

ALGEBRA Chapter 22

Funciones III

HELICO MOTIVATING

Motivation Strategy

HELICO THEORY

FUNCIONES III

I) FUNCIÓN INYECTIVA

Sea la función $f: A \rightarrow B$, diremos que f es inyectiva si y solo si:

$$f(a) = f(b)$$
, implica $a = b$ para todo $a; b \in A$

que es equivalente a la siguiente definición:

$$a \neq b$$
 implica $f(a) \neq f(b)$

la cual usaremos en los ejercicios

FORMA PRÁCTICA DE INDENTIFICAR CUÁNDO UNA FUNCIÓN ES INYECTIVA Y CUÁNDO NO

Sea
$$F = \{(a; 3), (b; 6), (c; 8), (d; 6)\}$$

 \Rightarrow F no es inyectiva,

Sea
$$G = \{(a; 7), (b; 2), (c; 8), (d; 1), (e; 5), (f; 3)\}$$

→ G si es inyectiva, porque ninguna de las segundas componentes se repite

OBSERVACIÓN

Para gráficas de funciones, se dirá que una gráfica es inyectiva si al trazar una horizontal lo corta sólo en un punto.

F es inyectiva

G no es inyectiva

01

FUNCIÓN SOBREYECTIVA

Sea la función $f \colon A \to B$, diremos que f es sobreyectiva

si y solo si: Rang(f) = B

f es sobreyectiva, pues:

$$Rang(f) = B$$

g no es sobreyectiva, pues:

$$Rang(f) \neq B$$

III) FUNCIÓN BIYECTIVA

La función $f: A \rightarrow B$ es biyectiva si y solo si f es inyectiva y sobreyectiva

IV) FUNCIÓN INVERSA

Si $f: A \to B$ es una función biyectiva ,entonces existe $f^{-1}: B \to A$ llamada inversa de f, definida por la condición $y = f(x) \leftrightarrow x = f^{-1}(y)$

PROPIEDAD:

$$Dom(f^{-1}) = Ran(f)$$

$$Ran(f^{-1}) = Dom(f)$$

III) FUNCIÓN BIYECTIVA

La función $f: A \rightarrow B$ es biyectiva si y solo si f es inyectiva y sobreyectiva

IV) FUNCIÓN INVERSA

Si $f: A \to B$ es una función biyectiva ,entonces existe $f^{-1}: B \to A$ llamada inversa de f, definida por la condición $y = f(x) \leftrightarrow x = f^{-1}(y)$

PROPIEDAD:

$$Dom(f^{-1}) = Ran(f)$$

$$Ran(f^{-1}) = Dom(f)$$

HELICO PRACTICE

PROBLEMA 1 ¿Cuáles de las funciones son inyectivas?

$$F = \{(1; 2), (3; 5), (4; 8), (5; 9)\}$$

$$G = \{(0; 1), (2; 5), (4; 1), (5; 7)\}$$

$$H = \{(1;5), (3;5), (7;10), (10;5)\}$$

Resolución

F es inyectiva:

G no es inyectiva:

H no es inyectiva:

pues NO se repite ningún elemento del rango; la correspondencia es uno a uno

pues se repite un elemento del rango:

$$(0; 1)$$
 y $(4; 1)$

pues se repite un elemento del rango:

```
PROBLEMA 2 Sean A = \{1; 2; 3; 4\} y B = \{1; 3; 5; 7\} y las funciones f: A \to B y g: A \to B tal que: f = \{(1; 1), (2; 1), (3; 3), (4; 5)\} g = \{(1; 3), (2; 1), (3; 5), (4; 7)\} if y g son sobreyectives?
```

Resolución

f no es Sobreyectiva:

pues
$$Ran(f) \neq B$$

 $\{1; 3; 5\} \neq \{1; 3; 5; 7\}$

g si es Sobreyectiva:

pues
$$Ran(g) = B$$

 $\{1; 3; 5; 7\} = \{1; 3; 5; 7\}$

PROBLEMA 3 Sean las funciones:

f y g son inyectivas?

Resolución

f si es inyectiva:

NO se repite ningún elemento del rango

g no es inyectiva:

(5;8), (7;8)

PROBLEMA 4 Sean las funciones:

¿f y g son sobreyectivas?

Resolución

f si es Sobreyectiva:

pues
$$Ran(f) = B$$

 $\{1; 2; 3\} = \{1; 2; 3\}$

g no es Sobreyectiva:

pues
$$Ran(g) \neq B$$

 $\{1; 3; 5\}$

PROBLEMA 5 Sean $f: A \to B$ y $g: A \to B$ funciones; Además: $A = \{2, 4, 6, 8\}$ y $B = \{2, 3, 5, 8\}$ tales que: $f = \{(2; 5), (4; 5), (8; 3), (6; 8)\}$ $g = \{(2; 2), (6; 3), (4; 8), (8; 5)\}$ ¿f y g son biyectivas?

Resolución

 $f: A \rightarrow B$ es biyectiva si y solo

si f inyectiva y sobreyectiva

I) f NOes Inyectiva

$$f = \{(2; 5), (4; 5), (8; 3), (6; 8)\}$$

pues se repite un elemento del rango:

$$(2;5)$$
 y $(4;5)$

f NO es hivectiva

I) g es Inyectiva

$$g = \{(2,2); (6,3), (4,8); (8,5)\}$$

Pue NO se repite ningún elemento del rango

II) g **es** sobreyectiva

$$pues\ el\ Ran(g)) = B$$

$$\{2,3,5,8\} = \{2,3,5,8\}$$

PROBLEMA 6 Sea la función:

¿Existe f^{-1} ? En caso exista, halle $Dom(f^{-1})$ y $Ran(f^{-1})$

Resolución

Recordar:

Si $f: A \rightarrow B$ es una funcion biyectiva entonces

Del gráfico $f = \{(2; 1), (7; 5), (4; 9)\}$

f es Inyectiva

pues NO se repite ningún elemento del rango; la correspondencia es uno a uno

II) f es Sobreyectiva

Pues: Ran(f)= B

$$\{1, 5, 9\} = \{1, 5, 9\}$$

f es biyectiva \implies $Existe f^{-1}$

$$f^{-1} = \{(1; 2), (5; 7), (9; 4)\}$$

 $Dom(f^{-1}) = \{1, 5, 9\}$ $Ran(f^{-1} = \{2, 4, 7\})$

PROBLEMA 7 Se tiene $f: A \rightarrow B$ función, donde

 $f = \{(2; 9), (3; 4), (4; 5)\}$. El costo de una bicicleta viene dado por el producto de los valores del dominio de la función inversa de f

RESOLUCIÓN

Si $f: A \rightarrow B$, **ES BIYECTIV** $A \rightarrow \exists f^{-1}$

¿Cuál es el costo de la bicicleta?

I) f es inyectiva

 $f = \{(2; 9), (3; 4), (4; 5)\}$ pues NOse repite ningún elemento del rango

II) f es sobreyectiva

$$rang(f) = B$$

$${4,5,9} = {4,5,9}$$

por lo tanto f es biyectiva $ightarrow \exists f^{-1}$

$$f^{-1} = \{(9; 2), (4; 3), (5; 4)\}$$

$$Dom(f^{-1}) = \{9, 4, 5\}$$

nos piden el costo de la bicicleta

el producto de los Valores del dominio
$$= 9x4x5$$
= 180

EL COSTO DE LA BICICLETA ES 180 SOLES

