

计算机组成原理 Project6 实验报告

Verilog - 支持 50 指令流水线 CPU

{add,addu,and,div,divu,mult,multu,nor,or,sub,subu,xor, addi,addiu,andi,lui,ori,xori, beq,blez,bltz,bgez,bgtz,bne, slt,sltu,slti,sltiu,sll,sllv,sra,srav,srl,srlv, lw,lh,lhu,lb,lbu,sw,sh,sb,jal,jr,j,jalr,mthi,mtlo,mfhi,mflo}.

北京航空航天大学 计算机学院 陈麒先 16061160

二〇一七年十二月

郑重声明

关于诚实守信公约:

本实验报告由本人独立完成,全部内容均为本人通过查找互联网资料、翻阅课件、课堂笔记和教材后独立思考的结果。特此声明。

16061160

陈麒先

原创性声明

作业中出现的公式、图片、代码段以及图片的文字注释信息,均为作者原创。抄袭行为在任何情况下都被严格禁止(COPY is strictly prohibited under any circumstances)! 转载或引用须征得作者本人同意,并注明出处!

16061160

陈麒先

目录

第一章 设计架构	2
第一节 流水线 CPU 顶层架构视图	2
第二节 流水线 CPU 模块定义说明	2
第三节 流水线 CPU 控制单元设	8
第四节 流水线 CPU 数据通路构造	11
第五节 流水线 CPU 转发暂停机制1952	13
第五节 流水线 CPU 转发暂停机制1952	13
第三章 思考题	33

第一章 设计架构

第一节 流水线 CPU 顶层架构视图(部分)

Figure 7.58 Pipelined processor with full hazard handling

第二节 流水线 CPU 模块定义说明

1, IFU

(1) 基本要求

- •起始地址: 0x00003000。
- •在实现设计中,为了保持模块的独立性,将 IFU 模块分成 IM、PC、NPC 三个模块的组合。其中 IM 模块单独负责取指令,其输入为 32 位 PC,输出为 32 位指令码;PC 单独建模寄存器,用于在 clk 上升沿更新为 NPC 的值; NPC 通过控制信号的输入,实现对 NPC 的计算。

(2) 端口定义

端口名	方向	描述
clk	In	时钟信号
Reset	In	异步复位信号
if_beq	In	B类跳转使能信号
if_jr	In	jr 跳转使能信号
if_j	In	j跳转使能信号
If_jal	In	jal 跳转使能信号
zero	In	相等条件信号
Offset	In	地址偏移量
Instr	Out	输出 32 位指令码

(3) 功能说明

序号	功能	描述
1	同步复位	Reset 信号有效时,PC 复位
2	b 类跳转	b 类信号和条件信号同时有效时, 执行跳转
3	j类跳转	j类信号有效时,执行跳转
4	jr 类跳转	jr 信号有效时,执行跳转至 jr_PC
5	PC4	PC 决定所取指令的地址,每个周期 PC+4

2, GPR

(1) 基本要求

- •用具有写使能的寄存器实现,寄存器总数为 32 个。
- •0 号寄存器的值保持为 0。

(2) 端口定义

端口名	方向	描述
clk	In	时钟信号
reset	In	异步复位信号
RA	[4:0] In	读总线 A 地址
RB	[4:0] In	读总线 B 地址
RW	[4:0] In	写寄存器地址
WD	[31:0] In	写数据输入

WE	In	写使能
BusA	[31:0] Out	总线 A 输出
BusB	[31:0] Out	总线 B 输出

(3) 功能说明

序号	功能	描述
1	同步复位	Reset 信号有效时,GRF 复位
2	读寄存器	根据 RA, RB 所指示的地址,读出对应寄存器的值
3	写寄存器	根据 RW 所指示的地址,将 WD 的数据写入对应寄存器
4	0 号寄存器	0 号寄存器不连接数据写入端口,输出接地

3、ALU

(1) 基本要求

- •提供 32 位加、减、或运算及大小比较功能。
- •可以不支持溢出(不检测溢出)。

(2) 端口定义

端口名	方向	描述
A	[31:0] In	ALU 第一个操作数
В	[31:1] In	ALU 第二个操作数
ALUOp	[1:0] In	ALU 控制信号
ALUOut	[31:0] Out	ALU 计算结果

(3) 功能说明

序号	功能	描述
1	加	ALUOp = 00, 两个操作数相加
2	减	ALUOp=01,两个操作数相减
3	或	ALUOp = 10, 两个操作数按位或

4, DM

(1) 基本要求

•容量为 32bit * 1024。

•起始地址: 0x00000000。

(2) 端口定义

端口名	方向	描述
clk	In	时钟信号
reset	In	异步复位信号
WE	In	写使能信号
WD	In	写入数据
address	In	写入地址
RD	Out	读内存数据

(3) 功能说明

序号	功能	描述
1	同步复位	Reset 信号有效时,DM 复位
2	读内存数据	WE 信号为 0 时,读内存中 Address 指示的地址数据
3	写内存数据	WE 信号为 1 时,向内存中 Address 指示的地址写数据

5, EXT:

(1) 基本要求

•注意扩展方式

(2) 端口定义

端口名	方向	描述
Imm16	[15:0] In	输入待扩展的 16 位立即数
ExtOp	[1:0] In	扩展信号
Ext32	[31:0] Out	扩展结果输出

(3) 功能说明

序号	功能	描述
1	零扩展	当 ExtOp==2'b00 时,执行零扩展
2	符号扩展	当 ExtOp==2'b01 时,执行符号扩展

3 高位扩展 当 ExtOp==2'b10 时,执行高位扩展

6, CMP:

