Analysis of algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 2

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes
- Two main resources of interest
 - Running time how long the algorithm takes
 - Space memory requirement

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes
- Two main resources of interest
 - Running time how long the algorithm takes
 - Space memory requirement
- Time depends on processing power
 - Impossible to change for given hardware
 - Enhancing hardware has only a limited impact at a practical level

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes
- Two main resources of interest
 - Running time how long the algorithm takes
 - Space memory requirement
- Time depends on processing power
 - Impossible to change for given hardware
 - Enhancing hardware has only a limited impact at a practical level
- Storage is limited by available memory
 - Easier to configure, augment

- Example of validating SIM cards against Aadhaar data
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes
- Two main resources of interest
 - Running time how long the algorithm takes
 - Space memory requirement
- Time depends on processing power
 - Impossible to change for given hardware
 - Enhancing hardware has only a limited impact at a practical level
- Storage is limited by available memory
 - Easier to configure, augment
- Typically, we focus on time rather than space

- Running time depends on input size
 - Larger arrays will take longer to sort

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size *n*
 - Running time t(n)

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size *n*
 - Running time t(n)
- Different inputs of size n may take different amounts of time
 - We will return to this point later

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size *n*
 - Running time t(n)
- Different inputs of size n may take different amounts of time
 - We will return to this point later

Example 1 SIM cards vs Aadhaar cards

 $n \approx 10^9$ — number of cards

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size *n*
 - Running time t(n)
- Different inputs of size n may take different amounts of time
 - We will return to this point later

Example 1 SIM cards vs Aadhaar cards

- $n \approx 10^9$ number of cards
- Naive algorithm: $t(n) \approx n^2$

- Running time depends on input size
 - Larger arrays will take longer to sort
- Measure time efficiency as function of input size
 - Input size n
 - Running time t(n)
- Different inputs of size n may take different amounts of time
 - We will return to this point later

Example 1 SIM cards vs Aadhaar cards

- $n \approx 10^9$ number of cards
- Naive algorithm: $t(n) \approx n^2$
- Clever algorithm: $t(n) \approx n \log_2 n$
 - log₂ *n* number of times you need to divide *n* by 2 to reach 1

Example 2 Video game

Several objects on screen

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes sime $n \log_2 n$

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes sime $n \log_2 n$

- High resolution gaming consle may have 4000×2000 pixels
 - 8×10^6 points 8 million

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes sime $n \log_2 n$

- High resolution gaming consle may have 4000×2000 pixels
 - 8×10^6 points 8 million
- Suppose we have $100,000 = 1 \times 10^5$ objects

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes sime $n \log_2 n$

- High resolution gaming consle may have 4000×2000 pixels
 - 8×10^6 points 8 million
- Suppose we have $100,000 = 1 \times 10^5$ objects
- Naive algorithm takes 10¹⁰ steps
 - 1000 seconds, or 16.7 minutes in Python
 - Unacceptable response time!

Example 2 Video game

- Several objects on screen
- Basic step: find closest pair of objects
- \blacksquare *n* objects naive algorithm is n^2
 - For each pair of objects, compute their distance
 - Report minimum distance across all pairs
- There is a clever algorithm that takes sime $n \log_2 n$

- High resolution gaming consle may have 4000×2000 pixels
 - 8×10^6 points 8 million
- Suppose we have $100,000 = 1 \times 10^5$ objects
- Naive algorithm takes 10¹⁰ steps
 - 1000 seconds, or 16.7 minutes in Python
 - Unacceptable response time!
- $\log_2 100,000$ is under 20, so $n \log_2 n$ takes a fraction of a second

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$
 - For small values of n, f(n) < g(n)
 - After n = 5000, f(n) overtakes g(n)

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$
 - For small values of n, f(n) < g(n)
 - After n = 5000, f(n) overtakes g(n)
- Asymptotic complexity
 - What happens in the limit, as n becomes large

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$
 - For small values of n, f(n) < g(n)
 - After n = 5000, f(n) overtakes g(n)
- Asymptotic complexity
 - What happens in the limit, as *n* becomes large
- Typical growth functions
 - Is t(n) proportional to $\log n, \ldots, n^2, n^3, \ldots, 2^n$?
 - Note: $\log n$ means $\log_2 n$ by default
 - Logarithmic, polynomial, exponential, ...

Input size	Values of $t(n)$						
	log n	n	$n \log n$	n^2	n^3	2 ⁿ	<i>n</i> !
10	3.3	10	33	100	1000	1000	10^{6}
100	6.6	100	66	10 ⁴	10^{6}	10^{30}	10^{157}
1000	10	1000	10 ⁴	10^{6}	10 ⁹		
10 ⁴	13	10 ⁴	10 ⁵	10 ⁸	10^{12}		
10 ⁵	17	10^{5}	10^{6}	10^{10}			
10 ⁶	20	10^{6}	10 ⁷	10^{12}			
10 ⁷	23	10 ⁷	10 ⁸				
108	27	10 ⁸	10^{9}				
10 ⁹	30	10 ⁹	10^{10}				
10 ¹⁰	33	10^{10}	10^{11}				

Measuring running time

- Analysis should be independent of the underlying hardware
 - Don't use actual time
 - Measure in terms of basic operations

Measuring running time

- Analysis should be independent of the underlying hardware
 - Don't use actual time
 - Measure in terms of basic operations
- Typical basic operations
 - Compare two values
 - Assign a value to a variable

Measuring running time

- Analysis should be independent of the underlying hardware
 - Don't use actual time
 - Measure in terms of basic operations
- Typical basic operations
 - Compare two values
 - Assign a value to a variable
- Exchange a pair of values?

$$(x,y) = (y,x)$$
 $t = x$
 $x = y$
 $y = t$

- If we ignore constants, focus on orders of magnitude, both are within a factor of 3
- Need not be very precise about defining basic operations

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters
- What about numeric problems? Is *n* a prime?

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters
- What about numeric problems? Is *n* a prime?
 - Magnitude of *n* is not the correct measure

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters
- What about numeric problems? Is *n* a prime?
 - Magnitude of *n* is not the correct measure
 - Arithmetic operations are performed digit by digit
 - Addition with carry, subtraction with borrow, multiplication, long division . . .

- Typically a natural parameter
 - Size of a list/array that we want to search or sort
 - Number of objects we want to rearrange
 - Number of vertices and number edges in a graph
 - We shall see why these are separate parameters
- What about numeric problems? Is *n* a prime?
 - \blacksquare Magnitude of n is not the correct measure
 - Arithmetic operations are performed digit by digit
 - Addition with carry, subtraction with borrow, multiplication, long division . . .
 - Number of digits is a natural measure of input size
 - Same as $\log_b n$, when we write n in base b

Which inputs should we consider?

