Tegnekurs i TikZ

Veronika Heimsbakk veronahe@ulrik.uio.no

2. oktober 2014

Innhold

1	The	Basics 3
	1.1	tikzpicture
	1.2	Linjer
	1.3	Kurver
	1.4	Kvadrat
	1.5	Sirkel
	1.6	Pynte litt
	1.7	Tykkelser
	1.8	Farger
	1.9	Bruke farger
	1.10	Plotte funksjoner
		$1.10.1 \ plot \ \ldots \ \ldots \ \ldots \ \ 7$
2	Koo	rdinatsystem 8
	2.1	Piler/akser
	2.2	Noder
	2.3	Løkker
	2.4	Hele koden for koordinatsystemet
	2.5	Eksempler med sin og cos
3	Træ	r 12
•	3.1	Bygge treet
	3.2	Justere avstand mellom noder
	3.3	Former som noder kan ha
	3.4	Eksempel på et tre med avstander
	3.5	Rød-svarte trær
	3.6	Bygge et tre
		<i>v</i> 00

4	Grafer		
	4.1	Tegne grafen	19
5	Aut	comater	20
	5.1	Automatens tilstander	20
	5.2	Stien gjennom automaten	21
6	Log	riske porter	22
	6.1	Eksempel på en liten krets	22
	6.2	Oversikt over forskjellige porter i Circuitikz	23
7	Res	sursser	24
\mathbf{F}	igu	rer	
	1	Mulige tykkelser i TikZ	5
	2	Mulige farger i TikZ	
	3	Forskjellige piler i TikZ	
	4	Forskjellige fasonger på noder	
	5	Forskjellige porter i Circuitikz	
	~	3. G. L	

1 The Basics

For å kunne bruke pakken TikZ må man først inkludere \usepackage{tikz} i dokumentet sitt.

1.1 tikzpicture

Alle illustrasjoner som skal tegnes ved hjelp av pakken TikZ krever et miljø som heter tikzpicture.

1.2 Linjer

En av de mest brukte TikZ kommandoene er \draw . For å tegne ei rett linje sier man hvor man vil tegne fra og til:

```
\draw (0,2) -- (4,2);
\draw (0cm,1.5cm) -- (4cm,1.5cm);
\draw (0em, 1cm) -- (4em, 1cm);
\draw (0pt, 0.5cm) -- (4pt, 0.5cm);
```

1.3 Kurver

Vi bruker kontrollpunkter for å lage en kurvet linje. I eksempelet her, så starter vi i koordinatene (-2,2) og så tegner vi en kurve til første kontrollpunkt som er (-1,0), så videre til (1,0), og til slutt ender kurven opp i slutt-punktet som er (2,2).

 $\frac{-1,0}{2}$ and $\frac{-1,0}{2}$ and $\frac{-1,0}{2}$

1.4 Kvadrat

Videre kan vi bygge på og lage et kvadrat:

$$draw (0,0) -- (2,0) -- (2,2) -- (0,2) -- (0,0);$$

Vi kan også bruke nøkkelordet **rectangle**, og lage en kortversjon som gjør akkurat det samme:

\draw (0,0) rectangle (2,2);

1.5 Sirkel

Den første koordinaten er sirkelens sentrum, og lengden vi oppgir til slutt er sirkelens radius.

\draw (2,2) circle (1cm);

Ellipser tegnes ved at vi oppgir radiusen i x- og y-retningene:

\draw (2,2) ellipse (2cm and 1cm);

1.6 Pynte litt

For å pynte litt på sirkelen vår, kan vi legge til noen ekstra argumenter til \draw-kommandoen. For eksempel slik:

\draw[red, thick, dashed] (2,2) circle (1cm); \draw[green, thick] (6,2) circle (1cm);

1.7 Tykkelser

Figur 1: Mulige tykkelser i TikZ.

1.8 Farger

Figur 2: Mulige farger i TikZ.

1.9 Bruke farger

Vi kan også fylle formene våre ved å bruke kommandoen \fill.

\fill[red] (0,0) rectangle (2,2);

Om vi ønsker å legge til en kant rundt kvadratet, kan vi bruke kommandoen \filldraw. Her fyller vi kvadratet rødt med gjennomsiktighet på 50% og en tykk sort strek som kant.

\filldraw[red!50, draw=black, very thick] (0,0) rectangle (2,2);

Vi har også gradient i TikZ, og det kan se slik ut:


```
\shade[left color=black, right color=red] (0,0) rectangle (2,2); \shade[top color=black, bottom color=red] (0,0) rectangle (2,2); \shade[inner color=black, outer color=red] (0,0) rectangle (2,2);
```

1.10 Plotte funksjoner

Man kan også plotte funksjoner i TikZ. Da er det kjekt å kjenne til de forskjellige typer piler.

