YILDIZ TECHNICAL UNIVERSITY COMPUTER ENGINEERING DEPARTMENT 0114850 DATA MINING MIDTERM EXAM

Instructor: Assistant Prof. Songül ALBAYRAK

7th April 08

Important Note: You have exactly 100 minutes for the exam and any type of cheating will be dealt with seriously.

Name and Last Name:

Student ID:

	Question 1	Question 2	Question 3	Question 4
Points	20P	25P	25P	30P
		12 12 12 12 12 12 12 12 12 12 12 12 12 1		

QUESTIONS

1.) Classification using KNN (K-nearest neighbor)

Consider the one-dimensional data set shown in the table below.

value	0.5	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
class	-	-	+	+	+	-	-	+	-	-

(a) Classify the data point x = 5.0 according to its 1-, 3-, 5-, and 9-nearest neighbors (using majority

(b) For the same sets of neighbors, classify the data point x = 5.0 using a distance-weighted voting

approach (rather than using a simple majority vote) with weight

where x_i is the value of the i-th nearest neighbor and $d(\cdot)$ computes the distance.

instance	e Value	X=5.0 distance	class	Order	weight
	0.5	4.5	(-)	10	0.049
2	3.0	2	(-)	8	0.25
	4.5		(+)	5 -	4
4	4-6		(+)	4	6.25
	4-9		- (+)	1	100
6	5.2	0.2 _	(-)	2	25
7	5.3	0.3	(-)	3	11
8	5.5		(+)	6	4
9	7.0	2	(-)	7	0.25
10	3.5	4.5	- (-)	9	0.049
				/ \	MH-1 (-41M

0) $1-NN \Rightarrow X=5$ $(1+) \Rightarrow Class=(+)$ $(1) \Rightarrow (100+,0-) \Rightarrow$

2.) Naïve Bayes Classification

Use Bayes' model to predict the new instance (35, medium, yes, fair)?

Age	Income	Married	Credit_rating	Loan (Class information)
21	low	no	excellent	no
25	low	no	fair	no
27	medium	no	excellent	no
28	medium	no	fair	no
29	medium	yes	fair	yes
31	medium	no	excellent	yes
32.	high	yes	fair	no
36	high	yes	fair	yes
41	medium	yes	fair	yes
45	low	yes	fair	no
45.	low	yes	excellent	no
47	medium	yes	fair	yes

For the numerical data use normal distribution (Gauss) to compute the probability:

For the numerical data use normal distribution (Gauss) to compute the probability:

$$P(x) = N(x \mid \sigma, \mu) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$ACE \qquad \frac{NO}{\mu} = \frac{NO}{2\mu + 25 + 27 + 28 + 32 + 45 + 45} \qquad \frac{4ES}{\mu} = \frac{29 + 31 + 36 + 44 + 47}{5}$$

$$AP \qquad \frac{ACE}{\mu} = \frac{31.8}{5}$$

$$AP \qquad \frac{ACE}{\mu} = \frac{31.8}{5}$$

$$P(35 \mid NO) \times P(Medium \mid NO) \times P(Yes \mid NO) \times P(Foir \mid NO) \times P(NO) \times$$

3.) Table shows a small bioinformatical dataset of 5 points in 3-dimensional space (e.g. 5 genes over 3 arrays). Start with initial points p1 and p2 as cluster centers. Then find out the clusters and label them with A and B by k-means clustering. Show every step of your calculations clearly. (Use Euclidean Distance...)

Data Point	A1	A2	A3
1	11	10	12
2	10	11	13
3	9	12	10
4	1	3	2
5	4	2	3

$$C_1 = P_1$$
 $C_2 = P_2$
 $C_4 = (M, 10, 12)$
 $C_2 = (10, 11, 13)$
 $C_3 \Rightarrow d_2(P_3, C_1) = \sqrt{12}$
 $d_2(P_3, C_2) = \sqrt{11} \Rightarrow P_3 \text{ is member of } C_2$
 $P_4 \Rightarrow d_2(P_4, C_1) = \sqrt{249}$
 $d_2(P_4, C_2) = \sqrt{266} \Rightarrow P_4 \text{ is member of } C_2$
 $P_5 \Rightarrow d_2(P_5, C_1) = \sqrt{194}$
 $d_2(P_5, C_2) = \sqrt{217} \Rightarrow P_5 \text{ is member of } C_2$

