NYU Tandon Bridge Summer 2023 - HW8

Abhishek Jayakumar Kurup 06 September 2023

Question 5

 \mathbf{a}

Proof

Expression $P(n) = n^3 + 2n$ We shall prove that P(n) is divisible by 3 for all positive integers Using induction on

Base Case

For $n = 1, n^3 + 2n = 1 + 2 = 3$, which is divisible by 3

Inductive Assumption

We shall assume that the proposition holds true for n=k.

i.e. $k^3 + 2 = 3P$, where P is some integer.

We shall prove that the proposition is true for n=k+1

$$P(k+1) = (k+1)^3 + 2 = k^3 + 3k^2 + 3k + 1 + 2 = k^3 + 2n + 3k(k+1)$$

We can replace $k^3 + 2$ using 3P from our inductive assumption. we get,

$$P(k+1) = 3P + 3k(k+1) = 3Q$$
, where Q is an integer $= P + k(k+1)$

b) Ans:

proof using induction on n

Base case For n=2, 2 can be written as product of a prime number 2.

Inductive assumption We shall assume that all integers ≥ 2 upto and including k can be expressed as product of prime numbers

ie $k = p1 \times p2 \times ... \times p_k$, where P1 to P_k are prime numbers.

We shall prove that K+1 can be expressed as product of prime numbers.

K+1 can either be a prime number or a composite number.

Case1: k+1 is prime. In this case, k+1 can be written a product of prime number k+1

Case2: k+1 is composite. In this case $k+1=a\times b$, where a and b are integers greater than 1(by definition of composite numbers).

Here a and b has to be less than or equal to k. Say a=k+1, then b has to be less than 1, which violates the above statement. This can be established for b as well. Hence a and b are both less than or equal to k.

Thus, using our inductive assumption both a and b can be written as product of prime numbers.

Since, k+1 is product of a and b, k+1 can also be written as product of prime numbers \blacksquare

Question 6

7.4.1

$$\sum_{j=1}^{n} j^2 = n(n+1)(2n+1)/6$$

- a) P(3) $\sum_{j=1}^{n} j^2 = 1 + 4 + 9 = 14$ 3(3+1)(6+1)/6 = 14

Hence, P(3) is true.

b) P(k) is the assertion that

$$\sum_{i=1}^{k} j^2 = k(k+1)(2k+1)/6$$

- c) P(k+1) is the assertion that $\Sigma_{j=1}^{k+1}j^2=(k+1)(k+2)(2k+3)/6$
- d) In the base case, we must prove that P(1) is true
- e) In the inductive step we must prove that $p(k) \to P(k+1)$
- f) The inductive hypothesis is P(k) is true for any $k \ge 1$
- g) **Proof** Using induction on n

Base case

$$P(1) = 1^2 = 1 = 1 * (1+1) * 3/6 = 1$$

Inductive Assumption

P(k) is true. i.e. $\sum_{j=1}^k j^2 = k(k+1)(2k+1)/6$ P(k+1) = $\sum_{j=1}^k j^2 + (k+1)^2$ Substituting for $\sum_{j=1}^k j^2$ from the assumption, we get,

$$P(k+1) = \sum_{i=1}^{k} i^2 + (k+1)^2$$

$$k(k+1)(2k+1)/6 + (k+1)^2$$

$$1/6(k+1)(2k^2+k+6k+6)$$

$$1/6(k+1)(2k^2+7k+6)$$

$$1/6(k+1)(k+2)(2k+3)$$

b) 7.4.3 c) Prove that for $n \ge 1, \sum_{i=1}^{n} (1/j^2) \le 2 - 1/n$

Proof Using induction on n

Base case
$$P(1) = 1/1 = 1 \le 2 - 1 = 1$$
. Thus, $P(1)$ is true.

Inductive Assumption

P(k) is true. i.e.
$$\sum_{j=1}^{k} (1/j^2) \le 2 - 1/k$$

$$p(k+1) = \sum_{j=1}^{k+1} (1/j^2) = \sum_{j=1}^{k} (1/j^2) + 1/(k+1)^2$$

Substituting from our inductive assumption, we get $\sum_{j=1}^{k+1} (1/j^2) \leq 2 - 1/k + 1$

Using the fact
$$1/k(k+1) \ge 1/(k+1)^2$$
 we get, $\sum_{j=1}^{k+1} (1/j^2) \le 2-1/k+1/k(k+1) = 2 \cdot 1/(k+1)^2 \cdot 1/(k+1) = 2 \cdot 1/(k+1)^2 \cdot 1/(k+1)$

$$2 - 1/k(1 - 1/(k+1)) = 2 - 1/(k+1)$$

Thus, $\sum_{j=1}^{k+1} (1/j^2) \le 2 - 1/(k+1) \blacksquare$

c) Prove that for any positive integer n, 4 evenly divides $3^{2n} - 1$

Proof Using induction on n

Base Case $P(1) = 3^2 - 1 = 8$. 8 is evenly divisible by 4. Hence P(1) is true.

Inductive assumption p(k) is true. i.e. $3^{2k} - 1 = 4m$, where m is an integer.

We shall prove that p(k+1) is true. $p(k+1) = 3^{2k+2} - 1 = 3^{2k} * 9 - 1$. Substituting for 3^{2k} from the inductive assumption we get,

p(k+1) = (4m+1)*9 - 1 = 9*4m - 8 = 4*n, where n is an integer (9m - 2) . Thus, P(k+1) is true.