Multigrid Solution of Discrete Convection-Diffusion Equations

Alison Ramage
Dept of Mathematics
University of Strathclyde
Glasgow, Scotland

Howard Elman
Dept of Computer Science
University of Maryland
College Park, MD, USA

Convection-Diffusion in 2D

$$-\epsilon \nabla^2 u(x,y) + \mathbf{w}.\nabla u(x,y) = f(x,y) \quad \text{in} \quad \Omega \in \mathbb{R}^2$$
$$u(x,y) = g \quad \text{on} \quad \partial \Omega$$

divergence-free convective velocity ('wind') ${\bf w}$ diffusion parameter $\epsilon << 1$ discretisation parameter \hbar

mesh Péclet number
$$P_h = \frac{\|\mathbf{w}\|h}{2\epsilon}$$

Boundary Layers and Oscillations

Galerkin finite element method

$$\epsilon(\nabla u_h, \nabla v_h) + (\mathbf{w} \cdot \nabla u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h$$

- oscillations observed in discrete solutions for $P_h > 1$
- Streamline Diffusion method

$$\epsilon(\nabla u_h, \nabla v_h) + (\mathbf{w} \cdot \nabla u_h, v_h) + \frac{\delta h}{\|\mathbf{w}\|} (\mathbf{w} \cdot \nabla u_h, \mathbf{w} \cdot \nabla v_h)$$

$$= (f, v_h) + \frac{\delta h}{\|\mathbf{w}\|} (f, \mathbf{w} \cdot \nabla v_h) \quad \forall v_h \in V_h$$

$$P_h \leq 1$$
: $\delta = 0$ Galerkin FEM

$$P_h > 1: \quad \delta = \frac{1}{2} - \frac{\epsilon}{h}$$
 Streamline Diffusion

Multigrid and Convection-Diffusion

 MG: decompose grid functions into two subspaces approximate inverse operator for components in subspace 1

smoothing iteration rapidly reduces error components in subspace 2

- approximation: choice of discretisation
- smoothing: choice of relaxation method
- multigrid can be implemented effectively for convection-diffusion problems

Multigrid Method

- two-grid method: N_f (fine grid), N_c (coarse grid)
- coefficient matrices: A_f (fine grid), A_c (coarse grid)
- prolongation: bilinear interpolation
- restriction: transpose of prolongation P^T
- smoothing: line Gauss-Seidel S_A
- ullet steps of pre-smoothing, no post-smoothing
- two-grid iteration matrix $M = (I PA_c^{-1}P^TA_f)S_A^{\nu}$
- convergence: $\|\mathbf{e}_k\| \leq \|M\|^k \|\mathbf{e}_0\|$

Convergence Analysis

- various successful approaches
 - perturbation arguments
 Bank (1981), Mandel (1986), Bramble, Pasciak and Xu (1988), Wang (1993)
 - matrix-based methods
 Reusken (2002), Olishanskii and Reusken (2002)
- AIM: bound $||M||_2 = ||(I PA_c^{-1}P^TA_f)S_A^{\nu}||_2$
 - write $M=(A_f^{-1}-PA_c^{-1}P^T)(A_fS_A^{\nu})=M_AM_S$ and bound $\|M_A\|_2$, $\|M_S\|_2$ separately
 - bound $||M||_2$ directly

Coefficient Matrix

$$A = \begin{bmatrix} M_1 & M_2 & & & 0 \\ M_3 & M_1 & M_2 & & & \\ & \ddots & \ddots & \ddots & & \\ & & M_3 & M_1 & M_2 \\ 0 & & & M_3 & M_1 \end{bmatrix}$$

eigenvectors and eigenvalues:

$$M_1 \mathbf{v}_j = \lambda_j \mathbf{v}_j, \quad \lambda_j = m_{1c} + 2m_{1r} \cos \frac{j\pi}{N_f}$$

$$M_2 \mathbf{v}_j = \sigma_j \mathbf{v}_j, \quad \sigma_j = m_{2c} + 2m_{2r} \cos \frac{j\pi}{N_f}$$

$$M_3 \mathbf{v}_j = \gamma_j \mathbf{v}_j, \quad \gamma_j = m_{3c} + 2m_{3r} \cos \frac{j\pi}{N_f}$$

$$\mathbf{v}_j = \sqrt{\frac{2}{N_f}} \left[\sin \frac{j\pi}{N_f}, \quad \sin \frac{2j\pi}{N_f}, \quad \dots, \sin \frac{(N_f - 1)j\pi}{N_f} \right]^T$$

