Name:	 RollNo.:	
Name:	ROILNO.:	

THAPAR INSTITUTE OF ENGINEERING & TECHNOLOGY-PATIALA Department of Computer Science and Engineering

U-grade / Axillary Exam (March 11, 2022)

Probability and Statistics (UCS410)

M.M. 45 Time: 2 Hours

Instructors: AMT

Note: Attempt any FIVE questions. Assume missing data suitably, if any. Some useful data P(Z > 1.67) = 0.04746, P(Z < -3) = 0.00135, P(Z < 3) = 0.99865, P(Z < 0) = 0.5, P(Z < -1.5) = 0.06681, P(-2 < Z < 2) = 0.9544, P(-1 < Z < 1) = 0.6826 Here, Z is the standard Normal variable.

Q1 (a)	Two computers A and B are to be marketed. A salesman who is assigned the job of finding customers for them has 70% and 40% chances respectively of succeeding in case of computer A and B. The two computers can be sold independently. Given that he was able to sell at least one computer, what is the probability that computer A has been sold?	4 Marks
Q1 (b)	 (i) State Bayes Theorem. (ii) Suppose that a product is produced in three factories X, Y, and Z. It is known that factory X produces thrice as many items as factory Y, and that factories Y and Z produce the same number of items. Assume that it is known that 2 per cent of the items produced by each factories X and Z are defective while 4 percent of those manufactured by factory Y are defective. All the items produced in the three factories are stocked, and an item of product is selected at random. 	5 Marks
	 What is the probability that this item is defective? If an item selected at random is found to defective, what is the probability that it was produced by factory X, Y and Z respectively? 	Š
Q2(a)	 Consider a random variable X with possible outcomes as 0, 1, 2, 3 Suppose that P(X = j) = (1-a)a^j, j = 0, 1, 2, 3 a) Find the values of 'a' so that this model represents a legitimate probability mass function. b) Show that the probability P(X > s + t X > s) = P(X ≥ t). 	3+3 Marks
Q2 (b)	Suppose X has exponential distribution with parameter $\lambda = 4$. Find the Cumulative Distribution Function (CDF) $F(t)$ of this distribution and hence calculate $P(X \ge 1)$ using this $F(t)$.	3 Marks
Q3 (a)	Find Moment Generating Function(MGF) for exponential distribution.	3 Marks
Q3 (b)	A component exhibits Normal Distribution for failure rate with mean of 3750 hrs. and standard deviation of 500 hrs. What percentage of parts will survive up to 4500 hrs.?	4 Marks

O3(c)	What is the probability that at least two out of n people have the same birthday? Assume 365 days in a year and that all days are equally likely.				
Q4 (a)	Fit the curve $y = ax^b$ for the following data				
	x: 1 2 3 4 5 6				
	y: 1200 900 600 200 110 50				
Q4 (b)	Suppose X has exponential distribution with parameter $\lambda = 4$. Find the Cumulative Distribution Function (CDF) $F(t)$ of this distribution and hence calculate $P(X \ge 1)$ using this $F(t)$.	3 Marks			
Q5 (a)	Random variable <i>X</i> follows the continuous uniform distribution over the interval 0 to 1 i.e. [0,1]. Find the probability density function (pdf) of $Y = \frac{1}{X}$?				
Q5(b)	The first four moments of a distribution about the value 4 of the variable are -1·5, 17, -30 and 108. Find the first four moments about the mean.				
Q6	Let the joint probability density function for (X, Y) be $f(x, y) = \begin{cases} \frac{x+y}{2}, & 0 < x, \ 0 < y, \ and \ 3x + y < 3 \\ 0, & Otherwise \end{cases}$ i. Find the probability $P(X < Y)$. Draw the clear target region under consideration ii. Find the marginal probability density function of X . iii. Find the marginal probability density function of Y . iv. Are X and Y independent? If not, find $Cov(X, Y)$.				
Q7 (a)	Suppose that the marks of students in a course are normally distributed with mean 55 and standard deviation 17. We take a sample of size 35, and note that the marks of students are: 82, 70, 45, 80, 49, 52, 59, 43, 36, 76, 72, 48, 64, 60, 38, 54, 46, 68, 35, 55, 61, 58, 76, 56, 62, 38, 63, 37, 78, 37, 60, 47, 38, 14, 32. Find the 95.44% confidence interval µ.				
Q7(b)	Define a Sample and Sample Mean. Also, Show that Sample Mean is an unbiased estimate of population mean.	4 Marks			