Predicting Hotel Reservation Cancellations

•••

Nimra Shakoor (ns924), Preeti Uppuluri (pnu3), Ashley Yu (yy346)

Problem

- Booking cancellations result in losses of profit for hotels
- The percentage of booking cancellations has been increasing over time [1]

 Knowing the likelihood of a hotel booking being canceled might help them decide how to take action in advance, such as through pricing, advertising, or overbooking

Pictured: Canceled bookings per month over time

Techniques

- Models
 - o SVM
 - o Random Forests
 - Logistic Regression
- Validation
 - o Hyperparameter search
 - o 3-fold cross validation

Model	Hyperparameter	Values
SVM	С	[0.01, 0.1, 1, 10]
	Kernel	[poly, rbf]
Random Forests	n_estimators	[200, 1000, 2000]
	max_depth	[10, 50 , 100, None]
Logistic Regression	С	[0.01, 0.1, 1, 10]
	Solver	[lbfgs, liblinear, newton-cg, newton-cholesky, sag, saga]

Results: SVM

- Metrics
 - \circ Accuracy = 0.63
 - \circ Precision = 1
 - \circ Recall = 0.63
 - \circ F1 = 0.78
 - False Negative Rate = 1
- All combinations of hyperparameters performed the same; neither the C-value nor the kernel used yielded different results

Figure: SVM AUC/ROC Curve

Results: Logistic Regression

- Average cross-validation score = 0.762
- Optimal hyperparameters
 - \circ C = 10
 - Solver = 'newton-cholesky'
- Metrics
 - \circ Accuracy = 0.82
 - \circ Precision = 0.91
 - \circ Recall = 0.82
 - \circ F1 = 0.86
 - False Negative Rate = 0.18

Results: Random Forests

- Overall best performing model
- Optimal hyperparameters
 - \circ n_estimators = 2000
 - \circ max_depth = 50
- Metrics
 - \circ Accuracy = 0.87
 - \circ Precision = 0.91
 - \circ Recall = 0.89
 - \circ F1 = 0.90
 - False Negative Rate = 0.11

Conclusion

- Best-performance Model is Random Forest
- Confident with our results
 - Data Quality and Processing
 - Multiple Metrics and Validation Techniques
 - Model Interpretability
- Potential "Weapon of Math Destruction"
 - If being used inappropriately
 - o Promote responsible and ethical use of our model

Future Work

- Generalization
 - Compare performance on hotels in vs. outside Portugal
 - How does the model perform on more recent data?

- Different methods
 - Change the framing of the problem: time-series
 - Try more complex models: neural networks

Thank You!

References

[1] P. Delgado, "Cancellations shooting up: Implications, costs and how to reduce them," May 2016. [Online]. Available:

https://www.mirai.com/blog/cancellations-shooting-up-implications-costs-and-how-to-reduce-them/