Chapitre 9

Fonctions de référence

I. Fonction carré

1) <u>Définition</u>

Définition:

La **fonction carré** est la fonction définie sur \mathbb{R} par $f(x) = x^2$.

Exemples:

- L'image de -1 et de 1 par f est 1.
- L'image de $\sqrt{3}$ et de $\sqrt{3}$ par f est 3.
- 16 a deux antécédents par f qui sont 4 et -4.
- -7 n'admet aucun antécédent par f.

Remarque:

f(1) = 1 et f(2) = 4. f(2) n'est pas le double de f(1); cette fonction n'est donc pas linéaire.

2) Représentation graphique

Définition:

La courbe représentative de la fonction carré dans un repère est une **parabole** \mathscr{P} de **sommet** l'origine du repère.

Propriétés:

- Pour tout réel $x, x^2 \ge 0$.
 - La courbe \mathcal{P} est donc située au-dessus de l'axe des abscisses.
- Pour tout réel x, on a $(-x)^2 = x^2$. Ainsi la fonction carré est paire.
 - La courbe \mathcal{P} admet l'axe des ordonnées pour axe de symétrie.
- Si $0 \le a < b$ alors $a^2 < b^2$ et si $a < b \le 0$ alors $a^2 > b^2$.

x	$-\infty$	0		$+\infty$
x^2	+∞	0	1	+∞

On a le tableau de valeurs :

x	0	<u>1</u> 2	1	<u>3</u> 2	2	4
x^2	0	$\frac{1}{4}$	1	$\frac{9}{4}$	4	16

3) Équations et inéquations

Propriétés:

- Si $c \in \mathbb{R}$, alors l'ensemble des solutions dans \mathbb{R} de l'équation $x^2 = c$ est :
 - $\circ \quad \{ \quad -\sqrt{c} \quad ; \quad \sqrt{c} \quad \} \text{ si } c > 0.$
 - \circ {0} si c = 0.
 - $\circ \varnothing \text{ si } c < 0$
- Si c est un nombre réel strictement positif, alors l'ensemble des solutions dans \mathbb{R} de l'inéquation $x^2 < c$ est l'intervalle $] -\sqrt{c}$; \sqrt{c} [.

Exemples:

- L'ensemble des solutions dans \mathbb{R} de l'équation $x^2 = 3$ est $\{-\sqrt{3}, \sqrt{3}\}$.
- L'ensemble des solutions dans \mathbb{R} de l'inéquation $x^2 < 3$ est] $-\sqrt{3}$; $\sqrt{3}$ [.

II. Fonction racine carré

1) <u>Définition</u>

Définition:

La fonction racine carré est la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}]$.

Exemples:

- L'image de 1 par f est 1.
- L'image de 3 par f est $\sqrt{3}$.
- -1 n'admet pas d'image par f.
- -7 n'admet aucun antécédent par f.

Remarque:

f(1) = 1 et f(4) = 2. f(4) n'est pas le quadruple de f(1); cette fonction n'est donc pas linéaire.

2) Représentation graphique

Définition:

La courbe représentative de la fonction racine carré dans un repère est une **demi-parabole** de **sommet** l'origine du repère.

Propriétés:

• Pour tout réel x, $\sqrt{x} \ge 0$.

La courbe est donc située au-dessus de l'axe des abscisses.

- La fonction racine carrée est définie sur [0 ; +∞[qui n'est pas centré en 0.
 La fonction n'est ni paire, ni impaire.
- Si $0 \le a < b$ alors $\sqrt{a} < \sqrt{b}$.

x	0		+∞
\sqrt{x}	0	1	+∞

On a le tableau de valeurs :

х	0	0,25	1	2	4	9
\sqrt{x}	0	0,5	1	~ 1,41	2	3

3

3) Équations et inéquations

Propriétés:

Soit c un nombre réel dans $[0; +\infty[$:

- l'ensemble des solutions dans $[0; +\infty[$ de l'**équation** $\sqrt{x} = c \operatorname{est}\{c^2\}.$
- l'ensemble des solutions dans $[0; +\infty[$ de l'**inéquation** $\sqrt{x} < c$ est $[0; c^2[$.

