DMA Domácí úkol č. 6a

Tento úkol vypracujte po přednášce a před cvičením, na druhé straně je řešení. Pokud vám něco není jasné, zeptejte se na cvičení nebo na konzultaci.

1. Uvažujte následující relace na \mathbb{N} :

 $a\mathcal{R}b$ právě tehdy, když a < b;

aSb právě tehdy, když a dělí b a $a \neq b$.

Rozhodněte, zda složená relace $S \circ \mathcal{R}$ (pozor, nejprve \mathcal{R} , pak S) obsahuje dvojici (3, 20) a dvojici (3, 7). Odpovědi zdůvodněte.

2. Nakreslete Hasseův diagram pro množinu $A = \{2,4,6,12,24,36\}$ uspořádanou relací dělitelnosti, tedy aRb jestliže a dělí b.

Najděte její maximum, minimum, největší a nejmenší prvek, pokud existují.

Najděte nějaké lineární rozšíření této uspořádané množiny.

Řešení:

1. Aby byla nějaká dvojice (x, z) v relaci $S \circ \mathcal{R}$, tak se musí najít číslo y takové, že $x\mathcal{R}y$ a $y\mathcal{S}z$ (neboli zkráceně $x\mathcal{R}y\mathcal{S}z$). Co to znamená? Musí být splněno x < y a y dělí z a $y \neq z$.

(3,20): Hledáme y splňující 3 < y, y dělí 20 a $y \neq 20$. Vyhovují y = 4, y = 5 a y = 10, ale stačilo by i jedno. Víme tedy, že $(3,20) \in \mathcal{S} \circ \mathcal{R}$.

Symbolicky: Pokud použiji y=5, tak mám řetězec 3 $\xrightarrow{\mathcal{R}}$ 5 $\xrightarrow{\mathcal{S}}$ 20, proto 3 $\xrightarrow{\mathcal{S} \circ \mathcal{R}}$ 20.

(3,7): Hledáme y splňující 3 < y, y dělí 7 a $y \neq 7$. Pak musí být $4 \leq y \leq 6$ a mezi těmito čísly žádné nedělí 7. Proto neexistuje y, jaké potřebujeme, a $(3,7) \notin \mathcal{S} \circ \mathcal{R}$.

2.

Maximální prvky jsou 24,36, největší prvek neexistuje, minimální prvek je 2, nejmenší prvek je 2. Pro linearizaci jsou čtyři možnosti:

$$2 \prec_L 4 \prec_L 6 \prec_L 12 \prec_L 24 \prec_L 36$$

nebo

$$2 \prec_L 4 \prec_L 6 \prec_L 12 \prec_L 36 \prec_L 24$$

nebo

$$2 \prec_L 6 \prec_L 4 \prec_L 12 \prec_L 24 \prec_L 36$$

nebo

$$2 \prec_L 6 \prec_L 4 \prec_L 12 \prec_L 36 \prec_L 24.$$