1. Теория множеств

Определение 1. Множество — неопределяемое понятие. В нектором приближении множество — некоторых набор объектов.

Пример 1. 1, 2, 5 — множество.

Способы задания множеств:

- Перечисление $A = \{1, 2, 5\}$
- Задание свойством или Set builder notation $\{n \in \mathbb{N}|2|n\}$

Замечание. Будем считать, что $0 ∈ \mathbb{N}$

 $\{n\in\mathbb{N}|x>10,2|x,n$ простое} = Множество крокодилов в этой комнате = \emptyset

$$\{\{\{\emptyset\},\emptyset\},\{\emptyset\},\emptyset\}$$

 $x \in A - x$ является элементом A.

 $B \subset A$, если любой элемент B, лежит в A.

$$A = B \Leftrightarrow (B \subset A) \land (A \subset B)$$

Утверждение.

- $\emptyset \subset A$
- \bullet $A \subset A$
- $A \subset B, B \subset C \Rightarrow A \subset C$

Парадокс Рассела

Рассмотрим множество $M = A | A \notin A$. Определим, лежит ли элемент M в множестве M. С одной стороны, если $M \in M$, то $M \notin M$ по построению. Если же $M \notin M$, то по построению $M \in M$. Получили противоречие.

Законы де Моргана

- $\bullet \ \overline{(A \cup B)} = \overline{A} \cap \overline{B}$
- $\bullet \ \overline{(A \cap B)} = \overline{A} \cup \overline{B}$

Определение 2. Пара — множество из двух объектов $\{a_1, a_2\}$

Определение 3. Упорядоченная пара — $\{\{a_1, a_2\}, a_i\}$

Определение 4. Декартово произведение множества A на множество B — множество всех упорядоченных пар с первым элементом из A и вторым из B. $A \times B = \{(a,b)|a \in A, b \in B\}$ $A^n = \{(a_1,\ldots,a_n)|\forall a_i \in A\}$

Свойство 1. Декартово произведение ассоциативно.

Определение 5. Соответствие между A и B — произвольное подмножество $A \times B$

Определение 6. Отображение или функция — однозначное соответствие. $\forall a \in A \; \exists ! b \in B \; (a,b) \in A \times B$

Определение 7. Инъекция — несклеивающее отображение $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$

Определение 8. Сюр $\overline{\imath}e\kappa uu\mathfrak{s}$ — накрывающее отображение. $\forall b \in B \ \exists a \in A \ f(a) = b$

Определение 9. *Биекция* — взаимно-однозначное соответствие. Иначе говоря, это отображение, являющееся инъекцией и сюръекцией.

Определение 10. Образ множества $P \subset A$ при соответствии $F \subset A \times B$ — это $\{b \in B | \exists a \in P \ (a,b) \in F\}$

Определение 11. Прообраз множества $Q \subset B$ при соответствии $F \subset A \times B$ —это $\{a \in A | \exists b \in Q \ (a,b) \in F\}$

 \mathbf{F} — инъекция $\Rightarrow P = F^{-1}(F(P))$

- 1) $P \subset F^{-1}(F(P))$ $a \in P \Rightarrow a \in F^{-1}(F(a))$
- 2) $F^{-1}(F(P)) \subset P$ $a' \in F^{-1}(F(P)), a' \notin P.$ $a' \in F^{-1}(F(P)) \Rightarrow F(a') \in F(P) \Rightarrow \exists a \in P \ F(a') = F(a).$ Имеем: $a' \neq a, F(a) = F(a')$ противоречие с инъекцией.

Теорема 1. $\forall PP = F^{-1}(F(P)) \Leftrightarrow \forall x \in A \ F(x) \neq \emptyset, \forall x_1, x_2 \in A \ x_1 \neq x_2 \Rightarrow F(x_1) \cap F(x_2) = \emptyset$

Определение 12. Пусть $F \subset A \times B$ —соответствие. Тогда *обратное* coomsemcmsue—это $F^{-1} \subset B \times A : (b,a) \in F^{-1} \Leftrightarrow (a,b) \in F$

Композиция отображений и соответствий $F:A\to B,\,G:B\to C,\,H=G\circ F:A\to C,\,H(a)=G(F(a))$

Тождественное преобразование (identity) $id_A: A \to A$.

Утверждение. Если $F: A \to B$, то $F \circ id_A = id_B \circ F = F$

Утверждение. $F:A\to B, G:B\to C, H:C\to D\Rightarrow H\circ (G\circ F)=(H\circ G)\circ F$

Утверждение. $(G \circ F)^{-1} = F^{-1} \circ G^{-1}$

Упражнение 1. Доказать вышеприведенные утверждения. Когда $F \circ F^{-1} = \mathrm{id}_B$?

Определение 13. |A| — количество элементов в множестве A.

Упражнение 2. • ∃инъекция из A и B \Leftrightarrow $|A| \leq |B|$

- Зсюръекция из A и B \Leftrightarrow $|A| \ge |B|$
- Збиекция из A и B \Leftrightarrow |A| = |B|

Определение 14. A и B равномощны $(A \cong B)$, если существует биекция из A и B.

Примеры:

- $\mathbb{N} \cong \{x \in \mathbb{N} | x$ четное $\}$
- $[0,1] \cong [0,2]$
- $(0,1) \cong \mathbb{R}$

Свойства:

- 1) $A \cong A$ (рефлексивность)
- 2) $A \cong B \Leftarrow B \cong A$ (симметричность)
- 3) $A \cong B, B \cong C \Leftarrow A \cong C$ (транзитивность)

Определение 15. не более мощно чем B, если существует $B_1 \subset B$, такое что $A \cong B_1$. Обозначение: A <= B.

