н.е. демидова

ОСНОВЫ ТРИГОНОМЕТРИИ

Учебное пособие для иностранных граждан

Министерство образования и науки Российской Федерации Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования

«Нижегородский государственный архитектурно-строительный университет»

ДЕМИДОВА Н.Е.

ОСНОВЫ ТРИГОНОМЕТРИИ

Утверждено редакционно-издательским советом университета в качестве учебного пособия для иностранных граждан

НИЖНИЙ НОВГОРОД 2011 ББК 22.151.О_Я729 Д 30

Научный редактор:

Петров В.В. – кандидат физико-математических наук, доцент ННГАСУ

Рецензенты:

Шабанов В.Н. – кандидат технических наук, доцент ННГУ

Лисенкова Е.Е. – кандидат физико-математических наук, доцент ВВАГС

Демидова Н.Е. Математика. Основы тригонометрии: Учебное пособие. – Н.Новгород: Нижегородский государственный архитектурностроительный университет, 2011. – 92 с.

Пособие предназначено для иностранных слушателей подготовительных отделений, поступающих в высшие учебные заведения.

Пособие включает основной материал курса «Основы тригонометрии». Определения, правила и формулы иллюстрируются большим количеством примеров и практическими указаниями. Подробная рубрикация и словарь облегчают восприятие необходимого материала.

Пособие также будет интересно всем учащимся, готовящимся к поступлению в вузы.

ББК 22.151.О_Я729 Д 30

ОСНОВЫ ТРИГОНОМЕТРИИ

1. Основные понятия тригонометрии

1.1. Отношения в прямоугольном треугольнике

Пусть $\triangle ABC$ — прямоугольный, угол C — прямой, угол B — острый, a и b — катеты, c — гипотенуза (рисунок 1.1). Cинуc угла B равен отношению противолежащего этому углу катета к гипотенузе: $sin B = \frac{b}{c}$, κ осинуc угла B равен отношению прилежащего катета к гипотенузе: $cos B = \frac{a}{c}$, m ангенc угла B равен отношению противолежащего и прилежащего катетов: $tgB = \frac{b}{a}$, κ отношение угла B равен отношению прилежащего и противолежащего катетов: $ctgB = \frac{a}{b}$.

Рисунок 1.1.

Прямоугольный треугольник ABC,
 а и *b* – катеты,
 c – гипотенуза

1.2. Тригонометрическая окружность. Синус, косинус, тангенс и котангенс угла α. Периодичность значений синуса, косинуса, тангенса и котангенса угла α

Тригонометрическая (единичная) окружность — окружность радиусом, равным одному и с центром в начале координат (рисунок 1.2). Луч OP_{α} получен поворотом против часовой стрелки луча OP_0 на угол α . Ордината точки P_{α} — синус угла α ($sin\alpha$), абсцисса точки P_{α} — косинус угла α ($cos\alpha$). Отрезок [-1;1] на оси Oy — линия синусов, отрезок [-1;1] на оси Ox — линия

косинусов. Величина $sec\alpha = \frac{1}{cos\alpha} - ceканc$ угла α , величина $cosec\alpha = \frac{1}{sin\alpha} - cekahc$ угла α . Тангенс угла α — это $tg\alpha = \frac{sin\alpha}{cos\alpha}$, котангенс угла α — это $ctg\alpha = \frac{cos\alpha}{sin\alpha}$. Прямая x=1 — линия (ось) тангенсов, прямая y=1 — линия (ось) котангенсов.

Рисунок 1.2. Тригонометрическая окружность

Угол α может измеряться в градусах и в радианах. Угол в *один радиан* — центральный угол, длина дуги которого равна радиусу окружности 1 рад \approx 57^017 . Формула *перевода градусной меры угла* α в радианную $\alpha = \frac{\pi \cdot \alpha^0}{180^0}$, где α^0 — градусная мера угла.

Значения синуса косинуса и тангенса периодически повторяются: $sin(\alpha+2\pi k)=sin\alpha$, $cos(\alpha+2\pi k)=cos\alpha$, $tg(\alpha+\pi k)=tg\alpha$, $ctg(\alpha+\pi k)=ctg\alpha$, где $k\in Z$.

1.3. Знаки значений синуса, косинуса, тангенса и котангенса угла α в различных четвертях. Положительные и отрицательные углы

Углы, полученные поворотом луча OP_0 (рисунок 1.2) против часовой стрелки принимаются положительными, по часовой стрелке — отрицательными. При этом $sin(-\alpha) = -sin\alpha$, $cos(-\alpha) = cos\alpha$, $tg(-\alpha) = -tg\alpha$, $ctg(-\alpha) = -ctg\alpha$.

Четверть	Угол $\alpha \ (k \in \mathbb{Z})$	$sin \alpha$	cosa	tgα	ctga
I	$\alpha \in \left(2\pi k; \frac{\pi}{2} + 2\pi k\right)$	+	+	+	+
II	$\alpha \in \left(\frac{\pi}{2} + 2\pi k; \ \pi + 2\pi k\right)$	+	-	-	-
III	$\alpha \in \left(\pi + 2\pi k; \frac{3\pi}{2} + 2\pi k\right)$	-	-	+	+
IV	$\alpha \in \left(\frac{3\pi}{2} + 2\pi k; 2\pi + 2\pi k\right)$	-	+	1	-

1.4. Таблица значений синуса, косинуса, тангенса и котангенса основных углов

$\alpha^{_0}$	0	30	45	60	90	120	135	150	180	270
α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$
sina	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
cosa	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0
tgα	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	не сущ.*	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	не сущ.*
ctga	не сущ.*	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	$-\frac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	не сущ.*	0

^{*} **не сущ.** – не существует

2. Основные формулы тригонометрии

2.1. Соотношения между тригонометрическими функциями одного и того же аргумента

$\sin^2\alpha + \cos^2\alpha = 1;$	$tg\alpha \cdot ctg\alpha = 1;$
$tg\alpha = \frac{\sin\alpha}{\cos\alpha};$	$1+tg^2\alpha=\frac{1}{\cos^2\alpha};$
$ctg\alpha = \frac{\cos\alpha}{\sin\alpha};$	$1+ctg^2\alpha=\frac{1}{\sin^2\alpha}.$

2.2. Формулы сложения

$sin(\alpha \pm \beta) = sin \alpha cos \beta \pm cos \alpha sin \beta;$	$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta;$
$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta};$	$ctg(\alpha \pm \beta) = \frac{ctg\alpha \cdot ctg\beta \mp 1}{ctg\beta \pm ctg\alpha}.$

2.3. Формулы двойного аргумента

$sin 2\alpha = 2 sin \alpha \cdot cos \alpha;$	$cos 2\alpha = cos^{2} \alpha - sin^{2} \alpha =$ $= 2 cos^{2} \alpha - 1 = 1 - 2 sin^{2} \alpha;$
$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha} = \frac{2}{ctg\alpha - tg\alpha};$	$ctg2\alpha = \frac{ctg^{2}\alpha - 1}{2ctg\alpha} = \frac{ctg\alpha - tg\alpha}{2}.$

2.4. Формулы тройного аргумента

$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha;$	$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha;$
$tg3\alpha = \frac{3tg\alpha - tg^3\alpha}{1 - 3tg^2\alpha};$	$ctg3\alpha = \frac{ctg^3\alpha - 3ctg\alpha}{3ctg^2\alpha - 1}.$

2.5. Формулы половинного аргумента (для синуса и косинуса формулы понижения степени)

$$sin^{2} \frac{\alpha}{2} = \frac{1 - \cos 2\alpha}{2}; \qquad cos^{2} \frac{\alpha}{2} = \frac{\cos 2\alpha + 1}{2};$$

$$tg \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}; \qquad ctg \frac{\alpha}{2} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha}.$$

2.6. Формулы преобразования суммы тригонометрических функций в произведение

$$sin\alpha + sin\beta = 2sin\frac{\alpha + \beta}{2} \cdot cos\frac{\alpha - \beta}{2}; \qquad sin\alpha - sin\beta = 2sin\frac{\alpha - \beta}{2} \cdot cos\frac{\alpha + \beta}{2};$$

$$cos\alpha + cos\beta = 2cos\frac{\alpha + \beta}{2} \cdot cos\frac{\alpha - \beta}{2}; \qquad cos\alpha - cos\beta = 2sin\frac{\alpha + \beta}{2} \cdot sin\frac{\beta - \alpha}{2};$$

$$tg\alpha \pm tg\beta = \frac{sin(\alpha \pm \beta)}{cos\alpha cos\beta}; \qquad ctg\alpha \pm ctg\beta = \frac{sin(\beta \pm \alpha)}{sin\alpha sin\beta}.$$

2.7. Формулы преобразования произведения тригонометрических функций в сумму

$$\sin\alpha \cdot \sin\beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2};$$

$$\cos\alpha \cdot \cos\beta = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2};$$

$$\sin\alpha \cdot \cos\beta = \frac{\sin(\alpha - \beta) + \sin(\alpha + \beta)}{2}.$$

2.8. Формулы приведения

Для того чтобы записать любую из формул приведения, можно руководствоваться следующими *правилами*:

- 1. в правой части формулы ставится тот знак, который имеет левая часть при условии $0 < \alpha < \frac{\pi}{2}$.
- 2. если в левой части формулы угол равен $\frac{\pi}{2} \pm \alpha$ или $\frac{3\pi}{2} \pm \alpha$, то синус заменяется на косинус, тангенс на котангенс и наоборот. Если угол равен $\pi \pm \alpha$, то замены не происходит.

Назван	ние функц	ии не изм	еняется	Название функции заменяется			
				сходным			
	-α	$\pi - \alpha$	$\pi + \alpha$	$\frac{\pi}{2} - \alpha$	$\frac{\pi}{2} + \alpha$	$\frac{3\pi}{2} - \alpha$	$\frac{3\pi}{2} + \alpha$
sin	$-\sin\alpha$	$\sin \alpha$	$-\sin\alpha$	$\cos \alpha$	$\cos \alpha$	$-\cos\alpha$	$-\cos\alpha$
cos	cosa	$-\cos\alpha$	$-\cos\alpha$	sin a	- sin a	- sin α	sin α
tg	$-tg\alpha$	$-tg\alpha$	tgα	ctgα	$-ctg\alpha$	ctgα	- ctga
	α≠-	$\frac{\pi}{2}(2n+1), n$	$n \in Z$		α	$n \neq \pi n, n \in \mathbb{R}$	Z
Назван	ние функц	ии не изм	еняется	Назва	ание функ	ции замен	яется
					сход	цным	
ctg	$-ctg\alpha$	$-ctg\alpha$	ctgα	tgα	$-tg\alpha$	tgα	$-tg\alpha$
	$\alpha \neq \pi n, n \in \mathbb{Z}$				α≠-	$\frac{\pi}{2}(2n+1)$, n	$i \in Z$

Например, покажем, как с помощью этих правил можно получить формулу приведения для $cos\left(\frac{\pi}{2} + \alpha\right)$. По первому правилу в правой части формулы нужно поставить знак «—», так как если $0 < \alpha < \frac{\pi}{2}$, то $\frac{\pi}{2} < \alpha + \frac{\pi}{2} < \pi$, а косинус во второй

четверти отрицателен. По второму правилу косинус нужно заменить на синус, следовательно, $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$.

3. Тождественные преобразования тригонометрических выражений

 $3a\partial a$ ча 1. Вычислить $tg\alpha$, если $sin\alpha = -0.8$ и $\pi < \alpha < \frac{3\pi}{2}$.

Решение. $\cos^2\alpha = 1 - \sin^2\alpha = 1 - (0.8)^2 = 0.36$, $\cos\alpha = \pm \sqrt{0.36} = \pm 0.6$. Так как по условию угол α находится в III четверти, то $\cos\alpha < 0$, следовательно, $\cos\alpha = -0.6$. Найдём $tg\alpha = \frac{\sin\alpha}{\cos\alpha} = \frac{-0.8}{-0.6} = \frac{4}{3}$.

 $3a\partial a 4a 2$. Упростить выражение $\frac{\sin 3\alpha \cos \alpha + \cos 3\alpha \sin \alpha}{2\cos^2 \alpha - 1}$.

Решение.

$$\frac{\sin 3\alpha \cos \alpha + \cos 3\alpha \sin \alpha}{2\cos^2 \alpha - 1} = \frac{\sin(3\alpha + \alpha)}{2\cos^2 \alpha - \sin^2 \alpha - \cos^2 \alpha} =$$

$$= \frac{\sin 4\alpha}{\cos^2 \alpha - \sin^2 \alpha} = \frac{2\sin 2\alpha \cos 2\alpha}{\cos 2\alpha} = 2\sin 2\alpha.$$

 $3a\partial a$ ча 3. Вычислить $\sin\left(-\frac{41\pi}{6}\right)$.

Решение

$$\sin\left(-\frac{41\pi}{6}\right) = -\sin\frac{41\pi}{6} = -\sin\left(6\pi + \frac{5\pi}{6}\right) = -\sin\frac{5\pi}{6} =$$

$$= -\sin\left(\pi - \frac{\pi}{6}\right) = -\sin\frac{\pi}{6} = -\frac{1}{2}.$$

Упражнения

1. Вычислить $\sin \alpha$, если $\cos \alpha = \frac{3}{5}$, $\frac{3\pi}{2} < \alpha < 2\pi$.

- 2. Вычислить $\cos \alpha$, если $\sin \alpha = \frac{3}{5}$, $\frac{\pi}{2} < \alpha < \pi$.
- 3. Вычислить $\operatorname{tg} \alpha$, если $\sin \alpha = -\frac{5}{13}$, $\pi < \alpha < \frac{3\pi}{2}$.
- 4. Вычислить $ctg\alpha$, если $cos\alpha = -\frac{12}{13}$, $\pi < \alpha < \frac{3\pi}{2}$.
- 5. Вычислить $\sin(\alpha + \beta)$, если $\sin \alpha = \frac{4}{5}$ и $0 < \alpha < \frac{\pi}{2}$; $\cos \beta = \frac{5}{12}$ и $0 < \beta < \frac{\pi}{2}$.
- 6. Вычислить $\sin 2\alpha$, если $\sin \alpha = \frac{\sqrt{3}}{2}$, $\frac{\pi}{2} < \alpha < \pi$.
- 7. Вычислить

7.1.
$$\sin\left(-\frac{9\pi}{4}\right)$$
;

7.2.
$$\cos \frac{5\pi}{4}$$
; 7.3. $tg \frac{11\pi}{3}$;

7.3.
$$tg \frac{11\pi}{3}$$

7.4.
$$ctg \frac{7\pi}{4}$$
;

7.5.
$$\cos\left(-\frac{13\pi}{6}\right)$$
; 7.2. $\sin\frac{19\pi}{4}$.

7.2.
$$\sin \frac{19\pi}{4}$$
.

8. Вычислить

8.1.
$$\sin 405^{\circ} - \cos 315^{\circ}$$
;

8.2.
$$\cos 690^{\circ} - \sin 780^{\circ}$$
;

8.3.
$$\sin \frac{11\pi}{6} + \cos \frac{5\pi}{3}$$
;

8.4.
$$\sin \frac{7\pi}{4} + \cos \frac{7\pi}{4}$$
.

9. Упростить выражения

9.1.
$$\frac{\sin(-\alpha) + \cos(\pi + \alpha)}{1 + 2\cos(\frac{\pi}{2} - \alpha)\cos(-\alpha)};$$

9.2.
$$\frac{\sin\left(\frac{\pi}{2} + \alpha\right) + \sin(2\pi + \alpha)}{2\cos(-\alpha)\sin(-\alpha) + 1}.$$

10. Упростить выражения

10.1.
$$\frac{\sin 2\alpha}{1-\cos^2 \alpha}$$
; 10.2. $\frac{\sin 2\alpha}{1-\sin^2 \alpha}$; 10.3. $\frac{\sin \alpha - tg\alpha}{\cos \alpha - 1}$;

10.4.
$$\frac{\cos \alpha - \cot \alpha}{\sin \alpha - 1}$$
; 10.5. $\frac{2\sin^2 \alpha - 1}{\sin^2 \alpha - \cos^2 \alpha}$; 10.6. $\frac{\cos^2 2\alpha}{1 + \cos 4\alpha}$.

11. Доказать тождества

11.1.
$$\left(1 + \operatorname{ctg}^2 \alpha + \frac{1}{\cos^2 \alpha}\right) \cdot \sin^2 \alpha \cos^2 \alpha = 1;$$

11.2.
$$\left(1 + \operatorname{tg}^2 \alpha + \frac{1}{\sin^2 \alpha}\right) \cdot \sin^2 \alpha \cos^2 \alpha = 1;$$

11.3.
$$\left(\frac{\cos\beta}{\sin\alpha} + \frac{\sin\beta}{\cos\alpha}\right) \cdot \sin 2\alpha = 2\cos(\alpha - \beta);$$

11.4.
$$\left(\frac{\cos\alpha}{\cos\beta} - \frac{\sin\alpha}{\sin\beta}\right) \cdot \sin 2\beta = -2\sin(\alpha - \beta).$$

- 12. Синус острого угла равен $\frac{15}{17}$. Найти косинус смежного с ним угла.
- 13. Косинус угла треугольника равен $\frac{9}{41}$. Найти синус угла, смежного с данным, при той же вершине треугольника.
- 14. Доказать тождества

14.1.
$$\frac{1}{\cos^2 \alpha} - \sin^2 \alpha - \operatorname{tg}^2 \alpha = \cos^2 \alpha;$$

14.2.
$$\frac{1-\cos^2\alpha}{1-\sin^2\alpha} + tg\alpha \cdot ctg\alpha = \frac{1}{\cos^2\alpha};$$

14.3.
$$\frac{\cos\alpha + \sin\alpha}{\cos\alpha - \sin\alpha} = \frac{1 + \lg\alpha}{1 - \lg\alpha};$$

14.4.
$$\frac{\operatorname{ctg}\alpha - 1}{\operatorname{ctg}\alpha + 1} = \frac{\cos\alpha - \sin\alpha}{\cos\alpha + \sin\alpha}.$$

15. Вычислить

15.1. $\sin 575^{\circ} \cdot \cos 845^{\circ} - \cos 1405^{\circ} \cdot \sin 1675^{\circ} - tg215^{\circ} tg685^{\circ} - tg^{2}35^{\circ}$;

15.2.
$$\sin \frac{8\pi}{3} \cdot \cot \frac{11\pi}{6} + \cos \frac{29\pi}{6} \cdot \tan \frac{4\pi}{3} + \frac{1}{\cos \frac{29\pi}{6} \cdot \sin \frac{11\pi}{6}} + 7;$$

 $15.3. 4\sin 18^{\circ} \cdot \cos 36^{\circ}$:

15.4.
$$\cos \frac{\pi}{7} \cdot \cos \frac{4\pi}{7} \cdot \cos \frac{5\pi}{7}$$
.

16. Упростить выражения

16.1.
$$\frac{\operatorname{ctg}\left(\frac{\pi}{2} - \alpha\right) - \operatorname{tg}(\pi + \alpha) + \sin\left(\frac{3\pi}{2} - \alpha\right)}{\cos(\pi + \alpha)};$$

16.2.
$$\frac{\sin(\pi-\alpha)+\cos\left(\frac{\pi}{2}+\alpha\right)-\cot(\pi-\alpha)}{\tan\left(\frac{3\pi}{2}-\alpha\right)}.$$

17. Упростить выражения и найти их числовые значения

17.1.
$$\frac{\sin\left(\frac{19\pi}{2} - \alpha\right) + \cos(7\pi + \alpha)}{\cos\left(\frac{11\pi}{2} + \alpha\right) - \sin(\alpha - \pi)}, \text{ при } \alpha = \frac{5\pi}{6};$$

17.2.
$$\frac{\operatorname{tg}(\pi + \alpha) - \operatorname{tg}(4\pi - \beta)}{1 + \operatorname{ctg}\left(\frac{5\pi}{2} + \alpha\right)\operatorname{tg}\beta}$$
, при $\alpha = \frac{\pi}{4}$, $\beta = \frac{\pi}{12}$.

18. Упростить выражения

18.1.
$$\frac{\cos\alpha - 2\sin\alpha}{\sin\alpha + \cos\alpha} - \frac{2 - \cos^2\alpha}{\cos2\alpha};$$

18.2.
$$\frac{2\cos\alpha + \sin\alpha}{\cos(-\alpha) + \sin\alpha} - \frac{2 - 3\sin^2\alpha}{\sin(\frac{\pi}{2} + 2\alpha)}.$$

19. Доказать тождества

19.1.
$$2\cos^2\left(\frac{\pi}{4} + \frac{\alpha}{2}\right) = 1 - \sin\alpha$$
;

19.2.
$$2\sin^2\left(\frac{\pi}{4} + \frac{\alpha}{2}\right) = 1 + \sin\alpha$$
;

19.3.
$$\frac{1-\cos 2\alpha}{\sin 2\alpha} \cdot \operatorname{ctg}\alpha = 1;$$

$$19.4. \frac{\sin 2\alpha}{1 + \cos 2\alpha} = \operatorname{tg}\alpha.$$

20. Доказать тождества

20.1.
$$\sin \alpha \cdot \sin(\beta - \alpha) + \sin^2(\frac{\beta}{2} - \alpha) = \sin^2(\frac{\beta}{2})$$
;

20.2.
$$\cos^2 \alpha - \sin^2 2\alpha = \cos^2 \alpha \cos 2\alpha - 2\sin^2 \alpha \cos^2 \alpha$$
.

21. Упростить выражения

21.1.
$$\frac{\operatorname{ctg}^{2}\left(\alpha + \frac{\pi}{2}\right) \cos^{2}\left(\alpha - \frac{\pi}{2}\right)}{\operatorname{ctg}^{2}\left(\alpha - \frac{\pi}{2}\right) \cos^{2}\left(\alpha + \frac{\pi}{2}\right)};$$

21.2.
$$\frac{\operatorname{ctg}(270^{\circ} - \alpha)}{1 - \operatorname{tg}^{2}(\alpha - 180^{\circ})} \cdot \frac{\operatorname{ctg}^{2}(360^{\circ} - \alpha) - 1}{\operatorname{ctg}(180^{\circ} + \alpha)}.$$

Ответы. 1.
$$-\frac{4}{5}$$
. 2. $-\frac{4}{5}$. 3. $\frac{5}{12}$. 4. $\frac{12}{5}$. 5. $\frac{56}{65}$. 6. $-\frac{\sqrt{3}}{2}$. 7.1. $-\frac{\sqrt{2}}{2}$; 7.2. $-\frac{\sqrt{2}}{2}$;

7.3.
$$-\sqrt{3}$$
; 7.4. -1 ; 7.5. $\frac{\sqrt{3}}{2}$; 7.6. $\frac{\sqrt{2}}{2}$.8.1. 0; 8.2. 0; 8.3. 0; 8.4. 0. 9.1.

$$-\frac{1}{\sin \alpha + \cos \alpha}$$
; 9.2. $\frac{1}{\sin \alpha - \cos \alpha}$. 10.1. $2 \cot \alpha$; 10.2. $2 \cot \alpha$; 10.3. $\cot \alpha$; 10.4.

$$\operatorname{ctg}\alpha$$
; 10.5. 1; 10.6. 0,5. 12. $-\frac{8}{17}$. 13. $\frac{40}{41}$. 15.1. $\cos 70^{\circ}$; 15.2. 0; 15.3. 1; 15.4.

$$\frac{1}{8}$$
. 16.1. 1; 16.2. -1. 17.1. $\frac{\sqrt{3}}{3}$; 17.2. $\sqrt{3}$. 18.1. $-\frac{3}{2}$ tg2 α ; 18.2. $-\frac{\text{tg2}\alpha}{2}$. 21.1. 1; 21.2. 1.

Задача 4. Упростить выражение

$$\left(\sin\left(\alpha + \frac{\pi}{12}\right) + \sin\left(\alpha - \frac{\pi}{12}\right)\right)\sin\frac{\pi}{12}.$$

Решение

$$\left(\sin\left(\alpha + \frac{\pi}{12}\right) + \sin\left(\alpha - \frac{\pi}{12}\right)\right)\sin\frac{\pi}{12} =$$

$$= 2\sin\alpha\cos\frac{\pi}{12} \cdot \sin\frac{\pi}{12} = \sin\alpha\sin\frac{\pi}{6} = \frac{1}{2}\sin\alpha.$$

3ada4a 5. Вычислить $\sin 75^{\circ} + \cos 75^{\circ}$.

