

Compilation Principle 编译原理

第3讲: 词法分析(3)

张献伟

xianweiz.github.io

DCS290, Spring 2021

Review Questions

Q1: Can we have multiple start/accepting states in FA?

start: only one, accepting: multiple

Q2: what are NFA and DFA? How to differentiate?

NFA: non-deterministic FA, DFA: deterministic FA ε-move or multiple transitions per input per state

Q3: how do RE, NFA, DFA relate to each other? $L(RE) \equiv L(NFA) \equiv L(DFA)$

Q4: the state graph is a NFA or DFA?

NFA, multiple transitions for state '0' on input 'a'

Q5: what's the language it recognizes? (a|b)*abb

Specification to Implementation

- Outline: RE → NFA → DFA → Table-driven
 Implementation
 - Converting DFAs to table-driven implementations
 - Converting REs to NFAs
 - Converting NFAs to DFAs

NFA \rightarrow DFA: Theory

- Question: is $L(NFA) \subseteq L(DFA)$
 - Otherwise, conversion would be futile
- Theorem: $L(NFA) \equiv L(DFA)$
 - Both recognize regular languages L(RE)
 - Will show L(NFA) \subseteq L(DFA) by construction (NFA \rightarrow DFA)
 - Since L(DFA) \subseteq L(NFA), L(NFA) \equiv L(DFA)
- Resulting DFA consumes more memory than NFA
 - Potentially larger transition table
- But DFAs are faster to execute
 - For DFAs, number of transitions == length of input
 - For NFAs, number of potential transitions can be larger
- NFA → DFA conversion is done because the speed of DFA far outweigh its extra memory consumption

NFA \rightarrow DFA: Idea

Subset construction

- Each state of the constructed DFA corresponds to a set of NFA states
- After reading input $a_1a_2...a_n$, the DFA is in that state which corresponds to the set of states that the NFA can reach, from its start state, following paths labeled $a_1a_2...a_n$

Algorithm to convert

- Input: an NFA N
- Output: a DFA D accepting the same language as N

NFA -> DFA: Algorithm

```
Initially, \varepsilon-closure(s_0) is the only state in Dstates and it is unmarked while there is an unmarked state T in Dstates do mark T

for each input symbol a \in \Sigma do
U := \varepsilon-closure(move(T, a))
if U is not in Dstates then
add \ U as an unmarked state to Dstates
end if
Dtran[T, a] := U
end do
```

- Operations on NFA states:
 - ε-closure(s): set of NFA states reachable from NFA state s on ε-transitions alone
 - ε-closure(T): set of NFA states reachable from some NFA state s in set T on ε-transitions alone; = $\bigcup_{s \text{ in } T} ε$ -closure(s)
 - move(T, a): set of NFA states to which there is a transition on input symbol a from some state s in T

NFA -> DFA: Example

- Start by constructing ε-closure of the start state
 - ε -closure(A) = A
- Keep getting ε-closure(move(T, a))
- Stop, when there are no more new states

alphabet			
		0	1
	А	A	ВС
	ВС	AC	ВС
	AC	AC	ВС

state

NFA DFA: Example (cont.)

- Mark the final states of the DFA
 - The accepting states of D are all those sets of N's states that include at least one accepting state of N

- Is the DFA minimal?
 - As few states as possible

NFA -> DFA: Minimization

- Any DFA can be converted to its minimum-state equivalent DFA
 - Partitioning the states of a DFA into groups of states that cannot be distinguished
 - Each groups of states is then merged into a single state of the min-state DFA

Initial: {A}, {BC, AC}

For {BC, AC}

- BC on '0' \rightarrow AC, AC on '0' \rightarrow AC
- BC on '1' \rightarrow BC, AC on '1' \rightarrow BC
- No way to distinguish BC from AC on any string starting with '0' or '1'

Final: {A}, {BCAC}

NFA \rightarrow DFA: Minimization (cont.)

