PROPOSED PDS-RECO1 FOR STANDARD RECONSTRUCTION

SBND Winter Collaboration Meeting 07/12/22

Francisco Javier Nicolás Arnaldos

finicolas@ugr.es

PDS RECO1: LONG STORY SHORT

- ➤ Back in 2020: first PDS reconstruction modules landed in sbndcode (work done by M.Tutto and others, 19169)
- Recol divided in two stages
 - ➤ Pulse finding: produces **OpHit** objects
 - Clustering among different photon detectors (PDs): produces **OpFlash** objects
- Using unipolar (not realistic) PMT SER
- Two different PD technologies: recol runs twice, <u>one per subsystem</u>
- ➤ This has been our default PDS recol in the past MC productions

PDS RECO1: LONG STORY SHORT

➤ Our signals will look different to what we've been using thus far: PDs are AC coupled (bipolar)

- ➤ A dedicated reconstruction to treat the overshoot issue was required
 - Overshoot makes output charge reconstruction challenging
- ➤ Proposed solution for both subsystems: signal **deconvolution** before hit finding (in a similar fashion to the TPC)
 - ➤ PMTs: <u>26422</u>, <u>26791</u>, <u>25323</u>
 - ➤ XARAPUCAs (Rodrigo): <u>26809</u>, <u>25332</u>, <u>24900</u>

PDS RECO1: LONG STORY SHORT

- ➤ Full reco1 chain including realistic digitization ready (after <u>sbndcode</u> <u>PR301</u>) for both PMT & XARAPUCA systems!
- ➤ We propose to include it in the standard reco fhicls to start using by default
 - ➤ You can follow the updates in sbndcode PR309:
 - \triangleright Merge intended in the next $\sim 1/2$ releases

UPDATES @ DETSIM

- ➤ Switch to the PMT test-bench SER
- ➤ Changes to DetSim configuration fhicl for PMTs:

sbndcode/OpDetSim/digi_pmt_sbnd.fcl

```
    PMTSinglePEmodel: false # false for ideal PMT response, true for test bench measured response
    PMTDataFile: "OpDetSim/digi_pmt_sbnd.root" # located in sbnd_data
    + PMTSinglePEmodel: true # false for ideal PMT response, true for test bench measured response
    + PMTDataFile: "OpDetSim/digi_pmt_sbnd_v2int0.root" # located in sbnd_data
```

➤ XARAPUCAs are already using the bipolar SER:

sbndcode/OpDetSim/digi_arapuca_sbnd.fcl

```
XArapucaVISEff: 0.014 #XArapuca VIS efficiency (taking into account 70% mesh transparency 0.02*0.7)

DecayTXArapucaVIS: 8.5 # decay time of EJ280 in ns

ArapucaDataFile: "OpDetSim/digi_arapuca_sbnd.root" # located in sbnd_data

ArapucaSinglePEmodel: true # false for ideal response true for response from XTDBoard cold tests

DaphneFrequency: 80.0 #in MHz. Frequency of the Daphne Readouts
```

UPDATES @ DETSIM

- ➤ What changes should we expect **@DetSim**?
- ➤ No changes in memory/CPU/file size

➤ Different PMT waveforms (closer to data)

➤ Refactored reco fhicl:

sbndcode/JobConfigurations/base/reco_sbnd.fcl

```
### optical deconvolution
                              @local::SBNDOpDeconvolutionPMT
         opdecopmt:
         opdecoxarapuca:
                              @local::SBNDOpDeconvolutionXARAPUCA
 99
         ### optical hit finders
100
         # ophit:
                                 @local::sbnd_hit_finder
101
                               @local::sbnd_ophit_finder_pmt
         ophitpmt:
         ophitarapuca:
                               @local::sbnd_ophit_finder_arapuca
         ophitpmt:
                               @local::SBNDDecoOpHitFinderPMT
102
         ophitdecoxarapuca:
                               @local::SBNDDecoOpHitFinderXArapuca
103
104
         ### flash finders
105
                                 @local::sbnd_opflash
106
         # opflash:
         opflashtpc0:
                               @local::SBNDSimpleFlashTPC0
         opflashtpc1:
                               @local::SBNDSimpleFlashTPC1
         opflashtpc0:
                               @local::SBNDDecoSimpleFlashTPC0
107
         opflashtpc1:
                               @local::SBNDDecoSimpleFlashTPC1
108
109
         # opflash(arapucas):
                                           @local::sbnd_opflash
110
         opflashtpc0xarapuca:
                                       @local::SBNDDecoSimpleFlashTPC0Arapuca
111
         opflashtpc1xarapuca:
                                       @local::SBNDDecoSimpleFlashTPC1Arapuca
112
```

- New PMT/XARAPUCA deconvolution stage
- We use the module in sbndcode/OpDetReco/ OpDeconvolution
- OpHit finder tuned for the deconvolved signals
- ➤ We use the same algorithms from larana with updated parameters
- ➤ Updated OpFlash finder
- ➤ Includes recent improvements to the time resolution (next slide)
- New OpFlash for XARAPUCAs

- Recent updates to the OpFlash t_0 reconstruction include corrections to:
 - ➤ Waveform rise time
 - \succ t_0 estimation algorithm
 - ➤ Scintillation photon time of flight
- \rightarrow Time resolution ~2 ns
- These changes were presented in the last CM and merged in sbndcode PR289
- ➤ These corrections are turned on in the proposed OpFlash configuration

➤ What changes should we expect in the **artroot files**?

