平成21年8月24日(月)

 $10:00\sim 12:00$ 

平成 22 年度大学院前期課程入学試験

回路理論

入試問題

## 【注意事項】

問題の数は4問である。解答は

問題1を1枚目(白色)の解答用紙

問題2を2枚目(赤色)の解答用紙

問題3を3枚目(青色)の解答用紙

問題4を4枚目(黄色)の解答用紙

に記入すること。

図 1 の回路において,電圧源の電圧は  $e_s(t) = E$  [1 -  $\exp(-t/T)$ ]  $(t \ge 0)$  なる波形を有する.また, $t = 0^{-\frac{(2*1)}{2}}$  におけるキャパシタ C の電圧は 0 である.E,T を正の実数(ただし  $T \ne RC$ )として以下の設問に答えよ.

- (1)  $e_s(t)$  のラプラス変換  $E_s(s)$ を求めよ.
- (2)電流 i(t) (t > 0)のラプラス変換 I(s)を求めよ.
- (3) t > 0 における電流 i(t)を求めよ.
- $(4) t \rightarrow \infty$  に至るまでにキャパシタ C に蓄えられるエネルギーを求めよ.
- (5)  $0 < t < \infty$  の間に抵抗 R で消費されるエネルギーを、T << RC および T >> RC それぞれの場合に対して求めよ.



注

\*1: t=0 の直前を t=0 で表す.

図 2a の正弦波定常状態 $^{*1}$  にある交流回路に関して,以下の設問に答えよ.ただし, $\dot{E}_0$  は電圧源の電圧フェーザ(角周波数  $\omega$  の正弦波電源), $\dot{V}$  はポート 1-1 の開放電圧 $^{*2}$  フェーザを示す.



- (1) ポート 1-1'の開放電圧フェーザ $\dot{V}$ を求めよ.
- (2) 電圧源  $\dot{E}_0$  を短絡除去したときのポート 1-1'の駆動点 $^{*3}$ インピーダンス  $Z_0$  を求めよ.
- (3) ポート 1-1' から見たテブナン等価回路\*4を示せ.
- (4) 図 2a のポート 1-1'に、図 2b のようにキャパシタ C からなる負荷を接続したときに、C に 流れる電流フェーザ  $\dot{I}_C$  を、テブナンの定理を用いて求めよ.



(5) 図 2b において起電力 $\dot{E}_0$ が一定であるとき、電流フェーザ $\dot{I}_0$ が最小となるための条件を示し、そのときの角周波数  $\omega_0$  を求めよ.

注

\*1 正弦波定常状態: sinusoidal steady state

\*2 開放電圧: open circuit voltage

\*3 駆動点: driving point

\*4 テブナン等価回路: Thévenin's equivalent circuit

## 問3(25点)

図の抵抗 R が接続された対称格子形回路\*1 について,以下の各設問に答えよ.

(1) ポート 1-1', 2-2'で挟まれた部分回路を 2 ポート回路として、そのインピーダンス行列 Z(s) を求めよ.

ただし, 
$$Z(s) = \begin{pmatrix} z_{11}(s) & z_{12}(s) \\ z_{21}(s) & z_{22}(s) \end{pmatrix}$$
は $\begin{pmatrix} V_1(s) \\ V_2(s) \end{pmatrix} = \begin{pmatrix} z_{11}(s) & z_{12}(s) \\ z_{21}(s) & z_{22}(s) \end{pmatrix} \begin{pmatrix} I_1(s) \\ I_2(s) \end{pmatrix}$ を満たす行列である.

- (2) 電圧伝達関数\*2  $T(s)=V_2(s)/V_1(s)$  を求めよ.
- (3) 入力インピーダンス  $Z_{in} = V_1(s)/I_1(s)$ を求めよ.
- (4)  $R=1\Omega$ とし、 $Z_a$ を 2F のキャパシタ、 $Z_b$ を 2H のインダクタで置き換える. 設問(2) で求めた電圧伝達関数 T(s)の周波数特性\*3 を求め、ボード線図\*4 に図示せよ.



注

\*1 対称格子形回路: symmetric lattice circuit

\*2 電圧伝達関数: voltage transfer function

\*3 周波数特性: frequency-response characteristic

\*4 ボード線図: Bode diagram

間 4 (25 点)

以下の設問に答えよ.

(1) 次の文章の( ) にあてはまる適切な語句を、解答用紙に該当番号を付して答えよ.

図 4a に示すダイオードにおいて、端子 a 側は ( ① ) と呼ばれ、 ( ② ) 形半導体\*1で構成される. 一方, b 側は ( ③ ) と呼ばれ、( ④ ) 形半導体で構成される.

印加電圧 $^{*2}V_D$ と電流  $I_D$ の関係は、近似的に図 4b のように表すことができる。図 4b における  $V_T$  をダイオードの(⑤)といい、 $r_D$  を(⑥)という。また、正の印加電圧  $V_D$  は(⑦)と呼ばれ、負の  $V_D$  は(⑧)と呼ばれる。図 4b から分かるように、一般にダイオードは一方向にしか電流を流さない。この性質を(⑨)作用という。また、図 4b で  $V_T$ = 0、 $r_D$ = 0 とした電圧  $V_D$ と電流  $I_D$ の関係をもつダイオードのことを理想ダイオード $^{**3}$ という。

- (2) 図 4c のダイオード回路において,入力  $v_{in}$  (t)として正弦波電圧 $^{*4}$  を加えたときの出力電圧  $v_{out}$  (t)について次の設問に答えよ.ただし,出力端子は開放されており,ダイオードは理想ダイオードとして取り扱え.また,加える正弦波電圧は, $v_{in}$  (t)  $= A\sin(2\pi ft)$  とし,E = 6 V, f = 1 KHz, R = 1 K $\Omega$  とする.なお,解答は,解答用紙に図 4d に示す座標軸 $^{*5}$  を写し,そこにプロットせよ.
  - (i) A = 12 V のとき, 出力電圧  $v_{out}(t)$  の時間波形を描け.
  - (ii) A = 4 V のとき, 出力電圧  $v_{out}(t)$  の時間波形を描け.







- (3) 図 4e のダイオード回路において、入力  $v_{in}$  (t)として正弦波電圧を加えたときの出力電圧  $v_{out}$  (t) について次の設問に答えよ. ただし、  $R_1=2\mathrm{K}\Omega$ ,  $R_2=1\mathrm{K}\Omega$  とし、その他の条件は、設問(2)と同じとする. なお、解答は、解答用紙に図 4d に示す座標軸を写し、そこにプロットせよ.
  - (i) A = 12 V のとき, 出力電圧  $v_{out}(t)$  の時間波形を描け.
  - (ii) A = 4 V のとき, 出力電圧  $v_{out}(t)$  の時間波形を描け.





注

\*1 半導体: semiconductor

\*4 正弦波電圧: sinusoidal voltage

\*2 印加電圧: applied voltage

\*3 理想ダイオード: ideal diode

\*5 座標軸: coordinate axes