Robotic Motion Planning: Tangent Bug and Sensors

Robotics Institute 16-735 http://voronoi.sbp.ri.cmu.edu/~motion

Howie Choset http://voronoi.sbp.ri.cmu.edu/~choset

What's Special About Bugs

- Many planning algorithms assume global knowledge
- Bug algorithms assume only *local* knowledge of the environment and a global goal
- Bug behaviors are simple:
 - 1) Follow a wall (right or left)
 - 2) Move in a straight line toward goal
- Bug 1 and Bug 2 assume essentially tactile sensing
- Tangent Bug deals with finite distance sensing

Summary

- Bug 1: safe and reliable
- Bug 2: better in some cases; worse in others
- Should understand the basic completeness proof
- Two behaviors: motion-to-goal, boundary following
- Tangent Bug: supports range sensing
- Sensors and control
 - should understand basic concepts and know what different sensors are

Bug 1

But <u>some</u> computing power!

- known direction to goalotherwise local sensing

walls/obstacles & encoders

"Bug 1" algorithm

- 1) head toward goal
- 2) if an obstacle is encountered, circumnavigate it and remember how close you get to the goal
- 3) return to that closest point (by wall-following) and continue

A better bug?

"Bug 2" Algorithm

- 1) head toward goal on the *m-line*
- 2) if an obstacle is in the way, follow it until you encounter the m-line again *closer to the goal*.
- 3) Leave the obstacle and continue toward the goal

Better or worse than Bug1?

head-to-head comparison or thorax-to-thorax, perhaps

Draw worlds in which Bug 2 does better than Bug 1 (and vice versa).

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

BUG 1 vs. BUG 2

- BUG 1 is an exhaustive search algorithm
 - it looks at all choices before committing
- BUG 2 is a greedy algorithm
 - it takes the first thing that looks better
- In many cases, BUG 2 will outperform BUG 1, but
- BUG 1 has a more predictable performance overall

The Spiral

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

A More Realistic Bug

- As presented: global beacons plus contact-based wall following
- The reality: we typically use some sort of range sensing device that lets us look ahead (but has finite resolution and is noisy).
- Let us assume we have a range sensor

Raw Distance Function

$$\rho(x,\theta) = \min_{\lambda \in [0,\infty]} d(x, x + \lambda [\cos \theta, \sin \theta]^T),$$

such that $x + \lambda[\cos \theta, \sin \theta]^T \in \bigcup_i \mathcal{WO}_i$.

$$\rho \colon \mathbb{R}^2 \times S^1 \to \mathbb{R}$$

Saturated raw distance function

$$\rho_R(x,\theta) = \begin{cases} \rho(x,\theta), & \text{if } \rho(x,\theta) < R \\ \infty, & \text{otherwise.} \end{cases}$$

Intervals of Continuity

- Tangent Bug relies on finding endpoints of finite, conts segments of ρ_{R}

Motion-to-Goal Transition from Moving Toward goal to "following obstalces"

Currently, the motion-to-goal behavior "thinks" the robot can get to the goal

Motion-to-Goal Transition **Among Moving Toward goal to "following obstacles"

Currently, the motion-to-goal behavior "thinks" the robot can get to the goal

Motion-to-Goal Transition Minimize Heuristic

Now, it starts to see something --- what to do? Ans: Choose the pt O_i that minimizes $d(x,O_i) + d(O_i,q_{goal})$

Minimize Heuristic Example

At x, robot knows only what it sees and where the goal is,

so moves toward O_2 . Note the line connecting O_2 and goal pass through obstacle

so moves toward O_{4.} Note some "thinking" was involved and the line connecting O₄ and goal pass through obstacle

Choose the pt O_i that minimizes $d(x,O_i) + d(O_i,q_{goal})$

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Motion To Goal Example

Choose the pt O_i that minimizes $d(x,O_i) + d(O_i,q_{goal})$

Transition *from* Motion-to-Goal

Choose the pt O_i that minimizes $d(x,O_i) + d(O_i,q_{goal})$

Problem: what if this distance starts to go up?