Примеры:

•
$$\mathbb{N} <= [0,1]$$
. $X = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \cong \mathbb{N}$

Свойства:

- 1) $A \ll A$ (рефлексивность)
- 2) $A \le B \Leftarrow B \ge A$
- 3) $\emptyset <= A$
- 4) $A \le B, B \le C \Leftarrow A \le C$ (транзитивность)

Теорема 2. Теорема Кантора-Бернштейна Если $A \le B$ и $B \le A$, $mo\ A\cong B$

Доказательство. $A \cong B_1 \subset B$. $f: A \mapsto B_1$ — биекция

$$B \cong A_1 \subset A. \ g: B \mapsto A_1$$
 — биекция

$$A_2 = g(B_1), A_2 \subset A_1. A_1 \cong B_1 \cong A \Rightarrow A_2 \cong A$$

Надо: $A \cong B$

Достаточно оказать: $A \cong A_1$

Переформулируем:

Дано: $A_2 \subset A_1 \subset A$, $A_0 \cong A_2$; доказать: $A_0 \cong A_1$

 $h:A\mapsto B$ — биекция. Пусть $A_i=h(A_{i-2}.$ Тогда $A_{i+1}\subset A_i$

Пусть
$$C_i=A_i$$

$$A_{i+1}\ C=\bigcap_{i=0}^\infty A_i\ A_j=\bigcup_{i=j}^\infty C_i\cup C.$$
 Заметим, что $_i\cup C_j=\emptyset$, $C\cup C_i=\emptyset$.

 $h(C_i) = h(A_i)$

$$A_{i+1}) = h(A_i)$$

$$h(A_{i+1}) = A_{i+2}/A_{i+3} = C_{i+2}$$
. Получили $h(C_i) = C_{i+2}$

$$A_0 = \bigcup C_i \cup C$$

$$A_0 = \bigcup_{i=0}^{\infty} C_i \cup C.$$

$$A_1 = \bigcup_{i=1}^{\infty} C_i \cup C.$$

Сделаем такую биекцию: Все нечетные слои оставляем на месте, все четные "сдвигаем"на один шаг.

$$k(x)=h(x),$$
 если $x\in (C_0\cup C_2\cup C_4\cup\cdots); x$ если $x\in (C_1\cup C_3\cup\cdots)\cup C$

Определение 16. A счетно, если A равномощно множеству натуральных чисел.

Утверждение. Если A счетно, то $A \cup a_i$ — счетно

Утверждение. Если A и B счетно, то $A \cup B$ — счетно

Следствие 1. $\mathbb{Z} - c$ четно.

Утверждение. Если A и B счетны, то $A \times B$ счетно.

Теорема 3. Объединение счетного числа счетных множеств счетно.

Доказательство. • Множества A_0, A_1, A_2, \cdots попарно не пересекаются. Доказательство аналогично

• Общий случай: $A_0 \subset A_0 \cup A_1 \cup \ldots <= B_0 \cup B_1 \cup B_2$, где $B_i = A_i \times i$; $B_i \cong A_i, B_i \cap B_j = \emptyset$. Используй теорему Кантора-Бернштейна, Люк!

Теорема 4. Теорема Кантора Множество всех бесконечных последовательностей 0 и 1 несчетно.

Доказательство. Пусть оно счетно. f_0, f_1, \ldots — все последовательности. Рассмотрим d, такое что $d[n] = f_n[n]$. Рассмотрим \overline{d} , такое что $\overline{d}[n] = 1 - d[n]$. С одной стороны, она должна быть в f по предположению. Пусть $\overline{d} = f_k$. Тогда $f_k(k) = \overline{d}[k] = 1 - f(k)[k]$. Противоречие. Значит d не лежит в f. Значит предположение и неверно это множество несчетно.

Обозначение. $2^A = B|B \subset A$

Обозначение. X < Y, если X <= Y и $X \not\cong Y$

Теорема 5. Теорема Кантора в общем виде $A < 2^A$

Доказательство. $A <= 2^A$, т.к $A \cong B = \{\{x\} | x \in A\}$. Пусть A равномощно 2^A . Тогда есть биекция из A в 2^A . Можно рассмотреть вопрос о том, правда ли, что $x \in f(x)$. Рассмотрим $D = x \in a | x \notin f(x) \subset A$. Поскольку это биекция, то D = f(d). Вопрос в том, правда ли, что $d \in f(d)$. Пусть $d \in f(d) \Rightarrow d \in D \Rightarrow d \notin f(d)$. Пусть $d \notin f(d)$. Тогда $d \in D$ по опредению D. Но значит $d \in f(d)$.

1. Предикаты

Определение 17. Пусть есть множество α . Предикатом валентности k на множестве α называется любое подмножество A^k (или любая функция из A^k в $\{0,1\}$).

Если k=1, то предикат называют свойством. Если k=2, то предикат называют отношением. Есть всего два

Обозначение. Произвольное отношение обозначают R. Вместо $(x,y) \in R$ пишут xRy

Определение 18. Свойства отношений

- Рефлексивность: $\forall x: xRx$
- Антирефлексивность: $\forall x : \neg x R x$
- Симметричность: $\forall x, y: xRy \Rightarrow yRx$
- Антисимметричность: $\forall x, y: xRy, yRx \Rightarrow x = y$
- Транзитивность: $\forall x, y, z: xRy, yRz \Rightarrow xRz$
- Полнота: $\forall x, y : xRy \lor yRx$

Определение 19. Отношение R называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Теорема 6. Основная теорема отношения эквивалентности $Ecnu \sim -$ отношение эквивалентности на множестве A, то A представляется в виде непересекающихся классов эквивалентности.

Доказательство. 1) $K_x = y|y \sim x$ — класс эквивалетности одного элемента.

- 2) $x \in K_x$ (из рефлексивности)
- 3) Если есть $x \in K_y \Rightarrow y \in K_x$ (из симметричности)
- 4) $\forall y, z: y, z \in K_x \Leftrightarrow y \sim z$ (из транзитивности)
- 5) либо $K_x = K_y$, либо $K_x \cap K_y = \emptyset$

Определение 20. Отношение R называется отношением (частичного) порядка, если оно рефлексивно, антисимметрично и транзитивно.

Определение 21. Порядок называется линейным, если любые два элемента сравнимы.

