МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Лабораторная работа № 3.2.2 Резонанс напряжений в последовательном контуре

> Климова Екатерина Группа Б01-108

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой емкостью, получение амплитудно- и фазово-частотных характеристик, определение основных параметров контура.

В работе используются: генератор сигналов; источник напряжения, нагрузкой которого явлется последовательный колебательный контур с переменной емкостью; двухканальный осциллограф; цифровые вольтметры.

1 Аннотация

В данной работе проводится исследование колебаний напряжения в последовательном колебательном контуре под воздействием внешней синусоидальной ЭДС. Проводится получение АЧХ и ФЧХ контура, при помощи которых определяются добротность и другие характеристики колебательного контура.

2 Теоретические сведения

2.1 Вынужденные колебания

Рассмотрим процессы, протекающие в RLC-контуре, подключенном к источнику внешней ЭДС, изменяющейся по гармоническому закону $\varepsilon = \varepsilon_0 \cos{(\omega t + \varphi_0)}$. Тогда для напряжения в конденсаторе получим уравнение:

$$\ddot{U}_c + 2\gamma \dot{U}_c + \omega_0^2 U_c = \omega_0^2 \varepsilon_0 \cos(\omega t + \varphi_0), \tag{1}$$

Рис. 1. Последовательный контур с внешней ЭДС

решение которого будет состоять из общего решения однородного дифференциального уравнения и какого-либо частного решения данного уравнения с правой частью. Для нахождения этого частного решения воспользуемся методом комплексных амплитуд. То есть пусть некоторая комплексная функция f(t) является решением линейного дифференциального уравнения с вещественными коэффициентами и комплексной правой частью; тогда вещественная часть этой функции Ref(t) является решением того же уравнения, в правой части которого стоит вещественная часть прежнего выражения, а мнимая часть Imf(t) — решением уравнения с мнимой правой частью. Тогда уравнение (1) станет выглядеть так:

$$\ddot{U}_c + 2\gamma \dot{U}_c + \omega_0^2 U_c = \omega_0^2 \varepsilon, \tag{2}$$

где $\varepsilon_0 e^{i\varphi}$ называется комплексной амплитудой.

Решив уравнение (2), получим комплексное выражение для напряжения на конденсаторе, вещественная часть которого и является решением исходного уравнения. Комплексные амплитуды тока в контуре и напряжений на сопротивлении и индуктивности:

$$\mathbf{U}_{C0} = \frac{\varepsilon_0}{i\omega CZ}, \ Z = R + i(\omega L - \frac{1}{\omega C}), \tag{3}$$

$$\mathbf{I}_0 = \frac{\varepsilon_0}{Z}, \ \mathbf{U}_{R0} = \frac{R\varepsilon_0}{Z}, \ \mathbf{U}_{L0} = i\omega L \frac{\varepsilon_0}{Z}. \tag{4}$$

Определим величину Z — **импеданс**, или комплексное сопротивление, — характеристику колебательного контура на заданной частоте:

$$Z_R = R$$
, $Z_L = i\omega L$, $Z_C = \frac{1}{i\omega C}$.

Aктивным сопротивлением называется действительная часть Z, peakmuehum — мнимая: $ImZ = \omega L - \frac{1}{\omega C}$. Импедансы реальных конедноаторов и катушек содержат, кроме мнимой части, также и действительную часть. Действительная часть импеданса определяется необратимыми потерями энергии, которые могут быть связаны как с омическим сопротивлением проводников, так и с другими причинами: с утечками и диэлектрическими потерями в конденсаторах, с токами перемагничивания в катушках. Потери в катушках самоиндукции и конденсаторах зависят как от частоты, так и от амплитуды проходящего через них тока. Импедансы контура и его отдельных элементов могут быть представлены в показательной форме:

$$Z = Z_0 e^{i\psi},\tag{5}$$

где Z_0 — модуль комплексного числа, $\psi = argZ$ — его аргумент. Для импеданса рассматриваемого последовательного контура находим:

$$Z_0 = \sqrt{(ReZ)^2 + (ImZ)^2} = \frac{R}{\cos \psi_I},$$
 (6)

$$\operatorname{tg}\psi_{I} = \frac{ImZ}{ReZ} = \frac{\omega L - \frac{1}{\omega C}}{R}.$$
 (7)

