3170 assn4 121040051

Question 1

(a)

$$E(X_N)_1 = 0p_0 + 1p_1 + 2p_2 + 3p_3 + \ldots + Np_N = \frac{C}{1} + 2\frac{C}{2} + 3*\frac{C}{3} + \ldots + N*\frac{C}{N} = NC$$

: this is a distribution

$$\begin{split} & \therefore \sum_N p_k = \sum_N \frac{C}{k} = 1 \\ & \Rightarrow C(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}) = 1 \\ & \Rightarrow C = \frac{1}{\sum_{k=1}^N \frac{1}{k}} \end{split}$$

Therefore, $E(X_N)_1 = NC = rac{N}{\sum_{k=1}^N rac{1}{k}}$

(b)

The average $E(X_N)$ of uniform distribution:

$$E(X_N)_2 = 0*p_0 + 1*p_1 + 2*p_2 + 3*p_3 + \ldots + N*p_N \ = rac{1}{N} + 2*rac{1}{N} + 3*rac{1}{N} + \ldots + N*rac{1}{N} \ = rac{(1+N)*N}{2}*rac{1}{N} \ = rac{1+N}{2}$$

When N=10:

$$E(X_N)_1 = rac{10}{\sum_{k=1}^{10}rac{1}{k}} = 3.414$$
,

$$E(X_N)_2 = rac{1+10}{2} = 5.5$$

(c)

When
$$E(X_{N^*})_1=E(X_{N^*})_2$$
, we have: $\frac{N^*}{\sum_{k=1}^{N^*}\frac{1}{k}}=\frac{1+N^*}{2}$ $\Rightarrow N^*=1$

Since $E(X_{N^*})_1$ is divergent, and the difference with $E(X_{N^*})_2$ will get larger after intersection, N*=1 is a unique solution for equality in a range.

(d)

<i>i if it's sequential search:

For each element, we'll keep searching until we find a element `greater than the one we're searching for.

 \Rightarrow average number of comparisons: $\frac{N}{2}$

<ii> if it's binary search:

For each element, the average number of comparisons is the total layer number of binary tree, which is log(N)

(e)

<i>when the required record is present in the file:

average number of comparisons is $\frac{N}{2}$

 ${}^<\!\!$ ii ${}^>\!$ when required record is not present in the file:

average number of comparisons are the number of layers of this heap is N

Question 2

we have n=23,

with average storage utility 0.69, we have 23*0.69=15.87 \approx 16

(i) Level1:

```
average number of nodes: 16
```

average number of key entries: 16*(16-1) = 16*15 = 240

average number of children pointers: 16*16 = 256

(ii) Level3:

average number of nodes: $16^3 = 4096$

average number of key entries: $16^3 * 15 = 61440$

average number of children pointers: $16^4 = 65536$

(iii) Level4:

average number of nodes: $16^4 = 65536$

average number of key entries: $16^4 * 15 = 983040$ average number of children pointers: $16^5 = 1048576$

(iv) height of tree is 2:

average number of entries = $level0_key + level1_key + level2_key = 15 + 16*15 + 16*15 = 4095$

(v) height of tree is 3:

average number of entries = level0_key + level1_key + level2_key + level3_key = 15 + 16*15 + 16*16*15 + 16*16*15 = 65535

(vi) height of tree is 4:

 \Rightarrow average total number of entries hat such a tree:

- we first have each node have a maximum of n children \rightarrow 23 here
- with average storage utility of B tree 0.69, we have average children we have is $0.69n \rightarrow 0.69*23 \approx 16$ here
- for i^{th} layer, we have $(0.69n)^i*(0.69n-1)=16^i*15$ key entries
- Therefore, for the tree with height h, we have: $\sum_{i=0}^h ((0.69n)^i*(0.69n-1)) = \sum_{i=0}^h (16^i*15)$

$$\begin{split} \bullet & \Rightarrow \sum_{i=0}^h ((0.69n)^i * (0.69n - 1)) \\ &= (0.69n - 1) \sum_{i=0}^h (0.69n)^i \\ &= (0.69n - 1) \times (1 - (0.69n)^{h+1})/(1 - 0.69n) \\ &= (0.69n)^{h+1} - 1 \end{split}$$

