# Abschlussprüfung 2017





Prüfungsdauer: 150 Minuten

## Mathematik I

| Name:   | Vorname:     |         |  |
|---------|--------------|---------|--|
| Klasse: | Platzziffer: | Punkte: |  |

### Aufgabe A 1

Haupttermin

A 1.0 Trapeze  $A_nB_nC_nD$  mit den parallelen Seiten  $\left[DC_n\right]$  und  $\left[A_nB_n\right]$  rotieren um die Gerade SD.

Es gilt:

$$A_n \in SD; \overline{SD} = 3 \text{ cm}; \overline{A_n B_n} = 4 \text{ cm}; \blacktriangleleft B_n A_n D = 90^\circ.$$

Die Winkel DSC<sub>n</sub> haben das Maß  $\varphi$  mit  $\varphi \in \left]0^{\circ}; 53,13^{\circ}\right[$ .

Die Zeichnung zeigt das Trapez  $A_1B_1C_1D$  für  $\phi = 25^{\circ}$ .



A 1.1 Zeichnen Sie in die Zeichnung zu A 1.0 das Trapez  $A_2B_2C_2D$  für  $\phi = 40^\circ$  ein.

1 P

A 1.2 Zeigen Sie durch Rechnung, dass für die Längen der Strecken  $\left[DC_n\right]$  und  $\left[SA_n\right]$  in Abhängigkeit von  $\phi$  gilt:  $\overline{DC_n}(\phi) = 3 \cdot \tan \phi$  cm und  $\overline{SA_n}(\phi) = \frac{4}{\tan \phi}$  cm.



2 P

A 1.3 Bestätigen Sie rechnerisch, dass für das Volumen V der entstehenden Rotations-

körper in Abhängigkeit von 
$$\phi$$
 gilt:  $V(\phi) = \frac{1}{3} \cdot \pi \cdot \left(\frac{64}{\tan \phi} - 27 \cdot \tan^2 \phi\right) \text{cm}^3$ .



Aufgabe A 2

Haupttermin

A 2.0 Die Punkte A(-0,5|1) und B(3,5|1) legen zusammen mit Pfeilen  $\overrightarrow{AC_n}(\phi) = \begin{pmatrix} 8 \cdot \cos \phi - 0,5 \\ \frac{1}{\cos \phi} + 1 \end{pmatrix} \text{ für } \phi \in \left[0^\circ; 90^\circ\right] \text{ Dreiecke ABC}_n \text{ fest.}$ 

Runden Sie im Folgenden auf eine Stelle nach dem Komma.

A 2.1 Berechnen Sie die Koordinaten der Pfeile  $\overrightarrow{AC_1}$  für  $\phi = 40^\circ$  und  $\overrightarrow{AC_2}$  für  $\phi = 80^\circ$ . Zeichnen Sie anschließend die Dreiecke  $ABC_1$  und  $ABC_2$  in das Koordinatensystem ein.





A 2.2 Zeigen Sie rechnerisch, dass für die Koordinaten der Punkte  $C_n$  in Abhängigkeit

von  $\varphi$  gilt:  $C_n \left( 8 \cdot \cos \varphi - 1 \mid \frac{1}{\cos \varphi} + 2 \right)$ .



A 2.3 Bestimmen Sie rechnerisch die Gleichung des Trägergraphen der Punkte C<sub>n</sub>.

A 2.4 Unter den Dreiecken  $ABC_n$  gibt es das gleichschenklige Dreieck  $ABC_3$  mit der Basis [AB].

Ermitteln Sie das zugehörige Winkelmaß  $\phi$  und begründen Sie durch Rechnung, dass das Dreieck ABC $_3$  nicht gleichseitig ist.



