

Big Data Analytics Project

Housing Prices

Team ID: 8

Team Members: ID:

 Ahmed Medhat
 20201701703

 Hla Hatem
 20201701714

 Sherry Fady
 20201701719

 Diaa Eldin Amr
 20201701720

 Ali Ahmed Shaker
 20201701725

A.Project Description

This project aims to analyze a Housing data set to gain valuable insights into the property market. By examining housing data and identifying key factors influencing property prices.

B. Dataset Description

The dataset consists of real estate listings. The list contains attributes that describe the property and its amenities. Variables:

- **Price**: The listing price of the property.
- Area: The total size of the property.
- Bedrooms: The number of bedrooms in the property.
- Bathrooms: The number of bathrooms on the property.
- Stories: The number of floors in the property.
- Main Road: Binary variable indicates whether the property is located on a main road.
- Guestroom: Binary variable indicating the presence or absence of a guest room.
- Basement: Binary variable indicating the presence or absence of a basement.
- HotWaterHeating: Binary variable indicating the presence or absence of hot water heating.
- AirConditioning: Binary variable indicating the presence or absence of air conditioning.
- Parking: Binary variable indicating the presence or absence of parking.
- PreArea (preferred Area): Binary variable indicating a specific area designation.
- **Furnishing Status**: This variable describes whether the property is furnished, semi-furnished, or unfurnished.

```
> dim(housing)
   [1] 545 13 > names (housing)
    [1] "price"
[5] "stories"
                                      "area"
                                                                 "bedrooms"
                                                                                             "bathrooms"
                                      "mainroad"
                                                                 "guestroom"
                                                                                            "basement"
     [9] "hotwaterheating" "airconditioning"
                                                                 "parking"
                                                                                            "prefarea"
   [13] "furnishingstatus"
    str(housing)
    'data.frame':
                         545 obs. of 13 variables:
                              : int 13300000 12250000 12250000 12215000 11410000 10850000 10150000 10150000 9870000 9800000 ...
    $ price
    $ area
                              : int 7420 8960 9960 7500 7420 7500 8580 16200 8100 5750 .
                              : int 4434434543...
    $ bedrooms
                              : int 2 4 2 2 1 3 3 3 1 2 ...
    $ bathrooms
                              $ stories
    $ mainroad
    $ guestroom
    $ basement
    $ hotwaterheating : chr
                                        "yes" "yes" "no"
                                                                 "yes" ...
    $ airconditioning : chr
                              : int 2 3 2 3 2 2 2 0 2 1 ...
: chr "yes" "no" "yes" "yes" ...
s: chr "furnished" "furnished" "semi-furnished" "furnished" ...
    $ furnishingstatus: chr
> summary(housing)
                     area
Min. : 1650
1st Qu.: 3600
Median : 4600
Mean : 5151
3rd Qu.: 6360
Max. :16200
guestroom
Length:545
summary(housing)
price
Min.: 1750000
Ist Qu.: 3430000
Median: 4340000
Mean: 4766729
                                           bedrooms
                                                            bathrooms
                                       Min. :1.000
1st Qu.:2.000
                                                          Min. :1.000
1st Qu.:1.000
                                                                            Min. :1.000
1st Qu.:1.000
                                        Median :3.000
Mean :2.965
                                                          Median :1.000
Mean :1.286
                                                                            Median :2.000
                                                                                                                                                             furnishingstatus
                                                                                                                   parking
3rd Qu.: 5740000
Max. :13300000
mainroad
                                        3rd Qu.:3.000
Max. :6.000
                                                          3rd Qu.:2.000
Max. :4.000
                                                                            3rd Qu.:2.000
Max. :4.000
                                                                                                                Min. :0.0000
                                                                                                                                    Length:545
                                                                                                                                                            Lenath:545
                                        Max. :6.00
basement
                                                                                                                1st Qu.:0.0000
                                                                                                                                     Class :character
                                                                                                                                                            Class :character
                                                                 hotwaterheating
                                                                                      airconditioning
                                                                                                                Median :0.0000
                                                                                                                                     Mode :character
Lenath:545
                                                                 Lenath:545
                                                                                      Lenath:545
Class :character
Mode :character
                      Class :character
Mode :character
                                           Class :character
Mode :character
                                                                 Class :character
Mode :character
                                                                                      Class :character
Mode :character
                                                                                                                Mean :0.6936
                                                                                                                3rd Qu.:1.0000
                                                                                                                Max.
                                                                                                                        :3.0000
```


C.Problem Definition & Project Objectives

Problem Definition: Accurately predict the asking or selling price of a property based on its characteristics.

