PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-174985

(43) Date of publication of application: 13.07.1993

(51)Int.Cl.

H05B 41/18

(21)Application number: 03-340442

H05B 41/18

(22)Date of filing: 24.12.1991

LTD (72)Inventor: FUKUMORI NORIYUKI

> ARAKAWAUCHI NOBORU UCHIHASHI MASAAKI

(71)Applicant: MATSUSHITA ELECTRIC WORKS

(54) DISCHARGE LAMP LIGHTING DEVICE

(57)Abstract:

PURPOSE: To provide a discharge lamp lighting device wherein a fine discharge is prevented from being generated at the time of restarting so that large electrical stress is prevented from being applied to a connecting terminal or the like.

CONSTITUTION: A discharge lamp DL and a stabilizer L are connected in series, and this series circuit is connected between both ends of an AC power supply AC. An igniter IG for applying a high voltage pulse overlapped with voltage of the AC power supply AC to the discharge lamp DL is provided. In a lighting discriminating circuit OC, lighting/nonlighting of the discharge lamp DL are detected to stop generation of the high voltage pulse from the igniter IG when the discharge lamp DL is lighted. When the discharge lamp DL is transferred from a lighting condition to nonlighting condition, a transistor Q3 is kept on only for the time determined by a capacitor C3 and a resistor R6.

Accordingly, after the discharge lamp DL is placed in nonlighting, during the time before disappearance of a residual ion in the inside of the discharge lamp DL, generation of the high voltage pulse from the igniter IG is stopped.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]A stabilizer which consists of a ** style element with which the series connection was carried out to an electric discharge lamp, and this series circuit was connected among both ends of AC nower supply.

An igniter which superimposes a high voltage pulse on AC power voltage, and is impressed to an electric discharge lamp.

A lighting discrimination circuit which detects lighting and un-switching on on the light of an electric discharge lamp, and stops generating of a high voltage pulse from an igniter at the time of lighting of an electric discharge lamp.

It is the discharge lamp lighting device provided with the above, and a lighting discrimination circuit is provided with a delay means which makes generating of a high voltage pulse from an igniter start after predetermined time passes since a time of an electric discharge lamp shifting to a non-lighted condition from a lighted condition.

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

Ī00011

[Industrial Application]This invention relates to the discharge lamp lighting device provided with the igniter which makes high-tension PASURU superimpose on power supply voltage, and starts an electric discharge lamp.

[0002]

Description of the Prior Art]Conventionally, the composition shown in <u>drawing 5</u> is known as this kind provided with igniter IG of a discharge lamp lighting device. That is, while carrying out the series connection of the stabilizer L set to electric discharge lamp DL from the choke coil as a ** style element and connecting this series circuit among the both ends of AC power supply AC, the high voltage pulse outputted from igniter IG is superimposed on AC power voltage via the stabilizer L.

[0003] The series circuit of resistance $\mathbf{R}_{\mathbf{1}}$ of the couple by which igniter IG was connected among the both ends of AC power supply AC, and R2, Capacitor C1 by which multiple connection was carried out to resistance R_2 , and capacitor C_2 and switching element Q_1 (for example, triac) by which the series connection was carried out to primary winding N₁ of the stabilizer L, It has voltage response type trigger device Q2 (for example, diode AC switch) and resistance R3 which were connected between the node of both resistance R, and R2, and the control terminal (gate) of switching element Q1. Therefore, if the voltage which carried out the partial pressure of the voltage of AC power supply AC like drawing 6 (a) by resistance R1 and R2 exceeds the breakover voltage of trigger device Q2, trigger device Q2 will be turned on and current will flow into the control terminal of switching element Q1 via resistance R2. Then, switching element Q1 is turned on and charging current I_C as shown in drawing 6 (b) via primary winding N_1 of the stabilizer L at capacitor C2 from AC power supply AC flows. If capacitor C2 is charged, charging current will stop and switching element Q_1 will be come by off. That is, charging current I_C to capacitor C_2 will flow into the stabilizer L until switching element \mathbf{Q}_2 is turned off from the time of switching element Q_1 being turned on in time t_1 in time t_2 . This charging current I_C flows for each [of AC power supply AC] half cycle of every. Since charging current Ic to capacitor C2 flows through primary winding N_1 of the stabilizer L, in secondary-winding N_2 of the stabilizer L, the voltage which carried out pressure up of the impressed electromotive force to primary winding N₁ generates it. That is, a high voltage pulse occurs in secondary-winding N2 of the stabilizer L, and when the voltage of AC power supply AC is overlapped on this high voltage pulse, voltage V_{DL} like drawing 6 (c) is impressed to electric discharge lamp DL. Thus, electric discharge lamp DL is put into operation by impressing high tension to electric discharge lamp DL. [0004]By the way, after electric discharge lamp DL has lit up, since it is not necessary to

