Simple Numerical Optimization Algorithms

Felix Mauersberger

Rheinische Friedrich-Wilhelms-Universität Bonn

July 3, 2019

Introduction

Optimization

- typical problem in economics: find an optimum
- Case 1:

$$\max_{x} f(x) = 0.5x - 0.02x^{2}$$

easy: just solve for x satisfying f(x) = 0

Case 2:

$$\max_{x} f(x) = 0.5 \ln(x) - 0.02x^{2} + \frac{1}{(1+x)^{\frac{5}{3}}}$$

can't solve analytically ⇒ need to use numerical methods

Numerical optimization

- continuous differentiable objective function: derivative-based methods
- arbitrary objective function: derivative-free methods

Numerical optimization in MATLAB

Numerical optimization in MATLAB

Three functions in MATLAB's Optimization Toolbox:

- fminunc: unconstrained optimization, derivative-based
- fmincon: constrained optimization, derivative-based
- fminsearch: unconstrained optimization, derivative-free

fminunc

- finds parameters that minimize given function
- Syntax:

x=fminunc(objfunc,x0)

- x0: starting guess
- objfun: objective function specified in a different script
- x: solution

<u>fminunc</u>

Example 1:

$$\max_{x} f(x) = 0.5 \ln x - 0.02x^{2} + \frac{1}{(1+x)^{\frac{5}{3}}}$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.2 - \frac{1}{0.2} = 0.00$$

$$0.3 - \frac{1}{0.2} = 0.00$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.1 - \frac{1}{0.2} = 0.00$$

$$0.2 - \frac{1}{0.2} = 0.00$$

$$0.3 - \frac{1}{0.2} = 0.00$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.1 - \frac{1}{0.2} = 0.00$$

$$0.2 - \frac{1}{0.2} = 0.00$$

$$0.3 - \frac{1}{0.2} = 0.00$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.3 - \frac{1}{0.2} = 0.00$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.3 - \frac{1}{0.2} = 0.00$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.3 - \frac{1}{0.2} = 0.00$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.3 - \frac{1}{0.2} = 0.00$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.3 - \frac{1}{0.2} = 0.00$$

$$0.4 - \frac{1}{0.2} = 0.00$$

$$0.3 - \frac{1}$$

fminunc

Example 1:

$$\max_{x} f(x) = 0.5 \ln x - 0.02x^{2} + \frac{1}{(1+x)^{\frac{5}{3}}}$$

Step 1: Main code

```
^^Ix0=1;
^^Ix=fminunc(@objfun,x0)
^^I
```

Step 2: function

```
^^Ifunction y=objfun(x)
^^Iy=0.5*log(x)-0.02 x^2+(1+x)^(-5/3);
^^Iy=-y;
^^Iend
^^I
```

fminunc

fminunc uses the BFGS Quasi-Newton method:

$$x_{k+1} = x_k + \alpha_k p_k$$

1 Compute direction p_k

$$p_{k} = -B_{k}^{-1} \nabla f(x_{k})$$

$$B_{k+1} = B_{k} - \frac{B_{k} s_{k} s_{k}' B_{k}}{s_{k}' B_{k} s_{k}} + \frac{y_{k} y_{k}'}{y_{k}' s_{k}}$$

where $s_k \equiv x_{k+1} - x_k$ and $y_k \equiv f_{k+1} - f_k$

2 Compute stepsize α_k . Use linesearch to approximately solve

$$\min_{\alpha_k} f(x_k + \alpha_k p_k)$$

BFGS Quasi-Newton method

fminunc

Introduce options:

```
^^Ioptions=optimset('Opt1',Opt1Val,'Opt2',Opt2Val,...)
^^I
```

Important algorithm options:

- Display: optimset('Display','off')
- Tolerance level: optimset('TolFun',1e-6) optimset('TolX',1e-6)
- Maximum number of iterations or evaluations: optimset('MaxIter',400) optimset('MaxFunEvals',100)

fminunc

Caution:

- Objective function must be continuous
- Local minima and flat regions are big issues

fmincon

- Finds parameters that minimize a given function, subject to a constraint
- Same algorithm as fminunc
- Syntax:

```
^^I^^Ix=fmincon(objfun,x0,A,b,Aeq,beq,lb,ub,nlcon,optic
^^I^^I
```

- x0: starting guess
- objfun: objective function specified in a different script
- A,b: linear inequality constraint: $Ax \le b$
- Aeq, beq: linear equality constraint: Ax = b
- 1b, ub: lower and upper bounds: $x \in [lb, ub]$
- nlcon: nonlinear constraint
- x: solution

- Finds parameters that minimize a given function
- Derivative-free algorithm: ...

