Orbit structures and complexity in Schubert varieties and Richardson varieties

Reuven Hodges (University of Kansas) joint work with Yibo Gao (Peking University)

Saint Louis University, 2025 Fall Central Sectional Oct 2025

Let GL_n be the general linear group and B be the Borel subgroup of upper triangular matrices. There is an action of GL_n on the flag variety GL_n/B by left multiplication.

Let GL_n be the general linear group and B be the Borel subgroup of upper triangular matrices. There is an action of GL_n on the flag variety GL_n/B by left multiplication.

B orbits

Let T be the diagonal matrices in GL_n and \mathfrak{S}_n be the Weyl group.

The *B*-orbits in GL_n/B are parametrized by \mathfrak{S}_n .

For $w \in \mathfrak{S}_n$, $X_w^{\circ} := BwB$ is the Schubert cell. Its Zariski closure is the Schubert variety,

$$X_w := \overline{BwB}$$

These are well studied varieties with a rich combinatorial structure.

Let GL_n be the general linear group and B be the Borel subgroup of upper triangular matrices. There is an action of GL_n on the flag variety GL_n/B by left multiplication.

B orbits

Let T be the diagonal matrices in GL_n and \mathfrak{S}_n be the Weyl group.

The *B*-orbits in GL_n/B are parametrized by \mathfrak{S}_n .

For $w \in \mathfrak{S}_n$, $X_w^{\circ} := BwB$ is the Schubert cell. Its Zariski closure is the Schubert variety,

$$X_w := \overline{BwB}$$

These are well studied varieties with a rich combinatorial structure.

B⁻ orbits

 B^- is the opposite Borel subgroup of lower triangular matrices; B^- -orbits parametrized by \mathfrak{S}_n .

For $w \in \mathfrak{S}_n, X_o^w := B^-wB$ is the opposite Schubert cell. Its Zariski closure is the opposite Schubert variety,

$$X^w := \overline{B^- wB}$$

Let GL_n be the general linear group and B be the Borel subgroup of upper triangular matrices. There is an action of GL_n on the flag variety GL_n/B by left multiplication.

B orbits

Let T be the diagonal matrices in GL_n and \mathfrak{S}_n be the Weyl group.

The *B*-orbits in GL_n/B are parametrized by \mathfrak{S}_n .

For $w \in \mathfrak{S}_n$, $X_w^{\circ} := BwB$ is the Schubert cell. Its Zariski closure is the Schubert variety,

$$X_w := \overline{BwB}$$

These are well studied varieties with a rich combinatorial structure.

B⁻ orbits

 B^- is the opposite Borel subgroup of lower triangular matrices; B^- -orbits parametrized by \mathfrak{S}_n .

For $w \in \mathfrak{S}_n, X_o^w := B^-wB$ is the opposite Schubert cell. Its Zariski closure is the opposite Schubert variety,

$$X^w := \overline{B^- wB}$$

Richardson varieties

Let $u, v \in \mathfrak{S}_n$. The Richardson variety $\mathcal{R}_{u,v}$ is

$$\mathcal{R}_{u,v} := X_v \cap X^u$$

The Bruhat order

The Bruhat order on \mathfrak{S}_n is the partial order \leq induced by B-orbit closure containment in GL_n/B ; that is, for $u, v \in \mathfrak{S}_n$

$$u \le v \iff X_u \subseteq X_v$$

Let $t_{i,j} := (ij) \in \mathfrak{S}_n$ and $s_i := t_{i,i+1}$. Combinatorially, the Bruhat order is the transitive closure of $w < wt_{i,j} \iff w(i) < w(j)$. (Ehresmann 1934, Chevalley 1958)

The Bruhat order

The Bruhat order on \mathfrak{S}_n is the partial order \leq induced by B-orbit closure containment in GL_n/B ; that is, for $u, v \in \mathfrak{S}_n$

$$u \leq v \iff X_u \subseteq X_v$$

Let $t_{i,j} := (ij) \in \mathfrak{S}_n$ and $s_i := t_{i,i+1}$. Combinatorially, the Bruhat order is the transitive closure of $w < wt_{i,j} \iff w(i) < w(j)$. (Ehresmann 1934, Chevalley 1958)

The Bruhat order on S4.

Much of the geometric structure of GL_n/B is encoded in the combinatorics of the Bruhat order.

