Älykäs aikataulutusasistentt

Tekoälyn soveltaminen

Jouni Kiviperä Turun ammattikorkeakoulu

Älykäs Aikataulutusassistentti

Tekoälyn soveltaminen

Opiskelija: Jouni Kiviperä

Oppilaitos: Turun ammattikorkeakoulu

Sisällysluettelo

- 1. Johdanto
- 2. Projektin tavoite
- 3. Tekninen toteutus
 - 3.1 Käytetyt teknologiat
 - 3.2 Sovelluksen rakenne
 - 3.3 Tekoälymalli ja koulutus
 - 3.4 Google Kalenteri -integraatio
 - 3.5 Käyttöliittymä
- 4. Haasteet ja oppimiskokemukset
- 5. Tulokset
- 6. Yhteenveto
- 7. Lähteet
- 8. Liitteet

1. Johdanto

Tekoälyä voidaan hyödyntää tehokkaasti ajanhallinnan apuvälineenä. Tässä projektissa kehitettiin älykäs aikataulutusassistentti, joka auttaa käyttäjää ennustamaan tehtävien keston ja sijoittamaan ne optimaalisesti kalenteriin.

2. Projektin tavoite

Tavoitteena oli kehittää Pythonilla toimiva graafinen sovellus, joka:

- Hyödyntää koneoppimista tehtävien ennustamisessa
- Synkronoituu Google Kalenteriin
- On helposti käytettävissä arjen aikataulujen suunnitteluun

3.1 Käytetyt teknologiat

- Python 3.10+
- Scikit-learn (ML)
- Pandas (data)
- Tkinter (UI)

- Google API (kalenteri)
- Pickle (mallin tallennus)

3.2 Sovelluksen rakenne

- gui_ai_predict.py: käyttöliittymä ja logiikka

train_model.py: mallin koulutusmodel.pkl: tallennettu malli

- opetusdata_ai_kalenteri.csv: opetusdata- google_auth.py: autentikointi Google API:lle

3.3 Tekoälymalli ja koulutus

Koneoppimismalli (RandomForestRegressor) koulutettiin data.csv-tiedostolla. Se sisälsi tehtävän vaikeuden, tärkeyden, deadlinen, viikonpäivän ja käyttäjän oman arvion kestosta. Tarkkuus saavutettiin keskimäärin MAE: 9.88 minuuttia.

3.4 Google Kalenteri -integraatio

Tehtävät siirtyvät tekoälyn arvioimalla aikavälillä automaattisesti käyttäjän Google Kalenteriin API:n ja OAuth-autentikoinnin avulla.

3.5 Käyttöliittymä

Tkinter-pohjainen käyttöliittymä sisältää:

- Tehtävien syötön ja muokkauksen
- Tekoälyennusteen
- Kalenterisynkronoinnin napin

4. Haasteet ja oppimiskokemukset

- Google API:n käyttöönotto vaati huolellisuutta
- Mallin koulutus onnistui hyvin pienelläkin datamäärällä
- Tkinterin integrointi koneoppimismalliin toi hyvää käytännön oppia

5. Tulokset

Sovellus toimii kokonaisuutena. Tekoäly ennustaa tehtävien keston ja ne viedään kalenteriin. Käyttöliittymä on selkeä ja helppokäyttöinen.

6. Yhteenveto

Projekti osoitti, miten tekoälyä voi käyttää arjen tukena. Ratkaisu on laajennettavissa mm. verkkosovellukseksi, jatkuvaksi oppimiseksi tai ryhmäkäyttöön.

7. Lähteet

- https://github.com/jounikivi/aikataulutusassistentti
- Google Developers Calendar API
- Scikit-learn Random Forest
- Tkinter Python GUI

8. Liitteet

Liite 1: Sovelluksen käyttöliittymä

Käyttöliittymä sisältää tehtävälistan, tekoälyn ennusteen ja Google-kalenteriin synkronoinnin.

Liite 2: Tekoälyennusteen näkymä

Sovellus näyttää tekoälyn suositteleman aloitusajan.

Liite 3: Tehtävät Google Kalenterissa

Synkronoidut tehtävät näkyvät kalenterinäkymässä automaattisesti.

9	10 2ip Opiskeluprojel 2ip Opiskeluprojel	11	12	13	14	15 10ap MUOKATTU: 10ap testi 10ap MUOKATTU: 10ap MUOKATTU: 12ip opopoipo 12ip opopoipo 12ip opopoipo
16	17	18	19	20	21	22
23	24	25	26	27 • 12:15ip Testi • 12:15ip Testi	28	29