Formális Nyelvek - 2. Előadás

Csuhaj Varjú Erzsébet

Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c

E-mail: csuhaj@inf.elte.hu

Nyelvekre vonatkozó műveletek - I

Legyen V egy ábécé és legyenek L_1, L_2 nyelvek V felett $(L_1 \subseteq V^*$ és $L_2 \subseteq V^*)$.

- $L_1 \cup L_2 = \{u \mid u \in L_1 \text{ vagy } u \in L_2\}$ az L_1 és az L_2 nyelv **uniója**;
- $L_1 \cap L_2 = \{u \mid u \in L_1 \text{ és } u \in L_2\}$ az L_1 és az L_2 nyelv **metszete**;
- $L_1 L_2 = \{u \mid u \in L_1 \text{ és } u \notin L_2\}$ az L_1 és az L_2 nyelv **különbsége**.
- Az $L \subseteq V^*$ nyelv **komplementere** a V ábécére vonatkozóan $\overline{L} = V^* L$.

Nyelvekre vonatkozó műveletek - II

Legyen V egy ábécé és legyenek L_1, L_2 nyelvek V felett $(L_1 \subseteq V^*$ és $L_2 \subseteq V^*)$.

- $L_1L_2 = \{u_1u_2 \mid u_1 \in L_1, u_2 \in L_2\}$ az L_1 és az L_2 nyelv **konkatenációja**;
- L^i jelöli L i-edik iterációját (a konkatenáció műveletére nézve), ahol $i \ge 1$ és $L^0 = \{\varepsilon\}.$
- Minden L nyelvre fennállnak a következő egyenlőségek: $\emptyset L = L\emptyset = \emptyset$ és $\{\varepsilon\}L = L\{\varepsilon\} = L$.
- Az L nyelv az **iteratív lezártja** (lezártja vagy Kleene-lezártja) alatt az $L^* = \bigcup_{i \geq 0} L^i$ nyelvet értjük. A megfelelő műveletet az iteráció lezárásának mondjuk.
- Az L^+ nyelv alatt az $L^+ = \bigcup_{i>1} L^i$ nyelvet értjük.

Nyilvánvalóan $L^+ = L^*$, ha $\varepsilon \in L$ és $L^+ = L^* - \{\varepsilon\}$, ha $\varepsilon \notin L$.

Nyelvekre vonatkozó műveletek - III

Legyen V egy ábécé és $L \subseteq V^*$.

 $L^{-1} = \{u^{-1} | u \in L\}$ a **tükörképe** (megfordítása) az L nyelvnek.

Tulajdonság:

$$(L^{-1})^{-1} = L$$
 and $(L^{-1})^i = (L^i)^{-1}$, $i \ge 0$.

Definíció:

$$HEAD(L) = \{u | u \in V^*, uv \in L, v \in V^*\}.$$

Nyilvánvaló, hogy $L \subseteq HEAD(L)$ bármely $L \in V^*$ nyelvre.

Nyelvekre vonatkozó műveletek - IV

Legyen V_1 és V_2 két ábécé.

A $h:V_1^*\to V_2^*$ leképezést **homomorfizmusnak** nevezzük, ha teljesülnek a következők:

- h egyértelmű, azaz, minden $u \in V_1^*$ szóra pontosan egy $v \in V_2^*$ szó létezik, amelyre h(u) = v teljesül.
- h(uv) = h(u)h(v), ha $u, v \in V_1^*$.

A két tulajdonság alapján $h(\varepsilon) = \varepsilon$. Nevezetesen, minden $u \in V_1^*$ -ra $h(u) = h(\varepsilon u) = h(u\varepsilon)$.

Nyilvánvaló, hogy egy homomorfizmus teljesen definiált, ha V_1 minden egyes szimbólumára definiálva van. Ekkor minden $u=a_1a_2\ldots a_n$ szóra, ahol $a_i\in V_1, 1\leq i\leq n,$ fennáll, hogy $h(u)=h(a_1)h(a_2)\ldots h(a_n)$. Ez alapján elégséges a h leképezést V_1 elemeire definiálni, és ez automatikusan kiterjesztődik V_1^* -ra.

Nyelvekre vonatkozó műveletek - V

Legyen $h: V_1^* \to V_2^*$ homomorfizmus.

A h homomorfizmus ε -mentes, ha $h(u) \neq \varepsilon$ bármely $u \in V_1^+$ szóra.

Legyen $h:V_1^* \to V_2^*$ homomorfizmus. Az $L \in V_1^*$ nyelv h-homomorf **képén** a

$$h(L) = \{ w \in V_2^* \mid w = h(u), u \in V_1^* \}$$

nyelvet értjük.

Nyelvekre vonatkozó műveletek - VI

A h homomorfizmust **izomorfizmusnak** nevezzük, ha bármely u és v V_1^* -beli szóra teljesül, hogyha h(u) = h(v), akkor u = v.

