Гайдамак И.В.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. СПРАВОЧНЫЙ МАТЕРИАЛ

Оглавление

§1. ЧИСЛОВЫЕ ФУНКЦИИ	4
1.1. Линейная функция	4
1.2. Квадратичная функция	4
1.3. Дробно-линейная функция	5
1.4. Степенная функция	5
1.5. Показательная функция	6
1.6. Логарифмическая функция	6
1.7. Тригонометрические функции	6
1.8. Обратные тригонометрические функции	9
1.9. Функция сигнум	9
1.10. Преобразования графиков функций	10
§2. ПРЕДЕЛ ЧИСЛОВОЙ ФУНКЦИИ	11
2.1. Таблица эквивалентных функций	11
2.2. Пределы некоторых функций	12
2.3. Предел степенно-показательной функции	12
2.4. Результаты действий с бесконечно малыми и бесконечно большими	
функциями	12
2.5. Отыскание асимптот графика функции	13
2.6. Непрерывность функции. Точки разрыва функции	14
§3. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОГО ПЕРЕМЕННОГО	15
3.1. Определение производной	15
3.2. Таблица производных	15
3.3. Основные правила дифференцирования	15
3.4. Правило Лопиталя раскрытия неопределенностей	16
3.5. Исследование функций и построение графиков	17
§4. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОГО ПЕРЕМЕННОГО:	
НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ	
4.1. Таблица интегралов	20
4.2. Таблица наиболее часто встречающихся дифференциалов	
4.3. Метод подстановки (замена переменной)	21
4.4. Интегрирование по частям	21
4.5. Интегрирование выражений, содержащих квадратный трехчлен в знамена	теле
	22

4.6. Интегрирование рациональных дробей	23
4.7. Интегрирование иррациональных функций	23
4.8. Интегрирование тригонометрических функций	23
§5. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОГО ПЕРЕМЕННОГО:	
ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ	26
5.1. Формула Ньютона-Лейбница	26
5.2. Метод замены переменной	26
5.3. Метод интегрирования по частям	26
5.4. Несобственные интегралы	26
5.5. Приложения определенного интеграла	27
§6. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ	29
6.1. Частные производные	29
6.2. Локальные экстремумы	29
6.3. Условные экстремумы	30
§7. ЧИСЛОВЫЕ РЯДЫ	32
7.1. Основные понятия	32
7.2. Необходимое условие сходимости ряда	32
7.3. Основные расходящиеся и сходящиеся ряды	32
7.4. Знакопостоянные ряды	33
7.5. Знакопеременные ряды	34
§8. СТЕПЕННЫЕ РЯДЫ	36
8.1. Основные понятия	36
8.2. Радиус и интервал сходимости	36
8.3. Разпожение функций в степенные одлы	36

§1. ЧИСЛОВЫЕ ФУНКЦИИ

1.1. Линейная функция y = kx + b, $k, b \in R$.

Область определения $D(y) = (-\infty; +\infty)$.

Область значений $E(y) = (-\infty; +\infty)$.

График функции – прямая линия.

Геометрический смысл коэффициента k:

k=tglpha , где lpha - угол между осью абсцисс и

прямой y = kx + b.

1.2. Квадратичная функция $y = ax^2 + bx + c$, $a,b,c \in R$.

Область определения $D(y) = (-\infty; +\infty)$.

Область значений
$$E(y) = \left(-\frac{D}{4a}; +\infty\right)$$
, если $a>0$; $E(y) = \left(-\infty; -\frac{D}{4a}\right)$,

если a < 0, где $D = b^2 - 4ac$ - дискриминант.

График функции – парабола с вершиной в

точке
$$\left(-\frac{b}{2a}; -\frac{D}{4a}\right)$$

На рисунке — 6 различных расположений параболы относительно оси абсцисс в зависимости от знака коэффициента *а* и значения дискриминанта.

1.3. Дробно-линейная функция

$$y = \frac{ax+b}{cx+d}, c \neq 0.$$

$$D(y) = \left(-\infty; -\frac{d}{c}\right) \cup \left(-\frac{d}{c}; +\infty\right)$$

$$E(y) = \left(-\infty; \frac{a}{c}\right) \cup \left(\frac{a}{c}; +\infty\right)$$

1.4. Степенная функция $y = x^{\alpha}$, $\alpha \in R$.

а) $y=x^{2k}$, $k{\in}\mathbb{N}$ (четный положительный показатель $\alpha=2k$).

$$D(y) = (-\infty; +\infty), E(y) = [0; +\infty).$$

б) $y=x^{2k+1}$, $k \in \mathbb{N}$ (нечетный положительный показатель $\alpha=2k+1$).

$$D(y) = (-\infty; +\infty), E(y) = (-\infty; +\infty).$$

$$D(y) = [0; +\infty), E(y) = [0; +\infty).$$

г)
$$y = \sqrt[2k+1]{x}$$
 (если $\alpha = \frac{1}{2k+1}$).

$$D(y) = (-\infty; +\infty), E(y) = (-\infty; +\infty).$$

Возможны иные варианты для показателя степенной функции.

1.5. Показательная функция $y = a^x$, a > 0; $a \ne 1$.

1.6. Логарифмическая функция $y = \log_a x$, a > 0; $a \ne 1$

1.7. Тригонометрические функции

1.7.1. <u>Графики</u>

$$\begin{cases} y = \sin x \\ y = \cos x \end{cases}$$
 $D(y) = (-\infty; +\infty), \ E(y) = [-1; 1]$ Период $T = 2\pi$

$$y=tgx,\; D(y): x\neq \frac{\pi}{2}+\pi k,\; k=0,\pm 1,\pm 2,...,\;\; E(y)=(-\infty;+\infty)$$
 . Период $T=\pi$. $y=ctgx,\; D(y): x\neq \pi k,\; k=0,\pm 1,\pm 2,...,\;\; E(y)=(-\infty;+\infty)$. Период $T=\pi$.

1.7.2. <u>Основные тригонометрические формулы и величины</u> Значения тригонометрических функций. Формулы приведения.