Transformation: Coefficient Matrix

$$\hat{V}_f = \begin{bmatrix} \mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_{n_f} \end{bmatrix} \qquad \mathbf{M}_1 \hat{V}_f = \hat{V}_f \mathbf{\Lambda}, \ M_2 \hat{V}_f = \hat{V}_f \Sigma, \ \mathbf{M}_3 \hat{V}_f = \hat{V}_f \Gamma$$

$$V_f = \operatorname{diag}(\hat{V}_f, \dots, \hat{V}_f), \quad \operatorname{permutation} \Pi_f$$

$$\Pi_f^T \begin{bmatrix} V_f^T A_f V_f \end{bmatrix} \Pi_f = T_f = \begin{bmatrix} T_1 & & & 0 \\ & T_2 & & \\ & & \ddots & & \\ & & T_{n_f-1} & \\ 0 & & & T_{n_f} \end{bmatrix}$$

$$T_j = \mathtt{tridiag}(\gamma_j, \lambda_j, \sigma_j)$$

fine grid:
$$A_f = Q_f T_f Q_f^T$$
 $Q_f = V_f \Pi_f$

coarse grid:
$$A_c = Q_c T_c Q_c^T$$
 $Q_c = V_c \Pi_c$

Transformation: Smoothing Matrix

block matrix splitting: $A_f = D_A - L_A - U_A$

Gauss-Seidel smoothing matrix:

$$S_A = (D_A - L_A)^{-1}U_A = I - (D_A - L_A)^{-1}A_f$$

transformation:

$$S_A = Q_f S_T Q_f^T$$

where $S_T = I - (D_T - L_T)^{-1}T_f$ is block-diagonal

Transformation: Prolongation Matrix

2D prolongation matrix:
$$P = L \otimes L$$

$$L^{T} = \begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2} \\ & & \frac{1}{2} & 1 & \frac{1}{2} \\ & & & & \frac{1}{2} & 1 & \frac{1}{2} \\ & & & & \frac{1}{2} & 1 & \frac{1}{2} \end{bmatrix}$$

transformation:
$$Q_f = (I_f \otimes \hat{V_f})\Pi_f, \quad Q_c = (I_c \otimes \hat{V_c})\Pi_c$$

$$\bar{P} = Q_f^T P Q_c = \mathcal{A}^T \otimes L$$

Transformation: Iteration Matrix (1)

$$M = (I - PA_c^{-1}P^T A_f)S_A^{\nu}$$

$$= (I - PQ_c T_c^{-1}Q_c^T P^T Q_f T_f Q_f^T)S_A^{\nu}$$

$$= Q_f (I - \bar{P}T_c^{-1}\bar{P}^T T_f)Q_f^T (Q_f S_T Q_f^T)^{\nu}$$

$$= Q_f \left(I - \bar{P}T_c^{-1}\bar{P}^T T_f\right)S_T^{\nu}Q_f^T$$

$$\Rightarrow M = Q_f \bar{M}Q_f^T$$

where
$$\bar{M}=\left(I-\bar{P}T_c^{-1}\bar{P}^TT_f\right)S_T^{\nu}$$

 Q_f is orthogonal:

$$||M||_2 = ||\bar{M}||_2$$

Transformed Iteration Matrix (2)

$$egin{bmatrix} {f B}_1 & {f C}_1 \ {f B}_2 & {f C}_2 \ {f B}_3 & {f C}_3 \ {f C}_5 & {f B}_5 \ {f C}_7 & {f B}_7 \ \end{bmatrix}$$

Transformed Iteration Matrix (2)

$$\begin{bmatrix} B_1 & C_1 \\ B_2 & C_2 \\ B_3 & C_3 \\ C_5 & B_5 \\ C_7 & B_7 \end{bmatrix}$$

$$\begin{bmatrix} B_1 & C_1 \\ C_7 B_7 \\ C_6 B_6 \\ B_3 C_3 \\ C_5 B_5 \\ B_4 \end{bmatrix}$$

$$\|\bar{M}\|_{2} = \max \left\{ \max_{j=1,\dots,n_{c}} \left\| \begin{bmatrix} B_{j} & C_{j} \\ C_{k} & B_{k} \end{bmatrix} \right\|_{2}, \|B_{N_{c}}\|_{2} \right\}, \quad k = N_{f} - j$$

The Story So Far...

- $n_f^2 \times n_f^2$ two-grid iteration matrix M
- Fourier transformation converts 2D problem to a set of n_f problems with 1D structure
- $\|M\|_2$ can be found from norms of N_c smaller problems n_c of size $2n_f \times 2n_f$, 1 of size $n_f \times n_f$

The Story So Far...

- $n_f^2 \times n_f^2$ two-grid iteration matrix M
- Fourier transformation converts 2D problem to a set of n_f problems with 1D structure
- $\|M\|_2$ can be found from norms of N_c smaller problems n_c of size $2n_f \times 2n_f$, 1 of size $n_f \times n_f$
- IDEA: analyse semiperiodic version of the problem n_c of size $2N_f \times 2N_f$, 1 of size $N_f \times N_f$
- gain insight into Dirichlet problem behaviour?

