FINAL

BASELINE ECOLOGICAL RISK ASSESSMENT

Upper Animas Mining District

San Juan County, COLORADO

March 2015

Prepared by: TechLaw, Inc. ESAT Region 8 16194 W. 45th Drive Golden, CO80403 DCN: EP8-1-1104

Prepared for:
US Environmental Protection Agency
Region 8
1595 Wynkoop Street
Denver, CO80202

Table of Contents

EX	ECUTIV	/E SUMMARY	16
		ntroduction	
	ES.2 F	Risk conclusions for benthic invertebrates	21
		Risk conclusions for fish	
	ES.4 F	Risk conclusions for wildlife receptors	23
1.0		IERAL INTRODUCTION	
	1.1	Scope	24
		General ecological risk assessment approach	
		Goals and objectives	
2.0	BAS	ELINE PROBLEM FORMULATION	27
		Data processing	
	2.1.1		27
	2.1.2		
	2.2 F	Problem formulation	29
	2.2.1	Environmental setting and contaminants at the Site	29
	2.2.1.	1 Brief Site description and history	29
	2.2.1.	- · · · · · · · · · · · · · · · · · · ·	
	2.2.1.		
	2.2.2	Ecological resources potentially at risk	31
	2.3 F	Preliminary fate and effects evaluation	32
	2.3.1	Fate and transport	32
	2.3.2	Ecosystems potentially at risk	37
	2.3.3	Complete exposure pathways	37
	2.4	Target receptors	38
	2.4.1		
	2.4.2	Representative species or communities	38
	2.4.2.	1 Community-level receptors	39
	2.4.2.	2 Wildlife receptors	40
	2.4.3	\mathcal{C}	
	2.4.3.	1 1	
	2.4.3.	2 Measures of effect	42
		Conceptual Site Model	
3.0	COF	PEC SELECTION & BASELINE ECOLOGICAL EFFECTS EVALU	JATION46
		Matrices of concern	
	3.2	Total metals versus dissolved metals	46
	3.3	Coxicity benchmarks	
	3.3.1		
	3.3.2		
	3.4	TRVs for wildlife receptors	48
		COPEC selection process	
	3.5.1	1 ,	
	3.5.2		
	3.5.3	Pore water COPECs for benthic invertebrates	53

	3.5.4	COPECs for wildlife receptors	55
		xicity testing	
	3.6.1	Surface water	5 <i>e</i>
	3.6.1.1	Surface Water Collection and dilutions	5 <i>e</i>
	3.6.1.2	Interpretation of the surface water toxicity test results	58
	3.6.2	Sediment toxicity testing	
	3.6.3	Benthic invertebrate survey	62
4.0	BASE	LINE EXPOSURE ESTIMATES	
	4.1 Intr	roduction	65
	4.2 Aq	uatic EUs	65
	4.3 Sea	asonal effects	66
	4.4 Exp	posure point concentrations	67
	4.4.1	Aquatic community-level receptors	68
	4.4.1.1	Surface water	
	4.4.1.2	Sediment	68
	4.4.1.3	Pore water	68
	4.4.2	Wildlife receptors	68
	4.4.2.1	Surface water	68
	4.4.2.2	Sediment	69
	4.5 Wi	ldlife food chain modeling	69
	4.6 Wi	ldlife EDDs	70
5.0	RISK (CHARACTERIZATION	71
	5.1 Intr	roduction	71
	5.2 Co	mmunity-level aquatic receptors - Benthic Invertebrates	72
	5.2.1	Measurement endpoint 1A	72
	5.2.1.1	Mainstem Mineral Creek	72
	5.2.1.2	Mainstem Cement Creek	73
	5.2.1.3	Animas River	73
	5.2.2	Measurement endpoint 1B	7 6
	5.2.2.1	Mainstem Mineral Creek	77
	5.2.2.2	Animas River	77
	5.2.3	Measurement endpoint 1C	80
	5.2.4	Measurement endpoint 1D	81
	5.3 Co	mmunity-level aquatic receptors – fish	85
	5.3.1	Measurement endpoint 2A	85
	5.3.1.1	Mainstem Mineral Creek	85
	5.3.1.2	Mainstem Cement Creek	86
	5.3.1.3	Animas River	
	5.3.2	Measurement endpoint 2B	92
	5.3.3	Risk Conclusions for assessment endpoint 2 (fish community)	92
	5.4 Aq	uatic invertivorous birds	
	5.4.1	Measurement endpoint 3A	95
	5.5 Aq	uatic omnivorous birds	96
	5.5.1	Measurement endpoint 4A	
	5.6 Pis	civorous birds	97
	5.6.1	Measurement endpoint 5A	97

	5.7	Aquatic herbivorous mammals	97
	5.7	7.1 Measurement endpoint 6A	98
	5.8	General risk conclusions for wildlife receptors	98
	5.9	Uncertainty Analysis	99
	5.9	P.1 Community-level receptors	99
	5.9	9.2 Wildlife receptors	101
6.0	SU	JMMARY AND CONCLUSIONS	103
	6.1	Introduction	
	6.2	Risk conclusions for benthic invertebrates	107
	6.3	Risk conclusions for fish	107
	6.4	Risk conclusions for wildlife receptors	
7.0	RI	EFERENCES	28

List of figures

Figure 1.1	Sampling locations on the Animas River upstream and across from Silverton
Figure 1.2	Sampling locations on the Animas River downstream from Silverton
Figure 2.1	Conceptual site model for the aquatic habitats and receptors evaluated in the BERA
Figure 3.1	Summary of select benthic invertebrate community data collected in September 2014 from the Animas River, mainstem Cement Creek and mainstem Mineral Creek
Figure 5.1	Geometric mean no effect and effect HQs for the benthic invertebrate community exposed to sediment in the Animas River above Cement Creek and below Mineral Creek
Figure 5.2	Sample-specific no effect and effect HQs for select metals in sediment collected from the Animas River, mainstem Cement Creek and mainstem Mineral Creek
Figure 5.3	Comparison of four benthic community metrics measured in 2014 at three sampling locations in the Animas River against the same metrics measured in 2004-2010
Figure 5.4	Scatter plots for pH in surface water
Figure 5.5	Scatter plots for total Al HQs in surface water
Figure 5.6	Scatter plots for dissolved Cd HQs in surface water
Figure 5.7	Scatter plots for dissolved Cu HQs in surface water
Figure 5.8	Scatter plots for dissolved Mn HQs in surface water
Figure 5.9	Scatter plots for dissolved Pb HQs in surface water
Figure 5.10	Scatter plots for dissolved Zn HQs in surface water
Figure 5.11	Scatter plots of dissolved metals chronic HQs in surface water samples collected using MiniSipper sampling devices in 2014
Figure 5.12	Geometric mean RME and CTE HQs for the four wildlife receptors evaluated using food chain modeling

List of tables

Table 2.1	Summary of the 2009-2014 surface water sampling efforts at select locations in the Upper Animas River, Cement Creek, and Mineral Creek
Table 2.2	Summary of the 2009-2014 sediment sampling efforts at select locations in the Upper Animas River, Cement Creek, and Mineral Creek
Table 2.3	Summary of the 2009-2014 pore water sampling efforts at select locations in the Upper Animas River, Cement Creek, and Mineral Creek
Table 3.1	Surface water chronic benchmarks and sediment no effect and effect benchmarks
Table 3.2	No effect and effect TRVs for birds
Table 3.3	No effect and effect TRVs for mammals
Table 3.4	Selection of surface water COPECs for community-level receptors in mainstem Mineral Creek
Table 3.5	Selection of surface water COPECs for community-level receptors in mainstem Cement Creek
Table 3.6	Selection of surface water COPECs for community-level receptors in the Animas River above mainstem Cement Creek
Table 3.7	Selection of surface water COPECs for community-level receptors in the Animas River between mainstem Cement Creek and mainstem Mineral Creek
Table 3.8	Selection of surface water COPECs for community-level receptors in the Animas River below mainstem Mineral Creek
Table 3.9	Summary of the surface water COPECs for community-level receptors
Table 3.10	Selection of sediment COPECs for the benthic invertebrate community in mainstem Mineral Creek
Table 3.11	Selection of sediment COPECs for the benthic invertebrate community in mainstem Cement Creek
Table 3.12	Selection of sediment COPECs for the benthic invertebrate community in the Animas River above mainstem Cement Creek
Table 3.13	Selection of sediment COPECs for the benthic invertebrate community in the Animas River below mainstem Mineral Creek
Table 3.14	Summary of the sediment COPECs for the benthic invertebrate community
Table 3.15	Selection of pore water COPECs for the benthic invertebrate community in the Animas River above mainstem Cement Creek
Table 3.16	Selection of pore water COPECs for the benthic invertebrate community in the Animas River below mainstem Mineral Creek
Table 3.17	Selection of pore water COPECs for the benthic invertebrate community in mainstem Mineral Creek
Table 3.18	Summary of the pore water COPECs for the benthic invertebrate community
Table 3.19	October 2012 acute surface water toxicity test results for juvenile rainbow trout
Table 3.20	November 2012 acute surface water toxicity test results for juvenile rainbow trout
Table 3.21	April 2013 acute surface water toxicity test results for juvenile rainbow trout
Table 3.22	Summary of the acute surface water toxicity test results for juvenile rainbow trout
Table 3.23	Toxicity in the amphipod <i>H. azteca</i> exposed to sediment in the laboratory
Table 3.24	Summary of select benthic invertebrate community data from the Animas River, mainstem Cement Creek, and mainstem Mineral Creek (Sep. 2014)

Table 4.1	Surface water EPCs for community-level receptors in mainstem Mineral Creek	
Table 4.2	Surface water EPCs for community-level receptors in mainstem Cement Creek	
Table 4.3	Surface water EPCs for community-level receptors in the Animas River above	
	mainstem Cement Creek	
Table 4.4	Surface water EPCs for community-level receptors in the Animas River between	
	mainstem Cement Creek and mainstem Mineral Creek	
Table 4.5	Surface water EPCs for community-level receptors at sampling location A71B in	
	the Animas River below mainstem Mineral Creek	
Table 4.6	Surface water EPCs for community-level receptors at sampling location A72 in	
	the Animas River below mainstem Mineral Creek	
Table 4.7	Surface water EPCs for community-level receptors at sampling location A73 in	
	the Animas River below mainstem Mineral Creek	
Table 4.8	Surface water EPCs for community-level receptors at sampling location A73B in	
	the Animas River below mainstem Mineral Creek	
Table 4.9	Surface water EPCs for community-level receptors at sampling location A75D in	
	the Animas River below mainstem Mineral Creek	
Table 4.10	Surface water EPCs for community-level receptors at sampling location A75B in	
	the Animas River below mainstem Mineral Creek	
Table 4.11	Surface water EPCs for community-level receptors at sampling location Bakers	
	Bridge in the Animas River below mainstem Mineral Creek	
Table 4.12	Sediment EPCs for mainstem Mineral Creek	
Table 4.13	Sediment EPCs for mainstem Cement Creek	
Table 4.14	Sediment EPCs for the Animas River above mainstem Cement Creek	
Table 4.15	Sediment EPCs at sampling location A72 on the Animas River below mainstem	
	Mineral Creek	
Table 4.16	Sediment EPCs at sampling location A73 on the Animas River below mainstem	
	Mineral Creek	
Table 4.17	Sediment EPCs at sampling location A73B on the Animas River below mainstem	
	Mineral Creek	
Table 4.18	Sediment EPCs at sampling location A75D on the Animas River below mainstem	
	Mineral Creek	
Table 4.19	Sediment EPCs at sampling location A75B on the Animas River below mainstem	
	Mineral Creek	
Table 4.20	Sediment EPCs at sampling location Bakers Bridge on the Animas River below	
	mainstem Mineral Creek	
Table 4.21	Pore water EPCs for community-level receptors for mainstem Mineral Creek	
Table 4.22	Pore water EPCs for community-level receptors for the Animas River above	
	mainstem Cement Creek	
Table 4.23	Pore water EPCs for community-level receptors at sampling location A72 on the	
	Animas River below mainstem Mineral Creek	
Table 4.24	Pore water EPCs for community-level receptors at sampling location A73 on the	
	Animas River below mainstem Mineral Creek	
Table 4.25	Pore water EPCs for community-level receptors at sampling location A73B on the	
	Animas River below mainstem Mineral Creek	
Table 4.26	Pore water EPCs for community-level receptors at sampling location A75D on the	
	Animas River below mainstem Mineral Creek	

Table 4.27	Pore water EPCs for community-level receptors at sampling location Bakers Bridge on the Animas River below mainstem Mineral Creek
Table 4.28	Surface water EPCs for wildlife receptors foraging on the Animas River above
	mainstem Cement Creek
Table 4.29	Surface water EPCs for wildlife receptors foraging at sampling location A72 on the Animas River below mainstem Mineral Creek
Table 4.30	Surface water EPCs for wildlife receptors foraging at sampling location A73 on
	the Animas River below mainstem Mineral Creek
Table 4.31	Surface water EPCs for wildlife receptors foraging at sampling location A73B on
	the Animas River below mainstem Mineral Creek
Table 4.32	Surface water EPCs for wildlife receptors foraging at sampling location A75D on
14614 1.52	the Animas River below mainstem Mineral Creek
Table 4.33	Surface water EPCs for wildlife receptors foraging at sampling location A75B on
1000	the Animas River below mainstem Mineral Creek
Table 4.34	Surface water EPCs for wildlife receptors foraging at sampling location Bakers
	Bridge on the Animas River below mainstem Mineral Creek
Table 4.35	EDD formulas for the target wildlife receptors
Table 4.36	Exposure parameters for the four wildlife receptors used in food chain modeling
Table 4.37	Soil-to-plant regression models and uptake factors for use in food chain modeling
Table 4.38	Sediment-to-benthic invertebrate regression models and uptake factors for use in
	food chain modeling
Table 4.39	Sediment-to-fish uptake factors for use in food chain modeling
Table 4.40	EDDs for the American dipper foraging on the Animas River above mainstem
	Cement Creek
Table 4.41	EDDs for the American dipper foraging at sampling location A72 on the Animas
	River below mainstem Mineral Creek
Table 4.42	EDDs for the American dipper foraging at sampling location A73 on the Animas
	River below mainstem Mineral Creek
Table 4.43	EDDs for the American dipper foraging at sampling location A73B on the
	Animas River below mainstem Mineral Creek
Table 4.44	EDDs for the American dipper foraging at sampling location A75D on the
	Animas River below mainstem Mineral Creek
Table 4.45	EDDs for the American dipper foraging at sampling location A75B on the
	Animas River below mainstem Mineral Creek
Table 4.46	EDDs for the American dipper foraging at sampling location Bakers Bridge on
	the Animas River below mainstem Mineral Creek
Table 4.47	EDDs for the mallard foraging on the Animas River above mainstem Cement
	Creek (100% benthic invertebrate diet)
Table 4.48	EDDs for the mallard foraging at sampling location A72 on the Animas River
	below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 4.49	EDDs for the mallard foraging at sampling location A73 on the Animas River
	below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 4.50	EDDs for the mallard foraging at sampling location A73B on the Animas River
	below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 4.51	EDDs for the mallard foraging at sampling location A75D on the Animas River
	below mainstem Mineral Creek (100% benthic invertebrate diet)

Table 4.52	EDDs for the mallard foraging at sampling location A75B on the Animas River below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 4.52	· · · · · · · · · · · · · · · · · · ·
Table 4.53	EDDs for the mallard foraging at sampling location Bakers Bridge on the Animas
T 11 4 5 4	River below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 4.54	EDDs for the mallard foraging on the Animas River above Cement Creek (50%-50% diet)
Table 4.55	EDDs for the mallard foraging at sampling location A72 on the Animas River
	below mainstem Mineral Creek (50%-50% diet)
Table 4.56	EDDs for the mallard foraging at sampling location A73 on the Animas River
	below mainstem Mineral Creek (50%-50% diet)
Table 4.57	EDDs for the mallard foraging at sampling location A73B on the Animas River
10010	below mainstem Mineral Creek (50%-50% diet)
Table 4.58	EDDs for the mallard foraging at sampling location A75D on the Animas River
14010 1.50	below mainstem Mineral Creek (50%-50% diet)
Table 4.59	EDDs for the mallard foraging at sampling location A75B on the Animas River
	below mainstem Mineral Creek (50%-50% diet)
Table 4.60	EDDs for the mallard foraging at sampling location Bakers Bridge on the Animas
	River below mainstem Mineral Creek (50%-50% diet)
Table 4.61	EDDs for the belted kingfisher foraging on the Animas River above mainstem
	Cement Creek
Table 4.62	EDDs for the belted kingfisher foraging at sampling location A72 on the Animas
	River below mainstem Mineral Creek
Table 4.63	EDDs for the belted kingfisher foraging at sampling location A73 on the Animas
10010	River below mainstem Mineral Creek
Table 4.64	EDDs for the belted kingfisher foraging at sampling location A73B on the
14010 1.01	Animas River below mainstem Mineral Creek
Table 4.65	EDDs for the belted kingfisher foraging at sampling location A75D on the
14010 1.05	Animas River below mainstem Mineral Creek
Table 4.66	EDDs for the belted kingfisher foraging at sampling location A75B on the
14016 4.00	Animas River below mainstem Mineral Creek
Table 4.67	EDDs for the belted kingfisher foraging at sampling location Bakers Bridge on
1 abic 4.07	the Animas River below mainstem Mineral Creek
Table 4.68	EDDs for the muskrat foraging on the Animas River above mainstem Cement
1 autc 4.00	Creek
Table 4.60	
Table 4.69	EDDs for the muskrat foraging at sampling location A72 on the Animas River
T-1-1- 4.70	below mainstem Mineral Creek
Table 4.70	EDDs for the muskrat foraging at sampling location A73 on the Animas River
T 11 471	below mainstem Mineral Creek
Table 4.71	EDDs for the muskrat foraging at sampling location A73B on the Animas River
T 11 4 72	below mainstem Mineral Creek
Table 4.72	EDDs for the muskrat foraging at sampling location A75D on the Animas River
m 11 1 ==	below mainstem Mineral Creek
Table 4.73	EDDs for the muskrat foraging at sampling location A75B on the Animas River
m 11 :=:	below mainstem Mineral Creek
Table 4.74	EDDs for the muskrat foraging at sampling location Bakers Bridge on the Animas
	River below mainstem Mineral Creek

Table 5.1	Summary of the risk estimation approaches by receptor group, exposure unit, and measurement endpoint
Table 5.2	Sediment HQs for mainstem Mineral Creek
Table 5.3	Sediment HQs for mainstem Cement Creek
Table 5.4	Sediment HQs for the Animas River above mainstem Cement Creek
Table 5.5	Sediment HQs for sampling location A72 on the Animas River below mainstem
14010 0.0	Mineral Creek
Table 5.6	Sediment HQs for sampling location A73 on the Animas River below mainstem Mineral Creek
Table 5.7	Sediment HQs for sampling location A73B on the Animas River below mainstem Mineral Creek
Table 5.8	Sediment HQs for sampling location A75D on the Animas River below mainstem Mineral Creek
Table 5.9	Sediment HQs for sampling location A75B on the Animas River below mainstem Mineral Creek
Table 5.10	Sediment HQs for sampling location Bakers Bridge on the Animas River below mainstem Mineral Creek
Table 5.11	Average and lower hardnesses used for deriving hardness-sensitive surface water benchmarks needed to calculate chronic HQs
Table 5.12	Pore water HQs for benthic community-level receptors in mainstem Mineral Creek
Table 5.13	Pore water HQs for aquatic community-level receptors in the Animas River above mainstem Cement Creek
Table 5.14	Pore water HQs for benthic community-level receptors at sampling location A72 in the Animas River below mainstem Mineral Creek
Table 5.15	Pore water HQs for benthic community-level receptors at sampling location A73 in the Animas River below mainstem Mineral Creek
Table 5.16	Pore water HQs for benthic community-level receptors at sampling location A73B in the Animas River below mainstem Mineral Creek
Table 5.17	Surface water HQs for benthic community-level receptors at sampling location A75D in the Animas River below mainstem Mineral Creek
Table 5.18	Pore water HQs for community-level receptors at sampling location Bakers Bridge in the Animas River below mainstem Mineral Creek
Table 5.19	Average and lower hardness used for deriving hardness-sensitive surface water benchmarks needed to calculate chronic HQs
Table 5.20	Surface water HQs for aquatic community-level receptors in mainstem Mineral Creek
Table 5.21	Surface water HQs for aquatic community-level receptors in mainstem Cement Creek
Table 5.22	Surface water HQs for aquatic community-level receptors in the Animas River above mainstem Cement Creek
Table 5.23	Surface water HQs for aquatic community-level receptors in the Animas River between the mainstems of Cement Creek and Mineral Creek
Table 5.24	Surface water HQs for aquatic community-level receptors at sampling location A 71B in the Animas River below mainstern Mineral Creek

Table 5.25	Surface water HQs for aquatic community-level receptors at sampling location A72 in the Animas River below mainstem Mineral Creek
Table 5.26	
1 aute 5.20	Surface water HQs for aquatic community-level receptors at sampling location A73 in the Animas River below mainstem Mineral Creek
Table 5.27	Surface water HQs for aquatic community-level receptors at sampling location
	A73B in the Animas River below mainstem Mineral Creek
Table 5.28	Surface water HQs for aquatic community-level receptors at sampling location
	A75D in the Animas River below mainstem Mineral Creek
Table 5.29	Surface water HQs for aquatic community-level receptors at sampling location
	A75B in the Animas River below mainstem Mineral Creek
Table 5.30	Surface water HQs for aquatic community-level receptors at sampling location
	Bakers Bridge in the Animas River below mainstem Mineral Creek
Table 5.31	HQs for the American dipper foraging on the Animas River above mainstem
	Cement Creek
Table 5.32	HQs for the American dipper foraging at sampling location A72 on the Animas
	River below mainstem Mineral Creek
Table 5.33	HQs for the American dipper foraging at sampling location A73 on the Animas
	River below mainstem Mineral Creek
Table 5.34	HQs for the American dipper foraging at sampling location A73B on the Animas
	River below mainstem Mineral Creek
Table 5.35	HQs for the American dipper foraging at sampling location A75D on the Animas
	River below mainstem Mineral Creek
Table 5.36	HQs for the American dipper foraging at sampling location A75B on the Animas
	River below mainstem Mineral Creek
Table 5.37	HQs for the American dipper foraging at sampling location Bakers Bridge on the
	Animas River below mainstem Mineral Creek
Table 5.38	HQs for the mallard foraging on the Animas River above mainstem Cement Creek
	(100% benthic invertebrate diet)
Table 5.39	HQs for the mallard foraging at sampling location A72 on the Animas River
	below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 5.40	HQs for the mallard foraging at sampling location A73 on the Animas River
	below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 5.41	HQs for the mallard foraging at sampling location A73B on the Animas River
	below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 5.42	HQs for the mallard foraging at sampling location A75D on the Animas River
	below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 5.43	HQs for the mallard foraging at sampling location A75B on the Animas River
	below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 5.44	HQs for the mallard foraging at sampling location Bakers Bridge on the Animas
	River below mainstem Mineral Creek (100% benthic invertebrate diet)
Table 5.45	HQs for the mallard foraging on the Animas River above mainstem Cement Creek
	(50% benthic invertebrate diet)
Table 5.46	HQs for the mallard foraging at sampling location A72 on the Animas River
	below mainstem Mineral Creek (50% benthic invertebrate diet)
Table 5.47	HQs for the mallard foraging at sampling location A73 on the Animas River
	below mainstem Mineral Creek (50% benthic invertebrate diet)

Table 5.48	HQs for the mallard foraging at sampling location A73B on the Animas River below mainstem Mineral Creek (50% benthic invertebrate diet)
Table 5.49	HQs for the mallard foraging at sampling location A75D on the Animas River below mainstem Mineral Creek (50% benthic invertebrate diet)
Table 5.50	HQs for the mallard foraging at sampling location A75B on the Animas River below mainstem Mineral Creek (50% benthic invertebrate diet)
Table 5.51	HQs for the mallard foraging at sampling location Bakers Bridge on the Animas River below mainstem Mineral Creek (50% benthic invertebrate diet)
Table 5.52	HQs for the belted kingfisher foraging on the Animas River above mainstem Cement Creek
Table 5.53	HQs for the belted kingfisher foraging at sampling location A72 on the Animas River below mainstem Mineral Creek
Table 5.54	HQs for the belted kingfisher foraging at sampling location A73 on the Animas River below mainstem Mineral Creek
Table 5.55	HQs for the belted kingfisher foraging at sampling location A73B on the Animas River below mainstem Mineral Creek
Table 5.56	HQs for the belted kingfisher foraging at sampling location A75D on the Animas River below mainstem Mineral Creek
Table 5.57	HQs for the belted kingfisher foraging at sampling location A75B on the Animas River below mainstem Mineral Creek
Table 5.58	HQs for the belted kingfisher foraging at sampling location Bakers Bridge on the Animas River below mainstem Mineral Creek
Table 5.59	HQs for the muskrat foraging on the Animas River above mainstem Cement Creek
Table 5.60	HQs for the muskrat foraging at sampling location A72 on the Animas River below mainstem Mineral Creek
Table 5.61	HQs for the muskrat foraging at sampling location A73 on the Animas River below mainstem Mineral Creek
Table 5.62	HQs for the muskrat foraging at sampling location A73B on the Animas River below mainstem Mineral Creek
Table 5.63	HQs for the muskrat foraging at sampling location A75D on the Animas River below mainstem Mineral Creek
Table 5.64	HQs for the muskrat foraging at sampling location A75B on the Animas River below mainstem Mineral Creek
Table 5.65	HQs for the muskrat foraging at sampling location Bakers Bridge on the Animas River below mainstem Mineral Creek

Appendices

Appendix 1	pH, hardness, and total plus dissolved metal concentrations measured in surface water samples from the three waterways
Appendix 2	Total metal concentrations measured in bulk sediment samples collected from the Animas River and the two creeks
Appendix 3	Hardness and dissolved metal concentrations measured in pore water samples collected in the field from the Animas River
Appendix 4	Benthic invertebrate tissue residue data collected from the Animas River in September 2014
Appendix 5	Trout-specific hardness-dependent acute toxicity thresholds (DRAFT)
Appendix 6	Known or likely vertebrate species occurrence in San Juan County, CO
Appendix 7	Calculating hardness-specific benchmarks and HQs in surface water samples
Appendix 8	Calculating sample-specific HQs for dissolved metals in pore water samples collected in the field
Appendix 9a	surface water toxicitytesting reportfor the Upper Animas River (October and November 2012)
Appendix 9b	Surface water toxicity testing report for the Upper Animas River (April 2013)
Appendix 10a	Sediment toxicity testing report for the Upper Animas River (December 2012)
Appendix 10b	Sediment toxicity testing report for the Upper Animas River (November 2014)
Appendix 11	Benthic invertebrate community metrics (September 2014)
Appendix 12	ProUCL calculations to derive EPCs for dissolved metals in surface water for aquatic community-level receptors
Appendix 13	ProUCL calculations to derive EPCs for total metals in surface water for wildlife receptors
Appendix 14	ProUCL calculations to derive sediment EPCs for benthic invertebrates and for use in wildlife food chain modeling
Appendix 15	ProUCL calculations to derive EPCs for dissolved metals in field-collected pore water for benthic invertebrates

- Appendix 16 Fall 2010 benthic macroinvertebrate data analysis for the Animas River stakeholder's group
- Appendix 17a Selected HQs associated with pore water and bulk sediment from the December 2012 sediment toxicity test
- Appendix 17b Selected HQs associated with pore water and bulk sediment from the November 2014 sediment toxicity test
- Appendix 18 2010 Animas River fisheries report
- Appendix 19 2014 Animas River fisheries report

LIST OF ABBREVIATIONS AND ACRONYMS

Ag silver
Al aluminum
As arsenic

AUF area use factor BAV bioavailability BB Bakers Bridge

BERA baseline ecological risk assessment

Be beryllium

BCF bioconcentration factor
BLM Bureau of Land Management

BW body weight

CCC criteria continuous concentration

Cd cadmium

CDOW Colorado Division of Wildlife

CDPHE Colorado Department of Public Health and the Environment

CO Colorado

COPEC contaminant of potential ecological concern

Cr chromium

CSM conceptual site model

CSWB chronic surface water benchmark

CTE1 central tendency exposure

Cu copper

DL detection limit DW dry weight

EDD estimated daily dose

EPA United States Environmental Protection Agency

EPC exposure point concentration

ER-L effect range-low ER-M Effect Range-Median

EU exposure unit

Fe iron

FIR food ingestion rate

ft feet

gpm gallons per minute
HBI Hilsenhoff Biotic Index
HRW hard reconstituted water

HQ hazard quotient
LEL lowest effect level
LOE line of evidence

mg/kg milligrams per kilogram (parts per million)

mg/kg.d milligrams per kilogram per day

mg/kg bw.d milligrams per kilogram body weight per day

MMI Mobile Metal Ions

Mn manganese

Upper Animas Mining District

Final BERA March 2015 Ni nickel

NRWQC national recommended water quality criteria

Pb lead

PEC probable effect concentration

PEL probable effect level

RME reasonable maximum exposure

ROC receptor of concern

Se selenium

SEL severe effect level

SGC Sunnyside Gold Corporation

Site mainstem Cement Creek, mainstem Mineral Creek, and the Animas River

at and below Silverton

SLERA screening-level ecological risk assessment

SMAV Species Mean Acute Value

SSL soil screening level

T&E threatened and endangered TEC threshold effect concentration

TEL threshold effect level
TRV toxicity reference value
UCL Upper Confidence Limit
WIR water ingestion rate

WP work plan

WQC water quality criteria

Zn zinc

EXECUTIVE SUMMARY

ES.1 Introduction

The Animas River flows through the town of Silverton in San Juan County, CO. This waterway is affected by flow, which has come in contact with mineralized material, either naturally or as a result of mining activities, such as through the creation of mine adits. Affected water originates in the upper reaches of the two major tributaries of the Animas River in this area, namely Cement Creek and Mineral Creek, and from other tributaries of the Animas River further upstream of Silverton. The tributaries contain high levels of metals and acidity that are carried downstream to the Animas River. This evaluation did not attempt to separate natural contamination from past mining-related contamination, but assessed the total risk from all sources combined.

The Exposure Units (EUs) evaluated in this Baseline Ecological Risk Assessment (BERA) consist of the following water bodies:

- The Animas River above mainstem Cement Creek: this reach of the Animas River covers about two river-miles between sampling locations A60 and A68. All the sampling locations from this reach of the river were combined into a single EU. Location A68 is the furthest downstream in this reach and is located about 1,000 feet (ft) above the confluence with mainstem Cement Creek. Location A56, situated about 1,000 ft above A60 and just upgradient of the Mayflower Mill and the Arrastra Creek, represents regional upstream conditions. Note that this BERA did not consider this location to represent reference conditions because both the surface water and sediment samples collected at A56 carry a persistent contaminant signal which appears to be associated with mining or ore-related sources further upstream in the watershed.
- The Animas River between mainstem Cement Creek and mainstem Mineral Creek: this reach of the Animas River covers about one river-mile between the confluences of the two creeks. Location A69A is about 3,000 ft downstream of the confluence with mainstem Cement Creek (just upstream of Idaho Gulch), whereas location A70B is just upstream of the confluence with mainstem Mineral Creek. Both of these sampling locations were combined into one EU.
- The Animas River below mainstem Mineral Creek: this reach of the Animas River covers about 30 river-miles between sampling locations A71B, and Bakers Bridge (BB). The following values represent the approximate distance (in river-miles, where appropriate) separating the point where mainstem Mineral Creek enters the Animas River in Silverton and the downstream sampling locations: A71B—around 300 ft, A72—around 3,500 ft, A73/A73B—5.9 miles, A75D/A75B—18.9 miles, and BB—30 miles. Each sampling location on this reach of the river was considered as a distinct EU due to the large distances separating A71B and BB.

16 | Page

- *Mainstem Cement Creek*: the section evaluated in this BERA is represented by sampling locations CC48 and CC49 found on the creek within one mile of the confluence with the Animas River. Both sampling locations were combined into one EU.
- *Mainstem Mineral Creek*: the section evaluated in this BERA is represented by sampling location M34 found on the creek just upstream of the confluence with the Animas River.

The main goal of this BERA is to refine the risk estimates presented in the Screening-Level Ecological Risk Assessment (SLERA; TechLaw, 2013) for different types of receptor groups, as follows:

- benthic invertebrates exposed to sediment in mainstem Cement Creek, mainstem Mineral Creek, the Animas River above Cement Creek, and the Animas River below Mineral Creek (note: no sediment samples were collected from the Animas River between mainstem Cement Creek and mainstem Mineral Creek),
- benthic invertebrates exposed to pore water collected from undisturbed bedded sediment in the Animas River,
- fish exposed to surface water in mainstem Cement Creek, mainstem Mineral Creek, and the three reaches of the Animas River, and
- four wildlife species representing different trophic levels exposed via ingestion of surface water, sediment, and food items from the Animas River above mainstem Cement Creek and below mainstem Mineral Creek.

The analytes of interest to this BERA consist of Aluminum (Al), Arsenic (As), Beryllium (Be), Cadmium (Cd), Chromium (Cr), Copper (Cu), Iron (Fe), Lead (Pb), Manganese (Mn), Nickel (Ni), Selenium (Se), Silver (Ag), and Zinc (Zn). These metals represented the Contaminants of Potential Ecological Concern (COPECs) investigated in the SLERA.

This BERA is a realistic evaluation to quantify risk to community and wildlife-level receptors exposed under current conditions. The evaluation recognizes that mainstem Mineral Creek upstream of the confluence with South Fork Mineral Creek, and mainstem Cement Creek, may not support viable fish or macroinvertebrate communities before large-scale mining activities started in the 19th century due to naturally high levels of metals and low pH levels in their surface waters. These two waterways were nonetheless included in this BERA to provide risk estimates and help identify risk drivers and exposure pathways of concern. It was expected that evaluating these waterways within a risk-based context would provide information to support a scientific management decision point for discussion among the stakeholders.

The surface water data represented dozens of samples collected from the five EUs between May 2009 and September 2014. The sediment data set was substantially smaller and consisted of analytical data collected from those same waterways during five sampling events in May 2012, October 2012, May 2013, April 2014, and September 2014. The pore water data set consisted of

17 | Page

analytical data collected in April and September 2014. Samples obtained by the United States Environmental Protection Agency (EPA) and others before May 2009 as part of earlier investigations were not evaluated in this BERA in order to focus on "current" exposure conditions. The available information was reviewed to identify assessment endpoints and measures of effect, and to develop a Conceptual Site Model (CSM) which showed the movement of contaminants from the sources to the receptors.

The effects evaluation used chronic surface water benchmarks (CSWBs) (hardness adjusted, if necessary), plus no-effect and effect sediment benchmarks, to quantify toxicity to aquatic community-level receptor groups exposed to surface water, sediment, and pore water. No-effect and effect Toxicity Reference Values (TRVs) for birds and mammals were used to assess the toxicity of metals via ingestion by wildlife receptors. In addition, surface water and sediment toxicity tests were performed in the laboratory on samples collected from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above Cement Creek and below Mineral Creek to measure effects to benthic invertebrates (the amphipod *Hyalella azteca*) and juvenile rainbow trout (*Oncorynchus mykiss*).

EPA and others assessed the benthic community structure and function in the five EUs and obtained benthic invertebrate samples for tissue residue analysis as part of additional sampling efforts performed in 2014 to enhance the existing database in support of this BERA.

The original surface water and sediment COPECs for benthic invertebrates and fish were reselected in this BERA because more analytical data were generated since the SLERA was released in 2013. A metal detected at least once in sediment was retained for use in wildlife food chain modeling but only if it was also identified as an "Important Bioaccumulative Compound" in Table 4-2 of *Bioaccumulation testing and interpretation for the purpose of sediment quality assessment* (EPA,2000).

Mainstem Cement Creek, mainstem Mineral Creek, and the three reaches of the Animas River were treated as separate EUs to derive Reasonable Maximum Exposure (RME) and Central Tendency Exposure (CTE) Exposure Point Concentrations (EPCs) for use in the baseline evaluation. The ProUCL software (EPA, 2013) was used whenever possible (depending on the size of the datasets) to calculate 95% Upper Confidence Levels (UCLs) for use as the RMEs and arithmetic means for use as CTEs. To fine tune the exposure to aquatic, community-level receptors, the surface water data were further split into three hydraulic periods, namely the prerunoff period (February to April), runoff period (May and June), and the post-runoff period (July to November). No surface water data were available for December or January.

The sediment data set was too sparse (five samples) to be split up into the three hydraulic periods. Instead, the sediment analytical data were combined across seasons for each EU to calculate RME and CTE EPCs for the sediment COPECs.

18 | Page

The EPC calculation method varied depending on the EUs, as follows:

- Animas River above mainstem Cement Creek: the surface water, sediment, and pore water
 analytical data were combined across the six sampling locations into separate datasets to
 calculate COPEC-specific RME and CTE EPCs for these three matrices. Also, a benthic
 invertebrate sample was collected from two sample locations in this reach for use in
 tissue residue analysis. These two samples were combined to calculate a mean and
 maximum tissue concentration for each COPEC for use in wildlife food chain modeling.
- Animas River between Cement and Mineral Creeks: only two surface water data points were available from the two sampling locations in this reach of the river. No sediment or benthic invertebrate samples were collected. Hence, wildlife receptors could not be evaluated either because those would have required either (a) sediment analytical data to estimate the tissue residue levels in the food items for use in the food chain models, or (b) measured benthic invertebrate tissue residue data. The surface water analytical data were summarized by sampling location for calculating COPEC-specific RME and CTE EPCs to evaluate the fish community.
- Animas River below mainstem Mineral Creek: up to several miles separate the various EUs in this lower reach of the river. As a result, the BERA assumed that wildlife receptors would not be exposed across this entire reach. Instead, the surface water, sediment, pore water, and benthic invertebrate analytical data were summarized by sampling location to calculate COPEC-specific RME and CTE EPCs for use in food chain modeling and to assess exposure to the benthic invertebrate and the fish community (note: only one benthic invertebrate tissue sample was collected at each sampling location in the Animas River below mainstem Mineral Creek. Hence, the invertebrate tissue RME and CTE EPCs used in the food chain models were the same at each EU).
- Mainstem Cement Creek: this BERA did not evaluate wildlife receptors foraging in this
 EU because the SLERA showed that current chemical conditions in this waterway are too
 degraded to provide forage for wildlife. The surface water and sediment data from the
 two sampling locations at the mouth of the creek were used to calculate COPEC-specific
 RME and CTE EPCs to evaluate risk to the fish and benthic invertebrate community. No
 pore water samples were collected from this EU.
- Mainstem Mineral Creek: this BERA did not evaluate wildlife receptors foraging in this EU because current chemical conditions in this waterway are too degraded to provide enough forage for wildlife. The surface water, sediment, and pore water data from the sampling location at the mouth of the creek were used to calculate COPEC-specific RME and CTE EPCs to evaluate risk to the fish and benthic invertebrate community.

Exposure to the four wildlife receptor species foraging in the reaches of the Animas River above mainstem Cement Creek and below mainstem Mineral Creek, was quantified using a food chain model which calculated RME and CTE Estimated Daily Doses (EDDs) based on ingesting surface water, sediment, and food items. The food items consisted of benthic invertebrates

19 | Page

(measured COPEC levels), fish (estimated COPEC levels based on sediment data), and aquatic plants (estimated COPEC levels based on sediment data), depending on the target wildlife species. Contaminant levels in fish and aquatic plants were estimated by multiplying the sediment RME and CTE COPEC levels by published COPEC-specific sediment-to-fish accumulation factors or by using published regression equations. Contaminant levels in benthic invertebrates were based on measured tissue samples collected from the Animas River.

Risk was quantified using the Hazard Quotient (HQ) method, which compares measured exposures (i.e., RME and CTE surface water, sediment and pore water EPCs) or estimated exposures (RME and CTE wildlife EDDs) to CSWBs, no-effect and effect sediment benchmarks, and wildlife TRVs.

A COPEC-specific HQ was then calculated using the following general equation:

HQ = EPC or EDD/benchmark or TRV

Where:

HQ = Hazard Quotient (unitless)

 $\begin{array}{lll} EPC & = & RME \ and \ CTE \ EPC \ (\mu g/L \ or \ mg/Kg) \\ EDD & = & RME \ and \ CTE \ EDD \ (mg/kg \ bw-day) \end{array}$

Benchmark = CSWBs or sediment no effect and effect benchmarks ($\mu g/L$ or

mg/kg, respectively)

TRV = no effect and effect wildlife TRV (mg/kg bw-day)

HQs equal to or above 1.0 identified a potential for ecological risk, whereas HQs below 1.0 were used to eliminate chemicals with assurance that they did not pose a risk.

Besides assessing the potential impacts associated with RME and CTE exposures, the risk characterization for fish and benthic invertebrates also viewed each surface water and sediment sample as an individual exposure event in time. Hence, HQs were calculated for all available surface water and sediment samples and were used to prepare "scatter plots" by sampling station and hydraulic period (i.e., pre-runoff, runoff, and post-runoff for surface water samples only). Those plots were then used to identify patterns of risk across the waterways and hydraulic periods. Minisipper surface water analytical data collected on a daily basis between mid-April 2014 and mid-July 2014 at four locations on the Animas River were used semi-quantitatively in the risk characterization to support the risk conclusions pertaining to fish.

Finally, toxicity data from fish and benthic invertebrates exposed to surface water and sediment in the laboratory were evaluated statistically to determine which of the observed responses were significantly different from the laboratory control sample (note: an upstream reference sample was not available for the statistical comparison due to a lack of reference locations that had not been impacted).

Uncertainty is inherent in this BERA because many assumptions were made in order to proceed with the investigation. These assumptions affected all aspects of the assessment including the

20 | Page

CSM, the effects analysis, the exposure analysis, and the risk characterization. The uncertainty analysis identifies and discusses the major assumptions made in this BERA. It also provides a short description to determine if the assumptions were likely to have overestimated or underestimated the potential for ecological risk. The end result is a balanced overview of the degree of uncertainty in this report's results to help risk managers understand the full extent of potential ecological risk to aquatic community and wildlife receptors living or feeding in mainstem Cement Creek, mainstem Mineral Creek, and the Animas River at and below Silverton.

ES.2 Risk conclusions for benthic invertebrates

Taken together, the four independent measurement endpoints evaluated in this BERA (i.e., sediment HQs, pore water HQs, sediment toxicity, and community structure and function) indicate that the benthic invertebrate communities in the Animas River between A60 and BB, and in mainstem Cement and Mineral Creeks, were all impacted. The two creeks were the most impaired of the four endpoints. In addition, comparing four benthic community metrics collected from the Animas River in September 2014 against historical data on those same four metrics indicated that the benthic invertebrate community in the Animas River has not consistently improved over the last decade, with the possible exception at sampling location A75D.

ES.3 Risk conclusions for fish

Mainstem Cement Creek:

The chemical conditions in surface water from mainstem Cement Creek are highly toxic to fish, particularly due to low pH and high Al, and to a lesser extent by the presence of Cd, Cu, and Zn. The toxicity tests showed that surface water collected from this EU in November 2012 (i.e., postrunoff period) was acutely toxic to juvenile rainbow trout. The preponderance of evidence suggests that the fish community in mainstem Cement Creek (if present) would experience lethal stress under current conditions.

Mainstem Mineral Creek:

The chemical conditions in surface water from mainstem Mineral Creek appear less severe than in mainstem Cement Creek for the local fish community. However, serious pH drops during the pre-runoff period coupled with high Al levels during the pre-runoff and post-runoff periods suggests that fish may experience high stress in the winter as well as summer and fall, but that survivors could possibly recover during the rest of the year (spring). The toxicity tests showed surface water collected from this EU in November 2012 (i.e., post-runoff period) and April 2013 (pre-runoff period) was acutely toxic to juvenile rainbow trout. The preponderance of evidence suggests that the fish community in mainstem Mineral Creek (if present) would likely experience high stress under current conditions.

21 | Page

Animas River above mainstem Cement Creek:

The chemical conditions in surface water from this reach of the Animas River between A60 and A68 indicates the presence of one or more sources of metal contamination located further upstream in the watershed. The chemical signature of the surface water suggested that chronic toxicity to the fish community was possible, particularly due to the presence of Al, Cd, and Zn. Low pH, on the other hand, was not an issue in this reach. The presence of significant acute toxicity measured in juvenile rainbow trout acutely exposed to surface water from this reach further confirms the results of the chemical analyses. The preponderance of evidence suggests that the fish community in this reach of the Animas River could be stressed during much of the year. This conclusion is supported by the fact that daily surface water samples collected between April and July 2014 using "MiniSipper" sampling devices positioned at location A56 (upstream of A60) showed the presence of potentially severe chronic toxicity associated with dissolved Al, Cd, Cu, Pb, and Zn during the pre-runoff and runoff periods.

Animas River between mainstem Cement Creek and mainstem Mineral Creek

Little chemical information on the quality of the surface water is available because only two samples were collected and no acute toxicity testing was performed. The limited amount of data suggests that this reach of the Animas River is likely to be lethal to fish, mostly due to low pH and high levels of aluminum, with secondary stress caused by Cd and Zn.

Animas River below mainstem Mineral Creek

The chemical signature of the surface water in this reach of the Animas River reflects the major inputs from mainstem Mineral and Cement Creek, and the reach of the Animas River above mainstem Cement Creek. Surface water samples collected from sampling location A72 during the pre and post-runoff periods were acutely toxic to juvenile rainbow trout. Surface water samples collected during the same two hydraulic periods from the EUs further downstream did not show acute toxicity, suggesting that the effect has been "diluted out". However, the preponderance of evidence shows that Al, Cd, and Zn in surface water may exert chronic effects on the fish community to at least the BB EU located about 30 miles downstream from Silverton. This conclusion is supported by two additional lines of evidence:

- O Daily surface water samples collected between April and July 2014 using "MiniSipper" sampling devices positioned at locations A73, A75D and BB showed the presence of low-grade and multi-week chronic toxicity associated with dissolved Al, Cd, and Zn during the pre-runoff and runoff periods.
- A fisheries survey performed by the Colorado Division of Wildlife (CDOW) in 2010 on the Animas River in the vicinity of sampling locations A72, A73, and A75D/A75B showed a severe decline of the trout populations at all three locations between 2005 and 2010. CDOW ascribed this collapse to a drastic reduction in surface water quality apparently associated with the discontinuance of a water treatment project in the Gladstone area on Cement Creek upgradient from Silverton. A 2014 follow-up fisheries

22 | Page

survey by CDOW in the vicinity of sampling location A75D/A75B showed that the trout population had essentially been extirpated.

ES.4 Risk conclusions for wildlife receptors

Animas River above mainstem Cement Creek

Potential for minimal risk to wildlife receptors was identified for Zn (for the American dipper) and Pb (for the belted kingfisher). The American dipper was also used as a surrogate species to perform a conservative assessment of risk for the southwestern willow flycatcher—a federally and state-listed bird species. The evidence does not suggest that this species is at substantial risk from foraging in the Animas River above mainstem Cement Creek between sampling location A60 and A68.

Animas River below mainstem Mineral Creek

The potential for risk to wildlife receptors in this reach of the Animas River was restricted to Cu in the American dipper at sampling locations A73B and A75B, with minor risk from Cu to the mallard (100% diet only) at the same two locations. The remaining COPECs were of no concern to any of the wildlife receptors due to the hazard quotient being less than one for those specific metals thus eliminating them from the pool. Benthic invertebrates were not collected for tissue residue analysis from sampling locations A73B and A75B. Hence, the levels of metals in benthic tissues at these two locations were estimated using conservative published sediment-to-benthic invertebrate regression models and uptake factors for use in the food chain model. It is noteworthy that the only two sampling locations with excessive risk from Cu are A73B and A75B. Given this pattern, the conclusion is that the risk from Cu was hypothetical and unlikely to be realized in the field.

The increased risk of Cu in the American dipper versus the mallard was driven almost entirely by the higher food ingestion rate of the former compared to the latter (0.0519 kg/kg/BW-day, Dry Weight (dw), versus 0.2173 kg/kg BW-day, dw which results in a ratio of 4.2). This difference was driven by the fact that the average adult American dipper weighs 0.0565 kg and the average adult mallard weighs 1.162 kg. As such, the American dipper was a suitably sensitive wildlife receptor for future risk evaluations on this river system.

23 | Page

1.0 GENERAL INTRODUCTION

1.1 Scope

This report is a BERA for the aquatic habitats in the Animas River Mining District, located in San Juan County, CO. This report is a follow-up to a SLERA finalized in 2013 (TechLaw, 2013).

The SLERA identified numerous COPECs for community-level and wildlife receptors associated with mainstem Cement Creek, mainstem Mineral Creek and the Animas River in the vicinity of Silverton. Those COPECs were further analyzed to determine if they represented a risk to various receptor groups in the three waterways. As such, the SLERA provided an initial and conservative assessment of risk, and allowed for the determination to be made if enough information was available to support decision making. The SLERA identified unacceptable risk to both community-level and wildlife receptors, which prompted the need for additional sampling to provide more data for use in this BERA.

These data were collected in 2012 and 2013 for inclusion in an initial draft BERA report submitted to EPA in February 2014. This expanded evaluation did not attempt to separate natural background contamination from past mining-related contamination, but instead assessed the risk from all sources combined. The draft BERA was reviewed by EPA and helped identify remaining data gaps that were addressed during additional sampling in April, May and September 2014 (TechLaw, 2014). This BERA is the result of these efforts.

The Animas River was divided into three reaches to support this BERA, as follows:

- The Animas River above mainstem Cement Creek: this reach of the Animas River covers about two river-miles between sampling locations A60 and A68. Location A56, which is situated about 1,000 ft upgradient of A60, represents regional "upstream" conditions. A56 is located just above the Mayflower Mill and Arrastra Creek. Location A68 is about 1,000 ft upstream of the confluence with Cement Creek and is therefore not influenced by the creek (see **Figure 1.1**). Note that the naming of this stretch of the Animas River is arbitrary, and that no samples collected upgradient from sampling location A56 were included in this BERA. Also, the text of this BERA does not refer to sampling location A56 as "reference" or "background" because sources of contamination are known to exist in the watershed upstream from A56.
- The Animas River between mainstem Cement Creek and mainstem Mineral Creek: this reach of the Animas River covers about one river-mile between the confluences of the two creeks. Location A69A is about 3,000 ft downstream of the confluence with mainstem Cement Creek (just upstream of Idaho Gulch), whereas location A70B is just upstream of the confluence with mainstem Mineral Creek (see **Figure 1.1**).
- The Animas River below mainstem Mineral Creek: this reach of the Animas River covers about 30 river-miles between sampling locations A71B and BB (see **Figures 1.1 and 1.2**). The following values represent the approximate distance (in river-miles, where

24 | Page

appropriate) separating the point where mainstem Mineral Creek enters the Animas River in Silverton and the downstream sampling locations: A71B—around 300 ft, A72—around 3,500 ft, A73/A73B—5.9 miles, A75D/A75B—18.9 miles, and BB—30 miles. Note that the naming of this stretch of the river is also arbitrary, and that no samples collected downgradient from BB are assessed in this BERA.

Two additional waterways that are also included in this BERA, are as follows:

- Mainstem Cement Creek: the section evaluated in this BERA is represented by sampling locations CC48 and CC49, found on the creek just upstream of the confluence with the Animas River (see **Figure 1.1**). The SLERA (TechLaw, 2013) also evaluated two more locations upstream from CC48, but these were not included in this BERA because the SLERA showed that neither one could support aquatic life under current conditions.
- *Mainstem Mineral Creek*: the section evaluated in this BERA is represented by sampling location M34, found on the creek just upstream of the confluence with the Animas River (see **Figure 1.1**).

Each of these five stream and river reaches were evaluated as separate EUs to select COPECs, calculate exposures, and quantify the potential for ecological risk.

1.2 General ecological risk assessment approach

The following guidance and reference documents were used to prepare this BERA:

- EPA, 1997. Ecological Risk Assessment for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Interim Final. Environmental Response Team, Edison, NJ.
- EPA, 1998. *Guidelines for Ecological Risk Assessment*. EPA/630/R-95/002F. EPA (1997) provides the general framework for planning and conducting the investigation.

1.3 Goals and objectives

Benthic invertebrates and fish represent the valued ecological resources to be protected in mainstem Cement Creek, mainstem Mineral Creek, and the Animas River at and below Silverton (the "Site"). In addition, four representative species of birds and mammals were also retained as ecological resources to be protected in the Animas River. These community-level and wildlife receptors provide the basis to develop Site goals and objectives, and to select assessment endpoints for this BERA.

25 | Page

The ecological risk management goal for the Site is defined as follows:

"Promote healthy communities of aquatic and wildlife receptors in the waterways affected by Site-related contamination."

Four ecological risk assessment objectives were identified to accomplish this goal:

- Identify the presence of Site-related COPECs that may pose a threat to one or more of the receptor groups;
- Document the potential exposure to those receptor groups using the available analytical datasets;
- Develop risk estimates and discuss major uncertainties; and
- Provide data for risk managers to determine the potential for ecological risk and to have enough information to support the risk management decision-making process.

This report recognizes that mainstem Mineral Creek upstream of the confluence with South Fork Mineral Creek, and mainstem Cement Creek, may not have supported a viable fish or invertebrate community before large-scale mining activities started in the 19th century due to naturally-high levels of metals and low pH levels in those surface waters (Church *et al.*, 2007). These two waterways are nonetheless included in this report in order to provide a conservative risk evaluation and help identify risk drivers and exposure pathways of concern. It is expected that evaluating these naturally impaired waterways within a risk-based context will provide more information to support a scientific management decision point for discussion among the various stakeholders.

26 | Page

2.0 BASELINE PROBLEM FORMULATION

2.1 Data processing

2.1.1 Compiling a database for use in this BERA

The final product of the data evaluation and summarization process is a comprehensive database for all the surface water, sediment, pore water and benthic tissue analytical data collected between May 2009 and September 2014 for the Site.

Individual data sets were developed by compiling analytical results for each matrix of interest (i.e., surface water, sediment, pore water, benthic tissues), analyte group (i.e., total metals, dissolved metals, and pH), EU (i.e., mainstem Cement Creek, mainstem Mineral Creek, and the three Animas River reaches), and sampling locations within each EU, if applicable.

- Appendix 1 provides the analytical data for pH, hardness, and total and dissolved metals concentrations measured in surface water from mainstem Cement Creek, mainstem Mineral Creek, and the three reaches of the Animas River between May 2009 and September 2014.
- Appendix 2 provides the analytical data for total metals in bulk sediment samples collected from mainstem Cement Creek, mainstem Mineral Creek, and the three reaches of the Animas River in between 2012 and September 2014. The USGS has historically collected and evaluated sediment data from the Upper Animas River basin (e.g., see Chapter E19 in Church *et al.*, 2007). Those data, which were obtained over a decade ago, were excluded from the evaluation because they were not considered to represent current exposure conditions.
- **Appendix 3** provides the analytical data for hardness and dissolved metals measured in the pore water samples collected from the Animas River.
- **Appendix 4** provides the tissue residue data (both wet weight and dry weight) for the benthic invertebrates collected from the Animas River in September 2014.

Tables 2.1, 2.2 and 2.3 summarize the surface water, sediment, and pore water sampling efforts, respectively, that have occurred in the various EUs between May 2009 and September 2014 (Note: Section 4.3 explains how surface water samples collected in different months between May 2009 and September 2014 were combined into three hydraulic periods for use in the exposure calculations). The surface water sampling efforts in support of this BERA focused heavily on sampling locations A68 (Animas River above mainstem Cement Creek), A72 (Animas River below mainstem Mineral Creek), CC48 (mainstem Cement Creek close to the confluence with the Animas River) and M34 (mainstem Mineral Creek close to the confluence with the Animas River). The other sampling locations were either not sampled or sampled only occasionally.

27 | Page

2.1.2 Data summarization method

The analytical data for total metals (unfiltered samples), dissolved metals (filtered samples), and pH in mainstem Cement Creek, mainstem Mineral Creek, the three Animas River reaches are summarized separately by waterway, as follows:

- frequency of detection (number of detected values over the number of samples analyzed),
- minimum detected value (with data qualifier),
- maximum detected value (with data qualifier), and
- sampling location of the maximum detected value.

The following procedures were applied to compile data for a metal in a given matrix to calculate the summary statistics used in this BERA:

- Results assigned qualifiers indicating that an analyte was positively detected or presumptively present (i.e., data without flags or flagged as "D" [diluted] or "J" [estimated]) were retained as reported for use in the exposure calculations.
- Results assigned qualifiers indicating that an analyte was not positively detected (i.e., data flagged as "U" [non-detected] or "UJ" [estimated non-detected]) were retained at one half their Detection Limit (DL).
- Any results considered of inadequate quality (i.e., data qualified as "R") were not used in the risk calculations.
- Analytical results for samples collected from the same location but during different sampling events were considered unique samples and were not combined.
- Analytical data from duplicate samples (i.e., samples collected at the same location and date) were averaged. These data were handled as follows:
 - o If both samples had a detected value, the average concentration and the most conservative of the two data qualifiers was used as the maximum value (e.g., if one value had no flag and the second value was flagged as "J", then the average concentration was calculated and flagged as "J").
 - o If one of the duplicates had a detected value and the other had an undetected value, then only the detected value and its associated flag (if available) was used as the maximum value. This approach was necessary because in some cases the undetected value was substantially higher than the detected value due to a difference in the way the samples were diluted, thus affecting the DLs. Taking an average of these two numbers would have artificially inflated the maximum value.
 - o If the values in both samples were non-detect, then the highest of the two method DLs was used.

28 | Page

2.2 Problem formulation

2.2.1 Environmental setting and contaminants at the Site

2.2.1.1 Brief Site description and history

The information summarized in this subsection was obtained from Church, S.E., P. von Guerard, and S.E. Finger, eds., 2007. *Integrated investigations of environmental effects of historical mining in the Animas River watershed, San Juan County, Colorado. U.S. Geological Survey Professional Paper 1651*, 1,096p. plus CD-ROM (in two volumes), and EPA, 2012. *Final Sampling and Analysis Plan/Quality Assurance Project Plan. 2012 Sampling Events. Upper Animas Mining District, Gladstone, San Juan County, Colorado (May 2012).*

The mining district is located in the northernmost headwaters of the Animas River watershed in San Juan County, CO. It covers the drainage basin of the Animas River at and upstream of the town of Silverton, CO, its two main tributaries (i.e., Cement Creek and Mineral Creek), and the Animas River below the confluence with Mineral Creek. Elevations in the watershed range between about 9,000 ft and 13,500 ft.

The discovery of gold and silver brought miners to the area in the early 1870's. The discovery of silver in the base-metal ores was the major factor in establishing Silverton as a permanent settlement. Between 1870 and 1890, the richer ore deposits were discovered and mined. Not until 1890 was a serious attempt made to mine and concentrate the larger low-grade ore bodies in the area. Twelve concentration mills operated in the valley by 1900. All sent their products to the Kendrick and Gelder Smelter near the mouth of Cement Creek in Silverton.

Mining and milling operations slowed down around 1905, and mines were consolidated into fewer and larger operations with the facilities for milling large volumes of ore. After 1907, mining and milling continued in the basin whenever prices were favorable. Gladstone, located about eight miles upstream of Silverton on Cement Creek, is the site of an historic mining town developed in the 1880s in response to the onset of mining. The town was the central location and railroad terminus for milling and shipping mine ores from the surrounding valley. Gladstone declined in the 1920's and no remnants of it remain visible today.

The Sunnyside Mine was the only active year-round mine left in the county by the 1970's. This mine ceased production in 1991, and underwent extensive reclamation. The Gold King Mine's permit with the Division of Reclamation, Mining and Safety was revoked by the Colorado Mined Land Reclamation Board and the financial warranty bond was forfeited in 2005.

The Sunnyside Mine was accessed through the American Tunnel which has its portal in Gladstone. The American Tunnel drained up to 1,600 gallons per minute (gpm) of water prior to bulkhead installations. The Standard Metals Corporation constructed a lime feed and settling pond-type treatment facility in Gladstone in 1979. Water discharging from the American Tunnel was treated as required by the water discharge permit. The facility operations and mine ownership was later transferred to the Sunnyside Gold Corporation (SGC). SGC installed eleven

29 | Page

bulkheads within the Sunnyside Mine as part of a court-ordered consent decree to terminate their discharge permit. These bulkheads greatly reduced the volume of discharge from the American Tunnel. Currently, between 70 and 100 gpm continue to discharge from the American Tunnel, presumably from near-surface groundwater. SGC met all the terms of the consent degree in 2002.

The treatment facility, operations, and permit were transferred to the Gold King Mines Corporation in January 2003. The settling ponds were deeded to the San Juan Corporation by SGC prior to the lease between the Gold King Mines and San Juan Corporations. The treatment facility continued to treat the American Tunnel discharge and the Gold King discharge until September 2004. The San Juan Corporation required SGC to reclaim the four settling ponds (completed in 2005) when the San Juan Corporation and the SGC lease were terminated. The Gold King Mines Corporation was subsequently evicted and the balance of the Gold King Mines Corporation land was acquired by the San Juan Corporation as the lien-holder. The American Tunnel portal reclamation and the removal of some out-buildings were completed in 2006. The Bureau of Land Management (BLM) manages land associated with the American Tunnel portal and its immediate vicinity, whereas the San Juan Corporation owns most of the surrounding land.

Many abandoned mines exist within a two-mile radius of Gladstone. They include: the Upper Gold King 7 Level, American Tunnel, Grand Mogul, Mogul, Red and Bonita, Eveline, Henrietta, Joe and John, and Lark mines. Some of these mines have acid mine drainages that produce flows of between 30 and 300 gpm that directly or indirectly enter Cement Creek and eventually reach the Animas River. The Animas River Stakeholder Group, the BLM, and the Division of Reclamation, Mining and Safety have completed remediation projects at the Eveline, Henrietta, Joe and John, and Lark mines.

Existing and historical data suggest that conditions have changed recently at several locations where site-impacted waters enter upper Cement Creek. For example, flows have increased at the Red and Bonita mine and the upper Gold King 7 Level. The data also show higher levels of Al, Cd, Cu, Mn and Zn in Cement Creek, and downstream in the Animas River at and below Silverton between 2005 and 2007. These increases coincide with the end of active water treatment in Gladstone in 2005 and the installation of bulkheads at the American Tunnel.

The headwaters and tributaries of Cement Creek, Mineral Creek, and the Animas River originate in treeless alpine regions. With a few exceptions, the streams follow high-gradient, narrow glaciated valleys. The vegetation along those valleys is rather sparse in the presence of extensive areas of exposed rock and talus (i.e., a sloping mass of rock debris at the base of a cliff).

Past surveys of fish and benthic invertebrate communities showed that the headwaters of the Animas River above Silverton, the main stems of Cement and Mineral Creeks, and several smaller tributaries support little or no aquatic life due to the presence of site-related contamination. On the other hand, South Fork Mineral Creek and several tributaries of the upper Animas River drain basins that provide substantial acid-neutralizing capacity and support viable trout populations. The Animas River between Maggie Gulch (located about eight river-miles

30 | Page

upstream from Silverton) and the mouth of Cement Creek in Silverton, supports brook trout and a robust invertebrate community (see Chapters D and E18 in Church *et al.*, 2007), which suggests substantial improvements in surface water quality since the 1970's. Note, however, that sections of the Animas River further upstream from Maggie Gulch are still severely impacted by past mining activities. The stream biota in the Animas River downstream from Silverton are also degraded due to input from Cement and Mineral Creeks (see Chapters A, D, E18, and E19 in Church *et al.*, 2007).

2.2.1.2 Past sampling of environmental media

EPA and others have collected numerous samples over the last 20 plus years from the Site for chemical analyses and evaluation. However, this BERA only used analytical data from surface water and sediment collected between 2009 and 2014 from the Animas River, mainstem Cement Creek, and mainstem Mineral Creek. This BERA also evaluated two rounds of pore water samples collected from the Animas River above mainstem Cement Creek and below mainstem Mineral Creek in April and September 2014. This approach ensured that the aquatic exposures reflected "current" conditions.

2.2.1.3 Suspected contaminants

Acid conditions result from the interaction of sulfide minerals, water, and oxygen, which together yield highly-acidified drainage water. This water dissolves metals present in bedrock, veins, ore, tailings, and waste rock, such as: Al, Cd, Cu, and Zn. These dissolved metals are then transported over land or via groundwater to small tributaries that connect to the Site.

The higher pH of the surface water in the Animas River above the confluence with mainstem Cement Creek could cause some of the dissolved metals brought in by the two creeks to precipitate out of solution and become integrated into the substrate. Metals may also be carried in particulate form (e.g., fine tailings) by the water current and deposited in lower-energy areas of the affected waterways. Previous investigations showed that numerous metals in surface water samples from the three targeted waterways exceeded applicable water quality standards (see Chapter D in Church *et al.*, 2007).

2.2.2 Ecological resources potentially at risk

The ecological resources of concern in this BERA consisted of (a) fish exposed to metals in surface water, (b) benthic invertebrates exposed to metals in sediment and pore water, and (c) four species of wildlife receptors exposed to metals in surface water, sediment, and prey items obtained from the Animas River above mainstem Cement Creek and below mainstem Mineral Creek.

A list of Threatened and Endangered (T&E) species was obtained from the Colorado Wildlife Heritage Foundation and from the Colorado Parks and Wildlife species of concern list for San Juan County, CO (updated December 2011). Two mammals identified on the lists were the lynx (*Lynx Canadensis*) and the wolverine (*Gulo gulo*). The lynx is listed as federally threatened and

31 | Page

state endangered while the wolverine is listed as state endangered. The boreal toad (*Bufo boreas boreas*) is listed as state endangered. For birds, the southwestern willow flycatcher (*Empidonax trailii extimus*) is listed as federally endangered and state endangered. This T&E species, if present in the riparian habitat along the Animas River at and below Silverton, was assumed to have the potential for exposure to Site-derived contamination.

The southwestern willow flycatcher is a small passerine bird which breeds in dense riparian habitats along rivers, streams, or wetlands and feeds on insects. The riparian vegetation can be dominated by dense growths of willows (*Salix* sp.), seepwillow (*Baccharis* sp.), or other shrubs and medium-sized trees. An overstory of cottonwood (*Populus* sp.), tamarisk (*Tamarix* sp.), or other large trees may be present but this is not necessary. In some areas, the flycatcher nests in habitats dominated by tamarisk and Russian olive (*Eleagnus angustifolia*). A key characteristic of breeding habitat appears to be the presence of dense vegetation, usually throughout all vegetation layers present within the habitat.

Almost all southwestern willow flycatcher breeding habitats are less than 20 yards from water. At some sites, surface water is present early in the nesting season, but gradually dries up as the season progresses. Ultimately, the breeding site must have a water table high enough to support riparian vegetation.

Suitable riparian habitat for the southwestern willow flycatcher is available along the shoreline of the Animas River downstream of Silverton, and especially at the lower elevations below BB and James Ranch. This BERA conservatively assumes that the species might be present based on its listing in San Juan County and the existence of riparian habitat. The American dipper (see further below) served as a surrogate for this species.

2.3 Preliminary fate and effects evaluation

A preliminary evaluation of the fate and transport of Site-related contamination helped to identify potentially complete exposure pathways. A brief summary of the fate and effects information, together with data on the ecotoxicity of Site-related contamination to the community-level and wildlife receptors are discussed below.

2.3.1 Fate and transport

The information provided by Church *et al.* (2007), was reviewed to determine which fate and transport mechanisms might result in complete exposure pathways to aquatic, community-level receptors in the three targeted waterways or to wildlife receptors feeding on aquatic food items in the Animas River (Note: The BERA assumed that wildlife receptors foraged only in the Animas River because fish and aquatic invertebrates appear to be largely absent from mainstem Cement and Mineral Creeks under current conditions).

32 | Page

The goal was to identify the major elements of a complete exposure pathway, which consist of the following components:

- source(s) of contamination,
- release and transport mechanisms,
- contact points and exposure media,
- routes of entry, and
- key receptors.

Each of these components is discussed below.

Sources of contamination

The major sources of contamination relating to past mining in the watersheds of Cement Creek, Mineral Creek, and the Animas River above Silverton consist of one or more of the following activities: tunneling to reach the ore veins and to drain groundwater out of mine workings, disposal of waste and overburden rock, and disposal of mine tailings on land and in waterways.

Additionally, natural sources of regional contamination consist of groundwater that has come in to contact with undisturbed mineralized materials.

Release and transport mechanisms

Some of the rocks are enriched with sulfide minerals (e.g., pyrrhotite, pyrite and chalcopyrite). These minerals react with water and atmospheric oxygen over time. The oxidation process generates sulfuric acid, which in turn causes metals to dissolve out of host rock, vein rock, waste rock, and tailings. This highly-acidic and metal-rich effluent is toxic to aquatic receptors due to its low pH and high dissolved metals content.

The following release and transport mechanisms may potentially affect the concentration and spatial distribution of metals in the affected waterways:

- dissolution and leaching of metals from mine waste, host rock, or vein rock into groundwater,
- migration of metals in groundwater to sediment and surface water in adjacent surface water bodies, and its attenuation by dilution or dispersion and sorption,
- transport of metals adsorbed to soil and tailings particles via terrestrial runoff,
- transport of metals in surface water runoff, and
- trophic transfer of metals incorporated in aquatic food chains.

The potential release of Site-related contamination and its transport from the sources to points of contact with aquatic receptors in the three targeted waterways depends on its chemical speciation, concentration, presence of nearby surface water bodies, and the extent and duration of precipitation or snowmelt events. Surface water runoff and groundwater infiltration are particularly important transport mechanisms for soluble species of metals.

33 | P a g e

Contact point and exposure media

Mainstem Cement Creek, mainstem Mineral Creek, and the three reaches of Animas River above, across, and below Silverton were the contact points evaluated in this BERA. The exposure media were as follows:

- surface water,
- sediment,
- pore water, and
- prey items for wildlife receptors (only in the Animas River above and below Silverton).

Routes of entry

The main routes of entry evaluated in this BERA for aquatic community-level receptors, and wildlife receptors feeding on aquatic prey, are as follows:

- direct contact with surface water, sediment or pore water via dermal or gill absorption (aquatic community-level receptors),
- surface water ingestion (wildlife receptors),
- incidental sediment ingestion (wildlife receptors), and
- ingestion of contaminated food items (wildlife receptors).

Exposure to metals via inhalation or skin absorption was omitted because it was considered to be minor for wildlife receptors feeding on aquatic food items.

Key receptors

Aquatic receptors

This BERA assumes that benthic invertebrates live on and within the substrate in mainstem Cement Creek, mainstem Mineral Creek, and the three reaches of the Animas River. It also assumed that fish live in the water column of mainstem Cement Creek, mainstem Mineral Creek, and the three reaches of the Animas River.

Wildlife receptors feeding on aquatic food items

This BERA assumes that the following types of wildlife receptors could become exposed to Site-related contamination while feeding in the three reaches of the Animas River: (a) invertivorous birds, (b) omnivorous birds, (c) piscivorous birds, and (d) herbivorous mammals. Wildlife receptors were not evaluated for risk in mainstem Cement Creek and mainstem Mineral Creek because these two waterways are too impacted under current conditions to provide forage to consistently sustain wildlife populations. Wildlife receptors were also not evaluated for risk on the Animas River across from Silverton

34 | Page

because this reach was not sampled for sediment, which was needed to estimate the contaminant levels in the food items ingested by the wildlife receptors.

Ecotoxicity

Acidity and metals are the two major chemical stressors in the aquatic habitats of interest to this BERA.

Acidity/low pH

Sulfuric acid is released when water and oxygen interact with sulfide-rich materials. Low pH is toxic to aquatic receptors. Sensitive species of fish and aquatic invertebrates experience increased mortality at a pH of around 6.0. For example, brook trout populations are known to disappear from streams when pH drops to the low 5s for an extended period of time. Other trout species (e.g., rainbow trout or brown trout) are considered more sensitive to increased acidity and are therefore affected sooner than brook trout.

Metals

High acidity solubilizes metals, resulting in metals-enriched surface water runoff. Dissolved metals are of the highest concern because, unlike metals associated with the particulate fraction, they are bioavailable to exert direct toxicity to aquatic receptors.

The relative sensitivity of four trout species (namely, brook trout, brown trout, rainbow trout and cutthroat trout) to Cd, Cu, and Zn was determined in support of this BERA (see **Appendix 5**). The four trout species included in this evaluation may be found in the Animas River above and below Silverton. The three metals of concern are known to be associated with past and current mining and non-mining-related releases in the Animas River watershed.

A literature search was performed to obtain 96-hour acute toxicity data on juvenile life stages to derive Species Mean Acute Values (SMAVs) for the three target metals. These SMAVs were standardized to a hardness of 50 mg/L CaCO₃ to allow for a direct comparison of species sensitivity to the three metals.

The table below summarizes the results of this effort. **Appendix 5** provides additional details on the literature search criteria and statistical analysis of the data.

35 | Page

Relative sensitivity of four trout species to three metals in surface water			
Trout Species	Target metal	SMAV	Relative sensitivity
brown trout	cadmium	1.07 μg/L	1
rainbow trout	cadmium	1.29 μg/L	2
rainbow trout	copper	13.3 μg/L	1
brown trout	copper	17.8 μg/L	2
brook trout	copper	22.7 μg/L	3
cutthroat trout	copper	29.5 μg/L	4
rainbow trout	zinc	121 μg/L	1
cutthroat trout	zinc	141 μg/L	2
brown trout	zinc	288 μg/L	3
brook trout	zinc	734 μg/L	4

The information provided in the table above can be summarized as follows:

Cadmium

- Only acute toxicity data for brown trout and rainbow trout were available to calculate Cd SMAVs. It is not known how much more or less sensitive brook trout and cutthroat trout may be compared to these two species.
- The difference in SMAVs between brown trout and rainbow trout was minimal and unlikely to be significant.
- Cd was the most toxic of the three target metals to trout.

Copper

- Acute toxicity data were available to calculate Cu SMAVs for all four trout species.
- The rainbow trout was over two times more sensitive to Cu than the cutthroat trout. The sensitivities of brown trout and brook trout fell between these extremes.
- The toxicity of Cu fell in between that of Cd and Zn

Zinc

- Acute toxicity data were available to calculate Zn SMAVs for all four trout species.
- The rainbow trout was six times more sensitive to Zn than the brook trout. The sensitivities of cutthroat trout and brown trout fell between these extremes.
- Zn was the least toxic of the three target metals.

Based on this information, it can be concluded that the rainbow trout appears to be consistently very sensitive to the three metals. The relative sensitivities of the other three species to Cu and Zn are not so consistent and vary by species.

36 | Page

Both acidity and dissolved metals affect osmoregulation in aquatic organisms by changing the integrity of the cell junctions in the gill tissues. The cell junctions become "leaky" with increasing levels of H⁺ (protons) or metals, thereby allowing blood electrolytes to diffuse out of the gill tissue, and water to diffuse into the bloodstream. Death results when blood electrolyte levels drop below a critical physiological threshold, which varies from species to species.

2.3.2 Ecosystems potentially at risk

The potentially impacted aquatic habitats evaluated in this BERA consisted of mainstem Cement Creek, mainstem Mineral Creek, and three reaches of the Animas River, as follows: Animas River above the confluence with mainstem Cement Creek (about 2 miles, between sampling locations A60 to A68), Animas River between mainstem Cement Creek and mainstem Mineral Creek (about 1 mile, represented by sampling locations A69A and A70B), and Animas River below mainstem Mineral Creek (about 30 miles, between sampling locations A71B and BB).

