Рубежный контроль №2

Ишков Денис Олегович, ИУ5-24М, 2021г.

Тема: Методы обработки текстов

Решение задачи классификации текстов.

Необходимо решить задачу классификации текстов на основе любого выбранного Вами датасета (кроме примера, который рассматривался в лекции). Классификация может быть бинарной или многоклассовой. Целевой признак из выбранного Вами датасета может иметь любой физический смысл, примером является задача анализа тональности текста.

Необходимо сформировать два варианта векторизации признаков - на основе CountVectorizer и на основе TfidfVectorizer.

В качестве классификаторов необходимо использовать два классификатора по варианту для Вашей группы:

Группа: ИУ5-24М

Классификатор 1: KNeighborsClassifier

Классификатор 2: Complement Naive Bayes (CNB)

Для каждого метода необходимо оценить качество классификации. Сделайте вывод о том, какой вариант векторизации признаков в паре с каким классификатором показал лучшее качество.

Датасет

Бинарная классификация текста

https://www.kaggle.com/blackmoon/russian-language-toxic-comments (https://www.kaggle.com/blackmoon/russian-language-toxic-comments)

In [2]:

загрузка датасета

```
!pip install wldhx.yadisk-direct
!curl -L $(yadisk-direct https://disk.yandex.ru/d/wedARfrtMn-Y-Q) -o labeled.csv
Collecting wldhx.yadisk-direct
 Downloading wldhx.yadisk_direct-0.0.6-py3-none-any.whl (4.5 kB)
Requirement already satisfied: requests in /opt/conda/lib/python3.7/site-p
ackages (from wldhx.yadisk-direct) (2.25.1)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/pyt
hon3.7/site-packages (from requests->wldhx.yadisk-direct) (1.26.3)
Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python
3.7/site-packages (from requests->wldhx.yadisk-direct) (3.0.4)
Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/si
te-packages (from requests->wldhx.yadisk-direct) (2.10)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python
3.7/site-packages (from requests->wldhx.yadisk-direct) (2020.12.5)
Installing collected packages: wldhx.yadisk-direct
Successfully installed wldhx.yadisk-direct-0.0.6
            % Received % Xferd Average Speed
 % Total
                                                        Time
                                                                 Time Cu
rrent
                                Dload Upload
                                                Total
                                                        Spent
                                                                 Left Sp
eed
 0
                                           0 --:--
                                                       0:00:01 --:--
100 4560k 100 4560k
                       0
                             0 1279k
                                           0 0:00:03 0:00:03 --:--: 1
921k
```

Импорт нужных библиотек

```
In [104]:
```

```
import pandas as pd
from sklearn.model_selection import train_test_split
import nltk
import string
from nltk.corpus import stopwords
from nltk.tokenize import word tokenize
from nltk.stem import SnowballStemmer
nltk.download('punkt')
from sklearn.pipeline import Pipeline
from sklearn.naive_bayes import ComplementNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.feature extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.metrics import precision_score, recall_score, precision_recall_curve, clas
sification report
from matplotlib import pyplot as plt
from sklearn.metrics import plot_precision_recall_curve
import numpy as np
from sklearn.model selection import GridSearchCV
```

```
[nltk_data] Downloading package punkt to /usr/share/nltk_data...
[nltk_data] Package punkt is already up-to-date!
```

Анализ и обработка выбросов в данных

In [5]:

```
df = pd.read_csv("labeled.csv", sep=",")
df.describe()
```

Out[5]:

	toxic
count	14412.000000
mean	0.334860
std	0.471958
min	0.000000
25%	0.000000
50%	0.000000
75%	1.000000
max	1.000000

In [73]:

```
df.comment.str.split(' ').apply(len).plot(kind='hist', bins=50)
```

Out[73]:

<AxesSubplot:ylabel='Frequency'>

Как видно из гистограммы, количество слов сообщений в данных распределено по экспоненциальному закону. Уберём "хвост"

In [75]:

```
df = df[df.comment.str.split(' ').apply(len) < 50].copy()
df.comment.str.split(' ').apply(len).plot(kind='hist', bins=50)</pre>
```

Out[75]:

<AxesSubplot:ylabel='Frequency'>

In [76]:

```
df["toxic"] = df["toxic"].apply(int)
df["toxic"].value_counts()
```

Out[76]:

81024419

Name: toxic, dtype: int64

Разделим данные на обучающую и тестовую выборки

In [82]:

```
train_df, test_df = train_test_split(df, test_size=500, stratify=df.toxic)
```

In [83]:

```
test_df["toxic"].value_counts(), train_df["toxic"].value_counts()
```

