https://dicook.github.io/Statistical_Thinking/tutorials/lab11/lab11help.pdf
Remember SETU surverys!

Question One - Monte Carlo Approximations

Your tasks:

- 1. Sample coordinates from the unit square.
- 2. Decide if that point is inside the unit circle.
- 3. Count the number of times the point is inside the circle for $n \in \{100, 1000, 10000, 100000\}$.
- 4. Calculate your approximation for π .

Figure 1: If we have even odds of picking any point in the square, the proportion of points in the circle should be the ratio of the two areas.

Question Two - Accept/Reject sampling

Part A

- 1. Sample $x^{(i)}$ from the proposal distribution g(x).
- 2. Calculate $\frac{f(x^{(i)})}{cg(x^{(i)})}$.
- 3. Sample u from $\mathcal{U}(0,1)$.
- 4. Decide to accept or reject $x^{(i)}$ depending on if $u < \frac{f(x^{(i)})}{cq(x^{(i)})}$.

Figure 2: Let c = 0.3. If we sample a point x from a uniform distribution, it is accepted as something that could be from f(x) with probability f(x)/c, the ratio of the height of the two lines at x. Points where f(x) is high are more likely to be accepted, so the accepted sample resembles f(x).

Figure 3: g(x) is now a beta(2, 2) distribution (with c = 0.2). The acceptance ratio is higher close to 0 and 1, but now most of our draws will be close to the middle, so the final sample will still resemble f(x).

Part B

- 1. For each c run the function 1000 times. Try using replicate(1000, function).
- 2. Count the number of rejections.
- 3. Calculate f(x) for a sequence of x between 0 and 1.
- 4. Plot the density of the accepted draws against a line plot of (x, f(x)).

Question Three - Metropolis Hastings MCMC

- 1. Pick an arbitary starting value that could come from a Cauchy, which is the same as a Students' t with one degree of freedom. You can get stuck near the starting value for a while but eventually the Markov chain will converge to the posterior so the starting value doesn't really matter.
- 2. Generate a candidate draw y from the proposal distribution.
- 3. Calculate r(x, y) where x is the previous draw.
- 4. Decide to keep the new draw or repeat x.
- 5. Calculate the rejection rate.
- 6. Plot (1:n, draws) as a line plot.
- 7. Plot the draws as a density plot against a Cauchy density.

Figure 4: I start with $x^{(0)}=0.5$. Then I sample y=1.5 from a $\mathcal{N}(x^{(0)},1)$ distribution. Then I calculate r(x=0.5,y=1.5)=0.38 and randomly accept $x^{(1)}=y$ with probability 0.38 or repeat $x^{(1)}=x^{(0)}$ with probability 1-0.38. Values y that are more likely to come from a Cauchy distribution than my current draw $x^{(0)}$ are more likely to be accepted.

Figure 5: After accepting $x^{(1)}=1.5$ I sample y=3 from a $\mathcal{N}(x^{(1)},1)$ distribution. Now my acceptance probability is 0.325 and it's pretty likely I'll reject y and set $x^{(2)}=x^{(1)}$. I might end up repeating this value until I draw a candidate value y that is more likely to come from a Cauchy distribution than my current 1.5.