Zaman Serisileri Analizi - Temel Konular

Zaman Serileri Analizi

Dr. Ömer Kara¹

¹İktisat Bölümü Eskişehir Osmangazi Üniversitesi

19 Mart 2021

1/52

Taslak

- Motivasyon
- Veri Türleri ve Özellikleri
 - Yatay-Kesit Verisi
 - Zaman Serileri Verisi
 - Havuzlanmış Yatay-Kesit Verisi
 - Panel Veri
- Zaman Serileri Verisi
 - Zaman Serileri Verisinin Özellikleri
 - Stokastik Sürec
 - Zaman Serileri Verisi Örnekleri
 - Zaman Serilerinde Bağımlılığın Ölçülmesi
 - Zaman Serilerinin Klasik Dekompozizasyonu
- Zaman Serisi Modelleri: Örnekler
 - Statik Modeller
 - FDL Modelleri

Motivasyon

Bu bölümde sırasıyla aşağıdaki konular incelenecektir.

- Veri türlerinin gözden geçirilmesi
- Zaman serileri verisinin özellikleri ve zaman serileri verisine örnekler
- Zaman serilerinde bağımlılığın ölçülmesi: otokovaryans ve otokorelasyon
- Zaman serilerinin klasik dekompozizasyonu
- Yaygın olarak kullanılan zaman serileri modellerinden örnekler
- Zaman serilerinin kullanıldığı doğrusal regresyon modellerinde klasik varsayımlar (ÇDR.1-ÇDR.8) altında Sıradan En Küçük Kareler (SEKK) parametre tahmincilerinin sonlu örneklem özellikleri
 - Klasik varsayımlar için Ekonometri I dersi Hafta #4 ve Hafta #5 notlarına bakınız.
- Zaman serisi modellerinde tahmin ve cıkarsama
- Zaman serilerinde trent ve mevsimsellik (seasonality)

Veri Türleri ve Özellikleri

- Zaman serileri verisinin özelliklerini detaylı olarak incelemeden önce diğer veri türlerini hatırlamamız faydalı olacaktır.
- Ekonometrik analizlerde temel olarak kullanılan 4 farklı veri türü yardır.
 - Yatay-kesit verisi (Cross-sectional data)
 - Zaman Serileri verisi (Time series data)
 - Havuzlanmış yatay-kesit verisi (Pooled cross-section data)
 - Panel veri (Panel Data)

Yatay-Kesit Verisi

- Yatay-kesit verisi değişken(ler)e ait verilen zamanın belirli bir kesitinde farklı birimlerden olusan veri türüdür.
- Şekil 1'deki veri tablosu bireylerin özelliklerini gösteren yatay-kesit verisine bir örnektir.

TABLE 1.1	A Cross-Sectional	Data Set on W	ages and Other I	ndividual Chara	cteristics
obsno	wage	educ	exper	female	married
1	3.10	11	2	1	0
2	3.24	12	22	1	1
3	3.00	11	2	0	0
4	6.00	8	44	0	1
5	5.30	12	7	0	1
525	11.56	16	5	0	1
526	3.50	14	5	1	0

Şekil 1: Yatay-Kesit Verisi Örneği 1

Kaynak: Wooldridge (2016)

Yatay-Kesit Verisi

• Şekil 2'deki veri tablosu ülkelerin ekonomik büyüme oranlarını ve ülke özelliklerini gösteren yatay-kesit verisine bir başka örnektir.

TABLE 1.2 A Da	ata Set on Economic (Growth Rates and C	ountry Characterist	ics
obsno	country	gpcrgdp	govcons60	second60
1	Argentina	0.89	9	32
2	Austria	3.32	16	50
3	Belgium	2.56	13	69
4	Bolivia	1.24	18	12
61	Zimbabwe	2.30	17	6

Şekil 2: Yatay-Kesit Verisi Örneği 2

Kaynak: Wooldridge (2016)

Zaman Serileri Verisi

- Zaman Serileri verisi değişken(ler)e ait verilen aynı birimin farklı zamanlarından oluşan veri türüdür.
- Şekil 3'deki veri tablosu Porto Riko'daki minimum maaş, işsizlik ve benzer istatistikleri gösteren zaman serileri verisine bir örnektir.