(1) 基本要求

•作为跳转类指令的条件判断信号, 需前移至 F 级。

(2) 端口定义

端口名	方向	描述
A	[31:0] In	比较数 A
В	[31:0] In	比较数 B
equal	Out	相等比较结果

(3) 功能说明

序号	功能	描述				
1	相等比较	当 equal 输出高电平时,说明两输入操作数相等				

7, MD:

(1) 基本要求

- •要求实现乘除运算,并能够模拟硬件设备中的延迟。
- •内置 hi/lo 寄存器,并能对其进行读写。

(2) 端口定义

端口名	方向	描述		
A	[31:0] In	第一个操作数		
В	[31:0] In	第二个操作数		
WD	[31:0] In	写寄存器数据		
clk	In	时钟信号		
reset	In	复位信号		
mthi	In	写 hi 寄存器使能		
mtlo	In	写 lo 寄存器使能		
start	In	発動信号		
MDOp	[1:0] In	运算操作控制信号		
busy	Out	繁忙信号		
hi	[31:0] Out	高 32 位寄存器		
lo	[31:0] Out	低 32 位寄存器		

(3) 功能说明

序号	功能	描述	
1	异步复位	Reset 信号有效时,MD 复位	
2	有无符号乘除运算	根据 MDOp 的输入值选择进行有无符号乘除运算	
3	写 hi/lo 寄存器	根据 hi/lo 寄存器写使能信号将 WD 写入	
4	延迟处理	输出 busy 信号模拟乘除运算单元延迟	

8. DMEXT:

(1) 基本要求

•对 DM 读出的数据进行扩展。

(2) 端口定义

端口名	方向	描述		
A	[1:0] In	输入 DM 的地址低 2 位		
Op	[2:0] In	扩展操作控制符		
Din	[31:0] In	输入扩展单元数据(从DM 获得)		
Dout	[31:0] Out	输出扩展结果待写回		

(3) 功能说明

序号	功能	描述		
1	零扩展半字	根据选择的部分进行零扩展半字		
2	符号扩展半字	根据选择的部分进行符号扩展半字		
3	零扩展字节	根据选择的部分进行零扩展字节		
4	符号扩展字节	根据选择的部分进行符号扩展字节		

第三节 流水线 CPU 控制单元设计

(1) 端口定义

端口名	方向	描述					
OpCode	[5:0] In	指令高六位 Ins [31:26]					
Func	[5:1] In	指令低六位 Ins [5:0]					
RegDst	Out	若为高电平,选择 Rd,否则选择 Rt 作为 GPR 的 RW 输入					
ALUSrc	Out	若为高电平,选择扩展数字,否则选择 BusB 作为 ALU 的第二位输入					
MemToReg	Out	若为高电平,选择 DM,否则选择 ALUOut 作为 GPR 的 WD 输入					
RegWrite	Out	若为高电平,则对 GPR 进行写操作,否则写使能无效					
MemWrite	Out	若为高电平,则对 DM 进行写操作,否则对 DM 进行读操作					
If_beq	Out	若为高电平且 zero 为高电平,则跳转					
ExtOp[0]	Out	井园冲亭 EVT 的存出					
ExtOp[1]	Out	共同决定 EXT 的行为					
ALUOp[0]	Out	共同决定 ALU 的行为					
ALUOp[1]	Out	共四伏定 ALU 的11 为					

(2) 控制器真值表

cal-r	add	addu	and	nor	or	sub	subu	xor
OpCode				0000	000			
Func	100000	100001	100100	100111	100101	100010	100011	100110
ALUSrc	0	0	0	0	0	0	0	0
MemWrite	0	0	0	0	0	0	0	0
RegWrite	1	1	1	1	1	1	1	1
MemToReg	0	0	0	0	0	0	0	0
EXTOp[1]	0	0	0	0	0	0	0	0
EXTOp[0]	0	0	0	0	0	0	0	0
RegDst	1	1	1	1	1	1	1	1
ALUOp[2]	0	0	0	1	0	0	0	1
ALUOp[1]	0	0	1	0	1	0	0	0
ALUOp[0]	0	0	1	1	0	1	1	0

cal-i	addi	addiu	andi	lui	ori	xori
OpCode	001000	001001	001100	001111	001101	001110
Func	N/A					

ALUSrc	1	1	1	1	1	1
MemWrite	0	0	0	0	0	0
RegWrite	1	1	1	1	1	1
MemToReg	0	0	0	0	0	0
EXTOp[1]	0	0	0	1	0	0
EXTOp[0]	1	1	0	0	0	0
RegDst	0	0	0	0	0	0
ALUOp[2]	0	0	0	0	0	1
ALUOp[1]	0	0	1	0	1	0
ALUOp[0]	0	0	1	0	0	0

branch	beq	bgez	bgtz	blez	bltz	bne	
OpCode	000100	000001	000111	000110	000001	000101	
Func		N/A					
Func2	N/A	00001	N/A	N/A	00000	N/A	
EXTOp[1]	0	0	0	0	0	0	
EXTOp[0]	1	1	1	1	1	1	

jump	j	jal	jalr	jr
OpCode	000010	000011	000000	000000
Func	N.	/A	001001	001000
RegWrite	0	1	1	0
set	slt	slti	sltiu	sltu
OpCode	000000	001010	001011	000000
Func	101010	N	/A	101011
ALUSrc	0	1	1	0
MemWrite	0	0	0	0
RegWrite	1	1	1	1
MemToReg	0	0	0	0
EXTOp[1]	0	0	0	0
EXTOp[0]	0	1	1	0
RegDst	1	0	0	1
ALUOp[2]	1	1	1	1
ALUOp[1]	1	1	1	1
ALUOp[0]	0	0	1	1

