Глава 1 Выбор субоптимальной структуры модели

В данной главе рассматривается задача выбора структуры модели глубокого обучения. Предлагается ввести вероятностные предположения о распределении параметров и распределении структуры модели. Проводится градиентная оптимизация параметров и гиперпараметров модели на основе байесовского вариационного вывода. В качестве оптимизируемой функции для гиперпараметров модели предлагается обобщенная функция ее обоснованности. Показано, что данная функция оптимизирует ряд критериев выбора структуры модели: метод максимального правдоподобия, последовательное увеличение и снижению сложности модели, полный перебор структуры модели, а также получение максимума вариационной оценки обоснованности модели. Решается двухуровневая задача оптимизации: на первом уровне проводится оптимизация нижней оценки обоснованности модели по вариационным параметрам модели. На втором уровне проводится оптимизация гиперпараметров модели.

1.1. Вероятностная модель

Определим априорные распределения параметров и структуры модели следующим образом. Пусть для каждого ребра $(j,k) \in E$ и каждой базовой функции $\mathbf{g}_l^{j,k}$ параметры модели $\mathbf{w}_l^{j,k}$ распределены нормально с нулевым средним:

$$\mathbf{w}_l^{j,k} \sim \mathcal{N}(\mathbf{0}, \gamma_l^{j,k}(\mathbf{A}_l^{j,k})^{-1}),$$

где $(\mathbf{A}_l^{j,k})^{-1}$ — диагональная матрица, $l \in \{1,\dots,K^{j,k}\}$, где $K^{j,k}$ — количество базовых функций для ребра $K^{j,k}$. Априорное распределение $p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h})$ параметров $\mathbf{w}_l^{j,k}$ зависит не только от гиперпараметров $\mathbf{A}_k^{j,k}$, но и от структурного параметра $\gamma_l^{j,k} \in (0,1)$.

В качестве априорного распределения для структуры Γ предлагается использовать произведение распределений Gumbel-Softmax (\mathcal{GS}) [?]:

$$p(\mathbf{\Gamma}|\mathbf{h}, oldsymbol{\lambda}) = \prod_{(j,k) \in E} p(oldsymbol{\gamma}^{j,k}|\mathbf{s}^{j,k}, \lambda_{ ext{temp}}),$$

где для каждого структурного параметра $\gamma^{j,k}$ с количеством базовых функций $K^{j,k}$ вероятность $p(\gamma^{j,k}|\mathbf{s}^{j,k},\lambda_{\text{temp}})$ определена следующим образом:

$$p(\boldsymbol{\gamma}^{j,k}|\mathbf{s}^{j,k}, \lambda_{\text{temp}}) = (K-1)!(\lambda_{\text{temp}})^{K-1} \prod_{l=1}^{K^{j,k}} s_l^{j,k} (\boldsymbol{\gamma}_l^{j,k})^{-\lambda_{\text{temp}}-1} \left(\sum_{l=1}^{K^{j,k}} s_l^{j,k} (\boldsymbol{\gamma}_l^{j,k})^{-\lambda_{\text{temp}}} \right)^{-K^{j,k}},$$

где $\mathbf{s}^{j,k} \in (0,\infty)^{Kj,k}$ — гиперпараметр, отвечающий за смещенность плотности распределения относительно точек симплекса на $K^{j,k}$ вершинах, $\lambda_{\text{temp}}>0$ —

метапараметр температуры, отвечающий за концентрацию плотности вблизи вершин симплекса или в центре симплекса.

Перечислим свойства, которыми обладает распределение Gumbel-Softmax: 1. Компонента l случайной величины $\gamma^{j,k}$ представима следующим образом:

$$\gamma_l^{j,k} = \frac{\exp(\log s_l^{j,k} + g_l^{j,k})/\lambda_{\text{temp}}}{\sum_{l'=1}^{K^{j,k}} \exp(\log s_{l'}^{j,k} + g_{l'}^{j,k})/\lambda_{\text{temp}}},$$
(1.1)

где $g^{j,k} \sim -\log(-\log \mathcal{U}(0,1)^{K^{j,k}}).$

- 2. Свойство округления: $p(\boldsymbol{\gamma}_{l_1} > \boldsymbol{\gamma}_{l_2}, l_1 \neq l_2 | \mathbf{s}^{j,k}, \lambda_{\text{temp}}) = \frac{s_l^{j,\kappa}}{\sum_{l'} s_{l'}^{j,k}}$.
- 3. При устремлении температуры к нулю плотность случайной величины концентрируется на вершинах симплекса:

$$p(\lim_{\lambda_{\text{temp}}\to 0} \gamma_l^{j,k} = 1 | \mathbf{s}^{j,k}, \lambda_{\text{temp}}) = \frac{s_l}{\sum_{l'} s_{l'}^{j,k}}.$$

4. При устремлении температуры к бесконечности плотность распределения концентрируется в центре симплекса:

$$\lim_{\lambda_{\text{temp}}\to\infty} p(\boldsymbol{\gamma}^{j,k}|\mathbf{s}^{j,k}, \lambda_{\text{temp}}) = \begin{cases} \infty, \boldsymbol{\gamma}^{j,k} = \frac{1}{K^{j,k}}, l \in \{1, \dots, K^{j,k}\}, \\ 0, \text{ иначе.} \end{cases}$$
(1.2)

Доказательства первых трех утверждений приведены в [?]. Докажем утверждение 4.

Доказательство. Формула плотности с точностью до множителя записывается следующим образом:

$$p(\boldsymbol{\gamma}^{j,k}|\mathbf{s}^{j,k}, \lambda_{\text{temp}}) \propto \frac{(\lambda_{\text{temp}})^{K^{j,k}-1}}{\left(\sum_{l=1}^{K^{j,k}} s_l^{j,k} (\boldsymbol{\gamma}_l^{j,k})^{-\frac{K^{j,k}-1}{K^{j,k}} \lambda_{\text{temp}}} \prod_{l'=1}^{K^{j,k}} [l \neq l'] (\boldsymbol{\gamma}_l^{j,k})^{\frac{1}{K^{j,k}} \lambda_{\text{temp}}}\right)^{K^{j,k}}}.$$

$$(1.3)$$

Заметим, что числитель $(\lambda_{\text{temp}})^{K^{j,k}-1}$ имеет меньшую скорость сходимости, чем знаменатель, поэтому для вычисления предела достаточно проанализировать только знаменатель. Знаменатель под степенью $(-K^{j,k})$ представляется суммой слагаемых следующего вида:

$$\left(\frac{\prod_{l'\neq l} \gamma_{l'}^{\frac{1}{K^{j,k}}}}{\gamma_{l}^{\frac{K^{j,k}-1}{K^{j,k}}}}\right)^{\lambda_{\text{temp}}}.$$
(1.4)

Рассмотрим два случая: когда вектор $\boldsymbol{\gamma}^{j,k}$ лежит не в центре симплекса, и когда $\boldsymbol{\gamma}^{j,k}$ лежит в центре симплекса. Пусть хотя бы для одной компоненты l выполнено: $\gamma_l^{j,k} \neq \frac{1}{K^{j,k}}$. Пусть l' соответствует индексу максимальной компоненты вектора $\boldsymbol{\gamma}^{j,k}$:

$$l' = \underset{l \in \{1, \dots, K^{j,k}\}}{\arg \max} \boldsymbol{\gamma}_l^{j,k}.$$

Для l=l' предел выражения (1.4) при $\lambda_{\text{temp}} \to \infty$ стремится к бесконечности. Для $l \neq l'$ предел выражения (1.4) при $\lambda_{\text{temp}} \to \infty$ стремится к нулю. Возводя сумму пределов в степень $(-K^{j,k})$ получаем предел плотности, равный нулю.

Рассмотрим второй случай. Пусть $\gamma_l^{j,k} = \frac{1}{K^{j,k}}$ для всех компонент вектора $\gamma^{j,k}$. Тогда выражение (1.3) с точностью до множителя упрощается до $(\lambda_{\text{temp}})^{K^{j,k}-1}$. Предел данного выражения стремится к бесконечности. Таким образом, предел плотности Gumbel-Softmax равен выражению (1.2), что и требовалось доказать.

Первое свойство Gumbel-Softmax распределения позволяет использовать репараметризацию при вычислении градиента в вариационном выводе (англ. reparametrization trick).

Определение 1. Случайную величину ψ с распределением q с параметрами θ_{ψ} назовем репараметризованной через случайную величину ε , чье распределение не зависит от параметров θ_{ψ} , если:

$$\psi = g(\varepsilon, \boldsymbol{\theta}_{\psi})$$

где g — некоторая непрерывная функция.

Идею репараметризации поясним на следующем примере.

Пример 1. Пусть структура Γ зафиксирована для модели \mathbf{f} . Рассмотрим математическое ожидание логарифма правдоподобия выборки модели по некоторому непрерывному распределению $q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})$:

$$\mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})}\log\ p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma}) = \int_{\mathbf{w}}\log\ p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma})q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})d\mathbf{w}.$$

Продифференцируем данное выражение по параметрам $\theta_{\mathbf{w}}$ вариационного распределения $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$, полагая что оно удовлетворяет необходимым условиям для переноса оператора дифференцирования под знак интеграла:

$$\nabla_{\boldsymbol{\theta}_{\mathbf{w}}} \mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})} \log p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma}) = \int_{\mathbf{w}} \log p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma}) \nabla_{\boldsymbol{\theta}_{\mathbf{w}}} q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}) d\mathbf{w}.$$

Это выражение в общем виде не имеет аналитического решения. Пусть распределение $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ для параметров \mathbf{w} подлежит репараметризации через случайную величину $\boldsymbol{\varepsilon}$:

$$\mathbf{w} = \mathbf{g}(\boldsymbol{\varepsilon}, \boldsymbol{\theta}_{\mathbf{w}}).$$

Тогда справедливо следующее выражение:

$$\nabla_{\boldsymbol{\theta}_{\mathbf{w}}} \mathsf{E}_{q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma}) = \nabla_{\boldsymbol{\theta}_{\mathbf{w}}} \mathsf{E}_{\boldsymbol{\varepsilon}} \log p(\mathbf{y}|\mathbf{X},\mathbf{g}(\boldsymbol{\varepsilon}),\boldsymbol{\Gamma}) =$$

$$= \int_{\boldsymbol{\varepsilon}} \nabla_{\boldsymbol{\theta}_{\mathbf{w}}} \log p(\mathbf{y}|\mathbf{X},\mathbf{g}(\boldsymbol{\varepsilon}),\boldsymbol{\Gamma}) p(\boldsymbol{\varepsilon}) d\boldsymbol{\varepsilon} = \mathsf{E}_{\boldsymbol{\varepsilon}} \nabla_{\boldsymbol{\theta}} \log p(\mathbf{y}|\mathbf{X},\mathbf{g}(\boldsymbol{\varepsilon}),\boldsymbol{\Gamma}).$$

Рис. 1.1. Пример распределения Gumbel-Softmax при различных значениях параметров: а) $\lambda_{\text{temp}} \to 0$, б) $\lambda_{\text{temp}} = 1$, $\mathbf{s} = [1, 1, 1]$, в) $\lambda_{\text{temp}} = 5$, $\mathbf{s} = [1, 1, 1]$, г) $\lambda_{\text{temp}} = 5$, $\mathbf{s} = [10, 0.1, 0.1]$.

Таким образом, распределение, позволяющее произвести репараметризацию, является более удобным для вычисления интегральных оценок вида $\nabla_{\boldsymbol{\theta}_{\mathbf{w}}} \mathsf{E}_{q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma})$, а также позволяет повысить точность приближенного вычисления значений таких функций [?]. Подробный анализ репараметризации для генеративных моделей глубокого обучения представлен в [?].

Пример распределения Gumbel-Softmax при различных параметрах представлен на Рис. 1.1. В качестве альтернативы для априорного распределения структуры выступает распределение Дирихле. В качестве предельного случая, когда все структуры $\Gamma \in \Gamma$ равнозначны, выступает равномерное распределение. Выбор в качестве распределения стрктуры произведения распределений Gumbel-Softmax обоснован выбором этого распределения в качестве вариационного.

Заметим, что предлагаемое априорное распределение неоднозначно: одно и то же распределение можно получить с различными значениями гиперпараметра $\mathbf{A}_l^{j,k}$ и структурного параметра $\gamma_l^{j,k}$. В качестве регуляризатора для матрицы $(\mathbf{A}_l^{j,k})^{-1}$ предлагается использовать обратное гамма-распределение:

$$(\mathbf{A}_l^{j,k})^{-1} \sim \text{inv-gamma}(\lambda_1, \lambda_2),$$

где $\lambda_1, \lambda_2 \in \lambda$ — метапараметры оптимизации. Использование обратного гаммараспределения в качестве распределения гиперпараметров можно найти в [?, ?]. В данной работе обратное распределение выступает как регуляризатор гиперпараметров. Варьированием метапараметров λ_1, λ_2 получается более сильная или более слабая регуляризация [?]. Пример распределений inv-gamma(λ_1, λ_2) для разных значений метапараметров λ_1, λ_2 изображен на Рис. 1.2. Оптимизации без регуляризации соответствует случай предельного распределения $\lim_{\lambda_1, \lambda_2 \to 0}$ inv-gamma(λ_1, λ_2).

Таким образом, предлагаемая вероятностная модель содержит следующие компоненты:

- 1. Параметры ${\bf w}$ модели, распределенные нормально.
- 2. Структура модели Γ , содержащая все структурные параметры $\{\gamma^{j,k}, (j,k) \in E\}$, распределенные по распределению Gumbel-Softmax.

Рис. 1.2. Графики обратных гамма распределений для различных значений метапараметров.

- 3. Гиперпараметры $\mathbf{h} = [\operatorname{diag}(\mathbf{A}), \mathbf{s}]$, где \mathbf{A} конкатенация матриц $\mathbf{A}^{j,k}, (j,k) \in E$, \mathbf{s} конкатенация параметров Gumbel-Softmax распределений $\mathbf{s}^{j,k}, (j,k) \in E$, где E множество ребер, соответствующих графу рассматриваемого параметрического семейства моделей \mathfrak{F} .
- 4. Метапараметры: $\lambda = [\lambda_1, \lambda_2, \lambda_{\text{temp}}]$. Эти параметры не подлежат оптимизации и задаются экспертно.

График вероятностной модели в формате плоских нотаций представлен на Puc. 1.3.

Рис. 1.3. График предлагаемой вероятностной модели в формате плоских нотаций. Переменные обозначены белыми и серыми кругами, константы обозначены обведенными черными кругами. Наблюдаемые переменные обозначены серыми кругами.

1.2. Вариационная оценка обоснованности вероятностной модели

Задача выбора структуры Γ и параметров \mathbf{w} заключается в получении оценок на апостериорное распределение $p(\mathbf{w}, \Gamma | \mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = p(\Gamma | \mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})p(\mathbf{w} | \mathbf{y}, \mathbf{X}, \Gamma, \mathbf{h}, \boldsymbol{\lambda})$. Оно зависит от гиперпараметров \mathbf{h} . В качестве критерия выбора гиперпараметров предлагается использовать апостериорную вероятность гиперпараметров:

$$p(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\lambda}) \propto p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})p(\mathbf{h}|\boldsymbol{\lambda}) \to \max_{\mathbf{h} \in \mathbb{H}}.$$
 (1.5)

Структура модели и параметры модели выбираются на основе полученных значений гиперпараметров:

$$\mathbf{w}^*, \mathbf{\Gamma}^* = \operatorname*{arg\,max}_{\mathbf{w} \in \mathbb{W}, \mathbf{\Gamma} \in \mathbb{F}} p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{y}, \mathbf{X}, \mathbf{h}^*, \boldsymbol{\lambda}),$$

где \mathbf{h}^* — решение задачи оптимизации (1.5).

