Lecture II: Learning parametric models

— We have until now looked at two simple parametric models → logistic regression → generalized linear models

- Parametric models assume a functional form described a fixed number of parameters
- Learning a parametric model implies tuning the parameters to fit the training dataset
- In the next two lectures, we will discuss basic principles for learning these models

- Key components of any parametric ML algorithm:
 - The data { xi, yi }i=1
 - A model with parameters Q [e.g. $\hat{y} = x^T Q$]

• A loss function $L(y,\hat{y})$ to quantify goodness of model predictions during training

. An optimization algorithm to tune the model's parameters so as to winimize the loss

- Key components of any parametric ML algorithm:
 - The data {zi, yi}i=1
- \rightarrow A model with parameters \underline{O} [e.g. $\hat{y} = \underline{x}^{\mathsf{T}}\underline{O}$]

. A loss function $L(y,\hat{y})$ to quantify goodness of model predictions during training

. An ophmization algorithm to tune the model's parameters so as to minimize the loss

Nonlinear Parametric Functions (Regression)

- A nonlinear regression model

$$y = f_0(x) + e$$
 sometimes also written as $f(x; 0)$

- $f_{\underline{o}}(\underline{x})$ could be any nonlinear function, which depend on some model parameter \underline{o} that control the shape of the function
- · Different values of @ result in different functions fo (.)
- In mathematical terms, we say we have a parametric family of functions $\{f_0(\cdot)\}$ s.t $Q\in G$ space of all possible parameter vectors

Nonlinear Parametric Functions (Regression)

A nonlinear regression model

$$\lambda = \ell^{\overline{0}}(\overline{x}) + \epsilon$$

- If noise ℓ is taken to be Gaussian with zero mean and variance t_{ℓ}^2 we obtain a Gaussian likelihood

$$P(Y \mid \underline{x}; \underline{0}) = \mathcal{N}(f_{\underline{0}}(\underline{x}), \sigma_{\epsilon}^{2})$$

- Note that in the linear case, $f_{\underline{0}}(\underline{x}) = \underline{x}^{T}\underline{0}$ and

$$P(Y|X;\underline{\Theta}) = \mathcal{N}(X^{T}\underline{\Theta}, \sigma_{e}^{2})$$

Nonlinear Parametric Functions (Classification)

- Recall linear classification i.e. logistic regression
 - · Logit : == 2 0
 - p(y=1|X): $h(z) = \frac{e^{z}}{1+e^{z}} = \frac{e^{3}}{1+e^{XTQ}}$

- Nonlinear classification can be constructed by considering $z = f_a(\underline{x})$ as a generalization of the logistic regression

$$p(y=1|\underline{x}) = e^{\int_{\underline{Q}}(\underline{x})}$$

$$1 + e^{\int_{\underline{Q}}(\underline{x})}$$

- Similarly, we could also have a multi-class nonlinear classifier by generalizing multi-class logistic regression model (recall softmax)

- Key components of any parametric ML algorithm:
 - · The data { Zi, yi} =1
 - A model with parameters O [e.g. $\hat{y} = x^T O$]

 \rightarrow A loss function $L(y,\hat{y})$ to quantify goodness of model predictions during training

. An ophmization algorithm to tune the model's parameters so as to minimize the loss

Loss functions

- After choosing a cortain parametric model class, the next stop is to "learn" the model — find suitable values of parameters so that the model describes the true (but often unknown) input-output relationship as accurately as possible

- For parametric models, "learning" is typically framed as an ophimization

· We seek to minimize a cost function which is the average of some user-defined loss function L evaluated on the training data

Loss function is a proxy of Generalization

- Natural Idea: Find the value of 0 that fits the training data well
- However, our ultimate goal is not to fit the training data very well but rather to find a model that can generalize to new data
 - · In other words, we are actually interested in solving:

$$\frac{\hat{\Theta}}{\underline{\Theta}} = \underset{\text{new}}{\text{arg min}} \quad \underbrace{E_{\text{new}}(\underline{\Theta})}_{\text{new}} \quad \underbrace{E_{\text{x}}[E(y, \hat{y}(x_{*}; \underline{\Theta}))]}_{\text{x}}$$

• Issue is $E_{new}(Q)$ is unknown since P(X,y) is unknown However, it is still important to keep in mind that

Training objective
$$\hat{Q} = \underset{N}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} L(Y_i, f_{\underline{Q}}(x_i))$$
is only a proxy for the actual objective

- > Viewing the training objective as a proxy for generalization will help us in choosing how we approach the optimization problem!
 - Optimization accuracy vs Statistical accuracy

 It is not meaningful to optimize $J(\underline{0})$ with greater accuracy than

 the statistical error in the estimate.

