Naive Bayes Classifier I

Classifier Based on Bayes' Theorem

Contents

- 1. Classification Methods
- 2. Introduction to Naive Bayes Classifier
- 3. Conditional Probability and Bayes' Theorem
- 4. Classification Rule
- 5. Expected Output
- 6. Advantages and Limitations of Naive Bayes Method
- 7. Naive Bayes Classifier in R

Classification Methods

Apart from logistic regression, several types of machine learning algorithms are effective in classification and prediction.

About Naive Bayes Classifier

- Simple probabilistic classifier based on Bayes Theorem.
- It can be used as an alternative method to logistic regression (Binary or Multinomial).
- It assumes conditional independence among the predictors.
- It is particularly suited when the dimensionality of the inputs is high.

Despite its simplicity, Naive Bayes can often outperform more sophisticated classification methods.

Conditional Probability

The conditional probability of an event B is the probability that event B will occur given the knowledge that an event A has already occurred.

This probability is written as P(B|A).

If A and B are independent events then

$$P(B|A) = P(B)$$

An unbiased die, with numbers 1-6 is tossed

A: Getting a number greater than 1

B: Getting an even number

$$P(A) = 5/6$$

 $P(B) = 3/6$
 $P(B|A) = 3/5$

Here the sample space has 5 points given A has occurred.

Bayes Theorem

P(A): Prior probability or marginal probability of A

P(A | B): Conditional probability of A given B

P(B|A): Conditional probability of B given A

P(B): Prior or marginal probability of B

Naive Bayes Framework

Objective: To estimate Y given the values of X_i's or

To estimate $P(Y|X_1, X_2, ..., X_m)$ using the Naïve Bayes Classifier

Assumption: All X_i's are conditionally independent of each other

Naive Bayes Framework - Example

Consider a simple example where Y is binary (response to a certain question) with 2 independent categorical variables X_1 and X_2

We classify	Y = 1 "Buyer" Y = 0 "Non-Buyer"
Let X ₁ denote age of the	$X_1 = 0$ for age group 25-30 years
individual	$X_1 = 1$ for age group 31-40 years
Let X ₂ denote gender	$X_2 = 0$ if Gender=female
	$X_2 = 1$ if Gender=male

Classification Rule

For the given values of X_1 and X_2 we want to know if the individual will be a potential buyer or not. Using Naive Bayes classifier we estimate:

$$P(Y = 0|X_1 = a_1, X_2 = a_2)$$
 &
$$P(Y = 1|X_1 = a_1, X_2 = a_2)$$

where a₁ and a₂ are values of X₁ and X₂ for a particular respondent

We classify Y = 0 if
$$P(Y = 0|X_1 = a_1, X_2 = a_2) > 0.5$$
 OR
Y = 1 if $P(Y = 1|X_1 = a_1, X_2 = a_2) > 0.5$
In the general case i.e. when Y has more than 2 categories we compare
 $P(Y = y_k \mid X)$ for all values of y_k and classify Y = y_k for which $P(Y = y_k \mid X)$

is the maximum

Expected Output

Once the classification rule is applied the output can be shown as follows:

Case#	X1	X2	P(Y=1/X ₁ ,X ₂)	P(Y=0/X ₁ ,X ₂)	Y classified as
1 2	1 1	0 1 .	0.44 0.7	0.56 0.3	0 1
240	0		0.2	0.8	0

Advantages of Naive Bayes Method

- Classification rule is simple to understand.
- •The method requires a small amount of training data to estimate the parameters necessary for classification.
- •The evaluation of the classifier is quick and easy.
- •The method can be a good alternative to logistic regression.

Limitations of Naive Bayes Method

- Assumption of conditional independence of the independent variables is highly impractical.
- In case of continuous independent variables the density function must be known or assumed to be normal.
- In case of categorical independent variables the probabilities cannot be calculated if the count in any conditional category is zero. For instance: If there are no respondents in the age group 25-30 yrs. then $P(X_1=0 \mid Y=1)=0$

Case Study – Modeling Loan Defaults

Background

 A bank possesses demographic and transactional data of its loan customers. If the bank has a model to predict defaulters it can help in loan disbursal decision making.

Objective

• To predict whether the customer applying for the loan will be a defaulter or not.