shift	sll	sllv	sra	srav	srl	srlv
OpCode	000000	000000	000000	000000	000000	000000
Func	000000	000100	000011	000111	000010	000110
RegWrite	1	1	1	1	1	1
RegDst	1	1	1	1	1	1

load	lw	lh	lhu	lb	lbu		
OpCode	100011	100001	100101	100000	100100		
Func	N/A						
ALUSrc	1	1	1	1	1		
MemWrite	0	0	0	0	0		
RegWrite	1	1	1	1	1		
MemToReg	1	1	1	1	1		
EXTOp[1]	0	0	0	0	0		
EXTOp[0]	1	1	1	1	1		
RegDst	0	0	0	0	0		
ALUOp[2]	0	0	0	0	0		
ALUOp[1]	0	0	0	0	0		
ALUOp[0]	0	0	0	0	0		
DMEXTOp[2]	0	1	0	0	0		
DMEXTOP[1]	0	0	1	1	0		
DMEXTOp[0]	0	0	1	0	1		

store	SW	sh	sb		
OpCode	101011	101001	101000		
Func	N/A				
ALUSrc	1	1	1		
MemWrite	1	1	1		
RegWrite	0	0	0		
MemToReg	0	0	0		
EXTOp[1]	0	0	0		
EXTOp[0]	1	1	1		
RegDst	0	0	0		

第四节 数据通路构造表(部分)

	指令		addu	subu	ori	lui	1w	SW	
D.	р	С	pc4	pc4	pc4	pc4	pc4	pc4	
F 级	i	m	pc	рс	рс	рс	рс	pc	
-3%	ро	c4	рс	рс	рс	рс	рс	pc	
F-D	D-Reg	IR@D	im	im	im	im	im	im	
Г	D Keg	PC4@D	pc4	pc4	pc4	pc4	pc4	pc4	
	GPR	RA	IR@D[Rs]	IR@D[Rs]	IR@D[Rs]	IR@D[Rs]	IR@D[Rs]	IR@D[Rs]	
	OI IX	RB	IR@D[Rt]	IR@D[Rt]				IR@D[Rt]	
	ЕХ	ΥT			IR@D[IMM]	IR@D[IMM]	IR@D[IMM]	IR@D[IMM]	
		pc4							
D	NPC	jr_pc							
级	INI C	imm							
		IR							
	СМР	D1							
_	CMI	D2							
	pc8								
		IR@E	IR@D	IR@D	IR@D	IR@D	IR@D	IR@D	
		PC8@E							
D-E	E-Reg	RA@E	GPR. RA	GPR. RA	GPR. RA	GPR. RA	GPR. RA	GPR. RA	
		RB@E	GPR. RB	GPR. RB				GPR. RB	
		ext@E			EXT	EXT	EXT	EXT	
Е		A	RA@E	RA@E	RA@E	RA@E	RA@E	RA@E	
	ALU	В	RB@E	RB@E	ext@E	ext@E	ext@E	ext@E	
-//		Б	N/A						
		IR@M	IR@E	IR@E	IR@E	IR@E	IR@E	IR@E	
E-M	M-Reg	PC8@M							
LM	m nes	AO@M	ALU	ALU	ALU	ALU	ALU	ALU	
		WM@M						RB@E	
M	DM	add					AO@M	AO@M	
级	DM	WM						WM@M	
		IR@W	IR@E	IR@E	IR@E	IR@E	IR@E	IR@E	
M-W	W-Reg	PC8@W							
111 11	" Reg	AO@W	AO@E	AO@E	AO@E	AO@E			
	-	DO@W					DM		
W	GPR	RW	IR@W[Rd]	IR@W[Rd]	IR@W[Rt]	IR@W[Rt]	IR@W[Rt]		
级	OLIV	WD	AO@W	AO@W	AO@W	AO@W	DO@W		

指令	beq	jal	jr	j	MUX	0	1	2
	pc4 npc	npc	npc	npc	pc_in	pc4@F	NPC	
F 级	рс	pc	рс	рс	рс			
	рс	pc	рс	pc	рс			
F-D	im	im	im	im	im			
I D	pc4	pc4	pc4	pc4	pc4			
	IR@D[Rs]		IR@D[Rs]		IR@D[Rs]			
	IR@D[Rt]				IR@D[Rt]			
	IR@D[IMM]				IR@D[IMM]			
	PC4@D	PC4@D		PC4@D	PC4@D			
D 级			GPR. RA		MFAD	GPR. RA	F1	F2
D级	EXT				EXT			
		IR@D		IR@D	IR@D			
	IR@D[Rs]				MFAD			
	IR@D[Rt]				MFBD			
		PC4@D			PC4@D			
	IR@D	IR@D	IR@D	IR@D	IR@D			
		pc8			pc8			
D-E					GPR. RA			
					GPR. RB			
					EXT			
					MFAE	RA@E	WD@W	AO@M
E级					ALUB	MFBE	ext@E	
	N/A				MFBE	RB@E	WD@W	AO@M
	IR@E	IR@E	IR@E	IR@E	IR@E			
E-M		PC8@E			PC8@E			
L WI					ALU			
					RB@E			
M 级					AO@M			
M SX					MFBM	WM@M	WD@W	
	IR@E	IR@E	IR@E	IR@E	IR@E			
M-W		PC8@M			PC8@M			
141 44					AO@E			
					DM			
W 级		31			regwrite	IR@W[Rd]	IR@W[Rt]	31
" 以		PC8@W			writeback	AO@W	DO@W	PC8@W

