

Public Cloud Services laaS auf Hyperscaler

Costs...

What is laaS?

Product Class

- Virtual Computing
- Basiert auf einem AMI
- CPU/RAM: Fixed Instance Types with defined Setups
- Disks: Extra Product, flexible to be added
- Netzwerk: Network Interface, connects to subnet, to be managed externally
- Possibility to scale
- Tags, Tags, Tags
- Access only via SSH Public/Private Key

Templates

Kinds of Templates

AMI:

- Amazon Machine Image / Azure Machine Image
- Image format for EC2-Instances / Compute instances
- Can be derived from running instance of build via IaC.

Common Use Case: Golden Image

Why to work with Golden Images?

Generating Images without Instance

Packer:

- Hashicorp Tool utilizing HCL
- Automating generation of AMI (and all kinds of other images)
- Widely used to generate Image directly in any kind of pipeline

```
source "amazon-ebs" "ubuntu" {
  ami name
               = "my-first-packer-image"
  instance_type = "t2.micro"
 region = "us-east-1"
  source ami = "ami-0557a15b87f6559cf"
              = "ubuntu"
  ssh username
build {
         = "ubuntu-nginx-image"
 name
  sources = ["source.amazon-ebs.ubuntu"]
 provisioner "shell" {
    inline = [
      "sudo apt update -y",
      "sudo apt install nginx -y",
      "git clone https://github.com/example/my-app.git
/home/ubuntu/app",
      "sudo ufw allow 'Nginx HTTP'",
      "sudo systemctl enable nginx",
      "sudo systemctl start nginx"
```

member of swissuniversities

Generating Images without Instance

Cloud-Init:

- Data Sources: Input provided by provider / User / etc.
 - Can be jinja2 / yaml-structures representing folders
- Different Stages within the boot process consume the sources
 - Network setting
 - Handlers for taking specific data caring about it specifically
 - Modules for specific further settings

users:

default

name: eval gecos: eval

primary_group: eval

sudo: ALL=(ALL) NOPASSWD:ALL

groups: users, admin shell: /bin/bash lock_passwd: false ssh_authorized_keys:

- ecdsa-sha2-nistp521

AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAGd1sEHWR+J1kz4TokLXzp TFGFO8dX3T1zWjQ0rJqsnrx1m8nTotpWTuqgQCgtIzQ8Usvy4wK3/pRV1raFtYThvEgHleB85YOaSi FEYs1rUz6KkQ8lhKuSXYLp8YnJtv0MCJNfm8jY816RvOqa+v7mS/+67ly4PXwf1jfibzw1bSZHc4w== snorwin@nano-x1

member of swissuniversities

Differences and Similarities to Switch Engines? Templating...

Instance lifecycle

EBS-Volumes

Instance Classes

Compute

Memory

Network

Storage

EC2 instance

Azure VM Types

	General Purpose	Compute Optimized	Memory Optimized	Storage Optimized	GPU	High Performance Compute
Туре	Av2, B, DCsv2, Dv2, Dsv2, Dv3, Dav4, Dasv4, Ddv4, Ddsv4, Dv4, Dsv4	Fsv2	M, Mv2, Dv2, Dsv2, Ev3, Esv3, Eav4, Easv4, Ev4, Esv4, Edv4, Edsv4	Lsv2	NC, NCv2, NCv3, ND, NDv2, NV, NVv3, NVv4	H, НВv2, НС, НВ
Description	Balanced CPU and Memory	High Ratio of Compute to Memory	High Ratio of Memory to Compute	High disk Throughput & IO	Specialized with Single or Multiple NVIDIA GPUs	High Memory and Compute Power- fastest & most Powerful
Uses	Testing & Devlopment, Small-medium databases, Low- medium traffic Webservers	Medium Traffic Web Servers, Network Appliances, Batch Processing, App Servers	Relational Databases Services, Analytics, Larger Caches	Big Data, SQL, NoSQL Databases	Compute Intensive, Graphics-intensive, Visualizations Workload	Batch Processing, Analytics, Molecular, Modelling, Fluid Dynamics, Low Latency RDMA Netwroking

member of swissuniversities

13

Differences and Similarities to Switch Engines? Lifecycle, Blockstorage, Instances...

Optimizing Costs, IaaS

AWS Pricing Models

Free Tier

- Free
- Opportunity to try new services
- Suitable for trials and testing
- Easy to Set Up
- Impractical for production grade use

On-Demand

- ❖ No Commitment
- No Upfront Costs
- Highly Flexible
- Easy to Set Up
- Suitable for Short Term Projects
- Most Expensive Option

Spot Instance

- No Commitment
- No Upfront Costs
- Limited Flexibility
- Can be Terminated with little notice
- Suitable for Fault Tolerant Apps
- Cheapest Option

Reserved Instance

- 1 or 3 year Commitment
- Upfront Cost Option
- Limited Flexibility
- Suitable for Predictable apps
- Cheaper than On-Demand

Savings Plan

- 1 or 3 year Commitment
- Upfront Cost Option
- Flexible
- Predictable Costs
- Easy to work with
- Cheaper than On-Demand

Optimizing Costs, IaaS, Reserved Instances

Blue: On Demand

Yellow: Upfront reserved Instance

Optimizing Costs, IaaS, Spot Instances

Optimizing Costs, Computing in common, Saving Plans

Azure goes even further...

Save up to 80% with RIs and Azure Hybrid Benefit

$\mathbf{n}|w$

Architectures for optimizing costs – laaS

$\mathsf{n}|w$

Architecting for scale

Scale between min and max

Implementation on Switch Engines What is missing to implement that?

Case Study - Supercell

https://aws.amazon.com/solutions/case-studies/innovators/supercell/

Summary

- laaS still main citizen in the cloud
 - Simple product
 - Well known to customer
 - Cheap / reliable / scalable (when used correctly)
- Billing drives Architecture
- IaC for setup / maintance
 - Stay tuned for next week

Optional Tutorials

- EC2:
 - https://awsacademy.instructure.com/courses/137586/modules → Modul 6
- Azure:

https://learn.microsoft.com/de-de/training/modules/describe-azure-compute-networking-services/