		Tipo de Prova Exame da Época de Recurso	Ano lectivo 2012/2013	Data 09-07-2013
ESTGF	POLITÉCNICO DO PORTO	Curso Engenharia Informática	Hora 10:00	
		Unidade Curricular Álgebra Linear e Geometria Analítica		Duração 2 horas

Observações:

- Para a realização do exame de ALGA os alunos podem utilizar:
 - o máquina de calcular gráfica;
 - um formulário A4 manuscrito pelo aluno que está a realizar o teste (só frente).
- Não são admitidas fotocópias de formulários ou formulários feitos em PC.
- Os alunos devem apresentar todos os cálculos necessários à resolução dos problemas e as justificações necessárias.
- No caso de utilizarem as funcionalidades de matrizes da máquina de calcular devem indicar todos os passos que realizaram.

Bom trabalho!

Aldina Correia, Eliana Costa e Silva e Teófilo Melo

Questão	1.1	1.2	1.3	2	3.1	3.2	4.1	4.2	5	6.1	6.2.1	6.2.2	7.1	7.2	7.3	Total
Cotação	1	1,5	1	2	2	2	1,5	1	2	1	1	1	1	1	1	20

1. Em C, conjunto dos números complexos, considere que o seguinte output do Scilab:

- 1.1. Determine os números reais x e y.
- 1.2. Considere $z_1 = \sqrt{2} \operatorname{cis} \left(\frac{\pi}{3}\right)$ e $z_2 = a+1$. Determine o número complexo $w = \frac{{z_1}^4}{z_2}$.

Apresente o resultado na forma algébrica.

- 1.3. Represente no plano de Argand a seguinte condição $|z + z_1| < |a| \vee \text{Re}(z i) \le 0$.
- 2. Dadas as matrizes $A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$ e $C = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, determine a matriz X, tal que $X^{-1}A + C^2 = CB$ (Sugestão: Comece por mostrar que $X = A(CB C^2)^{-1}$.
- 3. Considere o sistema de equações lineares

$$\begin{cases} y+z=1\\ -x+ay+z=a-1,\ a\in\mathbb{R}.\\ y+az=a^2 \end{cases}$$

- 3.1. Considere que A é a matriz do sistema. Determine a de forma a que exista A^{-1} .
- 3.2. Discuta o sistema em função do parâmetro a.

ESTGF-PR05-Mod013V1 Página 1 de 2

		Tipo de Prova Exame da Época de Recurso	Ano lectivo 2012/2013	Data 09-07-2013
ESTGF	POLITÉCNICO DO PORTO	Curso Engenharia Informática	Hora 10:00	
		Unidade Curricular		Duração 2 horas

4. Considere o sistema de equações lineares, nas incógnitas $x,y \in z$, cuja matriz do sistema A e a matriz dos termos independentes B, definidas em Scilab, são:

- 4.1. Averigue se o sistema é de Cramer;
- 4.2. Observe o excerto de código Scilab seguinte e respetivo output:

Classifique o sistema, justificando.

- 5. Considere a matriz $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & -1 \end{bmatrix}$. Calcule os valores próprios e vectores próprios associados à matriz A.
- 6. Considere o espaço vetorial das matrizes reais do tipo 2×2 :

$$\mathcal{M}_{2\times 2}(\mathbb{R}) = \left\{ A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} : a_{11}, a_{12}, a_{21}, a_{22} \in \mathbf{R} \right\}$$

- 6.1. Mostre que o conjunto $S = \{A \in \mathcal{M}_{2\times 2}(\mathbb{R}): a_{11} = a_{21} \land a_{12} = a_{22}\}$ é um subespaço vetorial de $\mathcal{M}_{2\times 2}(\mathbb{R})$.
- 6.2. Considere os vetores $v_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ e $v_2 = \begin{bmatrix} 0 & -1 \\ 0 & -1 \end{bmatrix}$ de $\mathcal{M}_{2\times 2}$.
 - 6.2.1. Averigue se $\begin{bmatrix} -1 & -4 \\ -1 & 1 \end{bmatrix} \in \langle v_1, v_2 \rangle$;
 - 6.2.2. Determine uma base de S e indique a sua dimensão.
- 7. Dado o plano α de equação cartesiana x-y+2z=0, a reta r de equação vetorial (x,y,z)=(1,-1,0)+k(0,1,2) e o ponto A=(0,-1,1), determine:
 - 7.1. Os ângulos que a reta r faz com o plano α .
 - 7.2. As equações cartesianas da reta s que passa pelo ponto A e é paralela à reta r.
 - 7.3. A distância do ponto A ao plano α .

ESTGF-PR05-Mod013V1 Página 2 de 2