Sample Spaces, Events, Probability

Foundations of Data Analysis

January 23, 2023

Brain Teaser

You have cards numbered 1 through 10. If you pick five cards at random, what is the probability that you selected the cards 1, 2, 3, 4, 5 (not necessarily in that order)?

Sets

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in ACC), or abstract things (numbers, colors).

Examples:

- $A = \{3,8,31\}$
- $B = \{apple, pear, orange, grape\}$
- Not a valid set definition: $C = \{1,2,3,4,2\}$

Sets

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in ACC), or abstract things (numbers, colors).

Examples:

- $A = \{3,8,31\}$
- $B = \{apple, pear, orange, grape\}$
- Not a valid set definition: $C = \{1,2,3,4,2\}$

Sets do not contain duplicates!

Sets

Order in a set does not matter!

$$\{1,2,3\} = \{3,2,1\} = \{1,3,2\}$$

• When x is an element of A, we denote this by:

$$x \in A$$
.

If x is not in a set A, we denote this as:

$$x \notin A$$
.

The "empty" or "null" set has no elements:

$$\emptyset = \{\}$$

Sample Spaces

Definition

A **sample space** is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω .

Examples:

- Coin flip: $\Omega = \{H, T\}$
- Roll a 6-sided die: $\Omega = \{1,2,3,4,5,6\}$
- Pick a ball from a bucket of red/black balls:

$$\Omega = \{R, B\}$$

Some Important Sets

Integers:

$$\mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$$

Natural Numbers:

$$\mathbb{N} = \{0, 1, 2, 3, \cdots\}.$$

Real Numbers:

 \mathbb{R} = any number that can be written in decimal form.

$$5 \in \mathbb{R}, \quad 17.42 \in \mathbb{R}, \quad \pi = 3.14159 \dots \in \mathbb{R}$$

Building Sets Using Conditionals

Alternate way to define natural numbers:

$$\mathbb{N} = \{ x \in \mathbb{Z} : x \ge 0 \}$$

Set of even integers:

$$\{x \in \mathbb{Z} : x \text{ is divisible by 2}\}.$$

Rationals:

$$\mathbb{Q} = \{ p/q : p, q \in \mathbb{Z}, q \neq 0 \}.$$

Subsets

Definition

A set A is a **subset** of another set B if every element of A is also an element of B, and we denote this as $A \subset B$

Examples:

- $\{1,9\} \subset \{1,3,9,11\}$
- $\mathbb{Q} \subset \mathbb{R}$
- {apple, pear} ⊄ {apple, orange, banana}
- $\emptyset \subset A$ for any set A

Events

Definition

An event is a subset of a sample space.

Examples:

You roll a die and get an even number:

$$\{2,4,6\} \subset \{1,2,3,4,5,6\}$$

You flip a coin and it comes up "heads":

$$\{H\} \subset \{H,T\}$$

Your code takes longer than 5 seconds to run:

$$(5,\infty)\subset\mathbb{R}$$

Set Operations: Union

Definition

The **union** of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Example:

- $A = \{1,3,5\}$ "an odd roll"
- $B = \{1,2,3\}$ "a roll of 3 or less"
- $A \cup B = \{1,2,3,5\}$

Venn Diagram: Union

Venn Diagram: Union

Set Operations: Intersection

Definition

The **intersection** of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happens.

Example:

- $A = \{1,3,5\}$ "an odd roll"
- $B = \{1,2,3\}$ "a roll of 3 or less"
- $A \cap B = \{1,3\}$

Note: If $A \cap B = \emptyset$, we say A and B are disjoint.

Venn Diagram: Intersection

Venn Diagram: Intersection

Set Operations: Complement

Definition

The **complement** of a set $A \subset \Omega$, denoted A^c , is the set of all elements in Ω that are not in A.

When A is an event, A^c means that the event A does not happen.

