

Measure the voltage (V_L) across the load resistance. Measure the current (I_L) through it using Ohm's law as $I_L = \frac{V_L}{R_L}$. Record the values in the corresponding data table.

Data Tables Signature of Lab Faculty: The Manney Date: 23/03/24

** For all the data tables, take data up to three decimal places, round to two, then enter into the table.

Table 1: Resistance Data

For all your future calculations, please use the observed values only (even for theoretical calculations).

Notation	Expected Resistance	Observed Resistance (kΩ)	Notation	Expected Resistance	Observed Resistance (kΩ)
R_{1}	10 kΩ	9.92	R_{5}	3.3 kΩ	3.29
R ₂	2.2 kΩ	2.143	R_{6}	l kΩ	0.98
R_3	2.2 kΩ	2.125	R_L	4.7 kΩ	4 '6
, R ₄	4.7 kΩ	4.01			

Table 2: Data from Circuit 1

In the following table, V_L is the voltage drop across the load resistor R_L and I_L is the current through the load with polarity and direction respectively as shown in Circuit 1. Solve the circuit and calculate theoretical V_L and I_L . Also, calculate the percentage of error between experimental and theoretical values of V_L .

Observation	(V) (from de supply)	V S (V) (using multimeter)	V s, (V) (from de supply)	V (V) (using multimeter)	ν <u>,</u> (V)	$I_L = \frac{V_L}{R_L}$ (mA)
Experimental	10	10.65	6	6.03	2.7	0.41
Theoretical	市特別等			003	1.993V	0.424mA

Percentage of Error =
$$\left| \frac{Experimental - Theoretical}{Theoretical} \right| \times 100\%$$

Here, Percentage of Error in V_L calculation = $\left| 0.35 \right|$ %

Table 3: Data from Circuit 2

In the following table, V_{OC} is the open circuit voltage across the open terminals with $I_L = 0$. This is the Thevenin voltage V_{Th} . Calculate the percentage of error between experimental and theoretical values of V_{OC} .

Observation	(V) (from de supply)	V _S (V) (using multimeter)	(V) (from do supply)	V _{I2} (V) (using multimeter)	$V_{oc} = V_{TX}$ (V)
Experimental	10	1005	6	6 03	3.431A
Theoretical	NE AL		計響的		3.49 V

Here, % error in
$$V_{oc} = V_{Th}$$
 calculation = 0.32 %

Table 4: Data from Circuit 3

In the following table, I_{SC} is the current through the shorted terminals with $V_L = 0$. Theoretically calculate the short circuit current and calculate the percentage of error between experimental and theoretical values of I_{SC} .

Observation	V S (V) (from de supply)	V S (V) (using multimeter)	V _s , (V) (from de supply)	V S (V) (using multimeter)	V _R , (V)	$I_{SC} = \frac{V_{p_1}}{R_1}$ (mA)
Experimental	10	10.05	6	6.03	2.27	1.045 mA
Theoretical			7 TO 77			1.02 mA

Here, % error in I_{SC} calculation =

2.45 %

Table 5: R_{Th} calculation

Comparison of the two methods to determine R_{Tb} .

Here, $\Delta R_{Th} = (R_{Th} using V_{Th}/I_{SC} method) - (R_{Th} using the Universal method)$

Observation	V Th (V) (from data Table 3)	l _{sc} (mA) (from data Table 4)	$R_{Th} = \frac{v_{Th}}{l_{sc}}$ $(k\Omega)$	R_{Th} $(k\Omega)$ (using multimeter from Circuit 4)	ΔR _{Th} (kΩ)
Experimental	3 431	1.045	3.883	3.558	0.031
Theoretical	3.43	1.02	3.36	3.39	0.03

Table 6: Data from Circuit 5

In the following table, V_L is the voltage drop across the load resistor R_L and I_L is the current through the load with polarity and direction respectively as shown in Circuit 1 and Circuit 5. Measure the value of V_L from Circuit 5. Then calculate I_L using the measured V_L . Finally, compare the values with those in Table 1. Here,

$$\Delta V_L = (V_L from Table 2) - (V_L measured for Circuit 5 in Table 6) and $\Delta I_L = (I_L from Table 2) - (I_L calculated for Circuit 5 in Table 6).$$$

Observation	V _L (V) (from data Table 2)	I _L (mA) (from data Table 2)	V _L (V) (from Circuit 5 using multimeter)	$I_{L} = \frac{v_{t}}{R_{L}}$ (V) (for Circuit 5)	Δ <i>V</i> _L (V)	Δ <i>I</i> _L (mA)
Experimental	2	0.42	2.003	0.434	0.003	0-014
Theoretical	\$1.993	0.424	2.002	0.426	0.009	0.02

Part 2: Maximum Power Transfer Theorem

Theory

The Maximum Power Transfer Theorem is a fundamental concept in electrical engineering that relates to the transfer of maximum power from a source to a load. The Maximum Power Transfer theorem states that A resistive load will receive maximum power when its total resistive value is exactly equal to Thevenin's resistance of the network as "seen" by the load.

We know that any circuit A terminated with a load R_L can be reduced to its Thevenin equivalent. Now according to this theorem, the load R_L will receive maximum power when $R_L = R_{Th}$. We can calculate the Maximum Power theoretically using the formula,

$$P_{max} = \frac{V_{Th}^2}{4R_{Th}}$$

The theorem focuses on the transfer of power between a source and a load. In electrical circuits, power is transferred from a source (such as a generator) to a load (such as a resistor) through a transmission medium (such as wires or conductors).

