

Acyklické grafy, stromy a kostry

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

23. marca 2011

Opakovanie – Cyklus, kružnica

Definícia

Cyklus (orientovaný cyklus, polocyklus) je netriviálny uzavretý ťah (orientovaný ťah, poloťah), v ktorom sa okrem prvého a posledného vrchola žiaden vrchol nevyskytuje viac než raz.

Definícia

Kružnica je súvislý pravidelný graf 2. stupňa. Kružnicu o n vrcholoch budeme označovať C_n .

Poznámka

Všetky vrcholy a hrany kružnice C_n možno usporiadať do cyklu

$$(v_1, \{v_1, v_2\}, v_2, \dots, \{v_{n-1}, v_n\}, v_n, \{v_n, v_1\}, v_1)$$

a naopak, všetky vrcholy a hrany cyklu tvoria graf, ktorý je kružnicou.

Definícia acyklického grafu a stromu

Definícia

Acyklický graf je taký graf, ktorý neobsahuje ako podgraf kružnicu.

Definícia

Strom je súvislý acyklický graf.

Poznámka

Triviálny graf je stromom.

Poznámka

Pretože každý komponent acyklického grafu je stromom (je súvislý a neobsahuje kružnicu), možno sa na acyklický graf pozerať ako na zjednotenie stromov. Od toho je odvodený pojem les, ktorý sa používa ako synonymum pre acyklické grafy.

Veta 🖯

Nasledujúce tvrdenia sú ekvivalentné:

- a) G = (V, H) je strom.
- b) V grafe G = (V, H) existuje pre každé $u, v \in V$ jediná u–v cesta.
- c) Graf G = (V, H) je súvislý a každá hrana množiny H je mostom.
- d) Graf G = (V, H) je súvislý a |H| = |V| 1.
- e) V grafe G = (V, H) platí |H| = |V| 1 a G je acyklický.

Definícia

Koreňový strom je strom G = (V, H) s pevne vybraným vrcholom $k \in V$, ktorý nazývame **koreň**. Koreňový strom budeme značiť G = (V, H, k).

Úroveň vrchola u v koreňovom strome G = (V, H, k) je dĺžka – počet hrán – (jedinej) k–u cesty.

Výška koreňového stromu G = (V, H, k) je maximum z úrovní všetkých vrcholov koreňového stromu G.

Prehľadávanie grafu do hĺbky a do šírky

Definícia

Nech strom $T = (V_T, H_T)$ je podgrafom grafu G = (V, H). Hovoríme, že hrana $h = \{u, v\} \in H$ je **hraničnou hranou**, ak $u \in V_T$ a $v \notin V_T$. Nech $h = \{u, v\}$ je hraničná hrana, $u \in V_T$, $v \notin V_T$. Povieme, že u je **zaradený vrchol**, v je **voľný vrchol** hraničnej hrany h.

Prehľadávanie grafu do hĺbky – Depth-First Search

Algoritmus

Prehľadávanie grafu G = (V, H) do hĺbky. (Depth-First Search)

- Krok 1. Inicializácia. Nech strom T je triviálny strom obsahujúci jediný vrchol $v \in V$. Polož p(v) := 1, k := 1.
- Krok 2. Ak T ešte neobsahuje všetky vrcholy grafu, GOTO Krok 3. Inak STOP.
- Krok 3. V grafe G so stromom T nájdi hraničnú hranu $h = \{u, v\}$ s maximálnou značkou p(u) zaradeného vrchola u.
- Krok 4. Polož $T := T \cup \{h\} \cup \{v\}, \quad k := k+1, \quad p(v) := k$. GOTO Krok 2.

Prehľadávanie grafu do šírky – Breadth-First Search

Algoritmus

Prehľadávanie grafu G = (V, H) do šírky. (Breadth-First Search.)

- Krok 1. Inicializácia Nech strom T je triviálny strom obsahujúci jediný vrchol $v \in V$.
- Polož p(v) := 1, k := 1.
 - **Krok 2.** Ak T ešte neobsahuje všetky vrcholy grafu, GOTO Krok 3. Inak STOP.
- **Krok 3.** V grafe G so stromom T nájdi hraničnú hranu $h = \{u, v\}$ s minimálnou značkou p(u) zaradeného vrchola u.
- **Krok 4.** Polož $T := T \cup \{h\} \cup \{v\}, \quad k := k+1, \quad p(v) := k$.

Najlacnejšia a najdrahšia kostra

Definícia

Kostra súvislého grafu G = (V, H) je taký jeho faktorový podgraf, ktorý je stromom.

Nech G = (V, H, c) je hranovo ohodnotený graf, K kostra grafu G. **Cena** c(K) **kostry** K je súčet ohodnotení jej hrán.

Najlacnejšia kostra v grafe G je kostra s najmenšou cenou.

