Regression

Pärt Prommik, PhD Ülo Maiväli, PhD

Reminder

Analysing relationships

Line drawing task

I'll draw few data points.

You come and draw a **STRAIGHT LINE** that fits the data points: it must be **AS CLOSE AS POSSIBLE** to all points.

You just did a regression

Regression is a statistical method that estimates relationship between two or more variables by finding a line of best fit.

$$\begin{array}{c|c}
 & \text{id y x} \\
 & \text{a 0 2} \\
 & \text{b 1 1} \\
 & \text{c 2 0}
\end{array}$$

Why regression?

- The most used technique
- Powerful
- Flexible

How the best fit line is found?

Residual: the difference between the observed value and the estimated value.

A line can be described mathematically as an equation

- L. Intercept: starting point
- 2. Slope: inclination
- 3. Residual SD: accuracy of relationship

Equations are good for answering different study questions

Descriptive

Lower confidence limit: 20-2 = **18** Upper confidence limit: 20+2 = **22**

Lower confidence limit: 20-4 = **16** Upper confidence limit: 20+4 = **24**

Equations are good for answering different study questions

Comparative

Relationship

Multiple variables are not a problem

Solves many kind of study questions!

Regression equations allow analysing the world

Line fitting machine's input and output

Regression finds the line of best fit and calculates coefficients for our input formula and residual standard deviation.

Regression in R language

_	speed	tail_length [‡]
1	20	15
2	25	12
3	32	18
4	37	14
5	34	24
6	39	22

Use variable names and tilde for determining formula

speed ~ tail_length

Use the formula inside a regrssion function

function_name(speed ~ tail_length, data = yourdata)

