PA_follower(row['source_node'],row['destination_node']),axis=1) df_final_train['PA_followee'] = df_final_train.apply(lambda row: PA_followee(row['source_node'], row['destination_node']), axis=1) df_final_test['PA_followee'] = df_final_test.apply(lambda row: PA_followee(row['source_node'], row['destination_node']), axis=1) Creating another New feature SVD DOT In [8]: def svd_dot_fun(a,b): temp=0 for i, j in zip(a, b): temp=temp+i*j return temp #Creating another Feature svd_dot U=['svd_u_s_1', 'svd_u_s_2', 'svd_u_s_3', 'svd_u_s_4', 'svd_u_s_5', 'svd_u_s_6'] V=['svd_u_d_1', 'svd_u_d_2', 'svd_u_d_3', 'svd_u_d_4', 'svd_u_d_5', 'svd_u_d_6'] In [10]: U1=['svd_v_s_1', 'svd_v_s_2', 'svd_v_s_3', 'svd_v_s_4', 'svd_v_s_5', 'svd_v_s_6'] V1=['svd_v_d_1', 'svd_v_d_2', 'svd_v_d_3', 'svd_v_d_4', 'svd_v_d_5', 'svd_v_d_6'] In [11]: df_final_test['svd_dot_u']=df_final_test.apply(lambda row: svd_dot_fun(row[U],row[V]),axis=1) df_final_test['svd_dot_v']=df_final_test.apply(lambda row: svd_dot_fun(row[U1],row[V1]),axis=1) In [12]: df_final_train['svd_dot_u']=df_final_train.apply(lambda row: svd_dot_fun(row[U],row[V]),axis=1) df_final_train['svd_dot_v']=df_final_train.apply(lambda row: svd_dot_fun(row[U1],row[V1]),axis=1) In [13]: #writing the df_final_train, df_final_test into csv files with new features svd_dot and Preferential Attachment df_final_train.to_csv('df_final_train.csv') df_final_test.to_csv('df_final_test.csv') In [14]: #by suing these two files, we can avoid running above code df_final_train=pd.read_csv('df_final_train.csv',index_col=None) df_final_test=pd.read_csv('df_final_train.csv') Creating a train, test, CV split X_train, X_cv=train_test_split(df_final_train, test_size=0.20) y_train=X_train.indicator_link y_cv=X_cv.indicator_link y_test=df_final_test.indicator_link X_test=df_final_test In [16]: X_train.drop(['source_node', 'destination_node', 'indicator_link', 'Unnamed: 0'], inplace=True, axis=1) X_cv.drop(['source_node', 'destination_node', 'indicator_link', 'Unnamed: 0'], inplace=True, axis=1) X_test.drop(['source_node', 'destination_node', 'indicator_link', 'Unnamed: 0'], inplace=True, axis=1) In [17]: from sklearn.metrics import confusion_matrix def plot_confusion_matrix(test_y, predict_y): C = confusion_matrix(test_y, predict_y) A = (((C.T)/(C.sum(axis=1))).T)B = (C/C.sum(axis=0))plt.figure(figsize=(20,4)) labels = [0,1]# representing A in heatmap format cmap=sns.light_palette("blue") plt.subplot(1, 3, 1) sns.heatmap(C, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels) plt.xlabel('Predicted Class') plt.ylabel('Original Class') plt.title("Confusion matrix")

[17:32:27] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:32:29] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:32:30] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:32:31] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:32:33] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:32:34] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:32:35] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:32:42] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:32:47] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:32:52] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:32:58] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:33:03] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:33:09] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:33:22] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:33:33] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:33:43] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:33:54] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:34:06] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:34:17] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:35:21] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:36:11] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:37:01] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:37:52] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:38:43] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:39:34] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:41:31] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:43:03] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:44:35] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:46:07] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:47:39] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:49:11] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:52:32] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:55:04] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[17:57:37] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[18:00:10] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[18:02:41] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[18:05:20] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[18:05:33] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[18:05:44] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[18:05:55] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[18:06:06] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

