Number Theory Basics

CHAPTER 2

Motivation

- Public key cryptography is based on large primes that have to be generated & tested using modular arithmetic.
- Fermat & Euler's work is used to prime or relatively prime numbers.
- Euclid's algorithm finds multiplicative inverses that are needed to find appropriate encryption keys in public key cryptography.

Divisibility

Definition 2.1.1

Let $a,b\in\mathbb{Z}$ and $a\neq 0$. We say a divides b if there exists $k\in\mathbb{Z}$ such that b=ak. This is denoted by a|b.

Example 2.1.1

 $3|15, -15|60, 7 \nmid 18$

Proposition 2.1.1

Let $a, b, c \in \mathbb{Z}$.

For every $a \neq 0$, $a \mid 0$ and $a \mid a$. Also $1 \mid b$ for every b.

If a|b and b|c then a|c.

If a|b and a|c then a|(sb+tc) where $s,t \in \mathbb{Z}$.

Proof:

Divisibility

Q: Which of the following is true?

- 1. 77 | 7
- 2. 7 | 77
- 3. 24 | 24
- 4. 0 | 24
- 5. 24 | 0

Greatest Common Divisor

Definition: The greatest common divisor (gcd) for two integers a and b is the largest integer dividing a and b.

Example 2.1.2

$$gcd(4,6) = 2$$
, $gcd(5,7) = 1$, $gcd(24,60) = 12$

Definition 2.1.2

2 integers a and b are relative prime if gcd(a,b) = 1.

Definition

This is a method to find the gcd of 2 integers.

As an example, let's say we want to find gcd(a,b) and a>b.

Step 1

Divide a by b. Determine the remainder. We will have

$$a = q_1 b + r_1$$

Step 2

If $r_1 = 0$ then

If $r_1 \neq 0$, continue by dividing b with r_1 . We will have

$$b = q_2 r_1 + r_2$$

Step 3

If
$$r_2 = 0$$
, $\gcd(a,b) = r$, else do $r_1 = q_3 r_2 + r_3$ \vdots $r_{k-2} = q_k r_{k-1} + r_k$ $r_{k-1} = q_{k+1} r_k + 0$ So, $\gcd(a,b) = r_k$.

Example 2.1.3

Compute gcd(482,1180).

$$1180 = 2(482) + 216$$

 $482 = 2(216) + 50$

This is the gcd

That is, gcd(482,1180) = 2.

Example 2.1.4

Compute gcd(12345,11111).

Solving ax + by = d.

In the above Euclidean algorithm we did not use the quotients q_i .

Theorem 2.1.2

Let $a, b \in \mathbb{Z}$ with at least one of the numbers is non-zero and let gcd(a, b) = d.

Then there exists $x, y \in \mathbb{Z}$ such that ax + by = d (x and y can be either positive or negative).

Example 2.1.5

gcd(4,6) = 2. There exists x = -1, y = 1 such that 4x + 6y = 2

Example 2.1.6

Determine gcd(748,2024) and find the two integers $x, y \in \mathbb{Z}$ such that ax + by = gcd(748,2024).

To solve ax + by = gcd(a, b) where a < b. We need to use an algorithm called **extended Euclidean algorithm**.

Extended Euclidean algorithm

Solve $ax + by = \gcd(a, b)$ where a < b.

• <u>Step 1</u>

Divide a into b (i.e. $\frac{b}{a}$).

$$a = q_1b + r_1$$

$$b = q_2r_1 + r_2$$

$$r_1 = q_3r_2 + r_3$$

$$\vdots$$

$$r_{k-2} = q_kr_{k-1} + r_k$$

$$r_{k-1} = q_{k+1}r_k + 0$$

• <u>Step 2</u>

Set
$$x_0 = 0$$
, $x_1 = 1$ and $x_j = -q_{j-1}x_{j-1} + x_{j-2}$.
Set $y_0 = 1$, $y_1 = 0$ and $y_j = -q_{j-1}y_{j-1} + y_{j-2}$

Step 3

Then $ax_n + by_n = \gcd(a, b)$.

