Методы ансамблирования обучающихся алгоритмов

Гущин Александр

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. А. Г. Дьяконов

Группа 174, весна 2015

Цель исследования

Цель работы: Стекинг (Stacking) - один из наиболее эффективных в смысле достигаемого качества способов ансамблирования обучающихся алгоритмов. Цель работы - предложить новую модификацию алгоритма стекинга и экспериментально сравнить её с предложенными ранее.

Решение:

- разработать алгоритм
- поставить вычислительные эксперименты

Постановка задачи

Стекинг: шаг 1

Стекинг: шаг 2

Стекинг по схеме hold-out

Преимущества: отсутствие переобучения **Недостатки**: неэффективное использование обучающей выборки

Получение метапризнака по схеме K-fold

Стекинг по схеме K-fold

Преимущества: использование всей обучающей выборки **Недостатки**: переобучение, "неоднородность" метапризнаков

Идея предлагаемой модификации

Преимущества: эффективное использование обучающей выборки, борьба с "неоднородностью" метапризнаков

Недостатки: увеличенная вычислительная сложность

Поставленные эксперименты

Данные:

- UCI, Forest Cover Type Prediction;
- Kaggle, Otto Group Product Classification Challenge.

$$|\mathsf{Train}| \approx |\mathsf{Test}| \approx 15000.$$

Все результаты приводятся для усреднения по 10 случайным разбиениям на обучающую и тестовую выборку.

Выдвигаемые предположения

- метапризнаки, полученные с помощью усреднений имеют качество лучше, чем метапризнаки, полученные без усреднений
- улучшение непосредственного качества метапризнака, связанное с выбором способа его построения, не обязательно ведёт к улучшению качества метаклассификатора

Качество метапризнаков, полученных различными способами

Puc.: ExtraTreesClassifier(X, XGBoost)

Результаты экспериментов

oof(K), test_averaging=True	0	6	3	5
oof(K), test_averaging=False	4	0	3	4
oof(K)*N, test_averaging=True	7	7	0	7
oof(K)*N, test_averaging=False	5	6	3	0

Результаты, выносимые на защиту

- Предложена модификация алгоритма построения метапризнаков
- В поставленых экспериментах продемонстрировано, что предложенная модификация часто оказывается лучше предложенной ранее