Economics 103 – Statistics for Economists

Francis J. DiTraglia

University of Pennsylvania

Lecture # 12

Continuous RVs - Part III

Last Time

- Expectation for Continuous RVs
- Normal Random Variable
- Linear Combination of Normal RV
- Areas under Normal pdfs

Today

- ▶ Percentiles/Quantiles for Continuous RVs
- Linear Combination of Several Normal RVs
- Friends of Normal Distribution

Recall: Def. of Cumulative Distribution Function (CDF)

$$F(x_0) \equiv P(X \le x_0)$$

= $\int_{-\infty}^{x_0} f(x) dx$ for Continuous RVs

Percentiles/Quantiles for Continuous RVs

Quantile Function Q(p) is the inverse of CDF $F(x_0)$

Plug in a probability p, get out the value of x_0 such that $F(x_0) = p$

$$Q(p) = F^{-1}(p)$$

In other words:

$$Q(p)$$
 = the value of x_0 such that $\int_{-\infty}^{x_0} f(x) dx = p$

Inverse exists as long as $F(x_0)$ is strictly increasing.

Example: Median

The median of a continuous random variable is Q(0.5), i.e. the value of x_0 such that

$$\int_{-\infty}^{x_0} f(x) \ dx = 1/2$$

What is the median of a standard normal RV?

By symmetry, Q(0.5) = 0. R command: qnorm()

90th Percentile of a Standard Normal

 $\mathtt{qnorm(0.9)} \approx 1.28$

Using Quantile Function to find Symmetric Intervals

$qnorm(0.75) \approx 0.67$

$qnorm(0.75) \approx 0.67$

$pnorm(0.67)-pnorm(-0.67)\approx$?

$pnorm(0.67)-pnorm(-0.67)\approx 0.5$

68% Central Interval for Standard Normal

Suppose X is a standard normal random variable. What value of c ensures that $P(-c \le X \le c) \approx 0.68$?

95% Central Interval for Standard Normal

Suppose X is a standard normal random variable. What value of c ensures that $P(-c \le X \le c) \approx 0.95$?

R Commands for Arbitrary Normal Distributions

Let $X \sim N(\mu, \sigma^2)$. Then we can use R to evaluate the CDF and Quantile function of X as follows:

```
CDF F(x) pnorm(x, mean = \mu, sd = \sigma)

Quantile Function Q(p) qnorm(p, mean = \mu, sd = \sigma)
```

Notice that this means you don't have to transform X to a standard normal in order to find areas under its pdf using R.

Example from Homework: $X \sim N(0, 16)$

One Way:

$$P(X \ge 10) = 1 - P(X \le 10) = 1 - P(X/4 \le 10/4)$$

= $1 - P(Z \le 2.5) = 1 - \Phi(2.5) = 1 - \text{pnorm}(2.5)$
 ≈ 0.006

Example from Homework: $X \sim N(0, 16)$

One Way:

$$P(X \ge 10) = 1 - P(X \le 10) = 1 - P(X/4 \le 10/4)$$

= $1 - P(Z \le 2.5) = 1 - \Phi(2.5) = 1 - pnorm(2.5)$
 ≈ 0.006

An Easier Way:

$$P(X \ge 10) = 1 - P(X \le 10)$$

= 1 - pnorm(10, mean = 0, sd = 4)
 ≈ 0.006

Suppose X has mean μ_X variance σ_X^2 and is independent of Y, which has mean μ_Y variance σ_Y^2 . Let a, b be constants.

What is E[aX + bY]?

Suppose X has mean μ_X variance σ_X^2 and is independent of Y, which has mean μ_Y variance σ_Y^2 . Let a, b be constants.

What is
$$E[aX + bY]$$
?
 $E[aX + bY] = aE[X] + bE[Y] = a\mu_x + b\mu_y$

What is
$$Var(aX + bY)$$
?

Suppose X has mean μ_X variance σ_X^2 and is independent of Y, which has mean μ_Y variance σ_Y^2 . Let a, b be constants.

What is
$$E[aX + bY]$$
?
$$E[aX + bY] = aE[X] + bE[Y] = a\mu_X + b\mu_Y$$
 What is $Var(aX + bY)$?
$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) = a^2 \sigma_X^2 + b^2 \sigma_Y^2$$
 By independence.

Now suppose $X \sim N(\mu_x, \sigma_x^2)$ independent of $Y \sim N(\mu_y, \sigma_y^2)$. Let a, b be constants.

What is E[aX + bY]?

Now suppose $X \sim N(\mu_X, \sigma_X^2)$ independent of $Y \sim N(\mu_Y, \sigma_Y^2)$. Let a, b be constants.

What is
$$E[aX + bY]$$
?
 $E[aX + bY] = aE[X] + bE[Y] = a\mu_x + b\mu_y$

What is Var(aX + bY)?

Now suppose $X \sim N(\mu_X, \sigma_X^2)$ independent of $Y \sim N(\mu_Y, \sigma_Y^2)$. Let a, b be constants.