第五节 转发暂停控制机制

1. 概述

流水线各流水级间冲突主要体现在寄存器的占用冲突,因此结合分布式译码特性,我们容易获知各流水级所执行指令对寄存器的存取特征。根据这些特征,我们可以分析出转发暂停的构造机制。

2. 转发暂停构造表

			Е			М			W				
		RegW	rite	MemT	oReg	RegW	rite	MemT	oReg	RegW	rite	MemT	oReg
		Rs	Rt										
D	Rs	S	-	S	-	F	_	S	-	F	_	F	_
D	Rt	_	S	_	S	_	F	_	S	_	F	_	F
Е	Rs	_	_	_	-	F	_	S	-	F	_	F	
Ľ	Rt	_	_	_	_	_	F	_	S	_	F	_	F
M	Rt	-	_	_	-	-	_	-	_	-	F	-	F

第二章 测试验证

流水线覆盖性分析测试用例构造表(部分)

1. addu 测试样例表

用例编号	测试类型	前序指令	冲突位置	冲突寄存器	测试样例
1	R-M-RS	subu	MEM	rs	subu \$1, \$2, \$3
					addu \$4, \$1, \$2
2	R-M-RT	subu	MEM	rt	subu \$1, \$2, \$3
					addu \$4, \$2, \$1
3	R-W-RS	subu	WB	rs	subu \$1,\$2,\$3
					nop
					addu \$4, \$1, \$2
4	R-W-RT	subu	WB	rt	subu \$1, \$2, \$3

					nop
					addu \$4, \$2, \$1
5	R-W-RS	subu	WB	rs	subu \$1, \$2, \$3
					nop
					nop
					addu \$4, \$2, \$1
6	R-W-RT	subu	WB	rt	subu \$1, \$2, \$3
					nop
					nop
					addu \$4, \$2, \$1
7	I-M-RS	ori	MEM	rs	ori \$1,20
					addu \$4, \$1, \$2
8	I-M-RT	ori	MEM	rt	ori \$1,20
					addu \$4, \$2, \$1
9	I-W-RS	ori	WB	rs	ori \$1,20
					nop
					addu \$4, \$1, \$2
10	I-W-RT	ori	WB	rt	ori \$1,20
					nop
					addu \$4, \$2, \$1
11	I-W-RS	ori	WB	rs	ori \$1,20
					nop
					nop
					addu \$4, \$1, \$2
12	I-W-RT	ori	WB	rt	ori \$1,20
					nop
					nop
					addu \$4, \$2, \$1
13	LW-M-RS	1w	MEM	rs	lw \$1,0(\$0)

					addu \$4, \$1, \$2
14	LW-M-RT	1w	MEM	rt	1w \$1,0(\$0)
					addu \$4, \$2, \$1
					lw \$1,0(\$0)
15	LW-WB-RS	1w	WB	rs	nop
					addu \$4, \$1, \$2
					lw \$1,0(\$0)
16	LW-WB-RT	1w	WB	rt	nop
					addu \$4, \$2, \$1
					lw \$1,0(\$0)
17	LW-W-RS	1 117	WB	rs	nop
17	LW W NS	1w		13	nop
					addu \$4, \$1, \$2
		1w	WB	rt	lw \$1,0(\$0)
18	LW-W-RT				nop
10	Bii ii Ki				nop
					addu \$4, \$2, \$1
					jal loop
19	J-M-RS	jal	MEM	rs	addu \$1, \$31, \$2
					loop:
					jal loop
20	J-M-RT	jal	MEM	rt	addu \$1, \$2, \$31
					loop:
					jal loop
21	J-W-RS	jal	WB	rs	ori \$4,1
	<i>y</i> 10	<i>J</i>			loop:
					addu \$1, \$31, \$2
22	J-W-RS	jal	WB	rt	jal loop
					ori \$4,1

			loop:	
			addu \$1, \$2, \$31	

2. subu 测试样例表

用例编号	测试类型	前序指令	冲突位置	冲突寄存器	测试样例
1	R-M-RS	addu	MEM	rs	addu \$1, \$2, \$3
1	CH IN H	audu	IVILLIVI	15	subu \$4, \$1, \$2
2	R-M-RT	subu	MEM	rt	subu \$1, \$2, \$3
2	K W KI	Subu	MITM	10	subu \$4, \$2, \$1
					addu \$1, \$2, \$3
3	R-W-RS	addu	WB	rs	nop
					addu \$4, \$1, \$2
					subu \$1, \$2, \$3
4	R-W-RT	subu	WB	rt	nop
					subu \$4, \$2, \$1
	R-W-RS	addu	WB		addu \$1, \$2, \$3
5				rs	nop
					nop
					addu \$4, \$1, \$2
		subu	WB	rt	subu \$1, \$2, \$3
6	R-W-RT				nop
	"	2000	2		nop
					subu \$4, \$2, \$1
7	I-M-RS	ori	MEM	rs	ori \$1,10
	1 11 110	011	MEM	15	subu \$4, \$1, \$2
8	I-M-RT	ori	MEM	rt	ori \$1,2
Ŭ	1 111 111	011	MILIM	10	subu \$4, \$2, \$1
					ori \$1,10
9	I-W-RS	ori	WB	rs	nop
					subu \$4, \$1, \$2

