ELSEVIER

Contents lists available at ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Enhanced visible light responsive MWCNT/TiO₂ core–shell nanocomposites as the potential photocatalyst for reduction of CO₂ into methane

Meei Mei Gui^a, Siang-Piao Chai^{a,*}, Bo-Qing Xu^c, Abdul Rahman Mohamed ^b

- ^a Low Carbon Economy (LCE) Group, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
- ^b Low Carbon Economy (LCE) Group, School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
- ^c Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history:
Received 15 May 2013
Received in revised form
22 November 2013
Accepted 27 November 2013
Available online 31 December 2013

Keywords: MWCNT/TiO₂ Core-shell Nanocomposites Photocatalysis CO₂ photoreduction Visible light

ABSTRACT

This work demonstrates the synthesis of MWCNT/TiO $_2$ core–shell nanocomposites and their application for photocatalytic reduction of CO $_2$ under visible light irradiation. MWCNT/TiO $_2$ core–shell nanocomposites were obtained from a newly developed coating approach. UV–vis analysis revealed that the photoactivity of the nanocomposites in the visible light range was significantly enhanced with the absorption edge extended to the visible light region (> 400 nm). The XRD and Raman analysis indicated that the TiO $_2$ shell layer was composed of anatase TiO $_2$ nanocrystallite prevailing grew along the (1 0 1) direction. The MWCNT/TiO $_2$ core–shell nanocomposites exhibited conversion of CO $_2$ into methane in a continuous process under a low power visible light irradiation at atmospheric pressure. The highest methane yield of ca. 0.17 μ mol/g-catalyst/h was recorded at the 6th hour of irradiation time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

TiO₂ is the principle catalyst for almost all types of photocatalysis reaction. However, it is only photoactive at the wavelengths of below 400 nm due to its relatively large bandgap energy (\sim 3.2 eV). In order for TiO₂ to be used for visible light applications, TiO₂ is usually modified with the addition of metal dopants or compounds that are photoactive in the visible light region, such as ruthenium dye, carbon materials, CdS, Cu, Fe, and so on [1,2]. In respect of being a high performance photocatalyst for CO₂ reduction under visible light illumination, modification of the TiO₂ is required to achieve the following important characteristics, namely: (i) easily to be photoactivated with lower bandgap energy; (ii) ability to absorb light in the visible range (λ > 400 nm); and (iii) ability to absorb CO₂ and water (sacrificial agent) on the catalytic surface [3].

Carbon nanotubes (CNTs), owing to their excellent optical properties and electron transfer ability, have been widely reported as an important substrate that can improve the photoactivity of TiO_2 [4]. In general, CNTs play two important roles in a photocatalyst: as photosensitizer that enables the photoactivation of TiO_2 under visible light irradiation and as electron sinks that transfer the electrons away from the TiO_2 particles after photoexcitation via the CNT– TiO_2 heterojunction. These electrons can subsequently trigger the photoreaction by formation of reactive radicals such as superoxide radical ions $(O_2^{\bullet-})$ and hydroxyl radicals (HO^{\bullet}) [5,6].

CNTs-TiO₂ composites exhibit great photocatalytic activity with excellent visible light absorption and unique electron charge transfer ability [7]. These composites were obtained most commonly using sol–gel [8–13] and other approaches such as chemical vapor deposition [14,15], functionalization with titanium precursor [16], and solvothermal [17]. The main concern of these earlier studies focused on improving the uniformity dispersion of the TiO₂ particles over the CNTs to yield the structure with minimum TiO₂ agglomeration. The control of the TiO₂ particle sizes and their dispersion over the CNTs was strongly dependent on the methods employed during the synthesis process, which was usually hard to be achieved.

