

Johns Hopkins University

Categorifying cardinal arithmetic

Goal: prove $a \times (b+c) = (a \times b) + (a \times c)$ for any natural numbers a, b, and c.

Plan

Goal: prove $a \times (b+c) = (a \times b) + (a \times c)$ for any natural numbers a, b, and c by taking a tour of some deep ideas from category theory.

Goal: prove $a \times (b+c) = (a \times b) + (a \times c)$ for any natural numbers a, b, and c by taking a tour of some deep ideas from category theory.

- Step 1: categorification
- Step 2: the Yoneda lemma
- Step 3: representability
- Step 4: the proof

Goal: prove $a \times (b+c) = (a \times b) + (a \times c)$ for any natural numbers a, b, and c by taking a tour of some deep ideas from category theory.

- Step 1: categorification
- Step 2: the Yoneda lemma
- Step 3: representability
- Step 4: the proof
- Epilogue: what was the point of that?

Step 1: categorification

The idea of categorification

The first step is to understand the equation

$$a \times (b+c) = (a \times b) + (a \times c)$$

as expressing some deeper truth about mathematical structures.

The idea of categorification

The first step is to understand the equation

$$a \times (b+c) = (a \times b) + (a \times c)$$

as expressing some deeper truth about mathematical structures.

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

The idea of categorification

The first step is to understand the equation

$$a \times (b+c) = (a \times b) + (a \times c)$$

as expressing some deeper truth about mathematical structures.

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

Q: What is the role of the natural numbers a, b, and c?

Categorifying natural numbers

Q: What is the role of the natural numbers a, b, and c?

Categorifying natural numbers

Q: What is the role of the natural numbers a, b, and c?

A: Natural numbers define the cardinalities, or sizes, of finite sets.

Categorifying natural numbers

Q: What is the role of the natural numbers a, b, and c?

A: Natural numbers define the cardinalities, or sizes, of finite sets.

Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

$${\color{red}a}:=|A|, \qquad {\color{red}b}:=|B|, \qquad {\color{red}c}:=|C|.$$

$$c :=$$

Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

$$\frac{a}{:=|A|, \qquad \frac{b}{:=|B|, \qquad c:=|C|.}$$

Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

$$a := |A|, \qquad b := |B|, \qquad c := |C|.$$

Q: What is true of A and B if a = b?

Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

$$a := |A|,$$
 $b := |B|,$ $c := |C|.$

Q: What is true of A and B if a = b?

A: a=b if and only if A and B are isomorphic, which means there exist functions $f\colon A\to B$ and $g\colon B\to A$ that are inverses in the sense that $g\circ f=\operatorname{id}$ and $f\circ g=\operatorname{id}$. In this case, we write $A\cong B$.

Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

$$a := |A|,$$
 $b := |B|,$ $c := |C|.$

Q: What is true of A and B if a = b?

A: a=b if and only if A and B are isomorphic, which means there exist functions $f\colon A\to B$ and $g\colon B\to A$ that are inverses in the sense that $g\circ f=\operatorname{id}$ and $f\circ g=\operatorname{id}$. In this case, we write $A\cong B$.

For
$$a := |A|$$
 and $b := |B|$, the equation $a = b$ asserts the existence of an isomorphism $A \cong B$.

"All equations are lies."

Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

$$a := |A|,$$
 $b := |B|,$ $c := |C|.$

Q: What is true of A and B if a = b?

A: a=b if and only if A and B are isomorphic, which means there exist functions $f\colon A\to B$ and $g\colon B\to A$ that are inverses in the sense that $g\circ f=\operatorname{id}$ and $f\circ g=\operatorname{id}$. In this case, we write $A\cong B$.

For
$$a:=|A|$$
 and $b:=|B|$, the equation $a=b$ asserts the existence of an isomorphism $A\cong B$.

"All equations are lies."

Categorification: the truth behind a = b is $A \cong B$.

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

The story so far:

• The natural numbers a, b, and c encode the sizes of finite sets A, B, and C:

$$a := |A|, \qquad b := |B|, \qquad c := |C|.$$

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

The story so far:

• The natural numbers a, b, and c encode the sizes of finite sets A, B, and C:

$$a := |A|, \qquad b := |B|, \qquad c := |C|.$$

• The equation "=" asserts the existence of an isomorphism " \cong ".

