Construção e Análise de Algoritmos Lista de exercícios 3 - SOLUÇÃO

- 1. Responda e explique cada um dos itens abaixo.
 - (a) O que é a Classe P? É o conjunto dos problemas de decisão que possuem algoritmos de tempo polinomial que os resolve (decide).
 - (b) O que é um certificado de um problema de decisão? O que é a Classe NP e qual a relação dela com certificados? Um certificado é um candidato à solução de uma instância do problema. A classe NP é o conjunto dos problemas de decisão que possuem um verificador de tempo polinomial (algoritmo que verifica se um dado certificado é válido ou não).
 - (c) O que é um Algoritmo Não-Determinístico? Algoritmo puramente teórico que tem uma capacidade adicional de gerar linhas de execução independentes.
 - (d) O que é uma Redução Polinomial entre dois problemas e para que serve? Dados problemas de decisão A e B, dizemos que $A \leq_P B$ se existe um algoritmo F de redução em tempo polinomial que transforma cada instância I_A de A em uma instância $F(I_A)$ de B, de modo que I_A é SIM em A se e somente $F(I_A)$ é SIM em B. Serve para provar que, se $B \in \mathcal{P}$, então $A \in \mathcal{P}$.
 - (e) O que é a Classe NP-Completa? É o conjunto dos problemas da Classe NP tais que todos os outros de NP se reduzem polinomialmente a ele. Ou seja, B é NP-Completo se e somente se $B \in NP$ e $A \leq_P B$ para todo $A \in NP$.
- 2. Para cada uma das afirmações abaixo, diga se ela e verdadeira, falsa, verdadeira se $P \neq NP$ ou falsa se $P \neq NP$. Dê uma justificativa curta para cada resposta.
 - (1) Não há problemas em P que são NP-Completos. Verdadeiro se $P \neq NP$, pois, se P=NP, todo problema NP-Completo estaria em P.
 - (2) Existe apenas algoritmo exponencial para o problema da parada. Falso, pois Parada é indecidível (não tem algoritmo nenhum que o resolva).
 - (3) Existem problemas em P que estão em NP. Verdadeiro, pois todo problema em P pertence a NP.
 - (4) Existem problemas em NP que não estão em P. Verdadeiro se $P \neq NP$, pois, se P=NP, todo problema NP estaria em P.
 - (5) Se A pode ser polinomialmente reduzido a B, e B é NP-Completo, então A é NP-Completo. Falso, pois é o contrário: se $A \leq_P B$, $B \in NP$ e A é NP-Completo, então B é NP-Completo.
 - (6) Se A pode ser polinomialmente reduzido a B, e B ∈ P, então A ∈ P. Verdadeiro, pois podemos obter um algoritmo polinomial para A a partir da composição de uma redução polinomial de A para B com qualquer algoritmo polinomial para B.
 - (7) O problema de obter o percurso mínimo do Caixeiro Viajante é NP-Completo. Falso, pois o problema de otimização do Caixeiro Viajante não é um problema de decisão.
 - (8) O problema SAT não pertence a Classe P. Verdadeiro, se $P \neq NP$, pois SAT é NP-Completo.

3. Seja MOCHILA o problema de decidir se, dados inteiros positivos P e V e dado um conjunto I de itens onde cada elemento $i \in I$ possui um peso p(i) e um valor v(i), existe um subconjunto I' de I tal que a soma dos pesos dos elementos de I' seja menor ou igual a P e a soma dos valores dos elementos de I' seja maior ou igual a V. Prove que MOCHILA é NP-Completo.

SOLUÇÃO:

