Transição de Fase em Modelos de Percolação via Funções Booleanas

André Victor Ribeiro Amaral † Orientador: Roger William Câmara Silva

Defesa do Trabalho de Dissertação

Universidade Federal de Minas Gerais - ICEx, Departamento de Estatística. (10/08/2020)

[†] E-mail: avramaral@gmail.com

Sumário

Introdução

Como provar que $(f_n)_{n\in\mathbb{N}}$ passa por **sharp threshold**?

Fórmula de Russo-Margulis

Inequação de sharp threshold

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Aplicações em percolação Bernoulli (\mathbb{L}^d)

Ponto crítico para percolação em \mathbb{L}^2

Sharpness da transição de fase para percolação Bernoulli em \mathbb{L}^d

Referências

Em modelos com componentes estocásticas, dizemos que um sistema aleatório finito passa por *sharp threshold* se o seu comportamento muda "rapidamente" como resultado de uma pequena perturbação dos parâmetros que governam sua estrutura.

Em modelos com componentes estocásticas, dizemos que um sistema aleatório finito passa por *sharp threshold* se o seu comportamento muda "rapidamente" como resultado de uma pequena perturbação dos parâmetros que governam sua estrutura.

Nesse sentido, o modelo probabilístico assumido, a menos que seja dito o contrário, será descrito por $(\Omega_n, \mathcal{A}, \mathbb{Q}_p)$, tal que $\Omega_n = \{0,1\}^n$, com $\omega = (\omega_1, \cdots, \omega_n)$ e $n \in \mathbb{N}$, $\mathcal{A} = \mathcal{P}(\Omega_n)$ e $\mathbb{Q}_p(\omega) = \prod_{i:\omega_i=1} p \prod_{i:\omega_i=0} (1-p)$ é a medida produto Bernoulli; onde $[n] = \{1, \cdots, n\}$.

Em modelos com componentes estocásticas, dizemos que um sistema aleatório finito passa por *sharp threshold* se o seu comportamento muda "rapidamente" como resultado de uma pequena perturbação dos parâmetros que governam sua estrutura.

Nesse sentido, o modelo probabilístico assumido, a menos que seja dito o contrário, será descrito por $(\Omega_n, \mathcal{A}, \mathbb{Q}_p)$, tal que $\Omega_n = \{0,1\}^n$, com $\omega = (\omega_1, \cdots, \omega_n)$ e $n \in \mathbb{N}$, $\mathcal{A} = \mathcal{P}(\Omega_n)$ e $\mathbb{Q}_p(\omega) = \prod_{i:\omega_i=1} p \prod_{i:\omega_i=0} (1-p)$ é a medida produto Bernoulli; onde $[n] = \{1, \cdots, n\}$.

Em $(\Omega_n, \mathcal{A}, \mathbb{Q}_p)$, nos concentraremos em analisar sequências de funções Booleanas; i.e., sequências do tipo $(f_n)_{n\in\mathbb{N}}$, tal que $f_n: \Omega_n \to \{0,1\}$, para $n \in \mathbb{N}$.

Além disso, definindo $F_n(p) := \mathbb{E}_p(f_n(\omega))$, para $n \in \mathbb{N}$, temos, com \mathbb{Q}_p medida produto,

$$F_n(p) = \sum_{\omega \in \Omega_n} f_n(\omega) p^{\sum_{i \in [n]} \omega_i} (1 - p)^{\sum_{i \in [n]} 1 - \omega_i}.$$
 (1)

Em modelos com componentes estocásticas, dizemos que um sistema aleatório finito passa por *sharp threshold* se o seu comportamento muda "rapidamente" como resultado de uma pequena perturbação dos parâmetros que governam sua estrutura.

Nesse sentido, o modelo probabilístico assumido, a menos que seja dito o contrário, será descrito por $(\Omega_n, \mathcal{A}, \mathbb{Q}_p)$, tal que $\Omega_n = \{0,1\}^n$, com $\omega = (\omega_1, \cdots, \omega_n)$ e $n \in \mathbb{N}$, $\mathcal{A} = \mathcal{P}(\Omega_n)$ e $\mathbb{Q}_p(\omega) = \prod_{i:\omega_i=1} p \prod_{i:\omega_i=0} (1-p)$ é a medida produto Bernoulli; onde $[n] = \{1, \cdots, n\}$.

Em $(\Omega_n, \mathcal{A}, \mathbb{Q}_p)$, nos concentraremos em analisar sequências de funções Booleanas; i.e., sequências do tipo $(f_n)_{n\in\mathbb{N}}$, tal que $f_n: \Omega_n \to \{0,1\}$, para $n \in \mathbb{N}$.

Além disso, definindo $F_n(p) := \mathbb{E}_p(f_n(\omega))$, para $n \in \mathbb{N}$, temos, com \mathbb{Q}_p medida produto,

$$F_n(p) = \sum_{\omega \in \Omega_n} f_n(\omega) p^{\sum_{i \in [n]} \omega_i} (1 - p)^{\sum_{i \in [n]} 1 - \omega_i}. \tag{1}$$

Por fim, e com a intenção de estabelecer uma ordem parcial para as possíveis configurações do espaço amostral, dizemos que, para $\omega, \omega' \in \Omega_n, \omega \leq \omega'$ se $\omega_i \leq \omega_i', \forall i \in [n]$. Assim, $f(\omega)$ é crescente se $f(\omega) \leq f(\omega')$ sempre que $\omega \leq \omega'$.

Definição 1

Uma sequência de funções Booleanas crescentes $(f_n)_{n\in\mathbb{N}}$ passa por **sharp threshold** em $(p_n)_{n\in\mathbb{N}}$ se existe $(\delta_n)_{n\in\mathbb{N}}$, com $\lim_{n\to+\infty} \delta_n = 0$, tal que $F_n(p_n - \delta_n) \to 0$ e $F_n(p_n + \delta_n) \to 1$, quando $n \to +\infty$.

Graficamente,

Figura 1: Esboço de $F_n(p)$ para n "muito grande", t.q. $(f_n)_{n\in\mathbb{N}}$ passa por sharp threshold.

