

Proceedings of A Workshop on

INTELLIGENT TURBINE ENGINES FOR ARMY APPLICATIONS

held at the

Massachusetts Institute of Technology Cambridge, MA 02139

March 21-22, 1994

Sponsored by U.S. Army Research Office

This document has been approved for public release and sale; its distribution is unlimited.

"The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation."

19950203 004

WORKSHOP ON INTELLIGENT TURBINE ENGINES FOR ARMY APPLICATIONS

Day 1 - Mo	onday. March 21, 1994
7:45	Registration
8:30	Welcome and Introduction – A. Epstein, MIT & D. Mann, ARO
Advanced Co	entrol for Gas Turbines: Industry and Government Perspective
9:00	Army View of Rotor Craft Turbine Engine Controls - Present & Future Applications - V. Edwards, Aviation R&D Engineering Center
9:30	Army Ground-Based Gas Turbine Engines - R. McClelland, USA Tank-Automotive Center
10:00	Experience and Potential for Advanced Engine Controls – J. Kulberg, Pratt & Whitney, E. Hartford
10:30	Break
10:50	Advanced Engine Control - S. Carpenter, GE Aircraft Engines
11:20	NASA Research in Engine Control - W. Merrill, NASA Lewis Research Center
11:50-13:00	Lunch
Overview of A	Active Control in Gas Turbine Engines
13:00	The Promise of Active Control for Helicopter and Tank Engines – A. Sehra, Textron Lycoming
13:30	MIT Research in Active Compressor Stabilization – J. Paduano, MIT
14:00	GE Research in Active Control – A. Spang, GE Research Center
14:30	Break
14:50	Progress in Modeling & Control of Compressor Stall – C. Nett, UTRC
15:20	A Systems Study of the Impact of Active Compressor Stabilization – K. Tow, GE Aircraft Engines, Lynn
16:00	Tour of MIT Gas Turbine Laboratory, Active Control Facilities
18:30	Dinner

Day 2 - Tue	esday. March 22, 1994
8:30	Panel Discussion on Intelligent Engine Control
	 Industry-Government-Academia
9:30	Change to Breakout Panels
9:45-12:00	Breakout Discussions
	a) Engine Systems & Applications
	b) Components
	c) Control Theory

12:00 Lunch13:00 Reports from the Breakout PanelsOpen Discussion

14:30 Closing Remarks - ARO Interests in Intelligent Engines
- D. Mann, ARO

15:00 Adjourn

REPORT DOCUMENTATION PAGE

Gas turbines, active control and control

18. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send company recarding this burden at searching existing data sources,

TITLE AND SUBTITE Intelligent Turbine Engines for Army Applications AUTHOR(S) Professor Alan H. Epstein PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) M.I.T. Gas Turbine Lab, 31-266 Cambridge, MA 02139-4307 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the integration of active control into helicopter and ground vehicle gas turbines.		2. REPORT DATE	3. REPORT TYPE	AND DATES COVERED
Intelligent Turbine Engines for Army Applications AUTHOR(S) Professor Alan H. Epstein PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) M.I.T. Gas Turbine Lab, 31-266 Cambridge, MA 02139-4307 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the		Nov 94	Final 28	3 Feb 94 - 27 Aug 94
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) M.T.T. Gas Turbine Lab, 31-266 Cambridge, MA 02139-4307 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	TITLE AND SUBTITLE			
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) M.I.T. Gas Turbine Lab, 31-266 Cambridge, MA 02139-4307 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	Totalliant mod :			. 1
Performing Organization Name(s) and address(es) M.I.T. Gas Turbine Lab, 31-266 Cambridge, MA 02139-4307 SPONSORING/MONITORING AGENCY NAME(s) AND ADDRESS(Es) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	Intelligent Turbine Eng	ines for Army App	plications	
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) M.I.T. Gas Turbine Lab, 31-266 Cambridge, MA 02139-4307 PONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Supplementary Notes The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	AUTHOR(S)			
M.I.T. Gas Turbine Lab, 31-266 Cambridge, MA 02139-4307 PONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	Professor Alan H. Ep	stein		DAAH04-94-6-0038
M.I.T. Gas Turbine Lab, 31-266 Cambridge, MA 02139-4307 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Research Triangle Park, NC 27709-2211 Research Triangle Park, NC 27709-2211 SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	M.I.T. Gas Turbine Lab, Cambridge, MA 02139-430	31-266 7		
U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	TOUS OR HE HAD NOT A STATE OF			
Research Triangle Park, NC 27709-2211 SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	U.S. Army Research Offic	·	ES)	
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. ABSTRACT (Maximum 200 words) This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	Research Triangle Park,	NC 27709-2211		ARO 33005.1-EG-CF
This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	The views, opinions and/ author(s) and should not	or findings cont	ained in this r	eport are those of the
This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	position, policy, or dec	ision, unless so	an official De	other documentation.
This report documents the proceedings of a workshop on Intelligent Turbine Engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	DISTRIBUTION / AVAILABILITY STATE	MENT	an official Dedesignated by	other documentation.
engines for Army Applications held at the Massachusetts Institute of Technology on March 21-22, 1994. The workshop brought together experts from government, industry, and academia to explore ways in which advanced controls concepts can be used to significantly benefit Army gas turbine engines. Participants discussed Army control related requirements. Emphasis was placed on the	Approved for public rel	MENT	an official Dedesignated by	other documentation.
	Approved for public rel	MENT	an official Dedesignated by	other documentation.
	Approved for public rel Approved for public rel Abstract (Maximum 200 words) This report documents Engines for Army Applic on March 21-22, 1994. Industry, and academia be used to significants discussed Army control	Lease; distributing the proceedings cations held at the workshop brown to explore ways benefit Army grelated requirem	an official De designated by on unlimited. s of a workshop the Massachusett aght together exist in which advances turbine engineents. Emphasis	on Intelligent Turbine ts Institute of Technology xperts from government, ced controls concepts can ines. Participants s was placed on the
	Approved for public rel Approved for public rel Approved for public rel ABSTRACT (Maximum 200 words) This report documents Engines for Army Applic on March 21-22, 1994. Industry, and academia be used to significants discussed Army control	Lease; distributing the proceedings cations held at the workshop brown to explore ways benefit Army grelated requirem	an official De designated by on unlimited. s of a workshop the Massachusett aght together exist in which advances turbine engineents. Emphasis	on Intelligent Turbine ts Institute of Technology xperts from government, ced controls concepts can ines. Participants s was placed on the
	Approved for public rel Approved for public rel Abstract (Maximum 200 words) This report documents Engines for Army Applic on March 21-22, 1994. industry, and academia be used to significants discussed Army control	Lease; distributing the proceedings cations held at the workshop brown to explore ways benefit Army grelated requirem	an official De designated by on unlimited. s of a workshop the Massachusett aght together exist in which advances turbine engineents. Emphasis	on Intelligent Turbine ts Institute of Technology xperts from government, ced controls concepts can ines. Participants s was placed on the

UNCLASSIFIED

OF REPORT

17. SECURITY CLASSIFICATION

UL

20. LIMITATION OF ABSTRACT

16. PRICE CODE

SECURITY CLASSIFICATION

OF ABSTRACT

UNCLASSIFIED

"INTELLIGENT TURBINE ENGINES FOR ARMY APPLICATIONS" Workshop March 21-22, 1994 Attendee List

Mr. Raymond A. Adomaitis Assistant Research Scientist University of Maryland Institute for Systems Research A.V. Williams (115) College Park, MD 20742 TEL: (301) 405-2969 FAX: (301) 314-9920

Mr. Sean Borror
Gas Turbine laboratory, MIT
31-215
77 Massachusetts Ave.
Cambridge, MA 02139
TEL: (617) 253-7154
FAX: (617) 258-6093

Mr. Sheldon Carpenter General Electric 1000 Western Avenue Lynn, MA 01910 TEL: (617) 594-8985 FAX: (617) 594-4141

Professor John Deyst Dept. of Aero/Astro, MIT 33-115 77 Mass. Ave. Cambridge, MA 02139 TEL: (617) 253-1644

Mr. Diego Diaz Dept. of Aero/Astro, MIT 31-257 77 Mass. Ave. Cambridge, MA 02139 TEL: (617) 253-5607 FAX: (617) 258-6093

Mr. Vernon Edwards
Aviation Research & Development
Engineering Center
4300 Goodfellow Blvd.
St. Louis, MO 63120-1798
TEL: (314) 263-1012
FAX: (314) 263-1640

Professor Alan H. Epstein Gas Turbine Lab, MIT 31-266 77 Mass. Ave. Cambridge, MA 02139 TEL: (617) 253-2485 FAX: (617) 258-6093 Dr. Robert Fagen Allison Gas Turbines P.O. Box 420 Indianapolis, IN 46206-0420 TEL: (317) 230-5304 FAX: (317) 230-5600

Major Daniel B. Fant Program Manager AFOSR/NA 110 Duncan Avenue, Suite B115 Bolling AFB, DC 20332-0001 TEL: (202) 767-0471 FAX: (202) 767-4988

Professor Edward M. Greitzer Gas Turbine laboratory, MIT 31-264 77 Massachusetts Ave. Cambridge, MA 02139 TEL: (617) 253-2128 FAX: (617) 258-6093

Dr. Gerald Guenette
Gas Turbine laboratory, MIT
31-214
77 Massachusetts Ave.
Cambridge, MA 02139
TEL: (617) 253-3764
FAX: (617) 258-6093

Dr. Robert J. Hansen Chief Scientist, applied Research Laboratory The Pennsylvania State University P.O. Box 30 State College, PA 16804 TEL: (814) 865-1419 FAX: (814) 865-1615

Mr. Don Hoying
Gas Turbine Lab, MIT
31-256
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-5608
FAX: (617) 258-6093

