PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-053581

(43)Date of publication of application: 19.02.2002

(51)Int.CI.

CO7D499/86 CO7D499/87 CO7D499/897

(21)Application number: 2000-244288

(71)Applicant:

OTSUKA CHEM CO LTD

(22)Date of filing:

11.08.2000

(72)Inventor:

SHIMABAYASHI AKIHIRO

KAWAHARA ICHIRO

(54) PENICILLIN CRYSTAL AND METHOD FOR MANUFACTURING THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a TMPB substance excellent in stabilityp without danger of quality deterioration due to decomposition even after storage for a long time at room temperature.

SOLUTION: The TMPB substance of the present invention is a crystal of 2-methyl-2-triazolylmethylpenam-3-carboxylic acid diphenylmethyl ester having peaks in lattice face intervals in X-ray diffraction pattern of powder obtained with copper radioactive ray of λ =1.5418 angstrom passed through a monochromater.

LEGAL STATUS

[Date of request for examination]

11.08.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] [Date of registration] 3743822 02.12.2005

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-53581 (P2002-53581A)

(43)公開日 平成14年2月19日(2002.2.19)

(51) Int.Cl.7

識別記号

FΙ

C 0 7 D 499/00

テーマコート*(参考)

C 0 7 D 499/86

499/87

499/897

審査請求 有 請求項の数3 OL (全 7 頁)

(21)出願番号

(22)出願日

特願2000-244288(P2000-244288)

平成12年8月11日(2000.8.11)

(71)出願人 000206901

大塚化学株式会社

大阪府大阪市中央区大手通3丁目2番27号

(72)発明者 島林 昭裕

徳島県徳島市川内町加賀須野463 大塚化

学株式会社徳島研究所内

(72)発明者 河原 一郎

徳島県徳島市川内町加賀須野463 大塚化

学株式会社徳島研究所内

(74)代理人 100065215

弁理士 三枝 英二 (外8名)

(54) 【発明の名称】 ペニシリン結晶及びその製造法

(57)【要約】

【課題】 本発明は、安定性に優れ、室温で長期間保存 しても分解して品質低下を起す虞れのない TMP B物質 を提供することを課題とする。

【解決手段】 本発明のTMPB結晶は、モノクロメーターを通した $\lambda = 1.5418$ 人の銅放射線で得られる X線粉末回折パターンで格子面間隔にピークを有する 2 - メチルー 2 - トリアゾリルメチルペナム - 3 - カルボン酸ジフェニルメチルエステルの結晶である。

(特許請求の範囲)

【請求項1】 モノクロメーターを通した $\lambda = 1.54$ 18人の銅放射線で得られるX線粉末回折パターンで下 記格子面間隔にピークを有することを特徴とする2-メ チル-2-トリアゾリルメチルペナム-3-カルボン酸 ジフェニルメチルエステルの結晶。

1

d (格子面間隔)

9. $026 \sim 9.977$

7. $192 \sim 7.949$

6. 056~6. 694

4. 810~5. 317

4. 662~5. 153

4. 509~4. 984

4. 193~4. 635

4. 120~4. 554

 $4.043 \sim 4.447$

3.801~4.201

3.602~3.981

3. 421~3. 781

 $3.031\sim3.350$

【請求項2】 モノクロメーターを通した $\lambda = 1.54$ 18人の銅放射線で得られるX線粉末回折パターンが、 下記に示すX線粉末回折パターンである請求項1に記載 の2-メチル-2-トリアゾリルメチルペナム-3-カ ルボン酸ジフェニルメチルエステルの結晶。

d (格子面間隔)

相対強度(1/1。)

