

Verifica di Fisica

17 maggio 2021

La prova consiste di 3 esercizi da svolgere sul foglio protocollo allegato

Esercizio 1

Consideriamo il campo elettrico \vec{E} generato da una carica puntiforme $Q=-8.5~\mu\mathrm{C}$ posizionata nell'origine di un piano cartesiano.

- a) Calcolare la differenza di potenziale elettrico ΔV tra il punto A = (-4 cm, 0 cm) e il punto B = (0 cm, 7 cm), specificando in quale dei due punti il potenziale è maggiore.
- b) Descrivere le superfici equipotenziali del campo elettrico \vec{E} .
- c) Una carica $q = -1 \mu C$ viene lanciata da un punto molto lontano (V = 0) verso l'origine a una velocità di 100 m/s. Se la massa di q è di 1 g, a quale distanza dall'origine si fermerà?

Esercizio 2

Consideriamo una carica puntiforme positiva $q=3,2~\mu\mathrm{C}.$

- a) Se q si sposta da un punto a potenziale $V_A = -100$ V a un punto a potenziale $V_B = 220$ V, qual è il lavoro $L_{A\to B}$ compiuto dalla forza elettrica sulla carica q?
- b) Consideriamo la stessa situazione descritta al punto a). Supponendo che q si muova in linea retta per effetto di un campo elettrico uniforme $E=1,2\cdot 10^6$ N/C, qual è la distanza tra i due punti A e B?

c) Calcolare l'energia potenziale elettrica del sistema costituito da quattro cariche $q_1 = q_2 = q_3 = q_4 = q$ poste ai vertici di un quadrato di lato 1 cm.

Esercizio 3

Le armature di un condensatore di capacità $5\cdot 10^{-12}~\mathrm{F}$ hanno una superficie di 1 cm² ciascuna.

- a) Qual è la distanza tra le armature?
- b) Collegando il condensatore a una batteria, le due armature raggiungono una differenza di potenziale di 5000 V. Determinare l'intensità, la direzione e il verso del campo elettrico generato tra le armature e la carica totale presente su ciascuna di esse.
- c) Facendo riferimento al punto b), calcolare l'energia elettrica accumulata nel condensatore.

Svolgimento

Esercizio 1

a) Indicando con $r_A = 0.04$ m e $r_B = 0.07$ m la distanza di A e B dalla carica Q, la differenza di potenziale elettrico tra i due punti risulta

$$V_B - V_A = \frac{kQ}{r_B} - \frac{kQ}{r_A} = kQ\left(\frac{1}{r_B} - \frac{1}{r_A}\right) = 818\,000 \text{ V}$$

Essendo generato da una carica negativa, il campo elettrico è diretto verso la carica Q e, di conseguenza, il potenziale diminuisce se ci avviciniamo all'origine $(V_A < V_B)$.

- b) Poiché il campo elettrico è radiale, le corrispondenti superfici equipotenziali sono le sfere di centro l'origine. Infatti, il potenziale in un punto dipende solo dalla sua distanza da Q.
- c) L'energia totale della carica $q=-1~\mu\mathrm{C}$ è in parte cinetica e in parte potenziale elettrica:

$$E = \frac{1}{2}mv^2 + qV$$

Inizialmente (V=0) l'energia della carica $E=1/2\,mv^2$ è totalmente cinetica, mentre alla fine, quando la carica si ferma (v=0), tutta la sua energia E=qV è potenziale elettrica. In base al principio di conservazione dell'energia abbiamo

$$\frac{1}{2}mv^2 = q \cdot \frac{kQ}{r} \longrightarrow r = \frac{2kqQ}{mv^2} = 1,53 \text{ cm}$$

Esercizio 2

a) Per definizione di energia potenziale elettrica U abbiamo

$$L_{A\to B} = U_A - U_B = q(V_A - V_B) = -1.02 \cdot 10^{-3} \text{ J}$$

Notiamo che, essendo L < 0, si tratta di un lavoro resistente, cioè la forza elettrica \vec{F} sulla carica q agisce in verso opposto al suo spostamento (e dunque ha un'azione frenante).

b) Se lo spostamento della carica q è parallelo a un campo elettrico uniforme \vec{E} , possiamo usare la relazione $\Delta V = E \cdot d$, dove $\Delta V = 320$ V e d è la distanza tra i due estremi A e B:

$$\Delta V = E \cdot d \longrightarrow d = \frac{\Delta V}{E} = 0.27 \text{ mm}$$

c) L'energia complessiva del sistema è data dalla somma delle singole energie potenziali delle 6 possibili coppie di cariche. Se ℓ è il lato del quadrato, allora

$$U = 4 \cdot \frac{k q^2}{\ell} + 2 \cdot \frac{k q^2}{\ell \cdot \sqrt{2}}$$
$$= \frac{2k q^2}{\ell} \left(2 + \frac{1}{\sqrt{2}}\right) = 49.9 \text{ J}$$

Esercizio 3

a) Indicando con A l'area della superficie di ciascuna armatura e con d la distanza tra di esse, abbiamo

$$C = \varepsilon_0 \frac{A}{d} \longrightarrow d = \frac{\varepsilon_0 A}{C} = 0.18 \text{ mm}$$

b) All'interno del condensatore si genera un campo elettrico uniforme \vec{E} diretto dall'armatura con potenziale più alto verso quella a potenziale più basso. Poiché il campo è uniforme,

$$\Delta V = E \cdot d \longrightarrow E = \frac{\Delta V}{d} = 2.82 \cdot 10^7 \text{ N/C}$$

Infine, dalla definizione di capacità ricaviamo la carica elettrica Q su ciascuna armatura:

$$C = \frac{Q}{\Delta V} \longrightarrow Q = C \cdot \Delta V = 2.5 \cdot 10^{-8} \text{ C}$$

Più precisamente, la carica totale dell'armatura con potenziale maggiore è +Q, mentre sull'altra armatura è presente una carica totale pari a -Q.

c) L'energia elettrostatica U accumulata nel condensatore (corrispondente al lavoro compiuto dalla batteria per trasferire la carica Q sulle armature) può essere calcolata come

$$U = \frac{1}{2}C\,\Delta V^2 = 6.25 \cdot 10^{-5} \text{ J}$$