

DAB1 - Datenbanken 1

Dr. Daniel Aebi (aebd@zhaw.ch)

Lektion 14: Rückblick, Ausblick

Wo stehen wir?

Grundlagen Mengen/BA Einführung **Relationale Algebra Relationale Bags Entity-Relationship** Design SQL

Ziele Lektion 14

- Rückblick++
- Einzelne Aspekte ggf. noch ergänzen
- Begriff «physischer Entwurf» kennen
- Ausblick auf DAB2

Zürcher Hochschule ür Angewandte Wissenschafter

- Wie alles begann...
- Aufgaben eines DBS (Begriffe: DB, DBMS, DBS, IS)
 - Datenbanksystem (DBS)
 - DBMS (Datenbankverwaltungssystem)
 - Datenbank (Datenbasis, Datenbestand)
 - Anwendungsprogramme (AP)
 - DBS + AP = Informationssystem (IS)

- Relationenmodell wichtige Begriffe:
 - Attribut
 - Domäne (Datentyp, Wertebereich)
 - Tupel
 - Relationenformat
 - Relation
 - Bag

- Relationenmodell Operationen der relationalen Algebra:
 - Entfernende Operatoren:
 - Selektion, Projektion
 - Mengenoperatoren:
 - Vereinigung, Schnittmenge, Differenz
 - Kombinierende Operatoren:
 - Kartesisches Produkt, Join, Joinvarianten
 - Umbenennung:
 - Verändert nicht Tupel, sondern Format

- Relationenmodell Operatoren:
 - σ Selektion
 - π Projektion
 - x Kreuzprodukt
 - ▶ Join (Verbund)
 - Mengendifferenz
 - U Mengenvereinigung
 - Mengendurchschnitt
 - ÷ Division
 - ρ Umbenennung
 - M Linker äusserer Verbund
 - M Rechter äusserer Verbund
 - Voller äusserer Verbund
 - → Hilfsmittel für die Modulprüfung

- Relationenmodell Verbundvarianten:
 - Natural Join
 - Theta-Join
 - Cross-Join
 - Self-Join
 - Outer-Joins

- Natürlicher Verbund (natural join):
- Gegeben seien: R(A₁, ..., A_m, B₁, ..., B_k) und S(B₁, ..., B_k, C₁, ..., C_n)
- $R \bowtie S = \pi_{A_1, ..., A_m, R.B_1, ..., R.B_k, C_1, ..., C_n} (\sigma_{R.B_1 = S.B_1 \land \land R.B_k = S.B_k} (RxS))$

	$R \bowtie S$										
R – S					R	∩ S		S – R			
$A_1 A_2 \dots A_m$			B_1	B ₂		B_k	C_1	C_2		C_n	

→ Hilfsmittel für die Modulprüfung

Gelb: bezieht sich auf das Format

- Theta join: Verallgemeinerung des natürlichen Joins.
- Verknüpfungsbedingung kann selbst gestaltet werden.
- Konstruktion des Ergebnisses:
 - Bilde Kreuzprodukt
 - Selektiere mittels der Joinbedingung
 - Also: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - θ ∈ {=, <, >, ≤, ≥, ≠}
- Schema: Wie beim Kreuzprodukt.
- Natural Join ist ein Spezialfall des Theta-Joins.

- Allgemeiner Verbund (theta join):
- Gegeben seien: R(A₁, ..., A_n) und S(B₁, ..., B_m)
- R \bowtie_{θ} S = σ_{P} (R x S) (kartesisches Produkt von R und S mit Selektion)

	$R\bowtie_{\scriptscriptstyle{\theta}}\!S$							
R				S				
A_1	A ₂		A _n	B_1	B ₂	•••	B _m	

→ Hilfsmittel für die Modulprüfung

- Relationenmodell bag-Operationen:
 - Selektion, Projektion: Wie gehabt, aber mit Duplikaten
 - Joins: Wie gehabt, aber mit Duplikaten
 - Mengenoperationen:

```
 r ∪ s = {<t,k> ∈ dom(R) x N | k=max(r(t),s(t))} "bag union"
```

•
$$r \cap s = \{ \langle t, k \rangle \in dom(R) \times \mathbb{N} \mid k = min\{r(t), s(t)\} \}$$

•
$$r \ s = \{ \langle t, k \rangle \in dom(R) \ x \ \mathbb{N} \mid k = max\{0, r(t) - s(t)\} \}$$

→ Hilfsmittel für die Modulprüfung

- Hörsaalübung 1:
 - Gegeben: 3 Relationen (alle domains integer):

r	Α	В	С
	0	0	0
	0	0	1
	1	0	0
	1	0	1
	1	1	0

S	В	C	D
	0	0	0
	0	0	1
	0 0 0	1	0
	0	1	1
	1	0	0
	1	0	1
	1	1	0
	1	1	1

u	D	E
	0	0
	0	1
	1	1

- Gesucht: $(r \bowtie \sigma_{B=1}(s) \bowtie u) \cap (r \bowtie \sigma_{D=1}(s) \bowtie u)$

- Entwurfsmethode wichtige Begriffe:
 - Entitätstypen (unabhängige, abhängige)
 - Beziehungstypen
 - Attribute
 - Kardinalitäten

