Problem Statement:

The transactions made by a UK-based, registered, non-store online retailer between December 1, 2010, and December 9,2011, are all included in the transnat ional data set known as online retail. The company primarily offer one-of-a-kin d gifts for every occasion. The company has a large number of wholesalers as cl ients. Company Objective Using the global online retail dataset, we will design a clustering model and select the ideal group of clients for the business to ta rget.

In [1]: ▶

#import libraries
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline

In [2]: ▶

df=pd.read_csv(r"C:\Users\DELL\Downloads\OnlineRetailData (1).csv")
df

Out[2]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID					
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:1	2.55	17850.0					
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:1	3.39	17850.0 I					
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:1	2.75	^{17850.0}					
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:1	3.39	^{17850.0}					
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:1	3.39	17850.0 I					
			•••									
65530	541696	21205	MULTICOLOUR 3D BALLS GARLAND	1	20-01-2011 18:08	2.46	NaN _I					
65531	541696	21208	PASTEL COLOUR HONEYCOMB FAN	2	20-01-2011 18:08	1.63	NaN _I					
65532	541696	21209	MULTICOLOUR HONEYCOMB FAN	1	20-01-2011 18:08	1.63	NaN _I					
65533	541696	21212	PACK OF 72 RETROSPOT CAKE CASES	1	20-01-2011 18:08	1.25	NaN _I					
65534	541696	21217	RED RETROSPOT ROUND CAKE TINS	1	20-01-2011 18:08	20.79	NaN _I					
CEEOE	CEFOE manya y O andrimana											

65535 rows × 8 columns

In [3]: ▶

df.head()

Out[3]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:1	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:1	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:1	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:1	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:1	3.39	17850.0	United Kingdom
4								•
In [4]:								

Out[4]:

df.tail()

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	
65530	541696	21205	MULTICOLOUR 3D BALLS GARLAND	1	20-01-2011 18:08	2.46	NaN	ı
65531	541696	21208	PASTEL COLOUR HONEYCOMB FAN	2	20-01-2011 18:08	1.63	NaN	ı
65532	541696	21209	MULTICOLOUR HONEYCOMB FAN	1	20-01-2011 18:08	1.63	NaN	ŀ
65533	541696	21212	PACK OF 72 RETROSPOT CAKE CASES	1	20-01-2011 18:08	1.25	NaN	ŀ
65534	541696	21217	RED RETROSPOT ROUND CAKE TINS	1	20-01-2011 18:08	20.79	NaN	ı
4								,

In [5]: ▶

df.describe()

Out[5]:

	Quantity	UnitPrice	CustomerID
count	65535.000000	65535.000000	40218.000000
mean	8.363119	5.856143	15384.033517
std	413.694482	145.755953	1766.863499
min	-74215.000000	0.000000	12346.000000
25%	1.000000	1.250000	14001.000000
50%	2.000000	2.510000	15358.000000
75%	8.000000	4.240000	17019.000000
max	74215.000000	16888.020000	18283.000000

In [6]: ▶

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 65535 entries, 0 to 65534
Data columns (total 8 columns):

Column Non-Null Count Dtype # ----_____ 0 InvoiceNo 65535 non-null object 1 StockCode 65535 non-null object 2 Description 65369 non-null object 3 65535 non-null int64 Quantity 4 InvoiceDate 65535 non-null object 5 65535 non-null float64 UnitPrice 6 CustomerID 40218 non-null float64 7 65535 non-null object Country

dtypes: float64(2), int64(1), object(5)

memory usage: 4.0+ MB

```
In [7]:
                                                                                            H
df['CustomerID'].value_counts()
Out[7]:
CustomerID
12748.0
           695
17841.0
           481
14606.0
           421
15311.0
           418
14911.0
           377
13883.0
             1
18233.0
             1
13829.0
             1
17616.0
              1
12875.0
             1
Name: count, Length: 1204, dtype: int64
In [8]:
                                                                                            H
df['Quantity'].value_counts()
Out[8]:
Quantity
 1
         21712
 2
         10237
 12
          5620
 3
          4870
          4572
 6
-177
             1
-723
              1
320
              1
              1
-223
-1400
              1
Name: count, Length: 247, dtype: int64
In [9]:
                                                                                            H
df.isnull().sum()
Out[9]:
InvoiceNo
                    0
StockCode
                    0
Description
                  166
Quantity
                    0
                    0
InvoiceDate
UnitPrice
                    0
CustomerID
                25317
Country
dtype: int64
```

```
In [10]:
                                                                                           H
df.fillna(method='ffill',inplace=True)
                                                                                           H
In [11]:
df.isnull().sum()
Out[11]:
InvoiceNo
               0
StockCode
               0
Description
               0
               0
Quantity
InvoiceDate
               0
UnitPrice
               0
CustomerID
               0
Country
dtype: int64
In [12]:
                                                                                           H
plt.scatter(df["Quantity"],df["CustomerID"])
plt.xlabel("Quantity")
plt.ylabel("CustomerID")
Out[12]:
```

