

TABLE OF SEQUENCES

SEQ ID NO:1 Human PPT2 nucleotide sequence

HUM125104 accession:BC001355 coding sequence:238..1146

GGCACGAGGGTGGTTCCAGACTGGGATAAGTAAACAGCGGGTGGAGCGAGGCCTACGGACCCAGGCCAGGTGG
 5 GAGTCTGCACTCTCAAGGGCCTGGCTGCTCACGGTATTAAAGAACCTCCGCGTTGTCATGGCTGAGGC
 GATGCATTAGGAAGATCCTGGACCTAGAGAACAAAGTCCCCGAACGCTGAGTTGGAGGGGGACTTCGGGTGCGC
 GTTGGCGGGAGCATGCTGGGCTCTGGGGCAGCGGCCTCCCGCGCGTGGGTCTGCTCTGTTGCCTTCCTG
 CCGCTGCTGCTGCAGCCCCCGCGCCCCACCGCGCGTCTACAAGCCGGTACATCGTGGTGATGGCTCTC
 GACAGCTCGTACAGCTTCCGCCACCTGCTGGAATACATCAATGAGACACACCCCGGGACTGTGGTGACAGTCTC
 10 GATCTCTTCGATGGGAGAGAGAGCTTGCAGCCCCCTGTTGGAACAGGTGCAAGGGTCCGAGAGGCTGTGGTCCCC
 ATCATGGCAAAGGCCCTCAAGGGTGATCTCATCTGCTACTCGCAGGGGGGCTTGTGTGCCGGCTCTGCTT
 TCTGTCATGGATGATACAACGGGATTCTTCATCTCCCTCTCCCTCCACAGATGGACAGTATGGAGACACG
 GACTACTTGAAGTGGCTGTTCCCCACCTCCATGCGGCTTAACCTCTATCGGATCTGCTATAGCCCTGGGCCAG
 GAATTCTCCATCTGCAACTACTGCATGATCCCCACCGATGACTTGTACCTCAATGCCAGCAGCTTCCGGCC
 15 CTGATCAATGGGAAAGAGACCATCCAATGCCACAGTATGGCGGAAGAACCTTCTGGCTGTGGCCACCTGGTG
 CTGATTGGGGCCCTGATGATGGTATTACTCCCTGGCAGTCCAGCTTGGTTCTATGATGCAAATGAG
 ACCGTCTGGAGATGGAGGAGCAACTGGTTATCTGCGGGATTCTTGGTTGAAGACTCTATTGGCCGGGG
 GCCATAGTGAGGTGTCCAATGGCGGTATCTCCACACGCGTGGACTCCAACCGTACCCCTTATGAGACCTGC
 ATTGAACCTGGCTCTCTGAGGATATATTCAAGGGTCCCCAGGAACCTCTGGTCCAGAGACCAAGTGGTGGCC
 20 TTGGAAAGCAGATGTCAGGCTTGGTGTGCCTGTGACCACCTCATTGCTCCATATTATCCCCCATTAGTAG
 AGACGGGGTTTAGTAGAGACTTGGCTCCAGAACCCCTTCCCTGCTCCCTCATGAATGACAATTCCAGGCC
 TCCCCTACCTCATGTCCTCTCATGGGGATTGCTCCGTGCTGCTCCCTCTCAAGGCCAGTTGGGAAGT
 GAGAAACCATGTTTAACTTGGCTGCTTTGCTGCTGCTGCTCCGTATCTGGCTGTATGGTGGAGAAC
 CCACCCCTGCCACCACAGGGTCTCCTCCAGGCCACTCAGGACATTAGCTCTCTCCCCATGTTCC
 25 CTTTTTCTCTAAAGTCCCCTGACATCAGCCCTCCAACCTCTAAGAGGGACTACCCATGAGAGTGGGGTCTGA
 GGCTCCCTATGGGACAGTCCGTTCTGAAGTGTCAAGTGGTGGGAATATCTGTCCTATGAGGCCATCTC
 AGGTTGGGATCCCCAGTCCCTATGATCAGTGGAGTACCCCTGGAGAGCCTAGTTCTCTCCCCATGTTCC
 CAGGCCCTTTAACTACCTTGAATAGGTGTATCCCTGTATTTATGAAATAAGTCCATTCTCAAAAAA
 AAAAAAAAAAAA

30

SEQ ID NO:2 Human PPT2 polypeptide sequence

protein_id:gi12655015

MLGLWQRLPAAWVLLLLPFLPLLLAAPAPHRASYKPVIIVHGLFDSSYSFRHLLEYINETHPGTVVTVLDFD
 GRESLRPLWEQVQGFREAVVPIMAKAPQGVHLICYSQGLVCRALLSVMDDHNVDASFISLSSPQMGTQYGDTDYLN
 35 WLFPTSMRSNLYRICYSWGQEFSICNYWHDPHDDLYLNASSFLALINGERDHPNATVWRKNFLRVGHLVLIGG
 PDDGVITPWQSSFFGYDANEVLEMEQLVYLRDSFGLKTLARGAIVRCPMAGISHTAWHSNRTLYETCIEPW
 LS

SEQ ID NO:3 mouse PPT2 nucleic acid sequence

accession:NM_019441

coding sequence:1..909

ATGCCGGGGCTATGGAGGCAGAGGCTTCCTCGGCTTGGCTTCCTGCCGTCCCTGCCGCTGCTGATG
 CCCGCAGCCCCGCAGCCCACCGCGGGCCTACAAGCCCGTATCGTGGTGACAGGCTTTGACAGTTCATAC
 5 AGCTTCCGCCACCTGCTGGACTATATCAATGAGACACACACACCCGGACTGTGGTGACAGTGTGATCTTCGAT
 GGCAGAGAGAGTTGCGGCCCCCTGGGAACAGGTACAAGGGTCCGAGAGGCTGTGGTCCCCATATGGAAAAG
 GCCCCTGAAGGAGTGCACCTCATCTGCTACTCCCAGGGGGCCTGGTGTGCCGTGCTTGCTGTGATGGAT
 AACACAAATGTGGACTCTTCATCTCCCTCCCTCCCCACAGATGGCCAGTATGGAGACACGGACTATTGAAA
 10 TGGCTTCCCCACGTCCATGCGGTCTAACCTCTATCGGTCTGCTATAGTCCTGGGCCAGGAATTTCATT
 TGCAACTACTGGCACGATCCTCACCACGATGACTTGTACCTCAATGCCAGCAGCTTCGGCCCTCATCAATGGG
 GAAAGAGACCATCCAATGCCACTGCATGGCGAAGAACCTCCTCGCGTGGCCGTGGTGCTGATTGGGGT
 CCTGATGATGGCGTTATCACTCCCTGGCAATCTAGCTTGGTTCTATGATGCCATGAGACAGTCTGGAG
 ATGGAGGAGCAGCCGGTGTATCTCGAGATTCTTGGGTGAAGACTCTCTGGCCGGGGGCCATAGTGAGG
 TGTCCCATGGCTGGCATCTCACACCACGTGGCACTTAACCGTACGCTACGATACTTGCAATTGAGCCGTGG
 15 CTCTCCTGA

SEQ ID NO:4 Mouse PPT2 polypeptide sequence

accession:gi9506985

MPGLWRQRLPSAWALLLPFLPLMPAAPAAHRSYKPVIVVHGLFDSSYSFRHLLDYINETHGTVVTVLDLFD
 20 GRESLRPLWEQVQGFREAVVPIMEKAPEGVHLICYSQGLVCRALLSVMDNHNVDSFISLSSPQMHQYGDTDYLK
 WLFPTSMRSNLRYRCYSPWGQEFSICNYWHDPHHDDLYLNASSFLALINGERDHPNATAWRKNFLRVGRVLIGG
 PDDGVITPWQSSFFGFYDANETVLEMEEQPVYLRDSFGLKTLLARGAIVRCPMAGISHTWHSNRTLYDTCIEPW
 LS

25 SEQ ID NO:5 Rat PPT2 nucleic acid sequence

accession:NM_019367

coding sequence:74..982

CCCGTGGATTCCCGACTAGGTACAAGTAAACAGCTGGCGAACGAAGCCTCCAGACACAGGCCAGGTGGGAGCAT
 GCCGGGGCTATGGAGGCAGAGGCTTCCTCGGCTTGGCTTCCTGCCCTTGCTGCTGTTGCC
 30 CGCAGCCCCCGCACCCACCGCGGGCCTACAAGCCAGTGTACGTGGTGATGGCTTTGACAGTTCATACAG
 CTTCCGCCACCTGCTGGACTACATCAATGAGACACACCCCGGACTGTGGTGACAGTGTGATCTTCGATGG
 CAGAGAGAGCTTGCACCCCTGTGGGAACAGGTTCAAGGGTCCGAGAGGCTGTGGTCCCCATATGGAAAAGGC
 CCCTGAGGGGTACACCTCATCTGCTACTCCCAGGGAGGCCTGGTGTGCCGCATTGCTGTGATGGATGA
 GCACAATGTGGATTCCCTCATCTCCCTTCTCCACAGATGGACAGTATGGAGACACGGACTATTGAAGTG
 35 GCTGTTCCCTACGTCCATGCGGTCTAACCTCTATCGGATCTGCTATAGCCCTGGGCCAGGAATTTCATTG
 CAACTACTGGCACGACCTCACCAACGATGACTTGTACCTCAACGCCAGCAGCTTCTGGCCCTCATCAATGGGA
 GAGAGACCATCCGAATGCCACTGCATGGCGGAAGAACCTCCTCGTGTGGCCGTCTGGTGCTGATTGGGGTCC
 GGACGATGGAGTCATCACTCCCTGGCAATCTAGCTTGGTTCTATGATGCCAACGAGACGGTCTGGAGAT
 GGAGGAACAGCCGGTGTATCTCGAGACTCTTGGGTGAAGACTCTCTGGCCGGGGGCCATAGTGAGATG
 40 CCCCATGGCTGGGTCTCTCACACCACCTGGCACTCCAATCGCACGCTCATGACGCTTGCAATTGAGCCCTGGCT
 CTCCTGAAGACGTCCCTCAGGGCTCTCCAGGAATTCCCCAGGCCAGAGATCAAGTGGTGGCCTCTGGCGTGCCTG

TGACCACCTCGTCCTCCCACACTGCCAACCTCCCCACCAAGGGCTCCAAACCCCTCCCTCTGCTCCTCTGTGA
 ATGACAAGTCCTGGTCCCTACCTCATGTCCTCACTTGGGACGTCTCCATGCTCTCCCTTCTGCCATGGCTGA
 GGTTGGGAAGCAAGCACCAGGTTTAACGTGGCTCACCGCTGCTGTTGCTTCGGGTCTGGCTGTAC
 5 CGGAGGAGAACCCAGCCCTGCCAACCTCAGGGTCTTCCAGGCCACTCAGGACATTAGCTTGTTAATTCCA
 TGCCCTCTTCTGTCCCTGTGGCCAGCCTCCCCACCGAGAGGGCGCCGTACAAGGGGTTCTGAGGCTCCC
 CTATGGGACAGTCCACTTTGAAGTGCAGTGTGGGAATATCTGTGGCTGCAAGGCCATCTCAGGTTG
 GGGATCCCCAGTCCATGATCAGTGTGGGTATCCCCTGGAGCCTAGGTTCTTGAGGCCAGCCCTCT
 TTTAACACCCTGAGTGGTGGTCCCCGTATTTAGAAATAAGTCCATTCCACAGAAAAAAAAAAAAAA
 AAAAAAAAAA

10

SEQ ID NO:6 Rat PPT2 polypeptide sequence

accession:gi9506987

MPGLWRQRLPSAWALLLPFLPLLLPAAPAPHRGSYKPVIVVHGLFDSSYSFRHLLDYINETHPGTVVTVLDFD
 GRESLRPLWEQVQGFREAVVPIMEKAPEGVHLICYSQGLVCRALLSVMDEHNVDSFISLSSPQMGQYGDTDYLK
 15 WLFPTSMRSNLYRICYSPWGQEFSICNYWHDPHDDLYLNASSFLALINGERDHPNATAWRKNFLRVGRVLIGG
 PDDGVITPWQSSFFGFYDANEVLEMEEQPVYLRSFGLKTLLARGAIVRCPMAGVSHTWHSNRTLYDACIEPW
 LS

SEQ ID NO:7 Human PPT2 splice variant

20 accession:AL110128 coding sequence: 104..1030

GAGTAGAGTAGGGCAGGAGAAACTGGGCCAGGCTGCACTTAGCTCAAGGGCCTCGAGGACTCTCTGCGTCTCG
 GAGACAAGGCACTACACGCACTTCAGAATGAAGAGTTGCGGGAGCATGCTGGGCTCTGGGGCAGCGGCTCCC
 CGCGCGTGGTCCTGCTCTGCTTCTGCCGCTGCTGCTGAGCCCCCGCAGCCACCGCGCGTC
 25 CTACAAGCCGGTACATCGTGGCATGGCTTCTCGACAGCTCGTACAGCTTCCGCCACCTGCTGGAATACATCAA
 TGAGACACACCCCGGACTGTGGTACAGTGCTCGATCTTCGATGGAGAGAGAGCTTGCACCCCTGTGGGA
 ACAGGTGCAAGGGTCCGAGAGGCTGTGGTCCCCATCATGGCAAAGGCCCTCAAGGGTGCATCTCATCTGCTA
 CTCGCAGGGGGCTTGTGTGCCGGCTCTGCTTCTGATGGATGATCACACGGTGGATTCTTCATCTCCCT
 30 CCTCTCTCCACAGATGGACAGTATGGAGACACGGACTACTTGAAGTGGCTGTTCCACCTCCATGCCGTCTAA
 CCTCTATCGATCTGCTATAGCCCTGGGCCAGGAATTCTCCATCTGCAACTACTGGCATGATCCCCACACGA
 TGACTTGTACCTCAATGCCAGCAGCTTCTGGCCCTGATCAATGGGAAAGAGACCATCCCAATGCCACAGTATG
 GCGGAAGAACCTTCTGCGTGTGGCCACCTGGTGTGATTGGGGCCCTGATGATGGTGTATTACTCCCTGGCA
 GTCCAGCTCTTGGTTCTATGATGCAAATGAGACCGTCTGGAGATGGAGGAGCAACTGGTTATCTGCCACACAGC
 TTCTTTGGTTGAAGACTCTATTGGCCGGGGCCATAGTGAGGTGTCAAATGCCGGTATCTCCACACAGC
 35 CTGGCACTCCAACCGTACCCCTTATGAGACCTGCATTGAACCTGGCTCTCTGAGGATATATTCAAGGGTCCCC
 AGGAACCTCGGTCCAGAGACCAAGTGGTGGCCTGGAAAGCAGATGTCAGGCCTTGGTGTGCCCTGTGACCACC
 TCATTGCTCCATATTATCCCCCATTAGTAGAGACGGGTTTAGTAGAGAGACTTGGCCTCCAGAACCCCT
 TCCTCTGCTCTCCATGAATGACAATTCCAGGCCTCCCTACCTCATGTCCTCTCATTTGGGGATTGCTCCGTG
 CTGTCCTCGTATCTGGCTGTATGGTGGAGAACCCACCCCTGCCACACAGGGTCTCCAGGCCACTC
 40 AGGACATTAGCTTCTCTCCCTCCATGTTCCCTTTCTAAAGTCCCTGACTTCAGCCCTCCAACTC

CTAAGAGGGACTACCCATGAGAGTGGGTTCTGAGGCTCCCCTATGGGACAGTTCCGTTCTGAAGTGTCACTG
 TTGGGAATATCTGTGGCCTATGAGGCCCATCTCAGGTTGGGATCCCCAGTCCCTATGATCAGTGTGGAGT
 ACCCCCCCTGGGAGAGCCTAGTCTCTTGAGGCCCTCTTTAACTACCTTGAATAGGTGTTATCCCTG
 TATTATGAAATAAGTCATTCTCAAAAAAAAAAAAAAA

5

SEQ ID NO:8 polypeptide encoded by human PPT2 splice variant

MKSCGSMLGLWGQRLPAAWVLLLPFLPLLLAAPAPHRASYKPVIVHGLFDSSYSFRHLLEYINETHPGTVVT
 VLDLFDGRESLRPLWEQVQGFREAVVPIMAKAPQGVHLICYSQGGLVCRALLSVMDDHNVDASFISLSSPQMGGYQ
 DTDYLKWLFPPTSMRSNLYRICYSPWQEFISICNYWHDPHDDLYLNASSFLALINGERDHPNATVWRKNFLRVGH
 10 LVLIGGPDDGVITPWQSSFFGFYDANETVLEMEQLVYLRDSFGLKTLLARGAIVRCPMAGISHTAWHSNRTLYE
 TCIEPWLS

SEQ ID NO:9 Human Testican-1 nucleic acid sequence

HUM134992 accession:X73608 coding sequence:435..1754

15 CACTCTCTGTTCCAATGGACACACCTGTCGTGTTTGAGGCCAGCAGATGCAGTGGAAAGTGAAGAACATGG
 TTACAGACTCCCCATCGCACAGTACACTCTCTGAAGTAGCGGACGCCCTGGTAGCTTGACATTCTATGCAAAGA
 TCCATAATGTGGTCTCTGCAGATGGCACAGTTATCAACCACAATATCCAGGCCAGAGGGCTACTGCATTCCAC
 TTTTCACCTCAAAGCGCTTCTGCCCGCGCGCTGTTGGTGCCGCTCGGGGTATCCACATCCATCGCTGCCGC
 TCACAAAGCGCCAGACGCTGGCGCGCGTGTGGCAGGAGCGCAGGGGCGCAGCCGGCGATCAGCCTCCCG
 20 GCGACCGTGCCCGGGAGCTCGAGCAACTCGGACTAGGGACCCGGCCGGCCAAAGATGCCGGCGATCGCGG
 TGTGGCGGGCCGCCGCGCGTGGTGCTTCCCTCAAGTCGAGAGGCCGACCTGGACCGCCTCGCCGGAGGCG
 CGGGCCCCAACACGGCAATTCTAGACAATGACCAGTGGCTGAGCACCGTCTCCAGTACGCCGGACAAGT
 ACTGGAACCGCTTCGAGACGATGATTATTCAGAAACTGGAATCCAACAAGCCCTTGACCAAGCCCTGGACC
 CATCCAAGGACCCCTGCTGAAGGTAATGCAGCCCTCACAAAGTGTGTGACCCAGGACTACCAGACGCC
 25 TGTGTGTCAGCCGAAGCACCTGCTCCCCAGGCAAAAGAAGGGAACGTGGCCAGAAACACTGGGTTGGACCTT
 CGAATTGGTCAAGTCAAGGCCCTGTCCTGGCACAGTCAGCCATGGCTGCGGCTCAGATGCCACTCCTACA
 CATCCAAGTCAAATTGGAGTTCCATGCTTGTACTGGAAAAGCCTGCCACCCCTGTGATGGCCCTGTC
 CCTGCTCCAGGCCCTGAGCCACCAAGCACAAGGAGGTGCCTGCACAGACAAGGAGTTGCCAAC
 TTGCTCCGGCTGAAGGATTGGTTGGAGCTCTCACGAGGATGCGAACAGAGTCATCAAGCCACCAAGCTCCA
 30 ACACAGCCAAGGAGGTTGACACTAGCATCCTGCCATCTGCAAGGACTCCCTGGCTGGATGTTCAACAAGT
 TGGACATGAACTATGACCTCCTGCTTGACCCCTCAGAGATCAATGCCATCTACCTGGATAAGTACGCCCTGTA
 TCAAGCCTCTTTCAACTCGTGTACTCCTCAAGGATGGCAAGCTTCTAACAAATGAGTGGTGTACTGCTTCC
 AGAACGCTGGAGGTCTCCCTGCCAGAATGAAACAGAATTCAAAGCTGAGTAAGGGAAAAGCCTGTTGG
 GGGCCTTCATACCTCGGTGAATGAGGAGGGCTATTACAAAGCCACACAGTGCCACGGCAGCACGGGAGCTGCT
 35 GGTGTGTTGACAAATATGGAATGAGTTGGCTGGCTCCAGGAAACAGGGTGTGAGCTGTGAAGAGGAGCAGG
 AAACCTCAGGGATTTGGCAGTGGTGGTCCGTGGTCTGCTGGATGACCTAGAAATGAACGGAGCTGGAC
 CAAAGGACAAAGAGGGAGCTGAGGGTGACACCCGAGCCGTGACAGAGGATGATGAGGATGAGGATGATGACA
 AAGAGGATGAGGTCGGGTACATATGGTAGTGCCACAAGAAAGAGGACACAAGTTGCACAAATTGCAAGTCA
 CTTCCTATTCCCTGCATTGTATCTAAGACTCCAAGGCACCAAGGTCTCTCCATTGTTGCTCTATACCGA
 40 CCTAAGGTTGGAAGACAAC TGCTTGCTCCAGAGGATTCTGATTTGCATATGTTGATGGAGAAAGGGTGT

TGTGTTTTTTTTTGTGTTGTTATTTTGGAAGTCATTGGCTTAATTAGAGCCTCCTCCCTTCT
 GTGAGATTTCCAACAAGCATGTGATTTACGTGGAATTCTGACAGTGCAGGGAGCCCCACCCCTTAAATGTC
 AAAGACCCTTTGATTACCCACACTGGTGGTTATTACAGCATGGTCCCAGCCTTACAGTGTCTAAGTGTCT
 CTTGTGCTGTAGATGTTGAAAAAGAAAAACAAAAACACCACACTGTACTTTTCCCCCTGCCCCCG
 5 TTACTGCCGGTGATTATTAAAAATTAGTTTTTACATCATTCTATCTGGCTTCTATAAACAAACAGCCTT
 AATTCAAGTCAAGACTCCCTTGGGAATTCACTTTATTAAAAATTGGTGTCTGGACTTCCGTACATGCATAA
 ATATGCATGCATGTACAGAAAGACTGTATGTTGCTGCCTGCACACACACCCATACCTCTCAGAAAAGTGT
 GGTATCTAAAAACTCGAAAACAATGATAAAATTCTCAGCTTGTCCAGACCTGGAACAAAATTCTGGAATAAG
 AAAATTGTATTAAAGTCCTTTTGCACTAACAGTTGGCTCTGTAGCCTGCAGGCTGAGGAAGTCTCTCTG
 10 TGCATCAGCAGAGTTACTGAAAGCCTCTGATTGAGAAAAACCTCCGTCTGCCTAAATCAC
 CCATGCGACTCCCACACGACACGGGCAGCTTCACAAGCCATCTCTTCAAGGGCTTTCTAAGGCATGCACACATATCTC
 GCAATCCTGCTGCCATAGGTTCTCCTTACCTACTCAAGGGCTTTCTAAGGCATGCACACATATCTC
 CTGTTCTCTGAGAGTACCATGGTGTCTAAAAGAAGAAAATTCTAATTCTGAACCTCAATGTTTGCTTTAC
 TCCCTTCTACTGACAAATCATGATAAGGGCACAAAAGCTGTACAGATTTTTTTAACCACTCAATCCAAA
 15 TGGAGGCCTACAAAGAACATCGAATAACACATGGAAGCAAACCCGGGTTTAAGAGCAAATTCTGCCCC
 CTCACTCCCCAAGTGACAAGATACTAATGAAGAAAGTCTCACCATAGTGTGTTAACTAAACTCATTGG
 AGTCTAGTTCAAATTGGTAGGGTCATCATCTACATTCTTAGGATTCTCTCCCTATCAAGCTGGCCAGA
 TACAAGTACCAAAACAGTAGTCTCTGAAGTTCCATTCTCAGTACAGTCTATAAGCTACTGTCCGCCACTGA
 TTTTCATCTATCAGGGTGTCTAATCAGAACGCCACAGCAAGCCTCTGGCCCACATATCTATCTTGC
 20 CCTTCCCCATGAACCTCAGCCTGTCCACACAAAAGCCACATAAAACTCAAGCAAGAAATATGTTCAGCCAAAACA
 TGATTATAGTGGCAGCTGACCAATACCCACCC

SEQ ID NO:10 Human Testican-1 polypeptide sequence

protein_id:gi793845

25 MPATAVLAAAAAWCFLQVESRHL DALAGGAGPNHGNFLDNDQWLSTVSQYDRDKYWNRFRDDDYFRNWNPNKPF
 DQALDPSKDPCLVKVCKSPHKVCVTQDYQTALCVSRKHLLPRQKKGNVAQKHVGPSNLVKCKPCPVAQSAMVGS
 DGHSYTSKCKLEFHACSTGKSLATLCDGPCPCLPEPEPPKHKAERSACTDKELRNLASRLKDWF GALHEDANRVI
 KPTSSNTAQGRFDTSILPICKDSLWGMFNKLDLMDNYDLLLDPSEINAIYLDKYEPCIKPLFNSCDSFKDGKLSNNE
 WCYCFQKPGGLPCQNEMNRIQKLSKGKSLLGAFIPRCNEEGYYKATQCHGSTGQCWCVDKYGNELAGSRKQGAVS
 30 CEEEQETSGDFSGGSVVLLDDLEYERELGPKDKEGKL RVHTRAVTEDDEDDDEKEDEVGYIW

SEQ ID NO:11 Mouse Testican-1 nucleic acid sequence

accession:NM_009262

coding sequence: 134..1462

GTGGGCTCACAAAGCGCCGGACCGCGCGCGGGCAGGTGCGCAAGGGAAACGAGCCGGGATCAGCCTTCCAG
 35 CCACCGCGGTACAGGAACCCAGCAACTCGGGCGCCGGACTCGGGCGGGCTCCAAAGATGCCAGCGATCGCGGT
 GCTCGCGCGGCCGCCGGCGTGGTGCTTCCCTCAAGTGGACAGCCGGCACCTGGACCGCGCTGGCCGGTGGCGC
 GGCCTCAACAACGCCAATTCTAGACAATGACCAGTGGCTGAGCACTGTCTCCAGTATGACCGTGACAAGTA
 CTGGAACCGCTTCCGAGATGAAGTTGAGGATGACTATTCAGAAACTGGAATCCAACAAGCCCTTCGACCAAGC
 CCTGGACCCATCCAAGGACCCCTGCCTGAAGGTGAAATGCAGCCGCACAAAGTATGTTGACCCAGGACTACCA
 40 GACGGCTCTGTGTCAGCCGCAAGCACCTGTTGCCAAGGCAGAAGAAGGGCAATGTGGCTCACAAACACTGGCT

TGGACCTCCAATCTGGTTAAGTGCAGGCCTGGCCGAGTCAGCGATGGCTGCGGCTCTGACGGCCA
CACGTACACGTCCAAGTGCAGTTGAATTCCACGCTTGTACAGGCAAAAGCCTCAACTCCCTGTGATGG
GCCCTGTCCGTCTGCCTGAGCCTGAGCCACTGAAGCCAAAGCAGAGAAGAGTGCCTGCACGGACAAGGAGCT
GCGAACCTCGCCTCCGGCTGAAGGACTGGTCGGGCTCTCATGAGGACGCCAATAGAGTCATCAAGCCTAC
5 CAGCTCTGATGGAGCCAAAGGCAGGTTGACACCAGCATCTTACCCATTGCAAGGACTCCTGGGTTGGATGTT
CAACAAGTTGGACATGAACATATGACCTGTTGCTGGACACTCAGAGATCAATGCCATCTACCTAGACAAATATGA
GCCCTGCATCAAGCCTCTTCAACTCGTGCACTCCTCAAGGACGGCAAACCTCACAATGAGTGGTGT
CTGCTTCCAGAACGCCAGCGGGCTCCCTGCCAGAATGAAATGAACAGAATTCAAGCTAAGCAAGGGAAAAG
CCTACTGGGGGCCITCATCCCTCGATGTAACGAGGAGGGCTACTACAAAGCCACACAGTGCACGGCAGCACGGG
10 GCAGTGCTGGTGTGGATAAAATATGGAACGAGCTGCCGGCTCCAGGAAACAGGGACTGTAAGCTGCGAAGA
GGAGCAGGAAACCTCCGGGACTCGGCAGTGGAGGCTCCGTGGATGACCTAGAGGATGAGCGGG
CGTGGGACCAAAGGACAAAGAACAGGAAGCTGAGGGTGCACCCGGGCGTGCAGGAAAGATGATGAGGATGAAGA
TGACGACAAAGAAGATGAGGTGGCTACATATGGTAGTGCCCACGAGGAAGAGGACACACTTTGGCACAGATCT
GCAAGTCGTTCTTGCCTGCATTTGTATCTAACAGACTCCGAGGCACCGGGCTCTTCTCCACTGTTGATCT
15 GAACGGGCCCTGAGGTTGGAAGACCCCTTCCCAGAGTGAATTGACATCGGTTGTGGAGAAAGGAT
GTTATTTTGTCTTGTGTTGTTGTTGATTGGATGAGGAGCAGGGCTGGCTTAGTTAAAGCCCTCCTCTCCC
TGTGAGGTTTCGCAACTAGCATGTGATTGGTAGGCTGGGAGCCACCCCTCTCAAGCGTCA
AAGACCCCTCTGATTACCCACGTCGGTGGTCCCTACAGCATGGTCCACGCGTCTTATGATGTCGCTGCTT
TCTCGTGTCTGTAGATGTTGAAAACATACCAAGGCTGTCCCCCTTCCCTGTCTTACCAACCTCTGGTGTGA
20 TTATTAAAAATTAAATTTCATGTCACTGTATCTGACTTCCTACAAACGACAGCCTTAATTGACATCGGTTGTGGAGAAAGGAT
TGGAGAATTCTTCTTCTTAAAGATCTCGACACCCCCCCCCCTGCGCCAAAGGTGACTGT
CTTGCATGACTTGCATACACACACCTTCAGTCTAGTGTCTGGGTGTATACCAAAACACCTTAGATAAGCAATG
GCTTTAGTCAGTTGCTCCAGACCGAGAACACAAACCGGGTATGAAATTCTCTTAGAGTCCGGTTGCACTAG
CTCTCGTGTGTGTAGCCTGCATCCGGGAGGCTCTTATGCGGTCTCAGAGTGAACGGCTTT
25 GATTGGATGAGCCTCATTGCTAAATGTTTACCCACAGAACGCCATGCAATTCCCACGTGGCAGCTTC
ACAAGCCATTCTTCACTCCCGCGCACAGCTCCCTCAGGATACAGTGTACCCACCTGCGGCAAGCTTCTCC
ATCCACCAAGGGCTTTCTTACCGTGTCTTGTACGCTCTTGTGACCCCCCTATCCACAAATCATGACCCAGGGTATG
CTTAGAAGAAAATTACCCCTTCTCAGTGTCTCTTGTACGCTCTTGTGACCCCCCTATCCACAAATCATGACCCAGGGTATG
AGACTTTAAAGGTTCTCGTGTCCCCATTATTACTAGGGACCCCCAATGGAAGCCAGAAAGAGATTCT
30 TAGCACAAGAGGCTAGTCCTCATCAGCAGCCATCTCCCGACACATGCTGACCTAGTTGACACACGGCTGAG
GCCATTTCAGTTGCTCTGAGAGCTGTTATTGGCATCTGGTTCACTAGTGATATCATCTCAATACTTTCA
GATTCTTCTACAAAGTACCAACAGCAATCTCAGTGCAGGCCCCGTTAGCTCAGGGCAATCCCAAGCT
GTCTCTGCTTCTGCCTAGCTCTGCCTAACAGCCACAGCCTGCCAGACACACTCTTCTATGGTCTT
CCTTCCCCCATCCTGAGTTAGCCAGTCACAAGACAGATCCATCAACTCAGGCTACAAAGGTATTGGTAAA
35 CCGAGATCAGGGAGCAGGCCCTAAACTGGCTTGTATTAGGAAGCCACCTACAATTGAAATTCCCCTTCTT
GAATAGGACAGGCAAAGTGACATCAGCCCTTGGAAATGAATATACCCGGTGCCCTTACCCCTGGCCTGGGA
TACACACGCCAGAGCCAGGGTGCTGAGATTCTGTGTGCTTCTCTTATGGAGATGGAAACCTGCTTGGAAATCTC
AGTGCATCCCCCCCCGCCCCCACCCCTATTGTTGTTCTTCTTCTTCTTCAAAATGGATCATCCTTAA
GAAAACAGGTGCTTAATCACAGCTAAATTGTAATAGAAATACATTAAAAGACATATTAGAAATCTCAGTTAGGC
40 CATCCATATAAGCCATTGTTGTTATTCTCATGAGCTAGGGGAAAAAAACATGCACAAGAGAACAAATTAAAC
ATGGCAAATTGATTCTCTGAGAAACTCTAGGAACCAATGAGCCACTTACTTGTCTAATTATCTTATGAC

AAGTGTACATTAAGATGACACTTAGAAGTCCTAACATTATCTTAATGGTGAAGAAGAGTACTCAGGAGGCAAT
 TCCCAGGAAGGTAATGAGATGTCATTCCAGAGACATTCCAAGAAGATATTTGATTCAATTAAATATTAAATCA
 AAAGCCCTCCTACGTGTGGAGGCCACATCAACAAGACAGGCCAGTGCGCTCTCATGGCCCCACTTGGGTTTT
 5 AAAGATGGCTATTATAATGGTACTTTAAAGTTAGACTTTGTTCTGAGAAAGAGTGCTTCACTGGT
 CTTCTGGAAGGACCCTTCAGTCTAATCATCAGGCAGCATATGAGACTTTAAAGCATATGCGGCTGTAATGAT
 ACCACTTGCTTAGGCAGGCAGTGAGCTGAGTCCCACCTAGCTTAGAAAACCTTCAGTTGATTCTGTTACTCT
 AATTCTACAAACTGTTCTACTAACATTCTGTGACATCCAGTTAAACCTAGAATTCTCTTCCACCAGGGTTC
 ATTGTCTGCCATATGACTATGTTCTACAGATATTCTCAGCATGAGGATGGCTCACATGGCTTCTCAGTAC
 TCCCTTATGCCACGACCCCTGTGTATACACCAAATGATGATTGTCTGTCAGGTCTACCTCTGCTTGTCCCA
 10 GAACGCCATTGACATTGACTTGGTTGGTTATCTTGACCACACTGTACAGTAACATCCAAGAGC

SEQ ID NO:12 Mouse Testican-1 polypeptide sequence

Protein sequence accession:gi6678111

MPAIAVLAAAAAWCFLQVDSRHL DALAGGAALNNANFLNDNQWLSTVSQYDRDKYWNFRDEVEDDYFRWNPN
 15 KPFQALDPSKDPCLKVKCSPHKVCVTQDYQTALCVSRKHLLPRQKKGNVAHKH WLGPSNLVKCKPCPVAQSAMV
 CGSDGHTYTSKCKLEFHACSTGKSLNSLCDGPCPCLPEPEPLPKPKAEKSACTDKELRNLA SRLKDWF GALHEDAN
 RVIKPTSSDGAQGRFDTSILPICKDSLGMFNKLDMNYDLDDHSEINAIYLDKYEP CIKPLFNSCDSFKDGKLS
 NNEWCYCFQKPAGLPCQNEMNRIQKLSKGKSLLGAFIPRCNEEGYYKATQCHGSTGQCWCVDKYGNELAGSRKQG
 TVSCEEQQETSGDFGSGGSVVLLDDLEDERDVGPKDKEGKL RVRTRAVREDDDEDEDDEKEDEVGYIW

20

SEQ ID NO:13 Human OXCT nucleic acid sequence

HUM140203, Accession:U62961; CDS:99..1661

GTCGAGCCTCTAGCCGCCCGGGTTCTCGCAGTCGCGACCGACGCTCAAACGCGCTCCAACCCGAGCC
 TCCTCCTGCCCTACCGCCCGAAGATGGCGCTCTCAAACCTCTCCTCCGGCTCTGCCCTCTGCC
 25 GCGGATCTGGGCAACCTGGTACAAGGGATGTGTTGTTCCCTTCCACCAAGTGCTCATGCCATACCAAGTTT
 ATACAGATCCAGTAGAAGCTGTAAAAGACATCCCTGATGGTGCCACGGTTTGGTTGGTTGGCTATGTG
 GAATTCCAGAGAATCTTATAGATGTTACTGAAAAGTGAGTAAAGGACTAACTGCAGTCAGCAACAATGCAG
 GGGTTGACAATTGGTTGGGCTTTGCTTGGTCAAGCAGATAAAACGATGGCTCTTCATATGTGGAG
 AAAATGCAGAATTGAAACGACAGTACTTATCTGGTGAATTAGAAGTGGAGCTGACACCACAGGGCACACTTGCAG
 30 AGAGGATCCGTGCAGGGGGCTGGAGTTCTGCATTTCACCCCCAACAGGGTATGGGACCTGGTACAAGAAG
 GAGGATGCCCATCAAACAAAGATGGCAGTGTTGCCATTGCCAGTAAGCCAAGAGAGGTGAGGGAGTTCA
 ATGGTCAGCACTTATTTGGAGGAAGCAATTACAGGGATTGGCTTGAAAGCCTGGAAGGGCGGACCGAG
 CAGGAAACGTGATTTCAAGAAAAGTGCAGGAATTCAACTGCCATGTGCAAAGCTGCAGAAACCACAGTGG
 TAGAGGTTGAAGAAATTGTGGATTGGAGCATTGCTCCAGAAGACATCCATATTCTCAGATTATGTACATC
 35 GCCTTATAAAGGGAGAAAATATGAGAAAAGAATTGAGCTTATCAATCCGGAAAGAGGGAGATGGGAAGCCA
 AATCTGCTAAACCTGGAGATGACGTAAGGGAACGAATCATCAAGAGGGCCGCTCTGAGTTGAGGATGGCATGT
 ATGCTAATTGGCATAGGAATCCCTCTGGCCAGCAATTATCAGCCAAATATAACTGTTCACTTCAA
 GTGAAAATGGAGTTCTGGTTGGTCCATATCCACGACAACATGAAGCTGATGCAGATCTCATCAATGCAGGCA
 AGGAAACAGTTACTATTCTCCAGGAGCCTTTTCTCCAGCGATGAATCATTGCAATGATTAGAGGTGGAC
 40 ACGTCGATCTGACAATGCTAGGAGCGATGCAGGTTCAAATATGGTACCTGGCTAAGTGGATGATACCTGGGA

AGATGGTGAAGGAATGGGAGGTGCTATGGATTAGTGTCCAGTGCAGAAACCAAGTGGTGGTCACCATGGAGC
 ATTCTGAAAGGGAAATGCACATAAAATCATGGAGAAATGTACATTACCATGACTGGAAAGCAATGTGTCAACC
 GCATTATTACTGAAAAGGCTGTGTTGATGTGGACAAGAAGAAAGGGTTGACTCTGATTGAGCTCTGGGAAGGCC
 5 TGACAGTGGATGACGTACAAAGAGTACTGGGTGTGATTTGCAGTTCACCAAAACTCATGCCAATGCAGCAGA
 TCGCAAATTGAAATATGGATATTGTACCAAGGCTGCGTGTCCCCATTTAACACACAAGATTAAATTGAAAGG
 ACATCAATAATCATAATTGTGTTAACAGGTGGTTTATTAGTGTGTTCACTGAACTTTATGCAGCC
 ATATAAACTGTTCTCTAGGCATGCTGTGACATTAAATAAAAAGCAAAAGGAGCATTATAATTATCTCATTG
 TAAGGCTGAGAAGGTTGTTTATAATAGGTAAATTATTAATGAAATGCATTTCACTGAATATGGTATGTATGCTAA
 10 ATTATATGAACCTTCCCCAAGAAGGGCCCTAGAAATTGATGTGGCTTCCTCTTAAATTAAATTATTAGTCCT
 GAAAGAAAGATAACATATGTGATTTGTGGTTAGGAGAGTTGCTGTGATGTTTTCTTCAGCCTCCTCT
 GACTTTCTTTGGGGCTTCAGATTATGATTACATCTGTCCCCCTAGAACATCCCCCTCCTCCCATACTGC
 TTTAAACAGATGCCAAGAAGGCAAGCAGGAATGCCCTTGCTGGGGAGGGCAGGGAGAAATACTAGTTCAA
 15 CCAACTATCTATCTATGCTTGTCAAAGACTAAGCGTATTATAGGAAGAGGGCTAGAAACCTAACTGATTCTCT
 CAGTTTCTCATTAAACAGCCCAGTATCCTTGATCCTCAAGGGCTCTTGAGAACATACCTGTTATTGAA
 ACCCTGTGGGCTACTGTACTGTACCTCTCAAGCCAAGAAGGGCTGTGGGATAATTACCATGAATCCTTAG
 TAGCAATGACAGCAGAGTTAAAAAATAAAAGGTGTTTACTTCAGGCTCTGTTGGTCAGAGGAGATTAA
 AATATTGAATGACACTTCTACAGAACAAACGGTTTCTCTGCCAAGGCTACTCCTTAACGAAGTGCCTTAA
 20 TTCAGCCTTATCCAACACTAGGGAAAATAATGTTGGACAAGTCTAGGATTGAAGAGTCAGTGAACCTTAGTCA
 GGGAAATAAACATGGTGGGTAGATTAGGTTGAAAAAAACTCCTTAGAGGTATTATTCTCAACACAGGG
 GCCCATGGGAAATGACTTCAGAACGCATCCGGATAATAGATGGTAAAAAGTCTAGGCACCCCTGAAGAACAGGTGA
 GACAGCTGGCCTCTGGACAGAGGTAGGCATAGTACAGTACGATATATCATTCTCTGGCCTAAATATAACAA
 25 TATTCTATGTTTTAGGTGATGATGGTCATTGAAACTCACTCTTCAAGGTGTAGCTACAATTGTGTAATGTACA
 ATATTAGAGAAAGGACAGGCTTTATGAGTAACACACACCATATATAAACAGCCTTCTGGCTGACCACATGG
 TTAAATGCATACCTCCCAGTACTGGGGGAAAATGACCTCTAGAACATGTGCAAGTCCATAGAGTAATATAT
 TGATATGATTGAAAAGAATTGTTGATAGTTACATCTCAAACCTTACATTCCAGTATGCATCTTAAGATAAT
 GTGATTCTAAGTAGATGACTTTATATTCTGATTAAAGAGTGCTATACATGTTAACATGCATTAAGGAATACA
 30 ATAAATATTCTAAACTGATGAAAAAAAAAAAAAA

SEQ ID NO:14 Human OXCT polypeptide sequence

protein_id:gi1519052
 MAALKLLSSGLRLCASARGSGATWYKGCVCSFSTSahrHtkfytdpveavkdipdgatvlvggfplcgipenlid
 ALLKTGVKGLTAVSNNAGVDNFGLLLLRSKQIKRMVSSYVGENAEFERQYLSGELEVELTPQGTLAERIRAGGA
 GVPafytpgygtlvqeggspikynkdgsuaiaskprevrefngqhfileeaitgdfalvkawkadragnvifrk
 SARNFNLPMCKAAETTVVEEEIVDIGAFAPEDIHIPQIYVHRLIKGEKYEKRIERLISRKEGDGEAKSAKPGDD
 35 VRERIIKRAALEFEDGMYANLGIGIPLLASNFISPNTVHLQSENGVLGLGPYPRQHEADADLINAGKETVTILP
 GASFFSSDESFAMIRGGHVDLTMLGAMQVSKYGDLANWMIPGKVMKGGMGGAMDLVSSAKTKVVVTMEHSAKGNAH
 KIMEKCTLPLTGKQCVNRIITEKAVFDVDKKGLTLIELWEGLTVDDVQKSTGCDFAVSPKLMPMQQIAN

SEQ ID NO:15 Mouse OXCT nucleic acid sequence

Accession:NM_024188; CDS:49..1611

CGCACGCACTCCCGCGCGCCACCGTCTCCGCACCCGGGCCGAAGATGGCGGCTCTCAAACCTCTGTCTCT
 5 GGGCTTCGGCTCGCGCCTCAGCCCGCAGCTCGGGGCCCTGCATAAGGGTGTGTCTGCTACTTCTCTGTG
 AGTACTCGTCAACCACACCAATTACACAGATCCC GTGGAAGCTGTAAAAGATATTCTAATGGTGCAACCTTG
 CTGGTTGGTGGTTTGGGCTGTGTGGTATTCCAGAGAACTTATAGGAGCTTACTGAAGACTGGAGTAAAAGAT
 CTAACTGCAGTCAGCAACAATGCAGGGGTGACAACCTCGGCCTGGCCTTTACTTCGATCCAAGCAGATAAAA
 CGAATGATCTCCTCATATGTGGAGAAAATGCAGAATTGAGCGACAGTCCTTCTGGTGAATTAGAAGTAGAG
 CTGACACCTCAGGGCACACTGCCGAGAGGATCCGTGCCGGTGGAGCTGGAGTCCCTGCCCTACACCAAGCACA
 10 GGGTATGGACTCTGGTACAGGAAGGAGGATCACCCATCAAATATAACAAAGATGGCAGTGTGCCATTGCCAGC
 AAGCCACGAGAGGTGAGGGAGTTAACGGTCAGCACTCATTGGAGGAAGCCATCACGGAGATTTGCTCTG
 GTGAAAGCATGGAAAGCAGACCGGGCAGGCAATGTGATTTCAGGAAAAGTGAAGAAACTCAATCTGCCATG
 TGCAAAGCTGCAGGAACCTACCGTGGTGGAGGTTGAAGAAATTGTAGACATTGGCTCATTGCCAGAAGATATC
 CACATTCAAAGATTATGTGCACCGCCTCATAAAGGGAGAGAAATATGAGAAGAGAAATTGAGCGTTTATCACTC
 15 CGAAAGGAAGGAGATGGAAAAGGCAAATCCGTAAGCCTGGAGGCATGTGAGGGAACGGATCATCAAGCGAGCC
 GCCCTGGAGTTTGAGGACGGCATGTACGCTAACCTGGTATTGGGATTCCCTCTGCCAGCAACTCATCAGT
 CCCAACATGACTGTTCATCTCAAAGTGAAAATGGAGTCTTGGGCTGGGCCATACCCACTGAAAGACGAAGCT
 GATGCGGATCTCATCAATGCAGGAAAGGAAACAGTTACTGTTCTCCAGGAGCCTTTCTCAGCGATGAG
 TCATTGCCATGATTAGAGGGGACATGTCAATCTAACATGTTAGGAGCCATGCAGGTTCTAAGTATGGTAC
 20 CTGGCCAACCTGGATGATACTGGAAAAATGGTGAAGGAATGGGAGGAGCTATGGATTGGTGTCCAGTTCAA
 ACCAAAGTGGTGGTACCATGGAGCACTCTCGAAGGGAAATGCTCATAAAATCATGGAGAAATGTACACTACCA
 CTGACGGGCAAACAGTGTCAACCGCATCATTACAGAAAAGGGTGTGTTGACGTGGACAAGAAAATGGTTG
 ACACGTGATTGAGCTGGGAAGGCCTGACTGTTGATGACATCAAGAAGAGCACAGGCTGTGACTTGCAGTTCA
 CCAAACCTCATGCCAATGCAGCAGATTCAACTGAAGCATCCACTGAACATTGTCCCAGGCTGCCAAGATTG
 25 ATTTCAACACATAGGATTAAACGGAAGGATGTCAGTAATCAATAGTTACATTACACATTAGCAAGAAGTTTC
 GGCTAGTTCTCTAGTATTCTGGATTGTGCAGCCATAGACATTGTTCTCCATCGTGTATATCAGTTCC
 GTGGGAAAAAAAAAAAAAA

