Risoluzione di sistemi lineari con metodi iterativi. Calcolo Numerico a.a. 2021-22

Elena Loli Piccolomini

Metodi iterativi

• I metodi iterativi. Apartire da uno o più dati iniziali, calcolano dei valori x_k attraverso un procedimento che si ripete (itera) sempre uguale ad ogni passo k:

$$x_k = G(x_{k-1})$$

• Sotto opportune condizioni gli iterati x_k convergono alla soluzione x^* (tale che $x^* = A^{-1}b$) per $k \to \infty$.

Generalità

Dato il sistema lineare $\mathbf{A}\mathbf{x} = \mathbf{b}$ i metodi iterativi ricercano la soluzione mediante una opportuna successione \mathbf{x}_{k+1} che può avere una delle seguenti forme:

$$\begin{split} \mathbf{x}_{k+1} &= \mathbf{H}\mathbf{x}_k + \mathbf{d} \, \left\{ \begin{array}{l} \text{Metodo di Jacobi} \\ \text{Metodo di Gauss Seidel} \\ \text{Metodi di Rilassamento (SOR, SSOR)} \end{array} \right. \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \alpha_k \mathbf{p}_k \, \left\{ \begin{array}{l} \text{Metodo Gradienti Coniugati} \\ \text{Metodo GMRES} \\ \text{Metodi di Krylov} \end{array} \right. \end{split}$$

dove $\mathbf{H} \in \mathbb{R}^{n \times n}$, $\mathbf{d}, \mathbf{p}_k \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$.

Metodi iterativi

Schema algoritmo iterativo:

- 1. Dati: x₀
- 2.k=1
- 3. Ripeti finchè convergenza

$$3.1 x_k = G(x_{k-1})$$

$$3.2 k = k + 1$$

end

Sono da specificare nel singolo metodo le condizioni di convergenza che comunque contengono sempre la seguente:

$$k \leq maxit$$

Metodi iterativi

Convergenza metodi iterativi.

Si dice che la successione x_k generata da un metodo iterativo converge ad α con ordine $p \ge 1$ se:

$$\exists C > 0: \frac{|x_{k+1} - \alpha|}{|x_k - \alpha|^p} \le C, \forall k \ge k_0$$

dove k_0 è un intero opportuno. In tal caso si dirà che il **metodo è di ordine** p.

Osservazione. nel caso p = 1 per avere convergenza deve essere C < 1. In questo caso C prende il nome di *fattore di convergenza*.

Introduzione ai metodi iterativi per sistemi lineari

• Consentono di mantenere la struttura della matrice

- Si applicano a matrici di grandi dimensioni e sparse, quali quelle che si incontrano nella risoluzione di equazioni differenziali con condizion ai limiti, risolte con metodi alle differenze finite o agli elementi finiti.
- La complessità computazionale è di un prodotto matrice vettore per iterazione.

Introduzione ai metodi iterativi per sistemi lineari

- Consentono di mantenere la struttura della matrice
- Si applicano a matrici di grandi dimensioni e sparse, quali quelle che si incontrano nella risoluzione di equazioni differenziali con condizioni ai limiti, risolte con metodi alle differenze finite o agli elementi finiti.
- La complessità computazionale è di un prodotto matrice vettore per iterazione.

Introduzione ai metodi iterativi per sistemi lineari

- Consentono di mantenere la struttura della matrice
- Si applicano a matrici di grandi dimensioni e sparse, quali quelle che si incontrano nella risoluzione di equazioni differenziali con condizioni ai limiti, risolte con metodi alle differenze finite o agli elementi finiti.
- La complessità computazionale è di un prodotto matrice vettore per iterazione.

Metodi iterativi per sistemi lineari

Dato il sistema lineare $\mathbf{A}\mathbf{x} = \mathbf{b}$ i metodi iterativi ricercano la soluzione mediante una opportuna successione \mathbf{x}_{k+1} che può avere una delle seguenti forme:

$$\begin{split} \mathbf{x}_{k+1} &= \mathbf{H}\mathbf{x}_k + \mathbf{d} \, \left\{ \begin{array}{l} \text{Metodo di Jacobi} \\ \text{Metodo di Gauss Seidel} \\ \text{Metodi di Rilassamento (SOR, SSOR)} \end{array} \right. \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \alpha_k \mathbf{p}_k \, \left\{ \begin{array}{l} \text{Metodo Gradienti Coniugati} \\ \text{Metodo GMRES} \\ \text{Metodi di Krylov} \end{array} \right. \end{split}$$

dove $\mathbf{H} \in \mathbb{C}^{n \times n}$, $\mathbf{d}, \mathbf{p}_k \in \mathbb{C}^n$, $\alpha \in \mathbb{R}$.

