DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120
DP - MATRIX CHAIN MULTIPLICATION

AGENDA

- Matrix chain multiplication
 - The problem
 - Apply dynamic programming to solve the problem

ELEMENTS OF DP BRIEF REVIEW

- The four elements of dynamic programming
 - Two key ingredients
 - Optimal substructure
 - Overlapping subproblems
 - Reconstructing a solution
 - Memoization

MATRIX MULTIPLICATION ALGORITHM

- The pseudocode calculates the dot-product of two *compatible* matrices *A* and *B*.
 - When we say A and B are compatible, we are referring the dimensions of A and B satisfying the following condition.
 - A is a $p \times q$ matrix and B is a $q \times r$ matrix.

MA	ATRIX-MULTIPLY (A, B)
I	if $A. columns \neq B. rows$
2	error "incompatible dimensions"
3	else let C be a new $A.rows \times B.columns$ matrix
4	for $i = 1$ to $A.rows$
5	for $j = 1$ to $B.$ columns
6	$c_{ij} = 0$
7	for $k = 1$ to $A.$ columns
8	$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$
9	return C

• Particularly, line 8 of the algorithm is called a **scalar multiplication**.

MATRIX MULTIPLICATION ALGORITHM

• The running time of the algorithm is dominated by the number of scalar multiplications, which is determined by

• Suppose that A is a $p \times q$ matrix and B is

MA	ATRIX-MULTIPLY (A, B)
I	if $A. columns \neq B. rows$
2	error "incompatible dimensions"
3	else let C be a new $A.rows \times B.columns$ matrix
4	for $i = 1$ to $A.rows$
5	for $j = 1$ to $B.columns$
6	$c_{ij} = 0$
7	for $k = 1$ to A. columns
8	$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$
9	return C

a $q \times r$ matrix, the number of scalar multiplications can be calculated as ______

SCALAR MULTIPLICATION PRACTICE

• Execute the algorithm on matrices A and B as shown below.

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \text{ and } B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix}$$

- Matrix A is _____ × ____, and B is _____ × ____.
- The resulting matrix C is _____ × ____.
- The number of scalar multiplications of this particular instance is

MA	1ATRIX-MULTIPLY (A, B)					
I	if $A. columns \neq B. rows$					
2	error "incompatible dimensions"					
3	else let C be a new $A.rows \times B.columns$ matrix					
4	for $i = 1$ to $A.rows$					
5	for $j = 1$ to $B.$ columns					
6	$c_{ij} = 0$					
7	for $k = 1$ to $A.$ columns					
8	$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$					
9	return C					

MATRIX-CHAIN MULTIPLICATION

- Say we want to calculate $A_1A_2A_3$.
 - The dimension of A_1 is 5×5 .
 - The dimension of A_2 is 5×2 .
 - The dimension of A_3 is 2×3 .
- Question
 - Are the three matrices A_1 , A_2 , and A_3 compatible?
 - If they are compatible, what is the dimension of the resulting matrix?
 - Are $((A_1A_2)A_3)$ and $(A_1(A_2A_3))$ equivalent to calculating $A_1A_2A_3$?

MATRIX-CHAIN MULTIPLICATION CASE 1

- Say we want to calculate $A_1A_2A_3$.
 - A_1 is 5×5, A_2 is 5×2, A_3 is 2×3.
- Question
 - How to use the MATRIX-MULTIPLY algorithm to compute $A_1A_2A_3$?
 - Call ____ = MATRIX-MULTIPLY (____, ___)
 _ ___ scalar multiplication, yielding a ____ matrix.
 - Call MATRIX-MULTIPLY (_____, ____)
 _____ scalar multiplication, yielding a _____ × ____ matrix.

MA	ATRIX-MULTIPLY (A, B)
I	if $A. columns \neq B. rows$
2	error "incompatible dimensions"
3	else let C be a new $A.rows \times B.columns$ matrix
4	for $i = 1$ to $A.rows$
5	for $j = 1$ to $B.columns$
6	$c_{ij} = 0$
7	for $k = 1$ to $A.$ columns
8	$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$
9	return C

MATRIX-CHAIN MULTIPLICATION CASE 2

- Say we want to calculate $A_1A_2A_3$.
 - A_1 is 5×5, A_2 is 5×2, A_3 is 2×3.
- Question
 - How about computing $((A_1A_2)A_3)$?
 - Call ____ = MATRIX-MULTIPLY (____, ___)
 _ ___ scalar multiplication, yielding a ____ matrix.
 - Call MATRIX-MULTIPLY (____,___)
 - scalar multiplication, yielding a _____ × ____ matrix.

MA	$ATRIX ext{-MULTIPLY}(A,B)$
I	if $A. columns \neq B. rows$
2	error "incompatible dimensions"
3	else let C be a new $A.rows \times B.columns$ matrix
4	for $i = 1$ to $A.rows$
5	for $j = 1$ to $B.$ columns
6	$c_{ij} = 0$
7	for $k = 1$ to $A.$ columns
8	$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$
9	return C

MATRIX-CHAIN MULTIPLICATION CASE 3

- Say we want to calculate $A_1A_2A_3$.
 - A_1 is 5×5, A_2 is 5×2, A_3 is 2×3.
- Question
 - How about computing $(A_1(A_2A_3))$?
 - Call ____ = MATRIX-MULTIPLY (____, ___)
 ___ scalar multiplication, yielding a ____ matrix.
 - Call MATRIX-MULTIPLY (____,___)
 - scalar multiplication, yielding a _____ × ____ matrix.