Так, действительная часть тока в контуре:

$$I(t) = \frac{\varepsilon_0}{R} \cos \psi_I \cos(\omega t + \varphi_0 - \psi_I). \tag{8}$$

Как видно из (8), угол ψ_I , определяемый отношением мнимой и действительной частей импеданса, представляет собой сдвиг фаз между напряжением на последовательном контуре и током в нем, причем положительные значения этого угла соответствуют отставанию фазы тока, а отрицательные — опережению. В общем случае, когда к источнику последовательно подключены резистор, конденсатор и катушка, сдвиг фазы тока лежит в пределах $-\pi/2 < \psi_I < \pi/2$. От этого угла также зависит амплитуда силы тока.

2.2 Векторные диаграммы

Решения, полученные методом комплексных амплитуд, допускают простую геометрическую интерпретацию. Комплексное число, например, напряжение $\varepsilon = \varepsilon_0 e^{i(\omega t + \varphi_0)}$,

представляется на комплексной плоскости вектором, длина которого равна ε_0 , а угол, составляемый этим вектором с вещественной осью, равен $(\omega t + \varphi_0)$ — фазе напряжения. Вектор напряжения вращается со скоростью ω против часовой стрелки. Удобно перейти к системе координат, которая сама вращается с такой угловой скоростью. В этой системе вектор ε будет представлен покоящимся вектором $\varepsilon_0 e^{i\varphi}$, а векторы \mathbf{I}_0 , \mathbf{U}_{C0} , \mathbf{U}_{L0} , \mathbf{U}_{R0} тоже будут неподвижны, но окажутся сдвинутыми по углу относительно вектора φ_0 . Вектор \mathbf{I}_0 , как показано выше, сдвинут от вектора φ_0 на угол ψ_I . Построенная таким образом диаграмма называется векторной.

2.3 Резонанс напряжений в последовательном контуре

Запишем вещественные части решений уравнений (3)-(4):

$$I(t) = \frac{U_R(t)}{R} = I_\omega \cos(\omega t - \psi_I), \ I_\omega = \frac{\varepsilon_0}{Z_0}, \tag{9}$$

$$Z_0 = R\sqrt{1 + \left[\frac{\rho}{R}\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right]^2}, \ \psi_I = \arctan\left[\frac{\rho}{R}\left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)\right], \tag{10}$$

$$U_C(t) = U_{C\omega}\cos(\omega t - \psi_C), \ U_{C\omega} = \varepsilon_0 \frac{\rho}{Z_0} \frac{\omega_0}{\omega}, \ \psi_C = \psi_I + \pi/2, \tag{11}$$

$$U_L(t) = U_{L\omega}\cos(\omega t - \psi_L), \ U_{L\omega} = \varepsilon_0 \frac{\rho}{Z_0} \frac{\omega}{\omega_0}, \ \psi_L = \psi_I - \pi/2.$$
 (12)

Анализ полученных формул (9)-(12) позволяет сделать следующие выводы:

- 1. При заданных параметрах ε_0 и ω_0 внешнего источника напряжения зависимости амплитуд и фаз тока и напряжений в системе от частоты амплитудные и частотные характеристики определяются двумя безразмерными величинами ρ/R и ω/ω_0 . Для контура со слабым затуханием $(Q\gg 1)$ имеет место соотношение $Q\approx\frac{\rho}{R}$.
- 2. Поведение системы носит резонансный характер: при $\omega=\omega_0$, когда мнимая часть импеданса равна нулю и $\omega_0 L=\frac{1}{\omega_0 C}=\rho,\ ImZ=0,\ Z_0=R,\ \psi_I=0$ амплитуды тока и напряжения на сопротивлении достигают максимальных значений $(I_{\omega_0}=\varepsilon_0/R,\ U_{R\omega_0}=\varepsilon_0)$ и совпадают по фазе с ЭДС. Таким образом, последовательный контур на собственной частоте ω_0 представляет для внешней ЭДС чисто активную нагрузку, на которой выделяется мощность $P_{\rm max}=\varepsilon_0^2/2R$.
- 3. Наиболее ярко резонансный характер проявляется в напряжениях на конденсаторе и индуктивности, которые при $\omega = \omega_0$ в ρ/R раз превышают напряжение ε_0 по амплитуде и сдвинуты по фазе от него каждый на $\pi/2$, то есть находятся в противофазе друг с другом. При высокой добротности их амплитуды значительно превышают амплитуду напряжения на контуре. По этой причине резонанс в последовательном контуре называется резонансом напряжений.

