Liste des leçons

- LP1: Gravitation
- LP2: Loi de conservation en dynamique
- LP3 : Notion de viscosité d'un fluide. Écoulements visqueux.
- LP4 : Modèle de l'écoulement parfait d'un fluide
- LP5 : Phénomènes interfaciaux impliquant des fluides
- LP6: Premier principe de la thermodynamique
- LP7: Transitions de phase
- LP8 : Phénomènes de transport
- LP9 : Conversion de puissance électromécanique
- LP10 : Induction électromagnétique
- LP11 : Rétroaction et oscillations
- LP12 : Traitement d'un signal. Étude spectrale
- LP13: Ondes progressives, ondes stationnaires
- LP14 : Ondes acoustiques
- LP15 : Propagation guidée des ondes
- LP16 : Microscopies optiques
- LP17 : Interférences à deux ondes en optique
- LP18 : Interférences à division d'amplitude
- LP19 : Diffraction de Fraunhofer
- LP20 : Diffraction par des structures périodiques
- LP21 : Absorption et émission de la lumière
- LP22 : Propriétés macroscopiques des corps ferromagnétiques
- LP23 : Mécanismes de la conduction électrique dans les solides
- LP24: Phénomènes de résonance dans différents domaines de la physique
- LP25 : Oscillateurs; portraits de phase et non-linéarités
- LP26 : Cinématique relativiste. Expérience de Michelson et Morley
- LP27: Effet tunnel; radioactivité alpha.

Table des matières

LP1 –	Gravitation	7
1.1	Le champ gravitationnel	8
	1.1.1 Analogie avec l'électrostatique	8
	1.1.2 Théorème de Gauss	8
	1.1.3 Différence avec l'électrostatique	8
1.2	Dynamique terrestre	6
	1.2.1 Référentiel terrestre	9
	1.2.2 Champ de pesanteur terrestre	9
	1.2.3 Mesure de g	9
1.3	Dynamique du système solaire	9
	1.3.1 Modélisation	9
	1.3.2 Lois de Kepler	9
LP 2 :	Loi de conservation en dynamique	10
2.1	Lois de conservation	12
	2.1.1 Conservation de la quantité de mouvement	12
	2.1.2 Conservation du moment cinétique	12
	-	12
2.2	Application au cas d'un choc	12
LP3 :	Notion de viscosité d'un fluide. Écoulements visqueux	14
3.1	Notes agrégat	14
3.2	Notion de viscosité	15
0.2		15
	3.2.2 Équation de Navier-Stockes	15
		15
3.3	Écoulement de Poiseuille	16
5.5		16
	• •	16
TD4.	Madèla de l'éconlement ponfeit d'un fluide	17
4.1	· · · · · · · · · · · · · · · · · · ·	18
4.1	4.1.1 Hypothèses	
	4.1.1 Hypotheses	18 18
4.2		18
4.2	4.2.1 Hypothèses	
	, -	18
	4.2.2 Démonstration	18
4.0	4.2.3 Application	18
4.3	Limites du modèle	18
	4.3.1 Nombre de Reynolds	18
	4.3.2 Notion de couche limite	18
LP5:	1 1	19
5.1	Tension superficielle	20

	5.1.1	Mise en évidence	20
	5.1.2	Origine microscopique	20
		· · · · · · · · · · · · · · · · · · ·	20
	5.1.4	Mesure de γ	20
5.2			20
	5.2.1	Surpression dans une bulle	20
	5.2.2	Forme d'une goutte d'eau	20
			20
LP6 :	Premie	r principe de la thermodynamique	21
6.1	Bilan d	0 1	21
	6.1.1		21
			22
		1	22
6.2		1	22
	6.2.1	1 1	22
	6.2.2	Détente d'un gaz	22
		•	23
7.1		1 0 1 1	24
		1 1	24
		v 1	24
			24
7.2		/ 1	24
		1 1	24
	7.2.2	Modèle de Landau	24
TDe.	Dhánan	nènes de transport	25
8.1			25 26
0.1			20 26
		V I	$\frac{20}{26}$
			$\frac{20}{26}$
	8.1.4	1	20 26
8.2		VI I	$\frac{20}{26}$
0.2			$\frac{20}{26}$
		1	$\frac{20}{26}$
8.3		±	26 26
0.0	8.3.1		$\frac{26}{26}$
			-0 26
	0.0.2		-0
LP9:	Conver	sion de puissance électromécanique	27
9.1	Généra	lités	28
	9.1.1	Description des machines tournante	28
	9.1.2	Bilan d'énergie	28
	9.1.3	Application à un dispositif simple	28
9.2	Machin	ne à courant continu	29
	9.2.1	Description	29
	9.2.2	Force électromotrice	29
	9.2.3	Bilan d'énergie	29
	9.2.4	Notion de rendement	29
TD	T 1		
		8 1 1	30
			30
10.2			31
			31
	10.2.2	Flux magnétique	31

	10.2.3 Loi de Faraday	31
10.3	Circuit immobile dans un champ variable	31
	10.3.1 Auto-induction	31
	10.3.2 Mesure de l'inductance d'une bobine	32
10.4	Circuit mobile dans un champ stationnaire	32
10.1	10.4.1 Rail de Laplace	32
	10.4.2 Microphone / Haut-parleur	32
	10.4.2 Wherophone / Haut-parieur	32
LP11 ·	Rétroaction et oscillations	33
	Rétroaction	34
11.1	11.1.1 Schéma-bloc	34
		$\frac{34}{34}$
	11.1.2 Système bouclé	
	11.1.3 Exemple du pont de Wien	34
	11.1.4 Stabilité	34
	11.1.5 Définition	34
	11.1.6 Critère de stabilité	34
11.2	Oscillations	34
	11.2.1 Types d'oscillateurs	34
	11.2.2 Système auto-oscillant	34
	11.2.3 Régime quasi-sinusoïdal	34
	Traitement du signal. Étude spectrale	35
12.1	Caractérisation d'un signal	36
	12.1.1 Spectre en fréquence	36
	12.1.2 Quelques exemples de signal	36
12.2	Filtrage	36
	12.2.1 Fonction de transfert d'un circuit	36
	12.2.2 Application au circuit RC	36
	12.2.3 Filtrage linéaire	36
19.9	Transport et lecture d'un signal	36
12.5	12.3.1 Modulation d'amplitude (AM)	36
	12.3.2 Autres modulations	36
	12.3.3 Les signaux numériques	36
T D19 .	Ondes progressives, ondes stationnaires	37
	1 0 ,	
13.1	Équation de propagation d'une onde	38
	13.1.1 Propagation dans un cable coaxial	
	13.1.2 Solutions de l'équation	
	13.1.3 Ondes planes progressives harmoniques	39
13.2	Ondes stationnaires	39
	13.2.1 Superposition de deux OPPH	39
	13.2.2 Conditions aux bords	39
	Ondes acoustiques	40
14.1	Propagation dans les fluides	41
	14.1.1 Hypothèses et modèle	41
	14.1.2 Linéarisation et propagation	41
	14.1.3 Mesure de la célérité du son	42
14.2	Les instruments à vent	42
LP15:	Propagation guidée des ondes	43
15.1	Généralités	44
	15.1.1 Description du guide d'onde	44
	15.1.2 Modes de propagation	44
15.2	Propagation d'une onde EM dans un guide rectangulaire	44
	15.2.1 Propagation entre deux plans	44

15.3	15.2.3 Mesure de la relation de dispersion	44 44 44
16.1	Microscopie classique 16.1.1 Description d'un microscope 16.1.2 Éclairage 16.1.3 Limitations Miscroscopie confocale 16.2.1 Principe	45 46 46 46 46 46 46
		47 47 47
LP18 : 18.1		48 48 48
19.1	Phénomène de diffraction optique . 19.1.1 Principe de Huygens-Fresnel . 19.1.2 Diffraction par un objet plan . 19.1.3 Approximation de Fraunhofer . Diffraction par une fent rectangulaire . 19.2.1 Figure de diffraction . 19.2.2 Mesure de la largeur d'une fente .	49 50 50 50 50 51 51 51
LP20 : 20.1		52 52 52
21.1 21.2	Phénomènes d'émission et d'absorption Modèle d'Einstein 21.2.1 Positionnement du problème 21.2.2 Coefficient d'Einstein 21.2.3 Cas du corps noir	53 54 54 54 54 54 55
LP22 : 22.1		56 56 56
LP23 : 23.1		57 57 57
24.1	Oscillateur harmonique forcé 24.1.1 Cas non-amorti	58 59 59 59 59

	24.2.1 Généralité	59
	24.2.2 Cas de la corde de Melde	59
LP25:	Oscillateurs; portraits de phase et non-linéarités	60
25.1	Cas du pendule	61
	25.1.1 Mise en équation	61
	25.1.2 Approximation linéaire	61
	25.1.3 Prise en compte de la non-linéarité	61
25.2	Portrait de phase	61
	25.2.1 Définitions	61
	25.2.2 Construction pour un pendule	61
	25.2.3 Cas de l'amortissement	61
LP26:	Cinématique relativiste. Expérience de Michelson et Morley.	62
26.1	Expérience de Michelson et Morley	63
	26.1.1 Principe	63
	26.1.2 Mise en place	63
	26.1.3 Résultats et interprétation	63
26.2	Postulats de la relativité restreinte	63
	26.2.1 Énoncé	63
	26.2.2 Conséquences	63
	26.2.3 Espace de Minkowski	63
LP27:	Effet tunnel; radioactivité alpha.	64
	Modèle de la barrière de potentiel 1D	65
	27.1.1 Description	65
	27.1.2 Calcul fonction de transmission	65
	27.1.3 Cas d'une barrière de largeur variable	65
27.2	Application à la radioactivité alpha	65
	27.2.1 Potentiel du noyau atomique	65
	27.2.2 Probabilité d'émission d'une particule alpha	65
	27.2.3 Temps de demi-vie	

LP1 – Gravitation

Références

Bibliographie

- Physique tout-en-1 PC/PC*, Dunod
- Mécanique fondements et applications, Pérez
- La physique par la pratique, Portelli

Notes agrégat

- 2017 : Les applications ne doivent pas nécessairement se limiter à la gravitation terrestre.
- 2016 : Les analogies entre l'électromagnétisme et la gravitation classique présentent des limites qu'il est pertinent de souligner.