Question 3

Insert Key3:

Insert Key12:

Insert Key9:

Insert Key6:

Question 4

Delete Key5:

Delete Key12:

Delete Key9:

Question 5

With K: total number of items in tree,

n: maximum capacity of a node

N: random number of nodes in the tree

ho: random storage utilization of the tree

f: minimum fullness factor, and $f = \frac{3}{4}$ here

we have:

$$ho = \frac{K}{Nn}$$

minimum number of nodes is $\frac{K}{n}$

maximum number of nodes is $\frac{K}{\frac{3}{4}n} = \frac{4K}{3n}$

$$\Rightarrow$$
 $N \sim U(rac{K}{n},rac{4K}{3n})$

(1)

$$egin{aligned} E(
ho) &= E(rac{K}{Nn}) = rac{K}{n}E(rac{1}{N}) \ &= (rac{K}{n}) imes (rac{3n}{K}) \int_{rac{K}{n}}^{rac{4K}{3n}} (rac{1}{t})dt \ &= 3 * (ln(rac{4K}{3n}) - ln(rac{K}{n})) \end{aligned}$$

$$= 3 * ln(\frac{4}{3})$$

= 86.3%

$$\begin{split} \sigma_f^2 &= f - (\frac{f}{f'})^2 [ln(\frac{1}{f})]^2 \\ &= \frac{3}{4} - (\frac{\frac{3}{4}}{\frac{1}{4}})^2 [ln(\frac{4}{3})]^2 \\ &= 0.00515 \\ \Rightarrow & \operatorname{sd}(\rho) = \sqrt{0.00515} = 0.072 \end{split}$$

Question 6

(1)

Record#	2305	1168	2580	4871
Hash Index	1	0	4	7
	1620	2428	3943	4750
	4	4	7	6
Record#	5659	1821	1074	7115
Hash Index	3	5	2	3
	6975	4981	9280	
	7	5	0	

 \Rightarrow

Hash Index	0	1	2	3
Records#	1168	2305	1074	5659
	9280			7115
Hash Index	4	5	6	7
Records#	2580	1821	4750	4871
	1620	4981		3943
	2428			6975

 $[\]Rightarrow$ we have: bucket4 and bucket7 are overflow

 \Rightarrow Therefore, average number of block accesses for a random record retrieval on Part# is:

$$2*\frac{2}{15}+1*\frac{13}{15}=\frac{17}{15}=1.133$$

(2)

<step i> insert 2305, 1168

(2305) mod 128 = 1 = $(00001)_2$

 $(1168) \mod 128 = 16 = (10000)_2$

we have d=0, d'=0 with 2 elements in one local buckets

<step ii> insert 2580, 4871

 $(2580) \mod 128 = 20 = (10100)_2$

 $(4871) \mod 128 = 7 = (00111)_2$

we have d=1, d'=1 with 4 elements in two local buckets

<step iii> insert 5659, 1821

(5659) mod 128 = $27 = (11011)_2$

(1821) mod 128 = 29 = $(11101)_2$

we have d=2,

Record# 2305	1168	2580	4871	5659	1821	
--------------	------	------	------	------	------	--

3170 assn4 121040051 4

Hash Index	1	16	20	7	27	29
Hash Value	00001	10000	10100	00111	11011	11101

\Rightarrow global depth: d=2

global index:	Records:		local depth:
00 / 01	Record1: 2305	Record4: 4871	d' = 1
10	Record2: 1168	Record3: 2580	d' = 2
11	Record5: 5659	Record6: 1821	d' = 2

3170 assn4 121040051 5