Out[83]:

```
(0 324
1 176
```

Name: toxic, dtype: int64,

0 77781 4243

Name: toxic, dtype: int64)

Предобработка текста

In [84]:

```
sentence_example = df.iloc[-1]["comment"]
tokens = word_tokenize(sentence_example, language="russian")
tokens_without_punctuation = [i for i in tokens if i not in string.punctuation]
russian_stop_words = stopwords.words("russian")
tokens_without_stop_words_and_punctuation = [i for i in tokens_without_punctuation if i not in russian_stop_words]
snowball = SnowballStemmer(language="russian")
stemmed_tokens = [snowball.stem(i) for i in tokens_without_stop_words_and_punctuation]
```

In [85]:

```
print(f"Исходный текст: {sentence_example}")
print("-----")
print(f"Токены: {tokens}")
print("Токены без пунктуации: {tokens_without_punctuation}")
print("-----")
print(f"Токены без пунктуации и стоп слов: {tokens_without_stop_words_and_punctuation}")
print("-----")
print("-----")
print(f"Токены после стемминга: {stemmed_tokens}")
print("-----")
```

Исходный текст: До сих пор пересматриваю его видео. Орамбо кстати на своем канале пилит похожий контент, но качеством похуже, там же и Шуран не редко светится, храню хрупкую надежду что когда-то он вернется, такая годнота ве дь.

```
Токены: ['До', 'сих', 'пор', 'пересматриваю', 'его', 'видео', '.', 'Орамб о', 'кстати', 'на', 'своем', 'канале', 'пилит', 'похожий', 'контент', ',', 'но', 'качеством', 'похуже', ',', 'там', 'же', 'и', 'Шуран', 'не', 'редк о', 'светится', ',', 'храню', 'хрупкую', 'надежду', 'что', 'когда-то', 'о н', 'вернется', ',', 'такая', 'годнота', 'ведь', '.']

Токены без пунктуации: ['До', 'сих', 'пор', 'пересматриваю', 'его', 'виде о', 'Орамбо', 'кстати', 'на', 'своем', 'канале', 'пилит', 'похожий', 'контент', 'но', 'качеством', 'похуже', 'там', 'же', 'и', 'Шуран', 'не', 'редк о', 'светится', 'храню', 'хрупкую', 'надежду', 'что', 'когда-то', 'он', 'в ернется', 'такая', 'годнота', 'ведь']

Токены без пунктуации и стоп слов: ['До', 'сих', 'пор', 'пересматриваю', 'видео', 'Орамбо', 'кстати', 'своем', 'канале', 'пилит', 'похожий', 'контент', 'качеством', 'похуже', 'Шуран', 'редко', 'светится', 'храню', 'хрупкую', 'надежду', 'когда-то', 'вернется', 'такая', 'годнота']

Токены после стемминга: ['до', 'сих', 'пор', 'пересматрива', 'виде', 'орам б', 'кстат', 'сво', 'канал', 'пил', 'похож', 'контент', 'качеств', 'поху ж', 'шура', 'редк', 'свет', 'хран', 'хрупк', 'надежд', 'когда-т', 'верне т', 'так', 'годнот']
```

In [86]:

```
snowball = SnowballStemmer(language="russian")
russian_stop_words = stopwords.words("russian")

def tokenize_sentence(sentence: str, remove_stop_words: bool = True):
    tokens = word_tokenize(sentence, language="russian")
    tokens = [i for i in tokens if i not in string.punctuation]
    if remove_stop_words:
        tokens = [i for i in tokens if i not in russian_stop_words]
    tokens = [snowball.stem(i) for i in tokens]
    return tokens

tokenize_sentence(sentence_example)
```

Out[86]:

```
['до',
 'сих',
 'пор',
 'пересматрива',
 'виде',
 'орамб',
 'кстат',
 'CBO',
 'канал',
 'пил',
 'похож',
 'контент',
 'качеств',
 'похуж',
 'шура',
 'редк',
 'свет',
 'хран',
 'хрупк',
 'надежд',
 'когда-т',
 'вернет',
 'так',
 'годнот']
```

