Fisica II

Giovanni Tosini

Indice

1	Inti	roduzione	1
2	Elettrostatica nel vuoto (in assenza di materia dielettrica)		
	2.1	Interazione (forze) di Coulomb	3
	2.2	Campo elettrostatico	5
	2.3	Energia elettrostatica	5
	2.4	Campo potenziale elettrostatico	6
	2.5	Linee di campo	8
	2.6	Superfici equipotenziali(superfici in cui V è costante)	9
	2.7	Teorema di Gauss	10
	2.8	Elettrostatica nei conduttori	12
		2.8.1 Proprietà di un conduttore in equilibrio	12
		2.8.2 Cavità in un conduttore	13
		2.8.3 Schermo elettrostatico	15
		2.8.4 Capacità elettrostatica	16

Capitolo 1

Introduzione

Esistono due tipi di forze in assoluto:

- attrattive
- repulsive

Queste forze si possono vedere anche nelle singole cariche elettriche, quelle con identica carica si respingeranno, mentre quelle con carica opposta si attrarranno.

Esistono tre modalità per caricare un oggetto:

- strofinio
- induzione
- contatto

Da notare che la carica non dipende dal meccanismo con cui viene creata, ma dai costituenti della materia.

Un atomo è composto da: protoni, neutroni ed elettroni. La differenza di dimensioni tra un protone e un elettrone è di parecchi ordini di grandezza. La carica elettrica di un elettrone viene denominata "carica elementare", è tale perché si dice "quantizzata" essendo che si possono trovare solo cariche multiple di essa. Inoltre il modulo della carica di un elettrone è equivalente alla carica di un protone, sebbene siano due particelle differenti.

$$|qe^-| = qe^+$$

La materia ordinaria è neutra, di conseguenza pure l'atomo è neutro, ovvero il centro di simmetria del nucleo coincide con quello degli elettroni.

Con lo strofinio vengono strappati gli elettroni meccanicamente, nel sistema isolato d'esempio (in un sistema isolato la carica totale Q si conserva) preso in questione. La carica dipenderà dal potenziale di estrazione del materiale.

Per induzione invece, un oggetto q^+ avvicinato a un oggetto neutro, porterà a una divisione di cariche nell'oggetto neutro causato dall'induzione elettrostatica

Capitolo 2

Elettrostatica nel vuoto (in assenza di materia dielettrica)

Quando non c'è dipendenza dal tempo il campo elettrico e il campo magnetico sono separati.

2.1 Interazione (forze) di Coulomb

- m oggetto di massa m, trascurabile
- θ angolo
- q_1 e q_2 sono le cariche
- d la distanza
- r il versore

La forza esercitata lungo d sarà equivalente a:

$$|\vec{F}| = k \frac{q_1 q_2}{r^2}$$

Questo è un modello valido **esclusivamente** per cariche ferme nel vuoto. La costante k equivale a

$$k = \frac{1}{4\pi\epsilon_0}$$

Di conseguenza la forza esercitata su q_1 sarà equivalente a

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r_{1,2}^2}$$

N.B.:

- l'unità di misura della carica equivale al Coulomb, q = [C].
- $\bullet \ \epsilon_0$ è la permeabilità sul vuoto (costante dielettrica del vuoto)
- $r_{1,2} = \vec{r}_{12} = \vec{r}_2 \vec{r}_1$
- \bullet se q_1q_2 è positivo allora avremo a che fare con una forza repulsiva, se negativo attrattiva

Una carica q_0 in uno spazio vuoto, con attorno N cariche, sarà sotto l'effetto della somma della forza di tutte:

$$\sum_{i=1}^{N} \frac{q_i q_0}{4\pi\epsilon_0} \frac{\hat{r}_{i0}}{r_{i0}^2}$$

N.B.:

- l'unità di misura della forza è il Newton [N]
- $\hat{r_{12}} = r_2 \hat{-} r_1$

2.2 Campo elettrostatico

$$\vec{F_{q_0}} = q_0 \vec{E_i}(\vec{r_0})$$

dove

- \vec{E} è la sommatoria senza q_0
- \vec{r}_0 equivale a $\frac{1}{4\pi\epsilon_0} \frac{q_i}{r_{i0}^2} \hat{r}_i 0$
- \bullet che a sua volta equivale a $\frac{\vec{F}_{q_iq_0}}{q_o}$
- $\bullet \ \vec{F}_{q_i q_0} = q_0 \vec{E}_i$
- $\vec{F}_{tot} = q_0 \sum \vec{E}_i$

