duale (D).

Quale delle seguenti affermazioni è corretta?

La soluzione x = [1, 1] è primale non degenere

La soluzione x = [1, 1] è ottima per il primale

Non esiste nessuna soluzione duale degenere complementare a x = [1, 1]

Per quale famiglia di coppie di valori la soluzione x = [1, 1] è ottima per (P)?

1) Si consideri il problema primale (P) dato qui accanto ed il corrispondente problema \max

I $\alpha \geq \beta \geq 0$

II $\alpha, \beta \in \mathbb{R}_+$

 $|\mathrm{III}| \ \alpha, \beta \in \mathbb{R}$

Se $\alpha=2$ e $\beta=1,$ quale delle seguenti direzioni è di crescita per (P)?

I = [1, -1]

II $\xi = [-1, 1]$

III nessuna delle precedenti

Se $\alpha=1$ e $\beta=1$, qual è l'insieme di tutte le soluzioni ottime di (D)?

I l'insieme è vuoto II $\{[t, 1-t, t, 0, 0], t \ge 0\}$

III nessuna delle precedenti

Se $\alpha=1$ e $\beta=1$, quale delle seguenti affermazioni è corretta?

I la soluzione duale è degenere

II la soluzione primale è non degenere

III nessuna delle precedenti

Se $\alpha=1$ e $\beta=1$, qual è l'insieme delle direzioni ammissibili e di crescita ?

| I | Ø

 $II \{[1,-1]\}$

 $[III] \{ [-1, 1] \}$

È possibile, cambiando un solo lato destro b_i dei vincoli $Ax \leq b$ di (P), rendere la soluzione primale ottima non degenere? Giustificare la risposta.

Risposta: Nella soluzione ottima $\bar{x} = [1, 1]$ di (P) sono attivi quattro vincoli: $I(\bar{x}) = \{1, 2, 3, 4\}$. Non è possibile rendere la soluzione non degenere cambiando un solo b_i , dal momento che in \bar{x} sarebbero comunque attivi almeno 3 vincoli.

III nessuno (l'algoritmo termina)

- 2) Si consideri l'applicazione dell'algoritmo del Simplesso Primale, per via algebrica, \max $-4x_1 + 2x_2$ al problema di PL dato qui accanto. $x_1 + x_2 \leq 12$ $-x_1 + x_2 \leq 2$ $x_1 x_2 \leq 2$ $x_1 \leq 6$
- A Per $B = \{2, 5\}$ si può afferare che I è una base primale ammissibile II è una base primale degenere III entrambe le cose
- I è una base primale ammissibile III è una base primale non ammissibile III non è una base D Se la base corrente è $B = \{3, 4\}$, l'indice uscente determinato dall'algoritmo è

|II| h=4

- G Si descriva l'esecuzione dell'algoritmo a partire dalla base $B = \{2, 5\}$, discutendo tutti i passi effettuati e giustificando algebricamente tutte le risposte. Infine si discuta come cambierebbero le conclusioni se il vettore dei costi c fosse [-2, 2] invece che [-4, 2]. Giustificare tutte le risposte.

Risposta: Per $B = \{2, 5\}$ si ha

$$A_{B} = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} , \quad A_{B}^{-1} = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} , \quad \bar{x} = A_{B}^{-1}b_{B} = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$\bar{y}_{B} = \begin{bmatrix} -4 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -2 \end{bmatrix} , \quad \bar{y} = [\bar{y}_{B}, \bar{y}_{N}] = \begin{bmatrix} 0 & 4 & 0 & 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$h = \min\{i \in B : \bar{y}_{i} < 0\} = 5 , \quad B(h) = 2 , \quad \xi = -A_{B}^{-1}u_{B(h)} = -\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$A_{N}\xi = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix} \le 0$$

Poiché $A_N \xi \leq 0$, ξ è una direzione di crescita illimitata, pertanto il problema primale è superiormente illimitato e di conseguenza il problema duale è vuoto.

Se il vettore dei costi c fosse [-2, 2] invece che [-4, 2] si avrebbe $c\xi = 0$, e pertanto la direzione ξ determinata all'ultima iterazione non sarebbe di crescita (e neppure di decrescita). In effetti, poiché

$$\bar{y}_B = cA_B^{-1} = [\,-2\,,\,2\,] \left[\begin{array}{cc} -1 & 1 \\ 0 & 1 \end{array} \right] = [\,2\,,\,0\,]$$

in quel caso l'ultima soluzione primale determinata sarebbe ottima per il primale, in quanto la soluzione di base complementare $\bar{y} = [\bar{y}_B, \bar{y}_N] = [0, 2, 0, 0, 0]$ sarebbe ammissibile, e quindi ottima, per il duale.

3) Si consideri l'applicazione dell'algoritmo del Simplesso Duale, per via geometrica, al problema di PL rappresentato nella figura qui accanto. Si noti che c, A_4 ed A_5 sono collineari tra loro, ed anche A_3 ed A_6 lo sono.