TABLE 1.3	Minimum Wage, U	nemployment, ar	nd Related Data	for Puerto Rico	
obsno	year	avgmin	avgcov	prunemp	prgnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
37	1986	3.35	58.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7

Şekil 3: Zaman Serileri Verisi Örneği 1

Kaynak: Wooldridge (2016)

Havuzlanmış Yatay-Kesit

- Havuzlanmış yatay-kesit verisi değişken(ler)e ait verilen farklı zamanlarındaki yatay-kesit verilerinin birleştirilmesiyle oluşan veri türüdür.
- Şekil 4'deki veri tablosu iki farklı yıldaki havuzlanmış (bir araya getirilmiş) ev fiyatlarını gösteren havuzlanmış yatay-kesit verisine bir örnektir.

TABLE 1.4 Pooled Cross Sections: Two Years of Housing Prices									
obsno	year	hprice	proptax	sqrft	bdrms	bthrms			
1	1993	85,500	42	1600	3	2.0			
2	1993	67,300	36	1440	3	2.5			
3	1993	134,000	38	2000	4	2.5			
250	1993	243,600	41	2600	4	3.0			
251	1995	65,000	16	1250	2	1.0			
252	1995	182,400	20	2200	4	2.0			
253	1995	97,500	15	1540	3	2.0			
520	1995	57,200	16	1100	2	1.5			

Şekil 4: Havuzlanmış Yatay-Kesit Verisi Örneği

Kavnak: Wooldridge (2016)

Panel Veri

- Panel veri değişken(ler)e ait verilen farklı birimlerin farklı zamanlarından oluşan veri türüdür.
- Şekil 5'deki veri tablosu iki farklı yıldaki suç istatistiklerini gösteren panel veriye bir örnektir.

TABLE 1.5	A Two-Year Pa	anel Data Set	on City Crime	Statistics		
obsno	city	year	murders	population	unem	police
1	1	1986	5	350,000	8.7	440
2	1	1990	8	359,200	7.2	471
3	2	1986	2	64,300	5.4	75
4	2	1990	1	65,100	5.5	75
297	149	1986	10	260,700	9.6	286
298	149	1990	6	245,000	9.8	334
299	150	1986	25	543,000	4.3	520
300	150	1990	32	546,200	5.2	493

Şekil 5: Panel Veri Örneği

Kavnak: Wooldridge (2016)

Zaman Serileri Verisinin Özellikleri

- Bir zaman serisi değişkeni, zamana göre indekslenmiş bir gözlem veya ölçüm dizisi olarak tanımlanabilir.
 - Örneğin, y_t bir zaman serisidir. Burada zaman indeksi t'nin (t = 1, 2, ..., n) ayrık olduğu varsayılır ve n gözlem sayısıdır.
- Zaman serilerinde veriler, yatay-kesit verisinden farklı olarak genellikle eskiden yeniye belli bir zaman sıralaması izlemektedir.
 - Gözlemler arasındaki zaman aralıkları (zaman frekansı) düzenli veya düzensiz olabilir.
 - Biz sadece düzenli olarak ölçülen zaman serisi verilerine odaklanacağız. Örneğin: aylık, yıllık, haftalık, günlük frekanstaki veri.

Data	Frekans
Yıllık (Annual)	1
Çeyreklik (Quarterly)	4
Aylık (Monthly)	12
Haftalık (Weekly)	52.25
Günlük (Daily)	365.25
Saatlik (Hourly)	8766

Notlar: Zaman aralığı olarak 1 yıl alınmıştır.

10 / 52

Zaman Serileri Verisinin Özellikleri

• Sekil 6'deki veri tablosu ABD'deki enflasyon ve işsizlik oranlarını gösteren zaman serileri verisine bir baska örnektir.

TABLE 10.1 Partial Listing of I	Data on U.S. Inflation and Unen	ployment Rates, 1948–2003
Year	Inflation	Unemployment
1948	8.1	3.8
1949	-1.2	5.9
1950	1.3	5.3
1951	7.9	3.3
	•	
1998	1.6	4.5
1999	2.2	4.2
2000	3.4	4.0
2001	2.8	4.7
2002	1.6	5.8
2003	2.3	6.0

Sekil 6: Zaman Serileri Verisi Örneği 2

Kavnak: Wooldridge (2016)

- Zaman serileri analizinde geçmiş değerler gelecekteki değerleri etkilemektedir fakat bunun tersi geçerli değildir.
- Şekil 6'deki zaman serisi verisinde 2000 yılındaki enflasyon ilerleyen yıllardaki enflasyonu etkilerken geçmiş yıllardaki enflasyon verilerini etkileyemez.