Najdrahšia kostra v grafe G je kostra s najväčšou cenou.

Algoritmus

Kruskalov algoritmus I. na hľadanie najlacnejšej (najdrahšej) kostry súvislého hranovo ohodnoteného grafu G = (V, H, c).

- **Krok 1.** Zoraď hrany podľa ich ohodnotenia vzostupne (zostupne) do postupnosti \mathcal{P} .
- Krok 2. Nech prvá hrana v postupnosti P je hrana {u, v}.
 Vylúč hranu {u, v} z postupnosti P a ak s už vybranými hranami nevytvára cyklus, zaraď ju do kostry.
- Krok 3. Ak je počet vybraných hrán rovný |V| 1 alebo ak je postupnosť \mathcal{P} prázdna, STOP. Inak GOTO Krok 2.

Kruskalov algoritmus II.

Algoritmus

Kruskalov algoritmus II. na hľadanie najlacnejšej (najdrahšej) kostry súvislého hranovo ohodnoteného grafu G = (V, H, c).

- **Krok 1.** Zoraď hrany podľa ich ohodnotenia vzostupne (zostupne) do postupnosti \mathcal{P} .
- Krok 2. Pre každý vrchol $i \in V$ polož k(i) = i.
- **Krok 3.** Nech prvá hrana v postupnosti \mathcal{P} je hrana $\{u, v\}$. Vylúč hranu $\{u, v\}$ z postupnosti \mathcal{P} . Ak $k(u) \neq k(v)$, zaraď hranu $\{u, v\}$ do kostry, a $\forall i \in V$, pre ktoré k(i) = k(v), potom polož k(i) := k(u)
- **Krok 4.** Ak je počet vybraných hrán rovný |V| 1 alebo ak je postupnosť \mathcal{P} prázdna, STOP. Inak GOTO krok 3.

Cesta maximálnej priepustnosti

Definícia

Nech G = (V, H, c) je hranovo ohodnotený graf, v ktorom cena hrany $h \in H$ c(h) > 0 znamená jej priepustnosť.

Priepustnosť $c(\mu(u,v))$ u-v cesty (sledu, polosledu, atď.) $\mu(u,v)$ definujeme ako

$$c(\mu(u,v)) = \min\{c(h) \mid h \in \mu(u,v)\}.$$

Definícia

Hovoríme, že u-v cesta $\mu(u,v)$ v grafe G=(V,H,c) je u-v cesta maximálnej priepustnosti, má najväčšiu priepustnosť zo všetkých u-v ciest v G.

Cesta maximálnej priepustnosti

Veta

Nech K je najdrahšia kostra v súvislom hranovo ohodnotenom grafe G = (V, H, c). Potom pre ľubovoľné dva vrcholy $u, v \in V$ je (jediná) u–v cesta v K u–v cestou maximálnej priepustnosti v G.

Dôkaz.

Algoritmus na hľadanie u-v cesty maximálnej priepustnosti

Algoritmus

Algoritmus na hľadanie u-v cesty maximálnej priepustnosti v súvislom hranovo ohodnotenom grafe G = (V, H, c).

- Krok 1. V grafe G zostroj najdrahšiu kostru K.
- Krok 2. V kostre K nájdi (jedinú) u–v cestu. Táto (jediná) u–v cesta v kostre K je u–v cestou maximálnej priepustnosti v grafe G.

Poznámka

Uvedený algoritmus síce nájde u-v cestu maximálnej priepustnosti, no táto nemusí byť – a spravidla ani nebýva – optimálnou z hľadiska prejdenej vzdialenosti.

Ak by sme chceli nájsť najkratšiu u–v cestu s maximálnou priepustnosťou, potrebujeme mať v príslušnom grafe okrem kapacitného ohodnotenia hrán aj ohodnotenie vyjadrujúce ich dĺžku.

Algoritmus na hľadanie u-v cesty maximálnej priepustnosti

Algoritmus

Algoritmus na hľadanie najkratšej u-v cesty s maximálnou priepustnosťou v súvislom hranovo ohodnotenom grafe G=(V,H,c,d), kde c(h) je priepustnosť a d(h) je dĺžka hrany $h\in H$.

• Krok 1. V grafe G nájdi cestu $\mu(u, v)$ maximálnej priepustnosti vzhľadom na ohodnotenie hrán c.

Nech C je priepustnosť cesty $\mu(u, v)$.

- Krok 2. Vytvor graf G' = (V, H', d), kde H' = {h|h ∈ H, c(h) ≥ C}. {H' obsahuje len tie hrany pôvodného grafu, ktoré majú priepustnosť väčšiu alebo rovnú než C.}
- Krok 3. V grafe G' nájdi najkratšiu u–v cestu vzhľadom na ohodnotenie hrán d.

