MAGNETISMO

Método e recomendacións

Carga nun campo magnético

- Un protón cunha enerxía cinética de 4,0·10⁻¹⁵ J penetra perpendicularmente nun campo magnético uniforme de 40 mT. Calcula:
 - a) O módulo da forza á que está sometido o protón dentro do campo.
 - b) O tipo de movemento realizado polo protón, a traxectoria que describe e o raio desta.

Datos: $q_p = 1.6 \cdot 10^{-19} \text{ C}$; $m_p = 1.67 \cdot 10^{-27} \text{ kg}$. (A.B.A.U. extr. 22)

Rta.: a) $F_B = 1.4 \cdot 10^{-14} \text{ N}$; b) R = 0.57 m.

Datos	Cifras significativas: 2
Enerxía cinética do protón	$E_{\rm c} = 4.0 \cdot 10^{-15} \rm J$
Valor da intensidade do campo magnético	B = 40 mT = 0.040 T
Ángulo entre a velocidade do protón e o campo	$\varphi = 90^{\circ}$
Carga do protón	$q = 1.6 \cdot 10^{-19} \text{ C}$
Masa do protón	$m = 1,67 \cdot 10^{-27} \text{ kg}$
Incógnitas	_
Módulo da forza á que está sometido o protón dentro do campo	F_B
Radio da traxectoria	R

Radio da traxectoria **Ecuacións**

Lei de Lorentz: forza magnética sobre unha carga, q, que se despraza polo inte- $\overline{F}_B = q(\overline{v} \times \overline{B})$ rior dun campo magnético, \overline{B} , cunha velocidade, $\overline{\nu}$

 $a_{\rm N} = \frac{v^2}{R}$ Aceleración normal (nun movemento circular de raio R) $\Sigma \overline{F} = m \cdot \overline{a}$ 2.ª lei de Newton da Dinámica $v = \frac{2\pi \cdot R}{T}$ Velocidade nun movemento circular uniforme de raio R

Solución:

a) A velocidade do protón calcúlase a partir da enerxía cinética:

$$E_{c} = \frac{1}{2} m \cdot v^{2} \Rightarrow 4.0 \cdot 10^{-15} [J] = (1.67 \cdot 10^{-27} [kg] / 2) \cdot v^{2}$$
$$v = \sqrt{\frac{2 \cdot 4.0 \cdot 10^{-15} [J]}{1.67 \cdot 10^{-27} [kg]}} = 2.2 \cdot 10^{6} \text{ m/s}$$

A forza magnética calcúlase pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

En módulos:

$$F_{B} = |\; \overline{\pmb{F}}_{B} \; | = q \cdot |\; \overline{\pmb{\nu}} \; | \cdot |\; \overline{\pmb{B}} \; | \; \cdot \; \text{sen } 90^{\circ} = 1,6 \cdot 10^{-19} \; [\text{C}] \; \cdot \; 2,2 \cdot 10^{6} \; [\text{m/s}] \; \cdot \; 0,040 \; [\text{T}] = 1,4 \cdot 10^{-14} \; \text{N}$$

b) Como só actúa a forza magnética, que é perpendicular á velocidade, o protón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a_N .

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{P}$$

Despexando o raio, *R*:

$$R = \frac{m \cdot v}{|q| \cdot B \cdot \text{sen } \varphi} = \frac{1,67 \cdot 10^{-27} \,[\text{kg}] \cdot 2,2 \cdot 10^6 \,[\text{m/s}]}{1,6 \cdot 10^{-19} \,[\text{C}] \cdot 0,040 \,[\text{T}] \cdot \text{sen } 90^\circ} = 0,57 \,\text{m}$$

Análise: Se o protón entra nun campo magnético, ao describir media circunferencia sairá del, polo que en realidade só daría media volta e sairía a unha distancia de 2 R = 1,0 m do punto de entrada, na mesma dirección coa que entrou, pero en sentido oposto.

Pode obter as respostas na pestana «Lorentz» da folla de cálculo Fisica (gal). Instrucións.

Prema sobre a cela situada de debaixo de «Partícula» e elixa «Protón», para non ter que teclear os valores da masa e carga do protón.

Faga clic na cela de color laranxa situada baixo «kg» e elixa «J».

Faga clic na cela de color branca e bordo azul situada a súa esquerda e escriba 4E-15, (o, si o prefire, 4,0 ↑3 10^- ^1 ^5 e borre os espazos).

