R. R. da Silva¹

¹Departamento de Ciências BioMoleculares Faculdade de Ciências Farmacêuticas

22 de novembro de 2023

Sumário

- Testes de hipóteses
- 2 Comparação entre 2 populações
 - Amostras independentes
- Análise de Variância
- 4 Comparações múltiplas de hipótese
- 5 Volcano plot

Inferência estatística¹

Na inferência estatística os dois principais objetivos são:

- Estimar um parâmetro populacional
 - Estimativa pontual
 - Estimativa intervalar
- Testar uma hipótese ou afirmativa sobre um parâmetro populacional

http://www.leg.ufpr.br/~paulojus/estbas/

¹Magalhães e Lima 2002.

Testes de hipótese

Hipótese

É uma afirmativa sobre uma propriedade da população

Teste de hipótese

- É um procedimento para se testar uma afirmativa sobre uma propriedade da população
- Permite tomar decisões sobre a população com base em informações de dados amostrais.

Exemplo 8.1

Suponha que, entre pessoas sadias, a concentração de certa substância no sangue se comporta segundo um modelo Normal com média 14 unidades/ml e desvio padrão 6 unidades/ml. Pessoas sofrendo de uma doença específica tem concentração média da substância alterada para 18 unidades/ml. Admitimos que o modelo Normal com desvio padrão 6 unidades/ml, continua representado de forma adequada a concentração da substância em pessoas com a doença.

Exemplo 8.1

Concentração no sangue

Exemplo 8.1

Para averiguar se um tratamento é eficaz contra a doença, selecionamos uma amostra de 30 indivíduos submetidos ao tratamento.

Assumimos que todos os elementos da amostra X_1, \ldots, X_{30} possuem a mesma distribuição: $X_i \sim N(\mu, 36)$, onde:

- \bullet $\mu=14$ se o tratamento for eficiente
- ullet $\mu=18$ se o tratamento não for eficiente

Se a média da amostra for próxima de 14, temos **evidências** de que o tratamento é eficaz. Se for mais próxima de 18, as **evidências** são contrárias ao tratamento.

Então a pergunta é: o quão próximo é "próximo"?

Exemplo 8.1 continuação

- Interesse geral $\mu = 14$?
- Distribuição da média amostral para n = 30: $N(\mu, 36/30)$.
- Critério para decidir sobre o valor de μ .
- Valor crítico, digamos x_c tal que se a média amostral (\bar{x}_{obs}) for maior que x_c concluímos que a amostra pertence a população com média 18.
- Como \bar{X} é uma variável aleatória, devem existir erros associados.

Tipos de hipóteses

Hipótese nula H₀

É uma afirmativa de que o valor de um parâmetro populacional é **igual** a algum valor especificado. (O termo *nula* é usado para indicar nenhuma mudança, nenhum efeito).

- ullet No ex. 8.1 temos: $\mu=$ 14 unidades/ml
- No ex. 8.2 temos: p = 0, 4

Hipótese alternativa Ha

É uma afirmativa de que o parâmetro tem um valor, que, de alguma forma, difere da hipótese nula. Ex.:

•
$$p \neq 0,4$$
 $p < 0,4$ $p > 0,4$

Tipos de hipóteses

Quando fazemos um teste de hipótese, chegamos a um dos dois possíveis resultados:

- Rejeitar H_0 : em favor da hipótese alternativa H_a
- Não rejeitar H_0 : e conclui-se que não existem diferenças

Atenção!

- O termo aceitar a hipótese nula é filosoficamente incorreto, pois não se pode aceitar uma hipótese baseada apenas em evidências amostrais (mesmo em um teste de hipótese formal).
- E ainda existe um erro associado a todo teste de hipótese

Hipóteses

Hipótese simples:

- H_0 : O tratamento não é eficaz ($\mu=18$)
- H_a : O tratamento é eficaz ($\mu=14$)

Hipóteses compostas:

- Hipótese unilateral à esquerda
 - H_0 : O tratamento não é eficaz ($\mu = 18$);
 - H_1 : O tratamento é eficaz ($\mu < 18$).
- Hipótese bilateral:
 - H_0 : O tratamento não é eficaz ($\mu = 18$);
 - H_1 : O tratamento é eficaz ($\mu \neq 18$).

