Universidade Federal Fluminense Programa de Pós Graduação em Eng. Civil Disciplina: Teoria da Decisão

AULA 5: Método Simplex

Curso de Mestrado

Disciplina: Teoria das Decisões

Docentes: Profa. Dra. Luciane Ferreira Alcoforado (<u>lucianea@id.uff.br</u>)

Prof. Dr. Marcos dos Santos (<u>marcos dos santos@ime.eb.br</u>)

Calendário das Aulas

- Aula 1: Introdução 03/dez/2021
- Aula 2: Formulação de Modelos: Tipos e Aplicações Práticas 10/dez/2021
- Aula 3: O modelo de Programação Linear 17/dez/2021
- Aula 4: Solução Gráfica 28/jan/2022
- Aula 5: Método Simplex/Simplex duas fases 04/fev/2022

Objetivo desta aula

- Conhecer o algoritmo simplex
- Executar o algoritmo simplex
- Compreender o contexto de aplicação do algoritmo simplex duas fases
- Executar o algoritmo simplex duas fases

O algoritmo simplex

Parte de uma solução trivial básica viável (SBV), ou seja, faz as variáveis de decisão iguais a zero e as de folga iguais ao vetor b como solução inicial

Solução inicial:

Variáveis de decisão Variáveis de folga

X = (x1, x2, ...,xk, xf1, xf2, ..., xfm)

=(0,0,...,0, b1,b2,...,bm)

6

Maximizar:

$$Z = 0.5x_1 + 20x_2 + 0.75x_3$$

Sujeito a:

$$2x_1 + 2x_2 + 0x_3 \le 30$$

 $0x_1 + 4x_2 + 1x_3 \le 65$
 $1x_1 + 0x_2 + 0.1x_3 \le 25$

Com:

$$x_1, x_2, x_3 \ge 0$$

Maximizar:

$$Z = 0.5x_1 + 20x_2 + 0.75x_3 + 0x4 + 0x5 + 0x6$$

Sujeito a:

$$2x_1 + 2x_2 + 0x_3 + x4 + 0x5 + 0x6 = 30$$

 $0x_1 + 4x_2 + 1x_3 + 0x4 + x5 + 0x6 = 65$
 $1x_1 + 0x_2 + 0.1x_3 + 0x4 + 0x5 + x6 = 25$

Com:

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Solução básica viável inicial:

$$X = (x1, x2, x3, x4, x5, x6)$$

= (0,0,0, 30,65,25)
Com z = 0

Princípio de funcionamento do Algoritmo SIMPLEX

A tabela padrão do simplex - maximização

Maximize $c_1x_1 + c_2x_2 + ... + c_nx_n - z = 0$ sujeito a um conjunto de restrições:

$$a_{11}X_1 + a_{12}X_2 + ... + a_{1n}X_n + 0z = b_1$$

 $a_{21}X_1 + a_{22}X_2 + ... + a_{2n}X_n + 0z = b_2$

. . .

$$a_{m1}X_1 + a_{m2}X_2 + ... + a_{mn}X_n + 0z = b_m$$

$$X_1, X_2, ..., X_n \geq 0$$

Note que a função objetivo está representada na última linha da tabela padrão.

O quadro simplex - maximização

			VNI 	3		VB			
Sujeito a: $2x_1 + 2x_2 + 0x_3 + x4 + 0x5 + 0x6 = 30$ $0x_1 + 4x_2 + 1x_3 + 0x4 + x5 + 0x6 = 65$ $1x_1 + 0x_2 + 0.1x_3 + 0x4 + 0x5 + x6 = 25$	VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	-Z	В
	X ₄	2	2	0	1	0	0	0	30
	X ₅	0	4	1	0	1	0	0	65
	X ₆	1	1	0	0	0	1	0	25
Maximizar: Z= 0.5x ₁ + 20x ₂ + 0.75x ₃ + 0x4	C 1 + 0x5 + 0x6	0.5	20	0.75	0	0	0	1	0

PPL na forma padrão: Base é a identidade e coeficientes das VB's na função objetivo são todos nulos. Solução inicial x = (0, 0, 0, 30,65,25) com z = 0.

