Team 20: Robotic Arm

Minh Luc, Nick Ratto, Hsi-ruei Tsao, Roger Nguyen

How Robot Arm Scores Points

CAD of Robot Collapsing

CAD of Robot Picking Up Box

CAD of Robot Dropping Box

Animation of Robot in Action

Turntable Base

- Responsible for rotation
 - o Base of arm screws into driven gear
- Utilizes a gear train
- Utilizes a slew bearing
- Screws into table

Nick

Lower Arm Extends

- Responsible for extension.
- Screws into rotating gear.

Upper Arm Extends Further

- Extension of the lower arm
- Uses four-bar linkage mechanism to ensure level gripper

Motor

Minh

Gripper Grabs Box

- Actuation method: mechanical grasping.
- Power source: DC geared motor.
- Fabrication materials: PLA, metal sheet, aluminum rod.

Importance of Initial Sketches

Initial sketching is an important step in the design process. Our initial idea was to create a robot arm which rotates around a base. The arm will have a gripper to grab the box.

Speed Analysis of Upper Arm

- Objective: find the maximum angular velocity
- Some Assumptions:
 - Motor operates at no-stall torque (optimistic)
 - Linkages can be reduced to rectangular prism since they are symmetric along the midplane of the upper joint (conservative)

 $I\frac{d^2\theta}{dt^2}$

 $\overline{dt^2}$

Speed Analysis Cont.

Bill Nick

Calculated Values:

- 6.3 seconds for 180 degree rotation
- maximum instantaneous angular velocity = 2.94 rad/s
- average angular velocity = 0.5067 rad/s

• Experimental Values:

- 3.7 seconds for 180 degree rotation
- average angular velocity = 1.357 rad/s
- Percent Error (respect to instant): 117%
- Percent Error (respect to average): 167%
- Factor of Safety: 3.46
- Potential Sources of Error:
 - Human error
 - o Rigid body too conservative

$$I\frac{d^{2}\theta}{dt^{2}} + \frac{C\rho(-0.0007453\theta^{2} + 0.1341\theta + 0.6732)sin(\theta)}{2r_{1}}(\frac{d\theta}{dt})^{2} - (\tau_{motor} - r_{1}Mgsin(\theta) - r_{2}m_{b}gsin(\theta)) = 0$$

Robot in Action

Our robot was able to score 70 points (2 boxes on the Top and Second floor) in 60s on its second attempt