Extended Euclidean algorithm

Example 2.1.7

Find

gcd(4,6)

gcd(6,21)

gcd(748,2024)

Extended Euclidean algorithm

Remark 2.1.1

We will define the solution pair (x_n, y_n) as the initial solution for

$$ax + by = \gcd(a, b)$$
. We re-denote as (X_0, Y_0) .

We define the **general solution** for ax + by = gcd(a, b) as

$$X = X_0 + bt$$
 and $Y = Y_0 - at$ where $t \in \mathbb{Z}$.

That is for any $t \in \mathbb{Z}$, (X, Y) will always satisfy $ax + by = \gcd(a, b)$.

Example 2.1.8

Try to find gcd(12345,11111) and solve 12345x + 11111y = gcd(12345,11111).

2.2.1 Congruence

Definition 2.2.1

Let $a, b, n \in \mathbb{Z}$ and $n \neq 0$. We say $a \equiv b \pmod{n}$ if $\frac{a-b}{n} = k \in \mathbb{Z}$.

Example 2.2.1

 $32 \equiv 7 \pmod{5}$

Proposition 2.2.1

Let $a, b, n \in \mathbb{Z}$ and $n \neq 0$.

- *i*) $a \equiv a \pmod{n}$
- ii) $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$
- iii) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ then $a \equiv c \pmod{n}$.

Proof:

Arithmetic operations

- i. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
- ii. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
- iii. $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$

Remark 2.2.1

Cryptography thought in this course will work with the integers modulo n. They are denoted by \mathbb{Z}_n or also as $\mathbb{Z}/n\mathbb{Z}$.

$$\mathbb{Z}_n = \{0,1,2,...,n-1\}$$

Example 2.2.2

Generate the addition and multiplication table modulo 10.

• Rules for Addition, Modulo 10

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	0
2	2	3	4	5	6	7	8	9	0	1
3	3	4	5	6	7	8	9	0	1	2
4	4	5	6	7	8	9	0	1	2	3
5	5	6	7	8	9	0	1	2	3	4
6	6	7	8	9	0	1	2	3	4	5
7	7	8	9	0	1	2	3	4	5	6
8	8	9	0	1	2	3	4	5	6	7
9	9	0	1	2	3	4	5	6	7	8

2.2.1.1 Division in modular arithmetic

Proposition 2.2.2

Let $a, b, n \in \mathbb{Z}$ and $n \neq 0$ with $ab \equiv ac \pmod{n}$ then $b \equiv c \pmod{n}$.

Proof:

Example 2.2.5

Solve $2x + 7 \equiv 3 \pmod{17}$. (Note: please observe $\gcd(2,17)$)

Proposition 2.2.3

Suppose gcd(a, n) = 1. Let $s, t \in \mathbb{Z}$ such that as + nt = 1 (s and t can be found using the extended Euclidean algorithm). If $as \equiv 1 \pmod{n}$, then s is the multiplicative inverse for $a \pmod{n}$.

Proof:

Inverses

- When we are working in modular arithmetic, we often need to find the inverse of a number relative to an operation.
- We are normally looking for an additive inverse (relative to an addition operation) or a multiplicative inverse (relative to a multiplication operation).

Inverses - Additive Inverses

 In Z_n, two numbers a and b are additive inverses of each other if

$$a + b \equiv 0 \pmod{n}$$

Note

In modular arithmetic, each integer has an additive inverse. The sum of an integer and its additive inverse is congruent to 0 modulo n.

Inverses - Additive Inverses

• Example:

Find all additive inverse pairs in Z10.

Solution

The six pairs of additive inverses are (0, 0), (1, 9), (2, 8), (3, 7), (4, 6), and (5, 5).

Inverses

Multiplicative Inverse

In Z_n, two numbers a and b are the multiplicative inverse of each other if

 $a \times b \equiv 1 \pmod{n}$

In modular arithmetic, an integer may or may not have a multiplicative inverse. When it does, the product of the integer and its multiplicative inverse is congruent to 1 modulo n.

Inverses - Multiplicative Inverses

Example

Find the multiplicative inverse of 8 in Z_{10} .

