第1章 c: 行列式的展开

数学系 梁卓滨

2020-2021 学年 I

We are here now...

1. 余子式、代数余子式

2. 行列式的展开

3. 行列式的展开Ⅱ

在 n 阶行列式 D 中,

```
\begin{vmatrix} a_{11} & \dots & a_{1j-1} & a_{1j} & a_{1j+1} & \dots & a_{1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{i-11} & \dots & a_{i-1j-1} & a_{i-1j} & a_{i-1j+1} & \dots & a_{i-1n} \\ a_{i1} & \dots & a_{ij-1} & a_{ij} & a_{ij+1} & \dots & a_{in} \\ a_{i+11} & \dots & a_{i+1j-1} & a_{i+1j} & a_{i+1j+1} & \dots & a_{i+1n} \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj-1} & a_{nj} & a_{nj+1} & \dots & a_{nn} \end{vmatrix}
```

在 n 阶行列式 D 中,将元素 a_{ij} 所在的行和列划掉:

```
\begin{vmatrix} a_{11} & \dots & a_{1j-1} & a_{1j} & a_{1j+1} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-11} & \dots & a_{i-1j-1} & a_{i-1j} & a_{i-1j+1} & \dots & a_{i-1n} \\ a_{i1} & \dots & a_{ij-1} & a_{ij} & a_{ij+1} & \dots & a_{in} \\ a_{i+11} & \dots & a_{i+1j-1} & a_{i+1j} & a_{i+1j+1} & \dots & a_{i+1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj-1} & a_{nj} & a_{nj+1} & \dots & a_{nn} \end{vmatrix}
```

在 n 阶行列式 D 中,将元素 a_{ij} 所在的行和列划掉:

a ₁₁	 a_{1j-1}	a_{1j+1}	 a_{1n}
:	:	:	:
a_{i-11}	 a_{i-1j-1}	a_{i-1j+1}	 a _{i−1n}
a: 11	a_{i+1j-1}	<i>Q</i> :.1:.1	<i>a:</i> 1 =
	 •	a_{i+1j+1}	
:	:	•	:
a_{n1}	 a_{nj-1}	a_{nj+1}	 a_{nn}

在 n 阶行列式 D 中,将元素 a_{ij} 所在的行和列划掉:

$$M_{ij} = \begin{vmatrix} a_{11} & \dots & a_{1j-1} & & a_{1j+1} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-11} & \dots & a_{i-1j-1} & & a_{i-1j+1} & \dots & a_{i-1n} \\ a_{i+11} & \dots & a_{i+1j-1} & & a_{i+1j+1} & \dots & a_{i+1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj-1} & & a_{nj+1} & \dots & a_{nn} \end{vmatrix}$$

所得的 n-1 阶行列式称为 a_{ii} 的余子式。

在 n 阶行列式 D 中,将元素 a_{ij} 所在的行和列划掉:

$$M_{ij} = \begin{vmatrix} a_{11} & \dots & a_{1j-1} & a_{1j} & a_{1j+1} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-11} & \dots & a_{i-1j-1} & a_{i-1j} & a_{i-1j+1} & \dots & a_{i-1n} \\ a_{i1} & \dots & a_{ij-1} & a_{ij} & a_{ij+1} & \dots & a_{in} \\ a_{i+11} & \dots & a_{i+1j-1} & a_{i+1j} & a_{i+1j+1} & \dots & a_{i+1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj-1} & a_{nj} & a_{nj+1} & \dots & a_{nn} \end{vmatrix}$$

所得的 n-1 阶行列式称为 a_{ij} 的 余子式。

在 n 阶行列式 D 中,将元素 a_{ij} 所在的行和列划掉:

$$M_{ij} = \begin{vmatrix} a_{11} & \dots & a_{1j-1} & a_{1j} & a_{1j+1} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-11} & \dots & a_{i-1j-1} & a_{i-1j} & a_{i-1j+1} & \dots & a_{i-1n} \\ a_{i1} & \dots & a_{ij-1} & a_{ij} & a_{ij+1} & \dots & a_{in} \\ a_{i+11} & \dots & a_{i+1j-1} & a_{i+1j} & a_{i+1j+1} & \dots & a_{i+1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj-1} & a_{nj} & a_{nj+1} & \dots & a_{nn} \end{vmatrix}$$

所得的 n-1 阶行列式称为 a_{ii} 的 **余子式** 。而将

$$A_{ij} = (-1)^{i+j} M_{ij}$$

定义为元素 a_{ii} 的代数余子式。

余子式、代数余子式

在 n 阶行列式 D 中,将元素 a_{ij} 所在的行和列划掉:

$$M_{ij} = \begin{vmatrix} a_{11} & \dots & a_{1j-1} & a_{1j} & a_{1j+1} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{i-11} & \dots & a_{i-1j-1} & a_{i-1j} & a_{i-1j+1} & \dots & a_{i-1n} \\ a_{i1} & \dots & a_{ij-1} & a_{ij} & a_{ij+1} & \dots & a_{in} \\ a_{i+11} & \dots & a_{i+1j-1} & a_{i+1j} & a_{i+1j+1} & \dots & a_{i+1n} \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj-1} & a_{nj} & a_{nj+1} & \dots & a_{nn} \end{vmatrix}$$

所得的 n-1 阶行列式称为 a_{ij} 的余子式。而将

$$A_{ij} = (-1)^{i+j} M_{ij}$$

定义为元素 a_{ii} 的代数余子式。

注 余子式、代数余子式何时相等?

• 元素 $a_{32} = -2$ 的余子式是

$$M_{32} =$$

代数余子式是 $A_{32} =$

● 元素 $a_{32} = -2$ 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix} =$$

代数余子式是 A_{32} =

● 元素 $a_{32} = -2$ 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 4 \\ 5 & 3 \end{vmatrix} =$$

代数余子式是 A_{32} =

元素 a₃₂ = −2 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 4 \\ 5 & 3 \end{vmatrix} = -29$$

代数余子式是 A_{32} =

• 元素 $a_{32} = -2$ 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 4 \\ 5 & 3 \end{vmatrix} = -29$$

代数余子式是
$$A_{32} = (-1)^{3+2} M_{32} =$$

行列式展开

• 元素 $a_{32} = -2$ 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 4 \\ 5 & 3 \end{vmatrix} = -29$$

代数余子式是
$$A_{32} = (-1)^{3+2} M_{32} = 29$$

元素 α₃₂ = −2 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 4 \\ 5 & 3 \end{vmatrix} = -29$$

$$\text{*CMARTILE } A_{32} = (-1)^{3+2} M_{32} = 29$$

代数余子式是
$$A_{32} = (-1)^{3+2} M_{32} = 29$$

元素 a₁₃ = 4 的余子式是 M₁₃ =

代数余子式是 $A_{13} =$

例 行列式
$$\begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix}$$
 中

元素 a₃₂ = −2 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 4 \\ 5 & 3 \end{vmatrix} = -29$$

代数余子式是 $A_{32} = (-1)^{3+2} M_{32} = 29$

• 元素
$$\alpha_{13} = 4$$
 的余子式是 $M_{13} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix}$

代数余子式是 $A_{13} =$

元素 a₃₂ = −2 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 4 \\ 5 & 3 \end{vmatrix} = -29$$

代数余子式是 $A_{32} = (-1)^{3+2} M_{32} = 29$

• 元素
$$\alpha_{13} = 4$$
 的余子式是 $M_{13} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 5 & -1 \\ 2 & -2 \end{vmatrix} =$

代数余子式是 $A_{13} =$

元素 a₃₂ = −2 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 4 \\ 5 & 3 \end{vmatrix} = -29$$

代数余子式是 $A_{32} = (-1)^{3+2} M_{32} = 29$

• 元素
$$a_{13} = 4$$
 的余子式是 $M_{13} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 5 & -1 \\ 2 & -2 \end{vmatrix} = -8$

代数余子式是 $A_{13} =$

元素 a₃₂ = −2 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 4 \\ 5 & 3 \end{vmatrix} = -29$$

代数余子式是 $A_{32} = (-1)^{3+2} M_{32} = 29$

• 元素
$$\alpha_{13} = 4$$
 的余子式是 $M_{13} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 5 & -1 \\ 2 & -2 \end{vmatrix} = -8$ 代数余子式是 $A_{13} = (-1)^{1+3}M_{13} =$

行列式展开 2/23 ⊲ ▶

元素 a₃₂ = −2 的余子式是

$$M_{32} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -3 & 4 \\ 5 & 3 \end{vmatrix} = -29$$

代数余子式是 $A_{32} = (-1)^{3+2} M_{32} = 29$

• 元素
$$a_{13} = 4$$
 的余子式是 $M_{13} = \begin{vmatrix} -3 & 10 & 4 \\ 5 & -1 & 3 \\ 2 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 5 & -1 \\ 2 & -2 \end{vmatrix} = -8$

代数余子式是 $A_{13} = (-1)^{1+3} M_{13} = -8$

We are here now...