[18:06:16] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

- 0.8

- 0.6

0.4

- 0.2

[18:06:30] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objecti

Recall matrix

Predicted Class

0.005

0.992

0.995

0.008

0

- 0.8

- 0.6

- 0.4

- 0.2

In [16]: In [17]:

plt.subplot(1, 3, 2)

plt.subplot(1, 3, 3)

alpha=[10,50,100,500,1000,2000]

x_cfl.fit(X_train,y_train)

sig_clf.fit(X_train, y_train)

for i in range(len(cv_log_error_array)):

best_alpha = np.argmin(cv_log_error_array)

ax.plot(alpha, cv_log_error_array,c='g')

log_loss for c = 10 is 0.09293840050658668
log_loss for c = 50 is 0.06404237204278532
log_loss for c = 100 is 0.05634093148653973
log_loss for c = 500 is 0.06089039353049096
log_loss for c = 1000 is 0.062074837686406294
log_loss for c = 2000 is 0.06257750435201091

(10, 0.093)

(50, 0.064)

(200, 0.056)

500

250

x_cfl.fit(X_train,y_train)

sig_clf.fit(X_train, y_train)

predict_y = sig_clf.predict_proba(X_train)

predict_y = sig_clf.predict_proba(X_cv)

predict_y = sig_clf.predict_proba(X_test)

CV_sc=f1_score(y_cv, sig_clf.predict(X_cv))
print('The Best f1 score for CV is ', CV_sc)

Confusion matrix

Predicted Class

The Best f1 score for train is 0.9969531991409021 The Best f1 score for test is 0.9936145084772905 The Best f1 score for CV is 0.9801311144730207

49726.000

412.000

clf.fit(X_train, y_train)

Feature importance

importances = x_cfl.feature_importances_
indices = (np.argsort(importances))[-25:]

features = X_train.columns

plt.figure(figsize=(10,12))
plt.title('Feature Importances')

plt.show()

cosine_followers follows_back weight f1

jaccard_followees num_followers_s shortest_path weight_in same_comp

num followees s

weight_out authorities_d

page_rank_d weight_f3

num_followees_d

hubs_s

katz_s katz d

0.00

4.f1 Score is around 0.99

class 0, where no link is present between them.

Summary

In []:

In []:

In []

In []:

In []:

In []:

In []:

0.05

0.10

1.In this case study we add two features Preferential Attachment and svd dot

5. We made a train test split randomly as we don't have any timestamp data.

1. Confusion matrix and f1 score also shows a great results

0.15

2. Coming to the feature importance cosine follower, follows back are the top 2 important features.

0.20

Relative Importance

2.Build a XGBoost model with best hyperparameter of alpha 100, and got a test loss of 0.02 which is the best value for this model.

Steps followed to slove the FaceBook predicition caseStudy

1.We defined the machine learning problem, i.e is to predict the whether a relation might exists in the future between two persons or not

4. Now we will do some feature engineering, to get new features such as Jaccard& cosine similarities, PageRank, Shortest path, Adar index etc.

0.30

0.35

0.40

2. After seeing the dataset we analysied that we have only, possitive class data i.e we have only graph data where a link is present. From that we can say that we have only possitive class, so we added some random data as

6. Now based on the above data we built various models, such as linear Regression, Randomforest, XGBoost etc. and calculated various metric related to that models and found that the above XGBoost model will perform well.

3. Now to handle the graph data we will use a library called networkx which will handle the graph data, this module will play an important role in finding the various metrics about the directed graph.

PA_followee svd_v_d_3 svd_v_d_2 PA_followers svd_u_s_6 svd_u_s_3 svd_v_d_5 svd_u_s_1

plt.xlabel('Relative Importance')

0

Original Class

In [20]:

In [28]:

0.090

0.085

0.080

0.075

0.065

0.060

0.055

In [19]:

Cross Validation Error for each alpha

1000 1250 1500 1750

For values of best alpha = 100 The train log loss is: 0.017946669323779935

For values of best alpha = 100 The test log loss is: 0.02562575211729765

226.000

49638.000

clf=XGBClassifier(n_estimators=alpha[best_alpha], nthread=-1)

Out[20]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,

gamma=0, gpu_id=-1, importance_type=None,

For values of best alpha = 100 The cross validation log loss is: 0.05634093148653973

40000

30000

20000

- 10000

colsample_bynode=1, colsample_bytree=1, enable_categorical=False,

max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,

nthread=-1, num_parallel_tree=1, predictor='auto', random_state=0,

Feature Importances

interaction_constraints='', learning_rate=0.300000012,

monotone_constraints='()', n_estimators=100, n_jobs=12,

plt.barh(range(len(indices)), importances[indices], color='r', align='center')

plt.yticks(range(len(indices)), [features[i] for i in indices])

reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1, tree_method='exact', validate_parameters=1, verbosity=None)

