Section 3.5 A Summary of Curve Sketching

1.
$$y = \frac{1}{x-2} - 3$$

 $y' = -\frac{1}{(x-2)^2} \Rightarrow \text{ undefined when } x = 2$

$$y'' = \frac{2}{(x-2)^3} \Rightarrow \text{ undefined when } x = 2$$

Intercepts: $\left(\frac{7}{3}, 0\right), \left(0, -\frac{7}{2}\right)$

Vertical asymptote: x = 2Horizontal asymptote: y = -3

y y' y'' Conclusion $-\infty < x < 2$ — Decreasing, concave down

 $2 < x < \infty$ – + Decreasing, concave up

2.
$$y = \frac{x}{x^2 + 1}$$

 $y' = \frac{1 - x^2}{(x^2 + 1)^2} = \frac{(1 - x)(x + 1)}{(x^2 + 1)^2} = 0 \text{ when } x = \pm 1.$
 $y'' = -\frac{2x(3 - x^2)}{(x^2 + 1)^3} = 0 \text{ when } x = 0, \pm \sqrt{3}.$

Horizontal asymptote: y = 0

	y	y'	y"	Conclusion
$-\infty < x < -\sqrt{3}$		-	-	Decreasing, concave down
$x = -\sqrt{3}$	$-\frac{\sqrt{3}}{4}$	_	0	Point of inflection
$-\sqrt{3} < x < -1$		-	+	Decreasing, concave up
x = -1	$-\frac{1}{2}$	0	+	Relative minimum
-1 < x < 0		+	+	Increasing, concave up
x = 0	0	+	0	Point of inflection
0 < x < 1		+	-	Increasing, concave down
x = 1	1/2	0	-	Relative maximum
$1 < x < \sqrt{3}$		-	-	Decreasing, concave down
$x = \sqrt{3}$	$\frac{\sqrt{3}}{4}$	_	0	Point of inflection
$\sqrt{3} < x < \infty$		-	+	Decreasing, concave up

3.
$$y = \frac{x^2}{x^2 + 3}$$

 $y' = \frac{6x}{(x^2 + 3)^2} = 0 \text{ when } x = 0.$
 $y'' = \frac{18(1 - x^2)}{(x^2 + 3)^3} = 0 \text{ when } x = \pm 1.$

Horizontal asymptote: y = 1

	у	y'	y"	Conclusion
-∞ < x < -l		-	_	Decreasing, concave down
x = -1	$\frac{1}{4}$	-	0	Point of inflection
-1 < x < 0		-	+	Decreasing, concave up
x = 0	0	0	+	Relative minimum
0 < x < 1		+	+	Increasing, concave up
x = 1	1/4	+	0	2Point of inflection
l < x < ∞		+	1	Increasing, concave down

4.
$$y = \frac{x^2 + 1}{x^2 - 4}$$

 $y' = \frac{-10x}{(x^2 - 4)^2} = 0$ when $x = 0$ and undefined when $x = \pm 2$.
 $y'' = \frac{10(3x^2 + 4)}{(x^2 - 4)^3} < 0$ when $x = 0$.

Intercept: (0, -1/4)

Symmetric about y-axis

Vertical asymptotes: $x = \pm 2$ Horizontal asymptote: y = 1

	y	v'	ν"	Conclusion
-∞ < x < -2		+	+	Increasing, concave up
-2 < x < 0		+	-	Increasing, concave down
x = 0	$-\frac{1}{4}$			Relative maximum
0 < x < 2		-	-	Decreasing, concave down
2 < x < ∞		-	+	Decreasing, concave up

5.
$$y = \frac{3x}{x^2 - 1}$$

 $y' = \frac{-3(x^2 + 1)}{(x^2 - 1)^2}$ undefined when $x = \pm 1$
 $y'' = \frac{6x(x^2 + 3)}{(x^2 - 1)^3}$

Intercept: (0, 0)

Symmetry with respect to origin

Vertical asymptotes: $x = \pm 1$

Horizontal asymptote: y = 0

٠
•

	У	y'	y"	Conclusion
$-\infty < x < -1$		-	-	Decreasing, concave down
-1 < x < 0		-	+	Decreasing, concave up
x = 0	0	-3	0	Point of inflection
0 < x < 1		-	-	Decreasing, concave down
1 < x < ∞		-	+	Decreasing, concave up

6.
$$f(x) = \frac{x-3}{x} = 1 - \frac{3}{x}$$

$$f'(x) = \frac{3}{x^2}$$
 undefined when $x = 0$

$$f''(x) = -\frac{6}{x^3} \neq 0$$

Vertical asymptote: x = 0

Intercept: (3, 0)

Horizontal asymptote: y = 1

	У	<i>y'</i>	у"	Conclusion
$-\infty < x < 0$		+	+	Increasing, concave up
0 < x < ∞		+	-	Increasing, concave down

7.
$$f(x) = x + \frac{32}{x^2}$$

$$f'(x) = 1 - \frac{64}{x^3} = \frac{(x-4)(x^2+4x+16)}{x^3} = 0$$
 when $x = 4$ and undefined when $x = 0$.

$$f''(x)=\frac{192}{x^4}$$

Intercept: (-2∛4, 0)

Vertical asymptote: x = 0

Slant asymptote: y = x

	У	y'	у"	Conclusion
$-\infty < x < 0$		+	+	Increasing, concave up
0 < x < 4		1	+	Decreasing, concave up
x = 4	6	0	+	Relative minimum
4 < x < ∞		+	+	Increasing, concave up

8.
$$f(x) = \frac{x^3}{x^2 - 9} = x + \frac{9x}{x^2 - 9}$$

$$f'(x) = \frac{x^2(x^2 - 27)}{(x^2 - 9)^2} = 0 \text{ when } x = 0, \pm 3\sqrt{3} \text{ and is undefined when } x = \pm 3.$$

$$f''(x) = \frac{18x(x^2 + 27)}{(x^2 - 9)^3} = 0 \text{ when } x = 0$$

Intercept: (0, 0)

Symmetry: origin

Vertical asymptotes: $x = \pm 3$ Slant asymptote: y = x

	y	y'	<i>y</i> "	Conclusion
$-\infty < x < -3\sqrt{3}$		+	-	Increasing, concave down
$x = -3\sqrt{3}$	$-\frac{9\sqrt{3}}{2}$	0	-	Relative maximum
$-3\sqrt{3} < x < -3$		-	-	Decreasing, concave down
-3 < x < 0		-	+	Decreasing, concave up
x = 0	0	0	0	Point of inflection
0 < x < 3		-	-	Decreasing, concave down
$3 < x < 3\sqrt{3}$		-	+	Decreasing, concave up
$x = 3\sqrt{3}$	$\frac{9\sqrt{3}}{2}$	0	+	Relative minimum
$3\sqrt{3} < x < \infty$		+	+	Increasing, concave up

9.
$$y = \frac{x^2 - 6x + 12}{x - 4} = x - 2 + \frac{4}{x - 4}$$

 $y' = 1 - \frac{4}{(x - 4)^2} = \frac{(x - 2)(x - 6)}{(x - 4)^2} = 0$ when $x = 2$, 6 and is undefined when $x = 4$.
 $y'' = \frac{8}{(x - 4)^3}$