1. 余子式、代数余子式

2. 行列式的展开

3. 行列式的展开Ⅱ

a_{11}	a_{12}	a ₁₃
a_{21}	a_{22}	a ₂₃
a_{31}	a_{32}	a ₃₃

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

```
\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}
= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}
- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}
= a_{11}(a_{22}a_{33} - a_{23}a_{32})
```

```
\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}
= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}
- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}
= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31})
```

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11} - a_{12} + a_{13}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} + a_{13}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} + a_{13}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} + a_{13}$$

$$= a_{11}M_{11}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}$$

$$= a_{11}M_{11}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}$$

$$= a_{11}M_{11}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}$$

$$= a_{11}M_{11} - a_{12}M_{12}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}M_{11} - a_{12}M_{12}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}M_{11} - a_{12}M_{12}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13}$$

 $= a_{11}A_{11} +$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13}$$

 $= a_{11}A_{11} + a_{12}A_{12} +$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13}$$

 $= a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$

$$- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13}$$

$$\begin{bmatrix} a_{13} & a_{13} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$

$$\begin{bmatrix} a_{13} & a_{13} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$

a_{11}	a_{12}	a_{13}
a_{21}	a_{12}	a_{23}
a_{31}	a_{12}	a_{33}

```
a_{11} a_{12} a_{13} a_{21} a_{22} a_{23} a_{31} a_{32} a_{33}
```

3 阶行列式按第 2 列展开:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12} \qquad a_{22} \qquad a_{32}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} \quad a_{22}A_{22} \quad a_{32}A_{32}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$

3 阶行列式按第 2 列展开:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$
$$= a_{12} + a_{22} + a_{32}A_{32} + a_{32}A_{32} + a_{32}A_{32}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$
$$= a_{12}(-1)^{1+2} + a_{22}$$
$$+ a_{32}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$
$$= a_{12}(-1)^{1+2} + a_{22}$$
$$+ a_{32}$$

3 阶行列式按第 2 列展开:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$

$$= a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22}$$

$$+ a_{32}$$

3 阶行列式按第 2 列展开:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$
$$= a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22}(-1)^{2+2} \begin{vmatrix} a_{32} & a_{33} \\ a_{31} & a_{33} \end{vmatrix}$$

行列式展开 4/23 ✓ ▶

3 阶行列式按第 2 列展开:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$

$$= a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22}(-1)^{2+2} \begin{vmatrix} a_{32} & a_{33} \\ a_{31} & a_{33} \end{vmatrix}$$

3 阶行列式按第2列展开:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$

$$= a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22}(-1)^{2+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{32}$$

$$+ a_{32}$$

3 阶行列式按第2列展开:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$

$$= a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22}(-1)^{2+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}$$

$$+ a_{32}(-1)^{3+2} \begin{vmatrix} a_{31} & a_{32} \\ a_{31} & a_{32} \end{vmatrix}$$

3 阶行列式按第 2 列展开:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$

$$= a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22}(-1)^{2+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{32}(-1)^{3+2} \begin{vmatrix} a_{31} & a_{32} \\ a_{31} & a_{32} \end{vmatrix}$$

3 阶行列式按第2列展开:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$

$$= a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22}(-1)^{2+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}$$

$$+ a_{32}(-1)^{3+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$$

3 阶行列式按第2列展开:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$$

$$= a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{22}(-1)^{2+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}$$

$$+ a_{32}(-1)^{3+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix}$$

注 说明计算 3 阶行列式可转化为计算 3 个 2 阶行列式

```
\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}
```

```
\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}
```

```
 \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}
```

$$= a_{11}A_{11} + a_{21} + a_{31} + a_{41}$$

```
 \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}
```

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31} + a_{41}$$

```
 \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}
```

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}$$

```
 \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}
```

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{3}$$

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

4 阶行列式按第1列展开:

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{21}(-1)^{2+1}$$

4 阶行列式按第1列展开:

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{21}(-1)^{2+1}$$

4 阶行列式按第1列展开:

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{21}(-1)^{2+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

4 阶行列式按第1列展开:

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{21}(-1)^{2+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$+ a_{31}(-1)^{3+1}$$

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{21}(-1)^{2+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$+ a_{31}(-1)^{3+1}$$

4 阶行列式按第1列展开:

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{21}(-1)^{2+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$+ a_{31}(-1)^{3+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

4 阶行列式按第1列展开:

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{21}(-1)^{2+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$+ a_{31}(-1)^{3+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{41}(-1)^{4+1}$$

4 阶行列式按第1列展开:

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{21}(-1)^{2+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$+ a_{31}(-1)^{3+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{41}(-1)^{4+1}$$

4 阶行列式按第1列展开:

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{21}(-1)^{2+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$+ a_{31}(-1)^{3+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{41}(-1)^{4+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \end{vmatrix}$$

行列式展开 5/23 ⊲ ▷

4 阶行列式按第1列展开:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$= a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31} + a_{41}A_{41}$$

$$= a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{21}(-1)^{2+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$+ a_{31}(-1)^{3+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{41}(-1)^{4+1} \begin{vmatrix} a_{12} & a_{13} & a_{14} \\ a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \end{vmatrix}$$

注 说明计算 4 阶行列式可转化为计算 4 个 3 阶行列式

定理 对 n 阶行列式 D,取第 i 行

定理 对 n 阶行列式 D,取第 i 行

 a_{i1} a_{i2} \cdots a_{in}

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

 a_{i1} a_{i2} \cdots a_{in}

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

 $a_{i1}A_{i1}$ $a_{i2}A_{i2}$ ··· $a_{in}A_{in}$

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

$$a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

类似地,取第j列

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

类似地,取第 j 列

$$a_{1j}$$
 a_{2j} \cdots a_{nj}

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

$$a_{1j}$$
 a_{2j} \cdots a_{nj}

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

$$a_{1j}A_{1j}$$
 $a_{2j}A_{2j}$ \cdots $a_{nj}A_{nj}$

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

$$\alpha_{1j}A_{1j}+\alpha_{2j}A_{2j}+\cdots+\alpha_{nj}A_{nj}$$

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

$$D = \alpha_{1j}A_{1j} + \alpha_{2j}A_{2j} + \cdots + \alpha_{nj}A_{nj}$$

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

类似地, 取第 j 列, 按该列的展开公式是:

$$D = \alpha_{1j}A_{1j} + \alpha_{2j}A_{2j} + \cdots + \alpha_{nj}A_{nj}$$

注 该定理说明: 计算 n 阶行列式可转化为计算 n 个 n-1 阶行列式!

