gregoriades_2021_supporting_digital_content_marketing_ and_messaging_through_topic_modelling_and_decision_tr ees

Year

2021

Author(s)

Andreas Gregoriades and Maria Pampaka and Herodotos Herodotou and Evripides Christodoulou

Title

Supporting digital content marketing and messaging through topic modelling and decision trees

Venue

Expert Systems With Applications

Topic labeling

Partially automated

Focus

Secondary

Type of contribution

Established approach

Underlying technique

Manual labeling assisted by topic polarity & associated documents

Topic labeling parameters

Label generation

In each STM model, each review (i.e. document) is associated with a distribution of a finite set of topics; topics are distributions of words in the corpus of all reviews. The probability distribution of topics per review denotes the probability of each topic discussed in a review and the sum of all topics' probabilities in each review totalled to 1.

_

A popular approach for labelling topics, also used herein, is to

- 1. Consider words highly associated with each topic and
- 2. Inspect the most prevalent reviews related to that topic.

For the first task, extracted topics were inspected to make the necessary connections between the main words associated with the topic that emerged from different metrics such as highest probability, Lift, and FREX (Roberts et al., 2019).

Lift weights words by giving higher weight to words that appear less frequently in other topics and FREX weights words by their overall frequency and how exclusive they are to the topic.

To assist the interpretation of topics, it was essential to identify the polarity of each topic based on its association to satisfaction (sentiment).

To that end, the STM's metadata capability was used with sentiment set as prevalence variable (metadata) to assess the association of each topic with the outcome (sentiment) using LASSO based estimates. For topics that were not included in the LASSO output a logistic regression model was generated per topic with the reviews' sentiment as the dependent variable and the topics' theta values from STM models as independent variable.

The evaluated topics' polarity helped to refine the naming of topics to have either positive or negative connotations, to later enable the interpretation of the DTs. The main topics that emerged from the analysis are depicted in Table 1.

Defined Topics for 2/3-star hotels based on STM model	Evaluated <mark>Topic</mark> Polarity	Defined Topics for 4/5-star hotels based on STM model	Evaluated <mark>Topic</mark> Polarity
V1_clubbing_holidays (Noise)	Negative	V1_revisited_refurnished	Positive
V2_renovation	Negative	V2_bar_food_cats	Negative
V3_good_rooms	Positive	V3_nice_pool_drinks	Positive
V4_dirty_bathroom	Negative	V4_spa_gym_massage	Positive
V5_dirty-room-unprofessional_staff	Negative	V5_staff_always_willing_to_help	Positive
V6_helpfull_staff	Positive	V6_rude_staff	Negative
V7_other_guests	Negative	V7_excellent_service	Positive
V8_limited_options_all_inclusive	Negative	V8_best_stay_ever	Positive
V9_good_location	Positive	V9_nice_room	Positive
V10_amazing_staff	Positive	V10_extra_costs_for_ameneties (WIFI, coffee machines)	Negative
V11_not_well_equipped_room(e.g. fridge)	Negative	V11_extra_charges	Negative
V12_good_mobility_options(bus, walk)	Positive	V12_amazing_dinners (buffet, a la carte)	Positive
V13_comfortable_room	Positive	V13_pool_area_issues (kids, noise)	Negative
V14_poor_entertaiment_and_food	Negative	V14_good_transportation_options	Positive
V15_limited_breakfast_options	Negative	V15_located_close_to_beach	Positive
V16_pool_area	Positive	V16_great_wedding_venue	Positive
V17_value_for_money	Positive	V17_birthday/anniversaries	Positive
V18_close_to_beach_with_pool	Positive	V18_perfect_location(walk around)	Positive
V19_basic_accomotation	Negative	V19_disagree_with_hotel_reviews	Positive
V20_accept_late_arrivals	Positive	V20_luxurius/quality -amenities	Positive
V21_good_dinner	Positive	V21_great_team_of_staff	Positive
V22_low_quality_food_and_drinks	Negative	V22_room_with_seaview	Positive
/23_smelly_room	Negative	V23_lovely_staff	Positive
V24_good_bar_service	Positive	V24_dirty_room_beddings_ shower	Negative
V25_ideal_for_summer_holidays (pool_area)	Positive	V25_missing_services	Negative
V26_bad_customer_service	Negative	V26_great_entertaiment (bingo, darts)	Positive
V27_old_room	Negative	V27_great_for_families	Positive
V28_good_entertaiment	Positive	V28_checkin/front_desk_issues	Negative
/29_friendly_staff	Positive	V29_beach_hotel_with_convenient_location	Positive
/30_will_revisit	Positive	V30_exceptional_staff-food-pool	Positive
V31_basic_apartment_no_luxuries	Negative		
V32_the_best_experiance	Positive		
V33_close_to_beach	Positive		
V34_bad_facilities_maintenance	Negative		
V35_clean_good_service	Positive		

Motivation

- 1. Topics naming was motivated by prevalent hotel service quality factors in hospitality literature (Banerjee & Chua, 2016) such as convenient location, service quality, reputation, and friendliness of staff and factor groupings such as tangibles (e.g., equipment), reliability (e.g., punctuality), responsiveness (e.g., prompt service), assurance (e.g., politeness), and empathy (e.g., personal attention).
- 2. Enable for the interpretation of the generated DTs.

