \mathfrak{F}_L$.

Θεώρημα

Το σύνολο $\left\{e^{\frac{in\pi t}{L}}\right\}_{-\infty}^{\infty}$ είναι μια ορθογώνια βάση του \mathfrak{F}_L .

Δηλαδή κάθε $f(t) \in \mathfrak{F}_L$ μπορεί να γραφεί:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$$

Επιπλέον $\forall n, m, \ m \neq n \ e^{\frac{in\pi t}{L}} \perp e^{\frac{inm\pi t}{L}}$

Δηλαδή:

$$e^{\frac{im\pi t}{L}} \cdot e^{\frac{in\pi t}{L}} = 0$$

Δηλαδή:

$$\int_{-L}^{L} e^{\frac{im\pi t}{L}} \cdot e^{\frac{in\pi t}{L}} \, \mathrm{d}t = 0$$

Για να ορίσω το εσωτερικό γινόμενο, θέλω $||\vec{x}||^2 = \vec{x} \cdot \vec{x} = \sum_n x_n \bar{x_n} = \sum (x_n)^2$

$$f \cdot g = \int_{-L}^{L} f(t) \overline{g(t)} \, \mathrm{d}t$$

Άρα

$$e^{\frac{im\pi t}{L}} \cdot e^{\frac{in\pi t}{L}} = \int_{-L}^{L} e^{\frac{im\pi t}{L}} e^{\frac{in\pi t}{L}} dt = \int_{-L}^{L} e^{\frac{i(m-n)\pi t}{L}} dt = \begin{cases} 2L, & m=n \\ 0, & m\neq n \end{cases}$$

- \mathfrak{F}_L το σύνολο των συναφτήσεων που ικανοποιούν Dirichlet
- To \mathfrak{F}_L είναι ΔX
- To $\left\{e^{\frac{in\pi t}{L}}\right\}_{p\mathbb{Z}}$ είναι μια ορθογώνια βάση του $\mathfrak{F}_{\mathfrak{L}}$
- Το $\left\{\cos\frac{in\pi t}{L}\right\}_{n=0}^{\infty} \cup \left\{\sin\frac{in\pi t}{L}\right\}_{n=1}^{\infty}$ είναι μια ορθογώνια βάση του $\mathfrak{F}_{\mathfrak{L}}$
- $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{\frac{in\pi t}{L}}$, we

περιοδική, με ημιπερίοδο L

$$c_n = \frac{1}{2L} \int_{-L}^{L} f(t)e^{\frac{in\pi t}{L}} dt$$

$$\vec{x} = [x_1 x_2 x_3] = x_1 \vec{e_1} + x_2 \vec{e_2} + x_3 \vec{e_3}$$

$$= \text{Proj}(\vec{x}, \vec{e_1}) + \text{Proj}(\vec{x}, \vec{e_2}) + \text{Proj}(\vec{x}, \vec{e_3})$$

$$= \sum_{n=1}^{3} \vec{x} \cdot \vec{e_n} \cdot \frac{\vec{e_n}}{\|\vec{e_n}\|}$$

Άρα:

$$f(t) = \sum_{n = -\infty^{\infty}} c_n e^{\frac{in\pi t}{L}} = \sum_{n = -\infty^{\infty}} \text{Proj}\left(f(t), e^{\frac{in\pi t}{L}}\right)$$

όπου
$$\operatorname{Proj}\left(f(t), e^{\frac{in\pi t}{L}}\right) = f(t) \bullet e^{\frac{in\pi t}{L}} e^{\frac{in\pi t}{L}}$$

$$f(t) \bullet e^{\frac{in\pi t}{L}} = \int_{-L}^{L} f(t) \cdot e^{\frac{in\pi t}{L}} dt$$

$$\left\| e^{\frac{in\pi t}{L}} \right\| = \int_{-L}^{L} e^{\frac{in\pi t}{L}} \cdot e^{\frac{-in\pi t}{L}} dt = 2L$$

Θεώρημα 8.1: Plancherel

$$\frac{1}{2L} \int_{-L}^{L} f(t) \overline{g(t)} \, dt = \sum_{n} c_n \overline{r_n}$$

$$H \begin{cases} f(t) &= \sum_{n} c_{n} e^{\frac{in\pi t}{L}} \\ f(t) &= \sum_{n} r_{n} e^{\frac{in\pi t}{L}} \end{cases}$$

