ALGEBRAIC GEOMETRY PART I

WANG YUNLEI

ABSTRACT. It is a note when I study algebraic geometry myself in YouTube from the channel ICTP Math, the speaker of the videos is Lothar Göttsche.

Contents

1.	Functions And Morphisms	3
2.	Morphisms of Quasi-projective varieties	8
3.	Products of Varieties	11

Proposition 1. Same as an affine space, in a projective space we have the following propositions:

- (1) $X \subset Y \subset \mathbb{P}^n$ are projective algebraic sets, then $I(X) \supset I(Y)$;
- (2) $X \subset \mathbb{P}^n$ is a projective algebraic set, then Z(I(X)) = X;
- (3) $\mathfrak{a} \subset k[x_0, \ldots, x_n]$ is a homogeneous ideal, then $I(Z(\mathfrak{a})) \supset \mathfrak{a}$;
- (4) If $S \subset k[x_0, ..., x_n]$ is a set of homogeneous polynomials, then $Z(S) = Z(\langle S \rangle)$:
- (5) For a family $\{S_{\alpha}\}$ of sets of homogeneous polynomials, $Z(\bigcup_{\alpha} S_{\alpha}) = \bigcap_{\alpha} lphaZ(S_{\alpha});$
- (6) If $T, S \subset k[x_0, ..., x_n]$ are sets of homogeneous polynomials, then $Z(ST) = Z(S) \cup Z(T)$.

Remark. From the proposition (5) and (6) we know that arbitrary intersections and finite unions of projective algebraic sets are projective algebraic sets, then we can define a topology through these two propositions.

Definition 1. The Zariski topology on \mathbb{P}^n is the topology whose closed sets are the projective algebraic sets.

If $X \subset \mathbb{P}^n$ is a subset, we give it the induced topology, called Zariski topology on X.

Definition 2. A quasi-projective algebraic set is an open subset of a projective algebraic set. Fro example, let U and V be closed subsets, then $Y = U \setminus V \neq \emptyset$ is a quasi-projective algebraic set.

Proposition 2. We jnow $k[x_0, ..., x_n]$ is noetherian, then follows the same proof as in affine case shows that \mathbb{P}^n is a noetherian topological sapce.

 $Date: \, \mathrm{June} \,\, 19, \, 2017.$

Remark. Every subspace of \mathbb{P}^n is noetherian. In particular, quasi-projective algebraic sets are noetherian, hence have unique decompositions into irreducible components.

Definition 3. A quasi-projective variety is an irreducible quasi-projective algebraic set

Remark. If we use the identification $\mathbb{A}^n = U_0 \subset \mathbb{P}^n$, then \mathbb{A}^n is an open set $\mathbb{A}^n = \mathbb{P}^n \setminus Z(x_0)$, i.e. \mathbb{A}^n is a quasi-projective variety.

Definition 4. A nonempty algebraic set $X \subset \mathbb{A}^{n+1}$ is called a cone if for all $p = (a_0, \ldots, a_n) \in X$ and all $\lambda \in k$, we have $(\lambda a_0, \ldots, \lambda a_n) = \lambda p \in X$.

If $X \subset \mathbb{P}^n$ is a projective algebraic set, its affine cone is

(0.1)
$$C(X) := \{(a_0, \dots, a_n) \in \mathbb{A}^{n+1} | [a_0, \dots, a_n] \in X\} \cup \{0\}$$

Lemma 1. Let $X \neq \emptyset$ be a projective algebraic set, then :

- (1) $X = Z_p(\mathfrak{a})$, for $\mathfrak{a} \subset k[x_0, \dots, x_n]$ a homogeneous ideal $\Rightarrow C(X) = Z_a(\mathfrak{a}) \subset \mathbb{A}^{n+1}$;
- (2) $I_a(C(X)) = I_H(X)$.

Theorem 1 (Projective Nullstellensatz). Let $\mathfrak{a} \subset k[x_0, \dots, x_n]$ be a homogeneous ideal:

- (1) $Z_p(\mathfrak{a}) = \emptyset \Leftrightarrow \mathfrak{a}$ contains all homogeneous polynomials of degree N for some $N \in \mathbb{N}$:
- (2) If $Z_p(\mathfrak{a}) \neq \emptyset$, then $I_p(Z_p(\mathfrak{a})) = \sqrt{\mathfrak{a}}$.

Proof. Let $X = Z_p(\mathfrak{a})$.

(1)
$$X = \emptyset \Leftrightarrow C(X) = \{0\}$$
. Since $C(X) = Z_a(\mathfrak{a}) \cup \{0\}$, we get $X = \emptyset \Leftrightarrow Z_a(\mathfrak{a}) = \emptyset$ or $Z_a(\mathfrak{a}) = \{0\}$.

By affine Nullstellensatz, we get

$$\sqrt{\mathfrak{a}} = k[x_0, \dots, x_n] \text{ or } \sqrt{\mathfrak{a}} = \langle x_0, \dots, x_n \rangle.$$

So $\sqrt{\mathfrak{a}} \supset \langle x_0, \ldots, x_n \rangle$. Thus for any $i = 0, \ldots, n$, $\exists m_i \text{ s.t. } x_i^{m_i} \in \mathfrak{a}$. Let $N = m_1 + \cdots + m_n$, then any monomial of degree N in $k[x_0, \ldots, x_n]$ lies in \mathfrak{a} .

(2)Let $X = Z_p(\mathfrak{a} \neq \emptyset$, then

(0.2)
$$I_H(X) = I_a(C(X)) = I_a(Z_a(\mathfrak{a})) = \sqrt{\mathfrak{a}}.$$

Remark. $\langle x_0, \dots, x_n \rangle$ is called the irrelevant ideal, an ideal different from $\langle x_0, \dots, x_n \rangle$ is called relevant.

Corollary 1. There is a one-to-one correspondence between homogeneous relevant radical ideals and projective algebraic sets:

 Z_p : homogeneous relevant radical ideals in $k[x_0, \ldots, x_n] \to projective$ algebraic sets in \mathbb{P}^n

 I_H : projective algebraic sets in $\mathbb{P}^n \to homogeneous$ relevant radical ideals in $k[x_0, \dots, x_n]$.

Remark. We use subscripts to recognize affine spaces and projective spaces, such as $Z_p(\mathfrak{a}), Z_a(\mathfrak{a})$. Sometimes we can infer the difference from the context, so we usually write briefly as $Z(\mathfrak{a})$.

Proposition 3. (1) A projective algebraic set $X \neq \emptyset \subset \mathbb{P}^n$ is irreducible if and only if $I = I_H(X)$ is a homogeneous prime ideal;

- (2) If $f \in k[x_0, ..., x_n]$ is a homogeneous polynomial and irreducible, then $Z_p(f)$ is irreducible.
- *Proof.* (1) \Leftarrow : Assume X reducible, then $X = X_1 \cup X_2, X_1, X_2 \subsetneq X$ b are closed subsets. Then we get $C(X) = C(X_1) \cup C(X_2), C(X_1) \subsetneq C(X), C(X_2) \subsetneq C(X)$ are closed, hence C(X) is reducible, $I_H(X) = I(C(X))$ is not prime.
- \Rightarrow : Assume $I_H(X)$ not prime, it means $\exists f,g \in k[x_0,\ldots,x_n], fg \in I_H(X)$ and $f,g \notin I_H(X)$. Let $i,j \in \mathbb{Z} \geq 0$ be minimal such that $f^{(i)} \notin I$ and $g^{(j)} \notin I$. Subtract homogeneous components of lower degrees from f and g, we can assume f starts in degree i and g starts in degree j. Thus $f^{(i)}g^{(j)}$ is homogeneous component of minimal degree in $fg \in I$. Because I is homogeneous, we get $f^{(i)}g^{(j)} \in I$. Let $X_1 := Z(I) \cap Z(f^{(i)})$ and $X_2 := Z(I) \cap Z(g^{(j)})$, then $X_1, X_2 \subsetneq X$, $X = X_1 \cup X_2$, thus X is reducible.
- (2) If $I \subset k[x_0, ..., x_n]$ is homogeneous and prime with $Z(I) \neq \emptyset$, then follow the result from (1) we know Z(f) is irreducible.