MA	$MATRIX-MULTIPLY\ (A,B)$						
I	if $A. columns \neq B. rows$						
2	error "incompatible dimensions"						
3	else let C be a new $A.rows \times B.columns$ matrix						
4	for $i = 1$ to $A.rows$						
5	for $j = 1$ to $B.$ columns						
6	$c_{ij} = 0$						
7	for $k = 1$ to $A.$ columns						
8	$c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$						
9	return C						

MATRIX-CHAIN MULTIPLICATION EFFICIENCY

- Previously, we determined that $A_1A_2A_3=\big((A_1A_2)A_3\big)=\big(A_1(A_2A_3)\big).$
 - For $A_1A_2A_3$, _____ scalar multiplications were involved.
 - For $((A_1A_2)A_3)$, _____ scalar multiplications were involved.
 - For $(A_1(A_2A_3))$, _____ scalar multiplications were involved.
- Which of the three computations is the most efficient?

MATRIX-CHAIN MULTIPLICATION

- The number of scalar multiplications varies based on different parenthesization of the matrices.
 - $-((A_1A_2)A_3)$ VS. $(A_1(A_2A_3))$
 - How we parenthesize a chain of matrices can have a dramatic impact on the cost of evaluating the product.
- Since matrix-multiplication is a costly process, we can **take advantage of different** parenthesizations to minimize the number of scalar multiplications involved.
 - Matrix multiplication is associative. All parenthesizations yield the same product.

FULLY PARENTHESIZED MATRIX CHAIN

- A product of matrices is *fully parenthesized* if it is either a single matrix or the product of two fully parenthesized matrix products, surrounded by parentheses.
 - We can fully parenthesize the product $A_1A_2A_3A_4$ in five different ways:
 - $\left(A_1\left(A_2\left(A_3A_4\right)\right)\right)$
 - $\left(A_1\left((A_2A_3)A_4\right)\right)$
 - $((A_1A_2)(A_3A_4))$
 - $((A_1(A_2A_3))A_4)$
 - $(((A_1A_2)A_3)A_4)$

THE MATRIX-CHAIN MULTIPLICATION PROBLEM

- We state the **matrix-chain multiplication problem** as follows
 - Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, where for i = 1, 2, ..., n,
 - Matrix A_i has dimension $p_{i-1} \times p_i$,
 - Goal: Fully parenthesize the product $A_1A_2\cdots A_n$ in a way that **minimizes** the number of scalar multiplications.

POSSIBLE SOLUTIONS

- Brute-force
 - This is one way to go.
 - However, as the matrix chain grows longer, the number of different parenthesizations increases dramatically.
 - As a matter of fact, it grows as $\Omega(2^n)$, where n is the size of the matrix chain.
- Dynamic programming?

DYNAMIC PROGRAMMING CHECKLIST

- Here is a checklist of the qualifications of a DP problem.
 - ☐ Optimization problem
 - ☐ Two key ingredients
 - ☐ Optimal substructure
 - ☐ Overlapping subproblems

OPTIMIZATION PROBLEM

- We state the **matrix-chain multiplication problem** as follows
 - Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, where for i = 1, 2, ..., n,
 - Matrix A_i has dimension $p_{i-1} \times p_i$,
 - Goal: Fully parenthesize the product $A_1A_2\cdots A_n$ in a way that **minimizes** the number of scalar multiplications.
- Keyword: minimize

DYNAMIC PROGRAMMING CHECKLIST

- Here is a checklist of the qualifications of a DP problem.
 - Optimization problem
 - ☐ Two key ingredients
 - ☐ Optimal substructure
 - ☐ Overlapping subproblems

OPTIMAL SUBSTRUCTURE NOTATION

- The chain of matrices: $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, where for i = 1, 2, ..., n.
- Matrix A_i has dimension $p_{i-1} \times p_i$.
 - Matrix A_1 has dimension $p_0 \times p_1$.
 - Matrix A_{10} has dimension $\underline{p_9} \times \underline{p_{10}}$.
 - Matrix A_n has dimension $\underline{p_{n-1}} \times \underline{p_n}$.
 - The # of scalar multiplications in computing the dot-product of a $p \times q$ and a $q \times r$ matrix is pqr.
 - Let us use $A_{i...j}$ to denote the resulting matrix of $A_iA_{i+1}...A_j$, where $i \leq j$.

- Challenge #1
- Let's examine the number of scalar multiplications involved by completing the table below.
 - Matrix A_i has dimension $p_{i-1} \times p_i$.
 - The # of scalar multiplications in computing the dot-product of a $p \times q$ and a $q \times r$ matrix is pqr.
 - $A_{i..j}$ denotes the resulting matrix of $A_i A_{i+1} ... A_j$, where $i \leq j$.

Operation	$I.A_1A_2$	$2. A_2 A_3$	$3.A_kA_{k+1}$	4. A_{ii}	$5.A_{13}A_{47}$	$6. A_{ik} A_{k+1j}$
# of Scalar						
Multiplication						

- Challenge #1
- Let's examine the number of scalar multiplications involved by completing the table below.
 - Matrix A_i has dimension $p_{i-1} \times p_i$.
 - The # of scalar multiplications in computing the dot-product of a $p \times q$ and a $q \times r$ matrix is pqr.
 - $A_{i..j}$ denotes the resulting matrix of $A_i A_{i+1} ... A_j$, where $i \leq j$.

Operation	$I.A_1A_2$	$2. A_2 A_3$	$3.A_kA_{k+1}$	4. A_{ii}	5. $A_{13}A_{47}$	$6.A_{ik}A_{k+1j}$
# of Scalar Multiplication	$p_0 p_1 p_2$	$p_{1}p_{2}p_{3}$	$p_{k-1}p_kp_{k+1}$	0	$p_0p_3p_7$	$p_{i-1}p_kp_j$

- Challenge #2
- Consider the following matrix chain $< A_1A_2A_3A_4A_5>$ and its dimension information given in the table.

Index	0	1	2	3	4	5
p_i	4	3	2	6	4	3

- Show the mathematical expression that calculates the # of scalar multiplications of the following operation.
 - Matrix A_i has dimension $p_{i-1} \times p_i$; $A_{i...j}$ denotes the resulting matrix of $A_i A_{i+1} \dots A_j$, where $i \leq j$.
 - The # of scalar multiplications in computing the dot-product of a $p \times q$ and a $q \times r$ matrix is pqr.

Operation	A_2A_3	A_3A_4	$A_{13}A_{45}$	$A_{14}A_{5}$	$A_{24}A_5$
# of Scalar					
Multiplication					

- Challenge #2
- Consider the following matrix chain $< A_1A_2A_3A_4A_5>$ and its dimension information given in the table.

Index	0	1	2	3	4	5
p_i	4	3	2	6	4	3

- Show the mathematical expression that calculates the # of scalar multiplications of the following operation.
 - Matrix A_i has dimension $p_{i-1} \times p_i$; $A_{i...j}$ denotes the resulting matrix of $A_i A_{i+1} \dots A_j$, where $i \leq j$.
 - The # of scalar multiplications in computing the dot-product of a $p \times q$ and a $q \times r$ matrix is pqr.

Operation	A_2A_3	A_3A_4	$A_{13}A_{45}$	$A_{14}A_{5}$	$A_{24}A_5$
# of Scalar	$p_1 p_2 p_3$	$p_{2}p_{3}p_{4}$	$p_0 p_3 p_5$	$p_0 p_4 p_5$	$p_{1}p_{4}p_{5}$
Multiplication	$= 3 \times 2 \times 6$	$= 2 \times 6 \times 4$	$= 4 \times 6 \times 3$	$= 4 \times 4 \times 3$	$= 3 \times 4 \times 3$

DYNAMIC PROGRAMMING CHECKLIST

- Here is a checklist of the qualifications of a DP problem.
 - Optimization problem
 - ☐ Two key ingredients
 - ☐ Optimal substructure
 - ☐ Overlapping subproblems

General steps

- Step I:A solution to the problem consists of making a choice.
- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
- **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
- **Step 4**: Show the solutions to the subproblems used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique.

- Step I:A solution to the problem consists of making a choice.
- In this matrix-chain multiplication problem, we do need to decide how to parenthesize the matrix chain in order to get minimum number of scalar multiplications.
 - At this point, we only consider making ONE choice.
 - We do not concern ourselves with how to make subsequent choices.
 - Once we make a decision, subproblems arise.

$$(A_1A_2\cdots A_kA_{k+1})(\cdots A_n)$$

$$(A_1A_2\cdots A_k)A_{k+1}\cdots A_n$$

$$(A_1A_2)(\cdots A_kA_{k+1}\cdots A_n)$$

- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
 - At this point, you do not concern yourself with how to determine this choice.
- Suppose that parenthesize the matrix chain at matrix A_k leads to the optimal solution.
 - In other words, suppose that we can split the matrix chain between A_k and A_{k+1} , and
 - this split will lead to an optimal parenthesization that costs minimum scalar multiplication.

$$(A_1A_2\cdots A_k)(A_{k+1}\cdots A_n)$$

- **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
- Given the choice of parenthesizing at A_k , _____ subproblems arise.
 - Fully parenthesize $A_1A_2\cdots A_k$ to minimize the number of scalar multiplications.
 - Fully parenthesize $A_{k+1}A_{k+2} \cdots A_n$ to minimize the number of scalar multiplications.

$$(A_1A_2\cdots A_k)(A_{k+1}\cdots A_n)$$

- **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
- (Cont'd) Characterize the subproblems.
 - One sub-chain is $A_1A_2 \cdots A_k$ that has a fixed end A_1 , the other, $A_{k+1}A_{k+2} \cdots A_n$ has a fixed end A_n .
 - From the two observations, we can see that making either end fixed will lose generality.
 - Therefore, we are going to characterize the subproblems as fully parenthesizing matrix chain

$$< A_i A_{i+1} \cdots A_k A_{k+1} \cdots A_j >$$

- **Step 4**: Show the solutions to the subproblem used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique.
- To prove this optimal substructure, we need to define new notations in addition to p.
 - Let m[i,j] be the minimum number of scalar multiplications needed to compute the matrix $A_{i...j}$.
 - This definition of m[i,j] indicate that m[i,j] itself is THE OPTIMAL VALUE.
 - For the full problem, the lowest-cost way to compute $A_{1..n}$ would thus $\underline{m[1,n]}$.

