

Notas de Aula - AED2 – Grafos: busca em largura

Grafos são estruturas mais complexas em comparação com listas, vetores e árvores binárias.

É necessário o desenvolvimento de métodos para explorar/percorrer um grafo.

O que é busca em grafos? Processo de seguir sistematicamente pelas arestas a fim de visitar os vértices do grafo.

Grande parte dos algoritmos famosos de processamento de grafos são baseados em métodos de busca:

- busca em largura: caminhos mínimos
- busca em profundidade: teste para verificar se um grafo é acíclico, ordenação topológica, resolução de quebra-cabeças, como labirinto

Informações relevantes sobre a estrutura do grafo podem ser extraídas: podem ser úteis para projetar algoritmos eficientes para determinados problemas.

Notação 1: Para um grafo G (orientado ou não) denotamos por V (ou V [G]) seu conjunto de vértices e por E (ou E[G]) seu conjunto de arestas.

Notação 2: A complexidade de algoritmos para grafos é dada em termos de V e/ou E.

Hoje veremos a busca em largura.

Busca em Largura

"Na teoria dos grafos, busca em largura (ou busca em amplitude, também conhecido em inglês por Breadth-First Search - BFS) é um algoritmo de busca em grafos utilizado para realizar uma busca ou travessia num grafo e estrutura de dados do tipo árvore. Intuitivamente, você começa pelo vértice raiz e explora todos os vértices vizinhos." - Wikipédia

Busca em largura é um método que expande e examina sistematicamente todos os vértices de um grafo direcionado ou não-direcionado.

Um vértice v é alcançável a partir de um vértice s em um grafo G se existe um caminho de s a v em G.

Definição: a distância de s a v é o comprimento do caminho mais curto de s a v.

Se v não é alcançável a partir de s, então dizemos que a distância entre ambos vértices é infinita. No início da aplicação do algoritmo de busca em largura, o vértice s começa com o valor de distância igual a zero e os demais com infinito.

Um algoritmo de busca em largura recebe um grafo G = (V, E) e um vértice especificado s chamado fonte (source).

Percorre todos os vértices alcançáveis a partir de *s* em ordem de distância.

O algoritmo constrói uma árvore de busca em largura com raiz s.

- Cada caminho entre **s** e **v** nessa árvore corresponde a um caminho mais curto entre ambos vértices.
- O algoritmo descobre todos os vértices a uma distância k do vértice origem antes de descobrir qualquer vértice a uma distância k+1.

Inicialmente a árvore de busca em largura contém apenas o vértice fonte s.

Para cada vizinho de *v* de *s*, o vértice *v* e a aresta (*s*, *v*) são acrescentadas à árvore.

O processo é repetido para os vizinhos dos vizinhos de s. Isso é feito até que todos os vértices alcançáveis por s sejam adicionados na árvore. O algoritmo de busca em largura também pode formar uma floresta.

O processo de busca é implementado através de uma fila Q.

Durante a aplicação do algoritmo de busca em largura, cada vértice pode ser colorido por meio das seguintes cores.

- Branca: não visitado (inicialmente, todos os vértices são brancos).
- Cinza: visitado pela primeira vez.
- Preta: todos os seus vizinhos foram visitados.

Vértices de cinza podem ter alguns vértices adjacentes brancos, e eles representam a fronteira entre vértices descobertos e não descobertos.

Ver slides de 10 ao 18

Implementação Busca em Largura

Cores

- Para cada vértice *v*, a cor atual é guardada no vetor *cor[v]*, que pode ser branco, cinza ou preto.
- Para o efeito de implementação, o uso da cor não é realmente necessário, mas facilita a compreensão do algoritmo (com o auxílio da fila, conforme apresentado entre os slides 10 e 18, a cor não é necessária).

A raiz da árvore de busca em largura é s.

Cada vértice v (exceto a raiz) possui um pai $\pi[v]$.

O caminho de s até v é dado por: v, $\pi[v]$, $\pi[\pi[v]]$, $\pi[\pi[\pi[v]]]$, ..., s

A variável d[v] é usada para armazenar a **distância** de s a v. Determinada durante o processo de busca.