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array

Which inputs should we consider?

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array
- Ideally, want the "average" behaviour
 - Difficult to compute
 - Average over what? Are all inputs equally likely?
 - Need a probability distribution over inputs

Which inputs should we consider?

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array
- Ideally, want the "average" behaviour
 - Difficult to compute
 - Average over what? Are all inputs equally likely?
 - Need a probability distribution over inputs
- Instead, worst case input
 - Input that forces algorithm to take longest possible time
 - Search for a value that is not present in an unsorted list
 - Must scan all elements

Which inputs should we consider?

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array
- Ideally, want the "average" behaviour
 - Difficult to compute
 - Average over what? Are all inputs equally likely?
 - Need a probability distribution over inputs
- Instead, worst case input
 - Input that forces algorithm to take longest possible time
 - Search for a value that is not present in an unsorted list
 - Must scan all elements
 - Pessimistic worst case may be rare

Which inputs should we consider?

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array
- Ideally, want the "average" behaviour
 - Difficult to compute
 - Average over what? Are all inputs equally likely?
 - Need a probability distribution over inputs
- Instead, worst case input
 - Input that forces algorithm to take longest possible time
 - Search for a value that is not present in an unsorted list
 - Must scan all elements
 - Pessimistic worst case may be rare
 - Upper bound for worst case guarantees good performance

- Two important parameters when measuring algorithm performance
 - Running time, memory requirement (space)
 - We mainly focus on time

- Two important parameters when measuring algorithm performance
 - Running time, memory requirement (space)
 - We mainly focus on time
- Running time t(n) is a function of input size n
 - Interested in orders of magnitude
 - \blacksquare Asymptotic complexity, as n becomes large

- Two important parameters when measuring algorithm performance
 - Running time, memory requirement (space)
 - We mainly focus on time
- Running time t(n) is a function of input size n
 - Interested in orders of magnitude
 - \blacksquare Asymptotic complexity, as n becomes large
- From running time, we can estimate feasible input sizes

- Two important parameters when measuring algorithm performance
 - Running time, memory requirement (space)
 - We mainly focus on time
- Running time t(n) is a function of input size n
 - Interested in orders of magnitude
 - \blacksquare Asymptotic complexity, as n becomes large
- From running time, we can estimate feasible input sizes
- We focus on worst case inputs
 - Pessimistic, but easier to calculate than average case
 - Upper bound on worst case gives us an overall guarantee on performance

Comparing orders of magnitude

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 2

Orders of magnitude

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$

Orders of magnitude

- When comparing t(n), focus on orders of magnitude
 - Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$
- How do we compare functions with respect to orders of magnitude?

Upper bounds

■ f(x) is said to be O(g(x)) if we can find constants c and x_0 such that $c \cdot g(x)$ is an upper bound for f(x) for x beyond x_0

Upper bounds

- f(x) is said to be O(g(x)) if we can find constants c and x_0 such that $c \cdot g(x)$ is an upper bound for f(x) for x beyond x_0
- $f(x) \le cg(x)$ for every $x \ge x_0$

Upper bounds

- f(x) is said to be O(g(x)) if we can find constants c and x_0 such that $c \cdot g(x)$ is an upper bound for f(x) for x beyond x_0
- $f(x) \le cg(x)$ for every $x \ge x_0$
- Graphs of typical functions we have seen

Examples

- 100n + 5 is $O(n^2)$
 - $100n + 5 \le 100n + n = 101n$, for $n \ge 5$
 - $101n < 101n^2$
 - Choose $n_0 = 5$, c = 101

Examples

- 100n + 5 is $O(n^2)$
 - $100n + 5 \le 100n + n = 101n$, for $n \ge 5$
 - $101n < 101n^2$
 - Choose $n_0 = 5$, c = 101
- Alternatively
 - $100n + 5 \le 100n + 5n = 105n$, for $n \ge 1$
 - $105n < 105n^2$
 - Choose $n_0 = 1$, c = 105

Examples

- 100n + 5 is $O(n^2)$
 - $100n + 5 \le 100n + n = 101n$, for $n \ge 5$
 - $101n < 101n^2$
 - Choose $n_0 = 5$, c = 101
- Alternatively
 - $100n + 5 \le 100n + 5n = 105n$, for $n \ge 1$
 - $105n < 105n^2$
 - Choose $n_0 = 1$, c = 105
- Choice of n_0 , c not unique

Examples . . .

- \blacksquare 100 $n^2 + 20n + 5$ is $O(n^2)$
 - $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$
 - $100n^2 + 20n + 5 \le 125n^2$, for $n \ge 1$
 - Choose $n_0 = 1$, c = 125

Examples . . .

- \blacksquare 100 $n^2 + 20n + 5$ is $O(n^2)$
 - $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$
 - \blacksquare 100 $n^2 + 20n + 5 < 125n^2$, for n > 1
 - Choose $n_0 = 1$, c = 125
- What matters is the highest term
 - 20n + 5 is dominated by $100n^2$

Examples . . .

- \blacksquare 100 $n^2 + 20n + 5$ is $O(n^2)$
 - $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, for $n \ge 1$
 - $100n^2 + 20n + 5 \le 125n^2$, for $n \ge 1$
 - Choose $n_0 = 1$, c = 125
- What matters is the highest term
 - 20n + 5 is dominated by $100n^2$
- \blacksquare n^3 is not $O(n^2)$
 - No matter what c we choose, cn^2 will be dominated by n^3 for n > c

■ If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Proof
 - $f_1(n) \le c_1 g_1(n) \text{ for } n > n_1$
 - $f_2(n) \le c_2 g_2(n) \text{ for } n > n_2$

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Proof
 - $f_1(n) \le c_1 g_1(n) \text{ for } n > n_1$
 - $f_2(n) \le c_2 g_2(n) \text{ for } n > n_2$
 - Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Proof
 - $f_1(n) \le c_1 g_1(n) \text{ for } n > n_1$
 - $f_2(n) \le c_2 g_2(n) \text{ for } n > n_2$
 - Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
 - For $n \ge n_3$, $f_1(n) + f_2(n)$ $\le c_1 g_1(n) + c_2 g_2(n)$

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Proof
 - $f_1(n) \le c_1 g_1(n) \text{ for } n > n_1$
 - $f_2(n) \le c_2 g_2(n) \text{ for } n > n_2$
 - Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
 - For $n \ge n_3$, $f_1(n) + f_2(n)$ $\le c_1g_1(n) + c_2g_2(n)$
 - $\leq c_3(g_1(n)+g_2(n))$

