

Summary and Examples in Application

Prof. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Content

- Application: "human centered automation"
- Robot systems, hardware and communication systems
- Control concepts
- Test results
 - Quantitative results regarding reaction times of the system
 - Optimization of the system
 - General computation of safety areas
- Summary of the lecture

Setup of a Dynamic and Flexible Safety Area for Robots

Basierend auf der **Diplomarbeit** von **Roland Krieger**

The "Human Centered Automation"

- Previously: Division of workspace of humans and machines
 - Human only as observer (surveillance, maintenance, ...)
- Future: Cooperation, use synergies
 - Speed, force, accuracy and media resistance of robots
 - Sensory abilities, knowledge and dexterity of humans
- Human-robot-cooperation is a (relatively) young research area (first publication 1992 by Y. Nakauchi: "Multi-Agent Interface Architecture for Human-Robot Cooperation")
- Fraunhofer Institute (IPA) coined term "Humanzentrierte Automatisierung"/"Human Centered Automation"

Problem Description and Goal Description

- Problem: Industry robots are "blind" to their environment
 - Usually only internal sensors
 - Often only binary detection (workspace free/occupied)
- Goal: Setup of a dynamic and flexible safety area
 - Different safety areas which trigger different actions: emergency stop, slowing down, or acoustic signal
 - Detection of humans with fusion of different sensors, with different physical measurements: Ultra sonic, laser scanner, light barrier, contact mat, radar etc.
- Adaptive trajectory control which considers the current obstacle map
- Future goal: Interaction between robot and human

Surveillance of Safety Area

- Possibilities
 - Surveillance of robot arm (one point-, multi point-, or surveillance of complete arm)
 - Surveillance of work space
- Static or dynamic surveillance
 - Thigh cooperation with human is desired
 - Flexible reactions to different situations
 - Therefore static surveillance (determined before program start) not suitable

Robot System: ABB IRB4400

Maximal range: 1,96m

Maximal load: 45 kg

• Position accuracy: 0.07 - 0.1 mm

■ Precision: 0, 25 − 0,4 mm

Maximal TCP acceleration: 14 m/s²

Control Hardware: Safety-SPS PSS3000

- Multi-channel, redundant setup
- Integrates test and safety algorithm
- Fulfills requirements of EN 954 1,11/94 up to category 4
- Data memory: 234 KByte, program memory: 1024 KByte

Sensors

- Laser scanner
 - Established in automation, widely accepted in industry
 - Covers big safety areas (up to 12 m)
 - Flexible usage (safety-/warning area)
 - Costly
- Ultra sonic sensors
 - Cheap bulk good
 - Extremely interference prone, no certification
- Light barrier
 - In the given application it would be used to reduce the speed of the robot (no emergency stop)
 - Suitable for safety application
 - Proved and tested in industrial applications

Workspace: System Setup

Workspace: Measurement areas

Communication between System Components

Static Safety Areas with Emergency Breaks

- Analogous to classical robot workspace
- Complete workspace is under static surveillance
- Entering zone 0 interrupts light barrier and triggers the emergency brake
- Pressing a clearance button returns the system into working mode

Static Safety Areas with Emergency Breaks and Warning Areas

- Emergency break area is surrounded by additional warning area
- Interrupting the light barrier reduces robot speed
- Breaching zone 0 ignites a signal light
- Breaching zone 1 stops the robot
- System automatically starts again if the breach is void
- Pressing a clearance button returns system to normal speed and turns off the signal lights

Dynamic Safety Areas

- Speed adjustments and emergency break
- Three gradual safety areas. Depending on the robot position a breaching results in ...
 - No reaction
 - Speed reduction
 - Emergency brake
- Safety area contains ...
 - Complete zone 2 and cell X, if the robot is in cell X of the safety zone 1
 - Additional cells X + 1, if robot is in cell X of zone 1 and executes a movement in the direction of cell X + 1
- Warning area is made up of both cells of zone 1, which are directly adjunct to the cells of the safety area

Dynamic Safety Areas

- Zone 0 breached: Robot reduces speed, signal light is ignited
- Warning area in zone 1 breached: Acoustic signal
- Safety area in zone 1 breached: Stopping of the robot
- Zone 2 breached: Stopping of the robot
- Safety breach is void: System starts again
- Pressing a clearance button: Systems returns to normal speed and signal light turns off

