學號: R05943139 系級: 電子所碩一 姓名: 張育瑄

1. 請簡明扼要地闡述你如何抽取模型的輸入特徵 (feature) 答:

- 1) Google 可能對 PM2.5 影響較大的因素
- 2) 透過 trial and error 嘗試各種 feature 組合
- 3) 使用 feature scaling 來加速 gradient descent
- 4) 從 training data 中切出 validation set 評估每種 feature 組合的表現 (但跟 kaggle 的結果不一定成正相關)
- 2.請作圖比較不同訓練資料量對於PM2.5預測準確率的影響答:
 - 實作 Adagrad
 - 以 PM2.5 第一個小時到第九個小時的一次方為 feature
 - 使用最後兩個月為 validation set, 剩下的調整不同月數量做 training

# of months	1	2	3	4
RMSE	6.06187	5.98636	5.82006	5.85581
# of months	5	6	7	8
RMSE	5.80644	5.77845	5.83774	5.84504
# of months	9	10		
RMSE	5.85181	5.86034		

由圖可清楚看出 training 使用的資料量越多,趨勢上很明顯是越準確的。

3. 請比較不同複雜度的模型對於PM2.5預測準確率的影響 答:

Features	RMSE
PM2.5-9^1	6.59418
PM2.5-1^1 ~ PM2.5-9^1	5.86034
PM2.5-1 ¹ ~ PM2.5-9 ¹ PM2.5-1 ² ~ PM2.5-9 ²	5.89758
PM2.5-1^1 ~ PM2.5-9^1 PM2.5-1^2 ~ PM2.5-9^2 PM2.5-1^3 ~ PM2.5-9^3	5.93192
PM2.5-1^1 ~ PM2.5-9^1 PM10-1^1 ~ PM10-9^1	5.78952
PM2.5-1^1 ~ PM2.5-9^1 PM10-1^1 ~ PM10-9^1 RAINFALL-1^1 ~ RAINFALL-9^1	5.79466
PM2.5-1^1 ~ PM2.5-9^1 PM10-1^1 ~ PM10-9^1 RAINFALL-1^1 ~ RAINFALL-9^1 O3-1^1 ~ O3-9^1	5.75993

PM2.5-1^1 ~ PM2.5-9^1 PM10-1^1 ~ PM10-9^1 RAINFALL-1^1 ~ RAINFALL-9^1 O3-1^1 ~ O3-9^1 WD_HR-1^1 ~ WD_HR-9^1 WIND_SPEED-1^1 ~ WIND_SPEED-9^1 WS_HR-1^1 ~ WS_HR-9^1	5.78996
ALL-1^1 ~ ALL-9^1	5.72339

P.S. 每個 feature 以 "指標名 - 第幾小時 ^ 次方" 來表示

實驗各種組合後發現:

- feature 越多結果不一定越好
- feature 的次方越高結果幾乎會變差
- 4. 請討論正規化(regularization)對於PM2.5預測準確率的影響答:

λ	Training RMSE	Validating RMSE
1	6.18341	5.84922
10	6.37210	5.89194
100	9.78734	8.31825
1000	13.89033	11.61689
10000	14.65590	12.24565

實驗後發現在這裡 regularization 的作用不是很大,不管 λ怎麼調整。 推測原因可能是因為我用的 feature 都是一次式,原本曲線就已經蠻 smooth 了,因此 regularization 原本的初衷在這裡的影響便很小。 5. 在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n , 其標註(label)為一存量 yⁿ, 模型參數為一向量w (此處忽略偏權值 b), 則線性回歸的損 失函數(loss function)為 $\sum\limits_{n=1}^{N} (y^n - w \cdot x^n)^2$ 。若將所有訓練資料的特徵值以矩陣 $X = [x^1 \ x^2 \ \dots$ $x^{\scriptscriptstyle N}$] 表示,所有訓練資料的標註以向量 $y=[y^{\scriptscriptstyle 1}\ y^{\scriptscriptstyle 2}\ ...\ y^{\scriptscriptstyle N}]^{\scriptscriptstyle T}$ 表示,請以 X 和 y 表示可以最小化 損失函數的向量 w。 答:

我們知道最佳解會出現在微分等於 0 的位置, 也就是:

$$(y - X \cdot w)^T \cdot X = 0$$

因此, 我們可以推出:

$$X^{T}Xw = X^{T}y$$
$$w = (X^{T}X)^{-1}X^{T}y$$