In this work, the composite materials consisting of multi-walled carbon nanotubes (MWCNTs) and TiO_2 have been developed via core-shell coating, in which the MWCNTs are wrapped

^{*} Corresponding author. Tel.: +603 55146234; fax: +603 55146207. E-mail address: chai.siang.piao@monash.edu (S.-P. Chai).

up by TiO₂ overlayers (shell). The MWCNT core induces visible light absorption and provides high surface area to accommodate the TiO₂ particles in the shell, making the MWCNT/TiO₂ nanocomposites highly active for photoreduction of CO₂. To the best of our knowledge, the performance of MWCNT/TiO₂ core–shell nanocomposites for CO₂ photoreduction has not been reported yet.

2. Materials and experiment procedures

2.1. Preparation of MWCNT/TiO₂ core-shell nanocomposites

Pristine MWCNTs used in this study were produced from Co-Mo/MgO catalyst using a rotary reactor, whose purity by the content of carbon was ca. 66.82% [18]. Prior to TiO_2 coating, the pristine MWCNTs were treated with acid to remove metal catalysts as well as to introduce carboxyl groups on the MWCNT surface to ease the coating process at the later stage. The acid treatment was done by continuously stirring of 500 mg of MWCNTs in a mixture of nitric acid (Chemolab supplies, 70%) and sulphuric acid (Chemolab supplies, 95–97%) mixed at a volume ratio of 1:3 at the concentration of 5 M each under reflux at 100 °C for 3 h. The mixture was then filtered and repeatedly washed with distilled water until neutral pH was achieved. The acid-treated MWCNTs were collected and dried overnight in oven at 80 °C.

In the second step, MWCNT/TiO₂ nanocomposites were synthesized by core-shell coating of TiO_2 (shell) on MWCNTs (core) surface. The TiO₂ core-shell coating was carried out using titanium butoxide (TBOT, Sigma Aldrich, 97%) as the titanium precursor, deionized water as the hydrolysis agent, and ethanol (Chemolab supplies, 96%) as the solvent for TBOT. Prior to the coating with TBOT solution, 0.16 g of acid-treated MWCNTs were sonicated in 20 mL of ethanol and water for 10 min. Next, the TBOT predissolved in 10 mL of ethanol was added into the MWCNTsethanol solution. The overall mixture was controlled at a TBOT: water:ethanol ratio of 1:5:50 (mol/mol). The mixture was continuously stirred in ice bath for an hour, followed by vacuum filtration and repeatedly washing with ethanol to remove TBOT in excess. The powder sample was collected and dried overnight in oven at 80 °C to remove excess ethanol. MWCNT/TiO2 core-shell nanocomposites were obtained by calcination of the sample in air at 400 °C for 2 h. Anatase TiO₂ powder sample was also synthesized using the same procedure but without presence of MWCNTs and was used for comparison purpose.

2.2. Characterization of MWCNT/TiO₂ nanocomposites

The characteristics of the nanocomposites obtained were investigated before they were used for CO2 photoreduction reaction. UV-vis spectroscopy (Agilent, Cary 100) equipped with powder cell holder (2.3 cm × 1 cm (diameter × cell depth); DRA-CA-301) was engaged to study the light absorption performance of the MWCNT/TiO₂ nanocomposites. Surface morphology of the nanocomposites was investigated via field emission scanning electron microscopy (FESEM, Hitachi SU8010) and high resolution transmission electron microscopy (HRTEM, JEM 2100f). Elemental analysis was performed by energy-dispersive X-ray spectroscopy (EDS) equipped with the FESEM. X-ray Diffraction (XRD) analysis and Raman spectroscopy with laser excitation at 532 nm (Renishaw inVia) were employed to study the crystal structure of the developed nanocomposites. Fourier-transformed infrared (FT-IR) spectra were obtained on a Nicolet iS10 FT-IR spectrometer using Kbr Die Model 129 to identify the intermediate products formed on the surface of the photocatalysts after the CO2 photoreduction.

