Step	Algorithm: $C := AB + C$ where A is symmetric and stored in the lower triangular part
	$\{C = \widehat{C}$
	$A \to \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right), B \to \left(\begin{array}{c c} B_T \\ \hline B_B \end{array}\right), C \to \left(\begin{array}{c c} C_T \\ \hline C_B \end{array}\right)$ where A_{BR} is 0×0 , B_B has 0 rows, C_B has 0 rows
2	$ \left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \right\} $
3	while $m(A_{BR}) < m(A)$ do
2,3	$ \left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \land m(A_{BR}) < m(A) \right\} $
	Determine block size b
5a	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ B_1 \\ \hline B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \rightarrow \left(\begin{array}{c} C_0 \\ C_1 \\ \hline C_2 \end{array}\right) $ where A_{11} is $b \times b$, B_1 has b rows, C_1 has b rows
	$ \begin{pmatrix} C_0 \\ C_0 \end{pmatrix} \begin{pmatrix} A_{20}^T B_2 + \hat{C}_0 \end{pmatrix} $
6	$ \left\{ \begin{array}{c} C_1 \\ C_2 \end{array} \right\} = \left(\begin{array}{c} A_{21}^T B_2 + \widehat{C}_1 \\ A_{22} B_2 + \widehat{C}_2 \end{array} \right) $
	$C_0 := A_{00}B_0 + A_{10}^TB_1 + A_{20}^TB_2 + C_0$
8	$C_1 := A_{10}B_0 + A_{11}B_1 + A_{21}^TB_1 + C_1$
	$C_2 := A_{20}B_0 + A_{21}B_1 + A_{22}B_2 + C_2$
7	$ \begin{cases} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_{10}^T B_1 + A_{20}^T B_2 + \widehat{C}_0 \\ A_{11} B_1 + A_{21}^T B_2 + \widehat{C}_1 \\ A_{21} B_1 + A_{22} B_2 + \widehat{C}_2 \end{pmatrix} $
5b	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ B_1 \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \leftarrow \left(\begin{array}{c} C_0 \\ C_1 \\ C_2 \end{array}\right) $
2	$\left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B}\right) \end{array} \right\}$
	endwhile
2,3	$ \left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \land \neg (m(A_{BR}) < m(A)) \right\} $
1b	$\{C = AB + \hat{C} $

Step	Algorithm: $C := AB + C$	where A is s	symmetric and st	tored in the lower tria	angular part
1a	{				}
4	where				
2					$\bigg\}$
3	while d	0			
2,3			٨		}
5a	Determine block s where	ize b			
6					$\bigg\}$
8	$A_{00}B_0 + A_{10}B_0 + A_{20}B_0 +$				
7					
5b					
2					
	endwhile				
2,3	$\bigg \bigg\{$		^ ¬()	}
1b	{				}

Step	Algorithm: $C := AB + C$ where A is symmetric and stored in the lower triangular part	
1a	$\{C = \widehat{C}\}$	
4	where	
2		$\left. ight\}$
3	while do	
2,3		}
5a	Determine block size b where	
6		$\left. \left. \right \right.$
8	$A_{00}B_0 + A_{20}^T B_2 +$ $A_{10}B_0 + A_{21}^T B_1 +$ $A_{20}B_0 + A_{22}B_2 +$	
7		$\left. \right\}$
5b		
2		$\left. ight\}$
	endwhile	
2,3	$\bigg \bigg\{ \hspace{1cm} \wedge \neg (\hspace{1cm})$	
1b	$\{C = AB + \widehat{C}\}$	_

Step	Algorithm: $C := AB + C$ where A is symmetric and stored in the lower triangular part	
1a	${C = \widehat{C}}$	
4	where	
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \right.$	$\left. ight\}$
3	while do	
2,3	$\left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B}\right) \wedge \end{array} \right.$	$\left. ight\}$
5a		
	where	
6		$\left. \left. \right \right.$
8	$A_{00}B_0 + A_{20}^T B_2 +$ $A_{10}B_0 + A_{21}^T B_1 +$ $A_{20}B_0 + A_{22}B_2 +$	
7		$\left. \overline{ ight\}}$
5b		
2	$ \left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B}\right) \\ \text{endwhile} \end{array} \right. $	$\left. ight\}$
2,3	$ \left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B} \right) \land \neg () \right\} $	$\left. ight\}$
1b	$\{C = AB + \widehat{C}\}$	

