Taxa de aparecimento de nós em trigo mourisco

Gabriel Elias Dumke¹, Alberto Cargnelutti Filho², Rafael Vieira Pezzini³, Ismael Mario Marcio Neu⁴, Samanta Luiza da Costa⁵, Andréia Procedi⁶

1 Introdução

O trigo mourisco (*Fagopyrum esculentum* Moench), também conhecido como trigo mouro ou trigo preto, originário da Ásia Central, é uma planta dicotiledônea pertencente à família Polygonaceae e não possui nenhum parentesco com o trigo comum (*Triticum aestivum* L.) (Embrapa, 2002). É uma planta anual, com folhas grande alternadas, sésseis e sagitadas (Furlan et al., 2006). Nas extremidades do caule, surgem as flores em cachos provenientes da axila da folha (Alencastro et al., 2014).

As hastes são ocas e a planta é muito propensa ao acamamento, com sistema radicular pivotante (Furlan et al., 2006). É uma planta rústica com múltiplos usos, tais como: alimentação humana com a produção de farinha dos grãos; alimentação animal com produção de feno; e silagem a partir da parte aérea.

O cálculo da taxa de aparecimento de nós (TAN), ou seja, o número de dias que a planta necessita para emitir um novo nó na haste principal é um importante parâmetro de desenvolvimento vegetal utilizado para dicotiledôneas (Streck et al., 2008). O número de nós (NN) acumulados é uma excelente medida do desenvolvimento vegetal (Martins et al., 2011). O NN está diretamente associado com diversos fatores, como o índice de área foliar, o qual é responsável pela interceptação da radiação solar utilizada na fotossíntese para produção de biomassa (Streck et al., 2008).

Estudo envolvendo o desempenho agronômico de trigo mourisco, cultivares IPR 91 Baili e IPR 92 Altar, em épocas de semeadura e TAN é importante para determinar a melhor época de semeadura. Porém, não foram encontradas na literatura. Supõe que a época de semeadura tenha efeito sobre a taxa de aparecimento de nós. Assim, os objetivos deste trabalho foram avaliar a taxa de aparecimento de nós em duas cultivares de trigo mourisco (IPR 91 Baili e IPR 92 Altar) em 26 épocas de semeadura e identificar a época preferencial de semeadura da cultura para a região da Depressão Central do Rio Grande do Sul.

2 Materiais e Métodos

O experimento foi conduzido no ano agrícola de 2017/2018, na área experimental do Departamento de Fitotecnia da Universidade Federal de Santa Maria (UFSM). O clima da região, segundo a classificação de Köppen, é Cfa subtropical úmido sem estação seca definida com verões quentes

¹ Graduação em Agronomia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil. email: *gabrieleliasdumke@gmail.com* (Bolsista BIC/CNPq)

² Departamento de Fitotecnia, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil. email: *alberto.cargnelutti.filho@gmail.com*. Bolsista de Produtividade em Pesquisa 1A-CNPq - Processo: 304652/2017-2

³ Programa de Pós-Graduação em Agronomia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil. email: rvpezzini@hotmail.com (Bolsista Capes)

⁴ Programa de Pós-Graduação em Agronomia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil. email: ismaelmmneu@hotmail.com (Bolsista Capes)

⁵ Graduação em Agronomia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil. email: samyldc09@hotmail.com (Bolsista PROBIC/FAPERGS/UFSM)

⁶ Graduação em Agronomia, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil. email: deiaprocedi123@gmail.com
Agradecimentos: Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Processos 401045/2016-1 e 304652/2017-2), à
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e à Fundação de Amparo à Pesquisa do Estado do Rio Grande do
Sul (FAPERGS) pelas bolsas concedidas.

(Heldwein et al., 2009). O solo é classificado como Argissolo Vermelho distrófica arênico (Santos et al., 2013).

Foi utilizado o delineamento inteiramente casualizado, em esquema fatorial 2×26 (duas cultivares \times 26 épocas de semeadura), com 5 repetições. As duas cultivares de trigo mourisco (*Fagopyrum esculentum* Moench) foram: IPR 91 Baili e IPR 92 Altar. As semeaduras foram realizadas no período de 01/11/2017 a 25/04/2018 com intervalo de sete dias entre cada época de semeadura.

Para cada cultivar foi utilizada a densidade de 50 kg ha⁻¹ de sementes. Correspondendo a 4,25 g m⁻¹ de fileira de semente para a cultivar IPR 91 Baili, com percentual de germinação de 60% e pureza de 98%. Na cultivar IPR 92 Altar correspondeu a 3,04 g m⁻¹ de fileira de semente, com germinação de 84% e pureza de 98%. Cada época de semeadura foi constituída com três fileiras com 2 m de comprimento, com espaçamento de 0,5 m entre as fileiras.

