课程名: <u>概率论 A</u> 课程号: <u>01014011</u> 学分: <u>3</u>

三、(10分)选择题(请在每个问题后的括号中填入A,B,C或D.每小题2分)

- 1. 如果A与B互不相容, 且相互独立, 则(B)
 - (A) A = B

- (B) $\min(P(A), P(B)) = 0$
- (C) $\max(P(A), P(B)) = 1$ (D) $A \neq B$
- 2. 设 $X \sim e(\lambda_1), Y \sim e(\lambda_2),$ 且相互独立. 如果 $\lambda_1 > \lambda_2$, 则对任意正常数c, 有(B)

 - (A) $P\{X > c\} > P\{Y > c\}$ (B) $P\{X > c\} < P\{Y > c\}$
 - (C) $P\{X < c\} < P\{Y < c\}$ (D) 不确定
- 3. 设F(x,y)分别为随机向量(X,Y)的分布函数,则 $P\{Y < y | X = x\} = (C)$.
 - (A) $\frac{\partial F(x,y)}{\partial x}/f_X(x)$
- (B) $f(x,y)/f_X(x)$
- (C) $\frac{\partial F(x,y)}{\partial x}/f_X(x)$
- (D) $F(x,y)/f_X(x)$
- 4. 二维随机变量 $(X,Y) \sim N(1,2,4,9,-\frac{1}{2}), 则 X-2Y \sim (B).$
 - (A) N(-1,13) (B) N(-3,52) (C) N(-3,40) (D) 不确定

- 5. 如果X的数学期望存在, 且其概率密度函数满足f(x-a) = f(a-x). 则有(A).
- (A) E(X) = a (B) $D(X) = a^2$ (C) E(X) = -a (D) D(X) = |a|
- 一、选择题(本大题共8小题,每小题3分,共24分)
- 1、对任意两个独立且发生概率均大于零的事件 A 和 B ,不正确的是 B 。
- (A) \overline{A} 与 \overline{B} 一定独立:
- (**B**) *A* 与 *B* 一定 互不相容;
- (C) $A 与 \overline{B}$ 一定独立;
- (\mathbf{D}) \overline{A} 与 B 一定独立。
- 2、设离散型随机变量 X 与 Y 独立,且都服从相同的分布律。则一定成立的是 D 。
- (A) $P(X = Y) = \frac{1}{2}$;
- **(B)** P(X = Y) = 1;
- (C) $P(X > Y) = P(X < Y) = \frac{1}{2}$; (D) P(X > Y) = P(X < Y).

3、设 X_1, \dots, X_n 独立同分布于b(1, p),则对于 $\varepsilon > 0$,有

 $\lim_{n\to\infty} P\{p-\varepsilon \le \frac{1}{n} \sum_{i=1}^{n} X_{i} \le p+\varepsilon\} = (D)$

- A. p(1-p);
- B. **0**

- *D*. **1**

4、设 $X \sim N(2, \sigma^2)$, 且P(0 < X < 4) = 0.5,则P(X > 0) = (C)

- (A) 0.65
- (B) 0.45
- (C) 0.75
- (D) 0.25
- 5、随机变量 X 的概率密度和分布函数分别为 f(x) 和 F(x) ,则一定有 **B** 。
- (A) $0 \le f(x) \le 1$; (B) $0 \le F(x) \le 1$; (C) P(X = x) = f(x); (D) P(X = x) = F(x).
- 6、函数 $f(x) = \begin{cases} \sin x, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$ 是随机变量 X 的概率密度,则 [a,b] 必须是(B)。

- (A) $[-\frac{\pi}{2},0]$; (B) $[\frac{\pi}{2},\pi]$; (C) $[0,\pi]$; (D) $[-\frac{\pi}{4},\frac{\pi}{4}]$.
- 7、对任意事件A和B,若P(B) > 0,则一定有 A 。
- (A) $P(A|B) + P(\overline{A}|B) = 1$; (B) $P(A|B) + P(A|\overline{B}) = 1$;
- (C) $P(A|B) + P(\overline{A}|\overline{B}) = 1$; (D) 以上结论都不一定成立。
- 8、对随机变量(X,Y),与协方差函数为cov(X,Y)=0 不 等价的是 (D)。
- (A) D(X+Y) = DX + DY;
- (B) D(X-Y) = DX + DY;

(C) E(XY) = EXEY;

- (D) *X* 与 *Y* 独立。
- $1 \times n$ 张奖券中有 m 张是有奖的, k 个人购买, 每人只买 1 张, 至少有一个人中奖的概率是 (A)
 - $A. 1 \frac{C_{n-m}^k}{C_n^k}$

C. $\frac{C_m^1 C_{n-m}^{k-1}}{C_n^k}$

- D. $\sum_{k=0}^{k} \frac{C_m^r}{C_k^k}$
- 2、设当事件 \mathbf{A} 与 \mathbf{B} 同时发生时,事件 \mathbf{C} 也发生,则(B)
- (A) $P(C) \le P(A) + P(B) 1$
- (B) $P(C) \ge P(A) + P(B) 1$
- (C) P(C) = P(AB)
- (D) $P(C) = P(A \cup B)$

- 3、设随机变量 ξ 的密度函数为 $\varphi(x) = \frac{1}{\pi(1+x^2)}$,则 $\eta = 2\xi$ 的概率密度为 (D)
- A. $\frac{1}{\pi(4+x^2)}$; B. $\frac{1}{\pi(1+x^2)}$

- C. $\frac{1}{2} \arctan x$
- D. $\frac{2}{\pi(4+x^2)}$
- 4、设 $X \sim N(2, \sigma^2)$,且P(0 < X < 4) = 0.5,则P(X < 0) = (D)
 - (A) 0.65
- (B) 0.45
- (C) 0.95
- (D) 0.25
- 5、设二维随机变量 (ξ, η) 的概率密度函数为

$$f(x) = \begin{cases} 2a(x+y), & 0 < x < 1, 0 < y < 2 \\ 0, & 其它. \end{cases}$$
 , 则常数**a** = (B)

C. 2

- 6、设随机变量 ξ , η 都服从正态分布 ,则(A)
- (A)若 $\rho = 0$,则 ξ 和 η 独立;
- (B) 若 ξ 和 η 独立,则 (ξ , η) 不一定是二维正态分布;
- (C) 若 ξ 和 η 不独立,则(ξ , η) 有可能是二维正态分布;
- (D) 若 $\rho \neq 0$,则 ξ 和 η 有可能独立。
- 7. 已知 $X \sim B(n, p)$, 且 EX = 8, DX = 4.8, 则 n = (C)
 - (A) 10 (B) 15 (C) 20 (D) 25;
- 8、如果 X, Y 满足 D(X + Y) = D(X Y),则必有 (B)

 - (A) X 与 Y 独立 (B) X 与 Y 不相关 (C) DY = 0
- (D) DX = 0

- 三、(10分)选择题(请在每个问题后的括号中填入A,B,C或D.每小题2分)
- 1. P(A B) = (B).
 - (A) P(A) P(B)
- (B) $P(A\overline{B})$

 - (C) 1 P(B A) (D) P(A)(1 P(B))
- 2. 设X的分布函数为F(x),则 $P\{a < X < b\} = (B)$.

 - (A) F(b) F(a) (B) $F(b^{-}) F(a)$

 - (C) $F(b) F(a^{-})$ (D) $F(b^{-}) F(a^{-})$
- 3. 给定X = x下, Y的条件概率密度函数 $f_{Y|X}(y|x) = (D)$.
 - (A) $f(x,y)/f_Y(y)$ (B) $f_X(x)/f(x,y)$ (C) $f_Y(y)/f(x,y)$ (D) $f(x,y)/f_X(x)$
- 4. 已知D(X) = σ_1^2 , D(Y) = σ_2^2 , $\rho_{XY} = \rho$. 则Cov(X + Y, X Y) = (A).

(A)
$$\sigma_1^2 - \sigma_2^2$$
 (B) $\sigma_1^2 + \sigma_2^2$ (C) $\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2$ (D) $\sigma_1^2 + \sigma_2^2 + 2\rho\sigma_1\sigma_2$

5. 设 $X_1, X_2 \cdots$, 独立同分布于 $\pi(\lambda)$, 则对于 $\varepsilon > 0$, 有

$$\lim_{n \to \infty} P\left\{\lambda - \varepsilon \le \frac{1}{n} \sum_{k=1}^{n} X_k \le \lambda + \varepsilon\right\} = (B).$$

- (A) 0
- (B) 1 (C) λ
- (D) $1/\lambda$
- 三、单项选择题(5 小题,每小题 2 分,共10 分)
- 11. 对任意两个独立且发生概率均大于零的事件 $A \cap B$, 正确的是(D).
 - A. \overline{A} 与 \overline{B} 不一定独立
- B. \overline{A} 与B 不一定独立
- C. $A 与 \overline{B}$ 不一定独立
- D. *A* 与 *B* 一定相容
- 12. 若函数 $f(x) = \begin{cases} \sin x, & x \in [a, b], \\ 0, & x \notin [a, b] \end{cases}$ 是连续型随机变量 X 的概率密度,则区间 [a, b] 必须是
- (B).
 - A. $\left[-\frac{\pi}{2}, 0\right]$ B. $\left[\frac{\pi}{2}, \pi\right]$ C. $\left[0, \pi\right]$ D. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$

- 13. 设连续型随机变量 X 的密度函数满足 f(x) = f(-x), 则当 x > 0 时, 分布函数 F(x) 一定有
- (A).

