POLYLINES

Trên mặt phẳng tọa độ, cho điểm gốc O có tọa độ (0,0) và điểm đích A có tọa độ (N, N), trong đó N là số nguyên. Ngoài ra, ta có tập S gồm M điểm có tọa độ nguyên (x_i, y_i) thỏa mãn $0 \le x_i, y_i \le N$.

Một đường gấp khúc $X_1X_2...X_k$ được gọi là đường gấp khúc tăng nếu với mọi i, ta có $x_i \le x_{(i+1)}$ và $y_i \le y_{(i+1)}$, $k \ge 2$, ở đây điểm X_i có tọa độ (x_i, y_i) .

Đếm số lượng đường gấp khúc tăng $X_1 \ X_2 \ \dots \ X_k$ mà X_1 = $O, \ X_k$ = A và các điểm $X_2 \ \dots \ X_{k-1}$ thuộc tập S.

INPUT

Dòng đầu ghi 2 số N và M. Sau đó là M dòng, mỗi dòng ghi 2 số nguyên x_i và y_i, là tọa độ điểm X_i.

OUTPUT

In ra số đường gấp khúc tăng thỏa mãn theo modulo 10^9+7.

GIỚI HẠN

- Subtask 1 (20% số điểm): N, M ≤ 20
- Subtask 2 (20% số điểm): N, M ≤ 100
- Subtask 3 (20% số điểm): N, $M \le 10^4$
- Subtask 4 (20% số điểm): N, $M \le 2 * 10^5$
- Subtask 5 (20% số điểm): $N \le 10^9$, $M \le 10^6$

Sample Input	Sample Output
10 2	3
1 3	
2 7	