generate a high voltage pulse, lighting discrimination circuit OC detects that electric discharge lamp DL lit up, and generating of the high voltage pulse from igniter IG is stopped. Current transformer CT by which the series connection of the primary winding was carried out to electric discharge lamp DL as for lighting discrimination circuit OC, Rectifier DB $_1$ which carries out full wave rectification of the secondary-winding output of current transformer CT, Capacitor C $_3$ which smooths the output of rectifier DB $_1$, and transistor Q_3 turned on when the both-ends voltage of capacitor C $_3$ is more than prescribed voltage, It has resistance R_3 which gives base current to transistor Q_3 according to the both-ends voltage of capacitor C_3 , R_4 , and rectifier DB $_2$ which is the full wave rectifiers to which the direct-current side edge was connected between the collector emitters of transistor Q_3 . The ac side end of rectifier DB $_2$ is connected to the both ends of capacitor C_1 of igniter IG. Rectifier DB $_2$ is provided here in order to nonpolarity-ize switching by transistor Q_3 .

[0005]Since current is not flowing into current transformer CT immediately after switching on AC power supply AC, transistor \mathbf{Q}_3 is off and igniter IG impresses a high voltage pulse to electric discharge lamp DL by operation mentioned above. On the other hand, if electric discharge lamp DL lights up, since current will come to flow into the primary winding of current transformer CT, capacitor \mathbf{Q}_3 will be charged and transistor \mathbf{Q}_3 will be turned on, the both ends of capacitor \mathbf{C}_1 connect too hastily, and trigger device \mathbf{Q}_2 comes to be maintained at OFF. That is, switching element \mathbf{Q}_1 is maintained at an OFF state, and generating of the high voltage pulse from igniter IG stops it. If electric discharge lamp DL is un-switching on the light from a lighted condition by going out etc., the charging charge of capacitor \mathbf{C}_3 will be immediately discharged via resistance \mathbf{R}_5 , transistor \mathbf{Q}_3 will be come by off, and igniter IG will start operation. That is, a high voltage pulse occurs again and restarts electric discharge lamp DL. [70006]

[Problem(s) to be Solved by the Invention] By the way, the following problems arise that it is common to be connected to a lighting device via contact button S₁ and S₂ for the purpose, such as lamp replacement, as for electric discharge lamp DL, and the contact state by contact button S, and S, is insufficient. That is, even if it is a contact state which can turn on electric discharge lamp DL at the time of start up immediately after switching on AC power supply AC, a contact state may become poor in the middle of lighting, and electric discharge lamp DL may go out. At this time, with the above-mentioned composition, lighting discrimination circuit OC detects un-switching on the light of electric discharge lamp DL, and igniter IG is started so that the high voltage pulse for a restart may be generated immediately. [0007]On the other hand, immediately after electric discharge lamp DL goes out, ion remains to inter-electrode [of electric discharge lamp DL], and the time of about several 10 msec is required for remains ion to disappear. When a high voltage pulse is impressed before disappearance of remains ion, when the contact state of contact button S₁ and S₂ is insufficient, fine discharge will be started without resulting in a lighted condition, this fine discharge will continue, and current will continue flowing into contact button S₁ and S₂. When such current flows, the electrical stress to contact button S₁ and S₂ may become large, and ignition and emitting smoke may arise. If contact button S, and S, are constituted so that ignition and emitting smoke may be prevented, contact button S_1 and S_2 will be enlarged and complicated, and the problem of leading to an increase in cost will arise, [0008] Fine discharge is prevented from producing this invention in an electric discharge lamp by