Objective: Develop a pricing model using machine learning and statistical techniques to predict property prices based on the available features in the dataset.

D.Data Visualization

Bar Plots

- These bar plots show the distribution of prices and areas
- The most common price range is between 3M to 4M
- The most common area is between 3000 sq ft and 4000 sq ft

Most common number of parking is 0

stories is 2

- Most of the houses are on the main road
- Most of the houses do not have guest rooms
- Most of the houses do not have a basement
- Most of the houses do not have hot water heating
- Most of the houses do not have air conditioning
- Most of the houses are not in the preferred area

- The majority of houses appear to be semi-furnished, followed by unfurnished, and then furnished.
- This graph suggests a preference for semi-furnished properties within this project.

- The number of Bathrooms and Stories have a positive relationship with the price. If the number of bathrooms or stories increases then the house price also increases
- The number of Bedrooms and Parking Spots do not necessarily have a positive relationship with the price as the price increases when they increase, however after reaching a certain threshold it starts decreasing again

• These Line Plots just confirm the previous observations

Boxplots of columns:

The area is left-skewed with outliers & The Price is slightly left-skewed with outliers

The price increases as the area increases with a drop in prices at 12ft.

The highest price is at 13ft followed by a decline at 15ft.

Houses by the main road, have a guest room, a basement, hot water heating, air conditioning, and are in a preferred area all have a higher price than the ones that aren't

The prices gradually decrease as the furnishing level decreases and the furnished houses are the most expensive

Pie charts:

68% of houses had no air conditioning & 76.5% of houses were not in a preferred area

Pie Chart of airconditioning

Pie Chart of prefarea

Most houses have 2 stories (43.6%) & Most Houses don't have any parking

Pie Chart of stories

Pie Chart of parking

Pie Chart of basement

Most Houses didn't have a basement

Box Plots:

- 1. MainRoad: The Yes and No data is left-skewed and yes has outliers.
- 2. Guestroom: Yes and No have a normal distribution and both have outliers.
- 3. Basements: Yes has a normal distribution, No is slightly left skewed, and both have outliers.
- 4. Hot Water: yes is right skewed and no is left-skewed and has outliers.
- 5. Air conditioning: both have normal distributions and outliers.
- 6. Preferred Area: both have normal distributions and outliers.

Furnished boxplot: all 3 values have outliers. the first 2 are normally distributed and the third is left skewed.

Boxplot of Price by Furnishing Status

The scatter plot you sent shows a positive correlation between price and area. This means that as the area of a house increases, the price also tends to increase.

The Density plot suggests that the number of stories is a factor in house price.

There's a peak at 3 bedrooms, which suggests that there are more houses with 3 bedrooms than any other number of bedrooms.

The density graph shows a peak at 2 rooms

E. Hypothesis Testing:

ANOVA (Analysis of Variance):

1st: Null hypothesis: #H0: There is no significant difference in the average price of houses based on furnishing.

Examining Data:

Tukey's test(Pair-wise comparison of means): All Null hypotheses are rejected since their P values are all less than the significant level of 0.01

```
Tukey multiple comparisons of means 95% family-wise confidence level
```

```
Fit: aov(formula = (price ~ furnishingstatus), data = df)
```

\$furnishingstatus

```
diff lwr upr p adj
semi-furnished-furnished -588171.8 -1038522 -137822.0 0.0063642
unfurnished-furnished -1481864.5 -1955270 -1008458.9 0.0000000
unfurnished-semi-furnished -893692.8 -1313257 -474128.5 0.0000023
```


Density plot:

2nd: Null hypothesis: #H0: There is no significant difference in the average price of houses based on the number of parking.

The null hypothesis is **rejected** since the p < significant value:

```
[1] "0" "1" "2" "3"
                               Mean Sq F value Pr(>F)
                      Sum Sq
               3 2.939e+14 9.797e+13
housing[[var]]
                                         32.93 <2e-16 ***
               541 1.609e+15 2.975e+12
Residuals
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = housing$price ~ housing[[var]])
$`housing[[var]]`
          diff
                      lwr
                              upr
                 582292.6 1526452 0.0000001
1-0 1054372.17
2-0 1760311.43
                1261322.0 2259301 0.0000000
3-0 1731149.94
                 422584.1 3039716 0.0038950
                 123095.2 1288783 0.0102120
2-1 705939.26
3-1 676777.78 -666003.4 2019559 0.5640377
3-2 -29161.48 -1381637.9 1323315 0.9999384
```


Tukey's test: there's a difference between having 2 parking spots compared to 1, a difference between having 3 parking spots compared to 1, and a difference between having 3 compared to 2.