Zaman Serileri Verisinin Özellikleri

- Yatay-kesit verisinde kullandığımız önemli varsayımlardan birisi rassalık varsayımıydı. Bakınız Ekonometri I dersi Hafta #4 notları.
 - Rassalık varsayımına göre tahminde kullanılan n tane gözlem ilgili anakütleden rassal örnekleme yoluyla seçilmiştir. Yani gözlemler stokhastiktir (rassal), deterministik (kesin) değil.
 - Anakütleden alınan farklı bir örnek genellikle bağımlı ve bağımsız değişkenlerin farklı değerlerini içereceğinden, bu örneklemler yardımıyla ulaşılan SEKK parametre tahmin değerleri de genellikle farklılık gösterir.
 - Bu nedenle SEKK parametre tahmincileri de rassal değişkenler olarak değerlendirilir.
- Peki zaman serilerinde de rassalık varsayımını kullanabilir miyiz? Eğer kullanabilirsek, rassallığı nasıl yorumlamamız gerekir?
- Zaman serisi değişkenlerinin (enflasyon, işsizlik, gayri safi yurtiçi hasıla, BIST 100 kapanış fiyatları, vs) bir sonraki dönemde hangi değerleri alacaklarını öngöremediğimiz için bu değişkenleri rassal değişken olarak düşünebiliriz.

Stokastik Süreç

Stokastik Sürec / Zaman Serisi Süreci

Zaman (t) indeksi taşıyan rassal değişkenlerin oluşturduğu diziye/seriye **stokastik** süreç (stochastic process) ya da zaman serisi süreci (time series process) denir.

- Stokastik sözcüğü rassal ile aynı anlamda kullanılmaktadır.
- Mevcut bir zaman serisi, stokastik sürecin olası bir gerçekleşmesi olarak görülebilir.
- Zamanda geriye gidip başka bir gerçekleşme elde edemeyeceğimiz için zaman serileri tek bir gerşekleşmenin sonuçlarıdır.
- Bununla birlikte, farklı tarihsel koşullar altında ilgilendiğimiz stokastik sürecin genellikle farklı bir gerçekleşmesini elde ederiz.
- Bu nedenle, bir zaman serisi sürecinin bütün olası gerçekleşmelerinin oluşturacağı küme, zaman serisi analizinde yatay-kesit verisindeki anakütlenin rolünü üstlenecektir.

Stokastik Süreç

Stokastik Süreç: Tekil Gerçekleşme

Bir stokastik sürecin tekil gerçekleşmesi $\{y_t : t = 1, 2, ..., n\}$ ya da $\{y_t\}_{t=1}^n$ ile gösterilebilir. Bu tekil gerçekleşme aşağıdaki sonsuz serinin bir alt kümesi olarak düsünülebilir.

$$\{y_t\}_{t=-\infty}^{\infty} = \{\dots, y_{-1}, y_0, \underbrace{y_1, y_2, \dots, y_{n-1}, y_n}_{\{y_t\}_{t=1}^n \text{ gerçekleşme}}, y_{n+1}, y_{n+2}, \dots\}$$

- Uygulamada zaman indeksi her zaman 1 değerinden başlar. Fakat, teorik olarak her hangi bir tam sayı değerini olabilir (hatta sğrekli reel sayı da olabilir).
- Eğer süreç tekrarlanırsa, aynı stokastik süreç kullanılarak farklı bir gerçekleşme elde edilebilir.
- Ekonomi gibi sosyal bilimlerde, biz çoğunlukla stokastik süreçlerin tekil bir gerçekleşmesini kullanacağız.
- Şimdi, bazı zaman serisi örneklerini inceleyelim.

Kişi Başı Reel GSYH - Türkiye

Kişi Başı Reel GSYH - Türkiye

Tablo 1: Kişi Başı Reel GSYH - Türkiye

Yıl	t	GSYH_t	$GSYH_{t-1}$	$GSYH_{t-2}$	$GSYH_{t-3}$	$GSYH_{t-4}$
1960	1	3175	NA	NA	NA	NA
1961	2	3135	3175	NA	NA	NA
1962	3	3230	3135	3175	NA	NA
1963	4	3440	3230	3135	3175	NA
1964	5	3542	3440	3230	3135	3175
1965	6	3557	3542	3440	3230	3135
÷	:	:	÷	÷	÷	÷
2016	57	14153	13924	13346	12936	12128
2017	58	14975	14153	13924	13346	12936
2018	59	15190	14975	14153	13924	13346
2019	60	15125	15190	14975	14153	13924

Notlar: World Bank datası kullanılmıştır.

