9. 딥러닝 모델 학습방법

The Deep Learning Revolution

Algorithms

인공신경망(Artificial Neural Network, ANN)

- 뇌신경은 수많은 신경세포(뉴런, neuron)들이 연결되어 정보를 처리하고 전달합니다.
- 인공신경망은 뇌 신경계의 정보처리 구조를 모방하여 만든 계산 알고리즘입니다.
- 뇌 신경계와 같이 수많은 계산 함수를 연결하여 복잡한 정보를 처리하는 네트워크 구조입니다.

Axon 축색돌기 이전 층의 연결세기 다음층의 단위들 단위 단

inputs

인공 뉴런(Neuron)

transfer

weights

activation

activation function

net input net;

인공 뉴런 모델의 수학적 표현

입력 가중치와 편향 (Input node) (Weights and bias) 활성화 함수 (Activation function) 출력 (Output node)

활성화 함수(Activation function)

입력값들의 수학적 선형결합을 다양한 형태의 비선형(또는 선형) 결합으로 변환하는 역할을 합니다.

렐루 (ReLU)

입력이 양수일때는 x, 음수일 때는 0을 출력

시그모이드 (Sigmoid)

0~1까지의 비선형 형태로 변경

하이퍼볼릭 탄젠트 (Hyperbolic Tangent)

선형함수의 결과를 -1~1까지의 비선형 형태로 변경하는 함수

소프트맥스 (Softmax)

입력값을 0~1 사이 출력이 되도록 정규화, 출력값들의 총합은 항상 1

$$\phi(z) = \frac{e^i}{\sum_{j=0}^k e^j}$$
 where i=0,1,....k

심층신경망(DNN, Deep Neural Network)

- 딥러닝은 여러 층(layer)을 가진 인공신경망(Artificial Neural Network)을 사용하여 학습을 수행하는 것입니다.
- 심층신경망은 입력층과 출력층사이에 다수의 은닉층(hidden layer)을 포함하는 인공신경망입니다.
- 머신러닝에서는 비선형 분류를 위해 여러 trick을 사용하지만, DNN은 다수의 은닉층으로 비선형 분류가 가능해집니다.

계산하여 전달하는 층

딥러닝 모델 학습과정

- 1. 미니배치 x를 샘플링합니다.
- 2. X를 신경망에 통과시켜 y에 대한 예측 y_hat을 만듭니다.
- 3. y와 y_hat을 비교하여 손실을 계산합니다.
- 4. 손실(Loss)을 기반으로 경사하강법을 적용해 x가 y를 더 잘 예측할 수 있도록 w와 b를 조정합니다.

딥러닝 모델 학습과정

- 딥러닝 모델 학습은 모델에 입력값을 넣었을 때의 출력값이 최대한 정답과 일치하게 하는 것입니다.
- 딥러닝 모델 학습은 손실(Error/Loss)를 최소화 하는 인공신경망의 가중치(weight)와 편향(bias)을 찾는 과정입니다.
- 딥러닝 모델 매개변수(weight, bias)를 무작위로 부여한 후, 반복학습(순전파-오차역전파)을 통해 모델의 출력값을 정답과 가깝게 되도록 매개변수(weight, bias)를 조금씩 조정합니다.
- 모델 학습은 순전파(Forward Propagation)와 오차역전파(Error Back Propagation)의 반복으로 진행 됩니다.

역전파 알고리즘(Error Back Propagation)

- 신경망 모델은 파라미터(w, b) 값을 랜덤하게 초기화 합니다.
- 신경망 모델에 x값을 입력하면 신경망은 예측 y_hat을 출력합니다.
- 신경망에서 손실 최소화를 위해 가중치를 업데이트 해야 합니다.
- 역전파를 사용해 신경망에 있는 모든 가중치에 대한 비용함수의 Gradient를 계산합니다.
- 가중치에 대한 비용함수의 Gradient에 비례하여 가중치를 조정함으로써 역전파는 비용을 감소하는 방향으로 가중치를 변경할 수 있습니다.