2.3. Photocatalytic reaction procedures

Photocatalytic activity of the MWCNT/TiO₂ core-shell catalysts was tested in a CO₂ photoreduction system with a continuous CO₂ flow at atmospheric pressure. The reaction was carried out under visible light irradiation with 15 W energy saving light bulb (Philips, TORNADO 15 W WW E27 220-240 V 1CT) [15]. The MWCNT/TiO₂ nanocomposites were coated on glass rods to ensure uniform and maximum exposure of the catalyst surface to the irradiated light. The coating of MWCNT/TiO₂ nanocomposites on the glass rods was carried out by mixing the powder sample with polyethylene glycol (PEG) (MW: 200, Merck) at a pre-calculated ratio of 1:3 (g:ml). The coating was done using a dip-coating method. Subsequently, the PEG was removed by thermal decomposition in air [19] at 300 °C for 30 min, leaving behind the coated layer of MWCNT/TiO₂ on the glass rods as shown in Fig. S1 (Supplementary materials). The coated glass rods were then loaded into quartz tubes with the dimensions of $10 \text{ mm} \times 200 \text{ mm}$ (OD × length) which functioned as a photoreactor. Upon loaded with the glass rods, the photoreactor was flowed with CO₂ gas in dark for 30 min at a flowrate of 30 mL/min. Next, the light source was turned on and the CO₂ photoreduction was carried out with a controlled flowrate of the CO₂ gas. Water was used as the sacrificial reagent for the photoreduction reaction and was introduced into the reactor via bubbling of the CO₂ gas in water at room temperature. The entire photoreduction system was enclosed in a black box to avoid incoming irradiation light from the surrounding. During the CO₂ photoreduction reaction, the product gas was collected in gas bags from time to time (with the sampling time of 1 h) and the composition of the product gas was analyzed in a gas chromatography (GC) (Agilent 7890 A, Hayesep Q and mol sieve column) equipped with both TCD and FID. A schematic diagram of the photoreduction was shown in Fig. S2 (Supplementary materials). Methane concentration was quantified from the peak area of the GC spectra using the internal standard reference method.

The yield of methane was calculated using the following expression:

Methane yield =
$$\frac{\text{Amount of methane produced/}h (\mu \text{mol/}h)}{\text{Amount of photocatalyst used }(g)}$$
 (1)

3. Results and discussion

3.1. Characterization of the nanocomposites

Fig. 1 shows the UV-vis spectra of the MWCNT/TiO₂ core-shell nanocomposites compared to the acid-treated MWCNTs and anatase TiO₂ powder. The light absorption of the MWCNT/TiO₂ core-shell nanocomposites was found to have a similar trend with that of the anatase TiO₂ but at a magnified scale with absorption in visible light range (at 400-800 nm). The total light absorption of the MWCNT/TiO₂ nanocomposites was believed to be contributed by both TiO2 and MWCNTs of which TiO2 led to the light absorption in the UV range (200-400 nm) and the MWCNTs contributed to the light absorption over the whole UV-vis range (200-800 nm) [14]. MWCNT/TiO₂ nanocomposites have shown reduced absorption intensity compared to the acid-treated MWCNTs. This result is in agreement with the earlier literature [9,20,21]. The reduction of absorption intensity in the visible range of the nanocomposites can be attributed to the wrapping of TiO₂ shell over the MWCNT core which reduced the light intensity reaching at the MWCNT core [22]. The red shift of the absorption edge (>400 nm) of the MWCNT/TiO₂ core-shell structure also implies an ability of the nanocomposites to be photoactivated under the visible light irradiation [13].

Fig. 1. UV–vis spectra of core–shell MWCNT/TiO $_2$, acid-treated MWCNTs and anatase TiO $_2$.

The surface morphology of the MWCNT/TiO $_2$ core–shell nano-composites was examined with FESEM (Fig. 2a and b). The TiO $_2$ nanoparticles were visualized to deposit uniformly over the surface of MWCNTs, forming a TiO $_2$ shell that wrapped up around MWCNT with insignificant TiO $_2$ agglomeration. The diameters of the nanocomposites were measured to be in the range of ca. 40–60 nm, which were thicker than the diameter of acid-treated MWCNTs that ranging from ca. 31 to 35 nm. The presence of the TiO $_2$ shell was further confirmed by performing the EDS on the core–shell structure as shown in Fig. 2c.

