NGUYỄN XUÂN TRƯỜNG (Chủ biên) TỪ NGOC ÁNH - PHẠM VĂN HOAN

Bài tập HOA HOC

PHẦN MỘT : CÂU HỎI VÀ BÀI TẬP

α 1	
Chuong I -	
Chubit I	

ESTE - LIPIT

Bài 1

			Daii		
			ESTE		
1.1.	Ứng với công th	nức phân tử (C ₄ H ₈ O ₂ có bao r	hiêu este đồng phân c	ủa nhau ?
	A. 2.	B. 3.	C. 4.	D. 5.	
1.2.	Cho các chất c	ó công thức	cấu tạo sau đây	·:	
	(1) CH ₃ CH ₂ CO	OCH ₃ ; (2) (CH ₃ OOCCH ₃ ; (3	3) HCOOC ₂ H ₅ ; (4) CH	I ₃ COOH
	(5) CH ₃ CHCO	OCH ₃ ; (6)	HOOCCH ₂ CH ₂	OH; (7) CH ₃ OOC-C	COOC ₂ H ₅
	COOC	$_{2}H_{5}$			
	Những chất thu	iộc loại este	e là		
	A. (1), (2), (3).	, (4), (5), (6).		
	B. (1), (2), (3)	, (5), (7).			
	C. (1), (2), (4)				
	D. (1), (2), (3).	, (6), (7).			
1.3.	• •	dich NaOl	•	giản nhất là CH ₂ O. X tác dụng được với n	
	A. CH ₃ CH ₂ CC	OH.	B. C	H ₃ COOCH ₃ .	
	C. HCOOCH ₃ .		D. 0	OHCCH₂OH.	
1.4.	Hợp chất X có	công thức c	cấu tạo : CH ₃ OC	OCCH ₂ CH ₃ . Tên gọi c	ủa X là
	A. etyl axetat.		B. n	netyl propionat.	
	C. metyl axeta	t.	D. p	ropyl axetat.	
					3

1.5. Thuỷ phân este E có công thức phân tử C₄H₈O₂ (có mặt H₂SO₄ loãng) thu được 2 sản phẩm hữu cơ X và Y. Từ X có thể điều chế trực tiếp ra Y bằng một phản ứng duy nhất. Tên gọi của E là

A. metyl propionat.

B. propyl fomat.

C. ancol etylic.

D. etyl axetat.

1.6. Thuỷ phân hoàn toàn hỗn hợp gồm hai este đơn chức X, Y là đồng phân cấu tạo của nhau cần 100 ml dung dịch NaOH 1M, thu được 7,85 g hỗn hợp hai muối của hai axit là đồng đẳng kế tiếp và 4,95 g hai ancol bậc I. Công thức cấu tạo và phân trăm khối lượng của hai este là:

A. HCOOCH₂CH₂CH₃, 75%; CH₃COOC₂H₅, 25%.

B. HCOOC₂H₅, 45%; CH₃COOCH₃, 55%.

C. HCOOC₂H₅, 55%; CH₃COOCH₃, 45%.

D. HCOOCH₂CH₂CH₃, 25%; CH₃COOC₂H₅, 75%.

1.7. Este X có công thức đơn giản nhất là C₂H₄O. Đun sối 4,4 g X với 200 g dung dịch NaOH 3% đến khi phản ứng xảy ra hoàn toàn. Từ dung dịch sau phản ứng thu được 8,1 g chất rắn khan. Công thức cấu tạo của X là

A. CH₃CH₂COOCH₃.

B. CH₃COOCH₂CH₃.

C. HCOOCH₂CH₂CH₃.

D. HCOOCH(CH₃)₂.

- 1.8. Đồng phân nào trong số các đồng phân mạch hở có công thức phân tử C₂H₄O₂ tác dụng được với
 - a) dung dịch natri hiđroxit?
 - b) natri kim loai?
 - c) ancol etylic?
 - d) dung dịch AgNO₃/NH₃ sinh ra Ag?

Viết các phương trình hoá học minh hoạ.

- 1.9. Este đơn chức X có phần trăm khối lượng các nguyên tố C, H, O lần lượt là 48,65%, 8,11% và 43,24%.
 - a) Tìm công thức phân tử, viết các công thức cấu tạo có thể có và gọi tên X.
 - b) Đun nóng 3,7 g X với dung dịch NaOH vừa đủ đến khi phản ứng xảy ra hoàn toàn. Từ dung dịch sau phản ứng, thu được 4,1 g muối rắn khan. Xác định công thức cấu tạo của X.

- 1.10. Hai este X và Y là đồng phân cấu tạo của nhau. Tỉ khối hơi của X so với hiđro bằng 44.
 - a) Tìm công thức phân tử của X và Y.
 - b) Cho 4,4 g hỗn hợp X và Y tác dụng với dung dịch NaOH vừa đủ đến khi các phản ứng xảy ra hoàn toàn, thu được 4,45 g chất rắn khan và hỗn hợp hai ancol là đồng đẳng kế tiếp. Xác định công thức cấu tạo của X, Y và gọi tên chúng.
- 1.11. Este đơn chức X thu được từ phản ứng este hoá giữa ancol Y và axit hữu cơ Z (có xúc tác là axit H₂SO₄). Đốt cháy hoàn toàn 4,3 g X thu được 4,48 lít khí CO₂ (đktc) và 2,7 g nước. Tìm công thức phân tử, viết công thức cấu tạo và tên gọi của X. Viết phương trình hoá học của phản ứng điều chế X từ axit và ancol tương ứng.
- 1.12. Hỗn hợp X gồm axit axetic và ancol etylic. Chia X thành ba phần bằng nhau.

Cho phần một tác dụng với natri dư thấy có 3,36 lít khí H_2 thoát ra (đktc). Phần hai phản ứng vừa đủ với 200 ml dung dịch NaOH 1M.

Thêm vào phần ba một lượng H_2SO_4 làm xúc tác rồi thực hiện phản ứng este hoá, hiểu suất đat 60%.

- a) Viết phương trình hoá học của các phản ứng xảy ra.
- b) Tính khối lượng của hỗn hợp X đã dùng và khối lượng este thu được.

Bài 2

LIPIT

- 1.13. Phát biểu nào sau đây không đúng?
 - A. Chất béo là trieste của glixerol với các axit monocacboxylic có mạch cacbon dài, không phân nhánh.
 - B. Chất béo chứa chủ yếu các gốc no của axit thường là chất rắn ở nhiệt độ phòng.

- C. Chất béo chứa chủ yếu các gốc không no của axit thường là chất lỏng ở nhiệt độ phòng và được gọi là dầu.
- D. Phản ứng thuỷ phân chất béo trong môi trường kiềm là phản ứng thuận nghịch.
- 1.14. Chất béo có đặc điểm chung nào sau đây?
 - A. Không tan trong nước, nặng hơn nước, có trong thành phần chính của dầu, mỡ động, thực vật.
 - B. Không tan trong nước, nhẹ hơn nước, có trong thành phần chính của đầu, mỡ động, thực vật.
 - C. Là chất lỏng, không tan trong nước, nhẹ hơn nước, có trong thành phần chính của dầu, mỡ động, thực vật.
 - D. Là chất rắn, không tan trong nước, nhẹ hơn nước, có trong thành phần chính của dầu, mỡ động, thực vật.
- 1.15. Khi thuỷ phân chất béo X trong dung dịch NaOH, thu được glixerol và hỗn hợp hai muối C₁₇H₃₅COONa, C₁₅H₃₁COONa có khối lượng hơn kém nhau 1,817 lần. Trong phân tử X có

A. 3 gốc C₁₇H₃₅COO.

B. 2 gốc C₁₇H₃₅COO.

C. 2 gốc C₁₅H₃₁COO.

D. 3 gốc C₁₅H₃₁COO.

1.16. Cho một lượng tristearin (triglixerit của axit stearic với glixerol) vào cốc thuỷ tinh chịu nhiệt đựng một lượng dư dung dịch NaOH, thấy chất trong cốc tách thành hai lớp; đun sôi hỗn hợp một thời gian đến khi thu được chất lỏng đồng nhất; để nguội hỗn hợp và thêm vào một ít muối ăn, khuấy cho tan hết thấy hỗn hợp tách thành hai lớp: phía trên là chất rắn màu trắng, dưới là chất lỏng.

Hāy giải thích quá trình thí nghiệm trên bằng phương trình hoá học.

- 1.17. Đun sôi a gam một triglixerit X với dung dịch kali hiđroxit (dư) đến khi phản ứng hoàn toàn thu được 0,92 g glixerol và m gam hỗn hợp Y gồm muối của axit oleic (C₁₇H₃₃COOH) và 3,18 g muối của axit linoleic (C₁₇H₃₁COOH).
 - a) Tìm công thức cấu tạo có thể có của triglixerit trên.
 - b) Tính a.

Bài 3

KHÁI NIỆM VỀ XÀ PHÒNG VÀ CHẤT GIẶT RỬA TỔNG HỢP

- 1.18. Xà phòng và chất giặt rừa có điểm chung là
 - A. chứa muối natri có khả năng làm giảm sức căng bề mặt của các chất bẩn.
 - B. các muối được lấy từ phản ứng xà phòng hoá chất béo.
 - C. sản phẩm của công nghệ hoá dầu.
 - D. có nguồn gốc từ động vật hoặc thực vật.
- 1.19. Trong thành phần của xà phòng và của chất giặt rửa thường có một số este. Vai trò của các este này là
 - A. làm tăng khả năng giặt rửa.
 - B. tạo hương thơm mát, dễ chịu.
 - C. tạo màu sắc hấp dẫn.
 - D. làm giảm giá thành của xà phòng và chất giặt rửa.
- 1.20. Xà phòng là gì? Tại sao xà phòng có tác dụng giặt rửa? Tại sao không nên dùng xà phòng để giặt rửa trong nước cứng?
- 1.21. Tại sao không nên dùng xô, chậu bằng nhôm để đựng quần áo ngâm xà phòng?
- 1.22. Nêu những ưu điểm của chất giặt rửa tổng hợp so với xà phòng về tính tiện dụng, tính kinh tế và vấn đề bảo vệ môi trường.
- 1.23. Chỉ số axit là số miligam KOH cần để trung hoà axit béo tự do có trong 1 g chất béo. Để xà phòng hoá 100 kg chất béo (giả sử có thành phần là triolein) có chỉ số axit bằng 7 cần 14,1 kg kali hiđroxit. Giả sử các phản ứng xảy ra hoàn toàn, tính khối lượng muối thu được.
- 1.24. Tính khối lượng muối dùng để sản xuất xà phòng thu được khi cho 100 kg một loại mỡ chứa 50% tristearin; 30% triolein và 20% tripanmitin tác dụng với natri hidroxit vừa đủ (giả thiết hiệu suất phản ứng đạt 100%).

Bài 4. Luyện tập

ESTE VÀ CHẤT BÉO

- 1.25. Cho các phát biểu sau:
 - a) Chất béo thuộc loại hợp chất este.
 - b) Các este không tan trong nước do chúng nhẹ hơn nước.
 - c) Các este không tan trong nước và nổi trên mặt nước do chúng không tạo được liên kết hiđro với nước và nhẹ hơn nước.
 - d) Khi đun chất béo lỏng trong nồi hấp rồi sực dòng khí hiđro vào (có xúc tác niken) thì chúng chuyển thành chất béo rắn.
 - e) Chất béo lỏng là các triglixerit chứa gốc axit không no trong phân tử.

Những phát biểu đúng là

A. a, d, e.

B. a, b, d.

C. a, c, d, e.

D. a, b, c, d, e.

- 1.26. Khi cho một ít mỡ lợn (sau khi rán, giả sử là trìstearin) vào bát sứ đựng dung dịch NaOH, sau đó đun nóng và khuấy đều hỗn hợp một thời gian. Những hiện tượng nào quan sát được sau đây là đúng?
 - A. Miếng mỡ nổi; sau đó tan dần.
 - B. Miếng mỡ nổi; không thay đổi gì trong quá trình đun nóng và khuấy.
 - C. Miếng mỡ chìm xuống; sau đó tan dần.
 - D. Miếng mỡ chìm xuống; không tan.
- 1.27. Giải thích tại sao khi cho isoamyl axetat (dầu chuối) vào cốc đựng dung dịch natri hiđroxit thấy chất lỏng trong cốc tách thành hai lớp, nhưng khi khuấy đều và đun sôi hỗn hợp một thời gian thấy chất lỏng trong cốc tạo thành một dung dịch đồng nhất.
- 1.28. Viết các phương trình hoá học để hoàn thành các dãy biến hoá sau :

a)
$$C_2H_4 \rightarrow CH_3CHO \xrightarrow{Br_2, H_2O} A \xrightarrow{+B} C_4H_8O_2 \xrightarrow{LiAlH_4, \iota^o} B$$

- b) $CH_3CH_2COOH \rightarrow CH_3CHBrCOOH \rightarrow CH_2=CHCOOK \rightarrow$
 - \rightarrow CH₂=CHCOOH \rightarrow CH₂=CHCOOCH₃ \rightarrow polime
- c) $\text{CH}_2 = \text{CH}_2 \rightarrow \text{CH}_3 \text{CHO} \rightarrow \text{CH}_3 \text{COOCH} = \text{CH}_2 \rightarrow \text{CH}_3 \rightarrow \text{CH}$
 - \rightarrow polime 1 \rightarrow polime 2
- 1.29. Để xà phòng hoá hoàn toàn 19,4 g hỗn hợp hai este đơn chức A và B cần 200 ml dung dịch natri hiđroxit 1,5M. Sau khi phản ứng hoàn toàn, cô cạn dung dịch, thu được hỗn hợp hai ancol đồng đẳng kế tiếp nhau và một muối khan X duy nhất.

Tìm công thức cấu tạo, gọi tên và tính phần trăm khối lượng của mỗi este có trong hỗn hợp ban đầu.

1.30. Cho ancol A tác dụng với axit B thu được este X. Làm bay hơi 8,6 g este X thu được thể tích hơi bằng thể tích của 3,2 g khí oxi (đo ở cùng điều kiện nhiệt độ và áp suất).

Tìm công thức cấu tạo và tên của A, B, X, biết A có phân tử khối lớn hơn B.

CACBOHIÐRAT

Bài 5

GLUCOZO

- 2.1. Trong các nhận xét dưới đây, nhận xét nào đúng?
 - A. Tất cả các chất có công thức $C_n(H_2O)_m$ đều là cacbohidrat.
 - B. Tất cả các cacbohidrat đều có công thức chung $C_n(H_2O)_m$.
 - C. Đa số các cachohidrat có công thức chung $C_n(H_2O)_m$.
 - D. Phân tử các cacbohiđrat đều có ít nhất 6 nguyên tử cacbon.
- 2.2. Glucozo không thuộc loại
 - A. hợp chất tạp chức.

B. cacbohidrat.

C. monosaccarit.

D. disaccarit.

- 2.3. Chất không có khả năng phản ứng với dung dịch AgNO₃/NH₃ (đun nóng) giải phóng Ag là
 - A. axit axetic.

B. axit fomic.

C. glucozo.

D. fomandehit.

- 2.4. Trong các nhận xét dưới đây, nhận xét nào không đúng?
 - A. Cho glucozơ và fructozơ vào dung dịch AgNO₃/NH₃ (đun nóng) xảy ra phản ứng tráng bạc.
 - B. Glucozơ và fructozơ có thể tác dụng với hiđro sinh ra sản phẩm có cùng một công thức cấu tạo.
 - C. Glucozơ và fructozơ có thể tác dụng với $Cu(OH)_2$ tạo ra cùng một loại phức đồng.
 - D. Glucozơ và fructozơ có công thức phân tử giống nhau.

	cho dung dịch glucozơ phản ứng với		
	A. $Cu(OH)_2$ trong NaOH, đun nóng.	_	
	B. Cu(OH) ₂ ở nhiệt độ thường.	·	
	C. natri hidroxit.		
	D. AgNO ₃ trong dung dịch NH ₃ , đun	nóng.	
2.6.	Phát biểu nào sau đây $\emph{không}$ đúng ?		
	A. Dung dịch glucozơ tác đụng với Cư nóng cho kết tủa $\mathrm{Cu}_2\mathrm{O}$.	n(OH) ₂ trong môi trường kiểm khi đun	
	B. Dung dịch AgNO ₃ trong NH ₃ ox và tạo ra bạc kim loại.	i hoá glucozơ thành amoni gluconat	
	C. Dẫn khí hiđro vào dung dịch gluco sinh ra sobitol.	ozơ đun nóng có Ni làm chất xúc tác,	
		i Cu(OH) ₂ trong môi trường kiềm ở	
	nhiệt độ cao tạo ra phức đồng glucoz	$\sigma \left[Cu(C_6H_{11}O_6)_2 \right].$	
2.7.	Đun nóng dung dịch chứa 27 g glu khối lượng Ag thu được tối đa là	cozo với dung dịch AgNO ₃ /NH ₃ thì	
	A. 21,6 g.	B. 10,8 g.	
	C. 32,4 g.	D. 16,2 g.	
2.8.	Cho m gam glucozo lên men thành		
	bộ khí CO ₂ sinh ra được hập thụ hết ra 80 g kết tủa. Giá trị của m là	vào dung dịch Ca(OH) ₂ (lấy dư), tạo	
	A.72.	B. 54.	
	C. 108.	D. 96.	
2.9.	Để phân biệt dung dịch glucozơ và d dùng phản ứng tráng bạc mà dùng viết phương trình hoá học của các ph	nước brom. Hãy giải thích vì sao và	
2.10.	Nêu những phản ứng hoá học chứng m	inh các đặc điểm sau đây của fructozo:	
	a) Có nhiều nhóm OH ở những nguy	ên tử cacbon kề nhau.	
	b) Tổng số nhóm OH trong phân tử l	à 5.	
	c) Có nhóm chức xeton.		
	d) Có mạch cacbon không phân nhán	ah.	
		11	

2.5. Để chứng minh trong phân tử glucozơ có nhiều nhóm hiđroxyl, người ta

- 2.11. Trình bày phương pháp hoá học để nhận biết bốn dung dịch : glixerol, anđehit axetic, axit axetic, glucozo.
- 2.12. Xuất phát từ glucozơ, viết các phương trình hoá học để điều chế ra bốn muối khác nhau của kali, biết trong thành phần các muối đó đều có cacbon.
- 2.13. Từ nguyên liệu là glucozơ và các chất vô cơ, người ta có thể điều chế một ete và một este đều có 4 nguyên tử cacbon. Hãy viết các phương trình hoá học. Ghi tên ete và este thu được.
- 2.14. Rượu 40° là loại rượu trong đó ancol etylic chiếm 40% về thể tích. Người ta dùng một loại nguyên liệu chứa 50% glucozơ để lên men thành rượu với hiệu suất 80%.
 - Để thu được 2,3 lít rượu 40° cần dùng bao nhiều kilogam nguyên liệu nói trên? Biết rằng khối lượng riêng của ancol etylic là 0,8 g/ml.
- 2.15. Hoà tan 2,68 g hỗn hợp axetanđehit và glucozơ vào nước; cho dung dịch thu được vào 35,87 ml dung dịch 34% AgNO₃ trong amoniac (khối lượng riêng 1,4 g/ml); đun nóng nhẹ để phản ứng xảy ra hoàn toàn; lọc bỏ kết tủa rồi trung hoà nước lọc bằng axit nitric, sau đó thêm vào nước lọc đó lượng dư dung dịch kali clorua, khi đó xuất hiện 5,74 g kết tủa. Tính phần trăm khối lượng từng chất trong hỗn hợp ban đầu.

Bài 6 SACCAROZO, TINH BÔT VÀ XENLULOZO

2.16. Saccarozo và fructozo đều thuộc loại

A. monosaccarit.

B. disaccarit.

C. polisaccarit.

D. cacbohidrat.

2.17. Glucozơ và mantozơ đều không thuộc loại

A. monosaccarit.

B. disaccarit.

C. polisaccarit.

D. cacbohidrat.

2.18.	. Loại thực phẩm không chứa nhiều saccarozơ là		
	A. đường phèn.	B. mật mía.	
	C. mật ong.	D. đường kính.	
2.19.	Chất không tan được trong nước lạnh	là	
	A. glucozo.	B. tinh bột.	
	C. saccarozo.	D. fructozo.	
	Cho chất X vào dung dịch AgNO3 thấy xảy ra phản ứng tráng bạc. Chất dưới đây?	_	
	A. Glucozo.	B. Fructozo.	
	C. Axetanđehit.	D. Saccarozo	
2.21.	Chất $\emph{không}$ tham gia phản ứng thuỷ j	phân là	
	A. saccarozo.	B. xenlulozo.	
	C. fructozo.	D. tinh bột.	
2.22.	Chất lỏng hoà tan được xenlulozơ là		
	A. benzen.	B. ete.	
	C. etanol.	D. nước Svayde.	
2.23.	Cho sơ đồ chuyển hoá sau : Tinh bộ	$t \to X \to Y \to Axit axetic.$	
	X và Y lần lượt là		
	A. glucozo, ancol etylic.	B. mantozo, glucozo.	
	C. glucozo, etyl axetat.	D. ancol etylic, andehit axetic.	
2.24.	Nhóm mà tất cả các chất đều tác dụn tác, trong điều kiện thích hợp) là	g được với H ₂ O (khi có mặt chất xúc	
	A. saccarozo, CH ₃ COOCH ₃ , benzen.		
	B. C ₂ H ₆ , CH ₃ COOCH ₃ , tinh bột.		
	C. C ₂ H ₄ , CH ₄ , C ₂ H ₂ .		
	D. tinh bột, C_2H_4 , C_2H_2 .		
2.25. Khi thuỷ phân saccarozơ, thu được 270 g hỗn hợp glucozơ Khối lượng saccarozơ đã thuỷ phân là		•	
	A. 513 g.	B. 288 g.	
	C. 256,5 g.	D. 270 g.	

- 2.26. Hợp chất A là chất rắn kết tinh có vị ngọt, tan nhiều trong nước. Khi thuỷ phân chất A thu được hai chất đồng phân; một trong hai chất đó chất B tham gia phản ứng với nước brom biến thành chất hữu cơ C. Hỏi các chất A, B và C có thể là chất gì? Viết phương trình hoá học của các phản ứng.
- 2.27. Một loại nước mía có nồng độ saccarozơ 7,5% và khối lượng riêng 1,1 g/ml. Từ nước mía đó người ta chế biến thành đường kết tình (chứa 2% tạp chất) và rì đường (chứa 25% saccarozơ). Rỉ đường lại được lên men thành ancol etylic với hiệu suất 60%.
 - a) Tính khối lượng đường kết tình và khối lượng rỉ đường thu được từ 1000 lít nước mía đó. Biết rằng 80% saccarozơ ở dạng đường kết tinh, phần còn lại ở trong rỉ đường.
 - b) Toàn bộ lượng ancol etylic thu được từ lên men ri đường nói trên được pha thành rượu 40° . Tính thể tích rượu 40° thu được biết rằng khối lượng riêng của ancol etylic là 0.8 g/ml.
- 2.28. Từ một loại nguyên liệu chứa 80% tinh bột, người ta sản xuất ancol etylic bằng phương pháp lên men. Sự hao hụt trong toàn quá trình là 20%. Từ ancol etylic người ta pha thành cồn 90°. Tính thể tích cồn thu được từ 1 tấn nguyên liệu biết rằng khối lượng riêng của ancol etylic là 0,8 g/ml.
- 2.29*. Từ nguyên liệu là vỏ bào, mùn cưa (chứa 50% xenlulozơ) người ta có thể sản xuất ancol etylic với hiệu suất 70%. Từ ancol etylic có thể sản xuất cao su buna với hiệu suất 75%.

Tính khối lượng nguyên liệu cần dùng để sản xuất 1 tấn cao su buna.

Bài 7. Luyện tập

CẤU TẠO VÀ TÍNH CHẤT CỦA CACBOHIÐRAT

2.30. Fructozơ thuộc loại

A. polisaccarit.

B. disaccarit.

C. monosaccarit.

D. polime.

2.31.	Zemulozo knong muộc loại	
	A. cacbohidrat.	B. gluxit.
	C. polisaccarit.	D. đisaccarit.
2.32.	Mantozơ và tinh bột đều không thuộc	e loại
	A. monosaccarit.	B. disaccarit.
	C. polisaccarit.	D. cacbohidrat.
2.33.	Saccarozơ, tinh bột và xenlulozơ đều	có thể tham gia vào
	A. phản ứng tráng bạc.	B. phản ứng với Cu(OH) ₂ .
	C. phản ứng thuỷ phân.	D. phản ứng đổi màu iot.
2.34.	Cho m gam tinh bột lên men thành a	ancol etylic với hiệu suất 81%. Toàn
	bộ lượng khí sinh ra được hấp thụ họ	oàn toàn vào dung dịch Ca(OH)2 lấy
	dư, thu được 75 g kết tủa. Giá trị của	m là
	A. 75.	B. 65.
	C. 8.	D. 55.
2.35.	35. Xenlulozo trinitrat được điều chế từ xenlulozo và axit nitric đặc có tác là axit sunfuric đặc, nóng. Để có 29,7 kg xenlulozo trinitrat, cần c dung dịch chứa m kilogam axit nitric (hiệu suất phản ứng 90%). Gi của m là	
	A. 30.	B. 21.
	C. 42.	D. 10.
2.36.	Hợp chất X có công thức phân tử Ce	$H_{14}O_6$. Chất X có thể được điều chế
		ra hợp chất $C_6H_8Na_6O_6$, tác dụng với màu xanh lam, tác dụng với anhiđrit
	Hãy cho biết tên và công thức cấu tạ	o của X.
2.37.	Cho xenlulozơ tác dụng với anhiđrit và 82,2 g hỗn hợp rắn gồm xenlulo trung hoà 1/10 lượng axit tạo ra cần c	zo triaxetat và xelulozo diaxetat. Để
	a) Viết phương trình hoá học của các	phản ứng.
	b) Tính phần trăm khối lượng từng cl	nất trong hỗn hợp rắn thu được.

AMIN, AMINO AXIT VÀ PRÔTEIN

Bài 9

AMIN

3.1.	. Trong các chất dưới đây, chất nào là amin bậc hai ?		
	A. $H_2N - [CH_2]_6 - NH_2$.	B. $CH_3 - CH - NH_2$.	
		CH ₃	
	$C. CH_3 - NH - CH_3.$	D. C ₆ H ₅ NH ₂ .	
3.2.	Có bao nhiều chất đồng phân có cùn	g công thức phân tử C ₄ H ₁₁ N ?	
	A. 4 chất.	B. 6 chất.	
	C. 7 chất.	D. 8 chất.	
3.3.	3. Có bao nhiều amin chứa vòng benzen có cùng công thức phân tử C_7H_9		
	A. 3 amin.	B. 4 amin.	
	C. 5 amin.	D. 6 amin.	
3.4. Có bao nhiều amin bậc hai có cùng công thức phân tử C ₅ H ₁₃ N		công thức phân tử C ₅ H ₁₃ N ?	
	A. 4 amin.	B. 5 amin.	
	C. 6 amin.	D. 7 amin.	
3.5. Trong các tên gọi dưới đây, tên nào phù hợp với chất CH ₃ - Cl		phù hợp với chất $CH_3 - CH - NH_2$?	
		CH ₃	
	A. Metyletylamin.	B. Etylmetylamin.	
	C. Isopropanamin,	D. Isopropylamin.	
3.6.	Trong các chất dưới đây, chất nào có	lực bazơ mạnh nhất?	
	A. NH ₃ .	B. $C_6H_5 - CH_2 - NH_2$.	
	C. $C_6H_5 - NH_2$.	D. (CH ₃) ₂ NH.	

3.7. Trong các chất dưới đây, chất nào có lực bazơ yếu nhất?

A.
$$C_6H_5 - NH_2$$
.

B.
$$C_6H_5 - CH_2 - NH_2$$
.

C.
$$(C_6H_5)_2NH$$
.

3.8. Trình bày phương pháp hoá học để tách riêng từng chất từ hỗn hợp gồm benzen, phenol và anilin.

3.9. Hỗn hợp khí A chứa propan và một amin đơn chức. Lấy 6 lít A trộn với 30 lít oxi rồi đốt. Sau phản ứng thu được 43 lít hỗn hợp gồm hơi nước, khí cacbonic, nitơ và oxi còn dư. Dẫn hỗn hợp này qua H₂SO₄ đặc thì thể tích còn lại 21 lít, sau đó cho qua dung dịch NaOH dư thì còn lại 7 lít. Các thể tích đo ở cùng điều kiên.

Xác định công thức phân tử, công thức cấu tạo và tên của amin trong hỗn hợp A.

3.10. Hồn hợp khí A chứa metylamin và hai hiđrocacbon kế tiếp nhau trong một dãy đồng đẳng. Lấy 100 ml A trộn với 470 ml oxi (lấy dư) rồi đốt cháy. Thể tích hỗn hợp khí và hơi sau phản ứng là 615 ml; loại bỏ hơi nước thì còn lại 345 ml; dẫn qua dung dịch NaOH dư thì còn lại 25 ml. Các thể tích đo ở cùng điều kiện.

Xác định công thức phân tử và phân trām thể tích từng hiđrocacbon trong A.

Bài 10

AMINO AXIT

3.11. Trong các tên gọi dưới đây, tên nào không phù hợp với hợp chất $CH_3-CH-COOH$?

NH₂

A. Axit 2-aminopropanoic.

B. Axit α -aminopropionic.

C. Anilin.

D. Alanin.

- 3.12. Để phân biệt 3 dung dịch H₂NCH₂COOH, CH₃COOH và C₂H₅NH₂, chỉ cần dùng một thuốc thử là
 - A. dung dịch NaOH.

B. dung dich HCl.

C. natri kim loai.

- D. quỳ tím.
- 3.13. Công thức cấu tạo của glyxin là

A.
$$H_2N - CH_2 - CH_2 - COOH$$
.

B.
$$H_2N - CH_2 - COOH$$
.

- 3.14. 1 mol α-amino axit X tác dụng vừa hết với 1 mol HCl tạo ra muối Y có hàm lương clo là 28,287%. Công thức cấu tạo của X là
 - A. $CH_3 CH(NH_2) COOH$. B. $H_2N CH_2 CH_2 COOH$.

- C. $H_2N CH_2 COOH$. D. $H_2N CH_2 CH(NH_2) COOH$.
- 3.15. Khi trùng ngưng 13,1 g axit ε-aminocaproic với hiệu suất 80%, ngoài amino axit còn dư người ta thu được m gam polime và 1,44 g nước. Giá tri của m là
 - A. 10.41.

B. 9.04.

C. 11,02.

- D. 8.43.
- 3.16. Trong số các chất đã được học, có bốn chất hữu cơ có cùng công thức phân tử C₃H₇O₂N vừa có khả năng tác dụng với dung dịch NaOH, vừa có khả năng tác dung với dung dịch HCl. Hãy viết công thức cấu tạo và tên của bốn hợp chất đó.
- 3.17. Hợp chất A là một muối có công thức phân tử C₂H₈N₂O₃. A tác dụng được với KOH tạo ra một amin và các chất vô cơ. Hãy viết các công thức cấu tạo mà muối A có thể có, viết phương trình hoá học biểu diễn phản ứng giữa A và KOH, có ghi tên các chất hữu cơ.
- 3.18*. Chất A là một amino axit mà phân tử không chứa thêm nhóm chức nào khác. Thí nghiệm cho biết 100 ml dung dịch 0,2M của chất A phản ứng vừa hết với 160 ml dung dịch NaOH 0,25M. Cô cạn dung dịch sau phản

ứng này thì được 3,82 g muối khan. Mặt khác, 80 g dung dịch 7,35% của chất A phản ứng vừa hết với 50 ml dung dịch HCl 0,8M.

- a) Xác định công thức phân tử của A.
- b) Viết công thức cấu tạo của A biết rằng A có mạch cacbon không phân nhánh và nhóm amino ở vị trí α.

Bài 11

PEPTIT VÀ PROTEIN

- 3.19. Một trong những điểm khác nhau giữa protein với cacbohidrat và lipit là
 - A. protein luôn có khối lượng phân tử lớn hơn.
 - B. phân tử protein luôn có chứa nguyên tử nitơ.
 - C. phân tử protein luôn có nhóm chức OH.
 - D. protein luôn là chất hữu cơ no.
- 3.20. Tripeptit là hợp chất
 - A. mà mỗi phân tử có 3 liên kết peptit.
 - B. có liên kết peptit mà phân tử có 3 gốc amino axit giống nhau.
 - C. có liên kết peptit mà phân tử có 3 gốc amino axit khác nhau.
 - D. có liên kết peptit mà phân tử có 3 gốc amino axit.
- 3.21. Có bao nhiều peptit mà phân tử chứa 3 gốc amino axit khác nhau?
 - A. 3 chất.

B. 5 chất.

C. 6 chất.

D. 8 chất.

3.22. Trong các chất dưới đây, chất nào là đipeptit?

A.
$$H_2N - CH_2 - CO - NH - CH_2 - CO - NH - CH_2 - COOH$$
.

B.
$$H_2N - CH_2 - CO - NH - CH - COOH$$
.

C.
$$H_2N$$
 – CH_2 – CO – NH – CH – CO – NH – CH_2 – $COOH$. CH_3

D.
$$H_2N$$
 – CH – CO – NH – CH_2 – CO – NH – CH – $COOH$. CH_3

- 3.23. Từ glyxin (Gly) và alanin (Ala) có thể tạo ra mấy chất địpeptit?
 - A. 1 chất.

B. 2 chất.

C. 3 chất.

D. 4 chất.

- 3.24. Trong các nhận xét dưới đây, nhận xét nào đúng?
 - A. Dung dịch các amino axit đều làm đổi màu quỳ tím sang đỏ.
 - B. Dung dịch các amino axit đều làm đổi màu quỳ tím sang xanh.
 - C. Dung dịch các amino axit đều không làm đổi màu quỳ tím.
 - D. Dung dịch các amino axit có thể làm đổi màu quỳ tím sang đô hoặc sang xanh hoặc không làm đổi màu quỳ tím.
- 3.25. Trong các nhận xét dưới đây, nhận xét nào không đúng?
 - A. Peptit có thể thuỷ phân hoàn toàn thành các α-amino axit nhờ xúc tác axit hoặc bazơ.
 - B. Peptit có thể thuỷ phân không hoàn toàn thành các peptit ngắn hơn nhờ xúc tác axit hoặc bazơ.
 - C. Các peptit đều tác dụng với $Cu(OH)_2$ trong môi trường kiềm tạo ra hợp chất có màu tím hoặc đỏ tím.
 - D. Enzim có tác dụng xúc tác đặc hiệu đối với peptit : mỗi loại enzim chỉ xúc tác cho sự phân cắt một số liên kết peptit nhất định.
- 3.26. Thuỷ phân hoàn toàn 1 mol peptit X sinh ra 2 mol glyxin (Gly), 1 mol methionin (Met), 1 mol phenylalanin (Phe) và 1 mol alanin (Ala). Dùng các phản ứng đặc trưng người ta xác định được amino axit đầu là Met và amino axit đuôi là Phe. Thuỷ phân từng phần X thu được các đipeptit Met ~ Gly, Gly Ala và Gly Gly.

Hãy cho biết trình tự đầy đủ của peptit X.

3.27. Thuỷ phân hoàn toàn pentapeptit X ta thu được các amino axit A, B, C, D và E. Thuỷ phân không hoàn toàn X ta thu được các đipeptit BD, CA, DC, AE và tripeptit DCA. Xác định trình tự các gốc amino axit trong phân tử X.

- 3.28. Hãy viết công thức cấu tạo của tripeptit có tên là Alanylglyxylvalin (Ala Gly Val).
- 3.29. Viết công thức cấu tạo thu gọn và tên của các amino axit sinh ra khi thuỷ phân hoàn các peptit:

a)
$$H_2N-CH_2-C-NH-CH-C-NH-CH_2-COOH$$
 \parallel
 \parallel
 \parallel
 \parallel
 \parallel
 \parallel
 \parallel
 \parallel

- 3.30. Có hai loại len có bề ngoài giống nhau, một loại là len lông cừu và một loại len sản xuất từ tơ nhân tạo (có bản chất là xenlulozơ). Làm thế nào để phân biệt hai loại len đó một cách đơn giản?
- 3.31. Khi thuỷ phân hoàn toàn 500 mg một protein, chỉ thu được các amino axit với khối lượng như sau :

$$CH_3 - CH(NH_2) - COOH$$
 178 mg
 $HOOC - CH_2 - CH_2 - CH(NH_2) - COOH$ 44 mg
 $HS - CH_2 - CH(NH_2) - COOH$ 48 mg
 $HO - CH_2 - CH(NH_2) - COOH$ 105 mg
 $HOOC - CH_2 - CH(NH_2) - COOH$ 131 mg
 $(CH_3)_2CH - CH(NH_2) - COOH$ 47 mg
 $H_2N - [CH_2]_4 - CH(NH_2) - COOH$ 44 mg

Tính tỉ lệ (về số mol) giữa các amino axit trong loại protein đó. Nếu phân tử khối của protein này là 50 000 thì số mắt xích của mỗi amino axit trong một phân tử protein là bao nhiều?

