# Introducción a la Inteligencia Artificial



Uso de la Librería Pandas



#### **Acerca de Pandas**

"Pandas es un paquete de Python que proporciona estructuras de datos similares a los dataframes de R. Pandas depende de Numpy, la librería que añade un potente tipo matricial a Python."

Pandas es una herramienta de manipulación de datos de alto nivel desarrollada por Wes McKinney. Es construido con el paquete Numpy y su estructura de datos clave es llamada el DataFrame. El DataFrame te permite almacenar y manipular datos tabulados en filas de observaciones y columnas de variables.

La documentación oficial de Pandas puede hallarse en su sitio: <a href="https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read\_csv.html">https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read\_csv.html</a>



Fuentes: <a href="https://www.learnpython.org/es/Pandas%20Basics">https://www.learnpython.org/es/Pandas%20Basics</a>

UTN # HAEDO

Fuentes: <a href="https://www.learnpython.org/es/Pandas%20Basics">https://www.learnpython.org/es/Pandas%20Basics</a>



Variables

```
dict = {"country": ["Brazil", "Russia", "India", "China", "South Africa"],
      "capital": ["Brasilia", "Moscow", "New Dehli", "Beijing", "Pretoria"],
      "area": [8.516, 17.10, 3.286, 9.597, 1.221],
      "population": [200.4, 143.5, 1252, 1357, 52.98] }
import pandas as pd
brics = pd.DataFrame(dict)
print(brics)
[1]: runfile('/home/brics.py', wdir='/home')
       country capital area population
        Brazil Brasilia 8.516 200.40
0
       Russia Moscow 17.100 143.50
1
2
    India New Dehli 3.286 1252.00
3
      China Beijing 9.597 1357.00
```

52.98

Fuentes: <a href="https://www.learnpython.org/es/Pandas%20Basics">https://www.learnpython.org/es/Pandas%20Basics</a>

South Africa Pretoria 1.221



```
dict = {"country": ["Brazil", "Russia", "India", "China", "South Africa"],
      "capital": ["Brasilia", "Moscow", "New Dehli", "Beijing", "Pretoria"],
      "area": [8.516, 17.10, 3.286, 9.597, 1.221],
      "population": [200.4, 143.5, 1252, 1357, 52.98] }
import pandas as pd
brics = pd.DataFrame(dict)
print(brics)
[1]: runfile('/home/brics.py', wdir='/home')
       country capital area population ←
                                                      - Variables
        Brazil Brasilia 8.516
0
                                      200.40
                   Moscow | 17.100
1
        Russia
                                     143.50
2
        India New Dehli 3.286
                                     1252.00
3
         China
                  Beijing | 9.597
                                      1357.00
  South Africa | Pretoria | 1.221
                                       52.98
```

DATOS

Fuentes: <a href="https://www.learnpython.org/es/Pandas%20Basics">https://www.learnpython.org/es/Pandas%20Basics</a>

UTN # HAEDO

Índice

## ¿Qué es un Archivo CSV?

"Los archivos CSV (del inglés comma-separated values) son un tipo de documento en formato abierto sencillo para representar datos en forma de tabla, en las que las columnas se separan por comas (o punto y coma en donde la coma es el separador decimal como en Chile, Perú, Argentina, España, Brasil, entre otros) y las filas por saltos de línea".

Son archivos que suelen usarse para almacenar grandes volúmenes de datos, en tablas sin formato: sin líneas, ni formato de texto. No incluye fórmulas. Es muy económico para almacenar datos.

Pandas tiene incluidos métodos muy simples para transformar dataframes en archivos csv.

Fuentes: <a href="https://es.wikipedia.org/wiki/Valores\_separados\_por\_comas">https://es.wikipedia.org/wiki/Valores\_separados\_por\_comas</a>

UTN # HAEDO

## Almacenar un Dataframe en un archivo CSV

Si se dispone de un dataframe pandas, exportarlo a CSV para almacenamiento es muy sencillo.



### Obtener un Dataframe desde un archivo CSV

Análogamente, si se posee un archivo CSV, importarlo como dataframe pandas es muy simple.