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

The story so far:

• The natural numbers a, b, and c encode the sizes of finite sets A, B, and C:

$$a := |A|, \qquad b := |B|, \qquad c := |C|.$$

The equation "=" asserts the existence of an isomorphism "≅".

Q: What is the deeper meaning of the symbols "+" and " \times "?

Categorifying +

Q: If b := |B| and c := |C| what set has b + c elements?

Categorifying +

Q: If b := |B| and c := |C| what set has b + c elements?

A: The disjoint union B+C is a set with b+c elements.

$$B = \left\{ egin{array}{c} \sharp \ \flat \ \sharp \end{array}
ight\} \,, \qquad C = \left\{ egin{array}{ccc} \spadesuit & \heartsuit \ \diamondsuit & \clubsuit \end{array}
ight\} \,, \qquad B + C = \left\{ egin{array}{ccc} \sharp & \flat & \spadesuit & \heartsuit \ \sharp & \diamondsuit & \clubsuit \end{array}
ight\} \,.$$

Categorifying +

Q: If b := |B| and c := |C| what set has b + c elements?

A: The disjoint union B+C is a set with b+c elements.

$$B = \left\{ egin{array}{c} \sharp \ \flat \ \sharp \end{array}
ight\} \,, \qquad C = \left\{ egin{array}{ccc} \spadesuit & \heartsuit \ \diamondsuit & \clubsuit \end{array}
ight\} \,, \qquad B + C = \left\{ egin{array}{ccc} \sharp & \flat & \spadesuit & \heartsuit \ \sharp & \diamondsuit & \clubsuit \end{array}
ight\} \,.$$

$$b + c \coloneqq |B + C|$$

Categorifying \times

Q: If a := |A| and b := |B| what set has $a \times b$ elements?

Categorifying \times

Q: If a := |A| and b := |B| what set has $a \times b$ elements?

A: The cartesian product $A \times B$ is a set with $a \times b$ elements.

$$A = \left\{ egin{array}{ll} * & \star \end{array}
ight\} \,, \qquad B = \left\{ egin{array}{ll} \sharp \ \flat \ \cr \natural \end{array}
ight\} \,, \qquad A imes B = \left\{ egin{array}{ll} (*, \sharp) & (\star, \sharp) \cr (*, \flat) & (\star, \flat) \cr (*, \sharp) & (\star, \sharp) \end{array}
ight\} \,.$$

Categorifying ×

Q: If a := |A| and b := |B| what set has $a \times b$ elements?

A: The cartesian product $A \times B$ is a set with $a \times b$ elements.

$$A = \left\{ egin{array}{ll} * & \star \end{array}
ight\} \,, \qquad B = \left\{ egin{array}{ll} \sharp \\ lapha \\ lapha \end{array}
ight\} \,, \qquad A imes B = \left\{ egin{array}{ll} (*, lapha) & (\star, lapha) \\ (*, lapha) & (\star, lapha) \\ (*, lapha) & (\star, lapha) \end{array}
ight\}$$

$$a \times b \coloneqq |A \times B|$$

In summary:

• Natural numbers define cardinalities: there are sets A, B, and C so that a := |A|, b := |B|, and c := |C|.

- Natural numbers define cardinalities: there are sets A, B, and C so that a := |A|, b := |B|, and c := |C|.
- The equation a = b encodes an isomorphism $A \cong B$.

- Natural numbers define cardinalities: there are sets A, B, and C so that a := |A|, b := |B|, and c := |C|.
- The equation a = b encodes an isomorphism $A \cong B$.
- The disjoint union B+C is a set with b+c elements.

- Natural numbers define cardinalities: there are sets A, B, and C so that a:=|A|, b:=|B|, and c:=|C|.
- The equation a = b encodes an isomorphism $A \cong B$.
- The disjoint union B+C is a set with b+c elements.
- The cartesian product $A \times B$ is a set with $a \times b$ elements.