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Proof
 - $f_1(n) \le c_1 g_1(n) \text{ for } n > n_1$
 - $f_2(n) \le c_2 g_2(n) \text{ for } n > n_2$
 - Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
 - For $n \ge n_3$, $f_1(n) + f_2(n)$ $< c_1 g_1(n) + c_2 g_2(n)$
 - $< c_3(g_1(n) + g_2(n))$
 - $\leq c_3(g_1(n) + g_2(n))$
 - $\leq 2c_3(\max(g_1(n),g_2(n)))$

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Proof
 - $f_1(n) \le c_1 g_1(n) \text{ for } n > n_1$
 - $f_2(n) \le c_2 g_2(n) \text{ for } n > n_2$
 - Let $c_3 = \max(c_1, c_2)$, $n_3 = \max(n_1, n_2)$
 - For $n \ge n_3$, $f_1(n) + f_2(n)$ $\le c_1g_1(n) + c_2g_2(n)$ $\le c_3(g_1(n) + g_2(n))$ $\le 2c_3(\max(g_1(n), g_2(n)))$

- Algorithm has two phases
 - Phase A takes time $O(g_A(n))$
 - Phase B takes time $O(g_B(n))$

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Proof

$$f_1(n) \le c_1 g_1(n) \text{ for } n > n_1$$

$$f_2(n) \le c_2 g_2(n) \text{ for } n > n_2$$

■ Let
$$c_3 = \max(c_1, c_2)$$
, $n_3 = \max(n_1, n_2)$

■ For
$$n \ge n_3$$
, $f_1(n) + f_2(n)$
 $\le c_1g_1(n) + c_2g_2(n)$
 $\le c_3(g_1(n) + g_2(n))$
 $\le 2c_3(\max(g_1(n), g_2(n)))$

- Algorithm has two phases
 - Phase A takes time $O(g_A(n))$
 - Phase B takes time $O(g_B(n))$
- Algorithm as a whole takes time $\max(O(g_A(n), g_B(n)))$

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Proof

$$f_1(n) \le c_1 g_1(n) \text{ for } n > n_1$$

$$f_2(n) \le c_2 g_2(n)$$
 for $n > n_2$

■ Let
$$c_3 = \max(c_1, c_2)$$
, $n_3 = \max(n_1, n_2)$

■ For
$$n \ge n_3$$
, $f_1(n) + f_2(n)$
 $\le c_1g_1(n) + c_2g_2(n)$
 $\le c_3(g_1(n) + g_2(n))$
 $\le 2c_3(\max(g_1(n), g_2(n)))$

- Algorithm has two phases
 - Phase A takes time $O(g_A(n))$
 - Phase B takes time $O(g_B(n))$
- Algorithm as a whole takes time $\max(O(g_A(n), g_B(n)))$
- Least efficient phase is the upper bound for the whole algorithm

Lower bounds

- f(x) is said to be $\Omega(g(x))$ if we can find constants c and x_0 such that cg(x) is a lower bound for f(x) for x beyond x_0
 - $f(x) \ge cg(x)$ for every $x \ge x_0$

Lower bounds

- f(x) is said to be $\Omega(g(x))$ if we can find constants c and x_0 such that cg(x) is a lower bound for f(x) for x beyond x_0
 - $f(x) \ge cg(x)$ for every $x \ge x_0$
- \blacksquare n^3 is $\Omega(n^2)$
 - $n^3 > n^2$ for all n, so $n_0 = 1$, c = 1

Lower bounds

- f(x) is said to be $\Omega(g(x))$ if we can find constants c and x_0 such that cg(x) is a lower bound for f(x) for x beyond x_0
 - $f(x) \ge cg(x)$ for every $x \ge x_0$
- \blacksquare n^3 is $\Omega(n^2)$
 - $n^3 > n^2$ for all n, so $n_0 = 1$, c = 1
- Typically we establish lower bounds for a problem rather than an individual algorithm
 - If we sort a list by comparing elements and swapping them, we require $\Omega(n \log n)$ comparisons
 - This is independent of the algorithm we use for sorting

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$
- n(n-1)/2 is $\Theta(n^2)$

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$
- n(n-1)/2 is $\Theta(n^2)$
 - Upper bound
 - $n(n-1)/2 = n^2/2 n/2 \le n^2/2$ for all $n \ge 0$

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$
- n(n-1)/2 is $\Theta(n^2)$
 - Upper bound

$$n(n-1)/2 = n^2/2 - n/2 \le n^2/2$$
 for all $n \ge 0$

- Lower bound
 - $n(n-1)/2 = n^2/2 n/2 \ge n^2/2 (n/2 \times n/2) \ge n^2/4$ for $n \ge 2$

- f(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - Find constants c_1, c_2, x_0 such that $c_1g(x) \le f(x) \le c_2g(x)$ for every $x \ge x_0$
- n(n-1)/2 is $\Theta(n^2)$
 - Upper bound

$$n(n-1)/2 = n^2/2 - n/2 \le n^2/2$$
 for all $n \ge 0$

Lower bound

$$n(n-1)/2 = n^2/2 - n/2 \ge n^2/2 - (n/2 \times n/2) \ge n^2/4$$
 for $n \ge 2$

• Choose $n_0 = 2$, $c_1 = 1/4$, $c_2 = 1/2$

8/9

- f(n) is O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe asymptotic worst case running time

- f(n) is O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe asymptotic worst case running time
- f(n) is $\Omega(g(n))$ means g(n) is a lower bound for f(n)
 - Typically used for a problem as a whole, rather than an individual algorihm

- f(n) is O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe asymptotic worst case running time
- f(n) is $\Omega(g(n))$ means g(n) is a lower bound for f(n)
 - Typically used for a problem as a whole, rather than an individual algorihm
- f(n) is $\Theta(g(n))$: matching upper and lower bounds
 - We have found an optimal algorithm for a problem

Calculating complexity — Examples

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 2

Calculating complexity

- Iterative programs
- Recursive programs

Find the maximum element in a list

- Input size is length of the list
- Single loop scans all elements
- Always takes n steps
- Overall time is O(n)

```
def maxElement(L):
  maxval = L[0]
  for i in range(len(L)):
    if L[i] > maxval:
       maxval = L[i]
return(maxval)
```

Check whether a list contains duplicates

- Input size is length of the list
- Nested loop scans all pairs of elements
- A duplicate may be found in the very first iteration
- Worst case no duplicates, both loops run fully
- Time is (n-1) + (n-2) + ... + 1 = n(n-1)/2
- Overall time is $O(n^2)$

```
def noDuplicates(L):
   for i in range(len(L)):
     for j in range(i+1,len(L)):
        if L[i] == L[j]:
        return(False)
   return(True)
```

