

Also, $|f(z)| \ge 1$ implies $|g(z)| \le 1$. Hence g is entire and bounded. By Liouville's theorem g is constant.

Hence f is constant.

The LNM Institute of Information Technology, Jaipur Department of Mathematics Mathematics-III MTH213 ${\rm Mid\ Term}$

Duration:	90 mins.	September 26, 2019	Max.Marks: 30
Name:		Roll No.:	
	Prove that for any complex	number $z \neq 1$, we have	[3]
		$1 + z + z^{2} + \dots + z^{n} = \frac{1 - z^{n+1}}{1 - z},$	
	and then use it to derive Lagrange's trigonometric identity:		
	$1 + \cos \theta + \cos \theta$	$\cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin[(2n+1)\theta/2]}{2\sin(\theta/2)},$	$0 < \theta < 2\pi.$
	Solution Consider $S = 1$. Then $zS = z + z^2 + \dots + z^n$ Then $S - zS = 1 - z^{n+1}$. Hence $1 + z + z^2 + \dots + z^n$ $(e^{i\theta})^k = e^{ik\theta}$, we get $1 + e^{i\theta} + e^{i2\theta} + \dots + e^{in\theta} = \frac{e^{i\frac{n+1}{2}\theta} \left(e^{-i(\frac{n+1}{2})\theta} - e^{i(\frac{n+1}{2})\theta} - e^{i(\frac{n+1}{2})\theta}\right)}{e^{i\frac{\theta}{2}} \left(e^{-i\frac{\theta}{2}\theta} - e^{i\frac{\theta}{2}}\right)} = e^{i\frac{n\theta}{2}} \frac{\sin(\frac{(n+1)\theta}{2})}{\sin(\frac{\theta}{2})}.$	$=\frac{1-z^{n+1}}{1-z},\ z\neq 1.\ \text{Substitute}\ z=e^{i\theta}\ \text{in}$ $\frac{1-e^{i(n+1)\theta}}{1-e^{i\theta}},z\neq 1.$	the above equation and using
	Comparing the real parts, we get $1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{\cos(\frac{n\theta}{2})\sin(\frac{(n+1)\theta}{2})}{\sin(\frac{\theta}{2})}.$ Hence $1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin[(2n+1)\theta/2]}{2\sin(\theta/2)}, \qquad 0 < \theta < 2\pi$) Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be an analytic function such that $ f(z) \ge 1$ for all $z \in \mathbb{C}$. Show that f is constant. [3]		
	Solution Consider $g(z) =$ Since $ f(z) \ge 1$, $f(z) \ne 0$ for Since f is entire and $f(z)$ is		

2. (a) Show that the function $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$, $(z \neq 0)$, f(0) = 0 satisfy CR equations at (0,0) but are not differentiable there. [3]

Solution: Here
$$u(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 and $v(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$

CR-equations are $u_x = v_y$ and $u_y = -v_x$ at (0,0).

$$u_x(0,0) = v_y(0,0) = 1$$
 and $u_y(0,0) = -v_x(0,0) = -1$.

Hence CR-equations are satisfied at (0,0).

To check the differentiability, consider the limit

$$\lim_{z \to \infty} \frac{f(0 + \Delta z) - f(0)}{\Delta z}$$

$$\Delta z \to 0$$
 Δz

$$\lim_{\Delta z \to 0} \frac{\int (s + \Delta x) \int (s)}{\Delta z}$$
Along y-axis, $\Delta x = 0$, $\Delta y \to 0$, we have
$$\lim_{\Delta y \to 0} \frac{-\Delta y^3 (1 - i)}{\Delta y^3} = -1 + i.$$
Along $\Delta x = \delta y$, $\Delta x \to 0$, we have

$$\lim_{\Delta x \to 0} \frac{\Delta x^3 (1+i)}{\Delta x^3} = 1+i$$

 $\lim_{\Delta x \to 0} \frac{\Delta x^3 (1+i)}{\Delta x^3} = 1+i.$ So along different paths we are getting different limits. So f'(0) does not exist.

(b) Suppose f is an analytic function on a domain D. Show that if $|f|^2$ is harmonic, then f is constant on

$$\Rightarrow 2u(u_{xx} + u_{yy}) + 2(u_x^2 + u_y^2) + 2v(v_{xx} + v_{yy}) + 2(v_x^2 + v_y^2) = 0$$

Solution $|f|^2 = u^2 + v^2$. Suppose |f| is harmonic, then $|f|_{xx} + |f|_{yy} = 0$. $\Rightarrow 2u(u_{xx} + u_{yy}) + 2(u_x^2 + u_y^2) + 2v(v_{xx} + v_{yy}) + 2(v_x^2 + v_y^2) = 0$ Since f is analytic, u and v are harmonic. Hence terms in first and third bracket are equal to zero. Hence

$$\Rightarrow u_x^2 + u_y^2 + v_x^2 + v_y^2 = 0$$

$$\Rightarrow u_x = u_y = v_x = v_y = 0$$

Hence $f(z) = u_x + iv_x = 0$ on a domain D. Hence f(z) is constant.

