Due: April 4th, 2023

Analysis Homework 4

Problem 1. Find the limit (and prove it of course) or prove that the limit does not exist.

- (a) $\lim_{x\to c} \sqrt{x}$, for $c \ge 0$
- (b) $\lim_{x\to c} x^2 + x + 1$, for $c \in \mathbb{R}$
- (c) $\lim_{x\to 0} x^2 \cos(1/x)$
- (d) $\lim_{x\to 0} \sin(1/x) \cos(1/x)$
- (e) $\lim_{x\to 0} \sin(x) \cos(1/x)$

Problem 2. Let $S \subset \mathbb{R}$ and let c be a cluster point of S. Suppose $f: S \to \mathbb{R}$, $g: S \to \mathbb{R}$, and $h: S \to \mathbb{R}$ are functions such that, for all $x \in S$,

$$f(x) \le g(x) \le h(x)$$
.

Suppose the limits of f(x) and h(x) as x goes to c exist, and

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x).$$

Then the limit of g(x) as x goes to c exists and

$$\lim_{x \to c} g(x) = \lim_{x \to c} f(x) = \lim_{x \to c} h(x).$$

Problem 3. Let $S \subset \mathbb{R}$ and let c be a cluster point of S. Suppose $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ are functions such that the limits of f(x) and g(x) as x goes to c both exist. Then

- (a) $\lim_{x\to c} (f(x) + g(x)) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x)$.
- (b) $\lim_{x\to c} (f(x) g(x)) = \lim_{x\to c} f(x) \lim_{x\to c} g(x)$.
- (c) $\lim_{x\to c} f(x)g(x) = (\lim_{x\to c} f(x))(\lim_{x\to c} g(x)).$
- (d) If $\lim_{x\to c} g(x) \neq 0$ and $g(x) \neq 0$ for all $x \in S \setminus \{c\}$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}.$$

Problem 4. Let $S \subset \mathbb{R}$, c be a cluster point of S, and $f: S \to \mathbb{R}$ be a function. Suppose that for every sequence $\{x_n\}$ in $S \setminus \{c\}$ such that $\lim x_n = c$ the sequence $\{f(x_n)\}$ is convergent. Then show that the limit of f(x) as $x \to c$ exists.

Problem 5. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} x & x \in \mathbb{Q} \\ x^2 & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Using the definition of continuity directly prove that f is continuous at 1 and discontinuous at 2.

Due: April 4th, 2023

Problem 6. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} \sin(1/x) & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Is f continuous? Prove your assertion.

Problem 7. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} x \sin(1/x) & x \neq 0 \\ 0 & x = 0. \end{cases}$$

Is f continuous? Prove your assertion.

Problem 8. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be continuous functions. Suppose that for all rational numbers r, f(r) = g(r). Show that f(x) = g(x) for all x.

Problem 9. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Suppose f(c) > 0. Show that there exists an $\alpha > 0$ such that for all $x \in (c - \alpha, c + \alpha)$, we have f(x) > 0.

Problem 10. Suppose $g : \mathbb{R} \to \mathbb{R}$ is a continuous function such that g(0) = 0, and suppose $f : \mathbb{R} \to \mathbb{R}$ is such that $|f(x) - f(y)| \le g(x - y)$ for all x and y. Show that f is continuous.