1. Functions And Morphisms

Definition 5. Let $X \subset \mathbb{A}^n$ be an affine algebraic set, the affine coordinate ring of X is

(1.1)
$$A(X) := k[x_0, \dots, x_n]/I(X).$$

It is a ring, also a k-algebra.

Definition 6. A polynomial function on X is a function $f: X \to k$ s.t. $f = F|_X$ for $F \in k[x_0, \ldots, x_n]$. This is the ring with pointwise addition and multiplication:

$$(f+g)(p) = f(p) + g(p), fg(p) = f(p)g(p), \forall p \in X.$$

There is a ring homomorphism:

$$k[x_0, \dots, x_n] \to \{\text{polynomial functions on } X\}$$

 $F \to F|_X$

It is surjective and its kernel is I(X). Thus we have the isomorphism:

$$A(X) \cong \{\text{polynomial functions on } X\}.$$

We will not distinguish them.

Remark. The zero set of a polynomial function is closed. Let X be an affine algebraic set, $f \in A(X)$, then

$$(1.2) Z(f) = \{ p \in X | f(p) = 0 \}$$

is closed in X. $f \in A(X)$ means $f = F|_X$ for some $F \in k[x_1, \ldots, x_n]$, then

(1.3)
$$Z(f) = \{ p \in X | F(p) = 0 \} = X \cap Z(F)$$

so it is closed.

Definition 7. Let X be an affine variety, then I(X) is prime, then A(X) is integral. The quotient field Q(A(X)) is a field of rational functions on X and denoted by K(X). Let $V \subset X$ be a quasi-affine variety, since I(V) = I(X), we can denote its field of rational functions by K(V) := K(X).

Definition 8. Let $p \in V$, the local ring of V at p is

(1.4)
$$\mathcal{O}_{V,p} := \{ h \in K(V) | \exists f, g \in A(V), \text{ s.t. } h = \frac{f}{g} \text{ and } g(p) \neq 0 \}$$

For simplicity in future we can write this:

(1.5)
$$\mathcal{O}_{V,p} = \{ \frac{f}{g} \in K(V) | g(p) \neq 0 \}.$$

If $U \subset V$ is an open subset, the regular functions on U are defined by

(1.6)
$$\mathcal{O}_V(U) = \bigcap_{V,p} \subset K(V).$$

Proposition 4. We have an injective ring homomorphism:

$$\mathcal{O}_V(U) \to \{functions \ from \ U \ to \ k\}.$$

For $h \in \mathcal{O}_V(U)$, $p \in U$, there exists an open subset W and $p \in W \subset U$, s.t. $h = \frac{f}{g}$ with $g(p) \neq 0$. We define the homomorphism by setting $h(p) = \frac{f(p)}{g(p)}$, the homomorphism is

$$h \in \mathcal{O}_V(U) \to h(p) = \frac{f(p)}{g(p)}, p \in U.$$

Proof. It is well defined: if $h=\frac{f}{g}=\frac{f'}{g'}$ with $g(p)\neq 0, g'(p)\neq 0$. Then $fg'=f'g\Rightarrow f(p)g'(p)=f'(p)g(p)\Rightarrow \frac{f(p)}{g(p)}=\frac{f'(p)}{g'(p)}$. Injective: Let $h,h'\in\mathcal{O}_V(U)$ such that $h(p)=h'(p)\forall p\in U$. Define $l=h-h'\in\mathcal{O}_V(U)$

Injective: Let $h, h' \in \mathcal{O}_V(U)$ such that $h(p) = h'(p) \forall p \in U$. Define $l = h - h' \in \mathcal{O}_V(U)$, then $l(p) = 0, \forall p \in U$. There exists an open subset W, s.t. $l = \frac{f}{g}$ with $g(p) \neq 0 \forall p \in W$. For $p \in W$, $l(p) = \frac{f(p)}{g(p)} = 0 \Rightarrow f(p) = 0 \forall p \in W$. As zero set Z(f) of f is closed, we get $f = 0 \in A(V)$, then l = 0 and hence h = h'.

Remark. We had called $\mathcal{O}_{V,p}$ a local ring of V at p. The maximal ideal at p is $\mathfrak{m}(p) := \{h \in \mathcal{O}_{V,p} | h(p) = 0\}$, this is a maximal ideal in $\mathcal{O}_{V,p}$. It is easy to verify that the local ring of a variety is alocal ring.

Proposition 5. For an affine variety X, functions which are regular functions everywhere are polynomial functions, i.e., $\mathcal{O}_X(X) = A(X)$.

Proof. Obviously, $A(X) \subset \mathcal{O}_X(X)$. We have to show the other inclusion. Let $h \in \mathcal{O}_X(X)$, $\forall p \in X$, $\exists F_p, G_p \in k[x_1, \dots, x_n]$ s.t. $h = \frac{[F_p]}{[G_p]}$ and $G_p(p) \neq 0$. It is equivalent to: $\forall p \in X$, $\exists G_p \in k[x_1, \dots, x_n]$ s.t. $h \cdot [G_p] \in A(X)$ and $[G_p(p)] \neq 0$. Let

(1.7)
$$\mathcal{G} := \{ G \in k[x_1, \dots, x_n] | h \cdot [G_p] \in A(X) \}$$

 \mathcal{G} is an ideal and $\mathcal{G} \supset I(X)$, so $Z(\mathcal{G}) \subset X$. But $Z(\mathcal{G}) \cap X = \emptyset$, so $Z(\mathcal{G}) = \emptyset$. By Nullstellensatz $1 \in \mathcal{G}$, so $h = h \cdot 1 \in A(X)$.

Definition 9. Let $X \subset \mathbb{P}^n$ be a projective algebraic set. The homogeneous coordinate ring of X is defined as

(1.8)
$$S(X) := k[x_0, \dots, x_n]/I_H(X)$$

If X is irreducible, then S(X) is an integral domain, Q(S(X)) is its quotient field.

Remark. $X \subset \mathbb{P}^n$ is a quasi-projective variety, then polynomial $F \in k[x_0, \dots, x_n]$ will not define a function $X \to k$. But we can take quotients of homogeneous polynomials of the same degree and get a well defined function.

Definition 10. Let $f = [F] \in S(X), F \in k[x_0, ..., x_n]$. The homogeneous part $f^{(d)}$ of f is $[F^{(d)}] \in S(X)$, and $S^{(d)}(X) = \{f^{(d)} \in S(X)\}$.

Definition 11. X is a quasi-projective variety, the field of rational functions on X (on $V \subset X$ open subset) is $K(V) := K(X) := \{ \frac{f}{g} \in Q(S(X)) | f, g \text{ both in } S^{(d)}(X) \text{ for some d} \}$. Elements of K(X)(K(V)) are called rational functions on X (on V).

Definition 12. Let $p \in V \subset \mathbb{P}^n$, the local ring of V at p is

(1.9)
$$\mathcal{O}_{V,p} := \{ \frac{f}{g} \in K(V) | g(p) \neq 0 \}.$$

If $U \subset V$ is open, the ring of regular functions on U is

(1.10)
$$\mathcal{O}_V(U) := \bigcap_{p \in U} \mathcal{O}_{V,p}.$$

Proposition 6. (1) (k-algebra) Constant functions $a \in k$ are regular on U. If $f, g \in \mathcal{O}_V(U)$, then f + g and fg are regular on U, and if g has no zero in U, then $\frac{f}{g} \in \mathcal{O}_V(U)$.

- (2) (Local)Let (U_i) be a open cover of U. A function $f: U \to k$ is regular if and only if $f|_{U_i}$ is regular for all i.
- (3) Regular functions are continuous. i.e., let $h \in \mathcal{O}_V(U)$, then $h: U \to k = \mathbb{A}^1$ is continuous($k = \mathbb{A}^1$ is given Zariski topology).