Решение.

$$\sin 75^{\circ} + \cos 75^{\circ} = \sin 75^{\circ} + \sin 15^{\circ} = 2\sin \frac{75^{\circ} + 15^{\circ}}{2}\cos \frac{75^{\circ} - 15^{\circ}}{2} =$$

$$= 2\sin 45^{\circ}\cos 30^{\circ} = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}.$$

Упражнения

22. Упростить выражения

22.1.
$$\sin\left(\frac{\pi}{3} + \alpha\right) + \sin\left(\frac{\pi}{3} - \alpha\right);$$
 22.2. $\cos\left(\frac{\pi}{4} - \beta\right) - \cos\left(\frac{\pi}{4} + \beta\right);$

22.3.
$$\sin^2\left(\frac{\pi}{4} + \alpha\right) - \sin^2\left(\frac{\pi}{4} - \alpha\right)$$
; 22.4. $\cos^2\left(\alpha - \frac{\pi}{4}\right) - \cos^2\left(\alpha + \frac{\pi}{4}\right)$.

23. Вычислить значения выражений

23.1.
$$\cos 105^{\circ} + \cos 75^{\circ}$$
; 23.2. $\sin 105^{\circ} - \sin 75^{\circ}$;

23.3.
$$\cos \frac{11\pi}{12} + \cos \frac{5\pi}{12}$$
;

23.4.
$$\cos \frac{11\pi}{12} - \cos \frac{5\pi}{12}$$
.

23.5.
$$\sin \frac{7\pi}{12} - \sin \frac{\pi}{12}$$
;

 $23.6. \sin 105^{\circ} + \sin 165^{\circ}$.

24. Доказать тождества

24.1.
$$\frac{\sin \alpha + \sin 3\alpha}{\cos \alpha + \cos 3\alpha} = \text{tg} 2\alpha ;$$

24.1.
$$\frac{\sin \alpha + \sin 3\alpha}{\cos \alpha + \cos 3\alpha} = \operatorname{tg} 2\alpha$$
; 24.2. $\frac{\sin 2\alpha + \sin 4\alpha}{\cos 2\alpha - \cos 4\alpha} = \operatorname{ctg} \alpha$.

25. Упростить выражения

$$25.1. \frac{2(\cos\alpha + \cos 3\alpha)}{2\sin 2\alpha + \sin 4\alpha};$$

$$25.1. \frac{2(\cos\alpha + \cos 3\alpha)}{2\sin 2\alpha + \sin 4\alpha}; \qquad 25.2. \frac{1 + \sin\alpha - \cos 2\alpha - \sin 3\alpha}{2\sin^2\alpha + \sin\alpha - 1}.$$

Ответы. 22.1. $\sqrt{3}\cos\alpha$; 22.2. $\sqrt{2}\sin\beta$; 22.3. $\sin 2\alpha$; 22.4. $\sin 2\alpha$. 23.1. 0; 23.2. 0; 23.3. $-\frac{\sqrt{2}}{2}$; 23.4. $-\frac{\sqrt{6}}{2}$; 23.5. $\frac{\sqrt{2}}{2}$; 23.6. $\frac{\sqrt{6}}{2}$. 25.1. $\frac{\text{ctg}2\alpha}{2}$; 25.2. $2\sin\alpha$.

4. Простейшие тригонометрические уравнения

4.1. Уравнение $\cos x = a$

 $|\mathbf{a}| \leq 1$, Уравнение $\cos x = a$, если имеет решения $x = \pm arccosa + 2k\pi$, $k \in Z$, где arccosa - apккосинус числа a. Apккосинусомчисла а (arccosa), где $|a| \le 1$, называется угол α такой, что 1) $\alpha \in [0;\pi]$ и 2) $\cos \alpha = a$ (arccosa = α , если $\cos \alpha = a$).

 $\arccos \frac{\sqrt{3}}{2} = \frac{\pi}{6}$, так как $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$ и $0 \le \frac{\pi}{6} \le \pi$; $\arccos\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$, τακ κακ $\cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2}$ и $0 \le \frac{5\pi}{6} \le \pi$.

Тождества

 $\cos(\arccos(a) = a; \arccos(\cos x) = x, \text{ если } x \in [0; \pi];$ $\arccos(-a) = \pi - \arccos(a) = \pi - \alpha$

Рисунок 4.1. Тригонометрическая окружность с абсциссами точек M_1 и M_2

 $3a\partial a$ ча 1. Решить уравнение $\cos x = \frac{1}{2}$.

Решение. Косинус x — абсцисса точки единичной окружности, полученной поворотом точки P(1;0) вокруг начала координат на угол x (рисунок 4.1). Абсциссу равную $\frac{1}{2}$ имеют две точки окружности M_1 и M_2 . Так как $\frac{1}{2} = \cos\frac{\pi}{3}$, то точка M_1 получается из точки P(1;0) поворотом на угол $x_1 = \frac{\pi}{3}$, а также на углы $x = \frac{\pi}{3} + 2\pi k$, где $k \in Z$. Точка M_2 получается из точки P(1;0) поворотом на угол $x_2 = -\frac{\pi}{3}$, а также на углы $x = -\frac{\pi}{3} + 2\pi k$, где $x \in Z$. Таким образом, все корни уравнения $x = \frac{1}{2}$ можно найти по формуле $x = \pm \frac{\pi}{3} + 2\pi k$, $x \in Z$.

 $3a\partial a$ ча 2. Решить уравнение $\cos x = -\frac{1}{2}$.

Peшение. Абсциссу равную $-\frac{1}{2}$ имеют две точки окружности M_1 и M_2 (рисунок 4.2). Так как $-\frac{1}{2}=\cos\frac{2\pi}{3}$, то $x_1=\frac{2\pi}{3}$, $x_2=-\frac{2\pi}{3}$. Следовательно, все корни уравнения $\cos x=-\frac{1}{2}$ можно найти по формуле $x=\pm\frac{2\pi}{3}+2\pi k, k\in Z$.

Итак, каждое из уравнений $\cos x = \frac{1}{2}$ и $\cos x = -\frac{1}{2}$ имеет бесконечное множество корней. На интервале $0 \le x \le \pi$ каждое из этих уравнений имеет только один корень: $x_1 = \frac{\pi}{3}$ – корень уравнения $\cos x = \frac{1}{2}$ и $x_1 = \frac{2\pi}{3}$ – корень уравнения $\cos x = -\frac{1}{2}$. Число $\frac{\pi}{3}$ называют *арккосинусом* числа $\frac{1}{2}$ и записывают $\arccos \frac{1}{2} = \frac{\pi}{3}$; Число $\frac{2\pi}{3}$ называют *арккосинусом* числа $-\frac{1}{2}$ и записывают $\arccos \left(-\frac{1}{2}\right) = \frac{2\pi}{3}$.

 $3a\partial a 4a$ 3. Решить уравнение $\cos x = -\frac{3}{4}$.

 $\begin{aligned} &\textit{Решение.} \ \ \, \text{Так как} \ \, -\frac{3}{4} \in \left[-1;1\right], \ \, \text{то уравнение} \ \ \, \cos x = -\frac{3}{4} \ \, \text{имеет решения} \\ &x = \pm \arccos\left(-\frac{3}{4}\right) + 2\pi k = \pm \left(\pi - \arccos\frac{3}{4}\right) + 2\pi k \, , \ \, k \in Z \, . \end{aligned}$ $\textit{Ответ.} \ \, x = \pm \left(\pi - \arccos\frac{3}{4}\right) + 2\pi k \, , \ \, k \in Z \, .$

 $3a\partial a + 4$. Решить уравнение $(4\cos x - 1)(2\cos 2x + 1) = 0$.

Решение.

1)
$$4\cos x - 1 = 0$$
, $\cos x = \frac{1}{4}$, $x = \pm \arccos \frac{1}{4} + 2\pi k$, $k \in \mathbb{Z}$.

2)
$$2\cos 2x + 1 = 0$$
, $\cos 2x = -\frac{1}{2}$, $2x = \pm \arccos\left(-\frac{1}{2}\right) + 2\pi = \pm \frac{2\pi}{3} + 2\pi n$,

$$x = \pm \frac{\pi}{3} + \pi n$$
, $n \in Z$.

Ombem.
$$x = \pm \arccos \frac{1}{4} + 2\pi k$$
, $k \in \mathbb{Z}$; $x = \pm \frac{\pi}{3} + \pi n$, $n \in \mathbb{Z}$.

Частные случаи:

$\cos x = 0,$	$x = \frac{\pi}{2} + \pi n, \ n \in Z.$
$\cos x = 1$,	$x = 2\pi n, n \in Z.$
$\cos x = -1,$	$x = \pi + 2\pi n, n \in Z.$

Задача 5. Решить уравнение $\cos \frac{x}{3} = -1$.

$$Peшение. \ \, \frac{x}{3} = \pi + 2\pi n \, , \ \, x = 3\pi + 6\pi n \, , \ \, n \in Z \, .$$

Ombem.
$$x = 3\pi + 6\pi n$$
, $n \in \mathbb{Z}$.

Упражнения

- 1. Вычислить
- 1.1. arccos 0; 1.2. arccos 1; 1.3. arccos $\frac{\sqrt{2}}{2}$;

1.4.
$$\arccos \frac{1}{2}$$
;

1.5.
$$\arccos\left(-\frac{\sqrt{3}}{2}\right)$$
; 1.6. $\arccos\left(-\frac{\sqrt{2}}{2}\right)$.

2. Вычислить

2.3. 12 arccos
$$\frac{\sqrt{3}}{2}$$
 – 3 arccos $\left(-\frac{1}{2}\right)$;

2.2.
$$3\arccos (-1) - 2\arccos 0$$
;

2.2.
$$3\arccos\left(-1\right) - 2\arccos\left(0\right)$$
; 2.4. $4\arccos\left(-\frac{\sqrt{2}}{2}\right) + 6\arccos\left(-\frac{\sqrt{3}}{2}\right)$.

3. Решить уравнения

3.1.
$$\cos x = \frac{\sqrt{2}}{2}$$
;

3.2.
$$\cos x = \frac{1}{2}$$
;

3.3.
$$\cos x = -\frac{\sqrt{3}}{2}$$
;

3.4.
$$\cos x = -\frac{1}{\sqrt{2}}$$
.

4. Решить уравнения

4.1.
$$\cos x = \frac{1}{3}$$
;

4.2.
$$\cos x = \frac{3}{4}$$
;

4.3.
$$\cos x = -0.3$$
;

4.4.
$$\cos x = -0.2$$
.

5. Решить уравнения

5.1.
$$\cos 4x = 1$$
;

5.2.
$$\cos 2x = -1$$
;

5.3.
$$\sqrt{2}\cos\frac{x}{4} = -1$$
;

5.4.
$$2\cos\frac{x}{3} = \sqrt{3}$$
.

5.5.
$$\cos\left(x + \frac{\pi}{3}\right) = 0$$

5.6.
$$\cos\left(2x - \frac{\pi}{4}\right) = 0$$

6.1.
$$\cos x \cdot \cos 3x = \sin 3x \cdot \sin x$$
;

6.2.
$$\cos 2x \cdot \cos x + \sin 2x \cdot \sin x = 0$$
.

7. Решить уравнения

7.1.
$$\cos^2 2x = 1 + \sin^2 2x$$
; 7.2. $4\cos^2 x = 3$;

7.3.
$$2\cos^2 x = 1 + 2\sin^2 x$$
; 7.4. $2\sqrt{2}\cos^2 x = 1 + \sqrt{2}$.

8. Решить уравнения

8.1.
$$(1 + \cos x)(3 - 2\cos x) = 0$$
; 8.2. $(1 - \cos x)(4 + 3\cos 2x) = 0$;

8.3.
$$(1+2\cos x)(1-3\cos x)=0$$
; 8.4. $(1-2\cos x)(2+3\cos x)=0$.

9.1.
$$\arccos(2x-3) = \frac{\pi}{3}$$
; 9.2. $\arccos\frac{x+1}{3} = \frac{2\pi}{3}$.

Ответы. 1.1.
$$\frac{\pi}{2}$$
; 1.2. 0; 1.3. $\frac{\pi}{4}$; 1.4. $\frac{\pi}{3}$; 1.5. $\frac{5\pi}{6}$. 1.6. $\frac{3\pi}{4}$ 2.1. π ; 2.2. 2π ;

$$2.3.\pi$$
; $2.4. 8\pi. 3.1. x = \pm \frac{\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$; $3.2. x = \pm \frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; $3.3.$

$$x = \pm \frac{5\pi}{6} + 2\pi k$$
, $k \in Z$; 3.4. $x = \pm \frac{3\pi}{4} + 2\pi n$, $n \in Z$. 4.1. $x = \pm \arccos \frac{1}{3} + 2\pi k$, $k \in Z$;

4.2.
$$x = \pm \arccos \frac{3}{4} + 2\pi k$$
, $k \in \mathbb{Z}$; 4.3. $x = \pm (\pi - \arccos 0,3) + 2\pi k$, $k \in \mathbb{Z}$; 4.4.

$$x = \pm \left(\pi - \arccos 0, 2\right) + 2\pi k \; , \; k \in Z \; . \; 5.1. \; \; x = \frac{\pi k}{2} \; , \; k \in Z \; ; \; 5.2. \; \; x = \frac{\pi}{2} + \pi n \; , \; n \in Z \; ; \; 5.3.$$

$$x = \pm 3\pi + 8\pi k$$
, $k \in Z$; 5.4. $x = \pm \frac{\pi}{2} + 6\pi n$, $n \in Z$; 5.5. $x = \frac{\pi}{6} + \pi k$, $k \in Z$; 5.6.

$$x = \frac{3\pi}{8} + \frac{\pi n}{2}, n \in \mathbb{Z}. 6.1. x = \frac{\pi}{8} + \frac{\pi k}{4}, k \in \mathbb{Z}; 6.2. x = \frac{\pi}{2} + \pi n, n \in \mathbb{Z}. 7.1. x = \frac{\pi k}{2},$$

$$k \in Z\; ; \; 7.2. \quad x = \pm \frac{\pi}{6} + 2\pi n \; , \; \; x = \pm \frac{5\pi}{6} + 2\pi n \; , \; \; n \in Z\; ; \; 7.3. \quad x = \pm \frac{\pi}{6} + \pi k \; , \; \; k \in Z\; ; \; 7.4.$$

$$x = \pm \frac{\pi}{8} + \pi n$$
, $n \in \mathbb{Z}$. 8.1. $x = \pi + 2\pi k$, $k \in \mathbb{Z}$; 8.2. $x = 2\pi n$, $n \in \mathbb{Z}$; 8.3.

$$x_1 = \pm \frac{2\pi}{3} + 2\pi k, \quad k \in \mathbb{Z}; \quad x_2 = \pm \arccos\frac{1}{3} + 2\pi n, \quad n \in \mathbb{Z}; \quad 8.4. \quad x = \pm \frac{\pi}{3} + 2\pi n, \quad n \in \mathbb{Z};$$

$$x = \pm \arccos\left(-\frac{2}{3}\right) + 2\pi k, \quad k \in \mathbb{Z}. \quad 9.1. \quad x = \frac{7}{4}; \quad 9.2. \quad x = -2.5.$$

4.2. Уравнение $\sin x = a$

Уравнение $\sin x = a$, если $|a| \le 1$, имеет решения $x = (-1)^k$ arcsina + $k\pi$, $k \in \mathbb{Z}$, где arcsina – *арксинус* числа а. Арксинусом числа (arcsina), где $|a| \le 1$, называется угол α такой, что 1) $\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ и 2) синус которого равен а: $\sin \alpha = a$ (arcsina = α , если $\sin \alpha = a$).

Например,
$$\arcsin\frac{\sqrt{2}}{2} = \frac{\pi}{4}$$
, так как $\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$ и $-\frac{\pi}{2} \le \frac{\pi}{4} \le \frac{\pi}{2}$; $\arcsin\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$, так как $\sin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$ и $-\frac{\pi}{2} \le \left(-\frac{\pi}{3}\right) \le \frac{\pi}{2}$.

Тождества

 $\sin(\arcsin a) = a$, если $|a| \le 1$; $\arcsin(\sin x) = x$, если $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$; $\arcsin(-a) = -\arcsin a$.

Задача 1. Решить уравнение $\sin x = \frac{1}{2}$.

Решение. $\sin x$ – ордината точки единичной окружности, полученной поворотом точки P(1;0) вокруг начала координат на угол x (рисунок 4.2).

Ординату равную $\frac{1}{2}$ имеют две точки окружности M_1 и M_2 (рисунок 4.2, слева). Так как $\frac{1}{2}=\sin\frac{\pi}{6}$, то точка M_1 получается из точки P(1;0) поворотом на угол $x_1=\frac{\pi}{6}$, а также на углы $x=\frac{\pi}{6}+2\pi k$, где $k\in Z$. Точка M_2

получается из точки P(1;0) поворотом на угол $x_2 = \frac{5\pi}{6}$, а также на углы $x = \frac{5\pi}{6} + 2\pi k$, т.е. на углы $x = \pi - \frac{\pi}{6} + 2\pi k$, где $k \in Z$. Таким образом, все корни уравнения $\sin x = \frac{1}{2}$ можно найти по формулам $x = \frac{\pi}{6} + 2\pi k$, $x = \pi - \frac{\pi}{6} + 2\pi k$

Рисунок 4.2. Тригонометрическая окружность с ординатами точек M_1 и M_2

В самом деле, если n- чётное число, т.е. n=2k , то $x=\frac{\pi}{6}+2\pi k$, если n- нечётное число, т.е. n=2k+1 , то $x=\pi-\frac{\pi}{6}+2\pi k$, то есть $x=\frac{5\pi}{6}+2\pi k$. Ответ. $x=(-1)^k\frac{\pi}{6}+n\pi$, $n\in Z$.

3ada4a 2. Решить уравнение $\sin x = -\frac{1}{2}$.

Решение. Ординату равную $-\frac{1}{2}$ имеют две точки окружности M_1 и M_2 (рисунок 4.2, справа), где $x_1=-\frac{\pi}{6},\ x_2=-\frac{5\pi}{6}.$ Следовательно, все корни уравнения $\sin x=-\frac{1}{2}$ можно найти по формулам $x=-\frac{\pi}{6}+2\pi k$ и

$$x = -\frac{5\pi}{6} + 2\pi k \,, \qquad k \in Z \,. \qquad \text{Эти} \qquad \text{формулы} \qquad \text{объединяются} \qquad \text{в} \qquad \text{одну}$$

$$x = \left(-1\right)^n \left(-\frac{\pi}{6}\right) + \pi n \,, \ n \in Z \,.$$

В самом деле, если n- чётное число, т.е. n=2k , то $x=-\frac{\pi}{6}+2\pi k$, $k\in Z$, если n- нечётное число, т.е. n=2k+1 , то $x=-\frac{5\pi}{6}+2\pi k$, $k\in Z$.

Ombem.
$$x = (-1)^{n+1} \frac{\pi}{6} + \pi n, n \in \mathbb{Z}$$
.

Итак, каждое из уравнений $\sin x = \frac{1}{2}$ и $\sin x = -\frac{1}{2}$ имеет бесконечное множество корней. На интервале $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ каждое из этих уравнений имеет только один корень: $x_1 = \frac{\pi}{6}$ – корень уравнения $\sin x = \frac{1}{2}$ и $x_1 = -\frac{\pi}{6}$ – корень уравнения $\sin x = -\frac{1}{2}$. Число $\frac{\pi}{6}$ называют *арксинусом* числа $\frac{1}{2}$ и записывают $\frac{1}{2} = \frac{\pi}{6}$; число $-\frac{\pi}{6}$ называют *арксинусом* числа $-\frac{1}{2}$ и пишут $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$.

Задача 3. Решить уравнение $\sin x = \frac{2}{3}$.

Решение. Так как $\frac{2}{3} \in [-1;1]$, то уравнение $\sin x = \frac{2}{3}$ имеет решения $x = (-1)^n \arcsin \frac{2}{3} + \pi n$, $n \in \mathbb{Z}$.

Omeem. $x = (-1)^n \arcsin \frac{2}{3} + \pi n$, $n \in \mathbb{Z}$.

Частные случаи

$\sin x = 0,$	$x = \pi n, n \in Z.$
$\sin x = 1,$	$x = \frac{\pi}{2} + 2\pi n, \ n \in Z.$
$\sin x = -1,$	$x = -\frac{\pi}{2} + 2\pi n, \ n \in Z.$

3ada4a 3. Решить уравнение $\sin 2 x = 1$.

Решение.
$$2x = \frac{\pi}{2} + 2\pi n$$
, $x = \frac{\pi}{4} + \pi n$, $n \in \mathbb{Z}$.

Omsem.
$$x = \frac{\pi}{4} + \pi n$$
, $n \in Z$.

Упражнения

1. Вычислить

- 1.1. arcsin 0;
- 1.2. arcsin 1; 1.3. arcsin $\frac{\sqrt{3}}{2}$;

1.4. arcsin
$$\frac{1}{2}$$
;

1.5.
$$\arcsin\left(-\frac{\sqrt{2}}{2}\right)$$
; 1.6. $\arcsin\left(-\frac{\sqrt{3}}{2}\right)$.

1.6.
$$\arcsin\left(-\frac{\sqrt{3}}{2}\right)$$
.

2. Вычислить

2.1.
$$\arcsin 1 - \arcsin (-1)$$

2.1.
$$\arcsin (-1);$$
 2.3. $\arcsin \frac{1}{\sqrt{2}} + \arcsin \left(-\frac{1}{\sqrt{2}}\right);$

2.2.
$$\arcsin \frac{1}{2} + \arcsin \frac{\sqrt{3}}{2}$$
;

2.2.
$$\arcsin \frac{1}{2} + \arcsin \frac{\sqrt{3}}{2}$$
; 2.4. $\arcsin \frac{\sqrt{3}}{2} + \arcsin \left(-\frac{1}{2}\right)$.

3.1.
$$\sin x = \frac{\sqrt{3}}{2}$$
;

3.2.
$$\sin x = \frac{\sqrt{2}}{2}$$
;

3.3.
$$\sin x = -\frac{1}{\sqrt{2}}$$
;

3.4.
$$\sin x = -\frac{1}{2}$$
.

4. Решить уравнения

4.1.
$$\sin x = \frac{3}{4}$$
;

4.2.
$$\sin x = \frac{2}{7}$$
;

4.3.
$$\sin x = -\frac{1}{4}$$
;

4.4.
$$\sin x = \frac{\sqrt{5}}{3}$$
.

5. Решить уравнения

$$5.1. \sin 3x = 1;$$

5.2.
$$\sin 2x = -1$$
;

5.3.
$$\sqrt{2}\sin\frac{x}{3} = -1$$
;

5.4.
$$2\sin\frac{x}{2} = \sqrt{3}$$
;

$$5.5. \sin\left(x + \frac{3\pi}{4}\right) = 0$$

5.6.
$$\sin\left(2x + \frac{\pi}{2}\right) = 0$$
.

6. Решить уравнения

6.1.
$$\sin 4 \times \cos 2x = \cos 4x \cdot \sin 2x$$
;

6.2.
$$\cos 2x \cdot \sin 3x = \sin 2x \cdot \cos 3x$$
.

7. Решить уравнения

7.1.
$$1 - 4\sin x \cos x = 0$$
;

7.2.
$$\sqrt{3} + 4\sin x \cos x = 0$$
;

7.3.
$$1 + 6\sin\frac{x}{4}\cos\frac{x}{4} = 0$$
;

7.4.
$$1 - 8\sin\frac{x}{3}\cos\frac{x}{3} = 0$$
.

8.1.
$$1 + \cos 5x \cdot \sin 4x = \cos 4x \cdot \sin 5x$$
;

8.2.
$$1 - \sin x \cdot \cos 2x = \cos x \cdot \sin 2x$$
.

9. Решить уравнения

9.1.
$$(\sin x - 1)(3\sin x + 1) = 0$$
;

9.1.
$$(\sin x - 1)(3\sin x + 1) = 0$$
; 9.2. $(4\sin x - 3)(2\sin x + 1) = 0$;

9.3.
$$(2\sin 2x - 1)(\sin 4x + 1) = 0$$
; 9.4. $(4\sin 3x - 1)(2\sin x + 3) = 0$.

9.4.
$$(4\sin 3x - 1)(2\sin x + 3) = 0$$

10.1.
$$\arcsin\left(\frac{x}{2} - 3\right) = \frac{\pi}{6}$$
; 10.2. $\arcsin\left(3 - 2x\right) = -\frac{\pi}{4}$.