Matrix multiplication

- Matrix is represented as list of lists
 - $\begin{array}{c|cccc}
 & 1 & 2 & 3 \\
 4 & 5 & 6
 \end{array}$
 - **[**[1,2,3],[4,5,6]]
- Input matrices have size $m \times n$, $n \times p$
- Output matrix is $m \times p$
- Three nested loops
- Overall time is $O(mnp) O(n^3)$ if both are $n \times n$

```
def matrixMultiply(A,B):
  (m,n,p) = (len(A),len(B),len(B[0]))
  C = [[0 \text{ for i in range}(p)]]
           for j in range(m) ]
  for i in range(m):
    for i in range(p):
      for k in range(n):
        C[i][j] = C[i][j] + A[i][k]*B[k][j]
  return(C)
```

Number of bits in binary representation of n

- lacksquare log n steps for n to reach 1
- For number theoretic problems, input size is number of digits
- This algorithm is linear in input size

```
def numberOfBits(n):
   count = 1
   while n > 1:
      count = count + 1
      n = n // 2
   return(count)
```

Towers of Hanoi

- Three pegs A,B,C
- Move n disks from A to B, use C as transit peg
- Never put a larger disk on a smaller one

Towers of Hanoi

- Three pegs A,B,C
- Move n disks from A to B, use C as transit peg
- Never put a larger disk on a smaller one

Recursive solution

- Move n-1 disks from A to C, use B as transit peg
- Move larges disk from A to B
- Move n-1 disks from C to B, use A as transit peg

Recurrence

- M(n) number of moves to transfer n disks
- M(1) = 1
- M(n) = M(n-1) + 1 + M(n-1) = 2M(n-1) + 1

8/9

Recurrence

- M(n) number of moves to transfer n disks
- M(1) = 1
- M(n) = M(n-1) + 1 + M(n-1) = 2M(n-1) + 1

$$M(n) = 2M(n-1) + 1$$

Recurrence

- M(n) number of moves to transfer n disks
- M(1) = 1
- M(n) = M(n-1) + 1 + M(n-1) = 2M(n-1) + 1

$$M(n) = 2M(n-1)+1$$

= $2(2M(n-2)+1)+1=2^2M(n-2)+(2+1)$

Recurrence

- M(n) number of moves to transfer n disks
- M(1) = 1
- M(n) = M(n-1) + 1 + M(n-1) = 2M(n-1) + 1

$$M(n) = 2M(n-1)+1$$

$$= 2(2M(n-2)+1)+1=2^2M(n-2)+(2+1)$$

$$= 2^2(2M(n-3)+1)+(2+1)=2^3M(n-3)+(4+2+1)$$

Recurrence

- M(n) number of moves to transfer n disks
- M(1) = 1
- M(n) = M(n-1) + 1 + M(n-1) = 2M(n-1) + 1

$$M(n) = 2M(n-1)+1$$

$$= 2(2M(n-2)+1)+1 = 2^{2}M(n-2)+(2+1)$$

$$= 2^{2}(2M(n-3)+1)+(2+1) = 2^{3}M(n-3)+(4+2+1)$$
...
$$= 2^{k}M(n-k)+(2^{k}-1)$$

Recurrence

- M(n) number of moves to transfer n disks
- M(1) = 1
- M(n) = M(n-1) + 1 + M(n-1) = 2M(n-1) + 1

$$M(n) = 2M(n-1)+1$$

$$= 2(2M(n-2)+1)+1=2^{2}M(n-2)+(2+1)$$

$$= 2^{2}(2M(n-3)+1)+(2+1)=2^{3}M(n-3)+(4+2+1)$$
...
$$= 2^{k}M(n-k)+(2^{k}-1)$$
...
$$= 2^{n-1}M(1)+(2^{n-1}-1)$$

Recurrence

- M(n) number of moves to transfer n disks
- M(1) = 1
- M(n) = M(n-1) + 1 + M(n-1) = 2M(n-1) + 1

Unwind and solve

$$M(n) = 2M(n-1)+1$$

$$= 2(2M(n-2)+1)+1=2^{2}M(n-2)+(2+1)$$

$$= 2^{2}(2M(n-3)+1)+(2+1)=2^{3}M(n-3)+(4+2+1)$$
...
$$= 2^{k}M(n-k)+(2^{k}-1)$$
...
$$= 2^{n-1}M(1)+(2^{n-1}-1)$$

$$= 2^{n-1}+2^{n-1}-1-2^{n}-1$$

8/9

- Iterative programs
 - Focus on loops

- Iterative programs
 - Focus on loops
- Recursive programs
 - Write and solve a recurrence

- Iterative programs
 - Focus on loops
- Recursive programs
 - Write and solve a recurrence
- Need to be clear about accounting for "basic" operations

Searching in a List

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 2

■ Is value v present in list 1?

- Is value v present in list 1?
- Naive solution scans the list

```
def naivesearch(v,1):
   for x in 1:
     if v == x:
       return(True)
   return(False)
```

- Is value v present in list 1?
- Naive solution scans the list
- Input size n, the length of the list

```
def naivesearch(v,1):
   for x in 1:
     if v == x:
        return(True)
   return(False)
```

- Is value v present in list 1?
- Naive solution scans the list
- Input size n, the length of the list
- Worst case is when v is not present in 1

```
def naivesearch(v,1):
   for x in 1:
     if v == x:
       return(True)
   return(False)
```

- Is value v present in list 1?
- Naive solution scans the list
- Input size n, the length of the list
- Worst case is when v is not present in 1
- Worst case complexity is O(n)

```
def naivesearch(v,1):
   for x in 1:
     if v == x:
       return(True)
   return(False)
```

■ What if 1 is sorted in ascending order?

- What if 1 is sorted in ascending order?
- Compare v with the midpoint of 1

- What if 1 is sorted in ascending order?
- Compare v with the midpoint of 1
 - If midpoint is v, the value is found
 - If v less than midpoint, search the first half
 - If v greater than midpoint, search the second half
 - Stop when the interval to search becomes empty

```
def binarysearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1 [m]:
    return(binarysearch(v,1[:m]))
  else:
    return(binarysearch(v,1[m+1:]))
```

- What if 1 is sorted in ascending order?
- Compare v with the midpoint of 1
 - If midpoint is v, the value is found
 - If v less than midpoint, search the first half
 - If v greater than midpoint, search the second half
 - Stop when the interval to search becomes empty
- Binary search

```
def binarysearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1 [m]:
    return(binarysearch(v,1[:m]))
  else:
    return(binarysearch(v,1[m+1:]))
```

Binary search

How long does this take?

```
def binarysearch(v,1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(binarysearch(v,1[:m]))
  else:
    return(binarysearch(v,l[m+1:]))
```