Figur 3: Forskjellige piler i TikZ.

```
\draw[<->] (0,1.5) -- (4,1.5);
\draw[|->] (0,1) -- (4,1);
\draw[<-] (0,0.5) -- (4,0.5);
\draw[->] (0,0) -- (4,0);
```

1.10.1 plot


```
\begin{tikzpicture}
  \draw[<->] (0,3.5) -- (0,0) -- (5,0);
  \draw[red, thick, domain=0:1.2] plot (\x, {0.25+\x+\x*\x});
  \end{tikzpicture}
```

domain er rekkevidden av x som blir plottet. I dette tilfellet plotter vi funksjonen $0.25+x+x^2$. Legg merke til at det er parenteser rundt funksjonen som vi skal plotte plot (\x, {function}).

2 Koordinatsystem

Dette eksempelet krever et rutenett, piler, noder og plassering av tall og bokstaver. Vi starter med et rutenett:

\draw[step=1cm,gray!80,very thin] (-1.9,-1.9) grid (5.9,5.9);

2.1 Piler/akser

Videre trenger vi x-aksen og y-aksen. Dette er to linjer med piler i enden.


```
\draw[thick, ->] (0,0) -- (4.5,0);
\draw[thick, ->] (0,0) -- (0,4.5);
```

2.2 Noder

Vi kan legge på tekst (*label*) ved å bruke nøkkelordet **node**. Vi plasserer teksten ved linjene vi har tegnet ved å fortelle noden hvor vi vil ha den.


```
\draw[thick, ->] (0,0) -- (4.5,0) node[below right] {x axis}; \draw[thick, ->] (0,0) -- (0,4.5) node[above left] {y axis};
```

2.3 Løkker

Vi kan fortsette med tallene som skal gå langs aksene ved å bruke løkker:

Denne løkken går over linjene vi allerede har tegnet, og setter en liten strek for hver centimeter. Og ved siden av linjen skriver vi et tall.

```
\foreach \x in {0,1,2,3,4}
\draw (\x cm, 2pt) -- (\x cm, -2pt) node[below] {$\x$};
\foreach \y in {0,1,2,3,4}
\draw (2pt, \y cm) -- (-2pt, \y cm) node[left] {$\y$};
```

2.4 Hele koden for koordinatsystemet


```
\begin{tikzpicture}
\draw[step=1cm,gray!80,very thin] (-1.9,-1.9) grid (5.9,5.9);
\draw[thick, ->] (0,0) -- (4.5,0) node[below right] {x axis};
\draw[thick, ->] (0,0) -- (0,4.5) node[above left] {y axis};

\foreach \x in {0,1,2,3,4}
\draw (\x cm, 2pt) -- (\x cm, -2pt) node[below] {$\x$};
\foreach \y in {0,1,2,3,4}
\draw (2pt, \y cm) -- (-2pt, \y cm) node[left] {$\y$};
\end{tikzpicture}
```

2.5 Eksempler med sin og cos


```
\begin{tikzpicture}
  \draw[gray] (0,-3) grid (5,3);
  \draw[red] (0,0) sin (1,2) cos (2,0) sin (3,-2) cos (4,0);
  \end{tikzpicture}
```



```
\begin{tikzpicture}
  \draw[gray] (0,-3) grid (5,3);
  \draw[red] (0,0) sin (1,2) sin (2,0) sin (3,-2) sin (4,0);
\end{tikzpicture}
```

3 Trær

Et tre består av en rekke noder. Når vi tegner trær i TikZ starter vi med å definere rot-noden. Legg merke til attributtene vi git tikzpicture. Her sier vi at every node skal ha *stilen* (.style) sirkel med sort strek.


```
\begin{tikzpicture}[every node/.style={circle, draw=black}]
    \node {1};
\end{tikzpicture}
```

3.1 Bygge treet

Treet bygger vi ved å legge til barna. Barna skrives på formen:

```
child { node[opt.] {value} }
```



```
\node {1}
    child { node {2}
        child { node {4} }
        child { node {5} }
    }
    child { node {3} }
```

3.2 Justere avstand mellom noder

Når vi nå vil bygge videre og legge til tallet 6 under child {node {3}} vil vi krasje bort i 5. Da trenger vi å justere avstanden mellom søsken-noder.

