MPI* Info

Représentation des Nombres

TD

Hasley William

1 Exercice 1

Question 1. Avec 4 bits, nous pouvons représenter $2^4 = 16$ valeurs distinctes. Le caractère signé de ces valeurs nous indique que nous pouvons représenter l'intervalle d'entiers [-8,7] avec ces quatre bits.

Question 2. Nous obtenons ainsi pour représentation :

- $\bullet \ 0 = \overline{0000}^2$
- 1 $= \overline{0001}^2$
- -1 = $\overline{1111}^2$
- 2 $= \overline{0010}^2$
- $-5 = \overline{1011}^2$
- 7 $= \overline{0111}^2$

L'entier représenté par $\overline{1000}^2$ est -8, car le complément à deux redonne la même écriture binaire, qui correspond à l'écriture binaire non signée de 8. (autrement, $x + 2^4 = x + 16 = 8 \implies x = -8$). Alors que $\overline{0101}^2 = 5$.

2 Exercice 2

Question 1. Le décalage vaut $e = 2^{3-1} - 1 = 3$. Les exposants possibles sont donc $\{-3, -2, -1, 0, 1, 2, 3, 4\}$. On rappelle que le décalage e vaut $2^{(n-1)} - 1$ pour n bits d'exposant, et que la puissance calculée est p - e. Nous retirerons néanmoins les puissances représentées par les écritures $\overline{000}^2$ et $\overline{111}^2$ pour des raisons qui apparaîtrons plus tard. La plage effective des puissances disponible est alors [-2,3]

Question 2. Nous obtenons ainsi pour représentation :

- 1 = $\overline{00110000}^2$ = $(-1)^0 \times 2^{(3-3)} \times 1.000$
- -1 = $\overline{10110000}^2$ = $(-1)^1 \times 2^{(3-3)} \times 1.000$
- $\frac{1}{2}$ = $\overline{00100000}^2$ = $(-1)^0 \times 2^{(2-3)} \times 1.000$
- $-5 = \overline{11010100}^2 = (-1)^0 \times 2^{(5-3)} \times 1.25$

Question 3. Par définition de la mantisse (comprise dans [1,2[), pour trouver $x = 1 + \epsilon$, le plus petit nombre strictement supérieur à 1, nous devons avoir un exposant donnant 1.

Ainsi,
$$x = \overline{00110001}^2 = (-1)^0 \times 2^0 \times \left(1 + \frac{1}{16}\right) = \frac{17}{16} = 1.0625$$

Question 4. Un calcul direct donne
$$\overline{11100101}^2 = (-1) \times 2^{(6-3)} \times \left(1 + \frac{1}{4} + \frac{1}{16}\right) = -8 - 2 - \frac{1}{2} = -10.5$$

Question 5. Rappelons que les nombres représentés sont dits normalisés lorsque le bit implicite de la mantisse vaut 1 (en notation scientifique, il est attendu d'avoir un chiffre des unités non-nul, or en binaire, seul 1 convient). Lorsque l'écriture binaire de l'exposant est différente de $\overline{000}^2$ et $\overline{111}^2$, le nombre est normalisé. Sinon, ce nombre est dit "dénormalisé", et le bit implicite de la mantisse devient zéro. Ce format sert à gérer les zéros, $+\infty$ et NaN.

Ainsi, le plus petit nombre strictement positif normalisé provient de l'écriture $\overline{00010000}^2 = 2^{(1-3)} = 0.25$, alors que le plus grand strictement positif normalisé s'écrit $\overline{01101111}^2 = 2^{(6-3)} \times \left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}\right) = 8 + 4 + 2 + 1 + 0.5 = 15.5$

Question 6. Nous remarquons que la meilleure approximation inférieure de π se fait avec un exposant biaisé de 1, via l'écriture binaire $\overline{01001001}^2 = 3.125$. De même, la meilleure approximation supérieure donne $\overline{01001010}^2 = 3.25$.

Ainsi, la meilleure approximation de π est l'approximation inférieure : $\overline{01001001}^2 = 3.125$

3 Exercice 3

La fonction suivante convient :

```
int pow_of_ten(void){
   int cur_pow = 0;
   double cur_ten = 1;
   while(cur_ten / 10.0 > 0){
      cur_pow--;
      cur_ten /= 10.0;
   }
   return cur_pow;
}
```

Nous obtenons via cette fonction : k = -323.

4 Exercice 4

Question 1. Le décalage vaut $2^{(5-1)} - 1 = 15$.

Question 2. Les nombres donnés ont pour représentation :

• 1 =
$$\overline{0011110000000000}^2 = (-1)^0 \times 2^{(15-15)} \times 1.000$$

•
$$-1$$
 = $\overline{10111100000000000}^2 = (-1)^1 \times 2^{(15-15)} \times 1.000$

• 7 =
$$\overline{0100011100000000}^2 = (-1)^0 \times 2^{(17-15)} \times 1.75$$

• $-259 = \overline{1101110000001100}^2 = (-1)^0 \times 2^{(23-15)} \times 1.01171875$

Question 3. De même que précédemment, le plus petit nombre strictement supérieur à 1 est représenté par $\overline{00111100000000001}^2$, et vaut $1 + \frac{1}{2^{10}} = 1.0009765625$

Question 4. Le plus petit nombre normalisé est représenté par $\overline{0000010000000000}^2$ et vaut $2^{-14} \simeq 6.1 \times 10^{-5}$. Alors que le plus grand nombre normalisé est représenté par $\overline{01111011111111111}^2$, valant 65504.

Question 5. L'écriture $\overline{0100001001001000}^2$ représente le nombre $2^{(16-15)} \times \left(1 + \frac{1}{2} + \frac{1}{16} + \frac{1}{128}\right) = 3.140625$

5 Exercice 5

Question 1. La fonction suivante convient :

```
bool test_associativite(double a, double b, double c){
return (((a + b) + c) == (a + (b + c)));
}
```

Question 2. Un exemple classique est le triplet 0.1, 0.2 et 0.3. Nous pouvons vérifier que le test d'associativité échoue sur cette entrée.

Question 3. Afin de répondre à cette question, nous proposons l'algorithme suivant :

```
double probabilite_assoc(void){
    long success = 0;
    for(int a = 0; a < 100; a++){
        for(int b = 0; b < 100; b++){
            for(int c = 0; c < 100; c++){
                if(test_associativite(a / 10.0, b / 10.0, c / 10.0)) success++;
            }
        }
    }
    return ((double)success) / (101.0 * 101.0 * 101.0);
}</pre>
```

Nous obtenons une probabilité de ne pas être associatif valant 24.6%

Question 4. Les cas limites NaN montrent que NaN \neq NaN (en effet, NaN est réalisé par un exposant rempli de 1, et une mantisse non-nulle. Ceci mène à pouvoir représenter NaN de deux manières différentes, et à affirmer leur différence).

Question 5. La multiplication n'est pas associative, et le même triplet 0.1, 0.2 et 0.3 le montre.

Question 6. Le triplet 0.1, 0.2, 0.3 montre que la multiplication flottante n'est pas distributive : $0.2 \times (0.1 + 0.3) \neq 0.2 \times 0.1 + 0.2 \times 0.3$