What is
$$E[aX + bY]$$
?
$$E[aX + bY] = aE[X] + bE[Y] = a\mu_x + b\mu_y$$
 What is $Var(aX + bY)$?
$$Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) = a^2 \sigma_x^2 + b^2 \sigma_y^2$$
 By independence.

Here's the Surprising Thing:

If X and Y are independent Normal Random Variables and a, b are constants, then aX + bY is also a Normal Random Variable!

Linear Combinations of Independent Normals

Let $X \sim N(\mu_x, \sigma_x^2)$ independent of $Y \sim N(\mu_y, \sigma_y^2)$. Then if a, b, c are constants:

$$aX + bY + c \sim N(a\mu_x + b\mu_y + c, a^2\sigma_x^2 + b^2\sigma_y^2)$$

Important

- Result assumes independence
- Particular to Normal Distribution
- Extends to more than two Normal RVs

Suppose $X_1, X_2, \sim \text{iid } N(\mu, \sigma^2)$

Let $\bar{X} = (X_1 + X_2)/2$. What is the distribution of \bar{X} ?

- (a) $N(\mu, \sigma^2/2)$
- (b) N(0,1)
- (c) $N(\mu, \sigma^2)$
- (d) $N(\mu, 2\sigma^2)$
- (e) $N(2\mu, 2\sigma^2)$

Figure: The Normal Distribution and Friends.

Functions of Independent RVs are Independent

If X and Y are independent random variables and g and h are functions, then the random variables g(X) and h(Y) are also independent.

Figure : PDF for χ^2 -Distribution

χ^2 Random Variable

Let $X_1, \ldots, X_{\nu} \sim \mathsf{iid} \ \mathcal{N}(0,1)$. Then,

$$\left(X_1^2+\ldots+X_{\nu}^2\right)\sim\chi^2(\nu)$$

where the parameter $\boldsymbol{\nu}$ is the degrees of freedom

χ^2 Random Variable

Let $X_1, \ldots, X_{\nu} \sim \mathsf{iid} \ \mathcal{N}(0,1)$. Then,

$$\left(X_1^2+\ldots+X_{\nu}^2\right)\sim\chi^2(\nu)$$

where the parameter ν is the degrees of freedom

$$\mathsf{Support} = (0, \infty)$$

χ^2 PDFs

Figure: PDF for Student-t Distribution

Student-t Random Variable

Let $X \sim N(0,1)$ independent of $Y \sim \chi^2(\nu)$. Then,

$$\frac{X}{\sqrt{Y/\nu}} \sim t(\nu)$$

where the parameter ν is the degrees of freedom.

Student-t Random Variable

Let $X \sim N(0,1)$ independent of $Y \sim \chi^2(\nu)$. Then,

$$\frac{X}{\sqrt{Y/
u}} \sim t(
u)$$

where the parameter ν is the degrees of freedom.

- Support = $(-\infty, \infty)$
- ▶ As $\nu \to \infty$, $t \to \text{Standard Normal}$.
- Symmetric around zero, but mean and variance may not exist!
- ▶ Degrees of freedom ν control "thickness of tails"

Student-t PDFs

F Random Variable

Suppose $X \sim \chi^2(\nu)$ independent of $Y \sim \chi^2(\omega)$. Then,

$$\frac{X/\nu}{Y/\omega} \sim F(\nu,\omega)$$

where ν is the numerator degrees of freedom and ω is the denominator degrees of freedom.

$$\mathsf{Support} = (0, \infty)$$

F PDFs

R Commands – CDFs and Quantile Functions

$$F(x) = P(X \le x)$$
 is the CDF, $Q(p) = F^{-1}(p)$ the Quantile Function

	<i>F</i> (<i>x</i>)	Q(p)
$N(\mu, \sigma^2)$	$pnorm(x, mean = \mu, sd = \sigma)$	qnorm(p, mean = μ , sd = σ)
$\chi^2(\nu)$	pchisq(x, df = ν)	qchisq(p, df = ν)
t(u)	$pt(x, df = \nu)$	$qt(p, df = \nu)$
${\sf F}(u,\omega)$	$pf(x, df1 = \nu, df2 = \omega)$	qf(p, df1 = ν , df2 = ω)

Mnemonic: "p" is for Probability, "q" is for Quantile.

$http://fditraglia.github.io/Econ103Public/Rtutorials/friends_of_normal.html$

Source Code on my Github Page

R Commands - PDFs and Random Draws

	f(x)	Make n iid Random Draws
$\mathcal{N}(\mu,\sigma^2)$	$dnorm(x, mean = \mu, sd = \sigma)$	$\texttt{rnorm}(\texttt{n, mean} = \mu, \texttt{sd} = \sigma)$
$\chi^2(\nu)$	$dchisq(x, df = \nu)$	$rchisq(n, df = \nu)$
t(u)	$dt(x, df = \nu)$	$rt(n, df = \nu)$
${\sf F}(u,\omega)$	$df(x, df1 = \nu, df2 = \omega)$	$rf(n, df1 = \nu, df2 = \omega)$

Mnemonic: "d" is for Density, "r" is for Random.

What is the distribution of $Y_1 = X_1^2 + X_2^2$?

