# The $v_1$ -Periodicity Region of the $E_2$ -page of the $\mathbb{C}$ -Motivic Adams spectral sequence

Ang Li

University of Kentucky

Graduates Reminisce Online On Topology July 15 2020

# $E_2$ -page of the classical Adams spectral sequence



Figure: classical Ext

# $E_2$ -page of the classical Adams spectral sequence



Figure: classical Ext

# $E_2$ -page of the $\mathbb{C}$ -motivic Adams spectral sequence



Figure:  $\mathbb{C}$ -motivic Ext

# $E_2$ -page of the $\mathbb{C}$ -motivic Adams spectral sequence



Figure:  $\mathbb{C}\text{-motivic Ext}$ 

GROOT

# $[S/h_0, \Sigma^{-1,1,0}F_0]_{*,*,*}^{\mathcal{A}(1)^{\vee}}$



Figure:  $[S/h_0, \Sigma^{-1,1,0}F_0]_{*,*,*}^{\mathcal{A}(1)^{\vee}}$ 

$$[S/h_0, \Sigma^{-1,1,0}F_0/h_1^{\infty}]_{*,*,*}^{\mathcal{A}(1)^{\vee}}$$



Figure:  $[S/h_0, \Sigma^{-1,1,0}F_0/h_1^{\infty}]_{*,*,*}^{\mathcal{A}(1)^{\vee}}$ 

# $\overline{[S/(h_0, \overline{\theta}), \Sigma^{-1,1,0}F_0/h_1^{\infty}]_{*,*,*}^{\overline{\mathcal{A}}(1)^{\vee}}}$



Figure:  $[S/(h_0, \theta), \Sigma^{-1,1,0}F_0/h_1^{\infty}]_{*,*,*}^{\mathcal{A}(1)^{\vee}}$ 

#### The Cartan-Eilenberg spectral sequence

Move to  $\mathcal{A}(2)^{\vee}$  by a sequence of normal extensions

$$\mathcal{A}(2)^{\vee} \to \mathcal{A}(2)^{\vee}/\xi_1^2 \to \mathcal{A}(2)^{\vee}/(\xi_1^2, \xi_2) \to \mathcal{A}(2)^{\vee}/(\xi_1^2, \xi_2, \tau_2) = \mathcal{A}(1)^{\vee}$$

#### The Cartan-Eilenberg spectral sequence

Move to  $\mathcal{A}(2)^{\vee}$  by a sequence of normal extensions

$$\mathcal{A}(2)^{\vee} \to \mathcal{A}(2)^{\vee}/\xi_1^2 \to \mathcal{A}(2)^{\vee}/(\xi_1^2, \xi_2) \to \mathcal{A}(2)^{\vee}/(\xi_1^2, \xi_2, \tau_2) = \mathcal{A}(1)^{\vee}$$

First one:

$$E[\tau_2] \to \mathcal{A}(2)^{\vee}/(\xi_1^2, \xi_2) \to \mathcal{A}(1)^{\vee}$$

The  $E_2$  page is

$$\mathsf{Ext}_{\mathcal{A}(1)^{\vee}}(M,N) \otimes \mathsf{Ext}_{E[\tau_2]}(\mathbb{M}_2,\mathbb{M}_2) \cong [M,N][\tau_2]$$

- $\tau_2 = (6,1,3)$
- $\xi_2 = (5,1,3)$
- $\xi_1^2 = (3, 1, 2)$

- $\bullet \ \tau_2 = (6,1,3)$
- $\xi_2 = (5,1,3)$
- $\xi_1^2 = (3,1,2)$

$$[S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(1)^{\vee}}[\tau_2] \Rightarrow [S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/(\xi_1^2,\xi_2)}$$

$$au_2 = (6,1,3)$$

• 
$$\xi_2 = (5,1,3)$$

• 
$$\xi_1^2 = (3,1,2)$$

$$[S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(1)^{\vee}}[\tau_2] \Rightarrow [S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/(\xi_1^2,\xi_2)}$$

$$[S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/(\xi_1^2,\xi_2)}[\xi_2] \Rightarrow [S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/\xi_1^2}$$

• 
$$\xi_2 = (5,1,3)$$

• 
$$\xi_1^2 = (3,1,2)$$

$$[S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(1)^{\vee}}[\tau_2] \Rightarrow [S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/(\xi_1^2,\xi_2)}$$

$$[S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/(\xi_1^2,\xi_2)}[\xi_2] \Rightarrow [S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/\xi_1^2}$$

$$[S/(h_0,\theta),F_0/h_1^{\infty}]^{A(2)^{\vee}/\xi_1^2}[\xi_1^2] \Rightarrow [S/(h_0,\theta),F_0/h_1^{\infty}]^{A(2)^{\vee}}$$

Those  $\beta$ s we are throwing in are:

- $\bullet \ \tau_2 = (6,1,3)$
- $\xi_2 = (5,1,3)$
- $\xi_1^2 = (3, 1, 2)$

$$[S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(1)^{\vee}}[\tau_2] \Rightarrow [S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/(\xi_1^2,\xi_2)}$$

$$[S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/(\xi_1^2,\xi_2)}[\xi_2] \Rightarrow [S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/\xi_1^2}$$

$$[S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}/\xi_1^2}[\xi_1^2] \Rightarrow [S/(h_0,\theta),F_0/h_1^{\infty}]^{\mathcal{A}(2)^{\vee}}$$

From  $\mathcal{A}(2)^{\vee}$  to  $\mathcal{A}$ , every elements we throw in will have "slope" lower than  $\frac{1}{5}$ !



#### The motivic periodicity theorem

$$\begin{split} [S/(h_0^k,\theta),F_0/h_1^\infty]_{s,f,w} & \longrightarrow [S/h_0^k,F_0/h_1^\infty]_{s,f,w} \xrightarrow{\theta} [S/h_0^k,F_0/h_1^\infty]_{s+s_0,f+f_0,w+w_0} \xrightarrow{} [S/(h_0^k,\theta),F_0/h_1^\infty]_{s-1,f+1,w} \\ & \downarrow \qquad \qquad \downarrow \\ [S,F_0/h_1^\infty]_{s,f,w} \xrightarrow{P_r(-)} [S,F_0/h_1^\infty]_{s+s_0,f+f_0,w+w_0} \end{split}$$

- The vertical maps are isomorphisms when  $f > \frac{1}{2}s + \frac{3}{2} k$
- $[S/(h_0^k,\theta),F_0/h_1^\infty]_{s,f,w}$  admits a vanishing region of  $f>\frac{1}{5}s+\frac{12}{5}$

GROOT

11 / 13

# $E_2$ -page of the $\mathbb{C}$ -motivic Adams spectral sequence



Figure:  $\mathbb{C}$ -motivic Ext

Thank you!

13 / 13