MATH 317, Homework 4

Colin Roberts July 12, 2016

Solutions

Problem 1. Let $f: \mathbb{R} \setminus \{5\} \to \mathbb{R}$ by $f(x) = x \cos \frac{1}{x-5} - 5 \cos \frac{1}{x-5}$. Show that $\lim_{x\to 5} f(x) = 0$.

Proof. Fix $\epsilon > 0$ and let $\delta = \epsilon$. Then for $x \in \mathbb{R} \setminus \{5\}$ and $0 < |x - 5| < \delta$ we have,

$$|f(x) - 0| = \left| x \cos\left(\frac{1}{x - 5}\right) - 5 \cos\left(\frac{1}{x - 5}\right) \right|$$

$$= \left| (x - 5) \cos\left(\frac{1}{x - 5}\right) \right|$$

$$\leq |x - 5| |1|$$

$$\leq |x - 5|$$

$$< \delta = \epsilon$$

Thus f has a limit 0 at x = 5.

Problem 2. Let $f:(a,\infty)\to\mathbb{R}$ for some a>0, and let $g:(0,\frac{1}{a})\to\mathbb{R}$ be defined by $g(x)=f(\frac{1}{x})$. Prove that f has a limit point at ∞ if and only if g has a limit at 0.

Proof. For the forward direction, suppose that f has a limit L at ∞ . Fix $\epsilon > 0$, then $\exists P > 0$ such that if $x > \max\{P, a\}$ then $|f(x) - L| < \epsilon$. With the same ϵ , fix $\delta > \frac{1}{P}$ and for $x \in (a, \infty)$ and $0 < |x - 0| < \delta$ we have,

$$|g(x) - L| = |f(\frac{1}{x}) - L|$$

But if we have $0 < |x - 0| < \frac{1}{p}$, then

$$\leq |f(P) - L|$$

 $< \epsilon$

Thus we have that g(x) has a limit at x = 0.

Next, suppose that g(x) has a limit L at x=0. Fix $\epsilon>0$, then $\exists \delta>0$ such that if $0<|x-0|<\delta$ we have $|g(x)-L|<\epsilon$. Keep the same ϵ , if f(x) has a limit at ∞ then $\exists P>0$ such that if $x>\max\{P,a\}$ we have $|f(x)-L|<\epsilon$. Let $P>\frac{1}{\delta}$, then we have,

$$|f(x) - L| = |g(\frac{1}{x}) - L|$$

$$\leq |g(\frac{1}{P}) - L|$$

$$< \epsilon$$

Since $\frac{1}{P} < \delta$, we know f(x) has a limit at ∞ . Thus we know that f(x) has a limit at ∞ iff $f\left(\frac{1}{x}\right)$ has a limit at 0.

Problem 3. Give an example of a function $f:(0,1)\to\mathbb{R}$ which has a limit at every point of (0,1) except at $x=\frac{1}{2}$.

Proof. First let's show that f does not have a limit $L \in \mathbb{R}$ at $x = \frac{1}{2}$. Fix $\epsilon = \frac{1}{4} + |L|$. Then $\forall \delta > 0$ and for $x \in D$, $|x - \frac{1}{2}| < \delta$ we have,

$$|f(x) - L| = \left| \frac{1}{x - \frac{1}{2}} - L \right|$$

$$\leq \left| \frac{1}{x - \frac{1}{2}} \right| + |L|$$

Notice, $\left|\frac{1}{x-\frac{1}{2}}\right|$ is minimized if $\left|x-\frac{1}{2}\right|$ is maximized. Thus if we let x=1,0 we have $\left|1-\frac{1}{2}\right|=\left|0-\frac{1}{2}\right|=1/2$. Since $x \in (0,1)$, we have,

$$\left| \frac{1}{x - \frac{1}{2}} \right| + |L| < \frac{1}{2} + |L|$$

$$> \epsilon$$

Now we must show that all other points $x \in (0,1) \setminus \left\{\frac{1}{2}\right\}$ have defined limits. In fact, the limit at each point other than $x = \frac{1}{2}$ is the function evaluated at that point. More specifically, $\lim_{x \to x_0} f(x) = f(x_0)$ $\forall x_0 \in (0,1) \setminus \left\{\frac{1}{2}\right\}$. Fix $\epsilon > 0$. Then let $\delta < \frac{\epsilon|x - x_0 + 2xx_0|}{2}$ and let $x, x_0 \in (0,1) \setminus \left\{\frac{1}{2}\right\}$ be such that $0 < |x - x_0| < \delta$. Then,

$$|f(x) - f(x_0)| = \left| \frac{1}{x - \frac{1}{2}} - \frac{1}{x_0 - \frac{1}{2}} \right|$$

$$= \left| \frac{\left(x_0 - \frac{1}{2}\right) - \left(x - \frac{1}{2}\right)}{\left(x - \frac{1}{2}\right)\left(x_0 - \frac{1}{2}\right)} \right|$$

$$= \left| \frac{2(x - x_0)}{x - x_0 + x x_0} \right|$$

$$< \frac{2\delta}{|x - x_0 + 2x x_0|}$$

$$< \epsilon$$

Thus we know a limit exists $\forall x \in (0,1) \setminus \left\{\frac{1}{2}\right\}$.

Problem 4. Let $f: D \to \mathbb{R}$ with x_0 an accumulation point of D, and suppose that f has a limit at x_0 . Prove *from the definition of the limit* that this limit is unique.

