Data assimilation: the seamless integration of data into computational models

Jana de Wiljes

October 10, 2017

A toy atmospheric model

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{z} = xy - \beta z$$

Uncertainty in initial conditions

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{\mathbf{z}} = \mathbf{x}\mathbf{y} - \beta \mathbf{z}$$

Uncertainty in parameters

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{z} = xy - \beta z$$

Numerical discretization and differentiation

$$\begin{split} x_n &= x_{n-1} + [\sigma(y_{n-1} - x_{n-1})] \mathrm{dt} \\ y_n &= y_{n-1} + [x_{n-1}(\rho - z_{n-1}) - x_{n-1}] \mathrm{dt} \\ z_n &= z_{n-1} + [x_{n-1}y_{n-1} - \beta z_{n-1}] \mathrm{dt} \end{split}$$

Model (deterministic)

Evolution equation

$$z_n = \Psi(z_{n-1}, \lambda)$$

$$z_0 \sim \mathcal{N}(m_0, C_0)$$

Model

Evolution equation

$$z_n = \Psi(z_{n-1}, \lambda) + \xi_{n-1}$$

$$\mathbf{z}_0 \sim \mathcal{N}(\mathbf{m}_0, C_0)$$

 $\mathbf{\xi}_n \sim \mathcal{N}(0, B)$ i.i.d. $\forall n$

Parameter estimation

Augmented state space

$$z_n = \Psi(z_{n-1}, \lambda_{n-1}) + \xi_{n-1}$$
$$\lambda_n = \lambda_{n-1}$$

$$[\mathbf{z}_0, \lambda_0]^{\top} \sim \mathcal{N}(\mathbf{m}_0, C_0)$$

 $\boldsymbol{\xi}_n \sim \mathcal{N}(0, B)$ i.i.d. $\forall n$

L63 example

Augmented state space

$$z_n = \Psi(z_{n-1}, \lambda_{n-1}) + \xi_{n-1}$$
$$\lambda_n = \lambda_{n-1}$$

$$[\mathbf{z}_0, \lambda_0]^{\top} \sim \mathcal{N}(\mathbf{m}_0, C_0)$$

 $\boldsymbol{\xi}_n \sim \mathcal{N}(0, B)$ i.i.d. $\forall n$

Observations

Partial and noisy data:

$$y_n = h(z_n) + \frac{\eta_n}{\eta_n}$$

$$\eta_n \sim \mathcal{N}(0, R)$$
 i.i.d. $\forall n$

Conditional probability

Definition (Conditional probability)

For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and events $A, B \in \mathcal{F}$ the conditional probability of B given A is

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}.$$

Bayes theorem

Theorem (Bayes)

For a given probability space $(\Omega, \mathcal{F}, \mathbb{P})$ the following holds for two events A and B in \mathcal{F}

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$

Bayesian data assimilation ansatz

$$\mathbb{P}(\mathsf{Model}|\mathsf{Obs}) = \frac{\mathbb{P}(\mathsf{Obs}|\mathsf{Model})\mathbb{P}(\mathsf{Model})}{\mathbb{P}(\mathsf{Obs})}$$

Bayesian data assimilation ansatz

 $\mathbb{P}(\mathsf{Model}|\mathsf{Obs}) \propto \mathbb{P}(\mathsf{Obs}|\mathsf{Model})\mathbb{P}(\mathsf{Model})$

Bayesian data assimilation for densities

$$\pi(z_{n+1}|y_{1:n+1}) = \pi(z_{n+1}|y_{1:n}, y_{n+1})$$

$$= \frac{\pi(y_{n+1}|y_{1:n}, z_{n+1})\pi(z_{n+1}|y_{1:n})}{\pi(y_{n+1}|y_{1:n})}$$

$$= \frac{\pi(y_{n+1}|z_{n+1})\pi(z_{n+1}|y_{1:n})}{\pi(y_{n+1}|y_{1:n})}$$

$$\implies \pi(z_{n+1}|y_{1:n+1}) \propto \pi(y_{n+1}|z_{n+1})\pi(z_{n+1}|y_{1:n}) \tag{1}$$