Mr. David Hughs Aviation Week 32 Holstein Ave. Londonderry, NH 03053 TEL: (603) 434-3861 FAX: (603) 432-4543 Mr. Satya Kodali Applied Research Laboratory The Pennsylvania State University P.O. Box 30 State College, PA 16804 TEL: (814) 863-3051 FAX: (814) 865-3287

Mr. Joel Kulberg Pratt & Whitney Aircraft 400 Main St. E. Hartford, CT 06108 TEL: (203) 565-5247 FAX: (203) 564-4321

Dr. David M Mann
Associate Director, Engineering
& Environmental Sciences Division
US Army Research Office
PO Box 12211
Research Triangle Park, NC 27709-2211
TEL: (919) 549-4249
FAX: (919) 549-4310

Dr. Henry McDonald Applied Research Laboratory The Pennsylvania State University P.O. Box 30 State College, PA 16804

Dr. Walt Merrill NASA Lewis Research Center 21000 Brookpark Rd. Cleveland, OH 44135 TEL: (216) 433-6328 FAX: (216) 433-8000

Professor Richard M. Murray Caltech Mail Code 104-44 Pasadena, CA 91125 TEL: (818) 395-6460 FAX: (818) 568-2719

Mr. SNB Murthy
Purdue University
1003 Chaffee Hall
West Lafayette, IN 47907-1003
TEL: (317) 494-1509
FAX: (317) 494-0530

Dr. Carl N. Nett United Technologies Research Center Silver Lane E. Hartford, CT 06108 TEL: (203) 727-7000 FAX: (203) 727-7909 Dr. Karl Owen Vehicle Propulsion Directorate Army Research Laboratory NASA Lewis Research Center Cleveland, OH 44135-3127 TEL: (216) 433-5895 FAX: (216) 433-3270

Professor James D. Paduano Dept. of Aero/Astro, MIT 33-103 77 Mass. Ave. Cambridge, MA 02139 TEL: (617) 253-6047 FAX: (617) 258-6093

Mr. Greg Pentek Senior Project Engineer MOOG Inc., Engine Controls Div. East Aurora, NY 14052-0018 TEL: (716) 687-4295 FAX: (716) 687-4869

Mr. Stephen J. Przybylko
Wright Laboratory
WL/POTA Building 18
1950 Fifth St.
Wright Patterson AFB, OH 45433-7251
TEL: (513) 255-6690
FAX: (513) 255-1759

Dr. Arun K. Sehra Manager, Compressor Aerodynamics Textron Lycoming Dept. LSD-10 550 Main St. Stratford, CT 06497 TEL: (203) 385-3028 FAX: (203) 385-1781

Dr. H. Austin Spang, III
General Electric Corporation
Corporate Research & Development
P.O. Box 8, Bldg. KW, Rm. D220
Schenectady, NY 12301
TEL: (518) 387-6490
FAX: (518) 387-5164

Dr. Choon Tan
Gas Turbine Lab, MIT
31-267
77 Mass. Ave.
Cambridge, MA 02139
TEL: (617) 253-7524
FAX: (617) 258-6093

Mr. Keven Tow General Electric Aircraft Engines 1000 Western Ave. Lynn, MA 01910 TEL: (617) 594-9423

TEL: (617) 594-9423 FAX:(617) 594-6426

Mr. Michael Tryfonidis Gas Turbine Lab, MIT 31-215 77 Mass. Ave. Cambridge, MA 02139 TEL: (617) 253-7154

Dr. Lena Valavani Volpe National Transportation Center DTS-73 55 Broadway Cambridge, MA 02142

FAX: (617) 258-6093

TEL: (617) 494-2246 FAX: (617) 494-2318

Mr. Chris Van Schalkwyk Gas Turbine Lab, MIT 31-254 77 Mass. Ave. Cambridge, MA 02139 TEL: (617) 253-1760

FAX: (617) 258-6093

Professor Vigor Yang Pennsylvania State University 111 Research Bldg. East Bigler Road University Park, PA 16802-1400 TEL: (814) 863-1502 FAX: (814) 865-3389

Mr. Harald Weigl
Gas Turbine Lab, MIT

31-215 77 Mass. Ave.

Cambridge, MA 02139

TEL: (617) 253-7154 FAX: (617) 258-6093

Professor J.E. Ffowcs Williams University Engineering Department Trumpington St. Cambridge CB2 1PZ ENGLAND

TEL: 011-44-223-332-629 FAX: 011-44-223-464-815

Acces	ion For	1
NTIS DTIC	CRA&I TAB Tounced	
By Distrib	oution/	
A	vailability C	ocles
Dist	Avail and Special	l or
A-1		

SUMMARY VIEWGRAPHS OF BREAKOUT PANELS

(Parenthetical remarks are those of the Editor)

Vehicle Systems & Components Panel **SYSTEMS**

		SISIEMS
	Potential	
<u>Risk</u>	<u>Reward</u>	
L	Н	 Identify active control benefit to small engines vs. large engines
		 Diagnostics – condition-based maintenance
M	Н	New sensor / actuator systems
		 Reconfigurable smart engine (For battle damage component failure)
Н	н	Simplicity (Of active control system)
		 Passive control (Same dynamic behavior without computer actuators)
		Totally Silent engine
М	M	 Active avoidance of distortion (Manipulate inflow to engine)
		 Active control of inlets
L	L	 Integration – adaptive propulsion control (Integration of helicopter flight & propulsion controls)

L = Low, M = Medium, H = High

Vehicle Systems & Components Panel **COMPONENTS**

<u>Risk</u>	Potential <u>Reward</u>	
Н	Н	 Active blade control – shape, flutter, forced vibration damping
		Active combustion control
		Emissions
		Pattern factor
		 Life cycle cost
		 Tip clearance control (Now done open loop in large engines)
		 Active control of separation
		High lift / max lift airfoil
L	M	 Optimized turbine cooling / performance (Control of turbine cooling)
Н	M	 Katzmeier effect – unsteady blading (Unsteady lift would increase loading capability)

Vehicle Systems & Components Panel **PROCESS**

<u>Risk</u>	Potentic Reward	
L	Н	 System identification (Of fluid & structure dynamics)
		 Identify low hanging fruit beyond compressor stability
		 Risk vs. reward
		 Strategy for technology insertion
		 Multidisciplinary w/ in-depth teams
M	, Н	 Stall line prediction – accurate Passive
		- With active control
Н	Н	Active control of flutter
L	M	 Active control as a demo tool
L	L	 Active control of surge only
		 Not including rotating stall
L	Н	Inverse optimization technique
		- Better modelling
Ger	neric	 Closed loop control of unsteady flow

Control Panel Summary

ENGINE CONTROL USING "CONVENTIONAL" ACTUATORS/SENSORS

- Nonlinear control (NL) techniques are needed CONTEXT is very important
- To understand the "class" of NL systems, a <u>standardized</u> NL model structure for engines, similar to the flight dynamics standard
 - Must involve industry
 - Recognize noise and NL
 - Be flexible (for inclusion of new concepts)
 - Be built around experimental testbed
- Wish list a testbed with complexity/dynamics between: a simple <u>compressor rig</u> and <u>engine</u>
- Airframe/engine integration in helicopters
 - Situation awareness/feedforward
 - Rotor aerodynamics in transient maneuvers
 - Performance seeking in new context
 - Vibration as well as fuel burn
 - Rotor speed as variable
 - Hardware/know-how is ripe

Control Panel Summary (Cont.)

- Recognition
 - Use of control theory relies on context
- Recommendations depend on context of fruitful work to be done
- Unsteady fluid mechanics
 - New system identification tools for fluid systems
 - Noise environment far worse
 - Techniques from fluid theory should be exploited
 - Length scale, time scale concepts
 - Ensemble averaging
 - Converting distributed fluids model to control form
 - Many structural dynamic, nonlinear dynamics techniques available
 - CFD to ODE) Create low order
 - PDE to ODE | aggregate models
 - Collaboration with experiments is vital

Control Panel Summary (Cont.)

- Other nonlinear control issues
 - Multivariable mode selection
 - Transient performance improvement through NL control
 - How to measure, insure safety during design
 - Engine companies should <u>talk to</u> academia about their problems
 - Disturbance rejection
 - Characterizing disturbances/uncertainty/ noise
- Advanced concepts
 - Sponsoring organizations should explicitly fund control work which <u>collaborates</u> with <u>experimental application</u>

SPEAKERS' PRESENTATIONS

WORKSHOP ON

INTELLIGENT TURBINE ENGINES

ARMY RESEARCH OFFICE DAVID M. MANN

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 21-22 MARCH 1994

INTELLIGENT TURBINE ENGINES **MOTIVATION**

Reduced Fuel Consumption

Example: Mechanized Infantry Division

58 M1 tanks, 21 Attack helicopters

Fuel use: 673,000 gal/day

Reduced Volume/Increased Power

Faster Deployment Increased Range/Payload

Improved Reliability

Reconfigurable/Adaptable

INTELLIGENT TURBINE ENGINES

Application of Artificial Intelligence-based Advanced Control Strategies to Gas Turbine Engines for Improved Economy and Reliability

AI ALGORITHMS

- Fuzzy Logic
- Genetic Algorithms
- Rule-based Control
- Model-based Control
- Hybird Systems

ENGINE MODELS

- Turboshaft
- Simple (T-800)
- Recouperated (AGT-1500)

