Computational Methods Summer 2021 **HOMEWORK 6**

Due Date: Thursday, June 10

- 1. Obtain the precise operation count (number of operations +, -, *, /) for computing a matrix-matrix product AB. Suppose each matrix is $n \times n$.
- 2. Suppose we have an $n \times n$ matrix. In class we discussed how the elimination step of Gaussian elimination is $O(n^3)$, while back-substitution (also forward-substitution) is only $O(n^2)$. The back-substitution steps for finding the components x_i of a solution can be concisely written as

$$x_n = b_n/u_{nn},$$
 $x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{j=i+1}^n u_{ij} x_j \right),$ for $i = n - 1, ..., 1.$

Show that the total operation count for constructing x is exactly n^2 .

3. (Optional, not graded) Write down the forward substitution algorithm and pseudocode for solving an $n \times n$ lower triangular matrix system. [A matrix is lower triangular if $a_{ij} = 0$ for i < j.]