Expériences possibles

Mesure de l'accélération de pesanteur à l'aide d'un pendule

Matériel:

- Pendule
- Interface d'acquisition + cable de connexion
- Règle
- Balance

Protocole préparation:

- Mesure masse de la tige par rapport à la masselette
- Préparation du logiciel d'acquisition
- Faire quelques tests pour s'assurer de quel temps d'acquisition prendre : autour de 30s pour les petits angles
- Refaire bien la démarche pour effectuer la TF avec le logiciel d'acquisition

Protocole pendant la leçon

- Mesure de la longueur l
- Acquisition du mouvement du pendule
- Mesure de la période T avec la transformée de Fourier
- Obtention de la valeur de q à partir de T et l
- Éventuellement : Visualisation de l'énergie cinétique, potentielle et mécanique

Remarques:

Plan détaillé de la leçon

niveau : CPGE pré-requis :

- Mécanique du point
- Électrostatique (théorème de Gauss)
- Potentiel central
- Référentiel non galiléen

Introduction

Force gravitationnelle découverte par Newton

=> interaction que l'on ressent le plus dans la vie de tous les jours

1.1Le champ gravitationnel

1.1.1 Analogie avec l'électrostatique

Définition force gravitationnelle :

$$\vec{F}_g = -G \frac{m_1 m_2}{r^2} \vec{u}$$

Même forme que l'interaction coulombienne :

$$\vec{F}_e = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \vec{u}$$

avec $-G \longleftrightarrow \frac{1}{4\pi\epsilon_0}$. Pour cette dernière, on a introduit le champ électrique s'appliquant sur la charge q_1 par :

$$\vec{F}_e = q_1 \vec{E}$$

On fait donc de même pour la force gravitationnelle, en introduisant un champ gravitationnel:

$$\vec{F}_g = m_1 \vec{\Gamma}$$

Intérêt : superposition des solutions : $\Gamma_{\{m_2,m_3,....\}} = \Gamma_2 + \Gamma_3 +$

1.1.2 Théorème de Gauss

Nous avons vu en électrostatique le théorème de Gauss :

$$\iint\limits_{\Sigma} d^2x \; \vec{E} \cdot \vec{n} = \iiint\limits_{V} d^3x \; \frac{\rho}{4\pi\epsilon_0} \rho = \frac{Q_{int}}{\epsilon_0}$$

Nous allons utiliser ce même théorème pour obtenir le champ gravitationnel :

$$\iint_{\Sigma} d^2x \; \vec{\Gamma} \cdot \vec{n} = \iiint_{V} d^3x \; (-4\pi G)\rho_m = -4\pi G M_{int}$$

Dans le cas d'un problème avec symétrie sphérique, le calcul est direct, en prenant pour une surface Σ , une sphère de rayon r:

$$\iint\limits_{\Sigma} d^2x \; \vec{\Gamma} \cdot \vec{n} = 4\pi r^2 \vec{\Gamma}(r)$$

On obtient ainsi:

$$\vec{\Gamma}(r) = \frac{-GM_int}{r^2}$$

Même expression que pour une masse ponctuelle

1.1.3 Différence avec l'électrostatique

Pour le champ électrostatique : charge électrique positive ou négative => force attractive ou répulsive

De plus, phénomène d'écrantage

Pour le champ gravitationnel: masse uniquement positive => force purement attractive

Pas de phénomène d'écrantage, ce qui fait que c'est l'interaction qui domine à grandes échelles

1.2 Dynamique terrestre

1.2.1 Référentiel terrestre

Introduction référentiel avec système d'axe et angle (sur slide) Référentiel en rotation => le référentiel terrestre n'est pas un référentiel galiléen Hypothèses :

- $-\vec{\Omega} = \Omega \vec{e}_z$
- $--\Omega = cste$
- Symétrie sphérique de la Terre

Étude du mouvement d'un point M à la surface de la Terre :

$$\vec{a}_{\mathcal{T}}(M) = \vec{\Gamma}_{T}(M) + \vec{\Gamma}_{a} - \vec{a}_{ie} - \vec{a}_{ic}$$
$$\vec{a}_{ie} = \vec{a}_{\mathcal{S}}(T) - \Omega^{2}HM$$

Terme de Coriolis négligeable (OdG : $\Omega \sim 7.10^5 \text{ s}^{-1}$; $|\vec{HM}| \sim R_T \sim 3, 4.10^6 \text{ m donc, pour } v \sim 1 \text{ m.s}^{-1}, |2\vec{\Omega} \wedge \vec{v}_T(M)| \sim 10^{-4} \text{ m.s}^{-2} \ll |\Omega^2 \vec{HM}| \sim 3.10^{-2} \text{ m.s}^{-2}$)

1.2.2 Champ de pesanteur terrestre

PFD dans référentiel héliocentrique (galiléen) : $M_T \vec{a}_S(T) = M_T \vec{\Gamma}_a(T)$

$$\vec{a}_{\mathcal{T}}(M) = \underbrace{\vec{\Gamma}_T(M) + \Omega^2 \vec{HM}}_{\text{terme de pesanteur } \vec{g}} + \underbrace{\vec{\Gamma}_a(M) - \vec{\Gamma}_a(T)}_{\text{terme de marée}}$$

Définition de l'accélération de pesanteur :

$$\vec{g} = -\frac{GM_T}{R_T^2} \vec{e}_r + \Omega^2 \vec{HM}$$

1.2.3 Mesure de q

Présentation du pendule => Calcul pour trouver expression période Acquisition de l'oscillation du pendule

1.3 Dynamique du système solaire

1.3.1 Modélisation

1.3.2 Lois de Kepler

LP 2 : Loi de conservation en dynamique

Références

Bibliographie

- Physique tout-en-1, Dunod
- Mécanique, Pérez
- Mécanique 1 et 2, BFR

Notes agrégat

- 2017: Des exemples concrets d'utilisation des lois de conservation sont attendus.
- 2016 : Lors de l'entretien avec le jury, la discussion peut aborder d'autres domaines que celui de la mécanique classique.
- 2015 : Cette leçon peut être traitée à des niveaux très divers. L'intérêt fondamental des lois de conservation et leur origine doivent être connus et la leçon ne doit pas se limiter à une succession d'applications au cours desquelles les lois de conservation se résument à une propriété anecdotique du problème considéré.

Expériences possibles

Mobile auto-porteurs

Matériel:

- Montage mobile auto-porteur
- Caméra avec potence + système de fixation
- Balance
- Niveau à bulle

Protocole préparation:

- Mettre le plateau à niveau
- Peser les deux mobiles
- Faire tous les branchements
- Régler la caméra
- Effectuer 2 capture vidéo :

choc élastique pour 2 masses identiques

choc élastique pour 2 masses différentes (lancer la plus légère?)

— Exploitation des résultats :

Dans tracker: pointer les positions des 2 masses (bien ajouter les valeurs des masses)

Générer centre de masse : obtenir trajectoire

Exporter position en fonction du temps pour les trois dans quiplot

Obtenir les vitesses, puis les impulsions

Sur tracker, générer courbe E_c

Protocole pendant la leçon:

— Ici, présenter simplement les résultats obtenu en préparation

Remarques:

Le bâtonnet magique d'Erwan

Matériel:

- Cylindre creus noir avec extrémités colorés
- Fond blanc
- Caméra
- Balance (déjà demandé au-dessus)
- règle (+ éventuellement pied à coulisse?)

Protocole préparation:

- Régler la caméra, le cadre, etc.
- Effectuer une acquisition vidéo de back-up

Protocole pendant la leçon:

- Effectuer l'acquisition vidéo
- Sur Tracker, pointer les deux extrémités de la tige
- Générer la position du centre de masse
- Régler l'origine du repère sur le cdm
- Discuter de l'incertitude sur r
- Obtenir l'angle en fonction de t
- exporter sur quiplot pour ajuster avec une droite et montrer que l'on a bien une vitesse angulaire constante

Remarques:

Plan de la leçon

niveau : CPGE pré-requis :

- théorèmes généraux mécanique (PFD, TMC, TEC)
- pesanteur
- moment d'inertie
- référentiel (galiléen, barycentrique)

Introduction

Nous avons vu précédemment différentes lois de la dynamique qui permettent de décrire le mouvement d'un système en fonction des forces qu'il subit. Dans certains cas particulier, ces lois sont associées à la conservation de certaines grandeurs au sein du système, c'est ce que nous allons voir dans cette leçon.

Dans toute la suite, nous nous placerons toujours dans un référentiel galiléen.

2.1 Lois de conservation

2.1.1 Conservation de la quantité de mouvement

Principe fondamental de la dynamique pour une masse ponctuelle :

$$\frac{d\vec{p}}{dt} = \sum \vec{F}_{\text{ext}}$$

On peut donc imaginer deux cas où la quantité de mouvement est conservée :

- cas d'un système isolé : pas de force extérieure
- cas d'un système pseudo-isolé : les forces extérieures se compensent (leur somme est nulle)

Pour système composé de plusieurs masses, nous pouvons appliquer le théorème de la résultante cinétique :

$$\frac{d\vec{P}}{dt} = \sum \vec{F}_{\rm ext}$$

avec $\vec{P} = \sum \vec{p_i} = M_{tot} \vec{p_G}$ où G est le barycentre du système.

Pour un système (pseudo-)isolé dont la masse totale est conservée, quelque soit le comportement de ses différents composants => Trajectoire rectiligne uniforme de son centre de masse.

2.1.2 Conservation du moment cinétique

On applique à présent le théorème du moment cinétique par rapport à l'origine O :

$$\frac{d\vec{L_O}}{dt} = \sum \vec{\mathcal{M}}_{\text{ext}}$$

avec $\vec{\mathcal{M}}_{\mathrm{ext}} = \vec{OM} \wedge \vec{F}_{\mathrm{ext}}$

À nouveau, pour un système isolé, on a ici conservation du moment cinétique.

Mais on voit que $\vec{\mathcal{M}}_{\text{ext}} = \vec{0}$ si la force est colinéaire avec \vec{OM} (force centrale)

Ainsi pour un système ponctuel soumis uniquement à des forces centrales, le moment cinétique est conservé.

Pour un système non-ponctuel, on écrit : $\vec{\mathcal{M}}_{\text{ext},O} = \vec{OA} \wedge \vec{F}_{\text{ext}}$ où A est le point d'application de la force.

De plus, si le théorème du moment cinétique s'applique normalement à un point fixe dans un repère galiléen, on peut également l'appliquer au centre de masse.