Bài 12. Luyện tập

CẤU TẠO VÀ TÍNH CHẤT CỦA AMIN, AMINO AXIT VÀ PROTEIN

3.32. Có bao nhiều amin bậ	ic ba có cùng công thức phân tử $C_6H_{15}N$?
A. 3 chất.	B. 4 chất.
C 7 chất	D. 8 chất

- 3.33. Trong các tên gọi dưới đây, tên nào phù hợp với chất CH₂-NH₂?
 - A. Phenylamin.
 - B. Benzylamin.
 - C. Anilin.
 - D. Phenylmetylamin.
- 3.34. Có bao nhiều amino axit có cùng công thức phân tử C₄H₉O₂N ?
 - A. 3 chất

B. 4 chất

C. 5 chất

D. 6 chất

3.35. Trong các tên gọi dưới đây, tên nào $\it không$ phù hợp với chất $\it CH_3-CH-CH-COOH$?

- A. Axit 2-metyl-3-aminobutanoic.
- B. Valin.
- C. Axit 2-amino-3-metylbutanoic
- D. Axit α -aminoisovaleric.
- 3.36. Trong các chất dưới đây, chất nào có tính bazơ mạnh nhất?
 - A. $C_6H_5 NH_2$.
 - B. $(C_6H_5)_2NH$.
 - C. p-CH₃ C₆H₄ NH₂.
 - D. $C_6H_5 CH_2 NH_2$.

3.37. Dung dịch của chất nào trong các chất dưới đây không làm đổi màu quỳ tím?

B.
$$NH_2 - CH_2 - COOH$$
.

C.
$$HOOC-CH_2-CH_2-CH-COOH$$
. H_2 NH_2

D. CH₃COONa.

3.38. Khi đốt cháy hoàn toàn một amin đơn chức X, thu được 16,80 lít khí CO_2 , 2,80 lít khí N_2 (các thể tích khí đo ở đktc) và 20,25 g H_2O . Công thức phân tử của X là

B. C_3H_7N .

$$C. C_2H_7N.$$

D. C₃H₀N.

3.39. Cho hỗn hợp X gồm hai chất hữu cơ có cùng công thức phân tử C₂H₇NO₂ tác dụng vừa đủ với dung dịch NaOH, đun nóng thu được dung dịch Y và 4,48 lít (đktc) hỗn hợp Z gồm hai khí (đều làm xanh giấy quỳ tím ẩm). Tỉ khối của Z đối với H₂ bằng 13,75. Cô cạn dung dịch Y thu được khối lượng muối khan là

A. 16,5 g.

B. 14,3 g.

C. 8,9 g.

D. 15,7 g.

- 3.40. Hãy viết công thức cấu tạo của tất cả các tripeptit có chứa gốc của cả hai amino axit là glyxin và alanin.
- 3.41. Chất X có công thức phần tử $C_4H_9O_2N$ và là este của amino axit. Hãy viết các công thức cấu tạo có thể có của X và ghi tên tương ứng.
- 3.42. Chất X là một muối có công thức phân tử C₃H₁₀N₂O₃. Khi cho X tác dụng với KOH ta thu được một amin bậc ba và các chất vô cơ.

Hãy viết công thức cấu tạo và tên của chất X.

Viết phương trình hoá học của phản ứng giữa X và KOH.

- 3.43*. Hỗn hợp A ở thể lỏng chứa hexan và một amin đơn chức. Làm bay hơi 11,6 g A thì thể tích hơi thu được đúng bằng thể tích của 4,8 g oxi ở cùng nhiệt độ và áp suất. Trộn 4,64 g A với m gam O₂ (lấy dư) rồi đốt cháy. Sau phản ứng thu được 6,48 g nước và 7,616 lít hỗn hợp khí gồm CO₂, N₂ và O₂ còn dư. Dẫn hỗn hợp khí này qua dung dịch NaOH (có dư) thì thể tích còn lại là 1,344 lít (các thể tích ở đktc).
 - a) Xác định công thức phân tử, công thức cấu tạo, tên và phần trăm về khối lượng của amin trong hỗn hợp A.
 - b) Tính m.
- 3.44*. Người ta đốt cháy 4,55 g chất hữu cơ X bằng 6,44 lít O₂ (lấy dư). Sau phản ứng thu được 4,05 g H₂O và 5,6 lít hỗn hợp khí gồm CO₂, N₂ và O₂ còn dư. Các thể tích đo ở đktc. Dẫn hỗn hợp khí này đi qua dung dịch NaOH (dư) thì còn lại hỗn hợp khí có tỉ khối đối với hiđro là 15,5.
 - a) Xác định công thức đơn giản nhất của X.
 - b) Xác định công thức phân tử, biết rằng phân tử khối của X là 91.
 - c) Viết công thức cấu tạo và tên của X, biết rằng X là muối, vừa phản ứng được với dung dịch NaOH, vừa phản ứng được với dung dịch HCl.

POLIME VÀ VẬT LIỆU POLIME

Bài 13

ĐẠI CƯƠNG VỀ POLIME

4.1. Cho các polime : \leftarrow CH₂ - CH₂ $\rightarrow_{\overline{n}}$, \leftarrow CH₂-CH=CH-CH₂ $\rightarrow_{\overline{n}}$ và \leftarrow NH-[CH₂]₅-CO $\rightarrow_{\overline{n}}$. Công thức các monome tạo nên các polime trên (bằng cách trùng hợp hoặc trùng ngưng) lần lượt là

A.
$$CH_2 = CH_2$$
; $CH_3 - CH = CH - CH_3$; $H_2N - CH_2 - CH_2 - COOH$.

B.
$$CH_2 = CHC1$$
; $CH_3 - CH = CH - CH_3$; $H_2N - CH(NH_2) - COOH$.

C.
$$CH_2 = CH_2$$
; $CH_2 = CH - CH = CH_2$; $H_2N - [CH_2]_5 - COOH$.

D.
$$CH_2 = CH_2$$
; $CH_3 - CH = C = CH_2$; $H_2N - [CH_2]_5 - COOH$.

4.2. Chất không có khả năng tham gia phản ứng trùng hợp là

A. stiren.

B. toluen.

C. propen.

D. isopren.

4.3. Chất không có khả năng tham gia phản ứng trùng ngưng là

A. glyxin.

B. axit terephtalic.

C. axit axetic.

D. etylen glicol.

4.4. Trong các nhận xét dưới đây, nhận xét nào không đúng?

- A. Các polime không bay hơi.
- B. Đa số polime khó hoà tan trong các dung môi thông thường.

C. Các polime không có nhiệt độ nóng chảy xác định.

D. Các polime đều bền vững dưới tác dụng của axit.

4.5. Polime \leftarrow CH_2-CH \rightarrow $COCCH_3$ \rightarrow $COCCH_3$

A. poli(metyl acrylat).

B. poli(vinyl axetat).

C. poli(metyl metacrylat).

D. poliacrilonitrin.

4.6. Poli(ure-fomandehit) có công thức cấu tạo là

A.
$$\rightarrow$$
 NH - CO - NH - CH₂ \rightarrow _n.

$$\begin{array}{c} \text{B.} \left(\begin{array}{c} \text{CH}_2 - \text{CH} \\ \\ \text{CN} \end{array} \right)_n \end{array}$$

$$\text{C.} \stackrel{\textstyle \leftarrow}{\longleftarrow} \text{NH} - \left[\text{CH}_2\right]_6 - \text{NH} - \text{CO} - \left[\text{CH}_2\right]_4 - \text{CO} \xrightarrow{\textstyle \setminus_{\text{II}}}.$$

$$D$$
. CH_2 .

4.7. Sản phẩm trùng hợp propen $CH_3 - CH = CH_2$ là

$$A. \leftarrow CH_3 - CH - CH_2 \rightarrow_n$$
. B. $\leftarrow CH_2 - CH_2 - CH_2 \rightarrow_n$.

B.
$$-\text{CH}_2 - \text{CH}_2 - \text{CH}_2 \xrightarrow{}_n$$
.

$$C. \leftarrow CH_3 - CH = CH_2 \rightarrow_{\overline{n}}$$

A.
$$\leftarrow$$
 CH₃ - CH - CH₂ \rightarrow _n.

B. \rightarrow CH₂ - CH₂ - CH

C. \leftarrow CH₃ - CH = CH₂ \rightarrow _n.

D. \leftarrow CH₂ - CH

CH₃ \rightarrow _n.

Trong các chất dưới đây, chất nào khi được thuỷ phân hoàn toàn sẽ tạo ra **4.8**. alanin?

A.
$$\leftarrow$$
 NH - CH₂ - CH₂ - CO \rightarrow_n .

B.
$$\left(\begin{array}{c} NH_2-CH-CO \\ CH_3 \end{array}\right)_n$$

C.
$$\leftarrow$$
 NH - CH(CH₃) - CO \rightarrow _n.

D.
$$\leftarrow$$
NH - CH₂ - CH(CH₃)- CO \rightarrow _n.

4.9. Có thể điều chế poli(vinyl ancol)
$$\left(\begin{array}{c} CH_2 - CH \\ OH \end{array}\right)_n$$
 bằng cách

A. trung hop ancol vinylic $CH_2 = CH - OH$.

B. trùng ngưng etylen glicol CH₂OH – CH₂OH.

C. xà phòng hoá poli(vinyl axetat)
$$CH_2 - CH$$
 H_3CCOO n

- D. dùng một trong ba cách trên.
- **4.10.** Chất X có công thức phân tử $C_8H_{10}O$. X có thể tham gia vào quá trình chuyển hoá sau :

$$X \xrightarrow{-H_2O} Y \xrightarrow{\text{trùng hợp}} \text{polistiren}$$

Hai chất X và Y có công thức cấu tạo và tên như thế nào ? Viết phương trình hoá học của các phản ứng nói trên.

- **4.11.** Viết phương trình hoá học của phản ứng tạo ra polime từ các monome sau đây. Ghi tên polime thu được.
 - a) $CH_2 = CHCl$.
 - b) $CH_2 = CH CH = CH_2$.
 - c) $H_2N [CH_2]_5 COOH$.
 - d) $HO CH_2 CH_2 OH$ và $HOOC C_6H_4 COOH$.
- **4.12.** Từ nguyên liệu là axetilen và các chất vô cơ, người ta có thể điều chế poli(vinyl axetat) và poli(vinyl ancol). Hãy viết phương trình hoá học của các phản ứng xảy ra trong quá trình điều chế đó.
- **4.13.** Phản ứng trùng hợp một hỗn hợp monome tạo thành polime chứa một số loại mắt xích khác nhau được gọi là phản ứng đồng trùng hợp. Hãy viết phương trình hoá học của phản ứng đồng trùng hợp:
 - a) Buta-1,3-dien và stiren.
 - b) Buta-1,3-đien và acrilonitrin $CH_2 = CH CN$.

4.14*. Chất X có công thức phân tử C_4H_8O . Cho X tác dụng với H_2 dư (chất xúc tác Ni, nhiệt độ cao) được chất Y. Đun Y với H_2SO_4 đặc ở nhiệt độ cao thu được chất hữu cơ Z. Trùng hợp Z, thu được poliisobuten.

Hãy viết công thức cấu tạo của X, Y và Z. Trình bày các phương trình hoá học của các phản ứng nêu trên.

Bài 14

VẬT LIỆU POLIME

- 4.15. Trong các nhận xét dưới đây, nhận xét nào không đúng?
 - A. Một số chất đẻo là polime nguyên chất.
 - B. Đa số chất dẻo, ngoài thành phần cơ bản là polime còn có các thành phần khác.
 - C. Một số vật liệu compozit chỉ là polime.
 - D. Vật liệu compozit chứa polime và các thành phần khác.
- 4.16. To nilon-6,6 thuộc loại

A. tơ nhân tao.

B. tơ bán tổng hợp.

C. tơ thiên nhiên.

D. tơ tổng hợp.

4.17. To visco không thuộc loại

A. tơ hoá học.

B. tơ tổng hợp.

C. tơ bán tổng hợp.

D. tơ nhân tao.

- 4.18. Trong các ý kiến dưới đây, ý kiến nào đúng?
 - A. Đất sét nhào nước rất dẻo, có thể ép thành gạch, ngói ; vậy đất sét nhào nước là chất dẻo.
 - B. Thạch cao nhào nước rất dẻo, có thể nặn thành tượng ; vậy đó là một chất dẻo.

C. Thuy tinh hữu cơ (plexiglas) rất cứng và bền với nhiệt; vậy đó không phải là chất đẻo.

D. Tính dẻo của chất dẻo chỉ thể hiện trong những điều kiện nhất định; ở các điều kiên khác, chất dẻo có thể không dẻo.

4.19. Poli(metyl metacrylat) có công thức cấu tao là

A.
$$\begin{pmatrix}
CH_3 \\
-CH_2 - C \\
-CH_3O - CO
\end{pmatrix}_n$$

A.
$$\begin{pmatrix}
CH_{3} \\
-CH_{2} - C \\
-CH_{3}O - CO
\end{pmatrix}_{n}$$
B.
$$\begin{pmatrix}
CH_{3} \\
-CH_{2} - C \\
-CH_{3}CH_{2}OCO
\end{pmatrix}_{n}$$

$$C. \leftarrow \begin{pmatrix} CH_2 - C \\ CH_3OCO \end{pmatrix}_n$$

D.
$$\begin{array}{c}
CH_{3} \\
CH_{2} - C \\
CH_{3}COO
\end{array}$$

4.20. Polime
$$CH_2$$
 là thành phần chủ yếu của

A. nhưa rezit.

B. nhưa rezol.

C. nhưa novolac.

D. teflon.

4.21. Nhưa phenol-formandehit được điều chế bằng cách đun nóng phenol với dung dịch

A. CH₃COOH trong môi trường axit.

B. CH₃CHO trong môi trường axit.

C. HCOOH trong môi trường axit.

D. HCHO trong môi trường axit.

4.22. Dãy gồm các chất được dùng để tổng hợp cao su buna-S là:

A.
$$CH_2 = CH - CH = CH_2$$
, $C_6H_5 - CH = CH_2$.

B.
$$CH_2 = C(CH_3) - CH = CH_2$$
, $C_6H_5 - CH = CH_2$.

C.
$$CH_2 = CH - CH = CH_2$$
, lưu huỳnh.

D.
$$CH_2 = CH - CH = CH_2$$
, $CH_3 - CH = CH_2$.

4.23. Cao su song (nay cao s	u tho) ia	
A. cao su thiên nhiên.		
B. cao su chưa lưu hoá		
C. cao su tổng hợp.		
D. cao su lưu hoá.		
với một phân tử clo. S	4.24. Khi clo hoá PVC, tính trung bình cứ k mắt xích trong mạch PVC phản ứng với một phân tử clo. Sau khi clo hoá, thu được một polime chứa 63,96% clo (về khối lượng). Giá trị của k là	
A. 3.	В. 6.	
C. 5.	D. 4.	
	g xà phòng có độ kiểm cao để giặt quần áo làm bằng	

- 4.25. Vì sao không nên dùng xà phòng có độ kiềm cao để giặt quần áo làm bằng nilon, len, tơ tằm, không nên giặt bằng nước quá nóng hoặc là (ủi) quá nóng các đồ dùng trên.
- 4.26. Trùng hợp 65,0 g stiren bằng cách đun nóng chất này với một lượng nhỏ chất xúc tác benzoyl peoxit. Cho toàn bộ hỗn hợp sau phản ứng (đã loại hết benzoyl peoxit) vào 1,0 lít dung dịch brom 0,15M; sau đó cho thêm KI (dư) thấy sinh ra 6,35 g iot.
 - a) Viết phương trình hoá học của các phản ứng.
 - b) Tính hiệu suất của phản ứng trùng hợp stiren.
- 4.27. Khi cho một loại cao su buna-S tác dụng với brom (tan trong CCl₄) người ta nhận thấy cứ 1,05 g cao su đó có thể tác dụng hết với 0,80 g brom. Hãy tính tỉ lệ giữa số mắt xích butađien và số mắt xích stiren trong loại cao su nói trên.

Bài 15. Luyện tập

POLIME VÀ VẬT LIỆU POLIME

- 4.28. Polime được điều chế bằng phản ứng trùng hợp là
 - A. poli(ure-fomanđehit).
 - B. teflon.
 - C. poli(etylen terephtalat).
 - D. poli(phenol-fomandehit).
- 4.29. Polime được điều chế bằng phản ứng trùng ngưng là
 - A. poli(metyl metacrylat).
- B. poliacrilonitrin.

C. polistiren.

D. polipeptit.

4.30. Cho các loai tơ sau:

1.
$$\leftarrow$$
 NH - [CH₂]₆ - NH - CO - [CH₂]₄ - CO \rightarrow _n

2.
$$+NH - [CH_2]_5 - CO \rightarrow_n$$

3.
$$[C_6H_7O_2(OOCCH_3)_3]_n$$

Tơ thuộc loại poliamit là

B. 1, 2, 3.

D. 1, 2.

4.31. Công thức của cao su isopren là

A.
$$\leftarrow$$
 CH₂ - CH = CH - CH₂- \rightarrow _n.

B.
$$\leftarrow CH_2 - C = CH - CH_2$$

 CH_3

C.
$$\leftarrow$$
 CH₂-CH=CH-CH₂-CH-CH₂ \rightarrow .

D.
$$\leftarrow$$
 CH₂-CH=CH-CH₂-CH-CH₂ \rightarrow CN

4.32. Trong các loại tơ dưới đây, chất nào là tơ nhân tạo?

A. To visco.

B. To capron.

C. Nilon-6,6.

D. Tơ tầm.

4.33. Teflon là tên của một polime được dùng làm

A. chất đẻo.

B. tơ tổng hợp.

C. cao su tổng hợp.

D. keo dán.

4.34. Người ta tổng hợp poli(metyl metacrylat) từ axit và ancol tương ứng qua hai giai đoạn là este hoá (hiệu suất 60%) và trùng hợp (hiệu suất 80%).

- a) Viết phương trình hoá học của các phản ứng.
- b) Tính khối lượng axit và ancol cần dùng để thu được 1,2 tấn polime.
- 4.35. Để đốt cháy hoàn toàn 6,55 g chất A cần dùng vừa hết 9,24 lít oxi. Sản phẩm cháy gồm có 5,85 g nước và 7,28 lít hỗn hợp khí gồm CO₂ và N₂. Các thể tích đo ở đktc.
 - a) Xác định công thức phân tử của A biết rằng phân tử khối của A là 131.
 - b) Viết công thức cấu tạo và tên của A biết rằng A là một ε-amino axit.
 - c) Viết phương trình hoá học của phản ứng điều chế polime từ chất A.

3.BTHH12(C) - A

ĐẠI CƯƠNG VỀ KIM LOẠI

33

Bài 17

VỊ TRÍ CỦA KIM LOẠI TRONG BẢNG TUẦN HOÀN VÀ CẤU TẠO CỦA KIM LOẠI

5.1.	Kim loại nào sau đây có tính dẫn	điện tốt nhất trong tất cả các kim loại ?
	A. Vàng	B. Bạc
	C. Đồng	D. Nhôm
5.2.	Kim loại nào sau đây dẻo nhất tro	ng tất cả các kim loại ?
	A. Bạc	B. Vàng
	C. Nhôm	D. Đồng
5.3.	Kim loại nào sau đây có độ cứng	lớn nhất trong tất cả các kim loại?
	A. Vonfam	B. Crom
	C. Sắt	D. Đồng
5.4.	Kim loại nào sau đây là kim loại n	mềm nhất trong tất cả các kim loại?
	A. Liti	B. Xesi
	C. Natri	D. Kali
5.5.	Kim loại nào sau đây có nhiệt độ nó	ống chảy cao nhất trong tất cả các kim loại?
	A. Vonfam	B. Sất
	C. Đồng	D. Kem
5.6.	Kim loại nào sau đây nhẹ nhất (c các kim loại ?	có khối lượng riêng nhỏ nhất) trong tất cả
	A. Liti	B. Natri
	C. Kali	D. Rubiđi

5.7. Tổng số hạt proton, notron, electron trong nguyên tử của một nguyên tố là 155. Số hạt mang điện nhiều hơn số hạt không mang điện là 33.

Nguyên tố đó là

A. bac.

B. đồng.

C. chì.

D. sắt.

5.8. Một nguyên tử có tổng số hạt proton, nơtron, electron là 40. Đó là nguyên tử của nguyên tố nào sau đây?

A. Canxi

B. Bari

C. Nhôm

D. Sắt

- 5.9. Cho biết vị trí của những nguyên tố kim loại trong bảng tuần hoàn, vị trí của kim loại có tính khử mạnh nhất và vị trí của phi kim có tính oxi hoá mạnh nhất.
- **5.10.** a) Hãy giải thích vì sao kim loại có tính dẻo, tính dẫn điện, tính dẫn nhiệt và có ánh kim.
 - b) Vì sao tính dẫn nhiệt của kim loại luôn luôn đi đôi với tính dẫn điện? Vì sao khi nhiệt độ tăng lên thì khả năng dẫn điện và dẫn nhiệt của kim loại giảm đi?
- 5.11. Hãy nêu những ứng dụng thực tế của kim loại có nhiệt độ nóng chảy cao nhất và thấp nhất.
- 5.12. Viết cấu hình electron nguyên tử của các nguyên tố kim loại : K, Ca, Al, Fe, Cu, Cr. Có nhận xét gì về cấu hình electron nguyên tử của các nguyên tố?
- 5.13. Hãy so sánh số electron ở lớp ngoài cùng của nguyên tử kim loại nhóm IA, IIA và phi kim nhóm VIA, VIIA.
- **5.14.** Dựa vào khối lượng riêng của kim loại, hãy tính thể tích mol kim loại và ghi kết quả vào bảng sau :

Tên kim loại	Khối lượng riêng (g/cm ³)	Thể tích mol (cm³/mol)
Kali (K)	0,86	
Natri (Na)	0,97	
Magie (Mg)	1,74	
Nhôm (AI)	2,70	
Kēm (Zn)	7,14	
Sắt (Fe)	7,87	}
Đồng (Cu)	8,92	
Bạc (Ag)	10,50	
Vàng (Au)	19,30	

Bài 18

TÍNH CHẤT CỦA KIM LOẠI DÃY ĐIỆN HOÁ CỦA KIM LOẠI

B. Cu, Pb, Rb, Ag.

D. Al, Hg, Cs, Sr.

5.15. Dãy kim loại tác dụng được với H₂O ở nhiệt độ thường là

A. Fe, Zn, Li, Sn.

C. K, Na, Ca, Ba.

5.16.		dung dịch CuCl ₂ IM, giả thiết Cu tạo ra n ứng xong lấy đinh sắt ra, sấy khô, khối
	A. 15,5 g.	B. 0,8 g.
	C. 2,7 g.	D. 2,4 g.
5.17.	Cho 4,8 g một kim loại R hoá trị loãng thu được 1,12 lít khí NO duy r	II tan hoàn toàn trong dung dịch HNO ₃ thất (đktc). Kim loại R là
	A. Zn.	B. Mg.
	C. Fe.	D. Cu.
5.18.	Cho 3,2 g Cu tác dụng với dung (đktc) thu được là	dịch HNO_3 đặc, dư thì thể tích khí NO_2
	A. 1,12 lít.	B. 2,24 lít.
	C. 3,36 lít.	D. 4,48 lít.
5.19.		bột lưu huỳnh (không có không khí) thư ng với dung dịch HCl dư thì có V lít khí ra hoàn toàn. Giá trị của V là
	A. 2,24.	B. 4,48.
	C. 6,72.	D. 3,36.
5.20.	5	eO và ZnO thành kim loại cần 2,24 lít H ₂ thu được cho tác dụng hết với dung dịch
	A. 4,48 lít.	B. 1,12 lít.
	C. 3,36 lít.	D. 2,24 lít.
		35

5.21. Cho 6,72 lít khí H₂ (đktc) đi qua ống đựng 32 g CuO nung nóng thu được chất rắn A. Thể tích dung dịch HCl 1M đủ để tác dung hết với A là

A. 0,2 lít.

B. 0,1 lít.

C. 0,3 lít.

D. 0.01 lít.

- 5.22. Cho một lá sắt nhỏ vào dung dịch chứa một trong những muối sau: CuSO₄, AlCl₃, Pb(NO₃)₂, ZnCl₂, KNO₃, AgNO₃. Viết phương trình hoá học dạng phân tử và ion thu gọn của các phản ứng xảy ra (nếu có). Cho biết vai trò của các chất tham gia phản ứng.
- **5.23.** Khối lượng thanh kẽm thay đổi thế nào sau khi ngâm một thời gian trong các dung dịch:
 - a) CuCl₂

b) $Pb(NO_3)_2$

c) AgNO₃

d) NiSO₄.

Viết phương trình hoá học của các phản ứng xây ra dưới dạng phân tử và ion thu gọn. Giả thiết các kim loại giải phóng ra đều bám hết vào thanh kẽm.

- 5.24. Ngâm một đinh sắt sạch trong 200 ml dung dịch CuSO₄. Sau khi phản ứng kết thúc lấy đình sắt ra khỏi dung dịch, rửa nhẹ, làm khô, nhận thấy khổi lượng đinh sắt tăng thêm 0,8 g.
 - a) Viết phương trình hoá học của phản ứng dạng phân tử và ion thu gọn. Cho biết vai trò của các chất tham gia phản ứng.
 - b) Tính nồng độ mol của dung dịch CuSO₄.

Giả thiết Cu giải phóng ra đều bám hết vào định sắt.

- 5.25. Hoà tan hoàn toàn 1,5 g hỗn hợp bột Al và Mg vào dung dịch HCl thu được 1,68 lít H₂ (đktc). Tính phần trăm khối lượng của từng kim loại trong hỗn hợp.
- 5.26. Đốt cháy hết 1,08 g một kim loại hoá trị III trong khí Cl₂ thu được 5,34 g muối clorua của kim loại đó. Xác định kim loại.
- 5.27. Cho 1,12 g bột sắt và 0,24 g bột Mg vào một bình chứa 250 ml dung dịch CuSO₄ rồi khuấy kĩ cho đến khi kết thúc phản ứng. Sau phản ứng, khối lượng kim loại có trong bình là 1,88 g. Tính nồng độ mol của dung dịch CuSO₄ trước phản ứng.

5.28. Cho 8,85 g hỗn hợp Mg, Cu và Zn vào lượng dư dung dịch HCl thu được 3,36 lít H₂ (đktc). Phần chất rắn không tan trong axit được rửa sạch rồi đốt cháy trong oxi tao ta 4 g chất bột màu đen.

Tính phần trăm khối lượng của từng kim loại trong hỗn hợp.

Bài 19

HOP KIM

5.29. Một loại đồng thau có chứa 59,63% Cu và 40,37% Zn. Hợp kim này có cấu tạo tinh thể của hợp chất hoá học giữa đồng và kẽm. Công thức hoá học của hợp chất là

A. Cu₃Zn₂.

B. Cu₂Zn₃.

C. Cu₂Zn.

D. CuZn₂.

5.30. Trong hợp kim Al – Mg, cứ có 9 mol Al thì có 1 mol Mg. Thành phần phần trăm khối lượng của hợp kim là

A. 80% Al và 20% Mg.

B. 81% Al và 19% Mg.

C. 91% Al và 9% Mg.

D. 83% Al và 17% Mg.

5.31. Nung một mẫu gang có khối lượng 10 g trong khí O_2 dư thấy sinh ra 0,448 lít CO_2 (đktc). Thành phần phần trăm khối lượng cacbon trong mẫu gang là

A. 4,8%.

B. 2,2%.

C. 2,4%.

D. 3,6%.

5.32. Khi hoà tan 7,7 g hợp kim gồm natri và kali vào nước thấy thoát ra 3,36 lít H_2 (đktc). Thành phần phần trăm khối lượng của các kim loại trong hợp kim là

A. 25,33% K và 74,67% Na.

B. 26,33% K và 73,67% Na.

C. 27,33% K và 72,67% Na.

D. 28,33% K và 71,67% Na.

5.33. Giải thích vì sao hợp kim có tính dẫn điện, dẫn nhiệt và có ánh kim. So sánh khả năng dẫn nhiệt, dẫn điện của hợp kim với kim loại tinh khiết trong thành phần.

- 5.34. Hoà tan hoàn toàn 3 g hợp kim Cu Ag trong dung dịch HNO₃ đặc thu được 7,34 g hỗn hợp hai muối Cu(NO₃)₂ và AgNO₃. Hãy xác định thành phần phần trām khối lượng của từng kim loại trong hợp kim.
- **5.35.** Cho 1 g hỗn hống của Na (natri tan trong thuỷ ngân) tác dụng với nước thu được dụng dịch kiềm. Để trung hoà dụng dịch kiềm đó cần 50 ml dụng dịch HCl 0,2M. Tính phần trăm khối lượng của natri trong hỗn hống.
- 5.36. Để xác định hàm lượng bạc trong một hợp kim, người ta hoà tan 1,5 g hợp kim đó trong axit HNO₃ đặc, dư. Xử lí dung dịch bằng axit HCl, lọc lấy kết tủa, rửa rồi sấy khô, cân được 1,194 g. Tính phần trăm khối lượng của bạc trong hợp kim.

SỰ ĂN MÒN KIM LOẠI

- 5.37. Sự ăn mòn kim loại không phải là
 - A. sự khử kim loại.
 - B. sự oxi hoá kim loại.
 - C. sự phá huỷ kim loại hoặc hợp kim do tác dụng của các chất trong môi trường.
 - D. sự biến đơn chất kim loại thành hợp chất.
- 5.38. Đinh sắt bị ăn mòn nhanh nhất trong trường hợp nào sau đây?
 - A. Ngâm trong dung dịch HCl.
 - B. Ngâm trong dung dịch HgSO₄.
 - C. Ngam trong dung dịch H₂SO₄ loãng.
 - D. Ngâm trong dung dịch H₂SO₄ loãng có nhỏ thêm vài giọt dung dịch CuSO₄.
- 5.39. Sắt tây là sắt tráng thiếc. Nếu lớp thiếc bị xước sâu tới lớp sắt thì kim loại bị ăn mòn trước là
 - A. thiếc.
 - B. sát.
 - C. cả hai đều bị ăn mòn như nhau.
 - D. không kim loại nào bị ăn mòn.

- 5.40. Sau một ngày lao động, người ta phải làm vệ sinh bề mặt kim loại của các thiết bị máy móc, dụng cụ lao động. Việc làm này có mục đích chính là gì?
 - A. Để kim loại sáng bóng đẹp mắt.
 - B. Để không gây ô nhiễm môi trường.
 - C. Để không làm bẩn quần áo khi lao động.
 - D. Để kim loại đỡ bi ăn mòn.
- 5.41. Một số hoá chất được để trên ngãn tủ có khung bằng kim loại. Sau một thời gian, người ta thấy khung kim loại bị gỉ. Hoá chất nào dưới đây có khả năng gây ra hiện tượng trên?
 - A. Ancol etylic (etanol)
- B. Dây nhôm

C. Dâu hoả

- D. Axit clohidric
- 5.42. Sự phá huỷ kim loại hay hợp kim do kim loại tác dụng trực tiếp với các chất oxi hoá trong môi trường được gọi là
 - A. sự khử kim loại.
 - B. sự tác dụng của kim loại với nước.
 - C. sự ăn mòn hoá học.
 - D. sự ăn mòn điên hoá học.
- 5.43. So sánh sự ăn mòn hoá học với sự ăn mòn điện hoá học.
- 5.44. Hãy nêu những phương pháp thường được áp dụng để chống ăn mòn kim loại. Cơ sở khoa học của mỗi phương pháp đó.
- 5.45. Khi điều chế hiđro từ kẽm và dung dịch H_2SO_4 loãng, nếu thêm một vài giọt dung dịch $CuSO_4$ vào dung dịch axit thì thấy H_2 thoát ra nhanh hơn hẳn. Hãy giải thích hiện tương trên.
- 5.46. Vì sao khi nối một sợi dây điện bằng đồng với một sợi dây điện bằng nhôm thì chỗ nối mau trở nên kém tiếp xúc?
- 5.47. Một hợp kim có cấu tạo tinh thể hỗn hợp Cu Zn để trong không khí ẩm. Hãy cho biết hợp kim bị ăn mòn hoá học hay điện hoá học.
- 5.48. Có những cặp kim loại sau đây tiếp xúc với nhau và cùng tiếp xúc với dung dịch điện li : a) Al Fe ; b) Cu Fe ; c) Fe Sn.
 - Cho biết kim loại nào trong mỗi cặp sẽ bị ăn mòn điện hoá học.

- **5.49.** Có một vật làm bằng sắt tráng kẽm (tôn), nếu trên bề mặt vật đó có vết sây sát sâu tới lớp sắt bên trong thì hiện tượng gì sẽ xảy ra khi vật đó tiếp xúc với không khí ẩm?
- 5.50. Ngâm 9 g hợp kim Cu Zn trong dung dịch axit HCl dư thu được 896 ml khí H₂ (đktc). Hãy xác định thành phần phần trăm khối lượng của hợp kim.

ĐIỀU CHẾ KIM LOẠI

- 5.51. Khi điện phân có màng ngăn dung dịch muối ăn bão hoà trong nước thì xảy ra hiện tượng nào trong số các hiện tượng cho dưới đây?
 - A. Khí oxì thoát ra ở catot và khí clo thoát ra ở anot.
 - B. Khí hiđro thoát ra ở catot và khí clo thoát ra ở anot.
 - C. Kim loai natri thoát ra ở catot và khí clo thoát ra ở anot.
 - D. Nước Gia-ven được tạo thành trong bình điện phân.
- 5.52. Phương pháp điều chế kim loại bằng cách dùng đơn chất kim loại có tính khử mạnh hơn để khử ion kim loại khác trong dung dịch muối được gọi là
 - A. phương pháp nhiệt luyện.
 - B. phương pháp thuỷ luyên.
 - C. phương pháp điện phân.
 - D. phương pháp thuy phân.
- 5.53. Điện phân bằng điện cực trơ dung dịch muối sunfat của kim loại hoá trị II với dòng điện có cường độ 6A. Sau 29 phút điện phân thấy khối lượng catot tăng 3,45 g. Kim loại đó là
 - A. Zn.

B. Cu.

C. Ni.

D. Sn.

5.54. Điện phân 200 ml dung dịch KOH 2M ($D = 1.1 \text{ g/cm}^3$) với điện cực trợ. Khi ở catot thoát ra 2,24 lít khí (đktc) thì ngừng điện phân. Biết rằng nước bay hơi không đáng kể. Dung dịch sau điện phân có nồng độ phần trăm là

A. 10,27%.

B. 10,18%.

C. 10,9%.

D. 38.09%.

- 5.55. Trình bày phương pháp hoá học điều chế các kim loại từ các dung dịch muối riêng biệt: NaCl, CuCl₂, FeCl₃. Viết phương trình hoá học của các phản ứng.
- 5.56. Từ những hợp chất riêng biệt : Cu(OH)2, MgO, FeS2, hãy nêu phương pháp thích hợp để điều chế Cu, Mg, Fe. Viết phương trình hoá học của các phản ứng.
- 5.57. Bằng những phương pháp nào người ta có thể điều chế Cu từ dung dịch Cu(NO₃)₂, Ca từ dung dịch CaCl₂? Viết phương trình hoá học của các phản ứng.
- 5.58. Trình bày phương pháp hoá học điều chế các kim loại Ca, Na, Cu từ những muối riêng biệt: CaCO₃, Na₂SO₄, Cu₂S.

Bài 22. Luyện tập

TÍNH CHẤT CỦA KIM LOAI

5.59. Kim loại Ni phản ứng được với tất cả muối trong dung dịch ở dãy nào sau đây?

A. NaCl, AlCl₃, ZnCl₂ B. MgSO₄, CuSO₄, AgNO₃

C. Pb(NO₃)₂, AgNO₃, NaCl D. AgNO₃, CuSO₄, Pb(NO₃)₂

5.60. Cho ba kim loại là Al, Fe, Cu và bốn dung dịch muối riêng biết là ZnSO₄, AgNO₃, CuCl₂, MgSO₄. Kim loại nào tác dụng được với cả bốn dung dịch muối đã cho?

