Report on UFLDL-Part II

Yunfei WANG

¹School of Computer Science & Technology Huazhong University of Science & Technology

June 18th, 2013

Table of contents

- Softmax Regression
 - Logistic Regression
 - Generalize Logistic Regression to Softmax Regression
 - Cost Function
 - Properties of softmax regression parameterization
 - Weight Decay
 - Softmax Regression vs. Logistic Regression
- 2 Linear Decoders with Autoencoders
- Self-Taught Learning

Logistic Regression-Binary Classification

$$h_{\theta}(x) = \frac{1}{1 + \exp(-\theta^T x)} \propto \exp(\theta^T x)$$
 (1)

Training set $\{(x^1, y^1), (x^2, y^2), \cdots, (x^m, y^m) | x^i \in \Re^{n+1}, y^i \in \{0, 1\}\}.$

Train the model parameters θ to minimize the following cost function:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{i} \log h_{\theta}(x^{i}) + (1 - y^{i}) \log(1 - h_{\theta}(x^{i})) \right]$$
 (2)

→ < □ → < □ → < □ → < □ → </p>

□ < </p>

→ < □ </p>

□

→ < □ </p>

□

→ < □ </p>

□

→

□

→

□

→

□

→

□

→

□

→

□

→

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

□

Generalize Logistic Regression to Softmax Regression

Training set $\{(x^1, y^1), (x^2, y^2), \cdots, (x^m, y^m) | x^i \in \Re^{n+1}, y^i \in \{1, \cdots, k\}\}.$ Estimate the probability for each class:

$$h_{\theta}(x^{i}) = \begin{bmatrix} p(y^{i} = 1|x;\theta) \\ p(y^{i} = 2|x;\theta) \\ \vdots \\ p(y^{i} = k|x;\theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} \exp(\theta_{j}^{T}x^{i})} \begin{bmatrix} \exp(\theta_{1}^{T}x^{i}) \\ \exp(\theta_{2}^{T}x^{i}) \\ \vdots \\ \exp(\theta_{k}^{T}x^{i}) \end{bmatrix}$$
(3)

where $\theta_1, \theta_2, \cdots, \theta_k \in \Re^{n+1}$ are parameters of model, θ is a matrix obtained by stacking up $\theta_1, \theta_2, \cdots, \theta_k$ in rows.

Cost Function I

Cost Function used for softmax regression:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{j=1}^{k} 1\{y^i = j\} \log \frac{\exp(\theta_j^T x^i)}{\sum_{l=1}^{k} \exp(\theta_l^T x^i)} \right]$$
(4)

where $1\{\cdot\}$ is indicator function: $1\{True\}=1, 1\{False\}=0.$

Taking partial derivatives, we get the following gradient:

$$\nabla_{\theta_j} J(\theta) = -\frac{1}{m} \sum_{i=1}^m \left[x^i (1\{y^i = j\} - p(y^i = j | x^i; \theta)) \right]$$
 (5)

Armed with the derivative, algorithm such as gradient descent an L-BFGS can be used to minimize $J(\theta)$.

Cost Function II

Next,make a brief derivation for the gradient above. Considering a single sample (x^i,y^i) :

• when $y^i = j$:

$$J(\theta; x^{i}) = \sum_{j=1}^{k} 1\{y^{i} = j\} \log \frac{\exp(\theta_{j}^{T} x^{i})}{\sum_{l=1}^{k} \exp(\theta_{l}^{T} x^{i})} = \log \frac{\exp(\theta_{j}^{T} x^{i})}{\sum_{l=1}^{k} \exp(\theta_{l}^{T} x^{i})}$$
(6)

$$\nabla_{\theta_j} J(\theta; x^i) = x^i (1 - p(y^i = j | x^i; \theta))$$
(7

• when $y^i = t \neq j$:

$$J(\theta; x^{i}) = \sum_{j=1}^{k} 1\{y^{i} = j\} \log \frac{\exp(\theta_{j}^{T} x^{i})}{\sum_{l=1}^{k} \exp(\theta_{l}^{T} x^{i})} = \log \frac{\exp(\theta_{t}^{T} x^{i})}{\sum_{l=1}^{k} \exp(\theta_{l}^{T} x^{i})}$$
(8)

 $\nabla_{\theta_j} J(\theta; x^i) = x^i (0 - p(y^i = j | x^i; \theta)) \tag{9}$

Properties of softmax regression parameterization

Softmax regression has a "redundant" set of parameters:

$$p(y^{i} = j | x^{i}; \theta) = \frac{\exp((\theta_{j} - \psi)^{T} x^{i})}{\sum_{l=1}^{k} \exp((\theta_{l} - \psi)^{T} x^{i})}$$

$$= \frac{\exp(\theta_{j}^{T} x^{i}) \exp(-\psi^{T} x^{i})}{\sum_{l=1}^{k} \exp(\theta_{l}^{T} x^{i}) \exp(-\psi^{T} x^{i})}$$

$$= \frac{\exp(\theta_{j}^{T} x^{i})}{\sum_{l=1}^{k} \exp(\theta_{l}^{T} x^{i})}$$
(10)

In other words, subtracting ψ from every θ_j doesn't affect predictions at all.

