$$T(n) = 3T(n/3) + 2n - 3$$

$$S(K) = T(n) = 3S(3^{K-1}) + 2(3^{k}) - 3$$

$$5(0) = T(\phi) = 0$$

Range transform:

$$R(k) = \frac{5(k)}{3^{k}} = \frac{3}{3^{k}} \frac{5(3^{k-1})}{3^{k}} + \frac{2(3^{k})}{3^{k}} - \frac{3}{3^{k}}$$
$$= R(k-1) + 2 - \frac{1}{3^{k-1}}$$

Set up telescoping:

$$R(R) - R(K-1) = 2 - \frac{1}{3^{K-1}}$$

$$R(1) - R(0) = 2k - \frac{k-1}{2} \frac{1}{3}$$

$$= 2K - \frac{1}{3}$$

$$= 2k - \frac{2}{3}k = 2k - \frac{1 - (\frac{1}{3})^{k}}{2 - 1} = 2k - \frac{1 - (\frac{1}{3})^{k}}{2 - 3} = 2k - \frac{3}{2}(\frac{1}{3}k)$$

$$5(k) = 3^{k} R(k) = 2k3^{k} - \frac{3}{2} 3^{k} \left[\frac{1}{1-3} k \right]$$

$$S(x)=2K3^{k}-\frac{3^{k+1}}{2}+\frac{3}{2}$$

$$T(n) = 2 \log_3 \cdot 3 \log_3 n - \frac{3 \log_3 n}{2} \cdot \frac{3}{2} + \frac{3}{2}$$

$$=2n\log_{3}n-\frac{3n}{2}+\frac{3}{2}$$

Range Transformation
$$R(n) = \frac{T(n)}{n+1}$$

$$R(n+1) - R(n) = C\left[-\frac{1}{n+1} + \frac{3}{n+2}\right]$$

$$R(1) - R(0) = C \left[-\frac{1}{1} + \frac{3}{2} \right]$$

$$R(n+1) = -C \sum_{i=1}^{n+1} \frac{1}{i} + C \sum_{i=1}^{n+1} \frac{3}{i+1}$$

$$R(0) = T(0) = C$$

$$R(0) = \frac{\Gamma(0)}{0+1} = C$$

$$R(n+1) = \frac{\Gamma(0)}{0+1} = R(n+1) + C = C$$

$$= O(\log C n)$$

RHS:

$$C \cdot 2 \log n = R(n+1)$$

Transform back

=)
$$T(n+1) = (n+1) c \cdot 2 \cdot (\log n)$$

= $o(n \log n)$

Lower bound for finding the minimum value

Create a binary tree where each leaf is a possible value for the min.

There will be at least n-1 leaves because each value needs to be represented in the list of possible answers.

Comparison tree

If the tree is not complete it will have less leaves for the same depth. If there are n leaves, the depth will be log (n)

How many possible leaves are there for sorting?

- At least n! because the same permutation could appear multiple ways
- The number of leaves >= n!
- Base case height = log (n!) = nlogn occurs when the tree is balanced and complete
 - o Sterling's approximation formula

Can you do better than nlogn?

Yes. (But if the algorithm is comparison-based then the best is nlogn)

Counting sort

- Create an array with indexes 1 to m and initialize to some value that won't be in the input (such as –infinity)
- Read an input element and increment a[k] where k is the value of the input element
- Once all the input has been read print out the elements

Input: 25, 45, 18, 25

Array:

Index	1	2	•••	18	 25	•••	45
Value				1	[1+1]=2		1

Output: 18 once, 25 twice, 45 once = 18, 25, 25, 45

Time complexity of counting sort:

Initializing:

m

Counting:

n

To write out:

n+m

So the time complexity is O(m+n)

Problem with counting sort: Inefficient space allocation because the array has to be allocated for the entire range of the input while only a few values in the range could appear

Bucket Sort

Sorting exam papers analogy — assume you need to sort student grades from highest to lowest. Put papers into buckets of certain ranges (example: 0-70, 71-80, 81-90, 91-100). Once the papers have been put into piles sort each pile and put everything in order.

M = maximum value in list (upper bound)

K = # of buckets

On average there are m/k items in each bucket

For each bucket, using insertion sort = $(n/k)^2 / 4 * k$ buckets = $n^2 / 4k$

K should be proportional to n

 $N^2/4k*(c/d)$

If k is proportional to n then the algorithm is O(n)

Worst case: All the data is in 1 bucket = $O(n^{2})$

Radix Sort

Time Complexity: Time to sort * number of digits

= O(n) * d

How to pick d? Pick d so that it's a constant & not proportional to n