Faga clic na cela de color branca e bordo azul situada á dereita de «B =» e teclee 0,04. Deberá ver:

Partícula	Carga	q =	$1,60218 \cdot 10^{-19}$	С
Protón	Masa	<i>m</i> =	$1,67262 \cdot 10^{-27}$	kg
	Enerxía cinética	E =	4E-15	J
	Ángulo entre v e B	φ =	90	0
	Radio da circunferencia	R =		
	Campo magnético	B =	0,04	T

Para ver o resultado da «Forza magnética», debe premer sobre a cela de color laranxa baixo «Radio da traxectoria circular» e elixir esa opción.

•	Cifras sig	gnificativas:	3
Velocidade dea partícula	<i>v</i> =	$2,19 \cdot 10^6$	m/s
Radio da traxectoria circular	R =	0,571	
Forza magnética	F =	$1,40 \cdot 10^{-14}$	N

- Unha partícula de masa 8 ng e carga eléctrica -2 μC entra nunha rexión do espazo na que hai un campo magnético $\overline{B} = 3\overline{\mathbf{j}}$ T, cunha velocidade, $\overline{\mathbf{v}} = 6\overline{\mathbf{i}}$ km·s⁻¹. Calcula:
 - a) A velocidade angular con que se move.
 - b) A intensidade de campo eléctrico (vector) que se debe aplicar para que a partícula siga unha traxectoria rectilínea.

(A.B.A.U. ord. 22)

Rta.: a) $\omega = 7.5 \cdot 10^5 \text{ rad/s}$; b) $\overline{E} = -1.8 \cdot 10^4 \overline{k} \text{ N/C}$.

Cifras significativas: 3 $m = 8,00 \text{ ng} = 8,00 \cdot 10^{-12} \text{ kg}$ $q = -2,00 \mu \text{ C} = -2,00 \cdot 10^{-6} \text{ C}$ $\mathbf{B} = 3,00 \mathbf{j} \text{ T}$ $\mathbf{v} = 6,00 \cdot 10^{3} \mathbf{i} \text{ m/s}$ $R = 1,00 \cdot 10^{-7} \text{ m}$
ω
$\frac{\omega}{m{E}}$
R
F_B
$rac{F_B}{oldsymbol{F}_E}$
$\overline{F}_{B} = q(\overline{\boldsymbol{v}} \times \overline{\boldsymbol{B}})$

Aceleración normal (nun movemento circular de raio
$$R$$
) $a_N = \frac{v^2}{R}$

Ecuacións

2.ª lei de Newton da Dinámica

Velocidade nun movemento circular uniforme de raio R

Forza, \overline{F}_E , exercida por un campo electrostático, \overline{E} , sobre unha carga, q $\overline{F}_E = q \cdot \overline{E}$ Relación entre a velocidade lineal v e a velocidade angular ω nun movemento circular de raio R.

$$\sum \overline{F} = m \cdot \overline{a}$$

$$v = \frac{2\pi \cdot R}{T}$$

$$\overline{F}_E = q \cdot \overline{E}$$

Solución:

a) Como só actúa a forza magnética, que é perpendicular á velocidade, a partícula describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a_N .

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Se a partícula entra perpendicularmente ao campo magnético, sen φ = 1. Despexando o raio:

$$R = \frac{m \cdot v}{|q| \cdot B} = \frac{8,00 \cdot 10^{-12} [\text{kg}] \cdot 6,00 \cdot 10^{3} [\text{m/s}]}{2,00 \cdot 10^{-6} [\text{C}] \cdot 3,00 [\text{T}]} = 8,00 \cdot 10^{-3} \text{ m} = 8,00 \text{ mm}$$

Pódese calcular a velocidade angular a partir da velocidade lineal:

$$v = \omega \cdot R \Rightarrow \omega = \frac{v}{R} = \frac{6,00 \cdot 10^3 \text{ [m/s]}}{8,00 \cdot 10^{-3} \text{ [m]}} = 7,50 \cdot 10^5 \text{ rad/s}$$

b) Se a forza eléctrica anula a magnética:

$$\overline{F}_B + \overline{F}_E = q (\overline{\boldsymbol{v}} \times \overline{\boldsymbol{B}}) + q \cdot \overline{\boldsymbol{E}} = \overline{\boldsymbol{0}}$$

$$\overline{E} = -(\overline{\boldsymbol{v}} \times \overline{\boldsymbol{B}}) = -(6,00 \cdot 10^3 \overline{\mathbf{i}} [\text{m/s}] \times 3,00 \overline{\mathbf{j}} [\text{T}]) = -1,80 \cdot 10^4 \overline{\mathbf{k}} \text{ N/C}$$

Pode obter as respostas na pestana «Lorentz» da folla de cálculo Fisica (gal). Instrucións.