Классификатор 1: Complement Naive Bayes

CountVectorizer

In [140]:

```
grid pipeline = Pipeline([
    ("vectorizer", CountVectorizer(tokenizer=lambda x: tokenize_sentence(x, remove_stop
_words=True))),
    ("model",
     GridSearchCV(
        ComplementNB(alpha=1.0, norm=False),
        param_grid={'alpha': [0.35+5e-3*i for i in range(20)],
                    'norm': [True, False]},
        cv=5,
        verbose=0,
        scoring='roc_auc',
    )
])
grid pipeline.fit(train_df["comment"], train_df["toxic"])
print(grid_pipeline['model'].best_params_)
model_pipeline = Pipeline([
    ("vectorizer", TfidfVectorizer(tokenizer=lambda x: tokenize_sentence(x, remove_stop
_words=True))),
    ("model", ComplementNB(**grid_pipeline['model'].best_params_),)
]
)
model_pipeline.fit(train_df["comment"], train_df["toxic"])
prec_c_10, rec_c_10, thresholds_c_10 = precision_recall_curve(y_true=test_df["toxic"],
                                                               probas_pred=model_pipelin
e.predict proba(test df["comment"])[:, 1])
plot_precision_recall_curve(estimator=model_pipeline, X=test_df["comment"], y=test_df[
"toxic"])
print(classification_report(y_true=test_df["toxic"],
                            y_pred=model_pipeline.predict(test_df["comment"]),
                            digits=4))
```

{'alpha': 0.4449999999999995, 'norm': False}				
	precision	recall	f1-score	support
0	0.8899	0.9228	0.9061	324
1	0.8476	0.7898	0.8176	176
accuracy			0.8760	500
macro avg	0.8687	0.8563	0.8619	500
weighted avg	0.8750	0.8760	0.8749	500

TfidfVectorizer

In [141]:

```
grid pipeline = Pipeline([
    ("vectorizer", TfidfVectorizer(tokenizer=lambda x: tokenize_sentence(x, remove_stop
_words=True))),
    ("model",
     GridSearchCV(
        ComplementNB(alpha=1.0, norm=False),
        param_grid={'alpha': [0.35+5e-3*i for i in range(20)],
                    'norm': [True, False]},
        cv=5,
        verbose=0,
        scoring='roc_auc',
    )
])
grid pipeline.fit(train_df["comment"], train_df["toxic"])
print(grid_pipeline['model'].best_params_)
model_pipeline = Pipeline([
    ("vectorizer", TfidfVectorizer(tokenizer=lambda x: tokenize_sentence(x, remove_stop
_words=True))),
    ("model", ComplementNB(**grid_pipeline['model'].best_params_),)
]
)
model_pipeline.fit(train_df["comment"], train_df["toxic"])
prec_c_10, rec_c_10, thresholds_c_10 = precision_recall_curve(y_true=test_df["toxic"],
                                                               probas_pred=model_pipelin
e.predict proba(test df["comment"])[:, 1])
plot_precision_recall_curve(estimator=model_pipeline, X=test_df["comment"], y=test_df[
"toxic"])
print(classification_report(y_true=test_df["toxic"],
                            y_pred=model_pipeline.predict(test_df["comment"]),
                            digits=4))
```

11, 'norm':	False}		
precision	recall	f1-score	support
0.8896	0.9198	0.9044	324
0.8424	0.7898	0.8152	176
		0.8740	500
0.8660	0.8548	0.8598	500
0.8730	0.8740	0.8730	500
	0.8896 0.8424 0.8660	0.8896 0.9198 0.8424 0.7898 0.8660 0.8548	precision recall f1-score 0.8896 0.9198 0.9044 0.8424 0.7898 0.8152 0.8740 0.8660 0.8548 0.8598

Классификатор 2: KNearestNeighbors

CountVectorizer

In [142]:

```
grid pipeline = Pipeline([
    ("vectorizer", CountVectorizer(tokenizer=lambda x: tokenize_sentence(x, remove_stop
_words=True))),
    ("model",
     GridSearchCV(
        KNeighborsClassifier(),
        param_grid={'n_neighbors': [i for i in range(31, 64, 1)],
                     'weights': ['uniform', 'distance'],
'metric': ['euclidean', 'cosine',]},
        cv=5,
        verbose=1,
        scoring='roc_auc', #'f1'
    )
])
grid_pipeline.fit(train_df["comment"], train_df["toxic"])
print(grid_pipeline['model'].best_params_)
model_pipeline = Pipeline([
    ("vectorizer", TfidfVectorizer(tokenizer=lambda x: tokenize_sentence(x, remove_stop
_words=True))),
    ("model", KNeighborsClassifier(**grid_pipeline['model'].best_params_),)
]
)
model_pipeline.fit(train_df["comment"], train_df["toxic"])
prec_c_10, rec_c_10, thresholds_c_10 = precision_recall_curve(y_true=test_df["toxic"],
                                                                 probas pred=model pipelin
e.predict proba(test df["comment"])[:, 1])
plot_precision_recall_curve(estimator=model_pipeline, X=test_df["comment"], y=test_df[
"toxic"])
print(classification_report(y_true=test_df["toxic"],
                             y_pred=model_pipeline.predict(test_df["comment"]),
                             digits=4))
```

```
Fitting 5 folds for each of 132 candidates, totalling 660 fits
{'metric': 'cosine', 'n_neighbors': 62, 'weights': 'distance'}
                           recall f1-score
              precision
                                               support
           0
                 0.7778
                            0.9722
                                      0.8642
                                                    324
           1
                 0.9053
                                      0.6347
                            0.4886
                                                    176
                                                    500
                                      0.8020
    accuracy
                 0.8415
                            0.7304
                                      0.7494
                                                    500
   macro avg
                 0.8227
                            0.8020
                                      0.7834
                                                    500
weighted avg
```


