Purification Strategies

纯化策略

Content

Introduction 介绍

Before Purification... 纯化前的准备

Strategies 纯化策略

Purification of recombinant and native Protein 纯化实例

How to get desired resolution?

如何取得预期的结果?

Summary总结

Content

Introduction 介绍

Before Purification... 纯化前的准备

Strategies 纯化策略

Purification of recombinant and native Protein 纯化实例

How to get desired resolution?

如何取得预期的结果?

Summary总结

Principles of operation for chromatography techniques 层析原理

Ion Exchange

离子交换

Gel Filtration 分子筛

Question

How to use these separation technologies to perform a SUCCESSFUL purification?

如何运用各种分离纯化技术来实现成功的分离纯化?

Content

Introduction 介绍

Before Purification... 纯化前的准备

Strategies 纯化策略

Purification of recombinant and native Protein 纯化实例

How to get desired resolution?

如何取得预期的结果?

Summary总结

目标:开发有效的蛋白质分离纯化工艺

- Maintained biological activity 活性
- Sufficient purity and quantity 纯度 & 规模
- Good economy 经济性

设定目标:需要的蛋白量

质谱

功能研究

用于免疫的 抗原

结构 研究

治疗用蛋白

pg ng µg mg g kg

终产品纯度要求

- 一般原则:

Extremely high 极	高 High 高	Moderate 中等
• therapy 治疗用	• crystallization for x-ray studies 结晶	antigen for monoclonal antibody production
• in vivo studies PK/PD 动物实验	• N-terminal sequencing of an unknown protein N端测序	免疫
	• most physical-chemical characterization methods 鉴定	

选择不同规模、不同功能的系统

开始纯化之前

样品来源

- 原核 or 真核?
- 胞内 or 胞外?细胞破碎?
- 活性, 复性?

目标蛋白的性质

- 等电点
- 分子量
- 稳定性 (pH /salt, etc)

Target protein stability window 目标蛋白的稳定性

Determination of a suitable ammonium sulfate concentration and pH screening range for **HIC**

开始纯化之前

建立目标蛋白特异性检测方法

- Activity Assay (specific) 快速可靠的活性检测方法
 A rapid and reliable assay for the target protein
- Purity determination 纯度测定方法
 - e.g. SDS-PAGE电泳, HPLC高效液相层析
- Total protein determination 总蛋白测定
 - e.g. colorimetric method 比色法

主要杂质的性质及检测方法

Content

Introduction 介绍

Before Purification... 纯化前的准备

Strategies 纯化策略

Purification of recombinant and native Protein 纯化实例

How to get desired resolution?

如何取得预期的结果?

Summary总结

策略1: 纯化三步曲(CIPP) Three phase strategy

Capture 粗纯

Initial purification of the target molecule from crude or clarified source Material 样品为粗料液

Concentration and stabilization 浓缩,稳定蛋白 - e.g. removal of proteases 去除蛋白酶

Intermediate purification 中度纯化

Removal of bulk impurities

去除主要杂质

Polishing 精纯

Final removal of trace contaminants, e.g. structural variants of the target protein

最终去除痕量杂质,如目标 蛋白的结构变体等 速度

Three phase strategy 三步纯化策略

- Ranking of chromatography techniques

	Technique	Main features	Capture	Intermediate	Polish
离子交换	IEX	high resolution high capacity high speed	***	***	***
疏水	HIC	good resolution good capacity high speed	**	***	*
亲和	AC	high resolution high capacity high speed	***	***	**
分子筛	GF	high resolution using Superdex		*	***
反相	RPC	high resolution		*	***
00			粗纯	中度纯化	精纯

Impact of bead sizes 粒径的影响

策略2:步骤越少,收率越高 Yields from multi-step protein purifications

纯化表

一种膜结合蛋白,白细胞三烯 C4 合成酶, 18 kDa protein

宿主: Pichia pastoris 毕赤酵母

纯化步 骤	体积 ml	蛋白 浓度 mg/ml	总 蛋白量 mg	总活性 µmol	比活 µmol/m g/min	纯化 倍数 fold	活性 收率 %	
匀浆	220	1.7	374	108	0.29	1	100	
溶解	226	1.74	393	314	0.8	2.76	291	100
亲和1	30	0.13	3.9	76	19.5	67	70.4	24.2
亲和 2	19	0.14	2.9	29	9.6	33	26.8	9.2
脱盐/ 浓缩	1	1.14	1.1	35	28	97	32.6	11.1

策略3: 交替运用互补技术,合理衔接

- 将分离机理互补的技术进行组合,交替运用不同的层析方法 (e.g. IEX, HIC and SEC)
- 减少不同层析技术间的样品处理 (e.g. 浓缩, 置换缓冲液)
- 尽量简单