Функции	Аргумент								
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$		
	0°	30°	45°	60°	90°	180°	270°		
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1		
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0		
$tg\alpha$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	_	0	_		
ctglpha	_	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	_	0		
x	$\pi \pm$	α	$2\pi \pm \alpha$		$\alpha = 2\pi \pm \alpha = \frac{\pi}{2}$		$\frac{\pi}{2} \pm \alpha$	$\frac{3\pi}{2}$	$\pm \alpha$
$\sin x$	∓sin	$\pm \sin \alpha$ $\cos \alpha$		-0	$-\cos \alpha$				
$\cos x$	$-\cos$	$s\alpha$	$\cos \alpha$		$\mp \sin \alpha$	± 9	$\pm \sin \alpha$		
tgx	$\pm tg$	α	$\pm tg\alpha$		$\mp ctg\alpha$		$\mp ctg\alpha$		
ctgx	$\pm ctg$	<i>β</i> α	$\pm ctg\alpha$ $\mp tg\alpha$		干	$\mp tg\alpha$			

Функции $y = \sin x$, y = tgx и y = ctgx - нечетные, т.е

$$\sin(-\alpha) = -\sin \alpha$$
, $tg(-\alpha) = -tg\alpha$, $ctg(-\alpha) = -ctg\alpha$.

Функция $y = \cos x$ четная, т.е. $\cos(-\alpha) = \cos \alpha$

Некоторые тригонометрические тождества.

(1)
$$\sin^2 x + \cos^2 x = 1$$

(2)
$$1+tg^2x = \frac{1}{\cos^2 x}$$
 (3) $1+ctg^2x = \frac{1}{\sin^2 x}$

(4)
$$\cos(x \pm y) = \cos x \cdot \cos y \mp \sin x \cdot \sin y$$

(5)
$$\sin(x \pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y$$

(6)
$$tg(x \pm y) = \frac{tgx \pm tgy}{1 \mp tgx \cdot tgy}$$
 (7) $ctg(x \pm y) = \frac{ctgx \cdot ctgy \mp 1}{ctgx \pm ctgy}$

(8)
$$\sin 2x = 2\sin x \cdot \cos x$$

(9)
$$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$$

(10)
$$tg(2x) = \frac{2tgx}{1 - tg^2x}$$
 (11) $ctg(2x) = \frac{ctg^2x - 1}{2ctgx}$

(12)
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
 (12) $\sin^2 x = \frac{1 - \cos 2x}{2}$

(13)
$$\sin x \pm \sin y = 2\sin \frac{x \pm y}{2} \cdot \cos \frac{x \mp y}{2}$$

$$(14) \cos x + \cos y = 2\cos\frac{x+y}{2} \cdot \cos\frac{x-y}{2}$$

(15)
$$\cos x - \cos y = -2\sin \frac{x+y}{2} \cdot \sin \frac{x-y}{2}$$

(16)
$$\sin x \cdot \cos y = \frac{1}{2} \left(\sin(x - y) + \sin(x + y) \right)$$

(17)
$$\cos x \cdot \cos y = \frac{1}{2} (\cos(x - y) + \cos(x + y))$$

(18)
$$\sin x \cdot \sin y = \frac{1}{2} (\cos(x - y) - \cos(x + y))$$

1.8. Обратные тригонометрические функции

 $y = \arcsin x$. Функция нечетная.

 $y = \arccos x$

$$D(y) = [-1;1], E(y) = \left[-\frac{\pi}{2}; \frac{\pi}{2}\right].$$

$$D(y) = [-1;1], E(y) = [0;\pi]$$

y = arctgx. Функция нечетная.

y = arcctgx

$$D(y) = (-\infty; +\infty), E(y) = \left[-\frac{\pi}{2}; \frac{\pi}{2}\right].$$

$$D(y) = (-\infty; +\infty), E(y) = [0; \pi].$$

1.9. Функция сигнум: y = sgn x

$$\operatorname{sgn} x = \begin{cases} -1, & x < 0; \\ 0, & x = 0; \\ 1, & x > 0. \end{cases}$$

$$D(y) = (-\infty; +\infty), E(y) = \{-1; 0; 1\}.$$

1.10. Преобразования графиков функций

(1) f(x)+c \Rightarrow сдвиг графика функции f(x) вдоль Оу на c единиц вверх; f(x)-c \Rightarrow сдвиг графика вниз (считается, что c>0)

(2) f(x-c) \Rightarrow сдвиг графика функции f(x) вдоль Ох на c единиц вправо; f(x+c) \Rightarrow сдвиг графика влево (считается, что c>0)

(3) f(kx) \Rightarrow сжатие графика функции f(x) вдоль Ох в k раз; $f\left(\frac{1}{L}x\right)$ \Rightarrow растяжение графика

вдоль Ох (считается, что k > 1)

 $|kf(x)| \Rightarrow$ растяжение графика функции f(x) вдоль Оу в k раз; $|\frac{1}{k}f(x)| \Rightarrow$ сжатие графика вдоль Оу

(5) f(-x) \Rightarrow зеркальное отражение графика функции f(x) относительно оси Оу

(6) $|-f(x)| \Rightarrow$ зеркальное отражение графика функции f(x) относительно оси Ох

 $||f(x)|| \Rightarrow$ часть графика, находящаяся В нижней полуплоскости, отражается симметрично относительно оси Ох; весь график находится в верхней полуплоскости

(8)
$$f(|x|) \Rightarrow$$

часть графика, находящаяся левой полуплоскости, удаляется; а график из правой полуплоскости симметрично отображается в левую полуплоскость

§2. ПРЕДЕЛ ЧИСЛОВОЙ ФУНКЦИИ

2.1. Таблица эквивалентных функций

Две функции f(x) и g(x) называются эквивалентными при $x \to x_0$, если $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$. Данный факт обозначают: $f(x) \approx g(x)$ при $x \to x_0$.

Таблица эквивалентных функций

При $x \rightarrow 0$:

(1)
$$\sin x \approx x$$

(2)
$$tgx \approx x$$

(2)
$$tgx \approx x$$
 (3) $\arcsin x \approx x$

(4)
$$arctgx \approx x$$

(5)
$$1 - \cos x \approx \frac{x^2}{2}$$

(6)
$$a^x - 1 \approx x \cdot \ln a$$
 (7) $e^x - 1 \approx x$

(7)
$$e^x - 1 \approx x$$

(8)
$$\log_a(1+x) \approx \frac{x}{\ln a}$$
 (9) $\ln(1+x) \approx x$

$$(9) \quad \ln(1+x) \approx x$$

(10)
$$(1+x)^k - 1 \approx kx$$
 (11) $\sqrt[k]{1+x} - 1 \approx \frac{1}{k}x$

При $x \to \infty$:

$$(12) \left(1 + \frac{a}{cx + d}\right)^{kx + m} \approx e^{\frac{ak}{c}}$$

(13) В случае многочлена $P(x) = a_k x^k + ... + a_n x^n \approx a_n x^n$, где a_n - коэффициент при старшей степени x^n .