Cas d'un cylindre soumis uniquement à son poids :

2.1.3 Conservation de l'énergie

2.2 Application au cas d'un choc

On considère ici le cas de deux masses allant l'une vers l'autre

Notion de choc : phénomène localisé spatialement et se déroulant sur un temps très court. On a une interaction de contact limitée dans le temps et l'espace : on va s'affranchir de la description précise de ce qui se passe pour la collision en elle-même et considérer les instants avant et après.

Cas d'un choc élastique : le nombre de particules et leur nature reste inchangés => énergie cinétique totale du système est conservée (ici, en classique, on peut garder uniquement la description en terme d'énergie cinétique)

Cas d'un choc élastique d'une masse m_1 sur une masse m_2 initialement immobile

Par conservation de la quantité de mouvement et de l'énergie cinétique du système... (cf calcul dans le Pérez de Mécanique p.233)

$$v_1' = \frac{m_1 - m_2}{m_1 + m_2} v_1 \text{ et } v_2' = \frac{2m_1}{m_1 + m_2} v_1$$

Conclusion

Les lois de conservation permettent de simplifier le traitement d'un certain nombre de problème On en a ici présenté plusieurs cas à partir des lois de la dynamique, mais les lois de conservation sont bien plus fondamentale. => une des bases de la physique moderne est le théorème de Noether "à toute invariance continue, on peut associer une loi de conservation"

LP3 : Notion de viscosité d'un fluide. Écoulements visqueux

Références

Bibliographie

- Dunod, Physique tout-en-1 PC
- Hydrodynamique physique (3e édition), Guyon, Hulin et Petit
- Ce que disent les fluides, Guyon, Hulin et Petit
- Mécanique des Fluides, D. Salin et J. Martin, Dunod (niveau Licence)

3.1 Notes agrégat

- 2017 : Il peut être judicieux de présenter le fonctionnement d'un viscosimètre dans cette leçon.
- 2016 : Le jury invite les candidats à réfléchir d'avantage à l'origine des actions de contact mises en jeu entre un fluide et un solide.
- 2014, 2013, 2012, 2011 (le titre était : "Notion de viscosité d'un fluide. Écoulements visqueux. Nombre de Reynolds. Exemples simples.") : L'exemple de l'écoulement de Poiseuille cylindrique n'est pas celui dont les conclusions sont les plus riches. Les candidats doivent avoir réfléchi aux différents mécanismes de dissipation qui peuvent avoir lieu dans un fluide. L'essentiel de l'exposé doit porter sur les fluides newtoniens : le cas des fluides non newtoniens, s'il peut être brièvement mentionné ou présenté, ne doit pas prendre trop de temps et faire perdre de vue le message principal.

Expériences possibles

Écoulement de Poiseuille

Matériel:

- Matos écoulement de Poiseuille
- Éprouvette graduée
- Chronomètre

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Plan détaillé de la leçon

niveau : CPGE pré-requis :

- Statique des fluides
- Équation d'Euler

Introduction

Le modèle du fluide parfait, n'explique pas tous les phénomènes observables dans un fluide

3.2Notion de viscosité

3.2.1Cas d'un cisaillement simple – écoulement de Couette

On se place en régime stationnaire.

Conditions aux bords: $\vec{v}_{fluide} = \vec{v}_{paroi}$

⇒ profil linéaire pour le champ de vitesse.

Si on considère un petit élement de surface et qu'on regarde la force projetée selon x

$$dF_x = \eta \frac{\partial v_x}{\partial x} dS \tag{3.1}$$

On introduit ici η : viscosité dynamique (Pa.s)

 \Rightarrow contrainte de cisaillement $\frac{\ddot{F}_x}{S}=\eta\frac{\ddot{v}_x}{a}$ Principe du viscosimètre de Couette

3.2.2Équation de Navier-Stockes

On fait un bilan sur un petit élement de volume $d\tau$

$$d\vec{F}_{totale} = d\vec{F}(y + dy) - d\vec{F}(y)$$

$$\Rightarrow dF_x = \eta \underbrace{\left(\frac{\partial v_x}{\partial y}(y + dy) - \frac{\partial v_x}{\partial y}(y)\right)}_{\frac{\partial^2 v_x}{\partial y^2} dy} dS$$

$$dF_x = \eta \frac{\partial^2 v_x}{\partial y^2} \underbrace{dx dy dz}_{d\tau}$$

On a donc une densité de force volumique $f_x = \eta \frac{\partial^2 v_x}{\partial y}$, que l'on va généraliser en 3 dimensions :

$$\vec{f} = \eta \Delta \vec{v} \tag{3.2}$$

où Δ est le laplacien

On peut donc écrire l'équation de Navier-Stokes (pour un fluide incompressible) :

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \text{grad}) \vec{v} \right) = \rho \vec{g} - \text{grad} P + \eta \Delta \vec{v}$$
(3.3)

Nombre de Reynolds 3.2.3

$$R_e = \frac{\text{terme convectif}}{\text{terme visqueux}} = \frac{|\rho(\vec{v} \cdot \text{grad})\vec{v}|}{|\eta \Delta \vec{v}|}$$

- \bullet longueur caractéristique L
- \bullet vitesse moyenne U

$$\Rightarrow R_e = \frac{\rho U^2 / L}{\eta U / L}$$

$$\Rightarrow R_e = \frac{\rho U L}{\eta} = \frac{U L}{\nu}$$
(3.4)

Introduction d'une nouvelle viscosité : ν viscosité cinématique Différents types d'écoulement en fonction du nombre de Reynolds

3.3 Écoulement de Poiseuille

Réalisation de l'expérience

3.3.1 Entre deux plans parallèles

Écoulement entre deux plans fixes dû à une différence de pression aux deux extrémités. On fait deux hypothèses :

- écoulement stationnaire
- on peut négliger les variations de pesanteur

$$\Rightarrow P(x)$$

On a donc un champ de vitesse selon x qui varie selon $y: \vec{v}=v_x(y)\vec{e}_x.$ Équation de Navier-Stokes selon \vec{e}_x :

$$0 = -\frac{\mathrm{d}P}{\mathrm{d}x} + \eta \frac{\mathrm{d}^2 v_x}{\mathrm{d}y^2}$$

$$\Rightarrow \frac{\mathrm{d}^2 v_x}{\mathrm{d}y^2} = \frac{1}{\eta} \frac{\mathrm{d}P}{\mathrm{d}x} = cste$$

$$\Rightarrow v_x(y) = \frac{1}{2\eta} \frac{\mathrm{d}P}{\mathrm{d}x} y^2 + C_1 y + C_2$$

36min00

On détermine C_1 et C_2 grâce aux conditions aux bords : $v_x(y=0)=v_x(y=a)=0$

$$\Rightarrow v_x(y) = \frac{-1}{2\eta} \frac{\mathrm{d}P}{\mathrm{d}x} (a - y)y \tag{3.5}$$

⇒ profil de vitesse parabolique Cas cylindrique sur slide

3.3.2 Mesures

Exploitation des mesures

Conclusion

Ouverture sur la notion de couche limite

LP4 : Modèle de l'écoulement parfait d'un fluide

Références

Bibliographie

- Physique tout-en-1 PC/PC*, Dunod
- Hydrodynamique physique, Guyon, Hulin et Petit
- Ce que disent les fluides, Guyon, Hulin et Petit
- La mécanique des fluides, Salin et Martin

Notes agrégat

- 2017 : La multiplication des expériences illustrant le théorème de Bernoulli n'est pas souhaitable, surtout si celles-ci ne sont pas correctement explicitées.
- 2016 : Les limites de ce modèle sont souvent méconnues.
- 2015 : Le jury invite les candidats à réfléchir davantage à l'interprétation de la portance et de l'effet Magnus. Les exemples cités doivent être correctement traités, une présentation superficielle de ceux-ci n'étant pas satisfaisante.
- 2014, 2013, 2012, 2011 (le titre était : "Modèle de l'écoulement parfait d'un fluide ; validité. Relation de Bernoulli ; limites et applications.") : La notion de viscosité peut être supposée acquise.

Expériences possibles

Mesure masse volumique de l'air par application du théorème de Bernoulli

Matériel:

- soufflerie
- anémomètre à fil chaud
- tube de pitot + manomètre différentiel + alim

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Plan détaillé de la leçon

niveau : pré-requis :

Introduction

- 4.1 Présentation du modèle
- 4.1.1 Hypothèses
- 4.1.2 Équation d'Euler
- 4.2 Théorème de Bernoulli
- 4.2.1 Hypothèses
- 4.2.2 Démonstration
- 4.2.3 Application
- 4.3 Limites du modèle
- 4.3.1 Nombre de Reynolds
- 4.3.2 Notion de couche limite

LP5 : Phénomènes interfaciaux impliquant des fluides

Références

Bibliographie

— Physique tout-en-1, PC/PC*, Dunod

Notes agrégat

— 2014 : Le lien avec les potentiels thermodynamiques n'est pas souvent maîtrisé. Il est important de dégager clairement l'origine microscopique de la tension superficielle. Le jury constate que trop souvent les candidats présentent des schémas où la représentation des interactions remet en cause la stabilité mécanique de l'interface. Le jury apprécie les exposés dans lesquels le/la candidat(e) ne se limite pas à la statique

Expériences possibles

Matériel :

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Plan détaillé de la leçon

niveau : Licence pré-requis :

- mécanique
- thermodynamique
- statique des fluides

Introduction

Voir plan d'Alex

5.1 Tension superficielle

- 5.1.1 Mise en évidence
- 5.1.2 Origine microscopique
- 5.1.3 Point de vue énergétique
- 5.1.4 Mesure de γ
- 5.2 Interfaces statiques
- 5.2.1 Surpression dans une bulle
- 5.2.2 Forme d'une goutte d'eau
- 5.2.3 Mouillage

LP6 : Premier principe de la thermodynamique

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2017: Des exemples concrets d'utilisation du premier principe de la thermodynamique sont attendus.
- 2015 : La notion d'équilibre thermodynamique n'est pas toujours bien comprise. Des exemples pertinents doivent être utilisés pour mettre en exergue l'intérêt du premier principe, y compris pour l'introduire.

