Métodos Numéricos

Primer Cuatrimestre 2015

Práctica 1

Elementos de Álgebra Lineal

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Nota: \mathbb{R}^n está formado por vectores columna. Cuando se escriben por filas es por comodidad tipográfica.

- 1. Dadas las matrices $A = (a_{ij}) \in \mathbb{R}^{n \times m}$, $B = (b_{ij}) \in \mathbb{R}^{m \times n}$, $D = (d_{ij}) \in \mathbb{R}^{m \times m}$ y los vectores columna $x = (x_i), z = (z_i) \in \mathbb{R}^n$, $y = (y_i), w = (w_i) \in \mathbb{R}^m$ (donde la notación a_{ij} representa el elemento que está en la fila i y en la columna j de la matriz A y la notación x_i representa el elemento i-esimo del vector x), decidir si las siguientes afirmaciones son verdaderas o falsas y en este último caso justificar por qué lo son.
 - a) $x^t A z = \sum_{i=1}^n \sum_{j=1}^m x_i a_{ij} z_j$
 - b) $xz^t = \sum_{i=1}^n x_i z_i$
 - c) $(ADw)_i = \sum_{j=1}^{m} \sum_{k=1}^{m} a_{ij} d_{jk} w_k$
 - d) $(B^tD^{-1}y)_i = \sum_{j=1}^m \sum_{k=1}^m b_{ji}d_{jk}^{-1}y_k$
- 2. Sean las siguientes matrices de 3×3 :

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 0 & 1 \\ 2 & 0 & 2 \end{pmatrix} \quad C = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$$

Para cada una de las particiones en bloques mencionadas a continuación, indicar si es realizable el producto C = AB en bloques. En caso de ser realizable, calcular cada bloque C_{ij} indicando sus dimensiones.

a)
$$A_{11} = [a_{11}], A_{12} = [a_{12}, a_{13}], A_{21} = \begin{bmatrix} a_{21} \\ a_{31} \end{bmatrix}, A_{22} = \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix}$$

 $B_{11} = [b_{11}], B_{12} = [b_{12}, b_{13}], B_{21} = \begin{bmatrix} b_{21} \\ b_{31} \end{bmatrix}, B_{22} = \begin{bmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{bmatrix}$

b)
$$A_{11} = \begin{bmatrix} a_{11} & a_{12} \end{bmatrix}$$
, $A_{12} = \begin{bmatrix} a_{13} \end{bmatrix}$, $A_{21} = \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$, $A_{22} = \begin{bmatrix} a_{23} \\ a_{33} \end{bmatrix}$
 $B_{11} = \begin{bmatrix} b_{11} \end{bmatrix}$, $B_{12} = \begin{bmatrix} b_{12} & b_{13} \end{bmatrix}$, $B_{21} = \begin{bmatrix} b_{21} \\ b_{31} \end{bmatrix}$, $B_{22} = \begin{bmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{bmatrix}$

c)
$$A_{11} = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$
, $A_{12} = \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix}$, $A_{21} = [a_{31}]$, $A_{11} = [a_{32} \ a_{33}]$
 $B_{11} = [b_{11}]$, $B_{12} = [b_{12} \ b_{13}]$, $B_{21} = \begin{bmatrix} b_{21} \\ b_{31} \end{bmatrix}$, $B_{22} = \begin{bmatrix} b_{22} & b_{23} \\ b_{32} & b_{33} \end{bmatrix}$

¿Qué otras particiones válidas son posibles?

- 3. Sean $A \in \mathbb{R}^{n \times n}$ una matriz con columnas a_1, \dots, a_n , y $B \in \mathbb{R}^{n \times n}$ una matriz con filas b_1^t, \dots, b_n^t . Probar que:
 - a) Si $\forall x \in \mathbb{R}^n : Ax = Bx$, entonces A = B.
 - b) $AB = \sum_{i=1}^{n} a_i b_i^t$.
- 4. Exhibir $n \in \mathbb{N}$ y $A, B \in \mathbb{R}^{n \times n}$ para los cuales $AB \neq BA$. Idem para que $tr(AB) \neq tr(A)Tr(B)$, siendo $tr(A) = \sum_{i} a_{ii}$ la traza de A.