In summary:

- Natural numbers define cardinalities: there are sets A, B, and C so that a := |A|, b := |B|, and c := |C|.
- The equation a = b encodes an isomorphism $A \cong B$.
- The disjoint union B+C is a set with b+c elements.
- The cartesian product $A \times B$ is a set with $a \times b$ elements.

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

In summary:

- Natural numbers define cardinalities: there are sets A, B, and C so that a := |A|, b := |B|, and c := |C|.
- The equation a = b encodes an isomorphism $A \cong B$.
- The disjoint union B+C is a set with b+c elements.
- The cartesian product $A \times B$ is a set with $a \times b$ elements.

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

A: It means that the sets $A \times (B+C)$ and $(A \times B) + (A \times C)$ are isomorphic!

$$A \times (B+C) \cong (A \times B) + (A \times C)$$

Summary of Step 1

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

A: The sets $A \times (B+C)$ and $(A \times B) + (A \times C)$ are isomorphic!

Summary of Step 1

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

A: The sets $A \times (B+C)$ and $(A \times B) + (A \times C)$ are isomorphic!

$$\left\{ \begin{array}{ll} (*,\sharp) & (\star,\sharp) \\ (*,\flat) & (\star,\flat) \\ (*,\sharp) & (\star,\flat) \\ (*,\sharp) & (\star,\sharp) \\ (*,\spadesuit) & (\star,\spadesuit) \\ (*,\diamondsuit) & (\star,\diamondsuit) \\ (*,\diamondsuit) & (\star,\diamondsuit) \\ (*,\clubsuit) & (\star,\clubsuit) \end{array} \right\} \cong \left\{ \begin{array}{ll} (*,\sharp) & (*,\flat) & (*,\spadesuit) & (*,\heartsuit) \\ (*,\sharp) & (*,\diamondsuit) & (*,\clubsuit) \\ (*,\sharp) & (\star,\flat) & (\star,\spadesuit) & (\star,\heartsuit) \\ (*,\sharp) & (\star,) & (\star,\diamondsuit) & (\star,\clubsuit) \end{array} \right\}$$

$$A \times (B+C) \cong (A \times B) + (A \times C)$$

Summary of Step 1

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

A: The sets $A \times (B+C)$ and $(A \times B) + (A \times C)$ are isomorphic!

$$\begin{cases} (*,\sharp) & (\star,\sharp) \\ (*,\flat) & (\star,\flat) \\ (*,\sharp) & (\star,\flat) \\ (*,,\bigstar) & (\star,,\bigstar) \\ (*,\diamondsuit) & (\star,\diamondsuit) \\ (*,\diamondsuit) & (\star,\diamondsuit) \\ (*,\clubsuit) & (\star,\clubsuit) \end{cases} \cong \begin{cases} (*,\sharp) & (*,\flat) & (*,\diamondsuit) & (*,\diamondsuit) \\ (*,\sharp) & (*,\diamondsuit) & (*,\clubsuit) \\ (*,\sharp) & (\star,\flat) & (\star,\spadesuit) & (\star,\heartsuit) \\ (*,\sharp) & (\star,\flat) & (\star,\spadesuit) & (\star,\diamondsuit) \end{cases}$$

$$A \times (B+C) \cong (A \times B) + (A \times C)$$

By categorification:

Step 1 summary: To prove $a \times (b+c) = (a \times b) + (a \times c)$

Summary of Step 1

Q: What is the deeper meaning of the equation

$$a \times (b+c) = (a \times b) + (a \times c)?$$

A: The sets $A \times (B+C)$ and $(A \times B) + (A \times C)$ are isomorphic!

$$\left\{ \begin{array}{ll} (*,\sharp) & (\star,\sharp) \\ (*,\flat) & (\star,\flat) \\ (*,\sharp) & (\star,\sharp) \\ (*,, \Leftrightarrow) & (\star, \Leftrightarrow) \\ (*, \diamondsuit) & (\star, \diamondsuit) \\ (*, \diamondsuit) & (\star, \diamondsuit) \\ (*, \diamondsuit) & (\star, \diamondsuit) \\ (*, \clubsuit) & (\star, \clubsuit) \end{array} \right\} \cong \left\{ \begin{array}{ll} (*,\sharp) & (*,\flat) & (*, \spadesuit) & (*, \heartsuit) \\ (*,\sharp) & (*,\diamondsuit) & (*,\clubsuit) \\ (*,\sharp) & (\star,\flat) & (\star, \spadesuit) & (\star, \heartsuit) \\ (*,\sharp) & (\star, \diamondsuit) & (\star, \clubsuit) \end{array} \right\}$$

$$A \times (B+C) \cong (A \times B) + (A \times C)$$

By categorification:

Step 1 summary: To prove
$$a \times (b+c) = (a \times b) + (a \times c)$$
 \rightsquigarrow we'll instead show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

2

Step 2: the Yoneda lemma

The Yoneda lemma. Two sets A and B are isomorphic if and only if

• for all sets X, the sets of functions

$$\operatorname{Fun}(A,X) \coloneqq \{h \colon A \to X\} \quad \text{and} \quad \operatorname{Fun}(B,X) \coloneqq \{k \colon B \to X\}$$

are isomorphic

The Yoneda lemma. Two sets A and B are isomorphic if and only if

• for all sets X, the sets of functions

$$\operatorname{Fun}(A,X) \coloneqq \{h \colon A \to X\} \quad \text{and} \quad \operatorname{Fun}(B,X) \coloneqq \{k \colon B \to X\}$$

are isomorphic and moreover

• the isomorphisms $\operatorname{Fun}(A,X) \cong \operatorname{Fun}(B,X)$ are "natural" in the sense of commuting with composition with any function $\ell\colon X\to Y$.

The Yoneda lemma. Two sets A and B are isomorphic if and only if

• for all sets X, the sets of functions

$$\operatorname{Fun}(A,X) \coloneqq \{h \colon A \to X\} \quad \text{and} \quad \operatorname{Fun}(B,X) \coloneqq \{k \colon B \to X\}$$

are isomorphic and moreover

• the isomorphisms $\operatorname{Fun}(A,X) \cong \operatorname{Fun}(B,X)$ are "natural" in the sense of commuting with composition with any function $\ell \colon X \to Y$.

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\operatorname{Fun}(A,X)$ and $\operatorname{Fun}(B,X)$ are "naturally" isomorphic.

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\operatorname{Fun}(A,X)$ and $\operatorname{Fun}(B,X)$ are "naturally" isomorphic.

Proof (\Leftarrow) :

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\operatorname{Fun}(A,X)$ and $\operatorname{Fun}(B,X)$ are "naturally" isomorphic.

 $\mathsf{Proof}\ (\Leftarrow) \colon \mathsf{Suppose}\ \mathsf{Fun}(A,X) \cong \mathsf{Fun}(B,X) \ \text{for all}\ X.$

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\operatorname{Fun}(A,X)$ and $\operatorname{Fun}(B,X)$ are "naturally" isomorphic.

Proof (\Leftarrow) : Suppose $\operatorname{Fun}(A,X) \cong \operatorname{Fun}(B,X)$ for all X. Taking X=A and X=B, use the bijections:

$$\operatorname{Fun}(A,A) \quad \cong \quad \operatorname{Fun}(B,A) \qquad \quad \operatorname{Fun}(A,B) \quad \cong \quad \operatorname{Fun}(B,B)$$

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\operatorname{Fun}(A,X)$ and $\operatorname{Fun}(B,X)$ are "naturally" isomorphic.

Proof (\Leftarrow) : Suppose $\operatorname{Fun}(A,X) \cong \operatorname{Fun}(B,X)$ for all X. Taking X=A and X=B, use the bijections:

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\operatorname{Fun}(A,X)$ and $\operatorname{Fun}(B,X)$ are "naturally" isomorphic.

Proof (\Leftarrow) : Suppose $\operatorname{Fun}(A,X) \cong \operatorname{Fun}(B,X)$ for all X. Taking X=A and X=B, use the bijections:

to define functions $g \colon B \to A$ and $f \colon A \to B$.

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\operatorname{Fun}(A,X)$ and $\operatorname{Fun}(B,X)$ are "naturally" isomorphic.