- (i) MOCHILA ∈ NP: Exercício.
- (ii) REDUÇÃO: Vamos fazer uma redução de SOMA-SUBC, que é NP-Completo e tem como instância um conjunto $X = \{x_1, \ldots, x_n\}$ de n inteiros e um inteiro T e retorna SIM se existe um subconjunto de X cuja soma seja T. Para a redução, crie n itens $I = \{i_1, \ldots, i_n\}$ do problema da MOCHILA com os seguintes pesos e valores: $p(i_1) = v(i_1) = x_1, \ p(i_2) = v(i_2) = x_2, \ldots, \ p(i_n) = v(i_n) = x_n$. Ou seja, para cada inteiro $x \in X$, crie um item i do problema da MOCHILA com peso p(i) e valor v(i) iguais a x. Faça ainda P = V = T.
- (iii) SIM \to SIM: Se (X,T) é SIM em SOMA-SUBC, então existe subconjunto X' de X cuja soma é T. Ou seja, $\sum_{x \in X'} x = T$. Seja I' o conjunto dos itens de MOCHILA associados aos inteiros de X'. Portanto, por construção, temos que $\sum_{i \in I'} p(i) = \sum_{x \in X'} x = T \le P$ e $\sum_{i \in I'} v(i) = \sum_{x \in X'} x = T \ge V$. Logo, (I, P, V) é SIM em MOCHILA.
- (iv) NÃO \rightarrow NÃO (equivalente a SIM \leftarrow SIM): Se (I,P,V) é SIM em MOCHILA, então existe subconjunto I' de itens de I cuja soma dos pesos é no máximo P e cuja soma dos valores é pelo menos V. Ou seja, $\sum_{i \in I'} p(i) \leq P$ e $\sum_{i \in I'} v(i) \geq V$. Seja X' o conjunto dos inteiros de SOMA-SUBC associados aos itens de I'. Portanto, por construção, temos que $\sum_{x_i \in X'} x_i = \sum_{i \in I'} p(i) \leq P = T$ e $\sum_{x_i \in X'} x_i = \sum_{i \in I'} v(i) \geq V = T$. Logo, $\sum_{x_i \in X'} x_i = T$ e consequentemente (X, T) é SIM em SOMA-SUBC.
- **4.** Seja HITTING-SET o problema de decidir se, dado como entrada um inteiro K e uma coleção de subconjuntos C_1, \ldots, C_m de um conjunto S, existe um subconjunto S^* com K elementos de S tal que, para todo subconjunto C_i , C_i contém algum elemento de S^* . Prove que HITTING-SET é NP-Completo.

SOLUÇÃO:

- (i) HITTING-SET ∈ NP: Exercício.
- (ii) REDUÇÃO DIRETA (COB-VERT \rightarrow HITTING-SET): Vamos fazer uma redução do problema COB-VERT, que é NP-Completo e tem como instância um grafo G' e um inteiro K' e retorna SIM se G' tem K' vértices que cobrem todas as arestas. Faça K = K', faça S ser o conjunto de vértices de G' e, para cada aresta $e_i = \{u, v\}$ de G', crie um conjunto $C_i = \{u, v\}$. Como os elementos de S são os vértices de G' e os subconjuntos C_1, \ldots, C_m representam as arestas de G', temos que HITTING-SET é uma generalização de COB-VERT. Portanto, HITTING-SET é NP-Completo.

5. Dizemos que um grafo G esta parcialmente rotulado se alguns de seus vértices possuem um número inteiro como rótulo. Dado um vértice rotulado v de G, seja r(v) o seu rótulo. Seja CAMPO-MINADO o problema de decidir se, dado como entrada um grafo G parcialmente rotulado, G pode ser completamente rotulado de forma que qualquer vértice v com rótulo positivo tenha exatamete r(v) vizinhos com rótulo negativo. Prove que CAMPO-MINADO é NP-Completo.

SOLUÇÃO:

- (i) CAMPO-MINADO ∈ NP: Exercício.
- (ii) REDUÇÃO (3SAT \rightarrow CAMPO-MINADO): Vamos fazer uma redução de 3SAT, que é NP-Completo e tem como instância uma fórmula lógica Φ na 3FNC (forma normal conjuntiva onde cada cláusula tem no máximo 3 literais (variável ou complemento de variável)) e responde SIM se existe uma atribuição de valores *Verdadeiro* ou *Falso* às variáveis satisfazendo todas as cláusulas. Para cada variável X_i , inclua o seguinte gadget de variável: crie três vértices $x_i, y_i, \overline{x_i}$ e duas arestas $x_i y_i$ e $\overline{x_i} y_i$, e dê rótulo $r(y_i) = 1$ ao vértice y_i . Para cada cláusula C_j , inclua o seguinte gadget de cláusula: crie três vértice a_j, b_j, c_j e duas arestas $a_j c_j$ e $b_j c_j$, e dê rótulo $r(c_j) = 3$ ao vértice c_j . Se $X_i \in C_j$, inclua a aresta $\overline{x_i} c_j$.
- (iii) SIM \rightarrow SIM: Se a fórmula lógica Φ é satisfatível, então existe uma atribuição de Verdadeiro ou Falso às variáveis satisfazendo todas as cláusulas. Se a variável X_i é verdadeira, dê rótulo -1 ao vértice x_i e rótulo 0 ao vértice $\overline{x_i}$. Se a variável X_i é falsa, dê rótulo -1 ao vértice $\overline{x_i}$ e rótulo 0 ao vértice x_i . Se C_j tem 3 literais verdadeiros, dê rótulo 0 para os vértices a_j e b_j . Se C_j tem 2 literais verdadeiros, dê rótulo -1 para o vértice a_j e rótulo 0 para o vértice b_j . Se C_j tem só 1 literal verdadeiro, dê rótulo -1 para os vértices a_j e b_j . Como todas as cláusulas tem algum literal verdadeiro, então cada vértice c_j tem exatamente 3 vizinhos com rótulo negativo. Além disso, cada vértice y_i tem exatamente 1 vizinho com rótulo negativo.
- (iv) NÃO \rightarrow NÃO (equivalente a SIM \leftarrow SIM): Se o grafo construído satisfaz a propriedade de CAMPO-MINADO, então todo vértice v com rótulo positivo r(v) tem exatamente r(v) vizinhos com rótulo negativo. Portanto, como $r(y_i) = 1$, então $r(x_i) < 0$ ou $r(\overline{x_i}) < 0$ (ou exclusivo). Se $r(x_i) < 0$, atribua Verdadeiro para a variável X_i ; caso contrário, atribua Falso. Como $r(c_j) = 3$, então c_j tem 3 vizinhos com rótulo negativo. Como c_j tem só dois vizinhos em gadgets de cláusulas, então algum vizinho de c_j em gadget de variável deve ter rótulo negativo. Desse modo, essa atribuição fará com que a cláusula C_j tenha algum literal Verdadeiro. Como isso vale para qualquer cláusula, então Φ é satisfatível.
- 6. No seguinte jogo de paciência, é dado um tabuleiro $n \times n$. Em cada uma das suas n^2 posições está colocada uma pedra azul ou uma pedra vermelha ou nenhuma pedra. Você joga removendo pedras do tabuleiro até que cada coluna contenha pedras de uma única cor e cada linha contenha pelo menos uma pedra. Você vence se atingir esse objetivo. Vencer pode ser possível ou não, dependendo da configuração inicial. Seja PACIÊNCIA o problema de decidir se dado um tabuleiro dessa forma como entrada é possível vencer. Prove que PACIÊNCIA é NP-Completo.

SOLUÇÃO:

- (i) PACIENCIA \in NP: Exercício.
- (ii) REDUÇÃO (3SAT \rightarrow PACIENCIA): Vamos fazer uma redução de 3SAT, que é NP-Completo e tem como instância uma fórmula lógica Φ na 3FNC (forma normal conjuntiva). Podemos assumir que o número m de cláusulas de Φ é maior ou igual ao número n de variáveis. Construa um tabuleiro com m linhas e m colunas. Associe cada variável X_i a uma coluna do tabuleiro e associe cada cláusula C_j a uma uma linha do tabuleiro. Se C_j contém X_i , coloque uma pedra Vermelha na posição (C_j, X_i) do tabuleiro (linha de C_j , coluna de X_i). Se C_j contém $\overline{X_i}$, coloque uma pedra Azul na posição (C_j, X_i) do tabuleiro.
- (iii) SIM \rightarrow SIM: Se a fórmula lógica Φ é satisfatível, então existe uma atribuição de Verdadeiro ou Falso às variáveis satisfazendo todas as cláusulas. Se a variável X_i é verdadeira, deixe na coluna X_i do tabuleiro somente as pedras Vermelhas; caso contrário, deixe apenas as pedras azuis. Portanto, cada coluna terá pedras de uma única cor. Além disso, como cada cláusula C_j é satisfeita por algum literal verdadeiro na atribuição, temos que a linha C_j do tabuleiro terá uma pedra em alguma coluna. Como isso vale para todas as linhas, então o tabuleiro satisfaz PACIENCIA.
- (iv) NAO \rightarrow NAO (equivalente a SIM \leftarrow SIM): Se o tabuleiro é SIM em PACIENCIA, então cada coluna tem pedras de uma única cor e cada linha tem alguma pedra. Se a coluna X_i tem pedras vermelhas, atribua Verdadeiro para a variável X_i ; caso contrário, atribua Falso para X_i . Logo, cada cláusula C_j tem algum literal verdadeiro, pois a coluna C_j tem alguma pedra. Como isso vale para todas as cláusulas, temos que Φ é satisfatível.
- 7. Seja DOMINANTE o problema de decidir se, dado como entrada um grafo G e um inteiro K > 0, existe um conjunto D com K vértices de G tal que todo vértice de G está em D ou é adjacente a algum vértice de D.

