

SEQUENCE LISTING

<110> The Board of Trustees of the University of Illinois
Costa, Robert
Raychaudhuri, Pradip
Wang, Xinhe
Kalinichenko, Vladimir
Major, Michael
Wang, I-Ching

<120> METHODS OF INHIBITING TUMOR CELL PROLIFERATION

<130> 03-284-E

<140> US 10/809,144
<141> 2004-03-25

<150> US 60/457,257
<151> 2003-03-25

<150> US 60/474,075
<151> 2003-10-23

<150> US 60/540,691
<151> 2004-01-30

<150> US 60/549,691
<151> 2004-03-02

<160> 13

<170> PatentIn version 3.0

<210> 1
<211> 2737
<212> DNA
<213> Homo Sapiens

<400> 1
ggagcccgga gcccccttc ggagctacgg cctaacggcg gcggcgactg cagtctggag 60
ggtccacact tttgtattctc aatggagagt gaaaacgcag attcataatg aaaacttagcc 120
cccgctggcc actgattctc aaaagacgga ggctgcccct tcctgttcaa aatgccccaa 180
gtgaaacatc agaggaggaa cctaagagat cccctgcccc acaggagtct aatcaagcag 240
aggcctccaa ggaagtggca gagtccaact cttgcaagtt tccagctggg atcaagatta 300
ttaaccaccc caccatgccc aacacgcaag tagtggccat ccccaacaat gctaataattc 360
acagcatcat cacagcactg actgccaagg gaaaagagag tggcagtagt gggcccaaca 420
aattcatcct catcagctgt gggggagccc caactcagcc tccaggactc cggcctcaaa 480
cccaaaccag ctatgatgcc aaaaggacag aagtgaccct ggagaccttg ggacaaaaac 540

ctgcagctag ggatgtgaat cttcctagac cacctggagc cctttgcgag cagaaacggg	600
agacctgtgc agatggtgag gcagcaggct gcactatcaa caatagccta tccaaacatcc	660
agtggcttcg aaagatgagt tctgatggac tgggctccc cagcatcaag caagagatgg	720
aggaaaagga gaattgtcac ctggagcagc gacaggttaa ggttggaggag cttcgagac	780
catcagcgtc ctggcagaac tctgtgtctg agcggccacc ctactcttac atggccatga	840
tacaattcgc catcaacagc actgagagga agcgcatgac tttgaaagac atctatacgt	900
ggattgagga ccactttccc tactttaagc acattgccaa gccaggctgg aagaactcca	960
tccgccacaa cctttccctg cacgacatgt ttgtccggga gacgtctgcc aatggcaagg	1020
tctccttctg gaccattcac cccagtgcc aaccgctactt gacattggac caggtgttta	1080
agcagcagaa acgaccgaat ccagagctcc gccggaacat gaccatcaaa accgaactcc	1140
ccctggcgc acggcggaaag atgaagccac tgctaccacg ggtcagctca tacctggtac	1200
ctatccagtt cccggtaaac cagtcactgg tttgcagcc ctcggtaag gtgccattgc	1260
ccctggcggc ttccctcatg agctcagagc ttgcccgccca tagcaagcga gtccgcattt	1320
cccccaaggt gctgctagct gaggagggaa tagctcctct ttcttctgca ggaccaggga	1380
aagaggagaa actcctgttt ggagaagggt tttctccttt gcttccagtt cagactatca	1440
aggaggaaga aatccagcct ggggaggaaa tgccacactt agcgagaccc atcaaagtgg	1500
agagccctcc cttggaagag tggccctccc cggcccccattt tttcaaagag gaatcatctc	1560
actcctggga ggattcgtcc caatctccca ccccaagacc caagaagtcc tacagtggc	1620
tttaggtcccc aaccgggtgt gtctcgaaaa tgcttgcgtat tcaacacagg gagaggaggg	1680
agaggagccg gtctcgaggaa aacacgcatt tactgcctcc ctgtgtggat gagccggagc	1740
tgctcttctc agaggggccc agtacttccc gctggccgc agagctccc ttcccagcag	1800
actcctctga ccctgcctcc cagtcagct actcccagga agtgggagga ccttttaaga	1860
caccattaa ggaaacgctg cccatctcct ccaccccgag caaatctgca ctccccagaa	1920
cccctgaatc ctggaggctc acgcccccaag ccaaagttagg gggactggat tttagccag	1980
tacaaacctc ccagggtgcc tctgacccct tgcctgaccc cctggggctg atggatctca	2040
gcaccactcc cttgcaaagt gctccccccc ttgaatcacc gcaaaggctc ctcagttcag	2100
aacccttaga cctcatctcc gtcccccttg gcaacttttc tccctcagat atagacgtcc	2160
ccaagccagg ctccccggag ccacaggttt ctggccttgc agccaatcgt tctctgacag	2220
aaggccttgtt cctggacaca atgaatgaca gcctcagcaa gatcctgctg gacatcagct	2280