Vertical asymptote: x = 4Slant asymptote: y = x - 2

	У	y'	у"	Conclusion
$-\infty < x < 2$		+	ı	Increasing, concave down
x = 2	-2	0	-	Relative maximum
2 < x < 4		-	-	Decreasing, concave down
4 < x < 6		-	+	Decreasing, concave up
x = 6	6	0	+	Relative minimum
6 < x < ∞		+	+	Increasing, concave up

10.
$$y = \frac{-x^2 - 4x - 7}{x + 3} = -x - 1 - \frac{4}{x + 3}$$

 $y' = -\frac{x^2 + 6x + 5}{(x + 3)^2} = -\frac{(x + 1)(x + 5)}{(x + 3)^2} = 0$ when $x = -1, -5$ and is undefined when $x = -3$.
 $y'' = \frac{-8}{(x + 3)^3}$

Intercept: $(0, -\frac{7}{3})$

No symmetry

Vertical asymptote: x = -3

Slant asymptote: y = -x - 1

	y	y'	y"	Conclusion
-∞ < x < -5		-	+	Decreasing, concave up
x = -5	6	0	+	Relative minimum
-5 < x < -3		+	+	Increasing, concave up
-3 < x < -1		+	-	Increasing, concave down
x = -1	-2	0	-	Relative maximum
-1 < x < ∞		_	_	Decreasing, concave down

11.
$$y = x\sqrt{4-x}$$
, Domain: $(-\infty, 4]$

$$y' = \frac{8-3x}{2\sqrt{4-x}} = 0$$
 when $x = \frac{8}{3}$ and undefined when $x = 4$.

$$y'' = \frac{3x - 16}{4(4 - x)^{3/2}} = 0$$
 when $x = \frac{16}{3}$ and undefined when $x = 4$.

Note: $x = \frac{16}{3}$ is not in the domain.

	у	y'	У"	Conclusion
$-\infty < x < \frac{8}{3}$		+	-	Increasing, concave down
$x=\frac{8}{3}$	$\frac{16}{3\sqrt{3}}$	0	-	Relative maximum
$\frac{8}{3} < x < 4$		ı	1	Decreasing, concave down
x = 4	0	Undefined	Undefined	Endpoint

12.
$$h(x) = x\sqrt{9 - x^2}$$
, Domain: $-3 \le x \le 3$
 $h'(x) = \frac{9 - 2x^2}{\sqrt{9 - x^2}} = 0$ when $x = \pm \frac{3}{\sqrt{2}} = \pm \frac{3\sqrt{2}}{2}$ and undefined when $x = \pm 3$.
 $h''(x) = \frac{x(2x^2 - 27)}{(9 - x^2)^{3/2}} = 0$ when $x = 0$ and undefined when $x = \pm 3$.

Intercepts: (0, 0), (±3, 0)

Symmetric with respect to the origin

	У	y'	у"	Conclusion
x = -3	0	Undefined	Undefined	Endpoint
$-3 < x < -\frac{3}{\sqrt{2}}$		-	+	Decreasing, concave up
$x = -\frac{3}{\sqrt{2}}$	$-\frac{9}{2}$	0	+	Relative minimum
$-\frac{3}{\sqrt{2}} < x < 0$		+	+	Increasing, concave up
x = 0	0	3	0	Point of inflection
$0 < x < \frac{3}{\sqrt{2}}$		+	-	Increasing, concave down
$x = \frac{3}{\sqrt{2}}$	9 2	0	ı	Relative maximum
$\frac{3}{\sqrt{2}} < x < 3$		-	1	Decreasing, concave down
x = 3	0	Undefined	Undefined	Endpoint

13.
$$y = 3x^{2/3} - 2x$$

 $y' = 2x^{-1/3} - 2 = \frac{2(1 - x^{1/3})}{x^{1/3}} = 0 \text{ when } x = 1 \text{ and undefined when } x = 0.$
 $y'' = \frac{-2}{3x^{4/3}} < 0 \text{ when } x \neq 0.$

	у	y'	y"	Conclusion
-∞ < x < 0		_	_	Decreasing, concave down
x = 0	0	Undefined	Undefined	Relative minimum
0 < x < 1		+	_	Increasing, concave down
x = 1	1	0	_	Relative maximum
1 < x < ∞		-	-	Decreasing, concave down

14.
$$y = (x+1)^2 - 3(x+1)^{2/3}$$

 $y' = 2(x+1) - 2(x+1)^{-1/3} = \frac{2(x+1)^{4/3} - 2}{(x+1)^{1/3}} = 0$ when $x = 0, -2$ and undefined when $x = -1$.
 $y'' = 2 + \frac{2}{3}(x+1)^{-4/3} = \frac{6(x+1)^{4/3} + 2}{3(x+1)^{4/3}}$

Intercepts: $(-1, 0), (\pm 3^{3/4} - 1, 0)$

	y	<i>y'</i>	y"	Conclusion
-∞ < x < -2		-	+	Decreasing, concave up
x = -2	-2	0	+	Relative minimum
-2 < x < -1		+	+	Increasing, concave up
x = -1	0	Undefined	+	Relative maximum
-1 < x < 0		-	+	Decreasing, concave up
x = 0	0	0	+	Relative minimum
0 < x < ∞		+	+	Increasing, concave up

15.
$$y = 2 - x - x^3$$

 $y' = -1 - 3x^2$

No critical numbers

$$y'' = -6x = 0 \text{ when } x = 0.$$

	у	y'	<i>y</i> "	Conclusion
-∞ < x < 0		-	+	Decreasing, concave up
x = 0	2	-	0	Point of inflection
0 < x < ∞		-	-	Decreasing, concave down

16.
$$y = -\frac{1}{3}(x^3 - 3x + 2)$$

 $y' = -x^2 + 1 = 0 \text{ when } x = \pm 1.$
 $y'' = -2x = 0 \text{ when } x = 0.$

	y	<i>y</i> ′	y"	Conclusion
-∞ < x < -l		-	+	Decreasing, concave up
x = -1	- 4 /3	0	+	Relative minimum
-1 < x < 0		+	+	Increasing, concave up
x = 0	$-\frac{2}{3}$	+	0	Point of inflection
0 < x < 1		+	-	Increasing, concave down
x = 1	0	0	-	Relative maximum
1 < x < ∞		-	-	Decreasing, concave down

17.
$$y = 3x^4 + 4x^3$$

 $y' = 12x^3 + 12x^2 = 12x^2(x+1) = 0 \text{ when } x = 0, x = -1.$
 $y'' = 36x^2 + 24x = 12x(3x+2) = 0 \text{ when } x = 0, x = -\frac{2}{3}.$

	y	y'	y"	Conclusion
-∞ < x < -l		-	+	Decreasing, concave up
x = -1	-l	0	+	Relative minimum
$-1 < x < -\frac{2}{3}$		+	+	Increasing, concave up
$x = -\frac{2}{3}$	$-\frac{16}{27}$	+	0	Point of inflection
$-\frac{2}{3} < x < 0$		+	-	Increasing, concave down
x = 0	0	0	0	Point of inflection
0 < x < ∞		+	+	Increasing, concave up