定理 对 n 阶行列式 D,取第 i 行,按该行的展开公式是:

$$D = a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in}$$

类似地, 取第 j 列, 按该列的展开公式是:

$$D = \alpha_{1j}A_{1j} + \alpha_{2j}A_{2j} + \cdots + \alpha_{nj}A_{nj}$$

注 该定理说明: 计算 n 阶行列式可转化为计算 n 个 n-1 阶行列式! 其实,通过一些小技巧,可以把 n 阶行列式转化为 1 个 n-1 阶行列式…… 最后转化为 1 个 2 阶,后面再详说

5/23 ▼ ▶ 6/23 ▼ ▶

a_{11}	a_{12}	a_{13}	a_{14}
$a_{11} \\ a_{21} \\ a_{31} \\ a_{41}$	a_{22}	a_{23}	a_{24}
a_{31}	a_{32}	a_{33}	a_{34}
a_{41}	a_{42}	a_{43}	a ₄₄

也就是要证明:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix}$$

也就是要证明:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix}$$

$$+ a_{13} \begin{vmatrix} a_{21} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} - a_{14} \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{vmatrix}$$

引理
$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{vmatrix} =$$

也就是要证明:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix}$$

$$+ a_{13} \begin{vmatrix} a_{21} & a_{22} & a_{24} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{vmatrix} - a_{14} \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{vmatrix}$$

引理
$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{vmatrix} = \begin{vmatrix} a & b & c \\ u & v & w \\ x & y & z \end{vmatrix}$$

引理证明

$$\left\| \begin{array}{ccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \stackrel{\Delta}{=}$$

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \stackrel{\Delta}{=} \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right|$$

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \triangleq \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right|$$

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \triangleq \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right|$$

验证这种运算满足规范性、反称性、数乘性、可加性:

● 规范性:

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \triangleq \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right]$$

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \stackrel{\Delta}{=} \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right|$$

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \triangleq \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right]$$

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \triangleq \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right|$$

验证这种运算满足规范性、反称性、数乘性、可加性:

反称性:

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \stackrel{\Delta}{=} \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right|$$

验证这种运算满足规范性、反称性、数乘性、可加性:

$$\left\| \begin{array}{ccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| =$$

$$- \left\| \begin{array}{cccc} a & b & c \\ x & y & z \\ u & v & w \end{array} \right\|$$

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \stackrel{\Delta}{=} \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right|$$

验证这种运算满足规范性、反称性、数乘性、可加性:

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| = \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right|$$

$$- \left\| \begin{array}{cccc} a & b & c \\ x & y & z \\ u & v & w \end{array} \right\|$$

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \stackrel{\Delta}{=} \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right|$$

验证这种运算满足规范性、反称性、数乘性、可加性:

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\| \triangleq \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{array} \right|$$

验证这种运算满足规范性、反称性、数乘性、可加性:

• 数乘性:

 $k \left\| \begin{array}{ccc} a & b & c \\ u & v & w \\ x & y & z \end{array} \right\|$

 $\begin{array}{c|cccc}
 & a & b & c \\
 & u & v & w \\
 & x & y & z
\end{array}$

● 可加性:

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x+p & y+q & z+r \end{array} \right\| = \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x+p & y+q & z+r \end{array} \right|$$

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x+p & y+q & z+r \end{array} \right\| = \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x+p & y+q & z+r \end{array} \right|$$

可加性: 比如,

$$\left\| \begin{array}{cccc} a & b & c \\ u & v & w \\ x+p & y+q & z+r \end{array} \right\| = \left| \begin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x+p & y+q & z+r \end{array} \right|$$

• 可加性: 比如,

所以:

| a b c | x y z | u v w |

• 可加性: 比如,

所以:

所以:
$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & a & b & c \\ 0 & u & v & w \\ 0 & x & y & z \end{vmatrix} = \begin{vmatrix} a & b & c \\ x & y & z \\ u & v & w \end{vmatrix} = \frac{\mathbf{e} - \mathbf{e}}{\mathbf{e}} \begin{vmatrix} a & b & c \\ x & y & z \\ u & v & w \end{vmatrix}$$

a_{11}	a_{12}	a_{13}	a_{14}
a_{21}	a_{22}	a_{23}	a_{24}
a_{31}	a_{32}	a_{33}	a 34
a_{41}	a_{42}	a_{43}	a_{44}

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

*a*₄₃

a44

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & a_{22} & a_{23} & a_{24} \\ 0 & a_{32} & a_{33} & a_{34} \\ 0 & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$
$$= a_{11} \begin{vmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 1 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 1 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

a44

 a_{43}

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} a_{12} & 0 & 1 & 0 & 0 \\ a_{21} & 0 & a_{23} & a_{24} \\ a_{31} & 0 & a_{33} & a_{34} \\ a_{41} & 0 & a_{43} & a_{44} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} - \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{12} \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & a_{21} & a_{23} & a_{24} \\ 0 & a_{31} & a_{33} & a_{34} \\ 0 & a_{41} & a_{43} & a_{44} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & a_{12} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + \begin{vmatrix} 0 & 0 & 0 & 0 & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{vmatrix} + a_{14} \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{vmatrix}$$

解

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 **解** $D = 1 \cdot A_{21}$ 0 1

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 $D = 1 \cdot A_{21} \quad 0 \cdot A_{22} \quad 1$

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 \mathbf{M} $\mathbf{M$

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 \mathbf{M} \mathbf{M}

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$ $= 1 \cdot (-1)^{2+1} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 $BH D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$ $AH D = 1 \cdot (-1)^{2+1}$ $AH D = 1 \cdot (-1)^{2+1}$

行列式展开 11/23 ⊲ ▷

$$\mathbf{M} \quad D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$

行列式展开 11/23 ⊲ ▷

$$\mathbf{M}$$
 $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3}$$

行列式展开 11/23 ⊲ ▷

$$\mathbf{M} \quad D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3}$$

行列式展开 11/23 ⊲ ▷

$$\mathbf{M} \quad D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$

行列式展开 11/23 ⊲ ▷

=-11+0-14=-25

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 B $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$

行列式展开 11/23 ⊲ ▷

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 解 $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$

$$= -11 + 0 - 14 = -25$$

解

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式
解 $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$
 $= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$
 $= -11 + 0 - 14 = -25$

行列式展开

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式
解 $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$
 $= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$
 $= -11 + 0 - 14 = -25$

行列式展开

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式
解 $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$
 $= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$
 $= -11 + 0 - 14 = -25$

例 2 将行列式 2 3 4 按第 1 行展开,算出行列式 4 9 16
 解
$$D = 1 \cdot A_{11} \cdot 1 \cdot A_{12} \cdot 1$$

行列式展开 11/23 ⊲ ▶

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 解 $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$

$$= -11 + 0 - 14 = -25$$

例 2 将行列式 2 3 4 按第 1 行展开,算出行列式 4 9 16
 解
$$D = 1 \cdot A_{11}$$
 1 · A_{12} 1 · A_{13}

行列式展开

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 解 $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$

$$= -11 + 0 - 14 = -25$$

$$\mathbf{H}$$
 $D = 1 \cdot A_{11} + 1 \cdot A_{12} + 1 \cdot A_{13}$

$$\mathbf{M} \quad D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$

$$= -11 + 0 - 14 = -25$$

$$=-11+0-14=-25$$

$$\mathbf{M} \quad D = 1 \cdot A_{11} + 1 \cdot A_{12} + 1 \cdot A_{13}$$

$$= 1 \cdot (-1)^{1+1} \left| +1 \cdot (-1)^{1+2} \right| + 1 \cdot (-1)^{1+3} \left| +1 \cdot (-1)^{1+3} \right|$$

$$\mathbf{H} \quad D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$

$$= -11 + 0 - 14 = -25$$

$$=-11+0-14=-25$$

$$\mathbf{M}$$
 $D = 1 \cdot A_{11} + 1 \cdot A_{12} + 1 \cdot A_{13}$

$$= 1 \cdot (-1)^{1+1} \left| +1 \cdot (-1)^{1+2} \right| \left| +1 \cdot (-1)^{1+3} \right|$$

$$|+1\cdot(-1)^{1+3}|$$

行列式展开

$$\mathbf{H} \quad D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$
$$= -11 + 0 - 14 = -25$$

$$=-11+0-14=-25$$

$$\mathbf{M} \quad D = 1 \cdot A_{11} + 1 \cdot A_{12} + 1 \cdot A_{13}$$

$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} 3 & 4 \\ 9 & 16 \end{vmatrix} + 1 \cdot (-1)^{1+2} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} + 1 \cdot (-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$