SEQ ID NO:16 Mouse OXCT polypeptide sequence

30 Accession:gi18266680
 MAALKLLSSGLRLGASARSSRGALHKGCVCYFSVSTRHHTKFYTD PVEAVKDIPNGATLLVGGFGLCGIPENLIG
 ALLKTVKDLTAVSNNAVGVDNFGLLRLSKQIKRMISSYVGENAEFERQFLSGELEVELTPQGTLAERIRAGGA
 GVPAFYTSTGYGTLVQEGGSPIKYNKDGSVAIASKPREVREFNGQHFILEEAITGDFALVKAWKADRAGNVIFRK
 SARFNLPMCKAAGTTVEEEIVDIGSFAPEDIHIPK1YVHRLIKGEKYEKRIERLSRKEGDGKGKSGKPGGD
 35 VRERIIKRAALEFEDGMYANLGIGIPLLASNFI SPNMTVHLQSENGVLGLGPYPLKDEADADLINAGKETVTVLP
 GASFFSSDES FAMIRGGHVNLMLGAMQVSKYGDLANWMIPGMVKGMMGAMDLVSSSKTKVVVTMEHSAKGNAH
 KIMEKCTLPLTGKQCVNR IITEKGVFDVDKKNGLTLIELWEGLTVDDIKKSTGCDFAVSPNLMPMQQIST

SEQ ID NO:17 Human ceramidase nucleic acid sequence

HUM163603 accession:BC016481 CDS:36..1223

CTGGAGTCCGGGGAGTGGCGTTGGCTGCTAGAGCGATGCCGGGCCGGAGTTGCGTCGCCTAGTCCTCCTGGCTG
 5 CCGCCGTCAGCTGTGCCGCGCAGCACGCCGCCGTGGACAGAGGACTGCAGAAATCAACCTATCCTCCTT
 CAGGACCAACGTACAGAGGTGCAGTTCCATGGTACACCATAAATCTGACTTACCAACCTACAAAAGATGGCATG
 AATTGATGCTTGACAAGGCACCAATGCTAAAGGTTATAGTGAATTCTCTGAAGAATATGATAAATACATTCTGTC
 CAAGTGGAAAAGTTATGCAGGTGGATGAAAATTGCCTGGCCTACTTGGCAACTTCCTGGCCCTTTGAAG
 AGGAAATGAAGGGTATTGCCGCTGTTACTGATATACTTACAGGAGAGATTATTCATTCAATATTTTATGAAT
 TATTACCAATTGACTTCATAGTAGCAGAACAAAAAGGTACATCTAATACATGGGAGAACATGGATT
 10 GAGTATTCTGGGTGGAACATAAATAATGATACCTGGTCATAACTGAGCAACTAAACCTTAACAGTGAATT
 TGGATTTCACAAAGAACACAAAAGTCTTCAGGCTCAAGGCTTGCTGGCTATGTGGCATGTTAACAGGAT
 TCAAACCAGGACTGTTAGTCTTACACTGAATGAACGTTCAAGTATAATGGTGGTTATCTGGTATTCTAGAAT
 GGATTCTGGGAAAGAAAGATGCCATGTGGATAGGTTCTCACTAGAACAGTCTGGAAAATAGCACAAGTTATG
 AAGAACCCAAGAATTATTGACCAAGACCAAGATATTGGCCCCAGCCTACTTTATCCTGGGAGGCAACCAGTCTG
 15 GGGAAAGTTGTGATTACACGAGACAGAAAGGAATCATTGGATGTATATGAACACTCGATGCTAACGGTAGAT
 GGTATGTGGTACAAACAAATTATGACCCTGGAAACATCCCTTCTCCTGATGATGCGAACGCCGCAAGA
 TGTGCTGAACCGCACCAGCCAAGAGAATATCTCATTGAAACCATGTATGATGTCCTGCAACAAAACCTGTCC
 TCAACAAGCTGACCGTATACACAACCTTGATAGATGTTACCAAAGGTCAATTGAAACTTACCTGGGACTGCC
 CTGACCCATTGATAGGTGGTGAGCACACGCTCTGGCTACAGAACGCGGCTCTGAGACATGAAGAACCCATCTC
 20 CATGTGACCGAACACTGCAGCTGCTGACCTTCCAAAGACTAACAGACTCGCGGCAGGTTCTTTGAGTCATAGC
 TTGCTTCGTCCATCTGTTGACAAATGACAGATCTTCTTCCCCTATCAGTTGATTTCTTATTACAGA
 TAACCTCTTAGGGGAAGTAAAACAGTCATCTAGAATTCACTGAGTTGTTCACTTGCACATTGGGGATCTG
 GTGGGCAGTCGAACCATGGTGAACCTCCACCTCCGTGAAATAATGGAGATTCAAGCTGGGTTGAATCCAGCAC
 GTCTGTGAGTAACGGACAGTAAACACTCCACATTCTCAGTTTCACTTCTACCTACATATTGTATGTT
 25 TTCTGTATAACAGCCTTCTGGTTCTAACTGCTGTTAAAATTAATATCATTATCTTGCTGTTATTGA
 CAGCGATATAATTATTACATATGATTAGAGGGATGAGACAGAACATTACCTGTATATTCTTTAATGGGCAC
 AAAATGGCCCTTGCCTCTAAATAGCACTTTGGGTTCAAGAAGTAATCAGTATGCAAAGCAATCTTATAC
 AATAATTGAAGTGTCCCTTTCTAAATTACTCTACTTCCAGTAACCTTAAGGAAGTTGCTAACTTAAAC
 TGCACTCCACGTTCTGTTAATTAGTAAATAACAGTCAAAGACTTGTGAAAATAGGAAGTGAACCCATATT
 30 TAAATTCTCATAAGTAGCATTGTAATAAACAGGTTTAGTTGTTCTCAGATTGATAGGGAGTTAAAG
 AAATTTAGTAGTTACTAAAATTATGTTACTGTATTTCTAGAAATCCAACGCTTATGAAAAGTACTAATAGAA
 CTTGTTAACCTTCTAACCTCACGATTAACGTTGAAATGTACGTCATTGTCAGACCGTTGTCCACTTCAT
 TTTGTATAATCACAGTTGTGTTCTGACACTCAATAAACAGTCATTGGAAAAAAAAAAAAAAA
 AAA

35

SEQ ID NO: 18 Human ceramidase polypeptide sequence

protein_id:gi16741292

MPGRSCVALVLLAAAVSCAVAQHAPPWEDCRKSTYPPSGPTYRGAVPWYTINLDLPPYKRWHELMMDKAPMLKV
 IVNSLKNMINTFVPSGKVMQVVDEKLPGLGNFPGPFEEEMKGIAAVTDIPLGEIISFNIFYELFTICTSIVAED
 40 KKGLIHGGRNMDFGVFLGWNINNDTWVITEQLKPLTVNLDFQRNNKTVFKASSFAGYVGMLTGFKPGLFSLTNE

RFSINGGYLGILEWILGKKDAMWIGFLTRTVLENSTSYYEAKNLLTKTKILAPAYFILGGNQSGEGCVITRDRKE
SLDVYELDAKQGRWYVVQTNYDRWKHPFFLDDRRTPAKMCLNRTSQENISFETMYDVLSTKPVLNKLTVYTLID
VTKGQFETYLRDCPDPCIGW

5 **SEQ ID NO:19 Mouse ceramidase nucleic acid sequence**

accession:NM_019734

CDS:44..1228

GCTGCTGCTAGAGTCCTCGGAGCGGCCTGAGCTGGAAAGATGCGGGGCCAAAGTCTTCTCACCTGGTCCT
AGCCGCGGCAGTCACCTGCGCCAGGCACAGGATGTGCCGCCGTGGACAGAAGATTGCAGAAAATCAACGTATCC
10 TCCTTCTGGACCAACCTATAGAGGACCAGTCCGTGGCACACCATAAAATCTTGATTTACCAACCTACAAAAGATG
GCATGAATTATTGGCTAAAAGGCACCAGCGTTGAGGATTTAGTGAATTCCATAACGAGTTAGTGAATACATT
TGTGCCAAGTGGAAAACATAATGAAGATGGGGATCAAAGCTGCCTGGTATGATTGGCAGCCTCCCTGACCCCTT
TGGAGAGGAAATGAGGGGATTGCAGATGTTACTGGGATTCCCTAGGAGAGATTATTCATTCAACATTTCTA
TGAATTGTTACCATGTGTACATCAATCATAACTGAAGATGAAAAAGGTCAATTACTACATGGGAGAACATGGA
TTTGGAATATTTCTGGGTTGAATATAAATAAAACACTTGGGTTGTACAGAAGAATTAAAGCCCTAACAGT
15 GAATTGGACTTCCAAAAGAAACAATAAGACTGTTCAAGGCTACAAGTGGATATGTGGCATGTTGAC
AGGATTCAAACCAGGGCTGTTCAAGTCTTCACTAAATGAACGTTCAAGTATAATGGGGTTATCTGGGTATCCT
AGAATGGATGTTCGGAAGGAAAGATGCTCAGTGGTAGGGTTATCACTCGATCAGTCTGGAAAACACCACAAG
TTATGAAGAAGCCAAGAACACACTGACCAAGACCAAGATAATGGGCCAGTATATTTATCCTGGGAGGCAAGAA
GTCTGGAGAGGGTTGTGATCACACGGGAAAGAAAAGAGTCTTGGATGTCTATGAACCTGATCCTAACGATGG
20 CAGATGGTATGTGGTACAAACCAATTATGACAGGGGAAAAACACCTTGTATTGATGACCGCAGAACACCGGC
CAAGAAGTGTCTAAATCACACCAACACAGAAGAACACTCTCCTTGCTACCATCTATGATGTCCTATCAACAAAACC
TGTCCCTAACAGCTGACTGTATTCAACACCTGATGGATGTTACAAAGGTCAATTGAAAGTCACCTTCGAGA
TTGCCAGACCCCTGTATAGGCTGGTGAGCACACGTTGCCAGCCTCGAGGACGTACTGAGACCCGAAGATGTGT
TGTGCAGCGAGCGTGCCTGGTCTCCCTCATAGGCTAAGGCTCAAGGCCCTTGCTTTAGTCAGGACTGCCCTC
25 ATCATGTTACATTGTTACAGGCTGTTGTTGTTGTTCTGATGATCATCATCACTTCGACTCACAGGTA
AATTCTTAAGGGACACCACATAGAAATTGCCAGTTCACTTGCCACTACGGAAAGGGTAAGTGTGACCT
CCATGGAACCCATCAAAGTTCTGATGGTGGTGAAGTCAGCGCCCTGTGATTAATGAAAAGTTACATTTTC
TTTTTAATCTACATACTTATGTTTCTGTACACCAAGTAGTTCCCTGGTCTCTTGAACCAACC
TGCCATTCACCTTGCTGGTGGTACAGCAGTGCAATGTCGCTATGCTGGAGTACCTCAGATGGACATT
30 GATACATTAAATGGGCAATCAAATAGACCTCTGACTCTAGAAACAGTGGGAGGATTATAAAATAACTAT
TATACAAACACTATTTTAAAAAGAATAAGTGTCTCTTTCCCTAGTTATTCTGCCTGCCAGTAACCCAG
GAAGAGTCTAGCTTCAAAAACCTGAGTTCAAGAACCTTACCAACAAACTCATATTAAATTTTATGTATAAT
CAATGTAATGTTCTCTAATCATATTAGATTTCATACAATATAGTATTAATTTTCAGAAAT
CAATGTATTATGAAAACAGAACAGAACCTGTTCATCTTCAACCTTCACAGTTGACAGTGAAGCATTCTGT
35 ACAGTGTGGCAGACTGTATCCATTAGTTGGACAGTCTGCCGTGCGTATGCGCAATAACAGTCAGTCA
G

SEQ ID NO:20 Mouse ceramidase polypeptide sequence

accession:gi9790019

MRGQSLLTWVLAATCAQAQDVPPWTECRKSTYPPSGPTYRGPVPWHTINLDLPPYKRWHELLAOKAPALRIL
 VNSITSLVNTFVPSGKLMKMDQKLPGMIGSLPDPFGEEMRGIAADVTGIPPLGEIISFNIFYELFTMCTSIIITEDE
 5 KGHLLHGRNMDFGIFLGWNINNNNTWVVTEELKPLTVNLDQQRNNKTVFKATSFGYVGMLTGFKPGLFSLSLNER
 FSINGGYLGILEWMFGRKDAQWVGFITRSVLENSTSYYEAKNLTKTKitAPAYFILGGKKSGEVCITRERKES
 LDVYELDPKHGRWYVVQTNYDRWKNTLFIDDRRTPAKKCLNHTTQKNLSFATIYDVLSTKPVLNKLTVFETLMDV
 TKGQFESHLRDCPDPCIGW

10 SEQ ID NO:21 Rat cermidase nucleic acid sequence

accession:NM_053407

CDS:15..1199

TTGCAGCTGGGAAGATGCTGGGCCGTAGTCCTCACCTGGGTCCCTGGCCGGCTGTCACCTGGCCCCAGGCAC
 AGCAAGTGCCACCGTGGACAGAAAGATTGCAGAAAATCAACTTATCCTCCTCTGGACCAAACCTATAGAGGACCAG
 TTCCGTGGTACACCATAAAATCTGATTTACCAACCTACAAGAGAGATGGCATGAATTATTGGCTCACAGGCACCTG
 15 TGTTGAGAACCTTAGTGAATTCCATCTCGAATTAGTGAATGCATTGTGCCAAGTGGAAAAATAATGCAGATGG
 TGGATGAAAAGTTGCCTGGTCTGATTGGCAGCATTCTGGCCCTTTGGAGAGGAAATGAGGGGATTGCAGATG
 TTACTGGGATTCCCTCTAGGAGAGATTATTCATTCAACATTTCTATGAACTGTTCACCATGTGTACATCGATCA
 TAACTGAAGATGGAAAAGGTCAATTACTACATGGAAGAACATGGATTTGGAATATTCTGGTGGAACATTA
 ACAACAACACTGGGGGTGACAGAAGAATTAAAGCCTTAACAGTGAATTGGACTTCCAGAGGAACAATAAGA
 20 CTGTGTTCAAGGCTACAAGTTCGCTGGATACGTGGCATGTTGACAGGATTCAAACACCAGGACTGTTAAGTCTTA
 CACTGAATGAACGTTTCAGTTAAATGGTGGTTATCTGGGTATCCTAGAATGGATGTTGGAAAGAAAAATGCC
 AATGGGTAGGGTTATCACTAGATCAGTTCTGGAAAATAGCACAAGTTATGAAGAAGCCAAGAATATATTGACCA
 AGACCAAGATAACGGCCCCAGCATATTTATCCTGGGAGGCAACCAGTCTGGAGAAGGTTGTGATTACACGAG
 AAAGAAAAGGTCTTAGACGTCTATGAACCTGATCTAACAGTGGCAGATGGTACGTGGTACAAACCAATTATG
 25 ACCGGTGGAAAAACACCTGTTCTTGATGACCGCAGAACACCTGCGAAGAAGTGTCTAAATCACACGACACAGA
 AGAATCTGTCATTGCTACCACATGATGATGTTCTATCAACAAAACCTGTCCTCAACAAGCTGACTGTATTCAA
 CCTTGATAGATGGGACCAAGATCCATTGAAAGCCACCTCGAGATTGCCAGACCCCTGTAGGGCTGGTACAG
 CACACATCAGCCAGCATACAGGGCAGACATACTCAGACCTGAAGATGTGTTCCAGCATGCGTGGTCTCCTTCC
 ATAGG

30

SEQ ID NO:22 Rat ceramidase polypeptide sequence

accession:gi16758140

MLGRSLLTWVLAATCAQAQQVPPWTECRKSTYPPSGPTYRGPVPWYTINLDLPPYKRWHELLAHKAPVRLTL
 VNSISNLVNAFVPSKIMQMVDKLPGLIGSIPGPFGEMRGIAADVTGIPPLGEIISFNIFYELFTMCTSIIITEDG
 35 KGHLLHGRNMDFGIFLGWNINNNNTWVVTEELKPLTVNLDQQRNNKTVFKATSFGYVGMLTGFKPGLLSLTNER
 FSINGGYLGILEWMFGKKNAQWVGFITRSVLENSTSYYEAKNLTKTKitAPAYFILGGNQSGEGCVITRERKES
 LDVYELDPKHGRWYVVQTNYDRWKNTLFIDDRRTPAKKCLNHTTQKNLSFATIYDVLSTKPVLNKLTVFETLIDG
 TKDPFESHLRDCPDPCIGW

SEQ ID NO:23 Human MK-STYX nucleic acid sequence

HUM170193 accession:AF069762 coding sequence:340..1281

GCCACTTCCGGGAGTCGAAAGGAAAGCTGTGGGACCATCCTGGCAACCCCGTGTTGGCTGGGTCTAGCGTA
 CCGGTCTGTGGCCGGTGGGGACCTGCGTCGGAGTGGGAGGGCCAGTCTGCACCCAAGAGGTGGAAGAGGAC
 5 GGGCTTTAGGCTGGAACGCCCTAGAGGAGCCATTTCAGGTGGGGCCCCAGNAGAGGCTCCGACAGGAGCTGN
 GCCATAGTCGGCANGGGGAGGTGGAGCGCGTCCCAGACCCGANCCCCGACCTCAGCAAACCCATTCTCT
 GTCCCTGGAGGCCAGAGGGACTCTGAGCATCGAAAGGATGCCTGGTTGCTTATGTGAACCGACAGAGCTT
 TACAACATCCTGAATCAGGCCACAAAATCTCCAGATTAACAGACCCAACTATCTCTGTTATTGGATGTCCGT
 10 TCCAAATGGGAGTATGACGAAAGCCATGTGATCACTGCCCTCGAGTGAAGAAGAAAAATAATGAATATCTCTC
 CGGAGTCTGGACCTGGAGTGTGAAGTACTGCGTGGTGTATGATAACAAACAGCAGCACCTGGAGATACTC
 TTAAAAGATGATGATGATGATTCAAGACTCTGATGGTGTGGCAAAGATCTTGTGCCTCAAGCAGCATTGAGTAT
 GGCAGGATCCTGACCCGCCTCACCCACCACCCGTCTACATCCTGAAAGGGCTATGAGCGCTTCAGGCACG
 TACCACTTCCTCGGACCCAGAAGATCATCTGGATGCCTCAGGAACCTGGATGCATTCCAGGCATACCCATTGAA
 15 ATCGTGCCAGGGAGGTCTCGTGGCAATTCAAGTCAAGCCTGTGACCCCAAGATTAGAAGGACTTGAAAATC
 AAAGCCCATGTCAATGTCTCCATGGATACAGGGCCCTTTTGCAAGGCATGCTGACAAGCTTCTGCACATCCGG
 ATAGAAGATTCCCCGGAAGCCCAGATTCTCCCTTCTACGCCACATGTGTCACTTCATTGAAATTCAACATCAC
 CTTGGCTCTGTCATTCTGATCTTCCACCCAGGGTATCAGCCGAGTTGTGCGGCCATCATAGCCTACCTCATG
 CATAGTAACGAGCAGACCTTGCAGAGGTCTGGGCTATGTCAAGAAGTGCACAAACATGTGTCACATGGATCCGCTC
 GGATTGGTGAAGCAGCTGCTGGATGGAGAGACTATCCTGGAGATTCCATCACAAACATCATGGATCCGCTC
 20 TACTGATCTCTCCGAGGCCACCGAACGGTACTGAAGAGCCTCACCTGGGGCATTGTGGTGGAGGCCAG
 AGTGTGTATAACCAGGCTGTGGAGGAGAACGGCTTGCTGCCGAAAGTCTCAAAAAAAAAAAAAA

SEQ ID NO:24 Human MK-STYX polypeptide sequence

Protein sequence protein_id:gi4995956

25 MPGLLCEPTELYNILNQATKLSRLTDPNYLCLLDVRSKWEYDESHVITALRVKKKNNEYLLPESVDLECVKYCV
 VYDNNSSSTLEILLKDDDDSDSDGDGKDLVPQAAIEYGRILTRLTHPVYILKGGYERFSGTYHFLRTQKIWMP
 QELDAFQPYPPIEIVPGKVFVGNFSQACDPKIQKDLKIAHVNVSMDTGPFFAGDADKLHIRIEDSPEAQILPFL
 RHMCHFIEIHHHLGSVILIFSTQGISRSCAAITAYLMHSNEQTLQRSWAYVKKCKNNMCPNRGLVSQLEWEKTI
 LGDSITNIMDPLY

30

SEQ ID NO:25 Human MP1 nucleic acid sequence

HUM175396 accession:BC005025 coding sequence:5..3118

CGCAATGTGGCGCTGCGCGGGCGGGCGGCTGTGTGCTGAGGGCTGAGCAGTATAAACTAGGAGACAAGATCCATGGATT
 AGCGTGGCGATGGAACAGTAACCGGGCTGTGAGAGGGCTCTGAGTATAAACTAGGAGACAAGATCCATGGATT
 35 CACCGTAAACCAAGGTGACATCTGTTCCGAGCTGTTCTGACTGCAGTGAAGCTCACCCATGATGACACAGGAGC
 CAGGTATTTACACCTGGCCAGAGAACACGAATAATCTGTTCAGCGTGAGTTCCGTACCACTCCATGGACAG
 TACTGGTGTCTCACATTCTGAGCATACCGTCCTTGAGGCTCAGAAATATCCGTGCAGAGACCCCTTCTT
 CAAAATGTTGAACCGGTCCCTCTCCACGTTCATGAACGCCTCACAGCTAGTGAATTACTCTGTATCCATTTC
 CACACAAAATCCCAAGGACTTTCAGAATCTCCTCTCGGTGTATTGGATGCCACCTTTCCATGTTACCGCA

GCTGGATTCGGCAGGAAGGATGGCGGCTGGAACATGAGAATCCGAGCGACCCCCAGACGCCCTGGCTTTAA
AGGAGTCGTCTTAATGAGATGAAGGGAGCGTTACAGACAATGAGAGGATATTCTCCAGCACCTTCAGAACAG
ACTTCTTCCCACCACACGTACTCAGGGTCTCCGGGGTGACCCACTGTGCATCCGGAGCTTACATGGGAGCA
GCTTAAGCAGTTCATGCCACTCACTATCACCCAAAGCAATGCTAGGTTCTCACGTACGGTAATTTCCATTAGA
5 ACAGCATCTGAAACAAATTCACTGAGGAAGCAGTCACTGAGCAAATTCCAGAAAATTGAACCAAGCACCGTGGTGCCAGC
TCAGACACCCCTGGGACAAGCCTAGGGATTCCAGATAACATGTGCCCGATTCAATTGCTACAGATCCCTCTAA
ACAAACAACCGTCAGCCTAGCTTACCGACACATTGAGCCTTCACATTAGTCTTCT
10 GTCTTCACTCTTGACTTCTGGGCCAATTCTCCCTTACAAAGCCTTGATTGAATCTGGCTTGGCACAGACTT
TTCTCCTGATGTTGGATATAATGGCTACAGGAGGGAGGCCTACTTTAGTGTGGCCTCCAAGGGATTGTGGAGAA
AGACATTGAGACCGTCAGAACGCTCATAGACAGAACGATTGATGAAGTAGTTGAGAAAGGATTGAAGATGATCG
AATTGAGGCTTACTTCATAAAATTGAAATACAGATGAAACATCAGTCTACCAGCTTGGCTGATGCTGACATC
ATACATAGCTCTTGCTGGAACCATGATGGGACCCCTGTGGAGCTTGAAGTTGGAAATCAGTTAGCTAAATT
15 CAGACAGTGCCTGCAGGAAAATCCAAAATTGGCAAGAAAAAGTAAAACAGTATTTAAGAATAACCAGCATAA
GCTGACTTTATCGATGAGGCCAGATGACAAGTATCACGAGAACGAGGACAGGTGGAAGCCACGAAGCTCAAGCA
GAAGGTCGAGGCTCTGCCCCGGAGACAGGCAGCAGATCTACGAGAAAGGTCTAGAATTACGGAGTCACAAAG
CAAACCTCAAGATGCCTCTGTGCTGCCAGCGTTGAAAGTTCCGATATTGAACCCACCACCTGTACAGAGTT
GGACGTGGTCTGACAGCTGGAGATATCCCTGTTCACTGCAGCTTGGCCCTATGTGCCCTTCTGCAGCGTCTCACCAA
GCCCTCTCCAGCCTGAACACACTCCCCGAGGAGCTGAGGCCCTATGTGCCCTTCTGCAGCGTCTCACCAA
GCTGGCTGCGCCTTCTGACTACCGGGAGCAGGCTCAGCAGATAGAATTGAAGACCGGAGGGATGAGTGTTC
20 TCCCCACGTGCTCCCCGACGACTCACACATGGACACCTACGAGCAGGGTGTGCTTCTCCTCTGCCTGGA
TCGAAACCTGCCAGACATGATGCAGCTATGGAGTGAAATATTTAACAAACCGTGCTTGAGAACAGGAGCACTT
CAAGGTGCTGGTGAAGATGACCGCCCAAGGAGCTGCCAATGAAATTCCCTGACTCTGGCACCTGTACGCATCCAT
CAGGGCAGGCCGGACCCCTACGCCCGCAGGGGACCTGCAGGAGACCTTCAGCGGATGGATCAGGTGCGCTGAT
GAAGAGGATTGAGAAATGACAGATATCAAACCCATCCTGAGGAAGCTCCACGTATCAAGAAACACTTGTAAA
25 TGGTGATAATATGAGGTGTTCACTGAAATGGACTCCTCAGCAGATGCCCTCAGACAGAAAAGCGTCGAAGACTT
CCTTAGAACATCGGTCGGAGTAAAAGGAACGGAGGCCCTGTGCCACACACGGTCGAGAAACCTGTGCCAG
CAGCTCTGGTGGAGATGCCACGTTCCCATGGCTCCAGGTCACTAGGAAGCTGGTCATGGAACCCACCTCAA
GCCCTGGCAGATGAAGACTCACTCCTGATGCCCTCCGGTAATTACGTGGTGAATGCATCGAACTGTCCC
CTACACGGACCCAGATCATGCCAGTCTTAAACCTTGACGTTGATGACTGCCAAATTCTGCATACAGAAAT
30 TCGAGAAAAGCGGTGTTATGGTGGAGGCCAAAATCAGCCACAATGGATTTCACCCCTTACTCTACAG
GGACCCAAATACAATAGAGACGCTCCAGTCTTGGGAAGGCTGCGACTGGCTAAGTCTGGAAAATTACACA
GCAAGACATCGACGAAGCCAAACTTCTGCTTCTCAACCCTAGATGCTCTGCTCCTCAGACAAAGGAAT
GGACCACTCTGTACGGCTCTGGATGAGATGAAGCAGGCCACAGAGAGCAGCTCTTGCTGTCAGCCACGA
CAAGCTCCTGGCGTGAGCGATAGGTACCTCGGCACGGGAAGAGCACACACGGCCTGGCCATCCTCGGACCCGA
35 GAACCCGAAAATTGCCAAGGACCCATCCTGGATCATCGATGAGCAGCCGTGGCGCTCGACTGCACAGGAGCCG
AGACAATACACCTCCAGCTGAATATGAAAAGTCAGAAATGCTACTGCTTTCCAAGAAATTATGTCATTGAG
TGTGCAAGCCCTTGACTGGCGAGTCAGAAACTCAGATCTATCTTAAGAGTGACCAAGGAGGTTCAATTGAA
ATAATCATGCATGAAGCGCCAAAGATGCACCATGTTAGAATTTCACCTTGACTGGCAGGCTCGTTTACCTCAT
TCTAGAATATTAAGAATCTAAAAATAAGGGCAACTCTGACTTAACAAAAAAAAAAAAAA

SEQ ID NO:26 Human MP1 polypeptide sequence

Protein sequence protein_id:gi13477137

MWRCGGRRGLCVRRLSGGHAAHRAWRWNNSNRACERALQYKLGDKIHGFTVNQVTSVPFLTAVKLTHDDTGAR
 YLHLAREDTNNLFSVQFRTPMDSTGVPHILEHTVLCGSQKYPARDPFKMLNRSLSFMNAFTASDYTLYPFST
 5 QNPKDFQNLLSVYLDATFFPCLRELDWFQEGWRLEHENPSDPQTPLVFKGVVFNEMKGAFTDNERIFSQHLQNRL
 LPDHTYSVVSDDPLCIPELTWEQLKQFHATHYHPSNARFFTGNFPLEQHLKQIHEEALSKFQKIEPSTVVPAQ
 TPWDKPREFQITCGPDSFATDPSKQTTVSFSLLPDITDTFEAFTLSLLSSLLTSGPNSPFYKALIESGLGTDFS
 PDVGYNGYTREAYFSVGLQGIVEKDIETVRSЛИDRTIDEVVEKGfedDRIEALLHKIEIQMKHQSTSFGMLTSY
 IASCWNHDGDPVELLKLNQNLAKFRQCLQENPKFLQEKFVKQYFKNQHKLTLSPRPDDKYHEKQAQVEATKLKQK
 10 VEALSPGDRQQIYEKGLELRSQQSKPQDASCLPALKVSDIEPTIPVTELDVVLTAGDI PVQYCAOPTNGMVYFRA
 FSSLNTLPEELRPYVPLFCSVLTLCGCLLDYREQAQIELKTGGMSASPHVLPDDSHMDTYEQGVLFSSLCLDR
 NLPDMMQLWSEIFNNPCFEEEEHFKVLVKMTAQELANGIPDSGHLYASIRAGRTLTPAGDLQETSGMDQVRLMK
 RIAEMTDIKPILRKLPRIKKHLLNGDNMRCVNATPQQMPQTEKAVEDFLRSIGRSKKERRPVRPHTVEKPVPS
 15 SGGDAHVPHGSQVIRKLVMEPTFKPWQMKTFLMPFPNVYGEICIRTVPYTDPDHASLKILARLMTAKFLHTEIR
 EKGGAYGGGAKLSHNGIFTLYSYRDPNTIELQSFGKAVDWAKSGKFTQQDIDEAKLSVFSTIDAPVAPSDKGMD
 HFLYGLSDEMKAHQAHREQLFAVSHDKLLAVSDRYLGTGKSTHGLAILGPENPKIAKDPSWIIR

SEQ ID NO:27 Mouse MP1 nucleic acid sequence

accession:XM_127191

coding sequence:281..3103

GCGCTTCAGCGGTGGCGGGACTCTGCGCTGTACAGCGGCTGAGCTGCGGGTACACCACAGAGTATGGAGGGA
 20 GAAGAGTGACCAAGCCTGTGAACCGAGCTCTACAGTATAAAGTGGAGAGAAAATCCACGGGTTCACTGTAAACCA
 GGTCACTCCTGTCCCCGAGCTGTTCTGACAGCCGTGAAGCTCAGCCATGACAACACGGGAGCCAGATACTGCA
 CCTGGCAAGGGAAAGACAACAATTATTCACTGTGCAGTTCCGCACAACCCAATGGATAGCAGTGGCTCC
 ACATGTTCTCGAGCATACGGTCTGTGCGGCTCTCAGAAGTACCCGTGCAGAGATCCTTCTTCAAATGCTCAA
 25 CAGGTCACTGTCCACATTTATGAATGCCATGACAGCCAGCGATTACACGATATATCCGTTTCACTCAAATCC
 CAAAGATTTCAAGAACCTCCTCTCGTGATTGGATGCAACTTCTCCCTGCTTGAGGGAACTGGACTTCTG
 GCAGGAAGGATGGCGTCTGGAGCATGAGAATCCCCGAGACCCCTCAGACGCCCTGATCTTAAGGGGTCGTCTT
 CAACGAGATGAAAGGGCATTACAGACAATGAGAGGATATTCTCCCAGCACCTGCAGAACAGCTGCTTCTGA
 CCACACCTACTCCGTGTTCTGGAGGGACCCACTGTGCATCCGGAGCTCACGTGGAAACAGCTGAAACAGTT
 30 CCACGCTACTCATTATCACCCAAAGCAATGCCAGGTTCTTCACTTATGGCAATTTCAGCTGGAGGACACCTGAA
 ACAAATTCAAGAACGCCCTGAGTAAATTCCAGAGATTGGAGCAGAGTACAGCAGTGCCTGCCAGCCGCACTG
 GGATAAGCCTAGGGAATTCCATATAACATGTGGCCAGATTCACTAGCTACGGAGACTGCCAAGCAGACAACAGT
 CAGCGTTAGCTCCTCTACCGGATATCACTGACACATTGAGCCTTCACTTGAGCTGGACTCGGCACAGACTTCT
 GATTGCTGGACCAACTCCCCCTCTACAAAGCTTGATCGAGTCTGGACTCGGCACAGACTTCTCCTGATGT
 35 TGGATATAATGGCTATACACGGGAGGTTACTTCAGTGTGGCTCCAAGGGATCGCAGAGAAAGATGTCAAGAC
 GGTCAAGAGAGCTGTAGACAGGACAATCGAAGAAGTTATAGAGAAAGGATTGAAGATGATGGATTGAAGCTCT
 GCTTCATAAAATCGAAATTCAAACGAAGCATCAGTCAGCCAGCTTGGCCTGACCCCTGACGTCAATATAGCTTC
 TTGCTGGAAACCATGATGGGACCCGTGGAGCTCCTGCAGATTGGAGTCAGCTGACTAGATTAGGAAGTGCCT
 TAAGGAAAATCCAAAATTTTACAAGAAAAGTAGAACAAATATTAAAGAACAAATCAGCACAAGCTGACTTTATC
 40 CATGAAGCCAGACGACAAGTATTATGAAAGCAAACCTCAGATGGAGACAGAAAAGCTGGAGCAAAGGTGAATT

TCTCTCCCCGGCGGACAAGCAGCAGATCTACGAGAAAGGTTAGAACTACAGACGCAGCAAAGTAAACATCAAGA
 CGCCTCTGCCTCCCAGCATTGAAAGTCTCGGACATTGAGCCCTCATGCCCTTCACCAAGCTTGACATCGGCCT
 TGCAGCTGGAGACATCCCTGTGCAGTACTGCCAACAGCCCACCAACGGCATGGTGTATTCCGAGCCTTCCAG
 TTTAAACACGCTGCCGGAGGACCTGAGGCCATTGTGCCTCTTTGCAGCGTGTGACCAAGCTGGGTTGTGG
 5 CATCCTTAACATACAGAGAGCAAGCCAACAGATTGAGCTCAAGACAGGAGGCATGAGTGTACGCCCATGTGCT
 CCCTGACGACTCACAGCTGGATACCTACGAGCAGGGTGTGTTATTTCATCTCTGCCTGGAGCGAACCTGCC
 AGACATGATGCATCTGTGGAGCGAAATATTAACAATCCATGCTTGAAGAAGAAGAACACTTCAAAGTGTGGT
 GAAGATGACCGCTCAGGAGCTCCAATGGAATTCAGACTCGGGGCATCTATGCAGCCCTCAGAGCAAGCAA
 GACACTGACACCTTCAGGGACTTGCAGGAGACCTTCAGTGGATGGATCAGGTGAAGGTGATGAAAAGAATTGC
 10 AGAGATGACAGACATCAAGCCATCCTGAGAAAATGCCCGATCAAGAAAGTATCTACTAAACTGTGACAACAT
 GAGATGCTCAGTGAATGCCACCCCTCAGCAGATGCCCTCAGGCAGAAAAAGAGGTGGAAAATTCCTTAGAAATGT
 TGGCGAAGCAAAAGGAACGGAAGCCTGTCGCCGCGATATTGTCAGAAACCCACACCCAGTGGCCCCAGTGG
 AGCTGCACATGTCAGTGGTCCCAGATGTCAGAAAATTGGTGACAGACCCACCTTCAAACCCCTGCCAGATGAA
 GACACATTTGTGCTGCCCTCCCTGTGAATTACATTGGCAGTGTGTCAGGACTGTCCGTATGCTGATCCAGA
 15 CCATGCCAGCCTTAAGATCCTGCCGTCTAATGACAGCTAAATTCTGCATACGAAATTGAGAGAAGGGGG
 TGCTTATGGTGGCGGTGCTAAACTCACCCACAGTGGGATTTCAAGCCTTACTCTTACAGGGATCCCAATTCCAT
 AGAAACACTCCAGTCTTGGGAAAGCTGTAGACTGGGCTAACTCTGGAAAGTTCACACAGCAGGACATTGATGA
 AGCCAAGCTGTCTGTTCTACTGTGGATTCTCCTGTGCTCCATCCGATAAAGGAATGGACCACCTCTTGTGA
 TGGCCTCTCCGATGAGATGAAGCAGGCATACCGAGAACAGCTTTGCTGTCAACCACGACAAACTGACCTCTGT
 20 GAGCCATAAATACCTGGCATGGGAAGAGCACACACGGCCTGGCTATCCTCGGACCAGAGAACTCAAAATTGC
 CAAAGACCCATCATGGATCATAAAATAATGAGTGCCACATATCTTGAGTATGTGAAGAAACCAGAGGCTCTTA
 ACAGCTGAGCCTCTGAGCTAAATTAAATGCGGATGATCACAAGAGTTACTAGTTCTTGTGAAAATCAGTT
 AGCCATATAAAACCAACCAAGGTTTATTGACTGGAAAAACTCTGAAGGAATTCTGAGACCATGAAGAAA
 TCATTAATCATGCATTAATGACAGCAGTGAGCAAATTAGCCTCTGAAACATTACTAAGCCTAGAATATGTATT
 25 TTAAATATAAAAGCCAACCTCAACCTGTCTGAGTTACTCATTATTTCAAACAAATAATTACGACAATAATGT
 TTAGACCTTCACTTAAGAAAATGGCTAAATCAAATCAAATCTAAATCAAAAAAATAAAAAAAATAAAATG
 CTAATC

SEQ ID NO:28 Mouse MP1 polypeptide sequence

30 MDSTGVPHVLEHTVLCGSQKYPGRDPFFKMLNRSLSTFMNAMTASDYTIYPFSTQNPKDFQNLLSVYLDATFFPC
 LRELDFWQEGRLEHENPRDPQTPLIFKGVVNFNEMKGAFDTNERIFSQHLQNKLDPDHTYSVVSDDPLCIPELT
 WEQLKQFHATHYHPSNARFFTYGNFQLEGHLKQIHEEALSKFQRLEQSTAVPAQPHWDKPREFHITCGPDLSATE
 TAKQTTVSFSLLPDITDTFEAFTLSLLSSLLIAGPNSPFYKALIESGLGTDfspDVGYNGYTREAYFSVGLQGI
 AEKDVKTVRRELVDRTIEEVIEKGfedDRIEALLHKIEIQTKHQSASFGLTLTSYIASCWHDGPVELLQIGSQL
 35 TRFRKCLKENPKFLQEKEQYFKNNQHKLTLSPMKPDDKYYEKQTMETEKLEQKVNSLSPADKQQIYEKGLELOT
 QOSKHQDASCLPALKVSDIEPSMPFTKLIDIGLAAGDIPVQYCPQPTNGMVYFRAFSSLNTLPEDLRPIVPLFC
 LT KLGCGILNYREQAQOIELK TGGMSVTPHVL PDDSQLDTYEQGVLFSSLCLERNLPDMMH LWSEIFNNPCFEEE
 EHF KVLVKM T A Q E L S N G I S D S G H L Y A A L R A S K T L P S G D L Q E T F S G M D Q V K V M K R I A E M T D I K P I L R K L P R I K K Y
 LLNCDNMRCSVNATPQQMPQAEEVENFLRNVGRSKKERKPVRPHIVEKPTPSGPSAAHVSGSQIVRKLVTDPT
 40 FKPCQMKT HFVLPFPVNYIGECVRTV PYADPDHASL K I L A R L M T A K F L H T E I R E K G G A Y G G G A K L T H S G I F T L Y S

YRDPNSIETLQSFGKAVDWAKSGKFTQODIDEAKLSVFSTVDSPVAPSDKGMDHFLYGLSDEMKGAYREQLFAVN
HDKLTSVSHKYLGIKSTHGLAILGPENSKIAKDPSWIK

SEQ ID NO:29 Human BPTF nucleotide sequence

5 HUM176759 accession:AB032251 CDS:472..8817
AGCCGCCACTGCGTCGGCCCTCCCCGTCAAGCTTCCCTCTCCGCCGCTGGGCTCCAACAAGAGGGCCGGC
GGGGCAGGCCAACAAAGCAGCCCGGGCTCCCGCTGGGAGCGCTGCGCCCCGGCCGCCGCCGCC
CGTCCGGACCCATCGGGGCTCCCTGCCGATACGCGGTAGTAGCCGGGCAGGTGGCAGCCGCCAGGCTGAG
GTGGCGCCCAAGACGCGGCTGAGCTGCCAAGGGTGGCAGCAGTAGCCGGAGGAAGCCGCCGCCGCC
10 GCCCCCCCCCAGCACAGCGCCCCGGCCGGGGGGCGAGGAGGGCGGGCGCACGACGGGGCGGGGGCG
GGCGGCCACCTGTCCCCGACCACCGCGCCCGAGGGCCGTCAACAAAGTGGTGTACGATGACCACGAGAGCGAG
GCGGTGGAGGAAGAGGAGGACATGGTCTCGAGGAGGAGGAGGAGGACGGCGACGCCAGGAGACCCAGGAT
TCTGAGGACGAGGAGGATGAGATGAAAGAGGACGACGATGACTCCGATTATCCGGAGGAGATGGAAGACGAC
GACGACGACGCCAGTTACTGCACGGAAAGCAGCTCAGGAGCCATAGTACCTACAGCAGCACTCAGGTAGCGA
15 AAACCAAGAGTACATCGGCCTCGTTCTCCTATATTGGAAGAAAAGACATCCGCCCTTGAATTCCCAAGTCC
TCTGAGGATTAAATGGTGCTTAATGAGCATATAATGAATGTCATTGCCATTACGAGGTACTGCGGAACCTTGGC
ACTGTTTGAGATTATCCTTTGCTTGAGGACTTTGTGCAGCTCTGGTGAGCCAAGAGCAGTGCACACTC
ATGGCAGAGATGCATGTTGTGCTTGAAAGCAGTTCTCGTGAAGAAGACACTTCAAATACTACCTTGGACCT
GCTGATCTGAAAGATAACGTTAACCTCACACTGTATTTCATAGATGGGATGACGTGGCCAGAGGTGCTGCGGGT
20 TACTGTGAGAGTGATAAGGAGTACCATCACGTTCTCCTTACCAAGAGGAGGACTACCCATATGGACCAGTA
GAGAACAAAGATCAAAGTTCTACAGTTCTAGTCGATCAGTTCTACAACAAATATTGCTCGAGAGGAATTGATG
TCTGAAGGGGTGATACTGATGACCATTGAGGTTGTCAACAAACTGGGATTGCTTGCTGTGAGACA
TGTTCAAGCAGTATACCAATTGGAATGTGTGAAGCCACCTCTGAGGAGGTGCCAGAGGACGAGTGGCAGTGTGAA
GTCTGTGTAGCACACAAGGTGCCGGTGTGACTGACTGTGTTGCTGAAATCCAAAAAAATAACCATATATCGA
25 CATGAACCTATTGGATATGATAGAAGTCGGAGGAATACTGGTTCTGAACCGAAGACTCATAATAGAAGAAGAT
ACAGAAAATGAAAAGAAAATTGGTATTACAGCACAAAGGTCCAACCTGCAGAATTAAATTGACTGTCTA
GACAAAGATTATTGGGAAGCAGAACTCTGCAAAATTCTAGAAGAAATGCGTAAGAAATCCACCGACACATGGAC
ATAACTGAAGACCTGACCAATAAGGCTGGGGCAGTAACAAATCCTTCTGGCGGCAGCTAATGAAGAAATTGG
GAGTCCATAAGAGCCAAAAGGGAGACATTGATAATGTTAAAGCCCAGAAGAACAGAAAAGACAAGAATGAG
30 ACTGAGAATGACTCTAAAGATGCTGAGAAAAACAGAGAAGAAGAATTGAAGACCAGTCCTTGAAGAAAGACAGTGC
GACAAAACACCAAGATGATGACCTGAGCAAGGAAAATCTGAGGTAGGTGATTCAAATCGGAGAAGTCCAACGGG
GAGCTAAGTGAATCTCCTGGAGCTGGAAAAGGAGCATCTGGCTCAACTCGAATCATCACCAGATTGCGGAATCCA
GATAGCAAACCTAGTCAGCTGAAGAGCCAGCAGGTGGCAGCCGCTGCACATGAAGCAAATAATTATTAAAGGAG
GGCAAAGAGGTACTGGTAGTTAACTCTCAAGGAGAAATTCAACGGTTGAGCACCAGGAAAGTGTGATGAA
35 GGAAATATCAACAATTATTAAATTGGGTCAGAAGGGAGTATCGCGTCTACCACAATCAATACTCCACCAAT
TCATTTGCTTGAATAAGCACCAGCACAGAGAAGACCATGATAAGAGAAGGCATCTGCACATAAGTCTGTCTG
ACTCCAGCAGGAGAGTTCAAATGGAACGGTTCTGTCATGGTCCAAAGTTCTTACCATATCTACTCTGAGACTG
ACTATCACCCAATTAGAAAACAACATCCCTCATCCTTCTCATCCCAACTGGGCATCACATAGGGCAAATTGG
ATCAAGGCAGTTCAGATGTGTAGCAAACCCAGAGAATTGCAATTGGCTTAGCCATTGGAGTGTGCAGTTAAA
40 CCAGTTGTGATGCTACCAATATGGCGAGAATTAGGACATACCAGGTTACACCGGATGACATCAATTGAAAGA