A.
$$F(-x) = \frac{1}{2} - \int_0^x f(u) du$$

B.
$$F(-x) = 1 - \int_0^x f(u) du$$

C.
$$F(x) = F(-x)$$

D.
$$F(-x) = 2F(x) - 1$$

- 14. 设产品的合格率为70%, 现独立检验100次, 则产品检验为合格的总次数用中心极限定理估 计的近似分布为(C). (这里, $\Phi(x)$ 是标准正态分布的分布函数)
 - A. $\Phi(x)$
- B. $\Phi(x-70)$ C. $\Phi\left(\frac{x-70}{\sqrt{21}}\right)$ D. $\Phi\left(\frac{x-70}{21}\right)$
- 15. 如果随机变量 X, Y 满足 D(X + Y) = D(X Y), 则必有(B)
 - A. *X* 与 *Y* 独立
- B. X 与Y 不相关 C. DY = 0
- D. DX = 0

评卷人 得分

三、单项选择题(5小题,每小题2分,共10分)

- 11. 对任意两个事件A和B, 且P(B) > 0. 则正确的是(D).
- A. P(A|B) > P(A) B. P(A|B) < P(A) C. P(A|B) = P(A) D. 大小关系不确定
- 12. 若函数 $f(x) = C \exp\{-x^2 + x\}, -\infty < x < \infty$ 是随机变量的概率密度,则C = (C).
 - A. $\frac{e^{-1/4}}{\sqrt{2\pi}}$ B. $\frac{e^{1/4}}{\sqrt{2\pi}}$ C. $\frac{e^{-1/4}}{\sqrt{\pi}}$ D. $\frac{e^{1/4}}{\sqrt{\pi}}$

- 13. 下列公式中正确的是(B).
 - A. $f_{X|Y}(x|y) = \frac{f_Y(y)f_{Y|X}(y|x)}{\int_{-\infty}^{\infty} f_Y(x)f_{Y|X}(y|x)dx}$
- B. $f_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{\int_{-\infty}^{\infty} f_X(x)f_{Y|X}(y|x)dx}$
- C. $f_{X|Y}(x|y) = \frac{f_X(x)f_Y(y)}{\int_{-\infty}^{\infty} f_X(x)f_Y(x)dx}$ D. $f_{X|Y}(x|y) = \frac{f_X(x)f_{X|Y}(x|y)}{\int_{-\infty}^{\infty} f_X(x)f_{X|Y}(x|y)dx}$
- 14. 如果X, Y均是二阶矩存在的随机变量, 那么下述说法正确的是(A).

 - A. $|E(XY)|^2 \le E(X^2) E(Y^2)$ B. $|E(XY)|^2 \ge E(X^2) E(Y^2)$
 - C. $|E(XY)|^2 = E(X^2) E(Y^2)$
- D. 大小关系不确定
- 15. 已知 X_1, X_2, \cdots 独立同分布, 且期望存在, 则对于∀ $\varepsilon > 0$, 必有(D).
 - A. $\lim_{n \to \infty} P\left\{ \left| \sum_{i=1}^{\infty} X_i \operatorname{E}(X_1) \right| < \varepsilon \right\} = 1$ B. $\lim_{n \to \infty} P\left\{ \left| \sum_{i=1}^{\infty} (X_i \operatorname{E}(X_i)) \right| < \varepsilon \right\} = 1$
 - C. $\lim_{n \to \infty} P\left\{ \left| \sum_{i=1}^{\infty} (X_i \operatorname{E}(X_i)) \right| > \varepsilon \right\} = 1$ D. $\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^{\infty} X_i \operatorname{E}(X_1) \right| < \varepsilon \right\} = 1$

课程名 概率论与数理统计(中欧)课程号 23014030 学分 5

- 二、单选题(每格2分,共10分)
- - (A)对任何实数 μ ,都有 $p_1 = p_2$; (B)对任何实数 μ ,都有 $p_1 < p_2$;
 - (C)只对个别 μ , 才有 $p_1 = p_2$; (D)对任何实数 μ , 都有 $p_1 > p_2$;
- 2. 设A和B任意两个概率非零的不相容事件,则(D).
 - (A) A 的逆事件与 B 的逆事件不相容; (B) P(AB) = P(A)P(B)
 - (C) A 逆事件与 B 的逆事件相互独立; (D) P(A-B) = P(A).
- 3. 设总体 X 的方差为 σ^2 , (X_1, X_2, \dots, X_n) 是来自 X 的样本,则(C).
 - (A) S是 σ 的无偏估计量: (B) S是 σ 的最大似然估计量:
 - (C)S是 σ 的相合估计量; (D)S与 \overline{X} 独立.
- 4. 设 μ_n 是n次独立重复试验中事件A出现的次数,p是事件A在每次试验中发生的概
 - 率,则对于任意的 $\varepsilon > 0$,均有 $\lim_{n \to \infty} P\{|\frac{\mu_n}{n} p| > \varepsilon\}$ (A
 - (A) = 0

(C) > 0

- (D) 不存在
- 5. 对正态总体的数学期望 μ 进行假设检验,如果在显著水平 0.05 下接受 $H_{\rm s}: \mu = \mu_{\rm s}$, 那么在显著水平 0.01 下,下列结论中正确的是(D)
 - (A) 不接受, 也不拒绝 *I*。
- (B) 可能接受 H, 也可能拒绝 H

(C) 必拒绝 K

(D) 必接受 *I*。

得分 评卷人

三**、选择题:** (每小题 2 分, 5 题共 10 分)

- 10、设事件 A , B 互不相容,且 P(A) > P(B) > 0 ,则一定正确的是 **D** 。
- (A) P(A) + P(B) = 1;

(B) $P(A \cup B) = 1$;

(C) P(AB) = P(A)P(B);

- **(D)** $P(\overline{AB}) = 1$ •
- 11、设随机变量 X 的密度函数 $f_{\nu}(x)$ 。令Y = -2X,则 Y 的密度函数 $f_{\nu}(y)$ 为 \mathbb{C} 。
- (A) $2f_{X}(-2y)$;

(B) $2f_X\left(-\frac{y}{2}\right)$;

(C) $\frac{1}{2}f_X\left(-\frac{y}{2}\right)$;

- **(D)** $-\frac{1}{2}f_X\left(-\frac{y}{2}\right)$.
- 12、设总体 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知,而 μ 为未知参数。 X_1, \dots, X_n 是来自于总体 X简单样本,样本均值为 \bar{X} ,样本方差为 S^2 。则不是统计量的是 B 。
- (A) $2\bar{X}$:

- **(B)** $\frac{X-\mu}{\sigma/\sqrt{n}}$; **(C)** $\frac{S^2}{\sigma^2}$; **(D)** $\frac{1}{\sigma^2}\sum_{i=1}^n \left(X_i \overline{X}\right)^2$.
- 13、设某人罚篮命中率为90%,独立罚篮100次,那么罚篮命中总次数用中心极限定 理估计的近似分布为 \mathbb{C} 。(这里, $\phi(x)$ 是标准正态分布的分布函数)
- (A) $\phi(x)$;

- **(B)** $\phi(x-90)$; **(C)**; $\phi\left(\frac{x-90}{3}\right)$ **(D)** $\phi\left(\frac{x-90}{9}\right)$.
- 14、设连续型随机变量 X 的密度函数满足 f(x) = f(-x),则对 x > 0,分布函数 F(x) 一 定有<u>A</u>。
- (A) F(-x) = 1 F(x);

(B) $F(-x) = 1 - \int_{0}^{x} f(u) du$;

(C) F(x) = F(-x);

(D) F(-x) = 2F(x) - 1.

得分	评卷人

三、选择题: (每小题 2 分, 5 题共 10 分)

- 10、(X,Y)为二维随机变量,与Cov(X,Y)=0不等价的是 D 。
- (A) E(XY) = E(X)E(Y).

