LEBESGUE OLCUMU VE INTEGRAL KURAMI

Uzaktan Eğitim

1.Hafta- Şubat 2021

Riemann İntegrali

Aralıkların Parçalanması (Riemann Anlamında Bölüntü)

[a, b] aralığını

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$$

özelliğini sağlayan $x_1, x_2, \ldots, x_{n-1}$ noktaları yardımıyla n tane alt aralığa bölelim.

$$P = \{x_0, x_1, \dots x_n\}$$

sonlu kümesine veya $I_k = [x_{k-1}, x_k]$ olmak üzere

$$P = \{I_1, I_2, ..., I_n\}$$

kümesine [a, b] aralığının bir parçalanması veya bölüntüsü denir.

(Uzaktan Eğitim)

 $[x_0,x_1], [x_1,x_2], \dots [x_{n-1},x_n]$ aralıklarına P parçalanmasına karşılık gelen kapalı alt aralıklar adı verilir. $\triangle x_k = x_k - x_{k-1} > 0$ sayısına aralığın boyu (veya ölçüsü) denir.

 $[x_0,x_1], [x_1,x_2], \dots [x_{n-1},x_n]$ aralıklarına P parçalanmasına karşılık gelen kapalı alt aralıklar adı verilir. $\triangle x_k = x_k - x_{k-1} > 0$ sayısına aralığın boyu (veya ölçüsü) denir.

 $\triangle x_1$, $\triangle x_2$,..., $\triangle x_n$ sayılarının en büyüğüne P parçalanmasının normu (veya maksimal çapı) denir ve $\|P\|$ ile gösterilir. Şu halde

$$||P|| = \max\{\triangle x_k : k = 1, 2, \dots, n\}$$

dir.

 $[x_0,x_1], [x_1,x_2], \dots [x_{n-1},x_n]$ aralıklarına P parçalanmasına karşılık gelen kapalı alt aralıklar adı verilir. $\triangle x_k = x_k - x_{k-1} > 0$ sayısına aralığın boyu (veya ölçüsü) denir.

 $\triangle x_1$, $\triangle x_2$,..., $\triangle x_n$ sayılarının en büyüğüne P parçalanmasının normu (veya maksimal çapı) denir ve $\|P\|$ ile gösterilir. Şu halde

$$||P|| = \max \{ \triangle x_k : k = 1, 2, \ldots, n \}$$

dir.

Eğer tüm alt aralıkların boyları birbirine eşit, yani $\triangle x_k = \frac{b-a}{n}$, $k=1,2,\ldots,n$ ise bu parçalanmaya standart veya düzgün parçalanma adı verilir.($P=\left\{x_k=a+\frac{k}{n}(b-a):k=1,2,\ldots,n\right\}$ ise P parçalanması [a,b] aralığının düzgün parçalanmasıdır.)

3 / 75

[a,b] aralığının tüm parçalanmalarının (bölüntülerinin) kümesi $\mathcal{P}[a,b]$ ile gösterilir.

- [a,b] aralığının tüm parçalanmalarının (bölüntülerinin) kümesi $\mathcal{P}[a,b]$ ile gösterilir.
- [a, b] aralığının iki parçalanması P_1 ve P_2 olsun. Eğer $P_1 \subset P_2$ ise P_2 parçalanması P_1 den daha incedir denir.

[a,b] aralığının tüm parçalanmalarının (bölüntülerinin) kümesi $\mathcal{P}[a,b]$ ile gösterilir.

[a,b] aralığının iki parçalanması P_1 ve P_2 olsun. Eğer $P_1 \subset P_2$ ise P_2 parçalanması P_1 den daha incedir denir.

Bir [a, b] aralığının $P_1, P_2, ..., P_r$ parçalanmaları için

$$P_1 \subset P_2 \subset \cdots \subset P_r$$

ise

$$||P_1|| \ge ||P_2|| \ge \cdots \ge ||P_r||$$

olduğu açıktır.

[a,b] aralığının tüm parçalanmalarının (bölüntülerinin) kümesi $\mathcal{P}[a,b]$ ile gösterilir.

[a, b] aralığının iki parçalanması P_1 ve P_2 olsun. Eğer $P_1 \subset P_2$ ise P_2 parçalanması P_1 den daha incedir denir.

Bir [a, b] aralığının $P_1, P_2, ..., P_r$ parçalanmaları için

$$P_1 \subset P_2 \subset \cdots \subset P_r$$

ise

$$||P_1|| \ge ||P_2|| \ge \cdots \ge ||P_r||$$

olduğu açıktır.

$$||P|| \to 0 \Rightarrow n \to \infty$$

P bir düzgün bölüntü ise $||P|| \to 0 \Leftrightarrow n \to \infty$.

[a,b] aralığının bir $P=\{x_0,x_1,\ldots,x_n\}$ parçalanması için her bir $[x_{k-1},x_k]$ aralığında herhangi bir x_k^* noktası seçilmiş ise

$$P := \{([x_{k-1}, x_k], x_k^*)\}_{k=1}^n$$

kümesine [a,b] aralığının bir işaretlenmiş parçalanması adı verilir. P yerine bazen (P,x^*) kullanacağız.

Riemann İntegrali

 $f:[a,b]\to\mathbb{R}$ fonksiyonu ve [a,b] aralığının herhangi bir P parçalanması verilsin.

$$S_n = R(f, P, x^*) = \sum_{k=1}^n f(x_k^*) \triangle x_k$$

toplamına f fonksiyonunun [a,b] nin P parçalanmasına göre Riemann toplamı denir. Riemann toplamı P bölüntüsüne ve x_k^* noktalarının seçimine bağlıdır.

6 / 75

f fonksiyonu [a,b] aralığında pozitif ise yukarıda verilen Riemann toplamı, tabanı $[x_{k-1},x_k]$ aralığı ve yüksekliği $f(t_k)$ olan dikdörtgenlerin alanları toplamıdır. $(x_k^*$ noktaları t_k olarak gösterilmiştir.)

[a,b] nin P parçalanmasına ve x_k^st noktalarının seçimine bağlı olmadan

$$\lim_{\|P\| \to 0} R(f, P, x^*) = \lim_{\|P\| \to 0} \sum_{k=1}^{n} f(x_k^*) \triangle x_k = I \in \mathbb{R}$$

sonlu limiti varsa f fonksiyonuna [a,b] aralığında Riemann integrallenebilen fonksiyon, bu limite f fonksiyonunun [a,b] aralığındaki Riemann integrali denir ve $\int_a^b f(x)dx$ ile gösterilir. a ve b sayılarına sırasıyla integralin alt ve üst sınırları adı verilir.

Limitin tanımından yararlanarak yukarıdaki tanımı şu şekilde ifade edebiliriz.

 $f:[a,b] \to \mathbb{R}$ fonksiyonu verilsin. $\forall \varepsilon>0$ ve $\exists I \in \mathbb{R}$ için $\exists \delta_{\varepsilon}>0$ öyleki [a,b] aralığının $\|P\|<\delta$ olacak şekilde herbir P parçalanması için $|R\left(f,P,x^{*}\right)-I|<\varepsilon$ olacak şekilde bir $\delta_{\varepsilon}>0$ sayısı varsa f fonksiyonuna Riemann integrallenebilir denir.

Limitin tanımından yararlanarak yukarıdaki tanımı şu şekilde ifade edebiliriz.

 $f:[a,b] \to \mathbb{R}$ fonksiyonu verilsin. $\forall \varepsilon>0$ ve $\exists I \in \mathbb{R}$ için $\exists \delta_{\varepsilon}>0$ öyleki [a,b] aralığının $\|P\|<\delta$ olacak şekilde herbir P parçalanması için $|R\left(f,P,x^{*}\right)-I|<\varepsilon$ olacak şekilde bir $\delta_{\varepsilon}>0$ sayısı varsa f fonksiyonuna Riemann integrallenebilir denir.

[a,b] aralığında Riemann integrallenebilir fonksiyonların kümesi $\mathcal{R}[a,b]$ ile gösterilir.