Kişi Başı Reel GSYH Büyüme Oranı - Türkiye

Şekil 8: Kişi Başı Reel GSYH Büyüme Oranı - Türkiye

Kaynak: World Bank

© 2021 by Dr. Ömer Kara

Kişi Başı Reel GSYH Büyüme Oranı - Türkiye

Tablo 2: Kişi Başı Reel GSYH Büyüme Oranı - Türkiye

Yıl	t	$GSYH_t$	GR_t	GR_{t-1}	GR_{t-2}	GR_{t-3}	GR_{t-4}
1960	1	3175	NA	NA	NA	NA	NA
1961	2	3135	-1.27	NA	NA	NA	NA
1962	3	3230	3.06	-1.27	NA	NA	NA
1963	4	3440	6.49	3.06	-1.27	NA	NA
1964	5	3542	2.97	6.49	3.06	-1.27	NA
1965	6	3557	0.4	2.97	6.49	3.06	-1.27
÷	:	÷	÷	:	÷	÷	÷
2018	59	15190	1.44	5.8	1.65	4.33	3.17
2019	60	15125	-0.43	1.44	5.8	1.65	4.33

Notlar: World Bank datası kullanılmıştır.

Büyüme oranı şu şekilde tanımlanabilir:

$$GR_t = \frac{GSYH_t - GSYH_{t-1}}{GSYH_{t-1}} * 100$$

Kişi Başı Reel GSYH - Kore

• Şekil 7'deki Türkiye'ye ait grafik ile Kore grafiğini karşılaştıralım.

Kişi Başı Reel GSYH Büyüme Oranı - Kore

• Şekil 8'deki Türkiye'ye ait grafik ile Kore grafiğini karşılaştıralım.

Şekil 10: Kişi Başı Reel GSYH Büyüme Oranı - Kore

Kişi Başı Reel GSYH - Seçilmiş Ülkeler 1

Şekil 11: Kişi Başı Reel GSYH - Seçilmiş Ülkeler 1

21 / 52

Kişi Başı Reel GSYH - Seçilmiş Ülkeler 2

Şekil 12: Kişi Başı Reel GSYH - Seçilmiş Ülkeler 2

Kaynak: World Bank

© 2021 by Dr. Ömer Kara

Tüketici Fiyatları İndeksi - Türkiye

İndeksler Hakkında Önemli Notlar

- İndeksler, makroekonometrik ve finansal uygulamalarda yaygın olarak kullanılmaktadır.
 - Örneğin, Tüketici Fiyatları İndeksi, Üretici Fiyatları İndeksi ve Endüstriyel Üretim İndeksi
- Her indeksin belli bir baz dönemi vardır. Baz döneminde indeks değeri 100'dür.
- Bir indeksin belirli değerleri yalnızca baz dönemdeki değerle karşılaştırılarak yorumlanabilir.
 - Örneğin, baz dönemi 2010 yılı olan bir indekste, diğer dönemlerindeki değerler ancak baz dönemine göre karşılaştırılarak yorumlanabilir. Değer 2014'te 130 ise, endeksin 2010'dan 2014'e kadar %30 arttığını söyleyebiliriz.
- Aşağıdaki formülü kullanarak herhangi bir indeksin baz dönemini kolayca değiştirebiliriz.

yeni indeks_t =
$$\frac{\text{eski indeks}_t}{\text{eski indeks}_{\text{yeni baz dönemi}}} * 100$$

burada eski indeks_{veni baz dönemi} eski indeksin yeni baz dönemindeki değeridir.

• İndeks değerlerini kullanarak hesaplanan indeks büyüme oranları indekste kullanılan baz dönemine göre farklılık göstermez, her zaman aynıdır.

Avustralya Elektrik Üretimi - Çeyreklik Veri

Nottingham Ortalama Sıcaklık - Aylık Veri

Şekil 15: Nottingham Ortalama Sıcaklık

26 / 52

Kaynak: datasets R paketi

İstanbul'a Verilen Temiz Su Miktarı - Aylık Veri

Eskişehir Osmangazi Üniersitesi

Kaynak: İstanbul Büyükşehir Belediyesi

İstanbul Barajları Doluluk Oranları - Günlük Veri

Şekil 17: İstanbul Barajları Doluluk Oranları

Kaynak: İstanbul Büyükşehir Belediyesi

Kaynak: Yahoo Finance

© 2021 by Dr. Ömer Kara

Hisse Senedi Fiyatları 2 - Günlük Veri

Şekil 19: Hisse Senedi Fiyatları 2

Kaynak: Yahoo Finance

Döviz Kuru (TL/USD) - Günlük Veri

Kaynak: Yahoo Finance

Bitcoin Fiyatları (BTC/USD) - Günlük Veri

Şekil 21: Bitcoin Fiyatları (BTC/USD)