2.3.3 Complete exposure pathways

Routes of exposure are the means by which COPECs can be transferred from a contaminated medium to ecological receptors. This BERA evaluated the following receptors and exposure routes:

- Benthic invertebrates: direct contact with sediment and pore water collected from mainstem Cement Creek (sediment only), mainstem Mineral Creek (sediment only), and the Animas River above mainstem Cement Creek (sediment and pore water) and the Animas River below mainstem Mineral Creek (sediment and pore water). Exposure of benthic invertebrates to substrate from the Animas River between mainstem Cement Creek and mainstem Mineral Creek could not be evaluated because no sediment samples were collected from this reach.
- Fish: direct contact with surface water in all three waterways.
- *Invertivorous birds*: ingestion of surface water, sediment, and benthic invertebrates from the Animas River above mainstem Cement Creek and below mainstem Mineral Creek.
- Omnivorous birds: ingestion of surface water, sediment, benthic invertebrates, and aquatic plants from the Animas River above mainstem Cement Creek and below mainstem Mineral Creek.
- Piscivorous birds: ingestion of surface water, sediment, and fish from the Animas River
 above mainstem Cement Creek and below mainstem Mineral Creek (note: the belted
 kingfisher, which is the modeled piscivorous bird, is assumed to ingest a small amount of
 sediment because, even though this species primarily eats fish captured from within the
 water column, it is also known to feed on crayfish, stonerollers, and sculpin found right
 on the substrate).

37 | Page

• *Herbivorous mammals*: ingestion of surface water, sediment, and aquatic plants from the Animas River above mainstem Cement Creek and below mainstem Mineral Creek.

2.4 Target receptors

2.4.1 Introduction

Endpoints were selected to help quantify the risks to representative receptors that may be exposed to metals and low pH associated with current mine releases.

Assessment endpoints represent explicit expressions of the key ecological resources to be protected from harm. They should reflect sensitive populations, communities, or trophic guilds. Four criteria used for selecting the proposed assessment endpoints for the BERA are listed below. The ecological resource should:

- have relevance to the local ecosystem,
- be susceptible to the stressors of concern,
- have biological, social, or economic value, and
- be relevant to the risk management goals for the Site.

By considering these selection criteria, risks identified to one or more of the assessment endpoints will help inform the risk management decision process at the Site.

Measures of effect represent measurable ecological characteristics, quantified through laboratory or field experimentation, which can be related back to the valued ecological resources chosen as the assessment endpoints. Measures of effect were required because it is often not possible to directly quantify risk to an assessment endpoint. The measures of effect represented the same exposure pathway(s) and mechanisms of toxicity as the assessment endpoints in order to be relevant and useful.

Risk questions establish a link between assessment endpoints and their predicted responses when exposed to COPECs. The risk questions should provide a basis to develop the study design and evaluate the results of the Site investigation in the analysis phase and during risk characterization (EPA, 1997).

2.4.2 Representative species or communities

It is neither practical nor possible to evaluate the potential for ecological risk to all of the individual parts of the local aquatic ecosystem potentially affected by Site-related contamination. Instead, key components were identified to select those species or groups most likely to experience exposure to the stressors.

2.4.2.1 Community-level receptors

Benthic invertebrates

Benthic invertebrates form an integral link in all aquatic ecosystems. They play a key role in nutrient and energy transfers within those systems. They also process and assimilate organic material, feed on other invertebrates, and are themselves consumed by fish, birds, and mammals.

Metals with the potential to bioaccumulate can be transferred from the surface water, sediment or pore water into the benthic invertebrate community and up the food chain, thereby harming higher-level receptors. Significant alterations in invertebrate communities could also impact the energy cycling at the base of the aquatic food chain.

The substrate in the three waterways of interest in this BERA should be able to support a diverse benthic invertebrate community. Key invertebrates include amphipods and the aquatic life stages of numerous insect species (e.g., mayflies, stoneflies, caddisflies, dragonflies, etc.).

Note that it is considered possible that mainstem Mineral Creek upstream of the confluence with South Fork Mineral Creek, and mainstem Cement Creek, may not have supported a macroinvertebrate community before large-scale mining activities started in the 19th century (Church *et al.*, 2007) due to naturally high levels of metals and low-pH levels. However, this BERA conservatively evaluates the potential ecological risk to a hypothetical benthic invertebrate community in these waterways in order to assess the current conditions. The outcome of this evaluation should be interpreted in a broader context, which considers naturally-altered surface water and substrate conditions.

Fish

The Animas River should be able to support a healthy fish community, consisting of cold-water stream species, such as trout and sculpin. The aquatic environment should provide such a community with a diverse food base, suitable feeding and spawning areas, refuges for juvenile fish, and other essential environmental services.

The presence of metals in the surface water and sediment can impair the local fish community in two general ways: (1) mortality of sensitive early-life stages exposed to dissolved metals in the water column or pore water, or (2) high metal concentrations in aquatic biota via food chain uptake, which could affect reproduction and the long-term survival of the exposed fish.

As with the benthic invertebrate community, it is considered possible that mainstem Mineral Creek upstream of the confluence with South Fork Mineral Creek, and mainstem Cement Creek, may not have supported fish before large-scale mining activities started in the 19th century (Church *et al.*, 2007). However, this BERA conservatively evaluates the potential ecological risk to a hypothetical fish community in these waterways in order to assess the current conditions. The outcome of this evaluation should be interpreted in a broader context, which considers naturally altered surface water conditions.

39 | Page

2.4.2.2 Wildlife receptors

The Colorado Parks and Wildlife Natural Diversity Information Source was accessed online to obtain a list of known or likely species occurrence in San Juan County, CO (see **Appendix 6**). This county encompasses the Animas River upstream and downstream of Silverton.

The information below lists select bird and mammal species found in San Juan County that may obtain some or all of their food from an aquatic environment. Note, however, that it is unknown if any of these species actually inhabit the reaches of the Animas River specifically evaluated in this BERA.

Birds:

- great blue heron (*Ardea Herodias*): piscivore
- belted kingfisher (*Ceryle alcyon*): piscivore
- American dipper (*Cinclus mexicanus*): aquatic insectivore
- Canada goose (Branta Canadensis): herbivore
- mallard (*Anas platyrhynchos*): aquatic and terrestrial herbivore and invertivore
- common merganser (Mergus merganser): piscivore
- spotted sandpiper (Actitis macularius): benthivore
- northern rough-winged swallow (Stelgidopteryx serripennis): aquatic insectivore
- barn swallow (*Hirundo rustica*): aquatic insectivore

Mammals:

- American beaver (*Castor Canadensis*): herbivore
- big brown bat (*Eptesicus fuscus*): insectivore
- common muskrat (*Ondatra zibethicus*): herbivore
- mink (*Mustela vison*): carnivore, including fish and crayfish
- water shrew (*Sorex palustris*): aquatic insectivore

Four kinds of bird and mammal species were assessed in this BERA using food chain modeling to calculate metal-specific daily exposures from drinking surface water, ingesting sediment, and feeding on aquatic food items from the Animas River above and below Silverton. This BERA does not calculate exposures for wildlife receptors that might feed in mainstem Cement Creek and mainstem Mineral Creek because these two waterways do not support viable aquatic invertebrate and fish communities under current conditions and therefore cannot provide a food base. This BERA evaluates the following target wildlife receptors:

• Invertivorous birds: represented by the American dipper (*Cinclus mexicanus*)

The American dipper is a small passerine bird, which forages on the bottom of fast-moving rocky streams in mountainous regions of the western US. It dives to the bottom of the stream where it seeks out mainly aquatic insects and their larvae, but also small crustaceans (e.g.,

40 | Page

juvenile crayfish) or tiny fish and tadpoles. This species was selected for use in food chain modeling to represent birds, which feed on aquatic insects and benthic invertebrates. It also serves as a surrogate for the southwestern willow flycatcher, a T&E species of passerine insectivore listed for San Juan County, CO, which may or may not be present in the riparian habitat of the Animas River above or below Silverton.

• Omnivorous birds: represented by the mallard (*Anas platyrhynchos*)

The mallard is a medium-sized dabbling duck with a flexible diet consisting of aquatic and terrestrial plants (including leaves, stems, seeds, roots and tubers), but also aquatic invertebrates (e.g., crustaceans and aquatic insects), and terrestrial invertebrates (e.g., worms, snails, slugs, beetles). This species was selected for use in food chain modeling to represent avian herbivores that also have the ability to switch to an invertivorous diet, particularly during the egg-laying season.

• Piscivorous birds: represented by the belted kingfisher (*Ceryle alcyon*)

The belted kingfisher is a piscivore which feeds mostly on fish that swim near the surface or in shallow areas of ponds, lakes, rivers, and streams. Depending on food availability and season, they may also feed on other aquatic species such as crayfish, mussels, insects, and amphibians, among others. The bird catches its prey by diving head-first into the water in flight or jumping from a perch along the shoreline. This species was selected for use in food chain modeling to represent piscivorous birds.

• Herbivorous mammals: represented by the muskrat (*Ondatra zibethicus*)

The muskrat is an aquatic rodent which feeds primarily on aquatic plants such as marsh grasses, sedges, cattails, bulrushes and green algae. The herbivorous diet can be complemented by small amounts of crayfish, mollusks, fish, frogs, turtles, and young birds. This species was selected for use in food chain modeling to represent semi-aquatic herbivorous mammals.

2.4.3 Selecting assessment endpoints and measures of effect

2.4.3.1 Assessment endpoints and risk questions

The following assessment endpoints were used in this BERA to evaluate the potential risks to the aquatic receptors, and wildlife receptors feeding on aquatic food items from the Animas River above and below Silverton. A risk question was appended to each assessment endpoint.

The BERA assumed that by evaluating and protecting the assessment endpoints, all of the aquatic habitats, and the wildlife receptors feeding on them, were protected as well.

- Maintain a stable and healthy benthic invertebrate community: are the metal levels in sediment and pore water from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above mainstem Cement Creek and below Mineral Creek high enough to impair the benthic invertebrates in these waterways?
- Maintain a stable and healthy fish community: are the metal levels in surface water from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above mainstem Cement Creek, between mainstem Cement Creek and mainstem Mineral Creek, and below Mineral Creek high enough to impair the fish in these waterways?
- Maintain stable and healthy invertivorous bird populations: are the metal levels in surface water, sediment, and benthic invertebrates high enough to impair invertivorous birds foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?
- Maintain stable and healthy omnivorous bird populations: are the metal levels in surface water, sediment, benthic invertebrates, and aquatic plants high enough to impair omnivorous birds foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?
- Maintain stable and healthy piscivorous bird populations: are the metal levels in surface water and fish high enough to impair piscivorous birds foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?
- Maintain stable and healthy herbivorous mammal populations: are the metal levels in surface water, sediment, and aquatic plants high enough to impair herbivorous mammals foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?

2.4.3.2 Measures of effect

Assessment endpoint #1:

Maintain a stable and healthy benthic invertebrate community: Are the metal levels in sediment and pore water from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above mainstem Cement Creek and below Mineral Creek high enough to impair the benthic invertebrates in these waterways?

42 | Page

The BERA uses up to four measures of effect, depending on the exposure unit, to assess the potential impacts of metals to this receptor group, as follows:

- 1.A Compare the metal levels measured in sediment samples to sediment benchmarks.
- 1.B Compare the metal levels measured in field-collected pore water samples to CSWBs.
- 1.C Assess survival and biomass in the amphipod *Hyalella azteca* exposed in the laboratory for ten days to sediment samples collected from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above mainstem Cement Creek and below mainstem Mineral Creek.
- 1.D Assess the benthic community structure and function based on field-collected invertebrate samples.

Assessment endpoint #2:

Maintain a stable and healthy fish community: Are the metal levels in surface water from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above mainstem Cement Creek, between mainstem Cement Creek and mainstem Mineral Creek, and below mainstem Mineral Creek high enough to impair the fish in these waterways?

This BERA uses two measures of effect to assess the potential impacts of metals to this receptor group, as follows:

- 2.A Compare metal levels measured in surface water samples to CSWBs.
- 2.B Assess survival in juvenile rainbow trout (*Oncorhynchus mykiss*) exposed for 96 hours in the laboratory to surface water samples collected from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above mainstem Cement Creek and below mainstem Mineral Creek.

Assessment endpoint #3:

Maintain stable and healthy invertivorous bird populations: are the metal levels in surface water, sediment, and benthic invertebrates high enough to impair invertivorous birds foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?

This BERA uses one measure of effect to assess the potential impacts of metals ingested by this receptor group, as follows:

3.A Use metal concentrations measured in sediment and benthic invertebrates in a food chain model to calculate metal-specific EDDs from ingesting surface water, sediment, and benthic invertebrates, and compare these EDDs to avian TRVs.

43 | Page

Assessment endpoint #4:

Maintain stable and healthy omnivorous bird populations: are the metal levels in surface water, sediment, benthic invertebrates, and aquatic plants high enough to impair omnivorous birds foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?

This BERA uses one measure of effect to assess the potential impacts of metals ingested by this receptor group, as follows:

4.A Use metal concentrations measured in sediment samples to estimate metal residues in aquatic plants; use the estimated plant residues and the measured benthic invertebrate residues in a food chain model to calculate metal-specific EDDs from ingesting surface water, sediment, and food, and compare these EDDs to avian TRVs.

Assessment endpoint #5:

Maintain stable and healthy piscivorous bird populations: are the metal levels in surface water and fish high enough to impair piscivorous birds foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?

This BERA uses one measurement endpoint to assess the potential impacts of metals ingested by this receptor group:

5.A Use metal concentrations measured in sediment samples to estimate metal residues in fish; use food chain modeling to calculate metal-specific EDDs from ingesting surface water and fish, and compare these EDDs to avian TRVs.

Assessment endpoint #6:

Maintain stable and healthy herbivorous mammal populations: are the metal levels in surface water, sediment, and aquatic plants high enough to impair herbivorous mammals foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?

This BERA uses one measurement endpoint to assess the potential impacts of metals ingested by this receptor group:

6.A Use metal concentrations measured in sediment samples to estimate metal residues in aquatic plants; use food chain modeling to calculate metal-specific EDDs from ingesting surface water, sediment, and aquatic plants, and compare these EDDs to mammalian TRVs.

44 | Page

2.5 Conceptual Site Model

The CSM provides the foundation of a problem formulation. The CSM was developed based on knowledge of natural and man-made sources, contaminants, complete exposure pathways, and likely ecological receptors. The model shows how metals move from the contaminant sources through the exposure media to the receptors. **Figure 2.1** presents the CSM for this BERA.

The primary sources of contamination to the local water ways consists of water which has come into contact with local rock, either naturally or as a result of mining activities, such as through the creation of adits. Sulfuric acid is released when water and oxygen interact with the sulfiderich mine wastes, host rock, or vein rock. This acid dissolves metals that enter the waterways as surface runoff, or via the groundwater (e.g., seeps; adits). Fine tailings material may also be present in the substrate of the waterways as a result of entrainment further upstream in the watershed. This material can serve as a secondary source of metals, mainly to the benthic invertebrate community.

The surface waters in mainstem Cement Creek and mainstem Mineral Creeks carry high loads of total and dissolved metals, and high acidity, into the Animas River in the vicinity of Silverton, even though substantial dilutions take place at that point. The benthic invertebrates and fish in the affected waterways become exposed to mine-derived and naturally-high levels of metals mainly by direct contact with surface water, sediment or pore water, whereas the wildlife receptors foraging in the Animas River become exposed by ingesting surface water and sediment, consuming fish, aquatic invertebrates, or plants. The current metal levels are high enough, and pH levels low enough, to cause mainstem Cement Creek and mainstem Mineral Creek to be essentially devoid of aquatic life, and to potentially affect aquatic life in the Animas River at and below Silverton.

3.0 COPEC SELECTION & BASELINE ECOLOGICAL EFFECTS EVALUATION

3.1 Matrices of concern

This BERA uses the analytical data from samples of surface water, sediment, pore water, and benthic invertebrates to assess current exposures to aquatic, community-level receptors and wildlife receptors.

3.2 Total metals versus dissolved metals

The surface water data consisted of both total metals (i.e., unfiltered) and dissolved metals (i.e., filtered), whereas the pore water data consisted only of dissolved metals.

- With two exceptions, exposures of the aquatic, community-level receptors to surface water samples collected from mainstem Cement Creek, mainstem Mineral Creek and the three Animas River reaches were quantified using dissolved metals because these data represented the fraction which is bioavailable, and hence toxic, to aquatic invertebrates and fish. The exceptions were Al and Fe in surface water, for which the chronic benchmark (Fe) or the hardness-dependent equation needed to derive a chronic benchmark (Al) were based on total recoverable metals (Colorado Department of Public Health and the Environment [CDPHE], 2013).
- Exposures of the benthic invertebrate community to pore water samples collected from the Animas River above mainstem Cement Creek, the Animas River below mainstem Mineral Creek, and in mainstem Mineral Creek were quantified using only dissolved metals, even for Al and Fe. The reason is that none of the pore water samples were analyzed for total metals. Additionally, none of the pore water samples were measured for pH. This variable is one of the two additional input parameters (the other one is hardness, which was available) required to derive a chronic benchmark for total Al using the CDPHE (2013) equation. As a result, the toxicity of Al in the pore water samples was determined by comparing dissolved Al levels to the standard chronic Al benchmark of 87 μg/L.
- The wildlife exposures associated with ingesting surface water from the Animas River were quantified using total metals concentrations. The reason is that the full amount of metal in water ingested while drinking becomes part of the daily dose of a wildlife receptor.

These different approaches ensured that the exposure of each receptor group to surface water was properly accounted for to the best ability of the available data.

3.3 Toxicity benchmarks

3.3.1 Surface water benchmarks

The metals concentrations measured in surface water and pore water samples were compared to surface water screening benchmarks to select COPECs for the aquatic, community-level receptors. The Colorado State Water Quality Criteria (WQC) regulation (CDPHE, 2013) was the primary source of surface water benchmarks used in the evaluation.

The metal concentrations were compared to the chronic WQC (referred to as the Criteria Continuous Concentration [CCC]). The WQC for Al, Ag, Cd, Cr, Cu, Mn, Pb, Ni, and Zn were adjusted for hardness in order to calculate hardness-specific benchmarks. Chronic toxicity thresholds summarized by Buchman (2008) were used when Colorado State WQC were not available.

Table 3.1 summarizes the CSWBs and hardness-dependent equations used to select the surface water COPECs for aquatic, community-level receptors and for use in the subsequent risk evaluation.

3.3.2 Sediment benchmarks

The metal concentrations measured in bulk sediment samples collected from the Site were compared to no effect sediment benchmarks, to select COPECs for the benthic invertebrate receptors. The Threshold Effect Concentrations (TECs), which consisted of the Threshold Effect Level (TEL), the TEL for *Hyalella azteca* in 28-day tests (TEL-HA28), the Effect Range-Low (ER-L) and the Lowest Effect Level (LEL), were the sources of sediment benchmarks used in COPEC selection.

The following hierarchy (in order of preference) was used to obtain these no-effect sediment benchmarks:

- MacDonald *et al.* (2000); consensus-based TECs,
- Ingersoll *et al.* (1996); TELs,
- Long et al. (1995); ER-Ls, and
- Thompson *et al.* (2005); LELs.

The Long et al. (1995) reference was included, even though its benchmarks pertain specifically to estuarine and marine environments. The reason is that this reference was the only one that provided a sediment benchmark for Ag.

In addition, following the COPEC selection process, the metals in sediment were further evaluated using effect sediment benchmarks which consisted of Probable Effect Concentrations (PECs), the Probable Effect Level (PEL), the Effect Range-Median (ER-M), and the Severe Effect Level (SEL).

47 | Page

The following hierarchy (in order of preference) was used to obtain these effect sediment benchmarks:

- MacDonald et al. (2000); consensus-based PECs,
- Ingersoll *et al.* (1996); PELs,
- Long et al. (1995); ER-Ms, and
- Thompson *et al.* (2005); SELs.

Table 3.1 summarizes the no-effect sediment benchmarks used to select the sediment COPECs for benthic invertebrates and the effect sediment benchmarks that were also used in the subsequent risk evaluation. The shaded values represent the sediment benchmarks retained for these purposes.

3.4 TRVs for wildlife receptors

The following hierarchy was used to obtain the mammalian and avian no effect TRVs for comparison to the EDDs in the wildlife risk characterization:

- EPA Eco SSLs (http://www.epa.gov/ecotox/ecossl/).
- Sample *et al.*, 1996, Toxicological Benchmarks for Wildlife: 1996 Revision, ES/ER/TM-86/R3, http://www.esd.ornl.gov/programs/ecorisk/documents/tm86r3.pdf (values represent the test species).

Effect TRVs for birds and mammals were obtained from Table C-8 in Appendix C (available at www.epa.gov/reg3hscd/npl/PASFN0305521/fsr/All Appendix C.pdf) of the May 2011 Final Remedial Investigation and Feasibility Study for the Lower Darby Creek Area (LDCA) Site, Delaware and Philadelphia Counties, Pennsylvania.

Tables 3.2 and 3.3 present the no-effect and effect TRVs for birds and mammals, respectively. These two tables provide TRVs only for those metals identified as "important bioaccumulative compounds" in Table 4-2 of EPA (2000).

3.5 COPEC selection process

The surface water and sediment COPECs are presented in the next subsections. Ca, Mg, K, and Na were automatically eliminated as COPECs for aquatic community receptors and wildlife receptors because these four compounds represent essential physiological electrolytes that are not expected to cause toxicity at prevailing concentrations (EPA, 2001).

The surface water samples collected during the three flow periods (i.e., pre-runoff period [February to April], runoff period [May and June], and post-runoff period [July through November]) were combined into one dataset for each of the five EUs. Hence, COPECs were selected for individual EUs across the three flow periods. This approach was conservative

48 | Page

because the highest concentrations measured during the pre-runoff, runoff, and post-runoff periods were used to select the COPECs that would apply to all three flow periods.

3.5.1 Surface water COPECs for aquatic community-level receptors

The surface water COPEC selection process for aquatic community-level receptors evaluated the metals in two ways, depending on whether the toxicity of a metal was hardness-independent or hardness-dependent, as follows:

• Hardness-independent surface water toxicity

The toxicity of As, Be, Fe, and Se in surface water does not depend on hardness. COPEC selection for these four compounds consisted of comparing maximum dissolved (As, Be, and Se) or total (Fe) metal concentrations measured in surface water samples to the published chronic surface water screening benchmarks.

Hardness-dependent surface water toxicity

CDPHE (2013) states that the toxicity of Ag, Al, Cd, Cr, Cu, Mn, Ni, Pb, and Zn depend on surface water hardness (in addition to pH for Al; see CDPHE, 2013 for details). It would have been inaccurate to automatically select the highest concentration of each of these metals to select surface water COPECs because a lesser concentration could be more toxic if the hardness was much lower.

Under those circumstances, the only reliable way to identify the most toxic surface water concentration was to: (1) calculate hardness-adjusted HQs for each target metal in each surface water sample (note: A hardness-adjusted HQ was obtained by dividing a metal concentration by its toxicity benchmark adjusted for the hardness of the water sample associated with that metal), (2) identify the highest HQ for a target metal in all of the surface water samples, and (3) select the metal concentration associated with that HQ as the concentration for use in COPEC selection.

This approach ensured that the metal concentration associated with the highest HQ was used in the surface water COPEC selection process. **Appendix 7** summarizes the hardness-adjusted HQs for the hardness-dependent metals measured in the surface water samples.

Surface water COPECs for mainstem Mineral Creek

Mainstem Mineral Creek was sampled at one location (M34), for the purpose of this BERA. Twenty four surface water samples were collected between May 2009 and September 2014. **Table 3.4** summarizes the COPEC selection process at this EU.

• As, Cr, Cu, Pb, Mn, Ni, and Se were eliminated because their maximum concentrations did not exceed their respective CSWBs.

49 | Page

• pH, Al, Be, Cd, Fe, Ag, and Zn were retained as COPECs for further evaluation because the concentrations associated with the highest HQs exceeded their respective chronic surface water benchmarks.

Be was retained as a COPEC even though it was not present above its analytical DL in any of the surface water samples collected from this EU. It was flagged because half of the highest DL exceeded the CSWB. This analyte is discussed as an uncertainty in the risk characterization because it cannot be further evaluated quantitatively.

Surface water COPECs for mainstem Cement Creek

Mainstem Cement Creek was sampled at two locations (i.e., CC48 and CC49) for the purpose of this BERA. However, except for a single sample collected at CC49 in October of 2012, all the remaining surface water samples were collected from CC48 between May 2009 and September 2014. **Table 3.5** summarizes the COPEC-selection process at this EU.

- As, Cr, Ni, and Se were eliminated because the maximum concentrations did not exceed the respective CSWBs.
- pH, Al, Be, Cd, Cu, Fe, Pb, Mn, Ag, and Zn were retained as COPECs for further evaluation because the concentrations associated with the highest HQs exceeded the respective CSWBs.

Ag was retained as a COPEC even though it was not present above its analytical DL in any of the surface water samples collected from this EU. It was flagged as a COPEC because half of the highest DL exceeded its CSWB. This analyte is discussed as an uncertainty in the risk characterization because it cannot be further evaluated quantitatively.

Surface water COPECs for the Animas River above mainstem Cement Creek

This reach of the Animas River was sampled at six locations between May 2009 and September 2014. However, over half of the samples were collected at sampling location A68. **Table 3.6** summarizes the COPEC selection process at this EU.

- As, Cr, Ni, and Se were eliminated because the maximum concentrations did not exceed the respective CSWBs.
- pH, Al, Be, Cd, Cu, Fe, Pb, Mn, Ag, and Zn were retained as COPECs for further evaluation because the concentrations associated with the highest HQs exceeded the respective CSWBs.

Be and Ag were retained as COPECs even though neither analyte was present above the analytical DL in any of the surface water samples collected from this EU. They were flagged because half of the highest DLs exceeded their CSWBs. Both analytes are discussed as uncertainties in the risk characterization because they cannot be further evaluated quantitatively.

50 | Page

Surface water COPECs for the Animas River between mainstem Cement Creek and mainstem Mineral Creek

This reach of the Animas River was sampled only once at two locations in October of 2012. **Table 3.7** summarizes the COPEC selection process at this EU.

- As, Cr, Pb, Ni, Se, and Ag were eliminated because the maximum concentrations did not exceed the respective CSWBs.
- pH, Al, Be, Cd, Cu, Fe, Mn, and Zn were retained as COPECs for further evaluation because the concentrations associated with the highest HQs exceeded the respective CSWBs.

Be was retained as a COPEC even though it was not present above its analytical DL in either of the two surface water samples collected from this EU. It was flagged because half of the highest DL exceeded the CSWB. This analyte is discussed as an uncertainty in the risk characterization because it cannot be further evaluated quantitatively.

Surface water COPECs for the Animas River below mainstem Mineral Creek

This reach of the Animas River was sampled at seven locations between May 2009 and September 2014. However, about half of the samples came from sampling location A72. **Table 3.8** summarizes the COPEC-selection process at this EU.

- As, Cr, Pb, Ni, and Se were eliminated because the maximum concentrations did not exceed the respective CSWBs.
- pH, Al, Be, Cd, Cu, Fe, Mn, Ag, and Zn were retained as COPECs for further evaluation because the concentrations associated with the highest HQs exceeded the respective CSWBs.

Be and Ag were retained as COPECs even though neither analyte was present above its DL in any of the surface water samples collected from this EU. They were flagged because half of the highest DL exceeded the CSWBs. Both analytes are discussed as an uncertainty in the risk characterization, but cannot be further evaluated quantitatively.

Table 3.9 summarizes all of the surface water COPECs for the aquatic, community-level receptors in mainstem Cement Creek, mainstem Mineral Creek, and the three reaches of the Animas River retained for further evaluation.

3.5.2 Sediment COPECs for benthic invertebrates

The sediment COPEC selection process for benthic community-level receptors was based on comparing maximum concentrations measured in bulk sediment samples collected from

51 | Page

mainstem Mineral Creek, mainstem Cement Creek, and two of the three reaches of the Animas River against the no-effect sediment benchmarks identified in **Table 3.1**. Note that no sediment samples were collected from the Animas River flowing between mainstem Cement and Mineral Creeks. The sediment data from the Animas River were combined by reach to select the COPECs.

Sediment COPECs for mainstem Mineral Creek

This waterway was sampled twice for sediment in October 2012 and September 2014 at sampling location CC49. **Table 3.10** summarizes the COPEC selection process at this EU.

- Cr, Fe, Hg, Ni, and Ag were eliminated from further consideration because the maximum concentrations did not exceed the respective sediment screening benchmarks.
- Al, As, Cd, Cu, Pb, Mn, Se, and Zn were retained as COPECs for further evaluation because the maximum concentrations exceeded the respective sediment screening benchmarks.

Be was retained as a COPEC even though it was not present above its analytical DL in the sediment sample collected from this EU. This analyte was flagged as a COPEC because it lacked a screening benchmark. It is as an uncertainty in the risk characterization, but cannot be further evaluated quantitatively.

Sediment COPECs for mainstem Cement Creek

This waterway was sampled once for sediment in October 2012 at sampling location CC49. **Table 3.11** summarizes the COPEC selection process at this EU.

- Al, Cd, Cr, Fe, Mn, Hg, Ni, and Se were eliminated from further consideration because the maximum concentrations did not exceed the respective sediment screening benchmarks.
- As, Cu, Pb, Ag, and Zn were retained as COPECs for further evaluation because the maximum concentrations exceeded the respective sediment screening benchmarks.

Be was retained as a COPEC even though it was not present above its analytical DL in the sediment sample collected from this EU. This analyte was flagged as a COPEC because it lacked a screening benchmark. It is discussed as an uncertainty in the risk characterization, but cannot be further evaluated quantitatively.

Sediment COPECs for the Animas River above mainstem Cement Creek

This reach of the Animas River was sampled at six locations between May 2012 and September 2014. **Table 3.12** summarizes the COPEC selection process at this EU.

52 | Page

- Al, Cr, Fe, and Ni were eliminated as COPECs because the maximum concentrations fell below the screening benchmarks.
- As, Cd, Cu, Pb, Mn, Mercury (Hg), Se, Ag, and Zn were retained as COPECs because the maximum concentrations exceeded the screening benchmarks.

Be was also retained as COPECs because it lacked a screening benchmark. This analyte is discussed as an uncertainty in the risk characterization, but cannot be further evaluated quantitatively.

Sediment COPECs for the Animas River below mainstem Mineral Creek

This reach of the Animas River was sampled at six locations between May 2012 and September 2014. **Table 3.13** summarizes the COPEC selection process at this EU.

- Cr, Fe, and Hg were eliminated as COPECs because the maximum concentrations fell below the screening benchmarks.
- Al, As, Cd, Cu, Pb, Mn, Ni, Se, Ag, and Zn were retained as COPECs because the maximum concentrations exceeded the screening benchmarks.

Be was also retained as a COPEC because it lacked a screening benchmark. This analyte is discussed as an uncertainty in the risk characterization, but cannot be further evaluated quantitatively.

Table 3.14 summarizes all of the sediment COPECs for the benthic invertebrate community in mainstem Cement Creek, mainstem Mineral Creek, and the three reaches of the Animas River that were retained for further evaluation.

3.5.3 Pore water COPECs for benthic invertebrates

Similar to surface water, the pore water COPEC selection process evaluated the metals in two ways, depending on whether the toxicity of a metal was hardness-independent or hardness-dependent, as follows:

Hardness-independent metals

The toxicity of As, Be, Fe, and Se in pore water does not depend on hardness. Pore water COPEC selection for these four compounds consisted of comparing maximum dissolved metal concentrations measured in the pore water samples to chronic surface water screening benchmarks.

Hardness-dependent metals

53 | Page

CDPHE (2013) states that the toxicity of Ag, Al, Cd, Cr, Cu, Mn, Ni, Pb, and Zn in water depends on surface water hardness (in addition to pH for Al; see CDPHE, 2013 for details. Note, however, that pH was not measured in the pore water samples and that the COPEC selection process for Al was therefore based on comparing dissolved Al concentrations against the standard Al CSWB of 87 μ g/L). It would have been inaccurate to automatically retain the highest concentration of each of these metals to select pore water COPECs because a lesser concentration could be more toxic if the hardness was much lower.

Under those circumstances, the only reliable way to identify the most toxic pore water concentration was to: (1) calculate hardness-adjusted HQs for each target metal in each pore water sample, (2) identify the highest HQ for a target metal in all of the pore water samples, and (3) select the metal concentration associated with that HQ as the concentration to select pore water COPECs.

This approach ensured that the metal concentration associated with the highest HQ was used in the pore water COPEC selection process. **Appendix 8** summarizes the hardness-adjusted HQs for the hardness-dependent metals measured in the pore water samples. Pore water COPECs were identified for the Animas River above mainstem Cement Creek, the Animas River below mainstem Mineral Creek, and mainstem Mineral Creek. Pore water samples were not collected from the Animas River flowing between mainstem Cement and Mineral Creeks, or from mainstem Cement Creeks.

Pore water COPECs for the Animas River above mainstem Cement Creek

This reach of the Animas River was sampled at up to six locations in April 2014 and September 2014. **Table 3.15** summarizes the COPEC selection process at this EU.

- As, Cr, Fe, and Ni were eliminated as COPECs because the maximum concentrations fell below the screening benchmarks.
- Al, Be, Cd, Cu, Pb, Mn, Se, Ag, and Zn were retained as COPECs because the concentrations associated with the highest HQs exceeded the screening benchmarks.

Be, Se, and Ag were retained as COPECs even though they were not present above their DLs in any of the pore water samples collected from this EU. They were flagged because half of the highest DL exceeded the CSWBs. These three analytes are discussed as an uncertainty in the risk characterization, but cannot be further evaluated quantitatively.

Pore water COPECs for the Animas River below mainstem Mineral Creek

This reach of the Animas River was sampled at up to five locations in April 2014 and September 2014. **Table 3.16** summarizes the COPEC selection process at this EU.

• As, Cr, Cu, Pb, Ni, and Se were eliminated as COPECs because the concentrations associated with the highest HQs fell below the screening benchmarks.

54 | Page

• Al, Be, Cd, Fe, Mn, Ag, and Zn were retained as COPECs because their maximum concentrations exceeded the screening benchmarks.

Be and Ag were retained as COPECs even though they were not present above the DLs in any of the nine pore water samples collected from this reach. They were flagged because half of the highest DL exceeded the CSWBs. These two analytes are discussed as an uncertainty in the risk characterization, but cannot be further evaluated quantitatively.

Pore water COPECs for mainstem Mineral Creek

Mainstem Mineral Creek was sampled once in September 2014. **Table 3.17** summarizes the COPEC selection process at this EU.

- Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se and Zn were eliminated as COPECs because the maximum concentrations fell below the screening benchmarks.
- Be and Ag were retained as COPECs because the maximum concentrations exceeded the screening benchmarks.

Be and Ag were retained as COPECs even though they were not present above the DLs in the one pore water sample collected from this EU. They were flagged because half the DL exceeded the CSWB. These two analytes are discussed as an uncertainty in the risk characterization, but cannot be further evaluated quantitatively.

Table 3.18 summarizes all of the pore water COPECs for the benthic invertebrate community in mainstem Mineral Creek, and the Animas River above mainstem Cement Creek and below mainstem Mineral Creek retained for further evaluation.

3.5.4 COPECs for wildlife receptors

The approaches outlined above did not apply to the four wildlife receptors evaluated using food chain modeling. The reason was that the exposures were not from direct contact with surface water or sediment, but from ingesting surface water, sediment, and aquatic food items. Therefore, a metal was automatically retained as a wildlife COPEC for evaluation in the food chain models if it met the following two conditions: 1) it was present above its analytical DL in at least one surface water sample or one sediment sample, and 2) it was identified as an "important bioaccumulative compound" in Table 4-2 in EPA, 2000. *Bioaccumulation testing and interpretation for the purpose of sediment quality assessment, Status and needs.* EPA-823-R-00-001, February 2000. Metals that fell into the bioaccumulative category consisted of As, Cd, Hexavalent Chromium (CrVI), Cu, Pb, methylmercury (MeHg), Ni, Se, Ag, and Zn. Note that CrVI and MeHg were not expected to be present in surface water and sediment from the Animas River. However, as a conservative measure, oxidized Cr (i.e., CrIII) and inorganic Hg, if detected, were retained for evaluation in the wildlife food chain models.

55 | Page

3.6 Toxicity testing

3.6.1 Surface water

EPA Region 8 performed three sets of surface water toxicity tests in October 2012, November 2012, and April 2013 at the Golden, CO laboratory. These tests consisted of exposing juvenile rainbow trout (*Oncorhynchus mykiss*) for 96 hours at 12°C to undiluted samples from the Animas River, mainstem Cement Creek, and mainstem Mineral Creek, and to various dilutions. **Appendices 9.a and 9.b** provide more details on the study design and rationale.

3.6.1.1 Surface Water Collection and dilutions

October 2012

Site-specific toxicity testing:

Surface water samples were collected in October 2012 from six sampling locations, as follows (see **Figure 1.1 and 1.2**):

- Animas River above mainstem Cement Creek: sampling locations A56 ("upstream") and A68.
- Animas River below mainstem Mineral Creek: sampling locations A72, A73B, A75B, and BB.

These surface water samples represented composites collected in the mid-water column across the width of the Animas River. They were tested undiluted for acute toxicity.

Serial dilution toxicity testing:

Flow-weighted surface water samples were also collected from mainstem Mineral Creek (sampling location M34) and mainstem Cement Creek (sampling location CC48). The samples were, (a) combined in a 61% (M34) + 39% (CC48) ratio (M34/CC48), (b) diluted using water from "upstream" sampling location A56 to generate water representing 6.25%, 12.5%, 25%, 50% and 100% CC48/M34, and (c) tested for acute toxicity.

Finally, the flow-weighted M34/CC48 surface water sample was diluted using water from sampling locations A68 to generate water representing 6.25%, 12.5%, 25%, and 50% M34/CC48 samples and then tested for acute toxicity.

November 2012

Surface water samples were collected in November 2012 from four sampling locations, as follows:

- Animas River above mainstem Cement Creek: sampling location A68
- Animas River below mainstem Mineral Creek: sampling location A72
- *Mainstem Cement Creek*: sampling location CC48
- Mainstem Mineral Creek: sampling location M34

All these surface water samples represented composite samples collected in the mid-water column across the width of each of the waterways.

Site-specific toxicity testing

Surface water from sampling locations M34, A68 and A72 were tested undiluted for acute toxicity.

Serial dilution testing

Surface water from sampling location A68 was used as a diluent to generate dilutions of surface water from sampling locations A72, as follows: 0% (full strength A68 water), 5%, 10%, 25%, 50%, 75%, and 100% (full strength A72 water). Each of these dilutions was then tested for acute toxicity.

Surface water from sampling location A68 was used as a diluent to generate dilutions of surface water collected from sampling location CC48, as follows: 0% (full strength A68), 1%, 3%, 6%, 12%, 25%, and 50% (50% CC48 water). Each of these dilutions was then tested for acute toxicity.

Surface water from sampling location A68 was used as a diluent to generate dilutions of a flow-weighted mixture of water samples collected from M34 and CC48 (M34/CC48), as follows: 0% (full strength A68 water), 4%, 9%, 20%, 40%, 65%, and 85% (85% of M34/CC48 flow-weighted mixture water). Each of these dilutions was then tested for acute toxicity.

April 2013

Site-specific toxicity testing:

Surface water samples were collected in April 2013 from six sampling locations, as follows:

• Animas River above mainstem Cement Creek: sampling location A68

57 | Page

- Animas River below mainstem Mineral Creek: sampling locations A72, A73, A73B, and A75B
- Mainstem Mineral Creek: sampling location M34

All these surface water samples represented composite samples collected in the mid-water column across the width of each waterway. They were tested full-strength (i.e., undiluted) for acute toxicity.

Serial dilution toxicity testing

Animas River water (A72) diluted by Hard Reconstituted Water (HRW)

The surface water sample collected from sampling location A72 was serially diluted with HRW to determine what dilutions of site water would cause acute toxicity to juvenile rainbow trout. The serial dilutions resulted in Animas River A72 surface water samples of 12%, 25%, 35%, 50%, 75%, and 88% strength.

Combined Mineral Creek and Cement Creek water (M34/CC48) diluted by A68 and HRW

The flow-weighted mixed surface water sample M34/CC48 was serially diluted either with Animas River water collected at sampling location A68 or with HRW to determine what dilutions would cause acute toxicity to juvenile rainbow trout. The serial dilutions resulted in M34/CC48 samples of 25%, 50%, 75%, 80%, 90%, and 95% strength (using water from sampling location A68 as diluent) or 25%, 50%, 75%, 90%, and 95% strength (using HRW as diluent).

3.6.1.2 Interpretation of the surface water toxicity test results

October 2012

Table 3.19 summarizes the outcome of the October 2012 toxicity tests.

Site-specific acute toxicity testing:

100% of the juvenile rainbow trout exposed for 96 hours to undiluted Animas River water survived at sampling locations A56 ("upstream" location), A68, A73B, A75B, and BB. On the other hand, complete mortality was observed in juvenile rainbow trout exposed for 96 hours to undiluted Animas River water collected from A72.

These results showed that at least 3,500 ft of the Animas River below mainstem Mineral Creek up to sample location A72 was acutely toxic to juvenile rainbow trout in October of 2012. Sampling location A73B, situated about 5.9 miles downstream from sampling location A72, was not acutely toxic during that same period. This finding showed that ongoing dilution of the

58 | Page

Animas River with surface water from various drainages flowing into the Animas River downstream of sampling location A72 mitigated the acute toxicity to juvenile rainbow trout.

Serial dilution acute toxicity testing

A flow-weighted sample of M34/CC48 was serially diluted either with surface water collected from sampling location A56 ("upstream" location) or from sampling location A68. The results showed that the M34/CC48 mixture was acutely toxic to juvenile rainbow trout only when it was tested undiluted (acute mortality was not significant when the M34/CC48 mixture was diluted 50% with A56 water). The M34/CC48 mixture was also acutely toxic when it was diluted 50% with A68 water

November 2012

Table 3.20 summarizes the outcome of the November 2012 acute toxicity tests.

Site-specific acute toxicity testing:

Ninety-two and a half percent of the juvenile rainbow trout survived a 96-hour exposure to undiluted Animas River water collected from sampling location A68. On the other hand, all juvenile rainbow trout died after 96 hours of exposure to surface water collected from sampling location M34 on mainstem Mineral Creek. Additionally, only 2.5% of juvenile rainbow trout survived a 96-hour exposure to surface water collected from sampling location A72 on the Animas River about 3,500 ft below mainstem Mineral Creek.

These results showed that surface water from mainstem Mineral Creek and from the Animas River down to at least sampling location A72 was acutely toxic to juvenile rainbow trout in November of 2012. The testing structure did not allow for an estimation of how much further downstream from A72 this acute toxicity would be expressed. However, the serial dilution of surface water from sampling location A72 with surface water from sampling location A68 (see below) showed that this water was not acutely toxic to juvenile rainbow trout when tested at a strength of 75%. This evidence suggested that a relatively small amount of dilution of the Animas River surface water with uncontaminated water further downstream would be expected to mitigate the acute toxicity measured at sampling location A72.

Serial dilution acute toxicity testing

Surface water collected from sampling location A72 was serially diluted with surface water collected further upstream on the Animas River at sampling location A68. Survival of juvenile rainbow trout acutely exposed to the surface water sample collected at A72 was not significantly different from the control when that sample was at 75% strength. Only undiluted A72 sample resulted in acute toxicity.

59 | Page

Surface water from sampling location CC48 resulted in 100% mortality when it was diluted 50% using water from sampling location A68 as the diluent. The CC48 surface water had to be diluted by a factor of four using A68 water as the diluent in order to mitigate the acutely toxic effects.

A similar pattern was observed using the flow-weighted M34/CC48 sample. This sample at 40% strength, using surface water from sampling location A68 as the diluent, was not acutely toxic to juvenile rainbow trout, whereas mortality was 100% when the M34/CC48 sample was tested at 65% strength using the same diluent source.

April 2013

Table 3.21 summarizes the outcome of the April 2013 acute toxicity tests.

Site-specific acute toxicity testing:

Survival in juvenile rainbow trout exposed to Animas River surface water from sampling locations A73 (98%), A73B (97.5%), and A75B (100%) was not significantly different from the controls. On the other hand, survival was significantly reduced in Animas River surface water from sampling location A68 (67.5% survival) and A72 (0% survival), and in mainstem Mineral Creek from location M34 (15% survival).

These results showed that at least 3,500 ft of the Animas River below mainstem Mineral Creek was acutely toxic to juvenile rainbow trout in April of 2013. Sampling location A73, situated about 5.9 miles downstream from sampling location A72, was not acutely toxic during that same period. This finding showed that ongoing dilution of the Animas River with surface water from various gulches and creeks flowing into the Animas River downstream of sampling location A72 mitigated the acute toxicity to juvenile rainbow trout.

Serial dilution acute toxicity testing:

Survival in juvenile rainbow trout exposed for 96 hours to Animas River surface water from sampling location A72 was not affected up to sample strength of 88% when HRW was used as the diluent. The data suggested that a relatively small amount of dilution with uncontaminated water removed the acute toxicity measured in full-strength surface water from sampling location A72. This conclusion is tempered by the fact that the diluent was not Animas River water collected upstream of the confluence with mainstem Mineral Creek. Rather, HRW was used as the diluent, which may have affected the toxicity of the hardness-dependent metals present in the A72 sample.

Seasonal patterns in acute toxicity to juvenile rainbow trout

Table 3.22 summarizes survival in juvenile rainbow trout acutely exposed to undiluted surface water samples in October 2012, November 2012, and April 2013.

The patterns can be interpreted as follows:

- Sample location A68 is upstream of the confluence with mainstem Cement Creek. Acute toxicity to juvenile rainbow trout was not present in surface water samples collected from this location in October and November 2012, but was observed in April 2013. It is not known if the source of this toxicity originated at the Mayflower Mill or further upstream since surface water from sampling location A56 ("upstream" location) was not tested for acute toxicity in April 2013.
- The surface water samples collected from sampling location A72 in October 2012, November 2012, and April 2013 were uniformly acutely toxic to juvenile rainbow trout. This toxicity most likely originated from mainstem Cement Creek and mainstem Mineral Creek, both of which independently showed severe acute toxicity in November 2012 and April 2013.
- The test data showed that acute toxicity to juvenile rainbow trout was consistently present at sampling location A72 (i.e., about 3,500 ft below the confluence with mainstem Mineral Creek) but was consistently absent at sampling locations A73/A73B (i.e., about 5.9 miles downstream).

3.6.2 Sediment toxicity testing

Two sediment toxicity tests were performed in December 2012 and November 2014 at the EPA regional laboratory in Golden, CO. The tests consisted of exposing juvenile amphipods (*Hyalella azteca*) for ten days at 23°C to sediment samples collected from the Animas River (A56 ["upstream" location], A60, A68, A72, A73, A73B, A75D, A75B, and BB), mainstem Cement Creek (CC49), and mainstem Mineral Creek (M34). The test endpoints consisted of survival and biomass. **Appendices 10.a and 10.b** provide details on the study design and rationale.

"Biomass" was defined as the total dw of the surviving organisms across replicates in a sediment sample at the end of the test divided by the number of organisms introduced in that sample at the start of the test. This measure was sensitive to mortality because death reduces the number of remaining organisms, which thereby decreases the final combined weight of the survivors at the end of the test, even if the individual survivors maintained or gained weight.

Table 3.23 provides the results of the two sediment toxicity tests. Note that the responses measured in both tests were compared to the laboratory control sample, instead of a Site-specific reference sample. The reason is that the sediment collected in the Animas River upstream of

location A60 for use as a reference (i.e., at location A56) showed severe effects and therefore did only represented impacted conditions. The results of the two tests can be summarized as follows:

- The laboratory control samples in the December 2012 and November 2014 tests showed 97.5% and 92.5% survival, respectively, with measureable growth in both tests. These responses met the two test acceptability criteria, namely over 80% survival plus measureable growth after ten days of exposure. Hence, the results of both tests were acceptable for use in decision making.
- Survival in the December 2012 test in sediment samples collected from locations A56, A68, A72, A73B, A75B, BB, CC49, and M34 were significantly lower compared to the laboratory control sample. Survival in the Animas River sediment samples during the November 2014 test was statistically lower than the laboratory control sample only at location A56 (note: CC49, M34, A73B, and A75B were not tested for toxicity in November 2014).
- Biomass in both the December 2012 and November 2014 tests was significantly lower at all sample locations compared to the laboratory control.

3.6.3 Benthic invertebrate survey

Macroinvertebrate samples were collected in September 2014 from seven locations on the Animas River above mainstem Cement Creek (i.e., A56 ["upstream"], A60, and A68) and below mainstem Mineral Creek (i.e., A72, A73, A75D and BB). One sample each was also collected from the mouth of mainstem Cement Creek (i.e., CC49) and the mouth of mainstem Mineral Creek (i.e., M34).

The field samplers submerged a modified rectangular kick net and used their feet to vigorously disturb a one-square meter of substrate immediately upstream of the net. This collection method was used at all sampling locations due to the primarily boulder and cobble nature of the Animas River substrate. Efforts were made to collect as many organisms as possible with the goal of collecting one gram of dw material for tissue residue analysis.

The benthic invertebrate samples were preserved in ethanol in the field and brought back to the laboratory for counting and species identification prior to chemical analysis. The data were reported as 300-count subsamples (based on protocols for Mobile Metal Ions [MMI] calculation provided by CDPHE). **Appendix 11** provides the raw counts and summarizes the community data as follows (note: a subset of the measures listed below are identified with an asterisk and are provided in **Table 3.24** by sampling location):

- Total number of organisms (# per sample)
- *Number of taxa per sample
- *Shannon-Weaver Diversity (H')
- *Hilsenhoff Biotic Index (HBI)
- *Total # of Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa

62 | Page

- *EPT Index (% of total number of taxa)
- *Ephemeroptera abundance (% of total number)
- # of Ephemeroptera (mayflies) taxa
- # of Plecoptera (stoneflies) taxa
- # of Trichoptera (caddisflies) taxa
- *% EPT (% of total number)
- *# of intolerant taxa
- *Tolerant organisms (% of total number)
- Dominant taxon (% of total number)
- *Filterers (% of total number)
- *Scrapers (% of total number)
- # Clinger Taxa
- *Clingers (% of Total Number)

Shannon-Weaver Diversity Index (H')

The *Shannon-Weaver Diversity Index* determines species diversity. This index calculates the number of different species in a sample (species richness), and the proportion of individuals of a particular species compared to the number of individuals of other species in the sample. This comparison shows how rare or common a species is in a group. The index is calculated as follows:

$$H'_{i=1} = -\sum (P_i * \ln P_i)$$

where:

H' = the Shannon diversity index

 P_i = fraction of the sample consisting of species i (i.e., the proportion of a species i relative to the total number of species present in a sample)

S = numbers of species present

A high H' represents a diverse and evenly-distributed community. A low H' represents a less diverse community. An H' of zero represents a community containing a single species.

The Hilsendorf Biotic Index (HBI)

The HBI estimates the overall tolerance of the community in a sample to organic pollution, weighted by the relative abundance of each taxonomic group. Species are assigned a tolerance value ranging between zero and ten, with zero for the most-sensitive species and ten for the least-sensitive species.

63 | Page

The HBI is calculated as follows:

$$HBI = \frac{\sum n_i \ x \ a_i}{N}$$

where:

n = number of specimens in taxon i

a = tolerance value for taxon i

N = total number of specimens in the sample

The HBI increases with decreasing water quality. Note that the taxon-specific tolerance values used in the HBI calculations were originally developed to assess organic pollution, but that the Animas River system is impacted mainly by mining-related inorganic pollution.

EPT

The EPT-related measures pertain to the number of mayfly, stonefly, and caddisfly taxa present in a sample. The EPT species are considered sensitive to pollution. As a result, impacted waters typically have lower numbers of EPT taxa than pristine waters.

Intolerant taxa

The *intolerant taxa* represent species in a sample that are intolerant to the presence of pollution. The number of intolerant taxa typically decreases with increasing contamination.

Filterers, scrapers, and clingers

These measures estimate what fraction of benthic species in a sample is represented by filter-feeders, scrapers, and clingers.

Table 3.24 summarizes the macroinvertebrate community data collected in September 2014. These data are also plotted in **Figure 3.1**. A serious constraint of the benthic survey is the lack of one or more reference locations on the Animas River upstream of Silverton to provide information on the expected benthic community structure under conditions that aren't impacted. Hence, a Site-specific "yard stick" is not available to compare against the results.

The general pattern shows a stressed benthic community at sampling locations A72 and A73 in the Animas River below the confluence with mainstem Mineral Creek. The benthic community at sampling location A75D appears robust, at least when compared to the community structure measured at sampling locations A56, A60 and A68 on the Animas River above the confluence with mainstem Cement Creek. The benthic community at sampling location CC49 in mainstem Cement Creek before its confluence with the Animas River is highly stressed and degraded. On the other hand, the benthic community at sampling location M34 in mainstem Mineral Creek before its confluence with the Animas River is generally similar to the conditions in the Animas River above the confluence with mainstem Cement Creek, and in the Animas River below mainstem Mineral Creek at sampling locations A75D and BB.

64 | Page

4.0 BASELINE EXPOSURE ESTIMATES

4.1 Introduction

The exposure analysis for this BERA consisted of the following two components: (a) quantify surface water, sediment, and pore water exposures to community-level receptors in mainstem Cement Creek, mainstem Mineral Creek, and the three Animas River reaches, and (b) perform wildlife exposure modeling in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek to calculate RME and CTE EDDs (mg/kg.bw-day).

4.2 Aquatic EUs

This BERA identifies discrete aquatic EUs to summarize the sediment, surface water, and pore water analytical data, and to quantify exposures to aquatic, community-level and wildlife receptors. The aquatic EUs were defined as follows:

- *Mainstem Cement Creek* was assessed by combining data from two sampling locations:
 - Location CC48: situated about one mile upstream of the confluence with the Animas River in Silverton. This location was sampled numerous times for surface water between May 2009 and September 2014, but not for sediment or pore water.
 - Location CC49: situated between CC48 and the confluence with the Animas River in Silverton. This location was sampled once for sediment and once for surface water in October 2012, but not for pore water.
- *Mainstem Mineral Creek* was assessed at one sampling location, as follows:
 - O Location M34 is situated in mainstem Mineral Creek less than a half of a mile above the confluence with the Animas River in Silverton. This location was sampled numerous times for surface water between May 2009 and September 2014, twice for sediment in October 2012 and September 2014, and once for pore water in September 2014.
- The Animas River above mainstem Cement Creek:

This reach covers about two miles of the Animas River between sampling locations A60 and A68. Location A56 is situated on the Animas River about a quarter mile upgradient from A68, above the Mayflower Mill and Arrastra Creek. This location is not part of the EU and is therefore not included in the exposure calculations. A56 represents "upstream" conditions reflective of other sources of contamination further upgradient in the watershed. Location A68 is about a quarter mile upstream of the confluence with Cement Creek.

This BERA assumes that exposure to benthic invertebrates, fish, and wildlife receptors was best represented by the chemical conditions measured across all of the sampling locations in this

65 | Page

reach. Hence, all surface water, sediment, pore water, and benthic invertebrate tissue analytical data collected between A60 and A68 were combined into one EU.

The Animas River between mainstem Cement Creek and mainstem Mineral Creek

This reach covers about one mile of the Animas River across from Silverton. Location A69A is about 2,500 ft downstream of the confluence with Cement Creek, whereas location A70B is just upstream of the confluence with Mineral Creek.

Only one surface water sample and no sediment samples were collected from each of these two sampling locations. Exposure to wildlife receptors could not be evaluated in this reach of the Animas River because sediment analytical data were not available to estimate the contaminant levels in the food items for evaluation in the food chain models.

• The Animas River below mainstem Mineral Creek

This reach covers about 30 river-miles between sampling locations A71B and BB. Location A71B is immediately downstream of the confluence with Mineral Creek.

This BERA assumes that exposure via surface water, sediment, and pore water to benthic invertebrates and fish in this reach of the Animas River was best represented by the chemical conditions measured at each separate sampling location. Hence, each sampling location represented its own EU for the community-level receptors. The same assumption was used to calculate exposures to the wildlife receptors. The reason is that the distance between many of the sampling locations was too great to assume that any of the receptor groups would be continuously exposed across these locations.

4.3 Seasonal effects

Surface water samples were collected throughout the year between May 2009 and September 2014 to investigate differences in metal loads across seasons. The surface water exposures for the aquatic community-level receptors were calculated at each of the sampling locations for three specific hydraulic periods across years, as follows:

- *Pre-runoff period*: February, March, and April (2010, 2011, and 2014 data combined),
- Runoff period: May and June (2009, 2010, 2011, 2013, and 2014 data combined), and
- Post-runoff period: July, August, September, October, and November (2009, 2010, 2011, 2012, and 2014 data combined). No surface water samples were collected in the months of December or January.

This approach ensured that the surface water exposures reflected the seasonal differences that existed in metal concentrations in the three waterways during the 2009 to 2014 time period.

The surface water exposures for the wildlife receptors were calculated at each EU across the three runoff periods.

4.4 Exposure point concentrations

The EPCs used in the exposure calculations consisted of RMEs and CTEs for metals in surface water, sediment, and pore water. Depending on the structure of a dataset, the RMEs represented either 95% Upper Confidence Limits (UCLs) derived using the ProUCL software, or the maximum detected values if UCLs could not be calculated due to limited datasets. If a data set was big enough to calculate 95% UCLs, but one or more of the UCLs exceeded their maximum concentrations, then the maximum concentration was used in the exposure calculations. All the CTEs represented arithmetic means, including half of the DL for non-detected compounds. Only the metals identified as COPECs in Section 3 were used to calculate EPCs.

Appendix 12 provides the ProUCL outputs (data permitting) for hardness and dissolved metals in surface water to derive EPCs for aquatic, community-level receptors. Appendix 13 provides the ProUCL outputs for total metals in surface water (data permitting) to derive EPCs for wildlife receptors in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek. Appendix 14 provides the ProUCL outputs for sediment (data permitting) to derive EPCs for benthic invertebrates and the wildlife receptors in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek. Appendix 15 provides the ProUCL outputs for the pore water samples collected from the Animas River above mainstem Cement Creek (note: not enough pore water samples were collected from the individual sampling locations on mainstem Mineral Creek or from the Animas River below mainstem Mineral Creek to run ProUCL).

The Animas River above mainstem Cement Creek, and between Cement Creek and Mineral Creek, was considered as two separate EUs to calculate EPCs for community-level, aquatic receptors and the four wildlife receptors. On the other hand, the six sampling locations on the Animas River below mainstem Mineral Creek were treated as separate EUs to calculate EPCs for both the community-level, aquatic receptors and the four wildlife receptors.

The concentrations of key surface water metals to this BERA (i.e., Al, Cd, Cu, Mn, Pb, and Zn) were also assessed on a sample-by-sample basis. These analytes were evaluated by calculating HQs based on dividing the measured concentrations by the hardness-adjusted surface water benchmarks (see **Appendix 7**). The HQs were then plotted by analyte, sampling location, and hydraulic period to create "scatter plots" which provide a visual overview of spatial and temporal changes in surface water risk. The results of this evaluation are further discussed in Section 5.

67 | Page

4.4.1 Aquatic community-level receptors

The aquatic, community-level receptors were assumed to be directly exposed to surface water, sediment, and pore water in mainstem Cement Creek, mainstem Mineral Creek, the Animas River between mainstem Cement Creek and mainstem Mineral Creek, and at the individual sampling locations on the Animas River below mainstem Mineral Creek.

4.4.1.1 Surface water

The EPCs for dissolved metals in surface water are provided in **Table 4.1** (mainstem Mineral Creek), **Table 4.2** (mainstem Cement Creek), **Table 4.3** (Animas River above mainstem Cement Creek), and **Table 4.4** (Animas River between mainstem Cement and Mineral Creeks). Additionally, **Tables 4.5 to 4.11** provide the EPCs in surface water samples collected from sampling locations A71B, A72, A73, A73B, A75D, A75B, and BB on the Animas River below mainstem Mineral Creek.

4.4.1.2 Sediment

The EPCs for metals in sediment samples are provided in **Table 4.12** (mainstem Mineral Creek), **Table 4.13** (mainstem Cement Creek), and **Table 4.14** (Animas River above mainstem Cement Creek). Additionally, **Tables 4.15 to 4.20** provide the EPCs for metals in sediment collected from sampling locations A72, A73, A73B, A75D, A75B, and BB on the Animas River below mainstem Mineral Creek.

4.4.1.3 Pore water

The EPCs for dissolved metals in pore water samples are provided in **Table 4.21** (mainstem Mineral Creek), **Table 4.22** (Animas River above mainstem Cement Creek), and **Tables 4.23 to 4.27** for sampling locations A72, A73, A73B, A75D, and BB on the Animas River below mainstem Mineral Creek.

4.4.2 Wildlife receptors

The four wildlife receptors were assumed to forage across the two miles of Animas River above mainstem Cement Creek and at each of the individual sampling locations on the Animas River below mainstem Mineral Creek. The Animas River reach flowing between mainstem Cement and Mineral Creeks was omitted from food chain modeling because no sediment data were available to derive tissue residues needed to calculate daily doses. The two creeks were also omitted because the SLERA showed that they cannot support a healthy forage base for use by wildlife receptors.

4.4.2.1 Surface water

The EPCs for total metals in surface water used for food chain modeling are provided in **Table 4.28** (Animas River above mainstem Cement Creek), and **Tables 4.29 to 4.34** that show the

68 | Page

EPCs for total metals measured in surface water samples collected from sampling locations A72, A73, A73B, A75D, A75B, and BB on the Animas River below mainstem Mineral Creek.

4.4.2.2 Sediment

The EPCs for metals in sediment samples are provided in **Table 4.14** (Animas River above mainstem Cement Creek) and **Tables 4.15 to 4.20** that show the EPCs for metals measured in sediment collected from sampling locations A72, A73, A73B, A75D, A75B, and BB on the Animas River below mainstem Mineral Creek.

4.5 Wildlife food chain modeling

Section 2.4.2.2 presents the four wildlife receptors evaluated in this BERA using exposure modeling. These receptors are the American dipper (representing invertivorous birds), the mallard (representing omnivorous birds), the belted kingfisher (representing piscivorous birds), and the muskrat (representing herbivorous mammals).

Wildlife species were assumed to be exposed to COPECs in the Animas River by direct ingestion of surface water, incidental ingestion of sediment, and by feeding on contaminated food items that accumulated metals from the sediment. This BERA calculates total EDDs for each wildlife receptor to estimate their exposure using a standard exposure equation which incorporates species-specific natural history parameters.

Table 4.35 presents the intake equations for each wildlife receptor species. **Table 4.36** provides the species-specific exposure parameters (e.g., body weights, ingestion rates, relative consumption of food items, etc.), as well as the reference sources and assumptions on which these values were based. This BERA assumes two different diets for the omnivorous mallard: (a) 100% benthic invertebrates to model the diet of female mallards during the egg-laying period (the "100% diet"), and (b) a half and half diet of benthic invertebrates and plants to model the diet of mallards for the rest of the year (the "50%-50% diet").

The exposure calculations assumed that the target wildlife receptors consumed aquatic invertebrates, aquatic plants, or fish, depending on the species. **Tables 4.37, 4.38 and 4.39** provide the literature-derived regression models and uptake factors used to estimate metal concentrations in these food items based on measured COPEC levels in sediment in the Animas River. The food intake equations and the estimated COPEC tissue levels were all based on dry weight. Note that the benthic invertebrate tissue levels used in the dose calculations were measured values from organisms collected from the Animas River in September 2014, except for sampling locations A73B and A75B from which benthic invertebrates were not collected.

4.6 Wildlife EDDs

The COPEC specific wildlife EDDs were calculated using the input parameters summarized in Section 4.5. **Tables 4.40 to 4.46** provide the EDDs for the American dipper, **Tables 4.47 to 4.53** and **Tables 4.54 to 4.60** provide the EDDs for the mallard 100% diet, and 50%-50% diet, respectively. **Tables 4.61 to 4.67** provide the EDDs for the belted kingfisher, and **Tables 4.68 to 4.74** to provide the EDDs for the muskrat.

5.0 RISK CHARACTERIZATION

5.1 Introduction

The potential for ecological risk is determined during risk characterization. The exposure analysis and effects analysis described in previous sections of this report were integrated to determine the likelihood of adverse effects to the assessment endpoints, given the assumptions inherent in the analysis phase.

Table 5.1 summarizes the risk estimation approaches for each of the receptor groups evaluated in this BERA. Risk was quantified mostly using the HQ method, which compared measured exposures (i.e., surface water, sediment, and pore water EPCs) or estimated exposures (wildlife EDDs) to corresponding toxicity values (i.e., CSWBs or no-effect and effect sediment benchmarks, plus wildlife no-effect and effect TRVs).

COPEC-specific HQs were then calculated using the following general equation:

HQ = EPC or EDD/benchmark or TRV

Where:

HQ = Hazard Quotient (unitless)

EPC = Exposure Point Concentration (μ g/L or mg/kg)

EDD = Estimated Daily Dose (mg/kg bw-day)

Benchmark = surface water or sediment benchmark (μg/L or mg/kg)
TRV = wildlife Toxicity Reference Value (mg/kg bw-day)

HQs equal to or greater than one identified a potential for ecological risk under the exposure and toxicity assumptions used in this evaluation. Besides assessing the potential impacts associated with RME and CTE surface water and sediment exposures, the risk characterization for community-level, aquatic receptor groups also viewed each surface water and sediment sample as representing an individual event in which organisms were exposed to COPECs. Hence, HQs were calculated for all available surface water and sediment samples and were plotted by sampling station and period. Risk may be acceptable if the community as a whole remains healthy and stable over time. It was assumed that community-level risks were unlikely to occur if all the HQs that were measured within a particular EU fell below one. On the other hand, community-level risks were more likely to occur if most or all of the individual HQs exceeded one. Finally, some impact may occur, but without resulting in community-level effects, if only a small portion of the HQs exceeded one.

71 | Page

Note that the risk characterization did not quantify "incremental risk" by subtracting reference risk from Site risk. The reason is that the Animas River above sampling location A60 is impacted by metals originating further upstream in the watershed and therefore cannot provide valid reference conditions. No reference samples were collected from either Mineral Creek or Cement Creek for use in this BERA. As such, the risks summarized in this section for each EU represent "total" risk.

Uncertainty is an inherent feature of this BERA because many assumptions were made in order to proceed with the evaluation. These assumptions affected all aspects of the assessment, including the CSM, the effects analysis, the exposure analysis, and the risk characterization. The uncertainty analysis identifies and discusses the major assumptions made in this BERA. It also determines if an assumption was likely to have overestimated or underestimated the potential for ecological risk. The end result was a balanced overview of uncertainty to help risk managers understand the full extent of potential ecological risk to receptors living or feeding in mainstem Cement Creek, mainstem Mineral Creek, and the three Animas River reaches.

5.2 Community-level aquatic receptors - Benthic Invertebrates

Assessment endpoint 1: Maintain a stable and healthy benthic invertebrate community. Are the metal levels in sediment from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above mainstem Cement Creek and below mainstem Mineral Creek high enough to impair the benthic invertebrates in these waterways?

The potential for ecological risk to the benthic invertebrate community in the three waterways was assessed as follows.

5.2.1 Measurement endpoint 1A

Compare the metal levels measured in sediment samples to sediment benchmarks.

5.2.1.1 Mainstem Mineral Creek

Table 5.2 presents the no effect and effect HQs for benthic invertebrates exposed to COPECs in sediment from mainstem Mineral Creek.

All six sediment COPECs had no effect HQs greater than one. But only three of those six COPECs had an effect HQ of greater than one, with the highest HQs associated with Pb (RME effect HQ = 1.9 and CTE effect HQs = 1.4).

72 | Page

The data suggests that sediment in mainstem Mineral Creek close to the confluence with the Animas River presented low levels of risk to the local benthic invertebrate community.

5.2.1.2 Mainstem Cement Creek

Table 5.3 presents the no effect and effect HQs for benthic invertebrates exposed to COPECs in sediment from mainstem Cement Creek. The RME and CTE EPCs are identical to each other because only one sediment sample was collected from this EU.

All five sediment COPECs had no effect HQs that were greater than one. But only two of those five COPECs had effect HQs of greater than one, with the highest HQs associated with Pb (RME and CTE effect HQs = 2.2).

The data suggests that sediment in mainstem Mineral Creek close to the confluence with the Animas River presented low levels of risk to the local benthic invertebrate community.

5.2.1.3 Animas River

Animas River above mainstem Cement Creek

Table 5.4 presents the no effect and effect HQs for benthic invertebrates exposed to COPECs in sediment from the Animas River above mainstem Cement Creek. Except for Hg and Se, all seven remaining COPECs had RME or CTE effect HQs above 1.0.

The three COPECs with the highest effect HQs consisted of Pb (RME effect HQ = 13.5 and CTE effect HQ = 11.8), Mn (RME effect HQ = 10.5 and CTE effect HQ = 8.8) and Zn (RME effect HQ = 8.8 and CTE effect HQ = 6.9).

The data suggests that sediment in the Animas River above mainstem Cement Creek presented high levels of risk to the local benthic invertebrate community.

• Animas River at sampling location A72 below mainstem Mineral Creek

Table 5.5 presents the no effect and effect HQs for benthic invertebrates exposed to COPECs in sediments from sampling location A72. Al, Cd, Ni, Se, and Ag had RME and CTE effects HQs below 1.0 and were therefore of no further concern.

The three COPECs with the highest effect HQs consisted of Pb (RME effect HQ = 4.5 and CTE effect HQ = 3.7), Mn (RME effect HQ = 2.5 and CTE effect HQ = 1.8) and Zn (RME effect HQ = 1.8) and CTE effect HQ = 1.4).

73 | Page

The data suggested that sediment at sampling location A72 presented moderate levels of risk to the local benthic invertebrate community.

Animas River at sampling location A73 below mainstem Mineral Creek

Table 5.6 presents the no effect and effect HQs for benthic invertebrates exposed to COPECs in sediments from sampling location A73. Al, Ni, Se, and Ag had RME and CTE effects HQs below one and were therefore of no further concern.

The three COPECs with the highest effect HQs consisted of Pb (RME effect HQ = 5.7 and CTE effect HQ = 4.0), Mn (RME effect HQ = 5.5 and CTE effect HQ = 3.6) and Zn (RME effect HQ = 3.0 and CTE effect HQ = 2.3).

The data suggests that sediment at sampling location A72 presented moderate levels of risk to the local benthic invertebrate community.

Animas River at sampling location A73B below mainstem Mineral Creek

Table 5.7 presents the no effect and effect HQs for benthic invertebrates exposed to COPECs in sediments from sampling location A73B. Al, Cd, Ni, Se, and Ag had RME and CTE effects HQs below 1.0 and were therefore of no further concern.

The three COPECs with the highest effect HQs consisted of Pb (RME effect HQ = 4.6 and CTE effect HQ = 4.2), Zn (RME effect HQ = 3.7 and CTE effect HQ = 2.4) and Mn (RME effect HQ = 3.6 and CTE effect HQ = 2.6).

The data suggested that sediment at sampling location A73B presented moderate levels of risk to the local benthic invertebrate community.

Animas River at sampling location A75D below mainstem Mineral Creek

Table 5.8 presents the no effect and effect HQs for benthic invertebrates exposed to COPECs in sediments from sampling location A75D. Al, As, Ni, Se, and Ag had RME and CTE effect HQs below one and were therefore of no further concern.

The three COPECs with the highest effect HQs consisted of Zn (RME effect HQ = 6.1 and CTE effect HQ = 3.8), Mn (RME effect HQ = 5.3 and CTE effect HQ = 3.6) and Pb (RME effect HQ = 2.9 and CTE effect HQ = 2.3).

74 | Page

The data suggests that sediment at sampling location A75D presented moderate levels of risk to the local benthic invertebrate community.

Animas River at sampling location A75B below mainstem Mineral Creek

Table 5.9 presents the no effect and effect HQs for benthic invertebrates exposed to COPECs in sediments from sampling location A75B. Al, Ni, Se, and Ag had RME and CTE effect HQs below one and were therefore of no further concern.

The three COPECs with the highest effect HQs consisted of Zn (RME effect HQ = 11.6 and CTE effect HQ = 4.8), Pb (RME effect HQ = 3.4 and CTE effect HQ = 2.3) and Mn (RME effect HQ = 3.2 and CTE effect HQ = 2.3).

The data suggests that sediment at sampling location A75B presented high levels of risk to the local benthic invertebrate community.

Animas River at sampling location Bakers Bridge below mainstem Mineral Creek

Table 5.10 presents the no effect and effect HQs for benthic invertebrates exposed to COPECs in sediments from sampling location BB. Al, As, Ni, Se, and Ag had RME and CTE effects HQs below one and were therefore of no further concern.

The three COPECs with the highest effect HQs consisted of Zn (RME effect HQ = 18.6 and CTE effect HQ = 10.1), Mn (RME effect HQ = 10.9 and CTE effect HQ = 6.2) and Cd (RME effect HQ = 3.7 and CTE effect HQ = 2.0).

The data suggests that sediment at sampling location BB presented high levels of risk to the local benthic invertebrate community.

Risk conclusion for measurement endpoint 1A

Mainstem Mineral Creek and mainstem Cement Creek had the lowest risk levels associated with metals in sediment. Pb, Mn, and Zn showed a consistent potential for risk across all the Animas River EUs. The HQ data for the three risk drivers were used to calculate a geometric mean of the no effect RME and CTE HQs, and the effect RME and CTE HQs at each of the Animas River EUs. These averaged HQs were then plotted for visualization (see **Figure 5.1**). The reach above mainstem Cement Creek represented the highest levels of risk for benthic invertebrates exposed to sediment. Risk from Pb, Mn, and Zn was still present in the Animas River below mainstem Mineral Creek, but at a lower level.

75 | Page

The risk from Zn in sediment increased at sampling location A75B (situated just downstream of the confluence with Cascade Creek) and was higher still at the BB sampling location situated about eleven miles further downstream. This pattern suggests the presence of a Zn source in this stretch of the Animas River or a depositional zone.

Figure 5.2 shows the sample-specific no effect and effect sediment HQs for Al, As, Cd, Cu, Pb, Mn, Ag, and Zn at each EU. This approach assumes that each sediment sample represented an exposure point within a particular EU (instead of calculating EU-wide RME and CTE EPCs for deriving the HQs presented above). The same general pattern is apparent from these data, namely: (a) the sediment quality at the mouths of mainstem Cement and Mineral Creeks is no worse, and in many cases substantially better, than in the reaches of the Animas River above and below these two creeks, (b) Pb, Mn and Zn are the major sediment risk drivers to the benthic invertebrate community in the Animas River, and (c) sediment risk is typically higher in the Animas River above mainstem Cement Creek compared to below mainstem Mineral Creek, indicating the presence of contaminant sources further upstream.

5.2.2 Measurement endpoint 1B

Compare the metal levels measured in pore water samples collected from substrate in the field to CSWBs.

The pore water risk characterization consists of calculating RME and CTE HQs for all the pore water COPECs identified across the various EUs. A complicating factor in these risk calculations is that the toxicity of many COPECs depends on hardness. Hence, the pore water RME and CTE EPCs for the hardness-sensitive metals presented in Section 4 need to be compared to chronic benchmarks adjusted for "reasonable minimum" and "average" pore water hardnesses (note: the toxicity of hardness-sensitive metals increases with decreasing hardness; hence, a reasonable minimum hardness was required as a conservative value for use in the pore water HQ calculations).

