

Figure 1

Figure 2

Figure 3

Figure 4

```
503
      LIBRARY ieee;
504
      USE ieee.std logic.all;
505
      ENTITY Top IS
506
                      (Signal1: IN std_logic;
507
                port
                      Signal2: OUT std logic
508
                      Signal3: OUT std logic);
509
510
      END Top;
511
512
      ARCHITECTURE struct OF Top IS
513
                                  : std logic;
             SIGNAL sigA
514
             SIGNAL sigB
                                  : std_logic;
515
516
             COMPONENT Module1
517
518
             PORT(
                            : IN std_logic;
519
                Signal1
                            :OUT std_logic;
520
                sigA
                            :OUT std_logic;
521
                sigB
522
             );
             END COMPONENT;
523
524
525
             COMPONENT Module2
526
             PORT(
                      : IN
527
                in1
                            std logic;
528
                Z
                      : OUT std_logic;
529
             END COMPONENT;
530
531
       BEGIN
532
533
534
             U0: Module1
                PORT MAP(
535
                             => sigA,
536
                   sigA
537
                   sigB
                             => sigB,
                             => Signal1
538
                   Signal1
                                                                5B
539
                );
540
             U1: Module2
541
542
                PORT MAP(
                                                            Figure 5
                   in1 => sigA,
543
                    z => Signal2
544
545
                );
 546
```

Figure 5A

546 547	U2 : Module2 PORT MAP(
548	in1 => sigB,	5A
549	z => Signal3	
550);	
551		
552		TAP TO THE TAPE
553	END ARCHITECTURE struct;	
554		
		Figure 5

Figure 5B

Figure 6A

Figure 6B

Figure 7B

Signal	Module	Synapse	Function
Signal	Module	I, O, B	Signal is connected to module Module and the port name is Signal
		I, O, B [synapseRange]	ILLEGAL
		I, O, B {synapseRange}	ILLEGAL
	Module {moduleRa nge}	I, O, B	Signal is connected to all arrayed modules Modules and the port name is Signal
		I, O, B [synapseRange]	ILLEGAL
į		I, O, B {synapseRange}	ILLEGAL

Figure 8

Signal	Module	Synapse	Function
Signal [range]	Module	I, O, B	Signal [range] is connected to module Module and the port name is Signal [range]
		I, O, B [synapseRange]	[synapseRange] must be a member of signal [range]. If this criterion is met, signal [synapseRange] is connected to Module and the port name is signal [synapseRange]. See note 3.
		I, O, B {synapseRange}	ILLEGAL
	Module {moduleRange}	I, O, B	Signal [range] is connected to all arrayed modules Module and the port name is Signal [range]
		I, O, B [synapseRange]	[synapseRange] must be a member of signal [range]. If this criterion is met, signal [synapseRange] is connected to all arrayed modules Module and the port name is signal [synapseRange]. See Note 3.
		I, O, B {synapseRange}	{synapseRange} must be a member of signal [range] and its range must be equal to {moduleRange}. If this criterion is met, each arrayed module Module has a port named signal and they are connected as per Note 1.

- Note 1 The arrayed connectivity works as if both array ranges were expanded, and an order of appearance association is made. For example, if range #1 is A:H and range #2 is 7:0, the ranges would be expand as A, B, C, D, E, F, G, H and 7, 6, 5, 4, 3, 2, 1, 0 respectively. The ranges would be interconnected such that element H in range #1 is connected to element 0 in range #2. This rule is true regardless of whether the range is specified numerically or alphabetically.
- Note 2 An example of this expansion is *mySignalData*{A:D} [7:0]. This signal would be expanded to be *mySignalData*A[7:0], *mySignalData*B[7:0], *mySignalData*C[7:0], and *mySignalData*D[7:0].
- Note 3 If [synapseRange] is only one element, the port name reduces to signal.

Signal	Module	Synapse	Function
Signal {array}	Module	I, O, B, U	Signal {array} is connected to module Module with a port for each member in {array}. The ports are individual signals whose names are formed by expanding {array} as per Note 2.
		I, O, B, U [synapseRange]	ILLEGAL
		I, O, B, U {synapseRange}	{synapseRange} must be a member of {array}. If this criterion is met, signal {synapseRange} is connected to module Module with a port for each member in {synapseRange}. The ports are individual signals whose names are formed by expanding {synapseRange} as per Note 2.
	Module {moduleRange}	I, O, B, U	{array} must be equal in range to {moduleRange}. If this criterion is met, each arrayed module Module has a port name <i>signal</i> and they are connected as per Note 1.
		I, O, B, U [synapseRange]	ILLEGAL
		I, O, B, U {synapseRange}	{synapseRange} must be a member of {array} and its range must be equal to {moduleRange}. If this criterion is met, each arrayed module Module has a port named <i>signal</i> and they are connected as per Note 1.

Note 1 — The arrayed connectivity works as if both array ranges were expanded, and an order of appearance association is made. For example, if range #1 is A:H and range #2 is 7:0, the ranges would be expand as A, B, C, D, E, F, G, H and 7, 6, 5, 4, 3, 2, 1, 0 respectively. The ranges would be interconnected such that element H in range #1 is connected to element 0 in range #2. This rule is true regardless of whether the range is specified numerically or alphabetically.