Proof (\Leftarrow) : Suppose $\operatorname{Fun}(A,X) \cong \operatorname{Fun}(B,X)$ for all X. Taking X=A and X=B, use the bijections:

to define functions $g \colon B \to A$ and $f \colon A \to B$. By naturality:

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\operatorname{Fun}(A,X)$ and $\operatorname{Fun}(B,X)$ are "naturally" isomorphic.

Proof (\Leftarrow) : Suppose $\operatorname{Fun}(A,X) \cong \operatorname{Fun}(B,X)$ for all X. Taking X=A and X=B, use the bijections:

to define functions $g \colon B \to A$ and $f \colon A \to B$. By naturality:

By categorification:

Step 1 summary: To prove $a \times (b+c) = (a \times b) + (a \times c)$

By categorification:

Step 1 summary: To prove $a \times (b+c) = (a \times b) + (a \times c)$ \rightsquigarrow we'll instead show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

By categorification:

Step 1 summary: To prove
$$a \times (b+c) = (a \times b) + (a \times c)$$
 \rightsquigarrow we'll instead show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

Step 2 summary: To prove
$$A \times (B+C) \cong (A \times B) + (A \times C)$$

By categorification:

Step 1 summary: To prove
$$a \times (b+c) = (a \times b) + (a \times c)$$
 \rightsquigarrow we'll instead show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

Step 3: representability

Q: For sets B, C, and X, what is Fun(B+C,X)?

Q: For sets B, C, and X, what is Fun(B+C,X)?

Q: What is needed to define a function $f: B + C \rightarrow X$?

Q: For sets B, C, and X, what is Fun(B+C,X)?

Q: What is needed to define a function $f: B + C \rightarrow X$?

A: For each $b \in B$, we need to specify $f(b) \in X$, and for each $c \in C$, we need to specify $f(c) \in X$.

Q: For sets B, C, and X, what is Fun(B+C,X)?

Q: What is needed to define a function $f: B + C \rightarrow X$?

A: For each $b \in B$, we need to specify $f(b) \in X$, and for each $c \in C$, we need to specify $f(c) \in X$. So the function $f \colon B + C \to X$ is determined by two functions $f_B \colon B \to X$ and $f_C \colon C \to X$.

Q: For sets B, C, and X, what is Fun(B+C,X)?

Q: What is needed to define a function $f: B + C \rightarrow X$?

A: For each $b \in B$, we need to specify $f(b) \in X$, and for each $c \in C$, we need to specify $f(c) \in X$. So the function $f \colon B + C \to X$ is determined by two functions $f_B \colon B \to X$ and $f_C \colon C \to X$.

$$\begin{array}{cccc} \text{By "pairing"} & & & \text{Fun}(B+C,X) & \cong & \text{Fun}(B,X) \times \text{Fun}(C,X) \\ & & & & & & & \\ f & & \Leftrightarrow & & & (f_B,f_C) \end{array}$$

Q: For sets A, B, and X, what is $Fun(A \times B, X)$?

Q: For sets A, B, and X, what is $Fun(A \times B, X)$?

Q: What is needed to define a function $f: A \times B \to X$?

Q: For sets A, B, and X, what is $Fun(A \times B, X)$?

Q: What is needed to define a function $f: A \times B \to X$?

A: For each $b \in B$ and $a \in A$, we need to specify an element $f(a,b) \in X$.

Q: For sets A, B, and X, what is $Fun(A \times B, X)$?

Q: What is needed to define a function $f: A \times B \to X$?

A: For each $b \in B$ and $a \in A$, we need to specify an element $f(a,b) \in X$. Thus, for each $b \in B$, we need to specify a function $f(-,b) : A \to X$ sending a to f(a,b).

Q: For sets A, B, and X, what is $Fun(A \times B, X)$?

Q: What is needed to define a function $f: A \times B \to X$?

A: For each $b \in B$ and $a \in A$, we need to specify an element $f(a,b) \in X$. Thus, for each $b \in B$, we need to specify a function $f(-,b) \colon A \to X$ sending a to f(a,b). So, altogether we need to define a function $f \colon B \to \operatorname{Fun}(A,X)$.

