Aufgabe 1: Das Phong-Beleuchtungsmodell

Teilaufgabe 1a

Abbildung 1: Skizze zu Aufgabe 1

Teilaufgabe 1b

TODO

Teilaufgabe 1c

TODO

Teilaufgabe 1d

TODO

Teilaufgabe 1e

TODO

Teilaufgabe 1f

TODO

Aufgabe 2: Raytracing

Teilaufgabe 2a

- \bullet Anstelle einen Punkt für einen Pixel abzutasten, tastet man k^2 mal in äquidistanten Intervallen ab.
- Aliasing wird dadurch verringert.

Teilaufgabe 2b

- Maximale Rekursionstiefe erreicht
- Rekursion bis der Beitrag zur Farbe vernachlässigbar wird

Teilaufgabe 2c

Was ist der Unterschied zwischen Distributed Raytracing und Whitted-Style Raytracing? TODO

Welchen Lichttransport kann man durch Distributed Raytracing berechnen, den Whitted-Style Raytracing nicht erfassen kann? TODO

Teilaufgabe 2d

Nennen Sie kurz und stichpunktartig die zwei Schritte, die zur Berechnung von Vertex-Normalen bei einem Dreiecksnetz notwendig sind! Gehen Sie dabei davon aus, dass nur die Vertex-Positionen und die Topologie des Netzes gegeben sind! TODO

Aufgabe 3: Farben und Farbwahrnehmung

Teilaufgabe 3a

Teilaufgabe 3a (I)

Wie berechnet man die Sensorantwort a für ein Spektrum $S(\lambda)$?

$$a(S(\lambda)) = \int_{\lambda} E(\lambda) \cdot S(\lambda) d\lambda$$

Teilaufgabe 3a (II)

Unter einem *Metamerismus* versteht man das Phänomen, das unterschiedliche Spektren den selben Farbeindruck vermitteln können. Es muss also

$$a_1 = a_2$$

gelten, damit $S_1(\lambda)$ und $S_2(\lambda)$ bzgl. der gegebenen Kamera Metamere sind.

Teilaufgabe 3b

- 1. Das HSV-Farbmodell trennt Farbton von Helligkeit.
- \Rightarrow Richtig (Hue (Farbton), Saturation (Sättigung), Value (Hellwert)).
- 2. Der Farbeindruck einer additiv gemischten Farbe hängt nicht vom Farbeindruck der Ausgangsfarben ab.
- \Rightarrow TODO
- 3. Farbige Flächen werden unabhängig von ihrer Umgebung vom menschlichen Auge immer gleich wahrgenommen.
- \Rightarrow Falsch. (TODO: Welche Folie?)
- 4. Der Machsche Bandeffekt ist vor allem bei Phong-Shading ein Problem.
- \Rightarrow TODO

Aufgabe 4: Bézier-Kurven

Teilaufgabe 4a

Gegeben sei die Bézier-Kurve $\mathbf{b}(u) = \sum_{i=0}^{3} \mathbf{b}_{i} B_{i}^{3}(u)$ mit den Kontrollpunkten \mathbf{b}_{i} , wobei $u \in [0,1]$ und B_{i}^{3} das i-te Bernstein-Polynom vom Grad 3 ist.

Teilaufgabe 4a (I)

Werten Sie die Bézier-Kurve zeichnerisch mit dem de-Casteljau-Algorithmus an der Stelle u = 1/3 aus! Markieren Sie den Punkt $\mathbf{b}(1/3)$!

Abbildung 2: Skizze zu Aufgabe 4a und 4b

Teilaufgabe 4a (II)

vgl Abbildung 2 (da bin ich mir aber unsicher, ob das stimmt).

Teilaufgabe 4b

Siehe Nachklausur 2015, Aufgabe 11b für eine detailierte Erklärung.

- 1. Nein, da die Kontrollpunkte auf den Ecken eines Rechtecks liegen, aber die Kurve nicht symmetrisch ist.
- 2. Nein, da die Kurve nicht in der konvexen Hülle der Kontrollpunkte liegt.
- 3. Ja
- 4. Nein, da die Kurve nicht tangential an b_0b_1 ist.

TODO Aufgabe 6: Texturierung Teilaufgabe 6a TODO Teilaufgabe 6b TODO Teilaufgabe 6c TODO Teilaufgabe 6d TODO Aufgabe 7: Cube-Maps und Environment-Mapping Teilaufgabe 7a TODO Teilaufgabe 7b TODO Aufgabe 8: Hierarchische Datenstrukturen Teilaufgabe 8a TODO

Aufgabe 5: Transformationen

Teilaufgabe 8b TODO Teilaufgabe 8c TODO Teilaufgabe 8d TODO Aufgabe 9: Rasterisierung und OpenGL TODO Aufgabe 10: Tiefenpuffer und Transparenz Teilaufgabe 10a TODO Teilaufgabe 10b TODO Teilaufgabe 10c TODO

Aufgabe 11: Phong-Shading und Phong-Beleuchtungsmodell

```
shader.vert
uniform mat4 matN; // Normalentransformation (Objekt -> Kamera)
uniform mat4 matM; // Modelltransformation
uniform mat4 matV; // Kameratransformation
uniform mat4 matP; // Projektionstransformation
```