- Finds parameters that minimize a given function
- Derivative-free algorithm: ...

Nelder-Mead

- Finds parameters that minimize a given function
- Derivative-free algorithm: ...

Nelder-Mead

Syntax:

```
^^I^^Ix=fminsearch(objfun,x0,options)
^^I^^I
```

- x0: starting guess
- objfun: objective function specified in a different script
- x: solution

1 select two points: x_1 and x_2

- select two points: x_1 and x_2
- ② order so that $\hat{x} = x_1$ and $\bar{x} = x_2$ if $f(\hat{x}) \ge f(\bar{x})$; and $\hat{x} = x_2$ and $\bar{x} = x_1$ otherwise

- **①** select two points: x_1 and x_2
- ② order so that $\hat{x} = x_1$ and $\bar{x} = x_2$ if $f(\hat{x}) \ge f(\bar{x})$; and $\hat{x} = x_2$ and $\bar{x} = x_1$ otherwise
- **3** reflection: $x^R = \hat{x} + (\hat{x} \bar{x})$

- **①** select two points: x_1 and x_2
- ② order so that $\hat{x}=x_1$ and $\bar{x}=x_2$ if $f(\hat{x})\geq f(\bar{x})$; and $\hat{x}=x_2$ and $\bar{x}=x_1$ otherwise
- **4** if $f(x^R) > f(\hat{x})$ and $f(x^R) > f(\bar{x})$, **expansion**: $x^E = \hat{x} + \alpha(x^R \hat{x}), \ \alpha > 1$ if $f(x^R) \le f(\hat{x})$ and $f(x^R) > f(\bar{x})$, update $\bar{x} = x^R$ and go to step 2 if $f(x^R) \le f(\hat{x})$ and $f(x^R) \le f(\bar{x})$, **contraction**: $x^C = \hat{x} + \beta(\bar{x} \hat{x}), \ \beta < \frac{1}{2}$

- **①** select two points: x_1 and x_2
- ② order so that $\hat{x}=x_1$ and $\bar{x}=x_2$ if $f(\hat{x})\geq f(\bar{x})$; and $\hat{x}=x_2$ and $\bar{x}=x_1$ otherwise
- if $f(x^R) > f(\hat{x})$ and $f(x^R) > f(\bar{x})$, expansion: $x^E = \hat{x} + \alpha(x^R \hat{x}), \ \alpha > 1$ if $f(x^R) \le f(\hat{x})$ and $f(x^R) > f(\bar{x})$, update $\bar{x} = x^R$ and go to step 2 if $f(x^R) \le f(\hat{x})$ and $f(x^R) \le f(\bar{x})$, contraction: $x^C = \hat{x} + \beta(\bar{x} \hat{x}), \ \beta < \frac{1}{2}$
- if $f(x^E) > f(x^R)$, update $\bar{x} = x^E$ and go to step 2 if $f(x^E) < f(x^R)$, update $\bar{x} = x^R$ and go to step 2

- select two points: x_1 and x_2
- ② order so that $\hat{x} = x_1$ and $\bar{x} = x_2$ if $f(\hat{x}) \ge f(\bar{x})$; and $\hat{x} = x_2$ and $\bar{x} = x_1$ otherwise
- if $f(x^R) > f(\hat{x})$ and $f(x^R) > f(\bar{x})$, expansion: $x^E = \hat{x} + \alpha(x^R \hat{x}), \ \alpha > 1$ if $f(x^R) \le f(\hat{x})$ and $f(x^R) > f(\bar{x})$, update $\bar{x} = x^R$ and go to step 2 if $f(x^R) \le f(\hat{x})$ and $f(x^R) \le f(\bar{x})$, contraction: $x^C = \hat{x} + \beta(\bar{x} \hat{x}), \ \beta < \frac{1}{2}$
- if $f(x^E) > f(x^R)$, update $\bar{x} = x^E$ and go to step 2 if $f(x^E) < f(x^R)$, update $\bar{x} = x^R$ and go to step 2
- if $f(x^C) > f(\bar{x})$, update $\bar{x} = x^C$ and go to step 2 if $f(x^C) < f(\bar{x})$, **shrink**: replace $\bar{x} = \hat{x} + \gamma(\bar{x} \hat{x})$ and go to step 2, $\gamma < 1$