- Step 4 (Cont'd): The proof of the optimality of the solution to the subproblem.
 - **Step a**: Derive a **recurrence** relation.
 - Based off steps I ~ 3
 - Step 2: We were given the choice that leads to an **optimal** value, i.e., parenthesizing at A_k .
 - Step 3:We determined to characterize the subproblems as having two open ends.
 - We can derive the recurrence relation as

$$m[i,j] = \underline{m[i,k]} + \underline{m[k+1,j]} + \underline{p_{i-1}p_kp_j}$$

The **minimum** number of scalar multiplications needed to compute the matrix $A_{i...k}$

The **minimum** number of scalar multiplications needed to compute the matrix $A_{k+1,i}$

The number of scalar multiplications needed to compute $A_{i..k} \cdot A_{k+1..j}$

- Step 4 (Cont'd): The proof of the optimality of the solution to the subproblem.
 - **Step b**: Use a "cut-and-paste" technique to derive contradiction.
 - The recurrence is: $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$
 - The goal is to prove that $\underline{m[i,k]}$ is the **minimum** number of scalar multiplication needed to compute $A_{i...k}$, and $\underline{m[k+1,j]}$ $A_{k+1...j}$.
 - Assume $m^*[i,k]$ is the **minimum** number of scalar multiplication needed to compute $A_{i..k}$, and assume $m^*[k+1,j]$ is the **minimum** number of scalar multiplication needed to compute $A_{k+1..j}$.
 - Obviously, we have the following relations.
 - $m^*[i, k]$ (< or >) m[i, k], and
 - $m^*[k+1,j]$ < (< or >) m[k+1,j].

- Step 4 (Cont'd): The proof of the optimality of the solution to the subproblem.
 - Step b (Cont'd): Use a "cut-and-paste" technique to derive contradiction.
 - The recurrence is: $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$
 - We can construct a **new minimum** number of scalar multiplication by cutting $\underline{m[i,k]}$ and $\underline{m[k+1,j]}$ out of the recurrence and pasting $\underline{m^*[i,k]}$ and $\underline{m^*[k+1,j]}$ to the recurrence.
 - The new recurrence, denoted by $m^*[i,j]$ is computed as $m^*[i,j] = m^*[i,k] + m^*[k+1,j] + p_{i-1}p_kp_j.$
 - The relation is $m^*[i,j]$ (< or >) m[i,j], which **contradicts** the definition of m[i,j].
 - Therefore, m[i,k] is the **minimum** number of scalar multiplication needed to compute $A_{i...k}$, and m[k+1,j] $A_{k+1...j}$.

- The optimal substructure of the matrix-chain multiplication problem is as follows.
 - Suppose that to optimally parenthesize $A_iA_{i+1}\cdots A_j$, we split the product between A_k and A_{k+1} .
 - Then the way we parenthesize the "prefix" subchain $A_iA_{i+1}\cdots A_k$ within this optimal parenthesization of $A_iA_{i+1}\cdots A_j$ must be an **optimal** parenthesization of $A_iA_{i+1}\cdots A_k$.
 - The same observation holds for **how we parenthesize the subchain** $A_{k+1}A_{k+2}\cdots A_j$ in the optimal parenthesization of $A_iA_{i+1}\cdots A_j$: it must be an **optimal** parenthesization of $A_{k+1}A_{k+2}\cdots A_j$.

DYNAMIC PROGRAMMING CHECKLIST

- Here is a checklist of the qualifications of a DP problem.
 - Optimization problem
 - ☐ Two key ingredients
 - Optimal substructure
 - ☐ Overlapping subproblems

DISCOVER OVERLAPPING SUBPROBLEMS

- Using subproblem graph
 - A vertex i...j represents the subproblem of parenthesizing matrix chain $A_iA_{i+1}\cdots A_j$.
 - A direct edge from vertex i..j to s..t represents determining an optimal solution for subproblem i..j involves directly considering an optimal solution for subproblem s..t.

DYNAMIC PROGRAMMING CHECKLIST

- Here is a checklist of the qualifications of a DP problem.
 - Optimization problem
 - Two key ingredients
 - Optimal substructure
 - Overlapping subproblems
- Now we have examined the problem and know that there is a dynamic programming solution to it, we can continue with the steps to develop a dynamic programming solution.

APPLYING DP STEP 1

- Step I: Characterize the structure of an optimal solution
 - Discover the **optimal substructure** of the problem.
- We will continue to use the notations we defined when discovering the optimal substructure.
 - A chain $< A_1, A_2, ..., A_n >$ of n matrices, where for i = 1, 2, ..., n., matrix A_i has dimension $p_{i-1} \times p_i$.
 - $A_{i...j}$ is the matrix that results from evaluating the product $A_iA_{i+1}\cdots A_j$.
 - We shall use the number of scalar multiplication to define the **cost** of the matrix-chain multiplication.

