Total No. of Pages: 02 FIFTH SEMESTER

Roll No B.Tech. (IT)

END SEMESTER EXAMINATION

November-2018

IT-307-PATTERN RECOGNTION

Max. Marks: 40 Time: 03 Hours Note: Attempt FIVE questions. Question No.1 is compulsory to attempt Assume suitable missing data, if any.

O.No.1

- [a] What are the different ways to classify patterns?
- [b] What do you mean by similarity (Proximity) or dissimilarity measure? Give two examples of each.
- [c] State and explain the three conditions of clustering.
- [d] Prove that dot product of two vectors is zero if they are orthogonal to each other. Verify it with an example.

Q.No.2

[4x2=8]

- [a] Describe a perceptron network? And discuss it's applications and limitations?
- [b] Explain a single layer perceptron model which can classify a pattern (take own example) effectively.

Q.No. 3

[8]

Let blue, green, and red be three classes of objects with prior probabilities given by P(blue) = 0.3, P(green) = 0.4, P(red) = 0.3. Let there be three types of objects: pencils, pens, and paper. Let the class conditional probabilities of these objects be given as follows:

P(pencil green) = 0.3	P(pen green) = 0.5	P(paper green) = 0.2
P(pencil blue) = 0.5	P(pen blue) = 0.2	P(paper blue) = 0.3
P(pencil red) = 0.2	P(pen red) = 0.3	P(paper red) = 0.5

Use Bayes classifier to classify pencil, pen, and paper.

O. No. 4

[4x2=8]

[a] Demonstrate K-NN algorithm with the help of some example and highlights the limitations of K-NN. In this algorithm how does, "The computational complexity for classifying new samples grows linearly with the number of samples in the training dataset in the worst-case scenario"

Q-500 -

[b] How do you optimize the construction of hyper plane using the theory of Support Vector Machines (SVM)? Give mathematical treatment for tradeoff between large margin and small margin errors.

Q.No. 5

[4x2=8]

A set of data is given as: $X_1 = [2, 1]^T$, $X_2 = [3, 2]^T$, $X_3 = [2, 3]^T$ and $X_4 = [1, 2]^T$. Compute the followings parameters:

- [a] Mean value of vector X.
- [b] Covariance matrix of the data.

Q.No. 6

[4x2=8]

Performance of a classifier with respect to a data set is as given in confusion matrix.

	Predicted Classes			
Actual	60	10	10	
classes	20 ·	50	10	
	5	5 .	70	

Determine the following parameters to evaluate the classifier performance.

- [n] Precision
- [b] Accuracy
- [c] Recall
- [d] Error rate