The GI4 $\rm HA2$

David Konopek(349333) , Paul Walger(349968) , Lukas Klammt(332263)

10. Juni 2014

a)

b)

$$f_{inf}((x_1, y_1), (x_2, y_2)) = \begin{cases} (x_1, y_1), falls \ x_1 \le x_2 \land y_1 \le y_2 \\ (x_1, y_2), falls \ x_1 \le x_2 \land y_2 \le y_1 \\ (x_2, y_1), falls \ x_2 \le x_1 \land y_1 \le y_2 \\ (x_2, y_2), falls \ x_2 \le x_1 \land y_2 \le y_1 \end{cases}$$

$$f_{sup}((x_1, y_1), (x_2, y_2)) = \begin{cases} (x_1, y_1), falls \ x_1 \ge x_2 \land y_1 \ge y_2 \\ (x_1, y_2), falls \ x_1 \ge x_2 \land y_2 \ge y_1 \\ (x_2, y_1), falls \ x_2 \ge x_1 \land y_1 \ge y_2 \\ (x_2, y_2), falls \ x_2 \ge x_1 \land y_2 \ge y_1 \end{cases}$$

c

 $Sei\ f: 2^{\mathbb{N} \times \mathbb{N}} \to \mathbb{N} \times \mathbb{N} \ die \ Funktion, \ die \ \sqcap X \ bestimmt \ mit$

$$f(X) = \begin{cases} a &, falls \ \#(X) = 1 \land a \in X \\ f((min(x_1, x_2), min(y_1, y_2)) \cup (X \setminus \{(x_1, y_1), (x_2, y_2)\})) &, sonst \ mit \ (x_1, y_1), (x_2, y_2) \in X \end{cases}$$
 Sei $g: 2^{\mathbb{N} \times \mathbb{N}} \to \mathbb{N} \times \mathbb{N}$ die Funktion, die $\sqcup X$ bestimmt mit

$$g(X) = \begin{cases} a &, falls \ \#(X) = 1 \land a \in X \\ g((max(x_1, x_2), max(y_1, y_2)) \cup (X \setminus \{(x_1, y_1), (x_2, y_2)\})) &, sonst \ mit \ (x_1, y_1), (x_2, y_2) \in X \end{cases}$$

d)

$$\begin{array}{l} \bot = (1,1) \\ \top \; existiert \; nicht \end{array}$$

e)

Der Verband ist nicht vollständig, weil nicht für jedes $A\subseteq (\mathbb{N}\times\mathbb{N})$ ein Supremum existiert (insbesondere nicht für die unendliche Menge $(\mathbb{N}\times\mathbb{N})$).

f)

$$z.z. \forall d_1, d_2 \in (\mathbb{N} \times \mathbb{N}).d_1 \leq_2 d_2 \rightarrow f(d_1) \leq_2 f(d_2)$$

Weil sowohl 2y2+2y-1 als auch x! komponentenweise monoton sind, ist auch f monoton!

z.Z.: Wenn (X,R) ein Verband ist mit X endlich, dann ist (X,R) auch ein vollständiger Verband.

Beweis:

Sei (X, R) ein beliebiger Verband mit X endlich.

Daraus folgt dass für beliebige $d_1, d_2 \in X$ auch $\prod \{d_1, d_2\}$ existiert. Beweis mittels vollständiger Induktion.

Sei A_i eine beliebige Menge mit $A_i \subseteq X$ und $\#(A_i) = i$

Beweis der Existenz von □

Induktionsanfang: $A_2 = \{d_1, d_2\}$. Nach Voraussetzung existiert $\prod \{d_1, d_2\}$.

Inuktionsvorausetzung(IV): $\prod A_i$ existiert.

Inuktionsschritt: $\prod A_{i+1}$

 $\prod A_{i+1} = \prod (A_i \cup \{d\}) \text{ für ein } d \in A_{i+1}$

Falls $\prod A_i \sqsubseteq d$ dann ist $\prod A_{i+1} = \prod A_i$ (1)

Falls $d \sqsubseteq \prod A_i$ dann ist $\prod A_{i+1} = d$ (2)

Aus (1) und (2) und (IV) folgt dass $\prod A_{i+1}$ existiert (3)

Beweis der Existenz von 📋

Induktionsanfang: $A_2 = \{d_1, \overline{d_2}\}$. Nach Voraussetzung existiert $\bigsqcup \{d_1, d_2\}$.

