PAT-NO:

JP02000100452A

DOCUMENT-IDENTIFIER:

JP 2000100452 A

TITLE:

SOLID HIGH POLYMER ELECTROLYTE FUEL

CELL AND MANUFACTURE

THEREFOR

PUBN-DATE:

April 7, 2000

INVENTOR-INFORMATION:

COUNTRY NAME NISHIDA, KAZUFUMI N/AN/A HADO, KAZUHITO N/A OBARA, HIDEO GYOTEN, HISAAKI N/A

ASSIGNEE-INFORMATION:

COUNTRY N/A

MATSUSHITA ELECTRIC IND CO LTD

APPL-NO:

JP10266221

APPL-DATE:

September 21, 1998

INT-CL (IPC): H01M008/02, C25D015/02 , H01M008/10

ABSTRACT:

PROBLEM TO BE SOLVED: To excellently maintain the electric conductivity of a separator, to reduce the cost, and to enable long-term use by

improving corrosion resistance by stacking cells through a metallic

separator provided with a composite plated layer containing a water repellent material and metal on the surface.

SOLUTION: A pair of electrodes having a catalytic reaction

layer are arranged by sandwiching a solid high polymer electrolyte film for selectively transporting a hydrogen ion to form a cell, fuel gas containing hydrogen is supplied to one electrode, and oxidizing agent gas containing oxygen is supplied to the other electrode. The cell is stacked for plural stages through a metallic separator to obtain a solid high polymer fuel cell. The metallic separator is constituted by forming a groove of a gas flow passage by machining a stainless steel plate by a press and also forming a composite plated layer containing a water repellent material and metal. For example, the water repellent material is desirably pitch fluoride and graphite fluoride having electron conductivity, and the metal is desirably gold, silver, nickel or chrome.

COPYRIGHT: (C) 2000, JPO

(19)日本国特許庁 (JP):

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-100452 (P2000-100452A)

(43)公開日 平成12年4月7日(2000.4.7)

(51) Int.CL.7		識別記号	FΙ			テーマコード(参考)
H01M	8/02		H01M	8/02	В	5H026
C 2 5 D	15/02		C 2 5 D	15/02	H	
H01M	8/10		H01M	8/10		

		審査請求	未請求 請求項の数7 OL (全 9 頁)
(21)出願番号	特顯平 10-266221	(71)出顧人	
(22)出顧日	平成10年9月21日(1998.9.21)		松下電器産業株式会社 大阪府門真市大字門真1006番地
(22) 山麓口		(72)発明者	西田 和史
	0 •		大阪府門真市大字門真1006番地 松下電器
			産業株式会社内
		(72)発明者	羽藤 一仁
			大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(74)代理人	100097445
			弁理士 岩橋 文雄 (外2名)
			民物医1元钟之

最終質に続く

(54) 【発明の名称】 固体高分子電解質型燃料電池とその製造法

(57)【要約】

【課題】 従来、固体高分子電解質型燃料電池のセパレ ータ板はカーボンを用い、この表面部分を切削加工し て、ガス流通路を形成していた。この方法では、カーボ ン板の材料コストと共に、これを切削するためのコスト を引き下げることが困難であった。これに替わり、金属 を用いる方法が考えられるが、金属が高温で酸化性の雰 囲気に曝されるため、長期間使用すると金属の腐食や溶 解が起こり、電池の発電効率が次第に低下するという課 題があった。

【解決手段】 セパレータを構成する金属板の表面部分 に、稅水性材料と金属とを含有した複合メッキ層を形成 する。

【特許請求の範囲】

【請求項1】 固体高分子電解質膜と、前記固体高分子 電解質膜を挟んで配した触媒反応層を有する一対の電極 と、前記電極の一方に水素を含有する燃料ガスを供給し かつ他方に酸素を含む酸化剤ガスを供給する手段とを具 備した単電池を、金属セパレータを介して積層した固体 高分子電解質型燃料電池であって、前記金属セパレータ の表面に飛水性材料と金属とを含有した複合メッキ層を 形成したことを特徴とする固体高分子電解質型燃料電

