

Advanced iCE40 I2C and SPI Hardened IP User Guide

Technical Note

Disclaimers

Lattice makes no warranty, representation, or guarantee regarding the accuracy of information contained in this document or the suitability of its products for any particular purpose. All information herein is provided AS IS, with all faults and associated risk the responsibility entirely of the Buyer. Buyer shall not rely on any data and performance specifications or parameters provided herein. Products sold by Lattice have been subject to limited testing and it is the Buyer's responsibility to independently determine the suitability of any products and to test and verify the same. No Lattice products should be used in conjunction with mission- or safety-critical or any other application in which the failure of Lattice's product could create a situation where personal injury, death, severe property or environmental damage may occur. The information provided in this document is proprietary to Lattice Semiconductor, and Lattice reserves the right to make any changes to the information in this document or to any products at any time without notice.

Contents

Acronym	is in This Document	
1. Intr	oduction	
2. Syst	tem Bus Interface for iCE40 LM, iCE40 Ultra and iCE40 UltraPlus	
2.1.	System Bus Write Cycle	8
2.2.	System Bus Read Cycle	g
3. Syst	tem Bus System for iCE40 UltraLite	11
3.1.	System Bus Write Cycle	12
3.2.	System Bus Read Cycle	13
4. Har	dened I ² C IP Cores	14
5. I ² C I	Registers for iCE40 LM, iCE40 Ultra, and iCE40 UltraPlus	14
5.1.	I2C_PRESCALE[9:0]	16
6. I ² C I	Registers for iCE40 UltraLite	19
6.1.	I2C_PRESCALE[9:0]	21
6.2.	I ² C Status Register (I2CSR/I2CFIFOSR)	21
6.3.	I ² C Transmitting Data Register (I2CTXDR/I2CTXFIFO)	23
6.4.	I ² C Receiving Data Register (I2CRXDR/I2CRXFIFO)	23
6.5.	I ² C General Call Data Register	24
6.6.	I ² C Slave Address MSB Register (I2CSADDR/I2CFIFOSADDR)	24
6.7.	I ² C Interrupt Control Register (I2CIRQEN/I2CFIFOIRQEN)	25
6.8.	I ² C Interrupt Status Register (I2CIRQ//I2CFIFOIRQ)	25
7. I ² C I	Read/Write Flow Chart	28
8. I ² C I	Framing	30
9. I ² C I	Functional Waveforms	31
10. I ² C	Timing Diagram	33
11. Har	dened SPI IP Core	33
12. SPI	Registers	34
13. SPI	Read/Write Flow Chart	40
14. SPI	Framing	41
15. SPI	Functional Waveforms	42
16. SPI	Timing Diagrams	43
Technica	l Support Assistance	45
Revision	History	46

Figures

Figure 2.1. System Bus Interface between the FPGA Core and the IP	
Figure 2.2. System Bus Write Operation	
Figure 2.3. System Bus Read Operation	
Figure 3.1. System Bus Interface between the FPGA Core and the IP	
Figure 3.2. System Bus Write Operation	
Figure 3.3. System Bus Read Operation	
Figure 7.1. I ² C Master Read/Write Example (via System Bus)	
Figure 7.2. I ² C Slave Read/Write Example (via System Bus)	
Figure 8.1. I ² C Read Device ID Example	
Figure 9.1. Master I ² C Write	
Figure 9.2. Master I ² C Read	
Figure 9.3. Slave I ² C Write	
Figure 9.4. Slave I ² C Read	
Figure 10.1. I ² C Bit Transfer Timing	
Figure 13.1. SPI Master Read/Write Example (via System Bus)	
Figure 14.1. SSPI Read Device ID Example	
Figure 15.1. Fully Specified SPI Transaction (iCE40 LM, iCE40 Ultra and iCE40 UltraPlus as SPI Master or Slave)	
Figure 15.2. Minimally Specified SPI Transaction Example (iCE40 LM, iCE40 Ultra and iCE40 UltraPlus as SPI Slave)	
Figure 16.1. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)	
Figure 16.2. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)	
Figure 16.3. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)	44
Tables	
Table 2.1. System Bus Slave Interface Signals of the Hardened IP Module	8
Table 3.1. System Bus Slave Interface Signals of the Hardened IP Module	
Table 5.1. I ² C Registers Summary	
Table 5.2. I ² C Control Register 1 (I2CCR1)*	
Table 5.3. I ² C Command Register (I2CCMDR)	
Table 5.4. I ² C Clock Pre-scale Register (I2CBRLSB)	15
Table 5.5. I ² C Clock Pre-scale Register (I2CBRMSB)	15
Table 5.6. I ² C Status Register (I2CSR)	16
Table 5.7. I ² C Transmitting Data Register (I2CTXDR)	17
Table 5.8. I2C Receiving Data Register (I2CRXDR)	17
Table 5.9. I ² C General Call Data Register (I2CGCDR)	
Table 5.10. I ² C Slave Address MSB Register (I2CSADDR)	
Table 5.11. I ² C Interrupt Control Register (I2CIRQEN)	18
Table 5.12. I ² C Interrupt Status Register (I2CIRQ)	18
Table 6.1. I ² C Registers Summary	19
Table 6.2. I ² C Control Register 1 (I2CCR1)*	19
Table 6.3. I ² C Command Register (I2CCMDR)	20
Table 6.4. I ² C Clock Pre-scale Register (I2CBRLSB)	
Table 6.5. I ² C Clock Pre-scale Register (I2CBRLSB)	
Table 6.6. I ² C Status Register (I2CSR)	
Table 6.7. I ² C Status Register (I2CFIFOSR)	
Table 6.8. I ² C Transmitting Data Register (I2CTXDR)	
Table 6.9. 1 ² C Transmitting Data Register (I2CTXFIFO)	
Table 6.10. I ² C Receiving Data Register (I2CRXDR)	
Table 6.11. I ² C Receiving Data Register (I2CRXFIFO)	
Table 6.12. I ² C General Call Data Register (I2CGCDR)	
Table 6.13. I ² C Slave Address MSB Register (I2CSADDR)	24

Table 6.14. I ² C Slave Address MSB Register (I2CFIFOSADDR)	24
Table 6.15. I ² C Interrupt Control Register (I2CIRQEN)	
Table 6.16. I ² C Interrupt Control Register (I2CFIFOIRQEN)	
Table 6.17. I ² C Interrupt Status Register (I2CIRQ)	
Table 6.18. I2CFIFOIRQ (FIFO Mode)	
Table 6.19. I ² C FIFO Threshold Register (I2CFIFOTHRESHOLD)	
Table 8.1. Command Framing Protocol, by Interface	
Table 12.1. SPI Registers Summary	
Table 12.2. SPI Control Register 0 (SPICRO)*	
Table 12.3. SPI Control Register 1 (SPICR1)*	
Table 12.4. SPI Control Register 2 (SPICR2)*	
Table 12.5. SPI Clock Prescale (SPIBR)	
Table 12.6. SPI Master Chip Select Register (SPICSR)	
Table 12.7. SPI Status Register (SPISR)	37
Table 12.8. SPI Transmit Data Register (SPITXDR)	
Table 12.9. SPI Receive Data Register (SPIRXDR)	38
Table 12.10. SPI Interrupt Status Register (SPIIRQ)	
Table 12.11. SPI Interrupt Enable Register (SPIIRQEN)	
Table 14.1. Command Framing Protocol, by Interface	

Acronyms in This Document

A list of acronyms used in this document.

Acronym	Definition
FIFO	First In First Out
FPGA	Field-Programmable Gate Array
SPI	Serial Peripheral Interface

6

1. Introduction

This reference guide provides guidance for the advanced usage of iCE40 LM, iCE40 Ultra™, iCE40 UltraLite™ and iCE40 UltraPlus™ I²C and SPI IP. It is used as a supplement to iCE40 I2C and SPI Hardened IP Usage Guide (FPGA-TN-02010). Note that the module generator – user interface flow is the recommended flow for initializing the Hard IP blocks as in FPGA-TN-02010.

This document includes the following:

- System Bus Protocol
- I²C/SPI Register Mapping
- I²C/SPI Timing Diagram
- Command Sequences
- Examples

System Bus Interface for iCE40 LM, iCE40 Ultra and iCE40 UltraPlus

The System Bus Interface for iCE40 LM, iCE40 Ultra and iCE40 UltraPlus provides connectivity between FPGA user logic and the Hardened IP functional blocks. The user can implement a System Bus Master interface to interact with the Hardened IP System Bus Slave interface.