Definição 1

Uma sequência de funções Booleanas crescentes $(f_n)_{n\in\mathbb{N}}$ passa por **sharp threshold** em $(p_n)_{n\in\mathbb{N}}$ se existe $(\delta_n)_{n\in\mathbb{N}}$, com $\lim_{n\to+\infty} \delta_n = 0$, tal que $F_n(p_n - \delta_n) \to 0$ e $F_n(p_n + \delta_n) \to 1$, quando $n \to +\infty$.

Graficamente,

Figura 1: Esboço de $F_n(p)$ para n "muito grande", t.q. $(f_n)_{n\in\mathbb{N}}$ passa por sharp threshold.

Note que se $f_n(\omega) = \mathbb{I}_{A_n}(\omega)$ tem essa característica, então $F_n(p) = \mathbb{Q}_p(A_n)$ está "perto" de 0 ou 1 para n "muito grande".

Como provar que $(f_n)_{n\in\mathbb{N}}$ passa por sharp threshold?

Seja $f: \Omega_n \to \{0,1\}$, então defina:

$$\nabla_i f(\omega) := f(\omega) - f(\operatorname{Flip}_i(\omega)),$$

onde

$$\operatorname{Flip}_{i}(\omega)_{j} = \begin{cases} \omega_{j} & \operatorname{para} j \neq i \\ 1 - \omega_{j} & \operatorname{para} j = i. \end{cases}$$

Além disso, defina a **influência** do bit i como

$$\operatorname{Inf}_i(f(\omega)) := \mathbb{E}_p(|\nabla_i f(\omega)|),$$

que é o mesmo que $\operatorname{Inf}_i(f(\omega)) = \mathbb{Q}_p(f(\omega) \neq f(\operatorname{Flip}_i(\omega))).$

Como provar que $(f_n)_{n\in\mathbb{N}}$ passa por sharp threshold?

Seja $f: \Omega_n \to \{0,1\}$, então defina:

$$\nabla_i f(\omega) := f(\omega) - f(\operatorname{Flip}_i(\omega)),$$

onde

$$\mathrm{Flip}_i(\omega)_j = \begin{cases} \omega_j & \mathrm{para}\ j \neq i \\ 1 - \omega_j & \mathrm{para}\ j = i. \end{cases}$$

Além disso, defina a **influência** do bit i como

$$\operatorname{Inf}_i(f(\omega)) := \mathbb{E}_p(|\nabla_i f(\omega)|),$$

que é o mesmo que $\operatorname{Inf}_i(f(\omega)) = \mathbb{Q}_p(f(\omega) \neq f(\operatorname{Flip}_i(\omega))).$

Nesse sentido, o primeiro resultado importante é enunciado através do teorema a seguir.

Teorema 1 (Fórmula de Russo-Margulis)

Para $f: \Omega_n \to \{0,1\}$ crescente, vale:

$$\frac{d}{dp} \mathbb{E}_p(f(\omega)) = F'(p) = \sum_{i \in [n]} \operatorname{Inf}_i(f(\omega)).$$

Fórmula de Russo-Margulis

Um resultado imediado do Teorema 1 é o de que, para $f(\omega)$ crescente, F(p) é crescente e diferenciável.

Além disso, suponha por um instante que seja possível provar cotas do tipo

$$F'(p) \ge C \, \mathbb{V}_p(f(\omega)),$$
 (2)

para uma constante C "grande" e $\mathbb{V}_p(f(\omega)) = F(p) (1 - F(p))$. Então vale que, reescrevendo a Expressão 2,

$$\left(\frac{F'(p)}{F(p)(1-F(p))}\right) = \left(\ln\frac{F(p)}{1-F(p)}\right)' \ge C. \tag{3}$$

Fórmula de Russo-Margulis

Um resultado imediado do Teorema 1 é o de que, para $f(\omega)$ crescente, F(p) é crescente e diferenciável.

Além disso, suponha por um instante que seja possível provar cotas do tipo

$$F'(p) \ge C \, \mathbb{V}_p(f(\omega)),$$
 (2)

para uma constante C "grande" e $\mathbb{V}_p(f(\omega)) = F(p) (1 - F(p))$. Então vale que, reescrevendo a Expressão 2,

$$\left(\frac{F'(p)}{F(p)(1-F(p))}\right) = \left(\ln\frac{F(p)}{1-F(p)}\right)' \ge C.$$
(3)

Agora, tome ptal que $F(p)=\frac{1}{2}.$ Então, para $\delta>0$ e integrando a Expressão 3 entre $(p-\delta)$ e p,vale que

$$F(p-\delta) < e^{-\delta C}$$
.

Analogamente, integrando a Expressão 3 entre p e $(p + \delta)$, obtemos

$$F(n+\delta) > 1 - e^{-\delta C}$$

Ou seja, a sequência $(f_n)_{n\in\mathbb{N}}$ associada passa por *sharp threshold*.

Inequação de sharp threshold

Teorema 2 (Talagrand)

Existe constante c>0 tal que, $\forall p\in[0,1]$ e $n\in\mathbb{N}$, vale que, para qualquer função Booleana crescente $f:\Omega_n\to\{0,1\}$,

$$\mathbb{V}_p(f(\omega)) \le c \ln \frac{1}{p(1-p)} \sum_{i \in [n]} \frac{\operatorname{Inf}_i(f(\omega))}{\ln \frac{1}{\operatorname{Inf}_i(f(\omega))}}.$$

Note que, do Teorema 2, para mostrar que a sequência associada $(f_n)_{n\in\mathbb{N}}$ passa por **sharp threshold**, temos que mostrar que $\left(c\ln\frac{1}{p(1-p)}\right)^{-1}\ln\frac{1}{\max(\mathrm{Inf}_i(f(\omega)))}$ é "grande"; i.e., $\forall i\in[n]$, $\mathrm{Inf}_i(f(\omega))$ é "pequeno".

Porém, provar que todas as influências são "pequenas" pode ser o verdadeiro desafio.

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Alternativamente, podemos utilizar a ideia de *algoritmo* para conseguir cotas como a da Expressão 2.

