Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Университет ИТМО

Факультет программной инженерии и компьютерной техники

Отчет по учебно-исследовательской работе 4 по дисциплине "Моделирование" Вариант 13/2

Выполнили: студенты группы Р34131

Бусыгин Дмитрий Алексеевич и Лазеев Сергей Максимович Преподаватель: Тропченко Андрей Александрович

Цель работы	2
Задание	2
Исходные данные	3
Выполнение	3
Моделирование ЗСеМО	3
Выявление критического число заявок в ЗСеМО	6
Результаты имитационного моделирования для ЗСеМО при 8 входн	ΙЫΧ
заявках	7
Выявление "узкого места" в ЗСеМО	8
Оценка ЗСеМО после улучшения	8
Построение экспоненциальной РСеМО	9
Построение неэкспоненциальной РСеМО	11
Сравнение эксп. и неэксп. РСеМО	13
Вывод	13

Цель работы

Исследование свойств системы, моделируемой в виде замкнутых и разомкнутых сетей массового обслуживания (CeMO) с однородным потоком заявок с применением имитационного моделирования при различных предположениях о параметрах структурно-функциональной организации и нагрузки.

Задание

Разработка имитационных моделей и проведение модельных экспериментов с целью исследования зависимостей характеристик функционирования от параметров и выявления свойств замкнутых и разомкнутых СеМО (РСеМО), а также сравнительный анализ эффективности разомкнутых и замкнутых СеМО (ЗСеМО). Исследования выполняются с применением имитационного моделирования в среде GPSS или в системе моделирования Any Logic. При представлении в отчете результатов исследований предпочтение следует отдавать графической форме в виде гистограмм и графиков, наглядно отображающих зависимости основных наиболее важных (с точки зрения исследователя) характеристик исследуемых систем от параметров (таких как загрузка, характер потока поступающих в РСеМО заявок, характер обслуживания заявок в узлах, количество приборов в узлах). Представление результатов в виде таблиц носит только рекомендательный характер и может быть выполнено, если это необходимо для подтверждения сформулированных выводов.

Исходные данные

Таблица 1. Структурные параметры ЗСеМО

Вариант	Кол-во	Количес	ство приб	Номер	Тип		
(A)	узлов п	У1	У2	У3	У4	узла	модел и
13	4	3	2	1	2	1	M2

Таблица 2. Параметры узлов СеМО

Вариант	Вероятност	ги передач		Средние длительности обслуживания, с				
(B)	p10	p12	p13	b1	b2	b3	b4	
1	0,2	0,4	0,2	2	5,5	10	12	

Выполнение

Моделирование ЗСеМО

Экспоненциальная ЗСеМО

```
UZEL_1 STORAGE 3; задание числа приборов в узле 1
UZEL_2 STORAGE 2; задание числа приборов в узле 2
UZEL 3 STORAGE 1; задание числа приборов в узле 3
UZEL_4 STORAGE 2; задание числа приборов в узле 4
* Средние длительности *
b1 EQU 2;
b2 EQU 5.5;
b3 EQU 10;
b4 EQU 6;
TU_buf_1 QTABLE 1,0.1,0.1,50;
TU_buf_2 QTABLE 2,0.1,0.1,50;
TU_buf_3 QTABLE 3,0.1,0.1,50;
TU_buf_4 QTABLE 4,0.1,0.1,50;
T_U TABLE M1,40,40,30;
RN_a EQU 20; номер генератора для потока
**********************
GENERATE ,,,8;
STAGE_1 QUEUE 1
ENTER UZEL_1
DEPART 1
ADVANCE (Exponential(920,0,b1))
LEAVE UZEL_1
TRANSFER 0.4,,STAGE_2; с вероятностью 0.4 - идем на 2 прибор
TRANSFER 0.4, STAGE_3; с вероятностью 0.4 - идем на 3 прибор
```

```
TABULATE T U
TRANSFER ,,STAGE_1; с вероятностью 0.2 - остаемся в 1 приборе
STAGE_2 QUEUE 2
ENTER UZEL_2
DEPART 2
ADVANCE (Exponential(920,0,b2))
LEAVE UZEL_2
TRANSFER , STAGE 4
STAGE_3 QUEUE 3
ENTER UZEL 3
DEPART 3
ADVANCE (Exponential(920,0,b3))
LEAVE UZEL 3
TRANSFER ,STAGE_4
STAGE_4 QUEUE 4
ENTER UZEL_4
DEPART 4
ADVANCE (Exponential(920,0,b4))
LEAVE UZEL_4
TRANSFER ,STAGE_1
GENERATE 100000; задание длительности моделирования
TERMINATE 1; уменьшение счетчика завершения на 1
```

