A. <u>Calculer la moyenne d'une série</u>

Définition. La moyenne d'une série de N valeurs $x_1; x_2; ...; x_N$ est :

$$m = \frac{x_1 + x_2 + \dots + x_N}{N}$$

Exemple. Dans un zoo, on a pesé 5 lions. Les poids (en kg) sont 130 ; 200 ; 190 ; 140 ; 170. Calculer le poids moyen d'un lion dans ce zoo.

m =

Exercice A1. Calculer la moyenne de la série 10; 12; 15; 10; 9; 14

B. Calculer l'écart-type d'une série

Définitions.

La variance d'une série de N valeurs $x_1; x_2; ...; x_N$ est :

$$V = \frac{(x_1 - m)^2 + (x_2 - m)^2 + \dots + (x_N - m)^2}{N}$$

L'écart-type d'une série de N valeurs $x_1; x_2; ...; x_N$ est

$$\sigma = \sqrt{V}$$

Remarque. L'écart-type d'une série statistique est un indicateur de dispersion autour de la moyenne.

Plus l'écart-type d'une série est petit, plus les valeurs de la série sont concentrées autour de la moyenne.

Exercice B1. Calculer l'écart-type de la série 10 ; 12 ; 15 ; 10 ; 9 ; 14

C. Calculer la moyenne d'une série pondérée

Définition. La moyenne pondérée d'une série de N valeurs $x_1; x_2; ...; x_N$ de poids (ou effectifs) respectifs $c_1; c_2; ...; c_N$ est :

$$m = \frac{c_1 x_1 + c_2 x_2 + \dots + c_N x_N}{c_1 + c_2 + \dots + c_N}$$

Exemple. On lance un dé cubique 40 fois, et on note le résultat dans ce tableau

		•				
Valeur	1	2	3	4	5	6
Effectif	5	10	5	7	3	10

m =

D. <u>Calculer l'écart-type d'une série pondérée</u>

Définitions.

La variance d'une série de N valeurs $x_1; x_2; ...; x_N$ de poids (ou effectifs) respectifs $c_1; c_2; ...; c_N$ est :

$$V = \frac{c_1(x_1-m)^2 + c_2(x_2-m)^2 + \dots + c_n(x_N-m)^2}{c_1 + c_2 + \dots + c_N}$$

L'écart-type d'une série de N valeurs $x_1; x_2; ...; x_N$ de poids (ou effectifs) respectifs $c_1; c_2; ...; c_N$ est :

$$\sigma = \sqrt{V}$$

Exemple. Calculer la moyenne pondérée, puis l'écart-type de la série 5 ; 12 ; 2 affectés des coefficients 7 ; 3 ; 1

m =

V =

 $\sigma =$

Exercice D1. Le tableau donne les températures à Sète les 15 premiers jours d'octobre.

Température (en °C)	20	21	22	23	24	25	26	27
Nombre de relevés	1	3	4	2	1	2	1	1

- 1) Déterminer la température moyenne m durant cette période.
- 2) Calculer l'écart-type s_1 de cette série.
- 3) Du 16 au 31 octobre, l'écart-type de la série des températures à Sète était $s_2=5,2\,^{\circ}C$. Durant quelle quinzaine d'octobre les Sétois ont-ils utilisé le plus de manteaux ?

Exercice D2. On considère la série donnant le nombre de jours de congés payés (JCP) par pays de l'Union européenne.

Nombre de JCP	20	22	24	25	28
Nombre de pays	17	2	2	5	2

- 1) Calculer le nombre moyen de jours de congés payés par pays dans l'Union européenne.
- 2) Calculer l'écart-type du nombre de JCP dans l'UE.

E. <u>Calculer la médiane d'une série</u>

Méthode. Pour calculer la médiane M_e d'une série :

- On trouve l'effectif total N
- On trie les valeurs de la série de sorte que $x_1 \le x_2 \le \cdots \le x_N$
- On calcule le rang de la médiane $k = [0.5 \times N]$ en arrondissant par excès à l'unité.
- La médiane est la valeur au k-ième rang $M_e = x_k$

F. Calculer les quartiles d'une série

Méthode. Pour calculer le *i*-ème quartile Q_i d'une série : (i = 1; 2 ou 3)

- On trouve l'effectif total N
- On trie les valeurs de la série de sorte que $x_1 \le x_2 \le \cdots \le x_N$
- On calcule le rang $k = \left[\frac{i}{4} \times N\right]$ en arrondissant par excès à l'unité.
- ullet Le i-ème quartile est la valeur au k-ième rang $Q_i=x_k$

Remarques. Il y a 3 quartiles, Q_1 ; Q_2 ; Q_3 . Q_2 est la médiane.

Définition. L'**écart interquartile** est $Q_3 - Q_1$. Comme l'écart-type, c'est une mesure de dispersion des valeurs.

Exercice F1. Dans une classe de 25 élèves, on demande le nombre d'heures passées par semaine devant la télévision.

12 filles répondent : 20 ; 10; 11 ; 22 ; 8 ; 18 ; 15 ; 12 ; 12 ; 22 ; 22 ; 12.

13 garçons répondent : 18 ; 22 ; 14 ; 7 ; 22 ; 43 ; 16 ; 36 ; 14 ; 15 ; 8 ; 22 ; 3.

A)

- 1) Déterminer la médiane de la série statistique des filles.
- 2) Déterminer les quartiles Q_1 ; Q_2 ; Q_3 de la série statistique des filles.
- 3) Quel est l'écart interquartile?

B)

- 1) Déterminer la médiane de la série statistique des garçons.
- 2) Déterminer les quartiles Q_1 ; Q_2 ; Q_3 de la série statistique des garçons.
- 3) Quel est l'écart interquartile ?

Exercice F2. On a réalisé un sondage auprès de 100 adultes sur leur nombre d'enfants. Les résultats sont ci-dessous.

Nombre d'enfants	0	1	2	3	4
Effectif	16	26	31	2	25

- 1) Déterminer la médiane de la série.
- 2) Déterminer les guartiles de la série, puis l'écart interguartile.

Exercice F3. On a demandé à un échantillon de personnes combien de fois elles avaient pris le bus ce jour. Les résultats sont ci-dessous.

Nombre de trajets	0	1	2	3	4	5
Effectif	51	5	36	1	12	2

- 1) Déterminer la médiane de la série.
- 2) Déterminer les quartiles de la série, puis l'écart interquartile.

G. <u>Calculer les déciles d'une série</u>

Méthode. Pour calculer le i-ème décile D_i d'une série :

- On trouve l'effectif total N
- ullet On trie les valeurs de la série de sorte que $x_1 \leq x_2 \leq \cdots \leq x_N$
- On calcule le rang $k = \left\lceil \frac{i}{10} \times N \right\rceil$ en arrondissant par excès à l'unité.
- ullet Le i-ème décile est la valeur au k-ième rang $D_i=x_k$