Teorem

Eğer $f \in \mathcal{R}[a,b]$ ise bu durumda f fonksiyonu [a,b] araliğinda sınırlıdır, yani

$$f \in \mathcal{R}[a, b] \Rightarrow f \in B[a, b].$$

10 / 75

Teorem

Eğer $f \in \mathcal{R}[a,b]$ ise bu durumda f fonksiyonu [a,b] aralığında sınırlıdır, yani

$$f \in \mathcal{R}[a, b] \Rightarrow f \in B[a, b].$$

İspat:

 $\int_a^b f(x) dx = L \in \mathbb{R}$ ve $f \notin B[a,b]$ olsun. $\varepsilon = 1$ olarak alalım. Bu durumda $\exists \delta > 0$ için [a,b] aralığının $\|P\| < \delta$ olacak şekilde herbir P parçalanması için $|R(f,P,x^*) - L| < 1$ yani $|R(f,P,x^*)| < 1 + |L|$ iken $[x_{i-1},x_i]$ alt aralığında fonksiyon sınırlı değildir.

$$\left|f\left(x_{i}^{*}\right)\triangle x_{i}\right|>1+\left|L\right|+\left|\sum_{\substack{k=1\k
eq i}}^{n}f\left(x_{k}^{*}\right)\triangle x_{k}\right|$$

olarak seçelim.

$$R(f, P, x^*) = \sum_{k=1}^{n} f(x_k^*) \triangle x_k = f(x_i^*) \triangle x_i + \sum_{\substack{k=1 \ k \neq i}}^{n} f(x_k^*) \triangle x_k$$

olduğundan, $|A+B| \ge |A| - |B|$ eşitsizliği kullanılırsa

$$|R(f, P, x^*)| = \left| \sum_{k=1}^{n} f(x_k^*) \triangle x_k \right| = \left| f(x_i^*) \triangle x_i + \sum_{\substack{k=1 \ k \neq i}}^{n} f(x_k^*) \triangle x_k \right|$$

$$\geq |f(x_i^*) \triangle x_i| - \left| \sum_{\substack{k=1 \ k \neq i}}^{n} f(x_k^*) \triangle x_k \right| > 1 + |L|$$

çelişkisi elde edilir. Demek ki $f \in B[a, b]$ dir.

 $\forall c \in \mathbb{R}$ için f(x) = c şeklinde tanımlanan fonksiyonun [a, b] aralığında Riemann integrallenebilir olduğunu gösteriniz.

12 / 75

 $\forall c \in \mathbb{R}$ için f(x) = c şeklinde tanımlanan fonksiyonun [a, b] aralığında Riemann integrallenebilir olduğunu gösteriniz.

Cözüm

 $P \in \mathcal{P}[a, b]$ olsun.

$$R(f, P, x^*) = \sum_{k=1}^{n} f(x_k^*) \triangle x_k$$
$$= \sum_{k=1}^{n} c \triangle x_k = c(b - a)$$

olduğundan $|R\left(f,P,x^*\right)-c(b-a)|=0$ elde edilir. orall arepsilon>0 için $\delta_arepsilon=1$ olarak alınırsa $\|P\|<1$ iken

$$|R(f, P, x^*) - c(b - a)| = 0 < \varepsilon$$

elde edilir. Bu yüzden $f \in \mathcal{R}[a,b]$ ve $\int_a^b f(x)dx = c(b-a)$ dir.

f(x) = x ise $f \in \mathcal{R}[a, b]$ olduğunu gösteriniz.

f(x) = x ise $f \in \mathcal{R}[a, b]$ olduğunu gösteriniz.

Çözüm

 $P \in \mathcal{P}[a, b]$ olsun. k = 1, 2, ..., n için

$$|\delta_k| \le \frac{\triangle x_k}{2} \le \frac{\|P\|}{2}$$

olmak üzere

$$x_k^* = \frac{x_{k-1} + x_k}{2} + \delta_k$$

șeklinde seçelim.

 $E_n = \sum_{k=1}^n \delta_k (x_k - x_{k-1})$ olmak üzere

$$R(f, P, x^*) = \sum_{k=1}^{n} f(x_k^*) \triangle x_k$$

$$= \sum_{k=1}^{n} \frac{x_{k-1} + x_k}{2} (x_k - x_{k-1}) + \sum_{k=1}^{n} \delta_k (x_k - x_{k-1})$$

$$= \frac{1}{2} \sum_{k=1}^{n} x_k^2 - x_{k-1}^2 + E_n$$

$$= \frac{b^2 - a^2}{2} + E_n$$

yazılabilir.

(Uzaktan Eğitim) Riemann İntegrali

14 / 75

$$|E_n| \leq \sum_{k=1}^{n} |\delta_k| (x_k - x_{k-1})$$

$$\leq \frac{\|P\|}{2} \sum_{k=1}^{n} (x_k - x_{k-1})$$

$$= \frac{\|P\|}{2} (b - a)$$

olduğuundan $\|P\| \to 0$ iken $E_n \to 0$ elde edilir. Böylece

$$\lim_{\|P\| \to 0} R(f, P, x^*) = \frac{b^2 - a^2}{2} = \int_a^b x dx$$

sonucu elde edilir.

15 / 75

$$f(x) = \left\{ \begin{array}{ll} 0 & ; & x \in \mathbb{Q} \cap [0,1] \\ 1 & ; & x \in I \cap [0,1] \end{array} \right. \text{ olmak ""zere } f \not \in \mathcal{R}[0,1] \text{ olduğunu g"osteriniz.}$$

$$f(x) = \left\{ egin{array}{ll} 0 & ; & x \in \mathbb{Q} \cap [0,1] \\ 1 & ; & x \in I \cap [0,1] \end{array}
ight.$$
 olmak üzere $f \notin \mathcal{R}[0,1]$ olduğunu gösteriniz.

Çözüm

 $P\in\mathcal{P}\left[0,1
ight]$ olsun. $x_{k}^{st}\in\left[x_{k-1},x_{k}
ight]\cap\mathbb{Q}$ olarak seçilirse

$$R(f,P,x^*) = \sum_{k=1}^n f(x_k^*) \triangle x_k = 0,$$

 $x_k^* \in [x_{k-1}, x_k] \cap I$ olarak seçilirse

$$R(f, P, x^*) = \sum_{k=1}^{n} f(x_k^*) \triangle x_k = 1$$

elde edilir. $||P|| \to 0$ iken $R(f, P, x^*) \to 0$ ve $R(f, P, x^*) \to 1$ șeklinde iki farklı limit elde edildiğinden limit yoktur, yani $f \notin \mathcal{R}[0, 1]$ dir.

16 / 75

Not : $[a,b] \subset \mathbb{R}$ üzerinde tanımlı $f:[a,b] \to \mathbb{R}$ fonksiyonunun [a,b] üzerinde integrallenebilir olması için f fonksiyonunun [a,b] aralığında sınırlı olması koşulu gereklidir, fakat yeterli değildir. Yukarıdaki örnekte, $f \in B[0,1]$ dir fakat $f \notin \mathcal{R}[0,1]$ dir.

Darboux İntegrali

 $f:[a,b]
ightarrow \mathbb{R}$ fonksiyonu bir sınırlı fonksiyon olsun. f fonksiyonu sınırlı ise

$$m_k = \inf_{x \in [x_{k-1}, x_k]} f(x)$$
 ve $M_k = \sup_{x \in [x_{k-1}, x_k]} f(x)$

sayıları sonludur.

$$\overline{S_n} = \sum_{k=1}^n M_k \triangle x_k$$
 ve $\underline{s_n} = \sum_{k=1}^n m_k \triangle x_k$

toplamlarına sırasıyla üst Darboux toplamı ve alt Darboux toplamı adı verilir.

f fonksiyonu pozitif ise alt toplam, tabanı $[x_{k-1},x_k]$ ve yüksekliği m_k olan dikdörtgenlerin alanları toplamını, üst toplam, ise tabanı $[x_{k-1},x_k]$ ve yüksekliği M_k olan dikdörtgenlerin alanları toplamını ifade eder.

Genellikle, üst toplam için $\overline{S_n} = U(f, P)$ ve alt tolam $\underline{s_n} = L(f, P)$ ile gösterilir.

[a, b] aralığında sınırlı f fonksiyonu için

$$m = \inf_{x \in [a,b]} f(x)$$
 ve $M = \sup_{x \in [a,b]} f(x)$

olarak tanımlayalım. Bu durumda

$$m \le m_k \le f(x_k^*) \le M_k \le M$$

olduğu açıktır.