Определение 22. Упорядоченное множество — пара множество и отношение порядка на нем

```
Определение 23. (A, \leq_A) — упорядоченное множество. x \in A — наибольший элемент, если \forall y: \leq_a x x \in A — максимальный элемент, если \forall y \in A: x \leq_a y \Rightarrow x = y
```

2. Комбинаторика

Определение 24. Правило сложения

Если есть два набора объектов, причем в первом N объектов a_1, \ldots, a_n , во втором M объектов b_1, \ldots, b_m . Тогда есть N+M способов выбрать объект либо из первого множества, либо из второго.

Определение 25. Правило умножения

Если есть два набора объектов, причем в первом N объектов a_1, \ldots, a_n , во втором M объектов b_1, \ldots, b_m . Тогда есть NM способов выбрать объект сначала из первого множества, затем из второго.

Определение 26. Принцип Дирихле

Если есть N ящиков и N+1 кролик, то для любой рассадки кроликов по ящикам найдется ящик, в котором находится не менее двух кроликов.

Пример 2. Возьмем квадрат на плоскости со стороной 2 и случайно кинем в него 5 точек. Тогда среди этих 5 точек есть такие две, расстояние между которыми не превосходит $\sqrt{2}$. Рассмотрим разбиение этого квадрата на четыре непересекающихся квадрата со стороной 1. Тогда согласно принципу Дирихле, в одном маленьком квадрате есть две точки. Очевидно, что расстояние между ними не превосходит диагонали маленьком

Пример 3. Пусть есть множество \mathcal{R} , состоящее из 20 натуральных чисел от 1 до 20. Выберем 15 различных подмножеств \mathcal{R} мощности 5: M_1, M_2, \ldots Рассмотрим множество этим множеств $\mathcal{M} = M_1, M_2, \ldots, M_1$ 5. Верно ли, что для любого \mathcal{M} найдется такая раскраска элементов множества \mathcal{R} в два цвета так, что каждое множество $M_i \in \mathcal{M}$ не одноцветно, то есть содержит оба цвета?

Теорема 7. Теорема о раскраски гиперграфа

Ответ на поставленный вопрос положителен, то есть для любой $\mathcal{M} = \{M_1, \dots, M_{15}\}, |M_i| = 5, M_i \in \mathcal{R}$

Доказательство. Зафиксируем $\mathcal{M} = \{M_1, \dots, M_15\}$. По правилу умножения всего двуцветных раскрасок \mathcal{R} есть 2^{20} . Раскрасок, в которой множество M_1 одноцветно — 2^{16} , так как есть 15 элементов вне множества M_1 , которые мы можем покрасить как угодно, и само множество M_1 мы можем покрасить двумя способами. Посчитаем количество раскрасок, в котором одноцветно хотя бы одно из M_i . Очевидно, что количество таких раскрасок не превосходит $152^{16} < 162^{16} = 2^{20}$ Так как плохих раскрасок меньше чем количество всего раскрасок, то надется хотя бы одна хорошая раскраска.

Числа размещений, сочетаний, перестановок и прочее

Пусть $A = \{a_1, \ldots, a_n\}$. Можно составлять упорядоченные последовательности элементов A. А можно извлекать объекты "кучами то есть без учета порядка. Если мы рассматриваем A как упорядоченную последовательность, то говорят о размещении объектов. Если же мы извлекаем объекты без учета порядка, то говорят о сочетании объектов. Бывают размещения с повторениями и без повторений. Аналогично, сочетания бывают с повторениями и без повторений.

Будем говорить о k-сочетании и k-размещении, если в сочетании(размещении) ровно k объектов.

Пусть дано множество объектов $\{a_1,\ldots,a_n\}$. Обозначим через $\overline{A_n^k}$ число всех k-размезещений с повторениями и A_n^k число всех k-размещений без повторения. Аналогично обозначим $\overline{C_n^k}$ и C_n^k число k-размещений с повторениями и без повторений соответственно.

Tеорема 8.
$$\overline{A_n^k} = n^k$$

Доказательство. На первую позицию нашего размещения можно поставить любой и n объектов. Как, впрочем, и на все остальные. Тогда по правилу умножения получаем n^k

Теорема 9.
$$A_n^k = \frac{n!}{(n-k)!}$$

поставили на первую позицию, то есть любой из n-1 объектов. Иначе говоря, на i-тую позицию можно поставить объект n-i способами. То

есть
$$A_n^k = n(n-1)(n-2)\dots(n-k+1) = \prod_{i=0}^{k-1} n - i = \frac{n!}{(n-k)!}$$

Теорема 10.
$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$

Доказательство. Каждому k-сочетанию без повторений соответствует k! различных размещений без повторения. То есть $k!C_n^k=A_n^k$, откуда следует, что $C_n^k=\frac{A_n^k}{k!}=\frac{n!}{k!(n-k)!}$

Теорема 11.
$$\overline{C_n^k} = C_{n+k-1}^k$$

Доказательство. Рассмотрим исходное множество объектов a_1,\ldots,a_n . Каждому k-сочетанию с повторениями поставим в соответствие некоторую последовательность из нулей и единиц. Ставить в соответствие последовательность из нулей и единиц мы будем по следующему алгоритму: пусть дано k-сочетание с повторениями. Рисуем в нашу последовательность столько единиц, сколько раз нам встретился элемент a_i , после этого рисуем ноль, если это не была последний, n-ный объект, и так делаем последовательно n раз для каждого i от 1 до n. Всего у нас в нашей последовательности k единиц, так как каждому элементу, входящему в наше сочетание с повторениями соответствует ровно одна единица и n-1 единиц. Утвержается, что между такими 0, 1 векторами длины n-k+1 с k единицами и сочетаниями с повторениями установилась биекция. Но количество таких последовательностей и нулей и единиц это число способов зафиксировать ровно k позиций среди n-k+1, а как известно, это количество равно C_n^k

Упражнение 3. Есть n символов из которых n_i раз встречается символ a_i . Сколько существует различных последовательностей символов?

Определение 27. $P(n_1, \ldots, n_k)$ — число различных последовательностей, которые можно составить из наших символов, если задействовать их все.