DOMINANTE \in **NP**: Exercício.

(a) Prove que DOMINANTE é NP-Completo usando o problema 3SAT

REDUÇÃO (3SAT \rightarrow **DOMINANTE):** Vamos fazer uma redução de 3SAT, que é NP-Completo e tem como instância uma fórmula lógica Φ na 3FNC (forma normal conjuntiva). Faça K ser igual ao número n de váriáveis de Φ . Construa o grafo G como segue. Para cada variável X_i da fórmula Φ , inclua o seguinte gadget de variável: crie três vértices $x_i, y_i, \overline{x_i}$ e três arestas $x_i \overline{x_i}, x_i y_i$ e $\overline{x_i} y_i$. Para cada cláusula C_j , inclua um vértice c_j . Se $X_i \in C_j$, inclua a aresta $\overline{x_i} c_j$.

SIM \rightarrow SIM: Se a fórmula lógica Φ é satisfatível, então existe uma atribuição de Verdadeiro ou Falso às variáveis satisfazendo todas as cláusulas. Se a variável X_i é verdadeira, coloque o vértice x_i no conjunto Dominante; caso contrário, coloque o vértice $\overline{x_i}$ no conjunto Dominante. Como todas as cláusulas tem algum literal verdadeiro, então cada vértice c_j tem algum vizinhos no conjunto Dominante. Além disso, cada vértice $x_i, \overline{x_i}, y_i$ é dominado por x_i ou $\overline{x_i}$. Portanto, temos um conjunto Dominante com K = n vértices.

 $\mathbf{N}\mathbf{\tilde{A}O} \to \mathbf{N}\mathbf{\tilde{A}O}$ (equivalente a SIM \leftarrow SIM): Se o grafo G possui um conjunto dominante com K=n vértices, então todo vértice y_i deve ser dominado por x_i ou por $\overline{x_i}$ (assuma que y_i não está no conjunto dominante, pois, caso contrário, poderíamos escolher qualquer um dos dois). Se x_i está no conjunto Dominante, atribua Verdadeiro para a variável X_i ; caso contrário, atribua Falso. Como c_j é dominado por algum vértice em gadget de variáveis, então essa atribuição fará com que a cláusula C_j tenha algum literal Verdadeiro. Como isso vale para qualquer cláusula, então Φ é satisfatível.

(b) Prove que DOMINANTE é NP-Completo usando o problema COB-VERT da Cobertura de vértices.

REDUÇÃO (COB-VERT \rightarrow **DOMINANTE):** Vamos fazer uma redução de COB-VERT, que É NP-Completo e tem como instância um grafo G' e um inteiro K'. Vamos construir um grafo G e um inteiro K para o problema DOMINANTE. Sej K = K' e faça G igual a G' inicialmente. Para cada aresta xy de G', crie um vértice e_{xy} em G e ligue-o a x e a y em G.

SIM \rightarrow SIM: Se G' possui uma cobertura C' de K' = K vértices cobrindo todas as arestas de G', então C' é também um conjunto Dominante de G', pois toda cobertura é um conjunto dominante. Basta mostrar que C' é também um conjunto dominante de G, ou seja, mostrar que C' domina também os vértices artificiais e_{xy} de G para toda aresta xy. Como C' é uma cobertura de G', então $x \in C'$ ou $y \in C'$. Portanto, e_{xy} é dominado por C' em G.

