Dynamic Routing Protocols

Link-State Routing Protocols

Trần Tuấn Toàn

Terminology

- Link: Interface trên Router
- Link state: Mô tả về một Interface và mối quan hệ của Interface đó với láng giềng, bao gồm:

Tập hợp tất cả các link-state được gọi là link-state database

Link-State Routing Protocols

Link-State Concepts

- 1. Flooding of Link-State information:
 - Router truyền bá các thông tin về link-state của mình cho tất cả các Router khác trong mạng

- 2. Building a Topologycal Database:
 - Mỗi Router sẽ thu thập tất cả các thông tin link-state từ các Router khác và đưa vào topologycal database
- 3.Shortest-Path First (SPF), Dijkstra's Algorithm:
 - Sử dụng những thông tin thu thập được, các Router có thể tự xây dựng lại được sơ đồ toàn bộ hệ thống mạng

- 4. Shortest-Path First Tree:
 - Thuật toán SPF sẽ tạo ra SPF tree:
 - Router local là gốc của SPF tree
 - Các Router khác cùng với các đường link là các nhánh của SPF tree
- 5. Building Routing table:
 - Dựa trên SPF tree, Router sẽ xây dựng Routing table cho mình

Link-State Routing Protocols

- Toàn bộ sơ đồ mạng sẽ được mô tả qua quá trình cập nhật đường đi
- Link-state protocols phải tính ra được metric thay vì lấy metric từ trong quá trình nhận thông tin cập nhật
- Thông tin về đường đi learned được của Router đã bao gồm cả giá trị cost tương ứng với mỗi liên kết
- Link-state protocols có thể quảng bá một lượng thông tin sơ đồ mạng khá lớn

OSPF Routing Protocol

OSPF Operation

- **1.** Mỗi Router sẽ tự phát hiện ra *neighbors* của mình trên mỗi Interface. Danh sách neighbors được lưu trong *neighbor table*
- 2. Mỗi Router sẽ sử dụng một giao thức tin cậy để trao đổi thông tin về topology (LSAs) với láng giềng.
 - LSA: mô tả subnet number/mask, cost và các thông tin khác của subnet.
- 3. Mỗi Router sẽ đặt thông tin về topology mà mình học được trong topology database
- 4. Mỗi Router sẽ tự chạy thuật toán SPF trên chính topology database của mình để tìm ra đường đi tốt nhất
- 5. Mỗi Router sẽ đặt đường đi tốt nhất đã tìm được vào trong Routing table của mình

Advantages of OSPF (1)

- OSPF Link-state Routing Protocol
 - RIP, IGRP, EIGRP distance-vector Routing Protocol:
 - Hạn chế: Routing Loop, Split-Horizon, ...
- OSPF có độ hội tụ cao
- OSPF hỗ trợ VLSM và CIDR
 - RIPv1 và IGRP không hỗ trợ

Advan

Advantages of OSPF (2)

- Cisco's OSPF metric: bandwidth
 - RIP metric: hop count
 - IGRP: bandwidth, delay, reliability, load
- OSPF chỉ gửi thông tin cập nhật khi có sự thay đổi
 - RIP (30 giây), IGRP (90 giây): định kỳ tự động gửi
- OSPF là cơ sở để có thể tiến hành mở rộng hệ thống mạng theo chiều ngang
- OSPF được hỗ trợ trên nhiều hệ thống
 - IGRP và EIGRP là 2 giao thức đặc trưng của riêng Cisco

Problem in large OSPF networks

- Một topology database lớn thường sẽ đòi hỏi về bộ nhớ nhiều hơn trên mỗi Router
- Chỉ một Interface đơn lẻ trong hệ thống thay đổi trạng thái (up/down) sẽ kéo theo tất cả các Router sẽ phải chạy lại SPF

Solution: Hierarchical Design

- Sử dụng OSPF Area để chia nhỏ mạng:
 - Router chỉ nhận biết được thông tin về topology trong nội vùng (area) của mình
- Topology database sẽ nhỏ hơn, Router cần ít bộ nhớ hơn, thuật giải SPF sẽ tiêu tốn ít thời gian hơn
 - ⇒Độ hội tụ sẽ nhanh hơn và ổn định hơn