Available Information

- Sample size is 700
- Independent Variables: Age group, Years at current address, Years at current employer, Debt to Income Ratio, Credit Card Debts, Other Debts. The information on predictors was collected at the time of loan application process.
- **Dependent Variable**: Defaulter (=1 if defaulter ,0 otherwise). The status is observed after loan is disbursed.

Bank Loan Data

Independent Variables

Dependent Variable

	SN		AGE	EMPLOY	ADDRESS	DEBTI	NC	CREDDEBT	OTHDEBT	DEFAULTE
		1	3	17	12		9.3	11.36	5.01	
		2	1	10	6		17.3	1.36	2.43	0
Columr			Descript	ion	Тур	e	Me	asurem	ent P	ossible Values
SN		Se	erial Nur	mber	nume	ric		-		-
AGE		ŀ	Age Gro	ups	Catego	rical	yea ye	1(<28 irs),2(28 ars),3(>4 years)	-40 40	3
EMPLO'	Ү с	usto	mber of omer wo rent em	rking at	Continu	IOUS		-		Positive value
ADDRES	SS (cust	mber of omer sta rrent ad	aying at	Continu	IOUS		-		Positive value
DEBTING	C D	ebt	to Incor	ne Ratio	Continu	IOUS		-		Positive value
CREDDE	ВТ	Credit Card Debt Contin		Continu	ious		-		Positive value	
OTHDEE	ЗТ	(Other D	ebt	Continu	ious		-		Positive value
DEFAULT	ER		ether cu aulted c		Binaı	y (•	Defaulte on-Defau)		2

Logistic Regression in R

Importing data and checking data structure

```
bankloan<-read.csv("BANK LOAN.csv",header=T)
str(bankloan)</pre>
```

Output

```
> str(bankloan)
'data.frame': 700 obs. of 8 variables:
$ SN : int 1 2 3 4 5 6 7 8 9 10 ...
$ AGE : int 3 1 2 3 1 3 2 3 1 2 ...
$ EMPLOY : int 17 10 15 15 2 5 20 12 3 0 ...
$ ADDRESS : int 12 6 14 14 0 5 9 11 4 13 ...
$ DEBTINC : num 9.3 17.3 5.5 2.9 17.3 10.2 30.6 3.6 24.4 19.7 ...
$ CREDDEBT : num 11.36 1.36 0.86 2.66 1.79 ...
$ OTHDEBT : num 5.01 4 2.17 0.82 3.06 ...
$ DEFAULTER: int 1 0 0 0 1 0 0 0 1 0 ...
```

```
bankloan$AGE<-factor(bankloan$AGE)</pre>
```

glm() fits a generalised linear model. **family=binomial** ensures that a binary regression is used.

Model Summary

```
summary(riskmodel)
# Output

summary() generates model
summary.
```

```
Call:
qlm(formula = DEFAULTER ~ AGE + EMPLOY + ADDRESS + DEBTINC +
   CREDDEBT + OTHDEBT, family = binomial, data = bankloan)
Deviance Residuals:
           1Q Median
   Min
                          3Q
                                 Max
-2.3495 -0.6601 -0.2974 0.2509
                              2.8583
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
0.25202 0.26651 0.946 0.34433
AGE 2
         0.62707 0.36056 1.739 0.08201 .
AGE 3
        EMPLOY
ADDRESS
       0.08506 0.02212 3.845 0.00012 ***
DEBTING
CREDDEBT 0.56336 0.08877 6.347 2.20e-10 ***
       0.02315 0.05709 0.405 0.68517
OTHDEBT
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 804.36 on 699 degrees of freedom
Residual deviance: 553.41 on 692 degrees of freedom
ATC: 569.41
Number of Fisher Scoring iterations: 6
```

Interpretation: EMPLOY, ADDRESS, DEBTINC and CREDDEBT are statistically significant.

Excluding Insignificant Variables

Output

summarv(riskmodel)

```
Call:
qlm(formula = DEFAULTER ~ EMPLOY + ADDRESS + DEBTINC + CREDDEBT,
   family = binomial, data = bankloan)
Deviance Residuals:
   Min
            10 Median
                                   Max
-2.4483 -0.6396 -0.3108 0.2583 2.8496
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
EMPL OY
          -0.24258 0.02806 -8.646 < 2e-16
ADDRESS -0.08122 0.01960 -4.144 3.41e-05 ***
DEBTINC 0.08827 0.01854 4.760 1.93e-06 ***
           0.57290
                     0.08725 6.566 5.17e-11 ***
CREDDEBT
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 804.36 on 699 degrees of freedom
Residual deviance: 556.74 on 695 degrees of freedom
ATC: 566.74
Number of Fisher Scoring iterations: 6
```

Interpretation:

All four variables remain significant.

