Outline:

- 1. Review of Lecture 2
- 2. Unbiasedness
- 3. Variances and Standard Errors of Important Regression Parameters
- 4. Example: *three data points*
- 5. The 'Coefficient of Determination'

1. Review of Lecture 2

Define fitted values
$$\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \cdot x_i$$
 for $i = 1, ..., n$ [2.20]

where
$$\widehat{\beta}_1 = \frac{\sum (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 [2.19]

and
$$\widehat{\beta_0} = \bar{y} - \beta_1 \bar{x}$$
 [2.17]

Define residuals $\widehat{u}_i = y_i - \widehat{y}_i$

$$= y_i - \widehat{\beta_0} - \widehat{\beta_1} \cdot x_i \tag{2.21}$$

Residuals satisfy three properties:
$$\sum \hat{u}_i = 0$$
 [2.30, 2.60]

$$\sum \widehat{u_i} x_i = 0 \tag{2.31, 2.60}$$

$$\bar{y} = E(y|x = \bar{x}) = \widehat{\beta_0} + \widehat{\beta_1} \cdot \bar{x}$$
 (line bisects (\bar{x}, \bar{y}))

To show another property — that $\sum \hat{u_i}^2$ [2.22] is *minimized* — requires calculus [Appx 2A].

2. Unbiasedness

Three key conditions: Linearity in Parameters
$$y = \beta_0 + \beta_1 x + u$$
 [SLR.1]
Simple Random Sampling $\{(x_i, y_i): i = 1, ..., n\}$ [SLR.2]
Zero *Conditional* Mean Disturbance $E(u \mid x) = 0$ [SLR.4]

Combine SLR.1 and SLR.2:
$$y_i = \beta_0 + \beta_1 x_i + u_i$$
, $i = 1, ..., n$

Then add SLR.4: $E(y|x) = \widehat{\beta_0} + \widehat{\beta_1} \cdot x$

Theorem 2.1
$$E(\widehat{\beta_1}) = \beta_1$$
 (see p. 48 for proof of $\widehat{\beta_1} = \beta_1 + \frac{cov(x,u)}{var(x)}$) [2.52] $E(\widehat{\beta_0}) = \beta_0$ (see p. 49) [2.53]

3. Variances and Standard Errors of Important Regression Parameters

Fourth key condition: Homoskedasticity (constant error variance): $var(u \mid x) = \sigma^2$ [SLR.5]

Estimated error variance
$$\hat{\sigma}^2 = \frac{1}{n-2} \sum \hat{u_i}^2$$
 a.k.a. Mean Squared Error [2.61]

Standard error of regression
$$\hat{\sigma} = \sqrt{\hat{\sigma}^2} = \sqrt{\frac{\sum \widehat{u_i}^2}{n-2}}$$
 a.k.a. 'root MSE' [2.62]

Sampling variance of slope
$$(\beta_1)$$
 $\operatorname{var}(\widehat{\beta_1}) = \frac{\widehat{\sigma}^2}{\sum (x_i - \bar{x})^2}$ [2.57]

Standard error of slope
$$\operatorname{se}(\widehat{\beta_1}) = \frac{\widehat{\sigma}}{\sqrt{\sum (x_i - \bar{x})^2}}$$
 p. 56

Sampling variance of intercept
$$(\beta_0)$$
 var $(\widehat{\beta_0}) = \frac{\widehat{\sigma}^2}{\sum (x_i - \bar{x})^2} \cdot \frac{\sum x_i^2}{n}$ [2.58]

Standard error of intercept
$$\operatorname{se}(\widehat{\beta}_0) = \frac{\widehat{\sigma}}{\sqrt{\sum (x_i - \bar{x})^2}} \cdot \sqrt{\frac{\sum x_i^2}{n}}$$

4. Example: three data points...

Cartesian coordinates: $\{(1,1), (2,3), (3,2)\} = \{(x_1,y_1), (x_2,y_2), (x_3,y_3)\}$

4. Example: three data points...

Fill in the following table:

i	X _i	y_i	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})(y_i - \overline{y})$
1	1	1	-1	1	-1	1	1
2	2	3	0	0	1	1	0
3	3	2	1	1	0	0	0
Σ	6	6		$SST_x = 2$		$SST_y = 2$	
Σ/n	$\bar{x} = 2$	$\bar{y} = 2$				•	
$\Sigma/(n-1)$				var(x)=1		var(y)=1	$cov(x,y) = \frac{1}{2}$

Fill in the following equations:

Slope:
$$\widehat{\beta_1} = \frac{cov(x,y)}{var(x)} = \frac{1/2}{1} = 1/2$$

Intercept:
$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1}\overline{x} = 2 - \frac{1}{2} \cdot 2 = 1$$