Introduzione ai metodi iterativi

 $A \in \mathbb{R}^{n \times n}$ una matrice non singolare,

$$A = M - N$$

dove M è una matrice non singolare e caratterizzata dal fatto che Mz = h sia "facilmente" risolubile.

Allora il sistema

$$Ax = b \tag{1}$$

si può scrivere come

$$Mx - Nx = b$$

ovvero

$$x = Tx + c \tag{2}$$

dove $T = M^{-1}N$ e $c = M^{-1}b$. Il sistema (5) è equivalente al (2).

Introduzione ai metodi iterativi

Assegnato un vettore iniziale x_0 si considera la successione x_1, x_2, \ldots definita da

$$x_k = Tx_{k-1} + c$$
 $k = 1, 2, ...$ (3)

Se

- la successione $\{x_k\}$ è convergente e
- $x^* = \lim_{k \to \infty} x_k$

passando al limite

$$x^* = Tx^* + c. (4)$$

Quindi x^* è la soluzione del sistema.

La relazione (3) individua un **metodo iterativo** per determinare la soluzione x^* di (5); la matrice T si chiama *matrice di iterazione* del metodo.

Introduzione ai metodi iterativi

Al variare del vettore iniziale x_0 si ottengono da (3) diverse successioni $\{x_k\}$, alcune delle quali sono convergenti ed altre no.

Un metodo iterativo è detto **convergente** se, qualunque sia il vettore iniziale x_0 , la successione $\{x_k\}$ è convergente.

Esempio.

$$T = \left(egin{array}{ccc} rac{1}{2} & 0 & 0 \ 0 & rac{1}{2} & 0 \ 0 & 0 & 2 \end{array}
ight) \quad c = \left(egin{array}{c} 0 \ 0 \ 0 \end{array}
ight)$$

per cui $x^* = (0,0,0)^T$, si ha

$$T^k = \left(\begin{array}{ccc} \frac{1}{2^k} & 0 & 0\\ 0 & \frac{1}{2^k} & 0\\ 0 & 0 & 2^k \end{array}\right).$$

Metodi iterativi

Se $x_0 = (1,0,0)^T$ si ottiene la successione

$$x_k = (1/2^k, 0, 0)$$
 $k = 1, 2, ...$

che converge alla soluzione x^* del sistema. Se invece si pone $x_0 = (0, 1, 1)^T$ si ottiene la successione

$$x_k = (0, 1/2^k, 2^k)$$
 $k = 1, 2, ...$

che non converge a x^* .

Questo è un esempio di metodo **non convergente**.

Teorema

Il metodo iterativo è convergente se e solo se $\rho(T) < 1$.

Velocità convergenza metodi iterativi

Fissata una norma di vettori $\|\cdot\|$ e la corrispondente norma di matrici indotta

$$||e_k|| \le ||T^k|| ||e_0||$$

EsempioSiano

$$T = \left(\begin{array}{cc} 0.5 & 0 \\ 0 & 0.6 \end{array} \right) \qquad S = \left(\begin{array}{cc} 0.5 & 0.25 \\ 0 & 0.5 \end{array} \right).$$

Si ha

$$T^k = \begin{pmatrix} 0.5^k & 0 \\ 0 & 0.6^k \end{pmatrix} \qquad S^k = \begin{pmatrix} 0.5^k & k0.5^{k+1} \\ 0 & 0.5^k \end{pmatrix}.$$

Utilizzando la norma infinito risulta

$$||T^k||_{\infty} = 0.6^k$$
 $||S^k||_{\infty} = (2+k)0.5^{k+1}$.

• per $k \le 9$ si ha che $||T^k||_{\infty} < ||S^k||_{\infty}$ e per $k \ge 10$ si che che $||T^k||_{\infty} > ||S^k||_{\infty}$

Costruzione dei metodi iterativi

$$A = D - E - F$$

dove $D = \text{diag}\{a_{11}, a_{22}, \dots, a_{nn}\}, -E$ è la parte strettamente triangolare inferiore di A e -F è la parte strettamente triangolare superiore. Si definisce il procedimento iterativo

$$Mx_k = Nx_{k-1} + b$$

Metodo di Jacobi

metodo di Jacobi (o delle sostituzioni simultanee):

$$M = D$$
 $N = E + F$.

