CS 5/7330

Review / Intro to NoSQL

Database Systems

- Why database systems?
 - Provide means for user to manage data
 - Allow users to
 - Specify data to be stored (data modeling)
 - Specify operation on the data (query language)
 - Ensure consistency and integrity of data (integrity checking)
 - Manage how data is being stored (indexing, file organization)
 - Manage how data is actually retrieved (query processing, optimization)
 - Manage how data is being shared/not shared (concurrency control)
 - Recover data after a failure (recovery)
 - Ensure data are not accessible by people who should not (security)
 - Access data from a variety of sources/locations (distribution processing)

Relational Model

- Data are represented as tuples in relations
- Represented as tables
 - Rows (tuples): each unit of data
 - Columns (attributes): attributes of each unit

Relational Model

- Relation can be viewed as SETS of attributes (set in a mathematical sense)
- Constraints on the table
 - First Normal Form
 - But NULL values allowed
 - No duplicate tuples
 - Thus (primary) keys
 - Domain values
 - Referential Integrity

[In tegrati] n. 正直、诚实;完整、完全;职业操守; (电子数据的)集成度

Foreign keys

SQL

A typical SQL query has the form:

select
$$A_1, A_2, ..., A_n$$

from $r_1, r_2, ..., r_m$
where P

- A_i represents an attribute
- \bullet R_i represents a relation
- P is a predicate.
- The result of an SQL query is a relation.

[ˈkwɪri] n. 疑问,询问;问号 v. 质疑 对……表示疑问;询问,提问

- API available for a variety of programming languages to interact (e.g. ODBC, JDBC)

 Open Database Connectivity (ODBC) is an open standard application programming interface (API) that allows application programmers to access any database.

 It a Database Connectivity (JDBC) is an application programming interface (API) for the programming language Java, which defines how a client may access a atabase. It is a Java-based data access technology used for Java database connectivity. It is part of the Java Standard Edition platform, from Oracle Corporation
- Also database specific APIs are available

Relational Algebra

- An abstract query language on relations
- A set of operations on a relations, returning another relation
- Basic operations:
 - Selection: $\sigma_{condition}(R)$
 - Pick tuples from the relation based on a condition, keeping all attributes
 - Projection: $\prod_{\text{attribute list}} (R)$
 - Select all tuples, but only keep attributes on the attribute list
 - Set operations: \cap , \cup , -
 - There are corresponding SQL commands for these (not often used)

Relational Algebra

- Basic operations:
 - Cartesian Product: rxs:
 - Create a table such that every pair of tuples in r, s is match to a topic
 - Basis of merging multiple tables
 - Join: r ⋈ s
 - Cartesian Product followed by a selection
 - The selection usually (not always) match the corresponding attributes (foreign keys) of the two tables.
 - Most common operation for merging tables.

Relational Algebra and SQL

A typical SQL query has the form:

select $A_1, A_2, ..., A_n$ **from** $r_1, r_2, ..., r_m$ Cartesian Product in relational algebra **where** P

- \bullet A_i represents an attribute
- \bullet R_i represents a relation
- P is a predicate.
- The result of an SQL query is a relation.

Selection in relational algebra (remember, join = Cartesian product + selection)

Projection in relational algebra

Relational Algebra -- Extension

- Each query input is a table (or set of tables)
- Each query output is a table.
- All data in the output table appears in one of the input tables
- There are many things that relational algebra (and SQL) cannot do
 - E.g. things that require recursion
- Extension of relational algebra to incorporate SQL statements such as
 - SUM
 - AVG
 - MAX
 - MIN
 - GROUP BY...HAVING

Relational algebra – Why?

- Very straight forward way of converting SQL statements into a list of operations
- Now executing a query becomes executing a program of such operations
- Implementing them correctly and efficiently will ensure the database system perform well

Course outline

- Outline of the course
 - NoSQL (from data modelling perspective)
 - Internals of a DBMS
 - Query execution and optimization
 - Concurrency Control
 - Recovery
 - Distributed databases / Big Data
 - NoSQL (from a performance perspective)

NoSQL databases

A history of database systems

<u>Figure 1-1</u>. Timeline of major database releases and innovations

From: Guy Harrison, "Next generation databases: NoSQL and Big Data", Apress, 2015

First Generation Databases

- Network Model/Hierarchical Model
- Works on mainframes
- Navigation based (i.e. you need to tell the DBMS "where" the data is)
 - E.g. following pointers and links (parent-child etc.)
- Drawbacks
 - Inflexible schema structure (next to impossible to change mid-stream)
 - Navigation based means complex query equal to complex program
 - User have to specify how to get to the data

Second Generation Database

- Relational Model
- Advantages
 - Well-defined mathematical background
 - Normal forms
 - "all non-key attributes must be dependent on "the key, the whole key, and nothing but the key—So Help Me Codd"
 - Separation of physical and logical layers
 - Make things like optimization possible/manageable
 - Full transaction model (ACID)
 - For concurrency and recovery
 - Well suited for client-server systems

Limit of relational models

- First normal form
- No compound value (set/list/sequence etc.)
- To store this require multiple tuples:

Student ID	Course
1	CS 7330
1	CS 7445
2	CS 7330
2	CS 7555
2	CS 7688

Limit of relational model

• Modeling of (undirected) graph can be very tricky

Edge ID	Node 1	Node2
1	1	2
2	1	4
3	3	2
4	5	1
5	4	6

- Do we need to duplicate edge?
- Either query will be complicated (e.g. node1 = 3 or node2 = 3)
- Or inconsistency may occur (deleted (1, 3) but forget to delete (3,1)

Limitations of relational model

- Development of new applications
 - Large amount of data
 - Not necessarily structured
 - Potentially evolving
 - Required high availability and fault tolerance
 - ACID may not be the best options for transactions

NoSQL databases

- More flexible data models
 - Semi-structured / Non-structured
 - Allow for evolving (non-fixed schema)
- Weak consistency model
 - Not requiring ACID properties
- Different storage management
 - E.g. storing via columns
- Designed to allow replication
 - Need to handle consistency (or allow limited level of inconsistency)
- Targeted for Big Data / Web applications

NoSQL Data Models

- Key-Value stores
- Wide Columns stores
- Document stores
- Graph stores