Подключение библиотек, загрузка данных

```
In [47]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import random

In [48]: df_apple = pd.read_csv('AppleStore.csv', index_col='Unnamed: 0')
df_google = pd.read_csv('googleplaystore.csv')
```

Подготовка данных

```
Out[49]:

id track_name size_bytes currency price rating_count_tot rating_count_ver user_rating user_r
```

	id	track_name	size_bytes	currency	price	rating_count_tot	rating_count_ver	user_rating	u
1	281656475	PAC-MAN Premium	100788224	USD	3.99	21292	26	4.0	
2	281796108	Evernote - stay organized	158578688	USD	0.00	161065	26	4.0	
3	281940292	WeatherBug - Local Weather, Radar, Maps, Alerts	100524032	USD	0.00	188583	2822	3.5	
4	282614216	eBay: Best App to Buy, Sell, Save! Online Shop	128512000	USD	0.00	262241	649	4.0	
5	282935706	Bible	92774400	USD	0.00	985920	5320	4.5	

In [50]: df_google.head()

Out[50]:

	Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	Ge
0	Photo Editor & Candy Camera & Grid & ScrapBook	ART_AND_DESIGN	4.1	159	19M	10,000+	Free	0	Everyone	Art & De
1	Coloring book moana	ART_AND_DESIGN	3.9	967	14M	500,000+	Free	0	Everyone	Design;Pre
2	U Launcher Lite – FREE Live Cool Themes, Hide	ART_AND_DESIGN	4.7	87510	8.7M	5,000,000+	Free	0	Everyone	Art & De
3	Sketch - Draw & Paint	ART_AND_DESIGN	4.5	215644	25M	50,000,000+	Free	0	Teen	Art & D€
4	Pixel Draw - Number Art Coloring Book	ART_AND_DESIGN	4.3	967	2.8M	100,000+	Free	0	Everyone	Design;Crea
4										•

In [51]: df_apple.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 7197 entries, 1 to 11097
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype				
0	id	7197 non-null	int64				
1	track_name	7197 non-null	object				
2	size_bytes	7197 non-null	int64				
3	currency	7197 non-null	object				
4	price	7197 non-null	float64				
5	rating_count_tot	7197 non-null	int64				
6	rating_count_ver	7197 non-null	int64				
7	user_rating	7197 non-null	float64				
8	user_rating_ver	7197 non-null	float64				
9	ver	7197 non-null	object				
10	cont_rating	7197 non-null	object				
11	prime_genre	7197 non-null	object				
12	<pre>sup_devices.num</pre>	7197 non-null	int64				
13	ipadSc_urls.num	7197 non-null	int64				
14	lang.num	7197 non-null	int64				
15	<pre>vpp_lic</pre>	7197 non-null	int64				
dtynes: $float64(3)$ $int64(8)$ $ohiect(5)$							

dtypes: float64(3), int64(8), object(5)

memory usage: 815.3+ KB

```
In [52]: df_google.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 10841 entries, 0 to 10840
        Data columns (total 13 columns):
                            Non-Null Count Dtype
             Column
             ----
                             -----
         0
                            10841 non-null object
             App
                            10841 non-null object
         1
             Category
         2
             Rating
                            9367 non-null
                                            float64
          3
                            10841 non-null object
             Reviews
         4
             Size
                            10841 non-null object
         5
             Installs
                            10841 non-null object
                            10840 non-null object
         6
             Type
         7
             Price
                            10841 non-null object
         8
             Content Rating 10840 non-null object
                            10841 non-null object
         9
             Genres
         10 Last Updated
                            10841 non-null object
         11 Current Ver
                            10833 non-null
                                            object
         12 Android Ver
                            10838 non-null
                                            object
         dtypes: float64(1), object(12)
         memory usage: 592.9+ KB
```

Создаю столбец "Туре" для df_apple, в котором будет хранится информация о типе приложения(платное или бесплатное), как в df_google:

```
In [53]: bins = [-np.inf, 0, np.inf]
    labels = ['Free','Paid']
    df_apple['Type'] = pd.cut(df_apple['price'], bins=bins, labels=labels)

In [54]: df_google.Type.fillna(value = 'Free', inplace = True)

In [55]: df_google.loc[df_google['Type'] == '0','Type'] = 'Free'
```