A reasonable minimum hardness was obtained as follows:

- The pore water hardness data were organized by EU (note: not enough pore water samples were available to calculate hardness by hydraulic period).
- For datasets too small to be evaluated using the ProUCL software, an average and a minimum pore water hardness was obtained from the available data to derive the pore water HQs for the hardness-sensitive metals.
- For the larger dataset (i.e., Animas River above mainstem Cement Creek), a 95% UCL and an average pore water hardness were calculated, after which the difference between the 95% UCL and the average was subtracted from the average to obtain a "reasonable"

76 | Page

minimum" pore water hardness value. Both the average and reasonable minimum hardness values were then used to calculate chronic benchmarks and derive the pore water HQs for the hardness-sensitive metals.

Table 5.11 summarizes the procedure used to obtain the hardness values required to calculate the pore water RME HQ and CTE HQs for the hardness-sensitive metals. Note that the RME and CTE HQs for Al were derived using only the standardized chronic benchmark of 87 μ g/L, even though CDPHE (2013) determined that the toxicity of Al in surface water was sensitive to hardness. The reason for using this simplifying step is that CDPHE (2013) also requires evaluating pH as an additional variable to determine if the hardness-sensitive equation or the standard benchmark of 87 μ g/L should be used. pH was not measured in the pore water samples and was therefore not available.

5.2.2.1 Mainstem Mineral Creek

Table 5.12 presents the chronic HQs for benthic invertebrates exposed to COPECs in pore water from mainstem Mineral Creek.

Two COPECs were retained for further evaluation but neither one was present above its analytical DL in the one pore water sample collected from this EU. The RME and CTE HQs equaled 1.5 for Be and 1.9 for Ag.

These results were inconclusive because they were derived from non-detect data. However, the lack of risk from the other COPECs suggests that pore water was unlikely to be a risk factor in this EU. This conclusion is highly tentative because it is based on a single sample.

5.2.2.2 Animas River

Animas River above mainstem Cement Creek

Table 5.13 presents the chronic HQs for benthic invertebrates exposed to COPECs in pore water from the Animas River above mainstem Cement Creek. Eight of the nine COPECs had RME and CTE chronic HQs above one. Cd, Cu and Zn represented the three COPECs with the highest HQs.

The HQs for these three metals indicated the presence of severe risk to benthic invertebrates exposed to pore water at this EU. However, a review of the analytical data (see **Appendices 3.1 and 3.2**) showed that this risk was driven by unusually high concentrations measured at sampling location A61 in April 2014 ([Cd] = 100 μ g/L; [Cu] = 2,250 μ g/L; [Zn] = 29,900 μ g/L) and in September 2014 ([Cd] = 106.5 μ g/L; [Cu] = 95.9 μ g/L; [Zn] = 18,490 μ g/L). Lower, but

77 | Page

still substantial levels of these three metals were also measured at sampling location A65 during the same two 2014 pore water sampling events. It is unclear if these high levels represent potential hot spots. It was noteworthy that the metal levels in the pore water samples collected from sampling locations A60 (April and September 2014) and A64 (April 2014 only—a pore water sample was not collected from A64 in September 2014), appeared more normal. A60 is located upstream of A61, whereas A64 is located between A61 and A65.

The data suggests that pore water, at least in some locations of the Animas River above mainstem Cement Creek, presents high risk to the local benthic invertebrate community, but that this risk may be localized.

Animas River at sampling location A72 below mainstem Mineral Creek

Table 5.14 presents the chronic HQs for benthic invertebrates exposed to COPECs in pore water collected from sampling location A72. Al, Be, Cd, Ag, and Zn had RME and CTE chronic HQs above one.

The three COPECs with the highest chronic HQs consisted of Zn (low hardness RME chronic HQ = 8.8), Al (RME chronic HQ = 5.9), and Cd (low hardness RME chronic HQ = 5.0).

The data suggested that pore water at sampling location A72 presented a high risk to the local benthic invertebrate community.

Animas River at sampling location A73 below mainstem Mineral Creek

Table 5.15 presents the chronic HQs for benthic invertebrates exposed to COPECs in pore water collected from sampling location A73. Be, Cd, Ag, and Zn had RME and CTE chronic HQs above one.

The three COPECs with the highest chronic HQs consisted of Zn (low hardness RME chronic HQ = 4.0), Cd (low hardness RME chronic HQ = 3.5), and Ag (low hardness RME chronic HQ = 1.6).

The data suggests that pore water at sampling location A72 presents moderate risk to the local benthic invertebrate community.

Animas River at sampling location A73B below mainstem Mineral Creek

Table 5.16 presents the chronic HQs for benthic invertebrates exposed to COPECs in pore water collected from sampling location A73B. Be and Ag had RME and CTE chronic HQs above one.

78 | Page

These two COPECs were retained for further evaluation but neither one was present above its analytical DL in the one pore water sample collected from this EU in September 2014. The RME and CTE chronic HQs equaled 1.5 and 11 for Be and Ag, respectively.

These results were inconclusive because they were derived from non-detect data. However, the lack of risk from the other COPECs suggested that pore water was unlikely to be an overriding risk factor in this EU. This conclusion was highly tentative because it was based on a single sample.

Animas River at sampling location A75D below mainstem Mineral Creek

Table 5.17 presents the chronic HQs for benthic invertebrates exposed to COPECs in pore water collected from sampling location A75D. Be, Cd, Ag, and Zn had RME and CTE chronic HQs above one.

The three COPECs with the highest chronic HQs consisted of Ag (low hardness RME chronic HQ = 3.6), Cd (low hardness RME chronic HQ = 1.9), and Zn (low hardness RME chronic HQ = 1.6).

Ag was not detected in either pore water samples collected in 2014. The Ag HQs were derived using one-half the highest DL and were therefore highly uncertain. The data suggested that pore water at sampling location A75D presented low risk to the local benthic invertebrate community.

Animas River at sampling location Bakers Bridge below mainstem Mineral Creek

Table 5.18 presents the chronic HQs for benthic invertebrates exposed to COPECs in pore water collected from sampling location BB. Be, Fe, Mn, and Ag had RME and CTE chronic HQs above 1.0.

The three COPECs with the highest chronic HQs consisted of Mn (low hardness RME chronic HQ = 3.3), Ag (RME chronic HQ = 2.3), and Be (RME chronic HQ = 1.5).

Be and Ag were not detected in either pore water samples. Their HQs were derived using one-half the highest DL and were therefore highly uncertain. The data suggests that pore water at sampling location BB presents low risk to the local benthic invertebrate community.

79 | Page

Risk conclusion for measurement endpoint 1B

High pore water risk in bedded sediment was identified in the Animas River above mainstem Cement Creek. Much of that risk was associated with one sampling location (A61) that showed unusually high levels of contamination in the pore water samples collected in April and September 2014. The sample locations upstream (A61) and downstream (A64) from A61 appeared much less impacted, suggesting that the high contaminant levels at A61 may represent a pore water "hot spot".

Low to moderate pore water risk is associated with most of the sampling locations in the Animas River below mainstem Cement Creek.

5.2.3 Measurement endpoint 1C

Assess survival and growth of H. azteca exposed for ten days to field-collected sediment samples.

Section 3.6.2 summarizes the results of the two sediment toxicity tests performed in December 2012 and November 2014. All the field-collected samples resulted in a statistically significant response, either in terms of increased mortality (particularly in the December 2012 test) or reduced biomass (in both toxicity tests). The most toxic samples were associated with CC49 (mainstem Cement Creek; 0% survival), M34 (mainstem Mineral Creek; 8.8% survival) and sampling location A73B (5.0%) survival). Except for sampling location A56, survival in the other locations tested both in December 2012 and November 2014 improved substantially (i.e., A68, A72, and BB), suggesting an improvement in sediment quality. However, that improvement was negated by the fact that biomass was still significantly affected. The survival in sediment from "upstream" location A56 equaled 62.5% in December 2012 and 43.8% in December 2014. This pattern indicates that sediment at this location was impacted by one or more sources further upgradient that were unrelated to inputs from mainstem Cement Creek or mainstem Mineral Creek.

Risk conclusion for measurement endpoint 1C

The two, ten-day *H. azteca* sediment toxicity tests identified severe effects, either on survival, growth, or both of these endpoints combined, in all of the sediment samples. The lowest survival was measured in the samples collected from M34, CC49, A72 and A73B. However, survival and biomass measured in all the other sampling locations were also significantly lower compared to the laboratory control sample. It was concluded that acute toxicity was present at all of the sediment sampling locations tested in December 2012 and November 2014 between A56 and BB.

80 | Page

5.2.4 Measurement endpoint 1D

Section 3.6.3 describes the results of the 2014 benthic community survey. In the fall of 2010, Mr. Chester Anderson (B.U.G.S. Consulting) prepared a benthic community data analysis report for the Animas River Stakeholder's Group (see **Appendix 16**). This report summarized the results of benthic surveys performed in the Animas River, Cement Creek, and Mineral Creek in 1992, 1996, 1997, 2004, 2006, 2007, 2009, and 2010. Some of the sampling locations in those previous surveys matched or overlapped with several locations surveyed by EPA in 2014, as follows:

- "Mineral Creek at mouth" corresponds roughly with sampling location M34.
- "Animas above Cement" correspond roughly with sampling location A68.
- "Cement Creek at mouth" corresponds roughly with CC49.
- "Animas @ A72" corresponds with sampling location A72.
- "Animas above Cascade" corresponds roughly with sampling location A75D.

Four of the benthic metrics presented in the 2010 Anderson report matched several of the 2014 metrics summarized in **Appendix 11** in this BERA (see also **Table 3.24**), as follows:

- # of taxa
- # of EPT taxa
- % EPT taxa
- Shannon diversity index (H')

The match between five sampling locations and four metrics afforded an opportunity to determine how the benthic community measured in 2014 compared to previous surveys. Note the following caveats: (a) it is unclear how well four of the five comparable sampling locations actually matched up, (b) the 2010 Anderson report provides no information on the sampling process to determine how well it reflected the 2014 effort, (c) the Anderson report does not state when the benthic invertebrates were collected to determine if the sampling periods corresponded to the September timeframe of the 2014 survey, and (d) many more metrics are available but were not evaluated. These uncertainties should be kept in mind when reviewing the data presented below.

For the sake of simplicity, it was decided to focus the historic data review specifically on Animas River locations A68, A72 and A75D, and to skip the two creek locations. **Appendix 16** identified sampling years 1992, 1996, and 1997 as "baseline". For the current analysis, the four common metrics of interest (i.e., # of taxa, # of EPT taxa, % EPT taxa, and H') obtained at each of the three Animas River locations were averaged across the three "baseline" years. Each of those average metrics was then assigned a relative value of 100. The same four metrics measured in 2004, 2006, 2007, 2009, 2010, and 2014 at the three target Animas River sampling locations

81 | Page

were then scaled relative to the "baseline" values of 100. This approach allowed for a standardized comparison of the four metrics across time and space, no matter their actual values. **Figure 5.3** presents the outcome of this analysis. The general patterns can be interpreted as follows:

- The number of benthic invertebrate taxa observed in 2014 increased at A72 and A75D compared to the previous survey performed in 2010, and remained roughly similar at A68. However, at none of the three Animas River sampling stations did the number of benthic invertebrate taxa in 2014 substantially exceed the baseline from the mid 1990's (see **Figure 5.3a**).
- The number of EPT taxa observed in 2014 decreased compared to 2010 at A68 and remained (roughly) the same at A72 and A75D. However, at none of the three Animas River sampling stations did the number of EPT taxa in 2014 exceed the baseline from the mid 1990's (see **Figure 5.3b**).
- The percent of EPT taxa observed in 2014 decreased at all three sampling stations compared to 2010. In addition, the percent of EPT taxa was substantially lower at all three locations compared to the baseline from the mid 1990's (see **Figure 5.3c**).
- The Shannon diversity index (H') observed in 2014 increased substantially at all three sampling stations on the Animas River compared to the previous survey performed in 2010. This metric in 2014 also exceeded the baseline from the mid 1990's at all three locations (see **Figure 5.3d**).

Risk conclusion for measurement endpoint 1D

In general, comparing select 2014 benthic community survey metrics with the same metrics from "historic" data suggested that the conditions for the benthic invertebrate community at sampling locations A68, A72 and A75D in the Animas River have not substantially improved since the mid-1990's. A72 appears to be the most impacted of the three sampling locations, particularly when compared to A68. The marked increase in the Shannon diversity index at all three locations in 2014 indicates that the benthic invertebrate community was more diverse than in previous sampling years, which is a positive development. However, it is unknown if this trend will be sustained in the future because it is based on data from only the last community survey in 2014.

82 | Page

Risk conclusion for assessment endpoint 1 (benthic invertebrate community)

Taken together, the four independent measurement endpoints (i.e., comparison of bulk sediment chemistry to sediment benchmarks, comparison of field-collected pore water chemistry to surface water benchmarks, sediment toxicity tests, and recent plus past benthic community survey results) show a strong potential for risk to the benthic invertebrate community in the Animas River between sampling location A56 and BB, as well as in mainstem Cement and Mineral creeks.

The sediment HQ evaluation and sediment toxicity test results did not provide a consistent picture. The sediment HQ analysis identified sediment samples CC49 and M34 as the least impacted by metals, whereas sediment samples A75B, BB, and the Animas River upstream of Cement Creek were the most impacted by metals. This pattern is contrary to the outcome of the sediment toxicity test, which showed the highest toxicity at CC49 and M34 and lower (relative) toxicity in the Animas River above mainstem Cement Creek, plus A75B and BB.

Appendices 17.a and 17.b compare the *H. azteca* mortality and biomass responses from the two sediment toxicity tests (summarized in **Table 3.23**) against the HQs of key "risk driving" metals measured in pore water and corresponding sediment samples collected from each of the toxicity test vessels in December 2012 and November 2014. The data analysis proceeded as follows:

- The evaluation focused on metals that yielded the highest HQs. Those metals were Al, As, Cd, Cu, Pb, Mn, and Zn.
- The sediment toxicity tests pore water HQs for the non-hardness dependent metals were obtained by dividing the detected concentrations (or half the DL for non-detect metals) of the dissolved metals measured in pore water by their corresponding CSWBs presented in **Table 3.1**
- The sediment toxicity tests pore water HQ for the hardness-dependent metals were obtained using the equations presented in **Table 3.1** to first calculate CSWBs based on the sample's hardness value and then dividing the dissolved concentrations of the hardness-dependent metals measured in pore water by these sample-specific surface water benchmarks (note: Al HQs were calculated using the standard benchmark of 87 μg/L).
- The sediment toxicity tests sediment HQs were calculated by dividing the detected concentrations (or half the DL for non-detect metals) by their corresponding effect sediment benchmarks presented in **Table 3.1**.

83 | Page

The results, which did not provide a consistent pattern, can be interpreted as follows:

December 2012 test (Appendix 17.a)

- The highest risk potential to *H. azteca* was associated with exposure to Pb, Mn and Zn in the bulk sediment, followed by As, Cd, and Cu.
- Toxicity to *H. azteca* from exposure to pore water in the test sediment appeared to be sporadic across the sampling locations, except for Mn.
- Only for sampling location CC49 can it be stated with some level of confidence that pore water may have been a likely cause of the observed toxicity to *H. azteca*.
- The high toxicity at sampling location M34 was puzzling giving the relative absence of pore water or bulk sediment risk (e.g. compare the response and chemistry of M34 to A68). This observation suggests the presence of an unaccounted factor resulting in high toxicity to benthic invertebrates in mainstem Mineral Creek

November 2014 test (Appendix 17.b)

- The highest risk potential to *H. azteca* was associated with exposure to Pb, Mn and Zn in the bulk sediment, followed by Cd and Cu.
- Toxicity from exposure to pore water in the test sediment was most pronounced for Cd, followed by Mn and Zn. However, the highest Cd risk associated with power water exposure occurred at the sample collected from location A60, even though *H. azteca* survival and biomass in that sample were no worse than at other locations.
- With some exceptions, the initial and final pore water HQs were remarkably similar. This pattern suggested that equilibrium between the pore water and bulk sediment was established within 24 hours of adding the sediment samples to the test beakers, and that the daily surface water renewal in the test beakers over the ten-day test did not affect the composition of the pore water.

The chemistry versus toxicity evidence, although contradictory, was weighed in favor of the sediment toxicity test because it measured direct effects on a sensitive benthic invertebrate species exposed for ten days to field-collected sediment samples. Additionally, the two sediment toxicity tests met the test acceptability criteria for both survival and growth, and were therefore more precisely valid for use in this report. The exact cause of toxicity to *H. azteca* (and by extension the benthic invertebrate community) is unclear, but the effects on survival and growth are uncontroversial.

84 | Page

5.3 Community-level aquatic receptors – fish

The risk characterization for fish was based on two separate but complimentary approaches.

The first approach is identical as described in Section 5.2.2 to derive "reasonable minimums" and average hardness values for use in calculating hardness-specific CSWBs. **Table 5.19** presents the surface water hardness values for each EU and hydraulic period.

The second approach used in the surface water risk characterization consisted of assessing the concentrations of key surface water COPECs (i.e., pH, Al, Cd, Cu, Mn, Pb, and Zn) on a sample-by-sample basis to create scatter plots. These plots are provided in **Figure 5.4.a-c** (pH), **Figure 5.5.a-c** (total Al), **Figure 5.6.a-c** (dissolved Cd), **Figure 5.7.a-c** (dissolved Cu), **Figure 5.8.a-c** (dissolved Mn), **Figure 5.9.a-c** (dissolved Pb), and **Figure 5.10.a-c** (dissolved Zn).

Assessment endpoint 2: Maintain a stable and healthy fish community. Are the metal levels in surface water from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above mainstem Cement Creek, between mainstem Cement Creek and mainstem Mineral Creek, and below mainstem Mineral Creek high enough to impair the fish in these waterways?

The potential for ecological risk to the fish community in the three waterways was assessed as follows.

5.3.1 Measurement endpoint 2A

Compare metal levels measured in surface water samples to CSWBs.

5.3.1.1 Mainstem Mineral Creek

Table 5.20 presents the surface water HQs for the fish community in mainstem Mineral Creek. All surface water samples were collected at one location (M34) by the mouth of the creek.

\circ pH

1778118

Figure 5.4.a provides the scatter plots for pH in this EU. The data showed that surface water pH can drop as low as around five during the pre-runoff period, but then stays mostly at or above six during the runoff and post-runoff period.

85 | Page

Metals

The RME and CTE HQs for Al, Cd, Fe, Ag, and Zn had HQs that exceeded one during all three hydraulic periods. The highest risk in this EU is associated with severe Al exceedances. The other exceedances were relatively minor in comparison. The risk from Ag is highly uncertain because it was based mostly on half of the analytical DLs, as opposed to actual detected concentrations.

It is concluded that surface water pHs of around five combined with high Al levels during the pre-runoff period can be potentially lethal to aquatic receptors depending on the duration of the low pH or high Al event. At a minimum, such conditions are expected to cause severe stress to fish during the pre-runoff period.

5.3.1.2 Mainstem Cement Creek

Table 5.21 presents the surface water HQs for aquatic, community-level receptors in mainstem Cement Creek. All surface water samples (except for one obtained at CC49) were collected from CC48, located close to the confluence with the Animas River.

\circ pH

Figure 5.4.a provides the scatter plots for pH in this EU. The data showed that pH remained entirely below six during all sampling events between 2009 and 2014, with pH excursions well below four during both the pre and post-runoff seasons. Irrespective of the surface water metals concentrations presented below, these pH levels can be expected to be acutely lethal to all fish.

Metals

The RME and CTE HQs for Al, Be, Cd, Cu, Fe, Mn, Pb, and Zn exceeded one during all three hydraulic periods. The highest risk in this EU is associated with severe Al exceedances. The other exceedances were relatively minor in comparison, but were still expected to be lethal, particularly for Cd, Cu, and Zn.

It is concluded that the chemical conditions in the surface water from mainstem Cement Creek cannot support a viable fish community.

86 | Page

5.3.1.3 Animas River

Animas River above mainstem Cement Creek

Table 5.22 presents the surface water HQs for the fish community in the Animas River above mainstem Cement Creek.

o pH

Figure 5.4.a provides the scatter plots for pH in this EU. The data showed that pH remained above six during all sampling events between 2009 and 2014. Hence, pH was not considered to be a stressor in this reach of the Animas River.

o Metals

Al, Cd, Cu, Mn, and Zn had HQs above one during one or more of the hydraulic periods, although the exceedances were in general relatively minor. **Figures 5.5.a** (Al), **5.6.a** (Cd), and **5.10.a** (Zn) suggested the presence of a source of these metals upstream of this EU. The lack of a robust surface water dataset from sampling location A56 ("upstream") precludes determining if the Mayflower Mill, situated just above the confluence of Arrastra Creek with the Animas River between sampling locations A56 and A64, may be a potential source for these three metals, or if the source is located further upstream in the watershed.

Therefore, this BERA concludes the chemical conditions in the surface water from the Animas River upstream of mainstem Cement Creek between sampling locations A60 and A68 may result in chronic toxicity to the fish community, mainly due to Al, Cd, and Zn. Additionally, this potential risk is unrelated to contamination from mainstem Cement Creek.

Animas River between mainstem Cement Creek and mainstem Mineral Creek

Table 5.23 presents the surface water HQs for the fish community in this short reach of the Animas River. Only two surface water samples were collected from the two sampling locations in October of 2012 (post-runoff period).

 \circ pH

Figure 5.4.b provides the scatter plots for pH in this EU. The two data points showed that the pH levels during the post-runoff period were at or below the minimum threshold of six. Hence, pH was considered to be a potential minor stressor in this reach of the Animas River. This acidity reflected input of low-pH surface water from mainstem Cement Creek located at the upstream

87 | Page

end of the reach (see **Figure 1.1**). This conclusion is supported by the fact that pH in the Animas River above mainstem Cement Creek was invariably well above six.

Metals

Al, Cd, Cu, Fe, Mn, and Zn had HQs that exceeded one during the post-runoff period, although the exceedances were in general relatively minor, except for Al. The limited contaminant profile suggested that the surface water chemistry in this reach of the Animas River could cause severe chronic toxicity to fish from a combination of low pH and high Al levels, together with the presence of several other metals at lower concentrations.

Animas River below mainstem Mineral Creek

Tables 5.24 to 5.30 present the surface water HQs for aquatic, community-level receptors in the seven EUs of the Animas River below mainstem Mineral Creek. Those EUs were combined for the purpose of this discussion because their risk patterns were quite similar.

o pH

Figures 5.4.b and c provide the scatter plots for pH in this reach of the Animas River. Sampling location A72 showed that pH dropped down to around five during the pre-runoff period. Surface water samples were collected from sampling locations A73, A75D, and BB in April 2014, but pH was not measured in any of these samples. None of the other EUs in this reach were sampled for surface water during the pre-runoff season. Hence, it is unknown how much further the low pH profile extends downstream prior to snowmelt. This acid pulse most likely originates from both mainstem Cement Creek and mainstem Mineral Creek (see **Figure 5.4.a**), instead of from further upstream on the Animas River. The sparse dataset for the EUs downstream from A72 suggested that pH was not an issue during the runoff and post-runoff periods.

Metals

Al, Cd, Cu, Fe, Mn, and Zn exceeded a pH of one during one or more of the hydraulic periods, although the exceedances were in general relatively minor, except for Al. The limited contaminant profile suggested that the surface water chemistry in this reach of the Animas River could cause severe chronic toxicity to fish during the pre-runoff period from a combination of low pH and high Al levels. The presence of several other metals at lower concentrations might further exacerbate this trend.

88 | Page

Risk conclusion for measurement endpoint 2.A

The prevailing conditions in mainstem Cement Creek were expected to be acutely lethal to fish, mainly as a result of low pH and high Al levels, coupled with excessive amounts of Cd, Pb, and Zn.

The prevailing conditions in mainstem Mineral Creek appear to be less extreme but should still result in severe stress to fish, mainly due to low pH in the pre-runoff period and high Al levels throughout the year.

The prevailing conditions in the Animas River above mainstem Cement Creek reflected one or more sources of Al, Cd and Zn contamination upstream of this reach, although low pH was not an issue. It appears likely that the prevailing conditions should result in chronic stress to the local fish community in this reach of the river.

The prevailing conditions in the Animas River between mainstem Cement Creek and mainstem Mineral Creek can only be assessed based on two surface water samples. This limited dataset suggested that the conditions in this reach of the Animas River reflected input from mainstem Cement Creek and from the Animas River upstream of Cement Creek. Low pH and high Al were expected to be risk drivers to the local fish community, as well as Cd and Zn.

The prevailing conditions in the Animas River below Mineral Creek were difficult to assess properly because only sampling location A72, situated about one mile downstream of the confluence with mainstem Mineral Creek was sampled over a five-year period. The limited data suggested that Al, Cd, and Zn would likely result in chronic stress to the local fish community, even though a possible trend showed lower HQs further downstream. However, this trend could not be confirmed due to the few available data points.

To provide a partial remedy for this data gap, EPA installed "MiniSipper" sampling devices at several locations in the Animas River below mainstem Mineral Creek, specifically A73, A75D, and BB (note: MiniSippers were also installed at locations A56, A66 and A68 in the Animas River above mainstem Cement Creek; however, the devices at locations A66 and A68 were lost during the 2014 spring runoff event). These sampling devices were deployed in mid-April before the spring runoff and retrieved in mid-July after the runoff concluded. On a daily basis, each device collected and stored a five milliliter integrated surface water sample within a sample coil. Each sample was preserved with 0.25 milliliter nitric acid (stabilizing reagent) to a pH of less than or equal to two and filtered in-situ through a ten micron, ultra-high molecular-weight polyethylene solvent filter. The filtered samples were separated from one another inside the sample coil by a small injected nitrogen gas bubble. The sample coils were returned to the

89 | Page

laboratory at the end of the three-month sampling period for analysis of the water samples for dissolved metals and hardness.

The interpretation of the MiniSipper analytical data focused on Al, Cd, Cu, Pb, and Zn, all of which have aquatic toxicities that depend on hardness (CDPHE, 2013). For the latter four metals, the daily hardness concentrations were used to derive "daily" hardness-adjusted benchmarks. The metal concentrations measured that day were divided by their hardness-adjusted benchmarks to generate "daily" HQs. This approach was also used for Al, except that the Al data set did not include total Al concentrations and pH, both of which are required to derive Al benchmarks per the CDPHE (2013) guidance. Instead, the Al HQs were calculated by dividing the daily dissolved Al concentration by the standard benchmark of 87 µg/L provided by CDPHE (2013). The HQs were then plotted for the five metals over time and across the four sampling locations (i.e., A56, A73, A75D, and BB) to help visualize changes in risk to fish at select locations in the Animas River from mid-April 2014 until mid-July 2014.

Note that the MiniSipper data had important limitations, including the potential for "smearing" between adjacent samples in the sample coils, limited QA capabilities, and the need for using a 10 µm versus a 0.4 µm filter to generate the dissolved samples. As a result, the data were only used semi-quantitatively to provide the supporting evidence presented below.

Figure 5.11 summarizes the plots associated with this analysis, which can be interpreted as follows:

o Aluminum:

The Al HQs started increasing towards the middle of May 2014 and exceeded unity (HQ of one) at the end of that month, except for sampling location A73. These HQ exceedances remained below five and were largely gone by the second half of June 2014. Sampling location A56 showed the highest risk from Al.

o Cadmium

The Cd HQs consistently exceeded one but stayed largely below five during the 2014 pre-runoff period at sampling locations A56, A73, and A75D. These HQ exceedances persisted throughout the runoff period, during which time the Cd HQs at BB were also slightly above one. The excess risk from Cd was largely removed by mid-June 2014.

90 | Page

o Copper

Copper was not a risk issue at any of the three MiniSipper sampling locations on the Animas River below mainstem Mineral Creek between April and July 2014. The HQs exceeded one but stayed below five at sampling location A56 during the 2014 runoff period.

o Lead

The Pb HQs started increasing towards the middle of May 2014 and were above one at the end of that month, except for sampling location A73. These HQ exceedances stayed below five, except for sampling location A56, and were largely gone by the second half of June 2014. Sampling location A56 showed the highest risk from Pb.

o Zinc

The pattern for the Zn HQs was similar to that observed for Cd, namely the HQs consistently exceeded one but stayed largely below five during the 2014 pre-runoff period at sampling locations A56, A73, and A75D. These HQ exceedances persisted throughout the runoff period, during which time the Cd HQs at BB were also slightly above one. The excess risk from Cd was largely gone by mid-June 2014.

The 2014 MiniSipper data mostly reflected the general trends summarized in **Figures 5.5 to 5.10**, namely: (a) the risk to fish increased during the runoff period and then subsided later on in the summer, (b) risk from Cd and Zn was consistently present during the pre-runoff period (except for the BB sampling location), and (c) a persistent risk signal was associated with the samples collected at sampling location A56, located upstream of A60 on the Animas River above mainstem Cement Creek. Multi-week exceedances of chronic HQs at the various sampling locations on the Animas River can be expected to have long-term detrimental effects on the local fish populations.

As a final note, the Al HQs summarized in Figure **5.11a** were lower than those provided in **Figure 5.5** for the same sampling locations. The reason is partly because the benchmark calculation methods differed since the MiniSipper Al data represented dissolved Al and lacked the pH data needed to select the proper HQ calculation method.

91 | Page

5.3.2 Measurement endpoint 2B

Assess survival in juvenile rainbow trout (Oncorhynchus mykiss) exposed for 96 hours in the laboratory to surface water samples collected from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above mainstem Cement Creek and below mainstem Mineral Creek.

Section 3.6.1 summarizes the results of the acute toxicity tests using juvenile rainbow trout. **Table 3.22** provided the survival data. The toxicity tests were performed using surface water collected during the pre-runoff period (April 2013) and the post-runoff period (October and November, 2012). No surface water samples were collected during the runoff period for use in toxicity testing.

Surface water samples collected from mainstem Cement Creek, mainstem Mineral Creek, and sampling location A72 on the Animas River below mainstem Mineral Creek were acutely toxic to juvenile rainbow trout. Sampling location A68 in the Animas River above mainstem Cement Creek was acutely toxic in April 2013 but not in the fall of 2012, strongly suggesting the presence of a seasonal chemical stressor in this reach of the river that is not associated with input from mainstem Cement or Mineral Creeks.

No significant acute toxicity was observed for juvenile rainbow trout exposed to surface water collected from the EUs below sampling location A72. This pattern suggested that the acute toxicity measured in A72 was "diluted out" by the time the river reached sampling location A73, about six miles downstream of the confluence with mainstem Mineral Creek.

5.3.3 Risk Conclusions for assessment endpoint 2 (fish community)

O Mainstem Cement Creek:

The chemical conditions in surface water from mainstem Cement Creek were highly toxic to fish, particularly due to low pH and high Al, and to a lesser extent by the presence of Cd, Cu, and Zn. The toxicity tests showed that surface water collected from this EU in November (i.e., postrunoff period) was acutely toxic to juvenile rainbow trout (see **Table 3.22**). The preponderance of the evidence suggested that the fish community in mainstem Cement Creek (if present) would experience high stress under current conditions.

Mainstem Mineral Creek:

The chemical conditions in mainstem Mineral Creek appeared less severe than in mainstem Cement Creek for the local fish community. However, severe pH drops and high Al levels during

92 | Page

the pre-runoff period suggested that fish may experience high stress in the winter, but that survivors could possibly recover during the remainder of the year. The toxicity tests showed surface water collected from this EU in November (i.e., post-runoff period) was acutely toxic to juvenile rainbow trout (see **Table 3.22**). The preponderance of evidence suggested that the fish community in mainstem Mineral Creek (if present) would likely experience severe acute stress under current conditions.

Animas River above mainstem Cement Creek:

The chemical conditions in the Animas River above mainstem Cement Creek suggest the presence of one or more sources of metal contamination located further upstream in the watershed. The chemical signature of the surface water suggests that chronic toxicity to the fish community is possible, particularly due to the presence of Al, Cd, and Zn. Low pH, on the other hand, is not an issue in this reach. The presence of significant acute toxicity measured in juvenile rainbow trout exposed to surface water from this reach further confirms the results of the chemical analyses. The preponderance of evidence suggested that the fish community in this reach of the Animas River may experience acute or chronic stress during much of the year.

Animas River between mainstem Cement Creek and mainstem Mineral Creek

The amount of chemical information on the quality of the surface water is limited because only two samples were collected and no acute toxicity testing was performed. The limited amount of data suggested that this reach of the Animas River was likely to be lethal to fish, mostly due to low pH and high levels of aluminum, with secondary stress caused by Cd and Zn.

Animas River below mainstem Mineral Creek

The chemical signature of the surface water in this reach of the Animas River reflected the major inputs from mainstem Mineral and Cement Creek, and the reach of the Animas River above mainstem Cement Creek. Surface water samples collected from sampling location A72 during the pre and post-runoff periods were acutely toxic to juvenile rainbow trout. The surface water samples collected during the same two hydraulic periods from the EUs further downstream did not show acute toxicity, suggesting that the acute effects had been "diluted out". However, the preponderance of evidence (including the semi-quantitative MiniSipper datasets summarized in **Figure 5.11**) shows that Al, Cd, and Zn in surface water may exert chronic stress to the fish community all the way to the BB EU located about 30 miles downstream from Silverton.

This general conclusion was strongly supported by the results of a fisheries survey performed by the Colorado Division of Wildlife (CDOW, 2010; see **Appendix 18**). The CDOW electroshocked the Animas River below mainstem Mineral Creek at locations "A-72 USGS"

93 | Page

(equivalent to sampling location A72), "Elk Park" (in the vicinity of sampling location A73), and "Teft Spur" (in the vicinity of sampling locations A75D/A75B). The CDOW also sampled the Animas River above mainstem Cement Creek but at a location well upstream of A60, and therefore outside of the current area of concern.

The data consisted of fish counts ("fish per mile" organized by trout species) sampled at these three locations in 1992, 1998, 2005, and 2010 (see Table 5 on p. 15 in **Appendix 18**). The data show that between 1992 and 2005, trout were essentially absent from A72, present at a low but steady level at Elk Park (vicinity of A73), and present at a much higher and steady level at Teft Spur (vicinity of A75D/A75B). The trout populations crashed at all three locations between 2005 and 2010, both in abundance and distribution. CDOW (2010) suggested that the main cause for this sudden collapse was associated with the discontinuation of a large water treatment project in the Gladstone area on Cement Creek upgradient from Silverton.

CDOW returned to Teft Spur (vicinity of A75D/A75B) on the Animas River below mainstem Cement Creek in September of 2014 for an additional electroshocking survey (see p. 29 to 32 in **Appendix 19**). The data showed that the reduced trout population observed in 2010 at this location was essentially eliminated by 2014.

In conclusion, the available evidence shows that the current conditions in the Animas River have had harmful effects on the local trout populations.

5.4 Aquatic invertivorous birds

The risk evaluation for the wildlife receptors generated numerous HQ tables. No effect and effect HQs were developed for both RME and CTE exposure scenario, resulting in four HQs for ten analytes across seven EUs on the Animas River. Four of the ten "important bioaccumulative compounds" assessed for risk via food chain modeling showed a potential for wildlife risk. Those compounds consisted of Cu, Pb, Se, and Zn.

The data presentation and interpretation outlined below for aquatic invertivorous birds (and the three other wildlife receptor species) was simplified by focusing the discussion only on those four compounds and calculating a geometric mean of the no effect and effect HQs for both the RME and CTE exposure scenario. A geometric mean was obtained by (a) taking the natural log of a no effect HQ and its corresponding effect HQ, (b) adding the two logged values, (c) dividing the sum by 2, and (d) taking the anti-log of the result. Those RME and CTE "geomean HQs" were then plotted for each wildlife receptor to help visualize the potential for ecological risk across all the Animas River EUs.

94 | Page

Assessment endpoint 3: Maintain stable and healthy invertivorous bird populations. Are the metal levels in surface water, sediment, and benthic invertebrates high enough to impair invertivorous birds foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?

The potential for ecological risk to this receptor group was assessed using one measurement endpoint, as follows:

5.4.1 Measurement endpoint 3A

Use metal concentrations measured in sediment and benthic invertebrates in a food chain model to calculate metal-specific EDDs from ingesting surface water, sediment, and benthic invertebrates, and compare these EDDs to avian TRVs.

Tables 5.31 to 5.37 provide the HQs for this receptor across all of the wildlife EUs. **Figure 5.12.a** summarizes the geometric mean RME and CTE HQs for Cu, Pb, Se, and Zn. The potential risks associated with the four major COPECs are discussed below. The reliability of the findings was considered low because it was based on a single, semi-qualitative Line of Evidence (LOE).

This measure of effect identified Cu as a risk driver to invertivorous birds ingesting surface water, sediment, and aquatic invertebrates from the Animas Rive at sampling locations A73B and A75B. The highest risk for Cu (RME geometric mean HQ = 5.6 and CTE geometric mean HQ = 2.6) was identified at A75B. Minor risk was also found for Zn (RME geometric mean HQ = 1.6 and CTE geometric mean HQ = 1.1) in the Animas River above mainstem Cement Creek, and for Se at sampling location A73B (RME geometric mean HQ = 1.2 and CTE geometric mean HQ = 1.2).

The southwestern willow flycatcher, which is listed as an endangered bird species both at the federal and state level, might forage for aquatic insects and breed in the riparian habitats along the Animas River downstream of Silverton. It is not known if this bird is actually present on the Animas River, but this BERA assumes it to be the case as a precautionary measure. It was decided that the no effect HQ under a RME scenario would provide a conservative assessment of risk for this protected species. Under that scenario, a potential for risk, primarily from Cu, but also from Se and Zn were identified both in the Animas River reach above mainstem Cement Creek and at sampling locations A73B and A75B in the Animas River below mainstem Cement Creek.

No benthic invertebrates were collected for tissue residue analysis from sampling locations A73B and A75B. Hence, the levels of metals in benthic tissues used in calculating EDDs were estimated using conservative published sediment-to-benthic invertebrate regression models and

95 | Page

uptake factors. It was noteworthy that the only two sampling locations with excessive risk from Cu were A73B and A75B (see **Figure 5.12a**). Given this pattern, it was concluded that the risk from Cu was hypothetical and unlikely to be realized in the field.

5.5 Aquatic omnivorous birds

Assessment endpoint 4: Maintain stable and healthy omnivorous bird populations. Are the metal levels in surface water, sediment, benthic invertebrates, and aquatic plants high enough to impair omnivorous birds foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?

The potential for ecological risk to this receptor group was assessed using one measurement endpoint, as follows:

5.5.1 Measurement endpoint 4A

Use metal concentrations measured in sediment samples to estimate metal residues in aquatic plants; use the estimated plant residues and the measured benthic invertebrate residues in a food chain model to calculate metal-specific EDDs from ingesting surface water, sediment, and food, and compare these EDDs to avian TRVs.

The risk to aquatic omnivorous birds, represented by the mallard, was assessed based on the "100% diet" to model females feeding exclusively on benthic invertebrates prior to laying their eggs in the spring and on the "50%-50% diet" to model both males and females feeding on a mix of plants and benthic invertebrates for the remainder of the year.

Tables 5.38 to 5.44 provide the HQs for the 100% diet, and **Tables 5.45 to 5.51** provide the HQs for the 50%-50% diet. **Figures 5.12.d and 5.12.e** summarize the geometric mean RME and CTE HQs for Cu, Pb, Se, and Zn in the 100% diet and the 50%-50% diet, respectively. The potential risks associated with the four major COPECs are discussed below. The reliability of the findings was considered low because it was based on a single, semi-qualitative LOE.

• 100% benthic invertebrate diet

Of the four major COPECs, only Cu was a minor risk concern to the mallard feeding on a 100% benthic invertebrate diet at sampling locations A73B and A75B in the Animas River below mainstem Mineral Creek. Pb, Se, and Zn were not a risk concern under this exposure scenario. As explained in the previous subsection, the small risk associated with Cu is considered hypothetical because it was derived based on estimated (instead of measured) benthic invertebrate tissue residue levels.

96 | Page

• 50% benthic invertebrate and 50% aquatic plant diet

None of the four major COPECs were a risk concern to the mallard feeding on a 50%-50% diet in the Animas above mainstem Cement Creek or below Mineral Creek. This finding suggested that mallards feeding on a 50%-50% diet are unlikely to be affected by the current conditions in the Animas River at the EUs evaluated in this BERA.

5.6 Piscivorous birds

Assessment endpoint 5: Maintain stable and healthy piscivorous bird populations. Are the metal levels in surface water, sediment and fish high enough to impair piscivorous birds foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?

The potential for ecological risk to this receptor group was assessed using one measurement endpoint, as follows:

5.6.1 Measurement endpoint 5A

Use metal concentrations measured in sediment samples to estimate metal residues in fish; use food chain modeling to calculate metal-specific EDDs from ingesting surface water, sediment and fish, and compare these EDDs to avian TRVs.

Tables 5.52 to 5.58 provide the HQs for this receptor. **Figure 5.12b** summarizes the geometric mean RME and CTE HQs for Cu, Pb, Se, and Zn. The potential risks associated with the four major COPECs are discussed below. The reliability of the findings was considered low because it was based on a single, semi-qualitative LOE.

This measure of effect identified Pb as a minor risk driver to piscivorous birds ingesting surface water and fish from the Animas River. Risk from Pb exceeded unity (RME geometric mean HQ = 1.2 and CTE geometric mean HQ = 1.1) only in the reach of the Animas River above mainstem Cement Creek. Risk from Zn in the Animas River at the BB EU further downstream equaled unity but only for the RME geometric mean HQs; the CTE geometric mean HQs for Zn all fell below one.

5.7 Aquatic herbivorous mammals

Assessment endpoint 6: Maintain stable and healthy herbivorous mammal populations. Are the metal levels in surface water, sediment, and aquatic plants high enough to impair

97 | Page

herbivorous mammals foraging in the Animas River above mainstem Cement Creek and below mainstem Mineral Creek?

The potential for ecological risk to this receptor group was assessed using one measurement endpoint, as follows:

5.7.1 Measurement endpoint 6A

Use metal concentrations measured in sediment samples to estimate metal residues in aquatic plants; use food chain modeling to calculate metal-specific EDDs from ingesting surface water, sediment, and aquatic plants, and compare these EDDs to mammalian TRVs.

Tables 5.59 to 5.65 provide the HQs for this receptor. **Figure 5.11.c** summarizes the geometric mean RME and CTE HQs for Cu, Pb, Se, and Zn. The potential risks associated with the four major COPECs are discussed below. The reliability of the findings was considered low because it was based on a single, semi-qualitative LOE.

None of the four major COPECs were a risk concern to the muskrat consuming a 100% aquatic plant diet from the Animas above mainstem Cement Creek or below Mineral Creek. This finding suggested that muskrats are unlikely to be affected by the current conditions in the Animas River at the EUs evaluated in this BERA.

5.8 General risk conclusions for wildlife receptors

Animas River above mainstem Cement Creek

Minimal potential risk to wildlife receptors was observed in this reach of the Animas River associated with Zn (American dipper, as a surrogate for the federally and state-listed southwestern willow flycatcher) and Pb (belted kingfisher). It appears unlikely that this potential for risk is actionable because the geomean HQs barely exceeded unity.

Animas River below mainstem Mineral Creek

Cu was identified as a potential risk driver to the American dipper and the mallard at sampling locations A73B and A75B. This risk was driven by estimated benthic tissue levels because no benthic invertebrates were collected from these two sampling locations for residue analysis. The other three major COPECs were not of concern to any of the wildlife receptor groups in this reach of the Animas River.

98 | Page

The increased risk of Cu in the American dipper versus the mallard was driven almost entirely by the higher food ingestion rate of the former species compared to the latter (0.0519 kg/kg/BW-day, dw, versus 0.2173 kg/kg BW-day, dw which results in a ratio of 4.2). This difference was because the average adult American dipper weighs 0.0565 kg and the average adult mallard weighs 1.162 kg (see **Table 4.29**). As such, the American dipper appears to be a suitably sensitive wildlife receptor for future risk evaluations on this river system.

5.9 Uncertainty Analysis

Uncertainty is inherent in any ecological risk assessment due to incomplete or inadequate knowledge about a number of key input parameters. This lack of knowledge is usually addressed by making exposure and toxicity estimates using the limited available data, or by making conservative assumptions based on guidance and best professional judgment when no reliable data are available. The major uncertainties associated with this BERA are discussed below.

5.9.1 Community-level receptors

- It is unclear if mainstem Cement Creek or Mineral Creek upstream of the confluence with South Fork Mineral Creek supported aquatic life before mining activities started in their watersheds in the 19th century (Church *et al.*, 2007). If this observation is correct, then any impairment may not reflect negatively on current conditions in those two waterways. This situation represents a serious uncertainty, which would have to be considered as part of any future risk management decision-making.
- Except for Al and Fe, the surface water exposures evaluated in this BERA were based on dissolved metal concentrations, which represent the toxicologically "active" fraction of the total metals. Basing the surface water exposures on this fraction was not overly conservative and did not generate much uncertainty.
- Twenty sediment samples were collected from the reach of the Animas River above mainstem Cement Creek between A60 and A68. The data from these samples were pooled into a single, large dataset representative of that EU. The sediment datasets collected from the EUs on the Animas River below mainstem Mineral Creek were uniformly small (n = 3 to 5) which was not always enough to calculate representative EPCs using ProUCL. Hence, some uncertainty was associated with the risk conclusions derived from these smaller sediment datasets.
- Risk to community-level receptors was assessed using the HQ method. The HQs were not summed to calculate a Hazard Index (HI), because a HI assumes that HQs are additive. It is not anticipated that all of the inorganic COPECs evaluated in this BERA would exert

99 | Page

their toxic effects on one and the same organ, which is a basic requirement for calculating HIs. On the other hand, it is possible that some of the COPECs may in fact exert additive toxicity, in which case the HQ approach would underestimate certain risks. This observation applied equally to the wildlife evaluation.

- Be and Ag in surface water were retained as COPECs for community-level aquatic receptors even though these two analytes were not present above their DL in most of the EUs. The HQs represented half of the highest DL divided by the chronic benchmark. The HQ exceedances were particularly striking for Ag (see **Tables 3.5, 3.6, and 3.8**). It is not known if Be and Ag represent a realistic but unquantifiable concern for this BERA. This lack of information represents an uncertainty, which may need to be addressed as part of the risk management process.
- Only one benthic species (the amphipod *H. azteca*) was used for the sediment toxicity tests. Even though this species is considered sensitive to contamination, it is not known how much more or less sensitive it is compared to the benthic invertebrate species typically found in the Animas River upstream and downstream of Silverton. At a minimum, the fact that the toxicity endpoints responded significantly at all sampling locations in the ten-day sediment toxicity test compared to the laboratory sediment control sample showed that the test organisms were sensitive to the chemical conditions found in the field-collected sediment samples. As a result, the uncertainty about species sensitivity is small.
- Juvenile rainbow trout were used in the surface water toxicity tests. This species was directly relevant to the fish populations found in the Animas River. Rainbow trout (and particularly juvenile life stages) are considered quite sensitive to the presence of metals in surface water. Hence, the uncertainty associated with their response to the acute exposures in the laboratory was minimal. However, the test did not assess toxicity from chronic exposures typically experienced by fish populations in the Animas River. The lack of an acute response in juvenile rainbow trout at sampling locations A73, A73B, A75B, and BB did not imply that a toxic response would not be present under longerterm exposures in the laboratory. This data gap would have represented a large uncertainty by itself, but was negated by the results of the 2010 and 2014 fisheries surveys performed by the CDOW that showed sharp declines or complete extirpation of trout populations in the Animas River below mainstem Mineral Creek. These findings were further supported by the MiniSipper data that showed the presence of multi-week chronic toxicity for several metals in surface water before and during the snowmelt period. As a result of these two supporting lines of evidence, the uncertainty associated with the lack of acute toxicity to juvenile rainbow trout exposed to surface water samples collected from the lower reaches of the Animas River was minimal.

100 | Page

• All trout species bury their eggs in gravelly substrate during spawning. These eggs remain in the gravel for several months until they hatch. The sac fry stay in the substrate for several more weeks until they have resorbed their yolk sac, after which the juveniles emerge into the overlying surface water. Hence, for six plus months the embryo-larval stages of trout are fully exposed to metals in pore water (note: the surface water benchmarks are derived from toxicity tests on hatched fish, not eggs). This BERA used the pore water HQs for the Animas River presented in Table 5.13 to Table 5.18 only to assess the risk to the benthic invertebrate community. Those same data could also have been applied to the sac fry, which would show unacceptable risk from pore water exposure at all locations sampled for pore water in the Animas River. This particular assessment was not performed, however, because the other three lines of evidence already showed unacceptable risk to the fish community.

5.9.2 Wildlife receptors

- The exposure modeling used published Biota-to-Sediment Accumulation Factors (BSAFs) or regression equations, instead of field-collected tissue samples to estimate COPEC levels in fish and plants (and benthic invertebrates, but only at sampling location A73B and A75B from which tissue samples were not available). The evidence presented in this report strongly suggested that the literature-derived values for benthic invertebrates poorly predicted Site-specific contaminant uptake and tissue levels, resulting in uncertainty. As a result, the risk from Cu to the American dipper and mallard at sampling locations A73B and A75B was considered hypothetical. Additionally, the soil-to-plant regression models and uptake factors were derived from terrestrial studies because no studies have been published to measure sediment-to-plant contaminant uptake. It is not known if or how metal uptake in plants differs between soil and sediment, resulting in uncertainty about actual risk to the omnivorous birds and the herbivorous mammals feeding on aquatic plants.
- Benthic invertebrates were collected for residue analysis in September 2014. These samples provided measured (versus estimated) tissue data for use in the food chain models for the American dipper and the mallard. It is not known how much or if metal levels fluctuate in benthic tissue throughout the year or across years in the Animas River. Also, with only a single sample to work from, the RME and CTE concentrations derived from the benthic invertebrate samples for use in the EDD calculations were identical to each other. The small benthic invertebrate tissue residue dataset represents an uncertainty but it appears unlikely that additional benthic residue sampling events in the future would greatly change the current wildlife risks.

101 | Page

- The exposure modeling assumed that the Animas River reach above mainstem Cement Creek between sampling location A60 and A68 equaled a wildlife receptor's entire home range and forage range (i.e., area use factor = 1.0). This assumption was not unrealistic, given that this reach covered about two miles of river habitat, and therefore has limited uncertainty.
- Fourty surface water samples were collected from the reach of the Animas River above mainstem Cement Creek. Twenty five of those samples were collected at sampling location A68. But even though this data set was assumed to represent the entire EU, it focused on one specific location. The impact on the risk conclusions, however, is expected to be minimal. A review of the surface water chemistry data obtained from the six sampling location in this EU shows that the metal concentrations are quite similar to each other. As such, it appears unlikely that the current surface water dataset for the Animas River above mainstem Cement Creek generated unrepresentative EPCs.
- The exposure modeling included sediment ingestion. The substrate composition of the Animas River at and below Silverton appears to include large fractions of coarse sand, gravel, pebble, and small cobble, instead of the fine sands and silts expected to be accidentally ingested by wildlife receptors during feeding. The actual incidental sediment ingestion may be substantially lower than assumed in the food chain models, which would slightly decrease the calculated risks.
- The characterization of exposure assumed that enough aquatic invertebrates, fish, and aquatic plants were present in the two Animas River reaches to feed the four wildlife receptor populations evaluated in this BERA. This assumption was speculative in light of the presence of aquatic toxicity to fish and benthic invertebrates identified in the surface water and sediment. Instead, the evidence showed that these two receptor groups are impacted and therefore may not be available in the quantities needed to support viable wildlife receptor populations as assumed in the food chain models. If so, then the estimated exposures, and the resulting risks, may be more hypothetical than real.
- The COPEC tissue residues in fish were derived from the COPEC levels measured in sediment samples. This approach assumed that the entire mass of COPECs present in fish originated from the sediment. The relatively high levels of metals detected in Animas River surface water made it likely that fish also accumulated COPECs via bioconcentration through the gills. This additional pathway would have increased tissue residue levels but was not accounted for in the exposure modeling. Therefore it may be possible that the EDDs for the belted kingfisher may have been somewhat underestimated.

102 | Page

- The effects assessment for the wildlife receptors used published no-effect and effect TRVs to measure COPEC toxicity. The assessment endpoints focused on preserving populations, whereas TRVs are derived from data on individuals of a test species. Extrapolating individual effects to higher levels of ecological organization is inherently uncertain, particularly because these extrapolations are applied across non-related species (e.g., chicken to belted king fisher, or mouse to muskrat). The degree of uncertainty with this approach is unknown.
- The wildlife TRVs apply to all birds or mammals. This means the same COPEC-specific TRVs were used for the American dipper, mallard, and belted kingfisher. It is unknown how much more, or less, sensitive these three receptors species might be compared to the test species employed to generate the TRVs used in this BERA. Using "one-size-fits-all" TRVs creates much uncertainty about the actual toxicity of a COPEC to the target wildlife receptor. However, the TRV-derivation process is conservative by design, such that it appears more likely that the wildlife risks were overestimated rather than underestimated.
- The consistent use of conservative assumptions (such as assuming 100% of contaminant bioavailability in food items, assuming feeding in a habitat which may lack food items, relying on TRVs derived from toxicity tests using soluble or other highly bioavailable fractions of the test chemical, and using conservative "one size fits all" TRVs) most likely overestimated risk to the wildlife receptors evaluated in this BERA. As a result, the actual risk to wildlife receptors may be substantially lower than reported.

6.0 SUMMARY AND CONCLUSIONS

6.1 Introduction

The Animas River flows through the town of Silverton in San Juan County, CO. This waterway is affected by flow, which has come in contact with mineralized material, either naturally or as a result of mining activities, such as through the creation of mine adits. The affected water originates in the upper reaches of two major tributaries of the Animas River in this area, namely Cement Creek and Mineral Creek, and from other tributaries of the Animas River further upstream of Silverton. Some of the tributaries contain high levels of metals and acidity that are carried downstream to the Animas River. This evaluation did not attempt to separate natural contamination from past mining-related contamination, but assessed the total risk from all sources combined.

The surface water data represented dozens of samples collected from all the EUs between May 2009 and September 2014. The sediment data set was substantially smaller and consisted of

103 | Page

analytical data collected from those same waterways during five sampling events between May 2012 and September 2014. The pore water data set represented two sampling events on the Animas River and mainstem Mineral Creek in April 2014 and September 2014. The benthic invertebrate tissue data set came from one sample-collection event in September 2014. The data were reviewed to identify assessment endpoints and measures of effect, and to develop a CSM, which showed the movement of contaminants from the sources to the receptors.

The effects evaluation used CSWBs (hardness-adjusted, if necessary) for the surface water and pore water samples, plus no-effect and effect sediment benchmarks, to quantify risk to benthic invertebrates and fish exposed to surface water, pore water and sediment. No-effect and effect TRVs for birds and mammals were used to assess the toxicity of metals taken up via ingestion by wildlife receptors. Additionally, surface water and sediment toxicity tests were performed in the laboratory on samples collected from mainstem Cement Creek, mainstem Mineral Creek, and the Animas River above Cement Creek and below Mineral Creek to measure effects to benthic invertebrates (the amphipod *H. azteca*) and juvenile rainbow trout (*O. mykiss*).

Mainstem Cement Creek, mainstem Mineral Creek, and the three reaches of the Animas River were treated as separate EUs to derive RME and CTE EPCs for use in the baseline evaluation. To fine tune the exposure to aquatic community-level receptors, the surface water data were further split into three hydraulic periods, namely the pre-runoff period (February to April), runoff period (May and June), and the post-runoff period (July to November).

The EPC calculation method varied depending on the EUs, as follows:

- Animas River above mainstem Cement Creek: the surface water, sediment, and pore water analytical data were combined into three separate datasets to calculate COPEC-specific RME and CTE EPCs across the sampling locations.
- Animas River between Cement and Mineral Creeks: only two surface water analytical
 data were available from the two sampling locations in this reach of the river. Therefore
 wildlife receptors were not evaluated because sediment analytical data were required to
 estimate the tissue residue levels in the food items evaluated in the food chain models.
 The surface water analytical data were summarized by sampling location for calculating
 COPEC-specific RME and CTE EPCs to evaluate the fish and benthic invertebrate
 community.
- Animas River below mainstem Mineral Creek: up to several miles separate the various EUs in this lower reach of the river. As a result, this BERA assumed that wildlife receptors would not be exposed across the entire reach. Instead, the surface water, sediment, and pore water analytical data were summarized by sampling location to

104 | Page

calculate COPEC-specific RME and CTE EPCs for use in food chain modeling and to assess exposure to the benthic invertebrate and the fish community.

- Mainstem Cement Creek: thix BERA did not evaluate wildlife receptors foraging in this EU because the SLERA showed that current chemical conditions in this waterway are too degraded to provide forage for wildlife. The surface water and sediment data from the two sampling locations at the mouth of the creek were used to calculate COPEC-specific RME and CTE EPCs to evaluate risk to the fish and benthic invertebrate community.
- Mainstem Mineral Creek: this BERA did not evaluate wildlife receptors foraging in this EU because current chemical conditions in this waterway are too degraded to provide enough forage for wildlife. The surface water and sediment data from the sampling location at the mouth of the creek were used to calculate COPEC-specific RME and CTE EPCs to evaluate risk to the fish and benthic invertebrate community.

Exposure to the four wildlife receptor species foraging in the reaches of the Animas River above mainstem Cement Creek and below mainstem Mineral Creek was quantified using a food chain model which calculated RME and CTE EDDs based on ingesting surface water, sediment, and food items. The food items consisted of benthic invertebrates, fish, and aquatic plants, depending on the target wildlife species. The contaminant levels in the benthic invertebrates were based on measured values (except at sampling locations A73B and A75B), whereas the contaminant levels in fish and plants were estimated by multiplying the sediment RME and CTE COPEC levels by published COPEC-specific sediment-to-biota accumulation factors or by using published regression equations.

Risk was quantified using the HQ method, which compares measured exposures (i.e., RME and CTE surface water, sediment, and pore water EPCs) or estimated exposures (RME and CTE wildlife EDDs) to CSWBs, and no-effect and effect sediment benchmarks and wildlife TRVs.

105 | Page

A COPEC-specific HQ was then calculated using the following general equation:

HQ = EPC or EDD/benchmark or TRV

Where:

HQ = Hazard Quotient (unitless)

EPC = RME and CTE Exposure Point Concentration ($\mu g/L$ or mg/Kg)

EDD = RME and CTE Estimated Daily Dose (mg/kg bw-day)

Benchmark = CSWBs or sediment no effect and effect benchmarks (μg/L or

mg/kg, respectively)

TRV = no effect and effect wildlife Toxicity Reference Value (mg/Kg bw-

day)

HQs equal to or above one identified a potential for ecological risk, whereas HQs below one were used to eliminate chemicals with assurance that they did not pose a risk.

Besides assessing the potential impacts associated with RME and CTE exposures, the risk characterization for fish and benthic invertebrates also viewed each surface water and sediment sample as an individual exposure event in time. HQs were calculated for all available surface water and sediment samples and were used to form "scatter plots" by sampling station and hydraulic period (i.e., pre-runoff, runoff, and post-runoff). Those plots were then used to identify patterns of risk across the waterways and hydraulic periods.

Finally, toxicity data from benthic invertebrates and fish exposed to surface water and sediment in the laboratory were evaluated statistically to determine which of the observed responses were significantly different from laboratory control samples. Benthic community data collected in September 2014 were graphically analyzed and compared to historic data collected from the same sampling locations in the past. Data from past fish surveys were also reviewed

Uncertainty was inherent in this BERA because many assumptions were made in order to proceed with the investigation. These assumptions affected all aspects of the assessment including the CSM, the effects analysis, the exposure analysis, and the risk characterization. The uncertainty analysis identified and discussed the major assumptions made in this BERA. It also provided a short description to determine if the assumptions were likely to have overestimated or underestimated the potential for ecological risk. The end result was a balanced overview of uncertainty to help risk managers understand the full extent of potential ecological risk to receptors living or feeding in mainstem Cement Creek, mainstem Mineral Creek, and the Animas River at and below Silverton.

106 | Page

6.2 Risk conclusions for benthic invertebrates

Taken together, the four independent measurement endpoints evaluated in this BERA (i.e., sediment HQs, pore water HQs, sediment toxicity, and community structure and function) indicated that the benthic invertebrate communities in the Animas River between A60 and BB, and in mainstem Cement and Mineral Creeks, were all impacted. The two creeks were the most impaired. Additionally, comparing four benthic community metrics collected from the Animas River in September 2014 against historical data on those same four metrics indicated that the benthic invertebrate community in the Animas River has not consistently improved over the last decade, with the possible exception at sampling location A75D.

6.3 Risk conclusions for fish

Mainstem Cement Creek:

The chemical conditions in surface water from mainstem Cement Creek were highly toxic to fish, particularly due to low pH and high Al, and to a lesser extent by the presence of Cd, Cu, and Zn. The toxicity tests showed that surface water collected from this EU in November 2012 (i.e., post-runoff period) was acutely toxic to juvenile rainbow trout. The preponderance of evidence suggested that the fish community in mainstem Cement Creek (if present) would experience lethal stress under current conditions.

• Mainstem Mineral Creek:

The chemical conditions in surface water from mainstem Mineral Creek appeared less severe than in mainstem Cement Creek for the local fish community. However, serious pH drops during the pre-runoff period coupled with high Al levels during the pre-runoff and post-runoff periods suggested that fish may experience high stress in the winter, summer, and fall, but that survivors could possibly recover during the rest of the year (spring). The toxicity tests showed surface water collected from this EU in November 2012 (i.e., post-runoff period) and April 2013 (pre-runoff period) was acutely toxic to juvenile rainbow trout. The preponderance of evidence suggested that the fish community in mainstem Mineral Creek (if present) would likely experience high stress under current conditions.

Animas River above mainstem Cement Creek:

The chemical conditions in surface water from this reach of the Animas River between A60 and A68 indicated the presence of one or more sources of metal contamination located further upstream in the watershed. The chemical signature of the surface water suggested that chronic

107 | Page

toxicity to the fish community was possible, particularly due to the presence of Al, Cd, and Zn. Low pH, on the other hand, was not an issue in this reach. The presence of significant acute toxicity measured in juvenile rainbow trout acutely exposed to surface water from this reach further confirms the results of the chemical analyses. The preponderance of evidence suggested that the fish community in this reach of the Animas River could be stressed during much of the year. This conclusion was supported by the fact that daily surface water samples collected between April and July 2014 using "MiniSipper" sampling devices positioned at location A56 (upstream of A60) showed the presence of potentially severe chronic toxicity associated with dissolved Al, Cd, Cu, Pb, and Zn during the pre-runoff and runoff periods.

Animas River between mainstem Cement Creek and mainstem Mineral Creek

Little chemical information on the quality of the surface water was available because only two samples were collected and no acute toxicity testing was performed. The limited amount of data suggested that this reach of the Animas River was likely to be lethal to fish, mostly due to low pH and high levels of aluminum, with secondary stress caused by Cd and Zn.

Animas River below mainstem Mineral Creek

The chemical signature of the surface water in this reach of the Animas River reflected the major inputs from mainstem Mineral and Cement Creek, and the reach of the Animas River above mainstem Cement Creek. Surface water samples collected from sampling location A72 during the pre and post-runoff periods were acutely toxic to juvenile rainbow trout. Surface water samples collected during the same two hydraulic periods from the EUs further downstream did not show acute toxicity, suggesting that the effect had been "diluted out". However, the preponderance of evidence shows that Al, Cd, and Zn in surface water may exert chronic effects on the fish community to at least the BB EU located about 30 miles downstream from Silverton. This conclusion was supported by two additional lines of evidence:

- Daily surface water samples collected between April and July 2014 using "MiniSipper" sampling devices positioned at locations A73, A75D and BB showed the presence of low-grade but multi-week chronic toxicity associated with dissolved Al, Cd, and Zn during the pre-runoff and runoff periods.
- O A fisheries survey performed by the Colorado Division of Wildlife (CDOW) in 2010 on the Animas River in the vicinity of sampling locations A72, A73, and A75D/A75B showed a severe decline of the trout populations at all three locations between 2005 and 2010. The CDOW ascribed this collapse to a drastic reduction in surface water quality apparently associated with the discontinuance of a water treatment project in the Gladstone area on Cement Creek upgradient from Silverton. A 2014 follow-up fisheries

108 | Page

Upper Animas Mining District Final BERA March 2015 survey by the CDOW in the vicinity of sampling location A75D/A75B showed that the trout population had essentially been extirpated.

6.4 Risk conclusions for wildlife receptors

Animas River above mainstem Cement Creek

A potential for minimal risk to wildlife receptors was identified for Zn (American dipper) and Pb (belted kingfisher). The American dipper was also used as a surrogate species to perform a conservative assessment of risk to the southwestern willow flycatcher, a federally and state-listed bird species. The evidence did not suggest that this species was at substantial risk from foraging in the Animas River above mainstem Cement Creek between sampling location A60 and A68.

Animas River below mainstem Mineral Creek

The potential for risk to wildlife receptors in this reach of the Animas River was restricted to Cu in the American dipper at sampling locations A73B and A75B, with minor risk from Cu to the mallard (100% diet only) at the same two locations. The remaining COPECs were of no concern to any of the wildlife receptors. Benthic invertebrates were not collected for tissue residue analysis from sampling locations A73B and A75B. Instead, the levels of metals in benthic tissues at these two locations were estimated using conservative published sediment-to-benthic invertebrate regression models and uptake factors for use in the food chain model. It is noteworthy that the only two sampling locations with excessive risk from Cu were A73B and A75B. Given this pattern, it was concluded that the risk from Cu was hypothetical and unlikely to be realized in the field.

109 | Page

Upper Animas Mining District Final BERA March 2015

7.0 REFERENCES

Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp.

Church, S.E., P. von Guerard, and S.E. Finger, eds. 2007. *Integrated investigations of environmental effects of historical mining in the Animas River watershed, San Juan County, Colorado*. U.S. Geological Survey Professional Paper 1651, 1,096p. plus CD-ROM (in two volumes).

Colorado Department of Public Health and the Environment (CDPHE). 2009. Regulation No. 31 – The basic standards and methodologies for surface water (5 CCR 1002 – 31): Denver, Water Quality Control Commission, 55-56 p.

Colorado Department of Wildlife (CDOW), 2010. 2010 Animas River Report. San Juan Basin. Report written by Jim White, Aquatic Biologist, CDOW.

Drost, C.A., E.H. Paxton, M.K. Sogge, and M.J. Whitfield, 2001. *Food habits of the endangered southwestern willow flycatcher*. Final report to the U.S. Bureau of Reclamation, Salt Lake City. January, 2001. Available at

http://sbsc.wr.usgs.gov/cprs/research/projects/swwf/Reports/Kern_Diet_Report_2001b.pdf

Ealey, D.M. 1997. Aspects of the ecology and behavior of a breeding population of dippers (Cinclus mexicanus: Passeriformes) in southern Alberta. M.S. Thesis. Univ. Alberta. Edmonton.

EPA, 1993. Wildlife Exposure Factors Handbook. EPA/600/R-93/187a.

EPA, 1997. Ecological Risk Assessment Guidance for Superfund (ERAGS): Process for designing and conducting ecological risk assessment. EPA540/R-97/006.

EPA, 1998. Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F.

EPA, 2000. Bioaccumulation testing and interpretation for the purpose of sediment quality assessment; Status and needs. EPA-823-R-00-001. February 2000.

EPA, 2005. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metal Mixtures (Cadmium, Copper, Lead, Nickel, Silver and Zinc). EPA/600/R-02/011, January 2005.

EPA, 2009. *National Recommended Water Quality Criteria: 2009*. http://water.epa.gov/scitech/swguidance/standards/criteria/current/upload/nrwqc-2009.pdf

EPA, 2012. Final Sampling and Analysis Plan/Quality Assurance Project Plan, 2012 Sampling Events. Upper Animas Mining District, Gladstone, San Juan County, Colorado (May 2012).

EPA, 2013. ProUCL Version 5.0.00 User Guide. Statistical software for environmental applications for data sets with and without nondetect observations. EPA, Office of Research and Development, Washington, DC. EPA/600/R-07/041.

EPA Eco SSLs (http://www.epa.gov/ecotox/ecossl/).

Ingersoll, C.G., P.S. Haverland, E.L. Brunson, R.J. Canfield, F.J. Dwyer, C.E. Henke, N.E. Kemble, D.R. Mount and R.G. Fox, 1996. *Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius*. International Association of Great Lakes Research. 22: 602-623.

Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder, 1995. *Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments*. Environ. Manag. 19:81-97.

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger, 2000. *Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems*. Arch. Environ. Contam. Toxicol. 39:20-31.

Sample, B.E., D.M. Opresko, G.W. Suter II, 1996. *Toxicological Benchmarks for Wildlife: 1996 Revision*. Oak Ridge National Laboratory. ES/ER/TM-86/R3.

Sample, B.E. and G.W. Suter, 1994. *Estimating exposure of terrestrial wildlife to contaminants*. ES/ER/TN-125. Oak Ridge National Laboratory, Oak Ridge, TN.

Silva, M. and J.A. Downing, 1995. *DRC Handbook of Mammalian Body Masses*. CRC Press. Boca Raton, FL. 359 pp.

Sullivan, J.O., 1973. *Ecology and behavior of the dipper, adaptations of a passerine to an aquatic environment.* Ph.D. Dissertation. Univ. Montana, Missoula.

TechLaw, Inc. 2012. Final Screening-Level Ecological Risk Assessment work plan. Cement Creek and Animas River Mining District, San Juan County, CO. July 2012.

TechLaw, Inc., 2013. Interim Final Screening-Level Ecological Risk Assessment, Upper Animas Mining District, San Juan County, CO. February 2013.

TechLaw, Inc., 2014. Sampling Activities Report. 2014 Sampling Events. Upper Animas Mining District, Gladstone, San Juan County, CO. Draft prepared for the USEP Region 8, Ecosystem Protection and Remediation – Program Support, Denver, CO.

