

Überblick über die Vorlesung

Einstieg mit

Youtube: Fantastic Fungi - Coming 'Shroom

https://www.youtube.com/watch?v=RLsxZegPzm4

Lernziele:

- >Verständnis der pilzlichen Lebensform (Lifestyle)
- >Kenntnisse von spezifischen Eigenschaften der pilzlichen Zelle
- >Kenntnisse der verschiedenen Differenzierungsprozesse des Myzels
- >Kenntnisse der Reproduktionszyklen aller Phyla der Pilze
- >Kenntnisse über die verschiedenartigen Ernährungsweisen der Pilze; Korrelation mit Habitat und Ökologie
- >Kenntnisse der Nutzung von Pilzen in Lebensmittelherstellung und Biotechnologie

 Konzept: Besprechung der Themen anhand von Powerpoint-Präsentationen; Darstellung anhand von Beispielen; eigenes Erarbeiten von Kenntnissen mittels Selbststudium Hilfsmittel: E-learning Plattform (Moodle)
mit Powerpoint-Präsentationen (mit Filmen
und Kommentaren) und zusätzlichem
Informationsmaterial (u.a. zwei Büchern,
Reviewartikel)

 <u>Leistungs(Lern)kontrolle</u>: Schriftliche Sessionsprüfung (120 Minuten) mit Textund Multiple Choice-Fragen

Programm

Vorlesungskapitel	Besprochene Themen	Kapitel Moore	Kapitel Deacon	Datum
Einführung	Überblick über die Vorlesung Stellung der Pilze unter den Organismen (Phylogenie) Lebensstil der Pilze Systematik der Pilze	1, 2, 3	1, 2	25.09.2017
Lebensstil der Pilze	Die pilzliche Zelle - Hyphenwachstum - Hefewachstum - Zellaufbau - Zellwand Die pilzliche Kolonie - Myzel - Vergleich zu Hefe-Form Ernährungsweise der Pilze - C-Heterotrophie - Substrate der Pilze und deren enzymatischer Abbau	4, 5, 6	3, 4, 6, 7, 8	02.10.2017 09.10.2017
Differenzierung des Myzels	Sporenbildung Myzelstränge Sklerotien	9, 12	5, 10	16.10.2017
Reproduktionszyklen und systematische Einteilung der Pilze	Konzept der sexuellen Reproduktion Beispiele - Chytridiomycota - Glomeromycota - Zygomycota - Ascomycota - Basidiomycota - Deuteromycota (Fungi imperfecti, Hyphomycota)	7, 8	2, 9	23.10.2017 30.10.2017 06.11.2017
Ökologie der Pilze	Saprophyten Antagonistische Symbiose - Phytopathogene Pilze - Tier- und humanpathogene Pilze - Mykoparasiten Mutualistische Symbiose - Flechten (mit Bakterien und Algen) - Mykorrhiza (mit Pflanzen) - mit Tieren	10, 13, 14, 15, 16	11, 12, 13, 14, 15, 16, 17	13.11.2017 20.11.2017 27.11.2017
Nutzung der Pilze	Lebensmittelherstellung - Brot, Bier und Wein - Soja-Fermentation - Käse Enzymproduktion Sekundärmetabolite Speisepilze	11, 17, 18	-	04.12.2017 11.12.2017 18.12.2017

Einführung in die Welt der Pilze

Phylogenetic Tree of Life

3 Domains of life: EUBACTERIA, ARCHAEA, EUKARYOTES

5 Kingdoms of life: EUBACTERIA, ARCHAEA, Plants, Animals, Fungi

Unterteilung der Eukaryonten

Fig. 1. A view of eukaryote phylogeny reflecting the classification presented herein.

Evolution der Pilze

- 1: Bewegliche Sporen
- 2: Verzweigte Hyphen ohne Septen
- 3: Verzweigte Hyphen mit Septen
- 4: Schnallen bei Basidiomyzeten
- 5: Heterobasidien bei Basidiomyzeten
- 6: Asexuelle Sporen bei Ascomyzeten
- 7: Asci bei Ascomyzeten
- 8: Fruchtkörper bei Ascomyzeten
- 9: Fruchtkörper bei Basidiomyzeten
- 10: Holobasidien bei Basidiomyzeten

Moore et al: Chapter 2.8

Zusammenfassung

- Pilze bilden das 5. Reich (5th Kingdom) des Lebens
- Pilze sind näher verwandt mit Tieren als mit Pflanzen
- Das Reich der Pilze umfasst viele verschiedene Phyla und Subphyla
- Die phylogenetisch ältesten Pilzphyla sind die die aquatischen Pilze mit motilen Sporen

Artenvielfalt der Pilze

Reich	Geschätzte Zahl der Arten	Beschriebene Zahl Arten
Tiere	7 Mio.	20%
Pflanzen	390'000	80%
Pilze	3 Mio	3-8%