- 5. Sean $A \in \mathbb{R}^{m \times n}$ y $B \in \mathbb{R}^{n \times r}$ tales que AB = 0 ¿Será cierto que A = 0 o B = 0?
- 6. Sean $A \in \mathbb{R}^{n \times n}$ no nula y $B, C \in \mathbb{R}^{n \times m}$ tales que AB = AC; Será cierto que B = C?
- 7. Sean $A, B \in \mathbb{R}^{n \times n}$. Dar condiciones necesarias y suficientes sobre A y B para que valga la igualdad $(A+B)^2 = A^2 + 2AB + B^2$. Idem para que $(A+B)(A-B) = A^2 B^2$
- 8. Sea $A \in \mathbb{R}^{n \times n}$ y $m \in \mathbb{N}$, probar la igualdad $(I-A)(I+A+\ldots+A^m)=(I+A+\ldots+A^m)(I-A)=I-A^{m+1}$
- 9. Determinar si los siguientes conjuntos de \mathbb{R}^n son linealmente independientes. Cuando no lo sean, escribir uno de sus elementos como combinación lineal del resto.
 - a) $C = \{(1, 2, 1, 0), (2, 1, 3, 0), (3, 2, 4, 1)\} \subseteq \mathbb{R}^4$
 - b) $C = \{(3, 3, 3), (2, 1, 0), (7, 5, 3)\} \subseteq \mathbb{R}^3$
- 10. Hallar dos bases distintas de los siguientes subespacios de \mathbb{R}^n . Extender las bases propuestas a bases de \mathbb{R}^n .
 - a) $S = \langle (1, 2, 0), (1, 3, 6), (1, 7, 30) \rangle \subseteq \mathbb{R}^3$
 - b) $S = <(1, 2), (4, 8) > \subseteq \mathbb{R}^2$
- 11. Demostrar:
 - a) Sea $\lambda \in \mathbb{R}$, $\lambda \neq 0$. El conjunto $\{v_1, \ldots, v_i, \ldots, v_m\} \subseteq \mathbb{R}^n$, con $m \leq n$, es linealmente independiente si y solo si el conjunto $\{v_1, \ldots, \lambda v_i, \ldots, v_m\}$ es linealmente independiente.
 - b) Sea $\lambda \in \mathbb{R}$. El conjunto $\{v_1, \ldots, v_i, \ldots, v_j, \ldots, v_m\} \subseteq \mathbb{R}^n$, con $m \le n$, es linealmente independiente si y solo si el conjunto $\{v_1, \ldots, v_i + \lambda v_j, \ldots, v_j, \ldots, v_m\}$ es linealmente independiente.

Relacionar estas dos propiedades con el método clásico de triangulación de matrices (Eliminación Gaussiana).

12. Para las siguientes matrices $A \in \mathbb{R}^{n \times m}$ hallar Nu(A), Im(A), su rango fila, su rango columna y comprobar que m = dim(Nu(A)) + dim(Im(A))

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 1 & 3 & 4 \\ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{4 \times 3} \quad A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 7 \\ 0 & 6 & 30 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

13. Hallar la transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^2$ asociada a la siguiente matriz $A \in \mathbb{R}^{2\times 3}$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 4 & 3 \end{pmatrix}$$

14. Hallar la matriz $A \in \mathbb{R}^{3\times 3}$ asociada a la siguiente transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$f(x_1, x_2, x_3) = (x_1 + 2x_2 + 3x_3, 2x_1 + 3x_3, 3x_2 + 2x_3)$$

- 15. Sea $A \in \mathbb{R}^{n \times n}$. Demostrar que las siguientes condiciones son equivalentes (es decir, si una de ellas vale, todas valen).
 - a) A es inversible.

- b) No existe $x \in \mathbb{R}^n, x \neq 0$, tal que Ax = 0.
- c) Las columnas de A son linealmente independientes.
- d) Las filas de A son linealmente independientes.
- 16. Sean $A \in \mathbb{R}^{n \times n}$ inversible y $B, C \in \mathbb{R}^{n \times m}$. Probar:
 - a) AB = AC entonces B = C.
 - b) AB = 0 entonces B = 0.
 - c) Si $\forall D \in \mathbb{R}^{n \times n}$: tr(BD) = tr(CD), entonces B = C.
 - d) Si m = n entonces $tr(B) = tr(ABA^{-1})$ (Sug.: demostrar primero que tr(CD) = tr(DC)).
- 17. Sean $A, B \in \mathbb{R}^{n \times n}$ probar:
 - a) Si A es inversible entonces A^{-1} es inversible y $(A^{-1})^{-1} = A$.
 - b) Si A, B son inversibles entonces AB es inversible y $(AB)^{-1} = B^{-1}A^{-1}$.
 - c) Si A es inversible entonces A^t es inversible y $(A^t)^{-1} = (A^{-1})^t$.
 - d) Si A es inversible y triangular inferior entonces A^{-1} es triangular inferior.
- 18. Una matriz $A \in \mathbb{R}^{n \times n}$ se dice nilpotente si $A^k = 0$ para algún $k \in \mathbb{N}$. Probar que si A es nilpotente entonces:
 - a) A no es inversible.
 - b) I A es inversible.
- 19. Sea $A \in \mathbb{R}^{m \times n}$. Demostrar que T(x) = Ax es una transformación lineal.
- 20. Sea $A = \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix}$ y sea T(x) = Ax. Sean x = (-1, -1) e y = (2, 1) dos puntos del plano. ¿Cuál es la imagen del segmento que tiene por extremo a dichos puntos? Justificar.
- 21. Demostrar el punto anterior considerando $A \in \mathbb{R}^{m \times n}$ y x e y dos puntos cualquiera del plano.
- 22. a) Probar la desigualdad de Cauchy-Schwarz-Bunyakovski $|x^ty| \leq ||x||_2 ||y||_2$.
 - b) Probar que si x e y son linealmente dependientes, entonces vale la igualdad.
- 23. Sea $x \in \mathbb{R}^n$. Demostrar que $||x||_2$, $||x||_1$, $||x||_{\infty}$ son normas vectoriales.
- 24. Graficar los siguientes conjuntos de puntos:
 - a) $A = \{x \in \mathbb{R}^2 / ||x||_2 = 1\}$
 - b) $B = \{x \in \mathbb{R}^2 / ||x||_1 = 1\}$
 - c) $C = \{x \in \mathbb{R}^2 / ||x||_{\infty} = 1\}$
- 25. Mostrar con un contraejemplo que la desigualdad de C-S-B no se cumple para la norma infinito. ¿Se cumple la desigualdad para la norma uno? Justificar la respuesta.
- 26. Probar que si $x \in \mathbb{R}^n$ entonces $\lim_{n \to \infty} ||x||_p = ||x||_{\infty}$.
- 27. Sea $\{x^{(i)}\}_{i\in\mathbb{N}}$ una sucesión de vectores de \mathbb{R}^n . Probar que $\lim_{i\to\infty} \|x-x^{(i)}\|_p = 0$ (es decir, $x^{(i)}$ tiende a x en norma p) sii $x_k^{(i)} \to x_k$ para toda coordenada k con $1 \le k \le n$.

