

TRƯỜNG ĐHBK TP. HCM Bộ Môn Toán Ứng Dụng ----- o O o -----

ĐỀ THI HỌC KÌ II NĂM HỌC 2012-2013 Môn thi: PHƯƠNG PHÁP TÍNH

Ngày thi: ...-...-2013 Thời lượng: 90 phút

LƯU Ý: Sinh viên phải đọc kỹ những qui định dưới đây:

- † Ghi đầy đủ Họ, Tên, MSSV, tính tham số $\mathcal M$ và làm trực tiếp lên đề thi.
- † Được sử dụng tài liệu, máy tính bỏ túi, không được sử dụng máy tính có lập trình.
- † Không làm tròn kết quả trung gian. Không ghi đáp số ở dạng phân số. Đáp số ghi vào bài thi phải được làm tròn đến 4 chữ số sau dấu phảy thập phân.
- † Đề thi gồm 10 câu (2 mặt tờ A4). Mọi thắc mắc, sinh viên ghi trực tiếp lên đề thi.
- † Gọi m và n là hai chữ số cuối của mã số sinh viên (m là chữ số hàng chục, n là chữ số hàng đơn vị, $0 \leqslant m, n \leqslant 9$). Đặt $\mathcal{M} = \frac{\mathbf{m} + 2\mathbf{n} + 13}{10}$. Ví dụ nếu mã số sinh viên là 91110247, thì m=4, n=7 và $\mathcal{M} = (4+2\times 7+13)/10 = 3.1$
- † Sinh viên tự điền vào bảng sau. Nếu không điền, bài thi bị xem là không hợp lệ.

Họ và Tên		Điểm toàn bài
MSSV	Chữ ký GT1	
\mathcal{M}	Chữ ký GT2	
	I CP	

Cho phương trình $f(x) = 3^x + \mathcal{M}x^2 + \sin x - 10 = 0$ trong khoảng cách ly nghiệm [1,2]. Sử dụng phương pháp Newton, chọn x_0 theo điều kiện Fourier, tìm nghiệm gần đúng x_2 của phương trình trên và đánh giá sai số của nó.

Kết quả: $x_2 =$; $\Delta_{x_2} =$

Kết quả: $x_1^{(3)} =$, $x_2^{(3)} =$, $x_3^{(3)} =$, $x_3^{(3)}$

Cip3. Cho bảng số: $\frac{x \mid 1.3 \quad 1.6 \quad 2.3}{y \mid 1.1\mathcal{M} \quad 4.3 \quad 6.6}$. Sử dụng spline bậc ba g(x) thỏa điều kiện g'(1.3) = 0.3, g'(2.3) = 0.5 nội suy bảng số trên để xấp xỉ giá trị của hàm tại x = 1.4 và x = 2.1.

Kết quả: g(1.4) = ; g(2.1) =

<u>Câu 4.</u> Cho bảng số: $\frac{x \mid 0.7 1.0 1.2 1.3 1.6}{y \mid 3.3 \mathcal{M} 4.5 1.1 \mathcal{M} 6.1}$. Sử dụng phương pháp bình phương bé nhất, tìm hàm $f(x) = A\sqrt{x} + B\cos x$ xấp xỉ tốt nhất bảng số trên.
<u>Kết quả:</u> A =
<u>Câu 5.</u> Cho bảng số: $\frac{x \mid 0.1 0.3 0.6 0.9}{y \mid 1.3\mathcal{M} 3.2 1.4\mathcal{M} 4.3}$. Sử dụng đa thức nội suy Lagrange, hãy xấp xỉ đạo hàm cấp một của hàm tại $x=0.5$.
Kết quả: $y'(0.5) \approx$
<u>Câu 6.</u> Cho tích phân $I = \int\limits_{1.1}^{2.3} \ln\left(\sqrt{2x+\mathcal{M}}\right) dx$. Hãy xấp xỉ tích phân I bằng công thức Hình thang mở rộng với $n=8$.
<u>Kết quả</u> : $I = $
<u>Câu 7.</u> Cho bảng số: $\frac{x \mid 1.0 1.2 1.4 1.6 1.8 2.0 2.2}{f(x) \mid \mathcal{M} 3.2 1.5 \mathcal{M} 4.5 5.1 6.2 7.4}$. Sử dụng
công thức Simpson mở rộng tính tích phân $I = \int_{1.0}^{2.2} [f^2(x) + 1.1 \mathcal{M}x^3] dx$.
Kết quả: $I =$
<u>Câu 8.</u> Cho bài toán Cauchy: $\begin{cases} y' = (\mathcal{M} + 1)x + x\sin(x + \mathcal{M}y), & x \geqslant 1 \\ y(1) = 1.2\mathcal{M} \end{cases}$. Sử dụng công thức Runge-Kutta cấp 4 hãy xấp xỉ $y(1.2)$ với bước $h = 0.2$.
Kất quả: y(12) – TÀI I IỆI SI YII TẬ D

<u>Câu 9.</u> Cho bài toán Cauchy: $\begin{cases} y''(x) = 2!3\mathcal{M}y' + \mathcal{M}x^3y + 1.3\mathcal{M}, & 1 \leqslant x \leqslant 1.8 \\ y(1) = 0.6\mathcal{M}, & y'(1) = 0.5\mathcal{M} \end{cases}$ phương trình vi phân cấp 1. Sử dụng công thức Euler, giải gần đúng phương trình với bước h = 0.2.

Kết quả: $y(1.2) = _____, y(1.8) = ______$

<u>Câu 10.</u> Cho bài toán biên tuyến tính cấp hai:

$$\begin{cases} xy'' + 12y' - 2.3\mathcal{M}y = \mathcal{M} + 2(x + \mathcal{M})^2, & 0.4 \le x \le 1.2\\ y(0.4) = 1.3, \ y(1.2) = 2.3\mathcal{M} \end{cases}$$

Sử dụng phương pháp sai phân hữu hạn, hãy xấp xỉ giá trị của hàm y(x) trên đoạn [0.4, 1.2] với bước h = 0.2.

Kết quả: y(0.6) = ______, y(0.8) = ______, y(1.0) = ______

CHỦ NHIỆM BỘ MÔN

GIÁO VIÊN RA ĐỀ

