DHARMSINH DESAI UNIVERSITY, NADIAD FACULTY OF TECHNOLOGY

B.TECH. SEMESTER V [Information Technology] SUBJECT: (IT 511) Theory of Automata and Formal Language

Examination: Second Sessional Seat No. :

Date : 06/09/2016 Day :Tuesday Time : 11:00 to 12:15 Max. Marks : 36

INSTRUCTIONS:

- 1. Figures to the right indicate maximum marks for that question.
- 2. The symbols used carry their usual meanings.
- 3. Assume suitable data, if required & mention them clearly.
- 4. Draw neat sketches wherever necessary.

Q.1	Do a	as directed.	[12]
	(a)	The grammar below is ambiguous or not? Explain with suitable example	[02]
		$S \rightarrow 0A \mid 1B$	
		$A \rightarrow 0AA \mid 1S \mid 1$	
		$B \to 1BB \mid 0S \mid 0$	
	(b)	Write a context free grammar that generates the set of all palindromes over the alphabet {0; 1}	[02]
	(c)	Consider the following grammar	[02]
		$S \rightarrow aB \mid bA$	[02]
		$B \rightarrow b \mid bS \mid aBB$	
		$A \rightarrow a \mid aS \mid bAA$	
		Which of the following strings is generated by the grammar?	
		(A) aaaabb (B) aabbbb (C) aabbab (D) abbbba	
	(d)	Consider the production of the grammar $S \rightarrow AA$ $A \rightarrow aa$ $A \rightarrow bb$ Which	[02]
		of the following valid strings set in the given language?	
		(a.) $L = \{aaaa, aabb, bbaa, bbbb\}$ (b.) $L = \{abab, abaa, aaab, baaa\}$	
		(c.) $L = \{aaab, baba, bbaa, bbbb\}$ (d.) $L = \{aaaa, abab, bbaa, aaab\}$	
	(e)	Write a context free grammar for declaring a variable in C language.	[02]
	(f)	Write a CFG for the regular expression $r = 0*1(0+1)*$	[02]
Q.2			[12]
	(a)	Prove that the following languages are non regular 1) L = {w : #a(w) = #b(w)}. (#a(w) = the number of a's in w and #b(w) = the number of b's in w.) 2) L={0n 102n : n>=0}	[06]
	(b)	Consider the following Pushdown Automaton (PDA) P:	[06]
		$P = (Q = \{q0, q1, q2\}, \Sigma = \{a, b, c\}, \Gamma = \{a, \#\}, \delta, q0, Z0 = \#, F = \{q2\})$	[00]
		where the transition function δ is given by	
		$\delta(q0, a, \#) = \{(q0, a\#)\} \qquad \delta(q0, c, \#) = \{(q0, \#)\} \qquad \delta(q0, a, a) = \{(q0, aa)\}$	
		$\begin{cases} \delta(q0, b, a) = \{(q1, \land)\} & \delta(q0, c, a) = \{(q0, a)\} \\ \delta(q1, c, \#) = \{(q1, \#)\} \end{cases}$	
		$\begin{cases} \delta(q1, b, a) = \{(q1, \land)\} & \delta(q1, c, a) = \{(q1, a)\} \\ \delta(q1, \land, \#) = \{(q2, \#)\} \end{cases}$	
		$\delta(q, w, z) = \emptyset$ for all other combinations. Acceptance is by final state.	
		Which of the following words are accepted by the PDA P? Prove your answers.	
		(i) acabbe (ii) abcabe	
	(c)	Convert the following CFG into an equivalent CFG in Chomsky normal form	[06]
		Convert the following of G into an equivalent of G in Chomsky normal form	լսսյ
		A) $S \rightarrow A \mid B \mid C$ $A \rightarrow aAa \mid B$ $B \rightarrow bB \mid bb$ $C \rightarrow aCaa \mid D$ $D \rightarrow baD \mid abD \mid aa$	
		B) $S \rightarrow BSB \mid B \mid \land$ $B \rightarrow 00 \mid \land$	

Q.3

	(a)	Construct (deterministic or nondeterministic) pushdown automata that	[06]
		accept the following languages	
		L1: $\{0^n 1^m 0^n : n \ge 1, m \ge 1\}$.	
		L2: $\{0^{2n}1^n: n \ge 0\}$.	
	(b)	Prove that context-free languages are closed under –	[06]
		a) Union b) Concatenation c) Kleene Star operation	
		OR	
			[12]
Q.3			
	(a)	Consider the CFG G with productions	[06]
		$S \rightarrow aB \mid bA \mid \land A \rightarrow aS \mid bAA \qquad B \rightarrow bS \mid aBB.$	
		Find the PDA corresponding to above grammar and trace it for the string	
		"aababb."	
	(b)	Construct pushdown automata to accept the following languages.	[06]
		L1: $\{1^n 0^n \mid n > 0\}$	
		L2: $\{0^n 1^{2n} \mid n \ge 0\}$	