1 P

 $\begin{array}{lll} A\ 3.0 & \mbox{Gegeben sind die Funktionen}\ f_1\ \mbox{mit der Gleichung}\ y=4\cdot 0,5^x\ \mbox{und}\ f_2\ \mbox{mit der Gleichung}\\ y=4\cdot 0,5^{x+2}-3\ \ (\mbox{G}=\ \mbox{IR}\times\mbox{IR}\ ).\ \mbox{Punkte}\ A_n\Big(x\,|\, 4\cdot 0,5^x\Big)\ \mbox{auf dem Graphen zu}\ f_1\ \mbox{und Punkte}\\ B_n\Big(x\,|\, 4\cdot 0,5^{x+2}-3\Big)\ \mbox{auf dem Graphen}\ \mbox{zu}\ \ f_2\ \ \mbox{haben dieselbe Abszisse}\ \ x.\ \mbox{Die Strecken}\\ \Big[A_nB_n\Big]\ \mbox{sind f\"ur}\ \ x\in\mbox{IR}\ \mbox{die Basen von gleichschenkligen Dreiecken}\ A_nB_nC_n\ . \end{array}$ 

Für die Höhen  $\left[M_{n}C_{n}\right]$  der Dreiecke  $A_{n}B_{n}C_{n}$  gilt:  $\overline{M_{n}C_{n}}=3$  LE .



A 3.1 Zeichnen Sie das Dreieck  $A_1B_1C_1$  für x = 1 in das Koordinatensystem ein.

1 P

A 3.2 Zeigen Sie durch Rechnung, dass für die Länge der Strecken  $\left[A_nB_n\right]$  in Abhängigkeit von der Abszisse x der Punkte  $A_n$  gilt:  $\overline{A_nB_n}\left(x\right) = \left(3\cdot0,5^x+3\right)$  LE.



2 P

A 3.3 Das Dreieck A<sub>2</sub>B<sub>2</sub>C<sub>2</sub> hat einen Flächeninhalt von 15 FE.

Berechnen Sie den zugehörigen Wert für x.



## Abschlussprüfung 2017

an den Realschulen in Bayern



Prüfungsdauer: 150 Minuten

### Mathematik I

Aufgabe B 1 Haupttermin B 1.0 Gegeben ist die Funktion  $f_1$  mit der Gleichung  $y = -1, 5 \cdot \log_{0.5}(x-1)$  mit  $\mathbb{G} = \mathbb{R} \times \mathbb{R}$ . B 1.1 Geben Sie die Definitionsmenge und die Wertemenge der Funktion f<sub>1</sub> an und zeichnen Sie den Graphen der Funktion  $f_1$  für  $x \in [1,5;11]$  in ein Koordinatensystem. 4 P Für die Zeichnung: Längeneinheit 1 cm;  $-1 \le x \le 12$ ;  $-6 \le y \le 6$ B 1.2 Der Graph der Funktion f, wird durch Achsenspiegelung an der x-Achse und anschließende Parallelverschiebung mit dem Vektor  $\overrightarrow{v}$  auf den Graphen der Funktion f, mit der Gleichung  $y = 1,5 \cdot \log_{0.5} x$  ( $\mathbb{G} = \mathbb{IR} \times \mathbb{IR}$ ) abgebildet. Geben Sie die Koordinaten des Verschiebungsvektors  $\overrightarrow{v}$  an und zeichnen Sie sodann den Graphen zu  $f_2$  für  $x \in [1,5;11]$  in das Koordinatensystem zu B 1.1 ein. 3 P B 1.3 Punkte  $A_n(x|1,5 \cdot \log_{0.5} x)$  auf dem Graphen zu  $f_2$  haben dieselbe Abszisse x wie Punkte  $C_n(x \mid -1, 5 \cdot \log_{0,5}(x-1))$  auf dem Graphen zu  $f_1$ . Sie sind für x > 1,62 zusammen mit Punkten  $\,B_{_{n}}\,$  und  $\,D_{_{n}}\,$  die Eckpunkte von Rauten  $\,A_{_{n}}B_{_{n}}C_{_{n}}D_{_{n}}\,.$ Es gilt:  $B_n D_n = 6 LE$ . Zeichnen Sie die Rauten  $A_1B_1C_1D_1$  für x = 2.5 und  $A_2B_2C_2D_2$  für x = 8.5 in das Koordinatensystem zu B 1.1 ein. Zeigen Sie sodann, dass für die Länge der Strecken [A<sub>n</sub>C<sub>n</sub>] in Abhängigkeit von der Abszisse x der Punkte  $A_n$  gilt:  $\overline{A_nC_n}(x) = -1.5 \cdot \log_{0.5}(x^2 - x) LE$ . 4 P B 1.4 Die Raute A<sub>3</sub>B<sub>3</sub>C<sub>3</sub>D<sub>3</sub> ist ein Quadrat. Berechnen Sie die zugehörige x-Koordinate des 2 P Punktes A<sub>3</sub>. Runden Sie dabei auf zwei Stellen nach dem Komma. B 1.5 Zeigen Sie rechnerisch, dass für die Koordinaten der Diagonalenschnittpunkte M<sub>n</sub> der Rauten  $A_n B_n C_n D_n$  in Abhängigkeit von der Abszisse x der Punkte  $A_n$  gilt:  $M_n\left(x \mid 0.75 \cdot \log_{0.5}\left(\frac{x}{x-1}\right)\right)$ . 2 P B 1.6 Geben Sie die Gleichung des Trägergraphen der Punkte D<sub>n</sub> der Rauten  $A_n B_n C_n D_n$  in Abhängigkeit von der Abszisse x der Punkte  $A_n$  an. 2 P