3rd: Null hypothesis: #H0: There is no significant difference in the average price of houses based on the number of bedrooms.

```
The null hypothesis is rejected since the p < significant value:
[1] "1" "2" "3" "4"
                Df
                               Mean Sq F value Pr(>F)
                      Sum Sq
               5 2.933e+14 5.867e+13
housing[[var]]
                                          19.64 <2e-16 ***
Residuals
               539 1.610e+15 2.987e+12
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = housing$price ~ housing[[var]])
$`housing[[var]]`
           diff
                       lwr
                               upr
                                        p adi
2-1
      919522.06 -2601130.2 4440174 0.9758673
3-1
     2242098.13 -1264579.9 5748776 0.4481284
4-1 3017257.89 -514387.6 6548903 0.1433633
     3107300.00 -721332.4 6935932 0.1872987
5-1
     2079000.00 -2863743.1 7021743 0.8354139
6-1
     1322576.07
                 811622.8 1833529 0.0000000
4-2 2097735.84 1436825.2 2758647 0.0000000
5-2 2187777.94 568300.1 3807256 0.0017381
6-2 1159477.94 -2361174.3 4680130 0.9354184
      775159.76 193265.4 1357054 0.0021376
5-3
     865201.87 -723667.7 2454071 0.6270700
6-3 -163098.13 -3669776.1 3343580 0.9999942
5-4
       90042.11 -1553197.5 1733282 0.9999869
6-4 -938257.89 -4469903.4 2593388 0.9739916
6-5 -1028300.00 -4856932.4 2800332 0.9727226
```

Tuckey's test shows that the rows with p > significant value and there's a significant difference between both values

4th: Null hypothesis: #H0: There is no significant difference in the average price of houses based on the number of Bathrooms.

The null hypothesis is **rejected** since the p < significant value:

Tuckey's test shows that each different number of bathrooms doesn't have effects against each other.

```
[1] "1" "2" "3" "4"
                 Df
                       Sum Sq
                                Mean Sq F value Pr(>F)
housing[[var]]
                 3 3.580e+14 1.193e+14
                                          41.78 <2e-16 ***
                541 1.545e+15 2.856e+12
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = housing$price ~ housing[[var]])
$`housing[[var]]'
         diff
                     lwr
                                upr
               189362.2
2-1 593414.9
                          997467.7 0.0009804
3-1 1514777.3
                759844.0 2269710.6 0.0000020
4-1 3037791.2 2298738.2 3776844.1 0.0000000
3-2 921362.4 168991.2 1673733.5 0.0091363
4-2 2444376.2 1707940.7 3180811.7 0.0000000
4-3 1523013.9 548846.0 2497181.7 0.0003721
```

T-Test:

- We are evaluating the hypothesis of the effect of some categories on the price using T-Test
- Null hypothesis: #H0: There is no significant difference in the average price of houses based on the following categories (main road, guestroom, basement, hot water heating, air-conditioning, and preferred area).
- The null hypothesis are all rejected since the T > 0 (far enough from zero) and the p is very small

```
[1] "mainroad"
        Two Sample t-test
data: y and n
t = 7.2451, df = 543, p-value = 1.49e-12
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1161003 2024742
sample estimates:
mean of x mean of y
 4991777 3398905
[1] "guestroom"
        Two Sample t-test
data: y and n
t = 6.1586, df = 543, p-value = 1.429e-09
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
850177.7 1646524.9
sample estimates:
mean of x mean of
 5792897 4544546
[1] "basement"
        Two Sample t-test
data: y and n
t=4.4372, df=543, p-value = 1.104e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
  408305 1056994
sample estimates:
mean\ of\ x\ mean\ of\ y
  5242615 4509966
[1] "hotwaterheating"
        Two Sample t-test
data: v and n
t = 2.1783, df = 543, p-value = 0.02982
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   81649.17 1581084.52
sample estimates:
mean of x mean of y
  5559960 4728593
```



```
[1] "airconditioning"
       Two Sample t-test
data: y and n
t = 11.839, df = 543, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1519092 2123469
sample estimates:
mean of x mean of y
 6013221 4191940
[1] "prefarea"
       Two Sample t-test
data: y and n
t = 8.1399, df = 543, p-value = 2.718e-15
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1102927 1804567
sample estimates:
mean of x mean of y
 5879046 4425299
```