Ответы. 1.1. 0; 1.2.
$$\frac{\pi}{2}$$
; 1.3. $\frac{\pi}{3}$; 1.4. $\frac{\pi}{6}$; 1.5. $-\frac{\sqrt{2}}{2}$; 1.6. $-\frac{\pi}{3}$. 2.1. π ; 2.2. 0;

2.3.
$$\frac{\pi}{2}$$
; 2.4. $-\frac{\pi}{2}$. 3.1. $x = (-1)^k \frac{\pi}{3} + \pi k$, $k \in \mathbb{Z}$; 3.2. $x = (-1)^n \frac{\pi}{4} + \pi n$, $n \in \mathbb{Z}$; 3.3.

$$x = \left(-1\right)^{k+1} \frac{\pi}{4} + \pi k, \ k \in \mathbb{Z}; \ 3.4. \ \ x = \left(-1\right)^{n} \frac{\pi}{6} + \pi n \ , \ \ n \in \mathbb{Z}. \ 4.1. \ \ x = \left(-1\right)^{n} \arcsin \frac{3}{4} + \pi n \ ,$$

$$n \in Z$$
; 4.2. $x = (-1)^n \arcsin \frac{2}{7} + \pi n$, $n \in Z$; 4.3. $x = (-1)^{n+1} \arcsin \frac{1}{4} + \pi n$, $n \in Z$; 4.4.

$$x = \left(-1\right)^n arcsin \frac{\sqrt{5}}{3} + \pi n \; , \; \; n \in Z \; . \; 5.1. \; \; x = \frac{\pi}{6} + \frac{2\pi k}{3} \; , \; k \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac{\pi}{4} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = -\frac$$

5.3.
$$x = (-1)^{n+1} \frac{3\pi}{4} + 3\pi n$$
, $n \in \mathbb{Z}$; 5.4. $x = (-1)^n \frac{2\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$; 5.5. $x = -\frac{3\pi}{4} + \pi n$,

$$n \in Z$$
; 5.6. $x = -\frac{\pi}{4} + \frac{\pi n}{2}$, $n \in Z$. 6.1. $x = \frac{\pi n}{2}$, $n \in Z$; 6.2. $x = \pi n$, $n \in Z$. 7.1.

$$x = (-1)^n \frac{\pi}{12} + \frac{\pi n}{2}, \quad n \in \mathbb{Z}; \quad 7.2. \quad x = (-1)^{n+1} \frac{\pi}{6} + \frac{\pi n}{2}, \quad n \in \mathbb{Z}; \quad 7.3.$$

$$x = \left(-1\right)^{n+1} 2 \arcsin \frac{1}{4} + 2\pi n \,, \quad n \in Z \,; \quad 7.4. \quad x = \left(-1\right)^{n} \frac{3}{2} \arcsin \frac{1}{4} + \frac{3\pi n}{2} \,, \quad n \in Z \,. \quad 8.1.$$

$$x = \frac{\pi}{2} + \pi n$$
, $n \in Z$; 8.2. $x = \frac{\pi}{6} + \frac{2\pi n}{3}$, $n \in Z$. 9.1. $x = (-1)^n \frac{\pi}{6} + \pi n$, $n \in Z$;

$$x = (-1)^{k+1} \arcsin \frac{1}{3} + \pi k$$
, $k \in \mathbb{Z}$; $9.2.$ $x = (-1)^{n+1} \frac{\pi}{6} + \pi n$, $n \in \mathbb{Z}$

$$x = (-1)^{k} \arcsin \frac{3}{4} + \pi k, \quad k \in \mathbb{Z}; \quad 9.3. \quad x = (-1)^{n} \frac{\pi}{12} + \frac{\pi n}{2}, \quad n \in \mathbb{Z}; \quad x = \frac{3\pi}{8} + \frac{\pi n}{2}, \quad n \in \mathbb{Z}.$$

$$9.4. \quad x = (-1)^{n} \frac{1}{3} \arcsin \frac{1}{4} + \frac{\pi n}{3}, \quad n \in \mathbb{Z}. \quad 10.1. \quad x = 7; \quad 10.2. \quad x = \frac{6 + \sqrt{2}}{4}.$$

4.3. Уравнение tgx = a

Уравнение tgx=a, $a\in R$, имеет решения $x=arctga+k\pi$, $k\in Z$, где arctga-apк исла a.

Арктангенсом числа (arctga), где $a \in R$, называется угол α такой, что

1)
$$\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$
,

2) $tg\alpha = a$ (arctga = α , если $tg\alpha = a$).

Например,
$$\operatorname{arctgl} = \frac{\pi}{4}$$
, так как $\operatorname{tg} \frac{\pi}{4} = 1$ и $-\frac{\pi}{2} < \frac{\pi}{4} < \frac{\pi}{2}$; $\operatorname{arctg} \left(-\frac{\sqrt{3}}{3} \right) = -\frac{\pi}{6}$, так

как
$$\operatorname{tg}\left(-\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{3}$$
 и $-\frac{\pi}{2} < -\frac{\pi}{6} < \frac{\pi}{2}$.

Тождества

$$tg(arctga) = a$$
; $arctg(tgx) = x$, если $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$; $arctg(-x) = arctgx$.

Например,
$$\operatorname{arctg}\left(-\sqrt{3}\right) = -\operatorname{arctg}\sqrt{3} = -\frac{\pi}{3}$$
; $\operatorname{arctg}\left(-1\right) = -\operatorname{arctg}1 = -\frac{\pi}{4}$.

 $3a\partial a$ ча 1. Решить уравнение $tgx = \sqrt{3}$.

Решение. Построим углы, тангенсы которых равны $\sqrt{3}$. Для этого проведём через точку P (рисунок 4.3.) прямую, перпендикулярную PO (ось тангенсов), и отложим отрезок $PM = \sqrt{3}$, через точки M и O проведём прямую. Эта прямая пересекает окружность в двух диаметрально противоположных точках M_1 и M_2 . Из прямоугольного треугольника POM находим

 $\frac{PM}{PO} = \frac{\sqrt{3}}{1} = \sqrt{3} = tgx_1, \text{ откуда } x_1 = \frac{\pi}{3}.$ Таким образом, точка M_1 получается из точки P(1;0) поворотом вокруг начала координат на угол $\frac{\pi}{3}$, а также на углы $x = \frac{\pi}{3} + 2\pi k$, где $k \in Z$.

Точка M_2 получается поворотом точки P(1;0) на угол $x_2=\frac{\pi}{3}+\pi$, а также на углы $x=\frac{\pi}{3}+\pi+2\pi k$, где $k\in Z$.

Итак, корни уравнения $tgx=\sqrt{3}$ можно найти по формулам $x=\frac{\pi}{3}+2\pi k$, $x=\frac{\pi}{3}+\pi(2k+1),\ k\in Z$. Эти формулы объединяются в одну: $x=\frac{\pi}{3}+\pi n$, $n\in Z$. *Ответ.* $x=\frac{\pi}{3}+\pi n$, $n\in Z$.

Рисунок 4.3.

Тригонометрическая окружность с отмеченными на ней углами, тангенсы которых равны $\sqrt{3}$ (слева) и $-\sqrt{3}$ (справа)

 $3a\partial a + a 2$. Решить уравнение $tgx = -\sqrt{3}$.

Решение. Углы, тангенсы которых равны $(-\sqrt{3})$, указаны на рисунке 4.3, где $PM \perp PO$, $PM = \sqrt{3}$. Из прямоугольного треугольника POM находим

 $\angle POM = \frac{\pi}{3}$, т.е. $x_1 = -\frac{\pi}{3}$. Таким образом, точка M_1 получается из точки P(1;0) поворотом вокруг начала координат на угол $-\frac{\pi}{3}$, а также на углы $x = -\frac{\pi}{3} + 2\pi k$, где $k \in Z$. Точка M_2 получается поворотом точки P(1;0) на углы $x = -\frac{\pi}{3} + \pi (2k+1)$, где $k \in Z$. Поэтому корни уравнения $tgx = -\sqrt{3}$ можно найти по формуле $x = -\frac{\pi}{3} + \pi n$, $n \in Z$.

Omeem.
$$x = -\frac{\pi}{3} + \pi n$$
, $n \in \mathbb{Z}$.

Итак, каждое из уравнений $tgx=\sqrt{3}$ и $tgx=-\sqrt{3}$ имеет бесконечное множество корней. На интервале $-\frac{\pi}{2} < x < \frac{\pi}{2}$ каждое из этих уравнений имеет только один корень: $x_1 = \frac{\pi}{3}$ – корень уравнения $tgx=\sqrt{3}$ и $x_1 = -\frac{\pi}{3}$ – корень уравнения $tgx=\sqrt{3}$ и $tgx=\sqrt{3}$ и исло $tgx=\sqrt{3}$ называют арктангенсом числа $tgx=\sqrt{3}$ и записывают $tgx=\sqrt{3}$ называют арктангенсом числа $tgx=\sqrt{3}$ и $tgx=\sqrt{3}$ и $tgx=\sqrt{3}$ называют арктангенсом числа $tgx=\sqrt{3}$ и $tgx=\sqrt{3}$ и

 $3a\partial a + a 3$. Решить уравнение tgx = 2.

Решение. $x = arctg2 + \pi n$, n ∈ Z.

Omeem. $x = arctg2 + \pi n$, $n \in Z$.

Задача 4. Решить уравнение $(tgx + 4)(ctgx - \sqrt{3}) = 0$.

Решение. 1) tgx + 4 = 0, tgx = -4, $x = arctg(-4) + \pi n$, $n \in \mathbb{Z}$.

При этих значениях х первая скобка левой части исходного уравнения обращается в ноль, а вторая не теряет смысла, так как из равенства tgx = -4 следует, что $ctgx = -\frac{1}{4}$. Следовательно, найденные значения х являются корнями исходного уравнения.

2)
$$ctgx - \sqrt{3} = 0$$
, $tgx = \frac{1}{\sqrt{3}}$, $x = arctg \frac{1}{\sqrt{3}} + \pi k = \frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$.

Эти значения х также являются корнями исходного уравнения, так как при этом вторая скобка исходного уравнения равна нулю, а первая скобка не теряет смысла.

Omeem.
$$x = arctg(-4) + \pi n$$
, $n \in \mathbb{Z}$; $x = \frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$.

Упражнения

1. Вычислить

1.1.
$$arctg0$$
; 1.2. $arctg(-1)$; 1.3. $arctg(-\frac{\sqrt{3}}{3})$; 1.4. $arctg\sqrt{3}$.

2. Вычислить

2.1.
$$6 \operatorname{arctg} \sqrt{3} - 4 \operatorname{arcsin} \left(-\frac{1}{\sqrt{2}} \right);$$
 2.3. $3 \operatorname{arctg} \left(-\frac{1}{\sqrt{3}} \right) + 2 \operatorname{arccos} \left(-\frac{\sqrt{3}}{2} \right);$

2.2.
$$2\operatorname{arctg1} + 3\operatorname{arcsin}\left(-\frac{1}{2}\right);$$
 2.4. $5\operatorname{arctg}\left(-\sqrt{3}\right) - 3\operatorname{arccos}\left(-\frac{\sqrt{2}}{2}\right).$

3.1.
$$tgx = \frac{1}{\sqrt{3}}$$
; 3.2. $tgx = \sqrt{3}$;

3.3.
$$tgx = -\sqrt{3}$$
;

3.4.
$$tgx = -1$$
;

3.5.
$$tgx = 4$$
;

3.6.
$$tgx = -5$$
.

4. Решить уравнения

4.1.
$$tg2x = 0$$
;

4.2.
$$tg3x = 0$$
;

4.3.
$$1 + tg \frac{x}{3} = 0$$
;

4.4.
$$\sqrt{3} + tg \frac{x}{6} = 0$$
.

5. Решить уравнения

5.1.
$$(tgx - 1)(tgx + \sqrt{3}) = 0$$
;

5.1.
$$(tgx - 1)(tgx + \sqrt{3}) = 0$$
; 5.2. $(\sqrt{3}tgx + 1)(tgx - \sqrt{3}) = 0$;

5.3.
$$(tgx - 2)(3cosx - 1) = 0$$

5.3.
$$(tgx - 2)(3cosx - 1) = 0$$
; 5.4. $(tgx - 4.5)(1 + 2sinx) = 0$;

5.5.
$$(tgx + 4)(tg\frac{x}{2} - 1) = 0$$
; 5.6. $(tg\frac{x}{6} + 1)(tgx - 1) = 0$.

5.6.
$$\left(tg \frac{x}{6} + 1 \right) \left(tgx - 1 \right) = 0$$

6. Решить уравнения

6.1.
$$\operatorname{arctg}(5x - 1) = \frac{\pi}{4}$$
; 6.2. $\operatorname{arctg}(3 - 5x) = -\frac{\pi}{3}$.

Ответы. 1.1. 0; 1.2. $-\frac{\pi}{4}$; 1.3. $-\frac{\pi}{6}$; 1.4. $\frac{\pi}{3}$. 2.1. 3π ; 2.2. 0; 2.3. $\frac{7\pi}{6}$; 2.4.

$$-\frac{47\pi}{12} \cdot 3.1. \quad x = \frac{\pi}{6} + \pi n, \ n \in \mathbb{Z}; \ 3.2. \ x = \frac{\pi}{3} + \pi n, \ n \in \mathbb{Z}; \ 3.3. \ x = -\frac{\pi}{3} + \pi n, \ n \in \mathbb{Z};$$

3.4.
$$x = -\frac{\pi}{4} + \pi n$$
, $n \in \mathbb{Z}$; 3.5. $x = \arctan 4 + \pi n$, $n \in \mathbb{Z}$; 3.6. $x = -\arctan 5 + \pi n$, $n \in \mathbb{Z}$.

4.1.
$$x = \frac{\pi n}{2}$$
, $n \in \mathbb{Z}$; 4.2. $x = \frac{\pi n}{3}$, $n \in \mathbb{Z}$; 4.3. $x = -\frac{\pi}{4} + \pi n$, $n \in \mathbb{Z}$; 4.4. $x = 2\pi + 6\pi n$,

$$n \in Z \; . \; 5.1. \; \; x = \frac{\pi}{4} + \pi n \; , \; \; x = -\frac{\pi}{3} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = \frac{\pi}{3} + \pi n \; , \; \; x = -\frac{\pi}{6} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = \frac{\pi}{3} + \pi n \; , \; \; x = -\frac{\pi}{6} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = \frac{\pi}{3} + \pi n \; , \; \; x = -\frac{\pi}{6} + \pi n \; , \; \; n \in Z \; ; \; 5.2. \; \; x = \frac{\pi}{3} + \pi n \; , \; \; x = -\frac{\pi}{6} + \pi n \; , \; \;$$

5.3.
$$x = arctg2 + \pi n$$
, $n \in Z$; 5.4. $x = arctg4.5 + \pi n$, $x = (-1)^{n+1} \frac{\pi}{6} + \pi n$, $n \in Z$; 5.5.

$$x = \arctan 4 + \pi n$$
, $x = \frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$; 5.6. $x = \frac{\pi}{4} + \pi n$, $n \in \mathbb{Z}$. 6.1. $x = \frac{2}{5}$; 6.2. $x = \frac{3 + \sqrt{3}}{5}$.

5. Решение различных типов тригонометрических уравнений 5.1. Уравнения, сводящиеся к квадратным

1. Уравнение вида $a\sin^2 x + b\sin x + c = 0$ и $a\cos^2 x + b\cos x + c = 0$, где $a, b, c \in R$ и $a \ne 0$. Делаем замену $\sin x = t$ или соответственно $\cos x = t$, где $t \in [-1;1]$. Решаем квадратное уравнение, затем простейшие тригонометрические уравнения.

 $3a\partial a$ ча 1. Решить уравнение $\sin^2 x + \sin x - 2 = 0$.

Решение. Делаем подстановку $\sin x = t$, $|t| \le 1$ и решаем квадратное уравнение $t^2 + t - 2 = 0$; $t_1 = -2$, $t_2 = 1$, где t = -2 — посторонний корень. Переходим к простейшему уравнению $\sin x = 1$, его решение $x = \frac{\pi}{2} + 2\pi n$, $n \in Z$.

Omsem:
$$x = \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}$$
.

2. Уравнение вида $a \sin^2 x + b \cos x + c = 0$, где $a, b, c \in R$ и $a \ne 0$.

Метод решения: заменяем $\sin^2 x = 1 - \cos^2 x$ и получаем: $a\cos^2 x - b\cos x - (c+a) = 0$, затем делаем подстановку: $\cos x = t$, $|t| \le 1$ и решаем квадратное уравнение, находим x.

 $3a\partial a 4a$ 2. Решить уравнение $2\sin^2 x + \cos x - 1 = 0$.

 $\begin{array}{ll} \textit{Решение}. \ \ \textit{Заменяем} \ \ \sin^2 x = 1 - \cos^2 x \,, \ \cos x = t \in [-1;1], \ \textit{решаем} \ \ \textit{квадратное} \\ \textit{уравнение} \qquad 2t^2 - t - 1 = 0 \,; \qquad t_1 = -\frac{1}{2}, \ t_2 = 1. \qquad \text{Простейшие} \qquad \textit{уравнения} \\ \cos x = 1, \ \cos x = -\frac{1}{2} \ \ , \ \textit{их решения} \ \ x_1 = 2k\pi \,, \ x_2 = \pm \frac{2\pi}{3} + 2k\pi \,, \ k \in Z \,. \\ \textit{Ответ.} \ \ x_1 = 2k\pi \,, \ x_2 = \pm \frac{2\pi}{3} + 2k\pi \,, \ k \in Z \,. \end{array}$

3. Уравнение вида $a\cos^2 x + b\sin x + c = 0$; где $a, b, c \in R$ и $a \neq 0$.

Метод решения: аналогичен методу решения уравнения в пункте 2.

 $3a\partial a + 3$. Решить уравнение $12\cos^2 x + \sin x - 11 = 0$.

Решение. Заменяем $\cos^2 x = 1 - \sin^2 x$, $\sin x = t$, $|t| \le 1$, решаем квадратное уравнение $12t^2 - t - 1 = 0$, из которого находим $t_1 = \frac{1}{3}$, $t_2 = -\frac{1}{4}$.

Получаем простейшие уравнения $\sin x = \frac{1}{3}, \ \sin x = -\frac{1}{4}$, их решения $x_1 = (-1)^k \arcsin \frac{1}{3} + k\pi \ , \ x_2 = (-1)^{k+1} \arcsin \frac{1}{4} + k\pi \ , \ k \in Z \ .$

Omeem. $x_1 = (-1)^k \arcsin \frac{1}{3} + k\pi$; $x_2 = (-1)^{k+1} \arcsin \frac{1}{4} + k\pi$, $k \in \mathbb{Z}$.

4. Уравнение вида $a \sin^2 x + b \sin x \cos x + c \cos^2 x = 0$, где $a, b, c \in R$ и $a \neq 0$.

Предположим, что $\cos x = 0$. Подставим это значение косинуса в уравнение, получим

$$a \sin^2 x + b \sin x \cdot 0 + c \cdot 0 = 0 \Leftrightarrow a \sin^2 x = 0 \Leftrightarrow \sin x = 0$$

чего не может быть, так как $\sin^2 x + \cos^2 x = 1$. Следовательно, $\cos x \neq 0$, поэтому обе части уравнения $a\sin^2 x + b\sin x\cos x + c\cos^2 x = 0$ можно разделить на $\cos^2 x \neq 0$.

Метод решения: обе части уравнения делим на $\cos^2 x \neq 0$ и получаем: $atg^2x + btgx + c = 0, \ \text{затем делаем подстановку: } \ tgx = t \ \text{ и решаем квадратное}$ уравнение, затем находим x.

3ada4a 4. Решить уравнение $5\sin^2 x - 3\sin x \cos x - 2\cos^2 x = 0$.

Решение. Делим обе части исходного уравнения на $\cos^2 x \neq 0$, получаем $5tg^2x - 3tgx - 2 = 0$. Делаем подстановку tgx = t, решаем квадратное уравнение $5t^2 - 3t - 2 = 0$; $t_1 = -\frac{2}{5}$, $t_2 = 1$. Переходим к простейшим уравнениям $tgx = -\frac{2}{5}$, tgx = 1, решение которых соответственно $x = \pi k - \arctan \frac{2}{5}$, $k \in Z$ и $x = \frac{\pi}{4} + \pi n$, $n \in Z$.

Omeem. $x_1 = \pi k - \operatorname{arctg} \frac{2}{5}, k \in \mathbb{Z}; x_2 = \frac{\pi}{4} + \pi n, n \in \mathbb{Z}.$

5. Уравнение вида $a\sin^2 x + b\sin x \cos x + c\cos^2 x = d$, где $a,b,c,d\in R$, $a\neq 0$, $a\neq d$.

Метод решения

Преобразуем исходное уравнение, используя основное тригонометрическое тождество:

$$a \sin^2 x + b \sin x \cos x + c \cos^2 x = d(\sin^2 x + \cos^2 x)$$
 или
$$(a-d)\sin^2 x + b \sin x \cos x + (c-d)\cos^2 x = 0,$$

последнее уравнение решается как уравнение в пункте 4.

 $3a\partial a + a 5$. Решить уравнение $2\sin^2 x - 5\sin x \cos x - 8\cos^2 x = -2$.

Решение. Преобразуем исходное уравнение:

$$2\sin^{2} x - 5\sin x \cos x - 8\cos^{2} x = -2(\sin^{2} x + \cos^{2} x),$$

$$4\sin^{2} x - 5\sin x \cos x - 6\cos^{2} x = 0.$$

Делим обе части последнего уравнения на $\cos^2 x \neq 0$, получаем $4tg^2x-5tgx-6=0$. Делаем подстановку tgx=t, решаем квадратное уравнение $4t^2-5t-6=0$; $t_1=-\frac{3}{4},\,t_2=2$. Переходим к простейшим уравнениям $tgx=-\frac{3}{4},\,tgx=2$, решение которых соответственно $x=\pi k-\arctan \frac{3}{4},\,k\in Z$ и $x=\arctan 2+\pi n,\,n\in Z$.

Ответ.
$$x = \pi k - \operatorname{arctg} \frac{3}{4}, k \in \mathbb{Z}$$
 и $x = \operatorname{arctg2} + \pi n, n \in \mathbb{Z}$.

 $3a\partial a$ ча 6. Решить уравнение tgx - 2ctgx + 1 = 0.

Решение. Область определения функций уравнения: $\sin x \neq 0$ и $\cos x \neq 0$. Так как $ctgx = \frac{1}{tgx}$, то исходное уравнение можно переписать в виде: $tgx - \frac{2}{tgx} + 1 = 0$. Умножим обе части последнего уравнения на tgx, получаем $tg^2x + tgx - 2 = 0$.

 $tgx=t\,,\quad t^2+t-2=0\,,\quad t_1=-2,\ t_2=1\,.\quad \Pi \text{ереходим}\quad \kappa\quad\text{уравнениям}$ $tgx=-2,\ tgx=1\,,\ \text{решение}\ \kappa\text{оторых}\ \text{соответственно}\ \ x=\pi k-\text{arctg2},\ k\in Z\ \ \text{и}$ $x=\frac{\pi}{4}+\pi n,\ n\in Z\,.$

Левая часть исходного уравнения имеет смысл, если $\sin x \neq 0$ и $\cos x \neq 0$. Найденные корни удовлетворяют этим условиям.

Ответ.
$$x = \pi k - \operatorname{arctg} \frac{3}{4}, k \in \mathbb{Z}$$
 и $x = \operatorname{arctg} 2 + \pi n, n \in \mathbb{Z}$.

 $3a\partial a 4a$ 7. Решить уравнение $3\cos^2 6x + 8\sin 3x \cos 3x - 4 = 0$.

Решение. Преобразуем исходное уравнение:

$$3(1-\sin^2 6x) + 4\sin 6x - 4 = 0,$$

$$3\sin^2 6x - 4\sin 6x + 1 = 0.$$

Обозначим $\sin 6x = t$, получим $3t^2 - 4t + 1 = 0$, $t_1 = \frac{1}{3}$, $t_2 = 1$. Решения уравнений $\sin 6x = \frac{1}{3}$, $\sin 6x = 1$ соответственно $x = \frac{(-1)^n}{6} \arcsin \frac{1}{3} + \frac{\pi n}{6}$, $x = \frac{\pi n}{12} + \frac{\pi n}{3}$, $n \in \mathbb{Z}$.

Omeem.
$$x = \frac{(-1)^n}{6} \arcsin \frac{1}{3} + \frac{\pi n}{6}, \quad x = \frac{\pi n}{12} + \frac{\pi n}{3}, \quad n \in \mathbb{Z}.$$

5.2. Уравнения вида $a \sin x + b \cos x = c$, где $a, b, c \in R$

При c=0 обе части делим на $\cos x \neq 0$ и получаем: atgx+b=0 и $x=arctg\bigg(-\frac{b}{a}\bigg)+\pi k\;,\;k\in Z\;.$

При $c \neq 0$ для решения уравнения $a \sin x + b \cos x = c$ используем *метод* вспомогательного угла. Выражение $a \sin x + b \cos x$ преобразуется к виду $a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(\varphi + x)$, где φ определяется из условий

$$\begin{cases}
\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}, \\
\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}.
\end{cases}$$

При a, b > 0
$$\varphi = \arccos \frac{a}{\sqrt{a^2 + b^2}} = \arcsin \frac{b}{\sqrt{a^2 + b^2}} = \operatorname{arctg} \frac{b}{a}$$
.

