Potential Energy of Point Charges

A point charge $q_2 = -3.4 \,\mu\text{C}$ is fixed at the origin of a co-ordinate system as shown. Another point charge $q_1 = -0.7 \,\mu\text{C}$ is is initially located at point P, a distance $d_1 = 9.1 \,\text{cm}$ from the origin along the x-

1)

What is ΔPE , the change in potential energy of charge q_1 when it is moved from point P to point R, located a distance $d_2 = 3.6$ cm from the origin along the x-axis as shown?

Our basic formula for potential energy is:

$$U = k \frac{q_a q_b}{r}$$

 $U=k\frac{q_aq_b}{r}$ Note that energy is a scalar and is not affected by direction, just by distance and charge strength. To find the change in Potential energy we take

$$\Delta U = U_2 - U_1 = k \frac{q_a q_b}{r_2} - k \frac{q_a q_b}{r_1}$$

 $\Delta U=U_2-U_1=k\frac{q_aq_b}{r_2}-k\frac{q_aq_b}{r_1}$ We do this for the above situation noting that only the distance changes.

2)

The charge q_2 is now replaced by two charges q_3 and q_4 which each have a magnitude of -1.7 μ C, half of that of q_2 . The charges are located a distance a = 2.2 cm from the origin along the y-axis as shown. What is ΔPE , the change in potential energy now if charge q_1 is moved from point P to point R?

When finding the potential energy of the system we can add the separate contributions from each of the charge-charge interactions. This problem is just like the previous one except that, because of the y displacement, we have to use the Pythagorean Theorem to find the distances. Also in this particular case since Q_3 and Q_4 have the same charge and distances from Q_1 we can just find the contribution from one of them and double it.

3)

What is the potential energy of the system composed of the three charges q_1 , q_3 , and q_4 , when q_1 is at point R? Define the potential energy to be zero at infinity.

1.099

Just use our potential energy equation from before and sum up the different contributions

$$U = k \frac{q_a q_b}{r}$$

4)

The charge q_4 is now replaced by charge q_5 which has the same magnitude, but opposite sign from q_4 (i.e., q_5 = 1.7 μ C). What is the new value for the potential energy of the system?

-0.59

Because Q_3 and Q_5 have the same magnitude of charge although the charge is opposite and are at the same distance from Q_1 the their interactions with Q_1 cancel out and we only have to look at the potential between Q_3 and Q_5 .

5)

Charges q_3 and q_5 are now replaced by two charges, q_2 and q_6 , having equal magnitude and sign (-3.4 μ C). Charge q_2 is located at the origin and charge q_6 is located a distance $d = d_1 + d_2 = 12.7$ cm from the origin as shown. What is ΔPE , the change in potential energy now if charge q_1 is moved from point P to point R?

We go from a system where, with Q_2 and Q_6 having the same charge, we go from a system where one charge is at a distance of d2 and the other at d1, to a system where one charge is d1 distant and the other d2. Essentially nothing changes and the difference in potential is zero.

Potential of Concentric Spherical Insulator and Conductor

A solid insulating sphere of radius a=4.5 cm is fixed at the origin of a co-ordinate system as shown. The sphere is uniformly charged with a charge density $\rho=-390~\mu\text{C/m}^3$. Concentric with the sphere is an uncharged spherical conducting shell of inner radius b=10.2 cm, and outer radius c=12.2 cm.