5.13.30

Aditya Appana - EE25BTECH11004

September 30,2025

Question

Let **A** be a square matrix all of whose entries are integers. Then which of the following is true?

- If $det(\mathbf{A}) \neq \pm 1$, then \mathbf{A}^{-1} exists but all its entries are not necessarily integers
- ② If $det(\mathbf{A}) \neq \pm 1$, then \mathbf{A}^{-1} exists and all its entries are non-integers
- **3** If $det(\mathbf{A}) = \pm 1$, then \mathbf{A}^{-1} exists but all its entries are integers
- If $det(\mathbf{A}) = \pm 1$, then \mathbf{A}^{-1} need not exist

Solution

We will proceed by checking each option.

<u>A)</u>

Let us take a square matrix $\bf A$ having all integer entries. Let rows R_1 and R_2 be equal. By performing row operation $R_1 \to R_1 - R_2$, all elements in R_1 become 0. Therefore, $|{\bf A}| = 0$. We know that if $|{\bf A}| = 0$, ${\bf A}^{-1}$ does not exist. Therefore, this option is wrong.

Solution

B)

This option is wrong according to the previous reasoning.

D)

We know that if $|\mathbf{A}| \neq 0$, \mathbf{A}^{-1} exists. By this logic, this option is wrong.

Therefore, the correct answer is C).