

JUL 06, 2023

Clustering of differentially expressed genes

Ahmad Husaini AHS Suhaimi¹

¹Institute of Biological Sciences, Faculty of Science, Universiti Malaya

MP2Lab

Ahmad Husaini AHS Suhaimi

OPEN ACCESS

dx.doi.org/10.17504/protocol s.io.rm7vzx82rgx1/v1

Protocol Citation: Ahmad Husaini AHS Suhaimi 2023. Clustering of differentially expressed genes. protocols.io

https://dx.doi.org/10.17504/p rotocols.io.rm7vzx82rgx1/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Jul 04, 2023

Last Modified: Jul 06, 2023

PROTOCOL integer ID:

84450

ABSTRACT

This differentially expressed genes clustering pipeline utilizes coseq v3.17 package (Rau & Maugis-Rabusseau, 2018) in R.

Clustering of differentially expressed genes (DEG) using Co..

1 Load the package (coseq).

Command

library(coseq)
library(matrixStats)

2 Run Coseq on transformed and normalized counts.

Example:

Performing clustering on bud data with expected clusters, K=5-16.

Clustering process is repeated for 10x.

Command

```
coseq_bud_logclr_1 = coseq(tcounts_logclr_exp_bud_ORF_scTMM[,1:15], K=5:16,
normFactor = "none", transformation = "none")
coseq_bud_logclr_2 = coseq(tcounts_logclr_exp_bud_ORF_scTMM[,1:15], K=5:16,
normFactor = "none", transformation = "none")
coseq bud logclr 3 = coseq(tcounts logclr exp bud ORF scTMM[,1:15], K=5:16,
normFactor = "none", transformation = "none")
coseq_bud_logclr_4 = coseq(tcounts_logclr_exp_bud_ORF_scTMM[,1:15], K=5:16,
normFactor = "none", transformation = "none")
coseq_bud_logclr_5 = coseq(tcounts_logclr_exp_bud_ORF_scTMM[,1:15], K=5:16,
normFactor = "none", transformation = "none")
coseq_bud_logclr_6 = coseq(tcounts_logclr_exp_bud_ORF_scTMM[,1:15], K=5:16,
normFactor = "none", transformation = "none")
coseq bud logclr 7 = coseq(tcounts logclr exp bud ORF scTMM[,1:15], K=5:16,
normFactor = "none", transformation = "none")
coseq bud logclr 8 = coseq(tcounts logclr exp bud ORF scTMM[,1:15], K=5:16,
normFactor = "none", transformation = "none")
coseq bud_logclr_9 = coseq(tcounts_logclr_exp_bud_ORF_scTMM[,1:15], K=5:16,
normFactor = "none", transformation = "none")
coseq bud logclr 10 = coseq(tcounts logclr exp bud ORF scTMM[,1:15], K=5:16,
normFactor = "none", transformation = "none")
```

3 Manually inspect the results and decide on the average number of clusters Choose one clustering result to proceed with the subsequent steps

Command

summary(coseq_bud_logclr_1)
summary(coseq_bud_logclr_2)
summary(coseq_bud_logclr_3)
summary(coseq_bud_logclr_4)
summary(coseq_bud_logclr_5)
summary(coseq_bud_logclr_6)
summary(coseq_bud_logclr_7)
summary(coseq_bud_logclr_8)
summary(coseq_bud_logclr_9)
summary(coseq_bud_logclr_10)

Assigning clusters to transcripts

4 Retrieve and tabulate the clustering information based on the chose clustering from the previous step.

Example:

coseq_bud_logclr_1 is chosen as the best clustering results_coseq_bud_logclr: the new table/vector.

Command

results_coseq_bud_logclr = clusters(coseq_bud_logclr_1)

5 Convert the vector into a data frame.

Command

results_coseq_bud_logclr = data.frame(results_coseq_bud_logclr)

6 Create a column containing the assigned cluster number for each transcript in the read count data frame.

Example:

the new column: bud_logclr

the data frame with read counts: tcounts_logclr_exp_bud_ORF_scTMM

Command

tcounts_logclr_exp_bud_ORF_scTMM\$bud_logclr =
results_coseq_bud_logclr_1\$results_coseq_bud_logclr