06 Dyskretne Sieci Hopfielda, tryb synchroniczny - implementacja

Elementy programowania w Scilab.

Na platformie virtualregion.kul.pl znajdują się materiały dodatkowe dotyczące programowania w środowisku Scilab. Należy zapoznać się z materiałami przez przystąpieniem do ćwiczeń. Na zajęciach do pisania skryptów będziemy wykorzystywać edytor SciNotes.

Na zajęciach będą wykorzystywane polecenia i instrukcje m.in. takie jak (przykłady):

Polecenie	objaśnienie
disp(W);	Pozwala na wyświetlenie w konsoli macierzy W z poziomu
	skryptu.
size(W,'r');	Zwraca liczbę wierszy macierzy W, dla 'c' zwraca liczbę
	kolumn
printf('Wartość zmiennej to %d\n',	Polecenie printf pozwala na wyświetlanie tekstu w konsoli,
BiezacyRok);	również z poziomu skryptu. Wynik polecenia to: Wartość
	zmiennej to 2014
zeros(3,2), ones(4,3), eye(4,4)	Polecenia pozwalające na tworzenie specyficznych
	macierzy (kolejno macierz zerowa, zawierająca same
	jedynki, oraz jednostkowa). Macierze kolejno mają
	wymiary: 3x3, 4x3 oraz 4x4.
e=2; k=1;	Pętla While, pozwalająca na obliczenie najmniejszej potęgi
while e < 100,	e, która jest większa od 100
e=e*e;	
k=k+1;	
end	
n=5;	Pętla for, obliczająca wartości nowej macierzy A, wg wzoru
for $i = 1:n$	$a_{ij} = 1/(i+j-1)$
for $j = 1:n$	
A(i,j) = 1/(i+j-1);	
end;	
end	
if wejscie > 0 then	Instrukcja warunkowa IF, pozwalająca na przekształcenie
wyjscie=1;	wartości sygnału wejściowego wejscie na wartość
else	unipolarną na wyjściu wyjscie.
wyjscie =0; end	
Cita	
function wy=g(we)	Przykład funkcji implementującej funkcję bipolarną dla
if $\mathbf{we} > 0$ then	wartości skalarnych. Aby uruchomić funkcję g, należy
wy=1;	zapisać ją w pliku o nazwie <i>g.sci</i> , a następnie uruchomić w
else	Scilabie.
wy =-1;	
end	
endfunction	

Zad.1. Wykorzystując środowisko Scilab zbadaj zbieżność punktu $V = [0\ 1\ 1]$ dla Sieci Hopfielda, działającej synchronicznie z unipolarną funkcją aktywacji, o macierzy wag:

$$W = \begin{bmatrix} 0 & 2 & -1 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}.$$

Wyznacz wartości dla potencjałów wejściowych i wyjściowych w kolejnych krokach.

Zad.2. Dane są Sieci Hopfielda działające w trybie synchronicznym:

a)
$$W = \begin{bmatrix} 0 & -2 & -1 \\ -2 & 1 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
, z funkcją unipolarną,

b)
$$W = \begin{bmatrix} 0 & -1 & -3 \\ -1 & 0 & 2 \\ -3 & 2 & 0 \end{bmatrix}$$
, z funkcją bipolarną,

c)
$$W = \begin{bmatrix} 0 & 2 & -1 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
, z funkcją bipolarną,

d)
$$W = \begin{bmatrix} 0 & 1 & -1 & -4 \\ 1 & 0 & -2 & 1 \\ -1 & -2 & 0 & 3 \\ -4 & 1 & 3 & 0 \end{bmatrix}$$
 , z funkcją unipolarną,

e))
$$W = \begin{bmatrix} 0 & -3 & 2 & -1 \\ -3 & 0 & 4 & 1 \\ 2 & 4 & 0 & 5 \\ -1 & 1 & 5 & 0 \end{bmatrix}$$
, z funkcją bipolarną.

Napisz skrypt w środowisku Scilab, badający zbieżność punktów sieci. Skrypt powinien wyświetlać wartości potencjałów wejściowych i wyjściowych podczas każdego kroku działania sieci. Zaimplementuj mechanizm przerywający nieskończone działanie sieci.

Zautomatyzuj działanie skryptu w taki sposób, aby możliwe było zbadanie zbieżności dla wszystkich punktów sieci. Opcjonalnie wyświetl na koniec każdego badania listę punktów zbieżnych.