RNN Intro

What are RNNs?

- Recurrent Neural Networks (RNNs) are a class of artificial neural networks designed to work with **sequential data or time series data**.
- Unlike traditional feedforward neural networks, RNNs have connections that form directed cycles, allowing information to persist from one step of the sequence to the next.

The key is:

RNNs **remember** past inputs — they have a "memory" of previous steps in a sequence.

RNNs are a type of neural network that work really well with sequence data, like:

- Text (e.g., predicting next word)
- Speech/audio
- Ime series (stock prices, weather)

How Does It Work?

Imagine you're reading a sentence word-by-word. RNNs process:

```
Input 1 \rightarrow Hidden state \rightarrow Output 1
Input 2 + Hidden state from step 1 \rightarrow Output 2
Input 3 + Hidden state from step 2 \rightarrow Output 3
...
```

Each step shares info forward

So the network "remembers" what it saw before.

• The word "Recurrent" means "repeating" or "looping".

• Unlike normal neural networks, an RNN has a **memory** — it remembers past inputs when making decisions.

Simple Analogy:

Imagine you're reading a sentence, "I went to the market and bought... ... "

To guess the next word, you need to remember what came before. A regular neural network looks at each word separately, but an RNN remembers the past words and uses that to guess what comes next.

How RNN Works Internally?

Let's say you feed in a sentence:

"I love pizza"

RNN will process it like this:

Step	Input	Memory (from previous step)	Output
1	"I"	None (first word)	Something
2	"love"	Memory from "I"	Something else
3	"pizza"	Memory from "I love"	Final output

So it passes memory forward at every step.

Internally:

At each time step ttt, the RNN does this:

$$h_t = \operatorname{activation}(W \cdot x_t + U \cdot h_{t-1} + b)$$

Where:

- x_t = input at time t
- h_{t-1} = memory from previous time
- W, U = weight matrices (learned values)
- b = bias
- h_t = current hidden state (memory + current input)

Structure of an RNN Cell

Think of each RNN cell like a little engine that:

- 1. Takes the current input
- 2. Takes what it remembers from before
- 3. Updates what it knows (memory)
- 4. Passes new memory forward

A sequence of these cells can process a whole sentence or time series step-bystep.

Common Applications

- Time series prediction
- Natural language processing (text generation, machine translation)
- Speech recognition
- Video analysis
- Music composition

Limitations of Basic RNNs

1. **Vanishing/Exploding Gradients**: Difficulty learning long-range dependencies due to gradient issues during backpropagation through time

2. **Short-term Memory**: Basic RNNs struggle with remembering information from far back in the sequence

Improved Variants

To address these limitations, more advanced architectures were developed:

- LSTM (Long Short-Term Memory): Uses gating mechanisms to control information flow
- GRU (Gated Recurrent Unit): Simplified version of LSTM with fewer parameters

Sample RNN in TensorFlow/Keras:

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Embedding, SimpleRNN, Dense
model = Sequential([
  Embedding(input_dim=10000, output_dim=64, input_length=100), # For wo
rd embeddings
  SimpleRNN(64), # The RNN layer
  Dense(1, activation='sigmoid') # Output for binary classification
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accur
acy'])
```