注意事项: 1. 考前请将密封线内各项信息填写清楚;

- 2. 可使用计算器, 所有答案请直接答在试卷上;
- 3. 考试形式: 闭卷;

木试券共 九 大颗、連分 100 分、 老试时间 120 分钟。

题号	 =	Ξ	四	五	六	七	八	九	总分
得分									
评卷人									

一. 选择题 (15分, 每题 3分)

, (i=1,2),且满足 $P\{X_1X_2=0\}=1$,则

$$P\{X_1 = X_2\} =$$

歌: A. O B. 1/4 C. 1/2

船

2. 设随机变量 X, Y 相互独立、 $X \sim N(0,1), Y \sim N(1,1)$, 则_

- (A) $P(X+Y \le 0) = 1/2$; (B) $P(X+Y \le 1) = 1/2$;

 - (C) $P(X-Y \le 0) = 1/2$;
- (D) $P(X-Y \le 1) = 1/2$.

3. 设随机变量 X_1, X_2, \dots, X_n 独立同分布, 且方差为 $\sigma^2 > 0$ 令 $Y = \frac{1}{n} \sum_{i=1}^{n} X_i$,

- (A) $Cov(X_1, Y) = \sigma^2 / n$; (B) $Cov(X_1, Y) = \sigma^2$;
- (C) $D(X_1 + Y) = (n+2)\sigma^2/n$; (D) $D(X_1 Y) = (n+1)\sigma^2/n$.

《概率论与数理统计(2学分)》试卷 A 第 1 页 共 8 页

4	. 设 X, Y 相3	互独立,都)	服从参数	为 2 的指	数分布,	则 $P\{X\cdot$	< Y} =		
	(A) 0;			(B)	1/4;				
	(C) 1/2;			(D)	1				
				(2)					
5	. 设 X 的分布	軍为 X	•						
		P	-2 a	-1	1/8	1 b	1/8		
则证	可能正确的是		-	1.4	170	-	178		
	(A) a-b=	1:		(B	EX = 1;				
	(C) a+b	< 1/4;		(D) EX < 1/	4.			1
-	埴空顋 (18分,每	题3分	.)					
					du al m	(117 0)	4		
. 1.	设 X, Y 为随机	发展且 P (X	=0, Y=	7, 1	(X≥0)=P	{Y≥0}=-	7'		
则日	$P(\max(X, Y) \ge$	0}=	-	.0					
2	设随机变量 X	眼以参粉为	2 65364	A公本 F	7-27-0	同(E (2)			
2.	XNUVEX.BL A	NK/N SE SK/U	E HUTHY	AN THE E	1 4-31-2,	州 [(乙)		-	
3 1	遊机变量 X, Y	/ 相互独立	日服以后	一公在	P(Y-k)	- P(V -	b) = (k + 1)/2 k =	0 1
J. 1	uvixa.n,	THEOLOGICA	1/JK/5(17)	23-13-1	(X-K)	-1(1-	(A + 1)13, K =	0,1,
	则 $P(X=Y)$)=							
4. }	遊机变量(X,	$Y) \sim N(0,$	1;0,4;	ρ),已知	D(2X-	(Y) = 1.	则 ρ =		
5. 1	如果 $A \cup B =$	<i>A</i> , 且 A F	B = A,	则事件	A 与 B	满足的	关系是		
6.	设连续型	随机变	量 ξ	的分	布函数	F(x)	$= \begin{cases} \frac{1}{2}e^x x \\ 1 - \frac{1}{2}e^{-x} \end{cases}$	≤ 0 $x > 0$	则
P 15	$ \xi - 2 < 3$	•							

《概率论与数理统计(2学分)》试卷A第2页共8页

 Ξ (10 分) 有 10 盒种子,其中 1 盒发芽率为 90%,其他 9 盒为 20% 随机选取其中 1 盒,从中取出 1 粒种子,该种子能发芽的概率为多少?若该种子能发芽,则它来自发芽率高的 1 盒的概率是多少?

(根率论与数理统计(2学分)) 试卷 A 第 3 页 共 8 页

四 (10 分). 设二维随机变量 (X,Y) 的联合密度函数 $f(x,y) = \begin{cases} 6x, & 0 < x < y < 1 \\ 0, & 1 \end{cases}$, 求

- X,Y的边缘密度函数;
 P(X+Y≤1);
- (3) cov(X,Y)

《概率论与数理统计(2学分)》试卷A第4页共8页

五(10 分) 设二维随机变量(X,Y)的联合密度函数

$$f(x,y) = \begin{cases} 2e^{-2x-y}, & x > 0, y > 0 \\ 0, & \text{if } \text{if } \end{cases}$$

求 $Z = \max\{X, Y\}$ 的密度函数.

《探索公与教理经计(2 学公)》 计类 4 第 5 页 共 8 页

六(10分)某厂生产某产品 1000件,其价格为 P=2000 元/件,其使用寿命 X(单位:天)的分布密度为

$$f(x) = \begin{cases} \frac{1}{20000} e^{-\frac{1}{20000}(x-365)} & x \ge 365\\ 0 & x < 365 \end{cases}$$

现由某保险公司为其质量进行保险: 厂方向保险公司交保费 P_0 元/件,若每件产品若寿命小于 1095 天(3 年),则由保险公司按原价赔偿 2000 元/件,试利用中心极限定理计算

- (1) 若保费 $P_0 = 100$ 元/件, 保险公司亏本的概率?
- (2) 试确定保费 P_0 ,使保险公司亏本的概率不超过1%.

$$(e^{-0.0365} \approx 0.96, \ \Phi(1.45) = 0.926, \ \Phi(1.61) = 0.946, \ \Phi(2.33) = 0.99)$$

《概率论与影理统计 (2 学分)》 试验 A 篦 6 面 共 8 面

七 (12 分) 随机变量(X, Y)服从在区域{0<x<2, 0<y<1}上均匀分布。

- (1) 求(X, Y)的概率密度函数及分布函数
- (2) 设 $\xi = X + Y, \eta = aX + bY$, 且 ξ, η 不相关, $D\eta = 1$, 求 a, b

《概率论与数理统计(2学分)》试卷 A 第 7 页 共 8 页

八(8 分) 在桥牌比赛中,将 52 张牌任意地分给东、南、西、北四家,求在北家 的 13 张牌中:

- (1) 恰有5张黑桃、5张红心、2张方块、1张梅花的概率
- (2) 在已知有一张 K 的情况下, 这张 K 是黑桃的概率

九. 证明题 (7分)

设事件 A、 B、 C 同时发生必导致事件 D 发生, 证明: $P(A) + P(B) + P(C) \le 2 + P(D)$.

《概率论与数理统计 (2 学分)》试卷 A 第 8 页 共 8 页