Theorem 1.1. If a graph has an ear-decomposition, then it is 2-connected.

Proof. Let $G_1, ..., G_n$ be the ear-decomposition of G = (V, E) existing by definition. As far as $G_n = G$ it is sufficient to proof that $\forall i \in \{1, ..., n\}$ G_i is 2-connected. This can be done by inducion.

Base($\mathbf{i} = \mathbf{1}$): G_1 is a cycle, hence it is 2-connected.

Step($\mathbf{i} \geq \mathbf{2}$): Per defintion $G_i = G_{i-1} + P_i$, P_i path and $P_i \cap G_{i-1}$ contains exactly the two endpoints of P_i .

Moreover we know that G_{i-1} is 2-connected by induction and P_i is connected by definition. To proof that G_i is 2-connected we have to proof that $H := G_i - \{u\}$ $(u \in V(G_i))$ is connected. Hence 2 cases have to be considered:

- $\mathbf{u} \in \mathbf{G_{i-1}}$ Because G_{i-1} is 2-connected by induction H is connected. Furthermore we know that H contains still one endpoint of P_i or more. Thus H is a composition of two connected graphs, hence H is connected.
- $\mathbf{u} \in \mathbf{P_i} \mathbf{G_{i-1}}$ We know that u is no endpoint of P_i , thus $P' := P_i \{u\}$ is disconnected and is now a forest containing exactly two Trees T_1, T_2 . Nevertheless each tree of P' contains exactly one endpoint of P_i . Hence $G_{i-1} + T_1 + T_2$ is still connected, because T_1, T_2 and G_{i-1} are connected. As far as $G_{i-1} + T_1 + T_2 = G_{i-1} + P_i - \{u\} = G_i - \{u\} = H$, H is connected.

Considering these two cases we know that H is connected, hence G_i is 2-connected.

We finally proofed by induction that $\forall i \in \{1, ..., n\}$ G_i is 2-connected. Thus $G = G_n$ is 2-connected.

For $0 < l < m \le d$, we will construct a graph F(d, l, m).

Figure 1: F(d, l, m)

First, we construct two complete graphs on d+1 vertices. $(V,E) \simeq K_{d+1}$, $(W,E') \simeq K_{d+1}$.

Then, we join m vertices $v_1, ..., v_m \in V$ of the first complete graph and l vertices $w_1, ..., w_l \in W$ of the second such that each v_i has a degree of exactly d+1 and each w_i of at least d+1 ($i \in [m], j \in [l]$).

Formally, for our constructed graph $F(d, l, m) := (V_F, E_F)$, the vertex set is the union of both complete graphs $(V_F = V \cup W)$ and it's edge set is defined by

$$E_F = E \cup E' \cup \{\{v_i, w_j\} \mid \delta_{ij} = 1 \ (i, j \in \mathbb{N})\}$$
 (1)

for a delta function δ_{ij} $(i, j \in \mathbb{N})$

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \text{ or } i > l, j = l \\ 0 & \text{otherwise} \end{cases}$$
 (2)

We will show that

- $\delta(F(d,l,m)) = d$
- $\kappa(F(d,l,m)) = l$
- $\kappa'(F(d,l,m)) = m$

$\delta(\mathbf{F}(\mathbf{d}, \mathbf{l}, \mathbf{m})) = \mathbf{d}$

No degree of a vertex of the complete graphs has been decreased. Thus, $\delta(F(d,l,m)) \geq \delta(K_{d+1}) = d$.

Moreover, we have increased the degree of exactly l+m<2(d+1) vertices. Indeed, the complete graph on d+1 vertices is d-regular and hence there is at least one vertex of degree d in F(d,l,m). Thus, $\delta(F(d,l,m)) \leq d$. From these considerations, $\delta(F(d,l,m)) = d$.

$$\kappa(\mathbf{F}(\mathbf{d}, \mathbf{l}, \mathbf{m})) = \mathbf{l}$$

In F(d, l, m), the two complete graphs are only joined by edges between l vertices of one and m vertices of another complete graph. The graph obviously disconnects by removing those first l vertices. Thus, $\kappa(F(d, l, m)) \leq l$.

Moreover, a complete graph on d+1 vertices is internally connected with $\kappa(K_{d+1})=d>l$. Hence, if we found a subset of l'< l vertices that disconnects F(d,l,m), it had to consist of the complete graphs' vertices that we have affected in our construction. However, between the complete graphs there are l edges not sharing an endpoint.

Thus, it is neither possible to disconnect one of the complete graph by removing less than l vertices nor is it possible to remove the inter-connection between the two complete graphs by removing less than l vertices.

From these considerations, $\kappa(F(d, l, m)) = l$.

$$\kappa'(\mathbf{F}(\mathbf{d}, \mathbf{l}, \mathbf{m})) = \mathbf{m}$$

In F(d, l, m), the two complete graphs are only joined by exactly m edges and a removal of those m vertices obviously disconnects F(d, l, m). Thus, $\kappa'(F(d, l, m)) \leq m$.

Moreover, a complete graph on d+1 vertices is internally connected with $\kappa'(K_{d+1}) = d > m$.

Thus, it is neither possible to disconnect one of the complete graph by removing less than m edges nor is it possible to remove the inter-connection between the two complete graphs by removing less than m edges.

From these considerations, $\kappa'(F(d, l, m)) = m$.

I will prove that any block-cut-vertex graph is a tree, by showing by contradiction that any block-cut-vertex graph is acyclic and connected.

Theorem 3.1. The block-cut-vertex graph G = (V, E) of any connected graph G' = (V', E') is a tree.

Proof. Let's assume for the sake of contradiction that G has a cycle $C=(b_1b_2...b_1)$. Let's denote the subgraphs $B_1, B_2, ...B_n$ of G' which are the 2-connected components and bridges corresponding to the nodes $b_1, b_2, ...b_n$ of G. Let B_1 and B_2 be as stated above two different subgraphs of G'. Because the corresponding nodes b_1 and b_2 are adjacent in G, B_1 and B_2 have to share a vertex $x \in V(B_1) \cap V(B_2)$. We can use the same argument for each pair B_i, B_{i+1} . Additionally, we know because each component B_j is either 2-connected or a bridge. Thus we can find a circle through all the components $B_1, B_2...B_n$ which is 2-connected, this is a contradiction to $B_1, B_2...B_n$ being the blocks of an block-cut-vertex graph, because by definition these blocks are either bridges or maximal 2-connected components.