1.	A lorry is driven between London and Newcastle.		
	In a simple model, the cost of the journey $\pounds C$ when the lorry is driven at a steady speed of v kilometres per hour is		
	$C = \frac{1500}{v} + \frac{2v}{11} + 60$		
	(a) Find, according to this model,		
	(i) the value of v that minimises the cost of the journey,		
	(ii) the minimum cost of the journey. (Solutions based entirely on graphical or numerical methods are not acceptable.)	(6)	
	(b) Prove by using $\frac{d^2C}{dv^2}$ that the cost is minimised at the speed found in (a)(i).	(2)	
	(c) State one limitation of this model.	(1)	

Figure 3

Figure 3 shows a flowerbed. Its shape is a quarter of a circle of radius x metres with two equal rectangles attached to it along its radii. Each rectangle has length equal to x metres and width equal to y metres.

Given that the area of the flowerbed is 4 m²,

(a) show that

$$y = \frac{16 - \pi x^2}{8x}$$
 (3)

(b) Hence show that the perimeter P metres of the flowerbed is given by the equation

$$P = \frac{8}{x} + 2x \tag{3}$$

(c) Use calculus to find the minimum value of *P*.

(5)

(d) Find the width of each rectangle when the perimeter is a minimum. Give your answer to the nearest centimetre.

Figure 2

A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, x cm, as shown in Figure 2.

The volume of the cuboid is 81 cubic centimetres.

(a) Show that the total length, L cm, of the twelve edges of the cuboid is given by

$$L = 12x + \frac{162}{x^2} \tag{3}$$

(b) Use calculus to find the minimum value of L.

(6)

(c) Justify, by further differentiation, that the value of L that you have found is a minimum.

(2)

Figure 3

A manufacturer produces pain relieving tablets. Each tablet is in the shape of a solid circular cylinder with base radius x mm and height h mm, as shown in Figure 3.

Given that the volume of each tablet has to be 60 mm³,

(a) express h in terms of x,

(1)

(b) show that the surface area, $A \text{ mm}^2$, of a tablet is given by $A = 2\pi x^2 + \frac{120}{x}$ (3)

The manufacturer needs to minimise the surface area $A \text{ mm}^2$, of a tablet.

(c) Use calculus to find the value of x for which A is a minimum.

(5)

(d) Calculate the minimum value of A, giving your answer to the nearest integer.

(2)

(e) Show that this value of A is a minimum.

Figure 4 shows a closed letter box *ABFEHGCD*, which is made to be attached to a wall of a house.

The letter box is a right prism of length y cm as shown in Figure 4. The base ABFE of the prism is a rectangle. The total surface area of the six faces of the prism is $S \text{ cm}^2$.

The cross section ABCD of the letter box is a trapezium with edges of lengths DA = 9x cm, AB = 4x cm, BC = 6x cm and CD = 5x cm as shown in Figure 5. The angle $DAB = 90^{\circ}$ and the angle $ABC = 90^{\circ}$.

The volume of the letter box is 9600 cm³.

(a) Show that

$$y = \frac{320}{x^2} \tag{2}$$

(b) Hence show that the surface area of the letter box, $S \text{ cm}^2$, is given by

$$S = 60x^2 + \frac{7680}{x} \tag{4}$$

(c) Use calculus to find the minimum value of S.

(6)

(d) Justify, by further differentiation, that the value of S you have found is a minimum.

		-	
4	h		
	U	,	
	~	•	

A solid glass cylinder, which is used in an expensive laser amplifier, has a volume of 75 π cm³.

The cost of polishing the surface area of this glass cylinder is £2 per cm² for the curved surface area and £3 per cm² for the circular top and base areas.

Given that the radius of the cylinder is r cm,

(a) show that the cost of the polishing, £C, is given by

$$C = 6\pi r^2 + \frac{300\pi}{r} \tag{4}$$

(b) Use calculus to find the minimum cost of the polishing, giving your answer to the nearest pound.

(5)

(c) Justify that the answer that you have obtained in part (b) is a minimum.

(1)

7	A company makes drinks containers out of metal.	
	A company makes drinks containers out of metal.	
	The containers are modelled as closed cylinders with base radius r cm and height h cm are the capacity of each container is 355cm^3	ıd
	The metal used	
	• for the circular base and the curved side costs 0.04 pence/cm ²	
	• for the circular top costs 0.09 pence/cm ²	
	Both metals used are of negligible thickness.	
	(a) Show that the total cost, C pence, of the metal for one container is given by	
	$C = 0.13 \cdot^2 + 28.4$	
	$C = 0.13\pi r^2 + \frac{28.4}{r}$	(4)
		(4)
	(b) Use calculus to find the value of r for which C is a minimum, giving your answer to 3 significant figures.	
		(4)
	(c) Using $\frac{d^2C}{dr^2}$ prove that the cost is minimised for the value of r found in part (b).	
	(c) Using $\frac{1}{dr^2}$ prove that the cost is infinitised for the value of 7 found in part (b).	(2)
	(d) Hence find the minimum value of <i>C</i> , giving your answer to the nearest integer.	
	(a) Trence find the minimum value of C, giving your answer to the hearest integer.	(2)

estion 7 continued		

Figure 4

Figure 4 shows a plan view of a sheep enclosure.