O algoritmo Simplex

Algoritmo Simplex –maximização

- 1. Coloque o problema na forma canônica, em que $b_i \ge 0, i = 1, 2, ..., m$.
- 2. Se $c_j \le 0$ então PARE, o ponto ótimo de um problem de maximização foi encontrado. Se houver algum $c_j > 0$, escolher entre eles o maior, ou seja, $c_s = max\{c_j | c_j > 0\}$, a variável a entrar na base será x_s , caso haja empate escolher s arbitrariamente e vá para 3.
- 3. x_s entra na base, e para definir quem sai da base considere:
 - 31. $a_{is} \le 0$ para todo i = 1, ..., m então x_s pode ser aumentado indefinidamente, sem fazer nenhuma variável básica decrescer a zero e o valor de Z tende ao infinito. PARE! A Solução é ilimitada.
 - 32. $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i, neste caso calcule o menor coeficiente da razão $a_{is} > 0$, para algum i algum

$$\frac{b_r}{a_{rs}} = min \left\{ \frac{b_i}{a_{is}} \middle| a_{is} > 0 \right\}$$

Assim, a variável básica correspondente a r-ésima equação é a que sai da base, digamos x_r e a_{rs} é denominado o elemento pivô. Vá ao passo 4.

4. Atualize os coeficientes do Quadro simplex:

Linha
$$r$$
: $a_{rj} = \frac{a_{rj}}{a_{rs}}$, $j = 1, 2, ..., n + 1$
Linha i : $a_{ij} = a_{ij} - \frac{a_{is}}{a_{rs}} a_{rj}$ $i = 1, ..., m; i \neq r; j = 1, 2, ..., n + 1$

5. Vá para (2) e realize novamente o teste de otimalidade.

Primeira iteração do simplex

		VNE	3		VB			
VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	-Z	В
X ₄	2	2	0	1	0	0	0	30
X ₅	0	4	1	0	1	0	0	65
x ₆	1	1	0	0	0	1	0	25
С	0.5	20	0.75	0	0	0	1	0

Entra na base x2 pois possui o maior cj>0 e sai da base o x4 pois corresponde ao menor quociente br/ars = 30/2 = 15 Elemento pivô = 2. No novo quadro as linhas são atualizadas:

$$L1 = L1/2$$
 $L2 = L2 - (4/2)L1$ $L3 = L3 - (1/2)L1$ e $L4 = L4 - (20/2)L1$

Primeira iteração do simplex – atualização do quadro

		VB = x2, x5, x6 VNB = x1, x3, x4											
VE	3 X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	-Z	В					
X ₂	1	1	0	1/2	0	0	0	15					
— X ₅	-4	0	1	-2	1	0	0	5					
X ₆	0	0	0	-1/2	0	1	0	10					
С	-19.5	0	0.75	-10	0	0	1	-300					

A solução agora é x = (0,15,0,0,5,10) com z=300 Observa-se c3 = 0.75, assim x3 entra na base e x5 sai da base. Pivô = 1 No novo quadro as linhas serão: L1 = L1 – 0*L2; L2 = L2; L3 = L3-0*L2 e L4 = L4 -0.75*L2

Segunda iteração do simplex – atualização do quadro

VB = x2, x3, x6VNB = x1, x4, x5

VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	-Z	В
X ₂	1	1	0	1/2	0	0	0	15
X ₃	-4	0	1	-2	1	0	0	5
X ₆	0	0	0	-1/2	0	1	0	10
С	-16.5	0	0	-8.5	-0.75	0	1	-303.75

A solução agora é x = (0,15,5,0,0,10) com z=303.75A regra de parada foi atingida pois cj < 0 para todo j correspondente a variável não básica. Portanto esta é a solução ótima.

O simplex duas fases

Quando não é possível obter uma solução básica viável trivial, isto é não conseguimos formar uma base inicial com as variáveis de folga.

Situação em que a origem não pode ser solução inicial: Exemplo

Método das Duas Fases

Método das duas fases

o método das duas fases utiliza conceito de variáveis artificiais para que uma solução básica factivel inicial possa ser encontrada em problemas de PL com restrições de desigualdade do tipo ≥ ou equações de igualdade.

para um problema original escrito na forma padrão, deve-se introduzir uma variável artificial em cada uma das restrições que não possui variável de folga.