- Entwurfsmethode Beispiel:
 - Kardinalitäten: 1, m, ID, ISA

- Entwurfsmethode Kardinalitäten:
 - Werden mit Hilfe von Schlüsseln durchgesetzt:

→ Hilfsmittel für die Modulprüfung

- Entwurfsmethode Kardinalitäten:
 - Werden mit Hilfe von Schlüsseln durchgesetzt:

х	у	z	Schlüssel	
m	m	m	{A1, A2, A3}	
m	m	1	{A1, A2}	
m	1	m	{A1, A3}	
m	1	1	{A1, A2} und {A1, A3}	
1	m	m	{A2, A3}	
1	m	1	{A2, A3} und {A1, A2}	
1	1	m	{A2, A3} und {A1, A3}	
1	1	1	{A2, A3} und {A1, A3} und {A1, A2}	

→ Hilfsmittel für die Modulprüfung

Entwurfsmethode – ID-Abhängigkeit:

- Bei einer Bestellposition brauchen wir ein weiteres Attribut, z.B. «Pos#», um die einzelnen Bestellpositionen zu unterscheiden.
- → Hilfsmittel für die Modulprüfung

Entwurfsmethode – ISA-Abhängigkeit:

- Jeder Kunde resp. jeder Lieferant ist auch Geschäftspartner.
- → Hilfsmittel für die Modulprüfung

- Entwurfsmethode zusammengesetzte Entitätstypen:
 - Wir wollen unterschiedlich viele (auch keine) Details zu jeder Vereinbarung festhalten können

- Achtung: An einem ZET kann auch wieder ein BT angehängt sein!
- → Hilfsmittel für die Modulprüfung

- Entwurfsmethode korrektes Diagramm (6 Regeln):
 - 1. Definiere unabhängigen Entitätstyp
 - 2. Definiere Beziehungstyp
 - 3. Definiere Attribut
 - 4. Wandle Beziehungstyp in zusammengesetzten Entitätstyp um
 - 5. Definiere ID-abhängigen Entitätstyp
 - 6. Definiere ISA-abhängigen Entitätstyp
 - → Hilfsmittel für die Modulprüfung

Hörsaalübung 2:

Beispiel: Projektleiter (ein Attribut: PL#) sind zuständig für Projekte (ein Attribut: P#) und zwar höchstens ein Projektleiter für ein Projekt. Ein Projektleiter kann aber für mehrere Projekte zuständig sein. Es können jedoch mehrere Projektleiter – in der Rolle als Stellvertreter – zuständig sein für ein Projekt. Zeichnen Sie das dazu passende ER-Schema.

Zürcher Hochschule für Angewandte Wissenschaften

- SQL: DDL
 - CREATE, ALTER, DROP
 - Datentypen
 - Constraints (Schlüssel PRIMARY/FOREIGN, CHECK, DEFAULT, ...)
 - **–** ...
- SQL: DML
 - INSERT, UPDATE, DELETE
 - Direkt, mit Subqueries
 - ..

- SQL: DQL
 - SELECT FROM WHERE GROUP BY HAVING ORDER BY
 - Verbundvarianten
 - Aliase
 - Korrelierte / unkorrelierte Subqueries
 - [NOT] EXISTS
 - [NOT] IN
 - ANY, ALL, SOME
 - LIKE
 - Aggregatfunktionen (SUM, AVG, MIN, MAX, COUNT)
 - Gruppierung
 - Sortierung
 - NULL's
 - Sichten

- ...

- Hörsaalübung 3:
 - Ausgangslage: 2 Tabellen
 (Domänen: int bzw. char(1))

Α	Х	у
	1	А
	2	В
	3	С
	4	D

В	Х	у
	1	Α
	3	С

- Erstellen Sie mit MySQL Workbench eine neue Datenbank
- Formulieren Sie in MySQL-Workbench die notwendigen CREATE TABLE-Anweisungen für die Tabellen A und B
- Füllen Sie die beiden Tabellen mit Hilfe von INSERT-Anweisungen
- Formulieren Sie in SQL folgende Abfragen:
 - A ∪ B (jeweils mit und ohne Duplikate)
 - A \ B
 - A ∩ B

Zürcher Hochschule ür Angewandte Wissenschafter

Begriff: Physischer Entwurf

Bisher:

- Konzeptioneller Entwurf (→ ER-Sprache)
- Logischer Entwurf (→ SQL)

Was noch fehlt:

Physischer Entwurf (→ SQL, andere Massnahmen)

Ziele:

- Performanz
- Physische Datenunabhängigkeit
- Sicherheit

Was kommt später noch auf Sie zu...

Themen, die in DAB2 behandelt werden:

- Stored Procedures und Trigger («Datenbankprogrammierung»)
- Speicherorganisationsformen
- Optimierung (Indexe, Statistiken, Abfragebäume, ...)
- Transaktionsverwaltung, Recovery
- Kurze Einführung in Non-standard-Datenbanksysteme (data warehouses, NoSQL)

Es gibt noch sehr viele andere, wichtige und interessante Themen im Datenbankbereich:

- Nicht-relationale Datenbanken (XML-/OO-/OR-/...-DB)
- Datenbank-Anwendungsentwicklung
- Business Intelligence
- Information Retrieval
- "big data", NoSQL
- •
- → Wahlfachmodule