18.
$$y = -2x^4 + 3x^2$$

 $y' = -8x^3 + 6x = 0 \text{ when } x = 0, \pm \frac{\sqrt{3}}{2}.$
 $y'' = -24x^2 + 6 = 0 \text{ when } x = \pm \frac{1}{2}.$
Symmetry: y-axis

Intercepts:	$\left(\pm\frac{\sqrt{6}}{2},0\right)$
(1.5) y	a 6

	y	<i>y'</i>	у"	Conclusion
$-\infty < x < -\frac{\sqrt{3}}{2}$		+	-	Increasing, concave down
$x = -\frac{\sqrt{3}}{2}$	<u>9</u> 8	0	-	Relative maximum
$-\frac{\sqrt{3}}{2} < x < -\frac{1}{2}$		-	-	Decreasing, concave down
$x = -\frac{1}{2}$	<u>5</u> 8	-2	0	Point of inflection
$-\frac{1}{2} < x < 0$		-	+	Decreasing, concave up
x = 0	0	0	+	Relative minimum
$0 < x < \frac{1}{2}$		+	+	Increasing, concave up
$x=\frac{1}{2}$	<u>5</u> 8	2	0	Point of inflection
$\frac{1}{2} < x < \frac{\sqrt{3}}{2}$		+	-	Increasing, concave down
$x = \frac{\sqrt{3}}{2}$	9 8	0	-	Relative maximum
$\frac{\sqrt{3}}{2} < x < \infty$		-	-	Decreasing, concave down

19.
$$y = x^5 - 5x$$

 $y' = 5x^4 - 5 = 5(x^4 - 1) = 0 \text{ when } x = \pm 1.$
 $y'' = 20x^3 = 0 \text{ when } x = 0.$

	y	y'	y"	Conclusion
-∞ < x < -l		+	-	Increasing, concave down
x = -1	4	0	-	Relative maximum
-1 < x < 0		-	-	Decreasing, concave down
x = 0	0	-	0	Point of inflection
0 < x < 1		-	+	Decreasing, concave up
x = 1	-4	0	+	Relative minimum
1 < x < ∞		+	+	Increasing, concave up

20.
$$y = (x - 1)^5$$

 $y' = 5(x - 1)^4 = 0$ when $x = 1$.
 $y'' = 20(x - 1)^3 = 0$ when $x = 1$.

	у	y'	у"	Conclusion
-∞ < x < 1		+	-	Increasing, concave down
x = 1	0	0	0	Point of inflection
1 < x < ∞		+	+	Increasing, concave up

21.
$$y = |2x - 3|$$

 $y' = \frac{2(2x - 3)}{|2x - 3|}$ undefined at $x = \frac{3}{2}$.
 $y'' = 0$

	у	y'	Conclusion
$-\infty < x < \frac{3}{2}$		1	Decreasing
$x=\frac{3}{2}$	0	Undefined	Relative minimum
$\frac{3}{2} < x < \infty$		+	Increasing

22.
$$y = |x^2 - 6x + 5|$$

$$y' = \frac{2(x-3)(x^2 - 6x + 5)}{|x^2 - 6x + 5|} = \frac{2(x-3)(x-5)(x-1)}{|(x-5)(x-1)|}$$
= 0 when $x = 3$ and undefined when $x = 1, x = 5$.

$$y'' = \frac{2(x^2 - 6x + 5)}{\left|x^2 - 6x + 5\right|} = \frac{2(x - 5)(x - 1)}{\left|(x - 5)(x - 1)\right|}$$
 undefined when $x = 1, x = 5$.

	у	y'	y"	Conclusion
-∞ < x < 1		_	+	Decreasing, concave up
x = 1	0	Undefined	Undefined	Relative minimum, point of inflection
1 < x < 3		+	-	Increasing, concave down
x = 3	4	0	-	Relative maximum
3 < x < 5		_	-	Decreasing, concave down
x = 5	0	Undefined	Undefined	Relative minimum, point of inflection
5 < x < ∞		+	+	Increasing, concave up

23.
$$f(x) = e^{3x}(2-x)$$

 $f'(x) = -e^{3x} + 2(2-x)e^{3x} = e^{3x}(5-3x) = 0 \text{ when } x = \frac{5}{3}.$
 $f''(x) = -3e^{3x}(-4+3x) = 0 \text{ when } x = \frac{4}{3}.$

	f(x)	f'(x)	f"(x)	Conclusion
$-\infty < x < \frac{4}{3}$		+	+	Increasing, concave up
$x=\frac{4}{3}$	2e ⁴ 3	54.6	0	Point of inflection
$\frac{4}{3} < x < \frac{5}{3}$		+	_	Increasing, concave down
$x=\frac{5}{3}$	e ⁵	0	-445.2	Relative maximum
$\frac{5}{3} < x < \infty$		-	_	Decreasing, concave down

24.
$$f(x) = -2 + e^{3x}(4 - 2x)$$

$$f'(x) = -2e^{3x}(3x - 5) = 0$$
 when $x = \frac{5}{3}$.

$$f''(x) = -6e^{3x}(3x - 4) = 0$$
 when $x = \frac{4}{3}$.

Horizontal asymptote (to left): y = -2

	f(x)	f'(x)	f"(x)	Conclusion	
$-\infty < x < \frac{4}{3}$		+	+	Increasing, concave up	
$x = \frac{4}{3}$	70.7975	109.1963	0	Point of inflection	
$\frac{4}{3} < x < \frac{5}{3}$		+	_	Increasing, concave down	
$x=\frac{5}{3}$	96.9421	0	-890.4790	Relative maximum	
$\frac{5}{3} < x < \infty$		-	-	Decreasing, concave down	

25.
$$g(t) = \frac{10}{1 + 4e^{-t}}$$

 $g'(t) = \frac{40e^{-t}}{\left(1 + 4e^{-t}\right)^2} > 0 \text{ for all } t.$

$$g''(t) = \frac{40e^{-t}(4e^{-t}-1)}{(1+4e^{-t})^3} = 0 \text{ at } t \approx 1.386.$$

 $\lim_{t\to -\infty} g(t) = 10 \implies t = 10$ is a horizontal asymptote.