Expériences possibles

Expérience de Joule

Matériel:

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Plan de la leçon

niveau : CPGE pré-requis :

- Travail d'une force
- Théorème de l'énergie mécanique
- Thermodynamique (définition du système, transformation)

Introduction

Intro historique

6.1 Bilan d'énergie du système

6.1.1 Énoncé du premier principe

La variation d'énergie d'un système est égale à l'énergie échangée entre celui-ci est l'extérieur :

$$\Delta E = W + Q \tag{6.1}$$

avec

- W est le travail des forces appliquées au système
- Q est le transfert thermique (ou chaleur)
- --E est l'énergie totale du système
- => Conservation de l'énergie

Bilan énergétique du système : on sait déjà caractériser l'énergie mécanique :

- E_c : énergie cinétique macroscopique
- E_p : énergie potentielle des forces extérieures

Mais pas suffisant pour rendre compte des phénomènes : cas de systèmes isolés où l'énergie mécanique n'est pas conservée

6.1.2 Notion d'énergie interne

Définition : valeur moyenne de l'énergie des particules (microscopique) du système lorsqu'il est "macroscopiquement au repos".

Elle comprend deux contributions:

- l'énergie cinétique relative des particules
- leur énergie d'interaction

Il s'agit d'une fonction d'état (c-à-d dont la variation ne dépend pas du chemin suivi) extensive (c-à-d proportionnelle au nombre de particules).

6.1.3 Expérience de Joule

Nous avons:

$$W = (Mg - T_{\text{ressort}})2\pi R N$$

$$Q = (m_{\rm eau} + m')c_{\rm m, \ eau}\Delta T$$

6.2 Applications et conséquences

6.2.1 Machine à mouvement perpétuel

Machine thermique : système qui effectue un cycle caractérisé par différentes transformations Application du premier principe....

6.2.2 Détente d'un gaz

LP7: Transitions de phase

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2015 : Il est dommage de réduire cette leçon aux seuls changements d'états solide-liquide-vapeur. La discussion de la transition liquide-vapeur peut être l'occasion de discuter du point critique et de faire des analogies avec la transition ferromagnétique-paramagnétique. La notion d'universalité est rarement connue ou comprise.
- 2014 : Il n'y a pas lieu de limiter cette leçon au cas des changements d'état solide-liquide-vapeur. D'autres transitions de phase peuvent être discutées.

Expériences possibles

Mesure de la chaleur latente du diazote

Matériel:

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Plan détaillé de la leçon

niveau : pré-requis :

Introduction

Reprise plan Charlie => à revoir? Définitions :

- Phase:
- Transition de phase :

7.1 Transition liquide-gaz d'un corps pur

- 7.1.1 Description du problème
- 7.1.2 Étude thermodynamique
- 7.1.3 Notion de chaleur latente
- $7.2 \quad Transition \ ferro/paramagn\'etique$
- 7.2.1 Description du problème
- 7.2.2 Modèle de Landau

LP8 : Phénomènes de transport

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2017 : La leçon ne peut se limiter à la présentation d'un unique phénomène de transport.
- 2016 : Les analogies et différences entre les phénomènes de transport doivent être soulignées tout en évitant de dresser un simple catalogue.
- 2015 : Les liens et les limites des analogies entre divers domaines doivent être connus.
- 2013 : [À propos du nouveau titre] Le candidat développera sa leçon à partir d'un exemple de son choix.

Expériences possibles

Diffusion thermique dans un barreau de cuivre

Matériel:

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Plan détaillé de la leçon

niveau : CPGE pré-requis :

- Thermodynamique
- Échelle mésoscopique

Introduction

Voir plan d'Alex

8.1 Processus irréversibles

- 8.1.1 Hypothèses
- 8.1.2 Grandeurs conservées
- 8.1.3 Réponse linéaire
- 8.1.4 Types de transport
- 8.2 Transport diffusif
- 8.2.1 Équation de diffusion
- 8.2.2 Propriété de la diffusion
- 8.3 Transport convectif
- 8.3.1 Équation de convection
- 8.3.2 Loi de similitudes

LP9 : Conversion de puissance électromécanique

Références

Bibliographie

- Physique tout-en-1 PSI/PSI*, Dunod
- Physique spé PSI/PSI*, édition Tec & Doc
- Machines électriques, Niard
- Machine électriques, Chatelain
- Génie électronique, Mérat

Notes de l'agrégat

- 2017 : Une approche à l'aide des seules forces de Laplace est insuffisante. Les candidats doivent aussi s'interroger sur l'intérêt d'utiliser des matériaux ferromagnétiques dans les machines électriques.
- 2016 : Afin de pouvoir aborder des machines électriques de forte puissance, le rôle essentiel du fer doit être considéré car les forces électromagnétiques ne se réduisent pas aux seules actions de Laplace s'exerçant sur les conducteurs traversés par des courants.
- 2015 : Il est souhaitable de préciser le rôle de l'énergie magnétique lors de l'étude des convertisseurs électromécaniques constitués de matériaux ferromagnétiques linéaires non saturés.
- 2014 : Dans le cas des machines électriques, les candidats sont invités à réfléchir au rôle du fer dans les actions électromagnétiques qui peuvent également être déterminées par dérivation d'une grandeur énergétique par rapport à un paramètre de position.

Expériences possibles

Machine à courant continu

Matériel :

Protocole préparation :

- Faire série de mesure à masse fixée pour couple moteur
- Faire série de mesure à U fixé pour rendement
- (cf poly de TP sur les moteurs pour le détail)

Protocole pendant la leçon:

Faire une mesure (notamment masse nominale et tension nominale) à ajouter à celles déjà prises en prépa Remarques :

Plan détaillé de la leçon

niveau : CPGE pré-requis :

- induction
- magnétisme
- énergie électromagnétique
- mécanique

Introduction

Production d'énergie sous forme d'électricité => on veut à présent utiliser cette énergie.

Pour cela, les phénomènes d'induction que nous avons vu précédemment sont un outil privilégié comme nous allons le voir dans cette leçon.

Intérêt des moteurs électriques : cf. paragraphe d'intro du Niard

9.1 Généralités

9.1.1 Description des machines tournante

Schéma général des machines tournantes :

- Une partie immobile, appelée stator, qui va générer un champ magnétique
- Une partie en rotation, appelé rotor, qui va générer un travail mécanique
- L'espace entre les deux est appelé l'entrefer

9.1.2 Bilan d'énergie

cf schéma figure 23.5 dans le Tout-en-un PSI

L'énergie du convertisseur comprend deux contributions :

- \mathcal{E}_c : l'énergie cinétique de la partie mobile
- \mathcal{E}_{em} : une énergie électromagnétique stockée par le système

On considère que le générateur apporte un travail électrique W_e dont une partie est dissipée par effet Joule (W_J) . Le convertisseur reçoit alors un travail $W_{em} = W_e - W_J$.

Á la sortie du convertisseur, on obtient un travail mécanique w_m dont une partie est dissipée à cause des forces de frottement W_f . Le travail utile généré par le convertisseur est alors $W_u = W_m - W_f$.

Remarque: on considère ici que la conversion se fait sans dissipation.

Le premier principe nous donne alors (avec les conventions du schéma):

$$d\mathcal{E} = d\mathcal{E}_c + d\mathcal{E}_{em} = \delta W_e - \delta W_u - \delta Q \tag{9.1}$$

où $\delta Q = \delta W_J + \delta W_f$.

Nous pouvons également appliquer le théorème de l'énergie cinétique sur la partie mobile du système :

$$d\mathcal{E}_c = W_m - W_f - W_u \tag{9.2}$$

 W_m étant le travail mettant en mouvement cette partie (cf figure 23.6 du Tout-en-un PSI). En combinant toute ces équations, nous obtenons la relation :

$$\delta W_{em} = d\mathcal{E}_{em} + \delta W_m \tag{9.3}$$

9.1.3 Application à un dispositif simple

Nous considérons un système modélisé par la figure 23.7 du Tout-en-un. Nous avons alors :

$$u = Ri - e = Ri + \frac{d\phi}{dt} \tag{9.4}$$

Le travail électrique est alors donné par

$$\delta W_e = uidt = \underbrace{Ri^2 dt}_{\text{effet Joule}} + \underbrace{id\phi}_{W_{em}} \tag{9.5}$$

Pour une machine tournante, nous avons également :

$$\delta W_m = \Gamma d\theta \tag{9.6}$$

où Γ est le couple du moteur.

9.2 Machine à courant continu

9.2.1 Description

Schéma + photos à mettre sur diapo Manip : montage de démo du moteur à CC

9.2.2 Force électromotrice

cf calcul dans le Tout-en-un

On a donc :

$$U = RI + K\Omega \tag{9.7}$$

où K est une constante dépendant du moteur (cf notice)

Expérience : obtention de la constante

9.2.3 Bilan d'énergie

cf Tout-en-un => obtention de la relation

$$\Gamma = KI \tag{9.8}$$

9.2.4 Notion de rendement

Conclusion

Récapitulatif

Évocation problèmes liés au moteur à courant continu (?)

Ouverture sur les autres types de moteurs

LP10 : Induction électromagnétique

Références

Bibliographie

- Physique tout-en-1 PCSI, Dunod
- Électromagnétisme : Milieux, structures et énergie, Rax
- *Électromagnétisme*, Pérez
- Électromagnétisme 3, BFR
- Magnétisme : statique, induction et milieux, Garing

10.1 Notes de l'agrégat

- 2015 : L'algébrisation rigoureuse des grandeurs électriques et mécaniques est nécessaire lors de la paramétrisation.
- 2014 : Dans cette leçon, le plus grand soin s'impose dans la définition des orientations et des conventions de signe. Les applications doivent occuper une place significative dans la présentation. Il n'est pas admissible à ce niveau de confondre les forces de Lorentz et de Laplace.

Expériences possibles

Mesure de l'inductance propre d'une bobine

Matériel:

Protocole préparation :

Protocole pendant la leçon:

Remarques:

Plan détaillé de la leçon

niveau : CPGE pré-requis :

- électrocinétique
- magnétisme
- fonction de transfert/digramme de Bode
- force de Laplace

Introduction

Support sur diapo

Électromagnétisme : domaine en plein essor au XIX°siècle

En 1820, Orsted et Ampère réalisent que les courants électriques génèrent des courants magnétiques

En 1831, Faraday recherche l'effet inverse : fonctionne à l'allumage et à l'extinction de ses appareils => ce sont les variations de champ magnétique qui génère un courant.

Expérience qualitative avec un aimant qu'on approche d'une bobine en visualisant la tension à ses bornes sur un oscilloscope.

Dans cette leçon, nous allons chercher à comprendre ce phénomène.