Partícula	Carga	<i>q</i> =	-2	μС
	Masa	<i>m</i> =	8	ng
Difer	enza de potencial	ΔV =	6000	m/s
Á	angulo entre v e B	φ =		90°
Raio	da circunferencia	R =		
(Campo magnético	<i>B</i> =	3	T

A folla non realiza o cálculo vectorial, só calcula os módulos dos vectores.

Para ver o resultado de «Velocidade angular», debe facer clic na cela de color laranxa baixo «Radio da traxectoria circular» e elixir esa opción.

Velocidade angular
$$\omega = 7,50.10^5 \text{ rad/s}$$

Para ver o resultado de «Intensidade de campo eléctrico», debe facer clic na cela de color laranxa e elixir «Intensidade de campo eléctrico» en vez de «Velocidad angular».

Intensidade de campo eléctrico	<i>E</i> =	1,80·10 ⁴ N/C
que anula a desviación		

- 3. Un protón acelerado por unha diferenza de potencial de 5000 V penetra perpendicularmente nun campo magnético uniforme de 0,32 T. Calcula:
 - a) A velocidade do protón.
 - b) O raio da órbita que describe e o número de voltas que dá en 1 segundo.

Datos: $m_p = 1,67 \cdot 10^{-27}$ kg, $q_p = 1,60 \cdot 10^{-19}$ C (Fai un debuxo do problema) (*P.A.U. xuño 05*) **Rta.:** a) $v = 9,8 \cdot 10^5$ m/s; b) R = 3,2 cm; $N = 4,9 \cdot 10^6$ voltas/s

Datos	Cifras significativas: 3	
Potencial de aceleración	$V = 5000 \text{ V} = 5,00 \cdot 10^3 \text{ V}$	
Valor da intensidade do campo magnético	B = 0.320 T	
Carga do protón	$q = 1,60 \cdot 10^{-19} \text{ C}$	
Ángulo entre a velocidade do protón e o campo magnético	$\varphi = 90^{\circ}$	
Masa do protón	$m = 1,67 \cdot 10^{-27} \text{ kg}$	
Tempo para calcular o número de voltas	t = 1,00 s	
Incógnitas		
Velocidade do protón	ν	
Radio da traxectoria circular	R	
Número de voltas que dá en 1 s	N	
Outros símbolos		
Valor da forza magnética sobre o protón	F_B	
Período do movemento circular	T	
Enerxía (cinética) do protón	$E_{\rm c}$	
Ecuacións		
Lei de Lorentz: forza magnética sobre unha carga, q , que se despraza no interi-	$\overline{F}_{0} = a(\overline{v} \times \overline{R})$	
or dun campo magnético, \overline{B} , cunha velocidade, \overline{v}		
A colono sión manusal (como massamento cinavlar da maio D)	$a_{\rm N} = \frac{v^2}{R}$	
Aceleración normal (nun movemento circular de raio R)	$a_{\rm N} = \frac{R}{R}$	
2.ª lei de Newton da Dinámica	$\Sigma \overline{F} = m \cdot \overline{a}$	
Velocidade nun movemento circular uniforme de raio R	$v = \frac{2\pi \cdot R}{T}$	
Traballo do campo eléctrico	$W(\text{eléctrico}) = q \cdot \Delta V$	
Traballo da forza resultante	$W = \Delta E_{\rm c}$	
Enerxía cinética	$E_{\rm c} = \frac{1}{2} m \cdot v^2$	
Difference Circulate	-c /2 ·	

Solución:

a) Para calcular a velocidade temos que ter en conta que ao acelerar o protón cunha diferenza de potencial (supomos que desde o repouso), este adquire unha enerxía cinética:

$$W(\text{eléctrico}) = q \cdot \Delta V = \Delta E_{\text{c}} = \frac{1}{2} m_{\text{p}} v^2 - \frac{1}{2} m_{\text{p}} v_0^2$$

Se parte do repouso, $v_0 = 0$. A velocidade final é:

$$v = \sqrt{\frac{2q \cdot \Delta V}{m_{\rm p}}} = \sqrt{\frac{2 \cdot 1,60 \cdot 10^{-19} \left[\text{ C} \right] \cdot 5,00 \cdot 10^{3} \left[\text{ V} \right]}{1,67 \cdot 10^{-27} \left[\text{ kg} \right]}} = 9,79 \cdot 10^{5} \text{ m/s}$$

b) Como só actúa a forza magnética, que é perpendicular á velocidade, o protón describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a_N .

