

a ce d'ec da est un chemin entérien

abdec er un whe hamiltonien et donc ausi un chemin hamiltonien

a c, b c, a c, b c, a est un y che euleien et donc un chemin eulérien

par c, , ce et c3 oblige à parser deux fois soit par a ou par l.

- 63 me contient par de cycle entérien can il y a des sommets de dépte impair . 63 — chemin entérien can il y a >2 sommets . a c e g f d l'est un chemin hamiltonien.

Un cycle hamiltonien contiendrait forcement la séquence ce g f d mais on me pent par y induce a et l de façon satisfaisante -1 63 n'a par de cycle hamiltonien

Etape! les sommets de dogré impais sont A, C, Fet C. de graphe
obtenu pou le calcul ele leurs distancer 2 à 2 est

Etere? Un matching de poids minimal des graphe précédent est

Et que 3 On applique l'algorithme de Fleury mu

On obtient pou exemple ABCEFBCEAEGHFHGA.

Il enix heaucon d'antres volutions mais elles sont bouter de poide épail

(romme des poids des arêtes du graphe de départ + 3 + 4).

- 1. Recherche d'un artre couvrant de poids minimals : D (m kg m)
 Par cour en presendeur sur cet artre : D (m)
- =) complexité en $O(m \log m)$
- 2. It et un grophe connerce pui relie dous les tommets du grophe de départ : tout auble couvant de H est un arbie couvant du grophe de départ.

par l'algorithme et U un artre couvrant de H.

Alors $\omega(T) \leq \omega(U)$ can Test minimal $\omega(U) \leq \omega(H)$ can West un sous-graphe de H.

De plus, mine le parcour en prépondeur le long de T parcourt chaque arété deux fois (une fois en dercendant, une fois en montant). Le parcours pour le voyageur coûte donc 2 w (T). Le coût est par consépuent inférieur à 2 w (H), cad égal à au plus deux fois le coût optimal.