

典型例题

题型一: 平面曲线的切线方程和法线方程

例1: 求曲线 $y = x^2 + 3x$ 在点(1,4)处的 切线方程和法线方程。

知识储备

1.导数的几何意义

- $f'(x_0)$ ——曲线y = f(x)在点 $x = x_0$ 处的切线斜率
- 曲线y = f(x)在点 (x_0, y_0) 处的 **切线方程** $y y_0 = f'(x_0)(x x_0)$ **法线方程** $y y_0 = -\frac{1}{f'(x_0)}(x x_0)$

典型例题				知识储备	
练习1): 求下列曲线在指定点处的切线			区点处的切织	线方程	
曲线	点	导数 <i>y′</i>	切线斜率k	切线方程	法线方程
$y = x^3$	(1,1)				
$y = \cos x$	(0,?)				
$y = \mathbf{e}^{x}$	(0,1)				
$y = \ln x$	(e, ?)				
$y = \sqrt{x}$	(4, 2)				
$y = \tan x$	$(\frac{\pi}{2}, ?)$				

■ 模块二 一元函数导数与微分

典型	例	题
----	---	---

知识储备

练习1): 求下列曲线在指定点处的切线方程

曲线	点	导数 $oldsymbol{y}'$	切线斜率k	切线方程	法线方程
$y = x^3$	(1,1)	$3 \cdot x^2$	3	y-1=3(x-1)	$y - 1 = -\frac{1}{3}(x - 1)$
$y = \cos x$	(0, 1)	$-\sin x$	0	y - 1 = 0	x = 0
$y = \mathbf{e}^x$	(0,1)	e^x	1	$y-1=1\cdot(x-0)$	y-1=-(x-0)
$y = \ln x$	(e, 1)	$\frac{1}{x}$	$\frac{1}{e}$	$y - 1 = \frac{1}{e}(x - e)$	y - 1 = -e(x - e)
$y = \sqrt{x}$	(4, 2)	$\frac{1}{2}x^{-\frac{1}{2}}$	$\frac{1}{4}$	$y - 2 = \frac{1}{4}(x - 4)$	y-2=-4(x-4)
$y = \tan x$	$\left(\frac{\pi}{3}, \sqrt{3}\right)$	$sec^2 x$	4	$y - \sqrt{3} = 4\left(x - \frac{\pi}{3}\right)$	$y - \sqrt{3} = -\frac{1}{4} \left(x - \frac{\pi}{3} \right)$

典型例题

题型一: 平面曲线的切线方程和法线方程

例2: 已知曲线 $y = ax^2$ 与 $y = e^x$ 相切,则 $a = e^x$

练习:

- 2.曲线 $y = x^2 3x$ 在点(______)处的切线平行于x轴.
- 3.曲线 $y = x^2 + ax + b$ 与 $y = x^3 + 2$ 在点 (2,1)处相切,则 $a = ____, b = ____.$

知识储备

2.两曲线的位置关系

- 如果切线 $l_1 \parallel l_2$,则它们的斜率相等,即 $k_1 = k_2$
- 曲线y = f(x)和y = g(x)在点 (x_0, y_0) 处相切,则有

$$\begin{cases} y_0 = f(x_0) = g(x_0) & 点在两条线上 \\ f'(x_0) = g'(x_0) & x_0 处有共同切线 \end{cases}$$

练习解答

2.曲线 $y = x^2 - 3x$ 在点(______)处的切线平行于x轴.

解: 设切点为(x_0, y_0).

因为y' = 2x - 3,而x轴的斜率为0,

所以 $2x_0 - 3 = 0$,得到 $x_0 = \frac{3}{2}$,

进而
$$y_0 = \left(\frac{3}{2}\right)^2 - 3 \times \frac{3}{2} = -\frac{9}{4}$$

所以点坐标为 $\left(\frac{3}{2},-\frac{9}{4}\right)$.

3.曲线 $y = x^2 + ax + b$ 与 $y = x^3 + 2$ 在点(1,3) 处相切,则 $a = ____$, $b = ____$.

解: 两函数的导数为y' = 2x + a和 $y' = 3x^2$

因为点在两条曲线上,且在该点处两曲线的切 线斜率一致,所以有

$$\begin{cases} 3 = 1 + a + b \\ 2 + a = 3 \end{cases}$$

解方程得a = 1, b = 1.