$$U_{C\omega}^{\text{pes}} = U_{L\omega}^{\text{pes}} = \frac{\rho}{R} \varepsilon_0 \left(1 - \frac{\rho^2}{4R^2} \right)^{-1/2}.$$
 (13)

Частоты, на которых достигаются максимальные значения величин, характеризующих вынужденные колебания в различных колебательных системах, принято называть резонансными. Для напряжения на конденсаторе резонансной является частота

$$\omega_C^{\text{pes}} = \omega_0 \left(1 - \frac{\rho^2}{2R^2} \right)^{+1/2},$$
(14)

для напряжения на индуктивности -

$$\omega_L^{\text{pes}} = \omega_0 \left(1 - \frac{\rho^2}{2R^2} \right)^{-1/2},\tag{15}$$

причем $\omega_C^{\mathrm{pes}}\cdot\omega_L^{\mathrm{pes}}=\omega_0^2.$

На рис. 2 приведены в безразмерном виде кривые зависимостей от $x = \omega/\omega_0$ амплитуды тока (а) $j(x) = RI_\omega/\varepsilon_0$ и амплитуды напряжения на конденсаторе (б) $u(x) = U_{C\omega}/\varepsilon_0$. Эти кривые называются амплитудными резонансными кривыми последовательного колебательного контура. Важными характеристиками резонансных кривых являются максимальное значение амплитуды соответствующей величины и uupuna резонансной кривой, при которой аплитуда уменьшается в $\sqrt{2}$ раз по сравнению со своим максимальным значением (мощность сигнала уменьшается в два раза). В частности, по этим кривым можно определить добротность колебательного контура:

Рис. 2. Амплитудные резонансные кривые а) тока и б) напряжения последовательного колебательного контура в безразмерных переменных $(x=\omega/\omega_0)$ при $\rho/R=2,\,5$ и 10

Наибольший практический интерес представляет случай, когда отклонение $\Delta \omega = \omega - \omega_0$ частоты внешней ЭДС от собственной частоты контуры с добротностью $Q = \rho/R \gg 1$ удовлетворяет сильному неравенству $|\Delta \omega| \ll \omega_0$. При этом в первом порядке малости по относительной расстройке частоты $\Delta \omega/\omega_0$

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0},$$

откуда

$$Z_0 = R\sqrt{1 + (\tau \Delta \omega)^2}, \ \psi_I = \arctan \tau \Delta \omega,$$

где $\tau = 1/\gamma$ — время затухания колебательного контура. В резонансе, когда для высокодобротного контура $\omega = \omega_0$, $\Delta \omega = 0$, выражения для амплитуд тока и напряжений на емкости и индуктивности, фазовых сдвигов принимают вид:

$$I_{\omega}(\omega_0) = \frac{\varepsilon_0}{R}, \ \psi_I(\omega_0) = 0, \tag{17}$$

$$U_{C\omega}(\omega_0) = Q\varepsilon_0, \ \psi_C(\omega_0) = \frac{\pi}{2},$$
 (18)

$$U_{L\omega}(\omega_0) = Q\varepsilon_0, \ \psi_L(\omega_0) = -\frac{\pi}{2}.$$
 (19)