- Erro Tipo I: rejeitar H_0 , quando H_0 é verdadeira.
- Erro Tipo II: não rejeitar H_0 quando H_0 é falsa.

	H_o verdadeira	H_o falsa
Não rejeitar H_0	Decisão correta	Erro tipo II
Rejeitar H_0	Erro tipo I	Decisão correta

Definimos por α e β as probabilidades de cometer os erros do tipo I e II:

- $\alpha = P(\text{erro tipo I}) = P(\text{rejeitar } H_0 \mid H_0 \text{ verdadeira})$
- $\beta = P(\text{error tipo II}) = P(\text{não rejeitar } H_0 \mid H_0 \text{ falsa})$

No exemplo 8.1, se H_0 : $\mu=18$ e H_a : $\mu<18$, então:

- $\alpha = P(\text{concluir que o tratamento é eficaz quando na verdade não é})$
- $\beta = P(\text{concluir que o tratamento não é eficaz quando na verdade é})$

Concentração no sangue

A situação ideal é aquela em que ambas as probabilidades, α e β , são próximas de zero.

No entanto, à medida que diminuimos α , a probabilidade β tende a aumentar.

Levando isso em conta, ao formular as hipóteses, devemos cuidar para que o erro mais importante a ser evitado seja o erro do tipo I.

Por isso, a probabilidade α recebe o nome de **nível de** significância do teste, e é esse erro que devemos controlar.

Valor crítico

Supondo α conhecido podemos determinar o valor crítico x_c .

$$lpha = P(ext{erro tipo I}) = P(ext{rejeitar } H_0 \mid H_0 \text{ verdadeira})$$

$$= P(\bar{X} < x_c \mid \mu = 18) = P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < \frac{x_c - 18}{6/\sqrt{30}}\right)$$

$$= P(Z < z_c)$$

com
$$Z \sim N(0,1)$$
.

Obtendo o valor crítico

Dado α encontramos z_c na tabela normal padrão. Obtemos x_c

$$z_c = \frac{x_c - 18}{6/\sqrt{30}} \quad \Rightarrow \quad x_c = 18 + z_c \frac{6}{\sqrt{30}}$$

Supondo $\alpha = 0.05$ temos

$$0.05 = P(Z < z_c) \quad \Rightarrow \quad z_c = -1.64$$

logo

$$x_c = 18 - 1.64 \frac{6}{\sqrt{30}} = 16.2$$

Região Crítica

Dada uma amostra, se $\bar{x}_{obs} < 16.2$, **rejeitamos** H_0 , concluindo que o tratamento é eficaz.

O conjunto dos números reais menores que 16.2 é denominado de Região de Rejeição ou Região Crítica (RC), isto é:

$$RC = \{x \in \mathbb{R} : x < 16.2\}.$$

No exemplo 8.1, se a média amostral dos 30 indivíduos foi $\bar{x}_{obs} = 16.04$, então rejeitamos H_0 , ao nível de significância $\alpha = 0.05$.

Nesse caso, $\bar{x}_{obs} < x_c$ está dentro da RC.