Nombre del dataframe



### Obtener un Dataframe desde un archivo CSV

```
df=pd.read_csv('brics.csv')
df
Out[6]:
```

|   | Unnamed: | 0 | country      | capital   | area   | population |
|---|----------|---|--------------|-----------|--------|------------|
| 0 |          | 0 | Brazil       | Brasilia  | 8.516  | 200.40     |
| 1 |          | 1 | Russia       | Moscow    | 17.100 | 143.50     |
| 2 |          | 2 | India        | New Dehli | 3.286  | 1252.00    |
| 3 |          | 3 | China        | Beijing   | 9.597  | 1357.00    |
| 4 |          | 4 | South Africa | Pretoria  | 1.221  | 52.98      |



### Obtener un Dataframe desde un archivo CSV

```
df=pd.read_csv('brics.csv')
df
Out[6]:
```

|   | Unnamed: 0 | country      | capital   | area   | population |
|---|------------|--------------|-----------|--------|------------|
| 0 | 0          | Brazil       | Brasilia  | 8.516  | 200.40     |
| 1 | 1          | Russia       | Moscow    | 17.100 | 143.50     |
| 2 | 2          | India        | New Dehli | 3.286  | 1252.00    |
| 3 | 3          | China        | Beijing   | 9.597  | 1357.00    |
| 4 | 4          | South Africa | Pretoria  | 1.221  | 52.98      |



#### Obtener un Dataframe desde un archivo CSV

```
df=pd.read_csv('brics.csv',index_col=0)
df
Out[7]:
               capital area
                               population
      country
       Brazil Brasilia 8.516
                                  200.40
0
       Russia
                 Moscow 17.100 143.50
        India New Dehli 3.286
                                 1252.00
3
        China
                Beijing 9.597
                                 1357.00
  South Africa Pretoria 1.221
                                   52.98
```

Indicando en la importación "index\_col=0", se asume que la columna 0 corresponde al índice, y no agrega otra columna a tal fin



#### Presentación del Dataset Titanic df=pd.read\_csv('datasets/titanic.csv', index\_col=0) df Out[8]: Survived Pclass ... Cabin Embarked PassengerId 1 NaN 1 ... C85 3 ... NaN 3 1 ... C123 4 5 NaN 887 NaN 888 1 ... B42 3 ... NaN 889 0 890 1 ... C148 891 NaN



### Presentación de la forma del Dataset

Para obtener la cantidad de Filas y Columnas del Dataset

df.shape
Out[22]: (891, 11)

# Presentación de las primeras líneas del Dataset

[5 rows  $\times$  11 columns]



## **Descripción General del Dataset**

```
Out[23]:
                       Pclass
         Survived
                                          Parch
                                                           Fare
       891.000000
                   891.000000
                                                     891.000000
count
                                     891.000000
                                . . .
                                       0.381594
         0.383838
                     2.308642
                                                    4026.270117
mean
                     0.836071
std
         0.486592
                                . . .
                                       0.806057
                                                   22153.876204
min
         0.000000
                     1.000000
                                       0.000000
                                                       0.000000
                     2.000000
25%
         0.000000
                                       0.000000
                                                       8.050000
                                . . .
50%
         0.000000
                     3.000000
                                       0.000000
                                                      19.500000
75%
         1.000000
                     3.000000
                                       0.000000
                                                      56.929200
                                . . .
         1.000000
                     3.000000
                                       6.000000
                                                  262375.000000
max
```

[8 rows  $\times$  6 columns]



df.describe()

## Obtener Info de una celda

df.iloc[0,1]
Out[24]: 3

Se obtiene el valor del elemento de la fila 0, columna 1.

Ticket

## Obtener Info de un subconjunto del Dataframe

df.iloc[1,:] # Se obtienen todos los elementos de la fila 1.
Out[23]:

PassengerId
Survived
Pclass
Name
Cumings, Mrs. John Bradley (Florence Briggs Th...

Sex female 38

SibSp Parch 0

Fare 71.2833 Cabin C85

Embarked Name: 1, dtype: object

Contacto: ia@frh.utn.edu.ar

PC 17599



