APUNTES DE CLASES - MOVIMIENTO PARABÓLICO

Carlos Armando De Castro

Asesorías en Matemáticas, Física e Ingeniería

1. ESQUEMA GENERAL DE UN MOVIMIENTO PARABÓLICO

En el caso general se dispara con una velocidad inicial a un cierto ángulo de la horizontal desde una altura inicial y se llega a una altura final conocida, como se ilustra en la Figura 1.

Figura 1. Esquema general de un movimiento parabólico.

2. LAS ECUACIONES DEL MOVIMIENTO PARABÓLICO

Un movimiento parabólico es la superposición de dos movimientos: uno horizontal sin aceleración y uno vertical con aceleración constante (la de la gravedad), por lo tanto, las ecuaciones que lo describen (descomponiendo la velocidad inicial en x e y) son las siguientes en cada componente:

$$\begin{bmatrix} x = (v_o \cos \theta)t \\ v_x = v_o \cos \theta \end{bmatrix}$$
 (1)
$$\begin{cases} y = y_0 + (v_o \sin \theta)t - \frac{1}{2}gt^2 \\ v_y = v_o \sin \theta - gt \end{cases}$$
 (2)

Donde g es la aceleración de la gravedad que apunta siempre hacia abajo.

https://sites.google.com/site/matematicasingenieria

3. ALTURA MÁXIMA

La altura máxima de un movimiento parabólico se da en el tiempo t_1 cuando la velocidad vertical es cero, entonces de la parte de velocidad en la Ec. 2 se tiene:

$$t_1 = \frac{v_o \sin \theta}{g} \quad (3)$$

Reemplazando el tiempo calculado en la Ec. 3 en la Ec. 2 para la altura se tiene la altura máxima alcanzada:

$$y_{m\acute{a}x} = y_0 + (v_0 \sin \theta) \left(\frac{v_0 \sin \theta}{g}\right) - \frac{1}{2}g \left(\frac{v_0 \sin \theta}{g}\right)^2$$

Simplificando:

$$y_{máx} = y_0 + \frac{(v_0 \sin \theta)^2}{2g}$$
 (4)

4. ALCANCE

El alcance es la distancia horizontal máxima a la que se llega cuando la partícula lanzada llega a la altura final y_0 , entonces de la parte de posición vertical en la Ec. 2 se tiene para el tiempo final:

$$y_f = y_0 + (v_0 \sin \theta)t_f - \frac{1}{2}gt_f^2$$

Reagrupando términos:

$$-\frac{1}{2}gt_f^2 + (v_o \sin \theta)t_f + (y_0 - y_f) = 0$$

Resolviendo la ecuación cuadrática resultante y tomando únicamente el valor positivo del tiempo (ya que uno negativo no tiene sentido) se tiene:

$$t_f = \frac{v_o \sin \theta + \sqrt{(v_o \sin \theta)^2 + 2g(y_0 - y_f)}}{a}$$
 (5)

Reemplazando el tiempo calculado en la Ec. 5 en la Ec. 1 para la posición horizontal se tiene el alcance del movimiento:

$$x_{m\acute{a}x} = (v_o \cos \theta) \left(\frac{v_o \sin \theta + \sqrt{(v_o \sin \theta)^2 + 2g(y_0 - y_f)}}{g} \right) \tag{6}$$

5. LA TRAYECTORIA PARABÓLICA

Despejando el tiempo de la Ec. 1 de posición tenemos:

$$t = \frac{x}{v_0 \cos \theta}$$

Reemplazando en la Ec. 2 para la altura:

$$y = y_0 + (v_0 \sin \theta) \left(\frac{x}{v_0 \cos \theta}\right) - \frac{1}{2} g \left(\frac{x}{v_0 \cos \theta}\right)^2$$

Simplificando se tiene la ecuación de una parábola en el plano xy que abre hacia abajo:

$$y = -\frac{g}{2(v_o \cos \theta)^2} x^2 + (v_o \tan \theta) x + y_0$$
 (7)

Ejemplo 1:

Analizaremos un tiro parabólico con los siguientes datos de entrada:

g [m/s^2]	9,80
y0 [m]	10,00
yf [m]	0,00
v0 [m/s]	10,00
θ [grados]	30

Ingresando las ecuaciones (1) al (6) en una hoja de Excel tenemos los resultados calculados:

vxf [m/s]	8,66
vyf [m/s]	-14,87
vf [m/s]	17,20
xf [m]	17,56
y_max [m]	11,28

Podemos graficar además la trayectoria de éste lanzamiento, como se vé en la Figura 2.

Figura 2. Trayectoria del movimiento parabólico del Ejemplo 1, graficada en Excel.

Ejemplo 2:

Implementando todas las ecuaciones mostradas en un código de MATLAB tenemos 90 trayectorias para un lanzamiento desde el suelo con 10 m/s desde 1º hasta 90º de inclinación:

¿Desea más profundización y ejemplos prácticos?

Contáctenos para una clase personalizada.