Durante o ciclo de desenvolvimento, foram anotadas as datas de semeadura, de emergência e de florescimento. Para a contagem do número de nós, com frequência de duas vezes por semana, foram marcadas cinco plantas, aleatoriamente, nas quais foram realizadas a contagem do número de nós. Iniciouse a contagem quando as plantas apresentavam a primeira folha expandida, ou seja, a folha estava totalmente expandida e as extremidades do limbo foliar não tocavam o caule. O encerramento da contagem do número de nós foi realizado quando apareceram os primeiros grãos.

Para cada uma das 260 plantas (duas cultivares \times 26 épocas de semeadura \times 5 plantas/cultivar/época) foi estimada a equação linear y = a + bx. Nessa equação, o y representa o número de nós (NN) e o x representa os dias após a semeadura (DAS). Após, foi calculada a taxa de aparecimento nós (TAN), em dias nós⁻¹, pela expressão: TAN = 1/b. Foram calculadas as médias do número de nós final de cada cultivar em cada época de semeadura.

Realizou-se a análise de variância (ANOVA), contendo como fatores as cultivares e épocas de semeadura, utilizando o teste F a 5% significância. Posteriormente, comparou-se as médias das 26 épocas de semeadura por meio do teste de *Scott Knott*, a 5% de significância. As análises estatísticas foram realizadas com auxílio do aplicativo Microsoft Office Excel[®] e do Software SISVAR.

3 Resultados e Discussão

Os valores médios do número de nós (NN) em 26 épocas de semeadura do trigo mourisco e duas cultivares (IPR 91 Baili e IPR 92 Altar) estão apresentadas na Tabela 1. De modo geral, foi constatado maior NN para a cultivar IPR 91 Baili nas 26 épocas de semeadura. As médias do NN para a cultivar IPR 91 Baili oscilaram entre 6,6 e 17,2 nós, respectivamente para as épocas 24 e 6. Para a cultivar IPR 92 Altar, as médias oscilaram entre 7,2 a 16,4 nós, para as épocas 20 e 5, respectivamente. Não foram encontrados trabalhos que avaliaram o número de nós na cultura.

Na tabela 2 é apresentada a análise de variância. Verifica-se que ao nível de 5% de significância, não há efeito significativo para cultivar e interação entre os fatores cultivar e época de semeadura. No entanto, foi constatado efeito significativo de épocas de semeadura (Valor-p <0,001). Assim, as médias das épocas de semeadura, independentemente de cultivar, foram comparadas por meio do teste de Scott-Knott.

A TAN oscilou de 5,28 a 2,51 dias nó⁻¹ para a IPR 91 Baili e de 5,62 a 2,77 dias nó⁻¹ para a IPR 92 Altar. A maior taxa de aparecimento de nós foi para a cultivar IPR 91 Baili na época 12 (semeadura em 17/01/2018), com média de 5,28 dias nó⁻¹. Na cultivar IPR 92 Altar o maior valor observado foi na época 11 (semeadura em 10/01/2018), com média de 5,62 dias nó⁻¹.

Na cultivar IPR 91 Baili a menor TAN foi observada na época 6 (semeadura em 06/12/2017), com valor de 2,51 dias nó⁻¹. A cultivar IPR 92 Altar apresentou menor TAN na época 5 (semeadura em 29/11/2017), com valor de 2,77 dias nó⁻¹ (Tabela 3).

Tabela 1. Média do número de nós em duas cultivares de trigo mourisco (*Fagopyrum esculentum* Moench), avaliadas em ensaios com a semeadura em 26 épocas de semeadura.

Época	Semeadura	IPR91	IPR92	Média
1	01/11/2017	8,4	10,6	9,5
2	08/11/2017	8,2	8,6	8,4
3	14/11/2017	10,0	12,4	11,2
4	22/11/2017	11,2	11,8	11,5
5	29/11/2017	15,0	16,4	15,7
6	06/12/2017	17,2	14,0	15,6
7	14/12/2017	15,6	11,6	13,6
8	20/12/2017	12,0	13,2	12,6
9	28/12/2017	14,0	12,4	13,2
10	03/01/2018	12,0	12,0	12,0
11	10/01/2018	12,6	12,4	12,5
12	17/01/2018	12,6	12,4	12,5
13	24/01/2018	10,8	11,4	11,1
14	31/01/2018	11,4	10,2	10,8
15	07/02/2018	11,4	10,8	11,1
16	14/02/2018	12,0	10,8	11,4
17	21/02/2018	10,2	10,2	10,2
18	28/02/2018	9,4	10,8	10,1
19	07/03/2018	11,0	10,8	10,9
20	14/03/2018	10,6	7,2	8,9
21	22/03/2018	9,8	9,8	9,8
22	28/03/2018	9,4	8,0	8,7
23	04/04/2018	7,6	8,4	8,0
24	11/04/2018	6,6	9,8	8,2
25	18/04/2018	8,6	9,2	8,9
26	25/04/2018	8,4	8,0	8,2

Tabela 2. Quadro de análise de variância individual da TAN, em vinte e seis épocas de semeadura de trigo mourisco (*Fagopyrum esculentum* Moench),

) 1 /	, ,			
FV	GL	SQ	QM	Fc	Valor-p
Cultivar	1	1,99	1,99	2,02	0,157 ^{ns}
Época	25	139,87	5,59	5,66	<0,001
Cultivar*Época	25	19,44	0,78	0,79	$0,756^{\text{ns}}$
Erro	208	205,54	0,99		
Total	259				

^{*}Efeito significativo pelo teste F com 5% de probabilidade de erro. ns não significativo.

