Politecnico Milano - Appello AM1 20220201 - Prof. Cipriani

Cognome, nome e firma:

Codice Persona:

QUIZ A RISPOSTA MULTIPLA Una e una sola delle 5 risposte è corretta. Indicarla con una croce. Per annullare una risposta data, racchiudere la croce in un cerchio.

1. (1 punto) Sia $z = 3 + \sqrt{3}i$. Allora

$$\arg(z^{22}) =$$

- (a) $5\pi/3$;
- (b) $2\pi/3$;
- (c) $5\pi/6$;
- (d) $7\pi/6$;
- (e) nessuna delle altre risposte è corretta;

2. (1 punto) L'insieme $A:=\{z\in\mathbb{C}:|z-3|=|z-i|\}$ è

- (a) l'intersezione di due circonferenze;
- (b) un punto;
- (c) la retta $\{z \in \mathbf{C} : Re \, z = \frac{3}{2}\};$
- (d) l'unione di due rette;
- (e) nessuna delle altre risposte è corretta.

3. (1 punto)

$$\lim_{n \to +\infty} \frac{\log\left(\frac{1}{n^7}\right)}{\log\left(1 + n^5\right)}$$

- (a) $=-\infty$;
- (b) = -12;
- (c) $=-\frac{7}{5}$;
- (d) = 0;
- (e) non esiste.

4. (1 punto) Sia $f: I \to \mathbb{R}$ una funzione continua, e sia J = f(I) l'immagine di f. Possiamo affermare che:

- (a) se f è strettamente monotona, f è invertibile se e solo se I è un intervallo;
- (b) se I è un intervallo limitato, f assume su I massimo assoluto e minimo assoluto;
- (c) se I è un intervallo chiuso, allora J è un intervallo chiuso;
- (d) se $I = \mathbb{R}$, allora $J = \mathbb{R}$;
- (e) nessuna delle altre risposte è corretta.

5 (1 punto) Siano $f, g : \mathbb{R} \to \mathbb{R}$, con f derivabile una volta e g derivabile due volte in tutto \mathbb{R} . Allora, presi $a, b \in \mathbb{R}$ con a < b, risulta che

$$\int_{a}^{b} f(x)g''(x) \, dx =$$

(a) =
$$f(x)g(x)|_a^b - \int_a^b f'(x)g(x) dx$$
;

(b) =
$$f'(x)g'(x)|_a^b - \int_a^b f'(x)g'(x) dx;$$

(c) =
$$f(x)g'(x)|_a^b - \int_a^b f'(x)g'(x) dx;$$

(d) =
$$f'(x)g''(x)|_a^b - \int_a^b f'(x)g(x) dx;$$

(e) nessuna delle altre risposte è corretta.

6. (1 punto)
$$\int_{-2}^{2} \frac{1}{x^{\frac{5}{3}}} dx$$
.

(a) non esiste poichè la funzione integranda non è integrabile

(b)
$$=\frac{3}{\sqrt[3]{4}}$$
;

(c)
$$= 0;$$

(d) =
$$-\frac{3}{\sqrt[3]{4}}$$
;

(e) nessuna delle altre risposte è corretta.

7. (2 punti) Sia data la funzione $f(x) := e^{x^2} \cdot \cos x - 1$ (attenzione: non ci sono parentesi). È vero che

(a)
$$f(x) \sim x^2 \text{ per } x \to 0;$$

(b)
$$f(x) \sim \frac{x^2}{2} \text{ per } x \to 0;$$

(c)
$$f(x) \sim -\frac{x^2}{2} \text{ per } x \to 0;$$

(d)
$$f(x) = o(x^2)$$
 per $x \to 0$;

(e) nessuna delle altre risposte è corretta.

8. (2 punti) Sia F la funzione integrale definita da $F(x)=\int_0^x \frac{|\sin t|}{t^2+1}\,dt$. È vero che

- (a) F ha infiniti punti di massimo o di minimo locale;
- (b) F ha infiniti punti angolosi;
- (c) F è strettamente crescente;

(d)
$$\lim_{x\to+\infty} F(x) = +\infty$$
;

(e) nessuna delle altre risposte è corretta.

9. (2 punti) Quale delle seguenti affermazioni garantisce la derivabilità di f in x=0?

(a)
$$f(0) = 0$$
 e $f(x) = o(x)$ per $x \to 0$;

(b)
$$\lim_{x\to 0} f(x) = 0;$$

(c)
$$f$$
 continua in $x = 0$;

(d)
$$f(x) \sim 1 \text{ per } x \to 0;$$

(e)
$$f$$
 ha un minimo in $x = 0$.

$$\mathbf{10} \ (2 \ \text{punti}) \ \text{Nel punto} \ \ x = 1 \, , \ \text{la funzione} \ f(x) = \begin{cases} 2a \log(x) & \text{per } x > 1 \\ b \cos(\pi x) + x & \text{per } x \leq 1 \end{cases} \ \text{risulta}$$

- (a) continua per qualunque scelta di a e b, ma non necessariamente derivabile;
- (b) continua per infinite coppie (a,b) ma derivabile solo per $(a,b)=(\frac{1}{2},1),$
- (c) continua se e solo se (a, b) = (0, 1),
- (d) non derivabile qualunque sia la coppia (a, b),
- (e) continua e derivabile per qualunque scelta di $a \in b$.

TEORIA

T1. (3 punti) Enunciare e dimostrare il Criterio del Rapporto per la convergenza di serie.

T2. (3 punti) Enunciare e dimostrare il Secondo Teorema Fondamentale del Cal	lcolo.

ESERCIZI

E1. (5 punti) Sia f la funzione definita da

$$f(x) = x \frac{\log(|x|) + 1}{\log(|x|) - 3},$$

- Determinare il dominio, eventuali simmetrie e studiare la continuità di f. Determinare gli zeri e il segno di f.
- \bullet Calcolare i limiti di f al bordo del dominio e determinare tutti gli eventuali asintoti.
- $\bullet\,$ Studiare la deriva
bilità di fe calcolarne la derivata sul suo domini
oD(f').
- \bullet Studiare la monotonia di f, discutendo la presenza di estremi locali e globali.
- Tracciare un grafico qualitativo della funzione f (non è richiesto lo studio di f'').

E2. (4 punti) Calcolare l'integrale

$$I := \int_{1}^{3} x \sqrt{1 - (x - 2)^{2}} \, dx.$$

 ${\bf E3.}~(3~{\rm punti})$ Studiare la convergenza semplice e assoluta della serie

$$\sum_{n=1}^{\infty} (-1)^n \frac{\arctan(n)}{n^{\alpha}},$$

al variare del parametro $\alpha \in [1,+\infty).$