Теорема 12.
$$P(n_1,\ldots,n_k) = \frac{n!}{n_1!n_2!\ldots n_k!}$$

Доказательство. У нас есть всего n позиций. Для a_1 нужно n_1 позиций и есть $C_n^{n_1}$ способов зафиксировать нужны позиции. Для символа a_2 нужно n_2 позиций и осталость $n-n_1$ свободных позиций, То есть $P(n_1,\ldots,n_k)=C_n^{n_1}C_{n-n_1}^{n_2}C_{n-n_1-n_2}^{n_3}\ldots=\frac{n!}{n_1!(n-n_1)!}+\frac{(n-n_1)!}{n_2!(n-n_1-n_2)!}+\ldots=\frac{n!}{n_1!n_2!\ldots n_k!}$

Теорема 13. Бином Ньютона
$$(x+y)^n = \sum_{k=0}^n = C_n^k x^k y^{n-k}$$

Доказательство. $(x+y)^n=(x+y)(x+y)\dots(x+y)$. Из каждой скобки надо взять либо x, либо y. Пусть из k скобок мы взяли x, то есть из остальных n-k скобок мы взяли y. Но мы выбрать k скобок можем выбрать C_n^k способами, то есть $x^ky^{n_k}$ встречается C_n^k раз, то есть $(x+y)^n=\sum_k C_n^k x^k y^{n-k}$

Same vanue. C_n^k также называются биномиальными коэффициентами и в западной традиции пишут $\begin{pmatrix} n \\ k \end{pmatrix}$

Теорема 14. Полиномиальная формула

$$(x_1 + x_2 + \ldots + x_k)^n = \sum_{(n_1, n_2, \ldots, n_k): n_i \in \mathbb{N}, \sum n_i = n}^{n_1, n_2, \ldots, n_k} P(n_1, n_2, \ldots, n_k) x_1^{n_1} x_2^{n_2} \ldots x_k^{n_k}$$

Доказательство. Возьмем n_1 скобок из которых извлекается x_1 , n_2 из которых извлекается x_2 , ..., n_k скобок, из которых извлекается x_k . Очевидно, что $x_i \in \mathbb{N}$, $\sum n_i = n$. Тогда в произведении получится $x_1^{n_1}x_2^{n_2} \dots x_k^{n_k}$. Этот моном встретится в $P(n_1, n_2, \dots, n_k)$ раз в качестве слагаемого, т.к. число способов выбрать скобки для x_1 равно $C_n^{n_1}$, для x_2 остается $n-n_1$ свободных скобок, то есть количество способов выбрать x_2 равно $C_{n-n_1}^{n_2}$, и так далее. А как известно, произведение таких биномимиальных коэффициэнтов равно $P(n_1, n_2, \dots, n_k)$.

Замечание. Числа $P(n_1, n_2, \dots, n_k)$ называются полиномиальными коэффициентами

Комбинаторные тождества:

- $\bullet \ C_n^k = C_n^{n-k}$
- $C_n^k = C_{n-1}^k + C_{n-1}^{k-1} + C_{n-1}^{k-1}$
- $\bullet \sum_{i=0}^{n} C_n^i = 2^n$

Доказательство.
$$\sum_{i=0}^{n} C_n^i = (1+1)^n = 2^n$$

•
$$\sum_{(n_1, n_2, \dots, n_k): n_i \in \mathbb{N}, \sum n_i = n} P(n_1, n_2, \dots, n_k) = k^n$$

$$\bullet \sum_{i=0}^{n} (C_n^i)^2 = C_{2n}^n$$

Доказательство. $A=\{a_1,\dots,a_{2n}\}.\ V$ — множество всех n - сочетаний из $A.\ |V|=C_{2n}^n.\ V=\bigsqcup_{i=0}^n V_i$, где V_k - множество тех n-сочетаний, которые содержат ровно k из первых n элементов, то есть C_n^k спобосов выбрать k элементов из первых n элементов и C_n^{n-k} способов выбрать оставшиеся n-k элементов из последних n элементов. То есть $|V_k|=C_n^kC_n^{n-k}=(C_n^k)^2.\ |V|=\sum |V_i|\Leftrightarrow C_{2n}^n=\sum_{i=0}^n(C_n^i)^2$

$$\bullet \ \forall n,m: \ C^n_{n+m} = \sum_{i=n-1}^{n+m-1} C^{n-1}_i$$

Доказательство. Рассмотрим $A = \{a_1, \dots, a_n, a_{n+1}\}$. V — множество всех m-сочетаний с повторениями из A. $|V| = C_{n+1+m-1}^m = C_{n+m}^m$. Пусть V_k это те сочетания из V, в которые объект a_1 входит ровно k раз. Осталось оценить $|V_k|$. В любое сочетание из V_k k раз встречается элемент a_1 и в этом сочетании еще есть m-k+1 "свободных" мест, на котором стоят остальные n элементов. То есть количество элементов в V_k равно количеству сm-k+1-ссочетаний с повторениями их n элементов. То есть $|V_k| = C$

Следствие 2. Если мы возъмем n=1 и подставим в тождество, то мы получим $C_{m+1}^1=C_m^0+C_{m-1}^0+\ldots+C_0^0$

Следствие 3. Если
$$n=2,$$
 то $C_{m+2}^2=C_{m+1}^1+C_m^1+\ldots+C_1^1\Leftrightarrow \frac{(m+2)(m+1)}{2}=(m+1)+m+(m-1)\ldots 1$

Следствие 4. Если
$$n=3$$
, то $C_{m+3}^3=C_{m+2}^2+C_{m+1}^2+\ldots+C_2^2\Leftrightarrow \frac{(m+1)(m+2)(m+3)}{6}=\frac{9(m+1)(m+2)}{2}+\frac{m(m+1)}{2}+\ldots+\frac{1\cdot 2}{2}=\frac{1}{2}(1^2+2^2+\ldots+(m+1)^2)+\frac{1}{2}(1+2+\ldots+(m+1))\Rightarrow \frac{1}{2}(1^2+2^2+\ldots+(m+1)^2)=\frac{(m+1)(m+2)(m+3)}{6}-\frac{1}{4}(m+1)(m+2)=\frac{1}{12}(m+1)(m+2)(2m+3)$

1. Формула включения-исключения

Рассмотрим произвольное N объектов a_1, a_2, \ldots, a_N . Выделим некоторые свойства $\alpha_1, \alpha_2, \ldots, \alpha_N$, которые могут быть присущи некоторым объектам.