FIGURE 2.1
Site conceptual model for the aquatic habitats and receptors evaluated in the BERA
Baseline Ecological Risk Assessment
Upper Animas Mining District

Figure 3.1: Summary of select benthic invertebrate community data collected in September 2014 from the Animas River, main stem Cement Creek, and main stem Mineral Creek

Figure 3.1a: # of taxa, # of intolerant taxa and # of EPT taxa for the benthic invertebrate community in the Animas River, mainstem Cement Cr. & mainstem Mineral Cr. (Sep. 2014)

Figure 3.1c: The Hilsendorf Biotic Index for the benthic invertebrate community in the Animas River, mainstem

Figure 3.1b: Shannon-Weaver Diversity Index for the benthic invertebrate community in the Animas River,

Sampling Location

Figure 3.1d: EPT Index, Ephemerata abundance, and %EPT for the benthic invertebrate community in the Animas River,

Figure 3.1 (cont'd): Summary of select benthic invertebrate community data collected in September 2014 from the Animas River, main stem Cement Creek, and main stem Mineral Creek

Figure 3.5: Filterers, scrapers, and clingers in the benthic community in the Animas River, mainstem Cement Creek, and mainsten Mineral Creek (Sep. 2014)

Figure 5.1: Geometric mean no effect and effect HQs for the benthic invertebrate community exposed to sediment in the Animas River above Cement Creek and below Mineral Creek

Figure 5.3: Comparison of four benthic community metrics measured in 2014 at three sampling locations in the Animas River against the same metrics measured in 2004-2010

Figure 5.3a: Relative change over time in the number of benthic invertebrate taxa in the Animas River at sampling locations A68, A72 and A75D

Figure 5.3c: Relative change over time in the % of EPT taxa in the Animas River at sampling locations A68, A72 and A75D

Figure 5.3b: Relative change over time in the number of EPT taxa in the Animas River at sampling

Figure 5.3d: Relative change over time in the Shannon diversity index in the Animas River at sampling locations A68, A72 and A75D

Figure 5.4: Scatter plots of pH in surface water

Figure 5.4.c: pH in pre-runoff, runoff, and post-runoff surface water samples from the Animas River below Mineral Creek (A73B, A75D, A75B, and Bakers Bridge)

Hydrologic periods and sampling locations

Figure 5.5: Scatter plots of total Al HQs in surface water

Figure 5.5.c: Total Al HQs in pre-runoff, runoff, and post-runoff surface water samples from the Animas River below MC at locations A73B, A75D, A75B, and Bakers Bridge

Hydrologic periods and sampling locations

Figure 5.6: Scatter plots of dissolved Cd HQs in surface water

Figure 5.6.c: Dissolved Cd HQs in pre-runoff, runoff, and post-runoff surface water samples from the Animas River below MC (A73B, A75D, A75B, and Bakers Bridge)

Figure 5.6.b: Dissolved Cd in pre-runoff, runoff, and post-runoff surface water samples from the Animas River between CC & MC (A69A & A70B) and below MC (A71B, A72 & A73)

Animas River Animas R below Animas R below Animas R below

Figure 5.7: Scatter plots of dissolved Cu HQs in surface water

Figure 5.7.a: Dissolved Cu HQs in pre-runoff, runoff, and post-runoff surface water samples from Mineral Cr., Cement Cr.,

Figure 5.7.c: Dissolved Cu HQs in pre-runoff, runoff, and post-runoff surface water samples from the Animas River below MC (A73B, A75D, A75B, and Bakers Bridge)

Hydrologic periods and sampling locations

Figure 5.7.b: Dissolved Cu HQs in pre-runoff, runoff, and post-runoff surface water samples from the Animas River between CC & MC (A69A & A70B) and below MC (A71B, A72 & A73)

Figure 5.8: Scatter plots of dissolved Mn HQs in surface water

Figure 5.8.a: Dissolved Mn HQs in pre-runoff, runoff, and postrunoff surface water samples from Mineral Cr., Cement Cr., Animas R. upstr. (A56) and Animas R. above CC (A60 to A68)

Figure 5.8.c: Dissolved Mn HQs in pre-runoff, runoff, and post-runoff surface water samples from the Animas River below MC (A73B, A75D, A75B, and Bakers Bridge)

Hydrologic periods and sampling locations

Figure 5.8.b: Dissolved Mn HQs in pre-runof, runoff, and post-runoff surface water samples from the Animas River between CC and MC (A69A & A70B) and below MC (A71B, A72 & A73)

Figure 5.9: Scatter plots of dissolved Pb HQs in surface water

Figure 5.9.a: Dissolved Pb HQs in pre-runoff, runoff, and post-runoff surface water samples from Mineral Cr., Cement Cr., Animas R. upstr. (A56) and Animas R. above CC (A60 to A68)

Figure 5.9.c: Dissolved Pb HQs in pre-runoff, runoff, and post-runoff surface water samples from the Animas River below MC (A73B, A75D, A75B, and Bakers Bridge)

Hydrologic periods and sampling locations

Hydrologic periods and sampling locations

ED 000552 00016309-00126

Figure 5.10: Scatter plots of dissolved Zn HQs in surface water

Figure 5.10.a: Dissolved Zn HQs in pre-runoff, runoff, and post-runoff surface water samples from Mineral Cr., Cement Cr., Animas R. upstr. (A56) and Animas R. above CC (A60 to A68)

Figure 5.10.c: Dissolved Zn HQs in pre-runoff, runoff, and post-runoff surface water samples from the Animas

Hydrologic periods and sampling locations

Figure 5.11: Scatter plots of dissolved metals chronic HQs in surface water samples collected using MiniSipper sampling devices in 2014

Figure 5.11a: Chronic HQs for dissolved Al in surface water collected in 2014 from the Animas River using MiniSipper samplers at locations A56, A73, A75D and Bakers Bridge

Figure 5.11c: Chronic HQs for dissolved Cu in surface water collected in 2014 from the Animas River using MiniSipper samplers at locations A56, A73, A75D and Bakers Bridge

Figure 5.11b: Chronic HQs for dissolved Cd in surface water collected in 2014 from the Animas River using MiniSipper

Figure 5.11d: Chronic HQs for dissolved Pb in surface water collected in 2014 from the Animas River using MiniSipper samplers at locations A56, A73, A75D and Bakers Bridge

Figure 5.11 (cont'd): Scatter plots of dissolved metals chronic HQs in surface water samples collected using MiniSipper sampling devices in 2014

Figure 5.12: Geometric mean RME and CTE HQs for the four wildlife receptors evaluated using food chain modeling

Figure 5.12: Geometric mean RME and CTE HQs for the four wildlife receptors evaluated using food chain modeling

Table 2.1
Summary of the 2009-2014 surface water sampling efforts at select locations in the Upper Animas River, Cement Creek, and Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

									Anima	s River										
			Al	oove maii	nstem Ce	ment Cro	eek			Cement neral eeks		Be	low mair	nstem Mi	neral Cre	eek		Main Cemen	istem t Creek	Mainstem Mineral Creek
	Sample Date	A56 ^a	A60	A61	A64	A65	A66	A68	A69A	A70B	A71B	A72	A73	A73B	A75D	A75B	Bbridge	CC48	CC49	M34
;	Feb-10							V				V						V		V
pre-runoff period	Mar-10							V				√						V		V
re-runo period	Apr-10							√				√						V		$\sqrt{}$
ĕ ₫	Mar-11							√				√						V		√
	Apr-14	V						V					V		V		V			
	May-09							V				V						V		V
period	Jun-09							V				√						V		√
E I	Jun-10							√				√						V		$\sqrt{}$
	Jun-11							√				√						V		V
runoff	May-12							√				√						V		V
	May-13	V	V	V	V	V	V	V				√	V	V	V	V	V	V		V
	May-14	V	V	V	V	√	V	√				√	√	√	√	√	V	√		√
	Jul-09							√,				√						V		V
	Aug-09							V				√ 						V		V
	Sep-09							√,				√ 						V		V
g	Nov-09							√,				- V						V		V
period	Jul-10							√,				<u>√</u>						V		V
≟	Sep-10							V				- V						V		V
-runoff	Nov-10							V				<u>√</u>						V		V
₹	Jul-11							V				<u>√</u>						ν,		√ ,
 	Aug-11			ļ				V				<u> </u>	ļ		<u> </u>			N I	<u> </u>	V
-	Sep-11							V				- V						V		V
	Oct-11	,		ļ				V	,	ļ.,,,,,,,	,	- V	<u> </u>	-	_		,	V	ļ.,,	V
	Oct-12	√,	,	ļ,.		_		V	V	V	٧	- V	V	V	٧,	V	٧,	V	V	V
	Sep-14	V	V	√ √	V	V	√	√				√	√	V	V	V	√	٧		√

a "upstream" location

prepared by: SJP (2/3/15) reviewed by: EC (3/12/15)

Table 2.2
Summary of the 2009-2014 sediment sampling efforts at select locations in the Upper Animas River, Cement Creek, and Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

									Anima	s River										
		3			nstem Ce			1.60	Cre	neral eks	AGAD			nstem Min			m	Main Cement	t Creek	Mainstem Mineral Creek
	Sample Date	A56 ^a	A60	A61	A64	A65	A66	A68	A69A	A70B	A71B	A72	A73	A73B	A75D	A75B	Bbridge	CC48	CC49	M34
pre-runoff period	Feb-10																			
our	Mar-10																			
re-runo period	Apr-10		<u>i</u>																	-
pro F	Mar-11	.1	.,		-1	-1						-1	-1		./		-1	-		l
	Apr-14	√	٧	√	√	V	√	√				√	V		V		V			
_	May-09																			
ioc	Jun-09																			
per	Jun-10 Jun-11		 	-																
runoff period	May-12		<u>:</u>	 				V	1			√								
Ę.	May-13	√	√	V	1		\ \	Ž				V	V	√	V	V	V			
	Jun-14	· ·	<u> </u>	<u> </u>	<u> </u>	,	· ·	· ·				,	· ·	· ·	,		· ·			
	Jul-09																			
	Aug-09			 	-				1											
	Sep-09			<u> </u>																
-	Nov-09																			
rio	Jul-10																			
be	Sep-10																			
post-runoff period	Nov-10																			
	Jul-11																			
st-1	Aug-11																			
bo	Sep-11																			
	Oct-11																			
	Oct-12	V						√				V	V	V	V	V	V		V	V
	Sep-14	√	√	V	V	V	V	V				V	V	V	V	√_	V			V

a "upstream" location

prepared by: SJP (2/3/15)

reviewedby: EC (3/12/15)

Table 2.3
Summary of the 2009-2014 sediment pore water sampling efforts at select locations in the Upper Animas River, Cement Creek, and Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

									Anima	s River										
			Al	ove maii	nstem Ce	ment Cro	ek		& Mi	Cement ineral eeks		Be	low mair	ıstem Mir	neral Cre	eek		Main Cemen		Mainstem Mineral Creek
	Sample Date	A56 ^a	A60	A61	A64	A65	A66	A68	A69A	A70B	A71B	A72	A73	A73B	A75D	A75B	Bbridge	CC48	CC49	M34
Ť	Feb-10																			
pre-runoff period	Mar-10																			
re-runo period	Apr-10																			
re P	Mar-11																			
	Apr-14	√	1	\checkmark	√	√						1			√					
	May-09																			
po	Jun-09																			
runoff period	Jun-10																			
Ϋ́р	Jun-11																			
nol	May-12																			
L	May-13																			
	May-14																			
	Jul-09																			
	Aug-09																			
	Sep-09																			
þ	Nov-09																			
eric	Jul-10																			
fp	Sep-10																			
lof	Nov-10																			
post-runoff period	Jul-11																			
st-	Aug-11																			
bс	Sep-11																			
	Oct-11																			
	Oct-12																			
	Sep-14	V	V	1		V	V					4	V	V	V		1			

a "upstream" location

prepared by: SJP (2/3/15) reviewed by: EC (3/12/15)

Table 3.1
Surface water chronic benchmarks and sediment no effect and effect benchmarks
Baseline Ecological Risk Assessment
Upper Animas River Mining District

metals	surface water					sedi	ment			
	chronic benchmarks (μg/L)			no effect bench	marks (mg/kg)		effect benchr	narks (mg/kg)	
	СДРНЕ (2013)	Buchman (2008)	MacDonald et al. (2000)	Ingersoll <i>et</i> <i>al</i> . (1996)	Long <i>et al</i> . (1995)	Thompson et al., 2005	MacDonald et al. (2000)	Ingersoll <i>et</i> <i>al</i> . (1996)	Long et al. (1995)	Thompson et al., 2005
рН	6.5									
Aluminum	87 or e ^{(1.3695[ln(hardness)]-0.1158)} , depending on pH and hardness	87		26,000				60,000		
Arsenic	150	190	9.8	11	8.2	9.3	33	48	70	56
Beryllium	NA	0.66								
Cadmium	(1.101672-[ln(hardness) x(0.041838)] x e ^{0.7998[ln(hardness)]-4.4451} (trout)	0.25	0.99	0.58	1.2		4.98	3.2	9.6	
Chromium	e ^{(0.819[ln(hardness)]+0.5340)}	74	43.4	36	81	36.7	111	120	370	69.2
Copper	e ^{(0.8545[ln(hardness)]-1.7428)}	9	31.6	28	34	12	149	100	270	200
Iron	1,000	1,000		190,000				250,000		
Lead	(1.46203-[(ln(hardness) x (0.145712)]) x e ^{(1.273[ln(hardness)]-4.705)}	3	35.8	37	46.7	27.7	128	82	218	380
Manganese	e ^{(0.3331[h(hardness)]+5.8743)}	80		630				1,200		
Mercury	0.01	0.77	0.18		0.15		1,06		0.71	
Nickel	e ^{(0.846[ln(hardness)]+0.0554)}	52	22.7	20	20.9	21	48.6	33	51.6	170
Selenium	4.6	5.0 total				0.9				4.7
Silver	e ^{(1.72[ln(hardness)]-10.51)} (trout)	0.36			1.0				3.7	
Zinc	0.986 x e ^{(0.9094[ln(hardness)]+0.6235)}	120	121	98	150		459	540	410	

shading identifies the benchmarks retained for use in the BERA

NA = not available

Sources:

Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle WA, Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages. Colorado Department of Public Health and the Environment (CDPHE), 2013. Regulation no. 31 – The basic standards and methodologies for surface water (5 CCR 1002 – 31): Denver, Water Quality Control Commission.

Ingersoll, C.G. etal. 1996. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius. J. Great Lakes Res. 22:602-623.

Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.

MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.

Thompson, P.A., J. Kurias, and S. Mihok. 2005. Derivation and use of sediment guidelines for ecological risk assessment of metals and radionuclides released to the environment from uranium mining and milling activities in Canada. Environ. Monit. Assess. 110:71-85.

prepared by: SJP (12/3/13) reviewed by: EC (3/12/15)

Table 3.2 No effect and effect TRVs for birds Baseline Ecological Risk Assessment Upper Animas River Mining District

	No effe	ct TRVs	Effect	s TRVs
Analyte [*]	Eco-SSL TRVs ^a	1996 toxicological benchmarks for wildlife ^b	Eco-SSL TRVs ^c	1996 toxicological benchmarks for wildlife ^b
Arsenic	2.24	5.1	4.51	12.8
Cadmium	1.47	1.45	6.35	20
Chromium III	2.66	1.0	15.6	5.0
Copper	4.05	47	34.9	61.7
Lead	1.63	1.13	44.6	11.3
Mercury (inorganic)		0.45		0.9
Nickel	6.71	77.4	18.6	107
Selenium	0.29	0.5	0.82	1.0
Silver	2.02		60.5	
Zinc	66.1	14.5	171	131

^{*}Only those analytes identified as "important bioaccumulatice compounds" in Table 4-2 of EPA (2000) are included in this table.

Footnotes:

All units are mg/kg bw-day

Shading identifies the TRVs selected for use in the BERA

EPA, 2005. Ecological soil screening levels for arsenic. Interim final. OSWER Directive 9285.7-62.

EPA, 2005. Ecological soil screening levels for cadmium. Interim final. OSWER Directive 9285.7-65.

EPA, 2008. Ecological soil screening levels for chromium. Interim final. OSWER Directive 9285.7-66.

EPA, 2007. Ecological soil screening levels for copper. Interim final. OSWER Directive 9285.7-68.

EPA, 2005. Ecological soil screening levels for lead. Interim final. OSWER Directive 9285.7-70.

EPA, 2007. Ecological soil screening levels for nickel. Interim final. OSWER Directive 9285.7-76.

EPA, 2007. Ecological soil screening levels for **selenium**. Interim final. OSWER Directive 9285.7-72.

EPA, 2006. Ecological soil screening levels for silver. Interim final. OSWER Directive 9285.7-77.

EPA, 2007. Ecological soil screening levels for zinc. Interim final. OSWER Directive 9285.7-73.

-- not available

EcoSSL – ecological soil screening level

TRV – toxicity reference value

prepared by: SJP (12/4/13) reviewed by: EC (3/12/15)

^a EPA Eco SSL reports (http://www.epa.gov/ecotox/ecossl), as follows:

^b Sample *et al.*, 1996, Toxicological Benchmarks for Wildlife: 1996 Revision, ES/ER/TM-86/R3, http://www.esd.ornl.gov/programs/ecorisk/documents/tm86r3.pdf(values are the toxicities measured in the test species)

^c The effect TRVs were obtained from Table C-8 in Remedial Investigationreport for Lower Darby Creek Area Site, Clearview Landfill Operable Unit 1 (OU-1), Delaware and Philadelphia Counties, PA. May 2010. Prepared by TetraTech NUS, Inc. under EPA contract No. EP-S3-07-04.

Table 3.3 No effect and effect TRVs for mammals Baseline Ecological Risk Assessment Upper Animas River Mining District

	No effe	et TRVs	Effect	s TRVs
Analyte [*]	Eco-SSL TRVs ^a	1996 toxicological benchmarks for wildlife ^b	Eco-SSL TRVs ^d	1996 toxicological benchmarks for wildlife ^b
Arsenic	1.04	0.126	4.6	1.26
Cadmium	0.77	1.0	6.9	10.0
Chromium III	2.4	2737 ^e	58.2	
Copper	5.6	11.7	82.7	15.4
Lead	4.7	8.0	186.4	80
Mercury (inorganic)		1		3.0°
Nickel	1.7	40	14.8	80
Selenium	0.14	0.2	0.66	0.33
Silver	6.02		119	
Zinc	75.4	160	298	320

^{*}Only those analytes identified as "important bioaccumulatice compounds" in Table 4-2 of EPA (2000) are included in this attachment.

Footnotes:

All units are in mg/kg bw-day

Shading identifies TRVs selected for use in the SLERA

EPA, 2005. Ecological soil screening levels for arsenic. Interim final. OSWER Directive 9285.7-62.

EPA, 2005. Ecological soil screening levels for cadmium. Interim final. OSWER Directive 9285.7-65.

EPA, 2008. Ecological soil screening levels for chromium. Interim final. OSWER Directive 9285.7-66.

EPA, 2007. Ecological soil screening levels for copper. Interim final. OSWER Directive 9285.7-68.

EPA, 2005. Ecological soil screening levels for lead. Interim final. OSWER Directive 9285.7-70.

EPA, 2007. Ecological soil screening levels for nickel. Interim final. OSWER Directive 9285.7-76.

EPA, 2007. Ecological soil screening levels for selenium. Interim final. OSWER Directive 9285.7-72.

EPA, 2006. Ecological soil screening levels for silver. Interim final. OSWER Directive 9285.7-77.

EPA, 2007. Ecological soil screening levels for zinc. Interim final. OSWER Directive 9285.7-73.

-- not available

 $EcoSSL-ecological\,soil\,screening\,level\\$

 $TRV-toxicity\ reference\ value$

prepared by: SJP (12/4/13) reviewed by: EC (3/12/15)

^aUSEPA Eco SSL reports (http://www.epa.gov/ecotox/ecossl), as follows:

^b Sample *et al*., 1996, Toxicological Benchmarks for Wildlife: 1996 Revision, ES/ER/TM-86/R3, http://www.esd.ornl.gov/programs/ecorisk/documents/tm86r3.pdf(values are the toxicities measured in the test species)

^c The reference did not provide an effect benchmark. The value represents the no effect benchmark X 3

^d The effect TRVs were obtained from Table C-8 in Remedial Investigation report for Lower Darby Creek Area Site, Clearview Landfill Operable Unit 1 (OU-1), Delaware and Philadelphia Counties, PA. May 2010. Prepared by TetraTech NUS, Inc. under EPA contract No. EP-S3-07-04.

^e The no effect TRV for CrIII is as reported in the reference

Table 3.4 Selection of surface water COPECs for community-level receptors in mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River District

Compound	Frequency of Detection	Minimum Detect (µg/L)	Flag	Maximum Detect (μg/L) ^a	Flag	Location of Maximum Detect [*]	Conc. used for Screening ^b	Benchmark (ug/L) ^{c,**}	Hardness (mg/L) ^d	Hardness- Adjusted Benchmark (ug/L) ^e	Bench- mark Source	Hazard Quotient ^f	COPEC?	Reason Code
pН	24/24	4.97		7.30		M34	4.97	6.50			1	>1 ^g	yes	a
Aluminum	24/24	563		5950		M34	5950	87			1	68.4	yes	a
Arsenic	0/24		4))) Danasanan	2.0	U	M34	2.0	150			1	<1	no	b
Beryllium	0/24		VIOTO 175000 VA	5.0	U	M34	5.0	0.66			2	7.6	yes	a
Cadmium	22/24	0.2	*************	2.0	TOTAL PROPERTY.	M34	2.0		150	0.58	1	3.4	yes	a
Chromium	0/24			2.5	U	M34	2.5		49	41	1	<1	no	b
Copper	12/24	1.5		16.2	PARKET THE PARKET	M34	12.3		150	13.0	1	<1	no	a
Iron	24/24	754	30000000000000000000000000000000000000	8290	mm=00000000	M34	8290	1,000			1	8.3	yes	a
Lead	6/24	0.1	J	4.2	**********	M34	4.2		247	6.6	1	<1	no	b
Manganese	24/24	84.9		634	***************************************	M34	592		238	2202	1	<1	no	b
Nickel	8/24	0.5	J	5.3		M34	2.0		49	28	1	<1	no	b
Selenium	0/24		ammaaa	1.3	U	M34	1.3	4.6			1	<1	no	b
Silver	2/24	0.5		0.6		M34	0.6		309	0.520	1	1.2	yes	a
Zinc	23/24	48.1		499		M34	499		150	175	1	2.8	yes	a

Notes:

Dissolved analytical data were used for all metals except aluminum and iron where total metals data were used.

Reason codes

- a = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, exceeds its chronic surface water benchmark
- b = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, falls below the chronic surface water benchmark

Benchmark sources:

- 1 = Colorado Department of Public Health and the Environment (CDPHE), 2013. Regulation no. 31 The basic standards and methodologies for surface water (5 CCR 1002 31): Denver, Water Quality Control Commission
- 2 = Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp

preparedby: SJP (1/27/14) reviewedby: RI (2/10/14) updated by: BB (2/17/15) reviewedby: EC (2/18/15)

^{*} For pH, the location shown is the one with the lowest-measured pH

^{**} The pH benchmark is unitless

^a These values represent the maximum detected concentrations, or half the maximum detection limit for a non-detected analyte (except for pH which represents the lowest reported value) measured between May 2009 and September 2014 in mainstem Mineral Creek.

^b For hardness-dependent metals, the concentration used for screening may differ from the maximum concentration if hardness caused another concentration to yield a higher hazard quotient than the maximum concentration

^e These benchmarks are not sensitive to surface water hardness

d This hardness was associated with the detected analyte concentration that resulted in the highest HQ measured between May 2009 and September 2014 in mainstem Mineral Creek

e The formulae used to adjust the benchmarks for hardness were obtained from CDPHE, 2013 (see "benchmark sources" below)

f the hazard quotient is calculated by dividing a screening concentration by its benchmark

² pH values are logarithmic and cannot be used to calculate an HQ because the HQ approach assumes linearity

Table 3.5 Selection of surface water COPECs for community-level receptors in mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas River District

Compound	Frequency of Detection	Minimum Detect (µg/L)	Flag	Maximum Detect (μg/L) ^a	Flag	Location of Maximum Detect [*]	Conc. used for Screening ^b	Benchmark (ug/L) ^{c,**}	Hardness (mg/L) ^d	Hardness- Adjusted Benchmark (ug/L) ^e	Bench- mark Source	Hazard Quotient ^f	COPEC?	Reason Code
рН	25/25	3.24		5.40		CC48	3.24	6.50			1	>1 ^g	yes	a
Aluminum	25/25	1610		8610		CC48	8610	87			1	99.0	yes	a
Arsenic	0/25			2.0	U	CC48	2.0	150			1	<1	no	b
Beryllium	9/25	1.1		1.3		CC48	1.3	0.66			2	2.0	yes	a
Cadmium	25/25	2.0		7.00		CC48	5.1		67	0.31	1	16.4	yes	a
Chromium	0/25			5.0	U	CC48	2.5		67	53	1	<1	no	b
Copper	25/25	55.6		221		CC48	65.3		67	6.4	1	10.3	yes	a
Iron	25/25	3610		21700		CC48	21700	1000			1	21.7	yes	a
Lead	25/25	4.2		21.4		CC48	14.2		67	1.6	1	8.9	yes	a
Manganese	25/25	710	,	5300	*	CC49	5270		495	2810	1	1.9	yes	a
Nickel	22/25	2.2		19.4		CC48	5.9		67	37	1	<1	no	b
Selenium	1/25	3.2	J	3.2	J	CC48	3.2	4.6			1	<1	no	b
Silver	0/25			2.5	U	CC48	1.25		67	0.04	1	31.3	yes	a
Zinc	25/25	394		2890		CC48	1310		126	150	1	8.7	yes	a

Notes:

Dissolved analytical data were used for all metals except aluminum and iron where total metals data were used.

Reason codes:

- a = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, exceeds its chronic surface water benchmark
- b = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, falls below the chronic surface water benchmark

Benchmark sources:

- 1 = Colorado Department of Public Health and the Environment (CDPHE), 2013. Regulation no. 31 The basic standards and methodologies for surface water (5 CCR 1002 31): Denver, Water Quality Control Commission.
- 2 = Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp

preparedby: SJP (1/27/14) reviewedby: RI (2/10/14) updated by: BB (2/17/15) reviewedby: EC (2/18/15)

^{*} For pH, the location shown is the one with the lowest-measured pH

^{**} The pH benchmark is unitless

^a These values represent the maximum detected concentrations, or half the maximum detection limit for a non-detected analyte (except for pH which represents the lowest reported value) measured between May 2009 and September 2014 in mainstem Cement Creek.

^b For hardness-dependent metals, the concentration used for screening may differ from the maximum concentration if hardness caused another concentration to yield a higher hazard quotient than the maximum concentration

^c These benchmarks are not sensitive to surface water hardness

d This hardness was associated with the detected analyte concentration that resulted in the highest HQ measured between May 2009 and September 2014 in mainstem Cement Creek

^e The formulae used to adjust the benchmarks for hardness were obtained from CDPHE, 2013 (see "benchmark sources" below)

f the hazard quotient is calculated by dividing a screening concentration by its benchmark

⁸ pH values are logarithmic and cannot be used to calculate an HQ because the HQ approach assumes linearity

Table 3.6 Selection of SW COPECs for community-level receptors in the Animas River above Mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas River District

	Frequency			Maximum		Location of	Conc. used			Hardness- Adjusted	Bench-			
	of	Detect	Flag	Detect	Q1/	Maximum *	for b	Benchmark	Hardness	Benchmark	mark	Hazard	COPECS	Reason
Compound	Detection	(µg/L)	豆	(μg/L) ^a	Fla	Detect"	Screening ^b	(ug/L) ^{c,**}	(mg/L) ^d	(ug/L) ^e	Source	Quotient ¹	COPEC?	Code
pН	39/39	6.26		7.71		A68	6.26	6.50			1	<1 ^g	no	b
Aluminum	35/40	101		1010		A68	1010		49	184	1	5.5	yes	a
Arsenic	0/40			2.0	U	multiple	2.0	150			1	<1	no	b
Beryllium	0/40			1.0	U	multiple	1.0	0.66			2	1.5	yes	a
Cadmium	40/40	0.7		4.1		A68	4.1		148	0.57	1	7.2	yes	a
Chromium	0/40			2.5	U	A68	2.5		50	42	1	<1	no	b
Copper	24/40	2.7		16.5	************	A61	16.5		80	7.4	1	2.2	yes	a
Iron	31/40	111	J	1100		A68	1100	1000			1	1.1	yes	a
Lead	20/40	0.1	J	1.5	200000000000000000000000000000000000000	A66	1.5		64	1.5	1	1.0	yes	a
Manganese	40/40	153		3730		A68	3730		148	1880	1	2.0	yes	a
Nickel	0/40			2.0	U	A68	2.0		50	29	1	<1	no	b
Selenium	0/40			0.5	U	multiple	0.5	4.6			1	<1	no	b
Silver	0/40			0.25	U	multiple	0.25		49	0.02	1	11.4	yes	a
Zinc	40/40	237		1030		A68	1030		151	176	1	5.8	yes	a

Notes:

Dissolved analytical data were used for all metals except aluminum and iron where total metals data were used.

Reason codes

a = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, exceeds its chronic surface water benchmark

b = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, falls below the chronic surface water benchmark

Benchmark sources:

1 = Colorado Department of Public Health and the Environment (CDPHE), 2013. Regulation no. 31 – The basic standards and methodologies for surface water (5 CCR 1002 – 31): Denver, Water Quality Control Commission.

2 = Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp

preparedby: SJP (1/27/14) reviewedby: RI (2/10/14) updatedby: BB (2/17/15) reviewedby: EC (2/18/15)

^{*} For pH, the location shown is the one with the lowest-measured pH

^{**} The pH benchmark is unitless

^a These values represent the maximum detected concentrations, or half the maximum detection limit for a non-detected analyte (except for pH which represents the lowest reported value) measured between May 2009 and September 2014 in the Animas River above mainstem Cement Creek

^b For hardness-dependent metals, the concentration used for screening may differ from the maximum concentration if hardness caused another concentration to yield a higher hazard quotient than the maximum concentration

^e These benchmarks are not sensitive to surface water hardness

d This hardness was associated with the analyte concentration that resulted in the highest HQ measured between May 2009 and September 2014 in the Animas River above mainstem Cement Creek

^e The formulae used to adjust the benchmarks for hardness were obtained from CDPHE, 2013 (see "benchmark sources" below)

f the hazard quotient is calculated by dividing a screening concentration by its benchmark

^g pH values are logarithmic and cannot be used to calculate an HQ because the HQ approach assumes linearity

Table 3.7 Selection of surface water COPECs for community-level receptors in the Animas River between mainstem Cement Creek and mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River District

	Frequency of	Minimum Detect		Maximum Detect	50	Location of Maximum	Conc. used	Benchmark	Hardness	Hardness- Adjusted Benchmark	Bench- mark	Hazard		Reason
Compound	Detection	$(\mu g/L)$	Flag	$(\mu g/L)^a$	Flag	Detect*	$Screening^{b} \\$	(ug/L) ^{c,**}	$(mg/L)^d$	(ug/L) ^e	Source	Quotient ^f	COPEC?	Code
pН	2/2	5.54		6.05		A69A	5.54	6.50			1	>1 ^g	yes	a
Aluminum	2/2	2460	D	2520	D	A69A	2520	87			1	29.0	yes	a
Arsenic	0/2			0.25	U	multiple	0.25	150			1	<1	no	b
Beryllium	0/2			1.0	U	multiple	1.0	0.66			2	1.5	yes	a
Cadmium	2/2	2.7		2.7		multiple	2.7		295	0.95	1	2.8	yes	a
Chromium	0/2		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.5	U	multiple	0.5		295	180	1	<1	no	b
Copper	2/2	16.3	1000 CHRISTOPHINA	24.8	-03.11.10V55-	A70B	24.8		295	23.0	1	1.1	yes	a
Iron	2/2	4890	D	5100	D	A69A	5100	1000			1	5.1	yes	a
Lead	2/2	0.2	J	3.0		A70B	3.0		295	8.0	1	<1	no	ь
Manganese	2/2	2540		2590	- ANDOLD	A69A	2540		295	2365	1	1.1	yes	a
Nickel	2/2	4.8		5.2	One manufacture of the last of	A70B	5.2	660 = = = 46400000000	295	130	1	<1	no	b
Selenium	0/2			0.25	U	multiple	0.25	4.6			1	<1	no	b
Silver	0/2			0.25	U	multiple	0.25		295	0.48	1	<1	no	ь
Zinc	2/2	1160		1160		multiple	1160		295	324	1	3.6	yes	a

Notes:

Dissolved analytical data were used for all metals except aluminum and iron where total metals data were used.

Reason codes:

- a = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, exceeds its chronic surface water benchmark
- b = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, falls below the chronic surface water benchmark

Benchmark sources:

- 1 = Colorado Department of Public Health and the Environment (CDPHE), 2013. Regulation no. 31 The basic standards and methodologies for surface water (5 CCR 1002 31): Denver, Water Quality Control Commission
- 2 = Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp

preparedby: SJP (1/27/14) reviewedby: RI (2/10/14) updated by: BB (2/17/15) reviewedby: EC (2/18/15)

^{*} For pH, the location shown is the one with the lowest-measured pH

^{**} The pH benchmark is unitless

^a These values represent the maximum detected concentrations, or half the maximum detection limit for a non-detected analyte (except for pH which represents the lowest reported value) measured between May 2009 and September 2014 in the Animas River between mainstem Cement Creek and mainstem Mineral Creek

^b For hardness-dependent metals, the concentration used for screening may differ from the maximum concentration if hardness caused another concentration to yield a higher hazard quotient than the maximum concentration

^cThese benchmarks are not sensitive to surface water hardness

d This hardness was associated with the analyte concentration that resulted in the highest HQ measured between May 2009 and September 2014 in the Animas River between mainstem Cement Creek and mainstem Mineral Creek

^e The formulae used to adjust the benchmarks for hardness were obtained from CDPHE, 2013 (see "benchmark sources" below)

f the hazard quotient is calculated by dividing a screening concentration by its benchmark

g pH values are logarithmic and cannot be used to calculate an HQ because the HQ approach assumes linearity

Table 3.8 Selection of surface water COPECs for community-level receptors in the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River District

Compound	Frequency of Detection	Minimum Detect (µg/L)	Flag	Maximum Detect (μg/L) ^a	Flag	Location of Maximum Detect*	Conc. used for Screening ^b	Benchmark (ug/L) ^{c,**}	Hardness (mg/L) ^d	Hardness- Adjusted Benchmark (ug/L) ^e	Bench- mark Source	Hazard Quotient ^f	COPEC?	Reason Code
рН	45/45	5.04		7.64		A72	5.04	6.50			1	>1 ^g	yes	a
Aluminum	48/48	234	JD	4440		A72	4440	87			1	51.0	yes	a
Arsenic	0/48			2.0	U	multiple	2.0	150			1	<1	no	ь
Beryllium	0/48			1.0	U	multiple	1.0	0.66			2	1.5	yes	a
Cadmium	48/48	0.3		2.9		A72	2.9		177	0.65	l	4.5	yes	a
Chromium	1/48	2.3		2.3		A72	2.3		261	163	1	<1	no	b
Copper	40/48	0.6	J	36.9		A72	36.9		296	23.0	1	1.6	yes	a
Iron	47/48	317		7710		A72	7710	1000			1	7.7	yes	a
Lead	16/48	0.1	J	2.7		A72	0.8		60	1.4	1	<1	no	ъ
Manganese	48/48	109		2920		A72	2920		337	2472	1	1.2	yes	a
Nickel	29/48	0.5	J	8.2		A72	1.4		37	22	1	<1	no	b
Selenium	0/48			1.25	U	multiple	1.30	4.6			1	<1	no	ъ
Silver	0/48			1.25	Ū	multiple	1.25		71	0.04	1	31.3	yes	a
Zinc	48/48	66.5		1230		A72	864		177	204	1	4.2	yes	a

Notes:

Dissolved analytical data were used for all metals except aluminum and iron where total metals data were used.

Reason codes:

- a = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, exceeds its chronic surface water benchmark
- b = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, falls below the chronic surface water benchmark

Benchmark sources:

- 1 = Colorado Department of Public Health and the Environment (CDPHE), 2013. Regulation no. 31 The basic standards and methodologies for surface water (5 CCR 1002 31): Denver, Water Quality Control Commission.
- 2 = Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34

prepared by: SJP (1/27/14)

reviewed by: RI (2/10/14)

updated by: BB (2/17/15)

reviewed by: EC (2/18/15)

^{*} For pH, the location shown is the one with the lowest-measuredpH

^{**} The pH benchmark is unitless

^a These values represent the maximum detected concentrations, or half the maximum detection limit for a non-detected analyte (except for pH which represents the lowest reported value) measured between May 2009 and September 2014 in the Animas River below mainstem Mineral Creek

^b For hardness-dependentmetals, the concentration used for screening may differ from the maximum concentration if hardness caused another concentration to yield a higher hazard quotient than the maximum concentration

^c These benchmarks are not sensitive to surface water hardness

d This hardness was associated with the analyte concentration that resulted in the highest HQ measured between May 2009 and September 2014 in the Animas River below mainstem Mineral Creek

e The formulae used to adjust the benchmarks for hardness were obtained from CDPHE, 2013 (see "benchmark sources" below)

f the hazard quotient is calculated by dividing a screening concentration by its benchmark

g pH values are logarithmic and cannot be used to calculate an HQ because the HQ approach assumes linearity

Table 3.9 Summary of the surface water COPECs for community-level receptors Baseline Ecological Risk Assessment Upper Animas River District

Analyte	mainstem Mineral Creek	mainstem Cement Creek	Animas River above mainstem Cement Creek	Animas River between mainstem Cement and Mineral Creeks	Animas River below mainstem Mineral Creek
рН	V	V		1	V
Aluminum	V	V		V	V
Arsenic			2 33000		
Beryllium	(V)		(1)	()	(V)
Cadmium	V	V	V		1
Chromium	emmenten en e		de a vertra.		
Copper	removement common and an opping the last of the polytic discharate the last of		V	T	
Iron	V	**************************************	V	A CONTRACTOR OF THE PROPERTY O	V
Lead			1		
Manganese	AWX.	V	V	V	V
Nickel			4-nn-k-Kennanananananananananananan-k-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-K-	\$14400000000000000000000000000000000000	
Selenium					
Silver	V	(√)	(√)		(√)
Zinc	V	V	V	V	V

 $^{(\}sqrt{})$ = analyte was not detected but was retained as a COPEC because 1/2 the max detection limit exceeded the benchmark

prepared by: SJP (1/31/14) checked by: RI (2/10/14) updated by: BB (2/17/15) reviewed by: EC (2/18/15)

Table 3.10 Selection of sediment COPECS for the benthic invertebrate community in mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

Analyte	Frequency of Detection	Minimum Detect (mg/kg)	Flag	Max Detect or 1/2 Max DL (mg/kg)	<u>5</u> 0	Location of Maximum	Conc. used for Screening	Benchmark (mg/kg)	Bench- mark Source	Hazard Quotient ^a	COPEC?	Reason Code
Aluminum	2 / 2	22,400	D	29,100	D	M34	29,100	26,000	2	1.1	yes	a
Arsenic	2 / 2	21.1	D	32.7	D	M34	32.7	9.8	1	3.3	yes	a
Beryllium	0 / 2			2.0	U	M34	2.0	NA			yes	c
Cadmium	2 / 2	0.9	D	1.9	D	M34	1.9	0.99	1	1.9	yes	a
Chromium	2 / 2	2.8	D	3.4	D	M34	3.4	43.4	1	<1	no	b
Copper	2 / 2	53.8	D	127	D	M34	127	31.6	1	4.0	yes	a
Iron	2 / 2	46,500	D	89,000	D	M34	89,000	190,000	2	<1	no	b
Lead	2 / 2	129	D	237	D	M34	237	35.8	1	6.6	yes	a
Manganese	2 / 2	1,160	D	1,430	D	M34	1,430	630	2	2.3	yes	a
Mercury	2 / 2	0.02	D	0.05	D	M34	0.05	0.18	1	<1	no	b
Nickel	2 / 2	4.6	D	5.9	BD	M34	5.9	22.7	1	<1	no	b
Selenium	1 / 2	1.7	D	1.7	D	M34	1.7	0.9	4	1.9	yes	a
Silver	2 / 2	0.7	D	0.9	JD	M34	0.9	1.0	3	<1	no	b
Zinc	2 / 2	270	D	666	D	M34	666	121	1	5.5	yes	a

a the hazard quotient is calculated by dividing a maximum concentration by its sediment screening benchmark

U = not detected

COPEC = contaminant of potential ecological concern

DL = detection limit

Reason codes:

- a = the maximum concentration exceeds the sediment screening benchmark
- b = the maximum concentration falls below the sediment screening benchmark
- c = a benchmark is not available

Benchmark sources:

- 1. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- 2. Ingersoll, C.G. etal. 1996. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius. J. Great Lakes Res. 22:602-623.
- 3. Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- 4. Thompson, P.A., J. Kurias, and S. Mihok. 2005. Derivation and use of sediment guidelines for ecological risk assessment of metals and radionuclides released to the environment from uranium mining and milling activities in Canada. Environ. Monit. Assess. 110:71-85.

prepared by: SJP (1/29/14)reviewed by: RI (2/10/14)

revised by: BB (2/10/15) reviewed by: ES (2/11/15)

D = sample was diluted before analysis

Table 3.11 Selection of sediment COPECS for the benthic invertebrate community in mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

Analyte	Frequency of Detection	Minimum Detect (mg/kg)		Max Detect or 1/2 Max DL (mg/kg)	5 0	Location of Maximum	Conc. used for Screening	Benchmark (mg/kg)	Bench- mark Source	Hazard Quotient ^a	COPEC?	Reason Code
Aluminum	1 / 1	5310	D	5,310	D	CC49	5,310	26,000	2	<1	no	b
Arsenic	1 / 1	40.6	D	40.6	D	CC49	40.6	9.8	1	4.1	yes	a
Beryllium	0 / 1			1.0	U	CC49	1.0	NA			yes	c
Cadmium	1 / 1	0.6	D	0.6	D	CC49	0.6	0.99	1	<1	no	b
Chromium	1 / 1	4.6	D	4.6	D	CC49	4.6	43.4	1	<1	no	ь
Copper	1 / 1	55.6	D	55.6	D	CC49	55.6	31.6	1	1.8	yes	a
Iron	1 / 1	143,000	D	143,000	D	CC49	143,000	190,000	2	<1	no	b
Lead	1 / 1	282	D	282	D	CC49	282	35.8	1	7.9	yes	a
Manganese	1 / 1	478	D	478	D	CC49	478	630	2	<1	no	b
Mercury	1 / 1	0.06	D	0.06	D	CC49	0.06	0.18	1	<1	no	b
Nickel	1 / 1	2.9	D	2.9	D	CC49	2.9	22.7	1	<1	no	b
Selenium	1 / 1	0.7	JD	0.7	Л	CC49	0.7	0.9	4	<1	no	b
Silver	1 / 1	2.0	D	2.0	D	CC49	2.0	1.0	3	2.0	yes	a
Zinc	1 / 1	195	D	195	D	CC49	195	121	1	1.6	ves	a

a the hazard quotient is calculated by dividing a maximum concentration by its sediment screening benchmark

COPEC = contaminant of potential ecological concern

DL = detection limit

Reason codes:

- a = the maximum concentration exceeds the sediment screening benchmark
- b = the maximum concentration falls below the sediment screening benchmark
- c = a benchmark is not available
- DL = detection limit

Benchmark sources:

- 1. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- 2. Ingersoll, C.G. et al. 1996. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalellaazteca and the midge Chironomus riparius. J. Great Lakes Res. 22:602-623.
- 3. Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- 4. Thompson, P.A., J. Kurias, and S. Mihok. 2005. Derivation and use of sediment guidelines for ecological risk assessment of metals and radionuclides released to the environment from uranium mining and milling activities in Canada. Environ. Monit. Assess. 110:71-85.

prepared by: SJP (1/29/14) reviewed by: RI (2/10/14) revised by: BB (2/10/15) reviewed by: ES (2/11/15)

J = estimated concentration

D = sample was diluted before analysis

U = not detected

Table 3.12 Selection of sediment COPECs for the benthic invertebrate community in the Animas River above mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas River District

						Location						
Analyte	Frequency of Detection	Minimum Detect (mg/kg)	Flag	Maximum Detect (mg/kg)		of Maximum Detect	Conc. used for Screening	Benchmark (mg/kg)	Bench- mark Source	Hazard Quotient ^a	COPEC?	Reason Code
Aluminum	20 / 20	7650	D	15300	D	A68	15300	26000	2	<1	no	ь
Arsenic	20 / 20	16.4	D	89.5	D	A68	89.5	9.8	1	9.1	yes	a
Beryllium	9 / 20	2.1	JD	6.8	D	A68	6.8	NA			yes	c
Cadmium	20 / 20	5.0	D	24.2	D	A68	24.2	0.99	1	24.4	yes	a
Chromium	20 / 20	3.6	D	6.4	D	A60	6.4	43.4	1	<1	no	Ъ
Copper	20 / 20	166	D	745	D	A68	745	31.6	1	23.6	yes	a
Iron	20 / 20	22800	D	45300	D	A68	45300	190000	2	<1	no	Ъ
Lead	20 / 20	554	D	3030	D	A68	3030	35.8	1	84.6	yes	a
Manganese	20 / 20	3400	D	22300	D	A68	22300	630	2	35.4	yes	a
Mercury	14 / 14	0.02	JD	0.19	D	A68	0.19	0.18	1	1.1	yes	a
Nickel	20 / 20	5.9	D	16.5	D	A68	16.5	22.7	1	<1	no	ъ
Selenium	4 / 20	0.91	JD	2.9	D	A68	2.9	0.9	4	3.2	yes	a
Silver	20 / 20	2.9	D	13.3	D	A68	13.3	1.0	3	13.3	yes	a
Zinc	20 / 20	1530	D	11500	D	A68	11500	121	1	95.0	yes	a

^a the hazard quotient is calculated by dividing a maximum concentration by its sediment screening benchmark

COPEC = contaminant of potential ecological concern

Reason codes:

- a = the maximum concentration exceeds the sediment screening benchmark
- b = the maximum concentration falls below the sediment screening benchmark
- c = a benchmark is not available

Benchmark sources:

- 1. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwaterecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- 2. Ingersoll, C.G. et al. 1996. Calculationand evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius. J. Great Lakes Res. 22:602-623.
- 3. Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97.
- 4. Thompson, P.A., J. Kurias, and S. Mihok. 2005. Derivation and use of sediment guidelines for ecological risk assessment of metals and radionuclides released to the environment from uranium mining and milling activities in Canada. Environ. Monit. Assess. 110:71-85.

prepared by: SJP (1/29/14) reviewed by: RI (2/10/14) revised by: BB (2/10/15) reviewed by: ES (2/11/15)

B = analyte was also detected in the blank

J = estimated concentration

D = sample was diluted before analysis

Table 3.13
Selection of sediment COPECS for the benthic invertebrate community in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

Analyte	Frequency of Detection	Minimum Detect (mg/kg) ස්	Maximum Detect (mg/kg) ^a ্ৰ	Location of Maximum Detect	Concentration used for Screening	Benchmark (mg/kg)	Benchmark Source	Hazard Quotient ^a	COPEC?	Reason Code
Aluminum	23 / 23	6,620 D	48,600 D	A75B	48,600	26,000	2	1.9	yes	a
Arsenic	23 / 23	9.2 D	40.6 D	A72	40.6	9.8	1	4.1	yes	a
Beryllium	9 / 23	3.2 JD	6.0 D	A75B	6.0			NA	yes	c
Cadmium	23 / 23	1.2 D	18.6 D	Bbridge	18.6	0.99	1	18.8	yes	a
Chromium	23 / 23	2.8 D	7.4 BD	BBridge	7.4	43.4	1	< 1	no	b
Copper	23 / 23	67 D	413 D	A75B	413	31.6	1	13.1	yes	a
Iron	23 / 23	20,100 D	109,000 D	A73	109,000	190,000	2	< 1	no	b
Lead	23 / 23	98 D	729 D	A73	729	35.8	1	20.4	yes	a
Manganese	23 / 23	1,210 D	13,100 D	BBridge	13,100	630	2	20.8	yes	a
Mercury	15 / 17	0.02 JD	0.09 D	A73B	0.09	0.18	1	< 1	no	b
Nickel	23 / 23	4.33 D	31.6 D	BBridge	31.6	22.7	1	1.4	yes	a
Selenium	13 / 23	0.59 JD	3.3 D	A75B	3.3	0.9	4	3.7	yes	a
Silver	23 / 23	0.512 JD	3.1 D	A73B	3.1	1.0	3	3.1	yes	a
Zinc	23 / 23	386 D	8,670 D	BBridge	8,670	121	1	71.7	yes	a

^a the hazard quotient is calculated by dividing a maximum concentration by its sediment screening benchmark

COPEC = contaminant of potential ecological concern

reason code:

a = the maximum detected concentration exceeds the screening benchmark

b = the maximum detected concentration does not exceed the screening benchmark

e = the analyte does not have a benchmark

Benchmark sources:

- 1. MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- 2. Ingersoll, C.G. et al. 1996. Calculation and evaluation of sediment effect concentrations for the amphipod Hyalellaazteca and the midge Chironomus riparius. J, Great Lakes Res. 22:602-623.
- 3. Long, E.R, D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ. Manag. 19:81-97. activities in Canada. Environ. Monit. Assess. 110:71-85.

prepared by: SJP (12/27/13) checked by: RI (2/10/14) revised by: BB (2/10/15) reviewed by: ES (2/11/15)

B = analyte was also detected in the blank

D = sample was diluted prior to analysis

J = estimated value

Table 3.14 Summary of the sediment COPECs for the benthic invertebrate community Baseline Ecological Risk Assessment Upper Animas River District

Analyte	mainstem Mineral Creek	mainstem Cement Creek	Animas River above mainstem Cement Creek	Animas River between mainstem Cement and Mineral Creeks ^a	Animas River below mainstem Mineral Creek
Aluminum	V				√
Arsenic	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$
Beryllium		V	V		
Cadmium	THE PROPERTY OF THE BUT HAVE AN ALL THE PROPERTY OF THE PROPER	COLORED REPRESENTATION OF THE REPRESENTATION OF THE PROPERTY O			
Chromium			С высмет в такон по будова и стеть в сего закон по постановать повет в на поверане посок на почение в неводились на почение в на почение в неводились на почение в неводились на почение в на почение в неводились на почение в неводились на почение в на почение в неводились на почение в неводились на почение в на поче	M 10.000444440000000000000000000000000000	
Copper	V	V			
Iron					
Lead	V	V	V	200000000000000000000000000000000000000	V
Manganese	V		V		V
Mercury	3 miles (1975) (1976) (V	00 (10 (10 (10 (10 (10 (10 (10 (10 (10 (**************************************
Nickel	# II II 1444 e444) II 1000 1000 1000 1000 1000 1000 1000	3 m (s 2 1 2 m (W (s 2 m) m) m (s 2	######################################		V V
Selenium	V		V		V
Silver			V V	E anto	V
Zinc	V	V	V		V

^a this reach of the Animas River was not sampled for sediment

prepared by: SJP (1/31/14)

checked by: RI (2/10/14)

revised by: BB (2/10/15)

reviewed by: ES (2/11/15)

Table 3.15 Selection of pore water COPECs for the benthic invertebrate community in the Animas River above mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

		3.4.		34 :		Location	C 1			Hardness-				
	Frequency of	Minimum Detect		Maximum Detect		of Maximum	Conc. used for	Benchmark	Hardness	Adjusted Benchmark	Bench- mark	Hazard		Reason
Compound	Detection	(μg/L) ^a	Flag	(μg/L) ^b	Flag	Detect	Screening	(ug/L) ^d	(mg/L) ^e	(ug/L) ^f	Source	Quotient ^g	COPEC?	Code
Aluminum	8/11	21	J	6170	D	A61	6170	87 ^h			1	70.9	yes	a
Arsenic	1/11	0.55	J	0.55	J	A60	0.55	150			1	<1	no	Ъ
Beryllium	0/11	2.0	U	10.0	U	A61	10.0	0.66			2	15.2	yes	a
Cadmium	11/11	0.28		107	D	A61	107		497	1.42	1	75.4	yes	a
Chromium	2/11	0.8	J	1.8	J	A66	1.8		141	98	1	<1	no	Ъ
Copper	11/11	1.3		2250	D	A61	2250		853	56.0	1	40.2	yes	a
Iron	0/11	100	U	500	U	A61	500	1000			1	<1	no	b
Lead	6/11	0.123	J	65.6	D	A61	65.6		497	13.6	1	4.8	yes	a
Manganese	10/11	2.6	J	78300	D	A61	78300		497	3369	1	23.2	yes	a
Nickel	4/11	11.3		77.5	D	A61	77.5		853	319	1	<1	no	Ъ
Selenium	0/11	1.0	U	5.0	U	A61	5.0	4.6			1	1.1	yes	a
Silver	0/11	0.5	U	2.5	U	A61	0.25		118	0.10	1	2.5	yes	a
Zinc	11/11	179		29900	D	A61	18490		497	520	1	35.6	yes	a

These values represent the minimum detected dissolved metals concentrations, or the minimum detection limit for a non-detected analyte, measured in April and September 2014 in pore water samples collected from the Animas River upstream from mainstem Cement Creek

Reason codes:

- a = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, exceeds its chronic surface water benchmark
- b = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, falls below the chronic surface water benchmark

Benchmark sources:

- 1 = Colorado Department of Public Health and the Environment (CDPHE), 2013. Regulation no. 31 The basic standards and methodologies for surface water (5 CCR 1002 31): Denver, Water Quality Control Commission.
- 2 = Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp

prepared by: SJP (2/24/15)

checked by: EC (2/26/15)

^b These values represent the maximum detected dissolved metals concentrations, or half the maximum detection limit for a non-detected analyte, measured in April and September 2014 in the Animas River upstream from mainstem Cement Creek

^c For hardness-dependent metals, the concentration used for screening may differ from the maximum concentration if hardness caused another concentration to yield a higher hazard quotient than the one associated with the maximum concentration

^dThese benchmarks are not sensitive to surface water hardness

e This hardness was associated with the analyte concentration that resulted in the highest HQ measured in April or September 2014 in the Animas River between mainstem Cement Creek and mainstem Mineral Creek

f The formulae used to adjust the benchmarks for hardness were obtained from CDPHE, 2013 (see "benchmark sources" below)

g the hazard quotient is calculated by dividing a screening concentration by its benchmark

^h CDPHE developed a benchmark equation for Al based on total Al, hardness, and pH. The latter parameter was not available. Instead, EPA's National Recommneded Water Quality Criterion of 87 μg/L was used to calculate the hazard quotients

Table 3.16 Selection of pore water COPECs for the benthic invertebrate community in the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

Compound	Frequency of Detection	Minimum Detect (μg/L) ^a	Flag	Maximum Detect (μg/L) ^b	Flag	Location of Maximum Detect	Conc. used for Screening ^c	Benchmark (ug/L) ^d	Hardness (mg/L) ^e	Hardness- Adjusted Benchmark (ug/L) ^f	Bench- mark Source	Hazard Quotient ^g	COPEC?	Reason Code
Aluminum	8/9	23	J	517		A72	517	87 ^h			1	5.9	yes	a
Arsenic	1/9	3.7		3.7		BBridge	3.74	150			1	<1	no	b
Beryllium	0/9	2.0	U	1.0	U	multiple	1.0	0.66			2	1.5	yes	a
Cadmium	7/9	0.33		3.0		A72	3.0		256	0.86	1	3.5	yes	a
Chromium	2/9	1.2	J	3.2		BBridge	3.2		271	168	1	<1	no	b
Copper	8/9	0.92	J	8.1		A72	8.1		256	20.0	1	<1	no	b
Iron	4/9	107	J	1260		BBridge	1260	1000			1	1.3	yes	a
Lead	3/9	0.19	J	0.45		A72	0.45		256	6.9	1	<1	no	b
Manganese	9/9	2.5	J	5870		BBridge	5870		271	2299	1	2.6	yes	a
Nickel	7/9	0.58	J	2.0		A72	2.0		256	115	1	<1	no	b
Selenium	0/9	1.0	U	0.5	U	multiple	0.5	4.6			1	<1	no	ь
Silver	0/9	0.5	U	0.25	U	multiple	0.25		49	0.02	1	12.5	yes	a
Zine	9/9	13.3	J	1630		A72	1630		256	285	1	5.7	yes	a

^a These values represent the minimum detected dissolved metals concentrations, or the minimum detection limit for a non-detected analyte, measured in April and September 2014 in pore water samples collected from the Animas River upstream from mainstem Cement Creek

Reason codes:

- a = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, exceeds its chronic surface water benchmark
- b = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, falls below the chronic surface water benchmark

Benchmark sources:

- 1 = Colorado Department of Public Health and the Environment (CDPHE), 2013. Regulationno. 31 The basic standards and methodologies for surface water (5 CCR 1002 31): Denver, Water Quality Control Commission
- 2 = Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp

prepared by: SJP (2/24/15)

checked by: EC (2/26/15)

^b These values represent the maximum detected dissolved metals concentrations, or half the maximum detection limit for a non-detected analyte, measured in April and September 2014 in the Animas River upstream from mainstem Cement Creek

^c For hardness-dependent metals, the concentration used for screening may differ from the maximum concentration if hardness caused another concentration to yield a higher hazard quotient than the one associated with the maximum concentration

^dThese benchmarks are not sensitive to surface water hardness

e This hardness was associated with the analyte concentration that resulted in the highest HQ measured in April or September 2014 in the Animas River between mainstem Cement Creek and mainstem Mineral Creek

^f The formulae used to adjust the benchmarks for hardness were obtained from CDPHE, 2013 (see "benchmark sources" below)

g the hazard quotient is calculated by dividing a screening concentration by its benchmark

^h CDPHE developed a benchmark equation for Al based on total Al, hardness, and pH. The latter parameter was not available. Instead, EPA's National Recommneded Water Quality Criterion of 87 μg/L was used to calculate the hazard quotient

Table 3.17 Selection of pore water COPECs for the benthic invertebrate community in mainstem Mineral Creek **Baseline Ecological Risk Assessment Upper Animas River Mining District**

	Frequency of	Minimum Detect	Flag	Maximum Detect	ıg	Location of Maximum		Benchmark	Hardness	Hardness- Adjusted Benchmark	Bench- mark	Hazard		Reason
Compound	Detection	(μg/L) ^a	<u>Ë</u>	(μg/L) ⁰	Fla	Detect	Screeninge	(ug/L) ^d	(mg/L) ^e	(ug/L) ¹	Source	Quotients	COPEC?	Code
Aluminum	1/1	45.7	J	45.7	J	M34	45.7	87 ^h			1	<1	no	b
Arsenic	0/1	0.5	U	0.25	U	M34	0.25	150			1	<1	no	b
Beryllium	0/1	2.0	U	1.0	U	M34	1.0	0.66			2	1.5	yes	a
Cadmium	1/1	0.13	J	0.13	J	M34	0.13		139	0.54	1	<1	no	b
Chromium	0/1	1.0	U	0.5	U	M34	0.5		139	97	1	<1	no	b
Copper	1/1	1.2		1.2		M34	1.2		139	12	1	<1	no	b
Iron	0/1	100	U	50	U	M34	50	1000			1	<1	no	b
Lead	0/1	0.1	U	0.05	U	M34	0.05		139	3.6	1	<1	no	b
Manganese	$1/\tilde{1}$	27.6		27.6		M34	27.6		139	1841	1	<1	no	b
Nickel	0/1	0.5	U	0.25	U	M34	0.25		139	69	1	<1	no	b
Selenium	0/1	1.0	U	0.5	U	M34	0.5	4.6			1	<1	no	b
Silver	0/1	0.5	U	0.25	U	M34	0.25		139	0.10	1	2.5	yes	a
Zinc	1/1	48.2		48.2		M34	48.2		139	163	1	<1	no	b

^a These values represent the minimum detected dissolved metals concentrations, or the minimum detection limit for a non-detected analyte, measured in April and September 2014 in pore water samples collected from the Animas River upstream from mainstem Cement Creek

Reason codes:

- a = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, exceeds its chronic surface water benchmark
- b = the maximum concentration, or 1/2 the maximum detection limit for a non-detected analyte, falls below the chronic surface water benchmark

Benchmark sources:

- 1 = Colorado Department of Public Health and the Environment (CDPHE), 2013. Regulationno. 31 The basic standards and methodologies for surface water (5 CCR 1002 31): Denver, Water Quality Control Commission.
- 2 = Buchman, M.F. 2008. NOAA Screening Quick Reference Tables, NOAA OR&R Report 08-1, Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp prepared by: SJP (2/24/15)

checked by: EC (2/26/15)

b These values represent the maximum detected dissolved metals concentrations, or half the maximum detection limit for a non-detected analyte, measured in April and September 2014 in the Animas River upstream from mainstem Cement Creek

^c For hardness-dependent metals, the concentration used for screening may differ from the maximum concentration if hardness caused another concentration to yield a higher hazard quotient than the one associated with the maximum concentration

^dThese benchmarks are not sensitive to surface water hardness

e This hardness was associated with the analyte concentration that resulted in the highest HQ measured between in April or September 2014 in the Animas River between mainstem Cement Creek and mainstem Mineral Creek

^f The formulae used to adjust the benchmarks for hardness were obtained from CDPHE, 2013 (see "benchmark sources" below)

g the hazard quotient is calculated by dividing a screening concentration by its benchmark

h CDPHE developed a benchmark equation for Al based on total Al, hardness, and pH. The latter parameter was not available. Instead, EPA's National Recommneded Water Quality Criterion of 87 µg/L was used in the calculations

Table 3.18 Summary of the pore water COPECs for the benthic invertebrate community Baseline Ecological Risk Assessment Upper Animas River District

Analyte	mainstem Mineral Creek	mainstem Cement Creek ^a	Animas River above mainstem Cement Creek	Animas R. between Cement and Mineral Creeks ^a	Animas River below mainstem Mineral Creek
Aluminum			√ √		V
Arsenic					
Beryllium			(1)		(V)
Cadmium	non-decision (1994 - 1994) - 1995 -		V		
Chromium	400 C C C C C C C C C C C C C C C C C C		ов на при под в верхно на постоя постоя на под		
Copper	\$6669-\$hill-hill-hill-hill \$60,000,000,000,000,000,000,000,000,000,			**************************************	
Iron	NY 97 (23) (Managed 1992 Managed 1994 Managed 1		AND THE RESIDENCE OF THE PROPERTY OF THE PROPE	\$0000048.5nuuuuuuuuud 6.9000000000000000000000000000000000000	V
Lead	and the second s			mammammammin (V) (F) (X) (X) (X) (X) (X) (X) (X) (X) (X) (X	
Manganese	### ### ### ### ### ### ### ### ### ##	***************************************	A		V
Mercury					
Nickel	A CONTRACTOR AND AN AND AN AND AN AND AN ANALYSIS AND AN AND AN ANALYSIS AND AN ANALYSIS AND AN ANALYSIS AND AN ANALYSIS AND ANALYSIS ANALYSIS AND ANALYSIS AND ANALYSIS ANALYSIS AND ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS AN	***************************************	and the second s	***************************************	The state of the s
Selenium			(1)		2007
Silver	()	***************************************	(\(\)	***************************************	()
Zinc			1		V

^a this reach was not sampled for pore water

prepared by: SJP (2/26/15) checked by: EC (2/26/15)

 $^{(\}sqrt{})$ = analyte was not detected but was retained as a COPEC because 1/2 the max detection limit exceeded the benchmark

Table 3.19
October 2012 acute surface water toxicity test results for juvenile rainbow trout
Baseline Ecological Risk Assessment
Upper Animas River Mining District

Sample ID	Diluent	Sample Strength	Survival	Signif.?
Sit	e-specific acute	toxicity test resu	ılts	
A56 ("upstream")	none	100%	100%	NS
A68	none	100%	100%	NS
A72	none	100%	0%	S
A73B	none	100%	100%	NS
A75B	none	100%	100%	NS
Bakers Bridge	none	100%	100%	NS
Seria	l dilution #1 acu	te toxicity test re	esults	
M34/CC48	A56	6.25%	100%	NS
M34/CC48	A56	12.5%	100%	NS
M34/CC48	A56	25%	100%	NS
M34/CC48	A56	50%	97.5%	NS
M34/CC48	A56	100%	0%	S
Seria	l dilution #2 acu	te toxicity test re	esults	
M34/CC48	A68	6.25%	100%	NS
M34/CC48	A68	12.5%	100%	NS
M34/CC48	A68	25%	100%	NS
M34/CC48	A68	50%	37.5%	S

S = significant; NS = non significant

Statistical significance was tested against the laboratory control water sample

Table 3.20
November 2012 acute surface water toxicity test results for juvenile rainbow trout
Baseline Ecological Risk Assessment
Upper Animas River Mining District

Sample ID	Diluent	Sample Strength	Survival	Signif.?
S	ite-specific acute	toxicity test resu	ilts	
A68	none	100%	92.5%	NS
M34	none	100%	0%	S
Seri	al dilution #1 acu	te toxicity test re	esults	
A72	A68	5%	92.5%	NS
A72	A68	10%	94.7%	NS
A72	A68	25%	92.2%	NS
A72	A68	50%	100%	NS
A72	A68	75%	100%	NS
A72	A68	100%	2.5%	S
Seri	al dilution #2 acu	te toxicity test re	esults	
CC48	A68	1%	85%	NS
CC48	A68	3%	97.5%	NS
CC48	A68	6%	97.5%	NS
CC48	A68	12%	90%	NS
CC48	A68	25%	90%	NS
CC48	A68	50%	0%	S
Seri	al dilution #3 acu	te toxicity test re	esults	
M34/CC48	A68	4%	97.5%	NS
M34/CC48	A68	9%	95%	NS
M34/CC48	A68	20%	100%	NS
M34/CC48	A68	40%	92.5%	NS
M34/CC48	A68	65%	0%	S
M34/CC48	A68	85%	0%	S

S = significant; NS = non significant

The statistical significance of the three serial dilution results was tested against the laboratory control water sample, whereas the statistical significance of survival in samples A68 and M34 was determined using a *t*-test

prepared by: SJP (1/6/14) reviewed by:

Table 3.21
April 2013 acute surface water toxicity test results for juvenile rainbow trout
Baseline Ecological Risk Assessment
Upper Animas River Mining District

		Sample		Signif.?
Sample ID	Diluent	Strength	Survival	Sig
Sit	te-specific acute	toxicity test resu	lts	
A68	none	100%	67.5%	S
A72	none	100%	0%	S
A73	none	100%	98%	NS
A73B	none	100%	97.5%	NS
A75B	none	100%	100%	NS
M34	none	100%	15%	S
Seria	l dilution #1 acu	te toxicity test re	esults	
A72	HRW	12%	100%	NS
A72	HRW	25%	100%	NS
A72	HRW	35%	100%	NS
A72	HRW	50%	100%	NS
A72	HRW	75%	100%	NS
A72	HRW	88%	97.5%	NS
Seria	l dilution #2 acu	te toxicity test re	esults	
CC48/M34	A68	25%	100%	NS
CC48/M34	A68	50%	90%	NS
CC48/M34	A68	75%	0%	S
CC48/M34	A68	80%	0%	S
CC48/M34	A68	90%	0%	S
CC48/M34	A68	95%	0%	S
Seria	l dilution #3 acu	te toxicity test re	esults	
CC48/M34	HRW	25%	100%	NS
CC48/M34	HRW	50%	100%	NS
CC48/M34	HRW	75%	100%	NS
CC48/M34	HRW	90%	0%	S
CC48/M34	HRW	95%	0%	S

HRW = hard reconstituted water

S = significant; NS = non significant

Statistical significance was tested against the laboratory control water sample

Table 3.22
Summary of the acute surface water toxicity test results for juvenile rainbow trout
Baseline Ecological Risk Assessment
Upper Animas River Mining District

		Sai	mpling Timefra	ame		
Sample Location	Oct. 2012	signif.?	Nov. 2012	signif.?	April 2013	signif.?
		Animas	River			
A56 ("upstream")	100%	NS	nt		nt	
A68	100%	NS	92.5%	NS	67.5%	S
A72	0%	S	2.5%	S	0%	S
A73	nt		nt		98%	NS
A73B	100%	NS	nt		97.5%	NS
A75B	100%	NS	nt		100%	NS
Bakers Bridge	100%	NS	nt		nt	
		Mineral	Creek			
M34	nt		0%	S	15%	S
	-	Cement	Creek	•		
CC48	nt		0%	S	nt	

value shown is survival

nt = not tested

S = significant; NS = non significant

prepared by: SJP (1/29/14)

reviewed by:

Table 3.23

Toxicity in the amphipod *H. azteca* exposed to sediment in the laboratory

Baseline Ecological Risk Assessment

Upper Animas River Mining District

	Dec. 20	12 test	Nov. 20	14 test	Dec. 2012	test	Nov. 2014	test
	Survival		Survival		Biomass ^b		Biomass ^b	
Sample ID	(mean±SE)	Signif? ^a	(mean±SE)	Signif? ^a	(mean±SE)	Signif? ^a	(mean±SE)	Signif? ^a
Laboratory control s	ample							
Lab	97.5±1.6%		92.5±3.1%		69.8±3.5 μg/org		78.1±4.2 μg/org	
Animas River "upstre	eam"							
A56	62.5±8.2%	Y	43.8±9.2%	Y	20.3±1.9 μg/org	Y	14.3±3.2 μg/org	Y
Animas River above i	nain stem Cen	ient Creek						
A60	not tested		77.5±6.5%	N	not tested		23.1±1.9 μg/org	Y
A68	56.3±3.2%	Y	70.0±10.0%	N	22.6±1.6 μg/org	Y	23.2±3.3 μg/org	Y
Mainstem Cement Cr	eek							
CC49	0%	Y	not tested		no survival		not tested	
Mainstem Mineral Ci	reek							
M34	8.8±3.5%	Y	not tested		$5.1\pm2.0\mu g/org$	Y	not tested	
Animas River below i	nainstem Mine	eral Creek						
A72	36.3±4.2%	Y	70.0±4.6%	N	$16.1\pm1.7\mu g/org$	Y	27.9±2.4 μg/org	Y
A73	not tested		73.8±7.8%	N	not tested		21.2±2.4 μg/org	Y
A73B	5.0±1.9%	Y	not tested		4.0±1.7 μg/org	Y	not tested	
A75D	not tested		76.3±7.5%	N	not tested		24.9±3.2 μg/org	Y
A75B	48.8±5.2%	Y	not tested		17.8±1.9 μg/org	Y	not tested	
Bbridge	76.3±3.8%	Y	86.3±3.8%	N	26.2±1.0 μg/org	Y	30.7±2.2 μg/org	Y

SE = standard error

preparedby: SJP (2/24/15) reviewedby: EC (2/25/15)

^a is the response statistically significant from that observed in the test-specific laboratory control sample?

 $^{^{}b}\ biomass = total\ dry\ weight\ of\ surviving\ organisms\ on\ day\ 10/number\ of\ organisms\ originally\ introduced\ on\ day\ 0$

Table 3.24
Summary of select benthic invertebrate community data from the Animas River, mainstem Cement Creek, and mainstem Mineral Creek (Sep. 2014)
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	total#of	# of EPT	# of intolerant				Ephemerata		Tolerant			
Sample Location	taxa	taxa	taxa	$\mathbf{H'}$	нві	EPT Index ^a	Abundance ^c	%EPT ^b	Organisms ^d	Filterers ^d	Scrapers ^d	Clingers ^d
Animas River above	mains stem Co	ement Creek										
A56 ("upstream")	18	13	12	2.24	4.28	72.2%	10.8%	37.8%	1.3%	73.0%	8.3%	90.8%
A60	25	14	16	3.21	3.67	56.0%	11.3%	39.1%	3.4%	44.9%	12.3%	64.8%
A68	17	10	9	2.83	4.19	58.8%	15.5%	32.6%	2.7%	38.7%	11.9%	48.8%
Animas River below	main stem Mi	neral Creek										
A72	9	4	3	2.19	1.87	44.4%	3.4%	54.3%	2.6%	38.8%	0.9%	53.4%
A73	11	7	8	1.61	1.28	63.6%	3.9%	96.1%	0.0%	71.3%	7.8%	92.2%
A75D	21	9	12	3.27	2.46	42.9%	24.8%	64.4%	15.8%	32.7%	15.8%	61.4%
Bakers Bridge	17	8	8	2.33	3.94	47.1%	52.9%	77.1%	2.7%	37.7%	1.3%	39.9%
main stem Cement C	reek											
CC49	2	0	0	0.72	8.00	0.0%	0.0%	0.0%	20.0%	0.0%	0.0%	0.0%
main stem Mineral C	Treek											
M34	12	7	6	2.1	1.66	58.3%	3.9%	86.3%	3.9%	62.7%	3.9%	86.3%

source: Appendix G (Macroinvertebrate assemblage results report), TechLaw. 2014. Sampling Activities Report. 2014. 2014 Sampling Events. Upper Animas Mining District. Gladstone, San Juan County, CO. Draft report prepared for US EPA Region 8, Ecosystem Protection and Remediation - Program Support.

H' = Shannon Weaver Diversity

HBI = Hilsendorf Biotic Index

EPT = Ephemeroptera, Plecoptera, Trichoptera

prepared by: SJP (2/13/15) reviewed by:

1778118 ED_000552_00016309-00159

a % of total number of taxa

^b % of total number of organisms consisiting of EPT

^c Ephemoptera abundance = % of total number

^d % of total number of organisms

Table 4.1
Surface water EPCs for community-level receptors in mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Frequency	Arithmetic	Max Detect or 1/2 max DL	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
			PRE-F	RUNOFF PERIO)		
Aluminum (total)	4 / 4	4,575	5,950	6,544	95% Student's-t UCL	5,950	4,575
Cadmium (dissolved)	4 / 4	1.3	2.0	1.852	95% Student's-t UCL	1.9	1.3
Iron (total)	4 / 4	5,868	6,830	7,240	95% Student's-t UCL	6,830	5,868
Silver (dissolved)	2 / 4	0.4	0.6	NA	NA	0.6	0.4
Zinc (dissolved)	4 / 4	358	499	470	95% Student's-t UCL	470	358
			RU	NOFF PERIOD			
Aluminum (total)	7 / 7	1353	2610	1910	95% Student's-t UCL	1,910	1,353
Cadmium (dissolved)	5 / 7	0.3	0.6	0.403	95% KM (t) UCL	0.4	0.3
Iron (total)	7 / 7	2,664	6,330	4,119	95% Student's-t UCL	4,119	2,664
Silver (dissolved)	0 / 7	0.4	1.3 U	NA	NA	1.3	0.4
Zinc (dissolved)	6 / 7	83.9	146	104.4	95% KM (t) UCL	104	83.9
			POST-	RUNOFF PERIO	D	•	
Aluminum (total)	13 / 13	2,267	4,590	2,826	95% Student's-t UCL	2,826	2,267
Cadmium (dissolved)	13 / 13	0.61	1.0	0.724	95% Student's-t UCL	0.7	0.6
Iron (total)	13 / 13	3,339	8,290	4,316	95% Student's-t UCL	4,316	3,339
Silver (dissolved)	0 / 13	0.3	1.3 U	NA	NA	1.3	0.3
Zinc (dissolved)	13 / 13	160	317	194	95% Student's-t UCL	194	160

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Table 4.2
Surface water EPCs for community-level receptors in mainstem Cement Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

CODECs (ug/L)	Frequency of Detection	Arithmetic Mean	Max Detect or 1/2 max DL (qualifier)	95% UCL of	UCL Calculation Method	Surface W RME	ater EPCs CTE
COPECs (µg/L)	of Detection	Mean		mean RUNOFF PERIOI		KVIE	CIE
Aluminum (total)	4 / 4	7,318	8,610	9,192	95% Student's-t UCL	8,610	7,318
Beryllium (dissolved)	3 / 4	1.2	1.3	1.311	95% KM (t) UCL	1.3	1.2
Cadmium (dissolved)	4/4	5.3	5.5	5.546	95% Student's-t UCL	5.5	5.3
Copper (dissolved)	4 / 4	107	119	122	95% Student's-t UCL	119	107
Iron (total)	4 / 4	17,150	21,700	22,006	95% Student's-t UCL	21,700	17,150
Lead (dissolved)	4 / 4	14.2	15.1	15.1	95% Student's-t UCL	15.1	14.2
Manganese (dissolved)	4 / 4	4,618	5,290	5,867	95% Student's-t UCL	5,290	4,618
Zinc (dissolved)	4 / 4	2,303	2,670	2,878	95% Student's-t UCL	2,670	2,303
	•		RU	NOFF PERIOD		•	•
Aluminum (total)	7 / 7	2,389	3,280	2,876	95% Student's-t UCL	2,876	2,389
Beryllium (dissolved)	0 / 7	0.7	1.0 U	NA	NA	1.0	0.7
Cadmium (dissolved)	7 / 7	2.8	3.8	3.3	95% Student's-t UCL	3.3	2.8
Copper (dissolved)	7 / 7	68.6	90.6	78.1	95% Student's-t UCL	78.1	68.6
Iron (total)	7 / 7	8,067	17,200	12,554	95% Student's-t UCL	12,554	8,067
Lead (dissolved)	7 / 7	8.4	13.1	10.4	95% Student's-t UCL	10.4	8.4
Manganese (dissolved)	7 / 7	1,268	1,770	1,620	95% Student's-t UCL	1,620	1,268
Zinc (dissolved)	7 / 7	929.3	1,310	1,144	95% Student's-t UCL	1,144	929
			POST-	RUNOFF PERIO	D		
Aluminum (total)	14 / 14	6,360	7,930	7,110	95% Student's-t UCL	7,110	6,360
Beryllium (dissolved)	6 / 14	1.1	1.2	1.0	95% KM(t) UCL	1.0	1.1
Cadmium (dissolved)	14 / 14	5.6	7.0	6.1	95% Student's-t UCL	6.1	5.6
Copper (dissolved)	14 / 14	130	221	152	95% Student's-t UCL	152	130
Iron (total)	14 / 14	10,801	18,600	12,725	95% Student's-t UCL	12,725	10,801
Lead (dissolved)	14 / 14	15.5	21.4	17.1	95% Student's-t UCL	17.1	15.5
Manganese (dissolved)	14 / 14	4,112	5,300	5,801	95% Chebyshev (Mean, Sd) UCL	5,300	4,112
Zinc (dissolved)	14 / 14	2,190	2,890	3,033	95% Chebyshev (Mean, Sd) UCL	2,890	2,190

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

prepared by: SJP (2/2/14)

reviewed by: RI (2/10/14)

updated by: EC (2/24/15)

Table 4.3
Surface water EPCs for community-level receptors in the Animas River above mainstem Cement Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Frequency	Arithmetic	Max Detect or 1/2 max DL	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
			PRE-I	RUNOFF PERIO	D		•
Aluminum (total)	5 / 5	305	438	401	95% Student's-t UCL	401	305
Cadmium (dissolved)	5 / 5	2.6	4.1	3.6	95% Student's-t UCL	3.6	2.6
Copper (dissolved)	2 / 5	7.2	8.3	8.435	95% KM (t) UCL	8.3	7.2
Iron (total)	5 / 5	259	334	309.3	95% Student's-t UCL	309	259
Lead (dissolved)	0 / 5	0.4	0.5 U	NA	NA	0.5	0.4
Manganese (dissolved)	5 / 5	3,300	3,730	3,676	95% Student's-t UCL	3,676	3,300
Zinc (dissolved)	5 / 5	840	1,030	1,012	95% Student's-t UCL	1,012	840
	-		RU	NOFF PERIOD		_	
Aluminum (total)	17 / 17	480	1,010	566	95% Student's-t UCL	566	480
Cadmium (dissolved)	17 / 17	1.04	1.5	1.15	95% Modified-t UCL	1.1	1.0
Copper (dissolved)	15 / 17	10.0	16.5	11.3	95% KM (t) UCL	11.3	10.0
Iron (total)	16 / 17	469	1,100	556	95% KM(t) UCL	556	469
Lead (dissolved)	13 / 17	1.0	1.5	1.08	95% KM(t) UCL	1.1	1.0
Manganese (dissolved)	17 / 17	514	1,220	633	95% Student's-t UCL	633	514
Zinc (dissolved)	17 / 17	344.2	509	381	95% Modified-t UCL	381	344
			POST-	RUNOFF PERIO	D		-
Aluminum (total)	13 / 18	153	217	154	95% KM (t) UCL	154	153
Cadmium (dissolved)	18 / 18	1.1	1.7	1.2	95% Student's-t UCL	1.2	1.1
Copper (dissolved)	7 / 18	3.17	3.5	3.223	95% KM (Percentile Bootstrap) UCL	3.2	3.2
Iron (total)	10 / 18	154	234	149	95% KM (Percentile Bootstrap) UCL	149	154
Lead (dissolved)	7 / 18	0.308	0.4	0.339	95% KM (Percentile Bootstrap) UCL	0.3	0.3
Manganese (dissolved)	18 / 18	1,031	2,380	1,247	95% Student's-t UCL	1,247	1,031
Zinc (dissolved)	18 / 18	327	567	362	95% Student's-t UCL	362	327

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Table 4.4
Surface water EPCs for community-level receptors in the Animas River between mainstem Cement Creek and mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Aluminum (total)	2 / 2	2,490	2,520	NA	NA	2,520	2,490
Cadmium (dissolved)	2 / 2	2.7	2.7	NA	NA	2.7	2.7
Copper (dissolved)	2 / 2	20.6	24.8	NA	NA	24.8	20.6
Iron (total)	2 / 2	4,995	5,100	NA	NA	5,100	4,995
Manganese (dissolved)	2 / 2	2,565	2,590	NA	NA	2,590	2,565
Zinc (dissolved)	2 / 2	1,160	1,160	NA	NA	1,160	1,160

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Table 4.5
Surface water EPCs for community-level receptors at sampling location A71B in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Aluminum (total)	1 / 1	2,780	2,780	NA	NA	2,780	2,780
Cadmium (dissolved)	1 / 1	1.9	1.9	NA	NA	1.9	1.9
Copper (dissolved)	1 / 1	8.7	8.7	NA	NA	8.7	8.7
Iron (total)	1 / 1	4,640	4,640	NA	NA	4,640	4,640
Manganese (dissolved)	1 / 1	1,660	1,660	NA	NA	1,660	1,660
Zinc (dissolved)	1 / 1	743	743	NA	NA	743	743

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Table 4.6
Surface water EPCs for community-level receptors at sampling location A72 in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Frequency	Arithmetic	Max Detect	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
			PRE-	RUNOFF PERIOD			
Aluminum (total)	4 / 4	3,455	4,440	4,739	95% Student's-t UCL	4,440	3,455
Cadmium (dissolved)	4 / 4	2.7	2.9	2.9	95% Student's-t UCL	2.9	2.7
Copper (dissolved)	4 / 4	28.9	35.9	38	95% Student's-t UCL	35.9	28.9
ron (total)	4 / 4	6,018	7,710	7,967	95% Student's-t UCL	7,710	6,018
Manganese (dissolved)	4 / 4	2,435	2,920	3,028	95% Student's-t UCL	2,920	2,435
Zinc (dissolved)	4 / 4	1,044	1,230	1,232	95% Student's-t UCL	1,230	1,044
			RU	NOFF PERIOD		-	
Aluminum (total)	7 / 7	1,359	3,060	2,065	95% Student's-t UCL	2,065	1,359
Cadmium(dissolved)	7 / 7	0.9	1.4	1.0	95% Student's-t UCL	1.0	0.9
Copper (dissolved)	5 / 7	5.2	7.6	6.7	95% KM(t) UCL	6.7	5.2
fron (total)	7 / 7	2,905	7,200	4,687	95% Student's-t UCL	4,687	2,905
Manganese (dissolved)	7 / 7	427	823	578	95% Student's-t UCL	578	427
Zinc (dissolved)	7 / 7	273	453	352	95% Student's-t UCL	352	273
	-		POST-	RUNOFF PERIOD			
Aluminum (total)	13 / 13	1,777	2,750	2,129	95% Student's-t UCL	2,129	1,777
Cadmium (dissolved)	13 / 13	1.6	2.8	1.9	95% Student's-t UCL	1.9	1.6
Copper (dissolved)	8 / 13	14.2	36.9	17.3	95% KM(t) UCL	17.3	14.2
ron (total)	13 / 13	2,701	5,490	3,409	95% Student's-t UCL	3,409	2,701
Manganese (dissolved)	13 / 13	1,242	2,490	1,514	95% Student's-t UCL	1,514	1,242
Zinc (dissolved)	13 / 13	579	1,120	696	95% Student's-t UCL	696	579

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Table 4.7
Surface water EPCs for community-level receptors at sampling location A73 in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Aluminum (total)	5 / 5	1,461	2,420	2,030	95% Student's-t UCL	2,030	1,461
Cadmium (dissolved)	5 / 5	1.3	1.8	1.704	95% Student's-t UCL	1.7	1.3
Copper (dissolved)	5 / 5	3.7	5.0	5.082	95% Student's-t UCL	5.0	3.7
Iron (total)	5 / 5	2,986	4,210	4,163	95% Student's-t UCL	4,163	2,986
Manganese (dissolved)	5 / 5	1,009	1,830	1,592	95% Student's-t UCL	1,592	1,009
Zinc	5 / 5	463	701	666	95% Student's-t UCL	666	463

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Table 4.8
Surface water EPCs for community-level receptors at sampling location A73B in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Aluminum (total)	4 / 4	975	1,980	1,764	95% Students (t) UCL	1,764	975
Cadmium (dissolved)	4 / 4	0.7	1.4	1.271	95% Students (t) UCL	1.3	0.7
Copper (dissolved)	4 / 4	2.6	3.8	3.844	95% Students (t) UCL	3.8	2.6
Iron (total)	4 / 4	1,570	2,790	2,649	95% Students (t) UCL	2,649	1,570
Manganese (dissolved)	4 / 4	508	1,210	1,079	95% Students (t) UCL	1,079	508
Zinc (dissolved)	4 / 4	250	561	500.1	95% Students (t) UCL	500	250

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Table 4.9
Surface water EPCs for community-level receptors at sampling location A75D in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Aluminum (total)	5 / 5	1,255	1,790	1,728	95% Student's-t UCL	1,728	1,255
Cadmium (dissolved)	5 / 5	0.8	1.1	1.036	95% Student's-t UCL	1.0	0.8
Copper (dissolved)	5 / 5	2.5	4.2	3.887	95% Student's-t UCL	3.9	2.5
Iron (total)	5 / 5	2,556	4,610	3,922	95% Student's-t UCL	3,922	2,556
Manganese (dissolved)	5 / 5	590	1,090	935.1	95% Student's-t UCL	935	590
Zinc	5 / 5	261	427	384.2	95% Student's-t UCL	384	261

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Table 4.10
Surface water EPCs for community-level receptors at sampling location A75B in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Aluminum (total)	4 / 4	1,021	1,650	1,565	95% Student's-t UCL	1,565	1,021
Cadmium (dissolved)	4 / 4	0.7	1.1	1.031	95% Student's-t UCL	1.0	0.7
Copper (dissolved)	4 / 4	2.6	4.1	4.476	95% Student's-t UCL	4.1	2.6
Iron (total)	4 / 4	2,224	4,810	4,454	95% Student's-t UCL	4,454	2,224
Manganese (dissolved)	4 / 4	462	856	781.7	95% Student's-t UCL	782	462
Zinc	4 / 4	235	442	401.5	95% Student's-t UCL	402	235

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Table 4.11
Surface water EPCs for community-level receptors at sampling location Bakers Bridge in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

			Maximum				
	Frequency	Arithmetic	Detect	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Aluminum (total)	5 / 5	704	1,310	1103	95% Student's-t UCL	1,103	704
Cadmium (dissolved)	5 / 5	0.5	0.7	0.613	95% Student's-t UCL	0.6	0.5
Copper (dissolved)	4 / 5	2.9	3.7	3.701	95% KM (t) UCL	3.7	2.9
Iron (total)	4 / 5	1,717	3,560	2,742	95% KM (t) UCL	2,742	1,717
Manganese (dissolved)	5 / 5	356	584	542.5	95% Student's-t UCL	543	356
Zinc	5 / 5	136	241	203.9	95% Student's-t UCL	204	136

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Table 4.12 Sediment EPCs for mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

CONTC	Frequency	Arithmetic		1/2 Maximum				nt EPCs
COPECs	of Detection	Mean	(qualifier)	non-detect	mean	UCL Calculation Method	RME	CTE
Metals (mg/kg)								
Arsenic	2 / 2	26.9	32.7 D		NA	NA	32.7	26.9
Copper	2 / 2	90.4	127 D		NA	NA	127	90.4
Lead	2 / 2	183	237 D		NA	NA	237	183
Manganese	2 / 2	1,295	1,430 D		NA	NA	1,430	1,295
Selenium	1 / 2	1.7	1.7 D		NA	NA	1.7	1.7
Zinc	2 / 2	468	666 D		NA	NA	666	468

mg/kg = milligram per kilogram

COPEC = chemicals of potential ecological concern

CTE = central tendency exposure

D = sample was diluted before analysis

EPC = exposure point concentration

NA = not applicable

NC = not calculated because of small sample size.