9. $026 \sim 9.977$ 7. $192 \sim 7.949$ 1.00

 $6.056\sim6.694$

 $0.32 \sim 0.47$

4.810~5.317

 $0.10 \sim 0.16$

4. 662~5. 153

 $0.46 \sim 0.55$

 $0.10 \sim 0.19$

4.509~4.984

 $0.35 \sim 0.65$

4. 193~4. 635

0.20~0.22

 $4.120\sim4.554$

0.19~0.25

 $4.043 \sim 4.447$

 $0.19 \sim 0.31$

3. 801~4. 201

 $0.13 \sim 0.19$

3. $602 \sim 3.981$

 $3.421\sim3.781$

 $0.05 \sim 0.07$

 $0.11 \sim 0.17$ 0.06~0.09

 $3.031\sim3.350$ 【請求項3】 式

【化1】

〔式中、Phはフェニル基を示す。〕で表される2-メ チル-2-トリアゾリルメチルペナム-3-カルボン酸 ジフェニルメチルエステルを含む溶液を濃縮し、濃縮液 を酢酸エステル類で希釈し、この希釈液をヘキサン類又 50 で抽出し、塩化メチレンを留去し、必要に応じて得られ

はヘキサン類と酢酸エステル類とを含む溶媒と混合し て、2-メチル-2-トリアゾリルメチルペナム-3-カルボン酸ジフェニルメチルエステルを晶析させること を特徴とする請求項1のペニシリン結晶の製造法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ペニシリン結晶及 びその製造法に関する。更に詳しくは、本発明は、2-メチル-2-トリアゾリルメチルペナム-3-カルボン 10 酸ジフェニルメチルエステルの結晶及びその製造法に関 する。

[0002]

【従来の技術】2-メチル-2-トリアゾリルメチルベ ナム-3-カルボン酸ジフェニルメチルエステル(以下 特に断らない限り「TMPB」と略記する)は、式 [0003]

[{£2]

20

【0004】で表されるタゾバクタムを合成するための 中間体として有用な化合物である。

【0005】タゾバクタム等のβ-ラクタマーゼ阻害剤 は、それ自体の抗菌活性は極めて弱く、単独では抗菌剤 として使用されることはないが、細菌が産出する各種の β-ラクタマーゼと不可逆的に結合してその活性を阻害 30 する作用を有している。

 $\{0006\}$ このため、 β – ラクタマーゼ阻害剤は、通 常、β-ラクタマーゼに不活性化される既存の各種抗生 剤と併用され、β-ラクタマーゼ産生菌に対しても該各 種抗生剤本来の抗菌作用を発揮させることができる(最 新抗生物質要覧、第10版、酒井克治著、第113

【0007】タゾバクタムは、3位に1,2,3-トリ アゾリルメチル基を有する化学構造の化合物であり、合 成の際には、TMPB、2-メチル-2-トリアゾリル 40 メチルペナム-3-カルボン酸p-ニトロベンジルエス テル等の合成中間体を経由することが不可欠である。と りわけTMPBを用いると、工業的に簡易且つ安価な方 法により、高純度のタゾバクタムを高収率で得ることが できる。

【0008】従来TMPBは、例えば、特公平7-12 1949号公報に記載の方法に従い、2-クロロメチル -2-メチルペナム-3-カルボン酸ジフェニルメチル エステルと1,2,3-トリアゾールとを塩基の存在下 溶媒中にて反応させた後、溶媒を留去し、塩化メチレン る残渣をシリカゲルカラム等を用いたクロマトグラフィ ーに付することにより製造されている。ここで、溶媒と しては、アセトン、アセトニトリル等の有機溶媒又はこ れらの有機溶媒と水との混合溶媒が使用されている。

3

【0009】しかしながら、該公報に記載の方法で得ら れるTMPBを含む固形物は、その分子内に求核反応性 を有する1,2,3-トリアゾール骨格を有することか ら不安定であり、例えば室温で保管すると自己分解を起 して品質が著しく低下するという欠点がある。通常、医 薬品の中間体には、長期間に亘って高純度を維持し、常 10 3.031~3.350 温保存等の温和且つ経済的な条件下で分解、変質等を起 すことなく、安定に取扱いできることが望まれているた め、上記方法で得られるTMPB含有固形物は、医薬品 中間体としては好ましくない。

