Linguagens Formais e Autômatos Trabalho 1

Prof. Douglas O. Cardoso CEFET-RJ Petrópolis

- 1. Considere as especificações a seguir.
 - (a) Quaisquer valores numéricos em sequência serão separados por espaços;
 - (b) Toda palavra será descrita no formato:
 - i. $c_1c_2\cdots c_n: c_i \geq 0, n > 0;$
 - ii. $c_i = 0$ indica que o i-ésimo componente da palavra trata-se de λ ;
 - iii. Assim sendo, por exemplo, a palavra w=000 é uma representação da palavra vazia (afinal, $\lambda\lambda\lambda=\lambda$).
 - (c) Todo AF será descrito no formato:
 - i. na 1a linha, os inteiros n, m e k, referentes ao seu número de estados, número de transições, e número de símbolos do alfabeto de entrada;
 - ii. na 2a linha, o inteiro s, seguido de s inteiros, $h_1h_2\cdots h_s$, sendo h_i um estado inicial;
 - iii. na 3a linha, o inteiro t, seguido de t inteiros, $g_1g_2\cdots g_t$, sendo g_i um estado final;
 - iv. nas m linhas seguintes, 3 inteiros a, b e c $(1 \le a, b \le n, 0 \le c \le k)$, indicando a existência de uma transição de a para b sob o símbolo c
 - v. Quando c=0, trata-se de uma transição por λ .
 - (d) Toda ER será descrita exatamente conforme previamente apresentado (vide slides da aula), substituindo apenas os símbolos do alfabeto de entrada por valores numéricos devidamente separados por espaços.
 - (e) Toda GLU à direita será descrita no formato:
 - i. na 1a linha, os inteiros n, m, k, referentes ao número de variáveis, número de regras, e o número de símbolos do alfabeto;
 - ii. nas m linhas seguintes, 3 inteiros A, b e C $(1 \le A, C \le n, 0 \le b < k)$, indicando a existência de uma regra $A \to bC$;
 - iii. A variável de partida sempre é a variável 1
 - iv. Quando b ou C forem iguais a 0, considere-os como sendo λ .
- 2. Sobre a linguagem DOT, são sugeridas as referências abaixo. Ainda assim, a procura por outras é também indicada.
 - (a) https://pt.wikipedia.org/wiki/DOT
 - (b) https://graphs.grevian.org/
 - (c) https://www.tonyballantyne.com/graphs.html
 - (d) https://www.graphviz.org/gallery/
- 3. Desenvolva programas que cumpram as seguintes tarefas (valor: 2 pontos por item):
 - (a) Leia um AF seguido de uma palavra, e apresente em qual(is) estado(s) o processamento respectivo termina. Para representar o estado-sumidouro, utilize o valor 0. Os estados devem ser listados em ordem crescente;
 - (b) Leia a descrição de um AF qualquer, e apresente seu tipo (AFD, AFN ou AFN λ), além de um AFD equivalente a este;
 - (c) Leia dois AFDs M_1 e M_2 , e apresente um AF que reconheça $L(M_1) \cap L(M_2)$;
 - (d) Leia uma ER e apresente um AF correspondente;
 - (e) Leia um AF e apresente uma ER correspondente;
 - (f) Leia um AF e gere uma descrição do mesmo na linguagem DOT, facilitando assim a geração de uma ilustração do mesmo.