Árboles

Definición: Un árbol T es un grafo no dirigido, conexo y acíclico.

Propiedades

Teorema 9.1: Un grafo T es un árbol si y solo si entre todo par de vértices u, v existe un único camino que los conecta.

Demostración:

 \Rightarrow

Por la definición de árbol, T es conexo, por que existe al menos un camino. Demostremos que es único. Supongamos que entre u, v existen dos caminos P, Q distintos. Entonces hay un vértice x y un vértice y tales que:

$$P=u
ightarrow^*x
ightarrow(p_i)
ightarrow y
ightarrow^*v\ Q=u
ightarrow^*x
ightarrow(q_i)
ightarrow y
ightarrow^*v$$

Donde, $u \to *x$ es idéntico en ambos caminos, y y es el primer vértices después x que aparece en ambos caminos.

Por tanto, hay dos caminos simples disjuntos de x a y, lo que implica un ciclo, contradiciendo la definición de árbol.

← Trivial ■

Teorema 9.2: Si T es un árbol de orden n entonces tiene exactamente n-1 aristas.

Idea de demostración: Inducción en n, teniendo en cuenta en que toda arista en un árbol es puente.

Teorema 9.3: Las siguientes proposiciones son equivalentes:

- T es un árbol
- T es conexo y tiene n-1 aristas.
- T es acíclico y tiene n-1 aristas.

Idea de demostración:

- $(i) \Rightarrow (ii)$ Trivial.
- $(ii) \Rightarrow (iii)$ Demostrar el lema si G es conexo, $|E| \geq n-1$.
- $(iii) \Rightarrow (i)$ Ver que cada componente conexa de T es un árbol, luego tiene $n_i 1$ aristas. Despejar la cantidad de componentes conexas.

Teorema 9.4: Todo árbol no trivial ($n \ge 2$) contiene al menos dos hojas.

Idea de demostración: Sumar los grados asumiendo que n-1 vértices tienen grado ≥ 2 .

Árboles abarcadores

Un árbol abarcador es un subgrafo abarcador que es un árbol.

Teorema 9.5: Todo grafo conexo tiene un árbol abarcador.

Idea de demostración: El subgrafo abarcador conexo de menor tamaño tiene que ser un árbol. ■

Definamos la distancia de u a v, como la longitud del camino más corto de u a v.

$$\delta(u,v) = min_{p:u
ightarrow v}\{|p|\}$$

Decimos que un subgrafo abarcador H de un grafo G conserva las distancias desde cierto vértice v si $\delta_H(v,u)=\delta_G(v,u)$.

Teorema 9.6: En todo grafo conexo, para todo vértice v, existe un árbol abarcador que conserva las distancias desde v.

Demostración: Lo haremos por construcción.

Definamos los conjuntos $D_i = \{u \in V \mid , d_G(v, u) = i\}$ para todo $i \in [1, k]$ donde k es la máxima distancia en G. Definamos $D_0 = \{v\}$. Evidentemente $\{D_i\}$ es una partición de los vértices de G, pues G es conexo, así que todo vértice pertenece a uno y solo uno de los conjuntos D_i .

Para cada vértice u en cada conjunto $D_i, i>0$ existe al menos una arista e que lo conecta con un vértice en D_{i-1} pues por definición, existe un camino $p=v\to^* w\to u$ de longitud i entre v y u, por lo que existe un camino $p=v\to^* w$ entre v y w de longitud i-1 (que puede ser v y por eso definimos v0. Si hay más de una arista, sea v1 la primera arista que cumple esta condición para el vértice v1.

Sea T el subgrafo abarcador donde $E(T)=\{e_u\}$ es el conjunto de todas las aristas por cada vértice $u\in D_i, i>0$. Evidentemente |E(T)|=n-1 pues existe una arista por cada vértice $u\in V-\{v\}$. Además, T es conexo (¿por qué?). Luego, T es un árbol.

Además, T conserva la distancia por inducción en i.

Emparejamiento

Un conjunto de aristas $e_{(i)} = \{u_i, v_i\}$ y xy en un grafo G se dicen mutuamente independientes si $\bigcap_i \{u_i, v_i\} = \emptyset$, o sea si no comparten vértices.

Definición: En un grafo G, un subcojunto $M \subseteq E$ de aristas mutuamente independientes es un **emparejamiento**.

Un emparejamiento es maximal si no se puede adicionar ninguna arista a M que sea independiente con todas las además. Un emparejamiento es máximo si tiene la mayor cardinalidad entre todos los emparejamientos posibles.

Emparejamientos máximos

Dado un emparejamiento M, todos los vértices en los que incide cualquier arista $e \in M$ se denominan *vértices* M-emparejados. El resto son vértices no M-emparejados.

Dado un emparejamiento M, un camino que alterna entre aristas de M y M^C se llama camino M-alternante. Si los vértices de ambos extremos son no M-emparejados, entonces se llama un **camino** M-incremento.