3. (a) Show that $|\cos z|^2 = \cos^2 x + \sinh^2 y$. Conclude that the cosine function is unbounded in \mathbb{C} . [3]

(b) Let
$$f(z) = \frac{1}{z^2}$$
. Show that $\int_C f(z)dz = 0$ where C is any closed contour not passing through 0. [3]

Solution Since the antiderivative of fz) = $\frac{1}{z^2}$ is $F(z) = -\frac{1}{z}$ in the domain, |z| > 0. Since the curve C lies entirely in the domain |z| > 0, so $\int_C f(z) dz = 0$.

4. (a) Let C_R denote the upper half circle |z| = R (R > 2), taken in the counterclockwise direction. Find an upperbound of

$$\left| \int_{C_R} \frac{2z^2 - 1}{z^4 + 5z^2 + 4} dz \right|.$$

Hence show that $\lim_{R\to\infty}\int_{C_R}\frac{2z^2-1}{z^4+5z^2+4}dz=0.$ [3]

Solution On C_R , $|f(z)| \le \frac{2R^2 + 1}{(R^2 - 1)(R^2 - 4)}$. In the ML-inequality, we take $M = \frac{2R^2 + 1}{(R^2 - 1)(R^2 - 4)}$. Here $L = \pi R$. hence by ML inequality, we have $\left| \int_{C_R} \frac{2z^2 - 1}{z^4 + 5z^2 + 4} dz \right| \le \frac{\pi R(2R^2 + 1)}{(R^2 - 1)(R^2 - 4)}$. Since the R.H.S tends to zero as R tends to ∞ , we have $\lim_{R\to\infty}\int_{C_R}\frac{2z^2-1}{z^4+5z^2+4}dz=0$.

(b) Find all the possible Laurent series expansion of $f(z) = \frac{2z}{z^2 - 9}$ about z = 3 and using that find the residue of f(z) at z=3. [3]

Solution
$$f(z) = \frac{1}{z-3} + \frac{1}{z+3}$$

 $\begin{array}{ll} \textbf{Solution} & f(z)=\frac{1}{z-3}+\frac{1}{z+3}\\ \text{We will consider the domains } D_1:0<|z-3|<6 \text{ and } D_2:|z-3|>6. \end{array}$ On D_1 ,

On
$$D_1$$
,

$$f(z) = \frac{1}{z-3} + \frac{1}{z+3} = \frac{1}{z-3} + \frac{1}{6} \frac{1}{\frac{z-3}{6}+1} = \frac{1}{z-3} + \frac{1}{6} \sum_{n=0}^{\infty} (-1)^n \left(\frac{z-3}{6}\right)^n.$$

$$Res_{z=3}f(z)=1$$

On
$$D_2$$

$$f(z) = \frac{1}{z-3} + \frac{1}{z+3} = \frac{1}{z-3} + \frac{1}{z-3} + \frac{1}{z-3} + \frac{1}{z-3} + \frac{1}{z-3} + \frac{1}{z-3} \sum_{n=0}^{\infty} (-1)^n \left(\frac{6}{z-3}\right)^n.$$

5. (a) Evaluate $\int z^2 e^{\frac{5}{z}}$ where C is any closed contour in counterclockwise direction with z=0 inside it. [2]

Solution The function $f(z) = z^2 e^{\frac{5}{z}}$ has only one singularity and the Laurent series expansion of f(z)

$$f(z) = z^{2} \left(1 + \frac{5}{z} + \frac{25}{z^{2} \cdot 2!} + \frac{125}{z^{3} \cdot 3!} + \cdots\right) = 1 + 5z + \frac{25}{2!} + \frac{125}{z \cdot 3!} + \cdots$$
So residue of $f(z)$ at 0 is $\frac{125}{6}$.

Hence $\int z^2 e^{\frac{5}{z}} = \frac{125}{3} \pi i$

(b) Using contour integral, evaluate $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^2}$. [4]

Solution Here p(x) = 1 and $q(x) = (x^2 + 1)^2$ Consider $f(x) = \frac{1}{(z^2 + 1)}$.

The function f(z) is not analytic at $z = \pm i$.

z=i lies in the upper half plane. z=i is a pole of order 2. Choose R>1, let C_R denote the semicircle centered at 0 and radius R in the upper half plane. Let L be the line on the x-axis joining -R to R. Let $C = C_R + L$ in the counterclockwise direction. Since the degree of q(x) is 2 greater than the degree of $p(x), \int_{C_R} f(z) = 0.$

Substitute the parametric equation $z=x,\,-R\leq x\leq R$ in the integral $\int_L f(z)dz=\int_{-R}^R f(x)dx$.

By residue theorem for any R > 1, we have $\int_C f(z)dz = 2\pi i Res_{z=i} f(z) = \frac{1}{2}\pi$.

Thus
$$\lim_{R \to \infty} \int_C f(z)dz = \lim_{R \to \infty} \int_{C_R} f(z)dz + \lim_{R \to \infty} \int_L f(z)dz$$

$$\Rightarrow \frac{1}{2}\pi = 0 + \lim_{R \to \infty} \int_{-R}^{R} f(x) dx.$$
 Since the function is even,
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 1)^2} = \frac{1}{2}\pi.$$