 I difficult to determine though

 - Early Stopping L(0) $\widehat{\mathbb{G}}^{(0)} \to \widehat{\mathbb{G}}^{(1)} \to \widehat{\mathbb{G}}^{(2)} \dots \widehat{\mathbb{G}}^{(5)} \to \widehat{\mathbb{G}}^{(1)} \to \widehat{\mathbb{G}}^{(2)} \dots \to \widehat{\mathbb{G}}^{(n)} \to \widehat{$
 - Explicit regularization by adding a parameter-penalty term in the cost function (e.g. L_2 -regularization)

- Equared error loss: $L(y, \hat{y}) = (y \hat{y})^2 \leftarrow default choice for linear$
 - · Maximum likelihood perspective: Noise & is Gaussian, &~ N(o, o=2)
- Absolute error loss: $L(y, \hat{y}) = |y \hat{y}| \leftarrow \text{robust to outliers since}$ it grows more slowly for large errors
 - · Maximum likelihood perspective: Noise & is Laplace, &~ L(o, be)
- · E insensitive loss (extension of absolute error loss)

$$L(\gamma, \hat{\gamma}) = \begin{cases} 0 & \text{if } |\gamma - \hat{\gamma}| < \epsilon \\ |\gamma - \hat{\gamma}| - \epsilon & \text{otherwise} \end{cases}$$

Huber loss (hybrid between squared error loss and absolute error loss)

$$L(y,\hat{y}) = \begin{cases} \frac{1}{2} (y-\hat{y})^2 & |y-\hat{y}| < 1 \\ |y-\hat{y}| - \frac{1}{2} & \text{otherwise} \end{cases}$$

Different loss functions (for regression)

Squared error loss

$$L(y, \hat{y}) = (y - \hat{y})^2$$

Absolute error loss

$$L(y, \hat{y}) = |y - \hat{y}|$$

E - insensitive loss

Squared error loss

--- Squared error loss

--- Absolute error loss

--- Huber loss

--- insensitive loss

Error
$$\hat{y} - y$$

$$L(y,\hat{y}) = \begin{cases} 0 & \text{if } |y-\hat{y}| < \epsilon \\ |y-\hat{y}| - \epsilon & \text{otherwise} \end{cases}$$

E-insensitive loss will turn out to be useful for support vector regression (SVR)

Huber loss

$$L(y,\hat{y}) = \begin{cases} \frac{1}{2} (y-\hat{y})^2 & \text{if } |y-\hat{y}| < 1\\ |y-\hat{y}| - \frac{1}{2} & \text{otherwise} \end{cases}$$

Different loss functions (for classification)

det's look at loss functions for binary classification first

- An intuitive loss function for is the misclassification loss

$$L(y, \hat{y}) = \mathbb{I}(\hat{y} \neq y) = \begin{cases} 0 & y = \hat{y} \\ 1 & y \neq \hat{y} \end{cases}$$
indicator function

Although intuitive, this loss is rarely used in practice, because it is hard to optimize -> has zero gradients

Different loss functions (for classification)

- Cross-entropy loss forms a natural choice for a binary classifier that predicts class probabilities P(y=1|x) in terms of g(x)

$$L(\gamma, \hat{\gamma}) = \begin{cases} \ln g(\underline{x}) & \text{if } \gamma = 1 \\ 1 - \ln g(\underline{x}) & \text{if } \gamma = -1 \end{cases}$$

- Another useful class of loss functions can be defined using the concept of margins
 - Many classifiers can be constructed by thresholding some real-valued function $f(z; \Theta)$ at O. We can write the class prediction as

$$\hat{y}(\underline{x}) = \text{sign } \{f(\underline{x}; \underline{\Theta})\}\$$
 (for binary closses) $\{-1, 1\}$

E.g. Logistic regression can be brought into this form by $f_{\underline{\theta}}(\underline{x}) = \underline{x}^{T}\underline{0}$

Concept of margin for (binary) classifiers

. The decision boundary of any classifier of the form

$$\hat{\gamma}(\underline{x}) = \text{sign } \{ f(\underline{x}; \underline{0}) \}$$
 $\hat{\gamma}(\underline{x})$

is given by the values of $\frac{1}{2}$ for which $f(\frac{1}{2}) = 0$

• The margin of a classifier for a data point (x,y) is $y \cdot f(x)$

$$f(\underline{x}) \rightarrow +$$
 $y \rightarrow +$
 $y \rightarrow +$
 $y \rightarrow +$

$$f(\underline{x}) \rightarrow \rightarrow$$
 $\gamma \cdot f(\underline{x}) \rightarrow +ve \text{ margin}$ $\downarrow \rightarrow -$

- · If classification is correct, margin is positive
- ° If y and f(≥) have different signs, margin is negative (meaning incorrect classification)
- · Data points with small margins are closer to decision boundary

Margin-based perspective of logistic loss

• In the lecture on logistic regression, we started out with a class probability perspective, modelling using p(y=1|x)=g(x), then arrived at cross-entropy loss, and later for g(x) modelled using the logistic function, we obtained the logistic loss

$$L(y, \hat{y}) = ln \left(1 + e^{-y \cdot \left(\underline{x}^{\mathsf{T}}\underline{\Theta}\right)}\right)$$

• Without linking the probabilistic perspective, we could consider the logistic loss as a generic margin-based loss

