

IRF7380TRPbF-1

HEXFET® Power MOSFET

V _{DS}	80	V
R _{DS(on) max}	73	mΩ
$(@V_{GS} = 10V)$	75	11152
Q _{g (typical)}	15	nC
I _D	3.6	Α
(@T _A = 25°C)	3.0	A

Applications

• High frequency DC-DC converters

Features

Industry-standard pinout SO-8 Package
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1, Industrial qualification

Benefits

Multi-Vendor Compatibility	
Easier Manufacturing	
Environmentally Friendlier	
Increased Reliability	

Base Bart Nerrahan Bashana Terra		Standard Pac	Orderable Bert Number	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
IRF7380PbF-1	SO-8	Tape and Reel	4000	IRF7380TRPbF-1

Absolute Maximum Ratings

	Parameter	Max.	Units	
V _{DS}	Drain-to-Source Voltage	80	V	
V _{GS}	Gate-to-Source Voltage	± 20		
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	3.6		
I _D @ T _A = 100°C	Continuous Drain Current, V _{GS} @ 10V	2.9	Α	
I _{DM}	Pulsed Drain Current ①	29		
P _D @T _A = 25°C	Maximum Power Dissipation	2.0	W	
	Linear Derating Factor	0.02	W/°C	
dv/dt	Peak Diode Recovery dv/dt ®	2.3	V/ns	
T _J	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range			

Thermal Resistance

	Parameter	Тур.	Max.	Units			
$R_{\theta JL}$	R _{eJL} Junction-to-Drain Lead		42	°C/W			
R _{e.ia}	Junction-to-Ambient (PCB Mount) ④		62.5				

Notes ① through ⑥ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	80			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.09		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		61	73	mΩ	V _{GS} = 10V, I _D = 2.2A ③
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	٧	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 80V, V_{GS} = 0V$
				250		$V_{DS} = 64V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			200	nA	V _{GS} = 20V
ı	Gate-to-Source Reverse Leakage			-200		V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	4.3			S	$V_{DS} = 25V, I_D = 2.2A$
Q_q	Total Gate Charge		15	23		I _D = 2.2A
Q_{gs}	Gate-to-Source Charge		2.9		nC	$V_{DS} = 40V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		4.5			V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		9.0			$V_{DD} = 40V$
t _r	Rise Time		10			I _D = 2.2A
t _{d(off)}	Turn-Off Delay Time		41		ns	$R_G = 24\Omega$
t _f	Fall Time		17			V _{GS} = 10V ③
C _{iss}	Input Capacitance		660			$V_{GS} = 0V$
C _{oss}	Output Capacitance		110			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		15		pF	f = 1.0 MHz
C _{oss}	Output Capacitance		710			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		72			$V_{GS} = 0V, V_{DS} = 64V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		140			V _{GS} = 0V, V _{DS} = 0V to 64V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy 2		75	mJ
IAR	Avalanche Current ①		2.2	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			3.6	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			29	Α	integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage	_	_	1.3	٧	$T_J = 25^{\circ}C$, $I_S = 2.2A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time	_	50		ns	$T_J = 25^{\circ}C$, $I_F = 2.2A$, $V_{DD} = 40V$
Q _{rr}	Reverse Recovery Charge	_	110		nC	di/dt = 100A/µs ③
t _{on}	Forward Turn-On Time	Intrinsio	cturn-a	ntimeis	negligik	de (turn-an is adminated by LS+LD)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12. On-Resistance Vs. Drain Current

Fig 13. On-Resistance Vs. Gate Voltage

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)

DIM	INCHES		MILLIM	ETERS
DIIVI	MN	MAX	MIN	MAX
Α	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
С	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
Е	.1497	.1574	3.80	4.00
е	.050 B	ASIC	1.27 BASIC	
еl	.025 B	.025 BASIC		BASIC
Н	.2284	.2440	5.80	6.20
K	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
У	0°	8°	0°	8°

NOTES:

- 1. DIMENSIONING & TOLERANGING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- [7] DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO ASUBSTRATE.

SO-8 Part Marking Information

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

SO-8 Tape and Reel (Dimensions are shown in millimeters (inches))

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification information[†]

Qualification level	Industrial (per JEDEC JESD47F ^{††} guidelines)				
Moisture Sensitivity Level	SO-8 MSL1 (per JEDEC J-STD-020D ^{††})				
RoHS compliant	Yes				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 31mH, $R_G = 25\Omega$, $I_{AS} = 2.2$ A.
- ③ Pulse width \leq 400µs; duty cycle \leq 2%.
- 4 When mounted on 1 inch square copper board.
- \odot C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- $\textcircled{6} \quad I_{SD} \leq 2.2A, \ di/dt \leq 220A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, T_J \leq 150^{\circ}C.$

Revision History

ricvision riistory	
Date	Comments
1 10/16/2014	Corrected part number from" IRF7380PbF-1" to "IRF7380TRPbF-1" -all pages
	• Removed the "IRF7380PbF-1" bulk part number from ordering information on page1

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/