Для вычисления обоснованности модели

$$p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \iint_{\mathbf{\Gamma}, \mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) d\mathbf{\Gamma} d\mathbf{w}$$

из (1.5) предлагается использовать нижнюю вариационную оценку обоснованности.

Теорема 1. Пусть $q(\mathbf{w}, \Gamma | \boldsymbol{\theta}) = q_{\mathbf{w}}(\mathbf{w} | \Gamma, \boldsymbol{\theta}_{\mathbf{w}}) q_{\Gamma}(\Gamma | \boldsymbol{\theta}_{\Gamma})$ — вариационное распределение с параметрами $\boldsymbol{\theta} = [\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\theta}_{\Gamma}]$, аппроксимирующее апостериорное распределение структуры и параметров:

$$q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}) \approx p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}),$$
$$q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) \approx p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}),$$
$$q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}}) \approx p(\mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}).$$

Тогда справедлива следующая оценка:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) \ge$$

$$\mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathsf{KL}} (q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}) || p(\boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) -$$
(1.6)

$$-D_{\mathrm{KL}}(q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})||p(\mathbf{1}|\mathbf{h},\boldsymbol{\lambda})) - D_{\mathrm{KL}}(q_{\mathbf{\Gamma}}(\mathbf{1}|\boldsymbol{\theta}_{\mathbf{\Gamma}})||p(\mathbf{1}|\mathbf{h},\boldsymbol{\lambda})) - D_{\mathrm{KL}}(q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})||p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda})),$$

где $D_{\mathrm{KL}} \big(q_{\mathbf{w}}(\mathbf{w} | \mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) || p(\mathbf{w} | \mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) \big)$ вычисляется по формуле условной дивергенции [?]:

$$D_{\mathrm{KL}}\big(q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})||p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h},\boldsymbol{\lambda})\big) = \mathsf{E}_{\boldsymbol{\Gamma} \sim q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})} \log \left(\frac{q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})}{p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h},\boldsymbol{\lambda})}\right).$$

Доказательство. Перепишем обоснованность:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \log \iint_{\boldsymbol{\Gamma}, \mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) p(\boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) d\boldsymbol{\Gamma} d\mathbf{w} =$$

$$= \log \iint_{\boldsymbol{\Gamma}, \mathbf{w}} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \frac{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})}{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} d\boldsymbol{\Gamma} d\mathbf{w} =$$

$$= \log \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})}{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})}.$$

Используя неравенство Йенсена получим

$$\log \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})}{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \ge \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})}{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} =$$

$$= \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$

Декомпозируем распределение q по свойству условной дивергенции:

$$D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) =$$

$$= D_{\mathrm{KL}}(q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})||p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) + \mathsf{E}_{\mathbf{\Gamma} \sim q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})} \log \left(\frac{q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}{p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})}\right). \quad (1.7)$$

В качестве вариационного распределения $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ предлагается использовать нормальное распределение, не зависящее от структуры модели $\mathbf{\Gamma}$:

$$q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) \sim \mathcal{N}(\boldsymbol{\mu}_q, \mathbf{A}_q),$$

где \mathbf{A}_q — диагональная матрица с диагональю \boldsymbol{lpha}_q .

В качестве вариационного распределения $q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})$ предлагается использовать произведение распределений Gumbel-Softmax. Конкатенацию параметров концентрации распределений обозначим \mathbf{s}_q . Его температуру, общую для всех структурных параметров $\gamma \in \Gamma$, обозначим θ_{temp} . Вариационными параметрами распределения $q(\mathbf{w}, \Gamma|\boldsymbol{\theta})$ являются параметры распределений $q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}), q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})$:

$$oldsymbol{ heta} = [oldsymbol{\mu}_q, oldsymbol{lpha}_q, \mathbf{s}_q, heta_{ ext{temp}}].$$

График вероятностной вариационной модели в формате плоских нотаций представлен на Рис. 1.4. Для анализа сложности полученной модели введем понятие *параметрической сложности*.

Определение 2. Параметрической сложностью $C_p(\theta|U_{\mathbf{h}}, \lambda)$ модели с вариационными параметрами θ на компакте $U_{\mathbf{h}} \subset \mathbb{H}$ назовем минимальную дивергенцию между вариационным и априорным распределением:

$$C_p(\boldsymbol{\theta}|U_{\mathbf{h}}, \boldsymbol{\lambda}) = \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$

Рис. 1.4. График предлагаемой вероятностной вариационной модели в формате плоских нотаций. Переменные обозначены белыми и серыми кругами, константы обозначены обведенными черными кругами. Вариационное распределение обозначено черным кругом. Наблюдаемые переменные обозначены серыми кругами.

Параметрическая сложность модели соответствует минимальной по $\mathbf{h} \in U_{\mathbf{h}}$ ожидаемой длине описания параметров модели при условии заданного параметрического априорного распределения [?].

Одним из критериев удаления неинформативных параметров в вероятностных моделях является отношение вариационной плотности параметров в моде распределения к вариационной плотности параметра в нуле [?]:

$$\frac{q_{\mathbf{w}}(w = \mu_q | \mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(w = 0 | \mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})} = \exp\left(-\frac{2\alpha_q^2}{\mu_q^2}\right),$$

где параметру модели w соответствуют вариационные параметры μ_q, α_q : $q_{\mathbf{w}}(w|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) \sim \mathcal{N}(\mu_q, \alpha_q)$.

Обобщим понятие относительной вариационной плотности на случай произвольных непрерывных распределений.

Определение 3. Относительной вариационной плотностью параметра $w \in \mathbf{w}$ при условии структуры Γ и гиперпараметров \mathbf{h} назовем отношение вариационной плотности в моде вариационного распределения параметра к вариационной плотности в моде априорного распределения параметра:

$$\rho(w|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \lambda) = \frac{q_{\mathbf{w}}(\text{mode } q_{\mathbf{w}}(w|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\text{mode } p(w|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}.$$

Относительной вариационной плотностью вектора параметров ${\bf w}$ назовем следующее выражение:

$$\rho(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda}) = \prod_{w \in \mathbf{w}} \rho(w|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda}).$$

Сформулируем и докажем теорему о связи относительной плотности и параметрической сложности модели. Предварительно докажем две вспомогательные леммы.

Лемма 1. Пусть

- 1. Заданы компактные множества $U_{\mathbf{h}} \subset \mathbb{H}, U_{\boldsymbol{\theta}_{\mathbf{w}}} \subset \mathbb{O}_{\mathbf{w}}, U_{\boldsymbol{\theta}_{\Gamma}} \subset \mathbb{O}_{\Gamma}$.
- 2. Вариационное распределение $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ является абсолютно непрерывным и унимодальным на $U_{\boldsymbol{\theta}}$. Его мода и матожидание совпадают:

mode
$$q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) = \mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}\mathbf{w}.$$

3. Априорное распределение $p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})$ является абсолютно непрерывным и унимодальным на $U_{\mathbf{h}}$. Его мода и матожидание совпадают и не зависит от гиперпараметров \mathbf{h} на $U_{\mathbf{h}}$ и структуры $\mathbf{\Gamma}$ на $U_{\boldsymbol{\theta}_{\mathbf{\Gamma}}}$:

$$\mathsf{E}_{p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda})} \mathbf{w} = \mathrm{mode} \ p(\mathbf{w}|\mathbf{\Gamma}_1,\mathbf{h}_1,\boldsymbol{\lambda}) = \mathrm{mode} \ p(\mathbf{w}|\mathbf{\Gamma}_1,\mathbf{h}_2,\boldsymbol{\lambda}) = \mathbf{m}$$

для любых $\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}, \Gamma_1, \Gamma_2 \in U_{\Gamma}$.

4. Параметры модели **w** имеют конечные вторые моменты по маргинальным распределениям:

$$\int_{\Gamma} q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) q_{\mathbf{w}}(\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}) d\Gamma, \quad \int_{\Gamma} q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda}) d\Gamma.$$

- 5. Вариационное распределение $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ является липшецевым по \mathbf{w} .
- 6. Значение $q_{\mathbf{w}}(\mathbf{m}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ не равно нулю при $\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}$. Тогда

$$\begin{split} \left| \mathsf{E}_{q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})} \rho(\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}, \mathbf{h}, \boldsymbol{\lambda}) - 1 \right| \leq \\ \leq \frac{C_{l}}{\min_{\boldsymbol{\theta}_{\mathbf{w}} \in U_{\boldsymbol{\theta}}} q_{\mathbf{w}}(\mathbf{m}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})} \iint_{\boldsymbol{\Gamma}, \mathbf{w}} |\mathbf{w}| |q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) |q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}) d\mathbf{w} d\boldsymbol{\Gamma}, \end{split}$$

где C_l — максимальная константа Липшица для $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ на $U_{\boldsymbol{\theta}}$.

Доказательство. Для произвольного $m{ heta} = [m{ heta_w}, m{ heta_\Gamma}]$ рассмотрим выражение:

$$\left|\mathsf{E}_{q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})}\rho(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}},\mathbf{h},\boldsymbol{\lambda})-1\right| =$$

$$\left| \int_{\Gamma} \left(\frac{q_{\mathbf{w}}(\text{mode } q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\text{mode } p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda})|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})} \right) q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) d\Gamma - 1 \right| =$$

представляя единицу как дробь с равными знаменателем и числителем

$$= \left| \int_{\Gamma} \left(\frac{q_{\mathbf{w}}(\text{mode } q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\text{mode } p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda})|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})} - \frac{q_{\mathbf{w}}(\text{mode } p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda})|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\text{mode } p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda})|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})} \right) q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) d\Gamma \right| = 0$$

заменяя моду на матожидание (по условию теоремы)

$$= \left| \int_{\Gamma} \left(\frac{q_{\mathbf{w}}(\mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\mathbf{m}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})} - \frac{q_{\mathbf{w}}(\mathsf{E}_{p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})}\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\mathbf{m}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}})} \right) q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) d\Gamma \right| \leq$$

занося модуль под знак интеграла

$$\leq \int_{\boldsymbol{\Gamma}} \left| \frac{q_{\mathbf{w}}(\mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})}\mathbf{w})|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\mathbf{m}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})} - \frac{q_{\mathbf{w}}(\mathsf{E}_{p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h},\boldsymbol{\lambda})}\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\mathbf{m}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})} q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})d\boldsymbol{\Gamma} \right| \leq$$

используя липшецевость функции $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$

$$\frac{C_l}{\min_{\boldsymbol{\theta}_{\mathbf{w}} \in U_{\boldsymbol{\theta}}} q_{\mathbf{w}}(\mathbf{m}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})} \int_{\boldsymbol{\Gamma}} |\mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})} \mathbf{w} - \mathsf{E}_{p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})} \mathbf{w} | q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}) d\boldsymbol{\Gamma} \leq$$

расписывая матожидание через интеграл

$$\leq \frac{C_l}{\min_{\boldsymbol{\theta_{\mathbf{w}}} \in U_{\boldsymbol{\theta}}} q_{\mathbf{w}}(\mathbf{m}|\boldsymbol{\Gamma}, \boldsymbol{\theta_{\mathbf{w}}})} \iint_{\boldsymbol{\Gamma}, \mathbf{w}} |\mathbf{w}| \cdot |q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta_{\mathbf{w}}}) - p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) |q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta_{\boldsymbol{\Gamma}}}) d\mathbf{w} d\boldsymbol{\Gamma},$$

Лемма 2. Пусть

- 1. Вариационное распределение $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ и априорное распределение $p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})$ являются абсолютно непрерывными.
- 2. Решение задачи

$$\mathbf{h}^* = \arg\min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}))$$
(1.8)

единственно для любого $\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}$.

3. Задана бесконечная последовательность векторов вариационных параметров $\boldsymbol{\theta}[1], \boldsymbol{\theta}[2], \dots, \boldsymbol{\theta}[i], \dots \in U_{\boldsymbol{\theta}}$, такая что $\lim_{i \to \infty} C_p(\boldsymbol{\theta}[i]|U_{\mathbf{h}}, \boldsymbol{\lambda}) = 0$. Тогда следующее выражение стремится к нулю:

$$\iint_{\mathbf{w},\mathbf{\Gamma}} |p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h}[i],\boldsymbol{\lambda}) - q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}[i])|q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}}[i])d\mathbf{\Gamma}d\mathbf{w},$$

где
$$m{ heta}[i] = [m{ heta_w}[i], m{ heta_\Gamma}[i]]$$
 , $\mathbf{h}[i]$ — решение задачи (1.8) для $m{ heta}[i]$.

Доказательство. Воспользуемся неравенством Пинскера:

$$||F_q((\boldsymbol{\theta}_{\mathbf{w}})_i) - F_p(\mathbf{h}_i)||_{\text{TV}} \leq \sqrt{\frac{1}{2}\widehat{\text{KL}}\left(p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})||q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})\right)},$$

где $||\cdot||_{\text{TV}}$ — расстояние по вариации, F_q, F_p — функции распределения $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}), p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}), \ \widehat{\text{KL}}\left(p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})||q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})\right)$ — дивергенция при фиксированной структуре $\mathbf{\Gamma}$:

$$\int_{\mathbf{w}} q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) \log \left(\frac{q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}{p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})} \right) d\mathbf{w}.$$

По условию дивергенция (1.7) стремится к нулю при $i \to \infty$. Она декомпозируется на два неотрицательных слагаемых, поэтому оба они стремятся к нулю. Рассмотрим второе слагаемое:

$$0 = \lim_{i \to \infty} \mathsf{E}_{\mathbf{\Gamma} \sim q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}}[i])} \mathsf{E}_{\mathbf{w} \sim q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}[i])} \log \left(\frac{q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}[i])}{p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h}[i],\boldsymbol{\lambda})} \right) =$$

расписывая матожидание как интеграл

$$\lim_{i\to\infty}\left|\int_{\boldsymbol{\Gamma}}\int_{\mathbf{w}}\log\left(\frac{q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}[i])}{p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h}[i],\boldsymbol{\lambda})}\right)q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}[i])q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}[i])d\mathbf{w}d\boldsymbol{\Gamma}\right|\geq$$

по неравенству Пинскера

$$\geq \lim_{i\to\infty} \int_{\Gamma} ||F_q(\boldsymbol{\theta}_{\mathbf{w}}[i]) - F_p(\mathbf{h}_i)||_{\mathrm{TV}}^2 q_{\Gamma}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\Gamma}[i]) d\Gamma \geq 0.$$

Отсюда

$$\lim_{i\to\infty} \int_{\Gamma} ||F_q(\boldsymbol{\theta}_{\mathbf{w}}[i]) - F_p(\mathbf{h}_i)||_{\mathrm{TV}}^2 q_{\Gamma}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\Gamma}[i]) d\boldsymbol{\Gamma} = 0.$$

По неравенству Йенсена

$$0 \le \left(\int_{\Gamma} ||F_q(\boldsymbol{\theta}_{\mathbf{w}}[i]) - F_p(\mathbf{h}_i)||_{\text{TV}} q_{\Gamma}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\Gamma}[i]) d\boldsymbol{\Gamma} \right)^2 \le$$

$$\int_{\Gamma} ||F_q(\boldsymbol{\theta}_{\mathbf{w}}[i]) - F_p(\mathbf{h}_i)||_{\text{TV}}^2 q_{\Gamma}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\Gamma}[i]) d\boldsymbol{\Gamma}.$$

Тогда по свойству степени предела

$$\lim_{i\to\infty}\int_{\Gamma}||F_q(\boldsymbol{\theta}_{\mathbf{w}}[i]) - F_p(\mathbf{h}_i)||_{\mathrm{TV}}q_{\Gamma}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\Gamma}[i])d\boldsymbol{\Gamma} = 0.$$

По теореме Шеффе данное выражение можно переписать как:

$$\lim_{i \to \infty} \frac{1}{2} \iint_{\mathbf{w}, \mathbf{\Gamma}} |p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}[i], \boldsymbol{\lambda}) - q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}[i])| q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}}[i]) d\mathbf{\Gamma} d\mathbf{w} = 0, \quad (1.9)$$

что и требовалось доказать.