10.2 Lois de l'induction

10.2.1 Loi de Lenz

Énoncé: tout système électromagnétique soumis à une force extérieur réagit de manière à s'y opposer.

10.2.2 Flux magnétique

Flux de \vec{B} à travers Σ

$$\Phi = \iint\limits_{\Sigma} \vec{B} \cdot d\vec{S} \tag{10.1}$$

Loi de conservation du flux magnétique

- \Rightarrow flux à travers une surface fermée est nul
- $\Rightarrow \Phi$ dépend uniquement du contour de Σ (et donc du circuit)

10.2.3 Loi de Faraday

Dans un circuit subissant une variation de flux

$$e = \frac{\mathrm{d}\Phi}{\mathrm{d}t}$$
 (en V) (10.2)

$$\Rightarrow e = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{\Sigma} \vec{B} \cdot \mathrm{d}\vec{S} \tag{10.3}$$

Deux types d'induction :

- de Neumann : circuit fixe dans un champ variable
- de Lorentz : circuit mobile dans un champ stationnaire

10.3 Circuit immobile dans un champ variable

10.3.1 Auto-induction

Bobine de N spires et de longueur l

$$\begin{split} &\Rightarrow \vec{B} = \mu_0 \frac{N}{l} i \vec{e}_z \\ &\Rightarrow \Phi_{spire} = \vec{B} \cdot \vec{S} = \mu_0 \frac{NS}{l} i \\ &\Rightarrow \Phi_{bobine} = N \Phi_{spire} = \mu_0 \frac{N^2 S}{l} i \end{split}$$

On peut introduire une grandeur L telle que $\Phi = Li$

$$L = \mu_0 \frac{N^2 S}{l}$$
 coefficient d'autoinduction (en H) (10.4)

Loi de Faraday

$$\Rightarrow e = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -L\frac{\mathrm{d}i}{\mathrm{d}t} \tag{10.5}$$

$$u_L = L \frac{\mathrm{d}i}{\mathrm{d}t} \qquad (u_L = -e) \tag{10.6}$$

10.3.2 Mesure de l'inductance d'une bobine

Mesure de L à l'aide de la fréquence de coupure d'un circuit RL

objectif : vérifier la loi en N^2 Diapo fonction de transfert avec diagramme de Bode

Lancement diagramme de Bode avec interface python

Transfert des données sur quiplot.

Tracé du diagramme et mesure de f_c sur la courbe.

 $\mathit{Trac\'e}\ \mathit{de}\ \mathit{L}\ \mathit{en}\ \mathit{fonction}\ \mathit{de}\ \mathit{N}\ =>\ \mathit{ajustement}\ : \mathit{L}=\mathit{AN}^n$

10.4 Circuit mobile dans un champ stationnaire

Démo qualitative avec l'aimant fixe et la bobine mobile

10.4.1 Rail de Laplace

$$\Rightarrow \Phi = S \vec{B} \cdot \vec{e}_z = B l_0 x(t)$$

Loi de Faraday $e = -Bl_0v(t)$

Resistance R du circuit $\Rightarrow i = e/R = -Bl_0v/R$

Bilan des forces \longrightarrow force de Laplace

$$\vec{F}_{\mathcal{L}} = \int_{barreau} i d\vec{l} \wedge \vec{B} = i l_0 B \vec{e}_x \tag{10.7}$$

$$\Rightarrow \vec{F}_{\mathcal{L}} = -\frac{B^2 l_0^2}{R} \vec{v} \tag{10.8}$$

frottement fluide qui freine le barreau

10.4.2 Microphone / Haut-parleur

Sur diapo

Conclusion

Sur diapo

LP11: Rétroaction et oscillations

Références

Bibliographie

- Physique tout-en-1 PSI, Dunod
- Physique spé PSI/PSI*, Tec&Doc
- Électronique fondements et applications, Pérez
- Le fameux poly de Jeremy, version électronique, Montrouge, Neveu

Notes agrégat

- 2015 : Dans le cas des oscillateurs auto-entretenus, les conditions d'apparition des oscillations et la limitation de leur amplitude doivent être discutées. Le jury souhaiterait que le terme de résonance soit dûment justifié sans oublier une discussion du facteur de qualité. Il n'est pas indispensable de se restreindre à l'électronique.
- 2013 : Le jury n'attend pas une présentation générale et abstraite de la notion de système bouclé.

Expériences possibles

Boites démonstration rétroaction avec lampe

Matériel:

- Boite de démo
- Oscillo + câbles

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Oscillateur à pont de Wien

Matériel:

- Résistance variable X3
- Condensateur variable
- Bobine (variable?)
- Ampli-op + alim
- Oscillo

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Plan détaillé de la leçon

 $niveau: \mathrm{CPGE}$ pré-requis:

— Amplificateur linéaire intégré

Introduction

-4 -	4 -	T
		l Rétroaction

- 11.1.1 Schéma-bloc
- 11.1.2 Système bouclé
- 11.1.3 Exemple du pont de Wien
- 11.1.4 Stabilité
- 11.1.5 Définition
- 11.1.6 Critère de stabilité
- 11.2 Oscillations
- 11.2.1 Types d'oscillateurs
- 11.2.2 Système auto-oscillant
- 11.2.3 Régime quasi-sinusoïdal

11.2. OSCILLATIONS 35

LP12 : Traitement du signal. Étude spectrale

Références

Bibliographie

- Physique tout-en-un, PSCI, Dunod (pour analyse spectrale)
- Physique tout-en-1, PSI/PSI*, Dunod (pour traitement du signal)
- Électronique, Pérez

Notes agrégat

- 2017 : Ce n'est pas une leçon sur le filtrage qui est attendue ; il ne faut pas se réduire à l'étude d'un ou plusieurs filtres électroniques.
- 2016 : Cette leçon ne peut en aucun cas se réduire à la simple étude de la théorie de Fourier.
- 2015 : Cette leçon ne doit pas se réduire à un catalogue de systèmes de traitement analogique du signal. Elle peut aussi mettre en exergue des méthodes numériques enseignées notamment dans les programmes de CPGE.

Expériences possibles

Mesure de la fréquence de coupure d'un circuit RC (diagramme de Bod
Matériel:
Protocole préparation :
Protocole pendant la leçon :
Remarques:
Modulation–démodulation d'amplitude

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Matériel:

Plan détaillé de la leçon

niveau : CPGE pré-requis :

— Onde harmonique – fonction sinusoïdale

Introduction

- 12.1 Caractérisation d'un signal
- 12.1.1 Spectre en fréquence
- 12.1.2 Quelques exemples de signal
- 12.2 Filtrage
- 12.2.1 Fonction de transfert d'un circuit
- 12.2.2 Application au circuit RC
- 12.2.3 Filtrage linéaire
- 12.3 Transport et lecture d'un signal
- 12.3.1 Modulation d'amplitude (AM)
- 12.3.2 Autres modulations
- 12.3.3 Les signaux numériques

Rapidement sur slide

LP13 : Ondes progressives, ondes stationnaires

Références

Bibliographie

- Physique tout-en-un PCSI, Dunod
- Dictionnaire de physique, Taillet
- Oscilations, propagation, diffusion, Soutif

Notes agrégat

- 2015 : Les candidats doivent être attentifs à bien équilibrer leur exposé entre ces deux familles d'ondes qui, d'ailleurs, ne s'excluent pas entre elles.
- 2014 : À l'occasion de cette leçon, le jury tient à rappeler une évidence : avec un tel titre, la leçon doit être équilibrée et ne peut en aucun cas se limiter pour l'essentiel aux ondes progressives.

Expériences possibles

Propagation dans un cable coaxial

Matériel:

- GBF (agilent)
- Oscilloscope
- Cable coaxial de 100m
- Petit cable coaxial BNC-BNC
- LCR-mètre
- Adaptateur BNC-banane + cavalier

Protocole préparation :

Protocole pendant la leçon:

Remarques:

Cuve à ondes : observation d'ondes progressives et d'ondes stationnaires

Matériel:

— Cuve à onde + tous les accessoires

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Plan détaillé de la leçon

niveau : CPGE pré-requis :

— Électrocinétique

— Équations différentielles

— Fonctions sinusoïdales

Introduction

Diapo avec exemple d'ondes

Les ondes sont partout autour de nous : Nature (vague, tremblement de terre, etc.), communication de manière générale (son mais aussi avec appareils électriques)

Définition: perturbation d'une grandeur physique se propageant de proche en proche

13.1 Équation de propagation d'une onde

13.1.1 Propagation dans un cable coaxial

Schéma modélisation cable coax

- Loi des mailles :

$$u(x,t) = \lambda \delta x \frac{\partial i}{\partial t}(x,t) + u(x + \delta x, t)$$

Limite pour $\delta x \longrightarrow 0$:

$$\Longrightarrow \frac{\partial u}{\partial x} = -\lambda \frac{\partial i}{\partial t} \tag{13.1}$$

- Loi des noeuds :

$$i(x,t) = \gamma \delta x \frac{\partial u}{\partial t}(x + \delta x, t) + i(x + \delta x, t)$$

Limite pour $\delta x \longrightarrow 0$:

$$\Longrightarrow \frac{\partial i}{\partial t} = -\gamma \frac{\partial u}{\partial t} \tag{13.2}$$

On voit ici que u et i sont des grandeurs couplées (notion essentielle pour les ondes)

$$\Longrightarrow \frac{\partial^2 u}{\partial x^2} = -\lambda \frac{\partial^2 i}{\partial x \partial t} = -\lambda \frac{\partial^2 i}{\partial t \partial x}$$

$$\frac{\partial^2 u}{\partial x^2} = +\gamma \lambda \frac{\partial^2 u}{\partial t^2}$$
(13.3)

Équation très courante pour les ondes : équation de d'Alembert :

$$\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0 \tag{13.4}$$

où c est la célérité de l'onde.

Par identification pour le cable coaxial : $c = 1/\sqrt{\gamma \lambda}$

13.1.2 Solutions de l'équation

Fonction de la forme $u(x,t)=f(x\pm ct)$ sont solutions de l'équation => ondes planes Graphe avec propagation

- function u(x,t) = f(x-ct): onde se propageant vers les x croissants
- de même, fonction u(x,t) = f(x+ct): onde se propageant vers les x décroissants

On voit ici que c représente la vitesse de propagation de l'onde, on va vérifier cela.