A. Al

B. Fe

C. Cu

D. Không kim loại nào tác dụng được

A. $Fe(NO_3)_2$.	B. $Fe(NO_3)_3$.		
C. Fe(NO ₃) ₂ , Cu(NO ₃) ₂ dur	D. $Fe(NO_3)_3$, $Cu(NO_3)_2$ du.		
5.62. Cho 2,52 g một kim loại tá muối sunfat. Kim loại đó là	c dụng với dung dịch H ₂ SO ₄ loãng tạo ra 6,84 g		
A. Mg.	B. Fe.		
C. Al.	D. Zn.		
	e, Al và Cu tác dụng với dung dịch HNO ₃ loãng, uy nhất (đktc). Khối lượng muối nitrat sinh ra là		
A. 9,5 g.	B. 7,44 g.		
C. 7,02 g.	D. 4,54 g.		
5.64. Cho hỗn hợp Fe và Zn tác dụng với dung dịch hỗn hợp chứa 0,01 mol HCl và 0,05 mol H ₂ SO ₄ . Sau phản ứng thu được chất rắn X, dung dịch Y và khí Z. Cho khí Z đi quạ CuO dư, đun nóng thu được m gam Cu. Giá trị của m là			
A. 5,32. B. 3,52	,		
- · · ·	u, Fe và Al trong axit HCl du thấy thoát ra 6 g chất rấn không tan. Thành phần phần trăm Cu. B. 41% Fe, 29% Al, 30% Cu.		
C. 42% Fe, 27% Al, 31% C	Cu. D. 43% Fe, 26% Al, 31% Cu.		
5.66. So sánh bản chất hoá học c	ủa phản ứng xảy ra trong hai thí nghiệm:		
a) Ngâm một lá đồng trong	g dung dịch AgNO3.		
b) Điện phân dung dịch Ag	${ m gNO}_3$ với các điện cực bằng đồng.		
5.67. Hãy trình bày phương phá muối sau :	p hoá học để điều chế từng kim loại từ hỗn hợp		
a) AgNO ₃ và Pb(NO ₃) ₂ .			
b) AgNO ₃ và Cu(NO ₃) ₂ .			
c) AgNO ₃ , Cu(NO ₃) ₂ và P	b(NO ₃) ₂ .		
Viết phương trình hoá học	của các phản ứng.		
42			

5.61. Cho Cu dư tác dụng với dung dịch AgNO₃ thu được dung dịch X. Cho Fe dư tác dụng với dung dịch X được dung dịch Y. Dung dịch Y chứa

- 5.68. Có sáu dung dịch, mỗi dung dịch chỉ có một loại cation: Zn²⁺, Cu²⁺, Mg²⁺, Fe²⁺, Ag⁺, Pb²⁺ và sáu kim loại là: Zn, Cu, Mg, Fe, Ag, Pb.
 - a) Hãy lập bảng để trình bày những kim loại nào có thể phản ứng với những dung dịch chứa cation nào.
 - b) Từ những kết quả trong bảng có thể rút ra kết luận gì về tính oxi hoá của ion Ag⁺ và Mg²⁺, tính khử của kim loại Ag và Mg?
 - c) Sắp xếp những cặp oxi hoá khử của những chất nói trên theo một thứ tự nhất định về tính chất hoá học.
- 5.69. Người ta phủ một lớp bạc lên một vật bằng đồng có khối lượng 8,84 g bằng cách ngâm vật đó trong dung dịch AgNO₃. Sau một thời gian lấy vật ra khỏi dung dịch, rửa nhẹ, làm khỏ, khối lượng của vật là 10,36 g.
 - a) Cho biết các cặp oxi hoá khử của kim loại trong phản ứng. Vai trò của các chất tham gia phản ứng. Viết phương trình hoá học dạng ion thu gọn.
 - b) Tính khối lượng bạc phủ trên bề mặt vật bằng đồng. Giả thiết toàn bộ bạc thoát ra đều bám vào vật bằng đồng.
- 5.70. Pha chế dung dịch CuSO₄ bằng cách hoà tan 87 g CuSO₄.5H₂O trong nước, thu được 750 ml dung dịch.
 - a) Tính nồng độ moi của dung dịch CuSO₄ đã pha chế.
 - b) Có bao nhiều ion Cu²⁺ và SO₄²⁻ trong 1 ml dung dịch?
 - c) Thêm một lượng mạt sắt dư vào 50 ml dung dịch CuSO₄ trên. Hãy cho biết khối lượng các kim loại tham gia và tạo thành sau phản ứng.
- 5.71. Chia 100 g dung dịch muối có nồng độ 6,8% làm hai phần bằng nhau.
 - Phần một cho tác dụng với dung dịch NaOH dư, tạo ra một bazơ không tan, làm khô chất này thu được một oxit có khối lượng 2,32 g.
 - Phần hai cho tác dụng với dung dịch NaCl dư thu được 2,87 g kết tủa không tan trong dung dịch axit.
 - a) Xác định công thức hoá học của muối có trong dung dịch ban đầu.
 - b) Trình bày các phương pháp hoá học điều chế kim loại từ muối tìm được ở trên.

Bài 23. Luyện tập

ĐIỀU CHẾ KIM LOẠI VÀ SỰ ĂN MÒN KIM LOẠI

5.72. Cho khí CO dư đi qua hỗn hợp gồm CuO, Al₂O₃ và MgO (nung nóng). Khi

phản ứng xảy ra hoàn toàn thu được chất rắn gồm:

một dung dịch có chứa các muối:

a) FeSO₄ và CuSO₄.

b) NaCl và CuCl₂.

Al, Ag.

A. Cu, Al, Mg.	B. Cu, Al, MgO.
C. Cu, Al ₂ O ₃ , Mg.	D. Cu, Al ₂ O ₃ , MgO.
5.73. Hoà tan hoàn toàn 28 g F rấn thu được là	Fe vào dung dịch AgNO3 dư thì khối lượng chất
A. 108 g.	B. 162 g.
C. 216 g.	D. 154 g.
một thời gian thu được 0,2	ch CuSO ₄ 0,2M với cường độ dòng điện 10A trong 224 lít khí (đktc) ở anot. Biết điện cực đã dùng là ện phân là 100%. Khối lượng catot tăng là
A. 1,28 g.	B. 0,32 g.
C. 0,64 g.	D. 3,2 g.
	vệ vỏ tàu biển bằng thép, người ta lại gắn những vỏ ngâm dưới nước biển).
5.76 Trình hày phương phán h	oá học để có thể tách riêng từng kim loại ra khỏi

5.77. Trình bày sơ đồ tách riêng từng kim loại từ hỗn hợp các kim loại : Cu, Fe,

KIM LOẠI KIỀM, KIM LOẠI KIỀM THỔ, NHÔM

	Bài 2	25
	KIM LOẠI KIỀM VÀ HỢP	CHẤT QUAN TRỌNG
	CỦA KIM L	oại Kiềm
6.1.	Những nguyên tố trong nhóm IA củ xuống dưới theo thứ tự tăng dần của	ia bảng tuần hoàn được sắp xếp từ trên
	A. điện tích hạt nhân nguyên tử.	B. khối lượng riêng.
	C. nhiệt độ sôi.	D. số oxi hoá.
6.2.	6.2. Cho 3 g hỗn hợp gồm Na và kim loại kiềm M tác dụng với nước. Để trui hoà dung dịch thu được cần 800 ml dung dịch HCl 0,25M. Kim loại M là	
	A. Li.	B. Cs.
	C. K.	D. Rb.
6.3.	Hoà tan 4,7 g K_2O vào 195,3 g nư thu được là	ước. Nồng độ phần trăm của dung dịch
	A. 2,6%.	B. 6,2%.
	C. 2,8%.	D. 8,2%.
6.4.	Cho 17 g hỗn hợp X gồm hai kim l	oại kiểm đứng kế tiếp nhau trong nhóm
	IA tác dụng với nước thu được 6,72	lít H ₂ (đktc) và dung dịch Y.
	a) Hỗn hợp X gồm	
	A. Li và Na.	B. Na và K.
	C. K và Rb.	D. Rb và Cs.

		'	
	b) Thể tích dung dịch HCl 2M cần để trung hoà dung dịch Y là		
	A. 200 ml.	B. 250 ml.	
	C. 300 ml.	D. 350 ml.	
6.5.	Cho 3,9 g kali tác dụng với nước thu được 100 ml dung dịch. Nồng độ m của dung dịch KOH thu được là		
	A. 0,1M.	B. 0,5M.	
	C. 1M.	D. 0,75M.	
6.6.	Cho hỗn hợp Na và Mg lấy dư vào 1	00 g dung dịch H ₂ SO ₄ 20% thì thể tích	
	khí H ₂ (dktc) thoát ra là		
	A. 4,57 lít.	B. 54,35 lít.	
	C. 49,78 lít.	D. 57,35 lít.	
6.7.		a một kim loại kiềm thu được 0,896 lít catot. Công thức hoá học của muối là	
	A. LiCl.	B. NaCl.	
	C. KCl.	D. RbCl.	
6.8.	Dung dịch NaOH 20% (D = 1,22 g/cm³) có nồng độ của các ion thế nào ? Hãy chọn nồng độ ở cột II để ghép với ion ở cột I cho phù hợp với dung dịch trên.		
	Cột I	Cột II	
	a) Nồng độ cation Na ⁺ là:	.1) 0,61M	
	b) Nồng độ anion OH là:	2) 6,10M	
	c) Nồng độ cation H ⁺ là :	3) 1,22M	
		4) 12,20M	
		$5)\ 0,164.10^{-14}M$	
6.9.	Viết cấu hình electron lớp ngoài cù suy ra:	ng của các nguyên tố nhóm IA, từ đó	
	a) Trạng thái oxi hoá của các nguyên	ı tő.	
	b) Kiểu liên kết hoá học trong hầu h	ết các hợp chất của chúng.	

- 6.10. Các đại lượng nào sau đây của kim loại kiềm có liên quan với nhau : điện tích hạt nhân, năng lượng ion hoá, bán kính nguyên tử, nhiệt độ nóng chảy, khối lượng riêng ? Giải thích ngắn gọn.
- 6.11. a) Viết phương trình hoá học chuyển hoá nguyên tử Na thành ion Na⁺ và ngược lại.
 - b) Dẫn ra 3 phản ứng hoá học trong đó nguyên tử Na bị oxi hoá thành ion Na⁺ và 1 phản ứng hoá học trong đó ion Na⁺ bị khử thành nguyên tử Na.
- 6.12. Ion Na+ có bị khử hay không khi thực hiện các phản ứng sau :
 - a) Điện phân NaOH nóng chảy?
 - b) Điện phân NaCl nóng chảy?
 - c) Điện phân dung dịch NaCl?
 - d) Dung dịch NaOH tác dụng với dung dịch HCl?
 Viết phương trình hoá học của các phản ứng đã xảy ra.
- 6.13. a) Muốn pha 0,5 lít dung dịch NaOH có pH = 12,5 cần phải dùng bao nhiều gam NaOH?
 - b) Để kết tủa hoàn toàn ion Cu^{2+} trong 200 ml dung dịch CuSO_4 có nồng đô 6.10^{-3}M cần phải dùng bao nhiều mililít dung dịch NaOH nói trên?
- 6.14. Nung nóng 7,26 g hỗn hợp gồm $NaHCO_3$ vào Na_2CO_3 , người ta thu được 0.84 lít khí CO_2 (đktc).

Hãy xác định khối lượng của mỗi chất có trong hỗn hợp trước và sau khi nung.

KIM LOẠI KIỀM THỔ VÀ HỢP CHẤT QUAN TRỌNG CỦA KIM LOẠI KIỀM THỔ

D.15.	O trạng thai cơ ban, nguyên từ kim	loại kiểm thổ có số electron hoá trị là
	A. le.	B. 2e.
	C. 3e.	D. 4e.
6.16.	Chỉ dùng thêm thuốc thử nào cho	dưới đây có thể nhận biết được 3 lọ mấ
	nhãn chứa các dung dịch : H_2SO_4 ,	BaCl ₂ , Na ₂ SO ₄ ?
	A. Quỳ tím.	B. Bột kẽm.
	C. Na ₂ CO ₃ .	D. Quỳ tím hoặc bột kẽm hoặc $\mathrm{Na_2CO_3}$.
6.17.	_	O_3 , CaO. Dựa vào mối quan hệ giữa cáo đổi nào sau đây có thể thực hiện được.
	A. Ca \rightarrow CaCO ₃ \rightarrow Ca(OH) ₂ \rightarrow	· CaO
	B. Ca \rightarrow CaO \rightarrow Ca(OH) ₂ \rightarrow C	CaCO ₃
	$C. CaCO_3 \rightarrow Ca \rightarrow CaO \rightarrow Ca$	$(OH)_2$
	D. $CaCO_3 \rightarrow Ca(OH)_2 \rightarrow Ca$	→ CaO
6.18.	Có thể dùng chất nào sau đây để là	àm mềm nước có tính cứng tạm thời?
	A. NaCl	B. H ₂ SO ₄
	C. Na ₂ CO ₃	D. KNO ₃
6.19.	Anion gốc axit nào sau đây có thể	làm mềm nước cứng ?
	A. NO ₃	B. SO ₄ ²⁻
	C. ClO ₄	D. PO ₄ ³⁻
6.20.	Trong một dung dịch có a mol Ca Biểu thức liên hệ giữa a, b, c, d là	$^{2+}$, b mol Mg ²⁺ , c mol Cl ⁻ , d mol HCO $_3^-$:
	A a + b = c + d	$B_{2a+2h=c+d}$

D. 2a + c = b + d.

C. 3a + 3b = c + d.

6.21.	21. Trong nước tự nhiên thường có lẫn một lượng nhỏ các muối Ca(NO ₃) Mg(NO ₃) ₂ , Ca(HCO ₃) ₂ , Mg(HCO ₃) ₂ . Có thể dùng dung dịch nào sau đã để loại đồng thời các cation trong các muối trên ra khỏi nước?		
	A. Dung dịch NaOH	B. Dung dịch K ₂ SO ₄	
	C. Dung dịch Na ₂ CO ₃	D. Dung dịch NaNO ₃	
6.22.	Có thể loại bỏ tính cứng tạm thời của n sau đây?	· ·	
	A. Nước sôi ở nhiệt độ cao (ở 100°C, áp	suất khí quyển).	
	B. Khi đun sôi đã làm tăng độ tan của cá	ic chất kết tủa.	
	C. Khi đun sôi các chất khí hoà tan trong		
	D. Các muối hiđrocacbonat của canxi tạo kết tủa.	và magie bị phân huỷ bởi nhiệt để	
6.23.	Để oxi hoá hoàn toàn một kim loại M lượng oxi bằng 40% lượng kim loại đã d		
	A. Zn.	B. Mg.	
	C. Ca.	D. Ba.	
6.24.	Nung hỗn hợp muối cacbonat của hai ki	m loại kế tiếp nhau trong nhóm IIA	
	tới khối lượng không đổi thu được 2,24 hai oxit. Hai kim loại đó là	4 lít CO ₂ (đktc) và 4,64 g hỗn hợp	
	A. Mg và Ca.	B. Be và Mg.	
	C. Ca và Sr.	D. Sr và Ba.	
6.25.	Để trung hoà dung dịch hỗn hợp X	chứa 0,1 mol NaOH và 0,15 mol	
Ba(OH) ₂ cần bao nhiều lít dung dịch hỗn hợp Y chứa HCl 0,1M và l 0,05M?		ốn hợp Y chứa HCl 0,1M và H ₂ SO ₄	
	A. 1 lít	B. 2 lít	
	C. 3 lít	D. 4 lít	
6.26.	Hoà tan hỗn hợp 2 muối cacbonat của HCl dư thu được 6,72 lít khí (đktc). Có khối lượng muối khan thu được nhiều ban đầu là	cạn dung dịch sau phản ứng thấy	
	A. 3,0 g.	B. 3,1 g.	
	C. 3,2 g.	D. 3,3 g.	
4.BTHH	112(C) - A	49	

- 6.27. Cho a gam hỗn hợp BaCO₃ và CaCO₃ tác dụng hết với V lít dung dịch HCl 0,4M thấy giải phóng 4,48 lít CO₂ (đktc), dẫn khí thu được vào dung dịch Ca(OH)₃ dư.
 - a) Khối lương kết tủa thu được là
 - A. 10 g.

B. 15 g.

C. 20 g.

D. 25 g.

- b) Thể tích dung dịch HCl cần dùng là
- A. 1,0 lít.

B. 1,5 lít.

C. 1,6 lít.

D. 1,7 lít.

- c) Giá trị của a nằm trong khoảng nào?
- A. 10 g < a < 20 g
- B. 20 g < a < 35,4 g
- C. 20 g < a < 39.4 g
- D. 20 g < a < 40 g
- **6.28.** Vì sao tính chất vật lí của kim loại nhóm IIA không biến đổi theo một quy luật nhất định?
- 6.29. So sánh kim loại Mg và Ca về các mặt:
 - a) Cấu hình electron của nguyên tử.
 - b) Tác dụng với nước.
 - c) Phương pháp điều chế các đơn chất.
- 6.30. Hãy dẫn ra những phản ứng để chứng tỏ rằng từ Be đến Ca, tính kim loại của các nguyên tố tăng dần.
- 6.31. Sục hỗn hợp khí CO₂ và CO vào dung dịch Ca(OH)₂ thấy có kết tủa. Lọc bỏ kết tủa, thu được dung dịch nước lọc. Đổ dung dịch NaOH vào nước lọc thấy xuất hiện kết tủa. Viết phương trình hoá học của các phản ứng xảy ra trong thí nghiệm trên.
- **6.32.** Nước trong vùng có núi đá vôi thuộc loại nước cứng. Viết phương trình hoá học của các phản ứng mô tả sự tạo thành nước cứng.
- **6.33.** Về mặt hoá học thì nước có tính cứng tạm thời và nước có tính cứng vĩnh cửu khác nhau ở điểm nào ?

- 6.34. Có 4 cốc đựng riêng biệt các chất sau : nước cất, nước có tính cứng tạm thời, nước có tính cứng vĩnh cửu và nước có tính cứng toàn phần. Hãy xác định loại nước đựng trong 4 cốc trên bằng phương pháp hoá học. Viết phương trình hoá học của các phản ứng đã dùng.
- 6.35. Cho 8 g hỗn hợp gồm một kim loại kiềm thổ và oxit của nó tác dụng vừa đủ với 1 lít dung dịch HCl 0,5M. Xác định kim loại kiềm thổ.
- 6.36. Khi lấy 11,1 g muối clorua của một kim loại chỉ có hoá trị II và một lượng muối sunfat của kim loại đó có cùng số mol, thấy khác nhau 2,5 g. Xác định công thức hoá học của hai muối.
- 6.37. Sục V lít khí CO₂ (đktc) vào bình đựng 2 lít dung dịch Ca(OH)₂ 0,01M, thu được 1 g kết tủa. Xác định V.
- **6.38.** Chỉ dùng nước và dung dịch HCl hãy trình bày cách nhận biết 4 chất rắn (đựng trong 4 lọ riêng biệt): Na₂CO₃, CaCO₃, Na₂SO₄, CaSO₄.2H₂O.
- 6.39. Hoà tan 23,9 g hỗn hợp bột BaCO₃ và MgCO₃ trong nước cần 3,36 lít CO₂ (đktc). Xác định khối lượng của mỗi muối trong hỗn hợp.

Bài 27 NHÔM VÀ HỢP CHẤT CỦA NHÔM

- 6.40. Nhôm hiđroxit thu được từ cách làm nào sau đây?
 - A. Cho dư dung dịch HCl vào dung dịch natri aluminat.
 - B. Thổi dư khí CO₂ vào dung dịch natri aluminat.
 - C. Cho dư dung dịch NaOH vào dung dịch AlCl₃.
 - D. Cho Al₂O₃ tác dụng với nước.
- **6.41.** Chỉ dùng hoá chất nào sau đây có thể phân biệt 3 chất rắn là Mg, Al và Al_2O_3 ?
 - A. Dung dịch HCl

B. Dung dich KOH

C. Dung dịch NaCl

D. Dung dịch CuCl₂

6.42.	12. Các dung dịch ZnSO ₄ và AlCl ₃ đều không màu. Để phân biệt 2 dung dịch này có thể dùng dung dịch của chất nào sau đây ?		
	A. NaOH	B. HNO ₃	
	C. HCl	D. NH ₃	
6.43.	Hiện tượng nào sau đây đúng khi nghiệm đựng dung dịch AlCl ₃ ?	cho từ từ dung dịch NH ₃ đến dư vào ống	
	A. Sửi bọt khí, dung dịch vẫn tron	g suốt và không màu.	
	B. Sủi bọt khí và dung dịch đục dầ	n do tạo ra chất kết tủa.	
	C. Dung dịch đục dần do tạo ra ch lại trong suốt.	ất kết tủa sau đó kết tủa tan và dung dịch	
	D. Dung dịch đục dần đo tạo ra α dư dung dịch NH_3 .	chất kết tủa và kết tủa không tan khi cho	
6.44.	5.44. Trong 1 lít dung dịch Al ₂ (SO ₄) ₃ 0,15M có tổng số mol các ion do muối phân li ra (bỏ qua sự thuỷ phân của muối) là		
	A. 0,15 mol.	B. 0,3 mol.	
	C. 0,45 mol.	D. 0,75 mol.	
6.45.	. Hoà tan m gam Al vào dung dịch gồm 0.015 mol N_2O và 0.01 mol 1	HNO ₃ rất loãng chỉ thu được hỗn hợp khí NO. Giá trị của m là	
	A. 13,5 g.	B. 1,35 g.	
	C. 0,81 g.	D. 8,1 g.	
6.46.	. Cho 5,4 g Al vào 100 ml dung d hoàn toàn thể tích khí H ₂ (đktc) th	ịch KOH 0,2M. Sau khi phản ứng xảy ra nu được là	
	A. 4,48 lít.	B. 0,448 lít.	
	C. 0,672 lít.	D. 0,224 lít.	
6.47	. Nung nóng hỗn hợp gồm 10,8 g b	ột Al với 16 g bột Fe ₂ O ₃ (không có không	
	khí), nếu hiệu suất phản ứng là 80	% thì khối lượng Al ₂ O ₃ thu được là	
	A. 8,16 g.	B. 10,20 g.	
	C. 20,40 g.	D. 16,32 g.	
52			

	8. Đốt cháy bột Al trong bình khí Cl ₂ dư, sau khi phản ứng xảy ra hoàn toàn		
	_	g 4,26 g. Khối lượng Al đã phản ứng là	
	A. 2,16 g.	B. 1,62 g.	
	C. 1,08 g.	D. 3,24 g.	
6.49.	Cho 4,005 g AlCl ₃ vào 1000 ml d xong thu được bao nhiều gam kết	ung dịch NaOH 0,1M. Sau khi phản ứng tủa ?	
	A. 1,56 g	B. 2,34 g	
	C. 2,60 g	D. 1,65 g.	
6.50.	Để khử hoàn toàn m gam hỗn hợ sau phản ứng thu được 50,2 g hỗn	p CuO và PbO cần 8,1 g kim loại nhôm, hợp 2 kim loại. Giá trị của m là	
	A. 57,4.	B. 54,4.	
	C. 53,4.	D. 56,4.	
6.51.	6.51. Cho 16,2 g kim loại X (có hoá trị n duy nhất) tác dụng với 3,36 lít O ₂ (đktc), phản ứng xong thu được chất rắn A. Cho A tác dụng hết với dung dịch HCl thấy có 1,2 g khí H ₂ thoát ra. Kim loại X là		
	A. Mg.	B. Zn.	
	C. Al.	D. Ca.	
6.52.	5.52. Tại sao Al khử H ₂ O rất chậm và khó, nhưng lại khử H ₂ O dễ dàng trong dung dịch kiểm mạnh, giải phóng khí H ₂ ? Kiềm giữ vai trò gì trong phản ứng này? Viết phương trình hoá học của các phản ứng.		
6.53.	. Có gì giống nhau và khác nhau kh	ni nhỏ từ từ cho đến dư:	
	a) Dung dịch NH ₃ vào dung dịch	AlCl ₃ ?	
	b) Dung dịch Ba(OH) ₂ vào dung c	dich AlCl ₃ ?	
6.54.	• •	ung dịch HNO_3 , Al có thể khử HNO_3 NO_3 . Viết phương trình hoá học của các	
6.55	 Có 4 kim loại riêng biệt là Na, bằng phương pháp hoá học và viế 	Ca, Cu, Al. Hãy nhận biết mỗi kim loại t các phương trình hoá học.	

6.56. Chỉ dùng những chất ban đầu là NaCl, H₂O, Al hãy điều chế: a) AlCl₃. b) Al(OH)₃. c) Dung dịch NaAlO₂. 6.57. Có gì giống và khác nhau khi cho khí CO₂ và dung dịch HCl loãng tác dụng với dung dịch NaAlO₂? Viết phương trình hoá học của các phản ứng xảy ra. 6.58. Cho 13,5 g Al tan trong dung dich NaOH nóng. a) Viết phương trình hoá học của phản ứng dưới dạng phân tử và ion thu gọn. b) Tính thể tích khí H₂ bay ra ở 735 mmHg và 22,5°C. Bài 28. Luyện tập TÍNH CHẤT CỦA KIM LOẠI KIỀM, KIM LOẠI KIỀM THỔ VÀ HỢP CHẤT CỦA CHÚNG 6.59. Có 3 lo, mỗi lọ đựng một dung dịch sau : BaCl₂, Ba(NO₃)₂, Ba(HCO₃)₂. Chỉ dùng thuốc thử nào sau đây có thể nhận biết được các dụng dịch trên? A. Quỳ tím. B. Phenolphtalein. C. Na₂CO₃. D. AgNO₃. 6.60. Điện phân nóng chảy 4,25 g muối clorua của một kim loại kiểm thu được 1,568 lít khí tại anot (đo ở 109,2°C và 1 atm). Kim loại kiềm đó là B. Na. A. Li. C. K. D. Rb. 6.61. Cho 21,6 g một kim loại chưa biết hoá trị tác dung hết với dung dịch HNO₃ loãng thu được 6,72 lít N₂O duy nhất (đktc). Kim loại đó là A. Na. B. Zn.

D. Al.

C. Mg.

6.62. Sục 11,2 lít khí SO ₂ (iktc) vào dung dịch NaOH dư, dung dịch thu được
cho tác dụng với BaCl	dư thì khối lượng kết tủa thu được là
A. 107,5 g.	B. 108.5 g.

D. 105,5 g.

6.63. Sục V lít khí SO₂ (đktc) vào dung dịch brom dư thu được dung dịch X.
Cho BaCl₂ dư vào dung dịch X thu được 23,3 g kết tủa. V có giá trị là

A. 1,12. B. 2,24. C. 3,36. D. 6,72.

C. 106,5 g.

6.64. Cho 5,75 g hỗn hợp Mg, Al và Cu tác dụng với dung dịch HNO₃ loãng, dư thu được 1,12 lít (đktc) hỗn hợp khí X gồm NO và N₂O (đktc). Tỉ khối của X đối với khí H₂ là 20,6. Khối lượng muối nitrat sinh ra trong dung dịch là

A. 27,45 g. B. 13,13 g. C. 58,91 g. D. 17,45 g.

- **6.65.** Ion Ca²⁺ có cấu hình electron giống với cấu hình electron của nguyên tử khí hiếm và ion halogen nào? Viết cấu hình electron của chúng.
- 6.66. Bằng những phản ứng hoá học nào có thể phân biệt được các chất trong mỗi dãy sau :
 - a) Các kim loại: Al, Mg, Ba, Na.
 - b) Các dung dịch muối : NaCl, Ba(NO₃)₂, Al₂(SO₄)₃.
 - c) Các oxit : CaO, FeO, Al₂O₃.
 - d) Các dung dịch: NaNO₃, Ca(NO₃)₂, Al(NO₃)₃.
- 6.67. Trình bày phương pháp điều chế từng kim loại riêng biệt từ hỗn hợp những chất NaCl, Al₂O₃, MgCO₃. Viết các phương trình hoá học.
- 6.68. Một hỗn hợp rắn gồm Ca và CaC₂ tác dụng với nước (dư) thu được hỗn hợp khí có tỉ khối đối với H₂ là 5. Để trung hoà dung dịch sau phản ứng, cần dùng 600 ml dung dịch HCl 0,5M. Tính:
 - a) Khối lượng của hỗn hợp rắn đã dùng ban đầu.
 - b) Thành phần phần trăm thể tích của hỗn hợp khí.

- 6.69. Một bình kín có dung tích 5 lít chứa khí O₂ ở áp suất 1,4 atm và 27°C. Đốt cháy 12 g kim loại kiềm thổ trong bình kín trên. Sau phản ứng, nhiệt độ và áp suất trong bình là 136,5°C và 0,903 atm. Biết thể tích bình không đổi, thể tích chất rắn không đáng kể. Xác định kim loại kiềm thổ đem đốt.
- 6.70. Hoà tan 1,04 g muối clorua của kim loại kiềm thổ trong nước thu được dung dịch A. Thêm Na₂CO₃ dư vào dung dịch A được một kết tủa. Hoà tan kết tủa này trong dung dịch HNO₃ được dung dịch B. Thêm H₂SO₄ dư vào dung dịch B được kết tủa mới có khối lượng 1,165 g. Xác định công thức hoá học của muối clorua kim loại kiềm thổ.

Bài 29. Luyện tập

TÍNH CHẤT CỦA NHÔM VÀ HỢP CHẤT CỦA NHÔM

- 6.71. Phát biểu nào sau đây đúng khi nói về nhôm oxit?
 - A. Al₂O₃ được sinh ra khi nhiệt phân muối Al(NO₃)₃.
 - B. Al₂O₃ bị khử bởi CO ở nhiệt độ cao.
 - C. Al₂O₃ tan được trong dung dịch NH₃.
 - D. Al₂O₃ là oxit không tạo muối.
- 6.72. Có các dung dịch: KNO₃, Cu(NO₃)₂, FeCl₃, AlCl₃, NH₄Cl. Chỉ dùng hoá chất nào sau đây có thể nhận biết được các dung dịch trên?
 - A. Dung dich NaOH du.
 - B. Dung dich AgNO₃.
 - C. Dung dịch Na₂SO₄.
 - D. Dung dịch HCl.

6.73.	Hoà tan hoàn toàn m gan	n bột Al vào du	ng dịch HNO ₃	dư chỉ thu	được 8,96 lít
	hỗn hợp khí X gồm NO	và N ₂ O (đktc)	có tỉ lệ mol là	1:3. Giá	trị của m là

A. 24,3.

B. 42,3.

C. 25,3.

D. 25,7.

6.74. Trộn 24 g Fe₂O₃ với 10,8 g Al rồi nung ở nhiệt độ cao (không có không khí). Hỗn hợp thu được sau phản ứng đem hoà tan vào dung dịch NaOH dư thu được 5,376 lít khí (đktc). Hiệu suất của phản ứng nhiệt nhôm là

A. 12,5%.

B. 60%.

C. 80%.

D. 90%.

6.75. Có các chất : NH₃, CO₂, HCl, KOH, Na₂CO₃. Có thể dùng những chất nào để kết tủa Al(OH)₃ từ dung dịch :

- a) Nhôm clorua?
- b) Natri aluminat?
- **6.76.** Từ Al₂O₃ và các dung dịch KOH, H₂SO₄, viết phương trình hoá học của các phản ứng dùng để điều chế phèn chua.
- 6.77. Dựa trên cơ sở hoá học nào để điều chế nhôm oxit từ quặng boxit? Viết phương trình hoá học của các phản ứng xảy ra.
- 6.78. Criolit được điều chế theo phản ứng sau:

$$Al_2O_3(r\acute{a}n) + HF(dd) + NaOH(dd) \rightarrow Na_3AlF_6(r\acute{a}n) + H_2O$$

Tính khối lượng mỗi chất ban đầu để sản xuất 1 kg criolit. Coi hiệu suất phản ứng đạt 100%.

SẮT VÀ MỘT SỐ KIM LOẠĨ QUAN TRỌNG

Bài 31

SẮT

7.1.	Fe có số hiệu nguyên tử là 26. Ion Fe ³⁺ có cấu hình electron là		
	A. $[Ar]3d^64s^2$.	B. $[Ar]3d^6$.	
	C. $[Ar]3d^34s^2$.	D. [Ar]3d ⁵ .	
7.2.	Fe có thể tan trong dung dịch chất nà	no sau đây ?	
	A. AlCl ₃ .	B. FeCl ₃ .	
	C. FeCl ₂ .	D. MgCl ₂ .	
7.3. Cho 1,4 g kim loại X tác dụng với dung dịch HCl thu ở trong đó kim loại có số oxi hoá +2 và 0,56 lít H ₂ (đktc)			
	A. Mg.	B. Zn.	
	C. Fe.	D. Ni.	
7.4.	Hoà tan hoàn toàn m gam Fe vào dung dịch HNO ₃ loãng, dư thu được 0,448 lít khí NO duy nhất (đktc). Giá trị của m là		
	A. 11,2.	B. 1,12.	
	C. 0,56.	D. 5,60.	
7.5.	Cho 8 g hỗn hợp bột kim loại Mg và Fe tác dụng hết với dung dịch HC		
	thấy thoát ra 5,6 lít H ₂ (đktc). Khối lượng muối tạo ra trong dung dịch là		
	A. 22,25 g.	B. 22,75 g.	
	C. 24,45 g.	D. 25,75 g.	
58			

7.6. Cho m gam hỗn hợp Al và Fe phản ứng hoàn toàn với dung dịch HNO₃ loãng thu được 2,24 lít NO duy nhất (đktc). Mặt khác cho m gam hỗn hợp này phản ứng với dung dịch HCl thu được 2,80 lít H₂ (đktc). Giá trị của m là

A. 8,30.

B. 4,15.

C. 4,50.

D. 6,95.

- 7.7. Tính chất hoá học cơ bản của sắt là gì ? Nguyên nhân ? Lấy các thí dụ để minh hoa.
- 7.8. Đốt một kim loại trong bình kín đựng khí clo thu được 32,5 g muối clorua và nhận thấy thể tích khí clo trong bình giảm 6,72 lít (đktc). Hãy xác định tên của kim loại đã dùng.
- 7.9. Sắt tác dụng như thế nào với dung dịch đặc và loãng của các axit HCl, H₂SO₄, HNO₃ ở nhiệt độ thường và nhiệt độ cao? Viết phương trình hoá học của các phản ứng.
- 7.10. Đốt nóng một lượng bột sắt trong bình đựng khí O₂, sau đó để nguội và cho vào bình một lượng dư dung dịch HCl. Viết phương trình hoá học của các phản ứng có thể xảy ra.
- 7.11. Hoà tan 3,04 g hỗn hợp bột kim loại sắt và đồng trong dung dịch HNO₃ loãng, thu được 0,896 lít khí NO duy nhất (đktc). Xác định thành phần phần trăm khối lượng của mỗi kim loại trong hỗn hợp.

Bài 32

HỢP CHẤT CỦA SẮT

- 7.12. Nhận định nào sau đây sai?
 - A. Sắt tan được trong dung dịch CuSO₄.
 - B. Sắt tan được trong dung dịch FeCl₃.
 - C. Sắt tan được trong dung dịch FeCl₂.
 - D. Đồng tan được trong dung dịch FeCl₃.

	A. FeO	B. Fe_2O_3	
	C. $Fe(OH)_3$	D. $Fe(NO_3^7)_3$	
7	.14. Khử hoàn toàn 0,3 mol s theo sơ đồ phản ứng sau	một oxit sắt Fe _x O _y bằng Al th :	nu được 0,4 moi ${ m Al_2O_3}$
	Fe _x O _y + Al —	$\xrightarrow{t^{\circ}}$ Fe + Al ₂ O ₃	
	Công thức của oxit sắt l	à	
	A. FeO.	B. Fe_2O_3 .	
	C. Fe ₃ O ₄ .	D. không xác đ	ịnh được.
7	.15. Khử hoàn toàn hỗn hợp	Fe ₂ O ₃ và CuO bằng CO thu	được số mol CO ₂ tạo
	ra từ các oxit có tỉ lệ tư và CuO trong hỗn hợp l	ương ứng là 3 : 2. Phần trăm ần lượt là	khối lượng của Fe ₂ O ₃
	A. 50% và 50%.	B. 75% và 25%	
	C. 75,5% và 24,5%.	D. 25% và 75%	
7	7.16. Cho biết các phản ứng xả	ủy ra khi cho hỗn hợp gồm Fe, F	SeO, Fe ₃ O ₄ , Fe ₂ O ₃ vào :
	a) Dung dịch H ₂ SO ₄ loã	ãng.	
	b) Dung dịch HNO ₃ loã	ing.	
7	7.17. Phân biệt 3 hỗn hợp sau	ı bằng phương pháp hoá học :	
	a) Fe và FeO;	b) Fe và Fe ₂ O ₃ ;	c) FeO và Fe ₂ O ₃ .
7		ua nguyên chất tác dụng với 2 g bạc clorua. Hỏi đó l	_
7	chỉ chứa một chất tan,	g và Cu ở dạng bột, cho hỗn h khuấy kĩ cho đến khi phản ứ lượng Ag đúng bằng lượng A	ng kết thúc thì thấy Fe
	a) Hỏi dung dịch B chứa	chất tan gì? Viết phương trình	hoá học của phản ứng.
	 b) Nếu sau phản ứng th dung dịch B chứa chất g 	hu được lượng Ag nhiều hơn gì?	lượng Ag trong A thì
(60		

7.13. Hợp chất nào sau đây của sắt vừa có tính oxi hoá, vừa có tính khử ?

HỢP KIM CỦA SẮT

- 7.20. Trong các phát biểu sau, phát biểu nào không đúng?
 - A. Gang là hợp chất của Fe C.
 - B. Hàm lượng C trong gang nhiều hơn trong thép.
 - C. Gang là hợp kim Fe C và một số nguyên tố khác.
 - D. Gang trắng chứa ít cacbon hơn gang xám.
- 7.21. Có thể dùng dung dịch nào sau đây để hoà tan hoàn toàn một mẫu gang?
 - A. Dung dich HCl

B. Dung dịch H₂SO₄ loãng

C. Dung dich NaOH

- D. Dung dịch HNO3 đặc, nóng
- 7.22. Trong quá trình sản xuất gang, xỉ lò là chất nào sau đây?
 - A. SiO₂ và C

B. MnO₂ và CaO

C. CaSiO₃

- D. MnSiO₃
- 7.23. Y là một loại quặng manhetit chứa 69,6% Fe₃O₄. Khối lượng sắt tối đa có thể điều chế từ 1 tấn Y là
 - A. 0,504 tấn.

B. 0,405 tấn.

C. 0,304 tấn.

- D. 0,404 tấn.
- 7.24. Từ 2,851 g gang sau khi chế hoá thích hợp, thu được 0,0825 g silic đioxit. Tính hàm lượng phần trăm của silic trong loại gang đó.
- 7.25. Cần bao nhiều tấn quặng manhetit có chứa 80% Fe₃O₄ để luyện được 100 tấn gang có 5% là các nguyên tố không phải sắt? Biết trong quá trình luyên gang, lượng sắt bị hao hụt là 4%.
- 7.26. Khử a gam một oxit sắt bằng CO ở nhiệt độ cao, thu được 0,84 g Fe và 0,88 g CO₂.
 - a) Viết phương trình hoá học của phản ứng ở dạng tổng quát.
 - b) Xác định công thức hoá học của oxit sắt đã dùng.
 - c) Tính thể tích dung dịch HCl 2M cần dùng để hoà tan hết a gam oxit sắt nói trên.