Text(0, 0.5, 'CustomerID')

K-Means Clustering:

```
M
In [13]:
from sklearn.cluster import KMeans
In [14]:
                                                                                         M
km=KMeans()
Out[14]:
 ▼ KMeans
KMeans()
In [15]:
                                                                                         M
y_predicted=km.fit_predict(df[["Quantity","CustomerID"]])
y_predicted
C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
  warnings.warn(
Out[15]:
array([5, 5, 5, ..., 5, 5, 5])
```

In [16]: ▶

df["Cluster"]=y_predicted
df.head()

Out[16]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:1	2.55	17850.0	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:1	3.39	17850.0	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:1	2.75	17850.0	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:1	3.39	17850.0	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:1	3.39	17850.0	United Kingdom
4								>

```
In [18]: ▶
```

```
df1=df[df.Cluster==0]
df2=df[df.Cluster==2]
df3=df[df.Cluster==3]
plt.scatter(df1["Quantity"],df1["CustomerID"],color="red")
plt.scatter(df2["Quantity"],df2["CustomerID"],color="blue")
plt.scatter(df3["Quantity"],df3["CustomerID"],color="green")
plt.xlabel("Quantity")
plt.ylabel("CustomerID")
```

Out[18]:

Text(0, 0.5, 'CustomerID')


```
In [19]:
from sklearn.preprocessing import MinMaxScaler
In [20]:
scaler=MinMaxScaler()
```

In [21]: ▶

```
scaler.fit(df[["CustomerID"]])
df["CustomerID"]=scaler.transform(df[["CustomerID"]])
df.head()
```

Out[21]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	01-12-2010 08:1	2.55	0.927068	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	01-12-2010 08:1	3.39	0.927068	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	01-12-2010 08:1	2.75	0.927068	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	01-12-2010 08:1	3.39	0.927068	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	01-12-2010 08:1	3.39	0.927068	United Kingdom
4								•

```
In [22]:

scaler.fit(df[["Quantity"]])
df["Quantity"]=scaler.transform(df[["Quantity"]])
df.head()
```

Out[22]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500040	01-12-2010 08:1	2.55	0.927068	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500040	01-12-2010 08:1	3.39	0.927068	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500054	01-12-2010 08:1	2.75	0.927068	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500040	01-12-2010 08:1	3.39	0.927068	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500040	01-12-2010 08:1	3.39	0.927068	United Kingdom
4								>

In [23]:
km=KMeans()

```
In [24]:

y_predicted=km.fit_predict(df[["Quantity","CustomerID"]])
y_predicted
```

C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk
learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init`
will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly
to suppress the warning
 warnings.warn(

```
Out[24]:
```

```
array([3, 3, 3, ..., 1, 1, 1])
```

In [25]: ▶

df["New cluster"]=y_predicted
df.head()

Out[25]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	0.500040	01-12-2010 08:1	2.55	0.927068	United Kingdom
1	536365	71053	WHITE METAL LANTERN	0.500040	01-12-2010 08:1	3.39	0.927068	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	0.500054	01-12-2010 08:1	2.75	0.927068	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	0.500040	01-12-2010 08:1	3.39	0.927068	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	0.500040	01-12-2010 08:1	3.39	0.927068	United Kingdom
4								•

In [27]: ▶

```
df1=df[df["New cluster"]==0]
df2=df[df["New cluster"]==1]
df3=df[df["New cluster"]==2]
plt.scatter(df1["Quantity"],df1["CustomerID"],color="red")
plt.scatter(df2["Quantity"],df2["CustomerID"],color="blue")
plt.scatter(df3["Quantity"],df3["CustomerID"],color="green")
plt.xlabel("Quantity")
plt.ylabel("CustomerID")
```

Out[27]:

Text(0, 0.5, 'CustomerID')


```
In [28]: ▶
```

km.cluster_centers_

Out[28]:

In [29]: ▶

```
df1=df[df["New cluster"]==0]
df2=df[df["New cluster"]==1]
df3=df[df["New cluster"]==2]
plt.scatter(df1["Quantity"],df1["CustomerID"],color="red")
plt.scatter(df2["Quantity"],df2["CustomerID"],color="green")
plt.scatter(df3["Quantity"],df3["CustomerID"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("Quantity")
plt.ylabel("CustomerID")
```

Out[29]:

Text(0, 0.5, 'CustomerID')


```
In [30]: ▶
```

```
k_rng=range(1,10)
sse=[]
```

```
In [31]: ▶
```

```
for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit(df[["Quantity","CustomerID"]])
    sse.append(km.inertia_)
#km.inertia_ will give you the value of sum of square errorprint(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
```

C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

C:\Users\DELL\AppData\Local\Programs\Python\Python310\lib\site-packages\sk learn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(

Out[31]:

Text(0, 0.5, 'Sum of Squared Error')

Conclusion: ¶

In This dataset we are performing clustering on Quantity and CustomerID.By usi ng kMeans Algorithm.so we conclude that KMeans alogorithm is best fot this Data set.