Egy példa az izomorfizmusra a decimális számok bináris reprezentációja:

$$V_1 = \{0, 1, 2, \dots, 9\}, V_2 = \{0, 1\},$$

 $h(0) = 0000, h(1) = 0001, \dots, h(9) = 1001$

Generatív grammatikák egy normálformája

Tétel:

Minden G=(N,T,P,S) generatív grammatikához meg tudunk konstruálni egy vele ekvivalens és azonos típusú G'=(N',T,P',S) generatív grammatikát úgy, hogy P' egyetlen szabályának baloldalán sem fordul elő terminális szimbólum.

A bizonyítás vázlata:

- 2- és 3-típusú grammatikák esetében az állítás azonnal adódik a definíciókból.
- Legyen G = (N, T, P, S) 0-típusú vagy 1-típusú grammatika.

Megkonstruáljuk a G' = (N', T, P', S) grammatikát.

Tekintsük az $N'=N\cup \bar{T}$ halmazt, ahol $\bar{T}=\{\bar{a}\mid a\in T\}$. Képezzük P'-t a P szabályhalmazból úgy, hogy minden $a\in T$ szimbólumot \bar{a} szimbólumra cserélünk minden egyes olyan szabály mindkét oldalán P-ben, ahol a előfordul, továbbá az így kapott szabályhalmazhoz adjuk hozzá minden $a\in T$ szimbólumra a $\bar{a}\to a$ szabályt.

Álljon P' az így kapott szabályokból.

(1) Megmutatjuk, hogy $L(G) \subseteq L(G')$.

Azonnal látható, hogyha $u=a_1\ldots a_n\in L(G)$, ahol $a_i\in T$, $1\leq i\leq n$, akkor $v=\bar{a}_1\ldots \bar{a}_n$ levezethető G'-ben. Ekkor a $\bar{a}_i\to a_i$ szabályok alkalmazásával u is levezethető G'-ben.

Az üres szó esetében nyilvánvaló, hogyha $\varepsilon \in L(G)$, akkor $\varepsilon \in L(G')$ is teljesül.

(2) Megmutatjuk, hogy $L(G') \subseteq L(G)$.

Definiáljuk a h homomorfizmust úgy, hogy $h(\bar{a}) = a$ minden $\bar{a} \in \bar{T}$ szimbólumra és h(x) = x minden $x \in (N \cup T)$ szimbólumra.

Ha $u \Longrightarrow_{G'} v$, akkor fennáll $h(u) \Longrightarrow_G^* h(v)$ is. Ha a v szó levezethető az u szóból valamely $\bar{a} \to a$ szabály alkalmazásával, akkor h(u) = h(v). Egyébként az $u \Longrightarrow_{G'} v$ levezetés P valamely szabályának alkalmazását kívánja meg, és így $h(u) \Longrightarrow_G h(v)$ szintén fennáll. Vagyis, $u \Longrightarrow_{G'}^* v$ teljesülése maga után vonja $h(u) \Longrightarrow_G^* h(v)$ teljesülését. Azaz, ha $S \Longrightarrow_{G'}^* w$, ahol $w \in T^*$, akkor $S = h(S) \Longrightarrow_G^* h(w) = w$.

Nyelvosztályok zártsági tulajdonságai

Az unió, a konkatenáció, valamint az iteráció lezárása műveleteket együttesen **reguláris** műveleteknek nevezzük.

Tétel:

Az \mathcal{L}_i , i=0,1,2,3 nyelvosztályok mindegyike zárt a reguláris műveletekre nézve.

Tétel:

Az \mathcal{L}_i , i = 0, 1, 2, 3 nyelvosztályok mindegyike zárt a reguláris műveletekre nézve.

Bizonyításvázlat:

Legyen L és L' két i-típusú nyelv, ahol i=0,1,2,3. Tegyük fel, hogy L és L' rendre generálhatók az i-típusú G=(N,T,P,S) és G'=(N',T',P',S') grammatikákkal. Az általánosság megszorítása nélkül feltehetjük, hogy G és G' a korábbiakban ismertetett normálformában adott (a szabályok baloldalán nincs terminális szimbólum), valamint hogy $N\cap N'=\emptyset$.

Unió:

- (1) i = 0, 2, 3 esetében legyen $S_0 \notin (N \cup N')$ és legyen $G_u = (N \cup N' \cup \{S_0\}, T \cup T', P \cup P' \cup \{S_0 \to S, S_0 \to S'\}, S_0).$
- (2) Nyilvánvaló, hogy G_u egyazon típusú, mint G és G'.
- (3) Az is azonnal látható, hogy $L(G) \cup L(G') \subseteq L(G_u)$.
- (4) $L(G_u) \subseteq L(G) \cup L(G')$ szintén fennáll, mivel N és N' diszjunktak és az $S_0 \to S$, $S_0 \to S'$ szabályok garantálják, hogy $L(G_u)$ egyetlen elemének levezetésekor sem használunk szabályt mind a P és mind a P' szabályhalmazból.