CONTROL METHODOLOGY

- Diagnostics/Prognostics
- Adaptive Reconfiguration
- Optimization

WORKSHOP ON INTELLIGENT TURBINE ENGINES

PRODUCTS

Assessment of current status

Identification of opportunities

Identification of enabling technologies

Identification of basic research requirements

A NEW RESEARCH PARADIGM

A University-Army-Industry Partnership for Research

ARO WILL FACILITATE THE PARTNERSHIP WITH SUPPORT AND COORDINATION

INTELLIGENT TURBINE ENGINE

WORKSHOP

FOR ARMY APPLICATIONS

VERNON R. EDWARDS CHIEF, PROPULSION TECHNOLOGY DIVISION ATCOM

ARMY VIEW OF ROTORCRAFT TURBINE CONTROLS PRESENT AND FUTURE CONSIDERATIONS

- O CURRENT ARMY FLEET HAS DIVERSITY OF TECHNOLOGIES
- **UH-1/T53 FLY BALL GOVERNOR**
- MH-47E/T55 FULL AUTHORITY DIGITAL ELEC CONTROL
- DIAGNOSTICS HUMAN DEPENDENT
- HISTORY RECORDING AND VARIOUS DEGREES OF FAULT MONITORING
- O ARMY'S MOST MODERN SYSTEMS
- SUPERVISORY DIGITAL ELECTRONIC CONTROL UH-60/T700 & AH-64/T700 HYDROMECHANICAI
- SUPERVISORY DIGITAL ELECTRONIC CONTROL OH-58/250C30R PNEUMATIC-MECHANICAL
- MH-47E/T55 FADEC

ARMY VIEW OF ROTORCRAFT TURBINE CONTROLS PRESENT AND FUTURE CONSIDERATIONS

O TYPICAL CURRENT TECHNOLOGY CAPABILITIES

- ISOCHRONOUS POWER TURBINE GOVERNING
- TORQUE MATCHING IN MULTI-ENGINE APPLICATIONS
 - TEMPERATURE LIMITING/START OVER TEMP ABORT
- OVERSPEED PROTECTION
- RUDIMENTARY SURGE RECOGNITION/AVOIDANCE
 - FLIGHT CONTROL ANTICIPATION (COLLECTIVE)
 - AUTOMATIC START/RELIGHT CAPABILITY
- NOTCH FILTER FOR TORSIONAL STABILITY
- TORQUE RATE ATTENUATION (UNCOMPENSATED)

TYPICAL PROBLEMS & SHORTCOMINGS

- ENGINE/DRIVE TRAIN/AIRFRAME INTERACTIONS 0
- TORSIONAL MODE OSCILLATIONS
- TRANSIENT ROTOR DROOP
- TORQUE SPLITTING
- TORQUE PREDICTABILITY
- UNABLE TO AUTOMATICALLY MANAGE FAILURE MODES
- NO ANTICIPATION FOR UNCOMPENSATED INPUTS
- LIMITED ADAPTIVE CAPABILITIES (ENG/OPER CONDITIONS) 0
- UNABLE TO SELF-DIAGNOSE ENGINE HEALTH NO PROGNOSTICS 0
- EXTENSIVE FLT TEST TO OPTIMIZE EACH INSTALLATION 0

INTELLIGENT ENGINE & CONTROL OPPORTUNITIES

- HI-FIDELITY TOTAL SYSTEM SIMULATION 0
- RECONFIGURABLE CONTROL LOGIC 0
- FAIL SMART, RAPID IDENT & AUTO SELECT BASED ON SYSTEM PARAMETERS 0
- TRANSPARENT FAULT/FAILURE DETECTION/RECOVERY TO ALLOW CONTINUED MISSION CAPABILITY 0
- ADAPTABILITY TO DEGRADED OPERATING CONDITIONS 0
- OPTIMIZE ROTORCRAFT PERFORMANCE SELF TUNING/PERFORMANCE SEEKING CONTROLS

0

- SELF DIAGNOSIS FOR ALL ON-BOARD ENGINE SYSTEMS & INTERFACES
- CONSIDER INTEGRATED FLIGHT & ENGINE CONTROLS 0

POWER LOSS SURVIVABILITY

ENGINE RELATED CONCEPTS MINIMUM FUEL CONSUMPTION

OPERATE ROTOR AT OTHER THAN 100% SPEED SEARCH OUT OPTIMUM SPEED

SUMMARY OF EXPECTED BENEFITS

- ENHANCED FLIGHT SAFETY
- ENHANCED ROTORCRAFT SYSTEM PERFORMANCE 0
- REDUCED LIFE CYCLE COST
- REDUCED ANNUAL O & S COSTS
- IMPROVED ENGINE OPERATION
- REDUCED ENGINE MISHAPS
- REDUCED PILOT WORK LOAD
- IMPROVED MAINTAINABILITY & DIAGNOSTIC CAPABILITY 0

Propulsion Systems Division

ARMY GROUND-BASED GAS TURBINE ENGINES

PROPULSION SYSTEMS DIVISION U.S. ARMY, TACOM SATYA KODALI

ARMY/N.G. GROUND VEHICLE INVENTORY

<u>Vehicle</u>	Ç Army	OTY N.G.	Engine Model	Manufacturer	HР
	-	TR	ACKED VEHICLES		
M60 Fam	1190	66	AVDS-1790	TCM	750
M728 CEV	728	89	AVDS-1790	TCM	750
M88 MRV	1560	697	AVDS-1790	TCM	750
M1	5841	2246	AGT-1500	Textron/Lycoming	1500
M2/3	5488	957	VTA-903T	Cummins	600
M113 2	27,416	10,071	6V-53T	Detroit Diesel	27 5
M9ACE	430	18	V - 903	Cummins	295
M551	1070	0	6V-53T	Detroit Diesel	300
M109	4000	0	8V-71T	Detroit Diesel	405
			WHEELED VEHICLES		
HET	749		8V92TA	Detroit Diesel	430
HEMTT	9663	2632	8V92TA	Detroit Diesel	445
PLS	120		8V92TA	Detroit Diesel	500
M35A2	44058		LDT-465-1D	Hercules	140
FMTV	0		3116	CAT	225
M 809	15 850	1	NH 250	Cummins	250
M939	11414	2507	6CTA8.3	Cummins	240
M880	2655		318 (Gas)	Chrysler	140
HMMWV	79 000		GM6.2	GM	150
cucv	35653	20205	GM6.2	GM	150
M915 Fam	4099		NTC 400	Cummins	400
M915 AVA	2 3252		Series 60	Detroit Diesel	400

Propulsion Systems Division

GROUND VEHICLE GAS TURBINE ENGINES

AGT 1500

LV 100

AGT 1500 CONFIGURATION

STAATFORD, CONN.

AGT1500 AND LV100 FEATURES

	AGT1500	LV100
PRESSURE RATIO	14:1	12:1
AIR INDUCTION RATR(LB/SEC)	12.5	7.5
BSFC (LB/BRAKE HP HR)	0.5	4.0
IDLE FUEL ECONOMY(LB/HR)	33	474
TIT (0 F)	2180	2470

(TARDEC)

LV100 VERSUS AGT 1500 SFC CHARACTERISTICS

GROUND VEHICLE ENGINE FEATURES

- AIR FILTRATION
- MODULAR DESIGN
- RECUPERATION
- IDLE FUEL ECONOMY

REGENERATOR SCHEMATIC

TANK ENGINE REQUIREMENTS

- POWER DENSITY
- FUEL ECONOMY
- **MULTI FUEL OPERATION**
- SIGNATURES
- ENVIRONMENTAL TOLERANCE
- RUGGED DESIGN- SOLDIER PROOF

Propulsion Systems Division

ENGINE PERFORMANCE REQUIREMENTS

- QUICK ACCELERATION
- MAX SPEED CAPABILITY
- SPEED ON GRADE CAPABILITY
- POWER AT HIGH ALTITUDE

AGT1500 AND LV100 ENGINES

	AGT1500	LV100
DEVELOPER	TEXTRON	GE/TEXTRON
POWER (HP)	1500	1500
VOLUME (CU.FT)	31	25
PROP SYS VOL(CU FT)	291	175
PROP SYS WT(LB)	15191	12696
BFD FUEL (GAL)	200	300
SPROCKET POWER(HP)	950	1050

Propulsion Systems Division

TANK ENGINE ELECTRONIC CONTROLLERS

VEHICLE-ENGINE

CONTROLLER

M1A1-AGT1500

ECO

M1A2-AGT1500

DECU

FUTURE-LV100

FADEC

XA-1246-78

FIGURE 6-4. ELECTRONIC CONTROL UNIT

CONCLUSIONS

VOLUME

40% LESS

WEIGHT

- 16% LESS
- BFD FUEL

- 40% LESS
- SPROCKET POWER 11% MORE
- **USER FRIENDLY VEHICLE**
- IMPROVEMENTS IN PROGNASTIC AND DIAGNOSTICS
- IMPROVED RAM-D
- 70% HIGHER
- CONTROLS PLAY A SIGNIFICANT ROLE IN ALL THESE

ELECTRONIC CONTROL SYSTEMS FOR AIRCRAFT TURBINE ENGINES

- EXPERIENCE
- **POTENTIAL**

INTELLIGENT TURBINE ENGINES FOR ARMY APPLICATIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY MARCH 21, 1994

CHRONOLOGY

1980 - PW2037 ENGINE

1994 - PW4084 ENGINE

2000 - ADVANCED ENGINE

ADVANTAGES OF FULL AUTHORITY **ELECTRONIC ENGINE CONTROL**

- REDUCTION IN FUEL BURN
- IMPROVEMENT IN CONTROL OPERATIONAL RELIABILITY
- REDUCTION IN WEIGHT
- REDUCTION IN CONTROL MAINTENANCE COSTS
- SIMPLIFIED COCKPIT PROCEDURES

