DYNAMIC PRICING WITH HIDDEN CAPACITIES

Daniel Garcia¹, Maarten Janssen^{1,2,3,4}, Radostina Shopova^{1,2}

¹University of Vienna, ²Vienna Graduate School of Economics, ³CEPR, ⁴National Research University Higher School of Economics, Moscow

Motivation

- Markets with following characteristics (e.g., hotel accommodations, airline tickets, shipping, generated electricity):
 - Product expires at a fixed future point in time
 - Capacity is fixed well in advance
 - Competition over multiple periods
 - Capacities are privately known
- These features have not been studied together in an equilibrium model of time-dated products

Empirical observations

- Regular price adjustments
- Increasing (average) prices towards deadline
- More volatile price changes (price dispersion) close to deadline
- No clear monotone relationship between price dispersion and available capacity in the market

Model

Two firms i=1,2 competing á la Bertrand in two periods t=1,2 over demand of myopic (one in each period) consumer with reservation value v=1. No costs of production and firms can be wither constrained or unconstrained with initial stock $s_i \in S = \{1,2\}$. Each firm constrained with probability $Prob(s_i=1) = \alpha$.

Dudey (1992) Equilibrium

If firms **share** their information, Dudey (1992) predicts monopoly pricing in all periods:

- Constrained firm can credibly threaten with competition unless she sells out first
- Unconstrained firm covers rest of demand

Equilibria with private information

- Second period: price dispersion firm, which did **not** sell a unit in first period holds posterior belief θ about being a monopolist (rival is sold out) (Janssen and Rasmusen (2002)) \Rightarrow mixes over interval $[\theta, 1]$ with mass point on 1. If rival still in market, also mix over $[\theta, 1]$, but no mass point.
- First period
 - No separating equilibrium
 - Unique pooling equilibrium with $p_1^* = \alpha$
 - Continuum of semi-separating equilibria with mixing in first period over the interval $[\alpha, \overline{p})$, where $\overline{p} \in (\alpha, 1]$. The higher \overline{p} the higher the probability an unconstrained firm sells first, the lower the profits in second period and overall \Rightarrow Equilibria Pareto-ranked and inferior, from firm's perspective, to the pooling equilibrium.

Empirical Implications

• Price dispersion is larger in periods closer to the deadline (Calibrated for $\alpha=0.2$ and $\overline{p}=0.35$.)

• Flights expected to be peak do not have more dispersion than those that are expected to be off-peak.

• Prices increase over time if first-period price interval relatively small. (Calibrated for $\alpha=0.2$ and $\overline{p}=0.35$.)

Welfare Implications

Ratio of ex ante expected profits with information sharing relative to private information is at least $\frac{2(2-\alpha)}{(3-\alpha)}$. Especially for small α , information exchange on capacities leads to significantly higher profits (up to 33%) and, thus, to significantly lower consumer surplus

Extensions

Voluntary (costly) disclosure and (costly) industrial espionage.