Ogni carica genera un campo.

$$\vec{E}(\vec{r}) = \frac{q}{4\pi\epsilon_0 r^2} \hat{r}$$

$$\vec{E}_{tot}(r) = \sum_i \vec{E}_i = \sum_i \frac{q_i \hat{r}_{i0}}{4\pi\epsilon_0 (r_i - r)^2}$$

$$\vec{F} = q\vec{E}$$

Definizione "operativa" di campo elettrico:

$$\vec{E} = \frac{\vec{F}}{q} \left[\frac{N}{C} \right] = \left[\frac{V}{m} \right]$$

2.3 Energia elettrostatica

La forza elettrostatica è conservativa? Lo è se:

- L non dipende dal percorso
- L in un percorso chiuso è nullo
- Esiste una funzione di energia potenziale U t.c. L da A->B è uguale a - ΔU

- Q è la particella che genera il campo elettrico
- q invece è la particella che si sposta da A a B
- $dL = \vec{F} d\vec{l}$
- $dL = \frac{qQ}{4\pi\epsilon_0 r^2} \hat{r} d\vec{l}$

 $\hat{r}\vec{dl}$ non è nient'altro che la proiezione di r su dl ovvero dr Il lavoro da A a B invece equivale all'integrale

ofo da
$$A$$
 a B invece equivale an integrale
$$L_{AB} = \int_A^B dL = \frac{qQ}{4\pi\epsilon_0} \int_A^B \frac{\hat{r}dl}{r^2} = \int_{r_A}^{r_B} \frac{dr}{r^2} 4 = -\frac{1}{r}|_{r_A}^{r_B} \text{ che è uguale a}$$

$$\frac{qQ}{4\pi\epsilon_0} (\frac{1}{r_A} - \frac{1}{r_B}) = -\Delta U$$

$$U_{caricaq} = \frac{qQ}{4\pi\epsilon_0 r} + c$$

L'unità di misura dell'energia potenziale è il Joule [J] $U_{\infty}=0$ perché non ci sono cariche

$$U = \frac{qQ}{4\pi\epsilon_0 r} = -(U_{\infty} - U_r) = -\Delta U$$

2.4 Campo potenziale elettrostatico

N.B.: le cariche sono statiche

Definizione: $\Delta_{AB}V = \frac{\Delta U_{AB}}{q}$

Il lavoro del campo, lavoro del potenziale:

$$L = -q\Delta V$$

L'unità di misura del potenziale è il Volt [V]. Quindi

$$\Delta U_{energia} = -\int_A^B \vec{F} d\vec{l} \Rightarrow \Delta V = V_B - V_A = -\int_A^B \vec{E} d\vec{l}$$

Formula per il calcolo del potenziale:

$$\begin{cases} V(r_0) = V_0 = 0 & \text{solo in alcuni casi} \\ V(r) = -\int_{r_0}^r \vec{E} d\vec{l} & \end{cases}$$

Che cammino scelgo per calcolare E? Quello più comodo. Ogni carica genera potenziale e un proprio campo.

$$\vec{E}(r) = \frac{q}{4\pi\epsilon_0 r^2} \hat{r}$$

$$V(r) - V_0 = -\int_{r_0}^r \underbrace{\frac{q}{4\pi\epsilon_0 r^2}}_{\vec{E}(r)} \hat{r} \frac{\vec{d}r}{\vec{d}l}$$

$$-\frac{q}{4\pi\epsilon_0} \int_{r_0}^r \underbrace{\frac{1}{r^2} dr}_{r}$$

$$\frac{q}{4\pi\epsilon_0} [\frac{1}{r} - \frac{1}{r_0}]$$

Posso porre $V_0 = 0$ con

$$\begin{split} r_0 &= \infty \\ V(r) - \underbrace{V_{\infty}}_{0} &= -\int \infty r \frac{q}{4\pi\epsilon_0 r^2} = \frac{q}{\pi\epsilon_0 r} \\ V(r)_q &= \underbrace{\frac{q}{4\pi\epsilon_0 r}}_{formula effettiva} [v] con V_{\infty} = 0 \end{split}$$

 $V_{\infty}=0$ è possibile solo se a ∞ non ci sono cariche, ciò è possibile solamente in un sistema finito.

