The University of Newcastle School of Electrical Engineering and Computer Science

COMP3260 Data Security

GAME 3 Solutions

Friday, 22nd March 2019

Number of Questions: 5 Time allowed: 30min Total mark: 5

In order to score marks you need to show all the workings and not just the end result.

	Student Number	Student Name
Student 1		
Student 2		
Student 3		
Student 4		
Student 5		
Student 6		
Student 7		

Question 1	Question 2	Question 3	Question 4	Question 5	TOTAL

```
Chinese Remainder Theorem: Let d_1, \ldots, d_t be pairwise relatively prime, and let n=d_1d_2\ldots
d_t. Then the system of equations
   (x \bmod d_i) = x_i \ (i = 1, \ldots, t)
   has a common solution x in the range [0,n-1].
   Euclid's Algorithm gcd(a,n)
  //n \ge a
         begin
         g_0 := n;
         g_1 := a;
         i := 1;
         while g_i \neq 0 do
           begin
             g_{i+1} := g_{i-1} \bmod g_i;
             i := i + 1
           end;
         gcd := g_{i-1}
  end
Extended Euclid's Algorithm inv(a,n)
begin
      g_0 := n; g_1 := a; u_0 = 1; v_0 := 0; u_1 := 0; v_1 := 1; i := 1;
      while g_i \neq 0 do "g_i = u_i n + v_i a"
        begin
          y := g_{i-1} \text{ div } g_i; \quad g_{i+1} := g_{i-1} - y \times g_i; //y := 10 \text{ div } 4 = 2;
                                                       //g_{i+1} := 10 - 2 \times 4 = 2
          u_{i+1} := u_{i-1} \ \text{-} \ y \times u_i; \ v_{i+1} := v_{i-1} \ \text{-} \ y \times v_i;
          i := i + 1
        end;
     x := v_{i\text{-}1}
     if x \ge 0 then inv := x else inv := x+n
End
Fast Exponentiation Algorithm fastexp(a, z, n)
begin "return x = a^z \mod n"
 a1:=a; z1:=z; x:=1;
 while z1 \neq 0 do
    begin
      while z1 \mod 2 = 0 do
         begin "square a1 while z1 is even"
             z1 := z1 \text{ div } 2; a1 := (a1*a1) \text{ mod } n;
        z1 := z1 - 1; x := (x*a1) \mod n;
      end;
  fastexp := x;
end
```

1. Use Fast Exponentiation to calculate $3^{49} \mod 170$?

Solution: $3^{49} \mod 170 = 3$

Workings:

X	a	Z
1	3	110001 (49)
3	3	110000 (48)
3	9	11000 (24)
3	81	1100 (12)
3	101	110 (6)
3	1	11 (3)
3	1	10 (2)
3	1	1(1)
3	1	0 (0)

2. Find the inverse of 20 modulo 477 using CRT.

Solution:

We have

$$n = 477$$

$$477 = 3^2 \times 53$$

$$n = d_1 \times d_2$$
, $d_1 = 9$, $d_2 = 53$

$$20x_1 \ mod \ 9 = 1 \rightarrow 2x_1 \ mod \ 9 = 1$$

$$\underline{x_1} = 5$$

$$20x_2 \ mod \ 53 = 1 \rightarrow x_2 = 20^{51} \ mod \ 53$$

= $20 \times 20^{50} \ mod \ 53$

$$= 20 \times (20^2)^{25} \mod 53$$

$$= 20 \times 29^{25} \mod 37$$

$$= 20 \times 29 \times 29^{24} \mod 53$$

$$= 50 \times (29^2)^{12} \mod 53$$

$$= 50 \times 46^{12} \mod 53$$

$$= 50 \times (46^2)^6 \mod 53$$

$$= 50 \times 49^6 \mod 53$$

$$= 50 \times (49^2)^3 \mod 53$$

$$= 50 \times 16^{3} \mod 53$$

$$= 50 \times 16 \times 16^2 \mod 53$$

$$= 5 \times 44 \mod 53$$

$$= 8 \mod 53 = 8$$

$$\underline{x_2} = 8$$

$$x \bmod 9 = 6$$
$$x \bmod 53 = 8$$

We now need to find
$$y_1$$
 and y_2

$$(477/9) y_1 \mod 9 = 1$$

$$(477/53) y_2 \mod 53 = 1$$

$$53y_1 \mod 9 = 8y_1 \mod 9 = 1 \rightarrow y_1 = 8^5 \mod 9 = 8 \times 8^4 \mod 9$$

