Apresentação da disciplina

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

05 de outubro de 2017

Plano de Aula

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Professor

Formação

Bacharel em Sistemas de Informação Mestre em Representação Conhecimento (IA)

Quem?

Esdras Lins Bispo Junior Recife, Pernambuco.

Professor

- Esdras Lins Bispo Jr.
- bispojr@ufg.br
- Sala 18, 1° Andar (Bloco Novo dos Professores)

Disciplina

- Teoria da Computação
- 13h30-15h10 (Quarta, [CA2, Sala 10])
 07h30-09h10 (Quinta, [CA2, Sala 10])
- Dúvidas: 09h30 11h00 (Segunda)
 [é necessário confirmação comigo]
- Grupo: facebook.com/groups/teocomp.rej.2017.2/
- Repositório: github.com/bispojr/teoria-computacao

Metodologia

- Aulas expositivas utilizando quadro negro (ou branco) e DataShow;
- Atendimento individual ou em grupos;
- Aplicação de listas de exercícios;
- Aplicação de atividades de aquecimento utilizando o Canvas AVA (Ambiente Virtual de Aprendizagem);
- Tempo de Aula: 50 minutos.

Mini-Testes

- $MT_1 \Rightarrow 20\%$ da pontuação total;
- MT₂ ⇒ 20% da pontuação total;
- MT₃ ⇒ 20% da pontuação total;
- $MT_4 \Rightarrow 20\%$ da pontuação total.

Mini-Testes

- MT₁ ⇒ 20% da pontuação total;
- $MT_2 \Rightarrow 20\%$ da pontuação total;
- MT₃ ⇒ 20% da pontuação total;
- MT₄ ⇒ 20% da pontuação total.

Exercício de Aquecimento (EB)

Serão propostos EBs, durante toda a disciplina.

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

- o SMT $_1$ (referente ao MT $_1$), e
- o SMT₂ (referente ao MT₂).

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

- o SMT $_1$ (referente ao MT $_1$), e
- o SMT_2 (referente ao MT_2).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

Prova Final (PF) - 20% da pontuação total

A PF é composta por duas etapas: a PF $_1$ e a PF $_2$. A PF $_1$ é composta por dois mini-testes de caráter substitutivo:

- o SMT $_1$ (referente ao MT $_1$), e
- o SMT₂ (referente ao MT₂).

Por sua vez, a PF₂ é composta pelos outros dois mini-testes também de caráter substitutivo:

- o SMT₃ (referente ao MT₃), e
- o SMT₄ (referente ao MT₄).

Exercícios-Bônus

 Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;
 - Respondeu a um EB;

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;
 - Respondeu a um EB;
 - Respondeu a dois EBs;

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;
 - Respondeu a um EB;
 - Respondeu a dois EBs;
 - e assim por diante.

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;
 - Respondeu a um EB;
 - Respondeu a dois EBs;
 - e assim por diante.
- Haverá sorteio entre candidatos dentro da mesma prioridade;

- Semanalmente serão disponibilizados exercícios-bônus (EB) valendo 0,5 ponto na média (quarta-feira, normalmente);
- Será dado um prazo para as candidaturas (normalmente um dia);
- Será dada prioridade às candidaturas aos seguintes alunos:
 - Respondeu a nenhum EB;
 - Respondeu a um EB;
 - Respondeu a dois EBs;
 - e assim por diante.
- Haverá sorteio entre candidatos dentro da mesma prioridade;
- Uma semana após, o candidato apresentará a sua resposta [texto escrito e slides] (normalmente na quinta, 09h30).

Avaliação

Média Final

O cálculo da média final será dada da seguinte forma:

• MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

PONT =
$$\left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0, 2 + EB$$

Avaliação

Média Final

O cálculo da média final será dada da seguinte forma:

MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina, dada da seguinte forma:

$$PONT = \left[\sum_{i=1}^{4} \max(MT_i, SMT_i) + PF\right] \times 0, 2 + EB$$

Previsão de Término das Atividades

07 de março de 2018

Como será?

Os alunos que estiverem entre as 3 melhores notas de cada avaliação receberão um distintivo digital.

Como será?

