

M3 – Machine Learning for Computer Vision

Project: Deep learning classification - Final Presentation

Group 7: Guillem Capellera, Johnny Nuñez and Anna Oliveras

Outline

- Week 1: Bag of Visual Words framework
- Week 2: Beyond BoVW → SVMs, Spatial Pyramids, Fisher Vectors
- Week 3: From hand crafted to learnt features
- Week 4: Fine tuning of pre-trained CNNs → Densenet121
- Week 5: Training a CNN from scratch
 - Initial CNN
 - o CNN Refinement
 - Residual Connections
 - Residual Network
 - Recap
- Conclusions

Handcrafted methods: Bag of Visual Words

Data driven methods: Deep Convolutional Networks

Datasets

- We have 8 classes: coast, forest, highway, inside city, mountain, open country, street, tall buildings
- Big dataset : MIT_split → total of 2288 images
- Small dataset: MIT_small_train_1 → Train with only 50 images for each class!

Opencountry

Week 1: Bag of Visual Words framework

Grid search best parameters (Optuna)

Descriptor: DenseSIFT with

- n features = 251
- patch_size = 3
- step size = 75

Clustering

Codebook size k = 1024

Dimensionality reduction

PCA with n_components = 46

Classifier

- n_neighbors = 18
- distance = euclidean

Week 2: Beyond BoVW

Spatial Pyramids

Multiple divisions: 1x1, 2x2, 4x4 vertical 1x2, 1x3, 1x4 horizontal 2x1, 3x1, 4x1

SVM and Kernels

- Linear
- RBF
- Histogram intersection

Feature normalization

- Power Norm
- L2 Norm

Fischer Vectors

Inlude higher order statistics: mean, covariance of local descriptors \rightarrow GMM clustering

Accuracy = 0.96 (Without hyperparameter optimization) F1 score = 0.83

Grid search best parameters (Optuna)→ We use Dense SIFT

- num features = 178
- step size = 18
- num cluster = 798
- num components = 69
- gamma = 0.00445
- C = 4.38
- dim_reduc = PCA
- kernel = RBF
- Normalization = power
- Spatial_pyramid = vertical 1x4

Accuracy = 0.96 F1 score = 0.86

Week 3: From hand crafted to learnt features

Deep features + SVM

Extracting the features after each dense layer output → similar results (best with output dense 4096)

Accuracy = 0.41

Patch based MLP

- → Best patch size: 32 x 32
- → Best aggregation: mean
 - Accuracy = 0.77

Patch based deep features + BoVW

- → Num clusters too low —> too much generalization of the features
- → Num clusters too big → too much specificity of the features
- → Best number of clusters (codebook size) = 256
 - Accuracy = 0.72

Week 4: Fine Tuning DenseNet121^[1]

29% less parameters than the original model

Making the network smaller

et	Model	Epochs	Num parameters	Validation accuracy	
dataset	Original	300	7M	0.9542	`
_split	Removing 1 DB	300	5M	0.941	
Σ	Removing 2 DB	300	1.5M	0.825	

Using MIT_small dataset

- Overfitting
- Accuracy drops to 0.845

Data augmentation

- Horizontal Flip = True
- Zoom Range = 20%
- Accuracy increases to 0.895
- Validation loss does not increase

Improve learning curve

- Early Stopper
- Reduce LR
- BatchNormalization and Dropout
 - → Accuracy increases to **0.915**

Hyperparameter Optimization

→ Accuracy increases to **0.9518**

Optimizer = Adamax LR = 0.0001 Dropout = 0.5 Wight decay = 0.3 Batch_ size = 10 BatchNormalization

[1] Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4700-4708). https://arxiv.org/abs/1608.06993

Week 5

Building a CNN from scratch

[1] Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4700-4708). https://arxiv.org/abs/1608.06993

Manual search of the CNN network

- CNN
 - 4 blocks → Conv2D + Conv2D + MaxPool + BatchNorm
- Classifier
 - Global Average Pooling
 - \circ 3 blocks \rightarrow Dense + Dropout

Network refinement

- Number of CNN blocks
- \rightarrow 2, 3, 4, 5

For each CNN block

- → Add a second layer? True, False
- Dimensionality first filter → 32, 64
- Number of dense layers
- \rightarrow 1, 2, 3, 4

Initializer & activation function

Params Accuracy 1.3M 0.81

- Initializer → GlorotUniform, GlorotNormal, HeUniform, HeNormal
- Activation → Relu, LeakyRelu, Mish
- Kernel size \rightarrow 3x3 or 5x5
- Kernel regularizer → True, False

Initializer & activation function

- Initializer → GlorotUniform, GlorotNormal, HeUniform, HeNormal
- Activation → Relu, LeakyRelu, Mish
- Kernel size \rightarrow 3x3 or 5x5
- Kernel regularizer → True, False

Hyperparameter optimization

Sweep	Values	Best	Sensitivity
LR	[0.01, 0.005, 0.001]	0.001	High
Batch Size	[8, 16, 32, 64]	32	Medium
Optimizer	[Adam, SGD]	Adam	Low
Dropout values	[0.3 , 0.4, 0.6]	0.4	Medium
Horizontal Flip	[True, False]	True	High
Rotation	[0, 15]	0	Medium
Width Shift	[0, 0.1]	0.1	Medium
Height Shift	[0, 0.1]	0.1	Medium
Shear Range	[0, 0.1]	0	Medium
Zoom Range	[0, 0.1]	0	High

Parameter refinement

Params Accuracy 1.3M 0.85

Params	Accuracy
380k J J	0.80 ↓

Reduce the number of **filters** at each CNN block

CNN blocks	Before	After	
1st block	32, 32	32, 32	
2nd block	64, 64	32, 32	
3th block	128, 128	64, 64	
4th block	256, 256	128, 128	

Residual Connections

- Residual Connections between blocks
- Reduce dimensionality of the filters

Benefits

- Converge more easily
- More Stability Training
- Better Generalization
- Easy implementation
- Improve accuracy

- CNN blocks \rightarrow 2, 3, 4, 5
- Num filters \rightarrow 16, **32**, 64, 128, 256
- Dense layers \rightarrow 0, 1, 2, 3

- CNN blocks \rightarrow 2, 3, 4, 5
- Num filters \rightarrow 16, **32**, 64, 128, 256
- Dense layers \rightarrow 0, 1, 2, 3

Params Accuracy 68k 0.85

- Horizontal Flip → True
- Rotation [0, 15] → **0**
- Width Shift $[0, 0.1] \rightarrow 0.1$
- Height Shift $[0, 0.1] \rightarrow \mathbf{0}$
- Shear Range $[0, 0.1] \rightarrow 0$
- Zoom Range $[0, 0.1] \rightarrow 0$

Recap week 5

Params	Accuracy
1.3M	0.85

Params	Accuracy
380k	0.80

Recap week 5

- Good results with BOVW and spatial pyramids (0.95 accuracy)
- MLP \rightarrow too simple for our problem in all the cases (0.77 accuracy)
- Reduced data → challenging and requires the use of data augmentation and other techniques to achieve the desired results
- Fine-tuning the DenseNet121 → best results (0.96 accuracy) and we were able to reduce
 30% of the network parameters to 5M
- Building a network from scratch is time consuming and difficult to optimize
- Residual connections → help the network to converge easily and generalize.
 - → 0.85 accuracy with 68k parameters
- Our results are limited due to the lack of data