ROC Curve and Area Under ROC Curve

```
# ROC Curve
install.packages("ROCR")
library(ROCR)

bankloan$predprob<-fitted(riskmodel)

pred<-prediction(bankloan$predprob,bankloan$DEFAULTER)

perf<-performance(pred,"tpr","fpr")

plot(perf)

abline(0,1)</pre>
```

- prediction() function prepares data required for ROC curve.
- performance() function creates performance objects, "tpr"
 (True positive rate), "fpr" (False positive rate).
- plot() function plots the objects created using performance
- abline() adds a straight line to the plot.

ROC Curve and Area Under ROC Curve

auc<-performance(pred, "auc")
Estimates area under the ROC curve. Here it is 0.8556

[[1]]
[1] 0.8556193

Naive Bayes Method in R

```
# Install and load package "e1071".
# Model Fitting
install.packages("e1071")
library(e1071)
riskmodel2<-naiveBayes(DEFAULTER~AGE+EMPLOY+ADDRESS+DEBTINC+CREDDEBT+0
THDEBT,
                     data=bankloan)
                        naiveBayes() fits a Naive Bayes
                        algorithm.
                        It computes the conditional
riskmodel2
                        posterior probabilities of
                        customer being defaulter/Non
                        defaulter given values of
                        independent variables using the
                        Bayes rule.
```

Naive Bayes Model Output

Output

```
> riskmodel2
Naive Bayes Classifier for Discrete Predictors
Call:
naiveBayes.default(x = X, y = Y, laplace = laplace)
A-priori probabilities:
0.7385714 0.2614286
Conditional probabilities:
  0 0.3017408 0.4313346 0.2669246
  1 0.4699454 0.3333333 0.1967213
   EMPLOY
        [.1]
  0 9.508704 6.663741
  1 5.224044 5.542946
   ADDRESS
        [,1]
  0 8.945841 7.000621
  1 6.393443 5.925208
   DEBTINC
         [.1]
                  Γ.27
  0 8.679304 5.615197
  1 14.727869 7.902798
   CREDDEBT
        [.1]
                [.2]
  0 1.245397 1.422238
  1 2.423770 3.232645
   OTHDEBT
        [,1]
  0 2.773230 2.813970
  1 3.863388 4.263394
```

Interpretation:

- Output shows a list of tables, one for each predictor variable. If the variable is categorical it shows the conditional probabilities for each class. For a numeric variable, for each target class, mean and standard deviation are shown.
- ☐ Eg. For EMPLOY, mean for "Defaulter" status = 0 is 9.51 and sd is 6.66.

Predicted Probabilities

Predicted Probabilities

prednb<-predict(riskmode12,bankloan,type='raw')

predict() returns predicted probabilities based on the model results and historical data.

head(prednb)

type="raw" returns raw probabilities. If not specified, predicted class is returned for each case

Output

Interpretation:

Column 2 gives probability of default (=1)

ROC Curve and Area Under ROC Curve

ROC Curve and Area Under ROC Curve

```
pred<-prediction(prednb[,2],bankloan$DEFAULTER)
perf<-performance(pred,"tpr","fpr")
plot(perf)
abline(0,1)</pre>
```


Area Under ROC Curve

```
auc<-performance(pred,"auc")
auc@y.values
[[1]]
[1] 0.794971</pre>
```


The column having probability of the event under study must be selected while creating the prediction object. In this case, we are predicting the likelihood of default and default is represented by 1, hence column index [,2] is taken.

Quick Recap

Conditional Probability and Bayes' Theorem

- The conditional probability of an event B is the probability that event B will occur given the knowledge that an event A has already occurred.
- P(B|A) = P(A|B) P(B) / P(A)

Naive Bayes Classifier

- To estimate Y given the values of X_i 's or $P(Y|X_1, X_2, ..., X_m)$ using the Naïve Bayes Classifier.
- Assumption: All X_i's are conditionally independent of each other.

0

Naive Bayes in R

• naiveBayes() in package e1071