Note 2 — An example of this expansion is *mySignal*{A:D}*Data*[7:0]. This signal would be expanded to be *mySignalAData*[7:0], *mySignalBData*[7:0], *mySignalCData*[7:0], and *mySig-nalDData*[7:0].

Signal	Module	Synapse	Function
Signal {array} [range]	Module	I, O, B	Signal {array} [range] is connected to module Module with a port for each member in {array}. The ports are [range] vectors whose names are formed by expanding {array} as described in Note 2.
		I, O, B [synapseRange]	[synapseRange] must be a member of [range]. Signal {array} [synapseRange] is connected to module Module with a port for each member in {array}. The port names are formed by expanding {array} as per Note 2.
		I, O, B {synapseRange}	{synapseRange} must be a member of {array}. If this criterion is met, signal {synapseRange} [range] is connected to module Module with a port for each member in {synapseRange}. The ports are [range] vectors whose names are formed by expanding {synapseRange} as per Note 2.
	Module {moduleRange}	I, O, B	{array} must be equal in range to {moduleRange}. If this criterion is met, each arrayed module Module has a port name <i>signal</i> [range] and they are connected as per Note 1.
		I, O, B [synapseRange]	[synapseRange] must be a member of [range] and {array} must be equal in range to {moduleRange}. If this criterion is met, each arrayed module Module has a port named <i>Signal</i> {synapseRange} and they are connected as per Note 1. See also Note 3.
		I, O, B {synapseRange}	{synapseRange} must be a member of {array} and its range must be equal to {moduleRange}. If this criterion is met, each arrayed module Module has a port named <i>signal</i> [range] and they are connected as per Note 1.

Notes

- Note 1 The arrayed connectivity works as if both array ranges were expanded, and an order of appearance association is made. For example, if range #1 is A:H and range #2 is 7:0, the ranges would be expand as A, B, C, D, E, F, G, H and 7, 6, 5, 4, 3, 2, 1, 0 respectively. The ranges would be interconnected such that element H in range #1 is connected to element 0 in range #2. This rule is true regardless of whether the range is specified numerically or alphabetically.
- **Note 2** An example of this expansion is *mySignal*{A:D}*Data*[7:0]. This signal would be expanded to be *mySignalAData*[7:0], *mySignalBData*[7:0], *mySignalCData*[7:0], and *mySig-nalDData*[7:0].

	Тор	Module1	Module2	Delay	Comment
in1	1			20 ns	Input port for top
intSig1		0	_	10 ns	
intSig2		0		5 ns	
out1	0		0	5 ns	Output port for top
cellName		Rev3			

Figure 12

```
LIBRARY ieee;
USE ieee.std logic.all;
ENTITY Top IS
                                                                    1310
         PORT (in1
                     : IN
                           std logic; -- Input port for top
               out1 : OUT std_logic); -- Output port for top
                                                                    1320
         ATTRIBUTE delay OF IN1: SIGNAL IS 20 ns;
                                                                    1330
         ATTRIBUTE delay OF OUT1: SIGNAL IS 5 ns;
                                                                    1340
END Top;
ARCHITECTURE struct OF Top IS
      SIGNAL intSig1
                            : std logic;
                            : std logic;
      SIGNAL intSig2
                                                                    1350
      ATTRIBUTE delay OF intSig1 : SIGNAL IS 10 ns;
      ATTRIBUTE delay OF intSig2: SIGNAL IS 5 ns;
                                                                    1360
      COMPONENT Module1
      PORT(
                     : IN std_logic;
         in1
                     : OUT std logic;
         intSig1
                     : OUT std_logic;
         intSig2
      END COMPONENT;
      ATTRIBUTE cellName of U0: LABEL IS "Rev3";
                                                              1370
      COMPONENT Module2
      PORT(
         intSig1
                      : IN
                            std logic;
         intSig2
                     : IN
                            std logic;
         out1
                     : OUT std_logic;
                                                              13A
      END COMPONENT;
BEGIN
                                                              13B
      U0: Module1
          PORT MAP(
             in1
                   => in1,
            intSig1
                      => intSig1,
                                                           Figure 13
            intSig2
                      => intSig2
         );
```

Figure 13A

```
U1 : Module2
    PORT MAP(
        out1 => out1,
        intSig1 => intSig1,
        intSig2 => intSig2
);
```

END ARCHITECTURE struct;

Figure 13

Figure 13B

Figure 14

Figure 15

	Example	Controll	Function one(A:B)	Other_Function	Monitor	Check(2:0)	Timing Model	Delay
clock	ı	-	1		ı	1	СK	20
myReq[2:0]		0	1{21}	I[0]	I[21]		RC	5
config[2:0]	0	0	I			1[5:3]	&	3
adk(AC)		I	Q(A:B)	Q(C)		I	RC	7
status(AB)[7:0]		1	0 /	1[3:0]	{B}		RC	3
data(0:2)[15:0]		0	I{0:1}			I[15:8]	RC	9

Figure 16

	Interface based design engine and GUI 1810	
Common Graphical User	State diagram editor engine and GUI 1840	Design integrator and
Interface (GUI) 1850	Block diagram editor engine and GUI 1820	netlist writer 1860
	HDL text editor engine and GUI 1830	

Figure 18

	ModuleName
myBundle	*

Figure 20