Частные случаи

$$\sin x + \cos x = \sqrt{2}\cos\left(\frac{\pi}{4} - x\right) = \sqrt{2}\sin\left(\frac{\pi}{4} + x\right);$$

$$\sin x - \cos x = \sqrt{2} \cos \left(\frac{\pi}{4} + x\right) = \sqrt{2} \sin \left(\frac{\pi}{4} - x\right).$$

Множество значений выражения $a \sin x + b \cos x$

$$-\sqrt{a^2+b^2} \le a\sin x + b\cos x \le \sqrt{a^2+b^2}.$$

Преобразуем уравнение $a \sin x + b \cos x = c \Leftrightarrow \sqrt{a^2 + b^2} \sin(\varphi + x) = c$

или
$$\sin(\varphi + x) = \frac{c}{\sqrt{a^2 + b^2}}$$
 . Если $|c| \le \sqrt{a^2 + b^2}$, то

$$x = (-1)^k \arcsin \frac{c}{\sqrt{a^2 + b^2}} - \varphi + \pi k, \ k \in Z.$$

 $3a\partial a ua$ 8. Решить уравнение $\sqrt{3}\sin x + \cos x = 0$.

Решение. Делим обе части исходного уравнения на $\cos x \neq 0$, получаем $\sqrt{3} t g x + 1 = 0$. Из уравнения $t g x = -\frac{1}{\sqrt{3}}$ находим $x = k \pi - \frac{\pi}{6}$, $k \in \mathbb{Z}$.

Omsem.
$$x = k\pi - \frac{\pi}{6}, k \in \mathbb{Z}.$$

Задача 9. Решить уравнение $\sqrt{3}\sin x + \cos x = 1$.

Решение. Так как $a = \sqrt{3}$, b = 1 и $\sqrt{a^2 + b^2} = 2$, то $\cos \varphi = \frac{\sqrt{3}}{2}$, $\sin \varphi = \frac{1}{2}$.

Пусть
$$\varphi = \frac{\pi}{6}$$
. Тогда $\sqrt{3}\sin x + \cos x = 1 \Leftrightarrow \sin\left(x + \frac{\pi}{6}\right) = \frac{1}{2}$. Отсюда находим

$$x = (-1)^k \frac{\pi}{6} - \frac{\pi}{6} + \pi k, k \in Z.$$

Omsem.
$$x = (-1)^k \frac{\pi}{6} - \frac{\pi}{6} + \pi k, k \in \mathbb{Z}.$$

5.3. Уравнения с тригонометрическими функциями от различных аргументов

 $3a\partial a$ ча 10. Решить уравнение $\sin 2x - \sin x - \cos x - 1 = 0$.

Решение. Так как $\sin 2x = (\sin x + \cos x)^2 - 1 = 0$, то исходное уравнение преобразуется к виду

$$(\sin x + \cos x)^2 - (\sin x + \cos x) - 2 = 0.$$

Обозначим $\sin x + \cos x = t$, получим $t^2 - t - 2 = 0$, $t_1 = -1$, $t_2 = 2$. Решим уравнение $\sin x + \cos x = -1$. Преобразуем его к виду

$$2\sin\frac{x}{2}\cos\frac{x}{2} + \cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2} = -\cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2},$$

$$2\sin\frac{x}{2}\cos\frac{x}{2} + 2\cos^{2}\frac{x}{2} = 0, \cos\frac{x}{2}\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right) = 0;$$

$$\cos\frac{x}{2} = 0, x = \pi + 2\pi n, n \in \mathbb{Z};$$

$$\sin\frac{x}{2} + \cos\frac{x}{2} = 0, tg\frac{x}{2} = -1, x = -\frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}.$$

Уравнение $\sin x + \cos x = 2$ не имеет корней, так как $\sin x \le 1$, $\cos x \le 1$ и равенства $\sin x = 1$, $\cos x = 1$ не могут одновременно выполняться.

Omsem.
$$x = \pi + 2\pi n$$
, $x = -\frac{\pi}{2} + 2\pi n$, $n \in \mathbb{Z}$.

 $3a\partial a$ ча 11. Решить уравнение $\cos^2 x + \cos 2x = 0$.

 $\begin{array}{lll} \textit{Решение}. & \text{Так} & \text{как} & \cos^2 x = \frac{1+\cos 2x}{2}\,, & \text{то} & \text{исходное} & \text{уравнение} \\ & \text{преобразуется} & \kappa & \text{виду:} & \frac{1+\cos 2x}{2} + \cos 2x = 0\,. & \text{Из} & \text{последнего} & \text{уравнения} \\ & \text{находим } \cos 2x = -\frac{1}{3} \text{ или } x = \pm \frac{1}{2} \arccos \left(-\frac{1}{3}\right) + k\pi\,, \ k \in Z\,. \end{array}$

Omeem.
$$x = \pm \frac{1}{2} \arccos\left(-\frac{1}{3}\right) + k\pi$$
, $k \in \mathbb{Z}$.

 $3a\partial a 4a$ 12. Решить уравнение $\cos^2 x = \sin 2x$.

Решение. Преобразуем исходное уравнение:

$$\cos^2 x = 2\sin x \cos x$$
или
$$\cos x (\cos x - 2\sin x) = 0;$$

$$\cos x = 0$$
, $x = \frac{\pi}{2} + \pi k$, $k \in Z$;

$$\cos x - 2\sin x = 0$$
, $tgx = \frac{1}{2}$, $x = arctg\frac{1}{2} + \pi k = arcctg2 + \pi k$, $k \in \mathbb{Z}$.

Omsem.
$$x = \frac{\pi}{2} + \pi k$$
, $x = arcctg2 + \pi k$ $k \in Z$.

Задача 13. Решить уравнение $\sin x \cos x \cos 2x = \frac{1}{8}$.

Решение. Преобразуем исходное уравнение, используя формулу двойного аргумента для синуса $\sin 2\alpha = 2\sin \alpha \cos \alpha$:

$$\sin 2x \cos 2x = \frac{1}{4}$$
, или $\sin 4x = \frac{1}{2}$, $4x = \left(-1\right)^k \frac{\pi}{6} + \pi k$, $x = \left(-1\right)^k \frac{\pi}{24} + \frac{\pi k}{4}$, $k \in \mathbb{Z}$.

Omsem.
$$x = (-1)^k \frac{\pi}{24} + \frac{\pi k}{4}, k \in \mathbb{Z}$$
.

Задача 14. Решить уравнение
$$1 + \frac{1}{\cos x} = \operatorname{ctg}^2 \frac{x}{2}$$
.

Решение. Область определения функций исходного уравнения $\cos x \neq 0$.

Так как
$$ctg^2 \frac{x}{2} = \frac{\cos^2 \frac{x}{2}}{\sin^2 \frac{x}{2}} = \frac{\frac{1 + \cos x}{2}}{\frac{1 - \cos x}{2}}$$
, то исходное уравнение примет вид

$$1 + \frac{1}{\cos x} = \frac{1 + \cos x}{1 - \cos x}$$
.

Приведем левую часть к общему знаменателю и перекрёстно перемножим части уравнения, получим $2\cos^2 x + \cos x - 1 = 0$. Решая квадратное уравнение, находим $\cos x = -1$ и $\cos x = \frac{1}{2}$. Или

$$x = \pm \frac{\pi}{3} + 2\pi k, \ x = \pi + 2\pi k, \ k \in Z.$$

Omsem.
$$x = \pm \frac{\pi}{3} + 2\pi k, x = \pi + 2\pi k, k \in \mathbb{Z}$$
.

Уравнения типа $\sin \alpha x = \sin \beta x$, $\cos \alpha x = \cos \beta x$, $\sin \alpha x = \cos \beta x$, $\alpha, \beta \in \mathbb{R}$, $\alpha, \beta \neq 0$ для последнего: $\alpha \neq \pm \beta$ решаются с помощью формул преобразования суммы в произведение, последнее ещё и с помощью формулы приведения.

 $3a\partial a 4a$ 15. Решить уравнение $\sin 7x = \sin 3x$.

Решение. По формуле (2.6) разность синусов преобразуем исходное уравнение

$$\sin 7x = \sin 3x \Leftrightarrow \sin 7x - \sin 3x = 0 \Leftrightarrow \sin 2x \cos 5x = 0.$$

Решения уравнений $\sin 2x = 0$ и $\cos 5x = 0$, соответственно, $x = \frac{\pi k}{2}$,

$$x = \frac{\pi}{10} + \frac{\pi k}{5}, \ k \in \mathbb{Z}.$$

Omeem.
$$x = \frac{\pi k}{2}$$
, $x = \frac{\pi}{10} + \frac{\pi k}{5}$, $k \in \mathbb{Z}$.

 $3a\partial a$ ча 16. Решить уравнение $\cos 3x + \sin 5x = 0$.

Решение. Используя формулу приведения (2.7) $\sin \alpha = \cos \left(\frac{\pi}{2} - \alpha \right)$, запишем уравнение в виде

$$\cos 3x + \cos \left(\frac{\pi}{2} - 5x\right) = 0.$$

С помощью формулы (2.6) для суммы косинусов преобразуем исходное уравнение

$$2\cos\left(\frac{\pi}{4} - x\right) \cdot \cos\left(4x - \frac{\pi}{4}\right) = 0.$$

Решения уравнений $\cos\left(\frac{\pi}{4} - x\right) = 0$ и $\cos\left(4x - \frac{\pi}{4}\right) = 0$, соответственно,

$$x = \frac{3\pi}{4} + \pi k$$
, $x = \frac{3\pi}{16} + \frac{\pi k}{4}$, $k \in \mathbb{Z}$.

Omeem.
$$x = \frac{3\pi}{4} + \pi k$$
, $x = \frac{3\pi}{16} + \frac{\pi k}{4}$, $k \in \mathbb{Z}$.

 $3a\partial a 4a$ 17. Решить уравнение $\sin 3x + \sin 7x = 3\cos 2x$.

Решение. С помощью формулы (2.6.) для суммы синусов преобразуем исходное уравнение

$$2\sin 5x \cdot \cos 2x = 3\cos 2x \Leftrightarrow 2\sin 5x \cdot \cos 2x - 3\cos 2x = 0 \Leftrightarrow$$
$$\Leftrightarrow \cos 2x \left(\sin 5x - \frac{3}{2}\right) = 0.$$

Уравнений $\cos 2x = 0$ имеет корни $x = \frac{\pi}{4} + \frac{\pi k}{2}$, $k \in \mathbb{Z}$, а уравнение $\sin 5x = \frac{3}{2}$ корней не имеет.

Omsem.
$$x = \frac{\pi}{4} + \frac{\pi k}{2}, k \in \mathbb{Z}$$
.

 $3a\partial a$ ча 18. Решить уравнение $\cos 3x \cdot \cos x = \cos 2x$.

Решение. С помощью формулы (2.2.) для синуса разности преобразуем исходное уравнение

$$\cos 3x \cdot \cos x = (\cos 3x - x) \Leftrightarrow \cos 3x \cdot \cos x = \cos 3x \cdot \cos x + \sin 3x \cdot \sin x \Leftrightarrow \sin 3x \cdot \sin x = 0.$$

Корни уравнений $\sin 3x = 0$ и $\sin x = 0$ соответственно $x = \frac{\pi k}{3}$, $x = \pi k$, $k \in \mathbb{Z}$. Корни второго уравнения содержатся в серии корней первого, так как, если k = 3n, то $\frac{\pi k}{3} = \pi n$.

Omeem.
$$x = \frac{\pi k}{3}, k \in \mathbb{Z}$$
.

Задача 19. Решить уравнение
$$(tgx + 1)(2\cos\frac{x}{3} - \sqrt{3}) = 0.$$

Решение.

1)
$$tgx + 1 = 0$$
, $tgx = -1$, $x = -\frac{\pi}{4} + \pi k$, $k \in \mathbb{Z}$.

Эти значения х являются корнями исходного уравнения, так как при этом первая скобка левой части уравнения равна нулю, а вторая не теряет смысла.

2)
$$2\cos\frac{x}{3} - \sqrt{3} = 0$$
, $\cos\frac{x}{3} = \frac{\sqrt{3}}{2}$, $\frac{x}{3} = \pm\frac{\pi}{6} + 2\pi k$, $x = \pm\frac{\pi}{2} + 6\pi k$, $k \in \mathbb{Z}$.

При этих значениях х вторая скобка левой части исходного уравнения равна нулю, а первая скобка не имеет смысла. Поэтому эти значения не являются корнями исходного уравнения.

Omsem.
$$x = -\frac{\pi}{4} + \pi k$$
, $k \in \mathbb{Z}$.

 $3a\partial a + 20$. Решить уравнение $6\sin^2 x + 2\sin^2 2x = 5$.

Решение. Используя формулу 2.3 для косинуса двойного аргумента и основное тригонометрическое тождество, преобразуем исходное уравнение

$$3(1-\cos 2x)+2(1-\cos^2 2x)=5$$
 или $2\cos^2 2x+3\cos 2x=0$, $\cos 2x(2\cos 2x+3)=0$.

1)
$$\cos 2x = 0$$
, $x = \frac{\pi}{4} + \frac{\pi k}{2}$, $k \in \mathbb{Z}$.

2) уравнение $\cos 2x = -\frac{3}{2}$ корней не имеет.

Omsem.
$$x = \frac{\pi}{4} + \frac{\pi k}{2}, k \in Z$$
.

Упражнения

1. Решить уравнения

1.1.
$$\sin^2 x = \frac{1}{4}$$
;

1.2.
$$\cos^2 x = \frac{1}{2}$$
;

1.3.
$$2\cos^2 x - \cos x - 1 = 0$$
; 1.4. $2\sin^2 x + \sin x - 1 = 0$;

1.4.
$$2\sin^2 x + \sin x - 1 = 0$$
;

1.5.
$$2\sin^2 x + \sin x - 6 = 0$$
; 1.6. $2\cos^2 x + \cos x - 6 = 0$.

1.6.
$$2\cos^2 x + \cos x - 6 = 0$$

2. Решить уравнения

2.1.
$$2\cos^2 x - \sin x + 1 = 0$$

2.1.
$$2\cos^2 x - \sin x + 1 = 0$$
; 2.2. $3\cos^2 x - \sin x - 1 = 0$;

2.3.
$$4\sin^2 x - \cos x - 1 = 0$$
; 2.4. $2\sin^2 x + 3\cos x = 0$.

2.4.
$$2\sin^2 x + 3\cos x = 0$$
.

3. Решить уравнения

3.1.
$$tg^2x = 2$$
;

3.2.
$$tgx = ctgx$$
;

3.3.
$$tgx + 3ctgx = 2\sqrt{3}$$
; 3.4. $tg^2x - 3tgx - 4 = 0$;

3.4.
$$tg^2x - 3tgx - 4 = 0$$
;

3.5.
$$tgx - \sqrt{3} ctgx + 1 = \sqrt{3}$$
; 3.6. $tg^2x - tgx + 1 = 0$.

3.6.
$$tg^2x - tgx + 1 = 0$$
.

4.1.
$$1 + 7\cos^2 x = 3\sin 2x$$
; 4.2. 4.3. $3 + \sin 2x = 4\sin^2 x$;

4.3.
$$\cos 2x + \cos^2 x + \sin x \cos x = 0$$
;

4.4.
$$3\cos 2x + \sin^2 x + 5\sin x \cos x = 0$$
.

5. Решить уравнения

5.1.
$$\sqrt{3}\cos x + \sin x = 0$$
;

5.2.
$$\cos x = \sin x$$
;

5.3.
$$\sin x = 2\cos x$$
;

5.4.
$$2\sin x + \cos x = 0$$
.

6. Решить уравнения

6.1.
$$\sin x - \cos x = 1$$
;

6.2.
$$\cos x + \sin x = 1$$
;

6.3.
$$\sqrt{3}\sin x + \cos x = 2$$
; 6.4. $\sin 3x + \cos 3x = \sqrt{2}$.

6.4.
$$\sin 3x + \cos 3x = \sqrt{2}$$

7. Решить уравнения

7.1.
$$\cos x = \cos 3x$$
;

7.2.
$$\sin 5x = \sin x$$
;

7.3.
$$\sin 2x = \cos 3x$$
;

7.4.
$$\sin x + \cos 3x = 0$$
.

8. Решить уравнения

8.1.
$$\cos 3x - \cos 5x = \sin 4x$$
;

8.2.
$$\sin 7x - \sin x = \cos 4x$$
;

8.3.
$$\cos x + \cos 3x = 4\cos 2x$$
;

8.4.
$$\sin^2 x + \cos^2 x = \cos 4x$$
.

9. Решить уравнения

9.1.
$$\left(tgx - \sqrt{3} \right) \left(2\sin\frac{x}{12} + 1 \right) = 0$$

9.1.
$$\left(tgx - \sqrt{3} \left(2\sin\frac{x}{12} + 1 \right) = 0 \right)$$
; 9.2. $\left(1 - \sqrt{2}\cos\frac{x}{4} \right) \left(\sqrt{3}tgx + 1 \right) = 0$;

9.3.
$$\left(2\sin\left(x+\frac{\pi}{6}\right)-1\right)(2\tan(x+1))=0$$

9.3.
$$\left(2\sin\left(x+\frac{\pi}{6}\right)-1\right)\left(2tgx+1\right)=0$$
; 9.4. $\left(1+\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)\right)\left(tgx-3\right)=0$.

10. Решить уравнения

10.1.
$$\sqrt{3} \sin x \cos x = \sin^2 x$$
; 10.2. $2 \sin x \cos x = \cos x$;

$$10.2. \ 2\sin x \cos x = \cos x$$

10.3.
$$\sin 4x + \sin^2 2x = 0$$
;

10.3.
$$\sin 4x + \sin^2 2x = 0$$
; 10.4. $\sin 2x + 2\cos^2 x = 0$.

$$11.2. \ 2\cos^2 2x - 1 = \sin 4x$$

11.3.
$$2\cos^2 2x + 3\cos^2 x = 2$$
; 11.4. $(\sin x + \cos x)^2 = 1 + \cos x$.

12. Решить уравнения

12.1.
$$2\sin 2x - 3(\sin x + \cos x) + 2 = 0$$
;

12.2.
$$\sin 2x + 3 = 3\sin x + 3\cos x$$
;

12.3.
$$\sin 2x + 4(\sin x + \cos x) + 4 = 0$$
;

12.4.
$$\sin 2x + 5(\cos x - \sin x + 1) = 0$$
.

13. Решить уравнения

13.1.
$$1 - \cos(\pi - x) + \sin(\frac{\pi}{2} + \frac{x}{2}) = 0$$
;

13.2.
$$\sqrt{2}\cos\left(x-\frac{\pi}{4}\right) = (\sin x + \cos x)^2$$
.

14. Решить уравнения

15. Решить уравнения

15.1.
$$2\cos^2 2x + 3\sin 4x + 4\sin^2 2x = 0$$
;

15.2.
$$1 - \sin x \cos x + 2\cos^2 x = 0$$
;

15.3.
$$2\sin^2 x + \frac{1}{4}\cos^3 2x = 1$$
;

15.4.
$$\sin^2 2x + \cos^2 3x = 1 + 4\sin x$$
.

16.1.
$$\cos x \cos 2x = \sin x \sin 2x$$
; 16.2. $\sin 2x \cos x = \cos 2x \sin x$;

16.3.
$$\sin 3x = \sin 2x \cos x$$
; 16.4. $\cos 5x \cos x = \cos 4x$.

Ответы. 1.1.
$$x = (-1)^k \frac{\pi}{6} + \pi k$$
, $x = (-1)^{k-1} \frac{\pi}{6} + \pi k$, $k \in Z$; 1.2. $x = \frac{\pi}{4} + \frac{\pi k}{2}$, $k \in Z$; 1.3. $x = 2\pi k$, $x = \pm \frac{2\pi}{3} + 2\pi k$, $k \in Z$; 1.4. $x = -\frac{\pi}{2} + 2\pi k$, $x = (-1)^k \frac{\pi}{4} + \frac{\pi k}{2}$, $k \in Z$; 1.5. корней нет; 1.6. корней нет. 2.1. $x = \frac{\pi}{2} + \pi k$, $k \in Z$; 2.2. $x = -\frac{\pi}{2} + 2\pi k$, $x = \pm \arccos \frac{3}{4} + 2\pi k$, $k \in Z$; 2.3. $x = \pi + 2\pi k$, $x = \pm \frac{2\pi}{3} + 2\pi k$, $k \in Z$; 2.4. $x = \pm \frac{2\pi}{3} + 2\pi k$, $k \in Z$; 3.1. $x = \pm \arctan \cot \sqrt{2} + \pi m$, $n \in Z$; 3.2. $x = \frac{\pi}{4} + \frac{\pi k}{2}$, $k \in Z$; 3.3. $x = \frac{\pi}{3} + \pi m$, $n \in Z$; 3.4. $x = -\frac{\pi}{4} + \pi m$, $x = \arctan \cot 4 + \pi m$, $n \in Z$; 3.5. $x = -\frac{\pi}{4} + \pi m$, $x = \frac{\pi}{3} + \pi m$, $n \in Z$; 3.6. корней нет 4.1. $x = \arctan \cot 2 + \pi m$, $x = \arctan \cot 4 + \pi m$, $n \in Z$; 4.2. $x = -\frac{\pi}{4} + \pi m$, $x = \arctan \cot \frac{1}{2} + \pi m$, $n \in Z$; 4.3. $x = -\frac{\pi}{4} + \pi m$, $x = \arctan \cot \frac{1}{2} + \pi m$, $n \in Z$; 5.2. $x = \frac{\pi}{4} + \pi m$, $n \in Z$; 5.3. $x = -\arctan \cot \frac{1}{2} + \pi m$, $n \in Z$; 5.1. $x = \pi n - \frac{\pi}{3}$, $n \in Z$; 5.2. $x = \frac{\pi}{4} + \pi n$, $n \in Z$; 6.1. $x = \frac{\pi}{2} + 2\pi k$, $x = \pi + 2\pi k$, $x \in Z$; 6.2. $x = \frac{\pi}{2} + 2\pi k$, $x = 2\pi k$, $x \in Z$; 6.3. $x = \frac{\pi}{3} + 2\pi m$, $n \in Z$; 6.4. $x = \frac{\pi}{12} + \frac{2\pi k}{3}$, $x \in Z$; 7.4. $x = \frac{\pi}{2} + 2\pi k$, $x \in Z$; 7.2. $x = \frac{\pi k}{2} + \pi k$, $x \in Z$; 7.3. $x = -\frac{\pi}{2} - 2\pi k$, $x \in Z$; 7.4. $x = \frac{\pi}{4} + \pi n$, $x = \frac{\pi}{3} + \frac{\pi}{4}$, $x \in Z$; 8.2. $x = \frac{\pi}{4} + \pi n$, $x = \frac{\pi}{3} + \frac{\pi}{4}$, $x \in Z$; 8.3. $x = \frac{\pi}{4} + \frac{\pi}{4}$, $x \in Z$; 8.4. $x = \frac{\pi}{6} + \frac{\pi}{3}$, $x \in Z$; 8.5. $x = \frac{\pi}{2} + \pi k$, $x \in Z$; 8.6. $x = \frac{\pi}{4} + \pi k$, $x \in Z$; 8.7. $x = \frac{\pi}{4} + \pi k$, $x \in Z$; 8.8. $x = \frac{\pi}{4} + \pi k$, $x \in Z$; 8.9. $x = \frac{\pi}{4} + \pi k$, $x \in Z$; 8.1. $x = \frac{\pi}{4} + \pi k$, $x \in Z$; 8.2. $x = \frac{\pi}{4} + \pi k$, $x \in Z$; 8.3. $x = \frac{\pi}{4} + \pi k$, $x \in Z$; 8.4. $x = \frac{\pi}{6} + \frac{\pi}{3}$, $x \in Z$; 8.3. $x = \frac{\pi}{4} + \frac{\pi}{4}$, $x \in Z$; 8.4. $x = \frac{\pi}{6} + \frac{\pi}{3}$, $x \in Z$; 8.5. $x \in Z$; 8.6. $x \in Z$; 8.7. $x \in Z$; 8.7. $x \in Z$; 8.8. $x \in Z$; 8.9. $x \in Z$; 8.

$$\begin{split} &x = (-1)^k \frac{\pi}{6} + \pi k \;, \;\; k \in Z; \;\; 9.3. \quad x = \left((-1)^k - 1 \right) \frac{\pi}{6} + \pi k \;, \;\; x = -\arctan (2 + \pi k), \; k \in Z; \;\; 9.4. \\ &x = \frac{\pi}{2} + \pi k \;, \;\; x = -\frac{\pi}{4} + \pi k \;, \;\; k \in Z \;. \;\; 10.1. \;\; x = \frac{\pi}{3} + \pi k \;, \;\; x = \pi k \;, \;\; k \in Z; \;\; 10.2. \;\; x = \frac{\pi}{2} + \pi k \;, \\ &x = (-1)^k \frac{\pi}{6} + \pi k \;, \;\; k \in Z; \;\; 10.3. \;\; x = \frac{k\pi}{2} \;, \;\; x = \frac{\pi k}{2} - \frac{\arctan (2)}{2} \;, \;\; k \in Z; \;\; 10.4. \;\; x = \frac{\pi}{2} + \pi k \;, \\ &x = -\frac{\pi}{4} + \pi k \;, \;\; k \in Z \;, \;\; 11.1. \;\; x = \frac{\pi}{4} + \frac{\pi k}{2} \;, \;\; k \in Z; \;\; 11.2. \;\; x = \frac{\pi}{16} + \frac{\pi k}{4} \;, \;\; k \in Z; \;\; 11.3. \\ &x = \pm \frac{1}{2} \arccos \frac{1}{4} + 2\pi k \;, \;\; k \in Z; \;\; 11.4. \;\; x = \frac{\pi}{2} + \pi k \;, \;\; x = (-1)^k \frac{\pi}{6} + \pi k \;, \;\; k \in Z \;, \;\; 12.1. \\ &x = \frac{\pi}{4} + \pi k \;, \;\; k \in Z; \;\; 12.2. \;\; x = \frac{\pi}{2} + \pi k \;, \;\; x = 2\pi k \;, \;\; k \in Z; \;\; 12.3. \;\; x = \pi + 2\pi k \;, \\ &x = -\frac{\pi}{2} + \pi k \;, \;\; k \in Z; \;\; 12.4. \;\; x = -\frac{\pi}{4} + \pi k \;, \;\; x = \frac{\pi}{2} + \pi k \;, \;\; x = 2\pi k \;, \;\; k \in Z \;, \;\; 13.1. \\ &x = \pi + 2\pi k \;, \;\; x = -\frac{4\pi}{3} + 4\pi k \;, \;\; k \in Z; \;\; 13.2. \;\; x = \frac{\pi}{2} + \pi k \;, \;\; x = 2\pi k \;, \;\; k \in Z \;, \;\; 14.1. \\ &x = (-1)^k \frac{\pi}{24} + \frac{\pi k}{4} \;, \;\; k \in Z; \;\; 14.2. \;\; x = \frac{\pi}{2} + \pi k \;, \;\; k \in Z \;, \;\; 15.1. \;\; x = -\frac{\pi}{8} + \frac{\pi k}{2} \;, \\ &x = -\frac{1}{2} \cdot \arctan \left(\frac{1}{2} + \frac{\pi k}{2} \;, \; k \in Z; \;\; 15.2. \;\; \text{корней нет}; \;\; 15.3. \;\; x = \frac{\pi}{4} + \pi k \;, \;\; k \in Z; \;\; 15.4. \\ &x = \pi k \;, \;\; k \in Z \;, \;\; 16.1. \;\; x = \frac{\pi}{6} + \frac{\pi k}{3} \;, \;\; k \in Z; \;\; 16.2. \;\; x = \pi k \;, \;\; k \in Z; \;\; 16.3. \;\; x = \frac{\pi}{4} + \frac{\pi k}{2} \;, \end{cases}$$

 $x = \pi k$; 16.4. $x = \frac{\pi k}{5}$, $k \in Z$.

