CSE460 Lab Assignment 0

AHMAD AL ASAD

ID: 19101196

Section: 06

PROBLEM 1

a.

Truth Table:

Α	В	С	~A~BC	~AB~C	A~B~C	ABC	Y = ~A~BC + ~AB~C + A~B~C +
							ABC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	1
0	1	0	0	1	0	0	1
0	1	1	0	0	0	0	0
1	0	0	0	0	1	0	1
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	1	1

From the above truth table, we can say when A is low or 0 the output is XOR of B and C, when A is high or 1 the output is XNOR of B and C. In general, when one of the inputs is 0, Y = XOR of other 2 inputs, similarly when that same input is 1, Y = XNOR of the other two inputs.

b.

Code:

Waveform:

Compilation Report:

Simulation Report:

From the above waveform, at time = 4ns, when A = 1, B = 0, C = 0 we get Y = 1 From the above waveform, at time = 8ns, when A = 1, B = 1, C = 0 we get Y = 0 For both time instances, the timing diagram input and output values match with the above truth table.

Simulation Report (random values to the input pins at half grid intervals):

From the above waveform, at time = 15ns, when A = 1, B = 1, C = 0 we get Y = 0From the above waveform, at time = 22ns, when A = 1, B = 0, C = 1 we get Y = 0For both time instances, the timing diagram input and output values match with the above truth table. Y = ABC + ABC + ABC + ABC

Converting the NOT Gates to NAND Gates:

 $Y = \sim (AA) \sim (BB)C + \sim (AA)B \sim (CC) + A \sim (BB) \sim (CC) + ABC$

Converting the AND gates followed by OR gates to NAND Gates:

 $Y = {\sim} [\sim {\sim}(AA)\sim (BB)C \} \sim {\sim}(AA)B\sim (CC) \} \sim {\sim}(BB)\sim (CC) \} \sim {\sim}(ABC \}$

Code (using only NAND Gates):

Waveform (using only NAND Gates):

Compilation Report (using only NAND Gates):

Simulation Report (using only NAND Gates):

RTL Circuit (using only NAND Gates):

