Úvod do lineární regrese

Supplementum ke cvičení 4ST201 Statistika

Lubomír Štěpánek^{1, 2}

¹Oddělení biomedicínské statistiky Ústav biofyziky a informatiky lékařská fakulta Univerzita Karlova, Praha

²Katedra biomedicínské informatiky Fakulta biomedicínského inženýrství České vysoké učení technické v Praze

(2019) Lubomír Štěpánek, CC BY-NC-ND 3.0 (CZ)

Dílo lze dále svobodně šířit, ovšem s uvedením původního autora a s uvedením původní licence. Dílo není možné šířit komerčně ani s ním jakkoliv jinak nakládat pro účely komerčního zisku. Dílo nesmí být jakkoliv upravováno. Autor neručí za správnost informací uvedených kdekoliv v předložené práci, přesto vynaložil nezanedbatelné úsilí, aby byla uvedená fakta správná a aktuální, a práci sepsal podle svého nejlepšího vědomí a svých "nejlepších" znalostí problematiky.

Obsah

Opakování

2 Úvod do lineární regrese

3 Literatura

• V přiloženém souboru _09_cviceni_.xlsx jsou v záložce mzdy_vs_vzdelani vždy hodnoty mezd (v tisících korun) náhodně vybraných jedinců vzhledem k jejich dosaženému vzdělání. Existuje mezi dosaženým vzděláním a průměrnou výší mzdy na hladina významnosti 0,05 závislost?

• Ze 100 hodů jednou mincí padla hlava 60-krát. Je pravděpodobnost padnutí hlavy a orla shodná na hladině významnosti 0.05?

Úvod do lineární regrese

 U 6800 osob byla zjišťována barva očí a vlasů. Výsledky jsou uvedeny v následující tabulce.

		barva vlasů			
		světlá	kaštanová	černá	zrzavá
barva očí	světle modrá	1768	807	189	47
	šedá či zelená	946	1387	746	53
	tmavohnědá	115	438	288	16

Rozhodněme, zda barva očí a barva vlasů jsou navzájem závislé znaky.

Regresní analýza

- regresní analýza se zabývá jednostrannými závislostmi mezi jednou nebo více vysvětlujícími proměnnými X_1,X_2,\dots,X_p a vysvětlovanou proměnnou Y
- ullet "jak X_1 ovlivňuje Y", "jaký dopad má změna X_1 na hodnotu Y"
- závislost je popsána pomocí regresní funkce (přímka, parabola)

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$$

kde koeficienty vyjadřují směr i "sílu" závislosti a $\varepsilon \sim \mathcal{N}(0,1^2)$ je chybová složka

regresní funkci neznáme, odhadujeme ji za pomoci výběrového souboru

$$Y = b_0 + b_1 X$$
$$Y = b_0 + b_1 X + b_2 X^2$$

Odhad parametrů regresní funkce

- parametry regresní funkce jsou obvykle neznámé a je třeba je na základě hodnot výběrového souboru odhadnout
- volí se tzv. kritérium
- zpravidla pro odhad parametrů používáme metodu nejmenších čtverců, kdy minimalizujeme

$$Q = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 existují i jiná kritéria, ale metoda nejmenších čtverců má výhodné statistické vlastnosti

Přímková regrese

přímková regrese je popsána vztahem

$$Y = b_0 + b_1 X$$

mezi závisle proměnnou Y a nezávisle proměnnou X

odhady parametrů b₁ a b₀ isou

$$b_1 = \hat{\beta}_1 = \frac{\overline{xy} - \bar{x}\bar{y}}{\overline{x^2} - \bar{x}^2} = \frac{s_{xy}}{s_x^2}$$
$$b_0 = \hat{\beta}_0 = \bar{y} - b_1\bar{x}$$

ullet závislost obou proměnných měříme pomocí indexu korelace R či indexu determinace I

$$I^2 = R^2 = \frac{S_T}{S_V}, \qquad I = \sqrt{I^2}$$

 posouzení kvality modelu lze testem o regresním parametru a testem o modelu

Test o regresním parametru

- testuje nulovou hypotézu $H_0: \beta_j$ o tom, že j-tý lineární koeficient je roven nule, tedy že j-tý vysvětlující proměnná v modelu nehraje signifikantní roli
- testovým kritériem je

$$T = \frac{\hat{\beta}_j}{s_{\hat{\beta}_j}} \sim t_{1-\alpha/2}(n-p)$$

kde $s_{\hat{eta}_i}$ je směrodatná odchylka odhadu koeficientu \hat{eta}_j a platí

$$s_{\widehat{\beta}_j} = \sqrt{\frac{S_R}{n-p}} \cdot \sqrt{\frac{1}{\sum_{i=1}^n (X_i - \bar{X})^2}}$$

kde $S_R = \sum_{i=1}^n (y_i - \hat{y}_i)^2$ tak, že \hat{y}_i je i-tá vyrovnaná hodnota, tedy hodnota proměnné Y odhadnutá regresní funkcí pro i-té pozorování

Test o regresním modelu

testuje nulovou hypotézu

$$H_0: \beta_0 = \text{konst.} \land \forall j \in \{1, 2, \dots, p\}: \beta_j = 0$$

o tom, že všechny lineární koeficienty je rovny nule (a absolutní člen je konstantní), tedy že regresní model popisuje neexistující závislost mezi Y a X_1, X_2, \ldots, X_p

testovým kritériem je

$$F = \frac{\frac{S_T}{p-1}}{\frac{S_R}{n-p}} \sim F_{1-\alpha}(p-1, n-p)$$

kde $S_T = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2$ je teoretický součet čtverců a $S_R = \sum_{i=1}^n \left(y_i - \hat{y}_i\right)^2$ je reziduální součet čtverců

- V přiloženém souboru _09_cviceni_.xlsx jsou v záložce udrzba_domu_vs_jeho_cena vždy hodnoty nákladů na údržbu domu (v dolarech) a tržní cena domu (v tisících dolarů).
 - (i) Modelujme závislost nákladů na údržbu na ceně tržní domu regresní přímkou.
 - Zhodnoťme kvalitu modelu pomocí koeficientu determinace.
 - Interpretujme věcně hodnotu regresního koeficientu $\hat{\beta}_1$.
 - Odhadněme střední hodnotu nákladů u domů za 80 tisíc dolarů.

Literatura

Děkuji za pozornost!

lubomir.stepanek@vse.cz lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz

https://github.com/LStepanek/4ST201 Statistika