

1 ヤコビ場

1.1 曲線の変分

定義 1.1. $c:[a,b]\to M$ を C^∞ 曲線とする. C^∞ 写像 $f:[a,b]\times(-\varepsilon,\varepsilon)\to M$ は f(t,0) = c(t) をみたすときに、c の (滑らかな) 変分であるという.

定義 1.2. c の変分 f は, $f(a,\cdot)=c(a)$, $f(b,\cdot)=c(b)$ をみたすとき, 端点が固定された変分 (あるいは proper な変分) という.

定義 1.3. c の変分 f は、任意のパラメータ $s \in (-\varepsilon, \varepsilon)$ に対して $f(\cdot, s)$ が測地線となるときに、測地的変分と

注意 1.4. 当たり前だが、c が測地線でなければ、c の変分で測地的な変分となるものはあるはずがない。

定義 1.5. c の変分を f とする. $df\left(\frac{\partial}{\partial s}\right)_{(t,0)}\in\Gamma(c^*TM)$ を f による c に沿った変分ベクトル場という.

1.2 測地線の変分とヤコビ場

定義 1.6. c を測地線とする. $X \in \Gamma(c^*TM)$ が

$$\nabla_{\frac{d}{dt}}^{c^*} \nabla_{\frac{d}{dt}}^{c^*} X + R(X, \frac{dc}{dt}) \frac{dc}{dt} = 0 \in \Gamma(c^*TM)$$

をみたすときに、X を c に沿ったヤコビ場という.

例 1.7. γ を測地線とする. $\dot{\gamma} \in \Gamma(\gamma^*TM)$ はヤコビ場である.

$$R(\dot{\gamma}, \dot{\gamma})\dot{\gamma} = 0 \in \Gamma(\gamma^*TM), \quad \nabla_{\frac{d}{d\tau}}^{\gamma^*}\dot{\gamma} = 0 \in \Gamma(\gamma^*TM)$$

からわかる。

例 1.8. γ を測地線とする. $t\dot{\gamma}\in\Gamma(\gamma^*TM)$ (厳密には $id_{[a,b]}\dot{\gamma}\in\Gamma(\gamma^*TM)$ とかくべきかもしれない) はヤコ ビ場である、実際、

$$\nabla_{\frac{d}{dt}}^{\gamma^*} \nabla_{\frac{d}{dt}}^{\gamma^*} (t\dot{\gamma}) = \nabla_{\frac{d}{dt}}^{\gamma^*} (\frac{dt}{dt} \dot{\gamma} + t \nabla_{\frac{d}{dt}}^{\gamma^*} \dot{\gamma}) = \nabla_{\frac{d}{dt}}^{\gamma^*} \dot{\gamma} = 0, \quad R(t\dot{\gamma}, \dot{\gamma}) \dot{\gamma} = 0$$

よりわかる。

例 1.9. γ を測地線とする. $t^2\dot{\gamma}$ はヤコビ場ではない.

$$\nabla_{\frac{d}{dt}}^{\gamma^*}\nabla_{\frac{d}{dt}}^{\gamma^*}(t^2\dot{\gamma}) = \nabla_{\frac{d}{dt}}^{\gamma^*}(2t\dot{\gamma} + t^2\nabla_{\frac{d}{dt}}^{\gamma^*}\dot{\gamma}) = \nabla_{\frac{d}{dt}}^{\gamma^*}(2t\dot{\gamma}) = 2\dot{\gamma} + 2t\nabla_{\frac{d}{dt}}^{\gamma^*}\dot{\gamma} = 2\dot{\gamma}$$

命題 1.10. $\gamma:[a,b]\to M$ 正規測地線 $(|\dot{\gamma}|=1$ の測地線) とする. X_a \in $T_{\gamma(a)}M$ と, Y_a \in $T_{\gamma(a)}M$ が与えられると, γ に沿ったヤコビ場 J \in $\Gamma(\gamma^*TM)$ で, J(a) = X_a , $(\nabla_{\underline{d}}^{\gamma^*} J)(a) = Y_a$ を満たすものは存在し、唯一つである.

証明。(sketch) ヤコビ場の方程式が 2 階の常微分方程式であることから従う.

