clase 12

Manuel Garcia.

September 14, 2023

1 Espacios topológicos

De la clase pasada:

$$X, \mathcal{T}_I = u_i | i \in I$$

 $d(x, y) \rightarrow u_{\epsilon}(x) = x' \in X | |x - x'| \subset \epsilon$

Espacios de hausdorff Si podemos encontrar dos entornos que su interseccion sea vacia.

$$u_x \cap u_y = \emptyset \quad \to \quad \text{Haussdorff}$$

De aquí en adelante vamos a trabajar solo son espacios de Haussdorff.

Vamos a definir un conjunto cerrado. Si $A \subset X$ el complemento de A: X-A, A es cerrado si X-A es abierto.

- Cerradura (\bar{A}) es el subconjunto abierto mas pequeño que incluye a A. $A \subseteq \bar{A}$.
- Interior: (A^0) es el subconjunto abierto mas grande que está incluido en A. $A^0 \subseteq A$.
- **Borde:** $b(A) = \bar{A} A^0$
- Cubierta (covering)

$$A_i \qquad A_i \subset X / \underset{i \in I}{\cup} A_i = X$$

Si A_i son abiertos $\to A_i$ cubierta abierta.

• Compacto: Si para una cubierta A_i existe una subfamilia finita.

$$u_k$$
 tal que $\bigcup_{k \in K} u_k = X$

Teorema: Si $X \subset \mathbb{R}^n$, X es compacto si está limitado, es decir, puede ser incluido en un subconjunto finito de \mathbb{R}^n .

$$X \subset M \to \text{Finito}$$

Ejemplo $(a,b) \to u_n : \{(a,b-\frac{1}{n})|n \in \mathbb{N}\}.$

- Conexo: Es un espacio que no se puede escribir de la forma $X = X_1 \cup X_2$ $X_1 \cap X_2 = \emptyset$. Si no los podemos separar tenemos conjuntos compactos y si los podemos separar tenemos conjuntos conexos.
- **Homeomorfismo:** Si tenemos dos espacios topologicos con su respectiva esturctura metrica y tenemos una funcion que nos mapea del uno al otro, esta funcion se llama homeomorfismo si $f: X_1 \to X_2$ y $f^{-1}: X_2 \to X_1$ son continuas y diferenciables.

2 Variedad diferenciable

Vamos a tener x elementos que vamos a describir en coordenadas. Por ejemplo x^{α} o y^{α} . Lo que queremos es que la tranformación entre estas dos coordenadas sean funciones continuas y suaves.

M de n dimensiones es una variedad diferenciables si:

- ullet M es un espacio topológico
- $u_i \to \text{abiertos.} \to \text{le asociamos unas parejas } (u_i, \phi_i), \text{ donde } \phi_i : u_i \to \mathbb{R}^n, \text{ esta transformacion debe ser un homeomorfismo.}$
- $\{u_i\}$ son una cubierta: $\bigcup_{i \in I} u_i = M$.
- Tomemos dos parejas u_i, u_j que tengan interseccion $u_i \cap u_j \neq \emptyset$. En la variedad M va a existir esta interseccion la cual está contenida en ambos conjuntos. La funcion que lleve esta interseccion de u_i a u_j debe ser diferenciable y suave. Basicamente la condicion 2 nos dice que podemos ir de la variedad diferenciable a ϕ_i y ϕ_j , mientras que esta condiciones nos dice que podemos ir de ϕ_i a ϕ_j .

Charts (cartas) (u_i, ϕ_i) Atlas $\{(u_i, \phi_i)\}$