Теорема 2. Пусть выполнены условия Леммы 1 и Леммы 2. Тогда справедливо следующее выражение:

$$\lim_{i\to\infty}\mathsf{E}_{q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}[i])}\rho(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}[i],\mathbf{h}[i],\boldsymbol{\lambda})=1.$$

Доказательство. По Лемме 2

$$\mathsf{E}_{q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})}\rho(\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}},\mathbf{h},\boldsymbol{\lambda}) \leq$$

$$\leq \frac{C_l}{\min_{\boldsymbol{\theta}_{\mathbf{w}} \in U_{\boldsymbol{\theta}}} q_{\mathbf{w}}(\mathbf{m}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})} \iint_{\boldsymbol{\Gamma}, \mathbf{w}} |\mathbf{w}| \cdot |q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) |q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}) d\mathbf{w} d\boldsymbol{\Gamma}.$$

Докажем что величина

$$\iint_{\Gamma \mathbf{w}} |\mathbf{w}| \cdot |q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda})|q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) d\mathbf{w} d\Gamma$$

стремится к нулю. Определим случайную величину ${m
u}(t), t \geq 0$ следующим образом:

$$\boldsymbol{\nu}(t) = \max(-t \cdot \mathbf{1}, \min(t \cdot \mathbf{1}, \mathbf{w})).$$

Данная величина совпадает с **w** при $|\mathbf{w}| < t$ и принимает значение t или -t при $|\mathbf{w}| \ge t$. Тогда для любого t > 0 справедливо:

$$\iint_{\Gamma,\mathbf{w}} |\mathbf{w}| \cdot |q_{\mathbf{w}}(\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})|q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})d\mathbf{w}d\Gamma \le$$

по неравенству треугольника и используя выражение $\mathbf{w} = \mathbf{w} + \boldsymbol{\nu}(t) - \boldsymbol{\nu}(t)$

$$\leq \iint_{\Gamma,\mathbf{w}} |\mathbf{w} - \boldsymbol{\nu}(t)| \cdot |p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) - q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})|q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})d\mathbf{w}d\Gamma + \qquad (1.10)$$

$$+ \iint_{\Gamma_{\mathbf{w}}} |\boldsymbol{\nu}(t)| \cdot |q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})|q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}) d\mathbf{w} d\boldsymbol{\Gamma}.$$

Рассмотрим первое слагаемое суммы (1.10). Т.к. вторые моменты $\mathsf{E}_{q_{\Gamma}(\Gamma|\theta_{\Gamma})}\mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\Gamma,\theta_{\mathbf{w}})}\mathbf{w}^2, \mathsf{E}_{q_{\Gamma}(\Gamma|\theta_{\Gamma})}\mathsf{E}_{p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})}\mathbf{w}^2$ конечны, то случайная величина \mathbf{w} равномерно интегрируема как при маргинальном распределении $\int_{\Gamma}q_{\Gamma}(\Gamma|\theta_{\Gamma})q_{\mathbf{w}}(\mathbf{w}|\Gamma,\theta_{\mathbf{w}})d\Gamma$, так и при маргинальном распределении $\int_{\Gamma}q_{\Gamma}(\Gamma|\theta_{\Gamma})p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})d\Gamma$. По определению равномерной интегрируемости для \mathbf{w} для любого числа ε существует число t_0 , такое что для любого $t \geq t_0$, любого $\mathbf{h} \in U_{\mathbf{h}}, \boldsymbol{\theta} \in U_{\boldsymbol{\theta}}$, справедливо выражение:

$$\mathsf{E}_{q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})}\mathsf{E}_{q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})}|\mathbf{w}-\boldsymbol{\nu}(t)| = \iint_{\mathbf{w},\boldsymbol{\Gamma}} |\mathbf{w}-\boldsymbol{\nu}(t)|q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})d\mathbf{w}d\boldsymbol{\Gamma} \leq \varepsilon,$$

$$\mathsf{E}_{q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})}\mathsf{E}_{p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})}|\mathbf{w}-\boldsymbol{\nu}(t)| = \iint_{\mathbf{w},\Gamma} |\mathbf{w}-\boldsymbol{\nu}(t)|p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda})q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})d\mathbf{w}d\Gamma \leq \varepsilon.$$

Тогда

$$\iint_{\Gamma_{\mathbf{w}}} |\mathbf{w} - \boldsymbol{\nu}(t)| \cdot |p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) - q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})| d\mathbf{w} d\Gamma \le$$

так как модуль разностей меньше или равен суммы модулей

$$\iint_{\Gamma,\mathbf{w}} |\mathbf{w} - \boldsymbol{\nu}(t)| p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) + \iint_{\Gamma,\mathbf{w}} |\mathbf{w} - \boldsymbol{\nu}(t)| q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}) d\Gamma d\mathbf{w} < 2\varepsilon$$

для любого $t \geq t_0$. Обозначим за $\varepsilon(t)$ минимальное число ε , удовлетворяющее предыдущим неравенствам. Тогда

$$\iint_{\Gamma, \mathbf{w}} |\mathbf{w} - \boldsymbol{\nu}(t)| \cdot |p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda}) - q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})| d\mathbf{w} d\Gamma \le 2\varepsilon(t),$$

где $\lim_{t\to\infty} \varepsilon(t) = 0$.

Рассмотрим второе слагаемое.

$$\iint_{\Gamma_{\mathbf{w}}} |\boldsymbol{\nu}(t)| \cdot |q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})| d\mathbf{w} d\boldsymbol{\Gamma} \le$$

по ограниченности функции $\boldsymbol{\nu}(t)$

$$\leq t \iint_{\Gamma, \mathbf{w}} |q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda})|q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) d\mathbf{w} d\Gamma.$$

Переходя к пределу в (1.10) получим:

$$\lim_{i \to \infty} \iint_{\Gamma_{\mathbf{w}}} |\mathbf{w}| \cdot |q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}}) - p(\mathbf{w}|\Gamma, \mathbf{h}_{i}, \boldsymbol{\lambda})|q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}[i]) d\mathbf{w} d\Gamma =$$

добавим предел по t, от которого не зависит данное выражение

$$=\lim_{t\to\infty}\lim_{i\to\infty}\iint_{\Gamma,\mathbf{w}}|\mathbf{w}|\cdot|q_{\mathbf{w}}(\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}[i])-p(\mathbf{w}|\Gamma,\mathbf{h}[i],\boldsymbol{\lambda})|q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}[i])d\mathbf{w}d\Gamma\leq$$

из выше написанных неравенств

$$\lim_{t\to\infty}\lim_{i\to\infty}\iint_{\Gamma,\mathbf{w}}|\mathbf{w}-\boldsymbol{\nu}(t)|\cdot|p(\mathbf{w}|\Gamma,\mathbf{h}[i],\boldsymbol{\lambda})-q_{\mathbf{w}}(\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}[i])|d\mathbf{w}d\Gamma+$$

$$+\iint_{\Gamma,\mathbf{w}}|\boldsymbol{\nu}(t)|\cdot|q_{\mathbf{w}}(\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}[i])-p(\mathbf{w}|\Gamma,\mathbf{h}[i],\boldsymbol{\lambda})|q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}[i])d\mathbf{w}d\Gamma\leq$$

$$\lim_{t\to\infty}2\varepsilon(t)+\lim_{t\to\infty}\lim_{i\to\infty}t\iint_{\Gamma,\mathbf{w}}|q_{\mathbf{w}}(\mathbf{w}|\Gamma,\boldsymbol{\theta}_{\mathbf{w}}[i])-p(\mathbf{w}|\Gamma,\mathbf{h}_{i},\boldsymbol{\lambda})q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}[i])=0.$$

Последнее равенство следует из Леммы 2. Таким образом выражение

$$\left| \int_{\Gamma} \frac{q_{\mathbf{w}}(\text{mode}q_{\mathbf{w}}(\mathbf{w}|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})}{q_{\mathbf{w}}(\text{mode}p(\mathbf{w}|\Gamma, \mathbf{h}, \boldsymbol{\lambda})|\Gamma, \boldsymbol{\theta}_{\mathbf{w}})} q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma}) d\Gamma \right|$$

стремится к единице, что и требовалось доказать.

Теорема утверждает, что при устремлении параметрической сложности модели к нулю, все параметры \mathbf{w} модели подлежат удалению в среднем по всем возможным значениям структуры $\mathbf{\Gamma}$ модели. Заметим, что теорема применима для случая, когда последовательность вариационных распределений $q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta})$ не имеет предела. Так, в случае, если структура $\mathbf{\Gamma}$ определена однозначно, последовательность $\boldsymbol{\theta}_i$ может являться последовательностью нормальных распределений, чье матожидание стремится к нулю:

$$oldsymbol{ heta}_i \sim \mathcal{N}(oldsymbol{\mu}_q[i], \mathbf{A}_q^{-1}[i]), oldsymbol{\mu}_q[i]
ightarrow \mathbf{0}.$$

Априорным распределением $p(\mathbf{w}, \Gamma | \mathbf{h}, \lambda) = p(\mathbf{w} | \Gamma, \mathbf{h}, \lambda)$ при этом может являться семейство нормальных распределений с нулевым средним:

$$p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) = \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}).$$

При этом сама последовательность распределений $\boldsymbol{\theta}[i]$ не обязана иметь предел.

1.3. Обобщающая задача

В данном разделе проводится анализ основных критериев выбора моделей, а также предлагается их обобщение на случай моделей, испольюзующих вариационное распределение $q(\mathbf{w}, \Gamma | \boldsymbol{\theta})$ для аппроксимации неизвестного апостериорного распределения параметров $p(\mathbf{w}, \Gamma | \mathbf{h}, \boldsymbol{\lambda})$.

Рассмотрим основные статистические критерии выбора вероятностных моделей.

1. Критерий максимального правдоподобия:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) \to \max_{\mathbf{w} \in U_{\mathbf{w}}, \mathbf{\Gamma} \in U_{\mathbf{\Gamma}}}.$$

Для использования данного критерия в качестве задачи выбора модели предлагается следующее обобщение:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}). \tag{1.11}$$

Данное обобщение (1.11) эквивалентно критерию правдоподобия при выборе в качестве $q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})$ эмпирического распределения параметров и структуры. Метод не предполагает оптимизации гиперпараметров \mathbf{h} . Для формального соответствия данной задачи задаче выбора модели (??), т.е. двухуровневой задачи оптимизации, положим $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) \to \max_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}},$$

$$Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) \to \max_{\mathbf{h} \in U_{\mathbf{h}}}.$$

2. Метод максимальной апостериорной вероятности.

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \to \max_{\mathbf{w} \in U_{\mathbf{w}}, \mathbf{\Gamma} \in U_{\mathbf{\Gamma}}}.$$

Аналогично предыдущему методу сформулируем вариационное обобщение данной задачи:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) =$$
 (1.12)

$$= \mathsf{E}_{q(\mathbf{w}, \Gamma | \boldsymbol{\theta})} \big(\log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) + \log p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big).$$

Т.к. в рамках данной задачи (1.12) не предполагается оптимизации гиперпараметров \mathbf{h} , положим параметры распределения $p(\mathbf{w}, \Gamma | \mathbf{h}, \lambda)$ фиксированными:

$$\lambda = [\lambda_1, \lambda_2, \lambda_{\text{temp}}, \mathbf{s}, \text{diag}(\mathbf{A})].$$

3. Полный перебор структуры:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}) = p'|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma})$$
(1.13)

где p' — некоторое распределение на структуре Γ , выступающее в качестве метапараметра.

4. Критерий Акаике:

$$AIC = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) + |\mathbf{W}|.$$

Т.к. все рассматриваемые модели принадлежат одному параметрическому семейству моделей \mathfrak{F} , то количество параметров у всех рассматриваемых моделей совпадает. Тогда критерий Акаике совпадает с критерием максимального правдоподобия. Для использования критерия Акаике для сравнения моделей, принадлежащих одному параметрическому семейству \mathfrak{F} предлагается следующая переформулировка:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) -$$
(1.14)

 $-|\{w: D_{\mathrm{KL}}\big(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})\big) < \lambda_{\mathrm{prune}}\}|,$

где

$$\mathbf{h} = \underset{\mathbf{h}' \in U_{\mathbf{h}}}{\operatorname{arg\,min}} D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})), \tag{1.15}$$

 λ_{prune} — метапараметр алгоритма, $U_{\mathbf{h}} \subset \mathbb{H}$ — область определения задачи по гиперпараметрам. Предложенное обобщение (1.14) применимо только в случае, если выражение (1.15) определено однозначно, т.е. существует единственный вектор гиперпараметров $\mathbf{h} \in U_{\mathbf{h}}$, доставляющий минимум дивергенции $D_{\text{KL}}(q(\mathbf{w}, \Gamma | \boldsymbol{\theta}) || p(\mathbf{w}, \Gamma | \mathbf{h}, \boldsymbol{\lambda}))$.

5. Информационный критерий Шварца:

BIC =
$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - 0.5 \log(m)|\mathbf{W}|$$
.

Переформулируем данный критерий аналогично критерию AIC:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) =$$
(1.16)

 $\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - \log m |\{w : D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) < \lambda_{\mathrm{prune}}\}|,$ метапараметр λ_{prune} определен аналогично (1.15).

6. Метод вариационной оценки обоснованности:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \tag{1.17}$$

$$= \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) + \log p(\mathbf{h}|\boldsymbol{\lambda}) \to \max_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}},$$

$$Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda}) =$$

$$\mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) | | p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big) + \log p(\mathbf{h} | \boldsymbol{\lambda}) \rightarrow \max_{\mathbf{h} \in U_{\mathbf{h}}},$$

В рамках данной задачи функции $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ и $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ совпадают, все гиперпараметры \mathbf{h} подлежат оптимизации.