CROM VÀ HỢP CHẤT CỦA CROM

7.28. Muốn điều chế được 6,72 lít khí Cl₂ (đktc) thì khối lượng K₂Cr₂O₇ tối

thiểu cần lấy để cho tác dụng với dung dịch HCl đặc, dư là

B. $[Ar]3d^5$.

D. $[Ar]3d^3$.

B. 27,4 g.

D. 29,4 g.

7.27. Cho biết $Cr \operatorname{có} Z = 24$. Cấu hình electron của ion Cr^{3+} là

A. $[Ar]3d^6$.

C. [Ar]3d⁴.

A. 26,4 g.

C. 28,4 g.

7.29. Khối lượng $K_2Cr_2O_7$ cần lấy để tác	dụng đủ với 0,6 mol FeSO_4 trong dung						
dịch (có H ₂ SO ₄ làm môi trường) là	dịch (có H ₂ SO ₄ làm môi trường) là						
A. 26,4 g.	B. 27,4 g.						
C. 28,4 g.	D. 29,4 g.						
- ·	AlCl ₃ và CrCl ₃ vào nước, thêm dư dung êm nước clo, rồi lại thêm dư dung dịch ảnh phần phần trăm khối lượng của hỗn						
A. 45,7% AlCl ₃ và 54,3% CrCl ₃ .							
B. 46,7% AlCl ₃ và 53,3% CrCl ₃ .							
C. 47,7% AlCl ₃ và 52,3% CrCl ₃ .							
D. 48,7% AlCl ₃ và 51,3% CrCl ₃ .							
7.31. Muối kép KCr(SO ₄) ₂ .12H ₂ O tan tro của muối này và cho biết màu của c							
7.32. Viết phương trình hoá học của các ph	hản ứng trong quá trình chuyển hoá sau :						
$Cr \xrightarrow{(1)} CrCl_3 \xrightarrow{(2)} Cr(OH)_3 \xrightarrow{(3)} N$ 62	$NaCO_2 \xrightarrow{(4)} Na_2CO_4 \xrightarrow{(5)} Na_2CO_2O_7$						
·							

7.33. Cho từ từ dung dịch NaOH vào dung dịch chứa 9,02 g hỗn hợp muối Al(NO₃)₃ và Cr(NO₃)₃ cho đến khi lượng kết tủa thu được là lớn nhất. Tách kết tủa ra khỏi dung dịch, rửa và nung đến khối lượng không đổi thu được 2,54 g chất rắn. Tính phần trăm khối lượng các muối trong hỗn hợp ban đầu.

Bài 35

ĐỒNG VÀ HỢP CHẤT CỦA ĐỒNG

- 7.34. Trong phòng thí nghiệm, để điều chế CuSO₄ người ta cho Cu tác dụng với dung dịch nào sau đây?
 - A. H₂SO₄ đậm đặc.
 - B. H₂SO₄ loãng.
 - C. Fe₂(SO₄)₃ loãng.
 - D. FeSO₄ loãng.
- 7.35. Có các dung dịch: HCl, HNO₃, NaOH, AgNO₃, NaNO₃. Chỉ dùng thêm chất nào sau đây để nhận biết các dung dịch trên?
 - A. Cu.

- B. Dung dich $Al_2(SO_4)_3$.
- C. Dung dich BaCl₂.
- D. Dung dịch $Ca(OH)_2$.
- 7.36. Ba hỗn hợp kim loại $\begin{cases} 1) Cu Ag \\ 2) Cu Al \\ 3) Cu Mg \end{cases}$

Dùng dung dịch của cặp chất nào sau đây để nhận biết các hỗn hợp trên?

A. HCl và AgNO₃

- B. HCl và Al(NO₃)₃
- C. HCl và Mg(NO₃)₂
- D. HCl và NaOH

7.37. Cho V lít khí H₂ (đktc) đi qua bột CuO (du) đun nóng, thu được 32 g Cu. Nếu cho V lít H₂ (đktc) đi qua bột FeO (dư) đun nóng thì khối lượng Fe thu được là bao nhiều? Giả sử hiệu suất của các phản ứng là 100%.

A. 24 g.

B. 26 g.

C. 28 g.

D. 30 g.

7.38. Cho hỗn hợp gồm 0,1 mol Ag₂O và 0,2 mol Cu tác dụng hết với dung dịch HNO₃ loãng, dư. Cô cạn dung dịch thu được sau phản ứng được hỗn hợp muối khan A. Nung A đến khối lương không đổi thu được chất rắn B có khối lượng là

A. 26,8 g.

B. 13,4 g.

C. 37,6 g.

D. 34,4 g.

7.39. Hoà tan hoàn toàn 19,2 g Cu vào dung dịch HNO₃ loãng. Khí NO thu được đem oxi hoá thành NO2 rồi sục vào nước cùng với dòng khí O2 để chuyển hết thành HNO3. Thể tích khí O2 (đktc) đã tham gia vào quá trình trên là

A. 2,24 lít.

B. 3,36 lft.

C. 4,48 lít.

D. 6,72 lft.

- 7.40. Nguyên tử đồng có 1 electron ở lớp ngoài cùng nhưng tại sao đồng có hoá trị II ? Đồng tác dụng như thế nào với các axit ?
- 7.41. Bôt đồng có lẫn tạp chất là bột thiếc, kẽm, chì. Hãy nêu phương pháp hoá học đơn giản để loại bỏ tạp chất. Viết phương trình hoá học của phản ứng dạng phân tử và ion thu gọn.
- 7.42. Malachit có công thức hoá học là CuCO₃.Cu(OH)₂. Trình bày các phương pháp điều chế Cu từ chất này.
- 7.43. Chia 4 g hỗn hợp bột kim loại gồm Al, Fe, Cu thành hai phần đều nhau.
 - Cho phần (1) tác dụng với lượng dư dung dịch HCl, thu được 560 ml H₂.
 - Cho phần (2) tác dụng với lượng dư dung dịch NaOH, thu được 336 ml H₂.

Các thể tích khí đo ở đktc. Tính thành phần phần trām khối lương của từng kim loại trong hỗn hợp.

SƠ LƯỢC VỀ NIKEN, KĒM, CHÌ, THIẾC

7.44.	Để làm	sạch n	nột lo	oại thuỷ	ngân	có	lān	tạp	chất	là :	Zn,	Sn	và	Рь	cần	khuấy
	loại thu	ỷ ngân	này i	trong												

- A. dung dịch $Zn(NO_3)_2$.
- B. dung dich $Sn(NO_3)_2$.
- C. dung dich Pb(NO₃)₂.
- D. dung dịch Hg(NO₃)₂.
- 7.45. Hai mẫu kẽm có khối lượng bằng nhau. Cho một mẫu tan hoàn toàn trong dung dịch HCl tạo ra 6,8 g muối. Cho mẫu còn lại tan hoàn toàn trong dung dịch H₂SO₄ thì khối lượng muối được tạo ra là
 - A. 16,1 g.

B. 8,05 g.

C. 13,6 g.

D. 7,42 g.

- 7.46. Cho 20,4 g hỗn hợp Mg, Zn, Ag vào cốc đựng 600 ml dung dịch HCl 1M (vừa đủ). Sau khi phản ứng kết thúc, thêm dần NaOH vào để đạt được kết tủa tối đa. Lọc kết tủa và nung nóng ở nhiệt độ cao đến khối lượng không đổi được a gam chất rắn. Giá trị của a là
 - A. 23,2.

B. 25,2.

C. 27,4.

D. 28,1.

- 7.47. Ngâm một bản kẽm vào 0,2 lít dung dịch AgNO₃. Sau khi phản ứng kết thúc lấy bản kẽm ra, sấy khô, thấy khối lượng bản kẽm tăng 15,1 g. Nồng độ mol của dung dịch AgNO₃ là
 - A. 0,5M.

B. 1,0M.

C. 0,75M.

D. 1,5M.

7.48. Những bức tranh cổ thường được vẽ bằng bột "trắng chì" có công thức là Pb(OH)₂.PbCO₃, lâu ngày thường bị xám đen. Để phục hồi những bức tranh đó người ta phun lên bức tranh nước oxi già H₂O₂, bức tranh sẽ trắng trở lại. Viết phương trình hoá học của phản ứng để giải thích việc làm trên.

- 7.49. Có hỗn hợp bột các kim loại Al và Zn. Trình bày phương pháp hoá học tách riêng từng kim loại và viết phương trình hoá học của các phản ứng đã dùng.
- **7.50.** Các quá trình oxi hoá và khử xảy ra ở các điện cực có giống nhau không nếu điện phân dung dịch $NiSO_4$ với
 - a) các điện cực trơ (Pt)?
 - b) các điện cực tan (Ni)?
- 7.51. Hoà tan 100 g hợp kim của Zn và Cu trong dung dịch HCl dư. Khí sinh ra trong phản ứng đã khử hoàn toàn một lượng Fe₂O₃ (làm giảm là 9,6 g so với ban đầu). Xác định thành phần phần trăm của hợp kim.

Bài 37. Luyện tập

TÍNH CHẤT HOÁ HỌC CỦA SẮT VÀ HỢP CHẤT CỦA SẮT

- 7.52. Để bảo quản dung dịch FeSO₄ trong phòng thí nghiệm, người ta ngâm vào dung dịch đó một đinh sắt đã làm sạch. Chọn cách giải thích đúng cho việc làm trên.
 - A. Để Fe tác dụng hết với H₂SO₄ dư khi điều chế FeSO₄ bằng phản ứng:

$$Fe + H_2SO_4(lo\tilde{a}ng) \rightarrow FeSO_4 + H_2\uparrow$$

B. Để Fe tác dụng với các tạp chất trong dung dịch, chẳng hạn với tạp chất là CuSO₄:

$$Fe + CuSO_4 \rightarrow FeSO_4 + Cu \downarrow$$

C. Để sắt tác dụng hết O2 hoà tan:

$$2Fe + O_2 \rightarrow 2FeO$$

D. Để sắt khử muối sắt(III) thành muối sắt(II):

$$Fe + Fe_2(SO_4)_3 \rightarrow 3FeSO_4$$

7.53. Cho hai phương trình hoá học sau:

$$\text{Cu} \ + \ 2\text{FeCl}_3 \ \rightarrow \ 2\text{FeCl}_2 \ + \ \text{CuCl}_2$$

$$Fe + CuCl_2 \rightarrow FeCl_2 + Cu$$

Có thể rút ra kết luận nào sau đây?

A. Tính oxi hoá: $Fe^{3+} > Cu^{2+} > Fe^{2+}$.

B. Tính oxi hoá : $Fe^{2+} > Cu^{2+} > Fe^{3+}$.

C. Tính khử: $Fe > Fe^{2+} > Cu$.

D. Tính khử : $Fe^{2+} > Fe > Cu$.

7.54. Nhúng thanh sắt (đã đánh sạch) vào các dung dịch ở ba thí nghiệm sau :

Thí nghiệm I: nhúng vào dung dịch CuSO₄.

Thí nghiệm 2: nhúng vào dung dịch NaOH.

Thí nghiệm 3: nhúng vào dung dịch $Fe_2(SO_4)_3$.

Giả sử rằng các kim loại sinh ra (nếu có) đều bám vào thanh sắt thì nhận xét nào sau đây đúng?

- A. Ở thí nghiệm 1, khối lượng thanh sắt giảm.
- B. Ở thí nghiệm 2, khối lượng thanh sắt không đổi.
- C. Ở thí nghiệm 3, khối lượng thanh sắt không đổi.
- D. A, B, C đều đúng.
- 7.55. Cho khí CO khử hoàn toàn 10 g quặng hematit. Lượng sắt thu được cho tác dụng hết với dung dịch $\rm H_2SO_4$ loãng thu được 2,24 lít $\rm H_2$ (đktc). Phần trăm khối lượng của $\rm Fe_2O_3$ trong quặng là
 - A. 70%.

B. 75%.

C. 80%.

D. 85%.

7.56. Thực hiện những biến đổi hoá học trong sơ đồ sau bằng cách viết phương trình hoá học của các phản ứng và nêu điều kiện của phản ứng (nếu có).

- 7.57. Nhận biết từng oxit kim loại riêng biệt sau bằng phương pháp hoá học : CuO, Al₂O₃, FeO, Fe₃O₄, Fe₂O₃, CaO. Giải thích và viết phương trình hoá học của các phản ứng.
- 7.58. Muốn có đủ khí clo để tác dụng với 1,12 g Fe, cần phải dùng bao nhiều gam $K_2Cr_2O_7$ và bao nhiều mililít dung dịch HCl 36,5% (D = 1,19 g/ml)?
- 7.59. Hỗn hợp A gồm Fe và kim loại M có hoá trị không đổi trong mọi hợp chất, M đứng trước hiđro trong dãy điện hoá. Tỉ lệ số mol của M và Fe trong hỗn hợp A là 1 : 2. Cho 13,9 g hỗn hợp A tác dụng với khí Cl₂ thì cần dùng 10,08 lít Cl₂. Cho 13,9 g hỗn hợp A tác dụng với dung dịch HCl thì thu được 7,84 lít H₂. Các thể tích khí đều đo ở đktc. Xác định kim loại M và % khối lượng của mỗi kim loại trong hỗn hợp A.

Bài 38. Luyện tập

TÍNH CHẤT HOÁ HỌC CỦA CROM, ĐỒNG VÀ HỢP CHẤT CỦA CHÚNG

7.60. Để phân biệt dung dịch H_2SO_4 đặc, nguội và dung dịch HNO_3 đặc, nguội có thể dùng kim loại nào sau đây ?

A. Cr.

B. Al.

C. Fe.

D. Cu.

PHÂN BIỆT MỘT SỐ CHẤT VÔ CƠ

Bài 40

NHẬN BIẾT MỘT SỐ ION TRONG DUNG DỊCH

8.1. Có các dung dịch không màu đựng trong các lọ riêng biệt, không dán nhãn : ZnSO₄, Mg(NO₃)₂, Al(NO₃)₃. Để phân biệt các dung dịch trên, có thể dùng

A. quỳ tím.

B. dung dich NaOH.

C. dung dịch Ba(OH)₂.

D. dung dịch BaCl₂.

8.2. Để phân biệt các dung dịch đựng trong các lọ riêng biệt, không dán nhãn : MgCl₂, ZnCl₂, AlCl₃, FeCl₂, KCl bằng phương pháp hóa học, có thể dùng

A. dung dịch NaOH.

B. dung dịch NH₃.

C. dung dịch Na₂CO₃.

D. quỳ tím.

8.3. Để phân biệt 2 dung dịch Na₂CO₃ và Na₂SO₃ có thể chỉ cần dùng

A. dung dịch HCl.

B. nước brom.

C. dung dich Ca(OH)₂.

D. dung dịch H₂SO₄.

8.4. Có các mẫu phân đạm sau : NH_4Cl (đạm một lá), NH_4NO_3 (đạm hai lá), $NaNO_3$ (đạm nitrat) và $(NH_4)_2SO_4$ (đạm sunfat). Trình bày cách phân biệt các mẫu phân đạm trên.

8.5. Cho dung dịch Na₂CO₃ và dung dịch hỗn hợp NaHCO₃ và Na₂CO₃. Trình bày phương pháp hoá học phân biệt hai dung dịch trên.

- **8.6.** Làm thế nào để phân biệt được hai loại phân lân : supephotphat đơn và supephotphat kép.
- 8.7. Cho các chất rắn sau : NaNO₃, CaCO₃, BaSO₄, Zn(NO₃)₂, Na₂CO₃. Chỉ dùng thêm tối đa hai hoá chất có thể phân biệt được các chất trên hay không?

NHẬN BIẾT MỘT SỐ CHẤT KHÍ

- **8.8.** Không thể nhận biết các khí CO₂, SO₂ và O₂ đựng trong các bình riêng biệt nếu chỉ dùng
 - A. nước brom và tàn đóm cháy dở.
 - B. nước brom và dung dịch Ba(OH)₂.
 - C. nước vôi trong và nước brom.
 - D. tàn đóm cháy dở và nước vôi trong.
- 8.9. Để phân biệt các khí CO, CO₂, O₂ và SO₂ có thể dùng
 - A. tàn đóm cháy dở, nước vôi trong và nước brom.
 - B. tàn đóm cháy dở, nước vôi trong và dung dịch K₂CO₃.
 - C. dung dịch Na₂CO₃ và nước brom.
 - D. tàn đóm cháy dở và nước brom.
- **8.10.** Phòng thí nghiệm bị ô nhiễm bởi khí clo. Dùng chất nào sau đây có thể khử được clo một cách tương đối an toàn?
 - A. Dung dịch NaOH loãng.
 - B. Dùng khí NH₃ hoặc dung dịch NH₃.
 - C. Dùng khí H₂S.
 - D. Dùng khí CO₂.
- **8.11.** Trình bày phương pháp hoá học phân biệt các khí : O_2 , O_3 , NH_3 , HCl và H_2S đựng trong các bình riêng biệt.

- 8.12. Để khử khí H₂S trong phòng thí nghiệm có thể dùng chất nào?
- 8.13. Khí X điều chế từ H₂ và Cl₂; khí Y điều chế bằng cách nung nóng KMnO₄; khí Z sinh ra do phản ứng của Na₂SO₃ với axit HCl; khí A sinh ra khi nung đá vôi; khí B thu được khi cho Fe tác dụng với dung dịch H₂SO₄ loãng. Trình bày phương pháp hoá học phân biệt các khí đựng trong các bình riêng biệt.
- 8.14. Trong quá trình sản xuất NH₃ thu được hỗn hợp gồm ba khí : H₂, N₂ và NH₃. Trình bày phương pháp hoá học để chứng tỏ sự có mặt của mỗi khí trong hỗn hợp.

Bài 42. Luyện tập

NHẬN BIẾT MỘT SỐ CHẤT VÔ CƠ

- 8.15. Để phân biệt các dung dịch: ZnCl₂, MgCl₂, CaCl₂ và AlCl₃ đựng trong các lọ riêng biệt có thể dùng
 - A. dung dịch NaOH và dung dịch NH₃.
 - B. quỳ tím.
 - C. dung dịch NaOH và dung dịch Na₂CO₃.
 - D. natri kim loại.
- 8.16. Để phân biệt các dung dịch : Na₂SO₃, Na₂CO₃, NaHCO₃ và NaHSO₃ đựng trong các lọ riêng biệt, có thể dùng
 - A. axit HCl và nước brom.
 - B. nước vôi trong và nước brom.
 - C. dung dịch CaCl₂ và nước brom.
 - D. nước vôi trong và axit HCl.

- 8.17. Có thể dùng chất nào sau đây để phân biệt các dung dịch: BaCl₂, Na₂SO₄, MgSO₄, ZnCl₂, KNO₃ và KHCO₃?
 - A. Kim loại natri.
 - B. Dung dịch HCl.
 - C. Khí CO₂.
 - D. Dung dịch Na₂CO₃.
- **8.18.** Để phân biệt các dung dịch loãng: HCl, HNO₃, H₂SO₄ có thể dùng thuốc thừ nào sau đây?
 - A. Dung dịch Ba(OH)₂ và bột đồng kim loại.
 - B. Kim loại sắt và đồng.
 - C. Dung dich Ca(OH)₂.
 - D. Kim loại nhôm và sắt.
- 8.19. Cho các chất bột sau : Al, Mg, Fe, Cu. Trình bày cách phân biệt các chất bột trên mà chỉ dùng không quá hai dung dịch thuốc thử.
- **8.20.** Có các gói bột sau : Al, Fe, Ag, Al₂O₃. Trình bày cách phân biệt các chất trong mỗi gói bằng phương pháp hoá học.
- 8.21. Trình bày phương pháp hoá học nhận biết sự có mặt của các ion trong dung dịch thu được bằng cách hoà tan các muối FeCl₂, Zn(NO₃)₂ và AlCl₃ vào nước.

HOÁ HỌC VÀ VẤN ĐỂ PHÁT TRIỂN KINH TẾ, XÃ HỘI VÀ MÔI TRƯỜNG

Bài 43

HOÁ HỌC VÀ VẤN ĐỀ PHÁT TRIỂN KINH TẾ

- 9.1. Trong số các nguồn năng lượng sau đây, nhóm các nguồn năng lượng nào được coi là năng lượng "sạch"?
 - A. Điện hạt nhân, năng lượng thủy triều.
 - B. Năng lượng gió, năng lượng thủy triều.
 - C. Năng lượng nhiệt điện, năng lượng địa nhiệt.
 - D. Năng lượng mặt trời, năng lượng hạt nhân.
- 9.2. Việt Nam có mỏ quặng sắt rất lớn ở Thái Nguyên nên đã xây dựng khu liên hợp gang thép tại đây. Khu sản xuất được xây dựng ở gần khu vực khai thác mỏ là do
 - A. tiện vận chuyển nguyên liệu làm cho chi phí sản xuất thấp.
 - B. không thể bảo quản được quặng sắt lâu dài sau khi khai thác.
 - C. chỉ có thể xây dựng nhà máy sản xuất gang thép tại Thái Nguyên.
 - D. có thể bảo quản được quặng sắt khi vận chuyển, nhưng điều kiện khí hậu ở nơi khác không đảm bảo.
- 9.3. Trong số các vật liệu sau, vật liệu nào có nguồn gốc hữu cơ?
 - A. Gốm, sứ.

B. Xi măng.

C. Chất đẻo.

D. Đất sét nặn.

- 9.4. Tại sao khi điện phân Al₂O₃ nóng chảy để sản xuất nhôm, người ta cần phải thêm criolit?
- 9.5. Tại sao hiện nay DDT không được dùng làm chất bảo vệ thực vật (diệt cỏ, kích thích sinh trưởng)?
- 9.6. Chất dẻo PVC [poli(vinyl clorua)] và chất dẻo PE (polietilen) khác nhau ở điểm nào ? Có thể phân biệt chúng bằng cách nào ?
- 9.7. Trong công nghiệp, trước kia người ta sản xuất phenol từ clobenzen; ngày nay sản xuất từ cumen. Viết phương trình hóa học của các phản ứng điều chế phenol theo hai cách và so sánh ưu điểm và hạn chế của hai cách.

Bài 44

HOÁ HỌC VÀ VẤN ĐỀ XÃ HỘI

9.8. Người hút thuốc lá nhiều thường mắc các bệnh nguy hiểm về đường hô hấp. Chất gây hại chủ yếu có trong thuốc lá là

A. becberin.

B. nicotin.

C. axit nicotinic.

D. mocphin.

- 9.9. Khí biogas sản xuất từ chất thải chặn nuôi được sử dụng làm nguồn nhiên liệu trong sinh hoạt ở nông thôn. Tác dụng của việc sử dụng khí biogas là A, phát triển chặn nuôi.
 - B. đốt để lấy nhiệt và giảm thiểu ô nhiễm môi trường.
 - C. giải quyết công ăn việc làm ở khu vực nông thôn.
 - D. giảm giá thành sản xuất dầu, khí.
- 9.10. Việc trồng rừng, ngoài việc tạo sự che phủ đất để hạn chế chống xói mòn do mưa lũ gây ra, còn có vai trò gì đối với môi trường?
- 9.11. Hãy nêu những nguyên nhân chính gây nên hiện tượng ô nhiễm nguồn nước?
- 9.12. Hiện nay, túi PE được dùng làm túi an toàn để đựng thực phẩm. Tuy nhiên, nếu kéo dài tình trạng sử dụng túi PE sẽ dẫn đến hậu quả gì? Cần có giải pháp nào để thay thế PE?

- 9.13. Nhựa bakelit được chế tạo từ poli(phenol-fomanđehit) có rất nhiều ứng dụng đặc biệt là trong vật liệu điện. Viết sơ đồ tổng hợp nhựa poli(phenol-fomanđehit) từ các sản phẩm của khí thiên nhiên và dầu mỏ.
- 9.14. Nêu một số thí dụ (trong các lĩnh vực : ān uống, may mặc, các thiết bị máy móc sử dụng trong đời sống) cho thấy vai trò của hóa học đối với đời sống hiện nay.

Bài 45

HOÁ HỌC VÀ VẤN ĐỀ MÔI TRƯỜNG

	9.15. Hiện tượng trái đất nóng lên d sau đây ?	o hiệu ứng nhà kính chủ yếu là đo chất nào	
	A. Khí clo.	B. Khí cacbonic.	
	C. Khí cacbon oxit.	D. Khí hiđro clorua.	
	9.16. Mưa axit chủ yếu là do những chất sinh ra trong quá trình sản xuất công nghiệp nhưng không được xử lí triệt để. Đó là những chất nào sau đây?		
	A. SO ₂ , NO ₂ .	B. H ₂ S, Cl ₂ .	
	C. NH ₃ , HCl.	D. CO ₂ , SO ₂ .	
	9.17. Nhóm nào sau đây gồm các io	n gây ô nhiễm nguồn nước ?	
	A. NO_3^- , NO_2^- , Pb^{2+} , Na^+ , Cl^- .		
B. NO ₃ , NO ₂ , Pb ²⁺ , Na ⁺ , Cd ²⁺ , Hg ²⁺ .		1^{2+} , Hg^{2+} .	
D. NO_3^- , NO_2^- , Pb^{2+} , Na^+ , HCO_3^- .			

B. mua axit.

D. quá trình sản xuất gang thép.

9.18. Nguyên nhân của sư suy giảm tầng ozon chủ yếu là do

A. khí CO₂.

C. clo và các hợp chất của clo.

- 9.19. Theo Tiêu chuẩn Việt Nam, nồng độ cho phép của ion Cu²⁺ trong nước uống không được phép vượt quá 3 mg/l. Khi cho dung dịch H₂S dư vào 500 ml một mẫu nước thấy có 0,00144 g kết tủa. Hỏi mẫu nước trên đã bị ô nhiễm đồng chưa?
- 9.20. Gần khu vực có mỏ đồng (chứa quặng có thành phần chính là Cu₂S) người ta xây dựng khu liên hợp sản xuất. Khu liên hợp này sản xuất Cu, bột CuO, CuCl₂ và CuSO₄. Vậy trong và xung quanh khu vực này sẽ bị ô nhiễm bởi những chất nào nếu việc xử lí nước thải và khí thải không tốt?
- 9.21. Nhà máy chế biến thực phẩm tại thị xã Sơn Tây có dây chuyền sản xuất glucozơ từ tinh bột sắn. Hiệu suất của phản ứng tạo glucozơ là 80% và trong bột sắn có 90% tinh bột.
 - a) Nếu công suất của nhà máy là 180 000 tấn glucozơ/năm và không tận dụng sản phẩm thừa thì lượng chất thải xả ra môi trường là bao nhiều?
 - b) Thực tế, người ta đã thu hồi phần thừa ra để sản xuất cồn y tế (cồn 70°). Tính thể tích cồn y tế tối đa có thể sản xuất được nếu tận dụng được 80% lượng phế thải. Cho khối lượng riêng của etanol bằng 0.8 g/ml và của nước bằng 1 g/ml. Việc sản xuất này có gây ra sự ô nhiễm nào không?
- 9.22. Trình bày phương pháp hóa học để xử lí các chất thải công nghiệp sau :
 - a) Khí SO_2 trong quá trình nướng quặng Fe_2O_3 (có lẫn hợp chất của lưu huỳnh, thí dụ FeS) trong sản xuất gang thép.
 - b) Khí NO₂ trong sản xuất axit HNO₃.

۴

- c) Khí clo trong điện phân sản xuất Na, NaOH.
- d) Xi quặng của quá trình đốt pirit trong sản xuất axit H₂SO₄.

PHẦN HAI : HƯỚNG DẪN - BÀI GIẢI - ĐÁP SỐ

Chương I _____

ESTE - LIPIT

Bài 1

ESTE

1.1. C

Este ứng với công thức phân tử C₄H₈O₂ phải là este no, đơn chức có các đồng phân:

CH₃CH₂COOCH₃ ; HCOOCH₂CH₂CH₃

 $HCOOCH(CH_3)_2$; $CH_3COOCH_2CH_3$.

- 1.2. B
- 1.3. C
- 1.4. B
- 1.5. D

Hướng dẫn:

Từ công thức cấu tạo của các đồng phân, chọn este thoả mãn là CH₃COOC₂H₅. Sản phẩm thuỷ phân là C₂H₅OH và CH₃COOH.

1.6. D

Hướng dẫn:

Theo định luật bảo toàn khối lượng, tính được khối lượng 2 este đã dùng là 8,8 g.

Từ số mol NaOH tính được số mol este = 0,1 mol \Rightarrow M_{este} = 88 g/mol.

Công thức phân tử của 2 este là $C_4H_8O_2$.

Từ phản ứng thuỷ phân và khối lượng sản phẩm, tìm được công thức cấu tao và phần trăm khối lương của mỗi chất.

1.7. B

Hướng dẫn:

Công thức phân tử của X là C₄H₈O₂.

Phản ứng với dung dịch NaOH:

$$C_xH_yCOOC_pH_q + NaOH \rightarrow C_xH_yCOONa + C_pH_qOH$$

 $n_X = 0.05 \text{ mol}$; $n_{NaOH} = 0.15 \text{ mol}$

Vậy
$$m_{mu\delta i} = 4.1 \text{ g} \Rightarrow M_{mu\delta i} = 82 \text{ g/mol}$$

hay $12x + y = 15 \Rightarrow x = 1$; $y = 3 \Rightarrow \text{Este là CH}_3\text{COOCH}_2\text{CH}_3$.

1.8. Ứng với công thức phân tử $C_2H_4O_2$ có các công thức cấu tạo mạch hở sau :

 $CH_3COOH(A)$; $HCOOCH_3(B)$; $HOCH_2CH = O(C)$.

- a) Tác dụng được với dung dịch natri hidroxit : A và B.
- b) Tác dụng được với natri kim loại : A và C.
- c) Tác dung được với ancol etylic: A và C.
- d) Tác dụng được với AgNO₃/NH₃ sinh ra Ag: B và C.

Có thể lập bảng:

Chất	CH ₃ COOH (A)	HCOOCH ₃ (B)	HOCH ₂ CH=O (C)
NaOH	x	x	-
Na	x	1	х
C ₂ H ₅ OH	x	_	x
AgNO ₃ /NH ₃	-	x	x

HS tự viết các PTHH.

1.9. Hướng dẫn:

a) Từ phần trăm khối lượng các nguyên tố, ta xác định được công thức đơn giản nhất của X là $C_3H_6O_2 \Rightarrow Công$ thức phân tử của X là $C_3H_6O_2$.

Các công thức cấu tạo có thể có của X là:

HCOOC₂H₅ (etyl fomat) và CH₃COOCH₃ (metyl axetat).

b) Đặt công thức của X là RCOOR (R # H).

$$RCOOR^1 + NaOH \rightarrow RCOONa + R^1OH$$

$$n_X = 0.05 \text{ mol}$$

Muối khan là RCOONa có số mol = số mol RCOOR = 0,05 mol

$$\Rightarrow M_{\text{mu\'oi}} = \frac{4,1}{0.05} = 82 \text{ (g/mol)}$$

Từ đó suy ra muối là CH₃COONa.

Công thức cấu tạo của X là CH₃COOCH₃.

1.10. a) $M_X = 44.2 = 88$ (g/mol).

Vì nhóm COO trong phân tử este có khối lượng là 44, nên X và Y thuộc loại este đơn chức dạng $RCOOR^1$ hay $C_xH_vO_2$.

Ta có:
$$12x + y = 56 \Rightarrow x = 4$$
; $y = 8$

Công thức phân tử của X và Y là $C_4H_8O_2$. X, Y thuộc loại este no, đơn chức, mạch hở.

b) Đặt công thức chung của 2 este là \overline{RCOOR} . Phản ứng thủy phân trong dung dịch NaOH :

$$\overline{RCOOR'}$$
 + NaOH $\rightarrow \overline{RCOONa}$ + $\overline{R'OH}$

Chất rắn khan là hỗn hợp muối của hai axit là đồng đẳng kế tiếp (vì hai ancol là đồng đẳng kế tiếp).

$$n_{este} = n_{mu\delta i} = 0.05 \text{ mol}$$

$$\overline{M}_{\text{mu\'oi}} = \frac{4,45}{0.05} = 89 \text{ (g/mol)} \Rightarrow \overline{R} = 22$$

Hai muối tương ứng là CH₃COONa và C₂H₅COONa.

X là CH₃COOCH₂CH₃ (etyl axetat), Y là C₂H₅COOCH₃ (metyl propionat).

1.11. Từ sản phẩm cháy ta có:

$$n_C = n_{CO_2} = 0.2 \text{ mol} \Rightarrow m_C = 2.4 \text{ g}$$
 $n_H = 2. n_{H_2O} = 0.3 \text{ mol} \Rightarrow m_H = 0.3 \text{ g}$
 $m_O = 4.3 - 2.4 - 0.3 = 1.6 \text{ (g)} \Rightarrow n_O = 0.1 \text{ mol}$

Đặt công thức phân tử của X là $C_x H_v O_z$. Ta có tỉ lệ :

$$x : y : z = 0.2 : 0.3 : 0.1 = 2 : 3 : 1.$$

CTĐGN của X là C_2H_3O . X là este đơn chức nên công thức phân tử của X là $C_4H_6O_2$.

Vì X được tạo ra từ phản ứng este hoá giữa ancol Y và axit hữu cơ Z nên có công thức cấu tạo :

HCOOCH₂CH=CH₂ (anlyl fomat) hoặc CH₂=CHCOOCH₃ (metyl acrylat). HS tư viết các PTHH.

1.12. Hướng dẫn:

a) HS tự viết các PTHH.

b) Phần một:
$$n_{ancol} + n_{axit} = 2n_{H_2} = 2.\frac{3,36}{22,4} = 0.3 \text{ (mol)}$$

Phần hai :
$$n_{axit} = n_{NaOH} = 0.2 \text{ mol} \Rightarrow n_{ancol} = 0.1 \text{ mol}$$

 $m_X = 3(0.2.60 + 0.1.46) = 49.8 \text{ (g)}$

Phản ứng este hoá: tính hiệu suất theo số mol ancol.

Số mol este tạo thành =
$$\frac{0,1.60}{100}$$
 = 0,06 (mol)
 $m_{este} = 0,06.88 = 5,28$ (g).

Bài 2

LIPIT

- 1.13. D
- 1.14. B
- 1.15. C
- 1.16. Hiện tượng : tristearin là chất rắn nhẹ hơn dung dịch nên tách thành hai lớp. Khi đun với dung dịch NaOH xảy ra phản ứng :

$$(C_{17}H_{35}COO)_3C_3H_5 + 3NaOH \rightarrow 3C_{17}H_{35}COONa + C_3H_5(OH)_3$$

Sản phẩm của phản ứng tan được trong nước nên thu được chất lỏng đồng nhất. Khi để nguội và thêm muối ăn vào hỗn hợp thì muối natri stearat nổi lên trên do nó nhẹ hơn lớp chất lỏng phía dưới. Muối ăn thêm vào nhằm làm tăng khối lượng riêng của dung dịch và làm giảm độ tan của muối natri stearat.

1.17. a) X là triglixerit của glixerol với axit oleic và axit linoleic nên có công thức dạng $(C_{17}H_{31}COO)_xC_3H_5(OOCC_{17}H_{33})_y$, với x + y = 3.

Phản ứng của X với KOH:

$$(C_{17}H_{31}COO)_xC_3H_5(OOCC_{17}H_{33})_y + 3KOH \rightarrow$$

$$xC_{17}H_{31}COOK + yC_{17}H_{33}COOK + C_3H_8O_3$$
0,01 0,01 x 0,01 y 0,01 (mol)

Ta có: $n_X = n_{glixerol} = 0.01 \text{ mol}$

Vì
$$n_{C_{17}H_{31}COOK} = 0.01 \text{ mol nên } x = 1 \text{ ; } y = 2.$$

X có công thức cấu tạo : $C_{17}H_{31}COOC_3H_5(OOCC_{17}H_{33})_2$.

b) Ta có :
$$n_{C_{17}H_{33}COOK} = 0.02 \text{ mol}$$

$$\Rightarrow$$
 m_{C₁₇H₃₃COOK} = 0,02.320 = 6,4 (g)

Áp dụng định luật bảo toàn khối lượng, ta có :

$$a = (0.92 + 6.4 + 3.18) - 0.03.56 = 8.82$$
 (g).

KHÁI NIỆM VỀ XÀ PHÒNG VÀ CHẤT GIẶT RỬA TỔNG HỢP

- 1.18. A
- 1.19. B
- 1.20. Xà phòng là hỗn hợp muối natri (hoặc muối kali) của axit béo, có thêm một số chất phụ gia.
 - Muối natri (hay muối kali) trong xà phòng có khả năng làm giảm sức căng bề mặt của các chất bẩn bám trên vải, da, ... do đó vết bẩn được phân tán thành nhiều phần tử nhỏ hơn và được phân tán vào nước.
 - Không nên dùng xà phòng để giặt rửa trong nước cứng vì sẽ tạo ra các muối khó tan của các axit béo với các ion Ca²⁺ và Mg²⁺ làm hạn chế khả năng giặt rửa.
- 1.21. Trong xà phòng luôn có một lượng xút dư; các muối natri của các axit béo bị thuỷ phân tạo ra môi trường kiềm có thể ăn mòn nhôm.
- 1.22. Hướng dẫn:

Xà phòng không tiện dụng trong nước cứng; Phải khai thác từ các nguồn dầu mỡ động vật, thực vật: làm cạn kiệt nguồn tài nguyên, phá huỷ môi trường, phải tốn nhiều thời gian nuôi trồng, chăm sóc. Phụ thuộc nhiều vào thời tiết, mùa vu.