Solution

There is no multiplicative inverse because gcd (10, 8) = $2 \neq 1$. In other words, we cannot find any number between 0 and 9 such that when multiplied by 8, the result is congruent to 1.

• Example:

Find all multiplicative inverses in Z₁₀

Solution

There are only three pairs: (1, 1), (3, 7) and (9, 9). The numbers 0, 2, 4, 5, 6, and 8 do not have a multiplicative inverse.

Inverses in Cryptography

We will use one number to encrypt and its inverse to decrypt.

Consider an input string to be encrypted = 3692.

Add a constant mod 10 to map the string to a new string (character by character).

$$(3 + 6) \mod 10 = 9$$

$$(6 + 6) \mod 10 = 2$$

$$(9 + 6) \mod 10 = 5$$

$$(2 + 6) \mod 10 = 8$$

The encrypted string for 3692 = 9258

Inverses in Cryptography

Now use the additive inverse of 6; it is 6 + x = 0; x = 4 to decrypt (inverse is taken from the table).

$$(9 + 4) \mod 10 = 3$$

$$(2 + 4) \mod 10 = 6$$

$$(5 + 4) \mod 10 = 9$$

 $(8 + 4) \mod 10 = 2$ The encrypted string is decrypted!

This is a simple substitution cipher (e.g., Caesar). The only difference is numbers were used instead of letters.

But – easy to break – lets do something harder!

x	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

If this works like addition, we should be able to encrypt and decrypt. Trouble is, it only works part of the time.

We can encrypt/decrypt some, but not all, numbers.

Encrypt the string 8732 using a multiplicative constant of: 5 mod 10

$$(8 \times 5) \mod 10 = 0; (40/10 = 4, 0)$$

$$(7 \times 5) \mod 10 = 5; (35/10 = 3, 5)$$

$$(3 \times 5) \mod 10 = 5; (15/10 = 1, 5)$$

$$(2 \times 5) \mod 10 = 0; (10/10 = 1, 0)$$

So the encrypted string would be 0550.

Trouble is, half the characters mapped to 0 and half to 5. We might guess this is a problem since results are not unique.

However, if we use 3 mod 10 we get unique results:

$$(8 \times 3) \mod 10 = 4; (24/10 = 2, 4)$$

$$(7 \times 3) \mod 10 = 1; (21/10 = 2, 1)$$

$$(3 \times 3) \mod 10 = 9; (9/10 = 0, 9)$$

$$(2 \times 3) \mod 10 = 6; (6/10 = 0, 6)$$

The result is 4196.

This looks better, but do inverses work?

Can we decrypt?

The multiplicative inverse of n is m, where $(n \times m) \mod 10 = 1$.

```
The multiplicative inverse of 3 is (3 \times m) \mod 10 = 1; so m = 7. Decrypting 4196 (previous slide) using 7:
```

```
(4 \times 7) \mod 10 = 8
```

$$(1 \times 7) \mod 10 = 7$$

$$(9 \times 7) \mod 10 = 3$$

 $(6 \times 7) \mod 10 = 2$; So... the inverse decrypts the cipher!

What is the condition that makes 3 work and 5 not work?

Why 3 works.

If $(a \times b) \equiv (a \times c) \mod n$, then $b \equiv c \mod n$, if and only if (iff) a is relatively prime to n.

Because $((a^{-1}) \times a \times b) \equiv ((a^{-1}) \times a \times c) \mod n = b \equiv c \mod n$

This is in accordance with Fermat's theorem.

That is, a mod n will not produce a complete & unique set of residues if a & n have any factors in common except 1!

