EEE 488 Numerical Optimization Techniques and Computer Applications

Optimal Resource Allocation with Node and Link Capacity Constraints in Complex Networks

Adlet Anarbek Didar Amangeldiyev

Overview

- INTRODUCTION
- PROBLEM FORMULATION
- ALGORITHM
- RESULTS
- CHALLENGES
- WORK DIVISON
- Q/A SESSION

Introduction

- Internet traffic congestion
- Increasing network capacity is expensive
- Use optimization theory
- Consider both node and link capacities
- Optimization of flow rate

Problem Formulation

The main optimization problem

$$\max_{x_{s} \in I_{s}, C_{l} \geq 0, D_{n} \geq 0} \sum_{s} U_{s}(x_{s}) \tag{1a}$$
subject to
$$\sum_{s \in F(n)} x_{s} \leq D_{n}, n = 1, 2, ..., N \tag{1b}$$

$$\sum_{s \in F(l)} x_{s} \leq C_{l}, l = 1, 2, ..., L, \tag{1c}$$

$$\sum_{s \in F(l)} D_{n} == M. \tag{1d}$$

N-number of nodes, L-number of links, S-number of flows

Problem Formulation

Rewritten form of optimization problem

$$C_{l_{mn}} = T_{mn}\alpha(D_m + D_n)$$

$$\max_{x_s \in I_s, D_n \ge 0} \sum_s U_s(x_s)$$
subject to
$$\sum_{s \in F(n)} x_s \le D_n, n = 1, 2, ..., N$$

$$\sum_{s \in F(l_{mn})} x_s \le T_{mn}\alpha(D_m + D_n), m, n = 1, 2, ..., N,$$

$$\sum_n D_n == M.$$

Algorithm

- □ We designed two network models with Tmn adjacency matrix and selected S pairs of nodes, where shortest path between pairs are not zero.
- \square We created set V(s), which represents the set of nodes flow s goes through, while two consecutive elements of arrays in V(s) refers to one of the links L.
- \Box To determine F(n), we created empty cell array with size (N,1), then by iterating through elements in each array in V(s), we added s to F(element).
- \square To obtain F(l), we created empty cell array with size (N,N), then by iterating through elements in each array in V(s), we added s to F(element, element + 1).
- Using CVX package of MATLAB, we solved optimization problem, plotted figures for $\sum_s U_s(x_s)$ and $\sum_s x_s$, where $U_s(x_s) = \frac{-1}{d_s^2 x_s}$

Figure 1. Relationship of throughput of the network and parameter α

Figure 2. Relationship of utility of the network and parameter α

Figure 3. Relationship of throughput of the network and total node capacity M.

Figure 4. Relationship of utility of the network and total node capacity M.

Challenges

Understanding the main concept

NUP + flow control algorithm

Distributed algorithm

Running time

Adlet

- Creation of CVX part of the code with all constraints.
- Figure 1 and 2

Didar

- Creation of F(n), F(l), V(s) sets and vector ds
- Figure 3 and 4

Q/A Session

Connect With Us

Gmail

adlet.anarbek@nu.edu.kz

didar.amangeldiyev@nu.edu.kz

Linkedin

linkedin.com/in/magpie70

linkedin.com/in/didare