Definição 2 (Algoritmo)

Dados uma n-upla $x=(x_1,\cdots,x_n)$ e um $t\leq n$, com $t\in\mathbb{N}$, defina $x_{[t]}:=(x_1,\cdots,x_t)$ e $\omega_{x_{[t]}}:=(\omega_{x_1},\cdots,\omega_{x_t})$. Um algoritmo \mathbf{T} é uma tripla $(i_1,\psi_t,t\leq n)$ que toma $\omega\in\Omega_n$ como entrada e devolve uma sequência ordenada $\mathbf{i}=(i_1,\cdots,i_n)$ construída indutivamente da seguinte forma: para $2\leq t\leq n$,

$$i_t = \psi_t(\mathbf{i}_{[t-1]}, \omega_{\mathbf{i}_{[t-1]}}) \in [n] \setminus \{i_1, \dots, i_{t-1}\};$$

onde ψ_t é interpretada como a regra de decisão no tempo t (ψ_t toma, como argumentos, a localização e o valor dos bits para os primeiros (t-1) passos do processo de indução, e, então, decide qual o próximo bit que será consultado). Aqui, note que a primeira coordenada i_1 é determinística. Por fim, para $f: \Omega_n \to \{0,1\}$, defina:

$$\tau(\omega) = \tau_{f,\mathbf{T}}(\omega) := \min\{t \ge 1 : \forall x \in \Omega_n, x_{\mathbf{i}_{[t]}} = \omega_{\mathbf{i}_{[t]}} \implies f(x) = f(\omega)\}.$$

Desigualdade de O'Donnel-Saks-Schramm-Servedio

Teorema 3 (Desiguladade de OSSS)

Seja $p \in [0,1]$ e $n \in \mathbb{N}$. Fixe uma função Booleana crescente $f:\Omega_n \to \{0,1\}$ e um algoritmo \mathbf{T} ; então, vale que

$$\mathbb{V}_p(f(\omega)) \le p(1-p) \sum_{i \in [n]} \delta_i(\mathbf{T}) \operatorname{Inf}_i(f(\omega)),$$

onde $\delta_i(\mathbf{T}) = \delta_i(f, \mathbf{T}) := \mathbb{Q}_p(\exists t \leq \tau(\omega) : i_t = i)$ é chamado de revelação de f para o algoritmo \mathbf{T} e o bit i.

Perceba que, sobre a Expressão 2, se todas as revelações $\delta_i(\mathbf{T})$ forem pequenas; ou seja, se existe um algoritmo que determina de forma completa $f(\omega)$, mas revela "poucos" bits, então $(f_n)_{n\in\mathbb{N}}$ passa por *sharp threshold*.

Seja $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ reticulado tal que \mathbb{Z}^d é conjunto de vértices e $\mathbb{E}^d = \{(x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x,y) = 1\}$ é conjunto de elos, onde $\delta(x,y) = \sum_{i=1}^d |x_i - y_i|$.

Seja $\mathbb{L}^d = (\mathbb{Z}^d, \mathcal{E}^d)$ reticulado tal que \mathbb{Z}^d é conjunto de vértices e $\mathcal{E}^d = \{(x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x,y) = 1\}$ é conjunto de elos, onde $\delta(x,y) = \sum_{i=1}^d |x_i - y_i|$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P}_p)$ é definido por $\Omega = \prod_{e \in \mathbb{E}^d} \{0, 1\}$, com $\omega = (\omega_e : e \in \mathbb{E}^d)$, $\mathcal{F} = \sigma$ (conjuntos cilíndricos finito-dimensionais) e \mathbb{P}_p é a medida produto Bernoulli; ou seja, $\mathbb{P}(\omega) = \prod_{e: \omega_p = 1} p \prod_{e: \omega_p = 0} (1 - p)$.

Seja $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ reticulado tal que \mathbb{Z}^d é conjunto de vértices e $\mathbb{E}^d = \{(x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x,y) = 1\}$ é conjunto de elos, onde $\delta(x,y) = \sum_{i=1}^d |x_i - y_i|$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P}_p)$ é definido por $\Omega = \prod_{e \in \mathbb{E}^d} \{0, 1\}$, com $\omega = (\omega_e : e \in \mathbb{E}^d)$, $\mathcal{F} = \sigma$ (conjuntos cilíndricos finito-dimensionais) e \mathbb{P}_p é a medida produto Bernoulli; ou seja, $\mathbb{P}(\omega) = \prod_{e: \omega_p = 1} p \prod_{e: \omega_p = 0} (1 - p)$.

Figura 2: $\omega \in \Omega$ em \mathbb{L}^2 com p = 0.25.

Seja $\mathbb{L}^d = (\mathbb{Z}^d, \mathbb{E}^d)$ reticulado tal que \mathbb{Z}^d é conjunto de vértices e $\mathbb{E}^d = \{(x,y) \in$ $\mathbb{Z}^d \times \mathbb{Z}^d : \delta(x,y) = 1$ } é conjunto de elos, onde $\delta(x,y) = \sum_{i=1}^d |x_i - y_i|$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P}_p)$ é definido por $\Omega = \prod_{e \in \mathbb{F}^d} \{0, 1\}$, com $\omega = (\omega_e)$ $e \in \mathbb{E}^d$), $\mathcal{F} = \sigma$ (conjuntos cilíndricos finito-dimensionais) e \mathbb{P}_p é a medida produto Bernoulli; ou seja, $\mathbb{P}(\omega) = \prod_{e:\omega=-1} p \prod_{e:\omega=-0} (1-p)$.

Figura 3: $\omega \in \Omega$ em \mathbb{L}^2 com p = 0.50.

Seja $\mathbb{L}^d = (\mathbb{Z}^d, \mathcal{E}^d)$ reticulado tal que \mathbb{Z}^d é conjunto de vértices e $\mathcal{E}^d = \{(x,y) \in \mathbb{Z}^d \times \mathbb{Z}^d : \delta(x,y) = 1\}$ é conjunto de elos, onde $\delta(x,y) = \sum_{i=1}^d |x_i - y_i|$.

O espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P}_p)$ é definido por $\Omega = \prod_{e \in E^d} \{0, 1\}$, com $\omega = (\omega_e : e \in E^d)$, $\mathcal{F} = \sigma$ (conjuntos cilíndricos finito-dimensionais) e \mathbb{P}_p é a medida produto Bernoulli; ou seja, $\mathbb{P}(\omega) = \prod_{e:\omega_e=1} p \prod_{e:\omega_e=0} (1-p)$.