7. Валидация на отложенной выборке:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}_{\text{train}}|\mathbf{X}_{\text{train}}, \mathbf{w}, \boldsymbol{\Gamma}) + \log p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \to \max_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}},$$

$$Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{X}_{\text{test}}|\mathbf{y}_{\text{test}}, \mathbf{w}, \boldsymbol{\Gamma}) \to \max_{\mathbf{h} \in U_{\mathbf{h}}},$$

$$(1.18)$$

где $(\mathbf{X}_{train}, \mathbf{y}_{train}), (\mathbf{X}_{test}, \mathbf{y}_{test})$ — разбиение выборки на обучающую и контрольную подвыборку. В рамках данной задачи, все гиперпараметры \mathbf{h} подлежат оптимизации.

Каждый из рассмотренных критериев удовлетворяет хотя бы одному из перечисленных свойств:

- 1) модель, оптимизируемая согласно критерию, доставляет максимум правдоподобия выборки;
- 2) модель, оптимизируемая согласно критерию, доставляет максимум оценки обоснованности;
- 3) для моделей, доставляющих сопоставимые значения правдоподобия выборки, выбирается модель с меньшим количеством информативных параметров.
- 4) критерий позволяет производить перебор структур для отбора наилуч-ших.

Формализуем рассмотренные критерии. Оптимизационную задачу, которая удовлетворяет всем перечисленным свойствам при некоторых значинях метапараметров, будет называть обобщающей.

Определение 4. Двухуровневую задачу оптимизации будем называть *обобща-ющей* на компакте

$$U = U_{\theta_{\mathbf{w}}} \times U_{\theta_{\Gamma}} \times U_{\mathbf{h}} \times U_{\lambda} \subset \mathbb{O}_{\mathbf{w}} \times \mathbb{O}_{\Gamma} \times \mathbb{H} \times \lambda,$$

если она удовлетворяет следующим критериям.

- 1. Область определения каждого параметра $w \in \mathbf{w}$, гиперпараметра $h \in \mathbf{h}$ и метапараметра $\lambda \in \lambda$ не является пустым множеством и не является точкой.
- 2. Для каждого значения гиперпараметров ${\bf h}$ оптимальное решение нижней (\ref{hem}) задачи оптимизации

$$\boldsymbol{\theta}^*(\mathbf{h}) = \underset{\boldsymbol{\theta} \in \mathbb{B}}{\operatorname{arg max}} L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$$

определено однозначно при любых значениях метапараметров $\lambda \in U_{\lambda}$.

3. Критерий максимизации правдоподобия выборки: существует $\lambda \in U_{\lambda}$ и $K_1 > 0$,

$$K_1 < \max_{\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}} Q(\mathbf{h}_1 | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_1), \boldsymbol{\lambda}) - Q(\mathbf{h}_2 | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_2), \boldsymbol{\lambda}),$$

такие что для любых векторов гиперпараметров $\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}$, удовлетворяющих неравенству

$$Q(\mathbf{h}_1|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_1), \boldsymbol{\lambda}) - Q(\mathbf{h}_2|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_2), \boldsymbol{\lambda}) > K_1,$$

выполняется неравенство

$$\mathsf{E}_{q(\mathbf{w},\mathbf{\Gamma}|\boldsymbol{\theta}^*(\mathbf{h}_1))}\log p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma}) > \mathsf{E}_{q(\mathbf{w},\mathbf{\Gamma}|\boldsymbol{\theta}^*(\mathbf{h}_2))}\log p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma}).$$

4. Критерий минимизации параметрической сложности: существует $\lambda \in U_{\lambda}$ и $K_2 > 0$,

$$K_2 < \max_{\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}} Q(\mathbf{h}_1 | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_1), \boldsymbol{\lambda}) - Q(\mathbf{h}_2 | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_2), \boldsymbol{\lambda}),$$

такие что для любых векторов гиперпараметров $\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}$, удовлетворяющих неравенству

$$Q(\mathbf{h}_1|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_1), \boldsymbol{\lambda}) - Q(\mathbf{h}_2|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}_2), \boldsymbol{\lambda}) > K_2,$$

параметрическая сложность первой модели меньше, чем второй:

$$C_p(\boldsymbol{\theta}^*(\mathbf{h}_1)|U_{\mathbf{h}},\boldsymbol{\lambda}) < C_p(\boldsymbol{\theta}^*(h_2)|U_{\mathbf{h}},\boldsymbol{\lambda}).$$

5. Критерий приближения оценки обоснованности: существует значение гиперпараметров λ , такое что значение функций потерь $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ как сложной функции от $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ пропорционально вариационной оценки обоснованности модели:

$$Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}^*(\mathbf{h}), \boldsymbol{\lambda}) \propto$$

 $\propto \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}'(\mathbf{h}))} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - D_{\mathrm{KL}} \big(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}'(\mathbf{h})) || p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \big) + \log p(\mathbf{h}|\boldsymbol{\lambda})$ для всех $\mathbf{h} \in U_{\mathbf{h}}$, где в качестве гиперпараметров \mathbf{h} рассматриваются все гиперпараметры модели, вне зависимости от критерия и особенность его оптимизации гиперпараметров:

$$\mathbf{h} = [\mathbf{A}, \mathbf{s}],$$

где

$$\boldsymbol{\theta}'(\mathbf{h}) = \operatorname*{arg\,max}_{\boldsymbol{\theta} \in U_{\mathbf{h}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) | | p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})).$$

6. Критерий перебора оптимальных структур: существует константа $K_3 > 0$, такая что существует хотя бы одна пара гиперпараметров $\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}$, удовлетворяющая неравенствам:

$$D_{\mathrm{KL}}(p(\Gamma|\mathbf{h}_{1},\boldsymbol{\lambda})||p(\Gamma|\mathbf{h}_{2},\boldsymbol{\lambda})) > K_{3}, D_{\mathrm{KL}}(p(\Gamma|\mathbf{h}_{2},\boldsymbol{\lambda})||p(\Gamma|\mathbf{h}_{1},\boldsymbol{\lambda})) > K_{3}$$

и набор метапараметров λ , такие что для произвольных локальных оптимумов $\mathbf{h}_1, \mathbf{h}_2$ задачи оптимизации $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$, полученных при метапараметрах $\boldsymbol{\lambda}$ и удовлетворяющих неравенствам

$$D_{\mathrm{KL}}(p(\mathbf{\Gamma}|\mathbf{h}_{1},\boldsymbol{\lambda})||p(\mathbf{\Gamma}|\mathbf{h}_{2},\boldsymbol{\lambda})) > K_{3}, D_{\mathrm{KL}}(p(\mathbf{\Gamma}|\mathbf{h}_{2},\boldsymbol{\lambda})||p(\mathbf{\Gamma}|\mathbf{h}_{1},\boldsymbol{\lambda})) > K_{3},$$
$$Q(\mathbf{h}_{1}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda}) > Q(\mathbf{h}_{2}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda}),$$

существует значение метапараметров $\lambda' \neq \lambda$, такие что

- (a) соответствие между вариационными параметрами $\boldsymbol{\theta}^*(\mathbf{h}_1), \boldsymbol{\theta}^*(\mathbf{h}_2)$ сохраняется при $\boldsymbol{\lambda}',$
- (b) выполняется неравенство $Q(\mathbf{h}_1|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda}) < Q(\mathbf{h}_2|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda})$ при $\boldsymbol{\lambda}'$.
- 7. Критерий нерперывности: функции $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ и $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ непрерывны по метапараметрам $\boldsymbol{\lambda} \in U_{\boldsymbol{\lambda}}$.

Первый критерий является техническим и используется для исключения из рассмотрения вырожденных задач оптимизации. Второй критерий говорит о том, что решение первого и второго уровня должны быть согласованы и определены однозначно. Критерии 3-5 определяют возможные критерии оптимизации, которые должны приближаться обобщающей задачей. Критерий 6 говорит о возможности перехода между различными структурами модели. Данный

критерий говорит о том, что мы можем перейти от одного набора гиперпараметров ${\bf h}_1$ к другим ${\bf h}_2$, если они соответствуют локальным оптимумам задачи оптимизации, и дивергенция соответствующих априорных распределений на структурах $p(\Gamma|\mathbf{h}, \boldsymbol{\lambda})$ значимо высока. При этом соответствующие вариационные распределения $q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})$ могут оказаться достаточно близки, несмотря на значимые различия априорных распределений. Поэтому возможным дополнением этого критерия был бы критерий, позволяющий переходить от структуры к структуре, если соответствующие распределения $q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})$ различаются значимо. Последний критерий говорит о том, что обобщающая задача должна позволять производить переход между различными методами выбора параметров и структуры модели непрерывно.

Теорема 3. Рассмотренные задачи (1.11),(1.12),(1.13),(1.14),(1.16),(1.18) не являются обобщающими.

Доказательство. Задачи (1.11),(1.12),(1.13),(1.14),(1.16) не имеют гиперпараметров \mathbf{h} , подлежащих оптимизации, поэтому не могут приближать вариационную оценку.

При использовании валидации на отложенной выборки (1.18) в функцию валидации $Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda})$ не входит ни один метапараметр, поэтому критерий перебора структур 6 для нее также не выполняется.

Теорема 4. Пусть q_{Γ} — абсолютно непрерывное распределение с дифференцируемой плотностью, такой что:

- 1. Градиент плотности $\nabla_{m{ heta}_{\Gamma}}q(m{\Gamma}|m{ heta}_{\Gamma})$ является нулевым не более чем счетное количество раз.
- 2. Выражение $\nabla_{\boldsymbol{\theta}_{\Gamma}}q(\Gamma|\boldsymbol{\theta}_{\Gamma})\mathrm{log}p(\Gamma|\mathbf{h},\boldsymbol{\lambda})$ ограничено на $U_{\boldsymbol{\theta}}$ некоторой случайной величиной с конечным первым моментом.

Тогда задача (1.17) не является обобщающей.

Доказательство. Пусть выполнены условия критерия 6 о переборе структур, и $\mathbf{h}_1, \mathbf{h}_2$ — локальные оптимумы функции $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ при метапараметрах $\boldsymbol{\lambda}$. По условию критерия соответствтие $\boldsymbol{\theta}^*(\mathbf{h}_1)$ и $\boldsymbol{\theta}^*(\mathbf{h}_2)$ должны сохраняться, т.е. для некоторого $oldsymbol{\lambda}'$ решение нижней задачи оптимизации $oldsymbol{ heta}^*(\mathbf{h}_1)$ должно совпадать с решением $\boldsymbol{\theta}^*(\mathbf{h}_1)$ при метапараметрах $\boldsymbol{\lambda}$. Тогда

$$\nabla_{\boldsymbol{\theta}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_1)} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \nabla_{\boldsymbol{\theta}} \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_1)|p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_1, \boldsymbol{\lambda})) =$$

$$= \nabla_{\boldsymbol{\theta}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_1)} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \nabla_{\boldsymbol{\theta}} \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_1)|p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_1, \boldsymbol{\lambda}')).$$

Сокращая равные слагаемые в равенстве получим:

$$\nabla_{\boldsymbol{\theta}} D_{KL}(q(\boldsymbol{\Gamma}|\boldsymbol{\theta}_1)|p(\boldsymbol{\Gamma}|\boldsymbol{\lambda})) = \nabla_{\boldsymbol{\theta}} D_{KL}(q(\boldsymbol{\Gamma}|\boldsymbol{\theta}_1)|p(\boldsymbol{\Gamma}|\boldsymbol{\lambda}')),$$

Из второго условия теоремы следует, что по теореме Лебега о мажорируемой сходимости осуществим переход дифференцирования под знак интеграла:

$$\int_{\Gamma \in \Gamma} \nabla_{\boldsymbol{\theta}_{\Gamma}} q(\Gamma | \boldsymbol{\theta}_{2}) (\log p(\Gamma | \boldsymbol{\lambda}) - \log p(\Gamma | \boldsymbol{\lambda}')) d\Gamma = 0.$$

Т.к. выражение $\nabla_{\boldsymbol{\theta}_{\Gamma}}q(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{2})$ принимает нулевое значение в счетном количестве точек, то выражение $\log p(\boldsymbol{\Gamma}|\boldsymbol{\lambda}) - \log p(\boldsymbol{\Gamma}|\boldsymbol{\lambda}')$ равно нулю почти всюду, что означает что метапараметр температуры λ_{temp} равен при разных значениях метапараметров:

$$\lambda_{\mathrm{temp}} = \lambda'_{\mathrm{temp}}, \quad \lambda_{\mathrm{temp}} \in \boldsymbol{\lambda}, \lambda'_{\mathrm{temp}} \in \boldsymbol{\lambda}'.$$

Таким образом, метапараметры λ , λ' отличаются лишь на метапараметры λ_1 , λ_2 регуляризации ковариационной матрицы \mathbf{A}^{-1} . Возьмем в качестве векторов гиперпараметров \mathbf{h}_1 , \mathbf{h}_2 гиперпараметры, отличающиеся только параметрами распределения структуры:

$$\mathbf{h}_1 = [\mathbf{s}_1, \text{diag}(\mathbf{A}_1)], \mathbf{h}_2 = [\mathbf{s}_2, \text{diag}(\mathbf{A}_2)], \quad \mathbf{s}_1 \neq \mathbf{s}_2, \mathbf{A}_1 = \mathbf{A}_2.$$

Метапараметры λ_1, λ_2 не влияют на значение функции $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ при гиперпараметрах, отличающихся только параметрами распределения структуры, поэтому значение функции Q для них будет неизменно при любых значениях λ_1, λ_2 . Приходим к противоречию: значение $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ не меняется при изменении метапараметров $\boldsymbol{\lambda}$.

В качестве обобщающей задачи оптимизации предлагается оптимизационную задачу следующего вида:

$$\mathbf{h}^{*} = \underset{\mathbf{h}}{\operatorname{arg max}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) =$$

$$= \lambda_{\text{likelihood}}^{Q} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}^{*})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) -$$

$$- \lambda_{\text{prior}}^{Q} D_{\text{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}^{*}) || p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) -$$

$$- \sum_{p' \in \mathfrak{P}, \lambda \in \boldsymbol{\lambda}_{\text{struct}}^{Q}} \lambda D_{\text{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}^{*}) || p') + \log p(\mathbf{h}|\boldsymbol{\lambda}),$$

$$\boldsymbol{\theta}^{*} = \underset{\boldsymbol{\theta}}{\operatorname{arg max}} L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) =$$

$$(1.20)$$

$$=\mathsf{E}_{q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})}\log p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma}) - \lambda_{\mathrm{prior}}^{\mathrm{L}} D_{\mathrm{KL}}\big(q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta}^*)||p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda})\big),$$

где \mathfrak{P} — непустое множество распределений на структуре Γ , λ_{prior}^Q , λ_{prior}^L , $\lambda_{\text{struct}}^Q$ — некоторые числа. Множество распределений \mathfrak{P} отвечает за перебор структур Γ в процессе оптимизации модели. В предельном случае, когда температура λ_{temp} близка к нулю, а множество \mathfrak{P} состоит из распределений, близких к дискретным, соответствующим всем возможным структурам, калибровка $\lambda_{\text{struct}}^Q$ порождает последовательность задач оптимизаций, схожую с перебором структур. Рассмотрим следующий пример.

20

Рис. 1.5. Пример зависимости функции $Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda})$ от гиперпараметра \mathbf{s} при различных значениях метапараметров $\boldsymbol{\lambda}_{\mathrm{struct}}^{\mathrm{Q}}$. Темные точки на графике соответсвуют наименее предпочтительным значениям гиперпараметра. а) $\boldsymbol{\lambda}_{\mathrm{struct}}^{\mathrm{Q}} = [0,0]$, б) $\boldsymbol{\lambda}_{\mathrm{struct}}^{\mathrm{Q}} = [1,0]$, в) $\boldsymbol{\lambda}_{\mathrm{struct}}^{\mathrm{Q}} = [1,1]$.

