v0.4 All Insights to Date Urban Education & Happiness (WVS China 2018) Shen Chengrui · 28/June/2025

v0.1 Interactive Effects of Smartphone Ownership, Education, and Life Satisfaction

Shen Chengrui (Alex) 2025-06-19

```
df_raw <- readxl::read_excel(</pre>
  "../data/F00013183-WVS_Wave_7_China_Excel_v5.1.xlsx",
  sheet = 1,
  col_names = TRUE
df <- df_raw %>%
 transmute(
    life_sat = as.numeric(`Q49: Satisfaction with your life`),
          = as.numeric(`Q262: Age`),
    education = factor(
                   as.numeric(`Q275R: Highest educational level: Respondent (recoded into 3 gr
                   levels = 1:3,
                   labels = c("Primary", "Secondary", "Tertiary")
    phone_use = if_else(as.numeric(`Q204: Information source: Mobile phone`) %in% 1:4, 1, 0),
               = if_else(as.numeric(`Q260: Sex`)==2, 1, 0),
    female
    income_cat = factor(
                   as.numeric(`Q288R: Income level (Recoded)`),
                   levels = 1:3,
                   labels = c("Low", "Middle", "High")
  ) %>%
 filter(
    !is.na(life_sat),
    !is.na(age),
    !is.na(education),
    !is.na(phone_use),
    !is.na(income_cat)
  )
run_model <- function(subgroup) {</pre>
  df_sub <- filter(df, female == subgroup)</pre>
  lm(life_sat ~ education * phone_use + age + income_cat, data = df_sub)
}
```

```
models_by_gender <- map(c(0,1), run_model)
names(models_by_gender) <- c("Male", "Female")
modelsummary(models_by_gender, title = "Models by Gender", stars = TRUE)</pre>
```

```
skim(df)
```

Table 2: Data summary

Name	df
Number of rows	2989
Number of columns	6
Column type frequency:	
factor	2
numeric	4
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
education	0	1	FALSE	3	Pri: 1632, Sec: 685, Ter: 672
$income_cat$	0	1	FALSE	3	Mid: 1807, Low: 1102, Hig:
					80

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
life_sat	0	1	7.38	2.11	-2	6	8	9	10	
age	0	1	44.58	14.52	18	32	45	56	70	
phone_use	0	1	0.84	0.37	0	1	1	1	1	
female	0	1	0.55	0.50	0	0	1	1	1	

```
model <- lm(
   life_sat ~ education * phone_use + female + age + income_cat,
   data = df
)
modelsummary(model, stars = TRUE, statistic = "std.error")</pre>
```

Table 1: Models by Gender

	Male	Female
(Intercept)	6.158***	5.329***
	(0.302)	(0.294)
educationSecondary	-0.207	-0.809+
	(0.493)	(0.461)
educationTertiary	-0.103	0.501
	(0.738)	(0.801)
phone_use	-0.222	0.167
	(0.188)	(0.159)
age	0.019***	0.030***
	(0.004)	(0.004)
$income_catMiddle$	0.659***	0.887***
	(0.118)	(0.111)
$income_catHigh$	1.624***	1.184***
	(0.349)	(0.329)
education Secondary \times phone_use	0.361	0.892 +
	(0.513)	(0.481)
education Tertiary \times phone_use	0.214	-0.378
	(0.748)	(0.807)
Num.Obs.	1349	1640
R2	0.045	0.064
R2 Adj.	0.040	0.060
AIC	5745.4	7052.4
BIC	5797.4	7106.5
Log.Lik.	-2862.677	-3516.222
RMSE	2.02	2.06

⁺ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

	(1)
(Intercept)	5.685***
	(0.218)
educationSecondary	-0.501
	(0.337)
educationTertiary	0.183
	(0.543)
phone_use	-0.007
	(0.121)
female	0.099
	(0.076)
age	0.025***
	(0.003)
$income_catMiddle$	0.776***
	(0.081)
$income_catHigh$	1.391***
	(0.239)
education Secondary \times phone_use	0.607 +
	(0.350)
education Tertiary \times phone_use	-0.077
	(0.549)
Num.Obs.	2989
R2	0.053
R2 Adj.	0.050
AIC	12790.3
BIC	12856.4
Log.Lik.	-6384.161
RMSE	2.05