FUNCTIONAL CONFIGURATION PW2037 CONTROL SYSTEM

ELECTRONIC ENGINE CONTROL FEATURES

- MAINTAIN FIXED ENGINE RATINGS AT UNIQUE THROTTLE POSITIONS
- PROVIDE CONSTANT IDLE SPEED CONTROL
- PROVIDE ACCELERATION AND DECELERATION CONTROL
- PROVIDE ENGINE STARTING CAPABILITY
- PROVIDE ENGINE OVERSPEED AND OVERPRESSURE
- POSITION HIGH COMPRESSOR VARIABLE STATOR VANES

ELECTRONIC ENGINE CONTROL FEATURES (CONTINUED)

- CONTROL COMPRESSOR BLEED AIRFLOW
- PROVIDE ACTIVE CLEARANCE AIRFLOW CONTROL AND TURBINE COOLING AIR CONTROL
- MODULATE OIL COOLER AIRFLOW
- PROVIDE THRUST REVERSER CONTROL AND THROTTLE INTERLOCK
- PROVIDE ENGINE PERFORMANCE DATA TO COCKPIT DISPLAYS AND CONDITION MONITORING SYSTEMS

ELECTRONIC ENGINE CONTROL

J26926-7 820706 M257

ELECTRONIC CONTROL SYSTEM EXPERIENCE 13 AIRPLANE MODELS **15 MILLION HOURS** 1984 - 1994

HIGHS

RELIABILITY

ROBUST SOFTWARE

LOWS

WIRING

VIBRATION

NUISANCE MESSAGES

PW4000 FADEC FUNCTIONAL COMPARISON

FUNCTION	CURRENT ENGINE	GROWTH ENGINE	COMMENTS
Wf Control	X	X	
Stator Vane Control	X	X	
LPC Bleed Control	X	X	
HPC Bleed Control	X	X	
Reverse Fn Limiting	X	X	
Overspeed Protection	X	X	
Engine Heat Management Control	X	X	
Turbine Case Cooling Control	X	X	
Nacelle Cooling Control	X	X	
IDG AOCV Override	X		
TRC System	X	X	
TVBCA System	X	$\frac{x}{x}$	
Modulated TCA System	X	X	P&W Requirement
ARINC Receiver #1	X	X	1 dvv requirement
ARINC Receiver #2	, i	X	Airframer Requirement
ARINC Transmitter #1	X	X	Antrainer Requirement
ARINC Transmitter #2		X	Airframer Requirement
High-Speed ARINC 429 Transmitter		X	Airframer Requirement
Reverser Control	A/C	X	Airframer Requirement
Probe Heat Control	A/C	X	Airframer Requirement
Fuel On/Off Control	A/C	X	Airframer Requirement
Ignition Control	A/C	X	Airframer Requirement
Full Autostart	SCU	X	Airframer Requirement
MINIMUX Features	SCU	X	Airframer Requirement
Power convert (115 VAC)	N/A	X	Airframer Requirement
Mass Wf Transmission	EBU	X	Airframer Requirement
Oil Quantity Transmission	EBU	X	Airframer Requirement
NAC Temperature Transmission	EBU	X	Airframer Requirement
Pon Transmission	EBU	X	Airframer Requirement
TIDG Oil Transmission	EBU	X	Airframer Requirement
IDG Heat Management Control	EBU	X	Airframer Requirement
VSCF Heat Management Control	N/A	X	Airframer Requirement
Low NOX Burner System Control	N/A	X	Airframer Requirement
Oil ΔP Transmission	EBU	X	Airframer Requirement
Fuel ∆P Transmission	EBU	X	Airframer Requirement
Ram Air Turbine Deploy Signal	A/C	X	Airframer Requirement
HP Customer Bleed Valve Override	ECS	$\frac{x}{x}$	Airframer Requirement
Holdup Power	SCU	X	Airframer Requirement
PMA Health Monitor	N/A	X	Airframer Requirement

CONTROL REQUIREMENTS GROWTH

Doubling per decade

TO DATE, THE CONTROL STRATEGY HAS NOT CHANGED

- OPEN LOOP SCHEDULING
- CLOSED LOOP CONTROL

ADVANCED ENGINE CONTROL POTENTIAL

ACTIVE CONTROL ENGINE

BENEFIT

TOTAL SYSTEM BLEED MANAGEMENT

FUEL BURN

AIRCRAFT/ENGINE DRAG OPTIMIZATION

FUEL BURN

NACELLE BOUNDARY LAYER CONTROL

FUEL BURN

FUEL BURN

CLOSED LOOP CLEARANCE CONTROL

FUEL BURN

CLOSED LOOP TURBINE COOLING CONTROL

ACTIVE COMPRESSOR STABILITY CONTROL

FUEL BURN

ADVANCED ENGINE CONTROL POTENTIAL

MORE ELECTRIC ENGINE

BENEFIT

INTEGRAL STARTER/GENERATOR

WEIGHT

DISTRIBUTED ELECTRONICS

WEIGHT

WEIGHT

ELECTRICAL ACTUATION

WEIGHT

DEMAND CONTROL FUEL PUMP

WEIGHT

MAGNETIC BEARING

GE Aircraft Engines Advanced Engine Control Issues

RS Carpenter 3/21/94

Overview of Topics

- Overall Technology Base
- **Technology Trends in Controls Functionality**
- **Design Methods**
- **Unique Helicopter Issues**
- Unique Land Vehicle Issues
- Conclusions

GEAE CONTROLS TECHNOLOGY BASE

GEAE Controls Technology

- commitment to introduce "State of the Art" In last decade GEAE has made major controls on all new product engines
- **GEAE Experience on all product lines directly** relates to future new product control needs
- demonstrator program spin offs to meet real Emphasis on appropriate application of advanced control concepts, and I&RD/ world design requirements

IN ENGINE CONTROL SYSTEM TECHNOLOGY GEAE COMMITTED TO BE LEADER

COMMERCIAL ENGINE TECHNOLOGY

FIGHTER ENGINE TECHNOLOGY

DUAL CHANNEL FADEC RED. MGMT
< 2/10 6 IFSD
POWER MANAGEMENT
PERFORMANCE SEEKING CONTROL
AUTO STARTING

CONSISTENT TRANSIENT TIMES
FADEC TESTABILITY/FAULT ISOLATION
INTEGRATED FLIGHT/PROPULSION
CONTROL

40 MILLION+ HOURS
FLIGHT EXPERIENCE
ON DIGITAL ENGINE
CONTROLS

ENGINE APPLICATION

NEW

FADEC CONTROL

SYSTEM

BEACON AUTOCODE MULTIVARIABLE CONTROL DESIGN METHODOLOGY GENERIC TECHNOLOGY

TECHNOLOGY PROGRAM SPINOFFS

SIMULATION CAPABILITY

SYSTEM DESIGN TOOLS

TURBOSHAFT/TURBOPROP ENGINE TECHNOLOGY

CLOSED LOOP GAS GENERATOR TRANS.

CONTROL

GENERATION AND RESPONSE TO LOAD

DEMAND SIGNAL

MAX TORQUE RATE ATTENUATOR

ENGINE DESIGN FOR RAPID SHP

RESPONSE

GE Aircraft Engines

Intelligent Engine Control (IEC) Concept.

GLOSSARY OF TERMS

CONTRACTS

ANALYTICAL REDUNDANCY TECHNOLOGY FOR ENGINE RELIABILITY IMPROVEMENT ARTERI

ADVANCED SIMULATION TECHNOLOGY FOR ENGINE CONTROL ASTEC

DESIGN METHODS FOR INTEGRATED CONTROL SYSTEMS DMICS

FIBER OPTIC CONTROL SYSTEM INTEGRATION FOCSI

ICLE INTEGRATED CONTROL LAW EVALUATION

IEC INTELLIGENT ENGINE CONTROL

INTEGRATED, RELIABLE, FAULT TOLERANT CONTROL FOR LARGE ENGINES INTERFACE

PROLIFIC PROPULSION CRITICAL INTEGRATED CONTROL

PSC PERFORMANCE SEEKING CONTROL

SUBEC SURVIVABILITY BASED ENGINE CONTROL

OTHER TERMS

POWER MANAGEMENT CONTROL

PMC

Control Technology Trends

Capability for "Intelligent" Control

Facilitating Factors

Control I. Architecture

Control I.Q and Authority

Dual FADEC

FADEC & Backup

Supervisory Digital

Supervisory Analog

Hydromechanical

Time

Processor capability Memory Affordability Design Methodology System & S/W process

Integrated control law design/analysis with pictures to code 16 Bit > 32 Bit > Fast 32 Bit floating point with CACHE simulation capability, computer horsepower, and Great advances in multivariable design methods, >16 X growth in digital control memory capacity smorgasboaard of "intelligent" concepts

Great advances in ability to develop/incorporate intelligent engine control features

system allows affordable useage of complex control laws

EVOLUTION OF INTELLIGENCE

RELY ON INTELLIGENT CONTROL TECHNIQUES TO HELP - NATURAL EVOLUTION OF CONTROL FUNCTIONALITY TO MEET EVER TIGHTER PERFORMANCE REQUIREMENTS

HIGH PERFORMANCE DIGITAL MIMO W/GAIN SCHEDULING

SOPHISTICATED GAIN SCHEDULING

 $HZ \vdash U \bot J \vdash U U U Z U U$

DIGITAL ELECTRONIC ISOCHRONOUS

ANALOG ELECTRONIC ISOCHRONOUS HYDROMECHANICAL DROOP (PROPORTIONAL)