Binary search

- How long does this take?
 - Each call halves the interval to search
 - Stop when the interval become empty
- log *n* number of times to divide *n* by 2 to reach 1
 - 1//2 = 0, so next call reaches empty interval

```
def binarysearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(binarysearch(v,1[:m]))
  else:
    return(binarysearch(v,1[m+1:]))
```

Binary search

- How long does this take?
 - Each call halves the interval to search
 - Stop when the interval become empty
- log *n* number of times to divide *n* by 2 to reach 1
 - 1//2 = 0, so next call reaches empty interval
- $O(\log n)$ steps

```
def binarysearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1 [m]:
    return(binarysearch(v,1[:m]))
  else:
    return(binarysearch(v,1[m+1:]))
```

Alternative calculation

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1

```
def bsearch(v.1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1 \lceil m \rceil:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

Alternative calculation

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n/2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0

```
def bsearch(v.1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1 \lceil m \rceil:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

Alternative calculation

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n/2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"

```
def bsearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n/2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"
- T(n) = T(n/2) + 1

```
def bsearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0. T(n) = T(n/2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"
- T(n) = T(n/2) + 1= (T(n//4) + 1) + 1

```
def bsearch(v.1):
  if 1 == []:
    return(False)
 m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n/2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"
- T(n) = T(n/2) + 1 $= (T(n//4) + 1) + 1 = T(n//2^2) + 1 + 1$

```
def bsearch(v.1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n/2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"
- T(n) = T(n/2) + 1 $= (T(n//4) + 1) + 1 = T(n//2^2) + \underbrace{1+1}_{}$ $= T(n//2^k) + \underbrace{1 + \cdots + 1}_{}$

```
def bsearch(v.1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n/2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"

■
$$T(n) = T(n/2) + 1$$

= $(T(n/4) + 1) + 1 = T(n/2^2) + \underbrace{1+1}_{2}$
= \cdots
= $T(n/2^k) + \underbrace{1+\cdots+1}_{k}$
= $T(1) + k$, for $k = \log n$

```
def bsearch(v.1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1
- \blacksquare Recurrence for T(n)
 - T(0) = 1
 - T(n) = T(n/2) + 1, n > 0
- Solve by "unwinding"

■
$$T(n) = T(n//2) + 1$$

 $= (T(n//4) + 1) + 1 = T(n//2^2) + \underbrace{1 + 1}_{2}$
 $= \cdots$
 $= T(n//2^k) + \underbrace{1 + \cdots + 1}_{k}$
 $= T(1) + k$, for $k = \log n$
 $= (T(0) + 1) + \log n = 2 + \log n$

```
def bsearch(v.1):
  if 1 == []:
    return(False)
  m = len(1)//2
  if v == 1[m]:
    return(True)
  if v < 1[m]:
    return(bsearch(v,1[:m]))
  else:
    return(bsearch(v,l[m+1:]))
```

Summary

- Search in an unsorted list takes time O(n)
 - Need to scan the entire list
 - Worst case is when the value is not present in the list

Summary

- Search in an unsorted list takes time O(n)
 - Need to scan the entire list
 - Worst case is when the value is not present in the list
- For a sorted list, binary search takes time $O(\log n)$
 - Halve the interval to search each time

Summary

- Search in an unsorted list takes time O(n)
 - Need to scan the entire list
 - Worst case is when the value is not present in the list
- For a sorted list, binary search takes time $O(\log n)$
 - Halve the interval to search each time
- In a sorted list, we can determine that v is absent by examining just $\log n$ values!

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 2

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

 Scan the entire pile and find the paper with minimum marks

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

- Scan the entire pile and find the paper with minimum marks
- Move this paper to a new pile

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

- Scan the entire pile and find the paper with minimum marks
- Move this paper to a new pile
- Repeat with the remaining papers
 - Add the paper with next minimum marks to the second pile each time

- Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 1

- Scan the entire pile and find the paper with minimum marks
- Move this paper to a new pile
- Repeat with the remaining papers
 - Add the paper with next minimum marks to the second pile each time
- Eventually, the new pile is sorted in descending order

74 32 89 55 21 64

Madhavan Mukund Selection Sort PDSA using Python Week 2

74 32 89 55 21 64

21

Madhavan Mukund Selection Sort PDSA using Python Week 2

74 32 89 55 21 64

21 32

74 32 89 55 21 64

21 32 55

Madhavan Mukund Selection Sort

74 32 89 55 21 64

21 32 55 64

74 32 89 55 21 64

21 32 55 64 74

Madhavan Mukund

21 32 55 64 74 89

Madhavan Mukund Selection Sort

Select the next element in sorted order

- Select the next element in sorted order
- Append it to the final sorted list

- Select the next element in sorted order
- Append it to the final sorted list
- Avoid using a second list
 - Swap the minimum element into the first position
 - Swap the second minimum element into the second position
 -

- Select the next element in sorted order
- Append it to the final sorted list
- Avoid using a second list
 - Swap the minimum element into the first position
 - Swap the second minimum element into the second position
 - . . .
- Eventually the list is rearranged in place in ascending order

- Select the next element in sorted order
- Append it to the final sorted list
- Avoid using a second list
 - Swap the minimum element into the first position
 - Swap the second minimum element into the second position
 - . . .
- Eventually the list is rearranged in place in ascending order

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

Correctness follows from the invariant

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: n i steps to find minimum in L[i:]

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: n-i steps to find minimum in L[i:]
 - $T(n) = n + (n-1) + \cdots + 1$

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: *n* − *i* steps to find minimum in L[i:]
 - $T(n) = n + (n-1) + \cdots + 1$
 - T(n) = n(n+1)/2

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: n i steps to find minimum in L[i:]
 - $T(n) = n + (n-1) + \cdots + 1$
 - T(n) = n(n+1)/2
- T(n) is $O(n^2)$

```
def SelectionSort(L):
   n = len(L)
   if n < 1:
      return(L)
   for i in range(n):
      # Assume L[:i] is sorted
      mpos = i
      # mpos: position of minimum in L[i:]
      for j in range(i+1,n):
        if L[i] < L[mpos]:</pre>
           mpos = j
      # L[mpos] : smallest value in L[i:]
      # Exchange L[mpos] and L[i]
      (L[i],L[mpos]) = (L[mpos],L[i])
      # Now L[:i+1] is sorted
   return(L)
```

Selection sort is an intuitive algorithm to sort a list

- Selection sort is an intuitive algorithm to sort a list
- Repeatedly find the minimum (or maximum) and append to sorted list

