Examen Localización de un robot diferencial

Alumno: Ana Itzel Hernández García

1.- Un robot diferencial se encuentra en la posición inicial (-1, -5, 0°), posteriormente genera el siguiente historial de pasos:

Paso	v(m/s)	ω (rad/s)	Δt (s)
1	1.0	0.0	1.0
2	0.0	π/3	1.0
3	1.0	0.0	1.0
4	0.0	π/3	1.0
5	1.0	0.0	1.0
6	0.0	π/3	1.0
7	1.0	0.0	1.0
8	0.0	π/3	1.0
9	1.0	0.0	1.0
10	0.0	π/3	1.0
11	1.0	0.0	1.0
12	0.0	π/3	1.0

a) Obtén la pose del robot en cada paso, integrando numéricamente siguiendo la suposición de Markov.

	X	y	θ
Paso 1	0	-5	0°
Paso 2	0	-5	60°
Paso 3	0.5	-4.1	60°
Paso4	0.5	-4.1	120°
Paso 5	0	-3.3	120°
Paso 6	0	-3-3	180°
Paso 7	-1	-3.3	180°
Paso 8	-1	-3.3	240°
Paso 9	-1.5	-4.1	240°
Paso 10	-1.5	-4.1	300°
Paso 11	-1	-5	300°
Paso 12	-1	-5	360°

b) Calcula la pose final (x, y, θ) del robot tras completar los 12 pasos. $Pose\ final = \begin{bmatrix} -1 \\ -5 \\ 360^{\circ} \end{bmatrix}$

Pose final =
$$\begin{bmatrix} -1 \\ -5 \\ 360^{\circ} \end{bmatrix}$$

2.- Un robot diferencial con los siguientes parámetros:

Radio de las ruedas: 0.1m.

Distancia entre ruedas (eje): L= 0.4m Pose inicial $(x0, y0, \theta0) = (0, 0, 0^{\circ})$

Completa la tabla y genera la simulación de la trayectoria del robot en Matlab

Paso	v (m/s)	w (rad/s)	x (m)	y (m)	θ (°)
1	0.3	0.7	0.3	0.1	41.3
2	0.4	0.6	0.5	0.4	75.9
3	0.4	0.4	0.5	0.9	99.1
4	0.5	0.3	0.3	1.4	114.9
5	0.6	0.2	0.0	1.9	127.4
6	0.6	-3.7	0.3	2.0	-86.1
7	0.6	-3.7	0.0	2.1	-298.6
8	0.5	0.3	0.2	2.6	-282.8
9	0.4	0.4	0.2	3.0	-259.7
10	0.4	0.6	0.1	3.3	-225.0
11	0.3	0.7	-0.2	3.5	-183.7
12	0.4	0.6	-0.6	3.4	-149.1
13	0.4	0.4	-0.9	3.1	-125.9
14	0.5	0.3	-1.1	2.6	-110.1
15	0.6	0.2	-1.3	2.0	-97.6
16	0.6	0.2	-1.3	1.4	-86.1
17	0.6	0.2	-1.2	0.8	-73.6
18	0.5	0.3	-1.0	0.3	-57.8
19	0.4	0.4	-0.7	-0.0	-34.7
20	0.4	0.6	-0.3	-0.1	-0.0

Figura 1. Gráfica de la trayectoria del robot

3. Considerando los parámetros del robot descrito en el reactivo 2. Obtén la tabla de las señales de entrada ω_R (rad/s) y ω_L (rad/s) requeridas en cada instante de muestreo si se desea obtener una trayectoria circular con un radio de 20m, cuyo centro sea el origen (0,0). Genera la simulación en Matlab.

Figura 2. Gráfica de la trayectoria circular

Figura 3. Gráfica de las velocidades cada llanta

	Tiempo_s	w_R_rad_s w	/_L_rad_s		32	62	10.1000	9.9000	
1	0	10.1000	9.9000	^	33	64	10.1000	9.9000	
2	2	10.1000	9.9000		34	66	10.1000	9.9000	
3	4	10.1000	9.9000		35	68	10.1000	9.9000	
4	6	10.1000	9.9000		36	70	10.1000	9.9000	
5	8	10.1000	9.9000		37	72	10.1000	9.9000	
6	10	10.1000	9.9000		38	74	10.1000	9.9000	
7	12	10.1000	9.9000		39	76	10.1000	9.9000	
8	14	10.1000	9.9000		40	78	10.1000	9.9000	
9	16	10.1000	9.9000		41	80	10.1000	9.9000	
10	18	10.1000	9.9000		42	82	10.1000	9.9000	
11	20	10.1000	9.9000		43	84	10.1000	9.9000	
12	22	10.1000	9.9000		44	86	10.1000	9.9000	
13	24	10.1000	9.9000		45	88	10.1000	9.9000	
14	26	10.1000	9.9000		46	90	10.1000	9.9000	
15	28	10.1000	9.9000		47	92	10.1000	9.9000	
16	30	10.1000	9.9000		48	94	10.1000	9.9000	
17	32	10.1000	9.9000		49	96	10.1000	9.9000	
18	34	10.1000	9.9000		50	98	10.1000	9.9000	
19	36	10.1000	9.9000		51	100	10.1000	9.9000	
20	38	10.1000	9.9000		52	102	10.1000	9.9000	
21	40	10.1000	9.9000		53	104	10.1000	9.9000	
22	42	10.1000	9.9000		54	106	10.1000	9.9000	
23	44	10.1000	9.9000		55	108	10.1000	9.9000	
24	46	10.1000	9.9000		56	110	10.1000	9.9000	
25	48	10.1000	9.9000		57	112	10.1000	9.9000	
26	50	10.1000	9.9000		58	114	10.1000	9.9000	
27	52	10.1000	9.9000		59	116	10.1000	9.9000	
28	54	10.1000	9.9000		60	118	10.1000	9.9000	
29	56	10.1000	9.9000		61	120	10.1000	9.9000	
30	58	10.1000	9.9000		62	122	10.1000	9.9000	
31	60	10.1000	9.9000		63	124	10.1000	9.9000	~
32	62	10.1000	9.9000						

Figura 4. Tabla de las velocidades de cada llanta