Da legger vi på et attributt til i listen til tikzpicture som forteller noe om avstanden mellom nodene.

Her forteller vi at stilen til nodene på level 1 skal være at de har avstand til sine søsken med 20 mm, og 15 mm for level 2. Vi kunne også lagt til attributtet level distance for å få større eller mindre avstand mellom lagene.

3.3 Former som noder kan ha

Man kan få forskjellige fasonger på noder ved å inkludere \usetikzlibrary{shapes}. Her er en oversikt over forskjellige fasonger en node kan ha. For å få ønsket fasong skriver man noden på denne formen:

```
\node[rectangle] {Rectangle};
\node[regular polygon, regular polygon sides=5] {n=5};
\node[star, star points=4] {p=4};
\node[circle split] {Circle \nodepart{lower} split};
```


Figur 4: Forskjellige fasonger på noder.

3.4 Eksempel på et tre med avstander


```
\begin{tikzpicture}[every node/.style={},
                    level 2/.style={sibling distance=20mm},
                    level 3/.style={sibling distance=10mm},
                    level distance=30pt]
\node {S}
   child { node{A}
        child { node {A}
            child { node {(} }
            child { node {)} }
        }
        child { node {A}
            child { node {(} }
            child { node {A}
                child { node {(} }
                child { node {)} }
            child { node {)} }
        }
\end{tikzpicture}
```

3.5 Rød-svarte trær

Å tegne trær på denne måten krever ingen tilleggsbiblioteker fra TikZ. Dette er et eksempel på tegning med *parametre*. Utseende til nodene i treet er definert som parametre som har et sett med .style-opsjoner.

Starter med å definere treenode, som er felles for alle typer noder. Røde og sorte noder tegnes som circle, hvor sorte noder har fill=black og tekstfarge white, mens røde noder har rødt omriss med draw=red, og tekstfarge red. Null-nodene sier vi skal være sorte rectangle. Tegnes som små kvadrater på $0.3~\mathrm{cm} \times 0.3~\mathrm{cm}$.

3.6 Bygge et tre

Setter forskjellige opsjoner med:

Her sier vi at treet skal tegnes med piler (->), og at stilen (.style) for distansen mellom søskennoder skal være 2 cm, og distansen mellom barn og foreldre skal være 1.5 cm.

Videre så tegnes treet ved å definere roten:

```
\node [opt.] {node value} ;
```

Så kan man bygge treet ved å legge inn barna til roten, osv.:

```
\node [opt.] {node value}
  child {node [opt.] {node value} };
```

4 Grafer

Det fins enklere måter å tegne grafer på enn dette, men jeg syns denne måten er fin. Den krever heller ingen andre biblioteker eller pakker enn TikZ selv.

Vi starter med å definere de forskjellige elementene til en graf.

```
\begin{tikzpicture}
  \tikzstyle{vertex} = [circle,fill=black!10]
  \tikzstyle{selected vertex} = [vertex, fill=red!50]

  \tikzstyle{selected edge} = [draw,line width=1pt,-,red!100]
  \tikzstyle{edge} = [-,black,line width=1pt]
  \end{tikzpicture}
```

Her fortelle vi at vertexer (eller noder), skal være sirkler som er fylt med sort med en gjennomsiktighet på 10%. Markerte noder skal også være fylt, da med en annen farge.

Kanter skal tegnes som sorte linjer ([-, black ...]). Og markerte kanter skal være røde.

4.1 Tegne grafen

For å plassere nodene rundt om på arket sier man hvor man vil de skal være. For eksempelet på toppen (grafen som har stjerne-form), er TikZ-koden som følger:

```
\begin{tikzpicture}[scale=5]
                                = [circle,fill=black!10]
    \tikzstyle{vertex}
    \tikzstyle{selected vertex} = [vertex, fill=red!50]
    \tikzstyle{selected edge}
                                = [draw,line width=1pt,-,red!100]
    \tikzstyle{edge}
                                = [-,black,line width=1pt]
    \node[vertex]
                           (v1) at (1.25,1.7) \{1\};
    \node[vertex]
                           (v2) at (1.5,1.1)
    \node[selected vertex] (v3) at (0.9,1.5)
                                               {3};
    \node[vertex]
                           (v4) at (1.6,1.5)
                                               {4};
    \node[vertex]
                           (v5) at (1,1.1)
                                               {5};
    \draw[edge]
                         (v1)--(v2)--(v3)--(v4)--(v5)--(v1);
    \draw[selected edge] (v1)--(v2);
\end{tikzpicture}
```