It's worth noting that the Maximum Power Transfer Theorem is a theoretical concept and is not always practical or desirable in real-world scenarios. In many practical applications, impedance matching is employed to achieve efficient power transfer, but it may not always

Table 7: Data from Circuit 6

In the following table, P_{In} is the power supplied by the dc source of whose value is set equal to V_{Th} , and P_{Load} is the power consumed by the load. η is the power efficiency. Theoretically, η is 50% at the maximum power transfer condition.

R _L (Expected)	$R_L \ (k\Omega)$ (Measured)	V Th (V) (using multimeter)	ν _ι (ν)	$I_L = \frac{v_L}{R_L}$ (mA)	$P_{In} = V_{Th}I_{L}$ (mW)	$P_{Load} = V_L I_L$ (mW)	Efficiency $\eta = \frac{P_{lond}}{P_{ln}} \times 100$ (%)
0.22 kΩ	0.518	i	0.213	0.973	3.351	0.738	6.20
lkΩ	0.98		0.48	0.496	2.730	0.620	7 61
1.5 kΩ	1.47		1.09	0.721	3.47	0.769	30.43
2.2 kΩ	2.125	3.43	1.36	0.632	3.16	0.854	34.76
3.3 kΩ	3.306	343	1.45	0.526	1.48	0.899	50.22
4.7 kΩ	4.6		2.004	0.435	1.442	0.891	58.37
5.6 kΩ	5.6		2.162	0.386	1.324	0.834	63.00
10 kΩ	9.92		2.28	0 26	0.89	0.63	75.3
18 kΩ	17:74		2.897	0.163	0.56	0.432	84.3
33 kΩ	32.5		3.12	0.046	0.33	0.999	90.6

Maximum Power found from the Table 7, $P_{max} = 0.09 \text{ mW}$ Theoretical Maximum Power, $P_{max} = \frac{v_{rh}^2}{4R_{rh}} = 0.09 \text{ mW}$

Here, percentage error in Maximum Powers calculation = 0 %

Questions

- 1. Circuit equivalency:
- (a) Draw the I V characteristic of the Circuit 5 to the left of terminals a b in the template provided below.

-1.04 mA

Slope of the straight line, m =0.30 $k\Omega^{-1}$

Resistance from the plot, $\frac{1}{m} =$ 3.283 kΩ

(b) Comparing the values to those measured for Circuit 1 in Tables 3 (V_{oc}), 4 (I_{sc}), and 5 (R_{Th}) , do they closely match?

2. Now in the same plot provided above, plot the I - V curve of Circuit 4.

Slope of the straight line,
$$m = \frac{0.302 \text{ k}\Omega^{-1}}{\text{ k}\Omega^{-1}}$$

Resistance from the plot,
$$\frac{1}{m} = \frac{3.31}{\text{k}\Omega}$$

Explain why there is a shift in the I - V curve of Circuit 4.

The shift happened because while plotting for circuit-4, there was only one voltage source, which is load voltage. But in the case of circuit-5 there was one extra Vtm.

3. Determine the open circuit voltage (V_{oc}) and the short circuit current (I_{SC}) to the terminals a - b for the circuit shown below.

Open circuit voltage,
$$V_{oc} =$$

Have you been able to calculate the Thevenin resistance (R_{Th}) using $R_{Th} = \frac{V_{oc} = V_{Th}}{l_{sc}}$?

☐ Yes \

4. If the following voltage source is in series with a resistor is the Thevenin equivalent of the linear two-terminal circuit, for each of the circuit elements listed in column 1 of the following table, write the values of V_{Th} and R_{Th}. Write 'Unknown' if unable to specify.

The linear two-terminal circuit is composed of	V _{Th}	R_{Th}
only a/an	(V)	(Ω)
Short circuit	0	0
Open circuit	unknown	00
- 2 V ideal voltage source	-2V	Ununomn
3 A ideal current source	unknown	unknown
5 kΩ resistor	urknown	5KI

- 5. Efficiency and Maximum Power:
- (a) From the η and P_{Load} vs. R_L plot, what is the efficiency at the maximum power position?

 $\eta = 60.11$ % at the maximum power point position.

(b) For a load resistance R_{I} ,

we can increase the power efficiency of the load by -

(c) We can maximize the power transfer of the load by -

 \square Increasing R_L than R_{Th} \square Decreasing R_L than R_{Th} \square By equating R_{Th} and R_L

(d) "We cannot maximize both the power of a load and the power efficiency of the circuit" - justify the statement.

Theoretically efficiency, Nin Go'lo; at max power transfer condition. But if we increase the efficiency, it won't maximize load power according to the theory.

 Specify by putting × or ✓, what should be the first priority: maximizing the power or increasing the efficiency for the following applications –

Application	Should Maximize the power transferred to the load	Should try to operate the load with the highest efficiency possible
An antenna sending signal to the Mars		X
A motor running to pull water to a tank placed in a higher position	X	
A mic used to amplify voice		×

Report

- 1. Fill up the theoretical parts of all the data tables.
- 2. Answers to the questions.
- 3. Attach two data plots, one should include V_L , I_L , and P_{Load} vs. R_L plotted together in the same pane and the other should include η and P_{Load} vs. R_L plotted together in the same pane. There is a guideline of plotting data using google sheet in the next page.
- 4. Discussion [your overall experience, accuracy of the measured data, difficulties experienced, and your thoughts on those]. Add pages if necessary.

The experiment helped us to gain visualization of the the Thernin's theorem and maximum power than the concept.

We prove got prove the proof of that a linearly two terminal circuit can be reduced to a cincuit with only a voltage on nowice and resistor, using thereins theorem. We also understood the relation between load voltage, we sintance and power efficiency.