I

$$\mathbf{H} \quad D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$

$$= -11 + 0 - 14 = -25$$

$$=-11+0-14=-25$$

$$\mathbf{M} \quad D = 1 \cdot A_{11} + 1 \cdot A_{12} + 1 \cdot A_{13}$$

$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} 3 & 4 \\ 9 & 16 \end{vmatrix} + 1 \cdot (-1)^{1+2} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} + 1 \cdot (-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$

$$|+1\cdot(-1)^{1+3}|$$

例 1 将行列式
$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix}$$
 按第 2 行展开,算出行列式 $D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$

=-11+0-14=-25

$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} 3 & 4 \\ 9 & 16 \end{vmatrix} + 1 \cdot (-1)^{1+2} \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \cdot (-1)^{1+3} \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix}$$

$$\mathbf{H} \quad D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$

= -11 + 0 - 14 = -25

$$\mathbf{M} \quad D = 1 \cdot A_{11} + 1 \cdot A_{12} + 1 \cdot A_{13}$$

$$=1\cdot(-1)^{1+1}\begin{vmatrix}3&4\\9&16\end{vmatrix}+1\cdot(-1)^{1+2}\begin{vmatrix}2&4\\4&16\end{vmatrix}+1\cdot(-1)^{1+3}$$

$$\mathbf{P} = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$
$$= -11 + 0 - 14 = -25$$

$$\mathbf{M} \quad D = 1 \cdot A_{11} + 1 \cdot A_{12} + 1 \cdot A_{13}$$

$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} 3 & 4 \\ 9 & 16 \end{vmatrix} + 1 \cdot (-1)^{1+2} \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \cdot (-1)^{1+3} \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix}$$

行列式展开

$$\mathbf{H} \quad D = 1 \cdot A_{21} + 0 \cdot A_{22} + 1 \cdot A_{23}$$

$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & 2 \\ 5 & 7 \end{vmatrix} + 0 \cdot (-1)^{2+2} \begin{vmatrix} 4 & 2 \\ 2 & 7 \end{vmatrix} + 1 \cdot (-1)^{2+3} \begin{vmatrix} 4 & 3 \\ 2 & 5 \end{vmatrix}$$
$$= -11 + 0 - 14 = -25$$

解
$$D = 1 \cdot A_{11} + 1 \cdot A_{12} + 1 \cdot A_{13}$$

 $= 1 \cdot (-1)^{1+1} \begin{vmatrix} 3 & 4 \\ 9 & 16 \end{vmatrix} + 1 \cdot (-1)^{1+2} \begin{vmatrix} 2 & 4 \\ 4 & 16 \end{vmatrix} + 1 \cdot (-1)^{1+3} \begin{vmatrix} 2 & 3 \\ 4 & 9 \end{vmatrix}$
 $= 12 - 16 + 6 = 2$

例3

 4
 3
 2

 1
 0
 1

 2
 5
 7

4 3 2 1 0 1 2 5 7

 $\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1}$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 \\ 1 & 0 \\ 2 & 5 \end{vmatrix} =$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} =$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$

$$=1\cdot (-1)^{2+1}$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1}$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix}$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = \begin{vmatrix} c_3 - c_1 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

例 4

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix} \xrightarrow{\frac{C_2 - C_1}{C_3 - C_1}}$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix} \xrightarrow{\frac{C_2 - C_1}{C_3 - C_1}} \begin{vmatrix} 1 & 0 \\ 2 & 1 \\ 4 & 5 \end{vmatrix}$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} = \underbrace{\begin{vmatrix} c_3 - c_1 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix}}_{c_3 - c_1} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix} \xrightarrow{\frac{C_2 - C_1}{C_3 - C_1}} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & 12 \end{vmatrix}$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

例 4 利用行列式的变换,将第 1 行化为 $(1 \ 0 \ 0)$,再按第一行展开:

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & 12 \end{vmatrix} = 1 \cdot A_{11} + 0 \cdot A_{12} + 0 \cdot A_{13}$$

行列式展开

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & 12 \end{vmatrix} = 1 \cdot A_{11} + 0 \cdot A_{12} + 0 \cdot A_{13}$$
$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & 12 \end{vmatrix}$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix} = \underbrace{\frac{c_2 - c_1}{c_3 - c_1}}_{c_3 - c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & 12 \end{vmatrix} = 1 \cdot A_{11} + 0 \cdot A_{12} + 0 \cdot A_{13}$$
$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & 12 \end{vmatrix}$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix} = \underbrace{\frac{c_2 - c_1}{c_3 - c_1}}_{c_3 - c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & 12 \end{vmatrix} = 1 \cdot A_{11} + 0 \cdot A_{12} + 0 \cdot A_{13}$$
$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} 1 & 2 \\ 5 & 12 \end{vmatrix}$$

$$\begin{vmatrix} 4 & 3 & 2 \\ 1 & 0 & 1 \\ 2 & 5 & 7 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 0 \\ 2 & 5 & 5 \end{vmatrix} = 1 \cdot A_{21} + 0 \cdot A_{22} + 0 \cdot A_{23}$$
$$= 1 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -2 \\ 5 & 5 \end{vmatrix} = -25$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} \begin{vmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 4 & 5 & 12 \end{vmatrix} = 1 \cdot A_{11} + 0 \cdot A_{12} + 0 \cdot A_{13}$$
$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} 1 & 2 \\ 5 & 12 \end{vmatrix} = 2$$

1. 利用行列式性质,将某一行(或列)化为至多只有一个非零元素

2. 将行列式按该行(或列)展开,从而化为低阶行列式

- 1. 利用行列式性质,将某一行(或列)化为至多只有一个非零元素
- 2. 将行列式按该行(或列)展开,从而化为低阶行列式
- 3. 重复以上操作,直至化为 2 阶行列式

- 1. 利用行列式性质,将某一行(或列)化为至多只有一个非零元素
- 2. 将行列式按该行(或列)展开,从而化为低阶行列式
- 3. 重复以上操作,直至化为 2 阶行列式

- 1. 利用行列式性质,将某一行(或列)化为至多只有一个非零元素
- 2. 将行列式按该行(或列)展开,从而化为低阶行列式
- 3. 重复以上操作,直至化为 2 阶行列式

- 1. 利用行列式性质,将某一行(或列)化为至多只有一个非零元素
- 2. 将行列式按该行(或列)展开,从而化为低阶行列式
- 3. 重复以上操作,直至化为 2 阶行列式

- 1. 利用行列式性质,将某一行(或列)化为至多只有一个非零元素
- 2. 将行列式按该行(或列)展开,从而化为低阶行列式
- 3. 重复以上操作,直至化为 2 阶行列式

- 1. 利用行列式性质,将某一行(或列)化为至多只有一个非零元素
- 2. 将行列式按该行(或列)展开,从而化为低阶行列式
- 3. 重复以上操作,直至化为 2 阶行列式

- 1. 利用行列式性质,将某一行(或列)化为至多只有一个非零元素
- 2. 将行列式按该行(或列)展开,从而化为低阶行列式
- 3. 重复以上操作,直至化为 2 阶行列式

- 1. 利用行列式性质,将某一行(或列)化为至多只有一个非零元素
- 2. 将行列式按该行(或列)展开,从而化为低阶行列式
- 3. 重复以上操作,直至化为 2 阶行列式

注 对比 化行列式为三角行列式的方法,更推荐 降阶法,因为更灵活!