O algoritmo de busca em largura recebe um grafo G (na forma de listas de adjacências), e um vértice "s que pertence a V[G]" e devolve:

- 1 Para cada vértice *v*, a distância de *s* a *v* em G
- 2 Árvore ou floresta de busca em largura

Nos slides 22 e 23 é apresentada um pseudocódigo para a busca em largura:

- Entre as linhas 1 e 8, os vetores *cor*, *d e pi* são inicializados.
- as cores, exceto o referente ao vértice **s** (inciado com a cor cinza), são inicializadas com branco.
- as distâncias entre s e os demais vértices são inciadas com infinito. Também, a distância d[s] é iniciada, mas com 0.
- o pai de cada vértice, incluindo s, é iniciado com nulo.
- Na linha 8 é iniciada uma fila vazia, na qual o vértice **s** é enfileirada (linha 9).
- Entre as linhas 10 e 18, o grafo é explorado a partir do vértice s.
- A exploração do grafo é feita enquanto a fila não estiver vazia.
- Na linha 11, um vértice **u** é desenfileirado
- Entre as linhas 12 e 17, os vértices adjacentes a *u* são explorados. Caso o vértice *Adj[u]* explorado seja branco:
- → a cor do vértice é mudada para cinza (linha 14).
- \rightarrow a distância d[v] é a soma da distância computada no vértice u (pai de v) e um (linha 15).
- \rightarrow na árvore de busca pi[v] é adicionado o vértice \boldsymbol{u} (pai de \boldsymbol{v}) (linha 16).
- → Por fim, o vértice v é adicionado na fila para ter os seus adjacentes explorados futuramente.
- Após a execução do loop da linha 12, o vértice u já teve todos os seus adjacentes explorados, ou seja, a sua cor é mudada para preto (linha 18).

ver slides de 24 a 34.

No exemplo, parece estranho a ordem como os vértice são adicionados na fila, mas isso ocorre de acordo com a ordem em que o mesmo parece na lista de adjacência (no exemplo apresentado nesses slides, não é considerada a ordenação).

É importante ressaltar que há uma outra forma de implementar busca em largura, cuja forma de exploração é feita enquanto todos os vértices não serem coloridos na cor preta. Nessa abordagem (apresentada no livro de Ziviani), a busca não é iniciada de um vértice qualquer, mas sim do primeiro (o que tiver menor valor).

Análise de Complexidade da Busca em Largura

A inicialização consome tempo O(|V|).

Depois que um vértice deixa de ser branco, ele não volta a ser branco novamente.

- Cada vértice é adicionado na fila apenas uma vez.
- Cada operação sobre a fila consome tempo O(1), resultando em um total de O(|V|).

Em uma lista de adjacência, cada vértice é percorrido apenas uma vez

- A soma dos comprimentos das listas de adjacência é O(|E|)
- Logo, o tempo gasto para percorrer as listas é O(|E|)

Conclusão: a complexidade da busca em largura é, no pior caso, na ordem de O(|V| + |E|)

Caminho Mais Curto

No slide 39 é apresentado um algoritmo recursivo para imprimir o caminho mais curto entre dois vértices ($\mathbf{s} \in \mathbf{v}$).

No algoritmo há dois casos bases:

1 - se s == v, o vértice s é impresso

2 – se pai de v é nulo.

No caso iterativo, primeiro é feita uma chamada recursiva considerando o pai de *v*. Após a chamada recursiva ser executada, o vértice v é impresso.

Exemplo no slide 39 Exercício no slide 40

Referências

Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. Introduction to Algorithms. Third edition, The MIT Press, 2009.

Marin, L. O. Grafos: Busca em Largura. AE23CP - Algoritmos e Estrutura de Dados II. Slides. Engenharia de Computação. Dainf/UTFPR/Pato Branco, 2017.

Tenenbaum, A.; Langsam, Y. Estruturas de Dados usando C. Pearson, 1995.

Ziviani, N. Projeto de Algoritmos - com implementações em Java e C++. Thomson, 2007.