- **(B)** D(X+Y) = D(X) + D(Y);
- (C) D(X-Y) = D(X) + D(Y);
- (D) X 与 Y 相互独立。
- 11、随机变量 $X \sim F(n,m)$, 即服从 F 分布。对 $0 < \alpha < 1$,不一定成立的是 C 。
- (A) $\frac{1}{V} \sim F(m,n)$;

- **(B)** $F_{0.5}(m,m) = F_{0.5}(n,n)$;
- (C) $F_{\alpha}(m,n) + F_{1-\alpha}(n,m) = 1$; (D) $F_{\alpha}(m,n) = \frac{1}{F_{\alpha}(m,m)}$.
- 12、设总体 $X \sim N(\mu, \sigma^2)$, 其中 μ 已知,而 σ^2 为未知参数。 X, \dots, X 是来自于总体 X 简单样本,样本均值为 \overline{X} ,样本方差为 S^2 。则是统计量的是 A 。

- (A) $\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}$; (B) $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$; (C) $\frac{S^{2}}{\sigma^{2}}$; (D) $\frac{1}{\sigma^{2}}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$.
- 13、设某人罚篮命中率为50%,独立罚篮 100 次,那么罚篮命中总次数用中心极限 定理估计的近似分布为 C 。(这里, $\phi(x)$ 是标准正态分布的分布函数)
- (A) $\phi(x)$:
- (B) $\phi(x-50)$; (C) $\phi\left(\frac{x-50}{5}\right)$; (D) $\phi\left(\frac{x-50}{25}\right)$.
- 14、设随机变量 X 的分布函数与概率密度函数分别为 F(x) 与 f(x), -X 与 X 同分布, 则有 B 。
- (A) F(x) = F(-x);

(B) f(x) = f(-x);

(C) F(x) = -F(x);

(D) f(x) = -f(-x).

得分 评卷人

三、选择题: (每小题 2 分, 5 题共 10 分)

- 10、设事件 A , B 满足 P(AB) = 0 , 则 **D** 。
 - (A) A和B互不相容

(B) A和B相互独立

(C) P(A) = 0 或 P(B) = 0

- **(D)** P(A-B) = P(A)
- 11、设连续型随机变量 X 的密度函数 $f_{Y}(x)$ 。令 Y = -2X + 2,则 Y 的密度函数 $f_{Y}(y)$ 为 <u>C</u>_.
 - **(A)** $2f_x(1-2y)$

(B) $2f_X \left(1 - \frac{y}{2}\right)$

(C) $\frac{1}{2} f_X \left(1 - \frac{y}{2} \right)$

- **(D)** $-\frac{1}{2}f_{X}\left(1-\frac{y}{2}\right)$
- 12、设总体 $X \sim N(\mu, \sigma^2)$,其中 σ^2 已知,而 μ 为未知参数。 X_1, \dots, X_n 是来自于总体 X简单样本,样本均值为 \bar{X} ,样本方差为 S^2 。则不是统计量的是 B 。
 - (A) $\max\{X_1, X_2, \dots, X_n\}$

(B) $U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$

(C) $\chi^2 = \frac{(n-1)S^2}{r^2}$

- **(D)** $\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i \bar{X})^2$
- 13、设某人罚篮命中率为80%,独立罚篮100次,那么罚篮命中总次数用中心极限定 理估计的近似分布为 $_{\mathbf{C}}$ 。(这里, $\phi(x)$ 是标准正态分布的分布函数)

- **(A)** $\phi(x)$ **(B)** $\phi(x-80)$ **(C)** $\phi\left(\frac{x-80}{4}\right)$ **(D)** $\phi\left(\frac{x-80}{16}\right)$
- 14、随机变量 $X \sim F(n,m)$,即服从 F 分布。对 $0 < \alpha < 1$,一定不成立的是 C 。
- (A) $\frac{1}{V} \sim F(m,n)$;
- **(B)** $F_{0.5}(m,m) = F_{0.5}(n,n)$;
- (C) $F_{\alpha}(m,n) + F_{1-\alpha}(n,m) = 1$; (D) $F_{\alpha}(m,n) = \frac{1}{F_{\alpha}(n,m)}$.

得分	评卷人

三、选择题: (每小题 2 分, 5 题共 10 分)

- 10. 设(X,Y)为二维随机变量,与Cov(X,Y)=0不等价的是_____。
 - (A) X与Y相互独立;

- (B) D(X+Y) = D(X) + D(Y);
- (C) D(X-Y) = D(X) + D(Y);
- (D) E(XY) = E(X)E(Y) •
- 11. 设总体 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知, 而 μ 为未知参数。 $X_1, ..., X_n$ 是来自于总体X简 单样本,样本均值为 \bar{X} ,样本方差为 S^2 。则不是统计量的是。。
 - (A) $\max \{X_1, X_2, \dots, X_n\}$
- (B) $U = \frac{\bar{X} \mu}{\sigma / \bar{\mu}}$

(C) $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$

- (D) $\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i \bar{X})^2$
- 12. 设X为均值 3 的泊松分布,则 $P(X \ge 2) =$ _____。
 - (A) $1-3e^{-3}$
- (B) $1-2e^{-3}$
- (C) $1-3e^{-2}$
- (D) $1-4e^{-3}$
- 13. 设F(x,y)为二维随机变量(X,Y)的分布函数,则P(X>a,Y>b)=______
 - (A) 1-F(a,b)

- (B) $1-F(a,+\infty)-F(+\infty,b)$
- (C) $1-F(a,+\infty)-F(+\infty,b)+F(a,b)$ (D) $F(a,+\infty)+F(+\infty,b)-F(a,b)$
- 14. 在同等条件下降低犯第一类错误的概率,犯第二类错误的概率将
 - (A) 降低
- (B) 提高
- (C) 不变
- (D) 不确定

课程名: <u>概率论与数理统计(A)</u>课程号: <u>01014016</u>学分: <u>5</u>

三、(10分) 选择题(请在每个问题后的括号中填入 A, B, C或 D) 為 松 2分

- 1. 设事件A, B, C相互独立, 且P(A) = P(B) = P(C) = p. 则 $P(A \cup B \cup C) = (D)$
 - (A) p^3

- (B) $p^2(2-p)$ (C) $p^2(1-p)$ (D) $1-(1-p)^3$
- 2. 设F(x)为随机变量X的分布函数, 则 $P\{X=c\}=(C)$ _
 - (A) F'(c)
- (B) 0
- (C) $F(c) F(c^{-})$ (D) F'(c)dx
- 3. 设随机变量X的方差存在,则使 $E(X-a)^2$ 达到最小的a=(B).
 - $(A) E(X)^2$
- (B) E(X)
- (C) 0
- (D) $\sqrt{D(X)}$
- 4. 记 $f_n(A)$ 为在n次独立试验中事件A发生的频率, P(A)为A发生的概率. Bernoulli 的大数定律叙述为: 对 $\forall \epsilon > 0$, 有(A).
 - (A) $\lim_{n\to\infty} P\{|f_n(A)-P(A)|\geq \varepsilon\}=0$ (B) $\lim_{n\to\infty} P\{|f_n(A)-P(A)|\geq \varepsilon\}=1$
 - (C) $\lim_{n\to\infty} P\{|f_n(A) P(A)| < \varepsilon\} = 0$ (D) $\lim_{n\to\infty} P\{f_n(A) P(A) < \varepsilon\} = 1$
- 5. 对于分布假设检验问题: $H_0: \mathbb{X} \sim F(x)$, 其 χ^2 检验统计量 $K = \sum_{k=1}^r \frac{(n_k np_k)^2}{np_k}$ (B).
 - (A) 越大对H₀越有利
- (B) 越小对Ho越有利
- (C) 太小或太大对 H_0 都不利 (D) 太小或太大对 H_0 都有利

得分	评卷人

选择题(每小题2分,5题共10分)

 $\overline{10}$ 、随机事件 A 和 B 的概率为 P(A) = 0.6, P(B) = 0.4 ,则正确的是 D 。

(A) $A\supset B$:

(B) A与B互不相容:

(C) P(AB) = 0;

(D)上述结论不一定成立。

11、设随机变量 X 和 Y 服从指数分布,且相互独立,则下列分布一定服从指数分布的 是 B 。

- (A) Z = X + Y;
- **(B)** $Z = \min\{X, Y\}$;
- (C) $Z = \max\{X, Y\}$;
- **(D)** Z = XY •

12、设总体 $X \sim N(\mu_1, \sigma^2)$,总体 $Y \sim N(\mu_2, \sigma^2)$,且相互独立, $X_1, ..., X_n$ 和 $Y_1, ..., Y_n$ 分 别是它们的简单样本,那么不正确的是 A

别是它们的简单样本,那么不正确的是A。
(A)
$$\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sim t(n_1 + n_2 - 1); \quad \textbf{(B)} \quad \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_1 \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 - 1);$$

(C)
$$\frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}} \sim t(n_1 + n_2 - 2); \quad \textbf{(D)} \quad \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S_2 \sqrt{1/n_1 + 1/n_2}} \sim t(n_2 - 1) \circ$$

13、如果总体 X 服从正态分布 $N(\mu, \sigma^2)$,其中, μ 已知, σ^2 未知, X_1 , X_2 , X_3 是 取自总体的一个样本,那么是统计量的是C。

(A) $\frac{X-\mu}{\sigma/\sqrt{3}}$;

(B) $\frac{2S^2}{\sigma^2}$;

(C) $\max\{X_1, X_2, X_3\}$;

(D) $\frac{1}{\sigma^2}(X_1 + X_2 + X_3)$.