- **1** select two points: x_1 and x_2
- ② order so that $\hat{x} = x_1$ and $\bar{x} = x_2$ if $f(\hat{x}) \geq f(\bar{x})$; and $\hat{x} = x_2$ and $\bar{x} = x_1$ otherwise
- **3** reflection: $x^R = \hat{x} + (\hat{x} \bar{x})$
- if $f(x^R) > f(\hat{x})$ and $f(x^R) > f(\bar{x})$, expansion: $x^E = \hat{x} + \alpha(x^R - \hat{x}), \ \alpha > 1$ if $f(x^R) < f(\hat{x})$ and $f(x^R) > f(\bar{x})$, update $\bar{x} = x^R$ and go to step if $f(x^R) \le f(\hat{x})$ and $f(x^R) \le f(\bar{x})$, contraction:

if
$$f(x^*) \le f(x)$$
 and $f(x^*) \le f(x)$, contraction $x^C = \hat{x} + \beta(\bar{x} - \hat{x}), \ \beta < \frac{1}{2}$

- **5** if $f(x^E) > f(x^R)$, update $\bar{x} = x^E$ and go to step 2 if $f(x^E) < f(x^R)$, update $\bar{x} = x^R$ and go to step 2
- of if $f(x^C) > f(\bar{x})$, update $\bar{x} = x^C$ and go to step 2 if $f(x^C) < f(\bar{x})$, shrink: replace $\bar{x} = \hat{x} + \gamma(\bar{x} - \hat{x})$ and go to step 2, $\gamma < 1$

Iterate until convergence: $\hat{x} \approx \bar{x}$ and/or $f(\hat{x}) \approx f(\bar{x})$

Examples

Example 1:

$$\max_{x} f(x) = 0.5 \ln x - 0.02x^{2} + \frac{1}{(1+x)^{\frac{5}{3}}}$$

$$0.4 - \frac{1}{0.2}$$

$$0.2 - \frac{1}{0.4}$$

$$0.3 - \frac{1}{0.2}$$

$$0.4 - \frac{1}{0.2}$$

$$0.4 - \frac{1}{0.2}$$

$$0.4 - \frac{1}{0.2}$$

$$0.1 - \frac{1}{0.2}$$

$$0.2 - \frac{1}{0.4}$$

$$0.3 - \frac{1}{0.4}$$

$$0.4 - \frac{1}{0.2}$$

$$0.4 - \frac{1}{0.2}$$

$$0.4 - \frac{1}{0.2}$$

$$0.1 - \frac{1}{0.2}$$

$$0.2 - \frac{1}{0.4}$$

$$0.3 - \frac{1}{0.4}$$

$$0.4 - \frac{1}{0.2}$$

$$0.5 - \frac{1}{0.2}$$

$$0.7 - \frac{1}{0.2}$$

$$0.8 - \frac{1}{0.2}$$

$$0.8 - \frac{1}{0.2}$$

$$0.1 - \frac{1}{0.2}$$

$$0.2 - \frac{1}{0.2}$$

$$0.3 - \frac{1}{0.2}$$

$$0.4 - \frac{1}{0.2}$$

$$0.4 - \frac{1}{0.2}$$

$$0.5 - \frac{1}{0.2}$$

$$0.7 - \frac{1}{0.2}$$

$$0.8 - \frac{1}{0.2}$$

$$0.1 - \frac{1}{0.2}$$

$$0.2 - \frac{1}{0.2}$$

$$0.3 - \frac{1}{0.2}$$

$$0.4 - \frac{1}{0.2}$$

$$0.4 - \frac{1}{0.2}$$

$$0.5 - \frac{1}{0.2}$$

$$0.7 -$$

Example 2: Discontinuous objective function:

$$\max_{x} f(x) = \begin{cases} 0.5 \ln x - 0.02x^{2} + \frac{1}{(1+x)^{\frac{5}{3}}} & 0 < x \le 4\\ 0.5 \ln x - 0.02x^{2} + \frac{1}{(1+x)^{\frac{5}{3}}} & 4 < x \end{cases}$$

Example 3: Objective function with flat regions:

$$\max_{x} f(x) = \begin{cases} 0.5 \ln x - 0.02x^{2} + \frac{1}{(1+x)^{\frac{5}{3}}} & 0 < x \le 4\\ 0.441546 & 4 < x \end{cases}$$

Example 4: Objective function with local maxima:

$$\max_{x} f(x) = \sin(3x) + x - 0.25x^{2}$$

Example 5: Objective function with many discontinuities:

$$\max_{x} f(x) = \lfloor x \rfloor + 0.2x - 0.04x^2$$

Conclusion

fminsearch vs. fminunc

- Rule of thumb: use fminunc for continuous differentiable functions, fminsearch otherwise
- No option guarantees that you find a (global) optimum
- For complicated cases
 - understand the problem well
 - try different algorithms
 - try different starting points