Q: For sets A, B, and X, what is $Fun(A \times B, X)$?

Q: What is needed to define a function $f: A \times B \to X$?

A: For each $b \in B$ and $a \in A$, we need to specify an element $f(a,b) \in X$. Thus, for each $b \in B$, we need to specify a function $f(-,b) \colon A \to X$ sending a to f(a,b). So, altogether we need to define a function $f \colon B \to \operatorname{Fun}(A,X)$.

By "currying"
$$\begin{array}{cccc} \operatorname{Fun}(A\times B,X) &\cong & \operatorname{Fun}(B,\operatorname{Fun}(A,X)) \\ & & & & \\ & & & \\ f\colon A\times B\to X & \Leftrightarrow & f\colon B\to \operatorname{Fun}(A,X) \end{array}$$

By categorification:

Step 1 summary: To prove $a \times (b+c) = (a \times b) + (a \times c)$

By categorification:

Step 1 summary: To prove
$$a \times (b+c) = (a \times b) + (a \times c)$$
 \rightsquigarrow we'll instead show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

By categorification:

Step 1 summary: To prove
$$a \times (b+c) = (a \times b) + (a \times c)$$
 \rightsquigarrow we'll instead show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

Step 2 summary: To prove
$$A \times (B+C) \cong (A \times B) + (A \times C)$$

By categorification:

Step 1 summary: To prove
$$a \times (b+c) = (a \times b) + (a \times c)$$
 \rightsquigarrow we'll instead show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

By categorification:

Step 1 summary: To prove
$$a \times (b+c) = (a \times b) + (a \times c)$$
 \rightsquigarrow we'll instead show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

By representability:

Step 3 summary:

Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove
$$a \times (b+c) = (a \times b) + (a \times c)$$
 \rightsquigarrow we'll instead show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

By representability:

Step 3 summary:

• $\operatorname{Fun}(B+C,X) \cong \operatorname{Fun}(B,X) \times \operatorname{Fun}(C,X)$ by "pairing"

Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove
$$a \times (b+c) = (a \times b) + (a \times c)$$
 \rightsquigarrow we'll instead show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

Step 2 summary: To prove
$$A \times (B+C) \cong (A \times B) + (A \times C)$$
 \rightsquigarrow we'll instead define a "natural" isomorphism
$$\operatorname{Fun}(A \times (B+C),X) \cong \operatorname{Fun}((A \times B) + (A \times C),X).$$

By representability:

Step 3 summary:

- $\bullet \ \operatorname{Fun}(B+C,X) \cong \operatorname{Fun}(B,X) \times \operatorname{Fun}(C,X)$ by "pairing" and
- $\operatorname{Fun}(A \times B, X) \cong \operatorname{Fun}(B, \operatorname{Fun}(A, X))$ by "currying."

Step 4: the proof

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

Proof:

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

Proof: To prove $a \times (b+c) = (a \times b) + (a \times c)$:

ullet pick sets A, B, and C so that $a \coloneqq |A|$, and $b \coloneqq |B|$, and $c \coloneqq |C|$

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

- ullet pick sets A, B, and C so that ${\color{blue}a}:=|A|$, and ${\color{blue}b}:=|B|$, and ${\color{blue}c}:=|C|$
- and show that $A \times (B+C) \cong (A \times B) + (A \times C)$.

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

- ullet pick sets A, B, and C so that a:=|A|, and b:=|B|, and c:=|C|
- and show that $A \times (B+C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, "naturally," $\operatorname{Fun}(A\times (B+C),X)\cong\operatorname{Fun}((A\times B)+(A\times C),X).$

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

- ullet pick sets A, B, and C so that a:=|A|, and b:=|B|, and c:=|C|
- and show that $A \times (B+C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, "naturally," $\operatorname{Fun}(A\times (B+C),X)\cong\operatorname{Fun}((A\times B)+(A\times C),X).$
- Now

$$\operatorname{Fun}(A\times (B{+}C),X)\cong$$

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

- pick sets A, B, and C so that $a \coloneqq |A|$, and $b \coloneqq |B|$, and $c \coloneqq |C|$
- and show that $A \times (B+C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, "naturally," $\operatorname{Fun}(A\times (B+C),X)\cong\operatorname{Fun}((A\times B)+(A\times C),X).$
- Now

$$\operatorname{Fun}(A \times (B+C), X) \cong \operatorname{Fun}(B+C, \operatorname{Fun}(A, X))$$
 by "currying"