(Uzaktan Eğitim)

Bu eşitsizlikten [a, b] aralığının her P bölüntüsü için

$$\textit{m}(\textit{b}-\textit{a}) \leq \textit{L}(\textit{f},\textit{P}) \leq \textit{R}(\textit{f},\textit{P},\textit{x}^*) \leq \textit{U}(\textit{f},\textit{P}) \leq \textit{M}(\textit{b}-\textit{a})$$

yazılabilir. [a,b] aralığının her P bölüntüsü için L(f,P) üstten sınırlı olduğu için alt toplamlar bir supremuma ve U(f,P) alttan sınırlı olduğu için üst toplamlar bir infimuma sahiptir.

(Uzaktan Eğitim)

 $f: [a, b] \to \mathbb{R}$ sınırlı bir fonksiyon olsun.

$$U(f) = \int_{a}^{b} f(x)dx = \inf \left\{ U(f, P) : P \in \mathcal{P}[a, b] \right\}$$

ve

$$L(f) = \int_{\underline{a}}^{b} f(x) dx = \sup \{ L(f, P) : P \in \mathcal{P}[a, b] \}$$

sayılarına f fonksiyonunun [a, b] üzerindeki sırasıyla alt (Darboux) integrali ve üst (Darboux) integrali denir.

Eğer [a, b] aralığında tanımlı sınırlı bir f fonksiyonu için U(f) = L(f) ise [a, b] üzerinde f fonksiyonu (Darboux) integrallenebilir denir.

Eğer [a,b] aralığında tanımlı sınırlı bir f fonksiyonu için U(f)=L(f) ise [a,b] üzerinde f fonksiyonu (Darboux) integrallenebilir denir.

Bu ortak değere f fonksiyonunun [a, b] üzerinde (Darboux) integrali denir ve $\int_a^b f(x) dx$ ile gösterilir.

(Uzaktan Eğitim) Riemann İntegrali

Eğer [a,b] aralığında tanımlı sınırlı bir f fonksiyonu için U(f)=L(f) ise [a,b] üzerinde f fonksiyonu (Darboux) integrallenebilir denir.

Bu ortak değere f fonksiyonunun [a, b] üzerinde (Darboux) integrali denir ve $\int_a^b f(x) dx$ ile gösterilir.

Eğer U(f) > L(f) ise bu durumda f fonksiyonu (Darboux) integrallenebilir değildir.

Eğer [a,b] aralığında tanımlı sınırlı bir f fonksiyonu için U(f)=L(f) ise [a,b] üzerinde f fonksiyonu (Darboux) integrallenebilir denir.

Bu ortak değere f fonksiyonunun [a, b] üzerinde (Darboux) integrali denir ve $\int_a^b f(x) dx$ ile gösterilir.

Eğer U(f) > L(f) ise bu durumda f fonksiyonu (Darboux) integrallenebilir değildir.

Riemann ve Darboux integral tanımlarının eşdeğer oldukları ileride gösterilecektir.

 $\forall c \in \mathbb{R}$ için f(x) = c şeklinde tanımlanan fonksiyonun [a, b] aralığında Darboux integrallenebilir olduğunu gösteriniz.

24 / 75

 $\forall c \in \mathbb{R}$ için f(x) = c şeklinde tanımlanan fonksiyonun [a, b] aralığında Darboux integrallenebilir olduğunu gösteriniz.

Çözüm

$$P \in \mathcal{P}\left[a,b\right]$$
 olsun. $m_k = \inf_{x \in [x_{k-1},x_k]} f(x) = c$ ve $M_k = \sup_{x \in [x_{k-1},x_k]} f(x) = c$

olduğundan

$$U(f,P) = \sum_{k=1}^{n} M_k \triangle x_k = c(b-a)$$

ve

$$L(f,P) = \sum_{k=1}^{n} m_k \triangle x_k = c(b-a)$$

elde edilir. $c(b-a) = L(f,P) \le L(f) \le U(f) \le U(f,P) = c(b-a)$ olduğundan L(f) = U(f) dir, yani f fonksiyonu integrallenebilirdir.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 24 / 75

 $f(x) = \begin{cases} 0 & ; & x \in \mathbb{Q} \cap [0,1] \\ 1 & ; & x \in I \cap [0,1] \end{cases}$ șeklinde tanımlı Dirichlet fonksiyonunun (Darboux) integrallenebilir olmadığını gösteriniz.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 25 / 75

 $f(x) = \begin{cases} 0 & ; \quad x \in \mathbb{Q} \cap [0,1] \\ 1 & ; \quad x \in I \cap [0,1] \end{cases}$ șeklinde tanımlı Dirichlet fonksiyonunun (Darboux) integrallenebilir olmadığını gösteriniz.

Çözüm

 $P=\{x_0,x_1,...,x_n\}$, [0,1] aralığının herhangi bir bölüntüsü olsun. Herbir $[x_{k-1},x_k]$ aralığı hem rasyonel hem de irrasyonel nokta içerdiğinden

$$m_k = \inf_{x \in [x_{k-1}, x_k]} f(x) = 0$$
 ve $M_k = \sup_{x \in [x_{k-1}, x_k]} f(x) = 1$

dir. Alt ve üst toplamlar hesaplanırsa

$$U(f,P) = \sum_{k=1}^{n} M_k \triangle x_k = 1 \text{ ve } L(f,P) = 0$$

elde edilir.

Herhangi $P \in \mathcal{P}\left[0,1
ight]$ için yukarıdaki hesaplamalar geçerli olduğundan

$$\int_{0}^{1} f(x)dx = 1 \text{ ve } \int_{0}^{1} f(x)dx = 0$$

elde edilir ki bu nedenle Dirichlet fonksiyonu [0,1] üzerinde (Darboux) integrallenebilir değildir.

26 / 75

Alt ve Üst Toplamın Temel Özellikleri

Teorem

 $P, Q \in \mathcal{P}[a, b]$ ve $f \in B[a, b]$ olsun.

- a) Eger $P \subseteq Q$ ise $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$
- b) P ve Q herhangi iki bölüntü ise L(f, P) < U(f, Q)
- c) $L(f) \leq U(f)$

Alt ve Üst Toplamın Temel Özellikleri

Teorem

 $P, Q \in \mathcal{P}[a, b]$ ve $f \in B[a, b]$ olsun.

- a) Eger $P \subseteq Q$ ise $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$
- b) P ve Q herhangi iki bölüntü ise $L(f, P) \leq U(f, Q)$
- c) $L(f) \leq U(f)$

Sonuç

 $f \in B[a,b]$ ve (P_n) de [a,b] aralığının parçalanmalarının artan bir dizisi (yani, n < m için $P_n \subset P_m$) olsun. $(L(f,P_n))$ alt toplamlar dizisi artan, $(U(f,P_n))$ üst toplamlar dizisi azalandır.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 27 /

Yukarıdaki sonuç yardımıyla, [a, b] üzerinde tanımlı sınırlı bir f fonksiyonu için

$$U(f) = \int_{a}^{b} f(x)dx = \inf_{P \in \mathcal{P}[a,b]} U(f,P) = \lim_{\|P\| \to 0} U(f,P)$$

ve

$$L(f) = \int_{\frac{a}{P}}^{b} f(x) dx = \sup_{P \in \mathcal{P}[a,b]} L(f,P) = \lim_{\|P\| \to 0} L(f,P)$$

yazılabilir.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 28 / 75

Riemann ve Darboux Tanımlarının Eşdeğerliliği

Teorem

f fonksiyonu [a, b] aralığında sınırlı bir fonksiyon ise f fonksiyonunun Riemann integrallenebilir olması için gerek ve yeter koşul Darboux integrallenebilir olmasıdır.

29 / 75

Riemann ve Darboux Tanımlarının Eşdeğerliliği

Teorem

f fonksiyonu [a, b] aralığında sınırlı bir fonksiyon ise f fonksiyonunun Riemann integrallenebilir olması için gerek ve yeter koşul Darboux integrallenebilir olmasıdır.

İspat:

 \Leftarrow : $f \in B[a,b]$ fonksiyonu Darboux integrallenebilir olsun. [a,b] aralığının her P bölüntüsü için

$$L(f, P) \le R(f, P, x^*) \le U(f, P)$$

olduğundan eşitsizliğin her üç tarafının $\|P\| o 0$ iken limiti alınırsa

$$L(f) = \lim_{\|P\| \to 0} L(f, P) \le \lim_{\|P\| \to 0} R(f, P, x^*) \le \lim_{\|P\| \to 0} U(f, P) = U(f)$$

elde edilir.