Обозначение. Пусть $N(\alpha_i)$ — количество объектов, обладающих свойством α_i , $N(\alpha_i,\alpha_j)$ — количество объектов, обладающих свойствами α_i и α_i одновременно.

Обозначение. α_i' — отрицание свойства α_i

Теорема 15.
$$N(\alpha'_1, \alpha'_2, \dots, \alpha'_3) = N - N(\alpha_1) - N(\alpha_2) - \dots - N(\alpha_n) + N(\alpha_1, \alpha_2) + N(\alpha_1, \alpha_3) + \dots + N(\alpha_{N-1}\alpha_N) - N(\alpha_1, \alpha_2, \alpha_3) + \dots + (-1)^n N(\alpha_1, \alpha_2, \dots, \alpha_n)$$

Доказательство. Докажем индукцией по п

База индукции: $\forall N \ \forall \ a_1, \dots, a_N \ \forall \ \alpha_i N(\alpha_i') = N - N(\alpha_i)$

 $\overline{\text{Предположение}}$: $\forall N \; \forall \; a_1, \ldots, a_N \; \forall \; \alpha_1, \ldots, \alpha_n$ выполняется утверждение теоремы.

<u>Шаг индукции:</u> $\forall N \ \forall \ a_1, \dots, a_N \ \forall \ \alpha_1, \dots, \alpha_{n+1}$ выполнено утверждение теоремы.

Зафиксируем произвольные $N, a_1, \ldots, a_N, \alpha_1, \ldots, \alpha_n$. Рассмотрим все из наших объектов, которые обладают свойством α_{n+1} . Обозначим их $\{b_1, b_2, \ldots, b_M\} \subset \{a_1, \ldots, a_N\}$, где $M = N(\alpha_{n+1})$. Применим предположение индукции к объектам $\{b_1, \ldots, b_M\}$ и свойствам $\{\alpha_1, \ldots, \alpha_n\}$. $M(\alpha'_1, \ldots, \alpha'_n) = M - M(\alpha_1) - \ldots - M(\alpha_n) + M(\alpha_1\alpha_2) + \ldots + (-1)^n M(\alpha_1, \ldots, \alpha_n)$. $N(\alpha'_1, \alpha'_2, \ldots, \alpha'_n, \alpha_{n+1}) = N(\alpha_{n+1}) - \ldots - N(\alpha_1, \alpha_{n+1}) - \ldots - N(\alpha_n, \alpha_{n+1}) + \ldots + (-1)^n N(\alpha_1, \ldots, \alpha_n, \alpha_{n+1})$. Применим предположение индукции к множеству $\{a_1, \ldots, a_N\}$ и свойствам $\{\alpha_1, \ldots, \alpha_n\}$ $N(\alpha'_1, \ldots, \alpha'_n) = N - N(\alpha_i) - \ldots + (-1)^n N(\alpha_1, \ldots, \alpha_n)$. Вычтем полученные утверждения: $N(\alpha'_1, \ldots, \alpha'_n) - N(\alpha'_1, \ldots, \alpha'_n, \alpha_{n+1}) =$

 $N(\alpha'_1, \dots, \alpha'_n, \alpha_n + 1') = N - N(\alpha_1) - \dots - N(\alpha_n) - N(\alpha_{n+1}) + \dots + (-1)^{n+1} N(\alpha_1, \alpha_2, \dots, \alpha_n, \alpha_{n+1})$

Еще один вариант формулы включения-исключения. Рассмотрим мно-

еще один вариант формулы включения-исключения. Рассмотрим множества S_1, \ldots, S_n . Тогда $|S_1 \cup \ldots \cup S_n| = |S_1| + |S_2| + \ldots + (-1)^{n+1} |S_1 \cap S_2 \cap \ldots \cap S_n|$

Пара занкопеременных тождеств

- $C_n^0 C_n^1 + \ldots + (-1)^n C_n^n = 0$ для всех $n \geq 1$, и равно 0 при n = 0
- Рассмотрим множество $\{a_1,\ldots,a_n\},\ m< n.$ Пусть V множество всех m-размещений с повторениями из $A.\ |V|=n^m.$ Скормим множество V со m свойствами "не содержать i-й символ. $N(\alpha_1',\ldots,\alpha_n')=0$, так как m< n. $N(\alpha_i)=(n-1)^m,$ $N(\alpha_i,\alpha_j)=(n-2)^m.$ В итоге получаем тождество: $0=C_n^0n^m-C_n^1(n-1)^m+C_n^2n-2^m+\ldots+(-1)^nC_n^n(n-n)^m$

Циклические последовательности и формула обращения Мебиуса

Есть алфавит $X = \{b_1, \ldots, b_n\}$ — алфавит. Назовем обычное слово a_1, a_2, \ldots, a_n составленным из символов алфавита линейным и будем обозначать его $a_1 \to a_2 \to \ldots \to a_n$. Циклическое слово (a_1, a_2, \ldots, a_n) — это циклическое слово. Все повороты циклического слова превращают его в себя. Спрашивается, сколько есть различных циклических слов. Обозначим его T(n) — число различных циклических комбинаций.

Определение 28. Число p называется простым, если $p \neq 1$ и у него нет делителей, кроме 1 и p.