Figura 4: $\omega \in \Omega$ em \mathbb{L}^2 com p = 0.75.

Porém, note que, se considerarmos funções do tipo $f_n:\Omega_n\to\{0,1\}$, com $\Omega_n=\prod_{e\in E}\{0,1\}$ e $E\subset E^d$ finito, então resultados como os dos Teoremas 2 e 3 ainda valem.

Notações e definições:

• Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in \mathbb{E}^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in \mathbb{E}^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in \mathbb{E}^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\Lambda_n := [-n, n]^d$ caixa d-dimensional de lado 2n centrada na origem e $\partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$; ou seja, $\partial \Lambda_n$ é a fronteira de Λ_n .

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in \mathbb{E}^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\Lambda_n := [-n, n]^d$ caixa d-dimensional de lado 2n centrada na origem e $\partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$; ou seja, $\partial \Lambda_n$ é a fronteira de Λ_n .
- Defina $\theta(p) := \mathbb{P}_p(\{\omega \in \Omega : |C_0(\omega)| = +\infty\})$. Nesse caso, é possível mostrar que $\theta(p)$ é não-decrescente em p.

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in \mathbb{E}^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\Lambda_n := [-n, n]^d$ caixa d-dimensional de lado 2n centrada na origem e $\partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$; ou seja, $\partial \Lambda_n$ é a fronteira de Λ_n .
- Defina $\theta(p) := \mathbb{P}_p(\{\omega \in \Omega : |C_0(\omega)| = +\infty\})$. Nesse caso, é possível mostrar que $\theta(p)$ é não-decrescente em p.
- Defina $p_c(d) := \sup\{p : \theta(p) = 0\}.$

- Sejam $x, y \in \mathbb{Z}^d$, então x está conectado a y se existe caminho de elos abertos $(e \in \mathbb{E}^d$ "aberto" é o mesmo que $\omega_e = 1$) que conecta x a y (notação: $x \leftrightarrow y$).
- Dado $x \in \mathbb{Z}^d$, $C_x(\omega) = \{y \in \mathbb{Z}^d : x \leftrightarrow y\}$ é dito cluster de x. Nesse sentido, $\{\omega \in \Omega : |C_0(\omega)| = +\infty\}$ é chamado de evento **percolar** (notação: $\{0 \leftrightarrow +\infty\}$).
- Defina $\Lambda_n := [-n, n]^d$ caixa d-dimensional de lado 2n centrada na origem e $\partial \Lambda_n := \Lambda_n \setminus \Lambda_{n-1}$; ou seja, $\partial \Lambda_n$ é a fronteira de Λ_n .
- Defina $\theta(p) := \mathbb{P}_p(\{\omega \in \Omega : |C_0(\omega)| = +\infty\})$. Nesse caso, é possível mostrar que $\theta(p)$ é não-decrescente em p.
- Defina $p_c(d) := \sup\{p : \theta(p) = 0\}.$
- Para $n, m \in \mathbb{Z}$, defina a caixa $R(n, m) := [0, n] \times [0, m]$ e os eventos $\mathcal{H}(n, m) := \{\exists \text{ cruzamento horizontal em } R(n, m)\}$ \bigoplus e $\mathcal{V}(n, m) := \{\exists \text{ cruzamento vertical em } R(n, m)\}$ \bigoplus .

Notações e definições:

• Defina um reticulado dual $(\mathbb{L}^2)^* = ((\mathbb{Z}^2)^*, (\mathbb{E}^2)^*)$ onde $(\mathbb{Z}^2)^* = \mathbb{Z}^2 + (\frac{1}{2}, \frac{1}{2})$ é conjunto de vértices e $(\mathbb{E}^2)^* = \{(x^*, y^*) \in (\mathbb{Z}^2)^* \times (\mathbb{Z}^2)^* : \delta(x^*, y^*) = 1\}$ é conjunto de elos. Além disso, para cada elo $e \in \mathbb{E}^2$, denote por $e^* \in (\mathbb{E}^2)^*$ o elo no reticulado dual que o cruza; por fim, defina $\omega_{e^*}^* := 1 - \omega_e$.

Figura 5: Reticulado original \mathbb{L}^2 (linha sólida) e *reticulado dual* $(\mathbb{L}^2)^*$ (linha tracejada).

Teorema 4 (Kesten, 1980)

O ponto crítico para percolação Bernoulli em \mathbb{L}^2 é $\frac{1}{2}.$

O Teorema 4 será demonstrado em duas partes. Primeiro, veremos o resultado de que $p_c(2) \ge \frac{1}{2}$ e, por fim, provaremos que $p_c(2) \le \frac{1}{2}$.

Teorema 4 (Kesten, 1980)

O ponto crítico para percolação Bernoulli em \mathbb{L}^2 é $\frac{1}{2}$.

O Teorema 4 será demonstrado em duas partes. Primeiro, veremos o resultado de que $p_c(2) \ge \frac{1}{2}$ e, por fim, provaremos que $p_c(2) \le \frac{1}{2}$.

Proposição 1

Existe $\alpha > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_{\frac{1}{2}}(0 \leftrightarrow \partial \Lambda_n) \le n^{-\alpha}$. Em particular $p_c \ge \frac{1}{2}$.

A partir da Proposição 1 e recordando a definição de $p_c(d)$, para verificar que $p_c(2) \ge \frac{1}{2}$, basta notar que, se $n \to +\infty$, então $\mathbb{P}_{\frac{1}{2}}(\{\omega \in \Omega : |C_0(\omega)| = +\infty\}) = 0$.

Teorema 4 (Kesten, 1980)

O ponto crítico para percolação Bernoulli em \mathbb{L}^2 é $\frac{1}{2}.$

O Teorema 4 será demonstrado em duas partes. Primeiro, veremos o resultado de que $p_c(2) \geq \frac{1}{2}$ e, por fim, provaremos que $p_c(2) \leq \frac{1}{2}$.