Região Crítica

Teste de hipótese bilateral

Definindo as hipóteses

$$H_0: \mu = \mu_0$$
 e $H_a: \mu \neq \mu_0$

A Região Crítica será dada por

$$RC = \{x \in \mathbb{R} \mid x < x_{c_1} \quad \text{ou} \quad x > x_{c_2}\}$$

Para um valor de α fixado, determinamos x_{c_1} e x_{c_2} de modo que

$$P(\bar{X} < x_{c_1} \cup \bar{X} > x_{c_2}) = \alpha$$

Assim, distribuimos a área lpha igualmente entre as duas partes da RC

$$P(\bar{X} < x_{c_1}) = \frac{\alpha}{2}$$
 e $P(\bar{X} > x_{c_2}) = \frac{\alpha}{2}$

Teste de hipótese bilateral

Etapas de um teste de hipótese

- Estabelecer as hipóteses nula e alternativa.
- 2 Definir a forma da região crítica, com base na hipótese alternativa.
- 3 Identificar a distribuição do estimador e obter sua estimativa.
- lacktriangle Fixar lpha e obter a região crítica.
- 6 Concluir o teste com base na estimativa e na região crítica.

P-valor

Em geral, α é pré-fixado para construir a regra de decisão.

Uma alternativa é deixar em aberto a escolha de α para quem for tomar a decisão.

A ideia é calcular, supondo que a hipótese nula é verdadeira, a probabilidade de se obter estimativas mais extremas do que aquela fornecida pela amostra.

Essa probabilidade é chamada de **nível descritivo**, denotada por α^* (ou P-valor).

Valores pequenos de α^* evidenciam que a hipótese nula é falsa.

O conceito de "pequeno" fica para quem decide qual α deve usar para comparar com $\alpha^*.$

P-valor

Para testes unilaterais, sendo H_0 : $\mu = \mu_0$, a expressão de α^* depende da hipótese alternativa:

$$lpha^* = P(\bar{X} < \bar{x}_{obs} \mid H_0 \text{ verdadeira}) \quad \text{para } H_a : \mu < \mu_0$$
 $\alpha^* = P(\bar{X} > \bar{x}_{obs} \mid H_0 \text{ verdadeira}) \quad \text{para } H_a : \mu > \mu_0$

Para testes bilaterais, temos $H_0: \mu = \mu_0$ contra $H_0: \mu \neq \mu_0$, a definição do nível descritivo depende da relação entre \bar{x}_{obs} e μ_0 :

$$lpha^* = 2 \times P(\bar{X} < \bar{x}_{obs} \mid H_0 \text{ verdadeira})$$
 se $\bar{x}_{obs} < \mu_0$
 $lpha^* = 2 \times P(\bar{X} > \bar{x}_{obs} \mid H_0 \text{ verdadeira})$ se $\bar{x}_{obs} > \mu_0$

Como estamos calculando a probabilidade para apenas uma das caudas, então esse valor é multiplicado por 2.

Comparação de Duas Médias

Duas das principais suposições feitas no desenvolvimento dos testes de hipóteses foram:

- Independência entre os componentes da amostra;
- Variabilidade associada aos valores populacionais e amostrais.

Testes Paramétricos

Os testes paramétricos discutidos aqui, assumem variáveis que se comportam segundo modelo Normal, ou que as amostras são suficientemente grandes para obter uma aproximação.

Comparação de Duas Médias

Amostras independentes com variâncias conhecidas

Consideramos agora o teste relacionado com a situação em que queremos comparar médias de duas populações independentes, quando as correspondentes variâncias são conhecidas. A obtenção de informação a respeito do valor de variância populacional pode ser obtido de estudos anteriores ou experimentos similares.

Supondo duas populações com variâncias iguais a um valor conhecido σ_0^2 . Além disso, adimitamos que as populações seguem uma distribuição Normal, com médias μ_1 e μ_2 . Obtendo amostras aleatórias independentes $(X_1,...,X_{n1})$ e $(Y_1,...,Y_{n2})$ de cada população com, tamanhos n_1 e n_2 para as duas amostras, podemos testar as seguintes hipóteses:

$$H_0: \mu_1 = \mu_2$$

 $H_a: \mu_1 \neq \mu_2$

Amostras independentes com variâncias conhecidas

Como estamos interessados em determinar se a diferença é estatisticamente significante, podemos ainda reescrever as hipóteses em termos de $\mu_D = \mu_1 - \mu_2$, isto é:

$$H_0: \mu_D = 0$$
 (As médias populacionais são iguais;)
 $H_a: \mu_D \neq 0$ (As médias populacionais não são iguais;),

o que sugere trabalharmos com o estimador de μ_D :

$$\bar{D} = \bar{X} - \bar{Y}$$

Com as suposições feitas, temos

$$X_i \sim N(\mu_1, \sigma_0^2), i = 1, 2, \dots, n_1;$$

 $Y_i \sim N(\mu_2, \sigma_0^2), i = 1, 2, \dots, n_2;$

Amostras independentes com variâncias conhecidas

Pela independência dessa variáveis, \bar{D} terá distribuição Normal com média $E(\bar{D})=\mu_D$ e quanto à variância, temos:

$$Var(\bar{D}) = Var(\bar{X} - \bar{Y}) = Var(\bar{X}) + Var(\bar{Y})$$
$$= \frac{\sigma_0^2}{n_1} + \frac{\sigma_0^2}{n_2} = \sigma_0^2(\frac{1}{n_1} + \frac{1}{n_2})$$

Note que a independência entre as amostras foi necessária para obter essa variância.

Resumo

Tabela 9.1: Comparação de médias para duas populações

Situação	Estimadores
Amostras Pareadas (Caso 1)	$\bar{D} = \frac{\sum_{i}^{n} D_{i}}{n}$ $S_{D}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (D_{i} - \bar{D})^{2}$ $T = \frac{\bar{D} - \mu_{D}}{S_{D} / \sqrt{n}} \sim t_{(n-1)}$
Amostras Independentes (Caso 2) Variâncias conhecidas	$\bar{D} = \bar{X} - \bar{Y}$ $Var(\bar{D}) = \sigma_X^2/n_1 + \sigma_Y^2/n_2$ $Z = \frac{\bar{D} - \mu_D}{\sqrt{\sigma_X^2/n_1 + \sigma_Y^2/n_2}}$

Tabela 9.1: Comparação de médias para duas populações

Situação	Estimadores
Amostras Independentes (Caso 3A) Variâncias desconhecidas e iguais	$\bar{D} = \bar{X} - \bar{Y}$ $S_c^2 = \frac{(n_1 - 1)S_X^2 + (n_2 - 1)S_Y^2}{(n_1 - 1) + (n_2 - 1)}$ $T = \frac{\bar{D} - \mu_D}{\sqrt{S_c^2(1/n_1 + 1/n_2)}}$
Amostras Independentes (Caso 3B) Variâncias desconhecidas e diferentes	$\begin{split} \bar{D} &= \bar{X} - \bar{Y} \\ \hat{\sigma}_{\bar{D}}^2 &= S_X^2 / n_1 + S_Y^2 / n_2 \\ T &= \frac{\bar{D} - \mu_D}{\sqrt{S_X^2 / n_1 + S_Y^2 / n_2}} \end{split}$

Análise de Variância

Consideramos nesta seção o caso de comparação de três ou mais populações, definidas por uma variável qualitativa (fator) através de testes com as correspondentes médias. Iniciamos com o caso em que as amostras de cada população têm o mesmo tamanho.

Consideraremos um modelo estatístico, em que cada observação Y pode ser decomposta em duas componentes: sistemática e aleatória, esta última representando variações individuais e todos os fatores que não são explicados pela parte sistemática. Matematicamente, podemos escrever

$$Y = \mu + e$$
.

Análise de Variância

Se Y representa a observação associada a uma unidade experimental, a parte sistemática μ pode ser vista como média populacional, que é fixa, e a parte aleatória e como a informação referente a outros fatores que podem influir nas observações mas não são incorporadas em μ .

