7.2 Eigenvalues and Eigenvectors (cont'd)

Example. Determine
$$l_2$$
 induced norm of $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$

Solution

$$A^{t}A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 & -1 \\ 2 & 6 & 4 \\ -1 & 4 & 5 \end{bmatrix}$$
Solve $\det(A^{t}A - \lambda I) = 0$

$$0 = -\lambda(\lambda^{2} - 14\lambda + 42)$$
Then $\lambda = 0, \lambda = 7 \pm \sqrt{7}$

$$||A||_{2} = [\rho(A^{t}A)]^{1/2} = \sqrt{\max(0, 7 + \sqrt{7}, 7 - \sqrt{7})} = \sqrt{7 + \sqrt{7}}$$

Convergent Matrices

Definition. An $n \times n$ matrix A is **convergent** if $\lim_{k\to\infty} (A^k)_{ij} = 0$ for each $i = 1, 2, \dots n$ and $j = 1, 2, \dots n$.

Example. Show that $A = \begin{bmatrix} 1/2 & 0 \\ 1/4 & 1/2 \end{bmatrix}$ is a convergent matrix.

Theorem 7.17 The following statements are equivalent.

- (i) A is **convergent** matrix.
- (ii) $\lim_{n\to\infty} ||A^n|| = 0$ for some natural norm.
- (iii) $\lim_{n\to\infty} ||A^n|| = 0$ for all natural norm.
- (iv) $\rho(A) < 1$
- (v) $\lim_{n\to\infty} A^n x = \mathbf{0}$ for every x.

7.1 The Jacobi and Gauss-Seidel Iterative Methods

The Jacobi Method

Two assumptions made on Jacobi Method:

1. The system given by

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

Has a unique solution.

2. The coefficient matrix A has no zeros on its main diagonal, namely, $a_{11}, a_{22}, \dots, a_{nn}$ are nonzeros.

Main idea of Jacobi

To begin, solve the 1st equation for x_1 , the 2nd equation for x_2 and so on to obtain the rewritten equations:

$$x_{1} = \frac{1}{a_{11}} (b_{1} - a_{12}x_{2} - a_{13}x_{3} - \cdots a_{1n}x_{n})$$

$$x_{2} = \frac{1}{a_{22}} (b_{2} - a_{21}x_{1} - a_{23}x_{3} - \cdots a_{2n}x_{n})$$

$$\vdots$$

$$x_{n} = \frac{1}{a_{nn}} (b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \cdots a_{n,n-1}x_{n-1})$$

Then make an initial guess of the solution $\mathbf{x}^{(0)} = (x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots x_n^{(0)})$. Substitute these values into the right hand side the of the rewritten equations to obtain the *first approximation*, $(x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, \dots x_n^{(1)})$.

This accomplishes one **iteration**.

In the same way, the *second approximation* $(x_1^{(2)}, x_2^{(2)}, x_3^{(2)}, ... x_n^{(2)})$ is computed by substituting the first approximation's *x*-vales into the right hand side of the rewritten equations.

By repeated iterations, we form a sequence of approximations $\mathbf{x}^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, \dots x_n^{(k)}\right)^t$, $k = 1, 2, 3, \dots$

The Jacobi Method. For each $k \ge 1$, generate the components $x_i^{(k)}$ of $x^{(k)}$ from $x^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1,\\j\neq i}}^n (-a_{ij} x_j^{(k-1)}) + b_i \right], \quad \text{for } i = 1, 2, \dots n$$

Example. Apply the Jacobi method to solve

$$5x_1 - 2x_2 + 3x_n = -1$$

$$-3x_1 + 9x_2 + x_n = 2$$

$$2x_1 - x_2 - 7x_n = 3$$

Continue iterations until two successive approximations are identical when rounded to three significant digits.

