EMTH211-19S2 TUTORIAL 8

SEPTEMBER 16-20, 2019

These exercises deal with

- Orthogonal vectors
- Orthogonal matrices
- Orthogonal complements and projections
- Gram-Schmidt process

Reading guide (Poole, Linear Algebra)

Sections 5.1, 5.2 and 5.3.

All references below are to this book. The exercises listed below are the same in the 2nd and 3rd editions.

- 8.1 Section 5.1, Exercises 3, 5, 9, 11, 13, 19, 27.
- 8.2 Let W be the subspace of \mathbb{R}^3 spanned by

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}.$$

Apply the Gram Schmidt Process to obatin an orthogonal basis for W. Furthermore find the orthogonal decomposition of

$$\mathbf{v} = \begin{bmatrix} 4 \\ -4 \\ 3 \end{bmatrix}$$

with respect to W.

8.3 Find an orthogonal basis for \mathbb{R}^4 that contains the vectors

$$\begin{bmatrix} 2 \\ 1 \\ 0 \\ -1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 \\ 0 \\ 3 \\ 2 \end{bmatrix}.$$

8.4 Use Gram Schmidt to find an orthogonal basis for the column space of

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

8.5 Let \mathbf{v} be any non-zero column vector in \mathbf{R}^n . Show that

$$H = I - \frac{2}{\mathbf{v}^{\mathsf{T}} \mathbf{v}} \mathbf{v} \mathbf{v}^{\mathsf{T}}$$

is an orthogonal matrix where I is the $n \times n$ identity matrix. Let $W = \text{span } (\mathbf{v})$. Show that

$$H \mathbf{x} = \begin{cases} -\mathbf{x} & \text{if } \mathbf{x} \in W \\ \mathbf{x} & \text{if } \mathbf{x} \in W^{\perp}. \end{cases}$$

$$A = \begin{bmatrix} 1 & 2 & 2 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

and use this factorisation to solve $A \boldsymbol{x} = \boldsymbol{b},$ where $\boldsymbol{b} = [1, 2, 3, 4]^T.$

Looking at the orthogonal matrices *A* and *B* in Example 5.7, you may notice that not only do their columns form orthonormal sets—so do their *rows*. In fact, every orthogonal matrix has this property, as the next theorem shows.

Theorem 5.7

If Q is an orthogonal matrix, then its rows form an orthonormal set.

Proof From Theorem 5.5, we know that $Q^{-1} = Q^{T}$. Therefore,

$$(Q^T)^{-1} = (Q^{-1})^{-1} = Q = (Q^T)^T$$

so Q^T is an orthogonal matrix. Thus, the columns of Q^T —which are just the rows of Q—form an orthonormal set.

The final theorem in this section lists some other properties of orthogonal matrices.

Theorem 5.8

Let Q be an orthogonal matrix.

a. Q^{-1} is orthogonal.

b. det
$$Q = \pm 1$$

c. If λ is an eigenvalue of Q, then $|\lambda| = 1$.

d. If Q_1 and Q_2 are orthogonal $n \times n$ matrices, then so is Q_1Q_2 .

Proof We will prove property (c) and leave the proofs of the remaining properties as exercises.

(c) Let λ be an eigenvalue of Q with corresponding eigenvector \mathbf{v} . Then $Q\mathbf{v} = \lambda \mathbf{v}$, and, using Theorem 5.6(b), we have

$$\|\mathbf{v}\| = \|Q\mathbf{v}\| = \|\lambda\mathbf{v}\| = |\lambda|\|\mathbf{v}\|$$

Since $\|\mathbf{v}\| \neq 0$, this implies that $|\lambda| = 1$.

/a + bi /

Remark Property (c) holds even for complex eigenvalues. The matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ is orthogonal with eigenvalues i and -i, both of which have absolute value 1.

Exercises 5.1

In Exercises 1–6, determine which sets of vectors are orthogonal.