- ➤ Deconvolved waveforms stored in raw::OpDetWaveform data products
- ➤ These are fed into the OpHit finder algorithm and then dropped
- ➤ No impact on artroot file size

		Dropped \
Reco1	opflashtpc1xarapuca	art::Assns <recob::ophit,recob::opflash,void></recob::ophit,recob::opflash,void>
Reco1	rns	std::vector <art::rngsnapshot></art::rngsnapshot>
Reco1	opdecopmt	std::vector <raw::opdetwaveform> </raw::opdetwaveform>
Reco1	TriggerResults . New	art::TriggerResults 1
Reco1	opflashtpc0xarapuca ■	std::vector <recob::opflash></recob::opflash>
Reco1	opflashtpc1	std::vector <recob::opflash></recob::opflash>
Reco1	caldata	std::vector <recob::wire> 11224</recob::wire>
Reco1	opflashtpc0	std::vector <recob::opflash></recob::opflash>
Reco1	opflashtpc0	art::Assns <recob::ophit,recob::opflash,void></recob::ophit,recob::opflash,void>
Reco1	gaushit	art::Assns <recob::wire,recob::hit,void> 112</recob::wire,recob::hit,void>
Reco1	opflashtpc1	art::Assns <recob::ophit,recob::opflash,void> .1727</recob::ophit,recob::opflash,void>
Reco1	gaushit	std::vector <recob::hit> 112</recob::hit>
Reco1	opflashtpc0xarapuca	art::Assns <recob::ophit,recob::opflash,void>DIOD.D.C</recob::ophit,recob::opflash,void>
Reco1	opdecoxarapuca	std::vector <raw::opdetwaveform></raw::opdetwaveform>
Reco1	opflashtpc1xarapuca New	std::vector <recob::opflash></recob::opflash>
Reco1	caldata	art::Assns <raw::rawdigit,recob::wire,void> 11224</raw::rawdigit,recob::wire,void>
Reco1	ophitxarapuca	std::vector <recob::ophit> 241</recob::ophit>
Reco1	gaushitTruthMatch	art::Assns <simb::mcparticle,recob::hit,anab::backtrackerhitmatchingdata> 52</simb::mcparticle,recob::hit,anab::backtrackerhitmatchingdata>
Reco1	ophitpmt	std::vector <recob::ophit> .2068</recob::ophit>

- ➤ What changes should we expect in the **light calorimetry**?
- ➤ PMTs:
 - ➤ Similar/identical performance to what we currently have using the ideal SER*, but...

using waveforms/reconstruction tools closer to what we'll have when data arrives

- ➤ Caveat: saturated signals (next slide)
- ➤ Similar Reco2 performance expected. Nevertheless a verification/optimization would be convenient.
- ➤ New: working OpHit objects for the XARAPUCAs

- ➤ A dedicated reconstruction would be needed for the saturated signals
 - ➤ Deconvolution doesn't make sense in a truncated signal
- ➤ Fake OpHits reconstructed due to the waving introduced by the deconvolution
- These signals will not be included in the OpFlash reconstruction
 - \triangleright Including them worsen the t_0 estimation

- ➤ What changes should we expect in the **OpFlash objects**?
- ➤ PMTs:
 - ➤ Same reco efficiency and #PE resolution

➤ Improved time resolution!

➤ New: OpFlash for the XARAPUCAs

- ➤ What changes should we expect in the **memory usage/cpu usage?**
 - ➤ Same memory usage

➤ Cost: cpu time as we are also deconvolving the PDS system

- 0
- ➤ Workflow validated in past productions:

 MCP2021Cv2_prodoverlay_corsika_cosmics_proton_genie_nu_spill_gsimpleconfigh-v1_tpc

PMT DETECTION EFFICIENCIES

- ➤ We'll be also updating the PMT detection efficiencies
- Currently we simulate two detection efficiencies, distinguishing by <u>light</u> component (VUV or visible)

sbndcode/OpDetSim/digi_pmt_sbnd.fcl

31	QEDirect:	0.03	#PMT quantum efficiency for direct (VUV) light
32	QERefl:	0.03	#PMT quantum efficiency for reflected (TPB converted) light

- Changes in <u>feature/fnicolas_pmtqe</u>
- ➤ Adds the feature to distinguish by light component and by <u>PMT flavor</u>

SUMMARY

- ➤ We propose to switch to the updated recol stage for the PDS, including:
 - ➤ Measured SER for PMTs
 - ➤ Refactored workflow including deconvolution
 - ➤ Improved time resolution
- ➤ The PDS simulation/reconstruction paper (see <u>db-27859</u>) will use this workflow

- ➤ What changes should we expect in the **memory usage/cpu usage?**
 - Same memory usage (MCP2021Cv2_prodoverlay_corsika_cosmics_proton_genie_nu_spill_gsimple-configh-v1_tpc))

Cost: cpu time as we are also deconvolving the PDS system

Memory Usage [GB]

- * CPU time for reco1
- * Sample nu+cosmics with 20ev/job