系 1.11. J を測地線 γ に沿ったヤコビ場で、恒等的に 0 ではないとする、J(t)=0 となる点は離散的である。

証明. 集積点 t_0 をもつとすると、その点の近傍で $J^i(t)=0$, $\dot{J}^i(t)=0$ であるので、 $J(t_0)=0$, $(\nabla_{\underline{d}}^{\gamma^*}J)(t_0)=0$ である。一意性からそのようなヤコビ場は恒等的に 0 となる。

1.3 法ヤコビ場

定義 1.12. (法ヤコビ場). γ を測地線とする. 任意の $t\in I$ において $\langle J(t),\dot{\gamma}(t)\rangle=0$ を満たす γ に沿ったヤコ ビ場を、法ヤコビ場という、

命題 1.13. (ヤコビ場の法ヤコビ場と接ヤコビ場への分解). γ を測地線とする. J を γ に沿ったヤコビ場とすると、 実数 $\alpha, \beta \in \mathbb{R}$ で、

 $J - \alpha t \dot{\gamma} - \beta \dot{\gamma}$ が法ヤコビ場となるものが存在する

証明.
$$\frac{d^2}{dt^2}\langle J,\dot{\gamma}\rangle = \frac{d}{dt}\langle \nabla_{\frac{1}{d}}^{\gamma^*}J,\dot{\gamma}\rangle = \langle \nabla_{\frac{1}{d}}^{\gamma^*}\nabla_{\frac{1}{d}}^{\gamma^*}J,\dot{\gamma}\rangle = -\langle R(J,\dot{\gamma})\dot{\gamma},\dot{\gamma}\rangle$$
 ここで、 $g(R(J,\dot{\gamma})\dot{\gamma},\dot{\gamma}) = -g(R(J,\dot{\gamma})\dot{\gamma},\dot{\gamma})$ であるので、最後の項は 0 になる。従って、適当な実数 $a,b\in\mathbb{R}$ により $g(J,\dot{\gamma}) = at+b$ と表される。 $\alpha:=\frac{a}{(d+2)},\beta:=\frac{b}{(d+2)},J^{\perp}:=X-\alpha t\dot{\gamma}-\beta\dot{\gamma}$ とすると、 $g(J^{\perp},\dot{\gamma})=0$ が成り立つ.

命題 1.14. (ヤコビ場が法ヤコビ場であるための必要十分条件) J を測地線 γ に沿ったヤコビ場とする. このとき、

$$J$$
 が法ヤコビ場である. $\Leftrightarrow \begin{cases} \langle J(0), \gamma(0) \rangle = 0 \\ \langle \nabla \frac{\gamma_d}{dt} J(0), \dot{\gamma}(0) \rangle = 0 \end{cases}$

証明.
$$\Rightarrow$$
 . $\langle J(t),\dot{\gamma}(t)\rangle=0, \langle \nabla^{\gamma^*}_{\frac{d}{dt}}J(t),\dot{\gamma}(t)\rangle=\frac{d}{dt}\langle J(t),\dot{\gamma}(t)\rangle=0$

 \Leftarrow . 測地線の速度を c とする. うまく実数 c_1,c_2 をとって法ベクトル場 $J^\perp \coloneqq J - c_1 t(t) - c_2(t)$ を定める. $\langle J(t),\dot{\gamma}(t)\rangle = \langle J^\perp(t),\dot{\gamma}(t)\rangle + c_1tc + c_2c$ が成り立つので、適当に暗算すると結局 $c_2c=0,c_1c=0$ となるの で、結局 J が法ヤコビ場であるということがわかる、

注意 1.15. つまり、ヤコビ場は時刻 0 においてそれ自体と微分が $\dot{\gamma}(0)$ と直交していれば、ずっと直交している.

注意 1.16. とくに、(0, w) を初期データとするヤコビ場を考えている場合は $\langle 0, \dot{\gamma}(0) \rangle = 0$ は明らかなので、 $\langle w, \dot{\gamma}(0) \rangle = 0$ を満たせば法ヤコビ場である.

注意 1.17. 仮に n 個のヤコビ場を初期データの第二パラメータを正規直交基底になるようにとったからといって、そ のヤコビ場たちが各点で正規直交枠かっていうと、冷静に考えると全く関係ない、各点で正規直交になる測地線に沿っ たベクトル場たちが欲しかったら、純粋に $\gamma(0)$ で正規直交基底をとって、それを初期パラメータとする測地線に沿っ たベクトル場を得ればよい. 実際そのようにして得られたベクトル場は、

$$\frac{d}{dt}\langle E_1(t), E_2(t)\rangle = \langle \nabla_{\frac{d}{dt}}^{\gamma^*} E_1(t), E_2(t)\rangle + \langle E_1(t), \nabla_{\frac{d}{dt}}^{\gamma^*} E_2(t)\rangle = \langle 0, E_2(t)\rangle + \langle E_1(t), 0\rangle = 0$$

であるので、時刻0での角度を保ち続ける.