GAAGAAAAGGAGAAAGTCAAAAAAAAAGAGAAGAACAGGAAGAAGAAAGAACGATGCAGCAAGCGACATGGGTA
AAATACACATTCCAGTTAACATCAGGTTGGAAACAAAAAGGTGAAGAGTACAGAGTGACAGGATATGGTGGT
TGGAGCTGGATTAGTAAAACATGTTATAGGTTGTTCTAAATTGCCAGGCAACTAAATGTGAATTACAGA
AAGTCGTTAGAAGGAACCAAAAATAATATGGATGAAATATGGATGAGTCAGATAAAAGAAAATGTTCACGAAGT
5 CCAAAAAAAATAAAATAGAGCCTGATTCTGAAAAAGATGAGGTAAAAGGTTCAGATGCTGCAAAGGAGCAGAC
CAAAATGAAATGGATATCTCAAAGATTACTGAGAAGAAGGACCAAGATGTGAAGGAGCTTAGATTCTGACAGT
GATAAACCTGCAAGGAAGAACCAATGGAAGTAGACGATGACATGAAAACAGAGTCACATGTAATTGTCAGGAG
AGTTCTCAAGTAGATGTTGTCAGTTAGTGAGGGTTTCTAAGGACTAGTTACAAAAAGAAAACAAAATCA
10 TCCAAACTAGATGGACTTCTGAAAGGAGAATTAAACAGTTACACTGGAAGAAAACAGCGACTCGAAAAAATC
AAGTTGGAGGGTGGAAATTAAAGGGTATAGGAAAGACTTCTACAAATTCTCAAAAATCTCTGAATCACCAGTA
ATAACGAAAGCAAAAGAAGGGTGTCAAGGTGACTCGATGAGACAAGAACAGGCCAATGCAAATAATGATCAA
CCTGAGGACTTGATTCAAGGGATGTCAGAAAGTCTCAGTTAGAATGAGTGATCCTAGTCATACCA
AACAAACTTATCCAAAAGATCGAGTGTAGATGATGTCAGGATAGCAGTGAAGAAGATATGATT
AATTCCATTGAAAATGACATAGAAGAAAAGTCTCTGACCTGCCAGTAGAGGCCAGGAACCCACTAAGAGTAAA
15 ACCAAAGGAAATGATTTTCATCGATGACTCTAAACTAGCCAGTGAGATGATATTGGTACTTGTATCTGTAAG
AACAAAAACCGCTCATACAGGAGGAAAGTGACACCATTGTTCTTCTCCAAGAGTGCTTACATTCTCAGTG
CCTAAAGTACCAATGACAGAGATGCCACACCTCTGCAAGAGCAATGGACTTGAAGGAAAATGGATGTGAC
TCTGAATCTAATAGCACTTGGAAAATAGTCTGATACCCTGCTATTCAAGGATAGCAGTGAAGAAGATATGATT
GTTCAGAATAGCAATGAAAGCATTCTGAACAGTTCAAGACACTCGAGAACAAAGATGTTGAAGTCTGGAGCCGTTA
20 AAGTGTGAGTTGGTTCTGGTGGACTCCACTGGAAACTGTGAGGACAGGCTGCCGGTCAAGGGACTGAAGCAAAT
GGTAAAAACCAAGTCAGCAGAAGAAATTAGAGGAGAGACCAGTTAATAATGTAGTGATCAAATAAGCTAAA
AATACCACTGACAAAAAGAATAATGAAAATCGAGAGTCTGAAAAGAAAGGACAGAGAACAAAGTACATTCAAATA
AATGGAAAAGATAATAACCCAAAATATATTGAAAGGTGAATGCTGAAAGAAATTCTGAGAGTAGAGTAGTA
AGTGGTAATGTTGAACCAAGGTTAATAATATAAATAATCCCTGAGAACATGATATTAAATCATTGACTGTT
25 AAAAGAATCTGCTATAAGGCCATTCTTAATGGTGTATGTCATCATGGAAGATTAAATGAAAGAAACAGCTCCGAA
ACAAAATCGCATTGCTGAGTTCTCAGATGCTGAAGGTAACCTACCGAGATAGCCTTGAGACCCCTGCCATCAACC
AAAGAGTCTGACAGTACACAGACGACCACACCTCAGCATCTGCTCCAGAAAGCAATTCAAGTTAACAGGTAGAA
GATATGGAAATAGAAACCTCAGAAGTTAAGAAAGTTACTTCATCACCTTACTCTGAAGAGGAATCTAACCTC
AGTAATGACTTATTGATGAAATGGCTGCCATCAACAAAATGAAAATGCAATGGAGAACATCTAAAAGAAAA
30 ACCGTCATCACAGAAGTCACCACGATGACCTCCACAGTGGCCACAGAACAAACTGTTGATCAAGGTAGAAAAA
GGCGATAAGCAAACGTGGTTCTTCCACAGAAAATTGTGCAAAATCCACTGTCAACACCACACTAACAGTG
ACCAAGCTTCCACACCCCTCCACAGGCCAGTGTGGACATCATCTGTAAGGAGCAGAGCAAAACGTCGGTC
ACCAAGCAGTGCAGACTCCCTGACCACCGGAGGCACACTGGTTACATCTATGACTGTGAGCAAAGAGTAT
TCCACACGAGACAAAGTGAACATGATGAAATTTCAGAACAAAGAACACTCGTTAGGTCAGGCTCTGCCATCC
35 TATAGAAAATTGTTACCAAGAGCACCAAGAACAGAGCATTGTTGCCATGATGACTTAAAGTTGGCC
CGAAAAGGAGGAATCCGAGAGGTCCCTTATTAAATTACAATGCAAAACCTGCTTGGATATGCCATATCCT
TCTCCTAGACCGACCTTGGCATCACTGGAGGTATAGACTTCAGACAGTAAAGTCCTAGCTGGAGTGACCTG
ATGTTACGGTTACTGTGGCAAGTTGAGATGGATGATATGGCGGCCAGGTTCTCCAGGAGGAGGGAGTACA
CGGACAGAAACATCCGAAACTGAAATCACAAACAGAAATAATTAGAGGAGAGATGTTGGCTTATGGCATT
40 CGATTGAAATTGATCAGGAAAATCATTGTCCCATTGGAGTTCCAGAAACACCAAAAGAACGCCTACACCT
CAGAGGAAAGGCCTCGATCAAGTGCAGTCGGCCAAAGAGACCAAGAACGCCTACACCT

ATTGAAACCTGGTAGCAGAAGAACCTGGATTGTGGGAGATCAGGGCATTGCTGAGAGAGTGGAGAAAGAA
AAGGCACAAGCAGTTGAGCAACAGGCTAACGAAACGACTGGAGCAGCAGAACGCCACAGTGATTGCAACTTCCACT
ACTTCCCCAACAAAGCAGTACAACCAGCACCATCTCTCAGCACAGAAAGTTATGGTGGCCCCATAAGTGGCTCA
5 GTTACAACCTGAAACCAAATGGTACTAACCTAACAGTAAAGTTGGATCTCCAGCTACAGTAACATTCAACAAAACAAG
AACTTCATCAAACCTTGCTACATGGGTTAACGAAGGCCAGTCAGAACATTCAAGCGTTGTTCAAGTACAGCAGAAA
GTCCTGGGTATCATTCCATCAAGTACAGGTACCAGTCAGAACCTTACTTCATTCCAGCCCAGGACAGCAACA
GTCACAATTAGGCCAACACCTCAGGCTCTGGAGGAACCACAAGAACATTACAAGTAATCACAGGGCCTCAGATT
GCCCTGGTATGACCGTGATTAGAACACCACCTAACAGTCAACACTAGGAAAGGCAATTATTGAAACACCTGTG
10 ATGGTACAGCCAGGTGCTCCTCAGCAAGTGATGACTCAAATCATCAGGGGGCAGCCTGCTCCACTGCAGTCTCC
GCCCTAACACGGTTCCCTAACACCTGGCAGAAAAGCTTAACCTCAGCAACGTCCACTCAAATATAAGTCT
TCAGCCTCACAAACCCCTCGCCCCAACAAAGGACAAGTGAAGCAGTCAACACTGGACAGTTGAGTTGATA
GGCCACGGTGGCAATCAAGGTTGACAGTAGTAATTCAAGGACAAGGTCAAACACTGGACAGTTGAGTTGATA
CCTCAAGGGGTGACTGTACTCCCAGGCCAGCAGCTAACAGCTGCAAGCTGCAATGCCAAATGGTACTGTTGAG
CGATTCCCTTTACCCCATTGGCAACAAACGCCAACAGCCAGGCCAGCACCACCAACTGTTCCACGACAGCA
15 GCAGGTACAGGTGAACAAAGGCAGAGTAAACTGTCACCCAGATGCAGGTACATCAAGACAAAACCTGCCACCA
GCTCAGTCATCAAGTGTGGGTCAGCAAAGCCCAGCCACAGACTGCTCAGCCTCAGCTCGGCCCCAGCCCCAA
ACCCAGCCCCAGTCCCCAGCTCAGCCTGAAGTTGACTCAGCCTGAAGTTGACTCAGACCCAAACACTGTTCATCC
CATGTCCTCTGAAGCACAACCCACCCACGCACAGTCATCCAAGCCCCAAGTTGAGCACAGTCTCAGCCTCAA
AGTAATGTCCAAGGACAGTCTCTGTTGTCACAGACTCGAACATACGTCCATCAACTCCATCC
20 CAACTGTCTCCTGGACAACAATCCCAGGTTAGACTACAACCTCACACCGATTCAAATTCAACACATACATCT
CTTCAGATACTTCCCAGGCCAGCCACAGTCACAACCCAGGTACAGTCTCAACTCAAACCTTTCATCAGGA
CAAACTTAAATCAAGTTAGTGTTCATCCCCATCCGCTCAGCTACAAATACAGCAGGCCACAGCCCCAAGTC
ATTGCTGTGCCTCAGCTGCAACAAAGTCAGGTTCTCTCAGATCCAGTCACAGGTTGTTGAGATAACAG
GCTCAGCAAAGGGTGTGCCCCAGCAAATCAAACCTCAGTTACCTATCCAAATTCAAGCAAAGCAGTGCTGTCAG
25 ACTCACCAGATTCTAGAATGTGGTTACAGTGCAAGGCAGCCAGTGCAAGAGCAGTTGCAAAGGGTTAGCAACTC
AGGGATCAGCAGCAAAGAACAGCAACAGATAGAAATTAAAGCGTAACACACCCCTCAAGCTTCTAAATCAA
AGTGAATCATTAGAAACAGGTGGTGTGAAGCATAATGCTGTAATAGAACATTAAAACAGAAAAAGAGCATG
ACTCCAGCTGAAAGAGAAGAGAATCAAAGAATGATTGTCTGTAACCAGGTGATGAAGTATATTGAGATAAGATA
GATAAGAAGAAAAACAGGCAGCAAAAAACGGAAGCGTGAAAGAGAGTGTGGAGCAGAAACGTAGCAAGCAGAAT
30 GCCACTAAGCTGTCAGCTCTGCTCTAACGACACAAAGAGCAGCTCAGAGCCAGATCCTGAAGAACAGAGCACTC
CTGGACAAGGATCTGCAAATTGAAGTGCAAGGAAGAGAGCTGAAGAGAGACCTGAAAATTAAAGAAAGAAAAAGACCTG
ATGCAGTTGGCTCAGGCCACAGCAGTAGCTGCACCCCTGCCAGTGACACACCAGTTCTCCAGCCCCCTCCAGCC
CCTCCACCTTCACCTCCCCCTCACCTGGTGTGCAACACACAGGCCTCTGTCCACGCCACCTTACCTGTTGCT
TCCCAGAAGAGGAAGCGGGAAAGAGGAAAAAGACTCCAGCTCAAAGTCCAAGAAAAAGAAAATGATCTACTACC
35 TCAAAGGAAACTAAGAAGGACACAAAGCTTACTGTATCTGAAAAGCCTTATGATGAATCTAAATTATATT
GGCTGTGATCGGTGTCAGAATTGGTACCATGGCGCTGCGTTGGCATCTTGCAAAGTGAGGCAGAGCTCATTGAT
GAGTATGTCTGTCACAGTGCAGTCACAGAGGATGCCATGACAGTGCTCACGCCACTAACAGAGAAGGATTAT
GAGGGGTTGAAGAGGGTGCTCCGTTACAGGCCATAAGATGGCCTGGCCTTCTGAAACCTGAGGCTTACAGCAGCCT
AATGATGCACCAAGATTATTATGGTGTATTAGAACCTATGGACCTTGCCACCATGGAAGAAAGAGTACAAAGA
40 CGATATTATGAAAAGCTGACGGAATTGTGGCAGATATGACCAAAATTGATAACTGTCGTTACTACAATCCA
AGTGACTCCCCATTACCAAGTGTGAGAACAGTTCTGCAATCATTGTCAGAAATTGAAAGGCTTCAAAGCT

AGCAGGTCTATAACAACAAACTGCAGTCTACAGCTCTTAAAGTTAGCGTGTAAACCTAACATAAAACACAGC
 AAGAATCTGGTTGTCGAACATTAAAGGAGCCAGATGTTTAGTCAGGCTATCCTGACAAGACTTGA
 CCTAAACTTCGTTTATTGGTCATAACAGCCAATTATATTCTGGCAATTGGCCAACGGACAAGAAAAAA
 GCAAAGTCAACGACACCATTATCTGTCAAGATCAGATGGTTACTATTGTGGCAGAAGCGAGAAAACTTGTT
 5 TATTGAAAAAAAAGAAAAGCAAGAAAAAGATACTATGGGGTCAAGTGTAACTCCATGGAAATGCCAC
 GTCTGCTCTCAGTGAAGAAGCTGGTTAGAGTCTCACAGAAAACCTTGACTGTATTATTGTTGCAAAA
 AAGACGCTTTTATTGCTGCCCTCATTTGTCAGCTAAGTATTCTTATAAAATCCAGCCCCGGTTACATAT
 AATCATCTGTATCTTATCATGATTCTGTAGGTAAAAGTACAAGACGACCTCTAGATGTCTTCTTCTATGAA
 10 AGGAGCTGCTATGTACACATGTGACACACACACAACACTGGGAATCAACAATGAGTTATTGTTCATGGTAGATTA
 AAATTAAGCTGCATAAAGGTTGGGCTAAGTGGCCTGGGCTACAGACTCTGTTGCCTTGAATATAACAGTACA
 ATTTGTCAATTACTCTGCACCAGGCTAAAGTGAGTAAATCTATTGAAGGTATCTGTTGTAAACATTTGTCA
 GATTCTAATTTTTCTTTGTATTAAAATTCAACTATGGATGTATATGAAACAAAATAATGGAGATAATTTT
 CTCCCACAAAAAAAAAAAAAA

15 SEQ ID NO:30 Human BPTF polypeptide sequence

protein_id:gi6683492

MVSEEEEEEEDGDAEETQDSEDDEEDEMEEDDDSDYPEEMEDDDDSASYCTESSFRSHSTYSSTPGRRKPRVHRP
 RSPILEEKDIIPPLEFPKSSEDLMPNEHIMNVIAIYEVLRNFGTVLRLSPFRFEDFCAALVSQEQLTLMAEMHVV
 LLKAVLREEDTSNTTFGPADLKDSVNSTLYFIDGMTWPEVLRVYCESDKKEYHHVLPYQEAEDYPYGPVENKIKV
 20 QFLVDQFLTTNIAREELMSEGVIQYDDHCRCVCHKLGDLLCETCSAVYHLECVKPPLPEVPEDEWQCEVCVAHKV
 PGVTDCVAEIQKNKPYIRHEPIGYDRSRRKYWFLNRRLIIEEDTENENEKKIWYYSTKVQLAELIDCLDKDYWEA
 ELCKILEEMREEIHRHMDITEDLTNKARGSNKSFLAAANEEILESIRAKKDIDNVKSPEETEKDKNETENDSKD
 AEKNREEFEDQSLEKDSDDKTPDDDPEQGKSEVGDFKSEKSNGELESPPGAGKGASGSTRIITRLRNPDSKSQL
 KSQQQVAAAHEANKLFKEGKEVLLVNSQGEISRLSTKKEVIMKGNINNYFKLGQEGKYRVYHNQYSTNSFALNKH
 25 QHREDHDKRRLAHKFCLTPAGEFKWNGSVHGSKVLTISSLRLTITQLENNIPSSFLHPNWASHRANWIKAQMC
 SKPREFALALAILECAVKPVVMLPIWREFLGHTRLHRMTSIEREEKEVKKKKEKKQEEEETMQQATWVKYTFPVK
 HQVWKQKGEYRVTVGGWSWISKTHVYRFVPKLPGNTNVNRSLEGTKNNMDENMDESDKRKCSRSPKKIKIE
 PDSEKDEVKGSDAAKGADQNEMDISKITEKKDQDVKELLSDSDKPCKEEPMEVDDDMKTESHVNCQESSQVDVV
 NVSEGFHLRTSYKKKTSSKLDGLLERRIKQFTLEEKQRLEKIKLEGGIKGIGKTSTNSSKNLSESPVITKAKEG
 30 CQSDSMRQEESPNAANDQPEDLIQGCSQSDSSVLRMSDPSHTTNKLYPKDRVLDDVSIRSPETKCPKQNSIENDI
 EEKVSDLASRGQEPTKS GTKNDFFIDDSKLASADDIGTLICKNKKPLIQEESDTIVSSSKSALHSSVPKSTNDR
 DATPLSRAMDFEGKLGCDSESNSTLENSSDTVSIQDSSEEDMIVQNSNESISEQFRTREQDVEVLEPLKCELVSG
 ESTGNCEDRLPVKGTEANGKKPSQQKKLEERPVNKCSDQIKLKNTTDKNNENRESEKKQRTSTFQINGKDNKP
 KIYLKGECLKEISESRVVGNSGNVEPKVNNINKIIPENDIKSLTVKESAIRPFINGDVIMEDFNERNSSETKSHLLS
 35 SSDAEGNYRDSLTLPTKESDSTQTTPSASCPESSNVNQVEDMEIETSEVKKVTSSPITSEEEESNLNSNDFIDE
 NGLPINKNENVNGESKRKTVITEVTTMTSTVATESKTVIKVEKGDKQTVVSSTENCASKTWTNTTPTKLSPTS
 TGGSVDIISVKEQSKEVTTVTDSLTTGGTLVTSMTSKEYSTRDKVKLMKFSRPKKTRSGTALPSYRKFVTK
 STKKSIFVLPNDDLKKLARKGGIREVPYFNYNAKPALDIWPYPPSPRPTFGITWRYRIQTVKSLAGVSLMLRLLWA
 SLRWDDMAAKVPPGGGSTRTELSETETTEITTEIIKRRDVGPYGIRFEYCIRKIIICPIGVPETPKETPTPQRKGLRS
 40 SALRPKRPETPKQTGPVIIETWVAEEELWEIRAFERVEKEKAQAVEQQAKRLEQQKPTVIATSTTSPTSST

TSTISPAQKVMVAPISGSVTTGKMLTTKGSPATVTFFQQNKNFHQTFATWVKQGOSNSGVVQVQQKVLGIIIPS
 STGTSQQTFTSFQPRTATVTIRPNNTSGGGTTSNSQVITGPQIRPGMTVIRTPLOQSTLGAIIIRTPVMQPGAP
 QQVMTQIIRGQPVSTAVSAPNTVSSTPGQKSLSATSTSNIQSSASQPPRPQQGQVKLTMAQLTQLTQGHGNQG
 5 LTVVVIQGQGQTTGQLQIIPQGVTVLPGPQQLMQAAMPNGTVQRFLFTPPLATTATTASTTTTVSTTAAGTGEQR
 QSKLSPQMNVHQDKTLPPAQSSSVGPAKAQPQTAQPSARPQPQTQPSPAQPEVQTQPEVQTQTTVSSHVPSEAQ
 PTHAQSSKPQVAQSQPQSVQGQSPVRVQSPSQTRIRPSTPSQLSPGQQSVQTTSQPIPIQPHTSQIIPSQG
 QPQSQPVQVQSVTQLSSGQTLNQSVSSPSRPQLQIQQPQPVIAVPQLQQQVQVLSQIQSVVAQIQAQSGVP
 QOIKLQLPIQIQQSSAVQTHQIQNVVTVQAAVQEQLQRVQQLRDQQQKKQQQIEIKREHTLQASNQSEIIQKQ
 VVMKHNAVIEHLKQKKSMTPAEREENQRMIVCNQVMKYILDKIDKEEKQAAKKRKREESVEQKRSKQNATKLSAL
 10 LFKHKEQLRAEILKKRALLDKDLQIEVQEELKDLKIKKEKDLMLQAQATAVAAPCPPTVLPAPPAPPPSPPP
 PPGVQHTGLLSTPTLPVASQKRKREEEKDSSSKKKMISTTSKETKKDTKLYCICKTPYDESKFYIGCDRCQN
 WYHGRCVGILQSEAEELIDEYVCQCQSTEDAMTVLTPLEKDYEGLKRVRLRSLQAHKMAWPFLEPVDPNDAPDYY
 GVIKEPMGLATMEERVQRRYYEKLTEFVADMTKIFDNCRYYNPSDSPFYQCAEVLESFFVQKLGFKASRSHNNK
 LQSTAS

15

SEQ ID NO:31 Mouse BPTF nucleotide sequence

accession:BC021489

CCACCGCGTCCGGTCTGCAGAAGCCCAGCCACAGCCTGCTCAGCCTGCAGCACAAACCCAGCCCCAGCCCCAGCC
 CCCAGCTCAGCCTGAAGTCCAGACCCAGCCAGCTGTCTCGTCCCAGTCCCTCTGAAACACAGCCCTCCCAAGC
 20 ACAGACATCTAAACCCCTGGTTGCAACACAGTGTCAAGCCTCAGAGCAGTGACAAGGACAGTCCTCTGTTGAGT
 CCAGAGTCCACCACTGACTCGAACATGTCCATCAACTCCATCCAAGTGACTCCTGGACAGCAACCCAGGTTCA
 GACTACAGCTTCACAGCCGATTCCAATTCCGCCCCCACATCTCTGCAGGCCACCTTCCAAGGCCAGCACAGTC
 ACAGCCCCAGGTACAGTCTCAACTCAAACCTTTCATCAGGACAGACATTAAATCAAGTTACTGTTCTATCTCC
 ATCCTGTCCTCAGCCACAGCCCCAACGTCAATGCTGTGCCCTAGCTCCAGCAAGTCCAGGTTCTCTCAGATCCA
 25 GTCGCAGGTTGTCAGATAACAGGCCAGCAAAGTGGTGTGCCAGCAAATCAAACATTCAAGTTGCCATTCA
 AGTTCAGCAAACAGTGTGCGCAGACTCAGAGTGTGGTCACAGTGCAGGCCAGTGTGCAGGAGCAGTTGCA
 GAGGGTTCAGCAAACAGGACCAGCAGAAAAGAAGAACAGCAGCAGATAGAAACTGAGCGTGAACACACCCCTCCA
 AGCTTCTAACCAAAAGTGAGATCATTCAAGAACAGGTGGTGATGAAGCATAATGCTGTAATAGAACATTAAAACA
 GAAAAAGACCATGACTCCAGCTGAAAGAGAAGAAAATCAAAGGATGATTGCTGTAACCAGGTGATGAAGTATAT
 30 TCTGGATAAGATAGATAAAGAAGAAAACAGGCCAGCAAAGAACGCAAGCGGGAGGAGAGTGTGGAGCAGAACGCG
 GAGCAAACAGAATGCCAGCAAGCTCTGCTCTGTTCAAACACAAGGAGCAGCTCAAAGCTGAGATCCTGAG
 AAAGAGAGGCCCTGGACAAAGAGTTGCAAGATCCAAGTGCAAGGAAGAGCTGAAAAGAGACCTGAAAATGAAACG
 AGAGAGGGAGATGGCCAGGCCAGCTCCAGCTCCTCGTTCTCCGCTCCACACACAGTCTGCCACCTGCAGG
 35 CCACCCACAGCCCCACTGCCGTCACTTCCAGAAGAGGAAGCGGGAGGAAGAGAAGGACTCTAAGTCCAAGAA
 GAAGAAGATGATCTTACACCTCTAAGGAGGCCAGAAGGAGCACCAGGCTATATTGCTGCAAGACACCGTA
 CGATGAGTCCAATTTATATTGGCTGTGATCGGTGTCAGAATTGGTACCAAGGGCGCTGTGTTGGCATTTGCA
 AAGTGAGGCAGATCTCATTGATGAGTATGTCAGTCCACAGTGCCAGTCAGAGGAGCAGGCCATGACAGTGTCTCAG
 ACCACTGACAGAGAAAAGATTATGAGGGCTTGAAGAGGGTGTGCGCTCCTTACAGGCCACAAAGATGGCGTGGCC
 40 TTTCCTTGAACCGTAGACCCCAATGATGCACCGGATTATTACGGTGTATTAAAGAGCCAATGGACCTGCCAC

CATGGAGAAGAATAACAAAAACGGTATTATGAAAAGCTGACAGAGTCGTGGCAGATATGACCAAAATTTGA
 TAACTGCCGTTATTACAATCCCCGTGACACCCCTTTTACCAAGTGTGCAGAAGTTCTGAATCATTCTTGACA
 GAAACTAAAGGATTCAAGGCCAGCAGGTCTCATAACAACAAGCTGCAATCTACAGCTCCTAGAACCTCAGCGTG
 5 TCTGTACACCTAACGCTAGACACAGCAAGTCTGGCGCTCTGAACATTTAAACTAAAGGCCAGATATTTCAGTCA
 GGCTTCCTGACAAGACCGTAACCTCGTTCATATTGGTCACAACAGTCCAGTTGTATTCTGGCCAATTTGTCC
 AACGGACAAAGGAAAGCAAAGTCAACGGCACCGTTGTGAGAGCAAATGGCTTACTATTGTGGCAGAA
 GCAGGAAACTTGTATTGGAAAAAAAAAAAAAA

SEQ ID NO:32 Mouse BPTF polypeptide sequence

10 accession:gi18204482
 HASGPAAQPQPAQPAQPPQQPQPPAQPEVQTQPAVSSHVPSETQPSQAQTSKPLVATQCOPLOSSVQGQSPVRV
 QSPPLTRICPSTPSQVTPGQQQPQVQTTASQPIPIPPTSLQAPSQGQPQSQPQVSSTQTLSSGQTLNQVTVLSP
 SCPQPQPQVIAPVQLQQVQVLSQIQSQVVAQIQAQQSGVPQQIKLQLPIQVQQNSAAQTQSVVTVQAASVQEQLQ
 RVQQLRDQQQKKQQIETEREHTLQASNQSEIIQKQVMKHNAVIEHLKQKKTMTPAEREENQRMIVCNQVMKYI
 15 LDKIDKEEKQAAKKRKREESVEQRSKQNASKLSALLPKHKEQLKAEILRKRALLDKELOIqvQEEELKRDLMKMR
 EREMAQAVQANAASVPTPSVPAPVAPAPAAPPAPPRSPPPPSTHSLPPAGHPTAPLPVTSQKRKREEEKSksKK
 KKMISTTSKEAKKDTRLYCICKTPYDESKFYIGCDRCQNWYHGRCVGILQSEADLIDEYVCQPCQSTEDAMTVLT
 PLTEKDYEGLKRVLRSLQAHKMAWPFLEPVDPNDAPDYYGVIKEPMDLATMEERIQRYYEKLTEFVADMTKIFD
 NCRRYNPRDTPFYQCAEVLESFFVQKLKGFKASRSHNNKLQSTAP

20

SEQ ID NO:33 Human GS3955 nucleotide sequence

HUM186702 accession:BC002637 CDS:496..1527
 GGCACGAGGGTTGGCTTAACCGTTGGACTGAGTCGCCCGTGAGCTCCCCGAAGACTGCACAAACTACC
 GCGGGCTCCTCCGCCCGTCTCGGATTCGGAAAGCCGCCCTGGGGTCGCTGGGAGCCCTGGCGCTGCAGCTCC
 25 GCACCTTAGCAGCCGGTACTCATCCAGATCCACGCCGGGACACACACAGAGTAACAAAAGTGCAGCGAT
 TCTGCACATCGCCACTGCTTGGGTAACAAAAGACCCGAGTTGCCTGCCGACCGAGGACCCCGGGAGCCGG
 GCTCGGAGCAGACGAGGTATCCGGCGGCCATTGGGGCTCTAACTCTTCTCCACGCAGCCCTCTCTG
 TCCCCTCCCTCTCGCTCCCTTAAATCAGTGGCACCGAGGCGCTGCAGCCGACTCGCCAGCGACTCATCT
 CTCCAGCGGGTTTTTTGTTGCTGTGCGATCCTCACACTCATGAACATAACAGGTCTACCCCATCACA
 30 ATAGCGAGATATGGGAGATCGCGAACAAAACCCAGGATTCGAAGAGTTGCGTCTATAAGTCCGCGGAGCCC
 AGCCAGAGTTTCAGCCGAACCTCGGCTCCCGAGCCGCCAGACTCCGAACCTGCGATTGCGTTCTGT
 ATCGGGAAATACTTATTGTTGAAACCTCTGGAGGGAGACCACGTTTCTGCGCTGCATCTGCACAGCGGAGAG
 GAGCTGGTGTGCAAGGTGTTGATATCAGCTGCTACAGGAATCCCTGGCACCGTGTGCTTGCGCTGCTCAT
 AGTAACATCAACAAATCACTGAAATTATCCTGGGTGAGACCAAAGCCTATGTGTTCTTGAGCGAAGCTATGGG
 35 GACATGCATTCCCTCGCCACCTGCAAGAAGCTGAGAGAGGAGGGCAGCCAGACTGTTCTACCAAGATTGCC
 TCGGCAGTGGCCCACTGCCATGACGGGGGCTGGTGTGCGGGACCTCAAGCTGCGGAAATTCACTTTAAGGAC
 GAAGAGAGGACTCGGGTCAAGCTGGAAAGCCTGGAAAGACGCCACATTCTGCGGGAGATGATGATTCCCTCTCC
 GACAAGCATGGCTGCCGGCTTACGTAAGCCCAGAGATCTGAAACACCAGTGGCAGCTACTCGGGCAAAGCAGCC
 GACGTGTGGAGCCTGGGGTGATGCTGTACACCATGTTGGTGGCGGTACCCCTTCCATGACATTGAACCCAGC
 40 TCCCTCTTCAGCAAGATCCGGCGTGGCCAGTTCAACATTCCAGAGACTCTGTCGCCAAGGCCAAGTGCCTCATC

CGAAGCATTCTGCGTCGGGAGCCCTCAGAGCGGCTGACCTCGCAGGAATTCTGGACCATCCTGGTTTCTACA
GATTTTAGCGTCTGAATTCAAGCATATGGTCTAAGGAAGTGTCTGACCAGCTGGTGCCGGACGTCAACATGGAA
GAGAACCTGGACCCTTCTTAACTGAGCTCATGCCAACGGAGACTTAGCAGGTTCCAGGAGTGAGCGAGGGCA
GCAGAAAGGAGTTCTCCGGGGACACGAATTGCCTGGCTGAGTAGCAAGAAAGACACACTCTTAAGTTCTGG
5 TTCAGAGCAGGAAAACCTCAAGGAGCTGACTGACCACGTAGCATGGGGCAAGAGGCCTGGATGGGATTGGG
GTGAGATGGATGGGAGCCCGCTGGAGCTTGTCTTCCCTAACATAGCCTGGAGACCACCCCTGCCACTGGGCC
ACTTCCGCCTACCCACTTTCTTCAAGGAACTTCTGAGCTTCTGTTAGGATTCAAGGAAGGAACAGTTGGCCAAGAA
AACACACATCCTGGCATCGCACTGTTAGCATTAACTTCTGTTAGGATTCAAGGAAGGAACAGTTGGCCAAGAA
TTTTTTCTTTAAACAAGCCAACCACCTAGCTGTAATTAAATGAGGTTCACTTAAAAAAATCGGTGCA
10 CACAGACTGACATGAAACCTGGTGCTACAGTAAAAGAAAACAAAGTCCAGTTGTCTCTTAATCGCTCACT
TCAACTCATTTCTCTAAATAAAACTATTAAATCCTGAAAAAAAAAAAAAA

SEQ ID NO:34 Human GS3955 polypeptide sequence

protein_id:gi12803605

15 MINIHRSTPITIARYGRSRNKTQDFEELSSIRSAEPSQSFSNLGSPSPETPNLSHCVCIGKYLLPLEGHDH
FRAVHLHSGEELVCKVFDISCYQESLAPCFCLSAHSNINQITEIIILGETKAYVFFERSYGDMHSFVRTCKKLREE
EAARLFYQIASAVAHCHDGLVRLDLKLRKFIFKDEERTRVKLESLEDAYILRGDDDSLSDKHGCPAYVSPEILN
TSGSYSGKAADVWSLGVMLYTMLVGRYPFHDIEPSSLFSKIRRGQFNIPETLSPKAKCLIRSILRREP SERLTSQ
EILDHPWFSTDFSVSNSAYGAKEVSDQLVPDVNMEENLDPPFN

20

SEQ ID NO:35 Mouse GS3955 nucleotide sequence

accession:XM 126841

CDS:555..1586

	GCAGCGCGGATTCTGGCTGCCGCGGGGTGAGCCGGTAGACCCGAGCTTATTCCTTTCTTTGTTGGGTT		
	TCTAACCGCGTGGAGGGCGAGCCGGCGCCGCGCTCCCTGAAGACTGCACAAACTCCACGCAGGGCTCTCCGCC		
25	CGGTCTCGGGATCCTCAGCTGGGATCGCTCAGAACAGAGACCCACTGAGTCCAGCGTGGTTCTGCACCGCGCTGGCAGCTCTGGG CGTCCAGATCCACGCTCGAACAGAGACCCACTGAGTCCAGCGTGGTTCTGCACCGCGCTGGCAGCTCTGGG TAACAAAAGGACCCGAGTTGCCAGAGCGAGCACCCCCGGGAGCGGGGCTCGCAGCCGGGACCAGCCCTGCA GCGCCCACATCTGGGGCTAGTTCTAACCTCCACGGAGCCCCAGACGGGTCCTCCCTCCCTCTTGATCCTT TAAGTCGGTAGCACCGAGGCGCCTGCACCGCGGGCTCATCCATCTCCAGAGGGTTTTGGTTGTTGT		
30	TTGTTTGTGCGTGTGCGATCCTCACACTCATGAACATACACAGGTCTACCCCTATCACAATAGCGAGATATGGGA GATCGCGGAACAAAACCCAGGATTCGAAGAGCTGTCGTCTATAAGGTCCGCTGAGCCCAGCCAGAGTTTCAGCC CGAACCTTGGCTCTCGAGCCGCCAGACTCCGAACTTGTGCATTGCGTTCTTGCACTGGGAAATACTTAC TGTGGAGGCTCTGGAGGGAGACCACGTTTCCGGCTGTGCATCTGCACAGCGGAGAGGAGCTGGTTGCAAGG TGTGGAGATCAGCTGCTACCAGGAGTCCCTGGCCCCCTGCTTCTGCCTGTCTGCCATAGCAACATCAACCAA 35	AA TCACGGAAATCCTCTGGAGAGACCAAAGCCTATGTGTTCTTGAGCGAAGCTATGGAGACATGCATTCCCTTG TCCGCACCTGTAAGAAGCTGAGGGAGGGAGGCAGCCGACTGTTCTACCAGATTGCCTCAGCTGTGGCCATT GCCACGATGGAGGCCCTGGTGTGCGTGACCTCAAGCTGCCAGAAATTATCTCAAGGATGAAGAGAGGACTCGTG TCAAGCTGGAGAGTTGGAAGACGCTTACATTCTCCGGGTGATGATGACTCACTCTGACAAGCATGGCTGCC CAGCGTATGTCAGCCCAGAGATCTGAACACCAGCGGAGTTATTGGCAAGGCAGCGGACGTGAGGCTGG 40	GGGTAATGCTGTACACCATGTTGGTGGCGTTACCCCTTCATGACATTGAGCCTAGTTCTTTCAGTAAGA

TCCGCAGGGGCCAGTTAACATTCCAGAAACTCTGTCCTCCAAGGCCAAGTGCCTCATCCGAAGCATTGCGAC
GGGAGCCGTCAGAGCGGCTGACCTCGCAGGAAATTCTGGACCATCCTGGTTCTACAGATTTAGTGTCTCAA
ATTGGGATTGGTCTAAAGAGGGCGTGTGACCAGCTGGTCCAGACGTCAACATGGAGGAGAACTTGGACCCCTT
TCTTTAACTGAGCTCAAGGCCAGGGACACATAGCAGGTACCAAGGAGCAAGAGAGAGCCCCAGAAAGGAGTCTG
5 GGACACAGGTGGCCTGGCTGAGAAGCAAGACGGACATTCAATTACACATTCTGGTTCAGAGAAGGAATATG
TTCTAGGAGCTGACGGAACACGTAGCATGGAACAAAGACGTGTGGATGGGGTTGGTTCAGATGGACGGAGC
CCCTCCCCTAAAGCTCTTCCCTGGGTAGCCTGAGAGTCCCCCTTACCAAGTAGGGCTATTCTACCCCACCTT
CATTGGTTCAGAAATAGTTGCAGATCTGATAGAATCCAAACTCTGCCTCAAACACCTACCTGGCATTGC
ACTGTTAGCATTAACTTCTTGATCAGGGAAAGGACAATTGATCGAAGATTTTTTTGGAA
10 CAGACCAACCACCTATGTAATAATTAAAGATTACCTAAAAATAATAATTACAGACTGACCT
GAAACCTGGGTGCTAAACTAAAAGAAAACAAAGTTCCAGTTGCTCTCATTGCACATTCCAATTCAATTTC
TTCTAAATAACGATGCTCTATTCTGGTTAGGAAGTAACACATTAAACGCTTGCTCCCTGAACGGGAGGGAG
TCTGTTCCACAGACATTCTGTTGTATCAGCTGGTTTGAGCAGGAAACTATCAGAAGTCAAACCTCC
AGATGTATTATCACAGTTCAGGGAAAGAAGAAAGGAAAAGAAGAAAATCCAACCTCTGGTTTGTTCT
15 TTGAAGGAAGAGGGTCACATTGATGACATTGCTCTGCTCAAATTCAAGTGAGGGCTCCAGAGGCAGGCG
CCTCCTGGAGTCAGATTTTGATGATGCTGATCTCAACGTTGTTTGCTTATGGAAACTAGTAAACG
AGACAGGTTGCCCAGTGTATAAAATACAGGGCAGCTATTCTTTCTTGCTAAGAATGATCCTTGGCCTT
GGAAAGGCCCTGGTTGAACAGAAAGATAACGGCAATAAGCCAAAGCCAGGATGATATAACATAACAAACA
GCTCTCTGCCCCAACACGACCTTGATTTATTAAAGAAAATGTCACATTGATGTATTAAGCCAGTACTCAA
20 TTACGGGTCAACGGGATGACATGTTACATGCTGTAGTTAACATTATAATTGTTCCCTGGTTGAGTATT
CTGTCCTGGAATAACCTTTATTGGCTTCTAGATAGCCTTATTGATTTGAGTGGCAAATGTTTCC
TTTGACTCTGGCTTCTATTGCTGATGATACAGAACTCTTGGCATAAATATTGTTGGTACACTC
AGTCGTTGGTTCTGCCTGCATCTGTTGTGAAATGGCCTGTTGGTAGGTGACACGTGGACTCTA
GTGTGTAAATGTTACTGAATCTGTGCTTCACTCTAGTATGTCATGTGGACTCTGGATGCTTCAGC
25 CCTACTCCACTGGAGCCCCGTCCCCAGGAGGACAGCTCCCCACTGATAATCAGGAGACCAAGCTGCCATGGAT
TTACCCCTGATTCTATTGATAATGGAAGATAACAGAGAGAGGGTTTACATTGAGATGGCTGTGGCAA
GAAGGACCTTTATCTCCCTCCCCGTAAAGTCCTCGGTGGAGGAAAGATTGAAACATGCATGATG
GGGACTAATGGCCTGGTGTCTTGTCTGTTAATGTTGTTAATCTCTCAATCAATAAAAT
TGTGCGTATTAACT

30

SEQ ID NO:36 Mouse GS3955 polypeptide sequence

accession:gi20845061

MNIHRSTPIIARYGRSRNKTQDFEELSSIRSAEPSQSFSNLGSPSPPETPNLSHCVSCIGKYLLPLEGDHV
FRAVHLHSGEELVCKVFEISCYQESLAPCFCLSAHSNINQITEILLGETKAYVFFERSYGDMHSFVRTCKKLREE
35 EAARLFYQIASAVAHCDGLVLRLDKLRKFIFKDEERTRVKLESLEDAYILRGDDDSLSDKHGCPAYVSPEILN
TSGSYSGKAADVWSLGVMLYTMIVGRYPFHIEDPSSLFSKIRRGQFNIPELSPKA
KCLIRSILRREPSELTSQ
EILDHPWFSTDFTSVSNSGFGAKEACDQLVPDVNMEENLDPPFN

SEQ ID NO:37 Human FRP nucleic acid sequence

HUM188423 accession:D89937 coding sequence:77..1003

CGGAGCTCCCACCTCCGCTTACAGCTCGCTGCCGCCCTGCCCGCCCCCAGGAGACCTGGACCAGACCAC
GATGTGGAAACGCTGGCTCGCTCGCTGGCTGGCGCTGGGTCCGCCGAGGAAGAGCTAAG
5 GAGCAAATCCAAGATCTGTGCCAATGTGTTTGTGGAGCCGCCGGAAATGTGCAGTCACAGAGAAAGGGAAACC
CACCTGTCTCTGCATTGAGCAATGCAAACCTCACAAAGAGGCCGTGTGTGCCAGTAATGGCAAGACCTACCTCAA
CCACTGTGAAGTGCATCGAGATGCCCTGCCCTACTGGATCCAAAATCCAGGTTGATTACGATGGACACTGCAAAGA
GAAGAAATCCGTAAGTCCATCTGCCAGCCCAGTTGCTATCAGTCAAACCGTGATGAGCTCCGACGTGCAT
CATCCAGTGGCTGGAAGCTGAGATCATTCCAGATGGCTGGTCTCTAAAGGCAGCAACTACAGTGAATCCTAGA
10 CAAGTATTTAAGAACCTTGATAATGGTATTCTGCCCTGGACTCCAGTGAATTCTGAAGTTGTGGAACAGAA
TGAAACTGCCATCAATATTACAACGTATCCAGACCAGGAGAACAAACAAGTTGCTTAGGGACTCTGTGTTGATGC
TCTCATTGAACTGTCTGATGAAAATGCTGATTGGAAACTCAGCTTCCAAGAGTTCTCAAGTGCCTCAACCCATC
TTTCAACCCTCCTGAGAAGAAGTGTGCCCTGGAGGATGAAACGTATGCAGATGGAGCTGAGACCCAGGTGGACTG
TAACCGCTGTCTGCCCTGTGAAATTGGTCTGTACAGCCATGACCTGTGACGGAAAGAACATCAGAAGGGGC
15 CCAGACCCAGACAGAGGAGGAGATGACCAGATATGTCAGGAGCTCCAAAAGCATCAGGAAACAGCTGAAAAGAC
CAAGAGAGTGAGCACCAAAGAGATCTAATGAGGAGGCACAGACCAGTGTCTGGATCCAGCATTCTCCACTTC
AGCGCTGAGTTCACTACACAAGTGTCTGCTACAGTCGCCAATCACCAGTATTGCTTATAGCAATGAGTT
TTATTTGTTATTTGTTTGCAATAAAGGATATGAAAGGTGGCTGGCTAGGAAGGGAAAGGCCACAGCCTTCATT
TCTAGGAGTGTCTTAAGAGAAACTGTAATGGTCTGTGGGCTGGAGGCTAGTAAGGAAACTGCATCACGATTG
20 AAAGAGGAACAGACCCAAATCTGAACCTTTGAGTTACTGCATCTGTCAGCAGGCTGCAGGGAGTGCACACG
ATGCCAGAGAGAACTTAGCAGGGTGTCCCCGGAGGAGAGGTTGGGAAGCTCCACGGAGAGAACGCTCTCGCT
TCCAGCCTCTTCCATTGCCGTACGATGACAGACCTCCAGCATTGGTCCCAATAACTGCCTC
TAGATACATGCCATAGCTAGTTAACCCAGTGTCCCTCAGACTGGATGGAGTTCTGGAGGGTACACCCAA
ATGATGCAGATACTTGTATACTTTGAGCCCTTAGCGACCTAACCAAATTAAAAACTTTTACCAAAGGTG
25 CTATTTCTCTGTAAAACACTTTTTGGCAAGTTGACTTTATTCTCAATTATTATCATTATATTGTTT
TTAATATTTTATTTCTTGACTAGGCTGACTTTATCATGACAACCTAGCTGATTCTTATGAAGGATTAGGGAT
ATTCACTTCAGCAGTGCACATGAGAAATAACTCTGAAAAGCAATTCTGGGTTAGGAAGGGACCGTATTC
TGGGAATTACTCAGAGGAACGGACAATAATTCTAGGATTATAGCCAAGAAGGACTGGAAGACTTCAGGAGATGC
TTCAGCTTCTCTAGATTTGAATGCTGAATAAGCCACTGAAGTGTGATATCTATATTATCCTTTCTTGCAAG
30 AAATTGAATAGCAGCAAATTCTATCCTGAATAGCAGACAGATTCAATTAGCTGTTCTCATCCA
AGGCATTAGGAAGACCTCCCTTTCCAAGGCACATCGAACCTGAGTTAGCAGGAAGGGATTCTCCAATAAGAGC
AGAAATGCCAGGAAATCCTCAACACTATGGAAGATTCTACCGGACCTGAAACCTCAATGATCCAGATGCAA
ATGCAGATTCCCCAAAATTGTAAATACAGATGACACTTATGAAGAGCTCCATTAACTGTTATAAGGCCAT
GAGTGCAGCTGTGCTTATGATCGACGCCCTGTCCACCCACGTTGGATTGGCCGAAGACTGGACAGCAT
35 CGTTGGCCCCCAGCTCACAGTGTGCCCTGTGACATCTGTGAACAGTTAACATCAACAAAGAGGATGTCCGGGTC
TGAGAAAGAACCCAGTTAACAGTTAACATCTCAACCACATGAATCTGCCGAGAACAGC