HRTEM was carried out to investigate the internal structure of the core–shell nanocomposites. Fig. 3a shows the HRTEM image of the MWCNT/TiO₂ core–shell structure. HRTEM results revealed that the core–shell structure of MWCNT/TiO₂ was constructed by the deposition of the TiO₂ nanoparticles along the tube wall of MWCNTs. The thickness of the TiO₂ shell layer was measured from the HRTEM images. The TiO₂ layer was found to have an average thickness of *ca.* 16.6 nm, calculated from repetitive measurements at various spots in the images (Fig. 3b). High magnification image (Fig. 3c) disclosed that the TiO₂ shell was composed of TiO₂ nanoparticles deposited on the tube wall. Heterojunction of the

Fig. 2. FESEM images of (a) acid-treated MWCNTs, (b) MWCNT/TiO₂ core-shell nanocomposites and (c) EDS results on MWCNTs/TiO₂ structure.

Fig. 3. HRTEM images of (a) the MWCNT/TiO₂ nanocomposites, ((b) and (c)) TiO₂ shell and (d) enlarged image of the selected MWCNT-TiO₂ heterojunction.

MWCNT-TiO₂ (highlighted area in Fig. 3c) can be significantly visualized from the overlapping of the two different lattice fringes of MWCNTs and TiO₂. The MWCNT-TiO₂ heterojunction would promote electron transfer between the two composites, thus, leading to red shift of the light absorption edge into visible region [23]. Fig. 3d shows the lattice fringes of the TiO₂ and MWCNT wall. The lattice spacing of *ca.* 0.35 nm obtained from the TiO₂ nanoparticles is attributed to the crystal facet of (101) [24]. Meanwhile, the lattice spacing of *ca.* 0.33 nm is identical to the facet of (002) of the MWCNTs [6,7].

XRD analysis was performed to examine the crystal phase of the nanocomposites. The peaks observed at 2θ =25.2°, 37.9°, 48.3°, 53.9°, 55.0°, 62.7°, 68.9°, 70.1°, and 75.5° were identified to be the anatase phase TiO₂ with various crystal structures as labeled in the spectrum shown in Fig. 4 [25]. The strongest diffraction was associated with the (1 0 1) facets, which indicates a much preferred crystallization of the deposited TiO2 along the (1 0 1) direction of the anatase phase. Rutile TiO₂ was not detected and it could be due to the relatively low calcination temperature (at 400 °C) employed in this work. The phase transformation of anatase into rutile phase would only begin at the temperatures above 550 °C [5]. The crystallite size of the TiO₂ nanoparticles was determined from Scherrer's equation using a K factor of cubic particles of 0.90. The TiO₂ was estimated to have the crystallite size of ca. 24.4 nm based on the strongest diffraction peak for the anatase (1 0 1) facets (Fig. 4).

Fig. 5 displays the Raman spectra of the MWCNT/ TiO_2 nanocomposites and pristine MWCNTs. The Raman spectrum of

Fig. 4. XRD spectrum of MWCNT/ TiO_2 core–shell nanocomposites. *A denotes as anatase.

MWCNT/TiO₂ nanocomposites exhibited characteristic peaks of anatase TiO₂ as well as G- and D-band of MWCNTs. Four characteristic peaks at the wavenumbers of ca. 155 cm $^{-1}$ (E_g), 402 cm $^{-1}$ (B_{1g}), 519 cm $^{-1}$ ($B_{1g} + A_{1g}$) and 639 cm $^{-1}$ (E_g) were observed, revealing that anatase was the predominant phase of the TiO₂ shell [26,27]. The crystal phase analysis by the Raman spectroscopy gave consistent result with the XRD in which no rutile and brookite phase TiO₂ was found. The characteristic

