Notes on Graphs

Graphs

- A graph G consists of a finite nonempty set V of vertices and a set E of edges, where an edge is a unordered pair of distinct vertices of V.
- We denote a graph G with the vertex set V and the edge set E by G = (V, E). And the vertex set of a graph G is denoted by V(G) and the edge set of G is denoted by E(G).
- Given that e = (u, v) ∈ E, we say that u is adjacent to v and u (or v) is incident to e.
- A directed graph (or digraph) consists of a finite nonempty set V of vertices and a set E of directed edges (or arcs), where a directed edge is an ordered pair of distinct vertices of V.

Subgraphs

- A **subgraph** of G = (V, E) is a graph having a vertex set $V' \subseteq V$ and an edge set $E' \subseteq E$ such that, for each $(u, v) \in E'$, $u, v \in V'$.
- A spanning subgraph is a subgraph containing all the vertices of V.
- For any set S⊆V, the induced subgraph G⟨S⟩ is the maximal subgraph of G with vertex set V.
- Thus, $(u,v) \in E(G(S))$ if and only if $(u,v) \in E(G)$

Graph isomorphism

• Two graphs G and H are **isomorphic** if there exists a one-to-one correspondence θ between V(G) and V(H) which preserves adjacency, i.e.

$$(u,v) \in E(G) \iff (\theta(u),\theta(v)) \in E(H).$$

- An **invariant** of a graph *G* is a number associated with *G* which has the same value for any graph isomorphic to *G*.
- A complete set of invariants determines a graph up to isomorphism.

Walks and connectedness

- A walk of a graph is an alternating sequence of vertices of edges ⟨ν₀, e₀, ν₁, ··· , ν_{n-1}, e_n, ν_n⟩, beginning and ending with vertices, in which each edge is incident to the two vertices immediately preceding and following it.
- A walk is **closed** if $v_0 = v_n$ and is **open** otherwise.
- A walk is a **trail** if all the edges are distinct.
- A walk is a path if all the vertices (and thus necessarily all the edges) are distinct.
- If the walk is closed, then it is a cycle if its n vertices are distinct and n ≥ 3.
- We denote by C_n the graph consisting of a cycle with n vertices.
- We denote by P_n a path with n vertices.
- **Theorem**: The edge set of a graph can be partitioned into cycles if and only if every vertex has even degree.

- A graph is connected if every pair of vertices are joined by a path.
- A maximally connected subgraph of G is called a **connected component** (or **component**) of G.
- The **length** of a walk $\langle v_0, e_0, v_1, \dots, v_n \rangle$ is n, the number of edges in it.
- The girth of a graph G, denoted g(G), is the length of a shortest cycle in G.
- The **circumference** of a graph G, denoted c(G) is the length of any longest cycle.
- The distance d(u, v) between two vertices u and v in G is the length of a shortest path joining them if any. Otherwise, d(u, v) = ∞.
- **Theorem**: In a connected graph, distance is a *metric*; that is, for all vertices *u*, *v* and *w*,
 - (a) $d(u, v) \ge 0$, with d(u, v) = 0 iff u = v.
 - (b) d(u, v) = d(v, u).
 - (c) $d(u,v) + d(v,w) \ge d(u,w)$.
- The **diameter** d(G) of a connected graph G is the length of any longest u-v path.
- The square G^2 of a graph G has $V(G^2) = V(G)$ with u, v adjacent in G^2 whenever $d(u, v) \le 2$ in G.
- Adjacency matrices for powers G^2, G^3, \cdots can be obtained by multiplying the adjacency matrix A for G. Actually, A_{uv}^k contains the number of distinct paths between u and v whose length is $\leq k$. Adjacency matrix G^n is essentially a transitive closure.

