Harmonic Measure TD2

2025年03月30日 aytony

Exercise 1: Let $\Omega \subset \mathbb{R}^n$ be a nonempty bounded open set with C^1 boundary $\partial\Omega$, and let $F:\overline{\Omega} \to \mathbb{R}^n$ be a vector field that is continuously differentiable in Ω and continuous up to the boundary, i.e., $F \in C^1(\Omega) \cap C(\overline{\Omega})$. Then the divergence theorem asserts

$$\int_{\Omega} \nabla \cdot F \, \mathrm{d}x = \int_{\partial \Omega} F \cdot \nu \, \mathrm{d}S,$$

where ν is the outward pointing unit normal to the boundary $\partial\Omega$.

As a warmup, let $u \in C^1(\Omega) \cap C(\overline{\Omega})$ and $\varphi \in C^2(\Omega) \cap C^1(\overline{\Omega})$, use the divergence theorem to prove the following identities:

1. Green's zeroth identity

$$\int_{\Omega} \Delta \varphi \, \mathrm{d}x = \int_{\partial \Omega} \partial_{\nu} \varphi \, \mathrm{d}S \,.$$

2. Green's first identity

$$\int_{\Omega} (\nabla u \cdot \nabla \varphi + u \Delta \varphi) \, \mathrm{d}x = \int_{\partial \Omega} u \partial_{\nu} \varphi \, \mathrm{d}S.$$

3. Green's second identity

$$\int_{\Omega} (u \Delta \varphi - \varphi \Delta u) \, \mathrm{d}x = \int_{\partial \Omega} (u \partial_{\nu} \varphi - \varphi \partial_{\nu} u) \, \mathrm{d}S.$$

Proof:

1. Set $F = \nabla \varphi$ and

2. LHS =
$$\int_{\Omega} \nabla \cdot F \, dx = \int_{\partial \Omega} F \cdot \nu \, dS = \int_{\partial \Omega} \nabla \varphi \cdot \nu \, dS = \text{RHS}.$$

2. LHS = $\int_{\Omega} \nabla \cdot (u \nabla \varphi) \, dx = \int_{\partial \Omega} u \nabla \varphi \cdot \nu \, dS = \text{RHS}.$

3. LHS = $\int_{\Omega} (u \Delta \varphi + \nabla u \cdot \nabla \varphi) \, dx - \int_{\Omega} (\varphi \Delta u + \nabla u \cdot \nabla \varphi) \, dx$

$$= \int_{\partial \Omega} u \partial_{\nu} \varphi \, dS - \int_{\partial \Omega} \varphi \partial_{\nu} u \, dS$$

$$= \text{RHS}.$$

Exercise 2: The inhomogeneous version of the Laplace equation is scrled the Poisson equation

$$\Delta u = f$$
, in Ω .

The common boundary conditions considered include

$$au + b\partial_{\nu}u = g$$
, on $\partial\Omega$,

with various choices of the functions a and b on the boundary. The case $a \equiv 1$ and $b \equiv 0$ is scribed the *Dirichlet*, $a \equiv 0$ and $b \equiv 1$ the *Neumann*, $a \equiv 1$ and b > 0 the *Robin*, and $a \equiv 1$ and b < 0 the *Steklov* boundary conditions.

Here we consider $C^2(\Omega) \cap C^1(\overline{\Omega})$ solutions:

- 1. Prove uniqueness of solutions to the Dirichlet problem for the Poisson equation.
- 2. Prove that any two solutions of the Neumann problem for the Poisson equation differ by a constant.
- 3. Prove a uniqueness theorem for the Robin problem for the Poisson equation. What if one specifies a Dirichlet condition on one part of the boundary, and a Neumann condition on the rest?

Proof:

- 1. Set u,v be two solutions to the Dirichlet problem for the Poisson equation. Therefore, u-v is harmonic in Ω since $\Delta(u-v)=\Delta u-\Delta v=0$ and u-v=0 on $\partial\Omega$, hence $u-v\equiv 0$ on Ω according to maximum principle of harmonic function.
- 2. Set u_1, u_2 be two solutions to the Neumann problem for the Poisson equation, and let $v = u_1 u_2$. Only need to prove $\nabla v = 0$. That's because

$$0 = \int_{\Omega} v \Delta v \, \mathrm{d}x = \int_{\partial \Omega} v \partial_{\nu} v \, \mathrm{d}S - \int_{\Omega} \nabla v \cdot \nabla v \, \mathrm{d}x,$$

since $\partial_{\nu}v=0$ on $\partial\Omega$, first term is always 0, so $\Delta v=0$ holds for $x\in\Omega$ a.e..

3. Set u_1, u_2, v similarly.

$$0 = \int_{\Omega} v \Delta v \, \mathrm{d}x = \int_{\partial \Omega} v \partial_{\nu} v \, \mathrm{d}S - \int_{\Omega} |\nabla v|^2 \, \mathrm{d}x = -\int_{\partial \Omega} \frac{v^2}{b} \, \mathrm{d}S - \int_{\Omega} |\nabla v|^2 \, \mathrm{d}x,$$

Hence $v^2=0$ for $x\in\partial\Omega$ a.e., and use the uniqueness of Dirichlet problem. For next question, suppose Dirichlet condition holds on $\Omega_1\subset\partial\Omega$ and Neumann holds on $\Omega_2=\partial\Omega\setminus\Omega_1$. Similarly we can deduce

$$0 = \int_{\partial\Omega} v \partial_\nu v \,\mathrm{d}S - \int_\Omega |\nabla v|^2 \,\mathrm{d}x = \int_{\Omega_1} 0 \cdot \partial_\nu v \,\mathrm{d}S + \int v \cdot 0 \,\mathrm{d}S - \int_\Omega |\nabla v|^2 \,\mathrm{d}x,$$

since first two terms vanish, v is a constant in Ω , therefore v=0 since v=0 on Ω_1 .