Step	Algorithm: $C := AB + C$ where A is symmetric and stored in the lower triangular part
1a	${C = \widehat{C}}$
4	where
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \right\}$
3	while $m(A_{BR}) < m(A)$ do
2,3	$\left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B}\right) \wedge m(A_{BR}) < m(A) \end{array} \right\}$
	Determine block size b
5a	where
	where
6	
	$A_{00}B_0 + A_{20}^T B_2 +$
8	$A_{10}B_0 + A_{21}^T B_1 +$
	$A_{20}B_0+ A_{22}B_2+$
7	
5b	
	$ \left\{ \begin{array}{c} \left(\frac{C_T}{C_T} \right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{C_T} \right) \end{array} \right\} $
2	$ \left(\begin{array}{c} C_B \end{array} \right) \left(\begin{array}{c} A_{BR}B_B + \widehat{C}_B \end{array} \right) $
	endwhile $AT R + \widehat{C}$
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \land \neg (m(A_{BR}) < m(A)) \right\}$
1b	$\{C = AB + \widehat{C} $

Step	Algorithm: $C := AB + C$ where A is symmetric and stored in the lower triangular part
1a	$\{C = \widehat{C}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{BR} is 0×0 , B_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \right\}$
3	while $m(A_{BR}) < m(A)$ do
2,3	$ \left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B} \right) \land m(A_{BR}) < m(A) \right\} $
5a	
	where
6	
8	$A_{00}B_0 + A_{20}^T B_2 +$ $A_{10}B_0 + A_{21}^T B_1 +$ $A_{20}B_0 + A_{22}B_2 +$
7	
5b	
2	$ \left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B}\right) \\ A_{BR} B_B + \widehat{C}_B \end{array} \right\} $
2,3	endwhile $\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B} \right) \land \neg (m(A_{BR}) < m(A)) \right\}$
1b	$\{C = AB + \widehat{C} $ }

Step	Algorithm: $C := AB + C$ where A is symmetric and stored in the lower triangular part
1a	$\{C = \widehat{C}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{BR} is 0×0 , B_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \right\}$
3	while $m(A_{BR}) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B} \right) \land m(A_{BR}) < m(A) \right\}$
5a	Determine block size b $ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} B_T \\ B_B \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \\ B_1 \\ B_2 \end{pmatrix}, \begin{pmatrix} C_T \\ C_B \end{pmatrix} \rightarrow \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} $ where A_{11} is $b \times b$, B_1 has b rows, C_1 has b rows
6	
8	$A_{00}B_0 + A_{20}^T B_2 + A_{10}B_0 + A_{21}^T B_1 + A_{20}B_0 + A_{22}B_2 +$
7	
5b	$ \left(\begin{array}{c c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ B_1 \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \leftarrow \left(\begin{array}{c} C_0 \\ C_1 \\ C_2 \end{array}\right) $
2	$ \left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B}\right) \\ \end{array} \right\} $
	endwhile
2,3	$ \left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B} \right) \land \neg (m(A_{BR}) < m(A)) \right\} $
1b	$\{C = AB + \widehat{C} $