SEQ ID NO:38 Human FRP polypeptide sequence

protein_id:gi3184393

MWKRLALALALVAVWRAEEEELRSKSKICANVFCGAGRECAVTEKGEPTCLCIEQCKPHKRPVCGSNGKTYLN
HCELHRDACLGSKIQVDYDGHCKEKKSVPSPASPVCYQSNRDELRRRIIQWLEAEIIPDGWFSKGSNYSEILD
5 KYFKNFDNGDSRLDSSEFLKFVEQNETAINITYPDQENNKLRLGLCVDALIELSDENADWKLSFQEFLKCLNPS
FNPPEKKCALEDETYADGAETEVDCNRCVCACGNWVCTAMTCDGKNQKGAAQTQTEEEMTRYVQELQKHQETAKT
KRVSTKEI

SEQ ID NO:39 Mouse FRP nucleic acid sequence

10 accession:NM_008047 coding sequence:80..1000
AAGCGACGCTCCCACCTTGCCTCTAACCTCGCTGCCACCCCTGCCAGTGTCTCCGGAGTCCGGACCCGAG
CACGATGTGGAAACGATGGCTGGCGCTCTCGCTGGTGACCATGCCCTGGTCCACGGGAGGAGAACCTAGAAG
CAAATCCAAGATCTGCCCAATGTGTTTGAGCTGGCAGGGATGTGCCGTACAGAGAAGGGGAGCCCAC
GTGCCTCTGCATTGAGCAATGCAAACCTACAAGAGGCCGTGTGGCAGTAATGGCAAGACCTACCTAACCA
15 CTGTGAACCTCATAGAGATGCCTGCCTCACTGGATCCAAGATCCAGGTTGATTATGATGGGCACTGCAAAGAAAA
GAAGTCTGCGAGTCCATCTGCCAGCCCAGTTGCTGCTATCAAGCTAACCGCGATGAGCTCCGACGGCGCTCAT
CCAGTGGCTGGAAGCTGAGATCATTCCAGATGGCTGGTTCTCTAAAGGCAGTAACTACAGTGAGATCCTAGACAA
GTACTTTAAGAGCTTGATAATGGCGACTCTCACCTGGACTCCAGTGAATTCTGAAATTCTGGAGCAGAATGA
AACAGCCATCAACATCACCACTTATGCAGATCAGGAGAACAAACTGCTCAGAACGCTCTGTGTTGACGCCCT
20 CATTGAACGTCTGATGAGAACGCTGACTGGAAACTCAGCTTCCAAGAGTTCCCTCAAGTGCCTAACCCATCCTT
CAACCCCTCTGAGAAGAAGTGTGCCCTGGAGGTCGAAACCTATGCAGATGGAGCTGAGACTGAGGTGGACTGCAA
TCGCTGTCTGTTCTGTGGCCACTGGTCTGCACAGCAATGACCTGTGATGGAAAGAATCAGAAGGGGTCCA
GACCCACACAGAGGAGGAGAACAGGATATGTCCAGGAACCTCCAGAACGGCACAGCAGAAAAGACCAA
GAAGGTGAACACCAAAGAGATCTAAGAAGAGGCACAGAGCACCGTGTCCGAGGCCAGCGCTCTTCAGCGC
25 TGAGCCCAGTACACACAGAGTCTGCAGCAATCACCAAATCACTAGTATTTGCTTGTATGGCAGCGAATCTTATTT
TGTGTTGCAATAAAAGGAAATGAGGGTGGCCAGCCTAGCGAGGGCACAAACCTTCACCTGTAGGAATG
CTTTAAGAGAAACTAAAGGACACCTTGGGACGAGAGGCAACTAAGGAAACAGCATGGTTGGCAGAGGAGCAGA
GGCAGGTTGAATGAAGCCTTCTGGGTACAGCAGCTGCGAGGAGAACAGCATAGAGAAACATTG
AACTAGCCCTGCTGGAGGAAGTGGGGGAGCTTGTAGGGAGGAACCTGCTGTTGACCCCTGTCAACCACTGT
30 CAGCATGACAGACCTGCAGCAAGTCTGCTTCTCCTTTGGTCCAACAATCACCTGAACACACAGCCGCCAACT
AGTTACCTGTCTCAGCCTGCATGGAGTTCTGGAGGGAGGTGTTAAATGATGCAAGACACTTATGTACTTC
AAGCGCATGGAGACTAACCAAATTTAAATACATTCTTTCTTTGTTAACTGTTAACCAAGGTGCTAT
TTCTCTGTAAGAGACTTTTCCAAGCTGACTTCATTCTCAGTTATTACGTTATATTATTGTTGTTTTAAT
ATTTCATTCTTGACTAGATATTAAGCTTTGAATTATTTCTTAGTCCTACTATTCGAGAAGTGAAGGTG
35 AAGGGGGTTGGCATTTCAGGGTACAGGGAACTCTGTAACACAAACAGCCATACCTGTCACATATTAGA
CCGGTTGCAGTTGGAGCATGCACCCCAACCCAGAGCTCTAGAAAATCAGCTCCATGCCACGAAGGCACAAGAG
GCCCTCAGCAGAACGCCACAGGACAAAGCATCTCATAGACAGCTGTTGAGATCCAACACAGTTAATTGCTTTG
TTCTTGTAAGAAGTCCAAGGATGGACGCTCAGGCTATCCCAGCCTGCCAGCCTGCTGATCTGGCTAACT
GGCAGAGTCAGCCACTGTGGCCTTAGCTGCTCCTGTTCTAGGTGTCAGTTACTTAGTAAACTGGTAAGAATG
40 AATCTTGGAAATTAAATAATGGTAGTTGTGGTTAGCCAACGGTCCAGAGGGAGCTACCTCTCCTTAGGATA

GATGAATCTACTCCATAAGAAAAACCAGCCAGGAATAGCATGGATGGGTTTGCTTGGTTGAAATGATCCTAGC
 AGGTGACTGGGTATGAGGACTTCATGGTCACTCTGCCAGGAAGAGAGCGTGAAGGACAACTAGCAGCTTCCTTA
 GGGATGGTACACATGTGTGATCTCTGGAGATCAGAGGTTGCCACACACATGATGATAAAACTTTCAGATT
 5 TAGAGCGGTTAAAACCTGGAGATCGAATCTGGATTGAGAACAGCACTGGGGCAGAAACTGTTATTGAAAGTCAA
 TCCTTCTTGAGACACTCGAATAAAACTATGGAGATTTCTGCATAGGAAAGTGTGGAATGTTGAGCTATTGA
 GATGGGAGTGGAATTGCTCTAAATAGTTTCTGGTCTCATCTGAACAAGACAATTGCTCTGCCTAGTGT
 CTGTGCCCTCCCTTCAAAGCTCTGAGCCCCGCTCATGCAGTCAGATTCTCATCCCCCTCTCCAAGTGCCTTGG
 AGAGCTCACGACAGCAATGCCATCATCAAAAGTTTGTGCTGGGAAG

10 **SEQ ID NO:40 Mouse FRP polypeptide sequence**

accession:gi6679871

MWKRWLALSLVTIALVHEEEPRSKSKICANVFCGAGRECAVTEKGEPTCLCIEQCKPHKRPVCGSNGKTYLNHC
 ELHRDACLGSKIQVDYDGHCKEKKSASPSASPVCYQANRDELRRRLIQWLEAEIIPDGWFSKGSNYSEILDKY
 FKSFDNGDSDHLDSSFLKFVEQNETAINITYADQENNKLRLSICVDALIELSDENADWKLSFQEFLKCLNPSFN
 15 PPEKKCALEVETYADGAETEVDCNRVCSCGHWVCTAMTCDGKNQKGVQTHTEEEKTGYVQELQKHQGTAEKTKK
 VNTKEI

SEQ ID NO:41 Rat FRP nucleic acid sequence

accession:NM_024369

coding sequence:64..984

20 CTGGCCTCCAACTCACTGCTTCCATCCTGCCAGTGTCCCTCTGAGTCCGGACCCGAGCACGATGTGAAACGC
 TGGCTGGCGCTCGCGCTGGTGACCATGCCCTGGTCCACGGCGAGGAGGAACAAAGAACAAATCCAAGATCTGC
 GCCAATGTGTTTGTGGAGCTGGCGGAATGCGCCGTCACGGAGAACAGGGGAGCCAACGTGCCTCTGCATTGAG
 CAATGCAAACCTCACAAAGAGGCCTGTGTGGCAGTAATGGCAAGACCTACCTCAACCATTGTAACTTCACAGA
 GACGCCTGCCTCACTGGATCCAAGATCCAGGGTATTATGATGGGACTGCAAAGAAAAGTCTGTGAGTCCA
 25 TCCGCCAGCCCGTTGCTGCTATCAGGCTAACCGTGATGAGCTGGCGCCGGATCATCCAGTGGCTGGAAGCC
 GAGATCATTCCAGATGGCTGGTCTCTAAAGGCAGTAACACTACAGTGAGATCCTAGACAAGTACTTAAGAGCTTT
 GATAATGGTACTCTCACCTGGACTCCAGCGAATTCTGAAATTCTGGAGCAGAACAGCCGTAAACATC
 ACCGCTTACCCAATCAGGAGAACAAACAAACTGCTCAGAGGCCCTGTGTGATGCCCTCATTGAACTGTCCGAT
 GAGAACGCTGACTGGAAACTCAGCTTCAAGAGTTCTCAAGTGCCTCAACCCATCCTCAACCCCTCTGAGAAG
 30 AAGTGCGCCCTGGAGGACGAAACCTATGCAGATGGAGCTGAGACCGAGGTGGACTGCAATCGCTGTCTGTTCC
 TGTGGACACTGGCTCTGCACAGCGATGACCTGTGATGGAAAGAACAGAACAGCCACACAGAGGAG
 GAGATGACGAGATATGCCAGGAACCTCAGAAGCACCAGGGAACAGCAGAAAAGACCAAGAACAGGTGAACACCAAA
 GAGATCTAAGAAGAGGCACGTAGCACCTCATCTGAAACCCAGCACCTCCTTCAGCGCTAACCCAGTATACAG
 CGTCTGTGCAATCACCGAACCTACCAAGTATTGCTTGACGGCAGCAAATCTTATCTGTTGCAATAAAG
 35 GAAAGTGAAGGGTGGCTGGCTAGCCAGGGCAGGCAGGCACAACTTCACTTCTAGGAATGCTTAAGAGACACTAA
 AGGGCACCTGGGGCAGGAGGCGAGTATCCGGTTGGCAGAGGAGCAGAGGCAGGGCAGGTCTGAATGAAACCTTCTGGG
 GTCAAGCTGTGAGGATACAACAGGAAAAGCATGTGATGTTAGGGAAACACTGAGCTGGCCCTGCTGGAGGAAATA
 GGGGGAGCTGGTGGGGAGG

SEQ ID NO:42 Rat FRP polypeptide sequence

accession:gi13242265

MWKRWLALALVTIALVHGEQQRSKSKICANVFCGAGRECAVTEKGEPTCLCIEQCKPHKRPVCGSNGKTYLNHC
ELHRDACLGSKIQVDYDGHCKEKSVSPSASPVCYQANRDELRRRIIQWLEAEIIPDGWFSKGSNYSEILDKY
5 FKSFDNGDSDHLDsseFLKFVEQNETAVNITAYPNQENNKLRLGLCVDALIELSDENAWKLSFQEFLKCLNPSFN
PPEKKCALEDETYADGAETEVDCNRVCSCGHWVCTAMTCDGKNQKGVQTHTEEEEMTRYAQELQKHQGTAEKTKK
VNTKEI

SEQ ID NO:43 Human ADH2 nucleic acid sequence

10 HUM194166 accession:X03350 coding sequence:73..1200
AGTGCACCAAGCAGAGAAGAAATCCACAAAGACTCACCATGCTGGTGGGGCAGAGAACAGACA
GAAACGACATGAGCACAGCAGGAAAAGTAATCAAATGCAAAGCAGCTGTGCTATGGGAGGTAAA
GAAACCCCTTTCCATTGAGGATGTGGAGGTGCACCTCCAAGGCTTATGAAGTTCGCATTAAAGAT
GGTGGCTGTAGGAATCTGTCGCACAGATGACCACGTGGTAGTGGCAACCTGGTGACCCCCCTTCC
15 TGTGATTTAGGCCATGAGGCAGCCGCATCGTGGAGAGTGTGGAGAAGGGGTGACTACAGTCA
AACCAGGTGATAAAAGTCATCCCGCTTTACTCCTCAGTGTGGAAAATGCAGAGTTGTAAAAACC
CGGAGAGCAACTACTGCTTAAAAATGATCTAGGCAATCCTGGGGGACCCCTGCAGGATGGCACC
AGGAGGTTCACCTGCAGGGGAAGCCCATTCAACCCTTCCCTGGCACCAGCACCTCTCCAGTAC
ACGGTGGTGGATGAGAATGCAGTGGCAAATTGATGCAGCCTCGCCCTGGAGAAAGTCTGCCT
20 CATTGGCTGTGGATTCTGACTGGTTATGGGTCTGCAGTTAACGTTGCCAACGGTCAACCCAGGCTC
TACCTGTGCTGTGTTGGCCTGGGAGGGGTGGCCTATCTGCTGTTATGGGTGAAAGCAGCTGG
AGCAGGCCAGAACATCATTGCGGTGGACATCAACAAGGACAAATTGCAAAGGCCAACAGAGTTGGGTG
CCACTGAATGCATCAACCTCAAGACTACAAGAAACCCATCCAGGAAGTGCTAAAGGAAATGACT
GATGGAGGTGTGGATTTCTGAAAGTCATCGGCTGGCATTGACACCATGATGGCTTCCCTGTTAT
25 GTTGTATGAGGCATGTGGCACAAGCGTCATCGTAGGGTACCTCCTGCTTCCCAGAACCTCTCAA
TAAACCTATGCTGCTACTGACTGGACGCACCTGGAAGGGGGCTGTTATGGGTGTTAACAGAGTA
AAGAAGGTATCCAAAATTGTGGCTGATTTATGGCTAACAGAAGTTCACTGGATGCGTTAACAA
CCCATGTTTACCTTTGAAAAAATGAAGGATTGACCTGCTTCACTCTGGAAAAGTATCC
GTACCGTCCTGACGTTTGAGGCAATAGAGATGCCTCCCTGTAGCAGTCTCAGCCTCTTAC
30 CTACGAGATCTGGAGCAACAGCTAGGAAATATCATTAAATTCAAGCTTCAAGAGATGTTATCAATAA
ATTACACATGGGGCTTCCAAAGAAATGGAAATTGATGGAAATTATTTTCAGGAAATTAAA
ATTCAAGTCAGAAGTAAATAAGTGTGAACATCAGCTGGGAATTGAAGCCAACAAACCTCCT
TCTTAACCATTCTACTGTGTACCTTGCCTATTGAGGAAAATATTCTGTGACTTCTGCATT
GGTATCTCATAATCTTAGTCATCGAATCCCAGTGGAGGGGACCCTTTACTTGCCTGAACATAC
35 ACATGCTGGGCCATTGTGATTGAAGTCTTCAACTCTGTCAGTTTCACTGTCGACATTTCCTT
TTCTAATAAAAATGTACCAAAATCCCTGGGTAAAAGCTAGGGTAAGGTAAAGGATAGACTCACAT
TTACAAGTAGTGAAGGTCCAAGAGTTCTAAATACAGGAAATTCTTAGGAACACTCAAATAAAATGC
CCACATTACTACAGTAAATGGCAGTGTGTTATGACTTTACTATTCTTATGGTCGATATA
CAATTGATTTAAAATAATAGCAGATTCTGCTCATATGACAAAGCCTCAATTACTAATTGTA

AAAACTGAACATTCCCAGAACATGTTCAAAAATCTGTAACTTGCTGATGAAAGTGCTTCATT
 GACTAAACAGTATTAGTTGTGGCTATAAATGATTATTAGGATGACTGAAAATGTGTATAAG
 TAATTAAAAGTAATATGGTGGCTTAAGTAGAGATGGGATGGCAAATGCTGTGAATGCAGAAT
 GTAAAATTGGTAACAAAGAACACCTAACAGCAATATATTTCCTAGTAGATATATAT
 5 ATACACATACATATACACATACAAATGTATATTTCGAAATTGTTCAATCTAGAACATT
 TCTATTAACTACCATGTCTAAATCAAGTCTATAATCCTAGCATTAGTTAATATTGAAATATGT
 AAAGACCTGTGTTAATGCTTGTAAATGCTTCCACTCTCATTGTTAATGCTTCCACTCTCAG
 GGGAGGATTGCTATTGAGCTTATCTCAAATGTGACATGCAAAGATTATTCTGGTAAAGGA
 GGTAGCTGTCTCCAAAATGCTATTGTTGCAATATCTACATTCTATTCAATTATGAAAGACCTA
 10 GACATAAAAGTAAAATAGTTATCA

SEQ ID NO:44 Human ADH2 polypeptide sequence

Protein sequence protein_id:gi28416

MSTAGKVIKCKAAVLWEVKKPFSIEDVEVAPPKAYEVRIKMVAvgICRTDDHVSGNLVTPLPVILGHEAAGIVE
 15 SVGEGVTTVKPGDKVIPLFTPQCGKCRVCKNPESNYCLKNDLGNPRGLQDGTRRFTCRGKPIHHFLGTSTFSQY
 TVVDENAVAKIDAASPLEKVCLIGCFGSTGYGSANVAKVTPGSTCAVFGLGGVGLSAVMGCKAAGAARIIAVDI
 NKDKFAKAKELGATECINPQDYKKPIQEVLKEMTDGGVDFSFEVIGRLDTMMASLLCCEACGTSVIVGVPPASQ
 NLSINPMLLLTTGRWKAGAVYGGFKSKEGIPKLVADFMACKFSLDALITHVLPFEKINEGF DLLHSGKSIRTVLTF

20 SEQ ID NO:45 Mouse ADH2 nucleic acid sequence

accession:NM_007409

coding sequence:1..1128

ATGAGCACTGCGGGAAAAGTGATCAAATGCAAAGCTGCGGTGCTATGGGAGCTTCACAAACCTTCACCATCGAG
 GACATAGAAGTCGCACCCCCCAAGGCCATGAAGTTGAAATTAGATGGTGGCCACTGGTGTCTGCCGCTCAGAC
 GATCACGTGGTTAGTGGAACCCCTGGTCACACCTCTTCTGCAGTTAGGCCATGAGGGAGCAGGCATTGTTGAG
 25 AGCGTTGGAGAAGGGGTGACTTGTGTAAACCAGGTGATAAAAGTCATTCCACTCTTCCCTCAGTGTGGAGAA
 TGCAGGATTGCAAGCACCCGGAAAGCAACTTTGTAGCCGAAGCGATCTGCTAATGCCCTGGGGACTTGC
 GAAGGCACCAGCAGGTTCTCCTGCAAGGGAAAGCAGATCCACAACCTTATCAGCACCAGCACCTCTCCAGTAC
 ACCGTGGTAGATGATATAGCAGTGGCAAAATCGATGGAGCTTCAACCACGGACAAAGTCTGCCCTCATGGCTGT
 GGGTCTCAACTGGCTATGGCTCTGCCGTCAAAGTGGCCAAGGTGACCCAGGCTCACATGTGCCGTGTTGGC
 30 CTCGGAGGTGCGGTCTGTCTGCATCATTGGCTGTAAAGCAGCAGGAGCAGCCAGGATCATTGCTGTGGACATC
 AACAAAGGACAAGTTGCCAAGGCCAAAGAGTTGGGTGCAACTGAGTGCATCAACCTCAAGACTACAGCAAACCC
 ATCCAGGAAGTTCTCCAGGAGATGACCGACGGAGGGGTGGACTTTGTTGAAGTCATCGGCCGCTTGACACC
 ATGACTTCTGCCCTGCTGAGCTGCCATGCAGCATGTGGTGTAAAGCGTCGTAGGAGTGCCTCCCAATGCCAG
 AACCTCTCCATGAACCCATGTTGCTGCTGGACGCACCTGGAAGGGAGCAATATTGGCGGGTTAAGAGT
 35 AAAGATTCTGTCCTAAACTTGTGGCTGACTTCATGGCTAAGAAGTTCCGGACCCGTTAATTACCCATGTT
 TTACCTTCGAGAAAATAATGAAGCATTGACCTGCTTCGTTCTGGAAAGAGCATCCGTACCGCCTGACTTTC
 TGA

SEQ ID NO:46 Mouse ADH2 polypeptide sequence

Protein sequence accession:gi6724311

MSTAGKVIKCKAAVLWELHKPFTIEDIEVAPPKAHEVRIKMVATGVCRSDDHVVSGTLVTPLPAVLGHEGAGIVE
SVGEGVTCVKPGDKVIPLFSPQCQEGRICKHPESNFCRSRSDLMPRGTLREGTSRFSCKGKQIHNFISTSTFSQY
5 TVVDDIAVAKIDGASPLDKVCLIGCGFSTGYGSAVKAVTPGSTCAVFGLGGVGLSIIIGCKAAGAARIIAVDI
NKDKFAKAKELGATECINPQDYSKPIQEVLQEMTDGGVDFSFEVIGRLDTMTSALLSCHAACGSVSVVGVPNAQ
NLSMNPMLLLGRTWKGAIFGGFKSKDSVPKLADFMACKFPLDPLITHVLPFEKINEAFDLLRGKSIRTVLTF

SEQ ID NO:47 Rat ADH2 nucleic acid sequence

10 accession:NM_019286 coding sequence:1..1131
ATGAGCACAGCTGGAAAAGTAATCAAATGCAAAGCGGCCGTGCTATGGGAGCCTCACAGCCCTCACCATCGAG
GACATAGAACGTCGACCCCCCAAGGCCATGAAGTTCGCATTAAGATGGTGGCCACCGGAGTCTGCCGCTCAGAC
GATCACCGGTTAGTGGATCCCTGTCACGCCCTTCCCTGCAGTTCTAGGCCACGAGGGAGCTGGCATTGTTGAG
AGCATTGGAGAAGGGGTGACTTGTGTGAAACCAGGTGATAAAGTCATCCCCTGTTCTCTCCCAGTGTGGAAAA
15 TGCAGGATCTGCAAGCACCGGAAAGCAACCTCTGTTGCCAAACTAAGAACATCTGACACAGCCTAACGGAGCTTG
CTGGACGGCACCAGCAGGTTCTCCTGCAGGGAAAGGCCATTCAACCATTCACTCAGCACCGAACCTTCTCCCAG
TACACTGTGGTAGATGACATAGCGGTGGCCAAATCGATGCGGCTGCACCGCTGGACAAAGTCTGCCCTATCGGC
TGTGGCTTCTCGACTGGCTATGGCTCTGCCGTCCAAGTCGCCAAGGTGACCCAGGCTCCACCTGTGCCGTGTT
GGCCTGGAGGTGTTGGTCTGTCGTGTCATTGGCTGTAACACAGCAGGAGCAGCCAAGATCATTGCCGTGGAC
20 ATCAACAAAGACAAGTTGCAAGGCCAAAGAGTTAGGTGCCACTGACTGTATCAACCTCAAGACTACACAAA
CCCATCCAGGAAGTTCTCCAGGAGATGACTGATGGAGGGGTGGACTTTTCAATTGAAGTCATTGGCCGTCTTGAT
ACCATGACTTCTGCCCTGTTAAGCTGCCATTCACTGCGGTGTAAGCGTCATTGTCGGGTGCCTCCCAGTGCC
CAAAGCCTCTCCGTTAACCCATGTCGCTGCTGGACGCACCTGGAAAGGAGCAATATTGGCGGGTTAAG
AGTAAAGATGCCGTCCCAAATTGTCGCTGACTTCATGGCTAAGAACAGTTCCGTTGAGCCGCTGATTACTCAT
25 GTTTACCTTTGAAAAGATAATGAAGCATTGACCTGCTCCGTGCTGGAAAGAGTATCCGTACCGTCCTGACG
TTCTGA

SEQ ID NO:48 Rat ADH2 polypeptide sequence

Protein sequence accession:gi9506375

30 MSTAGKVIKCKAAVLWEPHKPFTIEDIEVAPPKAHEVRIKMVATGVCRSDDHAVSGSLFTPPLPAVLGHEGAGIVE
SIGEGVTCKPGDKVIPLFSPQCQEGRICKHPESNLCCQTKNLQPKGALLDGTSRFSCRGKPIHHFISTSTFSQ
YTUUDDIAVAKIDAAAPLDKVCLIGCGFSTGYGSAVQAKVTPGSTCAVFGLGGVGLSIVIGCKTAGAAKIIAVD
INKDKFAKAKELGATDCINPQDYTKPIQEVLQEMTDGGVDFSFEVIGRLDTMTSALLSCHSACGSVSVVGPPSA
QSLSVNPMSSLGGRTWKGAIFGGFKSKDAVPKLADFMACKFPLEPLITHVLPFEKINEAFDLLRAGKSIRTVLT
35 F

SEQ ID NO:49 Human acylphosphatase nucleic acid sequence

HUM197730 accession:X84194 coding sequence:69..368

CTACTCGCCGAGTTCCCTGTACGTGCTGTCCGATGACCTGCAGCGTGGAAAGACAAGAGGTTGAGCATGGCAG
 AGGGAAACACCCCTGATATCAGTGGATTATGAAATTGGAAAGGTGCAAGGGGTGTTTCCGTAAGCATACTC
 5 AGGCTGAGGTAAAAAGCTGGGATTGGTAGGCTGGGTCCAGAACACTGACCGGGGCACAGTCAAGGACAATTGC
 AAGGTCCAATCTCCAAGGTGCGTCATATGCAGGAATGGCTGAAACAAGAGGAAGTCTAAATCACACATCGACA
 AAGCAAACCTCAACAATGAAAAGTCATCTTGAAGTTGGATTACTCAGACTTCAAATTGAAAATAATGGCCTG
 AATTAAAGTTTCTAAGATAAACTCAGTGGTTGGTTTATTATTAATAGAGATAGAACTATTGTGTGTTAATA
 10 TTAGCATTAGTCATAAGTTATTAAATGTCAGATTGAAATGTTATATATTACCTGTATGGAAGGATT
 ACCACTGTACACAAATCTAATCAATAAAACGTTAGAACCTCTGCTTAGAGTACAN

SEQ ID NO:50 Human acylphosphatase polypeptide sequence

Protein sequence protein_id:gi1834464

MAEGNTLISVDYEIFGVQGVFFRKHTQAEKKLGLVGWVQNTDRGTVQGQLQGPISKVRHMQEWELETRGSPKSH
 15 IDRANFNNEKVILKLDYSDFQIVK

SEQ ID NO:51 Mouse acylphosphatase nucleic acid sequence

accession:NM_025421 coding sequence:135..434

GCTCTAAACTCCGGAAGTGGCGTTAACACGGCTGGCGGTTGATCTGAAGGTCTCGGGGCTGTTCAGCGGC
 20 TCCTGGGAAGCCCAGAAAACCGAGCTTCCGCCGCTCGGATCATCCAAGTGGTTGAGCATGGCAGAAGGGACA
 CCTTGGTCTCAGTGGATTACGAAATTGGAAAGGTTCAAGGGGTGTTTCCGCAAGTACACTCAGGCTGAGG
 GTAAAAAGCTAGGTTGGTGGCTGGGTTCAGAACACCGACCAGGGCACCGTGCAAGGGCAACTGCAGGGCCCCG
 TCTCCAAGGTGCGCTTCATGCAGCAGTGGCTGGAGACCAGAGGAAGTCCAAGTCGCACATTGACAGAGCAA
 25 TCAACAATGAGAAAGTCATCGAAACCTGGATTATTCAAGCTTCAAATTGAAAATAATGAAACGAATCTAAT
 ATTGTTCAAAATAATCTCACTCCTTTTAAATCGCTAGATTAAAAAAAAAAATAGAACTATTCTGTGCTCAGT
 ATTAGAATTGTTAGTAAGTTATTGGTTGCATGTTGGAAAAGTTACCAAGTATTACAAGTATGAAATACA
 AATGTGTATAATTCTAACCAATAAAACACATTAGAACCT

SEQ ID NO:52 Mouse acylphosphatase polypeptide sequence

30 Protein sequence accession:gi13384810

MAEGDTLVSDYEIFGVQGVFFRKYTQAEKKLGLVGWVQNTDRGTVQGQLQGPVSKVRFMQQWLETRGSPKSH
 IDRANFNNEKVIANLDYSDFQIVK

SEQ ID NO:53 Human PRK1 nucleic acid sequence

35 HUM213181 accession:D26181 CDS:37..2865

GAATTCCCGCGCAGAGACTCCAGGTCGAGGTCGACATGGCCAGCGACGCCGTGCAGAGTGAGCCTCGCAGCTGG
 TCCCTGCTAGAGCAGCTGGCCTGGCCGGGAGACCTGGCGCCCCGGGTACAGCAGCAGCTGGAGCTGGAG
 CGGGAGCGGCTCGGGGGAAATCCGCAAGGAGCTGAAGCTGAAGGAGGGTGTGAGAACCTGCGGCGGGCACC

ACTGACCTGGGCCGAGCCTGGCCCCGTAGAGCTGCTGCTGCCGGCTCTCGGCCCTGACCTGTCAC
CAGCAGCTGCAGGAGCTGCACGCCACGTGGTCTCCGACCCGGCGAACCCACGATGGCCCCAGTCCCCT
GGTGCGGGTGGCCCCACCTGCTCGGCCACCAACCTGAGCCGCGTGGCGGGCTGGAGAAGCAGTTGCCATTGAG
CTGAAGGTGAAGCAGGGGCGGAGAACATGATCCAGACCTACAGCAATGGCAGCACCAAGGACCGAAGCTGCTG
5 CTGACAGCCCAGCAGATGTTGCAGGACAGTAAGACCAAGATTGACATCATCCGCATGCAACTCCGCCGGCGCTG
CAGGCCGCCAGCTGGAGAACCAAGGCAGCCCGGATGACACCCAAGGGAGTCCTGACCTGGGGCTGTGGAGCTG
CGCATCGAAGAGCTGCGCACCACTCCGAGTGGAGCACGCCGGAGGGTCCAAGAACGTACTGCGCTG
CTCAGCGCTGCCAAGGCCGGACCGCAAGGCAGTCAGCGAGGCCAGGAGAAATTGACAGAATCCAACCAGAAG
CTGGGGCTGCTGCCGGAGGCTCTGGAGCGGAGACTTGGGAGCTGCCGCCGACCACCCCAAGGGCGGCTGCTG
10 CGAGAAGAGCTCGCTGCCCTCCGCTGCCCTCAGCACCCGCCCTGGCCGGCCCTTCCGCCACGCACTAC
AGCACCCCTGTGCAAGCCCGCCGCTCACAGGGACCCCTGGAGGTACGAGTGGTGGCTGCAGAGACCTCCAGAG
ACCATCCCCTGGAACCCCTACCCCTCAATGGGGGACCTGGACCCAGACAGCCGCCCCCTCCCTGAGCCGC
CCAGCCCGGGGCTTACAGCGAAGCGAACGCTCAGTGGCCGGAGCAGCCTCAAAGCAGAAGCGAGAACACC
AGTGAAGTCAGCACTGTGCTTAAGCTGGATAACACAGTGGTGGGGCAGACGTCTTGGAAAGCCATGTGGCCCAAT
15 GCCTGGGACCAGAGCTTCACTCTGGAGCTGAAAGGGCACGGAACTGGAGTTGGCTGTGTTCTGCCGGACCAG
CGGGGCCTGTGCTGCCCTCAAATTCTGAAGTTGGAGGATTCTTGACAATGAGAGGCATGAGGTGCAGCTGGAC
ATGGAACCCCAGGGCTGCCCTGGTGGCTGAGGTACCTCCGCAACCCCTGTCATTGAGAGGATTCTCGGCTCCGA
CGGCAGAAGAAAATTCTCCAAGCAGCAAGGGAGGGCTCCAGCGTGCTAGGCAGATGAACATCGATGTCGCC
ACGTGGGTGCCGTGCTCCGGAGGCTCATCCCAATGCCACGGCACAGGCACCTTAGCCCTGGGCTTCTCCA
20 GGATCCGAGGCCGGACCACGGGTGACATATCGGTGGAGAACGCTGAAACCTCGGCACTGACTCGGACAGCTCACCT
CAGAAGAGCTCGCGGATCCTCCCTCCAGCCATCGAGCCTGAGCTCCCCATCCAGGAATCCACTGCTCCGAG
CTGCCCTCGAGACCCAGGAGACCCAGGGCCCGCCCTGTGAGCCCTCTGAGGAAGTCACCTCTGACCCCTCGAA
GATTCAAGTTCTGGCGGTGCTGGCCGGGTCAATTGGAAAGGTGCTCTCTCCGAATTCCGGCCAGTGGG
GAGCTGTTGCCATCAAGGCTCTGAAGAAAGGGACATTGTGGCCCGAGACGAGGTGGAGAGCCTGATGTGAG
25 AAGCGGATATTGGCGGCAGTGACCAAGTGCAGGACACCCCTCTGGTAACCTCTCGGCTGTTCCAGACACCG
GAGCACGTGTGCTTCGTGATGGAGTACTCGGCCGGTGGGACCTGATGCTGCACATCCACAGCGACGTGTTCTCT
GAGCCCCGTGCCATCTTATTCCGCCTCGTGGTGTGGCTACAGTTCTTACGAACACAAGATCGTCTAC
AGGGACCTGAAGTTGGACAATTGCTCTGGACACCGAGGGCTACGTCAAGATCGCAGACACTTGGCCTCTGCAAG
GAGGGGATGGCTATGGGACCGGACCAAGCACATTCTGGGACCCGGAGTTCCCTGGCCCTGAGGTGCTGACG
30 GACACGTGTACACCGCAGCTGGACTGGTGGGACTGGTGGTGTGCTCTACGAGATGCTGGTGGCGAGTCC
CCATTCCCAGGGATGATGAGGAGGAGGTCTCGACAGCATCGCAACGACGAGGTTCGCTACCCCGCTTCTG
TCGGCCGAAGCCATCGCATTGAGAAGGCTGCTCGGAGGAACCCAGAGCGGAGGCTGGGATCTAGCGAGAGA
GATGCAGAAGATGTGAAGAAACAGCCCTTCTCAGGACTCTGGCTGGGAAGCCCTGTTGGCCGGCCTGCCA
CCGCCCTTGTGCCACGCTGTCCGCCGACCGACGTCAGCAACTTCGACGAGGAGTTCACCGGGGAGGCC
35 AACTGAGCCGCCCGACGCCGGCCCTTACAGCGCGGAGCAGGCAGCCTCTGGACTTCGACTTCG
GCCGGGGCTGCTAGCCCCCTCCCTGCCCTGCCCTGCCGAGAGCTCTAGTTAAAAAGGCCT
TTGGGATTTGCCGGAAAAAAAAAAAAAAAGGAATT

SEQ ID NO:54 Human PRK1 polypeptide sequence

protein_id:gi825505

MASDAVQSEPRSWSLLEQLGLAGADLAAPGVQQQLELERERLRREIRKELKLKEGAENLRRATTDLGRSLGPVEL
 LLRGSSRRLDLLHQQLQELHAHVVLPDPAATHDPQSPGAGGPTCSATNLSRVAGLEKQLAIELKVQGAENMIQ
 5 TYSNGSTKDRKLLLTAQQMLQDSKTKIDIIIRMQLRRALQAGQLENQAAPDDTQGSPDILGAVELRIEELRHHRVE
 HAVAEGAKNVRLLSAAKAPDRKAVSEAQEKLTESNQKLGLLREALERRLGELPADHPKGRLREELAAASSAAF
 STRLAGPFPATHYSTLCKPAPLTGTLEVRVVGCRDLPETIPWNPTPSMGGPGTPDSRPPFLSRPARGLYSRSGSL
 SGRSSLKAEAENTSEVSTVLKLDNTVVGQTWSKPCGPNAWDQSFTLELERARELELAVFWRDQRGLCALKFLKLE
 DFLDNERHEVQLDMEPQGCLVAEVTFRNPVIERIPRLLRKQKKIFSKQQGKAFQRARQMNDVATWVRLRRLIPN
 10 ATGTGTFSFGASPGEARTTGDISVEKLNLDSDSSPQKSSRDPPSSPSSLSSPIQESTAPELPSETQETPGPA
 LCSPLRKSPLTLEDFKFLAVLGRGHFGKVLSEFRPSGELFAIKALKKGDIVARDEVESLMCEKRILAATSGAGH
 PFLVNLFGCFQTPEHVCVMEYSAGGDLMLHIHSDFVSEPRAIIFYCACVVLGLQFLHEHKIVYRDLKLDNLLDT
 EGYVKIADFGLCLEGMYGDRTSTFCGTPEFLAPEVLTDSYTRAVDWGLGVLLYEMLVGESPPFGDDEEEVFD
 SIVNDEVRYPRFLSAAAIGIMRLLRRNPERRLGSSERDAEDVKKQPFFRTLGEWEALLARRLPPPFVPTLSGRTD
 15 VSNFDEEFTGEAPTLSPPRDARPLTAAEQAAFLDFDFVAGGC

SEQ ID NO:55 Mouse PRK1 nucleic acid sequence

accession:XM_134571

CDS:229..1077

ACATCTCCAGAGCTGCCCTCAGAGACCCAGGAGACTCCAGGCCCTGGCTGTGCAGCCCCTTGAGAAAGTCGCC
 20 CTGACACTTGAGGACTTCAAGTTCCCTGGCGTGCTTGGCGGGGTCACTTGGAAAGGTGCTGCTGTGAATT
 CGCTCCAGTGGGAGCTTTGCCATCAAAGCCTTGAAGAAAGGTGACATTGTAGCCGAGATGAGGTTGAGAGC
 CTGATGTGTGAGAAGCGGATTTGGCGGCCGTGACCAGGGCAGGACATCCCTTCTGGTAACCTTTGGCTGT
 TTCCAGACCCCAGAGCACGTGTGCTTGTATGGAGTACTCGGGGGTGGAGACCTGATGCTGCACATTCA
 GACGTGTTCTCAGAGCCTCGGGCTGTCTTCTATTGCCCTGTGTGGTGCTGGACTGCAGTTCCCATGAACAC
 25 AAGATTGTCTACAGGGACCTGAAGTTGGACAATTGCTCCTGGATACTGAGGGCTACGTCAAGATCGCAGACTTT
 GCCCTCTGCAAGGAGGGATGGCTATGGGACCGGACCAGCACGTTCTGGGAACCTCGGAGTTCCCTGGCGCC
 GAAGTGCTCACAGACACATCCTACACGCGAGCAGTGGACTGGTGGGACTGGCGTGCTCTATGAGATGTTG
 GTTGGAGAGTCTCCGTTCCCTGGGATGATGAGGAGGGTATTGACAGCATTGTCAACGACGAAGTTCGCTAT
 CCCCGCTTCTGTCTGCAGAGGCCATGGCATCATGAGAAGGCTACTGCCAGGGAAACCCGGAGCGGGAGGGCTGGGG
 30 TCCACTGAGCGCGATGCAGAAGATGTGAAAAAACAGCCTTCTCCGGTCTCTGGCTGGGATGTCCTGCTGGCC
 CGCCGCTTGCCTCCACCCCTCGCCTACACTTCAGGGCGCACAGATGTCAGCAACTCGATGAGGAGTTCACT
 GGGGAGGCCCCACACTGAGTCTCCCGGGATGCACGGCCCTCACAGCTGGAGCAGGCGCTCCGGGAT
 TTCGACTTGTGGCCGGAGGCTACTAGCCCCAAGCCCTGCCTAACCAAGAGTTCTTGATTTTAAAAACAA
 GCCTTGGGGTTACTCCATACATGCATTTCAGCCTCTGTGTGCATCTGGACTGGAGTGTGCTTGG
 35

SEQ ID NO:56 Mouse PRK1 polypeptide sequence

accession:gi20885599

MCEKRILAATVTRAGHPFLVNLFGCFQTPEHVCVMEYSAGGDLMLHIHSDFVSEPRAVFYSACVVLGLQFLHEHK
 IVYRDLKLDNLLLDTEGYVKIADFGLCLEGMYGDRTSTFCGTPEFLAPEVLTDSYTRAVDWGLGVLLYEMLV

GESPPFGDDEEVFDSIVNDEVRYPRFLSAAIGIMRLLRRNPERRLGSTERDAEDVKKQPFFRSILGWDVLLAR
RLPPPFVPTLSGRTDVSNFDEEFTGEAPTLSPPRDARPLTAAEQAFRDFDVAGGY

SEQ ID NO:57 Rat PRK1 nucleic acid sequence

5 accession:L35634 CDS:18..2858

TGGGACCCCTGGCGACATGGCCGGCGACGCCGTGCAGAGTGAACCTCGCAGCTGGTCACTGCTGGAGCAGCTGG
GTCTGGCTGGGGCAGACCTGGCAGCCCCCTGGGGTGCAGCAGCAGCTGGAGTTAGAGCGAGAGCGGCTGAAGCGGG
AAATCCGAAAAGAGCTGAAGCTGAAGGAGGGCGTGAGAACCTGAGGCGGCCACCACTGACCTGGCCGAGCT
TGGCCCTGTGGAACTGCTGCTGAGGGCTCCGCTAGACGGCTTGACTTGCTGCACCAGCAGCTGCAGGAGCTGC
10 ATGCACATGTGGTGCCTGCCCACCCCTACAGCGGGAGTGATGCTCCCCAATCCCTTGAGAGGGCAGCCCTGTCT
GCTCATCCACCAACCTGAGCCAGTGCGCTGGCTGGAGAACGCAGCTGGCCATTGAGCTCAAGGTCAAACAGGGGG
CAGAAAACATGATCCAGACCTACAGCAATGGCAGCACCAAGGACCGGAAGCTGCTGTTGACGGCCAACAGATGC
TGCAGGATAGTAAGACCAAGATTGACATCATCCGCATGCAGCTCGCCGGCGCTACAAGCACTCCAGGCTGGCC
AGCTGGAGAGTCAGGCAGCTCCTGATGAGGCCACGGAGATCCAGACCTGGAGGCCAGAGCTACGCATTGAGG
15 AGCTACGACACCATTCGAGTAGAGCATGCAGTGGCAGAAGGCAGCAAGAATGTCCTGCGTCTGCTCAGTGC
CAAAGGCCAGACCGCAAAGCAGTCAGCGAGGCTCAGGAGAAATTGACTGAGTCCAACCAGAAAGCTGGCTTG
TGCAGGAGTCAGTGAGAGGCCAGCTGGGGAACTGCCTGCTGATCACCCCAAGGGACGCCCTGCTCGGGAGGAGC
TCACTGCGCGCTCATCGGCAGCCTTCAGTGCATACTGCCTGGCCCTTCCCTGCCACTCACTACAGCACCTTGA
GCAAGCCTGCACCACTCACAGGGACCCCTGGAAAGTACGAGTGGTGGCTGCAAAACCTTCCCAGACCATCCCTT
20 GGAGCCCTCCCCCTCAGTCGGGCATCTGGACCCCCGACAGCCGACTCCTCTTGAGTCGTCAGCTCGGG
GCCTTACAACCGAAGTGGAAAGCCTTAGTGGACGGAGCAGCCTCAAGGGGAGGCAGAGAAATTCACTGAGGTCA
GCACCGTGCCTCAAGCTGGACAACACTGTGGTGGGGCAAACAGCCTGGAAGCCATGCCCTGGACATGGCTGGGACC
AGAGCTTCACCCCTGGAGCTGGAGAGGGCTGGAGCTGGAGTTGGCTGTGTTCTGGCGTGACCAGAGGGTCTGT
GTGCTCTCAAATTCTGAAGTTGGAAAGACTTCTGGACAATGAGAGGCATGAGGTGAGCTGGACATGAAACCC
25 AGGGCTGCCCTGGTGGCTGAGGTACCTTCCGTAACCCATCATCGAGCGGATCCCTAGGCTCCAAAGGCAGAAAA
AAATTCTCCAAGCAGCAAGGGCAGACATTTCAGCGTGCAGACAGATGAACATCGATGTGGCCACCTGGGTGC
GGCTGCTCCGGAGACTCATCCCGAACGCCGTGCCACTGGCTCCTCAGCCCAATGCATCTCAGGCTCTGAGA
TCCGGAGCAGTGGAGACATATCCATGGAGAAATTGAATCTCGGTGCTGACTCAGACAGCTCGTCCAGAAGAGCC
CCGCAGGGCTGCCCTCACCTCATGTAGCCTGAGTTCTCCAACCCACGAATCCACCACTCTCCAGAGCTGCC
30 CAGAGACCCAGGAGACCCCAGGCCCTGGCTGTGCAGTCCCTGAGGAAGTGCCTGAGGACT
AGTTCCCTGGCAGTGCTTGGTGGGGTCACTTGGAAAGGTGCTGCTGATGAATTCCACTCCAGTGGGAGCTCT
TTGCCATTAAAGCCGTGAAGAAAGGTGACATTGTAGCCGGATGAGGTGAGAGGCCTGATGTGAGAAGCGGA
TTTGGCGACCGTGACCGAGGACATCCCTGGTGAACCTTCCGGCTGTTCCAGACCCCAGACATG
TGTGCTTGTGATGGAGTACTCAGCCGGGGACTTGATGCTGCATATCCACAGCGACGTGTTCTCAGAGCCTC
35 GGGCTGTCTCTATTCCGGCTGTGTGGTGTGGACTGCAGTCCCTCCATGAACACAAGATTGTCTACAGGGACC
TGAAGTTGGACAATTGCTCCTGGATACTGAGGGCTACGTCAAGATCGCAGACACTTGGCCTCTGCAAGGAGGGGA
TGGGCTATGGGGACCGGACCAGCACATTCTCGGGACTCCGGAGTTCCCTGGCGCCAGAAGTGCACAGACACAT
CCTACACTCGAGCCGTGGACTGGTGGGGACTGGGTGATTGCTCTATGAGATGCTGGTTGGAGAGTCTCCGTTCC
CTGGGGACGAGGAGGAGGAAGTATTGACAGCATCGTCAATGATGAGGTTGTTATCCCCGCTTCTGTGCGG
40 AGGCCATGGCAGTGCAGAGGCTACTGCCAGGAACCCAGAGCGGAGGTTGGGATCCACTGAGCGTGTGAGCAG