Kaynak: Yahoo Finance

Zaman Serilerinde Bağımlılığın Ölçülmesi

- Zaman serisi değişkenleri çoğunluklu kendi geçmiş değerlerine bağımlı olma eğilimindedir.
- Bu bağımlılığın özellikleri (yön, büyüklük, geçikme sayısı) zaman serisi verisini modellemede oldukça faydalıdır.
- Otokovaryans (autocovariance) ve otokorelasyon (autocorrelation) zaman serilerindeki bağımlılığı ölçmek için yaygın olarak kullanılmaktadır.
- Otokovaryans, otokorelasyon ve bağlantılı kavramları kısaca inceleyelim.

Örneklem Otokovaryansı

- Kovaryans ve korelasyon rassal X ve Y arasındaki doğrusal ilişkiyi ölçer.
- Zaman serileri analizinde, özellikle t dönemindeki değer ile önceki dönemlerdeki değerler (örneğin: h = t - s) arasındaki ilişkiyle ilgilenilir.
- Diğer bir deyişle otokovaryans ve otokorelasyonla ilgilenilir.

Örneklem Otokovaryansı

Otokovaryans, bir zaman serisi y_t 'nin t dönemindeki değeri ve gecikmeli değerleri arasındaki doğrusal ilişkiyi ölçer. Örneklem otokovaryansı aşağıdaki gibi tanımlanır:

$$\hat{\gamma}_{s} = \frac{\sum_{t=s+1}^{T} (y_{t} - \bar{y})(y_{t-s} - \bar{y})}{n}, \quad \bar{y} = \frac{\sum_{t=1}^{n} y_{t}}{n}$$

burada s gecikme değeridir; $\hat{\gamma}_s$ s. dereceden örneklem otokovaryansıdır; \bar{y} örneklem ortalamasıdır.

Örneklem Otokovaryansı

• Orneğin, s = 1 ise birinci dereceden otokovaryans:

$$\hat{\gamma}_1 = \frac{\sum_{t=2}^{T} (y_t - \bar{y})(y_{t-1} - \bar{y})}{n}$$

• Örneğin, s = 2 ise birinci dereceden otokovaryans:

$$\hat{\gamma}_2 = \frac{\sum_{t=3}^{T} (y_t - \bar{y})(y_{t-2} - \bar{y})}{n}$$

• Örneğin, s = 0 ise otokovaryans formülü aslında varyansı verir:

$$\hat{\gamma}_0 = \frac{\displaystyle\sum_{t=1}^T (y_t - \bar{y})(y_t - \bar{y})}{n} \longrightarrow \hat{\gamma}_0 = \widehat{Var(y_t)} = \frac{\displaystyle\sum_{t=1}^T (y_t - \bar{y})^2}{n}$$

Örneklem Otokorelasyonu

Örneklem Otokorelasyonu

Otokorelasyon, bir zaman serisi y_t 'nin t dönemindeki değeri ve gecikmeli değerleri arasındaki doğrusal ilişkinin gücünü ölçer. Örneklem otokorelasyonu aşağıdaki gibi tanımlanır:

$$\hat{\rho}_s = \frac{\hat{\gamma}_s}{\hat{\gamma}_0}$$

burada s gecikme değeridir; $\hat{\rho}_s$ s. dereceden örneklem otokorelasyonudur.

- Bu tanımın, istatistik derslerinde öğrendiğiniz korelasyon katsayısı tanımına benzer olduğunu unutmayın.
- Örneklem otokorelasyonu birbirinden s dönem kadar uzak olan y değerleri arasındaki doğrusal ilişkinin gücünü ölçer.
- $\hat{\rho}_1$, birinci dereceden örneklem otokorelasyonudur; $\hat{\rho}_2$, ikinci dereceden örneklem otokorelasyonudur; ...; $\hat{\rho}_s$, s. dereceden örneklem otokorelasyonudur.
- $\hat{\rho}_0$ her zaman 1'e eşittir.