What about orbits of other subgroups of GL_n ? Restrict to looking at reductive subgroups of GL_n .

What about orbits of other subgroups of GL_n ? Restrict to looking at reductive subgroups of GL_n . What about orbits in X_w instead of GL_n/B ?

What about orbits of other subgroups of GL_n ? Restrict to looking at reductive subgroups of GL_n . What about orbits in X_w instead of GL_n/B ?

Levi subgroups (and their Borel subgroups)

A standard parabolic subgroup of GL_n is a subgroup containing B. For each $I\subseteq [n-1]$, there is a standard parabolic subgroup P_I with

$$P_I = L_I \ltimes U_I$$

where U_l is its unipotent radical, and L_l is a reductive group called a Levi subgroup.

What about orbits of other subgroups of GL_n ? Restrict to looking at reductive subgroups of GL_n . What about orbits in X_w instead of GL_n/B ?

Levi subgroups (and their Borel subgroups)

A standard parabolic subgroup of GL_n is a subgroup containing B. For each $I \subseteq [n-1]$, there is a standard parabolic subgroup P_I with

$$P_I = L_I \ltimes U_I$$
,

where U_l is its unipotent radical, and L_l is a reductive group called a Levi subgroup. For n = 7, $l = \{1, 3, 5, 6\}$:

What about orbits of other subgroups of GL_n ? Restrict to looking at reductive subgroups of GL_n . What about orbits in X_w instead of GL_n/B ?

Levi subgroups (and their Borel subgroups)

A standard parabolic subgroup of GL_n is a subgroup containing B. For each $I \subseteq [n-1]$, there is a standard parabolic subgroup P_I with

$$P_I = L_I \ltimes U_I$$
,

where U_I is its unipotent radical, and L_I is a reductive group called a Levi subgroup. For n=7, $I=\{1,3,5,6\}$:

The Levi-Borel is $B_I := L_I \cap B$. Intuitively: it is the upper triangular part of each factor of L_I .

What about orbits of other subgroups of GL_n ? Restrict to looking at reductive subgroups of GL_n . What about orbits in X_w instead of GL_n/B ?

Levi subgroups (and their Borel subgroups)

A standard parabolic subgroup of GL_n is a subgroup containing B. For each $I \subseteq [n-1]$, there is a standard parabolic subgroup P_I with

$$P_I = L_I \ltimes U_I$$
,

where U_l is its unipotent radical, and L_l is a reductive group called a Levi subgroup. For n = 7, $l = \{1, 3, 5, 6\}$:

The Levi-Borel is $B_l := L_l \cap B$. Intuitively: it is the upper triangular part of each factor of L_l .

When I = [n-1], $P_I = L_I = GL_n$. In GL_n/B the Levi-Borel orbits are the Schubert cells. When $I = \emptyset$, $L_I = T$. And we are studying T-orbits and T-orbit closures in X_w or GL_n/B .

Orbit complexity

Let G be a reductive algebraic group and B_G a Borel subgroup of G.

The G-complexity of a normal G-variety X, $c_G(X)$, is the minimum codimension of a B_G -orbit in X.

Orbit complexity

Let G be a reductive algebraic group and B_G a Borel subgroup of G.

The G-complexity of a normal G-variety X, $c_G(X)$, is the minimum codimension of a B_G -orbit in X.

Fact 1: The are a finite number of B_G -orbits if and only if $c_G(X) = 0$; in this case X is G-spherical.

Fact 2: A *T*-spherical variety is a toric variety.

Orbit complexity

Let G be a reductive algebraic group and B_G a Borel subgroup of G.

The G-complexity of a normal G-variety X, $c_G(X)$, is the minimum codimension of a B_G -orbit in X.

Fact 1: The are a finite number of B_G -orbits if and only if $c_G(X) = 0$; in this case X is G-spherical.

Fact 2: A T-spherical variety is a toric variety.

Goal: Understand when there are a finite number of B_l -orbits in X_w (equivalently, $c_{L_l}(X_w) = 0$).

Orbit complexity

Let G be a reductive algebraic group and B_G a Borel subgroup of G.

The G-complexity of a normal G-variety X, $c_G(X)$, is the minimum codimension of a B_G -orbit in X.

Fact 1: The are a finite number of B_G -orbits if and only if $c_G(X) = 0$; in this case X is G-spherical.

