Seizure Detection Using EEG Data

Presentation by Yaksh and Prince

Table of Contents

3	Problem Statement	8	Training Details for Short Signals
4	Dataset Overview	9	Training Details for Full Signals
5	Our Algorithm	10	Classification Results
6	Main Theory	11	Code Demo
7	Core Concepts	12	Questions?

Seizure Detection Using EEG Data DSDA 310 3

Challenge of interpreting EEG signals

- Time Consuming Manually
- Prone to error
- No systematic framework

Dataset Overview

Full Signals

- Total Number of Signals: 500
- 400 Seizures and 100 Non Seizures

Full Signal Seizure Sample

Short Signals

- Total Number of Signals: 11500
- 2300 Seizures and 9200 Non Seizures

Short Signal No Seizure Sample

Our Algorithm

Convolutional Neural Networks (CNN)- Sequential

Seizure Detection Using EEG Data DSDA 310

What is CNN?

The core component of a CNN is convolution, which allows it to capture local patterns, such as signal cycles, and helps in extracting relevant information from the input.

CNN can handle translation invariance.

Model Architecture - Core Concepts

Activation Functions

ReLU acts as a switch for non-linear relationships.

Softmax allows for proper decision making.

Pooling Layers

Extracts Key Features in the "Big Picture"

Convolution Layers

Identifies the smaller details and converts to a feature map

Training Parameters - Short Signals

90% train data, 5% validation data, 5% test data

Pool Size = 2, Kernel Size = 3, Filters = 64, 128 Neurons

Categorical Cross Entropy Loss Function and Adam Optimizer

Batch Size = 16, Epochs = 6, Patience = 5

Training Parameters - Full Signals

80% train data, 10% validation data, 10% test data

Pool Size = 2, Kernel Size = 3, Filters = 64, 128 Neurons

Categorical Cross Entropy Loss Function and Adam Optimizer

Batch Size = 32, Epochs = 12, Patience = 5

Results

Short Signals

90% train data, 5% validation data, 5% test data

	Predicted			
		NS	S	
Actual	NS	459	1	
	S	2	113	

Accuracy: 99%

Full Signals

80% train data, 10% validation data, 10% test data

	Predicted			
		NS	S	
Actual	NS	37	3	
	S	2	8	

Accuracy: 90%

Code Go Through

Seizure Detection Using EEG Data DSDA 310 12

Thank you!

We are now open to questions.