1.23. Chất béo có công thức $(C_{17}H_{33}COO)_3C_3H_5$ tác dụng với kiềm :

$$(C_{17}H_{33}COO)_3C_3H_5 + 3KOH \rightarrow 3C_{17}H_{33}COOK + C_3H_5(OH)_3$$
 (1)
Phản ứng trung hoà axit :

RCOOH + KOH
$$\rightarrow$$
 RCOOK + H₂O (2)
 $n_{KOH \ d\bar{a} \ dung} = \frac{14100}{56} = 251,786 \ (mol)$

Số gam KOH để trung hoà axit béo là 700 g ứng với số mol KOH là 12,5 mol.

Theo (2):
$$n_{RCOOH} = n_{KOH}$$

 $n_{nuớc sinh ra} = n_{RCOOH} = 12,5 \text{ mol}$
 $m_{nuớc sinh ra} = 12,5.18 = 225 \text{ (g)}$

Số mol KOH tham gia phản ứng (1) là : 251,786 - 12,5 = 239,286 (mol)

Số mol glixerol sinh ra =
$$\frac{239,286}{3}$$
 = 79,762 (mol)

Áp dụng định luật bảo toàn khối lượng:

$$m_{\text{mu\'o}i} = m_{\text{ch\'at} \text{ b\'eo}} + m_{\text{KOH}} - m_{\text{nu\'oc}} - m_{\text{glixerol}}$$

= 100 000 + 14 100 - 225 - 79,762.92
= 106 536,896 (g) \approx 106,54 kg.

1.24. Phản ứng của các chất với dung dịch NaOH:

$$\begin{aligned} &(C_{17}H_{35}COO)_3C_3H_5 \ + \ 3NaOH \ \rightarrow 3C_{17}H_{35}COONa \ + C_3H_5(OH)_3 \\ &(C_{17}H_{33}COO)_3C_3H_5 \ + \ 3NaOH \ \rightarrow 3C_{17}H_{33}COONa \ + C_3H_5(OH)_3 \\ &(C_{15}H_{31}COO)_3C_3H_5 \ + \ 3NaOH \ \rightarrow 3C_{15}H_{31}COONa \ + C_3H_5(OH)_3 \\ &n_{tristearin} = \frac{50\,000}{890} = 56,18 \ (mol) \\ &n_{triolein} = \frac{30\,000}{884} = 33,94 \ (mol) \\ &n_{tripanmitin} = \frac{20\,000}{806} = 24,81 \ (mol) \end{aligned}$$

Khối lượng muối thu được:

$$m = 3(56,18.306 + 33,94.304 + 24,81.278) = 103218,06 (g) \approx 103,2 kg.$$

Bài 4. Luyện tập

ESTE VÀ CHẤT BÉO

- 1.25. C
- 1.26. A
- 1.27. Dầu chuối không tan trong nước vì nó không có khả năng tạo được liên kết hiđro với nước và vì khối lượng riêng nhỏ hơn nước nên dầu chuối nổi trên mặt nước (hoặc dung dịch kiềm).

Khi đun sôi và khuấy đều đã xảy ra phản ứng xà phòng hoá este :

$$\text{CH}_{3}\text{COOCH}_{2}\text{CH}_{2}\text{CH}(\text{CH}_{3})_{2} + \text{NaOH} \xrightarrow{ \mathfrak{t}^{0} } \text{CH}_{3}\text{COONa} + \text{HOCH}_{2}\text{CH}_{2}\text{CH}(\text{CH}_{3})_{2}$$

Sản phẩm phản ứng tan được trong nước (hoặc dung dịch kiềm dư) nên tạo thành dung dịch đồng nhất.

1.28. Hướng dẫn:

a)
$$CH_2=CH_2+\frac{1}{2}O_2 \xrightarrow{xt,t^o} CH_3CHO$$
 $CH_3CHO + Br_2 + H_2O \rightarrow CH_3COOH + 2HBr$
 $CH_3COOH + C_2H_5OH \xrightarrow{H_2SO_4d,t^o} CH_3COOC_2H_5 + H_2O$
 $CH_3COOC_2H_5 \xrightarrow{LiAlH_4,t^o} 2C_2H_5OH$

b) $CH_3CH_2COOH + Br_2 \xrightarrow{t^o,Pd\delta} CH_3CHBrCOOH + HBr$
 $CH_3CHBrCOOH + 2KOH \xrightarrow{C_2H_5OH,t^o} CH_2=CHCOOK + KBr + 2H_2O$
 $CH_2=CHCOOK + HCl (dd loāng) \longrightarrow CH_2=CHCOOH + KCl$
 $CH_2=CHCOOH + CH_3OH \xrightarrow{H_2SO_4d,t^o} CH_2=CHCOOCH_3 + H_2O$
 $nCH_2=CHCOOCH_3 \xrightarrow{p,t^o,xt} CH_2-CH \xrightarrow{l} CH_3OOC$
 $c) 2CH_2=CH_2 + O_2 \xrightarrow{xt,t^o} 2CH_3CHO$
 $2CH_3CHO + O_2 \xrightarrow{xt,t^o} 2CH_3COOH$
 $CH_3COOH + C_2H_2 \xrightarrow{xt,t^o} CH_3COOCH=CH_2$
 $nCH_3COOCH=CH_2 \xrightarrow{p,t^o,xt} CH_2-CH \xrightarrow{l} CH_3COOCH=CH_2$
 $nCH_3COOCH=CH_2 \xrightarrow{p,t^o,xt} CH_2-CH \xrightarrow{l} CH_3COOOH$
 $CH_2COOO \xrightarrow{l} CH_2-CH \xrightarrow{l} CH_3COONa$

1.29. Hai este có cùng gốc axit vì cùng tạo ra một muối sau khi xà phòng hoá. Đặt công thức của 2 este là RCOOR¹ và RCOOR² Công thức chung của 2 este là RCOOR.

Theo phương trình hoá học:

$$n_{NaOH} = n_{RCOONa} = n_{ROH} = 0.2.1,5 = 0.3 \text{ (mol)}$$

Ta có:
$$M_{RCOOR} = \frac{19.4}{0.3} = 64.67 \text{ (g/mol)}$$

Hay
$$M_R + M_{\overline{R}} = 64,67 - 44 = 20,67$$

Vậy hai ancol phải là CH₃OH và C₂H₅OH, còn axit là HCOOH.

Công thức cấu tạo của 2 este là:

HCOOCH₃ (metyl fomat) và HCOOCH₂CH₃ (etyl fomat).

Gọi số mol của HCOOCH3 và HCOOCH2CH3 trong hỗn hợp là x và y.

Ta c6:
$$\begin{cases} x + y = 0.3 \\ 60x + 74y = 19.4 \end{cases} \Rightarrow \begin{cases} x = 0.2 \\ y = 0.1 \end{cases}$$

$$%m_{\text{HCOOCH}_3} = \frac{0,2.60}{19,4}.100\% = 61,85\%$$

$$%m_{HCOOCH_2CH_3} = 100\% - 61,85\% = 38,15\%$$

1.30. Vì $n_{O_2} = 0.10 \text{ mol nên } M_X = 86 \text{ g/mol.}$

Vậy X là este đơn chức RCOOR¹ với $M_R + M_{R^1} = 42$. Các cặp giá trị :

M _R	M _{R¹}
1 (H)	41 (C ₃ H ₅)
15 (CH ₃)	27 (CH ₂ =CH)
29 (C ₂ H ₅)	13 (CH)
27 (CH ₂ =CH)	15 (CH ₃)

X tạo ra từ ancol và axit nên X có công thức cấu tạo :

Vì A có phân tử khối lớn hơn B nên X có công thức cấu tạo (I). Phương trình hoá học của phản ứng este hoá:

$$HCOOH + HOCH_2CH=CH_2 \xrightarrow{H_2SO_4d, t^o} HCOOCH_2CH=CH_2 + H_2O$$
Axit fomic ancol anlylic anlyl fomat (X)

CACBOHIÐRAT

Bài 5

GLUCOZO

- 2.1. C
- 2.2. D
- 2.3. A
- 2.4. C
- 2.5. B
- 2.6. D

Hướng dẫn : Để tạo ra phức đồng $Cu(C_6H_{11}O_6)_2$ phải cho dung dịch glucozơ tác dụng với $Cu(OH)_2$ ở nhiệt độ thường.

- 2.7. C
- 2.8. D. Hướng dẫn :

$$C_6H_{12}O_6 \xrightarrow{\text{enzim}} 2C_2H_5OH + 2CO_2$$

$$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$$

Số mol $C_2H_5OH = \text{số mol } CO_2 = \text{số mol } CaCO_3 = \frac{80}{100} = 0.8 \text{ (mol)}$

Số mol
$$C_6H_{12}O_6 = \frac{1}{2}$$
 số mol $C_2H_5OH = \frac{0.8}{2} = 0.4$ (mol)

$$m = 0.4.180. \frac{100}{75} = 96 (g)$$

2.9. Glucozo có chức anđehit nên có phản ứng tráng bạc :

$$C_3H_{11}O_5CHO + 2AgNO_3 + 3NH_3 + H_2O \xrightarrow{t^0} C_5H_{11}O_5COONH_4 + 2Ag\downarrow + 2NH_4NO_3$$

Fructozơ không có chức anđehit nhưng trong môi trưồng bazơ, fructozơ chuyển thành glucozơ nên cũng cho phản ứng tráng bạc.

Dung dịch glucozơ làm mất màu nước brom :

$$C_5H_{11}O_5CHO + Br_2 + H_2O \rightarrow C_5H_{11}O_5COOH + 2HBr$$

Fructozo không làm mất màu nước brom.

- 2.10. Xem SGK.
- 2.11. Hướng dẫn: Dùng giấy quỳ tím nhận biết được dung dịch axit axetic. Trong ba dung dịch còn lại, dung dịch nào không tham gia phản ứng tráng bạc là glixerol. Để phân biệt dung dịch glucozơ và dung dịch anđehit axetic có thể dùng phản ứng với Cu(OH)₂ ở nhiệt độ thường, glucozơ tạo ra dung dịch xanh lam.

2.12.
$$C_5H_{11}O_5CHO + 2Cu(OH)_2 + KOH \xrightarrow{t^0} C_5H_{11}O_5COOK + Cu_2O + 3H_2O$$
glucozơ kali gluconat

$$C_6H_{12}O_6 \xrightarrow{\text{enzim}} 2C_2H_5OH + 2CO_2$$

kali hidrocacbonat

$$CO_2 + 2KOH \rightarrow K_2CO_3 + H_2O$$

kali cacbonat

$$C_2H_5OH + O_2 \xrightarrow{\text{men giám}} CH_3COOH + H_2O$$

kali axetat

2.13.
$$C_6H_{12}O_6 \xrightarrow{\text{enzim}} 2C_2H_5OH + 2CO_2$$

$$2C_2H_5OH \xrightarrow{H_2SO_4 d\bar{a}c} C_2H_5 - O - C_2H_5 + H_2O$$

dietyl ete

$$C_{2}H_{5}OH + O_{2} \xrightarrow{\text{men giám} \atop 25-30^{\circ}C} CH_{3}COOH + H_{2}O$$

$$CH_{3}COOH + C_{2}H_{5}OH \xrightarrow{H_{2}SO_{4} \text{ dãc}, t^{\circ}} CH_{3}COOC_{2}H_{5} + H_{2}O$$

$$etyl \ axetat$$

2.14. Khối lượng ancol etylic trong 2,3 lít (2300 ml) rượu 40° là :

2300.
$$\frac{40}{100}$$
.0,8 = 736 (g).

$$C_6H_{12}O_6 \xrightarrow{\text{enzim}} 2C_2H_5OH + 2CO_2$$

Khối lượng nguyên liệu : $\frac{180.736}{46.2} \cdot \frac{100}{80} \cdot \frac{100}{50} = 3600 \text{ (g)} = 3,6 \text{ kg.}$

2.15. Số mol AgNO₃ ban đầu : 35,87.1,4. $\frac{34}{100} \cdot \frac{1}{170} = 0,10$ (mol).

$$CH_3CHO + 2AgNO_3 + 3NH_3 + H_2O \xrightarrow{t^o} CH_3COONH_4 + 2NH_4NO_3 + 2Ag\downarrow$$

$$C_5H_{11}O_5CHO + 2AgNO_3 + 3NH_3 + H_2O \xrightarrow{\iota^o} C_5H_{11}O_5COONH_4 + 2NH_4NO_3 + 2Ag\downarrow$$

$$AgNO_3 + KCl \rightarrow AgCl \downarrow + KNO_3$$

Số mol AgNO₃ tác dụng với KCl :
$$\frac{5,74}{143.5}$$
 = 0,04 (mol).

Số mol AgNO₃ tác dung với 2 chất hữu cơ: 0.1 - 0.04 = 0.06 (mol).

Số mol hai chất hữu cơ : $\frac{1}{2}.0,06 = 0,03$ (mol).

Đặt số mol CH₃CHO là x mol, số mol glucozơ là y mol.

Ta có hệ phương trình :
$$\begin{cases} x+y=0.03 \\ 44x+180y=2.68 \end{cases} \Rightarrow \begin{cases} x=0.02 \\ y=0.01 \end{cases}$$

Thành phần phần trăm của hỗn hợp:

CH₃CHO chiếm
$$\frac{0.02.44}{2.68}$$
.100% = 32,8% khối lượng

$$C_6H_{12}O_6$$
 chiếm $\frac{0.01.180}{2.68}.100\% = 67.2\%$ khối lượng.

SACCAROZO, TINH BỘT VÀ XENLULOZƠ

2,16. D

2.17. C

2.18. C

2.19, B

2.20. D

2.21. C

2.22. D

2.23. A

2.24. D

2.25. C

2.26. A là saccarozo; B là glucozo; C là axit gluconic.

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+,t^o} C_6H_{12}O_6 + C_6H_{12}O_6$$
saccarozo glucozo fructozo

$$C_5H_{11}O_5CHO + Br_2 + H_2O \rightarrow C_5H_{11}O_5COOH + 2HBr$$

glucozo axit gluconic

2.27. a) Khối lượng saccarozo trong 1000 lít nước mía:

1000.1,1.
$$\frac{7.5}{100}$$
 = 82,5 (kg).

Khối lượng đường kết tinh : 82,5. $\frac{80}{100} \cdot \frac{100}{98} = 67,35$ (kg).

Khối lượng rỉ đường : 82,5. $\frac{20}{100} \cdot \frac{100}{25} = 66$ (kg).

b)
$$C_{12}H_{22}O_{11} + H_2O \rightarrow 4C_2H_5OH + 4CO_2$$

342 g 184 g

Khối lượng ancol etylic thu được: 82,5. $\frac{20}{100} \cdot \frac{184}{342} \cdot \frac{60}{100} = 5,326$ (kg).

Thể tích rượu 40° thu được : 5,326. $\frac{1}{0.8} \cdot \frac{100}{40} = 16,6$ (lít).

2.28. Khối lượng tinh bột trong 1 tấn nguyên liệu: 1000. $\frac{80}{100} = 800 \text{ (kg)}.$

$$(C_6H_{10}O_5)_n + nH_2O \xrightarrow{H^+, t^0} nC_6H_{12}O_6$$

 $C_6H_{12}O_6 \xrightarrow{\text{enzim}} 2C_2H_5OH + 2CO_2\uparrow$

Cứ 162 kg tinh bột tạo ra 92 kg ancol etylic.

Vậy 800 kg tinh bột tạo ra $\frac{92.800}{162}$ kg ancol etylic.

Vì sự hao hụt là 20% nên thể tích cồn 90° thu được là :

$$\frac{92.800}{162} \cdot \frac{80}{100} \cdot \frac{1}{0.8} \cdot \frac{100}{90} = 504.8 \text{ (lít)}.$$

2.29*.
$$2C_2H_5OH \xrightarrow{Al_2O_3, 450^{\circ}C} CH_2 = CH - CH = CH_2 + 2H_2O + H_2$$

Khối lượng ancol etylic cần để sản xuất 1 tấn cao su buna (hiệu suất 75%) là :

 $nCH_2 = CH - CH = CH_2 \xrightarrow{Na, t^0, p} (CH_2 - CH = CH - CH_2)_n$

$$\frac{1000.92}{54} \cdot \frac{100}{75} = 2271,6 \text{ (kg)}.$$

$$(C_6H_{10}O_5)_n + nH_2O \xrightarrow{H^+, t^0} nC_6H_{12}O_6$$

 $C_6H_{12}O_6 \xrightarrow{\text{enzim}} 2C_2H_5OH + 2CO_2$

Khối lượng nguyên liệu cần dùng là:

$$\frac{2271,6.162}{92} \cdot \frac{100}{70} \cdot \frac{100}{50} = 11 \ 428,5 \ (kg).$$

Bài 7. Luyện tập

CẤU TẠO VÀ TÍNH CHẤT CỦA CACBOHIÐRAT

2.30. C

2.31. D

2.32. A

2.33. C

2.34. A

2.35. B

2.36. X là sobitol $CH_2OH - [CHOH]_4 - CH_2OH$.

2.37. a) $[C_6H_7O_2(OH)_3]_n$ + $3n(CH_3O)_2O$ → $[C_6H_7O_2(OOCCH_3)_3]_n$ + $3nCH_3COOH$ $[C_6H_7O_2(OH)_3)]_n$ + $2n(CH_3O)_2O$ → $[C_6H_7O_2(OOCCH_3)_2OH]_n$ + $2nCH_3COOH$ CH_3COOH + NaOH → CH_3COONa + H_2O

b) Số mol CH₃COOH tạo thành $\frac{1.80}{1000}$. 10 = 0,8 (mol).

Đặt khối lượng xenlulozơ triaxetat là x gam, khối lượng xenlulozơ diaxetat là y gam; ta có: x + y = 82,2 (1)

Khi tao ra 288n g xenlulozo triaxetat, thì tao ra 3n mol CH3COOH,

khi tạo ra x g xenlulozo triaxetat, thì tạo ra $\frac{3nx}{288n}$ mol CH₃COOH.

Khi tạo ra 246n g xenlulozo điaxetat thì tạo ra 2n mol CH₃COOH,

khi tạo ra y g xenIulozo diaxetat thì tạo ra $\frac{2ny}{246n}$ mol CH₃COOH.

$$\frac{3x}{288} + \frac{2y}{246} = 0.8 \tag{2}$$

Giải hệ gồm phương trình (1) và (2) tìm được : x = 57.6; y = 24.6.

Xenlulozo triaxetat chiếm $\frac{57.6}{82.2}$.100% = 70,1% khối lượng

xenlulozo diaxetat chiém 100% - 70,1% = 29,9% khối lượng.

AMIN, AMINO AXIT VÀ PROTEIN

Bài 9

AMIN

- **3.1.** C
- **3.2.** D
- **3.3.** C

Hướng dẫn: Các amin C₇H₉N có chứa vòng benzen là

- **3.4.** C
- **3.5.** D
- **3.6.** D
- 3.7. C
- 3.8. Lắc kĩ hỗn hợp với dung dịch HCl dư, chỉ có anilin phản ứng:

$$C_6H_5 - NH_2 + HCI \rightarrow [C_6H_5 - NH_3]^+ CI^-$$
anilin phenylamoni clorua

Sau đó để yên, có hai lớp chất lỏng tạo ra : một lớp gồm nước hoà tan phenylamoni clorua và HCl còn dư, lớp kia gồm benzen hoà tan phenol.

Tách riêng lớp có nước rồi cho tác dụng với NH3:

$$HCI + NH_3 \rightarrow NH_4CI$$

 $[C_6H_5 - NH_3]^{\dagger} CI^{-} + NH_3 \rightarrow C_6H_5NH_2 + NH_4CI$

Anilin rất ít tan trong nước nên có thể tách riêng.

Lắc kĩ hỗn hợp benzen và phenol với dung dịch NaOH dư:

$$C_6H_5OH + NaOH \rightarrow C_6H_5ONa + H_2O$$

natri phenolat

Natri phenolat tan trong nước còn benzen không tan và được tách riêng.

Thổi CO₂ dư qua dung dịch có chứa natri phenolat:

$$C_6H_5ONa + CO_2 + H_2O \rightarrow NaHCO_3 + C_6H_5OH$$

Phenol rất ít tan trong nước lạnh và được tách riêng.

3.9.
$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

$$C_xH_yN + \left(x + \frac{y}{4}\right)O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O + \frac{1}{2}N_2$$

$$nH_2O + H_2SO_4 \rightarrow H_2SO_4.nH_2O$$

$$CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O$$

Thể tích hơi nước: 43 - 21 = 22 (lít)

Thể tích CO_2 : 21 – 7 = 14 (lít)

Để tạo ra 22 lít hơi nước cần 11 lít O_2 (vì để tạo ra 1 mol H_2O cần 0,5 mol O_2)

Để tạo ra 14 lít CO_2 cần 14 lít O_2 (vì để tạo ra 1 mol CO_2 cần 1 mol O_2)

Thể tích O_2 đã dự phản ứng : 14 + 11 = 25 (lít)

Thể tích O_2 còn dư: 30 - 25 = 5 (lít)

Thể tích $N_2 : 7 - 5 = 2$ (lít)

Thể tích $C_x H_y N = 2$.thể tích $N_2 = 4$ (lít)

Thể tích $C_3H_8 = 6 - 4 = 2$ (lít)

Khi đốt 2 lít C_3H_8 thu được 6 lít CO_2 và 8 lít hơi nước. Vậy khi đốt 4 lít C_xH_vN thu được 14-6=8 (lít) CO_2 và 22-8=14 (lít) hơi nước.

Từ đó
$$\Rightarrow x = \frac{8}{4} = 2$$
; $\frac{y}{2} = \frac{14}{4} = 3.5 \Rightarrow y = 7$

Công thức phân tử của amin là C_2H_7N .

Các công thức cấu tạo : $\mathrm{CH_3} - \mathrm{CH_2} - \mathrm{NH_2}$; $\mathrm{CH_3} - \mathrm{NH} - \mathrm{CH_3}$

etylamin dimetylamin

3.10. Thể tích hơi nước : 615 - 345 = 270 (ml).

Thể tích khí CO_2 : 345 – 25 = 320 (ml).

Để tạo ra 320 ml CO₂ cần 320 ml O₂ (vì để tạo ra 1 mol CO₂ cần 1 mol O₂).

Để tạo ra 270 ml hơi nước cần 135 ml O_2 (vì để tạo ra 1 mol H_2O cần 0.5 mol O_2).

Thể tích O_2 tham gia phản ứng: 320 + 135 = 455 (ml).

Thể tích O_2 còn dư: 470 - 455 = 15 (ml).

Thể tích N_2 : 25 - 15 = 10 (ml).

Thể tích $CH_3NH_2 = 2.$ thể tích $N_2 = 2.10 = 20$ (ml).

Thể tích hai hiđrocacbon : 100 - 20 = 80 (ml).

Khi đốt 20 ml CH₃NH₂ tạo ra 20 ml CO₂ và 50 ml hơi nước.

Khi đốt 80 ml hidrocacbon tạo ra 300 ml CO₂ và 220 ml hơi nước.

Đặt công thức chung của hai hiđrocacbon là $C_x^-H_v^-$.

 $\frac{1}{x} = \frac{300}{80} = 3,75$. Vậy một hiđrocacbon có 3 nguyên tử cacbon và

một hiđrocacbon có 4 nguyên tử cacbon.

$$\frac{\ddot{y}}{2} = \frac{220}{80} = 2,75 \Rightarrow \ddot{y} = 5,5.$$

Hai hiđrocacbon kế tiếp nhau trong một dãy đồng đẳng khác nhau 2 nguyên tử hiđro và số nguyên tử hiđro trong mỗi phân tử hiđrocacbon phải là số chấn. Vì vậy, với $\dot{y} = 5,5$, có thể biết được một chất có 4 và một chất có 6 nguyên tử hiđro.

Đặt thể tích C_3H_4 là a ml, thể tích C_4H_6 là b ml, ta có :

$$a + b = 80$$

Thể tích CO_2 là : 3a + 4b = 300

Do đó a = 20; b = 60

Vậy C₃H₄ chiếm 20% và C₄H₆ chiếm 60% thể tích của hỗn hợp.

Bài 10

AMINO AXIT

- 3.11. C
- 3.12. D
- 3.13. B
- 3.14. A
- 3.15. B

3.16.
$$CH_3 - CH - COOH$$
 NH_2
 $CH_2 - CH_2 - COOH$
 NH_2
 $CH_2 - CH_2 - COOH$
 NH_2
 $CH_2 - CH_2 - COOH$
 $CH_2 - CH_2 - COOH$

amoni acrylat

metyl aminoaxetat

NH₂ O

3.17. Chất A có thể là $C_2H_5NH_3^+NO_3^-$ hoặc $(CH_3)_2NH_2^+NO_3^-$.

$$C_2H_5NH_3^+NO_3^- + KOH \rightarrow KNO_3 + C_2H_5NH_2 + H_2O$$

etylamoni nitrat etylamin

$$(CH_3)_2 NH_2^+NO_3^- + KOH \rightarrow KNO_3 + (CH_3)_2NH + H_2O$$

dimetylamoni nitrat

đimetylamin

3.18*. a) $(NH_2)_n C_x H_y (COOH)_m + mNaOH \rightarrow (NH_2)_n C_x H_y (COONa)_m + mH_2O$

Theo phương trình: 1 mol A tác dụng với m mol NaOH

Theo đầu bài: 0,02 mol A tác dụng với 0,04 mol NaOH

$$\Rightarrow m = \frac{0.04}{0.02} = 2$$

Số mol muối = số mol A = 0.02 (mol)

Khối lượng của 1 mol muối : $\frac{3.82}{0.02} = 191$ (g)

Từ phân tử khối của (NH₂)_nC_xH_y(COONa)₂ là 191, có thể suy ra

phân tử khối của $(NH_2)_n C_x H_v (COOH)_2 = 191 - 2.23 + 2.1 = 147$

Số mol A trong 80 g dung dịch 7,35% là : $\frac{80.7,35}{100} \cdot \frac{1}{147} = 0.04$ (mol)

Số moi HCl trong 50 ml dung dịch 0,8M là : $\frac{50.0,8}{1000} = 0,04$ (mol)

Cứ 1 mol A tác dụng với n mol HCl 0,04 mol A tác dụng với 0,04 mol HCl

$$\Rightarrow$$
 n = $\frac{0.04}{0.04}$ = 1; $M_{H_2NC_xH_y(COOH)_2}$ = 147

$$\Rightarrow$$
 12x + y = 147 - 16 - 2.45 = 41

$$V_{4}y x = 3 ; y = 5$$

Công thức phân tử của A: C₅H₉O₄N.

b) Công thức cấu tạo của A:

Bài 11

PEPTIT VÀ PROTEIN

3.19. B

3.20. D

3.21. C

Hướng dẫn: Từ 3 amino axit X, Y và Z có thể tạo ra 6 peptit mà phân tử chứa 3 gốc amino axit khác nhau:

$$X - Y - Z$$
 $X - Z - Y$

$$Y - Z - X$$
 $Y - X - Z$
 $Z - X - Y$ $Z - Y - X$

$$Z - X - Y$$
 $Z - Y - Y$

3.22. B

3.23. D

Hướng dẫn: 4 chất đipeptit được tạo ra là:

3.24. D

3.25. C

Hướng dẫn: Chỉ có các peptit có từ 2 liên kết peptit trở lên (tức là từ tripeptit trở lên) mới có phản ứng màu đặc trưng với Cu(OH)₂ trong môi trường kiềm.

3.26. Phân tử X có 5 gốc amino axit, gốc đầu là Met và đuôi là Phe:

$$Met - ? - ? - ? - Phe$$

Vì có thu được đipeptit Met - Gly nên có thể viết:

$$Met - Gly - ? - ? - Phe$$

Ngoài ra, còn thu được các địpeptit Gly - Gly và Gly - Ala nên trình tự đầy đủ của X là:

3.27. X là pentapeptit mà khi thuỷ phân tạo ra 5 loại amino axit khác nhau nên mỗi amino axit chỉ đóng góp 1 gốc vào phân tử X.

Nên xuất phát từ tripeptit: DCA

Vì có đipeptit BD nên gốc B đứng trước gốc D: BDCA. Vì có đipeptit AE nên gốc E đứng sau gốc A; do đó trình tự các gốc trong phân tử X là: BDCAE.

3.28. Công thức cấu tạo của tripeptit Ala - Gly - Val là:

$$H_2N-CH-CO-NH-CH_2-CO-NH-CH-COOH$$
 CH_3
 $CH(CH_3)_2$

3.29. a)
$$H_2N - CH_2 - COOH$$
; $CH_3 - CH - COOH$ NH_2

axit aminoaxetic

axit 2-aminopropanoic

axit 2-aminobutandioic

$$C_6H_5-CH_2-CH-COOH$$
 axit 2-amino-3-phenylpropanoic NH_2

- 3.30. Len lông cừu có bản chất protein; khi đốt cháy, loại-len đó bị phân huỷ tạo ra mùi khét. Sợi xenlulozơ khi cháy không tạo ra mùi khét. Vì vậy đốt cháy hai loại sợi len đó, có thể phân biệt được chúng.
- 3.31. Số mol mỗi amino axit thu được từ 500 mg protein:

Số mol CH₃ - CH(NH₂) - COOH là :
$$\frac{0,178}{89}$$
 = 0,002 (mol)
HOOC - CH₂ - CH₂ - CH(NH₂) - COOH : $\frac{0,044}{147}$ ≈ 0,0003 (mol)
HS - CH₂ - CH(NH₂) - COOH : $\frac{0,048}{121}$ ≈ 0,0004 (mol)
HO - CH₂ - CH(NH₂) - COOH : $\frac{0,105}{105}$ = 0,001 (mol)
HOOC - CH₂ - CH(NH₂) - COOH : $\frac{0,131}{133}$ ≈ 0,001 (mol)
(CH₃)₂CH - CH(NH₂) - COOH : $\frac{0,047}{117}$ ≈ 0,0004 (mol)
H₂N - [CH₂]₄ - CH(NH₂) - COOH : $\frac{0,047}{146}$ ≈ 0,0003 (mol)

Tỉ lệ số mol giữa các amino axit nói trên quy về số nguyên đơn giản nhất là:

Nếu phân tử khối của protein này là 50 000 (khối lượng mol là 50 000 g tức là gấp 100 000 lần so với 0,5 g) thì số mol mắt xích trong 1 mol phân tử (cùng là số mắt xích trong một phân tử) sẽ lần lượt là:

Bài 12. Luyện tập

CẤU TẠO VÀ TÍNH CHẤT CỦA AMIN, AMINO AXIT VÀ PROTEIN

3.32. C

Hướng dẫn: Amin bậc ba phải có 3 gốc hiđrocacbon liên kết với nguyên tử N. Ở đây, số nguyên tử cacbon tổng cộng là 6. Đem chia 6 nguyên tử cacbon làm 3 gốc thì chỉ có thể có 3 trường hợp:

- Mỗi gốc có 2 cacbon tức là (C₂H₅)₃N hay trietylamin.
- Một gốc CH_3 (metyl), một gốc C_2H_5 (etyl) và một gốc C_3H_7 (propyl hoặc isopropyl) như vậy có 2 amin : etylmetylpropylamin và etylmetylisopropylamin.
- Hai gốc CH_3 (metyl) và một gốc C_4H_9 (butyl hoặc isobutyl hoặc sec-butyl hoặc tert-butyl) như vậy có 4 amin : butylđimetylamin, isobutylđimetylamin, sec-butylđimetylamin và tert-butylđimetylamin.

3.33, B

3.34. C

Hướng dẫn: Các amino axit C₄H₉O₂N là:

$$\begin{array}{ccc} \mathrm{CH_3} - \mathrm{CH_2} - \mathrm{CH} - \mathrm{COOH} & & \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} + \mathrm{COOH} \\ & & & & | & & | \\ & & & \mathrm{NH_2} & & & \mathrm{NH_2} \end{array}$$

axit 2-aminobutanoic

axit 3-aminobutanoic

$$\begin{array}{cccc} & & & CH_3 \\ CH_2-CH_2-CH_2-COOH & CH_3-C-COOH \\ I & & I \\ NH_2 & & NH_2 \end{array}$$

axit 4-aminobutanoic

axit 2-amino-2-metylpropanoic

3.35. A

3.36. D

Hướng dẫn: Vòng benzen có tác dụng hút electron của N làm giảm tính bazơ của amin. Ở chất $C_6H_5-CH_2-NH_2$, tác dụng đó yếu nhất vì vòng benzen không đính trực tiếp với nguyên tử N; vì thế chất này có tính bazơ mạnh hơn so với 3 chất còn lại.

- **3.37.** B
- 3.38. D
- 3.39. B

Hướng dẫn:

Khối lượng hỗn hợp muối : 0.05.82 + 0.15.68 = 14.3 (g).

3.40. Từ hai amino axit là glyxin và alanin có thể tạo ra 6 tripeptit sau đây:

$$H_2N - CH_2 - CO - NH - CH_2 - CO - NH - CH(CH_3) - COOH$$
 $H_2N - CH(CH_3) - CO - NH - CH_2 - CO - NH - CH_2 - COOH$
 $H_2N - CH_2 - CO - NH - CH(CH_3) - CO - NH - CH_2 - COOH$
 $H_2N - CH(CH_3) - CO - NH - CH(CH_3) - CO - NH - CH_2 - COOH$
 $H_2N - CH_2 - CO - NH - CH(CH_3) - CO - NH - CH(CH_3) - COOH$
 $H_2N - CH_2 - CO - NH - CH(CH_3) - CO - NH - CH(CH_3) - COOH$

3.41. Các công thức cấu tạo phù hợp là:

$$CH_3-CH-COOCH_3$$
 metyl α -aminopropionat NH₂

H₂N - CH₂COOCH₂ - CH₃ etyl aminoaxetat

3.42. Chất X có công thức cấu tạo : $[(CH_3)_3NH]^+NO_3^-$

trimetylamoni nitrat

$$[(CH_3)_3NH]^+NO_3^- + KOH \rightarrow (CH_3)_3N + KNO_3 + H_2O$$

trimetylamin

3.43*. a) Số mol hai chất trong 11,6 g A = $\frac{4.8}{32}$ = 0,15 (mol)

Số mol hai chất trong 4,64 g A = 0,15.
$$\frac{4,64}{11,6}$$
 = 0,06 (mol)

$$2C_6H_{14} + 19O_2 \rightarrow 12CO_2 + 14H_2O$$

$$C_x H_y N + (x + \frac{y}{4})O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O + \frac{1}{2}N_2$$

Số mol $H_2O = \frac{6,48}{18} = 0.36$ (mol). Khối lượng H trong đó : 0.36.2 = 0.72 (g)

Số mol
$$CO_2 + N_2 + O_2$$
 còn d $u = \frac{7,616}{22,4} = 0,34$ (mol)

Số mol N₂ + O₂ còn dư =
$$\frac{1,344}{22.4}$$
 = 0,06 (mol)

Số mol
$$CO_2 = 0.34 - 0.06 = 0.28$$
 (mol)

Khối lượng C trong đó là 0.28.12 = 3.36 (g)

Khối lượng N trong 4,64 g A = 4,64 - 3,36 - 0,72 = 0,56 (g)

Số mol
$$C_x H_y N : \frac{0.56}{14} = 0.04 \text{ (mol)}$$

Số mol
$$C_6H_{14}$$
: $0.06 - 0.04 = 0.02$ (mol)

Khi đốt $0.02 \text{ mol } C_6H_{14}$, sinh ra $0.12 \text{ mol } CO_2 \text{ và } 0.14 \text{ mol } H_2O$.

Vậy khi đốt 0,04 mol C_xH_yN , số mol CO_2 sinh ra là : 0,28 - 0,12 = 0,16 (mol) số mol H_2O sinh ra là : 0,36 - 0,14 = 0,22 (mol).

Vây
$$x = \frac{0.16}{0.04} = 4$$
; $\frac{y}{2} = \frac{0.22}{0.04} = 5.5 \Rightarrow y = 11$

Công thức phân tử là C₄H₁₁N.

$$CH_3$$
 $CH_3 - N - CH_2 - CH_3$ etyldimetylamin

$$%m_{C_4H_{11}N} = \frac{0,04.73}{4,64}.100\% = 62,93\%$$

b) Khối lượng O trong 0,36 mol H_2O là : 0,36.16 = 5,76 (g)

Khối lượng O trong 0,28 mol CO_2 là : 0,28.32 = 8,96 (g)

Số mol
$$O_2$$
 còn dư : $0.06 - \frac{0.56}{28} = 0.04$ (mol)

Khối lượng O_2 còn dư: 0,04.32 = 1,28 (g)

Khối lượng O_2 ban đầu : m = 5.76 + 8.96 + 1.28 = 16 (g).

3.44*: Đặt lượng CO₂ là a mol, lượng N₂ là b mol, lượng O₂ còn dư là c mol.

Ta có:
$$a+b+c = \frac{5,6}{22,4} = 0,25$$
 (1)

$$44a + 28b + 32c = 4,55 + \frac{6,44}{22.4}.32 - 4,05 = 9,7$$
 (2)

$$\frac{28b + 32c}{b + c} = 15, 5.2 = 31 \tag{3}$$

Giải hệ phương trình, tìm được : a = 0.15; b = 0.025; c = 0.075.

Khối lượng C trong 4,55 g X: 0,15.12 = 1,8 (g).

Khối lượng H trong 4,55 g X :
$$\frac{2.4,05}{18} = 0,45$$
 (g).

Khối lượng N trong 4,55 g X: 0,025.28 = 0,7 (g).

Khối lượng O trong 4,55 g X: 4,55 - 1,8 - 0,45 - 0,7 = 1,6 (g).

