DIGITAL SIGNAL PROCESSING

Processamento Digital de Sinais

DIGITAL SIGNAL PROCESSING

Aula 7 - Projeto Dirigido Part. 1

PROJETO A SER DESENVOLVIDO EM AULA

PROJETO A SER DESENVOLVIDO EM AULA

$$y[n] = x[2n]$$

$$y[n] = \frac{1}{2}(x[2n] + x[2n+1])$$

	?		?		?		?		?		?		?		?
?	۰٠	~ ·	۰٠.	٠-	?-	?:	ભ -	٠-	٠-	٠-	۰-	٠-	C	?	?
	٠٠		٠٠		?		?		?		٠.		٠:		٠٠
?	٠٠	?-	٠٠	?	?	?	?	?	?	?	٠٠	?	٠٠	?	٠.
	٠.		٠.		?		٠:		?		٠.		٠:		٠٠
?	٠.	?	٠٠	?	?	?	?	?	?	?	٠.	?	?	?	٠.
	۰.		۰.		ભ		ભ		ભ -		۰.		C		?
?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

Retentor de Ordem Zero

$$y[n] = \begin{cases} x[0.5n], se \ n \ par \\ x[0.5(n-1)], caso \ contrário \end{cases}$$

$$y[n] = \begin{cases} x[0.5n], se \ n \ par \\ x[0.5(n-1)], caso \ contrário \end{cases}$$

$$y[n] = \begin{cases} x[0.5n], se \ n \ par \\ x[0.5(n-1)], caso \ contrário \end{cases}$$

$$y[n] = \begin{cases} x[0.5n], & se \ n \ par \\ x[0.5(n-5)] - 5x[0.5(n-3)] + 20x[0.5(n-1)] + 20x[0.5(n+1)] - 5x[0.5(n+3)] + x[0.5(n+5)] \\ 32 \end{cases}, caso \ contrario$$

Problema:

Solução: extrapolação de borda

NOTA

Embora as equações do sistema sejam dadas em termos de uma variável independente, destaca-se que o processo é aplicado em duas dimensões. Assim, adaptações deverão ser realizadas, tais como aplicar o filtro horizontalmente e verticalmente.

TRABALHO

Matlab

- Crie quatro funções em Matlab que modifiquem a resolução de uma imagem
 - Downsampling com descarte de amostra
 - Downsampling aplicando média
 - Upsampling com retenção de ordem zero
 - Upsampling com filtro de interpolação
- Entregar os códigos fonte e um relatório comparando as soluções de downsampling a upsampling
 - Prazo de entrega 05/09/2016

DICAS

Salvar imagem no arquivo

```
>> I = imread('lena.png');
>> I2 = rgb2ycbcr(I);
>> I2 = I2(:,:,1);
>> imshow(I)
>> imshow(I2)
>> imwrite(I2,'lena_gray.png');
```