Cosa succede con N cariche discrete?

$$\vec{E}_i(r) = \frac{q_i}{4\pi\epsilon_0(r - r_i)^2} r - r_i$$
$$E_{TOT} = \sum_i E_i$$

Per il principio di sovrapposizione si possono sommare i campi.

$$V_{TOT}(r) = \sum_{i} \frac{q_i}{4\pi\epsilon_0 |r - r_i|}$$

In una distribuzione continua

$$\sum \rightarrow \int$$

quindi:

$$V(r) = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r - r'}$$

Che può essere calcolato sullo spazio, il volume o linearmente.

2.5 Linee di campo

Sono linee tangenti al campo in ogni punto, continue ed escono dalle cariche positive mentre entrano da quelle negative.

2.6 Superfici equipotenziali(superfici in cui V è costante)

La carica che genere il campo è circondata da sfere equipotenziali, la carica positiva si sposterebbe fino a

 ∞

mentre la carica negativa verrebbe attratta fino a scontrarsi con quella che genera il campo.

$$\vec{E}(r) = \frac{\vec{F}}{q} = \frac{Q}{4\pi\epsilon_0 r^2}\hat{r}$$

Si calcoli il lavoro

$$dL = -qdV$$

se

$$dV = 0$$

allora

dL

è nullo, implica che la forza generata è perpendicolare alla superficie equipotenziale.

N.B.: il lavoro è negativo quando ci si sposta nella direzione opposta alla forza

Una particella lasciata libera e non fissa nello spazio avrebbe sempre lavoro positivo perché seguirebbe la forza a cui è sottoposta senza farne resistenza.

Campo elettrostatico è conservativo, ovvero esiste una

V

t.c. il

$$L_q = -\Delta V$$

Il lavoro svolto in un percorso chiuso sarà sempre equivalente a zero, la **Prima equazione di Maxwell** afferma che:

 $\oint_{\gamma} \vec{E} \vec{dl} = 0$

2.7 Teorema di Gauss

Viene usato per calcolare

$$\vec{E}(r)$$

Prendiamo una carica puntiforme q. Il campo è costante mantenendo fissa una certa distanza, di conseguenza moltiplicando

 \vec{E} per la superficie della sfera

si otterrà una costante.

N.B.: un angolo solido è

$$d\Omega = \frac{dS_{sferica}}{r^2} = \frac{\hat{r}\hat{n}dS}{r^2}$$

Flusso del campo \vec{E}

Flusso elementare $d\Phi = \vec{E} \vec{dS}$

Dove $\vec{dS} = dS\hat{n}$, il flusso attraverso una superficie equivale a

$$\Phi(E) = \int_{sup} \vec{E} \, \widehat{\hat{n}} dS$$

che ha come unità di misura

$$[\Phi] = [E][superficie] = \frac{V}{m}m^2 = Vm$$

Avremo inoltre che il flusso sarà:

- $\bullet~>0$ quando il flusso sarà orientato con la normale di \hat{n}
- \bullet = 0 quando il flusso sarà perpendicolare alla normale
- $\bullet~<0$ quando il flusso sarà opposto alla direzione della normale

La Seconda equazione di Maxwell afferma che:

$$\Phi(\vec{E}) = \oint_{\gamma} \vec{E} d\vec{S} = \frac{Q_{TOT}}{\epsilon_0}$$

Prendendo in considerazione una carica q all'interno di una superficie e concentrandoci solo su una parte della superficie, il flusso generato dalla

carica sarà

$$\begin{split} d\Phi &= \vec{E} \vec{dS} = \\ \frac{q}{4\pi\epsilon_0 r^2} \hat{r} \hat{n} dS \\ \text{notare che} \frac{q}{4\pi\epsilon_0} \underbrace{\frac{\hat{r} \hat{n} dS}{\hat{r}^2}}_{q} \\ \text{di conseguenza} \frac{q}{4\pi\epsilon_0} d\Omega \end{split}$$

Quindi

$$\Phi = \oint_{\gamma} d\Phi = \frac{q}{4\pi\epsilon_0} \int_{\gamma} d\Omega = \frac{q}{\epsilon_0}$$

Aggiungendo altre cariche, il flusso di tutte sarà la somma dei flussi.

Perché le cariche esterne non influenzano? Perché il loro flusso è nullo essendo che entrano ed escono dalla superficie.

2.8 Elettrostatica nei conduttori

La sorgente del campo E è una carica Q, il campo generato agisce sulle cariche e queste lo percepiscono, a loro volta ogni carica genererà un campo che verrà percepito dalle altre cariche.

La materia neutra affetta da un campo reagirà in due possibili modi:

- le cariche libere si metteranno in moto;
- i materiali dielettrici vincoleranno le cariche.