1.4 よくある変分

例 1.18. (与えられた $X\in (\gamma)$ を変分ペクトル場とする両端点固定の変分). $c:[0,1]\to M$ を測地線とは限らない曲線, $X\in \Gamma(c^*TM)$ を c に沿ったベクトル場とする. このとき, $F(t,s):=\exp_{c(t)}(sX(t))$ は X を変分ベクトル場とする c の変分である. 実際, s=0 の時は $F_0(t)=\exp_{c(t)}(0)=ct$

 $\gamma:[0,1] o M$ を測地線とする. $w_{\gamma(0)} \in T_{\gamma(0)}M$ は適当なベクトルとする. まず最初に, $d(f\circ g)_{(p)} = df_{g(p)} \circ dg_p$ であることから, $d\exp(f)_{(s_0,t_0)} = d(\exp\circ f)_{(s_0,t_0)} = d\exp_{f(s_0,t_0)} \circ df_{(s_0,t_0)}$ が成り立つことを思いだしておく.

例 1.19. $((0,\mathbf{w})$ を初期パラメータとするヤコビ場をつくる測地線の族). 測地線の族 $F(t,s):=\exp_{\gamma(0)}(t\dot{\gamma}(0)+tsw_{\gamma(0)})$ の変分ベクトル場を $J\in\Gamma(\gamma^*TM)$ で表すと、 $(1)J_0=0, (2)\left(\nabla_{\frac{d}{dt}J_0}^{\gamma^*}\right)_0=w_{\gamma(0)}, (3)J$ は γ に沿ったヤコビ場である。実際、

$$\begin{split} J_0 &= (d\exp_{\gamma(0)}(t\dot{\gamma}(0) + tsw_{\gamma(0)}) \bigg(\frac{\partial}{\partial s}\bigg))|_{(0,0)} \\ &= (d\exp_{\gamma(0)})_{(0\dot{\gamma}(0) + 0.0 \cdot w_{\gamma(0)})} \frac{d(t\dot{\gamma}(0) + tsw_{\gamma(0)})}{ds}(0,0) \quad = \bigg(d\exp_{\gamma(0)}\bigg)_0 (0 \cdot w_{\gamma(0)}) = Id(0) \\ &= 0 \end{split}$$

$$\begin{split} & \left(\nabla \frac{F_s^*}{dt} J \right)_0 \\ & = \left(\nabla \frac{F_s^*}{\partial t} \left(\frac{\partial}{\partial s} \right) \exp_{\gamma(0)}(t\dot{\gamma}(0) + tsw_{\gamma(0)}) \right) |_{(0,0)} \\ & = \left(\nabla \frac{F_s^*}{\partial s} \left(\frac{\partial}{\partial t} \right) \exp_{\gamma(0)}(t\dot{\gamma}(0) + tsw_{\gamma(0)}) \right) |_{(0,0)} \\ & = \left(\nabla \frac{F_s^*}{\partial s} \left(\frac{\partial}{\partial t} \right) \exp_{\gamma(0)}(t\dot{\gamma}(0) + tsw_{\gamma(0)}) \right) |_{(0,0)} \\ & = \left(\nabla \frac{F_s^*}{\partial s} Id(w_{\gamma(0)}) \right) \\ & = w_{\gamma(0)} \end{split}$$

から (1),(2) は成り立ち, (3) については測地線の族の変分なのでヤコビ場であることは明らか.

1.5 共役点とヤコビ場

 $\exp_{\gamma(0)}(t\gamma(0))$ の微分写像は原点で恒等写像となり非退化なので, $T_{\gamma(0)}M$ の原点で局所的に微分同相である. では他の点ではどうだろうか.

定義 1.20. (共役点). $\gamma:[0,1]\to M$ を測地線とする. $\gamma(t_0)$ $(0< t_0<1)$ は, $(d\exp_{\gamma(0)})_{(t_0\dot{\gamma}(0))}$ が線形写像として退化しているとき, $\gamma(0)$ の γ に沿った共役点であるという.

つまり、共役点というのは、指数写像が局所的に微分同相にならない時刻と対応している。

命題 1.21. (共役点のヤコビ場による特徴づけ). γ を測地線とする.

 $\gamma(t_0)$ が $\gamma(0)$ の γ に沿った共役点である.