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Despexando o raio, R:

$$R = \frac{m \cdot v}{|q| \cdot B \cdot \text{sen } \varphi} = \frac{1,67 \cdot 10^{-27} [\text{kg}] \cdot 9,79 \cdot 10^{5} [\text{m/s}]}{1,60 \cdot 10^{-19} [\text{C}] \cdot 0,320 [\text{T}] \cdot \text{sen } 90^{\circ}} = 3,19 \cdot 10^{-2} \text{ m} = 3,19 \text{ cm}$$

Análise: o raio ten un valor aceptable, uns centímetros.

O período do movemento calcúlase a partir da ecuación da velocidade no movemento circular uniforme:

$$v = \frac{2\pi \cdot R}{T} \Rightarrow T = \frac{2\pi \cdot R}{v} = \frac{2 \cdot 3.14 \cdot 3.19 \cdot 10^{-2} \text{ [m]}}{9.79 \cdot 10^{5} \text{ [m/s]}} = 2.05 \cdot 10^{-7} \text{ s}$$

O número, N, de voltas en 1 s será:

$$N = 1,00 \text{ [s]} \cdot \frac{1 \text{ volta}}{2,05 \cdot 10^{-7} \text{ [s]}} = 4,88 \cdot 10^6 \text{ voltas}$$

Análise: Se o protón entra nun campo magnético, ao describir media circunferencia sairá del, polo que en realidade só daría media volta

nun tempo de $T/2 = 1,03 \cdot 10^{-7}$ s e sairía a unha distancia de 2 R = 6,4 cm do punto de entrada.

Pode obter as respostas na pestana «Lorentz» da folla de cálculo Fisica (gal). Instrucións. Prema sobre a cela situada de debaixo de «Partícula» e elixa «Protón», para non ter que teclear os valores da masa e carga do protón.

Para ver o resultado de «Número de voltas», debe premer sobre a cela de color laranxa baixo «Radio da traxectoria circular» e elixir esa opción.

		Cifras si	gnificativas:	3
a)	Velocidade da partícula	<i>v</i> =	$9,79 \cdot 10^{5}$ m/s	
b)	Raio da traxectoria circular	R =	0,0319 <mark>m</mark>	
				_
c)	Número de voltas	f=	4,88·10 ⁶ vueltas/s	

Forza entre condutores

- Dous condutores rectilíneos, paralelos e infinitos, están situados no plano yz, na dirección do eixo z, separados unha distancia de 80 cm. Se por cada un deles circula unha corrente de 12 A en sentidos contrarios, calcula:
 - a) A forza por unidade de lonxitude que se exercen mutuamente, indicando a dirección e o sentido
 - b) O vector campo magnético no punto medio da distancia que separa os condutores.

DATO: $\mu_0 = 4\pi \ 10^{-7} \ \text{T m A}^{-1}$. (A.B.A.U. ord. 23)

Rta.: a) $F/l = 3.6 \cdot 10^{-5} \text{ N/m}$; b) $\overline{B} = -1.20 \cdot 10^{-5} \overline{\mathbf{j}} \text{ T}$

Intensidade de corrente polo condutor 1 Intensidade de corrente polo condutor 2 Distancia entre os condutores Permeabilidade magnética do baleiro

Incógnitas

Datos

Forza por unidade de lonxitude que se exercen mutuamente Campo magnético no punto medio entre os dous condutores

Ecuacións

Lei de Biot-Savart: campo magnético, $\overline{\textbf{\textit{B}}}$, creado a unha distanciar r, por un condutor recto polo que circula unha intensidade de corrente, IPrincipio de superposición:

Cifras significativas: 3

 $I_1 = 12,0 \text{ A}$ $I_2 = 12,0 \text{ A}$

d = 80.0 cm = 0.800 m

 $\mu_0 = 4 \pi \cdot 10^{-7} \text{ T} \cdot \text{m} \cdot \text{A}^{-1}$

 \overline{B}

Ecuacións

Lei de Laplace: forza magnética que exerce un campo magnético, \overline{B} , sobre un tramo, l, de condutor recto polo que circula unha intensidade de corrente, I $\overline{F}_B = I(\overline{l} \times \overline{B})$

Solución:

a) O valor do campo magnético, \overline{B} , creado a unha distancia, r, por un condutor recto polo que circula unha intensidade de corrente, I, vén dado pola lei de Biot-Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