6. Решение простейших тригонометрических неравенств

В тригонометрических неравенствах аргументы тригонометрических функций рассматриваются как действительные числа.

К простейшим тригонометрическим неравенствам относятся неравенства вида $\cos x > a$, $\cos x \ge a$, $\sin x > a$, $\sin x \ge a$, $\cos x < a$, $\cos x \le a$, $\sin x < a$, $\sin x \le a$, $(|a| \le 1)$, tgx > a $(a \in R)$ и т.д. Рассмотрим примеры решений некоторых из них.

Задача 1. Решить неравенство $\cos x > \frac{1}{2}$.

Решение. Косинус угла х равен абсциссе точки единичной окружности. Чтобы решить неравенство $\cos x > \frac{1}{2}$, нужно выяснить, какие точки единичной окружности имеют абсциссу, большую $\frac{1}{2}$.

Абсциссу, равную $\frac{1}{2}$, имеют две точки единичной окружности \mathbf{M}_1 и \mathbf{M}_2 (рисунок 4.4, слева).

Точка M_1 получается поворотом точки P(1;0) на угол $-\frac{\pi}{3}$, а также на углы, $-\frac{\pi}{3}+2\pi n$, где $n=\pm 1,\pm 2,...$; точка M_2 – поворотом на угол $\frac{\pi}{3}$, а также на углы, $\frac{\pi}{3}+2\pi n$ где $n=\pm 1,\pm 2,...$

Абсциссу, большую $\frac{1}{2}$, имеют все точки M дуги единичной окружности, лежащие правее прямой M_1M_2 . Таким образом, решениями неравенства являются все числа из промежутка $-\frac{\pi}{3} < x < \frac{\pi}{3}$.

Учитывая периодичность функции косинус, получаем, что все решения данного неравенства — множество интервалов — $\frac{\pi}{3} + 2\pi n < x < \frac{\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$.

Ombem.
$$x \in \left[-\frac{\pi}{3} + 2\pi n; \frac{\pi}{3} + 2\pi n \right], n \in \mathbb{Z}.$$

Рисунок 4.4. Тригонометрическая окружность с отмеченными на

ней абсциссами точек M_1 и M_2

 $3a\partial a$ ча 2. Решить неравенство $\cos x \le \frac{1}{2}$.

Решение. Абсциссу, не большую $\frac{1}{2}$, имеют все точки дуги единичной окружности $M_1 M M_2$ (рисунок 4.4, справа). Поэтому решениями неравенства $\cos x \le \frac{1}{2}$ являются числа x, которые принадлежат промежутку $\frac{\pi}{3} \le x \le \frac{5\pi}{3}$. Учитывая периодичность функции косинус, получаем, что все решения данного неравенства — множество отрезков $\frac{\pi}{3} + 2\pi n \le x \le \frac{5\pi}{3} + 2\pi n$, $n \in \mathbb{Z}$.

Ombem.
$$x \in \left[\frac{\pi}{3} + 2\pi n; \frac{5\pi}{3} + 2\pi n\right], n \in \mathbb{Z}.$$

Задача 3. Решить неравенство $\sin x \ge -\frac{1}{2}$.

Peшение. Синус угла х равен ординате точки единичной окружности. Ординату, не меньшую $-\frac{1}{2}$, имеют все точки дуги единичной окружности

 $M_1 M M_2$ (рисунок 4.5, слева). Поэтому решениями неравенства $\sin x \ge -\frac{1}{2}$ являются числа x, которые принадлежат промежутку $-\frac{\pi}{6} \le x \le \frac{7\pi}{6}$. Все решения данного неравенства — множество отрезков $-\frac{\pi}{6} + 2\pi n \le x \le \frac{7\pi}{6} + 2\pi n$, $n \in \mathbb{Z}$.

Ombem.
$$x \in \left[-\frac{\pi}{6} + 2\pi n; \frac{7\pi}{6} + 2\pi n\right], n \in \mathbb{Z}.$$

Рисунок 4.5.

Тригонометрическая окружность с отмеченными на ней ординатами (слева) и абсциссами (справа) точек M_1 и M_2

3adaчa 4. Решить неравенство $\sin x < -\frac{1}{2}$.

Решение. Все точки окружности, лежащие ниже прямой M_1M_2 имеют ординату, меньшую (рисунок 4.5 слева). Поэтому все числа $x \in \left] - \frac{5\pi}{6}; -\frac{\pi}{6} \right[$ являются решениями неравенства $\sin x < -\frac{1}{2}$. Все решения этого неравенства — интервалы $\left] - \frac{5\pi}{6} + 2\pi n; -\frac{\pi}{6} + 2\pi n \right[n \in \mathbb{Z}$.

Ombem.
$$x \in \left] -\frac{5\pi}{6} + 2\pi n; -\frac{\pi}{6} + 2\pi n \right[, n \in \mathbb{Z}.$$

Задача 5. Решить неравенство
$$\cos\left(\frac{x}{4}-1\right) \le -\frac{\sqrt{2}}{2}$$
.

Решение. Обозначим $\frac{x}{4}$ −1 = y . Решая неравенство $\cos y \le -\frac{\sqrt{2}}{2}$ (рисунок

4.5, справа), находим
$$\frac{3\pi}{4} + 2\pi n \le y \le \frac{5\pi}{4} + 2\pi n$$
, $n \in \mathbb{Z}$. Заменяя $y = \frac{x}{4} - 1$,

получаем
$$\frac{3\pi}{4} + 2\pi n \le \frac{x}{4} - 1 \le \frac{5\pi}{4} + 2\pi n$$
, откуда $1 + \frac{3\pi}{4} + 2\pi n \le \frac{x}{4} \le 1 + \frac{5\pi}{4} + 2\pi n$,

$$4 + 3\pi + 8\pi n \le \frac{x}{4} \le 4 + 5\pi + 8\pi n, \ n \in \mathbb{Z}.$$

Omsem.
$$x \in [4 + 3\pi + 8\pi n; 4 + 5\pi + 8\pi n], n \in Z$$
.

Упражнения

1. Решить неравенства

1.1.
$$\cos x \ge \frac{\sqrt{2}}{2}$$
;

1.2.
$$\cos x < \frac{\sqrt{3}}{2}$$
;

1.3.
$$\cos x > -\frac{\sqrt{3}}{2}$$
;

1.4.
$$\cos x \le -\frac{\sqrt{2}}{2}$$
.

2. Решить неравенства

2.1.
$$\cos x \le \sqrt{3}$$
;

2.2.
$$\cos x < -2$$
;

2.3.
$$\cos x \ge 1$$
;

2.4.
$$\cos x \le -1$$
.

3. Решить неравенства

3.1.
$$\sin x > \frac{1}{2}$$
;

$$3.2. \sin x \le \frac{\sqrt{2}}{2};$$

3.3.
$$\sin x \le -\frac{\sqrt{2}}{2}$$
;

3.4.
$$\sin x > -\frac{\sqrt{3}}{2}$$
.

4. Решить неравенства

4.1.
$$\sin x \ge -\sqrt{2}$$
;

4.2.
$$\sin x > 1$$
;

4.3.
$$\sin x \le -1$$
;

4.4.
$$\sin x \ge 1$$
.

5. Решить неравенства

5.1.
$$\sqrt{2}\cos 2x \le 1$$
;

5.2.
$$2\sin 3x > -1$$
;

5.3.
$$\sin\left(x + \frac{\pi}{4}\right) \le \frac{\sqrt{2}}{2}$$
;

5.4.
$$\cos\left(x - \frac{\pi}{6}\right) \ge \frac{\sqrt{3}}{2}$$
.

6. Решить неравенства

6.1.
$$\cos\left(\frac{x}{3} + 2\right) \ge \frac{1}{2}$$
;

6.2.
$$\sin\left(\frac{x}{4} - 3\right) < -\frac{\sqrt{2}}{2}$$
.

7. Решить неравенства

7.1.
$$\sin^2 x + 2\sin x > 0$$
;

7.2.
$$\cos^2 x - \cos x < 0$$
.

1.1.
$$-\frac{\pi}{4} + 2\pi n \le x \le \frac{\pi}{4} + 2\pi n$$
, $n \in \mathbb{Z}$.;

$$\frac{\pi}{6} + 2\pi n \le x \le \frac{11\pi}{6} + 2\pi n, \quad n \in \mathbb{Z}; \quad 1.3. \quad -\frac{5\pi}{6} + 2\pi n < x < \frac{5\pi}{6} + 2\pi n, \quad n \in \mathbb{Z}; \quad 1.4$$

$$\frac{3\pi}{4} + 2\pi n \le x \le \frac{5\pi}{4} + 2\pi n$$
, $n \in \mathbb{Z}$. 2.1. решений нет; 2.2. решений нет; 2.3.

$$x = 2\pi k, \ k \in Z \; ; \; 2.4. \ x = \pi + 2\pi k, \ k \in Z \; . \; 3.1. \ \frac{\pi}{6} + 2\pi n < x < \frac{5\pi}{6} + 2\pi n \; , \ n \in Z \; ; \; 3.2.$$

$$-\frac{5\pi}{4} + 2\pi n \le x \le \frac{\pi}{4} + 2\pi n \; , \quad n \in Z \; ; \quad 3.3. \quad -\frac{5\pi}{6} + 2\pi n < x < -\frac{\pi}{6} + 2\pi n \; , \quad n \in Z \; . ; \quad 3.4.$$

$$-\frac{\pi}{3} + 2\pi n \le x \le \frac{4\pi}{3} + 2\pi n$$
, $n \in \mathbb{Z}$. 4.1. решений нет; 4.2. решений нет; 4.3.

$$x = -\frac{\pi}{2} + 2\pi n, \quad n \in Z; \quad 4.4. \quad x = \frac{\pi}{2} + 2\pi n, \quad n \in Z. \quad 5.1. \quad \frac{\pi}{8} + \pi n \le x \le \frac{7\pi}{8} + \pi n, \quad n \in Z;$$

5.2.
$$-\frac{\pi}{18} + \frac{2\pi n}{3} \le x \le \frac{7\pi}{18} + \frac{2\pi n}{3}$$
, $n \in \mathbb{Z}$; 5.3. $\frac{\pi}{2} + 2\pi n \le x \le 2\pi + 2\pi n$, $n \in \mathbb{Z}$; 5.4.

$$2\pi n \leq x \leq \frac{\pi}{3} + 2\pi n, \quad n \in Z\,; \quad 6.1. \quad 12 - 3\pi + 8\pi n \leq x \leq 12 - \pi + 8\pi n\,, \quad n \in Z\,; \quad 6.2.$$

$$\begin{split} &-6-\pi+6\pi n \leq x \leq -6+\pi+6\pi n \,, \quad n \in Z \,. \quad 7.1. \quad 2\pi n < x < \pi+2\pi n \,, \quad n \in Z \,; \quad 7.2. \\ &-\frac{\pi}{2}+2\pi n \leq x \leq \frac{\pi}{2}+2\pi n \,, \quad n \in Z \,. \end{split}$$

Упражнения к разделам 1-6

1. Упростить выражение

1.1.
$$\left(\frac{1+\cos^2\alpha}{\sin\alpha}-\sin\alpha\right)\frac{1}{2}\operatorname{tg}\alpha$$
; 1.2. $\operatorname{ctg}\alpha\left(\frac{1+\sin^2\alpha}{\cos\alpha}-\cos\alpha\right)$.

2. Упростить выражение

2.1.
$$\frac{\sin\left(\frac{\pi}{4} + \alpha\right) - \cos\left(\frac{\pi}{4} + \alpha\right)}{\sin\left(\frac{\pi}{4} + \alpha\right) + \cos\left(\frac{\pi}{4} + \alpha\right)}; \quad 2.2. \frac{\sin\left(\frac{\pi}{4} - \alpha\right) + \cos\left(\frac{\pi}{4} - \alpha\right)}{\sin\left(\frac{\pi}{4} - \alpha\right) - \cos\left(\frac{\pi}{4} - \alpha\right)}.$$

3. Доказать тождество

3.1.
$$1 + \operatorname{tg} \alpha \cdot \operatorname{tg} \beta = \frac{\cos(\alpha - \beta)}{\cos \alpha \cdot \cos \beta}$$
; 3.2. $\operatorname{tg} \alpha - \operatorname{tg} \beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cdot \cos \beta}$.

4. Вычислить

4.1.
$$2\sin 6\alpha \cos^2 \left(\frac{\pi}{4} + 3\alpha\right) - \sin 6\alpha$$
 при $\alpha = \frac{5\pi}{24}$;

4.2.
$$\cos 3\alpha + 2\cos(\pi - 3\alpha) \cdot \sin^2\left(\frac{\pi}{4} - 1,5\alpha\right)$$
 при $\alpha = \frac{5\pi}{36}$.

5. Вычислить
5.1.
$$\frac{\sqrt{3}(\cos 75^{0} - \cos 15^{0})}{1 - 2\sin^{2} 15^{0}};$$
5.2.
$$\frac{2\cos^{2}\frac{\pi}{8} - 1}{1 + 8\sin^{2}\frac{\pi}{8}\cos^{2}\frac{\pi}{8}}.$$

6. Доказать тождества

6.1.
$$\frac{2\sin 2\alpha - \sin 4\alpha}{2\sin 2\alpha + \sin 4\alpha} = tg^2\alpha; \quad 6.2. \quad \frac{2\cos 2\alpha - \sin 4\alpha}{2\cos 2\alpha + \sin 4\alpha} = tg^2\left(\frac{\pi}{4} - \alpha\right).$$

7. Показать, что

7.1.
$$\sin 35^{\circ} + \sin 25^{\circ} = \cos 5^{\circ}$$
; 7.2. $\cos 12^{\circ} - \cos 48^{\circ} = \sin 18^{\circ}$.

Проверочная работа

1. Найти значения выражений

$$\frac{1 + \cos 2\alpha - \sin 2\alpha}{\cos 2\alpha + \cos(0.5 + \alpha)}$$
 при $\alpha = \frac{7\pi}{3}$; $\frac{\sin 75^{\circ} + \sin 15^{\circ}}{\cos 15^{\circ} - \cos 75^{\circ}}$;
$$\arccos\left(-\frac{1}{2}\right) + \arcsin\frac{\sqrt{3}}{2}.$$

2. Решить уравнения

$$\sin 3x \cdot \cos x - \sin x \cdot \cos 3x = 1;$$

$$2\cos^2 x + 5\cos x = 3;$$

$$tgx - 3ctgx = 0;$$

$$\sin 3x - \sin x = 0;$$

$$2\sin x + \sin 2x = 0.$$

3. Решить неравенства $\sin x > \frac{1}{2}$; $\cos x < 0$.

8. Вычислить

8.1.
$$2\arcsin\frac{\sqrt{3}}{2} + 3\arcsin\left(-\frac{1}{2}\right)$$
; 8.2. $\arcsin\frac{1}{\sqrt{2}} - 4\arcsin1$;

8.3.
$$\arcsin\left(-\frac{1}{2}\right) - \arcsin\frac{\sqrt{3}}{2}$$
; 8.4. $\arccos(-1) - \arcsin(-1)$;

8.5.
$$2\arctan - 3\arctan \left(-\frac{1}{\sqrt{3}}\right)$$
; 8.6. $4\arctan \left(-1\right) + 3\arctan \left(\sqrt{3}\right)$.

8.6.
$$4\operatorname{arctg}(-1) + 3\operatorname{arctg}\sqrt{3}$$

9. Решить уравнения

9.1.
$$\cos(4-2x) = \frac{1}{2}$$

9.1.
$$\cos(4-2x) = \frac{1}{2}$$
; 9.2. $\cos(6+3x) = -\frac{\sqrt{2}}{2}$;

9.3.
$$\sqrt{2}\cos\left(2x + \frac{\pi}{4}\right) + 1 = 0$$

9.3.
$$\sqrt{2}\cos\left(2x+\frac{\pi}{4}\right)+1=0$$
; 9.4. $2\cos\left(\frac{\pi}{3}-3x\right)-\sqrt{3}=0$.

10. Решить уравнения

10.1.
$$2\sin\left(3x - \frac{\pi}{4}\right) + 1 = 0$$
; 10.2. $1 - \sin\left(\frac{x}{2} + \frac{\pi}{3}\right) = 0$;

10.2.
$$1 - \sin\left(\frac{x}{2} + \frac{\pi}{3}\right) = 0$$

10.3.
$$3 + 4\sin(2x + 1) = 0$$
; 10.4. $5\sin(2x - 1) - 2 = 0$.

10.4.
$$5\sin(2x-1)-2=0$$
.

11. Решить уравнения

11.1.
$$(1 + \sqrt{2}\cos x)(1 - 4\sin x \cdot \cos x) = 0$$
;

11.2.
$$(1-\sqrt{2}\cos x)(1+2\sin 2x \cdot \cos 2x)=0$$
.

12. Решить уравнения

12.1.
$$tg\left(2x + \frac{\pi}{4}\right) = -1$$

12.1.
$$tg\left(2x + \frac{\pi}{4}\right) = -1;$$
 12.2. $tg\left(3x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}};$

12.3.
$$tg\left(3x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}}$$

12.3.
$$tg\left(3x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{3}};$$
 12.4. $1 - tg\left(x + \frac{\pi}{7}\right) = 0.$

13. Решить уравнения

13.1.
$$2\sin^2 x + \sin x = 0$$
;

13.2.
$$3\sin^2 x - 5\sin x - 2 = 0$$
;

13.3.
$$\cos^2 x - 2\cos x = 0$$
;

13.4.
$$6\cos^2 x + 7\cos x - 3 = 0$$
.

14.1.
$$6\sin^2 x - \cos x + 6 = 0$$
;

14.1.
$$6\sin^2 x - \cos x + 6 = 0$$
; 14.2. $8\cos^2 x - 12\sin x + 7 = 0$.

15. Решить уравнения

15.1.
$$tg^2x + 3tgx = 0$$
;

15.2.
$$2tg^2x - tgx - 3 = 0$$
;

15.3.
$$tgx - 12ctgx + 1 = 0$$
;

15.4.
$$tgx + ctgx = 2$$
.

16. Решить уравнения

16.1.
$$2\sin 2x = 3\cos 2x$$
;

16.2.
$$4\sin 3x + 5\cos 3x = 0$$
.

17. Решить уравнения

17.1.
$$5\sin x + \cos x = 5$$
;

17.2.
$$4\sin x + 3\cos x = 6$$
.

18. Решить уравнения

18.1.
$$\sin 3x = \sin 5x$$
;

18.2.
$$\cos x = \cos 3x$$
;

18.3.
$$\cos^2 3x - \cos 3x \cdot \cos 5x = 0$$
; 18.4. $\sin 3x \cdot \sin 5x - \sin^2 5x = 0$.

19. Решить неравенства

19.1.
$$\sin x \ge -\frac{\sqrt{3}}{2}$$
; 19.2. $\sin x < \frac{\sqrt{2}}{2}$;

19.2.
$$\sin x < \frac{\sqrt{2}}{2}$$

19.3.
$$\cos x \le \frac{\sqrt{3}}{2}$$
; 19.4. $\cos x > -\frac{\sqrt{2}}{2}$.

19.4.
$$\cos x > -\frac{\sqrt{2}}{2}$$
.

20. Упростить выражение

$$\left(\frac{\cos\beta}{\sin\alpha} + \frac{\sin\beta}{\cos\alpha}\right) \cdot \frac{1 - \cos 4\alpha}{\cos(\pi - \beta + \alpha)}.$$

21. Доказать тождества

$$21.1. \frac{\sin(2\alpha - 3\pi) + 2\cos\left(\frac{7\pi}{6} + 2\alpha\right)}{2\cos\left(\frac{\pi}{6} - 2\alpha\right) + \sqrt{3}\cos(2\alpha - 3\pi)} = -\sqrt{3}\operatorname{ctg}^{2}4\alpha;$$

21.2.
$$\frac{4\sin^2(\alpha - 1.5\pi)}{\sin^4(\alpha - 2.5\pi) + \cos^4(\alpha - 2.5\pi) - 1} = -2\operatorname{ctg}^2 4\alpha;$$

21.3.
$$\frac{4\sin^2(\alpha - 1.5\pi)}{\sin^4(\alpha - 2.5\pi) + \cos^4(\alpha - 2.5\pi) - 1} = -2\operatorname{ctg}^2 4\alpha;$$

21.4.
$$\frac{2\cos\left(\frac{\pi}{6} - 2\alpha\right) - \sqrt{3}\sin(2.5\pi - 2\alpha) +}{2\cos(4.5\pi - 2\alpha) + 2\cos\left(\frac{\pi}{6} + 2\alpha\right)} = \frac{\operatorname{tg}2\alpha}{\sqrt{3}}.$$

22. Доказать тождества

22.1.
$$\frac{1-\cos\alpha+\cos 2\alpha}{\sin 2\alpha-\sin\alpha}=\operatorname{ctg}\alpha;$$

22.2.
$$\frac{\sin \alpha + \sin \frac{\alpha}{2}}{1 + \cos \alpha + \cos \frac{\alpha}{2}\alpha} = \operatorname{tg} \frac{\alpha}{2};$$

22.3.
$$\frac{\cos 3\alpha + \cos 2\alpha + \cos \alpha + 1}{\cos \alpha + 2\cos^2 \frac{\alpha}{2} - 1} = 2\cos \frac{3\alpha}{2}\cos \frac{\alpha}{2};$$

22.4.
$$\frac{2\sin\alpha - \sin 3\alpha + \sin 5\alpha}{\cos\alpha - 2\cos 2\alpha + \cos 3\alpha} = -\frac{2\cos 2\alpha}{\lg \frac{\alpha}{2}}.$$

23. Упростить выражения

23.1.
$$\frac{2(\cos\alpha + \cos 3\alpha)}{2\sin 2\alpha + \sin 4\alpha}; \qquad 23.2. \frac{1+\sin\alpha - \cos 2\alpha - \sin 3\alpha}{2\sin^2\alpha - \sin\alpha - 1}.$$

24. Вычислить

24.1.
$$\cos\left(\arccos\frac{\sqrt{2}}{2}\right)$$
; 24.2. $\cos\left(\arccos\frac{1}{2}\right)$;

24.3.
$$\sin\left(\arccos\frac{1}{2}\right)$$
; 24.4. $\sin\left(\arccos\frac{\sqrt{3}}{2}\right)$;

24.5.
$$\operatorname{tg}\left(\arccos\frac{1}{2}\right)$$
; 24.6. $\operatorname{tg}\left(\arccos\frac{\sqrt{2}}{2}\right)$.