WE PROTTE LINE

CONSISTENT HIGH CURRENT
FERFORMANCE OVER APPROACH ON
OPERATING DEV/DEMO
REGIME, SS SFC PROGRAMS

CONSISTENT HIGH CURRENT
FERFORMANCE OVER APPROACH
OFERATING WHEN MIMO
REGIME N/A

IMPROVED ACCURACY/ PERFORMANCE

ADDED FLEXIBILITY FOR GAIN/ DYNAMICS TAILORING

> IMPROVED ACCURACY/ PERFORMANCE

NO EMI OR ELECTRICAL FOWER LOSS ISSUES

TIME

CONTROL SCHEDULING PERFORMANCE SHEETING CONTROL FOLL-BASE MANAGE SCHEDULING BENEF FOLLOWER MANAGEMENT MANAGEMENT MANAGEMENT MANAGEMENT MODEL-BASE MANAGEMENT FOLLOWER MANAGEMENT MANAGEMENT MANAGEMENT MODEL-BASE MANAGEMENT FOLLOWER MANAGEMENT MODEL-BASE MANAGEMENT FOLLOWER MANAGEMENT MODEL-BASE MANAGEMENT FOLLOWER FOLLOWER FOLLOWER MODEL-BASE MANAGEMENT FOLLOWER FOL		TTS COMMENT	OPTIMIZED FART OF SYSTEM SFC, IFFC STUDY FN,NOISE, EMISSIONS	HIGHER PERFORMANCE, CERTIFIED W/MARGIN,W/O ENGINES EYTRA SENSORS	EXPLOIT ENGINE PERF WHILE HOLDING STALL/SFC MARGIN SENSOR SET	SET REQUIRED GE POWER FOR MISSION FHASES PRODUCTION AUTOMATICALLY	IMPROVED FLEXIBILITY TO TAILOR SCHEDULIMG	ALLOWED SCHEDULING TO NON-CONSTANT LIMITS	
	ii .	BENEFITS	TROL		I FE MODES	MENT		ARIATE	

FRODUCTION. COMBINED W/ YODE TRANS **SAFABILITY** THAT FULLY ALL BELOW FOR MIXED EXPLOITS CONTROL - COMMENT ENGINE CYCLE Z ANTICIPATION FOR MOST COLLECTIVE IFE, TRANSIENT "UNCOMPENSATED" POWER RESPONSE/ LYPE MANELIVERS EFFECTIVE LOAD PROTECTION AND IMIT PROTECT, STALL/BLOWOUT STALL MARGIN, EERFORMANCE, CONSISTENCY DISTURBANCE SOOD BASIC SMARTER FF REDUCES MORE RAPID GUALITIES MANEUVERS JETIMIZED TRANSIENT REJECTION HANDL ING HANDL ING BENEFITS STRATEGY OLLECTIVE TRANSIENT CONTROL OPTIMIZED TRANS INTEGRATED LOAD VG/AIRFLOW OF N, TORQUE, ETC TRAJECTORY CONT CONTROL DIRECT RATE OR FACTOR FOR TURBOSHAFT SIMPLE COLLECTIVE BASED FEEDFORWARD NDOT CONTROL BASIC CORE FOR TURBOSHAFT 1-0AP MODEL CONTROL WF/FS3 COLLECTIVE V WEIGHT AIRSPECT PEDALS 2772 トNTEL

Ш Б

	ENGINE OPERABILITY CONTROL	ار.	
	ACTIVE COMPRESSOR STABILIZATION	BENEFITS STALL LINE, SFC, DISTORTION TOLERANCE	COMMENT IN RESEARCH FHASE
	ACTIVE STALL RECOVERY	ENHANCED STALL RECOVERY	UNIQUE DETECTION AND CONTROL SCHEDULING
∺ Z ⊢	INTELLIGENT INLET BUZZ PREVENTION	FASTER SUPERSONIC DECELS	SUPERSONIC APPLICATIONS ONLY!!!
و د لـ تـ تا		TIGHT OP-LINE COMTROL FOR REDUCED STALL MARGIN LOSS	ENGINES WITH VARIABLE EXHAUST NOZZLE
шии	UNIQUE TRANSIENT VG SCHEDLILING	BLYS TRANSIENT STALL MARGIN, ALLOWS USING FULL CYCLE	INDEPENDENT BLEED ON AXI-CENTRIF MACHINES
	GE MIXED MODE TRANSIENT CONTROL, W/NDOT	Ш O	BLEND OF WF/PS3,NDOT, TRAJECIORY AS APFROPRIATE
	WF/PS3 ACCEL/ DECEL AND SIMPLE VG SCHEDULING	BASIC OPERABILITY, STALL RECOVERY, RICWOUT PROTECTION	TY, TON
	3 H I L		

	FAULT DETECTION AND RES	RESPONSE	
		BENEFITS	COMMENT
	FUZZY-LOGIC INFUT SIGNAL SELECTION	INTELLIGENT IN-RANGE FAULT ACCOMMADATION	PHASING IN DEVELOPMENT PROGRAMS
нинш	ANALYTIC REDUNDANCY	ADDED FAIL-OP CAPABILITY IF ALL SOURCES OF A STGNAL FAILED	USED SELECTIVELY ON CURRENT PROGRAMS
J _ L 0	PHYSICAL REDUNDANCY	ADDED FAIL-OF CAFABILITY	CURRENT FADECS USE ALL BELOW
шгош	SOPHISTICATED SYSTEM LEVEL ERROR CHECKING	INCREASED FAULT COVERAGE	OUTPUT WRAPS, SERVO TRACKING, CYCLE
	BASIC BIT: CFU TESTS, RANGE TESTS	FOOD COVERAGE OF "COMPUTER" FART OF CONTROL, AND INPUTS	RELATIONSHIFS
	SIMFLE FAILSAFE RESPONSE	MOINTOINS ENGINE IN A SOFE CONDITION	PRIMARILY FOR HYDRO AND ANALOG CONTROLS
	TIME		

MAINTAINABILITY/FAULT DIAGNOSTICS

RENEFITS

COMMENT

SOPHISTICATED ON-ECARD FAULT ISOLATION

ISOLATES TO FAULTY COMPONENT (WRA) OR SRA

FROCESSES
RAW BIT
INFO, INITS
ADDED TESTS
AND AFFLIES
"KNOWLEDGE"
BASED TYPE
REASONING

RECORDS WHAT WAS HAPPENING IN VICINITY OF FAULT EVENTS

MORE EXTENSIVE

HZHUJJHUUZUU

ALL GE FADECS

INTEGRATION W/ COCKFIT DISPLAY, GROUND BASED DIAG SYSTEM ELECTRO-MECHANICAL BALLS

COMMUNICATE

RESULTS OF BIT FOR TROUBLESHOOTING MEASURE CONTROL FARAMS DIGITAL W/O DISSASSEMBLY CONTROLS

FAULT EVENTS

FAULT EVENTS

DIGITAL

COMMUNICATION OF

COMMUNICATION FAULT INFO

EXTERNAL VISUAL FAULT INDICATION

DIAGNOSTIC TEST CONNECTOR TIME

MODEL BASED CONTROL

- CRITICAL PART OF TODAY'S DESIGNS... SOME EXAMPLES:

MODELS USED TO ACHIEVE SENSOR TIME CONSTANT CORRECTION, AFTERBURNER FUEL SCHEDULING, AND LOW EMISSIONS BY CONTROLLING PREDICTED FLAME TEMPERATURE

INPUT SENSOR AND SERVO LOOP FAILURE DETECTION, SENSOR VOTING, AND SENSOR SUBSTITUTION

IMPLIED T41 AND STALL MARGIN BUILT INTO SMART REFERENCE SCHEDULES

SIMPLE MAP MODELS OR MORE COMPLEX COMPONENT LEVEL EMBEDDED MODELS USED DEPENDING ON ACCURACY REQUIREMENTS

- INCREASING ROLE IN THE FUTURE:

INCREASED EMPHASIS ON DESIGN FOR SURVIVABILTY (DETECTION AND RECONFIGURATION FOR BATTLE

INTEGRAL PART OF PERFORMANCE SEEKING CONTROL

DIRECT CONTROL TO MODEL BASED PARAMETERS

GREATER USE OF ANALYTIC REDUNDANCY

TREND MONITORING AND DIAGNOSTICS

INCREASED VEHICLE SYSTEM INTEGRATION/OPTIMIZATION

CONCLUSIONS ON EVOLUTION

- INTELLIGENT CONTROL PHASING INTO PRODUCT AND SUBSTANTIAL EVOLUTION IN CONTROL STRATEGIES HAS BEEN OCCURRING, WITH ASPECTS OF **NEAR TERM DEVELOPMENT PROGRAMS**
- AS CUSTOMERS CONTINUE TO ASK FOR MORE FROM - GENERALLY DRIVEN BY SPECIFIC PROGRAM NEEDS THEIR ENGINES

REGARDING TOOLS

AND SIMULATION HELP MAKE INTELLIGENT CONTROL MANAGEABLE - COMPREHENSIVE TOOLSETS FOR DESIGN, ANALYSIS,

METHODS	VELOPMENT
GE DRAWS ON A VARIETY OF ADVANCED SIMULATION METHODS	TAL CONTROL/ENGINE SYSTEM DEVELOPMENT
ADVANCED 8	OLZENGINE
ETY OF	L CONTR
A VARI	ATED TOTAL
DRAWS ON	INTEGRATED TOTAL
띰	FOR

HEN	COM	COM		
	"ULL CONTROL	SYSTEM HZW IN	HE LOOP FACILITY	

BENEFITS COMPREHENSIVE CONTROL SYSTEM TEST PRIOR TO ENGINE

COMMENT TOTAL SYSTEM SIMULATION CAPABILITY

> HIGH FREGUENCY MODELLING: FUEL SYSTEM,ENGINE

ALLOWS GREATEST PERFORMANCE IN TODAY'S HIGHLY COUPLED SYSTEMS

NON-LINEAR, COMPRESSIBLE EFFECTS

> AUTO-GENERATED COMPLETE CONTROL MODEL

RAPID AVAIL-BEACO ABILITY OF ERROR INTEC FREE COMPLETE TO CY CONTROL MODEL WORK

REACON CODE

INTEGRATED

TO CYCLE

WORK STATION
SYSTEM (CWS)