La matrice di iterazione ${\mathcal J}$ del metodo di Jacobi è

$$\mathcal{J} = D^{-1}(E + F) = I - D^{-1}A.$$

Il metodo di Jacobi è definito se D è non singolare ($a_{ii} \neq 0$ per ogni i = 1, ..., n).

$$x_i^{(k)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k-1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)}\right) / a_{ii}, \quad i = 1, \dots, n$$

dove il superindice k indica il numero di iterazione e $x^{(0)}$ è un vettore arbitrario.

Metodo di Jacobi

metodo di Jacobi (o delle sostituzioni simultanee):

$$M = D$$
 $N = E + F$.

La matrice di iterazione ${\mathcal J}$ del metodo di Jacobi è

$$\mathcal{J} = D^{-1}(E + F) = I - D^{-1}A.$$

Il metodo di Jacobi è definito se D è non singolare ($a_{ii} \neq 0$ per ogni i = 1, ..., n).

$$x_i^{(k)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k-1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)}\right) / a_{ii}, \quad i = 1, \dots, n$$

dove il superindice k indica il numero di iterazione e $x^{(0)}$ è un vettore arbitrario.

◆ロト ◆個ト ◆差ト ◆差ト 差 めの○

Metodo di Gauss-Sidel

metodo di Gauss-Sidel (o delle sostituzioni successive)

$$M = D - E$$
 $N = F$.

La matrice di iterazione è

$$\mathcal{L}_1 = (D - E)^{-1} F.$$

Il metodo di Jacobi è definito se D-E è non singolare ($a_{ii} \neq 0$ per ogni $i=1,\ldots,n$) ed è espresso dal procedimento iterativo

$$x_i^{(k)} = \Big(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)}\Big) / a_{ii}, \quad i = 1, \dots, n$$

dove il superindice k indica il numero di iterazione e $x^{(0)}$ è un vettore arbitrario.

Metodo di Gauss-Sidel

metodo di Gauss-Sidel (o delle sostituzioni successive)

$$M = D - E$$
 $N = F$.

La matrice di iterazione è

$$\mathcal{L}_1 = (D - E)^{-1} F.$$

Il metodo di Jacobi è definito se D-E è non singolare ($a_{ii} \neq 0$ per ogni $i=1,\ldots,n$) ed è espresso dal procedimento iterativo

$$x_i^{(k)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)}\right) / a_{ii}, \quad i = 1, \dots, n$$

dove il superindice k indica il numero di iterazione e $x^{(0)}$ è un vettore arbitrario.

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ かへで

Metodi di Jacobi e Gauss-Sidel

$$A = \begin{pmatrix} 3 & 0 & 4 \\ 7 & 4 & 2 \\ -1 & -1 & 2 \end{pmatrix} \quad b = \begin{pmatrix} 7 \\ 13 \\ -4 \end{pmatrix}$$

Matrice di iterazione di Jacobi:

$$J = \begin{pmatrix} 0 & 0 & -4/3 \\ -7/4 & 0 & -1/2 \\ -1/2 & -1/2 & 0 \end{pmatrix} \quad \rho(J) = 1.337510$$

Matrice di iterazione di Gauss-Sidel

$$G = \begin{pmatrix} 0 & 0 & -4/3 \\ 0 & 0 & 11/6 \\ 0 & 0 & -1/4 \end{pmatrix} \quad \rho(G) = 0.25$$

quindi Gauss-Sidel è convergente, Jacobi no.

Metodi di Jacobi e Gauss-Sidel

$$A = \begin{pmatrix} -3 & 3 & 6 \\ -4 & 7 & -8 \\ 5 & 7 & -9 \end{pmatrix} \quad b = \begin{pmatrix} -6 \\ -5 \\ 3 \end{pmatrix}$$

Matrice di iterazione di Jacobi:

$$J = \begin{pmatrix} 0 & 1 & -2 \\ 4/7 & 0 & 8/7 \\ 5/9 & 7/9 & 0 \end{pmatrix} \quad \rho(J) = 0.8133091$$

Matrice di iterazione di Gauss-Sidel

$$G = egin{pmatrix} 0 & 1 & -2 \ 0 & 4/7 & 0 \ 0 & 1 & -10/9 \end{pmatrix} \quad
ho(G) = 1.111111$$

quindi Jacobi è convergente, Gauss-Sidel no.

