DYP-H01-V1.0

H01-测身高模块 产品规格书

普通 第1页

目录

1	产品介绍	3
	1.1 概述	3
	1.2 产品特点	3
	1.3 产品优点	3
	1.4 适用范围	3
	1.5 基本参数	4
	1.6 机械特性	4
	1.7 引脚定义	5
2	极限参数	5
	2.1 额定环境条件	5
	2.2 额定电气条件	
3	输出格式	6
	3.1 UART/RS485 输出格式	6
	3.2 PWM 处理值输出格式	8
	3.3 PWM 输出格式	9
4	模块选型说明	10
5	有效探测范围参考	10
6	可靠性测试条件	11
	注意事项	
	包装规范	11

1 产品介绍

1.1 概述

H01 模块是采用电容式静电换能器探头设计而成的一款高性能测距模块。产品在 100mm 至 8000mm 范围内,能够准确探测出与平面物体间的距离,并且在 100mm 至 3000mm 范围内,能够准确检测人体。模块带有精准温度输出,温度补偿功能,专为测身高配套开发并研制的高性能、高可靠性商用级功能性模块。

1.2 产品特点

- •高声压输出
- •5V~12V 宽电压供电
- •UART 串口输出
- •PWM 输出
- •PWM 处理值输出
- •RS485 输出
- •一体开放式金属探头
- •传感器中心频率为 50KHz
- •温度补偿
- •工作温度-10℃到+50℃
- •存储温度-20℃到+65℃
- •静电防护设计,探头外壳与 I/O 引脚加入静电防护器件,符合 IEC61000-4-2 标准

1.3 产品优点

- •抗干扰强
- •数据输出稳定可靠
- •响应时间快
- •测距远,精度高
- •电容式静电换能器探头,灵敏度非常高,不锈钢外壳保护,适应恶劣环境

1.4 适用范围

- •高精度测量身高仪器
- •人工智能
- •停车管理系统
- •物体接近与存在察觉

普通 第3页

1.5 基本参数

参数项	PWM	单位	备注				
工作电压		V	DC				
平均电流		<10		<25	mA	(1)	
峰值电流		≤100			mA		
盲区距离		0~100			mm	(2)	
平面物体量程		100~8000			mm	(2)	
输出方式	PWM 脉宽	UART 受控输出	PWM 处理值	RS485	-		
工作周期	>75	>70	>160	>70	ms		
测量精度	±(8mm+S*0.2%)	±(5m	m+S*0.2%)		mm	(2)	
探头中心频率		$50K \pm 1.0K$			Hz		
ESD		$\pm 4/\pm 8$			KV	(3)	
温度补偿	不补偿		补偿		- /		
工作温度		-10~50					
存储温度		$^{\circ}$					
工作湿度		≤80%			RH	(4)	
存储湿度		≤90%			RH	(4)	

- 备注: (1) DC12 供电, 500ms 工作周期典型数据。
 - (2) 常温 50cm*60cm 平面纸箱测得的数据, S 表示测量距离。
 - (3) 探头外壳、输出引脚符合 IEC61000-4-2 标准。
 - (4) a、环境温度在 0-39℃时,湿度最高值为 90% (不凝露)。
 - b、环境温度在 40-50℃时,湿度最高为当前温度下自然界最高湿度(不凝露)。

1.6 机械特性

普通 第4页

1.7 引脚定义

引脚编号	引脚名称	备注	
1	VCC	5V~12V 电源输入引脚	DC
2	RX	触发输入引脚	
3	TX	UART/PWM 输出引脚	
4	OUT	空脚	
5	GND	电源地线引脚	
6	A	RS485 DATA+ 引脚	
7	В	RS485 DATA- 引脚	

2 极限参数

2.1 额定环境条件

项目	最小值	典型值	最大值	单位	备注
存贮温度	-20	25	65	$^{\circ}$	
存贮湿度		65%	90%	RH	(1)
工作温度	-10	25	50	$^{\circ}$ C	
工作湿度	1	65%	80%	RH	(1)

备注: (1) a、环境温度在 0-39℃时,湿度最高值为 90% (不凝露)。

b、环境温度在 40-50℃时,湿度最高为当前温度下自然界最高湿度(不凝露)。

2.2 额定电气条件

会装证		出 に	夕沙	
参数项	最小值	单位	备注	
工作电压	5. 0	12.0	V	
峰值电流		100	mA	峰峰值
输入纹波		50	mV	峰峰值
输入噪声		100	mV	峰峰值
ESD		$\pm 200/\pm 2K$	V	(1)
ESD		$\pm 4\text{K}/\pm 8\text{K}$	V	(2)