CLOSED LOOP FADEC TEST WITH REAL TIME MODEL

VERIFICATION OF CONTROL LAW IMPLEMENTATION PRIOR TO ENGINE VEHICLE/ENINE VITAL FOR INTERACTIONS, HELICOPTER, AND PREDICTION TILTROTOR, OF HANDLING VSTOL, AND GUALITIES LAND VEHICLES

INTEGRATED ENGINE/VEHICLE SYSTEM MODEL MOST ACCURATE TYPICALLY FOR OPTIMIZATION/ GE'S CWS, PREDICTIONS CYCLE WORK-

STATION SYS

COMPONENT LEVEL ENGINE MODEL COMPACT, DYNAMICALLY ACCURATE SIMULATIONS

FIECE-WISE LINEAR ENGINE MODEL

GE'S BEACON SYSTEM:

PROVIDES INTEGRATED CONTROL LAW DESIGN, IMPLEMENTATION, AND TEST, WITH DRAMATIC TOTAL PROCESS COST AND CYCLE TIME REDUCTION. QUALITY ENHANCEMENT, AND SIGNIFICANT REDUCTION IN MANUAL STEPS

THIS TASK

NOTE: FOR CLARITY, DESIGN ITERATION IS NOT SHOWN, NOR ARE ALL DETAILED PROCESS STEPS

LINEAR ISSUES:

NEED TOOLS THAT ALLOW CONSTRAINED STRUCTURE CONTROL LAW SYNTHESIS.

because company developed software allow controller structure constraints to be entered before optimization. Other toolboxes such as H Infinity do not Currently, most multivariable designs are done using Model Matching (KQ) provide this capability. Linear analysis tools such as Structured Singular Values are well developed and meet our needs better than the linear design tools.

NONLINEAR ISSUES:

NEED A MORE ANALYTICAL APPROACH TO NONLINEAR DESIGN

Currently depend solely on transient simulations to evaluate nonlinear stability.

Multivariable/Multimode Selection Logic (Limit Protection, Stability).

How to guarantee that approaching a linear governor from a new direction will not cause limit cycling due to nonlinearities such as gain kickers.

Unique Helicopter Issues

Background

- Extensive GE Experience on Helicopter applications through T58/T64/T700 product line
- Numerous military/commercial applications, including single/dual/triple engines

Unique Issues

- Helicopter applications inherently a challenging load disturbance rejection problem
- Increasingly aggressive manuvers, low rotor inertia, low transmission torque limit, and eyes out of cockpit flying result in increased performance demands on engine, control and drive control law complexity
- drives need for load share function & good OEI strategies Multiple engines coupled through rotor system drivetrain
- New VSTOL designs require mode transition
- Difficult to specify aircraft handling qualities drivers on engine system perfromance

Past Approach

- Highly refined supervisory electrical control architecture cost effectively meets today's performnace demands
- NP and load share loops spectrally seperated
- Collective based load anticipation signal

Torque trajectory shaping employed to control rate of torque rise at power

Relevant Technologies For Future Application

- FADEC for stringent performance reauirements, cockpit integration, and fail operational
- Higher bandwidth Np governing (with combustive damping) for load rejection in light of continued trend of aggressive maneuvers and low rotor inertias
- True Np/Q mimo design with optimized gain scheduling for tight loadshare and torque trajectory performance
- Intelligent load factor allowing compensation for pedal and cyclic inputs
- Multi-mode transient control for fastest/consistent accels
- VG overclosure during autorotation to enhance axi-centrif machine power vs. ng
- Integrated vehicle management allowing interchange of limits and other info for optimal vehicle system control
- Integrated vehicle/engine PSC for optimizing total system (E.G. tailor Nr for best cruise fuel burn, noise,maneuver load capability, etc.)

GE will continue to draw on Experience across product lines effective helicopter controls that meet operational needs and appropriate advanced technologies to provide cost

Unique Land Vehicle Issues

Background

- LV100 Demonstrator program ongoing since early 80's sponsored by US ARMY Tank-Automotive Command
 - Technology Demonstration of Electric Actuation/Fuel pump and multivariable control

Unique Issues

- Minimizing idle fuel flow and attaining great SFC are kev
- Engine cycle utilizes recuperator to help achieve above
- Variable area turbine nozzle (VATN) allows greatest realization of recuperator benefits
- discharge temperature allow near minimum SFC over Multivariable control of core speed and turbine power range
- Normal control operation is analogous to turboprop control, throttle controls engine power, "load" controls power turbine speed

RECUPERATED ENGINE CYCLE AND BENEFITS

₩2

PT

A NTAV

토

Combustor

Recuperator

Air Flow

92

T41

(1) £

Compressor

F

PS3 735

Simple Cross Section of a Turboshaft Engine with Heat Exchanger.

Output Horsepower

Comparison of Engine Cycles; Benefit of Recuperator and VATN. The sic of a recuperated turboshaft is significantly lower than that of a standard turboshaft.

Unique issues (cont'd)

- Low cost another key requirement, drives reduced sensor set
- Adaptive starting and decel control for range of fuel types and recuperator heat soak conditions
- Multi-mode transient control with varying recuperator heat input back into cycle
- Load loss/management impact on overspeed potential with recuperator
- Engine dynamics with recuperator
- Transient VATN control (opening VATN quickly accels gas generator, but can cause power dip)
- Control of auxiliary functions (e.g. blowers)
- Reflected vehicle inertias impact on Np governor design

Potential Future Relevant Technologies

PSC for optimal engine performance over life with reduced sensor set

Conclusions

- plethora of intelligent control possibilities at disposal of control system Advances in methodology and computer horsepower have placed
- Digital control processor power can be available as needed, but costs \$'s and weight... advanced features generally need to buy their way onto engine through life cycle cost savings or addressing stringent performance requirements
 - Increased dependency on model based approaches for enhanced performance, better SFC, reduced emissions, and enhanced fault
- Fuzzy logic concepts providing benefits in area of soft fault tolerance
- Performance seeking control holds promise for turbofan/turboprop SFC/ thrust benefits, and helicopter cruise fuel burn/noise reduction
- Integrated system design and control/engine/vehicle simulation tools help make complexity manageable
 - Additional work needed on multivariable design techniques to better address real world constraints

to play a vital role in meeting ever more demanding "Intelligent" Control Concepts will continue performance requirements

CONTROL FOR HELICOPTER AND THE PROMISE OF ACTIVE TANK ENGINES

ARUN K. SEHRA MANAGER, COMPRESSOR AERODYNAMICS TEXTRON LYCOMING, STRATFORD, CT 06468 WORKSHOP ON INTELLIGENT TURBINE ENGINES FOR ARMY APPLICATION M.I.T., CAMBRIDGE, MASS MARCH 21-22, 1994

AGENDA

- COMPRESSOR/ENGINE OPERABILITY
- OPERABILITY ENHANCEMENT
- ACTIVE STABILIZATION PAYOFFS & **APPLICATION**
- HELICOPTER ENGINE APPLICATION
- TANK ENGINE APPLICATION
- ISSUES & CONCERNS
- CONCLUDING MESSAGE

COMPRESSOR OPERATING ENVELOPE

STABILITY AUDIT

COMPRESSOR PRESSURE RATIO

COMPRESSOR REFERRED FLOW

SURGE MARGIN ENHANCEMENTS

IMPACT	INC. SIZE, WT., & COMPLEXITY, REDUCED RELIABILITY	INC. WT., REDUCED EFF.	INC. WT. & COMPLEXITY, REDUCED EFF.	INC. WT. & COMPLEXITY, REDUCED EFF. & POWER	REDUCED EFF.	INC. WT., SIZE, & COMPLEXITY	
ENGINE			AGT1500 & T53	ALL ENGINES		AGT1500	LTS101
SM ENHANCEMENT DEVICE	ADD MORE STAGE(S)	INCRESED SPEED	VARIABLE GEOMETRY *	BLEEDS *	CASING TREATMENT *	DUAL SPOOLING *	OTHER DEVICES

^{*} Primarily for part speed surge margin

ACTIVE STABILIZATION

PAYOFFS

- IMPROVED OPERABILITY RANGE
- IMPROVED SPECIFIC FUEL CONSUMPTION HIGHER CYCLE PRESSURE RATIO HIGHER EFFICIENCY

ACTIVE STABILIZATION

APPLICATION TO HELICOPTER & VEHICULAR **ENGINES**

Results of an In-house study corressponding to a 10% reduction of surge margin requirement for the following Lycoming engines

• T55

COMMON CORE (T55 DERIVATIVE)

• LTS101

AGT1500

ACTIVE SURGE CONTROL PAYOFFS

T55

DESIGN PT. SFC REDUCTION: 4.0%

IDLE FUEL CONSUMPTION REDUCTION: 5.6%

OPERABILITY FROM 25 K TO 39 K FEET ALTITUDE

STEADY STATE INLET PRESSURE DISTORTION DI FROM 0.03 TO 0.23 CAPABILITY

KP = Factor to acount for shape, extent, & radial content = MER

ACTIVE STABILIZATION OF T55 ENGINE

ACTIVE STABILIZATION OF T55 ENGINE

OBJECTIVE: DEVELOP AN A.S. SYSTEM FOR LOW/HIGH SPEED APPLICATION ON AN ENGINE USING AXIAL-CENT. COMPRESSOR

PROGRAM STATUS:

- RIG TESTING WITH DYNAMIC INSTRUMENTATION COMPLETED (AVPD/NASA T55 STRAT-UP STALL PROGRAM)
- DYNAMIC MODELING UNDERWAY AT MIT
- PROPOSALS SENT TO NAVY/NASA FOR A.S. SYSTEM DEVELOPMENT

