CLAIMS

1	1. A me	thod for method for decoding (extracting) a Linear Time Code (LTC) frame	
2	of the type used in connection with film and television and accompanying audio, comprising the		
3	steps of		
4	(a) detecting a valid synchronization sequence within an incoming LTC frame while		
5	measuring a predetermined symbol interval relative to a reference clock;		
6	(b) determining a LTC frame direction.		
7	(c) decoding payload information from the LTC frame; and		
8	(d) transferring the payload information in an order determined by the LTC frame		
9	direction.		
1	2. The	method according to claim 1 wherein the step of measuring the predetermined	
2	symbol interval dura	symbol interval duration comprises the step of measuring how many 27 MHz clock periods occur	
3	within a duration of bi-phase encoded half mark symbol interval within the LTC frame.		
1	3. The	method according to claim 2 wherein the decoding steps further comprises the	
2	step of extracting su	step of extracting successive symbols from the LTC frame using the measured 27 MHz clock	
3	periods as a reference.		
1	4. The	method according to claim 3 wherein a minimum required symbol interval for	
2	the 27 MHz clock is seventy.		
1	5. The	method according to claim 3 wherein a maximum allowable symbol interval	
2	for the 27 MHz clock is 210,497.		
1	6. The	method according to claim 1 further including the step of filtering each	
2	incoming LTC to remove a glitch.		
1	7. The	method according to claim 1 wherein steps (a)-(d) are repeated upon receipt	
2	of for each successive LTC frame.		
1	8. An l	LTC receiver for decoding (extracting) a Linear Time Code (LTC) frame of	
2	the type used in con	nnection with film and television and accompanying audio, comprising	
3	a) first means for detecting a valid synchronization sequence within an incoming LTC		
4	frame while measuring a predetermined symbol interval relative to a reference clock;		

12

1

2

direction.

- (b) second means for determining a LTC frame direction. 5 6 (c) third means for decoding payload information from the LTC frame; and 7 (d) fourth means for transferring the payload information in an order determined by the 8 LTC frame direction. 9. The LTC receiver according to claim 8 wherein the first means includes a first 1 2 counter for measuring the predetermined symbol interval duration comprises the step of 3 measuring how many 27 MHz clock periods occur within a duration of bi-phase encoded half 4 mark symbol interval within the LTC frame. 1 10. The LTC receiver according to claim 8 wherein the second means includes a 2 second counter for counting sync pulses in the incoming LTC frame to establish a LTC frame 3 direction. 1 11. The LTC receiver according to claim 8 wherein the third means includes a data 2 symbol counter for counting symbols within the incoming LTC frame. 1 12. The LTC receiver according to claim 8 wherein the fourth means includes a state 2 machine. 1 13. An LTC receiver for decoding (extracting) a Linear Time Code (LTC) frame of the 2 type used in connection with film and television and accompanying audio, comprising 3 a) first counter for measuring a predetermined symbol interval relative to a reference 4 clock; 5 a second counter for counting sync pulses within the incoming LTC frame; 6 a third counter for counting data symbols within the incoming LTC frame; 7 a shift register and 8 a state machine responsive to the counts of the first, second and third counters for (a) detecting a valid synchronization sequence within an incoming LTC frame, (b) determining a 9 10 LTC frame direction; (c) decoding payload information from the LTC frame; and (d) for transferring the payload information to the shift register in an order determined by the LTC frame 11
 - 14. The apparatus according to claim 13 further comprising a glitch filter for filtering the incoming LTC frame to remove glitches.

- 1 15. The apparatus according to claim 13 wherein the first counter measures the 2 predetermined symbol interval duration by measuring how many 27 MHz clock periods occur
- 3 within a duration of bi-phase encoded half mark symbol interval within the LTC frame.