Proof. (1) By definition, $\mathcal{O}_V(U) = \bigcap_{p \in U} \mathcal{O}_{V,p}$, thus enough to show if $f, g \in \mathcal{O}_{V,p}$, then $f + g, fg \in \mathcal{O}_{V,p}$, and it is obvious. Assume g has no zero on U, then $g = \mathcal{O}_V(U)$, then $\frac{f}{g} \in \mathcal{O}_V(U)$.

- (2) $h: U \to k$ is regular $\Leftrightarrow h \in \mathcal{O}_{V,p} \forall p \in U \Leftrightarrow h \in \mathcal{O}_{V,p} \forall p \in U_i \forall i$.
- (3) $h: U \to k$ is continuous $\Leftrightarrow h|_{U_i}$ is continuous for all U_i of an open cover of U. We just replace U by a suitable U_i and show h is continuous in U_i . From the definition of regular functions, we can simply assume $h = \frac{f}{g}, f, g \in k[x_0, \dots, x_n]$ are homogeneous of the same degree, and g has no zero on U_i . Zariski topology on \mathbb{A}^1 has closed subsets \emptyset , k and finite points subsets. Thus we only have to show $h^{-1}(a)$ is closed in U_i for all a in k,

$$(1.11) h^{-1}(a) = \{ p \in U_i | h(p) = a \} = \{ p \in U_i | (f - ag)(p) = 0 \}.$$

This is the zero set $Z(f-ag) \cap U$, hence the inverse of the closed sets are closed, hence h is continuous in $U_i \forall i$, hence continuous in U.

Definition 13 (Polynomial Map). Let $X \subset \mathbb{A}^n, Y \subset \mathbb{A}^m$ be affine algebraic sets. A map

$$(F_1, \ldots, F_m): X \to Y, p \to (F_1(p), \ldots, F_m(p)), F_1, \ldots, F_m \in k[x_1, \ldots, x_n]$$

is called a polynomial map. A surjective polynomial map whose inverse is also a polynomial map is an isomorphism.

Example 1. (1) If X is an affine algebraic set, the polynomial map $f: X \to k$ is the polynomial function in A(X).

(2) Let $X = \mathbb{A}^1$, $Y = Z(y - x^2) \subset \mathbb{A}^2$, the polynomial map

$$(t,t^2): \mathbb{A}^2 \to Y$$

is isomorphism.

Definition 14. Let $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$ be affine algebraic sets. Let

$$\varphi: X \to Y$$

be a polynomial map. The pull back of $h \in A(Y)$ is $\varphi^*h := h \circ \varphi \in A(X)$. If $h = H|_Y, H \in k[y_1, \dots, y_m], \varphi = (F_1, \dots, F_m)$, then

$$\varphi^* h(a_1, \dots, a_n) = h(F_1(a_1, \dots, a_n), \dots, F_m(a_1, \dots, a_n)).$$

i.e.,

$$\varphi^* h = H(F_1(x_1, \dots, x_n), \dots, F_m(x_1, \dots, x_n))|_X \in A(X).$$

The pull back $\varphi^*: A(Y) \to A(X)$ is obviously a ring homomorphism. If $\varphi: X \to Y$ is an isomorphism, then $\varphi^*: A(Y) \to A(X)$ is an isomorphism of k-algebra.

Definition 15. Let X, Y be varieties, a map $\varphi : X \to Y$ is a morphism(regular map) if:

- (1) φ is continuous;
- (2) for all open subsets $U \in Y$, all regular functions $f \in \mathcal{O}_Y(U)$, we have

$$\varphi^* := f \circ \varphi \in \mathcal{O}_X(\varphi^{-1}(U)).$$

Remark. Thus for each open subset $U \in Y$,

$$\varphi^*: \mathcal{O}_Y(U) \to \mathcal{O}_X(\varphi^{-1}(U))$$

is a k-algebra homomorphism. φ is called an isomorphism if φ is bijective and φ^{-1} is also a morphism.

- (1) id_X is a morphism form X itself.
- (2) If $\varphi: X \to Y, \psi: Y \to Z$ are morphisms, then

$$(\psi \circ \varphi)^* = \varphi^* \circ \psi^*$$

- (3) If $\varphi: X \to Y$ is isomorphism, then $\varphi^*: \mathcal{O}_Y \to \mathcal{O}_X(\varphi^{-1}(U))$ is an isomorphism for all $U \subset Y$.
- **Proposition 7.** (1) Let $\varphi: X \to Y$ and $(U_i)_{i \in I}$ be an open cover of X s.t. $\varphi|_{U_i}: U_i \to Y$ is a morphism. Then φ is a morphism.
 - (2) Let $Z \subset X, W \subset Y$ be varieties, let $\varphi : X \to Y$ be a morphism with $\varphi(Z) \subset W$. Then $\varphi|_Z : Z \to W$ is a morphism.

Proof. (1) Let $W \subset Y$ be open, then we can write $\varphi^{-1}(W) = \bigcup_{i \in I} (\varphi|_{U_i}^{-1}(W))$, it is open so φ is continuous. Let $h \in \mathcal{O}_Y(W)$ then the pull back of regular functions h from $\mathcal{O}_Y(W)$ to $\mathcal{O}_X(U_i \cap \varphi^{-1}(W))$ is $\varphi|_{U_i}^* h = \varphi^* h|_{U_i \cap \varphi^{-1}(W)}$, since $\varphi|_{U_i}$ is a morphism we get that $U_i \cap \varphi^{-1}(W)$ is open. Then

(1.12)
$$\varphi^{-1}(W) = \bigcup_{i \in I} U_i \cap \varphi^{-1}(W)$$

and $(U_i \cap \varphi^{-1}(W))_{i \in I}$ is an open cover of $\varphi^{-1}(W)$, then we can get the conclusion that φ is a morphism by proposition 6.

(2) First, $\varphi|_Z$ is continuous as a restriction of a continuous map. Let $U \subset W$ be open, let $h \in \mathcal{O}_W(U)$. Replace if necessary U by a smaller open subset sucht that we can assume $h = \frac{F}{G}$. This quotient also defines a regular function H on open subset $\tilde{U} \subset Y$ s.t. $U \subset \tilde{U}$, then $\varphi^*H \in \mathcal{O}_X(\varphi^{-1}(\tilde{U}))$ is regular. Then $\varphi^*h = \varphi^*H|_{\varphi^{-1}(U)\cap Z}$ is regular on $\varphi^{-1}(U)\cap Z$.

Definition 16. An affine variety is a variety which is isomorphis to irreducible closed subset of some \mathbb{A}^n .

Theorem 2. Let X, Y be subvarieties, assume $Y \subset \mathbb{A}^n$. A map $\varphi : X \to Y$ is a morphism if and only if $\exists f_1, \ldots, f_n \in \mathcal{O}_X(X)$ s.t.

$$(1.13) \varphi(p) = (f_1(p), \dots, f_n(p)), \forall p \in X.$$

We can write $\varphi = (f_1, \ldots, f_n)$.

Proof. \Rightarrow : Let $\varphi: X \to Y$ be a morphism. Let $y_1, \ldots, y_n \in \mathcal{O}_Y(Y)$ be restrictions of the coordinates on \mathbb{A}^n to Y, i.e., if $q = (a_1, \ldots, a_n) \in Y$, then $a_i = y_i(q)$. The pull back of y_i is

$$(1.14) f_i := \varphi^* y_i = y_i \circ \varphi \in \mathcal{O}_X(X).$$

Let
$$p \in X$$
, $\varphi(p) = (b_1, \dots, b_n)$, $b_i = y_i(\varphi(p)) = f_i(p)$, thus

$$\varphi = (f_1, \ldots, f_n)$$

where $f_i \in \mathcal{O}_X(X)$.