Απόδειξη

$$\frac{1}{2L} \int_{-L}^{L} f(t)\overline{g(t)} \, dt = \frac{1}{2L} \int_{-L}^{L} \left(\sum_{n=-\infty}^{\infty} c_n e^{\frac{in\pi t}{L}} \right) \left[\sum_{m=-\infty}^{\infty} c_m e^{\frac{im\pi t}{L}} \right] dt$$

$$= \frac{1}{2L} \int_{-L}^{L} \left(\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_n e^{\frac{in\pi t}{L}} \overline{r_m} e^{\frac{in\pi t}{L}} \right) dt$$

$$= \frac{1}{2L} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} c_n r_m \int_{-L}^{L} e^{\frac{i(n-m)\pi t}{L}} \, dt$$

$$\begin{cases} 0 & m \neq n \\ 2L & m = n \end{cases}$$

$$= \frac{1}{2L} 2L \sum_{n=-\infty}^{\infty} c_n r_n = \frac{1}{2L} \sum$$

Γενικά:

$$f(t) \leftrightarrow \vec{c} = [\ldots c_{-1} c_0 c_1 c_2 \ldots]$$

(με την επιφύλαξη ότι σε πεπερασμένο αριθμό σημείων μπορεί να αλλάζει η τιμή της συνάρτησης) Σύμφωνα με το θεώρημα:

$$f(t) \leftrightarrow \vec{c}$$
$$g(t) \leftrightarrow \vec{r}$$
$$\frac{1}{2L} f \bullet g = \vec{c} \bullet \vec{r}$$

Θεώρημα 8.2: Πόρισμα (Parseval)

$$\frac{1}{2L} \int_{-L}^{L} |f(t)|^2 dt = \sum_{n} |c_n|^2$$

Θεώρημα 8.3

Αν $f(t) \in \mathfrak{F}_L$ και $f(t) = \sum_n c_n e^{\frac{in\pi t}{L}}$, τότε:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \sum_{n} c_{n} \frac{in\pi}{L} e^{\frac{in\pi t}{L}}$$

$$\int f(t) = \sum_{n} c_{n} \frac{L}{in\pi} e^{\frac{in\pi t}{L}}$$

Τα ίδια για ημίτονα και συνημίτονα

Παράδειγμα Δίνεται
n $f(t) = \begin{cases} |t| & t \in [-\pi,\pi] \\ \pi$ εριοδική επέκταση $t \notin [-\pi,\pi] \end{cases}$ Να β
ρεθεί η Σειρά (Fourier) της f(t).

Λύση Αφού λοιπόν $g(t) = \frac{4}{\pi} \cdot \left(\sin t + \frac{\sin(3t)}{3} + \frac{\sin(5t)}{5} + \dots\right)$, τότε:

$$f(t) = c - \frac{4}{\pi} \left(\cos t + \frac{\cos 3t}{3^2} + \frac{\cos 5t}{5^2} \right)$$
$$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} = c$$

Άρα τελικά:

$$f(t) = \frac{\pi}{2} - \frac{4}{\pi} \left(\cos t + \frac{\cos 3t}{3^2} + \frac{\cos 5t}{5^2} \right)$$

Παρατηρώ ότι η f έχει ασθενέστερες υψηλές συχνότητες από τη g.

Παράδειγμα Να υπολογιστεί το:

$$S_1 = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \cdots$$

Είναι

$$g\left(\frac{\pi}{2}\right) = \frac{4}{\pi} \left(\sin\frac{\pi}{2} + \frac{\sin\frac{3\pi}{2}}{3} + \frac{\sin\frac{5\pi}{2}}{5} \right)$$
$$1 = g\left(\frac{\pi}{2}\right) = \frac{4}{\pi} \left(1 - \frac{1}{3} + \frac{1}{5} - \dots\right) = S_1$$

Παράδειγμα Να υπολογιστεί το:

$$S_1 = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

Λύση

$$0 = f(0) = \frac{\pi}{2} - \frac{4}{\pi} \cdot \left(1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots \right)$$
$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

Κεφάλαιο 9 Κεφάλαιο 9: Μετασχηματισμός Φουριερ

Θεώοημα

Έστω ότι η f(t) ικανοποιεί τα εξής:

1. Τις συνθήκες Dirichlet $\forall L \in \mathbb{R}$

2. $\int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t < \infty$ (δηλ. η f(t) είναι απολύτως ολοκληφώσιμη)

Τότε:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} dt$$

όπου:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

Απόδειξη Δίνεται η f(t). Διαλέγω τυχόν t και ορίζω την $f_T(t) = f(t)$ $\forall t \in \left[-\frac{T}{2}, \frac{T}{2}\right]$, που έχει σειρά Fourier:

$$f_T(t) = \sum_{n=-\infty}^{\infty} c(n)e^{\frac{in2\pi t}{T}}$$

όπου

$$c(n) = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-\frac{in2\pi t}{T}} dt$$

Θέτω $\delta\omega = \frac{2\pi}{T}$, $\omega = n \cdot \delta\omega = \frac{2n\pi}{T}$

$$f_T(t) = \sum_{n = -\infty}^{\infty} \left(\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-\frac{in2\pi t}{T}} dt \right) e^{\frac{in2\pi t}{T}}$$

$$= \frac{1}{2\pi} \sum_{n = -\infty}^{\infty} \left(\frac{2\pi}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(t) e^{-i\omega t} dt \right) e^{\frac{in2\pi t}{T}}$$

$$= \frac{1}{2\pi} \sum_{n = -\infty}^{\infty} \left(\int_{-\frac{T}{2}}^{\frac{T}{2}} f_T(t) e^{-i\omega t} dt \right) e^{i\omega t} \delta \omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t) e^{i\omega t} dt \right) e^{i\omega t} d\omega$$

Την $F(\omega)$ την ονομάζουμε Fourier μετασχηματισμένη της f(t), και γράφουμε:

$$\mathscr{F}\bigg(f(t)\bigg) = F(\omega)$$

$$F(\omega) = \mathcal{F} f(t) \quad f(t) = \mathcal{F}^{-1} \big(F(\omega) \big)$$

Παρ.

$$f(t) = \begin{cases} 1 & |t| < a \\ 0 & |t| \ge a \end{cases}$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt = \int_{-a}^{a} 1e^{-i\omega t} dt = -\frac{1}{i\omega}e^{-i\omega t} dt$$
$$= \frac{2}{\omega} \left(\frac{-e^{-i\omega a}}{2i}\right)$$
$$= 2\frac{\sin(\omega a)}{\omega}$$

Παρ.

$$f(t) = e^{-|t|}$$

$$F(\omega) = \int_{-\infty}^{\infty} e^{-|t|} e^{-i\omega t} dt$$
$$= \int_{-\infty}^{0} e^{t} e^{-i\omega t} dt + \int_{0}^{\infty} e^{-t} e^{-i\omega t} dt$$

$$\int_0^\infty e^{-t} e^{-i\omega t} dt = -\frac{1}{1+i\omega} \Big|_{t=0}^\infty$$

$$= -\frac{1}{1+i\omega} \left(e^{-(1+i\omega)\cdot\infty} - e^{-(1+i\omega)\cdot0} \right)$$

$$= -\frac{1}{1+i\omega} \left(0 - 1 \right)$$

$$= \frac{1}{1+i\omega}$$

Άρα:

$$\int_{-\infty}^{0} e^{t} e^{-i\omega t} dt + \int_{0}^{\infty} e^{-t} e^{-i\omega t} dt = \frac{1}{1 - i\omega} + \frac{1}{1 + i\omega}$$
$$= \boxed{\frac{2}{1 + \omega^{2}} = \mathscr{F}\left(e^{-|t|}\right)}$$

Ο Μ/Σ Fourier εφαρμόζεται μόνο σε απόλυτα ολοκληρώσιμες f(t). Δηλαδή υποθέτω ότι

$$\int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t = M < \infty$$

Αυτό το κάνω, διότι $\int_{-\infty}^{\infty} |f(t)| \, \mathrm{d}t < M < \infty$ είναι ικανή συνθήκη για να υπάρχει το $\int_{-\infty}^{\infty} f(t) e^{-i\omega t}$. Έχει μία σημαντική συνέπεια:

$$\lim_{t \to \pm \infty} f(t) = 0$$

Για παράδειγμα, οι $\mathscr{F}(e^t)$ και $\mathscr{F}(e^{-t})$ δεν υπάρχουν, ενώ ο $\mathscr{F}(e^{-|t|})$ υπάρχει διότι η $e^{-|t|}$ είναι απόλυτα ολοκληρώσιμη.