1

【請求項2】 複合メッキ層を形成する撥水性材料は、 電子伝導性を有することを特徴とする請求項1記載の固 体高分子電解質型燃料電池。

【請求項3】 複合メッキ層を形成する撥水性材料は、 フッ化ピッチ、フッ化黒鉛より選ばれる少なくとも1種 を含むことを特徴とする請求項2記載の固体高分子電解 質型燃料電池。

【請求項4】 複合メッキ層を形成する挽水性材料は、 ポリテトラフルオロエチレン、テトラフルオロエチレン エチレンーパーフルオロアルキルビニルエーテル共重合 体より選ばれる少なくとも1種を含むことを特徴とする 請求項1記載の固体高分子電解質型燃料電池。

【請求項5】 複合メッキ層を形成する金属は、金、 銀、ニッケル、クロムより選ばれる少なくとも1種を含 むことを特徴とする請求項1、2、3または4記載の固 体高分子電解質型燃料電池。

【請求項6】 複合メッキ層の形成方法は、カチオン性 界面活性剤と、金属イオンと、稅水性材料とを少なくと も含有し、pHを3以上6以下に調整したメッキ水溶液 30 を用いて、電解メッキにより形成することを特徴とする 請求項1、2、3、4または5記載の固体高分子電解質 型燃料電池の製造法。

【請求項7】 電解メッキ時に流す電流は、被メッキ面 の面積当たり0. 1A/c m²以上で1A/c m²以下の 値であることを特徴とする請求項6記載の固体高分子電 解質型燃料電池の製造法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ポータブル電源、 電気自動車用電源、家庭内コージェネシステム等に使用 する固体高分子電解質を用いた燃料電池とその製造法に 関する。

[0002]

【従来の技術】固体高分子電解質を用いた燃料電池は、 水素を含有する燃料ガスと、空気など酸素を含有する酸 化剤ガスとを、電気化学的に反応させることで、電力と 熱とを同時に発生させるものである。その構造は、ま ず、水素イオンを選択的に輸送する高分子電解質膜の両 面に、白金系の金属触媒を担持したカーボン粉末を主成 50

分とする触媒反応層を形成する。次に、この触媒反応層 の外面に、燃料ガスの通気性と、電子伝導性を併せ持つ 拡散層を形成し、この拡散層と触媒反応層とを合わせて 電極とする。

【0003】次に、供給する燃料ガスが外にリークした り、二種類の燃料ガスが互いに混合しないように、電極 の周囲には高分子電解質膜を挟んでガスシール材やガス ケットを配置する。このシール材やガスケットは、電極 及び高分子電解質膜と一体化してあらかじめ組み立て、 10 これを、MEA (電極電解質膜接合体)と呼ぶ。MEA の外側には、これを機械的に固定するとともに、隣接し たMEAを互いに電気的に直列に接続するための導電性 のセパレータ板を配置する。セパレータ板のMEAと接 触する部分には、電極面に反応ガスを供給し、生成ガス や余剰ガスを運び去るためのガス流路を形成する。ガス 流路はセパレータ板と別に設けることもできるが、セパ レータの表面に溝を設けてガス流路とする方式が一般的 である。

【0004】この溝に燃料ガスを供給するためには、燃 ーヘキサフルオロプロピレン共重合体、テトラフルオロ 20 料ガスを供給する配管を、使用するセパレータの枚数に 分岐し、その分岐先を直接セパレータ状の溝につなぎ込 む配管治具が必要となる。この治具をマニホールドと呼 び、上記のように燃料ガスの供給配管から直接つなぎ込 むタイプを外部マニホールドと呼ぶ。このマニホールド には、構造をより簡単にした内部マニホールドと呼ぶ形 式のものがある。内部マニホールドとは、ガス流路を形 成したセパレータ板に、貫通した穴を設け、ガス流路の 出入り口をこの孔まで通し、この孔から直接燃料ガスを 供給するものである。