■ 模块二 一元函数导数与微分

典型例题

题型二: 利用函数的四则运算法则求导数

例3: 计算下面导数y'

(1)
$$y = x^5 + 2^x + \log_3 x - e^2$$

(2)
$$y = \sqrt[3]{x}(2x^3 - \sin x)$$

(3)
$$y = \frac{x-1}{\sqrt{x}}$$

知识储备

1.基本导数公式★

类型	য়	
常值函数	C'=0 (C为常数);	
幂函数	$(x^n)' = nx^{n-1}$ (n为常数)	
指数函数	$(a^x)' = a^x \ln a (a > 0 \perp a \neq a)$	= 1);特别地 (e ^x)' = e ^x ;
对数函数	$(\log_a x)' = \frac{1}{x \ln a} \ (a > 0 \text{La}$	$\neq 1$); 特别地 $(\ln x)' = \frac{1}{x}$;
	$(\sin x)' = \cos x;$	$(\cos x)' = -\sin x;$
三角函数	$(\tan x)' = \sec^2 x;$	$(\cot x)' = -\csc^2 x;$
	$(\sec x)' = \sec x \tan x;$	$(\csc x)' = -\csc x \cot x;$
反三角函数	$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}};$	$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}};$
	$(\arctan x)' = \frac{1}{1+x^2};$	$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}.$

2.四则运算求导法则

(1)
$$(u+v)' = u' \pm v'$$

$$(2) \quad (u \cdot v)' = u' \cdot v + u \cdot v'$$

$$(3) \quad \left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

典型例题

题型二: 利用函数的四则运算法则求导数

练习: 4.计算下面导数

1)
$$y = 5x^2 + 3\log_3 x + \cos 2$$

2)
$$y = (x^2 + 3x)(x - 2)$$

3)
$$y = (\sqrt{x} + 4)x^3$$

4)
$$y = x \sin x - x^2$$

5)
$$f(x) = (x^2 + 3) \sin x$$
, $\Re f'(1)$, $f'(\frac{\pi}{2})$

知识储备

1.基本导数公式★

类型	求导公式
常值函数	C' = 0 (C为常数);
幂函数	$(x^n)' = nx^{n-1} (n$ 为常数);
指数函数	$(a^x)' = a^x \ln a \ (a > 0 \perp a \neq 1); 特别地 \ (e^x)' = e^x;$
对数函数	$(\log_a x)' = \frac{1}{x \ln a} (a > 0$ 且 $a \neq 1$); 特别地 $(\ln x)' = \frac{1}{x}$;
三角函数	$(\sin x)' = \cos x; \qquad (\cos x)' = -\sin x;$ $(\tan x)' = \sec^2 x; \qquad (\cot x)' = -\csc^2 x;$ $(\sec x)' = \sec x \tan x; \qquad (\csc x)' = -\csc x \cot x;$
反三角函数	$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}};$ $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}};$ $(\arctan x)' = \frac{1}{1+x^2};$ $(\operatorname{arccot} x)' = -\frac{1}{1+x^2}.$

2.四则运算求导法则 ★

$$(2) \quad (u \cdot v)' = u' \cdot v + u \cdot v'$$

$$(3) \quad \left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

练习解答

1)
$$y' = (5x^2)' + (3\log_3 x)' + (\cos 2)' = 10x + \frac{3}{x \ln 3}$$

2)
$$y' = (x^2 + 3x)'(x - 2) + (x^2 + 3x)(x - 2)' = (x^3 + x^2 - 6x)' = 3x^2 + 2x - 6$$

3)
$$y' = [(\sqrt{x} + 4)x^3]' = (x^{\frac{7}{2}} + 4x^3)' = \frac{7}{2}x^{\frac{5}{2}} + 12x^2$$

4)
$$y' = (x \sin x)' - (x^2)' = \sin x + x \cos x - 2x$$

所以
$$f'(1) = 2\sin 1 + 4\cos 1$$
, $f\left(\frac{\pi}{4}\right) = \pi \times 1 + \left(\frac{\pi^2}{4} + 3\right) \cdot 0 = \pi$