Örneklem Otokorelasyon Fonksiyonu - Korelogram

- Önceden belirlenmiş bir maksimum gecikme değeri S'e kadar (s = 1, 2, ..., S)tüm örneklem otokorelasyonlarını hesaplayarak, bir zaman serisinin bağımlılık yapısını grafiğe dökebiliriz.
- Bu grafik zaman serisinin bağımlılık yapısının incelenmesinde kullanılır ve örneklem otokorelasyon fonksiyonu ya da korelogram olarak bilinir.
 - Örneklem otokorelasyon fonksiyonu İngilizce'de autocorrelation function (ACF) ya da sample autocorrelation function (SACF) olarak bilinir.
- Büyük örneklemde, Merkezi Limit Teoremi kullanılarak aşağıdaki durum gösterilebilir:

$$\hat{\rho}_s \sim N\left(0, \frac{1}{n}\right) \longrightarrow \sqrt{n}\hat{\rho}_s \sim N(0, 1)$$

• ρ_s için %95 güven aralığı şu şekilde bulunabilir:

$$\hat{\rho}_s - z_{\alpha/2} * \frac{1}{\sqrt{n}} \le \rho_s \le \hat{\rho}_s + z_{\alpha/2} * \frac{1}{\sqrt{n}}$$

$$\hat{\rho}_s - 1.96 * \frac{1}{\sqrt{n}} \le \rho_s \le \hat{\rho}_s + 1.96 * \frac{1}{\sqrt{n}}$$

Pür Rassal Süreç

Stokastik bir sürece örnek olarak pür rassal süreci ele alalım.

Pür Rassal Süreç

Stokastik süreç $\{\epsilon_t : t = 1, 2, ..., n\}$ aşağıdaki koşulları sağlıyorsa ϵ_t 'ye **pür rassal** s**üreç** (white noise process) adı verilir.

$$E(\epsilon_t) = 0$$

$$\gamma_0 = Var(\epsilon_t) = \sigma^2$$

$$\gamma_{t-s} = Cov(\epsilon_t, \epsilon_s) = 0, \quad t \neq s$$

Bu süreci kısaca $\epsilon_t \sim wn(0, \sigma_{\epsilon}^2)$ ile göstereceğiz.

- Pür rassal sürecin ortalaması sıfırdır ve varyansı sabit bir sayıdır.
- Pür rassal sürecin ortalaması ve varyansı zamana bağımlı değildir. Yani ortalama ve varyans t'ye göre değişmez.
- Ayrıca, herhangi bir zaman indeksi t ve s ($t \neq s$) için otokovaryans sıfıra eşit olduğundan, cari dönemdeki ϵ_t değeri geçmiş dönemdeki değerlere bağımlı değildir.

Pür Rassal Süreç

• Aşağıda simüle edilmiş bir pür rassal süreç örneği verilmiştir.

Zaman Serisi Modelleri: Örnekler

 Bu bölümde zaman serileri analizi uygulamalarında yararlı olan ve SEKK Yöntemi ile kolayca tahmin edilebilen iki farklı zaman serisi modelini inceleyeceğiz.

40 / 52

- Statik Modeller
- Sonlu Dağıtılmış Gecikme Modelleri (Finite Distributed Lag Models) FDL Modelleri

Statik Model

Statik Model

y ve z eşanlı (contemporaneously) zaman indeksi taşıyan iki zaman serisi olsun. y'yi z ile ilişkilendiren statik bir model aşağıdaki gibi yazılabilir.

$$y_t = \beta_0 + \beta_1 z_t + u_t, \quad t = 1, 2, ..., n$$

• Statik model, değişkenlerin birinci farkları arasında da formüle edilebilir.

$$\Delta y_t = \beta_1 \Delta z_t + u_t, \quad t = 1, 2, \dots, n$$

- Buradaki statik kelimesi *y* ve *z* arasında eşanlı (yani aynı zamanlı) bir ilişki modellediğimizden dolayı kullanılmaktadır.
- Statik modeller genellikle z'de t zamanında oluşan bir değişikliğin y üzerindeki etkisi hemen (yani t zamanında) gözleniyorsa kullanılır.

$$\Delta y_t = \beta_1 \Delta z_t$$
, $\Delta u_t = 0$ iken

Statik Phillips Eğrisi Modeli (Basit Doğrusal Regresyon)

Statik Phillips eğrisini statik zaman serisi modeline bir örnek olarak kullanabiliriz.

Statik Phillips Eğrisi Modeli

$$inf_t = \beta_0 + \beta_1 unem_t + u_t$$

in f: enflasyon oranı; unem: işsizlik oranı

- Bu formadaki bir Phillips Eğrisi modeli doğal işsizlik oranı (natural rate of unemployment) ve **beklenen enflasyonun** (expected inflation) sabit olduğunu varsayar.
- Bu model aracılığıyla $in f_t$ ve $unem_t$ değişkenleri arasındaki **eşanlı ödünümü** (contemporaneous tradeoff) inceleyebiliriz.