1.
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$
2. $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 1 \end{bmatrix}$
3. $\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$
4. $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 6 \\ -1 \end{bmatrix}$

5.
$$\begin{bmatrix} 2 \\ 3 \\ -1 \\ 4 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -4 \\ -6 \\ 2 \\ 7 \end{bmatrix}$

6. $\begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \\ 0 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -1 \\ 1 \\ 1 \end{bmatrix}$

388

In Exercises 7–10, show that the given vectors form an orthogonal basis for \mathbb{R}^2 or \mathbb{R}^3 . Then use Theorem 5.2 to express w as a linear combination of these basis vectors. Give the coordinate vector $[\mathbf{w}]_{\mathcal{B}}$ of \mathbf{w} with respect to the basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\} \text{ of } \mathbb{R}^2 \text{ or } \mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \text{ of } \mathbb{R}^3.$

7.
$$\mathbf{v}_1 = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$; $\mathbf{w} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$

8.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$; $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$\mathbf{9.} \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}; \mathbf{w} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{10.} \ \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}; \mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

In Exercises 11–15, determine whether the given orthogonal set of vectors is orthonormal. If it is not, normalize the vectors to form an orthonormal set.

11.
$$\begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \end{bmatrix}$$
, $\begin{bmatrix} -\frac{4}{5} \\ \frac{3}{5} \end{bmatrix}$

12.
$$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$
, $\begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$

13.
$$\begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix}$$
, $\begin{bmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \\ -\frac{5}{2} \end{bmatrix}$ 14. $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$,

14.
$$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 \\ \frac{1}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{6} \\ \frac{1}{6} \\ -\frac{1}{6} \end{bmatrix}$$

15.
$$\begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \\ 1/2 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{6}/3 \\ 1/\sqrt{6} \\ -1/\sqrt{6} \end{bmatrix}, \begin{bmatrix} \sqrt{3}/2 \\ -\sqrt{3}/6 \\ \sqrt{3}/6 \\ -\sqrt{3}/6 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$

In Exercises 16–21, determine whether the given matrix is orthogonal. If it is, find its inverse.

16.
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

17.
$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

18.
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{2}{5} \\ \frac{1}{2} & -\frac{1}{3} & \frac{2}{5} \\ -\frac{1}{2} & 0 & \frac{4}{5} \end{bmatrix}$$

19.
$$\begin{bmatrix} \cos \theta \sin \theta & -\cos \theta & -\sin^2 \theta \\ \cos^2 \theta & \sin \theta & -\cos \theta \sin \theta \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$$

20.
$$\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

21.
$$\begin{bmatrix} 1 & 0 & 0 & 1/\sqrt{6} \\ 0 & 2/3 & 1/\sqrt{2} & 1/\sqrt{6} \\ 0 & -2/3 & 1/\sqrt{2} & -1/\sqrt{6} \\ 0 & 1/3 & 0 & 1/\sqrt{2} \end{bmatrix}$$

- 22. Prove Theorem 5.8(a).
- 23. Prove Theorem 5.8(b).
- 24. Prove Theorem 5.8(d).
- 25. Prove that every permutation matrix is orthogonal.
- 26. If Q is an orthogonal matrix, prove that any matrix obtained by rearranging the rows of Q is also orthogonal.
- 27. Let Q be an orthogonal 2×2 matrix and let x and y be vectors in \mathbb{R}^2 . If θ is the angle between x and y, prove that the angle between Qx and Qy is also θ . (This proves that the linear transformations defined by orthogonal matrices are angle-preserving in \mathbb{R}^2 , a fact that is true in general.)
- 28. (a) Prove that an orthogonal 2×2 matrix must have the form

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

where $\begin{bmatrix} a \\ b \end{bmatrix}$ is a unit vector.

(b) Using part (a), show that every orthogonal 2×2 matrix is of the form

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

where $0 \le \theta < 2\pi$.

- (c) Show that every orthogonal 2×2 matrix corresponds to either a rotation or a reflection in \mathbb{R}^2 .
- (d) Show that an orthogonal 2×2 matrix Q corresponds to a rotation in \mathbb{R}^2 if det Q = 1 and a reflection in \mathbb{R}^2 if det Q = -1.

In Exercises 29–32, use Exercise 28 to determine whether the given orthogonal matrix represents a rotation or a reflection. If it is a rotation, give the angle of rotation; if it is a reflection, give the line of reflection.

29.
$$\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

29.
$$\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
 30. $\begin{bmatrix} -1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & -1/2 \end{bmatrix}$

31.
$$\begin{bmatrix} -1/2 & \sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}$$
 32. $\begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$

32.
$$\begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{bmatrix}$$