2.2. Пределы некоторых функций.

функция	$x \rightarrow 0$	$x \rightarrow +\infty$	$x \rightarrow -\infty$
arctgx	0	$\frac{\pi}{2}$	$-\frac{\pi}{2}$
arcctgx	$ctgx$ $\frac{\pi}{2}$		π
a^x , если $a>1$	1	+∞	0
a^{x} , если $0 < a < 1$	1	0	$+\infty$
$\ln x$	$-\infty (x \rightarrow 0 + 0)$	+∞	_

2.3. Предел степенно-показательной функции

$$\lim_{x \to x_0} [U(x)]^{V(x)} = e^{\lim_{x \to x_0} V(x) \cdot \ln U(x)}.$$

Если при $x \to x_0$ функция, находящаяся в основании, $U(x) \to 1$, то

$$\lim_{x \to x_0} [U(x)]^{V(x)} = e^{\lim_{x \to x_0} V(x) \cdot [U(x) - 1]}.$$

2.4. Результаты действий с бесконечно малыми и бесконечно большими функциями

Если f(x) – *бесконечно малая* функция в точке x_0 , то $\lim_{x\to x_0} f(x) = 0$.

Если f(x) – бесконечно большая функция в точке x_0 , то $\lim_{x\to x_0} f(x) = \infty$.

Ниже схематично отображены действия с бесконечно малыми и бесконечно большими функциями. Причем, "0" – условное обозначение бесконечно малой функции, " ∞ " – бесконечно большой. $a \neq 0$ – произвольное число.

				Неопределенности:		
$\frac{0}{0} = 0$	$\frac{0}{\infty} = \infty$	$\frac{a}{\infty} = 0$	$\frac{\infty}{a} = \infty$	$\frac{0}{0}$	8 8	
$\frac{a}{0} = \infty$	$\frac{0}{a} = 0$					
$a+\infty=\infty$	$a-\infty=-\infty$	$-\infty-\infty=-\infty$	$+\infty+\infty=+\infty$	$\infty - \infty$		
$a \cdot \infty = \infty$	$\infty \cdot \infty = \infty$	$0 \cdot a = 0$		$0\!\cdot\!\infty$		
$1^a = 1$	$1^0 = 1$	$(+\infty)_{+\infty} = +\infty$	$(+\infty)_{-\infty} = 0$	0_{∞}	1^{∞}	
	$\infty^a = 0$, если $a < 0$	$0^a = 0$, если $a > 0$	$0^a=\infty,$ если $a<0$	∞_0	0_0	

2.5. Отыскание асимптот графика функции f(x)

- (1) Прямая x=a является вертикальной асимптотой функции f(x), если хотя бы один из односторонних пределов $\lim_{x\to a-0} f(x)$ и $\lim_{x\to a+0} f(x)$ равен $+\infty$ или $-\infty$. Значения a ищем среди точек разрыва области определения и ее конечных границ.
- (2) При $x \to +\infty$ (при $x \to -\infty$) у функции f(x) имеется горизонтальная асимптота, если существует конечный предел $\lim_{x \to +\infty} f(x) = b$ $\lim_{x \to +\infty} f(x) = b$. Тогда y = b искомая горизонтальная асимптота при $x \to +\infty$ (при $x \to -\infty$).

(3) Если при $x \to +\infty$ (при $x \to -\infty$) нет горизонтальных асимптот, то возможно найти *наклонные асимптоты* функции f(x). Для этого необходимо вычислить пределы $k = \lim_{x \to +\infty} \frac{f(x)}{x}$ и $b = \lim_{x \to +\infty} [f(x) - kx]$. Если они существуют, причем k и b конечны, то прямая y = kx + b является наклонной асимптотой при $x \to +\infty$. Аналогично находится наклонная асимптота и при $x \to -\infty$.

2.6. Непрерывность функции. Точки разрыва функции

Для исследования на непрерывность используются односторонние пределы: $f(x_0-0)=\lim_{x\to x_0-0}f(x)$ – предел слева,

$$f(x_0 + 0) = \lim_{x \to x_0 + 0} f(x)$$
 – предел справа.

- (1) Функция *непрерывна* в точке $x=x_0$ тогда и только тогда, когда $f(x_0-0)=f(x_0+0)=f(x_0).$ В противном случае $x=x_0$ точка разрыва функции f(x).
- (2) Точка разрыва $x=x_0$ является *устранимой*, если равны односторонние пределы $f(x_0-0)=f(x_0+0)$ (при этом либо функция в точке $x=x_0$ не определена, либо $f(x_0-0)=f(x_0+0)\neq f(x_0)$)
- (3) Точка $x = x_0$ является точкой разрыва I рода, если односторонние пределы существуют и конечны, но не равны: $f(x_0 0) \neq f(x_0 + 0)$.
- (4) Точка $x = x_0$ является *точкой разрыва II рода*, если хотя бы один из односторонних пределов не существует или не конечен.

§3. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОГО ПЕРЕМЕННОГО

3.1. Определение производной

Пусть функция y = f(x) определена в некоторой окрестности точки x_0 . Тогда производная функции в этой точке f'(x) определяется как

величина
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
.

Другие обозначения производной функции: y', $\frac{dy}{dx}$, $\frac{df(x_0)}{dx}$.

3.2. Таблица производных

(1)
$$(c)' = 0$$
, $c = const$

(2) $(x^n)' = nx^{n-1}$ В частности:

(2a)
$$(x)' = 1$$
 (26) $(\sqrt{x})' = \frac{1}{2\sqrt{x}}$ (2B) $(\frac{1}{x})' = -\frac{1}{x^2}$

(3)
$$(a^x)' = a^x \cdot \ln a$$

(3) $(a^x)' = a^x \cdot \ln a$ В частности: (3a) $(e^x)' = e^x$

(4)
$$(\log_a x)' = \frac{1}{x \cdot \ln a}$$
 В частности: (4a) $(\ln x)' = \frac{1}{x}$

$$(5) (\sin x)' = \cos x$$

$$(6) (\cos x)' = -\sin x$$

(7)
$$(tgx)' = \frac{1}{\cos^2 x}$$

(8)
$$(ctgx)' = -\frac{1}{\sin^2 x}$$

(9)
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

(10)
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

(11)
$$(arctgx)' = \frac{1}{1+x^2}$$

(12)
$$(arcctgx)' = -\frac{1}{1+x^2}$$

3.3. Основные правила дифференцирования

Пусть u = u(x) и v = v(x) - функции, дифференцируемые в точке x_0 . Тогда:

(1)
$$(a \cdot u + b \cdot v)' = a \cdot u' + b \cdot v'$$
, где $a, b = const$.