- States BC and AC do not need differentiation
 - Should be merged into one

NFA -> DFA: More Example

- Start state of the equivalent DFA
 - ε -closure(A) = {A, B, C, E, H} = A'
- ε-closure(move(A', a)) = ε-closure({D, J}) = {B, C, D, E, H, G, J} = B'
- ε-closure(move(A', b)) = ε-closure({F}) = {B, C, E, F, G, H} = C'
- •

NFA -> DFA: Space Complexity

NFA may be in many states at any time

- How many different possible states in DFA?
 - If there are N states in NFA, the DFA must be in some subset of those N states
 - How many non-empty subsets are there?

$$-2^{N}-1$$

- The resulting DFA has $O(2^N)$ space complexity, where N is number of original states in NFA
 - For real languages, the NFA and DFA have about same #states

NFA -> DFA: Time Complexity

DFA execution

- Requires O(|X|) steps, where |X| is the input length
- Each step takes constant time
 - If current state is S and input is c, then read T[S, c]
 - Update current state to state T[S, c]
- Time complexity = O(X)

NFA execution

- Requires O(|X|) steps, where |X| is the input length
- Each step takes O(N²) time, where N is the number of states
 - Current state is a set of potential states, up to N
 - On input c, must union all T[S_{potential},c], up to N times
 - Each union operation takes O(N) time
- Time complexity = $O(|X|*N^2)$

Implementation in Practice

- Lex: RE \rightarrow NFA \rightarrow DFA \rightarrow Table
 - Converts regular expressions to NFA
 - Converts NFA to DFA
 - Performs DFA state minimization to reduce space
 - Generate the transition table from DFA
 - Performs table compression to further reduce space
- Most other automated lexers also choose DFA over NFA
 - Trade off space for speed

Lexical Analyzer Generated by Lex

- A Lex program is turned into a transition table and actions, which are used by a finite-automaton simulator
- Automaton recognizes matching any of the patterns

Lex: Example

- Three patterns, three NFAs
- Combine three NFAs into a single NFA
 - Add start state 0 and ε-transitions

Lex: Example (cont.)

- NFA's for lexical analyzer
- Input: aaba
 - ε -closure(0) = {0, 1, 3, 7}
 - Empty states after reading the fourth input symbol
 - There are no transitions out of state 8
 - Back up, looking for a set of states that include an accepting state
 - State 8: a*b+ has been matched
 - Select aab as the lexeme, execute action A₃
 - □ Return to parser indicating that token w/ pattern p₃=a*b+ has been found

Lex: Example (cont.)

- DFA's for lexical analyzer
- Input: abba
 - Sequence of states entered: $0137 \rightarrow 247 \rightarrow 58 \rightarrow 68$
 - At the final a, there is no transition out of state 68
 - \blacksquare 68 itself is an accepting state that reports pattern $p_2 = abb$

How Much Should We Match?

- In general, find the longest match possible
 - We have seen examples
 - One more example: input string aabbb ...
 - Have many prefixes that match the third pattern
 - Continue reading b's until another a is met
 - Report the lexeme to be the intial a's followed by as many b's as there are
- If same length, rule appearing first takes precedence
 - String abb matches both the second and third
 - We consider it as a lexeme for p₂, since that pattern listed first

```
a { action_1 }
abb { action_2 }
a*b+ { action_3 }
```


How to Match Keywords?

- Example: to recognize the following tokens
 - Identifiers: letter(letter | digit)*
 - Keywords: if, then, else
- Approach 1: Make REs for keywords and place them before REs for identifiers so that they will take precedence
 - Will result in more bloated finite state machine
- Approach 2: Recognize keywords and identifiers using same RE but differentiate using special keyword table
 - Will result in more streamlined finite state machine
 - But extra table lookup is required
- Usually approach 2 is more efficient than 1, but you can implement approach 1 in your projects for simplicity

Conversion Flow

- Outline: RE → NFA → DFA → Table-driven
 Implementation
 - Converting DFAs to table-driven implementations
 - Converting REs to NFAs
 - Converting NFAs to DFAs

Beyond Regular Languages

- Regular languages are expressive enough for tokens
 - Can express identifiers, strings, comments, etc.
- However, it is the weakest (least expressive) language
 - Many languages are not regular
 - C programming language is not
 - The language matching braces "{{{...}}}" is also not
 - Finite automata cannot count # of times char encountered
 - $L = {a^nb^n | n ≥ 1}$
 - Crucial for analyzing languages with nested structures (e.g. nested for loop in C language)

- We need a more powerful language for parsing
 - Next, we will discuss context-free languages (CFGs)

