

Development of A Multichannel Modular Universal Biopotential Amplifier Train (RTR Module)

GROUP-35, Summer Defense 2016

SUPERVISOR

Saiful Islam Khan
Lecturer, Faculty of Engineering,
AIUB.

EXTERNAL SUPERVISOR

Chowdhury Akram Hossain Senior Assistant Professor, Faculty of Engineering, AIUB.

Group Members

MD. Amirul Islam Rokan ID:13-23295-1

Fakrul Islam Tushar ID:13-23244-1

Rupu Chowdhury ID:13-23143-1

Contents

- Biomedical Engineering
- **>** Biopotentials
- > Available Biopotential LAB Equipment Problem
- Project Idea
- Block Diagram of the project
- > RTR Module Configuration
- > Hand on skill Enhancement
- Output of ECG,EEG and EMG
- Cost of the Project
- > Software Alternative
- > Limitation & Solution
- > Student Survey
- Reference

Biomedical Engineering

Biomedical engineers (BME) apply advance engineering designing knowledge to solve medical challenges and design health care devices problems[1].

- ✓ Engineering your health
- ✓ Designing artificial limbs
- **✓** Designing medical equipment and so on....

Biopotential

Biopotentials are electric potentials that is measured in living cells, tissues and organisms, which accompanies biochemical process [1].

There are different types of biopotentials in different parts of human body Different biopotential are ECG, EEG, EMG, EOG, AAP etc.

Biopotential

Amplitude

(mV)

Bandwidth

(Hz)

ECG

1-5

0.5-100

EEG

0.001-0.01

0.5-40

"Problems with the biopotential lab's equipment"

"

Available Laboratory Devices

b) Biopac ECG100C [4].

D)BiBeat ECG kit [5].

D)BiBeat EMG kit [3].

Fig.1: Biopotential lab devices.

High Cost

IDEA OF THE PROJECT

BLOCK DIAGRAM OF THE PROJECT

Fig.2: Block diagram of the project.

BLOCK DIAGRAM OF THE RTR MODULE

Multichannel Universal Biopotential Amplifier Traineer -Non-chinical Experimental Measure of ECG, EEG & EMG.

BLOCK DIAGRAM OF THE CONFIGURATION

a) ECG Configuration

b) EEG Configuration

Fig.4: Configuration Block diagram of the RTR module for acquiring biosignals.

c) EMG Configuration

DESIGNED PROTOTYPE

Fig.5: Prototype of RTR Module.

HAND-ON DESIGNING EXPERIENCE

Fig.6: Connection configuration.

HAND-ON DESIGNING EXPERIENCE

b) Breadboard filter design

a) RTR Module.

Fig.7: Connection configuration with circuit made in breadboard.

ECG MEASUREMENT

(b)Non-clinical experimental output collected from Bi-Beat[2].

(a) Electrode placement.

Fig.8: ECG measurement.

(c) ECG output.

(c) ECG output.

EEG MEASUREMENT

(a) Electrode placement.

(b) Standard Alpha & Beta range of EEG[1].

(c) EEG output.

Fig.9: EEG measurement.

EMG MEASUREMENT

(a) Electrode placement and rest position

(b) Electrode placement a compressed position

(c) Non clinical EMG output[2].

(d) EMG output.

Fig. 10: EMG measurement.

Cost

Equipment	Cost (TAKA)		
PCB Printout and Soldering	3500		
RTR Box	2500		
Op-Amps	2000		
Circuit Equipment	2000		
Electrodes and other wires	1000		
Data Acquisition system	800		
Total	11800TK / \$143		

Target achievements

SOFTWARE ALTERNATIVE

Fig.11: Software alternative.

LIMITATION & SOLUTION

For medical equipment is good to have the tolerance level of **0.1%**, where we had used resistance of **5%-10%** tolerance due to the lacking of SMD implementation limitation.

For over come the limitation we are coming with the

"RTR module 2.0"

"RTR MODULE 2.0"

Cost Approximately \$250

#Start a small startup # National Patent #Catch the marker

"

6?
Questions

SURVEY QUESTIONS

			Strongly Disagreed				Strongly Agreed		
1.	The "RTR Module" will improve medical instrumentations knowledge when compared to traditional lecture courses.	1	2	3	4	5			
2.	This "RTR Module" will provide more practical knowledge and technologies for medical instrumentations.	1	2	3	4	5			
3.	You can relate the RTR Modules instrumentation with your theoretical knowledge.	1	2	3	4	5			
4.	RTR Modules step by step filtering options give you more clear ideas about bio-amplification and filtering.	1	2	3	4	5			
5.	RTR Module is giving more improved in hands-on skills of medical instrument design.	1	2	3	4	5			
6.	This "RTR module" will make you pay more affords on this course.	1	2	3	4	5			

SURVEY RESULT

SD= Strongly Disagreed GD= Generally Disagreed N= Neutral GA= Generally Agreed SA = Strongly Agreed

Reference

[1] The Biosignal How-To [BPM biosignals]. 2016. The Biosignal How-To [BPM biosignals]. [ONLINE] Available at: http://biosignals.berndporr.me.uk/doku.php?id=start. Accessed 01 May 2016.

[2] BiBeat. 2016. 12 lead ECG | BiBeat. [ONLINE] Available at: http://bibeat.com/product/12-lead-ecg/. Accessed 02 May 2016.

[3]O. O. Store, "R&D kit (16-channel) — 32bit, daisy, & accessories," OpenBCI Online Store, 2016. [Online]. Available: http://shop.openbci.com/collections/frontpage/products/openbci-16-channel-r-d-kit?variant=785215991. Accessed: Dec. 28, 2016.

[4] [Online]. Available: https://www.biopac.com/product/ecg-electrocardiogram-amplifier/. Accessed: Dec. 28, 2016.

[5] M. E. Ltd, "Mega electronics Ltd," 2016. [Online]. Available: http://www.megaemg.com/products/. Accessed: Dec. 28, 2016.

Thank you !!!©

ANY Question ???©