Extended Crane-Yetter via Skeins

- CY (W") = KO(W) Dx(W)/2 [CY 1993], [CKY 1993], [Roberts 1995], [Ooguri 1993]
- naturally extends to TQFT
- olefined similarly to Twaev-Viro, as state sum TV extends to codim 2 expect CY extends to codim 2 as well CY (Σ^2) = category
- $\left(e_{,g} \quad \left[\begin{array}{cc} \text{Burrett et al.} & , & 2007 \end{array}\right]\right)$ Conjecturally, Reshetikhin-Turaer is boundary theory of CY

Outline · briefly describe CY as state sum · alternative definition in terms of skeins · Resherikhin Turaer as boundary theory of CY

Preliminaries/Background

· Topology: PL (dim s6, smooth = PL)

Coporgrems:

Relative NXI

Cornered No (over N)

 $M: M \rightarrow^{N} M'$

 $M: M \rightarrow M$ W:4-mfld M:3-mfld

N : 2 - mfla

Preli	mino	nes 1	/Bac	kgr	mnd	•	•							•	•	•			•		•		•		•	•	•				•	
Alg	ebra	: P	remo	dula	r C	ate	Yo vid	 es .	· •	stri	ایم	dia	gvai	ms./	/ - ગુ	vap	hi e	J c	21au	Ins	•	•			•	•	•	•		•	•	
		4								•				٠		•	•		•	•		•		•	0	•						
• •					Ho					∳x •	•	0 1	- X - ↓	f	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
mon stri	oidal ucture	. S	:	f'e	E Ho	~ _^ (x'x')	•	· f 6	» f	,		ţ.	, t	•		£ /;	* X		•		•		•	(<u>"</u> U	•	, [°] C _o	r)	•	•	
duc	als.	*,	وبر ده	ey		J _×	:=	×*	X		· ;		γ×	:=	: - (X	1	Χ _*) eeΛ							oppo	site	o~!4	٠ ٠,	2	7			
	- 6	sivotal	strucl	here	8:	X —	<u>~</u> • X*	×	11L						•																	
			0	•			•		٠											•							•					

braiding
$$c: X \otimes Y \xrightarrow{\sim} Y \otimes X$$

$$- + wist \qquad 0 = 0$$

$$\theta : X \stackrel{\sim}{\sim} X : \theta$$

- premodular: all of above

• structures compartible

• semisimple / lk = lk

• finite

representatives X_i for simple objects, $i \in Irr(A)$ $d_i = 0$ i = i

4 ∈ Hom, (1, V, 8 ··· 8 Vk) =: ⟨V, ..., Vk), 4' ∈ ⟨V*, ..., V, >

$$-- \bigcirc \qquad := \sum_{\alpha} - \bigcirc \qquad \bigcirc \qquad \{ \forall_{\alpha} \}, \{ \forall^{\alpha} \} \text{ dual bases} \qquad \Big| \Big| \Big| = \sum_{\alpha} d_{1} + \sum_{\alpha} d_{1} \Big| = \sum_{\alpha} d_{1} + \sum_$$

$$\mathcal{O} = \mathcal{O} = \mathcal{O} = \mathcal{O}$$

Killing lemma : [A modular]
$$\frac{1}{D}$$
 = $\delta_{i,1}$

$$\frac{1}{D} \stackrel{\text{\tiny (i)}}{\downarrow_i} = \delta_{i,\underline{A}}$$

$$D := \bigcup_{i=1}^{\infty} = \sum_{i=1}^{\infty} q_{i}^{i}$$

$$\rightarrow \frac{1}{D} = \frac{1}{2} = \frac{1}{2} \propto \frac{1}{2}$$

CY - triangulation/PLCW

- label $l:\{\text{oriented } 2\text{-cells}\} \rightarrow \text{Irr}(A)$ $l(\vec{F}) = l(\vec{F})^*$

oriented 3-call $C \longrightarrow H(C,l)$ - "(oral state space" $H(C,l) \simeq Hom_{A}(1,\bigotimes l(\vec{F})) = \langle l(\vec{F}_{l}),...,l(\vec{F}_{l})\rangle$ $\vec{F} \in \partial C$ $H(C,l) \simeq Hom_{A}(1,\bigotimes l(\vec{F}_{l})) = \langle l(\vec{F}_{l})^{*},...,l(\vec{F}_{l})^{*}\rangle$ $\vec{F} \in \partial C$

$$H(\overline{C}, \ell) \simeq Hom_{A}(1, \bigotimes_{F \in \overline{BC}} \ell(\overline{F})) = \langle \ell(\overline{F}_{\ell})^*, ..., \ell(\overline{F}_{\ell})^* \rangle$$