 $\lim_{t\to -\infty} g(t) = 0 \implies t = 0$ is a horizontal asymptote.

	g(t)	g'(t)	g"(t)	Conclusion
-∞ < <i>t</i> < 1.386		+	+	Increasing, concave up
t = 1.386	5	2.5	0	Point of inflection
1.386 < t < ∞		+	_	Increasing, concave down

$$26. \quad h(x) = \frac{8}{2 + 3e^{-x/2}}$$

$$h'(x) = \frac{12e^{x/2}}{(2e^{x/2} + 3)^2}$$

$$h''(x) = \frac{6e^{x/2}(3 - 2e^{x/2})}{(2e^{x/2} + 3)^3}$$

No critical numbers, no relative extrema

$$\lim_{x\to\infty}h(x)=\frac{8}{2}=4\implies x=4 \text{ is a horizontal asymptote}.$$

 $\lim_{x \to -\infty} h(x) = 0 \implies x = 0 \text{ is a horizontal asymptote.}$

$$h''(x) = 0$$
: $3 = 2e^{x/2} \implies e^{x/2} = \frac{3}{2} \implies x = 2 \ln \left(\frac{3}{2}\right)$

Intercept: $\left(0, \frac{8}{5}\right)$

	h(x)	h'(x)	h"(x)	Conclusion
$-\infty < x < 2 \ln \frac{3}{2}$		+	+	Increasing, concave up
$x = 2 \ln \frac{3}{2}$	2	1/2	0	Point of inflection
$2\ln\frac{3}{2} < x < \infty$		+	_	Increasing, concave down

27.
$$y = (x - 1) \ln(x - 1)$$
, Domain: $x > 1$

$$y' = 1 + \ln(x - 1) = 0 \text{ when } \ln(x - 1) = -1 \Rightarrow (x - 1) = e^{-1} \Rightarrow x = 1 + e^{-1}$$

$$y'' = \frac{1}{x - 1}$$

	у	y'	<i>y</i> "	Conclusion
$1 < x < 1 + e^{-1}$		-	+	Decreasing, concave up
$x = 1 + e^{-1}$	-e ⁻¹	0	6	Relative minimum
$1+e^{-1} < x < \infty$		+	+	Increasing, concave up

28.
$$y = \frac{1}{24}x^3 - \ln x$$
, Domain: $x > 0$
 $y' = \frac{(x-2)(x^2+2x+4)}{8x} = 0$ when $x = 2$.
 $y'' = \frac{x^3+4}{4x^2}$

	у	y'	<i>y</i> "	Conclusion
0 < x < 2		ı	+	Decreasing, concave up
x = 2	-0.3598	0	3	Relative minimum
2 < x < ∞		+	+	Increasing, concave down

29.
$$g(x) = 6 \arcsin\left(\frac{x-2}{2}\right)^2$$
, Domain: $[0, 4]$

$$g'(x) = \frac{12(x-2)}{\sqrt{(4x-x^2)(x^2-4x+8)}} = 0 \text{ when } x = 2.$$

$$g''(x) = \frac{12(x^4-8x^3+24x^2-32x+32)}{\left[(4x-x^2)(x^2-4x+8)\right]^{3/2}}$$

	g(x)	g'(x)	g"(x)	Conclusion
0 < x < 2		-	+	Decreasing, concave up
x = 2	0	0	+	Relative minimum
2 < x < 4		+	+	Increasing, concave down

30.
$$h(x) = 7 \arctan(x+1) - \ln(x^2 + 2x + 2)$$
$$h'(x) = \frac{5 - 2x}{x^2 + 2x + 2} = 0 \text{ when } x = \frac{5}{2}.$$
$$h''(x) = \frac{2(x^2 - 5x - 7)}{(x^2 + 2x + 2)^2} = 0 \text{ when } x = \frac{5 \pm \sqrt{53}}{2}$$

	h(x)	h'(x)	h"(x)	Conclusion	
$-\infty < x < -1.1401$		+	+	Increasing, concave up	
x = -1.1401	-0.9935	+	0	Point of inflection	
$-1.1401 < x < \frac{5}{2}$		+	-	Increasing, concave down	
$x=\frac{5}{2}$	6.4635	0	-	Relative maximum	
$\frac{5}{2} < x < 6.1401$		-	-	Decreasing, concave down	
x = 6.1401	6.0707	-	0	Point of inflection	
6.1401 < x < ∞		-	+	Decreasing, concave up	

31.
$$f(x) = \frac{x}{3^{x-3}} = \frac{27x}{3^x}$$

$$f'(x) = \frac{27(1-x\ln 3)}{3^x} = 0 \Rightarrow x = \frac{1}{\ln 3} \approx 0.910$$

$$f''(x) = \frac{27\ln 3(x\ln 3 - 2)}{3^x} = 0 \Rightarrow x = \frac{2}{\ln 3} \approx 1.820$$

$$\lim_{x \to \infty} f(x) = 0, \lim_{x \to \infty} f(x) = -\infty$$

Horizontal asymptote: y = 0

Intercept: (0, 0)

	f(x)	f'(x)	f"(x)	Conclusion
$-\infty < x < 0.910$		+	-	Increasing, concave down
x = 0.910	9.041	0	-	Relative maximum
0.910 < x < 1.820		-	-	Decreasing, concave down
x = 1.820		-	0	Point of inflection
1.820 < x < ∞	6.652	- 15	+	Decreasing, concave up

32.
$$g(t) = (5 - t)5^t$$

 $g'(t) = 5^t (5 \ln 5 - 1 - t \ln 5) = 0 \Rightarrow t \ln 5 = 5 \ln 5 - 1 \Rightarrow t = \frac{5 \ln 5 - 1}{\ln 5} = 5 - \frac{1}{\ln 5} \approx 4.379$
 $g''(t) = 5^t \ln 5(5 \ln 5 - 2 - t \ln 5) = 0 \Rightarrow t = \frac{5 \ln 5 - 2}{\ln 5} = 5 - \frac{2}{\ln 5} \approx 3.757$
 $\lim_{t \to -\infty} g(t) = -\infty \text{ and } \lim_{t \to -\infty} g(t) = 0$

Horizontal asymptote: y = 0

Intercepts: (5, 0), (0, 5)

	g(t)	g'(t)	g"(t)	Conclusion	
-∞ < t < 3.757		+	+	Increasing, concave up	
t = 3.757	525.553	+	0	Point of inflection	
3.757 < t < 4.379		+	-	Increasing, concave down	
t = 4.379	714.301	0	-	Relative maximum	
4.379 < t < ∞		-	-	Decreasing, concave down	

33.
$$g(x) = \log_4(x - x^2) = \frac{\ln(x - x^2)}{\ln 4}$$
, Domain: $0 < x < 1$

$$g'(x) = \frac{2x - 1}{\ln 4 \cdot x(x - 1)} = 0 \text{ when } x = \frac{1}{2}.$$

$$g''(x) = \frac{-2x^2 + 2x - 1}{\ln 4 \cdot x^2(x - 1)^2}$$

	g(x)	g'(x)	g"(x)	Conclusion	
$0 < x < \frac{1}{2}$		+	_	Increasing, concave down	
$x=\frac{1}{2}$	-1	0	-	Relative maximum	
$\frac{1}{2} < x < 1$		-	-	Decreasing, concave down	

34.
$$f(x) = \log_2 |x^2 - 4x| = \frac{\ln |x^2 - 4x|}{\ln 2}$$

$$f'(x) = \frac{2(x-2)}{x(x-4) \ln 2} = 0$$
 when $x = 2$ and undefined when $x = 0$ and $x = 4$.

$$f''(x) = \frac{-2(x^2 - 4x + 8)}{x^2(x - 4)^2 \ln 2}$$

	f(x)	f'(x)	f"(x)	Conclusion
-∞ < x < 0		_	_	Decreasing, concave down
x = 0	Undefined	Undefined	Undefined	Undefined
0 < x < 2		+	_	Increasing, concave down
x = 2	2	0	-	Relative maximum
2 < x < 4		_	_	Decreasing, concave down
x = 4	Undefined	Undefined	Undefined	Undefined
4 < x < ∞		+	_	Increasing, concave down

35. Because 1 + x² ≠ 0 for any real number x and f(0) = 15, the graph of f does not have a vertical asymptote. So, the graph of f has a horizontal asymptote at y = 0.