(A) $P(X \le 0) > \frac{1}{2}$;

(B) $P(X \le 0) = \frac{1}{2}$;

(C) $P(X \le 0) < \frac{1}{2}$;

(D) 以上结论都不正确。

得分 评卷人

三、选择题: (每小题 2 分, 5 题共 10 分)

- 10、随机变量 X 以概率 1取值为零, Y 服从 b(1,p) (0-1 分布),则正确的是 A 。
- (A) *X* 与 *Y* 一定独立;

(B) *X* 与 *Y* 一定不独立:

(C) X 与 Y 不相关但不独立;

- (D) 不能确定 $X \to Y$ 的独立性。
- **11、设随机变量** X 和 Y 的联合密度函数 $f(x,y) = \begin{cases} e^{-y}, & 0 < x < y \\ 0, & \pm \end{cases}$ 则一定有___。
- (A) X和Y独立;

(B) $f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & y < 0 \end{cases}$;

(C) $f_{y}(x)=1$;

- (**D**) *X* 和 *Y* 不独立。
- 12、设总体 $X \sim N(\mu, \sigma^2)$, $X_1, ..., X_n$ 是简单样本, $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$,

$$S_2^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$
, $S_3^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$, $S_4^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2$ 。 那么服从 $t(n-1)$ 分

- (A) $\frac{\overline{X} \mu}{S_1 / \sqrt{n}}$; (B) $\frac{\overline{X} \mu}{S_2 / \sqrt{n}}$; (C) $\frac{\overline{X} \mu}{S_2 / \sqrt{n}}$;

- 13、设某人罚篮命中率为70%,独立罚篮100次,那么罚篮命中总次数用中心极限定 理估计的近似分布为______。(这里, $\phi(x)$ 是标准正态分布的分布函数)

- (A) $\phi(x)$; (B) $\phi(x-70)$; (C); $\phi\left(\frac{x-70}{\sqrt{21}}\right)$ (D) $\phi\left(\frac{x-70}{21}\right)$.
- 14、设连续型随机变量 X 的密度函数满足 f(x) = f(-x),则对 x > 0,分布函数 F(x) 一 定有<u>B</u>。
- **(A)** $F(-x) = 1 \int_{-\infty}^{\infty} f(u) du$;
- **(B)** $F(-x) = \frac{1}{2} \int_{0}^{x} f(u) du$;
- (C) F(x) = F(-x);

(D) F(-x) = 2F(x) - 1

- 三、选择题(本题共2分×5=10分)
- 10、对任意两个独立且发生概率均大于零的事件A和B,不正确的是 B 。
- (A) \overline{A} 与 \overline{B} 一定独立:

(B) A 与 B - 定互不相容:

- (C) $A 与 \overline{B}$ 一定独立:
- (D) \overline{A} 与B一定独立。
- 11、函数 $f(x) = \begin{cases} \sin x, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$ 是随机变量 X 的概率密度,则 [a,b] 必须是 B 。
- (A) $[-\frac{\pi}{2},0]$; (B) $[\frac{\pi}{2},\pi]$; (C) $[0,\pi]$; (D) $[-\frac{\pi}{4},\frac{\pi}{4}]$.

- 12、随机变量 $X \sim F(n,m)$,即服从 F 分布。对 $0 < \alpha < 1$,不一定成立的是 \mathbb{C} 。
- (A) $\frac{1}{V} \sim F(m,n)$;

- **(B)** $F_{0.5}(m,m) = F_{0.5}(n,n)$;
- (C) $F_{\alpha}(m,n) + F_{1-\alpha}(n,m) = 1$; (D) $F_{\alpha}(m,n) = \frac{1}{F_{\alpha}(n,m)}$
- 13、设随机变量 X 和 Y 都服从标准正态分布,但不一定独立。那么结论一定正确的是
- (A) X + Y 服从正态分布; (B) $X^2 + Y^2$ 服从 χ^2 分布;
- (C) X^2 和 Y^2 都服从 χ^2 分布; (D) $\frac{X^2}{Y^2}$ 服从F分布。
- 14、设离散型随机变量 X 与 Y 独立,且都服从相同的分布律。则一定成立的是 D 。
- (A) $P(X = Y) = \frac{1}{2}$;

- **(B)** P(X = Y) = 1;
- (C) $P(X > Y) = P(X < Y) = \frac{1}{2}$; (D) P(X > Y) = P(X < Y).

三、选择题 (共2分×5=10分)

16、设P(AB) = 0与,那么一定有(**D**)。

(A) A和B互不相容:

(B) A和B独立:

- (C) P(A) = 0或 P(B) = 0:
- **(D)** P(A-B) = P(A).

17、设随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \le x < 1, \\ 1 - e^{-x}, & x \ge 1 \end{cases}$$

则 P(X = 1) 的概率为___(C)__。

- (A) 0:
- (B) $\frac{1}{2}$; (C) $\frac{1}{2} e^{-1}$; (D) $1 e^{-1}$.

18、设总体 $X \sim N(\mu, \sigma^2)$, 其中 μ 和 σ^2 是未知参数。设 X_1, X_2, X_3 是来自该总体的简 单样本,则下面关于均值 μ 的估计中,最有效的是 (B) 。

(A)
$$\frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3$$
; (B) $\frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$;

(B)
$$\frac{1}{3}X_1 + \frac{1}{3}X_2 + \frac{1}{3}X_3$$

(C)
$$\frac{2}{3}X_1 + \frac{1}{6}X_2 + \frac{1}{6}X_3$$

(C)
$$\frac{2}{3}X_1 + \frac{1}{6}X_2 + \frac{1}{6}X_3$$
; (D) $-\frac{1}{3}X_1 + \frac{1}{3}X_2 + X_3$.

19、如果两个独立的随机变量 X_1 和 X_2 的分布函数分别为 $F_1(x)$ 和 $F_2(x)$,那么 $X = \max\{X_1, X_2\}$ 的分布函数是 (A)。

(A) $F_1(x)F_2(x)$;

(B) $(1-F_1(x))(1-F_1(x))$;

(C) $1-F_1(x)F_2(x)$;

(D) $1-(1-F_1(x))(1-F_2(x))$.

20、对给定的某一种区间估计及一组样本观测值 $x_1, x_2, ..., x_n$,结论正确的是<u>(B)</u>。

- (A) 置信度越大,则置信区间长度越短;(B) 置信度越大,则置信区间长度越长;
- (C)置信区间的长度与置信度无关; (D)以上结论都不一定成立。

三、选择题 (共2分×5=10分)

16、设P(B) > 0,P(A|B) = 1,那么一定有(D)。

;

(A) A和B互不相容:

(B) A和B独立:

(C) $B \subset A$

(D) $P(A \cup B) = P(A)$ •

17、设随机变量 X 的分布函数为 F(x) ,则 P(a < X < b) 的概率一定为 (C) 。

(A) F(b) - F(a); (B) F(a) - F(b); (C) F(b-0) - F(a); (D) F(b) - F(a-0).

18、设总体 $X \sim U(\theta, 2\theta)$ (均匀分布), 其中 θ 是未知参数, X_1, \dots, X_n 是来自该总体的 简单样本,记 $T = \frac{2}{3n} \sum_{i=1}^{n} X_i$,则下面正确的是<u>(A)</u>。

- (A) $T \in \theta$ 的矩估计,是无偏估计; (B) $T \in \theta$ 的最大似然估计,是无偏估计;
- (C) $T \to \theta$ 的矩估计,是有偏估计; (D) $T \to \theta$ 的最大似然估计,是有偏估计。

19、如果两个独立的随机变量 X_1 和 X_2 的分布函数分别为 $F_1(x)$ 和 $F_2(x)$,那么 (X,Y) 的 联合分布函数是 (B) 。

(A) $(1-F_1(x))(1-F_1(x))$;

(B) $F_1(x)F_2(x)$;

(C) $1-F_1(x)F_2(x)$;

(D) $1-(1-F_1(x))(1-F_2(x))$.