New cluster centers with their members;

$$C_{1} = \begin{cases} P_{1}, P_{4}, P_{5} \end{cases}$$

$$C_{2} = \begin{cases} P_{2}, P_{3} \end{cases}$$

$$C_{1} = \left(\frac{16}{3}, \frac{15}{3}, \frac{17}{3}\right)$$

$$C_{2} = \left(\frac{19}{2}, \frac{23}{2}, \frac{23}{2}\right)$$

$$C_{3} = \left(\frac{19}{2}, \frac{23}{2}, \frac{23}{2}\right)$$

$$C_{4} = \left(\frac{19}{3}, \frac{15}{3}, \frac{17}{3}\right)$$

$$C_{5} = \left(\frac{19}{3}, \frac{23}{2}, \frac{23}{2}\right)$$

$$C_{5} = \left(\frac{19}{3}, \frac{15}{3}, \frac{15}{3}\right)$$

$$\begin{array}{lll} P_{1} \Rightarrow d_{2}(P_{1}, C_{1}) = \sqrt{5 \cdot 7^{2} + 5^{2} + 6 \cdot 4^{2}} = \sqrt{10045} d_{2}(P_{1}, C_{2}) = \sqrt{15^{2} + 6 \cdot 7^{2}} = 3 \Rightarrow C_{2} \\ P_{2} \Rightarrow d_{2}(P_{2}, C_{1}) = \sqrt{4 \cdot 7^{2} + 6^{2} + 7 \cdot 4^{2}} = d_{2}(P_{2}, C_{2}) = \sqrt{6 \cdot 5^{2} + 6 \cdot 5^{2} + 1 \cdot 5^{2}} = \Rightarrow P_{2} \Rightarrow C_{2} \\ P_{3} \Rightarrow d_{2}(P_{3}, C_{1}) = \sqrt{3 \cdot 7^{2} + 7^{2} + 4 \cdot 4^{2}} = d_{2}(P_{3}, C_{2}) = \sqrt{6 \cdot 5^{2} + 6 \cdot 5^{2} + 1 \cdot 5^{2}} = \Rightarrow P_{3} \Rightarrow C_{2} \\ P_{4} \Rightarrow d_{2}(P_{4}, C_{1}) = \sqrt{4 \cdot 3^{2} + 2^{2} + 3 \cdot 6^{2}} = d_{2}(P_{4}, C_{2}) = \sqrt{8 \cdot 5^{2} + 6 \cdot 5^{2} + 8 \cdot 5^{2} + 9 \cdot 5^{2}} = \Rightarrow P_{4} \Rightarrow C_{1} \\ P_{5} \Rightarrow d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 2^{2} + 3 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) = \sqrt{4 \cdot 3^{2} + 3^{2} + 2 \cdot 6^{2}} = d_{2}(P_{5}, C_{1}) =$$

$$C_1 = \left\{ \begin{array}{l} P_4, P_5 \\ \end{array} \right\}$$
 $C_1 = \left\{ \begin{array}{l} \frac{5}{2}, \frac{5}{2} \end{array} \right\}$

$$C_{2} = \left\{ P_{1}, P_{2}, P_{3} \right\}$$

$$C_{2} = \left\{ \frac{30}{3}, \frac{33}{3}, \frac{35}{3} \right\}$$

4.) Given a training data set Y:

A	В	C	Class
(15)	1	A	(C ₁)
20	3	В	C ₂
(25.)	(2)	A	C ₁
30	4	A	C ₁
35	(2)	В	C ₂
(25)	4	A	C ₁
(15)	(2)	В	C ₂
20)	3	В	C ₂

a)Find the best threshold (for the maximal gain) for attribute A.

b) Find the best threshold (for the maximal gain) for attribute B.

SP c)Find a decision tree for data set Y.

60 d)If the testing set is

A	В	С	D
10	2	A	C ₂
20	1	В	C_1
30	3	A	C_2
40	2	В	C_2
15	1	В	C ₁

What is the percentage of correct classification using the decision tree developed in c.

The maximal gain is Gain (20) = 0.582, so the threshold is 20%

Ordered Class Instance CI 1 Threshold can be 2 \ 1, 2, 3 } CI 2 02 For $Th = 1 \Rightarrow E = \frac{1}{8}I(1,0) + \frac{7}{8}I(4,3) = 0.862$ C2 2 3 C2 Gan (1) 21 - 0,862 = 0,138 4 (3) Co For Th= 2 > E= 4 I(2,2) + 4 I(2,2) = 1 C, Gain(2)=1-1=04 4 C1 For Th= 3 2) E= 6 I (2,4) + 2 I(2,0) ({3) Galn(3) = 1-0.688 = 0.312 The maximal gain is G(3) =0,312, so the thishold C) Infoc(T) = 4 I(4,0) + 4 I(4,0) = 0 Gan (c) = 1-0=1 4 C2 4 C1 001 0 C2 set d.) for the test Actual class Classified as Instances The percentace False C1 of correct false classification 2 False is %20 True False