AAGATGTAAAAAACAGCCTTCAGGACTCTGGACTGGGATGCCCTGCTGGCCCGCCTGCCTCCACCC
 TCGCCTACACTTCCGGGCGCACAGACGTCAGCAACTCGATGAGGAGTTCACTGGGAGGCCACACTGA
 GCCCTCCCCGGATGCACGGCCCTGACAGCTGCGGAGCAGGCGGCTCCGGATTGACTTGTGGCAGGAG
 GCTATTAGCCCTAAGCCCCTGCCCTGCCAAGAGTTCTGGTTAAAAAGCCTTGGGTTACTCCATAAA

5 AAAAGGAATT

SEQ ID NO:58 Rat PRK1 polypeptide sequence

accession:gi16905491

MAGDAVQSEPRSWSLLEQLGLAGADLAAPGVQQOLELERERLREIRKELKLKEGAENLRRATTDLGRSLAPVEL
 10 LLRGSARRLDLLHQQLQELHAHVLPDPTAGSDAPQS LAEGSPVCSSTNLSRVAGLEKQLAIELKVQGAENMIQ
 TYSNGSTKDRKLLLTAQQMLQDSKTKIDII RMLQRLALQALQAGQLESQAPDEAHGDPDLGAVELRIEELRHIF
 RVEHAVAEGAKNVRLLSAAKAPDRKAVSEAQEKLTESNQKLGLLRESLERRLGELPADHPKGRLREELTARSS
 AAFSAILPGPF PATHYSTLSKPAPLTGTLEV RVVGCKNL PETIPWSPPPSVGASGTPDS RTPFLSRPARGLYNRS
 GSLSGRSSLKGEAENSTEVSTVLKDNTVVGQTAWKPCGPNAWDQSFTLELERARELELA VFWRDQRGLCALKFL
 15 KLEDFLDNERHEVQLDMEPQGCLVAEVTFRNPIIERIPRLQRKKIFS KQQQQT FQRARQMNI DVTWVRLRRL
 IPNAVATGSFSPNASPGSEIRSTGDISMEKLN LGADSDSSSQKSPAGLPSTSCS LSSPTHESTT SPELPSETQET
 PPGPLCSPLRKSP LTLED FKFLAVLGRGHFGKVLLSEFHSSGELFAIKAVKKGDIVARDEVESLMCEKRILATVT
 RAGHPFLVNLFGCFQTPEHVC FVMEYSAGGDLMLHIHSDVFSEPRAVFYSACVVLGLQFLHEHKIVYRDLKLDNL
 LLDTEGYVKIADFGLC KEGMGYGDRTSTFCGTPEFLAPEVLTDTSYTRAVDW WGLGVLLYEMLVGESPF PGDDEE
 20 EVFDSIVNDEVRYPRFLSAEAIGIMRLLRRNPERRLGSTERDAEDVKKQPF RTLDWDALLARRLPPP FPVPTLS
 GRTDVSNFDEEFTGEAPTLSPPR DARPLTAAEQAAFRDFDFVAGGY

SEQ ID NO:59 Human HIOMT nucleic acid sequence

HUM221672 accession:U11091 CDS:104..1225

25 CAGCTGTAGCGGGTGGCTCTCCCCACCTTGCCAGCAGGCTCTGTCTCCCTGAAGCAAGCGCTCCAGAGGCTC
 CGGAAGCCACGGCTGGATTGGAGACAAGATGGGATCCTCAGAGGACCAGGCCATGCCCTCTTAATGACTACGC
 CAACGGCTTCATGGTGTCCCAGGTTCTCTCGCCGCTGCGAGCTGGCGTGTACCTCTCGCCGAGGCC
 AGGGCCCTGGACGTGGCGGAGTGGCTGCAGGTGTAGGGCCAGGCCATGGGACAGAGCTCCTGCTGGACAT
 CTGTGTGTCCCTGAAGCTGCTGAAAGTGGAGACGAGGGAGGAAAAGCTTCTATCGAAACACAGAGCTGTCCAG
 30 CGACTACCTGACCACGGTCAGCCCAGTCACAATGCAGCATGCTGAAGTACATGGCAGGACCAGCTACCGGTG
 CTGGGCCACCTGGCAGACGCCGTGAGAGAAGGAAGGAACAGTACCTGGAGACGTTGGCGTCCGCTGAAGA
 GCTTTTACGGCCATCTACAGGTCCAGGGCAGCGCTACAGTCTGACAGTCTGAGGAGGTCTGGAGCGT
 CAACGGGAGAAGCGTGTGACCGCCTTGACCTGTCAGTGTCCACTTATGTGTGACCTGGTGGACACGGAT
 AAAGCTGGAAACCATCATTCTCAGCAA ACTATCGCAAGGACAGAAAACACCCGTGTTCTCACTCATAGG
 35 TGGGGCTGGAGCTCTGGCTAAGGAATGCATGTCTGTACCTGGATGTAAGATCACCGTTTGACATCCCAGA
 AGTGGTGTGGACGGCAAAGCAGCACTTCTCATTCCAGGAGGAAGAACAGATTGACTTCCAGGAAGGGATTCTT
 CAAAGACCCCTTCCCGAAGCTGATCTGACATCCTGGCCAGGGCTCCATGACTGGCAGACGGAAAGTGCTC
 ACACCTGCTGGAGAGGATCTACCAACACTTGCAAGCCAGGTGGCATTCTGGTAATTGAAAGCCTCCTGGATGA
 AGACAGGCAGGGCCTCTGCTCACGCAGCTACTCTGAACATGCTGTGACAGCGAAGGCAGGAGAGGAC
 40 CCCCCACCACTACCACATGCTCCTCTCTGGCTTCAGAGACTTCCAGTTAAGAAAACAGGAGCCATT

TGATGCCATTAGCCAGGAAATAACTGTTCTTGTACCTGGAACTAACGTCAAAGCACACAAGACATAATAAT
AAAGACATGTACCTCCA

SEQ ID NO:60 Human HIOMT polypeptide sequence

5 protein_id:gi607842
 MGSSEDQAYRLLNDYANGFMVSQVLFAACELGVFDLLAEAPGPLDVAAVAAGVRASAHGTELLLICVSLKLLKV
 ETRGGKAFYRNTELSSDYLTTVSPTSQCMLKYMGRTSYRCWGHILADAVREGRNQYLETFGVPAEELFTAIYRSE
 GERLQFMQALQEVEVSVNGRSVLTAFLSVPLMCDLGGTRIKLETIILSKLSQGQKTKHRVFSLIGGAGALAKEC
 10 MSLYPGCKITVFDIPEVVWTAKQHFSFQEEEQIDFQEGDFFKDPLPEADLYILARVLHDWADGKCSHLLEIYHT
 CKPGGGILVIESLLDEDRRGPLLTQLYSLNMLVQTEGQERTPTHYHMLLSSAGFRDFQFKKTGAIYDAILARK

SEQ ID NO:61 Human Taurine Transporter nucleic acid sequence

HUM222212 accession:Z18956 coding sequence:20..1879

15 GAATTCCGAAAGCAAGGAGATGGCCACCAAGGAGAACGCTGCAGTGTCTGAAAGATTCCACAAGGACATGGTGAA
 GCCCTCACCAAGGGAAGAGCCCAGGCACGCCCTGAGGACGAGGCTGAGGGAAAACCTCCGCAGAGGGAGAAGTG
 GTCTAGCAAGATCGACTTGTGCTCTCTGTGGCTGGCGCTTCGTGGCTGGCAACGTCTGGCGCTCCCGTA
 CCTCTGCTACAAGAATGGTGGAGGTGCGTTCTCATACCGTATTATTTCTGTTGGAGCGGCCTGCCTGT
 GTTTTCTGGAGATCATCATAGGCCAGTACACCTCTGAAGGGGGCATCACCTGCTGGAAAAGATCTGCCCTT
 20 GTTCTCTGGTATCGGCTATGCCTCCGTTGTAATTGTGTCCTCCTGAATGTCTACTACATCGTCATCCTGGCTG
 GGCCACATACTACCTGTTCCAGTCCTCCAGAACGGAGCTGCCCTGGCACACTGCAACCACAGCTGGAACACACC
 TCAC TGCACTGGAGGACACCATGCCAAGAACAAAGAGTGTCTGGATCACCATCAGCTCCACCAACTCACCTCCCC
 TGTCATCGAGTTCTGGGAGCGAACGTGCTGAGCTTGTCCCCTGGAATCGACCAACCCAGGCTCTGAAATGGGA
 CCTCGCTCTGCCTCTTTAGTCTGGCTAGTGTGTTCTGCATCTGCAAGGGCGTCAGGTCCACTGGAA
 GGTGCTACTTCACAGCCACCTTCCATTGCCATGCTCCCTGGTCTGCTGGTCCGAGGGCTGACGCTGCCGGG
 25 CGCGGGCGAGGCATCAAGTTCTATCTGATCCTGACATCACCCGCTTGAGGACCCACAGGTGTGGATTGACGC
 TGGGACTCAGATATTCTCTCTATGCCATCTGCCCTGGGGCTATGACCTCGCTGGGAGCTACAACAAGTACAA
 GTATAACTCGTACAGGACTGTATGCTGCTGGGATGCCTGAACAGTGGTACCAAGTTGTGTCGGCTTCGCAAT
 TTTTCCATCCTGGCTTCATGGCACAAGAGCAAGGGGTGGACATTGCTGATGTGGCTGAGTCAGGTCTGGCCT
 GGCCTTCATTGCCCTACCCAAAAGCTGTGACAATGATGCCGCTGCCACATTGGTCATTCTTTTTTATTAT
 30 GCTTCTCTGCTTGGACTGGATAGCCAGTTGTAAGTTGAAGGGACAGATCACATCCTGGTGTACCTTACCC
 ATCCTTCTAAGGAAGGGTATCGTCGGAAATCTCATGCCCTCGTGTAGCATCAGCTACCTGCTGGGCT
 GACGATGGTGACGGAGGGTGGCATGTATGTTAGCTTCACTACTATGCAGCTAGCGGTATGCCCTT
 GTGGGTTGCAATTGTAATGTTGTTATTGCCCTGGATATATGGAGGTGATAACCTTATGATGGTATTGAGGA
 CATGATTGGCTATGCCCGGGCCCTGGATGAAGTACAGCTGGTGTACCTCAGTTCTGTTGGATGTT
 35 CATCTTCTCGCTCGTCAAGTACGTACCCCTGACCTACAACAAACATACGTGTCCCCAACGGCCATTGGGCT
 GGGCTGGAGCCTGGCCCTTCCATGCTCTGCCCTGGCATCGTCATCCGCTCTGCCAGACTGAGGG
 GCCGTTCCCTGTGAGAGTCAGTACCTGCTGACCCCAAGGGAAACCCAAACGGCTGGCTGGAGCGAGGGAGC
 CACACCTTACAACCTCGCACCGTCATGAACGGCGCTCTCGTGAACCCACATCATTGTGGAGACCATGAT
 GTGAGCTCTCGGGTCAGGGCCGGCTTCTGCTGTTACTAACATTAGATTACATAGGACCAGGTT
 40 TACAGAGCTTATATTGCACTAGGATTTTTTTGTAATTGTCACAGAAAATGTAATTGTGGGTATGTGT

GCGTGCCTGTGTGTGTGTGTATCGTGTGTGTTTGATTTGGGGATATTTGTACAAA
 AAGAAAACCCACGGGAAGATGTCGTGGAGAGGAGAGCTTCATACTGAATTAGATGTATTTATGGAAATTG
 GTAAATTTCTTGTATTTTTACATATAAGTATATACACTTAGAGATTGTATACACTTTACCAC
 TTGAATTGATCTCTGCCAGCAATAGATCTCATTTCAAAAGCAATTCTCGGTGCTGTAGCTGGCAGAAAG
 5 TTCTGTCCAGTAAACGCAGGATGGAATTTCCTGGGACTCTACACCCATCTTAAGGTGGTATACCTCCAAATCC
 TGTTTCAGATGGAAGAAATAGCAGGAGAGAGGACCCATTAGCTGGCAGACCCAGGGGAAGAAAGGAGGGCTGTGA
 GGAGATACCTCATTAAACTTGGCTAGTGAAGAAGAGAGATGCCAAAGGAATGAACCAACCCCTCACATAAAGGA
 GACTGGCTGAAGCTGAATGAGGAGGCCCTATAGCAGAAGTCTGATTCTAAGAGCAGTAGAAACTTGTACCAAGAAG
 10 CAAAATCCCACTTTAATTTGAGATGGTAGTGGATAGTCAGTAGACCGTCAGAACCAACTGGCAGAGAGGGAG
 CTGCTAGAGATCCAAGAAGGCTGGCAGGAATGAGGCTCACAACTCAGCCTCGCAAGAGGTGGCAGAGGCACAGGA
 GCCCACAGTCCTCCTGGGCATTCCAGGCAGAGAAGGAGCAGAGGCTCTCCGGCAGGAGCTGGGTCTCAGGG
 CTCAGATGAGTCTGTTGCATTGAATGGGTCTAGCAGGTTCTGGTCATTCCCCAAGCAACATCTCAGCATCTC
 TTAAAGTTGCCTGCAGGAATGAAGCATGACATACCTGTTGAGGGACTAGGGAGTGGTGGGAGGTGAGTGGACC
 AAAGGATATAGGCCCAAGGCATGCAGATGGGCCGGTGTGGAGGGGTGCTTCTTCATCTCCCCACTC
 15 CCCACTCTCAGCCTGGGAGACTCCTGCCAACCCCTCATTAAGATGCCACCCCTGGCTGCCCTGGCACCTAGCAA
 GGACACCAAGAACAGCTTTGAGTCGTATCCTCCACTGGGAAGTGCTCCAGTCAGAACAAAGGGCAGCCCGT
 GGTGCTGACCTAGGATATAACAAAGCTCTCACTTCAAAACCCCTGCAATAGCTGGTTTACAGACATTACAC
 CTGGGGACCCAAAAGAGAAGGCCTAGGAGAGTTCTAGAAGGTTGGATTGTCAAGGGTCTGGGCCCCCAGAAC
 TGGCTTGATCAAGGGCTTATGTGGAGCAGAGGTTGTCTCTGAACCAGGAGAGAAGGTACTATACTTTCAAATC
 20 CCCAGGGCAGACACACCCCCACCCAGCCCTATTGGACCTAAACTGTGCCATTGAACAGTCACCTCCAAGCTC
 AGTCTAAATGAAACCGAAACGTGACCACGCAAAAGGCAGTCAGTCAGTCAGGGGTGCAGACCGCAGAATTTC
 CAGCAGGGCTCTGGAACTCTGGAAACCCCCCTCTTAAATTGGAGGAGGAGTATGCTGGGTCTGGGCCCCCTC
 CCAAGGGCAATTCTGAACCCATCTTGGCAGGCATACATATTCACTGTTCAAAGCTATCTACTCTGCCAAA
 CAACACCCAGTCCTATTCAAACCTCAACGATTCTATCTGGTCTGGTTTCTATGTATTATGGTGGCGTT
 25 TGTGCTGATTGATTACTGTTTCCCTGATTTATGGAGTAGCATTGTGACCTGTTCTGGTCTTAT
 ATAACTTAGTAAACTAACCAACTGTCAATGATTGAGGGCAGGTGGCACGTGGGAAGAGGGCGGAATT
 C

SEQ ID NO:62 Human Taurine Transporter polypeptide sequence

protein_id:gi36727

30 MATKEKLQCLKDFHKDMVKSPGKSPGTRPEDEAEGKPPREKWSSKIDFVL SVAGGFVGLGNWRF PYLCYKNG
 GGAFLIPYFIFLFGSGLPVFFLEIIIGQYTSEGGITCWEKICPLSGIGYASVVIVSLLNVYYIVILAWATYYLF
 QSFQKELPWAHCNHSWNTPHCMEDTMRKKNKSVWITISSTNFTSPVIEFWERNVLSLSPGIDHPGSLKWDLALCLL
 LVWLVCFFCICKGVRSTGKVVFATFPFAMLLVLLVRGLTPGAGRGIKFYLYPDITRLEDPOVWIDAGTQIFF
 SYAICLGAMTSLGSYNKYKYNYSRDCMLLGCLNSGTSFVGFAIFSILGFMAQEQGVDIADVAESGPGLAFIAYP
 35 KAVTMMPLPTFWSILFIMLLLGLDSQFVEVEGQITSLVLDLYPSFLRKGYRREIFIAFVCSISYLLGLTMVTEG
 GMYVFQLFDYYAASGVCLLWVAFFECFVIAWIYGGDNLYDGIEDMIGYRPGPWMKYSWVITPVLCVGCFIFSLVK
 YVPLTYNKTYVSPTWAIGLGWSIALSSMLCVPLVIVIRLCQTEGPFLVRVKYLLTPREPNRWAVEREGATPYNSR
 TVMNGALVKPTHIIIVETMM

SEQ ID NO:63 Mouse Taurine Transporter nucleic acid sequence

accession:BC015245

coding sequence:235..2100

CCCCACGCGTCGGGGAGAAGCCGTTATAAATTACCGCTTCCCGCGCCGCCAGCGTCGTGCTCCGGGACC
TGGTTGCTGCCGAGCTCCCGTGCAGCCAGCGCAACGCCGATCGCCGCCAGTCCCGCCAGCCTGCCAGCCCCG
5 GGCCATCCGCTGTGGGCTTAGCCACCCAGGTGCAGAACCCAGTGCCACAGCCTCTCAGAGGAGCATCTCAAGCAA
AACGAAGAGATGGCCACGAAGGAGAAGCTGCAATGTCGAAAGACTTCCACAAAGACATCCTGAAGCCTTCTCCA
GGGAAGAGCCCAGGCACACGGCCTGAAGATGAGGCGGACGGGAAGCCCTCAGAGGGAGAAGTGGTCCAGCAAG
ATCGACTTTGTGCTGTCGGCGGAGGCTCGTGGGTTGGCAACGTCTGGCGTTCCGTACCTCTGCTAC
AAAAATGGTGGAGGTGCCTCCTCATACCGTATTTTATTTCTGTTGGAGCGGCCCTGCCTGTGTTTCTTG
10 GAGGTCACTCATAGGCCAGTACACATCAGAAGGGGCATCACCTGCTGGGAGAAGATCTGCTCTTGTCTGGC
ATTGGCTACGCATCCATCGTCAATTGTGTCCTCCTGAACGTGTACTACATCGTCACTGGCCTGGGCCACATAC
TACCTATTCCACTTTCCAGAAGGATCTTCCCTGGGCCACTGCAACCATAGCTGAAACACACCAAGTGCATG
GAGGACACCCCTGCGTAGGAACGAGAGTCACTGGGTCTCCCTAGCACTGCCAACCTCACCTCACCGTCATCGAG
TTCTGGGAGCGCAATGTGCTCAGCCTGCCGAATCGACAACCCAGGCAGTCTGAAATGGGACCTCGCGCTC
15 TGCCCTCTTTAGTCTGGCTCGTCTGTTTCTGCATCTGAAAGGGTTCGATCCACAGGCAAGGGTGTCTAC
TTCACCGCTACTTCCGTTGCCATGCTCTGGTCTGCTGGTCCGTGGACTGACCTGCCAGGTGCTGGTAA
GGCATCAAATTCTACCTGTACCCGTACATCAGCCCTGGGACCCACAGGTGTGGATCGACGCTGGAAACTCAG
ATATTCTTCCATCGCAATCTGCCCTGGGGCATGACCTCACTGGGAGCTATAACAAGTACAAGTATAACTCG
TACAGGGACTGTATGCTGCTGGGATGCCGAACAGTGGTACCACTGGTCTGGCTCGCAATTCTTCCATC
20 CTGGGCTTCATGGCACAAGAGCAAGGGTGGACATTGCTGATGTTGCTGAGTCAGGTCTGGCTGGCTTCATT
GCCTACCCAAAAGCTGTAACCATGATGCCGCTGCCACCTTGGTCTATTCTGTTTCATTATGCTCCTCTTG
CTTGGACTGGACAGCCAGTTGTAAGTCGAAGGACAGATCACATCCTGGTGTCTTACCGCCTTCTCTA
AGGAAGGGTTATCGTCGGAAATCTCATAGCCATCTGTGTAGCATCAGCTACCTGCTGGGCTGACGATGGT
ACGGAGGGTGGCATGTATGTTCAACTCTTGACTACTATGAGCTAGTGGTGTATGCCCTTGTTGGTGC
25 TTCTTGAAATGTTTGTATTGCCCTGGATATGGCGGTGATAACTTATATGACGGTATTGAGGACATGATTGGC
TATCGGCCTGGCCCTGGATGAAGTACAGCTGGCTGTCACTCACTCCAGCTTTGTGGATGTTCTGCTCTC
TCGCTTGTCAAGTATGTACCCCTGACCTACAACAAAGTGTACGGTACCCGGATTGGCAATTGGCTGGCTGG
GCCCTGGCCCTTCCATGCTGTATCCCTGGTATTGTCACTCCTCTGCCGACGGAGGGACCGCTC
CGCGTGAGAATCAAATACCTGATAACCCCCAGGGAGCCAACCGCTGGCTGGAGCGTGAAGGGCCACACCC
30 TTTCACTCCCGAGTAACCCCTCATGAACGGCGACTCATGAAACCCAGTCACGTATTGTGGAGACCATGATGTGA
GGTCCGGGCCATGTGACAGGCGCCGTTCTGCTGTTACTAACGTTAGATTCTCATAGGACCAAGGTTACAGA
GCTTTATATTGTACTAGGATTTTTTAAATTGTCACAGAAAATGTTACTCTATGTGTGTATGTGT
CGTGTATGTCTGTATGTGTGTTGTTGGGGATTTGTACAAAAAGAAAACCCATAGGCCCTACG
TCCTGGGAAAGAGGATGGACTTCATATTGATTTCCATGTATTGTGGGAACCTGGTAAATTCTTCTTGTATT
35 TTTTTAACATATAACTATATACTTAGAGTCTGTCATACACTTGCCACTTGAATTGGCTTGCCAGCAATGG
ATCTCGTTTCAAAAGCAATTCTCGGTGCTTATATAGCTGGCAGAAAGTTCTGCCAAAAACAAATGAAAAAA
GAGAAAAAAAAAAAAAA

SEQ ID NO:64 Mouse Taurine Transporter polypeptide sequence

accession:gi15929615

MATKEKLOCLKDHFHKDILKPSPGKSPGTRPEDEADGKPPQREKWSSKIDFVL SVAGGFVGLGNVWRFPYLCYKNG
 5 GGAFLIPYFIFLFGSGLPVFFLEVIIGQYTSEGGITCWEKICPLFSGIGYASIVIVSLLNVYYIVILAWATYYLF
 HSFQKDLPAWHCNHSWNTPQCMEDETLRRNESHWSLSTANFTSPVIEFWERNVLSLSSGIDNPGLKWDLALCLL
 10 LVWLVCFFCIWKGVRS TGKVVFATFPFAMLLVLLVRGLTLPGAGEGIKFYLYPDISRLGDPQVWIDAGTQIFF
 SYAICLGAMTSLSGSYNKYKYNNSYRDCMILLGCLNSGTSFVSGFAIFSILGFMAQEQQVDIADVAESGPGLAFIAYP
 KAVTMMPLPTFWISLFFIMLLLGLDSQFVEVEGQITSLVLDLYPSFLRKGYRREIFIAILCSISYLLGLTMVTEG
 GMYVQLFDYYAASGVVLLWVAFFECFVIWIYGGDNLYDGIEDMIGYRPGP威KYSWAVITPALCVGCFVSLV
 KYVPLTYNKVYRYPDWAIGLGWGLALSSMLCIPLVIVILLCRTEGPLRVRIKYLITPREPNRWAVEREGATPFHS
 RVTLMN GALMKPSHVIVETMM

SEQ ID NO:65 Rat Taurine Transporter nucleic acid sequence

accession:NM_017206

coding sequence:127..1992

15 GCCAACGCCCGATGCCGCCAATCCCGCCAGCCTCGGGCCGGGCATCCGCTGTGGGCTTAGCCACCCAGATGC
 AGAGCCAGTGCCACAGCCTCTTCAGAGGAGCCTCTCAAGCAAAACGAGGAGATGGCCACCAAGGAGAACGCTCAA
 TGTCTGAAAGACTTCCACAAAGACATCCTGAAGCCTCTCCAGGGAAAGAGCCCAGGCACGCCCTGAGGATGAG
 GCTGATGGGAAGCCCCCTCAGAGGGAGAAGTGGTCCAGCAAGATCGACTTGTGCTGTGGCCGGAGGCTTC
 GTGGGTTGGCAATGTCTGGCTTCCGTACCTCTGCTACAAAATGGTGGAGGTGCATTCCATACCGTAT
 20 TTTATTTCTGTTGGAGCGGCCCTGCCTGTGTTTCTGGAGGTCACTCATAGGCCAGTACACCTCAGAAGGG
 GGCATCACCTGCTGGGAGAACGATCTGCCCTTGTCTGGCATTGGCTACCGCCATCGTCATCGTGTCCCTC
 CTGAATGTGACTACATCGTACATCCTGGCCTGGCCACATACTACCTATTCCAGTCTTCCAGAAGGATCTCCC
 TGGGCCACTGCAACCAGCTGGAACACGCCAGTGCATGGAGGACACCCCTGCGTAGGAACGAGAGTCACTGG
 GTCTCCCTAGGCCGCCAACCTCACTTCGCTGTATCGAGTTCTGGAGCGAACGTGCTAGCCTGTCCCTCC
 25 GGAATCGACCACCCAGGCAGTCTGAAATGGACCTCGCCTCGCTCCCTTAGTCTGGCTCGTGTGTTTTC
 TGCATCTGGAAAGGGTGGTCTGGTCCACAGGCAAGGTTGTACTTCACTGCTACTTCCGTTGCCATGCTTCTG
 GTGCTGCTGGTCCGTGGACTGACCCCTGCCAGGTGCTGGTAAGGCATCAAATTCTACCTGTACCCCTAACATCAGC
 CGCCTTGAGGACCCACAGGTGTGGATCGACGCTGGAACTCAGATATTCTTCCACTGCTATCTGCCTGGGGCC
 ATGACCTCACTGGGAAGCTATAACAAGTACAAGTATAACTCGTACAGGGACTGTATGCTGCTGGGATGCCTGAAC
 30 AGTGGTACCACTGGTGTCTGGCTTCGCAATTCTGGCTTCATGGCACAAGAGCAAGGGTGGAC
 ATTGCTGATGTGGCTGAGTCAGGTCTGGCTGGCTTCATTGCCAACCCAAAGCTGTGACCATGATGCCGCTG
 CCCACCTTGGTCCATTCTGTTTATTATGCTCCCTTGCTGGACTGGACAGCCAGTTGTTGAAGTCGA
 GGACAGATCACATCCTGGTATCTTACCCGTCCTCCTAAGGAAGGGTATCGTCGGAAATCTTCAATTGCC
 ATCGTGTGCAAGCATCAGCTACCTGCTGGGCTGACGATGGTACGGAGGGTGGCATGTATGTTCAACTCTT
 35 GACTACTATGCAGCTAGTGGTGTATGCCCTTGCTGGTCGATTCTTGAATGTTGTTATTGCCCTGGATATAT
 GCGGGTGAATACTTATGACGGTATTGAGGACATGATCGGCTATGCCCTGGACCCCTGGATGAAGTACAGCTGG
 GCTGTCATCACTCCAGCTCTGTGTTGGATGTTCATCTCTCGTCAAGTATGTACCCCTGACCTACAAC
 AAAGTCTACCGGTACCCCTGATTGGCAATCGGCTGGCTGGGGCTGGCCCTTCCATGGTGTATCCCC
 TTGGTCATTGTCATCCCTCTGCCGGACGGAGGGACCGCTCCGCGTGAGAATCAAACCTGATAACCCCCAGG
 40 GAGCCCAACCGCTGGCTGTGGAGCGTGAAGGGCTACGCCCTTCACTCCAGAGCAACCCCTCATGAACGGTGCA

CTCATGAAACCCAGTCACGTATTGTGGAGACCATGATGTGAGGTCCGGGCTGTGTGACCGGCCGCTTCCCTG
 CCGTTACTAACCTAGATTCTCTAGGACCAGGTTACAGAGCTTATATTGTACTAGGATTTTTTTAAT
 TGTCACAGAAAATGTTACTCTGT
 TCTGTATATGTGTATTTGTATTGGGGATTATTTGTACAAAAGAAAACCCATGGCCTATGTCCCTGGG
 5 GGGAGAGGATGGACTTCATATTGATTTGATGTATTTATGGAACTTGTAAATTTCCTTGATTTTA
 ACATATAACTATATATAGACTGTCACTACACTTGCCACTTGAATTGGTCTTGCCAGCAACGGATCTCGTTTT
 TGTTTTTGTTTTCAAAAGCAATTCTCGGTGCTTACATAGCTGGCAGAGAGTTCTGCCAAAAACAAAT
 GAAAAAAAAAAA

10 SEQ ID NO:66 Rat Taurine Transporter polypeptide sequence

accession:gi8394318

MATKEKLQCLKDFHKDILKPSGPSPGTRPEADGKPPQREKWSSKIDFVLSVAGGFVGLGNWRFPYLCYKNG
 GGAFLIPYFIFLFGSGLPVFFLEVIIQYTSEGGITCWEKICPLFSGIGYASIVIVSLLNVYYIVILAWATYYLF
 QSFQKDLPWAHCNHSWNTPQCMEDTLRRNESHWSLSAANFTSPVIEFWERNVLSLSSGIDHPGSLKWDLALCLL
 15 LVWLVCFFCIWKGVIRSTGKVVFATFPFAMLLVLLVRGLTLPGAGEGIKFYLYPNISRLEDPVWIDAGTQIFF
 SYAICLGAMTSLSGSYNYKYNNSYRDCMLLGCLNSGTSFVSGFAIFSILGFMAEQGVDIADVAESGPLAIFIAYP
 KAVTMMPLPTFWSILFFIMLLLGLDSQFVEVEGQITSVLVDLYPSFLRKGYRREIFIAIVCSISYLLGLTMVTEG
 GMYVFQLFDYYAASGVCLLWVAFECFVIWIYGGDNLYDGIEDMIGYRPGPWMKYSWAVITPALCVGCFIFSLV
 KYVPLTYNKVYRYPDWAIGLGWGLALSSMVCIPLVIVILLCRTEGPLRVRIKYLITPREPNRWAVEREGATPFHS
 20 RATLMNGALMKPSHVIVETMM

SEQ ID NO:67 Human (R)-3-hydroxybutyrate dehydrogenase aldehyde reductase nucleotide sequence

HUM222493 accession:NM_004051 CDS:224..1255

25 GGCACGGGCGGAGGCCGAGGCCAGGAGTGTGGTGAGGGCTTCCAGAAAGACCCCTGGCAGCGCCCCCTCGC
 TCTCCCCGAGGAGAGCGGGCACCTGCGCGGCCGGTGAAGCGAGAGCCTCGCGAGCCCTCTGCAGCGAGCCCCCTGC
 CCATTGGTTTGGAACACCAGGGAGGAACCTGGCCATTCTAACACCCGTTGCTACCATGCTGCCACCCGCTCTCCAGACC
 CCTGTACGGCTCCAGGAAAACCTAACGTGCTGTGATAGAGAAAATGGAGCAAGACGCCACTATTGCTTGGTCTACTT
 CCTTATCCGATTGGCCGTCGGACTTATGCCAGTGGCGGGAGCCGGTGGCAGCAAAGCTGCTCTGGTACAGGCTGTGAC
 30 TCTGGATTGGTTCTATTGCCAACCATCTGCATTCAAAGGCTTCTGTGTTGCTGGCTGCTTGATGAAGGACAAGG
 CCATGATGGGTCAAGGAGCTGGACAGCCTAACACAGTGACCGATTGAGAACCGTCCAGCTCAATGTCTGCAGCAGCGAACAGG
 TGGAGAAAGTGGTGGAGATTGTCGCTCGAGCCTGAAGGACCCCTGAGAAAGGCATGTGGGCTCGTTAACATGCCGCATC
 TCAACGTTGGGAGGTGGAGTTCAACAGCCTGGAGACCTACAAGCAGTGGCAGAAGTGAACCTTGGGACAGTGGGAT
 GACGAAATCCTTCTCCCCCTATCCGAAGGGCCAAGGCCGCGTCGTAATATCAGCAGCATGCTGGGCCATGGCCAACC
 35 CGGCCGCTCCCGTACTGCATCACCAAGTTCGGGTAGAGGCTTCTGGACTGCCCTGAGAGCATTAGGCCATGCCAA
 GTGAAGGTCAGCGTGGTGGAGGCCGCAACTTATCGCTGCCACCAGCCTTACAGCCCTGAGAGCATTAGGCCATGCCAA
 GAAGATGTGGGAGGAGCTGCTGAGGTGCGCAAGGACTACGGCAAGAAGTACTTGTGATGAAAAGATGCCAAGATGGAGA
 CCTACTGCAGCAGTGGCTCCACAGACACGTCCCCGTACATCGATGCTGTCACACACGCCCTGACGCCACCACCCCTACACC
 CGCTTACCAACCCATGGACTACTACTGGTGGCTGCCAATGCCAGATCATGACCCACTTGCCCTGGAGGCCATCTCGACATGATCTA
 40 CATCCGCTGAAGAGTCTCGCTGTGGCTCTGTCAAGGATCCCTGGTGGAGGGAGGGAGGAACCCATATAGTCAACT
 CTGATTATCCACGTGTGGATTATCCACCATGCCAGGAAGACCCATAACTGGTTAAACACTAGAGGAAATGACTTCTT

TGCATAGTGAGTGACTTGGGCCTTCACAAACAGGGTGTGGAGTGGCAGGCAGAGGCCCTAAATCTCAGGGCAACATGGTGA
ATCTATCTCTCCGGAGATAATTCATACAGAGATTTAAGAAAACATCTTATATTAAAAAACAGATCTCATTGATCCTTAAA
AAAAAAAAAAAAAAA

5 **SEQ ID NO:68 Human (R)-3-hydroxybutyrate dehydrogenase aldehyde reductase polypeptide sequence**

protein_id:gi17738292

MLATRLSRPLSRLPGKTL SACDRENGARRPLLGSTSFIPIGRRTYASAAEPVGSKAVLVTGCDSGFGSLAKHL
HSKGFLVFAGCLMKDKGDGVKE LDLSN DRLRTVQLNVCSSEEVEKVVEIVRSSLKDP EKG MWGLVN NAGISTF
10 GEVEFTSLETYKQVAEVNLWGTVRM TKSFLPLIRRAKGRVVNISSMLGRMANPARSPYCITKFGVEAFSDCLRYE
MYPLGVVKVS VVEPGNFIAATSLYSPESIQAIKKMWEELPEVVRKDYGKKYFDEKIAKMETYCSSGSTDTPVID
AVTHALTATTPYTRYHPMDYYWWLRMQIMTHLPGAI SDMIYIR

15 **SEQ ID NO:69 Mouse(R)-3-hydroxybutyrate dehydrogenase aldehyde reductase nucleotide sequence**

accession:BC027063

GGACAAAGGTGATGCTGGGTCAAGGA ACTGGACAGCTTGAAGAGTGACCGACTGAGAACCATCCAGCTCAATGT
CTGCAACAGTGAAGAGGGTGGAGAAGGCGGGAGACGATCCGCTCCGGCCTGAAAGATCCTGAGAACGGGAATGTG
20 GGGCCTGGTTAACAACCGCAGGCATCTCAACGTTGGGAGGTGGAGTTCAC CAGCATGGAGACATATAAGGAGGT
GGCTGAAGTGAACCTCTGGGAACCGTGC GCACCACAAAATCCTCCTCCCTCTCCGAAGAGCCAAGGGT
CGTCGTTAACATCAGCAGCATGCTGGCCGCATGGCCAACCCCGCCGCTGCCATACTGCATCACCAAGTTGG
GGTCGAGGCTTCTCGACTGCCTCGCTATGAGATGCACCCCTCTGGGTGTCAAGGTCAGTGTGGTGGAACCTGG
CAACTTCATAGCGGCCACCAGTCTCACAGCCCCGAGCGC ATCCAGGCCATGCCAAGAACGATGTGGATGACCT
GCCTGAGGTCGTCCGCAAGGACTATGGCAGGAAGTACTTCGATGAAAAGATTGCCAAGATGGAAACCTACTGCAA
25 CAGCGGTTCCACAGATACTTCCTCTGTCATCAACGCTGT CACACACGCCTTGACCGCCGCCACCCGTATAACCG
CTACCATCCC ATGGACTACTACTGGTGGCTCGGATGCAGATCATGACCCATTTCCTGGAGCCATCTCTGACAA
GATCTACATACACTGAAGAGCTGAAGAGGTCCCTCGGTCTCCGCCAGGGAACCTGGTGGGAGGGAGAAAGATGA
GGGGAGGGAGTTACCTTTGATTAGCTATTGAGGATTACCCACTGTCTAGGAAGACCTATTAAACCTTACGT
GTTCAATGTGGTGAATGGTTGGGCCTTCACAAATTAGGGGGGGGGCGAGGGCGCAGGTGGTGGCCCTAAA
30 CCTCAGGGCCAATATGGTGTCTTCTATCTCGAGTTGATTTATATAAGATTTGTGGGAAATATCTTATA
TTAAAAGCAGGTTATTAGAATAGAATCCAAAATCATTTCAGCCAAACATCCATTGAAATCTGTATCCCATT
TGATCCTTATGTAAGTCTCATGAGTAAACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAGAACAG
CGCAGAGGACATACGAGACACCTTTCATTGTGTCCACGGAGTCCCGCCAGTGTACGGCAAAGGCAAATCACA
TTTGTGTCCCACAGACACTTGAAACCCATCAGTCCAGTAACCTGTGACCAACTCTGTACCTTCTCCTGAGCCAGT
35 CACACCAAAGGTCACTGTGTGCTATGTCTGTGCGTCCGTAGCTCTGTGACTGGTGGCCAGCAGTCAGTGAC
TCTCTGCTGGCTCCAGGTGGGGAAATCCAGAGACTTTCAGCTGAGATCTGGCATTCTCATTAAAGATTGAGT
TAGGTCTGGGTGAAGATGCTGTCCGGCTAAGAGCGCAGCTGGTTGCCTAGGACAGGATTGGTGTATGCTTG
GTGCTGCAAACAGACCAAGTGGTGCCAGGCTGGGACTGAGACACTTGCCCAGCAATGGTCTAGATGCCTGTTG
TCTTGTGTGCTCATGTGGTGCTCCACATGTGGTGGCGTGTGCATGCACTCACACACACACACACACAT

CACACACACACACACACATCACACACACACACACACACACCTGCTCCATAGACTTCAGGGTGGTCACCTCTTCTT
TGTATTGGAACTTCTTTAATTAAACTGAGACACAGTTAGAGAGGCCTGTGTTCAATCAAGGGACTTTGCA
TTGAAGGCTGCTTGTCCCTGAAGTTCTAGGGTCTCAGTATTTGGATCCAACCAAATCCCACGTTCCAG
GTGGCAGCAAGTCTTGGCCGGTATTTAAGTGCCAGCTTACACACATCTCAGCTTACACTTTGTGCATCTT
5 GTTGCAAAGTCTAGGACTGCCACTAGAGGGCGCGCTGCCCTCAACTGGAGCCTGTCAGGCCGGGGCTTC
GTTCACACAAAACCTGGGTCTTCAAGAGTGTGACCACCTACTTGGACACTGCCAGGGAACAAAGAGAACAG
CAAAGACCCCTTGGAAACCGATCCTACACTCCTGGCAGTGTCTAGCCTGAAACTGAAGCCCAGGCCAGGAGAA
AGCAAAGGAACCTGGACAGCCACAGGGCTGCGAGCAGTGTGAGACAAAGAGGGTCCCACAGAGAGCGAATT
AGCCTGCCGGTTGGCTTTAACCCCTGGATACAAACAGAGGTGCACTGTTCTAGCTCTGTCTCAAAGCA
10 AAGTAGATAGGCCTGAGAGGAAGGTGAGAGGGAGCCAGGGCCCCAGGGTCCACGAATTACCTGACAGCGGGA
TGCATTTGTACTGCAGAGCCTGCCTCTGCTGGCTTTCAGTGGCATTTACACCTTGGGAGAATTGTATCC
GTGTTAATAAGAGATTGGTCATAACAAAAAAA

SEQ ID NO:70 Mouse (R)-3-hydroxybutyrate dehydrogenase aldehyde reductase

15 polypeptide sequence

accession:gi20071589

DKGDAGVKELDSLKSDRLRTIQLNVCNSEEVEKAVETIRSGLKDPKGWGLVNNAGISTFGEVFTSMETYKEV
AEVNLWGTVRTTKSFLPLLRRAKGRVVNISSMLGRMANPARSPYCITKFGVEAFSDCLRYEMHPLGVKVSVVEPG
NFIAATSLYSPERIQAIAKMWDDLPEVVRKDYGRKYFDEKIAKMETYCNSGSTDSSVINAVTHALTAATPYTR
20 YHPMDYYWLRLMQIMTHFGAISDKIYIH

SEQ ID NO:71 Rat (R)-3-hydroxybutyrate dehydrogenase aldehyde reductase

nucleotide sequence

accession:NM 053995

25	CCCTCAATAGCCACACTATTTATTCATAAATTTCTTCCAAACCTTCTGCACCTCCCTCACCC AAAACATATAAACTCGGTGCCATGATGCTGGCCGCCGTCTTCCAGACCCCTGTACAGCTCCCAGGAAAAGCTC TAAGTGTCTGTGATAGAGAAAATGGGACAAGACACACACTGTTGTTTACCCAGCTTCTTCAGCCCTGACACCC GTCGGACCTACACCAGCCAGGCAGATGCGGCTAGTGGCAAAGCTGTCCCTGGTTACAGGCTGTGACTCTGGATTG GGTTCTCTTGCCAAAGCATCTACACTCAAAAGGTTCTGTATTGCCGGATGTTGTTGAAGGAACAAGGCG
30	ATGCTGGGTCAAGGAGCTGGACAGCCTGAAGAGTGACCGGCTGAGAACCATCCAGCTCAATGTCTGCAACAGTG AGGAGGTGGAGAAAGCGGTGGAGACCGTCCGCTCCGGCCTGAAGGATCCTGAGAACAGGAATGTGGGGCTGGTTA ACAACGCAGGCATCTCAACGTTGGGAGGTGGAGTTCACTAGCATGGAGACGTATAAGGAGGTGGCCGAAGTGA ACCTCTGGGAACTGTGCGCACAAACAAATCCTCCCTCCCTCTCCGAAGAGCCAAGGCCGTGTTGTTAACAA TCAGCAGCATGCTGGTCGCATGGCCAACCCAGCCGCTCACCATACTGCATCACCAAGTTGGGTAGAGGCTT
35	TCTCGGACTGCCTACGCTATGAGATGCACCCCTCTGGGTGTGAAGGTCACTGTGGTGGAGCCTGGCAACTTCATAG CTGCCACCAGCCTCTAGCCCTGAGCGTATCCAGGCCATTGCAAGAACAGATGTGGGATGAGCTGCCAGAGGTCG TCCGCAAAGACTATGGCAAGAAGTACTTCGATGAAAAGATTGCAAGAACAGGAGACCTACTGCACACAGCGGTTCCA CCGATACGTCCCTCCGTATCAACGCTGTCAACCATGCCCTGACTGCTGCCACCCCTATACCCGCTACCATCCCA TGGACTACTACTGGTGGCTGGGATGCAGGTCATGACCCATTTCCTGGAGCCATCTGACAAGATCTACATAC

ACTGAAGAGCTGAAGAGGTCCCTGCAGCCTCTGCCAGGGAGCCTGATGGGAGGGAGTTCATACAGTTATCTTTG
 ATTAACCATTGTGGTTGTCCACTGTCTTAGGAAGACCTATTTAACCTTACGTGTTCAATGTGGTGAATGGTT
 GGGCCTTCACAAATACAGGGCACTGGTGGTGCCCTAACCTCAAGGCCAATATGGTCTTATCTGTCTATC
 TAGAGTTGATTTATATAAGATTGTGGAAATACCTTATATTAAAGACGTTATTAGAATAGAAAAAA

5

SEQ ID NO:72 Rat (R)-3-hydroxybutyrate dehydrogenase aldehyde reductase**polypeptide sequence**

accession:gi16758902

MMLAARLSRPLSQLPGKALSVCDRENGTRHTLLFYPASFSPDTRRTYTSQADAASGKAVLVTGCDSGFGFSLAKH
 10 LHSKGFLVFAGCLLKEQGDAGVRELDLSKSDRLRTLQLNVCNSEEVEKAVETVRSGLKDPKGWGLVNNA
 FGEVEFTSMETYKEVAEVNLWGTVRTTKSFLPLLRAKGRVVNISSMLGRMANPARSPYCITKFGV
 EMHPLGVKVSVVEPGNFIAATSLYSPERIQAIAKMWDELPEVVRKDYGKKYFDEKI
 NAVTHALTAATPYTRYHPMDYYWWLRMQMTHFPGAISDKIYIH