İspatın Devamı:

Bu yüzden f fonksiyonu Darboux integrallenebilir ise f fonksiyonu Riemann integrallenebilirdir.

İspatın Devamı:

Bu yüzden f fonksiyonu Darboux integrallenebilir ise f fonksiyonu Riemann integrallenebilirdir.

 $\Rightarrow f$ fonksiyonu Riemann integrallenebilir olsun. Bu durumda $P \in \mathcal{P}[a,b]$ seçiminden ve x^* noktalarının seçiminden bağımsız olarak

$$\lim_{\|P\|\to 0} R(f, P, x^*) = L$$

olacak şekilde $L \in \mathbb{R}$ sayısı vardır. orall arepsilon > 0 için $\exists \delta > 0$ $\ni \|P\| < \delta$ iken

$$L - \varepsilon < R(f, P, x^*) < L + \varepsilon.$$

 $f(x_k^*) < m_k + \varepsilon$ olduğundan

$$\sum_{k=1}^{n} f(x_{k}^{*}) \triangle x_{k} < \sum_{k=1}^{n} m_{k} \triangle x_{k} + \varepsilon \sum_{k=1}^{n} \triangle x_{k} = L(f, P) + \varepsilon (b - a)$$

yazılabilir.

İspatın Devamı:

Yani, $R(f,P,x^*) < L(f,P) + \varepsilon (b-a)$ yazılabilir. Buradan

$$L(f) \geq L(f,P) > R(f,P,x^*) - \varepsilon (b-a) > L - \varepsilon - \varepsilon (b-a)$$

eşitsizliği elde edilir. $\varepsilon > 0$ keyfi olduğundan $L(f) \ge L$ sonucu elde edilir. Benzer olarak $U(f) \le L$ olduğu gösterilebilir. $U(f) \ge L(f)$ olduğundan

$$L \ge U(f) \ge L(f) \ge L$$

yani U(f) = L(f) = L elde edilir ki, bu f fonksiyonunun [a, b] aralığında Darboux integrallenebilir olduğunu gösterir.

4□ > 4□ > 4 = > 4 = > = 90

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 31 / 75

f(x) = x ise $f \in \mathcal{R}[a, b]$ olduğunu gösteriniz.

(Uzaktan Eğitim) Riemann İntegrali

f(x) = x ise $f \in \mathcal{R}[a, b]$ olduğunu gösteriniz.

Çözüm

Riemann integralinin tanımından yararlanarak daha önce $f \in \mathcal{R}[a,b]$ olduğunu göstermiştik. Şimdi Darboux integralinin tanımından yararlanarak aynı sonucu gösterelim.

$$U(f, P) = \sum_{k=1}^{n} M_k \triangle x_k = \sum_{k=1}^{n} x_k (x_k - x_{k-1})$$

$$= \sum_{k=1}^{n} \left[\frac{(x_k + x_{k-1})}{2} + \frac{(x_k - x_{k-1})}{2} \right] (x_k - x_{k-1})$$

$$= \frac{1}{2} \sum_{k=1}^{n} x_k^2 - x_{k-1}^2 + E_n^{(1)}$$

$$= \frac{b^2 - a^2}{2} + E_n^{(1)}$$

$$L(f,P) = \sum_{k=1}^{n} m_k \triangle x_k = \sum_{k=1}^{n} x_{k-1} (x_k - x_{k-1})$$

$$= \sum_{k=1}^{n} \left[\frac{(x_k + x_{k-1})}{2} - \frac{(x_k - x_{k-1})}{2} \right] (x_k - x_{k-1})$$

$$= \frac{1}{2} \sum_{k=1}^{n} x_k^2 - x_{k-1}^2 + E_n^{(2)}$$

$$= \frac{b^2 - a^2}{2} + E_n^{(2)}$$

yazılabilir.

j=1,2 için

$$\begin{aligned} \left| E_n^{(j)} \right| & \leq & \sum_{k=1}^n \frac{(x_k - x_{k-1})}{2} (x_k - x_{k-1}) \\ & \leq & \frac{\|P\|}{2} \sum_{k=1}^n (x_k - x_{k-1}) \\ & = & \frac{\|P\|}{2} (b - a) \end{aligned}$$

olduğundan $\|P\| o 0$ iken $E_n^{(1)} o 0$ ve $E_n^{(2)} o 0$ elde edilir. Bu yüzden

$$\lim_{\|P\|\to 0} U(f,P) = \frac{b^2 - a^2}{2} = \lim_{\|P\|\to 0} L(f,P)$$

elde edilir. f fonksiyonu [0,1] aralığında Darboux integrallenebilirdir ve bu nedenle $f \in \mathcal{R}[a,b]$ dir.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 34 / 75

Riemann İntegrallenebilirlik Koşulu

$$L(f) = \lim_{\|P\| \to 0} L(f, P) \le \lim_{\|P\| \to 0} R(f, P, x^*) \le \lim_{\|P\| \to 0} U(f, P) = U(f)$$

eşitsizliği ve Darboux integrallenebilirlik koşulu (U(f)=L(f)) göz önüne alınarak aşağıdaki teoremler kolayca ispatlanabilir.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 35 / 75

Riemann İntegrallenebilirlik Koşulu

$$L(f) = \lim_{\|P\| \to 0} L(f, P) \le \lim_{\|P\| \to 0} R(f, P, x^*) \le \lim_{\|P\| \to 0} U(f, P) = U(f)$$

eşitsizliği ve Darboux integrallenebilirlik koşulu (U(f)=L(f)) göz önüne alınarak aşağıdaki teoremler kolayca ispatlanabilir.

Teorem

 $f \in B[a,b]$ olsun. $f \in \mathcal{R}[a,b]$ olması için g.v.y.k. $\forall \epsilon > 0$ için

$$U(f, P) - L(f, P) < \varepsilon$$

olacak şekilde [a, b] aralığının bir P parçalanmasının var olmasıdır.

4□ > 4□ > 4 = > 4 = > = 90

35 / 75

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021

İntegrallenebilirlik koşulu aşağıdaki şekilde de ifade edilebilir.

İntegrallenebilirlik koşulu aşağıdaki şekilde de ifade edilebilir.

Teorem

 $f \in B[a,b]$ olsun. $f \in \mathcal{R}[a,b]$ olması için g.v.y.k. $\forall \varepsilon > 0$ için $P \in \mathcal{P}[a,b]$ ve $\|P\| < \delta$ iken

$$U(f, P) - L(f, P) < \varepsilon$$

olacak şekilde bir $\delta > 0$ sayısının var olmasıdır.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 36 / 75

$$f(x) = \left\{ \begin{array}{ll} 1 & ; & x \in [0,1] - \left\{\frac{1}{2}\right\} \\ 0 & ; & x = \frac{1}{2} \end{array} \right. \quad \text{fonksiyonunun integrallenebilir}$$
 olduğunu gösteriniz.

4□ > 4□ > 4□ > 4□ > 4□ > 1□

$$f(x) = \left\{ \begin{array}{ll} 1 & ; & x \in [0,1] - \left\{\frac{1}{2}\right\} \\ 0 & ; & x = \frac{1}{2} \end{array} \right.$$
 fonksiyonunun integrallenebilir olduğunu gösteriniz.

Çözüm

 $P=\{x_0,x_1,...,x_n\},\ [0,1]$ aralığının bir bölüntüsü olsun. $\frac{1}{2}\notin P$ olsun. Bu durumda $\frac{1}{2}\in [x_{k-1},x_k]$ olacak şekilde bir alt aralık vardır ve bu yüzden

$$j \neq k$$
 için $m_j = M_j = 1$
 $j = k$ için $m_j = 0$, $M_j = 1$

dir.

◆ロト ◆問ト ◆言ト ◆言ト · 言 · からぐ

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 37

$$U(f,P)-L(f,P)=\sum_{j=1}^{n}(M_{j}-m_{j})\triangle x_{j}=\triangle x_{k}$$

olduğundan f fonksiyonu [0,1] aralığında yukarıdaki teorem gereği integrallenebilirdir. $\int_0^1 f(x) dx$ integralini belirlemek için

$$U(f,P)=\sum_{j=1}^n M_j\triangle x_j=1$$

ya da

$$L(f,P) = \sum_{j=1}^{n} m_{j} \triangle x_{j} = 1 - \triangle x_{k}$$

olduğunu göz önüne almak yeterlidir. Yukarıdaki eşitliklerden $\int_0^1 f(x) dx = 1$ sonucu elde edilir. f fonksiyonunun $x_0 = \frac{1}{2}$ noktasında süreksiz olduğuna dikkat ediniz.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 38 / 75

İntegrallenebilirliğin Dizisel Versiyonu

Teorem

 $f \in B[a, b]$ olsun.

