

Kalorimetrija

• Energijska vrednost hrane, kalorija

$$H_2O: c_p = 4180 \text{ J/kgK} = 4.18 \text{ kJ/kg K} = 1 \text{ kcal/kg K}$$

tipična potreba po energiji za odraslega človeka → cca. 2500 kcal/dan = 10000 kJ/dan

•	V bioloških sistemih nas pri kalorimetriji
	zanima količina energije (TOPLOTE), ki gre
	v/iz sistema, npr. pri

- razvijanju ali denaturaciju proteinov
- faznih prehodih v lipidnih membranah
- interakcijah encim/inhibitor, antigen/antitelo

en	rgijska vrednost kJ/kcal	301/71
be	ljakovine	2,9 g
og	ljikovi hidrati	12,4 g
od	teh sladkorj	11 g
ma	aščoba	1,1 g
od te:		
	nasičene maščobne kisline	0,7 g
	enkrat nenasičene mašč. k.	0,3 g
	večkrat nenasičene mašč. k.	0,03 g
	holesterol	6,4 mg

$$Q = mc_p \Delta T$$

Q ... toplota

m ... masa

c_p ... specifična toplota

T ... temperatura

Kalorimetrija – tri izvedbe

 Adiabatna kalorimetrija (meri toploto zgorevanja)

V bioloških sistemih:

 Diferencialna dinamična kalorimetrija

 Izotermna titracijska kalorimetrija

Laboratorijska biomedicina - Molekularna biofizika

Osmometer na parni tlak

- Kemijski potencial molekul topila v čistem topilu ali v raztopini je različen!
 - → različna parna tlaka topila

Parni tlak je odvisen tudi od T

→ Razlika v T, pri kateri izenačimo parni tlak topila in raztopine, je merilo za količino topljenca (OSMOLARNOST)

Površinska plazmonska resonanca (SPR)

ko zastavice zatemnijo nebo

• Ko spremenimo opazovano tekočino, spremenimo lastnosti odbite svetlobe!

Vezava molekul spremeni kot svetlobe

Light source

Polarized Light

Sensor chip

Flow channel

Določimo:

- specifičnost interakcij med molekulami
- koncentracijo vezanih molekul
- vezavno afiniteto
- hitrost vezave oz. disociacije

Encimskoimunski test

z molekularnim ojačevalcem vidimo dlje

Janez Štrancar

• Že vezava enega samega encima preko antigena ali protitelesa pretvori mnogo molekul substrata v molekule drugačne barve! (A) Indirect ELISA

Antigen-

coated well

Wash

Specific antibody

binds to antigen

ELISA = enzyme linked imunosorbent assay

Specifičnost

 Vezi med vodami se nadomesti z H-vezmi med vodami in aminokislinami ter koordinacijskimi vezmi med ioni in kisiki karboksilnih skupin aminokislin

Specifičnost ionskega kanala

• Specifičnost = konformacija interakcijskih mest na pravem mestu in v pravi smeri

ioni v interakciji s kisikom na aminokislinah

ioni s plaščem vode

Specifičnost encima

- Vezava ADP (sivo) na Uridin-citidin kinaso (UCK)
- H-vezi (črtkano)
- Ion (sivo)
- Vode (modro)

Specifičnost nukleinskih kompleksov

 RNA (AUCAC vezavni motiv) se veže na del proteina (Arg, Leu, Gln)

