

Relatório de Física Aplicada

Índice

Índice	2
Introdução	3
US401 - Apresente um croqui de uma estrutura, e suas divisões internas	3
US402 - Pretende-se saber qual o conjunto de materiais a usar nas paredes da estrutura grande e envolvente das restantes, assim como do respetivo telhado	4
1. Quais os materiais e suas características térmicas, a usar na constituição das paredes exterio	ores.4
2. Quais os materiais e suas características térmicas, a usar no telhado	5
3. Quais os materiais e suas características térmicas, a usar na constituição das portas e janela	s 6
US403 - Pretende-se saber quais os materiais a usar nas paredes divisórias (interiores) por forma a definir os espaços indicados e para funcionarem às temperaturas indicadas. A disposição dos espaç fica ao critério dos usuários.	
1. Quais os materiais e suas características térmicas, a usar na constituição das paredes interio	res. 7
2. Quais os materiais e suas características térmicas, a usar na constituição das portas de acess	so 9
US404 - Pretende-se saber qual a resistência térmica das paredes, para cada temperatura de funcionamento, de cada espaço ou zona que deve conter pelo menos três materiais diferentes nas paredes. Um para o material exterior, outro para o material intermédio e outro para o material interior.	
1. Para a divisão ou zona C, a funcionar à temperatura de -10 °C, determinar a resistência térm de cada parede e total, com a inclusão da porta de acesso à divisão	
2. Para a divisão ou zona D, a funcionar à temperatura de 0 °C, determinar a resistência térmic cada parede e total, com a inclusão da porta de acesso à divisão	
3. Para a divisão ou zona E, a funcionar à temperatura de 10 °C, determinar a resistência térm de cada parede e total, com a inclusão da porta de acesso à divisão	
4. Para a estrutura grande, que envolve as restantes divisões, determinar a resistência térmica cada parede e telhado, com a inclusão das portas de acesso à receção e de armazenamento e jar consideradas, de acordo com a escolha dos materiais realizada	nelas
Ribliografia	16

Introdução

O problema proposto tem como objetivo a criação de uma estrutura de um armazém com várias divisórias, que, devem-se manter a diferentes temperaturas. Nesta estrutura temos de ter em conta os materiais usados tanto nas paredes exteriores como nos interiores assim como nas portas, janelas e telhado. Cada parede deve ser constituída por não mais de 3 materiais distintos.

Neste Sprint(1) temos como objetivo a definição dos materiais e das divisões de espaço assim como o cálculo das suas Resistências Térmicas.

US401 - Apresente um croqui de uma estrutura, e suas divisões internas

- 1 A estrutura deve ter as seguintes dimensões: 10 metros de largura, 20 metros de comprimento e 5 metros de altura.
- A cobertura superior terá dupla inclinação mínima e que cobrirá toda a estrutura, com o cume ao longo de todo o comprimento.
- 3 Esta estrutura terá uma porta grande, que possa subir, de dimensões a definir pelo usuário, mas que permita o acesso a um veículo de transporte de mercadorias tipo furgão de grandes dimensões, e que dará acesso à zona de receção, zona A.
- A estrutura deve ter ainda uma outra porta de duas folhas, com dimensões a definir pelo usuário, que servirá exclusivamente para acesso à zona de armazenamento de produtos e/ou excedentes, zona B.
- A estrutura deve ter um mínimo de duas janelas, ambas com dimensões a definir pelo usuário. Uma posicionada na zona de receção, zona A, e a outra na zona de armazenamento, zona B.
- O interior será dividido em cinco espaços ou zonas, separados fisicamente por paredes e uma porta de acesso ao seu interior. Com exceção da zona de armazenamento, que só terá acesso pelo exterior.
- 7 A sua disposição, dimensões individuais e portas de acesso são definidas pelo usuário.

US402 - Pretende-se saber qual o conjunto de materiais a usar nas paredes da estrutura grande e envolvente das restantes, assim como do respetivo telhado

1. Quais os materiais e suas características térmicas, a usar na constituição das paredes exteriores.

Os materiais usados para a constituição das paredes exteriores foram o Tijolo, como suporte, pois é um material com um custo baixo, o Betão, como acabamento, pois possui uma boa condutividade térmica, e como material isolador elegemos a lã de vidro, pois possui uma boa condutividade térmica e tem um custo adequado as necessidades.