Extists $\int_{-\infty}^{\infty} |F(\omega)| d\omega = M' < \infty$

Θεώρημα 9.1

$$\mathscr{F}(\kappa f + \lambda g) = \kappa \mathscr{F}(f) + \lambda \mathscr{F}(g)$$

Παο.

$$\mathscr{F}(3 \cdot \text{square} + 5 \cdot e^{-|t|}) = 6 \frac{\sin(\omega)}{\omega} + \frac{10}{1 + \omega^2}$$

Η απόδειξη είναι εύκολη και αφήνεται για τον αναγνώστη.

Το Wolfram επιστρέφει τους M/Σ Fourier με διαφορετικό παράγοντα, για λόγους συμμετρίας! $(\frac{1}{\sqrt{2\pi}}$ έναντι $\frac{1}{2\pi}$). Στις σημειώσεις τηρείται η ιστορική σύμβαση που ακολουθείται και από προγράμματα όπως, π.χ. Matlab.

Θεώρημα 9.2

Έστω $F(\omega) = \mathscr{F}(f(t))$, τότε:

$$\mathscr{F}(F(t)) = 2\pi f(-\omega)$$

Δηλαδή:

$$\mathcal{F}\left(\mathcal{F}\left(f(t)\right)\right)=2\pi f(-t)$$

Απόδ.

$$\mathcal{F}(f(t)) = F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

$$\mathcal{F}^{-1}(F(\omega))) = f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{i\omega t} d\omega$$

$$2\pi f(-t) = \int_{-\infty}^{\infty} F(\omega)e^{-i\omega t} d\omega$$

$$= \int_{-\infty}^{\infty} F(\tau)e^{-i\tau w} d\tau = 2\pi f(-w)$$

$$= \mathcal{F}(F(\tau)) = 2\pi f(-w)$$

Πας.

$$\mathscr{F}\left(\frac{1}{1+t^2}\right)$$

Λύση

$$\cdots = \int_{-\infty}^{\infty} \dots$$

ń

Παρατηρώ ότι
$$\mathscr{F}(\frac{1}{2}e^{-|t|})=\frac{1}{1+\omega^2}=F(\omega)=F(-\omega)$$
 Άρα $F(t)=\frac{1}{1+t^2}$

$$\mathscr{F}\left(\frac{1}{1+t^2}\right) = \mathscr{F}\left(F(t)\right) = 2\pi f(-\omega) = \pi e^{-|\omega|}$$

Θεώρημα 9.3

$$\mathscr{F}\left(f(at)\right) = \frac{1}{a}F\left(\frac{\omega}{a}\right)$$

Απόδ.

$$\mathscr{F}(f(at)) = \int_{-\infty}^{\infty} f(at)e^{-i\omega t} dt$$

$$= \int_{-\infty}^{\infty} f(at)e^{-i\frac{\omega}{a}at} dt$$

$$= \frac{1}{a} \int_{-\infty}^{\infty} f(at)e^{-i\frac{\omega}{a}at} d(at) = \frac{1}{a} \int_{-\infty}^{\infty} f(\kappa)e^{-i\frac{\omega}{a}\kappa} d\kappa = \frac{1}{a}F\left(\frac{\omega}{a}\right)$$

Πας.

$$\mathscr{F}\left(\frac{1}{4+9t^2}\right) = \frac{1}{4}\mathscr{F}\left(\frac{1}{1+\frac{9}{4}t^2}\right) = \frac{1}{4}\mathscr{F}\left(\frac{1}{1+\left(\frac{3}{2}t\right)^2}\right)$$

 $\Gamma \iota \alpha \ f(t) = \frac{1}{1+t^2}, \quad F(\omega) = \pi e^{-|\omega|},$

$$f(\frac{3}{2}t = \frac{1}{1 + \frac{9}{4}t^2} \to \frac{1}{a}F\left(\frac{\omega}{a}\right) = \frac{2\pi}{3}e^{-\left|\frac{3\omega}{2}\right|}$$

Άρα ο ζητούμενος μετασχηματισμός είναι $\frac{1}{4}\frac{2\pi}{3}e^{-\left|\frac{3\omega}{2}\right|}$