2a LEI DE MENDEL

AULA 1 – VISÃO GERAL

Estudando duas características simultaneamente

Mendel passou a observar a transmissão de duas características das ervilhas simultaneamente.

A proporção 9:3:3:1

Proporção fenotípica encontrada no cruzamento entre dois di-híbridos.

Explicação: a meiose

	AaBb	X	AaBb
	AB		AB
gametas	Ab		Ab
	aB		аВ
	ab		ab

AULA 2 – EXPERIMENTOS DE MENDEL SOBRE DI-HIBRIDISMO

Características observadas nas ervilhas

Cor da semente: Textura da semente:

- Amarela → V
- Lisa → R
- Verde → v
- Rugosa → r

2ª LEI DE MENDEL

https://thinkbio.files.wordpress.com/2012/02/f22-19.jpg

AULA 3 – OBTENDO PROPORÇÕES GENOTÍPICAS E FENOTÍPICAS DE FORMA SIMPLES E RÁPIDA

Dica!

Fazer os cruzamentos para característica observada de maneira separada e, na sequência, multiplicar as proporções obtidas para cada caráter.

Justificativa

Na 2ª Lei, as características segregam-se independentemente.

Características observadas nas ervilhas

Cor da semente:

Textura da semente:

- Amarela → V
- Lisa → R
- Verde → v
- Rugosa → r

Cruzamento entre di-híbridos

VvRr X VvRr

Cor da semente: Vv x Vv Gametas: V e v Textura da semente: Rr x Rr

Gametas: R e r

Cruzamentos: VV, Vv, Vv vv

Cruzamentos: RR, Rr, Rr, rr

Proporções fenotípicas:

Ervilhas amarelas e lisas \rightarrow amarela (3/4) x lisa (3/4) = 9/16

Ervilhas amarelas e rugosas \rightarrow amarela (3/4) x rugosa (1/4) = 3/16

Ervilhas verdes e lisas \rightarrow verde (1/4) x lisa (3/4) = 3/16

Ervilhas verdes e rugosas → verde (1/4) x rugosa (1/4) = 1/16

Proporção: 9:3:3:1

AULA 6 – SEGREGAÇÃO INDEPENDENTE E O POLI-HIBRIDISMO

O estudo de múltiplos caracteres

Mendel, após aplicar a sua 2ª Lei, passou a estudar três características simultaneamente.

Poli-hibridismo: estudo de múltiplas características simultaneamente.

Determinando o número de tipos de gametas

Aplicação da potenciação: 2ⁿ

 $\ensuremath{\mathsf{n}} \to \ensuremath{\mathsf{n}} \text{úmero}$ de pares heterozigotos no genótipo do indivíduo.

Exemplos:

- Aabb → 1 par heterozigoto → 2¹ = 2 tipos diferentes de gametas (Ab e ab);
- AaBbCC → 2 pares heterozigotos → 2² = 4 tipos diferentes de gametas (ABC, AbC, aBC e abC);
- aabb → 0 par heterozigoto → 2⁰ = 1 tipo de gameta (ab);

AULA 8 - A MEIOSE E A 2ª LEI DE MENDEL

Observando a disposição dos genes nos cromossomos

Considere um organismo di-híbrido hipotético com 2n = 4. Fazendo a análise de duas características em segregação independente (2ª Lei de Mendel):

A célula está em intérfase. Os cromossomos foram representados, apesar de invisíveis na intérfase. A célula é diplóide, sendo que 2n = 4 cromossomos. Existem os pares de homólogos \mathbf{a} e \mathbf{a} ' e \mathbf{b} e \mathbf{b} '.

A meiose e a proporção de 25% para cada tipo de gameta

2a LEI DE MENDEL

Na segunda divisão meiótica, ocorre a separação das cromátides, que são distribuídas pelas células-filhas. Perceba que cada célula tem dois cromossomos, da mesma forma que no estágio anterior. No que se refere ao número de cromossomos, a segunda divisão meiótica é muito semelhante a uma mitose.

http://altamirsouza.blogspot.com.br/2012_01_01_archive.html