Теорема 16. Основная теорема арифметики

Пусть $n \ge 2$. Тогда существует единственное разложение числа n на простые. $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_n^{\alpha_n} \ (p_i - nonapho \ pasnuvhue \ npocmue).$

Определение 29. Функция Мёбиуса $\mu(n)$

Обозначение. $d|n \Leftrightarrow d$ делит n

Лемма 1.
$$\sum\limits_{d|n}\mu(d)=1, n=1,2, n\geq 2$$

Доказательство.

$$ullet$$
 Если $n=1,$ то $\sum\limits_{d\mid n}\mu(d)=1$

•
$$n \geq 2 \Rightarrow n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$$

 $d \mid n \Leftrightarrow d = p_1^{\beta_1} p_2^{\beta_2} \cdots p_s^{\beta_s}, \forall i : \beta_i \leq \alpha_i$
 $\sum_{d \mid n} = \sum_{\beta_1 = 0}^{\alpha_1} \sum_{\beta_2 = 0}^{\alpha_2} \dots \sum_{\beta_s = 0}^{\alpha_s} \mu p_1^{\beta_1} p_2^{\beta_2} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots \sum_{\beta_s = 0}^{1} \mu p_1^{\beta_1} p_2^{\beta_2} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots \sum_{\beta_s = 0}^{1} \mu p_1^{\beta_1} p_2^{\beta_2} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots \sum_{\beta_s = 0}^{1} \mu p_1^{\beta_1} p_2^{\beta_2} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots \sum_{\beta_s = 0}^{1} \mu p_1^{\beta_1} p_2^{\beta_2} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots \sum_{\beta_s = 0}^{1} \mu p_1^{\beta_1} p_2^{\beta_2} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots \sum_{\beta_s = 0}^{1} \mu p_1^{\beta_1} p_2^{\beta_2} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots \sum_{\beta_s = 0}^{1} \mu p_1^{\beta_1} p_2^{\beta_2} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_s} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_2 = 0} = \sum_{\beta_1 = 0}^{1} \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_2 = 0} = \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_2 = 0} = \sum_{\beta_2 = 0}^{1} \dots p_s^{\beta_2 = 0} =$

Теорема 17. Формула обращения Мебиуса

Пусть
$$\forall n \in \mathbb{N} : f(n) = \sum_{d|n} g(d)$$
. Тогда $g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$.

Доказательство.
$$g(n) = \sum_{d|n} \mu(d) (\sum_{d'|\frac{d}{n}} g(d')) = \sum_{d|n} g(d) \cdot (\sum_{d'|\frac{n}{d}} \mu(d')) = g(n) \cdot \sum_{d'|1} \mu(d') + \sum_{d|n,d < n} g(d) \cdot (\sum_{d'|\frac{n}{d}} \mu(d')) = g(n) + 0 = g(n)$$

Обозначение. $T_r(n)$ — количество циклических последовательностей длины n над алфавитом из r символов.

Теорема 18.
$$T_r(n) = \sum_{d|n} \frac{1}{d} (\sum_{d'|\frac{n}{d}} \mu(d') r^{\frac{d}{d'}})$$

Определение 30. Назовем циклическим сдвигом линейного слова $a_1 a_2 \dots a_n$ назовем $a_2 a_3 \dots a_n a_1$.

Замечание. Если применить циклический сдвиг к данному линейному слову n раз, то получится то же самое линейное слово.

Определение 31. Период линейного слова— это минимальное число d > 1: после d циклических сдвигов слово переходит в себя.

Лемма 2. Период любой линейной последовательности длины n является делителем n.

Лемма 3. Любая линейная последовательность длины n и периода d имеет вид $a_1a_2a\ldots a_da_1a_2\ldots a_d\ldots a_1a_2\ldots a_d.(\frac{n}{d})$ одинаковых блоков по d символов)

3амечание. Каждый из $\frac{n}{d}$ блоков — это множество слов длины d и периодом d.

Замечание. Между множеством всех слов длины n и периода d и множеством всех слов длины d и периода d есть биекция.

Пусть V — множество всех линейных слов длины n над алфавитом X. $|V|=r^n$. Пусть d_1,d_2,\ldots,d_m — все делители n. Тогда $V=V(d_1)\sqcup V(d_1)\sqcup\ldots\sqcup V(d_n)$. Тогда $|V|=|V(d_1)|+|V(d_2)|+\ldots+|V(d_m)|$.

Пусть $W(d_i)$ — множество всех линейных слов длины d_i и периода d_i . $r^n = |W(d_1)| + |W(d_2)| + \ldots + |W(d_m)|$

 $U(d_i)$ — множество всех различных циклических слов, которые получаются из линейных слов $W(d_i)$. $|U(d_i)| = \frac{|W(d_i)|}{d_i}$. Тогда $r^n = d_1|U(d_1)| + d_2|U(d_2)| + \ldots + d_n|U(d_m)|$. $r^n = \sum_{d|n} d|U(d_i)|$. Обозначим $f(n) = r^n$, $g(n) = \frac{|U(d_i)|}{|U(d_i)|}$

$$n|U(d_i)|$$
. Тогда $f(n) = \sum_{d|n} g(d) \Rightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d}) \Leftrightarrow n|U(n)| = \sum_{d|n} \mu(d) r^{\frac{n}{d}} \Leftrightarrow |U(n)| = \frac{1}{n} \sum_{d|n} \mu(d) r^{\frac{n}{d}}.$

Но |U(n)| — это число циклических слов, полученных из линейных с периодом n. Следовательно $T_r(n)=\sum\limits_{d|n}|U(d)|=\sum\limits_{d|n}\frac{1}{d}(\sum\limits_{d'|d}\mu(d')r^{\frac{d}{d'}})$

2. Общая теория обращения Мёбиуса

Рассмотрим частично упорядоченное множество $\mathcal{P}=p_1,p_2,\ldots,$ с отношением порядка \preceq , такое что $\forall i | \{x,x \leq p_i \mid | \} < \infty$

Пример 4.