Ans: start to act like a BUG and follow boundary

M is the point on the "sensed" obstacle which has the shorted distance to the goal

Followed obstacle: the obstacle that we are currently sensing

Blocking obstacle: the obstacle that intersects the segment

$$(1-\lambda)x + \lambda q_{\mathrm{goal}} \ \forall \lambda \in [0,1]$$

They start as the same

Boundary Following

Move toward the O_i on the followed obstacle in the "chosen" direction

 $\Psi \mathcal{O}_1$

M is the point on the "sensed" obstacle which has the shorted distance to the goal

Followed obstacle: the obstacle that we are currently sensing

Blocking obstacle: the obstacle that intersects the segment

They start as the same

Maintain d_{followed} and d_{reach}

d_{followed} and d_{reach}

- d_{followed} is the shortest distance between the sensed boundary and the goal
- d_{reach} is the shortest distance between *blocking* obstacle and goal (or my distance to goal if no blocking obstacle visible)

$$\Lambda = \{ y \in \partial \mathcal{W} \mathcal{O}_b : \lambda x + (1 - \lambda) y \in \mathcal{Q}_{\text{free}} \quad \forall \lambda \in [0, 1] \}.$$

$$d_{\text{reach}} = \min_{c \in \Lambda} d(q_{\text{goal}}, c)$$

- Terminate boundary following behavior when d_{reach} < d_{followed}
- Initialize with $x = q_{\text{start}}$ and $d_{\text{leave}} = d(q_{\text{start}}, q_{\text{goal}})$

Example: Zero Senor Range

- 1. Robot moves toward goal until it hits obstacle 1 at H1
- 2. Pretend there is an infinitely small sensor range and the Oi which minimizes the heuristic is to the right
- 3. Keep following obstacle until robot can go toward obstacle again
- 4. Same situation with second obstacle
- 5. At third obstacle, the robot turned left until it could not increase heuristic
- 6. D_{followed} is distance between M₃ and goal, d_{reach} is distance between robot and goal because sensing distance is zero

Example: Finite Sensor Range

Example: Infinite Sensor Range

Tangent Bug

• Tangent Bug relies on finding endpoints of finite, conts segments of ρ_{R}

Now, it starts to see something --- what to do? Ans: Choose the pt O_i that minimizes $d(x,O_i) + d(O_i,q_{goal})$ "Heuristic distance"

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Tangent Bug

• Tangent Bug relies on finding endpoints of finite, conts segments of ρ_{R}

Problem: what if this distance starts to go up? Ans: start to act like a BUG and follow boundary

The Basic Ideas

- A motion-to-goal behavior as long as way is clear or there is a visible obstacle boundary pt that decreases heuristic distance
- A boundary following behavior invoked when heuristic distance increases.
- A value d_{followed} which is the shortest distance between the sensed boundary and the goal
- A value d_{reach} which is the shortest distance between *blocking* obstacle and goal (or my distance to goal if no blocking obstacle visible)
- Terminate boundary following behavior when d_{reach} < d_{followed}

Tangent Bug Algorithm

- 1) repeat
 - a) Compute continuous range segments in view
 - b) Move toward $n \in \{T,O_i\}$ that minimizes $h(x,n) = d(x,n) + d(n,q_{goal})$ until
 - a) goal is encountered, or
 - b) the value of h(x,n) begins to increase
- 2) follow boundary continuing in same direction as before repeating
 - a) update {O_i}, d_{reach} and d_{followed} until
 - a) goal is reached
 - b) a complete cycle is performed (goal is unreachable)
 - c) d_{reach} < d_{followed}

Note the same general proof reasoning as before applies, although the definition of hit and leave points is a little trickier.