Teorema 9.7 (Berge): Un emparejamiento M es máximo si y solo si no existe ningún camino M-incremento.

Demostración:

- \Leftarrow Si existe un camino M-incremento, se puede construir un emparejamiento de cardinalidad |M|+1.
- \Rightarrow Supongamos que M no es máximo, demostremos que existe un camino M-incremento.

Sea M^* un emparejamiento máximo, entonces $|M^*| > |M|$. Sea H el subgrafo abarcador definido por $E(H) = M^* \Delta M = M^* - M \cup M - M^*$, o sea, las aristas que están en M^* o en M pero no en ambos. Cada vértice en H tiene grado $d_H(v) \leq 2$. Notemos que en este grafo están todas las componentes conexas son caminos o ciclos. Además, en cada camino o ciclo, las aristas en E(H) alternan entre M y M^* (¿ por qué?). Luego, como todo ciclo tiene longitud par, y en E(H) hay más aristas de M^* que de M, tiene que existir una

Luego, como todo ciclo tiene longitud par, y en E(H) hay más aristas de M^* que de M, tiene que existir una componente conexa P que es un camino que empieza y termina con aristas de $M^* - M$.

Sean u y v los vértices extremos respectivos de dicho camino. Notemos que u y v no pueden ser Memparejados. Supongamos que u es M-emparejado, entonces hay una arista $e \in M, e \notin E(H)$ incidente en u,
pero $e \notin M^*$ porque ya hay una arista incidente en u en M^* , por tanto $e \in M - M^*$ lo que contradice que $e \notin E(H)$. Por el mismo motivo v no es M-emparejado tampoco. Así que P es un camino M-incremento. \blacksquare

Emparejamiento en Grafos Bipartitos

Definición: Sea $G=(X\cup Y,E)$ un grafo bipartito con $|X|\leq |Y|$, se dice que X está (parcialmente) emparejado a Y por M, si existe un emparejamiento M que cubra todos los vértices de X. Si cubre todos los vértices de Y, diremos que M es un emparejamiento perfecto.

De ahora en adelante usaremos la notación N(X) para referirnos a la unión de las vecindades de todo vértice $x \in X$.

$$N(X) = igcup_{x \in X} N(x)$$

Teorema 9.8 (Hall): En un grafo bipartito $G = (X \cup Y, E)$ existe un emparejamiento de X a Y si y solo si $|N(S)| \ge |S|$ para todo $S \subseteq X$ no vacío.

Demostración:

 \Rightarrow

Sea M el emparejamiento, sea $S\subseteq X$ un subconjunto cualquiera, por definición todo vértice $x\in S$ está M-emparejado. Sea M(S) el conjunto de vértices $y\in Y$ correspondientemente emparejados a S. Por definición de emparejamiento, |M(S)|=|S|. Además, para todo vértice $y\in M(S)\Rightarrow y\in N(S)$ dado que está emparejado. Entonces $M(S)\subseteq N(S)$, luego $|N(S)|\ge |M(S)|=|S|$.

 \leftarrow

Supongamos que $|N(S)| \ge |S|$ pero X no puede ser emparejado completamente. Sea M el emparejamiento máximo, entonces $\exists v \in V$ tal que v no está M-emparejado.

Sea Z el conjunto de vértices en G que son alcanzables desde v por caminos M-alternantes. Como M es un emparejamiento máximo, el único vértice no emparejado en Z es v (¿por qué?).

Definamos $S=Z\cap X$ y $T=Z\cap Y$. Notemos que, por construcción, todos los vértices en S deben estar M-emparejados con algún vértice de T, excepto v. Por lo tanto, |T|=|S|-1, y $T\subseteq N(S)$.

Supongamos que hay un vértice $w \in N(S)$ tal que $w \notin T$. Esto significa que w no está unido a v por un camino M-alternante, pero entonces tendríamos un camino M-incremento, lo cuál es imposible porque M es un emparejamiento máximo. Por tanto, $N(S) \subseteq T$, por lor que N(S) = S, y entonces |N(S)| = |S| - 1 < |S|, lo que contradice la hipótesis inicial. \blacksquare

Finalmente, vamos a demostrar un corolario interesante del teorema de Hall.

Teorema 9.9 (Teorema de los matrimonios): Todo grafo bipartito regular de grado $r \ge 1$ tiene un emparejamiento perfecto.

Demostración:

Si G es bipartito y regular con $r \ge 1$, entonces r|X| = r|Y| y por tanto |X| = |Y|.

Sea $S \subseteq X$ un subconjunto no vacío cualquiera de X. Sea E_1 las aristas incidentes en S y E_2 las aristas incidentes en N(S). Por definición de N(S) tenemos que $E_1 \subseteq E_2$.

Entonces, si $|E_1|=r|S|$ y $|E_2|=r|N(S)|$ tenemos que $r|N(S)|\geq r|S|$ por lo que $|N(S)|\geq |S|$.