III. Fonction inverse

1) <u>Définition</u>

Définition:

La **fonction inverse** est la fonction définie sur $\mathbb{R}^* =]-\infty$; $0[\cup]0$; $+\infty[$ par $f(x) = \frac{1}{x}$.

Exemples:

- L'image de 1 par f est 1.
- L'image de 3 par f est $\frac{1}{3}$.
- 0 n'admet aucun antécédent par f.

Remarques:

- 0 n'a pas d'image par la fonction inverse. 0 est une valeur interdite.
- Pour tout réel x non nul, l'inverse de $\frac{1}{x}$ est x.

2) Représentation graphique

Définition:

La courbe représentative de la fonction inverse dans un repère est une **hyperbole** $\mathcal H$ de **sommet** l'origine du repère.

Propriétés:

-]- ∞ ; 0[\cup]0; + ∞ [est centré en 0. De plus, $\frac{1}{-x} = -\frac{1}{x}$. Donc la fonction est impaire.
- La courbe ${\mathscr H}$ est **symétrique** par rapport à l'**origine** du repère.
- Pour tous réels a et b, non nuls, et de même signe, si a < b alors $\frac{1}{a} > \frac{1}{b}$.

х	$-\infty$	()	$+\infty$
$\frac{1}{x}$	0	-∞	+∞	0

On a le tableau de valeurs :

x	0	1	2	3	4	5
$\frac{1}{x}$	×	1	0,5	~ 0,33	0,25	0,2

5

3) Équations et inéquations

Propriétés:

- Si $c \in \mathbb{R}^*$, alors l'ensemble \mathscr{S} des solutions dans $]-\infty$; $0[\cup]0$; $+\infty[$ de l'équation $\frac{1}{x} = c$ est $\mathscr{S} = \left\{\frac{1}{c}\right\}$.
- Si $c \in \mathbb{R}$, alors l'ensemble des solutions dans]- ∞ ; $0[\cup]0$; + $\infty[$ de l'**inéquation** $\frac{1}{x} < c$ est :

$$\circ \qquad]-\infty\,;0[\,\cup\, \left|\frac{1}{c}\,;+\infty\right| \quad \text{si }c>0.$$

∘]-∞; 0[si
$$c = 0$$
.

$$\circ \qquad \left| \frac{1}{c}; 0 \right| \quad \text{si } c < 0$$

Exemple:

L'ensemble des solutions dans $]-\infty$; $0[\cup]0$; $+\infty[$ de l'inéquation $\frac{1}{x} < 7$ est $]-\infty$; $0[\cup]\frac{1}{7}$; $+\infty[$.

IV. Fonction cube

1) <u>Définition</u>

Définition:

La **fonction cube** est la fonction définie sur \mathbb{R} par $f(x) = x^3$.

Exemples:

- L'image de 1 par f est 1.
- L'image de -1 par f est -1.
- L'image de 3 par f est 27.

Remarque:

f(1) = 1 et f(2) = 8. f(2) n'est pas le double de f(1); cette fonction n'est donc pas linéaire.

2) Représentation graphique

Propriétés:

- Pour tout réel x, on a (-x)³ = -x³. Ainsi la fonction cube est impaire.
 La courbe représentative de la fonction cube est symétrique par rapport à l'origine du repère.
- Pour tous réels a et b, si a < b alors $a^3 < b^3$.

x	$-\infty$	0	$+\infty$
x^3	-∞	A A	+∞

On a le tableau de valeurs :

x	0	0,5	1	1,5	2	3
x^3	0	0,125	1	3,375	8	27

Propriétés:

Pour tout nombre réel a.

- Si 0 < a < 1, alors $0 < a^3 < a^2 < a < 1$.
- Si a > 1, alors $a^3 > a^2 > a > 1$.