 $\Leftrightarrow \gamma$ に沿ったヤコビ場 $J \in \Gamma(\gamma^*TM)$ で, $J(0)=J(t_0)=0$ をみたして, かつ non-vanishing なものが存在する.

証明. (\Rightarrow) . $\ker(d\exp_{\gamma(0)})_{t_0\dot{\gamma}(0)} \neq 0$ なので、非自明な解 $w_{\gamma(0)} \in T_{\gamma(0)}M$ をとってきて、 $\exp_{\gamma(0)}(t\dot{\gamma}(0)+tsw_{\gamma(0)})$ という測地線族を考えると、変分ベクトル場 $(d\exp_{\gamma(0)})_{t\dot{\gamma}(0)}(tw_{\gamma(0)})$ は γ に沿ったヤコビ場であり、時刻 $0,t_0$ で 0 になる.また non-vanishing であることも $w_{\dot{\gamma}(0)}\neq 0$ からわかる.

(ڿ). $\exp_{\gamma(0)}(t\dot{\gamma}(0)+ts(\nabla_{\frac{d}{dt}}^{\gamma^*}J)(0))$ の変分ペクトル場 $(d\exp_{\gamma(0)})_{t\dot{\gamma}(0)}(t(\nabla_{\frac{d}{dt}}^{\gamma^*}J)(0))$ は J と一致するので、 時刻 t_0 を考えると、 $(d\exp_{\gamma(0)})_{t_0\dot{\gamma}(0)}(t_0(\nabla_{\frac{d}{dt}}^{\gamma^*}J)(0))=J(t_0)=0$ となり、これは非自明な解(なぜなら自明な解)をすると J は (0,0) を初期データとするヤコビ場になり恒等的に 0 となるから)ので主張が従う.

命題 1.22. γ_t が γ_0 の γ に沿う共役点ではないとすると,

$$J_0 = v \in T_p M$$
, $J_t = w \in T_{\gamma_t} M$

をみたす γ に沿うヤコビ場 J が存在する.

証明.

命題 1.23. (ガウスの補題). $v \in T_nM$ とし、 γ を (0,b) を定義域に含む $\gamma_0 = p$ なる測地線とする. このとき、

- (1) $d(\exp_n)_{t\dot{\gamma}_0}(\dot{\gamma}_0) = \dot{\gamma}(t)$
- (2) $g(d(\exp_n)_{t\dot{\gamma}_0}v, \dot{\gamma}_t) = g(v, \dot{\gamma}_0)$

証明. (1) $d(\exp_p)_{t\dot{\gamma}_0}(\dot{\gamma}_0)=\frac{d}{ds}|_{s=0}\exp_p((t+s)\dot{\gamma}_0)=\frac{d}{dr}|_{r=t}\exp_p(r\dot{\gamma}_0)=\dot{\gamma}(t)$. (2) $J_0=0,\nabla_{\frac{d}{dt}}J(0)=v$ をみたす γ に沿うヤコビ場 J をとる.

$$\frac{d^2}{dt^2}g(J_t, \dot{\gamma}_t) = 0$$

となることから, $g(J_t, \dot{\gamma}_t) = c_1 t + c_2$ と表され,

$$g(J_0, \dot{\gamma}_0) = 0$$
, $\frac{d}{dt}g(J_t, \dot{\gamma}_t)(0) = g(\nabla_{\frac{d}{dt}}J(0), \dot{\gamma}_0) = g(v, \dot{\gamma}_0)$

であることから、 $c_2=0,c_1=g(v,\dot{\gamma}_0)$ である. J が $\exp_p t(\dot{\gamma}_0+sv)$ の変分ベクトル場であることと、 $J_t(=\partial_s|_{s=0}\exp_p t(\dot{\gamma}_0+sv))=td(\exp_p)_{t\dot{\gamma}_0}v$ が成り立つことから、

$$g(d(\exp_p)_{t\dot{\gamma}_0} \nabla_{\frac{d}{dt}} J(0), \dot{\gamma}_t) = g(\frac{1}{t} J_t, \dot{\gamma}_t) = g(v, \dot{\gamma}_0)$$

である. **ロ**

命題 1.24. (M,g) を任意の点の任意の接平面における断面曲率が非負のリーマン多様体とする。このとき,任意の点 p は、測地線 γ $(\gamma(0)=p)$ に対して、測地線 γ に沿った共役点を持たない.

