

Optimization with Differential Algebraic Equations:

Parameter Estimation and Optimal Control

Prof. Karl Ezra Pilario, Ph.D.

Process Systems Engineering Laboratory Department of Chemical Engineering University of the Philippines Diliman

Outline

- Review: Differential Equations
- Optimization with DAEs
- Orthogonal Collocation
 - Parameter Estimation
 - Optimal Control

PARAMETER ESTIMATION

Given a real data set of $\boldsymbol{u}(t)$ and $\boldsymbol{y}(t)$, find all parameter values within $\boldsymbol{f}(\cdot)$ and $\boldsymbol{g}(\cdot)$ that fits the data.

OPTIMAL CONTROL

Given a fully known $f(\cdot)$ and $g(\cdot)$, find u(t) that achieves a desired trajectory in y(t) while satisfying other constraints.

Parameter Estimation

Optimization with DAE

Minimize: $\Psi(t, \mathbf{x}(t), \mathbf{y}(t), \mathbf{u}(t))$

Subject to: $\dot{x} = f(t, x(t), u(t))$ States

$$y = g(t, x(t), u(t))$$
 Outputs

and $h_i(t, x, u, y) \le 0$ i = 1, 2, ..., m

Parameter Estimation

$$\min \Psi = \sum_{i=1}^{N} (y_{\text{actual},i} - y_{\text{sim},i})^{2}$$

- Must have a data set of $\{t_i, y_{\text{actual},i}\}, i = 1, ..., N$
- Must ensure that times t_i are included in the ContinuousSet in Pyomo DAE.

Example:

Consider the reaction $A \rightarrow B \rightarrow C$, modeled by the following ODEs:

$$\frac{dA}{dt} = -k_1 A$$

$$\frac{dB}{dt} = k_1 A - k_2 B$$

with initial conditions: A(0) = 1, B(0) = 0. Fit the ODEs to the following experimental data set and find k_1 and k_2 :

Time	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0
Α	0.606	0.368	0.223	0.135	0.082	0.050	0.030	0.018	0.011	0.007
В	0.373	0.564	0.647	0.669	0.656	0.624	0.583	0.539	0.494	0.451

Reference: Pyomo Workshop December 2023

Outline

- Review: Differential Equations
- Optimization with DAEs
- Orthogonal Collocation
 - Parameter Estimation
 - Optimal Control

PARAMETER ESTIMATION

Given a real data set of $\boldsymbol{u}(t)$ and $\boldsymbol{y}(t)$, find all parameter values within $\boldsymbol{f}(\cdot)$ and $\boldsymbol{g}(\cdot)$ that fits the data.

OPTIMAL CONTROL

Given a fully known $f(\cdot)$ and $g(\cdot)$, find u(t) that achieves a desired trajectory in y(t) while satisfying other constraints.

Review: ChemE 182

What is a basic process control system?

The key elements needed for process control to occur are:

A basic illustration of process control:

Review: ChemE 182

Why do we need process control?

- Reduce variability in the output
 - Higher profit
- Plant safety
- **Environmental Compliance**

Review: ChemE 182

SISO control versus MIMO control

(measured output vs. desired output)

*ChemE 182 only deals with SISO control and linear ODEs.

- *Can deal with a system of nonlinear ODEs/PDEs.
- This can be done using either:
 - Multi-loop PID control
 - Model Predictive Control

Controlled Variables (CVs)

the <u>outputs</u> that we desire to control (keep constant or follow a setpoint)

Manipulated Variables (MVs)

the <u>inputs</u> that we adjust to achieve desired CV trajectories.

Disturbance Variables (DVs)

other <u>inputs</u> that cause the CVs to deviate from their setpoint.

Optimal Control

Multi-loop PID control

- 2 cascade control loops = 4 PID controllers
- 10 variables: 4 inputs (Fi, Ti, Ci, Tci) + 6 outputs (Fc, T, Tc, h, F, C)
- PID is still SISO, so we must select pairs of CV-MVs to connect.
- Download Link: https://www.mathworks.com/matlabcentral/fileexchange/65091-cascade-controlled-cstr-for-fault-simulation

Model Predictive Control

- Control can be centralized or decentralized to subsystems.
- Solve a big optimization problem to get control actions.
- Requires a computer model of the actual system.

Optimal Control

Optimization with DAE

Minimize: $\Psi(t, \mathbf{x}(t), \mathbf{y}(t), \mathbf{u}(t))$

Subject to: $\dot{x} = f(t, x(t), u(t))$ States

y = g(t, x(t), u(t)) Outputs

and $h_i(t, x, u, y) \le 0$ i = 1, 2, ..., m

Model Predictive Control

Minimize: $\sum_{k=0}^{P} \left[\Delta y_{k+1}^{T} \mathbf{Q} \Delta y_{k+1} + \Delta \mathbf{u}_{k}^{T} \mathbf{R} \Delta \mathbf{u}_{k} \right]$ Sum of squares: $\mathbf{v}^{T} \mathbf{W} \mathbf{v}$

Subject to: $\dot{x} = f(t, x(t), u(t))$ States

y = g(t, x(t), u(t)) Outputs

and $h_i(t, x, u, y) \le 0$ i = 1, 2, ..., m

Notation:

 Δy_{k+1} Deviation from setpoint at time k+1

 $\Delta \boldsymbol{u}_k$ Amount of control effort at time k

Q State weight matrix

R Control input weight matrix

P Prediction horizon

M Control horizon

Output, y

Input, u

Optimal Control

Model Predictive Control

Minimize:
$$\sum_{k=0}^{P} \left[\Delta y_{k+1}^{T} \mathbf{Q} \Delta y_{k+1} + \Delta \mathbf{u}_{k}^{T} \mathbf{R} \Delta \mathbf{u}_{k} \right]$$

Subject to:
$$\dot{x} = f(t, x(t), u(t))$$
 States

$$y = g(t, x(t), u(t))$$
 Outputs

and
$$h_i(t, x, u, y) \le 0$$
 $i = 1, 2, ..., m$

MPC Algorithm

Set: Prediction Horizon, Control Horizon, Process Model, Setpoints and Constraints, \mathbf{R} and \mathbf{Q} .

Steps:

- 1. Solve NLP for $oldsymbol{u}$ within the prediction horizon, P.
- 2. Apply the $oldsymbol{u}$ within the control horizon, M, only.
- 3. Roll the horizon M steps forward: $k \leftarrow k + M$.

Optimal Control: Example

Optimal Control of a Jacketed CSTR

$$\frac{dC}{dt} = \frac{Q}{V}(C_i - C) - akC$$

$$\frac{dT}{dt} = \frac{Q}{V}(T_i - T) - \frac{\Delta H_r akC}{\rho C_p} - \frac{b}{\rho C_p V}(T - T_c)$$

$$\frac{dT_c}{dt} = \frac{Q_c}{V_c} (T_{ci} - T_c) + \frac{b}{\rho} \frac{UA}{\rho C_{pc} V_c} (T - T_c)$$

The model of a constant hold-up, jacketed CSTR carrying out an exothermic first-order reaction A \rightarrow B is given. Simulate an MPC for a single prediction horizon of P=10 min that aims to decrease C from 0.1 mol/L to 0.05 mol/L by manipulating Q_c under:

- a. Normal case
- b. Fouling at 5 min (b decreases from 1.00 to 0.05)
- c. Catalyst decay at 5 min (α decreases from 1.00 to 0.05)

Parameter	Description	Value	Units
Q	Inlet Flow rate	100.0	L/min
V	Tank Volume	150.0	L
V_c	Jacket Volume	10.0	L
ΔH_r	Heat of reaction	-2e5	cal/mol
UA	Heat transfer coefficient	7.0e5	cal/min/K
k_0	Arrhenius factor	7.2e10	1/min
E/R	Activation Energy	1e4	K
$ ho, ho_c$	Density	1000	g/L
C_p, C_{pc}	Heat capacity	1.0	cal/g/K

Inputs:

 C_i = inlet concentration of A

 T_i = inlet temperature

 T_{ci} = inlet coolant temp.

 Q_c = coolant flow rate

Outputs:

C = outlet concentration of A

T = outlet temperature

 T_c = outlet coolant temp.

Optimal Control: Example

Optimal Control of an Evaporator

$$\frac{dL_2}{dt} = \frac{F_1 - F_4 - F_2}{20}$$

$$\frac{dX_2}{dt} = \frac{F_1 X_1 - F_2 X_2}{20}$$

$$\frac{dP_2}{dt} = \frac{F_4 - F_5}{4}$$

Ref: Pilario and Wu (2025). "Fast Mixed Kernel Canonical Variate Analysis for Learning based Nonlinear Model Predictive Control." *Chemical Engineering Research and Design*.

- Control X2 by manipulating F3, P100, F200 simultaneously.
- Use a surrogate machine learning (ML) model instead of DAEs.
- The proposed method (middle) has the best control performance among the three ML models being compared.

$$T_2 = 0.5616P_2 + 0.3126X_2 + 48.43$$

$$T_3 = 0.507P_2 + 55.0$$

$$F_4 = \frac{Q_{100} - 0.07F_1(T_2 - T_1)}{38.5}$$

$$T_{100} = 0.1538P_{100} + 90.0$$

$$Q_{100} = 0.16(F_1 + F_3)(T_{100} - T_2)$$

$$F_{100} = Q_{100}/36.6$$

$$Q_{200} = \frac{0.9576F_{200}(T_3 - T_{200})}{0.14F_{200} + 6.84}$$

$$T_{201} = T_{200} + Q_{200}/0.07F_{200}$$

$$F_5 = Q_{200}/38.5$$

Outline

- Review: Differential Equations
- Optimization with DAEs
- Orthogonal Collocation
 - Parameter Estimation
 - Optimal Control

PARAMETER ESTIMATION

Given a real data set of $\boldsymbol{u}(t)$ and $\boldsymbol{y}(t)$, find all parameter values within $\boldsymbol{f}(\cdot)$ and $\boldsymbol{g}(\cdot)$ that fits the data.

OPTIMAL CONTROL

Given a fully known $f(\cdot)$ and $g(\cdot)$, find u(t) that achieves a desired trajectory in y(t) while satisfying other constraints.