r	I		ı	T	1
					ori \$1,2
10	I-W-RT	ori	WB	rt	nop
					subu \$4, \$2, \$1
		ori	WB		ori \$1,10
11	I-W-RS			rs	nop
	1 # 105		""	15	nop
					subu \$4, \$1, \$2
					ori \$1,2
12	I-W-RT	ori	WB	rt	nop
12	I W KI	011	WD	Γt	nop
					subu \$4, \$2, \$1
13	LW-M-RS	1w	MEM	na	lw \$1,0(\$0)
13	LW-M-K2	I W		rs	subu \$4, \$1, \$2
14	LW-M-RT	1w	MEM	n+	lw \$1,0(\$0)
14			IVILLIVI	rt	subu \$4, \$2, \$1
		1w	WB		lw \$1,0(\$0)
15	LW-W-RS			rs	nop
					subu \$4, \$1, \$2
					lw \$1,0(\$0)
16	LW-W-RT	1w	WB	rt	nop
					subu \$4, \$2, \$1
					lw \$1,0(\$0)
1.7	LW-W-RS	1	WD	***	nop
17	LW-W-V2	1w	WB	rs	nop
					subu \$4, \$1, \$2
					lw \$1,0(\$0)
10	ти и от	1w	WB	n+	nop
18	LW-W-RT			rt	nop
					subu \$4, \$2, \$1
-			•	•	

19	J-M-RS	jal	MEM	rs	jal 100p subu \$1, \$31, \$2
					loop:
					jal loop
20	J-M-RT	jal	MEM	rt	subu \$1, \$2, \$31
					loop:
		jal	WB	jal loop	jal loop
21	T W DC			70.0	ori \$4,1
21	J-W-RS			rs	loop:
					subu \$1,\$31,\$2
					jal loop
0.0	T W DA	• 1	WD	,	ori \$4,1
22	J-W-RT	jal	WB	rt	loop:
					subu \$1, \$2, \$31

3. or i 测试样例表

用例编号	测试类型	前序指令	冲突位置	冲突寄存器	测试样例
1	R-M-RS	addu	MEM	rs	addu \$1, \$2, \$3 ori \$4, \$1, 7
3	R-W-RS	addu	WB	rs	addu \$1, \$2, \$3 nop ori \$4, \$1, 7
5	I-M-RS	ori	MEM	rs	ori \$1,\$2,2 ori \$3,\$1,8
6	I-W-RS	ori	WB	rs	ori \$1, \$2, 2 nop ori \$3, \$1, 8
7	LW-M-RS	1w	MEM	rs	lw \$1,0(\$0)

					ori \$3,\$1,2
					lw \$1,0(\$0)
8	LW-W-RS	1w	WB	rs	nop
					ori \$3,\$1,2
					lw \$1,0(\$0)
9	IW W DC	1	WB	70.7	nop
9	9 LW-W-RS	1w		rs	nop
					ori \$3,\$1,2
			MEM		jal loop
10	J-M-RS	jal		rs	ori \$31, \$31, 1
					loop:
					jal loop
1 1	T W DC	:_1	WD		ori \$1, \$1, 1
11	J-W-RS	jal	WB	rs	loop:
					ori \$31, \$31, 1

4. j 测试样例表

用例编号	测试类型	测试样例
		ori \$2,5
		ori \$1,1
1	T	addu \$1,\$1,\$2
1	J	j exit
		ori \$3,1
		exit:

5. lw 测试样例表

用例编号	测试类型	前序指令	冲突位置	冲突寄存器	测试样例
1	R-M-RS	addu	МЕМ	rs	addu \$1, \$2, \$3 1w \$4, 0(\$1)

2	R-W-RS	addu	WB	rs	addu \$1, \$2, \$3 nop 1w \$4, 0(\$1)
3	R-W-RS	addu	WB	rs	addu \$1, \$2, \$3 nop nop 1w \$4, 0(\$1)
4	I-M-RS	ori	MEM	rs	ori \$1,8 1w \$4,0(\$1)
5	I-W-RS	ori	WB	rs	ori \$1,8 nop 1w \$4,0(\$1)
6	I-W-RS	ori	WB	rs	ori \$1,8 nop nop 1w \$4,0(\$1)
7	LW-M-RS	1w	MEM	rs	1w \$1, 4 (\$0) 1w \$4, 0 (\$1)
8	LW-W-RS	1w	WB	rs	1w \$1,4(\$0)

					nop							
					lw							
					\$4,0(\$1)							
					1w							
					\$1,4(\$0)							
9	LW-W-RS	1,,,	WB	na	nop							
9	LW-W-V2	1w	WD	rs	nop							
						1w						
					\$4,0(\$1)							
	J-M-RS	jal	МЕМ		jal loop							
10				***	1w							
10				MEM	MEM	rs	\$1,0(\$31)					
					loop:							
					jal loop							
11	тмрт	∔a1	, we	ш	WD	WD	WD	WD.	WD	WD	***	loop:
	J-M-RT	jal	WB	rs	1w							
					\$1,0(\$31)							