Madhavan Mukund Selection Sort PDSA using Python Week 2

- Selection sort is an intuitive algorithm to sort a list
- Repeatedly find the minimum (or maximum) and append to sorted list
- Worst case complexity is $O(n^2)$
 - Every input takes this much time
 - No advantage even if list is arranged carefully before sorting

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python Week 2

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

Strategy 2

■ Move the first paper to a new pile

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

- Move the first paper to a new pile
- Second paper
 - Lower marks than first paper? Place below first paper in new pile
 - Higher marks than first paper? Place above first paper in new pile

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

- Move the first paper to a new pile
- Second paper
 - Lower marks than first paper? Place below first paper in new pile
 - Higher marks than first paper? Place above first paper in new pile
- Third paper
 - Insert into correct position with respect to first two

- You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks

- Move the first paper to a new pile
- Second paper
 - Lower marks than first paper? Place below first paper in new pile
 - Higher marks than first paper? Place above first paper in new pile
- Third paper
 - Insert into correct position with respect to first two
- Do this for the remaining papers
 - Insert each one into correct position in the second pile

74 32 89 55 21 64

74 32 89 55 21 64

74

74 32 89 55 21 64

32 74

74 32 89 55 21 64

32 74 89

74 32 89 55 21 64

32 55 74 89

74 32 89 55 21 64

21 32 55 74 89

21 32 55 64 74 89

■ Start building a new sorted list

Madhavan Mukund Insertion Sort PDSA using Python Week 2

- Start building a new sorted list
- Pick next element and insert it into the sorted list

- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume L[:i] is sorted
 - Insert L[i] in L[:i]

- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume L[:i] is sorted
 - Insert L[i] in L[:i]

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(j > 0 and L[j] < L[j-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume L[:i] is sorted
 - Insert L[i] in L[:i]
- A recursive formulation
 - Inductively sort L[:i]
 - Insert L[i] in L[:i]

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(j > 0 and L[j] < L[j-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume L[:i] is sorted
 - Insert L[i] in L[:i]
- A recursive formulation
 - Inductively sort L[:i]
 - Insert L[i] in L[:i]

```
def Insert(L,v):
   n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else:
     return(Insert(L[:-1],v)+L[-1:])
def ISort(L):
   n = len(L)
   if n < 1:
      return(L)
   L = Insert(ISort(L[:-1]), L[-1])
   return(L)
```

Correctness follows from the invariant

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
     return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      j = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      j = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant.
- Efficiency
 - Outer loop iterates n times
 - Inner loop: *i* steps to insert L[i] in L[:i]
 - $T(n) = 0 + 1 + \cdots + (n-1)$

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]
 - $T(n) = 0 + 1 + \cdots + (n-1)$
 - T(n) = n(n-1)/2

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- Correctness follows from the invariant
- Efficiency
 - Outer loop iterates n times
 - Inner loop: i steps to insert L[i] in L[:i]
 - $T(n) = 0 + 1 + \cdots + (n-1)$
 - T(n) = n(n-1)/2
- T(n) is $O(n^2)$

```
def InsertionSort(L):
  n = len(L)
   if n < 1:
      return(L)
  for i in range(n):
      # Assume L[:i] is sorted
      # Move L[i] to correct position in I
      i = i
      while(L[i] < L[i-1]):
        (L[i],L[i-1]) = (L[i-1],L[i])
        i = i-1
      # Now L[:i+1] is sorted
  return(L)
```

- For input of size n, let
 - \blacksquare TI(n) be the time taken by Insert
 - TS(n) be the time taken by ISort

```
def Insert(L,v):
   n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else
     return(Insert(L[:-1],v)+l[-1:])
def ISort(L):
   n = len(L)
   if n < 1:
      return(L)
   L = Insert(ISort(L[:-1]), L[-1])
   return(L)
```

- For input of size n, let
 - \blacksquare TI(n) be the time taken by Insert
 - TS(n) be the time taken by ISort
- First calculate *TI(n)* for Insert
 - TI(0) = 1
 - TI(n) = TI(n-1) + 1

```
def Insert(L,v):
   n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else
     return(Insert(L[:-1],v)+l[-1:])
def ISort(L):
   n = len(L)
   if n < 1:
      return(L)
   L = Insert(ISort(L[:-1]), L[-1])
   return(L)
```

- For input of size n, let
 - \blacksquare TI(n) be the time taken by Insert
 - TS(n) be the time taken by ISort
- First calculate *TI(n)* for Insert
 - TI(0) = 1
 - \blacksquare TI(n) = TI(n-1) + 1
 - Unwind to get TI(n) = n

```
def Insert(L,v):
   n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else
     return(Insert(L[:-1],v)+l[-1:])
def ISort(L):
   n = len(L)
   if n < 1:
      return(L)
   L = Insert(ISort(L[:-1]), L[-1])
   return(L)
```

- For input of size n, let
 - \blacksquare TI(n) be the time taken by Insert
 - TS(n) be the time taken by ISort
- First calculate *TI(n)* for Insert
 - TI(0) = 1
 - TI(n) = TI(n-1) + 1
 - Unwind to get TI(n) = n
- Set up a recurrence for TS(n)
 - TS(0) = 1
 - TS(n) = TS(n-1) + TI(n-1)

```
def Insert(L,v):
   n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else
     return(Insert(L[:-1],v)+l[-1:])
def ISort(L):
   n = len(L)
   if n < 1:
      return(L)
   L = Insert(ISort(L[:-1]), L[-1])
   return(L)
```

- For input of size n, let
 - \blacksquare TI(n) be the time taken by Insert
 - TS(n) be the time taken by ISort
- First calculate *TI(n)* for Insert
 - TI(0) = 1
 - TI(n) = TI(n-1) + 1
 - Unwind to get TI(n) = n
- Set up a recurrence for TS(n)
 - TS(0) = 1
 - TS(n) = TS(n-1) + TI(n-1)
- Unwind to get $1+2+\cdots+n-1$

```
def Insert(L,v):
   n = len(L)
   if n == 0:
     return([v])
   if v >= L[-1]:
     return(L+[v])
   else
     return(Insert(L[:-1],v)+l[-1:])
def ISort(L):
   n = len(L)
   if n < 1:
      return(L)
   L = Insert(ISort(L[:-1]), L[-1])
   return(L)
```

Insertion sort is another intuitive algorithm to sort a list

Summary

- Insertion sort is another intuitive algorithm to sort a list
- Create a new sorted list
- Repeatedly insert elements into the sorted list

Summary

- Insertion sort is another intuitive algorithm to sort a list
- Create a new sorted list
- Repeatedly insert elements into the sorted list
- Worst case complexity is $O(n^2)$
 - Unlike selection sort, not all cases take time n^2
 - If list is already sorted, Insert stops in 1 step
 - Overall time can be close to O(n)

Merge Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 2

- Both selection sort and insertion sort take time $O(n^2)$
- This is infeasible for n > 10000

Madhavan Mukund Merge Sort PDSA using Python Week 2

- Both selection sort and insertion sort take time $O(n^2)$
- This is infeasible for n > 10000
- How can we bring the complexity below $O(n^2)$?