Step	Algorithm: $C := AB + C$ where A is symmetric and stored in the lower triangular part
1a	$\{C = \widehat{C}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{BR} is 0×0 , B_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B} \right) \right\}$
3	while $m(A_{BR}) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \land m(A_{BR}) < m(A) \right\}$
5a	Determine block size b $ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ B_1 \\ \hline B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \rightarrow \left(\begin{array}{c} C_0 \\ C_1 \\ C_2 \end{array}\right) $ where A_{11} is $b \times b$, B_1 has b rows, C_1 has b rows
6	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_{20}^T B_2 + \widehat{C}_0 \\ A_{21}^T B_2 + \widehat{C}_1 \\ A_{22} B_2 + \widehat{C}_2 \end{pmatrix} $
8	$A_{00}B_0 + A_{20}^T B_2 + A_{10}B_0 + A_{21}^T B_1 + A_{20}B_0 + A_{22}B_2 +$
7	
5b	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ B_1 \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \leftarrow \left(\begin{array}{c} C_0 \\ C_1 \\ C_2 \end{array}\right) $
2	$\left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B}\right) \end{array} \right\}$
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \land \neg (m(A_{BR}) < m(A)) \right\}$
1b	$\{C = AB + \widehat{C} $

Step	Algorithm: $C := AB + C$ where A is symmetric and stored in the lower triangular part
1a	$\{C = \widehat{C}\}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{BR} is 0×0 , B_B has 0 rows, C_B has 0 rows
2	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B} \right) \right\}$
3	while $m(A_{BR}) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \land m(A_{BR}) < m(A) \right\}$
5a	Determine block size b $ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ B_1 \\ \hline B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \rightarrow \left(\begin{array}{c} C_0 \\ C_1 \\ C_2 \end{array}\right) $ where A_{11} is $b \times b$, B_1 has b rows, C_1 has b rows
6	$ \begin{cases} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_{20}^T B_2 + \widehat{C}_0 \\ A_{21}^T B_2 + \widehat{C}_1 \\ A_{22} B_2 + \widehat{C}_2 \end{pmatrix} $
8	$A_{00}B_0 + A_{20}^T B_2 +$ $A_{10}B_0 + A_{21}^T B_1 +$ $A_{20}B_0 + A_{22}B_2 +$
7	$ \left\{ \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_{10}^T B_1 + A_{20}^T B_2 + \widehat{C}_0 \\ A_{11} B_1 + A_{21}^T B_2 + \widehat{C}_1 \\ A_{21} B_1 + A_{22} B_2 + \widehat{C}_2 \end{pmatrix} \right\} $
5b	$A_{00} A_{01} A_{02} A_{02} A_{01} A_{02} A_{02} A_{02} A_{01} A_{02} $
2	$ \left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B}\right) \\ \end{array} \right\} $
	endwhile
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \land \neg (m(A_{BR}) < m(A)) \right\}$
1b	$\{C = AB + \widehat{C} $

Step	Algorithm: $C := AB + C$ where A is symmetric and stored in the lower triangular part
1a	${C = \widehat{C}}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{BR} is 0×0 , B_B has 0 rows, C_B has 0 rows
2	$\left\{ \begin{pmatrix} C_T \\ C_B \end{pmatrix} = \begin{pmatrix} A_{BL}^T B_B + \hat{C}_T \\ A_{BR} B_B + \hat{C}_B \end{pmatrix} \right\}$
3	while $m(A_{BR}) < m(A)$ do
2,3	$\left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \land m(A_{BR}) < m(A) \right\}$
5a	Determine block size b $ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ \hline A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ B_1 \\ \hline B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \rightarrow \left(\begin{array}{c} C_0 \\ C_1 \\ \hline C_2 \end{array}\right) $ where A_{11} is $b \times b$, B_1 has b rows, C_1 has b rows
6	$ \begin{cases} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_{20}^T B_2 + \hat{C}_0 \\ A_{21}^T B_2 + \hat{C}_1 \\ A_{22} B_2 + \hat{C}_2 \end{pmatrix} $
8	$C_0 := A_{00}B_0 + A_{10}^T B_1 + A_{20}^T B_2 + C_0$ $C_1 := A_{10}B_0 + A_{11}B_1 + A_{21}^T B_1 + C_1$ $C_2 := A_{20}B_0 + A_{21}B_1 + A_{22}B_2 + C_2$
7	$ \begin{cases} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} A_{10}^T B_1 + A_{20}^T B_2 + \widehat{C}_0 \\ A_{11} B_1 + A_{21}^T B_2 + \widehat{C}_1 \\ A_{21} B_1 + A_{22} B_2 + \widehat{C}_2 \end{pmatrix} $
5b	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ B_1 \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \leftarrow \left(\begin{array}{c} C_0 \\ C_1 \\ C_2 \end{array}\right) $
2	$\left\{ \begin{array}{c} \left(\frac{C_T}{C_B}\right) = \left(\frac{A_{BL}^T B_B + \hat{C}_T}{A_{BR} B_B + \hat{C}_B}\right) \end{array} \right\}$
	endwhile
2,3	$ \left\{ \left(\frac{C_T}{C_B} \right) = \left(\frac{A_{BL}^T B_B + \widehat{C}_T}{A_{BR} B_B + \widehat{C}_B} \right) \land \neg (m(A_{BR}) < m(A)) \right\} $
1b	$\{C = AB + \widehat{C} $