6. sw 测试样例表

用例编号	测试类型	前序指令	冲突位置	冲突寄存器	测试样例
					addu
1	R-M-RS	addu	MEM	rs	\$1, \$2, \$3
					sw \$2,0(\$1)
					addu
2	R-W-RS	addu	WB	rs	\$1, \$2, \$3
2					nop
					sw \$2,0(\$1)
					addu
3	R-W-RS	addu	WB	rs	\$1, \$2, \$3
					nop

					nop
					sw \$2,0(\$1)
4	T M DC	:	MEM		ori \$1,8
4	I-M-RS	ori	MEM	rs	sw \$2,0(\$1)
					ori \$1,8
5	I-W-RS	ori	WB	rs	nop
					sw \$2,0(\$1)
					ori \$1,8
6	I-W-RS	ori	WB	rs	nop
	I W KS	011	WD	15	nop
					sw \$2,0(\$1)
7	LW-M-RS	1w	MEM	rs	lw \$1,4(\$0)
,	LW W NO	I W	IAITZIAI	13	sw \$2,0(\$1)
					lw \$1,4(\$0)
8	LW-W-RS	1w	WB	rs	nop
					sw \$2,0(\$1)
					lw \$1,4(\$0)
9	LW-W-RS	$1\mathrm{w}$	WB	rs	nop
3	L" " NO	T W	"""	13	nop
					sw \$2,0(\$1)
					jal loop
10	J-M-RS	jal	MEM	rs	SW
	J III 110	Jui	MIDM	15	\$1,0(\$31)
					loop:
					jal loop
11	J-M-RT	jal	WB	rs	loop:
	איז זיינ ט	J 0.1	"""	15	SW
					\$1,0(\$31)

7. beq 测试样例表

用例编号	测试类型	前序指令	冲突位置	冲突寄存器	测试样例
					addu
					\$1, \$3, \$0
					beq
1	R-M-RS	addu	MEM	rs	\$1, \$3, exit
					ori \$4,1
					ori \$4,2
					exit:
					addu
					\$1, \$3, \$0
					beq
2	R-M-RT	addu	MEM	rt	\$3, \$1, exit
					ori \$4,1
					ori \$4,2
					exit:
					addu
					\$1, \$3, \$0
					nop
2	D W DC	. dd		***	beq
3	R-W-RS	addu	WB	rs	\$1, \$3, exit
					ori \$4,1
					ori \$4,2
					exit:
					addu
					\$1, \$3, \$0
A	р ш рт	د ما الم	WD	no.t	nop
4	R-W-RT	addu	WB	rt	beq
					\$3, \$1, exit
					ori \$4,1

					ori \$4,2 exit:
5	R-W-RS	addu	WB	rs	addu \$1, \$3, \$0 nop nop beq \$1, \$3, exit ori \$4, 1 ori \$4, 2
					exit:
6	R-W-RT	addu	WB	rt	\$1, \$3, \$0 nop nop beq \$3, \$1, exit ori \$4, 1 ori \$4, 2 exit:
7	I-M-RS	ori	MEM	rs	ori \$1,3 beq \$1,\$3,exit ori \$4,1 ori \$4,2 exit:
8	I-M-RT	ori	MEM	rt	ori \$1,3 beq \$3,\$1,exit

					ori \$4,1
					ori \$4,2
					exit:
					ori \$1,3
					nop
					beq
9	I-W-RS	ori	WB	rs	\$1, \$3, exit
					ori \$4,1
					ori \$4,2
					exit:
					ori \$1,3
			WB		nop
		ori			beq
10	I-W-RT			rt	\$3, \$1, exit
					ori \$4,1
					ori \$4,2
					exit:
					ori \$1,3
					nop
					nop
11	I-W-RS	ori	WB	rs	beq
11	1 # 105	011	WD	15	\$1, \$3, exit
					ori \$4,1
					ori \$4,2
					exit:
					ori \$1,3
12	Т_W_ВТ	ori	WB	rt	nop
14	I-W-RT	ori		1 (nop
					beq

					\$3, \$1, exit ori \$4, 1
					ori \$4,2
					exit:
					addu
					\$4, \$2, \$3
					1w \$1,8(\$0)
					beq
13	LW-M-RS	1w	MEM	rs	\$1, \$4, exit
					ori \$5,1
					ori \$5,2
					exit:
	LW-M-RT	1w	MEM		addu
				rt	\$4, \$2, \$3
					lw \$1,8(\$0)
					beq
14					\$4, \$1, exit
					ori \$5,1
					ori \$5,2
					exit:
					addu
			WB		\$4, \$2, \$3
					lw \$1,8(\$0)
					nop
15	LW-WB-RS	1w		rs	beq
					\$1, \$4, exit
					ori \$5,1
					ori \$5,2
					exit:

16	LW-WB-RT	1w	WB	rt	addu \$4, \$2, \$3 lw \$1, 8(\$0) nop beq \$4, \$1, exit ori \$5, 1 ori \$5, 2 exit:
17	LW-W-RS	1w	WB	rs	addu \$4, \$2, \$3 lw \$1, 8(\$0) nop nop beq \$1, \$4, exit ori \$5, 1 ori \$5, 2 exit:
18	LW-W-RT	1w	WB	rt	addu \$4, \$2, \$3 lw \$1, 8(\$0) nop nop beq \$4, \$1, exit ori \$5, 1 ori \$5, 2 exit:

8. jr 测试样例表

用例编号	测试类型	前序指令	冲突位置	冲突寄存器	测试样例
					ori \$1,4
					jal loop
					addu
					\$31, \$31, \$1
					ori \$2,1
1	D M DC	- 11	MEM		ori \$3,1
1	R-M-RS	addu	MEM	rs	j exit
					ori \$8,1
					loop:
					jr \$31
					ori \$4,1
					exit:
	R-W-RS	addu	WB	rs	ori \$1,4
					jal loop
					addu
					\$31, \$31, \$1
					ori \$2,1
					ori \$3,1
2					j exit
					ori \$8,1
					loop:
					ori \$5,1
					jr \$31
					ori \$4,1
					exit:
3	D_W_DC	guhu	WB	rs	ori \$1,4
J	R-W-RS	subu			jal loop

					addu
					\$31, \$31, \$1
					ori \$2,1
					ori \$3,1
					j exit
					ori \$8,1
					loop:
					ori \$5,1
					ori \$6,1
					jr \$31
					ori \$4,1
					exit:
	I-M-RS	ori	MEM		ori \$1,4
				rs	ori \$1,4
					ori \$1,4
					jal loop
					ori \$31,8
					ori \$2,1
4					ori \$3,1
					j exit
					ori \$8,1
					loop:
					jr \$31
					ori \$4,1
					exit:
			WB		ori \$1,4
5	I-W-RS	ori		rs	ori \$1,4
o l					ori \$1,4
					jal loop

ori \$31,8 ori \$2,1 ori \$3,1 j exit ori \$8,1 loop: ori \$5,1 jr \$31 ori \$4,1 exit: ori \$1,4 ori \$1,4 ori \$1,4 jal loop ori \$3,18 ori \$2,1 ori \$3,1 jexit ori \$4,1 exit: The state ori \$1,4 ori \$1,4 jal loop ori \$3,1 jexit ori \$1,5 jexit ori \$2,1 ori \$3,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: The state ori \$1,4 ori \$1,4 ori \$1,4 ori \$1,4 ori \$1,4 ori \$4,1 exit: ori \$1,4 ori \$1,4 ori \$1,4 ori \$2,0x301c sw \$2,0(\$0) jal loop		T				T
ori \$3,1 j exit ori \$8,1 loop: ori \$5,1 jr \$31 ori \$4,1 exit: ori \$1,4 ori \$1,4 ori \$1,4 ori \$2,1 ori \$3,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: ori \$2,0x301c sw \$2,0(\$0)						ori \$31,8
J exit ori \$8,1 loop: ori \$5,1 jr \$31 ori \$4,1 exit:						ori \$2,1
ori \$8,1 loop: ori \$5,1 jr \$31 ori \$4,1 exit: ori \$1,4 ori \$1,4 ori \$1,4 ori \$1,4 jal loop ori \$31,8 ori \$2,1 ori \$3,1 loop: ori \$3,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: 7 LW-M-RS lw MEM rs ori \$2,0x301c sw \$2,0x301c sw \$2,0x301c						ori \$3,1
loop: ori \$5,1 jr \$31 ori \$4,1 exit: ori \$1,4 ori \$1,4 ori \$1,4 ori \$3,1 ori \$3,1 ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: ori \$1,4 ori \$2,0x301c sw \$2,0(\$0)						j exit
ori \$5,1 jr \$31 ori \$4,1 exit: ori \$1,4 ori \$1,4 ori \$31,8 ori \$2,1 ori \$3,1 jexit ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: The matter of th						ori \$8,1
Jir \$31 Ori \$4,1						loop:
ori \$4,1 exit: ori \$1,4 ori \$1,4 ori \$1,4 jal loop ori \$31,8 ori \$2,1 ori \$3,1 jexit ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: The matter of the state of the s						ori \$5,1
Contact Cont						jr \$31
ori \$1,4 ori \$1,4 ori \$1,4 ori \$1,4 ori \$1,4 ori \$31,8 ori \$2,1 ori \$3,1 ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: The LW-M-RS are law MEM are resident and resident are resident and resident are resident.						ori \$4,1
6 I-W-RS ori WB rs jexit ori \$3,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: 7 LW-M-RS lw MEM rs ori \$1,4 ori \$1,4 ori \$1,4 ori \$2,0x301c sw \$2,0(\$0)						exit:
ori \$1,4 jal loop ori \$31,8 ori \$2,1 ori \$3,1 j exit ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: 7 LW-M-RS lw MEM rs ori \$1,4 jal loop ori \$31,8 ori \$2,1 ori \$3,1 jexit ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit:						ori \$1,4
Jal loop ori \$31,8 ori \$2,1 ori \$3,1 jexit ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: The state of the state o			ori			ori \$1,4
Table Tabl					rs	ori \$1,4
ori \$2,1 ori \$3,1 j exit ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: 7 LW-M-RS lw MEM rs ori \$2,0x301c sw \$2,0(\$0)						jal loop
6 I-W-RS ori WB rs j exit ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: 7 LW-M-RS lw MEM rs ori \$2,0x301c sw \$2,0(\$0)						ori \$31,8
6 I-W-RS ori WB rs j exit ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: 7 LW-M-RS lw MEM rs ori \$2,0x301c sw \$2,0(\$0)						ori \$2,1
ori \$8,1 loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: 7 LW-M-RS lw MEM rs ori \$2,0x301c sw \$2,0(\$0)						ori \$3,1
loop: ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: ori \$1,4 ori \$2,0x301c sw \$2,0(\$0)	6					j exit
ori \$5,1 ori \$6,1 jr \$31 ori \$4,1 exit: 7 LW-M-RS lw MEM rs ori \$2,0x301c sw \$2,0(\$0)						ori \$8,1
ori \$6,1 jr \$31 ori \$4,1 exit: ori \$1,4 ori \$2,0x301c sw \$2,0(\$0)						loop:
jr \$31 ori \$4,1 exit: 7 LW-M-RS lw MEM rs ori \$2,0x301c sw \$2,0(\$0)						ori \$5,1
ori \$4,1 exit: The second of						ori \$6,1
7 LW-M-RS lw MEM rs exit: ori \$1,4 ori \$2,0x301c sw \$2,0(\$0)						jr \$31
7 LW-M-RS lw MEM rs ori \$1,4 ori \$2,0x301c sw \$2,0(\$0)			1w			ori \$4,1
7 LW-M-RS 1w MEM rs ori \$2,0x301c sw \$2,0(\$0)						exit:
7 LW-M-RS 1w MEM rs sw \$2,0(\$0)					rs	ori \$1,4
sw \$2,0(\$0)	7					ori \$2,0x301c
jal loop						sw \$2,0(\$0)
						jal loop