(i) f fonksiyonu [a, b] üzerinde integrallenebilir ise

$$\lim_{n\to\infty} U(f, P_n) = \alpha = \lim_{n\to\infty} L(f, P_n), \quad \int_a^b f(x) dx = \alpha$$

olacak şekilde $\mathcal{P}[a,b]$ içinde bir (P_n) dizisi vardır.

(ii) Eğer

$$\lim_{n\to\infty} U(f, P_n) = \alpha = \lim_{n\to\infty} L(f, P_n)$$

olacak şekilde $\mathcal{P}[a, b]$ içinde bir (P_n) dizisi varsa $f \in \mathcal{R}[a, b]$ ve $\int_a^b f(x) dx = \alpha$ dır.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 39 / 75

f(x) = x ise $f \in \mathcal{R}[a, b]$ olduğunu gösteriniz.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 40 / 7

f(x) = x ise $f \in \mathcal{R}[a, b]$ olduğunu gösteriniz.

Çözüm

 $P_n=\left\{x_k=a+rac{k}{n}(b-a):k=0,1,...,n
ight\}$ olsun. Bu durumda tüm alt aralıkların boyları birbirine eşittir ve

$$U(f, P_n) = \sum_{k=1}^{n} M_k \triangle x_k = \frac{b-a}{n} \sum_{k=1}^{n} M_k$$

$$= \frac{b-a}{n} \sum_{k=1}^{n} x_k = \frac{b-a}{n} \sum_{k=1}^{n} \left[a + \frac{k}{n} (b-a) \right]$$

$$= \frac{b^2 - a^2}{2} + \frac{(b-a)^2}{2n}$$

←□▶ ←□▶ ←□▶ ←□▶ ←□ ♥ ←□▶

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 40 / 75

$$L(f, P_n) = \sum_{k=1}^{n} m_k \triangle x_k = \frac{b-a}{n} \sum_{k=1}^{n} m_k$$

$$= \frac{b-a}{n} \sum_{k=1}^{n} x_{k-1} = \frac{b-a}{n} \sum_{k=1}^{n} \left[a + \frac{k-1}{n} (b-a) \right]$$

$$= \frac{b^2 - a^2}{2} - \frac{(b-a)^2}{2n}$$

olduğundan

$$\lim_{n\to\infty} U(f, P_n) = \frac{b^2 - a^2}{2} = \lim_{n\to\infty} L(f, P_n)$$

elde edilir. $f \in \mathcal{R}[a,b]$ ve $\int_a^b f(x)dx = \frac{b^2-a^2}{2}$ dir.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 41 / 75

$$f:[0,1]\to\mathbb{R},\ f(x)=\left\{\begin{array}{ll}0&;\quad x\in[0,1]-\mathbb{Q}\\\\\frac{1}{q}&;\quad x=\frac{p}{q}\in[0,1]\cap\mathbb{Q}\ \text{ve}\ (p,q)=1\\\text{$\rm $g\"{e}$klinde tanımlı Thomae fonksiyonu verilsin.}\ f\in\mathcal{R}[0,1]\ \text{olduğunu g\"{o}steriniz.}\end{array}\right.$$

(Uzaktan Eğitim) Riemann İntegrali

42 / 75

$$f:[0,1]\to\mathbb{R},\ f(x)=\left\{\begin{array}{ll}0&;\quad x\in[0,1]-\mathbb{Q}\\\\\frac{1}{q}&;\quad x=\frac{p}{q}\in[0,1]\cap\mathbb{Q}\ \text{ve}\ (p,q)=1\\\text{şeklinde tanımlı Thomae fonksiyonu verilsin.}\ f\in\mathcal{R}[0,1]\ \text{olduğunu gösteriniz.}\end{array}\right.$$

Çözüm

 $\int_0^1 f(x) dx = 0 \text{ dir.}$

 $Q\in\mathcal{P}[0,1]$ olsun. L(f,Q)=0 olduğu açıktır. $n\geq 2$ için $P_n=\left\{rac{p}{q}\in[0,1]:p\leq q\leq n
ight\}$ bölüntüsünü göz önüne alalım. Örneğin n=4 için $P_4=\left\{0,rac{1}{4},rac{1}{3},rac{1}{2},rac{2}{3},rac{3}{4},1
ight\}$ şeklindedir. $n\geq 2$ için $M_k=\sup_{x_{k-1}\leq x\leq x_k}f(x)<rac{1}{n}$ dir ve $n\to\infty$ iken $\|P\|\to 0$ dır. $U(f,P)-L(f,P)<\sum_{k=1}^nrac{1}{n}\triangle x_k=rac{1}{n}$ olduğundan $f\in\mathcal{R}[0,1]$ dir ve

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 42 / 75

Uygulamalarda aşağıdaki teorem oldukça kullanışlıdır.

Teorem

 $f \in \mathcal{R}[a,b]$ ve $n \to \infty$ iken $\|P_n\| \to 0$ olacak şekilde (P_n) dizisi [a,b] aralığının bölüntülerinin bir dizisi olsun. Bu durumda

$$\lim_{n\to\infty} U(f, P_n) = \alpha = \lim_{n\to\infty} L(f, P_n) = \int_a^b f(x) dx$$

dir.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 43 / 75

 $f \in \mathcal{R}[a, b]$ olsun.

$$S_n = \frac{b-a}{n} \sum_{k=1}^n f(a + \frac{k}{n}(b-a))$$

olmak üzere $\int_a^b f(x) dx = \lim_{n \to \infty} S_n$ olduğunu gösteriniz. Özel olarak $f \in \mathcal{R}[0,1]$ ise

$$\int_0^1 f(x) dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$

ya da daha genel olarak $x_k^* \in \left\lceil \frac{(k-1)}{n}, \frac{k}{n} \right\rceil$ olmak üzere

$$\int_{0}^{1} f(x) dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(x_{k}^{*})$$

dir.

- 《曰》 《레》 《돌》 《돌》 - 돌 - 쒼익()

44 / 75

Çözüm

 $P_n = \left\{ x_k = a + \frac{k}{n}(b-a) : k = 0, 1, ..., n \right\}$ olarak alınırsa istenen hemen elde edilir.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 45 / 75

Çözüm

 $P_n = \left\{ x_k = a + \frac{k}{n}(b-a) : k = 0, 1, ..., n \right\}$ olarak alınırsa istenen hemen elde edilir.

Örnek

$$\lim_{n\to\infty}\sum_{k=1}^n \frac{n}{n^2+k^2} = ?$$

Çözüm

 $P_n = \left\{ x_k = a + \frac{k}{n}(b-a) : k = 0, 1, ..., n \right\}$ olarak alınırsa istenen hemen elde edilir.

Örnek

$$\lim_{n\to\infty}\sum_{k=1}^n \frac{n}{n^2+k^2}=?$$

Çözüm

$$S_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \left(\frac{k}{n}\right)^2} \to S = \int_0^1 \frac{dx}{1 + x^2} = \operatorname{arctgx} \Big|_0^1 = \frac{\pi}{4}$$

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021

İntegrallenebilir Fonksiyon Sınıfları

Teorem

 $f \in C[a, b]$ ise $f \in \mathcal{R}[a, b]$ dir. Tersi doğru değildir.

46 / 75

İntegrallenebilir Fonksiyon Sınıfları

Teorem

 $f \in C[a,b]$ ise $f \in \mathcal{R}[a,b]$ dir. Tersi doğru değildir.

$$C[a,b]\subset \mathcal{R}[a,b]\subset B[a,b]$$

46 / 75

İntegrallenebilir Fonksiyon Sınıfları

Teorem

 $f \in C[a,b]$ ise $f \in \mathcal{R}[a,b]$ dir. Tersi doğru değildir.

$$C[a,b] \subset \mathcal{R}[a,b] \subset B[a,b]$$

İspat:

f fonksiyonu [a,b] aralığında sürekli olduğundan [a,b] aralığında düzgün süreklidir. $\forall \varepsilon>0$ için $\exists \delta>0$ $\ni x_1,x_2\in [0,1]$ ve $|x_1-x_2|<\delta$ iken $|f(x_1)-f(x_2)|<\frac{\varepsilon}{b-a}$.