generating a high voltage pulse, after it aims at solution of the above-mentioned problem and the remains ion in an electric discharge lamp disappears at the time of restart, It is going to provide the discharge lamp lighting device kept big electrical stress from requiring for a contact button [Means for Solving the Problem]A stabilizer which consists of a ** style element from which the series connection was carried out to an electric discharge lamp, and this series circuit was connected among both ends of AC power supply to achieve the above objects in this invention, An igniter which superimposes a high voltage pulse on AC power voltage, and is impressed to an electric discharge lamp, In a discharge lamp lighting device which it had, a lighting discrimination circuit which detects lighting and un-switching on on the light of an electric discharge lamp, and stops generating of a high voltage pulse from an igniter at the time of lighting of an electric discharge lamp a lighting discrimination circuit, After predetermined time passes since a time of an electric discharge lamp shifting to a non-lighted condition from a lighted condition, it has a delay means which makes generating of a high voltage pulse from an igniter start.

Function]According to the above-mentioned composition, a lighting discrimination circuit will stop generating of the high voltage pulse from an igniter, if an electric discharge lamp will be in a lighted condition, Since he is trying to make generating of the high voltage pulse from an igniter resume after predetermined time passes since the time of an electric discharge lamp shifting to a non-lighted condition from a lighted condition, After the remains ion in an electric discharge lamp disappears, it can be made to restart, when an electric discharge lamp shifts to a non-lighted condition from a lighted condition by going out etc. As a result, big electrical stress can be prevented from fine discharge not arising, even if the contact state of a terminal area with an electric discharge lamp is insufficient, and being built over a terminal area by continuation of fine discharge current. That is, an easy and small thing can be used as a contact button for connecting an electric discharge lamp, and it leads to reduction of cost.

[0011] [Example]

(Example 1) This example inserts resistance R₆ for adjusting the charging time value of the charging charge of capacitor C₃ between the nodes of capacitor C₃ and resistance R₅ in lighting discrimination circuit OC shown in drawing 5, as shown in drawing 1. The damping time constant by capacitor C₃ and resistance R₆ is suitably set up here according to time for remains ion to disappear after putting out lights of electric discharge lamp DL. That is, a delay means is constituted by capacitor C₃ and resistance R₆. Other composition is the same as composition conventionally which was shown in drawing 5. [0012]Next, operation is explained. Since lamp current I_{D1} is not flowing like [electric discharge