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

- ullet pick sets A, B, and C so that $a \coloneqq |A|$, and $b \coloneqq |B|$, and $c \coloneqq |C|$
- and show that $A \times (B+C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, "naturally," $\operatorname{Fun}(A\times (B+C),X)\cong\operatorname{Fun}((A\times B)+(A\times C),X).$
- Now

$$\begin{split} \operatorname{Fun}(A\times(B+C),X) &\cong \operatorname{Fun}(B+C,\operatorname{Fun}(A,X)) \text{ by "currying"} \\ &\cong \operatorname{Fun}(B,\operatorname{Fun}(A,X)) \times \operatorname{Fun}(C,\operatorname{Fun}(A,X)) \text{ by "pairing"} \end{split}$$

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

- ullet pick sets A, B, and C so that a:=|A|, and b:=|B|, and c:=|C|
- and show that $A \times (B+C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, "naturally," $\operatorname{Fun}(A\times (B+C),X)\cong\operatorname{Fun}((A\times B)+(A\times C),X).$
- Now

$$\begin{split} \operatorname{Fun}(A \times (B+C), X) &\cong \operatorname{Fun}(B+C, \operatorname{Fun}(A, X)) \text{ by "currying"} \\ &\cong \operatorname{Fun}(B, \operatorname{Fun}(A, X)) \times \operatorname{Fun}(C, \operatorname{Fun}(A, X)) \text{ by "pairing"} \\ &\cong \operatorname{Fun}(A \times B, X) \times \operatorname{Fun}(A \times C, X) \text{ by "currying"} \end{split}$$

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

- ullet pick sets A, B, and C so that a:=|A|, and b:=|B|, and c:=|C|
- and show that $A \times (B+C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, "naturally," $\operatorname{Fun}(A\times (B+C),X)\cong\operatorname{Fun}((A\times B)+(A\times C),X).$
- Now

$$\begin{split} \operatorname{Fun}(A \times (B+C), X) &\cong \operatorname{Fun}(B+C, \operatorname{Fun}(A, X)) \text{ by "currying"} \\ &\cong \operatorname{Fun}(B, \operatorname{Fun}(A, X)) \times \operatorname{Fun}(C, \operatorname{Fun}(A, X)) \text{ by "pairing"} \\ &\cong \operatorname{Fun}(A \times B, X) \times \operatorname{Fun}(A \times C, X) \text{ by "currying"} \\ &\cong \operatorname{Fun}((A \times B) + (A \times C), X) \text{ by "pairing."} \end{split}$$

0

Theorem. For any natural numbers a, b, and c,

$$a\times (b+c)=(a\times b)+(a\times c).$$

- ullet pick sets A, B, and C so that ${\color{blue}a}:=|A|$, and ${\color{blue}b}:=|B|$, and ${\color{blue}c}:=|C|$
- and show that $A \times (B+C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, "naturally," $\operatorname{Fun}(A\times (B+C),X)\cong\operatorname{Fun}((A\times B)+(A\times C),X).$
- Now

$$\begin{split} \operatorname{Fun}(A \times (B+C), X) &\cong \operatorname{Fun}(B+C, \operatorname{Fun}(A, X)) \text{ by "currying"} \\ &\cong \operatorname{Fun}(B, \operatorname{Fun}(A, X)) \times \operatorname{Fun}(C, \operatorname{Fun}(A, X)) \text{ by "pairing"} \\ &\cong \operatorname{Fun}(A \times B, X) \times \operatorname{Fun}(A \times C, X) \text{ by "currying"} \\ &\cong \operatorname{Fun}((A \times B) + (A \times C), X) \text{ by "pairing."} \end{split}$$

Epilogue: what was the point of that?

Note we didn't actually need the sets A, B, and C to be finite.

Note we didn't actually need the sets A, B, and C to be finite.