APPLYING DP STEP 1 (CONT'D)

- Step I: Characterize the structure of an optimal solution
 - Discover the optimal substructure of the problem.
- The optimal substructure has been defined in its discovery.
 - Suppose that to **optimal**ly parenthesize $A_iA_{i+1}\cdots A_j$, we **split the product between** A_k **and** A_{k+1} . Then **the way we parenthesize the "prefix" subchain** $A_iA_{i+1}\cdots A_k$ within this optimal parenthesization of $A_iA_{i+1}\cdots A_j$ must be an **optimal** parenthesization of $A_iA_{i+1}\cdots A_k$. The same observation holds for **how we parenthesize the subchain** $A_{k+1}A_{k+2}\cdots A_j$ in the optimal parenthesization of $A_iA_{i+1}\cdots A_j$: it must be an **optimal** parenthesization of $A_kA_{k+1}\cdots A_kA_{k+2}\cdots A_j$.

APPLYING DP STEP 2

- Step 2: Recursively define the value of an optimization.
 - Take advantage of the optimal substructure to recursively compute the optimal value.
- When discovering the **optimal substructure**, we have derived a recurrence relation as follows.

$$m[i,j] = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

, where m[i,j] is defined to be **the minimum number** of scalar multiplications needed to compute the matrix $A_{i...j}$.

APPLYING DP STEP 2 (CONT'D)

- Step 2: Recursively define the value of an optimization.
 - Take advantage of the optimal substructure to recursively compute the optimal value.
- To include the consideration of bottom-out case.

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_k p_j \} & \text{if } i < j. \end{cases}$$

APPLYING DP STEP 3 (RECURSIVE)

- **Step 3**: Compute the **value** of an optimal solution.
 - Design an algorithm to compute the value.
- Input
 - p is an array of dimensions.
 - i and j are the indexes of the two matrices on the two ends

```
RECURSIVE-MATRIX-CHAIN (p,i,j)

I if i == j

2 return 0

3 m[i,j] = \infty

4 for k = i to j - 1

5 q = \text{RECURSIVE-MATRIX-CHAIN }(p,i,k) + \text{RECURSIVE-MATRIX-CHAIN }(p,k+1,j) + p_{i-1}p_kp_j

6 if q < m[i,j]

7 m[i,j] = q

8 return m[i,j]
```

APPLYING DP STEP 3 (RECURSIVE)

- **Step 3**: Compute the **value** of an optimal solution.
 - Design an algorithm to compute the value.
- Bottoms-out case
- Line 4 ~ 7 iteratively parenthesize $A_iA_{i+1}\cdots A_j$, then recurse to solve the subproblems for $A_iA_{i+1}\cdots A_k$ and $A_{k+1}A_{i+2}\cdots A_j$.

```
RECURSIVE-MATRIX-CHAIN (p, i, j)

I if i == j

2 return 0

3 m[i,j] = \infty

4 for k = i to j - 1

5 q = \text{RECURSIVE-MATRIX-CHAIN}(p, i, k) + \text{RECURSIVE-MATRIX-CHAIN}(p, k + 1, j) + p_{i-1}p_kp_j

6 if q < m[i,j]

7 m[i,j] = q

8 return m[i,j]
```

APPLYING DP STEP 3 (RECURSIVE, CONT'D)

- **Step 3**: Compute the **value** of an optimal solution.
- The algorithm computes the **optimal** cost in a **top-down** strategy.
- Drawbacks
 - There is **no memoization**.
 - The running time of the algorithm is $T(n) = \Omega(2^n)$.
 - See textbook page 385 386.

```
RECURSIVE-MATRIX-CHAIN (p, i, j)

I if i == j

2 return 0

3 m[i,j] = \infty

4 for k = i to j - 1

5 q = \text{RECURSIVE-MATRIX-CHAIN}(p, i, k) + \text{RECURSIVE-MATRIX-CHAIN}(p, k + 1, j) + p_{i-1}p_kp_j

6 if q < m[i,j]

7 m[i,j] = q

8 return m[i,j]
```

APPLYING DP STEP 3 (MEMOIZED TOP-DOWN)

- **Step 3**: Compute the **value** of an optimal solution.
- Improved top-down method with memoziation
 - Line I computes the length of the matrix chain
 - Memo is created by line 2.
 - Initialization done by line 3
 - Problem solved by line 6.
- Running time $T(n) = \theta(n^2) + f(n)$
 - -f(n) is the running time of the LOOKUP-CHAIN procedure.

```
MEMOIZED-MATRIX-CHAIN (p)

I n = p. length - 1

2 let m[1..n, 1..n] be a new table

3 for i = 1 to n

4 for j = i to n

5 m[i,j] = \infty

6 return LOOKUP-CHAIN (m, p, 1, n)
```

APPLYING DP STEP 3 (LOOKUP-CHAIN VS RECURSIVE)

• Step 3: Compute the value of an optimal solution.

LC	$DOKUP\text{-}CHAIN\;(m,p,i,j)$
1	if $m[i,j] < \infty$
2	return $m[i,j]$
3	if $i == j$
4	m[i,j]=0
5	else for $k = i$ to $j - 1$
6	$q = LOOKUP\text{-}CHAIN\;(m, p, i, k) +$
	LOOKUP-CHAIN $(m, p, k + 1, j) +$
	$p_{i-1}p_kp_j$
7	if $q < m[i,j]$
8	m[i,j] = q
9	return $m[i,j]$

```
RECURSIVE-MATRIX-CHAIN (p, i, j)

I if i == j

2 return 0

3 m[i,j] = \infty

4 for k = i to j - 1

5 q = \text{RECURSIVE-MATRIX-CHAIN}(p, i, k) + \text{RECURSIVE-MATRIX-CHAIN}(p, k + 1, j) + p_{i-1}p_kp_j

6 if q < m[i,j]

7 m[i,j] = q

8 return m[i,j]
```

APPLYING DP STEP 3 LOOKUP-CHAIN RUNNING TIME #1

- **Step 3**: Compute the **value** of an optimal solution.
- Running time $f(n) = O(n^3)$
 - Analyzed by two different types of calls made.
 - Type #1: Calls in which m[i,j] = ∞
 - There are ____ calls of this type.
 - There are _____ entries in the table of m[i,j].
 - When $i \neq j$, each call of this type makes asymptotically _____ recursive calls.
 - In total, type #1 complexity is bounded by _____.

```
LOOKUP-CHAIN (m, p, i, j)

I if m[i, j] < \infty

2 return m[i, j]

3 if i == j

4 m[i, j] = 0

5 else for k = i to j - 1

6 q = \text{LOOKUP-CHAIN } (m, p, i, k) + \text{LOOKUP-CHAIN } (m, p, k + 1, j) + p_{i-1}p_kp_j

7 if q < m[i, j]

8 m[i, j] = q

9 return m[i, j]
```

APPLYING DP STEP 3 LOOKUP-CHAIN RUNNING TIME #2

- **Step 3**: Compute the **value** of an optimal solution.
- Running time $f(n) = O(n^3)$
 - Analyzed by two different types of calls made.
 - Type #2: Calls in which m[i,j] < ∞
 - Line ____ through ____ gets executed.
 - Each call takes _____ time.
 - All these calls were made as recursive calls by the calls of the type #1.

```
LOOKUP-CHAIN (m, p, i, j)

I if m[i, j] < \infty

2 return m[i, j]

3 if i == j

4 m[i, j] = 0

5 else for k = i to j - 1

6 q = \text{LOOKUP-CHAIN}(m, p, i, k) + \text{LOOKUP-CHAIN}(m, p, k + 1, j) + p_{i-1}p_kp_j

7 if q < m[i, j]

8 m[i, j] = q

9 return m[i, j]
```

APPLYING DP STEP 3 LOOKUP-CHAIN RUNNING TIME

- **Step 3**: Compute the **value** of an optimal solution.
- Running time $f(n) = O(n^3)$
 - Analyzed by two different types of calls made.
 - Type # I takes _____ time.
 - Each of type #2 takes _____ time.

```
LOOKUP-CHAIN (m, p, i, j)

I if m[i, j] < \infty

2 return m[i, j]

3 if i == j

4 m[i, j] = 0

5 else for k = i to j - 1

6 q = \text{LOOKUP-CHAIN } (m, p, i, k) + \text{LOOKUP-CHAIN } (m, p, k + 1, j) + p_{i-1}p_kp_j

7 if q < m[i, j]

8 m[i, j] = q

9 return m[i, j]
```

APPLYING DP STEP 3 LOOKUP-CHAIN SPACE COMPLEXITY

- **Step 3**: Compute the **value** of an optimal solution.
- Space complexity S(n) =_____.

```
REMEMOIZED-MATRIX-CHAIN (p)

I n = p. length - 1

2 let m[1..n, 1..n] be a new table

3 for i = 1 to n

4 for j = i to n

5 m[i,j] = \infty

6 return LOOKUP-CHAIN (m, p, 1, n)
```

APPLYING DP STEP 3 (BOTTOM-UP)

- **Step 3**: Compute the **value** of an optimal solution.
- Input
 - An array p representing the dimension the dimensions of the matrices in the chain.
 - Array index starts at 0.

M/	ATRIX-CHAIN-ORDER (p)
I	n = p. length - 1
2	let $m[1n, 1n]$ and $s[1n-1, 2n]$ be new tables
3	for $i = 1$ to n
4	m[i,i]=0
5	for $l=2$ to n
6	for $i = 1$ to $n - l + 1$
7	j = i + l - 1
8	$m[i,j] = \infty$
9	for $k = i$ to $j - 1$
10	$q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j$
П	if $q < m[i,j]$
12	m[i,j] = q
13	s[i,j] = k
14	return m and s

APPLYING DP STEP 3 (BOTTOM-UP)

- **Step 3**: Compute the **value** of an optimal solution.
- MATRIX-CHAIN-ORDER algorithm
 - Line I computes the length of the matrix chain
 - **Memo** is created by line 2.
 - Solution table also created here.
 - Initialization of the diagonal entry done by line 3 and 4
 - Problem solved by line 5 ~ 14.

```
MATRIX-CHAIN-ORDER (p)
 2 let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
3 for i = 1 to n
       m[i,i]=0
5 for l = 2 to n
                      // l is the chain length
       for i = 1 to n - l + 1
 6
             = i + l - 1
            m[i,j] = \infty
            for k = i to j - 1
                 \overline{q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j}
10
П
                 if q < m[i, j]
12
                      m[i,j] = q
                      s[i,j] = k
14 return m and s
```

APPLYING DP STEP 3 (BOTTOM-UP CLOSER LOOK)