peaks of MWCNTs, *i.e.* D- and G-band, were observed at $1334\,\mathrm{cm}^{-1}$ and $1587\,\mathrm{cm}^{-1}$, respectively in the MWCNT/TiO₂ nanocomposites, acid-treated MWCNTs and pristine MWCNTs. Asymmetric G-bands due to the formation of G^* bands were noticed at $\sim 1600\,\mathrm{cm}^{-1}$ in the spectra of both the acid-treated MWCNTs and MWCNT/TiO₂ nanocomposites, which indicates the creation of defect sites on the MWCNT during the acid treatment [28]. The degree of graphitization (I_G/I_D) of the MWCNTs was found to reduce from 1.13 of the pristine MWCNTs to 0.70 of the acid-treated MWCNTs, which also uncovers that the defects were generated during the acid treatment. The I_G/I_D ratio of MWCNT/TiO₂ was determined to be 0.76, showing that TiO₂ coating did not cause significant defects to the MWCNT side wall.

3.2. Formation scheme of MWCNT/TiO₂ core-shell structure

The principle of the two-step synthesis of the MWCNT/TiO₂ core–shell structure is as illustrated in Scheme 1. The acid treatment was done to introduce hydrophilic behavior in the MWCNT surface *via* formation of carboxyl groups. The second step

Fig. 5. Raman spectra of pristine MWCNTs, acid-treated MWCNTs, and MWCNT/ ${\rm TiO_2}$ nanocomposites.

involved the dispersion of MWCNTs into water, followed by hydrolysis of titanium butoxide with water molecules which were readily attached to the surface of the MWCNTs, forming a layer of amorphous ${\rm TiO}_2$ that covered the surface of the MWCNTs uniformly. The anatase ${\rm TiO}_2$ shell with a preferred (1 0 1) orientation was subsequently obtained after calcination at 400 °C.

3.3. CO₂ photoreduction

CO₂ photoreduction was conducted to study the photocatalytic performance of the MWCNT/TiO₂ nanocomposites. Methane gas was detected in the product stream, which shows that CO₂ was successfully reduced to methane over the MWCNT/TiO₂ nanocomposites. The yield of methane upon the reaction is shown in Fig. 6. The MWCNT/TiO₂ nanocomposites exhibited superior photocatalytic activity as compared to the pure MWCNTs and anatase TiO₂. At the initial stage of the photoreaction, *i.e.* from 0 to 3 h, very low concentration of methane was detected. This observation may be attributed to the low photocatalytic activity at the beginning of the irradiation process, during which mainly intermediate products

Fig. 6. Methane yields as a function of irradiation time: (♠) MWCNT/TiO₂ nanocomposites, (♠) MWCNTs, and (♠) nanatase TiO₂.

Scheme 1. Schematic of the proposed coating method.

Fig. 7. FT-IR spectra of MWCNT/ ${\rm TiO_2}$ nanocomposites before and after the ${\rm CO_2}$ photoreduction reaction.

such as radicals were evolved at this stage [22,29–31]. The yield of methane was found to increase with the irradiation duration, achieving its maximum yield of *ca.* 0.17 µmol/g-catalyst/h at the 6th hour of irradiation. Prolonging the photoreaction to a duration of more than 6 h reduced the catalytic activity probably due to saturation of the active sites by adsorbed intermediate products [30,32]. Very low methane yield was observed from the CO₂ photoreduction reactions conducted with the acid-treated MWCNTs and the anatase TiO₂. MWCNTs with defects after acid treatment have been also reported earlier to have a low photocatalytic activity [20,33]. The low activity of TiO₂ for the conversion of CO₂ into methane would be due to that only a small fraction of UV light was present in the light source of the reaction, indicated by its light absorption spectrum (Fig. S3, Supplementary materials).

Fig. 7 shows the FT-IR spectra of the MWCNT/TiO₂ nanocomposites after the CO₂ photoreduction as compared with the fresh MWCNT/TiO₂ nanocomposites and acid-treated MWCNTs. Three peaks observed at ca. 1739 cm⁻¹, 1363 cm⁻¹, and 1215–1227 cm⁻¹ in the spectrum after the CO₂ photoreduction reaction were correspondent to the absorption of $v(\text{CH}_2=\text{O})$ of formaldehyde, asymmetric CO₃ stretching vibration band, $\nu_{as}(\text{CO}_3)$, and C–O stretching of carbonyl group, respectively [34,35]. The presence of these intermediate products further confirms that CO₂ was converted to methane via the photocatalytic reduction with water.