Special case

Linear model: Ψ is linear, e.g.,

$$z_n = A z_{n-1} + \xi_{n-1} \tag{2}$$

with $A \in \mathbb{R}^{N_z} \times \mathbb{R}^{N_z}$

Linear observation operator

$$h = H$$
 with $H \in \mathbb{R}^{N_y} \times \mathbb{R}^{N_y}$

Initial distribution: $z_0 \sim \mathcal{N}(m_0, C_0)$

Prior distribution: $\mathcal{N}(\hat{m}_1, \hat{c}_1)$

Likelihood: $\mathcal{N}(H\hat{z}_1, R)$

Posterior: $\mathcal{N}(m_1, C_1) \propto \mathcal{N}(H\hat{z}_1, R) \mathcal{N}(\hat{m}_1, \hat{C}_1)$

Two steps:

Two steps:

► Forecast: $(m_n, C_n) \mapsto (\hat{m}_{n+1}, \hat{C}_{n+1})$

Two steps:

- ► Forecast: $(m_n, C_n) \mapsto (\hat{m}_{n+1}, \hat{C}_{n+1})$
- ► Analysis: $(\hat{m}_{n+1}, \hat{C}_{n+1}) \mapsto (m_{n+1}, C_{n+1})$

Two steps:

- ▶ Forecast: $(m_n, C_n) \mapsto (\hat{m}_{n+1}, \hat{C}_{n+1})$
- ► Analysis: $(\hat{m}_{n+1}, \hat{C}_{n+1}) \mapsto (m_{n+1}, C_{n+1})$

Forecast formulas

$$\hat{\boldsymbol{m}}_{n+1} = A\boldsymbol{m}_n$$

$$\hat{\boldsymbol{C}}_{n+1} = A\boldsymbol{C}_n A^\top + B$$

Two steps:

- ► Forecast: $(m_n, C_n) \mapsto (\hat{m}_{n+1}, \hat{C}_{n+1})$
- ► Analysis: $(\hat{m}_{n+1}, \hat{C}_{n+1}) \mapsto (m_{n+1}, C_{n+1})$

Forecast formulas

$$\hat{\boldsymbol{m}}_{n+1} = A\boldsymbol{m}_n$$

$$\hat{\boldsymbol{C}}_{n+1} = A\boldsymbol{C}_n A^\top + B$$

Analysis formulas

$$m_{n+1} = \hat{m}_{n+1} - K_{n+1} (H \hat{m}_{n+1} - y_{n+1})$$

 $C_{n+1} = \hat{C}_{n+1} - K_{n+1} H \hat{C}_{n+1}$

Kalman gain

$$K_{n+1} = \hat{C}_{n+1}H^{\top}(R + H\hat{C}_{n+1}H^{\top})^{-1}$$

Problem: Kalman Filter is not applicable anymore

Ansatz: approximative Algorithms

1. Extended Kalman Filter: linearize model function

Problem: Kalman Filter is not applicable anymore

Ansatz: approximative Algorithms

- 1. Extended Kalman Filter: linearize model function
- 2. Monte Carlo Approximation:

$$\pi(z_n|y_{1:n}) = \frac{1}{M} \sum_{i=1}^M \delta(z - z_n^i)$$

$$\mathbf{z}_n^i \sim \pi(\mathbf{z}_n|\mathbf{y}_n)$$

Problem: Kalman Filter is not applicable anymore

Ansatz: approximative Algorithms

- 1. Extended Kalman Filter: linearize model function
- 2. Monte Carlo Approximation:

$$\pi(z_n|y_{1:n}) = \frac{1}{M} \sum_{i=1}^M \delta(z - z_n^i)$$

where

$$\mathbf{z}_n^i \sim \pi(\mathbf{z}_n|\mathbf{y}_n)$$

This ansatz leads to a variety of filters e.g.,

Problem: Kalman Filter is not applicable anymore

Ansatz: approximative Algorithms

- 1. Extended Kalman Filter: linearize model function
- 2. Monte Carlo Approximation:

$$\pi(z_n|y_{1:n}) = \frac{1}{M} \sum_{i=1}^M \delta(z - z_n^i)$$

where

$$\mathbf{z}_n^i \sim \pi(\mathbf{z}_n|\mathbf{y}_n)$$

This ansatz leads to a variety of filters e.g.,

Particle filters

Problem: Kalman Filter is not applicable anymore

Ansatz: approximative Algorithms

- 1. Extended Kalman Filter: linearize model function
- 2. Monte Carlo Approximation:

$$\pi(z_n|y_{1:n}) = \frac{1}{M} \sum_{i=1}^M \delta(z - z_n^i)$$

where

$$\mathbf{z}_n^i \sim \pi(\mathbf{z}_n|\mathbf{y}_n)$$

This ansatz leads to a variety of filters e.g.,

Particle filters (curse of dimensionality)

Problem: Kalman Filter is not applicable anymore

Ansatz: approximative Algorithms

- 1. Extended Kalman Filter: linearize model function
- 2. Monte Carlo Approximation:

$$\pi(z_n|y_{1:n}) = \frac{1}{M} \sum_{i=1}^M \delta(z - z_n^i)$$

where

$$\mathbf{z}_n^i \sim \pi(\mathbf{z}_n|\mathbf{y}_n)$$

This ansatz leads to a variety of filters e.g.,

- Particle filters (curse of dimensionality)
- Ensemble Kalman filter

Problem: Kalman Filter is not applicable anymore

Ansatz: approximative Algorithms

- 1. Extended Kalman Filter: linearize model function
- 2. Monte Carlo Approximation:

$$\pi(z_n|y_{1:n}) = \frac{1}{M} \sum_{i=1}^M \delta(z - z_n^i)$$

where

$$\mathbf{z}_n^i \sim \pi(\mathbf{z}_n|\mathbf{y}_n)$$

This ansatz leads to a variety of filters e.g.,

- Particle filters (curse of dimensionality)
- Ensemble Kalman filter(underlying Gaussian assumption)

$$\mathcal{N}(m_0, C_0)$$
 with $m_0 \approx \frac{1}{M} \sum_{i=1}^M z_0^i$
$$C_0 \approx \frac{1}{M} \sum_{i=1}^M (z_0^i - m_0)(z_0^i - m_0)^\top$$

$$\mathcal{N}(\hat{m}_1, \hat{C}_1)$$
 with $\hat{m}_1 pprox rac{1}{M} \sum_{i=1}^M \hat{z}_1^i = rac{1}{M} \sum_{i=1}^M \Psi(z_0^i)$ $\hat{C}_1 pprox rac{1}{M} \sum_{i=1}^M (\hat{z}_1^i - \hat{m}_1)(\hat{z}_1^i - \hat{m}_1)^{ op}$

$$\mathcal{N}(m_1, C_1)$$
 with $m_1 pprox rac{1}{M} \sum_{i=1}^M z_1^i$ $C_1 pprox rac{1}{M} \sum_{i=1}^M (z_1^i - m_1)(z_1^i - m_1)^ op$

Approximation: $\pi(\mathbf{z}_n|\mathbf{y}_{1:n})$

Approximation: $\pi(\mathbf{z}_n|\mathbf{y}_{1:n})$

Ansatz:: propagate samples \hat{z}_{n+1}^i with Kalman formula

$$\mathbf{z}_{n+1}^{i} = \hat{\mathbf{z}}_{n+1}^{i} - \mathbf{K}_{n+1} (H\hat{\mathbf{z}}_{n+1}^{i} - \tilde{\mathbf{y}}_{n+1}^{i})$$