Tabela 3. Médias da taxa de aparecimento nós em duas cultivares de trigo mourisco (*Fagopyrum esculentum* Moench), em vinte e seis épocas de semeadura.

Época	Semeadura	IPR 91 Baili	IPR 92 Altar	Média
1	01/11/2017	3,41	3,38	3,40 b
2	08/11/2017	3,14	3,08	3,11 b
3	14/11/2017	4,14	3,49	3,82 b
4	22/11/2017	3,50	3,23	3,37 b
5	29/11/2017	3,08	2,77	2,92 b
6	06/12/2017	2,51	3,58	3,05 b
7	14/12/2017	3,19	4,03	3,61 b
8	20/12/2017	3,33	3,85	3,59 b
9	28/12/2017	3,29	3,77	3,53 b
10	03/01/2018	4,15	4,99	4,57 a
11	10/01/2018	5,23	5,62	5,43 a
12	17/01/2018	5,28	4,97	5,12 a
13	24/01/2018	4,53	4,67	4,60 a
14	31/01/2018	3,41	3,70	3,55 b
15	07/02/2018	4,13	4,38	4,25 a
16	14/02/2018	3,66	4,35	4,00 b
17	21/02/2018	4,45	5,04	4,74 a
18	28/02/2018	4,11	3,20	3,66 b
19	07/03/2018	2,81	3,17	2,99 b
20	14/03/2018	3,44	4,38	3,91 b
21	22/03/2018	3,32	4,05	3,69 b
22	28/03/2018	3,13	3,13	3,13 b
23	04/04/2018	2,81	2,78	2,79 b
24	11/04/2018	5,06	4,06	4,56 a
25	18/04/2018	4,09	3,72	3,91 b
26	25/04/2018	5,09	5,48	5,29 a
Média		3,78	3,96	3,87

Médias não seguidas por mesma letra na coluna diferem pelo test de Sott-Knott, a 5% de probabilidade.

Nas épocas com menor TAN, observa-se que as plantas que tendem a acelerar seu ciclo para emitir um novo nó mais rapidamente. As épocas de semeadura 5, 6 e 7 (semeaduras em 29/11/2017, 06/12/2017 e 14/12/2018, respectivamente), apresentaram baixa TAN, mas as maiores médias NN por planta. Já as épocas 21, 22 e 23 (semeaduras em 22/03/2018, 28/03/2018 e 04/04/2018), também apresentaram TAN baixa, com diminuição do NN por planta.

Desta forma, observou-se que nas semeaduras tardias as plantas emitiram nós mais rapidamente para completar seu ciclo de desenvolvimento, porém com um número menor de nós por planta. Verificou-se que o período preferencial para se realizar a semeadura é de 29/11/2017 a 14/12/2017, demostrando que neste período tem uma baixa TAN, com maior NN por planta.

4 Considerações finais

As cultivares de trigo mourisco, IPR 91 Baili e IPR 92 Altar, não apresentaram diferença significativa entre elas, porém há diferença significativa entre as épocas de semeadura. A taxa de aparecimento de nós oscilou de 5,28 a 2,51 dias nó⁻¹ na cultivar IPR 91 Baili e de 5,62 a 2,77 dias nó⁻¹ na cultivar IPR 92 Altar. A época preferencial de semeadura para ambas as cultivares, visando a maximização do número de nós e uma baixa TAN dias nó⁻¹ é na primeira quinzena de dezembro.

Referências bibliográficas

ALENCASTRO, R.B.G. Produtividade e qualidade da forragem de Trigo Mourisco (*Fagopyrum esculentum* Möench L.) para a alimentação de ruminantes. **Brasília**, Faculdade de Agronomia e Medicina Veterinária, p.46, 2014.

FURLAN, A.C. et al. Avaliação nutricional do trigo mourisco (*Fagopyrum esculentum*, Moench) para coelhos em crescimento. **Acta scientiarum animal Science.** v. 28, p. 22-24, 2006.

HELDWEIN, A.B. et al. Clima de Santa Maria. Ciência e Ambiente, v. 38, p. 43-58, 2009.

MARTINS, J.D. et al. Plastocrono e número final de nós de cultivares de soja em função da época de semeadura. **Ciência Rural**, v.41, p.954-959, 2011.

SANTOS, H. G. dos. et al. Sistema brasileiro de classificação de solos. 3. ed. Rio de Janeiro: Embrapa Solos, 2013, p.353.

STRECK, N. A. et al. Estimativa do plastocrono em cultivares de soja. **Bragantia**, v.67, p. 67-73, 2008.