Proposição 1

Existe $\alpha > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_{\frac{1}{2}}(0 \leftrightarrow \partial \Lambda_n) \le n^{-\alpha}$. Em particular $p_c \ge \frac{1}{2}$.

A partir da Proposição 1 e recordando a definição de $p_c(d)$, para verificar que $p_c(2) \ge \frac{1}{2}$, basta notar que, se $n \to +\infty$, então $\mathbb{P}_{\frac{1}{2}}(\{\omega \in \Omega : |C_0(\omega)| = +\infty\}) = 0$.

Proposição 2

Para qualquer $p > \frac{1}{2}$, existe $\beta = \beta(p) > 0$, tal que

$$\mathbb{P}_p(\mathcal{H}(2n,n)) \ge 1 - \frac{1}{\beta}n^{-\beta}.$$

Demonstração:

Comece por definir a função Booleana $f_n(\omega) := \mathbb{I}_{\mathcal{H}(2n,n)}(\omega)$. Fixe um elo e em $\mathbb{R}(2n,n)$ e veja que se $\nabla_e f(\omega) \neq 0$, então existe um caminho aberto na rede dual que conecta a parte de cima (de baixo, respec.) de uma caixa do tipo $\mathbb{R}^* = \left[\frac{1}{2}, 2n - \frac{1}{2}\right] \times \left[-\frac{1}{2}, n + \frac{1}{2}\right]$ à extremidade superior (inferior, respec.) do elo e^* . Nesse caso, note que pelo menos um dos dois "braços" de elos abertos na rede dual com início em e^* tem tamanho $\geq \frac{n}{2}$.

Figura 6: Caixas R = R(2n, n) e R^* para um elo fixado e, tal que $\nabla_e f_n(\omega) \neq 0$.

Como os estados dos elos de ω^{\star} são determinados, de maneira independente, seguindo uma distribuição Bernoulli de parâmetro 1-p, a Proposição 1 nos dá que, para $p>\frac{1}{2}$,

$$\begin{split} \operatorname{Inf}_e(f_n(\omega)) &= \mathbb{P}_p(f_n(\omega) \neq f_n(\operatorname{Flip}_e(\omega))) \leq 2 \, \mathbb{P}_{1-p}\left(0 \leftrightarrow \partial \Lambda_{\frac{n}{2}}\right), \text{ por inclus. de eventos} \\ &\leq 2 \, \mathbb{P}_{\frac{1}{2}}\left(0 \leftrightarrow \partial \Lambda_{\frac{n}{2}}\right), \text{ já que } 1 - p < \frac{1}{2} \\ &\leq \frac{1}{N}, \text{ onde } N = \frac{1}{2}\left(\frac{n}{2}\right)^{\alpha}. \end{split}$$

Como os estados dos elos de ω^{\star} são determinados, de maneira independente, seguindo uma distribuição Bernoulli de parâmetro 1-p, a Proposição 1 nos dá que, para $p>\frac{1}{2}$,

$$\begin{split} \operatorname{Inf}_e(f_n(\omega)) &= \mathbb{P}_p(f_n(\omega) \neq f_n(\operatorname{Flip}_e(\omega))) \leq 2 \, \mathbb{P}_{1-p} \left(0 \leftrightarrow \partial \Lambda_{\frac{n}{2}} \right), \text{ por inclus. de eventos} \\ &\leq 2 \, \mathbb{P}_{\frac{1}{2}} \left(0 \leftrightarrow \partial \Lambda_{\frac{n}{2}} \right), \text{ já que } 1 - p < \frac{1}{2} \\ &\leq \frac{1}{N}, \text{ onde } N = \frac{1}{2} \left(\frac{n}{2} \right)^{\alpha}. \end{split}$$

O que acabamos de ver é que, para todo $e \in R(2n,n)$, $\mathrm{Inf}_e(f_n(\omega)) \leq \frac{1}{N}$; o que, pelo Teorema 2, implica em dizer que, para $p > \frac{1}{2}$,

$$F'_n(p) \ge c' \ln(N) \, \mathbb{V}_p(f_n(\omega)), \text{ onde } c' = \left(c \ln \frac{1}{p(1-p)}\right)^{-1}.$$

Assim, integrando a Expressão 4 entre $\frac{1}{2}$ e p, obtemos

$$F_n(p) \ge 1 - \frac{1}{F_n(\frac{1}{2})} N^{-c'(p-\frac{1}{2})} \ge 1 - \frac{1}{\beta} n^{-\beta},$$

para β pequeno o suficiente.

(4)

Demonstração (Teorema 4):

Para provar que, em d=2, $p_c(d)$ é igual a $\frac{1}{2}$, basta mostrar que $p_c(2) \leq \frac{1}{2}$; já que, pela Proposição 1, temos que $p_c(2) \geq \frac{1}{2}$. Porém, a estratégia utilizada aqui será a de mostrar que, para $p>\frac{1}{2}$, existe, com probabilidade 1, aglomerado de tamanho infinito.

Demonstração (Teorema 4):

Para provar que, em $d=2,\ p_c(d)$ é igual a $\frac{1}{2}$, basta mostrar que $p_c(2)\leq \frac{1}{2}$; já que, pela Proposição 1, temos que $p_c(2)\geq \frac{1}{2}$. Porém, a estratégia utilizada aqui será a de mostrar que, para $p>\frac{1}{2}$, existe, com probabilidade 1, aglomerado de tamanho infinito.

Defina, como na Figura 7, os eventos $A_n := \mathcal{H}(2^{n+1}, 2^n)$ e $B_n := \mathcal{V}(2^n, 2^{n+1})$.

Figura 7: Ocorrência (alternada) dos eventos $\mathcal{H}(2^{n+1},2^n)$ e $\mathcal{V}(2^n,2^{n+1})$ para $n\in\{0,1,2\}$.

Agora, note que se A_n e B_n ocorrem para todo $n \in \mathbb{N}$, com exceção de uma quantidade finita de vezes, então existe aglomerado de tamanho infinito em ω .

Assim, pela Proposição 2, e considerando um retângulo do tipo $R(2^{n+1},2^n)$, temos que, para $p>\frac{1}{2}$,

$$\sum_{n=1}^{+\infty} \mathbb{P}_p(A_n^c) \le \frac{1}{\beta} \sum_{n=1}^{+\infty} 2^{-\beta n}. \tag{5}$$

Agora, note que se A_n e B_n ocorrem para todo $n \in \mathbb{N}$, com exceção de uma quantidade finita de vezes, então existe aglomerado de tamanho infinito em ω .

