Ilana Sivan 205634272 Honors Course Homework 4

Question 1

Compute $\gcd(210,588)$ two different ways: by using Euclid's algorithm, and by finding the factorization of each number.

First we will compute with factorization:

- The factorization of 210 is:
 - -5*6*7, where we can further break down 6.6 = 2*3, so we have 2*3*5*7, but our greatest total here are 5*6*7
- The factorization of 588 is:
 - -2*6*49, where we can further break down 49,49 = 7*7 or 7^2 , for 2*6*7*7 and we can again break down our 6,6 = 2*3 so we have 2*2*3*7*7, but our greatest total here are $2*6*7^2$

So the greatest common divisors between 210 and 588 are 6 and 7, so we have 6*7=42. So our greatest common divisor between the two is **42**.

Now we will compute with Euclid's algorithm:

In Euclid's algorithm, we divide the greatest value by the smallest value and find the remainder, then we use the remainder and the divisor of the division to find the greatest divisor.

• Divide the greatest value by the smallest:

$$\begin{array}{c|c}
 & 2 \\
 & 588 \\
 & 420 \\
\hline
 & 168
\end{array}$$

• Divide the greatest value by the smallest:

$$\begin{array}{c|c}
 & 1 \\
 & 168 & 210 \\
 & -168 & 42
\end{array}$$

• Divide the greatest value by the smallest:

$$\begin{array}{c|c}
 & 4 \\
 & 168 \\
 & -168 \\
\hline
 & 0
\end{array}$$

$$\gcd(210, 588) = \gcd(210, 168) = \gcd(168, 42) = \gcd(42, 0) = 42$$

Question 2

The Fibonacci numbers $F_0, F_1, F_2, ...$ are defined by the rule:

$$F_0=0,\,F_1=1,\,F_n=F_{n-1}+F_{n-2}$$

Prove that for all $n \ge 1$, $gcd(F_{n-1}, F_n) = 1$

We will prove by induction.

Base case: $F_1 = 1$ and $F_2 = 1$, so clearly $gcd(F_1, F_2) = 1$.

Induction hypothesis: Let $gcd(F_{n-1}, F_n) = 1$.

Induction step: We will show that $\gcd(F_n,F_{n+1})=1$. We know from Euclid's algorizthm that $\gcd(a,a+b)=\gcd(a,b)$. We also know that any number x that divides both a and b (a=ux,b=vx) must also divide a+b (a+b=(u+v)x).

Similarly, any number xthat a, and a+b, where a=wx, and a+b=tx, also divides b, where b=(t-w)x.

Therefore, we can represent $\gcd(F_n,F_{n+1})=\gcd(F_n,F_n+F_{n-1})=\gcd(F_n,F_{n-1})=1$, where the final step is our induction hypothesis, so our hypothesis holds.

Question 3

Answer the following questions:

a. If p is prime, how many elements of $\{0, 1, ..., p^n - 1\}$ have an inverse modulo p^n ?

We know from the definition of our set $\{0,1,...,p^n-1\}$ that we exclude all the numbers which are multiples of p. In fact, since p is a prime, all elements in the range that are not a multiple of p have an inverse of modpⁿ. As $gcd(xp,p^n)$ for an xwhich is $0 \le x \le p-1$. We can see that $0 \le x \le p-1 \ne 1$, since pis the common divisor. Similarly, for $x, i \in \mathbb{Z}$, if we have xp+i, we have xp+i, we have xp+i, as p is not a divisor of xp+i, but it is the only prime divisor of xp+i, the numbers in the set which are multiples of p are xp-i, and numbers which have an inverse are of the form xp-i.

b. Find the inverse of: 20 mod 79, 3 mod 62, 21 mod 91, 5 mod 23.

A modular multiplicative inverse of an integer a is an integer x such that a * x is congruent to 1 modular some modulus m. To write it in a formal way: we want to find an integer x so that $a * x \equiv 1 \mod m$. We will also denote x simply with a^{-1} . If a modular inverse exists then it is unique.

$20 \mod 79$:

Our equation here is $20 * x = 1 \pmod{79}$, as the value of $1 \pmod{79} = 80$, we need to find the x that solves for 20 * x = 80.

```
\frac{80}{20} = 4, and indeed we get: 4 \equiv 20^{-1} \pmod{79} 4 * 20 \equiv 1 \pmod{79}
```

$3 \mod 62$:

Our equation here is $3 * x = 1 \pmod{62}$, as the value of $1 \pmod{62} = 63$, we need to find the x that solves for 3 * x = 63.

```
\frac{63}{3} = 21, and indeed we get: 21 \equiv 3^{-1} \pmod{62} 21 * 3 \equiv 1 \pmod{62}
```

$21 \mod 91$:

This equation has no solution because 21 and 91 aren't coprime. gcd(21,91) = 7

$5 \mod 23$:

Our equation here is $5 * x = 1 \pmod{23}$, as the value of $1 \pmod{23} = 24$, we need to find the x that solves for this.

```
x = 14

14 \equiv 5^{-1} \pmod{23}

14 * 5 \equiv 1 \pmod{23}
```

Question 4

Determine necessary and sufficient conditions on x, N so that the following holds: for any a, b, if ax \equiv bxmodN, then a \equiv bmodN.

Necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements.

```
ax \equiv bx(modN) \Rightarrow N|(a - b)x : N \text{ divides } (a - b)x

a \equiv b(modN) \Rightarrow N|(a - b) : N \text{ divides } (a - b)
```

Here, N must divide (a - b)x and (a - b), therefore, we need an x st. gcd(N, x) = 1. With gcd(N, x) = 1, we have (a - b)x which is divisible by N, so (a - b) must be as well.

Question 5

Choose your favorite programming language and implement in it:

- **a.** Euclid's algorithm for input $n \in N$ of arbitrary length
- **b.** Euclid's extended algorithm for input $n \in N$ of arbitrary length

I have provided the answers in separate files. Thank you.