Создаю новый столбец, в который заношу "новую" цену за приложение (типа float64, удобнее анализировать):

```
In [56]: df_google['NewPrice'] = pd.to_numeric(df_google.Price.str.replace('$', ''), errors='c
    oerce')
In [57]: df_google.NewPrice.fillna(value = 0.0, inplace = True)
```

- Столбец для А.S., показывающий, является ли приложение игрой
- Аналогичный столбец для G.P.S.

```
In [58]: df_apple['Games'] = df_apple.prime_genre.isin(['Games'])
df_google['Games'] = df_google.Category.isin(['GAME'])
```

Создаю столбец(float64) с кол-вом загрузок для G.P.S.

```
In [59]: df_google['NewInstalls'] = df_google.Installs.str.replace(',', '')
    df_google['NewInstalls'] = pd.to_numeric(df_google.NewInstalls.str.replace('+',''),er
    rors='coerce')
```

Создаю столбец NewRating(float64) с рейтингом приложений и столбец NewReviews(float64) с количеством оценок в G.P.S.

```
In [60]: df_google.Rating.fillna(value = '0',inplace = True)
    df_google['NewRating'] = pd.to_numeric(df_google.Rating,errors='coerce')
    df_google['NewReviews'] = pd.to_numeric(df_google.Reviews,errors='coerce')
```

Остальное:

```
In [61]: df_google.loc[[10472], ['Category']] = 'TOOLS'
```

Описательная статистика + гипотезы

Примечание: A.S. - Apple Store, G.P.S. - Google Play Store

```
In [62]: df_apple.Type.value_counts().plot.pie()
```

Out[62]: <matplotlib.axes._subplots.AxesSubplot at 0xba4dfa0>

• Доля платных приложений в A.S.

```
In [63]: df_google.Type.value_counts().plot.pie()
```

Out[63]: <matplotlib.axes._subplots.AxesSubplot at 0xfcdd48>

• Доля платных приложений в G.P.S.

Среднняя цена за приложение в A.S.:

```
In [64]: np.average(df_apple[~df_apple.price.isin(['0'])].price)
Out[64]: 3.955297675899396
```

Среднняя цена за приложение в G.P.S.:

```
In [65]: np.average(df_google[~df_google.NewPrice.isin(['0'])].NewPrice)
Out[65]: 13.920837500000003
```

В Apple Store намного больше платных приложений (почти половина) чем в Google Play Store (примерно 10%). Однако в G.P.S. средняя цена за приложение почти в 4 раза выше. Следовательно можно сделать вывод: В А.S. хочешь, не хочешь все равно придется отдать копеечку, хоть и небольшую, за продукт, а в G.P.S. приложения в большинстве своем бесплатные, но за платный продукт придется раскошелится.

Out[66]: <matplotlib.axes._subplots.AxesSubplot at 0xba6c640>

Out[67]: <matplotlib.axes._subplots.AxesSubplot at 0xb8f09d0>

Большая часть приложений в A.S. - игры. В то время, как в G.P.S. они составляют чуть больше 10% от общего количества

Как говорится, без спроса нет предложения. Владельцам iOS лишь бы в игрульки поиграть...