Criteri di arresto

 $||x_k - x_{k-1}|| \le \varepsilon ||x_k||$

dove ε è una tolleranza relativa prefissata.

Matrici particolari

- Una matrice $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ è con diagonale dominante in senso stretto se $|a_{ii}| > \sum_{i \neq j} |a_{ij}|$ per ogni i = 1, 2, ..., n.
- Una matrice $A=(a_{ij})\in\mathbb{R}^{n\times n}$ è **irriducibile** se non esiste una matrice di permutazione P per cui

$$PAP^{-1} = \left(\begin{array}{cc} B_{11} & B_{12} \\ 0 & B_{22} \end{array}\right)$$

con B_{11} , B_{22} matrici quadrate.

• Una matrice $A=(a_{ij})\in\mathbb{R}^{n\times n}$ si dice **irriducibile con diagonale dominante** se A è irriducibile e $|a_{ii}|\geq\sum_{i\neq j}|a_{ij}|,\ i=1,2,\ldots,n$, con almeno un indice i per cui la disuguaglianza vale in senso stretto.

Matrici particolari

- Una matrice $A=(a_{ij})\in\mathbb{R}^{n\times n}$ è con diagonale dominante in senso stretto se $|a_{ii}|>\sum_{i\neq j}|a_{ij}|$ per ogni $i=1,2,\ldots,n$.
- Una matrice $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ è **irriducibile** se non esiste una matrice di permutazione P per cui

$$PAP^{-1} = \left(\begin{array}{cc} B_{11} & B_{12} \\ 0 & B_{22} \end{array}\right)$$

con B_{11} , B_{22} matrici quadrate.

• Una matrice $A=(a_{ij})\in\mathbb{R}^{n\times n}$ si dice **irriducibile con diagonale dominante** se A è irriducibile e $|a_{ii}|\geq\sum_{i\neq j}|a_{ij}|,\ i=1,2,\ldots,n$, con almeno un indice i per cui la disuguaglianza vale in senso stretto.

Matrici particolari

- Una matrice $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ è con diagonale dominante in senso stretto se $|a_{ii}| > \sum_{i \neq i} |a_{ij}|$ per ogni i = 1, 2, ..., n.
- Una matrice $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ è **irriducibile** se non esiste una matrice di permutazione P per cui

$$PAP^{-1} = \begin{pmatrix} B_{11} & B_{12} \\ 0 & B_{22} \end{pmatrix}$$

con B_{11} , B_{22} matrici quadrate.

• Una matrice $A=(a_{ij})\in\mathbb{R}^{n\times n}$ si dice **irriducibile con diagonale dominante** se A è irriducibile e $|a_{ii}|\geq\sum_{i\neq j}|a_{ij}|,\ i=1,2,\ldots,n$, con almeno un indice i per cui la disuguaglianza vale in senso stretto.

- Se A è una matrice di ordine n con diagonale dominante in senso stretto, oppure irriducibile con diagonale dominante allora il metodo di Jacobi è convergente.
- Se A è una matrice di ordine n con diagonale dominante in senso stretto, oppure irriducibile con diagonale dominante allora il metodo di Gauss-Seidel è convergente.
- Sia A una matrice hermitiana non singolare con elementi sulla diagonale reale e positivi. Allora il metodo di Gauss-Seidel è convergente se e solo se A è definita positiva.

- Se A è una matrice di ordine n con diagonale dominante in senso stretto, oppure irriducibile con diagonale dominante allora il metodo di Jacobi è convergente.
- Se A è una matrice di ordine n con diagonale dominante in senso stretto, oppure irriducibile con diagonale dominante allora il metodo di Gauss-Seidel è convergente.
- Sia A una matrice hermitiana non singolare con elementi sulla diagonale reale e positivi. Allora il metodo di Gauss-Seidel è convergente se e solo se A è definita positiva.

- Se A è una matrice di ordine n con diagonale dominante in senso stretto, oppure irriducibile con diagonale dominante allora il metodo di Jacobi è convergente.
- Se A è una matrice di ordine n con diagonale dominante in senso stretto, oppure irriducibile con diagonale dominante allora il metodo di Gauss-Seidel è convergente.
- Sia A una matrice hermitiana non singolare con elementi sulla diagonale reale e positivi. Allora il metodo di Gauss-Seidel è convergente se e solo se A è definita positiva.