Ficamos então com uma parede igual representa a da Figura 2.

Materiais	Condutividade Térmica	Espessura (m)
	(k)	
Betão	0.6	0.015
Tijolo	0.6	0.1
Lã de vidro	0.03	0.05
Ar	0.03	0.02

2. Quais os materiais e suas características térmicas, a usar no telhado.

Os materiais usados na constituição do telhado foram **telhas de cerâmica**, para a drenagem de água, pois tem uma condutividade aceitável, mas ganham pontos no custo reduzido, para suporte das telhas temos **pladur**, possui uma boa condutividade térmica e a sua aplicação é de dificuldade reduzida, e como base foi utilizado **poliuretano** devido a sua boa resistência térmica.

Ficamos então com um telhado igual representa a Figura 3.

Materiais	Condutividade Térmica (k)	Espessura (m)
Poliuretano	0.022	0.05
Telhas (cerâmica)	0.6	0.03
Pladur	0.032	0.015

3. Quais os materiais e suas características térmicas, a usar na constituição das portas e janelas.

Os materiais usados na janela foram **vidro duplo**, consistente de vidro ar e vidro, e com uma calha constituída por **PVC**, devido a este ser um bom resistente térmico.

Materiais	Condutividade Térmica (k)	Espessura (m)
Vidro	0.79	0.01
PVC	0.21	0.03
Ar	0.03	0.0016

Para a Porta de Garagem com acesso a Zona A os materiais a ser usados serão **poliuretano** pela sua boa resistência térmica, e **aço** para aumentar a consistência e segurança da porta e do que ela vai fechar dentro do armazém.

Materiais	Condutividade Térmica	Espessura (m)
	(k)	

Poliuretano	0.022	0.03
Aço	52	0.01

Para a Porta Exterior usou-se **madeira**, pela sua resistência térmica, com uma câmara de ar para aumentar a sua resistência térmica e **aço** para manter a consistência e segurança da porta.

Materiais	Condutividade Térmica	Espessura (m)
	(k)	
Madeira	0.13	0.01
Aço	52	0.02
Ar	0.03	0.03

US403 - Pretende-se saber quais os materiais a usar nas paredes divisórias (interiores) por forma a definir os espaços indicados e para funcionarem às temperaturas indicadas. A disposição dos espaços fica ao critério dos usuários.

1. Quais os materiais e suas características térmicas, a usar na constituição das paredes interiores.

Para as Paredes interiores tinhas diferentes requisitos, por tanto para a Zona C em que teria de ter uma temperatura de -10°C os materiais escolhidos foram o **Poliuretano** como isolador devido ao seu índice de condutividade térmica, **Tijolo** para integridade da parede e **Pladur** como acabamento devido a sua resistência térmica.

Ficamos então com uma parede igual representa a da Figura 4.

Materiais	Condutividade Térmica (k)	Espessura (m)
Tijolo	0.6	0.1
Poliuretano	0.022	0.1
Pladur	0.032	0.015

Para as restantes paredes interiores, como a Zona D e E em que teriam de ter uma temperatura de 0°C e 10°C respetivamente, os materiais escolhidos foram a **Lã de Vidro** como isolador devido ao seu índice de condutividade térmica e custo reduzido, **Tijolo** para integridade da parede e **Pladur** como acabamento devido a sua resistência térmica.

Ficamos então com uma parede igual representa a da Figura 5.

Materiais	Condutividade Térmica (k)	Espessura (m)
Tijolo	0.6	0.1
Lã de vidro	0.03	0.05
Pladur	0.032	0.015

2. Quais os materiais e suas características térmicas, a usar na constituição das portas de acesso.

Para as portas de acesso as diferentes zonas interiores do armazém escolhemos portas constituídas de **madeira** devido a sua boa relação de resistência térmica e custo.

Materiais	Condutividade Térmica	Espessura (m)
	(k)	
Madeira	0.13	0.03

US404 - Pretende-se saber qual a resistência térmica das paredes, para cada temperatura de funcionamento, de cada espaço ou zona que deve conter pelo menos três materiais diferentes nas suas paredes. Um para o material exterior, outro para o material interior.