O campo magnético creado polo condutor 1 no condutor 2, que dista 80 cm del é:

$$\vec{B}_{1} = \frac{\mu_{0} \cdot I_{1}}{2\pi \cdot r} (-\vec{j}) = \frac{4\pi \cdot 10^{-7} [\text{T·m·A}^{-1}] \cdot 12,0 [\text{A}]}{2\pi \cdot 0,800 [\text{m}]} (-\vec{j}) = -3,00 \cdot 10^{-6} \vec{j} \text{ T}$$

A forza por unidade de lonxitude que exerce o condutor 1 sobre un condutor 2 vale:

$$\frac{\vec{F}}{l} = \frac{I_2(\vec{l} \times \vec{B}_1)}{l} = I_2(\vec{u}_l \times \vec{B}_1) = 12.0[A](-\vec{k} \times (-3.00 \cdot 10^{-6} \vec{j}[T])) = 3.60 \cdot 10^{-5} \vec{i} N/m$$

O campo magnético creado polo condutor 2 no condutor 1 é:

$$\vec{\boldsymbol{B}}_{2} = \frac{\mu_{0} \cdot I_{1}}{2\pi \cdot r} (-\vec{\mathbf{j}}) = \frac{4\pi \cdot 10^{-7} [\text{T·m·A}^{-1}] \cdot 12,0 [\text{A}]}{2\pi \cdot 0,800 [\text{m}]} (-\vec{\mathbf{j}}) = -3,00 \cdot 10^{-6} \vec{\mathbf{j}} \text{ T}$$

A forza por unidade de lonxitude que se exerce sobre un condutor 2 sobre un condutor 1 vale:

$$\frac{\vec{F}}{l} = \frac{I_1(\vec{l} \times \vec{B}_2)}{l} = I_1(\vec{u}_l \times \vec{B}_2) = 12,0 [A](\vec{k} \times (-3,00 \cdot 10^{-6} \vec{j}[T])) = -3,60 \cdot 10^{-5} \vec{i} N/m$$

Análise: Os condutores que transportan a corrente no mesmo sentido atráense e en sentido oposto repélense.

- b) No diagrama debúxanse os campos magnéticos \overline{B}_1 e \overline{B}_2 creados por ambos os condutores no punto medio.
- O campo magnético creado polo condutor 1 no punto equidistante de ambos os condutores é:

$$\vec{\boldsymbol{B}}_{1} = \frac{\mu_{0} \cdot I_{1}}{2\pi \cdot r_{1}} \left(-\vec{\boldsymbol{j}} \right) = \frac{4\pi \cdot 10^{-7} \left[\text{T} \cdot \text{m} \cdot \text{A}^{-1} \right] \cdot 12,0 \left[\text{A} \right]}{2\pi \cdot 0,400 \left[\text{m} \right]} \left(-\vec{\boldsymbol{j}} \right) = -6,00 \cdot 10^{-6} \vec{\boldsymbol{j}} \text{ T}$$

O campo magnético creado polo condutor 2 no punto equidistante de ambos os condutores vale o mesmo:

$$\overline{B}_2 = -6,00 \cdot 10^{-5} \, \overline{\mathbf{j}} \, \mathrm{T}$$

O campo magnético resultante é a suma vectorial de ambos:

$$\overline{\boldsymbol{B}} = \overline{\boldsymbol{B}}_1 + \overline{\boldsymbol{B}}_2 = -6.00 \cdot 10^{-5} \, \overline{\boldsymbol{j}} \, [\mathrm{T}] + (-6.00 \cdot 10^{-5} \, \overline{\boldsymbol{j}} \, [\mathrm{T}]) = -1.20 \cdot 10^{-5} \, \overline{\boldsymbol{j}} \, \mathrm{T}$$

Pode obter as respostas na pestana «Condutores» da folla de cálculo Fisica (gal). Instrucións.

Distancia do punto P ao condutor 2 $d_2 = 40$ cm

RESULTADOS:

	Campo magnético no punto P		Cifras significativas: 3
	debido ao condutor 1	$B_1 =$	6,00·10 ⁻⁶ T
	debido ao condutor 2	$B_2 =$	+6,00·10 ⁻⁶ T
b)	resultante	$\mathbf{B}_p =$	1,20·10⁻⁵ T
a)	Forza entre los condutores 1 y 2	$F_{12} =$	$3,60\cdot10^{-5} \text{ N/m}$

- 2. Dous fíos condutores rectos moi longos e paralelos (A e B) con correntes $I_A = 5$ A e $I_B = 3$ A no mesmo sentido están separados 0,2 m. Calcula:
 - a) O campo magnético no punto medio entre os dous condutores (D)
 - b) A forza exercida sobre un terceiro condutor C paralelo os anteriores, de 0,5 m e con I_C = 2 A e que pasa por D.