Approximation: $\pi(z_n|y_{1:n})$

Ansatz:: propagate samples \hat{z}_{n+1}^{i} with Kalman formula

$$\boldsymbol{z}_{n+1}^{i} = \hat{\boldsymbol{z}}_{n+1}^{i} - \boldsymbol{K}_{n+1} (\boldsymbol{H} \hat{\boldsymbol{z}}_{n+1}^{i} - \tilde{\boldsymbol{y}}_{n+1}^{i})$$

Need:: perturbed observations

$$\tilde{\mathbf{y}}_{n+1}^i = \mathbf{y}_{n+1} + \boldsymbol{\epsilon}_{n+1}^i$$

with $\epsilon_{n+1}^i \sim \mathcal{N}(0,R)$ i.i.d. to get the correct mean and covariance in the linear case for $M \to \infty$

Works well in practice: e.g., EnKF is used for operational NWP for z_n^i with dimension 10^9 only using M = 100

Yet: mathematical foundation largely missing

Recent study: accuracy results for EnKF for idealized setting: H = Id and observational error small

Problem: sampling from $\pi(z_n|y_{1:n})$ to approximate posterior via

$$\pi(z_n|y_{1:n}) = \frac{1}{M} \sum_{i=1}^M \delta(z - z_n^i)$$

Problem: sampling from $\pi(z_n|y_{1:n})$ to approximate posterior via

$$\pi(z_n|y_{1:n}) = \frac{1}{M} \sum_{i=1}^{M} \delta(z - z_n^i)$$

Idea: sampling from $\pi(z_n|y_{1:n-1})$ instead i.e.,

$$\pi(z_n|y_{1:n}) = \sum_{i=1}^M w_n^i \delta(z - \hat{z}_n^i)$$

Problem: sampling from $\pi(z_n|y_{1:n})$ to approximate posterior via

$$\pi(z_n|y_{1:n}) = \frac{1}{M} \sum_{i=1}^M \delta(z - z_n^i)$$

Idea: sampling from $\pi(z_n|y_{1:n-1})$ instead i.e.,

$$\pi(z_n|y_{1:n}) = \sum_{i=1}^M w_n^i \delta(z - \hat{z}_n^i)$$

Bayes:

$$\pi(z_{n+1}|y_{1:n}) \propto \pi(y_n|z_n)\pi(z_n|y_{1:n-1})$$
 (3)

Problem: sampling from $\pi(z_n|y_{1:n})$ to approximate posterior via

$$\pi(z_n|y_{1:n}) = \frac{1}{M} \sum_{i=1}^{M} \delta(z - z_n^i)$$

Idea: sampling from $\pi(z_n|y_{1:n-1})$ instead i.e.,

$$\pi(\boldsymbol{z}_n|\boldsymbol{y}_{1:n}) = \sum_{i=1}^{M} w_n^i \delta(\boldsymbol{z} - \hat{\boldsymbol{z}}_n^i)$$

Bayes:

$$\pi(z_{n+1}|y_{1:n}) \propto \pi(y_n|z_n)\pi(z_n|y_{1:n-1})$$
 (3)

Weighting: unnormalized weights

$$\tilde{w}_n^i = \pi(y_n|z_n^i)w_n^i$$
 with $w_0^i = \frac{1}{M}$

and normalized weights

$$w_n^i = \frac{\tilde{w}_n^i}{\sum_{i=1}^M \tilde{w}_n^j}$$

Resampling

Problem: weights w_n^i become very small

Ansatz: resampling

Input: w_n^i

For(k = 1 : M)

- 1. Draw a number $u \in [0,1]$ from the uniform distribution U[0,1]
- 2. Compute $i^* \in \{1, ..., M\}$ which satisfies

$$i^* = \arg\min_{i \ge 1} \sum_{j=1}^i w_j \ge u \tag{4}$$

3. Set $\xi_{i^*} = \xi_i^* + 1$

Return ξ_i