Degrees

- The degree of a vertex v_i in graph G, denoted by d_i or degree(v_i), is the number of edges incident to v_i.
- **Theorem**: The sum of the degrees of the vertices of a graph G = (V, E) is twice the number of edges,

$$\sum_{v \in V} \text{degree}(v) = 2|E|.$$

- Corollary: In any graph, the number of vertices of odd degree is even.
- The minimum degree among the vertices of G is denoted $\delta(G)$.
- The maximum degree among the vertices of G is denoted Δ(G).
- If $\delta(G) = \Delta(G) = r$, then all vertices have the same degree and G is called **regular** of degree r.
- 3-regular graphs are called **cubic**.
- Corollary: Every cubic graph has an even number of vertices.

Trees: Characterization

- A graph is acyclic if it has no cycles.
- A tree is a connected acyclic graph.
- Any graph without cycles is a forest, where the components of a forest are trees.
- **Theorem**: The following statements are equivalent for a graph *G*:
 - (a) G is a tree.
 - (b) Every two vertices of G are joined by a unique path.
 - (c) G is connected and m = n 1.
 - (d) G is acyclic and m = n 1.
 - (e) G is acyclic and if two nonadjacent vertices of G are joined by an edge e, then G+e has exactly one cycle.
 - (f) G is connected, is not K_n for $n \ge 4$, and if any two nonadjacent vertices of G are joined by an edge e, then G + e has exactly one cycle.
 - (g) G is not $K_3 \cup K_1$ or $K_3 \cup K_2$, m = n 1, and if any two nonadjacent vertices of G are joined by an edge e, then G + e has exactly one cycle.
- Corollary [1]: Every nontrivial tree has at least two endvertices

Trees: Centers and centroids

- The eccentricity e(v) of a vertex v in a connected graph G is max{d(u,v)} for all u ∈ V (i.e. distance to the farthest vertex).
- The radius r(G) is the minimum eccentricity of the vertices.
- The diameter d(G) is the maximum eccentricity of the vertices.
- A vertex v is a central vertex of G if e(v) = R(G), and the center of G is the set of all central vertices of G.
- **Theorem**: Every tree has a center consisting of either one vertex or two *adjacent* vertices.
- A **branch** at a vertex *u* of a tree *T* is a maximal subtree containing *u* as an *endvertex*.
- The number of branches at u is degree(u).
- The **weight** at a vertex *u* of a tree *T* is the maximum number of edges in any branch at *u*.
- A vertex v is a centroid vertex of a tree T if v has minimum weight, and the centroid of T consists of all such vertices
- **Theorem**: Every tree has a centroid consisting of either one vertex of two *adjacent* vertices.

Trees: Block-cutvertex trees

- For a connected graph G with blocks $\{B_i\}$ and cutvertices $\{c_j\}$, the **block-cutvertex graph**¹ of G, denoted by bc(G), is defined as the graph having vertex set $\{B_i\} \cup \{c_j\}$, with two vertices adjacent if one corresponds to a block B_i and the other to a cutvertex c_j and c_j is in B_i .
- A block-cutvertex graph is a bipartite graph.
- **Theorem**: A graph *G* is the block-cutvertex graph of some graph *H* if and only if it is a tree in which the distance between any two endvertices is even.

Independent cycles and cocycles

- A 0-chain of G is a linear combination Σε_iν_i of vertices and a 1-chain is a sum Σε_ie_i of edges.
- The boundary operator ∂ sends 1-chains to 0-chains according to the rules:
 - (a) ∂ is linear.
 - (b) if e = (u, v), then $\partial x = u + v$.
- The **coboundary operator** δ sends 0-chains to 1-chains by the rules.
 - (a) δ is linear.
 - (b) if $\delta v = \sum \varepsilon_i e_i$, where $\varepsilon_i = 1$ whenever x_i is incident with v.

