LANIAKEA IN A COSMOLOGICAL CONTEXT

S. D. Hernandez-Charpak¹ and J. E. Forero-Romero¹

A partir de observaciones del flujo cósmico local se ha definido nuestro supercúmulo local, Laniakea. En este trabajo presentamos un estudio sobre simulaciones de N-cuerpos con el fin de establecer la significancia de Laniakea en un contexto cosmológico. Exploramos diferentes algoritmos para definir supercúmulos a partir del campo de velocidades de la materia oscura en las simulaciones. Resumimos las propiedades de la población de supercúmulos por su abundancia a un volumen total y distribución de forma. Encontramos que supercúmulos similares en tamaño y estructura a Laniakea son poco comunes en un contexto cosmológico amplio.

Recent observations used local cosmic flow information to define our local supercluster, Laniakea. In this work we present a study on large cosmological N-body simulations aimed at establishing the significance of Laniakea in a cosmological context. We explore different algorithms to define superclusters from the dark matter velocity field in the simulations. We summarize the properties of the supercluster population by their abundance at a given total volume and its shape distribution. We find that superclusters similar in size and structure to Laniakea are relatively uncommon on a broader cosmological context.

Tully et al. defined our home supercluster, Laniakea, as the region where the peculiar velocity flows converge. Laniakea is found to be contained in a 160 Mpc/h diameter sphere containing a very dense region called the Great Attractor. We designed a method to find superclusters in dark matter N-body simulations and tested our method in a simulation of boxsize 250 Mpc/h. We based our method on the analysis of the eigenvalues λ_1 , λ_2 and λ_3 of the velocity shear tensor:

$$\Sigma_{\alpha\beta} = -\frac{1}{2H_0} \left(\frac{\partial v_{\alpha}}{\partial x_{\beta}} + \frac{\partial v_{\beta}}{\partial x_{\alpha}} \right). \tag{1}$$

From these eigenvalues we form two dimensionless

quantities: the fractional anisotropy (FA):

$$FA = \frac{1}{\sqrt{3}} \sqrt{\frac{((\lambda_1 - \lambda_3)^2 + (\lambda_2 - \lambda_3)^2 + (\lambda_1 - \lambda_2)^2)}{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}}$$
(2)

which tells us if a collapse or expansion is anisotropic (FA=1) or isotropic (FA=0) and the velocity divergence, normalized by the Hubble constant:

$$VDH = \lambda_1 + \lambda_2 + \lambda_3 = \frac{-\nabla \cdot \vec{v}}{H_0},\tag{3}$$

which tells us if the velocity flows are collapsing (dense region, VDH > 0). We are looking for regions dense (VDH > 0), containing a highly dense locality (VDH > 1.0), as Laniakea, and bellow a certain threshold of FA. We use a modified Friends-Of-Friends algorithm, after an CIC interpolation and a finite elements calculation. We resume our results in **Figure 1** and find that: **Laniakea is atypically larger** than the detected superclusters and **our method is robust** as the largest regions are detected independently of the FA thresholds and modifying the grid size in the interpolation do not influence our results.

REFERENCES

R. Brent Tully, Hlne. Courtois, Yehuda Hoffman and Daniel Pomarde. The Laniakea Supercluster of galaxies, Nature, 513 (7516):71-73, September 2014

Yehuda Hoffman, Ofer Metuki, Gustavo Yepes, Stefan Gottlber, Jaime E. Forero-Romero, Noam I. Libeskind and Alexander Knebe. A kinematic classification of the cosmic web, Monthly Notices of the Royal Astronomical Society, 425: 20492057, August 2012

Noam I. Libeskind, Yehuda Hoffma, Jaime E. Forero-Romero, Stefan Gottlber, Alexander Knebe, Matthias Steinmetz and Anatoly Klypin. The velocity shear tensor: tracer of halo alignment, Monthly Notices of the Royal Astronomical Societ, 428 (3):2489-2499, January 2013

¹Departamento de Física, Universidad de los Andes, Cra 1 18A-10, Bloque Ip, Bogotá, Colombia. (sd.hernandez204 @uniandes.edu.co).

Fig. 1. Distributions of volumes for different seed FA thresholds.