손실함수(Loss Function)

인공신경망 학습의 목적함수로 출력값(예측값)과 정답(실제값)의 차이를 계산합니다.

■ 회귀(Regression)

평균제곱오차 : Mean Squared Error

평균절대오차 : Mean Absolute Error

■ 이진분류(Binary Classification)

Binary Cross Entropy

■ 다중분류(Multi-class Classification)

Categorical Cross Entropy: label(target, 출력값)이 원핫 벡터(One-Hot Vector)

Sparce Categorical Cross Entropy: label(target, 출력값)이 정수(0, 1, 2, 3 또는 n)

옵티마이저(Optimization Algorithm)

딥러닝 모델의 매개변수(weight, bias)를 조절해서 손실함수의 값을 최저로 만드는 과정으로 경사하강법(Gradient Descent)이 대표적입니다.

경사하강법(Gradient Descent)

- 손실함수 J(w)는 가중치(w)의 함수로, 볼록함수 형태라면 미분으로 손실이 가장 작은 가중치를 찾을 수 있습니다.
- 하지만, 딥러닝에서는 손실함수가 복잡하고 계산량이 매우 크고, 미분이 0이 되는 값이 여러 개 존재하므로 미분만으로 최소값을 찾기 어려워 경사하강법(Gradient Descent)을 사용합니다.
- 경사하강법은 손실함수의 현 가중치에서 기울기를 구해서 손실(Loss)을 줄이는 방향으로 업데이트 해 나갑니다.

참고: https://angeloyeo.github.io/2020/08/16/gradient_descent.html

확률적 경사하강법(SGD, Stochastic Gradient Descent)

- 대규모 데이터셋은 전체 데이터를 메모리에 적재하기 어렵고, 수백만개의 파라미터를 가진 신경망 훈련의 계산복잡도로 기본 경사하강법은 비효율적입니다.
- 메모리와 계산의 제약에 대한 해결책으로, 훈련 데이터를 미니배치로 나누어 경사하강법을 수행하는 확률적 경사하강법이 있습니다.

드롭아웃(Dropout)

Hidden Layer의 일부 유닛이 동작하지 않게 하여 overfitting(과적합)을 막는 방법입니다.

Dropout이 적용된 심층신경망

■ 과적합(overfitting)

생성된 모델이 학습 데이터와 지나치게 일치하여 새 데이터를 올바르게 예측하지 못하는 경우입니다.

■ 일반화(generalization)

모델학습에 사용된 데이터가 아닌 이전에 접하지 못한 새로운 데이터에 대해 올바른 예측을 수행하는 능력을 의미합니다.

텐서 (Tensor)

TensorFlow

딥러닝 프로그램을 쉽게 구현할 수 있도록 다양한 기능을 제공해주는 프레임워크입니다.

https://www.tensorflow.org/tutorials/

텐서플로 구조

순환 신경망(RNN, Recurrent Neural Network)

순환신경망은 고정 길이 입력이 아닌 임의 길이를 가진 순차데이터(Sequence Data)를 다룰 수 있습니다. 시계열 데이터로부터 미래값을 예측하고, 문장/오디오를 입력으로 받아 자동번역, 자연어처리를 하는 작업에 유용합니다.

출처 : 도서, 핸즈온 머신러닝 2판

순환 신경망 - LSTM (Long-Short Term Memory)

LSTM 네트워크는 장기적인 종속성을 학습할 수 있는 특수한 종류의 RNN입니다. LSTM은 Forget gate, Input gate, Output gate를 통한 정보전이 및 전파를 제어합니다.

합성곱 신경망(CNN, Convolutional Neural Network)

사람의 시각 피질 메커니즘에 영감을 받아 설계된 이미지, 영상등을 인식하는 신경망 모델 Convolution층에서는 각 filter가 입력 이미지의 픽셀 전체를 차례로 훓고 지나가며 linear combination을 진행하고 Feature Map을 구성합니다.

Thank you