练习1 计算 1 2 3 4 1 0 1 2 3 -1 -1 0 1 2 0 -5

提示 先化第二行为 (1 0 0 0), 再按第二行展开

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix}$$

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underline{c_3 - c_1}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underline{\begin{array}{c} c_3 - c_1 \\ 3 & -1 \\ 1 & 2 \end{array}} \begin{vmatrix} 1 & 2 \\ 1 & 0 \\ 3 & -1 \\ 1 & 2 \end{vmatrix} = -1$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underline{c_3 - c_1} \begin{vmatrix} 1 & 2 & 2 \\ 1 & 0 & 0 \\ 3 & -1 & -4 \\ 1 & 2 & -1 \end{vmatrix} =$$

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underline{\frac{c_3 - c_1}{c_4 - 2c_1}} \begin{vmatrix} 1 & 2 & 2 \\ 1 & 0 & 0 \\ 3 & -1 & -4 \\ 1 & 2 & -1 \end{vmatrix} =$$

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \frac{c_3 - c_1}{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix} =$$

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underbrace{\begin{vmatrix} c_3 - c_1 \\ c_4 - 2c_1 \end{vmatrix}}_{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix}}_{=1 \cdot (-1)^{2+1}} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix} = 1 \cdot (-1)^{2+1} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} \xrightarrow{c_3 - c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix} = 1 \cdot (-1)^{2+1} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix} \stackrel{c_2 - c_1}{=}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \frac{c_3 - c_1}{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix} = 1 \cdot (-1)^{2+1} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix} \xrightarrow{c_2 - c_1} - 2 \begin{vmatrix} 1 \\ -1 \\ 2 \end{vmatrix}$$

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underbrace{\begin{vmatrix} c_3 - c_1 \\ c_4 - 2c_1 \end{vmatrix}}_{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix}}_{c_4 - 2c_1} = 1 \cdot (-1)^{2+1} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix} \xrightarrow{c_2 - c_1} - 2 \begin{vmatrix} 1 & 0 \\ -1 & -3 \\ 2 & -3 \end{vmatrix}$$

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underbrace{\begin{vmatrix} c_3 - c_1 \\ c_4 - 2c_1 \end{vmatrix}}_{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix}}_{c_4 - 2c_1} = 1 \cdot (-1)^{2+1} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} - 2 \begin{vmatrix} 1 & 0 \\ -1 & -3 \\ 2 & -3 \end{vmatrix}$$

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underbrace{\begin{vmatrix} c_3 - c_1 \\ c_4 - 2c_1 \end{vmatrix}}_{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix}}_{c_4 - 2c_1} = 1 \cdot (-1)^{2+1} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} - 2 \begin{vmatrix} 1 & 0 & 0 \\ -1 & -3 & -5 \\ 2 & -3 & -9 \end{vmatrix}$$

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underbrace{\begin{matrix} c_3 - c_1 \\ c_4 - 2c_1 \end{matrix}}_{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix} = 1 \cdot (-1)^{2+1} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} - 2 \begin{vmatrix} 1 & 0 & 0 \\ -1 & -3 & -5 \\ 2 & -3 & -9 \end{vmatrix} = -2.$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underbrace{\begin{vmatrix} c_3 - c_1 \\ c_4 - 2c_1 \end{vmatrix}}_{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix}}_{=1 \cdot (-1)^{2+1}} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} - 2 \begin{vmatrix} 1 & 0 & 0 \\ -1 & -3 & -5 \\ 2 & -3 & -9 \end{vmatrix} = -2 \cdot 1 \cdot (-1)^{1+1} \begin{vmatrix} -3 & -5 \\ -3 & -9 \end{vmatrix}$$

14/23 < ▶

解

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \frac{c_3 - c_1}{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix} = 1 \cdot (-1)^{2+1} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} - 2 \begin{vmatrix} 1 & 0 & 0 \\ -1 & -3 & -5 \\ 2 & -3 & -9 \end{vmatrix} = -2 \cdot 1 \cdot (-1)^{1+1} \begin{vmatrix} -3 & -5 \\ -3 & -9 \end{vmatrix}$$

$$r_2-r_1$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \underbrace{\begin{vmatrix} c_3 - c_1 \\ c_4 - 2c_1 \end{vmatrix}}_{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix}}_{c_4 - 2c_1} = 1 \cdot (-1)^{2+1} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} - 2 \begin{vmatrix} 1 & 0 & 0 \\ -1 & -3 & -5 \\ 2 & -3 & -9 \end{vmatrix} = -2 \cdot 1 \cdot (-1)^{1+1} \begin{vmatrix} -3 & -5 \\ -3 & -9 \end{vmatrix}$$

$$\frac{r_2-r_1}{=} -2 \cdot 1 \cdot (-1)^{1+1} \begin{vmatrix} -3 & -5 \\ 0 & -4 \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 3 & -1 & -1 & 0 \\ 1 & 2 & 0 & -5 \end{vmatrix} = \frac{c_3 - c_1}{c_4 - 2c_1} \begin{vmatrix} 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 0 \\ 3 & -1 & -4 & -6 \\ 1 & 2 & -1 & -7 \end{vmatrix} = 1 \cdot (-1)^{2+1} \begin{vmatrix} 2 & 2 & 2 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix}$$

$$= -2 \begin{vmatrix} 1 & 1 & 1 \\ -1 & -4 & -6 \\ 2 & -1 & -7 \end{vmatrix} = \frac{c_2 - c_1}{c_3 - c_1} - 2 \begin{vmatrix} 1 & 0 & 0 \\ -1 & -3 & -5 \\ 2 & -3 & -9 \end{vmatrix} = -2 \cdot 1 \cdot (-1)^{1+1} \begin{vmatrix} -3 & -5 \\ -3 & -9 \end{vmatrix}$$

$$\frac{r_2 - r_1}{2} - 2 \cdot 1 \cdot (-1)^{1+1} \begin{vmatrix} -3 & -5 \\ 0 & -4 \end{vmatrix} = -2 \cdot (-3) \cdot (-4) = -24$$

 练习2 计算
 1 -3 0 -6

 2 1 -5 1

 0 2 -1 2

 1 4 -7 6

练习2 计算 $\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$ (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

练习2 计算 $\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$ (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix}
1 & -3 & 0 & -6 \\
2 & 1 & -5 & 1 \\
0 & 2 & -1 & 2 \\
1 & 4 & -7 & 6
\end{vmatrix}$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \underline{r_2 - 2r_1}$$

练习2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3 & 0 & -6 \\ \frac{r_2 - 2r_1}{r_2 - 2r_1} \end{vmatrix} = r_2 - 2r_1 \begin{vmatrix} 1 & -3$$

练习2 计算
$$\begin{bmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{bmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \frac{r_2 - 2r_1}{2} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 0 & 0 \end{vmatrix} = \frac{r_2 - 2r_1}{2} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 0 & 0 & 0 \end{vmatrix}$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \frac{r_2 - 2r_1}{2} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \end{vmatrix} =$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \frac{r_2 - 2r_1}{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \end{vmatrix} =$$

练习2 计算
$$\begin{bmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{bmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \frac{r_2 - 2r_1}{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} =$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix}$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \underbrace{\frac{r_2 - 2r_1}{r_4 - r_1}}_{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix}$$