25. Вычислить

25.1.
$$\sin(4\arcsin 1)$$
; 25.2. $\sin\left(3\arcsin\frac{\sqrt{3}}{2}\right)$;

25.3.
$$\cos \left(5 \arcsin \frac{\sqrt{3}}{2} \right)$$
; 25.4. $\cos (6 \arcsin 1)$;

25.5.
$$tg\left(2\arcsin\frac{1}{2}\right)$$
; 25.6. $tg\left(4\arcsin\frac{\sqrt{2}}{2}\right)$.

26. Решить уравнения

26.1.
$$\sin 2x + 2\cos 2x = 1$$
; 26.2. $\cos 2x + 3\sin 2x = 3$.

27. Решить уравнения

27.1.
$$3\sin^2 x + \sin x \cos x - 2\cos^2 x = 0$$
;

27.2.
$$2\sin^2 x + 3\sin x \cos x - 2\cos^2 x = 0$$
.

28. Решить уравнения

28.1.
$$1 + 2\sin x = \sin 2x + 2\cos x$$
; 28.2. $1 + 3\cos x = \sin 2x + 3\sin x$.

29. Решить уравнения

29.1.
$$\sin\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{3}\right) = 1 + \cos 2x$$
;

29.2.
$$\sin\left(x - \frac{\pi}{4}\right) + \cos\left(x - \frac{\pi}{4}\right) = \sin 2x.$$

30.1.
$$\cos^3 x \sin x - \sin^3 x \cos x = \frac{1}{4}$$
; 30.2. $\sin^3 x \cos x + \cos^3 x \sin x = \frac{1}{4}$.

31. Решить уравнения

31.1.
$$\sin^2 x + \sin^2 2x = 1$$
; 31.2. $\sin^2 x + \cos^2 2x = 1$;

31.3.
$$\sin 4x = 6\cos^2 2x - 4$$
; 31.4. $2\cos^2 3x + \sin 5x = 1$.

32. Решить уравнения

32.1.
$$\sin^2 x - \cos x \cos 3x = \frac{1}{4}$$
; 32.2. $\sin 3x = 3\sin x$;

32.3.
$$3\cos 2x - 7\sin x = 4$$
; $32.4. 1 + \cos x + \cos 2x = 0$;

32.5.
$$\cos 4x - \sin 2x = 1$$
; $32.6. 5\sin 2x + 4\cos^3 x - 8\cos x = 0$.

33. Решить уравнения

33.1.
$$\sin x + \cos x = \sqrt{2} \sin 7x$$
;

33.2.
$$\sin x + \sin 2x + \sin 3x = 0$$
;

33.3.
$$\sin x - \sin 3x = \sin 2x - \sin 4x$$
;

33.4.
$$\cos x - \cos 3x = \cos 2x - \cos 4x$$
.

Ответы. 1.1. $\cos \alpha$; 1.2. $2\sin \alpha$. 2.1. $\tan \alpha$; 2.2. $-\cot \alpha$. 4.1. $-\frac{1}{2}$; 4.2. $\frac{1}{4}$;

5.1.
$$\sqrt{2}$$
; 5.2. $\frac{\sqrt{2}}{4}$. 8.1. $\frac{\pi}{3}$; 8.2. $-\frac{7\pi}{4}$; 8.3. $\frac{\pi}{3}$; 8.4. $\frac{3\pi}{2}$; 8.5. 0; 8.6. 0;

9.1.
$$x = \pm \frac{\pi}{3} + 2 - \pi k$$
, $k \in \mathbb{Z}$; 9.2. $x = -2 \pm \frac{\pi}{4} - \frac{2\pi k}{3}$, $k \in \mathbb{Z}$; 9.3.

$$x = \pm \frac{3\pi}{8} - \frac{\pi}{8} - \pi k, \quad k \in \mathbb{Z};$$
 9.4. $x = \frac{\pi}{9} \pm \frac{\pi}{18} + \frac{2\pi k}{3},$ $k \in \mathbb{Z}.$ 10.1.

$$x = (-1)^{k+1} \frac{\pi}{18} + \frac{\pi}{12} + \frac{\pi k}{3}, \qquad k \in \mathbb{Z}; \qquad 10.2. \qquad x = \frac{\pi}{3} + 4\pi k, \qquad k \in \mathbb{Z};$$

$$10.3. \ x = \left(-1\right)^{k+1} \frac{1}{2} \arcsin \frac{3}{4} - \frac{1}{2} + \frac{\pi k}{2}, \quad k \in \mathbb{Z}; \quad 10.4. \quad x = \frac{1}{2} + \left(-1\right)^{k} \frac{1}{2} \arcsin \frac{2}{5} + \frac{\pi k}{2},$$

$$k \in Z. \quad 11.1. \quad x = \pm \frac{3\pi}{4} + 2\pi k, \ x = \left(-1\right)^k \frac{\pi}{12} + \frac{\pi k}{2}, \quad k \in Z; \quad 11.2. \quad x = \pm \frac{\pi}{4} + 2\pi k,$$

$$x = -\frac{\pi}{8} + \frac{\pi k}{2}, \quad k \in \mathbb{Z}. \quad 12.1. \quad x = -\frac{\pi}{4} + \frac{\pi k}{2}, \quad k \in \mathbb{Z}; \quad 12.2. \quad x = \frac{5\pi}{36} + \frac{\pi k}{3}, \quad k \in \mathbb{Z}; \quad 12.3. \quad x = \frac{8\pi}{15} + \pi k, \quad k \in \mathbb{Z}; \quad 12.4. \quad x = \frac{3\pi}{28} + \pi k, \quad k \in \mathbb{Z}. \quad 13.1. \quad x = \pi k, \quad x = \left(-1\right)^{k+1} \frac{\pi}{6} + \pi k, \quad k \in \mathbb{Z}; \quad 13.2. \quad x = \left(-1\right)^{k+1} \arcsin \frac{1}{3} + \pi k, \quad k \in \mathbb{Z}; \quad 13.3. \quad x = \frac{\pi}{2} + \pi k, \quad x = \pm \frac{\pi}{3} + 2\pi k, \quad k \in \mathbb{Z}; \quad 13.4. \quad x = \pm \arccos \frac{1}{3} + 2\pi k, \quad k \in \mathbb{Z}. \quad 14.1. \quad \text{Her permenuii}; \quad 14.2. \quad x = \left(-1\right)^k \arcsin \frac{\sqrt{39} - 3}{4} + \pi k, \quad k \in \mathbb{Z}. \quad 15.1. \quad x = \pi k, \quad x = -\arctan (3 + \pi k), \quad k \in \mathbb{Z}; \quad 15.2. \quad x = -\frac{\pi}{4} + \pi k, \quad x = \arctan (3,5 + \pi k), \quad k \in \mathbb{Z}; \quad 15.3. \quad x = -\arctan (3 + \pi k), \quad k \in \mathbb{Z}; \quad 15.2. \quad x = -\frac{\pi}{4} + \pi k, \quad x = \arctan (3,5 + \pi k), \quad k \in \mathbb{Z}; \quad 15.3. \quad x = -\arctan (3,5 + \pi k), \quad k \in \mathbb{Z}; \quad 16.2. \quad x = -\frac{1}{3} \arctan (3 + \pi k), \quad k \in \mathbb{Z}; \quad 17.1. \quad x = 2 \arctan (3 + \pi k), \quad x = 2 \arctan (3 + \pi k), \quad k \in \mathbb{Z}; \quad 17.2. \quad \text{ner permenuii}. \quad 18.1. \quad x = \pi k, \quad x = \frac{\pi}{4} + \pi k, \quad x = 2 \arctan (3 + \pi k), \quad k \in \mathbb{Z}; \quad 18.3. \quad x = \pi k, \quad x = \frac{\pi k}{4}, \quad x = \frac{\pi k}{3}, \quad k \in \mathbb{Z}; \quad 18.3. \quad x = \pi k, \quad x = \frac{\pi k}{4}, \quad x = \frac{\pi k}{6} + \frac{\pi k}{3}, \quad k \in \mathbb{Z}; \quad 18.3. \quad x = \pi k, \quad x = \frac{\pi k}{4}, \quad x = \frac{\pi k}{6} + \frac{\pi k}{3}, \quad k \in \mathbb{Z}; \quad 18.3. \quad x = \pi k, \quad x = \frac{\pi k}{4}, \quad x = \frac{\pi k}{6} + \frac{\pi k}{3}, \quad k \in \mathbb{Z}; \quad 18.3. \quad x = \pi k, \quad x = \frac{\pi k}{4}, \quad x = \frac{\pi k}{6} + \frac{\pi k}{3}, \quad k \in \mathbb{Z}; \quad 18.3. \quad x = \pi k, \quad x = \frac{\pi k}{4}, \quad x = \frac{\pi k}{6} + \frac{\pi k}{3}, \quad k \in \mathbb{Z}; \quad 18.3. \quad x = \pi k, \quad x = \frac{\pi k}{4}, \quad x = \frac{\pi k}{6} + \frac{\pi k}{3}, \quad k \in \mathbb{Z}; \quad 18.3. \quad x = \pi k, \quad x = \frac{\pi k}{4}, \quad x = \frac{\pi k}{6} + \frac{\pi k}{3}, \quad k \in \mathbb{Z}; \quad 18.4. \quad x = \frac{\pi k}{2}, \quad x = \frac{\pi k}{6}, \quad x = \frac{\pi k}{6} + \frac{\pi k}{3}, \quad k \in \mathbb{Z}; \quad 19.1. \quad -\frac{\pi k}{3} + 2\pi k \leq x \leq \frac{11\pi}{3} + 2\pi k, \quad k \in \mathbb{Z}; \quad 19.2. \quad -\frac{5\pi}{4} + 2\pi k < x < \frac{\pi}{4} + 2\pi k, \quad k \in \mathbb{Z}; \quad 20. \quad -4 \sin 2\alpha. \quad 23.1. \quad \frac{\cot 2\alpha}{\cos \alpha}; \quad 23.2. \quad 2 \sin 2\alpha. \quad 24.1. \quad \frac{\sqrt{2}}{2}; \quad 24.2. \quad \frac{1}{2}; \quad 24.3. \quad \frac{\sqrt{3}}{2}; \quad 24.4. \quad \frac{1}{2}; \quad 24.5. \quad \sqrt{3}; \quad 24.6. \quad 1. \quad 25.1. \quad 0; \quad 25.2. \quad 0; \quad 25.3. \quad \frac{1}{2}; \quad 25.4$$

$$x = -\arctan 2 + \pi k, \quad k \in \mathbb{Z} \; ; \; 28.1. \; \; x = \frac{\pi}{4} + \pi k \; , \; \; k \in \mathbb{Z} \; ; \; 28.2. \; \; x = \frac{\pi}{4} + \pi k \; , \; \; k \in \mathbb{Z} \; . \; 29.1.$$

$$x = \frac{\pi}{2} + \pi k$$
, $x = \pm \frac{\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; 29.2. $x = \pi k$, $x = \pm \frac{\pi}{4} + 2\pi k$, $k \in \mathbb{Z}$. 30.1.

$$x = \frac{\pi}{8} + \frac{\pi k}{2}, k \in \mathbb{Z}$$
 30.2. $x = (-1)^k \frac{\pi}{12} + \frac{\pi k}{2}, k \in \mathbb{Z}.$ 31.1.

$$x = \frac{\pi}{2} + \pi k, \ x = \left(-1\right)^k \frac{\pi}{6} + \pi k, \ x = \left(-1\right)^{k+1} \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z} \ ; \ 31.2. \ x = \pi k, \ x = \pm \frac{\pi}{3} + \pi k,$$

$$k \in Z$$
; $31.3.$ $x = -\frac{\pi}{8} + \frac{\pi k}{2}$, $x = \frac{1}{2} \operatorname{arctg} 2 + \frac{\pi k}{2}$, $k \in Z$; $31.4.$

$$x = \frac{\pi}{2} + 2\pi k$$
, $x = -\frac{\pi}{22} + \frac{2\pi k}{11}$, $k \in \mathbb{Z}$; 32.1. $x = \pm \frac{\pi}{12} + \frac{\pi k}{2}$, $k \in \mathbb{Z}$; 32.2. $x = \pi k$,

$$k \in Z$$
; $32.3.$ $x = \frac{3\pi}{2} + 2\pi k$, $x = (-1)^{k+1} \arcsin \frac{1}{6} + \pi k$, $k \in Z$; $32.4.$

$$x = \frac{\pi}{2} + \pi k$$
, $x = \pm \frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; 32.5. $x = \pi k$, $x = (-1)^k \frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$; 32.6.

$$x = \frac{\pi}{2} + \pi k$$
, $x = (-1)^k \frac{\pi}{6} + \pi k$, $k \in \mathbb{Z}$. 33.1. $x = \frac{\pi k}{4} - \frac{3\pi}{32}$, $x = \frac{\pi k}{3} - \frac{3\pi}{24}$, $k \in \mathbb{Z}$; 33.2.

$$x = \frac{\pi k}{2}$$
, $x = \pm \frac{2\pi}{3} + 2\pi k$, $k \in \mathbb{Z}$; 33.3. $x = \pi k$, $x = 2\pi k$, $x = \frac{2\pi k}{5}$, $k \in \mathbb{Z}$; 33.4.

$$x = 2\pi k$$
, $x = \frac{\pi}{5} + \frac{2\pi k}{5}$, $k \in \mathbb{Z}$.

7. Тригонометрические функции

7.1. Область определения и множество значений тригонометрических функций

Каждому действительному числу х соответствует единственная точка единичной окружности, получаемая поворотом точки (1;0) на угол х радиан. Каждому действительному числу х поставлены в соответствие числа $\sin x$ и $\cos x$ или на множестве R всех действительных чисел определены функции $y = \sin x$ и $y = \cos x$. Область определения (D_f) функций $y = \sin x$ и $y = \cos x$ множество R всех действительных чисел. Известно, что $\sin x$ и $\cos x$ изменяются в пределах отрезка [-1;1]. Множество значений (E_f) функций $y = \sin x$ и $y = \cos x$ является отрезок $-1 \le y \le 1$.

Задача 1. Найти область определения функции $y = \frac{1}{\sin x + \cos x}$.

 $Peшение. \ \, \text{Выражение} \ \, \frac{1}{\sin x + \cos x} \, \text{имеет смысл при } \sin x + \cos x \neq 0 \, \text{или} \\ tgx \neq -1, \ \, x \neq -\frac{\pi}{4} + \pi k \, , k \in Z. \ \, \text{Следовательно, областью определения данной} \\ \varphi \text{ункции являются все значения } x \neq -\frac{\pi}{4} + \pi k \, , k \in Z.$

Omeem.
$$x \neq -\frac{\pi}{4} + \pi k$$
, $k \in \mathbb{Z}$.

 $3a\partial a + 2$. Найти множество значений функции $y = 3 + \sin x \cos x$.

Решение. Выясним, какие значения принимает у при различных значениях х. Преобразуем функцию к виду $2y-3=\sin 2x$. Это выражение имеет смысл при $-1 \le 2y-3 \le 1$, откуда находим множество значений исходной функции $2,5 \le y \le 3,5$.

Omeem. $y \in [2,5; 3,5]$.

Функция y = tgx определяется формулой $y = tgx = \frac{\sin x}{\cos x}$. Эта функция определена при тех значениях x, для которых $\cos x \neq 0$ или $x \neq \frac{\pi}{2} + \pi k$, $k \in Z$.

Oбласть определения функции y=tgx — множество чисел $x\neq \frac{\pi}{2}+\pi k,\ k\in Z\,.$

Mножество значений функции y = tgx является множество R всех действительных чисел.

Тригонометрические функции $y = \sin x$, $y = \cos x$, $y = \tan x$ относятся к основным элементарным функциям.

 $3a\partial a + 4$. Найти область определения функции $y = \sin 3x + \tan 2x$.

Решение. Выясним, при каких значениях х выражение $y = \sin 3x + tg2x$ имеет смысл. Выражение $\sin 3x$ имеет смысл при любом значении x, а выражение tg2x — при $2x \neq \frac{\pi}{2} + \pi k$, $k \in Z$, т.е. при $x \neq \frac{\pi}{4} + \frac{\pi k}{2}$, $k \in Z$. Следовательно, областью определения данной функции являются все значения $x \neq \frac{\pi}{4} + \frac{\pi k}{2}$, $k \in Z$.

Omsem.
$$x \neq \frac{\pi}{4} + \frac{\pi k}{2}, k \in \mathbb{Z}$$
.

 $3a\partial a + 4 \sin x + 4\cos x$. Найти множество значений функции $y = 3\sin x + 4\cos x$.

 Решение.
 Нужно выяснить, при каких значениях у уравнение

 $y = 3\sin x + 4\cos x$ имеет корни.
 Разделим выражение $y = 3\sin x + 4\cos x$ на

 $\sqrt{3^2 + 4^2} = 5$: $\frac{y}{5} = \frac{3}{5}\sin x + \frac{4}{5}\cos x$.
 Найдётся такой угол $\alpha\left(0 < \alpha < \frac{\pi}{2}\right)$, что

 $\sin^2 \alpha + \cos^2 \alpha = \left(\frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2$ и $\frac{y}{5} = \cos \alpha \sin x + \sin \alpha \cos x$, получаем, используя

формулу сложения для синуса 2.2, $\frac{y}{5} = \sin(x + \alpha)$. Следовательно, множество значений $-1 \le \frac{y}{5} \le 1$ или $-5 \le y \le 5$.

Ответ. $-5 \le y \le 5$.

Упражнения

1. Найти область определения функций

1.1.
$$y = \sin 2x$$
;

1.2.
$$y = \cos \frac{x}{2}$$
;

1.3.
$$y = \cos \frac{1}{x}$$
; 1.4. $y = \sin \frac{2}{x}$;

1.4.
$$y = \sin \frac{2}{x}$$

$$1.5. \ y = \sin \sqrt{x};$$

1.5.
$$y = \sin \sqrt{x}$$
; 1.6. $y = \cos \sqrt{\frac{x-1}{x+1}}$.

2. Найти множество значений функции

2.1.
$$y = 1 + \sin x$$
;

2.2.
$$y = 1 - \cos x$$
;

2.3.
$$y = 2 \sin x + 3$$
;

2.4.
$$y = 1 - 4\cos 2x$$
;

2.5.
$$y = \sin 2x \cos 2x + 2$$
;

2.6.
$$y = \frac{1}{2} \sin x \cos x - 1$$
.

3. Найти область определения функций

3.1.
$$y = \frac{1}{\cos x}$$
;

3.2.
$$y = \frac{2}{\sin x}$$
;

3.3.
$$y = tg \frac{x}{3}$$
;

3.4.
$$y = tg5x$$
.

4. Найти область определения функций

4.1.
$$y = \sqrt{\sin x + 1}$$
;

4.2.
$$y = \sqrt{\cos x - 1}$$
;

4.3.
$$y = \sqrt{2\cos x - 1}$$
;

4.4.
$$y = \sqrt{1 - 2\sin x}$$
;

4.5.
$$y = \lg \sin x$$
;

4.6.
$$y = \ln \cos x$$
.

5. Найти область определения функций

5.1.
$$y = \frac{1}{2\sin^2 x - \sin x}$$
;

5.2.
$$y = \frac{2}{\cos^2 x - \sin^2 x}$$
;

5.3.
$$y = \frac{1}{\sin x - \sin 3x}$$
;

5.4.
$$y = \frac{1}{\cos^3 x + \cos x}$$
.

6. Найти множество значений функции

6.1.
$$y = \sin^2 x - \cos 2x$$
;

6.2.
$$y = 1 - 8\sin^2 x \cos^2 x$$
;

6.3.
$$y = \frac{1 + 8\cos^2 x}{4}$$
;

6.4.
$$y = 10 - 9\sin^2 3x$$
;

6.5.
$$y = 1 - 2|\cos x|$$
;

6.6.
$$y = \sin x + \sin \left(x + \frac{\pi}{3} \right)$$
.

7. Найти наибольшее и наименьшее значения функции

$$y = 3\cos 2x - 4\sin 2x.$$

8. Найти множество значений функции $y = \sin x - 5\cos x$.

Ответы. 1.1. $x \in R$; 1.2. $x \in R$; 1.3. $x \neq 0$; 1.4. $x \neq 0$; 1.5. $x \geq 0$; 1.6.

$$x < -1, x \ge 1. \ 2.1. \ 0 \le y \le 2; \ 2.2. \ 0 \le y \le 2; \ 2.3. \ 0 \le y \le 2; \ 2.4. \ -3 \le y \le 5; \ 2.5.$$

$$\frac{3}{2} \le y \le \frac{5}{2}; \quad 2.6. \quad -\frac{5}{4} \le y \le -\frac{3}{4}. \quad 3.1. \quad x \ne \frac{\pi}{2} + \pi n, \quad n \in \mathbb{Z}; \quad 3.2. \quad x \ne \pi n, \quad n \in \mathbb{Z}; \quad 3.3.$$

$$x\neq \frac{3\pi}{2}+3\pi n\;,\;n\in Z\;;\;3.4.\;\;x\neq \frac{\pi}{10}+\frac{\pi n}{5}\;,\;\;n\in Z\;.\;4.1.\;\;x\in R\;;\;4.2.\;\;x=2\pi n,\;\;n\in Z\;;\;4.3.$$

$$-\frac{\pi}{3} + 2\pi n \le x \le \frac{\pi}{3} + 2\pi n, \ n \in \mathbb{Z}; \quad 4.4. \quad -\frac{7\pi}{6} + 2\pi n \le x \le \frac{\pi}{6} + \pi n, \quad n \in \mathbb{Z}; \quad 4.5.$$

$$2\pi n < x < \pi + 2\pi n, \ n \in Z \ ; \ 4.6. \ -\frac{\pi}{2} + 2\pi n < x < \frac{\pi}{2} + 2\pi n, \ n \in Z \ . \ 5.1. \ \ x \neq \pi n \ , \ \ n \in Z \ ;$$

$$5.2. \ x\neq \frac{\pi}{4}+\frac{\pi n}{2}, \ n\in Z\,; \ 5.3. \ x\neq \pi n\;, \ x\neq \frac{\pi}{4}+\frac{\pi n}{2}, \ n\in Z\,; \ 5.4. \ x\neq \frac{\pi}{2}+\pi n, \ n\in Z\,.$$

6.1.
$$-1 \le y \le 3$$
; 6.2. $-1 \le y \le 1$; 6.3. $\frac{1}{4} \le y \le \frac{9}{4}$; 6.4. $1 \le y \le 10$; 6.5. $-1 \le y \le 1$; 6.6. $-\sqrt{3} \le y \le \sqrt{3}$. 7. 5 и -5 . 8. $-\sqrt{26} \le y \le \sqrt{26}$.

7.2. Чётность, нечётность, периодичность тригонометрических функций

Если $f(-x) \neq f(x)$ и $f(-x) \neq -f(x)$, то данная функция – функция общего вида.

 $3a\partial a 4a \ 1.$ Выяснить, является ли функция $y = 2 + \sin x \cos \left(\frac{3\pi}{2} + x \right)$ чётной или нечётной.

Решение. Используя формулу приведения для синуса, запишем данную функцию в виде $y = 2 + \sin^2 x$. Имеем

$$y(-x) = 2 + \sin^2(-x) = 2 + (-\sin x)^2 = 2 + \sin^2 x = y(x),$$

т.е. функция является чётной.

Ответ.
$$y = 2 + \sin x \cos \left(\frac{3\pi}{2} + x \right) -$$
 чётная функция.

Функция f(x) называется *периодической*, если существует такое число $T \neq 0$, что для любого x из области определения этой функции выполняется равенство f(x-T)=f(x)=f(x+T). Таких чисел может быть множество, наименьшее из них называется *периодом* функции f(x).

Из этого определения следует, что если x принадлежит области определения функции f(x), то числа x+T и x-T и вообще числа x+T п, $n\in Z$ также должны принадлежать области определения функции и f(x+Tn)=f(x), $n\in Z$.

Для любых значений x верны равенства $\sin(x+2\pi)=\sin x$, $\cos(x+2\pi)=\cos x$.

Покажем, что число 2π является наименьшим положительным периодом функции $y = \cos x$.

Пусть T>0 — период косинуса, т.е. для любого x выполняется равенство $\cos(x+T)=\cos x$. Положив x=0, получим $\cos T=1$. Отсюда $T=2\pi n$, $n\in Z$. Так как T>0, то T может принимать значения $2\pi, 4\pi, 6\pi,...$ и поэтому период не может быть меньше 2π .

Можно показать, что *наименьший положительный период функции* $y = \sin x$ также равен 2π .

 $3a\partial a 4a = 2$. Доказать, что $f(x) = \sin 3x$ — периодическая функция с периодом $\frac{2\pi}{3}$.