Fact 2: A *T*-spherical variety is a toric variety.

Goal: Understand when there are a finite number of B_l -orbits in X_w (equivalently, $c_{L_l}(X_w) = 0$).

Complexity in the literature:

- (I) Torus orbits ($T = L_{\emptyset}$):
 - When is a Schubert variety is a a toric variety? (Karuppuchamy '13)
 - When is a Richardson variety a toric variety? (Lee-Matsuda-Park '21, Can-Saha '23)
 - What is the complexity of the torus action on a Schubert variety (or Richardson variety)? Type A: (Lee-Matsuda-Park '21, Donten Bury-Escobar-Portakal '23)

Orbit complexity

Let G be a reductive algebraic group and B_G a Borel subgroup of G.

The G-complexity of a normal G-variety X, $c_G(X)$, is the minimum codimension of a B_G -orbit in X.

Fact 1: The are a finite number of B_G -orbits if and only if $c_G(X) = 0$; in this case X is G-spherical.

Fact 2: A *T*-spherical variety is a toric variety.

Goal: Understand when there are a finite number of B_l -orbits in X_w (equivalently, $c_{L_l}(X_w) = 0$).

Complexity in the literature:

- (I) Torus orbits ($T = L_{\emptyset}$):
 - When is a Schubert variety is a a toric variety? (Karuppuchamy '13)
 - When is a Richardson variety a toric variety? (Lee-Matsuda-Park '21, Can-Saha '23)
 - What is the complexity of the torus action on a Schubert variety (or Richardson variety)? Type A: (Lee-Matsuda-Park '21, Donten Bury-Escobar-Portakal '23)
- (II) Levi-Borel orbits:
 - When is the flag variety L_I-spherical? (Magyar-Weyman-Zelevinsky '99, Stembridge '03)
 - When is a Schubert variety L_l -spherical? (Hodges-Yong '21, Gao-Hodges-Yong '22 & '23, Can-Saha '23)

Algebraic dimension of a Bruhat interval

The (undirected) Bruhat graph on \mathfrak{S}_n is the graph Γ with vertex set \mathfrak{S}_n and edges $w \sim t_{i,j} w$ for all $w \in \mathfrak{S}_n$ and $1 \le i < j \le n$.

Let e_1, \ldots, e_n be the standard basis vectors of \mathbb{R}^n .

For each edge $w \sim t_{i,j}w$, we say that it has weight $e_i - e_j$, and write $\operatorname{wt}(w,t_{i,j}w) = e_i - e_j$.

For $u \le v$, let $\Gamma(u, v)$ be the Bruhat graph restricted to the vertex set [u, v].

Algebraic dimension of a Bruhat interval

The (undirected) Bruhat graph on \mathfrak{S}_n is the graph Γ with vertex set \mathfrak{S}_n and edges $w \sim t_{i,j} w$ for all $w \in \mathfrak{S}_n$ and $1 \le i < j \le n$.

Let e_1, \ldots, e_n be the standard basis vectors of \mathbb{R}^n .

For each edge $w \sim t_{i,j}w$, we say that it has weight $e_i - e_j$, and write $\operatorname{wt}(w, t_{i,j}w) = e_i - e_j$.

For $u \leq v$, let $\Gamma(u, v)$ be the Bruhat graph restricted to the vertex set [u, v].

Algebraic dimension

For $u \leq v$, let AD(u, v) be the \mathbb{R} -span of all edge weights in $\Gamma(u, v)$, i.e.

$$AD(u, v) = \operatorname{span}_{\mathbb{R}} \{ \operatorname{wt}(x, y) \mid u \le x < y \le v \}.$$

Let $ad(u, v) = \dim AD(u, v)$ be the algebraic dimension of the Bruhat interval [u, v].

Algebraic dimension of a Bruhat interval

The (undirected) Bruhat graph on \mathfrak{S}_n is the graph Γ with vertex set \mathfrak{S}_n and edges $w \sim t_{i,j} w$ for all $w \in \mathfrak{S}_n$ and $1 \le i < j \le n$.

Let e_1, \ldots, e_n be the standard basis vectors of \mathbb{R}^n .

For each edge $w \sim t_{i,j}w$, we say that it has weight $e_i - e_j$, and write wt $(w, t_{i,j}w) = e_i - e_j$.