 $c_1 + 2c_2$

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \frac{r_2 - 2r_1}{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix}$$

$$\begin{array}{c|c} c_{1}+2c_{2} & -5 \\ -1 \\ -7 & \end{array}$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \underbrace{\frac{r_2 - 2r_1}{r_4 - r_1}}_{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix}$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \frac{r_2 - 2r_1}{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix}$$

$$\begin{array}{c|cccc} c_{1}+2c_{2} & -3 & -5 \\ \hline c_{3}+2c_{2} & 0 & -1 \\ -7 & -7 & -7 & \end{array}$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \underbrace{\frac{r_2 - 2r_1}{r_4 - r_1}}_{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix}$$

$$\begin{array}{c|cccc} c_{1+2c_{2}} & -3 & -5 & 3 \\ \hline c_{3+2c_{2}} & 0 & -1 & 0 \\ -7 & -7 & -2 \end{array}$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \underbrace{\begin{vmatrix} r_2 - 2r_1 \\ r_4 - r_1 \end{vmatrix}}_{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix}$$

$$\frac{c_{1}+2c_{2}}{c_{3}+2c_{2}}\begin{vmatrix} -3 & -5 & 3\\ 0 & -1 & 0\\ -7 & -7 & -2 \end{vmatrix} = (-1).$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \frac{r_2 - 2r_1}{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix}$$

$$\frac{c_{1}+2c_{2}}{c_{3}+2c_{2}}\begin{vmatrix} -3 & -5 & 3\\ 0 & -1 & 0\\ -7 & -7 & -2 \end{vmatrix} = (-1)\cdot(-1)^{2+2}\begin{vmatrix} -3 & 3\\ -7 & -2 \end{vmatrix}$$

练习 2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \frac{r_2 - 2r_1}{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix}$$

$$\frac{c_{1}+2c_{2}}{c_{3}+2c_{2}}\begin{vmatrix} -3 & -5 & 3\\ 0 & -1 & 0\\ -7 & -7 & -2 \end{vmatrix} = (-1)\cdot(-1)^{2+2}\begin{vmatrix} -3 & 3\\ -7 & -2 \end{vmatrix}$$

$$=(-1)\cdot(6+21)$$

练习2 计算
$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix}$$
 (提示 先化第一列为 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$,再展开)

$$\begin{vmatrix} 1 & -3 & 0 & -6 \\ 2 & 1 & -5 & 1 \\ 0 & 2 & -1 & 2 \\ 1 & 4 & -7 & 6 \end{vmatrix} = \frac{r_2 - 2r_1}{r_4 - r_1} \begin{vmatrix} 1 & -3 & 0 & -6 \\ 0 & 7 & -5 & 13 \\ 0 & 2 & -1 & 2 \\ 0 & 7 & -7 & 12 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 7 & -5 & 13 \\ 2 & -1 & 2 \\ 7 & -7 & 12 \end{vmatrix}$$

$$\frac{c_{1}+2c_{2}}{c_{3}+2c_{2}}\begin{vmatrix} -3 & -5 & 3\\ 0 & -1 & 0\\ -7 & -7 & -2 \end{vmatrix} = (-1)\cdot(-1)^{2+2}\begin{vmatrix} -3 & 3\\ -7 & -2 \end{vmatrix}$$

$$=(-1)\cdot(6+21)=-27$$

$$\begin{vmatrix}
-3 & 1 & 4 & -2 \\
1 & 0 & -1 & 1 \\
2 & 1 & 0 & -3 \\
0 & -2 & 1 & 2
\end{vmatrix}$$

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{\underline{c_3 + c_1}}$$

解

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{\underline{c_3 + c_1}} \begin{vmatrix} -3 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 2 & 1 & 2 & -5 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$

按第二行展开

解

$$c_2 - c_1$$

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{\underline{c_3 + c_1}} \begin{vmatrix} -3 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 2 & 1 & 2 & -5 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$

$$\frac{\overline{g}}{\overline{g}} 1 \cdot (-1)^{2+1} \cdot \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & -5 \\ -2 & 1 & 2 \end{vmatrix}$$

$$\frac{\overline{c}_2 - \overline{c}_1}{\overline{c}_3 - \overline{c}_1} - \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & -6 \\ -2 & 3 & 4 \end{vmatrix}$$

$$\begin{vmatrix} -3 & 1 & 4 & -2 \\ 1 & 0 & -1 & 1 \\ 2 & 1 & 0 & -3 \\ 0 & -2 & 1 & 2 \end{vmatrix} \xrightarrow{\underline{c_3 + c_1}} \begin{vmatrix} -3 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 2 & 1 & 2 & -5 \\ 0 & -2 & 1 & 2 \end{vmatrix}$$

$$\frac{$$
按第二行展开}{1 \cdot (-1)^{2+1} \cdot \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & -5 \\ -2 & 1 & 2 \end{vmatrix}

$$\frac{c_2 - c_1}{c_3 - c_1} - \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & -6 \\ -2 & 3 & 4 \end{vmatrix} = - \begin{vmatrix} 1 & -6 \\ 3 & 4 \end{vmatrix}$$

按第二行展开
$$1 \cdot (-1)^{2+1} \cdot \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & -5 \\ -2 & 1 & 2 \end{vmatrix}$$

$$\frac{c_2 - c_1}{c_3 - c_1} - \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & -6 \\ -2 & 3 & 4 \end{vmatrix} = -\begin{vmatrix} 1 & -6 \\ 3 & 4 \end{vmatrix} = -22$$

练习 4 计算 $\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix}$

练习 4 计算
$$\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix} \xrightarrow{r_2 - 2r_1}$$

$$\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 100 & 3 \\ 0 & \lambda - 4 & 1900 & -96 \end{vmatrix}$$

练习 4 计算
$$\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 100 & 3 \\ 0 & \lambda - 4 & 1900 & -96 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix} \xrightarrow{\underline{r_2 - 2r_1}} \begin{vmatrix} 1 & 2 & 100 & 3 \\ 0 & \lambda - 4 & 1900 & -96 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix}$$

$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} \lambda - 4 & 1900 & -96 \\ 0 & \lambda & 2 \\ 0 & 2 & \lambda \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix} \xrightarrow{r_2 - 2r_1} \begin{vmatrix} 1 & 2 & 100 & 3 \\ 0 & \lambda - 4 & 1900 & -96 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix}$$
$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} \lambda - 4 & 1900 & -96 \\ 0 & \lambda & 2 \\ 0 & 2 & \lambda \end{vmatrix}$$
$$= (\lambda - 4) \begin{vmatrix} \lambda & 2 \\ 2 & \lambda \end{vmatrix}$$

$$\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix} \xrightarrow{\underline{r_2 - 2r_1}} \begin{vmatrix} 1 & 2 & 100 & 3 \\ 0 & \lambda - 4 & 1900 & -96 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix}$$
$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} \lambda - 4 & 1900 & -96 \\ 0 & \lambda & 2 \\ 0 & 2 & \lambda \end{vmatrix}$$
$$= (\lambda - 4) \begin{vmatrix} \lambda & 2 \\ 2 & \lambda \end{vmatrix} = (\lambda - 4)(\lambda^2 - 4)$$

$$\begin{vmatrix} 1 & 2 & 100 & 3 \\ 2 & \lambda & 2100 & -90 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix} \xrightarrow{\underline{r_2 - 2r_1}} \begin{vmatrix} 1 & 2 & 100 & 3 \\ 0 & \lambda - 4 & 1900 & -96 \\ 0 & 0 & \lambda & 2 \\ 0 & 0 & 2 & \lambda \end{vmatrix}$$
$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} \lambda - 4 & 1900 & -96 \\ 0 & \lambda & 2 \\ 0 & 2 & \lambda \end{vmatrix}$$
$$= (\lambda - 4) \begin{vmatrix} \lambda & 2 \\ 2 & \lambda \end{vmatrix} = (\lambda - 4)(\lambda^2 - 4) = (\lambda - 4)(\lambda - 2)(\lambda + 2)$$

We are here now...