COMMON CORE COMPRESSOR

OITAR BRUSSBR9

REFERRED FLOW

ACTIVE SURGE CONTROL PAYOFFS

COMMON CORE

DESIGN POINT SFC REDUCTION: 3.3%

MAX. CRUISE SFC REDUCTION: 2.4%

IDLE FUEL CONSUMPTION = -6.6%

OPERABILITY: FROM 30 K TO 50 K FEET ALTITUDE

ACTIVE STABILIZATION OF LTS101 ENGINE

(JOINTLY SPONSORED BY NAVY)

OPERATION ON AN ENGINE HAVING A HIGH PRESSURE RATIO **OBJECTIVE:** DEVELOP AN A.S. SYSTEM FOR HIGH SPEED **CENTRIFUGAL STAGE**

PROGRAM STATUS:

- MODIFIED AN LTS101 ENGINE FOR ACTIVE STABILIZATION APPLICATION
- DYNAMIC MODELING COMPLETED
- FORCED RESPONSE TESTING USING INBLEED AT ROTOR INLET COMPLETED
- FORCED RESPONSE TESTING USING THROAT INBLEED UNDERWAY

4.0 % SAVING IN IDLE FUEL CONSUMPTION 3.7 % INCREASE IN SPECIFIC POWER LTS101 COMPRESSOR

ACTIVE STABILIZATION OF LTS101 ENGINE

TEST RIG

AGT 1500 HIGH PRESSURE COMPRESSOR

2.6 % SAVING IN IDLE FUEL CONSUMPTION

INLET REFERRED FLOW

ACTIVE STABILIZATION ISSUES AND CONCERNS

SEVERAL UNKNOWNS ABOUT ACTIVE STABILIZATION SYSTEM: EFFECTIVENESS IN ENGINE ENVIRONMENT

RELIABILITY

ACTUATOR DEVELOPMENT SCHEDULE

DEVELOPMENT COST AND SCHEDULE

PRODUCTION COST

WFIGHT

CONCLUDING MESSAGE

AN EARLY CONCEPT DEMO ON AN ENGINE IS VERY IMPORTANT PRIOR TO A MAJOR INVESTMENT BY **ENGINE COMPANIES**

AND

BASIC RESEARCH MUST CONTINUE

MIT RESEARCH IN ACTIVE COMPRESSOR STABILIZATION

Presented to the Workshop on Intelligent Turbine Engines for Army Applications March 21-22, 1994

A. H. Epstein E. M. Greitzer G. R. Guennette J. D. Paduano C. S. Tan

OUTLINE

- Background
 - -Goal of Active Control
 - -Surge and Rotating Stall in Compressors
- Surge Control
 - Results High-Speed Centrifugal Turbocharger
 - -Current Research Centrifugal Gas Turbine Surge Control
- Rotating Stall Control
 - -Results in Low Speed Axial Compressors
 - -Modeling and Detection in High Speed Compressors
 - -Current Research in Control of R/S in High Speed Compressors

GOAL OF ACTIVE STABILIZATION - Safe Operation at Higher Performance Levels -

- System study projects 8% reduction in GTOW or 11% longer range

NATURAL OSCILLATORY MODES OF COMPRESSORS

SURGE AND ROTATING STALL IN GAS TURBINES

- Rotating Stall Generally Precedes Surge
 - -Often eventually leads to surge
- Depending on Machine, May Choose to Control Surge and Not R/S
 - Centrifugals, axicentrifugals: surge control alone may pay off rugged compressors 'progressive', recoverable rotating stall surge is first debilitating instability
 - -Axial, multistage compressors R/S control required rotating stall is abrupt, debilitating control surge alone ⇒ deep, nonrecoverable stall

COMPARISON OF RECOVERABLE AND DEEP ROTATING STALL

Compressor test, no surgeUnstable axisymmetric map, no rotating stallRotating stall

Centrifugal Compressors, Fans, and Blowers

Axial Compressors

EARLY SURGE CONTROL RESULTS

- Ria Demonstration (Pinsely et al., 1988)
 - High speed (90,000 Rpm) centrifugal supercharger
 - 100 Hz valve actuating downstream or plenum bleed
 - -Demonstrated 20-25% operating range extension
- Dynamic Control Trough Tailored Structures (Gysling, 1991)
 - Movable plenum wall w/ tailored structural dynamics
 - -Tuned to act as passive damper for surge oscillations
 - -Demonstrated 25% operating range extension
- Detailed Sensor/Actuator Placement Studies (Simon, 1991)
 - -Sensor and actuator type, placement are pivotal
 - -Close-coupled actuation is a key to success
 - Highly multidisciplinary endeavor

STUDYING ALTERNATE IMPLEMENTATION STRATEGIES

Integrates control theory, engine design, fluid mechanics, experimentation, aeroelastics

CURRENT EFFORTS - ACTIVE SURGE STABILIZATION IN SMALL GAS TURBINES

- Two 650 HP engines on test stands
 - -Textron LTS-101 gas producer (turbojet w/ variable area nozzle)
 - Allison 250-C30 turboshaft (power turbine and water break)
- Surge Model Extended to Include:
 - -Combustor energy dynamics
 - Compressor/turbine shaft dynamics
 - Compressibility
 - Candidate actuation strategies
- Sensor/Actuator Effectiveness Study Complete
 - Diffuser throat injection very promising
 - Fuel modulation least effective
- LTS-101 Modified for Diffuser Throat Injection

LTS-101 INSTRUMENTATION LAYOUT

LTS-101 INSTRUMENTATION LAYOUT

GAS TURBINE PRESENTS NEW CHALLENGES TO ACTIVE CONTROL DESIGN/MODELLING

<u>Turbocharger System</u>

- $\pi_{\rm c}$ ~ 2, M_T ~ 0.8
- Simple compact geometry
- "Shallow" characteristics
- Low Helmholtz frequency

G.T. Helicopter Engine

- $\pi_{\rm C}$ ~ 8, M_T > 1.0
- Complex geometry
- "Steep" characteristics
- High Helmholtz frequency
- Combustion
- Shaft dynamics
- Very noisy

ROTATING STALL A Distributed Fluid-Mechanical Instability

Small amplitude circumferential

traveling waves:

Large amplitude nonlinear 'rotating stall' cell:

- Rotating Stall Causes Damage, Leads to Surge
- Engine Performance Compromised to Avoid Stall/Surge

ROTATING STALL STABILIZATION "Distributed" Sensors and Actuators

- stator vanes (IGVs) individually servo-controlled
- wave stabilization increases compressor operating range

ROTATING STALL CONTROL DEMONSTRATIONS - Low Speed Compressors -

- Single-Stage Axial
 - -Original demonstration
 - Modeling, identification, and control concepts & techniques developed
- Three-Stage Axial
 - -Verification of 1-stage results on Pratt-designed rig
 - Detailed identification, refinement of fluids models
 - -Testbed for advanced modeling and control
- Dynamic Control Using Aeromechanical Feedback
 - -Tailored structures coupled to fluid mechanics
 - Proof of passive control concept
 - -Close-coupled actuation concept tested

SINGLE-STAGE DEMONSTRATION 18% Operating Range Increase with Active Control

- -Control Circumferential Harmonics Independently
 Moore-Greitzer dynamics borne out
- -Additional Range For Each Addt'l Harmonic

ACTIVELY STABILIZED THREE-STAGE COMPRESSOR

Design Characteristics:

Low Speed

 $\omega = 2400 \text{ RPM}$

 $\phi = C_x/U = 0.6$

High Reaction No Surge R = 0.74B = 0.16

odige D = 0.10

PARAMETER IDENTIFICATION RESULTS and Refined Theoretical Predictions

NONLINEAR MODEL VALIDATED AGAINST STALL INCEPTION DATA **Experiment** δφ HW #3 HW #2 HW #1 25 20 15 10 τ, Rotor revs Simulation δφ HW #3 HW #2 HW #1

10

AEROMECHANICAL CONTROL OF ROTATING STALL

15

25

τ, Rotor revs

20

• 'Passive' system

ō

5

- -Feedback through dynamic coupling between unsteady flow and structure
- Deflection of structure causes flow injection into annulus
- Circumferential array of 24 reed valves control injection
- Phase of injection set by interaction between stall precursors (pressure perturbations) and reed dynamics
- 10% change in stall point

DYNAMIC CONTROL OF ROTATING STALL USING AEROMECHANICAL FEEDBACK

RANGE INCREASE DUE TO AEROMECHANICAL FEEDBACK

HIGH SPEED COMPRESSOR STALL CONTROL RESEARCH

- Modeling
 - -Compressible 2D Hydrodynamic Stability Model In Place
 - Applied to Industrial Compressor Test Rig Geometries
 - -Compressible Modes Explain Experimental Results
 - -Control, Sensor/Actuator Studies Underway
- Detection
 - -Data from 10 high speed compressors reduced
 - -Pre-stall traveling wave energy present in all cases
 - -'Compressible mode' important to stall inception
- Actuation
 - -Mass injection currently the most promising
 - -Valve hardware designed (Moog and NASA Lewis)
 - -Currently Investigating fluid mechanics of unsteady blowing
- Initial Control Design Studies Underway

COMPRESSIBLE MODELING OF ROTATING STALL

- 1D Compressible Flow in Blade Passages
- 2D Compressible Flow in Gaps
- Boundary Conditions Link Volumes
- Result Hydrodynamic Model for Circumferential Harmonics
- Actuation and Sensing Added to Study Control