What is the distribution of $Y_1 = X_1^2 + X_2^2$?

Sum of squares of two indep. std. normals $\Rightarrow Y_1 \sim \chi^2(2)$

What is the distribution of $Y_1 = X_1^2 + X_2^2$?

Sum of squares of two indep. std. normals \Rightarrow $Y_1 \sim \chi^2(2)$

What is the distribution of $Y_2 = (Y_1/2)/(X_3^2)$?

What is the distribution of $Y_1 = X_1^2 + X_2^2$?

Sum of squares of two indep. std. normals \Rightarrow $Y_1 \sim \chi^2(2)$

What is the distribution of $Y_2 = (Y_1/2)/(X_3^2)$?

$$Y_1 \sim \chi^2(2)$$
 and $X_3^2 \sim \chi^2(1)$

What is the distribution of $Y_1 = X_1^2 + X_2^2$?

Sum of squares of two indep. std. normals \Rightarrow $Y_1 \sim \chi^2(2)$

What is the distribution of $Y_2 = (Y_1/2)/(X_3^2)$?

$$Y_1 \sim \chi^2(2) \text{ and } X_3^2 \sim \chi^2(1)$$

Hence $Y_2=$ ratio of two indep. χ^2 RVs, each divided by its degrees of freedom $\Rightarrow Y_2 \sim F(2,1)$

What is the distribution of $Y_1 = X_1^2 + X_2^2$?

Sum of squares of two indep. std. normals \Rightarrow $Y_1 \sim \chi^2(2)$

What is the distribution of $Y_2 = (Y_1/2)/(X_3^2)$?

$$Y_1 \sim \chi^2(2)$$
 and $X_3^2 \sim \chi^2(1)$

Hence $Y_2=$ ratio of two indep. χ^2 RVs, each divided by its degrees of freedom $\Rightarrow Y_2 \sim F(2,1)$

What is the distribution of $Z = X_3/\sqrt{Y_1/2}$?

What is the distribution of $Y_1 = X_1^2 + X_2^2$?

Sum of squares of two indep. std. normals \Rightarrow $Y_1 \sim \chi^2(2)$

What is the distribution of $Y_2 = (Y_1/2)/(X_3^2)$?

$$Y_1 \sim \chi^2(2) \text{ and } X_3^2 \sim \chi^2(1)$$

Hence $Y_2=$ ratio of two indep. χ^2 RVs, each divided by its degrees of freedom $\Rightarrow Y_2 \sim F(2,1)$

What is the distribution of $Z = X_3/\sqrt{Y_1/2}$?

Ratio of standard normal and square root of independent χ^2 RV divided by its degrees of freedom \Rightarrow Z \sim t(2)

Suppose $X_1, X_2, \sim \text{iid } N(\mu, \sigma^2)$

Let
$$Y = (X_1 - \mu)^2 + (X_2 - \mu)^2$$
. What is the distribution of Y/σ^2 ?

- (a) F(2,1)
- (b) $\chi^2(2)$
- (c) t(2)
- (d) $N(\mu, \sigma)$
- (e) None of the above

$$Y_1 \sim \chi^2(2), \quad Y_2 \sim F(2,1), \quad Z \sim t(2)$$

What is the median of Y_1 ?

$$Y_1 \sim \chi^2(2), \quad Y_2 \sim F(2,1), \quad Z \sim t(2)$$

What is the median of Y_1 ? qchisq(0.5, df = 2) \approx 1.4

$$Y_1 \sim \chi^2(2), \quad Y_2 \sim F(2,1), \quad Z \sim t(2)$$

What is the median of Y_1 ? qchisq(0.5, df = 2) \approx 1.4

What is $P(Y_2 \leq 5)$?

$$Y_1 \sim \chi^2(2), \quad Y_2 \sim F(2,1), \quad Z \sim t(2)$$

What is the median of Y_1 ? qchisq(0.5, df = 2) \approx 1.4 What is $P(Y_2 \le 5)$? pf(5, df1 = 2, df2 = 1) \approx 0.7

$$Y_1 \sim \chi^2(2), \quad Y_2 \sim F(2,1), \quad Z \sim t(2)$$

What is the median of
$$Y_1$$
? $qchisq(0.5, df = 2) \approx 1.4$ What is $P(Y_2 \le 5)$? $pf(5, df1 = 2, df2 = 1) \approx 0.7$ What value of c gives $P(-c \le Z \le c) = 0.5$? Use Symmetry (like normal) $c = qt(0.75, df = 2) \approx 0.8$

$$Y_1 \sim \chi^2(2), \quad Y_2 \sim F(2,1), \quad Z \sim t(2)$$

What is the median of
$$Y_1$$
? $qchisq(0.5, df = 2) \approx 1.4$ What is $P(Y_2 \le 5)$? $pf(5, df1 = 2, df2 = 1) \approx 0.7$ What value of c gives $P(-c \le Z \le c) = 0.5$? Use Symmetry (like normal) $c = qt(0.75, df = 2) \approx 0.8$ or equivalently $-c = qt(0.25, df = 2) \approx -0.8$