Exercise 3: A **fundamental solution** (or elementary solution) of the Laplacian in n dimensions is a locally integrable function $E \in L^1_{loc}(\mathbb{R}^n)$ satisfying

$$\int_{\mathbb{R}^n} E(y) \Delta \varphi(y) dy = \varphi(0),$$

2

for all $\varphi \in \mathscr{D}(\mathbb{R}^n)$, where $\mathscr{D}(\mathbb{R}^n)$ is the space of compactly supported smooth functions on \mathbb{R}^n .

- 1. Prove that if a fundamental solution E is smooth on an open set Ω that does not contain the origin, then E must be harmonic on Ω .
- 2. Check the function $E(x) = \phi(|x|)$ with

$$\phi(r) = \begin{cases} C_n r^{2-n} & \text{if} \quad n \neq 2, \\ C_2 \log r & \text{if} \quad n = 2, \end{cases}$$

satisfies $\Delta E = 0$ in $\mathbb{R}^n \setminus \{0\}$.

3. Prove that the constants C_n can be tuned so that E is indeed a fundamental solution, and find the values of C_n .

Proof:

1. For any $\varphi \in \mathfrak{D}(\Omega)$,

$$\begin{split} 0 &= \varphi(0) = \int_{\mathbb{R}^n} E \Delta \varphi = \int_{\Omega} E \Delta \varphi \\ &= \int_{\partial \Omega} E \partial_{\nu} \varphi - \int_{\Omega} \nabla E \cdot \nabla \varphi \\ &= -\int_{\Omega} \nabla E \cdot \nabla \varphi \\ &= \int_{\Omega} \varphi \Delta E - \int_{\partial \Omega} \varphi \partial_{\nu} E \\ &= \int_{\Omega} \varphi \Delta E. \end{split}$$

For any $x \in \Omega$, we can easily choose $\varphi_n \uparrow \delta(x)$, where $\delta(x)$ stands for Dirac function. And conclution can be deduced according to monotone convergence theorem.

- 2. Omit.
- 3. Omit.

Exercise 4: In this problem, we look into the possibility of using fundamental solutions of the Laplace operator as one of the functions in Green's second identity.

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with C^1 boundary. Let $y \in \Omega$, and we put $E_y(x) := E(x-y)$, where E is the special fundamental solution above.

For
$$u \in C^2(\Omega) \cap C^1(\Omega^-)$$
, prove

$$u(y) = \int_{\Omega} E_y \Delta u \, \mathrm{d}x + \int_{\partial \Omega} u \partial_{\nu} E_y \, \mathrm{d}S - \int_{\partial \Omega} E_y \partial_{\nu} u \, \mathrm{d}S \,.$$

Proof: Without lost of generality, we can assume y = 0 and prove

$$u(0) = \int_{\Omega} \Phi \Delta u \, \mathrm{d}x + \int_{\partial \Omega} u \partial_{\nu} \Phi \, \mathrm{d}S - \int_{\partial \Omega} \Phi \partial_{\nu} u \, \mathrm{d}S$$

where Φ denotes the fundamental solution. Since

$$\begin{split} & \int_{\partial\Omega} \Phi \partial_{\nu} u \, \mathrm{d}S = \int_{\Omega} \nabla \cdot (\Phi \nabla u) \, \mathrm{d}x = \int_{\Omega} (\nabla \Phi \cdot \nabla u + \Phi \Delta u) \, \mathrm{d}x, \\ & \int_{\partial\Omega} u \partial_{\nu} \Phi \, \mathrm{d}S = \int_{\Omega} \nabla \cdot (u \nabla \Phi) \, \mathrm{d}x = \int_{\Omega} (\nabla u \cdot \nabla \Phi + u \Delta \Phi) \, \mathrm{d}x = u(y) + \int_{\Omega} \nabla u \cdot \nabla \Phi \, \mathrm{d}x, \end{split}$$

The result can be reached after calculation.

Exercise 5: Let Ω and u be as in Green's formula, and in addition, let $\Delta u = 0$ in Ω . Then by using Green's formula, prove that $u \in C^{\infty}(\Omega)$ with

$$\sup_{y \in K} |\partial^{\alpha} u(y)| \leqslant C \left(\sup_{\Omega} |u| + \sup_{\Omega} |\nabla u| \right),$$

for all multi-indices α and compact sets $K \subset \Omega$, with the constant C possibly depending on α and K.

Proof: Use induction. For $|\alpha|=0$, it is trivial. Assume condition holds for $|\alpha|=k$, we prove the condition $\partial_i\partial^\alpha$ still holds. Indeed, for every $y\in K$, set $B(y,\delta)\subset\Omega$, and

$$|\partial_i \partial^\alpha u(y)| \leqslant \frac{C_i}{\delta} \sup_{B(y,\delta)} |\partial^\alpha u(y)| \leqslant \frac{C_i}{\delta} C_\alpha \bigg(\sup_{\Omega} \lvert u \rvert + \sup_{\Omega} \lvert \nabla u \rvert \bigg).$$

Exercise 6: Let $u \in C^2(\Omega)$ be harmonic in a bounded domain Ω . By using the Harnack Inequality show that unless u is constant, it cannot achieve its extremums in Ω .

Proof: Without lost of generality, we can assume $\inf_{\Omega} u = 0$. Suppose $u(x_0) = 0, x_0 \in \Omega$, then we only need to prove $u \equiv 0$ in Ω . It is easy, because $\forall y \in \Omega$, we have $u(y) \leqslant C_{x_0,y} u(x_0) = 0$ according to Harnack Inequality. \square

4