Chất X có dạng C_xH_vN_zO_t.

$$x : y : z : t = \frac{1.8}{12} : \frac{0.45}{1} : \frac{0.7}{14} : \frac{1.6}{16}$$

= 0.15 : 0.45 : 0.05 : 0.10 = 3 : 9 : 1 : 2

Công thức đơn giản nhất của X là C₃H₉NO₂.

Vì M = 91 nên công thức phân tử của X cũng là $C_3H_9NO_2$. Các công thức cấu tạo phù hợp:

POLIME VÀ VẬT LIỆU POLIME

Bài 13 ĐẠI CƯƠNG VỀ POLIME

4.10. X có thể là
$$C_6H_5 - CH_2 - CH_2 - OH$$
 2-phenyletanol

hoặc
$$C_6H_5$$
 – CH – OH 1-phenyletanol CH_3

Y ià
$$C_6H_5 - CH = CH_2$$
 stiren
 $C_6H_5 - CH_2 - CH_2 - OH \xrightarrow{H_2SO_4} C_6H_5 - CH = CH_2 + H_2O$

$$nC_6H_5 - CH = CH_2 \xrightarrow{p, t^0, xt} \begin{pmatrix} CH - CH_2 \\ C_6H_5 \end{pmatrix}_n$$

4.11. a)
$$nCH_2 = CH - Cl \xrightarrow{p, t^0, xt} CH_2 - CH \xrightarrow{l} Cl$$

vinyl clorua

poli(vinyl clorua)

b)
$$nCH_2 = CH - CH = CH_2$$
 $\xrightarrow{p, t^0, xt}$ $\leftarrow CH_2 - CH = CH - CH_2 \rightarrow_n$
buta-1,3-dien polibuta-1,3-dien

c)
$$nNH_2 - [CH_2]_5 - COOH \xrightarrow{t^o} + NH - [CH_2]_5 - CO \xrightarrow{}_{\overline{n}} + nH_2O$$

axit ε -aminocaproic policaproamit

d)
$$nHOOC - C_6H_4 - COOH + nHO - CH_2 - CH_2 - OH \rightarrow$$
axit terephtalic etylen glicol

$$+CO - C_6H_4 - CO - O - CH_2 - CH_2 - O + 2nH_2O$$

poli(etylen terephtalat)

4.12. CH = CH + H₂O
$$\xrightarrow{\text{HgSO}_4}$$
 CH₃ - CH =, O

$$2CH_3 - CH = O + O_2 \xrightarrow{xt} 2CH_3 - COOH$$

$$CH_3 - COOH + CH \equiv CH \xrightarrow{(CH_3COO)_2Zn} CH_3 - COO - CH = CH_2$$

poli(vinyl axetat)

poli(vinyl ancol)

4.13.

a)
$$nCH_2 = CH - CH = CH_2 + nCH = CH_2 \xrightarrow{t^o} CH_2 - CH = CH - CH_2 - CH - CH_2 \xrightarrow{C_6H_5} C_6H_5$$

b)
$$nCH_2 = CH - CH = CH_2 + nCH = CH_2 \xrightarrow{t^0} CH_2 - CH = CH - CH_2 - CH - CH_2 \xrightarrow{CN}$$

4.14*. Chất X có thể là
$$CH_2 = C - CH_2 - OH$$
 hoặc $CH_3 - CH - CHO$

$$CH_3$$

$$CH_3$$

Chất Y là
$$CH_3 - CH - CH_2 - OH$$
; Z là $CH_3 - C = CH_2$ CH_3 CH_3

$$\begin{array}{cccc} CH_3-CH-CH_2-OH & \xrightarrow{H_2SO_4} & CH_3-C=CH_2 & + H_2O \\ & & & & | \\ & & & CH_3 & & CH_3 \end{array}$$

Bàl 14

VÂT LIÊU POLIME

- 4.15. C
- 4.16. D
- 4.17. B
- 4.18. D
- 4.19. A
- 4.20. C
- 4.21. D
- 4.22. A
- 4.23, B
- 4.24. A

Hướng dẫn: Mỗi mắt xích -CH₂-CH- có khối lượng là 62,5. Do đó k

mắt xích có khối lượng 62,5k, trong đó khối lượng của clo là 35,5k.

Phản ứng clo hoá PVC là phản ứng thế. Khi k mắt xích phản ứng với một phân tử clo thì k mắt xích mất đi một nguyên tử H và được thay thế bằng một nguyên tử clo. Do đó k mắt xích có khối lượng là:

$$62.5k - 1 + 35.5 = 62.5k + 34.5$$

Trong đó khối lượng của clo là : 35,5(k + 1)

Theo đầu bài ta có:
$$\frac{35,5(k+1)}{62,5k+34,5} = \frac{63,96}{100}$$

Từ đó tính được k = 3.

4.25. Nilon, len, tơ tằm đều có các nhóm CO – NH trong phân tử. Vì vậy, các loại tơ này dễ bị thuỷ phân trong môi trường kiểm và axit. Do đó, độ bền của quần áo làm bằng các loại tơ này sẽ bị giảm đi khi giặt bằng xà phòng có độ kiểm cao.

Nilon, len, tơ tằm kém bền với nhiệt nên không được giặt chúng bằng nước quá nóng, không là (ủi) quá nóng.

4.26. a) Các phương trình hoá học:

$$\begin{array}{ccc}
n CH = CH_2 & \xrightarrow{xt} & CH - CH_2 \\
\downarrow & & \downarrow \\
C_6H_5 & & & C_6H_5
\end{array}$$

$$C_6H_5 - CH = CH_2 + Br_2 \rightarrow C_6H_5 - CH - CH_2$$

Br Br

$$2KI + Br_2 \rightarrow I_2 + 2KBr$$

b) Số mol Br₂ tham gia 2 phản ứng là 0,15 mol.

Số mol Br₂ tác dụng với KI = số mol I₂ =
$$\frac{6,35}{254}$$
 = 0,025 (mol).

Số mol Br_2 tác dụng với stiren = 0,15 - 0,025 = 0,125 (mol).

Khối lượng sitren không trùng hợp = 0.125.104 = 13 (g).

Khối lượng stiren đã trùng hợp = 65 - 13 = 52 (g).

Hiệu suất trùng hợp =
$$\frac{52}{65}$$
. 100% = 80%.

4.27. Cao su buna-S: ...- CH_2 - $CH = CH - CH_2$ - $CH - CH_2$ -...

Giả sử cứ n mắt xích butadien thì có m mắt xích stiren.

Như vậy: (54n + 104m) g cao su kết hợp với 160n g brom.

Mặt khác, theo đầu bài : 1,05 g cao su kết hợp với 0,80 g brom.

$$\Rightarrow \frac{54n + 104m}{1,05} = \frac{160n}{0,80}$$

104m = 156n

$$\frac{n}{m} = \frac{104}{156} = \frac{2}{3}$$

Vậy tỉ lệ giữa số mắt xích butađien và số mắt xích stiren là 2:3.

Bài 15. Luyện tập

POLIME VÀ VẬT LIỆU POLIME

4.28. B

4.29. D

4.30. D

4.31. B

4.32. A

4.33. A

4.34. a)

$$CH_2 = C - COOCH + CH_3OH \xrightarrow{H_2SO_4d, t^0} CH_2 = C - COOCH_3 + H_2O$$

$$CH_3$$

$$CH_3$$

$$nCH_{2} = C - COOCH_{3} \xrightarrow{p,t^{o},xt} \begin{cases} H_{3}C \\ CH_{2} - C \\ CH_{3}OOC \end{cases}_{n}$$

b) Nếu hiệu suất của các giai đoan đều là 100% thì:

Để tạo ra 100 tấn polime cần 86 tấn axit và 32 tấn ancol.

Thực tế, các hiệu suất là 60% và 80% nên để tạo ra 1,2 tấn polime, khối lượng axit cần dùng là:

$$\frac{86.1,2}{100} \cdot \frac{100}{60} \cdot \frac{100}{80} = 2,15 \text{ (tán)}$$

Khối lượng ancol cần dùng là:

$$\frac{32.1,2}{100}.\frac{100}{60}.\frac{100}{80} = 0,80 \text{ (tán)}.$$

4.35. a) Đặt lượng CO_2 là a mol, lượng N_2 là b mol.

$$a + b = \frac{7,28}{22,4} = 0,325$$

Theo định luật bảo toàn khối lượng, tổng khối lượng của CO_2 và N_2 là :

$$6,55 + \frac{9,24}{22.4}.32 - 5,85 = 13,9 (g)$$

Do d6: 44a + 28b = 13.9

Giải hệ phương trình đại số, tìm được a = 0.30; b = 0.025

Khối lượng C trong 6,55 g A là : 0,30.12 = 3,60 (g)

Khối lượng H trong 6,55 g A là : $\frac{2.5,85}{18} = 0,65$ (g)

Khối lượng N trong 6,55 g A là : 0,025.28 = 0,70 (g)

Khối lượng O trong 6,55 g A là : 6,55 - 3,60 - 0,65 - 0,70 = 1,6 (g)

Từ đó tìm được công thức đơn giản nhất là $C_6H_{13}NO_2$. Kết hợp với phân tử khối (131), ta biết được công thức phân tử cũng là $C_6H_{13}NO_2$.

- b) Công thức cấu tạo: H₂N [CH₂]₅ COOH axit ε-aminocaproic.
- c) Phản ứng trùng ngưng:

$$nH_2N - [CH_2]_5 - COOH \xrightarrow{t^0} + NH - [CH_2]_5 - CO)_n + nH_2O$$

ĐẠI CƯƠNG VỀ KIM LOẠI

Bài 17

VỊ TRÍ CỦA KIM LOẠI TRONG BẢNG TUẦN HOÀN VÀ CẤU TẠO CỦA KIM LOẠI

- **5.1.** B
- **5.2.** B

Có thể dát được lá vàng mỏng đến mức ánh sáng có thể xuyên qua.

- **5.3.** B
- 5.4. B

Có thể rạch được xesi bằng móng tay. Người ta quy ước độ cứng của kim cương bằng 10 thì của crom bằng 9 và của xesi bằng 0,2.

5.5. A

Vonfam có $t_{nc} = 3410^{\circ}$ C.

5.6. A

Liti có khối lượng riêng là 0,5 g/cm³.

5.7. A

$$\begin{cases} 2P + N = 155 \\ 2P - N = 33 \end{cases} \Rightarrow \begin{cases} N = 61 \\ P = 47 \end{cases} \Rightarrow Z = 47 \Rightarrow Ag$$

5.8. C

$$N + P + E = 40$$
; $N + 2P = 40$

$$N = 40 - 2P$$
; $P \le N \le 1.5P$

$$11,43 \le P \le 13,33$$

Có hai trường hợp : $P = 12 \Rightarrow N = 16$ (loại)

$$P = 13 \Rightarrow N = 14 \Rightarrow A1$$

5.14.

Tên kim loại	Khối lượng riêng (g/cm ³)	Thể tích mol (cm³/mol)		
Kali (K)	0,86	45,46		
Natri (Na)	0,97	23,70		
Magie (Mg)	1,74	13,97		
Nhôm (Al)	2,70	9,99		
Kẽm (Zn)	7,14	9,16		
Sắt (Fe)	7,87	7,10		
Đồng (Cu)	8,92	7,12		
Bạc (Ag)	10,50	10,27		
Vàng (Au)	19,30	10,20		

Bài 18

TÍNH CHẤT CỦA KIM LOẠI DÃY ĐIỆN HOÁ CỦA KIM LOẠI

5.15. C

5.16. B. Fe + CuCl₂
$$\rightarrow$$
 FeCl₂ + Cu

56 g \leftarrow 1 mol \rightarrow 64 g \Rightarrow tăng 64 - 56 = 8 (g)

0,1 mol \Rightarrow tăng 0,8 g

5.17. D.
$$3R + 8HNO_3 \rightarrow 3R(NO_3)_2 + 2NO + 4H_2O$$

 $\frac{0,05.3}{2} = 0,075 \leftarrow \frac{1,12}{22,4} = 0,05 \text{ (mol)}$

$$R = \frac{4.8}{0.075} = 64 \Rightarrow Cu$$

5.18. B.
$$\text{Cu} + 4\text{HNO}_3 \rightarrow \text{Cu}(\text{NO}_3)_2 + 2\text{NO}_2 + 2\text{H}_2\text{O}$$

0,05 0,1 (mol)

5.19. C.
$$n_{Fe} = \frac{16.8}{56} = 0.3 \text{ (mol)}; n_{S} = \frac{6.4}{32} = 0.2 \text{ (mol)} \Rightarrow \text{Fe du}$$

$$Fe + S \xrightarrow{t^{0}} FeS$$

$$0.2 \quad 0.2 \quad \rightarrow 0.2 \text{ (mol)}$$

$$FeS + 2HCl \rightarrow FeCl_{2} + H_{2}S$$

$$0.2 \quad 0.2 \text{ (mol)}$$

$$Fe (du) + 2HCl \rightarrow FeCl_{2} + H_{2}$$

$$0.1 \quad 0.1 \text{ (mol)}$$

$$V_{khi} = 22.4 \cdot 0.3 = 6.72 \text{ (lit)}.$$

5.20. D. Hướng dẫn :
$$n_{hh \text{ oxit}} = n_{H_2} = n_{hh \text{ kim loại}} = \frac{2,24}{22,4} = 0,1 \text{ (mol)}$$

Khi cho hỗn hợp kim loại tác dụng với axit thì

$$n_{\text{H}_2} = n_{\text{hh kim loại}} = 0,1 \text{ mol}$$

$$V_{\text{H}_2} = 22,4 \cdot 0,1 = 2,24 \text{ (lít)}.$$

5.21. A.
$$n_{CuO} = 0.4 \text{ mol}$$
; $n_{H_2} = 0.3 \text{ mol} \Rightarrow CuO \text{ dur}$

CuO +
$$H_2 \xrightarrow{t^o}$$
 Cu + H_2O
0,3 (mol)

$$n_{CuO du} = 0.4 - 0.3 = 0.1 \text{ (mol)}$$

$$CuO + 2HCl \rightarrow CuCl_2 + H_2O$$

$$V_{\text{dung dich HCl}} = \frac{0.2}{1} = 0.2 \text{ (lít)}.$$

5.23. a)
$$\operatorname{Zn} + \operatorname{CuCl}_2 \to \operatorname{ZnCl}_2 + \operatorname{Cu}_{65 \text{ g}}$$
 64

$$M_{Cu} < M_{Zn} \Rightarrow$$
 khối lượng giảm.

$$Zn + Pb(NO_3)_2 \rightarrow Zn(NO_3)_2 + Pb$$

65 g 207 g

$$M_{Pb} > M_{Zn} \Rightarrow khối lượng tăng.$$

b)

c)
$$Zn + 2AgNO_3 \rightarrow Zn(NO_3)_2 + 2Ag$$

65 g 2.108 g
 $2.M_{Ag} > M_{Zn} \Rightarrow khối lượng tăng.$

d)
$$Zn + NiSO_4 \rightarrow ZnSO_4 + Ni$$

65 g 59 g

 $M_{Ni} < M_{Zn} \Rightarrow$ khối lượng giảm.

5.24. a) Fe + CuSO₄
$$\rightarrow$$
 FeSO₄ + Cu (1)

Fe +
$$Cu^{2+} \rightarrow Fe^{2+} + Cu$$
 (2)

chất khử chất oxi hoá

b) Theo (1) cứ 1 mol CuSO₄ phản ứng làm khối lượng đinh sắt tăng 8 g

x mol
$$= \frac{1.0,8}{8} = 0,1 \text{ (mol)}$$
 0,8 g

Nồng độ moi của dung dịch $CuSO_4$ là : $\frac{0,1.1000}{200} = 0,5$ (M).

5.25.
$$2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$$

$$x \qquad \qquad \frac{3x}{2} \quad (mol)$$

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$
 $y \qquad y \qquad (mol)$

Ta có hệ phương trình :
$$\begin{cases} 27x + 24y = 1,5 \\ \frac{3x}{2} + y = \frac{1,68}{22,4} = 0,075 \end{cases}$$

Giải hệ phương trình rồi tính phần trăm khối lượng của từng kim loại được : $%m_{Al} = 60\%$; $%m_{Mg} = 40\%$.

5.26.
$$2M + 3Cl_2 \rightarrow 2MCl_3$$
 (1)

Số mol
$$Cl_2$$
 đã phản ứng là : $\frac{5,34-1,08}{71} = 0,06 \text{ (mol)}$

Theo (1) số mol kim loại phản ứng là : $\frac{0.06.2}{3}$ = 0.04 (mol)

Khối lượng mol của kim loại là : $\frac{1.08}{0.04} = 27 \text{ (g/mol)}$

Kim loai là Al.

5.27. Khối lượng kim loại tăng là : 1,88 - 1,12 - 0,24 = 0,52 (g)

Mg là kim loại mạnh hơn Fe nên Mg phản ứng trước.

$$Mg + CuSO4 \rightarrow MgSO4 + Cu$$

$$\frac{0.24}{24} = 0.01 \qquad 0.01 \text{ (mol)}$$

Mg phản ứng hết làm khối lượng tặng là : $64 \cdot 0.01 - 24 \cdot 0.01 = 0.40$ (g)

Phản ứng của Fe làm khối lượng tăng thêm là: 0.52 - 0.40 = 0.12 (g)

$$Fe + CuSO_4 \rightarrow FeSO_4 + Cu$$
 (2)

Theo (2) : 1 mol $CuSO_4$ phản ứng làm khối lượng tăng 64 - 56 = 8 (g)

x mol ← ______ 0,12 g

$$x = \frac{0.12}{8} = 0.015 \text{ (mol)}$$

Số mol Fe ban đầu là $\frac{1,12}{56} = 0.02 \text{ (mol)} > 0.015$. Vậy Fe còn dư và CuSO₄ hết.

Nồng độ moi của CuSO₄ là :
$$\frac{(0.01+0.015).1000}{250} = 0.1$$
 (M).

5.28.
$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

Cu không phản ứng với dung dịch HCl.

$$2Cu + O_2 \rightarrow 2CuO$$

Khối lượng Cu là : $\frac{4}{80}$.64 = 3,2 (g)

Đặt số moi Mg và Zn lấn lượt là x và y. Ta có:

$$24x + 65y = 8,85 - 3,2 = 5,65 \tag{1}$$

Số mol H₂ là :
$$x + y = \frac{3,36}{22.4} = 0.15$$
 (2)

Giải hệ gồm phương trình (1) và (2) được x = 0,1; y = 0,05.

$$\% m_{Mg} = \frac{0,1.24}{8,85}.100\% = 27,12\%$$
 $\% m_{Zn} = \frac{0,05.65}{8,85}.100\% = 36,72\%$

 $%m_{Cu} = 100\% - 27,12\% - 36,72\% = 36,16\%.$

Bài 19 HƠP KIM

5.29. A

5.30. C

5.31. C

$$n_{CO_2} = \frac{0,448}{22,4} = 0,02 \text{ (mol)}$$

$$C + O_2 \rightarrow CO_2$$

$$\%m_C = \frac{12.0,02}{10}.100 \% = 2,4\%.$$

5.32. A

5.34. Các phương trình hoá học:

Cu +
$$4HNO_3 \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$$

x mol x mol
Ag + $2HNO_3 \rightarrow AgNO_3 + NO_2 + H_2O$
y mol y mol

Đặt x, y lần lượt là số mol Cu, Ag trong hợp kim \Rightarrow Số mol của Cu(NO₃)₂ và AgNO₃ cũng lần lượt là x và y.

Ta có hệ phương trình :
$$\begin{cases} 64x + 108y = 3 \\ 188x + 170y = 7,34 \end{cases} \Rightarrow \begin{cases} x = 0,03 \\ y = 0,01 \end{cases}$$
 % $m_{Cu} = \frac{64.0,03}{3}.100\% = 64\%$; % $m_{Ag} = 100\% - 64\% = 36\%$.

5.35.
$$2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2$$
 (1)

$$NaOH + HCI \rightarrow NaCl + H_2O$$
 (2)

Từ (1) và (2) ta thấy
$$n_{Na} = n_{NaOH} = n_{HCl} = \frac{0,2.50}{1000} = 0.01$$
 (mol).

$$\%$$
m_{Na} = $\frac{23.0,01}{1}.100\% = 23\%$.

5.36.
$$Ag + 2HNO_3 \rightarrow AgNO_3 + NO_2 + H_2O$$
 (1)

$$AgNO_3 + HCI \rightarrow AgCl \downarrow + HNO_3 \tag{2}$$

Theo (1) và (2) ta có :
$$n_{Ag} = n_{AgCl} = \frac{1,194}{143.5} = 0,00832$$
 (mol)

$$m_{Ag} = 0.00832.108 = 0.898 (g)$$

$$%m_{Ag} = \frac{0.898}{1.5}.100\% = 59.87\%$$

Bài 20

SỰ ĂN MÒN KIM LOẠI

- 5.37. A
- 5.38. D
- 5.39. B
- **5.40.** D
- 5.41. D
- 5.42. C
- 5.47. Hợp kim bị ăn mòn điện hoá học.

Zn là điện cực âm, bị ăn mòn. Cu là điện cực dương không bị ăn mòn.

- 5.48. a) Al (điện cực âm) bi ăn mòn, Fe (điện cực dương) không bị ăn mòn.
 - b) Fe (điện cực âm) bị ăn mòn, Cu (điện cực dương) không bị ăn mòn.
 - c) Fe (điện cực âm) bị ăn mòn, Sn (điện cực dương) không bị ăn mòn.
- 5.49. Ở những vét sây sát của vật làm bằng sắt tráng kẽm sẽ xảy ra hiện tượng ăn mòn điện hoá học.

5.50.
$$\operatorname{Zn} + 2\operatorname{H}^{+} \to \operatorname{Zn}^{2+} + \operatorname{H}_{2}$$

$$n_{\operatorname{Zn}} = n_{\operatorname{H}_{2}} = \frac{0.896}{22.4} = 0.04 \text{ (mol)}$$

$$\Rightarrow$$
 $m_{Zn} = 0.04.65 = 2.6 (g);$

$$%m_{Zn} = \frac{2.6}{9}.100\% = 28.89\%$$
; $%m_{Cu} = 71.11\%$.

Bài 21

ĐIỀU CHẾ KIM LOẠI

5.51. B.
$$2\text{NaCl} + 2\text{H}_2\text{O} \xrightarrow{\text{dpdd}} \underbrace{\text{H}_2 \uparrow + 2\text{NaOH}}_{\text{catot}} + \underbrace{\text{Cl}_2 \uparrow}_{\text{anot}}$$

5,52, B

5.53. B.
$$M^{2+} + 2e \rightarrow M$$

 $m = \frac{A.I.t}{n.F} \Rightarrow A = \frac{m.n.F}{I.t} = \frac{3,45.2.96500}{6.29,60} = 63,78 \approx 64.$ Đó là Cu.

5.54. A

5.55. +) Cô cạn dung dịch NaCl, lấy NaCl khan rồi điện phân nóng chảy:

$$2NaCl \xrightarrow{\text{dpnc}} 2Na + Cl_2$$

+) Có thể điện phân dung dịch CuCl₂:

$$CuCl_2 \xrightarrow{dpdd} Cu + Cl_2$$

$$\begin{array}{c} \text{hoặc}: \text{CuCl}_2 \xrightarrow{\quad +\text{NaOH} \quad} \text{Cu(OH)}_2 \xrightarrow{\quad t^o \quad} \text{CuO} \xrightarrow{\quad +\text{H}_2, t^o \quad} \text{Cu} \\ +) \text{ FeCl}_3 \xrightarrow{\quad +\text{NaOH} \quad} \text{Fe(OH)}_3 \xrightarrow{\quad t^o \quad} \text{Fe}_2\text{O}_3 \xrightarrow{\quad +\text{CO}, t^o \quad} \text{Fe} \end{array}$$

5.56. $Cu(OH)_2 \rightarrow CuCl_2 \xrightarrow{dpdd} Cu$

$$MgO \rightarrow MgCl_2 \xrightarrow{dpnc} Mg$$

 $FeS_2 \rightarrow Fe_2O_3 \rightarrow Fe$

$$4FeS_2 + 11O_2 \xrightarrow{t^o} 2Fe_2O_3 + 8SO_2$$

$$Fe_2O_3 + 3CO \xrightarrow{t^o} 2Fe + 3CO_2$$

5.57. – Điều chế Cu từ $Cu(NO_3)_2$:

$$2Cu(NO_3)_2 + 2H_2O \xrightarrow{dpdd} 2Cu + O_2 + 4HNO_3$$

hoặc $Fe + Cu(NO_3)_2 \longrightarrow Fe(NO_3)_2 + Cu$

$$2Cu(NO_3)_2 \xrightarrow{t^0} 2CuO + 4NO_2 + O_2$$

$$CuO + H_2 \xrightarrow{\iota^o} Cu + H_2O$$

- Điều chế Ca từ CaCl₂: cô cạn dung dịch CaCl₂ rồi điện phân nóng chảy.

$$CaCl_2 \xrightarrow{dpnc} Ca + Cl_2$$

5.58. Có thể điều chế kim loại theo các sơ đồ sau:

a)
$$CaCO_3 \xrightarrow{+HCl} CaCl_2 \xrightarrow{dpnc} Ca$$

b)
$$Na_2SO_4 \xrightarrow{+BaCl_2} NaCl \xrightarrow{dpnc} Na$$

c)
$$Cu_2S \xrightarrow{+O_2} CuO \xrightarrow{+H_2} Cu$$

$$\xrightarrow{+HCl} CuCl_2 \xrightarrow{dpdd} Cu$$

Bài 22. Luyện tập

TÍNH CHẤT CỦA KIM LOAI

5.59, D

5.60. D

5.61. A

5.62. B

5.63. A

$$Fe + 4HNO3 \rightarrow Fe(NO3)3 + NO + 2H2O$$
 (1)

$$Al + 4HNO_3 \rightarrow Al(NO_3)_3 + NO + 2H_2O$$
 (2)

$$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$$
 (3)

Từ (1), (2) và (3) ta thấy:

$$n_{NO_3^-}$$
 (trong muối) = $3n_{NO} = 3.\frac{0,986}{22.4} = 0.12$ (mol)

Vậy
$$m_{NO_3^-}$$
 (trong muối) = 0,12.62 = 7,44 (g)

Khối lượng muối nitrat là : 2,06 + 7,44 = 9,5 (g).

5.64. B

5.65. C

5.66. a) Thí nghiệm
$$l: Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

Cu khử trực tiếp Ag⁺ thành Ag, Cu bị oxi hoá thành Cu²⁺.

b) Thí nghiệm 2:
$$4AgNO_3 + 2H_2O \xrightarrow{dpdd} 4Ag + O_2 + 4HNO_3$$

Ở catot, Ag^+ bị khử thành Ag. Ở anot, Cu bị oxi hoá thành Cu^{2+} tan vào dung dịch. Sau khi các ion Ag^+ có trong dung dịch $AgNO_3$ bị khử hết sẽ đến lượt các ion Cu^{2+} bị khử thành Cu bám trên catot.

Trong hai thí nghiệm:

- Giống nhau: các phản ứng đều là phản ứng oxi hoá khử.
- Khác nhau: ở thí nghiệm 1, phản ứng oxi hoá khử không cần đòng điện, ở thí nghiệm 2, phản ứng oxi hoá khử xảy ra nhờ có đòng điện một chiều.

- 5.67. a) Ngâm lá Pb (dư) trong dung dịch hỗn hợp được Ag. Từ dung dịch Pb(NO₃)₂ có thể dùng phương pháp điện phân hoặc dùng kim loại mạnh hơn Pb để đẩy Pb ra khỏi dung dịch muối.
 - b) Ngâm lá Cu (dư) trong dung dịch hỗn hợp, được Ag và dung dịch $Cu(NO_3)_2$. Dùng phương pháp điện phân hoặc kim loại mạnh để đẩy Cu.
 - c) Trước hết, ngâm lá Cu (dư) trong dung dịch được Ag và dung dịch hỗn hợp hai muối là $\text{Cu}(\text{NO}_3)_2$ và $\text{Pb}(\text{NO}_3)_2$. Sau đó ngâm lá Pb (dư) trong dung dịch hỗn hợp, được Cu và dung dịch $\text{Pb}(\text{NO}_3)_2$. Từ dung dịch $\text{Pb}(\text{NO}_3)_2$ có thể điều chế Pb bằng phương pháp diện phân hoặc dùng kim loại mạnh để đẩy Pb.
- 5.68. a) Phản ứng giữa kim loại và dung dịch muối:

kim loại	Zn	Cu	Fe	Mg	Ag	Pb
Zn ²⁺	_	_	_	Mg ²⁺ + Zn	-	_
Cu ²⁺	Zn ²⁺ + Cu	_	Fe ²⁺ + Cu	Mg ²⁺ + Cu	_	Pb ²⁺ + Cu
Fe ²⁺	Zn ²⁺ + Fe	-	_	Mg ²⁺ + Fe	_	_
Mg ²⁺	_	-	_	_	-	_
Ag ⁺	Zn ²⁺ + Ag	Cu ²⁺ + Ag	Fe ²⁺ + Ag	Mg ²⁺ + Ag	-	Pb ²⁺ + Ag
Pb ²⁺	Zn ²⁺ + Pb	_	Fe ²⁺ + Pb	Mg ²⁺ + Pb	_	_

- b) Tính oxi hoá và tính khử:
- Cation Ag⁺ oxi hoá được tất cả các kim loại đã cho, Ag⁺ là chất oxi hoá mạnh nhất.
- Kim loại Mg khủ được tất cả các kim loại đã cho, Mg là chất khủ mạnh nhất.
- Cation Mg²⁺ không oxi hoá được những kim loại đã cho, Mg²⁺ là chất oxi hoá yếu nhất.
- Kim loại Ag không khử được kim loại nào đã cho, Ag là chất khử yếu nhất.
- c) Sắp xếp cặp oxi hoá khử:

$$Mg^{2+}/Mg$$
; Zn^{2+}/Zn ; Fe^{2+}/Fe ; Pb^{2+}/Pb ; Cu^{2+}/Cu ; Ag^{+}/Ag .

Từ trái sang phải:

- Tính oxi hoá của các cation kim loại tăng dần.
- Tính khử của các kim loại giảm dần.
- 5.69. a) Các cặp oxi hoá khử của các kim loại có trong phản ứng:

Vai trò của các chất tham gia phản ứng: Ag+ là chất oxi hoá; Cu là chất khử.

$$Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$$

b)
$$\text{Cu} + 2\text{AgNO}_3 \rightarrow \text{Cu(NO}_3)_2 + 2\text{Ag} \downarrow$$
 (1)

64 g
$$\longrightarrow$$
 2.108 \Rightarrow tang 216 - 64 = 152 (g)

Theo (1), khối lượng vật bằng đồng tăng 152 g thì có 216 g bạc phủ lên trên.

Theo bài ra, khối lượng vật tăng là : 10,36 - 8,84 = 1,52 (g)

Vậy khối lượng bạc phủ lên trên vật bằng đồng là 2,16 g.

- **5.70.** a) $C_M = 0.464M$
 - b) Trong 1 ml dung dich CuSO₄ có:

$$n_{Cu^{2+}} = n_{SO_4^{2-}} = n_{CuSO_4} = 0.464.10^{-3} \text{ (mol)}$$

Số ion $Cu^{2+} = số$ ion $SO_4^{2-} = 0.464.10^{-3}.6,02.10^{23} = 2,793.10^{20}$ (ion)

c) Fe +
$$Cu^{2+} \rightarrow Fe^{2+} + Cu$$

$$n_{Cu^{2+}} = 0.0232 \text{ mol}$$
; $m_{Fe} = 1.2992 \text{ g}$; $m_{Cu} = 1.4848 \text{ g}$

5.71. a) Đặt công thức của muối là A_mB_n. Khối lượng mol của A, B là X, Y.

Khối lượng muối trong mỗi phần là 3,4 g. Ta có sơ đồ biến đổi các chất trong thí nghiệm 1:

$$2A_mB_n \xrightarrow{NaOH} 2mA(OH)_n \xrightarrow{t^0} mA_2O_n$$

Theo so dò: 2(mX + nY) g A_mB_n tạo thành m(2X + 16n) g A_2O_n .

Theo bài toán : 3,4 g $A_m B_n \rightarrow 2,32$ g $A_2 O_n$

Ta có phương trình:
$$3,4m(2X + 16n) = 2,32.2(mX + nY)$$
 (1)

Sơ đồ biến đổi các chất trong thí nghiệm $2:A_mB_n \xrightarrow{NaCl} mACl_n$

Theo sơ đồ: (mX + nY) g A_mB_n tạo thành m(X + 35,5n) g ACl_n .

Theo bài toán:
$$3.4 \text{ g A}_m B_n \rightarrow 2.87 \text{ g ACl}_n$$

Ta có phương trình: $3.4 \text{m}(X + 35.5 \text{n}) = 2.87 \text{(mX + nY)}$ (2)
Chia (1) cho (2) ta được $\frac{2X + 16 \text{n}}{X + 35.5 \text{n}} = \frac{4.46}{2.87} \Rightarrow X = 108 \vec{n}$

Giá trị có thể chấp nhận là n = 1 và X = 108. Vậy kim loại A là Ag.

Thay n = 1 và X = 108 vào (1) hoặc (2) ta có Y = 62m. Gốc axit trong muối bạc không thể là gốc halogenua hoặc sunfua mà là gốc axit có oxi có khối lượng 62, gốc đó là NO_3^- . Vậy công thức hoá học của muối là $AgNO_3$.

- b) Điều chế Ag từ AgNO3:
- Dùng kim loại mạnh hơn Ag để đẩy Ag : Cu + $2AgNO_3$ → $Cu(NO_3)_2$ + 2Ag

- Nhiệt phân :
$$AgNO_3 \xrightarrow{t^o} Ag + NO_2 \uparrow + \frac{1}{2}O_2 \uparrow$$

- Điện phân với điện cực trơ:

$$4AgNO_3 + 2H_2O \xrightarrow{dpdd} 4Ag + O_2\uparrow + 4HNO_3$$

Bài 23. Luyện tập

ĐIỀU CHẾ KIM LOẠI VÀ SỰ ĂN MÒN KIM LOẠI

5.72. D

5.73. B. Fe +
$$3AgNO_3 \rightarrow Fe(NO_3)_3 + 3Ag$$

$$\frac{28}{56} = 0.5 \rightarrow 1.5 \text{ (mol)}$$

$$m_{Ag} = 108.1.5 = 162 \text{ (g)}.$$

5.74. A

5.75. Để chống lại sự ăn mòn vỏ tàu bằng thép ngâm trong nước biển, người ta gắn những tấm kẽm ở nhiều chỗ trên thân tàu. Các pin Zn – Fe được tạo thành, Fe (vỏ tàu) đóng vai trò là catot, không bị ăn mòn, còn Zn là anot bị ăn mòn thay cho Fe.

5.77.

KIM LOẠI KIỀM, KIM LOẠI KIỀM THỔ, NHÔM

Bài 25

KIM LOẠI KIỀM VÀ HỢP CHẤT QUAN TRỌNG CỦA KIM LOAI KIỀM

6.1. A

6.2. A

 $n_{HCl} = 0.8.0,25 = 0.2 \text{ (mol)}$

$$\overline{M} + H_2O \rightarrow \overline{M}OH + \frac{1}{2}H_2$$
 (1)

$$\overline{M}OH + HCl \rightarrow \overline{M}Cl + H_2O$$
 (2)

 $T\dot{v}(1), (2): n_{hh} = n_{HCl} = 0,2 \text{ (mol)}$

$$\overline{M} = \frac{3}{0.2} = 15$$

Nguyên tử khối trung bình là 15 thì phải có một kim loại có NTK < 15 và một kim loại có NTK > 15. Vậy chỉ có Li (M = 7) và Na (M = 23) là phù hợp.

6.3. C.
$$K_2O + H_2O \rightarrow 2KOH$$

$$\frac{4,7}{94} = 0.05$$
 0,1 (mol)

$$C\% = \frac{56.0,1}{4,7+195,3}$$
. $100\% = 2,8\%$.

b) C

$$2\overline{M} + 2H_2O \rightarrow 2\overline{M}OH + H_2$$
 $n_X = 2n_{H_2} = 2. \frac{6,72}{22,4} = 0,6 \text{ (mol)}$

$$\overline{M} = \frac{17}{0.6} = 28.3 \text{ (g/mol)}$$
 Na (M = 23 g/mol)
K (M = 39 g/mol)

$$V_{dd HCl} = \frac{0.6}{2} = 0.3 \text{ (lít)} = 300 \text{ ml}$$

6.5. C

$$K + H_2O \rightarrow KOH + \frac{1}{2}H_2\uparrow$$

 $\frac{3.9}{39} = 0.1 \quad 0.1 \text{ (mol)}$
 $C_M = \frac{n}{V} = \frac{0.1}{0.1} = 1 \text{ (M)}$

6.6. B

Trong 100 g dung dịch H_2SO_4 có $\begin{cases} 20\,g\,H_2SO_4\\ 80\,g\,H_2O \end{cases}$

$$H_2SO_4 \rightarrow H_2$$
98 g 22,4 lít
20 g V_1
 $V_1 = \frac{22,4.20}{98} = 4,57$ (lít)

$$H_2O \longrightarrow \frac{1}{2}H_2$$

$$V_2 = \frac{11,2.80}{18} = 49,78 \text{ (lít)}$$

$$V = V_1 + V_2 = 4,57 + 49,78 = 54,35$$
 (lít).