Manip: présentation propagation d'un pulse dans le cable coaxial + mesure vitesse de propagation

Théorème : toute solution de l'équation de d'Alembert peut s'écrire sous la forme $u(x,t) = f_1(x-ct) + f_2(x+ct)$

Transition : il existe également des solutions particulières très intéressantes

13.1.3 Ondes planes progressives harmoniques

On considère la fonction $u(x,t)=A\cos{(kx-\omega t+\phi)}=>$ onde plane progressive harmonique Solution de l'équation de d'Alembert ssi

$$k^2 = \frac{\omega^2}{c^2} \tag{13.5}$$

=> Relation de dispersion

Observation onde progressive dans la cuve à onde => qu'est-ce qui se passe quand on a une réflexion ?=> observation onde stationnaire

13.2 Ondes stationnaires

13.2.1 Superposition de deux OPPH

Nous allons considérer la superposition de 2 OPPH contrapropageante de même fréquence et de même amplitude :

$$u(x,t) = A\cos(kx - \omega t) + A\cos(kx + \omega t) = 2A\cos(kx)\cos(\omega t)$$

On a plus de propagation => ondes stationnaires

13.2.2 Conditions aux bords

LP14 : Ondes acoustiques

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2017 : La contextualisation et des applications de la vie courante ne doivent pas être oubliées dans cette leçon qui se résume souvent à une suite de calculs. De plus, les fluides ne sont pas les seuls milieux dans lesquels les ondes acoustiques peuvent être étudiées.
- 2014 : Cette leçon peut être l'occasion de traiter les ondes acoustiques dans les fluides ou dans les milieux périodiques, certes, mais elle peut aussi être l'occasion de traiter les deux cas qui donnent lieu à des phénoménologies très différentes.
- 2013 : Le candidat est libre d'étudier les ondes acoustiques dans un fluide ou dans un solide élastique.

Expériences possibles

Mesure de la célérité du son dans l'air

Matériel:

- Piézoélectriques émetteur + récepteur
- Banc optique + 2 pieds
- GBF
- Oscilloscope
- 2 cables BNC-bananes

Protocole préparation:

Protocole pendant la leçon :

Remarques:

Plan détaillé de la leçon

niveau : CPGE pré-requis :

- Ondes progressives/stationnaires
- Équation de d'Alembert
- Ondes électromagnétiques
- Dynamique des fluides
- Diffusion thermique

Introduction

Définition ondes acoustiques

14.1 Propagation dans les fluides

14.1.1 Hypothèses et modèle

On se place dans le référentiel du fluide au repos caractérisé par :

- Pression P_0
- Masse volumique ρ_0
- Vitesse $\vec{v}_0 = \vec{0}$
- Approximation acoustique : on considère une perturbation au-dessus de ce fluide au repos :
 - Champ de pression : $P(\vec{r},t) = P_0 + P_1(\vec{r},t)$ avec $P_1 \ll P_0$
 - Champ de masse volumique : $\rho(\vec{r},t) = \rho_0(\vec{r},t) + \rho_1(\vec{r},t)$ avec $\rho_0 \ll \rho_1$
 - Champ de vitesse : $v_1(\vec{r},t) \ll c_s$ où c_s est la célérité du son dans le fluide (grandeur sur laquelle on reviendra)
- On néglige la pesanteur
- On néglige également les effets disspatifs de l'écoulement (les termes de viscosité et les termes de diffusion thermique)
- => on considère ainsi que l'on est isentropique

14.1.2 Linéarisation et propagation

- Équation d'Euler :

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\text{grad}}) \vec{v} \right) = -\vec{\text{grad}} P$$

Au premier ordre, on a donc:

$$\rho_0 \frac{\partial \vec{v}_1}{\partial t} = -\vec{\text{grad}} P_1$$

Remarque à avoir en tête pour les questions : ici on a :

$$\frac{||(\vec{v} \cdot \vec{\mathrm{grad}}) \vec{v}||}{||\partial_t \vec{v}||} \sim \frac{v_1^2/\lambda}{c_s/\lambda v_1} \sim \frac{v_1}{c_s}$$

Donc on retrouve que le terme convectif est négligeable pour $v_1 \ll c_s$ (nombre de Mach : U/c_s)

- Conservation de la masse :

$$\frac{\partial \rho}{\partial t} = -\text{div}(\rho \vec{v})$$

Au premier ordre:

$$\frac{\partial \rho_1}{\partial t} = -\rho_0 \operatorname{div} \vec{v}_1$$

- Évolution isentropique : on peut relier ρ et P par le coefficient thermoélastique

$$\chi_S = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_S \sim \frac{1}{\rho_0} \frac{\rho_1}{P_1}$$

Nous avons ainsi : $\rho_1 = \chi_S \rho_0 P_1$

En combinant avec l'équation précédente, on a donc :

$$\chi_S \frac{\partial P_1}{\partial t} = -\text{div}\vec{v}_1$$

Nous voyons alors que \vec{v} et P sont les deux grandeurs couplés de l'onde acoustique. En combinant les deux équations obtenues, nous écrivons l'équation de propagation :

$$\Delta P_1 - \rho_0 \chi_S \frac{\partial^2 P_1}{\partial t^2} = 0 \tag{14.1}$$

On a ici une équation de type équation de d'Alembert où nous identifions la célérité du son : $c_s = 1/\sqrt{\rho_0 \chi_S}$

14.1.3 Mesure de la célérité du son

Pour un gaz, on peut montrer que Démo à savoir pour les questions :

$$c = \sqrt{\frac{\gamma RT}{\mathcal{M}}}$$

où γ : coefficient adiabatique et $\mathcal M$: masse molaire du gaz

Pour l'air nous avons : $\gamma = 1, 4$ et $\mathcal{M} = 29 \text{g.mol}^{-1}$ Expérience : mesure de la célérité du son dans l'air

14.2 Les instruments à vent

Schéma tube avec les différents type de condition aux limites (sur diapo) Questions des harmoniques accessibles => discussion sur le son de la clarinette Rapidement discussion sur l'impédance acoustique (sur diapo)?

LP15 : Propagation guidée des ondes

Références

Bibliographie

- Électrodynamisme des milieux continus, Landau et Lifchitz
- Cours sur les ondes de Thieberge (ENS Lyon): https://www.etienne-thibierge.fr/agreg/ondes_poly_ 2015.pdf

Notes agrégat

- 2014: Les candidats doivent avoir réfléchi à la notion de vitesse de groupe et à son cadre d'utilisation.
- 2012, 2013: Les notions de modes et de fréquence de coupure doivent être exposées. On peut envisager d'autres ondes que les ondes électromagnétiques.
- 2010 : La propagation guidée ne concerne pas les seules ondes électromagnétiques ou optiques. Il faut insister sur les conditions aux limites introduites par le dispositif de guidage.

Expériences possibles

Matériel: Protocole préparation: Protocole pendant la leçon: Remarques: Banc hyperfréquence – mesure de la relation de dispersion Matériel: Protocole préparation: Protocole pendant la leçon :

Plan détaillé de la leçon

niveau: Licence pré-requis :

Remarques:

Ondes progressives; ondes stationnaires

- Équations de Maxwell
- Relation de passage d'électromagnétisme

Introduction

15.1 Généralités

- 15.1.1 Description du guide d'onde
- 15.1.2 Modes de propagation
- 15.2 Propagation d'une onde EM dans un guide rectangulaire
- 15.2.1 Propagation entre deux plans

Calculs of cours Thieberge

15.2.2 Généralisation au guide rectangulaire

Calculs of cours Thieberge

15.2.3 Mesure de la relation de dispersion

Calculs of cours Thieberge

15.3 Propagation guidée des ondes acoustiques

LP16: Microscopies optiques

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2017 : L'intérêt des notions introduites doit être souligné.
- 2016 : Une technique récente de microscopie optique à haute résolution doit être présentée.

Expériences possibles

Mesure du grossissement commercial du microscope

Matériel:

- Microscope
- Mire micrométrique
- -- Lampe LED + condenseur 8cm
- Filtre anti-thermique + pied
- Diaphragme + pied
- Écran blanc
- 2 supports-élévateurs
- Un mètre-ruban + une règle

Protocole préparation:

— Faire le montage avec tous les bons alignements

Protocole pendant la leçon:

- Présenter le montage
- Faire image propre sur écran
- Mesurer distance écran
- Mesurer taille image
- Calculer grossissement

Remarques:

Plan détaillé de la leçon

niveau : Licence pré-requis :

- Optique géométrique
- Diffraction

Introduction

Résolution de l'oeil $\sim 100\,\mu\mathrm{m}$

16.1	Microsco	opie c	lassique

- 16.1.1 Description d'un microscope
- 16.1.2 Éclairage
- 16.1.3 Limitations
- 16.2 Miscroscopie confocale
- 16.2.1 Principe
- 16.2.2 Microscope confocal à fluorescence

LP17 : Interférences à deux ondes en optique

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2016: Les approximations mises en oeuvre dans les calculs de différence de marche doivent être justifiées a priori.
- 2015 : L'exposé doit permettre de préciser clairement les contraintes particulières que l'optique impose aux dispositifs interférentiels par rapport à d'autres domaines.
- 2014 : Un interféromètre comportant une lame séparatrice n'est pas obligatoirement utilisé en diviseur d'amplitude. La notion de cohérence et ses limites doivent être discutées.

Expériences possibles

Matériel :
_
Protocole préparation :
Protocole pendant la leçon :
Remarques :

Plan détaillé de la leçon

niveau : pré-requis :

Introduction

17.1

17.1.1

LP18 : Interférences à division d'amplitude

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2017 : Le candidat doit réfléchir aux conséquences du mode d'éclairage de l'interféromètre (source étendue, faisceau parallèle ou non...). Il est judicieux de ne pas se limiter à l'exemple de l'interféromètre de Michelson.
- 2016 : La distinction entre divisions du front d'onde et d'amplitude doit être précise. Le jury rappelle que l'utilisation d'une lame semi-réfléchissante ne conduit pas nécessairement à une division d'amplitude.
- 2015 : Les notions de cohérence doivent être présentées.
- 2014 : Un interféromètre comportant une lame séparatrice n'est pas obligatoirement utilisé en diviseur d'amplitude. La notion de cohérence et ses limites doivent être discutées.