Madhavan Mukund Merge Sort PDSA using Python Week 2

- Both selection sort and insertion sort take time $O(n^2)$
- This is infeasible for n > 10000
- How can we bring the complexity below $O(n^2)$?

Strategy 3

Divide the list into two halves

- Both selection sort and insertion sort take time $O(n^2)$
- This is infeasible for n > 10000
- How can we bring the complexity below $O(n^2)$?

Strategy 3

- Divide the list into two halves
- Separately sort the left and right half

- Both selection sort and insertion sort take time $O(n^2)$
- This is infeasible for n > 10000
- How can we bring the complexity below $O(n^2)$?

Strategy 3

- Divide the list into two halves
- Separately sort the left and right half
- Combine the two sorted halves to get a fully sorted list

Combine two sorted lists A and B into a single sorted list C

Madhavan Mukund Merge Sort PDSA using Python Week 2

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B

Madhavan Mukund Merge Sort PDSA using Python Week 2

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 2 74 89
- 21 55 64

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 2 74 89
- 21 55 64

21

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 32 74 89
- 21 55 64

21 32

- Combine two sorted lists A and B into a single sorted list C
- 32 74 89

■ Compare first elements of A and B

21 55 64

Move the smaller of the two to CRepeat till you exhaust A and B

21 32 55

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 32 74 89
- 21 55 64

21 32 55 64

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 32 74 89
- 21 55 64

21 32 55 64 7

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B

- 32 74 89
- 21 55 64

21 32 55 64 74 89

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B
- Merging A and B

- 32 74 89
- 21 55 64

21 32 55 64 74 89

■ Let n be the length of L

Madhavan Mukund Merge Sort PDSA using Python Week 2

- Let n be the length of L
- Sort A[:n//2]

Madhavan Mukund Merge Sort PDSA using Python Week 2

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]

- Let n be the length of *L*
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

43	32	22	78	63	57	91	13

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

43 32 22 78 63 57 91 13

43	32	22	78
----	----	----	----

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

43 | 32 | 22 | 78 | 63 | 57 | 91 | 13

43 | 32 | 22 | 78 | | | | | | 63 | | | | | 57 | | | 91 | | | 13 |

43 32 22 78 63 57 91 13

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

43 | 32 | 22 | 78 | 63 | 57 | 91 | 13

43 | 32 | 22 | 78 | | | | | | 63 | | | | | 57 | | | 91 | | | 13 |

43 32 22 78 63 57 91 13

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

 32
 43

 22
 78

 63
 57

 91
 13

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

43 | 32 | 22 | 78 | 63 | 57 | 91 | 13

43 32 22 78 63 57 91 13

32 43 22 78 63 57 91 13

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

43 | 32 | 22 | 78 | 63 | 57 | 91 | 13

43 32 22 78 63 57 91 13

32 | 43 | 22 | 78 | 57 | 63 | 91 | 13

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 | 43 | 22 | 78 | 57 | 63 | 13 | 91

43 32 22 78 63 57 91 13

PDSA using Python Week 2

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!


```
22 32 43 78 63 57 91 13
```

```
32 | 43 | 22 | 78 | 57 | 63 | 13 | 91
```

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A [n//2:1]
 - Recursively, same strategy!

32 43 78 13

57 63 91

43

78

63

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

22 | 32 | 43 | 78

13 | 57 | 63 | 91

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

22	32	43	78

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

13	22	32	43	57	63	78	91
13		52	75	31	0.5	10	91

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

Divide and Conquer

- Break up the problem into disjoint parts
- Solve each part separately
- Combine the solutions efficiently

■ Combine two sorted lists A and B into C

- Combine two sorted lists A and B into C
 - If A is empty, copy B into C

- Combine two sorted lists A and B into C
 - If A is empty, copy B into C
 - If B is empty, copy A into C

- Combine two sorted lists A and B into C
 - If A is empty, copy B into C
 - If B is empty, copy A into C
 - Otherwise, compare first elements of A and B
 - Move the smaller of the two to C

- Combine two sorted lists A and B into C
 - If A is empty, copy B into C
 - If B is empty, copy A into C
 - Otherwise, compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till all elements of A and B have been moved

- Combine two sorted lists A and B into C
 - If A is empty, copy B into C
 - If B is empty, copy A into C
 - Otherwise, compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till all elements of A and B have been moved

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif i == n:
      C.extend(A[i:])
      k = k + (m-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (j,k) = (j+1,k+1)
  return(C)
```

■ To sort A into B, both of length n

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done

Madhavan Mukund Merge Sort PDSA using

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise
 - Sort A[:n//2] into L

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise
 - Sort A[:n//2] into L
 - Sort A[n//2:] into R

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise
 - Sort A[:n//2] into L
 - Sort A[n//2:] into R
 - Merge L and R into B

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise
 - Sort A[:n//2] into L
 - Sort A[n//2:] into R
 - Merge L and R into B

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
  return(B)
```

PDSA using Python Week 2

Merge sort using divide and conquer to sort a list

- Merge sort using divide and conquer to sort a list
- Divide the list into two halves

- Merge sort using divide and conquer to sort a list
- Divide the list into two halves
- Sort each half

- Merge sort using divide and conquer to sort a list
- Divide the list into two halves
- Sort each half
- Merge the sorted halves

- Merge sort using divide and conquer to sort a list
- Divide the list into two halves
- Sort each half
- Merge the sorted halves
- Next, we have to check that the complexity is less than $O(n^2)$

8/8

Analysis of Merge Sort

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 2

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise
 - Sort A[:n//2] into L
 - Sort A[n//2:] into R
 - Merge L and R into B

Merging two sorted lists A and B into C

- If A is empty, copy B into C
- If B is empty, copy A into C
- Otherwise, compare first elements of A and B
 - Move the smaller of the two to C
- Repeat till all elements of A and B have been moved

■ Merge A of length m, B of length n

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif i == n:
      C.extend(A[i:])
      k = k + (m-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (j,k) = (j+1,k+1)
  return(C)
```

- Merge A of length m, B of length n
- Output list C has length m+n

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif i == n:
      C.extend(A[i:])
      k = k + (m-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (j,k) = (j+1,k+1)
  return(C)
```

- Merge A of length m, B of length n
- Output list C has length m + n
- In each iteration we add (at least) one element to C