综合考虑起始和结束条件进行衔接

技术

结合条件

洗脱条件

浓度

特定洗脱 条件

增加

高盐

增加

低盐

增加

不结合

常液洗脱

降低

设计合理的纯化路线

捕获

中度纯化

精细纯化

Combine techniques 使用不同层析技术

complementary selectivities 选择性互补 minimized sample handling 尽量避免样品处理步骤

策略4: 线性放大

固定以下条件:

- 1. 相同填料
- 2. 相同缓冲液
- 3. 相同线性流速/相同柱高
- 4. 相同样品浓度和缓冲条件
- 5. 相同样品体积和柱床体积比例
- 6. 相同梯度体积和柱床体积比例

放大:

- 1. 柱直径
- 2. 体积流速
- 3. 上样体积

线性流速: cm/h =
$$\frac{\text{ml/min} \times 60}{\text{cm}^2}$$

Scale-up: 从实验室到工业生产规模

ÄKTApilot 卫生级中试层析系统

ÄKTAprocess 大规模生产层析系统

Scale-up: 从实验室到工业生产规模

震 imagination at work 同一ÄKTA平台上的直接线性放大

Content

Introduction 介绍

Before Purification... 纯化前的准备

Strategies 纯化策略

Purification of recombinant and native Protein 纯化实例

How to get desired resolution?

如何取得预期的结果?

Summary总结

Protein purification strategies

DAOCS - 纯化策略 去乙酰氧化头孢菌素 C 合成酶

中度纯化

精细纯化

粗纯

快速探索填料 (scouting) 快速探索梯度 (scouting)

快速探索填料 (scouting) 快速探索梯度 (scouting)

准备样品

DAOCS·性质

纯化目标

得到 5-10 mg DAOCS, 纯度足够进行结晶和X-晶体衍射分析 一个工作日内完成整个纯化流程

DAOCS - 目标蛋白的性质

参数	数值	对纯化设计的影响
等电点	4.8	在粗纯时使用中性 pH 进行阴离子交换 层析
分子量	34 500	用 Superdex™ 75 prep grade 凝胶过滤 技术进行精细纯化 (3-70kD)
盐稳定性	>2 M (NH ₄) ₂ SO ₄	可以使用疏水层析
一般稳定性	容易氧化	在缓冲液中加 DTT 工艺设计重点 <u>缩短整体纯化时间</u>

DAOCS - 注意事项

在所有缓冲液中加 DTT 使所有半胱氨酸残基保持还原状态, 防止氧化

加入蛋白酶抑制剂以防止蛋白酶解

用 SDS-PAGE 检查每一个组份中 DAOCS

终产品通过酶活测定来确认生物活性

样品预处理

细菌菌体重悬于裂解缓冲液中

超声破碎菌体

沉淀DNA (optional)

20,000xg离心澄清

来源:从 S. Clavuligerus 克隆得到的DAOCS 基因 和在大肠杆菌的胞浆中扩增

选择粗纯的层析技术

pl = 4.8, 阴离子交换:

- 快速,浓缩
- 样品处理简单

分离机理: 带电性质差异

考虑到DACOS蛋白的酸性 pl 和稳定性,缓冲液选择中性 pH

pH的选择(关键参数)

ÄKTA 自动缓冲液制备 BufferPrep

Buffer is titrated on pump A Pump B controls salt conc.

Pump A/B

粗纯-在ÄKTA™上优化梯度

阴离子交换层析柱: HiPrep™ 16/10 Q XL

选择中度纯化技术

疏水层析HIC:

- 可以跟 IEX 互补衔接, 减少样品处理步骤 (只需加盐)
- DAOCS 在高盐下能保持稳定

分离机理: 疏水性差异

蛋白质疏水性质很难预测: 筛选适合填料

中度纯化 - 疏水填料筛选

ÄKTA crystal系统(自动多维纯化)

Fig 1-1. Schematic drawing of ÄKTAexplorer 100 together with ÄKTA 3D plus Kit (setup for protocol C: AC-GF).

选择精细纯化层析技术

分子筛 SEC:

- 简单
- 有力的补充IEX和HIC

分离机理: 分子量差异

最适合分离二聚体, 寡聚体和聚合物

DAOCS 纯化 - 结果

DAOCS 纯化 - 总结

层析技术的衔接

粗纯

中度纯化

精纯

Generic purification strategy! 通用的工艺路线!

