n=3 -> 8 valores

A- 111

B-110

C-101

D- 100

E-000

F- 00)

Falta utiliza - 010:011

O código e nectundante ponque vão foram utilizados todos os códigos possíncis

(2) BCD Nothing, AIKEN, BCD excess 3 OU KS3, Gray

a) 11110

BCD १००० १००० १०००

AZKEN 000/000/000/ 0100 0100 0100

Gray

b) 1258 = 82+2×8+5×8°=64+16+5=8510

BOD

1000 0101

A AJKEN ווסעי סנונ X53

حصور ددور

Gray 1100 01111

c) ABC16 = 10x16 + 11x16 + 12x16 = 2748 (0

BCD

ATKEN

X53 0101 1010 0111 1011

محدر حدره درره ماص

0010 1101 0100 1000

Gray

0011 0700 0770 1700

conversa Bination - Gray

(1) (1) (1) (1) (1) (1) (1) (1)

p) 0100119011 11010101

७) भूत्र्र मुद्द्रन् 10000000

(4) Converses Gray -> Bindralo

a) روس روس (۵) 0 10 10 000 (birdal)

> P) Josh 20018 01110111

C) 4111111118 101010101

- 10101010 DHMin = B 0101 0101
 - 11110000 DHmin=4 6) 11 00 0011
 - e) 10101111 DHmin = 0 10 10 1711

Autocomplementar

n bits > podemos codificos an situações distintas

I AIKEN WASH	BCD de encesso 3
	00 11
0001	0100
0010	0101
0011	0110
0 100	0111
20 21	1000
1700	1001
1101	1010
1710	1071
1111	1100
	0000

Decimal	BODNOMINA	Gray abits
0	0000	0000
1	0007	0001
2	0010	0077
3	0011	007000
4-	0100	0110
5	0101.	0121
6	0110	0 101
7	0171	0100
8	1000	1100
3	1001.	1101

converso Binária para Gray

- · adiciona à palaure do cédigo binário um bit, à expue de a hibuir-lhe o valor "o".
- · Numera hodos os bits do cádigo birdino da cineita para a esquerca
- · Se bit i e bit i+1 forem defenentes, o bit i Gray = "1"
- . se bit i e bit i +7 forem igrais, o bit i Gray = "b How new, neo bit a direita es bit logs a neguir a ele (a direita presquerà) foremiquois é The atribuido e valos de o, e amim nucessivamente

Conversão Gray para Binário

- e númerou hodos os bits do Gray de esqueros pous os directo.
- · Atribuir to bit 1 do côdigo de Gray no bit 1 do código binário
- · Bitiliza,3,..., n) do binário e igual à soma exclusiva (XOR) do bit i-1 binario e do bit i do cúdigo de Gray

	Tai
ab	a to
00	0
01	1
10	1
11	0

Exemple

bit 2 de Gray Dbit 1 de Gray 1) bit 3 de Gray () bit 2 do binario (e assim sucessivamente)

01.01.10 0110

$$(n \oplus y)^{9} = (n' + y) \cdot (n + y')$$

= $n' + n' y' + yn + yy'$
= $0 + n' y' + yn + 0$
= $n' y' + yn$

Algebra de BoRle

-> Teorema do Dualidade FD (121, 122, ..., 120, 0, 1, +, ,) = F(121, 122, ..., 120, 1, 0, 0, +, 1)

> Operadores são completos quando

ne nealizam an 3 operates boleanas

-> Teorema do Consenso

(7) たり'ヹ'+た'り'ヹ+た'yヹ+た'yヹ+たりヹ'+れりる=た'+y

NOT

(8) Mostre que os operadores são completos NAND = (12.4) = 12+4)

9 y= Ki ki3 ki4 + ki k3 k4 + ki ki3 k4 + kik2 k4 + ki k2 k4 + ki k2 k3 + kik2

a)
$$y = \frac{1}{2} \frac{1}{$$

1

- $\frac{11}{n!} \frac{1}{(2n)!} = 1 \quad \text{quando pelo menos dois dos seus trob argumentos pos 1}$ a) $\frac{n!}{n!} \frac{1}{n!} = 1 \quad \text{quando pelo menos dois dos seus trob argumentos pos 1}$
- 2) Ryz R 0000 0010 010 011 100 101 110 110 111
- b) 19(x,y,z)= 75yz+ 29z+ 24z+ 24z = 75yz+ 25z+ 24z+ 24z+ 21
 - = 7242+72(g2+4) = 7243+72(2+4)
 - = たりを+ルマナルタ= りんをる+たり+たる
 - = y (Z+x) + x =
 - = 92+24+28=

Se no

c)

d)

Ly A(n,y, 3) = 42+0+0 = 42, pipossire constrain um fango AND wondo a

OR (45) = 4+ 5'

9' - y'+2'

NOTICE Seiz

NOT

y pay