MANFRED BRATH, WS 2022

ADVANCED RADIATION AND REMOTE SENSING: ABSORPTION PROPERTIES OF THE ATMOSPHERE

MOLECULE SPECTRA

- This will be only a brief overview without going into any details.
- For those who interested in the details see
 - Haken, Hermann, und Hans Christoph Wolf. Molekülphysik Und Quantenchemie. Fünfte, völlig neubearbeitete und erweiterte Auflage. Springer-Verlag Berlin Heidelberg, 2006. https://dx.doi.org/ 10.1007/3-540-30315-4. (ebook/book, Stabi)
 - Demtröder, Wolfgang. Atoms, Molecules and Photons. Third edition. Springer, 2018. https://dx.doi.org/10.1007/978-3-662-55523-1. (ebook/book, Stabi)
 - or any other book about spectroscopy and molecular physics

- Quantum mechanics and electrodynamic and states that we need a dipole to interact with em radiation.
 - Where do we have dipoles?

- A dipole is not enough. What else do we need?
- We need a periodically moving dipole.
- Two ways: Rotation and Vibration

What takes more energy into account rotation or vibration?

$$E_{rot} < E_{vib} < E_{el}$$

ENERGY-FREQUENCY RELATIONS

• Energy E and frequency ν differ only by the Planck constant h.

$$E = h\nu$$

In quantum mechanics a different version is often used.

$$E = \hbar\omega = \frac{h}{2\pi} 2\pi\nu$$

TYPICAL SPECTRAL QUANTITIES, UNITS AND ORDER OF MAGNITUDE

Microwave (MW)	Frequency	$\nu \mathcal{O}(100\mathrm{GHz})$
Infrared (IR)	Wavenumber	$\tilde{\nu} \mathcal{O}(1000 \text{cm}^{-1}) \qquad \qquad \tilde{\nu} = \frac{\nu}{c_0}$
	Wavelength	$\lambda \mathcal{O}(15 \mu\text{m})$ $\lambda = \frac{c}{a}$
Visible	Wavelength	$\lambda \mathcal{O}(500 \text{nm})$

ROTATION SPECTRA

Transition from one state to another **not** the rotational state

- Spectrum consists
 several discrete lines.
- Rotational states are discrete (quantised).

VIBRATION

Which of these vibrational modes induce a changing dipole?

VIBRATION (LOW-RES)

- Vibrational transitions
 occur at 10 to 100 times
 larger energy levels than
 rotational transitions.
- Vibrational transitions are also quantised.

VIBRATION (HI-RES)

- Vibrational transitions in general never occur alone but are coupled with simultaneous rotational transitions.
- \triangleright CO₂ is one of the exclusions.

RECAP MOLECULE SPECTRA

- Permanent or induced dipole is needed for interaction with em radiation.
- Spectrum consists several discrete lines.
- Vibrational transitions occur at 10 to 100 times larger energy levels than rotational transitions.
- Vibrational transitions in general never occur alone but are coupled with simultaneous rotational transitions.
- Spectra change with temperature.

LINESTRENGTH

ABSORPTION LINE

The absorption cross section of a given line

$$\hat{\sigma} = S_{fi}(T, \nu_{fi}) \, \Phi(\nu_{fi} - \nu)$$
 line strength line shape

absorption line

LINE STRENGTH

The line strength S_{lu} is different for each transition.

 S_{lu} is the connection between radiative transfer and quantum mechanics

TRANSITION CONSTANTS

Spectral line catalogues are collections of these transition parameters. There is one line in the catalogue for each spectral line (thousands for each molecule). The most well-known is the HITRAN catalogue.

TEMPERATURE DEPENDENCY

$$\Delta E_{lu} = h\nu_{lu}$$

$$\Delta E_{lu} \gg k_b T \quad \Rightarrow e^{-\Delta E_{lu}/(k_B T)} \approx 0$$

$$\Delta E_{lu} \ll k_b T \quad \Rightarrow e^{-\Delta E_{lu}/(k_B T)} \approx 1$$

- $lackbox{ }$ Describes the probability of transition lu at given temperature T.
- $\triangleright Q(T)$ is usually tabulated by the spectroscopic databases.

RECAP LINE STRENGTH

- Transition constants define basic strength of the absorption line and at which frequency the transition happens.
- Transition constants are derived from quantum mechanics.
- Temperature controls the resulting strength of the line.

LINE SHAPE

ABSORPTION LINE

The absorption cross section of a given line

$$\hat{\sigma} = S_{fi}(T, \nu_{fi}) \Phi(\nu_{fi} - \nu)$$
 line strength line shape

absorption line