● The air conditioning has the highest value of T (11.839) which means that the presence of air conditioning has the highest effect on the pricing

Dataset preparation (Test, Train)

```
housing$mainroad <- factor(housing$mainroad, levels = c("yes", "no"))
housing$guestroom <- factor(housing$guestroom, levels = c("yes", "no"))
housing$basement <- factor(housing$basement, levels = c("yes", "no"))
housing$hotwaterheating <- factor(housing$hotwaterheating, levels = c("yes", "no"))
housing$airconditioning <- factor(housing$airconditioning, levels = c("yes", "no"))
housing$prefarea <- factor(housing$prefarea, levels = c("yes", "no"))
housing$furnishingstatus <- factor(housing$furnishingstatus, levels = c("furnished", "semi-furnished", "unfurnished"))
```

Convert categorical variables to factors

Data Analytics Technique:

Linear Regression was used to predict house prices.

The predicted values are continuous so we can't use a classification model and our data is labeled so K-means shouldn't be used as well.

Performance Measures

```
> attributes(fit)
$names
 [1] "coefficients"
                      "residuals"
                                       "effects"
                                                        "rank"
                                                                         "fitted.values" "assign"
  [7] "ar"
                                                                                         "terms"
                      "df.residual"
                                       "contrasts"
                                                        "xlevels"
                                                                        "ca11"
[13] "model"
$class
[1] "lm"
Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                              5251832.51 828091.85
                                                     6.342 4.92e-10 ***
                                  235.62
                                             24.96
                                                     9.442 < 2e-16 ***
area
bedrooms2
                              -121224.21 763298.00 -0.159 0.873875
                               119897.61 766050.81
                                                     0.157 0.875689
bedrooms3
bedrooms4
                               204453.78 776535.34
                                                     0.263 0.792431
bedrooms5
                               352331.32
                                         843096.88
                                                     0.418 0.676191
                               861907.29 1076888.59
                                                     0.800 0.423862
bedrooms6
bathrooms 2
                              889309.60 121853.03
                                                     7.298 1.10e-12 ***
                                                     5.842 9.08e-09 ***
bathrooms3
                              2087419.84
                                         357299.19
                                                     4.687 3.54e-06 ***
                              5309187.73 1132696.27
bathrooms4
stories2
                               300434.37 121020.21
                                                     2.483 0.013360 *
stories3
                               832268.81 208078.72
                                                    4.000 7.26e-05 ***
                                                    6.504 1.84e-10 ***
stories4
                              1406036.05
                                         216192.56
                              -433968.54 143672.89 -3.021 0.002647 **
mainroadno
                              -284657.48 132188.26 -2.153 0.031743 *
guestroomno
                                         112121.12 -3.331 0.000925 ***
basementno
                              -373520.17
                              -839134.50 226392.66 -3.707 0.000233 ***
hotwaterheatingno
                              -843080.22 109913.76 -7.670 8.48e-14 ***
airconditioningno
                               396938.75
                                         119101.07
                                                     3.333 0.000921 ***
parking1
                                                     4.750 2.64e-06 ***
parking2
                               622112.73 130978.04
parking3
                               112217.86 336032.76
                                                    0.334 0.738552
prefareano
                              -647611.82
                                         118363.86
                                                   -5.471 6.95e-08 ***
furnishingstatussemi-furnished -27717.11 118038.66 -0.235 0.814445
furnishingstatusunfurnished
                              -417022.33 127026.27 -3.283 0.001096 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1066000 on 521 degrees of freedom
Multiple R-squared: 0.6889,
                             Adjusted R-squared: 0.6752
F-statistic: 50.17 on 23 and 521 DF, p-value: < 2.2e-16
> summary(fit)
Call:
lm(formula = price ~ ., data = housing)
Residuals:
       Min
                              Median
                       10
                                                   30
                                                               Max
                              -59293
-2798873 -663461
                                            509704
                                                         5249000
```

Observed vs. Fitted

K-Means