Statik Cinavet Modeli (Coklu Doğrusal Regresyon)

- Statik bir regresyon modelinde çok sayıda bağımsız değişken bulunabilir.
- Aşağıdaki model yıllara göre bir şehirdeki cinayet oranını etkileyen faktörleri statik olarak açıklamaya çalışıyor.

Statik Cinayet Modeli

$$mrdrte_t = \beta_0 + \beta_1 convrte_t + \beta_2 unem_t + \beta_3 yngmle_t + u_t$$

mrdrte: şehirdeki 10000 kişi başına cinayet oranı; convrte: cinayetten hüküm giyme oranı; *unem*: işsizlik oranı; *ynqmle*: 18-25 yaşları arasındaki erkeklerin oranı

• Yukarıdaki statik modeli kullanarak cinayetten hüküm giyme oranı *convrte*'nın cinayet oranı mrdrte üzerindeki ceteris paribus (yalın) etkisini tahmin edebiliriz.

Sonlu Dağıtılmış Gecikme Modeli (FDL Modeli)

1. Dereceden FDL Modeli

 y_t 'yi z_t ve z_t 'nin birinci gecikmesi (z_{t-1}) ile ilişkilendiren 1. dereceden FDL modeli aşağıdaki gibi yazılabilir.

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + u_t, \quad t = 1, 2, \dots, n$$

2. Dereceden FDL Modeli

 y_t 'yi z_t ve z_t 'nin birinci ve ikinci gecikmeleri (z_{t-1} ve z_{t-2}) ile ilişkilendiren 2. dereceden FDL modeli aşağıdaki gibi yazılabilir.

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

• FDL modellerinde, bağımlı değişken y_t 'yi eşanlı ve gecikmeli olarak etkilyen bir çok farklı bağımsız değişken olabilir.

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + u_t$$

Vergi Muafiyetinin Doğurganlığa Etkisi

2. Dereceden FDL Modeli: Vergi Muafiyeti

$$gfr_t = \alpha_0 + \delta_0 p e_t + \delta_1 p e_{t-1} + \delta_2 p e_{t-2} + u_t$$

qfr: doğurganlık oranı (doğurganlık yaşındaki 1000 kadına düşen bebek sayısı); *pe*: çocuk sahibi olmayı özendirmek için getirilen vergi muafiyeti

• Vergi muafiyetinin doğurganlığa etkisini ele alan yukarıdaki model 2. dereceden FDL modeline bir örnektir.

45 / 52

Etki Carpanı

2. Dereceden FDL Modeli

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

• Yukarıda verilen 2. dereceden FDL modelindeki parametreleri yorumlayabilmek için varsayalım ki t zamanından önceki tüm dönemlerde z sabit ve c'ye eşit. Fakat t zamanında bir birim artarak c + 1 oluyor ve t + 1 zamanında tekrar eski değerine dönüyor. Yani t zamanında z'de gerçekleşen **geçici** bir artış var.

$$\ldots$$
, $z_{t-2} = c$, $z_{t-1} = c$, $z_t = c + 1$, $z_{t+1} = c$, $z_{t+2} = c$, \ldots

Bu değişimin y'de yaratacağı ceteris paribus (yalın) etkiye, etki çarpanı ya da etki çoğaltanı (impact multiplier) denir

46 / 52

Etki Çarpanın Hesaplanması

2. Dereceden FDL Modeli

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

- Şimdi yukarıda verilen 2. dereceden FDL modelindeki etki çarpanını hesaplayalım.
- z'nin y üzerindeki ceteris paribus (yalın) etkisine odaklanabilmek için her zaman periodunda hata terimi u_t 'nin sıfır olduğunu varsayalım.

