POLS/CS&SS 503: Advanced Quantitative Political Methodology

MISSING DATA

May 19, 2015

Jeffrey B. Arnold

Overview

What's the Problem?

Methods of Dealing with Missing Data

What's the Problem?

Methods of Dealing with Missing Data

Types of Missingness

- MCAR Missingness completely at random
- MAR Missingness at random
- MNAR Missingness that depends on unobserved variables, or NI Non-ignorable missingness

Funamental Problem with Missing Data

Cannot tell from data alone whether missingness is MAR or MNAR.

Examples of Missingness

MCAR

What we will cover and not cover

- · Covering: MCAR
 - Missing values in X
 - Methods: listwise-deletion, multiple imputation
- · Not-covering: MNAR models
 - · Selection models
 - Censoring, Truncation

What's the Problem?

Methods of Dealing with Missing Data

Methods

- Complete case (Listwise deletion)
 - Consistent and valid inferences when MCAR (or MAR but missingness does not depend on the dependent variable)
 - · Even in MCAR, inefficient
- Available case (pairwise deletion):
 - E.g. Covariance matrix. Calculate $\sum_i (x_{i,j} \bar{x}_j)(x_{i,k} \bar{x}_k)$ for all obs in which $x_{i,j}, x_{i,k}$ are not-missing, regardless of missingness of other variables.
 - Does not work for all analyses
 - · Can result in nonsensical results
- Unconditional Mean Imputation (Mean substitution)
 - preserves mean of variables; reduced variance
 - attenuates relationships between variables
 - overstates certainty—increases "effective" sample size and distorts inference

Overview of Multiple Imputation

When is Listwise Deletion Preferable to MI?

- 1. All of the following need to hold
 - ullet Analysis model is conditional on X and correctly specified
 - There is NI missingness in X
 - Missingness in X is not a function of Y, and unobserved variable affecting Y do not exist
 - Number of observations after deletion is large
- 2. Know X well enough that we don't trust it to impute, but trust it enough to analyze Y
- 3. Rarely would you prefer listwise deletion to multiple imputation

Multiple Imputation Estimator Combines Individual Estimates

Given $B_j^{(1)},\dots,B_j^{(g)}$, and $\mathrm{SE}(B_j^{(1)}),\dots,\mathrm{SE}(B_j^{(g)})$ from g imputations: Estimate for **single coefficients is:**

Point Estimate
$$\tilde{\beta}_j = \frac{\sum_{l=1}^g B_j^{(l)}}{g}$$
 Std. Error.
$$\tilde{\text{SE}}\left(\tilde{\beta}_j\right) = \sqrt{V_j^{(W)} + \frac{g+1}{g}V_j^{(B)}}$$
 Within Imputation Variance
$$V_j^{(W)} = \frac{1}{g}\sum_{l=1}^g \text{V}(B_j^{(l)})$$
 Between Imputation Variance
$$V_j^{(B)} = \frac{1}{g-1}\sum_{l=1}^g \left(B_j^{(l)} - \tilde{\beta}_j\right)^2$$

where \tilde{eta}_j distributed t with complicated d.f. (see Fox, 564)

Why we don't need to run many imputations

Relative efficiency of multiple imputation

$$RE(\tilde{\beta}_j) = V(\tilde{\beta}_j^{MLE})/V(\tilde{\beta}_j^{MI}) = \frac{g}{g + \gamma_j}$$

where γ_j is the relative rate of missing information

$$\gamma_j = \frac{R_j}{R_j + 1} \qquad \qquad R_j = \frac{g + 1}{g} \times \frac{V_j^{(B)}}{V_j^{(W)}}$$

Main point!

Suppose $R_j=\gamma$, then with g=5 iterations, then efficiency is

$$\frac{5}{5+0.5} = 0.91$$

Advice on Missing Data

- Include all relevant variables in the imputation; at least all used in the estimation, including the dependent variable.
- Even if data are not multivariate normal, multivariate normal works okay.
- Transform data to approximate normality (Amelia has options)
- See TSCS extensions in Amelia
- Post-hoc adjustments okay. Impute naively and adjust, e.g. round to integers, or 0/1.
- If need to save time, work with a single iteration until "final" analysis.
- Potential problems: complex interactions between variables
- Try default methods; they often work.
- If not ...
 - · Multiple Chained Equations: mice, mi packages
 - Hot-deck imputation
 - Full Bayesian models

What's the Problem

Methods of Dealing with Missing Data

- Gelman and Hill, Ch. 25 "Missing Data Imputation"
- · Fox, Ch 20 "Missing Data in Regression Models"
- Blackwell, Matthew, James Honaker, and Gary King. 10030. "A Unified Approach to Measurement Error and Missing Data: Overview." Sociological Methods and Research. http://j.mp/jqdj72.
- Honaker, James, Gary King, and Matthew Blackwell. 2011. "Amelia II:A Program for Missing Data." Journal of Statistical Software 45(7). http://www.jstatsoft.org/v45/i07/.
- Honaker, James, and Gary King. 2010. "What to Do about Missing Values in Time-Series Cross-Section Data." American Journal of Political Science 54(2): 561–81. http://onlinelibrary.wiley.com/doi/10.1111/j. 1540-5907.2010.00447.x/abstract (May 19, 2015).
- King, Gary, James Honaker, Anne Joseph, and Kenneth Scheve. 2001.
 "Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation." American Political Science Review null (01): 49–69.
 http://journals.cambridge.org/article_S0003055401000235 (May 19, 2015).