= $8 \times 64^2 \mod 9 = 8 \times 1^2 \mod 9 = 8$

$$9y_2 \ mod \ 53 = 1 \rightarrow y_2 = 9^{51} \ mod \ 53$$

 $= 9 \times 9^{50} \ mod \ 53$
 $= 9 \times (81)^{25} \ mod \ 53 = 9 \times 28^{25} \ mod \ 53$
 $= 9 \times 28 \times 28^{24} \ mod \ 53$
 $= 40 \times (28^2)^{12} \ mod \ 53 = 40 \times 42^{12} \ mod \ 53$
 $= 40 \times (42^2)^6 \ mod \ 53 = 40 \times 15^6 \ mod \ 53$
 $= 40 \times 13 \times 13^2 \ mod \ 53$
 $= 40 \times 13 \times 13^2 \ mod \ 53$
 $= 43 \times 10 \ mod \ 53$
 $= 6 \ mod \ 53 = 6$

We get $y_1 = 8$ and $y_2 = 6$.

We now get the solution

$$x = (53 \times 5 \times 8 + 9 \times 8 \times 6) \mod 477 = 167$$

Thus the multiplicative inverse of 20 modulo 477 is 167.

Check:
$$20 \times 167 \mod 477 = 2280 \mod 477 = 1$$

3. Find the inverse of 20 modulo 477 using Euler's Theorem and Totient function.

Solution:

We can use Euler's theorem:

$$x = 20^{\phi(477)-1} \mod 477$$

$$477 = 3^2 \times 53$$

$$\phi(477) = 3^1 \times (3-1) \times (53-1) = 6 \times 52 = 312$$

$$x = 20^{\phi(477)-1} \mod 477 = 20^{311} \mod 477$$

Using fast exponentiation, we get

$$x = 20^{311} \mod 477$$

$$= 20 \times 20^{310} \mod 477$$

$$= 20 \times (20^2)^{155} \mod 477$$

$$= 20 \times 400^{155} \mod 477$$

$$= 20 \times 400 \times 400^{154} \mod 477$$

$$= 368 \times (400^2)^{77} \mod 477 = 368 \times 205^{77} \mod 477$$

$$= 368 \times 205 \times 205^{76} \mod 477$$

$$= 74 \times (205^2)^{38} \mod 477 = 74 \times 49^{38} \mod 477$$

```
= 74 \times (49^2)^{19} \mod 477 = 74 \times 16^{19} \mod 477

= 74 \times 16 \times (16^2)^9 \mod 477 = 230 \times 256^9 \mod 477

= 230 \times 256 \times 256^8 \mod 477

= 209 \times (256^2)^4 \mod 477 = 209 \times 187^4 \mod 477

= 209 \times (187^2)^2 \mod 477 = 209 \times 148^2 \mod 477

= 209 \times 439 \mod 477

= 167
```

4. Find the inverse of 20 modulo 477 using Extended Euclid's Algorithm.

Solution:

i	у	u	V	g
0		1	0	477
1		0	1	20
2	23	1	-23	17
3	1	-1	24	3
4	5	6	-143	2
5	1	-7	<u>167</u>	1
6	2	20	477	0

$$x = 167$$

5. Consider GF(2^3) with the irreducible polynomial p(x)=1011 (x^3+x+1). Find the multiplicative inverse of 1 1 0.

Solution:

Since the degree of a^2 is greater than 2 (recall that all elements of GF(2³) have degree at most 2) we need to divide it by the irreducible polynomial 1 0 1 1:

 a^4 :

thus $a^4 = 1 \ 0 \ 0$

Finally, we obtain a^6 as $a^4 \times a^2$:

$$\begin{array}{c} 1\,0\,0 \\ \times 0\,1\,0 \\ \hline 0\,0\,0 \\ 1\,0\,0 \\ 0\,0\,0 \\ \hline ----- \\ 0\,1\,0\,0\,0 \\ \end{array}$$

Since the degree of a^6 is greater than 2 we need to divide it by the irreducible polynomial 1 0 1 1:

thus $a^6 = a^{-1} = 0.1.1$