lamp DL is a non-lighted condition, and] $\frac{1}{drawing} \cdot 2$ (a) when AC power supply AC is switched on by time t_3 as shown in $\frac{1}{drawing} \cdot 2$, current does not flow into the primary winding of current transformer CT. Therefore, voltage does not occur to the both ends of capacitor C_3 like $\frac{1}{drawing} \cdot 2$ (b), but transistor C_3 is OFF like $\frac{1}{drawing} \cdot 2$ (c) $\frac{1}{drawing} \cdot 2$ (c) shows the collector to emitter voltage of transistor C_3 , and igniter IG operates. That is, a high voltage pulse occurs repeatedly until electric discharge lamp DL lights up like $\frac{1}{drawing} \cdot 2$ (d). If electric discharge lamp DL lights up by time t_4 , lamp current t_{DL} will flow like $\frac{1}{drawing} \cdot 2$ (d). Since capacitor C_3 is charged like $\frac{1}{drawing} \cdot 2$ (b) and both-ends voltage rises, transistor C_3 is turned on like $\frac{1}{drawing} \cdot 2$ (c), and generating of the high voltage pulse from igniter IG stops like $\frac{1}{drawing} \cdot 2$ (d). If only lift is thifts to a non-lighted condition by going out etc. in time t_5 as shown in $\frac{1}{drawing} \cdot 2$ (a), the charging charge of capacitor C_3 will be discharged according to the damping time constant determined by capacitor C_3 and resistance C_3 to maintain the ON state of transistor C_3 in time c_5 . Transistor c_5 is come by off like $\frac{1}{drawing} \cdot 2$ (c), a high voltage pulse occurs again from igniter IG like $\frac{1}{drawing} \cdot 2$ (d), a high voltage pulse occurs again from igniter IG like $\frac{1}{drawing} \cdot 2$ (d), a high voltage pulse occurs again from igniter IG like $\frac{1}{drawing} \cdot 2$ (d) and pulse of capacitor C_3 is come by off like $\frac{1}{drawing} \cdot 2$ (d), a high voltage pulse occurs again from igniter IG like $\frac{1}{drawing} \cdot 2$ (d) and pulse of capacitor C_3 is come by off like $\frac{1}{drawing} \cdot 2$ (d), a high voltage pulse occurs again from igniter IG like $\frac{1}{drawing} \cdot 2$ (d) and pulse of capacitor $\frac{1}{drawing} \cdot 2$ (d) and pulse of capacitor $\frac{1}{drawing} \cdot 2$ (d) and pulse of capacitor $\frac{1}{drawing} \cdot 2$

2_(d), and it is going to restart electric discharge lamp DL. In here, after electric discharge lamp DL shifts to a non-lighted condition from a lighted condition, the damping time constant determined by capacitor C₃ and resistance R₆ is set up, as transistor Q₃ has been maintained at an ON state for a long time rather than the time when the remains ion inside electric discharge lamp DL disappears to be a grade. Therefore, fine discharge is prevented from a high voltage pulse occurring from igniter IQ, and arising in electric discharge lamp DL, before electric discharge lamp DL shifts to a non-lighted condition from a lighted condition and remains ion disappears. As a result, even if big electrical stress is prevented from fine discharge current flowing into contact button S₁ and S₂, and being built and it uses an easy and small thing as contact button S₁ and S₂, emitting smoke and ignition do not arise, and it leads to reduction of cost. Since other composition and operations are the same as composition conventionally which was shown in drawing 5, they omit explanation.

[0014](Example 2) In this example, as shown in drawing 3, timer circuit T is provided as a delay means. Only the fixed time which this timer circuit T requires a trigger in falling of an input signal, and is determined by resistance R_7 and capacitor C_4 in an output is a one-shot-multivibrator circuit set as H level, It is constituted using integrated circuit IC for general-purpose timers (for example, NEC muPC1555 grade). That is, if terminal ** connected to the anode of capacitor C_3 falls from H level to L level, timer circuit T will start output terminal ** on H level from L level, and will bring down output terminal ** on L level from H level after fixed time. The anode of capacitor C_3 and output terminal ** of timer circuit T are connected via diode D_1 and D_2 at the node of resistance R_4 and R_5 , respectively. Electric power is separately supplied to timer circuit T.

[0015] During lighting of electric discharge lamp DL, like Example 1, lamp current I_{DL} is detected by current transformer CT, and capacitor C_3 is charged. Therefore, transistor Q_3 is turned on and generating of the high voltage pulse from igniter IG stops. On the other hand, if electric discharge lamp DL shifts to a non-lighted condition from a lighted condition by going out, the both-ends voltage of capacitor C_3 will fall on L level from H level, and when the input of timer circuit T falls, only in fixed time, the output of timer circuit T will become H level. Namely, even if lamp current I_{DL} is no longer detected by current transformer CT and the terminal voltage of capacitor C_3 falls by it. Since transistor Q_3 is maintained at one by the output of timer circuit T, a high voltage pulse does not generate fixed time from igniter IG with it in the meantime. Therefore, a high voltage pulse is prevented from occurring from igniter IG, and fine discharge current is prevented from flowing into contact button S_1 and S_2 until electric discharge lamp DL will be in a non-lighted condition and internal remains ion disappears. Other composition and operations are the same as that of Example 1.