Пример 2. Рассмотрим вырожденный случай поведения функции $Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda})$, когда $\lambda_{\text{likelihood}}^Q = \lambda_{\text{prior}}^Q = 0$. Пусть модель использует один структурный параметр, в качестве априорного распределения на структуре задано распределение Gumbel-Softmax с λ_{temp} . Пусть в качестве множества распределений $\mathfrak P$ используется два распределения Gumbel-Softmax, сконцентрированных близко к вершинам симплекса:

$$\mathfrak{P} = [\mathcal{GS}([0.95, 0.05, 0.05]^T, 1.0), \mathcal{GS}([0.95, 0.05, 0.05]^T, 1.0)].$$

Из определения распределения Gumbel-Softmax следует, что достаточно рассмотреть только значения параметра \mathbf{s} , находящиеся внутри симплекса. На рис. 1.5 изображены значения функции Q в зависимости от метапараметров $\boldsymbol{\lambda}_Q^{\text{struct}}$ и значений гиперпараметра \mathbf{s} распределения на структуре. Видно, что варьируя коэффициенты метапараметров получается последовательность оптимизаций, схожая с полным перебором структуры.

Следующая теорема анализирует достаточные условия того, что предложенная задача оптимизации (1.19) является обобщающей.

Теорема 5. Пусть

- 1. Задано непустое множество непрерывных по параметрам распределений на структуре \mathfrak{P} , чьи плотности не принимают нулевое значение, где хотя бы одно распределение $p_1 \in \mathfrak{P}$ является Gumbel-Softmax распределением и для произвольного значения $\mathbf{s} \in U_{\mathbf{h}}, \lambda_{\text{temp}} \in U_{\lambda}$ существует значение параметров распределения p_1 , такое что $p_1 = p(\Gamma | \mathbf{h}, \lambda)$.
- 2. Вариационное распределение $q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})$ является абсолютно непрерывным, плотность которого непрерывна по метапараметрам $\boldsymbol{\lambda}$ и не принимает нулевое значение.
- 3. Задан компакт $U = U_{\theta_{\mathbf{w}}} \times U_{\theta_{\mathbf{r}}} \times U_{\mathbf{h}} \times U_{\boldsymbol{\lambda}}$, где параметры распределений $p \in \mathfrak{P}$ принадлежат множеству метапараметров $\boldsymbol{\lambda}$.

- 4. Область определения каждого параметра $w \in \mathbf{w}$, гиперпараметра $h \in \mathbf{h}$ и метапараметра $\lambda \in \lambda$ не является является пустым и не является точкой.
- 5. Для каждого значения гиперпараметров $\mathbf{h} \in U_{\mathbf{h}}$ оптимальное решение нижней задачи оптимизации $\boldsymbol{\theta}^*$ определено однозначно на $U_{\boldsymbol{\theta}} = U_{\boldsymbol{\theta}_{\mathbf{w}}} \times U_{\boldsymbol{\theta}_{\mathbf{r}}}$ при любых значениях метапараметров $\boldsymbol{\lambda} \in U_{\boldsymbol{\lambda}}$.
- 6. Область значений метапараметров $\lambda_{\text{likelihood}}^{Q}, \lambda_{\text{prior}}^{Q}, \lambda_{\text{prior}}^{L}, \boldsymbol{\lambda}_{\text{struct}}^{Q}$ включает отрезок от нуля до единицы.
- 7. Существует значение метапараметров

$$\lambda_1 > 0, \lambda_2 > 0, \lambda_{\text{likelihood}}^{Q} > 0 \in U_{\lambda},$$

такое что

$$\max_{\mathbf{h} \in U_{\mathbf{h}}} \log p(\mathbf{h}|\boldsymbol{\lambda}) - \min_{\mathbf{h} \in U_{\mathbf{h}}} \log p(\mathbf{h}|\boldsymbol{\lambda}) < \max_{\mathbf{h} \in U_{\mathbf{h}}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - \min_{\mathbf{h} \in U_{\mathbf{h}}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$$

при
$$\boldsymbol{\lambda}_{\mathrm{struct}}^{\mathrm{Q}} = \mathbf{0}, \lambda_{\mathrm{prior}}^{\mathrm{Q}} = 0.$$

8. Существует значение метапараметров

$$\lambda_{\text{prior}}^{\text{L}} > 0, \lambda_{\text{prior}}^{\text{Q}} > 0, \lambda_1 > 0, \lambda_2 > 0, \lambda_{\text{temp}} > 0 \in U_{\lambda},$$

такое что

$$\begin{split} \max_{\mathbf{h} \in U_{\mathbf{h}}} \frac{1}{\lambda_{\text{prior}}^{\mathbf{Q}}} \log p(\mathbf{h}|\boldsymbol{\lambda}) - \min_{\mathbf{h} \in U_{\mathbf{h}}} \frac{1}{\lambda_{\text{prior}}^{\mathbf{Q}}} \log p(\mathbf{h}|\boldsymbol{\lambda}) + \\ + \max_{\mathbf{h} \in U_{\mathbf{h}}} \min_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}} D_{\text{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \big) - \end{split}$$

$$\min_{\mathbf{h} \in U_{\mathbf{h}}, \boldsymbol{\theta} \in U_{\boldsymbol{\theta}}} D_{\mathrm{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})) + \max_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}} \frac{1}{\lambda_{\mathrm{prior}}^{\mathrm{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \\
- \min_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}} \frac{1}{\lambda_{\mathrm{prior}}^{\mathrm{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) < \\
< \max_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}, \mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})) - \\
- \min_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}, \mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}))$$

при
$$oldsymbol{\lambda}_{ ext{struct}}^{ ext{Q}} = oldsymbol{0}, \lambda_{ ext{likelihood}}^{ ext{Q}} = 0.$$

9. Существуют значения метапараметров $\lambda_{\text{prior}}^{Q} > 0, \lambda_{\text{likelihood}}^{Q} > 0, \lambda_{1} > 0, \lambda_{2} > 0, \lambda_{\text{temp}} > 0 \in U_{\lambda}$, такие что существуют гиперпараметры $\mathbf{h}_{1}, \mathbf{h}_{2} \in U_{\mathbf{h}}$:

$$\begin{aligned} &D_{\mathrm{KL}} \left(p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}_{1}, \boldsymbol{\lambda}) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}_{2}, \boldsymbol{\lambda}) \right) < \\ < &\frac{\max_{\mathbf{h}} Q(\mathbf{h} | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - \min_{\mathbf{h}} Q(\mathbf{h} | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})}{m_{\lambda}}, \\ &D_{\mathrm{KL}} \left(p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}_{2}, \boldsymbol{\lambda}) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}_{1}, \boldsymbol{\lambda}) \right) < \end{aligned}$$

$$< \frac{\max_{\mathbf{h}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - \min_{\mathbf{h}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})}{m_{\lambda}}$$

при $\boldsymbol{\lambda}_{\mathrm{struct}}^{\mathrm{Q}} = \mathbf{0}$, где m_{λ} — максимальное значение $\boldsymbol{\lambda}_{\mathrm{struct}}^{\mathrm{Q}}$ перед распределением p_1 из первого условия теоремы.

Тогда задача (1.19) является обобщающей на U.

Доказательство. Для доказательста теоремы требуется доказать критерии 1-7 из определения обобщающей задачи. Выполнение критериев 1 и 2 следует из условий задачи.

Докажем критерий 3. Пусть $\lambda_{\text{prior}}^{Q} = 0$, $\lambda_{\text{struct}}^{Q} = 0$. Пусть $\lambda_{1}, \lambda_{2}, \lambda_{\text{likelihood}}^{Q}$ удовлетворяют седьмому условияю теоремы. Возьмем в качестве K_{1} следующее выражение:

$$K_1 = \max_{\mathbf{h} \in U_{\mathbf{h}}} \log p(\mathbf{h}|\boldsymbol{\lambda}) - \min_{\mathbf{h} \in U_{\mathbf{h}}} \log p(\mathbf{h}|\boldsymbol{\lambda}).$$

Пусть $\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}$ — гиперпараметры, удовлетворяющие условию третьего критерия:

$$Q(\mathbf{h}_1|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - Q(\mathbf{h}_2|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) > K_1$$

. Тогда

$$Q(\mathbf{h}_{1}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - Q(\mathbf{h}_{2}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \lambda_{\text{likelihood}}^{Q} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}^{*}(\mathbf{h}_{1}))} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \lambda_{\text{likelihood}}^{Q} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}^{*}(\mathbf{h}_{2}))} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) + \log p(\mathbf{h}_{1}|\boldsymbol{\lambda}) - \log p(\mathbf{h}_{2}|\boldsymbol{\lambda}) > K_{1}.$$

Отсюда следует выполнение критерия 3:

$$\lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_1)} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - \lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_2)} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) > 0.$$

T.K. $\lambda_{likelihood}^{Q} > 0$:

$$\mathsf{E}_{q(\mathbf{w}, \Gamma|\boldsymbol{\theta}_1)} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \Gamma) - \mathsf{E}_{q(\mathbf{w}, \Gamma|\boldsymbol{\theta}_2)} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \Gamma) > 0.$$

Докажем критерий 4. Пусть $\pmb{\lambda}$ удовлетворяют восьмому условию теоремы и $\lambda_{
m likelihood}^{
m Q}=0, \pmb{\lambda}_{
m struct}^{
m Q}=\pmb{0}$. Пусть

$$K_{2} = \max_{\mathbf{h} \in U_{\mathbf{h}}} \frac{1}{\lambda_{\text{prior}}^{\mathbf{Q}}} \log p(\mathbf{h}|\boldsymbol{\lambda}) - \frac{1}{\lambda_{\text{prior}}^{\mathbf{Q}}} \min_{\mathbf{h} \in U_{\mathbf{h}}} \log p(\mathbf{h}|\boldsymbol{\lambda}) + \\ + \max_{\mathbf{h} \in U_{\mathbf{h}}} \min_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}} D_{\text{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) - \\ \min_{\mathbf{h} \in U_{\mathbf{h}}, \boldsymbol{\theta} \in U_{\boldsymbol{\theta}}} D_{\text{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) + \max_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}} \frac{1}{\lambda_{\text{prior}}^{\mathbf{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \\ \min_{\mathbf{h} \in U_{\mathbf{h}}} \frac{1}{\lambda_{\text{prior}}^{\mathbf{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}).$$

Пусть $\mathbf{h}_1, \mathbf{h}_2 \in U_{\mathbf{h}}, Q(\mathbf{h}_1|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - Q(\mathbf{h}_2|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) > K_2$. Рассмотрим разность параметрических сложностей двух векторов:

$$C_p(\boldsymbol{\theta}_2) - C_p(\boldsymbol{\theta}_1) = \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_2) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})) - \\ - \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_1) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})) \ge$$

оценим снизу, а также добавим и вычтем $D_{\mathrm{KL}}ig(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{ heta}_2) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}_2, \boldsymbol{\lambda})ig)$

$$\geq \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}} \big(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}_2) | |p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big) - D_{\mathrm{KL}} \big(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}_1) | |p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}_1, \boldsymbol{\lambda}) \big) +$$

 $+D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_2)||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_2, \boldsymbol{\lambda})) - D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_2)||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_2, \boldsymbol{\lambda})) =$ сведем выражение до $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$

$$=Q(\mathbf{h}_1|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda})-Q(\mathbf{h}_2|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda})-\frac{1}{\lambda_{\mathrm{prior}}^{\mathrm{Q}}}\log p(\mathbf{h}_1|\boldsymbol{\lambda})+\frac{1}{\lambda_{\mathrm{prior}}^{\mathrm{Q}}}\log p(\mathbf{h}_2|\boldsymbol{\lambda})+$$

$$+ \min_{\mathbf{h}} D_{\mathrm{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_2) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big) - D_{\mathrm{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_2) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}_2, \boldsymbol{\lambda}) \big) >$$
воспользуемся неравенством $Q(\mathbf{h}_1 | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - Q(\mathbf{h}_2 | \mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) > K_2$

$$> K_2 - \frac{1}{\lambda_{\text{prior}}^{Q}} \log p(\mathbf{h}_1|\boldsymbol{\lambda}) + \frac{1}{\lambda_{\text{prior}}^{Q}} \log p(\mathbf{h}_2|\boldsymbol{\lambda}) + \min_{\mathbf{h}} D_{\text{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_2)||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}))$$

$$-D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_2)||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_2, \boldsymbol{\lambda})).$$

Рассмотрим разность:

$$\min_{\mathbf{h}} D_{\mathrm{KL}} \big(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}_2) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big) - D_{\mathrm{KL}} \big(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}_2) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}_2, \boldsymbol{\lambda}) \big) =$$

 $m.\kappa.$ $oldsymbol{ heta}_2$ — решение нижней задачи оптимизации:

$$\min_{\mathbf{h}} D_{\mathrm{KL}}\big(q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta}_2)||p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda})\big) - \frac{1}{\lambda_{\mathrm{prior}}^{\mathrm{L}}} \mathsf{E}_{q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta}_2)} \log p(\mathbf{y}|\mathbf{X},\mathbf{w},\boldsymbol{\Gamma}) +$$

$$\max_{\boldsymbol{\theta}} \left(\frac{1}{\lambda_{\text{prior}}^{\text{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\text{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{h}_2, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) \right) \geq$$

получим оценку снизу:

$$\geq \min_{\mathbf{h}} D_{\mathrm{KL}} \big(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}_2) | | p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big) - \max_{\boldsymbol{\theta}} \frac{1}{\lambda_{\mathrm{prior}}^{\mathrm{L}}} \mathsf{E}_q \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) +$$

$$\max_{\boldsymbol{\theta}} \left(\min_{\boldsymbol{\theta}'} \frac{1}{\lambda_{\text{prior}}^{\text{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}')} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\text{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) | | p(\mathbf{h}_2, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big) \right) \geq$$

оценим первое слагаемое

$$\geq \min_{\boldsymbol{\theta}, \mathbf{h}} D_{\mathrm{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big) - \max_{\boldsymbol{\theta}} \frac{1}{\lambda_{\mathrm{prior}}^{\mathrm{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) +$$

$$\min_{\boldsymbol{\theta}} \frac{1}{\lambda_{\text{prior}}^{\text{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \min_{\boldsymbol{\theta}} D_{\text{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) | | p(\mathbf{h}_2, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})) \geq$$

оценим последнее слагаемое

$$\geq \min_{\boldsymbol{\theta}, \mathbf{h}} D_{\mathrm{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big) - \max_{\boldsymbol{\theta}} \frac{1}{\lambda_{\mathrm{prior}}^{\mathrm{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma})$$

$$+ \min_{\boldsymbol{\theta}} \frac{1}{\lambda_{\text{prior}}^{\text{L}}} \mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \max_{\mathbf{h}} \min_{\boldsymbol{\theta}} D_{\text{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \big).$$

Складывая полученную оценку с $K_2 - \log \frac{1}{\lambda_{\text{prior}}^Q} p(\mathbf{h}_2|\boldsymbol{\lambda}) + \log \frac{1}{\lambda_{\text{prior}}^Q} p(\mathbf{h}_2|\boldsymbol{\lambda})$ получаем разность параметрических сложностей больше нуля, что и требовалось доказать.