Exercises

Example 2.2.3

Solve
$$x + 5 \equiv 9 \pmod{20}$$

Example 2.2.4

Solve
$$x + 7 \equiv 3 \pmod{17}$$

Example 2.2.6

Solve
$$5x + 6 \equiv 13 \pmod{11}$$

Example 2.2.7

Solve
$$11111x \equiv 4 \pmod{12345}$$

Let us examine the following congruence relation

$$x \equiv 25 \pmod{42}$$

This means there exists $k \in \mathbb{Z}$ such that

$$x = 25 + 42k \tag{1}$$

Let us re-write $42 = 7 \cdot 6$. We can have equation (1) becoming

$$x = 25 + 7(6k) \tag{2}$$

OR

$$x = 25 + 6(7k) \tag{3}$$

From (2) we can have

$$x \equiv 25 \equiv 4 \pmod{7}$$

From (3) we can have

$$x \equiv 25 \equiv 1 \pmod{6}$$

Therefore we can say that

$$x \equiv 25 \pmod{42} = \begin{cases} x \equiv 4 \pmod{7} \\ x \equiv 1 \pmod{6} \end{cases}$$

The Chinese Remainder Theorem will reverse this process.

That is, a system of congruences can be replaced by a single congruence (But under certain conditions).

Theorem 2.3.1 (The Chinese Remainder Theorem)

Suppose $\gcd(m,n)=1$ Given $a,b\in\mathbb{Z}$ there exists exactly one solution $x(\bmod mn)$ to the simultaneous congruence

$$x \equiv a \pmod{m}$$

$$x \equiv b(\bmod n)$$

Proof:

Example 2.3.1

Solve

$$x \equiv 3 \pmod{7}$$
$$x \equiv 5 \pmod{15}$$

Solution:

We can observe that gcd(7,15) = 1 and mn = 105. What is x congruent to modulo 105????

List down numbers congruent 3(mod 7): 3, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 80, 87, 94, 101,...

List down numbers congruent 5(mod 15): 5, 20, 35, 50, 65, 80, 95,...

Thus, $x \equiv 80 \pmod{105}$

THE BIG QUESTION IS:

WHAT ABOUT FOR LARGE NUMBERS???

MAKING A LIST LIKE THE ONE ABOVE WOULD BE IN-EFFICIENT!!!!

Let's look back at the question: Find a solution for

$$x \equiv a(\bmod m) \tag{1}$$

$$x \equiv b(\bmod n) \tag{2}$$

Such that

$$x \equiv y \pmod{mn}$$

(i.e. x is congruent to y modulo mn)

From (1)

$$x = a + mk \tag{3}$$

(3) and (2) we have:

Solve

$$a + mk \equiv b \pmod{n}$$

That is,

$$mk \equiv b - a \pmod{n}$$

Since gcd(m, n) = 1 there exists a multiplicative inverse i for $m \pmod{n}$.

So,

$$imk \equiv (b-a)i \pmod{n}$$

and

$$k \equiv (b - a)i(\bmod n)$$

All answers are obtained by adding and subtracting multiples of *mn* to the particular answer.

Substituting back into (3)

$$x = a + m(b - a)i \equiv a + m(b - a)i \pmod{mn}$$

$$x = \dots, [a + m(b - a)i] - 2mn, [a + m(b - a)i] - mn, [a + m(b - a)i] + mn, [a + m(b - a)i] + 2mn, \dots$$

Example 2.3.2

Let us try for small numbers first. Solve

$$x \equiv 1 \pmod{5} \tag{1}$$

$$x \equiv 9 \pmod{11} \tag{2}$$

From (1)

$$x = 1 + 5k_1 \tag{3}$$

(3) into (2)

$$1 + 5k_1 \equiv 9 \pmod{11}$$

$$5k_1 \equiv 8 \pmod{11} \tag{4}$$

Multiply both sides of (4) with inverse of $5 \pmod{11}$

Thus,

$$k_1 \equiv 72 \equiv 6 \pmod{11}$$

and

$$x = 1 + 5 \cdot 6 \equiv 31 \pmod{55}$$

Example 2.3.3

Solve

$$x \equiv 7 \pmod{563}$$
$$x \equiv 3 \pmod{219}$$

Solution:

Try.