Matrici tridiagponali

Sia $A \in \mathbb{C}^{n \times n}$ matrice tridiagonale:

$$A = \begin{pmatrix} a_1 & c_1 \\ b_1 & a_2 & c_2 \\ & \ddots & \ddots & \ddots \\ & & a_{n-1} & 2 & c_{n-1} \\ & & & b_{n-1} & a_n \end{pmatrix}$$

in cui $a_i \neq 0, i = 1, \dots n$. Valgono:

- **1** se μ autovalore di J, allora μ^2 autovalore di G;
- $oldsymbol{0}$ se λ autovalore non nullo di G allora $\sqrt(\lambda)$ autovalore di J.

Quindi, per le matrici tridiagonali, il metodo di Gauss-Sidel è convergente se e solo se lo è il metodo di Jacobi e vale:

$$\rho(G) = \rho^2(J)$$

Metodi di rilassamento

Il metodo di Gauss-Sidel può essere visto nella forma:

$$x_k = x_{k-1} + r_k$$

dove:

$$r_k = x_k - x_{k-1} = D^{-1}(Ex_k + Fx_{k-1} + b) - x_{k-1}$$

Quindi il punto $x^{(k)}$ si ottiene a partire da x_{k-1} effettuando un passo nella direzione r_k di lunghezza $\|r_k\|_2$. Non sempre questa è la scelta migliore per avere una convergenza veloce. Si modifica allora la lunghezza del passo introducendo un parametro ω :

$$x_k = x_{k-1} + \omega r_k$$

metodi di rilassamento:

- $\omega < 0$ sottorilassamento
- $\omega > 0$ sovrarilassamento

Metodi di rilassamento

Il metodo di Gauss-Sidel può essere visto nella forma:

$$x_k = x_{k-1} + r_k$$

dove:

$$r_k = x_k - x_{k-1} = D^{-1}(Ex_k + Fx_{k-1} + b) - x_{k-1}$$

Quindi il punto $x^{(k)}$ si ottiene a partire da x_{k-1} effettuando un passo nella direzione r_k di lunghezza $\|r_k\|_2$. Non sempre questa è la scelta migliore per avere una convergenza veloce. Si modifica allora la lunghezza del passo introducendo un parametro ω :

$$x_k = x_{k-1} + \omega r_k$$

metodi di rilassamento:

- $\omega < 0$ sottorilassamento
- $\omega > 0$ sovrarilassamento

Metodo SOR

metodo di Gauss-Seidel rilassato (o SOR):

$$x_k = (D - \omega E)^{-1} ((1 - \omega)D + \omega F) x_{k-1} + \omega (D - \omega E)^{-1} b,$$

in cui la matrice di iterazione è

$$\mathcal{L}_{\omega} = (D - \omega E)^{-1} ((1 - \omega)D + \omega F).$$

Metodi di rilassamento

Per ogni matrice A di ordine n una **condizione necessaria di convergenza per il metodo SOR** è (Teorema di Kahan)

$$0 < \omega < 2$$
.

La condizione $0<\omega<2$ risulta anche sufficiente se la matrice A è definita positiva.

Teorema (Ostrowski-Reich).

Se A è definita positiva e ω è un numero reale $0<\omega<2$, allora il metodo di rilassamento è convergente.

Convergenza metodi SOR

Il valore ottimale di ω è

$$\omega^* = \frac{2}{1 + \sqrt{1 - \rho(\mathcal{J})^2}}$$

e

$$\rho(\mathcal{L}_{\omega^*}) = \omega^* - 1 = \left(\frac{\rho(\mathcal{J})}{1 + \sqrt{1 - \rho(\mathcal{J})^2}}\right)^2. \tag{5}$$

Risoluzione di sistemi lineari con metodi ite

Metodi di Krylov

Metodi iterativi negli spazi di Krylov per la risoluzione di

$$Ax = b$$

- Non hanno, al contrario dei metodi iterativi stazionari, una matrice di iterazione.
- minimizzano, alla k-esima iterazione, una misura dell'errore nello spazio:

$$x_0 + \mathcal{K}_k$$

dove x_0 è l'iterato iniziale e \mathcal{K}_k è il k-esimao sottospazio di Krylov:

$$\mathcal{K}_k = span(r_0, Ar_0, \dots A^{k-1}r_0)$$

dove

$$r_k = b - Ax_k, \quad k = 1, \dots n$$

Gradienti Coniugati (I)