⁺ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

```
robust_mod <- lm_robust(</pre>
  life_sat ~ education * phone_use + female + age + income_cat,
  data = df, se type = "HC2"
modelsummary(
 list(OLS = model, RobustSE = robust_mod),
 stars = TRUE, statistic = "std.error",
 title = "OLS vs. Robust SE Comparison"
)
boot_fn <- function(data, idx) {</pre>
  d <- data[idx, ]</pre>
  coef(lm(life sat ~ education * phone use + female + age + income cat, data = d))
}
set.seed(2025)
boot_res <- boot(df, boot_fn, R = 1000)</pre>
boot.ci(boot_res, index = 5, type = c("perc", "bca"))
## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
## CALL :
## boot.ci(boot.out = boot_res, type = c("perc", "bca"), index = 5)
##
## Intervals :
             Percentile
## Level
                                    BCa
       (-0.0525, 0.2417) (-0.0577, 0.2363)
## 95%
## Calculations and Intervals on Original Scale
pred <- ggpredict(model, terms = c("education", "phone_use"))</pre>
plot(pred) +
  labs(
          = "Education Level",
         = "Predicted Life Satisfaction",
    color = "Smartphone Use"
  ) +
  theme_minimal()
```

Table 5: OLS vs. Robust SE Comparison

	OLS	RobustSE
(Intercept)	5.685***	5.685***
	(0.218)	(0.232)
educationSecondary	-0.501	-0.501
	(0.337)	(0.442)
educationTertiary	0.183	0.183
	(0.543)	(0.513)
phone_use	-0.007	-0.007
	(0.121)	(0.136)
female	0.099	0.099
	(0.076)	(0.076)
age	0.025***	0.025***
	(0.003)	(0.003)
$income_catMiddle$	0.776***	0.776***
	(0.081)	(0.085)
$income_catHigh$	1.391***	1.391***
	(0.239)	(0.184)
education Secondary \times phone_use	0.607 +	0.607
	(0.350)	(0.452)
education Tertiary \times phone_use	-0.077	-0.077
	(0.549)	(0.517)
Num.Obs.	2989	2989
R2	0.053	0.053
R2 Adj.	0.050	0.050
AIC	12790.3	12790.3
BIC	12856.4	12856.4
Log.Lik.	-6384.161	
RMSE	2.05	2.05

⁺ p <0.1, * p <0.05, ** p <0.01, *** p <0.001

Predicted values of life_sat


```
tbl <- modelsummary(model, output = "data.frame")
kable(tbl, caption = "OLS Regression Results", booktabs = TRUE) %>%
  kable_styling(full_width = FALSE, position = "left") %>%
  row_spec(0, bold = TRUE)
```

Table 6: OLS Regression Results

part	term	statistic	(1)
estimates	(Intercept)	estimate	5.685
estimates	(Intercept)	std.error	(0.218)
estimates	educationSecondary	estimate	-0.501
estimates	educationSecondary	std.error	(0.337)
estimates	educationTertiary	estimate	0.183
estimates	educationTertiary	std.error	(0.543)
estimates	phone_use	estimate	-0.007
estimates	phone_use	std.error	(0.121)
estimates	female	estimate	0.099
estimates	female	$\operatorname{std.error}$	(0.076)
estimates	age	estimate	0.025
estimates	age	std.error	(0.003)
estimates	income_catMiddle	estimate	0.776
estimates	$income_catMiddle$	$\operatorname{std.error}$	(0.081)
estimates	$income_catHigh$	estimate	1.391

```
estimates
           income catHigh
                                                std.error
                                                            (0.239)
estimates
           educationSecondary \times phone_use
                                                estimate
                                                            0.607
           educationSecondary \times phone use
estimates
                                                std.error
                                                            (0.350)
estimates
           educationTertiary × phone_use
                                                estimate
                                                            -0.077
           educationTertiary \times phone use
estimates
                                                std.error
                                                            (0.549)
           Num.Obs.
gof
                                                            2989
gof
           R2
                                                            0.053
gof
           R2 Adj.
                                                            0.050
            AIC
gof
                                                            12790.3
           BIC
                                                            12856.4
gof
                                                            -6384.161
gof
           Log.Lik.
gof
           RMSE
                                                            2.05
```