Theorem. For any cardinals α , β , γ ,

$$\alpha \times (\beta + \gamma) = (\alpha \times \beta) + (\alpha \times \gamma).$$

Note we didn't actually need the sets A, B, and C to be finite.

Theorem. For any cardinals α , β , γ ,

$$\alpha \times (\beta + \gamma) = (\alpha \times \beta) + (\alpha \times \gamma).$$

Proof: The one we just gave.

Note we didn't actually need the sets A, B, and C to be finite.

Theorem. For any cardinals α , β , γ ,

$$\alpha \times (\beta + \gamma) = (\alpha \times \beta) + (\alpha \times \gamma).$$

Proof: The one we just gave.

Exercise: Find a similar proof for other identities of cardinal arithmetic:

$$\alpha^{\beta+\gamma}=\alpha^{\beta}\times\alpha^{\gamma}\quad\text{ and }\quad (\alpha^{\beta})^{\gamma}=\alpha^{\beta\times\gamma}=(\alpha^{\gamma})^{\beta}.$$

Generalization to other mathematical contexts

In the discussion of representability or the Yoneda lemma, we didn't need A, B, and C to be sets at all!

Generalization to other mathematical contexts

In the discussion of representability or the Yoneda lemma, we didn't need A, B, and C to be sets at all!

Theorem.

• For vector spaces U, V, W,

$$U \otimes (V \oplus W) \cong (U \otimes V) \oplus (U \otimes W).$$

• For nice topological spaces X, Y, Z,

$$X \times (Y \sqcup Z) \cong (X \times Y) \sqcup (X \times Z).$$

• For abelian groups A, B, C,

$$A \otimes_{\mathbb{Z}} (B \oplus C) \cong (A \otimes_{\mathbb{Z}} B) \oplus (A \otimes_{\mathbb{Z}} C).$$

Generalization to other mathematical contexts

In the discussion of representability or the Yoneda lemma, we didn't need A, B, and C to be sets at all!

Theorem.

For vector spaces U, V, W,

$$U \otimes (V \oplus W) \cong (U \otimes V) \oplus (U \otimes W).$$

• For nice topological spaces X, Y, Z,

$$X \times (Y \sqcup Z) \cong (X \times Y) \sqcup (X \times Z).$$

• For abelian groups A, B, C,

$$A \otimes_{\mathbb{Z}} (B \oplus C) \cong (A \otimes_{\mathbb{Z}} B) \oplus (A \otimes_{\mathbb{Z}} C).$$

Proof: The one we just gave.

• categorification (replacing equality by isomorphism),

- categorification (replacing equality by isomorphism),
- the Yoneda lemma (replacing isomorphism by natural isomorphism),

- categorification (replacing equality by isomorphism),
- the Yoneda lemma (replacing isomorphism by natural isomorphism),
- representability (characterizing maps to or from an object),

- categorification (replacing equality by isomorphism),
- the Yoneda lemma (replacing isomorphism by natural isomorphism),
- representability (characterizing maps to or from an object),
- limits and colimits (like cartesian product and disjoint union),

- categorification (replacing equality by isomorphism),
- the Yoneda lemma (replacing isomorphism by natural isomorphism),
- representability (characterizing maps to or from an object),
- limits and colimits (like cartesian product and disjoint union), and
- adjunctions (such as currying)

The ideas of

- categorification (replacing equality by isomorphism),
- the Yoneda lemma (replacing isomorphism by natural isomorphism),
- representability (characterizing maps to or from an object),
- limits and colimits (like cartesian product and disjoint union), and
- adjunctions (such as currying)

are all over mathematics

The ideas of

- categorification (replacing equality by isomorphism),
- the Yoneda lemma (replacing isomorphism by natural isomorphism),
- representability (characterizing maps to or from an object),
- limits and colimits (like cartesian product and disjoint union), and
- adjunctions (such as currying)

are all over mathematics — so keep a look out!

The ideas of

- categorification (replacing equality by isomorphism),
- the Yoneda lemma (replacing isomorphism by natural isomorphism),
- representability (characterizing maps to or from an object),
- limits and colimits (like cartesian product and disjoint union), and
- adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!