36.
$$f(x) = \frac{15}{1+x^2} = 15(1+x^2)^{-1}$$
$$f'(x) = -15(1+x^2)^{-2}(2x)$$
$$= \frac{-30x}{(1+x^2)^2}$$
$$0 = \frac{-30x}{(1+x^2)^2}$$
$$x = 0$$
$$f(0) = \frac{15}{1+(0)^2} = 15$$

So, the graph of f has a relative maximum at (0, 15).

37. $f(x) = \frac{20x}{x^2 + 1} - \frac{1}{x} = \frac{19x^2 - 1}{x(x^2 + 1)}$ $f'(x) = \frac{-(19x^4 - 22x^2 - 1)}{x^2(x^2 + 1)^2} = 0 \text{ for } x \approx \pm 1.10$

 $f''(x) = \frac{2(19x^6 - 63x^9 - 3x^2 - 1)}{x^3(x^2 + 1)^3} = 0 \text{ for } x \approx \pm 1.84$ Vertical asymptote: x = 0

Horizontal asymptote: y = 0Minimum: (-1.10, -9.05)

Maximum: (1.10, 9.05)

Points of inflection: (-1.84, -7.86), (1.84, 7.86)

38.
$$f(x) = x + \frac{4}{x^2 + 1} = \frac{x^3 + x + 4}{x^2 + 1} = 0 \text{ for } x \approx -1.379$$

$$f'(x) = \frac{x^4 + 2x^2 - 8x + 1}{(x^2 + 1)^2} = 0 \text{ for } x \approx 1.608, x \approx 0.129$$

$$f''(x) = \frac{8(3x^2 - 1)}{(x^2 + 1)^3} = 0 \text{ for } x = \pm \frac{1}{\sqrt{3}} \approx \pm 0.577$$

Slant asymptote: y = x

Points of inflection: (-0.577, 2.423), (0.577, 3.577)

Relative maximum: (0.129, 4.064)

Relative minimum: (1.608, 2.724)

39.
$$f(x) = \frac{4x}{\sqrt{x^2 + 15}}$$

 $f'(x) = \frac{60}{(x^2 + 15)^{3/2}} > 0$

$$f''(x) = \frac{-180x}{(x^2 + 15)^{5/2}} = 0 \text{ at } x = 0$$

Horizontal asymptotes: $y = \pm 4$

Point of inflection: (0, 0)

Vertical asymptotes: x = -3, x = 0

Slant asymptote: $y = \frac{x}{2}$

41.
$$f(x) = 2x - 4 \sin x$$
, $0 \le x \le 2\pi$

$$f'(x) = 2 - 4\cos x$$

$$f''(x) = 4 \sin x$$

$$f'(x) = 0 \Rightarrow \cos x = \frac{1}{2} \Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3}$$

$$f''(x) = 0 \Rightarrow x = 0, \pi, 2\pi$$

Relative minimum:
$$\left(\frac{\pi}{3}, \frac{2\pi}{3} - 2\sqrt{3}\right)$$

Relative maximum:
$$\left(\frac{5\pi}{3}, \frac{10\pi}{3} + 2\sqrt{3}\right)$$

Points of inflection: $(0, 0), (\pi, 2\pi), (2\pi, 4\pi)$

42.
$$f(x) = -x + 2 \cos x, 0 \le x \le 2\pi$$

$$f'(x) = -1 - 2\sin x$$

$$f''(x) = -2\cos x$$

$$f(x) = 0 \text{ at } x \approx 1.030$$

$$f'(x) = 0 \Rightarrow \sin x = -\frac{1}{2} \Rightarrow x = \frac{7\pi}{6}, \frac{11\pi}{6}$$

$$f''(x) = 0 \Rightarrow x = \frac{\pi}{2}, \frac{3\pi}{2}$$

Relative minimum:
$$\left(\frac{7\pi}{6}, -\sqrt{3} - \frac{7\pi}{6}\right) \approx (3.665, -5.397)$$

Relative maximum:
$$\left(\frac{11\pi}{6}, \sqrt{3} - \frac{18\pi}{6}\right) \approx (5.760, -4.028)$$

43.
$$y = \sin x - \frac{1}{18} \sin 3x, 0 \le x \le 2\pi$$
 $y' = \cos x - \frac{1}{6} \cos 3x$
 $= \cos x - \frac{1}{6} \left[\cos 2x \cos x - \sin 2x \sin x\right]$
 $= \cos x \left[1 - \frac{1}{6} \left(1 - 2 \sin^2 x\right) \cos x - 2 \sin^2 x \cos x\right]$
 $= \cos x \left[1 - \frac{1}{6} \left(1 - 2 \sin^2 x\right) \cos x - 2 \sin^2 x\right] = \cos x \left[\frac{5}{6} + \frac{2}{3} \sin^2 x\right]$
 $y' = 0$: $\cos x = 0 \Rightarrow x = \pi/2, 3\pi/2$
 $\frac{5}{6} + \frac{2}{3} \sin^2 x = 0 \Rightarrow \sin^2 x = -5/4, \text{impossible}$
 $y'' = -\sin x + \frac{1}{2} \sin 3x = 0 \Rightarrow 2 \sin x = \sin 3x$
 $= \sin 2x \cos x + \cos 2x \sin x$
 $= 2 \sin x \cos^2 x + \left(2 \cos^2 x - 1\right) \sin x$
 $= \sin x \left(2 \cos^2 x + 2 \cos^2 x - 1\right)$
 $= \sin x \left(4 \cos^2 x - 1\right)$
 $\sin x = 0 \Rightarrow x = 0, \pi, 2\pi$
 $2 = 4 \cos^2 x - 1 \Rightarrow \cos x = \pm \sqrt{3}/2 \Rightarrow x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}$

Relative maximum: $\left(\frac{\pi}{2}, \frac{19}{18}\right)$

Relative minimum: $\left(\frac{3\pi}{2}, -\frac{19}{18}\right)$

Points of inflection: $\left(\frac{\pi}{6}, \frac{4}{9}\right), \left(\frac{5\pi}{6}, \frac{4}{9}\right), \left(\pi, 0\right), \left(\frac{7\pi}{6}, -\frac{4}{9}\right), \left(\frac{11\pi}{6}, -\frac{4}{9}\right)$

44. $y = \cos x - \frac{1}{4} \cos 2x, 0 \le x \le 2\pi$
 $y' = -\sin x + \frac{1}{2} \sin 2x = -\sin x + \sin x \cos x$
 $= \sin x(\cos x - 1)$
 $y' = 0$: $\sin x = 0 \Rightarrow x = 0, \pi, 2\pi$
 $\cos x - 1 = 0 \Rightarrow x = 0, \pi, 2\pi$
 $\cos x - 1 = 0 \Rightarrow x = 0, 2\pi$
 $y'' = -\cos x + \cos 2x$
 $= -\cos x + 2 \cos^2 x - 1$
 $= \left(2 \cos x + 1\right)(\cos x - 1)$
 $y'' = 0$: $2 \cos x + 1 = 0 \Rightarrow x = 0, 2\pi$