Suponha que estamos interessados em compara as médias de K populações, isto é, queremos testar

$$H_0: \mu_1 = \mu_2 = \ldots = \mu_K;$$

 H_a : pelo menos uma das médias μ_i é diferente das demais.

Análise de Variância

Definimos as quantidades Soma de Quadrados Dentro (SQD)

$$SQD = \sum_{i=1}^{K} \sum_{j=1}^{m} (Y_{ij} - \hat{\mu}_i)^2 = \sum_{i=1}^{K} \sum_{j=1}^{m} (Y_{ij} - \bar{Y}_i)^2 = \sum_{i=1}^{K} \sum_{j=1}^{m} Y_{ij}^2 - m \sum_{i=1}^{K} \bar{Y}_i^2$$

e Soma de Quadrados Total (SQT)

$$SQT = \sum_{i=1}^K \sum_{j=1}^m (Y_{ij} - \hat{\mu})^2 = \sum_{i=1}^K \sum_{j=1}^m (Y_{ij} - \bar{Y})^2 = \sum_{i=1}^K \sum_{j=1}^m Y_{ij}^2 - mK\bar{Y}^2.$$

A diferença entre SQT e SQD representa a soma de quadrados entre será denotada por SQE, isto é,

$$SQE = SQT - SQD$$
.

Das expressões para soma de quadrados total e de dentro, segue que:

$$SQE = m \sum_{i=1}^{K} (\bar{Y}_i - \bar{Y})^2 = m (\sum_{i=1}^{K} \bar{Y}_i^2 - K \bar{Y}^2).$$

Cada uma das somas de quadrados envolve um certo número de quantidades que estão sendo estimadas. Por exemplo, SQT contém \bar{Y} e SQD contém \bar{Y}_i , $i=1,\ldots,K$. Levando este fato em consideração e o número de observações nas amostras, definimos os correspondentes quadrados médios:

$$QMT = \frac{SQT}{Km-1} : \text{quadrado médio total};$$

$$QMD = \frac{SQD}{Km-K} = \frac{SQD}{K(m-1)} : \text{quadrado médio dentro};$$

$$QME = \frac{SQE}{K-1} : \text{quadrado médio entre}.$$

Note que, nesse caso, é preciso calcular as três quantidades

O teste estatístico para hipótese H_0 envolve os quadrados médios. Se QME for grande comparado à QMD, a parte sistemática do modelo estará captando grande parte da informação dos dados e a hipótese H_0 deverá ser rejeitada. Definimos, então, a quantidade

$$F = \frac{QME}{QMD}.$$

Temos, agora condições de encontrar o valor crítico de f_c e determinar a região crítico do teste, que será da forma

$$RC = \{ f \in \mathbb{R}^+ : f > f_c \}$$

Das três suposições feitas, a mais importante é a segunda, $Var(Y_{ij}) = \sigma^2$, para i = 1, ..., K e j = 1, ..., m, que tem o nome técnico de homocedasticidade.

A discussão sobre o comportamento dos erros e das somas de quadrados é resumida na **Tabela de Análise de Variância** (ANOVA) Tabela 9.2:

Fonte de	Graus de	Soma de	Quadrado	F
Variação	Liberdade	Quadrados	Médio	
Entre	K-1	SQE	QME	QME/QMD
Dentro	K(m-1)	SQD	QMD	
Total	Km-1	SQT		

Métodos de comparações múltiplas de hipótese

- São aplicadas após a rejeição de H₀ pela estatística F da ANOVA:
- São métodos para corrigir a inflação do nível de significância global decorrene do teste de um grande número de hipótese;
- Isso é feito principalmente de duas formas:
 - **①** Corrige-se o p-valor após os testes de hipótese individuais para ter nível de significância global α_k desejado.
 - 2 Emprega-se uma estatística de teste de hipótese que incorpore o número de hipóteses para ter nível de significância global α_k desejado.

