Examples. In each of the examples below, X is a finite set and $\mathbf{F} = \mathbf{F}(X)$ is the free lattice generated by X. The symbol F denotes the universe of \mathbf{F} .

- Ex 1. Let $X = \{x, y, z\}$, and let $\mathbf{L} = \mathbf{2}$ be the 2-element chain. Then the kernel of an epimorphism $h: \mathbf{F} \to \mathbf{L}$ is a finitely generated sublattice of $\mathbf{F} \times \mathbf{F}$.
- Ex 2. Let $X = \{x, y, z\}$ and let $\mathbf{L} = \mathbf{3}$ be the 3-element chain. Then the kernel of an epimorphism $h: \mathbf{F} \to \mathbf{L}$ is finitely generated.
- Ex 3. Let n > 2, $X = \{x_0, x_1, \dots, x_{n-1}\}$, and $\mathbf{L} = \mathbf{2} \times \mathbf{2}$. Then the kernel of an epimorphism $h: \mathbf{F} \to \mathbf{L}$ is finitely generated.

(Proof of Ex 3 appears below.)

Here are some lemmas that may be useful.

Lemma 1.2 (Freese, Jezek, Nation) Let \mathcal{V} be a nontrivial variety of lattices and let $\mathbf{F}_{\mathcal{V}}(X)$ be the relatively free lattice in \mathcal{V} over X. Then,

(igstar) $\bigwedge S \leq \bigvee T$ implies $S \cap T \neq \emptyset$ for each pair of finite subsets $S, T \subseteq X$.

Lemma 1.4 (Freese, Jezek, Nation) Let **L** be a lattice generated by a set X and let $a \in L$. Then

- (1) if a is join prime, then $a = \bigwedge S$ for some finite subset $S \subseteq X$.
- (2) if a is meet prime, then $a = \bigvee S$ for some finite subset $S \subseteq X$.

If X satisfies condition (\star) above, then

• (3) for every finite, nonempty subset $S \subset X$, $\bigwedge S$ is join prime and $\bigvee S$ is meet prime.

Ex 3 Proof.

Let the universe of $\mathbf{L} = \mathbf{2} \times \mathbf{2}$ be $\{0, a, b, 1\}$, where $a \vee b = 1$ and $a \wedge b = 0$.

For each $y\in L$, denote by $X_y=X\cap h^{-1}\{y\}$ the set of generators mapped by h to y.

Denote the least and greatest elements of $h^{-1}\{y\}$ (if they exist) by y_* and y^* , respectively. For example,

$$a_* = igwedge h^{-1}\{a\} = igwedge \{x \in F: h(x) = a\}, \hspace{5mm} b^* = igvee \{x \in F: h(x) = b\}, \hspace{5mm} ext{etc.}$$

In the present example, the least and greatest elements exist is each case, as we now show.

Claim 1. $h^{-1}\{a\}$ has least and greatest elements, namely $a_* = \bigwedge(X_a \cup X_1)$ and $a^* = \bigvee(X_a \cup X_0)$, resp. (Similarly, for b_* and b^* .)

Claim 2. $h^{-1}\{1\}$ has least and greatest elements, namely $1_*=a_*\vee b_*$ and $1^*=\bigvee X$, resp.

Claim 3. $h^{-1}\{0\}$ has least and greatest elements, namely, $0_* = \bigwedge X$ and $0^* = a^* \wedge b^*$, resp.

Proof of Claim 1. Let $l_a = \bigwedge (X_a \cup X_1)$ and $g_a = \bigvee (X_a \cup X_0)$ (which exist in F, since the sets involved are finite). Then $h(l_a) = a = h(g_a)$.

Fix $r \in h^{-1}\{a\}$.

Case 0. If $r \in X_a$, then $r \ge \bigwedge X_a \ge \bigwedge (X_a \cup X_1) = l_a$.

Case 1. Let $r = s \lor t$, where h(s) = a and $h(t) \in \{a, 0\}$. Assume (the induction hypothesis) that $s \ge l_a$. Then $r = s \lor t \ge l_a$.

Case 2. Let $r=s \land t$, where h(s)=a and $h(t) \in \{a,1\}$. Assume (the induction hypothesis) that $s,t \geq l_a$. Then $s \land t \geq l_a$.

This proves that for each $r \in h^{-1}\{a\}$ we have $r \geq l_a$. Thus $a_* = l_a$.

The proof that every $r \in h^{-1}\{a\}$ is above g_a is similar, as are the analogous proofs for b_* and b^* .

Proof of Claim 2.

 $1^* = \bigvee X$ is obvious.

We now verify that $1_* = a_* \vee b_*$ (**TO DO:** fill in details)

Proof of Claim 3.

 $0_* = \bigwedge X$ is obvious.

We verify that $0^* = a^* \wedge b^*$ (**TO DO:** fill in details)

Now let $Y = \{(x, p^*), (p^*, x), (x, p_*), (p_*, x) : x \in X_p, p \in \{0, a, b, 1\}\}.$

Claim 4. If $r \in F$ and h(r) = p, then $(r, p_*), (r, p^*) \in \langle Y \rangle$.

Proof.

Case 0. If $r \in X_p$, then the pair belongs to Y and the claim is trivial.

Case 1. Suppose $r = s \wedge t$.

• Subcase 1.1. h(r)=1 implies h(s)=h(t)=1. If we assume (the induction hypothesis) that $(s,p_*),(s,p^*),(t,p_*),(t,p^*)$ belong to $\langle Y \rangle$, then $(r,p_*)=(s\wedge t,p_*)=(s,p_*)\wedge (t,p_*)\in \langle Y \rangle$. Similarly, $(r,p^*)\in \langle Y \rangle$.

• *Subcase* 1.2.

h(r)=a implies (wlog) h(s)=a and $h(t)\in\{a,1\}$. If we assume (the induction hypothesis) that $(s,p_*),(s,p^*),(t,p_*),(t,p^*)$ belong to $\langle Y\rangle$, then $(r,p_*)=(s\wedge t,p_*)=(s,p_*)\wedge (t,p_*)\in \langle Y\rangle$. Similarly, $(r,p^*)\in \langle Y\rangle$.

• *Subcase* 1.3.

 $\begin{array}{l} h(r)=0 \text{ implies (wlog) that either (i) } h(s)=0, \text{ or (ii) } h(s)=a, h(t)=b. \\ \text{If } h(s)=0, \text{ then } (s,0_*)\in \langle Y\rangle \text{ implies } (r,0_*)=(s\wedge t,0_*)=(s,0_*)\wedge (t,p_*)\in \langle Y\rangle. \\ \text{If If } h(s)=a, h(t)=b, \text{ and } (s,a_*), (t,b_*)\in \langle Y\rangle, \text{ then } \\ (r,0_*)=(s\wedge t,0_*)=(s,a_*)\wedge (t,b_*)\in \langle Y\rangle. \end{array}$