For $u \leq v$, let $\Gamma(u, v)$ be the Bruhat graph restricted to the vertex set [u, v].

Algebraic dimension

For $u \leq v$, let AD(u, v) be the \mathbb{R} -span of all edge weights in $\Gamma(u, v)$, i.e.

$$\mathsf{AD}(u,v) = \mathrm{span}_{\mathbb{R}} \{ \mathsf{wt}(x,y) \mid u \leq x < y \leq v \}.$$

Let $ad(u, v) = \dim AD(u, v)$ be the algebraic dimension of the Bruhat interval [u, v].

Proposition (Gao-H). AD(u, v) has the following properties.

1. For any saturated chain $u = w^{(0)} \leqslant w^{(1)} \leqslant \cdots \leqslant w^{(\ell-1)} \leqslant w^{(\ell)} = v$,

$$AD(u, v) = \operatorname{span}_{\mathbb{R}} \{ \operatorname{wt}(w^{(i)}, w^{(i+1)}) \mid i = 0, \dots, \ell - 1 \}.$$

2. For any $w \in [u,v]$, ${\sf AD}(u,v)$ is spanned by the weights of all cover relations incident to w inside [u,v].

Algebraic dimension example

Let u=1234 and v=3412. The interval $\left[1234,3412\right]$ in the Bruhat order is given below with cover relations bolded.

The weights from 3412 are e_1-e_3 , e_2-e_3 , e_1-e_4 and e_2-e_4 (from left to right) while the weights from 3142 are e_1-e_3 , e_2-e_3 and e_2-e_4 (from left to right on the bottom) and e_1-e_4 (on the top). The same linear space is spanned by these two sets of weights.

Thus ad(1234, 3412) = 3.

Torus complexity in Richardson varieties

Theorem (Gao-H). The T-complexity of the Richardson variety equals

$$c_T(\mathcal{R}_{u,v}) = \ell(v) - \ell(u) - \mathsf{ad}(u,v).$$

Torus complexity in Richardson varieties

Theorem (Gao-H). The T-complexity of the Richardson variety equals

$$c_T(\mathcal{R}_{u,v}) = \ell(v) - \ell(u) - \mathsf{ad}(u,v).$$

For $w \in \mathfrak{S}_n$, the support of w is

$$\mathsf{Supp}(w) = \{s_i : | s_i \leq w\}.$$

The cardinality of Supp(w) is written as supp(w) = |Supp(w)|.

Corollary (Gao-H). The T-complexity of the Schubert variety X_w equals

$$c_T(X_w) = \ell(w) - \text{supp}(w).$$

Torus complexity in Richardson varieties

Theorem (Gao-H). The T-complexity of the Richardson variety equals

$$c_T(\mathcal{R}_{u,v}) = \ell(v) - \ell(u) - \mathsf{ad}(u,v).$$

For $w \in \mathfrak{S}_n$, the support of w is

$$\mathsf{Supp}(w) = \{s_i : | s_i \leq w\}.$$

The cardinality of Supp(w) is written as supp(w) = |Supp(w)|.

Corollary (Gao-H). The T-complexity of the Schubert variety X_w equals

$$c_T(X_w) = \ell(w) - \operatorname{supp}(w).$$

Even better, this leads to a formula for the L_l -complexity of X_w .

Levi complexity in Schubert varieties

Fix $w \in \mathfrak{S}_n$ and $I \subseteq [n-1]$.

Fact: There is a unique left parabolic decomposition w = ad with respect to I.

Levi complexity in Schubert varieties

Fix $w \in \mathfrak{S}_n$ and $I \subseteq [n-1]$.

Fact: There is a unique left parabolic decomposition w = ad with respect to I.

Theorem (Gao-H). Suppose L_l acts on the Schubert variety X_w . Then

$$c_{L_I}(X_w) = \ell(d) - \operatorname{supp}(d).$$

Future work

Generalized Bruhat orders: Given a Levi-Borel B_l such that B_l has a finite number of orbits in X_w , can we give an combinatorial indexing set for these orbits. And can we describe the partial order on this set induced by orbit closure containment?

Number of B_I orbits in general? We can say when there will be a finite number of B_I -orbits in X_w when L_I acts on X_w . But what about when L_I does not act? This is an open problem.

Thank you!