Неэкспоненциальная ЗСеМО

```
UZEL_1 STORAGE 3; задание числа приборов в узле 1
UZEL_2 STORAGE 2; задание числа приборов в узле 2
UZEL_3 STORAGE 1; задание числа приборов в узле 3
UZEL_4 STORAGE 2; задание числа приборов в узле 4

* Средние длительности *
b1 EQU 2;
b2 EQU 5.5;
b3 EQU 10;
b4 EQU 6;

RN_H EQU 91; номер генератора для гиперэкспоненциального распределения qq EQU 0.2; вероятность выбора первой фазы
tt_1 EQU 1.7247; мат. ожидание первой фазы гиперэкспоненциального распределения
tt_2 EQU 0.1938; мат. ожидание второй фазы гиперэкспоненциального распределения
```

```
TU buf 1 QTABLE 1,0.1,0.1,50;
TU_buf_2 QTABLE 2,0.1,0.1,50;
TU_buf_3 QTABLE 3,0.1,0.1,50;
TU_buf_4 QTABLE 4,0.1,0.1,50;
RN_a EQU 20; номер генератора для потока
******************
GENERATE ,,,8;
STAGE 1 QUEUE 1
ENTER UZEL 1
DEPART 1
ADVANCE (Exponential(920,0,b1))
LEAVE UZEL_1
TRANSFER 0.2,,STAGE_1; с вероятностью 0.2 - остаемся в 1 приборе
TRANSFER 0.4,,STAGE_2; с вероятностью 0.4 - идем на 2 прибор
TRANSFER ,STAGE_3; с вероятностью 0.4 - идем на 3 прибор
STAGE_2 QUEUE 2
ENTER UZEL_2
DEPART 2
ADVANCE (Exponential(920,0,b2))
LEAVE UZEL_2
TRANSFER ,STAGE_4
STAGE_3 QUEUE 3
ENTER UZEL 3
 DEPART 3
ADVANCE (hyper1(RN_H, qq, tt_1, tt_2))
LEAVE UZEL 3
TRANSFER , STAGE 4
STAGE 4 QUEUE 4
ENTER UZEL 4
DEPART 4
ADVANCE (Exponential(920,0,b4))
LEAVE UZEL 4
TRANSFER ,STAGE_1
GENERATE 1000000; задание длительности моделирования
TERMINATE 1; уменьшение счетчика завершения на 1
********************
* Процедура возвращает значение псевдослучайной величины, *
* распределенной по гиперэкспоненциальному закону, в
* соответствии с параметрами распределения qq, tt_1, tt_2. *
*****************
PROCEDURE hyper1(RN_H, qq, tt_1, tt_2) BEGIN
if (uniform(1,0,1) < qq) then return exponential(RN_H,0,tt_1);</pre>
else return exponential(RN_H,0,tt_2);
```

END;

Выявление критического число заявок в ЗСеМО

Выявим критическое число заявок M^* , начиная с которого производительность сети почти не изменяется:

$$\lambda_0 = \frac{N_0}{T}$$

Характеристики СеМО		Замкнутая СеМО								
Число заявок	1	2	3	4	5	6	7	8		
Производительность	0.0114	0.0215	0.0289	0.0332	0.0358	0.0374	0.0382	0.0385		

