2/13/2016 ch2 sub3

Next: About this document ...

The input and output resistances R_{in} and R_{out} , as well as the voltage gain A_{oc} of a two-port network can be obtained experimentally. First, connect an ideal voltage source v_s (a new battary with very low internal resistance) in series with a resistor R_s , and then connect load R_L of two different resistances to the output port. Now the three parameters can be derived from the known values of v_s , R_s and the two measurements of the load voltage v_{out} , corresponding to the two resistance values used.

Assume $v_s=1.5V$, $R_s=5k\Omega$, and the input voltage is measured to be $v_{in}=1.25V$; also, assume the two different load resistors used are $R_1=150\Omega$ and $R_2=200\Omega$ respectively, with the two corresponding output voltage $v_1=18.75V$ and $v_2=20$. Find R_{in} , R_{out} and A_{oc} .

Solution:

First consider the voltage v_{in} of the input port:

$$v_{in} = v_s \frac{R_{in}}{R_s + R_{in}} = 1.5 \frac{R_{in}}{5k\Omega + R_{in}} = 1.25V$$

Solving this equation for R_{in} , we get $R_{in}=25k\Omega$

Next consider the voltage of the output port:

$$v_{out} = Av_{in} \frac{R_L}{R_L + R_{out}}$$

i.e.,

$$R_L A v_{in} - v_{out} R_{out} = v_{out} R_L$$

Using the values of R_L and V_L of the two experiments, we get

2/13/2016 ch2_sub

$$\begin{cases} 150Av_{in} - 18.75R_{out} = 2812.5\\ 200Av_{in} - 20.00R_{out} = 4000 \end{cases}$$

Solving these two equations we get

$$\left\{ \begin{array}{l} R_{out} = 50\Omega \\ Av_{in} = 25V \end{array} \right.$$

But we know $v_{in} = 1.25V$, we get A = 20.

• About this document ...

Next: About this document ...

Ruye Wang 2016-02-13