Exercises for Chapter 7

- **7.1** We want to predict the sales figures of a startup online shop from the sales of the previous three months: 5000 Euros, 10000 Euros, 15000 Euros.
 - a) Compute the μ - σ -standardized time series.
 - b) Construct the (standardized) regression data set for a forecasting model with time horizon 1 and find the optimal linear autoregressive forecasting model with offset $(f(0) \neq 0)$ and time horizon 1 for these data.
 - c) Using this forecasting model compute the (unstandardized) sales forecasts for the next two months.
 - d) Which value will this linear forecasting model yield if time goes to infinity?
- **7.2** We construct a *single* layer perceptron (SLP) using the linear forecasting model from Exercise 7.1 followed by a single neuron with hyperbolic tangent activation function. If necessary use the following approximations: $\tanh(3/4) = 5/8$, $\tanh(1) = 3/4$, $\tanh(3/2) = 29/32$, $\tanh(7/4) = 15/16$, $\tanh(2) = 1$.
 - a) Initialize the SLP with (the standardized equivalent of) 5000 Euros and compute the (unstandardized) sales forecasts for the following 3 months.
 - b) Which value will this SLP forecasting model yield if time goes to infinity?

- **7.1** We want to predict the sales figures of a startup online shop from the sales of the previous three months: 5000 Euros, 10000 Euros, 15000 Euros.
 - a) Compute the μ - σ -standardized time series.

The mean is
$$\mu = (5000 + 40000 + 15000) /2 = 10000$$

The standard deviation is

$$6 = \sqrt{\frac{1}{3.1}} \left[(5000 - 10000)^2, (10000 - 10000)^2 + (15000 - 10000)^2 \right]$$

$$= \sqrt{\frac{1}{2}} \left(5000^2 + 0 + 5000^2 \right) = 5000$$

So, the standardized time series is

b) Construct the (standardized) regression data set for a forecasting model with time horizon 1 and find the optimal linear autoregressive forecasting model with offset $(f(0) \neq 0)$ and time horizon 1 for these data.

The forecasting model is $X_t = a \times_{t-1} + b$. For the given data this yields $X_2 = a \times_2 + b \implies 0 = -a + b$ $Y_3 = a \times_2 + b \implies 0 = -a + b$ $Y_4 = a \times_2 + b \implies 0 = -a + b$

- c) Using this forecasting model compute the (unstandardized) sales forecasts for the next two months.
- d) Which value will this linear forecasting model yield if time goes to infinity?

c) We compute the standardized forecasts as $X_4 = X_3 + 1 = 1 + 1 = 2$ and $X_5 = X_4 + 1 = 2 + 1 = 3$, which corresponds to the unstandardized forecasts $Y_4 = 2.5000 + 10000 = 20000$ and $Y_5 = 3.5000 + 10000 = 25000$

- **7.2** We construct a *single* layer perceptron (SLP) using the linear forecasting model from Exercise 7.1 followed by a single neuron with hyperbolic tangent activation function. If necessary use the following approximations: $\tanh(3/4) = 5/8$, $\tanh(1) = 3/4$, $\tanh(3/2) = 29/32$, $\tanh(7/4) = 15/16$, $\tanh(2) = 1$.
 - a) Initialize the SLP with (the standardized equivalent of) 5000 Euros and compute the (unstandardized) sales forecasts for the following 3 months.

Applying to hyperbolic tangent yields the fore casting model

* tanh (x+211)

The unstandardized inizialization $y_2 = 5000$ corresponds to the standardized initialization $x_1 = 15000 - 10000 | 15000 = -1$. The standardized forecusts are then computed as

 $X_2 = \tanh(-1+1) = 0$ $X_4 = \tanh(3h.1) \approx 15/16$ $X_3 = \tanh(0+1) \approx 3/4$

This corresponds to the unstandardized forecasts

 $y = (-1.5000 + 10000, 0.5000 + 10000, \frac{3}{14}.5000 + 10000, \frac{15}{16}.5000 + 10000)$ = (5000, 10000, 13750, 14687.5)

b) Which value will this SLP forecasting model yield if time goes to infinity?

As time goes to intinty we have $X \cap X$ tanh $(X \cap X \cap X)$. With the approximation $\tanh(2) = 1$, we can write 1×1 tanh $(1+1) \implies X \cap 1 \implies Y \cap 2 = 1.5000 + 1000 = 15000$