The block diagram in Figure 2.1 shows the supported System Bus signals between the FPGA core and the Hardened IP. Table 2.1 provides a detailed definition of the supported signals.

Figure 2.1. System Bus Interface between the FPGA Core and the IP

Table 2.1. System Bus Slave Interface Signals of the Hardened IP Module

Signal Name	I/O	Width	Description
SBCLKI	Input	1	Positive edge clock used by System Bus Interface registers and hardened functions. Supports clock speeds up to 133 MHz.
SBSTBI	Input	1	Active-high strobe, input signal, indicating the System Bus slave is the target for the current transaction on the bus. The IP asserts an acknowledgment in response to the assertion of the strobe.
SBRWI	Input	1	Level sensitive Write/Read control signal. Low indicates a Read operation, and High indicates a Write operation.
SBADRI*	Input	8	8-bit wide address used to select a specific register from the register map of the IP.
SBDATI	Input	8	8-bit input data path used to write a byte of data to a specific register in the register map of the IP.
SBDATO	Output	8	8-bit output data path used to read a byte of data from a specific register in the register map of the IP.
SBACKO	Output	1	Active-high, transfer acknowledge signal asserted by the IP, indicating the requested transfer is acknowledged.

^{*}Note: SBADRI[7:4] must be set to 0001 for upper left I²C and to 0011 for upper right I²C. For values SBADRI[3:0], see Table 5.1.

To interface with the IP, you must create a System Bus Master controller in the User Logic. In a multiple-Master configuration, the System Bus Master outputs are multiplexed through a user-defined arbiter. If two Masters request the bus in the same cycle, only the outputs of the arbitration winner reach the Slave interface.

2.1. System Bus Write Cycle

Figure 2.2 shows the waveform of a Write cycle from the perspective of the System Bus Slave interface. During a single Write cycle, only one byte of data is written to the IP block from the System Bus Master. A Write operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. During this cycle:

- The Master updates the address on the SBADRI[7:0] address lines
- Updates the data that will be written to the IP block, SBDATI[7:0] data lines
- Asserts the write enable SBRWI signal, indicating a write cycle
- Asserts the SBSTBI, selecting a specific slave module

On clock Edge 1, the System Bus Slave decodes the input signals presented by the master. During this cycle:

- The Slave decodes the address presented on the SBADRI[7:0] address lines
- The Slave prepares to latch the data presented on the SBDATI[7:0] data lines
- The Master waits for an active-high level on the SBACKO line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the SBACKO line
- The IP may insert wait states before asserting SBACKO, thereby allowing it to throttle the cycle speed. Any number
 of wait states may be added
- The Slave asserts SBACKO signal

The following occurs on clock Edge 2:

- The Slave latches the data presented on the SBDATI[7:0] data lines
- The Master deasserts the strobe signal, SBSTBI, and the write enable signal, SBRWI
- The Slave deasserts the acknowledge signal, SBACKO, in response to the Master deassertion of the strobe signal

Figure 2.2. System Bus Write Operation

2.2. System Bus Read Cycle

Figure 2.3 shows the waveform of a Read cycle from the perspective of the System Bus Slave interface. During a single Read cycle, only one byte of data is read from the IP block by the System Bus master. A Read operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. The following occurs during this cycle:

- The Master updates the address on the SBADRI[7:0] address lines
- Deasserts the write enable SBRWI signal, indicating a Read cycle
- Asserts the SBSTBI, selecting a specific Slave module

On clock Edge 1, the System Bus slave decodes the input signals presented by the master. The following occurs during this cycle:

- The Slave decodes the address presented on the SBADRI[7:0] address lines
- The Master prepares to latch the data presented on SBDATO[7:0] data lines from the System Bus slave on the following clock edge
- The Master waits for an active-high level on the SBACKO line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the SBACKO line
- The IP may insert wait states before asserting SBACKO, thereby allowing it to throttle the cycle speed. Any number of wait states may be added.
- The Slave presents valid data on the SBDATO[7:0] data lines
- The Slave asserts SBACKO signal in response to the strobe, SBSTBI signal

The following occurs on clock Edge 2:

- The Master latches the data presented on the SBDATO[7:0] data lines
- The Master deasserts the strobe signal SBSTBI
- The Slave deasserts the acknowledge signal, SBACKO, in response to the master deassertion of the strobe signal

Figure 2.3. System Bus Read Operation

10

3. System Bus System for iCE40 UltraLite

The System Bus in the iCE40 UltraLite provides connectivity between FPGA user logic and the Hardened IP functional blocks. The user can implement a System Bus Master interface to interact with the Hardened IP System Bus Slave interface.

The block diagram in Figure 3.1 shows the supported System Bus signals between the FPGA core and the Hardened IP. Table 3.1 provides a detailed definition of the supported signals.

Figure 3.1. System Bus Interface between the FPGA Core and the IP

Table 3.1. System Bus Slave Interface Signals of the Hardened IP Module

Signal Name	I/O	Width	Description
SBCSI	Input	1	This chip select signal activates the IP to allow system bus to communicate with the IP.
SBCLKI	Input	1	Positive edge clock used by System Bus Interface registers and hardened functions. Supports clock speeds up to 133 MHz.
SBSTBI	Input	1	Active-high strobe, input signal, indicating the System Bus slave is the target for the current transaction on the bus. The IP asserts an acknowledgment in response to the assertion of the strobe.
SBRWI	Input	1	Level sensitive Write/Read control signal. Low indicates a Read operation, and High indicates a Write operation.
SBADRI	Input	_	4-bit wide address used to select a specific register from the register map of the IP.
SBDATI	Input	_	8-bit input data path used to write a byte of data to a specific register in the register map of the IP. 10 bits used for FIFO mode.
SBDATO	Output	1	8-bit output data path used to read a byte of data from a specific register in the register map of the IP. 10 bits used for FIFO mode.
SBACKO	Output	1	Active-high, transfer acknowledge signal asserted by the IP, indicating the requested transfer is acknowledged.

To interface with the IP, you must create a System Bus Master controller in the User Logic. In a multiple-Master configuration, the System Bus Master outputs are multiplexed through a user-defined arbiter. If two Masters request the bus in the same cycle, only the outputs of the arbitration winner reach the Slave interface.

3.1. System Bus Write Cycle

Figure 3.2 shows the waveform of a Write cycle from the perspective of the System Bus Slave interface. During a single Write cycle, only one byte of data is written to the IP block from the System Bus Master. A Write operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. During this cycle:

- The Master updates the address on the address lines
- Updates the data that will be written to the IP block, data lines
- Asserts the write enable SBRWI signal, indicating a write cycle
- Asserts the SBSTBI, selecting a specific slave module

On clock Edge 1, the System Bus Slave decodes the input signals presented by the master. During this cycle:

- The Slave decodes the address presented on the address lines
- The Slave prepares to latch the data presented on the data lines
- The Master waits for an active-high level on the SBACKO line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the SBACKO line
- The IP may insert wait states before asserting SBACKO, thereby allowing it to throttle the cycle speed. Any number
 of wait states may be added
- The Slave asserts SBACKO signal

The following occurs on clock Edge 2:

- The Slave latches the data presented on the data lines
- The Master deasserts the strobe signal, SBSTBI, and the write enable signal, SBRWI
- The Slave deasserts the acknowledge signal, SBACKO, in response to the Master deassertion of the strobe signal

Figure 3.2. System Bus Write Operation

3.2. System Bus Read Cycle

Figure 3.3 shows the waveform of a Read cycle from the perspective of the System Bus Slave interface. During a single Read cycle, only one byte of data is read from the IP block by the System Bus master. A Read operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. The following occurs during this cycle:

- The Master updates the address on the address lines
- Deasserts the write enable SBRWI signal, indicating a Read cycle
- Asserts the SBSTBI, selecting a specific Slave module

On clock Edge 1, the System Bus slave decodes the input signals presented by the master. The following occurs during this cycle:

- The Slave decodes the address presented on the address lines
- The Master prepares to latch the data presented on data lines from the System Bus slave on the following clock edge
- The Master waits for an active-high level on the SBACKO line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the SBACKO line
- The IP may insert wait states before asserting SBACKO, thereby allowing it to throttle the cycle speed. Any number
 of wait states may be added.
- The Slave presents valid data on the data lines
- The Slave asserts SBACKO signal in response to the strobe, SBSTBI signal

The following occurs on clock Edge 2:

- The Master latches the data presented on the data lines
- The Master deasserts the strobe signal SBSTBI
- The Slave deasserts the acknowledge signal, SBACKO, in response to the master deassertion of the strobe signal

Figure 3.3. System Bus Read Operation

4. Hardened I²C IP Cores

 I^2C is a widely used two-wire serial bus for communication between devices on the same board. Every iCE40 LM, iCE40 Ultra, iCE40 UltraLite and iCE40 UltraPlus device contains two hardened I^2C IP cores. Either of the two cores can be operated as an I^2C Master or as an I^2C Slave.