1. 余子式、代数余子式

2. 行列式的展开

3. 行列式的展开Ⅱ

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

将其中 a_{21} , a_{22} , a_{23} 分别换成任意数 u, v, w 得:

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

将其中 a_{21} , a_{22} , a_{23} 分别换成任意数 u, v, w 得:

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例1 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算 $A_{13} + 4A_{23} - 5A_{33}$

行列式展开 18/23 ⊲ ▷

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例1 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算 $A_{13} + 4A_{23} - 5A_{33}$

$$\mathbf{H}$$
 $A_{13} + 4A_{23} - 5A_{33}$

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例1 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 , 计算 $A_{13} + 4A_{23} - 5A_{33}$

$$\mathbf{R}$$
 $A_{13} + 4A_{23} - 5A_{33} = 1 \cdot A_{13} + 4 \cdot A_{23} + (-5) \cdot A_{33}$

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例1 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 , 计算 $A_{13} + 4A_{23} - 5A_{33}$

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例1 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算 $A_{13} + 4A_{23} - 5A_{33}$

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例1 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算 $A_{13} + 4A_{23} - 5A_{33}$

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例1 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算 $A_{13} + 4A_{23} - 5A_{33}$

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例1 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
, 计算 $A_{13} + 4A_{23} - 5A_{33}$

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

例1 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算 $A_{13} + 4A_{23} - 5A_{33}$

行列式展开

$$M_{21} + M_{22} + M_{23}$$

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21}$$

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22}$$

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$= \begin{vmatrix} 1 & 2 & -2 \\ -1 & 1 & -1 \\ 8 & -6 & 5 \end{vmatrix}$$

例 2 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算第 2 行的余子式之和

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$= \begin{vmatrix} 1 & 2 & -2 \\ -1 & 1 & -1 \\ 8 & -6 & 5 \end{vmatrix} \stackrel{c_1 + c_2}{=}$$

例 2 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算第 2 行的余子式之和

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$= \begin{vmatrix} 1 & 2 & -2 \\ -1 & 1 & -1 \\ 8 & -6 & 5 \end{vmatrix} \stackrel{c_1 + c_2}{=}$$

例 2 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算第 2 行的余子式之和

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$= \begin{vmatrix} 1 & 2 & -2 \\ -1 & 1 & -1 \\ 8 & -6 & 5 \end{vmatrix} \stackrel{c_1 + c_2}{=} \begin{vmatrix} 3 \\ 0 \\ 2 \end{vmatrix}$$

例 2 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算第 2 行的余子式之和

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$= \begin{vmatrix} 1 & 2 & -2 \\ -1 & 1 & -1 \\ 8 & -6 & 5 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 0 & 1 \\ 2 & -6 \end{vmatrix}$$

例 2 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算第 2 行的余子式之和

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$= \begin{vmatrix} 1 & 2 & -2 \\ -1 & 1 & -1 \\ 8 & -6 & 5 \end{vmatrix} \xrightarrow{\frac{c_1 + c_2}{c_3 + c_2}} \begin{vmatrix} 3 & 2 \\ 0 & 1 \\ 2 & -6 \end{vmatrix}$$

例 2 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算第 2 行的余子式之和

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$= \begin{vmatrix} 1 & 2 & -2 \\ -1 & 1 & -1 \\ 8 & -6 & 5 \end{vmatrix} \xrightarrow{\frac{c_1 + c_2}{c_3 + c_2}} \begin{vmatrix} 3 & 2 & 0 \\ 0 & 1 & 0 \\ 2 & -6 & -1 \end{vmatrix}$$

例 2 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算第 2 行的余子式之和

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$= \begin{vmatrix} 1 & 2 & -2 \\ -1 & 1 & -1 \\ 8 & -6 & 5 \end{vmatrix} \xrightarrow{\frac{c_1 + c_2}{c_3 + c_2}} \begin{vmatrix} 3 & 2 & 0 \\ 0 & 1 & 0 \\ 2 & -6 & -1 \end{vmatrix} = \begin{vmatrix} 3 & 0 \\ 2 & -1 \end{vmatrix}$$

例 2 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算第 2 行的余子式之和

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$= \begin{vmatrix} 1 & 2 & -2 \\ -1 & 1 & -1 \\ 8 & -6 & 5 \end{vmatrix} \frac{c_1 + c_2}{c_3 + c_2} \begin{vmatrix} 3 & 2 & 0 \\ 0 & 1 & 0 \\ 2 & -6 & -1 \end{vmatrix} = \begin{vmatrix} 3 & 0 \\ 2 & -1 \end{vmatrix} = -3$$

例 2 设行列式
$$D = \begin{vmatrix} 1 & 2 & -2 \\ 3 & 4 & 0 \\ 8 & -6 & 5 \end{vmatrix}$$
 ,计算第 2 行的余子式之和

$$M_{21} + M_{22} + M_{23} = (-1) \cdot A_{21} + 1 \cdot A_{22} + (-1) \cdot A_{23}$$

$$= \begin{vmatrix} 1 & 2 & -2 \\ -1 & 1 & -1 \\ 8 & -6 & 5 \end{vmatrix} = \begin{vmatrix} c_{1} + c_{2} \\ c_{3} + c_{2} \end{vmatrix} = \begin{vmatrix} 3 & 2 & 0 \\ 0 & 1 & 0 \\ 2 & -6 & -1 \end{vmatrix} = \begin{vmatrix} 3 & 0 \\ 2 & -1 \end{vmatrix} = -3$$

例3设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

行列式展开

例3 设
$$D = \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{vmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

例3设
$$D = \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{vmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

例3设
$$D = \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{vmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41}$$

例3设
$$D = \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{vmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42}$$

行列式展开

例3设
$$D = \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{vmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$
$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43}$$

例3设
$$D = \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{vmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$
$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

例 3 设
$$D = \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{vmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix}$$

例 3 设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2}$$

例3设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -2 \\ 0 & 1 & 0 \\ 4 & -6 & 5 \\ -3 & 4 & -2 \end{vmatrix}$$

例3设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix}$$

例3 设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{\underline{c_3 - 3c_2}} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix} = \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \\ -3 & -7 & -2 \end{vmatrix}$$

行列式展开 20/23 ⊲ ⊳

例3设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix} = \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \\ -3 & -7 & -2 \end{vmatrix}$$

$$r_3 + r_1$$

例3 设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix} = \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \\ -3 & -7 & -2 \end{vmatrix}$$

$$\frac{r_3 + r_1}{4} \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \end{vmatrix}$$

行列式展开 20/23 ⊲ ▷

例3 设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix} = \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \\ -3 & -7 & -2 \end{vmatrix}$$

行列式展开 20/23 ∢ ▷

例3设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & 6 & 0 & 5 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & 6 & 19 & 5 \end{vmatrix} = \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix} = \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \\ -3 & -7 & -2 \end{vmatrix}$$

$$\begin{array}{c|cccc} & 3 & -5 & -2 \\ 4 & 18 & 5 \\ 0 & -12 & -4 \end{array} \right| \stackrel{c_2 - 3c_3}{=}$$

行列式展开 20/23 ⊲ ⊳

例3设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$\begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \end{vmatrix} |_{c_3-3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \end{vmatrix} |_{a=10} 3 -\frac{5}{10}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix} = \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \\ -3 & -7 & -2 \end{vmatrix}$$

行列式展开 20/23 ⊲ ⊳

例3 设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix} = \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \\ -3 & -7 & -2 \end{vmatrix}$$

$$\begin{vmatrix} -3 & 4 & 5 & -2 \\ 4 & 18 & 5 \\ 0 & -12 & -4 \end{vmatrix} = \begin{vmatrix} -3 & 4 & -1 \\ 2 & -3c_3 \\ 4 & 3 & 5 \\ 0 & 0 & -4 \end{vmatrix}$$