Докажем критерий 5. Пусть $\lambda_{\text{prior}}^{\text{Q}} = \lambda_{\text{prior}}^{\text{L}} = \lambda_{\text{likelihood}}^{\text{Q}} = 1$, $\boldsymbol{\lambda}_{\text{struct}}^{\text{Q}} = \boldsymbol{0}$. Тогда функции $L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$ и $Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda})$ можно записать как:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})),$$

$$Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) + \log p(\mathbf{h}|\boldsymbol{\lambda}).$$

Двухуровневая задача оптимизации совпадает с оптимизацией вариационной оценки обоснованности, что и требовалось доказать.

Докажем критерий 6. Пусть задан вектор метапараметров λ , удовлетворяющий девятому условию теоремы и $\lambda_{\text{struct}}^{Q} = \mathbf{0}$. Пусть заданы векторы гиперпараметров $\mathbf{h}_{1}, \mathbf{h}_{2}$, такие что $Q(\mathbf{h}_{1}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - Q(\mathbf{h}_{2}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) > 0$.

По условию теоремы во множество $\mathfrak P$ входит хотя бы одно распределение Gumbel-Softmax:

$$p_1 \sim \mathcal{GS}, p \in \mathfrak{P}.$$

Возьмем в качестве K_4 следующее выражение:

$$K_4 = \frac{\max_{\mathbf{h}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - \min_{\mathbf{h}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})}{m_{\lambda}},$$

где m_{λ} — максимальное значение коэффициента $oldsymbol{\lambda}_{ ext{struct}}^{ ext{Q}}$ перед p_1 .

Пусть вектор метапараметров λ' отличается от λ лишь метапараметром $\lambda_{\text{struct}}^{Q}$. Для обоих векторов метапараметров нижняя задача оптимизации $L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$ совпадает, поэтому выполняется первое условие критерия.

Положим для λ' метапараметр перед данным распределением $\lambda_{\mathrm{struct}}^Q \in \lambda_{\mathrm{struct}}^Q$ равным максимальному значению. Положим также значение параметров данного распределения равным параметрам распределения $p(\mathbf{h}_1, \Gamma | \mathbf{h}, \lambda)$:

$$p_1 = p(\mathbf{h}_1, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}).$$

Для остальных распределений $p' \in \mathfrak{P}$ положим коэффициент $\lambda_{\mathrm{struct}}^Q \in \boldsymbol{\lambda}_{\mathrm{struct}}^Q$ равным нулю. Тогда справедливо следующее неравенство:

$$Q(\mathbf{h}_{2}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}') - Q(\mathbf{h}_{1}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}') =$$

$$= Q(\mathbf{h}_{2}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - Q(\mathbf{h}_{1}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) + \max_{\substack{\lambda_{\text{struct}} \\ \lambda_{\text{struct}}}} \lambda_{\text{struct}}^{Q} D_{\text{KL}}(p(\mathbf{h}_{2}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) || p(\mathbf{h}_{1}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) =$$

$$= Q(\mathbf{h}_{2}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) - Q(\mathbf{h}_{1}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) + \max_{\substack{\lambda_{\text{struct}} \\ \lambda_{\text{struct}}}} \lambda_{\text{struct}}^{Q} K_{4} > 0.$$

что и требовалось доказать.

Докажем критерий 7. Достаточным условием непрерывности функций $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}), \ Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ является непрерывность входящих в нее слагаемых.

Слагаемое $\mathsf{E}_{q(\mathbf{w},\Gamma|\boldsymbol{\theta})}\log p(\mathbf{y}|\mathbf{X},\mathbf{w},\Gamma)$ не зависит от метапараметров $\boldsymbol{\lambda}$. Слагаемое $\log p(\mathbf{h}|\boldsymbol{\lambda})$ непрерывно по метапараметрам по свойству обратного гаммараспределения.

Достаточным условием непрерывности функций вида $D_{\mathrm{KL}}(p_1||p_2)$ является непрерывность по метапараметрам функций $p_1(\log p_1 - \log p_2)$ почти всюду и ограниченность интегрируемой функцией. Априорные распределения задаются нерперывными функциями плотности $p(\mathbf{w}|\Gamma,\mathbf{h},\boldsymbol{\lambda}),p(\Gamma|\mathbf{h},\boldsymbol{\lambda}),$ не принимающими нулевое значение, и являющимися непрерывными по метапараметрам. Функция $q(\mathbf{w},\Gamma|\boldsymbol{\theta})$ принимает нулевое значение лишь в конечном количество точек, поэтому функция $q(\mathbf{w},\Gamma|\boldsymbol{\theta})(\log q(\mathbf{w},\Gamma|\boldsymbol{\theta}) - \log p(\mathbf{w},\Gamma|\mathbf{h},\boldsymbol{\lambda}))$ почти всюду непрерывна по метапараметрам. Она ограничена на компакте $U_{\boldsymbol{\lambda}}$, поэтому слагаемое $D_{\mathrm{KL}}(q(\mathbf{w},\Gamma|\boldsymbol{\theta})||p(\mathbf{w},\Gamma|\mathbf{h},\boldsymbol{\lambda}))$ является непрерывным по метапараметрам. Выражения вида $p(\mathbf{w},\Gamma|\mathbf{h},\boldsymbol{\lambda})(\log p(\Gamma|\mathbf{h},\boldsymbol{\lambda}) - \log p), p \in \mathfrak{P}$ также являются непрерывными по метапараметрам и ограниченными, поэтому слагаемые вида $D_{\mathrm{KL}}(p(\Gamma|\mathbf{h},\boldsymbol{\lambda})||p)$ являются непрерывными. Поэтому функции $L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda}), Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda})$ являются непрерывными по метапараметрам, что и требовалось доказать.

Метапараметрами данной задачи (1.19) являются коэффициенты $\lambda_{\text{prior}}^{L}, \lambda_{\text{prior}}^{Q}$, отвечающие за регуляризацию верхней и нижней задачи оптимизации, коэффициент $\lambda_{\text{likelihood}}^{Q}$ отвечает за максимизацию правдоподобия, а также параметры распрделений $\mathfrak P$ и вектор коэффициентов перед ними $\lambda_{\text{struct}}^{Q}$.

Условия 7-9 теоремы задают вид области U, на которой представленная оптимизационная задача является обобщающей. Условие 7 выполняется при

небольшом разбросе значений $\log p(\mathbf{h}|\boldsymbol{\lambda})$ в зависимости от λ_1, λ_2 . Т.к. эти метапараметры выполняют роль регуляризатора, для области гиперпараметров $U_{\mathbf{h}}$, выбранной адекватно, данное условие выполняется.

В случае, если $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ — нормальное распределение, а $q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})$ — распределение Gumbel-softmax, такие что для любого $\mathbf{h} \in U_{\mathbf{h}}$ существует $\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}$:

$$p(\mathbf{w}, \Gamma | \mathbf{h}, \lambda) = q(\mathbf{w}, \Gamma | \boldsymbol{\theta}),$$

а также полагая что $\log p(\mathbf{h}|\boldsymbol{\lambda})$ приблизительно равен для всех $\mathbf{h} \in U_{\mathbf{h}}$, восьмое условие можно представить в следующем виде:

$$\begin{split} & \max_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}} \frac{1}{\lambda_{\text{prior}}^{\text{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \\ & - \min_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}} \frac{1}{\lambda_{\text{prior}}^{\text{L}}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) < \\ & < \max_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}, \mathbf{h} \in U_{\mathbf{h}}} D_{\text{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big) - \\ & - \min_{\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}, \mathbf{h} \in U_{\mathbf{h}}} D_{\text{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big). \end{split}$$

Данное условие требует существования набора метапараметров λ , такого что максимальная разница дивергенций на U больше, чем максимальная разница между усредненными по $q(\mathbf{w}, \Gamma | \boldsymbol{\theta})$ логарифмами правдоподобия выборки, поделенными на $\lambda_{\text{likelihood}}^{\text{Q}}$. Данное условие будет выполняться при достаточно больших $\lambda_{\text{likelihood}}^{\text{Q}}$. Условие 9 выполняется при достаточно больших значениях метапараметра $\lambda_{\text{struct}}^{\text{Q}}$.

1.4. Анализ обобщающей задачи

В данном разделе рассматриваются свойства предложенной задачи при различных значениях метапараметров, а также характер ассимптотического поведения задач. Следующие теоремы говорят о соответствии предлагаемой обобщающей задачи вероятностной модели. В частности, задача оптимизации параметров и гиперпараметров соответствует двухуровневому байесовскому выводу. Теорема 6. Пусть $\lambda_{\text{prior}}^Q = \lambda_{\text{prior}}^L = \lambda_{\text{likelihood}}^Q = 1$, $\lambda_{\text{struct}}^Q = 0$. Тогда:

1. Задача оптимизации (1.19) доставляет максимум апостериорной вероятности гиперпараметров с использованием вариационной оценки обоснованности:

$$\mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - D_{\mathrm{KL}} (q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) + \log p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \to \max_{\mathbf{h}}.$$

2. Вариационное распределение $q(\mathbf{w}, \Gamma | \boldsymbol{\theta})$ приближает апостериорное распределение $p(\mathbf{w}, \Gamma | \mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ наилучшим образом:

$$D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})) \to \min_{\boldsymbol{\theta}}.$$

3. Если существуют такие значения параметров $\boldsymbol{\theta}_{\mathbf{w}}, \boldsymbol{\theta}_{\Gamma}$, что $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}) = q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}), p(\boldsymbol{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = q_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}})$, то решение задачи оптимизации $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ доставляет эти значения вариационных параметров.

Доказательство. Так как параметры $\boldsymbol{\theta}$ не зависят от слагаемых при коэффициентах $\boldsymbol{\lambda}_{\text{struct}}^Q$, а также от $\log p(\mathbf{h}|\boldsymbol{\lambda})$, то при $\lambda_{\text{likelihood}}^Q = \lambda_{\text{prior}}^L = 1$ как верхняя, так и нижняя задачи оптимизации (1.19) эквивалентны оптимизации вариационной оценки обоснованности, поэтому первое утверждение выполняется.

Докажем второе утверждение. Рассмотрим логарифм обоснованности модели:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log \frac{p(\mathbf{y}, \mathbf{w}, \boldsymbol{\Gamma}|\mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})}{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} + D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) =$$

$$= \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) +$$

$$+ D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})).$$

Из данного равенства следует:

$$\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})) =$$
$$\mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})),$$

где правая часть равенства соответствует вариационной оценки обоснованности. Выражение $\log p(\mathbf{y}|\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$ не зависит от вариационного распределения $q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})$, поэтому максимизации вариационной оценки эквивалентна минимизации дивергенции $D_{\mathrm{KL}}(q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda}))$.

Докажем третье утверждение. Т.к. вариационное распределение $q(\mathbf{w}, \Gamma | \boldsymbol{\theta})$ декомпозируется на $q_{\mathbf{w}}(\mathbf{w} | \boldsymbol{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}), q_{\Gamma}(\boldsymbol{\Gamma} | \boldsymbol{\theta}_{\Gamma})$, апостериорное распределение $p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ декомпозируется на $p(\mathbf{w} | \mathbf{y}, \mathbf{X}, \boldsymbol{\Gamma}, \mathbf{h}, \boldsymbol{\lambda}), p(\boldsymbol{\Gamma} | \mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$, поэтому достижимо значение нулевое значение дивергенции: $D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})) = 0$. Она представима в следующем виде (1.7). Отсюда следует что соотстветсвующие вариационные и апостериорные распределения совпадают.

Докажем, что варьирование коэффициента $\lambda_{\text{prior}}^{\text{L}}$ приводит к оптимизации вариационной оценки обоснованности для выборки из той же генеральной совокупнсоти, но другой мощности.

Теорема 7. Пусть $m\gg 0$, $\lambda_{\rm prior}^{\rm L}>0$, $\frac{m}{\lambda_{\rm prior}^{\rm L}}\in\mathbb{N}$, $\frac{m}{\lambda_{\rm prior}^{\rm L}}\gg 0$. Тогда оптимизация функции

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \lambda_{\mathrm{prior}}^{\mathrm{L}} D_{\mathrm{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \big)$$

эквивалентна оптимизации вариационной оценки обоснованности

$$\mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\hat{\mathbf{y}}|\hat{\mathbf{X}}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}))$$

для произвольной случайной подвыборки $\hat{\mathbf{y}}, \hat{\mathbf{X}}$ мощности $\frac{m}{\lambda_{\text{prior}}^{\text{L}}}$ из генеральной совопкупности.

Доказательство. Рассмотрим величину $\frac{1}{m}L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$:

$$\frac{1}{m}L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \frac{1}{m}\mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})}\log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \frac{\lambda_{\text{prior}}^{L}}{m}D_{\text{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$
(1.21)

При $m \gg 0$ по усиленному закону больших чисел данная функция может быть аппроксимирована следующим образом:

$$\frac{1}{m}L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) \approx \mathsf{E}_{y, \mathbf{x}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma})$$
$$-\frac{\lambda_{\mathrm{prior}}^{\mathrm{L}}}{m} D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$

Аналогично рассмотрим вариационную оценку обоснованности для произвольной выборки мощностью $m_0 = \frac{m}{\lambda_{\text{prior}}^{\text{L}}}$, усредненную на мощность выборки:

$$\frac{1}{m_0} \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - \frac{1}{m_0} D_{\mathrm{KL}} (q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) \approx (1.22)$$

$$\approx \mathsf{E}_{y, \mathbf{x}} \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - \frac{1}{m_0} D_{\mathrm{KL}} (p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) || q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})) =$$

$$= \mathsf{E}_{y, \mathbf{x}} \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - \frac{\lambda_{\mathrm{prior}}^{\mathrm{L}}}{m} D_{\mathrm{KL}} (q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$

Таким образом, задачи оптимизации функций (1.21),(1.22) совпадают, что и требовалось доказать.

Теорема показывает, что для достаточно большого m и $\lambda_{\text{prior}}^{L} > 0$, $\lambda_{\text{prior}}^{L} \neq 1$ оптимизация параметров и гиперпараметров эквивалентна нахождению оценки обоснованности для выборки другой мощности: чем выше значение $\lambda_{\text{prior}}^{L}$, тем выше мощность выборки, для которой проводится оптимизация.

Таким образом, предлагаемая обобщающая задача позволяет производить оптимизацию вариационной оценки обоснвоанности, а также оптимизацию обоснованности для выбор с другим эффекитвным размером. Чем больше размер выборки, тем больше влияние априорного распределения, которое выступает в качестве регуляризатора. Можно регулировать сложность модели следующим образом:

- 1. Варьируя сложность на верхнем уровне оптимизации оптимизации с использованием коэффициента $\lambda_{\mathrm{prior}}^{\mathrm{Q}};$
- 2. Варьируя сложность на нижнем уровне оптимизации оптимизации с использованием коэффициента $\lambda_{\text{prior}}^{\text{L}}$;
- 3. Варьируя сложность на обоих уровнях оптимизации.

Рассмотрим различие вариантов 1-3 на примере.