Implementing Tangent Bug

- Basic problem: compute tangent to curve forming boundary of obstacle at any point, and drive the robot in that direction
- Let $D(x) = \min_{c} d(x,c)$ $c \in \bigcup_{i} WO_{i}$
- Let $G(x) = D(x) W^* \leftarrow$ some safe following distance
- Note that ∇ G(x) points radially away from the object
- Define $T(x) = (\nabla G(x))$ the tangent direction
 - in a real sensor (we'll talk about these) this is just the tangent to the array element with lowest reading
- We could just move in the direction T(x)
 - open-loop control
- Better is $\delta x = \mu (T(x) \lambda (\nabla G(x)) G(x))$
 - closed-loop control (predictor-corrector)

Sensors!

Robots' link to the external world...

Sensors, sensors! and tracking what is sensed: world models

IR rangefinder

sonar rangefinder

CMU cam with onboard processing

odometry...

Tactile sensors

on/off switch

as a low-resolution encoder...

analog input: "Active antenna"

Surface acoustic waves

Capacitive array sensors

Resistive sensors

100% of light passes 16:735gHowie Chose With slides trons Gab. Hagenghd Z. Dodas % of light passes through

Tactile applications

Medical teletaction interfaces

daVinci medical system

haptics

Robotic sensing Merritt systems, FL

Infrared sensors

"Noncontact bump sensor"

"object-sensing" IR

diffuse distance-sensing IR

IR emitter/detector pair

IR detector

Object
Object
Point of Reflection

Rangle
angle

16-735, Howie Choset with slides from G.E.

Different Angles with Different Distances

Digital Infrared Ranging

- Insensitive to ambient light and surface type
- Minimum range ~ 10cm
- Beam width ~ 5deg
- Designed to run on 3v -> need to protect input
- Uses Shift register to exchange data (clk in = data out)
- Moderately reliable for ranging

Infrared calibration

The response to white copy paper (a dull, reflective surface)

- (1) sensing is based on light intensity.
- (2) sensing is based on angle received.

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Polaroid Ultrasonic Sensor

Electric Measuring Tape

Focus for Camera

http://www.robotprojects.com/sonar/scd.htm

Theory of Operation

- Digital Init
- Chirp
 - 16 high to low
 - -200 to 200 V
- Internal Blanking
- Chirp reaches object
 - 343.2 m/s
 - Temp, pressure
- Echoes
 - Shape
 - Material
- Returns to Xducer
- Measure the time

Issues

- Azimuth Uncertainty
- Specular Reflections
- Multipass
- Highly sensitive to temperature and pressure changes
- Minimum Range

Sonar modeling

16-735, Howie Choset with slides from ט.ט. רומטכו מוע ב. טטעעט

(Naïve) Sensor Model

Acoustic Physics

- In air, sound dissipates proportionally to distance squared
 - Sound also attenuates according to humidity and temperature
- Solid objects are acoustic reflectors
- Due to the relatively large wavelength of sound, most solid objects are acoustic mirrors

walls (obstacles)

Sonar effects

sonar

Sonar effects

sonar

Draw the range reading that the sonar will return in each case...

holding a sponge...

Sonar effects

- (a) Sonar providing an accurate range measurement
- (b-c) Lateral resolution is not very precise; the closest object in the beam's cone provides the response
- (d) Specular reflections cause walls to disappear
- (e) Open corners produce a weak spherical wavefront
- (f) Closed corners measure to the corner itself because of multiple reflections --> sonar ray tracing

s from G.D. Hager and Z. Dodds

resolution: time / space

Region of Constant Depth (Leonard) Typical Wall Response

- It is tempting to try to fit a line to the data and call that the wall
- Many approaches have done this in the past

A Different Representation

- Plot of range vs angle for the original scan.
- There are a number of regions where the depth remains constant
- These should correspond to arcs in a Cartesian representation

Region of Constant Depth

- An arc is fit through the closest response belonging to the RCD
- This should correspond to a perpendicular surface

Wall Response Prediction

- Perpendicular line to the target is the center of the RCD
- The RCD should extend in either direction β_t/2 which corresponds to the beam width as well as the ability of the target to reflect acoustic energy

Compare Prediction with Data

- Close correspondence
- Our model seems sufficient

But does it *really* work?

- 240 sonar scans rotating ~1.5 degrees between each
- Decent results for a cardboard room and 1 inch resolution

ATM: Improve Azimuth Resolution

Wide Sonar Beam Can Merge Obstacles

Passing a corridor

Neglecting the corner

Overlook the Gap!

Center Line Model – Problem

 The robot might believe the passageway is too narrow for it to pass through

Center Line Model – Real Data

- Center Line Model gives the robot a false impression of the world
 - The robot perceives that an opening does not exist!!!

ATM: Arc Intersection

- Arc Intersection of two or more arcs
 - The point of reflection can lie anywhere on arc 1, arc 2, ..., arc n
 - If many sonar arcs intersect at one point, the probability that it is in an obstacle becomes quite high

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

ATM Median Intersection

- The median of all intersections on one arc serves as a good approximation of the point
 - Median is in the cluster of intersections
 - Median is robust with respect to noise

ATM Transversal Intersection

Robot do not consider all intersections, just "Stable" intersections

b) Unstable intersection

- a) is more STABLE than b). Because $\theta_1 > \theta_2$
 - \rightarrow How big does θ have to be?

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Transversal Intersection – Why 30 deg?

 It is enough for our Nomad robots to use 30 deg as the threshold for transversal intersections

$$Arc(d) = d \times \frac{22.5}{180} \pi [inch]$$

$$Len(\theta) = \frac{1}{\sin(\theta)} + \frac{1}{\tan(\theta)} [inch]$$

$$Arc(100") = 100" \times \frac{22.5}{180} \pi \approx 39.2[inch]$$

 $Len(30°) = \frac{1}{\sin(30°)} + \frac{1}{\tan(30°)} \approx 3.73[inch]$

$$\frac{Len(30^\circ)}{Arc(100")} < \frac{1}{10}$$

At least a 10-fold improvement in resolution!! (at d=100 [inch])

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Real Data

 The points that ATM method generates present a more accurate view of the environment

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

McKerrow Method Overview

- Obstacle is tangent to closest sonar arc
- Use previous sonar sensor data
- Obstacle is tangent to both arcs
- Create outline segments
- Combine segments

Outlined obstacle

Single Sonar Reading

Two Sonar Readings

Common Tangent Condition

- d = distance between arc centers
- r = radius of arc
- b = beam angle
- a = angle of beam axis to x-axis
- -d * cos (a b) < $r_c r_p$ < -d * cos (a + b)

Common Tangent Condition

- d = distance between arc centers
- r = radius of arc
- b = beam angle
- a = angle of beam axis to x-axis
- -d * cos (a b) < $r_c r_p$ < -d * cos (a + b)

Common Tangent Condition

- d = distance between arc centers
- r = radius of arc
- b = beam angle
- a = angle of beam axis to x-axis
- -d * cos (a b) < $r_c r_p$ < -d * cos (a + b)

Calculate Intersection Points

- Tangent to arc = Perpendicular to Range Vector
- Common tangent will have slope m
- Range vector will have slope –1/m
- Knowing arc centers and slope, equations describing range vectors can be found
- Using range vector equations and radii, points of intersection can be found

Example – World

Fig. 6. Dimensions of room for experiments in millimetres.

Example – Cluttered

Fig. 8. Outline segment map derived from arc map in Fig. 7.

Example – Clearer Picture

Fig. 7. Arc map of room in Fig. 6.

Sonar Modeling

response model (Kuc)

$$h_R(t, z, a, \alpha) = \frac{2c \cos \alpha}{\pi a \sin \alpha} \sqrt{1 - \frac{c^2(t - 2z/c)^2}{a^2 \sin^2 \alpha}}$$

sonar (reading

• Models the response, h_R, with

c = speed of sound

a = diameter of sonar element

t = time

z = orthogonal distance

 α = angle of environment surface

• Then, allow uncertainty in the model to obtain a probability:

p(S|o)

chance that the sonar reading is S, given an obstacle at location O

Roman Kuc's animals

Rodolph

Robat

Certainty Grid Approach

Combine info with Bayes Rule (Morevac and Elfes)

Laser Ranging

LIDAR

Sick Laser

LIDAR map