DIAGNOSTICS & SUBSET SELECTION

Dr. Aric LaBarr
Institute for Advanced Analytics

SUBSET SELECTION METHODS

Birth Weight Data Set

- Model the association between various factors and child being born with low birth weight (< 2.5kg)
- 189 observations in the data set

Birth Weight Data Set

- Model the association between various factors and child being born with low birth weight (< 2.5kg)
- Predictors:
 - age: mother's age (years)
 - lwt: mother's weight at last menstrual period (lbs)
 - smoke: mother's smoking status during pregnancy
 - race: mother's race (1=White, 2 = Black, 3 = Other)
 - ptl: number of premature labors
 - ht: history of hypertension
 - ui: uterine irritability
 - ftv: number of physician visits during first trimester

Best Subsets

Stepwise Selection

Note:No (additional) effects met the 0.03 significance level for entry into the model.

Summary of Stepwise Selection							
Step	Effect				Score	Wald	
	Entered	Removed	DF	Number In	Chi- Square	Chi- Square	Pr > Chi Sq
1	lwt		1	1	5.4382		0.0197

Type 3 Analysis of Effects					
Effect	DF	Wald Chi-Square	Pr > ChiSq		
lwt	1	5.1921	0.0227		

Analysis of Maximum Likelihood Estimates							
Parameter	DF	Estimate	Standard Error	Pr > ChiSq			
Intercept	1	0.9983	0.7853	1.6161	0.2036		
lwt	1	-0.0141	0.00617	5.1921	0.0227		

```
## Start: AIC=236.67
## low ~ 1
##
##
                  Df Deviance
                              AIC
## + lwt
                   1
                       228.69 232.69
## + factor(smoke) 1 229.81 233.81
## + factor(race)
                   2 229.66 235.66
                   1 231.91 235.91
## + age
## <none>
                       234.67 236.67
##
## Step: AIC=232.69
## low \sim lwt
##
##
                  Df Deviance
                              AIC
## + factor(smoke) 1 224.34 230.34
## + factor(race)
                   2 223.26 231.26
                       228.69 232.69
## <none>
                   1
                       227.12 233.12
## + age
## - lwt
                   1
                       234,67 236,67
##
```

```
## Step: AIC=230.34
## low ~ lwt + factor(smoke)
##
                 Df Deviance AIC
##
## + factor(race) 2 215.01 225.01
## <none>
                      224.34 230.34
                  1 222.88 230.88
## + age
## - factor(smoke) 1 228.69 232.69
                  1 229.81 233.81
## - lwt
##
## Step: AIC=225.01
## low ~ lwt + factor(smoke) + factor(race)
##
##
                  Df Deviance AIC
                      215.01 225.01
## <none>
                  1 214.58 226.58
## + age
           1 219.97 227.97
## - lwt
## - factor(race) 2 224.34 230.34
## - factor(smoke) 1 223.26 231.26
```

```
summary(step.model)
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   1.18087
                             1.00983 1.169 0.24225
                 ## lwt
## factor(smoke)1 1.06001 0.37832 2.802 0.00508 **
## factor(race)other -0.31958  0.52560 -0.608  0.54317
## factor(race)white -1.29009 0.51087 -2.525 0.01156 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 234.67 on 188 degrees of freedom
##
## Residual deviance: 215.01 on 184 degrees of freedom
## AIC: 225.01
```

Backward Elimination

Backward Selection – SAS

Backward Selection – SAS

Note:No (additional) effects met the 0.03 significance level for removal from the model.

Summary of Backward Elimination							
Step	Effect Removed DF Number Wald Chi-Square				Pr > ChiSq		
1	age	1	3	0.4326	0.5107		
2	lwt	1	2	4.4149	0.0356		

Backward Selection – SAS

Type 3 Analysis of Effects						
Effect DF Wald Chi-Square Pr > Chi						
race	2	9.1128	0.0105			
smoke	1	9.1357	0.0025			

Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi- Square	Pr > ChiS q	
Intercept		1	-1.8405	0.3529	27.2065	<.0001	
race	black	1	1.0841	0.4900	4.8951	0.0269	
race	other	1	1.1086	0.4003	7.6689	0.0056	
smoke		1	1.1160	0.3692	9.1357	0.0025	

Backward Selection – R

```
back.model <- step(full.model, direction = "backward")</pre>
## Start: AIC=226.58
## low ~ age + lwt + factor(smoke) + factor(race)
##
##
                 Df Deviance AIC
## - age 1
                      215.01 225.01
                      214.58 226.58
## <none>
           1 218.86 228.86
## - lwt
## - factor(race) 2 222.88 230.88
## - factor(smoke) 1 222.66 232.66
##
## Step: AIC=225.01
## low ~ lwt + factor(smoke) + factor(race)
##
                 Df Deviance AIC
##
                      215.01 225.01
## <none>
           1 219.97 227.97
## - lwt
## - factor(race) 2 224.34 230.34
## - factor(smoke) 1 223.26 231.26
```

Backward Selection – R

summary(back.model)

```
## Coefficients:
##
                  Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   1.18087
                             1.00983 1.169 0.24225
## lwt
                  ## factor(smoke)1 1.06001 0.37832 2.802 0.00508 **
## factor(race)other -0.31958 0.52560 -0.608 0.54317
## factor(race)white -1.29009 0.51087 -2.525 0.01156 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 234.67 on 188 degrees of freedom
## Residual deviance: 215.01 on 184
                                 degrees of freedom
## AIC: 225.01
```

Scalability in PROC LOGISTIC

Interactions with Forward Selection

P-value vs. BIC Selection

 For our birth weight data set, BIC selection is the same as the p-value selection with the following alpha:

$$1 - P(\chi_1^2 > \log(n)) = 1 - P(\chi_1^2 > \log(189)) = 0.022$$

- Lot of attention being given to p-values and how other selection techniques are better.
- Attention **should** be on significance level (α) , **not** on p-value.
- DON'T ALWAYS USE 0.05!

DIAGNOSTICS

Residuals?

- Linear regression residuals have properties useful for model diagnostics.
- What is a residual in a binary response model?
- Many types of "residuals" in binary response model setting, just not as intuitive.
 - Deviance residuals
 - Partial residuals
 - Pearson residuals
 - Etc.

Deviance

- Model is a summary of a data set.
- The saturated model fits the data perfectly, but isn't really a useful summary.
- Deviance is a measure of how far a fitted model is from the saturated model – essentially our "error."
- Logistic regression minimizes the sum of squared deviances!
- Deviance residuals tell us how much each observation reduces the deviance.

Influence Statistics

Influence Statistics

DIFDEV

Measures change in deviance with deletion of the observation.

DIFCHISQ

 Measures change in Pearson Chi-square with deletion of observation.

DFBETAS

 Measure standardized change in each parameter estimate with deletion of observation.

Cook's D

 Measures the overall impact to the coefficients in the model.

