

$$\int_{2}^{L(x)} = x$$
Vomiable

Function L

$$f(x_1, x_2) = x_1 \cdot x_2$$

$$= \begin{cases} \log_{10} c & \text{gate} \\ \log_{10} c & \text{gate} \end{cases}$$
(AND gate)

$$\frac{x_1}{x_2} = \frac{1}{\sum_{i=1}^{\infty} L(x_1, x_2)} = x_1 + x_2$$

$$f(x_1, x_2, x_3) = (x_1 + x_2) \cdot x_3$$

$$\frac{1}{x_{2}} = \frac{1}{x_{3}} = \frac{1}{x_{3}} = \frac{1}{x_{2}} = \frac{1}{x_{3}} = \frac{1}{x_{2}} = \frac{1}{x_{3}} =$$

$$L(x) = \overline{x}$$

NOT gate

 $\chi' = 1 x = \sim x = NoT x$

- 10 A - 10 A

(* + (·)) ;

rate the second

e english

α_{1}	1 x2	L
0	0	21
O 1 f	1 1/1	A^{+}
t	0	1
1		0

$$L(x_1,x_2) = \overline{x_1 \bullet x_2}$$

$$f(x_1, x_2) = \overline{X_1 \cdot x_2}$$

$$\begin{array}{c} NAND \\ AND + NOT \\ x_1 \longrightarrow D \\ x_2 \longrightarrow \sqrt{\frac{2_1 \cdot x_2}{x_1 \cdot x_2}} \end{array}$$

\sim 1	22	1
0	6	
0	Λ	0
1	0	0
		110

24/22/	L
0 0 0	١
1. 1. 10)
	0
1 0 1	•
t 4 1 1 1 6	כ

L(x1,x2) = 21+22

$$\frac{\chi_1}{\chi_2} \longrightarrow \frac{1}{5} (\chi_1, \chi_2) = \overline{\chi_1 + \chi_2}$$

NOR gate

OR + NOT

Truth Table 21 21 5 0 0 0 0 1 0 1 1 0 1 1

