

Amendments to the Claims

Claim 1 (**Currently Amended**) A laser irradiation apparatus comprising:

a light source for producing a coherent beam;

a first optical unit disposed in an optical path between said light source and a target workpiece to initially receive the coherent beam from said light source; and

a second optical unit disposed in an optical path between said first optical unit and the target workpiece to receive the coherent beam from said first optical unit;

wherein said first optical unit is disposed such that an entry point on said second optical unit and a starting point of a pointing vector of the coherent beam from ~~of~~ said light source and an exit face on said second optical unit are mutually conjugated with respect to said first optical unit.

Claim 2 (**Original**) The laser irradiation apparatus as defined in Claim 1, wherein said second optical unit is an optical beam forming unit.

Claim 3 (**Currently Amended**) The laser irradiation apparatus as defined in Claim 2, wherein said optical beam forming unit is an optical element for making an ~~the~~ intensity distribution of the coherent beam uniform.

Claim 4 (**Original**) The laser irradiation apparatus as defined in Claim 1, wherein said first optical unit comprises at least two lenses.

Claim 5 (**Original**) The laser irradiation apparatus as defined in Claim 1, wherein said light source is a laser oscillator.

Claim 6 (**Currently Amended**) The laser irradiation apparatus as defined in Claim 1, further comprising at least a third optical unit in an optical path between said second optical unit and the target workpiece.

Claim 7 (**Currently Amended**) A laser irradiation apparatus comprising:-

a light source for producing a coherent beam;

a first optical unit disposed in an optical path between said light source and a target workpiece to initially receive the coherent beam from said light source;

a second optical unit disposed in an optical path between said first optical unit and the target workpiece to receive the coherent beam from said first optical unit; and

a third optical unit disposed in an optical path between said second optical unit and the target workpiece to receive the coherent beam from said second optical unit;

wherein said first optical unit focuses the said coherent beam between said first optical unit and said second optical unit, and a focal point of said second optical unit and an exit face-entry point on said third optical unit are mutually conjugated with respect to said second optical unit.

Claim 8 (Original) The laser irradiation apparatus as defined in Claim 7, wherein said third optical unit is an optical beam forming unit.

Claim 9 (Currently Amended) The laser irradiation apparatus as defined in Claim 8, wherein said optical beam forming unit is an optical element for making an the intensity distribution of the coherent beam uniform.

Claim 10 (Original) The laser irradiation apparatus as defined in Claim 9, wherein said second optical unit comprises at least two lenses.

Claim 11 (Original) The laser irradiation apparatus as defined in Claim 9, wherein said light source is a laser oscillator.

Claim 12 (Currently Amended) The laser irradiation apparatus as defined in Claim 9, further comprising at least a fourth optical unit in an optical path between said third optical unit and the target workpiece.

Claim 13 (Currently Amended) A laser irradiation method comprising;
producing a coherent beam with from a light source;

adjusting the said coherent beam using a first optical unit and a second optical unit, the said-first optical unit being disposed in an optical path between the said-light source and the target workpiece to initially receive the coherent beam from the light source, and the said-second optical unit being disposed in an optical path between the said-first optical unit and the target workpiece to receive the coherent beam from the first optical unit; and

irradiating the coherent beam to the said target workpiece,;

wherein the said-first optical unit is disposed such that an entry point on said second optical unit and a starting point of a pointing vector of the coherent beam produced from the said light source and an exit face on the second optical unit are mutually conjugated with respect to the said-first optical unit.

Claim 14 (Currently Amended) The laser irradiation method as defined in Claim 13, wherein the said-second optical unit is an optical beam forming unit.

Claim 15 (Currently Amended) The laser irradiation method as defined in Claim 14, wherein the said-optical beam forming unit is an optical element for making an the intensity distribution of the coherent beam uniform.

Claim 16 (Currently Amended) The laser irradiation method as defined in Claim 13, wherein the said-first optical unit comprises at least two lenses.

Claim 17 (Currently Amended) The laser irradiation method as defined in Claim 13, further comprising adjusting the coherent beam using at least a third optical unit disposed in an optical path between the said-second optical unit and the target workpiece.

Claim 18 (Currently Amended) The laser irradiation method as defined in Claim 13, wherein said irradiating of the coherent beam to the target workpiece laser-machines is laser machined in said irradiating the beam to said target workpiece.

Claim 19 (Currently Amended) A laser irradiation method comprising:

producing a coherent beam with ~~from~~ a light source;

adjusting the said-coherent beam using a first optical unit, a second optical unit, and a third optical unit, the said-first optical unit being disposed in an optical path between the said-light source and the target workpiece to initially receive the coherent beam from the light source, the said-second optical unit being disposed in an optical path between the said-first optical unit and the target workpiece to receive the coherent beam from the first optical unit, and the said-third optical unit being disposed in an optical path between the said-second optical unit and the target workpiece; and

irradiating the beam to the said-target workpiece;

wherein said adjusting of the said-coherent beam includes focusing the said coherent beam between the said-first optical unit and the said-second optical unit using the said-first optical unit, and

wherein a focal point of the second optical unit said coherent beam and an exit face-entry point on the said third optical unit are mutually conjugated with respect to the said second optical unit.

Claim 20 (Currently Amended) The laser irradiation method as defined in Claim 19, wherein the said-third optical unit is an optical beam forming unit.

Claim 21 (Currently Amended) The laser irradiation method as defined in Claim 20, wherein the said-optical beam forming unit is an optical element for making an the intensity distribution of the coherent beam uniform.

Claim 22 (Currently Amended) The laser irradiation method as defined in Claim 19, wherein the said-second optical unit comprises at least two lenses.

Claim 23 (Currently Amended) The laser irradiation method as defined in Claim 19, wherein the said-light source is a laser oscillator.

Claim 24 (**Currently Amended**) The laser irradiation method as defined in Claim 19,
further comprising adjusting the coherent beam using at least a fourth optical unit
disposed in an optical path between the said-third optical unit and the target workpiece.

Claim 25 (**Currently Amended**) The laser irradiation method as defined in Claim 19,
wherein said irradiating of the target workpiece laser-machines is laser machined in said
step of irradiating the beam to said-target workpiece.