 $\mathbf{NAO} \to \mathbf{NAO}$ (equivalente a SIM \leftarrow SIM): Se G possui um conjunto dominante D com K vértices, então todo vértice novo e_{xy} de G (associado a aresta xy de G') deve ser dominado por algum vértice de D. Podemos assumir que $e_{xy} \notin D$, pois, caso contrário, podemos substituí-lo por x ou y sem problemas. Como e_{xy} é dominado por D em G, então D é uma cobertura de vértices de G' com K' vértices.

8. Seja COR-DIF o problema de decidir se, dado como entrada um conjunto S e uma coleção $C = \{C_1, \ldots, C_k\}$ de subconjuntos de S, onde k > 0, é possivel colorir os elementos de S com duas cores de forma que nenhum conjunto C_i tenha todos os seus elementos com a mesma cor. Prove que COR-DIF é NP-Completo.

SOLUÇÃO:

- (i) COR-DIF ∈ NP: Exercício.
- (ii) REDUÇAO (3SAT \rightarrow COR-DIF): Vamos fazer uma redução de 3SAT, que tem como instância uma fórmula lógica Φ na 3FNC (forma normal conjuntiva) com variáveis X_1, \ldots, X_n e cláusulas C_1, \ldots, C_m . Faça $S = \{X_1, \overline{X_1}, \ldots, X_n, \overline{X_n}, F\}$, onde F é um elemento novo. Para cada cláusula $C_j = (\ell_1 \lor \ell_2 \lor \ell_3)$ de Φ , crie um conjunto $C_j = \{\ell_1, \ell_2, \ell_3, F\}$ de COR-DIF. Para cada variável X_i , crie um conjunto $C_i' = \{X_i, \overline{X_i}\}$.
- (iii) SIM \rightarrow SIM: Se a fórmula lógica Φ é satisfatível, então existe atribuição de Verdadeiro ou Falso às variáveis satisfazendo as cláusulas. Se a variável X_i é verdadeira, dê as cores 1 e 0 para os elementos X_i e $\overline{X_i}$ de S; senão, dê as cores 0 e 1 para os elementos X_i e $\overline{X_i}$ de S. Dê a cor 0 para o elemento F de S. Claramente, com essa construção, todo conjunto C'_i tem as duas cores. Como toda cláusula C_j tem algum

literal verdadeiro, então todo conjunto C_j tem algum elemento com cor 1 e tem o elemento F com cor 0 e, portanto, as duas cores aparecem em C_j . Como isso vale para qualquer conjunto C_j , temos que essa instância é SIM em COR-DIF.

- (iv) NÃO \rightarrow NÃO (equivalente a SIM \leftarrow SIM): Se a instância construída de COR-DIF é SIM, então existe coloração com cores 0 e 1 dos elementos de S em que cada conjunto C_i' e C_j tenham as duas cores. Assuma sem perda de generalidade que a cor do elemento F é 0 (senão, podemos recolorir trocando as duas cores). Se o elemento X_i de S tem cor 1, atribua Verdadeiro para a variável X_i de Φ ; caso contrário, atribua Falso. Como cada conjunto C_i' tem as duas cores, então ou X_i e $\overline{X_i}$ receberam as cores 0 e 1, respectivamente, ou X_i e $\overline{X_i}$ receberam as cores 1 e 0, respectivamente. Portanto, temos uma atribuição válida. Como cada conjunto C_j tem as duas cores e contém o elemento F que tem a cor 0, então deve ter algum outro elemento (além de F) que tenha a cor 1. Com isso, a cláusula C_j possui algum literal verdadeiro. Como isso vale para todas as clásulas, temos que Φ é satisfatível.
- 9. Dado um grafo G, uma coloração é uma atribuição de cores a seus vértices de forma que vértices adjacentes tenham cores diferentes. Seja 3CORES o problema de decidir se, dado um grafo G como entrada, G pode ser colorido com 3 cores. Mostre que 3CORES é NP-Completo.

SOLUÇÃO:

(i) $3CORES \in NP$: Exercício.

