Optimisation Recuit simulé

hepia HES-SO
Paul Albuquerque
Michel Vinckenbosch
Guido Bologna

2

Problème d'optimisation

- $\qquad \qquad \Omega : \mathbf{espace} \ \mathbf{des} \ \mathbf{configurations} \\ \mathbf{ou} \ \mathbf{espace} \ \mathbf{de} \ \mathbf{recherche}$
- C: fonction de coût (ou objectif ou fitness)
- Trouver une configuration $x^* \in \Omega$ de coût minimal

$$C(x^*) = \min \left\{ C(x) \mid x \in \Omega \right\}$$

Piège des minima locaux

 But: trouver une stratégie pour pouvoir sortir des minima locaux

Principe du recuit

- Initialement le métal est porté à haute température
- Puis refroidissement progressif
 - □ à haute température
 - atomes très agités (configurations atomiques équiprobables)
 - □ à basse température
 - atomes organisés en une structure atomique parfaite (configuration proche de l'état d'énergie minimale)
- Contrainte
 - Refroidissement lent
 - Si le refroidissement est trop rapide, il y a un risque de rester bloqué dans un minimum local (configuration sous-optimale)

Analogie problème d'optimisation / système physique

Problème	Système
d'optimisation	physique
fonction de coût / objectif $C(x)$	énergie libre $E(X)$
variables du problème	"coordonnées" des atomes
trouver une "bonne" configuration	trouver un état de basse énergie

Algorithme du recuit simulé (Kirkpatrick & al. - 1983)

- Algorithme
 - □ Le paramètre température (agitation thermique) autorise avec une certaine probabilité le choix de configurations d'énergie plus élevée
 - ⇒ capacité d'éviter les minima locaux
 - □ Suite de configurations dont le choix et l'acceptation dépendent de la fonction objectif et de la température
 - □ Procédure de refroidissement qui donne la décroissance de la température au cours du temps

Algorithme du recuit simulé (version Metropolis)

```
T \leftarrow T_0 -- Température initiale
X \leftarrow X_0 -- Configuration initiale
répéter
   répéter
      Tirer aléatoirement Y \in Voisinage(X)
      si \Delta E = E(Y) - E(X) < 0 ou \exp(-\Delta E / T) > \mu, \mu \in [0,1] aléatoire
      alors X \leftarrow Y
   jusqu'à fin palier
   T \leftarrow g(T) -- refroidissement : g strictement décroissante
jusqu'à critère d'arrêt vérifié
```

Probabilité d'acceptation des sauts positifs

- Choix des paramètres (en pratique)
 - T₀ est choisie à l'issue d'expérimentations ou tests
 - La longueur d'un palier est également fixée empiriquement
 - Schéma de température exponentiel

$$T_n = T_0 \cdot \alpha^n$$
, avec $n \in \{0,1,...\}$ et $0 < \alpha < 1$

- Critères d'arrêt possibles
 - pourcentage de configurations acceptées en dessous d'un seuil fixé
 - □ variation de l'énergie trop faible
 - □ choix d'une température minimale

- Résumé du choix des paramètres
 - Loi de décroissance de la température
 - □ Baisse de température entre deux paliers pas être trop importante

```
En théorie : T_n = T_0 / \ln n
```

En pratique :
$$T_n = T_0 \cdot \alpha^n$$
, avec $n \in \{0,1,...\}$ et $0.9 < \alpha < 1$

- Critères d'arrêt possibles
 - □ En pratique
 - Le pourcentage de configurations acceptées descend en dessous d'un seuil fixé
 - Variation de l'énergie trop faible
 - Choix d'une température minimale

Nb. de variables du problème

Remarque

- □ Voyageur de commerce
 - Recherche de la solution exacte ⇒ temps de calcul exponentiel
 - Recherche d'une solution approchée à 2% \Rightarrow temps de calcul en $O(N^3)$

v.

Le recuit simulé

- Avantages
 - Solutions de bonnes qualités
 - ☐ Méthode générale applicable à tout problème d'optimisation
 - Fonction à optimiser évaluable (mieux si variations évaluables)
 - Notion de voisins garantissant la connexité
 - □ Facile à programmer
 - □ Nouvelles contraintes incorporables à tout moment (e.g. problème des horaires)
- Inconvénients
 - Temps de calcul

Le recuit simulé: application

- Placement de composants électroniques
 - Fonction à optimiser?
 - Comment formuler le problème?
 - Quel algorithme?

Le recuit simulé: application

- Placement de composants électroniques
 - Modules → sommets d'un graphe
 - □ Interconnexions → arêtes d'un graphe
 - Coût de l'arrangement
 - longueur totale des fils + aire totale occupée

Placement sur une FPGA

Placement initial aléatoire

Placement final

- Les emplacements possibles sont fixes ici
- Donc pas d'optimisation de l'aire totale