При 8 входящих заявках производительность ЗСеМО можно считать константой

Результаты имитационного моделирования для 3CeMO при 8 входных заявках

Характери	3CeMC)-экспон	енциальн		3СеМО-неэкспоненциальная					
стики СеМО	Узловы	ıe			Сетев	Узловы		Сетев		
	У1	У2	У3	У4	ые	У1	У2	У3	У4	ые
Загрузка	0,109	0,285	0,585	0,985	0,491	0,246	0,274	0,117	0,998	0,409
Длина очереди	0,001	0,047	0,714	3,787	1,137	0,02	0,108	0,027	4,192	1,087
Производ-т ь	0,021 5	0,005	0,0035	0,00 85	0,0385	0,01	0,005	0,0112	0,009	0,2329
Время ожидания	0.041	1.064	0.568	0.00	0.358	0.046	1.226	0.220	0.000	0.336
Время преб-ния	0.5	0.272 7	0.5364	0.5	0.4615	1.029 0	0.305 0	0.7060	0.506 0	2.5035

Выявление "узкого места" в ЗСеМО

Для дальнейшей работы необходимо определить узел, где загруженность системы растет быстрее всего. «Узким местом» в системе является узел 4, так как именно его загрузка максимальна (UTIL: 0.985). В качестве способа решения проблемы уменьшим длительность обслуживания заявок на нём с 12с до 6с и вновь посмотрим на предельные параметры при 8 входящих заявках

Оценка ЗСеМО после улучшения

Видим, что мы значительно сократили длину очереди в 4м узле, но средняя длина очереди осталась прежней, т.к теперь "узким местом" стал узел 3. Тем не менее, улучшение можно считать успешным, т.к общая производительность системы выросла вдвое (0,0385 -> 0,06083)

Построение экспоненциальной РСеМО

Установим интенсивность входного потока $a_1 = \frac{1}{\lambda_0} = \frac{1}{0.06083} = 16.44$

Экспоненциальная РСеМО

```
UZEL_1 STORAGE 1; задание числа приборов в узле 1
UZEL_2 STORAGE 1; задание числа приборов в узле 2
UZEL_3 STORAGE 1; задание числа приборов в узле 3
UZEL_4 STORAGE 3; задание числа приборов в узле 4
* Средние длительности *
b1 EQU 1;
b2 EQU 10;
b3 EQU 4.5;
b4 EQU 20;
w_1 QTABLE 1,0,1,20
w_2 QTABLE 2,0,0.5,20
w_3 QTABLE 3,0,0.5,20
w_4 QTABLE 4,0,0.5,20
TU_buf_1 QTABLE 1,0.1,0.1,50;
TU_buf_2 QTABLE 2,0.1,0.1,50;
TU_buf_3 QTABLE 3,0.1,0.1,50;
```

```
TU_buf_4 QTABLE 4,0.1,0.1,50;
a_1 EQU 16.44; мат. ожидание входящего потока
RN_a EQU 920; номер генератора для потока
****************************
GENERATE (Exponential(20,0,a_1));
STAGE 1 QUEUE 1
ENTER UZEL 1
DEPART 1
ADVANCE (Exponential(920,0,b1))
LEAVE UZEL_1
TRANSFER 0.1, , BUF; с вероятностью 0.5 - остаемся в 1 приборе
TERMINATE 1
BUF TRANSFER 0.3,,STAGE_2; с вероятностью 0.3 - идем на 2 прибор
TRANSFER ,STAGE_3; с вероятностью 0.6 - идем на 3 прибор
STAGE_2 QUEUE 2
ENTER UZEL_2
DEPART 2
ADVANCE (Exponential(920,0,b2))
LEAVE UZEL 2
TRANSFER ,STAGE_4
STAGE_3 QUEUE 3
ENTER UZEL 3
DEPART 3
ADVANCE (Exponential(920,0,b3))
LEAVE UZEL_3
TRANSFER ,STAGE_4
STAGE_4 QUEUE 4
ENTER UZEL_4
DEPART 4
ADVANCE (Exponential(920,0,b4))
LEAVE UZEL_4
TRANSFER ,STAGE_1
END_1 TERMINATE 1
```

Сравним Экспоненциальные варианты СеМО:

	загрузка	į ·	Производител ьность	ا	Время ожидания
РСеМО Эксп	0,196	0,603	0,06083	0.556	0.683
3СеМО Эксп	0,762	1,03925	0,06083	0.358	0.4615

Видим, что благодаря верно выбранному входному потоку PCeMO имеет такую же производительность. Однако средняя длина очереди у нее уменьшилась, но время ожидания/пребывания увеличилось. Можнос сказать, что система начала работать медленнее, но с меньшим числом потерь

Построение неэкспоненциальной РСеМО

Некспоненциальная РСеМО

```
UZEL 1STORAGE
                  3; задание числа приборов в узле 1
UZEL_2STORAGE
                  2; задание числа приборов в узле 2
                  1; задание числа приборов в узле 3
UZEL_3STORAGE
                  2; задание числа приборов в узле 4
UZEL_4STORAGE
* Средние длительности *
b1
      EQU
            1;
b2
      EQU
            10;
      EQU
b3
            4.5;
b4
      EQU
            20;
w_1 QTABLE 1,0,1,20
w_2 QTABLE 2,0,1,20
w_3 QTABLE 3,0,1,20
w_4 QTABLE 4,0,1,20
```

```
RN_H EQU
         91; номер генератора для гиперэкспоненциального распределения
     EQU
          0.2; вероятность выбора первой фазы
qq
tt_1 EQU
          1.7247; мат. ожидание первой фазы гиперэкспоненциального
распределения
tt 2 EOU
          0.1938; мат. ожидание второй фазы гиперэкспоненциального
распределения
a 1
     EOU
         16.44; мат. ожидание входящего потока
RN_a EQU 920; номер генератора для потока
**********************************
*****
GENERATE
         (Exponential(20,0,a 1));
STAGE_1
          QUEUE 1
     ENTER UZEL_1
     DEPART1
     ADVANCE
             (Exponential(920,0,b1))
     LEAVE UZEL 1
               0.2, BUF; с вероятностью 0.2 - остаемся в 1 приборе
     TRANSFER
     TERMINATE 1
BUF
     TRANSFER 0.4,,STAGE_2; с вероятностью 0.4 - идем на 2 прибор
     TRANSFER ,STAGE_3; с вероятностью 0.4 - идем на 3 прибор
STAGE 2 QUEUE 2
     ENTER UZEL_2
     DEPART2
     ADVANCE (Exponential(920,0,b2))
     LEAVE UZEL_2
     TRANSFER ,STAGE_4
STAGE_3
         QUEUE 3
     ENTER UZEL_3
     DEPART3
     ADVANCE
               (hyper1(RN_H, qq, tt_1, tt_2))
     LEAVE UZEL_3
     TRANSFER ,STAGE_4
STAGE 4 QUEUE 4
     ENTER UZEL 4
     DEPART4
     ADVANCE
               (Exponential(920,0,b4))
```

Сравнение эксп. и неэксп. РСеМО

	РСеМО Экспоненциальная					РСеМО неэкспоненциалы				іая
	узловые				сетевы	узловые				
Хар-ки СеМО	У1	У2	У3	У4	e	У1	У2	У3	У4	сетевые
загрузка	0.718	0.179	0.144	0.107	0,196	0,398	0,017	0,519	0,411	0,427
Длина очереди	0.127	0.117	0.330	0.049	0,603	0,116	0,065	0,451	0,341	0,856
Производител ьность	0,001	0,057	0,092	0,064	0,0608	0,219	0,071	0,624	0,542	0,0598
Время ожидания	0,032	0,114	0,201	0,192	0.556	0,091	0,353	0,083	0,192	0,570
Время пребывания	0.040	0.173	0.236	0.200	0.683	0.050	0.273	0.579	0.500	0,703

Вывод

В процессе выполнения УИР мы с напарником расширили знания о системах массового обслуживания понятиями "замкнутых" и "разомкнутых" систем. Сами построили и сымитировали работу каждой из них в разных конфигурациях, а также попытались сделать выводы о работе каждой из них.