					4 40 4 7 (1-)
					lw \$31,0(\$0)
					ori \$2,1
					ori \$3,1
					j exit
					ori \$8,1
					loop:
					jr \$31
					ori \$4,1
					exit:
					ori \$1,4
					ori \$2,0x301c
					sw \$2,0(\$0)
		1w	WB		jal loop
					lw \$31,0(\$0)
					ori \$2,1
0	I W WD DC				ori \$3,1
8	LW-WB-RS			rs	j exit
					ori \$8,1
					loop:
					ori \$5,1
					jr \$31
					ori \$4,1
					exit:
					ori \$1,4
					ori \$2,0x301c
	I W W DC	1w	IVD		sw \$2,0(\$0)
9	LW-W-RS		WB	rs	jal loop
					lw \$31,0(\$0)
					ori \$2,1
					1

					ori \$3,1
					j exit
					ori \$8,1
					loop:
					ori \$5,1
					ori \$6,1
					jr \$31
					ori \$4,1
					exit:
					ori \$1,4
					jal loop
					addu
	J-M-RS	jal	WB		\$31, \$31, \$1
					ori \$2,1
10					ori \$3,1
10				rs	j exit
					ori \$8,1
					loop:
					jr \$31
					ori \$4,1
					exit:
					ori \$1,4
					jal loop
					addu
					\$31, \$31, \$1
11	J-W-RS	jal	WB	rs	ori \$2,1
					ori \$3,1
					j exit
					ori \$8,1
<u> </u>					

第三章 思考题

1. 为什么需要有单独的乘除法部件而不是整合进 ALU? 为何需要有独立的 HI、LO 寄存器?

答:在真实的硬件设备中,乘除法的运算需要调用更多的资源,消耗更多的时间,所以乘除法运算需要单独的部件,来控制指令流。独立的 HI/LO 寄存器是出于处理器的需要,根据指令集规定的行为,乘除法的运算结果并不直接写回寄存器,而是先保存在 HI/LO 寄存器中,所以必须在处理器中设置这两个寄存器。

2. 参照你对延迟槽的理解. 试解释"乘除槽"。

答:延迟槽即跳转类指令(包括分支类跳转和绝对跳转)后的那条指令,该条指令在不影响程序功能的情况下,可以不受跳转指令的控制而强制执行,从而提高了流水线的工作效率。

乘除槽的概念是仿照延迟槽的概念进行定义的,在乘除法运算后,根据模拟硬件行为的要求,需要对下一条的读写 HI/L0 寄存器或乘除运算的指令进行暂停。但若能进行合理的编译优化,则可将有意义且逻辑正确的指令装载到乘除槽中,从而提高流水线的工作效率。

3. 为何上文文末提到的 lb 等指令使用的数据扩展模块应在 MEM/WB 之后, 而不能在 DM 之后?

答:因为对 DM 的访问导致 M 级的运行时间最长,决定了流水线的运行周期。若数据扩展模块位于该级,将延长流水线的运行周期,导致流水线的资源浪费,和性能下降。因而应将扩展模块置于 MEM/WB 之后的 W 级,减少对流水线整体性能的影响。

4. 举例说明并分析何时按字节访问内存相对于按字访问内存性能 上更有优势。(Hint: 考虑 C 语言中字符串的情况)

答:对于访问内存地址不对齐的情况,按字节访问更有效,因为按字访存,只能访问首地址为4的倍数且内存连续的内容。但是按字节访存则更为灵活,可以应对不同类型的指令,如1b,1w1,1wr等指令。

5. 如何概括你所设计的 CPU 的设计风格? 为了对抗复杂性你采取了哪些抽象和规范手段? 你对流水线 CPU 设计风格有何见解?

答:在阅读指导书完毕后,我将自己设计的CPU设计风格归结为探索者风格。 我在指令集的每次扩增的过程中,对新的指令进行寄存器占用分析,对冒险的转发 暂停进行动态的设计,这种设计风格更偏向于"探索者"。

为了对抗呈指数级增长的复杂性,我将流水线的暂停规范约束在 E 级流水段,以 E 级作为分析的基准,对于每条新指令,若该指令需要访问寄存器的值的位置发生在 E 级之前,或该指令更新寄存器的值行为发生在 E 级之后,则设计相应的暂停机制。

对于转发机制的设计,则完全依赖于寄存器的占用关系,前后级流水段的指令对同一寄存器进行占用(读、写操作),则可能需要转发数据,而具体是否发生转发,或转发的优先级如何,则依赖于具体的指令判断。这对于设计来说有一个工作量上的大大简化,因为对于占用寄存器的行为分析只需进行一次,译码也可交付控制器统一进行,分类项目也更为简化。综上所述,这种分析模式,有利于设计和处理器功能的扩展。

唯一的缺点,就是这种设计模式不利于显示的表达,一旦发生错误,将陷入 调试的深渊。

Figure 7.58 Pipelined processor with full hazard handling