 \Leftarrow Let $\varphi:=(f_1,\ldots,f_n), f_i\in\mathcal{O}_X(X)$. First we show φ is continuous. Let $B\in Y$ be closed, it is equivalent to $B=Y\cap Z(G_1,\ldots,G_m)$ and $G_i\in k[x_1,\ldots,x_n]$. Since $G_i\circ\varphi=G(f_1,\ldots,f_n)\in\mathcal{O}_X(X)$, we get $\varphi^{-1}(B)=Z(G_1\circ\varphi,\ldots,G_m\circ\varphi)$ and it is closed in X. So φ is continuous. Let $h\in\mathcal{O}_Y(U)$, write $W=\varphi^{-1}(U)\subset Y$. we need to show $h\circ\varphi\in\mathcal{O}_X(W)$. We can always make U smaller and assume $h(q)=\frac{F(q)}{G(q)}, \forall q\in U, F$ and G are some polynomials and G has no zero on G. Then we have

(1.15)
$$h \circ \varphi = \frac{F \circ \varphi}{G \circ \varphi} = \frac{F(f_1, \dots, f_n)}{G(f_1, \dots, f_n)}$$

where $F(f_1, \ldots, f_n)$ and $G(f_1, \ldots, f_n)$ are regular on $\mathcal{O}_X(W)$. Since $\varphi(W) = U$ and G has no zero on U, $G(f_1, \ldots, f_n)$ also has no zero on W, i.e., $h \circ \varphi \in \mathcal{O}_X(W)$. \square

Remark. The regular functions on a variety X are the same as the morphisms $X \to \mathbb{A}^1$.

Corollary 2. Let $X \subset \mathbb{A}^n$ and $Y \subset \mathbb{A}^m$ be closed subvarieties. The morphisms

$$\varphi: X \to Y$$

are precisely the polynomial map.

Proof. From theorem 2 we know $\varphi = (f_1, \ldots, f_m)$ and $f_i \in \mathcal{O}_X(X) \forall i$. From theorem 5 we know $f_i \in A(X)$, so φ is a polynomial map.

Theorem 3. Let X, Y be varieties, assume $Y \subset \mathbb{A}^m$ be a closed affine variety. Then there is a bijection between morphisms $X \to Y$ and k-algebra homomorphisms $A(Y) \to \mathcal{O}_X(X)$:

$$\{ \begin{array}{cc} \{ morphisms \ X \to Y \} & \xrightarrow{bijection} \{ homomorphisms \ A(Y) \to \mathcal{O}_X(X) \} \\ \varphi & \xrightarrow{} \varphi^* \end{array}$$

Proof. \Rightarrow : Let $\varphi: X \to Y$ be a morphism, then $\varphi^*: A(Y) \to \mathcal{O}_X(X)$ is a k-algebra homomorphism by definition 15.

 \Leftarrow : Let $\phi: A(Y) \to \mathcal{O}_X(X)$ be a k-algebraic homomorphism, let $y_1, \ldots, y_n \in A(Y)$ be the coordinate functions. We set

$$f_i = \phi(y_i) \in \mathcal{O}_X(X).$$

Let $\varphi=(f_1,\ldots,f_m):X\to\mathbb{A}^m$. This is a morphism from X to Y. To see it is a morphism we have to show $\varphi(X)\subset Y$. Let $h\in I(Y),\ h\circ\varphi=h(f_1,\ldots,f_m)=h(\phi(y_1),\ldots,\phi(y_m))=\phi(h(y_1,\ldots,y_m))$. The second equality is based on the homomorphic property of ϕ , for example, if $h(x_1,x_2)=x_1^2-x_2^3$, then $h(\phi(y_1),\phi(y_2))=\phi(y_1)^2-\phi(y_2)^3=\phi(y_1^2)-\phi(y_2^3)=\phi(y_1^2-y_2^3)=\phi(h(y_1,y_2))$. So $h(y_1,\ldots,y_m)\in A(Y)$, we choose an arbitrary element $p=(a_1,\ldots,a_m)\in Y$, then $h(y_1,\ldots,y_m)(p)=h(a_1,\ldots,a_m)=0$ because $h\in I(Y)$. So for arbitrary $h\in I(Y)$, we get $h\circ\varphi=0$, it implies $\varphi(X)\subset \cap_{h\in I(Y)}Z(h)=Y$.

Example 2. A bijective polynomial map need not to be an isomorphism. For example, let $X = \mathbb{A}^1$, $Y = Z(x_2^2 - x_1^3) \subset \mathbb{A}^2$. Then

$$\varphi = (t^2, t^3) : X \to Y$$

is a morphism and bijective and the inverse is

$$\varphi^{-1}(a,b) = \begin{cases} \frac{b}{a} & \text{if } a \neq 0\\ 0 & \text{if } (a,b) = 0 \end{cases}$$

 φ is not an isomorphism (φ^{-1} is not a morphism). To show this we see the pull back:

$$\varphi^*: A(Y) \to \mathcal{O}_X(X)$$

where $A(Y) = k[x_1, x_2]/\langle x_2^2 - x_1^3 \rangle$ and A(X) = k[t]. φ^* makes $x_1 \to t^2$ and $x_2 \to t^3$. Since φ^* is not surjective(there is no element maps into t), φ^* is not an isomorphism. By theorem 3 we know φ is not an isomorphism. So bijective morphism is not necessary to be an isomorphism.

Definition 17. Let $X \subset \mathbb{A}^n$ be a closed variety, $F \in k[x_1, \dots, x_n] \setminus I(X)$. The principal open defined by F is $X_F := X \setminus Z(F)$.

Proposition 8. X_F is an affine variety.

Proof. Let $Z := Z(\langle I(X), F \cdot x_{n+1} - 1 \rangle) \subset \mathbb{A}^{n+1}$. We need to prove Z is a closed subvariety of \mathbb{A}^{n+1} isomorphic to X_F . Let $\varphi : (x_1, \ldots, x_n, \frac{1}{F}) : X_F \to \mathbb{A}^{n+1}$, it is a bijective morphism and $\varphi(X_F) = Z$. As X_F is irreducible, Z is also irreducible. So Z is closed variety of \mathbb{A}^{n+1} . On the other hand, the inverse of φ is

$$\varphi^{-1} = (x_1, \dots, x_n) : Z \to X_F$$

is a morphism, so φ is an isomorphism.

2. Morphisms of Quasi-projective varieties

Definition 18. Let $X \subset \mathbb{P}^n, Y \subset \mathbb{P}^m$ be quasi-projective algebraic sets. A map $\varphi: X \to Y$ is called a polynomial map if there exists homogeneous polynomials $F_0, \ldots, F_m \in k[x_0, \ldots, x_n]$ of the same degree with no common zero on X s.t. $\varphi(p) = [F_0(p), \ldots, F_m(p)], \forall p \in X$, write $\varphi = [F_0, \ldots, F_m]$.

Definition 19. The homogenization of $F \in k[x_0, ..., x_n]$ is:

$$F_a := F(1, x_1, \dots, x_n).$$

Theorem 4. $\varphi_i = (\frac{x_0}{x_i}, \dots, \frac{\hat{x_i}}{x_i}, \dots, \frac{x_n}{x_i}) : U_i \to \mathbb{A}^n$ is an isomorphism.

Proof. We can assume $i=0,\ \varphi:=\varphi_0,\ U:=U_0$, then $\varphi=\left(\frac{x_1}{x_0},\ldots,\frac{x_n}{x_0}\right)$. $\frac{x_i}{x_0}$ is a regular function in $\mathcal{O}_{\mathbb{P}^n}(\mathbb{P}^n)$, so φ is a morphism. We need to show that $u = \varphi^{-1}(x_1, \dots, x_n) = [1, x_1, \dots, x_n]$ is a morphism. (a) $u = \varphi^{-1}$ is continuous. Let $W = Z(F_1, \dots, F_m) \cap U$ be closed in $U, F_i \in \mathcal{C}$

 $k[x_0,\ldots,x_n]$ are homogeneous, then

$$u^{-1}(W) = \{(a_1, \dots, a_n) \in \mathbb{A}^n | [1, a_1, \dots, a_n] \in W\}$$

$$= \{(a_1, \dots, a_n) \in \mathbb{A}^n | F_i(1, a_1, \dots, a_n) = 0, \forall i = 1, \dots, m\}$$

$$= Z(F_{1a}, \dots, F_{ma})$$

where F_{ia} is homogenization of F_i , it shows that $u^{-1}(W)$ is closed in \mathbb{A}^n .

