Chi-Square Tests

R Handout

Derek H. Ogle

First Commands

```
> library(NCStats)
```

Chi-Square Test

Lake Trout

From Summarized Observed Table

When Chinook Salmon (*Oncorhynchus tshawytscha*) were first introduced to Lake Superior there was concern that they would compete with native Lake Trout (*Salvelinus namaycush*) for Cisco (*Coregonus artedi*). Preliminarily, fisheries biologists classified the dominant food items (Cisco, Smelt (*Osmerus mordax*) (another type of fish), or *Mysis* (an invertebrate)) in the diets of 50 Lake Trout and 40 Chinook Salmon. They found that 32, 10, and 8 Lake Trout diets were dominated by Cisco, Smelt, and *Mysis*, respectively. Similarly, 18, 18, and 4 Chinook Salmon diets were dominated by Cisco, Smelt, and *Mysis*, respectively. Test (at the 10% level) if the distribution of dominant food items differs at the 5% level?

```
> freq <- c(32,10,8,18,18,4)
> ( obs <- matrix(freq,nrow=2,byrow=TRUE) )</pre>
     [,1] [,2] [,3]
[1,]
       32
             10
                   8
[2,]
                    4
> rownames(obs) <- c("Lake Trout", "Chinook Salmon")
> colnames(obs) <- c("Cisco", "Smelt", "Mysis")</pre>
> obs
                Cisco Smelt Mysis
Lake Trout
                    32
                          10
Chinook Salmon
                    18
                          18
> chi1 <- chisq.test(obs,correct=FALSE)</pre>
> chi1$expected
                   Cisco
                              Smelt
                                       Mysis
```

27.77778 15.55556 6.666667

Chinook Salmon 22.22222 12.44444 5.333333

```
> chi1$expected >= 5
               Cisco Smelt Mysis
Lake Trout
                TRUE TRUE TRUE
Chinook Salmon TRUE TRUE TRUE
> chi1
Pearson's Chi-squared test with obs
X-squared = 6.5083, df = 2, p-value = 0.03861
> chi1$residuals
                    Cisco
                              Smelt
                                          Mysis
Lake Trout
                0.8011103 -1.408590 0.5163978
Chinook Salmon -0.8956686 1.574852 -0.5773503
> percTable(obs,margin=1,digits=1)
               Cisco Smelt Mysis Sum
Lake Trout
                  64
                        20
                              16 100
Chinook Salmon
                  45
                        45
                              10 100
> ( obs2 <- obs[,-2] )
               Cisco Mysis
Lake Trout
                  32
                         8
Chinook Salmon
                  18
                         4
> ( chi2 <- chisq.test(obs2,correct=FALSE) )</pre>
Warning in chisq.test(obs2, correct = FALSE): Chi-squared approximation may be incorrect
Pearson's Chi-squared test with obs2
X-squared = 0.0301, df = 1, p-value = 0.8624
```

From Raw Data

The General Social Survey (GSS) is a nationwide survey that has been administered since 1972 to gather data on contemporary American society in an attempt to monitor and explain trends in attitudes, behaviors, and attributes of American society. One part of that survey asked respondents to state their opinion on how true the following statement was – "All radioactivity is made by humans." Respondents were also categorized by their highest educational degree. The results from this portion of the GSS is in SciTest1.csv. Use these data to determine, at the 5% level, if the distribution of responses to this statement differs among levels of education.

```
> setwd("C:/aaaWork/Web/GitHub/NCMTH107/modules/Chi_Square")
> ST1 <- read.csv("SciTest1.csv")</pre>
> str(ST1)
              2549 obs. of 2 variables:
'data.frame':
 $ degree : Factor w/ 5 levels "bach","grad",..: 5 5 5 5 5 5 5 5 5 5 5 ...
 $ scitest: Factor w/ 4 levels "def.not", "def.true",..: 2 2 2 2 2 2 2 2 2 2 ...
> levels(ST1$degree)
[1] "bach" "grad" "hs"
                            "jc"
                                    "lt.hs"
> ST1$fdegree <- factor(ST1$degree,levels=c("lt.hs","hs","jc","bach","grad"))</pre>
> levels(ST1$scitest)
[1] "def.not"
                "def.true" "prob.not" "prob.true"
> ST1$fscitest <- factor(ST1$scitest,levels=c("def.not","prob.not","prob.true","def.true"))
> ( freq.tbl <- xtabs(~fdegree+fscitest,data=ST1) )</pre>
       fscitest
fdegree def.not prob.not prob.true def.true
  lt.hs
            52
                     112
                               155
                                         70
  hs
            366
                     451
                               437
                                        114
  jс
             60
                      44
                                36
                                         12
  bach
            214
                     135
                                78
  grad
            123
                      57
                                18
> ST1.chi <- chisq.test(freq.tbl,correct=FALSE)</pre>
> ST1.chi$expected
       fscitest
fdegree def.not prob.not prob.true def.true
  lt.hs 124.37623 121.93448 110.48882 32.20047
  hs
       437.39506 428.80816 388.55708 113.23970
        47.64025 46.70498 42.32091 12.33386
  iс
  bach 140.36289 137.60730 124.69047 36.33935
       65.22558 63.94508 57.94272 16.88662
> ST1.chi$expected >= 5
       fscitest
fdegree def.not prob.not prob.true def.true
  lt.hs
           TRUE
                    TRUE
                              TRUE
                                       TRUE
  hs
           TRUE
                    TRUE
                                       TRUE
                              TRUE
           TRUE
                    TRUE
                              TRUE
                                       TRUE
  ic
  bach
           TRUE
                    TRUE
                              TRUE
                                       TRUE
  grad
           TRUE
                    TRUE
                              TRUE
                                       TRUE
```

> all(chi1\$expected >= 5)

[1] TRUE

> ST1.chi

Pearson's Chi-squared test with freq.tbl X-squared = 288.2331, df = 12, p-value < 2.2e-16

> ST1.chi\$residuals

fscitest

```
        fdegree
        def.not
        prob.not
        prob.true
        def.true

        lt.hs
        -6.4897392
        -0.8996675
        4.2345762
        6.6612431

        hs
        -3.4137460
        1.0716718
        2.4575530
        0.0714471

        jc
        1.7906992
        -0.3958064
        -0.9716327
        -0.9492868

        bach
        6.2154218
        -0.2222643
        -4.1813025
        -4.0375730

        grad
        7.1536326
        -0.8685073
        -5.2473280
        -2.6492428
```

> percTable(freq.tbl,margin=1,digits=1)

fscitest

```
fdegree def.not prob.not prob.true def.true Sum
 lt.hs
         13.4
                 28.8
                          39.8
                               18.0 100.0
         26.8
                 33.0
                          31.9
 hs
                                 8.3 100.0
         40.3 29.5
 iс
                        24.2
                                 6.0 100.0
         48.7 30.8 17.8
60.3 27.9 8.8
 bach
                                 2.7 100.0
                                 2.9 99.9
 grad
```