컴퓨터의 구성 및 동작, 운영체제

논리연산

		비트논리연산	부울논리연산(참과 거짓,T/F)
•	AND(논리곱)	1101&1010	a && b
•	OR(논리합)	1101 1010	a b
•	NOT(단항연산자)	~1100	~a
•	XOR(베타논리곱)	1010^1100	
•	NOR		
•	NAND		

2의 보수

2 의 보수란 어떤 수를 커다란 2 의 제곱수에서 빼서 얻은 이진수이다.
2 의 보수는 대부분의 산술연산에서 원래 숫자의 음수처럼 취급된다.

Overflow

• 메모리 용량을 넘어선 값이 들어가 생기는 오류

Underflow

• 부동소수점 연산에서 지수부가 타입의 한계를 넘어 작아지면 0 에 가까워 지다가 결국 0 이 되어버리는 현상을 의미한다.

운영체제

- UNIX
 BSD
 MAC OS X
- LINUX (UNIX Like OS)
 Android

Ubuntu CentOS Fedora

WINDOWS

NT

운영체제가 왜 필요할까?

- 하드웨어를 잘 조작하기 위해
- 사용자의 편리를 위해
- 보편타당화
- 범용적 사용을 위해
- 컴퓨터를 사용하는 사용자의 목적이 다양해 짐에 따라 하드웨어가 다양해 졌고 이를 제어하기 위한 응용프로그램이 필요하기 시작했다.

운영체제 커널이 하는일

• 보안(시스템 하드웨어 관리)

프로그램의 오류나 잘못된 자원사용을 감시 입출력 장치 등의 자원에 대한 연산과 제어를 관리

• 추상화(가상 시스템 서비스 제공)

사용자에게 컴퓨터의 프로그램을 쉽고 효율적으로 실행 할 수 있는 환경을 제공

• 자원관리

컴퓨터 시스템 하드웨어 및 소프트웨어 자원을 여러 사용자 간의(응용프로그램) 효율적 할당, 관리 ,보호

프로세스 상태 전이도

1.생성 프로세스 생성(주기억장치에 적재)

• 2.준비 중앙처리장치에 의해 프로세스가 실행되기를 기다린다.

• 3.실행 중앙처리장치에 의해 프로세스가 실행된다.

• **4-1.종료** 프로세스가 종료된다.

4-2.대기 -> 준비
 어떤사건이 일어나기를 기다린다.

자원관리 - 프로세스 스케줄링

• 프로세스마다 얼마만큼의 자원을 사용해야 하는 결정 하는것

• 비선점 스케줄링(Non-Preemptive)

할당된 CPU 를 다른 프로세스가 강제로 빼앗아 사용할수 없는 기법 한번 CPU 를 할당 받으면 작업이 완료될때 까지 CPU 를 사용 문제점: 짧은 작업(중요한 작업)이 긴 작업(중요하지 않은 작업)을 기다리는 경우 발생 종류: FCFS(FIFO), SJF, 우선순위, HRN, 기한부(Deadline)

FCFS(First Come First Served)

준비 상태 큐에 도착한 순서에 따라 차례대로 중앙처리장치에 할당 한다.

SJF(Shortest Job First)

실행 시간이 짧을 수록 Process 에 먼저 중앙처리장치에 할당 한다.

평균 대기시간이 가장적은 알고리즘 실행시간이 긴 프로세스는 뒤로 밀림 예측 불가 및 비용 발생 (정확한 처리시간을 알수가 없을 뿐만아니라 측정하는데에 비용발생이 들기 때문이다)

• 기한부(Deadline)

일정시간동안 프로세스 완료하는 기법 제한된 시간 안에 완료되지 않을 경우 제거 되거나 처음부터 다시 실행해야함 여러 프로세스들이 동시에 실행되면 스케줄링이 복잡해지며, 프로세스 실행 시 집중적으로 요구되는 자원관리에 오버헤드가 발생한다.

Priority Based Scheduling(우선순위)

프로세스마다 우선순위 부여 우선순위가 동일한경우 FCFS 기법으로 할당 가장 낮은 순위를 부여받은 프로세스는 무한 연기 또는 기아상태가 발생할 수 있다.