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of mean concentration

Table 4.13 Sediment EPCs for mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	1/2 Maximum	95% UCL of		Sedime	nt EPCs
COPECs	of Detection	Mean	(qualifier)	non-detect	mean	UCL Calculation Method	RME	CTE
Metals (mg/kg)		,			-			
Arsenic	1 / 1	40.6	40.6 D		NA	NA	40.6	40.6
Copper	1 / 1	55.6	55.6 D		NA	NA	55.6	55.6
Lead	1 / 1	282	282 D	•••••••••	NA	NA	282	282
Silver	1 / 1	2.0	2.0 D		NA	NA	2.0	2.0
Zinc	1 / 1	195	195 D		NA	NA	195	195

mg/kg = milligram per kilogram

COPEC = chemicals of potential ecological concern

CTE = central tendency exposure

D = sample was diluted before analysis

EPC = exposure point concentration

NA = not applicable

NC = not calculated because of small sample size.

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of mean concentration

Table 4.14 Sediment EPCs for the Animas River above mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	СОР	PEC?	Frequency	Arithmetic	Maximum Detect	1/2 Maximum	95% UCL of		Sedime	nt EPCs
COPECs	benthos	wildlife	of Detection	Mean	(qualifier)	non-detect	mean	UCL Calculation Method	RME	CTE
Metals (mg/kg)										
Arsenic ^a	yes	yes	20 / 20	27.4	89.5 D		34.24	95% Modified-tUCL	34.2	27.4
Cadmium ^a	yes	yes	20 / 20	11.1	24.2 D		12.91	95% Student's-t UCL	12.9	11.1
Chromium ^a	no	yes	20 / 20	4.7	6.4 D		4.971	95% Student's-t UCL	5.0	4.7
Copper ^a	yes	yes	20 / 20	339	745 D		399.3	95% Adjusted Gamma UCL	399	339
Lead ^a	yes	yes	20 / 20	1,508	3,030 D		1,733	95% Student's-t UCL	1,733	1,508
Manganese	yes	no	20 / 20	10,617	22,300 D		12,566	95% Student's-t UCL	12,566	10,617
Mercury ^a	yes	yes	14 / 14	0.07	0.19 D		0.0914	95% Student's-t UCL	0.1	0.07
Nickel ^a	no	yes	20 / 20	8.2	16.5 D		9.2	95% Modified-t UCL	9.2	8.2
Selenium ^a	yes	yes	4 / 20	1.54	2.9 D		0.998	95%KM (t) UCL	0.998	1.5
Silver ^a	yes	yes	20 / 20	5.5	13.3 D		6.43	95% Student's-t UCL	6.4	5.5
Zinc ^a	yes	yes	20 / 20	3,172	11,500 D		4,054	95% Modified-t UCL	4,054	3,172

^a This analyte is an "important bioaccumulative compound" (Table 4-2 in EPA-823-R-00-001) and is retained for use in food chain modeling

mg/kg = milligram per kilogram

COPEC = chemicals of potential ecological concern

CTE = central tendency exposure

D = sample was diluted before analysis

EPC = exposure point concentration

NA = not applicable

NC = not calculated because of small sample size.

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of mean concentration

The RME value is the lesser of the maximum detected value and the 95% UCL value.

prepared by: SJP (1/29/14) reviewed by: RI (2/10/14) updated by: EC (2/20/15)

Table 4.15 Sediment EPCs at sampling location A72 on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	COF	PEC?	Frequency	Arithmetic	Maximum Detect	1/2 Maximum	95% UCL of		Sedime	nt EPCs
COPECs	benthos	wildlife	of Detection	Mean	(qualifier)	non-detect	mean	UCL Calculation Method	RME	CTE
Metals (mg/kg)										
Aluminum	yes	no	5 / 5	14,872	21,500 D		19,659	95% Student's-tUCL	19,659	14,872
Arsenic ^a	yes	yes	5 / 5	33.4	40.6 D		39.58	95% Student's-tUCL	39.6	33.4
Cadmium ^a	yes	yes	5 / 5	2.1	3.03 D		2.852	95% Student's-tUCL	2.9	2.1
Chromium ^a	no	yes	5 / 5	4.6	6.41 BD		6.087	95% Student's-tUCL	6.1	4.6
Copper ^a	yes	yes	5 / 5	137	179 D		172.9	95% Student's-tUCL	173	137
Lead ^a	yes	yes	5 / 5	478	581 D		581.8	95% Student's-tUCL	581	478
Manganese	yes	no	5 / 5	2,100	3,400 D		2979	95% Student's-tUCL	2,979	2,100
Mercury ^a	no	yes	4 / 4	0.055	0.072 D		0.072	95% Student's-tUCL	0.07	0.06
Nickel ^a	yes	yes	5 / 5	5.1	6.4 D		5.884	95% Student's-tUCL	5.9	5.1
Selenium ^a	yes	yes	4 / 5	1.5	2.0 D		1.881	95% KM (t) UCL	1.9	1.5
Silver ^a	yes	yes	5 / 5	1.9	2.8 D		2.425	95% Student's-tUCL	2.4	1.9
Zinc"	yes	yes	5 / 5	650.8	858 D		818.5	95% Student's-tUCL	819	651

^a This analyte is an "important bioaccumulative compound" (Table 4-2 in EPA-823-R-00-001) and is retained for use in food chain modeling mg/kg = milligram per kilogram

COPEC = chemicals of potential ecological concern

CTE = central tendency exposure

D = sample was diluted before analysis

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

The RME value is the lesser of the maximum detected value and the 95% UCL value.

prepared by: SJP (1/31/14)

reviewed by: RI (2/10/14)

updated by: EC (2/20/15)

Table 4.16 Sediment EPCs at sampling location A73 on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

					Maximum					
	COI	PEC?	Frequency	Arithmetic	Detect	1/2 Maximum	95% UCL of		Sedime	nt EPCs
Analytes	benthos	wildlife	of Detection	Mean	(qualifier)	non-detect	mean	UCL Calculation Method	RME	CTE
Metals (mg/kg)										
Aluminum	yes	no	4 / 4	17,123	40,700 D	-	35,775	95% Student's-tUCL	35,775	17,123
Arsenic ^a	yes	yes	4 / 4	27.9	33.8 D		35.09	95% Student's-tUCL	33.8	27.9
Cadmium ^a	yes	yes	4/4	4.0	5.6 D		5.433	95% Student's-tUCL	5.4	4.0
Chromium ^a	no	yes	4 / 4	4.0	5.6 BD		5.376	95% Student's-tUCL	5.4	4.0
Copper ^a	yes	yes	4 / 4	199	284 D		284.2	95% Student's-tUCL	284	199
Lead ^a	yes	yes	4 / 4	513	729 D		733.6	95% Student's-tUCL	729	513
Manganese	yes	no	4 / 4	4,340	7,120 D		6,618	95% Student's-tUCL	6,618	4,340
Mercury ^a	no	yes	3 / 3	0.04	0.05 D		0.0606	95% Student's-tUCL	0.05	0.04
Nickel ^a	yes	yes	4 / 4	6.4	7.2 D		7.295	95% Student's-tUCL	7.2	6.4
Selenium ^a	yes	yes	2 / 4	1.1	1.4 D		1.409	95% KM (t) UCL	1.4	1.1
Silver ^a	yes	yes	4 / 4	1.9	2.8 D		2.805	95% Student's-tUCL	2.8	1.9
Zine ^a	yes	yes	4/4	1049	1,450 D		1,393	95% Student's-tUCL	1,393	1,049

^a This analyte is an "important bioaccumulative compound" (Table 4-2 in EPA-823-R-00-001) and is retained for use in food chain modeling mg/kg = milligram per kilogram

COPEC = chemicals of potential ecological concern

CTE = central tendency exposure

D = sample was diluted before analysis

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of mean concentration

The RME value is the lesser of the maximum detected value and the 95% UCL value.

prepared by: SJP (1/31/14)

reviewed by: RI (2/10/14)

updated by: EC (2/20/15)

Table 4.17 Sediment EPCs at sampling location A73B on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

					Maximum					
	COP	PEC?	Frequency	Arithmetic	Detect	1/2 Maximum	95% UCL of		Sedime	nt EPCs
COPECs	benthos	wildlife	of Detection	Mean	(qualifier)	non-detect	mean	UCL Calculation Method	RME	CTE
Metals (mg/kg)										
Aluminum	yes	no	3 / 3	16,373	31,900 D		39,289	95% Student's-tUCL	31,900	16,373
Arsenic ^a	yes	yes	3 / 3	29.9	39.4 D		46.35	95% Student's-tUCL	39.4	29.9
Cadmium ^a	yes	yes	3 / 3	3.5	4.2 D		4.79	95% Student's-tUCL	4.2	3.5
Chromium ^a	no	yes	3 / 3	4.5	5.02 D		5.659	95% Student's-tUCL	5.0	4.5
Copper ^a	yes	yes	3 / 3	177	292 D		348.5	95% Student's-tUCL	292	177
Lead ^a	yes	yes	3 / 3	534	593 BD		639.4	95% Student's-tUCL	593	534
Manganese	yes	no	3 / 3	3,143	4,340 D		4,894	95% Student's-tUCL	4,340	3,143
Mercury ^a	no	yes	2 / 2	0.07	0.09 D		NA	NA	0.09	0.07
Nickel ^a	yes	yes	3 / 3	10.0	12.1 D		13.35	95% Student's-tUCL	12.1	10.0
Selenium ^a	yes	yes	1 / 3	2.9	2.9 D		NA	NA	2.9	2.9
Silver ^a	yes	yes	3 / 3	2.0	3.1 D		3.628	95% Student's-tUCL	3.1	2.0
Zine"	yes	yes	3 / 3	1,114	1,720 D		2,035	95% Student's-tUCL	1,720	1,114

^a This analyte is an "important bioaccumulative compound" (Table 4-2 in EPA-823-R-00-001) and is retained for use in food chain modeling mg/kg = milligram per kilogram

COPEC = chemicals of potential ecological concern

CTE = central tendency exposure

D = sample was diluted before analysis

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

The RME value is the lesser of the maximum detected value and the 95% UCL value.

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14)

updated by: EC (2/20/15)

Table 4.18 Sediment EPCs at sampling location A75D on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	СОР	PEC?	Frequency	Arithmetic	Maximum Detect	1/2 Maximum	95% UCL of		Sedime	ent EPCs
COPECs	benthos	wildlife	of Detection	Mean	(qualifier)	non-detect	mean	UCL Calculation Method	RME	CTE
Metals (mg/kg)										
Aluminum	yes	no	4 / 4	15,428	29,900 D		27,525	95% Student's-tUCL	27,525	15,428
Arsenic ^a	yes	yes	4 / 4	19.4	28.5 D		26.98	95% Student's-tUCL	27.0	19.4
Cadmium ^a	yes	yes	4 / 4	4.8	6.75 D		6.443	95% Student's-tUCL	6.4	4.8
Chromium ^a	no	yes	4 / 4	4.2	4.99 BD		4.924	95% Student's-tUCL	4.9	4.2
Copper ^a	yes	yes	4 / 4	147	223 D		211.9	95% Student's-tUCL	212	147
Lead ^a	yes	yes	4 / 4	300	367 BD		374.8	95% Student's-tUCL	367	300
Manganese	yes	no	4 / 4	4,348	6,900 D		6,390	95% Student's-tUCL	6,390	4,348
Mercury ^a	no	yes	2 / 3	0.04	0.04 D		NA	NA	0.04	0.04
Nickel ^a	yes	yes	4 / 4	9.4	13.1 D		12.44	95% Student's-tUCL	12.4	9.4
Selenium ^a	yes	yes	2 / 4	1.2	1.4 D		1.505	95% KM (t) UCL	1.4	1.2
Silver ^a	yes	yes	4 / 4	1.1	1.4 D		1.427	95% Student's-tUCL	1.4	1.1
Zine"	yes	yes	4/4	1,738	2,910 D		2,778	95% Student's-tUCL	2,778	1,738

^a This analyte is an "importantbioaccumulative compound" (Table 4-2 in EPA-823-R-00-001) and is retained for use in food chain modeling mg/kg = milligram per kilogram

COPEC = chemicals of potential ecological concern

CTE = central tendency exposure

B = analyte was also detected in the blank

D = sample was diluted before analysis

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of mean concentration

The RME value is the lesser of the maximum detected value and the 95% UCL value.

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14)

updated by: EC (2/20/15)

Table 4.19 Sediment EPCs at sampling location A75B on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	COP	PEC?	Frequency	Arithmetic	Maximum Detect	1/2 Maximum	95% UCL of		Sedime	nt EPCs
COPECs	benthos	wildlife	of Detection	Mean	(qualifier)	non-detect	mean	UCL Calculation Method	RME	CTE
Metals (mg/kg)										
Aluminum	yes	no	3 / 3	20,820	48,600 D	-	61,382	95% Student's-tUCL	48,600	20,820
Arsenic ^a	yes	yes	3 / 3	19.9	37.2 D		45.39	95% Student's-tUCL	37.2	19.9
Cadmium ^a	yes	yes	3 / 3	5.0	10.5 D		13.03	95% Student's-tUCL	10.5	5.0
Chromium ^a	no	yes	3 / 3	5.2	5.45 BD		5.584	95% Student's-tUCL	5.5	5.2
Copper ^a	yes	yes	3 / 3	188	413 D		517	95% Student's-tUCL	413	188
Lead ^a	yes	yes	3 / 3	296	435 D		592.2	95% Student's-tUCL	435	296
Manganese	yes	no	3 / 3	2,743	3,820 D		4,332	95% Student's-tUCL	3,820	2,743
Mercury ^a	no	yes	2 / 2	0.07	0.07 D		NA	NA	0.07	0.07
Nickel ^a	yes	yes	3 / 3	9.7	16.5 D		19.64	95% Student's-tUCL	16.5	9.7
Selenium ^a	yes	yes	2 / 3	1.9	3.3 D		7.901	97.5% KM (Chebyshev)UCL	3.3	1.9
Silver ^a	yes	yes	3 / 3	1.4	2.2 D		2.816	95% Student's-tUCL	2.2	1.4
Zine"	yes	yes	3 / 3	2,190	5,320 D		6,760	95% Student's-tUCL	5,320	2,190

^a This analyte is an "importantbioaccumulative compound" (Table 4-2 in EPA-823-R-00-001) and is retained for use in food chain modeling mg/kg = milligram per kilogram

COPEC = chemicals of potential ecological concern

CTE = central tendency exposure

B = analyte was also detected in the blank

D = sample was diluted before analysis

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

 $95\%\,UCL$ - $95\%\,Upper\,Confidence\,Limit\,of\,mean\,concentration$

The RME value is the lesser of the maximum detected value and the 95% UCL value.

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14)

updated by: EC (2/20/15)

Table 4.20

Sediment EPCs at sampling location Bakers Bridge on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	СОР	PEC?	Frequency	Arithmetic	Maximum Detect	1/2 Maximum	95% UCL of		Sedime	nt EPCs
COPECs	benthos	wildlife	of Detection	Mean	(qualifier)	non-detect	mean	UCL Calculation Method	RME	CTE
Metals (mg/kg)										
Aluminum	yes	no	4 / 4	20,025	37,400 D		37,463	95% Student's-tUCL	37,400	20,025
Arsenic ^a	yes	yes	4/4	21.9	29.7 D		30.11	95% Student's-tUCL	29.7	21.9
Cadmium ^a	yes	yes	4 / 4	10.1	18.6 D		19.21	95% Student's-tUCL	18.6	10.1
Chromium ^a	no	yes	4/4	5.4	7.38 BD		7.017	95% Student's-tUCL	7.0	5.4
Copper ^a	yes	yes	4/4	191	357 D		331.9	95% Student's-tUCL	332	191
Lead ^a	yes	yes	4 / 4	300	378 D		376.1	95% Student's-tUCL	376	300
Manganese	yes	no	4 / 4	7,425	13,100 D		13,563	95% Student's-tUCL	13,100	7,425
Mercury ^a	no	yes	3 / 3	0.04	0.06 D		0.07	95% Student's-tUCL	0.06	0.04
Nickel ^a	yes	yes	4 / 4	18.3	31.6 D		30.95	95% Student's-tUCL	31.0	18.3
Selenium ^a	yes	yes	2 / 4	2.1	3.1 D		3.088	95% Student's-tUCL	3.1	2.1
Silver ^a	yes	yes	4 / 4	1.3	1.7 D		1.654	95% Student's-tUCL	1.7	1.3
Zinc"	yes	yes	4 / 4	4,620	8,670 D		8,544	95% Student's-tUCL	8,544	4,620

^a This analyte is an "importantbioaccumulative compound" (Table 4-2 in EPA-823-R-00-001) and is retained for use in food chain modeling mg/kg = milligram per kilogram

COPEC = chemicals of potential ecological concern

CTE = central tendency exposure

B = analyte was also detected in the blank

D = sample was diluted before analysis

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

 $95\%\,UCL$ - $95\%\,Upper\,Confidence\,Limit\,of\,mean\,concentration$

The RME value is the lesser of the maximum detected value and the 95% UCL value.

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14)

updated by: EC (2/20/15)

Table 4.21

Pore water EPCs for community-level receptors for mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Engguenay	Arithmetic	Maximum D		95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	of Detection		(qualifie		mean	UCL Calculation Method	RME	СТЕ
Beryllium (dissolved)	0 / 1	1.0	1.0	U	NA	NA	1.0	1.0
Silver (dissolved)	0 / 1	0.25	0.25	U	NA	NA	0.25	0.25

^{*} when a COPEC is not detected in at least 1 sample the arthmetic mean is calculated using 1/2 the DL values.

ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

prepared by: EC (3/6/15) reviewed by: BB (3/9/15)

Table 4.22 Pore water EPCs for community-level receptors in the Animas River above mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

			Maximum Detect or 1/2			Surface W	ater FPCs
	Frequency	Arithmetic	Max DL	95% UCL of		Surface ()	ater Er es
COPECs (µg/L)	of Detection	Mean*	(qualifier)	mean	UCL Calculation Method	RME	CTE
Aluminum (dissolved)	8 / 11	1,259	6,170 D	4,514	95% Adjusted Gamma KM-UCL	4,514	1,259
Beryllium (dissolved)	0 / 11	2.2	10 U	NA	NA	10	2.2
Cadmium (dissolved)	11 / 11	23.6	106.5 D	93.35	95% Adjusted Gamma-UCL	93	24
Copper (dissolved)	11 / 11	224	2,250 D	2,242	95% Chebyshev (Mean, Sd) UCL	2,242	224
Lead (dissolved)	6 / 11	13.7	65.6 D	19.22	95% KM (Percentile Bootstrap) UCL	19	14
Manganese (dissolved)	10 / 11	17,912	78,300 D	115,211	95% GROS Adjusted Gamma-UCL	78,300	17,912
Selenium (dissolved)	0 / 11	1.6	5.0 U	NA	NA	5.0	1.6
Silver (dissolved)	0 / 11	0.8	2.5 U	NA	NA	2.5	0.8
Zinc (dissolved)	11 / 11	5,735	29,900 D	19,367	95% Adjusted Gamma-UCL	19,367	5,735

^{*} when a COPEC is not detected in at least 1 sample the arthmetic mean is calculated using 1/2 the DL values.

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

ug/L = microgram per liter

CTE = central tendency exposure

Table 4.23

Pore water EPCs for community-level receptors at sampling location A72 in the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

			Maximum Detect			Surface W	ater EPCs
COPECs (µg/L)	Frequency of Detection	Arithmetic Mean	or 1/2 Max DL (qualifier)	95% UCL of mean	UCL Calculation Method	RME	СТЕ
Aluminum (dissolved)	2 / 2	282	517	NA	NA	517	282
Beryllium (dissolved)	0 / 2	1.0	1.0 U	NA	NA	1.0	1.0
Cadmium (dissolved)	2 / 2	2.19	2.98	NA	NA	3.0	2.2
Iron (dissolved)	1 / 2	338	338	NA	NA	338	338
Manganese (dissolved)	2 / 2	722	995	NA	NA	995	722
Silver (dissolved)	0 / 2	0.25	0.25 U	NA	NA	0.25	0.25
Zinc (dissolved)	2 / 2	1,019	1,630	NA	NA	1,630	1,019

^{*} when a COPEC is not detected in at least 1 sample the arthmetic mean is calculated using 1/2 the DL values.

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

ug/L = microgram per liter

Pore water EPCs for community-level receptors at sampling location A73 in the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

			Maximum Detect			Surface W	ater EPCs
COPECs (µg/L)	Frequency of Detection	Arithmetic Mean	or 1/2 Max DL (qualifier)	95% UCL of mean	UCL Calculation Method	RME	СТЕ
Aluminum (dissolvedl)	2 / 2	26	29 Ј	NA	NA	29	26
Beryllium(dissolved)	0 / 2	1.0	1.0 U	NA	NA	1.0	1.0
Cadmium (dissolved)	2 / 2	1.2	2.03	NA	NA	2.03	1.2
Iron (dissolved)	1 / 2	341	341	NA	NA	341	341
Manganese (dissolved)	2 / 2	936	1,870	NA	NA	1,870	936
Silver (dissolved)	0 / 2	0.25	0.25 U	NA	NA	0.25	0.25
Zinc (dissolved)	2 / 2	536	709	NA	NA	709	536

^{*} when a COPEC is not detected in at least 1 sample the arthmetic mean is calculated using 1/2 the DL values.

ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Pore water EPCs for community-level receptors at sampling location A73B in the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

			Maximum Detect			Surface W	ater EPCs
COPECs (µg/L)	Frequency of Detection	Arithmetic Mean	or 1/2 Max DL (qualifier)	95% UCL of mean	UCL Calculation Method	RME	СТЕ
Aluminum (dissolved)	0 / 1	10	10 U	NA	NA	10	10
Beryllium (dissolved)	0 / 1	1.0	1.0 U	NA	NA	1.0	1.0
Cadmium (dissolved)	0 / 1	0.05	0.05 U	NA	NA	0.05	0.05
Iron (dissolved)	0 / 1	50	50 U	NA	NA	50	50
Manganese (dissolved)	1 / 1	3.37	3.37 J	NA	NA	3.37	3.37
Silver (dissolved)	0 / 1	0.25	0.25 U	NA	NA	0.25	0.25
Zinc (dissolved)	1 / 1	32.9	32.9	NA	NA	33	33

^{*} when a COPEC is not detected in at least 1 sample the arthmetic mean is calculated using 1/2 the DL values.

ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Pore water EPCs for community-level receptors at sampling location A75D in the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

			Maximum Detect	Maximum Detect		Surface Water EPCs	
COPECs (µg/L)	Frequency of Detection	Arithmetic Mean	or 1/2 Max DL (qualifier)	95% UCL of mean	UCL Calculation Method	RME	СТЕ
Aluminum (dissolved)	2 / 2	34	40 J	NA	NA	40	34
Beryllium (dissolved)	0 / 2	1.0	1.0 U	NA	NA	1.0	1.0
Cadmium (dissolved)	2 / 2	0.59	0.79	NA	NA	0.79	0.59
Iron (dissolved)	1 / 2	107	107 J	NA	NA	107	107
Manganese (dissolved)	2 / 2	238	290	NA	NA	290	238
Silver (dissolved)	0 / 2	0.25	0.25 U	NA	NA	0.25	0.25
Zinc (dissolved)	2 / 2	182	190	NA	NA	190	182

^{*} when a COPEC is not detected in at least 1 sample the arthmetic mean is calculated using 1/2 the DL values.

ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Pore water EPCs for community-level receptors at Bakers Bridge in the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Engguenay	Arithmetic	Maximum Detect or 1/2 Max DL	95% UCL of		Surface W	ater EPCs
COPECs (µg/L)	Frequency of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	СТЕ
Aluminum (dissolvedl)	2 / 2	41	47 J	NA	NA	47	41
Beryllium(dissolved)	0 / 2	1.0	1.0 U	NA	NA	1.0	1.0
Cadmium (dissolved)	1 / 2	0.33	0.33	NA	NA	0.33	0.33
Iron (dissolved)	1 / 2	1,260	1,260	NA	NA	1,260	1,260
Manganese (dissolved)	2 / 2	3,098	5,870	NA	NA	5,870	3,098
Silver (dissolved)	0 / 2	0.25	0.25 U	NA	NA	0.25	0.25
Zinc (dissolved)	2 / 2	64	115	NA	NA	115	64

^{*} when a COPEC is not detected in at least 1 sample the arthmetic mean is calculated using 1/2 the DL values.

ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable because either the dataset is too small and/or it contains too many non-detect values to calculate a 95%UCL

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

Surface water EPCs for wildlife receptors foraging on the Animas River above mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface W	ater EPCs
COPECs ^a	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Total Metals (µg/L)							
Cadmium	40 / 40	1.4	4.0	1.557	95% Modified-t UCL	1.6	1.4
Copper	32 / 40	15.5	33.5	16.2	95% KM (BCA) UCL	16.2	15.5
Lead	40 / 40	11.6	52.3	21.93	95% Chebyshev (Mean, SD) UCL	21.9	11.6
Zinc	40 / 40	432	1180	487.8	95% Modified-t UCL	488	432

^a Only those analytes identified as "important bioaccumulative compounds" (Table 4-2 in EPA-823-R-00-001) and detected in at least one surface water sample are retained for food chain modeling

ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of mean concentration

The RME value is the lesser of the maximum detected value and the 95% UCL value.

Surface water EPCs for wildlife receptors foraging at sampling location A72 on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface Water EPCs	
COPECs ^a	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Total Metals (µg/L)							
Arsenic	1 / 24	5.0	5.0	NA	NA	5.0	5.0
Cadmium	24 / 24	1.6	2.9	1.9	95% Student's-t UCL	1.9	1.6
Copper	23 / 24	27.4	46.7	30.66	95% KM (t) UCL	30.7	27.4
Lead	24 / 24	12.8	99.8	30.46	95% Chebyshev (MEAN, Sd) UCL	30.5	12.8
Nickel	9 / 24	5.0	7.0	3.713	95% KM (Percentile Bootstrap) UCL	3.7	5.0
Zinc	24 / 24	600	1320	711.4	95% Student's-t UCL	711	600

^a Only those analytes identified as "important bioaccumulative compounds" (Table 4-2 in EPA-823-R-00-001) and detected in at least one surface water sample are retained for food chain modeling

ug/L = microgram per liter CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

The RME value is the lesser of the maximum detected value and the 95% UCL value.

Surface water EPCs for wildlife receptors foraging at sampling location A73 on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface W	ater EPCs
COPECs ^a	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Total Metals (µg/L)	•						
Cadmium	5 / 5	1.5	2.2	2.1	95% Student's-t UCL	2.1	1.5
Copper	5 / 5	17.8	22.8	23.46	95% Student's-t UCL	22.8	17.8
Lead	5 / 5	11.1	33.7	23.41	95% Student's-t UCL	23.4	11.1
Nickel	1 / 5	3.8	3.8	NA	NA	3.8	3.8
Zinc	5 / 5	521	768	703.8	95% Student's-t UCL	704	521

a Only those analytes identified as "important bioaccumulative compounds" (Table 4-2 in EPA-823-R-00-001) and detected in at least one surface water sample are retained for food chain modeling

ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

The RME value is the lesser of the maximum detected value and the 95% UCL value.

Table 4.31 Surface water EPCs for wildlife receptors foraging at sampling location A73B on the Animas River below mainstem Mineral Creek

Baseline Ecological Risk Assessment Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface W	ater EPCs
COPECs ^a	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Total Metals (µg/L)							
Cadmium	2 / 4	1.0	1.5	NA	NA	1.5	1.0
Chromium	1 / 4	5.8	5.8	NA	NA	5.8	5.8
Copper	4 / 4	9.4	13.1	14.1	95% Student's-t UCL	13.1	9.4
Lead	4/4	5.5	11.7	10.6	95% Student's-t UCL	10.6	5.5
Nickel	1 / 4	2.9	2.9	NA	NA	2.9	2.9
Zinc	4 / 4	265	557	498	95% Student's-t UCL	498	265

^a Only those analytes identified as "important bioaccumulative compounds" (Table 4-2 in EPA-823-R-00-001) and detected in at least one surface water sample are retained for food chain modeling ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

The RME value is the lesser of the maximum detected value and the 95% UCL value.

Table 4.32

Surface water EPCs for wildlife receptors foraging at sampling location A75D on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

COPECsa	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)	95% UCL of mean	UCL Calculation Method	Surface W RME	ater EPCs CTE
Total Metals (µg/L)							
Cadmium	5 / 5	1.0	1.4	1.4	95% Student's-t UCL	1.4	1.0
Copper	5 / 5	13.8	20.6	19.7	95% Student's-t UCL	19.7	13.8
Lead	5 / 5	11.2	32.6	23.1	95% Student's-t UCL	23.1	11.2
Zinc	5 / 5	361	545	503.2	95% Student's-t UCL	503	361

^a Only those analytes identified as "important bioaccumulative compounds" (Table 4-2 in EPA-823-R-00-001) and detected in at least one surface water sample are retained for food chain modeling

ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

The RME value is the lesser of the maximum detected value and the 95% UCL value.

Table 4.33

Surface water EPCs for wildlife receptors foraging at sampling location A75B on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

COPECs ^a	Frequency of Detection	Arithmetic Mean	Maximum Detect (qualifier)	95% UCL of mean	UCL Calculation Method	Surface W RME	ater EPCs
Total Metals (µg/L)	of Detection	Mean	(quanner)	mean	CCL Calculation Method	TUTE	CIL
Cadmium	4 / 4	0.9	1.1	1.2	95% Student's-t UCL	1.1	0.9
Copper	4/4	12.2	21.5	22.6	95% Student's-t UCL	21.5	12.2
Lead	4 / 4	12.1	34.5	30.3	95% Student's-t UCL	30.3	12.1
Zinc	4 / 4	302	445	428.9	95% Student's-t UCL	429	302

a Only those analytes identified as "important bioaccumulative compounds" (Table 4-2 in EPA-823-R-00-001) and detected in at least one surface water sample are retained for food chain modeling

ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

The RME value is the lesser of the maximum detected value and the 95% UCL value.

Surface water EPCs for wildlife foraging at sampling location Bakers Bridge on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Frequency	Arithmetic	Maximum Detect	95% UCL of		Surface W	ater EPCs
COPECs ^a	of Detection	Mean	(qualifier)	mean	UCL Calculation Method	RME	CTE
Total Metals (µg/L)							
Cadmium	4 / 5	0.7	0.8	0.8	95% KM (t) UCL	0.8	0.7
Copper	4 / 5	9.5	16.3	13.8	95% KM (t) UCL	13.8	9.5
Lead	5 / 5	7.8	26.0	17.7	95% Student's-t UCL	17.7	7.8
Zinc	5 / 5	216	273	272.4	95% Student's-t UCL	272	216

a Only those analytes identified as "important bioaccumulative compounds" (Table 4-2 in EPA-823-R-00-001) and detected in at least one surface water sample are retained for food chain modeling

ug/L = microgram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

NA = not applicable

RME = reasonable maximum exposure

95% UCL - 95% Upper Confidence Limit of the mean concentration

The RME value is the lesser of the maximum detected value and the 95% UCL value.

EDD formulas for the targeted wildlife receptors Baseline Ecological Risk Assessment Upper Animas Mining District

	Avian insectivore - A	merico	an dipper							
estimated daily dose (EDD _x) =	aquatic insect exposure FIR*FC _{inverts} *PDF*AUF	+	surface water exposure WIR*WC _x *AUF	+	sediment exposure SIR*SC _x *AUF					
mg/kg BW-day	mg/kg BW-day		L/kg BW-day		mg/kg BW-day					
Avian omnivore - mallard [#]										
$\begin{array}{ccc} \textbf{estimated daily dose} & = & \\ & (EDD_x) & & \\ \end{array}$	invertebrate and plant exposure [#] FIR[(FC _{invert} *PDF)+(FC _{plant} *PDF)]*AUF	+	surface water exposure WIR*WC _x *AUF	+	sediment exposure SIR*SC _x *AUF					
mg/kg BW-day	mg/kg BW-day		L/kg BW-day		mg/kg BW-day					
	Avian piscivore - be	lted ki	ngfisher							
$\begin{array}{ccc} \textbf{estimated daily dose} \\ & (EDD_x) \end{array} =$	fish exposure FIR*FC _{fish} *PDF*AUF	+	surface water exposure WIR*WC _x *AUF		sediment exposure SIR*SC _x *AUF					
mg/kg BW-day	mg/kg BW-day		L/kg BW-day		mg/kg BW-day					
	Mammalian herbiv	ore - n	nuskrat							
estimated daily dose (EDD _x) =	aquatic plant exposure FIR*FC _{plant} *PDF*AUF	+	surface water exposure WIR*WC _x *AUF	+	sediment exposure SIR*SC _x *AUF					
mg/kg BW-day	mg/kg BW-day		L/kg BW-day		mg/kg BW-day					

^{*}The mallard is modeled for two diets: 100% benthic invertebrates to represent feeding by females during the egg-laying season, and an equal diet of benthic invertebrates (50%) and aquatic plants (50%) for the rest of the year.

$$FC_{xi} = SC_x * AF_x$$

Where: EDD_x = estimated daily dose of COPEC "x" (mg COPEC/kg BW-day)

FIR = food ingestion rate (kg dw/kg BW-day)

FC_{xi} = concentration of COPEC "x" in food item "i" (mg/kg dw) PDF = proportion of diet composed of food type "i" (unitless)

WIR = water ingestion rate (L/day)

 WC_x = concentration of COPEC "x" in surface water (mg/L)

SIR = sediment ingestion rate (kg dw/day)

SC_x = concentration of COPEC"x" in sediment (mg/kg [calculated as a receptor-specific fraction of the FIR])

BW = body weight (kg)

AUF = area use factor (unitless; assumed 1.0)

created by: SJP (1/9/14)

Exposure parameters for the four wildlife receptors used in food chain modeling Baseline Ecological Risk Assessment Upper Animas Mining District

	body weight		ingestion rates		l	dietai	y on(%)					
wildlife species	(kg)	food (kg/kg BW- day, dw)	sediment (kg/kg BW- day, dw)	aquatic ginvert.		aquatic	home range					
Aquatic Insectivorous Birds												
American dipper (Cinclus mexicanus)	0.0565 ^g	0.2173 ^a	0.152 ^e	0.02173 ⁿ	100 ^j			759 m (along a water course)				
Aquatic Herbivorous Mammals												
muskrat (<i>Ondatra zibethicus</i>)	1.17 ^h	0.0839 ^b	0.0975 ^f	0.00839 ⁿ			100 ^j	0.13 hectares				
			Piscivorous B	Birds								
belted kingfisher (<i>Ceryle alcyon</i>)	0.147^{i}	0.0869 ^c	0.111 ^e	0.00174°		100 ^j	1	2.25 km				
Omnivorous Birds												
mallard (Anas platyrhynchos)	1.162 ⁱ	0.0519 ^d	0.056 ^e	0.00104 ^m	100 ^k 50 ^l		 50 ¹	111 hectares				

^a Calculated using IR_{food} (g dw/day) = 0.398*BW(g)^{0.850}, adjusted to 1.0 kg of receptor(see eq. 3-4 [passerines] on p. 3-4 in EPA, 1993)

BW - Body weight

dw - dry weight

created by: SJP (1/9/14) reviewed by:

^b Calculated using IR_{food} (g dw/day) = 0.577*BW(g $^{0.727}$, adjusted to 1.0 kg of receptor (see eq. 3-9 [herbivores] on p. 3-6 in EPA, 1993)

^c Calculated using IR_{food} (g dw/day)= 0.301*BW(g $^{0.751}$, adjusted to 1.0 kg of receptor (see eq. 3-5 [non-passerines] on p. 3-5 in EPA, 1993)

^d Calculated using IR_{food} (g dw/day) = 0.301*BW(g)^{0.751}, adjusted to 1.0 kg of receptor (see eq. 3-5 [non-passerines] on p. 3-5 in EPA, 1993)

^e Calculated using IR_{water} (L/day)= 0.059*BW(kg)^{0.67}, adjusted to 1.0 kg of receptor (see eq. 3-15 [all birds] on p. 3-8 in EPA, 1993)

 $^{^{\}mathrm{f}}$ Calculated using $\mathrm{IR}_{\mathrm{water}}$ (L/day)= 0.099*BW(kg) $^{0.90}$, adjusted to 1.0 kg of receptor (see eq. 3-17 [all mammals] on p. 3-10 in EPA, 1993)

g Ealey, D., 1977

^h Silva and Downing, 1995

ⁱ EPA, 1993

^j Conservative assumption

k the 100% aquatic invertebrate diet is for females foraging prior to egg production in the spring

¹ the 50% aquatic invertebrates + 50% aquatic plants represents an average mallard diet for the rest of the year.

^m Table 4-4 in EPA, 1993 (value represents 2% of food intake on a dry-weight basis)

ⁿ best professional judgment (value represents 10% of food intake on a dry-weight basis)

^o best professional judgment (value represents 2% of food intake on a dry-weight basis)

Table 4.37 Soil-to-plant regression models and uptake factors for use in food chain modeling Baseline Ecological Risk Assessment Upper Animas River Mining District

	soil-to-plant regre	ssion models (dry weight) ^a		soil-to-plant upt	ake factors (dry weight) ^a				
Analyte	model	reference	value	basis	reference				
arsenic		Bechtel Jacobs, 1998 (Table 7)	regression model available						
cadmium	$C_p = e^{(-0.476 + 0.546(\ln C_s))}$	USEPA, 2007 (Table 4a)		regressio	on model available				
chromium			0.041 median USEPA, 2007 (Table 4a)						
copper	$C_p = e^{(0.669 + 0.394(\ln Cs))}$	USEPA, 2007 (Table 4a)		regressio	on model available				
lead	II P	USEPA, 2007 (Table 4a)	regression model available						
mercury	P	Bechtel Jacobs, 1998 (Table 7)		regressio	on model available				
nickel	II F	USEPA, 2007 (Table 4a)		regressio	on model available				
selenium	$C_p = e^{(-0.678 + 1.104(\ln Cs))}$	USEPA, 2007 (Table 4a)		regressio	on model available				
silver			0.014	median	USEPA, 2007 (Table 4a)				
zinc	$C_p = e^{(1.575 + 0.555(\ln Cs))}$	USEPA, 2007 (Table 4a)		regressio	on model available				

^a Tissue residue levels in the above-ground vegetative portion of rooted aquatic plants were estimated using the methods developed for terrestrial plants, except that sediment exposure point concentrations were used in the calculations

References:

Bechtel Jacobs. 1998. Empirical models for the uptake of inorganic chemicals from soil by plants. Prepared for the U.S. Department of Energy. BJC/OR-133. September 1998. U.S. Environmental Protection Agency (USEPA). 2007j. Guidance for developing ecological soil screening levels. Attachment 4-1. OSWER Directive 9285.7-55. April

prepared by: SJP (12/2/13)

 $^{^{\}rm b}$ $C_{\rm p}$ = concentration of an analyte in the plant; $C_{\rm s}$ = concentration of an analyte in the sediment

Table 4.38 Sediment-to-benthic invertebrate regression models and uptake factors for use in food chain modeling Baseline Ecological Risk Assessment Upper Animas River Mining District

	sediment-to-benthici	nvert. regression models (dry weight)	sedin	sediment-to-benthicinvertebrate uptake factors (dry weight)							
Analyte	model ^a	reference	value	basis	reference						
arsenic	$C_i = 10^{(-0.292 + 0.754(\log Csd))}$	Bechtel Jacobs, 1998 (Table 3 - all)		regressi	on model available						
cadmium	$C_i = 10^{(-0.314 + 0.513(\log Csd))}$	Bechtel Jacobs, 1998 (Table 3 - dep)		regressi	on model available						
chromium	$C_i = 10^{(0.2092 + 0.365(\log Csd))}$	Bechtel Jacobs, 1998 (Table 3 - all)	mention of the State of the Sta	regression model available							
copper			0.824	geometric mean	Bechtel Jacobs, 1998 (Table 2 - dep)						
lead	$C_i = 10^{(-0.515 + 0.653(\log Csd))}$	Bechtel Jacobs, 1998 (Table 3 - dep)		regression model available							
mercury			1.186	geometric mean	Bechtel Jacobs, 1998 (Table 2 - all)						
nickel	$C_i = 10^{(-0.440 + 0.695(\log Csd))}$	Bechtel Jacobs, 1998 (Table 3 - dep)		regressi	on model available						
selenium			1.00	assumed	50 g - COURTO A CO - 4 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6						
silver	######################################		0.18	mean	Hirsch, 1998						
zinc	$C_i = 10^{(1.89 + 0.126(\log Csd))}$	Bechtel Jacobs, 1998 (Table 3 - dep)		regressi	on model available						

^a C_p = concentration of an analyte in the plant; C_s = concentration of an analyte in the sediment

References:

Bechtel Jacobs, 1998. Biota sediment accumulation factors for invertebrates: review and recommendations for Oak Ridge Reservation. Prepared for U.S. Department of Energy. BJC/OR-112. August 1998. Hirsch, M.P. 1998. Bioaccumulation of silver from laboratory-spiked sediments in the oligochaete (*Lumbriculus variegatus*). Environ. Toxicol. Chem. 17:605-609.

prepared by: SJP (12/2/13)

Table 4.39 Sediment-to-fish uptake factors for use in food chain modeling Baseline Ecological Risk Assessment Upper Animas River Mining District

	sediment-to-fish r	egression models (dry weight)	Sed	Sediment bioaccumulation factors for fish (dry weight)						
Analyte	model	reference	value	basis	reference					
arsenic	no regre	ssion model available	0.126	average	Pascoe et al ., 1996					
cadmium	no regre	ssion model available	0.164	average	Pascoe <i>et al.</i> , 1996					
chromium	no regre	ssion model available	0.038	average	Krantzberg and Boyd, 1992					
copper	no regre	ssion model available	0.100	average	Krantzberg and Boyd, 1992					
lead	no regre	ssion model available	0.070	average	Krantzberg and Boyd, 1992					
mercury	no regre	ssion model available	3.25	average	Cope <i>et al.</i> , 1990					
nickel	no regre	ssion model available	1.00	assumed	Commission of the Commission o					
selenium	no regre	ssion model available	1.00	assumed						
silver	no regre	ssion model available	1.00	assumed						
zinc	no regre	ssion model available	0.147	average	Pascoe <i>et al.</i> , 1996					

References:

Cope, W.G., J.G. Wiener, and R.G. Rada. 1990. Mercury accumulation in yellow perch in Wisconsin seepage lakes: relation to lake characteristics. Environ. Toxicol. Chem. 9:931-940. Krantzberg, G. and D. Boyd. 1992. The biological significance of contaminants in sediment from Hamilton Harbour, Lake Ontario. Environ. Toxicol. Chem. 11:1527-1540.

Pascoe, G.A., R.J. Blanchet, and G. Linder. 1996. Food chain analysis of exposures and risks to wildlife at a metals-contaminated wetland. Arch. Environ. Contam. Toxicol. 30:306-318.

prepared by: SJP (2/2/14)

Table 4.40 Estimated daily doses for the American dipper foraging on the Animas River above mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas Mining District

	Cpper Animas Francis																	
						EDD									EDD			
	RN	Æ*				(mg/kg bw-d	ay)			C1	TE**			(mg/kg bw-d	ay)		
	Exposure Poin	t Concentration		Die	t		Sediment	Water		Exposure Point Concentration Diet					Sediment	Water		
			Invert tissue									Invert tissue						1 1
	Sediment	Surface Water	concentration						Total	Sediment	Surface Water	concentration						Total
COPECs	(mg/kg, dw)	(mg/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert} 1	Dose _{sed} ²	Dose _{water} 3	EDD ⁴	(mg/kg, dw)	(mg/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose _{sed} ²	Dose _{water} ³	EDD ⁴
Arsenic	34.2	0.000	2.10	0.9	0.1	4.11E-01	7.43E-02	0.00E+00	4.85E-01	27.4	0.000	1.27	0.9	0.1	2.48E-01	5.95E-02	0.00E+00	3.07E-01
Cadmium	12.9	0.0016	3.86	0.9	0.1	7.55E-01	2.80E-02	2.43E-04	7.84E-01	11.1	0.0014	2.84	0.9	0.1	5.55E-01	2.41E-02	2.13E-04	5.80E-01
Chromium	5.0	0.000	2.78	0.9	0.1	5.43E-01	1.09E-02	0.00E+00	5.54E-01	4.7	0.000	2.56	0.9	0.1	5.00E-01	1.02E-02	0.00E+00	5.11E-01
Copper	399	0.0162	64.9	0.9	0.1	1.27E+01	8.67E-01	2.46E-03	1.36E+01	339	0.0155	62.4	0.9	0.1	1.22E+01	7.37E-01	2.36E-03	1.30E+01
Lead	1733	0.0219	25.2	0.9	0.1	4.93E+00	3.77E+00	3.33E-03	8.70E+00	1508	0.0116	21.3	0.9	0.1	4.17E+00	3.28E+00	1.76E-03	7.45E+00
Mercury	0.10	0.000	0.09	0.9	0.1	1.72E-02	2.17E-04	0.00E+00	1.74E-02	0.07	0.000	0.09	0.9	0.1	1.66E-02	1.52E-04	0.00E+00	1.68E-02
Nickel	9.2	0.000	0.52	0.9	0.1	1.01E-01	2.00E-02	0.00E+00	1.21E-01	8.2	0.000	0.52	0.9	0.1	1.01E-01	1.78E-02	0.00E+00	1.19E-01
Selenium	1.0	0.000	0.88	0.9	0.1	1.72E-01	2.17E-03	0.00E+00	1.75E-01	1.5	0.000	0.88	0.9	0.1	1.72E-01	3.26E-03	0.00E+00	1.76E-01
Silver	6.4	0.000	0.22	0.9	0.1	4.30E-02	1.39E-02	0.00E+00	5.69E-02	5.5	0.000	0.21	0.9	0.1	4.15E-02	1.20E-02	0.00E+00	5.34E-02
Zinc	4054	0.488	799	0.9	0.1	1.56E+02	8.81E+00	7.42E-02	1.65E+02	3172	0.432	579	0.9	0.1	1.13E+02	6.89E+00	6.57E-02	1.20E+02

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day- milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

^{**} The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
1 Dose _{invert} =IR _{invert} X C _{invert} X DF _{invert} X AUF	Body Weight (BW) (kg)	0.0565
$2 \text{ Dose}_{\text{sed}} = \text{Ir}_{\text{sediment}} X \text{ EPC}_{\text{sediment}} X \text{ Df}_{\text{sed}} X \text{ AUF}$	IR _{diet} (kg/kg BW-day, dw)	0.2173
$3 \text{ Dose}_{\text{water}} = \text{IR}_{\text{water}} \times C_{\text{water}} \times AUF$	IR _{water} (L/kg BW-day)	0.152
4 Total EDD = Dose diet +Dose sediment + Dose water	IR _{sediment} (kg/kg BW-day, dw)	0.02173

^{*} The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

Table 4.41

EDDs for the American dipper foraging at sampling location A72 on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

						EDD									EDD			
	RM	Æ*				(mg/kg bw-d	ay)			C'	FE**			(mg/kg bw-d	ay)		
	Exposure Poin	t Concentration		Diet				Water		Exposure Poir	nt Concentration	Diet				Sediment	Water	
			Invert tissue									Invert tissue						
	Sediment	Surface Water	concentration				,	3	Total	Sediment	Surface Water	concentration				, ,	,	Total
COPECs	(mg/kg, dw)	(mg/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert} 1	Dose _{sed} ²	Dose _{water} 3	EDD^4	(mg/kg, dw)	(mg/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose _{sed} ²	Dose _{water} 3	EDD^4
Arsenic	39.6	0.0050	0.27	0.9	0.1	5.20E-02	8.61E-02	7.60E-04	1.39E-01	33.4	0.0050	0.27	0.9	0.1	5.20E-02	7.26E-02	7.60E-04	1.25E-01
Cadmium	2.9	0.0019	0.68	0.9	0.1	1.33E-01	6.30E-03	2.89E-04	1.39E-01	2.1	0.0016	0.68	0.9	0.1	1.33E-01	4.56E-03	2.43E-04	1.38E-01
Chromium	6.1	0.000	2.16	0.9	0.1	4.23E-01	1.33E-02	0.00E+00	4.36E-01	4.6	0.000	2.16	0.9	0.1	4.23E-01	1.00E-02	0.00E+00	4.33E-01
Copper	173	0.0307	38	0.9	0.1	7.49E+00	3.76E-01	4.67E-03	7.87E+00	137	0.0274	38	0.9	0.1	7.49E+00	2.98E-01	4.16E-03	7.79E+00
Lead	581	0.0305	7.6	0.9	0.1	1.48E+00	1.26E+00	4.64E-03	2.75E+00	478	0.0128	7.6	0.9	0.1	1.48E+00	1.04E+00	1.95E-03	2.52E+00
Mercury	0.070	0.000	0.11	0.9	0.1	2.09E-02	1.52E-04	0.00E+00	2.11E-02	0.06	0.000	0.11	0.9	0.1	2.09E-02	1.30E-04	0.00E+00	2.11E-02
Nickel	5.9	0.0037	0.27	0.9	0.1	5.20E-02	1.28E-02	5.62E-04	6.54E-02	5.1	0.0050	0.27	0.9	0.1	5.20E-02	1.11E-02	7.60E-04	6.39E-02
Selenium	1.9	0.000	0.53	0.9	0.1	1.04E-01	4.13E-03	0.00E+00	1.09E-01	1.5	0.000	0.53	0.9	0.1	1.04E-01	3.26E-03	0.00E+00	1.08E-01
Silver	2.4	0.000	0.27	0.9	0.1	5.20E-02	5.22E-03	0.00E+00	5.72E-02	1.9	0.000	0.27	0.9	0.1	5.20E-02	4.13E-03	0.00E+00	5.62E-02
Zinc	819	0.711	166	0.9	0.1	3.25E+01	1.78E+00	1.08E-01	3.44E+01	651	0.600	166	0.9	0.1	3.25E+01	1.41E+00	9.12E-02	3.40E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day- milligramsper kilogramof body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

 $CTE\hbox{--} Central Tendency Exposure$

DF - Dose Fraction

^{**} The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
1 Dose _{invert} =IR _{invert} X C _{invert} X DF _{invert} X AUF	Body Weight (BW) (kg)	0.0565
$2 \operatorname{Dose}_{sed} = \operatorname{Ir}_{sediment} X \operatorname{EPC}_{sediment} X \operatorname{Df}_{sed} X \operatorname{AUF}$	IR _{diet} (kg/kg BW-day, dw)	0.2173
$3 \text{ Dose}_{\text{water}} = \text{IR}_{\text{water}} \times C_{\text{water}} \times AUF$	IR _{water} (L/kg BW-day)	0.152
4 Total EDD = Dose diet +Dose sediment + Dose water	IR _{sediment} (kg/kg BW-day, dw)	0.02173

^{*} The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

Table 4.42 EDDs for the American dipper foraging at sampling location A73 on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas Mining District

						EDD									EDD			
	RN	IE*				(mg/kg bw-d	ay)			C.	TE**			(mg/kg bw-d	ay)		
	Exposure Poin	t Concentration		Die	t		Sediment	Water		Exposure Poi	nt Concentration	Diet				Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	Invert tissue concentration (dw)	DF _{Invert}	Df _{sediment}	Dose _{invert} ¹	Dose _{sed} ²	Dose _{water} 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (mg/L)	Invert tissue concentration (dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose _{sed} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	33.8	0.000	0.69	0.9	0.1	1.36E-01	7.34E-02	0.00E+00	2.09E-01	27.9	0.000	0.69	0.9	0.1	1.36E-01	6.06E-02	0.00E+00	1.96E-01
Cadmium	5.4	0.0021	0.94	0.9	0.1	1.83E-01	1.17E-02	3.19E-04	1.95E-01	4.0	0.0015	0.94	0.9	0.1	1.83E-01	8.69E-03	2.28E-04	1.92E-01
Chromium	5.4	0.000	2.03	0.9	0.1	3.97E-01	1.17E-02	0.00E+00	4.09E-01	4.0	0.000	2.03	0.9	0.1	3.97E-01	8.69E-03	0.00E+00	4.06E-01
Copper	284	0.0228	33	0.9	0.1	6.50E+00	6.17E-01	3.47E-03	7.12E+00	199	0.0178	33	0.9	0.1	6.50E+00	4.32E-01	2.71E-03	6.93E+00
Lead	729	0.0234	6.7	0.9	0.1	1.32E+00	1.58E+00	3.56E-03	2.90E+00	513	0.0111	6.7	0.9	0.1	1.32E+00	1.11E+00	1.69E-03	2.43E+00
Mercury	0.05	0.000	0.11	0.9	0.1	2.15E-02	1.09E-04	0.00E+00	2.16E-02	0.04	0.000	0.11	0.9	0.1	2.15E-02	8.69E-05	0.00E+00	2.16E-02
Nickel	7.2	0.0038	0.58	0.9	0.1	1.13E-01	1.56E-02	5.78E-04	1.29E-01	6.4	0.0038	0.58	0.9	0.1	1.13E-01	1.39E-02	5.78E-04	1.27E-01
Selenium	1.4	0.000	0.55	0.9	0.1	1.07E-01	3.04E-03	0.00E+00	1.10E-01	1.1	0.000	0.55	0.9	0.1	1.07E-01	2.39E-03	0.00E+00	1.10E-01
Silver	2.8	0.000	0.28	0.9	0.1	5.38E-02	6.08E-03	0.00E+00	5.99E-02	1.9	0.000	0.28	0.9	0.1	5.38E-02	4.13E-03	0.00E+00	5.79E-02
Zinc	1393	0.704	197	0.9	0.1	3.86E+01	3.03E+00	1.07E-01	4.18E+01	1049	0.521	197	0.9	0.1	3.86E+01	2.28E+00	7.92E-02	4.10E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day- milligramsper kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
1 Dose _{invert} = IR invert X Cinvert X DF invert X AUF	Body Weight (BW) (kg)	0.0565
$2\; Dose_{sed} = Ir_{sediment} \; X EPC_{sediment} \; X Df_{sed} \; X \; AUF$	IR _{diet} (kg/kg BW-day, dw)	0.2173
$3 \text{ Dose}_{\text{water}} = \text{IR}_{\text{water}} \times C_{\text{water}} \times AUF$	IR _{water} (L/kg BW-day)	0.152
4 Total EDD = Dose diet +Dose sediment + Dose water	IR _{sediment} (kg/kg BW-day, dw)	0.02173

EDDS for the American dipper foraging at sampling location A73B on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas Mining District

	PA.	1E*					EDD (g bw-day)				C	TE**					DD (bw-day)			
	1	t Concentration			Diet	(mg/i	ig bir-day)	Sediment	Water			nt Concentration			Diet	(IIIg/Kg	, Dir-day)	Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Invert tissue concentration (C _{invert, dw})	DF _{Invert}	Df _{sediment}	Dose _{invert} 1	Dose _{sed} ²	Dose _{water} 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Invert tissue concentration (C _{invert, dw})	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose _{sed} ²	Dose _{water} ³	Total EDD⁴
Arsenic	39.4	0.000	Equation	8.15	0.9	0.1	1.59E+00	8.56E-02	0.00E+00	1.68E+00	29.9	0.000	Equation	6.62	0.9	0.1	1.29E+00	6.50E-02	0.00E+00	1.36E+00
Cadmium	4.2	0.0015	Equation	1.01	0.9	0.1	1.98E-01	9.13E-03	2.28E-04	2.08E-01	3.5	0.0010	Equation	0.92	0.9	0.1	1.80E-01	7.61E-03	1.52E-04	1.88E-01
Chromium	5.0	0.0058	Equation	2.91	0.9	0.1	5.70E-01	1.09E-02	8.82E-04	5.81E-01	4.5	0.0058	Equation	2.80	0.9	0.1	5.48E-01	9.78E-03	8.82E-04	5.59E-01
Copper	292	0.0131	0.824	241	0.9	0.1	4.71E+01	6.35E-01	1.99E-03	4.77E+01	177	0.0094	0.824	145.848	0.9	0.1	2.85E+01	3.85E-01	1.43E-03	2.89E+01
Lead	593	0.0106	Equation	19.8	0.9	0.1	3.86E+00	1.29E+00	1.61E-03	5.15E+00	534	0.0055	Equation	18.5	0.9	0.1	3.61E+00	1.16E+00	8.36E-04	4.77E+00
Mercury	0.09	0.000	1.186	0.11	0.9	0.1	2.09E-02	1.96E-04	0.00E+00	2.11E-02	0.07	0.000	1.186	0.08	0.9	0.1	1.62E-02	1.52E-04	0.00E+00	1.64E-02
Nickel	12.1	0.0029	Equation	2.05	0.9	0.1	4.02E-01	2.63E-02	4.41E-04	4.28E-01	10.0	0.0029	Equation	1.80	0.9	0.1	3.52E-01	2.17E-02	4.41E-04	3.74E-01
Selenium	2.9	0.000	1.00	2.90	0.9	0.1	5.67E-01	6.30E-03	0.00E+00	5.73E-01	2.9	0.000	1.00	2.90	0.9	0.1	5.67E-01	6.30E-03	0.00E+00	5.73E-01
Silver	3.1	0.000	0.18	0.56	0.9	0.1	1.09E-01	6.74E-03	0.00E+00	1.16E-01	2.0	0.000	0.18	0.36	0.9	0.1	7.04E-02	4.35E-03	0.00E+00	7.48E-02
Zinc	1720	0.498	Equation	198	0.9	0.1	3.88E+01	3.74E+00	7.57E-02	4.26E+01	1114	0.265	Equation	188	0.9	0.1	3.67E+01	2.42E+00	4.03E-02	3.92E+01

mg/kg - milligrams per kilogram

mg/L - milligramsper liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-to-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

4 Total EDD = Dose diet +Dose sediment + Dose water

Equations	Area Use Factor (AUF)	1.0
1 Dose _{invet} =IR _{invet} X C _{invet} X DF _{invet} X AUF	Body Weight (BW) (kg)	0.0565
Where C _{invert} = (EPC _{sediment} X BSAF) or the result of the BSAF regression equation	IR _{diet} (kg/kg BW-day, dw)	0.2173
2 Dose sed Ir sediment X EPC sediment X Df sed X AUF	IR _{water} (L/kg BW-day)	0.152
$3 \operatorname{Dose}_{water} = \operatorname{IR}_{water} X \operatorname{C}_{water} X \operatorname{AUF}$	IR _{sediment} (kg/kg BW-day, dw)	0.02173

Table 4.44

EDDS for the American dipper foraging at sampling location A75D on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

						EDD									EDD			
	RM	Æ*				(mg/kg bw-d	ay)			C'	FE**			((mg/kg bw-d	ay)		
	Exposure Poin	t Concentration		Die	et		Sediment	Water		Exposure Poir	nt Concentration		Diet			Sediment	Water	
			Invert tissue									Invert tissue						l '
	Sediment	Surface Water	concentration						Total	Sediment	Surface Water	concentration						Total
COPECs	(mg/kg, dw)	(mg/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert} ¹	Dose _{sed} ²	Dose _{water} 3	EDD^4	(mg/kg, dw)	(mg/L)	(dw)	$\mathbf{DF}_{\mathbf{Invert}}$	Df _{sediment}	Dose _{invert} 1	Dose _{sed} ²	Dose _{water} 3	EDD ⁴
Arsenic	27.0	0.000	0.61	0.9	0.1	1.20E-01	5.87E-02	0.00E+00	1.79E-01	19.4	0.000	0.61	0.9	0.1	1.20E-01	4.22E-02	0.00E+00	1.62E-01
Cadmium	6.4	0.0014	0.78	0.9	0.1	1.53E-01	1.39E-02	2.13E-04	1.67E-01	4.8	0.0010	0.78	0.9	0.1	1.53E-01	1.04E-02	1.52E-04	1.64E-01
Chromium	4.9	0.000	3.26	0.9	0.1	6.37E-01	1.06E-02	0.00E+00	6.48E-01	4.2	0.000	3.26	0.9	0.1	6.37E-01	9.13E-03	0.00E+00	6.46E-01
Copper	212	0.0197	15	0.9	0.1	2.94E+00	4.61E-01	2.99E-03	3.41E+00	147	0.0138	15	0.9	0.1	2.94E+00	3.19E-01	2.10E-03	3.27E+00
Lead	367	0.0231	2.3	0.9	0.1	4.49E-01	7.97E-01	3.51E-03	1.25E+00	300	0.0112	2.3	0.9	0.1	4.49E-01	6.52E-01	1.70E-03	1.10E+00
Mercury	0.04	0.000	0.25	0.9	0.1	4.79E-02	8.69E-05	0.00E+00	4.80E-02	0.04	0.000	0.25	0.9	0.1	4.79E-02	8.69E-05	0.00E+00	4.80E-02
Nickel	12.4	0.000	0.61	0.9	0.1	1.20E-01	2.69E-02	0.00E+00	1.47E-01	9.4	0.000	0.61	0.9	0.1	1.20E-01	2.04E-02	0.00E+00	1.40E-01
Selenium	1.4	0.000	1.22	0.9	0.1	2.39E-01	3.04E-03	0.00E+00	2.42E-01	1.20	0.000	1.22	0.9	0.1	2.39E-01	2.61E-03	0.00E+00	2.42E-01
Silver	1.4	0.000	0.61	0.9	0.1	1.20E-01	3.04E-03	0.00E+00	1.23E-01	1.1	0.000	0.61	0.9	0.1	1.20E-01	2.39E-03	0.00E+00	1.22E-01
Zinc	2778	0.503	187	0.9	0.1	3.66E+01	6.04E+00	7.65E-02	4.27E+01	1738	0.361	187	0.9	0.1	3.66E+01	3.78E+00	5.49E-02	4.04E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day- milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

 $CTE\hbox{--} Central Tendency Exposure$

DF - Dose Fraction

^{**} The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
$1 \operatorname{Dose}_{invert} = \operatorname{IR}_{invert} X \operatorname{C}_{invert} X \operatorname{DF}_{invert} X \operatorname{AUF}$	Body Weight (BW) (kg)	0.0565
$2 \operatorname{Dose}_{sed} = \operatorname{Ir}_{sediment} X \operatorname{EPC}_{sediment} X \operatorname{Df}_{sed} X \operatorname{AUF}$	IR_{diet} (kg/kg BW-day, dw)	0.2173
$3 \operatorname{Dose}_{water} = \operatorname{IR}_{water} X \operatorname{C}_{water} X \operatorname{AUF}$	IR _{water} (L/kg BW-day)	0.152
4 Total EDD = Dose diet +Dose sediment + Dose water	IR _{sediment} (kg/kg BW-day, dw)	0.02173

^{*} The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

Table 4.45 EDDs for the American dipper foraging at sampling location A75B on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment

Upper Animas Mining District

							EDD									_	DD			
	RM	1E*				(mg/l	kg bw-day)				C1	ΓE**				(mg/kg	g bw-day)			
	ExposurePoin	t Concentration			Diet			Sediment	Water		ExposurePoin	nt Concentration			Diet			Sediment	Water	
				Invert tissue						1				Invert tissue						1
	Sediment	Surface Water		concentration						Total	Sediment	Surface Water		concentration						Total
COPECs	(mg/kg, dw)	(mg/L)	BSAFs	(Ciavert, dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose _{sed} ²	Dose _{water} 3	EDD ⁴	(mg/kg, dw)	(mg/L)	BSAFs	(Ciavert, dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose _{sed} ²	Dose _{water} 3	EDD^4
Arsenic	37.2	0.000	Equation	7.80	0.9	0.1	1.53E+00	8.08E-02	0.00E+00	1.61E+00	19.9	0.000	Equation	4.87	0.9	0.1	9.52E-01	4.32E-02	0.00E+00	9.95E-01
Cadmium	10.5	0.0011	Equation	1.62	0.9	0.1	3.17E-01	2.28E-02	1.67E-04	3.40E-01	5.0	0.0009	Equation	1.11	0.9	0.1	2.17E-01	1.09E-02	1.37E-04	2.28E-01
Chromium	5.5	0.000	Equation	3.02	0.9	0.1	5.90E-01	1.20E-02	0.00E+00	6.02E-01	5.2	0.000	Equation	2.95	0.9	0.1	5.78E-01	1.13E-02	0.00E+00	5.89E-01
Copper	413	0.0215	0.824	340	0.9	0.1	6.66E+01	8.97E-01	3.27E-03	6.75E+01	188	0.0122	0.824	154.912	0.9	0.1	3.03E+01	4.09E-01	1.85E-03	3.07E+01
Lead	435	0.0303	Equation	16.1	0.9	0.1	3.16E+00	9.45E-01	4.61E-03	4.11E+00	296	0.0121	Equation	12.6	0.9	0.1	2.46E+00	6.43E-01	1.84E-03	3.10E+00
Mercury	0.07	0.000	1.186	0.08	0.9	0.1	1.62E-02	1.52E-04	0.00E+00	1.64E-02	0.07	0.000	1.186	0.08	0.9	0.1	1.62E-02	1.52E-04	0.00E+00	1.64E-02
Nickel	16.5	0.000	Equation	2.55	0.9	0.1	4.98E-01	3.59E-02	0.00E+00	5.34E-01	9.7	0.000	Equation	1.76	0.9	0.1	3.44E-01	2.11E-02	0.00E+00	3.66E-01
Selenium	3.3	0.000	1.00	3.30	0.9	0.1	6.45E-01	7.17E-03	0.00E+00	6.53E-01	1.9	0.000	1.00	1.90	0.9	0.1	3.72E-01	4.13E-03	0.00E+00	3.76E-01
Silver	2.2	0.000	0.18	0.40	0.9	0.1	7.74E-02	4.78E-03	0.00E+00	8.22E-02	1.4	0.000	0.18	0.25	0.9	0.1	4.93E-02	3.04E-03	0.00E+00	5.23E-02
Zine	5320	0.429	Equation	229	0.9	0.1	4.47E+01	1.16E+01	6.52E-02	5.64E+01	2190	0.302	Equation	205	0.9	0.1	4.00E+01	4.76E+00	4.59E-02	4.48E+01

mg/kg - milligrams per kilogram

mg/L - milligramsper liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-to-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equations

1 Dose_{invert} =IR_{invert} X C_{invert} X DF_{invert} X AUF

Where $C_{invert} = (EPC_{sediment} X BSAF)$ or the result of the BSAF regression equation

2 Dose sed= Ir sediment X EPC sediment X Df sed X AUF

3 Dosewater = IRwater X Cwater X AUF

4 Total EDD = Dose diet +Dose sediment + Dose water

Area Use Factor (AUF)	1.0
Body Weight (BW) (kg)	0.0565
IR_diec (kg/kg BW-day, dw)	0.2173
IR_water (L/kg BW-day, dw)	0.152
IR_sediment (kg/kg BW-day, dw)	0.02173

