KonukhinaOV 01112024-160224

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.328	-164.0	11.236	88.0	0.043	68.4	0.309	-60.4

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который *не может* обеспечить согласование со стороны плеча 1 на частоте 1.2 $\Gamma\Gamma$ ц при наложении следующих ограничений:

- 1 W_T больше 36 Ом;
- 2 θ_Π меньше $\frac{\pi}{2}$.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой $R=163~{\rm Om}.$

Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=2.4~\Gamma\Gamma$ ц и $f_{\rm B}=4.9~\Gamma\Gamma$ ц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен 0.22 + j0;
- 3 использован *наикратчайший* отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\scriptscriptstyle \rm H}, f_{\scriptscriptstyle \rm B}]$?

Варианты ОТВЕТА:

- 1) 0.6 дБ
- 2) 1.2 дБ
- 3) 0.3 дБ
- 4) 1.6 дБ

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте 7 $\Gamma\Gamma$ ц с помощью калибровочной меры с названием "короткое замыкание". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения:

-0.37 + 0.93i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 67.5 cm
- 2) 13.9 см
- 3) 77.4 cm
- 4) 21.5 cm

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon=3,55$):

- 1 толщиной 0.508 мм и с волновым сопротивлением 65 Ом;
- 2 толщиной 0.203 мм и с волновым сопротивлением 41 Ом;
- 3 толщиной 0.305 мм и с волновым сопротивлением 40 Ом;
- 4 толщиной 0.406 мм и с волновым сопротивлением 74 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 3 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 3 – Различные реализаци и Г-образной цепи согласования

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\scriptscriptstyle \rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\scriptscriptstyle \rm H}=0.62f_{\scriptscriptstyle \rm B}$:

```
s_{11}=0.787-0.176і.
(Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 175 Om
- 2) 162 O_M
- 3) 217 Ом
- 4) 15 Om