For \$1.1, narrow focus to immediate needs.

Think of this as a future resource

$$[EX]$$
 $A = \{a,b,c,d,e\}$, then $\{a,b,c\} \notin [A]^3$
 $[A]^3 = (5) = 5! = 10$ $\{a,b\} \notin [A]^3$

def: A graph
$$G = (V, E)$$
 is a pair of sets such that $E \subseteq [V]^2$ unordered all of elements in E are spairs of elements in V

Ex Let
$$G = (V, E)$$
 be defined as $V = \{\{\{a,b\}, \{\{a,b\}\}, \{\{a,b\}\},$

$$\frac{def: G = (V, E)}{|G| = |V|}$$

$$\frac{|G| = |V|}{|G| = |E|}$$
He index of G

<u>defs</u>: G=(V, E) s.t. |V| >0; v EV

min { d(v) ; ve V 5

· The <u>average degree</u> of G, d(G), (\(\sum d(v) \) | V | average \(\frac{1}{2} \) | v | \(\sum \text{circidence} \) | \(\sum \text{circidence} \) Per vertix

· A graph is K-regular if
$$d(v)=K + v \in G$$
.

• #edges per vertex is ε(G) = |E|

$$E(G) = \frac{|E|}{|V|} = \frac{1}{2} \sum_{x} d(x)$$

$$= \frac{1}{2} d(G)$$

$$= \frac{1}{2} V = \frac{1}{2} d(G)$$

$$= \frac{1}{2} d(G)$$

$$= \frac{1}{2} d(G)$$

$$= \frac{1}{2} d(G)$$

$$= \frac{1}{2} d(G)$$

· Show S(G) ≤ d(G) ≤ △(G).

$$S = \frac{|V| \cdot S}{|V|} = \frac{7}{5} \frac{S(G)}{|V|} \ge d(G) = \frac{7}{5} \frac{d(G)}{|V|} \le Sam$$

· How to relate | E | and vertex degrees?

$$|E| = 2 Z d(v)$$

* Prop 1.2.1 In any graph G, the number of vertices of odd degree is EVEN Pf: | E | = 1 \(\sum_{10} \) | \(\text{Since} \) | \(E \) | \(\text{and} \) \(\sum_{10} \) \(\text{are} \) Integres, then Zd(v) is even. But Zd(v) is a sum of integres that is even, so it must have an even # of odd entries. Prop 1.2.2 For G=(V, E) s.t. | E| >0, 3 H = G s.t. S(H) > E(H) = E(G) OR S(H) > = d(H) = = d(G). Build a graph such that E(G) 76 and S(G)=2. In addition, G has 10 vertices w/d(v)=2. = d(G) = E(G) ≥ 6 ← d(G) ≥ 12 20+20.3 = 80 24 d(v)=9K10 W/ 10 860722/

10.9

