DISCRETE MATHEMATICS – CH6 Homework6

6.1

12. For $\Sigma = \{0,1\}$ determine whether the string 00010 is in each of the following languages (taken from Σ^*). (10 pts)

- (a) $\{0, 1\}^*$
- (b) {000, 101}{10, 11}
- (c) $\{00\}\{0\}*\{10\}$

- (d) $\{000\} * \{1\} * \{0\}$
- (e) $\{00\} * \{10\}$
- (f) $\{0\} * \{1\} * \{0\} *$

- a. yes
- b. {00010, 00011, 10110, 10111} yes
- c. {00010, 000010,} yes
- d. {00010, 000000110,...} yes
- e. {000010, 00000010...}
- f. {010, 0010, 00010,....} yes

14. For $\Sigma = \{0,1\}$ determine all possible languages $A, B \subseteq \Sigma^*$ where $AB = \{01, 000, 0101, 0111, 01000, 010111\}$. (10 pts)

- $A=\{\lambda\}, B=\{01,000,0101,0111,01000,010111\}$
- $A = \{01,000,0101,0111,01000,010111\}, B = \{\lambda\}$
- $A=\{0\}, B=\{1,00,101,111,1000,10111\}$
- $A=\{0,010\}, B=\{1,00,111\}$
- $A=\{\lambda, 01\}, B=\{01, 000, 0111\}$

6.3

4. For $\mathcal{I} = \mathbb{O} = \{0, 1\}$ a string $x \in \mathcal{I}^*$ is said to have *even parity* if it contains an even number of 1's. Construct a state diagram for a finite state machine that recognizes all nonempty strings of even parity. (10 pts)

6.2

8. Let $M = (S, \mathcal{I}, \mathbb{O}, \nu, \omega)$ be a finite state machine with $\mathcal{I} = \mathbb{O} = \{0, 1\}$ and S, ν , and ω determined by the state diagram shown in Fig. 6.7.

Figure 6.7

- a) Find the output for the input string x = 0110111011.
- b) Give the transition table for this finite state machine.
- c) Starting in state s_0 , if the output for an input string x is 0000001, determine all possibilities for x.
- d) Describe in words what this finite state machine does. (10 pts)
- a) output 000000010

b)

	υ		ω	
	0	1	0	1
S_0	S_0	S_1	0	0
S_1	S_1	S_2	0	0
S_2	S_2	S_3	0	0
S_3	S_3	S_4	0	0
S_4	S_4	S_5	0	0
S_5	S_5	S_0	0	1

- c) $\omega(x, S_0) = 0000001$ for x=(1)1111101; (2)1111011; (3)1110111; (4)1101111; (5)1011111; and (6)0111111
- d) The machine recognizes the occurrence of a sixth 1, a 12^{th} 1, in an input x

Others

Construct a state diagram for a finite state machine with $I = O = \{0, 1\}$ that recognizes all strings in the language $\{0, 1\} * \{01\} \cup \{0, 1\} * \{11\}$ (10 pts)

Advanced assignment (20 pts)

Design a FSM that can recognize some special pattern.

- Let your FSM as hard as possible (自行作答)
- Let the string you recognize as hard as possible (自行作答)