Pilzliche Genome

		DNA (in Millionen Basenpaaren = Mbp)		
Gruppe und Spezies	Anzahl Chromosomen	Nukleus	Durchschnittliche Grösse der Chromosomen	
Prokaryoten <i>E. coli</i>	1	4	4	
Schleimpilze				
D. discoideum	7	50	7	
P. polycephalum	ca. 40	270	7	
Oomycota				
A. bisexualis	?	46	?	
Zygomycota				
P. blakesleeanus	?	31	?	
Ascomycota				
N. crassa	7	47	4 - 13	
A. nidulans	8	31	3 - 5	
S. cerevisiae	16	12	0.2 - 2	
Basidiomycota				
S. commune	6	36	1 - 5	
U. maydis	20	19	0.3 - >2	
Tomate	12	2350	196	
Mensch	23	3000	130	

Lebensstil der Pilze

- 'Heterotrophe' Ernährungsweise
- Absorptive (osmotrophe) Ernährungsweise
- Immotilität des Organismus (nicht unbedingt aller Zellen)
- Von Zellwänden umgebene Zellen
- Hyphenförmige Multizellularität (polares multizelluläres Wachstum)
- Verbreitung durch Sporen

Heterotrophe Ernährungsweise

Metabolic Classification of Life

Absorptive (osmotrophe) Ernährungsweise

- Abbau der Nahrung ausserhalb des Organismus
- Sekretion von Exoenzymen, welche komplexe Nahrungsmoleküle zu kleineren Molekülen abbauen
- Aufnahme von kleineren Moleküle durch Zellwand und Zellmembran (Transporter)

Osmotrophe Ernährungsweise und 'public goods'

Osmotrophe Ernährungsweise und Multizellularität

Hypothese

At low cell density in low Sucrose Glucose sucrose concentrations. Invertase yeast cells cannot Fructose capture enough glucose and fructose to grow. transporter Three engineered strategies for growth in low sucrose: 1. Form multicellular 2. Make more 3. Import invertase. clumps. sucrose. Sucrose transporter

Experiment

Pilze zeigen bezüglich C-Quelle (Heterorophie) drei grundsätzliche Lebensstile

- Saprophyt
- Parasit (antagonistischer Symbiont)
- Mutualistischer Symbiont

Die Ernährungsweise* beeinflusst die Körperform der Pilze

- Die Hyphe erlaubt die optimale Aufnahme von Nahrungsbestandteilen (grosse Oberfläche, Einund Durchdringen des Substrates)
- Verzweigte Hyphen bilden eine Netzwerk (Myzel) für den Transport von Nährstoffen und Information

^{*}Heterotrophie, Osmotrophie

Die Ernährungsweise beeinflusst die Zellform der Pilze

Copyright @ 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

Zelluläre Formen der Pilze

Quelle: unbekannt

Pilzliches Zellwachstum

Ashbya gossypii (A.g.) / Saccharomyces cerevisiae (S.c.)

Pilzliches Zellwachstum

Ashbya gossypii / Saccharomyces cerevisiae

Quelle: Peter Philippsen, Universität Basel

Die Verbreitungs- und Vermehrungseinheit der Pilze ist die Spore

- Sporen werden auf vielfältige Arten (Teilung, Sprossung, etc.) gebildet
- Wir unterscheiden zwischen asexuell und sexuell gebildeten Sporen
- Die Art der sexuellen Sporenbildung ist das grundlegende taxonomische Merkmal für die Systematik der Pilze

Sporenbildung

Echter Mehltau (Uncincula tulasnei) auf Spitzahorn

Wirtsresistenz gegen biotrophe Pilze

Echter Mehltau (Erysiphe/Blumeria graminis) auf Gerste

Systematik der Pilze

Quelle: Spatafora et al 2017

Quelle: Campbell, Biology

Systematik der Pilze

Reich: Fungi (Echte Pilze)

Abteilung: Chytridiomycota (Flagellaten- oder Töpfchenpilze)

Basale Pilze Abteilung: **Zygomycota** (keine Septen)

(Jochpilze)

Abteilung: Glomeromycota

(Arbuskuläre Mykorrhizapilze)

Abteilung: **Ascomycota** (Schlauchpilze)

Abteilung: Basidiomycota (Hut- oder Ständerpilze)

Abteilung: Mucoromycota

(Spatafora et al 2017)

Höhere Pilze (Dikarya)

Taxonomie der Pilze

Beispiel: Bier-/Backhefe

Lebewesen

Eukarya

ebewese

Domäne

Reich

Stamm

Klasse

Ordnung

Familie

Gattung

Art

Fungi (echte Pilze)

Ascomycota

Saccharomycetes

Saccharomycetales (echte Hefen)

Saccharomycetaceae

Saccharomyces (Zuckerhefe)

S. cerevisiae (Bier-/Backhefe)

Chytridiomycota

- Der Stamm (Phylum, Abteilung) Chytridiomycota umfasst etwa 1250* heute bekannte Spezies
- Die Chytridiomycota gehören zu den phylogenetisch ältesten Pilzen
- Wir finden Vertreter Chytridiomycota als Saprophyten, Parasiten oder Symbionten
- Typisch für die Chytridiomycota sind <u>begeisselte</u>
 <u>Sporen</u> (Zoosporen)