1)
$$\mathcal{P} = (\mathbb{N}, " \preceq -" \leq ")$$

2)
$$\mathcal{P} = (\mathbb{N}, "x \leq y - "x|y")$$

3)
$$\mathcal{P} = (2^{1,2,\dots,n}, " \preceq -" \subseteq ")$$

Определение 32. Общая функция Мёбиуса:

1)
$$\forall x \in \mathcal{P} : \mu(x,x) = 1$$

2)
$$\forall x, y \in \mathcal{P}, x \prec y : \mu(x, y) = -\sum_{z: x \leq z \prec y} \mu(x, z)$$

Рассмотрим $\mu(1,n)$ при $\mathcal{P} = (\mathbb{N}, "x \leq y - "x|y")$

•
$$\mu(1,1) = 1 = \mu(1)$$

•
$$p$$
 — простое. Тогда $\mu(1,p) = -\sum_{z:x \preceq z \prec y} \mu(1,z) = -\sum_{d:\ d|n} \mu(1,d) = -1.$

•
$$\mu(1, p^2) = -(\mu(1, 1) + \mu(1, p)) = 0$$

•
$$\mu(1, p^k) =$$

Теорема 19. Формула обращения Мёбиуса Пусть \mathcal{P} — частично упорядоченное множество, пусть $g: \mathcal{P} \mapsto \mathcal{X}$, $u \ f(y) = \sum_{x \prec y} g(x)$. Тогда $g(y) = \sum_{x \prec y} \mu(x,y) f(x)$

Рассмотрим
$$S_1,\ldots,S_n$$
. Тогда чум $\mathcal{P}=\left\{\bigcap_{i\in I,I\subseteq\{1,2,\ldots,n\}}S_i\right\}$. Пусть $P_i=\bigcap_{i\in I_1}S_i,\,P_2=\bigcap_{i\in I_2}S_i\,P_i\preceq P_j\Leftrightarrow I_1\supseteq I_2.$

$$q(P) := |P|$$

Определим f(P) как количество элементов множества P, которые не принадлежат ни одному P', такому что $P' \prec P$.

$$g(p) = \sum_{P' \preceq P} f(P')$$

Применим формулу обращения Мёбиуса $f(p) = \sum_{p' \in P} \mu(p', p) |p'|$.

В качестве
$$P$$
 возьмем $S_1 \cup ... \cup S_n$. $f(S_1, ..., S_n) = 0$ $P' \leq P \Leftrightarrow P' = \bigcap_{i \in I} S_i; I \in \{1, 2, 3, ..., n\}$ $\mu(S_i, P) = -\sum_{S_i \leq P' \prec P} \mu(S_i, P') = -\mu(S_i, S_i) = -1$

$$|I|=2$$
. Тогда $\mu(S_i\cap S_j,P)=-(\mu(S_i\cap S_j,S_i)+\mu(S_i\cap S_j,S_j)+\mu(S_i\cap S_j,S_i\cap S_j))=-(-1+(-1)+1)=1.$

Аналогично можно доказать по индукции $\mu(\bigcap_{i\in I} S_i, P) = (-1)^{|I|}$

Формула включения-исключения!!!1111

3. Разбиения чисел на слагаемые

Определение 33. $f(N; n_1, n_2, \ldots, n_k)$ — количество попоечных разбиений числа на слагаемые, т.е. таких которые учитывают порядок слагаемых.

Определение 34. $F(N; n_1, n_2, \ldots, n_k)$ — количество попоечных разбиений числа на слагаемые, которые не учитывают порядок слагаемых.

Теорема 20.
$$f(N; n_1, \ldots, n_k) = \sum_i f(N - n_i; n_1, \ldots, n_k)$$

Определение 35. Количество разбиений числа N на слагаемые обозначается $\varphi(N)$ и равно f(N, 1; 2, 3, ..., N)

Теорема 21.
$$\varphi(N) = 2^{N-1}$$

Доказательство. Доказательство по индукции:
$$\varphi(0) = 1$$
, $\varphi(N+1) = f(N+1,1,\ldots,N+1) = f(N;1,\ldots,N+1) + \ldots + f(1;1,\ldots,N+1) + f(0;1,\ldots,N+1) + f(0;1,\ldots,N+1) = \varphi(N) + \ldots + \varphi(1) + \varphi(0) = 2^{N-1} + \ldots + 2^1 + 2^0 + 1 = 2^N$

Теорема 22.
$$F(N; n_1, \ldots, n_k) = F(N - n_1; n_1, \ldots, n_k) + F(N, n_2, \ldots, n_k)$$

Определение 36.
$$p(N) = F(N; 1, ..., N)$$

Теорема 23. Теорема Харди и Рамануджана $p(N)\cong \frac{1}{4N\sqrt{3}}e^{\pi\sqrt{\frac{2}{3}N}}$

Определение 37. Диаграммы Юнга

 $N = n_1 + n_2 + \ldots + n_k$. Можно считать, что $n_1 \ge n_2 \ge \ldots \ge n_k$

Теорема 24. Количество разибиений N на не более чем k слагаемых равно количеству разбиений N+k на ровно k слагаемых

Теорема 25. Количество разибиений N на не более чем k слагаемых равно количеству разбиений $N + \frac{k(k-1)}{2}$ на ровно k различных слагаемых

Доказательство. Сольем каждую диаграмму с диаграммой $1+2+3+\ldots+k$. В новой диаграмме k строк и $N+\frac{k(k-1)}{2}$ точек.

$$(1-x)(1-x^2)(1-x^3)\dots(1-x^n)\dots=1-x-x^2+x^5+x^7-x^{12}-x^{15}+\dots$$

Теорема 26. Если $N = \frac{3k^2 \pm k}{2}, k \in \mathbb{N}, mo$ коэффициент при x равен $(-1)^k$. Если $N \neq \frac{3k^2 \pm k}{2}, mo$ коэффициент при x^N равен нулю.

Теорема 27. Пусть N_{vem} — число помидорных разбиений на четное число различных слагаемых. N_{nechet} определяется аналогично. Если $N=\frac{3k^2\pm l}{2},\ mo\ ;;$

4. Формальные степенные ряды

Определение 38. Назовем $A = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \dots$ формальным степенным рядом с коэффициентами $\{a_i\} \in \mathbb{R}$.

Определение 39. Пусть A и B два формальных степенных ряда. Назовем их суммой формальный степенной ряд C с коэффициентами $c_i = a_i + b_i$.

Определение 40. Пусть A и B два формальных степенных ряда. Назовем их произведением формальный степенной ряд C с коэффициентами $c_i = \sum_{j=0}^i a_j \cdot b_{i-j}$.