5. I²C Registers for iCE40 LM, iCE40 Ultra, and iCE40 UltraPlus

Both I²C cores communicate with the System Bus interface through a set of control, command, status and data registers. Table 5.1 shows the register names and their functions.

Table 5.1. I²C Registers Summary

I ² C Register Name	Simulation Model Register Name	Address[3:0]	Address[3:0] Register Function	
I2CCR1	I2CCR1	1000	Control	Read/Write
12CCMDR	12CCMDR	1001	Command	Read/Write
12CBRLSB	I2CBRLSB	1010	Clock Prescale register, LSB	Read/Write
12CBRMSB	12CBRMSB	1011	Clock Prescale register, MSB	Read/Write
12CSR	12CSR	1100	Status	Read
12CTXDR	12CTXDR	1101	Transmit Data	Write
I2CRXDR	12CRXDR	1110	Receive Data	Read
12CGCDR	12CGCDR	1111	General Call Information	Read
12CSADDR	12CSADDR	0011	Slave Address MSB	Read/Write
I2CIRQEN	12CINTCR	0111	Interrupt Enable	Read/Write
I2CIRQ	12CINTSR	0110	Interrupt Status	Read/Write*

^{*}Note: I2CIRQ is Read Only. Write operation upon this register will not change the content of this register, but will clear corresponding interrupt flag caused by the flags inside I2CIRQ.

Table 5.2. I²C Control Register 1 (I2CCR1)*

	I2CCR1											
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name	12CEN	GCEN	WKUPEN	Reserved	SDA_DEL_SEL		Reserved	Reserved				
Default	0	0	0	0	0	0	0	0				
0 to Disable	YES	YES	YES	_	_		_	_				
Access	R/W	R/W	R/W	_	R/W		_	_				

^{*}Note: A write to this register will cause the I²C core to reset.

12CEN 12C System Enable Bit – This bit enables the 12C core functions. If 12CEN is cleared, the 2C core is

disabled and forced into idle state.

GCEN Enable bit for General Call Response – Enables the general call response in slave mode.

0: Disable1: Enable

The General Call address is defined as 0000000 and works with either 7-bit or 10-bit addressing

WKUPEN

Wake-up from Standby/Sleep (by Slave Address matching) Enable Bit – When this bit is enabled the, I^2C core can send a wake-up signal to wake the device up from standby/sleep. The wake-up function is activated when the Slave Address is matched during standby/sleep mode.

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

SDA_DEL_SEL[1:0] SDA Output Delay (Tdel) Selection (See Figure 10.1)

00: 300 ns (min) 300 ns + 2000/[wb_clk_i frequency in MHz] (max) 01: 150 ns (min) 150 ns + 2000/[wb_clk_i frequency in MHz] (max) 10: 75 ns (min) 75 ns + 2000/[wb_clk_i frequency in MHz] (max) 11: 0 ns (min) 0 ns + 2000/[wb_clk_i frequency in MHz] (max)

Table 5.3. I²C Command Register (I2CCMDR)

I2CCMDR										
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	STA	STO	RD	WR	ACK	CKSDIS	RBUFDIS	Reserved		
Default	0	0	0	0	0	0	0	0		
0 to Disable	YES	YES	YES	_	-	No	No	_		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_		

STA Generate START (or Repeated START) condition (Master operation)

STO Generate STOP condition (Master operation)
RD Indicate Read from slave (Master operation)
WR Indicate Write to slave (Master operation)

ACK Acknowledge Option – when receiving, ACK transmission selection

0: Send ACK 1: Send NACK

CKSDIS Clock Stretching Disable – Disables the clock stretching if desired by the user for both master and

slave mode. Then overflow error flag must be monitored.

0: Enable Clock Stretching1: Disable Clock Stretching

RBUFDIS Read Command with Buffer Disable – Read from Slave in master mode with the double buffering

disabled for easier control over single byte data communication scenario.

0: Read with buffer enabled as default

1: Read with buffer disabled

Table 5.4. I²C Clock Pre-scale Register (I2CBRLSB)

I2CBRMSB									
Bit	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0							
Name		I2C_PRESCALE							
Default				0000	0000				
Access		R/W							

Table 5.5. I²C Clock Pre-scale Register (I2CBRMSB)

I2CBRMSB									
BitBit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0									
Name		— I2C_PRESCALE						ESCALE	
Default		00000000							
Access		R/W							

5.1. **I2C_PRESCALE**[9:0]

I²C Clock Pre-scale value. A write operation to I2CBRMSB[1:0] will cause an I²C core reset. The System Bus clock frequency is divided by (I2C_PRESCALE*4) to produce the Master I²C clock frequency supported by the I²C bus (50 kHz, 100 kHz, 400 kHz).

Table 5.6. I²C Status Register (I2CSR)

I2CSR										
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	TIP	BUSY	RARC	SRW	ARBL	TRRDY	TROE	HGC		
Default	_	_	_	_	_	_	-	_		
Access	R	R	R	R	R	R	R	R		

TIP

Transmitting In Progress – This bit indicates that current data byte is being transferred for both master and slave mode. Note that the TIP flag will suffer half SCL cycle latency right after the start condition because of the signal synchronization. Note also that this bit could be high after configuration wake-up and before the first valid I²C transfer start (when BUSY is low), and it is not indicating byte in transfer, but an invalid indicator.

- 0: Byte transfer completed
- 1: Byte transfer in progress

BUSY

Bus Busy – This bit indicates the bus is involved in transaction. This will be set at start condition and cleared at stop. Therefore, only when this bit is high, should all other status bits be treated as valid indicators for a valid transfer.

RARC

Received Acknowledge – This flag represents acknowledge response from the addressed slave during master write or from receiving master during master read.

- 0: No acknowledge received
- 1: Acknowledge received

SRW

Slave RW

- 0: Master transmitting / Slave receiving
- Master receiving / Slave transmitting

ARBL

Arbitration Lost – This bit will go high if master has lost its arbitration in Master mode, It will cause an interrupt to System Bus Host if SCI set up allowed.

- 0: Normal
- 1: Arbitration Lost

TRRDY

Transmitter or Receiver Ready Bit – This flag indicate that a Transmit Register ready to receive data or Receiver Register if ready for read depend on the mode (master or slave) and SRW bit. It will cause an interrupt to System Bus Host if SCI set up allowed.

- 0: Transmitter or Receiver is not ready
- 1: Transmitter or Receiver is ready

TROE

Transmitter/Receiver Overrun or NACK Received Bit – This flag indicate that a Transmit or Receive Overrun Errors happened depend on the mode (master or slave) and SRW bit, or a no-acknowledges response is received after transmitting a byte. If RARC bit is high, it is a NACK bit, otherwise, it is overrun bit. It will cause an interrupt to System Bus Host if SCI set up allowed.

- 0: Transmitter or Receiver Normal or Acknowledge Received for Transmitting
- 1: Transmitter or Receiver Overrun or No-Acknowledge Received for Transmitting

HGC

Hardware General Call Received – This flag indicate that a hardware general call is received from the slave port. It will cause an interrupt to System Bus Host if SCI set up allowed.

- 0: NO Hardware General Call Received in Slave Mode
- 1: Hardware General Call Received in Slave Mode

Table 5.7. I²C Transmitting Data Register (I2CTXDR)

	I2CTXDR									
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name		I2C_Transmit_Data[7:0]								
Default				0000	0000					
Access				V	V					

I2C_Transmit_Data[7:0]

I²C Transmit Data – This register holds the byte that will be transmitted on the I²C bus during the Write Data phase. Bit 0 is the LSB and will be transmitted last. When transmitting the slave address, Bit 0 represents the Read/Write bit.

Table 5.8. I2C Receiving Data Register (I2CRXDR)

	I2CTXDR										
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name		I2C_Receive_Data[7:0]									
Default				_							
Access				R							

I2C_Receive_Data[7:0]

I²C Receive Data – This register holds the byte captured from the I²C bus during the Read Data phase. Bit 0 is LSB and was received last.