Método das Duas Fases

- Primeira fase (Criar problema auxiliar P'):
 - Introduzir variáveis de folga e variáveis artificiais
 - Variáveis de folga/excesso: introduzidas quando há variáveis do tipo ≤ ou ≥
 - Variáveis artificiais: introduzidas quando há restrições do tipo ≥ ou =

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \leftrightarrow \begin{cases} \sum_{j=1}^{n} a_{ij} x_j + x_i^a = b_i \\ x_i^a \ge 0 \end{cases}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i} \leftrightarrow \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} - x_{n+i} + x_{i}^{a} = b_{i} \\ x_{n+i} \ge 0, x_{i}^{a} \ge 0 \end{cases}$$

Criar função objetivo artificial:

$$w^a = \sum_i x_i^a \ \forall i$$

- Variáveis básicas iniciais: variáveis de folga associadas às restrições ≤ e variáveis artificiais
- Objetivo da primeira fase: minimizar a função objetivo artificial
- Como ai ≥ 0 ∀ i, o menor valor possível será obtido para ai = 0 ∀i.
- Caminhar de SBV em SBV de P' até alcançar SBV do problema original P (situação que ocorre quando todas as variáveis artificiais são nulas).

Método das Duas Fases

- Segunda fase:
 - A partir de uma SBV do problema original P, gerar SBV cada vez melhores até se atingir a solução ótima.

Passo a Passo

Fase 1

Cria-se uma nova função objetivo artificial w (sempre de minimização) que corresponde à soma de k variáveis artificiais ai, i = 1,...,k:

$$min w = a1 + a2 + ... + ak$$

Para que os coeficientes das variáveis artificiais sejam nulos na linha da função objetivo artificial , deve-se subtrair (problema original de maximização) cada uma das equações i em que foi introduzida uma variável artificial ai à equação da função objetivo atual:

Nova linha função objetivo artificial = linha atual - $\sum_i Li$, i com variável artificial

Aplicando o método das duas fases ao PPL dado $\max_{x_1} x_1 + 2x_2 = z \le 2$

$$x_1$$
 ≤ 2
 $x_2 \leq 2$
 $x_1 + x_2 \geq 3$
 $x_1 + x_2 \geq 0$

Fase 2
$$\max x_1 + 2x_2 + 0x_3 + 0x_4 + 0x_5 + 0x_1^a = z$$

restrições

$$x_1$$
 + x_3 = x_2 + x_4 = x_5 + x_1 + x_2 = x_1 + x_2 + x_2 + x_3 + x_4 + x_5 + x_1^a = x_1^a

Método das Duas Fases – Quadro Simplex Fase 1: versão maximização

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a		
(L ₁)	X ₃	1	0	1	0	0	0	2	
(L ₂)	X ₄	0	1	0	1	0	0	2	
(L ₃)	X ₁ ^a	1	1	0	0	-1	1	3	
(L ₄)		0	0	0	0	0	(-1)	Za = -w Fase	1: max
(L ₅)		1	2	0	0	0	0	z Fase :	2: max

Redução à forma

$$L_4 \leftarrow L_4 + L_3$$

Fase 1: Sai da base o **maior** coeficiente da função objetivo artificial (L4), estamos maximizando!

		VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	
—	- (L ₁)	X ₃	1	0	1	0	0	0	2
	(L ₂)	X ₄	0	1	0	1	0	0	2
	(L ₃)	X ₁ ^a	1	1	0	0	-1	1	3
	(L_4)		1	1	0	0	-1	0	Za+3
	(L ₅)		1	2	0	0	0	0	Z
	 L ₍	$_3 \leftarrow L_3$	- L ₁		$L_{\mathtt{4}} \leftarrow$	· L ₄ - L ₁	1	L ₅ ←	- L ₅ - L ₁

Fase 1: Sai da base o **maior** coeficiente da função objetivo artificial (L4), estamos maximizando!

		VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ ^a	
	(L ₁)	X ₁	1	0	1	0	0	0	2
	(L ₂)	X ₄	0	1	0	1	0	0	2
←	- (L ₃)	X ₁ ^a	0	1	-1	0	-1	1	1
<	(L ₄)		0	1	-1	0	-1	0	Za+1
	(L ₅)		0	2	-1	0	0	0	z-2

$$L_2 \leftarrow L_2 - L_3$$

$$L_4 \leftarrow L_4 - L_3$$

$$L_5 \leftarrow L_5 - 2L_3$$

Método das Duas Fases

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	X ₁ a		
(L ₁)	X ₁	1	0	1	0	0	0	2	
(L ₂)	X ₄	0	0	1	1	1	-1	1	
(L ₃)	X ₂	0	1	-1	0	-1	1	1	
(L ₄)		0	0	0	0	0	-1	za	
(L ₅)		0	0	1	0	2	-2	z-4	

Fim da primeira fase: w = 0

$$x1=2, x2=1, x3=x5=x1a=0,$$

 $x4=1 e z = 4$

$$x = (2, 1); z = 4$$

Fase 2: Iniciamos com uma SBV sem variáveis artificiais!

						V		
	VB	X ₁	X ₂	X ₃	X ₄	X ₅	-Z	b
(L ₁)	X ₁	1	0	1	0	0	0	2
(L ₂)	X ₄	0	0	1	1	1	0	1
(L ₃)	X ₂	0	1	-1	0	-1	0	1
(L ₄)		0	0	1	0	2 *	1	-4
	(L ₂)	(L_1) X_1 (L_2) X_4 (L_3) X_2	(L_1) X_1 1 (L_2) X_4 0 (L_3) X_2 0	(L_1) X_1 1 0 (L_2) X_4 0 0 (L_3) X_2 0 1	(L_1) X_1 1 0 1 (L_2) X_4 0 0 1 (L_3) X_2 0 1 -1	(L_1) X_1 1 0 1 0 (L_2) X_4 0 0 1 1 (L_3) X_2 0 1 -1 0	(L_1) x_1 1 0 1 0 0 (L_2) x_4 0 0 1 1 1 (L_3) x_2 0 1 -1 0 -1	(L_1) x_1 1 0 1 0 0 (L_2) x_4 0 0 1 1 0 (L_3) x_2 0 1 -1 0 -1 0

Estamos maximizando, observar o maior valor na lipha 4!

$$L_3 \leftarrow L_3 - (-1/1) L_2$$

$$L_4 \leftarrow L_4 - (2/1)L_2$$

Fim da segunda fase

	VB	X ₁	X ₂	X ₃	X ₄	X ₅	-Z	b
(L ₁)	X ₁	1	0	1	0	0	0	2
(L ₂)	X ₅	0	0	1	1	1	0	1
(L ₃)	X ₂	0	1	0	1	0	0	2
(L ₄)		0	0	-1	-2	0	1	-6

Fim da segunda fase: z = 6

Solução ótima: $x^* = (2,2); z^* = 6$

Método das Duas Fases: Interpretação Geométrica

Usando o R para resolver o último problema

```
# coeficientes na função objetivo
func.objetivo <- c(1, 2)
# coeficientes nas restrições.
coeficientes.restricoes \leftarrow rbind(R1=c(1, 0), R2=c(0, 1), R3 = c(1, 1))
# sinal das restrições.
<u>direcao.restricoes <- c("<=","<=",">=")</u>
# limite das restrições.
limites.restricoes <- c(2,2,3)
solucao.problema <- lpSolve::lp(direction = "max",</pre>
                    objective.in = func.objetivo,
                    const.mat = coeficientes.restricoes.
                    const.dir = direcao.restricoes,
                    const.rhs = limites.restricoes, all.int=F)
```

```
RESULTADO
   :########################
# valor da função objetivo na solução
solucao.problema$objval
## [1] 6
# Valores para as variáveis de escolha
solucao.problema$solution
## [1] 2 2
```

- Nesta aula vimos o funcionamento do simplex e do simplex duas fases, ao utilizar um software, estas situações já estarão programadas de modo que o usuário não percebe o que ocorre internamente.
- Este curso procurou embasar a teoria do algoritmo simplex de modo que se possa ter um conhecimento mais profundo do seu funcionamento.