Dato: $\mu_0 = 4 \pi \cdot 10^{-7} \text{ S.I.}$ (P.A.U. Set. 06)

Rta.: a) $\overline{B} = 4.0 \cdot 10^{-6}$ T perpendicular aos fíos; b) $\overline{F} = 4.0 \cdot 10^{-6}$ N cara a A.

Datos

Intensidade de corrente polo condutor A Intensidade de corrente polo condutor B Distancia entre os condutores Permeabilidade magnética do baleiro Intensidade de corrente polo condutor C Lonxitude do condutor C

Incógnitas

Campo magnético no punto D medio entre os dous condutores Forza exercida sobre un terceiro condutor C que pasa por D

Ecuacións

Lei de Biot-Savart: campo magnético, $\overline{\pmb{B}}$, creado a unha distanciar r, por un condutor recto polo que circula unha intensidade de corrente, I

Principio de superposición:

Lei de Laplace: forza magnética que exerce un campo magnético, \overline{B} , sobre un tramo, l, de condutor recto polo que circula unha intensidade de corrente, l

Cifras significativas: 3

 $I_{A=}$ 5,00 A I_{B} = 3,00 A d = 0,200 m μ_{0} = 4 π 10⁻⁷ T·m·A⁻¹ I_{C} = 2,00 A l = 0,500 m

 $oldsymbol{ar{B}}_{\! ext{D}}$

 $B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$ $\overline{B} = \Sigma \overline{B}_i$ $\overline{F}_B = I(\overline{l} \times \overline{B})$

Solución:

a) O valor do campo magnético, \overline{B} , creado a unha distancia, r, por un condutor recto polo que circula unha intensidade de corrente, I, vén dado pola lei de Biot-Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

No diagrama debúxanse os campos magnéticos BA e BB creados por ámbolos dous condutores no punto medio D.

O campo magnético creado polo condutor A no punto D equidistante de ámbolos dous condutores é:

$$\vec{B}_{DA} = \frac{\mu_0 \cdot I_A}{2\pi \cdot r} (-\vec{k}) = \frac{4\pi \cdot 10^{-7} [T \cdot m \cdot A^{-1}] \cdot 5,00 [A]}{2\pi \cdot 0.100 [m]} (-\vec{k}) = -1,00 \cdot 10^{-5} \vec{k} T$$

O campo magnético creado polo condutor B no punto D equidistante de ámbolos dous condutores é:

$$\vec{B}_{DB} = \frac{\mu_0 \cdot I_B}{2 \pi \cdot r} \vec{k} = \frac{4 \pi \cdot 10^{-7} [T \cdot m \cdot A^{-1}] \cdot 3,00 [A]}{2 \pi \cdot 0,100 [m]} \vec{k} = 6,00 \cdot 10^{-6} \vec{k} T$$

O campo magnético resultante é a suma vectorial de ambos:

$$\overline{\boldsymbol{B}}_{\mathrm{D}} = \overline{\boldsymbol{B}}_{\mathrm{DA}} + \overline{\boldsymbol{B}}_{\mathrm{DB}} = -1,00 \cdot 10^{-5} \ \overline{\mathbf{k}} \ [\mathrm{T}] + 6,00 \cdot 10^{-6} \ \overline{\mathbf{k}} \ [\mathrm{T}] = -4,0 \cdot 10^{-6} \ \overline{\mathbf{k}} \ \mathrm{T}$$

b) A forza que se exerce sobre un condutor C situado en D é:

$$\overline{F}_B = I(\overline{l} \times \overline{B}) = 2,00 \text{ [A] } (0,500 \text{ } \overline{\mathbf{i}} \text{ [m]} \times (-4,0.10^{-6} \text{ } \overline{\mathbf{k}} \text{ [T]})) = -4,0.10^{-6} \text{ } \overline{\mathbf{i}} \text{ N}$$

Está dirixida cara ao condutor A se o sentido da corrente é o mesmo que o dos outros condutores. Análise: Os condutores que transportan a corrente no mesmo sentido atráense e se o fan en sentido oposto, repélense. Aínda que se ve atraído por ambos os condutores, o será con maior forza polo que circula maior intensidade, ou sexa o A.