Величина $\delta\omega=2|\Delta\omega_{\gamma}|=2\gamma=2/\tau$ представляет собой ширину резонансной кривой $U_C(\omega)$, по которой с учетом соотношений $Q=\omega_0/2\gamma=\tau\omega_0/2$, зная ω_0 , можно найти добротность контура

$$Q = \frac{\omega_0}{\delta\omega}. (20)$$

3 Экспериментальная установка

Схема экспериментальной установки показана на рис. 3. Синусоидальный сигнал от генератора поступает на вход управляемого напряжением источника напряжения, собранного на операционном усилителе, питание которого осуществляется встроенным блоком-выпрямителем от сети. Источник напряжения (источник с нулевым внутренним сопротивлением) обеспечивает с высокой точностью постоянство амплитуды сигнала $\varepsilon = \varepsilon_0 \cos{(\omega t + \varphi_0)}$ на меняющейся по величине нагрузке — последовательном колебательном контуре, изображенном на рис. 3 в виде эквивалентной схемы.

Рис. 3. Схема экспериментальной установки

Источник напряжения, колебательный контур и блок питания заключены в отдельный корпус, отмеченный на рисунке штриховой линией. На корпусе имеются коаксиальные разъемы «Вход», « U_1 », « U_2 », а также переключатель магазина емкостей C_n с указателем номера n. Напряжение E на контуре через разъем « U_1 » попадает

одновременно на канал 1 осциллографа и вход 1-го цифрового вольтметра. Напряжение на конденсаторе U_C подается через разъем « U_2 » одновременно на канал 2 осциллографа и вход 2-го цифрового вольтметра.

В нашем контуре катушка индуктивности обладает малым сопротивлением по постоянному току и высокой собственной резонансной частотой $f_r > 1.3$ МГц. В общем случае каждая катушка, помимо индуктивности, характеризуется также собственной (межвитковой) емкостью C_L и активным сопротивлением потерь R_L . Считается, что эти величины сосредоточены в отдельных элементах схемы, образующих с L замкнутую колебательную цепь с собственной резонансной частотой $f_r = 1/2\pi\sqrt{LC_L}$. Вследствие влияния емкости C_L при измерении на частоте f определяется не истинная индуктивность L, а ее эффективное значение $L_{\rm эфф} = L/(1-f^2/f_r^2)$, однако в нашей работе $f \ll f_r$, так что индуктивность представлена своим истинным значением.

Для оценки возможного вклада активных потерь в конденсаторах в общий импеданс контура воспользуемся представлением конденсатора с емкостью C последовательной эквивалентной схемой на рис. 4:

Рис. 4. Последовательная эквивалентная схема для конденсатора с потерями

На этой схеме R_s — это так называемое эквивалентное последовательное сопротивление (ЭПС), обусловленное электрическим сопротивлением материала обкладок и выводов конденсатора и контактов между ними, а также потерями в диэлектрике. Из векторной диаграммы (рис. 46) видно, что активные потери в конденсаторе, пропорциональные косинусу угла ψ сдвига фаз между током и напряжением на емкости, убывают с ростом ψ и уменьшением угла $\delta = \pi/2 - \psi$. Потери в конденсаторе принято характеризовать величиной tg δ .

$$R_s = \frac{U_{Rs}}{I} = \frac{U_{Rs}}{\omega C U_{Rs}} = \frac{1}{\omega C} \operatorname{tg} \delta.$$
 (21)

В нашей установке $\lg \delta < 10^{-3}$. Суммарное реактивное сопротивление контура:

$$R_{\Sigma} = R + R_L + R_s. \tag{22}$$

Импедансы:

$$Z_L = R_L + i\omega L, \ Z_C = R_s - i\frac{1}{\omega C}, \ Z = R_{\Sigma} + i\left(\omega L - \frac{1}{\omega C}\right).$$
 (23)

Тогда получаем добротность контура:

$$Q = \rho/R_{\Sigma} = \omega_0 L/R_{\Sigma} = 1/\omega_0 CR_{\Sigma} \gg 1. \tag{24}$$

Отсюда видно, что потерями в конденсаторах $tg\,\delta$ можно пренебречь. В то же время вклад потерь в конденсаторах в суммарное активное сопротивление контура вблизи резонанса, примерно равный $\rho\,tg\,\delta$, можно оценить только по результатам эксперимента.