3.4. Photoexcitation scheme of the MWCNT/TiO₂ core-shell structure

Upon the irradiation with visible light, TiO_2 underwent charge separation generating electron–hole pairs (Eq. (2)). The electron–hole pairs were separated and trapped at the surface vacancies and subsequently initiated the photoreduction reaction by reacting with CO_2 and water, in which water was oxidized with holes, generating oxygen and H^+ ions. CO_2 was reduced into methane by reaction with electrons, following the reactions as presented in Eqs. (3) and (4), respectively [36,37].

$$TiO_2 + hv \rightarrow TiO_2 (e_{ch}^-) + TiO_2 (h_{vh}^+)$$
 (2)

$$2H_2O + 4h^+ \rightarrow 4H^+ + O_2$$
 (3)

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$$
 (4)

The electron charge transfer mechanism during the photoexcitation of the composites was investigated and proposed in Scheme 2. MWCNTs with their unique electrical and electronic properties played an important role to improve the electron charge transfer efficiency during the photoirradiation. Photogeneration and trapping of electron-hole pairs at the surface vacancies created non-equilibrium charging state between the TiO₂ and MWCNT. These trapped electrons would thus transfer from the conduction band (CB) of TiO₂ to the neighboring MWCNT which has lower band-edge position to achieve charge equilibrium

Scheme 2. Photoexcitation of the $MWCNT/TiO_2$ nanocomposites and the subsequent electron charge transfer.

in between these two semiconductors [7,37,38]. In addition, the transfer of electrons to MWCNT would reduce the trapping of electrons in the lattice of ${\rm TiO_2}$, subsequently reduced the electronhole recombination. This would generate more holes on the ${\rm TiO_2}$ surface for the oxidation of water and H $^+$ ions for the reduction of ${\rm CO_2}$, hence improved the overall efficiency of the photoreduction reaction.

4. Conclusions

MWCNT/TiO₂ core–shell nanocomposites with enhanced photoreactivity were successfully developed in this work. Uniform coating of TiO₂ overlayer on the surface of MWCNTs was obtained without any use of surfactant. We also demonstrated for the first time that the core–shell MWCNT/TiO₂ nanocomposites were photoactive for the reduction of CO₂ into methane under visible light irradiation. It is noteworthy that the maximum methane yield of *ca.* 0.17 µmol/g-catalyst/h was obtained at the 6th hour of reaction in a continuous CO₂ flow using an energy saving light bulb of low irradiation power (15 W). The photoexcitation mechanism suggests that the enhanced photoreactivity of these core–shell nanocomposites was achieved *via* electron transfer between the TiO₂ shell and the MWCNTs, which inhibited the electron–hole pair recombination and improved the overall efficiency of the photocatalysis.

Acknowledgements

The authors would like to thank the Ministry of Higher Education of Malaysia (LRGS, 2110226-113-00; FRGS/1/2013/TK05/MUSM/02/1) and Monash University Malaysia for the financial support given.

Appendix A. Supplementary materials

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.solmat.2013.11.034.