从毕赤酵母纯化重组的a-甘露糖苷酶

重组人白蛋白的下游纯化工艺

层析技术的衔接

捕获

中度纯化

精细纯化

Hydrophobic & membrane proteins

G protein receptor kinase purification G蛋白受体激酶的纯化

imagination at work

Purification of rhGM-CSF (MW14.6k, pl 5.4)

重组人粒细胞-巨噬细胞集落刺激因子

rhGM-CSF的纯化

Step 1. Phenyl Sepharose[™] 6 Fast Flow (high sub)

Step 3. Superdex[™] 75 prep grade

Step	Total vol ml	Total protein mg	Total Endotoxin EU	Endotoxin Clearance	Total DNA ng	DNA Clearance
Start	4344	490	1828824	-	781920	-
1. HIC	880	220	213840	8.6	405	1931
2. AIEX	620	88	155620	1.4	87	4.66
3. GF	1045	62	9405	16.5	84	1.04

Protein purification strategies

2009-6-6

带标签的融合表达的重组蛋白

优势:

简单的亲和纯化 检测方便 可以进行柱上复性 产率提高 (expression/stability) 溶解度提高/folding

劣势:

可能需要去除标签标签可能干扰结构或功能

不同的标签

Histidine

- + Small
- + Cleavage often not needed
- + Many references
- + Cheap
- -Inclusion bodies
- -Non-specific purification

MBP

- + Increases solubility & yield
- + Specific purification
- -Large
- -Cleavage often necessary

GST

- + Increases solubility & yield
- + Specific purification
- -Large
- -Cleavage often necessary
- -Binding capacity

Strep tag II

- + Small
- + Cleavage often not needed
- + Very specific purification
- -Expensive
- -Not many references yet

标签蛋白的纯化趋势

- Affinity + gel filtration
- Double tagging → affinity + affinity + gel filtration

层析技术的衔接

捕获

中度纯化

精细纯化

Proteins with known affinity ligand

- tagged proteins, antibodies

Affinity + gel filtration Automated two-step purification on ÄKTAxpress™

双标签得到全长蛋白

Strep tag II

Protein X

 $(His)_6$

Protein: Strep tag II-Protein X-(His)₆ Mr ≈ 15 000

Sample: 15 ml E. coli lysate

System: ÄKTAxpress™

For two AC steps in series, check compatibility of start and end buffer conditions

e.g., *Strep tag* II tagged protein binds to StrepTactin™ Sepharose™ in presence of imidazole

Acknowledgement: Martina Nilsson, Biovitrum, Stockholm, Sweden

需要精细纯化步骤

Size heterogeneities

Aggregation

Proteolytic fragmentation

use GF

Charge heterogeneities

Heterogeniety in N- or C- terminus
Post-translational modifications
e.g.phosphorylation, glycosylation etc.

use IEX

Content

Introduction 介绍

Before Purification... 纯化前的准备

Strategies 纯化策略

Purification of recombinant and native Protein 纯化实例

How to get desired resolution? 如何取得预期的结果?

Summary总结

How to get desired resolution?

Selectivity or Efficiency?

选择性 or 柱效?

Selectivity 选择性

"Right" technologies and parameters to maximize the differences between proteins!

- Separation technologies 分离技术
- Chromatography media screen 层析填料筛选
- Separation conditions screen 分离条件筛选

•

Separation technologies 分离技术

Separation media screen 层析填料筛选

- 1. Superdex[™] Peptide
- 2. Superdex 75
- 3. Superdex 200
- 4. Sephacryl[™] S-100 HR
- 5. Sephacryl S-200 HR
- 6. Sephacryl S-300 HR
- 7. Sephacryl S-400 HR

Superdex 75分离范围: 3,000~70,000 Da

Superdex 200分离范围: 10,000~600,000 Da

Separation conditions screen

分离条件筛选

imagination at work

pH: <u>关键参数</u>

Efficiency 柱效

A powerful tool to improve Resolution!

- "Smaller" media v.s. back-pressure and scale-up
- Uniform media in size distribution
- Good packing or pre-packed column
- Lower flow rate to improve mass transfer

A SUCCESSFUL Purification 成功的纯化

$$R_{s} = \frac{V_{2} - V_{1}}{(W_{1} + W_{2}) / 2}$$

Selectivity 选择性:

- 实现有效分离的前提和基础!

Efficiency 柱效:

- 进一步提高分辨率的有力工具!

Content

Introduction 介绍

Before Purification... 纯化前的准备

Strategies 纯化策略

Purification of recombinant and native Protein 纯化实例

How to get desired resolution?

如何取得预期的结果?

Summary总结

Summary of Strategies 总结

• 纯化前的考虑

- 蛋白来源
- 应用(纯度要求)
- 目标蛋白和杂质的性质
- 特异性检测方法(定性,定量)

• 纯化策略

- 策略1: 纯化三步曲
- 策略2: 步骤越少收率越高
- 策略3: 交替运用互补层析技术, 合理衔接
- 策略4: 线性放大
- 成功的纯化SUCCESSFUL Purification
 - 选择性 or 柱效

