KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ||

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ || 2016-2017 GÜZ DÖNEMİ ||

LİSANS TEZİ ARAŞTIRMA PROBLEMLERİ ||

KONU || TÜRKÇEDE KURALDIŞI DURUM İMLEME

OSMAN EKER

5,2 cm
HASAN GEZER

AHMET HAKAN

Doç. Dr. Ali İHSAN Danışman, Kocaeli Üniv. Dr. Öğr. Üyesi Hakan KAPLAN Jüri Üyesi, Kocaeli Üniv. **Prof. Dr. Ahmet KADAYIF**

Jüri Üyesi, Kocaeli Üniv.

П

Tezin Savunulduğu Tarih: 01.01.2017 ||

ÖNSÖZ VE TEŞEKKÜR

Bu		tez
çalışması,		a
macıyla gerçekleştirilmiştir.		
, ,	neyen, çalışmalarıma yön veren, bana güvenen sonsuz teşekkürlerimi sunarım.	ve
Tez çalışmamın tüm aşamala hocam teşe	rında bilgi ve destekleriyle katkıda bulur kkür ediyorum.	ıan
Tez çalışmamda gösterdiği anlayış sunarım.	ve destek için sayın teşekkürler	mi
Hayatım boyunca bana güç veren mutluluklarımı paylaşan sevgili ailem	en büyük destekçilerim, her aşamada sıkıntılarımı e teşekkürlerimi sunarım.	ve
Şubat – 2017	Osman EKER, Hasan GEZER, Ahmet HAKAN	

Bu dokümandaki tüm bilgiler, etik ve akademik kurallar çerçevesinde elde edilip sunulmuştur. Ayrıca yine bu kurallar çerçevesinde kendime ait olmayan ve kendimin üretmediği ve başka kaynaklardan elde edilen bilgiler ve materyaller (text, resim, şekil, tablo vb.) gerekli şekilde referans edilmiş ve dokümanda belirtilmiştir. ||

Öğrenci No: 160202123

Adı Soyadı:Osman EKER

Öğrenci No: 150202103

Adı Soyadı: Hasan GEZER

Öğrenci No: 160202093

Adı Soyadı: Ahmet HAKAN \parallel

Öğrenciler: 160202123 Osman EKER , 150202103 Hasan GEZER , 160202093 Ahmet

HAKAN.

İÇİNDEKİLER

ÖNSÖZ VE TEŞEKKÜR	i	
İÇİNDEKİLER		
ŞEKİLLER DİZİNİ	iii	
TABLOLAR DİZİNİ	iv	
SİMGELER VE KISALTMALAR DİZİNİ	v	
OZET	vii	
ABSTRACT	viii	
GİRİŞ	1	
1. SAYISAL KORUMADA TEMEL KAVRAMLAR	3	
1.1. Ayrık İşaretlerin Fazörel Gösterimi	3	
1.2. Arıza Tipinin Belirlenmesi	6	
2. İLETİM HATLARINDA EMPEDANSA DAYALI ARIZA YERİ BULMA		
ALGORİTMALARI	12	
2.1. Tek Bara Ölçümlerini Kullanan Arıza Yeri Bulma Algoritmaları	13	
2.1.1. Basit reaktans algoritması	13	
2.1.2. Takagi algoritması	13	
2.1.3. Geliştirilmiş Takagi algoritması	14	
2.2. İki Bara Ölçümlerini Kullanan Arıza Yeri Bulma Algoritmaları	14	
2.1.1. Basit arıza gerilimi eşitliği algoritması	14	
2.1.2. Asimetrik arıza yeri bulma algoritması	15	
2.1.3. Negatif bileşenler ile arıza yeri bulma algoritması	16	
2.1.4. Simetrik arıza yeri bulma algoritması	17	
3. EMPEDANSA DAYALI ARIZA YERİ BULMA ALGORİTMALARININ F.	ARKLI	
TEST SİSTEMLERİNDE UYGULANMASI	20	
3.1. Homojen Test Sistemi	20	
3.2. Homojen Olmayan Test Sistemi	24	
3.3. Homojen Olmayan Test Sistemi (Orta Uzun Hat Modeli - Pi Eşdeğer De	evresi)	28
4. SERİ KAPASİTÖRLÜ İLETİM HATLARINDA ARIZA YERİ TESPİTİ	33	
5. SERİ KAPASİTÖRLÜ İLETİM HATLARI İÇİN PERFORMANSA		
DAYALI ARIZA YERİ BULMA ALGORİTMASI	37	
5.1. Algoritmanın Temel Arıza Yeri Bulma Algoritmaları İle		
Karşılaştırması	41	
5.2. Seri Kapasitörlü İletim Hatlarını Baz Alan Arıza Yeri Bulma Algoritma		
Karşılaştırılması	45	
6. SONUÇLAR VE ÖNERİLER	48	
KAYNAKLAR	53	
EKLER	59	
KİŞİSEL YAYIN VE ESERLER	68	
ÖZGEÇMİŞ	69	
SEKİLLER DİZİNİ		