> 【0005】燃料電池は運転中に発熱するので、電池を 良好な温度状態に維持するために、冷却水等で冷却する 必要がある。 通常、 1~3セル毎に冷却水を流す冷却部 をセパレータとセパレータとの間に挿入するが、セパレ ータの背面に冷却水流路を設けて冷却部とする場合が多 い。これらのMEAとセパレータおよび冷却部を交互に 重ねていき、10~200セル積層した後、集電板と絶 縁板を介し、端板でこれを挟み、締結ボルトで両端から 固定するのが一般的な積層電池の構造である。

【0006】このような固体高分子電解質型の燃料電池 では、セパレータは導電性が高く、かつ燃料ガスに対し てガス気密性がよく更に水素/酸素を酸化還元する際の 反応に対して高い耐食性を持つ必要がある。 このような 理由で従来のセパレータは通常グラッシーカーボンや膨 張黒鉛などのカーボン材料で構成し、ガス流路もその表 面での切削や、膨張黒鉛の場合は型による成型で作製し ていた.

【0007】しかしながら近年、従来より使用されたカ ーボン材料に代えて、ステンレスなどの金属を用いる試 みが行われている。

[0008]

【発明が解決しようとする課題】従来のように、カーボ ン板の切削による方法は、カーボン板の材料コストと共 に、切削コストを引き下げることが困難であり、また膨 張黒鉛を用いた方法も材料コストが高く、これが実用化 のための障害である。

【0009】また、上述の金属を用いる方法では、金属 が高温で酸化性の雰囲気に曝されるため、長時間使用す ると金属の腐食や溶解が起こる。金属が腐食すると、腐 食部分の電気抵抗が増大し、電池の出力が低下する。ま た、金属が溶解すると、溶解した金属イオンが高分子電 10 解質に拡散し、これが高分子電解質のイオン交換サイト にトラップされ、結果的に高分子電解質自身のイオン電 導性が低下する。これらの原因により、金属をそのまま セパレータに使用し、電池を長期間運転すると、発電効 率が次第に低下するという課題があった。

[0010]

【課題を解決するための手段】以上の課題を解決するた め、本発明の固体高分子電解質型燃料電池は、固体高分 子電解質膜と、前記固体高分子電解質膜を挟んで配した 触媒反応層を有する一対の電極と、前記電極の一方に水 20 が、余り電流値を下げると、作業時間が長くな留言う、 素を含有する燃料ガスを供給しかつ他方に酸素を含む酸 化剤ガスを供給する手段とを具備した単電池を、金属セ パレータを介して積層した固体高分子電解質型燃料電池 であって、前記金属セパレータの表面に飛水性材料と金 属とを含有した複合メッキ層を形成したことを特徴とす

【0011】このとき、複合メッキ層を形成する撥水性 材料は、電子伝導性を有することが有用である。

【0012】特に、複合メッキ層を形成する飛水性材料 は、フッ化ピッチ、フッ化黒鉛より選ばれる少なくとも 30 パージョン溶液を混合し、ペースト状にした。このペー 1種を含むことが望ましい。

【0013】また、複合メッキ層を形成する攪水性材料 は、ポリテトラフルオロエチレン、テトラフルオロエチ レンーヘキサフルオロプロピレン共重合体、テトラフル オロエチレンーパーフルオロアルキルビニルエーテル共 重合体より選ばれる少なくとも1種を含むことが望まし 63"

【0014】また、複合メッキ層を形成する金属は、 金、銀、ニッケル、クロムより選ばれる少なくとも1種 を含むことが望ましい。

【0015】また、複合メッキ層の形成方法は、カチオ ン性界面活性剤と、金属イオンと、廃水性材料とを少な くとも含有し、pHを3以上6以下に調整したメッキ水 溶液を用いて、電解メッキにより形成することを特徴と する。

【0016】このとき、電解メッキ時に流す電流は、被 メッキ面の面積当たり0.1A/cm²以上で1A/c m²以下の値であることが望ましい。

[0017]