备注(1)装配线体静电规格,接触静电不应高于±200V,空气静电不应高于±2KV。

(2) 探头外壳、输出引脚符合 IEC61000-4-2 标准。

普通 第5页

3 输出格式

3.1 UART/RS485 输出格式

(1) 串口通信命令帧格式

	接口类型	起始位	数据位	停止位	奇偶效验	波特率
UART 接口	全双工	1	8	1	无	9600bps
RS485 接口	半双工	1	8	1	无	9600bps

(2) 控制指令特征码、帧格式列表

控制行为	控制指令特征码
读取探测距离实时值	0x01
读取温度	0x02
更改地址	0x03
读取探测距离过滤值	0x05

帧数据	说明	字节
帧头标识	固定为 0x55	1字节
帧头标识	固定为 0xaa	1字节
地址	默认为 0x01	1字节
控制字	控制指令特征码	1字节
Data_H	距离的高位数据	1字节
Data_L	距离的低位数据	1字节
和校验	SUM 通讯校验	1字节

(3) 读取探测距离实时值

读距离指令特征码: 0x01

	帧头		地址	指令	数据		校验和
主机发	0x55	0xaa	0x01	0x01	无	无	checksum
从机回	0x55	0xaa	0x01	0x01	Data_H	Data_L	checksum

例如:

超声波模块地址为 0x01,

则主机发送

0x55 0xaa 0x01 0x01 checksum

Checksum=(帧头+用户地址+指令)&0x00ff

=(0x55+0xaa+0x01+0x01) &0x00ff

=0x01

超声波模块返回命令为

普通 第6页

(编号:)

密级: □绝密 □机密 □秘密 ■普通

0x55 0xAA 0x01 0x01 0x02 0x33 checksum

Checksum=(帧头+用户地址+指令+数据)&0x00ff

=(0x55+0xaa+0x01+0x01+0x02+0x33) &0x00ff

=0x36

其中 0x02 为距离的高位数据;

0x33 为距离的低位数据;

距离值为 0x0233; 转换成十进制为 563; 单位为: 毫米

(4) 读取探测距离过滤值

读距离指令特征码: 0x05

	帧头		地址	指令	数据		校验和
主机发	0x55	0xaa	0x01	0x05	无	无	checksum
从机回	0x55	0xaa	0x01	0x05	Data_H	Data_L	checksum

例如:

超声波模块地址为 0x01,

则主机发送

0x55 0xaa 0x01 0x05 checksum

Checksum=(帧头+用户地址+指令)&0x00ff

=(0x55+0xaa+0x01+0x05) &0x00ff

=0x05

超声波模块返回命令为

0x55 0xAA 0x01 0x05 0x02 0x33 checksum

Checksum=(帧头+用户地址+指令+数据)&0x00ff

=(0x55+0xaa+0x01+0x05+0x02+0x33) &0x00ff

=0x3A

其中 0x02 为距离的高位数据;

0x33 为距离的低位数据;

距离值为 0x0233; 转换成十进制为 563; 单位为: 毫米

(5) 读取温度

读温度指令特征码: 0x02

	帧头		地址	指令	数据		校验和
主机发	0x55	0xaa	0x01	0x02	无	无	checksum
从机回	0x55	0xaa	0x01	0x02	Data_H	Data_L	checksum

例如:

超声波模块地址为 0x01,则主机发送

0x55 0xaa 0x01 0x02 checksum

Checksum=(帧头+用户地址+指令)&0x00ff

=(0x55+0xaa+0x01+0x02) &0x00ff

=0x02

普通 第7页

超声波模块返回命令为

0x55 0xAA 0x01 0x02 0x00 0x23 checksum

Checksum=(帧头+用户地址+指令+数据)&0x00ff

=(0x55+0xaa+0x01+0x02+0x00+0x23) &0x00ff

=0x25

其中,正温度的时候温度的高位数据 Data H 的最高位为 0;

例如: 0x01 为温度的高位数据;

0x23 为温度的低位数据;

有效温度值的十六进制为 0x123, 转换成十进制为 291;

转换成温度值为 29.1℃ 单位为: 摄氏度

其中, 负温度的时候温度的高位数据 Data H的最高位为 1;

例如: 0x80 为温度的高位数据;

0x64 为温度的低位数据;

有效温度值的十六进制为 0x64, 转换成十进制为 100;

转换成温度值为-10.0℃ 单位为: 摄氏度

(6) 修改地址

修改地址指令特征码: 0x03 (ADD: 为要更改的地址)

	帧头		地址	指令	数	据	校验和
主机发	0x55	0xaa	ADD	0x03	无	无	checksum
从机回	0x55	0xaa	ADD	0x03	无	无	checksum

例如:

超声波模块默认的地址为 0x01, 要把地址更改为 0x05;