- lacksquare By setting $\psi= heta_1$, we could eliminate one parameter $heta_1$
- Preprocessing inner product to avoid overflow when computing $\exp(\theta_l^T x^i)$

Weight Decay

Add weight decay term to penalize large values of parameters. Our cost function is now:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{j=1}^{k} 1\{y^i = j\} \log \frac{\exp(\theta_j^T x^i)}{\sum_{l=1}^{k} \exp(\theta_l^T x^i)} \right] + \frac{\lambda}{2} \sum_{i=1}^{k} \sum_{j=1}^{n} \theta_{ij}^2$$
(11)

With weight decay term(for any $\lambda \geq 0$),the cost function $J(\theta)$ is strictly convex and is guaranteed to have a unique solution.

To apply an optimization algorithm, compute its derivative:

$$\nabla_{\theta_j} J(\theta) = -\frac{1}{m} \sum_{i=1}^m \left[x^i (1\{y^i = j\} - p(y^i = j | x^i; \theta)) \right] + \lambda \theta_j$$
 (12)

Because $J(\theta)$ is convex,algorithms such as gradient descent and L-BFGS are guaranteed to converge to global minimum.

Softmax Regression vs. Logistic Regression

For multi-class classification application, which one is more suitable?

Mutually exclusive classes

- indoor_scene
- outdoor_urban_scene
- outdoor_wilderness_scene

Softmax regression is appropriate in this situation.

Classes not mutually exclusive

- pop music
- dance music
- vocal music

Building separate logistic regression classifiers.

Experiments on Softmax/Logistic Regression

Dataset	Dimensionality	Number of Samples
Training Data	784	60000
Testing Data	784	10000

Table: MNIST

Classifier	Accuracy	Time Consumed
Softmax Regression	92.63%	352sec
Logistic Regression	81.84%	218sec

Table: Experiments Results

Linear Decoders with Autoencoders

Each neuron in output layer compute the following:

$$z^3 = W^2 a^2 + b^2 (13)$$

$$\hat{x} = a^3 = f(z^3)$$
 (14)

Figure: Autoencoder Limitation:Input must be scaled in the range [0,1].

Linear decoder:modify the activation function of output layer into an identity one,leaving the others unchanged.

$$\hat{x} = a^3 = z^3 = W^2 a^2 + b^2 \tag{15}$$

Advantage: Real-valued inputs without pre-scale can be processed! We only need to change the error terms of output layer:

$$\delta_i^3 = \frac{\partial}{\partial z_i} \frac{1}{2} \|y - \hat{x}\|^2 = (\hat{x}_i - y_i) \cdot f'(z_i^3) = (\hat{x}_i - y_i)$$
 (16)

Experiments on Linear Decoder

 ${\tt Dataset:} 100,000 \; {\sf small} \; 8 \times 8 \; {\sf patches} \; {\sf sampled} \; {\sf from} \; {\sf STL-10} \; {\sf color} \; {\sf images}.$

Figure: Training Samples

Figure: PCA-Whitened Samples

Figure: Learned Features(Time Consumed:2305sec)

Self-Taught Learning

An aphorism in machine learning," sometimes it's not who has the best algorithm than wins; it's who has the most data."

Self-Taught Learning:exploit massive unlabeled data effectively to learn good feature representations of input.

For classification task, we will combine feature representations extracted from labeled data and their labels to train a classifier.

Self-Taught Learning and Semi-Supervised Learning

- Self-Taught Learning
 Unlabeled and labeled data may come from different distributions.
- Semi-Supervised Learning
 Unlabeled and labeled data comes from exactly the same distribution.

Apparently, Self-Taught Learning is more broadly applicable.

Learning Features

Train a sparse autoencoder on unlabeled data to get parameters W^1, b^1, W^2, b^2 :

Given any input x, compute the corresponding vector of activations a of hidden units:

Next,for a labeled sample (x_l,y_l) ,we can use (a_l,y_l) or $((x_l,a_l),y_l)$ to represent it.

Experiments on Self-Taught Learning

Learned Features+Softmax Classifier

Dataset	Dimensionality	Number of Samples
Unlabeled Data $(5\sim 10)$	784	29404
Training Data $(0\sim4)$	784	15298
Testing Data $(0\sim4)$	784	15298

Figure: Learned Features on unlabeled data

Accuray:98.3%, Time Consumed:6064sec