Topic modeling

STM

Topic modeling parameters

Nr of topics (k): 10 to 100

Nr. of topics

One model per review type and corresponding data (2/3-star and 4/5-star hotels) 30 topics for the 4/5 hotels and 35 topics for the 2/3 star hotels

Label

Single or multi-word labels linked to hotel service quality factors in hospitality literature (Banerjee & Chua, 2016)

Label selection

\

Label quality evaluation

\

Assessors

\

Domain

Paper:

Dataset: Tourism and Hospitality

Problem statement

This paper presents a machine learning approach involving tourists' electronic word of mouth (eWOM) to support destination marketing campaigns.

This approach enhances the communication of the right content to the right consumers. The proposed method further considers aggregate cultural and economic-related information of the tourists' country of origin with topic modelling and Decision Tree (DT) models. Each DT addresses different dimensions of culture and purchasing power and the way these dimensions are associated with the topics discussed in eWOM, thus revealing patterns relating tourists' experiences with potential explanations for their dissatisfaction/ satisfaction.

Patterns emerged from the extraction of rules from DTs illuminate combinations of variables associated with tourist experience (negative or positive) for each of the two hotel categories and verify the asymmetric relationship between service performance and satisfaction.

Corpus

Origin: TripAdvisor

Nr. of documents: 42.000

Details:

- eWOM data, written in English, by tourists in Cyprus who stayed in (reviewed) hotels between 2014 and 2019
- The data were retrieved using location filtering criteria in TripAdvisor
- Two main categories of hotels, namely 2/3-star and 4/5-star hotels, the reviews were split into two datasets, corresponding to each hotel category and processed separately. Each dataset was used to develop a topic model.

Document

Information from eWOM related to the generator, the hotel, and timing of visit and review, and included the reviewer's nationality based on their self-declared location, their past eWOM contributions, helpfulness vote, hotel rating, hotels star rating, and actual review text.

+

Level of economic development (as measured by nominal GDP per capita in US\$ at the time of the review) and cultural characteristics (as measured by scores on the six cultural dimensions) for both Cyprus (i.e., the destination) and the reviewer's home country.

Pre-processing

- stop-word removal
- stemming
- tokenization
- punctuation removal
- custom words removal (names of hotels, cities, and resorts)
- numbers removal
- converting all text to lowercase
- Reviews from local tourists were also eliminated

@article{gregoriades_2021_supporting_digital_content_marketing_and_messaging_through_topic_modelling_and_decision_trees,

abstract = {This paper presents a machine learning approach involving tourists' electronic word of mouth (eWOM) to support destination marketing campaigns. This approach enhances optimisation of a critical aspect of marketing campaigns, that is, the communication of the right content to the right consumers. The proposed method further considers aggregate cultural and economic-related information of the tourists' country of origin with topic modelling and Decision Tree (DT) models. Each DT addresses different dimensions of culture and purchasing power and the way these dimensions are associated with the topics discussed in eWOM, thus revealing patterns relating tourists' experiences with potential explanations for their dissatisfaction/satisfaction. The method is implemented in a case study in the context of tourism in Cyprus focusing on two hotel groups (2/3 and 4/5 stars) to account for their differences. Patterns emerged from the extraction of rules from DTs illuminate combinations of variables associated with tourist experience (negative or positive) for each of the two hotel categories and verify the asymmetric relationship between service performance and satisfaction. The approach can be used by management during marketing campaigns to design messages to better address the desires and needs of tourists from different cultural and economic backgrounds, as these emerge from the data analysis.}, author = {Andreas Gregoriades and Maria Pampaka and Herodotos Herodotou and Evripides Christodoulou}, $date-added = \{2023-03-19 \ 17:37:44 +0100\},$ date-modified = $\{2023-03-19\ 17:37:44\ +0100\}$, doi = {https://doi.org/10.1016/j.eswa.2021.115546}, $issn = \{0957-4174\},$ journal = {Expert Systems with Applications}, keywords = {Topic modelling, Cultural and economic distance, Decision trees, Shapley additive explanation, Tourists' reviews}, pages = $\{115546\}$, title = {Supporting digital content marketing and messaging through topic modelling and decision trees}, url = {https://www.sciencedirect.com/science/article/pii/S0957417421009532}, volume = $\{184\}$, $year = \{2021\}\}$