1. Para a divisão ou zona C, a funcionar à temperatura de -10 °C, determinar a resistência térmica, de cada parede e total, com a inclusão da porta de acesso à divisão.

Para a parede em contacto com a Zona B temos a seguinte tabela.

Parede interior poliuretano (50m²)	R = deltaX / (K * A)
Tijolo:	0.003333333
Poliuretano:	0.090909091
Pladur:	0.009375
Total:	0.116325758

Para a parede com a porta interior temos a seguinte tabela.

Parede interior poliuretano (48 m²) + (2 m²) de	R = 1 / ((1/R) + (1/R))
porta interior	
Parede Interior	0.027517361
Porta interior	0.115384615
Total:	0.022218588

Para uma das duas paredes exteriores temos a seguinte tabela.

Parede exterior (20 m²)	R = deltaX / (K * A)
Betão:	0.00125
Tijolo:	0.008333333
Lã de vidro:	0.083333333
Ar:	0.033333333
Total:	0.135833333

Com isto a Resistência Térmica da Zona C é dada pela seguinte tabela.

	Resistência
Parede exterior (20 m ²) * 2	0.271666667
Parede interior poliuretano (48 m²) + (2 m²) de porta interior	0.022218588
Parede interior poliuretano (50 m²)	0.116325758
Total:	0.410211012

2. Para a divisão ou zona D, a funcionar à temperatura de 0 °C, determinar a resistência térmica, de cada parede e total, com a inclusão da porta de acesso à divisão.

Para a parede com a porta interior e em contacto com a Zona C temos a seguinte tabela.

Parede interior poliuretano (48 m²) + (2 m²) de porta interior	R = 1 / ((1/R) + (1/R))
Parede Interior	0.027517361
Porta interior	0.115384615
Total:	0.022218588

Para a parede com a porta interior e em contacto com a Zona E temos a seguinte tabela.

Parede interior (48 m ²) + (2 m ²) de porta interior	R = 1 / ((1/R) + (1/R))
Parede Interior	0.092447917
Porta interior	0.115384615
Total:	0.051325301

Para uma das duas paredes exteriores temos a seguinte tabela.

Parede exterior (20 m ²)	R = deltaX / (K * A)
Betão:	0.00125
Tijolo:	0.008333333
Lã de vidro:	0.083333333
Ar:	0.03333333
Total:	0.135833333

Com isto a Resistência Térmica da Zona D é dada pela seguinte tabela.

	Resistência
Parede exterior (20 m ²) * 2	0.271666667
Parede interior poliuretano (48 m²) + (2 m²) de porta interior	0.022218588
Parede interior (48 m ²) + (2 m ²) de porta interior	0.051325301
Total:	0.345210556

3. Para a divisão ou zona E, a funcionar à temperatura de 10 °C, determinar a resistência térmica, de cada parede e total, com a inclusão da porta de acesso à divisão.

Para a parede com a porta interior e em contacto com a Zona D e com a Zona A temos a seguinte tabela.

Parede interior (48 m ²) + (2 m ²) de porta interior	R = 1 / ((1/R) + (1/R))
Parede Interior	0.092447917
Porta interior	0.115384615
Total:	0.051325301

Para uma das duas paredes exteriores temos a seguinte tabela.

Parede exterior (20 m²)	R = deltaX / (K * A)
Betão:	0.00125
Tijolo:	0.008333333
Lã de vidro:	0.083333333
Ar:	0.03333333
Total:	0.135833333

Com isto a Resistência Térmica da Zona E é dada pela seguinte tabela.

	Resistência
Parede exterior (20 m ²) * 2	0.271666667
Parede interior (48 m ²) + (2 m ²) de porta	0.044437176
interior * 2	
Total:	0.316103842

4. Para a estrutura grande, que envolve as restantes divisões, determinar a resistência térmica, de cada parede e telhado, com a inclusão das portas de acesso à receção e de armazenamento e janelas consideradas, de acordo com a escolha dos materiais realizada.

Para a parede exterior com 100 m² temos a seguinte tabela.