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif i == n:
      C.extend(A[i:])
      k = k + (m-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (i,k) = (i+1,k+1)
  return(C)
```

PDSA using Python Week 2

- Merge A of length m, B of length n
- Output list C has length m + n
- In each iteration we add (at least) one element to C
- Hence merge takes time O(m+n)

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif i == n:
      C.extend(A[i:])
      k = k + (m-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (i,k) = (i+1,k+1)
  return(C)
```

- Merge A of length m, B of length n
- Output list C has length m+n
- In each iteration we add (at least) one element to C
- Hence merge takes time O(m+n)
- Recall that $m + n < 2(\max(m, n))$

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif j == n:
      C.extend(A[i:])
      k = k + (m-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (i,k) = (i+1,k+1)
  return(C)
```

- Merge A of length m, B of length n
- Output list C has length m + n
- In each iteration we add (at least) one element to C
- Hence merge takes time O(m+n)
- Recall that $m + n \le 2(\max(m, n))$
- If $m \approx n$, merge take time O(n)

```
def merge(A,B):
  (m,n) = (len(A), len(B))
  (C,i,j,k) = ([],0,0,0)
  while k < m+n:
    if i == m:
      C.extend(B[i:])
      k = k + (n-j)
    elif i == n:
      C.extend(A[i:])
      k = k + (m-i)
    elif A[i] < B[j]:</pre>
      C.append(A[i])
      (i,k) = (i+1,k+1)
    else:
      C.append(B[j])
      (i,k) = (i+1,k+1)
  return(C)
```

Analysing mergesort

- Let T(n) be the time taken for input of size n
 - For simplicity, assume $n = 2^k$ for some k

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
  L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

Analysing mergesort

- Let T(n) be the time taken for input of size n
 - For simplicity, assume $n = 2^k$ for some k
- Recurrence
 - T(0) = T(1) = 1
 - T(n) = 2T(n/2) + n
 - Solve two subproblems of size n/2
 - Merge the solutions in time n/2 + n/2 = n

```
def mergesort(A):
  n = len(A)
  if n \le 1:
     return(A)
  L = mergesort(A[:n//2])
  R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

Analysing mergesort

- Let T(n) be the time taken for input of size n
 - For simplicity, assume $n = 2^k$ for some k
- Recurrence

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

- Solve two subproblems of size n/2
- Merge the solutions in time n/2 + n/2 = n
- Unwind the recurrence to solve

```
def mergesort(A):
  n = len(A)
  if n \le 1:
     return(A)
  L = mergesort(A[:n//2])
  R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

- T(0) = T(1) = 1
- T(n) = 2T(n/2) + n

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
  R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

$$T(n) = 2T(n/2) + n$$

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
  L = mergesort(A[:n//2])
  R = mergesort(A[n//2:])
  B = merge(L,R)
  return(B)
```

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

■
$$T(n) = 2T(n/2) + n$$

= $2[2T(n/4) + n/2] + n$

```
def mergesort(A):
 n = len(A)
 if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

- T(0) = T(1) = 1
- T(n) = 2T(n/2) + n
- T(n) = 2T(n/2) + n= $2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$

```
def mergesort(A):
 n = len(A)
 if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

- T(0) = T(1) = 1
- T(n) = 2T(n/2) + n
- T(n) = 2T(n/2) + n= $2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$ = $2^2[2T(n/2^3) + n/2^2] + 2n = 2^3T(n/2^3) + 3n$

```
def mergesort(A):
 n = len(A)
 if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

■
$$T(n) = 2T(n/2) + n$$

 $= 2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$
 $= 2^2[2T(n/2^3) + n/2^2] + 2n = 2^3T(n/2^3) + 3n$
 \vdots
 $= 2^kT(n/2^k) + kn$

```
def mergesort(A):
 n = len(A)
 if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

- T(0) = T(1) = 1
- T(n) = 2T(n/2) + n
- T(n) = 2T(n/2) + n $= 2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$ $= 2^2[2T(n/2^3) + n/2^2] + 2n = 2^3T(n/2^3) + 3n$ \vdots $= 2^kT(n/2^k) + kn$
- When $k = \log n$, $T(n/2^k) = T(1) = 1$

```
def mergesort(A):
 n = len(A)
 if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

■
$$T(n) = 2T(n/2) + n$$

 $= 2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$
 $= 2^2[2T(n/2^3) + n/2^2] + 2n = 2^3T(n/2^3) + 3n$
 \vdots
 $= 2^kT(n/2^k) + kn$

- When $k = \log n$, $T(n/2^k) = T(1) = 1$
- $T(n) = 2^{\log n} T(1) + (\log n)n = n + n \log n$

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

$$T(0) = T(1) = 1$$

$$T(n) = 2T(n/2) + n$$

■
$$T(n) = 2T(n/2) + n$$

 $= 2[2T(n/4) + n/2] + n = 2^2T(n/2^2) + 2n$
 $= 2^2[2T(n/2^3) + n/2^2] + 2n = 2^3T(n/2^3) + 3n$
 \vdots
 $= 2^kT(n/2^k) + kn$

- When $k = \log n$, $T(n/2^k) = T(1) = 1$
- $T(n) = 2^{\log n} T(1) + (\log n)n = n + n \log n$
- Hence T(n) is $O(n \log n)$

```
def mergesort(A):
 n = len(A)
  if n \le 1:
     return(A)
 L = mergesort(A[:n//2])
 R = mergesort(A[n//2:])
 B = merge(L,R)
 return(B)
```

■ Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible
 - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to C and increment both i and j

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible
 - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to C and increment both i and j
 - Intersection of two sorted lists when A[i] == B[j], move one copy to C, otherwise
 discard the smaller of A[i], B[j]

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible
 - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to C and increment both i and j
 - Intersection of two sorted lists when A[i] == B[j], move one copy to C, otherwise discard the smaller of A[i], B[j]
 - List difference elements in A but not in B

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible
 - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to C and increment both i and j
 - Intersection of two sorted lists when A[i] == B[j], move one copy to C, otherwise discard the smaller of A[i], B[j]
 - List difference elements in A but not in B
- Merge needs to create a new list to hold the merged elements
 - No obvious way to efficiently merge two lists in place
 - Extra storage can be costly

- Merge sort takes time $O(n \log n)$ so can be used effectively on large inputs
- Variations on merge are possible
 - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to C and increment both i and j
 - Intersection of two sorted lists when A[i] == B[j], move one copy to C, otherwise
 discard the smaller of A[i], B[j]
 - List difference elements in A but not in B
- Merge needs to create a new list to hold the merged elements
 - No obvious way to efficiently merge two lists in place
 - Extra storage can be costly
- Inherently recursive
 - Recursive calls and returns are expensive