[a,b] aralığının $\|P\|<\delta$ şartını sağlayan bir P bölüntüsünü göz önüne alalım. Bu durumda

$$0 \leq M_k - m_k < \frac{\varepsilon}{b-a}$$

yazılabilir.

İspatın Devamı:

O halde

$$U(f, P) - L(f, P) = \sum_{k=1}^{n} (M_k - m_k) \triangle x_k$$

$$< \frac{\varepsilon}{b-a} \sum_{k=1}^{n} \triangle x_k$$

$$= \varepsilon$$

elde edilir. Riemann integrallenebilirlik şartı sağlandığından f fonksiyonu [a, b] aralığında integrallenebilirdir.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 47 / 75

Teorem

 $f:[a,b] o \mathbb{R}$ fonksiyonu monoton ise f fonksiyonu [a,b] aralığında integrallenebilirdir. Tersi doğru değildir.

Teorem

 $f:[a,b] \to \mathbb{R}$ fonksiyonu monoton ise f fonksiyonu [a,b] aralığında integrallenebilirdir. Tersi doğru değildir.

İspat:

[a, b] aralığında artan fonksiyonlar için ispatı yapmak yeterlidir. f azalan ise benzer şekilde ispatlanabilir.

Her $x \in [a, b]$ için $f(a) \le f(x) \le f(b)$ olduğundan f fonksiyonu [a, b] üzerinde sınırlıdır. $\varepsilon > 0$ sayısı verilsin.

$$\|P\| < \delta = \frac{\varepsilon}{f(b) - f(a)}$$

özelliğine sahip [a,b] aralığının keyfi $P=\{x_0,x_1,...,x_n\}$ bölüntüsünü göz önüne alalım. f artan olduğundan

$$M_k = \sup_{x \in [x_{k-1}, x_k]} f(x) = f(x_k) \text{ ve } m_k = \inf_{x \in [x_{k-1}, x_k]} f(x) = f(x_{k-1}).$$

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 48 / 75

$$U(f, P) - L(f, P) = \sum_{k=1}^{n} (M_k - m_k) \triangle x_k$$

$$= \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) (x_k - x_{k-1})$$

$$< \delta \sum_{k=1}^{n} f(x_k) - f(x_{k-1})$$

$$= \delta (f(b) - f(a)) = \varepsilon$$

olduğundan f fonksiyonu integrallenebilirdir.

49 / 75

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021

Teorem

 $f,g\in B[a,b]$ ve [a,b] aralığında sonlu nokta hariç f(x)=g(x) olsun. Bu durumda

$$L(f) = L(g)$$
 ve $U(f) = U(g)$

dir. Özel olarak, f fonksiyonunun integrallenebilir olması için g.v.y.k. g fonksiyonunun integrallenebilir olmasıdır.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 50 / 75

Teorem

 $f,g\in B[a,b]$ ve [a,b] aralığında sonlu nokta hariç f(x)=g(x) olsun. Bu durumda

$$L(f) = L(g)$$
 ve $U(f) = U(g)$

dir. Özel olarak, f fonksiyonunun integrallenebilir olması için g.v.y.k. g fonksiyonunun integrallenebilir olmasıdır.

İspat:

İspatı sadece L(f)=L(g) için yapacağız. Üst integrallerin eşitliği benzer şekilde gösterilebilir. Hipotez gereği [a,b] aralığında $|f(x)|\leq K$ ve $|g(x)|\leq K$ olacak şekilde bir K>0 sayısı vardır. [a,b] aralığında r sayıdaki noktada f ve g fonksiyonları farklı olsun. $n\to\infty$ iken $\|P_n\|\to 0$ olacak şekilde P_n bölüntülerinin dizisini göz önüne alalım. Bu durumda

$$M_k = \sup_{x \in [x_{k-1}, x_k]} f(x) \neq M'_k \sup_{x \in [x_{k-1}, x_k]} g(x)$$

olacak şekilde en fazla 2r alt aralık vardır.

50 / 75

$$[x_{k-1},x_k]$$
 aralığında $|M_k-M_k'|\leq |M_k|+|M_k'|\leq 2K$ olduğundan
$$|L(f,P_n)-L(g,P_n)|\leq 2rK\,\|P_n\|$$

elde edilir.

$$|L(f) - L(g)| \leq |L(f) - L(f, P_n)| + |L(f, P_n) - L(g, P_n)| + |L(g) - L(g, P_n)| \leq |L(f) - L(f, P_n)| + 2rK ||P_n|| + |L(g) - L(g, P_n)|$$

olduğundan $n \to \infty$ iken L(f) = L(g) elde edilir. Bu ispatı tamamlar.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 51 / 75

Sonuç

Eğer $f \in B[a, b]$ fonksiyonu [a, b] aralığındaki sonlu sayıda nokta hariç sürekli ise bu durumda f fonksiyonu [a, b] üzerinde integrallenebilirdir. Özel olarak, [a, b] aralığı üzerinde parçalı sürekli ve sınırlı her fonksiyon [a, b] üzerinde integrallenebilirdir.

Belirli İntegralin Temel Özellikleri

Teorem

 $f,g\in\mathcal{R}\left[a,b
ight]$ olsun.

(a) c_1 ve c_2 sabitleri için $c_1f+c_2g\in\mathcal{R}\left[a,b\right]$ ve

$$\int_{a}^{b} [c_{1}f(x) + c_{2}g(x)] dx = c_{1} \int_{a}^{b} f(x) dx + c_{2} \int_{a}^{b} g(x) dx$$

eşitliği geçerlidir. Bu özelliğe integralin lineerlik özelliği adı verilir.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 53 / 75

Belirli İntegralin Temel Özellikleri

Teorem

 $f,g\in\mathcal{R}\left[a,b
ight]$ olsun.

(a) c_1 ve c_2 sabitleri için $c_1f + c_2g \in \mathcal{R}$ [a, b] ve

$$\int_{a}^{b} [c_{1}f(x) + c_{2}g(x)] dx = c_{1} \int_{a}^{b} f(x) dx + c_{2} \int_{a}^{b} g(x) dx$$

eşitliği geçerlidir. Bu özelliğe integralin lineerlik özelliği adı verilir.

(b) [a,b] üzerinde $f(x) \leq g(x)$ ise bu durumda

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$$

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 53 / 75

(c) $x \in [a,b]$ için $m \le f(x) \le M$ ve h fonksiyonu [m,M] üzerinde sürekli ise [a,b] üzerinde tanımlı $\phi(x) = (h \circ f)(x) = h(f(x))$ fonksiyonu [a,b] üzerinde integrallenebilirdir. Özel olarak

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a).$$

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 54

(c) $x \in [a,b]$ için $m \le f(x) \le M$ ve h fonksiyonu [m,M] üzerinde sürekli ise [a,b] üzerinde tanımlı $\phi(x) = (h \circ f)(x) = h(f(x))$ fonksiyonu [a,b] üzerinde integrallenebilirdir. Özel olarak

$$m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a).$$

(d) Her $x \in [a, b]$ için $f(x) \ge 0$ ise $\int_a^b f(x) dx \ge 0$ dır.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 54

(c) seçeneğinin bir sonucu olarak aşağıdaki önerme yazılabilir.

Sonuç

 $f \in \mathcal{R}[a, b]$ ise $\forall \alpha \in \mathbb{R}^+$ için $|f|^{\alpha} \in \mathcal{R}[a, b]$ dir.

(Uzaktan Eğitim) Riemann İntegrali

55 / 75

(c) seçeneğinin bir sonucu olarak aşağıdaki önerme yazılabilir.

Sonuç

 $f \in \mathcal{R}[a, b]$ ise $\forall \alpha \in \mathbb{R}^+$ için $|f|^{\alpha} \in \mathcal{R}[a, b]$ dir.