Parede exterior (100 m²)	R = deltaX / (K * A)
Betão:	0.00025
Tijolo:	0.001666667
Lã de vidro:	0.01666667
Ar:	0.00666667
Total:	0.027166667

Para a janela temos a seguinte tabela.

Janela	R = deltaX / (K * A)
Vidro:	0.071428571
PVC	1.587301587
Ar:	0.026666667
Vidro duplo:	0.16952381
Calha com vidro duplo:	3.344126984
	R = 1 / ((1/R) + (1/R))
Total da janela:	0.468555516

Para as duas paredes com janelas temos a seguinte tabela.

Parede de (48 m²) + (2 m²) de janela	R = 1 / ((1/R) + (1/R))
Janela:	0.468555516
Parede:	0.056597222
Total:	0.050497577

Para a porta de garagem e a porta exterior temos as seguintes tabelas, respetivamente.

Porta garagem	R = deltaX / (K * A)
Poliuretano:	0.113636364
Aço:	1.60256E-05
Total:	0.113652389

Porta exterior	R = deltaX / (K * A)
Madeira:	0.019230769
Aço:	9.61538E-05
Ar:	0.25
Total:	0.269326923

Para a parede com a porta exterior que dará acesso a Zona B temos a seguinte tabela.

Parede de (16 m ²) + (4 m ²) de porta exterior	R = 1 / ((1/R) + (1/R))
Porta exterior	0.269326923
Parede exterior	0.169791667
Total:	0.104139219

Para a parede com a porta de garagem que dará acesso a Zona A temos a seguinte tabela.

Parede de (8 m ²) + (12 m ²) de porta de garagem	R = 1 / ((1/R) + (1/R))
Parede exterior	0.339583333
Porta de garagem	0.113652389
Total:	0.085153167

Para a parede exterior que é constituída pelas duas paredes com a porta exterior e a porta de garagem mais o restante temos a seguinte tabela.

Parede de (60 m²) + (20 m²) de parede com porta de garagem+ (20 m²) de parede com porta exterior	R = 1 / ((1/R) + (1/R))
Parede exterior (60)	0.045277778
parede de 8 + 12 porta de garagem	0.085153167
Parede de 16 com porta exterior de 4	0.104139219
Total:	0.023024517

Com isto a Resistência Térmica das paredes exteriores seria dada pela tabela seguinte.

Total das paredes exteriores	R = R + R + R*2
Parede de (60 m²) + (20 m²) de parede com porta de garagem+ (20 m²) de parede com porta	0.023024517
exterior	
Parede exterior (100 m ²)	0.027166667
Parede de (48 m²) + (2 m²) de janela * 2	0.100995153
Total:	0.151186337

Para o telhado temos a seguinte tabela.

Telhado	R = deltaX / (K * A)
Poliuretano:	0.02228164
Telhas (cerâmica):	0.000490196
Pladur:	0.004595588
Total:	0.027367424

Para a continuação da parede na parte do telhado temos a seguinte tabela.

Parte triangular telhado	R = deltaX / (K * A)
Betão:	0.005
Tijolo:	0.033333333
Lã de vidro:	0.33333333
Ar:	0.133333333
Total:	0.543333333

Para o total do telhado temos a seguinte tabela.

Total do telhado	R = deltaX / (K * A)
Parte triangular telhado * 2	1.08666667
Telhado *2	0.054734848
Total:	1.141401515

Bibliografia

- https://www.inovacivil.com.br/os-6-principais-tipos-de-paredes-na-construcao/
- https://www.deco.proteste.pt/casa-energia/aquecimento/dicas/isolamento-termico-pros-contras-10-materiais
- http://repositorio.lnec.pt:8080/bitstream/123456789/16962/2/Revestimentos%20de%20isolam ento%20t%C3%A9rmico%20de%20fachada %20efici%C3%AAncia%2C%20durabilidade%20e%2 0comprova%C3%A7%C3%A3o%20de%20qualidade.pdf
- https://www.thermal-engineering.org/pt-br/o-que-e-condutividade-termica-de-poliestireno-expandido-definicao/
- https://www.thermal-engineering.org/pt-br/o-que-e-espuma-de-poliuretano-definicao/