【0010】また、特開平8-53462号公報、特に その実施例3によれば、2-メチル-2-アミノメチル ペナム-3-カルボン酸ジフェニルメチルエステルと 2, 2-ジクロロアセトアルデヒド-p-トルエンスル ホニルヒドラゾンとを室温下にメタノール中で反応さ て濾過し、濾液を濃縮し、残渣を酢酸エチルとヘキサン との混合溶媒(1:1)で結晶化することにより、TM PBを87%の収率で製造している。

【0011】しかしながら、このような方法で得られる TMPBの粉末は明確なX線粉末回折パターンを有して おらず、アモルファスである。このTMPB粉末は、上 記TMPB含有固形物と同様に不安定であり、室温で長 期間保存すると分解して品質低下を起すのを免れること ができない。

[0012]

【発明が解決しようとする課題】本発明は、安定性に優 れ、室温で長期間保存しても分解して品質低下を起す虞 れのないTMPB物質を提供することを課題とする。 [0013]

【課題を解決するための手段】本発明者は、上記課題を 解決すべく鋭意研究を重ねた結果、従来のTMPB含有 固形物及びアモルファス粉末とは異なった特性を有す る、2-メチル-2-トリアゾリルメチルペナム-3-カルボン酸ジフェニルメチルエステルの結晶を得ること に成功し、ことに本発明を完成するに至った。

【0014】本発明によれば、モノクロメーターを通し たλ=1.5418Aの銅放射線で得られるX線粉末回 折バターンで下記格子面間隔にピークを有することを特 徴とする2-メチル-2-トリアゾリルメチルペナム-3-カルボン酸ジフェニルメチルエステルの結晶(以下 この結晶を「ペニシリン結晶」という)が提供される。 【0015】d(格子面間隔)

9. $026 \sim 9.977$

7. $192 \sim 7.949$

6.056~6.694

4. $810 \sim 5.317$

4.662~5.153

4. 509~4. 984

4. 193~4. 635

 $4.120 \sim 4.554$

4. 043~4. 447

3.801~4.201

3.602~3.981

3. $421 \sim 3$. 781

本発明によれば、式 [0016]

[化3]

【0017】〔式中、Phはフェニル基を示す。〕で表 せ、反応混合物を濃縮し、残渣を塩化メチレンに溶解し 20 される2-メチル-2-トリアゾリルメチルペナム-3 - カルボン酸ジフェニルメチルエステルを含む溶液を濃 縮し、濃縮液を酢酸エステル類で希釈し、この希釈液を ヘキサン類又はヘキサン類と酢酸エステル類とを含む溶 媒と混合して、2-メチル-2-トリアゾリルメチルベ ナム-3-カルボン酸ジフェニルメチルエステルを晶析 させることを特徴とするペニシリン結晶の製造法が提供 される。

> 【0018】本発明のペニシリン結晶は、結晶分子内に 求核反応性を有する1,2,3-トリアゾール骨格を有 30 しているにも拘わらず、1年以上の長期間にわたって室 温で保存しても、分解や変質等を起すことなく安定であ り、高純度を維持し、タゾバクタム等の医薬品の合成中 間体として極めて有用である。

【0019】本発明のペニシリン結晶を用いれば、純度 99.9%以上のタゾバクタムを91%以上の髙収率で 製造することができる。

[0020]

【発明の実施の形態】本発明のTMPBは、式 [0021]

40 【化4】

【0022】〔式中、Phは前記に同じ。〕で表され る。

【0023】本発明のペニシリン結晶は、TMPBの結 晶から構成され、上記に示すX線粉末回折スペクトルの 50 ピークを有するものであるが、その一例としては、下記

に示すX線粉末回折スペクトルを有するものを挙げると とができる。

[0024]

