

Bruce M. Boghosian

CDFs and PDFs

Order statistics for Y_{max}

statistics for Y_{min}

Summary

A Quick Review of Order Statistics

Bruce M. Boghosian

Department of Mathematics

Tufts University

1 CDFs and PDFs

2 Order statistics for Y_{max}

3 Order statistics for Y_{\min}

Summary

Cumulative distribution functions

Bruce M. Boghosian

CDFs and PDFs

Order statistics for Y_{max}

order statistics for Y_{min} If $f_Y(y)$ is the probability density function (PDF) of random variable Y, we define the cumulative distribution function (CDF) of Y as

$$F_Y(y) := \operatorname{Prob}(Y < y) = \int_{-\infty}^y dz \ f_Y(z).$$

Note that, by the Fundamental Theorem of Calculus, it follows immediately that the PDF is given by

$$f_Y(y) = \frac{d}{dy} F_Y(y)$$

Sometimes it is easier to figure out the CDF, and then differentiate to obtain the PDF.

Order statistics for $Y_{\scriptscriptstyle{\max}}$

Bruce M. Boghosian

CDFs and PDFs

Order statistics fo Y_{\max}

Order statistics for Ymin Suppose that $\vec{y} = \{Y_1, Y_2, \dots, Y_n\}$ are n i.i.d. random variables with by the continuous PDF $f_Y(y)$. What is the PDF of $Y_{\text{max}} = \max_j Y_j$?

Note that if $Y_{\max} < y$, then it must be that $Y_j < y$ for $j = 1, 2, \dots, n$.

$$F_{Y_{\text{max}}}(y) = \operatorname{Prob}(Y_{\text{max}} < y)$$

$$= \operatorname{Prob}(Y_1 < y) \operatorname{Prob}(Y_2 < y) \cdots \operatorname{Prob}(Y_n < y)$$

$$= F_{Y_1}(y)F_{Y_2}(y) \cdots F_{Y_n}(y)$$

$$= [F_Y(y)]^n.$$

It follows that $f_{Y_{\text{max}}}(y) = \frac{d}{dy} F_{Y_{\text{max}}}(y)$, so

$$f_{Y_{\text{max}}}(y) = n [F_Y(y)]^{n-1} f_Y(y).$$

Order statistics for Y_{\min}

Bruce M. Boghosiar

CDFs an PDFs

order statistics fo Ymax

Order statistics for Y_{\min}

PDFs Order statistics fo Suppose that $\vec{y} = \{Y_1, Y_2, \dots, Y_n\}$ are n i.i.d. random variables with by the continuous PDF $f_Y(y)$. What is the PDF of $Y_{\min} = \min Y_j$?

Note that if $Y_{\min} < y$, then it must be that $Y_j > y$ for $j = 1, 2, \ldots, n$.

$$\begin{aligned} F_{Y_{\min}}(y) = & \text{Prob}(Y_{\min} < y) = 1 - \text{Prob}(Y_{\min} > y) \\ = & 1 - \text{Prob}(Y_1 > y) \text{ Prob}(Y_2 > y) \cdots \text{Prob}(Y_n > y) \\ = & 1 - [1 - F_{Y_1}(y)] [1 - F_{Y_2}(y)] \cdots [1 - F_{Y_n}(y)] \\ = & 1 - [1 - F_{Y}(y)]^n \,. \end{aligned}$$

It follows that $f_{Y_{\max}}(y) = \frac{d}{dy} \left\{ 1 - \left[1 - F_Y(y) \right]^n \right\}$, so

$$f_{Y_{\min}}(y) = n [1 - F_Y(y)]^{n-1} f_Y(y).$$

- We reviewed the topic of *order statistics*.
- This is normally covered in probability courses.
- It is useful to us in assessing *unbiasedness* of certain estimators.