Assim, pela Proposição 2, e considerando um retângulo do tipo $R(2^{n+1},2^n)$, temos que, para $p>\frac{1}{2}$,

$$\sum_{n=1}^{+\infty} \mathbb{P}_p(A_n^c) \le \frac{1}{\beta} \sum_{n=1}^{+\infty} 2^{-\beta n}.$$
 (5)

Da Expressão 5, perceba que $\sum_{n=1}^{+\infty} 2^{-\beta n}$ converge; logo, por Borel-Cantelli, $\mathbb{P}(A_n{}^c$ infinitas vezes) = 0. O que significa que, com probabilidade 1, A_n não ocorre, no máximo, uma quantidade finitas de vezes. Usando invariância por translação, $\mathbb{P}_p(B_n{}^c$ infinitas vezes) = 0. Dessa forma, como A_n e B_n ocorrem para todo $n \in \mathbb{N}$, exceto para uma quantidade finita de termos dessas sequências, então existe, com probabilidade 1, aglomerado de tamanho infinito em ω .

Alternativamente, podemos adotar a seguinte estratégia. Veja que, para $p=\frac{1}{2}$, e relembrando da definição da rede dual; i.e., se $\omega \sim \mathbb{P}_p$, então $\omega^* \sim \mathbb{P}_{1-p}$,

$$\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = 1 - \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)^{c}) = 1 - \mathbb{P}_{\frac{1}{2}}\left(\mathcal{V}^{*}\left(\left[\frac{1}{2}, n + \frac{1}{2}\right] \times \left[-\frac{1}{2}, n + \frac{1}{2}\right]\right)\right)$$

$$= 1 - \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) \implies \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = \frac{1}{2}, \ \forall n \in \mathbb{N}.$$

Alternativamente, podemos adotar a seguinte estratégia. Veja que, para $p=\frac{1}{2}$, e relembrando da definição da rede dual; i.e., se $\omega \sim \mathbb{P}_p$, então $\omega^* \sim \mathbb{P}_{1-p}$,

$$\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = 1 - \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)^{c}) = 1 - \mathbb{P}_{\frac{1}{2}}\left(\mathcal{V}^{*}\left(\left[\frac{1}{2}, n + \frac{1}{2}\right] \times \left[-\frac{1}{2}, n + \frac{1}{2}\right]\right)\right)$$

$$= 1 - \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) \implies \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = \frac{1}{2}, \ \forall n \in \mathbb{N}.$$

Assim, se pudermos mostrar que, para $p \in (p_c, 1]$, $\mathbb{P}_p(\mathcal{H}(n+1, n)) \to 1$, quando $n \to +\infty$, então temos que $p_c \geq \frac{1}{2}$.

Alternativamente, podemos adotar a seguinte estratégia. Veja que, para $p=\frac{1}{2}$, e relembrando da definição da rede dual; i.e., se $\omega \sim \mathbb{P}_p$, então $\omega^* \sim \mathbb{P}_{1-p}$,

$$\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = 1 - \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)^{c}) = 1 - \mathbb{P}_{\frac{1}{2}}\left(\mathcal{V}^{*}\left(\left[\frac{1}{2}, n + \frac{1}{2}\right] \times \left[-\frac{1}{2}, n + \frac{1}{2}\right]\right)\right)$$

$$= 1 - \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) \implies \mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = \frac{1}{2}, \ \forall n \in \mathbb{N}.$$

Assim, se pudermos mostrar que, para $p \in (p_c, 1]$, $\mathbb{P}_p(\mathcal{H}(n+1, n)) \to 1$, quando $n \to +\infty$, então temos que $p_c \geq \frac{1}{2}$.

Agora, devemos mostrar que $p_c \leq \frac{1}{2}$. Para isso, suponha $p_c > \frac{1}{2}$. Assim,

$$\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) \leq \mathbb{P}_{\frac{1}{2}}\left(\bigcup_{i=1}^{n} (0 \leftrightarrow \partial \Lambda_{n})\right) \leq n \, \mathbb{P}_{\frac{1}{2}}(0 \leftrightarrow \partial \Lambda_{n});$$

o que, se, para $p \in [0, p_c)$, pudermos mostrar que $\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \to 0$ "rápido o suficiente", quando $n \to +\infty$, é um absurdo – já que $\mathbb{P}_{\frac{1}{2}}(\mathcal{H}(n+1,n)) = \frac{1}{2}, \forall n \in \mathbb{N}$.

Assim, queremos provar que, para $p \in [0, p_c)$, $\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n)$ decai (exponencialmente rápido) com n.

Teorema 5 (H. Duminil-Copin, A. Raoufi e V. Tassion, 2019)

Para percolação Bernoulli em \mathbb{Z}^d ,

- 1. Para $p < p_c$, existe $c_p > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \le e^{-c_p n}$.
- 2. (Mean Field Lower Bound) Existe c>0 tal que $p>p_c, \mathbb{P}_p(0\leftrightarrow +\infty)\geq c\,(p-p_c).$

Outras provas para resultados como o do Teorema 5 foram desenvolvidas por Menshikov (1986) e Aizenman e Barsky (1987), além de H. Duminil-Copin e V. Tassion (2016).

Teorema 5 (H. Duminil-Copin, A. Raoufi e V. Tassion, 2019)

Para percolação Bernoulli em \mathbb{Z}^d ,

- 1. Para $p < p_c$, existe $c_p > 0$ tal que, para todo $n \ge 1$, $\mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \le e^{-c_p n}$.
- 2. (Mean Field Lower Bound) Existe c > 0 tal que $p > p_c$, $\mathbb{P}_p(0 \leftrightarrow +\infty) \ge c(p p_c)$.

Outras provas para resultados como o do Teorema 5 foram desenvolvidas por Menshikov (1986) e Aizenman e Barsky (1987), além de H. Duminil-Copin e V. Tassion (2016).