た。

d (格子面間隔) 相対強度(1/1。) 1.00 9. $026 \sim 9.977$ $0.32 \sim 0.47$ 7. $192 \sim 7.949$ 0.10~0.16 6. 056~6. 694 4.810~5.317 $0.46 \sim 0.55$ $0.10 \sim 0.19$ $4.662 \sim 5.153$ 4. 509~4. 984 $0.35 \sim 0.65$ 4. 193~4. 635 0.20~0.22 4. 120~4. 554 0.19~0.25 4. 043~4. 447 $0.19 \sim 0.31$ 3. 801~4. 201 0.13~0.19 0.05~0.07 3. $602 \sim 3.981$ 3. $421 \sim 3.781$ $0.11 \sim 0.17$ 1. 031~3. 350 0.06~0.09 本発明において、X線粉末回折スペクトルの測定は、株

【0025】本発明のペニシリン結晶は、TMPBを含 む溶液を濃縮し、濃縮液を酢酸エステル類で希釈し、と の希釈液をヘキサン類又はヘキサン類と酢酸エステル類 とを含む溶媒と混合することにより製造できる。

式会社リガク製のRINT2000/PCを用いて行っ

【0026】TMPBを含む溶液は、例えば、特公平7 -121949号公報等に記載の公知の方法に従って調 製できる。例えば、2-ハロメチル-2-メチルベナム - 3 - カルボン酸ジフェニルメタンエステルと1,2, 3-トリアゾールとを溶媒中にて反応させた反応溶液を 本発明のTMPBを含む溶液として使用してもよいし、 或いは上記反応溶液から溶媒を留去し、得られる残渣を 塩化メチレン等の適当な溶媒に溶解した溶液を本発明の TMPBを含む溶液として使用してもよい。

【0027】2-ハロメチル-2-メチルペナム-3-カルボン酸ジフェニルメタンエステルと1,2,3-ト リアゾールとを反応させるに当たり、1、2、3-トリ アゾールの使用量は、2-ハロメチル-2-メチルペナ ム-3-カルボン酸ジフェニルメタンエステル1モルに 対して通常1~40倍モル当量程度、好ましくは15~ 35倍モル当量程度とすればよい。反応溶媒としては、 アセトン、アセトリトリル、塩化メチレン等の有機溶媒 又はこれらの有機溶媒と水との混合溶媒が使用される。 反応溶媒の使用量は特に制限されず、上記原料化合物2 種を容易に溶解でき且つ反応に支障をきたさない量を適 宜選択すればよい。この反応系には、塩基を存在させて もよい。塩基としては公知のものを使用でき、例えば、 炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金 属炭酸塩、炭酸バリウム、炭酸カルシウム等のアルカリ 土類金属炭酸塩、炭酸銀、炭酸銅等の銅族金属炭酸塩、 酸化銅、酸化銀等の銅族金属酸化物、酸化マグネシウ

ム、酸化カルシウム、酸化バリウム等のアルカリ土類金 属酸化物、酸化亜鉛、酸化水銀等の亜鉛族金属酸化物、

酸化アルミニウム、酸化タリウム等のアルミニウム族金 属酸化物、シリカゲル、酸化鋁、酸化鉛等の炭素族金属 酸化物、酸化鉄、酸化コバルト、酸化ニッケル等の鉄族 金属酸化物、水酸化銅、水酸化銀等の銅族金属水酸化 物、ピリジン、トリエチルアミン、ジイソプロピルエチ ルアミン等の有機アミン、陰イオン交換樹脂等を挙げる ことができる。これら塩基は1種を単独で使用でき又は 10 必要に応じて2種以上を併用できる。塩基の使用量は特 に制限されないが、2-ハロメチル-2-メチルペナム

程度の温度下に行われる。 【0028】TMPBを含む溶液の濃縮は、通常該TM PB含有溶液の液量が濃縮前の1/5~1/2程度にな るまで行えばよい。濃縮方法は特に制限されず公知の方