A simmetrica e definita positiva ($\forall \mathbf{x} \in \mathbb{R} \mathbf{x}^t \mathbf{A} \mathbf{x} > 0$).

$$\min_{\mathbf{x} \in \mathbb{R}} \Phi(\mathbf{x}) \text{ dove } \Phi(\mathbf{x}) = \frac{1}{2} \mathbf{x}^t \mathbf{A} \mathbf{x} - \mathbf{x}^t \mathbf{b}$$

$$\updownarrow$$

$$\mathbf{A} \mathbf{x} = \mathbf{b}$$

Vettore **residuo**: $\mathbf{r} = \mathbf{b} - \mathbf{A}\mathbf{x}$ Si approssima la soluzione mediante la successione:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$

dove \mathbf{p}_k è detta direzione di discesa, $\alpha_k \geq 0$ è il passo.

Gradienti Coniugati:convergenza

Teorema. Sia A spd. Allora l'algoritmo dei Gradienti Coniugati (CG) calcola la soluzione in n iterazioni.

Teorema Sia A spd. Se ci sono esattamente $k \leq N$ autovalori distinti di A, allora le iterazioni di CG terminano in al più k iterazioni

- Questo è vero in aritmetica esatta, in aritmetica finita in generale le iterazioni per la convergenza sono in numero maggiore di n.
- Per questo il CG viene generalmente visto come metodo iterativo e non esatto.
- Quindi le iterazioni terminano quando una certa tolleranza di errore è raggiunta

Gradienti Coniugati:convergenza

Teorema. Sia A spd. Allora l'algoritmo dei Gradienti Coniugati (CG) calcola la soluzione in n iterazioni.

Teorema Sia A spd. Se ci sono esattamente $k \leq N$ autovalori distinti di A, allora le iterazioni di CG terminano in al più k iterazioni

- Questo è vero in aritmetica esatta, in aritmetica finita in generale le iterazioni per la convergenza sono in numero maggiore di n.
- Per questo il CG viene generalmente visto come metodo iterativo e non esatto.
- Quindi le iterazioni terminano quando una certa tolleranza di errore è raggiunta

Gradienti Coniugati:convergenza

Teorema. Sia A spd. Allora l'algoritmo dei Gradienti Coniugati (CG) calcola la soluzione in n iterazioni.

Teorema Sia A spd. Se ci sono esattamente $k \leq N$ autovalori distinti di A, allora le iterazioni di CG terminano in al più k iterazioni

- Questo è vero in aritmetica esatta, in aritmetica finita in generale le iterazioni per la convergenza sono in numero maggiore di n.
- Per questo il CG viene generalmente visto come metodo iterativo e non esatto.
- Quindi le iterazioni terminano quando una certa tolleranza di errore è raggiunta

Gradienti Coniugati:criterio di arresto

Relazione di decrescita dell'errore in norma A:

$$||x_k - x^*||_A \le 2||x_0 - x^*||_A \left(\frac{K_2(A) - 1}{K_2(A) + 1}\right)^2$$

dove
$$\sqrt{K_2(A)} = \lambda_1/\lambda_n$$
.

- Questa stima può essere anche molto pessimistica. Per esempio quando gli autovalori di A sono accumulati in pochi intervalli, il numero di condizione può essere molto grande ma il CG converge velocemente.
- La trasformazione del problema in uno i cui autovalori sono tutti accumulati verso 1 si chiama **precondizionamento**

Gradienti Coniugati:criterio di arresto

Relazione di decrescita dell'errore in norma A:

$$||x_k - x^*||_A \le 2||x_0 - x^*||_A \left(\frac{\kappa_2(A) - 1}{\kappa_2(A) + 1}\right)^2$$

dove
$$\sqrt{K_2(A)} = \lambda_1/\lambda_n$$
.