Lema 1

Considere uma sequência de funções convergentes $f_n:[0,\bar{x}]\to[0,M]$ diferenciáveis e crescentes em x tal que, para todo $n\geq 1$,

$$f'_n \ge \frac{n}{\Sigma} f_n,$$

onde $\Sigma_n = \sum_{k=0}^{n-1} f_k$. Então existe $\tilde{x} \in [0, \bar{x}]$ tal que

b. Para qualquer $x > \tilde{x}$, $f = \lim_{n \to +\infty} f_n$ satisfaz $f(x) \ge x - \bar{x}$.

a. Para qualquer $x < \tilde{x}$, existe $c_x > 0$ tal que, para qualquer $n \ge 1$, $f_n(x) \le e^{-c_x n}$

André V. R. Amaral | Transição de Fase em Modelos de Percolação via Funções Booleanas.

Defina $\theta_n(p) := \mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n) \in S_n := \sum_{s=0}^{n-1} \theta_s(p)$. Nesse caso, vale o resultado abaixo.

Proposição 3

Para qualquer $n \ge 1$, temos que

$$\sum_{e \in E} \operatorname{Inf}_{e}(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_{n}}(\omega)) \geq \frac{n}{S_{n}} \, \theta_{n}(p) \, (1 - \theta_{n}(p)),$$

onde E_n é o conjunto de elos tal que as duas extremidades de e estão em Λ_n .

Para a demonstração da Proposição 3, é suficiente provar que para qualquer $1 \le s \le n$, temos um algoritmo **T** para $\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)$ tal que, para todo $e = (x, y) \in \mathcal{E}_n$,

$$\delta_e(\mathbf{T}) \leq \mathbb{P}_p(x \leftrightarrow \partial \Lambda_s) + \mathbb{P}_p(y \leftrightarrow \partial \Lambda_s).$$

Defina $\theta_n(p) := \mathbb{P}_p(0 \leftrightarrow \partial \Lambda_n)$ e $S_n := \sum_{s=0}^{n-1} \theta_s(p)$. Nesse caso, vale o resultado abaixo.

Proposição 3

Para qualquer $n \geq 1$, temos que

$$\sum \operatorname{Inf}_{e}(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_{n}}(\omega)) \geq \frac{n}{S_{n}} \theta_{n}(p) (1 - \theta_{n}(p)),$$

onde E_n é o conjunto de elos tal que as duas extremidades de e estão em Λ_n .

Para a demonstração da Proposição 3, é suficiente provar que para qualquer $1 \le s \le n$, temos um algoritmo **T** para $\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega)$ tal que, para todo $e=(x,y)\in\mathcal{E}_n$,

$$\delta_{\varepsilon}(\mathbf{T}) \leq \mathbb{P}_{n}(x \leftrightarrow \partial \Lambda_{s}) + \mathbb{P}_{n}(y \leftrightarrow \partial \Lambda_{s}).$$

De fato, pelo Teorema 3 (Desigualdade de OSSS),

$$\sum_{n=1}^{n} \mathbb{V}_{p}(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_{n}}(\omega)) \leq \sum_{n=1}^{n} p(1-p) \sum_{n=1}^{n} (\mathbb{P}_{p}(x \leftrightarrow \partial \Lambda_{s}) + \mathbb{P}_{p}(y \leftrightarrow \partial \Lambda_{s})) \operatorname{Inf}_{e}(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_{n}}(\omega))$$

 $\sum_{s=1}^{n} \mathbb{V}_{p}(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_{n}}(\omega)) \leq \sum_{s=1}^{n} p(1-p) \sum_{e \in \mathbb{E}_{n}} (\mathbb{P}_{p}(x \leftrightarrow \partial \Lambda_{s}) + \mathbb{P}_{p}(y \leftrightarrow \partial \Lambda_{s})) \operatorname{Inf}_{e}(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_{n}}(\omega)).$ Reescrevendo $\mathbb{V}_p(\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega))$ e dizendo que $\sum_{s=1}^n \mathbb{P}_p(x\leftrightarrow\partial\Lambda_s) + \mathbb{P}_p(y\leftrightarrow\partial\Lambda_s) \leq 4S_n$,

temos o resultado desejado. 4 □ ▶ 4 늘 ▶ 20 / 26 André V. R. Amaral | Transição de Fase em Modelos de Percolação via Funções Booleanas.

Nesse caso, o algoritmo de exploração T
 poderá se representado, para cada $1 \le s \le n$, pela Figura 8.

Figura 8: Algoritmo de exploração T, com $1 \le s \le n$, para a função $\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)$.

Aqui, lembre-se de que queremos demonstrar que $\delta_e(\mathbf{T}) \leq \mathbb{P}_p(x \leftrightarrow \partial \Lambda_s) + \mathbb{P}_p(y \leftrightarrow \partial \Lambda_s)$.

Demonstração:

Defina o conjunto de índices e utilizando duas sequências $\partial \Lambda_s = V_0 \subset V_1 \subset \cdots \subset V_n$ e $\emptyset = E_0 \subset E_1 \subset \cdots \subset E_n$. Aqui, V_t representa o conjunto de vértices que o algoritmo verificou estar conectado a $\partial \Lambda_s$ e E_t representa o conjunto de elos explorados pelo algoritmo até o instante t.

Demonstração:

Defina o conjunto de índices e utilizando duas sequências $\partial \Lambda_s = V_0 \subset V_1 \subset \cdots \subset V_n$ e $\emptyset = E_0 \subset E_1 \subset \cdots \subset E_n$. Aqui, V_t representa o conjunto de vértices que o algoritmo verificou estar conectado a $\partial \Lambda_s$ e E_t representa o conjunto de elos explorados pelo algoritmo até o instante t.