(2)
$$(u \cdot v)' = u' \cdot v + u \cdot v'$$
.

(3)
$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$
, где $v(x_0) \neq 0$.

(4) Дифференцирование сложной функции. Если y=f(u), u=u(x), т.е. y=f[u(x)], где функции f(u) и u(x) дифференцируемы в точках $u(x_0)$ и x_0 соответственно, то $\frac{dy}{dx}=\frac{dy}{du}\cdot\frac{du}{dx}$ или $y_x'=y_u'\cdot u_x'$.

(5) Дифференцирование степенно-показательной функции.

$$\left(u(x)^{v(x)}\right)' = u(x)^{v(x)} \cdot \left(v(x) \cdot \frac{u'(x)}{u(x)} + v'(x) \ln u(x)\right)$$

3.4. Правило Лопиталя раскрытия неопределенностей

(1) Пусть в некоторой проколотой окрестности точки x_0 функции f(x) и g(x) дифференцируемы и $g(x) \neq 0$ при $x \neq x_0$. Если $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ или $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \infty$, т.е. частное f(x)/g(x) в точке x_0 представляет собой неопределенность вида 0/0 или ∞/∞ , то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$, если предел в правой части этого равенства существует.

При раскрытии других неопределенностей, их можно свести к неопределенностям вида 0/0 или ∞/∞ следующим образом:

(2) Неопределенность $0 \cdot \infty$ (предел вида $\lim_{x \to x_0} f(x)g(x)$)

$$f \cdot g = \frac{f}{1/g}$$
 или $f \cdot g = \frac{g}{1/f}$

(3) Неопределенность $\infty - \infty$ (предел вида $\lim_{x \to x_0} [f(x) - g(x)]$). Если хотя бы одна из функций f(x) и g(x) имеет вид дроби, то нужно привести выражение f(x) - g(x) к общему знаменателю. В противном случае разность функций преобразуется следующим образом:

$$f - g = \frac{(1/g) - (1/f)}{(1/f)(1/g)}$$

(4) Неопределенности 1^{∞} , 0^{0} , ∞^{0} сводятся к неопределенности $0\cdot\infty$ с преобразованием $f^{g}=e^{g\cdot\ln f}$, а затем и к неопределенности 0/0 или ∞/∞ (см. п.2).

3.5. Исследование функций и построение графиков

- 3.5.1. Исследование функций на монотонность и локальные экстремумы.
 - 1. Находим область определения функции: D(f).
- 2. Находим производную f'(x) и ее область определения D(f') (в области определения исходной функции).
- 3. Находим точки, «подозрительные» на локальный экстремум. Ими будут точки из области определения D(f), в которых f'(x) = 0 или f'(x) не существует
- 4. а) Отмечаем найденные точки на числовой прямой, выделяем полученные интервалы знакопостоянства производной.
 - б) Определяем знак производной f'(x) в каждом интервале.
- в) Определяем поведение исходной функции f(x) на каждом интервале.
 - 5. Выписываем интервалы возрастания и убывания функции.
- 6. Указываем, в каких точках присутствуют локальные экстремумы, определяем их вид, находим значения функции в этих точках.

3.5.2. <u>Нахождение глобальных экстремумов функции</u> f(x), непрерывной на отрезке [a,b]

- 1. Находим производную f'(x) и ее область определения.
- 2. Находим точки, «подозрительные» на глобальный экстремум:
 - а) Выписываем концы отрезка а и b.
- б) Находим, в каких точках f'(x) = 0. Указываем, какие из них принадлежат заданному отрезку.
- в) Находим, в каких точках заданного отрезка f'(x) не существует.
- 3. Вычисляем значения в каждой точке, найденной в предыдущем пункте.
- 4. Выбираем наибольшее и наименьшее значения функции (из найденных в п.3). Ответ записываем в виде: $\min_{a \le x \le b} f(x) = f(...) = ...,$

$$\max_{a \le x \le b} f(x) = f(\dots) = \dots$$

3.5.3. Определение промежутков выпуклости и точек перегиба

- 1. Находим область определения функции f(x).
- 2. Находим первую производную f'(x) и ее область определения.
- 3. Находим вторую производную f''(x) и ее область определения.
- 4. Находим точки, «подозрительные» на перегиб, те, в которых f''(x) = 0 или в которых f''(x) не существует.
- 5. а) Отмечаем на числовой прямой область определения функции f(x), в этой области найденные точки, выделяем полученные интервалы.
 - б) Определяем знак второй производной f''(x) в каждом интервале.
- в) Определяем поведение исходной функции f(x) на каждом интервале.

- 6. Выписываем интервалы выпуклости вверх и выпуклости вниз функции.
- 7. Указываем точки перегиба, находим значения функции в этих точках.

3.5.4. Полное исследование функции и построение графика

- 1. Находим область определения функции.
- 2. Исследуем функцию на четность, нечетность, периодичность.
- 3. Определяем промежутки знакопостоянства функции:
- 4. Находим асимптоты.
- 5. Находим промежутки монотонности, локальные экстремумы.
- 6. Находим промежутки выпуклости, точки перегиба.
- 7. Строим эскиз графика

§4. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОГО ПЕРЕМЕННОГО: НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

4.1. Таблица интегралов

u — независимая переменная или любая дифференцируемая функция, a,b=const, C — произвольная постоянная.

$$(1) \int 0 \cdot du = C.$$

(2)
$$\int u^n du = \frac{u^{n+1}}{n+1} + C, (n \neq -1).$$

В частности, (2a) $\int 1 \cdot du = u + C$, (2б) $\int \frac{du}{\sqrt{u}} = 2\sqrt{u} + C$, (2в) $\int \frac{du}{u^2} = -\frac{1}{u} + C$.

$$(3) \int \frac{du}{u} = \ln |u| + C$$

(4)
$$\int a^{u} du = \frac{a^{u}}{\ln a} + C$$
. В частности, (4a) $\int e^{u} du = e^{u} + C$.

