Standardize Normal Distribution

$$Z = \frac{X - \mu}{\sigma}$$

Z test for the Mean

$$Z_{_{STAT}} \; = \; \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Pooled variance

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)}$$

Test statistic for two independent samples and two unknown population standard deviation assumed equal

$$\mathbf{t_{STAT}} = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
 with d.f. = $(n_1 + n_2 - 2)$

Test statistic for two independent samples and two unknown population standard deviation not assumed equal

$$t_{STAT} = \frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$$

With d.f.

$$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\left(\frac{S_1^2}{n_1}\right)^2 + \left(\frac{S_2^2}{n_2}\right)^2}$$

$$\frac{n_1 - 1}{n_2 - 1} + \frac{n_2 - 1}{n_2 - 1}$$

t test for the Mean

$$t_{_{STAT}} = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$$

Test statistic for paired difference

$$t_{\text{STAT}} = \frac{\overline{\overline{D}} - \mu_D}{\frac{S_D}{\sqrt{n}}}$$

with d.f. of n -1

One-Way ANOVA Table

Source of Variation	Degrees of Freedom	Sum Of Squares	Mean Square (Variance)	F
Among Groups	c - 1	SSA	$MSA = \frac{SSA}{c - 1}$	F _{STAT} =
Within Groups	n - c	ssw	$MSW = \frac{SSW}{n - c}$	MSA MSW
Total	n – 1	SST		

Randomized Block Design

Source of Variation	SS	df	MS	F
Among Blocks	SSBL	r - 1	MSBL	MSBL MSE
Among Groups	SSA	c - 1	MSA	MSA MSE
Error	SSE	(r-1)(c-1)	MSE	
Total	SST	rc - 1		

Two-Way ANOVA table

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Squares	F
Factor A	SSA	r – 1	MSA = SSA /(r – 1)	MSA MSE
Factor B	SSB	c – 1	MSB = SSB/(c - 1)	MSB MSE
AB (Interaction)	SSAB	(r - 1)(c - 1)	MSAB = SSAB / (r − 1)(c − 1)	MSAB MSE
Error	SSE	rc(n' – 1)	MSE = SSE/rc(n' – 1)	
Total	SST	n – 1		