Semiperiodic problem

• B_j , C_j are replaced by periodic versions, e.g.

$$B_{j}^{per} = [I - \bar{P}_{j}^{per} (T_{c}^{per})_{j}^{-1} (\bar{P}_{j}^{per})^{T} (T_{f}^{per})_{j}] S_{j}^{per}$$

- transform using coarse grid periodic eigenvectors
- B_j^{per} , C_j^{per} become block diagonal with 2×2 blocks
- permute into block diagonal form

• 2-norm of M^{per} given by max 2-norm of 4×4 blocks

Analytic result

• with semiperiodic approximation, when $P_h > 1$

$$||M^{per}||_2 = \frac{\sqrt{3 + \cos(2\pi h)}}{\sqrt{2}(5^{\nu})}$$

as h is small in practice,

$$||M^{per}||_2 \simeq \frac{\sqrt{2}}{5^{\nu}}$$

• when $P_h < 1$, analysis is more detailed but good approximations to $\|M^{per}\|_2$ can be derived

Question: Does this semiperiodic analysis correctly predict Dirichlet problem behaviour?

Model Problem Results (1)

- $\|M\|_2$ vs P_h
- $P_h \ge 1$ only
- semiperiodic: dashed line
- Dirichlet: solid lines
- h fixed for each line

•
$$h = \frac{1}{8}$$
 to $h = \frac{1}{512}$

- $\nu = 1$
- semiperiodic: $\frac{\sqrt{2}}{5} \simeq 0.28$
- Dirichlet $\rightarrow \frac{\sqrt{2}}{5}$

Model Problem Results (2)

- $\|M\|_2$ vs P_h
- $P_h < 1$ only
- semiperiodic: dashed line
- Dirichlet: solid lines
- h fixed for each line

•
$$h = \frac{1}{8}$$
 to $h = \frac{1}{512}$

- $\nu = 1$
- not a good match
- MG may diverge!

Observations

- $||M||_2 = \sqrt{|\lambda_1(M^*M)|}$
- for $P_h < 1$, matrix blocks have one 'bad' eigenvalue

$$\sqrt{|\lambda(\mathcal{M}_1^*\mathcal{M}_1)|}$$
 for fixed $P_h=0.38$

Alternative Bound?

• artificially 'remove' this eigenvalue: use $\sqrt{|\lambda_2(\mathcal{M}_i^*\mathcal{M}_i)|}$

- $P_h < 1$ only
- semiperiodic: $||M^{per}||_2$
- Dirichlet: $\sqrt{|\lambda_2(\mathcal{M}_1^*\mathcal{M}_1)|}$

Outlying eigenvalue

- in practice, the effect of this outlying eigenvalue is transient
- the eigenvector corresponding to the outlying eigenvalue is large only on grid lines very close to the inflow boundary
- after a few MG iterations, it is smooth and so is easily eliminated by coarse grid correction
- these effects do not have an impact on practical MG performance

MG Iteration Counts

• MG-like convergence for any value of P_h

							ϵ				
h	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{64}$	$\frac{1}{128}$	$\frac{1}{256}$	$\frac{1}{512}$	$\frac{1}{1024}$	$\frac{1}{2048}$
$\frac{1}{4}$	5	5	5	5	5	4	4	3	2	2	2
$\begin{array}{c c} \frac{1}{4} \\ \frac{1}{8} \end{array}$	7	7	6	6	5	5	4	4	3	2	2
$\frac{1}{16}$	7	7	7	6	5	5	5	4	4	3	2
$\frac{1}{32}$	7	7	7	7	6	5	5	4	4	3	3
$\begin{array}{ c c }\hline \frac{1}{32} \\ \frac{1}{64} \\ \hline \end{array}$	7	7	7	7	6	5	5	4	4	4	3
$\frac{1}{128}$	7	6	6	6	6	6	5	4	4	4	3
	$P_{h} < 1$						F	$P_h \ge 1$			

Further Remarks

- Separate approximation and smoothing matrices:
 - semiperiodic analysis for smoothing matrix norm is representative of Dirichlet problem behaviour for all values of P_h ,
 - semiperiodic analysis for approximation matrix norm is representative of Dirichlet problem behaviour for $P_h \ge 1$: for $P_h < 1$, one 'bad' eigenvalue again causes trouble.
- Replacing the Dirichlet condition by a Neumann condition on the outflow boundary leads to similar computational results.

Conclusions

- Linear algebra can be used to give a useful insight into convergence of two-grid iteration.
- We have obtained bounds on the multigrid convergence factor for a problem with semiperiodic boundary conditions.
- Boundary effects associated with a Dirichlet condition on the inflow boundary appear to be transient.
- Semiperiodic analysis gives an accurate description of MG behaviour for the full Dirichlet problem.