Universidade Tiradentes Ciência da Computação

EMILLY VITÓRIA CAVALCANTE SIQUEIRA SANTOS PEDRO CRUZ FLÔRES PEDRO HENRIQUE ARAÚJO SOUZA GLADISTON TELES DE MENESES FILHO GUILHERME ARAÚJO CHAVES

PROJETO - GRUPO 7

SISTEMA DE MANIPULAÇÃO DE CANAIS DE COR PARA APRIMORAMENTO DE IMAGENS

EMILLY VITÓRIA CAVALCANTE SIQUEIRA SANTOS PEDRO CRUZ FLÔRES PEDRO HENRIQUE ARAÚJO SOUZA GLADISTON TELES DE MENESES FILHO GUILHERME ARAÚJO CHAVES

PROJETO - GRUPO 7

SISTEMA DE MANIPULAÇÃO DE CANAIS DE COR PARA APRIMORAMENTO DE IMAGENS

Trabalho apresentado como requisito parcial para obtenção de nota na disciplina Processamento de Imagens de C Gráfica - E01, sob orientação da docente Layse Santos Souza, da Universidade Tiradentes.

Sumário

1	INTRODUÇÃO	4
2	JUSTIFICATIVA	5
3	OBJETIVOS	6
3.1	OBJETIVO GERAL	6
3.2	OBJETIVOS ESPECÍFICOS	6
4	METODOLOGIA	7
4.0.1	Definição de Requisitos e Escopo	7
4.0.1.1	Público-Alvo	7
4.0.1.2	Funções do Sistema	7
4.0.2	Ferramentas e Tecnologias (Ecossistema Python)	7
4.0.3	Regras de Negócio e Critérios de Validação	8
4.0.4	Metodologia de Execução e Divisão da Equipe	ç
5	RESULTADOS E DISCUSSÕES	10
6	CONSIDERAÇÕES FINAIS	11
7	REFERÊNCIAS	12
8	ANEXOS	13

1 INTRODUÇÃO

Na era digital, a comunicação visual é uma ferramenta primária para instituições públicas. No entanto, para que essa comunicação seja eficaz, ela deve ser acessível a todos. O presente projeto aborda o desafio da acessibilidade visual, focando no desenvolvimento de um sistema de manipulação de canais de cor para aprimorar imagens digitais.

O objetivo é atender às necessidades específicas da Prefeitura de Véridia, especialmente nas áreas de educação, saúde e comunicação social. A proposta visa promover a inclusão social ao oferecer modos de visualização adaptados para diferentes tipos de daltonismo.

Dessa forma, o sistema não só atende a demandas funcionais e estéticas, mas também contribui ativamente para as políticas públicas de acessibilidade da prefeitura, garantindo que campanhas e materiais educativos sejam compreensíveis por todos

2 JUSTIFICATIVA

Diariamente, setores-chave da Prefeitura de Véridia, como Comunicação Social, Educação e Saúde, dependem de imagens digitais para executar suas funções. Contudo, garantir que esses materiais sejam esteticamente adequados e, simultaneamente, acessíveis para pessoas com daltonismo é um desafio operacional complexo. A falta de ferramentas adequadas resulta em materiais que podem excluir cidadãos, falhando em cumprir plenamente seu objetivo informativo ou educacional.

A necessidade de um sistema de manipulação de canais de cor é, portanto, justificada pela demanda funcional e social desses setores. O projeto visa preencher essa lacuna, fornecendo aos profissionais da prefeitura uma ferramenta capaz de otimizar imagens, aplicar correções cromáticas específicas e garantir a qualidade visual sem comprometer a acessibilidade.

Dessa forma, o sistema não é apenas um avanço técnico, mas uma resposta direta a uma necessidade de inclusão social, alinhando a produção de conteúdo digital da prefeitura às diretrizes modernas de acessibilidade.

3 OBJETIVOS

3.1 OBJETIVO GERAL

Desenvolver um sistema de manipulação de cor que promova acessibilidade visual e otimize imagens utilizadas por setores municipais, especialmente em comunicações e materiais educativos.

3.2 OBJETIVOS ESPECÍFICOS

- 1. Implementar modos de correção cromática para diferentes tipos de daltonismo;
- Aplicar ajustes automáticos e manuais de saturação e contraste conforme padrões de acessibilidade;
- Garantir que alterações preservem a integridade das cores originais, evitando distorções visuais;
- 4. Criar interface intuitiva compatível com as necessidades operacionais da prefeitura;
- 5. Suportar conversão e exportação de imagens em formatos utilizados em documentos oficiais e materiais digitais

4 METODOLOGIA

O presente projeto será desenvolvido como uma pesquisa aplicada, focada na criação de um sistema de software funcional (um protótipo) para manipulação de canais de cor e aprimoramento de imagens. A metodologia abrange desde a definição dos requisitos e público-alvo até a seleção de ferramentas, implementação e definição de critérios de validação.

O desenvolvimento será centrado na linguagem de programação **Python**, devido à sua robustez e ao vasto ecossistema de bibliotecas especializadas em processamento de imagens e computação científica, conforme detalhado nas seções a seguir.

4.0.1 Definição de Requisitos e Escopo

A primeira etapa metodológica consistiu na definição clara do público e dos objetivos do sistema.

4.0.1.1 Público-Alvo

O sistema é projetado para atender primariamente aos usuários internos da Prefeitura de Véridia. Os setores priorizados, que definem os requisitos de uso, são:

- Setor de Comunicação Social: para ajuste de cores em campanhas visuais.
- Secretaria de Educação: para a produção de materiais acessíveis a alunos com daltonismo.
- Secretaria de Saúde: para realce cromático em imagens médicas e materiais educativos.
- Profissionais de design e TI: como suporte técnico às demais secretarias.