References

 G. Guan, T. Kida, A. Yoshida, Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst, Appl. Catal., B 41 (2003) 387–396.

- [2] X.-H. Xia, Z.-J. Jia, Y. Yu, Y. Liang, Z. Wang, L.-L. Ma, Preparation of multi-walled carbon nanotube supported TiO₂ and its photocatalytic activity in the reduction of CO₂ with H₂O, Carbon 45 (2007) 717–721.
- [3] K. Woan, G. Pyrgiotakis, W. Sigmund, Photocatalytic carbon-nanotube-TiO₂ composites, Adv. Mater. 21 (2009) 2233–2239.
- [4] W. Feng, Y. Feng, Z. Wu, A. Fujii, M. Ozaki, K. Yoshino, Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes, J. Phys. Condens. Matter 17 (2005) 4361.
- [5] N. Bouazza, M. Ouzzine, M.A. Lillo-Ródenas, D. Eder, A. Linares-Solano, TiO₂ nanotubes and CNT-TiO₂ hybrid materials for the photocatalytic oxidation of propene at low concentration, Appl. Catal., B 92 (2009) 377–383.
- [6] J. Yu, T. Ma, S. Liu, Enhanced photocatalytic activity of mesoporous TiO₂ aggregates by embedding carbon nanotubes as electron-transfer channel, Phys. Chem. Chem. Phys. 13 (2011) 3491–3501.
- [7] Y. Cong, X. Li, Y. Qin, Z. Dong, G. Yuan, Z. Cui, X. Lai, Carbon-doped TiO₂ coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity, Appl. Catal., B 107 (2011) 128–134.
- [8] Y. Yu, J.C. Yu, J.-G. Yu, Y.-C. Kwok, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, P.-K. Wong, Enhancement of photocatalytic activity of mesoporous TiO₂ by using carbon nanotubes, Appl. Catal., A 289 (2005) 186–196.
- [9] L. Tian, L. Ye, K. Deng, L. Zan, TiO₂/carbon nanotube hybrid nanostructures: solvothermal synthesis and their visible light photocatalytic activity, J. Solid State Chem. 184 (2011) 1465–1471.
- [10] D. Eder, A.H. Windle, Morphology control of CNT-TiO₂ hybrid materials and rutile nanotubes, J. Mater. Chem. 18 (2008) 2036–2043.
- [11] D. Wang, L. Xiao, Q. Luo, X. Li, J. An, Y. Duan, Highly efficient visible light TiO₂ photocatalyst prepared by sol-gel method at temperatures lower than 300 °C, I. Hazard. Mater. 192 (2011) 150–159.
- [12] D. Eder, I.A. Kinloch, A.H. Windle, Pure rutile nanotubes, Chem. Commun. (2006) 1448–1450.
- [13] H. Wang, H.-L. Wang, W.-F. Jiang, Solar photocatalytic degradation of 2, 6-dinitro-*p*-cresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)–TiO₂ composite photocatalysts, Chemosphere 75 (2009) 1105–1111.
- [14] Y. Ou, J. Lin, S. Fang, D. Liao, MWNT-TiO₂:Ni composite catalyst: a new class of catalyst for photocatalytic H₂ evolution from water under visible light illumination, Chem. Phys. Lett. 429 (2006) 199–203.
- [15] W.-J. Ong, M.M. Gui, S.-P. Chai, A.R. Mohamed, Direct growth of carbon nanotubes on Ni/TiO₂ as next generation catalysts for photoreduction of CO₂ to methane by water under visible light irradiation, RSC Adv. 3 (2013) 4505–4509.
- [16] F. Wang, K. Zhang, Physicochemical and photocatalytic activities of self-assembling TiO₂ nanoparticles on nanocarbons surface, Curr. Appl. Phys. 12 (2012) 346–352.
- [17] W. Zhou, K. Pan, Y. Qu, F. Sun, C. Tian, Z. Ren, G. Tian, H. Fu, Photodegradation of organic contamination in wastewaters by bonding TiO₂/single-walled carbon nanotube composites with enhanced photocatalytic activity, Chemosphere 81 (2010) 555–561.
- [18] W.-M. Yeoh, K.-T. Lee, A.R. Mohamed, S.-P. Chai, Production of carbon nanotubes from chemical vapor deposition of methane in a continuous rotary reactor system. Chem. Eng. Commun. 199 (2012) 600–607.
- [19] SPI-Chem Polyethylene Glycol 200, in: (http://www.2spi.com/catalog/chem/poly.php). Accessed date: 23rd August 2013.