Table 4.46 EDDs for the American dipper foraging at the Bakers Bridge sampling location on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas Mining District

									wo maning is									
						EDD									EÐD			
	RN	Æ*				(mg/kg bw-c	lay)			C	E**			(mg/kg bw-d	ay)		
	Exposure Poin	t Concentration		Die	ŧ		Sediment	Water		Exposure Poir	t Concentration		Diet	1		Sediment	Water	
			Invert tissue									Invert tissue						i I
	Sediment	Surface Water	concentration						Total	Sediment	Surface Water	concentration						Total
COPECs	(mg/kg, dw)	(mg/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert} ¹	Dose _{sed} ²	Dose _{water} 3	EDD^4	(mg/kg, dw)	(mg/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose _{sed} ²	Dose _{water} 3	EDD ⁴
Arsenic	29.7	0.000	0.23	0.9	0.1	4.52E-02	6.45E-02	0.00E+00	1.10E-01	21.9	0.000	0.23	0.9	0.1	4.52E-02	4.76E-02	0.00E+00	9.28E-02
Cadmium	18.6	0.0008	1.59	0.9	0.1	3.11E-01	4.04E-02	1.22E-04	3.52E-01	10.1	0.0007	1.59	0.9	0.1	3.11E-01	2.19E-02	1.06E-04	3.33E-01
Chromium	7.0	0.000	2.05	0.9	0.1	4.01E-01	1.52E-02	0.00E+00	4.16E-01	5.4	0.000	2.05	0.9	0.1	4.01E-01	1.17E-02	0.00E+00	4.12E-01
Copper	332	0.0138	17.6	0.9	0.1	3.44E+00	7.21E-01	2.10E-03	4.16E+00	191	0.0095	17.6	0.9	0.1	3.44E+00	4.15E-01	1.44E-03	3.85E+00
Lead	376	0.0177	2.53	0.9	0.1	4.96E-01	8.17E-01	2.69E-03	1.32E+00	300	0.0078	2.53	0.9	0.1	4.96E-01	6.52E-01	1.19E-03	1.15E+00
Mercury	0.06	0.000	0.09	0.9	0.1	1.82E-02	1.30E-04	0.00E+00	1.83E-02	0.04	0.000	0.09	0.9	0.1	1.82E-02	8.69E-05	0.00E+00	1.83E-02
Nickel	31.0	0.000	1.59	0.9	0.1	3.11E-01	6.74E-02	0.00E+00	3.78E-01	18.3	0.000	1.59	0.9	0.1	3.11E-01	3.98E-02	0.00E+00	3.50E-01
Selenium	3.1	0.000	0.47	0.9	0.1	9.09E-02	6.74E-03	0.00E+00	9.77E-02	2.1	0.000	0.47	0.9	0.1	9.09E-02	4.56E-03	0.00E+00	9.55E-02
Silver	1.7	0.000	0.23	0.9	0.1	4.52E-02	3.69E-03	0.00E+00	4.89E-02	1.3	0.000	0.23	0.9	0.1	4.52E-02	2.82E-03	0.00E+00	4.80E-02
Zinc	8544	0.272	353	0.9	0.1	6.90E+01	1.86E+01	4.13E-02	8.76E+01	4620	0.216	353	0.9	0.1	6.90E+01	1.00E+01	3.28E-02	7.91E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day- milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
1 Dose _{invert} =IR _{invert} X C _{invert} X DF _{invert} X AUF	Body Weight (BW) (kg)	0.0565
$2 \operatorname{Dose}_{sed} = \operatorname{Ir}_{sediment} X \operatorname{EPC}_{sediment} X \operatorname{Df}_{sed} X \operatorname{AUF}$	IR _{diet} (kg/kg BW-day, dw)	0.2173
$3 \text{ Dose}_{\text{water}} = \text{IR}_{\text{water}} \times C_{\text{water}} \times AUF$	IR _{water} (L/kg BW-day)	0.152
4 Total EDD = Dose diet +Dose sediment + Dose water	IR _{sediment} (kg/kg BW-day, dw)	0.02173

EDDs for the Mallard foraging on the Animas River above Cement Creek (100% benthic invert diet) **Baseline Ecological Risk Assessment**

Upper	Animas	Mining	District

						EDD									EDD			
	RN	Æ*			(n	1g/kg bw-day)			C	ΓE**				(mg/kg bw-d	ay)		
	Exposure Poin	t Concentration		Die	t		Sediment	Water		Exposure Poir	nt Concentration		Die	t		Sediment	Water	
			Invert tissue						1			Invert tissue						1
	Sediment	Surface Water	Concentration					1	Total	Sediment	Surface Water	Concentration						Total
COPECs	(mg/kg, dw)	(ug/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose sed	Dose _{water} 3	EDD ⁴	(mg/kg, dw)	(ug/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose sed	Dose _{water} 3	EDD ⁴
Metals																		
Arsenic	34.2	0.000	2.10	0.98	0.02	1.07E-01	7.11E-04	0.00E+00	1.08E-01	27.4	0.000	1.27	0.98	0.02	6.44E-02	5.70E-04	0.00E+00	6.50E-02
Cadmium	12.9	0.0016	3.86	0.98	0.02	1.96E-01	2.68E-04	8.96E-05	1.97E-01	11.1	0.0014	2.84	0.98	0.02	1.44E-01	2.31E-04	7.84E-05	1.45E-01
Chromium	5.0	0.000	2.78	0.98	0.02	1.41E-01	1.04E-04	0.00E+00	1.41E-01	4.7	0.000	2.56	0.98	0.02	1.30E-01	9.78E-05	0.00E+00	1.30E-01
Copper	399	0.0162	64.9	0.98	0.02	3.30E+00	8.30E-03	9.07E-04	3.31E+00	339	0.0155	62.4	0.98	0.02	3.18E+00	7.05E-03	8.68E-04	3.18E+00
Lead	1733	0.0219	25.2	0.98	0.02	1.28E+00	3.60E-02	1.23E-03	1.32E+00	1508	0.0116	21.3	0.98	0.02	1.09E+00	3.14E-02	6.50E-04	1.12E+00
Mercury	0.10	0.000	0.09	0.98	0.02	4.48E-03	2.08E-06	0.00E+00	4.48E-03	0.07	0.000	0.09	0.98	0.02	4.32E-03	1.46E-06	0.00E+00	4.32E-03
Nickel	9.2	0.000	0.52	0.98	0.02	2.62E-02	1.91E-04	0.00E+00	2.64E-02	8.2	0.000	0.52	0.98	0.02	2.62E-02	1.71E-04	0.00E+00	2.64E-02
Selenium	1.0	0.000	0.88	0.98	0.02	4.49E-02	2.08E-05	0.00E+00	4.49E-02	1.5	0.000	0.88	0.98	0.02	4.49E-02	3.12E-05	0.00E+00	4.49E-02
Silver	6.4	0.000	0.22	0.98	0.02	1.12E-02	1.33E-04	0.00E+00	1.13E-02	5.5	0.000	0.21	0.98	0.02	1.08E-02	1.14E-04	0.00E+00	1.09E-02
Zinc	4054	0.488	799	0.98	0.02	4.06E+01	8.43E-02	2.73E-02	4.08E+01	3172	0.432	579	0.98	0.02	2.95E+01	6.60E-02	2.42E-02	2.96E+01

mg/kg - milligrams per kilogram mg/L - milligrams per liter

mg/kg bw-day- milligramsper kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

Equations	
1 Dose _{invert}	=I

IR_{diet} X C_{invert} X DF_{invert} X AUF 2 Dose sed= Ir sediment X EPC sediment X Df sed X AUF

 $3 \operatorname{Dose}_{water} = \operatorname{IR}_{water} X \operatorname{C}_{water} X \operatorname{AUF}$

4 Total EDD = Dose_{invert} + Dose_{plant}+ Dose_{sed}+Dose_{water}

Area Use Factor (AUF) 1.0 Body Weight (BW) (kg) 1.162 IR_{diet} (kg/kg BW-day, dw) 0.0519 IR_{water}(L/kg BW-day) 0.056 IR_{set} (kg/kg DW-day,dw) 0.00104

EDDs for mallards foraging at sampling location A72 on the Animas River below Mineral Creek (100% benthic invert diet) Baseline Ecological Risk Assessment Upper Animas Mining District

						EDD				C	TE**				EDD			
	RN	Æ*				mg/kg bw-da	y)			Expost	are Point			1	(mg/kgbw-da	y)		
	Exposure Poin	t Concentration		Die	et		Sediment	Water		Conce	entration		Diet			Sediment	Water	
			Invert Tissue									Invert Tissue						1 1
	Sediment		Concentration			_		_	Total	Sediment	Surface Water							Total
COPECs	(mg/kg, dw)	(ug/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose sed	Dose _{water} 3	EDD^4	(mg/kg, dw)	(ug/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose invert	Dose sed ²	Dose _{water} 3	EDD^4
Arsenic	39.6	0.0050	0.27	0.98	0.02	1.35E-02	8.24E-04	2.80E-04	1.46E-02	33.4	0.0050	0.27	0.98	0.02	1.35E-02	6.95E-04	2.80E-04	1.45E-02
Cadmium	2.9	0.0019	0.68	0.98	0.02	3.45E-02	6.03E-05	1.06E-04	3.47E-02	2.1	0.0016	0.68	0.98	0.02	3.45E-02	4.37E-05	8.96E-05	3.47E-02
Chromium	6.1	0.000	2.16	0.98	0.02	1.10E-01	1.27E-04	0.00E+00	1.10E-01	4.6	0.000	2.16	0.98	0.02	1.10E-01	9.57E-05	0.00E+00	1.10E-01
Copper	173	0.0307	38	0.98	0.02	1.95E+00	3.60E-03	1.72E-03	1.95E+00	137	0.0274	38	0.98	0.02	1.95E+00	2.85E-03	1.53E-03	1.95E+00
Lead	581	0.0305	7.6	0.98	0.02	3.84E-01	1.21E-02	1.71E-03	3.98E-01	478	0.0128	7.6	0.98	0.02	3.84E-01	9.94E-03	7.17E-04	3.95E-01
Mercury	0.07	0.000	0.11	0.98	0.02	5.44E-03	1.46E-06	0.00E+00	5.44E-03	0.06	0.000	0.11	0.98	0.02	5.44E-03	1.25E-06	0.00E+00	5.44E-03
Nickel	5.9	0.0037	0.27	0.98	0.02	1.35E-02	1.23E-04	2.07E-04	1.39E-02	5.1	0.0050	0.27	0.98	0.02	1.35E-02	1.06E-04	2.80E-04	1.39E-02
Selenium	1.9	0.000	0.53	0.98	0.02	2.72E-02	3.95E-05	0.00E+00	2.72E-02	1.5	0.000	0.53	0.98	0.02	2.72E-02	3.12E-05	0.00E+00	2.72E-02
Silver	2.4	0.000	0.27	0.98	0.02	1.35E-02	4.99E-05	0.00E+00	1.36E-02	1.9	0.000	0.27	0.98	0.02	1.35E-02	3.95E-05	0.00E+00	1.36E-02
Zinc	819	0.711	166	0.98	0.02	8.45E+00	1.70E-02	3.98E-02	8.51E+00	651	0.600	166	0.98	0.02	8.45E+00	1.35E-02	3.36E-02	8.50E+00

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligramsper kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

Eq	uat	ions
----	-----	------

$$\begin{split} &1 \; Dose_{invert} = & IR_{diet} \; X \; C_{invert} \; X \; DF_{invert} \; X \; AUF \\ &2 \; Dose_{sed} = \; Ir_{sediment} \; X \; EPC_{sediment} \; X \; Df_{sed} \; X \; AUF \end{split}$$

 $3 \ Dose_{water} = IR_{water} \ X \ C_{water} \ X \ AUF$

 $4 Total EDD = Dose_{invert} + Dose_{plant} + Dose_{sed} + Dose_{water}$

Area Use Factor (AUF) 1.0 Body Weight (BW) (kg) 1.162

IR_{diet} (kg/kg BW-day, dw) 0.0519

IR_{water} (L/kg BW-day) 0.056

IR_{sed} (kg/kg DW-day,dw) 0.00104

EDDs for mallards foraging at sampling location A73 on the Animas River below mainstem Mineral Creek (100% benthic invert diet) Baseline Ecological Risk Assessment Upper Animas Mining District

	RM	Æ*			i	EDD (mg/kg bw-da	ıy)			Ci	TE**				EDD (mg/kg bw-da	y)		
	Exposure Poin	t Concentration		Die			Sediment	Water		Exposure Poin	t Concentration		Die		`	Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	Invert Tissue Concentration (dw)	DF _{Invert}	Df _{sediment}	Dose invert	Dose sed 2	Dose _{water} ³	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (ug/L)	Invert Tissue Concentration (dw)	DF _{Invert}	Df _{sediment}	Dose invert	Dose sed 2	Dose _{water} 3	Total EDD⁴
Arsenic	33.8	0.0000	0.69	0.98	0.02	3.52E-02	7.03E-04	0.00E+00	3.60E-02	27.9	0.0000	0.69	0.98	0.02	3.52E-02	5.80E-04	0.00E+00	3.58E-02
Cadmium	5.4	0.0021	0.94	0.98	0.02	4.76E-02	1.12E-04	1.18E-04	4.78E-02	4.0	0.0015	0.94	0.98	0.02	4.76E-02	8.32E-05	8.40E-05	4.78E-02
Chromium	5.4	0.000	2.03	0.98	0.02	1.03E-01	1.12E-04	0.00E+00	1.03E-01	4.0	0.000	2.03	0.98	0.02	1.03E-01	8.32E-05	0.00E+00	1.03E-01
Copper	284	0.0228	33.2	0.98	0.02	1.69E+00	5.91E-03	1.28E-03	1.70E+00	199	0.0178	33.2	0.98	0.02	1.69E+00	4.14E-03	9.97E-04	1.70E+00
Lead	729	0.0234	6.7	0.98	0.02	3.42E-01	1.52E-02	1.31E-03	3.59E-01	513	0.0111	6.7	0.98	0.02	3.42E-01	1.07E-02	6.22E-04	3.53E-01
Mercury	0.05	0.000	0.11	0.98	0.02	5.59E-03	1.04E-06	0.00E+00	5.60E-03	0.04	0.000	0.11	0.98	0.02	5.59E-03	8.32E-07	0.00E+00	5.60E-03
Nickel	7.2	0.0038	0.58	0.98	0.02	2.93E-02	1.50E-04	2.13E-04	2.97E-02	6.4	0.0038	0.58	0.98	0.02	2.93E-02	1.33E-04	2.13E-04	2.96E-02
Selenium	1.4	0.000	0.55	0.98	0.02	2.79E-02	2.91E-05	0.00E+00	2.80E-02	1.1	0.000	0.55	0.98	0.02	2.79E-02	2.29E-05	0.00E+00	2.79E-02
Silver	2.8	0.000	0.28	0.98	0.02	1.40E-02	5.82E-05	0.00E+00	1.40E-02	1.9	0.000	0.28	0.98	0.02	1.40E-02	3.95E-05	0.00E+00	1.40E-02
Zinc	1393	0.704	197	0.98	0.02	1.00E+01	2.90E-02	3.94E-02	1.01E+01	1049	0.521	197	0.98	0.02	1.00E+01	2.18E-02	2.92E-02	1.01E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

* The RME value represents the 95% UCL or the maximum detected concentrationif a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equations

$$\begin{split} &1 \: Dose_{invert} = & IR_{diet} \: X \: C_{invert} \: X \: DF_{invert} \: X \: AUF \\ &2 \: Dose_{sed} = & Ir_{sediment} \: X \: EPC_{sediment} \: X \: Df_{sed} \: X \: AUF \\ &3 \: Dose_{water} = & IR_{water} \: X \: C_{water} \: X \: AUF \end{split}$$

 $4 \text{ Total EDD} = \text{Dose}_{\text{invert}} + \text{Dose}_{\text{plant}} + \text{Dose}_{\text{sed}} + \text{Dose}_{\text{water}}$

 Area Use Factor (AUF)
 1.0

 Body Weight (BW) (kg)
 1.162

 IR_{diet} (kg/kg BW-day, dw)
 0.0519

 IR_{water} (L/kg BW-day)
 0.056

 IR_{sed} (kg/kg DW-day,dw) 0.00104

EDDs for mallards foraging at sampling location A73B on the Animas River below mainstem Mineral Creek (100% benthic invertebrate diet) Baseline Ecological Risk Assessment Upper Animas Mining District

	RA	4E*					DD bw-day)					E** ure Point					EDD g bw-day)			
		t Concentration			Diet	(Sediment	Water		•	entration			Diet	(g. 1.	5 54.37)	Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	BSAFs	Invert Tissue Concentration (C _{invert, dw})	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose see 2	Dose _{water} 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (ug/L)	BSAFs	Invert Tissue Concentration (C _{invert, dw})	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose sed 2	Dose _{water} 3	Total EDD ⁴
Arsenic	39.4	0.000	Equation	8.15	0.98	0.02	4.14E-01	8.20E-04	0.00E+00	4.15E-01	29.9	0.000	Equation	6.62	0.98	0.02	3.37E-01	6.22E-04	0.00E+00	3.37E-01
Cadmium	4.2	0.0015	Equation	1.01	0.98	0.02	5.15E-02	8.74E-05	8.40E-05	5.17E-02	3.5	0.0010	Equation	0.92	0.98	0.02	4.69E-02	7.28E-05	5.60E-05	4.71E-02
Chromium	5.0	0.0058	Equation	2.91	0.98	0.02	1.48E-01	1.04E-04	3.25E-04	1.49E-01	4.5	0.0058	Equation	2.80	0.98	0.02	1.43E-01	9.36E-05	3.25E-04	1.43E-01
Copper	292	0.0131	0.824	241	0.98	0.02	1.22E+01	6.07E-03	7.34E-04	1.22E+01	177	0.0094	0.824	146	0.98	0.02	7.42E+00	3.68E-03	5.26E-04	7.42E+00
Lead	593	0.0106	Equation	19.8	0.98	0.02	1.01E+00	1.23E-02	5.94E-04	1.02E+00	534	0.0055	Equation	18.5	0.98	0.02	9.39E-01	1.11E-02	3.08E-04	9.50E-01
Mercury	0.09	0.000	Equation	1.19	0.98	0.02	6.03E-02	1.87E-06	0.00E+00	6.03E-02	0.07	0.000	Equation	1.19	0.98	0.02	6.03E-02	1.46E-06	0.00E+00	6.03E-02
Nickel	12.1	0.0029	Equation	2.05	0.98	0.02	1.04E-01	2.52E-04	1.62E-04	1.05E-01	10.0	0.0029	Equation	1.80	0.98	0.02	9.15E-02	2.08E-04	1.62E-04	9.19E-02
Selenium	2.9	0.000	1.00	2.90	0.98	0.02	1.47E-01	6.03E-05	0.00E+00	1.48E-01	2.9	0.000	1.00	2.90	0.98	0.02	1.47E-01	6.03E-05	0.00E+00	1.48E-01
Silver	3.1	0.000	0.18	0.56	0.98	0.02	2.84E-02	6.45E-05	0.00E+00	2.84E-02	2.0	0.000	0.18	0.36	0.98	0.02	1.83E-02	4.16E-05	0.00E+00	1.84E-02
Zinc	1720	0.498	Equation	198	0.98	0.02	1.01E+01	3.58E-02	2.79E-02	1.02E+01	1114	0.265	Equation	188	0.98	0.02	9.56E+00	2.32E-02	1.48E-02	9.59E+00

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the $\stackrel{\smile}{maximum}$ detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equation		

1 Dose_{invert} =IR_{diet} X C_{invert} X DF_{invert} X AUF

Where Cinvert = (EPCsediment X Invert BSAF) or the result of the BSAF regression equation

 $2 \ Dose_{sed} = Ir_{sediment} \ X \ EPC_{sediment} \ X \ Df_{sed} \ X \ AUF$

3 Dose_{water} = IR_{water} X C_{water} X AUF

4 Total EDD = Dose_{invert} + Dose_{plant}+ Dose_{sed}+Dose_{water}

Area Use Factor (AUF) 1.0

 Body Weight (BW) (kg)
 1.162

 IR_{diet} (kg/kg BW-day, dw)
 0.0519

IR_{water} (L/kg BW-day) 0.056

IR_{sediment} (kg/kg DW-day,dw) 0.00104

EDDs for mallards foraging at sampling location A75D on the Animas River below mainstem Mineral Creek (100% benthic invertebrate diet) Baseline Ecological Risk Assessment Upper Animas Mining District

	RN	ME*				EDD (mg/kgbw-da	ıy)				TE** ire Point			(EDD mg/kgbw-day	r)		
	Exposure Poin	t Concentration		Die	t		Sediment	Water		Conce	ntration		Die	et		Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	Invert Tissue Concentration (dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose sed 2	Dose _{water} 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (ug/L)	Invert Tissue Concentration (dw)	DF _{Invert}	Df _{sediment}	Dose 1	Dose sed 2	Dose _{water} ³	Total EDD ⁴
Arsenic	27.0	0.000	0.61	0.98	0.02	3.12E-02	5.62E-04	0.00E+00	3.17E-02	19.4	0.000	0.61	0.98	0.02	3.12E-02	4.04E-04	0.00E+00	3.16E-02
Cadmium	6.4	0.0014	0.78	0.98	0.02	3.98E-02	1.33E-04	7.84E-05	4.00E-02	4.8	0.0010	0.78	0.98	0.02	3.98E-02	9.98E-05	5.60E-05	4.00E-02
Chromium	4.9	0.000	3.26	0.98	0.02	1.66E-01	1.02E-04	0.00E+00	1.66E-01	4.2	0.000	3.26	0.98	0.02	1.66E-01	8.74E-05	0.00E+00	1.66E-01
Copper	212	0.0197	15.1	0.98	0.02	7.66E-01	4.41E-03	1.10E-03	7.71E-01	147	0.0138	15.1	0.98	0.02	7.66E-01	3.06E-03	7.73E-04	7.69E-01
Lead	367	0.0231	2.3	0.98	0.02	1.17E-01	7.63E-03	1.29E-03	1.26E-01	300	0.0112	2.3	0.98	0.02	1.17E-01	6.24E-03	6.27E-04	1.24E-01
Mercury	0.04	0.000	0.25	0.98	0.02	1.25E-02	8.32E-07	0.00E+00	1.25E-02	0.04	0.000	0.25	0.98	0.02	1.25E-02	8.32E-07	0.00E+00	1.25E-02
Nickel	12.4	0.000	0.61	0.98	0.02	3.12E-02	2.58E-04	0.00E+00	3.14E-02	9.4	0.000	0.61	0.98	0.02	3.12E-02	1.96E-04	0.00E+00	3.14E-02
Selenium	1.4	0.000	1.22	0.98	0.02	6.23E-02	2.91E-05	0.00E+00	6.23E-02	1.2	0.000	1.22	0.98	0.02	6.23E-02	2.50E-05	0.00E+00	6.23E-02
Silver	1.4	0.000	0.61	0.98	0.02	3.12E-02	2.91E-05	0.00E+00	3.12E-02	1.1	0.000	0.61	0.98	0.02	3.12E-02	2.29E-05	0.00E+00	3.12E-02
Zine	2778	0.503	187	0.98	0.02	9.52E+00	5.78E-02	2.82E-02	9.60E+00	1738	0.361	187	0.98	0.02	9.52E+00	3.62E-02	2.02E-02	9.57E+00

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligramsper kilogram of body weightper day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

^{**} The CTE values represents the mean concentration.

	Eq	uations	
--	----	---------	--

 $1 \; \mathsf{Dose}_{\mathsf{invert}} = \!\! \mathsf{IR}_{\mathsf{diet}} \! \; \mathsf{X} \; \mathsf{C}_{\mathsf{invert}} \; \mathsf{X} \; \mathsf{DF}_{\mathsf{invert}} \; \mathsf{X} \; \mathsf{AUF}$

 $2\ Dose_{sed} = Ir_{sediment}\ X\ EPC_{sediment}\ X\ Df_{sed}\ X\ AUF$

 $3 \text{ Dose}_{\text{water}} = IR_{\text{water}} \times C_{\text{water}} \times AUF$

4 Total EDD = Dose_{invert} + Dose_{plant} + Dose_{sed} + Dose_{water}

| Area Use Factor (AUF) | 1.0 | Body Weight (BW) (kg) | 1.162 | IR_{diet} (kg/kg BW-day, dw) | 0.0519 | IR_{water} (L/kg BW-day) | 0.056

IR_{sediment} (kg/kg DW-day,dw) 0.00104

^{*} The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

Estimated daily doses for mallards foraging at sampling location A75B on the Animas R. below mainstem Mineral Creek (100% benthic invert diet) Baseline Ecological Risk Assessment Upper Animas Mining District

	PA	ME*					DD (bw-day)					E** are Point					DD bw-day)			
		t Concentration			Diet	(mg/kg	, DW-Gay)	Sediment	Water			ntration			Diet	(mg/kg	bn-day)	Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	BSAFs	n 7.80 0.98 0.02 3.97E-01 7.74E				Dose sed 2	Dose _{water} 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (ug/L)	BSAFs	Invert Tissue Concentration (C _{invert, dw})	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose sed 2	Dose _{water} 3	Total EDD ⁴
Arsenic	37.2	0.000	Equation	7.80	0.98	0.02	3.97E-01	7.74E-04	0.00E+00	3.98E-01	19.9	0.000	Equation	4.87	0.98	0.02	2.48E-01	4.14E-04	0.00E+00	2.48E-01
Cadmium	10.5	0.0011	Equation	1.62	0.98	0.02	8.25E-02	2.18E-04	6.16E-05	8.27E-02	5.0	0.0009	Equation	1.11	0.98	0.02	5.64E-02	1.04E-04	5.04E-05	5.65E-02
Chromium	5.5	0.000	Equation	3.02	0.98	0.02	1.53E-01	1.14E-04	0.00E+00	1.54E-01	5.2	0.000	Equation	2.95	0.98	0.02	1.50E-01	1.08E-04	0.00E+00	1.50E-01
Copper	413	0.0215	0.824	340	0.98	0.02	1.73E+01	8.59E-03	1.20E-03	1.73E+01	188	0.0122	0.824	155	0.98	0.02	7.88E+00	3.91E-03	6.83E-04	7.88E+00
Lead	435	0.0303	Equation	16.1	0.98	0.02	8.21E-01	9.05E-03	1.70E-03	8.32E-01	296	0.0121	Equation	12.6	0.98	0.02	6.38E-01	6.16E-03	6.78E-04	6.45E-01
Mercury	0.07	0.000	Equation	1.19	0.98	0.02	6.03E-02	1.46E-06	0.00E+00	6.03E-02	0.07	0.000	Equation	1.19	0.98	0.02	6.03E-02	1.46E-06	0.00E+00	6.03E-02
Nickel	16.5	0.000	Equation	2.55	0.98	0.02	1.30E-01	3.43E-04	0.00E+00	1.30E-01	9.7	0.000	Equation	1.76	0.98	0.02	8.96E-02	2.02E-04	0.00E+00	8.98E-02
Selenium	3.3	0.000	1.00	3.30	0.98	0.02	1.68E-01	6.86E-05	0.00E+00	1.68E-01	1.9	0.000	1.00	1.90	0.98	0.02	9.66E-02	3.95E-05	0.00E+00	9.67E-02
Silver	2.2	0.000	0.18	0.40	0.98	0.02	2.01E-02	4.58E-05	0.00E+00	2.02E-02	1.4	0.000	0.18	0.25	0.98	0.02	1.28E-02	2.91E-05	0.00E+00	1.28E-02
Zine	5320	0.429	Equation	229	0.98	0.02	1.16E+01	1.11E-01	2.40E-02	1.18E+01	2190	0.302	Equation	205	0.98	0.02	1.04E+01	4.56E-02	1.69E-02	1.05E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the $\stackrel{\sim}{\text{maximum}}$ detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

 Equations
 Area Use Factor (AUF)
 1.0

 1 Doss_airent = IR_dert X Civiert X DF_invert X AUF
 Body Weight (BW) (kg)
 1.162

 Where Civiert = (EPC_scientert X Invert BSAF) or the result of the BSAF regression equation
 IR_dert (kg/kg BW-day, dw)
 0.0519

 2 Doss_sugin = Ins_airent X EPC_scientert X EPC_sci

4 Total EDD = Dose_{invert} + Dose_{plant}+ Dose_{sed}+Dose_{water}

EDDs for mallards foraging at the Baker Bridge sampling location on the Animas River below mainstem Mineral Creek (100% benthic invert diet) **Baseline Ecological Risk Assessment Upper Animas Mining District**

	D.	4E*				EDD (mg/kgbw-da	ov)				ΓE**			(1	EDD mg/kg bw-day	a)		
		t Concentration		Die		(mg/kgb#-uz	Sediment	Water			t Concentration		Di		ng/kgbw-ua/	Sediment	Water	
	Sediment	Surface Water	Invert Tissue Concentration						Total	Sediment	Surface Water	Invert Tissue Concentration						Total
COPECs	(mg/kg, dw)	(ug/L)	(dw)	DF _{Invert}	Df _{sediment}	Dose _{invert}	Dose sed 2	Dose _{water} 3	EDD ⁴	(mg/kg, dw)	(ug/L)	(C _{invert, dw})	DF _{Invert}	Df _{sediment}	Dose invert	Dose sed ²	Dose _{water} 3	EDD ⁴
Arsenic	29.7	0.000	0.23	0.98	0.02	1.17E-02	6.18E-04	0.00E+00	1.24E-02	21.9	0.000	0.23	0.98	0.02	1.17E-02	4.56E-04	0.00E+00	1.22E-02
Cadmium	18.6	0.0008	1.59	0.98	0.02	8.10E-02	3.87E-04	4.48E-05	8.14E-02	10.1	0.0007	1.59	0.98	0.02	8.10E-02	2.10E-04	3.92E-05	8.12E-02
Chromium	7.0	0.000	2.05	0.98	0.02	1.04E-01	1.46E-04	0.00E+00	1.04E-01	5.4	0.000	2.05	0.98	0.02	1.04E-01	1.12E-04	0.00E+00	1.04E-01
Copper	332	0.0138	17.6	0.98	0.02	8.94E-01	6.91E-03	7.73E-04	9.02E-01	191	0.0095	17.6	0.98	0.02	8.94E-01	3.97E-03	5.32E-04	8.99E-01
Lead	376	0.0177	2.5	0.98	0.02	1.29E-01	7.82E-03	9.91E-04	1.38E-01	300	0.0078	2.5	0.98	0.02	1.29E-01	6.24E-03	4.37E-04	1.36E-01
Mercury	0.06	0.000	0.09	0.98	0.02	4.73E-03	1.25E-06	0.00E+00	4.73E-03	0.04	0.000	0.09	0.98	0.02	4.73E-03	8.32E-07	0.00E+00	4.73E-03
Nickel	31.0	0.000	1.59	0.98	0.02	8.08E-02	6.45E-04	0.00E+00	8.14E-02	18.3	0.000	1.59	0.98	0.02	8.08E-02	3.81E-04	0.00E+00	8.11E-02
Selenium	3.1	0.000	0.47	0.98	0.02	2.37E-02	6.45E-05	0.00E+00	2.37E-02	2.1	0.000	0.47	0.98	0.02	2.37E-02	4.37E-05	0.00E+00	2.37E-02
Silver	1.7	0.000	0.23	0.98	0.02	1.17E-02	3.54E-05	0.00E+00	1.18E-02	1.3	0.000	0.23	0.98	0.02	1.17E-02	2.70E-05	0.00E+00	1.18E-02
Zine	8544	0.272	353	0.98	0.02	1.80E+01	1.78E-01	1.52E-02	1.81E+01	4620	0.216	353	0.98	0.02	1.80E+01	9.61E-02	1.21E-02	1.81E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

Eq	uations	۰

1 Dose_{isvert} =IR_{diet} X C_{invert} X DF_{invert} X AUF

 $2 \ Dose_{sed} = Ir_{sediment} X \ EPC_{sediment} X \ Df_{sed} \ X \ AUF$

 $3 \text{ Dose}_{\text{water}} = \mathbb{R}_{\text{water}} \times \mathbb{C}_{\text{water}} \times \text{AUF}$

 $4 Total EDD = Dose_{invert} + Dose_{plant} + Dose_{sed} + Dose_{water}$

Area Use Factor (AUF) 1.0 Body Weight (BW) (kg) 1.162

IR_{diet} (kg/kg BW-day, dw) 0.0519

IR_{water} (L/kg BW-day) 0.056

IR_{sediment} (kg/kg DW-day,dw) 0.00104

EDDs for the mallard foraging on the Animas River above Cement Creek (50%-50% diet) Baseline Ecological Risk Assessment

Upper Animas Mining District

	RN	Æ*					EDD	(mg/kg bw-	-day)				
	Exposure Poin	t Concentration				Diet					Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	Invert Tissue Concentration (dw)	DF _{Invert}	Plant BSAFs	Plant Concentration (C _{plant, dw})	Df _{plant}	Df _{sediment}	Dose _{invert} 1	Dose plant 2	Dose sed 3	Dose _{water} ⁴	Total EDD ⁵
Metals	•						-	•					
Arsenic	34.2	0.000	2.10	0.49	Equation	1.00	0.49	0.02	5.34E-02	2.54E-02	7.11E-04	0.00E+00	7.96E-02
Cadmium	12.9	0.0016	3.86	0.49	Equation	2.51	0.49	0.02	9.82E-02	6.38E-02	2.68E-04	8.96E-05	1.62E-01
Chromium	5.0	0.000	2.78	0.49	0.04	0.21	0.49	0.02	7.06E-02	5.21E-03	1.04E-04	0.00E+00	7.59E-02
Copper	399	0.0162	64.9	0.49	Equation	20.7	0.49	0.02	1.65E+00	5.26E-01	8.30E-03	9.07E-04	2.19E+00
Lead	1733	0.0219	25.2	0.49	Equation	17.4	0.49	0.02	6.41E-01	4.42E-01	3.60E-02	1.23E-03	1.12E+00
Mercury	0.10	0.000	0.09	0.49	Equation	0.11	0.49	0.02	2.24E-03	2.68E-03	2.08E-06	0.00E+00	4.92E-03
Nickel	9.2	0.000	0.52	0.49	Equation	0.57	0.49	0.02	1.31E-02	1.45E-02	1.91E-04	0.00E+00	2.78E-02
Selenium	1.0	0.000	0.88	0.49	Equation	0.51	0.49	0.02	2.24E-02	1.29E-02	2.08E-05	0.00E+00	3.53E-02
Silver	6.4	0.000	0.22	0.49	0.014	0.090	0.49	0.02	5.59E-03	2.28E-03	1.33E-04	0.00E+00	8.01E-03
Zinc	4054	0.488	799	0.49	Equation	486	0.49	0.02	2.03E+01	1.24E+01	8.43E-02	2.73E-02	3.28E+01

	CT	E**					EDE	(mg/kg bw-	-day)				
	Exposure Poin	t Concentration				Diet			-		Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	Invert Tissue Concentration (dw)	DF _{Invert}	Plant BSAFs	Plant Concentration (C _{plant, dw})	Df _{plant}	Df _{sediment}	Dose _{invert} 1	Dose plant 2	Dose sed 3	Dose _{water} 4	Total EDD ⁵
Arsenic	27.4	0.000	1.27	0.49	Equation	0.88	0.49	0.02	3.22E-02	2.24E-02	5.70E-04	0.00E+00	5.52E-02
Cadmium	11.1	0.0014	2.84	0.49	Equation	2.31	0.49	0.02	7.22E-02	5.88E-02	2.31E-04	7.84E-05	1.31E-01
Chromium	4.7	0.000	2.56	0.49	0.04	0.19	0.49	0.02	6.51E-02	4.90E-03	9.78E-05	0.00E+00	7.01E-02
Copper	339	0.0155	62.4	0.49	Equation	19.4	0.49	0.02	1.59E+00	4.93E-01	7.05E-03	8.68E-04	2.09E+00
Lead	1508	0.0116	21.3	0.49	Equation	16.1	0.49	0.02	5.43E-01	4.09E-01	3.14E-02	6.50E-04	9.84E-01
Mercury	0.07	0.000	0.09	0.49	Equation	0.09	0.49	0.02	2.16E-03	2.21E-03	1.46E-06	0.00E+00	4.37E-03
Nickel	8.2	0.000	0.52	0.49	Equation	0.52	0.49	0.02	1.31E-02	1.33E-02	1.71E-04	0.00E+00	2.66E-02
Selenium	1.5	0.000	0.88	0.49	Equation	0.79	0.49	0.02	2.24E-02	2.02E-02	3.12E-05	0.00E+00	4.27E-02
Silver	5.5	0.000	0.21	0.49	0.014	0.077	0.49	0.02	5.39E-03	1.96E-03	1.14E-04	0.00E+00	7.46E-03
Zinc	3172	0.432	579	0.49	Equation	424	0.49	0.02	1.47E+01	1.08E+01	6.60E-02	2.42E-02	2.56E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

Equations

1 Dose_{invert} =IR_{diet} X C_{invert} X DF_{invert} X AUF

 $2 \operatorname{Dose}_{plant} = \operatorname{IR}_{diet} X \operatorname{C}_{plant} X \operatorname{DF}_{plant} X \operatorname{AUF}$

Where $C_{plant} = (EPC_{sediment} \times plant BSAF)$ or the result of the BSAF regression equation

 $3 \,\, \mathsf{Dose}_{\,\mathsf{sed}} \!\!= \mathsf{Ir}_{\mathsf{sediment}} \, \mathsf{X} \,\, \mathsf{EPC}_{\mathsf{sediment}} \, \mathsf{X} \,\, \mathsf{Df}_{\mathsf{sed}} \, \mathsf{X} \,\, \mathsf{AUF}$

 $4 \text{ Dose}_{\text{water}} = \text{IR}_{\text{water}} \times \text{C}_{\text{water}} \times \text{AUF}$

5 Total EDD = $Dose_{invert} + Dose_{plant} + Dose_{sed} + Dose_{water}$

^{**} The CTE values represents the mean concentration.

Table 4.55 EDDs for mallards foraging at sampling location A72 on the Animas River below mainstem Mineral Creek (50%-50% diet)

Baseline Ecological Risk Assessment Unner Animas Mining District

						mas Wining D		EDD					
	RN	Æ*					(m	ng/kg bw-da	y)				
	Exposure Poin	t Concentration				Diet			_		Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	Invert Tissue Concentration (dw)	DF _{Invert}	Plant BSAFs	Plant Concentration (C _{plant, dw})	Df _{plant}	Df _{sediment}	Dose _{invert}	Dose plant 2	Dose sed 3	Dose _{water} 4	Total EDD ⁵
Arsenic	39.6	0.0050	0.27	0.49	Equation	1.09	0.49	0.02	6.76E-03	2.76E-02	8.24E-04	2.80E-04	3.55E-02
Cadmium	2.9	0.0019	0.68	0.49	Equation	1.11	0.49	0.02	1.73E-02	2.83E-02	6.03E-05	1.06E-04	4.57E-02
Chromium	6.1	0.000	2.16	0.49	0.04	0.25	0.49	0.02	5.50E-02	6.36E-03	1.27E-04	0.00E+00	6.14E-02
Copper	173	0.0307	38	0.49	Equation	14.9	0.49	0.02	9.74E-01	3.78E-01	3.60E-03	1.72E-03	1.36E+00
Lead	581	0.0305	7.6	0.49	Equation	9.4	0.49	0.02	1.92E-01	2.40E-01	1.21E-02	1.71E-03	4.46E-01
Mercury	0.070	0.000	0.11	0.49	Equation	0.09	0.49	0.02	2.72E-03	2.21E-03	1.46E-06	0.00E+00	4.93E-03
Nickel	5.9	0.0037	0.27	0.49	Equation	0.41	0.49	0.02	6.76E-03	1.04E-02	1.23E-04	2.07E-04	1.75E-02
Selenium	1.9	0.000	0.53	0.49	Equation	1.03	0.49	0.02	1.36E-02	2.62E-02	3.95E-05	0.00E+00	3.98E-02
Silver	2.4	0.000	0.27	0.49	0.014	0.034	0.49	0.02	6.76E-03	8.54E-04	4.99E-05	0.00E+00	7.67E-03
Zine	819	0.711	166	0.49	Equation	200	0.49	0.02	4.23E+00	5.08E+00	1.70E-02	3.98E-02	9.37E+00

								EDD					
		E**					(n	ig/kg bw-da	y)				
	Exposure Poin	t Concentration				Diet					Sediment	Water	
			Invert Tissue			Plant							
	Sediment	Surface Water	Concentration		Plant	Concentration							Total
COPECs	(mg/kg, dw)	(ug/L)	(dw)	DF _{Invert}	BSAFs	(Cplant, dw)	$\mathbf{Df}_{\mathrm{plant}}$	Df _{sediment}	Dose _{invert} ¹	Dose plant 2	Dose sed 3	Dose _{water} 4	EDD ⁵
Arsenic	33.4	0.0050	0.27	0.49	Equation	0.99	0.49	0.02	6.76E-03	2.51E-02	6.95E-04	2.80E-04	3.28E-02
Cadmium	2.1	0.0016	0.68	0.49	Equation	0.93	0.49	0.02	1.73E-02	2.37E-02	4.37E-05	8.96E-05	4.11E-02
Chromium	4.6	0.000	2.16	0.49	0.04	0.19	0.49	0.02	5.50E-02	4.80E-03	9.57E-05	0.00E+00	5.98E-02
Copper	137	0.0274	38	0.49	Equation	13.6	0.49	0.02	9.74E-01	3.45E-01	2.85E-03	1.53E-03	1.32E+00
Lead	478	0.0128	7.6	0.49	Equation	8.4	0.49	0.02	1.92E-01	2.15E-01	9.94E-03	7.17E-04	4.18E-01
Mercury	0.06	0.000	0.11	0.49	Equation	0.08	0.49	0.02	2.72E-03	2.03E-03	1.25E-06	0.00E+00	4.76E-03
Nickel	5.1	0.0050	0.27	0.49	Equation	0.37	0.49	0.02	6.76E-03	9.31E-03	1.06E-04	2.80E-04	1.65E-02
Selenium	1.5	0.000	0.53	0.49	Equation	0.79	0.49	0.02	1.36E-02	2.02E-02	3.12E-05	0.00E+00	3.38E-02
Silver	1.9	0.000	0.27	0.49	0.014	0.027	0.49	0.02	6.76E-03	6.76E-04	3.95E-05	0.00E+00	7.48E-03
Zine	651	0.600	166	0.49	Equation	176	0.49	0.02	4.23E+00	4.48E+00	1.35E-02	3.36E-02	8.75E+00

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

Equations

1 Dose_{invert} =IR_{diet} X C_{invert} X DF_{invert} X AUF

 $2 \operatorname{Dose}_{plant} = \operatorname{IR}_{diet} \times \operatorname{C}_{plant} \times \operatorname{DF}_{plant} \times \operatorname{AUF}$

Where $C_{plant} = (EPC_{sediment} X plant BSAF)$ or the result of the BSAF regression equation

3 Dose $_{sed}$ = $Ir_{sediment} X EPC_{sediment} X Df_{sed} X AUF$

 $4 \operatorname{Dose}_{water} = \operatorname{IR}_{water} X \operatorname{C}_{water} X \operatorname{AUF}$

5 Total EDD = $Dose_{invert} + Dose_{plant} + Dose_{sed} + Dose_{water}$

| Area Use Factor (AUF) | 1.0 | Body Weight (BW) (kg) | 1.162 | IR_{diet} (kg/kg BW-day, dw) | 0.0519 | IR_{water} (L/kg BW-day) | 0.056 | IR_{sediment} (kg/kg DW-day,dw) | 0.00104

> Created by: EC 1/20/14 QC'd by: SJP 2/13/14 Updated by: EC 2/27/15 QC'd by: 3/3/15

^{*} The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

EDDs for mallards foraging at sampling location A73 on the Animas River below mainstem Mineral Creek (50%-50% diet) Baseline Ecological Risk Assessment

Upper Animas Mining District

			EDD													
	RM	Æ*		(mg/kg bw-day) Diet Sediment Water												
	Exposure Poin	t Concentration				Sediment	Water									
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	Invert Tissue Concentration (dw)	$\mathbf{DF}_{\mathbf{Invert}}$	Plant BSAFs	Plant Concentration (C _{plant})	$\mathbf{Df_{plant}}$	Df _{sediment}	Dose invert	Dose plant 2	Dose sed 3	Dose _{water} 4	Total EDD ⁵			
Arsenic	33.8	0.000	0.69	0.49	Equation	0.99	0.49	0.02	1.76E-02	2.53E-02	7.03E-04	0.00E+00	4.36E-02			
Cadmium	5.4	0.0021	0.94	0.49	Equation	1.56	0.49	0.02	2.38E-02	3.97E-02	1.12E-04	1.18E-04	6.37E-02			
Chromium	5.4	0.000	2.03	0.49	0.04	0.22	0.49	0.02	5.17E-02	5.63E-03	1.12E-04	0.00E+00	5.74E-02			
Copper	284	0.0228	33	0.49	Equation	18.1	0.49	0.02	8.45E-01	4.60E-01	5.91E-03	1.28E-03	1.31E+00			
Lead	729	0.0234	6.7	0.49	Equation	10.7	0.49	0.02	1.71E-01	2.72E-01	1.52E-02	1.31E-03	4.60E-01			
Mercury	0.05	0.000	0.11	0.49	Equation	0.07	0.49	0.02	2.80E-03	1.84E-03	1.04E-06	0.00E+00	4.64E-03			
Nickel	7.2	0.0038	0.58	0.49	Equation	0.47	0.49	0.02	1.46E-02	1.20E-02	1.50E-04	2.13E-04	2.71E-02			
Selenium	1.4	0.000	0.55	0.49	Equation	0.74	0.49	0.02	1.40E-02	1.87E-02	2.91E-05	0.00E+00	3.27E-02			
Silver	2.8	0.000	0.28	0.49	0.014	0.039	0.49	0.02	6.99E-03	9.97E-04	5.82E-05	0.00E+00	8.05E-03			
Zinc	1393	0.704	197	0.49	Equation	268	0.49	0.02	5.02E+00	6.83E+00	2.90E-02	3.94E-02	1.19E+01			

	СТ	E**	EDD (mg/kg bw-day)											
	Exposure Poin	t Concentration	Invert Tissue		Sediment	Water								
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	Concentration (dw)	DF _{Invert}	Plant BSAFs	Plant Concentration (C _{plant})	\mathbf{Df}_{plant}	Df _{sediment}	Dose invert	Dose plant 2	Dose sed 3	Dose _{water} 4	Total EDD ⁵	
Arsenic	27.9	0.000	0.69	0.49	Equation	0.89	0.49	0.02	1.76E-02	2.27E-02	5.80E-04	0.00E+00	4.09E-02	
Cadmium	4.0	0.0015	0.94	0.49	Equation	1.32	0.49	0.02	2.38E-02	3.37E-02	8.32E-05	8.40E-05	5.76E-02	
Chromium	4.0	0.000	2.03	0.49	0.04	0.16	0.49	0.02	5.17E-02	4.17E-03	8.32E-05	0.00E+00	5.59E-02	
Copper	199	0.0178	33	0.49	Equation	15.7	0.49	0.02	8.45E-01	4.00E-01	4.14E-03	9.97E-04	1.25E+00	
Lead	513	0.0111	6.7	0.49	Equation	8.8	0.49	0.02	1.71E-01	2.23E-01	1.07E-02	6.22E-04	4.06E-01	
Mercury	0.04	0.000	0.11	0.49	Equation	0.06	0.49	0.02	2.80E-03	1.63E-03	8.32E-07	0.00E+00	4.43E-03	
Nickel	6.4	0.0038	0.58	0.49	Equation	0.43	0.49	0.02	1.46E-02	1.10E-02	1.33E-04	2.13E-04	2.60E-02	
Selenium	1.1	0.000	0.55	0.49	Equation	0.56	0.49	0.02	1.40E-02	1.43E-02	2.29E-05	0.00E+00	2.83E-02	
Silver	1.9	0.000	0.28	0.49	0.014	0.027	0.49	0.02	6.99E-03	6.76E-04	3.95E-05	0.00E+00	7.71E-03	
Zine	1049	0.521	197	0.49	Equation	229	0.49	0.02	5.02E+00	5.83E+00	2.18E-02	2.92E-02	1.09E+01	

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

Equations

1 Dose_{invert} =IR_{diet} X C_{invert} X DF_{invert} X AUF

 $2 \operatorname{Dose}_{plant} = \operatorname{IR}_{diet} \times \operatorname{C}_{plant} \times \operatorname{DF}_{plant} \times \operatorname{AUF}$

Where $C_{plant} = (EPC_{sediment} X plant BSAF)$ or the result of the BSAF regression equation

3 Dose sed= Ir_{sediment} X EPC_{sediment} X Df_{sed} X AUF

 $4 \operatorname{Dose}_{\operatorname{water}} = \operatorname{IR}_{\operatorname{water}} X \operatorname{C}_{\operatorname{water}} X \operatorname{AUF}$

5 Total EDD = $Dose_{invert} + Dose_{plant} + Dose_{sed} + Dose_{water}$

^{**} The CTE values represents the mean concentration.

EDDs for mallards foraging at sampling location A73B on the Animas River below mainstem Mineral Creek (50%-50% diet) Baseline Ecological Risk Assessment

Upper Animas Mining District

			EDD													
	RN	Æ*		(mg/kg bw-day) Diet Sediment Water												
	Exposure Poin	t Concentration			Sediment	Water										
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	BSAFs	Invert Tissue Concentration (C _{invert, dw})	$\mathbf{DF}_{\mathbf{Invert}}$	Plant BSAFs	Plant Concentration (C _{plant})	$\mathbf{Df}_{\mathtt{plant}}$	Df _{sediment}	$\mathbf{Dose}_{\mathbf{invert}}^{1}$	Dose plant 2	Dose sed	Dose _{water} 4	Total EDD ⁵		
Arsenic	39.4	0.000	Equation	8.15	0.49	Equation	1.08	0.49	0.02	2.07E-01	2.75E-02	8.20E-04	0.00E+00	2.36E-01		
Cadmium	4.2	0.0015	Equation	1.01	0.49	Equation	1.36	0.49	0.02	2.58E-02	3.46E-02	8.74E-05	8.40E-05	6.05E-02		
Chromium	5.0	0.0058	Equation	2.91	0.49	0.04	0.21	0.49	0.02	7.41E-02	5.21E-03	1.04E-04	3.25E-04	7.97E-02		
Copper	292	0.0131	0.824	241	0.49	Equation	18.3	0.49	0.02	6.12E+00	4.65E-01	6.07E-03	7.34E-04	6.59E+00		
Lead	593	0.0106	Equation	19.8	0.49	Equation	9.5	0.49	0.02	5.03E-01	2.42E-01	1.23E-02	5.94E-04	7.58E-01		
Mercury	0.09	0.000	Equation	1.19	0.49	Equation	0.10	0.49	0.02	3.02E-02	2.53E-03	1.87E-06	0.00E+00	3.27E-02		
Nickel	12.1	0.0029	Equation	2.05	0.49	Equation	0.70	0.49	0.02	5.22E-02	1.78E-02	2.52E-04	1.62E-04	7.04E-02		
Selenium	2.9	0.000	1.00	2.90	0.49	Equation	1.64	0.49	0.02	7.37E-02	4.18E-02	6.03E-05	0.00E+00	1.16E-01		
Silver	3.1	0.000	0.18	0.56	0.49	0.014	0.043	0.49	0.02	1.42E-02	1.10E-03	6.45E-05	0.00E+00	1.54E-02		
Zinc	1720	0.498	Equation	198	0.49	Equation	302	0.49	0.02	5.05E+00	7.68E+00	3.58E-02	2.79E-02	1.28E+01		

	CT	E**	EDD (mg/kg bw-day)											
	Exposure Poin	t Concentration				Sediment	Water							
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	BSAFs	Invert Tissue Concentration (C _{invert, dw})	$\mathbf{DF}_{\mathbf{Invert}}$	Plant BSAFs	Plant Concentration (C _{plant})	Df _{plant}	Df _{sediment}	Dose _{invert}	Dose plant 2	Dose sed 3	Dose _{water} 4	Total EDD ⁵
Arsenic	29.9	0.000	Equation	6.62	0.49	Equation	0.93	0.49	0.02	1.68E-01	2.36E-02	6.22E-04	0.00E+00	1.92E-01
Cadmium	3.5	0.0010	Equation	0.92	0.49	Equation	1.23	0.49	0.02	2.35E-02	3.13E-02	7.28E-05	5.60E-05	5.49E-02
Chromium	4.5	0.0058	Equation	2.80	0.49	0.04	0.18	0.49	0.02	7.13E-02	4.69E-03	9.36E-05	3.25E-04	7.64E-02
Copper	177	0.0094	0.824	146	0.49	Equation	15.0	0.49	0.02	3.71E+00	3.82E-01	3.68E-03	5.26E-04	4.09E+00
Lead	534	0.0055	Equation	18.5	0.49	Equation	9.0	0.49	0.02	4.69E-01	2.28E-01	1.11E-02	3.08E-04	7.09E-01
Mercury	0.07	0.000	Equation	1.19	0.49	Equation	0.09	0.49	0.02	3.02E-02	2.21E-03	1.46E-06	0.00E+00	3.24E-02
Nickel	10.0	0.0029	Equation	1.80	0.49	Equation	0.61	0.49	0.02	4.57E-02	1.54E-02	2.08E-04	1.62E-04	6.15E-02
Selenium	2.9	0.000	1.00	2.90	0.49	Equation	1.64	0.49	0.02	7.37E-02	4.18E-02	6.03E-05	0.00E+00	1.16E-01
Silver	2.0	0.000	0.18	0.36	0.49	0.014	0.028	0.49	0.02	9.16E-03	7.12E-04	4.16E-05	0.00E+00	9.91E-03
Zinc	1114	0.265	Equation	188	0.49	Equation	237	0.49	0.02	4.78E+00	6.03E+00	2.32E-02	1.48E-02	1.08E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

Equations

1 Dose_{invert} =IR_{diet} X C_{invert} X DF_{invert} X AUF

Where C_{invert} = (EPC_{sediment} X Invert BSAF) or the result of the BSAF regression equation

 $2 \ Dose_{plant} = IR_{diet} \ X \ C_{plant} \ X \ DF_{plant} \ X \ AUF$

Where $C_{plant} = (EPC_{sediment} X plant BSAF)$ or the result of the BSAF regression equation

 $3\ \mathsf{Dose}_{\mathsf{sed}} \mathsf{=} \mathsf{Ir}_{\mathsf{sediment}} \, \mathsf{X} \, \mathsf{EPC}_{\mathsf{sediment}} \, \mathsf{X} \, \mathsf{Df}_{\mathsf{sed}} \, \mathsf{X} \, \mathsf{AUF}$

 $4 \; Dose_{water} = IR_{water} \; X \; C_{water} \; X \; AUF$

5 Total EDD = $Dose_{invert} + Dose_{plant} + Dose_{sed} + Dose_{water}$

 Area Use Factor (AUF)
 1.0

 Body Weight (BW) (kg)
 1.162

 IR_{diet} (kg/kg BW-day, dw)
 0.0519

 IR_{water} (L/kg BW-day)
 0.056

 IR_{sediment} (kg/kg DW-day,dw)
 0.00104

^{**} The CTE values represents the mean concentration.

Table 4.58 EDDs for mallards foraging at sampling location A75D on the Animas River below mainstem Mineral Creek (50%-50% diet) Baseline Ecological Risk Assessment Upper Animas Mining District

	1				- FF	mas mining D							
								EDD					
	RN	Æ*					(m	ig/kg bw-day	v)				
	Exposure Poin	t Concentration				Diet					Sediment	Water	
			Invert Tissue			Plant							
	Sediment	Surface Water	Concentration		Plant	Concentration							Total
CODEC	(mg/kg, dw)	(ug/L)	(dw)	DF _{Invert}	BSAFs	(C _{plant})	$\mathbf{Df}_{\mathrm{plant}}$	Df _{sediment}	Dose invert	Dose plant 2	Dose sed 3	Dose _{water} 4	-
COPECs	, , ,	, , ,	` ,		Doning								EDD
Arsenic	27.0	0.000	0.61	0.49	Equation	0.88	0.49	0.02	1.56E-02	2.23E-02	5.62E-04	0.00E+00	3.84E-02
Cadmium	6.4	0.0014	0.78	0.49	Equation	1.71	0.49	0.02	1.99E-02	4.35E-02	1.33E-04	7.84E-05	6.37E-02
Chromium	4.9	0.000	3.26	0.49	0.04	0.20	0.49	0.02	8.28E-02	5.11E-03	1.02E-04	0.00E+00	8.80E-02
Copper	212	0.0197	15.1	0.49	Equation	16.1	0.49	0.02	3.83E-01	4.10E-01	4.41E-03	1.10E-03	7.98E-01
Lead	367	0.0231	2.3	0.49	Equation	7.3	0.49	0.02	5.83E-02	1.85E-01	7.63E-03	1.29E-03	2.52E-01
Mercury	0.04	0.000	0.25	0.49	Equation	0.06	0.49	0.02	6.23E-03	1.63E-03	8.32E-07	0.00E+00	7.86E-03
Nickel	12.4	0.000	0.61	0.49	Equation	0.71	0.49	0.02	1.56E-02	1.81E-02	2.58E-04	0.00E+00	3.39E-02
Selenium	1.4	0.000	1.22	0.49	Equation	0.74	0.49	0.02	3.11E-02	1.87E-02	2.91E-05	0.00E+00	4.99E-02
Silver	1.4	0.000	0.61	0.49	0.014	0.020	0.49	0.02	1.56E-02	4.98E-04	2.91E-05	0.00E+00	1.61E-02
Zinc	2778	0.503	187	0.49	Equation	394	0.49	0.02	4.76E+00	1.00E+01	5.78E-02	2.82E-02	1.49E+01

	CT	E**					(n	EDD 1g/kg bw-da	z)				
		t Concentration				Diet	(11	ig/kg bw-da	')		Sediment	Water	
	•		Invert Tissue			Plant							
	Sediment	Surface Water			Plant	Concentration				,		,	Total
COPECs	(mg/kg, dw)	(ug/L)	(dw)	DF _{Invert}	BSAFs	(C _{plant})	Df _{plant}	Df _{sediment}	Dose _{invert}	Dose plant 2	Dose sed	Dose _{water} 4	EDD⁵
Arsenic	19.4	0.000	0.61	0.49	Equation	0.73	0.49	0.02	1.56E-02	1.85E-02	4.04E-04	0.00E+00	3.45E-02
Cadmium	4.8	0.0010	0.78	0.49	Equation	1.46	0.49	0.02	1.99E-02	3.72E-02	9.98E-05	5.60E-05	5.73E-02
Chromium	4.2	0.000	3.26	0.49	0.04	0.17	0.49	0.02	8.28E-02	4.38E-03	8.74E-05	0.00E+00	8.73E-02
Copper	147	0.0138	15.1	0.49	Equation	13.9	0.49	0.02	3.83E-01	3.55E-01	3.06E-03	7.73E-04	7.41E-01
Lead	300	0.0112	2.3	0.49	Equation	6.5	0.49	0.02	5.83E-02	1.65E-01	6.24E-03	6.27E-04	2.31E-01
Mercury	0.04	0.000	0.25	0.49	Equation	0.06	0.49	0.02	6.23E-03	1.63E-03	8.32E-07	0.00E+00	7.86E-03
Nickel	9.4	0.000	0.61	0.49	Equation	0.58	0.49	0.02	1.56E-02	1.47E-02	1.96E-04	0.00E+00	3.05E-02
Selenium	1.2	0.000	1.22	0.49	Equation	0.62	0.49	0.02	3.11E-02	1.58E-02	2.50E-05	0.00E+00	4.69E-02
Silver	1.1	0.000	0.61	0.49	0.014	0.015	0.49	0.02	1.56E-02	3.92E-04	2.29E-05	0.00E+00	1.60E-02
Zinc	1738	0.361	187	0.49	Equation	304	0.49	0.02	4.76E+00	7.72E+00	3.62E-02	2.02E-02	1.25E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

Equations

1 Dose_{invert} =IR_{diet} X C_{invert} X DF_{invert} X AUF

 $2 \operatorname{Dose}_{plant} = \operatorname{IR}_{diet} \times \operatorname{C}_{plant} \times \operatorname{DF}_{plant} \times \operatorname{AUF}$

Where $C_{plant} = (EPC_{sediment} X plant BSAF)$ or the result of the BSAF regression equation

 $3 \text{ Dose}_{sed} = Ir_{sediment} X EPC_{sediment} X Df_{sed} X AUF$

 $4 \operatorname{Dose}_{\operatorname{water}} = \operatorname{IR}_{\operatorname{water}} \operatorname{X} \operatorname{C}_{\operatorname{water}} \operatorname{X} \operatorname{AUF}$

5 Total EDD = $Dose_{invert} + Dose_{plant} + Dose_{sed} + Dose_{water}$

| Area Use Factor (AUF) | 1.0 | Body Weight (BW) (kg) | 1.162 | IR_{diet} (kg/kg BW-day, dw) | 0.0519 | IR_{water} (L/kg BW-day) | 0.056 | IR_{sediment} (kg/kg DW-day,dw) | 0.00104

> Created by: EC 1/20/14 QC'd by: SJP 2/13/14 Updated by: EC 2/27/15 QC'd by: RI 3/3/15

^{*} The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

EDDs for mallards foraging at sampling location A75B on the Animas River below mainstem Mineral Creek (50%-50% diet) Baseline Ecological Risk Assessment

Upper Animas Mining District

	DA	1E*			- 11		9	ED (mg/kg b	_					
		t Concentration					Diet	(mg/kg t	ow-day)			Sediment	Water	
	Exposure 1 oin						Diet		1			Sediment	water	
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	BSAFs	Invert Tissue Concentration (C _{invert, dw})	$\mathbf{DF}_{\mathbf{Invert}}$	Plant BSAFs	Plant Concentration (C _{plant})	$\mathrm{Df}_{\mathrm{plant}}$	Df _{sediment}	Dose _{invert}	Dose plant 2	Dose sed 3	Dose _{water} 4	Total EDD ⁵
Arsenic	37.2	0.000	Equation	7.80	0.49	Equation	1.05	0.49	0.02	1.98E-01	2.67E-02	7.74E-04	0.00E+00	2.26E-01
Cadmium	10.5	0.0011	Equation	1.62	0.49	Equation	2.24	0.49	0.02	4.12E-02	5.70E-02	2.18E-04	6.16E-05	9.86E-02
Chromium	5.5	0.000	Equation	3.02	0.49	0.04	0.23	0.49	0.02	7.67E-02	5.73E-03	1.14E-04	0.00E+00	8.25E-02
Copper	413	0.0215	0.824	340	0.49	Equation	21.0	0.49	0.02	8.65E+00	5.33E-01	8.59E-03	1.20E-03	9.20E+00
Lead	435	0.0303	Equation	16.1	0.49	Equation	8.0	0.49	0.02	4.10E-01	2.04E-01	9.05E-03	1.70E-03	6.25E-01
Mercury	0.07	0.000	Equation	1.19	0.49	Equation	0.09	0.49	0.02	3.02E-02	2.21E-03	1.46E-06	0.00E+00	3.24E-02
Nickel	16.5	0.000	Equation	2.55	0.49	Equation	0.88	0.49	0.02	6.48E-02	2.24E-02	3.43E-04	0.00E+00	8.75E-02
Selenium	3.3	0.000	1.00	3.30	0.49	Equation	1.90	0.49	0.02	8.39E-02	4.82E-02	6.86E-05	0.00E+00	1.32E-01
Silver	2.2	0.000	0.18	0.40	0.49	0.014	0.031	0.49	0.02	1.01E-02	7.83E-04	4.58E-05	0.00E+00	1.09E-02
Zinc	5320	0.429	Equation	229	0.49	Equation	565	0.49	0.02	5.82E+00	1.44E+01	1.11E-01	2.40E-02	2.03E+01

	CT	E**						ED (mg/kg b						
	Exposure Poin	t Concentration					Diet					Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (ug/L)	BSAFs	Invert Tissue Concentration (C _{invert, dw})	$\mathbf{DF}_{\mathbf{Invert}}$	Plant BSAFs	Plant Concentration (C _{plant})	Df _{plant}	Df _{sediment}	Dose _{invert}	Dose plant 2	Dose sed 3	Dose _{water} 4	Total EDD⁵
Arsenic	19.9	0.000	Equation	4.87	0.49	Equation	0.74	0.49	0.02	1.24E-01	1.87E-02	4.14E-04	0.00E+00	1.43E-01
Cadmium	5.0	0.0009	Equation	1.11	0.49	Equation	1.50	0.49	0.02	2.82E-02	3.80E-02	1.04E-04	5.04E-05	6.64E-02
Chromium	5.2	0.000	Equation	2.95	0.49	0.04	0.21	0.49	0.02	7.51E-02	5.42E-03	1.08E-04	0.00E+00	8.07E-02
Copper	188	0.0122	0.824	155	0.49	Equation	15.4	0.49	0.02	3.94E+00	3.91E-01	3.91E-03	6.83E-04	4.33E+00
Lead	296	0.0121	Equation	12.6	0.49	Equation	6.5	0.49	0.02	3.19E-01	1.64E-01	6.16E-03	6.78E-04	4.90E-01
Mercury	0.07	0.000	Equation	1.19	0.49	Equation	0.09	0.49	0.02	3.02E-02	2.21E-03	1.46E-06	0.00E+00	3.24E-02
Nickel	9.7	0.000	Equation	1.76	0.49	Equation	0.59	0.49	0.02	4.48E-02	1.51E-02	2.02E-04	0.00E+00	6.00E-02
Selenium	1.9	0.000	1.00	1.90	0.49	Equation	1.03	0.49	0.02	4.83E-02	2.62E-02	3.95E-05	0.00E+00	7.46E-02
Silver	1.4	0.000	0.18	0.25	0.49	0.014	0.020	0.49	0.02	6.41E-03	4.98E-04	2.91E-05	0.00E+00	6.94E-03
Zinc	2190	0.302	Equation	205	0.49	Equation	345	0.49	0.02	5.20E+00	8.78E+00	4.56E-02	1.69E-02	1.40E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

Equations

1 Dose_{invert} =IR_{diet} X C_{invert} X DF_{invert} X AUF

Where $C_{invert} = (EPC_{sediment} X Invert BSAF)$ or the result of the BSAF regression equation

 $2 \text{ Dose}_{plant} = IR_{diet} X C_{plant} X DF_{plant} X AUF$

Where $C_{plant} = (EPC_{sediment} \ X \ plant \ BSAF)$ or the result of the BSAF regression equation

 $3 \ \mathsf{Dose}_{\mathsf{sed}} = \mathsf{Ir}_{\mathsf{sediment}} \ \mathsf{X} \ \mathsf{EPC}_{\mathsf{sediment}} \ \mathsf{X} \ \mathsf{Df}_{\mathsf{sed}} \ \mathsf{X} \ \mathsf{AUF}$

 $4 \text{ Dose}_{\text{water}} = IR_{\text{water}} \times C_{\text{water}} \times AUF$

 $5 Total EDD = Dose_{invert} + Dose_{plant} + Dose_{sed} + Dose_{water}$

| Area Use Factor (AUF) | 1.0 | Body Weight (BW) (kg) | 1.162 | IR_{diet} (kg/kg BW-day, dw) | 0.0519 | IR_{water} (L/kg BW-day) | 0.056 | IR_{sediment} (kg/kg DW-day,dw) | 0.00104

> Created by: EC 1/20/14 QC'd by: SJP 2/13/14 Updated by: EC 2/27/15 QC'd by: RI 3/3/15

^{**} The CTE values represents the mean concentration.