Assignment

Theorem 2.3.2 (The Chinese Remainder Theorem – General Form)

Let $m_1, ..., m_k \in \mathbb{Z}$ with $\gcd(m_i, m_j) = 1$ whenever $i \neq j$. Given $a_1, ..., a_k \in \mathbb{Z}$ there exists exactly on solution $x(\text{mod } m_1 m_2 \cdots m_k)$ to the simultaneous congruences $x \equiv a_1(\text{mod } m_1), x \equiv a_2(\text{mod } m_2), ..., x \equiv a_k(\text{mod } m_k)$.

Example 2.4.4

Solve

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{7}$$

$$x \equiv 4 \pmod{16}$$

Remark 2.3.1

How do you use the Chinese remainder theorem?????

Suppose you want to solve $x^2 \equiv 1 \pmod{35}$. Since

$$x^2 \equiv 1 \pmod{35} = \begin{cases} x^2 \equiv 1 \pmod{7} \\ x^2 \equiv 1 \pmod{5} \end{cases}$$

Observe that $x^2 \equiv 1 \pmod{7}$ has 2 solutions, $x \equiv \pm 1 \pmod{7}$ and for $x^2 \equiv 1 \pmod{5}$ we have $x \equiv \pm 1 \pmod{5}$.

We can arrange them in 4 ways:

$$x \equiv 1 \pmod{5},$$
 $x \equiv 1 \pmod{7} \Rightarrow x \equiv 1 \pmod{35}$
 $x \equiv 6 \equiv 1 \pmod{5},$ $x \equiv 6 \equiv -1 \pmod{7} \Rightarrow x \equiv 6 \pmod{35}$
 $x \equiv 29 \equiv -1 \pmod{5},$ $x \equiv 29 \equiv 1 \pmod{7} \Rightarrow x \equiv 29 \pmod{35}$
 $x \equiv 34 \equiv -1 \pmod{5},$ $x \equiv 34 \equiv -1 \pmod{7} \Rightarrow x \equiv 34 \pmod{35}$

So, solutions of $x^2 \equiv 1 \pmod{35}$ are $x \equiv 1, 6, 29, 34 \pmod{35}$.

Consider the following:

$$x^2 \equiv 71 \pmod{77}$$

Or more generally

$$x^2 \equiv b \pmod{n}$$

Where n = pq is the product of primes.

Remark 2.4.1

When we say $x^2 \equiv b \pmod{n}$ it means that x is a square root of b modulo n.

As in the "normal" situation such as $2^2 = 4$ means 2 is a square root of 4.

 $6^2 = 36$ means 6 is a square root of 36

Proposition 2.4.1

Let $p \equiv 3 \pmod{4}$ be a prime and let $y \in \mathbb{Z}$. Let $x \equiv y^{\frac{(p+1)}{4}} \pmod{p}$.

If y has a square root mod p, then the square roots of y mod p are $\pm x$. If y has a no square root mod p, then -y has a square root mod p, then the square roots of -y mod p are $\pm x$.

Proof:

Example 2.4.1

Find square root of 5 mod 11.

Solution:

$$\frac{(p+1)}{4} = 3$$
. Compute $x \equiv 5^3 \pmod{11}$ and we get $4^2 \equiv 5 \pmod{11}$.

So, the square roots of 5 mod 11 are ± 4 .

Example 2.4.2

Find the square roots of 2 mod 11.

Solution:

$$\frac{(p+1)}{4} = 3$$
. Compute $x \equiv 2^3 \pmod{11}$ and we get $8^2 \equiv 9 \equiv -2 \pmod{11}$.

We found the square root of -2 mod 11, that is 8. Thus, 2 has no square root mod 11.

Now let's consider square roots for a composite modulus.

Note that $x^2 \equiv 71 \pmod{77}$ means that $x^2 \equiv 71 \equiv 1 \pmod{7}$ and $x^2 \equiv 71 \equiv 5 \pmod{11}$.

Note:
$$\frac{(p+1)}{4} = 3$$
, $\pm x \equiv 5^3 \pmod{11} = 4$

Therefore, $x \equiv \pm 1 \pmod{7}$ and $x \equiv \pm 4 \pmod{11}$.

By CRT, we can have the solution set (4 answers):

$$x \equiv \pm 15, \pm 29 \pmod{77}$$