- [20] C.G. Silva, L.F. Joaquim, Photocatalytic oxidation of benzene derivatives in aqueous suspensions: synergic effect induced by the introduction of carbon nanotubes in a TiO₂ matrix, Appl. Catal., B 101 (2010) 81–89.
- [21] S. Wang, et al., Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites, J. Phys. Chem. Solids 69 (2008) 2396–2400.
- [22] Slamet, H.W. Nasution, E. Purnama, S. Kosela, J. Gunlazuardi, Photocatalytic reduction of CO₂ on copper-doped titania catalysts prepared by improvedimpregnation method, Catal. Commun. 6 (2005) 313–319.
- [23] S. Qin, F. Xin, Y. Liu, X. Yin, W. Ma, Photocatalytic reduction of CO₂ in methanol to methyl formate over CuO–TiO₂ composite catalysts, J. Colloid Interface Sci. 356 (2011) 257–261.
- [24] Q. Zhang, Y. Li, E.A. Ackerman, M. Gajdardziska-Josifovska, H. Li, Visible light responsive iodine-doped TiO₂ for photocatalytic reduction of CO₂ to fuels, Appl. Catal., A 400 (2011) 195–202.
- [25] Q.-H. Zhang, W.-D. Han, Y.-J. Hong, J.-G. Yu, Photocatalytic reduction of CO₂ with H₂O on Pt-loaded TiO₂ catalyst, Catal. Today 148 (2009) 335–340.
- [26] P. Falaras, A. Hugot-Le Goff, M.C. Bernard, A. Xagas, Characterization by resonance Raman spectroscopy of sol-gel TiO₂ films sensitized by the Ru (PPh₃)₂(dcbipy)Cl₂ complex for solar cells application, Sol. Energy Mater. Sol. Cells 64 (2000) 167–184.
- [27] T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO₂, J. Raman Spectrosc. 7 (1978) 321–324.
- [28] R. Graupner, Raman spectroscopy of covalently functionalized single-wall carbon nanotubes, J. Raman Spectrosc. 38 (2007) 673–683.
- [29] K. Kočí, K. Matějů, L. Obalová, S. Krejčíková, Z. Lacný, D. Plachá, L. Čapek, A. Hospodková, O. Šolcová, Effect of silver doping on the TiO₂ for photocatalytic reduction of CO₂, Appl. Catal., B 96 (2010) 239–244.
- [30] S.S. Tan, et al., Photosynthesis of hydrogen and methane as key components for clean energy system, Sci. Technol. Adv. Mater. 8 (2007) 89.
- [31] O. Ozcan, F. Yukruk, E. Akkaya, D. Uner, Dye sensitized CO₂ reduction over pure and platinized TiO₂, Top. Catal. 44 (2007) 523–528.
- [32] N. Sasirekha, S.J.S. Basha, K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide, Appl. Catal., B 62 (2006) 169–180.
- [33] Y. Luo, Y. Heng, X. Dai, W. Chen, J. Li, Preparation and photocatalytic ability of highly defective carbon nanotubes, J. Solid State Chem. 182 (2009) 2521–2525.
- [34] H. Tsuneoka, K. Teramura, T. Shishido, T. Tanaka, Adsorbed species of CO_2 and H_2 on Ga_2O_3 for the photocatalytic reduction of CO_2 , J. Phys. Chem. C 114 (2010) 8892–8898.
- [35] N. Ulagappan, H. Frei, Mechanistic study of CO₂ photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy, J. Phys. Chem. A 104 (2000) 7834–7839.
- [36] Y. Li, W.-N. Wang, Z. Zhan, M.-H. Woo, C.-Y. Wu, P. Biswas, Photocatalytic reduction of CO₂ with H₂O on mesoporous silica supported Cu/TiO₂ catalysts, Appl. Catal., B 100 (2010) 386–392.
- [37] A. Kongkanand, P.V. Kamat, Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor—SWCNT suspensions, ACS Nano 1 (2007) 13–21.
- [38] T. Tsubota, A. Ono, N. Murakami, T. Ohno, Characterization and photocatalytic performance of carbon nanotubes material-modified TiO₂ synthesized by using the hot CVD process, Appl. Catal., B 91 (2009) 533–538.