- **Step 3**: Compute the **value** of an optimal solution.
- MATRIX-CHAIN-ORDER algorithm
 - Solving the problem
 - Starting at the shortest chain possible.
 - For each length l, solve the same-length matrix chain starting at $A_1, A_3, ..., A_{n-1}$.
 - l = 2 $\begin{pmatrix} A_1 & A_2 \end{pmatrix} A_3 \cdots \cdots A_k A_{k+1} \cdots A_{n-1} A_n$

```
MATRIX-CHAIN-ORDER (p)
 | | n = p.length - 1 |
2 let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
3 for i = 1 to n
       m[i,i] = 0
5 for l = 2 to n
                       II l is the chain length
       for i = 1 to n - l + 1
              = i + l - 1
            m[i,j] = \infty
            for k = i to j - 1
                 q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j
                 if q < m[i, j]
                      m[i,j] = q
                      s[i,j] = k
14 return m and s
```

APPLYING DP STEP 3 (BOTTOM-UP RUNNING TIME)

- **Step 3**: Compute the **value** of an optimal solution.
- The running time of the algorithm is easily analyzed as the code is structured as triply-nested for-loops

for
$$l=2$$
 to n
for $i=1$ to $n-l+1$
for $k=i$ to $j-1$

• The running time $T(n) = O(n^3)$

```
MATRIX-CHAIN-ORDER (p)
 2 let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
3 for i = 1 to n
       m[i,i]=0
5 for l = 2 to n
                     II l is the chain length
       for i = 1 to n - l + 1
             = i + l - 1
           m[i,j] = \infty
           for k = i to j - 1
                q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j
                if q < m[i, j]
                     m[i,j] = q
                     s[i,j] = k
14 return m and s
```

APPLYING DP STEP 3 SUMMARY

- Top-down memoized algorithm
 - MEMOIZED-MATRIX-CHAIN (p)
 - LOOKUP-CHAIN(m, p, i, j)
 - Time complexity $T(n) = O(n^3)$
 - Space complexity $S(n) = \Theta(n^2)$
 - Neither algorithm generates a solution
 - They compute the optimal value ONLY.

- Bottom-up algorithm with memoization
 - MATRIX-CHAIN-ORDER (p)
 - Time complexity $T(n) = O(n^3)$
 - Space complexity $S(n) = \Theta(n^2)$
 - The algorithm above computes the the optimal value while saving the solution in an s table.

APPLYING DP STEP 4 (PRINT-OPTIMAL-PARENS)

- **Step 4**: Construct the optimal solution from the computed information.
 - At step 3, the bottom-up algorithm MATRIX-CHAIN-ORDER (p) computes the **optimal** value while saving the solution in an s table.
 - We can also doctor the top-down MEMOIZED-MATRIX-CHAIN (p) and LOOKUP-CHAIN(m, p, i, j) such that they also save the solution in an s table.

```
MATRIX-CHAIN-ORDER (p)
 |n = p.length - 1
2 let m[1...n, 1...n] and s[1...n-1, 2...n] be new tables
3 for i = 1 to n
       m[i,i] = 0
5 for l=2 to n
       for i = 1 to n - l + 1
             j = i + l - 1
             m[i,j] = \infty
             for k = i to j - 1
                  \overline{q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j}
                  if q < m[i,j]
                       m[i,j] = q
                       s[i,j]=k
14 return m and s
```

APPLYING DP STEP 4 (PRINT-OPTIMAL-PARENS)

- **Step 4**: Construct the optimal solution from the computed information.
- Once the solution table s is computed, call PRINT-OPTIMAL-PARENS (\underline{s} , $\underline{1}$, \underline{n}) to print the solution.

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"i

3 else print "("

4 PRENT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRENT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

BREAKOUT PRACTICE (15 MINUTES)

• Consider a matrix chain $< A_1, A_2, A_3, A_4 >$. The dimension of the matrices are given in the table.

matrix	A_1	A_2	A_3	A_4
dimension	3×5	5×2	2×4	4×6

- Derive the array p that can be used as input to MATRIX-CHAIN-ORDER and PRINT-OPTIMAL-PARENS algorithms. Then run the two algorithms to complete the m and s tables.
 - Pay attention to the indexes of the two tables.

S		i			
		1	2	3	
	4				
j	3				
	2				

matrix	A_1	A_2	A_3	A_4
dimension	3×5	5×2	2×4	4×6

	111111111111111111111111111111111111111	3/3	3/12		1// 0		
MA	MATRIX-CHAIN-ORDER (p)						
I	n = p.lengt	h-1					
2	let m[1n, 1]	$\lfloor n \rfloor$ and	s[1n]	-1, 2n] be new	tables	
3	for $i=1$ to	n					
4	m[i,i]	= 0					
5	for $l = 2$ to	n					
6	for <i>i</i> =	= 1 to <i>n</i>	-l+1				
7		j = i + l	-1				
8		m[i,j] =	: ∞				
9		for $k =$					
10		q :	=m[i,k]]+m[k]	+ 1, j] +	$p_{i-1}p_kp_j$	
П		if (q < m[i,	<i>j</i>]			
12			m[i,	[j] = q			
13			s[i , j]=k			
		_					