法が採用でき、例えば、25~80kPa程度の減圧下

-3-カルボン酸ジフェニルメタンエステル 1 モルに対

して、通常0.5~2倍モル当量程度とすればよい。本

反応は、通常0~60℃程度、好ましくは室温~40℃

20 に濃縮すればよい。

【0029】次いで、TMPB含有溶液の濃縮液(以下 単に「濃縮液」という)に酢酸エステル類を加え、希釈 液を得る。との時、後の工程の操作を簡便化する目的 で、酢酸エステル類と共に他の溶媒を添加してもよい。 【0030】酢酸エステル類としては公知のものを使用 でき、例えば、酢酸メチル、酢酸エチル、酢酸ブチル等 の低級アルコール類と酢酸とのエステル類等を挙げるこ とができる。これらの中でも、酢酸エチルが好ましい。 酢酸エステル類は1種を単独で使用でき、また2種以上 30 を併用できる。酢酸エステル類の使用量は特に制限され ないが、濃縮液中に残存する有機溶媒100容量に対 し、通常40~240容量程度、好ましくは50~15 0容量程度とすればよい。

【0031】酢酸エステル類と共に添加する他の溶媒は 特に制限はないが、濃縮液中に残存する溶媒と同種のも のであることが好ましい。酢酸エステル類と共に他の溶 媒を添加する場合、濃縮液中の残存溶媒と添加する他の 溶媒との合計量100容量に対し、前記と同じ体積割合 の酢酸エステル類を使用すればよい。

【0032】なお、後の晶析工程での晶析率を向上さ せ、目的物である本発明ベニシリン結晶の収量を更に増 加させるために、希釈液を繰り返し濃縮及び希釈しても よい。濃縮は前記と同様に行えばよい。2度目以降の希 釈は、濃縮液に酢酸エステル類及び必要に応じて他の溶 媒を添加することにより行われる。その際、濃縮液中に は通常酢酸エステル類とそれ以外の溶媒とが残存してい る点に留意し、得られる希釈液中に、他の溶媒100容 量に対して酢酸エステル類100~800容量、好まし くは200~600容量が含まれるようにすればよい。

50 【0033】 このようにして得られる希釈液をヘキサン

類又はヘキサン類と酢酸エステル類とを含む溶媒と混合 することにより、本発明のTMPB結晶からなるペニシ リン結晶が晶析する。ヘキサン類としては公知のものを 使用でき、例えば、n-ヘキサン、シクロヘキサン、メ チルシクロヘキサン等を挙げることができる。これらの 中でも、n-ヘキサンが好ましい。酢酸エステル類とし ては前記と同様のものが使用でき、やはり酢酸エチルが 好ましい。ヘキサン類及び酢酸エステル類はそれぞれ1 種を単独で使用でき又は2種以上併用できる。

特に制限されず、広い範囲から適宜選択すればよいが、 ヘキサン類は、希釈液中の酢酸エステル類以外の溶媒 1 00容量に対して通常100~500容量程度、好まし くは150~300容量程度(いずれも体積比)添加す ればよい。酢酸エステル類は、希釈液中の酢酸エステル 類以外の溶媒100に対して、通常100~800容量 程度、好ましくは200~600容量程度添加すればよ

【0035】晶析の際の温度条件は特に制限されない *

*が、晶析率を向上させ、ひいては本発明のペニシリン結 晶の収量を増加させることを考慮すると、通常20°C以 上、好ましくは22~40℃程度で晶析を行うのがよ

【0036】晶析するTMPB結晶は、例えば、濾過、 有機溶媒による洗浄、減圧乾燥等の公知の分離手段に従 って、混合物中から容易に単離精製できる。有機溶媒に よる洗浄に使用される有機溶媒としては、例えば、酢酸 エステル類、ヘキサン類、これらの混合溶媒等を挙げる 【0034】ヘキサン類及び酢酸エステル類の使用量は 10 ととができる。酢酸エステル類とヘキサン類とを混合す る場合、その混合比は特に制限されないが、通常体積比 で50:50程度にすればよい。減圧乾燥は、25~4 0℃程度の温度下及び30~0.1 k P a 程度の減圧下 に行われる。