Independence sets

- A subset *S* of *V* is an **independence set** of *G* if no two vertices of *S* are adjacent in *G*.
- An independent set S is a **maximum independent set** if G has no independent set S' with $|S'| \supseteq |S|$.
- A subset V' of V is a covering of G if every edge of G has at least one end in V'.
- maximum independent sets VS minimum vertex covering
- **Theorem**: A set $S \subseteq V$ is an independent set of G if and only if V S is a covering of G.
- The size of a maximum independence set is called the independence number of G and is denoted by α(G).
- The size of a minimum covering of G is the covering number of G and is denoted by β(G).
- **Theorem**: For any graph G = (V, E), $\alpha(G) + \beta(G) = |V|$.
- An edge covering of G is a subset E' of E such that each vertex of G is incident to some edge in E'.
- Edge analogue of an independent set is a set of edges which are pairwise non-adjacent, that is, a matching.
- maximum matching VS minimum edge covering
- We denote the number of edges in a maximum matching of G by \(\alpha'(G) \) and call it the edge independence number.
- We denote the size of minimum edge cover of G by β'(G) and call it the edge covering number.

¹For an application, see [2]

- **Theorem**: For any graph G = (V, E), if $\delta > 0$, then $\alpha'(G) + \beta'(G) = |V|$.
- Theorem: In a bipartite graph G with δ > 0, the number of vertices in a maximum independent set is equal to the number of edges in a minimum edge cover.

Depth-first search

- DFS has a nice feature that partitions the edge set into forward edges, backward edges, tree edges, and cross edges, which can be used for binconnectivity, planarity algorithms.
- topological sorting: a vertex is finished only after all vertices reachable from it are finished; so ordering vertices in decreasing order of finish time is a topological order
- An **articulation point** (a.k.a. **cut vertex**) is a vertex whose deletion disconnects the remaining graph into multiple components.
- A graph is **biconnected** if there is no articulation point.
- A **biconnected component** of a graph is a maximal subset of edges s.t. the corresponding induced subgraph is biconnected. Typically, an articulation point join different biconnected components.
- Hopcroft-Tarjan algorithm for biconnected components:

$$low(v) = \min_{w \in V} \{D[v], D[w]\}$$

where D[v] is the discover time of v, (u, w) is a back edge for some descendent u of v. That is low(v) of a vertex v is the discovery number of the vertex closest to the root that can be reached from v by following zero or more tree edges downward and at most one back edge upward.

- **Theorem**: Let T be a DFS tree of a connected graph G, and let v be a nonroot vertex of T. Vertex v is a **cut vertex** if and only if there is a child w of v in T with $low(w) \ge D[v]$.
- strong connectivity: can be found by two DFS over G: once for G and second time with G^T (edges of G are reversed).
 - (a) call **DFS**(G) to compute **finish times** F(v)
 - (b) call **DFS**(G^T) but visit vertices in the order of decreasing F(v).

Minimum spanning trees

- Kruskal's algorithm:
- Prim's algorithm:

Single-source shortest paths

All-pairs shortest paths

- $D^k(i, j)$: distance between vertices i and j which goes through vertices $\leq k$.
- Iterate the following for $1 \le k \le n$

$$D_{ij}^k = \left\{ \begin{array}{ll} w_{ij} & k = 0, \\ \min\{D_{ij}^{k-1}, D_{ik}^{k-1} + D_{kj}^{k-1}\} & k \leq 1 \end{array} \right.$$

Network flows

- A flow network G = (V, E) is a directed graph where each edge ⟨u, v⟩ ∈ E has a nonnegative capacity c(u, v) ≥ 0. There are two special vertices: a source s ∈ V and a sink t ∈ V.
- A flow in G is a function $f: V \times V \rightarrow \mathbb{R}$, which satisfies the following constraints (i.e. is a valid assignment of flow):
 - 1. **capacity constraints**: for all $u, v \in V$, $f(u, v) \le c(u, v)$.
 - 2. **skew symmetry**: for all $u, v \in V$, f(u, v) = -f(v, u).
 - 3. **flow conservation**: for all $u \in V \{s, t\}$,

$$\sum_{u \in V} f(u, v) = 0.$$

• The **value of a flow** f is defined as

$$|f| = \sum_{v \in V} f(s, v).$$

References

- [1] F. Harary. Graph Theory. Addison-Wesley, 1969.
- [2] R. E. Tarjan and U. Vishkin. Finding biconnected components and computing tree functions in logarithmic parallel time. In *Proceedings of FOCS'84*, 25th Annual IEEE Symposium on Foundations of Computer Science, October 1984.