Inuktionsvorausetzung(IV): $\bigsqcup A_i$ existiert.

Inuktionsschritt: $\bigsqcup A_{i+1}$

 $\bigsqcup A_{i+1} = \bigsqcup (A_i \cup \{d\})$ für ein $d \in A_{i+1}$

Falls $\bigsqcup A_i \sqsubseteq d$ dann ist $\bigsqcup A_{i+1} = d$ (4)

Falls $d \sqsubseteq \bigsqcup A_i$ dann ist $\bigsqcup A_{i+1} = \bigsqcup A_i$ (5)

Aus (4) und (5) udn (IV) folgt dass $\coprod A_{i+1}$ existiert (6)

Aus (3) und (6) folgt dass für jede $A \subseteq X$ sowohl $\coprod A$ als auch $\prod A$ existieren, $\coprod A_1$ und $\prod A_1$ trivialerweiser existieren. Daraus folgt dass (X, R) nach Definition 4.3 ein vollständiger Verband ist.

a)

 $Z.z \le ist$ eine partielle Ordnung auf B.

Es genügt zu zeigen dass \leq reflexiv, antisymetrisch und transitiv ist.

Reflexiv

Sei $f \in B$ beliebig. Dann gilt $f \leq f$ da $f^{-1}(\{1\}) \subseteq f^{-1}(\{1\})$ (1)

Antisymetrisch

Es muss gelten $\forall f,g\in B: f\leq g\land g\leq f\to f=g.$ Sei $f,g\in B$ beliebig. Annahme: $f\leq g\land g\leq f$ Z.z f=g

Aus der Annamhe folgt $f^{-1}(\{1\}) \subseteq g^{-1}(\{1\}) \wedge g^{-1}(\{1\}) \subseteq f^{-1}(\{1\})$ $\Rightarrow f^{-1}(\{1\}) = g^{-1}(\{1\})$

Dies impliziert aber auch $f^{-1}(\{0\}) = g^{-1}(\{0\})$ da es sich um eine boolsche Funktion handelt.

Daraus folgt dass f = g(2)

Transitiv

Es muss gelten $\forall f,g,h\in B: f\leq g\wedge g\leq h\to f\leq h.$ Sei $f,g,h\in B$ beliebig. Annahme: $f\leq g\wedge g\leq h$ z.Z.: $f\leq h$ Aus der Annahme folgt, dass $f^{-1}(\{1\})\subseteq g^{-1}(\{1\})\wedge g^{-1}(\{1\})\subseteq h^{-1}(\{1\})$ $\Rightarrow f^{-1}(\{1\})\subseteq h^{-1}(\{1\})$ $\Rightarrow f\leq g$ (3)

Mit (1) und (2) und (3) folgt, dass \leq eine partielle Ordung auf B ist.

b)

Da wir aus TheGI3 wissen dass die Menge der boolschen Funktionen über n
 variablen die Mächtigkeit 2^n hat ist B endlich.

Mit Aufgabe 2 müssen wir lediglich zeigen dass $\bigsqcup\{f,g\}$ für $f,g\in B$ existiert. Sei $f,g\in B$ beliebig mit $f\neq g$.