L(y,
$$f(\underline{x})$$
) = $\ln \left(1 + e^{-\frac{y \cdot f(\underline{x})}{\underline{\theta}}}\right)$ margin of the classifier

Hence,

- we postulate a classifier according to $\hat{y}(\underline{x}) = \text{sign} \{ f(\underline{x}; \underline{0}) \}$, and
- · then learn the parameters of f(x; 0) by minimizing L(y, f(x))

Other margin-based loss functions for classification

· Misclassification loss rewritten as margin-based loss

Misclassification loss as a Margin-based loss

$$L(y,\hat{y}) = \mathbb{I}(\hat{y} \neq y) = \begin{cases} 0 & y = \hat{y} \\ 1 & y \neq \hat{y} \end{cases} \longrightarrow L(y, f(\underline{x})) = \begin{cases} 1 & \text{if } y \cdot f(\underline{x}) < 0 \\ 0 & \text{otherwise} \end{cases}$$

· In principle, any DECREASING function is a candidate loss function

· e.g. Exponential loss

$$L(y, f(\underline{x})) = exp(-y \cdot f(x))$$

 e^{-u}

o Not very robust to outliers, due to the exponential growth for negative margins

· Hinge loss (will be used in support vector machine)

$$L(y, f(\underline{x})) = \begin{cases} 1 - y \cdot f(\underline{x}) & \text{for } y \cdot f(\underline{x}) \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

· Squared hinge loss

$$L(y, f(x)) = \begin{cases} (1 - y \cdot f(x))^2 & \text{for } y \cdot f(x) \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

o less robust to outliers

· Huberized squared hinge loss (robust to outliers)

$$L(y, f(\underline{x})) = \begin{cases} -4y \cdot f(\underline{x}) & \text{for } y \cdot f(\underline{x}) \leq -1 & \text{(linear margin)} \\ (1 - y \cdot f(\underline{x}))^2 & \text{for } -1 \leq y \cdot f(\underline{x}) \leq 1 & \text{(squared hinge loss)} \end{cases}$$

$$0 & \text{otherwise}$$

Mis classification loss

$$L(y, f(x)) = \begin{cases} 1 & \text{if } y \cdot f(x) < 0 \\ 0 & \text{otherwise} \end{cases}$$

Exponential loss

$$L(\gamma, f(\underline{x})) = \exp(-\gamma \cdot f(x))$$

-0.5

Hinge loss

$$L(y, f(x)) = \begin{cases} 1 - y \cdot f(x) & \text{for } y \cdot f(x) \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

-3

-2.5

-2

-1.5

Squared hinge loss

$$L(\gamma, f(\underline{x})) = \begin{cases} (1 - \gamma, f(\underline{x}))^2 & \text{for } \gamma, f(\underline{x}) \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

Huberized squared hinge loss

Margin, $y \cdot f(\mathbf{x})$

$$L(y, f(\underline{x})) = \begin{cases} -4y \cdot f(\underline{x}) & \text{for } y \cdot f(\underline{x}) \leq -1 \\ (1 - y \cdot f(\underline{x}))^2 & \text{for } -1 \leq y \cdot f(\underline{x}) \leq 1 \end{cases}$$

$$0 \quad \text{otherwise}$$

0.5

2.5

Regularization

- . The idea of regularization in a parametric model is to
- "keep the parameters @ small unless the data really convinces us otherwise"
 - · Two types of regularization
 - → Explicit regularization, e.g L2-regularization
 - -> Implicit regularization, e.g. early stopping

Explicit regularization

$$\frac{\hat{Q}}{\hat{Q}} = \underset{Q}{\operatorname{arg min}} \frac{1}{N} \| \underline{Y} - \underline{X} \underline{Q} \|_{2}^{2} + \lambda \| \underline{Q} \|_{2}^{2}$$

· Admits closed-form solution

$$\hat{Q} = \left(\underline{X}^{T}\underline{X} + N\lambda\underline{I}\right)^{-1}\underline{X}^{T}\underline{Y}$$

Typically does not produce
 sparse solution

$$\hat{\underline{O}} = \operatorname{argmin} \frac{1}{N} \|\underline{Y} - \underline{X} \underline{O}\|_{2}^{2} + \lambda \|\underline{O}\|_{1}^{2}$$

$$\underline{\underline{O}}$$

$$\|\underline{O}\|_{1} = \|\underline{O}_{0}\| + \|\underline{O}_{1}\| + \dots + \|\underline{O}_{p}\|_{2}^{2}$$

- · No closed-form solution available

 Have to do numerical optimization
- Produces sparse solutions, where only a few of the parameters are non-zero

In a sense, L1-regularization can "switch-off" some inputs (by setting the corresponding parameter Ok to zero)

Implicit Regularization

- · There are alternative ways to achieve regularization without explicitly modifying the cost function
- · One such way is Early Stopping

aborting an iterative numerical ophmization before it has reached the minimum of the cost function

· Set aside some hold-out validation data for computing Enold-out and use it to determine the stopping point

