converting the solar radiation into electricity. A power storage assembly is operationally coupled to the solar assembly. The power storage assembly is adapted for storing electricity from the solar assembly. The power storage assembly is positioned within the lower portion of the base assembly such that the lower portion of the base assembly is adapted for protecting the power storage assembly from adverse weather. A turbine assembly is coupled to the upper portion of the base assembly. The turbine assembly is adapted for producing electricity from wind. The turbine assembly is operationally coupled to the power storage assembly such that the power storage assembly is adapted for storing electricity produced from the turbine assembly.--

Replace the paragraph starting on page 7, line 6, with: -- Yet another object of the present invention is to provide a new power generator, which includes a base assembly that has a lower portion and an upper portion. The lower portion is adapted for resting on a support surface. The lower portion is for supporting the upper portion of the base assembly. A solar assembly is coupled to the upper portion of the base assembly. The solar assembly is adapted for collecting solar radiation and converting the solar radiation into electricity. A power storage assembly is operationally coupled to the solar assembly. The power storage assembly is adapted for storing electricity from the solar assembly. The power storage assembly is positioned within the lower portion of the base assembly such that the lower portion of the base assembly is adapted for protecting the power storage assembly from adverse weather. A turbine assembly is coupled to the upper portion of the base assembly. The turbine assembly is adapted for producing electricity from wind. The turbine assembly is operationally coupled to the power storage assembly such that the

power storage assembly is adapted for storing electricity produced from the turbine assembly.--

Replace the paragraph starting on page 9, line 9, with: -- As best illustrated in Figures 1 through 7, the power generator 10 generally includes a base assembly 12 that has a lower portion 14 and an upper portion 16. The lower portion 14 is adapted for resting on a support surface 18. The lower portion 14 is for supporting the upper portion 16 of the base assembly 12. A solar assembly 20 is coupled to the upper portion 16 of the base assembly 12. The solar assembly 20 is adapted for collecting solar radiation and converting the solar radiation into electricity. A power storage assembly 22 is operationally coupled to the solar assembly 20. The power storage assembly 22 is adapted for storing electricity from the solar assembly 20. The power storage assembly 22 is positioned within the lower portion 14 of the base assembly 12 such that the lower portion 14 of the base assembly 12 is adapted for protecting the power storage assembly 22 from adverse weather. A turbine assembly 24 is coupled to the upper portion 16 of the base assembly 12. The turbine assembly 24 is adapted for producing electricity from wind. The turbine assembly 24 is operationally coupled to the power storage assembly 22 such that the power storage assembly 22 is adapted for storing electricity produced from the turbine assembly 24.--

Replace the paragraph starting on page 10, line 29, with:

--The turbine assembly 24 includes a head assembly 36 and a
stanchion 38. The stanchion 38 is coupled to the upper portion 16
of the base assembly 12 such that the stanchion 38 upwardly extends
from the solar assembly 20. The head assembly 36 is rotatably
coupled to the stanchion 38 at the end opposite to the base assembly