Şekil 1.1.	Yinelenen Fourier ifadesi	5	
Şekil 1.2.	Simetrili bileşenlerin gösterimi a) pozitif bileşenler b) negatif		
	bileşenler c) sıfır bileşenler	7	
Şekil 1.3.	Şebekenin a) pozitif bileşen devresi b) negatif bileşen devresi c) sıfır bileşen		
	devresi	8	
Şekil 1.4.	Arıza öncesi, arıza anı ve arıza sonrası durum	9	
Şekil 2.1.	İletim hattında arıza eşdeğer devresi	12	
Şekil 3.1.	Homojen test sistemi	20	
Şekil 3.2.	Homojen olmayan test sistemi	24	
Şekil 3.3.	Homojen olmayan test sistemi(pi modeli)	28	
Şekil 5.1.	Seri kapasitörlü iletim hattı	37	
Şekil 5.2.	Arıza yerinin S barası ve seri kapasitör arasında olma durumu	38	
Şekil 5.3.	Performansa dayalı alınan algoritmanın akış diyagramı	41	
Şekil 5.4.	Seri kapasitörlü test sistemi	42	
Şekil 5.5.	MOV ve seri kapasitörde ki akım değişimi	43	

TABLOLAR DİZİNİ

Tablo 1.1.	Arıza tiplerine göre pozitif bileşen empedans eşitlikleri	10
Tablo 3.1.	Homojen test sisteminde farklı uzaklıklardaki çeşitli arıza tipleri	
	için yüzde hata oranları	21
Tablo 3.2.	Homojen test sisteminde farklı arıza dirençlerindeki çeşitli arıza	
	tipleri için yüzde hata oranları	23
Tablo 3.3.	Homojen olmayan test sisteminde farklı uzaklıklardaki çeşitli arıza	
	tipleri için yüzde hata oranları	25
Tablo 3.4.	Homojen olmayan test sisteminde farklı arıza dirençlerindeki çeşitli	
	arıza tipleri için yüzde hata oranları	26
Tablo 3.5.	Homojen olmayan test sisteminde (orta uzun hat modeli - pi	
	eşdeğer devresi) farklı uzaklıklardaki farklı arıza tipleri için yüzde	
	hata oranları	29
Tablo 3.6.	Homojen olmayan pi eşdeğer devreli test sisteminde farklı arıza dirençlerindeki	
	çeşitli arıza tipleri için yüzde hata oranları	30
Tablo 4.1.	Seri kompanzasyonun etkileri ve sonuçları	33
Tablo 4.2.	Seri kompanze edilmiş iletim sistemleri için kullanılan bazı	
	algoritmalar ve özellikleri	34
Tablo 5.1.	Test sistemi parametreleri	42
Tablo 5.2.	Test sisteminin simülasyon parametreleri	42
Tablo 5.3.	Test sisteminin farklı uzaklıklardaki çeşitli arıza tipleri için yüzde	
	hata oranları	44
Tablo 5.4.	Test sisteminin farklı arıza dirençlerindeki faz-faz-toprak arıza tipi	
	için yüzde hata oranları	45
Tablo 5.5.	Seri kapasitörü dikkate alan algoritmaların karşılaştırılması	46
Tablo 5.6.	Seri kapasitörü dikkate alan algoritmaların genel özellikleri	47

SİMGELER VE KISALTMALAR DİZİNİ

 $\alpha_{1,2,3}$: Eğim için alınan açı, (°)

φ : Açı, (°) θ : Açı, (rad)

d : Arıza noktasının referans baraya uzaklığı, (%)
d_{capS} : Seri kapasitörün S barasına uzaklığı, (%)
d_{capR} : Seri kapasitörün R barasına uzaklığı, (%)
d_S : Arıza noktasının S barasına uzaklığı, (%)
d_R : Arıza noktasının R barasına uzaklığı, (%)

f₀ : İşaretin frekansı, (Hz)
f_S : Örnekleme frekansı, (Hz)
I⁰ : Sıfır bileşen akımı, (A)
I¹ : Pozitif bileşen akımı, (A)
I² : Negatif bileşen akımı, (A)