20、对随机变量(X,Y),与协方差函数为cov(X,Y)=0 不 等价的是 (D) 。

(A) D(X+Y) = DX + DY;

(B) D(X-Y) = DX + DY;

- (C) E(XY) = EXEY:
- (D) *X* 与 *Y* 独立。

三. 选择题: (每小题 2 分, 5 题共 10 分)

10. 函数 $f(x) = \begin{cases} \sin x, & x \in [a, b], \\ 0, & x \notin [a, b] \end{cases}$ 是随机变量 X 的概率密度,则区间 [a, b] 必须是

(B).

A.
$$\left[-\frac{\pi}{2}, 0\right]$$
 B. $\left[\frac{\pi}{2}, \pi\right]$ C. $\left[0, \pi\right]$ D. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$

B.
$$\left[\frac{\pi}{2}, \pi\right]$$

D.
$$\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$

11. 设随机变量 X 的概率密度函数为 $f_{Y}(x)$, 令 Y = 3X, 则 Y 的概率密度函数 $f_{Y}(y)$ 为(D).

- A. $3f_X(y)$ B. $\frac{1}{3}f_X(y)$ C. $3f_X\left(\frac{y}{3}\right)$ D. $\frac{1}{3}f_X\left(\frac{y}{3}\right)$

12. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, \dots, X_n 是简单随机样本, 记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,

$$S_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
, $S_2^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$, $S_3^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$,

 $S_4^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2$. 那么服从t(n-1)分布的是(B).

- A. $\frac{\overline{X} \mu}{S / \sqrt{n}}$ B. $\frac{\overline{X} \mu}{S / \sqrt{n}}$ C. $\frac{\overline{X} \mu}{S / \sqrt{n}}$ D. $\frac{\overline{X} \mu}{S / \sqrt{n}}$

13. 设某人罚篮命中率为70%,独立罚篮100次,那么罚篮命中总次数用中心极限定 理估计的近似分布为(C). (这里, $\Phi(x)$ 是标准正态分布的分布函数)

- A. $\Phi(x)$

- B. $\Phi(x-70)$ C. $\Phi\left(\frac{x-70}{\sqrt{21}}\right)$ D. $\Phi\left(\frac{x-70}{21}\right)$

14. 设连续型随机变量 X 的密度函数满足 f(x) = f(-x),则对 x > 0,分布函数 F(x)一定有(A).

- A. $F(-x) = \frac{1}{2} \int_0^x f(u) du$
- B. $F(-x) = 1 \int_0^x f(u) du$
- C. F(x) = F(-x)

D. F(-x) = 2F(x) - 1

三、(10分)选择题(请在每个问题后的括号中填入A,B,C或D.每小题2分)

- 1. A, B, C为三个事件, 那么事件 $\overline{A} \cup \overline{B} \cup \overline{C}$ 表示这三个事件(B)
 - (A) 三个都不发生
- (B) 不多于两个发生
- (C) 不多于一个发生 (D) 恰有一个不发生
- 2. 设X的分布函数为 $\Phi(x)$, 那么 $2X+1\sim(C)$
 - (A) N(1,2)
- (B) N(1,3) (C) N(1,4)
- (D) N(1,5)
- 3. 若X和Y具有相同的方差. 则X + Y与X Y的相关系数等于 (D).
 - (A) -1
- (B) 1
- (C) 1/2
- (D) 0
- 4. 设 X_1, X_2, \dots, X_{12} 独立同分布于U(0,1), 则与 $\sum_{i=1}^{12} X_i 6$ 的分布最相似的分布 是 (A)
 - (A) N(0,1)
- (B) $b(12, \frac{1}{2})$
- (C) $\pi(6)$
- (D) U(-6.6)
- 5. 对于假设检验问题: $H_0: \theta \in \Theta_0, H_1: \theta \in \Theta_1, 则一个检验犯"第一类错误"是$ 指(B).
 - (A) H_0 为假时,接受 H_0
- (B) H_0 为真时, 拒绝 H_0
- (C) H_1 为真时, 拒绝 H_1 (D) H_1 为真时, 接受 H_1

	3年 4文 166	/ 未十 晒 井 (面 ル c	每小题3分,	廿 24 八 八
→ `	儿作耿	【坐入赵共)	5 /11 疋火,	母小碶 3 刀,	- 光 24 ガナ

- 1、对任意两个独立且发生概率均大于零的事件A和B,不正确的是 B 。
- (A) \overline{A} 与 \overline{B} 一定独立:
- (B) A 与 B 定互不相容;
- (C) $A 与 \overline{B}$ 一定独立:
- (**D**) \overline{A} 与B一定独立。
- 2、设离散型随机变量 X 与 Y 独立,且都服从相同的分布律。则一定成立的是_____。
- (A) $P(X = Y) = \frac{1}{2}$;
- **(B)** P(X = Y) = 1;
- (C) $P(X > Y) = P(X < Y) = \frac{1}{2}$; (D) P(X > Y) = P(X < Y)
- 3、设 X_1, \dots, X_n 独立同分布于b(1, p),则对于 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\{p-\varepsilon \le \frac{1}{n} \sum_{i=1}^{n} X_i \le p+\varepsilon\} = (D)$$

- A. p(1-p); B. 0

- D. 1
- 4、设 $X \sim N(2, \sigma^2)$,且P(0 < X < 4) = 0.5,则P(X > 0) = (C)
 - (A) 0.65
- (B) 0.45
- (C) 0.75
- (D) 0.25
- 5、随机变量 X 的概率密度和分布函数分别为 f(x) 和 F(x) ,则一定有 **B** 。

- (A) $0 \le f(x) \le 1$; (B) $0 \le F(x) \le 1$; (C) P(X = x) = f(x); (D) P(X = x) = F(x).
- 6、函数 $f(x) = \begin{cases} \sin x, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$ 是随机变量 X 的概率密度,则 [a,b] 必须是(B)。

- (A) $[-\frac{\pi}{2},0]$; (B) $[\frac{\pi}{2},\pi]$; (C) $[0,\pi]$; (D) $[-\frac{\pi}{4},\frac{\pi}{4}]$.
- 7、对任意事件 $A \cap B$,若 P(B) > 0 ,则一定有 A 。
- (A) $P(A|B) + P(\overline{A}|B) = 1$; (B) $P(A|B) + P(A|\overline{B}) = 1$;
- (C) $P(A \mid B) + P(\overline{A} \mid \overline{B}) = 1$;
 - (D) 以上结论都不一定成立。
- 8、对随机变量(X,Y),与协方差函数为cov(X,Y)=0 不 等价的是 (D)。
- (A) D(X+Y) = DX + DY;

(B) D(X-Y) = DX + DY;

(C) E(XY) = EXEY;

(D) *X* 与 *Y* 独立。

课程名: 概率论与数理统计(B) 课程号: 01014017 学分: _5

- 二、单选题(每格2分,共10分)
- - (A)对任何实数 μ ,都有 $p_1 = p_2$; (B)对任何实数 μ ,都有 $p_1 < p_2$;
 - (C) 只对个别 μ , 才有 $p_1 = p_2$; (D)对任何实数 μ , 都有 $p_1 > p_2$;
- 2. 设A和B任意两个概率非零的不相容事件,则(D)
 - (A) A 的逆事件与 B 的逆事件不相容: (B) P(AB) = P(A)P(B)
- - (C) A 逆事件与 B 的逆事件相互独立; ; (D) P(A-B) = P(A).
- 3. 设总体 X 的方差为 σ^2 , (X_1, X_2, \dots, X_n) 是来自 X 的样本,则(C).
 - (A) S是 σ 的无偏估计量; (B) S是 σ 的最大似然估计量;
 - (C)S是 σ 的相合估计量; (D)S与 \overline{X} 独立.
- 4. 设 μ_n 是n次独立重复试验中事件A出现的次数,p是事件A在每次试验中发生的概
 - 率,则对于任意的 $\varepsilon > 0$,均有 $\lim_{n \to \infty} P\{|\frac{\mu_n}{n} p| > \varepsilon\}$ (A)
 - (A) = 0

(B) = 1

(C) > 0

- (D) 不存在
- 5. 对正态总体的数学期望 μ 进行假设检验,如果在显著水平 0.05 下接受 $H_{\rm s}: \mu = \mu_{\rm s}$, 那么在显著水平 0.01 下, 下列结论中正确的是(D)
 - (A) 不接受, 也不拒绝 *B*。
- (B) 可能接受 H, 也可能拒绝 H

(C) 必拒绝 H

- (D) 必接受 H
- 三、选择题(本题共2分×5=10分)
- 10、对任意两个独立且发生概率均大于零的事件A和B,不正确的是 D 。
- (A) \overline{A} 与 \overline{B} 一定独立;
- (B) \overline{A} 与 B 一定独立:
- (C) $A 与 \overline{B}$ 一定独立:
- (\mathbf{D}) A 与 B 一 定 互 不 相 容 。
- 11、随机变量 X 的概率密度和分布函数分别为 f(x) 和 F(x) ,则一定有_______。
- (A) $0 \le f(x) \le 1$; (B) $0 \le F(x) \le 1$; (C) P(X = x) = f(x); (D) P(X = x) = F(x).