5 Automater


```
\begin{tikzpicture}[->,auto,node distance=3cm,line width=0.2mm]
 \node[initial,state
                                              {$q_1$};
                         (A)
 \node[state]
                         (B) [right of=A]
                                              {$q_2$};
 \node[state]
                         (C) [right of=B]
                                              {$q_3$};
 \node[state,accepting](D) [right of=C]
                                              {$q_4$};
 \path (A) edge [loop above] node
                                              {b}
                                                     (A)
            edge node
                                              {a}
                                                     (B)
        (B) edge [loop above] node
                                              {b}
                                                     (B)
            edge node
                                              {a}
                                                     (C)
        (C) edge [loop above] node
                                              {b}
                                                     (C)
            edge node
                                              {a}
                                                     (D)
        (D) edge [loop above] node
                                              {b,a} (D);
\end{tikzpicture}
```

For denne måten å tegne automater på, så settes alle parametre som beskriver automaten i definisjonen til tikzpicture. Man må også inkludere \usetikzlibrary{automata}. Her har automaten følgende egenskaper:

```
{tikzpicture}[->, auto, node distance=3cm, line width=0.2mm]
```

Dette forteller oss at automaten skal tegnes med piler (->), nodene skal ha avstand på 3 cm, og linjene en tykkelse på 0,2 mm. Auto stiller teksten *over* linjene, i stedet for på linjene.

5.1 Automatens tilstander

En automat har tre typer tilstander: starttilstanden, vanlig tilstand(er), og akepterende tilstand(er).

```
\node[state] (node-name) {name of state};
```

I tillegg til [state], så kan man ha med opsjonen [initial, state] for starttilstanden, eller [state, accepting] for aksepterende tilstand.

5.2 Stien gjennom automaten

Stien tegnes gjennom en path. Denne konstrueres på følgende vis:

\path (from-node) edge [opt.] node {weight} (to-node).

Her kan [opt] være loop above/below, bend left/right.

Flittig bever

Her er en flittig 4-bever. Denne automaten dekker de fleste opsjoner.


```
\begin{tikzpicture}[->,auto,node distance=4cm,line width=0.2mm]
 \node[initial,state] (A)
 \node[state]
                       (B) [below of=A] \{\};
 \node[state]
                       (C) [right of=A] {};
                       (D) [below of=C] {};
 \node[state]
 \node[state]
                       (E) [right of=D] {H};
 \path (A) edge node
                                    {1 $\rightarrow$ 1,L}
                                                            (C)
        (A) edge [bend left] node
                                   {0 $\rightarrow$ 1,R}
                                                            (C)
                                   {0 $\rightarrow$ 1,L}
        (C) edge [bend left] node
                                                            (A)
        (B) edge node
                                    {1 $\rightarrow$ 0,R} (A)
        (B) edge [loop below] node {0 $\rightarrow$ 1,R}
                                                            (B)
        (D) edge node
                                   {1 $\rightarrow$ 1,L}
                                                            (B)
        (C) edge node
                                   {1 $\rightarrow$ 0,L}
                                                            (D)
                                    {0 $\rightarrow$ 1,R}
        (D) edge node
                                                            (E);
\end{tikzpicture}
```

6 Logiske porter

Noe som er kjekt å vite om er også logiske porter i Circuitikz. Dette får du ved å inkludere pakken:

\usepackage{circuitikz}

Siden dette *ikke* er TikZ jobber vi ikke i miljøet tikzpicture, men i miljøet circuitikz.

```
\begin{circuitikz} \draw < kode her> \end{circuitikz}
```

6.1 Eksempel på en liten krets


```
begin{circuitikz} \draw
    (-3,0.3) node[not port] (not) {}
    (0,0)    node[and port] (and) {}
    (2,1)    node[or port] (or) {}

    (not.out) -- (and.in 1)
    (and.out) -- (or.in 2);
    \end{circuitikz}
```

Det fungerer på samme måte som når vi tegner noder i TikZ. Vi starter med koordinatene, så definerer vi hva slags node (port) vi vil ha, og til slutt en evt. merkelapp.

```
(x,y) node [what kind of port] (name of port) {label}
```

Portens navn er valgfritt, og brukes kun i din egen kode.

6.2 Oversikt over forskjellige porter i Circuitikz

Figur 5: Forskjellige porter i Circuitikz

7 Resursser

Gøyale eksempler

- Enderman
- Dartboard
- India map

Lære mer?

- TikZ & PGF Manual
- Introduksjon til Circuitikz
- Tankekart med TikZ
- Generere TikZ-kode fra GeoGebra