Relative minimum: $\left(\pi, -\frac{5}{4}\right)$

Points of inflection: $\left(\frac{2\pi}{3}, \frac{3}{8}\right), \left(\frac{4\pi}{3}, \frac{3}{8}\right)$
 $\cos x - 1 = 0 \Rightarrow x = 0, 2\pi$

Relative minimum: $\left(\pi, -\frac{5}{4}\right)$

- 45. $y = 2x \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2}$
 - $y' = 2 \sec^2 x = 0$ when $x = \pm \frac{\pi}{4}$.
 - $y'' = -2 \sec^2 x \tan x = 0 \text{ when } x = 0.$
 - Relative maximum: $\left(\frac{\pi}{4}, \frac{\pi}{2} 1\right)$
 - Relative minimum: $\left(-\frac{\pi}{4}, 1 \frac{\pi}{2}\right)$
 - Point of inflection: (0, 0)
 - Vertical asymptotes: $x = \pm \frac{\pi}{2}$

- 46. $y = 2(x 2) + \cot x, 0 < x < \pi$ $y' = 2 - \csc^2 x = 0$ when $x = \frac{\pi}{4}, \frac{3\pi}{4}$
 - $y'' = 2 \csc^2 x \cot x = 0 \text{ when } x = \frac{\pi}{2}$
 - Relative maximum: $\left(\frac{3\pi}{4}, \frac{3\pi}{2} 5\right)$
 - Relative minimum: $\left(\frac{\pi}{4}, \frac{\pi}{2} 3\right)$
 - Point of inflection: $\left(\frac{\pi}{2}, \pi 4\right)$
 - Vertical asymptotes: $x = 0, \pi$

- 47. $y = 2(\csc x + \sec x), 0 < x < \frac{\pi}{2}$
 - $y' = 2(\sec x \tan x \csc x \cot x) = 0 \Rightarrow x = \frac{\pi}{4}$
 - Relative minimum: $\left(\frac{\pi}{4}, 4\sqrt{2}\right)$
 - Vertical asymptotes: $x = 0, \frac{\pi}{2}$

- 48. $y = \sec^2\left(\frac{\pi x}{8}\right) 2\tan\left(\frac{\pi x}{8}\right) 1, -3 < x < 3$
 - $y' = 2 \sec^2 \left(\frac{\pi x}{8}\right) \tan \left(\frac{\pi x}{8}\right) \left(\frac{\pi}{8}\right) 2 \sec^2 \left(\frac{\pi x}{8}\right) \left(\frac{\pi}{8}\right) = 0 \implies x = 2$
 - Relative minimum: (2, -1)

49.
$$g(x) = x \tan x, -\frac{3\pi}{2} < x < \frac{3\pi}{2}$$

$$g'(x) = \frac{x + \sin x \cos x}{\cos^2 x} = 0 \text{ when } x = 0.$$

$$g''(x) = \frac{2(\cos x + x \sin x)}{\cos^3 x}$$

Vertical asymptotes: $x = -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}$

Intercepts: $(-\pi, 0), (0, 0), (\pi, 0)$

Symmetric with respect to y-axis.

Increasing on
$$\left(0, \frac{\pi}{2}\right)$$
 and $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

Points of inflection: (±2.80, -1)

50.
$$g(x) = x \cot x, -2\pi < x < 2\pi$$

$$g'(x) = \frac{\sin x \cos x - x}{\sin^2 x}$$

$$g'(0)$$
 does not exist. But $\lim_{x\to 0} x \cot x = \lim_{x\to 0} \frac{x}{\tan x} = 1$.

Vertical asymptotes: $x = \pm 2\pi, \pm \pi$

Intercepts:
$$\left(-\frac{3\pi}{2}, 0\right), \left(-\frac{\pi}{2}, 0\right), \left(\frac{\pi}{2}, 0\right), \left(\frac{3\pi}{2}, 0\right)$$

Symmetric with respect to y-axis.

Decreasing on $(0, \pi)$ and $(\pi, 2\pi)$

Points of inflection: (±4.49, 1)

 Because the slope is negative, the function is decreasing on (2, 8), and so f(3) > f(5).

52. If
$$f'(x) = 2$$
 in $[-5, 5]$, then $f(x) = 2x + 3$ and

$$f(2) = 7$$
 is the least possible value of $f(2)$. If

$$f'(x) = 4$$
 in $[-5, 5]$, then $f(x) = 424 + 3$ and

$$f(2) = 11$$
 is the greatest possible value of $f(2)$.

f is cubic.

f' is quadratic.

f" is linear.

The zeros of f' correspond to the points where the graph of f has horizontal tangents. The zero of f' corresponds to the point where the graph of f' has a horizontal tangent.

54. f'' is constant.

f' is linear.

f is quadratic.

The zero of f' corresponds to the points where the graph of f has a horizontal tangent. There are no zeros on of f'', which means the graph of f'has no horizontal tangent.

55.
$$f(x) = \frac{4(x-1)^2}{x^2-4x+5}$$

Vertical asymptote: none

Horizontal asymptote: y = 4

The graph crosses the horizontal asymptote y = 4. If a function has a vertical asymptote at x = c, the graph would not cross it because f(c) is undefined.

56.
$$g(x) = \frac{3x^4 - 5x + 3}{x^4 + 1}$$

Vertical asymptote: none

Horizontal asymptote: y = 3

The graph crosses the horizontal asymptote y = 3. If a function has a vertical asymptote at x = c, the graph would not cross it because f(c) is undefined.

$$57. \ h(x) = \frac{\sin 2x}{x}$$

Vertical asymptote: none Horizontal asymptote: y = 0

Yes, it is possible for a graph to cross its horizontal asymptote.

It is not possible to cross a vertical asymptote because the function is not continuous there.

$$58. \ f(x) = \frac{\cos 3x}{4x}$$

Vertical asymptote: x = 0

Horizontal asymptote: y = 0

Yes, it is possible for a graph to cross its horizontal asymptote.

It is not possible to cross a vertical asymptote because the function is not continuous there.

59.
$$h(x) = \frac{6-2x}{3-x}$$

= $\frac{2(3-x)}{3-x} = \begin{cases} 2, & \text{if } x \neq 3 \\ \text{Undefined, if } x = 3 \end{cases}$

The rational function is not reduced to lowest terms.

There is a hole at (3, 2).

60.
$$g(x) = \frac{x^2 + x - 2}{x - 1}$$

= $\frac{(x + 2)(x - 1)}{x - 1} = \begin{cases} x + 2, & \text{if } x \neq 1 \\ \text{Undefined, if } x = 1 \end{cases}$

The rational function is not reduced to lowest terms.

61.
$$f(x) = -\frac{x^2 - 3x - 1}{x - 2} = -x + 1 + \frac{3}{x - 2}$$

The graph appears to approach the slant asymptote y = -x + 1.

62.
$$g(x) = \frac{2x^2 - 8x - 15}{x - 5} = 2x + 2 - \frac{5}{x - 5}$$

The graph appears to approach the slant asymptote y = 2x + 2.