Az i=1 és $\varepsilon \notin (L \cup L')$ esetben megkonstruálunk egy G_u grammatikát az előbbi módon.

Ha i=1 és $\varepsilon\in(L\cup L')$, akkor először tekintjük az $L_1=L-\{\varepsilon\}$ és az $L_2=L'-\{\varepsilon\}$ nyelveket. Tegyük fel, hogy a G_1 és a G_2 grammatikák 1-típusúak, valamint rendre generálják az G_1 és az G_2 nyelveket. Ezután az előbbieknek megfelelően konstruálunk egy G_2 grammatikát, amely az G_1 0 nyelvet generálja. Majd bevezetünk egy új G_2 1 nemterminális szimbólumot és a G_2 2 szabályhalmazához hozzáadjuk az G_1 1 of G_2 2 szabályokat. Az így nyert grammatika az G_2 3 nyelvet generálja.

Konkatenáció:

Tekintsük először az i=0,2 eseteket. Legyen $S_0\notin (N\cup N')$ és $G_c=(N\cup N'\cup \{S_0\}, T\cup T', P\cup P'\cup \{S_0\to SS'\}, S_0).$

- (2) Nyilvánvaló, hogy G_c egyazon típusú, mint G és G'.
- (3) Az is azonnal látható, hogy $L(G)L(G') \subseteq L(G_c)$.

Konkatenáció - folytatás

(4) Megmutatjuk, hogy $L(G_c) \subseteq L(G)L(G')$. Tekintsük az

$$S_0 \Longrightarrow u_1 \Longrightarrow u_2 \Longrightarrow \ldots \Longrightarrow u_m = u, \ m \ge 1$$

 G_c -beli levezetést, ahol $u \in (T \cup T')^*$.

j-szerinti indukcióval megmutatjuk, hogy $u_j = v_j v_j'$ valamely v_j és v_j' -re úgy, hogy $S \Longrightarrow_G^* v_j$ és $S' \Longrightarrow_{G'}^* v_j'$ teljesül. A j=1 esetben az állítás triviális, hiszen $u_1 = SS'$ kell, hogy legyen. Tegyük fel, hogy az állítás igaz u_j -re. Akkor viszont igaz u_{j+1} -re is, mivel N és N' diszjunktak, terminális szimbólum nem fordul elő a baloldalon, és ahhoz, hogy az u_{j+1} szót megkapjuk, vagy a v_j , vagy a v_j' mondatformát át kell írnunk. Ez alapján az $L(G_c)$ minden eleme egyben eleme az L(G)L(G') nyelvnek is.

Konkatenáció - folytatás

- (5) Legyen i = 1.
- (a) Ha $\varepsilon \notin LL'$, akkor G_c -t az előzőeknek megfelelően konstruáljuk meg.
- (b) Ha $\varepsilon \in LL'$, akkor először vegyük az $L_1 = L \{\varepsilon\}$ és $L_2 = L' \{\varepsilon\}$ nyelveket, és konstruáljuk meg G_c -t a fenti módon. Az LL' nyelv megegyezik a következő nyelvek valamelyikével:

$$L_1L_2 \cup L_2$$
, $L_1L_2 \cup L_1$, $L_1L_2 \cup L_1 \cup L_2 \cup \{\varepsilon\}$,

attól függően, hogy $\varepsilon \in L$ és $\varepsilon \notin L'$, vagy fordítva, vagy ε mindkét nyelv eleme.

Mindegyik esetben $LL' \in \mathcal{L}_1$ következik abból, hogy $L_1L_2 \in \mathcal{L}_1$ és \mathcal{L}_1 zárt az unió műveletére nézve.

Konkatenáció - folytatás

Legyen i = 3.

A P szabályhalmazból megkonstruálunk egy P_1 szabályhalmazt úgy, hogy minden $A \to u$ alakú szabályt, ahol $A \in N$ és $u \in T^*$ felcserélünk egy $A \to uS'$ alakú szabályra $(S' \notin (N \cup T))$ és a többi szabályt változatlanul hagyjuk. A

$$G_c = (N \cup N', T \cup T', P_1 \cup P', S)$$

grammatika nyilvánvalóan 3-típusú és generálja az L(G)L(G') nyelvet.

Megmutatjuk, hogy $L(G_c) \subseteq L(G)L(G')$. Minden G_c -beli ww' terminális szóhoz vezető levezetés $S \Longrightarrow_{G_c}^* wS' \Longrightarrow_{G_c}^* ww'$ alakú, ahol ahhoz, hogy a w szót előállítsuk P-beli szabályokat, ahhoz, hogy a w' szó elemeit előállítsuk, P'-beli szabályokat kell használnunk. Azaz, $L(G_c) \subseteq L(G)L(G')$. A fordított irányú tartalmazás könnyen látható.