m		i			S		i	
	1	2	3	4	_	1	2	3
4					4			
3 j					j 3			
2					2			
1								

14 return m and s

index i	0	1	2	3	4
p_i	3	5	2	4	6

$l = 2 \le 4$				
$ \begin{array}{c} \mathbf{i} \leq \\ 4 - \mathbf{l} + 1 \end{array} $	j	$k \leq j-1$	q	< m[i ,j] ?
1 ≤ 3	2	1 ≤ 1		
2 ≤ 3	3	2 ≤ 2		
3 ≤ 3	4	3 ≤ 3		

matrix	A_1	A_2	A_3	A_4
dimension	3×5	5×2	2×4	4×6

index i	0	1	2	3	4
p_i	3	5	2	4	6

MA	ATRIX-CHAIN-ORDER (p)
12	n = p.length - 1
2	et $m[1n, 1n]$ and $s[1\mathbf{n} - 1, 2\mathbf{n}]$ be new tables
31	for $i = 1$ to n
4	m[i,i]=0
51	for $l = 2$ to n
6	for $i = 1$ to $n - l + 1$
7	j = i + l - 1
8	$m[\mathbf{i}, \mathbf{j}] = \infty$
9	for $k = i$ to $j - 1$
10	$\mathbf{q} = m[\mathbf{i}, \mathbf{k}] + m[\mathbf{k} + 1, \mathbf{j}] + p_{\mathbf{i} - 1}p_{\mathbf{k}}p_{\mathbf{j}}$
11	if $q < m[i,j]$
12	$m[\mathbf{i}, \mathbf{j}] = \mathbf{q}$
13	s[i,j]=k

m		i			S		i	
	1	2	3	4		1	2	3
4	1		48	0	4			3
j :	3	40	0		j 3		2	
	30	0			2	1		
,	1 0							

return m and s

$l=3\leq 4$	•			
$ \frac{\mathbf{i}}{4 - \mathbf{l} + 1} $	j	$k \leq j-1$	q	< m[i , j] ?
1 ≤ 2	3	1 ≤ 2		
		2 ≤ 2		
2 ≤ 2	4	2 ≤ 3		
		3 ≤ 3		

matrix	A_1	A_2	A_3	A_4
dimension	3×5	5×2	2×4	4×6

	imension	3X5	5XZ	ZX4	4X0		
MA	ATRIX-CHAI	N-ORDE	R (p)				
I	n = p.lengt	h-1					
2	$let\ m[1n,1]$	$\dots n$] and	s[1n]	- 1, 2 <i>n</i>] be new	tables	
3	for $i=1$ to	n					
4	m[i,i]	= 0					
5	for $l = 2$ to	n					
6	for <i>i</i> =	= 1 to <i>n</i>	-l + 1				
7		j = i + l	- 1				
8		m[i,j] =	∞				
9		for $k = 1$	to <i>j</i> –	1			
10		q =	=m[i,k]]+m[k]	+ 1, j] +	$p_{i-1}p_kp_j$	
11		if a	q < m[i,	<i>j</i>]			
12			m[i,	[j] = q			
13			S[i,j]]=k			

10	
П	
12	
13	
14	return m and s

m	ı		i		
		1	2	3	4
	4		108	48	0
j	3	54 100	40	0	
	2	30	0		
	1	0			

S			i	
		1	2	3
	4		2	3
j	3	2	2	
	2	1		

index i	0	1	2	3	4
p_i	3	5	2	4	6

$l = 4 \le 4$	•			
$ \begin{array}{c} \mathbf{i} \leq \\ 4 - \mathbf{l} + 1 \end{array} $	j	$k \leq j-1$	q	< m[i , j] ?
1 ≤ 1	4	1 ≤ 3		
		2 ≤ 3		
		3 ≤ 3		

matrix	A_1	A_2	A_3	A_4
dimension	3×5	5×2	2×4	4×6

index i	0	1	2	3	4
p_i	3	5	2	4	6

PR	PRINT-OPTIMAL-PARENS (s, i, j)				
I	if $i == j$				
2	print "A"i				
3	else print "("				
4	PRINT-OPTIMAL-PARENS $(s, i, s[i, j])$				
5	PRINT-OPTIMAL-PARENS $(s, s[i, j] + 1, j)$				
6	print ")"				

m		i			S		i	
	1	2	3	4		1	2	3
4	114 198	108	48	0	4	2	2	3
3 j	54 100	40	0		j 3	2	2	
2	30	0			2	1		
1	0							

Recursions			Print	
PRINT-OPTIMAL-PARENS $(s, 1, 4)$				
PRINT-OPTIMAL-PARENS $(s, 1, s[1, 4] = 2)$				
		PRINT-OPTIMAL-PARENS $(s, 1, s[1, 2] = 1)$	Al	
		PRINT-OPTIMAL-PARENS $(s, s[1,2] + 1 = 2, 2)$	A2	
)	
PRINT-OPTIMAL-PARENS $(s, s[1, 4] + 1 = 3, 4)$			(
		PRINT-OPTIMAL-PARENS $(s, 3, s[3,4] = 3)$	A3	
		PRINT-OPTIMAL-PARENS $(s, s[3,4] + 1, 4)$	A4	
)	
)	

The output: ((AIA2)(A3A4))

NEXT UP LONGEST-COMMON-SUBSEQUENCE

REFERENCE

• Screenshots are taken from the textbook.