Vecteur, deuxième partie

Delhomme Fabien

13 octobre 2021

Table des matières

Ι	Coo	ordonn	ées d'un vecteur dans un repère orthonormé	
	I.1	Défini	tion	
	I.2	Coord	lonnées d'un vecteur définit par deux points du plan	
I.3	I.3	B Opérations sur les vecteurs, et coordonnées		
		I.3.1	Coordonnées d'une somme de vecteurs	
		I.3.2	Multiplication d'un vecteur par un scalaire	
		I.3.3	Produit scalaire de deux vecteurs	
ſT	No	rme d'i	un vecteur	

Coordonnées d'un vecteur dans un repère orthonormé

Définition

Coordonées d'un vecteur

Soit \vec{u} un vecteur, et on considère un repère orthonormé du plan. Alors, le vecteur \vec{u} admet des coordonnées qui le décrivent.

Exemple

Dans l'image suivante, vous trouverez un exemple de vecteur \vec{u} qui admet pour coordonnées (3;4). Ainsi, l'égalité

$$\vec{u} = (3, 4)$$

désigne un vecteur qui déplace de 3 horizontalement, et de 4 verticalement.

Ún vecteur peut aussi admettre des coordonnées négatives. Par exemple, dans l'image suivante, le vecteur \vec{v} admet une abscisse négative.

& Coordonées du vecteur nul

Les coordonnées nulles, c'est-à-dire (0;0) désignent le vecteur nul, noté $\vec{0}$.

I.2 Coordonnées d'un vecteur définit par deux points du plan

À partir de deux points, A et B, on peut définir le vecteur qui «emmène» le point A vers le point B, et on le note \overrightarrow{AB} . À partir des coordonnées de A et de celle de B, on peut en déduire les coordonnées du vecteur \overrightarrow{AB} .

§Proposition

Si A et B admettent les coordonnées $(x_A,y_A),\,(x_B,y_B),$ alors le vecteur \overrightarrow{AB} a pour coordonnées :

$$\overrightarrow{AB} = (x_B - x_A; y_B - y_A)$$

Exemple

Si A(3;4) et B(-2;-3) alors le vecteur \overrightarrow{AB} a pour coordonnées

$$\overrightarrow{AB} = (-2 - 3; -3 - 4) = (-5; -7)$$

Donc pour se rendre de A vers B, il faut se déplacer de 5 horizontalement (vers la gauche, puisque la première coordonnée de \overrightarrow{AB} est -5), et de 7 verticalement (vers le bas). L'image suivante illustre cette situation.

Opérations sur les vecteurs, et coordonnées

Coordonnées d'une somme de vecteurs

Proposition

Si on considère deux vecteurs \vec{u} et \vec{v} de coordonnée (x;y) et (w;z), alors si on note $\vec{z}=\vec{u}+\vec{v}$, le vecteur \vec{z} a pour coordonnées:

$$\vec{z} = (x + w; y + z)$$

Exemple

Si
$$\vec{u} = (-3, 4)$$
 et $\vec{v} = (2, 5)$ alors $\vec{u} + \vec{v} = (-1, 9)$

Multiplication d'un vecteur par un scalaire

Si \vec{u} est un vecteur, alors $2\vec{u}$, $3\vec{u}$, $\sqrt{2}\vec{u}$, etc, sont aussi des vecteurs. On peut multiplier un vecteur par n'importe quel nombre réel k, et on notera l'opération $k\vec{u}$

№Proposition

Soit \vec{u} un vecteur, de coordonnées (x;y). Alors, le vecteur $k\vec{u}$ a pour coordonnées

$$k\vec{u} = (kx; ky)$$

Exemple

$$\dot{S}i \ \vec{u} = (-3; 5), \text{ alors } -2\vec{u} = (6; -10)$$

I.3.3 Produit scalaire de deux vecteurs

Nous verrons plus tard à quoi sert le produit scalaire (\vec{u}, \vec{v}) de deux vecteurs \vec{u} et \vec{v} , mais en quelques mots, le produit scalaire permet d'avoir une idée de l'angle qu'il y a entre deux vecteurs. Le produit scalaire est simple à calculer si vous connaissez les coordonnées de deux vecteurs.

Produit scalaire de deux vecteurs

Soit \vec{u} et \vec{v} deux vecteurs, de coordonnées respectives (x;y) et (w;z). Alors, le produit scalaire est un nombre, noté (\vec{u}, \vec{v}) , qui se calcule par :

$$(\vec{u}, \vec{v}) = xw + yz$$

Avec cette formule, on peut remarquer énormément de propriétés associées au produit scalaire. Par exemple,

Proposition

Pour tout vecteur \vec{u} et \vec{v} , on a :

$$(\vec{u}, \vec{v}) = (\vec{v}, \vec{u})$$

Autrement dit, on peut calculer un produit scalaire en notant les vecteurs «dans le sens que l'on veut».

TT Norme d'un vecteur

La norme d'un vecteur \overrightarrow{AB} représente la distance à parcourir pour emmener A vers B. À partir des coordonnées d'un vecteur, on peut calculer sa norme!

Proposition

Soit \vec{u} un vecteur, de coordonnées (x; y). Alors, sa norme se calcule par

$$\|\vec{u}\| = \sqrt{x^2 + y^2}$$

$\mathbf{E}_{\mathbf{E}}$ Exemple

Ce résultat provient du théorème de Pythagore! Sur l'image, puisque le triangle est rectangle, d'après le théorème de Pythagore, on sait que

$$\|\vec{u}\|^2 = b^2 + c^2$$

Ce qui revient au calcul plus haut.

Ici, puisque $\vec{u} = (4; 5)$, on a:

$$\|\vec{u}\| = \sqrt{4^2 + 5^2} = \sqrt{16 + 35} = \sqrt{41} \approx 6, 4$$

№Proposition

Pour tout vecteur \vec{u} , on peut remarquer que :

$$\|\vec{u}\| = \sqrt{(u,u)}$$

Le produit scalaire est décidement partout!