- Questa stima può essere anche molto pessimistica. Per esempio quando gli autovalori di A sono accumulati in pochi intervalli, il numero di condizione può essere molto grande ma il CG converge velocemente.
- La trasformazione del problema in uno i cui autovalori sono tutti accumulati verso 1 si chiama **precondizionamento**

• Criterio per terminare le iterazioni:

$$||b - Ax_k||_2 = ||r_k||_2 \le \eta ||b||_2.$$

- La matrice A non deve necessriamente essere memorizzata; solo una funzione per calcolare il prodotto matrice-vettore è necessaria. Per questo i metodi negli spazi di Krylov sono di solito detti matrix-free.
- Il costo per iterazione è il costo della funzione che calcola il prodotto Av.

Criterio per terminare le iterazioni:

$$||b - Ax_k||_2 = ||r_k||_2 \le \eta ||b||_2.$$

- La matrice A non deve necessriamente essere memorizzata; solo una funzione per calcolare il prodotto matrice-vettore è necessaria. Per questo i metodi negli spazi di Krylov sono di solito detti matrix-free.
- Il costo per iterazione è il costo della funzione che calcola il prodotto Av.

• Criterio per terminare le iterazioni:

$$||b - Ax_k||_2 = ||r_k||_2 \le \eta ||b||_2.$$

- La matrice A non deve necessriamente essere memorizzata; solo una funzione per calcolare il prodotto matrice-vettore è necessaria. Per questo i metodi negli spazi di Krylov sono di solito detti matrix-free.
- Il costo per iterazione è il costo della funzione che calcola il prodotto Av.

• Criterio per terminare le iterazioni:

$$||b - Ax_k||_2 = ||r_k||_2 \le \eta ||b||_2.$$

- La matrice A non deve necessriamente essere memorizzata; solo una funzione per calcolare il prodotto matrice-vettore è necessaria. Per questo i metodi negli spazi di Krylov sono di solito detti matrix-free.
- Il costo per iterazione è il costo della funzione che calcola il prodotto Av.

Gradienti Coniugati: matlab

Nella function Matlab cg si implementa tale metodo arrestando le iterazioni se $\|\mathbf{r}_k\| < \epsilon \|\mathbf{b}\|$

```
\begin{split} & function \ [x, iter] = cg(A, b); \\ & x = zeros(size(b)); \\ & r = b; nb = sqrt(b'*b); \\ & num = r'*r; p = r; \\ & err = sqrt(num); maxit = n; iter = 0; \\ & while(err > eps * nb & iter < maxit) \\ & v = A*p; den = p'*v; alfa = num/den; den = num; \\ & x = x + alfa*p; r = r - alfa*v; \\ & num = r'*r; err = sqrt(num); \\ & beta = num/den; p = r + beta*p; iter = iter + 1; \\ end \end{aligned}
```

- Se il numero di condizione $\mathcal{K}_2(A)$ è grande il metodo può essere lento.
- Per ridurre il numero di condizione, si può sostituire il sistema Ax0b con un altro sistema con matrice spd e stessa soluzione.
- Se M è una matrice spd che approssima A^{-1} allora gli autovalori di MA sono vicini ad 1.
- Tuttavia MA in generale non è spd e quindi non è possibile applicare i CG al sistema: MAx = Mb.

- Se il numero di condizione $\mathcal{K}_2(A)$ è grande il metodo può essere lento.
- Per ridurre il numero di condizione, si può sostituire il sistema Ax0b con un altro sistema con matrice spd e stessa soluzione.
- Se M è una matrice spd che approssima A^{-1} allora gli autovalori di MA sono vicini ad 1.
- Tuttavia MA in generale non è spd e quindi non è possibile applicare i CG al sistema: MAx = Mb.

- Se il numero di condizione $\mathcal{K}_2(A)$ è grande il metodo può essere lento.
- Per ridurre il numero di condizione, si può sostituire il sistema Ax0b con un altro sistema con matrice spd e stessa soluzione.
- Se M è una matrice spd che approssima A^{-1} allora gli autovalori di MA sono vicini ad 1.
- Tuttavia MA in generale non è spd e quindi non è possibile applicare i CG al sistema: MAx = Mb.

- Se il numero di condizione $\mathcal{K}_2(A)$ è grande il metodo può essere lento.
- Per ridurre il numero di condizione, si può sostituire il sistema Ax0b con un altro sistema con matrice spd e stessa soluzione.
- Se M è una matrice spd che approssima A^{-1} allora gli autovalori di MA sono vicini ad 1.
- Tuttavia MA in generale non è spd e quindi non è possibile applicare i CG al sistema: MAx = Mb.