【発明の実施の形態】本発明のポイントは、固体高分子 50 深さ(山6の高さ)は約1mmとした。次に、この表面

電解質型燃料電池のセパレータを金属材料で構成し、セ パレータの表面に飛水性材料と金属とを含有した複合メ ッキ層を形成することにある。この構成により金属を材 料とする導電性セパレータの導電性を維持したまま、酸 性雰囲気に曝させれても化学的不活性を維持させること が出来る。ここで用いる飛水性材料は、ポリテトラフル オロエチレンなどのポリマーを用いると、耐酸化性雰囲 気に対する安定性は高くなるが、電気抵抗が増大する 分、出力特性が低下する。 この点、 疣水性材料としてフ ッ化ビッチやフッ化黒鉛などの電子伝導性材料を用いる と、出力特性を損ねることはない。

【0018】また、メッキ層の膜厚を厚くすると、耐酸 化性雰囲気に対する安定性は高くなるが、電気抵抗が増 大する分、出力特性が低下する。メッキ層の形成は、メ ッキ液にカチオン性界面活性剤を加え、pHを3以上6 以下に調整し、被メッキ面の面積当たり0.1A/cm 2以上で1A/cm2以下の値であることが望ましい。電 解メッキを施すとき、電流は出来る限り小さくすると、 良好な特性を有する複合メッキ層を作ることが出来る 課題が発生する。

[0019]

【実施例】以下、本発明の好ましい実施例を、図面を参 照しながら詳細に説明する。

【0020】 (実施例1) アセチレンブラック系のカー ボン粉末に、平均粒径約30の白金粒子を25重量%担 持したものを電極の触媒とした。この触媒粉末をイソプ ロパノールに分散させた溶液に、パーフルオロカーボン スルホン酸の粉末をエチルアルコールに分散したディス ストを原料とし、厚み250µmのカーボン不織布3の 一方の面に、スクリーン印刷法により塗布し、電極触媒 層2を形成した。形成後の反応電極中に含まれる白金量 は0.5mg/cm²、パーフルオロカーボンスルホン 酸の量は1.2mg/cm²となるよう調整した。

【0021】つぎに、上記の方法で作成した電極を長さ および幅をともに10cmに切断し、これより一回り大 きい長さおよび幅が12cmのプロトン伝導性高分子電 解質膜1の中心部の両面に、印刷した触媒層が電解質膜 40 側に接するようにホットプレスによって接合して、電極 /電解質接合体 (MEA) を作成した。ここでは、プロ トン伝導性高分子電解質として、パーフルオロカーボン スルホン酸を25µmの厚みに薄膜化したものを用い

【0022】つぎに図2を用いて、セパレーターの作成 方法を記述する。厚さ0.3mmのSUS316L製の ステンレス板を用い、その中央部10cm×9cmの領 域に、5.6mmピッチ (溝幅約2.8mm) の波状加 工部4を、プレス加工により形成した。このとき溝5の

に挽水性材料と金属とを含有した複合メッキ層を形成し た。これに用いたメッキ液は、フッ化ピッチの微粉砕粒 子(平均粒径1.3 mm、平均分子量2000、F/C 原子比=1.3)を20gと、カチオン性界面活性剤で ある第3級パーフルオロアンモニウム{CaF17SO2NH(CH2) aN+ (CHa)a・Cl-}を15gと、スルファミン酸ニッケル を150gと、塩化ニッケルを50gと、硼酸を50g とを、100000の水に溶かすことで作成した。

【0023】次いで、正極および負極として、それぞれ ニッケル板と前記の加工を施したSUS316L板をメ 10 ッキ液につけ、液温45±5℃、pH4.2、電流密度 0. 5A/c m²の条件で、膜厚が7μmとなるまで電 解メッキを行って、ニッケルーフッ化ピッチ複合メッキ 層を形成させた。このときのメッキ液のph調整は、上 述のようにメッキ液中の硼酸の量で制御した。また前記 複合メッキ処理を行った後、ニッケルーフッ化ピッチ複 合メッキ層の組成を公知の方法で確認したところ、N i:フッ化ピッチ=85:15重量比であった。