63.
$$f(x) = \frac{2x^3}{x^2 + 1} = 2x - \frac{2x}{x^2 + 1}$$

The graph appears to approach the slant asymptote y = 2x.

64.
$$h(x) = \frac{-x^3 + x^2 + 4}{x^2} = -x + 1 + \frac{4}{x^2}$$

The graph appears to approach the slant asymptote y = -x + 1.

- 65. (a) f'(x) < 0 when -3 < x < 1.</p>
 So, f is decreasing on the interval (-3, 1).
 - (b) $f'(x) = x^2 + 2x$ f''(x) = 2x + 2 < 0 when x < -1.

So, the graph of f is concave downward on the interval (-7, -1).

- (c) f'(x) = 0 when x = -3 and x 1.
 Because f is decreasing on the interval (-3, 1),
 f has a relative maximum at x = -3 and a relative minimum at x = 1.
- (d) f''(x) = 2x + 2 = 0 when x = -1.
 So, the graph of f has a point of inflection at x = -1.
- 66. (a) f'(x) > 0 when x < -2 and -2 < x < 1.</p>
 So, f is increasing on the intervals (-4, 2) and (-2, 1).
 - (b) Because f'(x) is increasing when −2 < x < 0, the graph of f is concave upward on the interval (−2, 0).
 - (c) f'(x) = 0 when x = -2 and x = 1.
 Because f is increasing on the intervals (-4, -2) and (-2, 1) and decreasing on the interval (1, 2), the relative maximum is at x = 1 and there is no relative minimum.
 - (d) Because f''(x) = 0 when x = -2 and x = 0, the graph of f has points of inflection at x = -2and x = 0.
- 67. (a) Because f" < 0 when x < -2 and x > 6, the graph of f is concave downward on (-∞, 2) and (6, ∞). Because f" > 0 when -2 < x < 6, the graph of f is concave upward on (-2, 6).</p>
 - (b) f' is decreasing on (-∞, -2) and (6, ∞) and increasing on (-2, 6).
 - (c) Because f" = 0 when x = -2 and x = 6, the graph of f has points of inflection at x = -2 and x = 6.

- 68. (a) Because f'' < 0 when x < -2 and x > 2, the graph of f is concave downward on $(-\infty, -2)$ and $(2, \infty)$. Because f'' > 0 when -2 < x < 0 and 0 < x < 2, the graph of f is concave upward on (-2, 2).
 - (b) f' is decreasing on (-∞, -2) and (2, ∞) and increasing on (-2, 2).
 - (c) Because f'' = 0 when x = -2 and x = 2, the graph has points of inflection at x = -2 and x = 2.
- 69. (a) Because f" < 0 when 0 < x < π, the graph of f is concave downward on (0, π). Because f" > 0 when π < x < 2π, the graph of f is concave upward on (π, 2π).</p>
 - (b) f' is decreasing on (0, π) and increasing on (π, 2π).
 - (c) Because f" = 0 when x = π, the graph of f has a point of inflection at x = π.
- 70. (a) Because f'' < 0 when x < -1 and x > 1, the graph of f is concave downward on $(-\infty, -1)$ and $(1, \infty)$. Because f'' > 0 when -1 < x < 1, the graph of f is concave upward on (-1, 1).
 - (b) f' is decreasing on (-∞, -1) and (1, ∞) and increasing on (-1, 1).
 - (c) Because f'' = 0 when x = -1 and x = 1, the graph has points of inflection at x = -1 and x = 1.

(or any vertical translation of f)

(or any vertical translation of f)

73.

(or any vertical translation of f)

74.

(or any vertical translation of the 3 segments of f)

75. $f(x) = \frac{\cos^2 \pi x}{\sqrt{x^2 + 1}}, (0, 4)$

On (0, 4) there seem to be 7 critical numbers: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5

(b)
$$f'(x) = \frac{-\cos \pi x \left(x \cos \pi x + 2\pi (x^2 + 1) \sin \pi x\right)}{\left(x^2 + 1\right)^{3/2}}$$

= 0

Critical numbers $\approx \frac{1}{2}, 0.97, \frac{3}{2}, 1.98, \frac{5}{2}, 2.98, \frac{7}{2}$.

The critical numbers where maxima occur appear to be integers in part (a), but approximating them using f' shows that they are not integers.

76. $f(x) = \tan(\sin \pi x)$

- (b) $f(-x) = \tan(\sin(-\pi x)) = \tan(-\sin \pi x) = -\tan(\sin \pi x) = -f(x)$ Symmetry with respect to the origin
- (c) Periodic with period 2
- (d) On (-1, 1), there is a relative maximum at $(\frac{1}{2}, \tan 1)$ and a relative minimum at $(-\frac{1}{2}, -\tan 1)$.
- (e) On (0,1), the graph of f is concave downward.

77. (a)
$$f(x) = \ln x, g(x) = \sqrt{x}$$

$$f'(x) = \frac{1}{x}, g'(x) = \frac{1}{2\sqrt{x}}$$

For x > 4, g'(x) > f'(x). g is increasing at a higher rate than f for "large" values of x.

(b)
$$f(x) = \ln x, g(x) = \sqrt[4]{x}$$

$$f'(x) = \frac{1}{x}, g'(x) = \frac{1}{4\sqrt[4]{x^3}}$$

For x > 256, g'(x) > f'(x). g is increasing at a higher rate than f for "large" values of x. $f(x) = \ln x$ increases very slowly for "large" values of x.

78.
$$g(x) = \ln f(x), f(x) > 0$$

 $g'(x) = \frac{f'(x)}{f(x)}$

- (a) Yes. If the graph of g is increasing, then g'(x) > 0. Because f(x) > 0, you know that f'(x) = g'(x)f(x) and f'(x) > 0. So, the graph of f is increasing.
- (b) No. Let f(x) = x² + 1 (positive and concave up).
 g(x) = ln(x² + 1) is not concave up.
- 79. (a) f'(x) = 0 at x_0 , x_2 and x_4 (horizontal tangent).
 - (b) f''(x) = 0 at x₂ and x₃ (point of inflection).
 - (c) f'(x) does not exist at x₁ (sharp corner).
 - (d) f has a relative maximum at x_1 .
 - (e) f has a point of inflection at x₂ and x₃ (change in concavity).
- 80. (a) f'(x) = 0 for x = -2 (relative maximum) and x = 2 (relative minimum). f' is negative for -2 < x < 2 (decreasing). f' is positive for x > 2 and x < -2 (increasing).
 - (b) f"(x) = 0 at x = 0 (point of inflection).
 f" is positive for x > 0 (concave upward).
 f" is negative for x < 0 (concave downward).
 - (c) f' is increasing on $(0, \infty)$. (f'' > 0)
 - (d) f'(x) is minimum at x = 0. The rate of change of f at x = 0 is less than the rate of change of f for all other values of x.

