ALGEBRA LINEAL 520131

Listado 6 (Espacios vectoriales con producto interior.)

1. a) Considere \mathbb{R}^2 con el producto interior usual. Si x=(1,2) y y=(-1,1), encuentre $v\in\mathbb{R}^2$ tal que

$$\langle v, x \rangle = -2 \ \land \ \langle v, y \rangle = 3.$$

b) Demuestre que para cada vector $u \in \mathbb{R}^2$, se tiene

$$u = \langle u, e_1 \rangle e_1 + \langle u, e_2 \rangle e_2$$

donde $\{e_1, e_2\}$ es la base canónica de \mathbb{R} .

(En práctica.)

- 2. Encuentre una base ortonormal para \mathbb{R}^3 a partir de $\{(1,1,0),(-1,1,0),(-1,1,1)\}$.
- 3. Dado el vector $(2,1,-1) \in \mathbb{R}^3$, construya a partir de él una base ortonormal de \mathbb{R}^3 . (En práctica.)
- 4. Considere el espacio vectorial \mathbb{R}^3 con el p.i. usual. Sea $S = \langle \{(1,1,1), (-1,1,0)\} \rangle$.
 - a) Caracterice S^{\perp} y determine su dimensión.
 - b) Encontrar una base B ortonormal de \mathbb{R}^3 tal que uno de sus vectores sea elemento de S^{\perp} .
- 5. Considere el espacio vectorial real $\mathcal{P}_2(\mathbb{R})$ con el p.i.

$$\langle p, q \rangle = 2 \int_0^2 p(x)q(x)dx$$

Pruebe que el conjunto $\{1, x-2, x^2-2\}$ es l.i. y ortonormalice respecto del p.i. dado.

6. En \mathbb{C}^2 se define el producto interior

(En práctica.)

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y}_i.$$

Pruebe que los vectores $x=(3,-i),\,y=(2,6i)$ son ortogonales y normalícelos.

7. Pruebe que en el espacio $C_{\mathbb{R}}[0,1]$, con el producto interior

$$\langle f, g \rangle = \int_0^1 f(t)g(t)dt,$$

el conjunto $\{1, \sqrt{3}(2t-1), \sqrt{5}(6t^2-6t+1)\}$ es una base ortonormal.

8. En el espacio $C_{\mathbb{R}}[0,2\pi]$, con el producto interior

$$\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx,$$

el conjunto $\{\sin(x),\cos(x)\}\$ es ortogonal.

(En práctica.)

9. Pruebe que $\{\sin(nx),\cos(nx),1\}$ es un conjunto ortogonal con el producto interior

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx.$$

10. En el espacio de los polinomios reales de grado menor o igual que 2 con el producto

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx.$$

construya a partir de la base $\{1, x, x^2\}$ una base ortonormal.

- 11. Sean x e y vectores de un espacio vectorial con p.i. tales que x+y es ortogonal a x-y. Demuestre que ||x|| = ||y||.
- 12. Sea V un \mathbb{K} -espacio vectorial con p.i. Demuestre que: $\forall x, y \in V$, (En práctica.)

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$
.

13. Se
a $W=\{(x,y,z)\in\mathbb{R}^3: x=2y=z\}.$ Halle W^\perp . ¿Qué represent
an geométricamente W y $W^\perp?$