[0016](Example 3) This example distinguishes lighting and un-switching on the light by lighting discrimination circuit OC based on both-ends voltage $V_{\rm DL}$ of electric discharge lamp DL, as shown in <u>drawing 4</u>. That is, the partial pressure of the both-ends voltage $V_{\rm DL}$ of electric discharge lamp DL is carried out by resistance $R_{\rm g}$ by which multiple connection was carried out to electric discharge lamp DL, and $R_{\rm g}$, and the terminal voltage of resistance $R_{\rm g}$ is rectified by rectifier DB₁. The output of rectifier DB₁ is charged by capacitor $C_{\rm g}$ via resistance $R_{\rm 10}$, and the terminal voltage of capacitor $C_{\rm g}$ is compared with reference voltage $V_{\rm REF}$ by comparator CP. Comparator CP is constituted so that an output may be used as H level, when the terminal voltage of capacitor $C_{\rm g}$ is lower than reference voltage $V_{\rm REF}$. Reference voltage $V_{\rm REF}$ is set as the pressure value between the terminal voltage of capacitor $C_{\rm g}$ of the time of no-load, and the time of lighting.

[0017] Therefore, since it is high and both-ends voltage V_{DL} of electric discharge lamp DL

becomes higher than reference voltage V_{RFF} during the period before electric discharge lamp DL lights up immediately after switching on AC power supply AC in the terminal voltage of capacitor C3, the output of comparator CP is set to L level. At this time, transistor Q3 is off and a high voltage pulse is outputted from igniter IG. In this way, if electric discharge lamp DL lights up, since both-ends voltage V_{DI} of electric discharge lamp DL falls, the terminal voltage of capacitor C3 will fall, the output of comparator CP will be set to H level, transistor Q3 will be turned on, and generating of the high voltage pulse from igniter IG will stop. [0018]In the lighted condition of electric discharge lamp DL, if electric discharge lamp DL goes out by going out etc., Since it will be in an unloaded condition and both-ends voltage V_{DI} of electric discharge lamp DL goes up, Capacitor C3 is charged with the damping time constant determined by resistance R₁₀ and capacitor C₃, and transistor Q₃ is maintained at an ON state time until the terminal voltage of capacitor C2 exceeds reference voltage VDEF. That is, the period until electric discharge lamp DL is un-switching on the light and remains ion disappears can stop generating of the high voltage pulse from igniter IG. Other composition and operations are the same as that of Example 1. [0019]

[Effect of the Invention]This invention to the lighting discrimination circuit which will stop generating of the high voltage pulse from an igniter as mentioned above if an electric discharge lamp will be in a lighted condition. Since the delay means is established so that generating of the high voltage pulse from an igniter may be made to resume after predetermined time passes since the time of an electric discharge lamp shifting to a non-lighted condition from a lighted condition. After the remains ion in an electric discharge lamp disappears, it can be made to restart, when an electric discharge lamp shifts to a non-lighted condition from a lighted condition by going out etc. As a result, even if the contact state of a terminal area with an electric discharge lamp is insufficient, fine discharge does not arise, and the effect that big electrical stress can be prevented from being built over a terminal area by continuation of fine discharge current is done so. That is, an easy and small thing can be used as a contact button for connecting an electric discharge elamp, and there is an advantage of leading to reduction of cost.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

 This document has been translated by computer. So the translation may not reflect the original precisely.

2,*** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1]It is a circuit diagram showing Example 1.

[Drawing 2] It is an explanatory view of operation showing Example 1.

Drawing 31t is a circuit diagram showing Example 2.

[Drawing 4]It is a circuit diagram showing Example 3.

[Drawing 5] It is a circuit diagram showing a conventional example.

[Drawing 6] It is an explanatory view of a conventional example of operation.

[Description of Notations]

AC AC power supply

C₃ capacitor

DL Electric discharge lamp

IG Igniter

L Stabilizer

OC Lighting discrimination circuit

R₆ resistance

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2,**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 3]

[Drawing 2]

[Drawing 4]

[Drawing 6]