【0024】次に、図2に示したように、対抗する2辺 にはそれぞれ水素、冷却水、空気を供給・排出するため 20 のマニホールド孔7を設けた。

【0025】次に図3 (a) に示したように、水素側と なるセパレータを2個の溝5が互いに隣り合い、湾曲し てつながるように樹脂でできた凸部8を重ねた。

【0026】この樹脂製の凸部8は、厚みが約1mmで セパレータ板の山6の高さと同じとした。 セパレータ板 の外周部、マニホルド孔7の周囲にも同様に形成し、金 属の形状に対応したガスケット10を構成している。

【0027】さらに図3(b)に示したように、空気側 となるセパレータは隣り合う6個の溝5が、湾曲して連 30 続したガス流通溝を形成するようにした。 空気側と水素 側で構造を変えているのは、空気側と水素側とでガス流 量が25倍程度異なるからである。逆に言えば、このよ うな構造では、ガス流量に応じて樹脂製のガス流通溝9 の形状を変えることにより、最適なガス流速とガス圧損 にする事が可能である。

【0028】次に、図4に示したように、これら2種類 のセパレータとガスケット10により、MEA11をは さみ電池の構成単位とした。図4で示したように、水素 側のガス流通溝12と空気側のガス流通溝13の位置は 40 対応するように構成し、MEA11に過剰なセンダン力 がかからないようにした。単電池を2セル積層ごとに冷 却水を流す冷却部14設けた。冷却部14にはSUS3 16 L製の金属メッシュ15を用いて導電性と冷却水の 流通性を確保し、外周部とガスマニホルド部に樹脂製の ガスケット10を設けることによってシール部とした。 ガスケット10とMEA11、セパレータ板とセパレー 夕板、ガスケット10とセパレータ板などのガスシール が必要な部分はグリース16を薄く塗布することによっ てあまり導電性を低下させずにシール性を確保した。

【0029】以上示したMEA11を50セルを積層し た後、集電板と絶縁板を介し、ステンレス製の単板と締 結ロッドで、 $20 \text{ kg f}/\text{cm}^2$ の圧力で締結した。締 結圧力は小さすぎるとガスがリークし、接触抵抗も大き いので電池性能が低くなるが、逆に大きすぎるとMEA 11が破損したり、セパレータ板が変形したりするので ガス流通溝9の設計に応じて締結圧を変えることが重要

【0030】比較例の電池として、上記実施例の電池の ように表面コートをしないSUS316L板により導電 性セパレータを構成したものを作製した。比較例の電池 で、導電性セパレータ以外は、全て上記実施例の構成と 同一とした。

【0031】このように作製した本実施例と比較例の高 分子電解質型燃料電池を、85℃に保持し、一方の電極 3側に83℃の露点となるよう加湿・加温した水素を、 もう一方の電極3側に78℃の露点となるように加湿・ 加温した空気を供給した。その結果、電流を外部に出力 しない無負荷時には、50Vの電池開放電圧を得た。

【0032】この電池を燃料利用率80%、酸素利用率 40%、電流密度0.5A/cm2の条件で連続発電試 験を行い、出力特性の時間変化を図6に示した。その結 果、比較例の電池は駆動時間と共に出力が低下するのに 比べ、本実施例の電池は、8000時間以上にわたって 1000W (22V-45A) の電池出力を維持するこ とを確認した。

【0033】この実施例ではガス流通溝9が複数の平行 直線の場合を試みたが、図5のように2度の湾曲部17 を経て、ガス供給マニホルド7から、ガス排出マニホル ド孔7をガス流通溝9でつなぐ構造や、巻き貝の殻のよ うに中央部のマニホルド孔7と外側のマニホルド孔7と をガス流通溝9でつなぐ構造など様々な構造も可能であ

【0034】以上の構成ではセパレータ板の表面に形成 したニッケルーフッ化ピッチ複合メッキ層の膜厚を7μ mとし、また、Ni:フッ化ピッチ=85:15重量比 としたが、膜厚を厚くするほど初期出力は低下するが、 長期信頼性が向上することを確認した。さらに、Ni: フッ化ピッチで表わしたフッ化ピッチの組成比を高くす るほど初期特性は低下するが、長期信頼性が向上するこ とを確認した。

