General recommendations:

- Write the solutions in CLEAR and READABLE way on paper and show (qualitatively) all the relevant plots.
- Avoid (if not required) theoretical introductions or explanations covered during the course.
- Always state the assumptions and report all relevant steps/discussion/formulas/expression to present and motivate your solution.
- When using hypothesis tests provide the numerical value of the test statistic and the test conclusion in terms of p-value.
- Exam duration: 2h
- Multichance students should skip: point b) in Exercise 1, point a) in Exercise 2

Exercise 1 (15 points)

The concentration of a contaminant (measured in ppm) in the production of synthetic rubber is monitored over time. '230609 ex1.csv' contains the measurements collected in 50 consecutive samples.

- a) Being known that a negative value is the result of a temporary miscalibration of the measuring device, fit a suitable model to these data;
- b) Based on the result of point a), estimate the 95% prediction interval for the contaminant concentration in the next sample.
- c) Based on the result of point a), design an appropriate control chart for these data with $ARL_0 = 250$.
- d) From historical data, it is known that the most appropriate model for this process yielded a standard deviation of residuals equal to $\sigma_{\varepsilon} = 2.5$. Determine, with a statistical test, if the model fitted at point a) is such that the standard deviation of residuals is greater than this value (report also the p-value of the test). Discuss the result.

Exercise 2 (15 points)

A company produces aluminum laminates. The quality control department has recently introduced a statistical monitoring tool to keep under control the planarity of the laminates. It consists of an \bar{X} control chart designed such that the number of samples before a false alarm is equal to 250.

- a) Estimate and draw the curves of ARL_1 as a function of the mean shift δ expressed in standard deviation units with a sample size n=4 and n=8, respectively (show the two curves for $\delta \in [0\ 2]$ and report the ARL_1 values for $\delta=1$ and $\delta=2$).
- b) Estimate and draw the curves of ARL_1 as a function of the sample size n for two values of the shift, $\delta = 1$ and $\delta = 2$, where δ is expressed in standard deviation units (show the two curves for $n \in [2\ 20]$ and report the ARL_1 values for n = 3 and n = 6).
- c) The head of the quality control department is interested in selecting an optimal sample size n to minimize the lack of quality costs in the presence of a mean shift equal to $\delta = 2$ standard deviation units. Knowing that samples are gathered every 4 hours, the cost of planarity measurements for each laminate is $C_1 = 2 \in$ and an extra cost equal to $C_2 = 15 \in$ is due for each hour spent in the out-of-control state, determine the optimal sample size that minimizes the overall expected costs (assume the cost of the process in its incontrol state as a reference baseline). Discuss the results.

Exercise 3 (3 points)

A quality characteristic X_t follows a stationary AR(1) model $X_t = \xi + \phi_1 X_{t-1} + \varepsilon_t$, $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$ with positive autocorrelation coefficient and known σ_{ε}^2 . Let $E(X_t) = \mu$ and $V(X_t) = \sigma^2$. Compute the expressions of ξ and ϕ_1 as functions of μ , σ^2 and σ_{ε}^2 .

Solutions

Exercise 1

<u>a)</u>

Time series plot of the temperature series:

It is present a meandering pattern. Negative values were observed in sample 17 and 18.

Runs test: null hypothesis is not accepted:

Test

Null hypothesis H_0 : The order of the data is random Alternative hypothesis H_1 : The order of the data is not random

Number of Runs

Observed Expected P-Value

8 25,96 0,000

Sample autocorrelation and partial autocorrelation functions:

A slow decay of the SACF is present, which suggests a non-stationarity of the process. By differencing the timeseries we get:

The SACF and SPACF of the data after the differencing operation are the following:

A suitable model for the temperature time series is therefore an ARIMA(1,1,0). However, we should keep in mind that two negative values are present, caused by a temporary miscalibration of the sensor. Thus, a dummy variable that is equal to 1 for these two samples and 0 for all other samples can be included in the model.

Regression Analysis: diff versus AR1; dummy

Method

Categorical predictor coding (1; 0) Rows unused 2

Regression Equation

dumi	my
0	diff = 0,251 - 0,546 AR1
1	diff = -4,47 - 0,546 AR1

Coefficients

Term	Coef	SE Coef	95% CI	T-Value	P-Value	VIF
Constant	0,251	0,413	(-0,581; 1,083)	0,61	0,547	
AR1	-0,546	0,125	(-0,797; -0,295)	-4,38	0,000	1,02
dummy						
1	-4,72	2,04	(-8,83; -0,62)	-2,32	0,025	1,02

Model Summary

S R-sq	R-sq(adj)	PRESS	R-sq(pred)	AICc	BIC
2,79333 32,91%	29,92%	387,706	25,92%	240,66	247,22

Analysis of Variance

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F-Value	P-Value
Regression	2	172,21	32,91%	172,21	86,106	11,04	0,000
AR1	1	130,36	24,91%	149,58	149,580	19,17	0,000
dummy	1	41,85	8,00%	41,85	41,854	5,36	0,025
Error	45	351,12	67,09%	351,12	7,803		
Total	47	523,33	100,00%				

The constant term is not significant, thus we may remove it:

Regression Analysis: diff versus AR1; dummy

Method

Categorical predictor coding (1; 0) Rows unused 2

Regression Equation

dummy	
0	diff = 0,0 - 0,540 AR1
	1155 4.45 0.540.454
1	diff = -4,46 - 0,540 AR1

Coefficients

Term	Coef S	E Coef	95% CI	T-Value	P-Value VIF	,
AR1	-0,540	0,123 ((-0,789; -0,292)	-4,37	0,000 1,02	
dummy	/					
1	-4,46	1,98	(-8,44; -0,48)	-2,25	0,029 1,02	