При резонансе:

$$I(\omega_0) = \frac{\varepsilon}{R_{\Sigma}}, \ \psi_I = 0, \tag{25}$$

$$U_L(\omega_0) = Q\varepsilon, \ \psi_L = \frac{\pi}{2} - \frac{R_L}{\rho}, \tag{26}$$

$$U_C(\omega_0) = Q\varepsilon, \ \psi_C = -\frac{\pi}{2} + \delta.$$
 (27)

Из формул (25)-(27) следует, что на резонансной частоте импеданс контура становится чисто активным и равным суммарному сопротивлению, амплитуда тока достигает максимального значения $I_{\rm max} = \varepsilon/R_{\Sigma}$. Напряжения на конденсаторе и индуктивности находятся почти в противофазе и в Q раз превышают по амплитуде значение внешней ЭДС.

При отклонении $\Delta\omega$ частоты внешней ЭДС от ω_0 таком, что

$$\tau \Delta \omega = \pm 1,\tag{28}$$

амплитуда тока уменьшается в $\sqrt{2}$ раз относительно своей резонансной величины, а фаза ψ_I изменяется на угол $\mp \pi/4$. Аналогично для остальных величин из уравнений (25)-(27). Схожесть поведения вблизи резонанса частотных характеристик тока и напряжений на реактивных элементах последовательного контура с добротностью $Q \gg 1$ упрощает эксперимент, позволяя производить измерения именно напряжений. В нашей работе это напряжение на контуре ε и напряжение на конденсаторе U_C .

Величина $\delta\omega=2/\tau$ (ширина резонансной кривой, введенная выше) позволяет определить время релаксации $\tau=2/\delta\omega$ и найти добротность контура $Q=\omega_0/\delta\omega$.

Те же самые величины можно найти и по фазово-частотным характеристикам контура. Расстояние по оси ω между точками, в которых фаза ψ_C меняется от $-\pi/4$ до $-3\pi/4$ равно $2/\tau$, а тангенс угла наклона функции $\psi_C(\omega)$ определяет время релаксации τ .

4 Ход работы

4.1 Амплитудно-частотные характеристики

Проверим правильность сборки электрической цепи, настроим приборы и подготовим

их к работе. На входе контура выставим напряжение $E=175.5~\mathrm{mB}$ и будем поддерживать его постоянным на протяжении всей работы. Для контуров с различными емкостями, которые можно менять при помощи переключателя, будем измерять резонансные частоты f_{0n} и напряжения $U_C(f_{0n})$.

Так, для двух контуров с емкостями $C_3=47.6$ нФ и $C_5=68.0$ нФ снимем амплитудночастотные характеристики $U_C(f)$ (по 16-17 точек в сумме по обе стороны от резонанса, наблюдаемого на частоте, близкой к 23.27 кГц для C_3 и 19.42 кГц для C_5) при почти постоянном напряжении E на входе контуров. Результаты занесем в таблицу 1:

$C_3 = 47.6 \; {\rm H}\Phi$						$C_5=68.0$ н Φ				
n	f , к Γ ц	σ_f , к Γ ц	U_C , B	σ_{Uc} , B	n	f, кГц	σ_f , к Γ ц	U_C , B	σ_{Uc} , B	
1	25.12	0.1	1.07	0.01	1	21.20	0.1	1.05	0.01	
2	24.49	0.1	1.55	0.01	2	20.72	0.1	1.43	0.01	
3	24.15	0.1	1.96	0.01	3	20.41	0.1	1.80	0.01	
4	24.03	0.1	2.15	0.01	4	20.27	0.1	2.01	0.01	
5	23.84	0.1	2.49	0.01	5	20.18	0.1	2.17	0.01	
6	23.66	0.1	2.80	0.01	6	20.00	0.1	2.47	0.01	
7	23.49	0.1	3.10	0.01	7	19.88	0.1	2.66	0.01	
8	23.27	0.1	3.30	0.01	8	19.55	0.1	2.86	0.01	
9	23.21	0.1	3.34	0.01	9	19.60	0.1	2.89	0.01	
10	23.00	0.1	3.05	0.01	10	19.32	0.1	2.54	0.01	
11	22.90	0.1	2.83	0.01	11	19.20	0.1	2.28	0.01	
12	22.74	0.1	2.47	0.01	12	19.00	0.1	1.93	0.01	
13	22.49	0.1	1.97	0.01	13	18.94	0.1	1.81	0.01	
14	22.32	0.1	1.72	0.01	14	18.77	0.1	1.57	0.01	
15	21.99	0.1	1.37	0.01	15	18.55	0.1	1.34	0.01	
16	21.45	0.1	1.02	0.01	16	18.19	0.1	1.06	0.01	

