DNI: 32714282

1. Tomar los últimos 4 números de tu DNI y pasarlos a sistema binario y a sistema hexadecimal. Mostrar el proceso por medio del cual llevaste a cabo dicha solución

Convertir 4282 a binario				
División (A)	Divisor	Resto (B)		
4282	2	0		
2141	2	1		
1070	2	0		
535	2	1		
267	2	1		
133	2	1		
66	2	0		
33	2	1		
16	2	0		
8	2	0		
4	2	0		
2	2	0		
1	2	1		
0	2			
Binario : 1000010111010				

División	Cociente	Residuo	Hexadecimal
4282 ÷ 16	267	10	А
267 ÷ 16	16	11	В
16 ÷ 16	1	0	0
1 ÷ 16	0	1	1
Resultado:	10BA		

2. Tomar los cuatro primeros números del DNI, pasarlos a sistema binario y sumarlos con los últimos cuatro números del DNI en binario calculados en el punto anterior

Convertir 3271 a binario						
División (A)	Divisor	Resto (B)				
3271	2	1				
1635	2	1				
817 2 1						
408 2 0						
204 2 0						
102	2	0				
51	2	1				
25	2	1				
12 2 0						
6 2 0						
3 2 1						
1	2	1				
0						
Binario : 110011000111						

Suma de los Dos numeros Binarios			
Binario A 1000010111010 428			
Binario B	110011000111	3271	
Suma :	1110110000001	7553	

3. Tomar el número de DNI completo, separarlo en grupos de dos decimales y convertir esos números a hexadecimal. Por ej: 12.345.678 pasarían a ser: 12 34 56 78 y cada para de números, pasarlos a hexadecimal

Decimal	Hexadecimal	
32	20	32÷16=2, residuo 0 → hexadecimal es 20.
71	47	71÷16=4, residuo 7 → hexadecimal es 47.
42	2A	42÷16=2, residuo 10 → hexadecimal es 2A.
82	52	82÷16=5, residuo 2 → hexadecimal es 52.

4. Diseñar un circuito sumador que tenga como IMPUT 3 bits. Calcular qué valores deberían tener para que se enciendan al menos UN FLAG. Identificar que FLAG o FLAGS se encienden y por qué se da ese fenómeno (qué condiciones se dieron).

Respuesta:

- Para que se encienda al menos un FLAG, basta con que cualquiera de las entradas (A, B, C) tenga un valor de 1. Esto se debe a que el circuito sumador genera un resultado que puede activar las diferentes FLAGS según las condiciones del cálculo.
- Las FLAGS que se encienden están marcadas en color en la tabla. Este fenómeno se da por las siguientes condiciones:
 - 1. **Flag de Carry:** Se enciende cuando hay un acarreo, es decir, cuando la suma de las entradas excede la capacidad de un solo bit (por ejemplo, cuando dos o más entradas son 1).
 - 2. **Flag de Overflow:** Se activa cuando los tres inputs (A, B, C) son 1, lo que indica un desbordamiento lógico en la operación de suma.
 - 3. **Flag de Zero:** Se enciende cuando todas las entradas (A=0,B=0,C=0), lo que significa que el resultado de la suma es 0.

Α	В	С	Sumador	Carry	Overflow (O)	Zero (Z)
0	0	0	0	0	0	1
0	0	1	1	0	0	0
0	1	0	1	0	0	0
0	1	1	0	1	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	1	1	1	0

5. Graficar el circuito