Example:

- $A = \{1,3,5\}$ "an odd roll"
- $A^c = \{2,4,6\}$ "an even roll"

Venn Diagram: Complement

Venn Diagram: Complement

Set Operations: Difference

Definition

The **difference** of a set $A \subset \Omega$ and a set $B \subset \Omega$, denoted A - B, is the set of all elements in Ω that are in A and are not in B.

Example:

- $A = \{3,4,5,6\}$
- $B = \{3,5\}$
- $A B = \{4,6\}$

Note: $A - B = A \cap B^c$.

Venn Diagram: Difference

Venn Diagram: Difference

De Morgan's Laws

Complement of union or intersection:

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

Exercises

Check whether the following statements are true or false. (Hint: you might use Venn diagrams.)

$$A - B \subset A$$

$$(A - B)^c = A^c \cup B$$

$$A \cup B \subset B$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Probability

Definition

A probability function on a finite sample space Ω assigns every event $A \subset \Omega$ a number in [0, 1], such that:

$$P(\Omega) = 1$$

 $P(A \cup B) = P(A) + P(B)$ when $A \cap B = \emptyset$

is the **probability** that event A occurs.

Equally Likely Outcomes

The number of elements in a set A is denoted |A|.

If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$P(A) = \frac{|A|}{|\Omega|}$$

Example: Rolling a 6-sided die

- $P(\{1\}) = 1/6$
- $P(\{1,2,3\}) = 1/2$

Repeated Experiments

If we do two runs of an experiment with sample space Ω , then we get a new experiment with sample space

$$\Omega \times \Omega = \{(x, y) : x \in \Omega, y \in \Omega\}$$

The element $(x, y) \in \Omega \times \Omega$ is called an **ordered pair**.

Properties:

- Order matters: $(1,2) \neq (2,1)$
- Repeats are possible: $(1,1) \in \mathbb{N} \times \mathbb{N}$

More Repeats

Repeating an experiment *n* times gives the sample space

$$\Omega^n = \Omega \times \cdots \times \Omega$$
 (n times) = { $(x_1, x_2, \dots, x_n) : x_i \in \Omega, \forall i$ }

The element (x_1, x_2, \dots, x_n) is called an **n-tuple**.

If
$$|\Omega| = k$$
, then $|\Omega^n| = k^n$

Probability Rules

Complement of an event A:

$$P(A^c) = 1 - P(A)$$

Union of two overlapping events $A \cap B \neq \emptyset$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Exercise

You are picking a number out of a hat, which contains the numbers 1 through 100. What are the following events and their probabilities?

- The number has a single digit
- The number has two digits
- The number is a multiple of 4
- The number is not a multiple of 4
- The sum of the number's digits is 5

Permutations

A **permutation** is an ordering of an n-tuple. For instance, the n-tuple (1, 2, 3) has the following permutations:

$$(1,2,3), (1,3,2), (2,1,3)$$

 $(2,3,1), (3,1,2), (3,2,1)$

The number of unique orderings of an n-tuple is *n* factorial:

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2$$

How many ways can you rearrange (1, 2, 3, 4)?

Binomial Coefficient or "n choose k"

The **binomial coefficient**, written as $\binom{n}{k}$ and spoken as

"n choose k", is the number of ways you can select k items out of a list of n choices.

Formula:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomial Coefficient or "n choose k"

Example: You have cards numbered 1 through 10. If you pick five cards at random, what is the probability that you selected the cards 1, 2, 3, 4, 5 (not necessarily in that order)?

Answer

We'll use the formula $P(A) = \frac{|A|}{|\Omega|}$.

There is only one combination that gives us cards 1,2,3,4,5, so |A| = 1.

The total number of possible 5 card selections is

$$|\Omega| = {10 \choose 5} = \frac{10!}{5!(10-5)!} = 252$$

So, finally the probability is

$$P(A) = \frac{|A|}{|\Omega|} = \frac{1}{252} \approx 0.00397 = 0.397 \%$$