【0035】(実施例2)上記実施例1では、ニッケル -フッ化ピッチ複合メッキ層を形成したが、本実施例で は、ニッケルーフッ化黒鉛複合メッキ層を形成し、複合 メッキ層を形成する飛水性材料が電子伝導性を有すると き、特に優れた特性を与えることを示した。

【0036】実施例2の電池として、表面にニッケルーニ フッ化黒鉛複合メッキ層を形成したSUS316L板に より導電性セパレータを構成したものを作製した。なを

50 実施例2では、上記の複合メッキ層の構成以外は全て実

施例1と同一とした。

【0037】このように作製した実施例2の高分子電解 質型燃料電池を、85℃に保持し、一方の電極3側に8 3℃の露点となるよう加湿・加温した水素を、もう一方 の電極3側に78℃の露点となるように加湿・加温した 空気を供給した。その結果、電流を外部に出力しない無 負荷時には、55Vの電池開放電圧を得た。

7

【0038】この電池を燃料利用率80%、酸素利用率 40%、電流密度0.5A/cm2の条件で連続発電試 験を行い、出力特性の時間変化を図7に示した。実施例 10 【0040】 2の電池は、8000時間以上にわたって1089W *

* (24.2V-45A) の電池出力を維持することを確 認した。

【0039】(実施例3)上記実施例1では、ニッケル ーフッ化ピッチ複合メッキ層の形成を、pH4.2、電 流密度0.5A/cm²の条件で行ったが、本実施例で はメッキ液のphと電解の際の電流密度を検討した。そ の結果を表1に示した。なを、phと電流密度以外は全 て実施例1と同一とした。また、phの調整は、メッキ 液中の硼酸量で制御した。

【表1】

工作的100911 4 【数1】				
評価番号	PH	電流密度	電池出力(W)	
计测量子		A/cm²	初期	8000時間
1	4.2	0.05	1150	1100
2	4.2	0.1	1180	1050
3	4.2	0.5	1200	1000
4	4.2	1.0	1220	950
5	4.2	1.1	1250	700
6	4.2	2.0	1260	500
7	1	0.5	1200	100
8	2.5	0.5	1200	500
9	3	0.5	1200	900
10	6.5	0.05	1200	1100

【0041】表1において、特性は、電池の初期出力と 駆動8000時間後の出力とを示した。これより、電解 メッキの際の電流密度が大きいほど、長期使用により劣 化が増加することを見出した。しかし、余り小さい電流 密度でメッキを行うと、工程時間が多大に必要となり、 実用性が損なわれる。また、メッキ液のphを3より小 さくすると、長期使用により劣化が増加することを見出 した。しかし余り中性に近付け過ぎると、電解の際の電 流密度を大きくすることが出来ず、工程時間が多大に必 要となり、実用性が損なわれた。

※【0042】この評価により、pHを3以上6以下に調 整したメッキ水溶液を用いて、電解メッキ時に流す電流 は、被メッキ面の面積当たり0.1A/cm2以上で1 A/cm²以下が、適することを見出した。

【0043】(実施例4)実施例1では、複合メッキ層 を形成する挠水性材料はフッ化ピッチを用い、また、金 属としてニッケルを用いたが、本実施例では、これ以外 の材料を検討した。その結果を表2に示した。

[0044]

%40 【表2】

:

10

評価 号	AB	機水性材料	電池出力(W)		
	金属	放小压物种	初期	8000時間	
11	ニッケル	PTFE	1150	980	
12	ニッケル	TFE-HFP	1130	960	
13	ニッケル	TFE-PFEV	1120	940	
14	金	フッ化ピッチ	1200	1100	
15	銀	フッ化ピッチ	1200	1020	
16	クロム	フッ化ピッチ	1200	1050	
17	クロム	フッ化黒鉛	1250	1060	