Az iteráció lezárása:

(1) Legyen i=2 és legyen $S_0 \notin N$. Akkor

$$G_* = (N \cup \{S_0\}, T, P \cup \{S_0 \to \varepsilon, S_0 \to SS_0\}, S_0)$$

generálja az L^* nyelvet.

(2) Legyen i=3. Definiáljuk a P_* szabályhalmazt úgy, hogy $A\to uS$ eleme P_* -nak minden $A\to u$ P-beli szabályra, ahol $u\in T^*$. Akkor

$$G_* = (N \cup \{S_0\}, T, P_* \cup P \cup \{S_0 \to \varepsilon, S_0 \to S\}, S_0)$$

grammatika generálja az L^* nyelvet.

Iteráció lezárása - folytatás

(3) Legyen i=0,1 és $\varepsilon\notin L$. Tegyük fel, hogy $S_0,S_1\notin N$.

Legyen

 $G_* = (N \cup \{S_0, S_1\}, T, P \cup \{S_0 \to \varepsilon, S_0 \to S, S_0 \to S_1 S\} \cup \{S_1 a \to S_1 S a \mid a \in T\} \cup \{S_1 a \to S_1 S \mid a \in T\}, S_0)$ grammatika.

Legyen $L_* = L(G_*)$. Könnyen látható, hogy $L^* \subseteq L_*$. Megmutatjuk a fordított irányú tartalmazást.

Iteráció lezárása - folytatás

$$G_* = (N \cup \{S_0, S_1\}, T, P \cup \{S_0 \to \varepsilon, S_0 \to S, S_0 \to S_1 S\} \cup \{S_1 a \to S_1 S a \mid a \in T\} \cup \{S_1 a \to S a \mid a \in T\}, S_0)$$

Megmutatjuk, hogy $L(G_*) \subseteq L^*$.

Tekintsük az

$$S_0 \Longrightarrow_{G_*} u_1 \Longrightarrow_{G_*} u_2 \Longrightarrow_{G_*} \ldots \Longrightarrow_{G_*} u_m = u, \ m \ge 1$$

levezetést, ahol $u \in T^*$. Ha az első lépésben az $S_0 \to \varepsilon$ szabályt használjuk, akkor m=1 és $u_m=\varepsilon \in L^*$. Ha $u_1=S$, akkor $u \in L^*$, egyébként $u=S_1S$ és minden j-re, $1 \le j \le m$ indukcióval j szerint megmutatható, hogy u_j alakja a következő két alak közül valamelyik:

- (a) $S_1v_1...v_k$, $k \ge 1$, ahol $S \Longrightarrow_G^* v_l$, l = 1,...,k és a $v_2,...,v_k$ szavak mindegyike terminális szimbólummal kezdődik; vagy
- (b) $v_1 \dots v_k$, $k \ge 0$, ahol $S \Longrightarrow_G^* v_l$, $l = 0, \dots, k$ és a v_2, \dots, v_k szavak mindegyike terminális szimbólummal kezdődik.

Az $u=S_1S$ eset az (a) esetnek felel meg. A G_* szabályait megvizsgálva láthatjuk, hogy u_{j+1} vagy (a), vagy (b) formájú, ha u_j rendelkezik ezzel a tulajdonsággal. azaz (a) vagy (b) formájú. Azaz, $L(G_*) \subseteq L^*$.

Iteráció lezárása - folytatás

Ha i=0,1 és $\varepsilon\in L$, akkor először veszünk egy G_1 grammatikát, ahol $L(G_1)=L-\{\varepsilon\}.$

- (a) i=1 esetében ez egyszerű, elhagyjuk az $S \to \varepsilon$ szabályt.
- (b) i=0 esetben minden $u\to \varepsilon$ szabályt az $uX\to X$ és az $Xu\to u$ szabályra cserélünk minden $X\in (N\cup T)$ szimbólum esetében. G típusa és $(L-\{\varepsilon\})^*=L^*$.

Korollárium

Ha az L nyelv i-típusú, i = 0, 1, 2, 3, akkor L^+ is az.

Néhány további tulajdonság

- (1) A \mathcal{L}_i , ahol i=0,1,2 is zárt a megfordítás (tükrözés) műveletére nézve.
- (2) \mathcal{L}_i , ahol i=0,1,2 zárt a homomorfizmus és \mathcal{L}_1 zárt a ε -mentes homomorfizmus műveletére nézve.
- (3) Minden véges nyelv eleme \mathcal{L}_3 -nak.

Irodalom:

György E. Révész, Introduction to Formal Languages, McGraw-Hill Book Company, 1983, Chapter 2.