Solution To begin, rewrite the system

$$x_1 = \frac{-1}{5} + \frac{2}{5}x_2 - \frac{3}{5}x_3$$

$$x_2 = \frac{2}{9} + \frac{3}{9}x_1 - \frac{1}{9}x_3$$

$$x_3 = -\frac{3}{7} + \frac{2}{7}x_1 - \frac{1}{7}x_2$$

Choose the initial guess $x_1 = 0, x_2 = 0, x_3 = 0$

The first approximation is

$$x_1^{(1)} = \frac{-1}{5} + \frac{2}{5}(0) - \frac{3}{5}(0) = -0.200$$

$$x_2^{(1)} = \frac{2}{9} + \frac{3}{9}(0) - \frac{1}{9}(0) = 0.222$$

$$x_3^{(1)} = -\frac{3}{7} + \frac{2}{7}(0) - \frac{1}{7}(0) = -0.429$$

Continue iteration, we obtain

n	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
$x_1^{(k)}$	0.000	-0.200	0.146	0.192			
$\chi_2^{(k)}$	0.000	0.222	0.203	0.328			
$\chi_2^{(k)}$	0.000	-0.429	-0.517	-0.416			

The Jacobi Method in Matrix Form

Consider to solve an $n \times n$ size system of linear equations $A\mathbf{x} = \mathbf{b}$ with $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ for $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$.

We split A into

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & \dots & 0 & 0 \\ -a_{21} & \dots & 0 & 0 \\ \vdots & & \ddots & \vdots \\ -a_{n1} & \dots & -a_{n\,n-1} & 0 \end{bmatrix} - \begin{bmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ 0 & 0 & & \vdots \\ \vdots & \vdots & \ddots & -a_{n-1,n} \\ 0 & 0 & \dots & 0 \end{bmatrix} = D - L - U$$

Ax = b is transformed into (D - L - U)x = b

$$Dx = (L + U)x + b$$

Assume
$$D^{-1}$$
 exists and $D^{-1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \dots & 0 \\ 0 & \frac{1}{a_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{1}{a_{nn}} \end{bmatrix}$

Then

$$x = D^{-1}(L+U)x + D^{-1}b$$

The matrix form of Jacobi iterative method is

$$\mathbf{x}^{(k)} = D^{-1}(L+U)\mathbf{x}^{(k-1)} + D^{-1}\mathbf{b}$$
 $k = 1,2,3,...$

Define
$$T = D^{-1}(L + U)$$
 and $\mathbf{c} = D^{-1}\mathbf{b}$, Jacobi iteration method can also be written as $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$ $k = 1, 2, 3, ...$

Numerical Algorithm of Jacobi Method

Input: $A = [a_{ij}]$, b, $XO = x^{(0)}$, tolerance TOL, maximum number of iterations N.

Step 1 Set k = 1

Step 2 while $(k \le N)$ do Steps 3-6

Step 3 For for i = 1, 2, ... n

$$x_i = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1, \ j \neq i}}^{n} (-a_{ij} X O_j) + b_i \right],$$

Step 4 If ||x - XO|| < TOL, then OUTPUT $(x_1, x_2, x_3, ..., x_n)$; STOP.

Step 5 Set k = k + 1.

Step 6 For for $i = 1,2, \dots n$ Set $XO_i = x_i$.

Step 7 OUTPUT $(x_1, x_2, x_3, ... x_n)$; STOP.

Another stopping criterion in Step 4: $\frac{||x^{(k)}-x^{(k-1)}||}{||x^{(k)}||}$

The Gauss-Seidel Method

Main idea of Gauss-Seidel

With the Jacobi method, the values of $x_i^{(k)}$ obtained in the kth iteration remain unchanged until the entire (k+1)th iteration has been calculated. With the Gauss-Seidel method, we use the new values $x_i^{(k+1)}$ as soon as they are known. For example, once we have computed $x_1^{(k+1)}$ from the first equation, its value is then used in the second equation to obtain the new $x_2^{(k+1)}$, and so on.

Example. Derive iteration equations for the Jacobi method and Gauss-Seidel method to solve

$$5x_1 - 2x_2 + 3x_n = -1$$

$$-3x_1 + 9x_2 + x_n = 2$$

$$2x_1 - x_2 - 7x_n = 3$$