(b) Let $V \subset U$ be open, $h \in \mathcal{O}_U(V)$, we need to show $u^*h \in \mathcal{O}_{\mathbb{A}^n}(u^{-1}(V))$. Making V smaller necessary, we can assume $h = \frac{F}{G}$, $F, G \in k[x_0, \dots, x_n]$ are homogeneous polynomials of the same degree.

$$u^*h = h \circ u = \frac{F \circ u}{G \circ u} = \frac{F(1, x_1, \dots, x_n)}{G(1, x_1, \dots, x_n)}.$$

Thus $u^*h \in \mathcal{O}_{\mathbb{A}^n}(u^{-1}(V))$, $phi : \mathbb{A}^n \to u$ is an isomorphism.

Remark. From theorem 4 we find that if we identify \mathbb{A}^n with $u_0 \subset \mathbb{P}^n$, the Zariski topology on \mathbb{A}^n is equivalent to the induced topology of u_0 from \mathbb{P}^n .

Corollary 3. (1) Every variety is isomorphic to a quasi-projective variety.

- (2) Every variety has an open cover by affine varieties.
- *Proof.* (1) Let X be a variety, if X is locally closed in \mathbb{P}^n , then it is a quasi-projective variety, so we only need to consider the condition in \mathbb{A}^n . Assume X be locally closed in \mathbb{A}^n . $Y = \varphi_0^{-1}(X) \subset \mathbb{P}^n$ is locally closed subvariety and $\varphi_0^{-1}: X \to Y$ is an isomorphism.
- (2) For varieties in \mathbb{A}^n , it is trivial. Let $X \subset \mathbb{P}^n$ be a quasi-projective variety, then $X = \bigcup_{i=0}^n X \cap U_i$. $X \cap U_i$ is isomorphic to locally closed subvariety in \mathbb{A}^n . We can regard $X \cap U_i$ simply as $X \subset \mathbb{A}^n$, where X is locally closed. It is equivalent to prove:

For every point $p \in X$, there exists a neighborhood $U \subset X$ and U is an affine variety.

Since X is locally closed, there exist $Y, Z \subset \mathbb{A}^n$ closed in \mathbb{A}^n s.t. $X = Y \setminus Z$. For any point $p \in X$, $\exists F_p \in I(Z)$ with $F_p(p) \neq 0$. Then we have $Y_{F_p} = Y \setminus Z(F_p) \subset X$. According to proposition 8, Y_{F_p} is an affine variety.

Theorem 5. Let $X \subset \mathbb{P}^m$, $Y \subset \mathbb{P}^n$ be quasi-projective varieties. Let $\varphi : X \to Y$ be a map. The following conditions are equivalent:

- (1) φ is a morphism;
- (2) φ is locally given by regular functions, i.e., for all $p \in X$, there exists a neighborhood $U \subset X$, $h_0, \ldots, h_n \in \mathcal{O}_X(U)$ with no common zero on U, s.t.

$$\varphi(q) = [h_0(q), \dots, h_n(q)], \quad \forall q \in U.$$

We write $\varphi = [h_0, \dots, h_n]$ on U;

(3) φ is locally a polynomial map, i.e.:

 $\forall p \in X, \exists open \ neighborhood \ U \subset X, \ F_0, \dots, F_n \in k[x_0, \dots, x_n]$ homogeneous of the same degree with no common zero s.t.

$$\varphi(q) = [F_1(q), \dots, F_n(q)] \quad \forall q \in U.$$

We write $\varphi = [F_0, \dots, F_n]$ on U.

Proof. (1) \Rightarrow (2): If $\varphi: X \to \mathbb{P}^n$ is amorphism, then $\forall p \ in X, \ \exists i, \ \text{s.t.} \ \varphi(p) \in U_i$. Assume i = 0 and then $\varphi(p) \in U_0$. Let U be an open neighborhood of p in X s.t. $\varphi(U) \subset U_0$. Then $\varphi_0 \circ \varphi: U \to \mathbb{A}^n$ is a morphism, so $\varphi_0 \circ \varphi = (h_1, \ldots, h_n)$ with $h_i \in \mathcal{O}_X(U)$. Since the inverse of φ_0 is u_0 we get

(2.1)
$$\varphi = u_0 \circ \varphi_0 \circ \varphi = [1, h_1, \dots, h_n].$$

 $(2) \Rightarrow (3)$: Assume $\varphi = [h_0, \ldots, h_n]$ on $U \subset X$, where $h_i \in \mathcal{O}_X(U)$ with no common zeros on U. By making U possibly smaller we can further assume $h_i = \frac{F_i}{G_i}$, $F_i, G_i \in k[x_0, \ldots, x_m]$ are homogeneous of the same degree (F_i) and G_i are of the same degree, it is not necessary that F_i and G_j are of the same degree for $i \neq j$, G_i has no zeros on U. Let $L_i = F_i \cdot G_0 \cdot \hat{G}_i \cdot G_n$, L_i are homogeneous of the same degree, we get

(2.2)
$$\varphi = [h_0, \dots, h_n] = [L_0, \dots, L_n].$$

 $(3) \Rightarrow (1)$: Let $\varphi|_U = [L_0, \ldots, L_n]$, $L_i \in k[x_0, \ldots, x_m]$ are homogeneous of the same degree with no common zero. Making U smaller, we can assume one of L_i (say L_0) has no zero in U. Then for $i = 1, \ldots, n$, let $h_i = \frac{L_i}{L_0} \in \mathcal{O}_X(U)$. Rewrite the map as

$$(2.3) \varphi = [1, h_1, \dots, h_n]$$

$$(2.4) \qquad \Rightarrow \varphi_0 \circ \varphi = (h_1, \dots, h_n).$$

So $\varphi_0 \circ \varphi$ is amorphism, then $\varphi = u_0 \circ \varphi_0 \circ \varphi$ is a morphism.

Definition 20 (Projective Transformation). Let

(2.5)
$$A = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0n} \\ a_{10} & a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n0} & a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

be a $(n+1) \times (n+1)$ matrix in k, then we can construct a map from $\mathbb{P}^n \to \mathbb{P}^n$:

$$[A]: [b_0, \dots, b_n] \to [b_0, \dots, b_n] \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0n} \\ a_{10} & a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n0} & a_{n1} & \cdots & a_{nn} \end{bmatrix}^T.$$

It is called a projective transformation. This is a morphism and if A is inverse then it is an isomorphism.

Remark. All automorphisms of \mathbb{P}^n are projective transformations. It is not so easy to prove.

Definition 21 (Projection). Let $X \subset \mathbb{P}^n$ be a variety, $W \subset \mathbb{P}^n$ be a projective subspace of \mathbb{P}^n of dimW = k. Assume $X \cap W = \emptyset$ and there exist linear forms H_0, \ldots, H_{n-k-1} such that $W = Z(H_0, \ldots, H_{n-k-1})$. The projection from W is

$$\Pi_W = [H_0, \dots, H_{n-k-1}] : X \to \mathbb{P}^{n-k-1}.$$

This is a morphism $(H_i \text{ have no common zero on } X \text{ because } W \cap X = \emptyset).$

Remark. Π_W depends on H_0, \ldots, H_{n-k-1} , but if we have another relation $W = Z(L_0, \ldots, L_{n-k-1})$, then there exists a projection transformation $[A]: \mathbb{P}^{n-k-1} \to \mathbb{P}^{n-k-1}$. In particular, if $p \in \mathbb{P}^n \backslash X$, for example, $p = [0, \ldots, 0, 1]$, then $\Pi_p = [x_0, \ldots, x_{n_1}]: X \to \mathbb{P}^{n-1}$.

3. Products of Varieties

Theorem 6 (Products of Affine Varieties). If $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$ are closed subvarieties, then $X \times Y \subset \mathbb{A}^n \times \mathbb{A}^m = \mathbb{A}^{n+m}$ is a closed subvariety.

Before we prove it, we need to prove a conclusion in topology.

Lemma 2. Let X, Y be irreducible topological spaces. Assume we have a topology on the product $X \times Y$ s.t.:

$$\begin{array}{ll} y_p: & Y \to X \times Y, & q \to (p,q) \ is \ continuous \ \forall p \in X; \\ l_q: & X \to X \times Y, & p \to (p,q) is \ continuous \ \forall q \in Y. \end{array}$$

Then $X \times Y$ is irreducible.

