

planetmath.org

Math for the people, by the people.

immanent

Canonical name Immanent

Date of creation 2013-03-22 14:05:43 Last modified on 2013-03-22 14:05:43 Owner Mathprof (13753) Last modified by Mathprof (13753)

Numerical id 17

Author Mathprof (13753)

Entry type Definition
Classification msc 20C30
Related topic permanent
Related topic character

Let S_n denote the symmetric group on n elements. Let $\chi: S_n \to \mathbb{C}$ be a complex character. For any $n \times n$ matrix $A = (a_{ij})_{i,j=1}^n$ define the *immanent* of A as

$$\operatorname{Imm}_{\chi}(A) = \sum_{\sigma \in S_n} \chi(\sigma) \prod_{j=1}^n A_{j \sigma(j)}.$$

Special cases of immanents are determinants and permanents — in the case where χ is the constant character $(\chi(x) = 1 \text{ for all } x \in S_n)$, $\operatorname{Imm}_{\chi}(A)$ is the permanent of A. In the case where χ is the sign of the permutation (which is the character of the permutation group associated to the (non-trivial) one-dimensional representation), $\operatorname{Imm}_{\chi}(A)$ is the determinant of A.