Algorithm: $C := AB + C$ where A is symmetric and stored in the lower triangular part
$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{BR} is 0×0 , B_B has 0 rows, C_B has 0 rows
while $m(A_{BR}) < m(A)$ do
Determine block size b $ \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} B_T \\ B_B \end{pmatrix} \rightarrow \begin{pmatrix} B_0 \\ B_1 \\ B_2 \end{pmatrix}, \begin{pmatrix} C_T \\ C_B \end{pmatrix} \rightarrow \begin{pmatrix} C_0 \\ C_1 \\ C_2 \end{pmatrix} $ where A_{11} is $b \times b$, B_1 has b rows, C_1 has b rows
$C_0 := A_{00}B_0 + A_{10}^T B_1 + A_{20}^T B_2 + C_0$ $C_1 := A_{10}B_0 + A_{11}B_1 + A_{21}^T B_1 + C_1$ $C_2 := A_{20}B_0 + A_{21}B_1 + A_{22}B_2 + C_2$
$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & A_{01} & A_{02} \\ \hline A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ B_1 \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \leftarrow \left(\begin{array}{c} C_0 \\ C_1 \\ C_2 \end{array}\right) $
endwhile

Algorithm: C := AB + C where A is symmetric and stored in the lower triangular part

$$A o \left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array} \right) , B o \left(\begin{array}{c|c} B_T \\ \hline B_B \end{array} \right) , C o \left(\begin{array}{c|c} C_T \\ \hline C_B \end{array} \right)$$

where A_{BR} is 0×0 , B_B has 0 rows, C_B has 0 rows

while $m(A_{BR}) < m(A)$ do

Determine block size b

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \to \left(\begin{array}{c|c}
A_{00} & A_{01} & A_{02} \\
A_{10} & A_{11} & A_{12} \\
\hline
A_{20} & A_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c}
B_T \\
B_B
\end{array}\right) \to \left(\begin{array}{c}
B_0 \\
B_1 \\
\hline
B_2
\end{array}\right), \left(\begin{array}{c}
C_T \\
C_B
\end{array}\right) \to \left(\begin{array}{c}
C_0 \\
C_1 \\
C_2
\end{array}\right)$$

where A_{11} is $b \times b$, B_1 has b rows, C_1 has b rows

$$C_0 := A_{10}^T B_1 + C_0$$

$$C_1 := A_{11}B_1 + C$$

$$C_2 := A_{21}B_1 + C_2$$

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \leftarrow \left(\begin{array}{c|c}
A_{00} & A_{01} & A_{02} \\
\hline
A_{10} & A_{11} & A_{12} \\
A_{20} & A_{21} & A_{22}
\end{array}\right), \left(\begin{array}{c}
B_T \\
B_B
\end{array}\right) \leftarrow \left(\begin{array}{c}
B_0 \\
B_1 \\
B_2
\end{array}\right), \left(\begin{array}{c}
C_T \\
C_B
\end{array}\right) \leftarrow \left(\begin{array}{c}
C_0 \\
C_1 \\
C_2
\end{array}\right)$$

endwhile