Project in Data Intensive Systems

4DV652 Lab Lecture 5 Welf Löwe

Agenda

2

- Tree-based regression and classification
- Lab 5 task descriptions

1

Regression

- Response Y as a function of predictors $X_1, ..., X_p$ $f(X) \colon X_1 \times \cdots \times X_p \to Y$
 - $\it Xi$ are possibly linear or nonlinear terms, predictors are quantitative variables, dummy variables for each class of the categorical predictors
- Learning:
 - estimate f(X) such that $\hat{f}(X) = \hat{y}$ is a good prediction of Y, i.e., low MSE, given predictor values $X = [x_1, \dots, x_p]$
- Predicting:

3

• apply $\hat{y} = \hat{f}(x_1, ..., x_p)$

Tree-based Regression

- Learning: Splits the predictor space into regions by maximizing the information gain in the training data
 - No special treatment of class predictors necessary
 - Use direct or indirectly computed predictors
- Predicting: the average values of the observed training data in a region

Classification

- Class Y as a function of predictors $X_1, ..., X_p$ $f(X) \colon X_1 \times \cdots \times X_p \to Y$
 - X_i are quantitative or categorical predictors
- Learning:
 - estimate f(X) such that $\hat{f}(X) = \hat{y}$ is a good prediction of Y, i.e., low *error* rate, high *precision/recall*, given predictor values $X=[x_1,\ldots,x_p]$
- Predicting:
 - apply $\hat{y} = \hat{f}(x_1, ..., x_p)$

Tree-based Classification

- Learning: Splits the predictor space into regions by maximizing the information gain in the training data
 - No special treatment of class predictors necessary
 - Use direct or indirectly computed predictors
- Classifying: the most frequently occurring class (mode) in training data in a region

5

6

4

Random Forrest

- Generalization of trees-based regression and classification
- Learning: Create several trees
 - using bagging: bootstrapping and learning tree models for each set using a subsets of predictors for each of these models

 - both helps creating models with more or less (un-) correlated errors
- Predict: ensemble technique
 - Regression: the mean of the individual tree's predictions
 - Classification: the mode of the individual tree's classes
- Resampling technique that protects against overfitting

Tree Boosting

- Generalization of trees-based regression and classification
- Learning: Regression: Create a series of trees (using bagging) each predicting the residuals from the sum of the shrunken (with weight $\lambda \in [0,1]$) previous trees
 - Classification: Create a series of trees (using bagging) each grown based on weighted training errors where weights are calculated based on the error of the previous trees
- Predict: pipeline technique
 - Predict the weighted (with weight $\lambda)$ sum of the individual tree's predictions
 - ullet Classify by the sign of the weighted sum of the individual tree's (-1, 1) predictions
- \bullet Yet another resampling technique that protects against overfitting

7

8

Agenda

- Tree-based regression and classification
- Lab 5 task descriptions

Lab assignment 5: tree-based approaches for regression and classification

- ML
 - Challenge the current champion regression with a tree-based approach
 Challenge the current champion classification with a tree-based approach
- Software development
 - If applicable, implement and deploy the new champion regression and classification
- - In a fifth notebook, document the iteration(s) over the ML process steps
- Deadline: 2023-03-01

9

10