Unit - 1 Introductory Mechanics & theory of Relativity Frame of reference - It is nothing but a simple geometrical framework which is used to describe the occurrence of event in space. , P(x,y,z,t) → Position, time description of event P. $\vec{x} = x\hat{i} + y\hat{j} + z\hat{k}$ at t' instan $\overrightarrow{V}_{p} = \frac{dn \hat{i} + dy \hat{j} + dz \hat{k}}{dt}$ = Vzî + Vzî + Vzř $\frac{d^2z}{dt^2} = \frac{d^2z}{dt^2} + \frac{d^2y}{dt^2} + \frac{d^2z}{dt^2} + \frac{d^2z}{dt^2} + \frac{1}{12} + \frac{1}{1$ = anî + ayî + azî classification of frame of reference: i) Inertial frame of superence - This frame follows law of inertia. The special theory of relativity is based on this frame. → a = 0, v = constant (uniform motion)

ii) Non-Inertial frame of reference - This doesn't follows law of inertia. Gener theory of relativity is hased on this a = d2r # 0, accelerated frame (which is true for all components - 12, y & 2) particle experiences some fouch due to nonzero acceleration of this frame called pseudo / pictitions force Gallilean transformations: law of inertia is also known as gallilean law (21, y, 2, +) to (2, , y, , Z, ,t) i) at t = t, ; origin of both brames coincide r = r' + vt (uso in component form) ii) relocity of moning object n'= n- VI

 $b \pm z \pm z - z = 2d - 2d = 0$ St = t2-t, \$0 (when earth is in motion) path difference = dv² v- ulocity of earth, a relocity of light.
Fringe patterns appears in this (ii) case. After performing this exp. again & again, (no fringe shift was imperimentally observed) > notion of Earth would not be detected - Parth is absolutely at rest in aether.

(Negative result - null result) "The speed of light is universal constant & is identical for all the observers of inertial frames" Presence of aether was discarded. G.T. is appliced - ble for small relocities only (not for a)

 $x^2 + y^2 + z^2 = x^2 + z^2$ (i) 5' frame Observed Similarly for t' = 0'P $= (x'^2 + y'^2 + z'^2)^{1/2}$ $x'^2 + y'^2 + z'^2 = c^2 + c^2 - (ii)$ let's apply Gallilean transformation; x' = x - vt, y' = y, |z| = z, |t'| = tSo, (ii) can be written as $(x-vt)^2 + y^2 + 7^2 = c^2t^2$ 22+ 22+2 - 2xxx + y2+22 = c2 +2 -... (iii) (Gallilean transformation fails) (needs modified New transformations to be included only in order to transform (i) to (iii) let the modified egn's be written $x' = \alpha(x-y+t)$, $t' = \alpha'(t+fx)$ where d, d', f are constant.

And for small relocities, V - 0 2' = 21 - Vit, Transform 2) In light source being at s' x-axis direction So, Inverse Loventz transform to stationary observed Rect frame Taking case of a timple pendulum at mean position at til duration (st') = t21-t, so, time

for I frame person time interval (At) = tz-t 4 improper the apply loverty transformation for s frame, as observato was not appropriate Applying L.T, $(s \pm)_{\text{motion}} = \pm z' \pm v x'$ V 1-V2 (Dt) motion > (Dt) nest Time dilation is a real effect * Enample - high energy physicis (elementary particles) 11- mesons are elementary particles which are produced in the upper atmosphere at altitudes by the action of cosmic ray 7 - mesons These are highly unstable and their lifetime in our frame of reference is 2.2×10-6 seconds So, the distance transred by 11- mesons in this life time - (our frame)

d = life time X velocity = 2.2 × 10-6 s × 0.998 c m/s = 660 m.
in There is no expectation of finding these particles near to the surface of earth But experimentally these particles have been detected near to the surface of earth.
This can be justified considering time - dilation effect.
$\Delta t = \Delta t' = 2 \cdot 2 \times 10^{-6}$ $\sqrt{1 - \sqrt{2}} = \sqrt{1 - (0.998c)^2}$ laboratory frame observer
Now, new d'= 3.17×10-5 x 0.998 c (we can use 'c' for ease) as observed by laboratory frame
i. Presence of 11-mesons near to the earth's surface is justified.
So, time dilation is a real effect.
- I - I - I - I - I - I - I - I - I - I

Einstein's mass energy relation consider a body mones with relocity v under the action of force F. Therefore - $F = \frac{dP}{dt} = \frac{d(mv) - (1)}{dt}$ In relativistic mechanics, both mass and $F = \frac{\text{mdv}}{\text{dt}} + \frac{\text{v.dm}}{\text{dt}} - \frac{\text{(2)}}{\text{dt}}$ Work done on the body dW = dK = F. ds dK = mdvds + v.dm.ds $= mvdv + v^2dm - (3)$ $m = m_0$; $m_0^2 = m^2 \left[1 - v^2 \right]$ mo2c2 = m2[c2-v2] $m^2c^2 - m^2V^2 = m_0^2c^2 - (4)$ Diff (4), we get, 2mdmc2 - [m2. 2vdv + 22m dm] = 0 mvdv + x2dm = c2dm; subst. in (3) $dK = c^2 dm - (5)$ movement), suppose mass changes from mo > m

 $= \frac{m_0^2 c^4}{(1-v^2)^2} - \frac{m_0^2 c^2 v^2}{(1-v^2)^2}$ $= m_0^2 c^4 \quad (newified)$