4. Example: three data points...

Fill in the following table:

i	X _i	y_i	$\widehat{y_i} = \widehat{\beta_0} + \widehat{\beta_1}_{X_i}$	$\widehat{\mathbf{u}_{\mathbf{i}}} = (\mathbf{y}_{\mathbf{i}} - \widehat{\mathbf{y}_{\mathbf{i}}})$	$\widehat{\mathbf{u_i}} \cdot \mathbf{x_i}$	$\widehat{\mathbf{u}_{\mathbf{i}}}^2 = (\mathbf{y}_{\mathbf{i}} - \widehat{\mathbf{y}_{\mathbf{i}}})^2$
1	1	1	1+(½)×1=1½	$1-1\frac{1}{2} = -\frac{1}{2}$	- ¹ / ₂	1/4
2	2	3	$1+(\frac{1}{2})\times 2=2$	3-2 = 1	2	1
3	3	2	$1+(\frac{1}{2})\times 3=2\frac{1}{2}$	$2-2\frac{1}{2} = -\frac{1}{2}$	-1½	1/4
Σ	6	6	$\Sigma \widehat{y_i} = 6$	$\Sigma \widehat{\mathbf{u}_{\mathbf{i}}} = 0$	$\Sigma \widehat{\mathbf{u}_{\mathbf{i}}} \cdot \mathbf{x}_i = 0$	SSR = 1½
Σ/n	$\bar{x} = 2$	$\overline{y} = 2$	$\overline{\hat{y}} = 2$			

Fill in the following equations:

sigma:
$$\sqrt{\widehat{\sigma^2}} = \sqrt{\frac{SSR}{n-2}} = \sqrt{(1\frac{1}{2})/1} \cong 1.225$$

$$\operatorname{se}(\widehat{\beta_1}) = \frac{\widehat{\sigma}}{\sqrt{\sum (x_i - \bar{x})^2}} = \frac{\sqrt{1\frac{1}{2}}}{\sqrt{2}} = .866$$

$$\operatorname{se}(\widehat{\beta_0}) = \frac{\widehat{\sigma}}{\sqrt{\sum (x_i - \bar{x})^2}} \cdot \sqrt{\frac{\sum x_i^2}{n}} = 1.871$$

R²:
$$\frac{SST_y - SSR}{SST_y} = \frac{2 - 1\frac{1}{2}}{2} = .25$$

4. Example: three data points...

Use R to check results – estimated slope and intercept; graph regression line and plot fitted values; verify properties of residuals; verify standard errors; verify R²

```
\label{eq:model} $$\operatorname{model} < -\operatorname{lm}(y \sim x)$ $$\operatorname{summary}(\operatorname{model})$ $$\operatorname{plot}(x,y,\operatorname{pch}=16,\operatorname{xlim}=c(0,4),\operatorname{ylim}=c(0,4))$ $$\operatorname{text}(x,y,\operatorname{labels}=\operatorname{cartesian},\operatorname{pos}=c(1,3,1),\operatorname{xpd}=\operatorname{TRUE})$ $$\operatorname{abline}(a=\operatorname{model}\operatorname{scoefficients}[1],\operatorname{b}=\operatorname{model}\operatorname{scoefficients}[2],\operatorname{col}=\operatorname{"red"})$ $$\operatorname{points}(x,\operatorname{model}\operatorname{fitted},\operatorname{col}=\operatorname{"red"})$ $$\operatorname{cbind}(y,\operatorname{model}\operatorname{fitted},\operatorname{model}\operatorname{residuals},\operatorname{model}\operatorname{residuals}^*x)$ $$\operatorname{round}(\operatorname{sum}(\operatorname{model}\operatorname{residuals},x),\operatorname{digits}=2)$ $$\operatorname{round}(\operatorname{sum}(\operatorname{model}\operatorname{residuals}^*x),\operatorname{digits}=2)$ $$\operatorname{round}(\operatorname{sum}(\operatorname{model}\operatorname{residuals}^*x),\operatorname{digits}=2)$ $$$
```

4. Example: three little data points...

Check R results – estimated slope, intercept, residuals, and fitted values; sigma, standard errors, R²

5. The 'Coefficient of Determination'

Total Sum of Squares	$SST = \sum (y_i - \bar{y})^2$	$= (n-1) \cdot var(y)$	[2.33]
----------------------	--------------------------------	------------------------	--------

Residual Sum of Squares
$$SSR = \sum (y_i - \hat{y}_i)^2 = \sum \hat{u}_i^2 = (n-2) \cdot M.S.E.$$
 [2.35]

Explained Sum of Squares
$$SSE = \sum (\hat{y}_i - \bar{y})^2$$
 [2.34]

Relationship:
$$SST = SSR + SSE$$
 [2.36]

Coefficient of Determination
$$R^2 = 1 - \frac{SSR}{SST} = \frac{SSE}{SST}$$
 [2.38]

Note:
$$SST_x = \sum (x_i - \bar{x})^2$$
 (p. 48)