Peшение. Данная функция определена для всех $x \in R$ и $f\left(x+\frac{2\pi}{3}\right)=\sin 3\left(x+\frac{2\pi}{3}\right)=\sin (3x+2\pi)=\sin 3x=f(x)$.

Ответ. Доказано, что $f(x) = \sin 3x$ – периодическая функция с периодом $\frac{2\pi}{3}$.

Функции y=tgx и y=ctgx являются периодическими с периодом π . Или $tg(x+\pi)=tgx$ и $ctg(x+\pi)=ctgx$. Область определения для функций y=tgx и y=ctgx соответственно $x\neq \frac{\pi}{2}+\pi n$ и $x\neq \pi n$, $n\in Z$. Покажем, что число π является наименьшим положительным периодом функции y = tgx .

Пусть T>0 — период тангенса, тогда tg(x+T)=tgx, откуда при x=0 получаем tgT=0, $T=\pi n$, где $n\in Z$. Наименьшее положительное n=1, следовательно, π — наименьший положительный период функции y=tgx.

 $3a\partial a + a \ 3$. Доказать, что $f(x) = tg \frac{x}{3}$ — периодическая функция с периодом 3π .

Pешение.
$$\operatorname{tg} \frac{x+3\pi}{3} = \operatorname{tg} \left(\frac{x}{3} + \pi \right) = \operatorname{tg} \frac{x}{3}$$
, $\operatorname{tg} \frac{x-3\pi}{3} = \operatorname{tg} \left(\frac{x}{3} - \pi \right) = \operatorname{tg} \frac{x}{3}$,

 $tg\frac{x}{3}$ — периодическая функция с периодом 3π .

Ответ. доказано, что $\lg \frac{x}{3}$ – периодическая функция с периодом 3π .

Упражнения

1. Проверить на чётность функции

1.1.
$$y = \cos 3x$$
; 1.2. $y = 2\sin 4x$; 1.3. $y = \frac{x}{2} tg^2 x$;

1.4.
$$y = x \cos \frac{x}{2}$$
; 1.5. $y = x \sin x$; 1.6. $y = 2 \sin^2 x$.

2. Проверить на чётность функции

2.1.
$$y = \sin x + x$$
; 2.2. $y = \cos \left(x - \frac{\pi}{2}\right) - x^2$;

2.3.
$$y = 3 - \cos\left(\frac{\pi}{2} + x\right) \cdot \sin(\pi - x);$$

2.4.
$$y = \frac{1}{2}\cos 2x \cdot \sin\left(\frac{3\pi}{2} - 2x\right) + 3$$
;

2.5.
$$y = \frac{\sin x}{x} + \sin x \cdot \cos x$$
;

2.6.
$$y = x^2 + \frac{1 + \cos x}{2}$$
.

3. Доказать, что данные функции является периодическими с периодом 2π

3.1.
$$y = \cos x - 1$$
;

3.1.
$$y = \cos x - 1$$
; 3.2. $y = \sin x + 1$; 3.3. $y = 3\sin x$;

3.3.
$$y = 3 \sin x$$
;

3.4.
$$y = \frac{\cos x}{2}$$

3.4.
$$y = \frac{\cos x}{2}$$
; 3.5. $y = \sin\left(x - \frac{\pi}{4}\right)$; 3.6. $y = \cos\left(x + \frac{2\pi}{3}\right)$.

4. Доказать, что данные функции является периодическими с периодом Т

4.1.
$$y = \sin 2x$$
, $T = \pi$;

4.2.
$$y = \cos \frac{x}{2}$$
, $T = 4\pi$;

4.3.
$$y = tg2x$$
, $T = \frac{\pi}{2}$

4.3.
$$y = tg2x$$
, $T = \frac{\pi}{2}$; 4.4. $y = sin \frac{4x}{5}$, $T = \frac{5\pi}{2}$.

5. Исследовать функции на чётность

5.1.
$$y = \frac{1 - \cos x}{1 + \cos x}$$
;

5.2.
$$y = \frac{\sqrt{\sin^2 x}}{1 + \cos 2x}$$

5.1.
$$y = \frac{1 - \cos x}{1 + \cos x}$$
; 5.2. $y = \frac{\sqrt{\sin^2 x}}{1 + \cos 2x}$; 5.3. $y = \frac{\cos 2x - x^2}{\sin x}$;

5.4.
$$y = \frac{x^2 + \sin 2x}{\cos x}$$
; 5.5. $y = 3^{\cos x}$; 5.6. $y = x |\sin x| \sin^3 x$.

5.5.
$$y = 3^{\cos x}$$
;

$$5.6. y = x |\sin x| \sin^3 x.$$

6. Найти наименьшие положительные периоды функций

6.1.
$$y = \cos \frac{2}{5}x$$
;

6.2.
$$y = \sin \frac{3}{2}x$$
;

6.3.
$$y = tg \frac{x}{2}$$
;

6.4.
$$y = |\sin x|$$
.

Ответы. 1.1. чётная ;1.2. нечётная; 1.3. нечётная; 1.4. нечётная; 1.5. чётная; 1.6. чётная. 2.1. нечётная; 2.2. общего вида; 2.3. чётная; 2.4. чётная; 2.5. общего вида; 2.6. $-\frac{5}{4} \le y \le -\frac{3}{4}$. 5.1. чётная; 5.2. чётная; 5.3. нечётная; 5.4. нечётная; 5.5. чётная; 5.6. чётная. 6.1. 5π ; 6.2. $\frac{4\pi}{3}$; 6.3. 2π ; 6.4. π .

7.3. Функция у = cos x, её свойства и график

Основные свойства функции $y = \cos x$ (рисунок 7.1)

Рисунок 7.1. График функции $y = \cos x$

- 1. Область определения множество R всех действительных чисел.
- 2. Множество значений отрезок [-1; 1].
- 3. Функция $y = \cos x$ периодическая с периодом 2π .
- 4. Функция $y = \cos x$ чётная.
- 5. Функция $y = \cos x$ принимает
- значение равное 0 при $x = \frac{\pi}{2} + \pi n$, $n \in Z$;
- наибольшее значение, равное 1, при $\, x = 2\pi n \, , \, n \in Z \, ; \,$
- наименьшее значение, равное -1, при $x = \pi + 2\pi n$, $n \in Z$;
- положительные значения на интервалах $\left(-\frac{\pi}{2} + 2\pi n; \frac{\pi}{2} + 2\pi n\right), n \in \mathbb{Z};$
- отрицательные значения на интервалах $\left(\frac{\pi}{2} + 2\pi n; \frac{3\pi}{2} + 2\pi n\right), \ n \in \mathbb{Z}.$

6. Функция $y = \cos x$

- возрастает на отрезках $[\pi + 2\pi n; 2\pi + 2\pi n], n \in \mathbb{Z};$
- убывает на отрезках $[2\pi n; \pi + 2\pi n], n \in \mathbb{Z}$.

 $3a\partial a 4a \ 1.$ Найти все корни уравнения $\cos x = -\frac{1}{2}$, принадлежащее отрезку $-\pi \le x \le 2\pi$.

Решение. На отрезке $\left[-\pi; 2\pi\right]$ графики $y = \cos x$ и $y = -\frac{1}{2}$ (рисунок 7.1) пересекаются в трёх точках с абсциссами $-\frac{2\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}$. Это и есть корни исходного уравнения.

Ombem.
$$x \in \left\{-\frac{2\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}\right\}$$
.

 $3a\partial a 4a \ 2$. Найти все решения неравенства $\cos x > -\frac{1}{2}$, принадлежащие отрезку $-\pi \le x \le 2\pi$.

Решение. Из рисунка 7.1 видно, что график функции $y = \cos x$ лежит выше графика функции $y = -\frac{1}{2}$ на промежутках $\left(-\frac{2\pi}{3}; \frac{2\pi}{3}\right)$ и $\left(\frac{4\pi}{3}; 2\pi\right]$.

Omsem.
$$x \in \left(-\frac{2\pi}{3}; \frac{2\pi}{3}\right) \cup \left(\frac{4\pi}{3}; 2\pi\right]$$
.

Упражнения

1. Сравнить числа, используя свойство возрастания и убывания функции $y = \cos x$

1.1.
$$\cos \frac{\pi}{7} \text{u} \cos \frac{8\pi}{9}$$
; 1.2. $\cos \frac{8\pi}{7} \text{u} \cos \frac{10\pi}{7}$;

1.3.
$$\cos\left(-\frac{6\pi}{7}\right)$$
и $\cos\left(-\frac{\pi}{8}\right)$;

1.3.
$$\cos\left(-\frac{6\pi}{7}\right)$$
 u $\cos\left(-\frac{\pi}{8}\right)$; 1.4. $\cos\left(-\frac{8\pi}{7}\right)$ u $\cos\left(-\frac{9\pi}{7}\right)$;

2. Найти все корни уравнения, принадлежащие отрезку $[0; 3\pi]$

2.1.
$$\cos x = \frac{1}{2}$$
;

1.2.
$$\cos x = \frac{\sqrt{2}}{2}$$
;

2.3.
$$\cos x = -\frac{\sqrt{2}}{2}$$
;

1.4.
$$\cos x = -\frac{1}{2}$$
.

3. Найти все корни неравенства, принадлежащие отрезку $[0; 3\pi]$

3.1.
$$\cos x \ge \frac{1}{2}$$
;

3.2.
$$\cos x \ge -\frac{1}{2}$$
;

3.3.
$$\cos x < -\frac{\sqrt{2}}{2}$$
;

3.4.
$$\cos x < \frac{\sqrt{3}}{2}$$
.

4. Сравнить числа, выражая синус через косинус по формулам приведения 2.7

4.1.
$$\cos \frac{\pi}{5}$$
 u $\sin \frac{\pi}{5}$;

$$4.2. \sin \frac{\pi}{7}$$
и $\cos \frac{\pi}{7}$;

4.3.
$$\cos \frac{5\pi}{8} \text{u } \sin \frac{5\pi}{8}$$
;

4.3.
$$\cos \frac{5\pi}{8} \text{u} \sin \frac{5\pi}{8}$$
; 4.4. $\sin \frac{3\pi}{5} \text{u} \cos \frac{3\pi}{5}$;

4.5.
$$\cos \frac{\pi}{6} \text{ u } \sin \frac{5\pi}{14}$$
;

4.6.
$$\cos\frac{\pi}{8}$$
и $\sin\frac{3\pi}{10}$.

5. Найти все корни уравнения, принадлежащие промежутку $-\frac{\pi}{2} \le x \le \frac{3\pi}{2}$

5.1.
$$\cos 2x = \frac{1}{2}$$
;

5.2.
$$\cos 3x = \frac{\sqrt{3}}{2}$$
.

Найти все решения неравенства, принадлежащие промежутку

$$-\frac{\pi}{2} \le x \le \frac{3\pi}{2}$$

6.1.
$$\cos 2x < \frac{1}{2}$$
;

6.2.
$$\cos 3x > \frac{\sqrt{3}}{2}$$
.

7. Построить график функции и выяснить её свойства

7.1.
$$y = 1 + \cos x$$
;

7.2.
$$y = \cos x - 2$$
;

7.3.
$$y = \cos 2x$$
;

7.4.
$$y = 3 \cos x$$
.

8. Найти множество значений функции у = cos x, если x принадлежит промежутку

8.1.
$$\left\lceil \frac{\pi}{3}; \pi \right\rceil$$
;

8.2.
$$\left(\frac{5\pi}{4}; \frac{7\pi}{4}\right)$$
.

9. Построить график функции

9.1.
$$y = |\cos x|$$
;

9.2.
$$y = 3 - 2\cos(x - 1)$$
.

$$1.1.\cos\frac{\pi}{7} > \cos\frac{8\pi}{9};$$

1.1.
$$\cos \frac{\pi}{7} > \cos \frac{8\pi}{9}$$
; 1.2. $\cos \frac{8\pi}{7} < \cos \frac{10\pi}{7}$;

1.3.

$$\cos\left(-\frac{6\pi}{7}\right) < \cos\left(-\frac{\pi}{8}\right); \quad 1.4. \quad \cos\left(-\frac{8\pi}{7}\right) < \cos\left(-\frac{9\pi}{7}\right); \quad 1.5. \quad \cos 1 > \cos 3; \quad 1.6$$

$$\cos 4 < \cos 5$$
. $2.1. x = \frac{\pi}{3}; \frac{5\pi}{3}; \frac{7\pi}{3}:$ $2.2. x = \frac{\pi}{4}; \frac{7\pi}{4}; \frac{9\pi}{4};$ $2.3. x = \frac{3\pi}{4}; \frac{5\pi}{4}; \frac{11\pi}{4};$

$$2.4. x = \frac{2\pi}{3}; \frac{4\pi}{3}; \frac{7\pi}{3}. \ \ 3.1. \ \ 0 \le x \le \frac{\pi}{3}; \frac{5\pi}{3} \le x \le \frac{7\pi}{3}; \ \ 3.2. \ \ 0 \le x \le \frac{2\pi}{3}; \frac{4\pi}{3} \le x \le \frac{7\pi}{3};$$

$$3.3.\frac{\pi}{6} < x < \frac{11\pi}{6}; \frac{13\pi}{6} < x \le 3\pi; 3.4.\frac{3\pi}{4} < x < \frac{5\pi}{4}; \frac{11\pi}{4} < x < 3\pi; 4.1.\cos\frac{\pi}{5} > \cos\frac{3\pi}{10}$$

4.2.
$$\sin \frac{\pi}{7} < \cos \frac{\pi}{7}$$
; 4.3. $\cos \frac{5\pi}{8} > \cos \frac{\pi}{8}$; 4.4. $\sin \frac{3\pi}{5} > \cos \frac{3\pi}{5}$; 4.5. $\cos \frac{\pi}{6} < \cos \frac{\pi}{7}$;

$$4.6. \cos \frac{\pi}{8} > \sin \frac{3\pi}{10}. \ 5.1. \ \ x = \frac{\pi}{6}; \ \ ; \frac{5\pi}{6}; \frac{7\pi}{6}; \ \ 5.2. \ \ x = -\frac{\pi}{12}; \frac{\pi}{12}; \frac{11\pi}{12}; \frac{13\pi}{12}; \frac{23\pi}{12}; \frac{25\pi}{12}.$$

$$6.1.\frac{\pi}{6} < x < \frac{5\pi}{6}; \ \frac{7\pi}{6} < x < \frac{3\pi}{2}; \ 6.2. - \frac{\pi}{12} < x < \frac{\pi}{12}; \ \frac{11\pi}{12} < x < \frac{13\pi}{12}; \ \frac{23\pi}{12} < x < \frac{25\pi}{12}.$$

8.1.
$$-1 \le y \le -\frac{\sqrt{3}}{2}$$
; 8.2. $-\frac{\sqrt{2}}{2} < y < \frac{\sqrt{2}}{2}$.

7.4. Функция у = sin x, её свойства и график

Основные свойства функции $y = \sin x$ (рисунок 7.2)

Рисунок 7.2. График функции $y = \sin x$

- 1. Область определения множество R всех действительных чисел.
- 2. Множество значений отрезок [-1; 1].
- 3. Функция $y = \sin x$ периодическая с периодом 2π .
- 4. Функция $y = \sin x \text{нечётная}.$
- 5. Функция $y = \sin x$ принимает
- значение, равное 0, при $x = \pi n$, $n \in Z$;
- наибольшее значение, равное 1, при $x = \frac{\pi}{2} + 2\pi n$, $n \in Z$;
- наименьшее значение, равное -1, при $x = -\frac{\pi}{2} + 2\pi n$, $n \in \mathbb{Z}$;
- положительные значения на интервалах $(2\pi n; \pi + 2\pi n), n \in \mathbb{Z};$
- отрицательные значения на интервалах $(\pi + 2\pi n; 2\pi + 2\pi n), n \in \mathbb{Z}$.

6. Функция $y = \sin x$

- возрастает на отрезках
$$\left[-\frac{\pi}{2} + 2\pi n; \frac{\pi}{2} + 2\pi n \right], n \in \mathbb{Z};$$

- убывает на отрезках
$$\left[\frac{\pi}{2} + 2\pi n; \frac{3\pi}{2} + 2\pi n\right], n \in \mathbb{Z}.$$

 $3a\partial a 4a \ 1.$ Найти все корни уравнения $\sin x = \frac{1}{2}$, принадлежащее отрезку $-\pi \le x \le 2\pi$.

Решение. Построим графики функций $y = \sin x$ и $y = \frac{1}{2}$. На отрезке $\left[-\pi; 2\pi \right]$ эти графики (рисунок 7.3) пересекаются в двух точках с абсциссами $\frac{\pi}{6}, \frac{5\pi}{6}$. Это и есть корни исходного уравнения.

Ombem.
$$x \in \left\{ \frac{\pi}{6}, \frac{5\pi}{6} \right\}$$
.

Рисунок 7.3. Графики функции $y = \sin x$ и $y = \frac{1}{2}$

 $3a\partial a 4a$ 2. Найти все решения неравенства $\sin x < \frac{1}{2}$, принадлежащие отрезку $-\pi \le x \le 2\pi$.

Решение. Из рисунка 7.3 видно, что график функции $y = \sin x$ лежит ниже графика функции $y = \frac{1}{2}$ на промежутках $\left[-\pi; \frac{\pi}{6} \right]$ и $\left(\frac{5\pi}{6}; 2\pi \right]$.

Ombem.
$$x \in \left[-\pi; \frac{\pi}{6}\right] \cup \left(\frac{5\pi}{6}; 2\pi\right]$$
.

Упражнения

1. Сравнить числа, используя свойство возрастания и убывания функции $y = \sin x$

1.1.
$$\sin \frac{7\pi}{10} \text{ u } \sin \frac{13\pi}{10}$$
; 1.2. $\sin \frac{13\pi}{7} \text{ u } \sin \frac{11\pi}{7}$;

1.2.
$$\sin \frac{13\pi}{7}$$
и $\sin \frac{11\pi}{7}$;

1.3.
$$\sin\left(-\frac{7\pi}{8}\right)$$
и $\sin\left(-\frac{8\pi}{9}\right)$

1.3.
$$\sin\left(-\frac{7\pi}{8}\right)\mu \sin\left(-\frac{8\pi}{9}\right);$$
 1.4. $\sin\left(-\frac{8\pi}{7}\right)\mu \sin\left(-\frac{9\pi}{8}\right);$

2. Найти корни уравнения, принадлежащие отрезку $[0; 3\pi]$

2.1.
$$\sin x = \frac{\sqrt{3}}{2}$$
;

1.2.
$$\sin x = \frac{\sqrt{2}}{2}$$
;

2.3.
$$\sin x = -\frac{\sqrt{2}}{2}$$
;

1.4.
$$\sin x = -\frac{\sqrt{3}}{2}$$
.

3. Найти решения неравенств, принадлежащие отрезку $[0; 3\pi]$

3.1.
$$\sin x > \frac{1}{2}$$
;

3.2.
$$\sin x \le \frac{\sqrt{2}}{2}$$
;

3.3.
$$\sin x \ge -\frac{1}{2}$$
;

3.4.
$$\sin x < -\frac{\sqrt{3}}{2}$$
.

Сравнить числа, выражая косинус через синус по формулам приведения 2.7

4.1.
$$\sin\frac{\pi}{9}$$
и $\cos\frac{\pi}{9}$;

4.2.
$$\sin \frac{9\pi}{8} \text{ u } \cos \frac{9\pi}{8}$$
;

4.3.
$$\sin \frac{\pi}{5} \text{ u } \cos \frac{5\pi}{14}$$
;

4.4.
$$\sin \frac{\pi}{8}$$
и $\cos \frac{3\pi}{10}$.

5. Найти корни уравнения, принадлежащие промежутку $-\frac{3\pi}{2} \le x \le \pi$

5.1.
$$\sin 2x = -\frac{1}{2}$$
; 5.2. $\sin 3x = \frac{\sqrt{3}}{2}$.

6. Найти решения неравенства, принадлежащие промежутку $-\frac{3\pi}{2} \le x \le \pi$

6.1.
$$\sin 2x \ge -\frac{1}{2}$$
; 6.2. $\sin 3x < \frac{\sqrt{3}}{2}$.

7. Построить график функции и выяснить её свойства

7.1.
$$y = 1 - \sin x$$
; 7.2. $y = 2 + \sin x$;

7.3.
$$y = \sin 3x$$
; 7.4. $y = 2\sin x$.

8. Найти множество значений функции $y = \sin x$, если x принадлежит промежутку

8.1.
$$\left[\frac{\pi}{6}; \pi\right];$$
 8.2. $\left[\frac{3\pi}{4}; \frac{5\pi}{4}\right].$

9. Построить график функции

9.1.
$$y = \sin |x|$$
; 9.2. $y = |\sin x|$.

Ответы. 1.1. $\sin \frac{7\pi}{10} > \sin \frac{13\pi}{10}$; 1.2. $\sin \frac{13\pi}{7} > \sin \frac{11\pi}{7}$; 1.3.

$$\sin\left(-\frac{7\pi}{8}\right) > \sin\left(-\frac{8\pi}{9}\right); \quad 1.4. \quad \sin\left(-\frac{8\pi}{7}\right) > \sin\left(-\frac{9\pi}{8}\right); \quad 1.5. \quad \sin 3 > \sin 4; \quad 1.6.$$

$$\sin 7 > \sin 6. \ 2.1. \ x = \frac{\pi}{3}; \frac{2\pi}{3}; \frac{7\pi}{3}; \frac{8\pi}{3}; \ 2.2. \ x = \frac{\pi}{4}; \frac{3\pi}{4}; \frac{9\pi}{4}; \frac{11\pi}{4}; \ 2.3. \ x = \frac{5\pi}{4}; \frac{7\pi}{4};$$

2.4.
$$x = \frac{4\pi}{3}$$
; $\frac{5\pi}{3}$. 3.1. $\frac{\pi}{6} < x < \frac{5\pi}{6}$; $\frac{13\pi}{6} < x < \frac{17\pi}{6}$; 3.2. $0 \le x < \frac{\pi}{4}$; $\frac{3\pi}{4} \le x < \frac{9\pi}{4}$;

3.3.
$$0 \le x < \frac{7\pi}{6}$$
; $\frac{11\pi}{6} \le x < 3\pi$; 3.4. $\frac{4\pi}{3} < x < \frac{5\pi}{3}$. 4.1. $\sin \frac{\pi}{9} < \sin \frac{7\pi}{18}$; 4.2. $\sin \frac{9\pi}{8} > \cos \frac{9\pi}{8}$; 4.3. $\sin \frac{\pi}{5} > \sin \frac{\pi}{7}$; 4.4. $\sin \frac{\pi}{8} < \cos \frac{3\pi}{10}$. 5.1. $x = -\frac{17\pi}{12}$; $-\frac{13\pi}{12}$; $-\frac{5\pi}{12}$; $-\frac{\pi}{12}$; $\frac{5\pi}{12}$; $\frac{11\pi}{12}$; 5.2. $x = -\frac{11\pi}{9}$; $-\frac{10\pi}{9}$; $-\frac{5\pi}{9}$; $-\frac{4\pi}{9}$; $\frac{\pi}{9}$; $\frac{2\pi}{9}$; $\frac{7\pi}{9}$; $\frac{8\pi}{9}$.

7.5. Функция y = tgx, её свойства и график

Основные свойства функции y = tgx (рисунок 7.4)

- 1. Область определения множество R всех действительных чисел кроме $x = \frac{\pi}{2} + \pi n, \, n \in Z.$
 - 2. *Множество значений* множество R всех действительных чисел.
 - 3. Функция y = tgx периодическая с периодом π .
 - 4. Функция y = tgx нечётная.
 - 5. Функция y = tgx принимает
 - значение, равное 0, при $x = \pi n$, $n \in Z$;
 - положительные значения на интервалах $\left(\pi n; \frac{\pi}{2} + \pi n\right), n \in \mathbb{Z};$
 - отрицательные значения на интервалах $\left(-\frac{\pi}{2}+\pi n;\pi n\right),\ n\in Z.$
 - 6. Функция y = tgx возрастает на интервалах $\left(-\frac{\pi}{2} + \pi n; \frac{\pi}{2} + \pi n\right)$, $n \in \mathbb{Z}$.

Рисунок 7.4. График функции y = tgx

 $3a\partial a 4a$ 1. Найти все корни уравнения tgx=2, принадлежащее отрезку $-\pi \le x \le \frac{3\pi}{2}$.

Pешение. Рассмотрим графики функций y = tgx и y = 2 (рисунок 7.4). На отрезке $\left[-\pi; \frac{3\pi}{2} \right]$ эти графики пересекаются в трёх точках с абсциссами $\arctan 2; \arctan 2 + \pi; \arctan 2 - \pi$. Это и есть корни исходного уравнения.

Omeem. $x \in \{arctg2; arctg2 + \pi; arctg2 - \pi\}$.

 $3a\partial a 4a=2$. Найти все решения неравенства $tgx\leq 2$, принадлежащие отрезку $-\pi\leq x\leq \frac{3\pi}{2}$.