(5)
$$\int \sin u du = -\cos u + C$$
 (6)
$$\int \cos u du = \sin u + C$$

(7)
$$\int tgudu = -\ln|\cos u| + C$$
 (8)
$$\int ctgudu = \ln|\sin u| + C$$

(9)
$$\int \frac{du}{\cos^2 u} = tgu + C$$
 (10)
$$\int \frac{du}{\sin^2 u} = -ctgu + C$$

(11)
$$\int \frac{du}{\cos u} = \ln \left| tg \left(\frac{u}{2} + \frac{\pi}{4} \right) \right| + C$$
 (12)
$$\int \frac{du}{\sin u} = \ln \left| tg \frac{u}{2} \right| + C$$

(13)
$$\int \frac{du}{u^2 + a^2} = \frac{1}{a} \arctan \frac{u}{a} + C, (a \neq 0)$$

(14)
$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C, (a > 0)$$

(15)
$$\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{u + a}{u - a} \right| + C, (a > 0)$$

(16)
$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C, (a > 0)$$

(17)
$$\int \frac{du}{\sqrt{u^2 + b}} = \ln \left| u + \sqrt{u^2 \pm b} \right| + C, (b > 0)$$

(18)
$$\int \sqrt{a^2 - u^2} du = \frac{u}{2} \sqrt{a^2 - u^2} + \frac{a^2}{2} \arcsin \frac{u}{a} + C, (a > 0)$$

(19)
$$\int \sqrt{u^2 \pm a^2} \cdot du = \frac{u}{2} \sqrt{u^2 \pm a^2} \pm \frac{a^2}{2} \ln \left| u + \sqrt{u^2 \pm a^2} \right| + C, (a > 0)$$

4.2. Таблица наиболее часто встречающихся дифференциалов

(1)
$$\cos x dx = d(\sin x)$$
 (2) $\sin x dx = -d(\cos x)$

(3)
$$e^x dx = d(e^x)$$
 (4) $dx = \frac{1}{a}d(ax+b)$ (5) $xdx = \frac{1}{2}d(x^2)$

(6)
$$\frac{1}{x}dx = d(\ln x)$$
 (7) $\frac{1}{\sqrt{x}}dx = 2d(\sqrt{x})$ (8) $\frac{1}{x^2}dx = -d(\frac{1}{x})$

(9)
$$\frac{dx}{\cos^2 x} = d(tgx)$$
 (10)
$$\frac{dx}{\sin^2 x} = -d(ctgx)$$

(11)
$$\frac{dx}{1+x^2} = d(arctgx) = -d(arcctgx)$$

(12)
$$\frac{dx}{\sqrt{1-x^2}} = d(\arcsin x) = -d(\arccos x)$$

4.3. Метод подстановки (замена переменной)

Пусть функция f(x) непрерывна на заданном промежутке; переменная x представима непрерывно дифференцируемой функцией $x=\varphi(t)$. Тогда $\int f(x)dx = \int f[\varphi(t)]\cdot \varphi'(t)dt$.

4.4. Интегрирование по частям

 $\int u \, dv = uv - \int v \, du$, где $u = u(x), \, v = v(x)$ - непрерывно дифференцируемые функции от x .

Основные типы интегралов, к нахождению которых применяют интегрирование по частям:

І тип. $\int P_n(x) \cdot e^{ax} dx$, $\int P_n(x) \cdot \sin bx \, dx$, $\int P_n(x) \cdot \cos bx \, dx$, где $P_n(x)$ – многочлен степени n; a,b-произвольные числа. Берем $u = P_n(x)$, dv – все, что осталось от подынтегрального выражения.

II тип. $\int P_n(x) \cdot \ln x \, dx$, $\int P_n(x) \cdot \arcsin x dx$, $\int P_n(x) \cdot \arccos x \, dx$, $\int P_n(x) \cdot \arctan x \, dx$, $\int P_n(x) \cdot \arctan x \, dx$, $\int P_n(x) \cdot \arctan x \, dx$, Берем $\int P_n(x) \cdot \arctan x \, dx$, $\int P_n$

III тип. Так называемые возвратные интегралы. Для них интегрирование по частям применяется дважды, после чего решается линейное уравнение относительно исходного интеграла.

 $\int e^{ax}\sin bx\ dx$, $\int e^{ax}\cos bx\ dx$. Берем за u любой из сомножителей, за dv - все, что осталось от подынтегрального выражения.

$$\int \cos(\ln x) dx$$
, $\int \sin(\ln x) dx$. Берем $dv = dx$, a $u = \cos(\ln x)$, $u = \sin(\ln x)$.

4.5. Интегрирование выражений, содержащих квадратный трехчлен в знаменателе

В интегралах вида (a) $\int \frac{dx}{x^2+px+q}$, (б) $\int \frac{dx}{\sqrt{x^2+px+q}}$ в знаменателе

выделяется полный квадрат, и затем применяются табличные интегралы (2в),(3),(13) – (17) из п.4.1.

Чтобы найти интегралы вида (в)
$$\int \frac{Mx+N}{x^2+px+q} dx$$
 , (г) $\int \frac{Mx+N}{\sqrt{x^2+px+q}} dx$,

нужно найти производную знаменателя и выделить ее в числителе. Далее разбить интеграл на два, почленно поделив преобразованный числитель на знаменатель. При этом получаются два интеграла. Первый находим по одной из спедующих формул: $\int \frac{f'(x)}{x} dx = \ln |f(x)| + C$ или

находим по одной из следующих формул:
$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$$
 или

$$\int \! rac{f'(x)}{\sqrt{f(x)}} dx = 2 \sqrt{f(x)} + C$$
 . А второй интеграл будет иметь вид (а) или (б),

нахождение которых описано выше.

4.6. Интегрирование рациональных дробей

$$\int rac{P_n(x)}{Q_m(x)} dx$$
 , где $P_n(x), Q_m(x)$ — многочлены степеней n, m

соответственно

Если n < m, то рациональная дробь называется правильной, в противном случае – неправильной.

Если интегрируется неправильная дробь, то прежде всего делим числитель на знаменатель. Это позволит представить дробь в виде суммы многочлена и правильной рациональной дроби. А затем правильную рациональную дробь раскладываем на простейшие или с помощью преобразований приводим к табличному виду.

