

inary Search Maylist

Facebook] > code storywith MIK Twitter -> cswithMIK -> codestory with MIK

Practice Problem

1608. Special Array With X Elements Greater Than or Equal X

Return \times if the array is **special**, otherwise, return -1. It can be proven that if $\overline{\text{nums}}$ is special, the value for \times is **unique**.

Example: nums = [3, 5]Output = 2nums = [0,0]Output = -1nums = [0, 4, 3, 0, 4]Output = [3, 5]

$$n_{\text{ums}} = \{0, 4, 3, 0, 4\}, n = 5$$

$$| (\text{count} = x) \text{ such } x = x)$$

Approach-1

Sort + BSearch

Sort
$$>= \{0, 4, 3, 0, 4\}$$

 $>= \{0, 0, 3, 4, 4\}$
 $>= x$ $>= Lower Bound$

$$\frac{1}{\sqrt{\sqrt{2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\sqrt{2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\sqrt{2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{\sqrt{2}}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{$$

HPProach-2

$$S \cdot C = O(1)$$

$$c. c = o(u)$$