Model Summary

S F	≀-sq	R-sq(adj)	PRESS	R-sq(pred)	AICc	BIC
2,77408 32,3	37%	29,43%	374,471	28,45%	238,67	243,74

Analysis of Variance

Source	DF	Seq SS	Contribution	Adj SS	Adj MS	F-Value	P-Value
Regression	2	169,41	32,37%	169,41	84,703	11,01	0,000
AR1	1	130,32	24,90%	147,23	147,227	19,13	0,000
dummy	1	39,09	7,47%	39,09	39,087	5,08	0,029
Error	46	353,99	67,63%	353,99	7,696		
Total	48	523,40	100,00%				

Check of residuals:

Test

Null hypothesis H_0 : The order of the data is random Alternative hypothesis H_1 : The order of the data is not random

Number of Runs

Observed Expected P-Value

29 24,83 0,221

The residuals are normal and independent. The model is adequate.

<u>b)</u>

The 95% prediction interval for the differenced time series for observation 51 is the following:

This is a prediction interval on the differenced data. To obtain the prediction interval on the original data (contaminant concentration in ppm) we must sum the value of the variable at the 50^{th} sample, i.e., Y = 10,95, thus:

$$8.119 \ ppm \le Y \le 19.604 \ ppm$$

<u>c)</u>

The Type I error corresponding to ARL₀ = 250 is α = 0,004, which corresponds to $k = z_{\alpha/2}$ = 2,878. The resulting I-MR control chart for the model residuals is the following:

Sample 25 yields an OOC in the MR control chart. It is possible to verify if this OOC is the consequence of a violation of assumptions in the MR chart. One possible way is to transform MR data to normality and redesign the chart as follows:

Box-Cox transformation:

Normality of MR statistic after transformation:

New MR control chart:

The OOC in the MR control chart was caused by a violation of assumptions of the chart itself. The process is in-control.

<u>d)</u>

Since model residuals are normal and independent, it is possible to perform a one sample chi-squared test as follows.

By estimating the standard deviation of the model residuals as $\hat{\sigma}_{\varepsilon} = \sqrt{MSE} = 2.774$.

The test is such that:

$$H_0$$
: $\sigma_{\varepsilon} = 2.5$

$$H_1$$
: $\sigma_{\varepsilon} > 2.5$

The test statistic is $X^2 = \frac{(n-p)\widehat{\sigma}_{\varepsilon}^2}{\sigma_{\varepsilon}^2} \sim X_{n-p}^2$, where p=2 is the number of model terms, and n-p=46.

Under H_0 we get $X^2 = 56.636$. The corresponding p-value is 0.135.

At 95% confidence, the standard deviation of residuals of the model fitted in point a) is not statistically larger than the one observed on historical data.

Exercise 2

The value of
$$K = z_{\alpha/2}$$
 with $\alpha = \frac{1}{250} = 0.004$ is: $K = 2.878$.

The Type II error as a function of the mean shift in standard deviation units is given by:

$$\beta = \Pr(Z \le K - \delta \sqrt{n}) - \Pr(Z \le -K - \delta \sqrt{n})$$
, where $\delta = \frac{\mu_1 - \mu_0}{\sigma}$

Being, $ARL_1(\delta) = \frac{1}{1-\beta}$. The $ARL_1(\delta)$ curves for n = 4 and n = 8 are the following:

	$\delta = 1$	$\delta = 2$
ARL_1 with n=4	5.26	1.15
ARL_1 with n=8	2.08	1.00

b)

Being fixed δ , the type II error can be estimated as a function of n with the same expression used in the previous case:

$$\beta = \Pr(Z \le K - \delta \sqrt{n}) - \Pr(Z \le -K - \delta \sqrt{n})$$

The resulting $ARL_1(n)$ curves for the two given mean shifts are the following:

	n=3	n=6
ARL_1 with $\delta = 1$	7.94	2.99
ARL_1 with $\delta = 2$	1.39	1.02

c)

The function to be minimized is the following:

$$C(n) = C1 * n + C2 * ATS(n) = 2 * n + 15 * ATS(n)$$

Where ATS = $h \cdot ARL_1$, where h is the time between the collection of two consecutive samples, i.e., h = 4 h. The cost function for $\delta = 2$ is shown below:

The late detection cost predominates at smaller values of n, whereas the inspection cost predominates at larger values of n. The optimal values of the sample size is n=6.

Exercise 3 (solution)

Given a stationary AR(1) model $X_t = \xi + \phi_1 X_{t-1} + \varepsilon_t$, $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$, it is known that:

$$\mu = \frac{\xi}{1 - \phi_1}$$
$$\sigma^2 = \frac{\sigma_{\varepsilon}^2}{1 - {\phi_1}^2}$$

Therefore:

$$1 - \phi_1 = \frac{\xi}{\mu}$$
$$1 - {\phi_1}^2 = \frac{\sigma_{\varepsilon}^2}{\sigma^2}$$

By solving the two equations with two unknowns:

$$\phi_1 = \sqrt{1 - \frac{\sigma_{\varepsilon}^2}{\sigma^2}}$$

$$\xi = \mu \left(1 - \sqrt{1 - \frac{\sigma_{\varepsilon}^2}{\sigma^2}} \right)$$