Dann existieren sowohl $f^{-1}(\{1\})$ als auch $g^{-1}(\{1\})$. Auch \subseteq ist für diese beiden definiert, darauf folgt dass $f \leq g$ definiert ist Nun gilt:

 $\bigsqcup\{f,g\}=f \text{ falls } f\leq g \text{ sonst } \bigsqcup\{f,g\}=g$

a)

Ø

b)

2{ 0, 1 }

c)

 $\{ Nordpol \}$

```
 \begin{array}{l} \mathcal{F}^{1}(\operatorname{Proc} \times \operatorname{Proc}) = s(r(\{\ (P_{2},\ P_{6}),\ (P_{1},\ P_{4}),\ (P_{1},\ P_{5}),\ (P_{5},\ P_{4})\ \})) \\ \mathcal{F}^{2}(\operatorname{Proc} \times \operatorname{Proc}) = s(r(\{\ (P_{2},\ P_{6}),\ (P_{1},\ P_{5})\ \})) \\ \mathcal{F}^{3}(\operatorname{Proc} \times \operatorname{Proc}) = s(r(\{\ (P_{1},\ P_{5})\ \})) \\ \mathcal{F}^{4}(\operatorname{Proc} \times \operatorname{Proc}) = \mathcal{F}^{3}(\operatorname{Proc} \times \operatorname{Proc}) \end{array}
```

Somit erhalten wir, dass P_1 und P_5 das einzige nicht trivial bisimilare Paar ist. Es gilt $P_1 \sim P_5$

a)

Sei (D, \sqsubseteq) ein vollständiger Verband. Sei f monoton. Sei $A = \{x \in D | f(x) \sqsubseteq x\}$ Z.z $z_{min} = \prod A$ ist der kleinste Fixpunkt. Wir brauchen zu zeigen, dass

1. z_{min} ist ein Fixpunkt von f.

Da \sqsubseteq antisymmetrisch ist müssen wir zeigen dass: $z_{min} \sqsubseteq f(z_{min})$ (*) und $f(z_{min}) \sqsubseteq z_{min}$ (**)

- (*)
 Nach $z_{min} = \prod A$ gilt $\forall x \in A : z_{min} \sqsubseteq x$ Da f monoton ist gilt: $f(z_{min}) \sqsubseteq f(x)$ Nach Defintion von A gilt $\forall x \in A : f(z_{min}) \sqsubseteq f(x) \sqsubseteq x$ $\Rightarrow f(z_{min}) \in A$. $\Rightarrow z_{min} \sqsubseteq f(z_{min})$ da z_{min} das Infimum ist.
- (**) Da $z_{min} \in A$ gilt $f(z_{min}) \sqsubseteq z_{min}$

Aus (*) und (**) folgt mit Der Antisymetrie von \sqsubseteq dass z_{min} ein Fixpunkt ist.

2. z_{min} ist der kleinste Fixpunkt.

Widerspruchsbeweis.

Sei z_{min2} ein Fixpunkt mit $z_{min2} \sqsubseteq z_{min}$ (1).

Es gilt $z_{min} = \prod \{x \in D | f(x) \sqsubseteq x\}$

Nun ist aber $z_{min2} \in \{x \in D | f(x) \sqsubseteq x\}$ da es ein Fixpunkt ist.

Das aber steht im Widerspruch zu (1), wenn z_{min} das Infimum ist, kann z_{min2} nicht Element der Prä-Fixpunkte sein.

b)

z.Z Aus (D, \sqsubseteq) ein endlicher vollständiger Verband und f monoton folgt dass, $z_{max} = f^M(\top)$ ein $M \in \mathbb{N}$ der größte Fixpunkt von f ist. Sei (D, \sqsubseteq) ein endlicher vollständiger Verband und f monoton. z.Z $z_{max} = f^M(\top)$ ein $M \in \mathbb{N}$ der größte Fixpunkt von f.

Wir brauchen zu zeigen, dass

1. z_{max} ist ein Fixpunkt von f.

 $z_{max} = f^{M}(\top) = f^{M+1}(\top)$ da \top das maximale Element ist und f monoton ist.

2. z_{max} ist der größte Fixpunkt.

Sei z ein Fixpunkt.

Nun gilt $z \sqsubseteq \top$. Da f monoton ist $f(z) = z \sqsubseteq f(\top)$. Wir wenden f M - 1 mal

an, und wir bekommen $z \sqsubseteq f^M(\top) = z_{max}$ Daraus folgt dass z_{max} der größte Fixpunkt ist.

Mit 1. und 2. folgt dass z_{max} der größte Fixpunkt ist. \blacksquare