Os alunos que estiverem entre as 3 melhores notas de cada avaliação receberão um distintivo digital.

Quantos distintivos existem?

- Top One
- Top Two
- Top Three

Obter a 3ª melhor nota da turma em uma avaliação.

Obter a 2ª melhor nota da turma em uma avaliação.

Obter a melhor nota da turma em uma avaliação.

Pontuação

- Obter um Top One: 10 pontos;
- Obter um Top Two: 8 pontos;
- Obter um Top Three: 6 pontos.

Pontuação

- Obter um Top One: 10 pontos;
- Obter um Top Two: 8 pontos;
- Obter um Top Three: 6 pontos.

Na Prova Final...

Os cinco primeiros que obtiverem maior pontuação, nos quatro testes, ganharão medalhas.

Pontuação

- Obter um Top One: 10 pontos;
- Obter um Top Two: 8 pontos;
- Obter um Top Three: 6 pontos.

Na Prova Final...

Os cinco primeiros que obtiverem maior pontuação, nos quatro testes, ganharão medalhas.

Por que estamos usando distintivos digitais?

Pode aumentar a motivação dos alunos;

Pontuação

- Obter um Top One: 10 pontos;
- Obter um Top Two: 8 pontos;
- Obter um Top Three: 6 pontos.

Na Prova Final...

Os cinco primeiros que obtiverem maior pontuação, nos quatro testes, ganharão medalhas.

Por que estamos usando distintivos digitais?

Pode aumentar a motivação dos alunos;
 (Estou pesquisando para saber se isto é verdade...)

Conteúdo do Curso

- Introdução à Teoria da Computação;
- Modelos de Computação;
- Problemas decidíveis;
- Problemas indecidíveis;
- Complexidade de tempo;
- NP-Completude;
- Tópicos Avançados.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Pensamento

Pensamento,

Frase

Os limites do meu conhecimento são os limites do meu mundo.

Quem?

Ludwig Wittgenstein (1889-1951) Filósofo austríaco.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- 2 Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Pode ser dividida em três grandes áreas:

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.

Pode ser dividida em três grandes áreas:

- Teoria dos Autômatos;
- Teoria da Computabilidade;
- Teoria da Complexidade.

São interligadas pela pergunta:

Quais são as capacidades e limitações fundamentais dos computadores?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria da Computabilidade

O que faz alguns problemas serem solúveis e outros não?

Teoria dos Autômatos

Quais são as definições e propriedades dos modelos matemáticos de computação?

Teoria da Computabilidade

O que faz alguns problemas serem solúveis e outros não?

Teoria da Complexidade

O que faz alguns problemas serem computacionalmente difíceis e outros fáceis?

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
 - Instrumentos de Avaliação
 - Distintivos Digitais
- Pensamento
- Introdução
 - O que é Teoria da Computação?
- Máquina de Turing

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\};$
- Fragilidades: não reconhecem linguagens como $A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Modelos Básicos Computacionais

AFDs, AFNs, e Expressões Regulares

- Potencialidades: reconhecem linguagens como $(10 \cup 1)^*$;
- Fragilidades: não reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

GLCs e Autômatos com Pilha

- Potencialidades: reconhecem linguagens como $A = \{0^n 1^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\};$
- Fragilidades: não reconhecem linguagens como $A = \{a^n b^n c^n \mid n \ge 0 \text{ e } n \in \mathbb{N}\}.$

Portanto são bem restritos para servir de modelo de computadores de propósito geral.

• Modelo mais poderoso que GLCs e AFDs;

- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;

- Modelo mais poderoso que GLCs e AFDs;
- Turing, 1936;
- Características importantes:
 - faz tudo o que um computador real pode fazer;
 - existem certos problemas que uma MT não pode resolver.

- Salaminh salah-mês... tranforme as figuras em inglês!

Diferenças entre MT e AFDs

 Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;

Diferenças entre MT e AFDs

- Uma MT pode tanto escrever sobre a fita quanto ler a partir dela;
- A cabeça de leitura-escrita pode mover-se tanto para a esquerda quanto para a direita;
- A fita é infinita;
- Os estados especiais para rejeitar e aceitar fazem efeito imediatamente.