tccctggcct	ggacgaggac	ccactggcc	ctgacaacat	caactggtcc	cagtttattc	2340
ctgagctaca	gtagagccct	gcccttgc	ctgtgctcaa	gctgtccacc	atcccgggca	2400
ctccaaggct	cagtgcaccc	caagcctctg	agtgaggaca	gcaggcaggg	actgttctgc	2460
tcctcatagc	tccctgctgc	ctgattatgc	aaaagttagca	gtcacaccct	agccactgct	2520
gggacttgt	gttccccaaag	agtatctgat	tcctctgctg	tccctgccag	gagctgaagg	2580
gtggaaacaa	caaaggcaat	ggtaaaaaga	gattaggaac	cocccagcct	gtttccattc	2640
tctgcccagc	agtctcttac	cttccctgat	cttgcaggg	tggtccgtgt	aaatagtata	2700
aattctccaa	attatcctct	aattataaat	gtaaagct			2737

<210> 2
<211> 748
<212> PRT
<213> Homo sapiens

<400> 2

Met	Lys	Thr	Ser	Pro	Arg	Arg	Pro	Leu	Ile	Leu	Lys	Arg	Arg	Arg	Leu
1				5				10			15				
Pro	Leu	Pro	Val	Gln	Asn	Ala	Pro	Ser	Glu	Thr	Ser	Glu	Glu	Glu	Pro
	20						25				30				
Lys	Arg	Ser	Pro	Ala	Gln	Gln	Glu	Ser	Asn	Gln	Ala	Glu	Ala	Ser	Lys
	35				40				45						
Glu	Val	Ala	Glu	Ser	Asn	Ser	Cys	Lys	Phe	Pro	Ala	Gly	Ile	Lys	Ile
	50				55			60							
Ile	Asn	His	Pro	Thr	Met	Pro	Asn	Thr	Gln	Val	Val	Ala	Ile	Pro	Asn
65					70				75			80			
Asn	Ala	Asn	Ile	His	Ser	Ile	Ile	Thr	Ala	Leu	Thr	Ala	Lys	Gly	Lys
					85				90			95			
Glu	Ser	Gly	Ser	Ser	Gly	Pro	Asn	Lys	Phe	Ile	Leu	Ile	Ser	Cys	Gly
					100			105			110				
Gly	Ala	Pro	Thr	Gln	Pro	Pro	Gly	Leu	Arg	Pro	Gln	Thr	Gln	Thr	Ser
					115			120			125				
Tyr	Asp	Ala	Lys	Arg	Thr	Glu	Val	Thr	Leu	Glu	Thr	Leu	Gly	Pro	Lys
					130			135			140				
Pro	Ala	Ala	Arg	Asp	Val	Asn	Leu	Pro	Arg	Pro	Pro	Gly	Ala	Leu	Cys
						145			150			155			160
Glu	Gln	Lys	Arg	Glu	Thr	Cys	Ala	Asp	Gly	Glu	Ala	Ala	Gly	Cys	Thr
						165			170			175			

Ile Asn Asn Ser Leu Ser Asn Ile Gln Trp Leu Arg Lys Met Ser Ser
180 185 190

Asp Gly Leu Gly Ser Arg Ser Ile Lys Gln Glu Met Glu Glu Lys Glu
195 200 205

Asn Cys His Leu Glu Gln Arg Gln Val Lys Val Glu Glu Pro Ser Arg
210 215 220

Pro Ser Ala Ser Trp Gln Asn Ser Val Ser Glu Arg Pro Pro Tyr Ser
225 230 235 240

Tyr Met Ala Met Ile Gln Phe Ala Ile Asn Ser Thr Glu Arg Lys Arg
245 250 255

Met Thr Leu Lys Asp Ile Tyr Thr Trp Ile Glu Asp His Phe Pro Tyr
260 265 270

Phe Lys His Ile Ala Lys Pro Gly Trp Lys Asn Ser Ile Arg His Asn
275 280 285

Leu Ser Leu His Asp Met Phe Val Arg Glu Thr Ser Ala Asn Gly Lys
290 295 300

Val Ser Phe Trp Thr Ile His Pro Ser Ala Asn Arg Tyr Leu Thr Leu
305 310 315 320

Asp Gln Val Phe Lys Gln Gln Lys Arg Pro Asn Pro Glu Leu Arg Arg
325 330 335

Asn Met Thr Ile Lys Thr Glu Leu Pro Leu Gly Ala Arg Arg Lys Met
340 345 350

Lys Pro Leu Leu Pro Arg Val Ser Ser Tyr Leu Val Pro Ile Gln Phe
355 360 365

Pro Val Asn Gln Ser Leu Val Leu Gln Pro Ser Val Lys Val Pro Leu
370 375 380

Pro Leu Ala Ala Ser Leu Met Ser Ser Glu Leu Ala Arg His Ser Lys
385 390 395 400

Arg Val Arg Ile Ala Pro Lys Val Leu Leu Ala Glu Glu Gly Ile Ala
405 410 415

Pro Leu Ser Ser Ala Gly Pro Gly Lys Glu Glu Lys Leu Leu Phe Gly
420 425 430

Glu Gly Phe Ser Pro Leu Leu Pro Val Gln Thr Ile Lys Glu Glu Glu
435 440 445

Ile Gln Pro Gly Glu Glu Met Pro His Leu Ala Arg Pro Ile Lys Val
450 455 460

Glu Ser Pro Pro Leu Glu Glu Trp Pro Ser Pro Ala Pro Ser Phe Lys
465 470 475 480

Glu Glu Ser Ser His Ser Trp Glu Asp Ser Ser Gln Ser Pro Thr Pro
 485 490 495

 Arg Pro Lys Lys Ser Tyr Ser Gly Leu Arg Ser Pro Thr Arg Cys Val
 500 505 510

 Ser Glu Met Leu Val Ile Gln His Arg Glu Arg Arg Glu Arg Ser Arg
 515 520 525

 Ser Arg Arg Lys Gln His Leu Leu Pro Pro Cys Val Asp Glu Pro Glu
 530 535 540

 Leu Leu Phe Ser Glu Gly Pro Ser Thr Ser Arg Trp Ala Ala Glu Leu
 545 550 555 560

 Pro Phe Pro Ala Asp Ser Ser Asp Pro Ala Ser Gln Leu Ser Tyr Ser
 565 570 575

 Gln Glu Val Gly Gly Pro Phe Lys Thr Pro Ile Lys Glu Thr Leu Pro
 580 585 590

 Ile Ser Ser Thr Pro Ser Lys Ser Val Leu Pro Arg Thr Pro Glu Ser
 595 600 605

 Trp Arg Leu Thr Pro Pro Ala Lys Val Gly Gly Leu Asp Phe Ser Pro
 610 615 620

 Val Gln Thr Ser Gln Gly Ala Ser Asp Pro Leu Pro Asp Pro Leu Gly
 625 630 635 640

 Leu Met Asp Leu Ser Thr Thr Pro Leu Gln Ser Ala Pro Pro Leu Glu
 645 650 655

 Ser Pro Gln Arg Leu Leu Ser Ser Glu Pro Leu Asp Leu Ile Ser Val
 660 665 670

 Pro Phe Gly Asn Ser Ser Pro Ser Asp Ile Asp Val Pro Lys Pro Gly
 675 680 685

 Ser Pro Glu Pro Gln Val Ser Gly Leu Ala Ala Asn Arg Ser Leu Thr
 690 695 700

 Glu Gly Leu Val Leu Asp Thr Met Asn Asp Ser Leu Ser Lys Ile Leu
 705 710 715 720

 Leu Asp Ile Ser Phe Pro Gly Leu Asp Glu Asp Pro Leu Gly Pro Asp
 725 730 735

 Asn Ile Asn Trp Ser Gln Phe Ile Pro Glu Leu Gln
 740 745

<210> 3
 <211> 6
 <212> PRT
 <213> Artificial

```

<220>
<223> FoxM1B LXLXXL motif

<220>
<221> UNSURE
<222> (2)..(2)
<223> X is any amino acid

<220>
<221> UNSURE
<222> (4)..(5)
<223> X is any amino acid

<400> 3

Leu Xaa Leu Xaa Xaa Leu
1          5

<210> 4
<211> 66
<212> DNA
<213> Artificial

<220>
<223> EcoR1 T-epitope tagged FoxM1B primer

<400> 4
gcggattca ccatggctag catgactggc ggacagcaaa tgggttggca gaactctgtg      60
tctgag                                         66

<210> 5
<211> 18
<212> DNA
<213> Artificial

<220>
<223> antisense primer for CMV expression vector SV-40 poly A region

<400> 5
gtttgtccaa ttatgtca                                18

<210> 6
<211> 12
<212> DNA
<213> Artificial

<220>
<223> FoxM1B/FoxA binding site

<400> 6
tttgtttgtt tg                                12

```

```

<210> 7
<211> 6
<212> RNA
<213> Artificial

<220>
<223> transcription termination signal

<400> 7
aauaaa

<210> 8
<211> 81
<212> PRT
<213> Homo sapiens

<400> 8

Pro Phe Lys Thr Pro Ile Lys Glu Thr Leu Pro Ile Ser Ser Thr Pro
1           5          10          15

Ser Lys Ser Val Leu Pro Arg Thr Pro Glu Ser Trp Arg Leu Thr Pro
20          25          30

Pro Ala Lys Val Gly Gly Leu Asp Phe Ser Pro Val Gln Thr Ser Gln
35          40          45

Gly Ala Ser Asp Pro Leu Pro Asp Pro Leu Gly Leu Met Asp Leu Ser
50          55          60

Thr Thr Pro Leu Gln Ser Ala Pro Pro Leu Glu Ser Pro Gln Arg Leu
65          70          75          80

Leu

<210> 9
<211> 28
<212> PRT
<213> Artificial

<220>
<223> LXLXXXL motif from FoxM1B amino acid residue 635 to 662

<220>
<221> UNSURE
<222> (2)..(4)
<223> X is any amino acid

<220>
<221> UNSURE
<222> (6)..(6)
<223> X is any amino acid

```

<220>
<221> UNSURE
<222> (8)..(9)
<223> X is any amino acid

<220>
<221> UNSURE
<222> (11)..(14)
<223> X is any amino acid

<220>
<221> UNSURE
<222> (16)..(20)
<223> X is any amino acid

<220>
<221> UNSURE
<222> (22)..(26)
<223> X is any amino acid

<400> 9

Leu Xaa Xaa Xaa Leu Xaa Leu Xaa Xaa Leu Xaa Xaa Xaa Leu Xaa
1 5 10 15

Xaa Xaa Xaa Xaa Leu Xaa Xaa Xaa Xaa Leu Leu
20 25

<210> 10
<211> 28
<212> PRT
<213> Mus Musculus

<220>
<221> MISC_FEATURE
<222> (1)..(9)
<223> X is D-Arg

<400> 10

Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Lys Phe Val Arg Ser Arg Arg
1 5 10 15

Pro Arg Thr Ala Ser Cys Ala Leu Ala Phe Val Asn
20 25

<210> 11
<211> 19
<212> PRT
<213> Mus Musculus

<400> 11

Lys Phe Val Arg Ser Arg Arg Pro Arg Thr Ala Ser Cys Ala Leu Ala
1 5 10 15

Phe Val Asn

<210> 12

<211> 30

<212> PRT

<213> Mus Musculus

<400> 12

Lys Phe Val Arg Ser Arg Arg Pro Arg Thr Ala Ser Cys Ala Leu Ala
1 5 10 15

Phe Val Asn Met Leu Leu Arg Leu Glu Arg Ile Leu Arg Arg
20 25 30

<210> 13

<211> 13

<212> PRT

<213> Human immunodeficiency virus

<400> 13

Met Gly Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
1 5 10