15 **SEQ ID NO:73 Human aldehyde reductase nucleotide sequence**

HUM223359 accession: J04794 + CDS:61..1038

AGCCAGAAATGTGAAGTGCTAGCTGAAGGATGAGCAGCAGCTAGCCAGGCAAAGGGGCAATGGCGGCTTCTGT
 GTTCTACTGCACACTGGCAGAACAGATGCCTCTGATTGGTCTGGTACCTGGAAGAGTGAGCCTGGTCAGGTA
 20 GCAGCTGTTAAGTATGCCCTTAGCGTAGGCTACCGCACATTGATTGTGCTGCTATCTACGGCAATGAGCCTGAG
 ATTGGGGAGGCCCTGAAGGAGGACGTGGACCAGGCAAGGCAGTCCTCGGAGGAGCTGTTGTGACATCCAAG
 CTGTGGAACACCAAGCACCACCCCGAGGATGTGGAGCCTGCCCTCCGGAAAGACTCTGCTGACCTCCAGCTGGAG
 TATCTGGACCTGTACCTGATGCACTGCCCTATGCCCTTGAGCGGGAGACAACCCCTCCCCAAGAATGCTGAT
 25 GGGACTATATGCTACGACTCCACCCACTACAAGGAGACTTGGAGGACTCTGGAGGACTGGTGGCTAAGGGCTG
 GTGCAGGCCTGGCCTGTCCAACCTAACAGTCGGCAGATTGATGACATACTCAGTGTGGCTCCGTGCGTCCA
 GCTGTCTTGAGGTGGAAATGCCACCCATACTTGGCTAAAATGAGCTAATTGCCACTGCCAACGACGTGGCTTG
 GAGGTAACTGCTTATAGCCCTTGGCTCCTCTGATCGCATGGCGATCCTGATGAGCCTGCTGGAG
 30 GAACCAAGTAGTCCTGGCATTGGCTGAAAGTATGCCGATCTCAGCTCAGATCTTGGCTCAGGTGGCAGGTCCAG
 CGGAAAGTGATCTGCATCCCCAAAGTATCACTCCTCTGAATCCTTCAGAACATCAAGGTGTTGACTTCACC
 TTAGCCCAGAAGAGATGAAGCAGCTAAATGCCCTGAACAAAATTGGAGATATTGTGCCTATGCTTACGGTG
 GATGGGAAGAGAGTCCAAGGGATGCAGGCATCCTCTGTAACCTTTAATGACCCGACTGAGACCACAGCTTC
 TTGGCCTCCCTCCAGCTCTGCAGCTAATGAGGTCTGCCACAACGGAAAGAGGGAGTTAATAAGCCATTGGAG
 CATCCAT

SEQ ID NO:74 Human aldehyde reductase polypeptide sequence

35 protein_id:gi178481

MAASCVLLHTGQKMPLIGLGTWKSEPGQVKAAVKYALSVGYRHIDCAA
 FVTSKLWNTKHHPEDVEPALRKTADLQLEYLDLYLMHWPYAFERGDNPFPKNADGTIC
 VAKGLVQALGLSNFNSRQIDDILSVASVRPAVLQVECHPYLAQNELIAHCQARGLEV
 TAYSPLGSSDRAWRDPDE

PVLLEEPVVLALAEKYGRSPAQILLRWQVQRKVICIPKSITPSRILQNIKFDFTSPEEMKQLNALKNWRYIV
PMLTVDGKRVPRDAGHPLYPFNDPY

SEQ ID NO:75 Mouse aldehyde reductase nucleotide sequence

5 accession:NM_021473

TTCGGCACGGAAATGTCAAAGTCCAGCTTGGCTCTACTCCCTCTTACTTCGCAGGACAGTGGGGTC
TCCCTCGCCTGCGCTAGTTCTGGAGCCGGCCCTCGCTCCCTGGGTGGGCTGCCGCTCTCCGCCG
GACTTAAGTCGGGCCCTGTTGCCTCAGTACTGGAGTGCAGAGCTGAATTGGCCACTTGTCTTCCACAGCC
TGTGCTCACTGCCAAGGGACAATGACGGCCTCCAGTGTCCCTGCACACTGGACAGAAGATGCCCTGATTGG
10 TCTGGGACATGGAAGAGTGAGCCTGGTCAGGTGAAAGCAGCATTAAACATGCCCTAGCGCAGGCTACGCCA
CATTGATTGTGCTCTGTATATGCAATGAAACTGAGATTGGGAGGCCCTGAAGGAGAGTGTGGGTAGGCAA
GGCAGTCCCTCGAGAGGAGCTGTTGTGACATCCAAGCTGTGAAACTAAGCACCACCTGAGGATGTAGAAC
TGCCCTCCGGAAGACACTGGCTGATCTGCACTGGAGTATTGGACCTCTATTGATGCACTGCCCTATGCC
TGAGCGGGAGACAATCCCTTCCAAGAATGCCATGGAACTGTCACTGAACTCAACTCACTATAAGAGAC
15 CTGGAAGGCTCTGGAGGTACTGGTGGCAAAGGGCTGGTCAAAGCCCTGGCTTGTCCAACCTAACAGTCGGCA
GATTGATGATGTCCTCAGTGTGGCCTCTGTGCGCCAGCTGTCTGCAGGTGGAATGCCATCCACCTGGCTCA
GAATGAGCTCATTGCCACTGTCACGCACGGGCTGGAGGTGACTGTTAGGCCCTGGTTCTGACCG
TGCTTGGGCCATCCTGATGAGCCAGTCCTGTTGAAGAACCAAGTAGTCTTGGCACTAGCTGAAAAACATGCC
ATCTCCAGCTCAGATCTTGCTTAGATGGCAGGTTCAAGGGAAAGTGATCTGCATCCCCAAAAGCATCAATCCTC
20 CCGCATCCTTCAGAACATTCAAGGTATTGATTTGACCTTACGGTGGATGGAAAGAGGTTCCAGAGATGCTGGACACCC
CAAAATTGGCGGTATATTGTGCCATGATTACGGTGGATGGAAAGAGGTTCCAGAGATGCTGGACACCC
GTATCCCTTAATGACCCATACTGAGACCTATAGTTCTCAGCTCCCTTCAGTTCTCCTGCTAACGATTGCCT
GCTACTCCCCAGAAAGAAGGAATCAATAAGCCATTGAAGTGTAA

25 **SEQ ID NO:76 Mouse aldehyde reductase polypeptide sequence**

accession:gi10946870

MTASSVLLHTGQKMPLIGLGTWKSEPGQVKAAIKHALSAGYRHIDCASVYGNETEIGEALKESVGSGKAVPREEL
FVTSLWNTRHHPEDVEPALRKTTLADLQLEYLDLYLMHPYAFERGDNPFPKNADGTVRYDSTHYKETWKALEVL
VAKGLVKALGLSNFNSRQIIDDVLVASVRPAVLQVECHPYLAQNELIAHCHARGLEVTA
30 PVILLEPVLALAEKHGRSPAQILLRWQVQRKVICIPKSINPSRILQNIQVFDFTSPEEMKQLDALKNWRYIV
PMITVDGKRVPRDAGHPLYPFNDPY

SEQ ID NO:77 Rat aldehyde reductase nucleotide sequence

accession:NM_031000

35 GAATTCTGGCCACTTGTCTTCCACAGCCTGTGCTCATTGCCAAGGGACAATGACGGCCTCCAGTGTCC
TGCACACTGGACAGAAGATGCCCTGATTGGCTGGGACATGGAAGAGTGGCCTGGTCAGGTGAAAGCAGCTA
TTAAATATGCCCTAGCGTAGGCTACGCCACATTGACTGTGCTCTGTATATGGCAATGAAACTGAGATTGGAG
AGGCCCTGAAGGAGAGTGTGGAGCAGGCAAGGCAGTACCTCGAGAGGAGCTGTTGTGACCTCAAGCTGTGGA
ATACTAACGACCCCTGAGGATGTAGAACCTGCTGTCGGAAAGACGCTGGCTGATCTGCAGCTGGAGTATTGG

ACCTCTATTGATGCATTGGCCTATGCCCTCGAGCGGGAGACAATCCCTTCCCAGAAATGCCGATGGAAC TG
 TCAAATATGACTCCACTCACTATAAGGAGACCTGGAAGGCTCTGGAGGCACTGGTGGAAAGGGCTGGTGAAG
 CCTTGGGCTTGTCCAACTTCACTGGAGATAGATGATGTCCTCAGTGTGGCTCGGTGCCAGCTGTCT
 5 TGCAGGTGGAATGCCATCCATACCTGGCTCAAAATGAGCTATTGCCACTGTCAAGCACGAGGCTGGAGGTGA
 CAGCTTACAGCCCCTGGGTTATCGGATCGTCTGGGCCACCTGATGAGCCAGTCCTGCTTGAGGAACCAG
 TTGTCTGGCACTAGCTGAAAAACATGGCCATCTCAGCTCAGATCTGCTCAGATGGCAGGTTCAGCGGAAAG
 TAATCTGCATCCCCAAAAGCATCACTCCTCCGCATCCTCAGAACACATTAGGTATTGATTTCACCTTAGTC
 CAGAGGAGATGAAGCAATTAGATGCTCTGAACAAAATTGGCGGTATATTGTGCCATGATTACGGTGGATGGGA
 10 AGAGAGTCCCCAGAGATGCTGGACACCCCTGTATCCCTTAATGACCCATACTGAGGCCGTAGTTCTCAGCT
 TCCCTTCAGTTCTCCTGCTAACGATTGCCGCTACTCCAAGAAAGAAGGACTCAATAAGCCATTGAAGTGT

SEQ ID NO:78 Rat aldehyde reductase polypeptide sequence

accession:gi13591894

MTASSVLLHTGQKMPILGLGTWKSEPGQVKAAIKYALSVGYRHIDCASVYGNETEIGEALKESVGAGKAVPREEL
 15 FVTSQLWNTKHHPEDVEPAVRKTLADLQLEYLDLYLMHWPYAFERGDNPFPKNADGTVKYDSTHYETWKALEAL
 VAKGLVKALGLSNFSSRQIDDVLVASVRPAVLQVECHPYLAQNELIAHCQARGLEVTAISPLGSSDRAWRHPDE
 PVLEEPVVLAELAEKHGRSPAQILLRWQVQRKVICIPKSITPSRILQNIQVFDFTSPEEMKQLDALNKNWRYIV
 PMITVDGKRVPRDAGHPLYPFNDPY

20 SEQ ID NO:79 Human PDE4B nucleotide sequence

HUM225316 accession:M97515 CDS:282..1976

GGCACGAGCCTAAAGAACCCCTGGGATGACTAAGGCAGAGAGAGTCTGAGAAAACCTTTGGTGCTTCGCCCTTA
 GTTTAGGACACATTATGCAGATGAGCTTATAAGAGACCCTCCGGCTCCGCCCTTCAGAGGAAGTTCTT
 GGTAGATCACCGACACCTCATCCAGGCGGGGGTTGGGGAAACTTGGCACCGCCATCCCAGGCAGACCA
 25 CTGTGATTTGTTCTCCTGGAGAGAGCTGGAAGGAAGGAGCCAGCGTGCAAATAATGAAGGAGCACGGGGCA
 CCTTCAGTAGCACCGGAATCAGCGGTGGTAGCGGTGACTCTGCTATGGACAGCCTGCAGCCGCTCCAGCCTAACT
 ACATGCCTGTGTGTTGTTGCAGAAGAACCTTATCAAAATTAGCAATGAAACGCTGGAGGAATTAGACTGGT
 GTTAGACCAGCTAGAGACCATAAGACCTACCGGTCTGTCAGTGAGATGGCTTAACAAGTTCAAAAGAACATGC
 TGAACCGGGAGCTGACACACCTCAGAGATGAGCCATCAGGAACCAAGGTGTCTGAATAACATTCAAATACTT
 30 TCTTAGACAAGCAGAACATGATGGAGATCCCATCTCCTACCCAGAAAGACAGGGAGAAAAGAAAAGCAGCAGC
 TCATGACCCAGATAAGTGGAGTGAAGAAATTAAATGCATAGTTCAAGCCTAAACAATACAAGCATCTCACGTTG
 GAGTCACACTGAAATGAAGATCACCTGCCAAGGAGCTGGAAGACCTGAACAAATGGGTCTTAACATTTTA
 ATGGCTGGATATTCTCACAATAGACCCCTAACATGCATCATGTATGCTATATTCCAGGAAAGAGACCTCCTAA
 AGACATTCAAATCTCATCTGACACATTATAACCTACATGATGACTTTAGAAGACCATTACCAATTCTGACGTGG
 35 CATATCACACAGCCTGCACGCTGCTGATGTAGCCAGTCGACCCATGTTCTCCTTCTACACCAGCATTAGACG
 CTGTCTTCACAGATTGGAGATCCTGGCTGCCATTGGCAGCTGCCATGACGTTGATCATCCTGGAGTCT
 CCAATCAGTTCTCATCAACACAAATTCAAACAGAAACTGCTTTGATGTATAATGATGAATCTGTGTTGGAAAATCATC
 ACCTTGCTGGGTTCAAACAGTGTGCAAGAAGAACACTGTGACATCTCATGAATCTCACCAAGAACGAGCGTC
 AGACACTCAGGAAGATGGTTATTGACATGGTGTAGCAACTGATGATGTCTAAACATATGAGCCTGCTGGCAGACC
 40 TGAAGACAATGGTAGAAACGAAGAAAGTTACAAGTTCAAGCGTTCTCCTAGACAACTATACCGATCGCATTG

AGGTCCITCGCAACATGGTACACTGTGCAGACCTGAGCAACCCCACCAAGTCCTTGGATTGTATCGGCAATGGA
 CAGACCGCATTGAGGAATTTTCCAGCAGGGAGACAAAGAGCAGGGAGAGGGGAATGAAATTAGCCCAATGT
 GTGATAAACACACAGCTCTGTGAAAAATCCAGGTTGGTTCATCGACTACATTGTCCATCCATTGTGGGAGA
 CATGGGAGATTGGTACAGCCTGATGCTCAGGACATTCTGATACCTTAGAAGATAACAGGAACGGTATCAGA
 5 GCATGATAACCTCAAAGTCCCTCACCAACCAGCTGGACGAGCAGAACAGGGACTGCCAGGGCTGATGGAGAAGTTTC
 AGTTGAACTGACTCTCGATGAGGAAGATTCTGAAGGACCTGAGAAGGGAGAGGGACACAGCTATTCAGCA
 GCACAAAGACGCTTGTGATTGATCCAGAAAACAGAGATTCCCTGGGAGAGACTGACATAGACATTGCAACAG
 AAGACAAGTCCCCGGTGGATACATAATCCCCCTCCCTGTGGAGATGAACATTCTATCCTGATGAGCATGCCA
 GCTATGTGGTAGGGCCAGCCCACATGGGGCCAAGACCTGCACAGGACAAGGGCACCTGGCTTCAGTTACTT
 10 GAGTTGGAGTCAGAAAGCAAGACCAGGAAGCAAATAGCAGCTCAGGAAATCCCACGGTTGACTGCCTTGATGG
 CAAGCTTGGGGAGAGGGCTGAAGCTGTTGCTGGGGCGATTCTGATCAAGACACATGGCTTAAAATGGAAGA
 CACAAAACGTGAGAGATCATTCTGACTAAGTTGGAAACTTATCCCCGACAGTGAACACTCACTGACTAATA
 ACTTCATTTATGAATCTTCTCAGTTGCTCCCTTGTCTGCCAACCTGTGTGCCCTTTGTAAAACATTTCATGT
 CTTAAAATGCCTGTTGAATACCTGGAGTTAGTATCAACTTCTACACAGATAAGCTTCAAAGTTGACAAACTT
 15 TTTTGACTCTTCTGGAAAAGGGAAAGAAAATAGTCTTCCTTCTTGGCAATATCCTTCACTTACTACAG
 TTACTTTGCAAACAGACAGAAAGGATAACACTTCTAACCCACATTCTCCTCCAGTACTTTAACCTTGTCAAACAGAAT
 CCACAGTCACTCTTAAACATTCTCTGTGTTGCCTGCCTCCAACAGTACTTTAACCTTGTCAAACAGAAT
 AAAATTGAACAAATTAGGGGGTAGAAAGGAGCAGTGGTGTGTTCACCGTGAGAGTCTGCATAGAAACTCAGCAGT
 GTGCCCTGCTGTGTTGGACCTGCCCCCACAGGAGTTGTACAGTCCCTGGCCCTGCTCCACCTCCTCT
 20 TCACCCCGTAGGCTTTCAATGTAATGCTGCCGTCTCTTGCACTGCCCTCGCCTAACACCTCCATT
 CCTGTTATAACCGTGTATTATTACTTAATGTATATAATGTAATGTTGTAAGTTATTAAATTATATCTAA
 CATTGCCCTGCCAATGGGGTAAATTGTGTAGAAAACCTGCTAACCCACAGTACTTAGAGACATATGGCCCCCTGGCAGAGAGGACAGGGGTG
 TTGTATTGTGTATTATATAACCCAAACGTCACTTAGAGACATATGGCCCCCTGGCAGAGAGGACAGGGGTG
 GGCTTTGTTCAAAGGGCTGCCCTTCCCTGCCTGAGTTGCTACTTCTGCACAACCCCTTATGAACCAGTTT
 25 GGGAAACAATATTCTACACATTAGATACTAAATGGTTACTGAGCTTTACTTTGTATAGCTTGATAGGGCA
 GGGGGCAATGGATGTAGTTTACCCAGGTTCTATCAAATCTATGTGGGATGAGTTGGGTTATAACTGGATCC
 TACTATCATTGTGGCTTGGTCAAAAGGAAACACTACATTGCTCACAGATGATTCTCTGAATGCTCCGAAC
 TACTGACTTTGAAGAGGTAGCCTGCCTGCCATTAGCAGGAATGTCATGTTCCAGTTCACTACAAAAGAAAA
 CAATAAAACAATGTGAATTAAATAAAATGTGAACGTGATGTAGCAAATTACGCAAATGTGAAGCCTTCTG
 30 ATAACACTTGTAGGCCTCTTACTGATGTCAGTTGTTAAATATGTTCATGCTTCAGTTGAGCATTG
 TGACTCAGTAAATACAGAAATGGCACAAATGTGCATGACCAATGTATGTCTATGAACACTGCATTGTTGAGGT
 GGACATTATCGATTTCAAATGTTCTACAATGTATGTTAGTGTATTATATATTGTGTTCAAATGC
 ATTCTAAAGAGACTTTATATGAGGTGAATAAGAAAAGCATAATT

35 SEQ ID NO:80 Human PDE4B polypeptide sequence

protein_id:gi292388

MKEHGGTFSSSTGISGGSGDSAMDSLQPLQPNYMPVCLFAEESYQKLAMETLEELDWCLDQLETIQTYSVSEMAS
 NKFKRMLNRELTHLSEMSRSGNQVSEYISNTFLDKQNDVEIPSPTQKDREKKKQQLMQISGVKKLMHSSLNN
 TSISRGVNTEBEDHLAKELEDLNKWGLNIFNVAGYSHNRPLTCIMYAIIFQERDLLKTFRISSDTFITYMMTLED
 40 HYHSDVAYHNSLHAADVAQSTHVLLSTPALDAVFTDLEILAAIFAAAIHDVDHPGVSNQFLINTNSELALMYNDE

SVLENHHLAVGFKLLQEEHCDIFMNLTKKQRQTLRKMVIDMVLATDMSKHMSLLADLKTMVETKKVTSSGVLLLD
NYTDRIQVLRNMVHCADLSNPTKSLELYRQWTDRIIMEEFFQQGDKERERGMEISPMCDKHTASVEKSQVGFIDYI
VHPLWETWADLVQPDAQDILDLEDNRNWYQSMIPQSPSPPLDEQRDCQGLMEKFQFELTLDEEDSEGPEKEGE
GHSYFSSTKTLVIDPENRDSLGETDIDIATEDKSPVDT

5

SEQ ID NO:81 Mouse PDE4B nucleotide sequence

accession:AF326556 CDS:23..2188

TAGCTAGCACTCCATACGAGACATGACAGCAAAAATTCTCAAAAGAATTACTGCTTCGGAATCTGAGGTTTG
CATAAAGACTTTCAAGGAGCAGATGCGCTTGGAACTTGAGCTTCAAAGCTACCAGGAAACAGACCTACATCTCC
10 CAAAATTCTCCACGCAGTCACCAAGGAATTCAACATGCTTTTCAGAAAGTTGCTGGTGAATAAAAGCATCCG
ACAGCGGCGTCGCTTCACGGTGGCTCATACATGCTTGATGTGGAAAATGCCCTCTCCAGGTGGAGCCACT
GGACCCCTCAAGCCGGCTTCGCTGGACTGGTACTTCATGCCCTTCTGGCACAGCCAGCGCAGGGAGTC
GTTCCCTCTACAGATCTGACAGCGACTATGACTTGTACCAAAAGCGATGTCCAGGAACTCATCACTCCCAGTGA
GCAACACGGCGATGACCTGATTGTCACTCCTTGCCCCAGGTTCTGCCAGCTTGCAGTGTAAAGAAACAACTT
15 CACCCCTGCTGACGAACCTTCATGGAGCGCCGAACAAGAGGTCAACCAGCGCTAGTCAGGCTCCAGTCTCCAGAGT
CAGCCTGCAAGAAGAACATATCAGAAACTAGCAATGGAGACGCTGGAGGAACTAGACTGGTGCCTAGACCAGCT
AGAGACCATCCAGACCTACCGCTCTGTCAGCGAGATGGCTCAAACAAGTTCAAAAGGATGCTGAACCGGGAGCT
GACACACCTCTCAGAGATGAGCAGATCAGGGACCAGGTGTCTGAGTACATTCAAACACGTTCTAGACAAGCA
GAACGATGTGGAAATCCATCTCCACGCAGAAGGACAGGGAGAAGAAGAACAGCAGCTCATGACCCAGAT
20 AAGTGGAGTGAAGAAACTGATGACAGCTCAAGCCTGAACAACACAAGCATCTCACGCTTCGGAGTCACACGGGA
AAATGAGGATCATCTAGCCAAGGAGCTGGAAGACCTGAACAAATGGGGCTTAACATCTCAATGTGGCTGGTA
CTCACATAATCGGCCCTTACGTGATCATGTATGCAATATTCCAGGAAAGAGACCTCTGAAGACGTTAAAAT
CTCATCTGACACCTTGTAAACCTACATGATGACTTTAGAACGACCTTACATGATGTGGCATATCACAACAG
CCTGCATGCTGCTGACGTGGCCAGTCACGTTCTCCTTCTACGCCGCACTGGATGCTGTCTCACAGA
25 CCTGGAAATCCTGGCTGCCATTGGCAGCTGCCATCCATGATGTCGATCATCCTGGAGTCTCAAATCAGTTCT
CATCAAACAAATTCTGAACTTGCTTTGATGTATAATGATGAATCTGTTCTGGAAAACCATCACCTGCTGTGG
ATTCAAATTGCTACAAGAGGAACACTGCGACATCTTCAAGATCTTACCAAGAACGCAACGCCAGACACTCAGGAA
AATGGTGATTGACATGGTGGCAACTGATATGTCAAACACATGAGCCTCCTGGCAGACCTTAAACAAATGGT
AGAAACCAAGAAGGTGACAAGCTCCGGTGTCTCCTGGACAACACTATACTGACCGGATAACAGGTTCTCGCAA
30 CATGGTACACTGTGCAAGACCTGAGCAACCCCACCAAGTCCTGGAATTGTATCGGCAATGGACCGATGTATCAT
GGAGGAGTTTCCAGCAGGGAGACAAAGAACGGGAGAGGGGAATGGAGATTAGCCAATGTGTGATAAGCACAC
AGCTTCTGTGGAAAAATCCCAGGTTGGTTCATGACTACATTGTCATCCACTGTGGAGACCTGGCAGACCT
GGTCAACCGGATGCTCAAGATATTCTGGATACACTAGAACGATAACAGGAACGGTACCAAGAGTATGATAACCCCA
GAGCCCTCCCCGCCACTGGATGAGAGGAGCAGGGACTGCCAAGGCCAGTGGAGAACGTTAGTTGAACGTGAC
35 CCTTGAGGAAGAGGATTCTGAGGGACCGGAAAGGAGGGAGAACGCCAGCTATTCTGAGCAGCACAAAGACGCT
TTGTGTGATTGATCCAGAGAACAGGGATTCTCTGGAAAGAGACTGACATAGACATTGCAACAGAACAGTCTCC
GATCGACACATAATCTCTCCCTCTGTGTGGAGATGAACATTCCACCCCTGACTGAGCA

SEQ ID NO:82 Mouse PDE4B polypeptide sequence

accession:gi17225439

MTAKNSPKEFTASESEVCIKTFKEQMRLELELPKLPGNRPTSPKISPRSSPRNSPCFFRKLLVNKSIRQRRRFTV
 AHTCFDVENGPSPGRSPLDPQAGSSGLVLHAAFPGHSQRRESFLYRSRSDSDYDLSPKAMSRNSSLIPSEQHGDLLI
 5 VTPFAQVLASLRSVRNNFTLLTNLHGAPNKRSPAASQAPVSRLSQEESYQKLAMETLEELDWCLDQLETIQTYR
 SVSEMASNKFKRMLNRELTHLSEMSRSGNQVSEYISNTFLDKQNDEIPSPTQKDREKKKKQQLMTQISGVKKLM
 HSSSLNNTSISRGVNTENEDHLAKELEDLNKGWLNIKVAGYSHNRPLTCIMYAIQERDLLKTFKISSDTFVT
 YMMTLEDHYHSDVAYHNSLHAADVQAQSTHVLLSTPALDAVFTDLEILAAIFAAAHDVDHPGVSNQFLINTNSEL
 10 ALMYNDESVLENHHHLAVGFKLLQEEHCDIFQNLTKKQRQTLRKMVIDMVLATDMSKHMSLLADLKTMVETKKVTS
 SGVLLLDNYTDRIQVLRNMVHCADLSNPTKSLELYRQWTDRIMEEFFQQGDKERERGMEIFPMCDKHTASVEKSQ
 VGFIDYIVHPLWETWADLVQPDADILDLEDNRNWYQSMIPQSPSPPLDERSRDCQGLMEKFQFELTLEEDSE
 GPEKEGEHHSYFSSTKTLCVIDPENRDSLEETDIDIATEDKSPIDT

SEQ ID NO:83 Rat PDE4B nucleotide sequence

accession:L27058

CDS:542..2236

GTCTTGTCATCAGGAGACCTCATTTACCTTAGGTTAAGGGAGAGAACATCTATGAAGAGAAAGGAATAGTCGTG
 TCTCGGTCTTGTCCGGTCAGTGTTCAGAGCTCACAGTGGCCACCTGAAGCATTTCAGGACATGAAGAA
 CTGCCCTGCCAGAACAGAACAGGCCAAACAGTTCCCCACATGCCATAGGGAGCTGGTTCATTAAGAA
 AAGCAAAGAGAGGGAAAGCCTCCCTCATTTCTCCGGACGGCAAACATTAGAAATGACATCACACACACCA
 20 CAGCCCCGGGATGACTAAGGCAGAAGTAGCCTGAGAAAACCTCTGCTCTGCCCTGAGTTTAGGGCACAGTTATGC
 AGATGAGCGTCTGGGCCAGGTTCCCGCTTCTGAGGAAGTTCTGGTAGATCACTGACACACCTCATCC
 CGGCGAGGGGGTGAAAACCTGGCACCAGCCACTCCCCCTCCGGCAGAGCACCAGAAAGAGCTTGAAGCAAGG
 AGTCGGCAAGCAAACATGAAGGAGCAAGGGGCACCGTCAGTGGGCCGGAGCAGCCGAGGCCAGGAGACTC
 GGCTATGCCAGCCTGCAGCCGCTGCAGCCTAACTACCTGTCTGTGTTGAGAAGAAATCATATCAGAA
 25 ACTAGCAATGGAGACGCTGGAGGAACTAGACTGGTGCCTAGACCAGCTAGAGACCATCCAGACCTACCGCTCTGT
 CAGCGAGATGGCTCAAACAAGTTCAAAGGGATGCTGAACCGGAGCTGACACACACCTCTCAGAGATGAGCAGATC
 AGGAAACCAAGTGTCTGAATAACATTTGAACACGTTCTAGACAAGCAGAACGATGTGAAATCCCACATCCCAC
 CCAGAAGGACAGGGAGAAGAAGAACAGCAGCAGCTCATGACCCAGATAAGTGGAGTGAAGAAACTGATGCACAG
 CTCAGCCTGAACAAACACAAGCATCTCACGCTTGGAGTCACACAGGAAATGAGGATCATCTAGCCAAGGAGCT
 30 GGAAGACCTGAACAAATGGGCCCTTAACATCTCAACGTGGCTGGTACTCCCATAATCGGCCCTCACATGCAT
 CATGTACGCCATTTCAGGAAAGAGACCTCTAAAGACGTTAAAATCTCCCGACACCTCGTAACCTACAT
 GATGACTTTAGAAGACCAATTACCAATTCTGATGTGGGTATCACACAGCCTGCAGCTGCTGACGTGGCCAGTC
 AACGCACGTTCTCTACGCCAGCAGCTGGATGCTGTCTCACAGACCTGGAAATCCTGGCTGCCATTTTGC
 AGCTGCCATCCATGATGTTGATCATCCTGGAGTCTCAATCAGTTCTCATCAATAACAAATTCCGAACCTGCTTT
 35 GATGTATAATGACGAATCTGTGGAAAACCATCACCTCGCTGGGATTCAAGCTCCTCAAGAGGAACATTG
 CGACATCTTCAGAATCTTACCAAGAACGCAACGCCAGACACTCAGGAAATGGTGATTGACATGGTGTAGCAAC
 TGATATGTCAAGCACATGAGGCCCTGGCTGACCTTAAACGATGGTAGAAACCAAAAGGTGACGAGCTCCGG
 TGTTCTCCTCTGGACAACACTATACTGACCGGATACAGGTTCTCGCAACATGGTACATTGTGCAGACCTGAGCAA
 CCCTACCAAGTCCTGGAGTTGATCGGAATGGACTGATCGCATCATGGAGGAGTTTCAACAGGGAGACAA
 40 AGAACGGAGAGGGAAATGGAGATTAGCCAAATGTGTGATAAACACACAGCTCTGTGGAAAAGTCCCAGGTTGG

TTTCATTGACTACATTGTCCATCCATTGTGGGAGACCTGGGCAGACCTGGTCAGCCTGATGCTCAAGACATTT
 GGACACACTAGAAGATAACAGGAACCTGGTACCAAGAGTATGATTCCCCAGAGCCCCTCCACCCTGGACGAGAG
 GAGCAGGGACTGCCAAGGCCTATGGAGAAGTTCACTGACCCCTGAAGAAGAGGATTCTGAAGGACC
 5 GGAAAAGGAGGGAGAAGGCCCAACTATTCAGCAGCACAAAGACACTTGTGTATCGATCCAGAGAACAGGGA
 TTCTCTGGAAGAGACTGACATAGACATTGCCACAGAACAGTCTCTGATCGACACATAATCTCCCTCTGTGTG
 GAGGTGAACATTCTATCCTTGACGAGCATGCCAGCTGAGTGGTAGGGCCACCTACCAGAGCCAAGGCCCTGCACA
 AAACAAAGGCCACCTGGCTTGAGTTACTTGAGTTGGAGCCAGAACATGCAAGGCCGTGAAGCAAATAGCAGTTC
 CGTGTGCGCTTGCGCTTGCGAGCTGGCGAGACCCGAGCTGTAGTAGAAGCCAGTCCACAGCTAAA
 10 TGGCTTGAAAACAGAGGACAGAAAGCTGAGAGATTGCTCTGCAATAGGTGTTGAGGGCTGTCCGACAGGTGAC
 TGAACTCACTAACAACTTCATCTATAAATCTACCCATCCTGTTGCTGCCAACCTGTGTGCCTTTTGAAAA
 TGTTTCGTCTTGAAATGC

SEQ ID NO:84 Rat PDE4B polypeptide sequence

accession:gi598375

15 MKEQGGTVSGAGSSRGGDSAMASLQPLQPQNYLSVCLFAEESYQKLAMETLEELDWCLDQLETIQTYSVSEMAS
 NKFKRMLNRELTHLSEMSRSQNVSEYISNTFLDKQNDVEIPSPTQKDREKKKQQLMTQISGVKKLMHSSLNN
 TSISRFGVNTEDEDHLAKELEDLNWKGLNI FNVAGYSHNRPLTCIMYAIFQERDLLKTFKISSDTFVTYMMTLED
 HYHSDVAYHNSLHAADVQAQSTHVLILSTPALDAVFTDLEILAAIFAAAIDVDHPGVSNQFLINTSELALMYDE
 20 SVLENHHHLAVGFKLQLQEEHCDIFQNLTKKQRQTLRKMVIDMVLATDMSKHMSLLADLKTIVETKKVTSSGVLLD
 NYTDRIQVLRNMVHCADLSNPTKSLELYRQWTDRIMEEFFQQGDKERERGMIEISPMCDKHTASVEKSQVGFIDYI
 VHPLWETWADLVQPDAQDILDLEDNRNWYQSMIPQSPSPPLDERSRDCQGLMEKFQFELTLEEDSEGPEKEGE
 GPNYFSSTKTLCVIDPENRDSLEETDIDIATEDKSLIDT

SEQ ID NO:85 Human CYP27 nucleic acid sequence

25 HUM227009 accession:M62401 CDS:22..1617
 GCAGGGCGCGAGCACACCCATGGCTGCGCTGGGCTGCGCAGGGCTGAGGTGGCGCTGCAGGGGCCGGCGT
 GGCCTCTGCCCTACGGGCCAGAGCCAAGGCCGATCCCTGCCGCCCTCCCTCGACAAGGCCACCGGAGCT
 CCCGGAGCCGGCTGGTGTCCGGCGGCCAACGGAGCTAGAGGAGATTCCACGTCAGGACAGCTGCGCTTC
 TTCTTCAGCTGTTCAAGGCTATGCCCTGCAACTGCACCAAGTTACAGGTGCTTACAAGGCCAAGTACGGT
 30 CCAATGTGGATGTCCTACTTAGGGCTCAGATGCACGTGAAACCTGGCAGTGCCCCGCTCTGGAGCAAGTGATG
 CGGCAAGAGGAAAGTACCCAGTACGGAACGACATGGAGCTATGGAAGGAGCACCGGGACCAGCACGACCTGACC
 TATGGGCCGTTACCAACGGAAGGACACCACGGTACCGCTGCGCCAGGCTCTGAACCAAGCGGTTGCTGAAGCCA
 GCGGAAGCAGCGCTCTACGGATGCTTCAATGAGGTGATTGATGACTTTATGACTCGACTGGACCAGCTGCGG
 GCAGAGAGTGCTCGGGGAACCAAGGTGCGACATGGCTCAACTCTTCAACTTTGCTTGGAGCTATTG
 35 TACATCCTGTTGAGAAAACGATTGGCTGCCCTGAGCGATCCATCCCCGAGGACACCGTGACCTCGTCAGATCC
 ATCGGGTTAATGTTCCAGAACTCACTCTATGCCACCTTCCCTCCCAAGTGGACTCGCCCCGTGCTGCCTTCTGG
 AAGCGATACCTGGATGGTGGAAATGCCATCTTCCCTGGAGAAGAGCTGATTGATGAGAAGCTCGAAGATATG
 GAGGCCCAACTGCAGGCAGCAGGGCCAGATGGCATCCAGGTGCTGGCTACCTGCACTTCAACTGGCCAGTGG
 CAGCTCAGTCCTCGGGAGGCCATGGCAGCCTGCGTGAAGCTGCTCATGGCTGGAGTGGACAGCACATCCAACAGC
 40 CTGACATGGGCCCTGTACCACCTCTCAAAGGACCCCTGAGATCCAGGAGGCCCTGCACGAGGAAGTGGTGGGTGTG

GTGCCAGCCGGCAAGTCCCCAGCACAAAGGACTTTGCCACATGCCGTTGCTCAAAGCTGTGCTTAAGGAGACT
 CTGCGTCTCTACCCCTGTGGTCCCCACAAACTCCGGATCATAGAAAAGGAAATTGAAGTTGATGGCTTCCTCTTC
 CCCAAGAACACCCAGTTGTGTTGCCACTATGTGGTGTCCGGGACCCACTGCCTTCTTGAGCCTGAAAGC
 TTCCAGCCCCACCGCTGGCTGAGAACAGCCAGCCTGCTACCCCCAGGATCCAGCACCCATTGGCTCTGTGCC
 5 TTTGGCTATGGGTCCGGCCTGCCTGGCCGCAGGATTGCAGAGCTGGAGATGCAGCTACTCCTCGCAAGGCTG
 ATCCAGAAGTACAAGGTGGTCTGGCCCCGGAGACGGGGAGTTGAAGAGTGTGGCCGCATTGTCCTGGTTCCC
 AATAAGAAAGTGGGCCTGCAGTCCTGCAGAGACAGTGCTGAGCTGAGCTCCGCCTGCTGGGCTTGTCCCTAG
 AGGCTCCAGCTCTGGCACAGTGGTCTGGCTGCCATGTCAGATGAGGAGGGAGAGAAGGAGGCCAG
 ACTCGAGAGGTGGGAGGAACCTCTGCACACACCCCTGAGCTTGCCACTTCTATCATTTGAGCAACTCCCTC
 10 TCAGCTAAAAGGCCACCCCTTATCGCATTGCTGTCCTGGTAGAATATAAAATAAGGACTTTATTCCTTA
 AAAAA

SEQ ID NO:86 Human CYP27 polypeptide sequence

protein_id:gi181292

15 MAALGCARLRWALRGAGRGLCPH GARAKAAIPAA LPSDKATGAPGAGPGVRRQRSLEEIPRLGQLRFFFQLFVQ
 GYALQLHQLQVLYKAKYGPWM SYLGPQM HVNLASAPLLEQVMRQE GKYPVRNDMELWKEHRDQHDLTYGPFTTE
 GHHWYQLRQALNQRLLKPAEAALYTDAFNEVIDDFMTRLDQLRAESASGNQVSDMAQLFY YFALEAICYILFEKR
 IGCLQRSTIPEDTVTFVRSIGLMFQN SLYATFLPKWTRPVLPFWKRYLDGWNAIFSGKKLIDEKLEDMEAQLQAA
 GPDGIQVSGYLHFLLASGQLSPREAMGSLPELLMAGVDTSNTLTWALYHLSKDPEI QEA LHEEVVGVPAGQVP
 20 QHKDFAHMPLLKAVLKETLRLYPVVPTNSRIIEKEIEVDGFLFPKNTQFVFCHYVVS RDPTAFSE PESFQPHRWL
 RNSQPATPRIQHPFGSVPFGYGVRA CLGRRIAELEMQLLARLIQKYKVVLAPETGELKSVARIVLVPNKKVGLQ
 FLQRQC

SEQ ID NO:87 Mouse CYP27 nucleic acid sequence

25 accession:NM_024226 CDS:20.1333
 ATTTACAGCTTTCTGTTAGTATGCATAATTGTAATTGCTGGAGGGCAGATCGTGGCAAGAAATGGACGAT
 CAGAAGAACGTTGGAAGGACAAGGTTGTTGACCTCTGTACTGGAGAGACATTAAGAAGACTGGAGTGGTT
 GGTGCCAGCTTATCCTGCTGCTCTGACAGTGGTCAGCATTGTCAGTGTAA CGGCCTACATTGCCCTGGCC
 CTGCTCTGTGACTATCAGCTTAGGATATATAAGGGTGTGATCCAAGCTATCCAGAAATCAGATGAAGGCCAC
 30 CCATTCAAGGCATATTGGAATCTGAAGTTGCCATATCAGAGGAATTGGTCAGAAATATAGTAATTCTGCTCTT
 GGT CATGTGAACAGCACAATAAAAGAATTGAGGGCTCTCTTAGTTGATGATTAGTTGATTCCCTGAAGTT
 GCAGTGGATGTTGATGTTGCTTACTACGTTGGTGCCTTGTCAATGGTTGACACTACTGATT TAGCCCTGATC
 TCACTCTTCAGTATT CCTGTTATATGAACGGCATCAGGCGCAGATAGATCATTATCTAGGACTTGCAAACAAG
 AGTGTAAAGGATGCCATGGCAAAATCCAAGCAAAATCCCTGGATTGAAGCGCAAAGCAGAATGAAAAGGCC
 35 AACAGTAGACATT CATTTAAAGGGGACACTCCCTGGTACGGGAAGGGCAATT C

SEQ ID NO:88 Mouse CYP27 polypeptide sequence

accession:gi13195684

MWTTSGTYTNVNLASAPLLEQVMRQEKGKPIRDHMDQWKDHDKGLTYGIFIAQGEQWYHLRQALKQRLLKPD
EAALYTDALNEVISDFITRLDQVRAESESGDQVPMMAHLLYHLALEAITYILFEKRIGCLKPSIPEDTAAFIRSV
5 AIMFQNSVYITFLPKWTRPLLPFWKRYLNGWDNIFSFGKKLIDEKVQELKAQLQETGPDGVRVSGYLHFLLTNEL
LSTQETIGTFPELLLGVDTTSNTLTWALYHLSKSPEIQEALHKEVTVVPGKVPQHKDFAHMPLLKAVIKETL
RLYPVVPTNSRIITEKETEINGFLFPKNTQFVLCHYVVSRDPSVFPNSFQPHRWLRKKEADNPGILHPFGSVP
FGYGVRSLGRRIAELEMQLMLSRLVQKYEIALAPGMGEVKTVSRIVLVPSKKVRLHFLQRQ

10 SEQ ID NO:89 Rat CYP27 nucleic acid sequence

accession:Y07534 CDS:59..1660

TGCCTGGATGGGCGCGTAGTCTCTGGCTCTAAACTCTGGCTTCAGACACGATCTATGGCTGTGTTGAGCCG
CATGAGACTGAGATGGGCGCTTCTGGACACTCGTGTGATGGGCCATGGCCTCTGCCACAAGGGGCCAGAGCAA
GGCCGCGATCCCTGCAGCCCTCCGGATCACGAGAGCACGGAGGGTCCAGGAACAGGTCAAGACCGACCGCCCT
15 GCGGAGTCTGGCGGAGCTCCGGACCCGAAACGCTACGCTTTTATTCCAGCTATTCAGCTACGAGGCTATGTGCT
GCACCTTGACAGCTCCAGGCGCTGAACAAGGCCAAGTACGCCAATGTGGACAACCACCTTGGACTCGCAC
CAATGTGAATCTGGCTAGCGCCCCCTTGGAGCAAGTGTGATGAGACAGGAGGGCAAGTACCCATAAGAGACAG
CATGGAGCAGTGAAGGAGCACCGAGACCACAAAGGCCTCTCCTATGGGATCTTCATCACACAAGGACAGCAGTG
GTACCATCTGCGTCATAGTTGAATCAGCGGATGCTGAAGCCTGCTGAGGCAGCCCTCTACACAGATGCCTAAA
20 CGAGGTCATCAGTGACTTTATTGCCGGCTGGACCAGGTGCGGACAGAGAGTCATCAGGGATCAGGTGCCAGA
TGTGGCACATCTTCTTACCAACCTTGCCTTGGAAAGCCATCTGCTATATCCTGTTGAGAAAAGGGTTGGCTGCCT
GGAGCCCTCCATCCCTGAGGACACCGCCACCTTCATCAGATCTGTTGACTCATGTTCAAGAACTCAGTCTATGT
CACTTCTTCCCAGTGGCTCGGCCTCTGCTGCCCTTGGAAAGCGATACTGAATAACTGGATAACATTTT
CTCCTCGGGAGAAGATGATTCAACAAAGTCCAGGAGATAGAACGCCAGCTACAGGCGCTGGCCAGATGG
25 GGTCCAGGTATCTGGTACCTGCACTTCTGCTGACTAAGGAATTGCTCAGTCCTCAAGAGACTGTCGGCACCTT
TCCTGAGCTGATCTGGCTGGGTAGACACGACATCCAATACACTGACCTGGCCCTGTATCACCTTCAAAAGAA
CCCAGAGATCCAGGAAGCCTTGACAAGGAAGTGACTGGTGTGGTACCCCTGGAAAGGTGCCAGAACAGGA
CTTGCCCACATGCCCTGCTAAAGCTGTGATTAAGGAGACCCCTGCGCCTCTACCCCTGGTCCACAAACTC
CCGGATCATCACAGAAAAGGAAACTGAAATTAAATGGCTTCTTCCCTAAGAATAACACAGTTGTGTTATGCCA
30 CTACGTGGTGTCCCGAGATCCCAGTGTCTTCCCTGAGCCGAGAGCTCCAGCCTCACCGATGGCTGAGGAAGAG
AGAGGACGATAACTCCGGATCCAACACCCATTGGCTCTGTGCCCTTGGCTATGGGTTGGCTCTGCCTGGG
TCGCAGGATTGCAAGACTGGAGATGCAACTCCCTGCTGTCAAGGCTGATACAAAGTATGAGGTGGCTGTCTCC
CGGGATGGGAGAAGTGAAGTGTGTCCTGCCATCGTCCCTGGTCCAGCAAGAAGGTGAGCCTACGCTTCTGCA
GAGACAGTAGTACCAAGCTGGCCTCTGCTCCATGGGACTTGTCCAGAAGCCCTGGCACAGAAGTTCTGGCAG
35 TCTCACGTACATGTCACGATGCCAGATTCAACAGGGACCTCTGCCCTCCATAGACACCAGACGTCTGGC
ACAATCTCTACTGAGCAGCACCCATTAAAGACATTAGAGCACCTCATATCACAGGACGGTGCTGGTACAATTT
AAAAATAAAATTAAAAATTCAAAAAA

SEQ ID NO:90 Rat CYP27 polypeptide sequence

accession:gi56034

MAVLSRMRLRWALLDTRVMGHGLCPQGARAKAAIPAAALRDHESTEGPGTQDRPRLRSLAELPGPGTLRFLFQLF
 LRGYVLHLHELQALNKAKYGPWTTFGTRTNVLASAPLLEQVMRQEKGKPIRDSMEQWKEHRDHKGLSYGINI
 5 TQQQQWYHLRHSLNQRMLKPAAEALYTDALNEVISDFIARLDQVRTEASGDQVPDVAHLLYHLALEAICYILFE
 KRVGCLEPSIPEPDATFIRSVGLMFKNCSVYTFPKWSRPLLFWKRYMNNWDNIFSFGEKMIHQKVQEIEAQLO
 AAGPDGVQVSGYLHFLLTKELLSPQETVGTFPELILAGVDTSNTLTWALYHLSKNPEIQEALHKEVTGVVPFGK
 VPQNKKDFAHMPLLKAVIKETLRLYPVVPTNSRIITEKETEINGFLFPKNTQFVLCHYVVSRDPSVPEPESFQPH
 RWLRKREDDNSGIQHPFGSVPFGYGVRSCLGRRIAELMQLLSRLLIQKYEVVLSPGMGEVKSVSRIVLVPSKKV
 10 SLRFLQRQ