Fixando uma ordem para os elos de E_n , defina $V_0 = \partial \Lambda_s$ e $E_0 = \emptyset$. Assuma, então, que os conjuntos $V_t \subset V_n$ e $E_t \subset E_n$ foram construídos de tal forma que, em t, uma das duas situações a segui se aplica:

- a. Se existe elo e=(x,y) em $\mathcal{E}_n\setminus\mathcal{E}_t$ tal que $x\in\mathcal{V}_t$ e $y\notin\mathcal{V}_t$ (se existir mais de um, escolha o menor deles de acordo com a ordem estabelecida), então defina $\mathbf{e}_{t+1}:=e,\,\mathcal{E}_{t+1}:=\mathcal{E}_t\cup\{e\}$ e
 - $\mathbf{V}_{t+1} := egin{cases} \mathbf{V}_t \cup \{y\} & ext{se } \omega_e = 1 \\ \mathbf{V}_t & ext{caso contrário.} \end{cases}$
- b. Se e não existe, então defina \mathbf{e}_{t+1} como o menor elo em $\mathbf{E}_n \setminus \mathbf{E}_t$ (de acordo com a ordem estabelecida), $\mathbf{E}_{t+1} := \mathbf{E}_t \cup \{e\}$ e $\mathbf{V}_{t+1} := \mathbf{V}_t$.

Perceba que, enquanto estivermos na situação "a.", ainda estamos descobrindo elos que fazem parte da componente conectada a $\partial \Lambda_s$; ao passo que, assim que mudamos para a situação "b.", nós permanecemos nela. Nesse caso, $\tau(\omega)$ não é maior que o último t para o qual ainda estamos na situação "a.".

Relembrando a definição de $\delta_e(\mathbf{T}) := \mathbb{P}_p(\exists t \leq \tau(\omega) : e_t = e)$, temos que

$$\mathbb{P}_{p}(\exists t \leq \tau(\omega) : e_{t} = e) \leq \mathbb{P}_{p}(\{x \leftrightarrow \partial \Lambda_{s}\} \cup \{y \leftrightarrow \partial \Lambda_{s}\})$$
$$\leq \mathbb{P}_{p}(x \leftrightarrow \partial \Lambda_{s}) + \mathbb{P}_{p}(y \leftrightarrow \partial \Lambda_{s}),$$

finalizando a demonstração.

Demonstração (Teorema 5):

Para $\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega)$, utilize o Teorema 1 e a Proposição 3 para dizer que

$$\theta_n'(p) = \sum_{e \in \mathbb{F}} \operatorname{Inf}_e(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)) \ge \frac{n}{S_n} \theta_n(p) (1 - \theta_n(p)).$$
 (6)

Demonstração (Teorema 5):

Para $\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega)$, utilize o Teorema 1 e a Proposição 3 para dizer que

$$\theta_n'(p) = \sum_{e \in \mathbb{F}} \operatorname{Inf}_e(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)) \ge \frac{n}{S_n} \theta_n(p) (1 - \theta_n(p)).$$
 (6)

Fixando $\bar{p} \in (p_c, 1)$, veja que, para $p \leq \bar{p}$, $1 - \theta_n(p) \geq 1 - \theta_1(\bar{p}) > 0$; dessa forma, considerando a Expressão 6, somos capazes de dizer que

$$\left(\frac{1}{1-\theta_1(\bar{p})}\,\theta_n(p)\right)' \geq \frac{n}{(1-\theta_1(\bar{p}))^{-1}\,S_n} \cdot \left(\frac{1}{1-\theta_1(\bar{p})}\,\theta_n(p)\right).$$

Demonstração (Teorema 5):

Para $\mathbb{I}_{0\leftrightarrow\partial\Lambda_n}(\omega)$, utilize o Teorema 1 e a Proposição 3 para dizer que

$$\theta_n'(p) = \sum_{\in \mathbb{R}} \operatorname{Inf}_e(\mathbb{I}_{0 \leftrightarrow \partial \Lambda_n}(\omega)) \ge \frac{n}{S_n} \theta_n(p) (1 - \theta_n(p)).$$
 (6)

Fixando $\bar{p} \in (p_c, 1)$, veja que, para $p \leq \bar{p}$, $1 - \theta_n(p) \geq 1 - \theta_1(\bar{p}) > 0$; dessa forma, considerando a Expressão 6, somos capazes de dizer que

$$\left(\frac{1}{1-\theta_1(\bar{p})}\,\theta_n(p)\right)' \geq \frac{n}{(1-\theta_1(\bar{p}))^{-1}\,S_n} \cdot \left(\frac{1}{1-\theta_1(\bar{p})}\,\theta_n(p)\right).$$

Assim, aplicando o Lema 1 para $f_n(p) = (1 - \theta_1(\bar{p}))^{-1} \theta_n(p)$, $\exists \tilde{p}_c \in [0, \bar{p}]$ tal que

a. Para qualquer $p < \tilde{p}_c$, existe $c_p > 0$ tal que, para qualquer $n \ge 1$, $\theta_n(p) \le e^{-c_p n}$.

b. Existe c > 0 tal que, para qualquer $p > \tilde{p}_c$, $\theta(p) \ge c (p - \tilde{p}_c)$.

Por fim, já que \bar{p} foi escolhido maior do que p_c , então \tilde{p}_c deve ser, necessariamente, igual a p_c .

Referências

Michael Aizenman and David J Barsky.

Sharpness of the phase transition in percolation models.

Communications in Mathematical Physics, 108(3):489–526, 1987.

 $\mbox{\it Vincent Beffara}$ and $\mbox{\it Hugo Duminil-Copin}.$

The self-dual point of the two-dimensional random-cluster model is critical for $q \ge 1$.

Probability Theory and Related Fields, 153(3-4):511-542, 2012.

Hugo Duminil-Copin.

Sharp Threshold Phenomena in Statistical Physics.

Japanese Journal of Mathematics, 14(1):1–25, 2019.

Hugo Duminil-Copin, Aran Raoufi, and Vincent Tassion.

Sharp phase transition for the random-cluster and Potts models via decision trees.

Annals of Mathematics, 189(1):75-99, 2019.

Referências

Hugo Duminil-Copin and Vincent Tassion.

A new proof of the sharpness of the phase transition for bernoulli percolation on \mathbb{Z}^d .

L'Enseignement Mathématique, 62:199–206, 2016.

H. Kesten.

The critical probability of bond percolation on the square lattice equals 1/2.

Communications in mathematical physics, 74(1):41–59, 1980.

Mikhail V Menshikov.

Coincidence of critical points in percolation problems.

 $Soviet\ Mathematics\ Doklady,\ 33:856-859,\ 1986.$