Определение 41. Пусть A и B два формальных степенных ряда. Назовем их отношением формальный степенной ряд C, если A = BC.

$$b_0 c_0 = a_0 \Rightarrow c_0 = \frac{a_0}{b_0}$$

 $b_1 c_0 + b_0 c_1 = a_1 \Rightarrow c_1 = \frac{a_1 - b_1 c_0}{b_0}$

5. Производящая функция

Определение 42. Пусть есть последовательность чисел a_0, a_1, a_2, \ldots Её производящая функция — ряд $a_0 + a_1x + a_2x^2 + \ldots$ Хочется научиться понимать какой смысл принимает это выражение

Обозначение.
$$A(x) = \sum_{i=0}^{\infty} a_n x^n$$

Определение 43. Ряд A(x) имеет значение A в точке $x \in \mathbb{R}$, если $\lim_{k \to \infty} \sum_{n=0}^{k} a_n x^n = A$.

Вопрос — при каких условиях на $x \in \mathbb{R}$ такой предел существует.

Теорема 28. Положим $\rho = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{a_n}}$. Тогда ряд $\sum_{n=0}^{\infty} a_n x^n$ сходится при всех $x: |x| < \rho$.

Теорема 29. Пусть $A(x) = \frac{b_0 + b_1 x + b_2 x^2 + \dots}{c_0 + c_1 x + c_2 x + \dots}$, $c_0 \neq 0, b_0 \neq 0$, и выполнены два следующих условия: все корни знаменателя лежат в \mathbb{R} (то есть нет комплесных корней) и множество корней числителя и корней знаменателя не пересекается. Тогда ряд A(x) сходится для всех x, таких что |x| меньше наименьшего значения модуля корня знаменателя.

Теорема 30.
$$Ecnu |x| < \rho$$
. $A'(x) = \sum_{n=1}^{\infty} a_n n x^{n-1}$

Пример 5. Найти
$$\sum_{k=0}^{n} k^2 C_n^k (\frac{1}{3})^k$$

Возьмем $\left\{C_n^k(\frac{1}{3})^k\right\}$ и составим её производящую функцию.

$$f(x) = \sum_{k=0}^{n} C_n^k (\frac{1}{3})^k = (1 + \frac{x}{3})^n$$

$$f'(x) = \sum_{k=1}^{n} k C_n^k (\frac{1}{3})^k x^{k-1}$$

$$xf'(x) = \sum_{k=1}^{n} k C_n^k (\frac{1}{3})^k x^k$$

$$(xf'(x))' = \sum_{k=1}^{n} k^2 C_n^k (\frac{1}{3})^k x^{k-1}$$

$$x(xf'(x))' = \sum_{k=1}^{n} k^2 C_n^k (\frac{1}{3})^k x^k$$

$$x(xf'(x))' = x(x\frac{n}{3}(1 + \frac{n}{3})^{n-1})'$$

Пример 6. $F_0=1, F_1=1, F_n=F_{n-1}+F_{n-2}$ Найдем $\sum_{n=0}^{\infty}F_n(\frac{1}{2})^n$. $xf(x)=F_0x+F_1x^2+F_2x^3+\dots$ $x^2f(x)=F_0x^2+F_1x^3+F_2x^4+\dots$ $xf(x)+x^2f(x)=F_1x+(F_0+F_1)x^2+\dots+(F_{n-2}+F_{n-1})x^n+\dots=F_1x+F_2x^2+\dots=f(x)-F_0$ $xf(x)+x^2f(x)=f(x)-1\Rightarrow f(x)=\frac{1}{1-x-x^2}$ Корни знаменателя: $\frac{\sqrt{5}+1}{2},\frac{\sqrt{5}-1}{2}$. По теореме о сходимости $|x|<\frac{\sqrt{5}-1}{2}$

Линейные реккурентные зависимости

Линейная зависимость порядка k: $x_n = a_{n-1}x_{n-1} + \ldots + a_{n-k}x_{n-k}$.

Для
$$k=2$$
 $a_2y_{n+2}+a_1y_{n+1}+a_0y_n=0$

Определение 44. Характеристическое уравнение для линейной зависимости порядка 2 есть $a_2\lambda^2 + a_1\lambda + a_0 = 0$

Теорема 31. Пусть у характеристического уравнения есть решение $\lambda_1 \neq \lambda_2$. Тогда

- любая последовательность $y_n = c_1 \lambda_1^n + c_2 \lambda_2^n$, $c_1, c_2 \in \mathbb{C}$ являются решениями зависимости.
- если y_n решение. Тогда $\exists c_1, c_2 \in \mathbb{C}: \ y_n = c_1 \lambda_1^n + c_2 \lambda_2^n$

Доказательство.

- Подставим и получим равносильность утверждения и характеристического уравнения.
- Пусть $y_0, y_1, \ldots, y_n, \ldots$ Рассмотрим уравнения $c_1 + c_2 = y_0$, $c_1\lambda_1 + c_2\lambda_2 = y_1$ с неизвестными c_1, c_2 . Так как $\lambda_1 \neq \lambda_2$, то у этой системы есть решения. Пусть c_1^*, c_2^* решения этой системы. Рассмотрим последовательность $y_n^* = c_1^*\lambda_1^n + c_2^*\lambda_2^n$.

Теорема 32. Пусть у характеристического уравнения $\lambda_1 = \lambda_2 = \lambda$. Тогда для любое решение представимо в виде $y_n = (c_1 n + c_2)\lambda^n$, и для любых c_1, c_2 $y_n = (c_1 n + c_2)\lambda^n$ есть решение

Доказательство аналогично.

Общий случай $a_k \lambda^k + a_{k-1} \lambda^{k-1} + \ldots + a_0 = 0$ — характеристическое уравнение

 $\lambda_1, \dots, \lambda_k \in \mathbb{C}$ (основная теорема алгебры).

Обозначим все различные корни через μ_1, \dots, μ_l . Пусть

Теорема 33. Пусть $P_1(n), \ldots P_l(n)$, таких что $P_i(n)$ — многочлен с произвольными коэффициентами из \mathbb{C} , имеющий степень n_i-1 . Тогда любое $y_n=P_1(n)\mu_1^n+\ldots+P_l(n)\mu_l^n$ — решение и любое решение представимо в таком виде.