証明・ $\gamma(t_0)$ を共役点と仮定する. γ に沿った non-vanishing なヤコビ場 J で, $J(0)=J(t_0)=0$ となるものが存在する. 一方で、そのようなヤコビ場 J に対しては

$$\begin{split} &(\frac{d}{dt})^2 g(J(t),J(t)) = 2 \bigg(g(\nabla_{\frac{d}{dt}}^{\gamma^*} \nabla_{\frac{d}{dt}}^{\gamma^*} J(t),J(t)) + g(\nabla_{\frac{d}{dt}}^{\gamma^*} J(t),\nabla_{\frac{d}{dt}}^{\gamma^*} J(t)) \bigg) \\ &= 2 \bigg(g(-R(J,\dot{\gamma})\dot{\gamma},J) + g(\nabla_{\frac{d}{dt}}^{\gamma^*} J,\nabla_{\frac{d}{dt}}^{\gamma^*} J) \bigg) \\ &> 0 \end{split}$$

となることが、 $g(-R(J(t),\gamma)\gamma,J(t))=K(J,\gamma)\leq 0$ となることからわかる.従って、g(J(t),J(t)) は t=0 で 0 の値をとってから広義単調増大であるわけだが、non-vanishing であるので $g(J(t_0),J(t_0))>0$ となり、 $J(t_0)=0$ であることと矛盾する.

16 Cut Locus

測地線 γ は t_0 が十分小さければ $\gamma(0), \gamma(t_0)$ を結ぶ曲線のうち、最短のものである。そこで、最短線である時刻の上限に着目すると、何かいえることはあるだろうか。

定義 1.25. (cut point), $p\in M, \gamma: [0,\infty)\to M$ を $\gamma(0)=p$ なる測地線とする. $t_0:=\sup\{t\in [0,\infty)\mid \gamma \text{ d}\gamma(0)$ と $\gamma(t_0)$ の間の最短線である。} とする. $t_0<\infty$ のとき、 $\gamma(t_0)$ を γ に沿った p の cut point という.

定義 1.26.

 $p\in M$ において、各単位ベクトル $v\in T_pM$ に対して $\exp_p(t_0v)$ が p の $\exp_p(tv)$ に沿った cut point となる t_0 を対応させる写像を $\rho(p;v)$ と定める.

命題 1.27. M を完備連結リーマン多様体とする. このとき, $\rho_p:S^{n-1}\to (0,+\infty]$ は連続写像である.

証明. (加須栄篤"リーマン幾何学" p.175)

注意 1.28. $V_p := \{tv \mid 0 \le t < \rho_p(v), v \in S^{n-1}(1)\}$ 上で \exp_n は微分同相である.

定義 1.29. (cut locus).

 $\operatorname{Cut}(p) := \left\{ q \in M \mid \exists \gamma : \gamma(0) = p, q \ \text{は} \gamma$ に沿った $p \ \text{の共役点} \right\}$ (あるいは $\operatorname{Cut}(p) := \left\{ \exp_p(\rho_p(v)v) \right\}$ と定めても同じである.) これを $p \ \text{の最小跡}$ (cut locus) という.

定義 1.30. $\min_{v \in S^{n-1}} \rho_p(v)$ を $p \in M$ における単射半径という. (最小値の存在は連続性から従う.)

1.7 比較定理

定義 1.31. γ を正規測地線とする. $(0,\omega)$ を初期データとするヤコビ場の時刻 t での値を与える写像を $\mathcal{Y}_t:T_{\gamma(0)}M\to T_{\gamma(t)}M$ とする.

ヤコビ場は初期データの第二パラメータが測地線と直交していれば、任意の時刻で測地線と直交するので、この写像を $T_{\gamma(0)}M^{\perp^{i}(0)}\coloneqq \{w\in T_{\gamma(0)}M\mid \langle w,\dot{\gamma}(0)\rangle=0\}$ に制限した写像を $\mathcal{Y}^{t}_{t}:T_{\gamma(0)}M^{\perp^{i}(0)}\to T_{\gamma(t)}M^{\perp^{i}(t)}$ として定める。 C:()

1.8 Nヤコビ場

定義 1.32. $N \subset M$ を M の部分多様体とする. M の測地線 γ に沿ったヤコビ場 J が

$$\dot{\gamma}(0) \in T_p N^{\perp}, \quad J_{\gamma_0} \in T_p N, \quad \nabla_{\frac{d}{d}} J_{\gamma_0} - A_{Y_{\gamma}(0)} \dot{\gamma}(0) \in T_p N^{\perp}$$

をみたすとき、N ヤコビ場という. (ただし、A は型作用素である.)