4.7. Интегрирование иррациональных функций

(1)
$$\int R\left(x, \sqrt[k]{x^{\alpha}}, \sqrt[m]{x^{\beta}},\right) dx$$
. Делаем замену $x = t^N$

(2)
$$\int R\left(x, \sqrt[k]{(ax+b)^{\alpha}}, \sqrt[m]{(ax+b)^{\beta}}, \dots\right) dx$$
. Замена $ax+b=t^N$

(3)
$$\int R \left(x, \sqrt[k]{\left(\frac{ax+b}{cx+d} \right)^{\alpha}}, \sqrt[m]{\left(\frac{ax+b}{cx+d} \right)^{\beta}}, \dots \right) dx \cdot \text{Замена } \frac{ax+b}{cx+d} = t^N$$

В интегралах (1)–(3) N = HOK(k,m,....), иначе говоря, N – общий знаменатель дробей $\frac{\alpha}{k}, \frac{\beta}{m},....$

(4)
$$\int R\left(x, \sqrt{a^2 - x^2}\right) dx$$
. Замена $x = a \sin t, dx = a \cos t dt$.
$$\int R\left(x, \sqrt{a^2 + x^2}\right) dx$$
. Замена $x = a t g t, dx = \frac{a dt}{\cos^2 t}$
$$\int R\left(x, \sqrt{x^2 - a^2}\right) dx$$
. Замена $x = \frac{a}{\cos t}, dx = \frac{a \sin t dt}{\cos^2 t}$

4.8. Интегрирование тригонометрических функций

(1) Универсальная тригонометрическая подстановка

$$t = tg\frac{x}{2} = \sin x = \frac{2t}{1+t^2};\cos x = \frac{1-t^2}{1+t^2};dx = \frac{2dt}{1+t^2};x = 2arctgt$$

- (2) Интегралы вида $\int \sin^n x dx$, $\int \cos^n x dx$. Возможны два варианта:
 - а) n нечётное. Тогда отделяем сомножитель в первой степени и вносим его под знак дифференциала. Оставшееся выражение преобразуем с помощью основного тригонометрического тождества:

$$\sin^2 x = 1 - \cos^2 x$$
 или $\cos^2 x = 1 - \sin^2 x$.

- б) n чётное. Используем формулы понижения степени $\sin^2 x = \frac{1 \cos 2x}{2}; \cos^2 x = \frac{1 + \cos 2x}{2}.$
- (3) Интегралы вида $\int \sin^m x \cos^n x \ dx$. Возможны два варианта:
 - а) хотя бы одно из m и n нечётное. Тогда отделяем от меньшей нечетной степени сомножитель в первой степени и вносим его под знак дифференциала. Оставшееся выражение преобразуем так, чтобы ОНО содержало ЛИШЬ функцию, полученную ПОД дифференциалом. Делаем С помощью формул это $\sin^2 x = 1 - \cos^2 x$ u $\cos^2 x = 1 - \sin^2 x$.
 - б) обе степени чётные. Используем формулы для понижения степени: $\sin^2 x = \frac{1-\cos 2x}{2}$; $\cos^2 x = \frac{1+\cos 2x}{2}$; $\sin x \cos x = \frac{1}{2}\sin 2x$.
- (4) Интегралы вида $\int \frac{dx}{\sin^m x}$; $\int \frac{dx}{\cos^m x}$; $\int \frac{dx}{\sin^n x \cdot \cos^m x}$. В числителе расписываем единицу $1 = \sin^2 x + \cos^2 x$ и почленно делим на знаменатель, разбиваем на два интеграла.
- (5) Интегралы вида $\int \sin ax \sin bx \, dx$; $\int \sin ax \cos bx \, dx$; $\int \cos ax \cos bx \, dx$. Используем тригонометрические формулы

$$\sin x \cdot \cos y = \frac{1}{2} \left(\sin(x - y) + \sin(x + y) \right)$$

$$\cos x \cdot \cos y = \frac{1}{2} \left(\cos(x - y) + \cos(x + y) \right)$$

$$\sin x \cdot \sin y = \frac{1}{2} \left(\cos(x - y) - \cos(x + y) \right)$$

(6) Интегралы вида $\int tg^n x dx$, $\int ctg^n x dx$. Используем формулы $tg^2 x = \frac{1}{\cos^2 x} - 1$, $ctg^2 x = \frac{1}{\sin^2 x} - 1$.

§5. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОГО ПЕРЕМЕННОГО: ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

5.1. Формула Ньютона-Лейбница

$$\int\limits_a^b f(x)dx = F(x) \, \Big|_a^b = F(b) - F(a)$$
, где $F(x)$ - любая из первообразных

для функции f(x), непрерывной на отрезке [a,b].

5.2. Метод замены переменной

Пусть для вычисления интеграла $\int\limits_a^b f(x)dx$ от непрерывной функции сделана подстановка $x=\varphi(t)$, где $\varphi(t)$ — непрерывно дифференцируемая на отрезке $[\alpha,\beta]$ функция, причем $a=\varphi(\alpha)$, $b=\varphi(\beta)$. Тогда $\int\limits_a^b f(x)dx=\int\limits_a^\beta f(\varphi(t))\cdot\varphi'(t)\,dt$.

5.3. Метод интегрирования по частям

Если функции u = u(x) и v = v(x) имеют непрерывные производные на

отрезке
$$[a,b]$$
, то $\int_a^b u \, dv = uv \Big|_a^b - \int_a^b v \, du$

5.4. Несобственные интегралы

(1) Несобственный интеграл I рода — интеграл с бесконечным промежутком интегрирования. Пусть функция f(x) интегрируема на любом отрезке. Тогда несобственные интегралы I рода определяются следующим образом:

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx, \quad \int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$

Если пределы существуют и конечны, то интегралы называются сходящимися. В противном случае – расходящимися.

$$\int\limits_{-\infty}^{+\infty}f(x)dx=\int\limits_{-\infty}^{c}f(x)dx+\int\limits_{c}^{+\infty}f(x)dx$$
, где c – любое число (чаще $c=0$).

И далее находится каждый их интегралов.

(2) Несобственный интеграл II рода – интеграл от неограниченной функции.