• 선점 스케줄링(Preemptive)

우선순위가 높은 다른 프로세스가 CPU 를 강제로 빼앗아 사용할 수 있는 기법 빠른 응답 시간을 요구하는 대화식 시분할 시스템(Time Sharing System)에 사용 문제점 :많은 오버헤드 초래 인터럽트용 타이머 클럭 필요(프로세스가 자원을 독점하는것을 방지)

종류 : RR(Round Robin), SRT, 선점 우선순위, 다단계 큐(MQ), 다단계 피드백큐(MFQ)

Round Robin Scheduling

각 프로세스는 시간 할당량 동안만 실행한 후 완료되지 않으면 다음 프로세스에게 CPU 를 넘겨주고 준비상태 큐의 가장 뒤로 배치 시분할 시스템을 위해 고안된 방식 FCFS 기법 변형 할당된 시간이 클수록 FCFS 와 비슷할당시간이 작을 수록 문맥교환과 오버헤드가 자주발생

SRT(Shortest Remaining Time)

SJF 기법을 변형, 선점 SJF 라고도 한다.

실행중인 프로세스의 남은 시간과 준비상태 큐에 새로 도착한 프로세스의 실행 시간을 비교하여 짧은 실행 시간을 요구하는 프로세스에게 CPU 를 할당.

준비상태 큐에 있는 프로세스의 실행 기간 추적으로 오버헤드 증가

Multi Queue Scheduling

프로세스를 특정 그룹으로 분류 할 수 있는 경우 그룹에 따라 각기 다른 준비 단계 큐 사용 준비 상태 큐마다 다른 스케줄링 기법 사용가능 다른 준비상태 큐로 이동불가 하위 단계 준비 큐에 있는 프로세스를 실행하는 도중이라도 상위 단계 준비상태 큐에 프로세스가 들어오면 상위 단계 프로세스에게 CPU 를 할당

자원관리 - 주기억 장치 관리

• 단순관리

가상메모리: 보조기억장치를 주기억장치 처럼 활용

• 파일관리

응용프로그램 <-> 운영체제 <-> 보조기억장치 (파일 입/출력 요청) (파일 입/출력 처리)

조각모음

• 파편화 되있는 데이터를 한곳에 모아 액세스 횟수를 줄인다.

메타데이터

• 컴퓨터 용어에서, 접두어 메타(Meta)는 일반적으로 "~에 관한"(about)이라는 의미로 사용된다. 따라서 메타언어는 다른 데이터를 기술하기 위해 사용되는 언어이며, 메타데이터는 다른 데이터를 기술하기 위해 사용하는 데이터라고 할수 있다.

RISC(Reduced Instruction Set Computer)

• CPU 명령어의 개수를 줄여 하드웨어 구조를 좀 더 간단하게 만드는 방식

CISC (Complex Instruction Set Computer)

• 복잡한 명령어 집합을 갖는 CPU 아키텍처

ARM(Acorn RISC Machine)

• 임베디드 기기에 많이 사용되는 RISC 프로세서

과제 내용

- 액티브 X 가 무일까?
- 국내 웹에 액티브 X 가 정착되게 된 이유 및 배경
- 기술적 부채(Technical Debt)에 대해 알아보기

학습링크

ALU

http://goo.gl/ROO7KS

가산기

http://goo.gl/T2mYkI

누산기

http://goo.gl/5aQf2L

운영체저

http://goo.gl/4UalWu, http://goo.gl/njn9fl, http://goo.gl/kl3DP3

스케쥴링

http://goo.gl/Wi9lri, http://goo.gl/7HwAe0

파일시스템

http://goo.gl/VuPAHg

커널

http://goo.gl/CG9zir

리누스 토발즈

http://goo.gl/kQSSsR, http://goo.gl/xQ6JPi

자료구조

http://goo.gl/f807Vo, http://goo.gl/H1CKb0

알고리즘

http://goo.gl/GRz6tA, http://goo.gl/qdkZIF