

Metodi matematici per l'Informatica Modulo 13 – Logica proposizionale

Docente: Pietro Cenciarelli

- un simbolo proposizionale (P, Q, ...) è una proposizione
- falso è una proposizione
- se A e B sono proposizioni, allora A v B è una proposizione
- se A e B sono proposizioni, allora A ∧ B è una proposizione
- se A e B sono proposizioni, allora $A \rightarrow B$ è una proposizione
- se A è una proposizione, allora ¬ A è una proposizione
- nient'altro è una proposizione

simboli proposizionali

proposizioni A, B, ... ::=
$$P \mid Q \mid ... \mid falso \mid A \lor B \mid A \land B \mid A \rightarrow B \mid \neg A$$

modelli $m: simboli proposizionali <math>\rightarrow \{T, F\}$

m si estende alle proposizioni (*interpretazione*) come segue: m(*falso*) = F e, per le proposizioni composte, applicando le *tavole di verità*:

Α	В	$A \wedge B$	Α	В	$A \lor B$	Α	В	$A \rightarrow B$	Α	¬Α
Т	Т	Т	Т	Т	Т	T	Т	Т	T	F
Т	F	F	Τ	F	T	Т	F	F	F	Τ
F	Т	F	F	Т	Т	F	Т	Т		
F	F	F	F	F	F	F	F	Т		

simboli proposizionali *proposizioni* A, B, ... ::= P | Q | ... | *falso* | A \vee B | A \wedge B | A \rightarrow B | \neg A *modelli* m : simboli proposizionali $\rightarrow \{T, F\}$ m si estende alle proposizioni (*interpretazione*) come segue: m(falso) = Fe, per le proposizioni composte, applicando le tavole di verità Se m(A) = T, si dice che m soddisfa A e si scrive $\models_m A$ A si dice *soddisfacibile* se esiste almeno un modello che la soddisfa A è conseguenza semantica di B_1 , B_2 , ... B_n se è soddisfatta in ogni modello che soddisfa B_1 , B_2 , ... B_n , e si scrive B_1 , B_2 , ... $B_n \models A$ A si dice *valida* (una *tautologia*) se è *soddisfatta in ogni modello*, e si scrive $\models A$

$P \to$	Q s	soddisfacibile				
Q	3	soddisfa	cibile			
Р∧¬Р		insoddisfacibile				
(A ∧	B) → (A v B)	valida			
В	АлВ	ΑVΒ	(A ∧ B)	\rightarrow ((A v	B)
Т	Т	Т		Т		
F	F	Т		Т		
Τ	F	Τ		Т		
F	F	F		Т		

 $P \rightarrow Q$ soddisfacibile

Q *soddisfacibile*

P ∧ ¬P insoddisfacibile

 $(A \land B) \rightarrow (A \lor B)$ valida

 $B \models A \rightarrow B$ $T \quad T$ $T \quad F$ $F \quad T$ $F \quad F$

 $P \rightarrow Q$ soddisfacibile

Q *soddisfacibile*

 $P \wedge \neg P$ insoddisfacibile

 $(A \land B) \rightarrow (A \lor B)$ valida

 $B \models A \rightarrow B$ conseguenza semantica

 $A, A \rightarrow B \models B$ segue immediatamente dal teorema di deduzione semantica

Algebre di Boole/Heyting

 $A \rightarrow B \ earline{e}$ elemento X tale che $X \land A \leq B$

 $C \land A \leq B$ sse $C \leq A \rightarrow B$

Logica classica/intuizionista

 $A \rightarrow B \stackrel{.}{e} la più debole$ proposizione X tale che X, $A \models B$

 $C, A \models B \text{ sse } C \models A \rightarrow B$

 C_1 , C_2 , ... C_n , $A \models B$ se e solo se C_1 , C_2 , ... $C_n \models A \rightarrow B$

Si può dimostrare per induzione su n.

$$A \models B \Longrightarrow \models A \rightarrow B$$

Si può dimostrare per induzione su n. Per n = 0 ...

Se $A \models B$ allora, per ogni m, m(A) = T implica m(B) = T. Dalla tabella di verità di \rightarrow ne consegue che, per ogni m, m(A \rightarrow B) = T ovvero $\models A \rightarrow B$.

$$A \models B \iff \models A \rightarrow B$$

Si può dimostrare per induzione su n.

Per
$$n = 0$$
 \bigcirc

Se $\models A \rightarrow B$ allora, per ogni m, m(A \rightarrow B) = T. Dalla tabella di verità di \rightarrow ne consegue che, per ogni m, se m(A) = T, allora m(B) = T, ovvero A \models B.

 C_1 , C_2 , ... C_n , $A \models B$ se e solo se C_1 , C_2 , ... $C_n \models A \rightarrow B$

Si può dimostrare per induzione su n.

Per n = 0 ②. Passo induttivo ... *esercizio!*

conseguenze...

$$C_1$$
, C_2 , ... C_n , $A \models B$ se e solo se C_1 , C_2 , ... $C_n \models A \rightarrow B$

$$B \models A \rightarrow B$$
 conseguenza semantica

$$A, A \rightarrow B \models B$$
 conseguenza immediata del teorema di deduzione semantica...

conseguenze...

$$C_1$$
, C_2 , ... C_n , $A \models B$ se e solo se C_1 , C_2 , ... $C_n \models A \rightarrow B$

$$A \rightarrow B \models A \rightarrow B \implies A, A \rightarrow B \models B$$

$$B \models A \rightarrow B$$

$$A, A \rightarrow B \models B$$

conseguenze...

$$C_1$$
, C_2 , ... C_n , $A \models B$ se e solo se C_1 , C_2 , ... $C_n \models A \rightarrow B$

$$B, A \models B \implies B \models A \rightarrow B$$

$$\Rightarrow \models B \rightarrow (A \rightarrow B)$$

$$B \models A \rightarrow B$$

$$A, A \rightarrow B \models B$$

conseguenze...

$$C_1, C_2, ... C_n, A \models B$$
 se e solo se $C_1, C_2, ... C_n \models A \rightarrow B$

David Hilbert 1862 - 1943

$$A \rightarrow A$$
 $B \rightarrow (A \rightarrow B)$
 $(A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow C)$
 $(\neg A \rightarrow \neg B) \rightarrow (B \rightarrow A)$

assiomi della logica proposizionale classica

(coming soon...)