Table 5.9. I²C General Call Data Register (I2CGCDR)

			12	CGCDR					
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name		I2C_GC_Data[7:0]							
Default				_					
Access				R					

I2C_GC_Data[7:0]

 I^2C General Call Data – This register holds the second (command) byte of the General Call transaction on the I^2C bus.

Table 5.10. I²C Slave Address MSB Register (I2CSADDR)

	12CSADDR										
BitBit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0											
7 Bits Addressing	_	_	_	A6	A5	A4	А3	A2			
10 Bits Addressing	A9	A8	A7	A6	A5	A4	А3	Α			
Default	0000000										
Access		R/W									

Table 5.11. I²C Interrupt Control Register (I2CIRQEN)

	-									
I2CIRQEN										
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	IRQINTCLREN	IRQINTFRC	Reserved	Reserved	IRQARBLEN	IRQTRRDYEN	IRQTROEEN	IRQHGCEN		
Default	0	0	_	_	0	0	0	0		
0 to Disable	YES	YES	_	_	YES	Yes	YES	YES		
Access	R/W	R/W	_	_	R/W	R/W	R/W	R/W		

IRQINTCLREN Auto Interrupt Clear Enable – Enable the interrupt flag auto clear when the I2CIRQ has been

read.

IRQINTFRC Force Interrupt Request On – Force the Interrupt Flag set to improve testability

IRQARBLEN Interrupt Enable for Arbitration Lost

IRQTRRDYEN Interrupt Enable for Transmitter or Receiver Ready

IRQTROEEN Interrupt Enable for Transmitter/Receiver Overrun or NACK Received

IRQHGCEN Interrupt Enable for Hardware General Call Received

Table 5.12. I²C Interrupt Status Register (I2CIRQ)

			l	2CIRQ				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name		Reser	ved		IRQARBL	IRQTRRDY	IRQTROE	IRQHGC
Default	_	_	_	_	_	_	_	_
Access	_	_	_	_	R/W	R/W	R/W	R/W

IRQARBL

Interrupt Status for Arbitration Lost. When enabled, indicates ARBL was asserted. Write a '1' to this bit to clear the interrupt.

0: No interrupt

1: Arbitration Lost Interrupt

IRQTRRDY

Interrupt Status for Transmitter or Receiver Ready. When enabled, indicates TRRDY was asserted. Write a '1' to this bit to clear the interrupt.

0: No interrupt

1: Transmitter or Receiver Ready Interrupt

IRQTROE

Interrupt Status for Transmitter/Receiver Overrun or NACK received. When enabled, indicates TROE was asserted. Write a '1' to this bit to clear the interrupt.

0: No interrupt

1: Transmitter or Receiver Overrun or NACK received Interrupt

IRQHGC

Interrupt Status for Hardware General Call Received. When enabled, indicates HGC was asserted. Write a '1' to this bit to clear the interrupt.

0: No interrupt

1: General Call Received in slave mode Interrupt

6. I²C Registers for iCE40 UltraLite

Both I²C cores communicate with the System Bus interface through a set of control, command, status and data registers. Table 6.1 shows the register names and their functions.

Table 6.1. I²C Registers Summary

Name	Simulation Model Register Name	SB Address [3:0]	Register Function	Register Width	Support Modes	Access
I2CCR1	I2CCR1	0001	I ² C Control Register 1	8	Both	RW
I2CBRLSB	I2CBRLSB	0010	I ² C Clock Presale register, LSB	8	Both	RW
12CBRMSB	12CBRMSB	0011	I ² C Clock Presale register,	8	Both	RW
I2CSADDR/I2CFIFOSADDR	I2CSADDR	0100	I ² C Slave address / FIFO Slave Address	8/10	Both	RW
I2CIRQEN/I2CFIFOIRQEN	_	0101	I ² C Interrupt Control Register / FIFO interrupt Control	8/10	Both	RW
12CFIFOTHRESHOLD	_	0110	I ² C FIFO Threshold Register	10	FIFO mode	RW
I2CCMDR	I2CCMDR	0111	I ² C Command Register	8	Reg mode	RW
I2CTXDR/I2CTXFIFO	I2CTXDR	1000	I ² C Transmitting Data Register / FIFO	8/10	Both	W
I2CRXDR/I2CRXFIFO	I2CRXDR	1001	I ² C Receiving Data Register / FIFO	8/10	Both	R
12CGCDR	I2CGCDR	1010	I ² C General Call Information Register	8	Both	R
I2CSR/I2CFIFOSR	I2CSR	1011	I ² C Status Register / FIFO Status Register	8/10	Both	R
I2CIRQ/I2CFIFOIRQ	I2CINTCR	1100	I ² C Interrupt Status Register / FIFO Interrupt Status register	8/10	Both	R

Table 6.2. I²C Control Register 1 (I2CCR1)*

	I2CCR1											
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name	12CEN	GCEN	WKUPEN	FIFO_MODE	SDA_D	EL_SEL	CLKSDIS	Reserved				
Default	0	0	0	0	0	0	0	0				
0 to Disable	Yes	Yes	Yes	Yes	-	-	Yes	_				
Access	R/W	R/W	R/W	R/W	R/	W	R/W	_				

^{*}Note: A write to this register will cause the I²C core to reset

I²C System Enable Bit – This bit enables the I²C core functions. If I2CEN is cleared, the I²C core is 12CEN

disabled and forced into idle state.

GCEN Enable bit for General Call Response – Enables the general call response in slave mode.

> 0: Disable 1: Enable

The General Call address is defined as 0000000 and works with either 7-bit or 10-bit addressing

WKUPEN Wake-up from Standby/Sleep (by Slave Address matching) Enable Bit – When this bit is enabled the,

I²C core can send a wake-up signal to wake the device up from standby/sleep. The wake-up function

is activated when the Slave Address is matched during standby/sleep mode.

FIFO_MODE 0: Register mode (default)

> 1: FIFO mode

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

19 FPGA-TN-02011-1.8

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

SDA_DEL_SEL[1:0] SDA Output Delay (Tdel) Selection (See Figure 10.1)

00: 300 ns

CKSDIS Clock Stretching Disable Option (used in FIFO mode only)

Disable the clock stretching if desired by user for both master and slave mode. Then

overflow error flag must be monitored.

0: Clock Stretching is Enabled1: Clock Stretching is Disabled

Table 6.3. I²C Command Register (I2CCMDR)

	I2CCMDR										
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name	STA	STO	RD	WR	ACK	CKSDIS	RBUFDIS	Reserved			
Default	0	0	0	0	0	0	0	0			
0 to Disable	Yes	Yes	Yes	_	_	No	No	_			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	1			

STA Generate START (or Repeated START) condition (Master operation)

STO Generate STOP condition (Master operation)
RD Indicate Read from slave (Master operation)
WR Indicate Write to slave (Master operation)

ACK Acknowledge Option – when receiving, ACK transmission selection

0: Send ACK 1: Send NACK

CKSDIS Clock Stretching Disable – Disables the clock stretching if desired by the user for both master

and slave mode. Then overflow error flag must be monitored.

0: Enable Clock Stretching1: Disable Clock Stretching

RBUFDIS Read Command with Buffer Disable – Read from Slave in master mode with the double

buffering disabled for easier control over single byte data communication scenario.

0: Read with buffer enabled as default

1: Read with buffer disabled

Table 6.4. I²C Clock Pre-scale Register (I2CBRLSB)

	(
I2CBRLSB											
Bit	BitBit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0										
Name		I2C_PRESCALE									
Default				0000	0000						
Access				R/	W						

Table 6.5. I²C Clock Pre-scale Register (I2CBRLSB)

(
I2CBRMSB										
BitBit7Bit6Bit5Bit4Bit3Bit2Bit1Bit0										
Name		— I2C_PRESCALE								
Default				0000	0000					
Access				R/	W					

6.1. I2C_PRESCALE[9:0]

I²C Clock Pre-scale value. A write operation to I2CBRMSB[1:0] will cause an I²C core reset. The System Bus clock frequency is divided by (I2C_PRESCALE*4) to produce the Master I²C clock frequency supported by the I²C bus (50 kHz, 100 kHz, 400 kHz).

6.2. I²C Status Register (I2CSR/I2CFIFOSR)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 6.6. I²C Status Register (I2CSR)

		,									
	I2CSR (Register Mode)										
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name	TIP	BUSY	RARC	SRW	ARBL	TRRDY	TROE	HGC			
Default	_	_	_	_	_	_	_	_			
Access	R	R	R	R	R	R	R	R			

TIP

Transmitting In Progress – This bit indicates that current data byte is being transferred for both master and slave mode. Note that the TIP flag will suffer half SCL cycle latency right after the start condition because of the signal synchronization. Note also that this bit could be high after configuration wake-up and before the first valid I²C transfer start (when BUSY is low), and it is not indicating byte in transfer, but an invalid indicator.