Correção do p-valor pelo método de Bonferroni

Agora serão testadas separadamente um conjunto de hipóteses

$$H_0: m_i = m_j \quad \forall \quad i \neq j$$

- Se as hipóteses forem para todos os pares possíveis de $i, j \in \{1, ..., k\}$, já foi visto que totalizam $u = \binom{k}{2}$.
- ullet Dado um nível de significância global, para p hipóteses independentes, o nível de significância individual lpha corrigido é

$$\alpha_p = 1 - (1 - \alpha)^p$$
 logo

$$\alpha = 1 - (1 - \alpha_p)^{1/p} \approx \alpha_p/p$$

 Dessa forma, o p-valor do teste t individual é multiplicado por p para corrigir pela quantidade de hipóteses.

Método de Benjamini-Hochberg

• Testando *m* hipóteses

$$H_1, H_2, \ldots, H_3$$

Os Valores-P

$$p_1, p_2, \ldots, p_3$$

• Seja α a taxa de falsas descobertas (FDR) que se quer controlar, encontre

$$p_{(i)} \leq \frac{i}{m} \alpha$$

• Faça o Valor-P correspondente o ponto de corte, a taxa FDR está controlada em α .

Comparações múltiplas pelo teste de Tukey

- Outra opção é trocar a estatística de teste ⇒ outra distribuição amostral.
- Pelo teste de Tukey, rejeita-se a hipótese de igualdade de duas médias quando

$$q_0 = rac{abs(ar{y}_i - ar{y}_j)}{ep(ar{y}_i - ar{y}_j)} = rac{abs(ar{y}_i - ar{y}_j)}{\sqrt{2s^2/r}} > q_{lpha,
u,k},$$

em que $q_{\alpha,\nu,k}$ é o quantil superior da distribuição da amplitude total studentizada e ep(.) denota o erro padrão.

- Ou seja, não se usa mais a distribuição t mas sim esta que incorpora o número de tratamentos (k) como parâmetro.
- Pelo uso desta estatística de teste se faz o controle para manter o nível de significância global no valor desejado.

Pressuposições

As pressuposições gerais de testes paramétricos são:

- As populações sendo comparadas são normalmente distribuidas
- A amostra é representativa da população.
- Os dados estão em uma escala intervalar ou proporcional.

Teste não paramétricos podem ser usados quando:

- Os dados não se ajustam a uma distribuição especificada e pressuposições não são feitas.
- Dados são medidos em qualquer escala.

Pressuposições

- Pode-se inspecionar os pressupostos pela análise de resíduos.
- Também é possível aplicar testes de hipótese para os pressupostos.
- Os pressupostos não devem ser violados para a validade das inferências.

Qual teste aplicar?²

Desenho Experimental	Distribuição Normal	Distribuição Não Normal	
	Compare médias	Compare medianas	
Dados não pareados	Teste-t	Mann-Whitney	
Dados pareados	Teste-t pareado	Wilcoxon	
>2 grupos não pareados	Anova	Kruskal-Wallis	
>2 grupos pareados	Anova - medidas repetidas	Friedman	

Fluxo de análises completo

Volcano plot

Um gráfico de *Volcano* é um tipo de gráfico de dispersão usado para identificar rapidamente mudanças em grandes conjuntos de dados. Suas principais características são

- Representa graficamente a significância versus a magnitude da diferença em y e x, respectivamente.
- Usa o negativo do logaritmo do valor p no eixo y (geralmente na base 10).
- O logaritmo da razão entre as médias dos grupos comparados (geralmente na base 2) é utilizano no eixo x.

Volcano plot

Referências bibliográficas

Marcos Nascimento Magalhães e Antonio Carlos Pedroso de Lima. *Noções de probabilidade e estatistica*. Vol. 5. Editora da Universidade de São Paulo, 2002.

Maria Vinaixa et al. "A guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data". Em: *Metabolites* 2.4 (2012), pp. 775–795.