

دانشكدهي مهندسي كامپيوتر

نظریهی زبانها و ماشینها تمرینهای سری سوم

> علی حیدری ۱۸ اردیبهشت ۱۳۹۸

فهرست مطالب

pumping lemma \

١

S-grammer Y

۳ CYK و چامسکی

۴ گریباخ

pumping lemma

با استفاده از pumping lemma نشان دهید که زبانهای زیر منظم نیستند.

 $L = \{a^n : n = 2^k, k \ge 0\}$.

پاسخ.

$$w = a^{2^{p}} \rightarrow w = xyz$$

$$|xy| = p \quad z = 2^{p} - p$$

$$y = a^{k} \quad k \in (1, p) \rightarrow w = x^{p-k}y^{k}z^{2^{p}-p}$$

با فرض منظم بودن L باید داشته باشیم:

 $2^p + k < 2^{p+1}$

پس:

$$2^{p} + k < 2^{p} + p < 2^{p} + 2^{p} < 2^{p+1} \implies$$

که خود این تناقض است پس فرض خلف باطل و حکم ثابت است. بنابر این xyz در زبان L وجود ندارد پس L منظم نیست.

 $L = \{a^n b^l : L \le n \le 2L\} . \Upsilon$

پاسخ.

$$w = a^{2p}b^p$$
 $y = a^k \Rightarrow w' = a^{2p+k}b^p \in L$ $k \in (1, p)$

با فرض منظم بودن L باید داشته باشیم:

$$p < 2p + k < 2p \Rightarrow \Leftarrow$$

كه خود اين تناقض است پس فرض خلف باطل و حكم ثابت است.

 $L = \{a^n b^m : n \neq m\} . \Upsilon$

پاسخ.

$$L = \{x \in \{a, b\}^* : x = a^n b a^m b a^{\max(m, n)}\}$$
.

پاسخ.

S-grammer Y

آ) یک راند بازی سنگ، کاغذ، قیچی دو نفره را رسم کنید ی برای آن یک S-grammar بنویسید. دقت کنیدک ترنزیشنها سنگ، کاغذ و قیچیاند.

پاسخ. طبق قوانین بازی داریم:

با توجه به شكل داريم:

$$S \rightarrow rR|pP|cC$$

 $R \rightarrow cW|rE|pL$
 $P \rightarrow rW|pE|cL$
 $C \rightarrow pE|cE|rL$

ب) گرامر زیر را ساده کنید و نتیجهی نهایی را درصورت امکان به فرم S-grammar بنویسید.

$$S \rightarrow Aa|B$$

 $A \rightarrow aA$
 $B \rightarrow bC|a$
 $C \rightarrow a|\lambda$

پاسخ. مرحلهی اول:

$$S \rightarrow Aa|B$$

 $A \rightarrow aA$
 $B \rightarrow bC|a|b$
 $C \rightarrow a$

	مرحلهی دوم:
S o Aa E	3
A o aA	
B o ba a	b
_ ,,	17
	مرحلهی سوم:
S o B	
B o ba a	b
<i>B</i> / <i>ba</i> <i>a</i>	lo.
	مرحلهی چهارم:
S o ba a	16
$S \to bu u$	lo.
	مرحلهی پنجم:
$c \rightarrow Lc'$	
S o bS'	
$S' o a \lambda$	

۳ CYK و چامسکی

گرامر زیر را به فرم نرمال چامسکی ببرید سپس با رسم جدول مربوطهاش به کمک الگوریتم CYK و فرم نرمال چامسکی وجود رشتهی abaaba را در زبان آن بررسی کنید.

$$S o A|B$$

 $A o aBa|\lambda$
 $B o bAb|\lambda$

$$S oup A|B|\lambda$$
 $S oup A|B|\lambda$ $A oup aBa|\lambda|aa$ $B oup bAb$ $S oup A|B|\lambda$ $A oup aBa|aa$ $B oup bAb$ $S oup A|B|\lambda$ $A oup aBa|aa$ $B oup bAb|ab$ $S oup A|B|\lambda$ $A oup aBa|aa$ $B oup bAb|bb$ $S oup A|\lambda|bAb|bb$ $S oup A|\lambda|bAb|bb$

(S
ightarrow A مرحلهی چهارم (حذف انتقال

 $S \rightarrow \lambda |bAb|bb|aBa|aa$

 $A \rightarrow aBa|aa$

 $B \rightarrow bAb|bb$

فرم نرمال چامسكى:

 $S \rightarrow \lambda |T_b V_1| T_b T_b |T_a V_2| T_a T_a$

 $V_1 \rightarrow AT_b$

 $V_2 \rightarrow BT_a$

 $A \rightarrow T_a V_2 | T_a T_a$

 $B \to T_b V_1 | T_b T_b$

 $T_a \rightarrow a$

 $T_b \rightarrow b$

بررسي وجود رشته با استفاده از الگوريتم CYK:

	1) $\frac{a}{T_a}$	a	b	a	a	b	a
		T_a	T_b	T_a	T_a	T_b	T_a
	2)	ab	ba	aa	ab	ba	
		×	×	S, A	×	×	
	3)	aba	baa	aab	aba		
		×	×	V_1	×		
•	4)	abaa	baab	aaba			
		×	B, S	×			
	5)	abaab	baaba				
		×	V_2				
		ahaaha					

6) abaaba S, A

چون S در متغیرهای پایانی وجود دارد رشتهی abaaba در این زبان وجود دارد.

۴ گريباخ

گرامر زیر را به فرم گریباخ درآورید.

 $S \rightarrow Sa|Ab$

 $A \rightarrow B|BC$

 $B \to bC$

 $C \rightarrow c$

پاسخ. مرحلهی اول:

 $S \rightarrow Sa|Ab$

 $A \rightarrow B|Bc$

 $B \rightarrow bc$

مرحلهي دوم:

 $S \rightarrow Sa|Ab$

 $A \rightarrow Bc|bc$

 $B \to bc$

مرحلهي سوم

 $S \rightarrow AbX$

 $X \to aX | \lambda$

 $B\to bc$

 $A \rightarrow Bc|bc$

مرحلهي سوم

 $S \rightarrow AbX$

 $X \to aX | \lambda$

 $B \to bc$

 $A \rightarrow bcc|bc$

مرحلهي چهارم

 $S \rightarrow AbX$

 $X \to aX | \lambda$

 $B \rightarrow bc$

 $A \rightarrow bcX_2$

 $X_2 \rightarrow c | \lambda$

مرحلهي پنجم

 $S \rightarrow AT_bX$

 $X \to aX | \lambda$

 $B \rightarrow bT_c$

 $A \rightarrow bT_cX_2$

 $X_2 \to c | \lambda$

 $T_c \rightarrow c$

 $T_b \rightarrow b$