12、随机变量 $X \sim F(n,m)$,即服从 F 分布。对 $0 < \alpha < 1$,分位数一定成立关系 \mathbb{C} 。

- (A) $F_{\alpha}(m,n) = F_{1-\alpha}(n,m)$;
- **(B)** $F_{\alpha}(m,n) = 1 F_{1-\alpha}(n,m)$;
- (C) $F_{\alpha}(m,n) = \frac{1}{F_{\alpha}(m,m)}$; (D) $F_{\alpha}(m,n) = \frac{1}{F_{\alpha}(m,n)}$.
- 13、对任意事件 A 和 B ,若 P(B) > 0 ,则一定有 A 。
- (A) $P(A | B) + P(\overline{A} | B) = 1$:
- **(B)** $P(A | B) + P(A | \overline{B}) = 1$:
- (C) $P(A \mid B) + P(\overline{A} \mid \overline{B}) = 1$;
- (D) 以上结论都不一定成立。
- 14、设随机变量 X 与 Y 独立,且都服从参数为 p 的 0-1 分布。则一定成立的是 **B** 。
- (A) $P(X = Y) = p^2$;

(B) $P(X = Y) = p^2 + (1 - p)^2$;

- (C) $P(X = Y) = \frac{1}{2}$;
- **(D)** P(X = Y) = 1 •
- 三、选择题 (共2分×5=10分)
- 16、设事件 A 与 B 互不相容,那么 (B) 一定成立。
- (A) $P(\overline{AB}) = 0$:

(B) $P(\overline{A} \cup \overline{B}) = 1$:

(C) P(A) + P(B) = 1;

- **(D)** P(AB) = P(A)P(B) •
- 17、设随机变量(X,Y) 服从二维正态分布,且 X 与 Y 互不相关,那么条件概率密度函 数 $f_{X|Y}(x|y)$ 为 (A)。
- (A) $f_{\mathbf{v}}(x)$;

(B) $f_{y}(y)$;

(C) $f_{x}(x)f_{y}(y)$;

- (**D**) $\frac{f_X(x)}{f_Y(y)}$.
- **18**、设 X_1, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的简单样本,其中 μ 已知,而 σ^2 未知,则 下面不是统计量的是__(B)__。
- (A) $\max\{X_1,...,X_n\}$;

(B) $\frac{1}{\sigma}\sum_{k=1}^n X_k$;

(C) $\min\{X_1, ..., X_n\}$;

(**D**) $\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu$.

- 19、如果两个独立的随机变量 X_1 和 X_2 的分布函数分别为 $F_1(x)$ 和 $F_2(x)$,那么 $X = \min\{X_1, X_2\}$ 的分布函数是 (D) 。
- (A) $F_1(x)F_2(x)$;

(B) $(1-F_1(x))(1-F_1(x))$;

(C) $1-F_1(x)F_2(x)$;

- **(D)** $1-(1-F_1(x))(1-F_2(x))$.
- 20、在假设检验时,样本容量给定,显著性水平为 α 。如果犯第二类错误的概率为 β , 则一定有 (D) 。
- (A) $\alpha + \beta = 1$;

(B) $\alpha + \beta > 1$:

(C) $\alpha + \beta < 1$:

- (D)以上结论都不一定成立。
- 三、选择题(每题2分,共10分)
- 1、如果随机变量 X 与 Y 不相关 (即相关系数 $\rho_{XY} = 0$),则下面正确的结论是 <u>C</u>。
- (A) 一定有 $F(x, y) = F_y(x)F_y(y)$; (B) 一定有D(XY) = DXDY;
- (C) 一定有 E(XY) = EXEY;
- (D) 以上结论均不一定成立。
- 2、设随机变量 X 和 Y 都服从标准正态分布,但不一定独立。一定正确的是 C 。
- (A) X+Y 服从正态分布;
- (B) $X^2 + Y^2$ 服从 χ^2 分布:
- (C) X^2 和 Y^2 都服从 χ^2 分布;
- (D) $\frac{X^2}{v^2}$ 服从F分布。
- 3、对任意两个独立且发生概率均大于零的事件 A 和 B ,不正确的是 B 。
- (A) \overline{A} 与 \overline{B} 一定独立;

(B) A 与 B 也可能互不相容:

(C) $A 与 \overline{B}$ 一定独立:

- (**D**) \overline{A} 与B一定独立。
- **4**、如果总体 X 服从正态分布 $N(\mu, \sigma^2)$,其中, μ 未知, σ^2 已知, X_1 , X_2 , X_3 是 取自总体的一个样本,那么不是统计量的是___B__。
- (A) $X_1 + X_2 + X_3$;
- **(B)** $\frac{X_1 + X_2 + X_3}{3} \mu$;
- (C) $\min\{X_1, X_2, X_3\}$;
- **(D)** $\frac{1}{\sigma^2}(X_1^2 + X_2^2 + X_3^2)$.

5、设离散型随机变量 X 与 Y 独立,且都服从相同的分布律。则一定成立的是 D 。

(A) $P(X = Y) = \frac{1}{2}$;

- **(B)** P(X = Y) = 1;
- (C) $P(X > Y) = P(X < Y) = \frac{1}{2}$; (D) P(X > Y) = P(X < Y).

三. 选择题: (每小题 2 分, 5 题共 10 分)

- 10. 对任意两个独立且发生概率均大于零的事件A和B,不正确的是(B).
- A. \overline{A} 与 \overline{B} 一定独立

B. A 与 B 一定互不相容

C. $A 与 \overline{B}$ 一定独立

- D. \overline{A} 与B一定独立
- 11. 函数 $f(x) = \begin{cases} \sin x, & x \in [a, b], \\ 0, & x \notin [a, b] \end{cases}$ 是随机变量 X 的概率密度,则[a, b]必须是

(A).

- A. $\left[\frac{\pi}{2}, \pi\right]$ B. $\left[-\frac{\pi}{2}, 0\right]$ C. $\left[0, \pi\right]$ D. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
- 12. 随机变量 $X \sim F(n, m)$, 即服从 F 分布. 对 $0 < \alpha < 1$, 不一定成立的是(C).
- A. $\frac{1}{V} \sim F(m, n)$

B. $F_{0.5}(m, m) = F_{0.5}(n, n)$

- C. $F_{\alpha}(m,n) + F_{1-\alpha}(n,m) = 1$ D. $F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}(n,m)}$
- 13. 设随机变量 X 和 Y 都服从标准正态分布, 但不一定独立. 那么结论一定正确的是 (C).
 - A. X + Y 服从正态分布

B. $X^2 + Y^2$ 服从 γ^2 分布

C. X^2 和 Y^2 都服从 χ^2 分布

- D. $\frac{X^2}{V^2}$ 服从F 分布
- 14. 设离散型随机变量X与Y独立、且都服从相同的分布律、则一定成立的是(D).
- A. $P\{X = Y\} = \frac{1}{2}$

- B. $P\{X = Y\} = 1$
- C. $P\{X > Y\} = P\{X < Y\} = \frac{1}{2}$
 - D. $P\{X > Y\} = P\{X < Y\}$

三、(10分)选择题(请在每个问题后的括号中填入A,B,C或D.每小题2分)

- 1. A. B. C为三个事件, 那么事件 $AB \cup AC \cup BC$ 表示这三个事件 (B)
 - (A) 至少有一个不发生
- (B) 至多有一个不发生
- (C) 三个都发生
- (D) 恰好有两个发生
- 2. 设 $X \sim b(100, 0.01)$, 则与X的分布最相似的分布是(A)
 - (A) $\pi(1)$
- (B) b(10, 0.1)
- (C) U(0, 100)
- (D) N(0,1)
- 3. 设 X_1, X_2, \dots, X_n 独立同分布, 其分布函数均为 $1 \exp\{-x\}, x > 0$. 那么 当x > 0时, $\min_{1 \le i \le n} X_i$ 的分布函数为(C)
 - (A) $(1 \exp\{-x\})^n$ (B) $(1 \exp\{-x\})^{\frac{1}{n}}$
 - (C) $1 \exp\{-nx\}$ (D) $n \exp\{-nx\}$
- 4. X与Y互不相关, 且具有相同的方差. 则对于不全为零的常数a和b. aX + bY = bX + aY的相关系数等于(D).