Пример 3. Пусть $\lambda_{\text{struct}}^{Q} = 0$. Пусть требуется уменьшить вклад априорного распределения в итоговую оптимизацию. При варьировании нижней задачи оптимизации ($\lambda_{\text{prior}}^{L} \to 0$) оптимизационная задача становится эквивалента методу максимального правдоподобия:

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) \to \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}).$$

При этом верхняя задача $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) \to \max_{\mathbf{h}}$ не имеет смысла, т.к. параметры $\boldsymbol{\theta}$ не зависят от гиперпараметров \mathbf{h} .

При варьировании только верхней задачи оптимизации ($\lambda_{\text{prior}}^{Q} \to 0, \lambda_{\text{prior}}^{L} = \lambda_{\text{likelihood}}^{Q} = 1$), на нижнем уровне задача $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ совпадает с задачей поиска обоснованных параметров при фиксированном значении гиперпараметров \mathbf{h} :

$$L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}) = \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})).$$

При этом на верхнем уровне оптимизации выбираются гиперпараметры \mathbf{h} , при которых параметры будут доставать максимум правдоподобия с точностью до регуляризации:

$$Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) \to \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) + \log p(\mathbf{h}|\boldsymbol{\lambda}).$$

Таким образом, варьирование сложности на верхнем оптимизации приводит к оптимизации параметров и гиперпараметров с большей регуляризацией, чем варьирование сложности на нижнем уровне оптимизации.

Докажем теорему об оценки разности параметрических сложностей.

Лемма 3. Пусть:

- 1. задан компакт $U = U_{\mathbf{h}} \times U_{\boldsymbol{\theta}}$.
- 2. $\lambda_{\text{struct}}^{Q} = \mathbf{0}$.
- 3. Решение задачи

$$\min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}_2) || p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}))$$
 (1.23)

является единственным для некоторых $\lambda_{\mathrm{prior}_1}^{\mathrm{Q}}, \lambda_{\mathrm{prior}_2}^{\mathrm{Q}}, \lambda_{\mathrm{prior}_1}^{\mathrm{Q}} > \lambda_{\mathrm{prior}_2}^{\mathrm{Q}}$ на U при некоторых фиксированных $\lambda_{\mathrm{likelihood}}^{\mathrm{Q}}, \lambda_{\mathrm{prior}}^{\mathrm{L}}, \lambda_{\mathrm{temp}}, \lambda_1, \lambda_2$.

Тогда справедливо следующее неравенство:

$$D_{\mathrm{KL}}(q(\mathbf{w}, \Gamma | \boldsymbol{\theta}_1) || p(\mathbf{w}, \Gamma | \mathbf{h}_1, \boldsymbol{\lambda}')) < D_{\mathrm{KL}}(q(\mathbf{w}, \Gamma | \boldsymbol{\theta}_2) || p(\mathbf{w}, \Gamma | \mathbf{h}_2, \boldsymbol{\lambda}')),$$

где $\mathbf{h}_1, \boldsymbol{\theta}_1, \, \mathbf{h}_2, \boldsymbol{\theta}_2$ — решения задачи (1.19) при $\lambda_{\mathrm{prior}_1}^{\mathrm{Q}}, \lambda_{\mathrm{prior}_2}^{\mathrm{Q}},$

$$\boldsymbol{\theta}_1 = \boldsymbol{\theta}^*(\mathbf{h}_1), \quad \boldsymbol{\theta}_2 = \boldsymbol{\theta}^*(\mathbf{h}_2),$$

 $m{\lambda}'$ — вектор метапараметров, содержащий метапараметры $\lambda_{\mathrm{temp}}, \lambda_1, \lambda_2$

Доказательство. Заметим, что выражение вида $D_{\mathrm{KL}} \big(q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}_1) || p(\mathbf{h}_1, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}) \big)$ зависит только от метапараметров $\boldsymbol{\lambda}' = [\lambda_{\mathrm{temp}}, \lambda_1, \lambda_2]$ и не зависит от $\lambda_{\mathrm{likelihood}}^{\mathrm{Q}}, \lambda_{\mathrm{prior}}^{\mathrm{L}}, \lambda_{\mathrm{prior}}^{\mathrm{Q}}, \boldsymbol{\lambda}_{\mathrm{struct}}^{\mathrm{Q}}.$

Пусть $\mathbf{h}_1, \boldsymbol{\theta}_1, \mathbf{h}_2, \boldsymbol{\theta}_2$ — решения задачи (1.19) при $\lambda_{\text{prior}_1}^Q, \lambda_{\text{prior}_2}^Q$. Тогда справедлисва система неравенств:

$$\begin{split} &\lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{1})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \\ &- \lambda_{\text{prior}_{1}}^{\text{Q}} D_{\text{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{1}) || p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_{1}, \boldsymbol{\lambda}') \big) + \log p(\mathbf{h}_{1}|\boldsymbol{\lambda}_{1}) > \\ &> \lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{2})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \\ &\lambda_{\text{prior}_{1}}^{\text{Q}} D_{\text{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{2}) || p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}') \big) + \log p(\mathbf{h}_{2}|\boldsymbol{\lambda}_{2}); \end{split}$$

$$\begin{split} & \lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_2)} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \\ & - \lambda_{\text{prior}_2}^{\text{Q}} D_{\text{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_2) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}_2, \boldsymbol{\lambda}') \big) + \log p(\mathbf{h}_2 | \boldsymbol{\lambda}_2) > \\ & > \lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_1)} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \\ & - \lambda_{\text{prior}_2}^{\text{Q}} D_{\text{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_1) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}_1, \boldsymbol{\lambda}') \big) + \log p(\mathbf{h}_1 | \boldsymbol{\lambda}_1). \end{split}$$

Складывая неравенства получим следующее выражение:

$$(\lambda_{\text{prior}_{2}}^{Q} - \lambda_{\text{prior}_{1}}^{Q})D_{\text{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{1})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_{1}, \boldsymbol{\lambda}')) >$$

$$> (\lambda_{\text{prior}_{2}}^{Q} - \lambda_{\text{prior}_{1}}^{Q})D_{\text{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}')).$$

Т.к. по условию $\lambda_{\mathrm{prior}_1}^{\mathrm{Q}} > \lambda_{\mathrm{prior}_2}^{\mathrm{Q}}$, то отсюда следует:

$$D_{\mathrm{KL}}(q(\mathbf{w}, \Gamma | \boldsymbol{\theta}_1) || p(\mathbf{w}, \Gamma | \mathbf{h}_1, \boldsymbol{\lambda}')) < D_{\mathrm{KL}}(q(\mathbf{w}, \Gamma | \boldsymbol{\theta}_2) || p(\mathbf{w}, \Gamma | \mathbf{h}_2, \boldsymbol{\lambda}')),$$

что и требовалось доказать.

Теорема 8. Пусть

- 1. выполнены условия Леммы 3;
- 2. функция $Q(\mathbf{h}|\boldsymbol{\theta}_2, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ является вогнутой по $\mathbf{h} \in U_{\mathbf{h}}$ при $\lambda_{\mathrm{prior}}^{\mathrm{Q}} = \lambda_{\mathrm{prior}_2}^{\mathrm{Q}}$.

3. решение задачи (1.23) единственно при $\lambda_{\mathrm{prior}}^{\mathrm{Q}} = \lambda_{\mathrm{prior}_2}^{\mathrm{Q}}$.

4. Все стационарные точки $\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}$ функции $L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$ являются решениями нижней задачи оптимизации при $\lambda_{\mathrm{prior}}^{\mathrm{Q}} = \lambda_{\mathrm{prior}_2}^{\mathrm{Q}}$ с обратимым гессианом.

Тогда справедлива следующая оценка разности параметрических сложностей:

$$C_{p}(\boldsymbol{\theta}_{1}|U_{\mathbf{h}},\boldsymbol{\lambda}_{1}) - C_{p}(\boldsymbol{\theta}_{2}|U_{\mathbf{h}},\boldsymbol{\lambda}_{2}) \leq \frac{\lambda_{\text{prior}}^{L}}{\lambda_{\text{likelihood}}^{Q}} (\lambda_{\text{prior}_{2}}^{Q} - \lambda_{\text{prior}_{2}}^{L}) \times \\ \times \max_{\mathbf{h} \in U_{\mathbf{h}},\boldsymbol{\theta} \in U_{\boldsymbol{\theta}}} \nabla_{\boldsymbol{\theta},\mathbf{h}} (D_{\text{KL}}(q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})||[p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda})))^{\mathsf{T}} \nabla_{\boldsymbol{\theta}}^{2} (L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda}_{2}))^{-1} \times \\ \times \nabla_{\boldsymbol{\theta}} D_{\text{KL}}(q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h},\boldsymbol{\lambda})).$$

Доказательство. Положим λ_1, λ_2 — два набора метапараметров с фискированными значениями метапараметров, соответствующих условиями теоремы и отличающихся лишь значениями $\lambda_{\text{prior}}^Q = \lambda_{\text{prior}_1}^Q, \lambda_{\text{prior}}^Q = \lambda_{\text{prior}_2}^Q$. Рассмотрим разность параметрических сложностей:

$$C_p(\boldsymbol{\theta}_1|U_{\mathbf{h}},\boldsymbol{\lambda}_1) - C_p(\boldsymbol{\theta}_2|U_{\mathbf{h}},\boldsymbol{\lambda}_2) =$$

по определению параметрической сложности:

$$= \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_1) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}') \big) - \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_2) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}, \boldsymbol{\lambda}') \big) <$$

используя оценку сверху:

$$< D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_1)||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}')) - \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_2)||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}')) =$$

добавляя и вычитая слагаемое $D_{\mathrm{KL}}ig(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_2)||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_2, \boldsymbol{\lambda}')ig)$:

$$= D_{\mathrm{KL}}\big(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_1)||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_2, \boldsymbol{\lambda}')\big) - \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}\big(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_2)||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_2, \boldsymbol{\lambda}')\big) +$$

$$+D_{\mathrm{KL}}\big(q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h}_{2},\boldsymbol{\lambda}')\big)-D_{\mathrm{KL}}\big(q(\mathbf{w},\boldsymbol{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w},\boldsymbol{\Gamma}|\mathbf{h}_{2},\boldsymbol{\lambda}')\big).$$

По лемме 3 следует:

$$D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_{1})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_{1}, \boldsymbol{\lambda}')) - \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}')) +$$

$$+D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}')) - D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}')) <$$

$$D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}')) - \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}')).$$

Обозначим за \mathbf{h}' — решение задачи (1.23). Тогда справедливо следующее выражение:

$$D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_2)||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_2, \boldsymbol{\lambda}')) - \min_{\mathbf{h} \in U_{\mathbf{h}}} D_{\mathrm{KL}}(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_2)||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}')) =$$

$$D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}')) - D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}', \boldsymbol{\lambda}')) = \frac{1}{\lambda_{\mathrm{likelihood}}^{\mathrm{Q}}} (Q(\mathbf{h}_{2}|\boldsymbol{\theta}_{2}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_{2}) - Q(\mathbf{h}'|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_{2})).$$

Т.к. $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ — вогнутая, то справедливо равенство

$$Q(\mathbf{h}_{2}|\boldsymbol{\theta}_{2}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_{2}) - Q(\mathbf{h}'|\boldsymbol{\theta}_{2}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) \leq \nabla_{\mathbf{h}}(Q(\mathbf{h}_{2}|\boldsymbol{\theta}_{2}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_{2}))||\mathbf{h}_{2} - \mathbf{h}'|| \leq$$

$$\leq \nabla_{\mathbf{h}}(Q(\mathbf{h}_{2}|\boldsymbol{\theta}_{2}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_{2})) \max_{\mathbf{h}_{1}, \mathbf{h}_{2}} ||\mathbf{h}_{1} - \mathbf{h}_{2}||.$$

Рассмотрим выражение $\nabla_{\mathbf{h}}Q(\mathbf{h}_2|\boldsymbol{\theta}_2,\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda}_2)$. Из [?] следует равенство:

$$\nabla_{\mathbf{h}}Q(\mathbf{h}_2|\boldsymbol{\theta}^*(\mathbf{h}_2), \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_2) = \nabla_{\mathbf{h}}Q(\mathbf{h}_2|\boldsymbol{\theta}_2, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_2) -$$

$$-\nabla_{\boldsymbol{\theta},\mathbf{h}}(L(\boldsymbol{\theta}_2|\mathbf{y},\mathbf{X},\mathbf{h}_2,\boldsymbol{\lambda}_2))^{\mathsf{T}}\nabla_{\boldsymbol{\theta}}^2(L(\boldsymbol{\theta}_2|\mathbf{y},\mathbf{X},\mathbf{h}_2,\boldsymbol{\lambda}_2))^{-1}\nabla_{\boldsymbol{\theta}}Q(\mathbf{h}_2|\boldsymbol{\theta}_2,\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda}),$$

где левая часть равенства градиент от $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ как от сложной функции, где $\boldsymbol{\theta}^*$ — решение нижней задачи оптимизации. Т.к. \mathbf{h}_2 — решение задачи оптимизации (??), то $\nabla_{\mathbf{h}}Q(\mathbf{h}_2|\boldsymbol{\theta}^*(\mathbf{h}_2), \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_2) = 0$. Отсюда следует:

$$Q(\mathbf{h}_2|\boldsymbol{\theta}_2, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_2) - Q(\mathbf{h}'|\boldsymbol{\theta}_2, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_2) \le$$

$$\leq \nabla_{\boldsymbol{\theta},\mathbf{h}}(L(\boldsymbol{\theta}_2|\mathbf{y},\mathbf{X},\mathbf{h}_2,\boldsymbol{\lambda}_2))^\mathsf{T} \nabla_{\boldsymbol{\theta}}^2 (L(\boldsymbol{\theta}_2|\mathbf{y},\mathbf{X},\mathbf{h}_2,\boldsymbol{\lambda}_2))^{-1} \nabla_{\boldsymbol{\theta}} Q(\mathbf{h}_2|\boldsymbol{\theta}_2,\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda}_2) \max_{\mathbf{h}_1,\mathbf{h}_2} ||\mathbf{h}_1 - \mathbf{h}_2 - \mathbf$$

Функция $L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$ состоит из двух слагаемых, одно из которых не зависит от \mathbf{h} , поэтому

$$\nabla_{\boldsymbol{\theta}, \mathbf{h}} (L(\boldsymbol{\theta}_2 | \mathbf{y}, \mathbf{X}, \mathbf{h}_2, \boldsymbol{\lambda}_2))^{\mathsf{T}} = \lambda_{\mathrm{prior}}^{\mathrm{L}} \nabla_{\boldsymbol{\theta}, \mathbf{h}} (D_{\mathrm{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_2) | | [p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}_2, \boldsymbol{\lambda}')))^{\mathsf{T}}.$$

Т.к. $\boldsymbol{\theta}_2$ — оптимум функции $L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h}_2,\boldsymbol{\lambda}_2)$, то

$$\nabla_{\boldsymbol{\theta}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{2})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) - \nabla_{\boldsymbol{\theta}} \lambda_{\mathrm{prior}}^{\mathrm{L}} D_{\mathrm{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{2}) || p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}_{2})) = 0,$$

$$\nabla_{\boldsymbol{\theta}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_{2}) = \nabla_{\boldsymbol{\theta}} \mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{2})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}) -$$

$$-\lambda_{\text{prior}_2}^{\text{Q}} \nabla_{\boldsymbol{\theta}} D_{\text{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_2) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}_2, \boldsymbol{\lambda}_2)) =$$

$$= (\lambda_{\text{prior}_2}^{\text{Q}} - \lambda_{\text{prior}}^{\text{L}}) \nabla_{\boldsymbol{\theta}} D_{\text{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma} | \boldsymbol{\theta}_2) || p(\mathbf{w}, \boldsymbol{\Gamma} | \mathbf{h}_2, \boldsymbol{\lambda}_2)).$$

С учетом переписанных выражений $\nabla_{\boldsymbol{\theta},\mathbf{h}}(L(\boldsymbol{\theta}_2|\mathbf{h}_2,\mathbf{X},\mathbf{h},\boldsymbol{\lambda}))^\mathsf{T},$ $\nabla_{\boldsymbol{\theta}}Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{\theta},\boldsymbol{\lambda})$ получаем:

$$\nabla_{\mathbf{h}} Q(\mathbf{h}_{2}|\boldsymbol{\theta}^{*}(\mathbf{h}_{2}), \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_{2}) = \nabla_{\mathbf{h}} Q(\mathbf{h}_{2}|\boldsymbol{\theta}_{2}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}_{2}) - \lambda_{\text{prior}}^{L} (\lambda_{\text{prior}}^{Q} - \lambda_{\text{prior}}^{L}) \nabla_{\boldsymbol{\theta}, \mathbf{h}} (D_{\text{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{2})||[p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}_{2})))^{\mathsf{T}} \times \nabla_{\boldsymbol{\theta}}^{2} (L(\boldsymbol{\theta}_{2}|\mathbf{h}_{2}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda}_{2}))^{-1} \nabla_{\boldsymbol{\theta}} D_{\text{KL}} (q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}_{2})||p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}_{2}, \boldsymbol{\lambda}_{2})).$$

Отсюда следует доказываемое неравенство.

