ENGG 201 Handout – Linear Interpolation

Case #1 - Two-Variable Interpolation

Interpolation – a mathematical prediction that is made <u>between</u> known values of data.

You interpolate when you have a figure or table with discrete data points and you know the coordinates (x_0,y_0) and (x_1,y_1) , and want to find points in between by knowing either an x or y in the interval $(x_0...x_1,y_0...y_1)$. You assume that a line joining the two points is a straight line.

For example you may have a table as shown below (given data in bold), and want to find the value of y that corresponds to a value of x between x0 and x1.

Χ	Y
X ₀	Уo
Х	y=?
X ₁	y 1

It may be easier to visualize this as a graph instead of a figure.

By inspecting the figure we see that:

$$\frac{y - y_0}{y_1 - y_0} = \frac{x - x_0}{x_1 - x_0}$$

By manipulating this algebraically, we get:

$$y = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

This is similar to the familiar equation for a straight line:

(x,y)

$$y = mx + b$$

where:
$$m = \frac{y_1 - y_0}{x_1 - x_0}$$
 and $b = y_0 - x_0 \frac{y_1 - y_0}{x_1 - x_0}$

The same formula can easily be derived for x when y is known.

(x1,y1)

Example #1

The following table gives pizza price (the Y value) as a function of the number of slices of pepperoni added (the X value) for a pizza with 2.0 lbs of cheese.

Number of Slices of	Pizza Price	
Pepperoni (#)	(\$)	
10	\$12.00	
20	\$18.00	

We want to find the price of a pepperoni pizza with 17 slices of pepperoni and 2 lbs of cheese, as shown in the modified table below:

Number of Slices of	Pizza Price	
Pepperoni (#)	(\$)	
10	\$12.00	
17	Price = ??	
20	\$18.00	

We expect the price to be between \$12.00 and \$18.00 (check at the end), and we assume a linear relationship between the number of slices and the price.

Using the formulas given above, we have:

$$y = y_0 + \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$$

where y = pizza price, and x = slices of pepperoni

Substituting numbers in from our original table, we get a general equation to interpolate the price between 10 and 20 pepperoni slices:

$$y = $12.00 + \frac{$18.00 - $12.00}{20 - 10}(x - 10)$$

Substituting 17 in for x, we can solve for the price of our pizza:

$$y = \$12.00 + \frac{\$18.00 - \$12.00}{20 - 10}(17 - 10) = \$16.20$$

The price of **\$16.20** is in the range we expected!

ENGG 201 2 of 4

Case #2 - Three-Variable Interpolation

Use this when you have a figure or table and you know the third variable (z) at the coordinates (x_0,y_0) , (x_0,y_1) , (x_1,y_0) , and (x_1,y_1) , (this means you know z_{00} , z_{10} , z_{01} , and z_{11}). You want to find points in between (z_{xy}) by knowing both an x or y in the interval $(x_0...x_1,y_0...y_1)$.

For example you may have a table as shown below (given data in bold), and want to find the value of z that corresponds to a value of x between x_0 and x_1 , and a value of y between between y_0 and y_1 ,

z = f((x,y)	Υ		
		Уo	y	y 1
	x_0	Z ₀₀		Z ₀₁
X	Х	z_{x0}	z _{xy} =?	Z _{x1}
	X 1	Z ₁₀		Z ₁₁

The procedure is simple – you need to perform 2 Two-Variable interpolations (like above in Case #1) to get z_{x0} and z_{x1} , and then a final Two-Variable interpolation between those values to get z_{xy} .

Example #2

The following table gives pizza price (the Z value) as a function of the number of slices of pepperoni added (the X value), and the pounds of cheese (the Y value).

Pizza Price		Cheese (lb)	
(as a function of pepperoni		1.00	2.00
and cheese)			
Pepperoni	10	\$9.00	\$12.00
(slices)	20	\$15.00	\$18.00

We want to find the price of a pepperoni pizza with 17 slices of pepperoni and 1.4 lbs of cheese, and as shown in the modified table below:

Pizza	Price	Cheese (lb)		
(as a function of pepperoni		1.00	1.40	2.00
and ch	eese)			
	10	\$9.00		\$12.00
Pepperoni	17	W	Price = ??	\$16.20
(slices)	20	\$15.00		\$18.00

ENGG 201 3 of 4

Notice that we already have calculated (in Example #1) the price of a pizza with 17 slices of pepperoni and 2.0 lbs of cheese.

Now, we need to find the value of w so that we can interpolate between w and \$16.20 (i.e. between 1.0 and 2.0 lbs of cheese on a 17-pepperoni pizza).

Substituting numbers in from our table, we get a general equation to interpolate the price between 10 and 20 pepperoni slices <u>at 1.00 lbs of cheese</u>:

$$y = \$9.00 + \frac{\$15.00 - \$9.00}{20 - 10}(x - 10)$$

Substituting 17 in for x, we can solve for w:

$$y = \$9.00 + \frac{\$15.00 - \$9.00}{20 - 10}(17 - 10) = \$13.20$$

Our table now looks like this:

Pizza	Price	Cheese (lb)		
(as a function of pepperoni		1.00	1.40	2.00
and ch	eese)			
	10	\$9.00		\$12.00
Pepperoni	17	\$13.20	Price = ??	\$16.20
(slices)	20	\$15.00		\$18.00

Now we just need to interpolate between \$13.20 and \$16.20 (the prices at 1.0 lb and 2.0 lb of cheese for a 17-pepperoni pizza).

$$y = \$13.20 + \frac{\$16.20 - \$13.20}{2.00 - 1.00}(x - 1.00)$$

Substituting 1.40 lb in for x, we can solve for the price of our pizza:

$$y = \$13.20 + \frac{\$16.20 - \$13.20}{2.00 - 1.00}(1.40 - 1.00) = \$14.40$$

So, the price of a pizza with 1.40 lb of cheese and 17 slices of pepperoni is **\$14.40!**

ENGG 201 4 of 4