Рассмотрим G.P.S. глубже

```
In [68]: # Prepare Data
    df = df_google.groupby('Category', as_index=False).mean()
    df.sort_values('NewInstalls', inplace=True)
    n = df['Category'].unique().__len__()+1
    all_colors = list(plt.cm.colors.cnames.keys())
    random.seed(3)
    c = random.choices(all_colors, k=n)
    # Plot Bars
    plt.figure(figsize=(20,7), dpi= 80)
    plt.bar(df['Category'], df['NewInstalls'], color=c, width=.8)
    plt.gca().set_xticklabels(df['Category'], rotation=60, horizontalalignment= 'center',
    fontsize=14)
    plt.title("Число загрузок приложений разных категорий",fontsize=22)
    plt.show()
```



```
In [69]:
         # Prepare Data
         df = pd.DataFrame(df_google.Category.value_counts())
         df.reset index(inplace=True)
         df.columns = ['Category','Value']
         df.sort_values('Value', inplace=True)
         df.reset_index(inplace=True)
         # Draw plot
         fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
         ax.vlines(x=df.index, ymin=0, ymax=df.Value, color='firebrick', alpha=0.7, linewidth=
         ax.scatter(x=df.index, y=df.Value, s=75, color='firebrick', alpha=0.7)
         # Title, Label, Ticks and Ylim
         ax.set_title('Количество приложений разных категорий', fontdict={'size':22})
         ax.set_xticks(df.index)
         ax.set_xticklabels(df.Category.str.upper(), rotation=60, fontdict={'horizontalalignme
         nt': 'right', 'size':12})
         ax.set_ylim(0, 2100)
         plt.show()
```


Как мы видим, приложения категории "Communication" самые популярные, ведь имеют наибольшее количество загрузок с большим отрывом от других категорий, хотя по кол-ву приложений данной категории они находятся лишь на 8 месте. Скорее всего это связано с популярностью именно социальных сетей, которые, очевидно, входят в эту категорию.

Обратная ситуция с категорий "Family". Несмотря на то, что приложений данной категории очень много, они не могут похвастаться особой популярностью среди пользователей.

Рассмотрим рейтинги приложений и количество оценок на площадках

Нашел средний рейтинг приложений в G.P.S.

Будем считать рейтинг < 4.2 - "ниже среднего", а >= 4.2 - "выше среднего"

Аналогично для A.S.

```
In [71]: np.average(df_apple[~df_apple.user_rating.isin(['0'])].user_rating)
Out[71]: 4.049696873005743
```

```
In [72]: # Prepare Data
         x = len(df_google[df_google.NewRating > 4.1]) / len(df_google[df_google.NewRating > 0
         y = len(df_apple[df_apple.user_rating > 4.0]) / len(df_apple[df_apple.user_rating > 0
         ]) * 100
         #----
         n = 2
         all_colors = list(plt.cm.colors.cnames.keys())
         random.seed(3)
         c = random.choices(all_colors, k=n)
         # Plot Bars
         plt.figure(figsize=(4,5), dpi= 80)
         plt.bar(['A.S.','G.P.S.'], [y,x], color=c, width=.5)
         plt.ylim(0, 100)
         # Decoration
         plt.gca().set_xticklabels(['A.S','G.P.S.'], horizontalalignment= 'center', fontsize=1
         plt.title('Доля приложений (в %), оценненных "выше среднего"', fontsize=22)
         plt.show()
```

Доля приложений (в %), оценненных "выше среднего"


```
In [73]: # Prepare Data
         x = (df_google[df_google.NewRating > 4.1].NewReviews.sum() / df_google[df_google.NewR
         ating > 0].NewReviews.sum()) * 100
         y = (df_apple[df_apple.user_rating > 4.0].rating_count_tot.sum() / df_apple[df_apple.
         user_rating > 0].rating_count_tot.sum()) * 100
         n = 2
         all_colors = list(plt.cm.colors.cnames.keys())
         random.seed(3)
         c = random.choices(all_colors, k=n)
         # Plot Bars
         plt.figure(figsize=(4,5), dpi= 80)
         plt.bar(['A.S.','G.P.S.'], [y,x], color=c, width=.5)
         plt.ylim(0, 100)
         # Decoration
         plt.gca().set_xticklabels(['A.S','G.P.S.'], horizontalalignment= 'center', fontsize=1
         plt.title('Доля оценок(в %) за приложения "выше среднего"', fontsize=22)
         plt.show()
```

Доля оценок(в %) за приложения "выше среднего"

Из полученного можно сделать вывод, что люди, в основном, положительно оценивают приложения в этих магазинах, еще несмотря на то, что средние оценки приложений 4.1 и 4.0 (т.е. оценка 3.9 считалась плохой). Также люди чаще комментируют хорошие приложения, т.е. приложения с оценкой "выше среднего".