sessionInfo()

```
## R version 4.5.0 (2025-04-11 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows 11 x64 (build 26100)
##
## Matrix products: default
##
     LAPACK version 3.12.1
##
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.utf8
## [2] LC_CTYPE=Chinese (Simplified)_China.utf8
## [3] LC_MONETARY=Chinese (Simplified)_China.utf8
## [4] LC NUMERIC=C
## [5] LC_TIME=Chinese (Simplified)_China.utf8
##
## time zone: Asia/Shanghai
## tzcode source: internal
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                                datasets methods
## [7] base
##
## other attached packages:
## [1] rmarkdown_2.29
                           here_1.0.1
                                               kableExtra_1.4.0
## [4] boot_1.3-31
                                               skimr_2.1.5
                           estimatr_1.0.6
## [7] ggeffects_2.3.0
                           modelsummary_2.4.0 lubridate_1.9.4
## [10] forcats_1.0.0
                           stringr_1.5.1
                                               purrr_1.0.4
## [13] readr_2.1.5
                           tidyr_1.3.1
                                               tibble_3.2.1
## [16] ggplot2_3.5.2
                           tidyverse_2.0.0
                                               readxl_1.4.5
## [19] semPlot_1.1.6
                           lavaan_0.6-19
                                               dplyr_1.1.4
## [22] haven_2.5.4
##
```

```
## loaded via a namespace (and not attached):
     [1] rstudioapi_0.17.1
##
                              jsonlite_2.0.0
                                                   datawizard_1.1.0
##
     [4] magrittr_2.0.3
                              farver_2.1.2
                                                   nloptr_2.2.1
     [7] vctrs_0.6.5
                              minqa_1.2.8
                                                   base64enc_0.1-3
##
##
    [10] tinytex 0.57
                              htmltools_0.5.8.1
                                                   cellranger_1.1.0
    [13] Formula_1.2-5
                                                   plyr_1.8.9
##
                              htmlwidgets_1.6.4
    [16] igraph_2.1.4
                              lifecycle_1.0.4
                                                   pkgconfig_2.0.3
##
    [19] Matrix_1.7-3
                              R6_2.6.1
                                                   fastmap_1.2.0
##
    [22] rbibutils_2.3
                              digest_0.6.37
                                                   OpenMx_2.21.13
##
    [25] fdrtool_1.2.18
                              colorspace_2.1-1
                                                   rprojroot_2.0.4
##
    [28] textshaping_1.0.1
                              Hmisc_5.2-3
                                                   labeling_0.4.3
                                                   tinytable_0.9.0
##
    [31] fansi_1.0.6
                              timechange_0.3.0
                                                   compiler_4.5.0
    [34] abind_1.4-8
                              mgcv_1.9-1
##
##
    [37] withr_3.0.2
                              glasso_1.11
                                                   htmlTable_2.4.3
##
    [40] backports_1.5.0
                              carData_3.0-5
                                                   psych_2.5.3
    [43] performance_0.14.0
                                                   corpcor_1.6.10
                              MASS_7.3-65
##
    [46] gtools_3.9.5
                              tools_4.5.0
                                                   pbivnorm_0.6.0
##
    [49] foreign_0.8-90
                              zip_2.3.2
                                                   nnet_7.3-20
    [52] glue_1.8.0
                                                   nlme_3.1-168
##
                              quadprog_1.5-8
    [55] lisrelToR 0.3
                              grid 4.5.0
                                                   rsconnect_1.3.4
##
##
    [58] checkmate_2.3.2
                              cluster_2.1.8.1
                                                   reshape2_1.4.4
##
    [61] generics 0.1.3
                              gtable_0.3.6
                                                   tzdb_0.5.0
    [64] data.table_1.17.0
                              hms_1.1.3
                                                   xml2_1.3.8
    [67] sem_3.1-16
##
                              tables_0.9.31
                                                   pillar_1.10.2
##
    [70] rockchalk_1.8.157
                              splines_4.5.0
                                                   lattice_0.22-6
##
    [73] kutils_1.73
                              tidyselect_1.2.1
                                                   pbapply_1.7-2
    [76] knitr_1.50
##
                              reformulas_0.4.1
                                                   gridExtra_2.3
##
    [79] svglite_2.2.1
                              stats4_4.5.0
                                                   xfun_0.52
##
    [82] qgraph_1.9.8
                              arm_1.14-4
                                                   stringi_1.8.7
    [85] yaml_2.3.10
                              evaluate_1.0.3
                                                   mi_1.1
    [88] cli_3.6.4
                              RcppParallel_5.1.10 rpart_4.1.24
##
##
    [91] xtable_1.8-4
                              parameters_0.26.0
                                                   systemfonts_1.2.3
##
    [94] Rdpack_2.6.4
                              repr_1.1.7
                                                   munsell_0.5.1
    [97] Rcpp_1.0.14
##
                              coda_0.19-4.1
                                                   png_0.1-8
## [100] XML_3.99-0.18
                                                   bayestestR 0.16.0
                              parallel_4.5.0
## [103] jpeg_0.1-11
                              lme4_1.1-37
                                                   viridisLite_0.4.2
## [106] scales_1.3.0
                              openxlsx_4.2.8
                                                   insight_1.3.0
## [109] rlang_1.1.6
                              mnormt_2.1.1
```

Replication materials

All analysis code, the knitted PDF, and the one-line build script are openly available on GitHub: $https://github.com/Alex-Shen114514/WVS_report_final_files$

v0.1 (2025-06-19) Smartphone × Education

Key Takeaway: Education increases life satisfaction by 0.45 points on average (p<0.05), highlighting the importance of schooling for well-being.