行列式展开 20/23 ⊲ ▷

例3 设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix} = \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \\ -3 & -7 & -2 \end{vmatrix}$$

行列式展开 20/23 ∢ ▷

例3 设
$$D = \begin{bmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -1 & 3 & -2 & 1 \end{bmatrix}$$
, 计算 $3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$

$$3M_{41} + 4M_{42} - 5M_{43} - 2M_{44}$$

$$= (-3) \cdot A_{41} + 4 \cdot A_{42} + 5 \cdot A_{43} + (-2) \cdot A_{44}$$

$$= \begin{vmatrix} 3 & 2 & 1 & -2 \\ 0 & 1 & 3 & 0 \\ 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \xrightarrow{c_3 - 3c_2} \begin{vmatrix} 3 & 2 & -5 & -2 \\ 0 & 1 & 0 & 0 \\ 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix} = \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \\ -3 & -7 & -2 \end{vmatrix}$$

$$\begin{vmatrix} 4 & -6 & 0 & 5 \\ -3 & 4 & 5 & -2 \end{vmatrix} \qquad \begin{vmatrix} 4 & -6 & 18 & 5 \\ -3 & 4 & -7 & -2 \end{vmatrix} \qquad \begin{vmatrix} -3 & -7 & -2 \\ 3 & 1 & -2 \end{vmatrix}$$

$$\frac{r_3+r_1}{2} \begin{vmatrix} 3 & -5 & -2 \\ 4 & 18 & 5 \\ 0 & -12 & -4 \end{vmatrix} = \frac{c_2-3c_3}{2} \begin{vmatrix} 3 & 1 & -2 \\ 4 & 3 & 5 \\ 0 & 0 & -4 \end{vmatrix} = (-4) \cdot \begin{vmatrix} 3 & 1 \\ 4 & 3 \end{vmatrix} = -20$$

行列式展开 20/23 ∢ ▷

例4设
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ 8 & 27 & 64 & 125 \end{vmatrix}$$
, 计算 $M_{41} - M_{42} + M_{43} - M_{44}$

行列式展开 21/23 ⊲ ▷

例4 设
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ 8 & 27 & 64 & 125 \end{vmatrix}$$
, 计算 $M_{41} - M_{42} + M_{43} - M_{44}$

$$M_{41} - M_{42} + M_{43} - M_{44}$$

例4 设
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ 8 & 27 & 64 & 125 \end{vmatrix}$$
, 计算 $M_{41} - M_{42} + M_{43} - M_{44}$

$$M_{41} - M_{42} + M_{43} - M_{44}$$
$$= -A_{41} - A_{42} - A_{43} - A_{44}$$

行列式展开 21/23 ⊲ ▷

例 4 设
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ 8 & 27 & 64 & 125 \end{vmatrix}$$
, 计算 $M_{41} - M_{42} + M_{43} - M_{44}$

$$M_{41} - M_{42} + M_{43} - M_{44}$$

$$= -A_{41} - A_{42} - A_{43} - A_{44}$$

$$= \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ -1 & -1 & -1 & -1 \end{vmatrix}$$

21/23 ⊲ ⊳ 行列式展开

例 4 设
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ 8 & 27 & 64 & 125 \end{vmatrix}$$
, 计算 $M_{41} - M_{42} + M_{43} - M_{44}$

$$M_{41} - M_{42} + M_{43} - M_{44}$$

$$= -A_{41} - A_{42} - A_{43} - A_{44}$$

$$= \begin{vmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 4 & 5 \\ 4 & 9 & 16 & 25 \\ -1 & -1 & -1 & -1 \end{vmatrix} = 0$$

21/23 ⊲ ⊳ 行列式展开

行列式展开的进一步应用

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

将其中 a_{21} , a_{22} , a_{23} 分别换成任意数 u, v, w 得:

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

行列式展开 22/23 ⊲ ▷

行列式展开的进一步应用

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

将其中 a_{21} , a_{22} , a_{23} 分别换成任意数 u, v, w 得:

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

取 u, v, w 为第一行元素 a_{11} , a_{12} , a_{13}

$$\Rightarrow a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

行列式展开的进一步应用

$$a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

将其中 a_{21} , a_{22} , a_{23} 分别换成任意数 u, v, w 得:

$$\Rightarrow uA_{21} + vA_{22} + wA_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ u & v & w \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

取 u, v, w 为第一行元素 a_{11} , a_{12} , a_{13}

$$\Rightarrow a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0$$

定理 对于行列式 D 的第 r 行元素和第 i 行代数余子式,我们有

 a_{r1}

 a_{r2}

 a_{rn}

定理 对于行列式 D 的第 r 行元素和第 i 行代数余子式,我们有

 $a_{r1}A_{i1}$ $a_{r2}A_{i2}$ $a_{rn}A_{in}$

$$a_{r1}A_{i1} + a_{r2}A_{i2} + \cdots + a_{rn}A_{in}$$

$$a_{r1}A_{i1} + a_{r2}A_{i2} + \dots + a_{rn}A_{in} = \begin{cases} & \exists i = r \\ & \exists i \neq r \end{cases}$$

$$a_{r1}A_{i1} + a_{r2}A_{i2} + \dots + a_{rn}A_{in} = \begin{cases} D & 若i = r \\ & \\ & \\ & \\ \end{cases}$$

$$a_{r1}A_{i1} + a_{r2}A_{i2} + \dots + a_{rn}A_{in} = \begin{cases} D & \exists i = r \\ 0 & \exists i \neq r \end{cases}$$

定理 对于行列式 D 的第 r 行元素和第 i 行代数余子式,我们有

$$a_{r1}A_{i1} + a_{r2}A_{i2} + \dots + a_{rn}A_{in} = \begin{cases} D & \exists i = r \\ 0 & \exists i \neq r \end{cases}$$

类似地,对于行列式 D 的第 s 列元素和第 j 列代数余子式,有

$$\alpha_{1s}A_{1j}+\alpha_{2s}A_{2j}+\cdots+\alpha_{ns}A_{nj}=$$

定理 对于行列式 D 的第 r 行元素和第 i 行代数余子式,我们有

$$a_{r1}A_{i1} + a_{r2}A_{i2} + \dots + a_{rn}A_{in} = \begin{cases} D & \exists i = r \\ 0 & \exists i \neq r \end{cases}$$

类似地,对于行列式 D 的第 s 列元素和第 j 列代数余子式,有

$$a_{1s}A_{1j} + a_{2s}A_{2j} + \dots + a_{ns}A_{nj} = \begin{cases} & \exists j = s \\ & \exists j \neq s \end{cases}$$

行列式展开 23/23 ⊲ ▷

定理 对于行列式 D 的第 r 行元素和第 i 行代数余子式,我们有

$$a_{r1}A_{i1} + a_{r2}A_{i2} + \dots + a_{rn}A_{in} = \begin{cases} D & \exists i = r \\ 0 & \exists i \neq r \end{cases}$$

类似地,对于行列式 D 的第 s 列元素和第 j 列代数余子式,有

$$a_{1s}A_{1j} + a_{2s}A_{2j} + \dots + a_{ns}A_{nj} = \begin{cases} D & \exists j = s \\ & \exists j \neq s \end{cases}$$

行列式展开 23/23 ⊲ ▷

定理 对于行列式 D 的第 r 行元素和第 i 行代数余子式,我们有

$$a_{r1}A_{i1} + a_{r2}A_{i2} + \dots + a_{rn}A_{in} = \begin{cases} D & \exists i = r \\ 0 & \exists i \neq r \end{cases}$$

类似地,对于行列式 D 的第 s 列元素和第 j 列代数余子式,有

$$a_{1s}A_{1j} + a_{2s}A_{2j} + \dots + a_{ns}A_{nj} = \begin{cases} D & \exists j = s \\ 0 & \exists j \neq s \end{cases}$$

行列式展开 23/23 ⊲ ▷