6.7. B

6.8. Chuyển nồng độ C% sang nồng độ C_M của dung dịch NaOH được

$$C_{M} = 6,10M$$

$$[Na^{+}] = [OH^{-}] = 6,10M$$

$$[H^{+}] = \frac{10^{-14}}{[OH^{-}]} = \frac{10^{-14}}{6.1} \approx 0,164.10^{-14} (M).$$

6.10. Hướng dẫn:

- Điện tích hạt nhân nguyên tử càng nhỏ, bán kính nguyên tử càng lớn, electron liên kết với hạt nhân càng kém chặt chẽ nên càng dễ tách ra khỏi nguyên tử, do đó năng lượng ion hoá nguyên tử càng nhỏ.
- Điện tích hạt nhân càng nhỏ, bán kính nguyên tử càng lớn, lực hút của hạt nhân nguyên tử này với lớp vỏ electron của nguyên tử khác ở lân cận nhau càng yếu, các nguyên tử trong tinh thể liên kết với nhau càng kém chặt chẽ, do đó khối lượng riêng của kim loại kiềm nhỏ và nhiệt độ nóng chảy, nhiệt đô sôi của chúng thấp.

6.11. Hướng dẫn :

- a) $Na^+ + 1e \rightleftharpoons Na$
- b) Phản ứng oxi hoá Na thành Na⁺: Na tác dụng với phi kim, với dung dịch axit, với nước.

Phản ứng khử Na⁺ thành Na: Điện phân NaCl hoặc NaOH nóng chảy.

- 6.13. a) 0,63 g NaOH.
 - b) 76 ml dung dịch NaOH.

6.14. Hướng dẫn :

Nung hỗn hợp, chỉ có NaHCO₃ bị phân huỷ:

$$2NaHCO_3 \xrightarrow{t^0} Na_2CO_3 + H_2O + CO_2$$
Theo (1), $n_{NaHCO_3} = 2n_{CO_2} = 2.\frac{0.84}{22.4} = 0.075 \text{ (mol)}$

Trước khi nung : $m_{NaHCO_3} = 84.0,075 = 6,3$ (g)

$$m_{\text{Na}_2\text{CO}_3} = 7.26 - 6.3 = 0.96 \text{ (g)}$$

Sau khi nung : $m_{\text{Na}_2\text{CO}_3} = 0.96 + 106.0,0375 = 4,935 \text{ (g)}$

Bài 26

KIM LOẠI KIỀM THỔ VÀ HỢP CHẤT QUAN TRỌNG CỦA KIM LOẠI KIỀM THỔ

6.15. B

6.16. D

6.17. B

6.18. C

6.19. D

6.20. B

6.21. C

6.22. D.

6.23. C

Oxit là MO

Khối lượng oxi bằng 40% khối lượng của M nên $\frac{16}{M}$.100 = 40

$$\Rightarrow$$
 M = 40 \Rightarrow Kim loai là Ca

6.24. A

$$\overline{\text{MCO}}_3 \xrightarrow{t^0} \overline{\text{MO}} + \text{CO}_2$$

0,1

0,1 (mol)

$$M_{\overline{MO}} = \frac{4.64}{0.1} = 46.4 \text{ (g/mol)} \implies M_{\overline{M}} = 46.4 - 16 = 30.4 \text{ (g/mol)}$$

$$M_1 < 30.4 \implies M_1 \text{ là Mg } (M = 24 \text{ g/mol})$$

$$M_2 > 30,4 \implies M_2$$
 là Ca (M = 40 g/mol)

6.25. B

Dung dịch X có :
$$n_{OH^-} = 0.1 + 0.15.2 = 0.4$$
 (mol)
 $n_{H^+ \text{ côn}} = 0.4$ mol

1 lít dung dịch Y cổ: $n_{H^+} = 0.1 + 0.05.2 = 0.2$ (mol)

$$V_{dd \text{ axit}} = \frac{0.4}{0.2} = 2 \text{ (lit)}.$$

6.26. D

$$n_{\overline{MCO}_3} = n_{CO_2} = \frac{6,72}{22,4} = 0.3 \text{ (mol)}$$

1 mol $\overline{M}CO_3 \rightarrow 1$ mol \overline{M} Cl_2 khối lượng tăng 11 g

 $V_{ay} 0.3 \text{ mol } \overline{MCO}_3 \rightarrow 0.3 \text{ mol } \overline{M}Cl_2$

 \Rightarrow Khối lượng tăng là 0,3.11 = 3,3 (g).

- **6.27.** a) C; b) A; c) C.
- 6.28. Sự biến đổi không theo quy luật do kim loại nhóm IIA có những kiểu mạng tinh thể khác nhau : mạng lục phương (Be, Mg) ; mạng lập phương tâm diện (Ca, Sr) ; mang lập phương tâm khối (Ba).
- **6.29.** a) Cấu hình electron: Mg: [Ne]3s²; Ca: [Ar]4s².
 - b) Tác dụng với nước : Ca tác dụng với nước ở điều kiện thường còn Mg không tác dụng.
 - c) Phương pháp điều chế : Cả Ca và Mg đều được điều chế bằng phương pháp điện phân nóng chảy hai muối MgCl₂ và CaCl₂.
- 6.30. Phản ứng với nước:
 - Be không tác dụng với nước ở nhiệt độ thường.
 - Mg tác dụng chậm với nước nóng.
 - Ca tác dụng với nước ở nhiệt độ thường.

Tính chất của hiđroxit:

- Be(OH)₂ có tính lưỡng tính.
- Mg(OH)2 là bazơ yếu.
- Ca(OH)₂ là bazơ mạnh.

6.31.
$$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$$
 (1)

$$CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$$
 (2)

$$Ca(HCO_3)_2 + 2NaOH \rightarrow CaCO_3 \downarrow + Na_2CO_3 + 2H_2O$$
 (3)

6.32. Trong thành phần của đá vôi có các hợp chất CaCO₃, MgCO₃. Nước mưa hoà tan khí CO₂ trong không khí đã hoà tan dần các hợp chất CaCO₃, MgCO₃.

$$CaCO_3 + CO_2 + H_2O \rightleftharpoons Ca(HCO_3)_2$$

 $MgCO_3 + CO_2 + H_2O \rightleftharpoons Mg(HCO_3)_2$

- 6.33. Khác nhau về thành phần anion của muối.
 - Nước có tính cứng tạm thời chứa anion HCO_3^- , khi đun nóng bị phân huỷ thành ion cacbonat làm kết tủa Ca^{2+} và Mg^{2+} .
 - Nước có tính cứng vĩnh cửu chứa các anion SO_4^{2-} và Cl^- , khi đun nóng không làm kết tủa Ca^{2+} và Mg^{2+} .
- 6.34. Đun sôi nước trong các cốc ta sẽ chia ra thành 2 nhóm :
 - (1) Không thấy vẫn đục là nước cất và nước có tính cứng vĩnh cửu.
 - (2) Thấy vẫn đục là nước có tính cứng tạm thời và nước có tính cứng toàn phần.
 - + Thêm vài giọt dung dịch Na_2CO_3 vào mỗi cốc của nhóm (1). Nếu có kết tủa là nước có tính cứng vĩnh cửu, không có kết tủa là nước cất.
 - + Lấy nước lọc của mỗi cốc ở nhóm (2) (sau khi đun sôi để nguội) cho thêm vài giọt dung dịch Na_2CO_3 . Nếu có kết tủa là nước có tính cứng toàn phần, không có kết tủa là nước có tính cứng tạm thời.
- 6.35. Gọi kim loại kiềm thổ là X (có khối lượng mol là M), oxit của nó là XO.

$$X + 2HCl \rightarrow XCl_2 + H_2 \tag{1}$$

$$XO + 2HCl \rightarrow XCl_2 + H_2O$$
 (2)

Goi x, y là số mol của kim loại kiềm thổ và oxit của nó.

Số mol HCl tham gia phản ứng (1) và (2) là 0,5 mol.

Ta có hệ phương trình :
$$\begin{cases} Mx + (M+16)y = 8\\ 2x + 2y = 0,5 \end{cases}$$

Giải hệ phương trình ta được:
$$x = \frac{M-16}{64}$$

Biết
$$0 < x < 0.25$$
, ta có : $0 < \frac{M-16}{64} < 0.25$

$$\Rightarrow$$
 0 < M - 16 < 16 \Rightarrow 16 < M < 32

Vậy kim loại kiềm thổ có nguyên tử khối bằng 24, đó là Mg.

6.36. Đặt công thức của các muối là MCl₂ và MSO₄.

Gọi x là số mol mỗi muối. Theo đề bài ta có:

$$(M + 96)x - (M + 71)x = 2.5$$

Giải ra được x = 0,1 mol

Khối lượng mol của
$$MCl_2$$
 là $\frac{11,1}{0,1} = 111$ (g/mol)

Nguyên tử khối của M là 111 - 71 = 40 ⇒ M là Ca

Công thức các muối là CaCl₂ và CaSO₄

- 6.37. Sục khí CO₂ vào dung dịch Ca(OH)₂ thu được 1 g kết tủa thì có 2 trường hợp xảy ra.
 - 1) Phản ứng chỉ tạo ra 1 g kết tùa:

$$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$$
 (1)
 $0.01 \qquad \frac{1}{100} = 0.01 \text{ (mol)}$

Theo đề bài : $n_{Ca(OH)_2} = 0.01.2 = 0.02$ (mol). Vậy $Ca(OH)_2$ dư.

$$V_{CO_2} = 22,4.0,01 = 0,224$$
 (lít).

2) Phản ứng tạo ra nhiều hơn 1 g kết tủa, sau đó tan bớt trong CO_2 dư còn lại 1 g.

$$CO_2 + Ca(OH)_2 \rightarrow CaCO_3 \downarrow + H_2O$$

0,02 0,02 (mol)

$$CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$$

0,01 0,01 (mol)
 $V_{CO_2} = 22,4.(0,02 + 0,01) = 0,672$ (lít).

- 6.38. Hoà vào nước ta được hai nhóm chất:
 - (1) Tan trong nước là Na_2CO_3 và Na_2SO_4 . Phân biệt 2 chất này bằng dung dịch HCl. Tác dụng với dung dịch HCl là Na_2CO_3 (sửi bọt khí); không tác dụng với dung dịch HCl là Na_2SO_4 .
 - (2) Không tan trong nước là CaCO₃ và CaSO₄.2H₂O. Dùng dung dịch HCl để nhận ra CaCO₃ (có sủi bọt khí) còn lại là CaSO₄.2H₂O.

6.39. BaCO₃ + CO₂ + H₂O
$$\rightarrow$$
 Ba(HCO₃)₂ (1)

$$MgCO_3 + CO_2 + H_2O \rightarrow Mg(HCO_3)_2$$
 (2)

Số mol CO_2 đã cho là : $\frac{3,36}{22,4} = 0,15$ (mol)

Đặt x và y là số mol của BaCO3 và MgCO3 ta có hệ phương trình:

$$\begin{cases} x + y = 0.15 \\ 197 x + 84y = 23.9 \end{cases}$$

Giải ra : x = 0.1 và y = 0.05

$$m_{BaCO_3} = 197.0, 1 = 19,7 (g)$$

$$m_{MgCO_3} = 23.9 - 19.7 = 4.2 (g)$$

. Bài 27

NHÔM VÀ HỢP CHẤT CỦA NHÔM

6.42. D

AlCl₃ + 3NH₃ + 3H₂O
$$\rightarrow$$
 Al(OH)₃ \downarrow + 3NH₄Cl (không tan trong NH₃ dư)

ZnSO₄ + 2NḤ₃ + 2H₂O \rightarrow Zn(OH)₂ \downarrow + (NH₄)₂SO₄

Zn(OH)₂ + 4NH₃ \rightarrow [Zn(NH₃)₄](OH)₂ (tan)

6.43. D

6.44. D

6.45. B

6.46. C

$$n_{KOH} = 0.1.0.2 = 0.02 \text{ (mol)}; n_{Al} = 0.2 \text{ mol} \Rightarrow \text{Al du}$$

$$2\text{Al} + 2\text{KOH} + 2\text{H}_2\text{O} \rightarrow 2\text{KAlO}_2 + 3\text{H}_2$$

$$0.02 \quad 0.02 \quad 0.03 \text{ (mol)}$$

$$V_{H_2} = 22.4.0.03 = 0.672 \text{ (lít)}$$

6.47.
$$A_i n_{A1} = 0.4 \text{ mol}$$
; $n_{Fe_2O_3} = 0.1 \text{ mol}$

$$2Al + Fe2O3 \rightarrow Al2O3 + 2Fe$$

$$0,1 0,1 (mol)$$

$$n_{Al2O3} = \frac{102.0,1.80}{100} = 8,16 (g)$$

6.48. C

$$2Al + 3Cl2 \rightarrow 2AlCl3$$

$$54 g \quad 3.71 = 213 (g)$$

$$x g \quad 4,26 g$$

$$\Rightarrow x = \frac{54.4,26}{213} = 1,08 (g)$$

134

6.49. A.
$$n_{AlCl_3} = 0.03 \text{ mol}$$
; $n_{NaOH} = 0.1 \text{ mol}$

$$AlCl_3 + 3NaOH \rightarrow Al(OH)_3 + 3NaCl$$

$$0.03 \quad 0.09 \quad 0.03 \text{ (mol)}$$

$$Al(OH)_3 + NaOH \rightarrow NaAlO_2 + 2H_2O$$

$$0.01 \quad 0.1 - 0.09 = 0.01 \text{ (mol)}$$

$$n_{Al(OH)_3 \text{ con}} = 0.03 - 0.01 = 0.02 \text{ (mol)}$$

$$m_{Al(OH)_3} = 78.0.02 = 1.56 \text{ (g)}$$

6.50. A

$$3\overline{MO} + 2Al \rightarrow Al_2O_3 + \overline{3M}$$

$$0,45 \qquad \frac{8,1}{27} = 0,3 \text{ (mol)}$$

$$m_O = 0.45.16 = 7.2 (g)$$

Khối lượng hỗn hợp 2 oxit ban đầu là : 50,2 + 7,2 = 57,4 (g)

6.51. C

6.52. Hướng dẫn: Al khử H₂O rất khó khăn, không thu được khí H₂ vì Al phản ứng với nước tạo ra màng bảo vệ là Al(OH)₃, nó ngăn không cho Al tiếp xúc với nước. Trong dung dịch kiềm mạnh (NaOH, KOH,...) màng bảo vệ Al(OH)₃ sinh ra liền bị phá huỷ, do đó Al khử H₂O dễ dàng, giải phóng khí H₂.

$$2A1 + 6H2O \rightarrow 2AI(OH)3 \downarrow + 3H2 \uparrow$$
 (1)

$$Al(OH)_3 + NaOH \rightarrow NaAlO_2 + 2H_2O$$
 (2)

Hai phản ứng trên xảy ra luân phiên nhau, cho tới khi Al bị oxi hoá hết. $\mathring{\text{O}}$ đây, kiềm giữ vai trò hoà tan màng bảo vệ $\text{Al}(OH)_3$, tạo điều kiện cho Al khử H_2O để dàng.

6.53. a) Kết tủa tạo ra không tan trong dung dịch NH3 dư:

$$AICl_3 + 3NH_3 + 3H_2O \rightarrow AI(OH)_3 \downarrow + 3NH_4CI$$

b) Kết tủa tạo ra tan trong dung dịch Ba(OH)2 dư:

$$2AlCl_3 + 3Ba(OH)_2 \rightarrow 2Al(OH)_3 \downarrow + 3BaCl_2$$

 $2Al(OH)_3 + Ba(OH)_2 \rightarrow Ba(AlO_2)_2 + 4H_2O$

6.54. Các phương trình hoá học:

A1 + 6HNO₃
$$\xrightarrow{t^{\circ}}$$
 Al(NO₃)₃ + 3NO₂↑ + 3H₂O
A1 + 4HNO₃ \rightarrow Al(NO₃)₃ + NO↑ + 2H₂O
8A1 + 30HNO₃ \rightarrow 8Al(NO₃)₃ + 3N₂O↑ + 15H₂O
10A1 + 36HNO₃ \rightarrow 10Al(NO₃)₃ + 3N₂↑ + 18H₂O
8A1 + 30HNO₃ \rightarrow 8Al(NO₃)₃ + 3NH₄NO₃ + 9H₂O

6.55. Hướng dẫn:

Dùng H₂O để phân thành 2 nhóm kim loại : Nhóm (1) gồm Na và Ca, nhóm (2) gồm Cu và Al. Sản phẩm là các dung dịch NaOH và Ca(OH)₂.

Dùng CO_2 nhận biết dung dịch $Ca(OH)_2$, suy ra chất ban đầu là Ca. Kim loại còn lại ở nhóm (1) là Na.

Kim loại nào ở nhóm (2) tác dụng với dung dịch NaOH tạo bọt khí, kim loại đó là Al. Kim loại còn lại ở nhóm (2) là Cu.

6.56. a) Hoà tan NaCl vào nước tới bão hoà rồi điện phân dung dịch :

$$2NaCl + 2H_2O \xrightarrow{\text{dpdd}} H_2 + Cl_2 + 2NaOH$$
 (1)

Thu Cl₂ cho phản ứng với Al:

$$2AI + 3Cl_2 \rightarrow 2AlCl_3 \tag{2}$$

b) Lấy AlCl₃ vừa điều chế được (2) cho tác dụng với NaOH ở (1):

$$AlCl_3 + 3NaOH (via di) \rightarrow Al(OH)_3 \downarrow + 3NaCl$$
 (3)

c) Lấy Al(OH)3 điều chế được ở (3) cho tác dụng với NaOH:

$$Al(OH)_3 + NaOH \rightarrow NaAlO_2 + 2H_2O$$

6.57. – Kết tủa xuất hiện, không tan trong CO₂ dư:

$$NaAlO_2 + CO_2 + 2H_2O \rightarrow Al(OH)_3 \downarrow + NaHCO_3$$

- Kết tủa xuất hiện rồi tan trong dung dịch HCl dư:

$$NaAlO_2 + HCl + H_2O \rightarrow Al(OH)_3 \downarrow + NaCl$$

 $Al(OH)_3 + 3HCl \rightarrow AlCl_3 + 3H_2O$

6.58. a)
$$2A1 + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2 \uparrow$$
 natri aluminat

$$2A1 + 2OH^{-} + 2H_{2}O \rightarrow 2AlO_{2}^{-} + 3H_{2}\uparrow$$

ion aluminat

b) 18,8 lít.

Bài 28. Luyện tập

TÍNH CHẤT CỦA KIM LOẠI KIỀM, KIM LOẠI KIỀM THỔ VÀ HƠP CHẤT CỦA CHÚNG

6.59. D

- Đun nóng các dung dịch, có kết tủa xuất hiện là dung dịch Ba(HCO₃)₂:

$$Ba(HCO_3)_2 \xrightarrow{t^0} BaCO_3 \downarrow + CO_2 \uparrow + H_2O$$

- Cho AgNO₃ vào 2 dung dịch còn lại, có kết tủa là dung dịch BaCl₂:

$$2AgNO_3 + BaCl_2 \rightarrow 2AgCl \downarrow + Ba(NO_3)_2$$

6.60. A

6.61. D

6.62. B

6.63. B

6.64. A

6.65. Cấu hình của ion Ca²⁺: 1s²2s²2p⁶3s²3p⁶. Giống cấu hình electron của nguyên tử khí hiếm đứng trước nó là agon (Ar) và cấu hình electron của ion Cl⁻.

6.66. Hướng dẫn:

a) Dùng H_2O , nhận biết được 2 nhóm kim loại Na, Ba và Mg, Al. Nhận biết ion Ba^{2+} trong nhóm (1) bằng ion CO_3^{2-} . Nhận biết kim loại Al trong nhóm (2) bằng dụng dịch NaOH.

- b) Nhận biết ion Al³⁺ bằng dung dịch NaOH, sau đó nhận biết ion Ba²⁺ bằng dung dịch muối cacbonat, còn lại là dung dịch chứa Na⁺.
- c) Dùng H_2O nhận biết CaO, dùng dung dịch NaOH nhận biết Al_2O_3 , chất còn lại là FeO.
- d) Dùng dung dịch NaOH nhận biết: Al(NO₃)₃ tạo kết tủa sau đó tan trong dụng dịch NaOH dư; Ca(NO₃)₂ làm dung dịch vẩn đục, còn lại là NaNO₃.

6.67. Hướng dẫn:

Dùng nước tách được NaCl. Cô cạn dung dịch được NaCl rắn. Điện phân NaCl nóng chảy, được kim loại Na.

Dùng dung dịch NaOH dư, tách được chất rắn MgCO₃ và dung dịch NaAlO₂. Từ MgCO₃ điều chế kim loại Mg theo sơ đồ chuyển hoá sau :

$$MgCO_3 \xrightarrow{t^o} MgO \xrightarrow{dd HCl} MgCl_2 \xrightarrow{dpnc} Mg.$$

Từ natri aluminat điều chế kim loại Al theo sơ đồ chuyển hoá:

$$NaAlO_2 \xrightarrow{CO_2} Al(OH)_3 \xrightarrow{t^o} Al_2O_3 \xrightarrow{dpnc} Al.$$

HS tư viết các phương trình hoá học.

6.68. a) Ca +
$$2H_2O \rightarrow Ca(OH)_2 + H_2 \uparrow$$
 (1)

$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2 \uparrow$$
 (2)

$$Ca(OH)_2 + 2HCI \rightarrow CaCl_2 + 2H_2O$$
 (3)

Số mol HCl tham gia phản ứng (3) là 0,3 mol.

Đặt x và y là số mol Ca và CaC_2 trong hỗn hợp. Số mol $Ca(OH)_2$ tham gia phản ứng (3) là x + y. Ta có hệ phương trình:

$$\begin{cases} x + y = 0.15 \\ \frac{2x + 26y}{x + y} = 5.2 = 10 \end{cases}$$
 Giải ra được $x = 0.1$; $y = 0.05$.

Khối lượng của hỗn hợp rắn ban đầu:

$$m_{\text{Ca}} = 40.0, 1 = 4 \text{ (g)} ; \ m_{\text{CaC}_2} = 64.0, 05 = 3,2 \text{ (g)} \Rightarrow m_{\text{h\"{o}n h\'{o}p}} = 7,2 \text{ g}.$$

b) %
$$V_{H_2} = 66,67\%$$
; % $V_{C_2H_2} = 33,33\%$.

6.69.
$$2M + O_2 \rightarrow 2MO$$

Thể tích khí O₂ (đktc) có trong bình trước phản ứng:

$$V = \frac{273.1, 4.5}{1.(273 + 27)} = 6,37 \text{ (lít)}$$

Thể tích khí O2 còn lại trong bình sau phản ứng:

$$V' = \frac{273.0,903.5}{1.(273+136,5)} = 3,01 \text{ (lít)}$$

Thể tích khí O2 (đktc) tham gia phản ứng:

$$6,37 - 3,01 = 3,36$$
 (lít) hay 0,15 mol O₂.

⇒ Số mol kim loại M tham gia phản ứng là 0,3 mol.

Khối lượng mol của M là $\frac{12}{0.3}$ = 40 (g/mol) \Rightarrow Canxi

6.70.
$$MCl_2 \xrightarrow{+Na_2CO_3} MCO_3 \xrightarrow{+HNO_3} M(NO_3)_2 \xrightarrow{+H_2SO_4} MSO_4$$

Đặt X là khối lượng mol của kim loại kiềm thổ.

Theo sơ đồ phản ứng : 1 mol $MCl_2 \rightarrow 1$ mol MSO_4

$$(X + 71)$$
 g MCl₂ \rightarrow $(X + 96)$ g MSO₄

$$1,04 \text{ g MCl}_2 \rightarrow 1,165 \text{ g MSO}_4$$

$$\Rightarrow$$
 1,165.(X + 71) = 1,04.(X + 96)

Giải ra được X = 137. Vậy M là Ba, muối là BaCl₂.

Bài 29. Luyện tập

TÍNH CHẤT CỦA NHÔM VÀ HỢP CHẤT CỦA NHÔM

6.71. A

6.72. A

Cho từ từ dung dịch NaOH đến dư vào các dung dịch trên:

- Tạo ra kết tủa màu xanh là Cu(NO₃)₂.
- Tạo ra kết tủa nâu đỏ là FeCl3.
- Tạo ra kết tủa trắng, tan trong NaOH dư là AlCl₃.
- Có khí mùi khai (NH3) thoát ra là NH4Cl:

- Không có hiện tượng gì là KNO3.

6.73. A

$$Al + 4HNO3 \rightarrow Al(NO3)3 + NO + 2H2O$$
 (1)

$$8A1 + 30HNO_3 \rightarrow 8A1(NO_3)_3 + 3N_2O + 15H_2O$$
 (2)

$$n_X = \frac{8,96}{22.4} = 0.4 \text{ (mol)}; \ n_{NO} = \frac{0.4}{4} = 0.1 \text{ (mol)}; \ n_{N_2O} = 0.3 \text{ mol}$$

$$n_{Al(1)} = n_{NO} = 0.1 \text{ mol} ; n_{Al(2)} = \frac{0.3.8}{3} = 0.8 \text{ (mol)}$$

$$m_{A1} = 0.9.27 = 24.3$$
 (g).

6.74. C

6.75. a) Các chất có thể dùng là NH₃, KOH, Na₂CO₃:

$$AlCl_3 + 3NH_3 + 3H_2O \rightarrow Al(OH)_3 \downarrow + 3NH_4Cl$$

$$AICl_3 + 3KOH(via di) \rightarrow Al(OH)_3 \downarrow + 3KCl$$

$$2AlCl_3 + 3Na_2CO_3 + 3H_2O \rightarrow 2Al(OH)_3 \downarrow + 3CO_2 \uparrow + 6NaCl$$

b) Các chất có thể dùng là CO₂, HCl:

$$NaAlO_2 + CO_2 + 2H_2O \rightarrow Al(OH)_3 \downarrow + NaHCO_3$$

 $NaAlO_2 + HCl (vita dil) + H_2O \rightarrow Al(OH)_3 \downarrow + NaCl$

6.76.
$$2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$$

Cô cạn dung dịch được tinh thể K₂SO₄ khan.

$$Al_2O_3 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2O$$

Cô cạn dung dịch thu được tinh thể Al₂(SO₄)₃.18H₂O.

- Hoà tan 1 mol K₂SO₄ vào nước cất.
- Hoà tan 1 mol Al₂(SO₄)₃.18H₂O vào cốc nước cất khác.
- Đun nóng cả hai dung dịch, trộn 2 dung dịch với nhau rồi khuấy mạnh, sau đó để nguội, một thời gian thấy dung dịch bị vẫn đục, các tinh thể $K_2SO_4.Al_2(SO_4)_3.24H_2O$ sẽ tách ra.
- 6.77. Quặng boxit gồm chủ yếu là Al₂O₃, có lẫn các tạp chất là Fe₂O₃ và SiO₂ (cát). Việc tách Al₂O₃ nguyên chất ra khỏi các tạp chất dựa vào tính lưỡng tính của Al₂O₃.
 - Nghiền nhỏ quặng rồi cho vào dung dịch NaOH loãng, nóng :

$$Al_2O_3 + 2NaOH \rightarrow 2NaAlO_2 + H_2O$$

Lọc bỏ Fe₂O₃ và SiO₂ không tan.

- Sục khí CO₂ dư vào dung dịch NaAlO₂:

$$NaAlO_2 + CO_2 + 2H_2O \rightarrow Al(OH)_3 \downarrow + NaHCO_3$$

- Lọc lấy Al(OH)3 rồi nhiệt phân:

$$2AI(OH)_3 \xrightarrow{t^0} Al_2O_3 + 3H_2O$$

6.78. $Al_2O_3 + 12HF + 6NaOH \rightarrow 2Na_3AlF_6 + 9H_2O$

Đáp số : 242,8 g $\mathrm{Al_2O_3}$; 571,4 g HF ; 571,4 g NaOH.

SẮT VÀ MỘT SỐ KIM LOẠI QUAN TRỌNG

Bài 31

SẮT

7.1. D

7.2. B

7.3.

7.4. B

7.5. D

$$n_{\text{H}_2} = \frac{5.6}{22.4} = 0.25 \text{ (mol)} \Rightarrow n_{\text{H}} = 0.5 \text{ mol}$$

Khi có 0,5 mol nguyên tử H thoát ra thì cũng có 0,5 mol ion Cl⁻ tạo muối.

$$m_{mu\delta i} = m_{kimloai} + m_{g\delta caxit}$$

$$m_{\text{mu\'o}i} = 8 + 35,5.0,5 = 25,75 \text{ (g)}.$$

7.6. B

$$\overline{M} + 4HNO_3 \rightarrow \overline{M}(NO_3)_3 + NO + 2H_2O$$

0,1

0,1 (mol)

$$2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$$

X

 $\frac{3x}{2}$ (mol)

Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂

V

y (mol)

$$x + y = 0.1 \Rightarrow 3x + 3y = 0.3$$

(1)

$$\frac{3x}{2} + y = \frac{2.8}{22.4} = 0.125 \Rightarrow 3x + 2y = 0.25$$
 (2)

Từ (1) và (2)
$$\Rightarrow$$
 y = 0.05; x = 0.05
m = 27.0.05 + 56. 0.05 = 4.15 (g).

7.7. Tính chất hoá học cơ bản của sắt là tính khử. Tuỳ thuộc vào chất oxi hoá mà sắt có thể bị oxi hoá đến số oxi hoá +2 hoặc +3. Nguyên nhân là sắt dễ nhường 2e ở phân lớp 4s để thành ion Fe²⁺ và có thể nhường thêm 1e ở phân lớp 3d để thành ion Fe³⁺, tuỳ thuộc vào khả năng thu electron của chất oxi hoá.

Thi du: Fe +
$$I_2 \xrightarrow{t^0}$$
 Fe I_2
2Fe + 3Cl₂ $\xrightarrow{t^0}$ 2FeCl₃

7.8. Gọi kim loại là M, có hoá trị n.

$$2M + nCl_2 \rightarrow 2MCl_n$$

Theo phương trình hoá học, cứ:

n mol Cl2 thu được 2 mol muối

Vậy
$$\frac{6,72}{22,4} = 0,3 \text{ (mol) Cl}_2 \text{ thu được } \frac{32,5}{M+35,5n} \text{ mol muối}$$

Do đó ta có :
$$n \frac{32,5}{M+35,5n} = 2.0,3 \Rightarrow M = \frac{56n}{3}$$

Vì n là số nguyên, dương nên chỉ có n = 3 và M = 56 là hợp lí. Vậy kim loại đã dùng là Fe.

7.9. Fe + 2HCl
$$(lo\tilde{a}ng) \rightarrow$$
 FeCl₂ + H₂ \uparrow
Fe + H₂SO₄ $(lo\tilde{a}ng) \rightarrow$ FeSO₄ + H₂ \uparrow
2Fe + 6H₂SO₄ $(d\tilde{a}c) \xrightarrow{t^0}$ Fe₂(SO₄)₃ + 3SO₂ \uparrow + 6H₂O
Fe + H₂SO₄ $(d\tilde{a}c) \xrightarrow{\text{ngu\acute{o}i}}$ không phản ứng
Fe + 4HNO₃ $(lo\tilde{a}ng) \rightarrow$ Fe(NO₃)₃ + NO \uparrow + 2H₂O
Fe + HNO₃ $(d\tilde{a}c) \xrightarrow{\text{ngu\acute{o}i}}$ không phản ứng
Fe + 6HNO₃ $(d\tilde{a}c) \xrightarrow{t^0}$ Fe(NO₃)₃ + 3NO₂ \uparrow + 3H₂O

7.10. Đốt Fe trong khí O₂, sản phẩm có thể là FeO, Fe₃O₄, Fe₂O₃ và Fe dư. Cho dung dịch HCl vào, có các phản ứng:

Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂
FeO + 2HCl \rightarrow FeCl₂ + H₂O
Fe₃O₄ + 8HCl \rightarrow FeCl₂ + 2FeCl₃ + 4H₂O
Fe₂O₃ + 6HCl \rightarrow 2FeCl₃ + 3H₂O
Fe + 2FeCl₃ \rightarrow 3FeCl₂
Fe + 4HNO₂ \rightarrow Fe(NO₂)₂ + NO↑ + 2H₂O (1)

7.11. Fe + 4HNO₃
$$\rightarrow$$
 Fe(NO₃)₃ + NO↑ + 2H₂O (1)

$$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO^{\uparrow} + 4H_2O$$
 (2)

$$n_{NO} = \frac{0.896}{22.4} = 0.04 \text{ (mol)}$$

Đặt x và y là số mol Fe và Cu trong hỗn hợp, ta có hệ phương trình:

$$\begin{cases} 56x + 64y = 3,04 \\ x + \frac{2y}{3} = 0,04 \end{cases}$$

Giải ra được x = 0.02; y = 0.03.

$$\% \text{ m}_{\text{Fe}} = \frac{56.0,02}{3.04}.100\% = 36.8\%$$

$$\% \text{ m}_{\text{Cu}} = 100\% - 36,8\% = 63,2\%.$$

Bài 32

MỘT SỐ HỢP CHẤT CỦA SẮT

7.12. C

7.13. A

7.14. C

Từ sơ đồ $Fe_xO_y \rightarrow Al_2O_3$

Ta có : 0,3 mol $\text{Fe}_{x}\text{O}_{y} \rightarrow 0,4 \text{ mol Al}_{2}\text{O}_{3}$

Theo số nguyên tử oxi thì 0.3y = 0.4.3

$$\Rightarrow$$
 y = $\frac{1,2}{0.3}$ = 4

Oxit sắt có 4 nguyên tử oxi trong phân tử là Fe₃O₄.

7.15. A

Suy luận:

$$Fe_2O_3 + 3CO \xrightarrow{t^0} 2Fe + 3CO_2$$
 (1)

$$2CuO + 2CO \rightarrow 2Cu + 2CO_{2} \tag{2}$$

Để có số mol CO_2 có tỉ lệ 3 : 2 thì Fe_2O_3 và CuO phải có tỉ lệ mol 1 : 2. Do $M_{Fe_2O_3} = 160$ g/mol và $M_{CuO} = 80$ g/mol nên trong hỗn hợp khối lượng của Fe_2O_3 và CuO là như nhau.

7.17. Lấy một ít các hỗn hợp cho vào dung dịch CuSO₄ dư, hỗn hợp không làm nhạt màu dung dịch là hỗn hợp (c) FeO và Fe₂O₃. Lọc lấy chất rắn sau phản ứng của hỗn hợp (a) là Cu và FeO; của hỗn hợp (b) là Cu và Fe₂O₃ cho phản ứng với dung dịch HCl dư; Cho dung dịch NaOH dư vào các dung dịch vừa thu được, nếu thấy có kết tủa màu nâu đỏ thì hỗn hợp ban đầu là Fe và Fe₂O₃, nếu có kết tủa màu trắng xanh thì hỗn hợp ban đầu là Fe và FeO.

7.18. Phương trình hoá học: $FeCl_n + nAgNO_3 \rightarrow Fe(NO_3)_n + nAgCl \downarrow$

Theo phương trình : (56 + 35,5n) g ______ n(108 + 35,5) g

Ta có phương trình : (56 + 35,5n).2,6492 = n(108 + 35,5)

Tìm được $n = 3 \Rightarrow Muối sắt cần tìm là FeCl₃.$

7.19. a) Dung dịch B chứa $Fe_2(SO_4)_3$:

$$Fe_2(SO_4)_3 + Fe \rightarrow 3FeSO_4$$

$$Fe_2(SO_4)_3 + Cu \rightarrow 2FeSO_4 + CuSO_4$$

b) Dung dịch B chứa AgNO₃:

$$Fe + 2AgNO_3 \rightarrow Fe(NO_3)_2 + 2Ag$$

$$Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

Bài 33

HỢP KIM CỦA SẮT

- 7.20. A
- 7.21. D

Trong gang có C nên không hoà tan được trong các dung dịch HCl, H_2SO_4 loãng, NaOH.

- 7.22. C
- 7.23. A
- 7.24. Đáp số: 1,35%.
- 7.25. Khối lượng quặng : $100.\frac{95}{100}.\frac{100}{96}.\frac{232}{168}.\frac{100}{80} \approx 170,82 \text{ (tấn)}$

7.26. a)
$$Fe_xO_y + yCO \rightarrow xFe + yCO_2$$
 (1)

b) Số mol các chất thu được sau phản ứng:

$$n_{Fe} = 0.015 \text{ mol}$$
; $n_{CO_2} = 0.02 \text{ mol}$; $Ta có tỉ lệ: $\frac{x}{y} = \frac{0.015}{0.020} = \frac{3}{4}$$

Công thức hoá học của oxit sắt là Fe₃O₄.

c)
$$Fe_3O_4 + 8HCl \rightarrow FeCl_2 + 2FeCl_3 + 4H_2O$$
 (2)

Theo đề bài, trong a gam oxit sắt có 0.84 g sắt và 0.02 mol nguyên tử oxi. Khối lượng a = 0.84 + (16.0.02) = 1.16 (g)

ứng với
$$\frac{1,16}{232}$$
 = 0,005 (mol) Fe₃O₄

Theo (2):
$$n_{HCl} = 8 n_{Fe_3O_4} = 8.0,005 = 0,04 \text{ (mol)}$$

$$V_{HC1} = \frac{1000.0,04}{2} = 20 \text{ (ml)}.$$

Bài 34

CROM VÀ HỢP CHẤT CỦA CROM

7.27. D

7.28. D

$$K_2Cr_2O_7 + 14HCl \rightarrow 2KCl + 2CrCl_3 + 3Cl_2\uparrow + 7H_2O$$

$$0,1 \qquad \frac{6,72}{22,4} = 0,3 \text{ (mol)}$$

$$m_{K_2Cr_2O_7} = 294.0,1 = 29,4 (g).$$

7.29. D

7.30. A

AlCl₃ + 3NaOH
$$\rightarrow$$
 Al(OH)₃ \downarrow + 3NaCl
CrCl₃ + 3NaOH \rightarrow Cr(OH)₃ \downarrow + 3NaCl
Al(OH)₃ + NaOH \rightarrow NaAlO₂ + 2H₂O
Cr(OH)₃ + NaOH \rightarrow NaCrO₂ + 2H₂O
2NaCrO₂ + 3Cl₂ + 8NaOH \rightarrow 2Na₂CrO₄ + 6NaCl + 4H₂O
Na₂CrO₄ + BaCl₂ \rightarrow BaCrO₄ \downarrow + 2NaCl

7.31. $KCr(SO_4)_2 \rightarrow K^+ + Cr^{3+} + 2SO_4^{2-}$

Ion Cr^{3+} trong dung dịch có màu xanh tím, còn ion K^+ , SO_4^{2-} không màu. Vậy màu của dung dịch do ion Cr^{3+} gây ra.

