

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0 1 2 3 4 5 6 7 8 9

COMPUTER SCIENCE

9618/01

Paper 1 Theory Fundamentals

For examination from 2021

SPECIMEN PAPER

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

This document has 14 pages. Blank pages are indicated.

© UCLES 2018 [Turn over

1

(a)	State one difference between a kibibyte and a kilobyte .							
		[1]						
(b)	Give the number of bytes in a mebibyte .							
		[1]						
(c)	(i) Complete the following binary addition. Show your working.							
	10011010							
	<u>+11110111</u>							
		[2]						
	(ii) Describe the error that occurred when you added the binary numbers in part (c)(i).							
		[2]						
(d)	Complete the binary subtraction. Show your working.							
	01100111							
	<u>-00110010</u>							

[2]

BLANK PAGE

2

Yvette runs a company that books walking holidays for groups of people. She has a website that

(a)	The website has a URL and an IPv6 address.	
	Describe, using an example, the format of an IPv6 address.	
		[1]
(b)	An IP address can be static or dynamic. Describe static and dynamic IP addresses.	
	Static	
	Dynamic	
		[4]
(c)	Yvette's company has a LAN (Local Area Network) that has hybrid topology.	
	(i) Describe the characteristics of a LAN.	

	(ii)	The LAN has a range of different topologies. One subnetwork connects four computers and one server set up as a star topology.					
		Describe how packets are transmitted between two of the computers in this subnetwork.					
		[3]					
(d)	The	LAN has both wired and wireless connections.					
	(i)	Ethernet cables connect the computers to the server.					
		Identify three other hardware components that might be used to set up the LAN.					
		1					
		2					
		3					
		[3]					
	(ii)	Describe how Carrier Sense Multiple Access/Collision Detection (CSMA/CD) manages collisions during data transmission.					
		[3]					

				6			
Me	ehro	dad	has a holiday company datab	pase that includes:			
•			about holidays, such as the loabout the customers and the				
(a)) N	Леhі	rdad has normalised the data	abase, which has three ta	ıbles.		
	(i)	Draw an entity-relationship (E	E-R) diagram for the norn	nalised table	es.	
	(i		Complete the table to identify you identified in part (a)(i) . If				[3 le:
			Table name	Primary key		Foreign key	
							_
							[3
	(ii	i)	Explain why the holiday datab	pase is in Third Normal Fo	orm (3NF).		

(b) The holiday company has several members of staff. The database has **two** additional tables to store data about the staff.

STAFF(<u>StaffID</u>, FirstName, SecondName, DateOfBirth, Role, Salary)
SCHEDULE(<u>ScheduleID</u>, <u>StaffID</u>, WorkDate, Morning, Afternoon)

The following table shows some sample data from the table SCHEDULE.

ScheduleID	duleID StaffID WorkDate		Morning	Afternoon
210520-1	ВС	21/05/2020	TRUE	TRUE
210520-2	JB	21/05/2020	TRUE	FALSE
220520-1	ВС	22/05/2020	FALSE	TRUE
220520-2 LK		22/05/2020	TRUE	FALSE

(i)	Write an SQL script to display the first name and second name of all staff members working on 22/05/2020.
	[4]
(ii)	Write an SQL script to count the number of people working on the morning of 26/05/2020.
	[3]

A cake factory uses machines to make cakes.

(a)	Complete the following descriptions of types of system. Write the correct missing term in the spaces.
	The factory uses a system to record data such as the number
	of cakes being produced each hour.
	When the data collected from sensors are analysed and used as
	it is a system. One example
	of this system, used in the factory, is to maintain a constant temperature in the ovens. It uses
	a to measure the values. [4]

(b) Cake mixture is mixed in a large pot. A conveyor belt moves the cake tins beneath the pot. The conveyor belt stops and a set quantity of the cake mixture fills the cake tin. The conveyor belt then moves and another cake tin is positioned beneath the pot.

tins.
[5]

(c)		e cake factory has servers that store its confidential recipes and control the fact chines.	ory
	(i)	Describe the implications of a hacker gaining access to the cake factory's servers.	
	(ii)	Explain how the company could protect its data against hackers.	[4]

(d)	The machines have a counter to record the number of cake tins filled. Each time a cake tin
	is filled, the counter is increased by 1. The value is stored in an 8-bit register and the current
	value is shown.

0	0	0	0	1	0	0	1

(i) Show the value of the binary number after another five cake tins have been filled.

[1]

(ii) The following table shows some assembly language instructions for a processor which has one general purpose register, the Accumulator (ACC).

Instruction		Explanation		
Opcode	Operand			
AND	#n	Bitwise AND operation of the contents of ACC with the operand		
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>		
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand		
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>		
OR	#n	Bitwise OR operation of the contents of ACC with the operand		
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>		
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right hand end		
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left hand end		

At the end of each day, th	ne register is reset to 0.
----------------------------	----------------------------

Write the assembly language statement to reset the register to 0.

	(iii)	A two-place logical shift to the left is performed on the binary number shown in part (d) .
		Show the result of this logical shift.
		[1]
	(iv)	State the mathematical result of a one-place logical shift to the right on a binary number.
		[1]
(e)	The	factory servers run software that makes use of Artificial Intelligence (AI).
	Ехр	lain how the use of AI can help improve the safety and efficiency of the factory.
		[3]

5 (a) Draw a logic circuit diagram for the logic expression:

(b) Complete the truth table for the logic expression:

X = (A XOR B) OR NOT (A OR B OR C)

Α	В	С	Working space	Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		
				[

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.