Proof. Assume $X \times Y = S_1 \cup S_2$, $S_i \subsetneq X \times Y$ are closed. For i = 1, 2, set $T_i = \bigcap\limits_{q \in Y} l_q^{-1}(S_i) = \{p \in X | (p,q) \in S_i \ \forall q \in Y\}$. It is the same as $T_i = \{p \in X | \{p\} \times Y \subset S_i\}$. Since y_p is continuous and Y is irreducible, we get $y_p(Y) = \{p\} \times Y$ is irreducible. So we get $\{p\} \times Y \subset S_1$ or $\{p\} \times Y \subset S_2 \ \forall p \in X \text{ (it implies } T_1 \cap T_2 = \emptyset \text{ and } T_i \subsetneq X \text{)}$. Hence $X = T_1 \cup T_2$. Since l_q is continuous, T_i are closed, then X is reducible.

Proof of Theorem 6. Let $X \subset \mathbb{A}^n, Y \subset \mathbb{A}^m$ be closed subvarieties, the product of X and Y is just

$$X \times Y = \{(p,q) \in \mathbb{A}^n \times \mathbb{A}^m = \mathbb{A}^{n+m} | p \in X \text{ and } q \in Y\}.$$

Let x_1, \ldots, x_n be coordinates in \mathbb{A}^n and y_1, \ldots, y_m be coordinates in \mathbb{A}^m , we can assume $X = Z(F_1, \ldots, F_k)$ and $Y = Z(G_1, \ldots, G_l)$ where $F_i \in k[x_1, \ldots, x_n], G_j \in k[y_1, \ldots, y_m]$. Then

$$(3.1) X \times Y = Z(F_1, \dots, F_k, G_1, \dots, G_l) \subset \mathbb{A}^{n+m}$$

is a closed subset. By lemma 2 we only need to check $\forall q \in Y, l_q : X \to Y$ is continuous. Write $q = (b_1, \ldots, b_m)$, then $l_q = (x_1, \ldots, x_n, b_1, \ldots, b_m)$. It is a morphism, so it is continuous, thus we finish the whole proof.

Proposition 9 (Universal Property). Let $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$ be varieties, then

(1) The projections

$$p_1 = (x_1, \dots, x_n) : X \times Y \to X$$

$$p_2 = (y_1, \dots, y_m) : X \times Y \to Y$$

are morphisms.

(2) Let Z be a variety. The morphism $\varphi: Z \to X \times Y$ are precisely the

$$(f,g):Z\to X\times Y,\quad p\to (f(p),g(p))\quad \forall p\in Z$$

where $f: Z \to X$ and $g: Z \to Y$ are morphisms. In other words, $\varphi: Z \to X \times Y$ is a morphism if and only if both $p_1 \circ \varphi$ and $p_2 \circ \varphi$ are morphisms.

Proof. The first is obvious, we only check the second.

 \Rightarrow : Let $\varphi: Z \to X \times Y$ be a morphism, then $f = p_1 \circ \varphi$ and $g = p_2 \circ \varphi$ are morphisms and $\varphi = (f, g)$.

 \Leftarrow : Assume $f: Z \to X$ and $g: Z \to Y$ are both morphisms. then there exist $f_1, \ldots, f_n \in \mathcal{O}_Z(Z)$ and $g_1, \ldots, g_m \in \mathcal{O}_Z(Z)$ s.t. $f = (f_1, \ldots, f_n), g = (g_1, \ldots, g_m)$. Then $(f, g) = (f_1, \ldots, f_n, g_1, \ldots, g_m)$ is a morphism.

Remark. Let $X \subset \mathbb{P}^n, Y \subset \mathbb{P}^m$ be subvarieties, $X \times Y$ does not lie rationally in some projective space. Thus we need to find an embedding $\sigma : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$ to denote the products of quasi-projective varieties.

Definition 22 ([Segre Embedding).] We put $N := (n+1) \cdot (m+1) - 1$, let x_0, \ldots, x_n be coordinates on \mathbb{P}^n , y_0, \ldots, y_m be coordinates on \mathbb{P}^m . Let $z_{ij}, i = 0, \ldots, n, j = 0, \ldots, m$ be coordinates on \mathbb{P}^N . Define a map

$$\sigma: \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$$

$$([x_0, \dots, x_n], [y_0, \dots, y_m]) \to [z_{ij}] = [x_i y_j]$$

 σ is called the Segre embedding.

Definition 23. We define the image of σ as

$$\Sigma := \sigma(\mathbb{P}^n \times \mathbb{P}^m) \subset \mathbb{P}^N.$$

For $i = 0, \ldots, n$, put

$$U_i := \{ [x_0, \dots, x_n] \in \mathbb{P}^n | x_i \neq 0 \}.$$

For $j = 0, \ldots, m$, put

$$U_i := \{ [y_0, \dots, y_m] \in \mathbb{P}^m | y_i \neq 0 \}.$$

And for i = 0, ..., n, j = 0, ..., m, put

$$U_{ij} := \{ [z_{kl}] \in \mathbb{P}^N | z_{ij} \neq = 0 \}.$$

there are isomorphisms:

$$\mathbb{A}^{n} \quad \stackrel{u_{i}}{\rightleftharpoons} U_{i} \\
\mathbb{A}^{m} \quad \stackrel{\varphi_{j}}{\rightleftharpoons} U_{j} \\
\mathbb{A}^{N} \quad \stackrel{u_{ij}}{\rightleftharpoons} U_{ij}.$$

Since $\mathbb{P}^N = \bigcup_{i,j} U_{ij}$, we get $\Sigma = \bigcup_{i,j} (\Sigma \cap U_{ij})$, define

$$\Sigma^{ij} = \Sigma \cap U_{ij}$$
.

Define the map σ^{ij}

$$\sigma^{ij}: \mathbb{A}^{n+m} \longrightarrow U_{ij}$$
$$(p,q) \longrightarrow \sigma(u_i(p), u_j(q)).$$

By definition we know $\sigma^{ij}(\mathbb{A}^{n+m}) = \Sigma^{ij}$.

Theorem 7. (1) $\sigma: \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$ is injective and Σ is closed in \mathbb{P}^N :

(3.2)
$$\Sigma = Z\left(\left\{z_{ij}z_{kl} - z_{il}z_{kj} \middle| \begin{array}{ll} i, k & = 0, \dots, n \\ j, l & = 0, \dots, m \end{array}\right\}\right).$$

- (2) $\sigma^{ij}: \mathbb{A}^{n+m} \to \Sigma^{ij}$ is an isomorphism.
- (3) $\forall q \in \mathbb{P}^m$, the map

$$\begin{array}{ccc} \bar{i_q}: \mathbb{P}^n & \to \mathbb{P}^N \\ p & \to \sigma(p,q) \end{array}$$

is a morphism. Similarly, $j_p = \sigma(p,q) : \mathbb{P}^m \to \mathbb{P}^N$ is a morphism.

(4) Let $X \subset \mathbb{P}^n, Y \subset \mathbb{P}^m$ be quasi-projective varieties, then $\sigma(X \times Y) \subset \mathbb{P}^N$ is also a quasi-projective variety. What's more, if X and Y are both projective varieties, then $\sigma(X \times Y)$ is a projective variety.