0x55 0xaa 0x05 0x03 checksum

Checksum=(0x55+0xaa+0x05+0x03) &0x00ff

=0x07

3.2 PWM 处理值输出格式

(1) 触发说明

当触发输入引脚"RX" 接收到一个高电平触发脉冲,下降沿会触发模块工作一次,输出引脚"TX"将输出一次 TTL 电平的 PWM 高电平脉宽信号,模块的触发周期必须大于 160ms,如果模组没有检测到物体,输出引脚将输出约 65ms 的固定脉宽。

(2) 时序图

普通 第8页

注: T1=0.1~5ms; T2≥75ms; T3=0.6~65ms (PWM高电平脉宽时间)

(3) 计算方式

公式: S=T*V/2(S为距离值,T为PWM高电平脉宽时间,V为声音在空气中的传播速度)。在常温下得声速V为344M/S,可简化公式得S=T/5.8 (此时距离S单位为ms,时间T单位为us)。

举例: 当输出引脚 "TX" 的PWM高电平脉宽时间T3为10000us时, 得S= T/5.8=10000/5.8≈1724(mm),表示当前测量的距离值为1724mm。

3.3 PWM 输出格式

(1) 触发说明

当触发输入引脚"RX" 接收到一个高电平触发脉冲,下降沿会触发模块工作一次,输出引脚"TX"将输出一次 TTL 电平的 PWM 高电平脉宽信号,模块的触发周期必须大于 75ms,如果模块没有检测到物体,输出引脚将输出约 65ms 的固定脉宽。

(2) 时序图

注: T1=0.1~10ms; T2=4.5~6.0ms; T3=0.55~65ms (PWM高电平脉宽时间)

(3) 计算方式

公式: S=T*V/2(S为距离值,T为PWM高电平脉宽时间,V为声音在空气中的传播速度)。 在常温下得声速V为344M/S,可简化公式得S= T/5.8 (此时距离S单位为ms,时间T单位为us)。

举例: 当输出引脚 "TX" 的PWM高电平脉宽时间T3为10000us时, 得S= T/5.8=10000/5.8≈1724(mm),表示当前测量的距离值为1724mm。

普通 第9页

4 模块选型说明

此系列模块按输出格式分为 4 种,用户可根据实际使用需求选择相对应的型号。此 4 种输出格式为出厂前选配,同一模块不支持两种或两种以上格式同时输出。

序号	H01 系列型号	输出方式	备注
1	DYP-H01IOU-V1.0	UART	
2	DYP-H01I04-V1.0	RS485	
3	DYP-H01IOW-V1.0	PWM 处理值	(1)
4	DYP-H01IOM-V1.0	PWM	(1)

备注: (1) 输出方式区别说明: "PWM 处理值"输出方式有温度补偿,有数据稳定性算法,响应时间偏慢,出厂默认此模式; "PWM"输出方式无温度补偿,响应时间快。

5 有效探测范围参考

(1)被测试物体为PVC材质白色圆柱管,高为1000mm、直径为7.5cm。

(2)被测试物体为"瓦楞纸箱"垂直于0°中轴线,长*宽为60cm*50cm。

普通 第 10 页

(3)被测试物体为"瓦楞纸箱"相切于弧线,长*宽为60cm*50cm。

6 可靠性测试条件

项次	测试项目	实验条件	样品数量	备注
1	高温高湿工作	55°C, 85%RH, Power ON@5V, 72hrs	3	
2	低温工作	-15℃, Power ON@5V, 72hrs	3	
3	高温高湿存贮	65℃, 80%RH, storage, 72hrs	3	
4	低温存贮	-20℃, storage, 72hrs	3	
5	振动试验	10-200Hz, 15min, 2.0G, XYZ 三个轴向, 每个轴向 0.5 小时	3	
6	跌落试验	1.2m 自由落体跌落,5次@木质地板	3	

备注 试验后模块通过功能测试即判定 OK, 性能衰减率≤10%

7 注意事项

- 1、设计时请注意结构公差,不合理的结构设计有可能引起模块功能短暂性异常。
- 2、设计时请注意电磁兼容性评估,不合理的系统设计有可能引起模块功能异常。
- 3、涉及产品极限参数边界应用时,可联系本司 FAE 确认相关注意事项。
- 4、本公司保留对此文档更改的权利,功能更新,恕不另行通。

8 包装规范

- 1、默认为电应普常规包装方式。
- 2、小量订单可选用单模块独立静电袋包装方式。
- 3、可根据客户 IQC 相关标准定制包材。
- 4、集装箱运输方式需采用交错拼箱方式,同时需在单栈外缘使用裹膜搭配加强角板的方式 以提供足够的支撑。

普通 第 11 页