

<u>Gameboard</u>

Maths

Differentiation: Products 3ii

Differentiation: Products 3ii

Find the exact value of the x-coordinate of the stationary point of the curve $y = x \ln x$.

The following symbols may be useful: e, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Differentiation: Quotients 3ii

Differentiation: Quotients 3ii

Part A Differentiate

A curve has equation $y=rac{2x+1}{3x-1}$. Find an expression for $rac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B Tangent

Hence find the equation of the tangent to this curve at the point $(1, \frac{3}{2})$, giving your answer in the form ax + by + c = 0, where a, b, and c are integers.

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

<u>Gameboard</u>

Maths

Area Between Two Curves 1ii

Area Between Two Curves 1ii

Figure 1 shows the curve $y = e^{3x} - 6e^{2x} + 32$.

Figure 1: The curve $y = e^{3x} - 6e^{2x} + 32$.

Part A x-coordinate

Give the exact x-coordinate of the minimum point and verify that the y-coordinate of the minimum point is 0.

The following symbols may be useful: x

Part B Area of shaded region

Find the exact area of the shaded region enclosed by the curve and the coordinate axes.

The following symbols may be useful: ln(), log()

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

Gameboard

Maths

Integration by Substitution 3i

Integration by Substitution 3i

Part A Substitution

Find the expression that appears to the right of the integral sign after the substitution $u=\mathrm{e}^x+1$ has been applied to $\int \frac{\mathrm{e}^{2x}}{\mathrm{e}^x+1} \,\mathrm{d}x$. Include $\mathrm{d}u$ in your answer.

The following symbols may be useful: du, u

Part B Integral

Hence find the exact value of $\int_0^1 \frac{\mathrm{e}^{2x}}{\mathrm{e}^x + 1} \, \mathrm{d}x$.

The following symbols may be useful: e

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

Home

Gameboard

Maths

Differentiation: Chain Rule 4i

Differentiation: Chain Rule 4i

Earth is being added to a pile so that, when the height of the pile is h metres, its volume is V cubic metres, where

$$V=(h^6+16)^{rac{1}{2}}-4.$$

Part A Rate of change of volume

Find the value of $\frac{\mathrm{d}V}{\mathrm{d}h}$ when h=2, to three significant figures.

Part B Rate of change of height

The volume of the pile is increasing at a constant rate of 8 cubic metres per hour. Find the rate in metres per hour, at which the height of the pile is increasing at the instant when h=2. Give your answer correct to 2 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

Gameboard

Maths

Parametric Equations 4i

Parametric Equations 4i

A curve has parametric equations

$$x=2\sin t, \qquad y=\cos 2t+2\sin t$$

for
$$-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$$
.

Part A Derivative

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ as a function of t.

The following symbols may be useful: Derivative(y, x), cos(), cosec(), cot(), sec(), sin(), t, tan(), x, y

Part B Coordinates

Find the x-coordinate of the stationary point.

The following symbols may be useful: x

Find the y-coordinate of the stationary point.

The following symbols may be useful: y

Part C Equation

Find the	Cartesian	equation	nn of th	e curve
	Cartesian	cqualic		ic cui vc.

The following symbols may be useful: x, y

Part D Range

Find the range of values \boldsymbol{x} can take.

What form does your answer take? Choose from the list below, where a and b are constants and a < b, and then find a and/or b.

- () x < a
- $x \le a$
- () x > a
- $x \geq a$
- \bigcirc a < x < b
- $\bigcirc \quad a \leq x \leq b$
- x < a or x > b
- $x \le a \text{ or } x \ge b$

Write down the value of a.

Write down the value of b (or if your chosen form has no b, write "n").

The following symbols may be useful: n

Part E Sketch

Hence sketch the curve.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

Gameboard

Maths

Modelling - Advanced 2ii

Modelling - Advanced 2ii

At time t seconds, the radius of a spherical balloon is r cm. The balloon is being inflated so that the rate of increase of its radius is inversely proportional to the square root of its radius. When t=5, r=9 and, at this instant, the radius is increasing at $1.08 \, \mathrm{cm \, s^{-1}}$.

Part A Differential equation

Write down a differential equation to model this situation. Your answer should include a constant k, whose value you do not need to determine yet.

The following symbols may be useful: Derivative(r, t), k, r, t

Part B Solution

Solve the differential equation to express r in terms of t. Your answer should include some numerical constants, which should be converted to exact fractions.

The following symbols may be useful: r, t

Part C Initial condition

How much air (in cm^3) is in the balloon initially? Write your answer as an exact expression.

The following symbols may be useful: pi

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

<u>Gameboard</u>

Maths

Differentiation: Implicit 4i

Differentiation: Implicit 4i

Find the equation of the normal to the curve $x^3 + 2x^2y = y^3 + 15$ at the point (2,1), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

<u>Gameboard</u>

Maths

Integration by Parts 3i

Integration by Parts 3i

Find
$$\int_0^\pi \left(x^2+5x+7\right)\sin x\,\mathrm{d}x.$$

The following symbols may be useful: pi

Used with permission from UCLES A-level Maths papers, 2003-2017.