FIGURA 1. Dicas de gadgets na redução de 3SAT para 3CORES

- (ii) REDUÇÃO (3SAT \rightarrow 3CORES): Vamos fazer uma redução de 3SAT, que tem como instância uma fórmula lógica Φ na 3FNC (forma normal conjuntiva) com variáveis x_1, \ldots, x_n e cláusulas C_1, \ldots, C_m . Vamos construir um grafo G para 3 CORES. Crie três vértices especiais F, V, Z (chamados vértices da paleta). Para cada variável x_i , crie dois vértices x_i e $\overline{x_i}$ e as arestas $x_i\overline{x_i}$, x_iZ e $\overline{x_i}Z$ (como na dica da Figura 1). Para cada cláusula $C_j = (\ell_{j,1} \vee \ell_{j,2} \vee \ell_{j,3})$, inclua o gadget de cláusula da Figura 1: crie seis vértice $C_j, p_j, q_j, r_j, s_j, t_j$ com arestas $p_jq_j, p_js_j, q_js_j, r_jt_j, r_jC_j, s_jt_j$. Além disso, crie as arestas $p_j\ell_{j,1}, q_j\ell_{j,2}$ e $r_j\ell_{j,3}, C_jF$ e C_jZ . Veja a Figura 2 para o exemplo da fórmula $\Phi = (x_1 \vee x_2 \vee x_2) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2})$.
- (iii) SIM \rightarrow SIM: Se a fórmula lógica Φ é satisfatível, então existe uma atribuição de Verdadeiro ou Falso às variáveis satisfazendo todas as cláusulas. Dê a cor 1 para o vértice V, a cor 0 para o vértice F e a cor 2 para o vértice Z. Se a variável x_i é verdadeira, dê a cor 1 para o vértice x_i e a cor 0 para o vértice $\overline{x_i}$; caso contrário, dê a cor

FIGURA 2. Redução da fórmula $\Phi = (x_1 \vee x_2 \vee x_2) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2})$

0 para o vértice x_i e a cor 1 para o vértice $\overline{x_i}$. Para cada cláusula $C_j = (\ell_{j,1} \vee \ell_{j,2} \vee \ell_{j,3})$, dê a cor 1 para o vértice C_j . Como Φ é satisfatível, temos que $\ell_{j,1}$ ou $\ell_{j,2}$ ou $\ell_{j,3}$ é verdadeiro. Se $\ell_{j,1}$ é verdadeiro, dê a cor 0 para os vértices p_j e t_j , a cor 1 para o vértices q_j e q_j . Se q_j e verdadeiro, dê a cor 0 para os vértices q_j e q_j e verdadeiro, dê a cor 0 para os vértices q_j e ver

(iv) NÃO \rightarrow NÃO (equivalente a SIM \leftarrow SIM): Se o grafo construído G é 3-colorível, então os vértices especiais F, V, Z da paleta receberam cores diferentes. Sem perda de generalidade, seja 0 a cor de F, 1 a cor de V e 2 a cor de Z. Assim, cada vértice C_j recebeu a mesma cor 1 do vértice V (pois é adjacente a F e Z) e cada vértice x_i e $\overline{x_i}$ recebeu a cor 0 ou 1 (pois são adjacentes a Z). Atribua Verdadeiro para a variável x_i se o vértice x_i recebeu a cor 1; caso contrário, atribua Falso. Considere agora a cláusula $C_j = (\ell_{j,1} \lor \ell_{j,2} \lor \ell_{j,3})$. Queremos provar que um literal de C_j é Verdadeiro nessa atribuição. Para isso, basta mostrar que algum vértice $\ell_{j,1}, \ell_{j,2}$ ou $\ell_{j,3}$ recebeu a cor 1. Como o vértice C_j recebeu a cor 1, então r_j recebeu a cor 0 ou 2. Se r_j recebeu a cor 0, então o vértice $\ell_{j,3}$ recebeu a cor 1 e fim. Então assuma que r_j recebeu a cor 2. Logo t_j recebeu a cor 0 e s_j recebeu a cor 1 ou 2. Portanto p_j ou q_j recebeu a cor 0. Se p_j recebeu a cor 0, então $\ell_{j,1}$ recebeu a cor 1 e fim. Se q_j recebeu a cor 0, então $\ell_{j,2}$ recebeu a cor 1 e fim. Como todas as possibilidades foram analisadas, então C_j é satisfatível. Como isso vale para todas as cláusulas, temos que Φ é satisfatível.