Resolver en computadora

I Dados x_1, \ldots, x_n una muestra de una variable aleatoria, implementar rutinas que calculen la media y la varianza utilizando operaciones vectoriales.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$

- II Sea $A \in \mathbb{R}^{m \times n}$.
 - a) Demostrar que $A^t A$ y AA^t son simétricas.
 - b) Implementar una rutina que dada una matriz cuadrada verifique si la misma es simétrica.
 - c) Analizar la función implementada en el item anterior con la matriz B generada de la siguiente forma:

```
>> A = rand(4);
>> B = A'*A*0.1/0.1;
```

Analizar el resultado, revisar la implementación y (eventualmente) reimplementar la función.

III Sean $A, B \in \mathbb{R}^{n \times n}$, con n par y B triangular inferior.

- a) Realizar la multiplicación AB por bloques, partiendo ambas matrices en bloques de tamaño n/2.
- b) Implementar una rutina que realice la multiplicación por bloques, evitando cuentas innecesarias.

Funciones útiles

A continuación incluimos ejemplos para crear y operar con matrices y vectores usando Python+Numpy y Matlab/Octave.

 Inicializar matrices y vectores usando distintas sintaxis en Numpy. Tener en cuenta que Numpy maneja como tipos de datos básicos tanto array multidimensional como matrix; para operaciones de álgebra lineal se recomienda usar esta última.

```
from numpy import *

from numpy.linalg import *

# Distintas maneras de inicializar una matriz

A = matrix([[1,2],[3,4]])

B = matrix('1_2;_3_4')

C = matrix('1_2;_3_4', float)

# Para los vectores usamos matrices columna

v = matrix([[4],[5]])

w = matrix('4;_5')

# Crear matrices especiales

I = asmatrix(eye(3))  # Identidad de 3x3

D = asmatrix(diag([1,2]))  # Matriz diagonal

N = asmatrix(zeros((3,3)))  # Matriz nula de 3x3
```

```
\# Construir una matriz de 4x4 usando las matrices A,B,C,D como bloques E = bmat([[A,B],[C,D]])
```

Operaciones básicas entre las matrices y vectores definidos anteriormente en Numpy

```
A + B
          \# Suma
A - B
          \# Resta
A * B
          # Producto de matrices
A * v
          # Producto de matriz por vector
          # Producto por escalar
3.2 * A
A ** 2
          # Potencia
          \# Traspuesta
A. t
          \# Inversa
inv(A)
```

 Inicializar matrices y vectores en Matlab/Octave, por defecto se inicializan con tipo de dato double.

```
\%\ Distintas\ maneras\ de\ inicializar\ una\ matriz
A = [1,2;3,4]
A = [1 \ 2 \ ; 3 \ 4]
C = [[1 \ 2]; [3, 4]]
% Para los vectores usamos matrices columna
v = [4 ; 5]
% Crear matrices especiales
                   % Identidad de 3x3
I = eye(3)
D = diag([1,2])
                 \%~Matriz~diagonal
N = zeros(3,3)
                 % Matriz nula de 3x3
% Construir una matriz de 4x4 usando las matrices A,B,C,D como bloques
E = [A,B;C,D]
E = [[A,B];[C,D]]
E = [[A B]; [C D]]
```

• Operaciones básicas entre las matrices y vectores definidos anteriormente en Matlab/Octave

```
A + B
           % Suma
A – B
           \% Resta
A * B
           \% \ Producto \ de \ matrices
A * v
           % Producto de matriz por vector
3.2 * A
           % Producto por escalar
A^2
           % Potencia
           % Traspuesta
Α'
inv(A)
           % Inversa
```