The enclosure *ABCDEA*, as shown in Figure 4, consists of a rectangle *BCDE* joined to an equilateral triangle *BFA* and a sector *FEA* of a circle with radius *x* metres and centre *F*.

The points B, F and E lie on a straight line with FE = x metres and $10 \le x \le 25$

(a) Find, in m^2 , the exact area of the sector *FEA*, giving your answer in terms of x, in its simplest form.

Given that BC = y metres, where y > 0, and the area of the enclosure is 1000 m²,

(b) show that

$$y = \frac{500}{x} - \frac{x}{24} \left(4\pi + 3\sqrt{3} \right) \tag{3}$$

Diagram not drawn to scale

(2)

(c) Hence show that the perimeter P metres of the enclosure is given by

$$P = \frac{1000}{x} + \frac{x}{12} \left(4\pi + 36 - 3\sqrt{3} \right) \tag{3}$$

- (d) Use calculus to find the minimum value of P, giving your answer to the nearest metre. (5)
- (e) Justify, by further differentiation, that the value of P you have found is a minimum. (2)

Figure 4

Figure 4 shows a solid brick in the shape of a cuboid measuring 2x cm by x cm by y cm.

The total surface area of the brick is 600 cm².

(a) Show that the volume, $V \text{ cm}^3$, of the brick is given by

$$V = 200x - \frac{4x^3}{3} \, .$$

(4)

Given that x can vary,

(b) use calculus to find the maximum value of V, giving your answer to the nearest cm³.

(5)

(c) Justify that the value of V you have found is a maximum.

10.		
	A company decides to manufacture a soft drinks can with a capacity of 500 ml.	
	The company models the can in the shape of a right circular cylinder with radius r cm and height h cm.	
	In the model they assume that the can is made from a metal of negligible thickness.	
	(a) Prove that the total surface area, $S \text{ cm}^2$, of the can is given by	
	$S = 2\pi r^2 + \frac{1000}{r}$	
	r	(3)
	Given that r can vary,	
	(b) find the dimensions of a can that has minimum surface area.	
		(5)
	(c) With reference to the shape of the can, suggest a reason why the company may	
	choose not to manufacture a can with minimum surface area.	(1)

Figure 9

[A sphere of radius r has volume $\frac{4}{3}\pi r^3$ and surface area $4\pi r^2$]

A manufacturer produces a storage tank.

The tank is modelled in the shape of a hollow circular cylinder closed at one end with a hemispherical shell at the other end as shown in Figure 9.

The walls of the tank are assumed to have negligible thickness.

The cylinder has radius r metres and height h metres and the hemisphere has radius r metres.

The volume of the tank is 6 m³.

(a) Show that, according to the model, the surface area of the tank, in m², is given by

$$\frac{12}{r} + \frac{5}{3} \pi r^2 \tag{4}$$

The manufacturer needs to minimise the surface area of the tank.

(b) Use calculus to find the radius of the tank for which the surface area is a minimum.

(4)

(c) Calculate the minimum surface area of the tank, giving your answer to the nearest integer. (2)

Figure 2

Figure 2 shows a closed box used by a shop for packing pieces of cake. The box is a right prism of height h cm. The cross section is a sector of a circle. The sector has radius r cm and angle 1 radian.

The volume of the box is 300 cm³.

(a) Show that the surface area of the box, $S \text{ cm}^2$, is given by

$$S = r^2 + \frac{1800}{r} \,. \tag{5}$$

(b) Use calculus to find the value of r for which S is stationary.

(4)

(c) Prove that this value of r gives a minimum value of S.

(2)

(d) Find, to the nearest cm^2 , this minimum value of S.

Figure 5

A company makes toys for children.

Figure 5 shows the design for a solid toy that looks like a piece of cheese.

The toy is modelled so that

- face ABC is a sector of a circle with radius rcm and centre A
- angle BAC = 0.8 radians
- faces ABC and DEF are congruent
- edges AD, CF and BE are perpendicular to faces ABC and DEF
- edges AD, CF and BE have length h cm

Given that the volume of the toy is 240 cm³

(a) show that the surface area of the toy, $S \text{ cm}^2$, is given by

$$S = 0.8r^2 + \frac{1680}{r}$$

making your method clear.

(4)

Using algebraic differentiation,

(b) find the value of r for which S has a stationary point.

(4)

(c) Prove, by further differentiation, that this value of r gives the minimum surface area of the toy.