> 【0037】本発明のペニシリン結晶は、下記反応式に 示す方法等の公知の方法に従って、β-ラクタマーゼ阻 害剤であるタゾバクタムに導くことができる。

[0038]

[化5]

【0039】(式中Phは上記に同じ。)

[0040]

【実施例】以下に実施例及び参考例を挙げ、本発明を具 体的に説明する。

【0041】実施例1

1リットルのナス型フラスコに、2-メチル-2-トリ アゾリルメチルペナム-3-カルボン酸ジフェニルメチ ルエステル約15gを含む塩化メチレン溶液300ml 塩化メチレンは、-10~-20℃の冷媒を還流させた コンデンサ内を通して液体として回収し、回収液体量が 約210mlになった時点で、酢酸エチル43mlを添 加した。更に、回収される有機溶媒の液量が約60m1 に達するまで濃縮を続けた。この濃縮液をガスクロマト グラフィーで分析し、塩化メチレン量が10m1、酢酸 エチル量が40mlとなるように塩化メチレン及び酢酸 エチルを添加した。この希釈液に、その液温を22℃以 上に保持しながらn-ヘキサン24mlを添加すること により、2-メチル-2-トリアゾリルメチルペナム- 50

3-カルボン酸ジフェニルメチルエステルの結晶が析出 した。

【0042】この析出物を加圧下に瀘取し、酢酸エチル /n-ヘキサン(体積比50:50)の混合溶剤40m 1にて洗浄し、約40℃で減圧乾燥を行い、2-メチル -2-トリアゾリルメチルペナム-3-カルボン酸ジフ ェニルメチルエステルの結晶9.5gを製造した。

【0043】 この結晶について、モノクロメーターを通 を入れ、減圧下に濃縮を行った。濃縮により留去された 40 したλ=1.5418Åの銅放射線で得られるX線粉末 回折パターンを測定したところ、下記の格子面間隔に強 いピークを有していた。

[0044]

d(格子面間隔)	相対強度(1/1。)
9.5016	1.00
7.5703	0.42
6. 3749	0.14
5.0635	0.52
4.9078	0.16
4.7462	0.45

10

4.4140	0. 21	6. 3749	0.
4. 3372	0. 23	5.0635	0. 4
4. 2348	0. 27	4.9132	0.
4.0010	0.17	4.7462	0.
3. 7921	0.06	4.4184	0. :
3.6014	0.15	4. 3414	0. :
3. 1907	0.08	4. 2388	0. :
'H-NMR (CDC	1,) δ:1.22(s, 3H),	4.0010	0.
3. $18 (d, J = 1)$	16Hz, 1H), 3.68 (d	3.7921	0. (
d, $J = 4.16 Hz$	z, 1H), 4.59 (m, 2	10 3.6043	0.
H), 4.86(s,	1H), 5. 42 (d, J=4H	3. 1907	0. (

【0045】比較例1

0H), 7.74(s, 2H).

1リットルのナス型フラスコに、2-メチル-2-トリ アゾリルメチルペナム-3-カルボン酸ジフェニルメチ ルエステル15gを含む塩化メチレン溶液300mlを 入れ、減圧下に濃縮し、シリカゲルカラムクロマトグラ フィーにかけて再度濃縮し、固形物残渣を得た。このも リルメチルペナム-3-カルボン酸ジフェニルメチルエ ステルであることが確認されたが、モノクロメーターを 通したλ=1.5418Aの銅放射線で得られるX線粉 末回折パターンを測定したところ、明確なX線粉末回折 パターンを有していなかった。

z, 1H), 6. 90 (s, 1H), 7. 32 (s, 1

【0046】比較例2

1リットルのナス型フラスコに、2-メチル-2-トリ アゾリルメチルペナム-3-カルボン酸ジフェニルメチ ルエステル約15gを含む塩化メチレン溶液300m1 を入れ、減圧下に濃縮した後、酢酸エチル: n-ヘキサ 30 ン=1:1の混合溶媒で結晶化させ、2-メチル-2-トリアゾリルメチルペナム-3-カルボン酸ジフェニル メチルエステルの粉末結晶を得た。この結晶について、 モノクロメーターを通したλ=1.5418Aの銅放射 線で得られる粉末X線回折パターンを測定したところ、 明確なX線粉末回折バターンを有しておらず、アモルフ ァスであった。