 - (A) $\frac{ab}{a^2+b^2}$ (B) $\frac{a^2}{a^2+b^2}$ (C) $\frac{b^2}{a^2+b^2}$ (D) $\frac{2ab}{a^2+b^2}$
- 5. 设X, Y独立同分布于 $N(\mu, \sigma^2)$, 下列随机变量中哪一个服从 $\chi^2(1)$ (B).

 - (A) $\frac{1}{\sigma^2}X^2$ (B) $\frac{1}{2\sigma^2}(X-Y)^2$ (C) $\frac{1}{2\sigma^2}(X+Y)^2$ (D) $\frac{1}{\sigma^2}XY$

评卷人 得分

二、选择题 (每小题 2 分, 共 10 分)

- 1. 若 A.B 和 C 是三个随机事件,则表示三个事件中至少有一个发生的事件是 B 。
 - (A) $\bar{A} \cup \bar{B} \cup \bar{C}$;

(B) $A \cup B \cup C$;

(C) ABC;

- (D) \overline{ABC} .
- 2. 随机变量X取非负整数值,且存在期望,则一定有A__。

 - (A) $EX = \sum_{k=0}^{+\infty} P(X > k)$; (B) $EX = \sum_{k=0}^{+\infty} P(X \le k)$;
 - (C) $EX = \sum_{k=1}^{+\infty} kP(X < k)$; (D) $EX = \sum_{k=1}^{+\infty} kP(X > k)$;
- 3. 设离散型随机变量 X 和 Y 有相同的分布律,且相互独立,则一定有 C 。
 - (A) P(X = Y) = 1/2;
- **(B)** P(X = Y) = 1;
- (C) P(X > Y) = P(X < Y);
- **(D)** P(X > Y) + P(X < Y) = 1;
- 4. 设事件 A 与事件 B 独立,且发生的概率都大于零,则 $P(A \cup B)$ 的概率为____B___。 (A) P(A)+P(B); (B) $1-P(\overline{A})P(\overline{B})$; (C) $P(\overline{A})P(\overline{B})$; (D) $1-P(\overline{AB})$.
- 5. 如果总体 $X \sim N(\mu, \sigma^2)$, μ 和 σ^2 为未知参数,则方差 σ^2 的矩估计为 **D**...。
 - (A) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$; (B) $\frac{1}{n+1} \sum_{i=1}^{n} (X_i \bar{X})^2$;

- (C) $\frac{1}{n} \sum_{i=1}^{n} (X_i \mu)^2$; (D) $\frac{1}{n} \sum_{i=1}^{n} (X_k \overline{X})^2$.

补充

- 三、(10分) 选择题(请在每个问题后的括号中填入 A, B, C或 D. 每小题2分)
 - 1. 发射3发子弹, 事件 A_i 表示"击中i发", i=0,1,2,3. 那么事件 $A=A_0\cup A_1$ 表示
 - (A) 至少击中一发
 - (B) 至多击中一发

 - (C)恰好击中一发 (D)必有一发击中
 - 2. 设X的分布律为 $P\{X=0\}=0.25$, $P\{X=1\}=0.35$, $P\{X=2\}=0.4$. F(x)是X的分布函数,则 $F(\sqrt{2})=($
 - (A) 0.6
- (B) ().35
- (C) ().25
- (D) 0
- 3. 设义的概率密度为 $f(x) = \frac{1}{\sqrt{6\pi}} e^{-\frac{(x-x)^2}{6}} (-\infty < x < \infty), 则D(X) = ().$
 - (A) $\sqrt{3}$
- (B) $\sqrt{6}$ (C) 3
- (D) 6
- 4. 设总体X服从 $(0,\theta)$ 上的均匀分布,从中抽取容量为2的样本 (X_1,X_2) ,则下述 θ 的 无偏估计量中()最有效.

 - (A) $\frac{X_1+3X_2}{2}$ (B) $\frac{2X_1+4X_2}{3}$ (C) $\frac{3X_1+5X_2}{4}$ (D) $\frac{4X_1+8X_2}{5}$
- 5. 设总体均值为 μ , 对于检验问题: $H_0: \mu \leq \mu_0$. $H_1: \mu > \mu_0$, 选择样本均值 \overline{X} 作 为检验统计量.则合理的Ho的拒绝域应形如().
 - (A) $\{(x_1, \dots, x_n) | \overline{x} \ge C\}$ (B) $\{(x_1, \dots, x_n) | \overline{x} \le C\}$
 - (C) $\{(x_1, \dots, x_n) | |\bar{x} \mu_0| \ge C\}$ (D) $\{(x_1, \dots, x_n) | |\bar{x} \mu_0| \le C\}$
- 3 选择题、每小题2分、共10分
 - 1, B 2, A 3, C 4, D 5, A

三;(10分) 选择题(请在每个问题后的括号中填入 A, B, C或 D, 每小题2分)

- 1. $\mathcal{Q}P(A) > 0$, P(B) > 0, 并且 $A \cap B = \emptyset$, 则(C)
 - (A) A与B互相对立 (B) A与B相互独立 (C) A与B互不相容 (D) A与B相容
- 2. 设 $X \sim \pi(\lambda)$, 则 $P\{X(X-1)=0\}=(B)$

 - (A) $e^{-\lambda}$ (B) $(1 + \lambda)e^{-\lambda}$ (C) $e^{-\lambda^2}$
- (D) $\lambda e^{-\lambda^2}$
- 3. 设 $X \sim b(m,p)$, $Y \sim b(n,p)$, 且它们相互独立. 则 $X + Y \sim (D)$.

- (A) b(mn, 2p) (B) b(mn, p) (C) b(m + n, 2p) (D) b(m + n, p)
- 4. 若随机变量 $X \sim N(1.9)$, 则 $\frac{\sqrt{DX}}{EX}$ 为(C)
 - (A) $\frac{1}{3}$
- (B) $\frac{1}{9}$
- (C) 3
- (D) 9
- 5. 设 X_1, X_2, \cdots, X_n 是从总体 $N(\mu, \sigma^2)$ 中抽取的样本, 其中 μ 未知, $\sigma > 0$ 已知. 汉和S²分别为样本均值和样本方差,则下列各式中能作为统计量的是(11).
 - $(A) \sum_{i=1}^{n} (X_i \mu)^2$

(C) $\frac{\overline{X}-\mu}{\sigma}\sqrt{n}$

(D) $\frac{\overline{X} - \mu}{S} \sqrt{n}$

	得分	评卷人		
,			三. 选择题(每小题 2 分, 共 10 分)	1

10、对概率不为零的事件A和B,一定有结论 C

- (A) $P(A|B) + P(\overline{A}|\overline{B}) = 1$;
- (B) $P(A|B) + P(A|\overline{B}) = 1$:
- (C) $P(A|B) + P(\bar{A}|B) = 1$;

(D)上述结论都不一定成立。

11、设相互独立的随机变量X和Y服从参数为 λ 的泊松分别,则仍服从泊松分布的 **是 A** .

- (A) Z = X + Y; (B) $Z = \min\{X, Y\}$; (C) $Z = \max\{X, Y\}$;
- (D) Z = XY.

(A)
$$\frac{\bar{X}}{S/10} \sim t(n-1)$$
;

(B)
$$\frac{\sum_{k=1}^{30} X_k}{\sqrt{\sum_{k=1}^{100} X_k^2}} \sim t(50)$$

(C):
$$\frac{\sum_{k=1}^{50} X_k^2}{\sum_{k=1}^{100} X_k^2} \sim F(50,50)$$

(D)
$$\frac{\sum_{k=1}^{50} X_k}{\sqrt{\sum_{k=1}^{100} X_k^2}} \sim t(49).$$

13、如果总体X 服从正态分布 $N(\mu,\sigma^2)$, 其中, μ 未知, σ^2 已知, X_1 , X_2 , X_3 是

- (A) $X_1 + X_2 + X_3$; (B) $\frac{X_1 + X_2 + X_3}{3} \mu$;
- (C) $\min\{X_1, X_2, X_3\}$ (D) $\frac{1}{\sigma^2}(X_1^2 + X_2^2 + X_3^2)$.

