OCE 313 TÉCNICAS DE ANÁLISIS NO PARAMÉTRICO

CLASE 11 – Introducción a los métodos multivariantes: Matriz de distancia

Dr. José Gallardo

Mayo 2021

Contenidos de la clase

- Datos multivariantes.
- Estudios de caso: Análisis de cluster, análisis de componentes principales.
- Matriz de distancia (similaridad): cálculo manual
- Matriz de distancia con R

Datos multivariantes.

Datos multivariantes (toy dataset)

SITE No.	Species counts					Environmental variables			
	а	b	С	d	е	Depth (x)	Pollution (y)	Temperature (z)	Sediment (s)
s1	0	2	9	14	2	72	4.8	3.5	S
s2	26	4	13	11	0	75	2.8	2.5	С
s3	0	10	9	8	0	59	5.4	2.7	С
s4	0	0	15	3	0	64	8.2	2.9	S
s5	13	5	3	10	7	61	3.9	3.1	С
s6	31	21	13	16	5	94	2.6	3.5	G
s7	9	6	0	11	2	53	4.6	2.9	S
s8	2	0	0	0	1	61	5.1	3.3	С
s9	17	7	10	14	6	68	3.9	3.4	С
s10	0	5	26	9	0	69	10.0	3.0	S

S: Arena

G: Gravilla

Hipótesis básicas: Regresión y-x.

Hipótesis básicas: Comparación de medias (y-x).

Hipótesis básicas: Correlación (y-x)

Análisis multivariado: Función v/s estructura

Las cuatro esquinas del análisis multivariado.

Estudios de caso

Análisis de agrupamiento (clustering)

Descubriendo una variable latente categórica

Problema: Almejas de distintas especies (V_{latente})

¿Será posible agruparlas por especie?

¿Qué variables respuestas (V_r) medir?

¿Cuántas V_r o varias?

Análisis de agrupamiento 2

Descubriendo una variable latente categórica

Análisis de componentes principales (ACP)

Descubriendo variables latentes continuas

Problema cambio climático: demasiadas

variables respuesta, muchas de ellas correlacionadas

¿Puedo reducir las variables?

YEAR	AO	AO_winter	AO_summer	NPI	NPI_spring	NPI_winter	Тетр		<i>lceCover</i>	<i>IceFreeDays</i>
1981	-0.4346	-0.1683	-0.2410	-2.09	-0.15	-4.46	-3.9		-0.64	140
1982	0.2977	-0.3750	0.3083	0.75	0.13	1.70	-4.7		-1.65	144
1983	0.0319	0.1733	0.4653	-2.54	0.30	-5.44	-4.4		-0.34	116
1984	-0.1917	0.2627	0.0240	-1.20	-0.23	-2.62	-7.0		0.15	134
1985	-0.5192	-1.2667	0.2678	0.52	-0.43	1.11	-5.9		-0.21	120
÷	:	:	:	:	:	:	:	÷	:	:
2002	0.0717	0.4543	0.0187	0.13	-0.18	0.30	-3.3		0.78	203
2003	0.1521	-0.6453	0.0399	-1.67	-0.40	-3.84	-3.8		-1.60	179
mean	0.0466	0.0587	0.1652	-0.440	0.023	-0.950	-5.15		-0.317	151.8
variance	0.1699	1.1687	1.0505	1.166	0.491	5.603	1.08		0.888	398.5

¿Existe algún patrón?

ACP 2: Definición e interpretación geométrica.

Descubriendo variables latentes continuas

CP: Combinación lineal de las variables originales no corr. entre si (perpendiculares / ortogonales).

Ejemplo
2 var.cor.
2 CP

ACP 2: Varianza explicada

Descubriendo variables latentes continuas

2 var cor.

Varianza explicada Varianza explicada por 6 variables

ACP 3: Gráficas biplot Descubriendo variables latentes continuas

Gráficas biplot (Muchas variables en 2 CP)

Ventajas

- Reducción de dimensionalidad.
- Mayor varianza explicada por los primeros 2 CP.

ACP 4: Descubriendo patrones

Descubriendo varias variables latentes continuas

Existe un patrón de cambio climático: Si.

Qué variables influyen: cada cuadrante se puede asociar a una combinación de variables correlacionadas

Matriz de distancia (similaridad) Variables continuas

Teorema de pitágoras

TEOREMA DE PITÁGORAS

$$c^2 = a^2 + b^2$$

De donde se extrae que

$$c = \sqrt{a^2 + b^2}$$

$$b = \sqrt{c^2 - a^2}$$

$$a = \sqrt{c^2 - b^2}$$

Distancia euclideana: 2 dim.

Distancia euclideana: 3 dim.

3 dimensiones

$$d_{x,y} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$

> 3 dimensiones

$$d_{x,y} = \sqrt{\sum_{j=1}^{J} (x_j - y_j)^2}$$

Calculo distancia euclideana para variables continuas

Sitio	Depth	Pollution	Temperature		
s29	51	6,0	3,0		
s30	99	1,9	2,9		

$$d_{x,y} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$

$$d_{\text{s29,s30}} = \sqrt{(51 - 99)^2 + (6.0 - 1.9)^2 + (3.0 - 2.9)^2}$$
$$= \sqrt{2304 + 16.81 + 0.01} = \sqrt{2320.82} = 48.17$$

Estandarice antes de calcular distancia euclideana

Sitio	Depth	Pollution	Temperatura
media	74,433	4,517	3,057
ds	15,615	2,141	0,281

Valor estandarizado : (valor original - media) / ds

Sitio	Depth	Pollution	Temperatura
s29	51	6,0	3,0
s30	99	1,9	2,9
Sitio		Estandari	zado
S29			
s30			

Calcule distancia estandarizada

Sitio	Depth	Pollution	Temperatura
s29	-1,501	0,693	-0,201
s30	1,573	-1,222	-0,557

$$d_{x,y} = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$

$$d_{\text{s29,s30}} = \sqrt{[-1.501 - 1.573]^2 + [0.693 - (-1.222)]^2 + [-0.201 - (-.557)]^2}$$
$$= \sqrt{9.449 + 3.667 + 0.127} = \sqrt{13.243} = 3.639$$

Matriz de distancia (similaridad) No euclideana

Disimilaridad de Bray-Curtis

para variables discretas

Sitio	a	b	C	d	е	Suma
s29	11	0	7	8	0	26
s30	24	37	5	18	1	85

$$b_{ii'} = \frac{\sum_{j=1}^{J} \left| n_{ij} - n_{i'j} \right|}{n_{i+} + n_{i'+}}$$

$$b_{\text{s29,s30}} = \frac{\left|11 - 24\right| + \left|0 - 37\right| + \left|7 - 5\right| + \left|8 - 18\right| + \left|0 - 1\right|}{26 + 85} = \frac{63}{111} = 0.568$$

Resumen de la clase

- Revisión e importancia de datos multivariantes.
- Introducción al Análisis de cluster y al análisis de componentes principales.
- Calculo de matriz de distancia (similaridad)