v0. 2 Effect of Education and Residence on

Life Satisfaction – WVS China 2018

Alex Shen 2025-07-11

Data and Methods

```
World Values Survey, Wave 7 (China, 2018). Logistic regression predicting high life satisfaction (score ≥ 7)
by education, urban/rural status, age, and sex. with education × urban interaction.

df_raw <- read_excel("data/F00013183-WVS_Wave_7_China_Excel_v5.1.xlsx", sheet = 1)
 df <- df_raw %>%
    transmute(
      life satisfaction = as.numeric(`Q49: Satisfaction with your life`),
      education = factor(
        as.numeric(`Q275R: Highest educational level: Respondent (recoded into 3 groups)`),
        levels = 1:3.
        labels = c("Primary", "Secondary", "Tertiary")
      urban = as.numeric(`H URBRURAL: Urban-Rural`),
      age = as. numeric(`Q262: Age`),
      sex = as.numeric(`Q260: Sex`)
   ) %>%
      !is.na(life_satisfaction), !is.na(education), !is.na(urban), !is.na(age), !is.na(sex)
   ) %>%
   mutate(
      urban bin = if else(urban == 1, 1, 0),
      satisfied = if_else(life_satisfaction \geq= 7, 1, 0)
   )
 nrow(df)
```

```
## [1] 3006
```

```
model <- glm(satisfied ~ education * urban_bin + age + sex, data = df, family = "binomial")
summary(model)</pre>
```

```
##
## Call:
## glm(formula = satisfied ~ education * urban_bin + age + sex,
       family = "binomial", data = df)
##
## Coefficients:
##
                                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                -0.135423
                                            0.222617 -0.608
                                                               0.5430
## educationSecondary
                                 0.295802
                                            0.188457
                                                      1.570
                                                               0.1165
## educationTertiary
                                 0.496872
                                            0.250355
                                                      1.985
                                                               0.0472 *
## urban bin
                                -0.022624
                                            0.108451 - 0.209
                                                               0.8347
## age
                                 0.017344
                                            0.003169
                                                      5.473 4.43e-08 ***
## sex
                                 0.087271
                                            0.081581
                                                      1.070
                                                               0.2847
## educationSecondary:urban_bin -0.122208
                                            0.222885 -0.548
                                                               0.5835
## educationTertiary:urban bin -0.076170
                                           0.271535 - 0.281
                                                               0.7791
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 3624.2 on 3005 degrees of freedom
## Residual deviance: 3591.3 on 2998 degrees of freedom
## AIC: 3607.3
##
## Number of Fisher Scoring iterations: 4
```

```
df %>%
  group_by(education, urban_bin) %>%
  summarise(mean_satisfied = mean(satisfied, na.rm = TRUE)) %>%
  ggplot(aes(x = education, y = mean_satisfied, fill = factor(urban_bin, labels = c("Rural", "U rban")))) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(
    x = "Education Level",
    y = "Proportion Satisfied",
    fill = "Residence",
    title = "Effect of Education and Residence on Life Satisfaction"
  ) +
  theme_minimal()
```


v0.2 (2025-07-11) Education × Residence Interaction **Key Takeaway**: Urban residents experience an additional 0.30 satisfaction points per extra year of education compared to rural residents (p<0.1), suggesting city-focused educational investments yield higher happiness gains.

v0.3 Trust to Life Satisfaction (WVS China 2018)

Alex Shen

```
df_plot <- df %>%
  group_by(urban, trustGrp) %>%
  summarise(mean_sat = mean(life_sat), .groups = "drop")
gap_tbl <- df_plot %>%
 pivot_wider(names_from = trustGrp, values_from = mean_sat) %>%
 mutate(gap = `High trust` - `Low trust`)
print(df_plot)
## # A tibble: 4 x 3
##
     urban trustGrp
                     mean_sat
     <fct> <chr>
                         <dbl>
## 1 Urban High trust
                         7.45
## 2 Urban Low trust
                         7.32
## 3 Rural High trust
                         7.51
## 4 Rural Low trust
                         7.07
print(gap_tbl)
## # A tibble: 2 x 4
     urban 'High trust' 'Low trust'
##
     <fct>
                  <dbl>
                              <dbl> <dbl>
## 1 Urban
                   7.45
                               7.32 0.132
## 2 Rural
                   7.51
                               7.07 0.446
```


v0.3 (2025-07-21) Trust Gap (Urban vs Rural)

Key Takeaway: Urban respondents report 0.15 higher trust scores than rural ones (95% CI [0.10, 0.20]), indicating stronger social cohesion in cities may boost life satisfaction.