14、设随机变量 $X \rightarrow I(n)$,则正确的是___B__。

- (A) $P(X > 0) > \frac{1}{2}$; (B) $P(X > 0) = \frac{1}{2}$;
- (C) $P(X > 0) < \frac{1}{2}$;
- (D) 以上结论都不正确。

 吳弥即	(每格2分,	共10分)
 中儿咫	しながな ムンバッ	75 10 77 7

- 1. 设 $X \sim N(\mu, 4^2), Y \sim N(\mu, 5^2)$, 记 $p_1 = P\{X \le \mu 4\}, p_2 = P\{Y \ge \mu + 5\}$, 则(A)
 - (A)对任何实数 μ ,都有 $p_1 = p_2$; (B)对任何实数 μ ,都有 $p_1 < p_2$;
 - (C)只对个别 μ , 才有 $p_1 = p_2$; (D)对任何实数 μ , 都有 $p_1 > p_2$;
- 2. 设A和B任意两个概率非零的不相容事件,则(D).
 - (A) A 的逆事件与 B 的逆事件不相容;
- (B) P(AB) = P(A)P(B)
- (C) A 逆事件与 B 的逆事件相互独立; ; (D) P(A-B)=P(A).
- 3. 设总体 X 的方差为 σ^2 , $(X_1, X_2, ..., X_n)$ 是来自 X 的样本,则(C).
 - (A) S是o的无偏估计量; (B) S是o的最大似然估计量;
 - (C)S是 σ 的相合估计量; (D)S与 \overline{X} 独立.
- 4. 设 μ_n 是 n 次独立重复试验中事件 A 出现的次数, p 是事件 A 在每次试验中发生的概

率,则对于任意的 $\varepsilon > 0$,均有 $\lim_{n \to \infty} P\{|\frac{\mu_n}{n} - p| > \varepsilon\}$ (A)

(A) = 0

(B) = 1

(C) > 0

- (D) 不存在
- 5. 对正态总体的数学期望 μ 进行假设检验,如果在显著水平 0.05 下接受 $H_{i}: \mu = \mu_{i}$ 那么在显著水平 0.01 下,下列结论中正确的是(D)
 - (A) 不接受, 也不拒绝 &
- (B) 可能接受 K, 也可能拒绝 K

(C) 必拒绝 %

(D) 必接受 K

三、选择题

- 1. 如果 P(A|B) = P(B|A), 且 P(AB) > 0, 则().
 - (A) A = B

(B) P(A) = P(B)

(C) A, B 相互独立

- (D) $A \cup B = S$
- 2. 已知随机变量 X 服从均值为 $\frac{1}{\lambda}$ 的指数分布, 则 $\frac{E(X)}{\sqrt{D(X)}}$ 等于().
 - (A) λ
- (B) $\frac{1}{1}$ (C) $\frac{1}{2}$
- (D) 1
- 3. 设 μ_n 是n次独立重复试验中事件A发生的次数,p是事件A在每次试验中发生的概

率,则 $\forall \varepsilon > 0$,均有 $\lim_{n \to \infty} P\left\{\left|\frac{\mu_n}{n} - p\right| < \varepsilon\right\} = ($).

- (A) 0
- (B) 1
- (C) p
- (D) 1-p

- 4. 设 $\hat{\theta}_i$ 与 $\hat{\theta}_i$ 均是 θ 的无偏估计量,则().
 - (A) $E[(\hat{\theta}_1 \hat{\theta}_2)]^2 = 0$

(B) $D(\hat{\theta}_1) = D(\hat{\theta}_2)$

(C) $E(\hat{\theta}_1 - \hat{\theta}_2) = 0$

- 5. 对于假设检验问题: H_0 : $\theta = \theta_0$, H_1 : $\theta \neq \theta_0$, 第二类错误即为().
 - (A) H_0 为真却拒绝 H_0

(B) H_0 为假却接受 H_0

(C) 总是拒绝 H。

(D) 总是接受 H_o

5. B.

三、选择题

- 2. D; 3. B; 1. B:
- 4. C;

《概率论与数理统计》强化训练

三、单项选择题

- 10. 对任意两个互不相容的事件 A 和 B, 结论一定成立的是(
 - A. \overline{A} 与 \overline{B} 互不相容
- B. \overline{A} 与 \overline{B} 相容
- C. $P(A \cup B) = P(A) + P(B)$ D. P(AB) = P(A)P(B)
- 11. 要使函数 $f(x) = \cos x$ 是随机变量 X 的密度函数,则x 的取值区间必须是(

- A. $\left[-\frac{\pi}{2}, 0\right]$ B. $\left[\frac{\pi}{2}, \pi\right]$ C. $\left[0, \pi\right]$ D. $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
- 12. 设随机变量 X 和 Y 都服从标准正态分布, 但不一定独立. 那么结论一定正确的是

 - A. X + Y 服从正态分布 B. $X^2 + Y^2$ 服从 χ^2 分布
 - C. X^2 和 Y^2 都服从 χ^2 分布 D. $\frac{X^2}{V^2}$ 服从F分布
- 13. 如果总体X服从正态分布 $N(\mu,\sigma^2)$, 其中 μ 已知, σ^2 未知, X_1,X_2,X_3 是取自 总体的一个样本, 那么不是统计量的是(
 - A. $\frac{1}{3}(X_1 + X_2 + X_3)$ B. $X_1 + X_2 + \mu$

- C. $\max\{X_1, X_2, X_3\}$ D. $\frac{1}{2}(X_1 + X_2 + X_3)$
- 14. 设随机变量 X 与 Y 独立, 且分别服从分布 N(0,1) 与 N(1,1),则正确的是(
 - A. $P(X+Y \le 0) = \frac{1}{2}$ B. $P(X+Y \le 1) = \frac{1}{2}$
 - C. $P(X Y \le 0) = \frac{1}{2}$ D. $P(X Y \le 1) = \frac{1}{2}$

三、单项选择题

- 10. C;
- 11. A;
- 12. C; 13. D;
- 14. B

三、单项选择题

- 1. 如果 P(A|B) = P(B|A), 且 P(AB) > 0, 则()
 - A. A = B

- B. P(A) = P(B)
- C. A, B 相互独立
- D. $A \cup B = S$
- 2. 已知随机变量 X 服从均值为 $\frac{1}{\lambda}$ 的指数分布,则 $\frac{E(X)}{\sqrt{D(X)}}$ 等于()

 - A. λ B. $\frac{1}{\lambda}$ C. $\frac{1}{2}$ D. 1
- 3. 设 μ_n 是n次独立重复试验中事件A发生的次数,p是事件A在每次试验中发生的
- 概率. 则 $\forall \varepsilon > 0$, 均有 $\lim_{n \to \infty} P\left\{ \left| \frac{\mu_n}{n} p \right| < \varepsilon \right\} = ($)
- B. 1 C. p
- D. 1 p
- 4. 设 $\hat{\theta}_1$ 与 $\hat{\theta}_2$ 均是 θ 的无偏估计量,则()
 - A. $E[(\hat{\theta}_1 \hat{\theta}_2)^2] = 0$ B. $D(\hat{\theta}_1) = D(\hat{\theta}_2)$
 - C. $E(\hat{\theta}_1 \hat{\theta}_2) = 0$ D. $E\left(\frac{\hat{\theta}_1}{\hat{\theta}}\right) = 1$
- 5. 对于假设检验问题: H_0 : $\theta = \theta_0$, H_1 : $\theta \neq \theta_0$, 第二类错误即为()
 - A. H_0 为真却拒绝 H_0
 - B. H_0 为假却接受 H_0

 - C. 总是拒绝 H_0 D. 总是接受 H_0

三、单项选择题

- 1. B; 2. D; 3. B; 4. C;

- 5. B.

三、单项选择题

1. 对于P(A), P(B) > 0, 如果P(A | B) = P(B | A), 则(

A. A = B

B. P(A) = P(B)

C. *A*, *B* 相互独立 D. *A*, *B* 互不相容

2. 设F(x) 为随机变量X 的分布函数,则 $P(X \ge a) = ($

A. 1-F(a) B. $F(a)-F(a^{-})$ C. $1-F(a^{-})$ D. $F(a)-F(-\infty)$

3. X, Y 相互独立,且均服从b(1, p),则 $P\{\min(X, Y) < \max(X, Y)\} = ($

A. p^2 B. 1 C. 2p(1-p) D. $(1-p)^2$

4. 如果 X_1, X_2, \dots, X_n 相互独立,且均服从指数分布,则下列哪个随机变量仍然服从 指数分布()

 $\text{A. } \sum_{i=1}^n X_i \qquad \qquad \text{B. } \prod_{1 \leq i \leq n}^n X_i \qquad \qquad \text{C. } \max_{1 \leq i \leq n} \{X_i\} \qquad \qquad \text{D. } \min_{1 \leq i \leq n} \{X_i\}$

5. 设 (X_1, X_2, \dots, X_n) 为取自均匀分布总体 $U(0, \theta)$ 的一组样本,则下列哪个估计量不 是 θ 的好估计()

A. $\frac{1}{n} \sum_{i=1}^{n} X_i$ B. $\max_{1 \le i \le n} \{X_i\}$ C. $\frac{2}{n} \sum_{i=1}^{n} X_i$ D. $\frac{n+1}{n} \max_{1 \le i \le n} \{X_i\}$

三、单项选择题

1. B; 2. C; 3. C; 4. D; 5. A.