Proof. (1) If $\sigma([a_0,\ldots,a_n],[b_0,\ldots,b_m]) = \sigma([a'_0,\ldots,a'_n],[b'_0,\ldots,b'_m])$, then $\exists \lambda \in k \setminus \{0\}$, s.t. $\lambda a'_i b'_j = \lambda a_i b_j \ \forall i,j$. Choose i_0,j_0 s.t. $a_{i_0}b_{j_0} \neq 0$, then $\forall i=0,\ldots,n,$ $a_i b_{j_0} = \lambda a'_i b'_{j_0} \Rightarrow a_i = \left(\frac{\lambda b'_{j_0}}{b_{j_0}}\right) a'_i \Rightarrow [a_0,\ldots,a_n] = [a_0',\ldots,a_n']$. The same way can be used to prove $[b_0,\ldots,b_m] = [b_0',\ldots,b_m']$. Let W be the zero set on the right hand side of the equation 3.2, clearly we have the relation $\Sigma \subset W$. Now let $[a_{ij}] \in W$, choose i_0,j_0 s.t. $a_{i_0j_0} \neq 0$, then we get $[a_{ij}] = [a_{i_0j_0}a_{ij}] = [a_{i_0j}a_{ij_0}] = [a_{i_0j_0}a_{ij_0}] = [a_{i_0j_0}a_{ij_0}] = [a_{i_0j_0}a_{ij_0}] = [a_{i_0j_0}a_{ij_0}]$, $[a_{i_00},\ldots,a_{i_0m}] \subset \Sigma$.

(2) Assume i = j = 0, then

$$\varphi_{00} \circ \sigma^{00}(a_1, \dots, a_n, b_1, \dots, b_m) = \varphi_{00}(\sigma([1, a_1, \dots, a_n], [1, b_1, \dots, b_m]))$$
$$= (z_{ij})_{(i,j) \neq (0,0)}$$

where $z_{i0}=a_i$ for $i=1,\ldots,n,\ z_{0j}=b_j$ for $j=1,\ldots,m,\ z_{ij}=a_ib_j$ for $i,j\geq 1$. These are all regular functions, so $\varphi_{00}\circ\sigma^{00}$ is a morphism, so σ^{00} is a morphism. Finally, σ^{00} is an isomorphism because the inverse map is

$$(\sigma^{00})^{-1} = \left(\frac{z_{10}}{z_{00}}, \dots, \frac{z_{n0}}{z_{00}}, \frac{z_{01}}{z_{00}}, \dots, \frac{z_{0m}}{z_{00}}\right).$$

Remark. In fact, Σ^{ij} is a quasi-projective variety. Because \mathbb{A}^{n+m} is irreducible, Σ^{ij} is irreducible, hence a quasi-projective variety.

- (3) Let $q = [b_0, \ldots, b_m]$, then $i_q = [x_i b_j]$, $x_i b_j$'s are homogeneous polynomials, so by theorem 5 we know it is a morphism.
- (4) Let $X \subset \mathbb{P}^n, Y \subset \mathbb{P}^m$ be projective varieties. We can decompose the map into the following:

$$\sigma(X \times Y) = \bigcup_{i,j} \sigma(X \times Y) \cap U_{ij}$$

=
$$\bigcup_{i,j} \sigma^{ij} (\varphi_i(X \cap U_i) \times \varphi_j(Y \cap U_j))$$

 $\varphi_i(X\cap U_i)$ and $\varphi_j(Y\cap U_j)$ are closed subsets of \mathbb{A}^n and \mathbb{A}^m respectively. By the theorem 6 $\varphi_i(X\cap U_i)\times \varphi_j(Y\cap U_j)$ is closed in \mathbb{A}^{n+m} . Since σ^{ij} is an isomorphism, then $\sigma^{ij}(\varphi_i(X\cap U_i)\times \varphi_j(Y\cap U_j))$ is closed in $\Sigma^{ij}=\Sigma\cap U_{ij}$. So $\sigma(X\times Y)$ is closed in Σ , hence closed in \mathbb{P}^N because Σ itself is closed. To show its irreducible, we use the lemma 2. Since σ is injective we can endow $\mathbb{P}^n\times \mathbb{P}^m$ with the topological structure of \mathbb{P}^N , hence we can identify $\mathbb{P}^n\times \mathbb{P}^m$ with Σ provided with the topology induced from \mathbb{P}^N . Now we can use the lemma 2, we have known i_q and j_p are continuous, so $\sigma(X\times Y)$ is irreducible. For quasi-projective conditions ,we just get the conclusion by simply difference two projective varieties.

Remark. For $X \subset \mathbb{P}^n$ and $Y \subset \mathbb{P}^m$ we can now identify $X \times Y$ with $\sigma(X \times Y) \subset \mathbb{P}^N$. In particular we can identify $\mathbb{P}^n \times \mathbb{P}^m$ with Σ .

From this perspective, part (2) of the theorem just says $U_i \times U_j \subset \mathbb{P}^n \times \mathbb{P}^m$ is open and $\varphi_i \times \varphi_j : U_i \times U_j \to \mathbb{A}^{n+m}$ is an isomorphism.

Proposition 10 (Universal Property). Let X, Y be quasi-projective varieties, then

(1) The projections

$$p_1 = (x_1, \dots, x_n) : X \times Y \to X$$

 $p_2 = (y_1, \dots, y_m) : X \times Y \to Y$

are morphisms.

(2) Let Z be a variety. The morphism $\varphi: Z \to X \times Y$ are precisely the

$$(f,g): Z \to X \times Y, \quad p \to (f(p),g(p)) \quad \forall p \in Z$$

where $f: Z \to X$ and $g: Z \to Y$ are morphisms. In other words, $\varphi: Z \to X \times Y$ is a morphism if and only if both $p_1 \circ \varphi$ and $p_2 \circ \varphi$ are morphisms.

Proof. (1) It is enough to show $p_1|_{U_i\times U_j}$ is a morphism from $U_i\times U_j$ to U_i . Identify $U_i\times u_j$ with \mathbb{A}^{n+m} and U_i with \mathbb{A}^n , then we can see that p_1 is the same as the projection defined by the proposition 9, so it is a morphism.

(2) \Rightarrow : Let $\varphi: Z \to X \times Y$ be a morphism. Then $f:=p_1 \circ \varphi$ and $g:=p_2 \circ \varphi$ are morphisms.

 \Leftarrow : Let $f: Z \to X$ and $g: Z \to Y$ be morphisms. Define

$$Z^{ij} := f^{-1}(U_i) \cap g^{-1}(U_j).$$

Then (f,g) is a morphism $\Leftrightarrow (f,g)|_{Z^{ij}}$ is a morphism for $i=1,\ldots,n, j=1,\ldots,m$. Consider the following mapping chain

$$Z^{ij} \xrightarrow{(f,g)} (X \times Y) \cap (U_i \times U_i) \xrightarrow{\varphi_i \times \varphi_j} \varphi_i(X \cap U_i) \times \varphi_i(Y \cap U_i) \subset \mathbb{A}^{n+m}.$$

the whole chain $(\varphi_i \circ f, \varphi_j \circ g) : Z^{ij} \to \mathbb{A}^{n+m}$ is a morphism, so (f,g) is a morphism.

Corollary 4. Let X_1, X_2, Y_1, Y_2 be varieties. If $f: X_1 \to Y_1$ and $X_2 \to Y_2$ are morphisms, then the map:

$$\begin{array}{ccc} f \times g : X_1 \times X_2 & \to Y_1 \times Y_2 \\ (p,q) \to (f(p),g(q)) & \end{array}$$

is a morphism. In particular, if X_1 is isomorphic to Y_1 and X_2 is isomorphic to Y_2 , then $X_1 \times X_2$ is isomorphic to $Y_1 \times Y_2$

Proof. We can write $f \times g$ as $f \circ p_1$ and $g \circ p_2$, both $f \circ p_1$ and $g \circ p_2$ are morphisms, so $f \times g = (f \circ p_1, g \circ p_2)$ is a morphism.

Lemma 3. The closed subset in $\mathbb{P}^n \times \mathbb{P}^m$ is the zero set of sets of polynomials of $f_k(x_0, \ldots, x_n, y_0, \ldots, y_m)$ for $k = 1, \ldots, r$ which are homogeneous in x_i and y_j , and the degree in x_i is equal to the degree in y_j , we called it behomogeneous.