Due proposizioni A e B si dicono semanticamente equivalenti quando, per ogni interpretazione m, m(A) = T sse m(B) = T.

 $A \equiv B$

Nota: $A \equiv B$ quando $A \models B \in A$

Algebre di Boole

$$A \lor (B \lor C) = (A \lor B) \lor C$$

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$

$$A \lor B = B \lor A$$

$$A \wedge B = B \wedge A$$

$$A \lor (A \land B) = A$$

$$A \wedge (A \vee B) = A$$

$$A \lor A = A$$
 $A \land A = A$

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$$

$$A \lor (B \land C) = (A \lor B) \land (A \lor C)$$

$$A \lor \bot = A$$

$$A \lor \bot = A$$
 $A \land \top = A$

$$A \lor A = T$$

$$A \vee \overline{A} = T$$
 $A \wedge \overline{A} = \bot$

Logica (classica)

$$A \lor (B \lor C) \equiv (A \lor B) \lor C$$

$$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$$

$$A \lor B \equiv B \lor A$$

$$A \wedge B \equiv B \wedge A$$

$$A \lor (A \land B) \equiv A$$

$$A \wedge (A \vee B) \equiv A$$

$$A \lor A \equiv A$$
 $A \land A \equiv A$

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

$$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$$

A
$$\vee$$
 falso \equiv A \wedge \vee A \wedge \vee ero \equiv A

$$A \lor \neg A \equiv \text{vero} \quad A \land \neg A \equiv \text{falso}$$

$$\neg \neg A \equiv A$$
 doppia negazione
 $\neg (A \lor B) \equiv \neg A \land \neg B$
 $\neg (A \land B) \equiv \neg A \lor \neg B$ De Morgan

$$m(\neg(A \lor B)) = T$$
 sse $m(A \lor B) = F$
sse $m(A) = F e m(B) = F$
sse $m(\neg A) = T e m(\neg B) = T$
sse $m(\neg A \land \neg B) = T$

$$\neg \neg A \equiv A$$

doppia negazione

$$m(\neg \neg A) = T$$
 sse $m(\neg A) = F$ sse $m(A) = T$

vale nella logica classica ma non in quella intuizionistica

vale nella logica classica ma non in quella intuizionistica

$$\neg \neg A \equiv A$$
 doppia negazione
$$A \models \neg \neg A \models A$$

$$\odot$$

vale nella logica classica ma non in quella intuizionistica

$$\neg A \stackrel{\text{def}}{=} A \rightarrow \bot$$

$$A \vDash \neg \neg A$$

$$A \vDash (A \rightarrow \bot) \rightarrow \bot \quad \text{sse} \quad A, (A \rightarrow \bot) \vDash \bot$$

vale nella logica classica ma non in quella intuizionistica dove ¬¬A consegue da A, ma non viceversa!

$$A \wedge B \equiv \neg \neg (A \wedge B) \equiv \neg (\neg A \vee \neg B)$$

$$\neg \neg A \equiv A$$

doppia negazione

$$\neg(A \lor B) \equiv \neg A \land \neg B$$

$$\neg(A \land B) \equiv \neg A \lor \neg B$$

De Morgan

$$A \wedge B \equiv \neg(\neg A \vee \neg B)$$

$$A \lor B \equiv \neg(\neg A \land \neg B)$$

$$A \lor B \equiv \neg A \rightarrow B$$

$$A \rightarrow B \equiv \neg A \vee B$$

$$\neg A \equiv A \rightarrow falso$$

$$falso \equiv A \wedge \neg A$$

bastano → e *falso* oppure ∨ e ¬ oppure ...

Esistono *altri operatori* logici *non* esprimibili in termini di quelli dati?

$$A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$$

$$A \stackrel{\lor}{\lor} B \equiv (A \land \neg B) \lor (B \land \neg A)$$

Α	В		(XOR)
Т	Т	F	verificare!
Т	F	Т	erifica
F	Т	Т	16.
F	F	F	

bastano → e *falso* oppure ∨ e ¬ oppure ...

Esistono *altri operatori* logici *non* esprimibili in termini di quelli dati?

* (A, B, C)
$$A \stackrel{\checkmark}{\lor} B \equiv (A \land \neg B) \lor (B \land \neg A)$$

$$A \qquad B \qquad A \stackrel{\checkmark}{\lor} B$$

$$T \qquad T \qquad F$$

$$T \qquad F \qquad T$$

$$F \qquad T \qquad T$$

Α	В	С	* (A, B, C)
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	Т
Т	F	F	F
F	Т	Т	F
F	Т	F	F
F	F	Т	Т
F	F	F	F

Esistono *altri operatori* logici *non* esprimibili in termini di quelli dati?

*
$$(A, B, C) \equiv (A \wedge B \wedge C) \vee$$

 $(A \wedge \neg B \wedge C) \vee$
 $(\neg A \wedge \neg B \wedge C)$

verificare!

Α	В	С	* (A, B, C)
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	Т
Т	F	F	F
F	Т	Т	F
F	T	F	F
F	F	Т	Т
F	F	F	F

Esistono *altri operatori* logici *non* esprimibili in termini di quelli dati?

No!