Решение. Из рисунка 7.4. видно, что график функции y = tgx лежит не выше графика функции y = 2 на промежутках $\left[-\pi; -\pi + arctgx \right], \left(-\frac{\pi}{2}; arctg2 \right],$ $\left(\frac{\pi}{2}; \pi + arctg2 \right].$

Omsem.
$$x \in [-\pi; -\pi + arctgx] \cup \left(-\frac{\pi}{2}; arctg2\right] \cup \left(\frac{\pi}{2}; \pi + arctg2\right].$$

3адача 3. Решить неравенство tgx > 1.

Решение. Из рисунка 7.4. видно, что график функции y=tgx лежит выше графика прямой y=1 на промежутке $\left(\frac{\pi}{4};\frac{\pi}{2}\right)$, а также на промежутках, полученных сдвигами его на π , 2π , 3π , $-\pi$, -2π ...

Omsem.
$$x \in \left(\frac{\pi}{4} + \pi n; \frac{\pi}{2} + \pi n\right), n \in \mathbb{Z}$$
.

Упражнения

1. Сравнить числа, используя свойство возрастания и убывания функции y = tgx

1.1.
$$tg\frac{\pi}{5}u tg\frac{\pi}{7}$$
;

1.2.
$$tg \frac{7\pi}{8} u tg \frac{8\pi}{9}$$
;

1.3.
$$\operatorname{tg}\left(-\frac{7\pi}{8}\right)$$
 $\operatorname{utg}\left(-\frac{8\pi}{9}\right)$; 1.4. $\operatorname{tg}\left(-\frac{\pi}{5}\right)$ $\operatorname{utg}\left(-\frac{\pi}{7}\right)$;

1.4.
$$\operatorname{tg}\left(-\frac{\pi}{5}\right)$$
 $\operatorname{H} \operatorname{tg}\left(-\frac{\pi}{7}\right)$;

2. Найти все корни уравнения, принадлежащие промежутку (– π ; 2π)

2.1.
$$tgx = 1$$
;

1.2.
$$tgx = \sqrt{3}$$
;

2.3.
$$tgx = -\sqrt{3}$$
;

1.4.
$$tgx = -1$$
.

3. Найти решения неравенства, принадлежащие промежутку $(-\pi; 2\pi)$

3.1.
$$tgx \ge 1$$
;

3.2.
$$tgx < \frac{\sqrt{3}}{3}$$
;

3.3.
$$tgx < -1$$
;

3.4.
$$tgx \ge -\sqrt{3}$$
.

4. Решить неравенства

4.1.
$$tgx < 1$$
;

4.2.
$$tgx \ge \sqrt{3}$$
;

4.3.
$$tgx \le -\frac{\sqrt{3}}{3}$$
;

4.4.
$$tgx > -1$$
.

5. Найти корни уравнения, принадлежащие промежутку $[0; 3\pi]$

5.1.
$$tgx = 3$$
;

5.2.
$$tgx = -2$$
.

6. Решить неравенства

6.1.
$$tgx > 4$$
;

6.2.
$$tgx \le 5$$
;

6.3.
$$tgx < -4$$
;

6.4.
$$tgx \ge -5$$
.

7. Найти решения неравенства, принадлежащие промежутку $[0; 3\pi]$

7.1.
$$tgx \ge 3$$
;

7.2.
$$tgx < 4$$
;

7.3.
$$tgx \le -4$$
;

7.4.
$$tgx > -3$$
.

8. Найти все корни уравнения, принадлежащие промежутку $\left(-\frac{\pi}{2}; \pi\right)$

8.1.
$$tg2x = \sqrt{3}$$
;

8.2.
$$tg3x = -1$$
.

9. Найти все решения неравенства, принадлежащие промежутку $\left(-\frac{\pi}{2};\pi\right)$

9.1.
$$tg2x \le 1$$

9.1.
$$tg2x \le 1$$
; 9.2. $tg3x < -\sqrt{3}$.

10. Построить график функции и выяснить его свойства

10.1.
$$y = tg\left(x + \frac{\pi}{4}\right);$$

10.2.
$$y = tgx - 2$$
;

10.3.
$$y = \frac{1}{2} tgx$$
;

10.4.
$$y = tg \frac{x}{2}$$
.

11. Найти множество значений функции y = tgx, если x принадлежит промежутку

11.1.
$$\left[-\frac{\pi}{4}; \frac{\pi}{3}\right]$$
; 11.2. $\left(\frac{3\pi}{4}; \frac{3\pi}{2}\right)$; 11.3. $\left(0; \frac{\pi}{2}\right)$; 11.4. $\left[\frac{\pi}{4}; \frac{3\pi}{4}\right]$.

12. Построить график функции

12.1.
$$y = tg|x|$$
; 12.2. $y = |tgx|$; 12.3. $y = ctgx$; 12.4. $y = \frac{1}{ctgx}$.

Ответы. 1.1.
$$tg\frac{\pi}{5} < tg\frac{\pi}{7}$$
; 1.2. $tg\frac{7\pi}{8} < tg\frac{8\pi}{9}$; 1.3. $tg\left(-\frac{7\pi}{8}\right) < tg\left(-\frac{8\pi}{9}\right)$;

1.4.
$$tg\left(-\frac{\pi}{5}\right) < tg\left(-\frac{\pi}{7}\right)$$
; 1.5. $tg2 < tg3$; 1.6. $tg1 < tg1,5$. 2.1. $x = \frac{\pi}{4}; \frac{5\pi}{4}$; 2.2.

$$x = -\frac{2\pi}{3}; \frac{\pi}{3}; \frac{4\pi}{3}; 2.3. \ x = -\frac{\pi}{3}; \frac{\pi}{3}; \frac{5\pi}{3}; 2.4. \ x = -\frac{\pi}{4}; \frac{3\pi}{4}; \frac{7\pi}{4}. \ 3.1. \ \frac{\pi}{4} \le x < \frac{\pi}{2};$$

$$\frac{5\pi}{4} \le x < \frac{3\pi}{2}; \ 3.2. -\pi \le x < \frac{5\pi}{6}; \ -\frac{\pi}{2} < x < \frac{\pi}{6}; \ \frac{\pi}{2} < x < \frac{7\pi}{6}; \ \frac{3\pi}{2} < x \le 2\pi;$$

$$3.3. -\frac{\pi}{2} < x \le -\frac{\pi}{4}; \ \frac{\pi}{2} < x \le \frac{3\pi}{4}; \ 3.4. -\pi \le x < -\frac{\pi}{2}; \ -\frac{\pi}{3} < x < \frac{\pi}{2}; \ \frac{2\pi}{3} < x < \frac{3\pi}{2};$$

$$\frac{5\pi}{3} < x \le 2\pi. \quad 4.1. \quad -\frac{\pi}{2} + \pi n < x \le \frac{\pi}{4} + \pi n; \quad n \in \mathbb{Z}; \quad 4.2. \quad \frac{\pi}{3} + \pi n \le x < \frac{\pi}{2} + \pi n; \quad n \in \mathbb{Z};$$

$$4.3. \ -\frac{\pi}{2} + \pi n \leq x \leq -\frac{\pi}{6} + \pi n; \ n \in Z; \ 4.4. \ -\frac{\pi}{4} + \pi n < x < \frac{\pi}{2} + \pi n; \ n \in Z.$$

5.1.
$$x = arctg3 + \pi$$
; $x = arctg2 + 2\pi$; 5.2. $x = -arctg2 + \pi$;

$$x = -arctg2 + 2\pi$$
; $x = -arctg2 + 3\pi$. 6.1. $arctg3 + \pi n < x < \frac{\pi}{2} + \pi n$; $n \in \mathbb{Z}$; 6.2.

$$-\frac{\pi}{2} + \pi n < x \le arctg5 + \pi n; \quad n \in Z; \quad 6.3. \quad -\frac{\pi}{2} + \pi n < x < -arctg4 + \pi n; \quad n \in Z; \quad 6.4.$$

$$-\operatorname{arctg5}+\pi n \leq x < \frac{\pi}{2}+\pi n; \ \ n \in Z \ . \ 7.1. \ \operatorname{arctg3} \leq x < \frac{\pi}{2}; \ \ \operatorname{arctg3}+\pi \leq x < \frac{3\pi}{2};$$

$$arctg3 + 3\pi \le x < \frac{5\pi}{2}$$
; 7.2. $0 \le x < arctg4$; $\frac{\pi}{2} < x < arctg4 + \pi$;

$$\frac{3\pi}{2} < x < \arctan 4 + 2\pi; \ \frac{5\pi}{2} < x \le 2\pi; \ 7.3. \ \frac{\pi}{2} < x \le -\arctan 4; \ \frac{3\pi}{2} < x \le -\arctan 4 + \pi;$$

$$\frac{5\pi}{2} < x \le -\arctan 4 + 2\pi; \quad 7.4. \quad 0 \le x < -\frac{\pi}{2}; \quad -\arctan 3 + \pi < x < \frac{3\pi}{2};$$

$$-\arctan 3 + 2\pi < x < \frac{5\pi}{2}$$
; $-\arctan 3 + 3\pi < x \le 3\pi$. 8.1. $x = \frac{\pi}{6}$; $\frac{2\pi}{3}$; 8.2. $x = -\frac{5\pi}{12}$;

$$-\frac{\pi}{12}; \ \frac{\pi}{4}; \ \frac{7\pi}{12}; \ \frac{11\pi}{12}. \ 9.1. \ -\frac{\pi}{4} < x \le \frac{\pi}{8}; \ \frac{\pi}{4} < x \le \frac{\pi}{2}; \ 9.2. \ -\frac{\pi}{2} < x < -\frac{4\pi}{9};$$

$$-\frac{\pi}{6} < x < -\frac{\pi}{9}; \ \frac{\pi}{6} < x < \frac{2\pi}{9}; \ \frac{\pi}{2} < x < \frac{5\pi}{9}; \ \frac{\pi}{6} < x < \pi. \ 11.1. \ -1 \le y \le \sqrt{3};$$

11.2. y > 1; 11.3. y > 0; 11.4. $y \in R$.

Упражнения к разделу 7

1. Найти область определения функции

1.1.
$$y = \sin x + \cos x$$
; 1.2. $y = \sin x + tgx$;

1.3.
$$y = \sqrt{\sin x}$$
; 1.4. $y = \sqrt{\cos x}$;

1.5.
$$y = \frac{2x}{2\sin x - 1}$$
; 1.6. $y = \frac{\cos x}{2\sin^2 x - \sin x}$.

2. Найти множество значений функции

2.1.
$$y = 1 - 2\sin^2 x$$
; 2.2. $y = 2\cos^2 x - 1$;

2.3.
$$y = 3 - 2\sin^2 x$$
; 2.4. $y = 2\cos^2 x + 5$;

2.5.
$$y = \cos 3x \cdot \sin x - \sin 3x \cdot \cos x + 4$$
;

2.6.
$$y = \cos 2x \cdot \cos x + \sin 3x \cdot \sin x - 3$$
.

3. Найти область определения функции

3.1.
$$y = x^2 + \cos x$$
; 3.2. $y = x^3 - \sin x$;

3.3.
$$y = (1 - x^2)\cos x$$
; 3.4. $y = (1 + \sin x)\sin x$.

4. Найти период функции

4.1.
$$y = \cos 7x$$
; 4.2. $y = \sin \frac{x}{7}$.

5. Найти корни уравнения, принадлежащие промежутку [0; 3]

5.1.
$$2\cos x + \sqrt{3} = 0$$
; 5.2. $\sqrt{3} - \sin x = \sin x$;

5.3.
$$3 \log x = \sqrt{3}$$
; 5.4. $\cos x + 1 = 0$.

6. Найти все решения неравенства, принадлежащие промежутку $\left[-2\pi;-\pi\right]$

6.1. $1+2\cos x \ge 0$;

6.2. $1 - 2\sin x < 0$;

6.3. 2 + tgx > 0;

6.4. $1 - 2tgx \le 0$.

7. Решить графически уравнение

7.1. $\cos x = x^2$; 7.2. $\sin x = 1 - x$.

Проверочная работа

- 1. Найти область определения функции y = tg4x. Является ли эта функция чётной?
- 2. Построить схематически график функции $y = \sin x$; $y = \cos x$ на отрезке $[-\pi; 2\pi]$. При каких значениях x y(x) = 1, y(x) = -1, y(x) = 0, y(x) > 0, y(x) < 0, функция возрастает? Убывает?
- 3. Построить схематически график функции y=tgx на отрезке $\left[-\frac{3\pi}{2};\frac{\pi}{2}\right]$. При каких значениях $x \ tgx=0$, tgx>0, tgx<0?
 - 4. Решить неравенство $tgx \ge -1$.
 - 8. Найти область определения функции

8.1.
$$y = tg\left(2x + \frac{\pi}{6}\right)$$
;

8.2.
$$y = \sqrt{tgx}$$
.

9. Найти наибольшее и наименьшее значения функции

9.1.
$$y = \cos^4 x - \sin^4 x$$
;

9.2.
$$y = \sin\left(x + \frac{\pi}{4}\right) \sin\left(x - \frac{\pi}{4}\right);$$

9.3.
$$y = 1 - 2|\sin 3x|$$
;

9.4.
$$y = \sin^2 x - 2\cos^2 x$$
.

10. Проверить на чётность функции

10.1.
$$y = \sin x + tgx$$
;

10.2.
$$y = \sin x t g x$$
;

10.3.
$$y = \cos x + |\sin x|$$
; 10.4. $y = \sin x |\cos x|$.

10.4.
$$y = \sin x |\cos x|$$
.

11. Найти период функции

11.1.
$$y = 2\sin(2x + 1)$$
;

11.2.
$$y = 3tg \frac{1}{4}(x+1)$$
.

12. Решить графически уравнение

12.1.
$$\cos x = |x|$$
;

12.2.
$$\sin x = -|x+1|$$
.

13. Найти нули функции

13.1.
$$y = \sin^2 x + \sin x$$
;

13.2.
$$y = \cos^2 x - \cos x$$
;

13.3.
$$y = \cos 4x - \cos 2x + \sin x$$
;

13.4.
$$y = \cos x - \cos 2x - \sin 3x$$
.

Ответы. 1.1. $x \in R$; 1.2. $x \neq \frac{\pi}{2} + \pi n$; $n \in Z$; 1.3. $\pi n \leq x \leq \pi + \pi n$; $n \in Z$;

1.4.
$$-\frac{\pi}{2} + 2\pi n \le x \le \frac{\pi}{2} + 2\pi n; n \in \mathbb{Z}; 1.5. x \ne (-1)^n \frac{\pi}{6} + \pi n; n \in \mathbb{Z}; 1.6$$

$$x \neq \pi n; x \neq (-1)^n \frac{\pi}{6} + \pi n; n \in \mathbb{Z}. 2.1. -1 \leq y \leq 1; 2.2. -1 \leq y \leq 1; 2.3. 1 \leq y \leq 3;$$

чётная; 3.4. общего вида. 4.1.
$$T = \frac{2\pi}{7}$$
; 4.2. $T = 4\pi$; 5.1. $x = \frac{\pi}{6}$; 5.2.

$$x = \frac{\pi}{3}; \frac{2\pi}{3}; \frac{7\pi}{3}; \frac{8\pi}{3}; 5.3. \quad x = \frac{\pi}{6}; \frac{7\pi}{6}; \frac{13\pi}{6}; 5.4. \quad x = \pi; 3\pi. \quad 6.1. \quad -2\pi \le x \le -\frac{7\pi}{6};$$

6.2.
$$-\frac{11\pi}{6} < x < -\frac{7\pi}{6}$$
; 6.3. $-\arctan 2 - \pi < x \le -\pi$; $-2\pi \le x < -\frac{3\pi}{2}$, 6.4.

$$\arctan \frac{1}{2} - 2\pi \le x < \frac{3\pi}{2}$$
. 8.1. $x \ne \frac{\pi}{6} + \frac{\pi n}{2}$, $n \in \mathbb{Z}$; 8.2. $\pi n \le x \le \frac{\pi}{2} + \pi n$, $n \in \mathbb{Z}$. 9.1.

$$1$$
 и -1 ; 9.2. $\frac{1}{2}$ и $-\frac{1}{2}$; 9.3. 1 и -1 ; 9.4. 1 и -2 . 10.1 . Нечётная; 10.2 . чётная; 10.3 .

чётная; 10.4. нечётная. 11.1. π ; 11.2. 4π . 13.1. $\mathbf{x} = \pi\mathbf{n}$; $\frac{3\pi}{2} + 2\pi\mathbf{n}$, $\mathbf{n} \in \mathbb{Z}$; 13.2.

$$x = \frac{\pi}{2} + 2\pi n$$
; $2\pi n$, $n \in \mathbb{Z}$; 13.3. $x = \pi n$; $(-1)^{n+1} \frac{3\pi}{18} + \frac{\pi n}{3}$, $n \in \mathbb{Z}$; 13.4.

$$x = \frac{2\pi n}{3}$$
; $\frac{\pi}{4} + \pi n$; $-\frac{\pi}{2} + 2\pi n$; $n \in \mathbb{Z}$.

Словарь

Русский	Английский	Французский	
Абсцисса	Abscissa	L'abscisse	
Арккосинус	Arc cosine	Arc cosinus	
Арксинус	Arc sine	Arc sinus	
Арктангенс	Arc tangent	Arc tangente	
Арккотангенс	Arc cotangent	Arc cotangente	
Градус	Degree	Le degré	
Диаметрально	Diametrically	Diamétralement	
Дуга	Arc	L'arc	
Единичная	Unit	Unitaire	
Координата	Coordinate	La coordonnée	
Косинус	Cosine	Le cosines	
Котангенс	Cotangent	La cotangente	
Окружность	Circle	La circonférence	
Ордината	Ordinate	L'ordonnée	
Ось	Axis	L'axe	
Преобразование	Transformation	La transformation	
Противоположный	The opposite	L'opposé	
Приведение	Reduction	La réduction	
Прямая	Straight line. Direct	La ligne droite. Direct	
Прямоугольный	The rectangular	Le rectangulaire	
Радиан	Radian	Radian	
Синус	Sine	Le sinus	
Смежный угол	Adjacent angle	L'angle de contingence	
Тангенс	Tangent	La tangente	
Треугольник	Triangle	Le triangle	
Тригонометрический	The trigonometrical	Le trigonométrique	
Тригонометрия	Trigonometry	La trigonométrie	

Тождество	Identity	L'identité
Четверть	Quarter	Le quart
Отрезок	Segment	Le segment
Центральный угол	The central angle	L'angle au centre
Элемент	Element	L'élément
	l	I

Список литературы

- 1. Сборник задач по математике для поступающих во втузы. Под ред. М.И. Сканави / М.: Высшая школа, 1994. 528 с.
- 2. Козко, А.И. Математика. Письменный экзамен. Решение задач. Методы. Идеи: Учеб. пособие / А.И. Козко, Ю.Н.Макаров, В.Г. Чирский. М.: Экзамен, 2007. 511 с.
- 3. Цыпкин, А.Г. Справочное пособие по математике с методами решения задач для поступающих в вузы / А.Г. Цыпкин, А.И. Пинский. М.: Оникс: 21 век. Мир и образование, 2005. 460 с.
- 4. Смирнова, Л.А. Русско-английский разговорник для физиков / Л.А.Смирнова. Под ред. Д.М. Толстого. М.: Советская энциклопедия, 1968. 336 с.
- 5. Драгнев, М.В. Французско-русский математический словарь. Под ред. Н.Х. Розова / М.В. Драгнев, М.И. Жаров, Н.Х. Розов. – М.: Советская энциклопедия, 1970. – 303 с.
- 6. Кузнецова, Т.И. Учебный русско-англо-китайский словарь математической лексики. Под ред. Т.И. Кузнецовой / Т.И. Кузнецова, Е.А. Лазарева. М.: МГУ им. М.В. Ломоносова. Центр международного образования, 2000. 57 с.
- 7. Гринёва, Е.Ф. Французско-русский словарь / Е.Ф. Гринёва, Т.М. Громова. М.: Русский язык, 1991. 576 с.
- 8. Скакун, В.Л. Русско-французский словарь / В.Л. Скакун. Минск: Харвест, 2003. — 992 с.
- 9. Аросева, Т.Е. Пособие по научному стилю речи / Т.Е. Аросева, Л.Г. Рогова, Н.Ф. Сафьянова. М.: Русский язык, 1987. 291 с.
- 10. Кожухов, И.Б. Математика. Полный справочник / И.Б. Кожухов, А.А.Прокофьев. М.: Махаон, 2008. 352 с.
- 11. Крысенко, С.М. Новейший англо-русский, русско-английский словарь / С.М. Крысенко. Киев: Арий, М.: ИКТЦ «Лада», 2007. 903 с.

- 12. Мюллер, В.К. Новый англо-русский словарь / В.К.Мюллер М.: Рус. яз.: Медиа, 2007. 945 с.
- 13. Выгодский, М.Я. Справочник по высшей математике / М.Я. Выгодский. М.: Астрель, 2005. 991 с.
- 14. Фадеев, М.А. Численные методы / М.А. Фадеев, К.А. Марков. Нижний Новгород: Изд-во ННГУ, 2005. 156 с.
- 15. Ященко, И.В. Единый государственный экзамен 2011. Математика. Учебно-тренировочные материалы для подготовки учащихся / ФИПИ авторысоставители: Ященко И.В., Семенов А.Л., Высоцкий И.Р., Гущин Д.Д., Захаров П.И., Панферов В.С., Посицельский С.Е., Семенов А.В., Семенова М.А., Сергеев И.Н., Смирнов В.А., Шестаков С.А., Шноль Д.Э. М.: Интеллект-Центр, 2010. 132 с.
- 16. Ященко, И.В. ЕГЭ-2011: Математика / ФИПИ авторы-составители: Ященко И.В., Семенов А.Л., Высоцкий И.Р., Гущин Д.Д., Захаров П.И., Панферов В.С., Посицельский С.Е., Семенов А.В., Семенова М.А., Сергеев И.Н., Смирнов В.А., Шестаков С.А., Шноль Д.Э.— М.: Астрель, 2010. . 93 с.

Содержание

1.	Основные понятия тригонометрии	3
1.1.	Отношения в прямоугольном треугольнике	3
1.2.	Тригонометрическая окружность. Синус, косинус, тангенс и котангенс	
	угла α . Периодичность значений синуса, косинуса, тангенса и	
	котангенса угла $\pmb{\alpha}$	3
1.3.	Знаки значений синуса, косинуса, тангенса и котангенса угла $\pmb{\alpha}$ в	
	различных четвертях. Положительные и отрицательные	
	углы	4
1.4.	Таблица значений синуса, косинуса, тангенса и котангенса основных	
	углов.	5
2.	Основные формулы тригонометрии	6
2.1.	Соотношения между тригонометрическими функциями одного и того	
	же аргумента	6
2.2.	Формулы сложения	6
2.3.	Формулы двойного аргумента	6
2.4.	Формулы тройного аргумента	6
2.5.	Формулы половинного аргумента (для синуса и косинуса формулы	
	понижения степени)	7
2.6.	Формулы преобразования суммы тригонометрических функций в	
	произведение	7
2.7.	Формулы преобразования произведения тригонометрических	
	функций в сумму	7
2.8.	Формулы приведения	8
3.	Тождественные преобразования тригонометрических выражений	9
4.	Простейшие тригонометрические уравнения	15
4.1.	$У$ равнение $\cos x = a$	15
4.2.	Уравнение $\sin x = a$	21

4.3.	Уравнение $tgx = a$	27
5.	Решение различных типов тригонометрических уравнений	32
5.1.	Уравнения, сводящиеся к квадратным	32
5.2.	Уравнения вида $a \sin x + b \cos x = c$	36
5.3.	Уравнения с тригонометрическими функциями от различных	
	аргументов	38
6.	Решение простейших тригонометрических неравенств	48
	Упражнения к разделам 1-6.	53
7.	Тригонометрические функции	62
7.1.	Область определения и множество значений тригонометрических	
	функций	62
7.2.	Чётность, нечётность, периодичность тригонометрических функций	66
7.3.	Функция у = $\cos x$, её свойства и график	70
7.4.	Функция y = sin x, её свойства и график	74
7.5.	Функция у = tgx , её свойства и график	78
	Упражнения к разделу 7	83
	Словарь	87
	Список литературы	89

ДЕМИДОВА Наталия Евгениевна

ОСНОВЫ ТРИГОНОМЕТРИИ

Учебное пособие для иностранных граждан

Редактор Гришуткина Н.П.

Подписано в печ	атьФор	омат <u>60*90 1/16</u>		
Бумага газетная.	Печать офсетная			
Уч. изд. л	Уч. печ. л	Тираж	Заказ№	

Нижегородский государственный архитектурно-строительный университет, 603950, Н. Новгород, Ильинская, 65 Полиграфцентр ННГАСУ, 603950, Н. Новгород, Ильинская, 65