MODEL PREDICTS COMPRESSIBLE MODE AT ROTOR FREQUENCY

HIGH SPEED COMPRESSOR PRE-STALL SPECTRA

CURRENT EFFORTS - ACTIVE CONTROL OF ROTATING STALL

- Control With Inlet Distortion on 3-Stage Rig
 - High priority for implementation
 - -Modeling, control much more complicated
 - We will 'close the loop' with distortion this Spring
- Mass Flow Injection on 3-Stage Rig
 - -Replace inlet guide vanes with injectors
 - -Significant performance improvement predicted by 2D modeling
 - Details of implementation will effect performance achieved
- Application of Advanced Control Techniques
 - Robust controller design and implementation demonstrated on 3-stage developing techniques for use at NASA Lewis
 - Nonlinear analysis and control law design goal: enhance large disturbance stability applying Lyapunov, absolute stability theory

CURRENT EFFORTS - ACTIVE CONTROL OF ROTATING STALL - NASA Lewis Project -

- Industrial scale compressor stages
 - -Stage 37 High speed compressor stage (U_{tip} = 454 m/s, h/t=.7)
 - -Stage 67 Low hub/tip fan stage (U_{tip} = 430 m/s, h/t=.36)
- Mass flow injection, high-bandwidth actuation (300-500 Hz)
 - NASA Lewis & Moog designing linear actuators
 - -MIT designing valves and injectors
 - -Scale wind tunnel tests (M=0.5) of injection underway
- 3D hydrodynamic stability analysis of rotating stall
- System procedures for eigenvector identification
- Testing at NASA to begin Late 1994

SUMMARY Stall and Surge Control are Maturing Rapidly

- Evolution of apparatus complexity
 Surge control concept ⇒ surge rig ⇒ small engines
 R/S control concept ⇒ 1 stage ⇒ 3 stage ⇒ high speed/industrial
- Evolution of maturity of understanding
 - -Surge control:

Lumped model ⇒ model w/ actuation ⇒ engine scale, environment

- Rotating stall control:

Moore-Greitzer ⇒ unsteady losses ⇒ distortion ⇒ high speed, 3D, nonlinear

- Each evolutionary stage has been successful to date
 - -Still *much* to do, but confidence is high
- New multidisciplinary concepts are emerging <u>out of necessity</u>:

'Close-coupled' actuation
System Identification of fluid processes
Passive aeromechanical control
Wave energy for detection
Interaction of compressible and acoustic modes

Progress in Modeling & Control of Compressor Stall

Dr. Carl N. Nett

Technology Area Leader, Dynamic Systems & Controls PW Joint Program Subelement Manager, Fans & Compressors

United Technologies Research Center

Mail Stop 129-15 411 Silver Lane E. Hartford, CT 06108 Phone: (203) 727-7957, Fax: (203) 727-7909

E-mail: cnn@utrc.utc.com

Intelligent Turbine Engines for Army Applications Cambridge, MA (MIT) March 21, 1994

Key UTRC Contributors

Formerly Georgia Tech LICCHUS

Dr. Kevin M. Eveker

Dr. Carl N. Nett

Formerly MIT GTL

Dr. Daniel L. Gysling

Dr. Gavin J. Hendricks

Dr. Philip L. Lavrich

Formerly U. Maryland ISR

Dr. Hua O. Wang

Key P&W Point-of-Contact: Dr. Om P. Sharma

Obstacles and Related Issues

- Highly nonlinear phenomena characterized by bifurcations
- relevancy of linear perspective
- 3D distributed unsteady compressible flow phenomena
- model uncertainty (unknown physics and parameters)
 - model complexity
- number, locations, and types of actuators and sensors
- Relatively high frequency phenomena
- sensor and actuator bandwidths
- digital processor throughput
- Inherently noisy and hostile operating environment
- sensing and actuation constraints
- Complex interactions with overall system and operating environment

Stability Enhancing Control Concepts

Active Control Proof-of-Concept Demos

Active Surge Control Demo: 2-Way Actuation

Active Surge Control Demo: 1-Way Actuation

Active Surge Control Demos

Active Rotating Stall Control Demo

Active Rotating Stall Control Demo

Integrated Control Proof-of-Concept Demo

Active Rotating Stall / Surge Control Demo

Active Rotating Stall / Surge Control Demo

disturbance on

Stall Inception Models

Span-wise Uniform, Long Wavelength Inception

Model-Based Surge Controllers

Proportional Feedback Controller

Experiment Model

+ 6.6 dB - 2.0 dB

+ 5.6 dB - 4.4 dB

Margins

Dynamic Feedback Controller

Experiment Model

+ 5.5 dB + 7.3 dB Margins Gain

- 4.0 dB

- 6.3 dB

Required Extensions

Low speed to high speed (compressibility effects)

Few stage to many stage

Single spool to multiple spool

Compressors to cores to engines

Low pressure ratio to high pressure ratio

Extensions required for both models and controls

Parting Comments...

Nonlinear perspective provides a real edge

Much fruitful work can yet be accomplished in low speed environments Carry out parallel efforts in high speed environments

Deployable hardware issues yet to be considered

A Systems Study of the Impact of Active Compressor Stabilization

3/21/94

Kevin R. Tow General Electric Aircraft Engines Lynn, MA.

A Systems Study of the Impact of Active Compressor Stabilization

- Overview of Assumptions
- Potential Benefits of Active Stabilization
- Engine System Level Benefits
- Aircraft System Level Benefits
- Summary of Design Options

Overview of Assumptions

- Active control provides assumed levels of additional stability margin.
- The specific method of active control is not studied.
- Potential effects of the active control hardware on efficiency or weight are not included.
- Active stabilization is used as an upgrade to both existing configurations and entirely new designs.

The systems level study assesses the bottom line benefit of having more stall margin

Advantages of Active Control Stabilization

- Current advanced control technologies are designed to avoid stall.
- Active stabilization suppresses the initiation of stall and increases the acceptable region of compressor operation.
- Active control has the potential for more widespread application over stall avoidance technologies.

Active stabilization includes and potentially exceeds the performance benefits of stall avoidance control technologies.

Active Control Provides Potential Benefits on Different Levels

- Compressor Component Level Improved adiabatic efficiency Higher pressure ratio capability Weight reduction
- Improved steady state and transient performance Improved cycle thermal efficiencies Improved hardware durability Engine System Level
- Aircraft System Level
 Improved distortion tolerance capability
 Reduced installed drag
 Increased aircraft range

Design Scenario

- · Low, bypass ratio afterburning turbofan typical for military fighter applications.
 - Additional 5%-20% stall margin available
- Other cycle limits (temperatures, pressures, rotor speeds, physical geometries) remain constant

Typical Engine Design Limits

Parameters other than stall margin may limit cycle performance

Method of Implementation

- Additional stall margin used by raising the compressor pressure ratio at constant corrected speed.
 - · High pressure compressor is actively controlled; the fan is not.

Engine Performance Figures of Merit

- Specific Fuel Consumption (SFC)
 SFC= Fuel Flow/Net Thrust
- exhaust total pressure, gas properties) FG/airflow= function (exhaust total temperature, FG= (airflow)(exhaust velocity) Specific Ideal Gross Thrust

stall margin results in lower fuel flow, higher exhaust temperature The steady state systems performance improves if the additional and/or higher exhaust pressure.

Results

- Cruise Operation
 Significant fuel consumption benefits
- Intermediate Rated Power: thrust penalty at all flight conditions Max AB: thrust benefit/penalty depending on the flight Higher pressure ratio results in lower turbine exhaust temperature due to temperature limits. High Power Operation condition.

For this application, performance benefits and penalties associated with the higher pressure ratio

Specific Fuel Consumption Benefit for Cruise Operation 35,000 ft/ .85 MN

Net Thrust Normalized to a Reference Point

High Power Thrust Penalty Driven by Temperature Limits

T2 Normalized to a Reference Point

The presence of existing cycle constraints may compromise potential active control benefits on existing configurations.

T3 Limited Operation Covers a Larger Portion of the Flight Envelope as Core Pressure Ratio is Raised

The severity of the performance penalty depends on the location of the aircraft's critical flight conditions.

Summary of Results:

Benefits of 5% Additional Stall Margin on an Existing Configuration

- Max AB thrust changes from -4.3 % to +.8% depending Cruise SFC improves by -.74% to -.82% on the flight condition. Raise core pressure ratio
- Max AB thrust improves from 0.0 % to 5.4% depending No impact on cruise performance. on the flight condition. Raise fan pressure ratio
- Cruise SFC improves by -0.21% to -0.41% Optimize efficiency using variable stators

Additional stability margin above 5% could not effectively be utilized on the existing configuration.

Active Stabilization Incorporated on a New Engine Design (J. C. Seymour- MIT MS Thesis)

Design scenario

- · Configuration: low bypass, mixed flow afterburning turbofan
- Implementation: higher pressure ratio operation
- 20% available stall margin

Results:

- 11.2% increase in mission radius
- 8.3% decrease in takeoff gross weight
- 7.3% decrease in aircraft operating weight

The benefits of 20% additional stall margin are maximized when active stabilization is incorporated early in the engine design process.

Aircraft System Benefit: Active Stabilization on a New Aircraft Design (Northrop)

Design Scenario

- · Configuration: high performance fighter aircraft
- Implementation: Higher compressor stall margin can accommodate larger inlet flow distortion.

Results

- Inlet capture area reduction
- Reduced spillage drag
- Increased aircraft range

Aircraft System Benefit: Larger Inlet Distortion Tolerance Allows Reductions in the Inlet Capture Area

The reduction in inlet area results in significant improvements in range.

Design Options for Implementing Active Control

- associated penalties. Higher stall margin capability is not Performance improvements must be compared to the simply a win-win situation.
- The presence of other cycle design constraints limits the benefits of additional stall margin on existing configurations.
- Active stabilization is likely to provide the greatest benefits on new aircraft/engine designs.
- The manner of implementation of active control is dependent on the particular aircraft application.