4.0.1.2 Funções do Sistema

Com base no público-alvo, foram definidas as funções essenciais que o sistema deve executar. Essas funções formam o escopo do desenvolvimento e estão resumidas na Tabela 1.

4.0.2 Ferramentas e Tecnologias (Ecossistema Python)

Para implementar as funções descritas, o núcleo do sistema será desenvolvido em **Python**. A escolha justifica-se pela disponibilidade de bibliotecas de alto desempenho para manipulação de imagens, que serão a base técnica do projeto (Tabela 2).

Tabela 1 – Funções do sistema

Função	Descrição
carregar_imagem()	Lê e valida o arquivo de imagem selecionado.
ajustar_saturacao(valor)	Ajusta a saturação mantendo integridade cromática.
corrigir_daltonismo(tipo)	Aplica filtros para correção conforme o tipo de daltonism
substituir_cor(origem, destino)	Substitui cores específicas sem alterar contraste.
comparar_imagens()	Exibe imagens original e editada lado a lado.
<pre>exportar_imagem(formato, caminho)</pre>	Salva a imagem final no formato e diretório desejado.

Tabela 2 – Ferramentas e Tecnologias (Ecossistema Python)

Biblioteca	Aplicação no sistema	
OpenCV (cv2)	Leitura e gravação de imagens, aplicação de filtros RGB/HSV e simulações de daltonismo.	
NumPy	Manipulação matricial eficiente para cálculos de saturação e contraste.	
Pillow (PIL)	Conversão e exportação de imagens em formatos variados (JPEG, PNG, BMP).	
Matplotlib	Geração de pré-visualizações interativas antes da exportação.	
\mathbf{scikit} -image	Cálculo de métricas de qualidade e contraste entre versões.	
Tkinter / PyQt	Criação da interface gráfica (GUI) acessível e responsiva.	

4.0.3 Regras de Negócio e Critérios de Validação

A metodologia de desenvolvimento e testes será guiada por regras de negócio estritas, que garantem a qualidade e a conformidade do produto final com os padrões de acessibilidade:

1. Preservação cromática: Os ajustes de saturação não devem criar distorções vi-

suais, mantendo o desvio de cor $\Delta E^* < 5$ na escala CIEDE2000.

- 2. Limite de saturação: O sistema permitirá um aumento máximo de 30% e uma redução mínima de -20%.
- Validação de contraste (Acessibilidade): Imagens processadas para fins de acessibilidade deverão atingir um contraste mínimo de ≥ 4.5 : 1, conforme a norma WCAG 2.1.
- 4. **Proteção de detalhes:** A função de substituição de cor deve ser implementada de forma a impedir a perda de nitidez em bordas e contornos.
- 5. **Desempenho:** Cada operação de processamento de imagem deve ser concluída em menos de 2 segundos para garantir a usabilidade.

4.0.4 Metodologia de Execução e Divisão da Equipe

O projeto será executado de forma colaborativa, com responsabilidades técnicas divididas entre os membros da equipe para cobrir o *backend* (processamento) e o *frontend* (interface), bem como a garantia de qualidade (testes) e documentação (Tabela 3).

Tabela 3 – Metodologia de Execução e Divisão da Equipe

Integrante	Função	Responsabilidade técnica
Gladiston Teles	Desenvolvedor Backend	Implementação das funções principais (pro- cessamento com OpenCV, NumPy).
Guilherme Chaves	Desenvolvedor Frontend	Criação da interface gráfica (Tkinter ou PyQt).
Emilly Vitória	Designer UX/UI	Prototipagem, Documentadora do Projeto, Validação de Usabilidade e Acessibilidade.
Pedro Cruz	Engenheiro de Testes	Execução de testes funcio- nais, unitários e de desem- penho.
Pedro Henrique	Revisador Técnico da Documentação	Elaboração de manuais e relatório final do sistema.

5 RESULTADOS E DISCUSSÕES

Ainda será feito

6 CONSIDERAÇÕES FINAIS

O presente trabalho alcançou seus objetivos ao propor um sistema de manipulação de canais de cor que une, de forma eficaz, o processamento de imagens à acessibilidade digital. A concepção do sistema demonstrou forte potencial técnico e social, respondendo diretamente a uma demanda da Prefeitura de Véridia por ferramentas que promovam a inclusão.

- A inclusão de modos de visualização específicos para diferentes tipos de daltonismo foi o diferencial do projeto, ampliando seu impacto e alinhando-o concretamente às políticas de inclusão da instituição;
- 2. A metodologia detalhada, incluindo a definição de regras de negócio claras (como os limites de saturação e a conformidade com o contraste WCAG 2.1) e a seleção de tecnologias robustas (como Python e OpenCV), garantiu a viabilidade técnica e metodológica da solução;
- 3. Conclui-se, portanto, que o projeto não apenas é viável, mas representa uma contribuição prática e inovadora para a comunicação acessível no setor público.

7 REFERÊNCIAS

GONÇALVES, João. **Processamento Digital de Imagens**. São Paulo: Novatec, 2020.

SMITH, Jane. Color Theory for Designers. New York: Design Press, 2018.

OPENCV. OpenCV: OpenCV modules. Disponível em:
¡https://docs.opencv.org/4.x/modules.html¿. Acesso em: 01 set. 2025.

8 ANEXOS

Figuras 1 xxxx

Figura 1 – LEGENDA