Proof. Let $W \subset \mathbb{P}^n \times \mathbb{P}^m$ be closed. $W = \sigma^{-1}(A)$, for $A \subset \mathbb{P}^N$ closed. Then A is the zero set of homogeneous polynomials in z_{ij} , write it as $A = (f_1(z_{ij}), \ldots, f_r(z_{ij}))$. Then we get $W = (f_1(x_iy_j), \ldots, f_r(x_iy_j))$. For $k = 1, \ldots, r$, $f_k(x_iy_j)$ are bihomogeneous. Conversely, assume

$$W = Z(g_1(x_0, \dots, x_n, y_0, \dots, y_m), \dots, g_l(x_0, \dots, x_n, y_0, \dots, y_m))$$

where g_k are bihomogeneous. Then

$$(\varphi_i \times \varphi_j)(W \cap (U_i \times U_j)) = Z(g_1(x_0, \dots, x_i = 1, \dots, x_n, y_0, \dots, y_j = 1, \dots, y_m), \dots, g_l(x_0, \dots, x_i = 1, \dots, x_n, y_0, \dots, y_0,$$

Definition 24. Let X be a variety, the diagonal is

$$\Delta_X := \{(p, p) \in X \times X | p \in X\} \subset X \times X.$$

The diagonal morphism is

$$\delta_X: X \to \Delta_X \subset X \times X
p \to (p, p).$$

Lemma 4. Δ_X is closed in $X \times X$ and $\delta_X : X \to \Delta_X$ is an isomorphism.

Proof. Any variety X is isomorphic to a locally closed subvariety of some projective space, so we can assume $X \subset \mathbb{P}^n$ is locally closed, then

$$\Delta_X = \Delta_{\mathbb{P}^n} \cap (X \times X).$$

Thus we know if $\Delta_{\mathbb{P}^n}$ is closed then Δ_X is closed in $X \times X$. In fact $\Delta_{\mathbb{P}^n} = Z\left(\{x_iy_j - x_jy_i | i, j = 0, \dots, n\}\right)$ is closed.

 $\delta_X: X \to \Delta_X$ is isomorphic because $p_1: \Delta_X \to X$ is its inverse morphism. \square

Remark. The fact that $\Delta_X \subset X \times X$ is closed replaces for us the Hausdorff property in topology.

Definition 25. A variety is called separated if $\Delta_X \subset X \times X$ is closed. By the lemma 4 all varieties are separated.

Corollary 5. Let $\varphi, \psi : X \to Y$ be morphisms of varieties, then $W = \{p \in X | \varphi(p) = \psi(p)\}$ is closed in X. In particular, if $\varphi|_U = \psi|_U$ for an open subset of X, then $\varphi = \psi$.

Proof. See the following chain

$$X \xrightarrow{\delta_X} \Delta_X \xrightarrow{\varphi \times \psi} Y \times Y.$$

So $W = \delta^{-1}((\varphi \times \psi)^{-1}(\Delta_Y))$ is closed. Because varieties are irreducible, the open set U is dense in X, let $\omega = \varphi - \psi$ and we get l(x) = 0 in U, hence l = 0 in X because of the continuity of l, hence $\varphi = \psi$.

Definition 26. Let $\varphi: X \to Y$ be a morphism of varieties. The graph of φ is defined as

(3.3)
$$\Gamma_{\varphi} := \{ (p, \varphi(p)) | p \in X \} \subset X \times Y.$$

Corollary 6. Γ_{φ} is closed in $X \times Y$.

Proof. Define the map

$$\begin{array}{ccc} \varphi \times \operatorname{id}_Y : X \times Y & \to Y \times Y \\ (p,q) & \to (\varphi(p),q). \end{array}$$

Then we have $\Gamma_{\varphi} = (\varphi \times id_Y)^{-1}(\Delta Y)$, so it is closed. In fact Γ_{φ} is isomorphic to Y

Definition 27. A map $\varphi: X \to Y$ of topological spaces is called closed if $\varphi(Z)$ is closed in Y for all closed subsets $Z \subset X$.

Definition 28. A variety complete if the projection $p_2: X \times Y \to Y$ is a closed map for all varieties Y.

Remark. Completeness replaces for us compactness in topology.

Example 3. \mathbb{A}^1 is not complete. Let $Z = Z(x_1y_1 - 1) \subset \mathbb{A}^2 = \mathbb{A}^1 \times \mathbb{A}^1$, then $p_2(Z) = \mathbb{A}^1 \setminus \{0\}$ is not closed in \mathbb{A}^1 .

Proposition 11. Let X be a complete variety, $\varphi : X \to Y$ be a morphism of varieties. Then $\varphi(X)$ is closed in Y.

Proof. Since $\Gamma_{\varphi} \subset X \times Y$ is closed and $\varphi(X) = p_2(\Gamma_{\varphi})$, thus if X is complete, $\varphi(X)$ is closed in Y.

Theorem 8. All projective varieties are complete.

Proof. We finish the proof by two steps.

(1) Main step to show $p_2: \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^m$ is closed. Let $X \subset \mathbb{P}^n \times \mathbb{P}^m$ be closed, we can write it as

$$X = Z(f_1(x, y), \dots, f_r(x, y))$$

where f_i isbihomogeneous, $x=(x_0,\ldots,x_n),y=(y_0,\ldots,y_m)$. We can assume all f_i have the same degree d in y. If f_j has a lower degree l, we can replace it by polynomials $y_0^{d-l}f_j,y_1^{d-l}f_j,\ldots,y_n^{d-l}f_j$. Fix a point $q\in\mathbb{P}^m$, then $q\in p_2(X)\Leftrightarrow Z(f_1(x,q),\ldots,f_r(x,q))\neq\emptyset$. By the projective Nullstellensatz, this is equivalent to:

$$\forall s > 0, \ (*) \ \mathfrak{a} := \langle f_1(x,q), \dots, f_r(x,q) \rangle$$
 does not contain all monomials of degree s in x .

It is trival for s < d, so it is enough to show:

$$\forall s \geq d$$
, the set $X_s := \{q \in \mathbb{P}^m | q \text{ satisfies the condition } (*)\}$ is closed in \mathbb{P}^m . Hence $p_2(X) = \bigcap_{s > d} X_s$ is closed in \mathbb{P}^m .

Denote monomials in x of degree s with $M_i(x)$, $i=1,\ldots,\binom{n+s}{n}$. Denote monomials in x of degree s-d with $N_j(x)$, $j=1,\ldots,\binom{n+s-d}{n}$. The elements of degree s in $\mathfrak a$ are the linear span of $\{N_i(x)f_j(x,q)|i=1,\ldots,\binom{n+s-d}{n},j=0,\ldots,r\}$. Define all $\{N_i(x)f_j(x,y)\}$ by $\{G_k(x,y),k=1,\ldots,t\}$. The condition (*) is equivalent to:

 $\{G_k(x,q)\}\$ does not equal to the whole space of degree s in x.

We can write $G_k(x,y) = \sum_{i=1}^{\binom{n+s}{n}} A_{ik}(y) M_i(x)$. The dimension of the linear span of $\{G_k(x,q), k=1,\ldots,t\}$ is the rank of the matrix $A:=(A_{ik}(q))$. Thus the condition (*) is equivalent to $\operatorname{rank}(A) < \binom{n+s}{n}$. Thus

$$\{q\in\mathbb{P}^m|q\text{ satisfies the condition }(*)\}=\text{ zero set of all }\binom{n+s}{n}\times\binom{n+s}{n}\text{ minors of }A.$$

Thus $p_2(X)$ is closed in \mathbb{P}^m .

(2) General case. First show \mathbb{P}^n is completed. Let Y be a variety, we can assume $Y \subset \mathbb{P}^m$ is locally closed subvariety. Let $Z \subset \mathbb{P}^n \times Y$ be closed in $\mathbb{P} \times Y$, \bar{Z} be the closure of Z in $\mathbb{P}^n \times \mathbb{P}^m$. Then $p_2(\bar{Z})$ is closed in \mathbb{P}^m , hence $p_2(Z) = p_2(\bar{Z} \cap (\mathbb{P}^n \times Y)) = p_2(\bar{Z}) \cap Y$ is closed in Y. Finally, let $X \subset \mathbb{P}^n$ be closed

subvariety, $Z \subset X \times Y$ be closed, it follows that Z is also closed in $\mathbb{P}^n \times Y$, therefore by trival step $p_2(Z)$ is closed in Y.

 $Email\ address{:}\ \verb|wcghdpwyl@126.com|$