0: Byte transfer completed

1: Byte transfer in progress

BUSY

Bus Busy – This bit indicates the bus is involved in transaction. This will be set at start condition and cleared at stop. Therefore, only when this bit is high, should all other status bits be treated as valid indicators for a valid transfer.

RARC

Received Acknowledge – This flag represents acknowledge response from the addressed slave during master write or from receiving master during master read.

0: No acknowledge received

1: Acknowledge received

SRW Slave RW

0: Master transmitting / Slave receiving

1: Master receiving / Slave transmitting

ARBL

Arbitration Lost – This bit will go high if master has lost its arbitration in Master mode. It will cause an interrupt to System Bus Host if SCI set up allowed.

0: Normal

1: Arbitration Lost

TRRDY

Transmitter or Receiver Ready Bit – This flag indicate that a Transmit Register ready to receive data or Receiver Register if ready for read depend on the mode (master or slave) and SRW bit. It will cause an interrupt to System Bus Host if SCI set up allowed.

0: Transmitter or Receiver is not ready

1: Transmitter or Receiver is ready

TROE

Transmitter/Receiver Overrun or NACK Received Bit – This flag indicate that a Transmit or Receive Overrun Errors happened depend on the mode (master or slave) and SRW bit, or a no-acknowledges response is received after transmitting a byte. If RARC bit is high, it is a NACK bit, otherwise, it is overrun bit. It will cause an interrupt to System Bus Host if SCI set up allowed.

0: Transmitter or Receiver Normal or Acknowledge Received for Transmitting

1: Transmitter or Receiver Overrun or No-Acknowledge Received for Transmitting

HGC

Hardware General Call Received – This flag indicate that a hardware general call is received from the slave port. It will cause an interrupt to System Bus Host if SCI set up allowed.

- 0: NO Hardware General Call Received in Slave Mode
- 1: Hardware General Call Received in Slave Mode

Table 6.7. I²C Status Register (I2CFIFOSR)

				I2CF	IFOSR (FIF	O Mode)				
Bit	Bit 9	Bit 8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name		Reserved		HGC	RNACK	MRDCMPL	ARBL	TXSERR	TXUNDERF	RXOVERF
Default	_	_	-	_	_	_	_	_	_	_
Access R R R R R R R R R										

HGC

Hardware General Call Received – This flag indicate that a hardware general call is received from the slave port. It will cause an interrupt to System Bus Host if SCI set up allowed.

- 0: NO Hardware General Call Received in Slave Mode
- 1: Hardware General Call Received in Slave Mode

RNACK

Received NACK – This flag represents acknowledge response from the addressed slave during master write.

- 0: Acknowledge received
- 1: No acknowledge (NACK) is received, FIFO state machine issues a STOP and go to idle state.

MRDCMPL

Master Read Complete – This is only valid for Master Read mode.

- 0: Transaction is not completed.
- 1: Transaction is completed. In Master read mode, it means 1) the number of bytes read equals to the expected number, 2) Master terminates the read earlier but there is data in the RX FIFO.

ARBL

Arbitration Lost – This bit will go high if the master has lost its arbitration in Master mode.

- 0: Norma
- 1: Arbitration Lost, FIFO state machine goes to idle state.

TXSERR

TX FIFO synchronization error. This happens when there are back-to-back commands in the FIFO.

- 0: No synchronization error
- 1: Synchronization error, the previous command is overwritten, then continues with the next data entry in the FIFO.

TXUNDERF

TX FIFO underflow – This indicates an error condition, mutually exclusive with clock stretching function.

- 0: No underflow
- 1: FIFO underflow, data is not valid

RXOVERF

RX FIFO overflow – This indicates an error condition, mutually exclusive with clock stretching function.

- 0: No overflow
- 1: FIFO overflow, data is not valid

22

6.3. I²C Transmitting Data Register (I2CTXDR/I2CTXFIFO)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 6.8. I²C Transmitting Data Register (I2CTXDR)

			I2CTXDR	(Register Mod	de)							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name		I2C_Transmit_Data[7:0]										
Default				0000	0000							
Access				V	V							

I2C Transmit Data[7:0]

 I^2C Transmit Data – This register holds the byte that will be transmitted on the I^2C bus during the Write Data phase. Bit 0 is the LSB and will be transmitted last. When transmitting the slave address, Bit 0 represents the Read/Write bit.

Table 6.9. I²C Transmitting Data Register (I2CTXFIFO)

				12CTXFIFC	(FIFO Mod	le)					
Bit	Bit 9	Bit 8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	CMD	RSTAEN/		RXBYTE							
Default	0	0	0	0	0	0	0	0	0	0	
Access	W	W	W	W	W	W	W	W	W	W	

CMD, RSTAEN 10: Bits [4:0] of this byte is the number of bytes to be received (in Master mode).

Following data transaction should be sent using a STOP then a START.

11: Bits [4:0] of this byte is the number of bytes to be received (in Master mode). Following data transaction should be sent using a START/ReSTART. The 1st data byte should

always has RSTAEN bit set to 1.

CMD, LTXBYTE 00: Bits [7:0] of this byte are data bits. If this is the last data byte in the TXFIFO, then

depending on the CKSDIS bit, Master Write will either go into clock stretching (CKSDIS=0), or

TXFIFO will underflow (CKSDIS=1).

O1: Bit [7:0] of this byte are data bytes. If this is the last data byte in TXFIFO, this indicates the last byte to be transferred and a STOP will be issued. If this is not the last byte

in TXFIFO, then this bit is ignored.

RXBYTE[7:5] Not used when CMD =1; data byte when CMD =0

RXBYTE[4:0] Data byte

6.4. I²C Receiving Data Register (I2CRXDR/I2CRXFIFO)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 6.10. I²C Receiving Data Register (I2CRXDR)

			I2CRX	DR (Register IV	lode)			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name				I2C_Receive	e_Data[7:0]			
Default				_	_			
Access				F	₹			

I2C Receive Data[7:0]

 I^2C Receive Data – This register holds the byte captured from the I^2C bus during the Read Data phase. Bit 0 is LSB and was received last.

Table 6.11. I²C Receiving Data Register (I2CRXFIFO)

	I2CRXFIFO (FIFO Mode)												
Bit	Bit 9	Bit 8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name	Reserved	DFIRST	DATA										
Default	-	_	_	-	_	-	_	_	_	_			
Access	R	R	R	R	R	R	R	R	R	R			

DFIRST Last byte of data

0: Normal data

1: First byte received after a Start or a ReStart is detected

DATA Data received

6.5. I²C General Call Data Register

Table 6.12. I²C General Call Data Register (I2CGCDR)

				I2CGCDR							
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name		I2C_GC_Data[7:0]									
Default				-	-						
Access				F	₹						

I2C_GC_Data[7:0]

 I^2C General Call Data – This register holds the second (command) byte of the General Call transaction on the I^2C bus.

6.6. I²C Slave Address MSB Register (I2CSADDR/I2CFIFOSADDR)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 6.13. I²C Slave Address MSB Register (I2CSADDR)

		120	SADDR (Reg	ister Mode)								
Bit	Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0										
7 Bits Addressing	-	A6 A5 A4 A3 A2										
10 Bits Addressing	A9	A8	A7	A6	A5	A4	А3	A2				
Default				0000	0000							
Access	R/W											

Table 6.14. I²C Slave Address MSB Register (I2CFIFOSADDR)

	I2CFIFOSADDR (FIFO mode)											
Bit	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
7 Bits Addressing	ts Addressing A6 A5 A4 A3 A2 A1 A0											
10 Bits Address	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0		
Default					00000	00000						
Access	ccess R/W									·		

6.7. I²C Interrupt Control Register (I2CIRQEN/I2CFIFOIRQEN)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 6.15. I²C Interrupt Control Register (I2CIRQEN)

			12CIRQEI	N (Register Mo	ode)			
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	IRQINTCLREN	IRQINTFRC	Reserved	Reserved	IRQARBLEN	IRQTRRDYEN	IRQTROEEN	IRQHGCEN
Default	0	0	_	_	0	0	0	0
0 to Disable	YES	YES	_	_	YES	Yes	YES	YES
Access	R/W	R/W	_	_	R/W	R/W	R/W	R/W

IRQINTCLREN Auto Interrupt Clear Enable – Enable the interrupt flag auto clear when the I2CIRQ has been

read.