Expériences possibles

Matériel :
_
Protocole préparation :
Protocole pendant la leçon :
Remarques:

Plan détaillé de la leçon

niveau : pré-requis :

Introduction

18.1

18.1.1

LP19: Diffraction de Fraunhofer

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2017 : Les conditions de Fraunhofer et leurs conséquences doivent être présentées, ainsi que le lien entre les dimensions caractéristiques d'un objet diffractant et celles de sa figure de diffraction.
- 2014, 2013, 2012, 2011 : Les conditions de l'approximation de Fraunhofer doivent être clairement énoncées. Pour autant, elles ne constituent pas le coeur de la leçon.

Expériences possibles

Diffraction par une fente calibrée

Matériel:

- Laser
- Caméra CCD + cable usb
- Lentille convergente (15 ou 20 cm) + pied
- Laser élargi (ou laser + kit lentille laser)

Protocole préparation :

Protocole pendant la leçon :

Remarques:

Plan détaillé de la leçon

niveau : Licence pré-requis :

- Tranformée de Fourier
- Physique ondulatoire (onde sphérique, onde plane, interférences et diffraction)

Introduction

Lorsque l'on fait passer la lumière par une ouverture fine, on observe phénomène d'élargissement du faisceau => démo Cela rappelle phénomène déjà vu en physique ondulatoire : la diffraction

De plus, on a ici une figure assez pariculière qui se forme => Dans cette leçon, on va chercher à étudier quantitativement ce phénomène

19.1 Phénomène de diffraction optique

19.1.1 Principe de Huygens-Fresnel

Énoncé du principe sur diapo

 $Sch\'{e}ma$ sur le $c\^{o}t\'{e}$ du tableau à $compl\'{e}ter$ au fur et à mesure de la $le\~{c}on$ Expression de l'onde en un point M:

$$dS_p(M) = \frac{e^{ik|\vec{PM}|}}{|\vec{PM}|} As_0(P) d\Sigma$$

$$\implies s(M) = A \iint d\Sigma s_0(P) \frac{e^{ik|\vec{PM}|}}{|\vec{PM}|}$$

19.1.2 Diffraction par un objet plan

$$\begin{split} |\vec{PM}| &= \sqrt{(X-x)^2 + (Y-y)^2 + D^2} \\ &= D\sqrt{1 + \left(\frac{X-x}{D}\right)^2 + \left(\frac{Y-y}{D}\right)^2} \end{split}$$

Conditions de Gauss $\Longrightarrow X-x, Y-y \ll D$ (petits angles)

$$|\vec{PM}| \sim D \left[1 + \frac{1}{2} \left(\frac{X - x}{D} \right)^2 + \frac{1}{2} \left(\frac{Y - y}{D} \right)^2 \right]$$
$$\sim D \left[1 + \frac{\alpha^2 + \beta^2}{2} - \frac{\alpha x + \beta y}{D} + \frac{x^2 + y^2}{2D^2} \right]$$

avec $\alpha \sim X/D, \, \beta \sim Y/D$ et $x^2 + y^2 = r^2$. Donc

$$\frac{1}{|P\vec{M}|} \sim \frac{1}{D}$$

$$e^{ik|P\vec{M}|} \sim e^{i\varphi} e^{ik(-\alpha x - \beta y + r^2/2D)}$$

$$s_0(P) = s_0 \frac{e^{ik|S\vec{P}|}}{|S\vec{P}|} \sim s_0 \frac{e^{i\varphi}}{d} e^{ik(\alpha_0 x + \beta_0 y + r^2/2d)}$$

$$\Rightarrow s(M) = \tilde{s_0} \iint dx dy \, t(x, y) e^{-ik[(\alpha - \alpha_0)x + (\beta - \beta_0)y]} e^{ik\frac{r^2}{2} \left(\frac{1}{a} + \frac{1}{D}\right)}$$
(19.1)

19.1.3 Approximation de Fraunhofer

On veut que $\frac{kr^2}{2D}, \frac{kr^2}{2d} \ll 1 \iff D, d \gg \frac{\pi r^2}{\lambda}$

A.N. pour He-Ne $\lambda = 633, 8$ nm, $r \sim 0, 1$ mm

$$\Rightarrow D, d \gg 5 \text{ cm}$$
 (19.2)

En pratique on se place au foyer de deux lentilles

$$\Rightarrow s(M) = \tilde{s_0} \iint dx dy \, t(x, y) e^{-ikxX/f'} e^{-ikyY/f'}$$
(19.3)

Diffraction de Fraunhoffer $s(M) = \tilde{s_0} TF[t(x, y)]$

19.2 Diffraction par une fent rectangulaire

19.2.1 Figure de diffraction

$$\Rightarrow t(x,y) = \begin{cases} 1/ab & \text{pour } x \in [-a/2, a/2], \ y \in [-b/2, b/2] \\ 0 & \text{sinon} \end{cases}$$
$$s(M) = \tilde{s_0} \operatorname{sinc}\left(\frac{\pi a X}{\lambda f'}\right) \operatorname{sinc}\left(\frac{\pi a Y}{\lambda f'}\right) \tag{19.4}$$

Expérimentalement on mesure $I(M) = |s(M)|^2$

19.2.2 Mesure de la largeur d'une fente

Manip mesure avec caméra CCD

19.2.3 Influence des paramètres de la fente

Animation pour montrer changement figure de diffraction par rapport aux caractéristiques de la fente source : https://phet.colorado.edu/sims/html/wave-interference/latest/wave-interference_en.html

Conclusion

Ouverture : limitation des instruments d'optique

LP20 : Diffraction par des structures périodiques

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2017 : Il faut traiter de diffraction par des structures périodiques et pas seulement d'interférences à N ondes.
- 2015 : Il est important de bien mettre en évidence les différentes longueurs caractéristiques en jeu.
- 2014, 2013, 2012 : Cette leçon donne souvent l'occasion de présenter les travaux de Bragg; malheureusement, les ordres de grandeur dans différents domaines ne sont pas toujours maîtrisés.
- 2010, 2009 : La notion de facteur de forme peut être introduite sur un exemple simple. L'influence du nombre d'éléments diffractants doit être discutée.

Expériences possibles

Matériel:
_
Protocole préparation :
Protocole pendant la leçon :
Remarques:

Plan détaillé de la leçon

niveau : pré-requis :

Introduction

20.1

20.1.1

20.1. 53

LP21 : Absorption et émission de la lumière

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2017 : Cette leçon ne peut se résumer à une présentation des relations d'Einstein.
- 2015 : Cette leçon peut être traitée de façons très variées, mais il est bon que les candidats aient réfléchi aux propriétés des diverses formes de rayonnements émis, aux dispositifs exploitant ces propriétés et au cadre théorique permettant de les comprendre.
- 2014, 2013, 2012, 2011 (Absorption, émission spontanée ou induite du rayonnement. Caractéristiques et applications.): Trop souvent, il y a confusion entre les processus élémentaires pour un atome et un ensemble d'atomes. De même le candidat doit préciser au cours de sa leçon le caractère monochromatique ou non du champ de rayonnement qu'il considère et plus généralement les caractéristiques du rayonnement stimulé.

Expériences possibles

Spectre d'absorption de la rhodamine

Matériel:

Protocole préparation:

Protocole pendant la leçon:

Remarques:

Plan de la leçon

niveau : pré-requis :

- Électromagnétique (densité d'énergie, vecteur de Poynting)
- Physique statistique (distribution de Boltzmann)
- Quantification des niveaux d'énergie
- Rayonnement du corps noir (loi de Planck)

Introduction

Description de la lumière : objet de débat pendant longtemps en physique

=> Connaissance de la matière très fortement liée à cette histoire

XVII° siècle: Newton étudie la décomposition du spectre de la lumière blanche => description des couleurs comme un objet physique

XVIII°-XIX° siècle : développement de la spectroscopie

XX° siècle : spectroscopie atomique

21.1 Phénomènes d'émission et d'absorption

Présentation spectre lampe de mercure => Phénomène d'émission de lumière

Expérience: étude du spectre d'absorption de la rhodamine

21.2 Modèle d'Einstein

21.2.1Positionnement du problème

Schéma système à 2 niveaux

Interaction entre lumière et atome ssi $h\nu = E_2 - E_1 = h\nu_0$

Lumière de densité spectrale $u(\nu)$ ici on considère $u(\nu = \nu_0)$

(hypothèse large bande sous-jacente)

- Hypothèse : population d'atome $N \ll 1 =$ description statistique du problème

21.2.2Coefficient d'Einstein

- Émission spontanée :

$$\left(\frac{dN_2}{dt}\right)_{\rm sp} = -A_{21}N_2 \tag{21.1}$$

=> Photon avec direction de propagation, polarisation et phase aléatoire

- Absorption :

$$\left(\frac{dN_2}{dt}\right)_{\text{abs}} = +B_{12}N_1u(\nu_0) \tag{21.2}$$

Il existe aussi un autre phénomène d'émission introduit par Einstein : - Émission stimulée :

$$\left(\frac{dN_2}{dt}\right)_{\text{st}} = -B_{21}N_2u(\nu_0)$$
(21.3)

Nous obtenons ainsi:

$$\frac{dN_2}{dt} = -A_{21}N_2 - B_{21}N_2u(\nu_0) + B_{12}N_1u(\nu_0)$$
(21.4)

21.2.3 Cas du corps noir

- Régime permanent : $\frac{dN_2}{dt} = 0$ => $(B_{12}N_1 - B_{21}N_2)u(\nu_0) = A_{21}N_2$

Nous obtenons alors:

$$u(\nu_0) = \frac{A_{21}}{B_{21}} \frac{1}{\frac{B_{12}N_1}{B_{21}N_2} - 1}$$
(21.5)

or à l'équilibre thermodynamique : $N_i \propto e^{-\frac{E_i}{k_B T}}$, nous avons donc :

$$\frac{N_1}{N_2} = e^{\frac{E_2 - E_1}{k_B T}} = e^{\frac{h\nu_0}{k_B T}}$$

Nous avons alors:

$$u(\nu_0) = \frac{A_{21}}{B_{21}} \frac{1}{\frac{B_{12}}{B_{22}} e^{\frac{h\nu_0}{k_B T}} - 1}$$
(21.6)

Identification avec la loi de Planck : $u(\nu)=\frac{8\pi\nu^3}{c^3}\frac{1}{e^{\frac{\hbar\nu}{k_BT}}-1},$ on a donc :

$$B_{12} = B_{21} \text{ et } \frac{A_{21}}{B_{21}} = \frac{8\pi\nu_0^3}{c^3}$$

On veut utiliser les propriétés de l'émission stimulée Comparaison coeff pour différentes fréquences (MASER avant les LASER)

21.3 Application au laser

Sur diapo?