I_a : a fazı akımı, (A)

I_{ab} : a fazı ve b fazı akımları farkı, (A)

I_b : b fazı akımı, (A)

I_{bc} : b fazı ve c fazı akımları farkı, (A)

I_c : c fazı akımı, (A)

Ica : c fazı ve a fazı akımları farkı, (A)

 I_{cap} : Seri kapasitör üzerinden geçen akım, (A)

I_F : Arıza noktasından geçen akım, (A)

I_{FR} : Arıza noktasından geçen akımın R barasından gelen kısmı, (A)
 I_{FS} : Arıza noktasından geçen akımın S barasından gelen kısmı, (A)

I_{önce} : Arıza öncesi akım, (A)

 $\begin{array}{lll} I_R & : & R \ barasından \ \varsigma \iota kan \ akımı, \ (A) \\ I_{ref} & : & Alınan \ referans \ akımı, \ (A) \\ I_S & : & S \ barasından \ \varsigma \iota kan \ akımı, \ (A) \\ I_{s\"{u}p} & : & S\"{u}perpozisyon \ akımı, \ (A) \end{array}$

I_{süp}* : Süperpozisyon akımının eşleniği, (A)

 R_F : Arıza noktası empedansı, (Ω)

X_L : Hat empedansının imajiner bileşeni, (Ω)
 xd'' : Senkron makinenin subtransientreaktansı, (pu)

V⁰ : Sıfır bileşen gerilimi, (V) V¹ : Pozitif bileşen gerilimi, (V) V² : Negatif bileşen gerilimi, (V)

V_a : a fazı gerilimi, (V)

V_{ab} : a fazı ve b fazı gerilimleri farkı, (V)

V_b : b fazı gerilimi, (V)

V_{bc} : b fazı ve c fazı gerilimleri farkı, (V)

V_c : c fazı gerilimi, (V)

V_{ca} : c fazı ve a fazı gerilimleri farkı, (V)

V_{cap} : Kapasitör öncesindeki bağlantı noktasının gerilimi, (V)

V_R : R barası (uzak bara) gerilimi, (V) V_{ref} : Alınan referans gerilimi, (V) V_S : S barası (yakın/referans bara) gerilimi, (V)

V_F : Arıza noktası gerilimi, (V)

 Z_{Cap-F} : Seri kapasitör ile arıza noktası arasındaki empedans, (Ω)

 Z_L : Hat empedans,, (Ω)

 Z_R : R barasından görülen thevenin empedansı, (Ω) Z_S : S barasından görülen thevenin empedansı, (Ω)

Kısaltmalar

AC : AlternativeCurrent (Alternatif Akım)

ANN : ArtificialNeural Networks (Yapay Sinir Ağları)

DDA : DeterministicDifferentialApproach (Deterministik Diferansiyel Yaklaşım)
FACTS : FlexibleAlternativeCurrentTransmissionSystem (Esnek Alternatif Akım İletim

Sistemi)

IEEE : TheInstitute of ElectricalandElectronicsEngineers (Elektrik ve Elektronik

Mühendisleri Enstitüsü)

Im : İmajiner min : Minimum

MOV : Metal Oxide Varistor (Metal Oksit Varistör)PMU : PhasorMeasurementUnit (Fazör Ölçüm Ünitesi)

R : Receiving (Alan)

Re : Reel

S : Sending (Gönderen)

SC : Series Capacitor (Seri Kapasitör)

TÜRKÇEDE KURALDIŞI DURUM İMLEME || ÖZET

Bu çalışma, Türkçedeki kuraldışı durum imleme yapılarını, yeni verilerle inceleyerek KDİ öznesinin durum eşleme ve sözdizimsel konumuna yönelik tartışmalara katkı sunmayı amaçlamaktadır. Alanyazındaki çalışmalara göre, Türkçede KDİ öznesi, ana eylemden belirtme durumunu (i) yerleşmiş tümcenin Gös,TümÖ konumundan ya da yerinden uzaktan uyumla (Aygen 2002, Öztürk 2005a, Şener 2008, Özgen & Aydın 2016), (ii) ana tümcenin Gös,eÖ konumuna yükselerek (Knecht 1986, Zidani-Eroğlu 1997, Moore 1998, Özsoy 2001, Arslan-Kechriotis 2016) ya da (iii) doğrudan ana tümcede üretilerek (İnce, 2006) almaktadır. ||

Anahtar kelimeler: KDİ, yükselme, edilgenleştirme, durum eşleme, niceleyici açısı, çiftBirleştirme.