7.33. - Các phương trình hoá học:

$$Al(NO_3)_3 + 3NaOH \rightarrow Al(OH)_3 \downarrow + 3NaNO_3$$
 (1)

$$Cr(NO_3)_3 + 3NaOH \rightarrow Cr(OH)_3 \downarrow + 3NaNO_3$$
 (2)

$$2Al(OH)_3 \xrightarrow{t^0} Al_2O_3 + 3H_2O$$
 (3)

$$2Cr(OH)_3 \xrightarrow{t^0} Cr_2O_3 + 3H_2O$$
 (4)

Gọi x là số mol Al(NO₃)₃ và y là số mol Cr(NO₃)₃.

Ta có hệ phương trình :
$$\begin{cases} 213x + 238y = 9,02 \\ 102\frac{x}{2} + 152.\frac{y}{2} = 2,54 \end{cases} \Rightarrow x = y = 0,02$$

$$m_{Al(NO_3)_3} = 213.0,02 = 4,26 \text{ (g)}; \% m_{Al(NO_3)_3} = \frac{4,26}{9,02}.100\% = 47,23\%$$

 $\% m_{Cr(NO_3)_3} = 52,77\%$

Bài 35

ĐỒNG VÀ HỢP CHẤT CỦA ĐỒNG

7.34. A

7.35. A

Cho Cu vào các dung dịch trên:

- Không phản ứng là : HCl, NaOH, NaNO₃.
- Có phản ứng là:

1)
$$3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO\uparrow + 4H_2O$$

Khí NO hoá nâu trong không khí:

$$2NO + O_2 \rightarrow 2NO_2$$

- 2) $\operatorname{Cu} + 2\operatorname{AgNO}_3 \rightarrow \operatorname{Cu}(\operatorname{NO}_3)_2 + 2\operatorname{Ag} \downarrow$
- Lấy dung dịch AgNO₃ để nhận ra dung dịch HCl (kết tủa AgCl trắng), nhân ra dung dịch NaOH (kết tủa Ag₂O đen).
- Còn lại là dung dịch NaNO₃.

7.36. D

- Cho từng hỗn hợp tác dụng với dung dịch HCl nhận ra hỗn hợp Cu Ag không tác dụng.
- Hỗn hợp (2) tạo ra dung dịch AlCl₃ và hỗn hợp (3) tạo ra dung dịch MgCl₂, phân biệt bằng dung dịch NaOH:

$$AlCl_3 + 3NaOH \rightarrow Al(OH)_3 \downarrow + 3NaCl$$

tan trong NaOH du

$$MgCl_2 + 2NaOH \rightarrow Mg(OH)_2 \downarrow + 2NaCl$$

không tan trong NaOH dư

7.37. C. Cách giải nhanh:

$$n_{\text{H}_2} = n_{\text{Cu}} = n_{\text{Fe}} = \frac{32}{64} = 0.5 \text{ (mol)}$$

$$m_{\text{Fe}} = 56.0, 5 = 28 \text{ (g)}$$

7.38. C. Cách giải nhanh:

$$Ag_2O \rightarrow 2AgNO_3 \rightarrow 2Ag$$

 $0,1$ $0,2$ $0,2$ (mol)
 $m_{Ag} = 108.0,2 = 21,6$ (g)
 $Cu \rightarrow Cu(NO_3)_2 \rightarrow CuO$
 $0,2$ $0,2$ $0,2$ (mol)
 $m_{Cu} = 80.0,2 = 16,0$ (g)

Vậy khối lượng chất rắn B là : 21.6 + 16.0 = 37.6 (g).

7.39. B

- Phương pháp thông thường:

$$3 \stackrel{0}{\text{Cu}} + 8 \stackrel{+5}{\text{N}} \stackrel{0}{\text{O}}_{3} \rightarrow 3 \stackrel{+2}{\text{Cu}} (NO_{3})_{2} + 2 \stackrel{+2}{\text{N}} O + 4 \stackrel{+2}{\text{H}}_{2} O$$

$$\frac{19,2}{64} = 0,3 \qquad 0,2 \text{ (mol)}$$

$$2 \stackrel{+2}{\text{N}} O + \stackrel{0}{\text{O}}_{2} \rightarrow 2 \stackrel{+4}{\text{N}} O_{2}$$

$$0,2 \rightarrow 0,1 \rightarrow 0,2 \text{ (mol)}$$

$$4 \stackrel{+4}{\text{N}} O_{2} + O_{2} + 2 \stackrel{+2}{\text{H}}_{2} O \rightarrow 4 \stackrel{+5}{\text{N}} O_{3}$$

$$0,2 \rightarrow 0,05 \text{ (mol)}$$

$$V_{O_{2}} = (0,1+0,05).22,4 = 3,36 \text{ (lit)}.$$

- Phương pháp bảo toàn electron:

Trong quá trình phản ứng trên thì Cu nhường electron và O_2 thu electron, còn $\stackrel{+5}{N}$ trong HNO_3 chỉ vận chuyển electron nên ta có :

Quá trình nhường electron :
$$Cu \rightarrow Cu^{2+} + 2e$$

0,3 0,6 (mol)

Quá trình thu electron :
$$O_2 + 4e \rightarrow 2O^{2-}$$

$$x \rightarrow 4x \text{ (mol)}$$

Ta có:
$$4x = 0.6 \Rightarrow x = \frac{0.6}{4} = 0.15 \text{ (mol)} \Rightarrow V_{O_2} = 0.15.22, 4 = 3.36 \text{ (lít)}.$$

7.42. Cách 1:
$$CuCO_3.Cu(OH)_2 \xrightarrow{t^0} 2CuO + CO_2 \uparrow + H_2O$$

$$CuO + H_2 \xrightarrow{t^0} Cu + H_2O$$

Cách 2:
$$CuCO_3.Cu(OH)_2 + 4HCl \rightarrow 2CuCl_2 + CO_2 \uparrow + 3H_2O$$

$$CuCl_2 \xrightarrow{dpdd} Cu + Cl_2 \uparrow$$

7.43. Phần (1):
$$2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2 \uparrow$$
 (1)

$$Fe + 2HCl \rightarrow FeCl_2 + H_2 \uparrow \tag{2}$$

Phần (2):
$$2AI + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$$
 (3)

Từ phương trình (3):

$$n_{Al} = \frac{2}{3}n_{H_2} = \frac{2}{3} \cdot \frac{0,336}{22,4} = 0,01 \text{ (mol)} \Rightarrow m_{Al} = 0,27 \text{ g}$$

Theo (1), (2) và (3) ta có : $V_{H_2}(2) = 560 - 336 = 224$ (ml)

$$\Rightarrow$$
 Theo (2) ta có : $n_{Fe} = n_{H_2} = \frac{0.224}{22.4} = 0.01 \text{ (mol)} \Rightarrow m_{Fe} = 0.56 \text{ g}$

$$\% \, m_{Al} = \frac{0.27}{2}.100\% = 13.5\% \; ; \; \% \, m_{Fe} = \frac{0.56}{2}.100\% = 28\%$$

$$%m_{Cu} = 58,5\%$$
.

Bài 36

SƠ LƯỢC VỀ NIKEN, KẾM, CHÌ, THIẾC

7.44. D

Khuấy vào dung dịch Hg(NO₃)₂ vì:

$$Zn + Hg(NO_3)_2 \rightarrow Zn(NO_3)_2 + Hg$$

$$Sn + Hg(NO_3)_2 \rightarrow Sn(NO_3)_2 + Hg$$

$$Pb + Hg(NO_3)_2 \rightarrow Pb(NO_3)_2 + Hg$$

7.45. B

7.46. B

Chỉ có Mg, Zn tác dụng:

$$\overline{M} + 2HCl \rightarrow \overline{M} Cl_2 + H_2$$

0,3 0,6 (mol)

Tổng số mol Mg, Zn là 0,3 mol.

$$\overline{M} \rightarrow \overline{M} O \Rightarrow m_0 = 0.3.16 = 4.8 (g)$$

$$a = 20.4 + 4.8 = 25.2$$
 (g).

7.47. B

$$Zn + 2AgNO_3 \rightarrow Zn(NO_3)_2 + 2Ag$$

Cứ 65 g Zn chuyển vào dúng dịch → 2.108 g Ag

Khối lượng thanh Zn tăng 216 - 65 = 151 (g)

 $2 \text{ mol AgNO}_3 \text{ phản ứng} \rightarrow \text{tăng 151 g}$

$$C_{M} = \frac{0.2}{0.2} = 1 (M).$$

7.48. Pb(OH)₂.PbCO₃ lầu ngày tác dụng dần với khí H₂S có trong không khí tạo ra PbS màu đen :

$$Pb(OH)_2 + H_2S \rightarrow PbS \downarrow + 2H_2O$$

Phun dung dịch H₂O₂ sẽ làm cho PbS chuyển thành PbSO₄ màu trắng:

$$PbS + 4H_2O_2 \rightarrow PbSO_4 \downarrow + 4H_2O$$

7.49. - Hoà tan hỗn hợp vào dung dịch HCl dư:

$$2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$$

 $Zn + 2HCl \rightarrow ZnCl_2 + H_2$

- Dung dịch thu được cho tác dụng với dung dịch NH3 dư:

HCl
$$(du)$$
 + NH₃ \rightarrow NH₄Cl
AlCl₃ + 3NH₃ + 3H₂O \rightarrow Al(OH)₃ \downarrow + 3NH₄Cl
ZnCl₂ + 2NH₃ + 2H₂O \rightarrow Zn(OH)₂ \downarrow + 2NH₄Cl
Zn(OH)₂ + 4NH₃ \rightarrow [Zn(NH₃)₄](OH)₂

- Lọc tách Al(OH)3, nhiệt phân thu được Al₂O₃ rồi điện phân nóng chảy.
- Nước lọc cho tác dụng với dung dịch HCl thu được $Zn(OH)_2$, nhiệt phân thành ZnO rồi khử bằng H_2 .
- 7.50. Hướng dẫn: Khi điện phân dung dịch NiSO₄ với:
 - a) Diện cực trơ:
 - Ở catot xảy ra sư khử các ion Ni²⁺ thành Ni kim loại.
 - Ở anot xảy ra sự oxi hoá các phân tử H_2O sinh ra khí O_2 .
 - b) Điện cực tan:
 - Ở catot xảy ra sự khử các ion Ni²⁺ thành Ni kim loại.
 - Ở anot xảy ra sự oxi hoá điện cực Ni thành các ion Ni²⁺.
- 7.51. Các phản ứng xảy ra:

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$

 $Fe_2O_3 + 3H_2 \xrightarrow{t^o} 2Fe + 3H_2O$

Đáp số: 39% Zn và 61% Cu.

Bài 37. Luyện tập

TÍNH CHẤT HOÁ HỌC CỦA SẮT VÀ HỢP CHẤT CỦA SẮT ^{*}

7.52. D

7.53. A

7.54. B

7.55. C

$$Fe_2O_3 + 3CO \xrightarrow{t^{\circ}} 2Fe + 3CO_2$$

$$0,05 \qquad 0,1 \text{ (mol)}$$
(1)

$$Fe + H_2SO_4(lo\tilde{a}ng) \rightarrow FeSO_4 + H_2$$
 (2)

$$0.1 \qquad \frac{2.24}{22.4} = 0.1 \text{ (mol)}$$

Từ (1) và (2) \Rightarrow $n_{\text{Fe}_2\text{O}_3} = 0.05 \text{ mol}$

$$\% \, \mathrm{m_{Fe_2O_3}} = \frac{160.0,05}{10} .100\% = 80\%.$$

- 7.57. Dùng H₂O nhận biết CaO.
 - Dùng dung dịch HCl hoà tan các oxit được dung dịch muối clorua. Dung dịch nào có màu xanh thì oxit ban đầu là CuO. Dung dịch nào không màu tác dụng với NaOH tạo kết tủa keo tan trong NaOH dư thì oxit ban đầu là Al₂O₃. Dung dịch màu lục nhạt tác dụng với NaOH tạo kết tủa trắng xanh chuyển dần sang màu nâu đỏ thì oxit ban đầu là FeO.
 - Nhận biết Fe₂O₃ và Fe₃O₄ bằng dung dịch HNO₃ loãng, phản ứng không giải phóng khí là Fe₂O₃, giải phóng khí hoá nâu trong không khí là Fe₃O₄.

$$3\text{Fe}_3\text{O}_4 + 28\text{HNO}_3 \rightarrow 9\text{Fe}(\text{NO}_3)_3 + \text{NO}^{\uparrow} + 14\text{H}_2\text{O}$$

7.58. $D\acute{a}p \ s\acute{o}' : 2,94 \ g \ K_2Cr_2O_7 \ và 11,76 \ ml \ dung dịch HCl.$

7.59. Đặt số mol M là x, số mol Fe là 2x.

$$2M + 2nHCl \rightarrow 2MCl_n + nH_2$$

X

0,5nx (mol)

Fe + 2HCl
$$\rightarrow$$
 FeCl₂ + H₂

2x

2x (mol)

$$0.5nx + 2x = \frac{7.84}{22.4} = 0.35 \tag{1}$$

$$2M + nCl_2 \rightarrow 2MCl_n$$

$$2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3$$

$$0.5nx + 3x = \frac{10.08}{22.4} = 0.45 \tag{2}$$

Giải hệ gồm phương trình (1) và (2) được n = 3; x = 0,1

$$m_{Fe} = 2.0, 1.56 = 11, 2 (g); m_M = 13, 9 - 11, 2 = 2,7 (g)$$

Khối lượng mol của M là : $\frac{2.7}{0.1}$ = 27 (g/mol). M là Al.

$$%m_{Al} = \frac{2.7}{13.9}.100\% = 19,42\%$$
; $%m_{Fe} = 80,58\%$.

Bài 38. Luyện tập

TÍNH CHẤT HOÁ HỌC CỦA CROM, ĐỒNG VÀ HỢP CHẤT CỦA CHỨNG

7.60. D

7.61. D

7.62. B

7.63. A

7.64. B
$$n_{Cu} = 0.3 \text{ mol}$$
; $n_{HNO_3} = 0.4 \text{ mol}$ $3Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$ $0.15 \quad 0.4 \quad 0.1 \text{ (mol)}$

 \Rightarrow Cu du.

7.68.
$$(NH_4)_2Cr_2O_7 \xrightarrow{t^0} Cr_2O_3 + N_2 + 4H_2O$$

Phản ứng thuộc loại phản ứng oxi hoá - khử nội phân tử.

PHÂN BIỆT MỘT SỐ CHẤT VÔ CƠ

Bàl 40

NHẬN BIẾT MỘT SỐ ION TRONG DUNG DỊCH

8.1. C

8.2. B

Dùng dung dịch NH_3 dư: $MgCl_2$ tạo kết tủa trắng; $ZnCl_2$ tạo kết tủa sau đó tan do tạo phức; $FeCl_2$ tạo kết tủa trắng hơi xanh của $Fe(OH)_2$, nếu lắc nhẹ chuyển từ trắng hơi xanh sang nâu đỏ của $Fe(OH)_3$; $AlCl_3$ tạo kết tủa keo; còn lại là dung dịch KCl.

8.3. B

8.4. Hướng dẫn:

Hoà tan vào nước được các dung dịch.

- Cho quỳ tím vào mỗi dung dịch. Dung dịch NaNO₃ không làm đổi màu
 quỳ tím; 3 dung dịch còn lại làm quỳ tím chuyển thành màu hồng nhạt.
- Cho dung dịch $BaCl_2$ vào 3 dung dịch còn lại. Dung dịch $(NH_4)_2SO_4$ tạo kết tùa trắng.
- Nhỏ dung dịch $AgNO_3$ vào 2 dung dịch còn lại. Dung dịch NH_4Cl tạo kết tủa trắng. Còn lại là NH_4NO_3 .

8.5. Hướng dẫn :

Cho dung dịch BaCl₂ đến dư vào 2 dung dịch, sau đó lọc bỏ kết tủa và cho dung dịch HCl vào dung dịch nước lọc. Dung dịch nào có khí bay ra thì dung dịch ban đầu là NaHCO₃ và Na₂CO₃.

$$BaCl_2 + Na_2CO_3 \rightarrow BaCO_3 \downarrow + 2NaCl$$

 $HCl + 2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 \uparrow + H_2O$

8.6. Hướng dẫn:

Hoà tan một lượng nhỏ mỗi mẫu phân lân vào nước. Phân lân supephotphat đơn có $Ca(H_2PO_4)_2$ tan trong nước và $CaSO_4$ không tan ; supephotphat kép chỉ có $Ca(H_2PO_4)_2$ tan.

8.7. Hướng dẫn:

Có thể dùng H₂O và dung dịch HCl để phân biệt các chất.

Dùng H_2O : NaNO₃, Na₂CO₃, Zn(NO₃)₂ tan (I); CaCO₃, BaSO₄ không tan (II).

Cho dung dịch HCl vào (I): nhận ra Na₂CO₃ (có khí bay ra).

Lấy Na_2CO_3 cho vào hại dung dịch còn lại, dung dịch nào tạo kết tủa là dung dịch $Zn(NO_3)_2$.

Cho dung dịch HCl vào (II): BaSO₄ không tan, CaCO₃ tan và có khí bay ra.

Bài 41

NHẬN BIẾT MỘT SỐ CHẤT KHÍ

8.8. D

 SO_2 và CO_2 đều tạo kết tủa với nước vôi trong ; khí O_2 làm tàn đóm bùng cháy.

8.9. A

8.10. B

Khí NH3 hoặc dung dịch NH3 khử clo nhờ phản ứng hoá học:

$$2NH_3 + 3Cl_2 \rightarrow N_2 + 6HCl$$

8.11. Hướng dẫn:

Dùng giấy quỳ tím ẩm : HCl và H_2S làm đổi màu quỳ tím thành đỏ ; NH_3 làm đổi màu quỳ tím thành xanh ; O_3 làm mất màu quỳ tím.

Dùng giấy tẩm dung dịch $Pb(NO_3)_2$: H_2S làm giấy có màu đen.

8.12. Hướng dẫn :

Dùng dung dịch NH3 hoặc khí NH3 dư.

8.13. Hướng dẫn:

X là khí HCl; Y là O_2 ; Z là SO_2 ; A là CO_2 ; B là H_2 .

Dùng tàn đóm cháy dở: nhận được O₂.

Dùng nước brom : nhận được SO_2 ; Dùng nước với trong dư nhận được CO_2 ; Dùng giấy quỳ tím ẩm : nhận được HCI; còn lại là H_2 .

8.14. Hướng dẫn:

– Dùng giấy quỳ tím ẩm : nhận biết sự có mặt của NH_3 . Dẫn khí qua dung dịch HCl dư để hấp thụ hoàn toàn NH_3 ; dẫn khí còn lại qua ống đựng CuO nung nóng : CuO bị khử và có H_2 O ngưng tụ chứng tỏ có H_2 ; khí nitơ không cháy, không duy trì sự cháy.

Bài 42. Luyện tập NHẬN BIẾT MỘT SỐ CHẤT VÔ CƠ

8.15. A

8.16. C

- Dùng dung dịch $CaCl_2$: Na_2SO_3 và Na_2CO_3 tạo kết tủa ; $NaHCO_3$ và $NaHSO_3$ không tạo kết tủa.
- Cho mỗi dung dịch trong từng nhóm vào nước brom : NaHSO $_3$ làm mất màu nước brom, NaHCO $_3$ không ; Na $_2$ SO $_3$ làm mất màu nước brom, Na $_2$ CO $_3$ không.

8.17. A

Cho Na vào các dung dịch: MgSO₄ tạo kết tủa, ZnCl₂ tạo kết tủa sau đó tan.

Dùng dung dịch MgSO₄ cho vào 4 dung dịch còn lại : BaCl₂ tạo kết tủa.

Cho dung dịch BaCl₂ vào 3 dung dịch còn lại : Na₂SO₄ tạo kết tủa.

Cho dung dịch BaCl₂ vào dung dịch KHCO₃ và KNO₃ (sau khi đã cho Na): KHCO₃ tạo kết tủa, còn lại là KNO₃:

$$KHCO_3 \xrightarrow{OH^-} K_2CO_3 \xrightarrow{BaCl_2} BaCO_3 \downarrow$$

8.18. A

Bột Cu tác dụng với HNO₃; Dung dịch Ba(OH)₂ tạo kết tủa với H₂SO₄.

8.19. Hướng dẫn:

- Dùng dung dịch HNO₃ đặc, nguội : Cu, Mg phản ứng tạo dung dịch có màu khác nhau ; Fe và Al không phản ứng.
- Dùng dung dịch NaOH: Al phản ứng; Fe không phản ứng.

8.20. Hướng dẫn :

- Dùng dung dịch NaOH : Al phản ứng sinh ra khí ; Al_2O_3 bị hoà tan, không có khí.
- Dùng dung dịch HCl: Fe phản ứng; Ag không phản ứng.

8.21. Hướng dẫn:

Cho dung dịch tác dụng với dung dịch $AgNO_3$, có kết tủa trắng chứng tỏ có ion Cl^- .

Thêm vài giọt axit H_2SO_4 đặc và mảnh đồng : có khí không màu hoá nâu trong không khí thoát ra chứng tỏ có ion NO_3^- .

Cho từ từ dung dịch NaOH đến dư vào dung dịch trên thấy có kết tủa, sau đó kết tủa tan một phần chứng tỏ có hidroxit lưỡng tính. Gạn để tách lấy dung dịch (dung dịch A); lắc phần kết tủa: nếu kết tủa chuyển sang màu nâu đỏ chứng tỏ có ion Fe²⁺.

Cho dung dịch A tác dụng với dung dịch NH_4CI , có kết tủa xuất hiện chứng tỏ có AI^{3+} . Lọc bỏ kết tủa, lấy dung dịch cho tác dụng với Na_2S , có kết tủa trắng (ZnS) chứng tỏ có Zn^{2+} .

HOÁ HỌC VÀ VẤN ĐỀ PHÁT TRIỂN KINH TẾ, XÃ HỘI VÀ MÔI TRƯỜNG

Bàl 43

HOÁ HỌC VÀ VẤN ĐỀ PHÁT TRIỂN KINH TẾ

- 9.1. B
- 9.2. A
- 9.3. C
- **9.4.** Hướng dẫn:

Tạo hỗn hợp có nhiệt độ nóng chảy thấp, tăng độ dẫn điện, đỡ tốn điện năng. Tạo hỗn hợp xỉ nhẹ nổi lên trên, bảo vệ nhôm không bị oxi hoá bởi oxi trong không khí; nhôm được dẫn ra khỏi bể điện phân dễ dàng.

- 9.5. DDT có hoạt tính cao, tuy nhiên nó lại bền vững, phân hủy chậm. Dư lượng hoá chất trên sản phẩm dễ gây nguy hiểm.
- 9.6. PVC: nặng hơn, chìm trong nước; PE nhẹ hơn, nổi trên mặt nước.

Túi bằng PVC: sở vào có cảm giác đính tay; túi bằng PE sở vào thấy trơn.

Túi bằng PVC không được dùng để đựng thực phẩm do có chất gây độc. Túi bằng PE không độc.

Có thể đốt mẫu chất trong lòng phễu đã có láng dung dịch AgNO₃. PVC cháy tạo kết tủa trắng; PE không có hiện tượng này.

9.7. Hướng dẫn:

Theo phương pháp hiện nay: rẻ tiền, ít ô nhiễm môi trường.

HS tự viết các phương trình hoá học minh hoạ.

HOÁ HỌC VÀ VẤN ĐỀ XÃ HỘI

9.8. B 9.9. B

- 9.10. Do cây xanh hấp thụ khí CO₂ giải phóng khí O₂ nên làm giảm lượng khí CO₂ (là khí gây hiệu ứng nhà kính), tăng lượng oxi trong không khí góp phần nằng cao chất lượng không khí; trong quá trình quang hợp, cây hấp thụ năng lượng mặt trời, nhả hơi nước góp phần làm hạn chế sự nóng lên của trái đất.
- 9.11. Do hoạt động nông nghiệp: trồng cấy cần bón phân, thuốc trừ sâu.

Do hoạt động công nghiệp: các chất thải của các nhà máy tán trong nước gây ô nhiễm.

Do sinh hoạt : bột giặt, nước thải từ nấu ăn, chất thải của người, động vật tan trong nước.

9.12. Túi PE không gây độc nên thuận lợi cho việc dùng đựng thực phẩm. Tuy nhiên, do PE là chất rất bền với các tác nhân oxi hoá thông thường, không bị phân huỷ sinh học và không tự phân huỷ được, nên sau một thời gian, lượng túi PE trở thành phế thải rấn rất lớn, đòi hỏi việc xử lí rác thải rất khó khăn.

Cần có các vật liệu an toàn, dễ tự phân huỷ hoặc bị phân huỷ sinh học, thí dụ túi làm bằng vật liệu sản xuất từ xenlulozo.

9.13. Hướng dẫn:

Từ khí thiên nhiên có metan ; trong sản phẩm chế biến dầu khí có propilen ; dầu mỏ có benzen.

So $d\hat{o}$: Benzen \rightarrow Cumen (isopropylbenzen) \rightarrow Phenol (A) + Axeton

Metan → Metanol → Fomandehit (B)

 $n(A) + n(B) \rightarrow Poli(phenol - fomandehit)$

9.14. Hướng dẫn:

- Các sản phẩm chế biến thông qua con đường hoá học hoặc có sự tham gia của hoá học : các loại mĩ phẩm, thực phẩm, các loại vải hoá học đẹp bền.
- Các máy móc thiết bị: các chi tiết được sản xuất bằng vật liệu polime cần các quá trình công nghệ, sản xuất kim loại cần quá trình luyện kim.

HOÁ HỌC VÀ VẤN ĐỀ MÔI TRƯỜNG

9.15. B

9.16. A

Trong công nghiệp sản xuất axit H_2SO_4 , phân lân sinh ra lượng đáng kể SO_2 ; sản xuất phân đạm sinh ra NO_2 (hoặc NO sau đó gặp không khí chuyển thành NO_2). Các khí này gặp mưa tạo thành axit.

9.17. B

9.18. C

Hợp chất của clo dưới tác dụng của bức xạ mặt trời bị phân huỷ sinh ra clo. Clo tác dụng với ozon theo sơ đồ phản ứng:

$$Cl_2 + O_3 \rightarrow ClO + O_2$$

do đó làm giảm lượng ozon, gây nên hiện tượng suy giảm tầng ozon, tạo ra các "lỗ thủng" của tầng ozon.

9.19. Hướng dẫn:

$$Cu^{2+} + H_2S \rightarrow CuS + 2H^+$$

 $n_{CuS} = \frac{0,00144}{96} = 0,000015 \text{ (mol)}$

Nồng độ
$$Cu^{2+} = \frac{0,000015.64}{0.5} = 0,00192 \text{ (g/l)} = 1,92 \text{ mg/l}.$$

Như vậy, mẫu nước này chưa bi ô nhiễm đồng.

- 9.20. Các quá trình sản xuất :
 - Đốt Cu_2S được CuO, SO_2 (sản xuất axit H_2SO_4); dùng axit HCl sản xuất $CuCl_2$; dùng C hoặc CO khử CuO.
 - Chất gây ô nhiễm là: SO₂, ion Cu²⁺, axit HCl, khí CO và CO₂.
- 9.21. Hướng dẫn:

a)
$$(C_6H_{10}O_5)_n \rightarrow nC_6H_{12}O_6$$

180 000 tấn glucozơ cần 162 000 tấn tinh bột ứng với 180 000 tấn bột sắn.

Lượng bột sắn thực tế cần dùng : $\frac{180\,000.100}{80}$ = 225 000 (tấn).

Lượng chất thải $ra = 225\ 000 - 162\ 000 = 63\ 000$ (tấn)

Trong 63 000 tấn chất thải có 45 000 tấn bột sắn.

b) Trong 45 000 tấn bột sắn thải ra có 40 500 tấn tinh bột.

$$(C_6H_{10}O_5)_n \rightarrow nC_6H_{12}O_6 \rightarrow 2nC_2H_5OH + 2nCO_2$$

Theo sơ đồ, số mol etanol là 5.10^8 mol.

Do hiệu suất tận dụng 80%, nên số mol etanol thu được là 4.10^8 mol.

Khối lượng etanol nguyên chất: 184.108 g.

Thể tích etanol nguyên chất: 230.108 ml.

Thể tích cồn 70° : $328,57.10^{8}$ ml = $328,57.10^{5}$ lít.

Chất gây ô nhiễm : khí CO_2 . Khắc phục : dùng CO_2 sản xuất sođa, bình chữa cháy ; $NaHCO_3$ sản xuất thuốc giảm đau dạ dày,...

9.22. Hướng dẫn:

Biện pháp đầu tiên là thu hồi để sản xuất các sản phẩm có ích theo nguyên tắc xây dựng khu liên hợp sản xuất. Nếu không giải quyết được thì mới phải dùng hoá chất để khử các chất độc hại này. Thí dụ:

- a) Khi nướng quặng chứa $\mathrm{Fe_2O_3}$ có lẫn hợp chất lưu huỳnh trong sản xuất gang sẽ sinh ra $\mathrm{SO_2}$. Có thể thu hồi khí $\mathrm{SO_2}$ để sản xuất axit $\mathrm{H_2SO_4}$, hoặc dùng $\mathrm{SO_2}$ để tẩy màu cho đường saccarozơ.
- d) Xỉ quặng của quá trình đốt pirit trong sản xuất axit H_2SO_4 chính là Fe_2O_3 . Tận dụng xỉ này để sản xuất gang hoặc sản xuất chất phụ gia cho sản xuất cao su, sơn,...

WÁC TÁC

	ĐỀ BÀI	LÒIGIÁI
Chương 1: Este - Lipit	3	78
Bài 1 Este	3	78
Bài 2 Lipit	5	82
Bài 3 Khái niệm về xà phòng và chất giặt rửa tổng hợp	7	83
Bài 4 Luyện tập: Este và chất béo	8	84
Chương 2 : Cacbohiđrat	10	87
Bài 5 Glucozo	10	87
Bài 6 Saccarozo, tinh bột và xenlulozo	12	90
Bài 7 Luyện tập: Cấu tạo và tính chất của cacbohidrat	14	92
Chương 3 : Amin, amino axit và protein	16	93
Bài 9 Amin	16	93
Bài 10 Amino axit	17	96
Bài 11 Peptit và protein	19	97
Bài 12 Luyện tập: Cấu tạo và tính chất của amin,		
amino axit và protein	22	100
Chương 4 : Polime và vật liệu polime	25	105
Bài 13 Đại cương về polime	25	105
Bài 14 Vật liệu polime	28	108
Bài 15 Luyện tập: Polime và vật liệu polime	31	110

Chương 5 : Đại cương về kim loại	33	112
Bài 17 Vị trí của kim loại trong bảng tuần hoàn		
và cấu tạo của kim loại	33	112
Bài 18 Tính chất của kim loại. Dãy điện hoá của kim loại	35	113
Bài 19 Hợp kim	37	117
Bài 20 Sự ăn mòn kim loại .	38	118
Bài 21 Điều chế kim loại ,	40	119
Bài 22 Luyện tập: Tính chất của kim loại	41	121
Bài 23 Luyện tập: Điều chế kim loại và sự ăn mòn kim loại	44	124
Chương 6 : Kim loại kiềm, kim loại kiềm thổ, nhôm	45	126
Bài 25 Kim loại kiềm		
và hợp chất quan trọng của kim loại kiềm	45	126
Bài 26 Kim loại kiềm thổ		
và hợp chất quan trọng của kim loại kiềm thổ	48	129
Bài 27 Nhôm và hợp chất của nhôm	51	134
Bài 28 Luyện tập: Tính chất của kim loại kiềm,		
kim loại kiểm thổ và hợp chất của chúng	54	137
Bài 29 Luyện tập: Tính chất của nhôm và hợp chất của nhôm	56	140
Chương 7 : Sắt và một số kim loại quan trọng	58	142
Bài 31 Sắt	58	142
Bài 32 Hợp chất của sắt	59	145
Bài 33 Hợp kim của sắt	61	146
Bài 34 Crom và hợp chất của crom	62	147
Bài 35 Đồng và hợp chất của đồng	63	149
Bài 36 Sơ lược về niken, kẽm, chì, thiếc	65	152
Bài 37 Luyện tập: Tính chất của sắt và hợp chất của sắt	66	154
166		

Bài 38 Luyện tập: Tính chất hoá học của crom, đồng		
và hợp chất của chúng	68	156
Chượng 8 : Phân biệt một số chất vô cơ	70	157
Bài 40 Nhận biết một số ion trong dung dịch	70	157
Bài 41 Nhận biết một số chất khí	71	158
Bài 42 Luyện tập: Nhận biết một số chất vô cơ	72	159
Chương 9 : Hoá học và vấn đề phát triển kinh tế,		
xã hội và môi trường	74	161
Bài 43 Hoá học và vấn đề phát triển kinh tế	74	161
Bài 44 Hoá học và vấn đề xã hội	75	162
Bài 45 Hoá học và vấn đề môi trường	76	163

Chiu trách nhiệm xuất bản : Chủ tích HĐQT kiệm Tổng Giám đóc NGÔ TRẨN ÁI

Phó Tổng Giám đốc kiệm Tổng biên tập NGUYỄN QUÝ THAO

Biến tập lần đầu : PHẠM KIỀU DUYÊN - NGUYỄN VĂN LỄ

Biên tập tái bản : NGUYỄN VĂN NGUYÊN Biên tập kĩ thuật : TRẦN THANH HẰNG

Trình bày bia: PHAN HƯƠNG

Sửa bản in: NGUYỄN VĂN NGUYÊN

Chế bản: CÔNG TY CP THIẾT KẾ VÀ PHÁT HÀNH SÁCH GIÁO DỤC

BÀI TẬP HOÁ HỌC 12

Mã số: CB208T0

In 50.000 cuốn (QĐ09BT) , khổ 17 x 24 cm

In tại Công ty cổ phần in & TM Thống Nhất, HN.

Số in: 238/TN. Số xuất bản : 01 - 2010/CXB/494 - 1485/GD

In xong và nộp lưu chiểu tháng 3 năm 2010.

SÁCH BÀI TẬP LỚP 12

1. BÀI TẬP GIẢI TÍCH 12

2. BÀI TẬP HÌNH HỌC 12

3. BÀI TẬP VẬT LÍ 12

4. BÀI TẬP HOÁ HỌC 12

5. BÀI TẬP SINH HỌC 12

6. BÀI TẬP TIN HỌC 12

7. BÀI TẬP NGỮ VĂN 12 (tập một, tập hai)

8. BÀI TẬP TIẾNG ANH 12

9. BÀI TẬP TIẾNG PHÁP 12

10. BÀI TẬP TIẾNG NGA 12

SÁCH BÀI TẬP LỚP 12 - NÂNG CAO

· BÀI TẬP GIẢI TÍCH 12

BÀI TẬP HÌNH HỌC 12

· BÀI TẬP VẬT LÍ 12

BÀI TẬP HOÁ HỌC 12

BÀI TẬP NGỮ VĂN 12 (tập một, tập hai)

BÀI TẬP ĐỊA LÍ 12

BÀI TẬP LỊCH SỬ 12

BÀI TẬP TIẾNG ANH 12

Bạn đọc có thể mua sách tại :

Các Công ty Sách - Thiết bị trường học ở các địa phương.

Công ty CP Đầu tư và Phát triển Giáo dục Hà Nội. 187B Giáng Vô, TP. Hà Nội.

Công ty CP Đầu tư và Phát triển Giáo dục Phương Nam, 231 Nguyễn Văn Cử, Quận 5, TP, HCM.

Công ty CP Dầu tư và Phát triển Giáo dục Đà Nẵng, 15 Nguyễn Chí Thanh, TP. Đà Nẵng.

hoặc các của hàng sách của Nhà xuất bản Giáo dục Việt Nam :

Tại TP, Hà Nội:

187 Giang Vô; 232 Tây Sơn; 23 Trắng Tiến:

25 Hán Thuyện ; 321: Kim Mã ; 14/3 Nguyễn Khánh Toàn.

Tại TP. Đà Nẵng:

78 Pasteur; 247 Hai Phông.

Tại TP Hồ Chi Minh:

104 Mai Thị Lưu; 2A Định Tiên Hoàng, Quận 1;

240 Trần Bình Trọng , 231 Nguyễn Văn Cử, Quận 5 ,

5 Binh Thời, Quận 11.

Tại TP. Cản Thơ:

5.5 During 30.4.

Website: www.nxbgd.com.vn

Giá: 9.700đ