Какие параметры лучшие?

In [143]:

cols = ['param_metric', 'param_n_neighbors', 'param_weights', 'mean_test_score']
pd.DataFrame(grid_pipeline['model'].cv_results_).sort_values(by='rank_test_score').loc
[:, cols].head(10)

Out[143]:

	param_metric	param_n_neighbors	param_weights	mean_test_score
129	cosine	62	distance	0.865295
131	cosine	63	distance	0.865283
127	cosine	61	distance	0.865031
130	cosine	63	uniform	0.865012
128	cosine	62	uniform	0.865002
125	cosine	60	distance	0.864925
123	cosine	59	distance	0.864745
126	cosine	61	uniform	0.864692
124	cosine	60	uniform	0.864582
119	cosine	57	distance	0.864509

TFidfVectorizer

In [144]:

```
grid pipeline = Pipeline([
    ("vectorizer", TfidfVectorizer(tokenizer=lambda x: tokenize_sentence(x, remove_stop
_words=True))),
    ("model",
     GridSearchCV(
        KNeighborsClassifier(),
        param_grid={'n_neighbors': [i for i in range(31, 64, 2)],
                     'weights': ['uniform', 'distance'],
'metric': ['euclidean', 'cosine',]},
        cv=5,
        verbose=1,
        scoring='roc_auc', #'f1'
    )
])
grid_pipeline.fit(train_df["comment"], train_df["toxic"])
print(grid_pipeline['model'].best_params_)
model_pipeline = Pipeline([
    ("vectorizer", TfidfVectorizer(tokenizer=lambda x: tokenize_sentence(x, remove_stop
_words=True))),
    ("model", KNeighborsClassifier(**grid_pipeline['model'].best_params_),)
]
)
model_pipeline.fit(train_df["comment"], train_df["toxic"])
prec_c_10, rec_c_10, thresholds_c_10 = precision_recall_curve(y_true=test_df["toxic"],
                                                                 probas pred=model pipelin
e.predict proba(test df["comment"])[:, 1])
plot_precision_recall_curve(estimator=model_pipeline, X=test_df["comment"], y=test_df[
"toxic"])
print(classification_report(y_true=test_df["toxic"],
                             y_pred=model_pipeline.predict(test_df["comment"]),
                             digits=4))
```

Fitting 5 folds for each of 68 candidates, totalling 340 fits {'metric': 'cosine', 'n_neighbors': 45, 'weights': 'uniform'} recall f1-score precision support 0.7834 0 0.9599 0.8627 324 1 0.8738 0.5114 0.6452 176 0.8020 500 accuracy 0.8286 0.7356 0.7539 500 macro avg 0.7861 500 weighted avg 0.8152 0.8020

Какие параметры лучшие?

In [145]:

```
cols = ['param_metric', 'param_n_neighbors', 'param_weights', 'mean_test_score']
pd.DataFrame(grid_pipeline['model'].cv_results_).sort_values(by='rank_test_score').loc
[:, cols].head(10)
```

Out[145]:

	param_metric	param_n_neighbors	param_weights	mean_test_score
48	cosine	45	uniform	0.917287
50	cosine	47	uniform	0.917125
54	cosine	51	uniform	0.917124
46	cosine	43	uniform	0.916920
44	cosine	41	uniform	0.916891
42	cosine	39	uniform	0.916859
56	cosine	53	uniform	0.916817
58	cosine	55	uniform	0.916817
60	cosine	57	uniform	0.916806
52	cosine	49	uniform	0.916661

Выводы

	ComplementNB	KNN Classifier	
CountVectorizer	0.8749	0.7834	
TfldfVectorizer	0.8730	0.7861	

Лучше всего по f1-мере показала себя связка CountVectorizer + ComplementNB.