【0047】実施例2

比較例1で得られた固形物残渣18gを、塩化メチレン れ、以下実施例1と同様に操作し、2-メチル-2-ト リアゾリルメチルペナム-3-カルボン酸ジフェニルメ チルエステルの結晶9.5gを製造した。この結晶につ いて、モノクロメーターを通したλ=1.5418Åの 銅放射線で得られる粉末X線回折パターンを測定したと **とろ、下記の格子面間隔に強いピークを有していた。** [0048]

d(格子面間隔)

相対強度(1/1。)

9. 5220

1.00

7. 5703

0.37

実施例1のTMPB結晶、比較例1のTMPB含有固形 物残渣及び比較例2のTMPB粉末結晶10gを、それ ぞれ試験管に入れ、密封して室温で1年間保存した後、 その純度を調べたところ、実施例1:96%、比較例 1:76%、比較例2:48%であった。

【0049】参考例2

参考例1

塩化メチレン240m1の入った1リットルの四頚フラ のは、NMRスペクトルから2-メチル-2-トリアゾ 20 スコに2-メチル-2-トリアゾリルメチルペナム-3 - カルボン酸ジフェニルメチルエステルを加え溶解し た。これに90%酢酸水溶液120mlと過マンガン酸 カリウム20gとを添加し、42℃付近にて3時間攪拌 した。次いで、塩化メチレン340mlと水180ml とを加え、5℃まで冷却し、35%過酸化水素24m1 を泡立ちに注意しながら滴下した。有機層を分取し、2 %重亜硫酸ナトリウム水溶液で洗浄後、水洗した。有機 層を乾燥し、減圧下に塩化メチレンを留去することによ り、油状物が37.4g得られた。

【0050】1リットルのナス型フラスコに2-メチル -2-トリアゾリルメチルペナム-3-カルボン酸1, 1-ジオキシドジフェニルメチルエステルのアモルファ ス30gを秤とり、塩化メチレン580mlを加えて溶 解した。減圧下に塩化メチレンの濃縮を行い、約420 mlの塩化メチレンを留去した時点で、400mlのメ タノールを添加し、更に濃縮を続け約200mlの塩化 メチレンとメタノールの混合溶剤を留去した。5 °C以下 で1時間撹拌することにより、2-メチル-2-トリア ゾリルメチルペナム - 3 - カルボン酸 1, 1 - ジオキシ 280m1に溶解し、1リットルのナス型フラスコに入 40 ドジフェニルメチルエステルが結晶体として析出した。 このものを減圧濾過、メタノール洗浄を行った後、約4 0℃で減圧乾燥を行うと2-メチル-2-トリアゾリル メチルペナム-3-カルボン酸1,1-ジオキシドジフ ェニルメチルエステルの結晶体が28.5g得られた。 【0051】得られた2-メチル-2-トリアゾリルメ チルペナム~3-カルボン酸1,1-ジオキシドジフェ ニルメチルエステル (TAZB) 10gを、50~55 ℃に加温したm-クレゾール80mlに加え、その温度 を維持しながら2時間反応させた。反応終了後、メチル 50 イソブチルケトン240mlを加え、0~5℃に冷却し

11

た。これに水23ml、炭酸水素ナトリウム2.3gを加えて抽出した。有機層には更に水12ml、炭酸水素ナトリウム0.7gを加えて再度抽出した。2度の抽出で分取した水層を合わせて、メチルイソブチルケトン1

8 mlで洗浄し、0~5°Cに冷却し、6規定塩酸を加えてpH=1に調整した。析出物を濾取し、少量の冷水で洗浄し乾燥すると、タゾバクタムの白色結晶が得られた。純度99.9%。収率95%(TAZB基準)。

12