IRQINTFRC Force Interrupt Request On – Force the Interrupt Flag set to improve testability

IRQARBLEN Interrupt Enable for Arbitration Lost

IRQTRRDYEN Interrupt Enable for Transmitter or Receiver Ready

IRQTROEEN Interrupt Enable for Transmitter/Receiver Overrun or NACK Received

IRQHGCEN Interrupt Enable for Hardware General Call Received

Table 6.16. I²C Interrupt Control Register (I2CFIFOIRQEN)

	<u> </u>			12CFIFOIR	QEN (FIFO I	Mode)							
Bit	Bit Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0												
Name	IRQCLREN	IRQFRC	Reserved	HGCEN	RNACKEN	MRDCMPLEN	ARBLEN	TXSERREN	TXUNDERFEN	RXOVERFEN			
Default	0	0	0	0	0	0	0	0	0	0			
0 to Disable	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			

IRQCLREN Auto Interrupt Clear Enable – Enable the interrupt flag auto clear when the I2CINTSR been

read

IRQFRC Force Interrupt Request On – Force the Interrupt Flag set to improve testability

0: Normal operation

1: Force the Interrupt Request

HGCEN Force Interrupt Request On — Force the Interrupt Flag set to improve testability

0: Normal operation

1: Force the Interrupt Request

RNACKEN Receive NACK Interrupt Enable MRDCMPLEN Master Read Complete Enable

ARBLEN Arbitration Lost Interrupt Enable — Enable arbitration Lost Interrupt

TXSERREN TX FIFO Synchronization error Interrupt Enable TXUNDERFEN TXFIFO Underflow interrupt

enable

RXOVERFEN RXFIFO overflow interrupt enable

6.8. I²C Interrupt Status Register (I2CIRQ//I2CFIFOIRQ)

This address is shared by both Register mode and FIFO mode. However, the definition of each status bit is different for each mode.

Table 6.17. I²C Interrupt Status Register (I2CIRQ)

			I2CIRQ (Register Mod	e)					
Bit Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0										
Name		Rese	rved		IRQARBL	IRQTRRDY	IRQTROE	IRQHGC		
Default	_	_	_	_	_	_	_	_		
Access	_	_	_	_	R/W	R/W	R/W	R/W		

IRQARBL Interrupt Status for Arbitration Lost.

When enabled, indicates ARBL was asserted. Write a '1' to this bit to clear the interrupt.

0: No interrupt

1: Arbitration Lost Interrupt

IRQTRRDY Interrupt Status for Transmitter or Receiver Ready.

When enabled, indicates TRRDY was asserted. Write a '1' to this bit to clear the interrupt.

0: No interrupt

1: Transmitter or Receiver Ready Interrupt

IRQTROE Interrupt Status for Transmitter/Receiver Overrun or NACK received.

When enabled, indicates TROE was asserted. Write a '1' to this bit to clear the interrupt.

0: No interrupt

1: Transmitter or Receiver Overrun or NACK received Interrupt

IRQHGC Interrupt Status for Hardware General Call Received.

When enabled, indicates HGC was asserted. Write a '1' to this bit to clear the interrupt.

0: No interrupt

1: General Call Received in slave mode Interrupt

Table 6.18. I2CFIFOIRQ (FIFO Mode)

	I2CFIFOIRQ (FIFO Mode)													
Bit	Bit 9	Bit 8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Name	Reserved	Reserved	Reserved	IRQHGC	IRQRNACK	IRQMRDCMPL	IRQARBL	IRQTXSERR	IRQTXUNDERF	IRQRXOVERF				
Default	_	_	_	_	_	_	_	_	_	_				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				

IRQHGC General Call Interrupt Request Flag. Write a "1" to this bit clear the interrupt

0: No interrupt request

1: Interrupt request pending

IRQRNACK NACK Interrupt Request Flag. Write a "1" to this bit clear the interrupt

0: No interrupt request

1: Interrupt request pending

IRQMRDCMPL Master Read Completion Interrupt Request Flag. Write a "1" to this bit clear the interrupt

0: No interrupt request

1: Interrupt request pending

26

IRQARBL Arbitration Lost Interrupt Request Flag. Write a "1" to this bit clear the interrupt

0: No interrupt request

1: Interrupt request pending

IRQTXSERR TXFIFO Synchronization Error Interrupt Request Flag. Write a "1" to this bit clear the

interrupt

0: No interrupt request

1: Interrupt request pending

IRQTXUNDERF TXFIFO Underflow Interrupt Request Flag. Write a "1" to this bit clear the interrupt

0: No interrupt request

1: Interrupt request pending

IRQRXOVERF RXFIFO Overflow Interrupt Request Flag. Write a "1" to this bit clear the interrupt

0: No interrupt request

1: Interrupt request pending

Table 6.19. I²C FIFO Threshold Register (I2CFIFOTHRESHOLD)

I2CFIFOTHRESHOLD (FIFO mode)										
Bit	Bit 9 Bit 8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0									Bit0
Name	RXFIFO_AF_VAL					TXFIFO_AE_VAL				
Default	_					_				
Access			R/W			R/W				

RXFIFO_AF_VAL5-bit – Almost Full value for the RX FIFO TXFIFO_AE_VAL5-bit – Almost Empty value for the TX FIFO

7. I²C Read/Write Flow Chart

Figure 7.1 shows a flow diagram for controlling Master I²C reads and writes initiated via the System Bus interface.

Figure 7.1. I²C Master Read/Write Example (via System Bus)

Figure 7.2 shows a flow diagram for reading and writing from an I²C Slave device via the System Bus interface.

Figure 7.2. I²C Slave Read/Write Example (via System Bus)

8. I²C Framing

Each command string sent to the I^2C port must be correctly "framed" using the protocol defined for each interface. In the case of I^2C , the protocol is well known and defined by the industry as shown below.

Table 8.1. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (–)	
I ² C	Start	(Command/Operands/Data)	Stop	

Figure 8.1. I²C Read Device ID Example

9. I²C Functional Waveforms

Figure 9.1. Master I²C Write

Figure 9.2. Master I²C Read

Figure 9.3. Slave I²C Write

Figure 9.4. Slave I²C Read

10. I²C Timing Diagram

Figure 10.1. I²C Bit Transfer Timing

11. Hardened SPI IP Core

The iCE40 LM and iCE40 Ultra devices contain two hard SPI IP cores that can be configured as a SPI Master or Slave. When the SPI core is configured as a Master it is able to control other devices with Slave SPI interfaces that are connected to the SPI bus. When the SPI core is configured as a Slave, it is able to interface to an external SPI Master device.

The SPI core communicates with the System Bus interface through a set of control, command, status and data registers. Table 5.1 shows the register names and their functions.

12. SPI Registers

Table 12.1. SPI Registers Summary

SPI Register Name	Simulation Model Register Name	Address[3:0]	Register Function	Access
SPICR0	SPICR0	1000	SPI Control Register 0	Read/Write
SPICR1	SPICR1	1001	SPI Control Register 1	Read/Write
SPICR2	SPICR2	1010	SPI Control Register 2	Read/Write
SPIBR	SPIBR	1011	SPI Baud Rate Register	Read/Write
SPITXDR	SPITXDR	1101	SPI Transmit Data Register	Read/Write
SPIRXDR	SPIRXDR	1110	SPI Receive Data Register	Read
SPICSR	SPICSR	1111	SPI Chip Select Mask For Master	Read/Write
SPISR	SPISR	1100	SPI Status Register	Read
SPIIRQ	SPIINTSR	0110	SPI Interrupt Status Register	Read/Write*
SPIIRQEN	SPIINTCR	0111	SPI Interrupt Control Register	Read/Write

^{*}Note: SPIIRQ is Read Only. Write operation upon this register will not change the content of this register, but will clear corresponding interrupt flag caused by the flags inside SPIIRQ.

Table 12.2. SPI Control Register 0 (SPICR0)*

SPICR0									
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	TIdle_X0	CNT[1:0]	TTrail_XCNT[2:0]			TLead_XCNT[2:0]			
Default	0	0	0	0	0	0	0	0	
Access	R/W	R/W	R/W	1	R/W	1	_		

^{*}Note: A write to this register will cause the SPI core to reset

Tidle XCNT[1:0]

Idle Delay Count – Specifies the minimum interval prior to the Master Chip Select low assertion (Master Mode only), in SCK periods.

