

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob *et al.* from Google 2017]

Ryo Takahashi

Motivation

Let's get deeper into optimized arithmetic inside Neural Networks!!

Approaches to CNN deployment on mobile platform

- Approach 1: computation/memory-efficient network architecture
 - e.g. MobileNet[arXiv:1704.04861], SqueezeNet[arXiv:1602.07360]
- Approach 2: quantization (Today's topic)
 - definition: quantize weights and activations from float into lower bit-depth format
 - benefit: save memory/power use, speed up inference

Existing works	Issues	
 Ternary weight networks [arXiv:1605.04711] Binary Neural networks [arXiv:1602.02505] 	Their baseline architectures are over-parameterized fat architectures (e.g. VGG) are easy to compress it's still unclear that their schemes are applicable to modern light-weight architectures (e.g. MobileNet)	
$0.9 0.4 0.8 \approx 0.2$ 1 1 1 $\alpha = \frac{1}{100} W = sign(W)$	they are verified only in classification tasks, which are tolerant to quantization errors unlike regression	
w αW ^B these works can approximate conv. by bit-shifts/counts	NOT efficient on common hardware (e.g. CPU) bit-shifts/counts based conv. provides benefit only on custom hardware (e.g. FPGA, ASIC)	

Proposal: Integer-arithmetic-only quantization

improve latency-vs-accuracy tradeoffs of MobileNets on common hardware

- a) Integer-arithmetic-only inference
 - why convert weight and activation to not int8 but uint8?
 - why keep the bit-depth of biases to 32bit?
- b) Quantization-aware training
 - quantize weight and activation during training unlike calibration
- c) Evaluation in ImageNet classification and COCO object detection

OSS Contribution

- This work is included in Google's ML software stack:
 - TensorFlow (<u>Model optimization</u>)
 - TensorFlow Lite (<u>Case studies</u>)
 - Android NN

this work

Top-1 Top-1 Latency	•
Top-1 Accuracy Accuracy Latency (Post (Quantization (Original) Training (Original) Training (MB) Top-1 Accuracy Accuracy Latency (Post (Quantization (Original) Training Aware (ms) Quantized) Training) (ms)	Size al) (Optimized) (MB)
Mobilenet-v1- 0.709 0.657 0.70 124 112 64 16.9	4.3
Mobilenet-v2- 0.719 0.637 0.709 89 98 54 14 1-224 big accuracy drop small accuracy drop	3.6
Inception_v3 0.78 0.772 0.775 1130 845 543 95.7	23.9
Resnet_v2_101 0.770 0.768 N/A 3973 2868 N/A 178.3	44.9

Table 1 Benefits of model quantization for select CNN models

Quantization scheme

- Equation: r = S(q Z)
 - where:
 - r: real value
 - q: quantized value
 - S: scale (learned in training)
 - Z: zero-point (learned in training)
- Data structure in C++
 - create struct QuantizedBuffer for each weight and activation
 - each buffer has different S and Z

Whey we can say integer-only-arithmetic in spite of this float S?

Integer-arithmetic-only matrix multiplication

Consider
$$X_3 = X_1 \cdot X_2$$
 where $X_\alpha = \begin{pmatrix} r_\alpha^{(0,0)} & \cdots & r_\alpha^{(0,N)} \\ \vdots & r_\alpha^{(i,j)} & \vdots \\ r_\alpha^{(N,0)} & \cdots & r_\alpha^{(N,N)} \end{pmatrix}$, $r_\alpha^{(i,j)} = S_\alpha(q_\alpha^{(i,j)} - Z_\alpha)$

$$S_3(q_3^{(i,k)} - Z_3) = \sum_{i=1}^{N} S_1(q_1^{(i,j)} - Z_1) S_2(q_2^{(j,k)} - Z_2),$$

which be rewritten as:

$$q_3^{(i,k)} = Z_3 + M \sum_{j=1}^{N} (q_1^{(i,j)} - Z_1)(q_2^{(j,k)} - Z_2) = Z_3 + M \left(N Z_1 Z_2 - Z_1 \left[\sum_{j=1}^{N} q_2^{(j,k)} - Z_2 \left[\sum_{j=1}^{N} q_1^{(i,j)} + \sum_{j=1}^{N} q_1^{(i,j)} q_2^{(j,k)} \right] \right)$$

where:

$$M\coloneqq \frac{S_1S_2}{S_3} \leftarrow \textit{M}$$
 is empirically in (0,1)
$$= 2^{-n}M_0$$

these N^3 addition can be factored-out from calculation for each q_3

this $2N^3$ arithmetic operation stays in the inner loop

where:

n is a non-negative integer M_0 is a fixed-point value of typedef int32_t q31_t; // Q-format

Conv. & Affine get free from float-arithmetic by approximating *M* by int32_t

Implementation of a typical fused layer

$$Z_{3} + 2^{-n} M_{0} \left(N Z_{1} Z_{2} - Z_{1} \sum_{j=1}^{N} q_{2}^{(j,k)} - Z_{2} \sum_{j=1}^{N} q_{1}^{(i,j)} + \sum_{j=1}^{N} q_{1}^{(i,j)} q_{2}^{(j,k)} \right)$$
(2)

- (1) Accumulate products in int32 += uint8 * uint8
 - quantize bias-vectors by not uint8 but int32
 - reason: quantization errors in bias-vectors tend to be overall errors because their elements are added to many output activations
- (2) Scale down int32_t to uint8
 - a. multiplying the fixed-point value M_0
 - b. *n* bit-shift
 - c. saturating cast to [0, 255]
- (3) Apply activation functions
 - mere clamp uint8_t because MobileNets use only ReLU and ReLU6

Quantization-aware training

- Motivation: post-quantization has difficulties in handling:
 - large differences (> 100×) in ranges of weights for each output channels
 - outlier weight values
- Approach: simulate integer-quantization effects during training

Experiments with MobileNets

- CPU: Snapdragon 835
 - march: ARM big.LITTLE [Cortex-(A73|A53)]
 - optimize by ARM NEON

ImageNet:

• in the LITTLE core, the accuracy gap at 33ms (30FPS) is quite substantial (~10%)

COCO:

- MobileNet SSD was used
- up to a 50% reduction in inference time
 with a minimal loss in accuracy (-1.8% relative)
- The INT8 quantization deals well with regression tasks

DM	Type	mAP	LITTLE (ms)	big (ms)
100%	floats	22.1	778	370
	8 bits	21.7	687	272
50%	floats	16.7	270	121
	8 bits	16.6	146	61

Summary & My perspective

- Summary
 - integer quantization benefits in common hardware like CPU
 - quantization-aware training is crucial in quantizing modern light-weight architectures (e.g. Mobile-Nets) and error-sensitive tasks such as regression
- My perspective
 - integer quantization is the most moderate and generic scheme so far
 - Extreme quantization like BNNs is achievable only if parallel development of hardware and software works
 - Google
 - NVIDIA
 - Apple

Reports are circulating that the Seattle-based AI at the edge company Xnor has been quietly a Apple. An investigation by GeekWire suggests the deal was worth in the region of \$200 million development could mean Xnor's low-power algorithms for object detection in photos end up of the contract of the co

Xnor, a spin-out from the Allen Institute for Artificial Intelligence (AI2), had raised \$14.6 mill since it was founded three years ago. Xnor's founders, Ali Farhadi and Mohammed Rastegari, a of YOLO, a well-known neural network widely used for object detection.