命題 1.33. J を \in $C_p N^{\perp}$ を始方向とする測地線 γ に沿ってのベクトル場とする. J が N ヤコビ場であることの必要十分条件は、J を変分ペクトル場とする変分 $\alpha(t,s)$ で、任意の s に対して $\alpha_s(t)$ が測地線で $\partial_t \alpha_s(0)$ が N に垂直となるものが存在するとくである.

証明・ \Leftarrow . 測地的変分であるので、ヤコビ場であることは明らかである. 仮定より、測地線 $\alpha_0(t)$ の始方向は N に垂直である. $\alpha_0(s)$ が N の曲線であることから $\partial_s \alpha_t(0,0) \in T_nN$ であることもわかる.

$$\nabla_{\partial_t} J_{\alpha(0,0)} = \nabla_{\partial_t} (\partial_s \alpha(0,0)) = \nabla_{\partial_s} (\partial_t \alpha(0,0)) = \nabla_{\partial_s \alpha(0,0)} (\partial_t \alpha(0,0))$$

となる. $\partial_s \alpha_{(0,0)} = J_{\alpha(0,0)}$ であるので、これの TN^\top 成分は $A_{J_{\alpha(0,0)}}(\partial_t \alpha(0,0))$ であるので、それを除いた $\nabla_{\partial_t} J_{\alpha(0,0)} - A_{J_{\alpha(0,0)}}(\partial_t \alpha(0,0))$ は $T_{\alpha}(0,0)N^\bot$ に属する.従って J は N ヤコビ場である. \Rightarrow .s=0 で $\dot{\gamma}(0) \in T_{\gamma(0)}N^\bot$ を通り, $(J_{\gamma(0)}, \nabla_{\frac{d}{dt}} J_{\gamma(0)} - A_{J_{\gamma(0)}} \dot{\gamma}(0)) \in T_{\gamma(0)} T_{\gamma(0)} N^\bot$ を速度ベクトル とする TN^\bot 内の曲線を $\xi(s)$ とすると、 $\alpha(t,s) := \exp_{\nu_N f(s)}(t\xi(s))$ が求める変分である.実際,

$$\begin{split} (\partial_s)(\exp_{\nu_N\xi(s)}(t\xi(s)))(0,0) &= (\partial_s)|_{s=0}(\exp_{\nu_N\xi(s)}(0\xi(s))) \\ &= \partial_s(\nu_N\xi)(0) = d\nu_N(\dot{\xi}(0)) = d\nu_N((J_{\gamma(0)},\nabla_{\frac{d}{dt}}Y_{\gamma(0)} - A_{J_{\gamma(0)}}\dot{\gamma}(0))) = J_{\gamma(0)} \end{split}$$

である. (ここでは, $\nu_N:TN^{\perp}\to N$ で法束を表している.) また,

$$\begin{split} \nabla_{\partial_t}(\partial_s\alpha(0,0)) &= \nabla_{\partial_s}(\partial_t\alpha(0,0)) = \nabla_{\partial_s}(\xi(0)) = \nabla_{\partial_s}(\xi(0))^\top + \nabla_{\partial_s}(\xi(0))^\bot \\ &= K^\bot \dot{\xi}(0) + \nabla_{\partial_s\alpha}(\xi)^\top(0) = K^\bot ((J_{\gamma(0)}, \nabla_{\frac{d}{dt}}J_{\gamma(0)} - A_{J_{\gamma(0)}}\dot{\gamma}(0))) + A_{J\gamma_0}\xi(0) \\ &= \nabla_{\frac{d}{dt}}J_{\gamma(0)} - A_{J_{\gamma(0)}}\dot{\gamma}(0) + A_{J_{\gamma(0)}}\dot{\gamma}(0) = \nabla_{\frac{d}{dt}}J_{\gamma(0)} \end{split}$$

となる.

命題 1.34. J が γ に沿った N ヤコビ場であることの必要十分条件は, $(X,Y)\in TTN^{\perp}$ で, TM の曲線 $\xi(s)$ を $\dot{\xi}(0)=(X,Y)$ となるよう定めると

$$J_{\gamma_t} = d(\exp_{\nu_N} \xi(s))_{t\xi(s)}(X, tY)$$

となるものが存在することである.

証明.	
定義 1.35. (焦点 (focal point)). M の測地線 γ を $N\subset M$ に垂直であるとする. γ に沿った N ヤコビ場 $J_{t_0}=0$ $(t_0>0)$ となるものが存在する時, γ_{t_0} を γ に沿う N の焦点という. また, t_0 を焦値という.	で,
命題 1.36.	
証明.	