Pode obter as respostas na pestana «Condutores» da folla de cálculo Fisica (gal). Instrucións.

de obter as respostas na pestana «cone	autor c	on an iona ac c	arcaro	i ibica (Sai). ilibil actori	_
Intensidade no condutor 1	$I_1 =$	5	A	+	
Intensidade no condutor 2	$I_2 =$	3	A	Sentido +	
Separación entre condutores	s =	0,2	m		
Distancia del punto P ao condutor 1	$d_1 =$	0,1	m		
Distancia del punto P ao condutor 2	$d_2 =$	0,1	m		
Intensidade no condutor 3	$I_3 =$	2	A		
Lonxitude do condutor 3	$L_3 =$	50	cm		

RESULTADOS:

	Campo magnético no punto P		Cifras significativas: 3
	debido ao condutor 1	$B_1 =$	1,00⋅10 ⁻⁵ T
	debido ao condutor 2	$B_2 =$	-6,00·10 ⁻⁶ T
a)	resultante	$B_p =$	4,00·10 ⁻⁶ T
	Forza entre los condutores 1 e 2	$F_{12} =$	$1,50 \cdot 10^{-5} \text{ N/m}$
b)	Forza sobre o cond. 3 no punto P	F =	4,00·10 ⁻⁶ N

- 3. Indica cal é o módulo, dirección e sentido do campo magnético creado por un fío condutor recto percorrido por unha corrente e realiza un esquema que ilustre as características de devandito campo. Considérese agora que dous fíos condutores rectos e paralelos de gran lonxitude transportan a súa respectiva corrente eléctrica.
 - a) Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando separados 10 cm, atráense cunha forza por unidade de lonxitude de 4,8·10⁻⁵ N·m⁻¹, calcula as intensidades que circulan polos fíos.
 - b) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta menos corrente?

Dato: $\mu_0 = 4 \pi \cdot 10^{-7} \text{ N} \cdot \text{A}^{-2}$ (P.A.U. Xuño 15) **Rta.:** b) $I_1 = 3,46 \text{ A}$; $I_2 = 6,93 \text{ A}$; c) $B = 3,3 \mu\text{T}$

Datos

Intensidade de corrente polo segundo condutor Distancia entre os dous condutores Forza de atracción por unidade de lonxitude Permeabilidade magnética do baleiro

Incógnitas

Intensidades que circulan polos fíos

Campo magnético a 3 cm do fío con menos corrente

Ecuacións

Lei de Biot-Savart: campo magnético, \overline{B} , creado a unha distanciar r, por un condutor recto polo que circula unha intensidade de corrente, I

Principio de superposición:

Lei de Laplace: forza magnética que exerce un campo magnético, \overline{B} , sobre un tramo, l, de condutor recto polo que circula unha intensidade de corrente, l

Cifras significativas: 3

$$I_2 = 2 I_1$$

 $d = 10.0 \text{ cm} = 0.100 \text{ m}$
 $F/l = 4.8 \cdot 10^{-5} \text{ N} \cdot \text{m}^{-1}$
 $\mu_0 = 4 \pi 10^{-7} \text{ N} \cdot \text{A}^{-2}$

$$\frac{I_1}{\mathbf{B}}$$
, I_2

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

$$\overline{B} = \Sigma \overline{B}_i$$

$$\overline{F}_B = I(\overline{l} \times \overline{B})$$

Solución:

a) O campo magnético creado por un condutor rectilíneo é circular e o seu sentido vén dado pola regra da man dereita: o sentido do campo magnético é o de peche da man dereita cando o polgar apunta no sentido da corrente.

O valor do campo magnético, \overline{B} , creado a unha distancia, r, por un condutor recto polo que circula unha intensidade de corrente, I, vén dado pola lei de Biot-Savart:

$$B = \frac{\mu_0 \cdot I}{2\pi \cdot r}$$

b) A forza entre dous condutores rectilíneos paralelos obtense substituíndo na ecuación de Lorentz a expresión da lei de Biot-Savart.

$$F_{21} = I_1 \cdot l \cdot B_2 = I_1 \cdot l \cdot \frac{\mu_0 \cdot I_2}{2\pi \cdot r} = \frac{\mu_0 \cdot I_1 \cdot I_2}{2\pi \cdot r} \cdot l$$

Substituíndo os datos, tendo en conta que a forza é por unidade de lonxitude (l = 1 m):

$$4,8 \cdot 10^{-5} \left[\text{N} \cdot \text{m}^{-1} \right] = \frac{4 \pi \cdot 10^{-7} \left[\text{N} \cdot \text{A}^{-2} \right] \cdot I_1 \cdot 2 I_1}{2 \pi \cdot 0,100 \left[\text{m} \right]}$$

$$I_1 = \sqrt{\frac{4,8 \cdot 10^{-5} \left[\text{N} \cdot \text{m}^{-1} \right] \cdot 2 \pi \cdot 0,100 \left[\text{m} \right]}{2 \cdot 4 \pi \cdot 10^{-7} \left[\text{N} \cdot \text{A}^{-2} \right]}} = 3,46 \text{ A}$$

$$I_2 = 2 I_1 = 6,93 \text{ A}$$

c) No diagrama debúxanse os campos magnéticos $\overline{\pmb{B}}_1$ e $\overline{\pmb{B}}_2$ creados por ámbolos dous condutores no punto 3 a 3 cm de I₁.