Construindo uma MT

Construir M_1 que reconheça a linguagem

$$B = \{\omega \# \omega \mid \omega \in \{0,1\}^*\}.$$

Descrição de M₁

 $M_1 =$ "Sobre a cadeia de entrada ω :

- Faça um zigue-zague ao longo da fita checando posições correspondentes de ambos os lados do símbolo # para verificar se elas contêm o mesmo símbolo. Se elas não contêm, ou se nenhum # for encontrado, rejeite. Marque os símbolos à medida que eles são verificados para manter registro de quais símbolos têm correspondência.
- Quando todos os símbolos à esquerda do # tiverem sido marcados, verifique a existência de algum símbolo remanecente à direta do #. Se resta algum símbolo, rejeite; caso contrário, aceite.


```
° 1 1 0 0 0 # 0 1 1 0 0 0 u ...
x 1 1 0 0 0 # x 1 1 0 0 0 \( \dots \)...
х 1 1 0 0 0 # x 1 1 0 0 0 u ...
х × 1 0 0 0 # x 1 1 0 0 0 u ...
x x x x x x # x x x x x x <sup>*</sup> ...
                             accept
```


Uma **máquina de Turing** é uma 7-upla $(Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$, de forma que Q, Σ, Γ são todos conjuntos finitos e

- Q é o conjunto de estados,
- ② Σ é o alfabeto de entrada sem o **símbolo branco** \sqcup ,
- lacktriangle Γ é o alfabeto da fita, em que $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- \bullet $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- $oldsymbol{0} q_0 \in Q$ é o estado inicial,
- $oldsymbol{0}$ $q_{aceita} \in Q$ é o estado de aceitação, e
- $m{0}$ $q_{rejeita} \in Q$ é o estado de rejeição, em que $q_{rejeita}
 eq q_{aceita}$

Uma configuração de uma MT leva em consideração:

- o estado atual da fita;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma configuração de uma MT leva em consideração:

- o estado atual da fita;
- o conteúdo atual da fita;
- a posição atual da cabeça.

Uma forma especial de representar...

uqv em que

- u e v são cadeias sobre Γ;
- uv é o conteúdo atual da fita;
- q é o estado atual; e
- a posição atual da cabeça está sobre o primeiro símbolo de v.

- Salaminh salah-mês... tranforme as figuras para português!

FIGURA 3.4

Uma máquina de Turing com configuração $1011q_701111$

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

Para:

- ullet a, b, $c\in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_i ,
- ullet as configurações uaq_i by e uq_j acv.

A configuração C_1 origina a configuração C_2 , se a máquina de Turing puder legitimamente ir de C_1 para C_2 .

Mais formalmente...

Para:

- \bullet a, b, $c \in \Gamma$,
- u, $v \in \Gamma^*$,
- os estados q_i e q_j ,
- ullet as configurações uaq_i by e uq_j acv.

Digamos que

 uaq_i bv origina uq_j acv

se na função de transição $\delta(q_i,b)=(q_i,c,E)$.

Mais formalmente...

Digamos que

 uaq_i bv origina uq_j acv

se na função de transição $\delta(q_i,b)=(q_j,c,E)$. Ou

 uaq_i bv origina $uacq_i$ v

se na função de transição $\delta(q_i,b)=(q_j,c,D)$.

Termos importantes:

- configuração inicial;
- configuração de aceitação;
- configuração de rejeição;
- configuração de parada.

Linguagem de uma MT

Uma máquina de Turing M aceita a entrada ω se uma sequência de configurações C_1, C_2, \ldots, C_k existe, de forma que

- C_1 é a configuração inicial de M sobre a entrada ω ;
- cada C_i origina C_{i+1} ;
- C_k é uma configuração de aceitação.

Linguagem de uma MT

Uma máquina de Turing M aceita a entrada ω se uma sequência de configurações C_1, C_2, \ldots, C_k existe, de forma que

- C_1 é a configuração inicial de M sobre a entrada ω ;
- cada C_i origina C_{i+1} ;
- C_k é uma configuração de aceitação.

Linguagem de M

É a coleção de cadeias que M aceita. Também chamada de linguagem reconhecida por M e denotada por L(M).

Apresentação da disciplina

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

05 de outubro de 2017