# Abschlussprüfung 2017

an den Realschulen in Bayern



Prüfungsdauer: 150 Minuten

### Mathematik I

Aufgabe B 2 Haupttermin

B 2.0 Die Diagonalen [AC] und [BD] des Drachenvierecks ABCD schneiden sich im Punkt K. Das Drachenviereck ABCD ist die Grundfläche des geraden Prismas ABCDEFGH. Der Punkt E liegt senkrecht über dem Punkt A.

Es gilt:  $\overline{AC} = 12 \text{ cm}$ ;  $\overline{BD} = 10 \text{ cm}$ ;  $\overline{AK} = 4 \text{ cm}$ ;  $\overline{AE} = 6 \text{ cm}$ .

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie das Schrägbild des Prismas ABCDEFGH, wobei [AC] auf der Schrägbildachse und der Punkt A links vom Punkt C liegen soll.

Für die Zeichnung:  $q = \frac{1}{2}$ ;  $\omega = 45^{\circ}$ 

Die Strecken [EG] und [FH] schneiden sich im Punkt L.

Berechnen Sie das Maß des Winkels LCK. [Ergebnis: ∢LCK = 36,87°]

3 P

B 2.2 Punkte P<sub>n</sub> liegen auf der Strecke [LC]. Die Winkel CKP<sub>n</sub> haben das Maß φ mit  $\varphi \in [0^\circ; 90^\circ]$ . Die Punkte  $P_n$  sind zusammen mit den Punkten B und D die Eckpunkte gleichschenkliger Dreiecke BDP<sub>n</sub> mit der Basis [BD].

Zeichnen Sie das Dreieck BDP<sub>1</sub> sowie die Strecke  $[KP_1]$  für  $\varphi = 78^\circ$  in das Schrägbild zu B 2.1 ein.

Begründen Sie sodann, dass keines der Dreiecke BDP, gleichseitig ist.

3 P

B 2.3 Zeigen Sie, dass für die Länge der Strecken [KP<sub>n</sub>] in Abhängigkeit von φ gilt:

 $\overline{\text{KP}_{n}}(\varphi) = \frac{4,80}{\sin(\varphi + 36,87^{\circ})} \text{ cm}.$ 

Die Länge der Strecke [KP<sub>0</sub>] ist minimal. Geben Sie den zugehörigen Wert für φ an.

3 P

B 2.4 Die Punkte P<sub>n</sub> sind die Spitzen von Pyramiden ABCDP<sub>n</sub> mit der Grundfläche ABCD und den Höhen  $[P_nQ_n]$ . Die Punkte  $Q_n$  liegen auf der Strecke [KC].

Zeichnen Sie die Pyramide ABCDP<sub>1</sub> und die Höhe [P<sub>1</sub>Q<sub>1</sub>] in das Schrägbild zu B 2.1 ein.

Ermitteln Sie sodann durch Rechnung das Volumen V der Pyramiden ABCDPn in Abhängigkeit von φ.

Ergebnis: 
$$V(\varphi) = \frac{96 \cdot \sin \varphi}{\sin(\varphi + 36,87^\circ)} \text{cm}^3$$

3 P

B 2.5 Das Volumen der Pyramide ABCDP<sub>2</sub> beträgt 96 cm<sup>3</sup>.

Berechnen Sie das zugehörige Maß für φ.

3 P

B 2.6 Begründen Sie, dass die Volumina der Pyramiden ABDP, mit der Grundfläche ABD und der Pyramiden BCDP<sub>n</sub> mit der Grundfläche BCD stets im Verhältnis 1:2 stehen. 2 P

Bitte wenden!