Prøve-Eksamen i Diskret Matematik

2. semester, Aalborg Universitet xxxdag den xx. juni 2011, kl. 9.00–13.00.

Tilladte hjælpemidler: Bøger, noter og lignende.

Der må ikke benyttes elektroniske hjælpemidler.

Bemærkninger: Det er vigtigt, at tankegangen bag opgaveløsningerne fremgår af besvarelsen, og at mellemregninger medtages i passende omfang. Ved hver opgave er angivet hvordan opgaven vægtes ved bedømmelsen.

Der er givet to mængder:

$$A = \{x \in \mathbb{Q} \mid 1 \le x \le 2\} \text{ og } B = \{x \in \mathbb{Q} \mid 1 \le x \le 4\}.$$

Vis at A og B har samme kardinalitet.

Lad
$$f(x) = 5x^2 + 7x + 4$$
. Vis at $f(x)$ er $O(x^2)$.

Betragt følgende algoritme:

Procedure talfølge(n: positivt helt tal) x := 1 y := 2 i := 1while i < nbegin z := x + 6y y := x x := z i := i + 1end

1. Vis at følgende er en invariant for while-løkken

$$i \in \mathbb{N} \ \land \ i \le n \ \land \ x = 3^i + (-2)^i \ \land \ y = 3^{i-1} + (-2)^{i-1}.$$

2. Hvad er værdien af x når algoritmen standser. Begrund dit svar.

Figur 1: Benyttes i opgave 4 og opgave 5.

Opgave 4 (13 %)

På figur 1 ses en graf G med punktmængde $\{v_1, v_2, \ldots, v_8\}$ og kantmængde $\{e_1, e_2, \ldots, e_{12}\}$. Kanterne er vægtet som angivet i følgende tabel.

Kant	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}	e_{12}
vægt	7	5	3	1	4	6	6	4	1	1	2	2

I denne opgave skal man finde et minimum vægt udspændende træ i G.

- 1. Find ved hjælp af Kruskals algoritme et minimum vægt udspændende træ T i G. Angiv den rækkefølge kanterne tilføjes til T. (Hvis der er flere muligheder skal der kun angives én mulig rækkefølge.)
- 2. Find ved hjælp af Prims algoritme et minimum vægt udspændende træ T i G. Angiv den rækkefølge kanterne tilføjes til T. (Hvis der er flere muligheder skal der kun angives én mulig rækkefølge.)

Opgave 5 (7%)

Lad G være grafen i figur 1.

- 1. Har G en Hamilton-kreds? Angiv en kreds eller forklar hvorfor den ikke eksisterer.
- 2. Har G en Euler-kreds? Angiv en kreds eller forklar hvorfor den ikke eksisterer.

Opgave 6 (6 %)

Udregn $(111 \cdot 222 + 333 \cdot 444) \mod 11$.

Opgave 7 (7 %)

Bestem den største fælles divisor af 65 og 85 og bestem hele tal s og t så $gcd(65, 85) = s \cdot 65 + t \cdot 85$.

Opgave 8 (13 %)

En talfølge a_0, a_1, a_2, \ldots er defineret rekursivt ved

- $a_0 = 2$
- $a_k = \frac{k+2}{k} a_{k-1}$, for $k \ge 1$.
- 1. Bestem værdien af a_1 , a_2 og a_3 .
- 2. Vis at $a_k = k^2 + 3k + 2$, for alle $k \ge 0$. Hvilken bevisteknik benyttes?

Opgave 9 (8 %)

Find ved hjælp af den kinesiske restsætning alle hele tal x som opfylder

$$x \equiv 2 \pmod{4} \land x \equiv 3 \pmod{9}$$
.

Opgave 10 (11 %)

En mængde $S, S \subseteq \mathbb{N} \times \mathbb{N}$, er defineret rekursivt ved

- $(0,0) \in S$,
- hvis $(a,b) \in S$ så er (a+1,b+3), (a+2,b+2) og (a+3,b+1) også i S
- 1. Vis at $(4,8) \in S$.
- 2. Vis ved strukturel induktion at 4 går op i a + b for alle $(a, b) \in S$.

Opgave 11 (5 %)

Lad A, B og C være mængder med fem element hver, og antag at hver af mængderne $A \cap B$, $A \cap C$, $B \cap C$ og $A \cap B \cap C$ har ét element. Hvor mange elementer er der i mængden $A \cup B \cup C$?

Husk at skrive jeres fulde navn på hver side af besvarelsen. Nummerer siderne, og skriv antallet af afleverede ark på 1. side.