Chytridiomycota

© M. Piepenbring, CC BY-S

Batrachochytrium dendrobatidis

Chytridiomycota

Xenopus laevis

before 1935

Worldwide detections of Batrachochytrium dendrobatidis

Zygomycota

- Der Stamm (Phylum, Abteilung) Zygomycota umfasst etwa 1350* heute bekannte Spezies
- Zu den Zygomycota gehören vor allem schnellwachsende Schimmelpilze, aber auch Parasiten und symbiotisch-lebende Organismen
- Typisch für die Zygomycota sind <u>Sporangien</u> und <u>Zygosporen</u>

Zygomycota

Glomeromycota

- Die Glomeromycota bilden einen kleinen Stamm (Abteilung, Phylum) mit heute etwa 275* bekannten Spezies
- Sie sind symbiotisch wachsende Organismen und sind für die vesikuläre-arbuskuläre Mykorrhiza (VAM- oder AM-Pilze) verantwortlich

Glomeromycota

- Der Stamm der Ascomycota lebt im Wasser und auf dem Land
- Mit etwa 87'000* bekannten Species bildet er den grössten Stamm (Abteilung, Phylum) der Pilze
- Charakteristisch für die Ascomycota ist die Bildung von sexuellen Sporen in einem Askus
- Ascomycota können sich auch durch asexuelle Sporen (Konidien) verbreiten
- Ascomycota haben unterschiedliche Grössen und

Komplexität: einzellige Hefen gehören zu den Ascomycota ebenso wie Schimmelpilze und komplexe fruchtkörperbildende Arten

^{*}gemäss catalogueoflife.org Sept. 2017

(a) The cup-shaped ascocarps (fruiting bodies) of Aleuria aurantia give this species its common name: orange peel fungus.

(b)The edible ascocarp of Morchella esculenta, the succulent morel is often found under trees in orchards.

(c) Tuber melanosporum is a truffle, an ascocarp that grows underground and emits strong odors. These ascocarps have been dug up and the middle one sliced open.

(d)Neurospora crassa feeds as a mold on bread and other food (SEM).

Konidienbildung bei Neurospora crassa

Ascosporenbildung bei Ascobolus sp.

Basidiomycota

- Zum Stamm der Basidiomycota gehören etwa 50'000* heute bekannte Spezies
- Viele Arten weisen komplexe Reproduktionszyklen z.T. mit Wirtswechseln auf
- Zu den Basidiomycota gehören die bekannten Hutpilze aber auch pflanzenpathogene Rost- und Brandpilze
- Charakteristisch für die Basidiomycota ist die Bildung von Basidiosporen im Rahmen des sexuellen Reproduktionszyklus

Basidiomycota

(b) Maiden veil fungus (*Dictyphora*), a fungus with an odor like rotting meat

(c) Shelf fungi, important decomposers of wood

Basidiomycota

Basidiosporenbildung bei verschiedenen Hutpilzen

Deuteromycota

(Fungi imperfecti, Hyphomycota, anamorphe Pilze)

Gibberella zeae

F. graminearum and G. zeae are two forms of the same fungus!

Deuteromycota

(Fungi imperfecti, Hyphomycota, anamorphe Pilze)

Aspergillus niger

Penicillium roqueforti

Take home messages

- Pilze bilden phylogenetisch ein eigenes Reich und sind näher verwandt mit den Tieren als den Pflanzen
- Pilze sind chemo-organo-heterotrophe Organismen, die sich durch Absorption (Osmotrophie) ernähren
- Pilze beziehen den reduzierten Kohlenstoff entweder als Saprophyten oder als (antagonistische oder mutualistische) Symbionten
- Pilze treten als einzellige Hefen oder als vielzellige Myzelien auf
- Pilze verbreiten und vermehren sich durch Sporen

Further information

Websites über Pilzgenome:

http://genome.jgi.doe.gov/programs/fungi/index.jsf

http://1000.fungalgenomes.org/home/

Filme über das Reich und den Lebensstil der Pilze:

https://www.youtube.com/watch?v=VXhfRdqTnDg (deutsch)

https://www.youtube.com/watch?v=9nqbJ53-Eac (englisch)

Further literature

What Defines the THOMAS A. RICHARDS, 12 GUY LEONARD, 1 and JEREMY G. WIDEMAN1 "Kingdom" Fungi?

Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, United Kingdom; Integrated Microbial Richts

The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies

JOSEPH W. SPATAFORA, 1 M. CATHERINE AIME, 2 IGOR V. GRIGORIEV, 3 FRANCIS MARTIN, 4 JASON E. STAJICH, 5 and MEREDITH BLACKWELL 6

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; 2Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907; ³U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; ⁴Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d'Excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France; Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208