Proyecto de Lógica para Ciencias de la Computación

Juan Camilo Rodriguez y Daniel Forero

Programa de Matemáticas Aplicadas y Ciencias de la Computación Universidad del Rosario

2019-2

Contenido

1 Representación de situaciones sin condiciones iniciales

2 Representación de situaciones con condiciones iniciales

Problema sin condiciones iniciales

Considere un tablero vacío de tamaño 3x3.

El problema consiste en lograr obtener las posiciones para para completar una línea recta de longitud 3 (Vertical, Horizontal o Diagonal).

Por ejemplo, al ubicar de esta manera las "X" se forma la línea de 3 necesaria para terminar el juego.

Claves de representación (1)

Lo primero será, enumerar las casillas del tablero.

Claves de representación (2)

Se asigna una letra proposicional " X_i ", para la casilla i. X_i es verdadera, sii hay una X ocupando la casilla en la posición i.

- $\neg X_1$: No hay X en la posición 1
- $\neg X_2$: No hay X en la posición 2
- $\neg X_3$: No hay X en la posición 3
- $\neg X_4$: No hay X en la posición 4
- $\neg X_5$: No hay X en la posición 5
- X₆: Hay X en la posición 6
- $\neg X_7$: No hay X en la posición 7
- ¬X₈: No hay X en la posición 8
- $\neg X_9$: No hay X en la posición 9

Reglas

Regla 1: Tiene que haber exactamente 3 figuras iguales seguidas, en este caso "X".

Regla 1

(
$$X_1 \, \wedge \, \neg X_2 \, \wedge \, \neg X_3 \, \wedge \, \neg X_4 \, \wedge \, X_5 \, \wedge \, \neg X_6 \, \wedge \, \neg X_7 \, \wedge \, \neg X_8 \, \wedge \, X_9$$
)

Contenido

1 Representación de situaciones sin condiciones iniciales

2 Representación de situaciones con condiciones iniciales

Problema con condiciones iniciales

Dado un circulo ubicado en la posición 1 del tablero 3x3, el problema consiste en ubicar todas las X de tal manera de que:

- 1) No haya una X en la misma posición que el circulo.
- 2) Se logre hacer una línea de tres solo con las X's.

Reglas

Regla 1: Tiene que haber exactamente 3 figuras iguales seguidas, en este caso "X".

Regla 2: No puede haber dos figuras en una misma posición.

Regla 3: Debe haber al menos un círculo como condición inicial.

Una letra proposicional O_i y otra X_i para cada casilla i. O_i es verdadera sii hay un circulo en la posición del tablero i. X_i es verdadera sii hay una X en la posición del tablero i. El método para saber si una casilla está disponible es: comparar mediante el operador lógico $\lor lasentradas O_i$ y X_i y negar el resultado.

 $\mathsf{DISPOINBILIDAD}_i = \neg(\mathsf{O}_i \vee \mathsf{X}_i)$

(instertar O en 1 X en 9)La representación lógica para este ejemplo especifico seria:

$$(\ \neg X_1 \land \neg X_2 \land \neg X_3 \land \neg X_4 \land \neg X_5 \land \neg X_6 \land \neg X_7 \land \neg X_8 \land X_9 \) \land (O_1 \land \neg O_2 \land \neg O_3 \land \neg O_4 \land \neg O_5 \land \neg O_6 \land \neg O_7 \land \neg O_8 \land \neg O_9)$$

Es decir que nuestra representación de disponibilidad seria:

- ($\neg DISPONIBILIDAD_1 \land DISPONIBILIDAD_2 \land DISPONIBILIDAD_3$
- \land DISPONIBILIDAD₄ \land DISPONIBILIDAD₅ \land DISPONIBILIDAD₆
- \land DISPONIBILIDAD₇ \land DISPONIBILIDAD₈ \land ¬DISPONIBILIDAD₉)

Sea O_7 y O_9 nuestras condiciones iniciales.

Nuestra representación de disponibilidad seria:

($DISPONIBILIDAD_1 \land DISPONIBILIDAD_2 \land DISPONIBILIDAD_3 \land DISPONIBILIDAD_4 \land DISPONIBILIDAD_5 \land DISPONIBILIDAD_6 \land \neg DISPONIBILIDAD_7 \land DISPONIBILIDAD_8 \land \neg DISPONIBILIDAD_9)$

Nuestra representación de las figuras para obtener una línea de tres formada por X, seria:

[
$$(\neg X_1 \land X_2 \land \neg X_3 \land \neg X_4 \land X_5 \land \neg X_6 \land \neg X_7 \land X_8 \land \neg X_9) \land (\neg O_1 \land \neg O_2 \land \neg O_3 \land \neg O_4 \land \neg O_5 \land \neg O_6 \land O_7 \land \neg O_8 \land O_9)$$
 Universidad del
$$| \lor \dots$$
 Universidad del Rosario

El programa ha de retornar la representacion de las figuras que contenga la solucion requerida.