• Se S approssima B^{-1} dove $B^2 = A$, posso scrivere il sistema con un precondizionamento two-sides:

$$SASz = Sy$$

la cui soluzione è $z = S^{-1}x$.

 Questo procedimento si può fare senza ricorrere a due moltiplicazioni per la matrice S ad ogni iterazione.

• Se S approssima B^{-1} dove $B^2 = A$, posso scrivere il sistema con un precondizionamento two-sides:

$$SASz = Sy$$

la cui soluzione è $z = S^{-1}x$.

 Questo procedimento si può fare senza ricorrere a due moltiplicazioni per la matrice S ad ogni iterazione.

- Il costo del PCG è uguale a quello del CG con in più:
 - 1 l'applicazione del precondizionatore M
 - 2 il prodotto scalare per calcolare τ_k
- Precondizionatori efficienti tengono conto della struttura della matrice
 A
- esempi di precondizionatori:
 - precondizionatore per il metodo di Jacobi: M è l'inverso della diagonale di A
 - ▶ Cholsky incompleto: se $A = LL^T + E$ con E piccola, $M = (LL^T)^{-1}$.

- Il costo del PCG è uguale a quello del CG con in più:
 - 1 l'applicazione del precondizionatore M
 - 2 il prodotto scalare per calcolare τ_k
- Precondizionatori efficienti tengono conto della struttura della matrice
 A
- esempi di precondizionatori:
 - precondizionatore per il metodo di Jacobi: M è l'inverso della diagonale di A
 - ▶ Cholsky incompleto: se $A = LL^T + E$ con E piccola, $M = (LL^T)^{-1}$.

- Il costo del PCG è uguale a quello del CG con in più:
 - 1 l'applicazione del precondizionatore M
 - 2 il prodotto scalare per calcolare τ_k
- Precondizionatori efficienti tengono conto della struttura della matrice
 A
- esempi di precondizionatori:
 - precondizionatore per il metodo di Jacobi: M è l'inverso della diagonale di A
 - ▶ Cholsky incompleto: se A = LL' + E con E piccola, $M = (LL')^{-1}$.

- Il costo del PCG è uguale a quello del CG con in più:
 - 1 l'applicazione del precondizionatore M
 - 2 il prodotto scalare per calcolare τ_k
- Precondizionatori efficienti tengono conto della struttura della matrice
 A
- esempi di precondizionatori:
 - precondizionatore per il metodo di Jacobi: M è l'inverso della diagonale di A
 - ▶ Cholsky incompleto: se $A = LL^{T} + E$ con E piccola, $M = (LL^{T})^{-1}$.

- Il costo del PCG è uguale a quello del CG con in più:
 - 1 l'applicazione del precondizionatore M
 - 2 il prodotto scalare per calcolare au_k
- Precondizionatori efficienti tengono conto della struttura della matrice A
- esempi di precondizionatori:
 - precondizionatore per il metodo di Jacobi: M è l'inverso della diagonale di A
 - ▶ Cholsky incompleto: se $A = LL^T + E$ con E piccola, $M = (LL^T)^{-1}$.

- Il costo del PCG è uguale a quello del CG con in più:
 - 1 l'applicazione del precondizionatore M
 - 2 il prodotto scalare per calcolare au_k
- Precondizionatori efficienti tengono conto della struttura della matrice
 A
- esempi di precondizionatori:
 - precondizionatore per il metodo di Jacobi: M è l'inverso della diagonale di A
 - ▶ Cholsky incompleto: se $A = LL^T + E$ con E piccola, $M = (LL^T)^{-1}$.

- Il costo del PCG è uguale a quello del CG con in più:
 - 1 l'applicazione del precondizionatore M
 - 2 il prodotto scalare per calcolare τ_k
- Precondizionatori efficienti tengono conto della struttura della matrice A
- esempi di precondizionatori:
 - precondizionatore per il metodo di Jacobi: M è l'inverso della diagonale di A
 - ▶ Cholsky incompleto: se $A = LL^T + E$ con E piccola, $M = (LL^T)^{-1}$.

CG applicato alle equazioni normali (CGLS o CGNR)

Se A è nonsingolare e non simmetrica, si può pensare di risolvere Ax = b applicando il CG alle equazioni normali:

$$A^T A x = A^T b$$
.

Questo metodo è detto **CGLS** o **CGNR**. Tutta la teoria del CG e PCG si può ora applicare.