İspat:

 $\forall \alpha>0$ için $h:\mathbb{R}\to\mathbb{R}^+$, $h(t)=\left|t\right|^\alpha$ fonksiyonu \mathbb{R} üzerinde sürekli olduğundan bu fonksiyon her [m,M] üzerinde süreklidir. Bu yüzden (c) seçeneği gereği $\phi(x)=(h\circ f)\,(x)=h(f(x))=\left|f(x)\right|^\alpha$ fonksiyonu [a,b] üzerinde integrallenebilirdir.

55 / 75

Teorem (integraller için alt aralık özelliği)

 $f \in B[a, b]$ ve $c \in (a, b)$ olsun.

(a) $f \in \mathcal{R}\left[a,b\right]$ ise bu durumda $f \in \mathcal{R}\left[a,c\right]$ ve $f \in \mathcal{R}\left[c,b\right]$ dir. Üstelik

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

eşitliği geçerlidir.

(b) Eğer $f \in \mathcal{R}[a, c]$ ve $f \in \mathcal{R}[c, b]$ ise bu durumda $f \in \mathcal{R}[a, b]$ dir ve yukarıdaki eşitlik sağlanır.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 56 / 75

Teorem

 $\textit{f},\textit{g} \in \mathcal{R}\left[\textit{a},\textit{b}\right] \textit{ olsun. Bu durumda fg} \in \mathcal{R}\left[\textit{a},\textit{b}\right] \textit{ ve } \left|\textit{f}\right| \in \mathcal{R}\left[\textit{a},\textit{b}\right]. \textit{ Üstelik,}$

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

eşitsizliği geçerlidir. Eğer [a,b] aralığı üzerinde $|f(x)| \leq K$ ise

$$\left| \int_{a}^{b} f(x) dx \right| \le K(b-a)$$

yazılabilir.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 57 / 75

Teorem

f, $g \in \mathcal{R}\left[a,b
ight]$ olsun. Bu durumda f $g \in \mathcal{R}\left[a,b
ight]$ ve $\left|f\right| \in \mathcal{R}\left[a,b
ight]$. Üstelik,

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

eşitsizliği geçerlidir. Eğer [a,b] aralığı üzerinde $|f(x)| \leq K$ ise

$$\left| \int_{a}^{b} f(x) dx \right| \le K(b-a)$$

yazılabilir.

Sonuç

 $f \in \mathcal{R}[a, b]$ ise $f^2 \in \mathcal{R}[a, b]$ dir.

57 / 75

[a, b] aralığının aritmetik ve geometrik dizi olacak şekilde birer P bölüntüsü oluşturunuz.

Ornek

[a, b] aralığının aritmetik ve geometrik dizi olacak şekilde birer P bölüntüsü oluşturunuz.

Çözüm

[a, b] aralığının standart parçalanması bir aritmetik dizi oluşturur.

$$P = \left\{ x_k = a + (b-a) \stackrel{k}{\underset{n}{\cdot}} : k = 0, 1, ..., n \right\}$$
 olarak alınırsa $\triangle x = h = \frac{b-a}{n}$, $x_k = a + hk$ genel terimine sahip dizi bir aritmetik dizidir.

Şimdi geometrik dizi olacak şekilde bir P bölüntüsü oluşturalım. $x_0 = a$ ve

$$r=\left(\frac{b}{a}\right)^{\frac{1}{n}}$$
 olmak üzere $k=1,2,...,n$ için $x_k=ar^k$ genel terimine sahip

dizi bir geometrik dizidir.
$$P = \left\{ x_k = a \left(\frac{b}{a} \right)^{\frac{k}{n}} : k = 0, 1, ..., n \right\}$$
 bölüntüsü

[a, b] aralığının geometrik dizi teşkil edecek şekilde bir bölüntüsüdür. Bu durumda $\triangle x_k = x_k - x_{k-1} = ar^k - ar^{k-1} = ar^{k-1}(r-1)$ dir ve her iki durumda da $n \to \infty$ iken $||P|| \to 0$ dır.

[a, b] aralığının geometrik dizi teşkil eden $P = \{x_0, x_1, ..., x_n\}$ parçalanmasından yararlanarak $f(x) = \frac{1}{x}$ fonksiyonunun Riemann integrallenebilir olduğunu gösteriniz.

[a,b] aralığının geometrik dizi teşkil eden $P=\{x_0,x_1,...,x_n\}$ parçalanmasından yararlanarak $f(x)=\frac{1}{x}$ fonksiyonunun Riemann integrallenebilir olduğunu gösteriniz.

Çözüm

$$P = \left\{ x_k = a \left(\frac{b}{a} \right)^{\frac{k}{n}} \colon k = 0, 1, ..., n \right\} \text{ b\"ol\"unt\"us\'u} \left[a, b \right] \text{ araliğinin geometrik}$$
 dizi teşkil edecek şekilde bir b\"ol\"unt\"us\"ud\"ur. $r = \left(\frac{b}{a} \right)^{\frac{1}{n}}, x_0 = a \text{ ve}$ $k = 1, 2, ..., n$ için $x_k = ar^k$ dır. $\triangle x_k = ar^{k-1}(r-1)$ şeklindedir. $f(x) = \frac{1}{x}$ fonksiyonu $[a, b]$ aralığında azalan olduğundan

$$m_k = \inf_{x \in [x_{k-1}, x_k]} f(x) = \frac{1}{x_k} = \frac{1}{ar^k}$$
 $M_k = \sup_{x \in [x_{k-1}, x_k]} f(x) = \frac{1}{x_{k-1}} = \frac{1}{ar^{k-1}}$

olur.

Buna göre

$$L(f,P) = \sum_{k=1}^{n} m_k \triangle x_k$$
$$= \sum_{k=1}^{n} \frac{ar^{k-1}(r-1)}{ar^k}$$
$$= \frac{r-1}{r}n$$

ve

$$U(f,P) = \sum_{k=1}^{n} M_k \triangle x_k = (r-1) n$$

elde edilir.

$$\lim_{n \to \infty} L(f, P) = \lim_{n \to \infty} \frac{r - 1}{r} n$$

$$= \lim_{n \to \infty} \frac{\left(\frac{b}{a}\right)^{\frac{1}{n}} - 1}{\left(\frac{b}{a}\right)^{\frac{1}{n}}} n$$

$$= \ln \frac{b}{a}$$

ve

$$\lim_{n \to \infty} U(f, P) = \lim_{n \to \infty} (r - 1) n$$

$$= \lim_{n \to \infty} \left(\left(\frac{b}{a} \right)^{\frac{1}{n}} - 1 \right) n$$

$$= \ln \frac{b}{n}$$

elde edilir. $\lim_{n\to\infty} L(f,P) = \ln \frac{b}{a} = \lim_{n\to\infty} U(f,P)$ olduğundan f Riemann integrallenebilirdir.

1.Hafta- Subat 2021

$$g(x) = \left\{ \begin{array}{ll} 0 & ; & 0 \leq x \leq \frac{1}{2} \\ 1 & ; & \frac{1}{2} < x \leq 1 \end{array} \right. \ \, \text{fonksiyonunun integrallenebilir olduğunu}$$
 gösteriniz.

(Uzaktan Eğitim)

$$g(x) = \left\{ \begin{array}{ll} 0 & ; & 0 \leq x \leq \frac{1}{2} \\ 1 & ; & \frac{1}{2} < x \leq 1 \end{array} \right. \ \, \text{fonksiyonunun integrallenebilir olduğunu gösteriniz.}$$

Çözüm

$$P \in \mathcal{P}[0,1]$$
 olsun. $\inf_{x \in [0,1]} f(x) = 0$ ve $\sup_{x \in [0,1]} f(x) = 1$ olduğundan

 $0 \leq L(P,f) \leq U(f,P) \leq 1$ eşitsizliği geçerlidir. Bu nedenle $0 < \varepsilon \leq 1$ için $U(f,P) - L(f,P) < \varepsilon$ olacak şekilde bir $P \in \mathcal{P}[0,1]$ bölüntüsünün varlığını göstermek yeterlidir. $P = \left\{0, \frac{1}{2}, \frac{1}{2} + \frac{\varepsilon}{4}, 1\right\}$ olarak seçilirse

$$U(f,P) - L(f,P) = \sum_{k=1}^{3} (M_k - m_k) \triangle x_k = \frac{\varepsilon}{4} < \varepsilon$$

elde edilir. Riemann koşulu gereği f fonksiyonu integrallenebilirdir. Darboux koşulundan yararlanarak, f fonksiyonunun integrallenebilir olduğunu gösteriniz.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 62 / 75

Belirli integral yardımıyla aşağıdaki limitleri hesaplayınız.