EDDs for mallards foraging at the Bakers Bridge sampling location on the Animas R. below mainstem Mineral Creek (50%-50% diet) Baseline Ecological Risk Assessment

Upper Animas Mining District

	RM	Æ*											
	Exposure Poin	t Concentration									Sediment	Water	
			InvertTissue			Plant							
	Sediment	Surface Water	Concentration		Plant	Concentration							Total
COPECs	(mg/kg, dw)	(ug/L)	(dw)	DF _{Invert}	BSAFs	(Cplant)	Df _{plant}	Df _{sediment}	Dose _{invert}	Dose plant 2	Dose sed	Dose _{water} 4	EDD ⁵
Arsenic	29.7	0	0.23	0.49	Equation	0.92	0.49	0.02	5.87E-03	2.35E-02	6.18E-04	0.00E+00	3.00E-02
Cadmium	18.6	0.0008	1.59	0.49	Equation	3.06	0.49	0.02	4.05E-02	7.79E-02	3.87E-04	4.48E-05	1.19E-01
Chromium	7.0	0	2.05	0.49	0.04	0.29	0.49	0.02	5.21E-02	7.30E-03	1.46E-04	0.00E+00	5.95E-02
Copper	332	0.0138	17.6	0.49	Equation	19.2	0.49	0.02	4.47E-01	4.89E-01	6.91E-03	7.73E-04	9.44E-01
Lead	376	0.0177	2.5	0.49	Equation	7.4	0.49	0.02	6.44E-02	1.88E-01	7.82E-03	9.91E-04	2.61E-01
Mercury	0.06	0	0.09	0.49	Equation	0.08	0.49	0.02	2.37E-03	2.03E-03	1.25E-06	0.00E+00	4.40E-03
Nickel	31.0	0	1.59	0.49	Equation	1.41	0.49	0.02	4.04E-02	3.59E-02	6.45E-04	0.00E+00	7.69E-02
Selenium	3.1	0	0.47	0.49	Equation	1.77	0.49	0.02	1.18E-02	4.50E-02	6.45E-05	0.00E+00	5.69E-02
Silver	1.7	0	0.23	0.49	0.014	0.024	0.49	0.02	5.87E-03	6.05E-04	3.54E-05	0.00E+00	6.52E-03
Zine	8544	0.272	353	0.49	Equation	735	0.49	0.02	8.98E+00	1.87E+01	1.78E-01	1.52E-02	2.79E+01

	CT	E**											
	Exposure Poin	t Concentration									Sediment	Water	
	~ 11	C 0 TV	Invert Tissue			Plant							
	Sediment	Surface Water	Concentration		Plant	Concentration			_				Total
COPECs	(mg/kg, dw)	(ug/L)	(dw)	DF _{Invert}	BSAFs	(C _{plant})	Df _{plant}	Df _{sediment}	Dose _{invert}	Dose plant 2	Dose sed	Dose _{water} 4	EDD ⁵
Arsenic	21.9	0	0.23	0.49	Equation	0.78	0.49	0.02	5.87E-03	1.98E-02	4.56E-04	0.00E+00	2.61E-02
Cadmium	10.1	0.0007	1.59	0.49	Equation	2.20	0.49	0.02	4.05E-02	5.58E-02	2.10E-04	3.92E-05	9.66E-02
Chromium	5.4	0	2.05	0.49	0.04	0.22	0.49	0.02	5.21E-02	5.63E-03	1.12E-04	0.00E+00	5.78E-02
Copper	191	0.0095	17.6	0.49	Equation	15.5	0.49	0.02	4.47E-01	3.93E-01	3.97E-03	5.32E-04	8.45E-01
Lead	300	0.0078	2.5	0.49	Equation	6.5	0.49	0.02	6.44E-02	1.65E-01	6.24E-03	4.37E-04	2.36E-01
Mercury	0.04	0	0.09	0.49	Equation	0.06	0.49	0.02	2.37E-03	1.63E-03	8.32E-07	0.00E+00	4.00E-03
Nickel	18.3	0	1.59	0.49	Equation	0.95	0.49	0.02	4.04E-02	2.42E-02	3.81E-04	0.00E+00	6.50E-02
Selenium	2.1	0	0.47	0.49	Equation	1.15	0.49	0.02	1.18E-02	2.93E-02	4.37E-05	0.00E+00	4.12E-02
Silver	1.3	0	0.23	0.49	0.014	0.018	0.49	0.02	5.87E-03	4.63E-04	2.70E-05	0.00E+00	6.36E-03
Zinc	4620	0.216	353	0.49	Equation	522	0.49	0.02	8.98E+00	1.33E+01	9.61E-02	1.21E-02	2.24E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

Equations

1 Dose_{invert} =IR_{diet} X C_{invert} X DF_{invert} X AUF

 $2 \operatorname{Dose}_{\operatorname{plant}} = \operatorname{IR}_{\operatorname{diet}} \times \operatorname{C}_{\operatorname{plant}} \times \operatorname{DF}_{\operatorname{plant}} \times \operatorname{AUF}$

Where $C_{plant} = (EPC_{sediment} X plant BSAF)$ or the result of the BSAF regression equation

3 Dose $_{sed}$ = $Ir_{sediment} X EPC_{sediment} X Df_{sed} X AUF$

 $4 \operatorname{Dose}_{water} = \operatorname{IR}_{water} X \operatorname{C}_{water} X \operatorname{AUF}$

5 Total EDD = $Dose_{invert} + Dose_{plant} + Dose_{sed} + Dose_{water}$

| Area Use Factor (AUF) | 1.0 | Body Weight (BW) (kg) | 1.162 | IR_{diet} (kg/kg BW-day, dw) | 0.0519 | IR_{water} (L/kg BW-day) | 0.056 | IR_{sediment} (kg/kg DW-day,dw) | 0.00104

> Created by: EC 1/20/14 QC'd by: SJP 2/13/14 Updated by: EC 2/27/15 QC'd by: RI 3/3/15

^{*} The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

EDDs for the belted kingfisher foraging on the Animas River above mainstem Cement Creek **Baseline Ecological Risk Assessment**

Upper Animas Mining District

	RM	ME*				(EDD mg/kg bw-da	y)			CT	E**				(1	EDD ng/kg bw-da	y)		
	Exposure Poir	t Concentration			Diet			Sediment	Water		Exposure Poin	t Concentration			Diet			Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Fish Tissue Concentation (C _{fish, dw})	DF _{fish}	DF sediment	Dose _{fish} 1	Dose _{sediment} ²	Dose _{water} 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Fish Tissue Concentation (C _{fish, dw})	DF _{Fish}	DF sediment	Dose _{fish} 1	Dose _{sediment} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	34.2	0.000	0.126	4.31	0.98	0.02	3.67E-01	1.19E-03	0.00E+00	3.68E-01	27.4	0.000	0.126	3.45	0.98	0.02	2.94E-01	9.52E-04	0.00E+00	2.95E-01
Cadmium	12.9	0.0016	0.164	2.12	0.98	0.02	1.80E-01	4.48E-04	1.78E-04	1.81E-01	11.1	0.0014	0.164	1.82	0.98	0.02	1.55E-01	3.86E-04	1.55E-04	1.56E-01
Chromium	5.0	0.000	0.038	0.19	0.98	0.02	1.62E-02	1.74E-04	0.00E+00	1.64E-02	4.7	0.000	0.220	1.03	0.98	0.02	8.81E-02	1.63E-04	0.00E+00	8.82E-02
Copper	399	0.0162	0.100	39.9	0.98	0.02	3.40E+00	1.39E-02	1.80E-03	3.41E+00	339	0.0155	0.100	33.9	0.98	0.02	2.89E+00	1.18E-02	1.72E-03	2.90E+00
Lead	1733	0.0219	0.070	121	0.98	0.02	1.03E+01	6.02E-02	2.43E-03	1.04E+01	1508	0.0116	0.070	106	0.98	0.02	8.99E+00	5.24E-02	1.29E-03	9.04E+00
Mercury (inorganic)	0.10	0.000	3.25	0.325	0.98	0.02	2.77E-02	3.48E-06	0.00E+00	2.77E-02	0.07	0.000	0.13	0.009	0.98	0.02	7.75E-04	2.43E-06	0.00E+00	7.77E-04
Nickel	9.2	0.000	1.00	9.2	0.98	0.02	7.83E-01	3.20E-04	0.00E+00	7.84E-01	8.2	0.000	4.58	37.6	0.98	0.02	3.20E+00	2.85E-04	0.00E+00	3.20E+00
Selenium	1.0	0.000	1.00	1.00	0.98	0.02	8.50E-02	3.47E-05	0.00E+00	8.50E-02	1.5	0.000	1.00	1.500	0.98	0.02	1.28E-01	5.21E-05	0.00E+00	1.28E-01
Silver	6.4	0.000	1.00	6.40	0.98	0.02	5.45E-01	2.22E-04	0.00E+00	5.45E-01	5.5	0.000	1.00	5.50	0.98	0.02	4.68E-01	1.91E-04	0.00E+00	4.69E-01
Zinc	4054	0.488	0.147	596	0.98	0.02	5.08E+01	1.41E-01	5.42E-02	5.09E+01	3172	0.432	0.147	466	0.98	0.02	3.97E+01	1.10E-01	4.80E-02	3.99E+01

mg/kg - milligrams per kilogram mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equ	1a	110	BS

1 Dosef_{ish} =(IR_{diet} X C_{fish} X DF_{fish} X AUF) Where C_{fish}=EPC_{sediment} X BSAF $2 \ Dose_{sediment} = (IR_{sediment} \ X \ EPC_{sediment} \ X \ DF_{sediment} \ X \ AUF)$

3 Dose_{water} = IR_{water} X C_{water} X AUF

4 Total EDD = Dose_{fish} + Dose _{sediment} + Dose_{water}

Area Use Factor (AUF) Body Weight (BW) (kg) 0.147 IR_{diet} (kg/kg BW-day, dw) 0.0869 IR_{water} (L/kg BW-day) 0.111 IRsed (kg/kg BW-day, dw) 0.001738

EDDs for the belted kingfisher foraging at sampling location A72 on the Animas River below mainstem Mineral Creek **Baseline Ecological Risk Assessment** Upper Animas Mining District

	R!	ME*				(r	EDD ng/kg bw-day)			СТ	E**				(1	EDD ng/kg bw-da	v)		
	Exposure Poir	nt Concentration]	Diet			Sediment	Water		Exposure Poin	t Concentration			Diet			Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Fish Tissue Concentation (C _{fish. dw})	DF _{fish}	DF	Dose _{fish} 1	Dos e _{sediment} ²	Dose _{water} 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Fish Tissue Concentation (C _{fish, dw})	$\mathrm{DF}_{\mathrm{Fish}}$	DF	Dose _{fish} 1	Dose _{sediment} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	39.6	0.0050	0.126	4.99	0.98	0.02	4.25E-01	1.38E-03	5.55E-04	4.27E-01	33.4	0.0050	0.126	4.21	0.98	0.02	3.58E-01	1.16E-03	5.55E-04	3.60E-01
Cadmium	2.9	0.002	0.164	0.48	0.98	0.02	4.05E-02	1.01E-04	2.11E-04	4.08E-02	2.1	0.0016	0.164	0.34	0.98	0.02	2.93E-02	7.30E-05	1.78E-04	2.96E-02
Chromium	6.1	0.000	0.038	0.23	0.98	0.02	1.97E-02	2.12E-04	0.00E+00	2.00E-02	4.6	0.000	0.038	0.17	0.98	0.02	1.49E-02	1.60E-04	0.00E+00	1.50E-02
Copper	173	0.0307	0.100	17.3	0.98	0.02	1.47E+00	6.01E-03	3.41E-03	1.48E+00	137	0.0274	0.100	13.7	0.98	0.02	1.17E+00	4.76E-03	3.04E-03	1.17E+00
Lead	581	0.0305	0.070	41	0.98	0.02	3.46E+00	2.02E-02	3.39E-03	3.49E+00	478	0.0128	0.070	33	0.98	0.02	2.85E+00	1.66E-02	1.42E-03	2.87E+00
Mercury (inorganic)	0.070	0.000	3.25	0.228	0.98	0.02	1.94E-02	2.43E-06	0.00E+00	1.94E-02	0.06	0.000	3.25	0.195	0.98	0.02	1.66E-02	2.09E-06	0.00E+00	1.66E-02
Nickel	5.9	0.0037	1.00	5.9	0.98	0.02	5.02E-01	2.05E-04	4.11E-04	5.03E-01	5.1	0.0050	1.00	5.1	0.98	0.02	4.34E-01	1.77E-04	5.55E-04	4.35E-01
Selenium	1.9	0.000	1.00	1.90	0.98	0.02	1.62E-01	6.60E-05	0.00E+00	1.62E-01	1.5	0.000	1.00	1.500	0.98	0.02	1.28E-01	5.21E-05	0.00E+00	1.28E-01
Silver	2.4	0.000	1.00	2.40	0.98	0.02	2.04E-01	8.34E-05	0.00E+00	2.04E-01	1.9	0.000	1.00	1.90	0.98	0.02	1.62E-01	6.60E-05	0.00E+00	1.62E-01
Zinc	819	0.711	0.147	120	0.98	0.02	1.03E+01	2.85E-02	7.89E-02	1.04E+01	651	0.600	0.147	96	0.98	0.02	8.15E+00	2.26E-02	6.66E-02	8.24E+00

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

*The RNE value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

*The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
$1 \operatorname{Dose}_{fish} = (IR_{diet} \times C_{fish} \times DF_{fish} \times AUF)$	Body Weight (BW) (kg)	0.147
Where C_{fish} =EPC _{sediment} X BSAF	IR _{diet} (kg/kg BW-day, dw)	0.0869
2 Dose sediment = (IR sediment X EPC sediment X DF sediment X AUF)	IR _{water} (L/kg BW-day)	0.111
$3 \text{ Dose}_{\text{water}} = IR_{\text{water}} \times C_{\text{water}} \times AUF$	IRsed (kg/kg BW-day, dw)	0.00173

4 Total EDD = Dosefish + Dose sediment + Dose water

EDDs for the belted kingfisher foraging at sampling location A73 on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment

Upper Animas Mining District

	R	ME*				(n	EDD g/kg bw-day	,			CT	E**				(r	EDD ng/kg bw-day	a)		
		it Concentration			Diet	/	gag on day	Sediment	Water			t Concentration			Diet	7.	agang on un	Sediment	Water	
	Sediment	Surface Water		Fish Tissue Concentation		DF	,	,	3	Total	Sediment	Surface Water		Fish Tissue Concentation		DF	,	2	2	
COPECs	(mg/kg, dw)	(mg/L)	BSAFs	(Cfish, dw)	DF _{fish}	sediment	Dose _{fish} 1	Dose _{sediment} ²	Dosewater	EDD⁴	(mg/kg, dw)	(mg/L)	BSAFs	(Cfish, dw)	DF _{Fish}	sediment	Dose _{fish} 1	Dose _{sediment} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	33.8	0.000	0.126	4.26	0.98	0.02	3.63E-01	1.17E-03	0.00E+00	3.64E-01	27.9	0.000	0.126	3.52	0.98	0.02	2.99E-01	9.70E-04	0.00E+00	3.00E-01
Cadmium	5.4	0.0021	0.164	0.89	0.98	0.02	7.54E-02	1.88E-04	2.33E-04	7.58E-02	4.0	0.0015	0.164	0.66	0.98	0.02	5.59E-02	1.39E-04	1.67E-04	5.62E-02
Chromium	5.4	0.000	0.038	0.21	0.98	0.02	1.75E-02	1.88E-04	0.00E+00	1.77E-02	4.0	0.000	0.038	0.15	0.98	0.02	1.29E-02	1.39E-04	0.00E+00	1.31E-02
Copper	284	0.0228	0.100	28.4	0.98	0.02	2.42E+00	9.87E-03	2.53E-03	2.43E+00	199	0.0178	0.100	19.9	0.98	0.02	1.69E+00	6.92E-03	1.98E-03	1.70E+00
Lead	729	0.0234	0.070	51	0.98	0.02	4.35E+00	2.53E-02	2.60E-03	4.37E+00	513	0.0111	0.070	36	0.98	0.02	3.06E+00	1.78E-02	1.23E-03	3.08E+00
Mercury (inorganic)	0.05	0.000	3.25	0.163	0.98	0.02	1.38E-02	1.74E-06	0.00E+00	1.38E-02	0.04	0.000	3.25	0.130	0.98	0.02	1.11E-02	1.39E-06	0.00E+00	1.11E-02
Nickel	7.2	0.0038	1.00	7.2	0.98	0.02	6.13E-01	2.50E-04	4.22E-04	6.14E-01	6.4	0.0038	1.00	6.4	0.98	0.02	5.45E-01	2.22E-04	4.22E-04	5.46E-01
Selenium	1.4	0.000	1.00	1.40	0.98	0.02	1.19E-01	4.87E-05	0.00E+00	1.19E-01	1.1	0.000	1.00	1.100	0.98	0.02	9.37E-02	3.82E-05	0.00E+00	9.37E-02
Silver	2.8	0.000	1.00	2.80	0.98	0.02	2.38E-01	9.73E-05	0.00E+00	2.39E-01	1.9	0.000	1.00	1.90	0.98	0.02	1.62E-01	6.60E-05	0.00E+00	1.62E-01
Zine	1393	0.704	0.147	205	0.98	0.02	1.74E+01	4.84E-02	7.81E-02	1.76E+01	1049	0.521	0.147	154	0.98	0.02	1.31E+01	3.65E-02	5.78E-02	1.32E+01

mg/kg - milligrams per kilogram mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
$1 \operatorname{Dosef}_{ish} = (\operatorname{IR}_{diet} X \operatorname{C}_{fish} X \operatorname{DF}_{fish} X \operatorname{AUF})$	Body Weight (BW) (kg)	0.147
Where C _{fish} =EPC _{sediment} X BSAF	IR _{diet} (kg/kg BW-day, dw)	0.0869
2 Dose sediment = (IR sediment X EPC sediment X DF sediment X AUF)	IR _{water} (L/kg BW-day)	0.111
$3 \text{ Dose}_{\text{water}} = IR_{\text{water}} X C_{\text{water}} X AUF$	IRsed (kg/kg BW-day, dw)	0.00173

4 Total EDD = Dose_{fish} + Dose_{sediment} + Dose_{water}

EDDs for the belted kingfisher foraging at sampling location A73B on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment **Upper Animas Mining District**

		ME*					EDD g bw-day)					E**				(m	EDD 1g/kg bw-day			_
	Exposure Poir Sediment	t Concentration Surface Water		Fish Tissue Concentation	Diet			Sediment	Water	1	Exposure Poin Sediment	t Concentration Surface Water		Fish Tissue Concentation	Diet	DF		Sediment	Water	
COPECs	(mg/kg, dw)	(mg/L)	BSAFs	(C _{fish, dw})	$\mathbf{DF}_{\mathrm{fish}}$	DF sediment	Dose _{fish}	Dose _{sediment} ²	Dose _{water} 3	Total EDD ⁴	(mg/kg, dw)	(mg/L)	BSAFs	(C _{fish, dw})	DF _{fish}	sediment	Dose _{fish}	Dose _{sediment} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	39.4	0.000	0.126	4.96	0.98	0.02	4.23E-01	1.37E-03	0.00E+00	4.24E-01	29.9	0.000	0.126	3.77	0.98	0.02	3.21E-01	1.04E-03	0.00E+00	3.22E-01
Cadmium	4.2	0.0015	0.164	0.69	0.98	0.02	5.87E-02	1.46E-04	1.67E-04	5.90E-02	3.5	0.0010	0.164	0.57	0.98	0.02	4.89E-02	1.22E-04	1.11E-04	4.91E-02
Chromium	5.0	0.0058	0.038	0.19	0.98	0.02	1.62E-02	1.74E-04	6.44E-04	1.70E-02	4.5	0.0058	0.038	0.17	0.98	0.02	1.46E-02	1.56E-04	6.44E-04	1.54E-02
Copper	292	0.0131	0.100	29.2	0.98	0.02	2.49E+00	1.01E-02	1.45E-03	2.50E+00	177	0.0094	0.100	17.7	0.98	0.02	1.51E+00	6.15E-03	1.04E-03	1.51E+00
Lead	593	0.0106	0.070	42	0.98	0.02	3.54E+00	2.06E-02	1.18E-03	3.56E+00	534	0.0055	0.070	37	0.98	0.02	3.18E+00	1.86E-02	6.11E-04	3.20E+00
Mercury (inorganic)	0.09	0.000	3.25	0.293	0.98	0.02	2.49E-02	3.13E-06	0.00E+00	2.49E-02	0.07	0.000	3.25	0.228	0.98	0.02	1.94E-02	2.43E-06	0.00E+00	1.94E-02
Nickel	12.1	0.0029	1.00	12.1	0.98	0.02	1.03E+00	4.21E-04	3.22E-04	1.03E+00	10.0	0.0029	1.00	10.0	0.98	0.02	8.52E-01	3.48E-04	3.22E-04	8.52E-01
Selenium	2.9	0.000	1.00	2.90	0.98	0.02	2.47E-01	1.01E-04	0.00E+00	2.47E-01	2.9	0.000	1.00	2.900	0.98	0.02	2.47E-01	1.01E-04	0.00E+00	2.47E-01
Silver	3.1	0.000	1.00	3.10	0.98	0.02	2.64E-01	1.08E-04	0.00E+00	2.64E-01	2.0	0.000	1.00	2.00	0.98	0.02	1.70E-01	6.95E-05	0.00E+00	1.70E-01
Zinc	1720	0.498	0.147	253	0.98	0.02	2.15E+01	5.98E-02	5.53E-02	2.16E+01	1114	0.265	0.147	164	0.98	0.02	1.39E+01	3.87E-02	2.94E-02	1.40E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction
BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

.qu	au	on	s

Equations	Area Use Factor (AUF)	1.0
$1 \operatorname{Dosef}_{ith} = (\operatorname{IR}_{diet} X \operatorname{C}_{fish} X \operatorname{DF}_{fish} X \operatorname{AUF})$	Body Weight (BW) (kg)	0.147
Where $C_{fish} = EPC_{sediment}X$ BSAF	IR diet (kg/kg BW-day, dw)	0.0869
2 Dose sediment = (IR sediment X EPC sediment X DF sediment X AUF)	IR _{water} (L/kg BW-day)	0.111
3 Dose _{water} = IR _{water} X C _{water} X AUF	IRsed (kg/kg BW-day, dw)	0.001738

4 Total EDD = Dose_{fish} + Dose_{sediment} + Dose_{water}

EDDs for the belted kingfisher foraging at sampling location A75D on the Animas River below mainstem Mineral Creek **Baseline Ecological Risk Assessment**

Upper Animas Mining District

	R	ME*		CT	E**				(1	EDD ng/kg bw-da	y)									
	Exposure Poi	nt Concentration			Diet			Sediment	Water		Exposure Poin	t Concentration			Diet			Sediment	Water	1
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Fish Tissue Concentation (C _{fish, dw})	DF _{fish}	DF	Dose _{fish} 1	Dose _{sediment} ²	Dose _{water} 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Fish Tissue Concentation (C _{fish, dw})	DF _{Fish}	DF	Dose _{fish} 1	Dose _{sediment} ²	Dose _{water} 3	Total EDD⁴
Arsenic	27.0	0.000	0.126	3.40	0.98	0.02	2.90E-01	9.39E-04	0.00E+00	2.91E-01	19.4	0,000	0.126	2.44	0.98	0.02	2.08E-01	6.74E-04	0.00E+00	2.09E-01
Cadmium	6.4	0.0014	0.164	1.05	0.98	0.02	8.94E-02	2.22E-04	1.55E-04	8.98E-02	4.8	0.0010	0.164	0.79	0.98	0.02	6.70E-02	1.67E-04	1.11E-04	6.73E-02
Chromium	4.9	0.000	0.038	0.19	0.98	0.02	1.59E-02	1.70E-04	0.00E+00	1.60E-02	4.2	0.000	0.038	0.16	0.98	0.02	1.36E-02	1.46E-04	0.00E+00	1.37E-02
Copper	212	0.0197	0.100	21.2	0.98	0.02	1.81E+00	7.37E-03	2.19E-03	1.81E+00	147	0.0138	0.100	14.7	0.98	0.02	1.25E+00	5.11E-03	1.53E-03	1.26E+00
Lead	367	0.0231	0.070	26	0.98	0.02	2.19E+00	1.28E-02	2.56E-03	2.20E+00	300	0.0112	0.070	21	0.98	0.02	1.79E+00	1.04E-02	1.24E-03	1.80E+00
Mercury (inorganic)	0.04	0.000	3.25	0.130	0.98	0.02	1.11E-02	1.39E-06	0.00E+00	1.11E-02	0.04	0.000	3.25	0.130	0.98	0.02	1.11E-02	1.39E-06	0.00E+00	1.11E-02
Nickel	12.4	0.000	1.00	12.4	0.98	0.02	1.06E+00	4.31E-04	0.00E+00	1.06E+00	9.4	0.000	1.00	9.4	0.98	0.02	8.01E-01	3.27E-04	0.00E+00	8.01E-01
Selenium	1.4	0.000	1.00	1.40	0.98	0.02	1.19E-01	4.87E-05	0.00E+00	1.19E-01	1.20	0.000	1.00	1.200	0.98	0.02	1.02E-01	4.17E-05	0.00E+00	1.02E-01
Silver	1.4	0.000	1.00	1.40	0.98	0.02	1.19E-01	4.87E-05	0.00E+00	1.19E-01	1.1	0.000	1.00	1.10	0.98	0.02	9.37E-02	3.82E-05	0.00E+00	9.37E-02
Zinc	2778	0.503	0.147	408	0.98	0.02	3.48E+01	9.66E-02	5.58E-02	3.49E+01	1738	0.361	0.147	255	0.98	0.02	2.18E+01	6.04E-02	4.01E-02	2.19E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/k bw-day - milligrams per kilogram of body weight per day
COPECs - Chemicals of Potential Ecological Concern
EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
$1 \text{ Dosef}_{ish} = (IR_{dict} X C_{fish} X DF_{fish} X AUF)$	Body Weight (BW) (kg)	0.147
Where C _{fish} = EPC _{sediment} X BSAF	IR _{diet} (kg/kg BW-day, dw)	0.0869
2 Dose sediment = (IR sediment X EPC sediment X DF sediment X AUF)	IR _{water} (L/kg BW-day)	0.111
$3 \text{ Dose}_{\text{water}} = IR_{\text{water}} X C_{\text{water}} X AUF$	IRsed (kg/kg BW-day, dw)	0.001738

4 Total EDD = Dose_{fish} + Dose_{sediment} + Dose_{water}

EDDs for the belted kingfisher foraging at sampling location A75B on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment

Upper Animas Mining District

	RN	Æ*				(n	EDD ng/kg bw-day))			CT	E**				(m	EDD g/kg bw-day)		
1	Exposure Poin	t Concentration			Diet			Sediment	Water		Exposure Poin	t Concentration			Diet			Sediment	Water	
1				Fish Tissue						1				Fish Tissue						1 1
1	Sediment	Surface Water		Concentation		DF			_	Total	Sediment	Surface Water	l	Concentation		DF			_	
COPECs	(mg/kg, dw)	(mg/L)	BSAFs	(Cfish, dw)	\mathbf{DF}_{fish}	sediment	Dose _{fish} 1	Dose _{sediment} ²	Dose _{water} 3	EDD^4	(mg/kg, dw)	(mg/L)	BSAFs	(Cfish, dw)	DF _{Fish}	sediment	Dose _{fisb} 1	Dose _{sediment} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	37.2	0.000	0.126	4.69	0.98	0.02	3.99E-01	1.29E-03	0.00E+00	4.00E-01	19.9	0.000	0.126	2.51	0.98	0.02	2.14E-01	6.92E-04	0.00E+00	2.14E-01
Cadmium	10.5	0.0011	0.164	1.72	0.98	0.02	1.47E-01	3.65E-04	1.22E-04	1.47E-01	5.0	0.0009	0.164	0.82	0.98	0.02	6.98E-02	1.74E-04	9.99E-05	7.01E-02
Chromium	5.5	0.000	0.038	0.21	0.98	0.02	1.78E-02	1.91E-04	0.00E+00	1.80E-02	5.2	0.000	0.038	0.20	0.98	0.02	1.68E-02	1.81E-04	0.00E+00	1.70E-02
Copper	413	0.0215	0.100	41.3	0.98	0.02	3.52E+00	1.44E-02	2.39E-03	3.53E+00	188	0.0122	0.100	18.8	0.98	0.02	1.60E+00	6.53E-03	1.35E-03	1.61E+00
Lead	435	0.0303	0.070	30	0.98	0.02	2.59E+00	1.51E-02	3.36E-03	2.61E+00	296	0.0121	0.070	21	0.98	0.02	1.76E+00	1.03E-02	1.34E-03	1.78E+00
Mercury (inorganie)	0.07	0.000	3.25	0.228	0.98	0.02	1.94E-02	2.43E-06	0.00E+00	1.94E-02	0.07	0.000	3.25	0.228	0.98	0.02	1.94E-02	2.43E-06	0.00E+00	1.94E-02
Nickel	16.5	0.000	1.00	16.5	0.98	0.02	1.41E+00	5.74E-04	0.00E+00	1.41E+00	9.7	0.000	1.00	9.7	0.98	0.02	8.26E-01	3.37E-04	0.00E+00	8.26E-01
Selenium	3.3	0.000	1.00	3.30	0.98	0.02	2.81E-01	1.15E-04	0.00E+00	2.81E-01	1.9	0.000	1.00	1.900	0.98	0.02	1.62E-01	6.60E-05	0.00E+00	1.62E-01
Silver	2.2	0.000	1.00	2.20	0.98	0.02	1.87E-01	7.65E-05	0.00E+00	1.87E-01	1.4	0.000	1.00	1.40	0.98	0.02	1.19E-01	4.87E-05	0.00E+00	1.19E-01
Zine	5320	0.429	0.147	782	0.98	0.02	6.66E+01	1.85E-01	4.76E-02	6.68E+01	2190	0.302	0.147	322	0.98	0.02	2.74E+01	7.61E-02	3.35E-02	2.75E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day
COPECs - Chemicals of Potential Ecological Concern
EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
1 Dosef _{ish} =(IR _{diet} X C _{fish} X DF _{fish} X AUF)	Body Weight (BW) (kg)	0.147
Where C _{fish} =EPC _{sediment} X BSAF	IR _{diet} (kg/kg BW-day, dw)	0.0869
2 Dose sediment = (IR sediment X EPC sediment X DF sediment X AUF)	IR _{water} (L/kg BW-day)	0.111
3 Dose _{water} = IR _{water} X C _{water} X AUF	IRsed (kg/kg BW-day, dw)	0.001738
AT APPROPRIES OF THE PROPERTY		

4 Total EDD = Dosefish + Dose sediment + Dose water

EDDs for the belted kingfisher foraging at the Bakers Bridge sampling location on the Animas River below mainstem Mineral Creek **Baseline Ecological Risk Assessment**

Upper Animas Mining District

							EDD										EDD			
	R	ME*				(mg	g/kg bw-day)				CI	E**				(mg/kg bw-d	ay)		
	Exposure Poi	it Concentration			Diet				Water		Exposure Poin	t Concentration			Diet				Water	
				Fish Tissue						1				Fish Tissue						1
	Sediment	Surface Water	l	Concentation		DF					Sediment	Surface Water		Concentation		DF		l .		
COPECs	(mg/kg, dw)	(mg/L)	BSAFs	(Cfish, dw)	DFfish	sediment	Dose _{fish} 1	Dose _{sediment} ²	Dose _{water} 3	Total EDD ⁴	(mg/kg, dw)	(mg/L)	BSAFs	(Cfish, dw)	DFFish	sediment	Dose _{fish} 1	Dose _{sediment} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	29.7	0.000	0.126	3.74	0.98	0.02	3.19E-01	1.03E-03	0.00E+00	3.20E-01	21.9	0.000	0.126	2.76	0.98	0.02	2.35E-01	7.61E-04	0.00E+00	2.36E-01
Cadmium	18.6	0.0008	0.164	3.05	0.98	0.02	2.60E-01	6.47E-04	8.88E-05	2.61E-01	10.1	0.0007	0.164	1.66	0.98	0.02	1.41E-01	3.51E-04	7.77E-05	1.41E-01
Chromium	7.0	0.000	0.038	0.27	0.98	0.02	2.27E-02	2.43E-04	0.00E+00	2.29E-02	5.4	0.000	0.038	0.21	0.98	0.02	1.75E-02	1.88E-04	0.00E+00	1.77E-02
Copper	332	0.0138	0.100	33.2	0.98	0.02	2.83E+00	1.15E-02	1.53E-03	2.84E+00	191	0.0095	0.100	19.1	0.98	0.02	1.63E+00	6.64E-03	1.05E-03	1.63E+00
Lead	376	0.0177	0.070	26	0.98	0.02	2.24E+00	1.31E-02	1.96E-03	2.26E+00	300	0.0078	0.070	21	0.98	0.02	1.79E+00	1.04E-02	8.66E-04	1.80E+00
Mercury (inorganic)	0.06	0.000	3.25	0.195	0.98	0.02	1.66E-02	2.09E-06	0.00E+00	1.66E-02	0.04	0.000	3.25	0.130	0.98	0.02	1.11E-02	1.39E-06	0.00E+00	1.11E-02
Nickel	31.0	0.000	1.00	31.0	0.98	0.02	2.64E+00	1.08E-03	0.00E+00	2.64E+00	18.3	0.000	1.00	18.3	0.98	0.02	1.56E+00	6.36E-04	0.00E+00	1.56E+00
Selenium	3.1	0.000	1.00	3.10	0.98	0.02	2.64E-01	1.08E-04	0.00E+00	2.64E-01	2.1	0.000	1.00	2.100	0.98	0.02	1.79E-01	7.30E-05	0.00E+00	1.79E-01
Silver	1.7	0.000	1.00	1.70	0.98	0.02	1.45E-01	5.91E-05	0.00E+00	1.45E-01	1.3	0.000	1.00	1.30	0.98	0.02	1.11E-01	4.52E-05	0.00E+00	1.11E-01
Zine	8544	0.272	0.147	1256	0.98	0.02	1.07E+02	2.97E-01	3.02E-02	1.07E+02	4620	0.216	0.147	679	0.98	0.02	5.78E+01	1.61E-01	2.40E-02	5.80E+01

mg/kg - milligrams per kilogram mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
$1 \operatorname{Dosef}_{ish} = (IR_{dict} X C_{fish} X DF_{fish} X AUF)$	Body Weight (BW) (kg)	0.147
Where C _{fish} = EPC _{sediment} X BSAF	IR _{diet} (kg/kg BW-day, dw)	0.0869
2 Dose sediment = (IR sediment X EPC sediment X DF sediment X AUF)	IR _{water} (L/kg BW-day)	0.111
3 Dose _{water} = IR _{water} X C _{water} X AUF	IRsed (kg/kg BW-day, dw)	0.001738
4 Total EDD - Doss Doss Doss		

4 Total EDD = Dose_{fish} + Dose_{sediment} + Dose_{water}

EDDs for the muskrat foraging on the Animas River above mainstem Cement Creek Baseline Ecological Risk Assessment

Upper Animas Mining District

	RME* EDD (mg/kg bw-day) Exposure Point Concentration Diet Sediment Water									C	ΓE**					EDD kg bw-day)				
1	ExposurePoin	t Concentration			Diet			Sediment	Water		ExposurePoir	nt Concentration			Diet			Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Plant Tissue Concentration (C _{plant, dw})	DF _{plant}	Df _{sediment}	Dose _{plant} 1	Dose _{sed} ²	Dose _{water} 3	Total EDD⁴	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Plant Tissue Concentration (C _{plant, dw})	DFplant	Df _{sediment}	Dose _{plant}	Dose _{sed} ²	Dose _{water} 3	Total EDD⁴
Arsenic	34.2	0.000	Equation	1.00	0.9	0.1	7.55E-02	2.87E-02	0.00E+00	1.04E-01	27.4	0.000	Equation	0.88	0.9	0.1	6.66E-02	2.30E-02	0.00E+00	8.96E-02
Cadmium	12.9	0.0016	Equation	2.51	0.9	0.1	1.90E-01	1.08E-02	1.56E-04	2.01E-01	11.1	0.0014	Equation	2.31	0.9	0.1	1.75E-01	9.31E-03	1.37E-04	1.84E-01
Chromium	5.0	0.000	0.04	0.21	0.9	0.1	1.55E-02	4.20E-03	0.00E+00	1.97E-02	4.7	0.000	0.04	0.19	0.9	0.1	1.46E-02	3.94E-03	0.00E+00	1.85E-02
Copper	399	0.0162	Equation	20.7	0.9	0.1	1.56E+00	3.35E-01	1.58E-03	1.90E+00	339	0.0155	Equation	19.4	0.9	0.1	1.46E+00	2.84E-01	1.51E-03	1.75E+00
Lead	1733	0.0219	Equation	17.4	0.9	0.1	1.31E+00	1.45E+00	2.14E-03	2.77E+00	1508	0.0116	Equation	16.1	0.9	0.1	1.21E+00	1.27E+00	1.13E-03	2.48E+00
Mercury	0.10	0.000	Equation	0.11	0.9	0.1	7.97E-03	8.39E-05	0.00E+00	8.05E-03	0.07	0.000	Equation	0.09	0.9	0.1	6.56E-03	5.87E-05	0.00E+00	6.62E-03
Nickel	9.2	0.000	Equation	0.57	0.9	0.1	4.30E-02	7.72E-03	0.00E+00	5.07E-02	8.2	0.000	Equation	0.52	0.9	0.1	3.94E-02	6.88E-03	0.00E+00	4.63E-02
Selenium	1.0	0.000	Equation	0.51	0.9	0.1	3.82E-02	8.37E-04	0.00E+00	3.91E-02	1.5	0.000	Equation	0.79	0.9	0.1	6.00E-02	1.26E-03	0.00E+00	6.12E-02
Silver	6.4	0.000	0.014	0.090	0.9	0.1	6.77E-03	5.37E-03	0.00E+00	1.21E-02	5.5	0.000	0.014	0.077	0.9	0.1	5.81E-03	4.61E-03	0.00E+00	1.04E-02
Zinc	4054	0.488	Equation	486	0.9	0.1	3.67E+01	3.40E+00	4.76E-02	4.01E+01	3172	0.432	Equation	424	0.9	0.1	3.20E+01	2.66E+00	4.21E-02	3.47E+01

mg/kg - milligrams per kilogram

mg/L - milligramsper liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - EstimatedDaily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or gegression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
1 Dose _{plant} = IR _{diet} X C _{plant} X DF _{invert} X AUF	Body Weight (BW) (kg)	1.17
Where C _{plant} = (EPC _{sediment} X BSAF) or the result of the BSAF regression equation	IR _{plant} (kg/kg BW-day, dw)	0.0839
2 Dose sed Ir _{sediment} X EPC _{sediment} X Df _{sed} X AUF	IR _{water} (L/kg BW-day)	0.0975
$3 \text{ Dose}_{\text{water}} = \text{IR}_{\text{water}} X C_{\text{water}} X AUF$	IR _{sediment} (kg/kg BW-day, dw)	0.00839

 $4 Total EDD = Dose_{invert} + Dose_{sed} + Dose_{water}$

EDDs for the muskrat foraging at sampling location A72 on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas Mining District

	RM	1E*					EDD kg bw-day)				C	ΓE**					EDD kg bw-day)			
	ExposurePoin	t Concentration			Diet			Sediment	Water		ExposurePoir	nt Concentration			Diet			Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Plant tissue Concentration (C _{plant, dw})	DFplant	Df _{sediment}	Dose _{plant} 1	Dose _{sed} ²	Dose _{water} 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Plant tissue Concentration (C _{plant, dw})	DF _{plant}	Df _{sediment}	Dose _{plant}	Dose _{sed} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	39.6	0.0050	Equation	1.09	0.9	0.1	8.20E-02	3.32E-02	4.88E-04	1.16E-01	33.4	0.0050	Equation	0.99	0.9	0.1	7.45E-02	2.80E-02	4.88E-04	1.03E-01
Cadmium	2.9	0.002	Equation	1.11	0.9	0.1	8.39E-02	2.43E-03	1.85E-04	8.65E-02	2.1	0.0016	Equation	0.93	0.9	0.1	7.03E-02	1.76E-03	1.56E-04	7.23E-02
Chromium	6.1	0.000	0.04	0.25	0.9	0.1	1.89E-02	5.12E-03	0.00E+00	2.40E-02	4.6	0.000	0.04	0.19	0.9	0.1	1.42E-02	3.86E-03	0.00E+00	1.81E-02
Copper	173	0.0307	Equation	14.9	0.9	0.1	1.12E+00	1.45E-01	2.99E-03	1.27E+00	137	0.0274	Equation	13.6	0.9	0.1	1.02E+00	1.15E-01	2.67E-03	1.14E+00
Lead	581	0.0305	Equation	9.4	0.9	0.1	7.11E-01	4.87E-01	2.97E-03	1.20E+00	478	0.0128	Equation	8.4	0.9	0.1	6.37E-01	4.01E-01	1.25E-03	1.04E+00
Mercury	0.070	0.000	Equation	0.09	0.9	0.1	6.56E-03	5.87E-05	0.00E+00	6.62E-03	0.06	0.000	Equation	0.08	0.9	0.1	6.04E-03	5.03E-05	0.00E+00	6.09E-03
Nickel	5.9	0.0037	Equation	0.41	0.9	0.1	3.08E-02	4.95E-03	3.61E-04	3.61E-02	5.1	0.0050	Equation	0.37	0.9	0.1	2.76E-02	4.28E-03	4.88E-04	3.24E-02
Selenium	1.9	0.000	Equation	1.03	0.9	0.1	7.79E-02	1.59E-03	0.00E+00	7.95E-02	1.5	0.000	Equation	0.79	0.9	0.1	6.00E-02	1.26E-03	0.00E+00	6.12E-02
Silver	2.4	0.000	0.014	0.034	0.9	0.1	2.54E-03	2.01E-03	0.00E+00	4.55E-03	1.9	0.000	0.014	0.027	0.9	0.1	2.01E-03	1.59E-03	0.00E+00	3.60E-03
Zinc	819	0.711	Equation	200	0.9	0.1	1.51E+01	6.87E-01	6.93E-02	1.59E+01	651	0.600	Equation	176	0.9	0.1	1.33E+01	5.46E-01	5.85E-02	1.39E+01

mg/kg - milligrams per kilogram

mg/L - milligramsper liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
$1 \operatorname{Dose}_{plant} = \operatorname{IR}_{diet} X \operatorname{C}_{plant} X \operatorname{DF}_{invert} X \operatorname{AUF}$	Body Weight (BW) (kg)	1.17
Where C _{plant} = (EPC _{sediment} X BSAF) or the result of the BSAF regression equation	IR _{plant} (kg/kg BW-day, dw)	0.0839
2 Dose sed Ir sediment X EPC sediment X Df sed X AUF	$IR_{water}(L/kg BW-day)$	0.0975
$3 \text{ Dose}_{\text{water}} = 1R_{\text{water}} \times C_{\text{water}} \times AUF$	IR _{sediment} (kg/kg BW-day, dw)	0.00839

4 Total EDD = Doseinvert + Dose sed + Dosewater

EDDs for the muskrat foraging at sampling location A73 on the Animas River below mainstem Mineral Creek **Baseline Ecological Risk Assessment**

Upper Animas Mining District

							EDD										EDD			
	RM	ΛE*				(mg/	kg bw-day)				Cl	[E**				(mg/	kg bw-day)			
	Exposure Poin	t Concentration			Diet			Sediment	Water		Exposure Poir	nt Concentration			Diet			Sediment	Water	
				Plant Tissue										Plant Tissue						1
	Sediment	Surface Water		Concentration		1 1		1		Total	Sediment	Surface Water		Concentration						
COPECs	(mg/kg, dw)	(mg/L)	BSAFs	(C _{plant, dw})	DF _{plant}	Df _{sediment}	Dose plant	Dose _{sed} ²	Dose _{water} 3	EDD ⁴	(mg/kg, dw)	(mg/L)	BSAFs	(Cplant, dw)	DF _{plant}	Df _{sediment}	Dose plant	Dose _{sed} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	33.8	0.000	Equation	0.99	0.9	0.1	7.50E-02	2.84E-02	0.00E+00	1.03E-01	27.9	0.000	Equation	0.89	0.9	0.1	6.73E-02	2.34E-02	0.00E+00	9.07E-02
Cadmium	5.4	0.0021	Equation	1.56	0.9	0.1	1.18E-01	4.53E-03	2.05E-04	1.23E-01	4.0	0.0015	Equation	1.32	0.9	0.1	1.00E-01	3.36E-03	1.46E-04	1.04E-01
Chromium	5.4	0.000	0.04	0.22	0.9	0.1	1.67E-02	4.53E-03	0.00E+00	2.12E-02	4.0	0.000	0.04	0.16	0.9	0.1	1.24E-02	3.36E-03	0.00E+00	1.57E-02
Copper	284	0.0228	Equation	18.1	0.9	0.1	1.37E+00	2.38E-01	2.22E-03	1.61E+00	199	0.0178	Equation	15.7	0.9	0.1	1.19E+00	1.67E-01	1.74E-03	1.36E+00
Lead	729	0.0234	Equation	10.7	0.9	0.1	8.08E-01	6.12E-01	2.28E-03	1.42E+00	513	0.0111	Equation	8.8	0.9	0.1	6.63E-01	4.30E-01	1.08E-03	1.09E+00
Mercury	0.05	0.000	Equation	0.07	0.9	0.1	5.47E-03	4.20E-05	0.00E+00	5.51E-03	0.04	0.000	Equation	0.06	0.9	0.1	4.84E-03	3.36E-05	0.00E+00	4.87E-03
Nickel	7.2	0.0038	Equation	0.47	0.9	0.1	3.58E-02	6.04E-03	3.71E-04	4.22E-02	6.4	0.0038	Equation	0.43	0.9	0.1	3.27E-02	5.37E-03	3.71E-04	3.85E-02
Selenium	1.4	0.000	Equation	0.74	0.9	0.1	5.56E-02	1.17E-03	0.00E+00	5.67E-02	1.1	0.000	Equation	0.56	0.9	0.1	4.26E-02	9.23E-04	0.00E+00	4.35E-02
Silver	2.8	0.000	0.014	0.039	0.9	0.1	2.96E-03	2.35E-03	0.00E+00	5.31E-03	1.9	0.000	0.014	0.027	0.9	0.1	2.01E-03	1.59E-03	0.00E+00	3.60E-03
Zinc	1393	0.704	Equation	268	0.9	0.1	2.03E+01	1.17E+00	6.86E-02	2.15E+01	1049	0.521	Equation	229	0.9	0.1	1.73E+01	8.80E-01	5.08E-02	1.83E+01

mg/kg - milligrams per kilogram mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equations

1 Dose_{plant}=IR_{diet} X C_{plant} X DF_{invert} X AUF

Where $C_{\text{plant}} = (EPC_{\text{sediment}} X \text{ BSAF})$ or the result of the BSAF regression equation

 $2\;Dose\;{}_{sed}\!\!=\!Ir_{sediment}X\;EPC_{sediment}X\;Df_{sed}\;X\;AUF$

3 Dose_{water} = IR_{water} X C_{water} X AUF

4 Total EDD = Dose invert + Dose sed + Dose water

Area Use Factor (AUF) 1.0 Body Weight (BW) (kg) 1.17 IR_{plant} (kg/kg BW-day, dw) 0.0839 IR_{water} (L/kg BW-day) 0.0975 IR_{sediment} (kg/kg BW-day, dw) 0.00839

EDDs for the muskrat foraging at sampling location A73B on the Animas River below mainstem Mineral Creek **Baseline Ecological Risk Assessment**

Upper Animas Mining District

							EDD										EDD			
	R	ME*				(mg/	kg bw-day)				C.	TE**				(mg/	kg bw-day)			
	Exposure Poin	t Concentration			Diet			Sediment	Water		Exposure Poir	nt Concentration			Diet			Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Plant tissue Concentration (C _{plant, dw})		Df _{sediment}	Dose _{plant}	Dose _{sed} ²	Dose water 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Plant tissue Concentration (C _{plant, dw})	DF _{plant}	Df _{sediment}	Dose _{plant}	Dose _{sed} ²	Dose _{water} 3	Total EDD⁴
Arsenic	39.4	0.000	Equation	1.08	0.9	0.1	8.18E-02	3.31E-02	0.00E+00	1.15E-01	29.9	0.000	Equation	0.93	0.9	0.1	7.00E-02	2.51E-02	0.00E+00	9.51E-02
Cadmium	4.2	0.0015	Equation	1.36	0.9	0.1	1.03E-01	3.52E-03	1.46E-04	1.06E-01	3.5	0.0010	Equation	1.23	0.9	0.1	9.30E-02	2.94E-03	9.75E-05	9.60E-02
Chromium	5.0	0.0058	0.04	0.21	0.9	0.1	1.55E-02	4.20E-03	5.66E-04	2.02E-02	4.5	0.0058	0.04	0.18	0.9	0.1	1.39E-02	3.78E-03	5.66E-04	1.83E-02
Copper	292	0.0131	Equation	18.3	0.9	0.1	1.38E+00	2.45E-01	1.28E-03	1.63E+00	177	0.0094	Equation	15.0	0.9	0.1	1.13E+00	1.49E-01	9.17E-04	1.28E+00
Lead	593	0.0106	Equation	9.5	0.9	0.1	7.19E-01	4.98E-01	1.03E-03	1.22E+00	534	0.0055	Equation	9.0	0.9	0.1	6.78E-01	4.48E-01	5.36E-04	1.13E+00
Mercury	0.09	0.000	Equation	0.10	0.9	0.1	7.53E-03	7.55E-05	0.00E+00	7.60E-03	0.07	0.000	Equation	0.09	0.9	0.1	6.56E-03	5.87E-05	0.00E+00	6.62E-03
Nickel	12.1	0.0029	Equation	0.70	0.9	0.1	5.27E-02	1.02E-02	2.83E-04	6.32E-02	10.0	0.0029	Equation	0.61	0.9	0.1	4.57E-02	8.39E-03	2.83E-04	5.44E-02
Selenium	2.9	0.000	Equation	1.64	0.9	0.1	1.24E-01	2.43E-03	0.00E+00	1.27E-01	2.9	0.000	Equation	1.64	0.9	0.1	1.24E-01	2.43E-03	0.00E+00	1.27E-01
Silver	3.1	0.000	0.014	0.043	0.9	0.1	3.28E-03	2.60E-03	0.00E+00	5.88E-03	2.0	0.000	0.014	0.028	0.9	0.1	2.11E-03	1.68E-03	0.00E+00	3.79E-03
Zinc	1720	0.498	Equation	302	0.9	0.1	2.28E+01	1.44E+00	4.86E-02	2.43E+01	1114	0.265	Equation	237	0.9	0.1	1.79E+01	9.35E-01	2.58E-02	1.89E+01
mg/kg - milligrams	per kilogram	•								•	-	•			-	•	•			

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equations

1 Dose_{plant}=IR_{diet} X C_{plant} X DF_{invert} X AUF

Where $C_{\text{plant}} = (EPC_{\text{sediment}} \, X \, BSAF)$ or the result of the BSAF regression equation

 $2\;Dose\;{}_{sed}\!\!=\!Ir_{sediment}X\;EPC_{sediment}X\;Df_{sed}\;X\;AUF$

 $3 \text{ Dose}_{water} = IR_{water} \times C_{water} \times AUF$

4 Total EDD = Dose invert + Dose sed + Dose water

Area Use Factor (AUF) 1.0 Body Weight (BW) (kg) 1.17 $\mathbf{IR}_{\mathbf{plant}}$ (kg/kg BW-day, dw) 0.0839 IR_{water} (L/kg BW-day) 0.0975 IR_{sediment} (kg/kg BW-day, dw) 0.00839

EDDs for the muskrat foraging at sampling location A75D on the Animas River below mainstem Mineral Creek **Baseline Ecological Risk Assessment**

Upper Animas Mining District

	RA	ME*				(mg/	EDD kg bw-day)				C	ΓE**				(mg/	EDD kg bw-day)			
	1	t Concentration			Diet	(mg/	ng on-day)	Sediment	Water	I		it Concentration			Diet	(mg/	ng Dir-day)	Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Plant tissue Concentration (C _{plant, dw})	DF _{plant}	Df _{sediment}	Dose _{plant}	Dose _{sed} ²	Dose water 3	Total EDD⁴	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Plant tissue Concentration (C _{plant, dw})	l .	Df _{sediment}	Dose _{plant}	Dose _{sed} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	27.0	0.000	Equation	0.88	0.9	0.1	6.61E-02	2.27E-02	0.00E+00	8.87E-02	19.4	0.000	Equation	0.73	0.9	0.1	5.49E-02	1.63E-02	0.00E+00	7.11E-02
Cadmium	6.4	0.0014	Equation	1.71	0.9	0.1	1.29E-01	5.37E-03	1.37E-04	1.35E-01	4.8	0.0010	Equation	1.46	0.9	0.1	1.10E-01	4.03E-03	9.75E-05	1.15E-01
Chromium	4.9	0.000	0.04	0.20	0.9	0.1	1.52E-02	4.11E-03	0.00E+00	1.93E-02	4.2	0.000	0.04	0.17	0.9	0.1	1.30E-02	3.52E-03	0.00E+00	1.65E-02
Copper	212	0.0197	Equation	16.1	0.9	0.1	1.22E+00	1.78E-01	1.92E-03	1.40E+00	147	0.0138	Equation	13.9	0.9	0.1	1.05E+00	1.23E-01	1.35E-03	1.18E+00
Lead	367	0.0231	Equation	7.3	0.9	0.1	5.50E-01	3.08E-01	2.25E-03	8.60E-01	300	0.0112	Equation	6.5	0.9	0.1	4.91E-01	2.52E-01	1.09E-03	7.44E-01
Mercury	0.04	0.000	Equation	0.06	0.9	0.1	4.84E-03	3.36E-05	0.00E+00	4.87E-03	0.04	0.000	Equation	0.06	0.9	0.1	4.84E-03	3.36E-05	0.00E+00	4.87E-03
Nickel	12.4	0.000	Equation	0.71	0.9	0.1	5.37E-02	1.04E-02	0.00E+00	6.41E-02	9.4	0.000	Equation	0.58	0.9	0.1	4.37E-02	7.89E-03	0.00E+00	5.15E-02
Selenium	1.4	0.000	Equation	0.74	0.9	0.1	5.56E-02	1.17E-03	0.00E+00	5.67E-02	1.20	0.000	Equation	0.62	0.9	0.1	4.69E-02	1.01E-03	0.00E+00	4.79E-02
Silver	1.4	0.000	0.014	0.020	0.9	0.1	1.48E-03	1.17E-03	0.00E+00	2.65E-03	1.1	0.000	0.014	0.015	0.9	0.1	1.16E-03	9.23E-04	0.00E+00	2.09E-03
Zinc	2778	0.503	Equation	394	0.9	0.1	2.97E+01	2.33E+00	4.90E-02	3.21E+01	1738	0.361	Equation	304	0.9	0.1	2.29E+01	1.46E+00	3.52E-02	2.44E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equations

1 Dose_{plant}=IR_{diet} X C_{plant} X DF_{invert} X AUF

Where $C_{\text{plant}} = (EPC_{\text{sediment}} \, X \, BSAF)$ or the result of the BSAF regression equation

 $2\; Dose\; _{sed} = Ir_{sediment} \; X \; EPC _{sediment} \; X \; Df_{sed} \; X \; AUF$

 $3 \text{ Dose}_{water} = IR_{water} \times C_{water} \times AUF$

4 Total EDD = Dose invert + Dose sed + Dose water

Area Use Factor (AUF) 1.0 Body Weight (BW) (kg) 1.17 $\mathbf{IR}_{\mathbf{plant}}$ (kg/kg BW-day, dw) 0.0839 IR_{water} (L/kg BW-day) 0.0975 IR_{sediment} (kg/kg BW-day, dw) 0.00839

EDDs for the muskrat foraging at sampling location A75B on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment

Upper Animas Mining District

							EDD										EDD			
		ME*				(mg/	kg bw-day)				8	ΓE**				(mg/	kg bw-day)			
	Exposure Poin	nt Concentration			Diet			Sediment	Water		Exposure Poin	nt Concentration			Diet			Sediment	Water	J
				Plant Tissue										Plant Tissue						
	Sediment	Surface Water		Concentration						Total	Sediment	Surface Water		Concentration						l
COPECs	(mg/kg, dw)	(mg/L)	BSAFs	(Cplant, dw)	DF _{plant}	Df _{sediment}	Dose _{plant}	Dose _{sed} ²	Dose _{water} 3	EDD^4	(mg/kg, dw)	(mg/L)	BSAFs	(Cplant, dw)	DFplant	Df _{sediment}	Dose plant	Dose _{sed} ²	Dose _{water} ³	Total EDD ⁴
Metals																				
Arsenic	37.2	0.000	Equation	1.05	0.9	0.1	7.92E-02	3.12E-02	0.00E+00	1.10E-01	19.9	0.000	Equation	0.74	0.9	0.1	5.56E-02	1.67E-02	0.00E+00	7.23E-02
Cadmium	10.5	0.0011	Equation	2.24	0.9	0.1	1.69E-01	8.81E-03	1.07E-04	1.78E-01	5.0	0.0009	Equation	1.50	0.9	0.1	1.13E-01	4.20E-03	8.78E-05	1.17E-01
Chromium	5.5	0.000	0.04	0.23	0.9	0.1	1.70E-02	4.61E-03	0.00E+00	2.16E-02	5.2	0.000	0.04	0.21	0.9	0.1	1.61E-02	4.36E-03	0.00E+00	2.05E-02
Copper	413	0.0215	Equation	21.0	0.9	0.1	1.58E+00	3.47E-01	2.10E-03	1.93E+00	188	0.0122	Equation	15.4	0.9	0.1	1.16E+00	1.58E-01	1.19E-03	1.32E+00
Lead	435	0.0303	Equation	8.0	0.9	0.1	6.05E-01	3.65E-01	2.95E-03	9.72E-01	296	0.0121	Equation	6.5	0.9	0.1	4.87E-01	2.48E-01	1.18E-03	7.37E-01
Mercury	0.07	0.000	Equation	0.09	0.9	0.1	6.56E-03	5.87E-05	0.00E+00	6.62E-03	0.07	0.000	Equation	0.09	0.9	0.1	6.56E-03	5.87E-05	0.00E+00	6.62E-03
Nickel	16.5	0.000	Equation	0.88	0.9	0.1	6.65E-02	1.38E-02	0.00E+00	8.03E-02	9.7	0.000	Equation	0.59	0.9	0.1	4.47E-02	8.14E-03	0.00E+00	5.28E-02
Selenium	3.3	0.000	Equation	1.90	0.9	0.1	1.43E-01	2.77E-03	0.00E+00	1.46E-01	1.9	0.000	Equation	1.03	0.9	0.1	7.79E-02	1.59E-03	0.00E+00	7.95E-02
Silver	2.2	0.000	0.014	0.031	0.9	0.1	2.33E-03	1.85E-03	0.00E+00	4.17E-03	1.4	0.000	0.014	0.020	0.9	0.1	1.48E-03	1.17E-03	0.00E+00	2.65E-03
Zinc	5320	0.429	Equation	565	0.9	0.1	4.26E+01	4.46E+00	4.18E-02	4.72E+01	2190	0.302	Equation	345	0.9	0.1	2.61E+01	1.84E+00	2.94E-02	2.79E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

^{**} The CTE values represents the mean concentration.

Equations	Area Use Factor (AUF)	1.0
$1 \operatorname{Dose}_{\operatorname{plant}} = \operatorname{IR}_{\operatorname{diet}} X \operatorname{C}_{\operatorname{plant}} X \operatorname{DF}_{\operatorname{invert}} X \operatorname{AUF}$	Body Weight (BW) (kg)	1.17
Where C _{plant} = (EPC _{sediment} X BSAF) or the result of the BSAF regression equation	IR _{plant} (kg/kg BW-day, dw)	0.0839
$2 \text{ Dose }_{\text{sed}} = \text{Ir}_{\text{sediment}} X \text{ EPC}_{\text{sediment}} X \text{ Df}_{\text{sed}} X \text{ AUF}$	IR _{water} (L/kg BW-day)	0.0975
$3 \operatorname{Dose}_{\operatorname{water}} = \operatorname{IR}_{\operatorname{water}} \operatorname{X} \operatorname{C}_{\operatorname{water}} \operatorname{X} \operatorname{AUF}$	IR _{sediment} (kg/kg BW-day, dw)	0.00839
$4 \text{ Total EDD} = \text{Dose}_{\text{invert}} + \text{Dose}_{\text{sed}} + \text{Dose}_{\text{water}}$		

EDDs for the muskrat foraging at the Bakers Bridge sampling location on the Animas River below mainstem Mineral Creek **Baseline Ecological Risk Assessment**

Upper Animas Mining District

	RN	ME*				(mg/	EDD kg bw-day)				C	TE**				(mg/	EDD kg bw-day)			
	Exposure Poin	t Concentration			Diet			Sediment	Water		Exposure Poir	nt Concentration			Diet			Sediment	Water	
COPECs	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Plant tissue Concentration (C _{plant, dw})	DF _{plant}	Df _{sediment}	Dose _{plant} 1	Dose sed 2	Dose _{water} 3	Total EDD ⁴	Sediment (mg/kg, dw)	Surface Water (mg/L)	BSAFs	Plant tissue Concentration (C _{plant, dw})	DF _{plant}	Df _{sediment}	Dose _{plant}	Dose _{sed} ²	Dose _{water} 3	Total EDD ⁴
Arsenic	29.7	0	Equation	0.92	0.9	0.1	6.97E-02	2.49E-02	0.00E+00	9.47E-02	21.9	0	Equation	0.78	0.9	0.1	5.87E-02	1.84E-02	0.00E+00	7.71E-02
Cadmium	18.6	0.0008	Equation	3.06	0.9	0.1	2.31E-01	1.56E-02	7.80E-05	2.47E-01	10.1	0.0007	Equation	2.20	0.9	0.1	1.66E-01	8.47E-03	6.83E-05	1.74E-01
Chromium	7.0	0	0.04	0.29	0.9	0.1	2.17E-02	5.87E-03	0.00E+00	2.75E-02	5.4	0	0.04	0.22	0.9	0.1	1.67E-02	4.53E-03	0.00E+00	2.12E-02
Copper	332	0.0138	Equation	19.2	0.9	0.1	1.45E+00	2.79E-01	1.35E-03	1.73E+00	191	0.0095	Equation	15.5	0.9	0.1	1.17E+00	1.60E-01	9.26E-04	1.33E+00
Lead	376	0.0177	Equation	7.4	0.9	0.1	5.57E-01	3.15E-01	1.73E-03	8.74E-01	300	0.0078	Equation	6.5	0.9	0.1	4.91E-01	2.52E-01	7.61E-04	7.43E-01
Mercury	0.06	0	Equation	0.08	0.9	0.1	6.04E-03	5.03E-05	0.00E+00	6.09E-03	0.04	0	Equation	0.06	0.9	0.1	4.84E-03	3.36E-05	0.00E+00	4.87E-03
Nickel	31.0	0	Equation	1.41	0.9	0.1	1.07E-01	2.60E-02	0.00E+00	1.33E-01	18.3	0	Equation	0.95	0.9	0.1	7.19E-02	1.54E-02	0.00E+00	8.72E-02
Selenium	3.1	0	Equation	1.77	0.9	0.1	1.34E-01	2.60E-03	0.00E+00	1.36E-01	2.1	0	Equation	1.15	0.9	0.1	8.70E-02	1.76E-03	0.00E+00	8.87E-02
Silver	1.7	0	0.014	0.024	0.9	0.1	1.80E-03	1.43E-03	0.00E+00	3.22E-03	1.3	0	0.014	0.018	0.9	0.1	1.37E-03	1.09E-03	0.00E+00	2.46E-03
Zinc	8544	0.272	Equation	735	0.9	0.1	5.55E+01	7.17E+00	2.65E-02	6.27E+01	4620	0.216	Equation	522	0.9	0.1	3.94E+01	3.88E+00	2.11E-02	4.33E+01

mg/kg - milligrams per kilogram

mg/L - milligrams per liter

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

DF - Dose Fraction

BSAF - Biota-Sediment Accumulation Factor or regression equation

* The RME value represents the 95% UCL or the maximum detected concentration if a 95% UCL could not be calculated.

** The CTE values represents the mean concentration.

Equations

1 Dose_{plant}=IR_{diet} X C_{plant} X DF_{invert} X AUF

Where $C_{\text{plant}} = (EPC_{\text{sediment}} \, X \, BSAF)$ or the result of the BSAF regression equation

 $2\; Dose\; {}_{sed}\!\!=\! Ir_{sediment}X\; EPC_{sediment}X\; Df_{sed}\; X\; AUF$

 $3 \text{ Dose}_{water} = IR_{water} \times C_{water} \times AUF$

4 Total EDD = Dose invert + Dose sed + Dose water

Area Use Factor (AUF) 1.0 Body Weight (BW) (kg) 1.17 IR_{plant} (kg/kg BW-day, dw) 0.0839 IR_{water} (L/kg BW-day) 0.0975 IR_{sediment} (kg/kg BW-day, dw) 0.00839

Table 5.1 Summary of the risk estimation approaches by receptor group, exposure unit, and measurement endpoint Baseline Ecological Risk Assessments Upper Animas Mining District

		measure	ment endpoint	
receptor group	exposure units ^a	exposure	effect	risk estimation approach
benthic invertebrate	CC, MC, AR above CC, AR below MC	total metals in bulk sediment	no effect & effect sediment benchmarks	HQ method
community	MC, AR above CC, AR below MC,	dissolved metals in pore water	chronic surface water benchmarks	HQ method
	CC, MC, AR above CC, and AR below MR	10-day sediment toxicity test using	juvenile amphipods (<i>Hyalella azteca</i>)	statistical method
	CC, MC, AR above CC, and AR below MR	macroinvertebrate benthic commun	ity survey	graphical analysis
fish community	CC, MC, AR above CC, AR between CC & MR, AR below MC	total or dissolved metals in surface water	chronic surface water benchmarks	HQ method
	CC, MC, AR above CC, AR below MC	96-hour acute surface water toxicity	tests using juvenile rainbow trout	statistical method
insectivorous birds	AR aboce CC; AR below MC	exposure modeling to calculate RME and CTE EDDs	bird no-effect and effect TRVs	HQ method
omnivorous birds	AR aboce CC; AR below MC	exposure modeling to calculate RME and CTE EDDs	bird no-effect and effect TRVs	HQ method
piscivorous birds	AR aboce CC; AR below MC	exposure modeling to calculate RME and CTE EDDs	bird no-effect and effect TRVs	HQ method
herbivorous mammals	AR aboce CC; AR below MC	exposure modeling to calculate RME and CTE EDDs	mammal no-effect and effect TRVs	HQ method

^a CC = Cement Creek; MC = Mineral Creek; AR = Animas River

created by: SJP (1/9/14) reviewed by: EC (3/16/15)

CTE = central tendency exposure

EDD = estimated daily dose

HQ = hazard quotient

RME = reasonable maximum exposure

TRV = toxicity reference value

Table 5.2
Sediment HQs for mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	EPCs (mg/kg)	Sed benchma	rks (mg/kg)	No Effe	ect HQs	Effec	t HQs
COPECs	RME	СТЕ	no effect	effect	RME	CTE	RME	CTE
Arsenic	32.7	26.9	9.8	33	3.3	2.7	<1	<1
Copper	127	90.4	31.6	149	4.0	2.9	<1	<1
Lead	237	183	35.8	128	6.6	5.1	1.9	1.4
Manganese	1430	1295	630	1,200	2.3	2.1	1.2	1.1
Selenium	1.7	1.7	0.9	4.7	1.9	1.9	<1	<1
Zinc	666	468	121	459	5.5	3.9	1.5	1.02

COPEC = chemical of potential ecological concern

CTE = central tendency exposure

EPC = exposure point concentration

HQ = hazard quotient

RME = reasonable maximum exposure

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14)

updated by: EC (3/8/15) reviewed by: ES (3/9/15)

Table 5.3
Sediment HQs for mainstem Cement Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	EPCs ((mg/kg)	Sed benchma	arks (mg/kg)	No Eff	ect HQs	Effec	t HQs
COPECs	RME	CTE	no effect	effect	RME	CTE	RME	CTE
Arsenic	40.6	40.6	9.8	33	4.1	4.1	1.2	1.2
Copper	55.6	55.6	31.6	149	1.8	1.8	<1	<1
Lead	282	282	35.8	128	7.9	7.9	2.2	2.2
Silver	2.0	2.0	1.0	3.7	2.0	2.0	<1	<1
Zinc	195	195	121	459	1.6	1.6	<1	<1

COPEC = chemical of potential ecological concern

CTE = central tendency exposure

EPC = exposure point concentration

HQ = hazard quotient

RME = reasonable maximum exposure

prepared by: SJP (1/31/14)

reviewed by: RI (2/10/14) updated by: EC (3/8/15)

Table 5.4
Sediment HQs for the Animas River above mainstem Cement Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	EPCs (mg/kg)	Sed benchma	arks (mg/kg)	No Eff	ect HQs	Effec	ct HQs
COPECs	RME	CTE	no effect	effect	RME	CTE	RME	CTE
Arsenic	34.2	27.4	9.8	33	3.5	2.8	1.04	<1
Cadmium	12.9	11.1	0.99	4.98	13.0	11.2	2.6	2.2
Copper	399	339	31.6	149	12.6	10.7	2.7	2.3
Lead	1733	1508	35.8	128	48.4	42.1	13.5	11.8
Manganese	12566	10617	630	1,200	19.9	16.9	10.5	8.8
Mercury	0.09	0.07	0.18	1.06	<1	<1	<1	<1
Selenium	0.998	1.54	0.9	4.7	1.1	1.7	<1	<1
Silver	6.4	5.5	1.0	3.7	6.4	5.5	1.7	1.5
Zinc	4054	3172	121	459	33.5	26.2	8.8	6.9

COPEC = chemical of potential ecological concern

CTE = central tendency exposure

EPC = exposure point concentration

HQ = hazard quotient

RME = reasonable maximum exposure

prepared by: SJP (1/31/14)

reviewed by: RI (2/10/14)

updated by: EC (3/8/15)

Table 5.5
Sediment HQs for sampling location A72 on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	EPCs (mg/kg)	Sed benchma	arks (mg/kg)	No Effe	ect HQs	Effec	ct HQs
COPECs	RME	CTE	no effect	effect	RME	CTE	RME	CTE
Aluminum	19,659	14,872	26,000	60,000	<1	<1	<1	<1
Arsenic	39.6	33.4	9.8	33	4.0	3.4	1.2	1.01
Cadmium	2.9	2.1	1.0	4.98	2.9	2.1	<1	<1
Copper	173	137	31.6	149	5.5	4.3	1.2	<1
Lead	581	478	35.8	128	16.2	13.4	4.5	3.7
Manganese	2,979	2,100	630	1,200	4.7	3.3	2.5	1.8
Nickel	5.9	5.1	22.7	48.6	<1	<1	<1	<1
Selenium	1.9	1.5	0.9	4.7	2.1	1.7	<1	<1
Silver	2.4	1.9	1.0	3.7	2.4	1.9	<1	<1
Zinc	819	651	121	459	6.8	5.4	1.8	1.4

COPEC = chemical of potential ecological concern

CTE = central tendency exposure

EPC = exposure point concentration

HQ = hazard quotient

RME = reasonable maximum exposure

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14)

updated by: EC (3/8/15)

Table 5.6
Sediment HQs for sampling location A73 on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	EPCs ((mg/kg)	Sed benchm	arks (mg/kg)	No Eff	ect HQs	Effec	t HQs
COPECs	RME	CTE	no effect	effect	RME	CTE	RME	CTE
Aluminum	35,775	17,123	26,000	60,000	1.4	<1	<1	<1
Arsenic	33.8	27.9	9.8	33	3.4	2.9	1.02	<1
Cadmium	5.4	4.0	1.0	4.98	5.5	4.1	1.1	<1
Copper	284	199	31.6	149	9.0	6.3	1.9	1.3
Lead	729	513	35.8	128	20.4	14.3	5.7	4.0
Manganese	6,618	4,340	630	1,200	10.5	6.9	5.5	3.6
Nickel	7.2	6.4	22.7	48.6	<1	<1	<1	<1
Selenium	1.4	1.1	0.9	4.7	1.6	1.2	<1	<1
Silver	2.8	1.9	1.0	3.7	2.8	1.9	<1	<1
Zinc	1,393	1,049	121	459	11.5	8.7	3.0	2.3

COPEC = chemical of potential ecological concern

CTE = central tendency exposure

EPC = exposure point concentration

HQ = hazard quotient

RME = reasonable maximum exposure

prepared by: SJP (1/31/14)

reviewed by: RI (2/10/14) updated by: EC (3/8/15)

Table 5.7
Sediment HQs for sampling location A73B on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	EPCs ((mg/kg)	Sed benchma	arks (mg/kg)	No Effe	ect HQs	Effec	et HQs
COPECs	RME	CTE	no effect	effect	RME	CTE	RME	CTE
Aluminum	31,900	16,373	26,000	60,000	1.2	<1	<1	<1
Arsenic	39.4	29.9	9.8	33	4.0	3.1	1.2	<1
Cadmium	4.2	3.5	1.0	4.98	4.3	3.5	<1	<1
Copper	292	177	31.6	149	9.2	5.6	2.0	1.2
Lead	593	534	35.8	128	16.6	14.9	4.6	4.2
Manganese	4,340	3,143	630	1,200	6.9	5.0	3.6	2.6
Nickel	12.1	10.0	22.7	48.6	<1	<1	<1	<1
Selenium	2.9	2.9	0.9	4.7	3.2	3.2	<1	<1
Silver	3.1	2.0	1.0	3.7	3.1	2.0	<1	<1
Zinc	1,720	1,114	121	459	14.2	9.2	3.7	2.4

COPEC = chemical of potential ecological concern

CTE = central tendency exposure

EPC = exposure point concentration

HQ = hazard quotient

RME = reasonable maximum exposure

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14)

updated by: EC (3/8/15)

Table 5.8
Sediment HQs for sampling location A75D on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	EPCs ((mg/kg)	Sed benchm	arks (mg/kg)	No Effe	ect HQs	Effec	t HQs
COPECs	RME	CTE	no effect	effect	RME	CTE	RME	CTE
Aluminum	27,525	15,428	26,000	60,000	1.1	<1	<1	<1
Arsenic	27.0	19.4	9.8	33	2.8	2.0	<1	<1
Cadmium	6.4	4.8	1.0	4.98	6.5	4.9	1.3	<1
Copper	212	147	31.6	149	6.7	4.6	1.4	<1
Lead	367	300	35.8	128	10.3	8.4	2.9	2.3
Manganese	6,390	4,348	630	1,200	10.1	6.9	5.3	3.6
Nickel	12.4	9.4	22.7	48.6	<1	<1	<1	<1
Selenium	1.4	1.2	0.9	4.7	1.6	1.4	<1	<1
Silver	1.4	1.1	1.0	3.7	1.4	1.1	<1	<1
Zinc	2,778	1,738	121	459	23.0	14.4	6.1	3.8

COPEC = chemical of potential ecological concern

CTE = central tendency exposure

EPC = exposure point concentration

HQ = hazard quotient

RME = reasonable maximum exposure

prepared by: SJP (1/31/14)

reviewed by: RI (2/10/14)

updated by: EC (3/8/15) reviewed by: ES (3/9/15)

Table 5.9
Sediment HQs for sampling location A75B on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	EPCs (mg/kg)	Sed benchma	arks (mg/kg)	No Effe	ect HQs	Effec	t HQs
COPECs	RME	CTE	no effect	effect	RME	CTE	RME	CTE
Aluminum	48,600	20,820	26,000	60,000	1.9	<1	<1	<1
Arsenic	37.2	19.9	9.8	33	3.8	2.0	1.1	<1
Cadmium	10.5	5.0	1.0	4.98	10.6	5.1	2.1	1.01
Copper	413	188	31.6	149	13.1	5.9	2.8	1.3
Lead	435	296	35.8	128	12.2	8.3	3.4	2.3
Manganese	3,820	2,743	630	1,200	6.1	4.4	3.2	2.3
Nickel	16.5	9.7	22.7	48.6	<1	<1	<1	<1
Selenium	3.3	1.9	0.9	4.7	3.7	2.1	<1	<1
Silver	2.2	1.4	1.0	3.7	2,2	1.4	<1	<1
Zinc	5,320	2,190	121	459	44.0	18.1	11.6	4.8

COPEC = chemical of potential ecological concern

CTE = central tendency exposure

EPC = exposure point concentration

HQ = hazard quotient

RME = reasonable maximum exposure

prepared by: SJP (1/31/14)

reviewed by: RI (2/10/14)

updated by: EC (3/8/15) reviewed by: ES (3/9/15)

Table 5.10
Sediment HQs for sampling location Bakers Bridge on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	EPCs (mg/kg)	Sed benchm	arks (mg/kg)	No Effe	ect HQs	Effec	t HQs
COPECs	RME	CTE	no effect	effect	RME	CTE	RME	CTE
Aluminum	37,400	20,025	26,000	60,000	1.4	<1	<1	<1
Arsenic	29.7	21.9	9.8	33	3.0	2.2	<1	<1
Cadmium	18.6	10.1	1.0	4.98	18.8	10.2	3.7	2.0
Copper	332	191	31.6	149	10.5	6.0	2.2	1.3
Lead	376	300	35.8	128	10.5	8.4	2.9	2.3
Manganese	13,100	7,425	630	1,200	20.8	11.8	10.9	6.2
Nickel	31.0	18.3	22.7	48.6	1.4	<1	<1	<1
Selenium	3.1	2.1	0.9	4.7	3.4	2.4	<1	<1
Silver	1.7	1.3	1.0	3.7	1.7	1.3	<1	<1
Zinc	8,544	4,620	121	459	70.6	38.2	18.6	10.1

COPEC = chemical of potential ecological concern

CTE = central tendency exposure

EPC = exposure point concentration

HQ = hazard quotient

RME = reasonable maximum exposure

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14)

updated by: EC (3/8/15)

Table 5.11
Average and lower hardnesses for deriving hardness-sensitive surface water benchmarks to calculate chronic HQs for pore water
Baseline Ecological Risk Assessment
Upper Animas River Mining District

			Pore wa	ater hardness (n	ng/L)	
Exposure Unit	n	95% UCL	average ^a	difference ^b	ave - diff ^c	minimum ^d
Mineral Creek	1		139			139
Cement Creek	0				dest************************************	
Animas R. above Cement Cr.	11	594.2	296	298	-2	118
Animas R. between CC & MC	0					
A71B (Animas R. below MC)	0			### ##################################		——
A72 (Animas R. below MC)	2		208	### ##################################		160
A73 (Animas R. below MC)	2		168			151
A73B (Animas R. below MC)	1		49	and interligical transfer and analysis of the second secon		49
A75D (Animas R. below MC)	2		115.5	90) yyyyddiddiddiddidd dy yddidiannan maenin maenin mae'i CONNYCCCC o'r Tyfyd cCC o'r Tyfyd cCC o'r Tyfyd c	3944 milaning (n) (1975 milaninum milanin) (1995 (n) (1994 (n) (1994 (n) (1995 (n) (19	96
A75B (Animas R. below MC)	0			——		
BBridge(Animas R. below MC)	2		198		mukain hala hala da kakenda ana ana mana mana 1944 da adalan ƙasar sa basan hala adalan ƙasar sa basan hala ad 	125

Highlighted concentrations were retained to adjust the hardness-sensitive benchmarks used in calculating the surface water HQs

note: the higher of the "ave - diff" value or "minimum" value was used to represent the estimated lower bound for pore water hardness for a given period

prepared by: SJP (1/31/14)

reviewed by: RI (2/10/14) updated by: EC (3/5/15

: 11 Eg (2/10/1

^a average = arithmetic mean pore water hardness concentration

^b difference = 95% UCL - average concentration

^c ave - diff = concentration obtained by subtracting "difference" from "average"

^d minimum = lowest pore water hardness measured in the samples collected from an exposure unit during the period

Table 5.12

Pore water HQs for benthic community-level receptors in mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	Н	HQ TE		Hardness (mg/L)		Hardn. Adj. Benchm.		Low Hardness		ardness
COPECs (dissolved)	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
Beryllium	1.0	1.0	0.66	1.5	1.5								
Silver	0.25	0.25				139	139	0.13	0.13	1.9	1.9	1.9	1.9

ug/L = microgram per liter

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient(concentration/benchmark)

RME = reasonable maximum exposure

Table 5.13

Pore water HQs for benthic community-level receptors in the Animas River above mainstem Cement Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	H	IQ	Hardnes	ss (mg/L)	Hardn. Ad	j. Benchm.	Low H	ardness	High H	ardness
COPECs (dissolved)	RME	CTE	(µg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
Aluminum	4,514	1,259	87	52	14								
Beryllium	10	2.2	0.66	15	3.4								
Cadmium	93	24				118	296	0.48	0.95	195	49	98	25
Copper	2,242	224				118	296	10.3	22.6	217	22	99	9.9
Lead	19	14				118	296	3.0	8.0	6.4	4.5	2.4	1.7
Manganese	78,300	17,912				118	296	1,743	2,368	45	10	33	7.6
Selenium	5.0	1.6	4.6	1.1	<1								
Silver	2.5	0.8				118	296	0.10	0.49	25	7.9	5.1	1.6
Zinc	19,367	5,735				118	296	141	325	137	41	60	18

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient (concentration/benchmark)

RME = reasonable maximum exposure

Table 5.14

Pore water HQs for benthic community-level receptors at sampling location A72 on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	Н	[Q	Hardnes	s (mg/L)	Hardn. Ad	j. Benchm.	Low Ha	ardness	High H	ardness
COPECs (dissolved)	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
Aluminum	517	282	87	5.9	3.2								
Beryllium	1	1	0.66	1.5	1.5								
Cadmium	3.0	2.2				160	208	0.60	0.73	5.0	3.6	4.1	3.0
Iron	338	338	1,000	<1	<1								
Manganese	995	722				160	208	1,929	2,105	<1	<1	<1	<1
Silver	0.25	0.25	4.6			160	208	0.17	0.26	1.5	1.5	<1	<1
Zinc	1,630	1,019				160	208	186	236	8.8	5.5	6.9	4.3

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient(concentration/benchmark)

RME = reasonable maximum exposure

Table 5.15

Pore water HQs for benthic community-level receptors at sampling location A73 on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Water	r EPCs (μg/L)	Benchmark	Н	IQ	Hardnes	s (mg/L)	Hardn. Ad	lj. Benchm.	Low Ha	ardness	High H	ardness
COPECs (dissolved)	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
Aluminum	29	26	87	<1	<1								
Beryllium	1.0	1.0	0.66	1.5	1.5								
Cadmium	2.0	1.2				151	168	0.58	0.62	3.5	2.1	3.3	1.9
Iron	341	341	1,000	<1	<1								
Manganese	1,870	936				151	168	1,892	1,961	<1	<1	<1	<1
Silver	0.25	0.25				151	168	0.15	0.18	1.6	1.6	1.4	1.4
Zinc	709	536				151	168	176	194	4.0	3.0	3.6	2.8

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient(concentration/benchmark)

RME = reasonable maximum exposure

Table 5.16

Pore water HQs for benthic community-level receptors at sampling location A73B on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	Н	IQ	Hardnes	s (mg/L)	Hardn. Ad	j. Benchm.	Low Ha	ardness	High H	ardness
COPECs (dissolved)	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
Aluminum	10	10	87	<1	<1								
Beryllium	1.0	1.0	0.66	1.5	1.5								
Cadmium	0.1	0.1				49	49	0.25	0.25	<1	<1	<1	<1
Iron	50	50	1,000	<1	<1								
Manganese	3.4	3.4				49	49	1,301	1,301	<1	<1	<1	<1
Silver	0.25	0.25				49	49	0.02	0.02	11	11	11	11
Zinc	33	33				49	49	63	63	<1	<1	<1	<1

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient(concentration/benchmark)

RME = reasonable maximum exposure

Table 5.17

Pore water HQs for benthic community-level receptors at sampling location A75D on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Water	r EPCs (μg/L)	Benchmark	Н	[Q	Hardnes	s (mg/L)	Hardn. Ad	j. Benchm.	Low H	ardness	High H	ardness
COPECs (dissolved)	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
Aluminum	40	34	87	<1	<1								
Beryllium	1.0	1.0	0.66	1.5	1.5								
Cadmium	0.79	0.59				96	116	0.41	0.47	1.9	1.4	1.7	1.2
Iron	107	107	1,000	<1	<1								
Manganese	290	238				96	116	1,627	1,731	<1	<1	<1	<1
Silver	0.25	0.25				96	116	0.07	0.10	3.6	3.6	2.6	2.6
Zinc	190	182				96	116	117	138	1.6	1.6	1.4	1.3