LP22 : Propriétés macroscopiques des corps ferromagnétiques

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2017 : L'introduction des milieux linéaires en début de leçon n'est pas judicieuse.
- 2016 : Un bilan de puissance soigné est attendu.
- 2009, 2010 L'intérêt du champ \vec{H} doit être clairement dégagé. L'obtention expérimentale du cycle d'hystérésis doit être analysée.

Expériences possibles

Matériel :
_
Protocole préparation :
Protocole pendant la leçon :

Plan détaillé de la leçon

niveau : Licence pré-requis :

Remarques:

Introduction

22.1

22.1.1

LP23 : Mécanisme de la conduction électrique dans les solides

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

- 2017 : Cette leçon ne concerne pas que la conduction dans les métaux.
- 2014 : Dans la présentation du modèle de Drude, les candidats doivent être attentifs à discuter des hypothèses du modèle, en particulier celle des électrons indépendants. Le jury se permet par ailleurs de rappeler aux candidats que les solides ne sont pas tous métalliques. Voir également le commentaire sur la leçon 29 [Ondes électromagnétiques dans les milieux conducteurs.]

Expériences possibles

Matériel :
_
Protocole préparation :
Protocole pendant la leçon :
Remarques:

Plan détaillé de la leçon

niveau : pré-requis :

Introduction

23.1

23.1.1

LP24 : Phénomènes de résonance dans différents domaines de la physique

Références

Bibliographie

- Physique tout-en-1, Dunod
- Mécanique, Landau Lifchitz
- Vibration, propagation, diffusion, Soutif
- Acoustique des instruments de musique, A. Chataigne et J. Kergomard

Notes agrégat

- **2015**: Présenter l'exemple célèbre du pont de Tacoma n'est pas pertinent, sauf s'il s'agit d'effectuer une critique d'une interprétation erronée très répandue.
- 2010 : L'analyse du seul circuit RLC est très insuffisante pour cette leçon. Le phénomène de résonance ne se limite pas aux oscillateurs à un degré de liberté.

Expériences possibles

Protocole pendant la leçon:

Résonance dans un circuit RLC

Matériel :

—
Protocole préparation :

Corde de Melde

Matériel:

- GBF
- Ampli
- Fils électriques
- Vibreur + corde
- Poulie

Protocole préparation:

Tout mettre ensemble, pas de prépa particulière Regarder pour avoir une idée des fréquence de résonance

Protocole pendant la leçon:

Démo qualitative des résonances Remarques :

Plan détaillé de la leçon

niveau:

pré-requis :

- Oscillateur harmonique
- Fonction de transfert

Introduction

Définition de résonance => donner des exemples

24.1 Oscillateur harmonique forcé

24.1.1 Cas non-amorti

On considère l'équation d'un oscillateur harmonique à laquelle on va ajouter un terme de forçage :

$$\ddot{x} + \omega_0^2 x = f(t) \tag{24.1}$$

Dans cette leçon, nous allons nous intéresser tout d'abord à des forçages sinusoïdal : $f(t) = a \cos(\omega t)$

Obtention de la solution particulière

Cas $\omega = \omega_0$ est un cas particulier => divergence du système

Prise en compte de l'amortissement primordial quand on parle de résonance

24.1.2 Cas amorti

On ajoute à présent un terme d'amortissement :

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = a \cos(\omega t) \tag{24.2}$$

Résolution par passage en formalisme complexe => fonction de transfert

Résonance en intensité

Résonance en charge

24.1.3 Application au circuit RLC

24.2 Résonance en cavité

24.2.1 Généralité

24.2.2 Cas de la corde de Melde

LP25 : Oscillateurs ; portraits de phase et non-linéarités

Références

Bibliographie

- Physique tout-en-1 PCSI, édition Dunod
- Vibration, propagation, diffusion, Soutif (1993)
- L'ordre dans le chaos, Bergé, Pomeau et Vidal

Notes agrégat

- 2017 : Les définitions d'un oscillateur et d'un portrait de phase sont attendues. La leçon doit présenter des systèmes comportant des non-linéarités.
- 2015 : L'intérêt de l'utilisation des portraits de phase doit ressortir de la leçon.
- 2013 : Les aspects non-linéaires doivent être abordés dans cette leçon sans développement calculatoire excessif, en utilisant judicieusement la notion de portrait de phase. Une simulation numérique bien présentée peut enrichir cette leçon.

Expériences possibles

Acquisition des oscillations d'un pendule

Matériel:

- Pendule pesant
- interface d'acquisition
- Balance
- Règle

Protocole préparation:

Protocole pendant la leçon:

Remarques:

— Attention à la distinction pendule simple/pendule pesant => bien poser les hypothèses

Plan détaillé de la leçon

niveau : CPGE?
pré-requis :

- Mécanique du point
- Oscillateur harmonique

25.1. CAS DU PENDULE 61

Introduction

25.1 Cas du pendule

25.1.1 Mise en équation

 $Sch\'{e}ma$

Référentiel : terrestre Système : masse m

Bilan des forces :

— Poids : $\vec{P} = -mg\vec{e}_z = mg(\cos\theta\vec{e}_r - \sin\theta\vec{e}_\theta)$

— Tension du la corde : $\vec{T} = -||\vec{T}||\vec{e}_r$

Principe fondamental de la dynamique :

$$m\vec{a} = \vec{P} + \vec{T}$$

$$ml(-\dot{\theta}^2\vec{e}_r + \ddot{\theta}\vec{e}_\theta) = (mg\cos\theta - ||\vec{T}||)\vec{e}_r - \sin\theta\vec{e}_\theta$$

Projection selon \vec{e}_{θ} :

$$ml\ddot{\theta} = mg\sin\theta \tag{25.1}$$

25.1.2 Approximation linéaire

Cas des petits angles : $\sin \theta \sim \theta$

On retrouve alors équation de l'oscillateur harmonique :

$$\ddot{\theta} - \frac{g}{l}\theta = 0 \tag{25.2}$$

avec $\frac{g}{l} = \omega_0^2$

Expérience : acquisition oscillations pendule

25.1.3 Prise en compte de la non-linéarité

Développement de Bordas

On est plus sinusoïdal => de nouvelles fréquences émergent Acquisition grand angle + exploitation avec code Yum Compliqué à traiter exactement => mais on peut développer d'autres outils.

25.2 Portrait de phase

25.2.1 Définitions

25.2.2 Construction pour un pendule

25.2.3 Cas de l'amortissement

Conclusion

Ouverture sur les oscillateurs entretenus?

LP26 : Cinématique relativiste. Expérience de Michelson et Morley.

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

Pour cinématique relativiste :

- 2016: Les notions d'événement et d'invariant sont incontournables dans cette leçon.
- 2015 : Le jury rappelle qu'il n'est pas forcément nécessaire de mettre en œuvre des vitesses relativistes pour être capable de détecter et de mesurer des effets relativistes.
- 2014 : Cette leçon exige une grande rigueur dans l'exposé tant sur les notions fondamentales de relativité restreinte que sur les référentiels en jeu. Elle invite les candidats à faire preuve d'une grande pédagogie pour présenter des notions a priori non intuitives et faire ressortir les limites de l'approche classique. Un exposé clair des notions d'invariant relativiste est attendu.

Expériences possibles

Commentaire correcteur : La cinématique relativiste, comme la dynamique relativiste, se prêtent mal à des expériences réalisables de manière raisonnable pour une leçon d'agrégation. Avoir présenté un interféromètre de Michelson est une bonne idée, mais on pourrait désirer y consacrer davantage de temps (ce qui n'est pas évident dans le temps imparti). Il n'est pas impossible que l'expérience de Fizeau soit réalisable, mais cela reste techniquement délicat pour une leçon de concours

Interféromètre de Michelson

Matériel:

- Interféromètre de Michelson
- Laser + kit lentilles laser
- Philora
- Lentille de focale 1m

Protocole préparation:

Aligner le Michelson

Protocole pendant la leçon:

Remarques:

Plan détaillé de la leçon

niveau : Licence
pré-requis :

- Mécanique classique
- Électromagnétisme
- Interféromètre de Michelson

Introduction

Incompatibilité de l'électromagnétisme et de la méca newtonnienne

Concept de l'éther

- 26.1 Expérience de Michelson et Morley
- 26.1.1 Principe
- 26.1.2 Mise en place
- 26.1.3 Résultats et interprétation
- 26.2 Postulats de la relativité restreinte
- 26.2.1 Énoncé
- 26.2.2 Conséquences
 - Relativité du temps entre les référentiels
 - Notion d'événements
 - Transformation de Lorentz
 - Intervalle entre deux événements

26.2.3 Espace de Minkowski

LP27: Effet tunnel; radioactivité alpha.

Références

Bibliographie

— Physique tout-en-1, Dunod

Notes agrégat

Titre: effet tunnel:

- 2017 : Encore une fois, il ne s'agit pas de se limiter à des calculs. L'exposé doit présenter l'analyse d'applications pertinentes.
- 2015 : Trop de candidats pensent que l'effet tunnel est spécifique à la physique quantique.
- 2013, 2012, 2011: Dans le traitement de l'effet tunnel, les candidats perdent souvent trop de temps dans les calculs. Le jury invite les candidats à réfléchir à une présentation à la fois complète et concise sans oublier les commentaires physiques relatifs à la dérivation de la probabilité de transmission. Certains candidats choisissent d'aborder le cas de la désintégration alpha mais ne détaillent malheureusement pas le lien entre la probabilité de traversée d'une barrière et la durée de demi-vie de l'élément considéré. La justification des conditions aux limites est essentielle! Le microscope à effet tunnel peut être un bon exemple d'application s'il est analysé avec soin (hauteur de la barrière, origine de la résolution transverse, ...).

Expériences possibles

Aucune : présenter données expérimentales sur temps de demi-vie des noyaux rédioactifs

Plan détaillé de la leçon

niveau : pré-requis :

Introduction

- 27.1 Modèle de la barrière de potentiel 1D
- 27.1.1 Description
- 27.1.2 Calcul fonction de transmission
- 27.1.3 Cas d'une barrière de largeur variable
- 27.2 Application à la radioactivité alpha
- 27.2.1 Potentiel du noyau atomique
- 27.2.2 Probabilité d'émission d'une particule alpha
- 27.2.3 Temps de demi-vie