 $ev: H(c,e) \otimes H(c,e) \longrightarrow k$

$$-M \longrightarrow H(M, 2) = \otimes H(C, 2)$$

- oriented 4-cell $T \longrightarrow Z(T,\ell)$ local invariant $Z(T,\ell) \in \bigotimes H(\vec{c},\ell)$ $Z(T,\ell) \in \bigotimes H(\vec{c},\ell)$ $Z(T,\ell)$ $Z(T,\ell)$ $Z(T,\ell)$ $Z(T,\ell)$ $Z(U,\ell) = \exp\left(\bigotimes Z(T,\ell)\right) \in H(\partial W,\ell)$ $Z(W,\ell) = \exp\left(\bigotimes Z(T,\ell)\right) \in H(\partial W,\ell)$ $Z(W,\ell) \in \bigotimes (H(\vec{c},\ell) \otimes H(\vec{c},\ell)) \otimes \bigotimes H(\vec{c},\ell)$ boundary $Z(W,\ell) \in \bigotimes (H(\vec{c},\ell) \otimes H(\vec{c},\ell)) \otimes \bigotimes H(\vec{c},\ell)$ boundary $Z(W,\ell) \in \bigotimes (H(\vec{c},\ell) \otimes H(\vec{c},\ell))$ boundary $Z(W,\ell) \in \bigotimes (H(\vec{c},\ell) \otimes H(\vec{c},\ell))$ $Z(W,\ell) \in \bigotimes (H(\vec{c},\ell) \otimes H(\vec{c},\ell))$

$$Z_{cy}(W) = D^{\mathbf{x}(\mathring{w}) + \frac{1}{2} \mathbf{x}(\partial W)} \sum_{\ell} \prod_{\ell \in \mathcal{H}} d_{\ell(f)}^{n_f} Z(W, \ell) \in H(\partial W) = \bigoplus_{\ell} H(\partial W, \ell)$$

$$Z_{cy}(W) = D^{\kappa(\mathring{w}) + \frac{1}{2}\kappa(\partial W)} \sum_{\ell} \prod_{\ell \in \mathcal{F}} d_{\ell(\mathring{f})}^{n_{f}} Z(W, \ell) \in H(\partial W) = \bigoplus_{\ell} H(\partial W, \ell)$$

Extend to 4-notes w/ corner

NEZW

 $Z_{\mathcal{H}}(\mathcal{W}; \mathcal{N}) = \mathcal{D}^{\mathbf{x}(\mathring{w}) + \frac{1}{2}\mathbf{x}(\partial W \setminus \mathcal{N})} \sum_{\ell} \prod_{f \notin \mathcal{N}} d_{f}^{n_{f}} Z(W, \ell) \in H(\partial W)$

 $W: M \xrightarrow{\sim} M' , W': M' \xrightarrow{\sim} M''$

W' 0 W = W' W, W

 $Z_{op}(w',w;N) = Z_{op}(w';N) \circ Z_{op}(w;N) : H(M) \longrightarrow H(M'')$

$$M'$$
 M'
 M'
 M'
 M'

Skeins
$$(M^3)$$
 = {formal linear combination} of A - colonel ribbon graphs} in M null graphs

- null graph w.r.t. $D \cong B^3 \subseteq M$

$$\Gamma = \sum_i c_j \Gamma_j \qquad \Gamma_i \text{ agree outside } D$$

$$\cdot \langle \sum_i c_j \Gamma_j \rangle_D = \sum_i c_j \langle \Gamma_j \rangle_D = 0$$

$$\Gamma = \sum_{i \in I} c_i \Gamma_i$$

$$\cdot \langle \sum_{c_j} \Gamma_j \rangle_{D} = \sum_{c_j} \langle \Gamma_j \rangle_{D} = 0$$

·
$$Z_{cy}^{sk}(M; V) = \{Skeins in M w/ 2-value V\} \subseteq Skein(M)$$

For surface
$$N$$
, $\hat{Z}_{CY}^{sk}(N) = \begin{cases} Obj : boundary values $V = (B, \{V_{\underline{i}}\}) \\ Mov : Hom(V, V') = Z_{CY}^{sk}(N \times I; V, V') \end{cases}$$

$$Z_{cy}^{sk}(N) = Kar(\hat{Z}_{cy}^{sk}(N))$$
 Karondi envelope / idempotent completion

-
$$\mathbb{E}:=$$
 empty configuration = $(8=\emptyset,\emptyset)$.