Если f(x) непрерывна на (a,b] и имеет разрыв 2 рода в точке x=a, то несобственный интеграл II рода определяется следующим образом:

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x)dx.$$

Если f(x) непрерывна на [a,b) и имеет разрыв 2 рода в точке x=b, то

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x)dx$$

Если f(x) непрерывна на [a,b] и имеет разрыв 2 рода в точке $c\in [a,b]$,

TO
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = \lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\varepsilon \to 0} \int_{c+\varepsilon}^{b} f(x)dx.$$

5.5. Приложения определенного интеграла

27

(1) Площадь криволинейной трапеции, ограниченной сверху кривой $y = \varphi(x)$, снизу кривой $y = \psi(x)$, а слева и справа –

прямыми x=a и x=b, определяется по формуле:

$$S = \int_{a}^{b} [\varphi(x) - \psi(x)] dx$$

- (2) Длина дуги кривой, заданной уравнением y = f(x), при $a \le x \le b$ вычисляется по формуле $l = \int\limits_a^b \sqrt{1 + \big(f'(x)\big)^2} \, dx$.
- (3) Объемы тела вращения, образованного вращением вокруг оси Ох (или оси Оу) криволинейной трапеции, ограниченной кривой y=f(x) ($f(x) \ge 0$) и прямыми y=0, x=a, x=b, вычисляются соответственно по формулам: $V_x=\pi\int\limits_a^b f^2(x)\,dx$, $V_y=2\pi\int\limits_a^b x\cdot f(x)\,dx$, $a\ge 0$.

(4) Если дуга кривой y = f(x) ($a \le x \le b$) вращается вокруг оси Ox, то площадь поверхности вращения вычисляется по формуле

$$S_x = 2\pi \int_a^b f(x) \sqrt{1 + (f'(x))^2} dx$$

Если дуга кривой x = g(y) ($c \le y \le d$) вращается вокруг оси *Оу*, то площадь поверхности вращения вычисляется по формуле

$$S_y = 2\pi \int_c^d g(y) \sqrt{1 + (g'(y))^2} dy$$

§6. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

6.1. Частные производные

Пусть z = f(x, y) - функция двух переменных.

Две частные производные первого порядка:

$$f_x'$$
 и f_y' (или $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$).

Четыре частных производных второго порядка:

$$f_{xx}''$$
, f_{yy}'' , f_{xy}'' и f_{yx}'' (или $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$, $\frac{\partial^2 z}{\partial y \partial x}$ и $\frac{\partial^2 z}{\partial x \partial y}$).

Если смешанные производные f_{xy}'' и f_{yx}'' непрерывны в некоторых точках, то в этих точках выполняется равенство: $f_{xy}'' = f_{yx}''$.

Аналогично определяются производные высших порядков.

Дифференциал первого порядка: $dz = f_x' dx + f_y' dy$.

Дифференциал второго порядка: $d^2z = f''_{xx} dx^2 + 2f''_{xy} dxdy + f''_{yy} dy^2$.

6.2. Локальные экстремумы

<u>Алгоритм нахождения локальных экстремумов</u> функции двух переменных z = f(x, y):

- 1. Находим первые частные производные f_{χ}' и f_{γ}' .
- 2. Решая систему $\begin{cases} f_x^{'} = 0 \\ f_y^{'} = 0 \end{cases}$, определяем подозрительные на локальный экстремум точки.
- 3. Находим вторые частные производные f''_{xx} , f''_{yy} , f''_{xy} и составляем выражение $\Delta = f''_{xx} \cdot f''_{yy} \left(f''_{xy}\right)^2$.
- 4. В каждой подозрительной на локальный экстремум точке вычисляем значения вторых производных и Δ .

- 5. Выбираем те точки, для которых Δ >0. Делаем вывод о наличии в этих точках локального экстремума.
- 6. Для точек из п.5 определяем вид экстремума: если $f_{xx}''>0$, то в точке локальный минимум, если $f_{xx}''<0$, то локальный максимум. Вычисляем значение функции в точках локальных экстремумов.
- 7. Выбираем из подозрительных на экстремум точек те, для которых Δ <0. Делаем вывод о том, что в этих точках локального экстремума нет.

Если Δ в какой-либо точке равно нулю, то вопрос остается открытым.

6.3. Условные экстремумы

Алгоритм нахождения условных экстремумов функции f(x,y) при условии, заданном в виде F(x,y) = 0.

- 1. Составляем функцию Лагранжа $\Psi(x,y,\lambda) = f(x,y) + \lambda \cdot F(x,y)$, где λ неопределенный числовой множитель
- 2. Находим первые производные функции Лагранжа Ψ_x' и Ψ_y' .
- 3. Решая систему уравнений $egin{cases} \Psi_x'=0 \\ \Psi_y'=0 \end{cases}$, находим подозрительные на F(x,y)=0

условный экстремум точки (x, y) и соответствующие λ .

- 4. Находим вторые частные производные функции Лагранжа: Ψ''_{xx} , Ψ''_{yy} , Ψ''_{xy} и составляем выражение $d^2\Psi = \Psi''_{xx}dx^2 + 2\Psi''_{xy}dxdy + \Psi''_{yy}dy^2$, в котором dx, dy произвольные переменные приращения.
- 5. Полученные в п.3 точки и λ подставляем в выражение $d^2\Psi$.
- 6. Находим F_x' и F_y' . Составляем равенство $F_x'dx + F_y'dy = 0$. Подставляем каждую из подозрительных на условный экстремум точек (из п.3) и выражаем dx через dy или dy через dx.

- 7. Подставляем найденное выражение из п.6 в выражение $d^2\Psi$ из п.5 и приводим к виду $d^2\Psi = K dx^2$ или $d^2\Psi = K dy^2$.
- 8. Если K>0, то в данной точке условный минимум; если K<0, то в данной точке условный максимум. Вычисляем значение функции f(x,y) в каждой точке условного экстремума.

§7. ЧИСЛОВЫЕ РЯДЫ

7.1. Основные понятия

Числовой ряд: $a_1+a_2+a_3+...+a_n+...=\sum_{n=1}^{\infty}a_n$, где $a_1,a_2,a_3,...,a_n,...$ -

произвольные вещественные числа.

Частичные суммы ряда: $S_n = a_1 + a_2 + a_3 + ... + a_n$, где n = 1, 2, ...

Если существует конечный предел $S = \lim_{n \to \infty} S_n$, то исходный ряд cxodumcs_(и величина S называется суммой ряда). В противном случае ряд pacxodumcs.

