# New York Condominiums and Complaints

Can complaints have an affect on the price of Condominiums?

Dr. James R. Gatewood Junior Data Scientist, Mathematician Urban Planner/designer Enthusiast



#### Presentation Outline

- 1. Motivation
- 2. Analysis
- 3. Results
- 4. Additional Questions
- 5. Applications
- 6. Conclusion



### Motivation

- Since the industrial revolution, people have been moving to cities for opportunities and stimulation
- Cities are dense clusters of vibrant centers of human activity: research, commerce, tourism, culture, etc
- Use mathematical models to study cities which will aid in the in-depth understanding of their workings and how they evolve over time.
- Its an interesting science, but also may be useful in a planning scenario

#### Motivation

- Do certain characteristics and complaints have an effect on the prices of Manhattan Condominiums?
  - Only explored Manhattan Neighborhoods
  - Choose a few complaints out of dozens
- Hypothesis: Yes, complaints have some effect on the overall cost of the condominiums.
- Data Sources (files from www.nycopendata.socrata.com)
  - DOF Condominiums comparable rental incomes
  - 311 Service Requests

### Data Wrangling: Clean and Transform

#### • Target Variable: Market Value per Sqft

 A calculation of the value of each square foot of an area of a house, condo or any building. It is a simple, but useful calculation that is mostly used to compare similar properties.





### Data Wrangling: Clean and Transform

#### • Features:

- 1. Total Number of Units in Condominiums
- 2. Year Built (Changed to age of building)
- 3. Estimated Gross Income (Applied the Log function)
- 4. Taxi Complaint
- 5. Noise Commercial
- 6. Food Establishment
- 7. Noise Vehicle
- 8. Street Condition
- 9. Noise Street/Sidewalk
- 10. Sidewalk Condition Traffic
- 11. Graffiti
- 12. Elevator
- 13. School Maintenance
- 14. DOF Property Reduction Issue
- 15. Root/Sewer/Sidewalk Condition
- 16. Overgrown Tree/Branches
- 17. Construction
- 18. Noise

Transformed into dummy variables and fill in the neighborhoods



# Analysis

- Two Machine Learning Algorithms:
  - Ridge Regression and Decision Tree Regression
    - Use ridge regression: when too many independent variables have a near linear relationship, multicollinearity occurs
    - Ridge regression adds a degree of bias to regression estimates
  - Decision Tree Regression

- Builds a regression model in the form of a tree structure (since

my output is continuous)



# Analysis

- Ridge Regression results
- $R^2 = 0.6650934$
- Complaints are not the best predictors of Market Value Sqrt

|                                | Coefficients | p-values |
|--------------------------------|--------------|----------|
| Columns                        |              |          |
| Total Units                    | -0.114117    | 9.38E-08 |
| Building Age                   | -0.31736     | 2.04E-12 |
| Estimated Gross Income (Log)   | 16.38965     | 4.53E-46 |
| Taxi Complaint                 | -0.017395    | 1.66E-22 |
| Noise - Vehicle                | -1.481904    | 1.35E-17 |
| Street Condition               | 0.079993     | 3.31E-17 |
| Noise - Street/Sidewalk        | 0.128582     | 4.23E-36 |
| Sidewalk Condition             | -0.034104    | 1.37E-04 |
| Traffic                        | 0.38822      | 3.89E-22 |
| Graffiti                       | 0.029997     | 8.78E-05 |
| Elevator                       | -0.224764    | 5.51E-19 |
| School Maintenance             | 3.710313     | 5.37E-33 |
| DOF Property - Reduction Issue | -0.695815    | 1.17E-16 |
| Root/Sewer/Sidewalk Condition  | 0.896545     | 2.57E-05 |
| Overgrown Tree/Branches        | 2.439971     | 2.27E-04 |
| Construction                   | -10.392431   | 2.06E-32 |
| Noise                          | 0.076452     | 6.54E-24 |

### **Analysis**

#### Decision Tree Regression

• Best score: 64.2668180897

• Best depth: 4



| Feature             | Importance |  |
|---------------------|------------|--|
| Total Units         | 0.01349    |  |
| Building Age        | 0.13960    |  |
| Estimated Gross     | 0.10003    |  |
| Income Log          | 0.19982    |  |
| Taxi Complaint      | 0.00000    |  |
| Noise - Commercial  | 0.00000    |  |
| Food Establishment  | 0.00000    |  |
| Noise - Vehicle     | 0.06276    |  |
| Street Condition    | 0.08383    |  |
| Noise -             | 0.44266    |  |
| Street/Sidewalk     | 0.44266    |  |
| Sidewalk Condition  | 0.05384    |  |
| Traffic             | 0.00000    |  |
| Graffiti            | 0.00000    |  |
| Elevator            | 0.00399    |  |
| School Maintenance  | 0.00000    |  |
| DOF Property -      | 0.00000    |  |
| Reduction Issue     | 0.00000    |  |
| Root/Sewer/Sidewalk | 0.00000    |  |
| Condition           | 0.00000    |  |
| Overgrown           | 0.00000    |  |
| Tree/Branches       |            |  |
| Construction        | 0.00000    |  |
| Noise               | 0.00000    |  |

### Challenges

- Multi-collinearity
- Which machine learning techniques to use
- Which features to explores and which to omit.
- Truly understanding what the values of the results represent.

### **Additional Questions**

- What would the effect be if I included all complaints from the file?
- How do the complaints vary (seasonally)?
- Would the results be different if I explored zip codes instead of neighborhoods?
- Additional machine learning algorithms.

### Conclusions

• Questions?????

- Thank you
  - Ed
  - Julia
  - Pooja