00:1/2

01:1

10:1.5

11:2

TTrail_XCNT[2:0]

Trail Delay Count – Specifies the minimum interval between the last edge of SCK and the high deassertion of Master Chip Select (Master Mode only), in SCK periods.

000:1/2

001:1

010:1.5

...

111:4

TLead XCNT[2:0]

Lead Delay Count – Specifies the minimum interval between the Master Chip Select low assertion and the first edge of SCK (Master Mode only), in SCK periods.

000:1/2

001:1

010:1.5

...

111:4

Table 12.3. SPI Control Register 1 (SPICR1)*

	SPICR1										
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name	SPE	WKUPEN_USER	Reserved	TXEDGE	Reserved						
Default	0	0	0	0	0	0	0	0			
Access	R/W	R/W	_	R/W	_	_	_	_			

^{*}Note: A write to this register will cause the SPI core to reset.

SPE

This bit enables the SPI core functions. If SPE is cleared, SPI is disabled and forced into idle state.

0: SPI disabled

1: SPI enabled, port pins are dedicated to SPI functions.

WKUPEN_USER

Wake-up Enable via User Enables the SPI core to send a wake-up signal to the on-chip Power Controller to wake the part from Standby mode when the User slave SPI chip select (spi_scsn) is driven low.

0: Wakeup disabled

1: Wakeup enabled.

WKUPEN_CFG

Wake-up Enable Configuration – Enables the SPI core to send a wake-up signal to the on-chip power controller to wake the part from standby mode when the Configuration slave SPI chip select (ufm_sn) is driven low.

0: Wakeup disabled

1: Wakeup enabled.

TXEDGE

Data Transmitting selection bit – This bit gives user capability to select which clock edge to transmit data for fast SPI applications. Note that this bit should not be set when CPHA or MCSH of SPICR2 is set.

O: Transmit data on the different clock edge of data receiving (receiving on rising / transmit on falling)

1: Transmit data on the same clock edge of data receiving (receiving on rising /transmit on rising)

Table 12.4. SPI Control Register 2 (SPICR2)*

SPICR2									
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Name	MSTR	MCSH	SDBRE	Reserved		CPOL	СРНА	LSBF	
Default	0	0	0	0	0	0	0	0	
Access	R/W	R/W	R/W	_	1	R/W	R/W	R/W	

^{*}Note: A write to this register will cause the SPI core to reset.

MSTRSPI

Master/Slave Mode – Selects the Master/Slave operation mode of the SPI core. Changing this bit forces the SPI system into idle state.

0: SPI is in Slave mode

1: SPI is in Master mode

MCSHSPI

Master CSSPIN Hold – Holds the Master chip select active when the host is busy, to halt the data transmission without de-asserting chip select.

Note: This mode must be used only when the System Bus clock has been divided by a value greater than three (3).

0: Master running as normal

1: Master holds chip select low even if there is no data to be transmitted

SDBRE

Slave Dummy Byte Response Enable – Enables Lattice proprietary extension to the SPI protocol. For use when the internal support circuit (e.g. System host) cannot respond with initial data within the time required, and to make the slave read out data predictably available at high SPI clock rates.

When enabled, dummy 0xFF bytes will be transmitted in response to a SPI slave read (while SPISR[TRDY]=1) until an initial write to SPITXDR. Once a byte is written into SPITXDR by the System host, a single byte of 0x00 will be transmitted then followed immediately by the data in SPITXDR. In this mode, the external SPI master should scan for the initial 0x00 byte when reading the SPI slave to indicate the beginning of actual data. Refer to Figure 15.2.

- 0: Normal Slave SPI operation
- 1: Lattice proprietary Slave Dummy Byte Response Enabled

Note: This mechanism only applies for the initial data delay period. Once the initial data is available, subsequent data must be supplied to SPITXDR at the required SPI bus data rate.

Clock Polarity – Selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical SPICR2[CPOL] values. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Figure 16.1 through Figure 16.3.

- 0: Active-high clocks selected. In idle state SCK is low.
- 1: Active-low clocks selected. In idle state SCK is high.

Clock Phase – Selects the SPI clock format. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Figure 16.1 through Figure 16.3.

- O: Data is captured on a leading (first) clock edge, and propagated on the opposite clock edge.
- 1: Data is captured on a trailing (second) clock edge, and propagated on the opposite clock edge*.

Note: When CPHA=1, the user must explicitly place a pull-up or pull-down on SCK pad corresponding to the value of CPOL (e.g. when CPHA=1 and CPOL=0 place a pull-down on SCK). When CPHA=0, the pull direction may be set arbitrarily.

Slave SPI Configuration mode supports default setting only for CPOL, CPHA.

FLSB-First – LSB appears first on the SPI interface. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Figure 16.1 through Figure 16.3.

Note: This bit does not affect the position of the MSB and LSB in the data register. Reads and writes of the data register always have the MSB in bit 7

- 0: Data is transferred most significant bit (MSB) first
- 1: Data is transferred least significant bit (LSB) first

CPOLSPI

CPHASPI

LSB

36

Table	125	SDI	Clock	Prescale	(SDIRR)
iabie	12.3.	3PI	CIUCK	Prescale	LISPIDKI

				SPIBR				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	Reserved		DIVIDER[5:0]					
Default	0	0	0	0	0	0	0	0
Access	_	_	R/W	R/W	R/W	R/W	R/W	R/W

DIVIDER[5:0]

SPI Clock Prescale value – The System clock frequency is divided by (DIVIDER[5:0] + 1) to produce the desired SPI clock frequency. A write operation to this register will cause a SPI core reset. DIVIDER must be >= 1.

Note: The digital value is calculated by Module Generator when the SPI core is configured in the SPI tab of the Module Generator user interface. The calculation is based on the System Bus Clock Frequency and the SPI Frequency, both entered by the user. The digital value of the divider is loaded in the iCE40 LM, iCE40 Ultra, and iCE40 UltraPlus devices using Soft IP into the SPIBR register.

Register SPIBR has Read/Write access from the System Bus interface. Designers can update the clock pre-scale register dynamically during device operation.

Table 12.6. SPI Master Chip Select Register (SPICSR)

				SPICSR				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name		Reserved				CSN_2	CSN_1	CSN_0
Default	0	0 0 0 0			0	0	0	0
Access	_	_	_	_	R/W	R/W	R/W	R/W

CSN_[7:0]

SPI Master Chip Selects – Used in master mode for asserting a specific Master Chip Select (MCSN) line. The register has four bits, enabling the SPI core to control up to four external SPI slave devices. Each bit represents one master chip select line (Active-Low). Bits [3:1] may be connected to any I/O pin via the FPGA fabric. Bit 0 has a pre-assigned pin location. The register has Read/Write access from the System Bus interface. A write operation on this register will cause the SPI core to reset.

Table 12.7. SPI Status Register (SPISR)

				SPISR				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	TIP	BUSY	Reserved	TRDY	RRDY	Reserved	ROE	MDF
Default	_	_	-	_	_	_	_	0
Access	R	R	-	R	R	-	R	R

TIP

Transmitting In Progress – Indicates the SPI port is actively transmitting/receiving data.

0: SPI Transmitting complete

SPI Transmitting in progress*

BUSY

Busy Flag – This bit indicate that the SPI port in the middle of data transmitting / receiving (CSN is low).

0: SPI Transmitting complete

1: SPI Transmitting in progress*

TRDY

Transmit Ready – Indicates the SPI transmit data register (SPITXDR) is empty. This bit is cleared by a write to

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

FPGA-TN-02011-1.8 37

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.

RRDY SPI Receive Ready – Indicates the receive data register (SPIRXDR) contains valid receive data.

This bit is cleared by a read access to SPIRXDR. This bit is capable of generating an interrupt.

0: SPIRXDR does not contain data

1: SPIRXDR contains valid receive data

Receive Overrun Error – Indicates SPIRXDR received new data before the previous data was

read. The previous data is lost. This bit is capable of generating an interrupt.

0: Normal

1: Receiver Overrun detected

Mode Fault – Indicates the Slave SPI chip select (spi_scsn) was driven low while

SPICR2[MSTR]=1. This bit is cleared by any write to SPICR0, SPICR1 or SPICR2. This bit is

capable of generating an interrupt.

