北京理工大学2014-2015学年第一学期

《微积分A》(I)A卷试题答案及评分标准

一、填空题(每题4分)

(1)
$$e^{a+b}$$
; (2) $3/4$; (3) $\sqrt{2}/2$; (4) $-\frac{1}{2}x^2 + C$; (5) $2\sqrt{2} - 1$;

(6)
$$e-7/6$$
; (7) $y''-2y'+y=0$. (若有其他答案,代入验证)

若用其它方法,如用微分法,类比上述标准给分。

$$\Xi$$
, M : $D(x) = (-\infty, -1) \bigcup (-1, +\infty)$

$$f'(x) = \frac{3x^2 + x^3}{(1+x)^3} \dots 1$$

$$f''(x) = \frac{6x}{(1+x)^4} \dots 2$$

x	$(-\infty, -3)$) -3	(-3, -1)	-1	(-1,0)	0	$(0,+\infty)$
f'(x)	+	0	_	不存在	+	0	+
f''(x)	_		_		_	0	+
f(x)	凸	极大值	凸		凸	(0,3)拐	凹
						点	

单增区间: $(-\infty, -3]$, $(-1, +\infty)$; 单减区间: [-3, -1);

凸区间: $(-\infty, -1), (-1, 0)$; 凹区间: $(0, +\infty)$;

单调区间判断1分, 凹凸区间判断1分, 极值点和拐点判断1分;5分

因为 $\lim_{x\to -1} f(x) = \infty$, 所以, x = -1是铅直渐近线;

 $\lim_{x \to +\infty} f(x)$ 不存在, $\lim_{x \to -\infty} f(x)$ 不存在, 所以, 曲线无水平渐近线;

 $\lim_{x \to \infty} \frac{f(x)}{x} = 1$, $\lim_{x \to \infty} f(x) - x = 1$, 所以,曲线有斜渐近线y = x + 1,7分 每种形式的渐近线判断和计算各1分。

六、解: $=\int_0^\pi \sqrt{\sin x} \cos x dx$
$= \int_0^{\frac{\pi}{2}} \sqrt{\sin x} \cos x dx - \int_{\frac{\pi}{2}}^{\pi} \sqrt{\sin x} \cos x dx \dots 3 $
$= \int_0^{\frac{\pi}{2}} \sqrt{\sin x} d\sin x - \int_{\frac{\pi}{2}}^{\pi} \sqrt{\sin x} d\sin x$
$= \frac{2}{3}(\sin x)^{\frac{3}{2}}\Big _{0}^{\frac{\pi}{2}} - \frac{2}{3}(\sin x)^{\frac{3}{2}}\Big _{\frac{\pi}{2}}^{\frac{\pi}{2}} \dots 6$
$=4/3$ 7 β
计算过程出错, 酌情扣分
七、解:
$\int_0^{\frac{\pi}{2}} f(\sin x) dx$
$= -\int_{\frac{\pi}{2}}^{0} f(\sin\left(\frac{\pi}{2} - t\right)) dt$
$= \int_0^{\frac{\pi}{2}} f(\cos t) dt$
$= \int_0^{\frac{\pi}{2}} f(\cos t) dt$ $= \int_0^{\frac{\pi}{2}} f(\cos x) dx \dots 4 \hat{\beta}$
$= \int_0^{\frac{\pi}{2}} f(\cos x) dx \dots 4 \hat{\beta}$
$= \int_0^{\frac{\pi}{2}} f(\cos x) dx$

八、解: 令 $u = tx$,则 $\int_0^1 f(tx)dt = \frac{1}{x} \int_0^x f(u)du$,
方程两边关于xx导:
$f(x) = 2f(x) + f(x) + xf'(x) + 3x^2$, $\mathbb{R}f'(x) + \frac{2}{x}f(x) = -3x \dots 5\%$
$f(x) = e^{-\int \frac{2}{x} dx} \left(\int (-3x) e^{\int \frac{x}{2} dx} + C \right) = \frac{3}{4} x^2 + \frac{C}{x^2} \dots 7$
将 $f(1) = 0$ 代入,得 $C = \frac{3}{4}$,
$\mathbb{F}, \ f(x) = -\frac{3}{4}x^2 + \frac{3}{4x^2} \dots 8$
九、解: 因为 $x\sin x \le x, x \in [0, \frac{\pi}{2}]$, 所以, 围成图形的面积
$A = \int_0^{\frac{\pi}{2}} (x - x \sin x) dx \dots 2\pi$
$= \frac{x^2}{2} \Big _0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} x d \cos x$
$= \frac{\pi^2}{8} + x \cos x \Big _0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \cos x dx$
$= \frac{\pi^2}{8} - 1 \dots 4 $
体积的微元: $dv = \pi(x^2 - x^2 \sin^2 x) dx$
体积: $V = \int_0^{\frac{\pi}{2}} dv$
$= \int_0^{\frac{\pi}{2}} \pi(x^2 - x^2 \sin^2 x) dx \dots$
$=\frac{\pi^4}{48}-\frac{\pi^2}{8}$

十、选x作为积分变量,则 $x \in [0,L]$,沿x方向引力的微元:

$$dF = \frac{km\rho dx}{b^2 + x^2} \cdot \frac{x}{\sqrt{b^2 + x^2}}$$

$$F = \int_0^L dF$$

$$= \int_0^L \frac{km\rho}{b^2 + x^2} \cdot \frac{x}{\sqrt{b^2 + x^2}} dx$$

$$= \frac{1}{2} \int_0^L kmp(b^2 + x^2)^{-\frac{3}{2}} d(x^2 + b^2)$$

$$= km\rho(\frac{1}{b} - \frac{1}{\sqrt{b^2 + L^2}})$$

$$= 8$$

十一、因f(x)连续,故其原函数存在,设为F(x),即F'(x)=f(x) ... 1分根据牛顿-莱布尼兹公式: $\int_a^b f(x) dx = F(b) - F(a)$ 3分显然,F(x)在区间[a,b]上满足微分中值定理的条件,

因此, $\exists \xi \in (a,b)$ 使得: