Readiness Assurance Outcomes

Before beginning this module, each student should be able to...

- Solve a system of linear equations (including finding a basis of the solution space if it is homogeneous) by interpreting as an augmented matrix and row reducing (Standard(s) E1, E2, E3, E4).
- State the definition of linear independence, and determine if a set of vectors is linearly dependent or independent (Standard(s) V5).
- State the definition of a spanning set, and determine if a set of vectors spans a vector space or subspace (Standard(s) V6, V7).
- State the definition of a basis, and determine if a set of vectors is a basis (Standard(s) V8, V9).

Readiness Assurance Resources

The following resources will help you prepare for this module.

• TODO

Readiness Assurance Test

1) Which of the following is a solution to the system of linear equations

$$x + 3y - z = 2$$
$$2x + 8y + 3z = -1$$
$$-x - y + 9z = -10$$

(a)
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{array}{c|c} (b) & \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \end{array}$$

(c)
$$\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

2) Find a basis for the solution set of the following homogeneous system of linear equations

$$x + 2y + -z - w = 0$$

$$-2x - 4y + 3z + 5w = 0$$

(a)
$$\left\{ \begin{bmatrix} 2\\1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\3\\1 \end{bmatrix} \right\}$$

$$(b) \left\{ \begin{bmatrix} 2\\2\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\3\\0 \end{bmatrix} \right\}$$

(c)
$$\left\{ \begin{bmatrix} 2\\1\\3\\1 \end{bmatrix} \right\}$$

(d) None of these are a basis.

3) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It does not span and is linearly dependent
- (b) It does not span and is linearly independent
- (c) It spans but it is linearly dependent
- (d) It is a basis of \mathbb{R}^3 .
- 4) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\3 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It does not span and is linearly dependent
- (b) It does not span and is linearly independent
- (c) It spans but it is linearly dependent
- (d) It is a basis of \mathbb{R}^3 .
- 5) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} -2\\0\\-2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\3\\-3 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It does not span and is linearly dependent
- (b) It does not span and is linearly independent
- (c) It spans but it is linearly dependent

- (d) It is a basis of \mathbb{R}^3 .
- 6) Determine which property applies to the set of vectors

$$\left\{ \begin{bmatrix} 2\\2\\-1 \end{bmatrix}, \begin{bmatrix} -3\\1\\-2 \end{bmatrix}, \begin{bmatrix} 1\\5\\-4 \end{bmatrix} \right\} \subset \mathbb{R}^3.$$

- (a) It does not span and is linearly dependent
- (b) It does not span and is linearly independent
- (c) It spans but it is linearly dependent
- (d) It is a basis of \mathbb{R}^3 .
- 7) Find a basis for the subspace of \mathbb{R}^4 spanned by the vectors ...
- 8) Suppose you know that every vector in \mathbb{R}^5 can be written as a linear combination of the vectors $\{\vec{v}_1,\ldots,\vec{v}_n\}$. What can you conclude about n?
 - (a) $n \le 5$
 - (b) n = 5
 - (c) $n \ge 5$
 - (d) n could be any positive integer
- 9) Suppose you know that every vector in \mathbb{R}^5 can be written uniquely as a linear combination of the vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$. What can you conclude about n?
 - (a) $n \le 5$
 - (b) n = 5
 - (c) $n \ge 5$
 - (d) n could be any positive integer
- 10) Suppose you know that every vector in \mathbb{R}^5 can be written uniquely as a linear combination of the vectors $\{\vec{v}_1,\ldots,\vec{v}_n\}$. What can you conclude about the set $\{\vec{v}_1,\ldots,\vec{v}_n\}$?
 - (a) It does not span and is linearly dependent
 - (b) It does not span and is linearly independent
 - (c) It spans but it is linearly dependent
 - (d) It is a basis of \mathbb{R}^3 .

Day 1

Application Activity 1. A linear transformation is a map between vector spaces that preserves the vector space operations. More precisely, if V and W are vector spaces, a map $T:V\to W$ is called a linear transformation if

1.
$$T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$$
 for any $\vec{v}, \vec{w} \in V$

2.
$$T(c\vec{v}) = cT(\vec{v})$$
 for any $c \in \mathbb{R}$, $\vec{v} \in V$.

In other words, a map is linear if one can do vector space operations before applying the map or after, and obtain the same answer.

V is called the **domain** of T and W is called the **co-domain** of T.

1) Determine if each of the following maps are linear transformations

(a)
$$T_1: \mathbb{R}^2 \to \mathbb{R}$$
 given by $T_1\left(\begin{bmatrix} a \\ b \end{bmatrix}\right) = \sqrt{a^2 + b^2}$

(b)
$$T_2: \mathbb{R}^3 \to \mathbb{R}^2$$
 given by $T_2 \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x-z \\ y \end{bmatrix}$

(c)
$$T_3: \mathcal{P}_d \to \mathcal{P}_{d-1}$$
 given by $T_3(f(x)) = f'(x)$.

(d)
$$T_4: C(\mathbb{R}) \to C(\mathbb{R})$$
 given by $T_4(f(x)) = f(-x)$

(e)
$$T_5: \mathcal{P} \to \mathcal{P}$$
 given by $T_5(f(x)) = f(x) + x^2$

2) Suppose
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
 is a linear transformation, and you know $T\begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $T\begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$.

Compute each of the following:

(a)
$$T \begin{pmatrix} \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix}$$

(b)
$$T\left(\begin{bmatrix}0\\0\\-2\end{bmatrix}\right)$$

(c)
$$T\left(\begin{bmatrix}1\\0\\1\end{bmatrix}\right)$$

(d)
$$T\left(\begin{bmatrix} -2\\0\\5 \end{bmatrix}\right)$$

3) Suppose
$$T: \mathbb{R}^4 \to \mathbb{R}^3$$
 is a linear transformation. What is the smallest number of vectors needed to determine T ? In other words, what is the smallest number n such that there are $\vec{v}_1, \ldots, \vec{v}_n \in \mathbb{R}^4$ and given $T(\vec{v}_1), \ldots, T(\vec{v}_n)$ you can determine $T(\vec{w})$ for **any** $\vec{w} \in \mathbb{R}^2$?

Fix an ordered basis for V. Since every vector can be written uniquely as a linear combination of basis vectors, a linear transformation $T:V\to W$ corresponds exactly to a choice of where each basis vector goes. For convenience, we can thus encode a linear transformation as a matrix, with one column for the image of each basis vector (in order).

1) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation with

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}3\\2\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\4\end{bmatrix} \qquad T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\0\end{bmatrix}$$

Write the matrix corresponding to this linear transformation with respect to the standard ordered basis.

4

2) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation with

$$T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}3\\2\end{bmatrix} \qquad \qquad T\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\4\end{bmatrix} \qquad \qquad T\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}5\\0\end{bmatrix}$$

Write the matrix corresponding to this linear transformation with respect to the ordered basis $\{\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & -1 & 3 \end{bmatrix}, \begin{bmatrix} -1 & 3 & 3 \\ -1 &$

3) Let $D: \mathcal{P}_3 \to \mathcal{P}_2$ be the derivative map (recall this is a linear transformation). Write the matrix corresponding to D with respect to the ordered basis $\{1, x, x^2, x^3\}$.

Day 2

Application Activity 2. Let $T: V \to W$ be a linear transformation.

- T is called *injective* or *one-to-one* if T does not map two distinct values to the same place. More precisely, T is injective if $T(\vec{v}) \neq T(\vec{w})$ whenever $\vec{v} \neq \vec{w}$.
- T is called *surjective* or *onto* if every element of W is mapped to by an element of V. More precisely, for every $\vec{w} \in W$, there is some $v \in V$ with $T(\vec{v}) = \vec{w}$.
- 1) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$. Determine if T is injective, surjective, both, or neither.
- 2) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Determine if T is injective, surjective, both, or neither.

We also have two important sets called the kernel of T and the image of T.

$$\ker T = \left\{ \vec{v} \in V \mid T(\vec{v}) = 0 \right\}$$

Im $T = \left\{ \vec{w} \in W \mid \text{there is some } v \in V \text{ with } T(\vec{v}) = \vec{w} \right\}$

- 1) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ (for the standard basis). Find the kernel and image of T.
- 2) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be given by the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (for the standard basis). Find the kernel and image of T.
- 1) Describe surjective linear transformations in terms of the image.
- 2) Describe injective linear transformations in terms of the kernel.

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the matrix $A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ (for the standard basis).

- 1) Write a system of equations whose solution set is the kernel.
- 2) Compute RREF(A) and solve the system of equations.
- 3) Compute the kernel of T
- 4) Find a basis for the kernel of T

Let $S: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by the matrix $B = \begin{bmatrix} 3 & 4 & 1 \\ 1 & 2 & 4 \\ 5 & 8 & 9 \end{bmatrix}$ (for the standard basis).

- 1) Write a system of equations whose solution set is the kernel.
- 2) Compute RREF(A) and solve the system of equations.
- 3) Compute the kernel of T
- 4) Find a basis for the kernel of T

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by the matrix $A = \begin{bmatrix} 3 & 4 & -1 \\ 1 & 2 & 1 \end{bmatrix}$ (for the standard basis).

- 1) Find a set of vectors that span the image of T
- 2) Find a basis for the image of T.

Let $S: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by the matrix $B = \begin{bmatrix} 3 & 4 & 1 \\ 1 & 2 & 4 \\ 5 & 8 & 9 \end{bmatrix}$ (for the standard basis).

- 1) Find a set of vectors that span the image of T
- 2) Find a basis for the image of T.

Day 3

Application Activity 3. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map with matrix $A \in M_{m,n}$ (for the standard basis). Consider the following statements about T

- (a) T is injective
- (b) T is not injective
- (c) T is surjective
- (d) T is not surjective
- (e) The system of linear equations given by the augmented matrix $A \mid \vec{b}$ has a solution for all $\vec{b} \in \mathbb{R}^m$
- (f) The system of linear equations given by the augmented matrix $\begin{bmatrix} A & | & \vec{b} \end{bmatrix}$ has a unique solution for all $\vec{b} \in \mathbb{R}^m$
- (g) The system of linear equations given by the augmented matrix $\begin{bmatrix} A & \vec{0} \end{bmatrix}$ has a non-trivial solution.
- (h) The columns of A span \mathbb{R}^m
- (i) The columns of A are linearly independent
- (j) The columns of A are a basis of \mathbb{R}^m
- (k) Every column of RREF(A) is a pivot column
- (1) RREF(A) has a non-pivot column
- (m) RREF(A) has n pivot columns

- 1) Sort these statements into groups of equivalent statements.
- 2) Gallery walk–switch boards with a different team. If they have two things grouped together that you know are not equivalent, write a reason or counter-example on a sticky note.
- 3) Update your team's groupings based on feedback.
- 4) Repeat?
- 5) Can you add any statements to any groups?