- A Per $B = \{3, 4\}$ si può afferare che
 - I è una base primale ammissibile
- II è una base duale ammissibile
- III entrambe le cose

- B Per $B = \{6, 7\}$ si può afferare che
 - I è una base primale ammissibile
- II è una base duale ammissibile
- III nessuna delle due cose

- C Per $B = \{2, 5\}$ si può afferare che
 - I è una base duale ammissibile
- II è una base duale degenere
- III entrambe le cose

- D Per $B = \{2, 5\}$, l'indice entrante è
 - $I \quad k=1$

II k=4

||III|| k = 7

- E | Per $B = \{4, 6\}$, l'indice entrante è
 - I k=1

 $|II| \quad k=2$

- |III| k=7
- [F] Per $B = \{4, 6\}$, dato l'indice entrante stabilito alla domanda precedente, l'indice uscente è
 - $I \quad h = 4$
- | II | h = 6
- III nessuno (l'algoritmo termina)

G Si descriva l'esecuzione dell'algoritmo a partire dalla base $B = \{2, 4\}$, discutendo tutti i passi effettuati e giustificando geometricamente tutte le risposte. Al termine, nel caso di ottimo finito si discuta l'unicità delle soluzioni primale e duale ottenute. Giustificare tutte le risposte.

Risposta: Alla prima iterazione, $B = \{2, 4\}$. La soluzione primale di base \bar{x}^1 , mostrata in figura qui sotto, viola il solo vincolo 1, pertanto k = 1. Poiché $A_1 \in cono(A_2, -A_4)$, come mostrato in (i), si ha $\eta_2 > 0$ ed $\eta_4 < 0$; pertanto deve necessariamente essere h = 2.

Alla seconda iterazione, quindi, $B = \{1, 4\}$. La soluzione primale di base \bar{x}^2 non viola alcun vincolo, come mostra la figura qui sotto, quindi l'algoritmo termina avendo determinato una soluzione ottima sia per il primale che per il duale.

Per discutere l'unicità di \bar{x}^2 occorrere esaminare la degenerazione della soluzione duale di base; si ha che $\bar{y}_2 = 0$ e $\bar{y}_4 > 0$ in quanto c è collineare con A_4 (si veda (ii)), quindi la base è duale degenere. Pertanto \bar{x}^2 potrebbe non essere l'unica soluzione ottima. È infatti immediato verificare che questo è il caso: tutto il segmento di estremi \bar{x}^1 ed il vertice corrispondente alla base $\{3,4\}$ è ammissibile ed è formato da soluzioni aventi lo stesso valore di funzione obiettivo di \bar{x}^2 .

Per quanto riguarda l'unicità della soluzione duale di base determinata, poiché la soluzione primale di base \bar{x}^2 è non degenere $(B = I(\bar{x}^2))$, essa è sicuramente l'unica soluzione ottima.

4) Si considerino il problema del ciclo Hamiltoniano di costo minimo sul grafo di destra ed il seguente metodo "Branch and Bound": l'euristica è l'algoritmo del "vicino più vicino" (nearest neighbour) a partire dal nodo 1 ed è applicata solamente al nodo radice, la valutazione inferiore è ottenuta utilizzando l'1-albero di costo minimo come rilassamento, la ramificazione viene eseguita selezionando un vertice con più di due lati incidenti nell'1-albero (se ve n'è più di uno quello col minor numero di lati incidenti, ed a parità di questo quello col nome più piccolo) e fissando in ciascun figlio uno di tali lati come non appartenente al ciclo, e l'albero delle decisioni è visitato in ampiezza. Si risponda alle seguenti domande:

- A Quale delle seguenti affermazioni è corretta?
- I Il lato {1,4} appartiene al ciclo Hamiltoniano individuato dall'euristica
- II L'1-albero di costo minimo calcolato alla radice è un ciclo Hamiltoniano
- III L'1-albero di costo minimo nel sottoproblema in cui $x_{14} = 0$ è un ciclo Hamiltoniano
- B Quali sono le valutazioni inferiore z e superiore \bar{z} calcolate dall'algoritmo al nodo radice?

$$\boxed{\mathrm{I}} \ \underline{z} = 10, \, \overline{z} = 10$$

II
$$\underline{z} = 10, \, \bar{z} = 12$$

$$\boxed{\text{III}} \ \underline{z} = 12, \, \bar{z} = 12$$

C Su quante e quali variabili l'algoritmo ramifica prima di terminare?

$$I$$
 3: x_{12} , x_{13} , x_{14}

$$\boxed{\text{II}}$$
 3: x_{12} , x_{13} , x_{34}

- D | Quanti nodi vengono chiusi alla prima ramificazione e per quale motivo?
- I | 1 per inammissibilità, 2 per la valutazione superiore
- II | 3 per la valutazione superiore
- III 2 per la valutazione superiore, 1 per ottimalità
- Quali sono le migliori valutazione superiore ed inferiore globali $z \le z(P) \le \bar{z}$ disponibili quando l'algoritmo ha finito di visitare la radice ed i suoi figli?

$$I z = 10, \bar{z} = 10$$

II
$$z = 10, \bar{z} = 12$$

III
$$z = 12, \bar{z} = 12$$

F In quanti modi è possibile aumentare il costo di un solo lato in modo tale che l'algoritmo termini alla radice (l'1-albero determinato sia un ciclo Hamiltoniano)? Giustificare la risposta.

Risposta: Nell'1-albero il nodo 1 ha grado 3, occorre quindi fare in modo che uno dei tre lati selezionati ($\{1,2\},\{1,3\},\{1,4\}$) non faccia più parte dell'1-albero. Questo è possibile aumentando il costo di tali lati ed un valore > 5, ossia il costo del lato $\{2,4\}$ che è il primo a non far parte dell'1-albero e quindi quello che viene inserito al posto di quello il cui costo viene aumentato. Quando $\{2,4\}$ viene inserito, il grado del nodo 4 nell'1-albero diviene tre a meno che non venga eliminato il lato $\{1,4\}$. Pertanto c'è un modo solo: aumentare il costo di $\{1,4\}$ ad un valore $c_{14} > 5$.