Work Space: Safety Areas

Realization of an Evasion Movement

- Cell E it divided into four sub-cells (zone 3)
 - Requires additional surveillance possibilities
 - Multiplexing of the sub-cells with laser scanner, cyclic surveillance
- Actions if a safety area is breached
 - Zones 0,1,2: Analogously to previous example
 - Zone 3: Evasion movement (depends on breached cell) instead of breaking

Workspace: Safety Zones

Workspace: Safety Areas

Implementation on the SPS

System Tests

- Software: Bottom-up implementation, black- und white-box tests during the whole development cycle
- Laser scanner, SPS and light barrier: No intensive HW-testing, as the components are certified for safety applications
- Ultra sonic sensors
 - Weak point of the hardware
 - Moderate object detection quality
 - Objects with a highly reflective surface can not be detected reliably (if outgoing sonic waves are not reflected away from the sensor)
 - Objects with a sound absorbing surface are not detected well

Quantitative Results Regarding Reaction Time

Test number	Reaction time laser scanner (ms)	Reaction time SPS (ms)	Reaction time robot control (ms)	Follow-up time (ms)	Sum (ms)
1	120	139	410	221	890
2	120	58	405	238	821
3	120	215	411	223	969
4	120	121	416	113	770
5	120	45	415	227	807
6	120	124	415	224	883
7	120	63	419	229	831
8	120	177	417	224	938
9	120	81	414	236	851
10	120	97	422	218	857
Minimum	120	45	405	113	770
Maximum	120	215	422	238	969
Median	120	109	415	224	854
Average	120	112	414,4	215,3	861,7
Avg. deviation	0	43,2	3,52	20,46	46,64

Quantitative Results

- Total follow-up time of the system is on average 862 ms and 1050 ms in the worst case
- Reaction/Follow-up times
 - Laser scanners: 120 ms (worst case 120 ms)
 - SPS: 112 ms (worst case 270 ms)
 - Robot control: 414 ms (worst case 422 ms)
 - Robot actuation: 215 ms (worst case 238 ms)
- Required safety distance s = 4.6 m in the worst case

$$s_{safety}(v_{robot}) = t_{total} \cdot v_{human} + t_{reaction} \cdot v_{robot} + s_{follow-up} + s_{minimal_distance}$$

→ Optimization needed

Optimization of the System

- Additional laser scanner prevent switching of zones
 - → Reduction by 240 ms
- Direct Control instead of trap routine
 - → Reduction by ca. 410 ms
- Optimization
 - Response time reduced to 400 ms
 - Distance reduced to 2,2 m

General Calculation of Safety Areas

Summary of the Lecture

Prof. Karsten Berns

Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Topics

- Subsystems
- Spatial kinematics
- Robot modeling
- Trajectory control
- End effectors and gripping
- Planning systems
- Control architectures
- Programming of robotic systems

Subsystems and Spatial Kinematics

- Subsystems
 - Mechanic components
 - Joint types
 - Elementary robot configurations
 - Workspace
 - Actuators, sensors, control
- Spatial kinematic
 - Description of objects and object poses in a 3D Euclidian space (E3)
 - Pose description with 3 × 3 matrices
 - 6-dim. Description vectors
 - Homogeneous coordinates and transformation matrices
 - Chained pose descriptions

Modeling and Trajectory Control

- Robot modeling
 - Degrees of freedom
 - Geometric model
 - Kinematic model
 - Direct kinematic problem
 - Inverse kinematic problem
 - Dynamic model
- Trajectory control
 - Basics of trajectory control
 - Interpolation types
 - Path planning
 - Spline interpolation

Gripping and Planning Systems

- End effectors and gripping
 - Basics
 - Grip hierarchy
 - Classification of gripping systems
 - Planning of re-gripping operations
 - Scene stability
- Planning systems
 - Basics of robot planning
 - Planning types
 - Planning via searching
 - Cranfield-montage benchmark

Control Architectures and Programming

- Control architectures
 - Basic abilities
 - Schematic visualization of the 4 basic architectures
 - Hierarchical deliberative/function based architectures
 - Distributed deliberative/function based architectures
 - Hierarchical reactive/behavior based architectures
 - Distributed reactive/behavior based architectures
- Programming
 - Programming of industry robots
 - Online-/Offline-methods
 - Types of programming
 - Environment models

Comments about the Lecture

- What was nice/bad?
- Lack of clarity/errors in the content?
- Structure?
- ...
- Courses survey: (<u>https://vlu.cs.uni-kl.de</u>)

Thank You