(a)
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right)$$

Belirli integral yardımıyla aşağıdaki limitleri hesaplayınız.

(a)
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}\right)$$

(b)
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \cdots + \frac{n}{n^2+n^2} \right)$$

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 63 / 75

Belirli integral yardımıyla aşağıdaki limitleri hesaplayınız.

(a)
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n} \right)$$

(b)
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \dots + \frac{n}{n^2+n^2} \right)$$

(c)
$$p \ge 0$$
 olmak üzere $\lim_{n \to \infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 63 / 75

Belirli integral yardımıyla aşağıdaki limitleri hesaplayınız.

(a)
$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n} \right)$$

(b)
$$\lim_{n\to\infty} \left(\frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \cdots + \frac{n}{n^2+n^2} \right)$$

(c)
$$p \ge 0$$
 olmak üzere $\lim_{n \to \infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$

(d)
$$\lim_{n\to\infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(n+p)\cdots 2n}$$

(Uzaktan Eğitim)

Çözüm

(a)

$$S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$
$$= \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{k}{n}}$$

 $f(x)=rac{1}{1+x}$ fonksiyonu [0,1] aralığında sürekli olduğundan $f\in\mathcal{R}\left[0,1
ight]$ dir ve bu nedenle

$$S_n = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}) \to S = \int_0^1 \frac{dx}{1+x} = \ln(1+x)|_0^1 = \ln 2$$

elde edilir.

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 64

Çözüm

(c)

$$S_n = \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$$

$$= \frac{1}{n} \left[\left(\frac{1}{n} \right)^p + \left(\frac{2}{n} \right)^p + \dots + \left(\frac{n}{n} \right)^p \right]$$

$$= \frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n} \right)^p$$

 $f(x)=x^p$ fonksiyonu $p\geq 0$ için [0,1] üzerinde Riemann integrallenebilir olduğundan

$$S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \rightarrow S = \int_0^1 x^p dx = \frac{1}{1+p}$$

elde edilir.

- 4 ロ ト 4 個 ト 4 重 ト 4 重 ト 3 重 · か 9 0

Çözüm

$$S_n = \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(n+p)\cdots 2n}$$
 denilirse

$$\ln S_n = \frac{1}{n} \left[\ln \left(1 + \frac{1}{n} \right) + \dots + \ln \left(1 + \frac{p}{n} \right) + \dots + \ln \left(1 + \frac{n}{n} \right) \right]$$
$$= \frac{1}{n} \sum_{n=1}^{\infty} \ln \left(1 + \frac{k}{n} \right)$$

olur. $f:[0,1] \to \mathbb{R}$, $f(x)=\ln(1+x)$ fonksiyonu sürekli olduğundan $f \in \mathcal{R}[0,1]$ dir ve bu nedenle

$$\ln S_n = \frac{1}{n} \sum_{n=1}^{\infty} f\left(\frac{k}{n}\right) \to S = \int_0^1 \ln(1+x) dx = 2 \ln 2 - 1$$

$$\lim_{n\to\infty} \ln S_n = 2 \ln 2 - 1 \Rightarrow \lim_{n\to\infty} S_n = e^{2 \ln 2 - 1} = \frac{4}{e}$$

elde edilir.

(ロ) (部) (注) (注) 注 り()

Alıştırma

1. Belirli integral yardımıyla aşağıdaki dizilerin limitlerini hesaplayınız.

(a)
$$a_n = \frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n}$$

Alıştırma

Belirli integral yardımıyla aşağıdaki dizilerin limitlerini hesaplayınız.

(a)
$$a_n = \frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n}$$

(b) $a_n = \left[\prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)\right]^{\frac{1}{n}}$

(b)
$$a_n = \left[\prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)\right]^{\frac{1}{n}}$$

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Subat 2021 67 / 75

1. Belirli integral yardımıyla aşağıdaki dizilerin limitlerini hesaplayınız.

(a)
$$a_n = \frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n}$$

(b)
$$a_n = \left[\prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)\right]^{\frac{1}{n}}$$

(c)
$$a_n = \sum_{k=1}^n \frac{k^2}{n^3 + k^3}$$

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 67 / 75

1. Belirli integral yardımıyla aşağıdaki dizilerin limitlerini hesaplayınız.

(a)
$$a_n = \frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n}$$

(b)
$$a_n = \left[\prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)\right]^{\frac{1}{n}}$$

(c)
$$a_n = \sum_{k=1}^n \frac{k^2}{n^3 + k^3}$$

(d)
$$a_n = \sum_{k=1}^n \frac{n+k}{n^2+k^2}$$

(Uzaktan Eğitim)

1. Belirli integral yardımıyla aşağıdaki dizilerin limitlerini hesaplayınız.

(a)
$$a_n = \frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n}$$

(b)
$$a_n = \left[\prod_{k=1}^n \left(1 + \frac{k^2}{n^2}\right)\right]^{\frac{1}{n}}$$

(c)
$$a_n = \sum_{k=1}^n \frac{k^2}{n^3 + k^3}$$

(d)
$$a_n = \sum_{k=1}^n \frac{n+k}{n^2+k^2}$$

(e)
$$a_n = \frac{\pi}{n} \sum_{k=1}^n \sin\left(\frac{k\pi}{n}\right)$$

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021 67 / 75

2. $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} x & ; x \neq 0 \text{ ve } \frac{1}{x} \in \mathbb{Z} \\ 0 & ; \text{ diğer yerlerde} \end{cases}$ şeklinde tanımlanan fonksiyon [0,1] üzerinde integrallenebilir midir?

68 / 75

(Uzaktan Eğitim) Riemann İntegrali 1.Hafta- Şubat 2021

- 2. $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} x & ; x \neq 0 \text{ ve } \frac{1}{x} \in \mathbb{Z} \\ 0 & ; \text{ diğer yerlerde} \end{cases}$ şeklinde tanımlanan fonksiyon [0,1] üzerinde integrallenebilir midir?
- 3. $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} x & ; x \in \mathbb{Q} \cap [0,1] \\ x^2 & ; x \in \mathbb{Q}^c \cap [0,1] \end{cases}$ șeklinde tanımlanan fonksiyon [0,1] üzerinde integrallenebilir midir?

- 2. $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} x & ; x \neq 0 \text{ ve } \frac{1}{x} \in \mathbb{Z} \\ 0 & ; \text{ diğer yerlerde} \end{cases}$ şeklinde tanımlanan fonksiyon [0,1] üzerinde integrallenebilir midir?
- 3. $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} x & ; x \in \mathbb{Q} \cap [0,1] \\ x^2 & ; x \in \mathbb{Q}^c \cap [0,1] \end{cases}$ şeklinde tanımlanan fonksiyon [0,1] üzerinde integrallenebilir midir?
- 4. $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} \sin\frac{1}{x} & ; & 0 < x \le 1 \\ 0 & ; & x = 0 \end{cases}$ şeklinde tanımlanan fonksiyon [0,1] üzerinde integrallenebilir midir?

- 2. $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} x & ; x \neq 0 \text{ ve } \frac{1}{x} \in \mathbb{Z} \\ 0 & ; \text{ diğer yerlerde} \end{cases}$ şeklinde tanımlanan fonksiyon [0,1] üzerinde integrallenebilir midir?
- 3. $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} x & ; x \in \mathbb{Q} \cap [0,1] \\ x^2 & ; x \in \mathbb{Q}^c \cap [0,1] \end{cases}$ şeklinde tanımlanan fonksiyon [0,1] üzerinde integrallenebilir midir?
- 4. $f:[0,1] \to \mathbb{R}$, $f(x) = \begin{cases} \sin\frac{1}{x} & ; & 0 < x \le 1 \\ 0 & ; & x = 0 \end{cases}$ şeklinde tanımlanan fonksiyon [0,1] üzerinde integrallenebilir midir?
- 5. $f:[0,1] \to \mathbb{R}, \ f(x) = \left\{ \begin{array}{ll} \sin\frac{1}{x} & ; \quad x \in \mathbb{Q} \cap [0,1] \\ 0 & ; \quad x \in \mathbb{Q}^c \cap [0,1] \end{array} \right.$ șeklinde tanımlanan fonksiyon [0,1] üzerinde integrallenebilir midir?