81. Tangent line at P:
$$y - y_0 = f'(x_0)(x - x_0)$$

(a) Let
$$y = 0$$
: $-y_0 = f'(x_0)(x - x_0)$
 $f'(x_0)x = x_0f'(x_0) - y_0$
 $x = x_0 - \frac{y_0}{f'(x_0)} = x_0 - \frac{f(x_0)}{f'(x_0)}$

x-intercept:
$$\left(x_0 - \frac{f(x_0)}{f'(x_0)}, 0\right)$$

(b) Let
$$x = 0$$
: $y - y_0 = f'(x_0)(-x_0)$
 $y = y_0 - x_0f'(x_0)$
 $y = f(x_0) - x_0f'(x_0)$

y-intercept:
$$(0, f(x_0) - x_0 f'(x_0))$$

(c) Normal line:
$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0)$$

Let
$$y = 0$$
: $-y_0 = -\frac{1}{f'(x_0)}(x - x_0)$
 $-y_0 f'(x_0) = -x + x_0$
 $x = x_0 + y_0 f'(x_0) = x_0 + f(x_0) f'(x_0)$

x-intercept:
$$(x_0 + f(x_0)f'(x_0), 0)$$

(d) Let
$$x = 0$$
: $y - y_0 = \frac{-1}{f'(x_0)}(-x_0)$

$$y = y_0 + \frac{x_0}{f'(x_0)}$$

y-intercept:
$$\left(0, y_0 + \frac{x_0}{f'(x_0)}\right)$$

(e)
$$|BC| = \left| x_0 - \frac{f(x_0)}{f'(x_0)} - x_0 \right| = \left| \frac{f(x_0)}{f'(x_0)} \right|$$

(f)
$$|PC|^2 = y_0^2 + \left(\frac{f(x_0)}{f'(x_0)}\right) = \frac{f(x_0)^2 f'(x_0)^2 + f(x_0)^2}{f'(x_0)^2}$$

 $|PC| = \left|\frac{f(x_0)\sqrt{1 + \left[f'(x_0)\right]^2}}{f'(x_0)}\right|$

(g)
$$|AB| = |x_0 - (x_0 + f(x_0)f'(x_0))| = |f(x_0)f'(x_0)|$$

(h)
$$|AP|^2 = f(x_0)^2 f'(x_0)^2 + y_0^2$$

 $|AP| = |f(x_0)| \sqrt{1 + [f'(x_0)]^2}$

82.
$$f(x) = \frac{2x^n}{x^4 + 1}$$

- (a) For n even, f is symmetric about the y-axis. For n odd, f is symmetric about the origin.
- (b) The x-axis will be the horizontal asymptote if the degree of the numerator is less than 4. That is, n = 0, 1, 2, 3.
- (c) n = 4 gives y = 2 as the horizontal asymptote.
- (d) There is a slant asymptote y = 2x if n = 5: $\frac{2x^5}{x^4 + 1} = 2x \frac{2x}{x^4 + 1}$

n	0	1	2	3	4	5
M	1	2	3	2	1	0
N	2	3	4	5	2	3

83.
$$f(x) = \frac{ax}{(x-b)^2}$$

Answers will vary. Sample answer: The graph has a vertical asymptote at x = b. If a and b are both positive, or both negative, then the graph of f approaches ∞ as x approaches b, and the graph has a minimum at x = -b. If a and b have opposite signs, then the graph of f approaches $-\infty$ as x approaches b, and the graph has a maximum at x = -b.

84.
$$f(x) = \frac{1}{2}(ax)^2 - (ax) = \frac{1}{2}(ax)(ax - 2), a \neq 0$$

 $f'(x) = a^2x - a = a(ax - 1) = 0 \text{ when } x = \frac{1}{a}$.
 $f''(x) = a^2 > 0 \text{ for all } x$.

(a) Intercepts:
$$(0, 0), \left(\frac{2}{a}, 0\right)$$

Relative minimum: $\left(\frac{1}{a}, -\frac{1}{2}\right)$

Points of inflection: none

85. Vertical asymptote:
$$x = 3$$

Horizontal asymptote: $y = 0$

$$y = \frac{1}{x - 3}$$

86. Vertical asymptote: x = 2

Slant asymptote:
$$y = -x$$

$$y = -x + \frac{1}{x-2} = \frac{-x^2 + 2x + 1}{x-2}$$

88. $y = \sqrt{x^2 + 6x} = \sqrt{(x + 3)^2 - 9}$ $y \to x + 3 \text{ as } x \to \infty, \text{ and } y \to -x - 3 \text{ as } x \to -\infty.$ Slant asymptotes: y = x + 3, y = -x - 3

89. $f(x) = \frac{x^3 - 1}{x^2 - x} = \frac{(x - 1)(x^2 + x + 1)}{x(x - 1)} = \frac{x^2 + x + 1}{x}$ $\lim_{x \to -\infty} \frac{x^2 + x + 1}{x} = \lim_{x \to -\infty} \left(x + 1 + \frac{1}{x} \right) = -\infty$ $\lim_{x \to -\infty} \frac{x^2 + x + 1}{x} = \lim_{x \to -\infty} \left(x + 1 + \frac{1}{x} \right) = \infty$

So, the graph of y = x + 1 is a slant asymptote of f.

 $f(x) = \frac{x^3 - 1}{x^2 - x} = \frac{x^2 + x + 1}{x}$ has a vertical asymptote at x = 0, and x = 1 is a nonremovable discontinuity.

Because the asymptotes of f are y = x + 1 and x = 0, the answer is C.

- 90. Evaluate each statement.
 - A: Because f'' < 0 when x < -8 and 8 < x < 16, the graph is concave downward on $(-\infty, -8)$ and (8, 16).

The statement is false.

B: Because f' > 0 when x < -16 and 0 < x < 16, the graph of f is increasing on (-∞, -16) and (0, 16).

The statement is false.

- C: f' = 0 when x = -16, x = 0, and x = 16. The statement is false.
- D: Because f' = 0 when x = -16, x = 0, and x = 16, the graph of f has points of inflection at x = -16, x = 0, and x = 16. The statement is true.

So, the answer is D.

- 91. Evaluate each statement.
 - I: Because g" > 0 when x > 2, the graph of g is concave upward on (2, ∞).
 The statement is true.
 - II: Because g" < 0 when x < 2, the graph of g' is decreasing on the interval (-∞, 2).
 The statement is true.
 - III: Because g" = 0 when x = 2, the graph has a point of inflection at x = 2. The statement is true.

So, the answer is D.

92. (a) $f'(x) = -12(x-2)^2(x-4) = 0$ x = 2,

Because f'(x) > 0 on $(-\infty, 2)$ and (2, 4) and f'(x) < 0 on $(4, \infty)$, the graph of f has a relative maximum at x = 4.

- (b) Because f'(x) < 0 on (4,∞), the graph of f is decreasing on (4,∞).
- (c) f'(x) = -12(x 2)²(x 4)
 f'(x) has relative extrema at x = 2 and x = 10/3,
 so f''(x) = 0 at x = 2 and x = 10/3. Because
 f''(x) = 0 when x < 2 and x > 10/3, the graph of f is concave downward on (-∞, 2) and (10/2, ∞).
- (d) Because f''(x) = 0 at x = 2 and $x = \frac{10}{3}$, the graph of f has two points of inflection at x = 2 and $x = \frac{10}{3}$.