0

Final Model with best HyperParameters

x_cfl=XGBClassifier(n_estimators=alpha[best_alpha],nthread=-1)

sig_clf = CalibratedClassifierCV(x_cfl, method="sigmoid")

plot_confusion_matrix(y_test, sig_clf.predict(X_test))
train_sc = f1_score(y_train, sig_clf.predict(X_train))
print('The Best f1 score for train is ', train_sc)
test_sc = f1_score(y_test, sig_clf.predict(X_test))
print('The Best f1 score for test is ', test_sc)

plt.show()

cv_log_error_array=[]

fig, ax = plt.subplots()

plt.xlabel("Alpha i's")
plt.ylabel("Error measure")

plt.grid()

plt.show()

for i **in** alpha:

plt.xlabel('Predicted Class')
plt.ylabel('Original Class')
plt.title("Precision matrix")

plt.xlabel('Predicted Class')
plt.ylabel('Original Class')
plt.title("Recall matrix")

representing B in heatmap format

Building a model using with XGBoost

x_cfl=XGBClassifier(n_estimators=i, nthread=-1)

for i, txt in enumerate(np.round(cv_log_error_array,3)):

plt.title("Cross Validation Error for each alpha")

predict_y = sig_clf.predict_proba(X_cv)

sig_clf = CalibratedClassifierCV(x_cfl, method="sigmoid")

print ('log_loss for c = ',alpha[i],'is',cv_log_error_array[i])

ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],cv_log_error_array[i]))

sns.heatmap(B, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)

sns.heatmap(A, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=labels)

cv_log_error_array.append(log_loss(y_cv, predict_y, labels=x_cfl.classes_, eps=1e-15))

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

(2d00, 0.063)

print ('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss(y_train, predict_y))

print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(y_test, predict_y))

print('For values of best alpha = ', alpha[best_alpha], "The cross validation log loss is:",log_loss(y_cv, predict_y))

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

0.992

0.008

ve 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

Precision matrix

Predicted Class

0.005

0.995

#Importing Libraries

import warnings

import matplotlib

import xgboost as xgb

import networkx as nx

from tqdm import tqdm

#Reading File train

Number of nodes: 1780722 Number of edges: 7550015 Average in degree: 4.2399 Average out degree: 4.2399

def PA_follower(a,b):

return 0

return 0

def PA_followee(a,b):

try:

except:

from pandas import read_hdf

import warnings

import pdb
import pickle

In [2]:

In [3]:

In [6]:

Name:

Type: DiGraph

try:

import math
import pickle
import os

import csv

please do go through this python notebook:

from matplotlib import rcParams#Size of plots

to install xgboost: pip3 install xgboost

from pandas import HDFStore, DataFrame

from sklearn.metrics import log_loss

from xgboost import XGBClassifier

from sklearn.metrics import f1_score

print(nx.info(train_graph))

from scipy.sparse.linalg import svds, eigs

from sklearn.calibration import CalibratedClassifierCV

from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

print("please run the FB_EDA.ipynb or download the files from drive")

Creating a new feature Preferential Attachment

train_graph=nx.read_edgelist('train_pos_after_eda.csv',delimiter=',',create_using=nx.DiGraph(),nodetype=int)

if len(set(train_graph.successors(a))) == 0 | len(set(train_graph.successors(b))) == 0:

if len(set(train_graph.predecessors(a))) == 0 | len(set(train_graph.predecessors(b))) == 0:

PA_follower(row['source_node'],row['destination_node']),axis=1)

return len(set(train_graph.predecessors(a)))*len(set(train_graph.predecessors(b)))

return len(set(train_graph.successors(a)))*len(set(train_graph.successors(b)))

#print("Something went wrong in PA_follower please check it once")

#Again reading the data frame to get source and destination nodes

df_final_train['PA_followers'] = df_final_train.apply(lambda row:

df_final_test['PA_followers'] = df_final_test.apply(lambda row:

df_final_train = read_hdf('storage_sample_stage4.h5', 'train_df', mode='r')
df_final_test = read_hdf('storage_sample_stage4.h5', 'test_df', mode='r')

if os.path.isfile('train_pos_after_eda.csv'):

import pandas as pd#pandas to create small dataframes

if numpy is not installed already : pip3 install numpy
import numpy as np#Do aritmetic operations on arrays

from sklearn.cluster import MiniBatchKMeans, KMeans#Clustering

warnings.filterwarnings("ignore")

import datetime #Convert to unix time
import time #Convert to unix time

matplotlib: used to plot graphs

import matplotlib.pylab as plt
import seaborn as sns#Plots