Оценка, полученная в данной теореме зависит от метапараметров и гиперпараметров, использованных только в задаче оптимизации при $\lambda_{\text{prior}_2}^Q$. Верхняя оценка разности параметрических сложностей обращается в ноль при $\lambda_{\text{prior}_2}^Q = \lambda_{\text{prior}}^L$ и при $\lambda_{\text{prior}}^L = 0$. Последний случай соответствует вырожденному случаю, когда нижняя задача оптимизации эквивалентна оптимизации правдоподобия выборки, и оценка параметрической разности параметрической сложности напрямую следует из Леммы 3.

Следующая теорема анализирует оптимизацию при $\frac{\lambda_{\text{prior}}^Q}{\lambda_{\text{likelihood}}^Q} = \lambda_{\text{prior}}^L$. В частности, если $\lambda_{\text{likelihood}}^Q = 1$, то такая оптимизация соответствует оптимизации вариационной оценки обоснованности на обеих уровнях оптимизации для выборки размера $\left[\frac{m}{\lambda_{\text{prior}}^L}\right]$, о чем говорилось в Теореме 1.4.

Теорема 9. Пусть $\frac{\lambda_{\text{prior}}^{Q}}{\lambda_{\text{likelihood}}^{Q}} = \lambda_{\text{prior}}^{L}$. Тогда задача оптимизации (1.19) представима в виде одноуровневой задачи оптимизации:

$$\lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - \lambda_{\text{prior}}^{\text{Q}} D_{\text{KL}} (q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) - \\ - \sum_{p' \in \mathfrak{P}, \lambda \in \boldsymbol{\lambda}_{\text{struct}}^{\text{Q}}} D_{\text{KL}} (p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})||p') - \log p(\mathbf{h}|\boldsymbol{\lambda}) \to \max_{\mathbf{h}, \boldsymbol{\theta}}.$$

 \mathcal{A} оказательство. Т.к. выполнено равенство $\frac{\lambda_{\text{prior}}^{Q}}{\lambda_{\text{likelihood}}^{Q}} = \lambda_{\text{prior}}^{L}$, то нижняя задача оптимизации экивалентна следующей задаче:

$$\lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - \\ -\lambda_{\text{prior}}^{\text{Q}} D_{\text{KL}} (q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta}) | | p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})).$$

Параметры $\boldsymbol{\theta}$ вариационного распределения $q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})$ не зависят от слагаемых вида $\log p(\mathbf{h}|\boldsymbol{\lambda})$ и $D_{\mathrm{KL}}(p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})||p'), p' \in \mathfrak{P}$, поэтому нижняя задача оптимизации эквивалентна следующей задаче:

$$\lambda_{\text{likelihood}}^{\text{Q}} \mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) - \\ -\lambda_{\text{prior}}^{\text{Q}} D_{\text{KL}} (q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})). \\ -\sum_{p', \lambda \in \mathfrak{P}, \boldsymbol{\lambda}_{\text{struct}}^{\text{Q}}} D_{\text{KL}} (p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) || p') + \log p(\mathbf{h}|\boldsymbol{\lambda}) \to \max_{\boldsymbol{\theta}}$$

для любого вектора $oldsymbol{\lambda}_{ ext{struct}}^{ ext{Q}}.$

Поэтому верхняя и нижняя задачи совпадают:

$$\mathbf{h} = \arg\max_{\mathbf{h}'} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}),$$

где

$$\boldsymbol{\theta}^*(\mathbf{h}') = \argmax_{\boldsymbol{\theta}} Q(\mathbf{h}'|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}).$$

Из свойства

$$\max_{\mathbf{h}} \max_{\boldsymbol{\theta}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda}) = \max_{\boldsymbol{\theta}, \mathbf{h}} Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$$

следует доказательство теоремы.

Для вычисления приближенного значения функций $Q(\mathbf{h}|\mathbf{y}, \mathbf{X}, \boldsymbol{\theta}, \boldsymbol{\lambda})$ и $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ предлагается использовать приближение методом Монте-Карло с порождением R реализаций величин $\mathbf{w}, \boldsymbol{\Gamma}$. Т.к. эти функции состоят из слагаемых вида $\mathsf{E}_{q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \boldsymbol{\Gamma}), \ D_{\mathrm{KL}} \big(q(\mathbf{w}, \boldsymbol{\Gamma}|\boldsymbol{\theta}) || p(\mathbf{w}, \boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) \big), \ \log p(\mathbf{h}|\boldsymbol{\lambda}), \ D_{\mathrm{KL}} \big(p(\boldsymbol{\Gamma}|\mathbf{h}, \boldsymbol{\lambda}) || p' \big), p' \in \mathfrak{P}$, то рассмотрим численные приближения каждого из этих слагаемых.

Выражение $\mathsf{E}_{q(\mathbf{w}, \Gamma|\boldsymbol{\theta})} \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \Gamma)$ предлагается вычислять следующим образом:

$$\mathsf{E}_{q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta})} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \mathbf{\Gamma}) \approx \frac{1}{R} \sum_{r=1}^{R} \log p(\mathbf{y} | \mathbf{X}, \mathbf{w}_r, \mathbf{\Gamma}_r),$$

где Γ_r — реализация случайной величины, полученная по форумле (1.1), \mathbf{w}_r — реализация случайной величины, полученная по формуле:

$$\mathbf{w}_r = \boldsymbol{\mu}_q + \boldsymbol{arepsilon}^\mathsf{T} \boldsymbol{lpha}_q.$$

Выражение $D_{\mathrm{KL}}ig(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})ig)$ декомпозируется на два слагаемых:

$$D_{\mathrm{KL}}(q(\mathbf{w}, \mathbf{\Gamma}|\boldsymbol{\theta})||p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) = D_{\mathrm{KL}}(q_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}})||p(\mathbf{\Gamma}|\mathbf{h}, \boldsymbol{\lambda})) +$$

$$+ \int_{\mathbf{\Gamma}} \int_{\mathbf{w}} q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) \log \frac{q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})}{p(\mathbf{w}|\mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})} dq_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}}) dq_{\mathbf{\Gamma}}(\mathbf{\Gamma}|\boldsymbol{\theta}_{\mathbf{\Gamma}}).$$

Для первого слагаемого предлагается использовать следующую формулу:

$$D_{\mathrm{KL}}(q_{\Gamma}(\Gamma|\boldsymbol{\theta}_{\Gamma})||p(\Gamma|\mathbf{h},\boldsymbol{\lambda})) \approx \frac{1}{R} \sum_{r=1}^{R} \log q_{\Gamma}(\Gamma_{r}|\boldsymbol{\theta}_{\Gamma}) - \log p(\Gamma_{r}|\mathbf{h},\boldsymbol{\lambda}).$$
 (1.24)

Для второго слагаемого справедлива следующая формула:

$$\int_{\boldsymbol{\Gamma}} \int_{\mathbf{w}} q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}) \log \frac{q_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}})}{p(\mathbf{w}|\boldsymbol{\Gamma},\mathbf{h},\boldsymbol{\lambda})} dq_{\mathbf{w}}(\mathbf{w}|\boldsymbol{\Gamma},\boldsymbol{\theta}_{\mathbf{w}}) dq_{\boldsymbol{\Gamma}}(\boldsymbol{\Gamma}|\boldsymbol{\theta}_{\boldsymbol{\Gamma}}) \approx$$

$$\approx \frac{1}{2R} \sum_{r=1}^{R} \sum_{(j,k)\in E} \sum_{l=1}^{K_{j,k}} \left((\gamma_l^{j,k})^{-1} \operatorname{tr} \mathbf{A}_q^{-1} \mathbf{A} + (\gamma_l^{j,k})^{-1} \boldsymbol{\mu}_q^{\mathsf{T}} \mathbf{A}^{-1} \boldsymbol{\mu}_q + \log \frac{\gamma_l^{j,k} \operatorname{det} \mathbf{A}}{\operatorname{det} \mathbf{A}_q} \right) - \frac{1}{2} |\mathbf{W}|.$$

1.4.1. Вычислительный эксперимент

Список основных обозначений

 $\mathbf{x}_i \in \mathbf{X}$ — вектор признакового описания i-го объекта

 $y_i \in \mathbf{y}$ — метка i-го объекта

 \mathfrak{D} — выборка

 $\mathbf{X} \subset \mathbb{X}$ — матрица, содержащая признаковое описание объектов выборки

 $\mathbf{y} \subset \mathbb{Y}$ — вектор меток объектов выборки

m — количество объектов в выборке

n — количество признаков в признаковом описании объекта

 $\mathbb{X} = \mathbb{R}^m$ — признаковое пространство объектов

R — множество классов в задаче классификации

(V,E) — граф со множеством вершин V и множеством ребер E

 $\mathbf{g}^{j,k}$ — вектор базовых функций для ребра (j,k)

 $K^{j,k}$ — мощность вектора базовых функций для ребра (j,k)

 \mathbf{agg}_v — функция аггрегации для вершины v

 $\gamma^{ar{j},ar{k}}$ — структурный параметр для ребра (j,k)

 \mathfrak{F} — параметрическое семейство моделей

U — область определения оптимизационной задачи

 $\mathbf{w} \in \mathbb{W}$ — параметры модели

 \mathbb{W} — пространство параметров модели

 $U_{\mathbf{w}} \subset \mathbb{W}$ — область определения параметров модели

 $\Gamma \in \Gamma$ — структура модели

 Γ — множество значений структуры модели

 $U_{\Gamma} \subset \Gamma$ — область определения параметров модели

 $\mathbf{h} \in \mathbb{H}$ — гиперпараметры модели

 \mathbb{H} — пространство гиперпараметров модели

 $U_{\mathbf{h}} \subset \mathbb{H}$ — область определения гиперпараметров

 $oldsymbol{ heta} \in \mathbb{O}$ — параметры вариационного распределения

Пространство параметров вариационного распределения

 $U_{\theta} \subset \Theta$ — область определения вариационных параметров модели

 $\boldsymbol{\theta}_{\mathbf{w}} \in \mathbb{O}_{\mathbf{w}}$ — параметры вариационного распределения, аппроксимирующего апостериорное распределение параметров модели

 $\Theta_{\mathbf{w}}$ — пространство параметров вариационного распределения, аппроксимирующего апостериорное распределение параметров модели

 $U_{\theta_{\mathbf{w}}} \subset \Theta_{\mathbf{w}}$ — область определения параметров вариационного распределения, аппроксимирующего апостериорное распределение параметров модели

 $heta_{\Gamma} \in \mathbb{O}_{\Gamma}$ — параметры вариационного распределения, аппроксимирующего апостериорное распределение структуры модели

 Θ_{Γ} —пространство параметров вариационного распределения, аппроксимирующего апостериорное распределение структуры модели

 $U_{\theta_{\Gamma}} \subset \mathbb{O}_{\Gamma}$ — область определения параметров вариационного распределения, аппроксимирующего апостериорное распределение структуры модели

- $\lambda \in \lambda$ вектор метапараметров
- λ пространство метапараметров
- $U_{\lambda} \subset \lambda$ область определения метапараметров
- $p(\mathbf{y}|\mathbf{X},\mathbf{w},\mathbf{\Gamma})$ правдоподобие выборки
- $p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h}, \boldsymbol{\lambda})$ априорное распределение параметров и структуры модели
- $p(\mathbf{h}|\boldsymbol{\lambda})$ распределение гиперпараметров модели
- $p(\Gamma | \mathbf{h}, \boldsymbol{\lambda})$ априорное распределение структуры модели
- $p(\mathbf{w}|\mathbf{\Gamma},\mathbf{h},\boldsymbol{\lambda})$ априорное распределение параметров модели
- $p(\mathbf{w}, \mathbf{\Gamma}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ апостериорное распределение параметров и структуры модели
- $p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{\Gamma}, \mathbf{h}, \boldsymbol{\lambda})$ апостериорное распределение структуры модели
- $p(\Gamma|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ апостериорное распределение структуры модели
- $p(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{\lambda})$ апостериорное распределение гиперпараметров
- $p(y, \mathbf{w}, \mathbf{\Gamma} | \mathbf{x}, \mathbf{h})$ вероятностная модель глубокого обучения
- $p(\mathbf{y}|\mathbf{X},\mathbf{h},\boldsymbol{\lambda})$ обоснованность модели
- $q(\mathbf{w}, \mathbf{\Gamma} | \boldsymbol{\theta})$ вариационное распределение параметров и структуры модели
- $q_{\mathbf{w}}(\mathbf{w}|\mathbf{\Gamma}, \boldsymbol{\theta}_{\mathbf{w}})$ вариационное распределение структуры модели
- $q_{\Gamma}(\Gamma|oldsymbol{ heta}_{\Gamma})$ вариационное распределение параметров модели
- $L(\boldsymbol{\theta}|\mathbf{y}, \mathbf{X}, \mathbf{h}, \boldsymbol{\lambda})$ функция потерь
- $Q(\mathbf{h}|\mathbf{y},\mathbf{X},\boldsymbol{ heta},\boldsymbol{\lambda})$ валидационная функция
- $T(\boldsymbol{\theta}|L(\boldsymbol{\theta}|\mathbf{y},\mathbf{X},\mathbf{h},\boldsymbol{\lambda}))$ оператор оптимизации
- \mathfrak{Q} семейство вариационные распределений
- S энтропия распределения
- M- множество моделей без общей параметризации
- $D_{\mathrm{KL}}(p_1||p_2)$ дивергенция Кульбака-Лейблера между распределениями p_1 и p_2
- \mathbf{A}^{-1} матрица ковариаций параметров модели
- ${f s}$ конкатенация параметров концентрации на структуре модели