 $y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$

 $y_{t+3} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$

$$y_t = \alpha_0 + \delta_0(c+1) + \delta_1 c + \delta_2 c$$
 (zaman: t)

$$y_{t+1} = \alpha_0 + \delta_0 c + \delta_1(c+1) + \delta_2 c$$
 (zaman: t + 1)

$$y_{t+2} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2(c+1)$$
 (zaman: t + 2)

(zaman: t-1)

(zaman: t + 3)

Etki Çarpanın Hesaplanması

$$y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$$
 (zaman: $t - 1$)

$$y_t = \alpha_0 + \delta_0 (c + 1) + \delta_1 c + \delta_2 c$$
 (zaman: t)

$$y_{t+1} = \alpha_0 + \delta_0 c + \delta_1 (c + 1) + \delta_2 c$$
 (zaman: $t + 1$)

$$y_{t+2} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 (c + 1)$$
 (zaman: $t + 2$)

$$y_{t+3} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$$
 (zaman: $t + 3$)

- İlk iki denklemden $y_t y_{t-1} = \delta_0$ olduğu rahatlıkla görülebilir.
- δ_0 , t döneminde (cari) z'deki bir birim artışın y üzerindeki ani etkisini gösterir ve etki çarpanı olarak adlandırılır.
- Benzer şekilde y'deki değişim, geçici değişmenin olduğu t döneminden bir dönem sonra $y_{t+1} - y_{t-1} = \delta_1$ 'e, iki dönem sonra ise $y_{t+2} - y_{t-1} = \delta_2$ 'ye eşit olacaktır.
- t + 3 döneminde y eski değerine geri dönecektir. Yani, $y_{t+3} = y_{t-1}$
- Bunun nedeni şu an incelenen modelin sadece iki dönem gecikme barındıran 2. dereceden FDL modeli olmasıdır.

Gecikme Dağılımı

- δ_i 'lerin j indeksine göre çizilen grafiği **gecikme dağılımını** (lag distribution) verecektir.
- Bu grafik, z'de meydana gelen geçici (temporary) bir artışın y üzerindeki dinamik etkisini (dynamic effect) gösterecektir.
- 2. dereceden FDL modeli için olası bir gecikme dağılımı Şekil 23'de görülebilir.
- Elbette δ_i parametrelerini bilemeyiz. Buna rağmen δ_i 'leri tahmin edip bu tahminler üzerinden tahmini bir gecikme dağılımı çizebiliriz.

Şekil 23: Gecikme Dağılımı

Kaynak: Wooldridge (2016)

Uzun Dönem Carpanı

2. Dereceden FDL Modeli

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

- z'deki kalıcı (permanent) artışların y üzerindeki etkisini de bilmek isteriz.
- Yukarıda verilen 2. dereceden FDL modelindeki parametreleri yorumlayabilmek için varsayalım ki t zamanından önceki tüm dönemlerde z sabit ve c'ye eşit. Fakat t zamanından itibaren bir birim artarak kalıcı bir şekilde c + 1 oluyor. Yani tzamanında z'de gerçekleşen kalıcı bir artış var.

...,
$$z_{t-2} = c$$
, $z_{t-1} = c$, $z_t = c+1$, $z_{t+1} = c+1$, $z_{t+2} = c+1$, ...

- Bu değişimin y'de yaratacağı uzun dönemli etkiye, uzun dönem çarpanı ya da uzun dönem çoğaltanı (long run multiplier) denir.
- FDL modellerinde, uzun dönem çoğaltanı ilginin ana odağıdır.

 $y_{t-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c$

Uzun Dönem Çarpanın Hesaplanması

2. Dereceden FDL Modeli

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t, \quad t = 1, 2, \dots, n$$

- Şimdi yukarıda verilen 2. dereceden FDL modelindeki uzun dönem çarpanını hesaplayalım.
- z'nin y üzerindeki uzun dönem etkisine odaklanabilmek için her zaman periodunda hata terimi u_t 'nin sıfır olduğunu varsayalım.

$$y_t = \alpha_0 + \delta_0(c+1) + \delta_1 c + \delta_2 c$$
 (zaman: t)

$$y_{t+1} = \alpha_0 + \delta_0(c+1) + \delta_1(c+1) + \delta_2 c$$
 (zaman: t+1)

$$y_{t+1} = \alpha_0 + o_0(c+1) + o_1(c+1) + o_2c$$
 (zaman: $t+1$)

$$y_{t+2} = \alpha_0 + \delta_0(c+1) + \delta_1(c+1) + \delta_2(c+1)$$
 (zaman: t + 2)

(zaman: t-1)

52 / 52

Kaynaklar

Gujarati, D.N. (2009). Basic Econometrics. Tata McGraw-Hill Education.

Güriş, S. (2005). Ekonometri: Temel Kavramlar. Der Yayınevi.

Stock, J.H. ve M.W. Watson (2015). Introduction to Econometrics.

Wooldridge, J.M. (2016). Introductory Econometrics: A Modern Approach. Nelson Education.