SEQ ID NO:91 Human Endothelin A receptor nucleic acid sequence

HUM228677 accession:S57498 CDS:485..1768

GAATTCGCGGCCGCCTTGGGTCCCAGAGTGGAGTGGAGCTGGAGCTTGAGGGAGACGGGAGGACAG
 15 ACTGGAGGCCTGTTCCCTCCGGAGTTTCTTTCTGCGAGCCCTCGCGCGCGTACAGTCATCCGCTGGTCT
 GACGATTGTGGAGAGCGGTGGAGAGGCTTCATCCATCCCACCCGGTCTCGCCGGGATTGGGTCCCAGCGAC
 ACCTCCCCGGAGAACGAGTGCCAGGAAGTTTCTGAAGCCGGGAAGCTGTGCAGCCGAAGCCGCCGCCGC
 CGGAGCCCGGGACACCGGCCACCCCTCGGCCACCCACCCCTCGCTTCTCCGGCTTCTGGCCAGGCCGC
 GCGGACCCGGCAGCTGCTGCGCACGCCAGCTCCACGGTAAAAAAAAGTGAAGGTGTAAAGCAGCACAAGT
 20 GCAATAAGAGATATTCCTCAAATTGCTCAAGATGAAACCCCTTGCTCAGGGCATCCTTGGCTGGCACT
 GGTTGGATGTGAATCAGTGATAATCCTGAGAGATAACAGCACAAATCTAACGCAATCATGTGGATGATT
 TTTCTGTCAGAGCTCAGCTTGGTTACCACTCATCAACCCACTAATTGGTCTACCCAGCAATGGCTC
 AATGCACAACATTGCCACAGCAGACTAAAATTACTCAGCTTCAAATACATTAACACTGTGATATCTGTAC
 TATTTCTCGTGGGAATGGTGGGAATGCAACTCTGCTCAGGATCATTACAGAACAAATGTATGAGGAATGG
 25 CCCAACCGCCTGATGCCAGTCTGCCCTGGAGACCTTATCTATGTGGTCAATTGATCTCCCTATCAATGTATT
 TAAGCTGCTGGCTGGCGCTGGCCTTTGATCACAATGACTTTGGCTATTGCAAGCTGTTCCCTGGCT
 GCAGAAAGTCCTCGGTGGGATCACCGTCCTCAACCTCTGCGCTTAGTGGTACAGGTACAGAGCAGTTGCCTC
 CTGGAGTCGTGTTCAAGGAATTGGGATTCCCTGGTAACTGCCATTGAAATTGTCTCCATCTGGATCCTGT
 TATCCTGGCATTCTGAAGCGATTGGCTTCGTATGGTACCCCTTGAATATAGGGTGAACAGCATAAACCTG
 30 TATGCTCAATGCCACATCAAAATTGAGTTCTACCAAGATGAAAGGACTGGTGGCTCTCGGGTTCTATT
 CTGTATGCCCTGGTGTGCACTGCCATCTTACACCCCTCATGACTTGTGAGATGTTAACAGAACANNAATGGCAG
 CTTGAGAATTGCCCTCAGTGAACATCTTAAGCAGCGTCAGAACAGTGGCAAAACAGTTCTGCTGGTTGAAT
 TTTGCTCTTGCTGGTCCCTCTCACTTAAGCGTATATTGAAGAAAATGTGTTAACGAAATGGACAAGAA
 CCGATGTGAATTACTTAGTTCTACTGCTCATGGATTACATCGGTATTAACGGCAACCAGAACATTGATGT
 35 AAACCCATAGCTCTGTATTTGTGAGCAAGAAATTAAAAATTGTTCCAGTCATGCCCTGCTGCTGTTA
 CCAGTCCAAAAGTCTGATGACCTCGGTCCCCATGAACGGAACAGCATCCAGTGGAAAGAACCGAGTAAAACAA
 CCACAAACACAGACCGGAGCAGCCATAAGGACAGCATGAACGTGACCACCTAGAACGACTCCTCGGTACTCC
 AATCCTCTCGGAGAAAAATCACAAGGCAACTGTGACTCCGGAAATCTCTCTGATCCTCTTAATT
 ACTCCCACACCCAAGAAGAAATGCTTCAAAACCGCAAGGTAGACTGGTTATCCACCCACACATCTACGAAT
 40 CGTACTTCTTAATTGATCTAATTACATATTCTGCGTGTGTATTCACTAAAAATGGTGGAGCTGGGG

AGAATGAAGACTGTTAAATGAAACCAAGAAGGATATTTACTACTTTGCATGAAAATAGAGCTTCAAGTACATGG
 CTAGCTTTATGGCAGTTCTGGTGAATGTTCAATGGGAACGGTCACCATGAAACTTAGAGATTAACGACAAGA
 TTTTCTACTTTTTAAGTGTATTTGTCCTCAGCCAAACACAATATGGGCTCAGGTCACTTTATTTGAAAT
 GTCATTTGGTGCAGTATTTAACTGCATAATAGCCTAACATGATTATTGAACCTATTTACACATAGTTGA
 5 AAAAAAAAGACAAAATAGTATTCAAGGTGAGCAATTAGATTAGTATTTCCACGTCACTATTTATTTTTAAA
 ACACAAATTCTAAAGCTACAACAAACTACAGGCCCTAAAGCACAGTCTGATGACACATTTGCAGTTAATA
 GATGTTACTCAAAGAATTTTAAGAACTGTATTTATTTAAATGGTGTATTACAAGGGACCTTGAAACA
 10 TGTTTGATGTTAAATTCAAAGTAATGCTCAATCAGATAGTCTTTCAACAGTTCAAAACTGTTCTGAGACTT
 GTAAATTTGTATGAAAATCAATGTCAAGTACCAAAATGTTATGTATGTGTCAATTAACTCTGCCTGAGACTT
 TCAGTGCACTGTATATAGAAGTCAAAACACACCTAACAGAGAAAAGATCGAATTTTCAGATGATTGGAAATT
 15 TCATTCAAGGTATTTGTAATAGTGACATATATGTATATACATATCACCTCCTATTCTTAAATTTGTTAAAA
 TGTTAACTGGCAGTAAGTCTTTTGATCATTCCCTTCCATATAGGAAACATAATTTGAAGTGGCCAGATGA
 GTTATCATGTCAGTGAAAATAATTACCCACAAATGCCACCAGTAACCTAACGATTCTCACTCTGGGTT
 TCAGTATGAACCTAACCCCCACCCAACATCTCCCTCCCACATTGTCACCATTCAAAGGGCCACAGTGA
 20 TTGCTGGCATTTCAGATGTTACAGACTGTGAGTACAGCAGAAAATCTTACTAGTGTGTGTGTATAT
 ATATAAACAAATTGTAATTTCTTTAGCCCATTTCAGACTGTCCTGTGGAATATATTGTGTGTGTGATAT
 ATGCATGTGTGATGGTATGTTAAATCTAACTCTAATCTAAATTGTGCCCCGAGTGTGCCAAAGTGCATA
 GTCTGAGCTAAATCTAGGTGATTGTTCATCATGACAACCTGCCCTCAGTCATTAAACCTGTAGCAACCTCTG
 CATTCAAAATCTGTAATCATGTTACCATTACAATGGGATATAAGAGGCAGCGTGAAGCAGATGAGCTGTGG
 25 ACTAGCAATATAGGGTTTGGTTGGTTGGTTGATAAAGCAGTATTGGGTCATATTGTTCTGTGCTG
 GAGCAAAAGTCATTACACTTTGAAGTATTATATTGTTCTTATCCTCAATTCAATGTGGTGTGAAATTGCCAGGT
 TGTCTGATATTTCTTCAGACTTCGCCAGACAGATTGCTGATAATAATTAGGTAAAGATAATTGTTGGG
 TTTAGGACAGGTAACATCAGGTTCCAGTTGCTGAATTGCAAGGCTAAGAAGTACTGCCCTTGTGTG
 TTAGCAGTCAAATCTATTATTCCACTGGCGCATCATGCACTGATATATGCCTATAATATAAGCCATAGGTTCA
 CACCATTGTTAGACAATTGCTTTCAAGATGCTTCTTCATATGAAAAAAATGCATTIATAA
 30 ATTCAAGAAAGTCATAGATTCTGAAGGCAGTCACGTGCAATTGACTGGTAAGTAACGTGTTACT
 AGCAGGAATATTCCAATTCTACCTTACTACATTCAACAGTAACTTGTAGAAATGAGCCAGAACCCA
 AGGCCCTGAGTTGGCAGTGGCCATAAGTGTAAAATAAGTTACAGAAACCTT

30 SEQ ID NO:92 Human Endothelin A receptor polypeptide sequence

protein_id:gi18390352

METLCLRASFWLALVGCVISDNPERYSTNLSNHVDDFTFRGTELSFLVTTHQPTNLVLPNGSMHNYPQQT
 TSAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIASLALGDLIYVVIDLPINVFKLLAGRWPFDH
 NDFGVFLCKLFPFLQKSSVGITVLNLCAESVDRYRAVASWSRVQGIGIPLVTAIEIVSIWLSFILAIPAEIGF
 35 MVPFEYRGEQHKTCMILNATSKMIFYQDVKDWWLFGFYFCMPLVCTAIFYLMTCEMLNRXNGSLRIALSEHLKQ
 RREVAKTVFCLVVIFALCWFPPLHSRILKKTVYNEMDKNRCELLSFLLMDYIGINLATMNSCINPIALYFVSKK
 FKNCFQSCLCCCCYQSKSLMTSVMNGTSIQWKNHQNNHNTDRSSHKDSMN

SEQ ID NO:93 Mouse Endothelin A receptor nucleic acid sequence

accession:BC008277

CDS:397..1680

GTCTAGGAGCCTGTGGAGTCTAAGGAAGATCGCGGGAGGCGTGTCCCTCCGGAGTTGCTTTCCCTGGGAGCCT
CGCGCGCACACCCATCCCTCTAGTCTGGCAACTGTGTCTAGGAGGTGGGAGCCTCTCTGATCCACCGGACC
5 ATCGCTGGAGCTTGCAAGGCTGAGCAAGATCTCCCCTAGAGAACGCCGGCTGTCCGGGGAAAGTTCCCCGAGCTG
AGACTGTGCTGCAGCCCTGGTCACCCGCCACCCCTGCGCGCCACCCCTCGTTCTCCAGCTCAGGCTCCGGCTGGCCC
GTGCGCGGACCTGGAGCTGTCTGCTCCGAGGGAGCTCTAAGGTGAAAAAAAGAAAGCGTGAGACCAACATAAGA
AGACTTAAAATCCAGGTTAAGATGAGTATCTTGCCTGGCATACTTTGGCTGACCATGGTGGGAGGCGTA
ATGGCTGACAATCCGGAGAGATAACAGCGCTAATCTAACGCCACATGGAAAGACTTCACCCCTTCCGGGACG
10 GAGATCAACTTCTGGCACCACCCATCGACCCCTAATTGGCCCTGCCTAGCAATGGCTCAATGCACGGCTAT
TGCCCACAGCAGACTAAAATCAGCACAGCTTCAAATATATTAAACACTGTGATATCCTGCACCATTTCATCGTG
GGAATGGTGGGGAACGCAACTCTACTACGAATCATTACCAAAACAAGTGTATGAGGAACGGCCCAATGCGCTC
ATAGCCAGCCTGGCCCTTGGAGACCTTATCTACGTGGTCATTGACCTCCCCATCAACGTGTTAAGCTCTGGCA
GGACGCTGGCCTTCGACCACAATGATTGGAGTGTCTCTGCAAGCTGTTCCCTGAGAAGTCTCC
15 GTGGGCATCACCGTCTTGAACCTCTGTGCTCTCAGTGTGGACAGGTACAGAGCAGTGGCTTCCGGAGCCAGTT
CAAGGAATGGGATCCCTTGATTACCGCATTGAAATCGTCTCCATCTGGATTCTTCATCTGGCCATC
CCGGAAAGCAATCGGCTCGTCACTGGTACCCCTCGAATACAAGGGCGAGCTGCATAGGACCTGCATGCTCAACGCC
ACGTCCAAGTTCATGGAGTTTACCAAGATGTGAGGACTGGTGGCTTTGGGTTCTACTTCTGCATGCCCTTG
GTGTGCACAGCAATCTTACACCCCTCATGACCTGTGAGATGCTCAACAGGAGGAACGGCAGCTGCGGATCGCC
20 CTTAGTGAGCACCTCAAACAGCGTCGAGAAGTGGCAAAGACTGTCTTCTGCTTGGTTGCATCTCGCCCTGTGC
TGGTTCCCTTCACTTAAGCCGATTGGAAAGAAAATGTATGAGATGGATAAGAACCGGTGTGAACCT
CTCAGCTTCTGCTGCTAATGGATTACCGCATTAAACCTGGCAACCCTGCTCTGGTGTGTCACCAGTCCAAAAGC
CTATATTTGTGAGCAAGAAATTCAAAAATTGTTCAAGTGGTGTGCTTGGGTTCTACTTCTGCATGCCCTTG
CTCATGACCTCGGTCCCCATGAATGGAACGAGTATCCAGTGGAAAGAACCAAGAGCAGAACACCACACGGAA
25 CGGAGCAGCCACAAGGACAGCATGAACTAACCTCCGAGAAACACCGAGACGTGTGCCCTCAAGTCCTAGGATG
GAAACAACCATTACGCCACAGATCGCTCCAAAACCTCCAAAGTCTCTCCATGCTCCTTCTAAGTCATCC
TAGGAAAAGCTCTGCTGCCCTCCAAACAGCACGTGGTGGACCGGTCCAGCTATAGCCAATGGGTCTTCTGAG
TACTGTATATGATTGCTACCGCGCATGTCATTCCAACACTTGAAAATTAGAGCTGGAGAAAGGAGATGATG
GTTCAAAGAACGCCACCTAGCTGCCGCTTGCATGAACACAGAGTTGCAAGTTCATGACCAGCTTCCGTGCAGT
30 TCTATGGACCAGCTGGGGAACTGTCCATCTAAGATTCTAGAGCAGTGGCTCAACCTCCAATGCTGCAG
CCCCCTTAATACAGTTCTCATTTCCAGTGACCCCCCCCACCCAAATATTATTTTGTGCTACTTCATTAT
TTTGAATTGTTATAATTGTCTGATATTCTGATAGTCTTAGCCTGCCCTGTTAAAGGGTCTTAGCAACCCACA
AGTTGAGAACCACTGCCCTAGAAATTCTGTTGCGTTCATGGCCATGACTACAATCTAAAATTGGAGAGGTGA
GGGAAGATGGTCAGGTGTTCAAGGTTAGCCTCATCAACATAGTCGGAAAAGCCAGGGCTACCTGTTCTACAAG
35 ACACAAACAGACAAAAGTGTTCAGGTTAAGTACTCTTGGAAATGTCACCGAGTGTGGTACTTTATAACTGCATGGTACCCCTAGAA
ATGATCGTTCATCTCTTCAATGTAAGAAAAGAAATAGGAGAGTTCCAGAAGGGAGATCTGGAAAGG
AGATAATGTTGAAATGTAAGAAGGAAATATCCAATAAAGTCTAAAAAAAAAAAAAA

SEQ ID NO:94 Mouse Endothelin A receptor polypeptide sequence

accession:gi14198449

MSTIFCLAAWFWLTMVGGVMADNPERYSANLSSHMEDFTPFPGTEINFLGTTHRPPNLALPSNGSMHGYCPQQTKI
 TTAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMLRNGPNALIASLALGDLIYVVIDLPINVFKLLAGRWPFDH
 5 NDFGVFLCKLFPFLQKSSVGITVLNLALSVDRLYRAVASWSRVQGIGIPLITAIEIVSIWILSFILAYPEAIGFV
 MVPFEYKGELHRTCMLNATSKMIFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCMELNRNRNGSLRIALSEHLKQ
 RREVAKTVFCLVVIFALCWFPFLHLSRILKKTVYDEMDKNRCELLSFLLLMDYIGINLATMNSCINPIALYFVSKK
 FKNCFQSCLCCCCHQSKSLMTSVPNGTSIQWKNQEQQNNHNTERSSHKDSMN

10 SEQ ID NO:95 rat Endothelin A receptor nucleic acid sequence

accession:NM_012550

CDS:44..1324

GTGAGACCAACATAACAGGACGTTCTTCAGATCCACATTAAAGATGGGTGCTTCTGGCGTCCTTG
 GCTGGCCCTGGTGGAGGCGCAATCGCTGACAATGCTGAGAGATAAGTCTAATCTAACGCCACGTGGAGGA
 CTTCACCCCTTTCCAGGGACAGAGTCGACTTCTGGCACCACCCCTGACCCCTAATTGGCCCTGCCTAG
 15 CAATGGCTCAATGCATGGCTATTGCCACAGCAGACAAAAATCACGACGGCTTCAAATATATCAACACTGTGAT
 ATCCTGTACCATTTCATCGTGGAAATGGTGGGAACGCCACTCTCTAAGAACATTTACAAAACAAGTGTAT
 GAGGAACGGCCCAATCGCCTAGCCAGCCTGGCCCTTGGAGACCTTATCTACGTGGTCATTGATCTCCCAT
 CAATGTGTTAAGCTGTTGGCGGGCGCTGGCCTTTGACCACAATGATTGGAGTGTTCTGCAAGCTGTT
 CCCCTTTGCAGAAGTCGTCCGGCATCACTGTCTGAATCTCTGCCTCTCAGTGTGGACAGGTACAGAGC
 20 AGTGGCTTCTGGAGCCGGTTCAAGGAATCGGGATCCCCTTGATTACCGCATTGAAATTGTCTCCATCTGGAT
 CCTTCCCTTATCTTGGCCATCCCAGAACGAAATGGCTTCGTCACTGGTACCCCTCGAATACAAGGGCGAGCAGCA
 CAGGACCTGCATGCTCAACGCCACGACCAAGTTCATGGAGTTACCAAGACGTGAAGGACTGGTGGCTTTGG
 ATTCTACTTCTGCATGCCCTGGTGTGCACAGCAATCTCTACCCCTCATGACCTGTGAGATGCTAACAGAAG
 GAATGGGAGCTGCGGATTGCCCTCAGCGAACACCTCAAGCAGCGTCGAGAGGTGGCAAAGACCGTCTCTGCTT
 25 GGTTGTCATCTCGCCCTGTGCTGGTCCCTCTCACTTAAGCGAATTGAAAGAAAACCGTATGAGAT
 GGATAAGAACCGGTGTAACTGCTCAGCTTCTGCTCATGGATTACATTGGCATTAAACCTGGCAACCAGAA
 CTCTTGCAAAACCAATAGCTCTGATTTGTGAGCAAGAAATTCAAAATTGTTTCAGTCATGCCCTGTTG
 CTGTTGTCACCAGTCCAAAAGCCTCATGACCTCGGTCCCCATGAATGGAACGAGTATCCAGTGGAAAGAACCAAGGA
 GCAGAACCAACACAGAACGGAGCAGCCACAAGGACAGCATGAACTAACCTGTGCAGAAGCACCGAGCAGTGT
 30 GCCTCGAGTCCCAGGATGAAACGGTCACGCAGCAGCTGCCTCCAAAACCTCCAGGTCTCTCCCTGCTTT
 TGCTAAGCTT

SEQ ID NO:96 Rat Endothelin A receptor polypeptide sequence

accession:gi7549758

MGVLCAFASFWLALVGGAIADNAERYSANLSSHVEDFTPFPGTEFDLGTTLRPPNLALPSNGSMHGYCPQQTKI
 TTAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMLRNGPNALIASLALGDLIYVVIDLPINVFKLLAGRWPFDH
 35 NDFGVFLCKLFPFLQKSSVGITVLNLALSVDRLYRAVASWSRVQGIGIPLITAIEIVSIWILSFILAYPEAIGFV
 MVPFEYKGELHRTCMLNATTKFMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCMELNRNRNGSLRIALSEHLKQ

RREVAKTVFCLVVIFALCWFPILHSRILKKTVYDEMDKNRCELLSFLLLMDYIGINLATMNSCINPIALYFVSKK
FKNCFQSCLCCCCHQSKSLMTSVPNGTSIQWKNQEQNHTERSHKDSMN

SEQ ID NO:97 Human EGF-Like nucleic acid sequence

5 HUM233032 accession:M60278 CDS:262..888
GCTACGGGCCACGCTGGCTGGCTGACCTAGGCAGCGGGTCGGCGGCCGGCGCGGGCTGAGTGA
GCAAGACAAGACACTCAAGAAGAGCGAGCTCGCCCTGGTCCCAGGCTTGACCGAGAGGCGGCCAGA
CGGTGCCCGGGAATCTCCTGAGCTCCGCCAGCTCTGGTGCAGCGCCAGTGGCGCCCTCGAAAGT
GACTGGTGCCTCGCCGCCCTCTCGGTGCGGGACCATGAAGCTGCTGCCGTCGGTGGTGAAGCTCTTCTG
10 GCTGCAGTTCTCTCGGACTGGTACTGGCAGAGGCCTGGAGCGGCCCTCGGAGAGGGCTAGCTGCTGGAACCAGC
AACCCGGACCCCTCCCAGTGTATCCACGGACAGCTGCTACCCCTAGGAGGCGGCCGGACCGAAAGTCCGTGAC
TTGCAAGAGGCAGATCTGGACCTTTGAGAGTCACTTTATCCTCCAAGCCACAAGCACTGCCACACCAAACAG
GAGGAGCACGGAAAAGAAAGAAGAAAGGCAAGGGCTAGGAAGAAGAAGGGACCCATGTCTCGGAAATACAAG
GACTTCTGCATCCATGGAGAATGCAAATATGTGAAGGAGCTCCGGCTCCCTGCATCTGCCACCCGGTTAC
15 CATGGAGAGAGGTGTCATGGCTGAGCCTCCAGTGGAAAATCGCTTATATACCTATGACCACACAACCATCCTG
GCCGTGGTGGCTGTGGTGCATCTGTCTGTCTGGTCACTGGGGCTCTCATGTTAGGTACCATAGG
AGAGGAGGTTATGATGTGGAAAATGAAGAGAAAGTGAAGTTGGCATGACTAATTCCACTGAGAGAGACTGTG
CTCAAGGAATCGGCTGGGACTGCTACCTCTGAGAAGACACAAGGTGATTCAGACTGCAGAGGGAAAGACTTC
CATCTAGTCACAAAGACTCCTTGTCCCCAGTTGCCGTCTAGGATTGGGCTCCCATAATTGCTTGCCAAAATA
20 CCAGAGCCTTCAAGTGCCAACAGAGTATGTCGATGGTATCTGGTAAGAAGAAAGCAAGGGACCTTC
ATGCCCTCTGATTCCCTCCACAAACCCACTTCCCTCATAAGTTGTTAACACTTATCTCTGGATTAG
AATGCCGGTTAAATTCCATATGTCAGGATTTGACTGAAAAAAGAAGAAGAAGAAGGAGAGCAAGAA
GGAAAGATTTGTGAAGTGGAAAGAAAGCAACAAAGATTGAGAAGCCATGTACTCAAGTACCAAGGGATCTGCC
ATTGGGACCTCCAGTGTGGATTGATGAGTTAACCTACAAGCCTGAGAACTGAATTGGACT
25 TCTACCCAGATGGAAAAATAACAACATTGGTTGTTGTTGAAATGCCCTTAAATTATATATT
TATTCTATGTATGTTAATTATTAGTTAACATCTAACATAATTCAAGTGCCTAGACTGTTACTTTG
GCAATTCCCTGGCCCTCCACTCCTCATCCCCACAATCTGGCTTAGTGCCACCCACCTTGCCACAAAGCTAGGAT
GGTCTGTGACCCATCTGTAGTAATTATTGTCTGTACATTCTGCAGATCTCCGTGGTCAGAGTGCCACTG
CGGGAGCTCTGTATGGTCAGGATGTAGGGTTAACCTGGTCAGAGCCACTCTATGAGTTGGACTTCAGTCTGCC
30 TAGGCAGATTGTCTACCATTGTGTTGAAAGCCCAAGGTGCTGATGTCAGACTGAAACAGATATCAGTGTCT
CCCCGTGCTCTCCCTGCCAAGTCTCAGAAGAGGTTGGCTTCCATGCCCTGTCAGCTTCCCTGGTCCCTCACCC
CATGGCCCCAGGCCACAGCGTGGAACTCACTTCCCTGTGTCAGACATTTCTCTAACCTGCCATTCTTCT
GGTGCTACTCCATGCAGGGTCAGTGCAGCAGAGGACAGTCTGGAGAAGGTATTAGCAAAGCAAAGGCTGAGAA
GGAACAGGGAACATTGGAGCTGACTGTTCTGGTAACTGATTACCTGCCATTGCTACCGAGAAGGTTGGAGGTG
35 GGGAAAGGTTGTATAATCCCACCCACCTCACCAAAACGATGAAGGTATGTCATGGCCTTCTGGAAAGTT
CTGGTGCCTTCTGAACGTGTTACAACCTGTATTCAACCTGGTCATATTATACTTTGCAATCCAAATAAA
GATAACCCATTCCATAAAAAAAAAAAAAAA

SEQ ID NO:98 Human EGF-Like polypeptide sequence

protein_id:gi183867

MKLLPSVVLKLFLAAVLSALVTGESLERLRRGLAAGTSNPDPPPTVSTDQLLPLGGGRDRKVRDLQEADLDLLRVT
LSSKPQALATPNKEEHGKRKKKGKGLKRDPCCLRKYKDFCIHGECKYVKELRAPSCICHPGYHGERCHGLSLPV

5 ENRLYTYDHTTILAVVAVVLSVCLLVIVGLLMFRYHRRGGYDVENEELVKLGMTNSH

SEQ ID NO:99 mouse EGF-Like nucleic acid sequence

accession:NM_010415

CDS:262..888

AGTCGGCCCGGGAGCTGCACGCCGCTGGCTGGCTGGCCGACAGACCTCAAGGGCTGGAGTGGACGCCGCGAC

10 CGACTCTGAACAGACAGACGAACCGCGGCCAAGGTTCCCAGACAGGATCTCACCCAGAGGCAGGCAGCGAAC
GTGCCCTAGTGGAACCTCGCTGTCCTCCACCGCTGGCCCCGGTGCAGGCGTCCAGTGGCCGCCATCCAAAGT
GATCGCTGCCCTCCCGTCTCCGCCAGGCTGGGACCATGAAGCTGCTGCCGTCGGTATGCTGAAGCTCTTCTG
GCCGAGTGGTGTCCCGGTTGGTACCGGGTGGAGAGTCTGGAGCGGCTTCGGAGAGGTCTGGCGGAGCAACCAGC15 AACCGTACCCCTCCACTGGATCCACAAACAGCTGCTACCCACGGGAGGTGATCGTCTCAGGGGTCCAGGAC
TTGGAAGGGACAGATCTGAACCTTTCAAAGTTGCTTCTCCTCCAAGCCACAAGGCCTGGCCACCCCAAGCAA
GAAAGGAATGGGAAAAGAAGAAGAAAGGAAAGGGTTAGGAAGAAAGAGAGACCCATGCCCTAGGAAATACAAG20 GACTACTGCATCCACGGGAGTGAGATACTGCAGGAGTTCCGTACTCCCTTGTCAAATGCCCTGGTTAC
CACGGACACAGGTGTATGGCTGACTCTACCAAGTGGAGAATCCCTATAACATATGACCACACTACAGTCTG
GCTGTGGTGCTGTAGTAGCTGCTCCGTCTGTCTTGTATCGTGGACTTCTCATGTTAGGTACCAAGG25 AGAGGAGGTTATGACTGGAAAGTGAAGAGAAAGTGAAGTTGGCGTGGCTAGCTCCACTGAGGAGGACCTGAG
CTATAGGAACCTTCAGAGGCTACTTCTGAGACAGTGGTTCTTACACGTTCTACATAGAGGAGAAATTTCAAC
AGCAGCCATGAAAACGTCTTCATTCAATTCCAGTTGCTACCCCTGACTGGGCTCCTGTAATTGCTCTGTTAAAG
AAAAAAAAAAATCTCAGAGCCTCTAAGTGCCAAACAGACCATGCCGCTGGATCCGGATCAGAAGAAAGCAGGATC30 GAGTGAGCCCTTCAGGCCCTGGCTCTCCATTGAACCCACTGGTTGTTAACACTTAGCTCTGGATT
AGAGTGTCACTAGTTCCATATGCTCCAGGATTTGACTGGAAAAAGGGAGAGGAAGGTTAAATG
GTTTATGGACTGGAAGAGAGCAACAGAGCTGAGAAGCTATGTGTTCAAGTAGCCGCAAGGGATCTGCTGTTGGA
CCCTCCAGCAGCTGGATTTGATGAACTAACGTGAAATACCGCAAGCTCGAGAACTCTTGAGTTGGACTTT35 TCTACCCAGAGGGGAAAATAACAAGTATTGTTGTTGTTGTTGTTGTTGTTGTTGAAATGCCCTTT
AAATTATATATTATTATCTATGTATGTTAATATATTAGTTTTAACATCTAACAAATAATTCAAGTG
CCTAGACTGTTACTTGGCAATGCTCTGGCCACTCTCTGCGCTCCACCATCTGGCTCAATGCCACGCTGGGT
CCTATTGCTCTGTAACCCATCGGTAGTAATTATTATTGTCTGTCTACATTCAAGAGATGCTCCCTGGAGCAGAATA
TCCCAGGGTAGGTTGTATGGTCAGAGTGCAGGGATCGGTTGGCGGAGCCACTCTGTGAGTTGGACTGCAGT40 CTTGCCTAGGTGATTTGTCACCGTTCGTCCGAAAGCCAAGGTGCTGATGTTAGCGTGTAAAGATATT
GGTGTGGCTGTGTCCTCTCCCTGCCAAATCCCAAGAGAGATTGAGCATCCATGCCCTGAGGAAGTCCATGGC
TTCCCTGGCCTCTATCCCCCACCCTCACTCCCTTGTCAGACATTTCCCTATCCTGCTGTTCTCGGGTGC
TACTTCGTGCAGGGTTGGCAGAGCACAGGACAGTTGGAGAAGGCATTAGTAAAGGAAAAGGCTGAGGAAGAGC
AGGGAGCTTGGAGTTGACTATTCTGGTCATTGATAACCTATCAATTACTATAGGGAGGTTGGTGGAGGAAAG
GTTTGGGTAAGGAGAGACTACGTGTCACCAAGACTATAATGTATGCTGTCACAGTCCCCATGGAAGGTTCTAGT
GCCATGTCTGAACGTAACTTATATTCCAAAACCTGGTCATATTATACTTGTGACCCAAATAAGATA

ACCCTTACTCCA

SEQ ID NO:100 Mouse EGF-Like polypeptide sequence

protein_id:gi6754178

5 MKLLPSVMLKLFIAAVLSALVTGESLERLRRGLAAATSNPDPPTGSTNQLLPTGGDRAQGVQDLEGTDLNLFKVA
FSSKPQGLATPSKERNGKKKKKGKGLGKKRDPCLRKYKDYCINHECRYLQEFRTPSCKCLPGYHGRCHGLTLPV
ENPLYTYDHTTVLAVVAVVLSSVCLLVIVGLLMFRYHRRGGYDLESEEKVKLGVASSH

SEQ ID NO:101 Rat EGF-Like nucleic acid sequence

accession:L05489

CDS:32..658

10 GGGCCCCCGTCTCCGCCAGGCTCGGGACCATGAAGCTGCCGTGGTGGCTGAAGCTCTTCTGGCCGC
AGTGTGTCGCGTTGGTGACCGGTGAGAGTCTGGAGCGGCTCGGAGAGGTCTGGCCGCAGCAACCAGCAACCC
TGACCCCTCCCACGGAAACCACAAACAGCTGCTACCCACGGGAGCTGATCGCGCTCAGGAGGTCCAGGACTTGGA
AGGGACCGATCTGGACCTTTCAAAGTTGCTTCTCCTCCAAGCCACAAGCCCTGGCCACCCCAGGAAAAGAAAA
GAACGGGAAAAGAAGAGGAAAGGCAAGGGTTAGGAAAGAAGAGAGATCCATGCCTTAAGAAATACAAGGACTA
15 CTGCATCCACGGAGAGTGCAGATACTGAAGGAGCTCCGTATTCCCTCGGCCACTGCCCTGGTTACCATGG
ACAGAGGTGTCATGGGCTGACCCCTACCGGTAGAGAACCCCTGTACACATATGACCACACTACCGTCTGGCTGT
GGTGGCTGTAGTACTGTCATCTGTCATCTGTCTTGTACATCGTGGACTTCTCATGTTAGGTACCATAGGGAGG
AGGTTATGACTTGGAAAGTGAAGTTGGCATGGCTAGCTCCACTGAGGAGGATCTGAGCTAA
GGAGCCTTCAGAGGATGGCTACTTCTGAGATGGCGGTTCTACAAGTTCTACAGAGGGAAAATACCTCACCGC
20 AGCCATGAAGACTTCTCATTCACTCCAGTTGCTACCCGACTGGGCCTCCTGTAATTGCTCTGCAAAATATC
AGAGCCTCTAAGTGCACAAACAGACTATGCCCGCTGGATCTGGATCAGAAGAAAGCAGGAGCAAGTGAGCCCTT
CAGGCCTTCCTGATCCTCCACCACTGAACCCACTGGTTGTTAAACACTTAGCTTCTGGATTAAAGTGTCA
AGTTCCATATGCTCCAGGATTTGGCTGAAAAAAAAAGAAGAGGAGACGGATGAGTGGTTATGGACTGG
AAGAGATCAACAGAGTTGAGAAGCTAAGTGTCAAGTAGCCACAGGGATCTGCTGTTGGACCCTCCAGCACGC
25 TGGATTGAGCTAACTGTGAAATATCTCAAGCCGAGAACTCTTGAGTTGGACTTCTACCCAGAGGGAA
AAATAACAAGTATTTGTTGTTGTTGTTAAATGCCTCTAAATTATATTTATTTATT
CTATGTATGTTAATATTTAGTTTAACAATCTAACATAATTTCAAGTGCCTAGACTGTTACTTGC
TGTCCCTGGCCCGCCTCTTGAGCTTCCACCTGGCTCAATGCCACACTCCATCTGCTCTGTAACCCATCTG
TAGTAATTATTGTCAGACATTTCAGAAGATGCCCTGTAGCAGAGTATCCCAGGGTGGTTGTATGGTC
30 GGAGTGCAAGGATGGATTGGCAGAGCCACTCTGTGAGTTGGACTGCGAG

SEQ ID NO:102 Rat EGF-Like polypeptide sequence

protein_id:gi204290

35 MKLLPSVVLKLFIAAVLSALVTGESLERLRRGLAAATSNPDPPTGTTNQLLPTGADRAQEVQDLEGTDLDLFKVA
FSSKPQALATPGKEKNGKKRKKGKGLGKKRDPCLKKYKDYCINHECRYLKELRIPSCHCLPGYHQRCHGLTLPV
ENPLYTYDHTTVLAVVAVVLSSVCLLVIVGLLMFRYHRRGGYDLESEEKVKLGMASSH

SEQ ID NO:103 Human TPR-MET nucleic acid sequence

gi|187558|gb|J02958.1|

CDS:195..2241

GAATTCCGCCCTCGCCGCCCGCGCGCCCCGAGCGCTTGTGAGCAGATGCGGAGCCGAGTGGAGGGCGCGAGCC
AGATGCGGGCGACAGCTGACTTGCTGAGAGGAGGCGGGAGGCAGCGCGTGTGGCCTTGCACCTGGCTG
5 ACTTCTCCACTGGTTCTGGCACCGAAAGATAAACCTCTCATATGAAGGCCCCCGCTGTGCTTCACCTGGCA
TCCTCGTGCCTCTGTTACCTGGTGCAGAGGAGCAATGGGAGTGTAAAGAGGCAGTAGCAAAGTCCGAGATGA
ATGTGAATATGAAGTATCAGCTCCAACTTCACCGCGAAACACCCATCCAGAATGTCATTCTACATGAGCATC
ACATTTCTGGTGCCACTAACTACATTATGTTAAATGAGGAAGACCTTCAGAAGGTTGCTGAGTACAAGA
CTGGGCCTGTGCTGGAACACCCAGATTGTTCCCAGTCAGGACTGCGAGCAAAGCCAATTATCAGGAGGTG
10 TTTGGAAAGATAACATCAACATGGCTCTAGTTGTCGACACCTACTATGATGATCAACTCATTAGCTGTGGCAGCG
TCAACAGAGGGACCTGCCAGCGACATGCTTCCCCACAATCATACTGCTGACATACAGTCGGAGGTTCACTGCA
TATTCTCCCCACAGATAGAAGAGCCAGCCAGTGTCTGACTGTGTGGTAGCGCCCTGGGAGCCAAGTCCTTT
CATCTGTAAAGGACCGGTTCATCAACTTCTTGTAGGCAATACCATAAAATTCTTATTTCAGATCATCCAT
TGCATTGATATCAGTGAGAAGGCTAAAGGAAACGAAAGATGGTTTATGTTTGACGGACCAGTCCTACATTG
15 ATGTTTACCTGAGTTCAGAGATTCTTACCCATTAAAGTATGTCATGCCTTGAAAGCAACAATTATTTACT
TCTTGACGGTCCAAAGGAAACTCTAGATGCTCAGACTTTCACACAAGAATAATCAGGTTCTGTTCCATAAACT
CTGGATTGCATTCTACATGGAAATGCCTGGAGTGTATTCTCACAGAAAAGAGAAAAAGAGATCCACAAAGA
AGGAAGTGTAAATATACTTCAGGCTGCGTATGTCAGCAAGCCTGGGCCCAGCTGCTAGACAAATAGGAGCCA
GCCTGAATGATGACATTCTTTCGGGTGTCGACAAAGCAAGCCAGATTCTGCCGAACCAATGGATCGATCTG
20 CCATGTGTGCATTCCATCAAATATGTCACAGACTTCTCAACAAGATCGTAACAAAAACAATGTGAGATGTC
TCCAGCATTTCACGGACCCAAATCATGAGCACTGCTTAAAGGACACTTCTGAGAAATTCACTCAGGCTGTGAAG
CGCGCCGTGATGAATATCGAACAGAGTTACACAGCTTGAGCGCTTACTTATGGTCAATTCACTCAGCG
AAGTCCTCTAACATCTATCCACCTTCATTAAAGGAGACCTCACCATACTGTAATCTGGGACATCAGAGGTC
GCTTCATGCAAGGGTGTGGTTCTGATCAGGACCATCAACCCCTCATGTGAATTTCCTGGACTCCATCCAG
25 TGTCTCCAGAAGTGTGGAGCATACTAAACAAATGGCTACACACTGGTTATCACTGGGAAGAAGATCA
CGAAGATCCATTGAATGGCTGGCAGACATTCCAGTCAGTCATGCCTCTGCCCCACCCCTTG
TTCACTGTGGCTGGTGCACGACAAATGTGTGCGATCGGAGGAATGCCTGAGCGGGACATGGACTCAACAGATCT
GTCTGCCTGCAATCTACAAGGTTCCAAATAGTCACCCCTGAAGGAGGGACAAGGCTGACCATATGTGGCT
GGGACTTTGGATTTGGAGGAATAATAAATTGATTAAAGAAAATAGAGTTCTCCTGGAAATGAGAGCTGCA
30 CCTTGACTTAAAGTGTGAGAGCACGATGAATAACATTGAAATGCACTGGTCTGCCATGAATAAGCATTCAATA
TGTCCATAATTATTCAAATGCCACGGACAACACAATACAGTACATTCTCTATGTGGATCTGTAAATAACAA
GTATTTCGCCGAAATACGGCTCATGGCTGGCACTTACTTAACTGGAAATTACCTAAACAGTGGGA
ATTCTAGACACATTCAATTGGTGGAAAACATGTACTTAAAAAGTGTCAAACAGTATTCTGAATGTTATA
CCCCAGCCAAACCATTCAACTGAGTTGCTGTTAAATTGACTTAGCCAACCGAGAGACAAGCATT
35 TCAGTTACCGTGAAGATCCCATTGCTATGAAATTCAACAAATCTTTATTAGTACTGGTGGAAAGAAC
CTCTCAACATTGTCAGTTCTATTGCTTGCAGTGGTGGAGCACAATAACAGGTGTTGGAAAAACCTGA
ATTCACTGTTAGTGTCCCAGAATGGCATAATGTGATGAAGCAGGAAGGAACCTTACAGTGGCATGTCAACATC
GCTCTAAATTCAAGAGATAATCTGGTGTACCAACTCCTCCCTGCAACAGCTGAACTGCAACTCCCCCTGAAACCCA
AAGCCTTTTCATGTTAGATGGGATCCTTCAAATACTTTGATCTCATTATGTACATAATCCTGTGTTAAGC
40 CTTTGAAAAGCCAGTGTGATCTCAATGGCAATGAAATGTAATGGAAATTAGGAAATGATATTGACCTG

AAGCAGTTAAAGGTGAAGTGTAAAAGTTGAAATAAGAGCTGTGAGAATATACACTTACATTCTGAAGCCGTT
 TATGCACGGTCCCCAATGACCTGCTGAAATTGAACAGCGAGCTAAATATAGAGTGGAAAGCAAGCAATTCTCAA
 CCGTCCTTGGAAAAGTAATAGTTCAACCAGATCAGAATTTCACAGGATTGATTGCTGGTGTCTCAATATCAA
 5 CAGCACTGTTATTACTACTGGGTTTCTGTGGCTAAAAAGAGAAAGCAAATTAAAGATCTGGGCAGTGAAT
 TAGTCGCTACGATGCAAGAGTACACACTCCTCATTTGGATAGGTTGTAAGTGCCCAGTGTAAAGCCAACTA
 CAGAAATGGTTCAAATGAATCTGTAGACTACCGAGCTACTTTCCAGAAGATCAGTTCTAATTCTCATCTCAGA
 ACGGTTCATGCCACAAGTGCAGTATCCTCTGACAGACATGTCCCCCATCTAACTAGTGGGACTCTGTATAT
 CCAGTCCATTACTGCAAAATACTGTCCACATTGACCTCAGTGTCTAAATCCAGAGCTGGTCCAGGCAGTGCAGC
 ATGTAGTGATTGGGCCAGTAGCCTGATTGTGCAATTCAATGAAGTCATAGGAAGAGGGCATTGGTTGTGTAT
 10 ATCATGGGACTTTGTTGGACAATGATGGCAAGAAAATTCACTGTGCTGTGAAATCCTGAACAGAACACTGACA
 TAGGAGAAGTTCCAATTCTGACCGAGGAATCATGAAAGATTTAGTCATCCAATGTCCCTCGCTCC
 TGGGAATCTGCCCTGCGAAGTGAAGGGCTCCGCTGGTGTCTACCACATGAAACATGGAGATCTCGAAATT
 TCATTGAAATGAGACTCATAATCCAACGTAAAAGATCTTATTGGCTTGGTCTCAAGTAGCCAAAGCGATGA
 AATATCTTGAAGCAAAAAGTTGTCCACAGAGACTTGGCTGCAAGAAACTGTATGCTGGATGAAAATTACAG
 15 TCAAGGTTGCTGATTGGTCTGCCAGAGACATGTATGATAAAGAACACTATAGTGTACACAACAAAACAGGTG
 CAAAGCTGCCAGTGAAGTGGATGGCTTGGAAAGTCTGCAAACACTCAAAGATTACCAAGTCAGATGTGGT
 CCTTGGCGTCGTCCTCTGGAGCTGATGACAAGAGGGAGCCCCACCTTACCTGACGTAACACACCTTGATATAA
 CTGTTTACTTGTGCAAGGGAGAAGACTCCTACAACCCGAATACTGCCAGACCCCTATATGAAGTAATGCTAA
 AATGCTGGCACCCCTAAAGCCGAATGCGCCATCCTTCTGAACCTGGTGTCCGGATATCAGCGATCTCTCA
 20 CTTTCATTGGGAGCACTATGTCATGTGAACGCTACTTATGTGAACGTAATGTGTCGCTCCGTATCCTCTC
 TGTTGTCATCAGAAGATAACGCTGATGATGAGGTGGACACACGACCAGCCTCTGGAGACATCATAGTGT
 AGTACTATGTCAAAGCAACAGTCACACTTGTCCAATGGTTTCACTGCCTGACCTTAAAGGCCATCGAT
 ATTCTTGCTCCTGCACTAGGACTGTATTGTTATTAAATTACTGGATTCTAAGGAATTCTATCTGACAGA
 GCATCAGAACCAAGAGGCTGGTCCCACAGGCCAGGGACCAATGCGCTGCAG

25

SEQ ID NO:104 Human TPR-MET polypeptide sequence

gi|307196|gb|AAA59591.1|

MKAPAVLAPGILVLLFTLVQRSGECKEALAKSEMNVNMKYQLPNFTAETPIQNVILHEHHIFLGATNYIYVLNE
 EDLQKVAEYKTGPVLEHPDCFPQDCSSKANLSGGVWKDNINMALVVDTYYDDQLISCGSVNRGTCQRHVFPHNH
 30 TADIQSEVHCIFSPQIEEPSQCPDCVVSALGAKVLSSVKDRFINFFVGNTINSSYFPDHPLHSISVRRLKETKDGF
 FMFLTDQSYIDVLPEFRDSYPIKVHAFESNNFIYFLTVQRETLDAQTFHTRIIRFCINSGLHSYMEMPLECIL
 TEKRKKRSTKKEVFNILQAAYVSKPGAQQLRQIGASLNDDILFGVFAQSKPDSAEPMDRSAMCAFPIKYVNDFFN
 KIVNKNNVRCLQHFYGPNEHCFNRTLLRNSSGCEARRDEYRTEFTTALQRVDLFMGQFSEVLLTSISTFIKGDL
 TIANLGTSEGRFMQVVVSRSGPSTPHVNFLLDSPVSPREVIVEHTLNQNGYTLVITGKKITKIPLNGLGCRHFQS
 35 CSQCLSAPPVQCGWHDKCVRSEECLSGTWTQQICLPAIYKVFVNSAPLEGGTRLTICGWDFGRRNNKFDLKK
 TRVLLGNESCTLTLESTMNTLKCTVGPAMNKHFNMSIIISNGHGTQYSTFSYVDPVITSISPKYGPMAGGTLL
 TLTGNYLNSGNSRHISIGGKTCTLKSVSNSILECYTPAQTIESTEFAVKLKIDLARETSIFSYREDPIVYEIHPT
 KSFISTWWKEPLNIVSFLFCFASGGSTITGVGKNLNSVSPRMVINHEAGRNFVACQHRSNSEIIICCTPSLQ
 QLNQLPLKTKAFFMLDGILSKYFDLIYVHNPFKPFEKPVMISMGNENVLEIKGNDIDPEAVKGEVLKGNKSC
 40 ENIHLHSEAVLCTVPNDLLKLNSELNIEWKQAISSVTLGKIVQPDQNFTGLIAGVVSISTALLLLGFFLWLKK

