Quiz	Course Title:	Course	Date:	Duration of	Number of	Instructor:	University:	Department:
Number:	Digital Signal and	Code:	Tuesday,	Quiz:	Questions:	Siamak Najarian,	UBC	Electrical and
1	Image Processing	ELEC 421	October 8,	15 minutes	5	Ph.D., P.Eng.		Computer
			2024					Engineering

Please carefully read the following instructions and guidelines:

- **1.** This quiz is closed books/notes.
- **2.** You will not get a negative mark for choosing the incorrect answer.
- **3.** Each question carries 1 mark.

Question 1:

Consider the signal $x(t) = 4 - 2\cos(\omega_0 t)$. Based on the pattern matching method for Fourier series decomposition, which of the following sets of Fourier coefficients is correct?

A)
$$a_0 = 4$$
, $a_1 = 1$, $a_{-1} = 1$, and $a_k = 0$ for all other k

B)
$$a_0 = 4$$
, $a_1 = -1$, $a_{-1} = -1$, and $a_k = 0$ for all other k

C)
$$a_0 = 2$$
, $a_1 = -2$, $a_{-1} = -2$, and $a_k = 0$ for all other k

D)
$$a_0 = 0, a_1 = 2, a_{-1} = 2, \text{ and } a_k = 0 \text{ for all other } k$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \hspace{1cm} a_k = rac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$$

Note that:

Question 2:

Which of the following conditions is **NOT** a valid reason why the Fourier series may fail to converge for a given signal?

- A) The signal has an infinite number of discontinuities distributed over each period.
- B) The signal approaches an asymptote, leading to an infinite area under the curve over one period.
- C) The signal exhibits infinite oscillations (wiggling) as it approaches the end of its period.
- **D)** The signal contains a finite number of discontinuities, but they occur at the same points in every period.

Question 3:

Consider the continuous signal x(t). Which of the following statements about the Fourier transform and inverse Fourier transform is **correct**?

- A) The Fourier transform can only be applied to finite-length periodic signals, and it produces a discrete set of coefficients a_k .
- B) The inverse Fourier transform converts the signal from the omega domain to the time domain using the formula $X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt.$
- C) The Fourier transform applies to both finite-length and infinite-length aperiodic signals, producing a continuous function $X(\omega)$ in the frequency domain.
- **D)** A periodic signal x(t) will always have a Fourier series representation, regardless of whether it is finite or infinite in duration.

Question 4:

Which of the following statements correctly describes the Duality Property in signal processing?

- A) A delta function in the time domain results in a constant function in the frequency domain.
- **B)** A pair of impulses in the time domain corresponds to a cosine in the frequency domain, and a cosine in the time domain corresponds to a regular non-repeating pulse in the frequency domain.
- C) A pulse in the frequency domain results in a constant in the time domain.
- **D)** A sinc function in the time domain results in a delta function in the frequency domain.

Question 5:

We know that the Fourier transform of e^{-at} is $\frac{1}{a+j\omega}$. Given the input signal $x(t)=2e^{-4t}u(t)$ and the impulse response $h(t)=8e^{-2t}u(t)$, the output response $Y(\omega)$ in the frequency domain is given by what expression?

A)
$$\frac{8}{(4+j\omega)(2+j\omega)}$$

B)
$$\frac{12}{(4+j\omega)(2+j\omega)}$$

C)
$$\frac{4}{(4+j\omega)(2+j\omega)}$$

D)
$$\frac{16}{(4+j\omega)(2+j\omega)}$$

End of Questions

Answer Sheet:

Question Number	Α	В	С	D
1				
2				
3				
4				
5				