2.8.1 Proprietà di un conduttore in equilibrio

La cariche di un conduttore affetto da un campo esterno si sposteranno in base alla forza generata dal campo. Con questa separazione di cariche si accende un campo interno al conduttore, indotto appunto da quello esterno. Le cariche si sposteranno a fino a quando il campo interno non sarà nullo.

1. Il campo interno di un conduttore in equilibrio è 0, in caso contrario le particelle sarebbero ancora in movimento

$$E_{interno} = E_{indotto} + E_{esterno} = 0$$

2. Il potenziale nel volume del conduttore sarà costante a quello della superficie

$$V = costante$$

Figura 2.1: Conduttore in equilibrio

3. Se il campo fosse nullo per il teorema di Gauss la carica interna in un conduttore è 0

$$Q_{interna} = 0$$

ha solo carica superficiale

$$Q_{superficiale} = \int_{superficie} \sigma dS$$

4. Il campo della superficie dei conduttori è noto

$$\vec{E}_{superficie} = \frac{\sigma}{\epsilon_0} \hat{n}$$

è un campo normale alla sua superficie.

2.8.2 Cavità in un conduttore

Le eventuali cariche si distribuiranno solo sulla superficie del conduttore e in particolar modo la superficie della cavità interna è sempre scarica. Quindi:

- 1. $\sigma_{\text{cavità}} = 0$
- 2. $\vec{E}_{\text{cavità}} = 0$

Dimostrazione:

1. Posizionando una superficie di Gauss all'interno del conduttore, abbiamo che il flusso del nostro campo sarà uguale all carica interna della superficie S_0

$$\oint_{S} \vec{E} d\vec{S} = \frac{Q_{int}}{\epsilon_0}$$

Figura 2.2: Conduttore cavo, con campo $E_{interno} = 0$ e potenziale V_0 costante

ma essendo il campo di cui calcolo il flusso, il campo interno, nullo allora la carica interna totale sarà uguale a zero

$$Q_{\text{int totale}} = 0$$

la superficie è arbitraria, quindi la posso stringere fino alla superficie della cavità, dimostrando che la carica **totale** sulla superficie della cavità è nulla, **N.B.**: questo non implica che la superficie della cavità sia scarica.

2. La carica è identicamente nulla, supponiamo che la carica totale sia nulla, ma che ci sia una separazione di carica sulla superficie della cavità, per l'elettrostatica ci sarebbe l'accensione di un campo indotto dalla separazione di cariche, ricordando che la circuitazione del campo in qualsiasi cammino Γ chiuso è sempre nulla

$$\oint_{\Gamma} E dl = 0$$

allora in una situazione simile io potrei sempre prendere una circuitazione Γ posta in parte all'interno del conduttore e in parte all'interno della cavità, una circuitazione simile viene calcolata come la somma degli integrali

$$\int_{\Gamma_{\rm conduttore}} + \int_{\Gamma_{\rm cavità}}$$

la parte interna al conduttore sarà nulla in quanto il campo elettrico all'interno di un conduttore è appunto nullo, quindi avrei per assurdo che la circuitazione è \neq da zero, questo non è possibile che non ci troviamo in equilibrio elettrostatico e andrebbe contro l'ipotesi di partenza.

Questo dimostra che la separazione di cariche non esiste e che la carica all'interno della cavità è identicamente nulla, questo significa a sua volte che non può esserci distribuzione di carica sulla superficie interna. Anche se caricassi il conduttore con una carica esterna la situazione della cavità non cambierà. Le leggi di Maxwell richiedono che qualunque sia la situazione delle cariche esterne dello spazio esterno il conduttore andrà in equilibrio elettrostatico distrubuendo le cariche sulla superficie esterna.

2.8.3 Schermo elettrostatico

Dal punto di vista generale abbiamo un conduttore cavo, possiamo avere delle cariche libere esterne e/o depositate sul conduttore. In particolare nessuna situazione esterna non può influenzare la situazione interna, la cavità agirà da **schermo elettrostatico**, ovvero la differenza di potenziale tra esterno e cavità rimarrà costante.

$$V_{esterno} - V_{interno} = costante$$

Il potenziale della cavità cambierà in conseguenza all' esterno, se non fosse così avrei modo dall'interno di sapere cosa succede all'esterno. Il campo elettrico nullo fa da barriera tra esterno e interno. Quindi se dalla cavità non ho modo di avere informazioni sull'esterno, viceversa sarà possibile?