O campo magnético creado polo condutor 1 a 3 cm de distancia é:

$$B_1 = \frac{\mu_0 \cdot I_1}{2\pi \cdot r_1} = \frac{4\pi \cdot 10^{-7} \left[\text{N} \cdot \text{A}^{-2} \right] \cdot 3,46 \left[\text{A} \right]}{2\pi \cdot 0,030 \text{ O[m]}} = 2,31 \cdot 10^{-5} \text{ T}$$

O campo magnético creado polo condutor 2 a 7 cm de distancia é:

$$B_2 = \frac{\mu_0 \cdot I_1}{2 \pi \cdot r_2} = \frac{4 \pi \cdot 10^{-7} \left[\text{N} \cdot \text{A}^{-2} \right] \cdot 6,93 \left[\text{A} \right]}{2 \pi \cdot 0,070 \text{ g/m}} = 1,98 \cdot 10^{-5} \text{ T}$$

Como os campos son de sentidos opostos, o campo magnético resultante no punto que dista 3 cm é:

$$B_3 = B_1 - B_2 = 2.31 \cdot 10^{-5} [T] - 1.98 \cdot 10^{-5} [T] = 3.3 \cdot 10^{-6} T$$

A dirección do campo magnético resultante é perpendicular ao plano formado polos dous condutores e o sentido é o do campo magnético do fío máis próximo, (no debuxo, cara ao

Cuestións e problemas das Probas de avaliación de Bacharelato para o acceso á Universidade (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 07/10/24

Sumario

MAGNETISMO

Carg	a nun campo magnético1
1.	Un protón cunha enerxía cinética de 4,0·10 ⁻¹⁵ J penetra perpendicularmente nun campo magnético
	uniforme de 40 mT. Calcula:1
	a) O módulo da forza á que está sometido o protón dentro do campo
	b) O tipo de movemento realizado polo protón, a traxectoria que describe e o raio desta
2.	Unha partícula de masa 8 ng e carga eléctrica –2 μC entra nunha rexión do espazo na que hai un
	campo magnético B = 3 j T, cunha velocidade, v = 6 i km·s ⁻¹ . Calcula:2
	a) A velocidade angular con que se move
	b) A intensidade de campo eléctrico (vector) que se debe aplicar para que a partícula siga unha tra- xectoria rectilínea
3.	Un protón acelerado por unha diferenza de potencial de 5000 V penetra perpendicularmente nun
	campo magnético uniforme de 0,32 T. Calcula:3
	a) A velocidade do protón
	b) O raio da órbita que describe e o número de voltas que dá en 1 segundo
	a entre condutores5
1.	Dous condutores rectilíneos, paralelos e infinitos, están situados no plano yz, na dirección do eixo
	z, separados unha distancia de 80 cm. Se por cada un deles circula unha corrente de 12 A en senti-
	dos contrarios, calcula:5
	a) A forza por unidade de lonxitude que se exercen mutuamente, indicando a dirección e o sentido
	destab) O vector campo magnético no punto medio da distancia que separa os condutores
2	Dous fios condutores rectos moi longos e paralelos (A e B) con correntes IA = 5 A e IB = 3 A no
۷.	mesmo sentido están separados 0,2 m. Calcula:
	a) O campo magnético no punto medio entre os dous condutores (D)
	b) A forza exercida sobre un terceiro condutor C paralelo os anteriores, de 0,5 m e con IC = 2 A e que pasa por D
2	Indica cal é o módulo, dirección e sentido do campo magnético creado por un fío condutor recto
Э.	percorrido por unha corrente e realiza un esquema que ilustre as características de devandito cam-
	po. Considérese agora que dous fíos condutores rectos e paralelos de gran lonxitude transportan a
	súa respectiva corrente eléctrica8
	a) Sabendo que a intensidade dunha das correntes é o dobre que a da outra corrente e que, estando
	separados 10 cm, atráense cunha forza por unidade de lonxitude de 4,8·10 ⁻⁵ N·m ⁻¹ , calcula as in-
	tensidades que circulan polos fíos
	b) Canto vale o campo magnético nun punto situado entre os dous fíos, a 3 cm do que transporta
	menos corrente?