Reg. No.:

Name :

$Continuous\ Assessment\ Test\ II-October\ 2023$

Programme	:	B.Tech CSE	Semester	:	FALL 2023-24
Course	:	Theory of Computation	Code	:	BCSE304L
	-		Slot	:	F1+TF1
Faculty	:	Dr. S. Suseela	Class Nbr	:	CH2023240101110
		Dr. K. Sathyarajasekaran			CH2023240101108
Time	:	90 Minutes	Max. Marks	:	50

Answer ALL the questions

Q.No.	Questions	Mark
	Design a Push Down Automata for the following language,	
1.	 a) L= {a²ⁿ b^m c^p d^q e^{n+p} n, m, p, q>0} (8 Marks) b) Validate a sample string of your choice for the given language over your machine. (2 marks) 	10
	Let the language L be defined as, $L \rightarrow L_1L_2$	
	Where,	
2.	(ab) * a (b a) $^+$ is the regular expression for the language L ₁	10
	$(a^* b^*) (ab ba)^*$ is the regular expression for the language L ₂	
	Construct a Context-Free Grammar that generates all strings in L.	
3.	Prove whether the following languages are regular or not regular.	
	a) L= {w w {a, b}* and for every arrival of "a" there should be two "b's" in the string.(5 Marks)	10
	b) $L = \{0^i \ 1^{j+i} \ 2^{i+j} \ \ i,j \ge 0\} (5 \text{ Marks})$	
	Given the following Context Free Grammar G_1 = ({X, Y, Z, S, T}, {0,1}, P, X) with the set of all productions,	
	P= {	
	X→0Y1 1Y0 Z11 Y	
4.	$Y\rightarrow 0Y \mid 1Y \mid \epsilon \mid Z$	1
	$Z\rightarrow 0Z0 \mid 1Z1$	
	S→ZS SY	
	T→ZSY YSZ S	
	}	

	a) For the above given grammar G ₁ provide an equivalent grammar G ₂ in a simplified form. (6 Marks)	
	b) Write any two words generated by L (G ₂). For the 1 st generated word, perform LMD and RMD. (4M)	
	NOTE: word length should be greater than 7.	
	$L = \{a^i b^{2j} / i, j > 0 \text{ and } i = 2j\}$	
5.	a) Construct Context Free Grammar G ₁ for L. (4 Marks)	10
	b) For the generated CFG G ₁ in question 5(a) derive an equivalent grammar G ₂ in Chomsky Normal Form. (6 Marks)	