Таблица 1. Результаты измерений для АЧХ

По данным, представленным в таблице 1, построим амплитудно-частотные характеристики контуров в координатах $f, U_C(f)$:

Рис. 5. Графики зависимости напряжения на конденсаторе от частоты (АЧХ) для двух контуров

По тем же данным построим также графики в безразмерных координатах: $x = f/f_{0n}$, $y = U_C(x)/U_C(1)$, где f_{0n} — резонансная частота для соответствующего контура:

Рис. 6. Графики АЧХ в безразмерных координатах, где $x=f/f_{0n},\,y=U_C(x)/U_C(1)$

Из графиков 5 и 6 хорошо видно, что резонансная частота и добротность для $C_3=$

 $47.6 \text{ н}\Phi$ выше. По ширине резонансных кривых (рис. 6) на уровне 0.707 определим добротности контуров как обратное к разности частот на этом уровне:

$$Q_{C_3} = 20.6 \pm 0.1;$$

$$Q_{C_5} = 17.2 \pm 0.1.$$

4.2 Фазово-частотные характеристики

Для тех же двух контуров получим фазово-частотные характеристики $\varphi_C(f)$ при том же значении напряжения E. Результаты измерений занесем в таблицу 2:

($C_3 = 47.6$	Фн	($C_5 = 68.0 \; \text{н}\Phi$			
n	f , к Γ ц	$-\varphi/\pi$	n	f , к Γ ц	$-\varphi/\pi$		
1	23.21	0.46	1	19.65	0.48		
2	23.47	0.61	2	19.27	0.32		
3	23.57	0.64	3	19.13	0.24		
4	23.69	0.69	4	18.91	0.20		
5	23.93	0.75	5	18.76	0.18		
6	24.26	0.80	6	18.56	0.13		
7	24.56	0.83	7	18.27	0.11		
8	25.11	0.88	8	18.03	0.09		
9	23.20	0.46	9	19.61	0.49		
10	22.95	0.34	10	19.86	0.60		
11	22.77	0.27	11	19.98	0.65		
12	22.67	0.23	12	20.24	0.74		
13	22.51	0.18	13	20.43	0.76		
14	22.20	0.14	14	20.68	0.82		
15	21.71	0.10	15	20.84	0.83		
16	21.35	0.08	16	21.15	0.86		

Таблица 2. Результаты измерений для ФЧХ

На основе данных из таблицы 2 построим на одном графике фазово-частотные характеристики в безразмерных координатах: $x = f/f_{0n}, y = -\varphi/\pi$:

Рис. 7. Графики ФЧХ в безразмерных координатах, где $x = f/f_{0n}, y = -\varphi/\pi$

По полученным характеристикам (рис. 7) определим добротности контуров. По расстоянию между точками по оси x, в которых y меняется от 1/4 до 3/4, равному 1/Q, определим Q:

$$Q_{C_3} = 20 \pm 1;$$

$$Q_{C_5} = 16 \pm 1.$$

Как видно, полученные значения добротности неплохо согласуются с определенными при помощи AЧX.

4.3 Характеристики контура

При все том же значении E=175.5 мВ для контуров с семью различными емкостями C_n измерим резонансные частоты f_{0n} и напряжения $U_C(f_{0n})$. По результатам измерений для каждого контура определим значение индуктивности катушки L, добротность Q, характеристическое сопротивление ρ , суммарное сопротивление контура R_{Σ} , значение ЭПС $R_{S\max}$, омическое сопротивление катушки R_L и ток I. Результаты измерений и вычислений занесем в таблицу 3.