PTFE ~ ポリテトラフルオロエチレン

TFE-HFP ~ テトラフルオロエチレンー ヘキサフルオロプロビレン共重合体

TFE-PFEV ~ テトラフルオロエチレン-パーフルオロエチルビニルエーテル共重合体

【0045】その結果、これに用いる金属として、金、 銀、クロムまた、挽水性材料としてポリテトラフルオロ エチレン (重合度約1100)、テトラフルオロエチレ ンーヘキサフルオロプロピレン共重合体 (重合度約10 00、共重合比1:1)、テトラフルオロエチレンーパ ーフルオロエチルビニルエーテル共重合体 (重合度約1 000、共重合比1:1)が優れた特性を有することを 見出した。また、上記テトラフルオロエチレンーパーフ ルオロエチルビニルエーテル共重合体と、同様の構造を 30 /1と、上記の各쁐水性材料を50g/1の割合で添加 有するテトラフルオロエチレンーパーフルオロメチルビ ニルエーテル共重合体(重合度約1000、共重合比 1:1) やテトラフルオロエチレンーパーフルオロプロ ピルビニルエーテル共重合体 (重合度約1000、共重*

. .

* 合比1:1)を用いても同様の特性を得た。

【0046】ただし本実施例では、複合メッキ層の作成 は、メッキ液の液温を55±5℃とし、添加する硼酸の 量を調整してph=5にし、電解電流を0.2A/cm ²とし、1μmの膜厚になるまで電解メッキを行った。 また、用いたメッキ液は、表3に記載した組成のもの に、カチオン性界面活性剤である第3級パーフルオロア ンモニウム {C₈F₁₇SO₂NH(CH₂)₃N+ (CH₃)₃·Cl⁻}を15g した。

[0047] 【表3】

メッキ液の種類	メッキ液の素成
金メッキ	シアン化金カリウム-10g/l, シアン化カリウム-30g/l. 炭酸カリウム-30g/l
銀メッキ	シアン化銀-5g/l シアン化カリウム-20g/l
クロムメッキ	無水クロム酸-250g/I, 硫酸-2.5g/I

【0048】また、本実施例では、上記の複合メッキ層 の構成以外は全て実施例1と同一とした。前記複合メッ キ処理を行った後、金属一挽水材料複合メッキ層の組成 を公知の方法で確認したところ、全ての飛水材料でおお 【0049】以上の構成ではセパレータ板の表面に形成

※は低下するが、長期信頼性が向上することを確認した。 [0050]

【発明の効果】本発明によると、セパレータ板として、 従来のカーボン板の切削工法に替わりステンレスなどの 金属材料を切削加工しないで用いることができるので、 量産時に大幅なコスト低減が図れる。また、セパレータ を一層薄くできるので積層電池のコンパクト化に寄与す

【図面の簡単な説明】

12

11

【図1】本発明の第1の実施例の燃料電池で用いたME Aの断面を示した図

【図2】本発明の第1の実施例の燃料電池で用いた導電性セパレータの構成を示した図

【図3】本発明の第1の実施例の燃料電池で用いた水素 関セパレータの構成を示した図

【図4】本発明の第1の実施例の燃料電池の積層電池の 構成を示した図

【図5】本発明の第1の実施例の燃料電池で用いることができる他の導電性セパレータの構成を示した図

【図6】本発明の第1の実施例の燃料電池の出力特性を 示した図

【図7】本発明の他の実施例の燃料電池の出力特性を示した図

【符号の説明】

1 高分子電解質膜

2 触媒層

- 3 電極
- 4 波状加工部
- 5 溝
- 6 山、
- 7 マニホールド孔
- 路凸 8
- 9 ガス流通溝
- 10 ガスケット
- 10 11 MEA
 - 12 水素側のガス流通溝
 - 13 空気側のガス流通溝
 - 14 冷却部
 - 15 金属メッシュ
 - 16 グリース
 - 17 湾曲部

【図1】 ~

【図2】

【図4】

フロントページの続き

(72)発明者 小原 英夫

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72)発明者 行天 久朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

Fターム(参考) 5H026 AA06 BB00 BB04 CC03 CC08 EE02 EE08 EE11 EE19 HH00 **НН06**