7.2. Необходимое условие сходимости ряда

Если ряд
$$\sum_{n=1}^{\infty} a_n$$
 сходится, то $\lim_{n \to \infty} a_n = 0$.

(Т.е. если $\lim_{n\to\infty} a_n \neq 0$, то ряд расходится, а если $\lim_{n\to\infty} a_n = 0$, то требуется дальнейшее исследование на сходимость).

7.3. Основные расходящиеся и сходящиеся ряды

(1) Геометрическая прогрессия $\sum_{n=1}^{\infty}q^n$.

Если |q| < 1 то ряд сходится; если $|q| \ge 1$, то ряд расходится.

(2) Ряд Римана (обобщенный гармонический ряд) $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$.

Если $\alpha > 1$, то ряд сходится; если $\alpha \le 1$, то ряд расходится.

7.4. Знакопостоянные ряды

Ряд $\sum_{n=1}^{\infty} a_n$ называется *знакоположительным*, если $a_n > 0$ при любом $n = 1, 2, \dots$

<u>Признак сравнения</u>. Рассмотрим $\sum a_n$ и $\sum b_n$.

Если $a_n \le b_n$ при $n \ge n_0$ (то есть начиная с некоторого n_0), то:

$$\sum a_n$$
 расходится => $\sum b_n$ расходится

$$\sum b_n$$
 сходится => $\sum a_n$ сходится.

<u>Признак эквивалентности</u>. Рассмотрим $\sum a_n$ и $\sum b_n$.

Если $a_n \approx b_n$ при $n \to \infty$, то ряды $\sum a_n$ и $\sum b_n$ сходятся или расходятся одновременно.

<u>Признак Даламбера</u>. Находим значение предела $q = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.

Если q > 1 => ряд расходится; если q < 1 => ряд сходится; если q=1 =>(?)

<u>Признак Коши</u>. Находим значение предела $q = \lim_{n \to \infty} \sqrt[n]{a_n}$.

Если q > 1 => ряд расходится; если q < 1 => ряд сходится; если q=1 =>(?)

Интегральный признак.

 $\sum_{n=1}^{\infty} f(n)$ — члены этого ряда является значениями некоторой функции f(x),

положительной, непрерывной и убывающей на [1,+∞). Тогда

если
$$\int\limits_{1}^{+\infty}f(x)dx$$
 сходится => ряд $\sum\limits_{n=1}^{\infty}f(n)$ сходится;

если
$$\int_{1}^{+\infty} f(x)dx$$
 расходится => ряд $\sum_{n=1}^{\infty} f(n)$ расходится.

7.5. Знакопеременные ряды

Знакочередующиеся ряды. Признак Лейбница.

Знакочередующимся называется ряд вида $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot u_n$, где $u_n > 0$.

Иными словами, это ряд вида $u_1 - u_2 + u_3 - u_4 + ...$

Чередование знака может быть представлено не только в виде $(-1)^{n+1}$, но и в других вариантах, например: $(-1)^n$, $(-1)^{n-5}$ и т.п. Чтобы убедиться, что знаки чередуются, можно последовательно подставить n=1,2,3,4,5,...

Признак Лейбница применим только к знакочередующимся рядам:

а) $\lim_{n\to\infty}u_n=0$; **б)** последовательность $\{u_n\}$ убывающая.

Если оба условия выполнены, то ряд сходится.

Если не выполнено а) то ряд расходится.

Если не выполнено б) то вопрос остаётся открытым.

Для пункта б): $\{u_n\}$ убывает, если с некоторого n_0 выполнено одно из

Знакопеременные ряды. Абсолютная сходимость.

Абсолютную сходимость можно применять для любых числовых рядов, т.е. для $\sum a_n$, где a_n – любого знака.

Рассмотрим $\sum |a_n|$ - знакопостоянный ряд

если $\sum |a_n|$ сходится => $\sum a_n$ сходится абсолютно

если $\sum |a_n|$ расходится => вопрос о сходимости ряда $\sum a_n$ открыт

Замечание: Если $\sum a_n$ сходится, а $\sum |a_n|$ расходится, то $\sum a_n$ сходится условно.

§8. СТЕПЕННЫЕ РЯДЫ

8.1. Основные понятия

Общий вид степенного ряда: $\sum_{n=0}^{\infty} a_n \cdot (x-x_0)^n$, x_0 — фиксированная точка, a_n — числовые коэффициенты ряда.

Если $x_0 = 0$, то степенной ряд имеет вид: $\sum_{n=0}^{\infty} a_n x^n$.

8.2. Радиус и интервал сходимости

Радиус сходимости степенного ряда $\sum_{n=0}^{\infty} a_n \cdot (x-x_0)^n$ находится по одной

из следующих формул:
$$R=\lim_{n\to\infty}\left|\dfrac{a_n}{a_{n+1}}\right|$$
 или $R=\lim_{n\to\infty}\dfrac{1}{\sqrt[n]{|a_n|}}$.

Интервал сходимости ряда $\sum_{n=0}^{\infty} a_n \cdot (x-x_0)^n$ имеет вид: $(x_0-R; x_0+R)$.

Графически это можно изобразить следующим образом:

8.3. Разложение функций в степенные ряды

Ряд Тейлора

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots = f(x_0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

36

Если $x_0 = 0$, тогда получаем ряд Маклорена:

$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots = f(0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!}x^n$$

Пять важнейших разложений в ряд Маклорена

(1)
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in (-\infty; +\infty);$$

(2)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!},$$

 $x \in (-\infty; +\infty);$

(3)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \cdot \frac{x^{2n}}{(2n)!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad x \in (-\infty; +\infty);$$

(4)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \cdot \frac{x^{n+1}}{n+1} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x \le 1;$$

(5)
$$(1+x)^{\alpha} = 1 + \alpha \cdot x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + \dots = \frac{\alpha(\alpha-1)\dots$$

$$=1+\sum_{n=1}^{\infty}\frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}x^{n}$$

при $\alpha \ge 0$ $-1 \le x \le 1$; при $-1 < \alpha < 0$ $-1 < x \le 1$; при $\alpha \le -1$ -1 < x < 1. Частный случай (при $\alpha = -1$):

$$\frac{1}{1+x} = 1 - x + x^2 - \dots + (-1)^n x^n + \dots = \sum_{n=0}^{\infty} (-1)^n x^n.$$