Proof. Suppose that $\lim_{x\to x_0} f(x) = L_1$ and $\lim_{x\to x_0} f(x) = L_2$ where $L_1 \neq L_2$. Since we have the first limit, $\forall \epsilon > 0$, $\exists \delta_1 > 0$ such that if $0 < |x - x_0| < \delta_1$ and $x \in D$ we have $|f(x) - L_1| < \epsilon$. Fix $\epsilon = |L_1 - L_2|$, then $\exists \delta_2 > 0$ such that if $0 < |x - x_0| < \delta_2$ we have, $|f(x) - L_2| < \epsilon$. Pick $\delta = \min\{\delta_1, \delta_2\}$ and we have,

$$|f(x) - L_2| = |f(x) - L_1 + L_1 - L_2|$$

 $\leq |f(x) - L_1| + |L_1 - L_2|$
 $< \epsilon + \epsilon = 2\epsilon$

Which is a contradiction since. Thus $L_1 = L_2$.

Problem 5. Define $f: (0,1) \to \mathbb{R}$ by $f(x) = \frac{x^3 + 6x^2 + x}{x^2 - 6x}$. Determine whether or not f has a limit at 0 and prove your claim.

Proof. First, let's do some algebra and reduce the fraction (all joking aside, I used *FullSimplify* in *Mathematica*).

$$f(x) = \frac{x^3 - 6x^2 + x}{x^2 - 6x}$$
$$= \frac{1 + 6x^4}{x - 6}$$

From here, it is fairly easy to see that plugging in 0 is possible, and gives us the result $\frac{-1}{6}$. Thus, I guess the limit must be that. Fix ϵ and let $\delta = \frac{9}{\epsilon}$ and for $x \in (0,1)$ and $0 < |x-0| < \delta$ we have,

$$\left| f(x) - \left(\frac{1}{6}\right) \right| \le \left| \frac{1+6}{x-6} \right| + \left| \frac{1}{6} \right|$$

$$= \left| \frac{7}{x-6} \right| + \frac{1}{6}$$

$$\le \frac{7}{|x|+|6|} + \frac{1}{6}$$

$$= \frac{7}{x+6} + \frac{\frac{x}{6}+1}{x+6}$$

$$= \frac{8+\frac{x}{6}}{x+6}$$

$$\le \frac{9}{x}$$

$$< \epsilon$$

So the limit at 0 exists and is equal to $\frac{-1}{6}$.

Problem 6. Suppose $f, g, h: D \to \mathbb{R}$ with x_0 an accumulation point of D. Suppose further that $f(x) \le g(x) \le h(x)$ for all $x \in D$ and that f and h both have limits at x_0 with $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x)$.

- (i) Prove that g has a limit at x_0 .
- (ii) Prove that $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x)$.

Proof. We will do (i) and (ii) in just one cohesive proof. Suppose that we have $f(x) \le g(x) \le h(x)$ $\forall x \in D$. Also we have $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$. Fix $\epsilon > 0$, then $\exists \delta_1 > 0$ such that $\forall x \in D$ where $0 < |x - x_0| < \delta_1$ we have $|f(x) - L| < \epsilon$. With the same ϵ , $\exists \delta_2 > 0$ such that $\forall x \in D$ where $0 < |x - x_0| < \delta_2$ we have $|h(x) - L| < \epsilon$. Let $\delta = \min\{\delta_1, \delta_2\}$, then we have,

$$|g(x) - L| < \epsilon \iff -\epsilon < g(x) - L < \epsilon$$

 $\iff -\epsilon + L < g(x) < \epsilon + L$

But since we have chosen $0 < |x - x_0| < \delta$ and since $\forall x \in D$ we have $f(x) \le g(x) \le h(x)$. Thus we have,

$$-\epsilon + L < f(x) \le g(x) \le h(x) < \epsilon + L$$

Thus
$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L$$
.

Problem 7. Assume that $f: \mathbb{R} \to \mathbb{R}$ is such that f(x+y) = f(x)f(y) for every $x, y \in \mathbb{R}$, and suppose that f has a limit as 0.

- (i) Prove that f has a limit at every point in \mathbb{R} .
- (ii) Prove that f(x) = 0 for all $x \in \mathbb{R}$ or $\lim_{x \to 0} f(x) = 0$.

Proof. Since we know that $f(x+y) = f(x)f(y) \quad \forall x, y \in \mathbb{R}$ we know that f(0) = f(x-x) = f(x)f(-x). Since x is arbitrary, f must be defined for all $x \in mathbb{R}$ and thus the limit at any point is f(x). Thus we have (i). Next, suppose that $f(0) = L \neq 1$ and $L \neq 0$, then fix $\epsilon > 0$ then $\exists \delta > 0$ such that $\forall x \in \mathbb{R}$ where $|x| < \delta$ we have $|f(x) - 1| < \epsilon$ since the limit is defined as the function evaluated at the point. But this means,

$$|f(x) - L| = |f(x+0) - L|$$

$$= |f(x)f(0) - L|$$

$$= \left| f(x) - \frac{L}{f(0)} \right|$$

$$\implies \frac{L}{f(0)} = L$$

But since $L \neq 1$ and $L \neq 0$ this is a contradiction. Thus either L = 1 or L = 0.

If $f(0) \neq 1$ then we have $L = \frac{1}{f(0)} = \frac{1}{0}$ which is not possible. However, if we allow f(0) = 0 and thus $\lim_{x\to 0} f(x) = 0$, we have,

$$|f(x) - 0| = |f(x)|$$

$$= |f(x + 0)|$$

$$= |f(x)f(0)|$$

$$= 0 < \epsilon$$

Thus if $f(0) \neq 1$ then f(x) = 0 for all $x \in \mathbb{R}$.

If we have $f(0) \neq 0$ then we must have f(0) = 1 or we contradict the statement that L = 1 or L = 0. Thus we know that f(x) = f(x)f(0) = 0 for all $x \in \mathbb{R}$ or $\lim_{x \to 0} f(x) = 1$.