OSPF Router types

OSPF Router types

Internal:

Là các Router cùng tất cả các
Interface trong cùng một area

Backbone:

Là các Router có ít nhất một
Interface kết nối tới area 0

- ASBR (Autonomous System Boundary Router):
 - Là các Router có ít nhất một Interface kết nối sang một vùng bên ngoài (một area khác)
- ABR (Area Border Router):
 - Là các Router với những Interface kết nối tới nhiều area

OSPF Terminology

- Router ID: xác định Router trong hệ thống mạng OSPF
 - IP address được cấu hình gắn với Router qua câu lệnh router-id
 - Loopback address cao nhất
 - IP address đang kích hoạt cao nhất
- Loopback address có ưu điểm là không bao giờ "down"

Electing the DR and BDR (1)

 Trong các hệ thống mạng multi-access, DR và BDR cần phải được lựa chọn

DR – Designated Router

BDR – Backup Designated Route

 DR được coi là một điểm tập hợp Link State Advertisements (LSAs) trong multi-access network

 Nếu IP network là multi-access, các Router OSPF sẽ tự bầu ra môt DR và BDR

Electing the DR and BDR (2)

- Các Router sẽ "bầu" Router nào có router-id cao nhất làm DR, tiếp theo là BDR
- Trường priority của Router có thể được thiết đặt nhằm xác định mức độ ưu tiên lựa chọn làm DR của Router
 - Router(config-if)#ip ospf priority <0-255>
 - Mặc định priority = 1
 - priority = 0: ngăn không cho Router trở thành DR/BDR

Electing the DR and BDR (3)

 Tất cả các Router khác không được bầu làm DR/BDR thì được gọi là "DROther"

 Các DROther được gộp nhóm vào địa chỉ 224.0.0.5

 DR/BDR được gộp nhóm vào địa chỉ 224.0.0.6

Backup Designated Router :

- Lắng nghe, không hành động
- Nếu LSA được gửi, BDR sẽ thiết lập thời gian
- Nếu thời gian thiết lập quá hạn mà chưa nhận được hồi âm của DR, BDR sẽ tự động trở thành DR và tiếp tục cập nhật
- Quá trình tiếp tục diễn ra với việc bầu BDR mới

Electing the DR and BDR (4)

- Khi một Router mới được thêm vào mạng:
 - DR được thông báo, tuy nhiên nếu Router mới có router-id cao hơn của DR hiện tại thì cũng không trở thành DR/BDR
- Khi DR bị "down", BDR sẽ tự động chuyển thành DR và các DROther sẽ bầu một BDR mới.

Comparison

	Link-State	Distance-Vector
Độ hội tụ	Nhanh	Chậm
Tránh lặp vòng	Tích hợp sẵn	Cần có tính năng phụ (split-horizontal)
Yêu cầu về memory/CPU	Có thể lớn	Thấp
Yêu cầu nỗ lực khi thiết kế mạng lớn	Có	Không
Dùng chung/riêng	Cho mọi loại Router	Được thiết kế riêng cho Cisco Router

OSPF Configuration

Enable OSPF

- Router(config)#router ospf process-id
 - process-id: 1 65.535
 - Cisco Router cho phép chạy được nhiều OSPF với process khác nhau trên một Router (*Not Recommend*)
 - process-id chỉ là một giá trị cục bộ, không có ý nghĩa trong hệ thống mạng (không phải giống với Router khác)

Network command

- Router(config)#router ospf process-id
- Router(config-router)#

network <u>address</u> <u>wildcast-mask</u> area <u>area-id</u>

OSF

OSPF's reference bandwidth

- Router(config-if)#ip ospf x
 - Thiết đặt cost cho Interface hiện tại
- Router(config-if)#bandwidth kbps
 - Thiết đặt bandwidth cho Interface hiện tại

Link Type and Bandwidth	Cost
56-kbps serial link	1785
T1 1.544-Mbps serial link	64
E1 2.048-Mbps serial link	48
4-Mbps Token Ring	25
10-Mbps Ethernet	10
16-Mbps Token Ring	6
100-Mbps Fast Ethernet , FDDI	1