Ipotizziamo di inserire all'interno della cavità un altro conduttore carico, ovviamente questo conduttore sarà in equilibrio e avrà un suo potenzale. Si potrà sempre posizionare una superficie di Gauss sul bordo della cavità, il flusso attraverso questa superficie deve essere ovviamente la carica interna che come visto sopra sarà nulla. Il conduttore per essere in equilibrio indurrà la formazione di una carica uguale e opposta posizionata sulla superficie della cavità.

Poiché il conduttore esterno era inzialmente scarico, per la conservazione della carica dovrà comparire una quantità di carica Q_1 sulla superficie. Apparirà solo sull'esterno poichè all'interno deve esserci campo elettrico nullo. Quindi abbiamo che una carica interna della cavità induce una carica esterna sul conduttore. Si potrà osservare un potenziale esterno dovuto alla carica Q_1 , all'interno della cavità avremo un campo $E \neq da$ zero. Ricordiamo che la differenza di potenziale tra la regione esterna e quella interna sarà sempre costante.

Supponendo di aggiungere delle cariche esterne, causeranno un cambio di potenziale, in particolare una separazione di cariche sulla superficie esterna.

- Cambierà qualcosa all'interno?
- Quanto vale la carica della cavità?

La carica sulla superficie della cavità sarà sempre l'opposto della carica sul conduttore interno, che ovviamente non potrà essere cambiata da ciò che succede all'esterno. La cavità è uno schermo elettrostatico, questo varrà anche in presenza di più conduttori all'interno della cavità.

2.8.4 Capacità elettrostatica

Conduttore isolato

Prendiamo un conduttore isolato caricato con una carica Q, come visto prima si porterà a un potenziale costante V, si definisce capacità elettrostatica

 $C\frac{Q}{V}$

l'unità di misura della capacità [C] è il Farad (F), il significato fisico è che la carica e il potenziale sono proporzionali. La capacità dipende solo dalla geometria del conduttore e in cosa è contenuto, nel nostro caso il vuoto.

Da un punto di vista pratico, prendiamo un conduttore isolato sferico di raggio R, depositando una carica sulla sua superficie si genererà un campo, con un corrispondente potenziale nello spazio, il campo dato da

$$E = \frac{Q}{4\pi\epsilon_0 r^2} \text{per r esterno}$$

mentre il potenziale è

$$V = \frac{Q}{4\pi\epsilon_0 r}$$
per r esterno

Per un eventuale r interno il campo è nullo e il potenziale ovviamente è costante. Il potenziale sulla superficie della sfera per r=R, quindi

$$C = \frac{Q}{V_{\rm superficiale \; r=R}} = 4\pi\epsilon_0 R$$

è la capacità di un conduttore sferico isolato. Per ottenere la capacità di un 1 Farad occorrerà una sfera di raggio

$$R = \frac{1}{4\pi\epsilon_0} = 9x10^9 m$$

. Si tratta di numeri molto grandi, di conseguenza solitamente la capacità si misura in

- pF ovvero $10^{-12}F$
- nF ovvero $10^{-9}F$
- μF ovvero $10^{-6} F$

Conduttore non isolato

Ci possono essere altri conduttori, in modo più esteso la terra stessa è un conduttore, il conduttore non essendo isolato sente effetti di induzione elettrostatica dai conduttori attorno. Quale potenziale si metterà nella definizione di capacità? Si definiranno conduttori solo a induzione completa.

Si definiscono conduttori a induzione completa, due conduttori per cui tutte le linee di campo di uno vanno nelle linee di campo dell'altro. Un metodo per realizzare la cosa è quello di mettere uno nella cavità dell'altro, perché posizionando una carica sul conduttore interno avrò una carica indotta sulla superficie della cavità dell'altro. Non ci sarà alcuna dispersione delle linee di campo. Di conseguenza la capacità si calcolerà come:

$$C = \frac{Q}{\Delta V}$$

questa è la capacità di due conduttori in induzione completa che si definisce anche **condensatore** i due conduttori si chiamano **armature** del condensatore.

Eventualmente le due armature potranno essere cilindriche, con la lunghezza di molto maggiore al raggio, in tal caso si potranno ignorare gli effetti di induzione esterna e si potrà considerarli in induzione completa.

Un ultimo caso sono due armature sottoforma di superfici, affiancate, di modo che la loro distanza sia molto minore della lunghezza delle superfici, che in maniera simile al cilindro si rirtroveranno in induzione completa.