0: Normal

1: Mode Fault detected

Table 12.8. SPI Transmit Data Register (SPITXDR)

				SPITXDR				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name		SPI_Transmit_Data[7:0]						
Default	-						-	
Access	W	W	W	W	W	W	W	W

SPI Transmit Data[7:0]

ROE

MDF

SPI Transmit Data – This register holds the byte that will be transmitted on the SPI bus. Bit 0 in this register is LSB, and will be transmitted last when SPICR2[LSBF]=0 or first when SPICR2[LSBF]=1.

Note: When operating as a Slave, SPITXDR must be written when SPISR[TRDY] is '1' and at least 0.5 CCLKs before the first bit is to appear on SO. For example, when CPOL = CPHA = TXEDGE = LSBF = 0, SPITXDR must be written prior to the CCLK rising edge used to sample the LSB (bit 0) of the previous byte. See Figure 15.1 – Figure 16.3. This timing requires at least one protocol dummy byte be included for all slave SPI read operations.

Table 12.9. SPI Receive Data Register (SPIRXDR)

		<u> </u>						
				SPIRXDR				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name		SPI_Receive_Data[7:0]						
Default	_							
Access	R	R	R	R	R	R	R	R

SPI Receive Data[7:0]

SPI Receive Data This register holds the byte captured from the SPI bus. Bit 0 in this register is LSB and was received last when LSBF=0 or first when LSBF=1.

38

Table 12.10. SPI Interrupt Status Register (SPIIRQ)

				SPIIRQ				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name		Reserved		IRQTRDY	IRQRRDY	IRQTOE	IRQROE	IRQMDF
Default	_	-	-	-	_	-	_	-
0 means No Interrupt	-	ı	ı	YES	YES	YES	YES	YES
Access	_	_	_	R/W	R/W	R/W	R/W	R/W

IRQTRDY Interrupt Status for SPI Transmit Ready. When enabled, indicates SPISR[TRDY] was asserted.

Write a '1' to this bit to clear the interrupt.

IRQRRDY Interrupt Status for SPI Receive Ready. When enabled, indicates SPISR[RRDY] was asserted.

Write a '1' to this bit to clear the interrupt.

IRQROE Interrupt Status for Receive Overrun Error. When enabled, indicates ROE was asserted.

Write a '1' to this bit to clear the interrupt.

IRQMDF Interrupt Status for Mode Fault.

When enabled, indicates MDF was asserted. Write a '1' to this bit to clear the interrupt.

Table 12.11. SPI Interrupt Enable Register (SPIIRQEN)

				SPIIRQ				
Bit	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	Reserved			IRQTRDYEN	IRQRRDYEN	IRQTOEEN	IRQROEEN	IRQMDFEN
Default	-	_	_	_	_	_	_	_
0 means Disable	-	_	_	YES	YES	YES	YES	YES
Access	_	_	_	R/W	R/W	R/W	R/W	R/W

IRQTRDYEN Interrupt Enable for SPI Transmit Ready.

IRQRRDYEN Interrupt Enable for SPI Receive Ready

IRQTOEEN Interrupt Enable for SPI Transmit Overrun Ready.
IRQROEEN Interrupt Enable for SPI Receive Overrun Ready.
IRQMDFEN Interrupt Enable for SPI Mode Default Ready

13. SPI Read/Write Flow Chart

Figure 13.1 shows a flow diagram for controlling Master SPI reads and writes initiated via the System Bus interface.

Figure 13.1. SPI Master Read/Write Example (via System Bus)

Note: Assumes CR2 register, MSCH = '1'. The algorithm when MSCH = '0' is application dependent and not provided. See Figure 15.1 for guidance.

14. SPI Framing

Each command string sent to the I^2C port must be correctly "framed" using the protocol defined for each interface. In the case of I^2C , the protocol is well known and defined by the industry as shown below.

Table 14.1. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)
SPI	Start	(Command/Operands/Data)	Stop

Figure 14.1. SSPI Read Device ID Example

15. SPI Functional Waveforms

Figure 15.1. Fully Specified SPI Transaction (iCE40 LM, iCE40 Ultra and iCE40 UltraPlus as SPI Master or Slave)

Figure 15.2. Minimally Specified SPI Transaction Example (iCE40 LM, iCE40 Ultra and iCE40 UltraPlus as SPI Slave)

© 2025 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

16. SPI Timing Diagrams

Figure 16.1. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)

Figure 16.2. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)

Figure 16.3. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)

Technical Support Assistance

Submit a technical support case via www.latticesemi.com/techsupport.

Revision History

Revision 1.8, July 2025

Section	Change Summary
SPI Registers	In Table 12.7. SPI Status Register (SPISR):
	Updated Bit2 to reserved.
	Removed TOE bit definition in relation to the SPI status register.

Revision 1.7, October 2021

Section	Change Summary
All	Changed document title from "Usage Guide" to "User Guide"
SPI Registers	 Changed the caption for Table 12.7. from "SPI Master Chip Select Register (SPICSR)" to "SPI Status Register (SPISR)". Changed "TIPSPI" to "TIP", "BUSYSPI" to "BUSY", "TRDYSPI" to "TRDY" and removed the
	SPITXDR section from Table 12.7. SPI Status Register (SPISR).

Revision 1.6, June 2021

Section	Change Summary
Disclaimers	Added this section.
System Bus Interface for iCE40 LM, iCE40 Ultra and iCE40 UltraPlus	 Updated section heading. Added iCE40 UltraPlus in the introductory paragraph. Updated Figure 2.1. System Bus Interface between the FPGA Core and the IP and Figure 2.2. System Bus Write Operation.
System Bus System for iCE40 UltraLite	 Updated section heading. Removed devices from introductory paragraph except for iCE40 UltraLite. Updated Figure 3.1. System Bus Interface between the FPGA Core and the IP. Updated Table 3.1. System Bus Slave Interface Signals of the Hardened IP Module. Removed specific addresses from the System Bus Write Cycle and System Bus Read Cycle subsections.
I ² C Registers for iCE40 LM, iCE40 Ultra, and iCE40 UltraPlus	Updated section heading.
I ² C Registers for iCE40 UltraLite	Updated section heading.
_	Updated revision history and back cover format.

Revision 1.5, August 2017

Section	Change Summary
All	Changed document number from TN1276 to FPGA-TN-02011.
	Updated document template.
Acronyms in This Document	Added this section.

47

Revision 1.4, June 2016

Section	Change Summary		
All	Added support for iCE40 UltraPlus.		
Introduction	Updated Introduction section. Fixed link to FPGA-TN-02010 on page 1.		
System Bus Interface for iCE40 LM, iCE40 Ultra and iCE40 UltraPlus	 Updated System Bus Interface for iCE40 LM, iCE40 Ultra and iCE40 UltraPlus section. Revised section heading to include iCE40 UltraPlus. Added iCE40 UltraPlus to Figure 2.1. System Bus Interface between the FPGA Core and the IP 		
I2C Registers for iCE40 LM, iCE40 Ultra and iCE40 UltraPlus	Updated I2C Registers for iCE40 LM, iCE40 Ultra and iCE40 UltraPlus section. Revised section heading to include iCE40 UltraPlus. Revised SDA_DEL_SEL[1:0] description.		
I2C Registers for iCE40 UltraLite	Updated I2C Registers for iCE40 UltraLite section. Revised section heading to include only iCE40 UltraLite.		
Hardened SPI IP Core	Updated Hardened SPI IP Core section. Added iCE40 UltraPlus to introductory paragraph.		
SPI Registers	Updated SPI Registers section. Revised note in Table 12.5. SPI Clock Prescale (SPIBR) to include iCE40 UltraPlus.		
SPI Functional Waveforms	 Updated SPI Functional Waveforms section. Revised caption of Figure 15.1. Fully Specified SPI Transaction (iCE40 LM, iCE40 Ultra and iCE40 UltraPlus as SPI Master or Slave). Revised caption of Figure 15.2. Minimally Specified SPI Transaction Example (iCE40 LM, iCE40 Ultra and iCE40 UltraPlus as SPI Slave) 		
Technical Support Assistance	Updated Technical Support Assistance section.		

Revision 1.3, January 2015

Section	Change Summary
All	Added support for iCE40 UltraLite.

Revision 1.2, June 2014

Section	Change Summary	
All	Changed document title to Advanced iCE40 I2C and SPI Hardened IP Usage Guide.	
	Added support for iCE40 Ultra.	

Revision 1.1, November 2013

Section	Change Summary	
Multiple	•	Changed the interface signal names of hardened IP module.
	•	Updated I2C Registers Summary table.

Revision 1.0, October 2013

Section	Change Summary
All	Initial release.

All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notic FPGA-TN-02011-1.8

www.latticesemi.com