Зная резонансную частоту, можно найти индуктивность катушки по формуле:

$$L = \frac{1}{4\pi^2 C f_0^2},$$

а погрешность можно определить как

$$\sigma_L = L\sqrt{\left(\frac{\sigma_C}{C}\right)^2 + 4\left(\frac{\sigma_{f_0}}{f_0}\right)^2}.$$

Характеристическое сопротивление контура ищется как

$$\rho = \sqrt{\frac{L}{C}},$$

причем погрешность

$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_L}{2L}\right)^2 + \left(\frac{\sigma_C}{2C}\right)^2}.$$

Зная суммарное активное сопротивление и $R_S=10^{-3}\rho$, можно найти активное сопротивление катушки R_L . Для определения добротности контура применяется формула $U_C(f_0)=QE$. При этом $R_\Sigma=\frac{1}{f_0CQ}$. Все погрешности также занесены в таблицу 3.

n	C_n , н Φ	$f_{0n},$ к Γ ц	U_C , B	E, MB	L , мк Γ н	Q	ρ, Οм	R_{Σ} , Om	$R_{S_{\max}},$ Om	R_L , OM	I, мА
1	24.8	32.20	4.38	175.5	986.1	25.0	199.4	7.99	0.20	4.34	21.97
2	33.2	27.78	3.88	175.5	989.6	22.1	172.7	7.81	0.17	4.19	22.47
3	47.6	23.27	3.35	175.5	983.7	19.1	143.8	7.53	0.14	3.94	23.30
4	57.5	21.17	3.10	175.5	983.9	17.7	130.8	7.41	0.13	3.82	23.70
5	68.0	19.42	2.88	175.5	988.7	16.4	120.6	7.35	0.12	3.78	23.88
6	81.6	17.73	2.90	175.5	988.5	16.5	110.1	6.66	0.11	3.63	26.35
7	102.8	15.82	2.42	175.5	985.5	13.8	97.9	7.10	0.10	3.55	24.72
Среднее значение			986.6	18.7	139.3	7.41	0.14	3.89	23.77		
Коэффициент Стьюдента			2.2	_			2.26	_			
Среднеквадратичная погрешность			0.1	_			0.02	_			
Случайная погрешность (0.3	_			0.10	_		

Таблица 3. Характеристики контуров

Таким образом, мы определили добротности контуров с C_3 и C_5 тремя разными способами: по AЧX, ФЧX и теоретически. Сравним полученные значения:

	Q , A Ψ X	$Q, \Phi \Psi X$	Q, теория
$C_3 = 47.6 \; \text{н}\Phi$	20.6 ± 0.1	20 ± 1	19.1
$C_5 = 68.0 \; \text{н}\Phi$	17.1 ± 0.1	16 ± 1	16.4

Таблица 4. Добротности контуров, вычисленные тремя способами

По данным таблицы 3 построим график зависимости сопротивления катушки индуктивности от резонансной частоты $R_L(f_{0n})$:

Рис. 8. График зависимости сопротивления катушки индуктивности от резонансной частоты

Уравнение полученной зависимости указано на графике (рис. 8). Видим, что с увеличением частоты резонанса (то есть с увеличением емкости в цепи) растет и сопротивление потерь катушки. Можно предположить, что изменения связаны с потерями на перемагничивание сердечника катушки.

4.4 Векторная диаграмма

Построим векторную диаграмму напряжений для контура с наименьшей добротностью в резонансном состоянии, ось абсцисс направим по вектору \mathbf{E} , а масштаб оси сделаем в 2 раза более крупным, чем оси ординат. Так как, по закону Кирхгофа, $E = U_R + U_C + U_L$, на графике вектор \mathbf{E} должен быть равен сумме остальных векторов напряжений.

Рис. 9. Векторная диаграмма

5 Вывод

Было проведено исследование резонанса напряжений в последовательном колебательном контуре, по результатам которого были определены некоторые его характеристики: индуктивность, сопротивление катушки индуктивности, характеристическое сопротивление. Также тремя разными способами были рассчитаны добротности двух контуров.