

Training-free Object Counting with Prompts

Zenglin Shi¹, Ying Sun^{1, 2}, Mengmi Zhang^{1, 2, 3}

¹I2R, Agency for Science, Technology and Research, Singapore ²CFAR, Agency for Science, Technology and Research, Singapore ³Nanyang Technological University (NTU), Singapore

Goal of this work

Building a training-free counting model, where we can specify what to count with prompts

Contributions

- The class-agnostic counting task is reformulated as a prompt-based segmentation problem to eliminate the need for extensive data collection and model training.
- A new prior-guided mask generation method is proposed to improve the segmentation efficiency and accuracy by incorporating three types of priors into SAM.
- A new two-stage approach for counting objects specified through text is proposed by integrating reference object selection with the prior-guided mask generation method.

Methods

Counting by segmentation with vanilla SAM

- Segmenting all objects is computationally
- threshold presents a significant challenge.

Three priors:

Counting by segmentation with prior-guided SAM

- Similarity prior: Create positive and negative points as SAM prompts by utilizing a similarity map.
- Segment prior: Remove redundant positive points by leveraging an overall segment map.
- Semantic prior: Use reference object's semantic feature enables SAM to identify target objects better.

Two advantages:

- Only target objects are segmented
- Improved efficiency and accuracy.

Experiments

Metrics: Mean Absolute Error (MAE); Root Mean Square Error (RMSE); Normalized Relative Error (NAE); Squared Relative Error (SRE)

Counting with point and box prompts CARPK Training Prompt $RMSE \downarrow NAE \downarrow SRE \downarrow$ CFOCNet+ [27] BMNet+ [19]

Ablation study										
Thre	e types of p	riors	FSC-147 MAE RMSE NAE SR							
Similarity	Segment	Semantic	MAE ↓	RMSE ↓	NAE ↓	SRE ↓				
			42.48	137.59	1.14	8.13				
\checkmark			21.36	134.07	0.27	4.29				
	\checkmark		26.14	134.98	0.51	4.84				
		\checkmark	37.17	134.86	1.12	8.19				
\checkmark	\checkmark		20.38	134.32	0.31	3.89				
\checkmark		\checkmark	20.83	133.16	0.38	5.29				
\checkmark	\checkmark	\checkmark	19.95	132.16	0.29	3.80				

Counting with text prompt

	Training	FSC-147					
	219	MAE ↓	RMSE ↓	NAE ↓	SRE ↓		
Xu et al. [24]	Yes	22.09	115.17	0.34	3.74		
SAM	No	42.48	137.50	1.14	8.13		
Ours (vanilla)	No	32.86	142.89	0.44	5.12		
Ours	No	24.79	137.15	0.37	4.52		

- Perform much better than the vanilla method and original SAM
- Competitive results compared to learning-based approaches
- Succeed in the scenes where objects are individually visible
- Fail in extreme scenes where individual objects are hard to distinguish