-
$$\phi_M^{sk} = \text{empty graph } \in Z_{cy}^{sk}(M; \mathbb{E})$$

- W:M - M', handle deemp W= Wo...oW,

- define $Z_{cy}(W)$ for elementary cobordisms - Case index k-handle:

• k=0: $Z_{sk}^{ck}(w;N)(\Gamma):=D \cdot \Gamma \cup \phi_{sk}^{sk}$

k = 4: $Z_{oq}^{sk}(W; N)(\Gamma'U\Gamma'') := Z_{RT}(\Gamma'') \cdot \Gamma'$

• k=1: isotope Γ to avoid attaching region, then, treating Γ as graph in new mfld, $Z_{CY}^{sk}(W;N)(\Gamma) = D^{-1} \cdot \Gamma$ • k=2,3— inv under handle moves — $Z_{CY}^{sk}(W;N)$ indep of handle decomp.

Theorem: Zy = Zyk

- eg. for 3-mflds, essentially just forget triangulation, get skein - 2-mflds follows easi!

- for 4-mflds, check they agree on handles.

 $W_{L}: \overline{M_{L}} \xrightarrow{\text{orthach}} \overline{S^{3}} \xrightarrow{\text{4-handle}} \emptyset$ dual 2-handles

- meridians of attaching region of dual 2-handles (= (ink components)

-essentially gives the Reshetikhin-Turaev invariant of M_L : [A modular] $Z_{RT}(M_L) = K^{-\sigma(L)} \cdot D^{(-|L|-1)/2} \cdot Z_{RT}(\Omega L)$

usually QL, convention issue

Theorem A modular. Define $E_{m} = \frac{1}{Z_{RT}(\overline{M})} \cdot p_{M}^{sk} \in Z_{cY}^{sk}(M) \cong k$

For wood. W:M ->M',

$$Z_{cM}^{sk}(M) (\epsilon^{W}) = K_{\alpha(M)} \cdot D_{\chi(M)/2} \cdot \epsilon^{W}$$

- uses fact that Zor (closed 3-mfld) is 1-dim
- key observation to generalize example:
trade 1-handle for appropriate 2-handle
in dual handle decomp,

use killing lemma

Relation to Reshetikhin-Turaev
$$Z_{cy}^{sk}(H;V) \cong \bigoplus_{i_{1,...,i_{g}}} \langle V_{1,...,V_{k}}, X_{i_{1}}, X_{i_{1}}^{*}, ..., X_{i_{g}}, X_{i_{g}}^{*} \rangle \cong Z_{RT}(\partial H; V)$$

RT should be an extended 3-2-1-TQFT.

— has "anomaly"

— fix "framing: for every closed surface N, choose handlebody HN wy identification $\partial H_N \simeq N$ $Z_{RT}^{of}(N,V) := Z_{of}(H_N;V)$

For 3-wtd, as cobord. M:N→N',

W/ A-colored I in M w/ 2-vals V*, V',

 $Z_{R_{T}}^{CY}(M,\Gamma):Z_{R_{T}}^{CY}(N,V) \longrightarrow Z_{R_{T}}^{CY}(N',V')$ $\varphi \longmapsto K^{-\sigma(w)} \cdot D^{-\chi(w)/2}$ where W is some 4-wfld $2\overline{W} = \overline{H}_{NN}^{N} M U H_{N'}$ $W \Gamma M$ $H_{N'}$

Zik (W; N') ([U4)

Theorem: ZRT agrees w/ RT.

- clear from taking WzWL

- skein pairing - gluing axiom

For M, DM=N, consider

 $M \times I : M \bigvee M \longrightarrow \emptyset$

- defines skein paining (forget corner)

 $ev^{sk}: Z_{oq}^{sk}(M; V) \otimes Z_{oq}^{sk}(\overline{M}; V^{*}) \longrightarrow \mathbb{K}$

 $\lambda \otimes \delta$, $\longrightarrow Z_{sk}(wxz)(\delta \Lambda \delta)$

Thank You!