RKQIKDLGSELVRYDARVHTPHLDRLVSARSVPSTTEVSNESVDYRATFPEDQFPNSSONGSCRQVQYPLTDMS
 PILTSGSDISSLQNTVHIDLALNPELVQAVQHVIVGPSSIIVHFNEVIGRGHFGCVYHGTLDDNDGKKIHC
 AVKSLNRITDIEVSQFLTEGIIMKDFSHPNVLSSLGICLRSSEGSPVVLPYMKHGDLRNFIRNETHNPTVKDLI
 GFGLQVAKAMKYLASKKFVHRDLAARNCLMDEKFTVKVADFGLARDMYDKEYYSVHNKTGAKLPVKWMALESLQT
 5 QKFETTKSDVWSFGVVLWELMTRGAPPYDVTNFIDTVYLLQGRLLQPEYCPDPLYEVMLKCWHPKAEMRPSFSE
 LVSRIASIFSTFIGEHYVHVNVNVCVAPYPSLSSEDNADDEVDTWPASFETS

SEQ ID NO:105 Mouse TPR-MET nucleic acid sequence

gi|6678867|ref|NM_008591.1|

CDS:1..4140

10 ATGAAGGCTCCCACCGTGCTGGCACCTGGCATTCTGGTGCTGCTGTTGCCTGGTCAGAGGAGCCATGGGAG
 TGCAAGGAGGCCCTAGTGAAGTCTGAGATGAACGTGAACATGAAGTATCAGCTCCCCAACCTCACGGCAGAAACC
 CCCATCCAGAAATGTCGTCCTACACGGCCATCATATTATCTCGGAGCCACAAACTACATTTATGTTTAAATGAC
 AAAGACCTTCAGAAGGTATCCGATTCAAGACCGGGCCCGTGTGGAACACCCAGATTGTTACCTGTCGGGAC
 TGCAGCAGCAAAGCCAATTCATCAGGAGGGTTGGAAAGACAACATCAACATGGCTCTGTTGACACATAC
 15 TATGATGATCAACTCATTAGCTGGCAGTGTCAACAGAGGGACTTGCCAGCGGCATGTCCTCCTGACAAT
 TCTGCTGACATCCAGTCTGAGGTCCTGCATGTTCTCCCCAGAACAGAGGAGTCAGGGCAGTGTCTGACTGTGA
 GTGAGTGCCCTCGGAGCCAAAGTCCTCCTGCGAAAAGGACGGGTTCATCAATTCTTTGTGGGAATACGATC
 AATTCTCCTATCCTCCTGGTTATTCACTGCATTGATATCGGTGAGACGGCTGAAGGAAACCAAGATGGTTT
 AAGTTTTGACAGACCAGTCCTATATTGATGTTACAGAACATTCTTGATTCCCTACCCATAAAGTACATACAT
 20 GCCTCGAAAGCAACCATTATTTACTTCTGACTGTCCAAAGGAAACTCTAGATGCTCAGACTTTCATACA
 AGAATAATCAGGTTCTGTTCCGTAGACTCTGGGTTGCACTCCTACATGGAAATGCCCTGGAATGCATCCTGACA
 GAAAAAAAGAAGGAAGAGATCCACAAGGAAGAACGTTAATATCCTCAAGCCGCGTATGTCAGTAACCCAGGG
 GCCAATCTGCTAAGCAAATAGGAGCTAGCCCTCTGATGACATTCTCTGGGTGTTGCACAAAGCAAGCCA
 GATTCTGCTGAACCTGTGAATCGATCAGCAGTCTGTGCAATTCCCATCAAATATGTCAATGACTTCTCAACAAG
 25 ATTGTCAACAAAAACACGTGAGATGTCTCCAGCATTTCAGCACCCAAACATGAGCACTGTTCAATAGGACC
 CTGCTGAGAAAATCTCGGGCTGTGAAGCGCGCAGTGCAGAGTATCGGACAGAGTTACCACGGCTTGAGCGC
 GTCGACTTATTGATGGCCGGCTTAACCAAGTGCTCCTGACATCCATCTCACCTCATCAAAGGTGACCTCACC
 ATTGCTAATCTAGGGACGTCAGAAGGTGCTTACATGAGCTGCTCTCGAACAGCACACCTCACTCCTCAT
 GTGAACATTCTCCTGGACTCCATCCTGTATCTCCAGAAGTTATTGTTGAGCATCCATCAAATCAAATGGCTAT
 30 ACATTGGTTGTACAGGAAAGAAGATCACAAGATTCCATTGAATGGCCTGGCTGACATTCCAAATCTG
 AGTCAGTGCCTCTGCCCCCTACTTATACAGTGTGGCTGGGCCACAATCAATGTCGTTGATGAATGC
 CCCAGCGGTACATGGACTCAAGAGATCTGCTGCCAGCGTTATAAGGTGTTCCACAGCGCCTTGAA
 GGAGGAACAGTGTGACCATATGTGGCTGGACTTGGATTCAAGGAAGAATAATAATTGATTAAGGAAAACC
 AAAGTTCTGCTTGGCAACGAGAGGCTGTACCTGACCTTAAGCGAGAGCAGCACAAATACGTTGAAATGCACAGTT
 35 GGTCCCGCGATGAGTGAGCACTCAATGTGTCGTAAATTCTCAAACAGTCGAGAGACAACACAATACAGTGC
 TTCTCCTATGTAGATCCTGTAATAACAAGCATTCTCCGAGGTACGGCCCTCAGGCTGGAGGCACCTTACTCACT
 CTTACTGGGAAATACCTCAACAGTGGCAATTCTAGACACATTCAAATTGGAGGGAAAACATGTA
 GTATCAGATAGTATTCTGAAATGCTACACCCAGCCAAACTACCTCTGATGAGTTCTGTGAAATTGAAGATT
 GACTTGGCTAACCGAGAGACCAGCAGCTTACCGGGAGACCCGTTGTCTATGAAATCCACCAACCAAC
 40 TCTTTTATTAGTGGTGAAGCACAATAACGGTATTGGAGACCCCTGAATTGGTAGCCTCCAAAGCTGGTA

ATAGATGTGCATGAAGTGGGTGTGAACACTACACAGTGGCATGTCAGCATCGCTCAAATTCAAGAGATCATCTGCTGC
 ACTACTCCTTCACTGAAACAGCTGGGCCTGCAACTCCCCCTGAAGACCAAAGCCTTCTCCTGTTAGACGGGATT
 CTTCCAAACACTTGTATCTCACTTATGTGCATAATCCTGTGTTGAGCCTTGTAAAAGCCAGTAATGATCTCA
 ATGGGCAATGAAAATGTAGTGGAAATTAGGGAAACAATTAGCCCTGAAGCAGTTAAAGGTGAAGTGTAAAA
 5 GTTGGAAATCAGAGCTGCGAGAGTCTCCACTGGCACTCTGGAGCTGTGTTGACAGTCCCAGTGACCTGCTC
 AAACTGAACAGCGAGCTAAATATAGAGTGGAAAGCAAGCAGTCTCTCAACTGTTCTGGAAAAGTGATCGTCAA
 CCGGATCAGAATTTGCAGGATTGATCATTGGTGCCTCAATATCAGTAGTTAGTTGTTATTATCCGGCTC
 TTCCGTGGATGAGAAAGAGAAAGCATAAAAGATCTGGCAGTGAATTAGTCGCTATGACGCAAGAGTACACACT
 CCTCATTGGATAGGCTTGTAAAGTGCCTGAAGTGTAAAGTCCAACACAGAGATGGTTCAAATGAGTCTGTAGAC
 10 TACAGAGCTACTTTCCAGAAGACCAGTTCCCAACTCCTCTCAGAATGGAGCATGCAGACAAGTCAATATCCT
 CTGACAGACCTGTCCCTATCCTGACGAGTGGAGACTCTGATATATCCAGCCCATTACTACAAAATACTGTTCAC
 ATTGACCTCAGTGTCTAAATCCAGAGCTGGTCCAAGCAGTTCAGCACGTAGTGATTGGACCCAGCAGCCTGATT
 GTGCATTCAATGAAGTCATAGGAAGAGGGCATTGGCTGTCTATCATGGACTTTGCTGGACAATGACGGA
 AAGAAAATTCACTGTGCTGTGAAATCCTGAATAGAACATCACAGATATAGAACAGGTCCTCAGTTCTGACTGAG
 15 GGAATCATCATGAAAGACTTCAGCCATCCCAATGTTCTCTCACTCTGGAAATCTGCTGAGGAGTGAAGGGTCT
 CCTCTGGTGGTCCCTGCCCTATATGAAGCATGGAGATCTGCGAAATTTCATTGAAACAGAGACTCATAATCCA
 ACTGTAAAGATCTTATAGGATTGGCTTCAAGTAGCCAAAGGCATGAAATATCTTGCCAGCAAAAGTTGTCAC
 AGAGACTTAGCTGCAAGAAACTGCATGTTGGATGAAAATTCACTGTCAAGGTTGCTGATTTGGTCTTGCCAGA
 GACATGTACGATAAAGAGTACTATAGTGTCCACAACAAGACGGGTGCCAGCTACCAGTAAAGTGGATGGCTTA
 20 GAGAGTCTGCAAACGCAGAAGTCAACCACCAAGTCAGATGTGGTCTTGGTGTGCTCCTCTGGAGCTCATG
 ACCAGAGGAGCCCTCCTTATCCGACGTGAACACATTGATATCACTATCTACCTGTCAGGCAGAACAGACTC
 TTGCAACCAGAATACTGTCCAGACGCCCTGTACGAAAGTGTGCTAAATGCTGGCACCCAAAGCGGAAATGCG
 CCGTCCTTCCGAACTGGTCTCCAGGATATCCTCAATCTCTCACGTTATTGGGAACACTACGTCCACGTG
 AACGCTACTTATGTGAATGTAAAATGTGCTCCATATCCTCTGTGCTCATCCAAAGACAACATTGATGGC
 25 GAGGGGAACACATGA

SEQ ID NO:106 Mouse TPR-MET polypeptide sequence

gi|6678868|ref|NP_032617.1|

MKAPTVLAPGILVLLSLVQRSHGECKEALVKSEMNVNMKYQLPNFTAETPIQNVVLHGHHIYLGATNYIYVLND
 30 KDLQKVSEFKTGPVLEHPDCLPCRDCSSKANSSGGVWKDNINMALLVDTYDDQLISCGSVNRGTCQRHVLPDPD
 SADIQSEVHCMFSPEEESGQCPDCVVSALGAKVLLSEKDRFINFFVGNTINSSYPPGYSLHSISVRRLKETQDGF
 KFLTDQSYIDVLPEFLDSYPIKYIHAFESNHFIYFLTVQKETLDAQTFHTRIIRFCSDSGLHSYMEMPLECILT
 EKRRKRSTREEVFNILQAAYVSKPGANLAKQIGASPSDDILFGVFAQSKEPDSAEPVNSAVCAFPIKYVNDFFNK
 IVNKNNVRCLQHFYGPNHEHCFNRTLLRNSSGCEARSDEYRTEFTTALQRVDFMGRLNQVLLTSISTFIKGDLT
 35 IANLGTSEGRFMQVVLRTAHLTPHNFLLDShPVSPEVIVEHPSNQNGYTLVVITGKKITKIPLNGLGCGHFQSC
 SQCLSAPYFIQCGWCHNQCVRFDECPSGTWTQEICLPAVYKVFTSAPLEGGVTLTICGWDFGFRKNNKFDLRKT
 KVLLGNESCLTLSESTNTLKCTVGPAMSEHFNVSIIISNSRETTQYSAFSYVDPVITSISPRYGPQAGGTLLT
 LTGKYLNNSNSRHISIGGKTCTLKSVSDSILECYTPAQTTSDFPVKLKIDLANRETSSFSYREDPVVYEIHPTK
 SFISGGSTITGIGKTLNSVSLPKLVIDVHEGVNYTVACQHRSNSEIICCTTPSLKQLGLQLPLKTAFFLLDG
 40 LSKHFDLTYVHNPVFEPEKPMISMGNENVVEIKGNNDPEAVKGEVLKVGNSCESLHWHSAGVLCTVPSDLL

KLNSELNIEWKQAVSSTVLGVIVQPDQNFAGLIIGAVSIISVVVLLSGLFLWMRKRKHDLGSELVRYDARVHT
 PHLDRLVSARVSPTTEMVSNESVDYRATFPEDQFPNSQNGACRQVQYPLTDSPILTSGSDISSPLLQNTVH
 IDLSALNPELVQAVQHVVIGPSSLIVHFNEIGRGHFGCVYHGTLDDNGKKIHCAVSLNRITDIEEVSQLTE
 5 GIIMKDFSHPNVLSLLGICLRSSEGSPLVLPYMKHGDLRNFIRNETHNPTVKDLIGFGLQVAKGMKYLASKKFVH
 RDLAARNCMLDEKFTVKVADFGLARDMYDKEYYSVHNKTGAKLKVWMALESLOQTQKFTTKSDVWSFGVLLWEML
 TRGAPPYPDVNTFDITIYLLQGRLLQPEYCPDALYEVMLKCWHPKAEMRPSFSELVSRRISSIFSTFIGEHYVHV
 NATYVNVKCVAPYPSLLPSQDNIDGEGNT

SEQ ID NO:107 Rat TPR-MET nucleic acid sequence

10 gi|13928699|ref|NM_031517.1|
 ATGAAGGCTCCCACCGCGCTGGCACCTGGCATTCTGCTGCTGCTGACCTTGGCGCAGAGGAGCCATGGGGAG
 TGCAAGGAGGCCCTAGTGAAGTCAGATGAACGTAACTGAGTACCAAGCTTCCAACCCACCGCAGAAACC
 CCCATCCAGAATGTCGTCCTCCATGGGCACCATATTATCTCGGAGCCACAAACTACATTTATGTTTAAATGAC
 AAAGACCTTCAGAAGGTATCTGAGTTCAAGACCGGGCCGTGGGAACACCCAGATTGTTTCTTGTCAGGAC
 15 TGCAGCAGCAAAGCCAATGTGTCAGGAGGTGTTGGAAAGACAACGTAACTGGCGCTGCTTGTGACACTTAC
 TATGACGACCAGCTCATCAGCTGGCAGCGTCACACAGAGGGACCTGCCAACGGCATGTCCTCCTGACAAT
 GCTGCCGACATTCACTGGCAGGTTCACTGCATGTTCTCCCCACTTGGAGGAAGAGTCAGGCCAGTGTCCGAC
 TGTGTAGTGAGTGCCTGGAGCCAAGTCCTCTGTCTGAAAAGGACCGGTTCAATTCTCGTGGGAAT
 ACGATAAAACTCTTCCTACCCCTCCGATTATTCAATTGCAATTCAATATCGGTGAGGCGGCTGAAGGAAACCCAGGAC
 20 GGTTTAAGTTTGACAGACCAGTCCTACATTGATGTCCTGGAGAATTCCGAGATTCCCTACCCATCAAGTAC
 ATACATGCCCTCGAAAGCAACCATTATCTACTTTCTGACTGTCCAGAAGGAAACCCTAGATGCTCAGACTTC
 CATAACAAGAATAATCAGGTTCTGTTCTGTAGACTCTGGGTTGCACTCCTACATGAAATGCCCTGGAGTCATT
 CTGACGGAAAAAGAAGAAAGAGATCCACAAGGGAGAAGTGTAAATATCCTCCAAGCCGCGTATGTCAGTAAA
 CCAGGGCCAATCTGCTAACGAAATAGGGCCAGCCGTATGATGACATTCTACGGGGTGTGACAAAGC
 25 AAGCCAGATTCTGCTGAGCCCAGTGAACCGATCAGCGCTGTGCATTCCCCATCAAATATGTCAATGACTTCTTC
 AACAAAGATTGTCAACAAAAACACGTACGGTGTCTCCAGCATTATGGACCCAACCACGAGCACTGTTCAAT
 AGGACCCCTGCTGAGAAATTCACTGGGCTGCGAAGTGCAGTGCAGTACCGGACGGAGTTACACAGCGCTG
 CAGGCTGTGGATTATTCACTGGCCGGCTAACCATGTTACTCTGACGTCTATCTACCTTCATCAAAGGTGAC
 CTCACCATTGCTAACATTAGGGACATCAGAAGGTGCTTCATGCAGGTGGTGTCTCGCACAGCACATTCAAC
 30 CCCCCATGTGAATTCTCCTGGATTCCATCCTGTGTCTCCGGAAAGTTATTGTCGAACATCCATCAAATCAAAT
 GGCTATACCCCTGGTGGTCACAGGGAAGAAGATCACCAAGATTCCACTGAATGGCCTAGGCTGTGGCATTCCAG
 TCCTGCAGTCAGTGTCTCTGCCCCCTACTTTATACAGTGTGGCTGGTGTGCCACAAATCGGTGTGTGCAATTCAA
 GAATGCCCAAGCGGTACATGGACTCAAGAGATCTGCTGCCAGCAGTTATAAGGTTTCCCCACTAGTGCACCC
 CTCGAAGGAGGAACAATGCTGACCATATGTGGCTGGACTTTGGATTCAAGAAGAATAATAATTGATTAAAGG
 35 AAAACCAAAGTTCTGCTGGCAACGAGAGCTGTACCTTGACCTTAAGCGAGAGCACGACAAATACGTTGAAATGC
 ACAGTTGGCCCCCGCATGAGTGAGCACTTCATGTTGATCGTCTCAAACAGTCAGGAGAGACAACACAGTAC
 AGTGCCTTCTATGTGGATCCTGTAATAACAAGTATTCTCAAGGTATGGTCTCATGCCAGGGCACCTTA
 CTCACTTGACTGGAAAATACCTAACAGCGGCAATTCTAGACACATTCAATCGGAGGGAAACATGTACTTTA
 AAAAGTGTATCAGATAGCATTCTCGAACACCCAGGCCACACCGTCTCTGCCAGTTCCCGTGAATTG
 40 AAAATCGACCTGGCTGACCGAGTGACAAGCAGCTTCAGTTACGGGAAAGACCCGTTGTCTGAAATCCACCCG

ACCAAATCTTTATCAGTGGTGGAAAGCACAATAACGGGGATTGAAAGAACCTGAATTAGTAGCACCCAAAG
 CTGTAATAGAAGTGCATGACGTGGCGTGAACACTACCGTGGCGCCAACATCGCTCGAGTCAGAGATCATC
 TGCTGCACCACCTCCTCCCTGCAACAGCTGGACCTGCAACTCCCCCTGAAGACCAAAGCCTTCTCCTGCTGGAC
 GGGATCCTTCAAACACTTGATCTCACTTATGTACATGATCCTATGTTAACGCCTTGAAAAGCCAGTAATG
 5 ATCTCCATGGCAATGAGAATGTAGTGGAAATTAAAGGGAGACGATATTGACCCCTGAAGCAGTTAAAGGTGAAGTG
 TTAAAAGTCGGAATAAGAGCTGTGAGAATCTCCACTGGCATTCTGAAGCTTGTGTACGGTCCCCAGTGAC
 CTGCTGAAGCTGAACGGCGAGCTAAATATAGAGTGGAAAGCAAGCAGTCCTCAACTGTCCTGGAAAAGTG
 ATCGTTCAACCGGATCAGAATTTCAGGATTGATCATTGGTGCCTCTCAATATCAGGGTAGTTGTAGTA
 TCCGGGCTCTCCTGTCAGAAAAGAGAAAGCATAAAAGATCTGGCAGTGAATTAGTCGCTATGACGCAAGA
 10 GTACACACTCCTCATTGGATAGGCTTGTAGTGCCAGTGTAAGGCCAACTACAGAGATGGTCTCAAATGAG
 TCTGTAGACTACAGAGCTACTTTCCAGAACGACCAGTTCCAACTCCTCTCAGAATGGAGCCTGCAGACAAGTG
 CAGTATCCACTGACAGATCTGCCCCATCCTGACGAGTGGAGACTCTGATATATCCAGCCCATTACTACAAAAC
 ACTGTTCACATTGACCTCAGCGCTCTAAATCCAGAGCTGGTCCAAGCGGTGCAGCACCGTAGTGATTGGACCCAGT
 AGCCTGATTGTGCATTCAATGAAGTCATAGGAAGAGGGCATTGGCTGTCTATCATGGACTTGGAC
 15 AGTGACGGAAAGAAAATTCACTGTGCTGTGAAATCCTGAATAGAATCACAGATATAGAAGAAGTCTCCCAGTT
 CTGACTGAGGAAATCATCATGAAAGATTTCAGCCACCCAAATGTTCTCTCACTCTGGAAATCTGCCTGCAG
 GAAGGGTCCCTCTGGGTTCTGCCCTATATGAAGCACGGAGATCTCGCAATTCTGAACAGAGACTCAT
 AACCCAACGTGAAAGATCTTATAGGATTGGTCTCAAGTAGCCAAGGGCATGAAATATCTTGCAGCAAAAG
 TTTGTCCACAGAGACTAGCTGCAAGAAACTGCATGTTGGATGAAAATTCACTGTCAAGGTTGCTGATTTCGGT
 20 CTTGCCAGAGACATGTACGACAAGAGTATTATAGCGTCCACAACAAAAGGGTGCAGAAACTACCGGTGAAGTGG
 ATGGCTTTAGAGAGTCAGACGCAAAAGTTCAACCACCAAGTCAGACGTGGTCTTCGGTGTGCTCTCTGG
 GAGCTCATGACGAGAGGAGCCCTCCTTATCCTGACGTGAACACATTGATATCACTATACCTGTTGCAAGGC
 AGAAGACTCTGCAACCAGAGTACTGTCCAGACGCCTGTATGAAGTGATGCTAAAATGCTGGCACCCAAAGCA
 GAAATGCGCCATCGTTCTGAACTGGTCTCCAGAATATCCTCAATCTCTCCACTTCATTGGCGAGCACTAT
 25 GTCCATGTGAACGCTACTTATGTGAATGTAAAATGTGTTGCTCATATCCTCTGTTGCCATCCAAAGACAAC
 ATTGACGGCGAAGCGAACACATGACGGATAAGAGGCCGCCAGCCACTTCAAGAAACAGTT

SEQ ID NO:108 Rat TPR-MET polypeptide sequence

gi|13928700|refNP_113705.1|

30 MKAPTLAPGILLLLTLAQRSHGECKEALVKSEMNVNMKYQLPNFTAETPIQNVVLHGHHIYLGATNYIYVLND
 KDLQKVSEFKTGPVVEHPDCFPQCDCSSKANVSGGVWKDNVNMALLVDTYYDDQLISCGSVNRGTCQRHVLPPDN
 AADIQSEVHCMFSPLAEEESGQCPDCVVSALGAKVLSEKDRFINFFVGNTINSSYPPDYSLHSISVRLKETQD
 GFKFLTDQSYIDVLGEFRDSYPIKYIHAFESNHFIFYFLTVQKETLDAQTFHTRIIRFCSDSGLHSYMEMPLECI
 LTEKRRKRSTREEVFNILQAAYVSKPGANLAKQIGASPYDDILYGVFAQSKPDSEAEPNRSAVCAFPIKYVNDFF
 35 NKIVNKNNVRCLQHFYGPNEHCNFNRTLLRNSSGCEVRSDEYRTEFTTALQAVDLMGRNLHVLLTSISTFIKGD
 LTIANLGTSEGRFMQVVLSRATAFTPHVNFLLDSPVSPREVIEHPSNQNGYTLVVTGKKITKIPLNGLGCGHFQ
 SCSQCLSAPYFIQCGWCHNRCVHSNECPSTWTQEICLPAVYKFPTSAPLEGGTMLTICGWDFGFKKNNKFDLR
 KTKVLLGNESCTLTSESTNTLKCTVGPAMSEHFNVSVIVNSRETTQYSAFSYVDPVITSISPRYGPAGGTL
 LTLTGKYLNSGNSRHISIGGKTCTLKSVSDSILECYTPGHTVSAEFPVKLKIDLADRVTSFSYGEDPDFVSEIHP
 40 TKSFISGGSTITGIGKNLNSVSTPKLVIEHDVGVNYTVACQHRSSEIICCTPSLQQQLDQLPLKTKAFFLLD

GILSKHFDLTYVHDPMFKPFEPVMISMGNENVVEIKGDDIDPPEAVKGEVLKVGNKSCENLHWHEALLCTVPSD
 LLKLNGGELNIEWKQAVSSTVLGVIVQPDQNFAGLIIGAVSISVVVLLVSGFLWLRKRKHDLGSELVRYDAR
 VHTTPHLDRLVSARSVPTEMVSNESVDYRATFPEDQFPNSSQNGACRQVQYPLTDLSPILTDGSIDISSLQN
 5 TVHIDL SALNPELVQAVQHVVIGPSSLIVHFNEVIGRHFGCVYHGTLDSDGKKIHCAVKSLSNRITDIEEVSQF
 LTEGIIMKDFSHPNVLSLLGICLRLSEGSPLVVLPMKHGDLRNFIERNETHNPTVKDLIGFGLQVAKGMKYLASKK
 FVHRDLAARNCMLDEKFTVKVADFGGLARDMYDKEYYSVNKTGAKLPVKWMALSLQTQKFTTKSDVWSFGVLLW
 ELMTRGAPPYPDVNTFDITIYLLQGRRLLQPEYCPDALYEVMLKCWHPKAEMRPSFSELVSRISSIFSTFIGEHY
 VHVNATYVNVKCVAPYPSLLPSQDNIDGEANT

10 SEQ ID NO:109 Human MDC9 nucleic acid sequence

HUM242227 accession:U41766 coding sequence:79..2538

CGGCAGGGTTGGAAAATGATGGAAGAGGCGGAGGTGGAGGCACCGAGTGCTGAGAGGAACCTGCGGAATCGGCC
 GAGATGGGTCTGGCGCGCTTCCTCGGGACCCCTCGTGTCCGGTGGTTGCTGTTGCTTGGCCTGGTGGC
 15 CCAGTCCTCGGTGCGCGCGCCAGGCTTCAACAGACCTCACATCTTCTTATGAAATTATAACTCCTTGG
 AGATTAACTAGAGAAAGAGAGAACGCCCCTAGGCCATTCAAAACAAGTATCTTATGTTATTCAAGCTGAAGGA
 AAAGAGCATATTATTCACTTGAAAGGAACAAAGACCTTTGCCTGAAGATTGTGTTTATACTTACAACAAG
 GAAGGGACTTAATCACTGACCACCCAAATATACAGAACATCATTGTCATTATCGGGCTATGTGGAGGGAGTCAT
 AATTCACTCCATTGCTTTAGCGACTGTTGGACTCAGAGGATTGCTGCATTAGAGAACGAGTTATGGGATT
 GAACCCCTGCAGAACAGCTCTCATTTGAGCACATCAATTATCGAATGGATGATGTCATAAAGAGCCTCTGAAA
 20 TGTGGAGTTCCAACAAGGATATAGAGAAAGAAACTGCAAAGGATGAAGAGGAAGAGCCTCCAGCATGACTCAG
 CTACTTCGAAGAAGAACGAGCTGCTTGCCACAGACCCGGTATGTGGAGCTGTTCTGCGTAGACAAGGAAAG
 TATGACATGATGGGAAGAAATCAGACTGCTGTGAGAGAACGAGATGATTCTCCTGGCAAACACTTGGATAGTATG
 TATATTATGTTAAATATTCAATTGTGCTAGTTGGACTGGAGATTGGACCAATGGAAACCTGATCAACATAGTT
 GGGGGTGTGGTGTGGACTGGCTGGGAACCTCGTCAGTGGCGGGAAAGTTCTTATCACACGTGGAGACATGAC
 25 AGTGCACAGCTAGTTCAAAGAAAGTTGGTGGAACTGCAGGAATGGCATTGTTGGAAACAGTGTGTTCAAGG
 AGCCACGCAGGCGGGATTAATGTGTTGGACAAATCACTGTGGAGACATTGCTTCCATTGTTGCTCATGAATTG
 GGTCAATACTTGGAAATGAATCACGATGATGGGAGAGATTGTTCTGTGGAGCAAAGAGCTGCATCATGAATTCA
 GGAGCATCGGGTCCAGAAAACCTTAGCAGTTGCAGTGCAGAGGACTTGAGAACGTTAACCTTAAATAAGGAGGA
 AACTGCCTCTTAATATTCAAAGCCTGATGAAGCCTATAGTGCTCCCTCTGTGGTAATAAGTTGGTGGACGCT
 30 GGGGAAGAGTGTGACTGTGGTACTCCAAAGGAATGTGAATTGGACCCCTGCTGCGAAGGAAGTACCTGTAAGCTT
 AAATCATTGCTGAGTGTGCATATGGTACTGTTGAAAGACTGTCGGTTCTCCAGGAGGTACTTATGCCGA
 GGAAAAACCACTGAGTGTGATGTTCCAGACTGCAATGGTTCTCTCAGTTCTGTCAGCCAGATGTTTATT
 CAGAACATGGATATCCTTGCCAGAATAACAAAGCCTATTGCTACACGGCATGTGCCAGTATTATGATGCTCAATGT
 CAAGTCATCTTGGCTCAAAGCCAAGGCTGCCAAAGATTGTTCATGAGTGAATTCTAAAGGTGACAGA
 35 TTTGGCAATTGTGGTTCTGGCAATGAATACAAGAACGAGTGTGCCACTGGGAATGCTTGTGGAAAGCTTCAG
 TGAGAATGTACAAGAGATACCTGTATTGGAATTGTGCCTGCTATTATTCAAACGCCAGTGCAGGCACCAAA
 TGTTGGGGTGTGGATTCCAGCTAGGATCAGATGTTCCAGATCCTGGGATGGTTAACGAAGGCACAAATGTGGT
 GCTGGAAAGATCTGTAGAAACTTCCAGTGTGTAGATGCTTCTGTAATTGACTGTCAGTGTGATGTTCA
 TGTCATGGACATGGGTATGTAATAGCAATAAGAACATGTCACTGTGAAAATGGCTGGCTCCCCAAATTGTGAG
 40 ACTAAAGGATACGGAGGAAGTGTGGACAGTGGACCTACATACAATGAAATGAATACTGCATTGAGGGACGGACTT

CTGGTCTTCTTCTTCTAATTGTCCCCCTATTGTCGTGCTATTTTATCTCATCAAGAGGGATCAACTGTGG
 AGAACGCTACTTCAGAAAGAAGAGATCACAAACATATGAGTCAGATGGCAAAATCAAGCAAACCCCTCTAGACAG
 CCGGGGAGTGTTCCTCGACATGTTCTCCAGTGACACCTCCCAGAGAAGTCCATATATGCAAACAGATTGCA
 GTACCAACCTATGCAGCCAAGCAACCTCAGCAGTCCATCAAGGCCACCTCCACCACAACCGAAAGTATCATCT
 5 CAGGGAAACTTAATTCTGCCGTCTGCTCCTGCACCTCCTTATATAGTTCCTCACTTGATTTTTAACCT
 TCTTTTGCAAATGTCTCAGGAAGTGAAGCTAATACTTTTTCTTGATGTTCTGAAAAGCCTTCT
 GTGCAACTATGAATGAAAACAAAACACCACAAACAGACTTCACTAACACAGAAAAACAGAAAAGTGTGAG
 AGTTGTGAAATACAAGGAAATGCAGTAAAGCCAGGGAAATTACAATAACATTCCGTTCCATCATTGAATAAGT
 CTTATTCACTCGGTGAGGTTAATGCACTAATCATGGATTTTGAAACATGTTATTGCAGTGATTCTCAAATT
 10 AACTGTATTGGTGTAAAGATTTGTCATTAAGTGTAAAGTGTATTCTGAATTTCTACCTAGTTATCATTAA
 TGTTAGTCCTCATTGAACATGTGATAATCTAACCTGTGAAACTGACTAACAGCTGCCAATAATATCTAATA
 TTTTCATCATGCACGAATTAATAATCATCATACTCTAGAATCTGCTGTCACTCACTACATGAATAAGCAAAT
 ATTGTCTTCAAAAGAATGCACAAGAACCAATTAAAGATGTCAATTATTTGAAAGTACAAATATACTAAAAG
 AGTGTGTGTGTATTACGCAGTAACTCGCTTCCATTATGACCTTCAACTATAGGTAAATAACTCTTAGAGAA
 15 ATTAATTAAATTAGAATTCTATTATGAATCATGTGAAAGCATGACATTGTTACAATAGCACTATTTAAA
 TAAATTATAAGCTTAAAGGTACGAAGTATTTAATAGATCTAACAAATATGTTGATTCTGGCTATAATAAGCA
 GGAGCAATTATAAAATCTTCAATCAATTGAACCTTACAAACCACTTGAGAATTTCATGAGCATTAAATCT
 GAACTTTCAAGCTTGCTATTAAATCATTAGAATGTTACATTACTAAGGTGTGCTGGGTATGTAAGGTTATT
 AGACACTAATATTTCATAGAAATTAGGCTGGAGAAAGAAGGAAGAAATGGTTCTAAATACCTACAAAAAAG
 20 TTACTGTGGTATCTATGAGTTATCATCTTAGCTGTGTTAAAGTGAATTCTACTATGGCAGATATGGTATGGAT
 CGTAAAATTAAAGCACTAAAATTCTTCAAACTTCAATAAAGTTAATAATAGGTTATTAACTGAAT
 TTCATTAGTTTTAAAGTGTGTTGGTTGTGTTATATACATACAAATACAACATTACAATAATAAAAAA
 TACTTGAAATTCTCAAAAAAAAAAAAAAA

25 SEQ ID NO:110 Human MDC9 polypeptide sequence

protein_id:gi1235672

MSGSARFPSGTLRVRLWLLGLVGPVLGAARPGFQQTSHLSSYEIITPWRLTRERREAPRPSKQVSYVIQAEGK
 EHIHLERNKDLLPEDFVVYTYNKEGTLITDHPNIQNHCHYRGYVEGVHNSSIALSDCFGLRGLLHENASYGIE
 PLQNSSHFEHIIYRMDDVYKEPLKCGVSNKDIKEKETAKDEEEPPSMTQLLRRRAVLPQTRYVELFIVVDKERY
 30 DMMGRNQTAVEREEMILLANYLDSMYIMLNIRIVLVGLEIWTNGNLINIVGGAGDVLGNFVQWREKFLITRRRHDS
 AQLVLKKGFGGTAGMAFVGTVCSRSHAGGINVFGQITVETFASIVAHELGHNLGMNHDDGRDCSCGAKSCIMNSG
 ASGSRNFSSCSAEDFEKLTLNKGGNCLLNIPKPDEAYSAPSCGNKLVDAGEECDCGTPKECELDPCCEGSTCKLK
 SFAECAYGDCCDKCRFLPGGTLRGKTSECDVPEYCNSSQFCQPDVFIQNGYPQCQNNKAYCYNGMCQYYDAQCQ
 VIFGSKAKAAPKDCFIEVNSKGDRFGNCFGSGNEYKKCATGNALCGKLQCENVQEIPVFGIVPAIQTPSRGK
 35 WGVDFQLGSDVPDPGMVNEGKCGAGKICRNFQCVDASVLYDCDVQKKCHGHGVCSNKNCENGWAPPNCET
 KGYGGSVDSGPTYNEMNTALRDGLLVFFFILVPLIVCAIFIFIKRDQLWRSYFRKKRSQTYESDGKNQANPSRQP
 GSVPRHVSPVTPPPRevPIYANRFAVPTYAAKQQFSPRPPPQPKVSSQGNLIPARPARPAPPLYSSLT

SEQ ID NO:111 Mouse MDC9 nucleic acid sequence

accession:NM_007404

coding sequence:14..2551

CGAACGCCTCGCTATGGGCCGCGCCTCGCCCTCTGCGACTAAGGTGGCTGGCGTGTGG .
CTTGCTGGGCCAGTCCTCGAGGCCGGCGACCAGACTTGAACAGACTGTCCATTTCTTCTATGAAATTAT
5 TACTCCTGGAGATTAACTAGAGAAAAGAAGGGAAAGCTCTGGGCCAGTTCACAGCAGATCTTACGTCATCCA
GGCCCAAGGAAAACAGCATATTATTCACTTGGAAAGAAACACAGACCTTACCTAATGATTTGTAGTTACAC
CTACGACAAGGAAGGCCTCCCTACTCTGACCATCCCAACGTACAGAGCCATTGTCACTATCGAGGCTATGTGGA
GGGAGTGCAGAATTCCCGGGTTGCTGTGAGCGCCTGCTTGGACTCAGAGGCTTGCATTTGGAGAATGCCAG
TTTGGAAATTGAACCTCTGCACAACAGCTCACACTTGAGCACATATTACCCATGGATGGCATCCACCAGGA
10 GCCTCTGAGATGTGGAGTCTCTAACAGGGACACAGAGAAGGAAGGCACACAGGGGATGAGGAGGCATCCGAG
TGTCACTCAGCTGCTGCGCAGAAGAAGAGCTGTTCTACACAGACCCGCTATGTGGAGCTGTTATTGTTGAGA
CAAGGAAAGGTACGACATGATGGGACGGAACCAAGAGACTGCTGTGAGAGAAGAGATGATTGCTTAGCAAACACTACCT
GGATAGCATGTACATCATGTTAACATTGCAATTGCTGGTTGGACTAGAAATTGAGACAGACAGAAATCCTAT
CAATATAATTGGAGGAGCTGGAGATGTGCTGGCAACTTGTTCAGTGGGGAAAAGTCCCTATAACTCGTCG
15 GAGACACGACAGTGCACAGTTGGTTTGAGAGAAAAGGTTTGGTGGAACTGCAGGAATGGCCTTGTAGGAACAGT
ATGTTCAAGGAGCCACGCAAGGTGGATCAATGTGTTGGCAAATCACTGTGGAGACATTGCACTCCATTGTTGC
TCATGAATTGGGCATAACCTTGAATGAATCATGATGATGGGAGAGAGTGTGTTCTGTGGAGCAAAGAGCTGTAT
CATGAATTCAAGGAGCATCCGGTCCAGAAACTTGTGAGTTGCGAGTGCAGGACTTGAGAAGTTAACGTTGAA
TAAGGGAGGAAGCTGCTGCTAACATCCGAAGCCTGACGAAGCCTACAGCGCCCTCTGTGTAATAAGCT
20 GGTGGACCCCTGGAGAGGAGTGTGACTCGGGCACAGCGAAGGAGTGTGAGGTGGACCATGCTGTGAAGGAAGCAC
TTGTAAGCTCAAGTCATTGCTGAGTGTGCATATGGCAGTGTGTTGGCAAATCACTGTGGAGACATTGCACTCCATTGTTGC
CATGTGCAAGAGGAAGACCAGTGAGTGTGATGTTCTGAGTACTGCAACGTTCTCTCAGTTCTGCCAGGAGGCTC
TGTCTTCATTCAAGATGGATATCCTTGCAGAACAGCAAAGCTACTGCTACAATGGCATGTGCCAATATTATGA
CGCGCAGTGTCAAGGTCACTTGGTCAAAGGCTAAGGCTGCCAAGAGATTGCTCATTGAAGTCAATTCTAA
25 AGGTGACAGATTGGCAACTGTGGTTCTCCGGCAGTGAGTACAAGAAGTGTGCCACTGGAACCGCCTGTGTTGG
AAAGCTTCAATGCGAGAATGTACAGGACATGCCGGTGTGGATTCCAGCTGGTCCAGCTCCAGACCCAGGGATGGTAATGAAGGCAC
AGGCACCAAAATGCTGGGTGTGGATTCCAGCTGGTCCAGCTCCAGCTCCAGACCCAGGGATGGTAATGAAGGCAC
CAAATGTGATGCTGGCAAGATTGCAAGGAAATTTCAGTGTGAAATGCTCTGTGTAATTATGACTGTGACAT
TCAGGGAAAATGTCATGCCATGGGTATGTAACAGCAATAAGAATTGTCAGTGTGAAAGATGGCTGGCTCCCCC
30 ACACGTGACACCAAAGGATATGGAGGAAGCGTGGACAGCGGGCCGACGTATAATGCAAAGAGCACAGCACTGAG
GGACGGGCTTCTGGCTTCTTCTCTTAATCGTCCCCCTGTTGCGGCTGCCATTTCCTTTATCAAGAGAGA
TGAACACTGGAAAACCTTCAGGAAGAAGAGATCACAAATGTCAGATGGCAGAAATCAAGCAAACGTCTAGACA
GCCAGGAGATCCTAGTATCTCCAGACCACCAGGGGCCAAATGTCTCCAGACCACCCAGGGGCCAGGTGTCTC
CAGACCACCAGGGGCCAGGTGTCTCCAGACCACCCAGGGGCCAGGTGTCTCCAGACCGCCACCTGGCATGG
35 AACACGATTCCCAGTACCAACCTACGCCCAAGCAGCCTGCCAGTCCCGTCAAGGCCACCTCCACCACAAACC
GAAAATATCTTCTCAGGGAAACTTGATTCCGGCTGGCCCTGCACCTCCTTATAGCTCCCTCACCTG
ATAGTGAATATTAGAATCTTATTGGTAAATGTCTCAGGGAACTGAGCAAATGTTGTTTTTTTTC
CTGATGTTCTGAAAAGCCTTCTTCAACCATGAATGAACACAAACCACAAAACAAGCTTATTAAC
ACAGGAGCCTAGTGGGATTGCAAACACAGGAATGTCAGGCCTCCGGGGGTGAAAGTGAACGTTCCATC
40 GTTGAATGTTCTGGCATTGTTAATGCACTTGACGTGGATTAAGTATTCTGAGCATGTTACTG

TAATGATTCTCAAATTAACGTATTAGTAAAGCTTGTCACTATGCGCTAACGTAATCCTGACTTTGACCC
CAGTTACCATTAATAGTTCTGGTTGACCATTGAACATGTATTAACTTAGGAAGACTAATTGCCAATAACGTCT
GCATTTCATCTGCATGGATTAACAGCCATTATGGACTTATGTCTTTAATGCACAAAGAAGCAGATATCT
CGAAGGAGCTTACACAAGAACCAATTACTAGATCATGATATACTTGAAAGTGTAAAATATGGTGTACTCA
5 GTTATTGGCTTCCATTTTATGATCTTCAACTATAACAATTATGATAGAAATGATTTAACACAATCAGTTAT
GGGCTTCCATTTCAAATATCTTCAACTGTAATGACTATGACAGGAACGTCAACTCTCAATTCTTTAT
GCATCATGGTAAAGCATTGCAGCAGTGTGTTGAAGTGCACACTCTATGGTACGAGGTGTTAGTATAC
CCAAGCAGATAGGTGTCGATCGAACAGGAGCAGGGAGAAACTTCAACAGTTGAGGTGTTACCAAACCACTTGA
GAATTCACTGAGCACTTAACTCTAACTCTGAATTCAAAGCTTGATGTAAAGTCCTCTAGAATGTTACATT
10 CTAAGGTGTGCTGGGTCTGTCTTTGACTAATATTCGTAACATTAGGCTGGAGAAAGGAAGGAAGCAGT
GGTTCTTAGATAACTACAGAATTATACTGGTCTGGGATTACTCTCAGCTGTATTAAAATGAATTGTA
TTTGAAAGGAATGATATTGACACTAAAATTAACTTAACTTCAATCTTCATAAAGAAGTTAAT
AATAGGTATATTAACTGAATTTCATTAGTTTAAAATAATTGTTGTATATACATATTAAAATAAAA
ACATTACAACAAATAAAAAAAAAA

15

SEQ ID NO:112 Mouse MDC9 polypeptide sequence

accession:gi6680644

MGPRALSPLASLRLRWLLACGLLGPVLEAGRPDLEQTVHLSSYEIITPWRLTRERREALGPSSQQISYVIQAQKQ
QHIIHLERNTDLLPNDFVVYTYDKEGSLLSDHPNVQSHCHYRGYVEGVQNSAVAVSACFGLRGLLHLENASFGIE
20 PLHNSSHFEHIFYPMDGIHQEPLRCGVSNRDTEKEGTQGDEEEHPSVTQLLRRRAVLQPTRYVELFIVVDKERY
DMMGRNQTAVEREEMIRLANYLDMSYIMLNIRIVLVGLEIWTDRNPINIIGGAGDVLGNFVQWREKFLITRRRHDS
AQQLVKKGFFGTAGMAFVGTVCSRSHAGGINVFGQITVETFASIVAHELGHNLGMNHDDGRECFCGAKSCIMNSG
ASGRNFSSCSAEDFEKLTLNKGGSCLLNIPKPDEAYSAPSCGNKLVDPGEECDCGTAKECEVDPCCCGSTCKLK
SFAECAYGDCCDKDCQFLPGGSMCRGKTSECDVPEYCNSSQFCPPDVFIQNGYPCQNSKAYCYNGMCQYYDAQCQ
25 VIFGSKAKAAPRDCFIEVNSKGDRFGNCFGSEYKKCATGNALCGKLQCENVQDMPVFGIVPAIIQTPSRGK
WGVDQLGSDVPDPGMVNNEGKCDAGKICRNFQCVNASVLNYDCDIQGKCHGHGVCNSNKCHCEDGWAPPHCDT
KGYGGSVDSGPTYNNAKSTALRDGLLVFFFILVPLVAAAIFLFIKRDELRKFRKKRSQMSDGRNQANVSQPGDP
SISRPPGGPVSRPPGGPGVSRRPGGPGVRPPPQHGHRFPVPTYAAKQPAQFPSRPPPKISS
QGNLIPARPAPAPPLYSSLT