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient(concentration/benchmark)

RME = reasonable maximum exposure

Table 5.18

Pore water HQs for benthic community-level receptors at sampling location Bakers Bridge on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Water EPCs (µg/L)		Benchmark	HQ		Hardness (mg/L)		Hardn. Ad	j. Benchm.	Low Ha	ardness	High Hardness	
COPECs (dissolved)	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
Aluminum	47	41	87	<1	<1								
Beryllium	1.0	1.0	0.66	1.5	1.5								
Cadmium	0.3	0.3				125	198	0.50	0.71	<1	<1	<1	<1
Iron	1,260	1,260	1,000	1.3	1.3				==				
Manganese	5,870	3,098				125	198	1,777	2,071	3.3	1.7	2.8	1.5
Silver	0.25	0.25				125	198	0.11	0.24	2.3	2.3	1.03	1.03
Zinc	115	64				125	198	148	226	<1	<1	<1	<1

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient(concentration/benchmark)

RME = reasonable maximum exposure

Table 5.19

Average and lower hardnesses used for deriving hardness-sensitive surface water benchmarks needed to calculate chronic HQs Baseline Ecological Risk Assessment Upper Animas River Mining District

	Pre-Runoff Period Hardness (mg/L)						Runoff Period Hardness (mg/L)							Post-Runoff Period Hardness (mg/L)						
Exposure Unit	n	95% UCL ^a	average ^b	difference	ave - diff ^d	minimum ^e	n	95% UCL	average	difference	ave - diff	minimum	n	95% UCL	average	difference	ave - diff	minimum		
Mineral Creek	4	342	253	89	164	150	7	80	68	12	56	49	13	188	161	27	135	65		
Cement Creek	4	619	477	143	334	301	7	157	124	33	91	76	14	475	409	66	343	67		
Animas R. above Cement Cr.	5	192	170	22	148	148	17	74	69	5.1	64	49	18	136	124	12	112	66		
Animas R. between CC & MC	0						0				-		2		296			295		
A71B (Animas R. below MC)	0			-			0				-		1		263			263		
A72 (Animas R. below MC)	4	378	285	93	192	177	7	87	72	15	56	45	13	221	189	32	158	75		
A73 (Animas R. below MC)	the 1 pre-runoff datapoint was combined with the 2 runoff datapoints					5	216	147	70	77	71	the 2 post-runoff datapoints were combined with the 2 runoff datapoints								
A73B (Animas R. below MC)	0						4	194	98	96	1.6	37	the 2 post-runoff datapoints were combined with the 2 runoff datapoints							
A75D (Animas R. below MC)	the 1 pre-runoff datapoint was combined with the 2 runoff datapoints					5	161	110	50	60	60	the 2 post-runoff datapoints were combined with the 2 runoff datapoints								
A75B (Animas R. below MC)	0						4	174	102	72	30	61	the 2 post-runoff datapoints were combined with the 2 runoff datapoints							
BBridge(Animas R. below MC)	the 1 pre-runoff datapoint was combined with the 2 runoff datapoints						5	155	108	47	61	58	tl	the 2 post-runoff datapoints were combined with the 2 runoff datapoints						

Highlighted concentrations were retained to adjust the hardness-sensitive benchmarks used in calculating the surface water HQs

note: the higher of the "ave - diff" value or "minimum" value was used to represent the estimated lower bound for surface water hardness for a given period

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14) updated by: EC (3/5/15 reviewed by: BB (3/5/15)

 $^{^{}a}\,UCL = upper\,\, confidence\,\, limit\,\, for\, surface\,\, water\,\, hardness\,\, concentration\,\, (see\,\, Appendix\,\, X)$

 $^{^{\}mathfrak{b}}$ average = arithmetic mean surface water hardness concentration

c difference = 95% UCL - average concentration

^d ave - diff = concentration obtained by subtracting "difference" from "average"

e minimum = lowest surface water hardness concentration measured in the samples collected from an exposure unit during the period

Table 5.20 Surface water HQs for aquatic community-level receptors in mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	Н	[Q	Hardnes	s (mg/L)	Hardn. Ad	j. Benchm.	Low Ha	ardness	High H	ardness
COPECs	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
]	PRE-RUNO	FF PERIO	OD						
Aluminum (total)	5,950	4,575	87	68	53								
Cadmium (dissolved)	1.9	1.3				164	253	0.61	0.85	3.0	2.1	2.2	1.5
Iron (total)	6,830	5,868	1,000	6.8	5.9								
Silver (dissolved)	0.6	0.4				164	253	0.18	0.37	3.4	2.3	1.6	1.1
Zinc (dissolved)	470	358				164	253	190	282	2.5	1.9	1.7	1.3
					RUNOFI	PERIOD							
Aluminum (total)	1,910	1,353	87	22	16								
Cadmium (dissolved)	0.4	0.3				56	68	0.27	0.32	1.5	1.01	1.3	<1
Iron (total)	4,119	2,664	1,000	4.1	2.7								
Silver (dissolved)	1.3	0.4				56	68	0.03	0.04	46.9	14.4	33.6	10.3
Zinc (dissolved)	104	83.9				56	68	72	85	1.5	1.2	1.2	<1
				F	POST-RUNG	OFF PERI	OD						
Aluminum (total)	2,826	2,267	87	32	26								
Cadmium (dissolved)	0.7	0.6				135	161	0.53	0.60	1.4	1.1	1.2	1.0
Iron (total)	4,316	3,339	1,000	4.3	3.3								
Silver (dissolved)	1.3	0.3				135	161	0.13	0.17	10.3	2.4	7.6	1.8
Zinc (dissolved)	194	160				135	161	159	187	1.2	1.002	1.04	<1

ug/L = microgram per liter

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient (concentration/benchmark)

RME = reasonable maximum exposure

Table 5.21 Surface water HQs for aquatic community-level receptors in mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	Н	IQ	Hardnes	s (mg/L)	Hardn. Ad	j. Benchm.	Low Ha	ardness	High H	ardness
COPECs	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
	•			P	RE-RUNO	FF PERIO	D						
Aluminum (total)	8,610	7,318	87	99	84								
Beryllium (dissolved	1.3	1.2	0.7	2.0	1.8								
Cadmium (dissolved)	5.5	5.3				334	477	1.05	1.37	5.3	5.1	4.0	3.9
Copper (dissolved)	119	107				334	477	25.1	34.0	4.7	4.3	3.5	3.1
Iron (total)	21,700	17,150	1,000	22	17								
Lead (dissolved)	15.1	14.2				334	477	9.1	13.1	1.7	1.6	1.2	1.1
Manganese (dissolved)	5,290	4,618				334	477	2465	2776	2.1	1.9	1.9	1.7
Zinc (dissolved)	2,670	2,303				334	477	363	502	7.4	6.3	5.3	4.6
					RUNOFF	PERIOD							
Aluminum (total)	2,876	2,389	87	33	27								
Beryllium (dissolved)	1.0	0.7	0.7	1.5	1.1								
Cadmium (dissolved)	3.3	2.8				91	124	0.39	0.50	8.4	7.1	6.7	5.6
Copper (dissolved)	78.1	68.6				91	124	8.3	10.8	9.5	8.3	7.3	6.4
Iron (total)	12,554	8,067	1,000	13	8.1								
Lead (dissolved)	10.4	8.4				91	124	2.3	3.2	4.6	3.7	3.3	2.6
Manganese (dissolved)	1,620	1,268				91	124	1599	1772	1.01	<1	<1	<1
Zinc (dissolved)	1,144	929		-		91	124	111	147	10	8.4	7.8	6.3
				Pe	OST-RUNO	FF PERIC)D						
Aluminum (total)	7,110	6,360	87	82	73								
Beryllium (dissolved)	1.0	1.1	0.7	1.5	1.7								
Cadmium (dissolved)	6.1	5.6				343	409	1.07	1.22	5.7	5.3	5.0	4.6
Copper (dissolved)	152	130				343	409	25.7	29.8	5.9	5.1	5.1	4.4
Iron (total)	12,725	10,801	1,000	13	11								
Lead (dissolved)	17.1	15.5				343	409	9.3	11.2	1.8	1.7	1.5	1.4
Manganese (dissolved)	5,300	4,112				343	409	2487	2637	2.1	1.7	2.0	1.6
Zinc (dissolved)	2,890	2,190				343	409	372	436	7.8	5.9	6.6	5.0

ug/L = microgram per liter

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient (concentration/benchmark)

RME = reasonable maximum exposure

Table 5.22
Surface water HQs for aquatic community-level receptors in the Animas River above mainstem Cement Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	Н	[Q	Hardnes	s (mg/L)	Hardn. Ad	j. Benchm.	Low H	ardness	High H	ardness
COPECs	RME	CTE	(µg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
				P	RE-RUNOI	F PERIO	D						
Aluminum (total)	401	305	87	4.6	3.5								
Cadmium (dissolved)	3.6	2.6				148	170	0.57	0.63	6.3	4.7	5.7	4.2
Copper (dissolved)	8.3	7.2				148	170	12.5	14.1	<1	<1	<1	<1
Iron (total)	309	259	1,000	<1	<1								
Lead (dissolved)	0.5	0.4				148	170	3.8	4.5	<1	<1	<1	<1
Manganese (dissolved)	3,676	3,300				148	170	1880	1969	2.0	1.8	1.9	1.7
Zinc (dissolved)	1,012	840				148	170	173	196	5.8	4.9	5.2	4.3
					RUNOFF	PERIOD							
Aluminum (total)	566	480	87	6.5	5.5								
Cadmium (dissolved)	1.1	1.0				64	69	0.30	0.32	3.8	3.5	3.6	3.3
Copper (dissolved)	11.3	10.0				64	69	6.1	6.5	1.8	1.6	1.7	1.5
Iron (total)	556	469	1,000	<1	<1								
Lead (dissolved)	1.1	1.0				64	69	1.5	1.7	<1	<1	<1	<1
Manganese (dissolved)	633	514				64	69	1422	1458	<1	<1	<1	<1
Zinc (dissolved)	381	344				64	69	81	86	4.7	4.3	4.4	4.0
				PC	OST-RUNO	FF PERIC	D						
Aluminum (total)	154	153	87	1.8	1.8								
Cadmium (dissolved)	1.2	1.1				112	124	0.46	0.50	2.6	2.4	2.4	2.2
Copper (dissolved)	3.2	3.2				112	124	9.9	10.8	<1	<1	<1	<1
Iron (total)	149	154	1,000	<1	<1								
Lead (dissolved)	0.3	0.3				112	124	2.8	3.2	<1	<1	<1	<1
Manganese (dissolved)	1,247	1,031				112	124	1713	1772	<1	<1	<1	<1
Zinc (dissolved)	362	327				112	124	134	147	2.7	2.4	2.5	2.2

 $ug/L = microgram \, per \, liter$

mg/L = milligram per liter

 $CTE = central\ tendency\ exposure$

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient (concentration/benchmark)

RME = reasonable maximum exposure

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14) updated by: EC (3/6/15)

Table 5.23
Surface water HQs for aquatic community-level receptors in the Animas River between the mainstems of Cement Creek and Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	I.	IQ	Hardnes	s (mg/L)	Hardn. Ad	lj. Benchm.	Low H	ardness	High H	ardness
COPECs	RME	CTE	(µg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
	_			Po	OST-RUNO	FF PERIC)D						
Aluminum (total)	2,520	2,490	87	29	29								
Cadmium (dissolved)	2.7	2.7				295	296	0.95	0.95	2.8	2.8	2.8	2.8
Copper (dissolved)	24.8	20.6				295	296	22.6	22.6	1.1	<1	1.1	<1
Iron (total)	5,100	4,995	1,000	5.1	5.0								
Manganese (dissolved)	2,590	2,565				295	296	2365	2368	1.1	1.1	1.1	1.1
Zinc (dissolved)	1,160	1,160				295	296	324	325	3.6	3.6	3.6	3.6

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

RME = reasonable maximum exposure

Table 5.24
Surface water HQs for aquatic community-level receptors at sampling location A71B in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	H	IQ	Hardnes	s (mg/L)	Hardn. Ad	lj. Benchm.	Low H	ardness	High H	ardness
COPECs	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
				PC	OST-RUNO	FF PERIO)D						
Aluminum (total)	2,780	2,780	87	32	32								
Cadmium (dissolved)	1.9	1.9				263	263	0.87	0.87	2.2	2.2	2.2	2.2
Copper (dissolved)	8.7	8.7				263	263	20.5	20.5	<1	<1	<1	<1
Iron (total)	4,640	4,640	1,000	4.6	4.6								
Manganese (dissolved)	1,660	1,660				263	263	2276	2276	<1	<1	<1	<1
Zinc (dissolved)	743	743				263	263	292	292	2.5	2.5	2.5	2.5

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

RME = reasonable maximum exposure

Table 5.25
Surface water HQs for aquatic community-level receptors at sampling location A72 in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	Н	IQ	Hardnes	s (mg/L)	Hardn. Ad	j. Benchm.	Low H	ardness	High H	ardness
COPECs	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
				P	RE-RUNO	FFPERIO	D						
Aluminum (total)	4,440	3,455	87	51	40								
Cadmium (dissolved)	2.9	2.7				192	285	0.69	0.93	4.2	3.9	3.1	2.9
Copper (dissolved)	35.9	28.9				192	285	15.6	21.9	2.3	1.8	1.6	1.3
Iron (total)	7,710	6,018	1,000	7.7	6.0								
Manganese (dissolved)	2,920	2,435				192	285	2050	2338	1.4	1.2	1.2	1.04
Zinc (dissolved)	1,230	1,044				192	285	219	314	5.6	4.8	3.9	3.3
					RUNOFF	PERIOD							
Aluminum (total)	2,065	1,359	87	24	16								
Cadmium (dissolved)	1.0	0.9				56	72	0.27	0.33	3.7	3.2	3.0	2.7
Copper (dissolved)	6.7	5.2				56	72	5.5	6.8	1.2	<1	<1	<1
Iron (total)	4,687	2,905	1,000	4.7	2.9								
Manganese (dissolved)	578	427			-	56	72	1360	1479	<1	<1	<1	<1
Zinc (dissolved)	352	273				56	72	72	90	4.9	3.8	3.9	3.0
				PC	OST-RUNO	FF PERIO	D						
Aluminum (total)	2,129	1,777	87	24	20								
Cadmium (dissolved)	1.9	1.6				158	189	0.60	0.68	3.1	2.7	2.7	2.3
Copper (dissolved)	17	14				158	189	13.2	15.4	1.3	1.1	1.1	<1
Iron (total)	3,409	2,701	1,000	3.4	2.7								
Manganese (dissolved)	1,514	1,242				158	189	1921	2039	<1	<1	<1	<1
Zinc (dissolved)	696	579				158	189	184	216	3.8	3.2	3.2	2.7

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient (concentration/benchmark)

RME = reasonable maximum exposure

prepared by: SJP (1/31/14) reviewed by: RI (2/10/14)

updated by: EC (3/6/15)

reviewed by: BB (3/6/15)

Table 5.26 Surface water HQs for aquatic community-level receptors at sampling location A73 in the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas River Mining District

	Surface Wat	er EPCs (μg/L)	Benchmark	H	IQ	Hardne	ss (mg/L)	Hardn. Ad	lj. Benchm.	Low H	ardness	High H	ardness
COPECs	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
		PRE-RUNOI	FF (n=1) RUNG	FF PERIO	D (n = 2) ar	id POST-	RUNOFF	PERIOD (n	= 2) COMBI	NED			
Aluminum (total)	2,030	1,461	87	23	17								
Cadmium (dissolved)	1.7	1.3				77	147	0.35	0.56	4.9	3.6	3.0	2.2
Copper (dissolved)	5.0	3.7				77	147	7.2	12.4	<1	<1	<1	<1
Iron (total)	4,163	2,986	1,000	4	3								
Manganese (dissolved)	1,592	1,009				77	147	1512	1875	1.05	<1	<1	<1
Zinc (dissolved)	666	463				77	147	96	172	7.0	4.8	3.9	2.7

ug/L = microgram per liter

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient (concentration/benchmark)

RME = reasonable maximum exposure

Table 5.27
Surface water HQs for aquatic community-level receptors at sampling location A73B in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	H	IQ	Hardnes	s (mg/L)	Hardn. Ad	lj. Benchm.	Low H	ardness	High H	ardness
COPECs	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
		RU	JNOFF PERIO	OD(n=2) a	nd POST-R	UNOFFP	ERIOD (n	= 2) COMI	BINED				
Aluminum (total)	1,764	975	87	20	11								
Cadmium (dissolved)	1.3	0.7				37	98	0.20	0.42	6.4	3.6	3.1	1.7
Copper (dissolved)	3.8	2.6				37	98	3.8	8.8	1.0	<1	<1	<1
Iron (total)	2,649	1,570	1,000	2.6	1.6								
Manganese (dissolved)	1,079	508				37	98	1185	1639	<1	<1	<1	<1
Zinc (dissolved)	500	250				37	98	49	119	10	5.1	4.2	2.1

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient (concentration/benchmark)

RME = reasonable maximum exposure

Table 5.28
Surface water HQs for aquatic community-level receptors at sampling location A75D in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	I.	IQ	Hardnes	s (mg/L)	Hardn. Ad	j. Benchm.	Low H	ardness	High H	ardness
COPECs	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
	PR	E-RUNOFFPE	CRIOD (n=1) R	UNOFF PI	ERIOD (n =	2) and PO	ST-RUNG	OFFPERIO	D(n=2)CC	MBINED			
Aluminum (total)	1,728	1,255	87	20	14								
Cadmium (dissolved)	1.0	0.8				60	110	0.29	0.45	3.6	2.7	2.3	1.7
Copper (dissolved)	3.9	2.5				60	110	5.8	9.7	<1	<1	<1	<1
Iron (total)	3,922	2,556	1,000	3.9	2.6								
Manganese (dissolved)	935	590				60	110	1391	1703	<1	<1	<1	<1
Zinc (dissolved)	384	261				60	110	76	132	5.0	3.4	2.9	2.0

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient (concentration/benchmark)

RME = reasonable maximum exposure

Table 5.29
Surface water HQs for aquatic community-level receptors at sampling location A75B in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	H	IQ	Hardnes	s (mg/L)	Hardn. Ad	j. Benchm.	Low H	ardness	High H	ardness
COPECs	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
		RU	JNOFF PERIO	OD(n=2) a	nd POST-R	UNOFFP	ERIOD (n	= 2) COMI	BINED				
Aluminum (total)	1,565	1,021	87	18	12								
Cadmium (dissolved)	1.0	0.7				61	102	0.29	0.43	3.5	2.4	2.4	1.6
Copper (dissolved)	4.1	2.6				61	102	5.9	9.1	<1	<1	<1	<1
Iron (total)	4,454	2,224	1,000	4.5	2.2	61							
Manganese (dissolved)	782	462				61	102	1399	1661	<1	<1	<1	<1
Zinc (dissolved)	402	235				61	102	77	123	5.2	3.0	3.3	1.9

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient (concentration/benchmark)

RME = reasonable maximum exposure

Table 5.30
Surface water HQs for aquatic community-level receptors at Bakers Bridge sampling location in the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas River Mining District

	Surface Wate	r EPCs (μg/L)	Benchmark	I	IQ	Hardnes	s (mg/L)	Hardn. Ad	j. Benchm.	Low H	ardness	High H	ardness
COPECs	RME	CTE	(μg/L)	RME	CTE	low	average	low	average	HQ RME	HQ CTE	HQ RME	HQ CTE
	PR	E-RUNOFFPF	CRIOD (n=1) R	UNOFF PI	ERIOD (n =	2) and PO	ST-RUNG	OFFPERIO	D (n = 2) CC	MBINED			
Aluminum (total)	1,103	704	87	13	8.1								
Cadmium (dissolved)	0.6	0.5				61	108	0.29	0.45	2.1	1.6	1.4	1.03
Copper (dissolved)	3.7	2.9				61	108	5.9	9.6	<1	<1	<1	<1
Iron (total)	2,742	1,717	1,000	2.7	1.7								
Manganese (dissolved)	543	356				61	108	1399	1692	<1	<1	<1	<1
Zinc (dissolved)	204	136				61	108	77	130	2.6	1.8	1.6	1.05

mg/L = milligram per liter

CTE = central tendency exposure

COPEC = contaminant of potential ecological concern

EPC = exposure point concentration

HQ = hazard quotient (concentration/benchmark)

RME = reasonable maximum exposure

Table 5.31 HQs for the American dipper foraging on the Animas River above mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	4.85E-01	2.24	4.51	<1	<1	3.07E-01	2.24	4.51	<1	<1
Cadmium	7.84E-01	1.47	6.35	<1	<1	5.80E-01	1.47	6.35	<1	<1
Chromium	5.54E-01	2.66	15.6	<1	<1	5.11E-01	2.66	15.6	<1	<1
Copper	1.36E+01	4.05	34.9	3.4	<1	1.30E+01	4.05	34.9	3.2	<1
Lead	8.70E+00	1.63	44.6	5.3	<1	7.45E+00	1.63	44.6	4.6	<1
Mercury	1.74E-02	0.45	0.9	<1	<1	1.68E-02	0.45	0.9	<1	<1
Nickel	1.21E-01	6.71	18.6	<1	<1	1.19E-01	6.71	18.6	<1	<1
Selenium	1.75E-01	0.29	0.82	<1	<1	1.76E-01	0.29	0.82	<1	<1
Silver	5.69E-02	2.02	60.5	<1	<1	5.34E-02	2.02	60.5	<1	<1
Zinc	1.65E+02	66.1	171	2.5	<1	1.20E+02	66.1	171	1.8	<1

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.32

HQs for the American dipper foraging at sampling location A72 on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.39E-01	2.24	4.51	<1	<1	1.25E-01	2.24	4.51	<1	<1
Cadmium	1.39E-01	1.47	6.35	<1	<1	1.38E-01	1.47	6.35	<1	<1
Chromium	4.36E-01	2.66	15.6	<1	<1	4.33E-01	2.66	15.6	<1	<1
Copper	7.87E+00	4.05	34.9	1.9	<1	7.79E+00	4.05	34.9	1.9	<1
Lead	2.75E+00	1.63	44.6	1.7	<1	2.52E+00	1.63	44.6	1.5	<1
Mercury	2.11E-02	0.45	0.9	<1	<1	2.11E-02	0.45	0.9	<1	<1
Nickel	6.54E-02	6.71	18.6	<1	<1	6.39E-02	6.71	18.6	<1	<1
Selenium	1.09E-01	0.29	0.82	<1	<1	1.08E-01	0.29	0.82	<1	<1
Silver	5.72E-02	2.02	60.5	<1	<1	5.62E-02	2.02	60.5	<1	<1
Zinc	3.44E+01	66.1	171	<1	<1	3.40E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.33
HQs for the American dipper foraging at sampling location A73 on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	2.09E-01	2.24	4.51	<1	<1	1.96E-01	2.24	4.51	<1	<1
Cadmium	1.95E-01	1.47	6.35	<1	<1	1.92E-01	1.47	6.35	<1	<1
Chromium	4.09E-01	2.66	15.6	<1	<1	4.06E-01	2.66	15.6	<1	<1
Copper	7.12E+00	4.05	34.9	1.8	<1	6.93E+00	4.05	34.9	1.7	<1
Lead	2.90E+00	1.63	44.6	1.8	<1	2.43E+00	1.63	44.6	1.5	<1
Mercury	2.16E-02	0.45	0.9	<1	<1	2.16E-02	0.45	0.9	<1	<1
Nickel	1.29E-01	6.71	18.6	<1	<1	1.27E-01	6.71	18.6	<1	<1
Selenium	1.10E-01	0.29	0.82	<1	<1	1.10E-01	0.29	0.82	<1	<1
Silver	5.99E-02	2.02	60.5	<1	<1	5.79E-02	2.02	60.5	<1	<1
Zinc	4.18E+01	66.1	171	<1	<1	4.10E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.34

HQs for the American dipper foraging at sampling location A73B on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment

				Upper Ani	mas Mining	District				
		RM	IE Scenario				СТЕ	Scenario		
COPECs	Total EDD (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Arsenic	1.68E+00	2.24	4.51	<1	<1	1.36E+00	2.24	4.51	<1	<1
Cadmium	2.08E-01	1.47	6.35	<1	<1	1.88E-01	1.47	6.35	<1	<1
Chromium	5.81E-01	2.66	15.6	<1	<1	5.59E-01	2.66	15.6	<1	<1
Copper	4.77E+01	4.05	34.9	12	1.4	2.89E+01	4.05	34.9	7.1	<1
Lead	5.15E+00	1.63	44.6	3.2	<1	4.77E+00	1.63	44.6	2.9	<1
Mercury	2.11E-02	0.45	0.9	<1	<1	1.64E-02	0.45	0.9	<1	<1
Nickel	4.28E-01	6.71	18.6	<1	<1	3.74E-01	6.71	18.6	<1	<1
Selenium	5.73E-01	0.29	0.82	2.0	<1	5.73E-01	0.29	0.82	2.0	<1
Silver	1.16E-01	2.02	60.5	<1	<1	7.48E-02	2.02	60.5	<1	<1
Zinc	4.26E+01	66.1	171	<1	<1	3.92E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

 $RME-Reasonable\,Maximum\,Exposure$

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.35

HQs for the American dipper foraging at sampling location A75D on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.79E-01	2.24	4.51	<1	<1	1.62E-01	2.24	4.51	<1	<1
Cadmium	1.67E-01	1.47	6.35	<1	<1	1.64E-01	1.47	6.35	<1	<1
Chromium	6.48E-01	2.66	15.6	<1	<1	6.46E-01	2.66	15.6	<1	<1
Copper	3.41E+00	4.05	34.9	<1	<1	3.27E+00	4.05	34.9	<1	<1
Lead	1.25E+00	1.63	44.6	<1	<1	1.10E+00	1.63	44.6	<1	<1
Mercury	4.80E-02	0.45	0.9	<1	<1	4.80E-02	0.45	0.9	<1	<1
Nickel	1.47E-01	6.71	18.6	<1	<1	1.40E-01	6.71	18.6	<1	<1
Selenium	2.42E-01	0.29	0.82	<1	<1	2.42E-01	0.29	0.82	<1	<1
Silver	1.23E-01	2.02	60.5	<1	<1	1.22E-01	2.02	60.5	<1	<1
Zinc	4.27E+01	66.1	171	<1	<1	4.04E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.36

HQs for the American dipper foraging at sampling location A75B on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.61E+00	2.24	4.51	<1	<1	9.95E-01	2.24	4.51	<1	<1
Cadmium	3.40E-01	1.47	6.35	<1	<1	2.28E-01	1.47	6.35	<1	<1
Chromium	6.02E-01	2.66	15.6	<1	<1	5.89E-01	2.66	15.6	<1	<1
Copper	6.75E+01	4.05	34.9	17	1.9	3.07E+01	4.05	34.9	7.6	<1
Lead	4.11E+00	1.63	44.6	2.5	<1	3.10E+00	1.63	44.6	1.9	<1
Mercury	1.64E-02	0.45	0.9	<1	<1	1.64E-02	0.45	0.9	<1	<1
Nickel	5.34E-01	6.71	18.6	<1	<1	3.66E-01	6.71	18.6	<1	<1
Selenium	6.53E-01	0.29	0.82	2.3	<1	3.76E-01	0.29	0.82	1.3	<1
Silver	8.22E-02	2.02	60.5	<1	<1	5.23E-02	2.02	60.5	<1	<1
Zinc	5.64E+01	66.1	171	<1	<1	4.48E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.37

HQs for the American dipper foraging at the Bakers Bridge sampling location on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.10E-01	2.24	4.51	<1	<1	9.28E-02	2.24	4.51	<1	<1
Cadmium	3.52E-01	1.47	6.35	<1	<1	3.33E-01	1.47	6.35	<1	<1
Chromium	4.16E-01	2.66	15.6	<1	<1	4.12E-01	2.66	15.6	<1	<1
Copper	4.16E+00	4.05	34.9	1.03	<1	3.85E+00	4.05	34.9	<1	<1
Lead	1.32E+00	1.63	44.6	<1	<1	1.15E+00	1.63	44.6	<1	<1
Mercury	1.83E-02	0.45	0.9	<1	<1	1.83E-02	0.45	0.9	<1	<1
Nickel	3.78E-01	6.71	18.6	<1	<1	3.50E-01	6.71	18.6	<1	<1
Selenium	9.77E-02	0.29	0.82	<1	<1	9.55E-02	0.29	0.82	<1	<1
Silver	4.89E-02	2.02	60.5	<1	<1	4.80E-02	2.02	60.5	<1	<1
Zinc	8.76E+01	66.1	171	1.3	<1	7.91E+01	66.1	171	1.2	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.38

HQs for the mallard foraging on the Animas River above mainstem Cement Creek (100% benthic invert diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RM	IE Scenario			CTE Scenario					
COPECs	Total EDD (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	
Arsenic	1.08E-01	2.24	4.51	<1	<1	6.50E-02	2.24	4.51	<1	<1	
Cadmium	1.97E-01	1.47	6.35	<1	<1	1.45E-01	1.47	6.35	<1	<1	
Chromium	1.41E-01	2.66	15.6	<1	<1	1.30E-01	2.66	15.6	<1	<1	
Copper	3.31E+00	4.05	34.9	<1	<1	3.18E+00	4.05	34.9	<1	<1	
Lead	1.32E+00	1.63	44.6	<1	<1	1.12E+00	1.63	44.6	<1	<1	
Mercury	4.48E-03	0.45	0.9	<1	<1	4.32E-03	0.45	0.9	<1	<1	
Nickel	2.64E-02	6.71	18.6	<1	<1	2.64E-02	6.71	18.6	<1	<1	
Selenium	4.49E-02	0.29	0.82	<1	<1	4.49E-02	0.29	0.82	<1	<1	
Silver	1.13E-02	2.02	60.5	<1	<1	1.09E-02	2.02	60.5	<1	<1	
Zinc	4.08E+01	66.1	171	<1	<1	2.96E+01	66.1	171	<1	<1	

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.39

HQs for mallards foraging at sampling location A72 on the Animas River below mainstem Mineral Creek (100% benthic invert diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.46E-02	2.24	4.51	<1	<1	1.43E-02	2.24	4.51	<1	<1
Cadmium	3.47E-02	1.47	6.35	<1	<1	3.47E-02	1.47	6.35	<1	<1
Chromium	1.10E-01	2.66	15.6	<1	<1	1.10E-01	2.66	15.6	<1	<1
Copper	1.95E+00	4.05	34.9	<1	<1	1.95E+00	4.05	34.9	<1	<1
Lead	3.98E-01	1.63	44.6	<1	<1	3.95E-01	1.63	44.6	<1	<1
Mercury	5.44E-03	0.45	0.9	<1	<1	5.44E-03	0.45	0.9	<1	<1
Nickel	1.39E-02	6.71	18.6	<1	<1	1.39E-02	6.71	18.6	<1	<1
Selenium	2.72E-02	0.29	0.82	<1	<1	2.72E-02	0.29	0.82	<1	<1
Silver	1.36E-02	2.02	60.5	<1	<1	1.36E-02	2.02	60.5	<1	<1
Zinc	8.51E+00	66.1	171	<1	<1	8.50E+00	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.40

HQs for mallards foraging at sampling location A73 on the Animas River below mainstem Mineral Creek (100% benthic invert diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	3.60E-02	2.24	4.51	<1	<1	3.58E-02	2.24	4.51	<1	<1
Cadmium	4.78E-02	1.47	6.35	<1	<1	4.78E-02	1.47	6.35	<1	<1
Chromium	1.03E-01	2.66	15.6	<1	<1	1.03E-01	2.66	15.6	<1	<1
Copper	1.70E+00	4.05	34.9	<1	<1	1.70E+00	4.05	34.9	<1	<1
Lead	3.59E-01	1.63	44.6	<1	<1	3.53E-01	1.63	44.6	<1	<1
Mercury	5.60E-03	0.45	0.9	<1	<1	5.60E-03	0.45	0.9	<1	<1
Nickel	2.97E-02	6.71	18.6	<1	<1	2.96E-02	6.71	18.6	<1	<1
Selenium	2.80E-02	0.29	0.82	<1	<1	2.79E-02	0.29	0.82	<1	<1
Silver	1.40E-02	2.02	60.5	<1	<1	1.40E-02	2.02	60.5	<1	<1
Zinc	1.01E+01	66.1	171	<1	<1	1.01E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.41

HQs for mallards foraging at sampling location A73B on the Animas River below mainstem Mineral Creek (100% benthic invert diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	4.15E-01	2.24	4.51	<1	<1	3.37E-01	2.24	4.51	<1	<1
Cadmium	5.17E-02	1.47	6.35	<1	<1	4.71E-02	1.47	6.35	<1	<1
Chromium	1.49E-01	2.66	15.6	<1	<1	1.43E-01	2.66	15.6	<1	<1
Copper	1.22E+01	4.05	34.9	3.0	<1	7.42E+00	4.05	34.9	1.8	<1
Lead	1.02E+00	1.63	44.6	<1	<1	9.50E-01	1.63	44.6	<1	<1
Mercury	6.03E-02	0.45	0.9	<1	<1	6.03E-02	0.45	0.9	<1	<1
Nickel	1.05E-01	6.71	18.6	<1	<1	9.19E - 02	6.71	18.6	<1	<1
Selenium	1.48E-01	0.29	0.82	<1	<1	1.48E-01	0.29	0.82	<1	<1
Silver	2.84E-02	2.02	60.5	<1	<1	1.84E-02	2.02	60.5	<1	<1
Zinc	1.02E+01	66.1	171	<1	<1	9.59E+00	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.42

HQs for mallards foraging at sampling location A75D on the Animas River below mainstem Mineral Creek (100% benthic invert diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	3.17E-02	2.24	4.51	<1	<1	3.16E-02	2.24	4.51	<1	<1
Cadmium	4.00E-02	1.47	6.35	<1	<1	4.00E-02	1.47	6.35	<1	<1
Chromium	1.66E-01	2.66	15.6	<1	<1	1.66E-01	2.66	15.6	<1	<1
Copper	7.71E-01	4.05	34.9	<1	<1	7.69E-01	4.05	34.9	<1	<1
Lead	1.26E-01	1.63	44.6	<1	<1	1.24E-01	1.63	44.6	<1	<1
Mercury	1.25E-02	0.45	0.9	<1	<1	1.25E-02	0.45	0.9	<1	<1
Nickel	3.14E-02	6.71	18.6	<1	<1	3.14E-02	6.71	18.6	<1	<1
Selenium	6.23E-02	0.29	0.82	<1	<1	6.23E-02	0.29	0.82	<1	<1
Silver	3.12E-02	2.02	60.5	<1	<1	3.12E-02	2.02	60.5	<1	<1
Zinc	9.60E+00	66.1	171	<1	<1	9.57E+00	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.43

HQs for mallards foraging at sampling location A75B on the Animas River below mainstem Mineral Creek (100% benthic invert diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD ¹	TRV	TRV			Total EDD ¹	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	3.98E-01	2.24	4.51	<1	<1	2.48E-01	2.24	4.51	<1	<1
Cadmium	8.27E-02	1.47	6.35	<1	<1	5.65E-02	1.47	6.35	<1	<1
Chromium	1.54E-01	2.66	15.6	<1	<1	1.50E-01	2.66	15.6	<1	<1
Copper	1.73E+01	4.05	34.9	4.28	<1	7.88E+00	4.05	34.9	1.95	<1
Lead	8.32E-01	1.63	44.6	<1	<1	6.45E-01	1.63	44.6	<1	<1
Mercury	6.03E-02	0.45	0.9	<1	<1	6.03E-02	0.45	0.9	<1	<1
Nickel	1.30E-01	6.71	18.6	<1	<1	8.98E-02	6.71	18.6	<1	<1
Selenium	1.68E-01	0.29	0.82	<1	<1	9.67E-02	0.29	0.82	<1	<1
Silver	2.02E-02	2.02	60.5	<1	<1	1.28E-02	2.02	60.5	<1	<1
Zinc	1.18E+01	66.1	171	<1	<1	1.05E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.44

HQs for mallards foraging at the Baker Bridge sampling location on the Animas River below mainstem Mineral Creek (100% benthic invert diet)

Baseline Ecological Risk Assessment

				Unner Anii	nas Mining	District				
				C P P C	g					
		RN	IE Scenario				СТЕ	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.24E-02	2.24	4.51	<1	<1	1.22E-02	2.24	4.51	<1	<1
Cadmium	8.14E-02	1.47	6.35	<1	<1	8.12E-02	1.47	6.35	<1	<1
Chromium	1.04E-01	2.66	15.6	<1	<1	1.04E-01	2.66	15.6	<1	<1
Copper	9.02E-01	4.05	34.9	<1	<1	8.99E-01	4.05	34.9	<1	<1
Lead	1.38E-01	1.63	44.6	<1	<1	1.36E-01	1.63	44.6	<1	<1
Mercury	4.73E-03	0.45	0.9	<1	<1	4.73E-03	0.45	0.9	<1	<1
Nickel	8.14E-02	6.71	18.6	<1	<1	8.11E-02	6.71	18.6	<1	<1
Selenium	2.37E-02	0.29	0.82	<1	<1	2.37E-02	0.29	0.82	<1	<1
Silver	1.18E-02	2.02	60.5	<1	<1	1.18E-02	2.02	60.5	<1	<1
Zinc	1.81E+01	66.1	171	<1	<1	1.81E+01	66.1	171	<1	<1

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.45
HQs for Mallard foraging on the Animas River above mainstem Cement Creek (50%-50% diet)
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	7.96E-02	2.24	4.51	<1	<1	5.52E-02	2.24	4.51	<1	<1
Cadmium	1.62E-01	1.47	6.35	<1	<1	1.31E-01	1.47	6.35	<1	<1
Chromium	7.59E-02	2.66	15.6	<1	<1	7.01E-02	2.66	15.6	<1	<1
Copper	2.19E+00	4.05	34.9	<1	<1	2.09E+00	4.05	34.9	<1	<1
Lead	1.12E+00	1.63	44.6	<1	<1	9.84E-01	1.63	44.6	<1	<1
Mercury	4.92E-03	0.45	0.9	<1	<1	4.37E-03	0.45	0.9	<1	<1
Nickel	2.78E-02	6.71	18.6	<1	<1	2.66E-02	6.71	18.6	<1	<1
Selenium	3.53E-02	0.29	0.82	<1	<1	4.27E-02	0.29	0.82	<1	<1
Silver	8.01E-03	2.02	60.5	<1	<1	7.46E-03	2.02	60.5	<1	<1
Zinc	3.28E+01	66.1	171	<1	<1	2.56E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.46

HQs for mallards foraging at sampling location A72 on the Animas River below mainstem Mineral Creek (50%-50% diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	3.55E-02	2.24	4.51	<1	<1	3.26E-02	2.24	4.51	<1	<1
Cadmium	4.57E-02	1.47	6.35	<1	<1	4.11E-02	1.47	6.35	<1	<1
Chromium	6.14E-02	2.66	15.6	<1	<1	5.98E-02	2.66	15.6	<1	<1
Copper	1.36E+00	4.05	34.9	<1	<1	1.32E+00	4.05	34.9	<1	<1
Lead	4.46E-01	1.63	44.6	<1	<1	4.18E-01	1.63	44.6	<1	<1
Mercury	4.93E-03	0.45	0.9	<1	<1	4.76E-03	0.45	0.9	<1	<1
Nickel	1.75E-02	6.71	18.6	<1	<1	1.65E-02	6.71	18.6	<1	<1
Selenium	3.98E-02	0.29	0.82	<1	<1	3.38E-02	0.29	0.82	<1	<1
Silver	7.67E-03	2.02	60.5	<1	<1	7.48E-03	2.02	60.5	<1	<1
Zinc	9.37E+00	66.1	171	<1	<1	8.75E+00	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.47

HQs for mallards foraging at sampling location A73 on the Animas River below mainstem Mineral Creek (50%-50% diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	4.36E-02	2.24	4.51	<1	<1	4.09E-02	2.24	4.51	<1	<1
Cadmium	6.37E-02	1.47	6.35	<1	<1	5.76E-02	1.47	6.35	<1	<1
Chromium	5.74E-02	2.66	15.6	<1	<1	5.59E-02	2.66	15.6	<1	<1
Copper	1.31E+00	4.05	34.9	<1	<1	1.25E+00	4.05	34.9	<1	<1
Lead	4.60E-01	1.63	44.6	<1	<1	4.06E-01	1.63	44.6	<1	<1
Mercury	4.64E-03	0.45	0.9	<1	<1	4.43E-03	0.45	0.9	<1	<1
Nickel	2.71E-02	6.71	18.6	<1	<1	2.60E-02	6.71	18.6	<1	<1
Selenium	3.27E-02	0.29	0.82	<1	<1	2.83E-02	0.29	0.82	<1	<1
Silver	8.05E-03	2.02	60.5	<1	<1	7.71E-03	2.02	60.5	<1	<1
Zinc	1.19E+01	66.1	171	<1	<1	1.09E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.48

HQs for mallards foraging at sampling location A73B on the Animas River below mainstem Mineral Creek (50%-50% diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	2.36E-01	2.24	4.51	<1	<1	1.92E-01	2.24	4.51	<1	<1
Cadmium	6.05E-02	1.47	6.35	<1	<1	5.49E-02	1.47	6.35	<1	<1
Chromium	7.97E-02	2.66	15.6	<1	<1	7.64E-02	2.66	15.6	<1	<1
Copper	6.59E+00	4.05	34.9	1.6	<1	4.09E+00	4.05	34.9	1.01	<1
Lead	7.58E-01	1.63	44.6	<1	<1	7.09E-01	1.63	44.6	<1	<1
Mercury	3.27E-02	0.45	0.9	<1	<1	3.24E-02	0.45	0.9	<1	<1
Nickel	7.04E-02	6.71	18.6	<1	<1	6.15E-02	6.71	18.6	<1	<1
Selenium	1.16E-01	0.29	0.82	<1	<1	1.16E-01	0.29	0.82	<1	<1
Silver	1.54E-02	2.02	60.5	<1	<1	9.91E-03	2.02	60.5	<1	<1
Zinc	1.28E+01	66.1	171	<1	<1	1.08E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.49

HQs for mallards foraging at sampling location A75D on the Animas River below mainstem Mineral Creek (50%-50% diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	3.84E-02	2.24	4.51	<1	<1	3.45E-02	2.24	4.51	<1	<1
Cadmium	6.37E-02	1.47	6.35	<1	<1	5.73E-02	1.47	6.35	<1	<1
Chromium	8.80E-02	2.66	15.6	<1	<1	8.73E-02	2.66	15.6	<1	<1
Copper	7.98E-01	4.05	34.9	<1	<1	7.41E-01	4.05	34.9	<1	<1
Lead	2.52E-01	1.63	44.6	<1	<1	2.31E-01	1.63	44.6	<1	<1
Mercury	7.86E-03	0.45	0.9	<1	<1	7.86E-03	0.45	0.9	<1	<1
Nickel	3.39E-02	6.71	18.6	<1	<1	3.05E-02	6.71	18.6	<1	<1
Selenium	4.99E-02	0.29	0.82	<1	<1	4.69E-02	0.29	0.82	<1	<1
Silver	1.61E-02	2.02	60.5	<1	<1	1.60E-02	2.02	60.5	<1	<1
Zinc	1.49E+01	66.1	171	<1	<1	1.25E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.50

HQs for mallards foraging at sampling location A75B on the Animas River below mainstem Mineral Creek (50%-50% diet)

Baseline Ecological Risk Assessment

Upper Animas Mining District

		RN	IE Scenario				CTE	Scenario		
COPECs	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD ¹ (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Arsenic	2.26E-01	2.24	4.51	<1	<1	1.43E-01	2.24	4.51	<1	<1
Cadmium	9.86E-02	1.47	6.35	<1	<1	6.64E-02	1.47	6.35	<1	<1
Chromium	8.25E-02	2.66	15.6	<1	<1	8.07E-02	2.66	15.6	<1	<1
Copper	9.20E+00	4.05	34.9	2.3	<1	4.33E+00	4.05	34.9	1.1	<1
Lead	6.25E-01	1.63	44.6	<1	<1	4.90E-01	1.63	44.6	<1	<1
Mercury	3.24E-02	0.45	0.9	<1	<1	3.24E-02	0.45	0.9	<1	<1
Nickel	8.75E-02	6.71	18.6	<1	<1	6.00E-02	6.71	18.6	<1	<1
Selenium	1.32E-01	0.29	0.82	<1	<1	7.46E-02	0.29	0.82	<1	<1
Silver	1.09E-02	2.02	60.5	<1	<1	6.94E-03	2.02	60.5	<1	<1
Zinc	2.03E+01	66.1	171	<1	<1	1.40E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.51

HQs for mallards foraging at the Bakers Bridge sampling location on the Animas River below mainstem Mineral Creek (50%-50% diet)

Baseline Ecological Risk Assessment

	1			Upper Anu	nas Mining	District				
		DA	TE Comonio	- 1 1	9		CTE	Camania		
		KN	IE Scenario	_			CIE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	3.00E-02	2.24	4.51	<1	<1	2.61E-02	2.24	4.51	<1	<1
Cadmium	1.19E-01	1.47	6.35	<1	<1	9.66E-02	1.47	6.35	<1	<1
Chromium	5.95E-02	2.66	15.6	<1	<1	5.78E-02	2.66	15.6	<1	<1
Copper	9.44E-01	4.05	34.9	<1	<1	8.45E-01	4.05	34.9	<1	<1
Lead	2.61E-01	1.63	44.6	<1	<1	2.36E-01	1.63	44.6	<1	<1
Mercury	4.40E-03	0.45	0.9	<1	<1	4.00E-03	0.45	0.9	<1	<1
Nickel	7.69E-02	6.71	18.6	<1	<1	6.50E-02	6.71	18.6	<1	<1
Selenium	5.69E-02	0.29	0.82	<1	<1	4.12E-02	0.29	0.82	<1	<1
Silver	6.52E-03	2.02	60.5	<1	<1	6.36E-03	2.02	60.5	<1	<1
Zinc	2.79E+01	66.1	171	<1	<1	2.24E+01	66.1	171	<1	<1

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.52

HQs for the belted kingfisher foraging on the Animas River above mainstem Cement Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	3.68E-01	2.24	4.51	<1	<1	2.95E-01	2.24	4.51	<1	<1
Cadmium	1.81E-01	1.47	6.35	<1	<1	1.56E-01	1.47	6.35	<1	<1
Chromium	1.64E-02	2.66	15.6	<1	<1	8.82E-02	2.66	15.6	<1	<1
Copper	3.41E+00	4.05	34.9	<1	<1	2.90E+00	4.05	34.9	<1	<1
Lead	1.04E+01	1.63	44.6	6.4	<1	9.04E+00	1.63	44.6	5.5	<1
Mercury	2.77E-02	0.45	0.9	<1	<1	7.77E-04	0.45	0.9	<1	<1
Nickel	7.84E-01	6.71	18.6	<1	<1	3.20E+00	6.71	18.6	<1	<1
Selenium	8.50E-02	0.29	0.82	<1	<1	1.28E-01	0.29	0.82	<1	<1
Silver	5.45E-01	2.02	60.5	<1	<1	4.69E-01	2.02	60.5	<1	<1
Zinc	5.09E+01	66.1	171	<1	<1	3.99E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.53

HQs for the belted kingfisher foraging at sampling location A72 on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				СТЕ	Scenario		
COPECs	Total EDD (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ	Total EDD (mg/kg bw-day)	TRV NOAEL	TRV LOAEL	No Effect HQ	Effect HQ
Arsenic	4.27E-01	2.24	4.51	<1	<1	3.60E-01	2.24	4.51	<1	<1
Cadmium	4.08E-02	1.47	6.35	<1	<1	2.96E - 02	1.47	6.35	<1	<1
Chromium	2.00E-02	2.66	15.6	<1	<1	1.50E-02	2.66	15.6	<1	<1
Copper	1.48E+00	4.05	34.9	<1	<1	1.17E+00	4.05	34.9	<1	<1
Lead	3.49E+00	1.63	44.6	2.1	<1	2.87E+00	1.63	44.6	1.8	<1
Mercury	1.94E-02	0.45	0.9	<1	<1	1.66E-02	0.45	0.9	<1	<1
Nickel	5.03E-01	6.71	18.6	<1	<1	4.35E-01	6.71	18.6	<1	<1
Selenium	1.62E-01	0.29	0.82	<1	<1	1.28E-01	0.29	0.82	<1	<1
Silver	2.04E-01	2.02	60.5	<1	<1	1.62E-01	2.02	60.5	<1	<1
Zinc	1.04E+01	66.1	171	<1	<1	8.24E+00	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.54

HQs for the belted kingfisher foraging at sampling location A73 on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	1E Scenario			CTE Scenario					
	Total EDD	TRV	TRV			Total EDD	TRV	TRV			
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	
Arsenic	3.64E-01	2.24	4.51	<1	<1	3.00E-01	2.24	4.51	<1	<1	
Cadmium	7.58E-02	1.47	6.35	<1	<1	5.62E-02	1.47	6.35	<1	<1	
Chromium	1.77E-02	2.66	15.6	<1	<1	1.31E-02	2.66	15.6	<1	<1	
Copper	2.43E+00	4.05	34.9	<1	<1	1.70E+00	4.05	34.9	<1	<1	
Lead	4.37E+00	1.63	44.6	2.7	<1	3.08E+00	1.63	44.6	1.9	<1	
Mercury	1.38E-02	0.45	0.9	<1	<1	1.11E-02	0.45	0.9	<1	<1	
Nickel	6.14E-01	6.71	18.6	<1	<1	5.46E-01	6.71	18.6	<1	<1	
Selenium	1.19E-01	0.29	0.82	<1	<1	9.37E-02	0.29	0.82	<1	<1	
Silver	2.39E-01	2.02	60.5	<1	<1	1.62E-01	2.02	60.5	<1	<1	
Zinc	1.76E+01	66.1	171	<1	<1	1.32E+01	66.1	171	<1	<1	

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.55

HQs for the belted kingfisher foraging at sampling location A73B on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	1E Scenario			CTE Scenario					
	Total EDD	TRV	TRV			Total EDD	TRV	TRV			
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	
Arsenic	4.24E-01	2.24	4.51	<1	<1	3.22E-01	2.24	4.51	<1	<1	
Cadmium	5.90E-02	1.47	6.35	<1	<1	4.91E-02	1.47	6.35	<1	<1	
Chromium	1.70E-02	2.66	15.6	<1	<1	1.54E-02	2.66	15.6	<1	<1	
Copper	2.50E+00	4.05	34.9	<1	<1	1.51E+00	4.05	34.9	<1	<1	
Lead	3.56E+00	1.63	44.6	2.2	<1	3.20E+00	1.63	44.6	2.0	<1	
Mercury	2.49E-02	0.45	0.9	<1	<1	1.94E-02	0.45	0.9	<1	<1	
Nickel	1.03E+00	6.71	18.6	<1	<1	8.52E-01	6.71	18.6	<1	<1	
Selenium	2.47E-01	0.29	0.82	<1	<1	2.47E-01	0.29	0.82	<1	<1	
Silver	2.64E-01	2.02	60.5	<1	<1	1.70E-01	2.02	60.5	<1	<1	
Zinc	2.16E+01	66.1	171	<1	<1	1.40E+01	66.1	171	<1	<1	

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.56

HQs for the belted kingfisher foraging at sampling location A75D on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	2.91E-01	2.24	4.51	<1	<1	2.09E-01	2.24	4.51	<1	<1
Cadmium	8.98E-02	1.47	6.35	<1	<1	6.73E-02	1.47	6.35	<1	<1
Chromium	1.60E-02	2.66	15.6	<1	<1	1.37E-02	2.66	15.6	<1	<1
Copper	1.81E+00	4.05	34.9	<1	<1	1.26E+00	4.05	34.9	<1	<1
Lead	2.20E+00	1.63	44.6	1.4	<1	1.80E+00	1.63	44.6	1.1	<1
Mercury	1.11E-02	0.45	0.9	<1	<1	1.11E-02	0.45	0.9	<1	<1
Nickel	1.06E+00	6.71	18.6	<1	<1	8.01E-01	6.71	18.6	<1	<1
Selenium	1.19E-01	0.29	0.82	<1	<1	1.02E-01	0.29	0.82	<1	<1
Silver	1.19E-01	2.02	60.5	<1	<1	9.37E-02	2.02	60.5	<1	<1
Zinc	3.49E+01	66.1	171	<1	<1	2.19E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.57

HQsfor the belted kingfisher foraging at sampling location A75B on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	4.00E-01	2.24	4.51	<1	<1	2.14E-01	2.24	4.51	<1	<1
Cadmium	1.47E-01	1.47	6.35	<1	<1	7.01E-02	1.47	6.35	<1	<1
Chromium	1.80E-02	2.66	15.6	<1	<1	1.70E-02	2.66	15.6	<1	<1
Copper	3.53E+00	4.05	34.9	<1	<1	1.61E+00	4.05	34.9	<1	<1
Lead	2.61E+00	1.63	44.6	1.6	<1	1.78E+00	1.63	44.6	1.1	<1
Mercury	1.94E-02	0.45	0.9	<1	<1	1.94E-02	0.45	0.9	<1	<1
Nickel	1.41E+00	6.71	18.6	<1	<1	8.26E-01	6.71	18.6	<1	<1
Selenium	2.81E-01	0.29	0.82	<1	<1	1.62E-01	0.29	0.82	<1	<1
Silver	1.87E-01	2.02	60.5	<1	<1	1.19E-01	2.02	60.5	<1	<1
Zinc	6.68E+01	66.1	171	1.01	<1	2.75E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.58

HQs for the belted kingfisher foraging at the Baker Bridge sampling location on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	IE Scenario				CTE	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	3.20E-01	2.24	4.51	<1	<1	2.36E-01	2.24	4.51	<1	<1
Cadmium	2.61E-01	1.47	6.35	<1	<1	1.41E-01	1.47	6.35	<1	<1
Chromium	2.29E-02	2.66	15.6	<1	<1	1.77E-02	2.66	15.6	<1	<1
Copper	2.84E+00	4.05	34.9	<1	<1	1.63E+00	4.05	34.9	<1	<1
Lead	2.26E+00	1.63	44.6	1.4	<1	1.80E+00	1.63	44.6	1.1	<1
Mercury	1.66E-02	0.45	0.9	<1	<1	1.11E-02	0.45	0.9	<1	<1
Nickel	2.64E+00	6.71	18.6	<1	<1	1.56E+00	6.71	18.6	<1	<1
Selenium	2.64E-01	0.29	0.82	<1	<1	1.79E-01	0.29	0.82	<1	<1
Silver	1.45E-01	2.02	60.5	<1	<1	1.11E-01	2.02	60.5	<1	<1
Zinc	1.07E+02	66.1	171	1.6	<1	5.80E+01	66.1	171	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.59 HQs for the muskrat foraging on the Animas River above mainstem Cement Creek Baseline Ecological Risk Assessment Upper Animas Mining District

		RM	E Scenario				CTE S	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.04E-01	1.04	4.6	<1	<1	8.96E-02	1.04	4.6	<1	<1
Cadmium	2.01E-01	0.77	6.9	<1	<1	1.84E-01	0.77	6.9	<1	<1
Chromium	1.97E-02	2.4	58.2	<1	<1	1.85E-02	2.4	58.2	<1	<1
Copper	1.90E+00	5.6	82.7	<1	<1	1.75E+00	5.6	82.7	<1	<1
Lead	2.77E+00	4.7	186.4	<1	<1	2.48E+00	4.7	186.4	<1	<1
Mercury	8.05E-03	1	3	<1	<1	6.62E-03	1	3	<1	<1
Nickel	5.07E-02	1.7	14.8	<1	<1	4.63E-02	1.7	14.8	<1	<1
Selenium	3.91E-02	0.14	0.66	<1	<1	6.12E-02	0.14	0.66	<1	<1
Silver	1.21E-02	6.02	119	<1	<1	1.04E-02	6.02	119	<1	<1
Zinc	4.01E+01	75.4	298	<1	<1	3.47E+01	75.4	298	<1	<1

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.60 HQs for the muskrat foraging at sampling location A72 on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas Mining District

		RM	E Scenario				CTE S	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.16E-01	1.04	4.6	<1	<1	1.03E-01	1.04	4.6	<1	<1
Cadmium	8.65E-02	0.77	6.9	<1	<1	7.23E-02	0.77	6.9	<1	<1
Chromium	2.40E-02	2.4	58.2	<1	<1	1.81E-02	2.4	58.2	<1	<1
Copper	1.27E+00	5.6	82.7	<1	<1	1.14E+00	5.6	82.7	<1	<1
Lead	1.20E+00	4.7	186.4	<1	<1	1.04E+00	4.7	186.4	<1	<1
Mercury	6.62E-03	1	3	<1	<1	6.09E-03	1	3	<1	<1
Nickel	3.61E-02	1.7	14.8	<1	<1	3.24E-02	1.7	14.8	<1	<1
Selenium	7.95E-02	0.14	0.66	<1	<1	6.12E-02	0.14	0.66	<1	<1
Silver	4.55E-03	6.02	119	<1	<1	3.60E-03	6.02	119	<1	<1
Zinc	1.59E+01	75.4	298	<1	<1	1.39E+01	75.4	298	<1	<1

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.61 HQs for the muskrat foraging at sampling location A73 on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas Mining District

		RM	E Scenario				CTE S	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.03E-01	1.04	4.6	<1	<1	9.07E-02	1.04	4.6	<1	<1
Cadmium	1.23E-01	0.77	6.9	<1	<1	1.04E-01	0.77	6.9	<1	<1
Chromium	2.12E-02	2.4	58.2	<1	<1	1.57E-02	2.4	58.2	<1	<1
Copper	1.61E+00	5.6	82.7	<1	<1	1.36E+00	5.6	82.7	<1	<1
Lead	1.42E+00	4.7	186.4	<1	<1	1.09E+00	4.7	186.4	<1	<1
Mercury	5.51E-03	1	3	<1	<1	4.87E-03	1	3	<1	<1
Nickel	4.22E-02	1.7	14.8	<1	<1	3.85E-02	1.7	14.8	<1	<1
Selenium	5.67E-02	0.14	0.66	<1	<1	4.35E-02	0.14	0.66	<1	<1
Silver	5.31E-03	6.02	119	<1	<1	3.60E-03	6.02	119	<1	<1
Zinc	2.15E+01	75.4	298	<1	<1	1.83E+01	75.4	298	<1	<1

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.62 HQs for the muskrat foraging at sampling location A73B on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas Mining District

		RM	E Scenario				CTE S	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.15E-01	1.04	4.6	<1	<1	9.51E-02	1.04	4.6	<1	<1
Cadmium	1.06E-01	0.77	6.9	<1	<1	9.60E-02	0.77	6.9	<1	<1
Chromium	2.02E-02	2.4	58.2	<1	<1	1.83E-02	2.4	58.2	<1	<1
Copper	1.63E+00	5.6	82.7	<1	<1	1.28E+00	5.6	82.7	<1	<1
Lead	1.22E+00	4.7	186.4	<1	<1	1.13E+00	4.7	186.4	<1	<1
Mercury	7.60E-03	1	3	<1	<1	6.62E-03	1	3	<1	<1
Nickel	6.32E-02	1.7	14.8	<1	<1	5.44E-02	1.7	14.8	<1	<1
Selenium	1.27E-01	0.14	0.66	<1	<1	1.27E-01	0.14	0.66	<1	<1
Silver	5.88E-03	6.02	119	<1	<1	3.79E-03	6.02	119	<1	<1
Zinc	2.43E+01	75.4	298	<1	<1	1.89E+01	75.4	298	<1	<1

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.63 HQs for the muskrat foraging at sampling location A75D on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas Mining District

		RM	E Scenario				CTE S	Scenario		
	Total EDD	TRV	TRV	N. 1100 / 110	Eee HO	Total EDD	TRV	TRV	N. F. C. A. TICO	Eee / HO
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	8.87E-02	1.04	4.6	<1	<1	7.11E-02	1.04	4.6	<1	<1
Cadmium	1.35E-01	0.77	6.9	<1	<1	1.15E-01	0.77	6.9	<1	<1
Chromium	1.93E-02	2.4	58.2	<1	<1	1.65E-02	2.4	58.2	<1	<1
Copper	1.40E+00	5.6	82.7	<1	<1	1.18E+00	5.6	82.7	<1	<1
Lead	8.60E-01	4.7	186.4	<1	<1	7.44E-01	4.7	186.4	<1	<1
Mercury	4.87E-03	1	3	<1	<1	4.87E-03	1	3	<1	<1
Nickel	6.41E-02	1.7	14.8	<1	<1	5.15E-02	1.7	14.8	<1	<1
Selenium	5.67E-02	0.14	0.66	<1	<1	4.79E-02	0.14	0.66	<1	<1
Silver	2.65E-03	6.02	119	<1	<1	2.09E-03	6.02	119	<1	<1
Zinc	3.21E+01	75.4	298	<1	<1	2.44E+01	75.4	298	<1	<1

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.64 HQs for the muskrat foraging at sampling location A75B on the Animas River below mainstem Mineral Creek Baseline Ecological Risk Assessment Upper Animas Mining District

		RM	E Scenario				CTE S	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	1.10E-01	1.04	4.6	<1	<1	7.23E-02	1.04	4.6	<1	<1
Cadmium	1.78E-01	0.77	6.9	<1	<1	1.17E-01	0.77	6.9	<1	<1
Chromium	2.16E-02	2.4	58.2	<1	<1	2.05E-02	2.4	58.2	<1	<1
Copper	1.93E+00	5.6	82.7	<1	<1	1.32E+00	5.6	82.7	<1	<1
Lead	9.72E-01	4.7	186.4	<1	<1	7.37E-01	4.7	186.4	<1	<1
Mercury	6.62E-03	1	3	<1	<1	6.62E-03	1	3	<1	<1
Nickel	8.03E-02	1.7	14.8	<1	<1	5.28E-02	1.7	14.8	<1	<1
Selenium	1.46E-01	0.14	0.66	1.04	<1	7.95E-02	0.14	0.66	<1	<1
Silver	4.17E-03	6.02	119	<1	<1	2.65E-03	6.02	119	<1	<1
Zinc	4.72E+01	75.4	298	<1	<1	2.79E+01	75.4	298	<1	<1

mg/kg bw-day - milligrams per kilogram of body weight per day

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Table 5.65

HQs for the muskrat foraging at the Baker Bridge sampling location on the Animas River below mainstem Mineral Creek
Baseline Ecological Risk Assessment
Upper Animas Mining District

		RM	E Scenario				CTE S	Scenario		
	Total EDD	TRV	TRV			Total EDD	TRV	TRV		
COPECs	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ	(mg/kg bw-day)	NOAEL	LOAEL	No Effect HQ	Effect HQ
Arsenic	9.47E-02	1.04	4.6	<1	<1	7.71E-02	1.04	4.6	<1	<1
Cadmium	2.47E-01	0.77	6.9	<1	<1	1.74E-01	0.77	6.9	<1	<1
Chromium	2.75E-02	2.4	58.2	<1	<1	2.12E-02	2.4	58.2	<1	<1
Copper	1.73E+00	5.6	82.7	<1	<1	1.33E+00	5.6	82.7	<1	<1
Lead	8.74E-01	4.7	186.4	<1	<1	7.43E-01	4.7	186.4	<1	<1
Mercury	6.09E-03	1	3	<1	<1	4.87E-03	1	3	<1	<1
Nickel	1.33E-01	1.7	14.8	<1	<1	8.72E-02	1.7	14.8	<1	<1
Selenium	1.36E-01	0.14	0.66	<1	<1	8.87E-02	0.14	0.66	<1	<1
Silver	3.22E-03	6.02	119	<1	<1	2.46E-03	6.02	119	<1	<1
Zinc	6.27E+01	75.4	298	<1	<1	4.33E+01	75.4	298	<1	<1

COPECs - Chemicals of Potential Ecological Concern

EDD - Estimated Daily Dose

NOAEL - No Observable Adverse Effect Level

LOAEL - Lowest Observable Adverse Effect Level

TRV - Toxicity Reference Value

RME - Reasonable Maximum Exposure

CTE - Central Tendency Exposure

HQ - Hazard Quotient

Appendix 1.a: Field pH measurements in surface water samples collected between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

		PRE-RUNO	FF PERIOD					RUNOFF	PERIOD									POST	-RUNOFF PE	RIOD					
Sampling Date	Feb 2010	Mar 2010	Apr 2010	Mar 2011	April 2014	May 2009	Jun 2009	Jun 2010	Jun 2011	May 2012	May 2013	May 2014	Jul 2009	Aug 2009	Sep 2009	Nov 2009	Jul 2010	Sep 2010	Nov 2010	Jul 2011	Aug 2011	Sep 2011	Oct 2011	Oct 2012	Sept 2014
Measurement	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН	pН
Animas River upstr	eam of mains	tem Cement Cr	eek																						
A56 ("upstream)											7.61	7,44												7,39	6.64
A60											7.66	7.44													6.48
A61											7.38	7.36													7.37
A64											7.54	7.35													6.26
A65 A66											7.47 7.45	7.24 7.15													7.01 6.99
A68	6.74	6.82	6.85	7.18		7.15	7.51	6.98	7.28	7.37	7.39	7.09	7.61	7.18	7.21	6.52	6.92	7.52	7.26	7.42	7.2	7.39	6.87	7.42	7.71
A08	0.74	0.82	0.83	7.10		7.13	7.51	0.96	7.20	1,51	1.59	1.09	7.01	7.10	7.21	0.52	0.92	1.32	7.20	7.42	1.2	1.39	0.67	7.42	7.71
Animas River betw A 69 A A 70B	een mainstem	Cement Creek	and mainstem	Mineral Cree	k																			5.54 6.05	
Animas River down	istream of ma	nstem Mineral	Creek																						
A71B A72	5.07	5.04	6.09	5.3		7.08	7.09	6.51	6.5	6.59	6.87	6.33	6.88	6.40	6.46	5.93	6.41	6.48	6.25	7.08	6.51	6.38	6.23	6.10 5.98	7.00
A73	3.07	3.04	0.09	3.3		7.08	7.09	0.31	0.3	0.39	7.25	7.19	0.88	0.40	0.40	3.93	0.41	0.48	0.23	7.08	0.31	0.38	0.25	6.54	7.24
A73B											7.26	7.24												6.74	7.24
A75D											7.49	7.44												7.21	6.93
A75B											7.42	7.29												7.02	6.89
Bakers Bridge											7.64	7.63												7.20	7.58
Mainstem Cement	Creek																								
CC48	3.5	3.42	3.93	3.54		5.40	4.29	5.34	5.24	4.43	4.43	4.6	3.95	3.51	3.65	3.50	3.57	3.45	3.51	4.54	3.45	3.51	3.24	3.40	4.00
CC49																								3.43	
Mainstem Mineral	Creek																								
M34	4.97	5.02	6.22	5.12		6.49	7.30	7.00	7.19	7.07	7.23	6.83	7.19	6.73	6.70	5.62	6.77	6.73	6.4	7.28	6.82	6.68	5.90	6.15	7.05

prepared by: SJP (1/20/14) checked by: Emily (1/23/14)

Appendix 1.b: Hardness measurements in surface water samples collected between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

		PR	E-RUNOFFPER	HOD				RI	NOFFPERI	OD								POST	-RUNOFF PI	RIOD					
Sampling Date	Feb 2010	Mar 2010	Apr 2010	Mar 2011	April 2014	May 2009	Jun 2009	Jun 2010	Jun 2011	May 2012	May 2013	May 2014	Jul 2009	Aug 2009	Sep 2009	Nov 2009	Jul 2010	Sep 2010	Nov 2010	Jul 2011	Aug 2011	Sep 2011	Oct 2011	Oct 2012	Sept 2014
Measurement	hardness	hardness	bardness	hardness	bardness	hardness	hardness	hardness	bardness	bardness	bardness	bardness	bardness	bardness	bardness	bardness	bardness	bardness	bardness	hardness	bardness	bardness	bardness	bardness	hardness
Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Animas River upstr A56 (*upstream*)	eam of mainsten	Cement Creek			131						65	79												168	114
A60 A61 A64 A65 A66 A68	202	179	148	172	151	49	65	50	53	71	74 78 63 65 64 66	78 80 76 80 79 87	85	135	141	167	97	144	154	66	111	140	138	174	111 113 117 120 114
Animas River betwe A69A A70B				l Creek																				297 295	
Animas River down A71B	istream of mains	tem Mineral Cree	k																					263	
A72 A73 A73B A75D A75B Bakers Bridge	352	337	177	273	182 133 127	45	78	54	55	86	82 71 37 60 61 58	103 88 54 76 70 73	109	211	199	296	136	245	232	75	161	210	183	261 251 217 191 193 183	144 142 83 92 85 99
Mainstem Cement																									
CC48 CC49	571	541	301	493		81	189	88	76	177	129	126	293	467	470	495	345	509	517	191	398	474	435	515 545	67
Mainestem Minera	l Creek																								
M34	309	308	150	247		52	72	49	53	77	79	92	91	186	156	238	114	199	219	65	144	188	155	220	118

prepared by: SJP (1/20/14) checked by: Emily (1/23/14)

Appendix 1.c: Total and Dissolved Aluminum Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

1		Р	RE-RUNOFF PE	RIOD					RUNOFF PEI	tion			1					PC	ST-RUNOFF I	PERIOD					
	Feb 2010	Mar 2010	Apr2010	Mar2011	April2014	May 2009	Jun 2009	Jun 2010	Jun 2011	May 2012	May 2013	May 2014	Jul 2009	Aug 2009	Sep 2009	Nov 2009	Jui 2010	Sep 2010	Nov 2010	Jul 2011	Aug 2011	Sep 2011	Oct 2011	Oct 2012	Sept 2014
Metal-fraction Units	Al-total	Al-total us/L	Al-total ug/L	Al-total	Al-total	Al-total ug/L	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total	Al-total
Onits Animas River upstra	J			μg/L Vaar	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	µg/L
A56 ("upstream")	еат ој гне соп	ниевсе жив то	имет Сетені С	reek	71.2			200200000000	000000000000000000000000000000000000000		817	392		encentration of	000000000000000000000000000000000000000	1010101010101		00000000000		10000000000000			0.000.000.000.000	100	U 188
Section With Section Co.						Seventennevente					reneralism ie en komonisten		400,440,440,440,440											COLUMN CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT	
A60											370	452													174
A61											322	549													168
A64											343	514													150
A65											698	454													160
A66											653	547													174
A68	269	177	368	275	438	1010	165	348	540	154	534	508	117	120	134	189	100 U	124	101	217	100 U	100 ₹	7 100 U	100	U 164
4-6 B4 1		C																							
Animas River betwe A69A	een mainsteam	Cemens Creek	ina mainstem Mi	neral Creek																				2520	
A70B																								2460	
AIUB																								2400	D
Animas River down	stream of cont	luence with ma	nstem Mineral C	reek																					
A71B	,,																							2780	D
A72	4440	4090	1980	3310		3060	679	585	1200	713	938	2340	812	2080	2080	2750	1090	2180	2540	597	1370	2070	1800		D 1110
A73					1620	l					1280	1050													D 933
A73B											666	640												1980	D 612
A75D					1260	l					1630	1060												1790	D 534
A75B											1650	1040													D 562
Bakers Bridge					843						1310	734												234	JD 399
Mainstem Cement t CC48	8610	8100	5020	7540		1780	2920	1750	1610	2690	2690	3280	4120	7110	7050	7850	5270	7230	7930	2710	5830	6770	6810	7670	D 4890 D
CC48 CC49	8010	8100	3020	73+0		1780	2920	1750	1010	2090	2090	3200	4120	/110	/050	/830	3210	1230	1930	2710	3030	0//0	0810		D 4890 D
CC49																								7800	n
Mainstem Mineral	Creek																								
M34	5950	5360	2160	4830		1130	773	665	2200	824	1270	2610	933	2630	2480	4590	1200	2960	3080	563	1600	2610	2170	3390	D 1260
Sampling Date	Feb 2010	Mar 2010	Apr2010	Mar2011	April2014	May 2009	Jun 2009	Jun 2010	Jun 2011	May 2012	May 2013	May 2014	Jul 2009	Aug 2009	Sep 2009	Nov 2009	Jul2010	Sep 2010	Nov 2010	Jul 2011	Aug 2011	Sep 2011	Oct 2011	Oct 2012	Sept 2014
Metal-fraction	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Al-diss	Ai-diss	Al-diss
Units Animas River upstr	ug/L	Mark and	pg/L Instan Camani C	10 mg/ 20	μg/L	ugL	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L
A.56 ("upgressn")	can of at ton			0.75 0.5 7.0 75 0.5 7.0 75 0.5	40.8 J						48.7	58.1												42.7	J 61.4
A60											49.8	52.5													43.3 J
A61											70.4	116													64.9
A64											70.5	84.8													63
A65											81.4	89.9													54.7
A66											76.7	93.1													59.9
A68	141	100 U	100 U	100	82.9	100 U	100 U	100 U	100 U	57.2	93.3	112	100 €	100 U	100 U	103	100 U	25.0 U	25.0 U	100 ₹	J 100 U	100 ₹	7 100 U	62.2	73
Animas River betwe	een mainstem (ement Creek a	id mainstem Min	eral Creek																					
A69A																								603	
A70B																								1690	
tuinen Biron dann		Turner midde men	harden Mineral C																						
Animas River down A71B	isweam of conf	шенсе жин та	assem szinerai C	/EEA		l																		309	
A/1B A72	3.290	2748	212	1570		100 U	100 U	100 U	100 U	33.6 I	58.9	37.4 J	100 T	131	171	959	100 U	25.0 U	193	100 T	J 100 U	117	103	309 342	38.9 J
A73	3290	2740	212	1370	32.2 J	100 0	100 L	100 L	100 0	33.0 3	73.1	38.6 J	100	131	111	9.59	100 0	23.0 U	190	100 1	. 100 0	117	103	44.8	J 36.9 J
A73B					24.4						83.1	64.6												39.1	J 43.1 J
A75D					36.9 J	I					86.7	58.1													ช 66.2
A75B											84.2	58.9													J 61.8
Bakers Bridge					69.1	I					84.2	79.3												26.2	J 76.9
Mainstem Cement C		7020	10.10	7.660		3.61	2000	1050	700	2170	2200	22.60	10.50	2050	6070	70.00	1220	7440	2220	2410	6020	7200	6770	7100	D 020
CC48 CC49	8450	7820	4840	7660		751	2890	1050	798	2470	2290	2360	4050	7050	6930	7850	5270	7440	7720	2410	6030	7290	6770		D 938 D
						l																			-
Mainstem Mineral		4700	160			l	T 100 U				62.6		I			656	1.00 17	25.0 17		7 100 3	7 100 11	100 3	7 100 U	177	JD 46 J
M34	4410			3.020		100 U		117	100 13	450 J		35.5 J	100 €	' 100 U	100 U				25.0 17						

prepared by: SJP (1/20/14) checked by: Emily(1/23/14)

updated by: Beth (2/9/15) checked by: Emily (2/10/15)

Appendix 1.d: Total and Dissolved Arsenic Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

	1		PRE-RUNG	OFF PER	IOD						1	RUNOFF	PERIO)													PC	ST-RUNOI	F PER	HOD							
Sampling Date Metal-fraction Units	Feb 2010 As-total µg/L	Mar 2010 As-total µg/L	Apr 2 As-to µg/	otal	Mar 2011 As-total μg/L	April 2014 As-total µg/L	May 20 As-tot: µg/L	af	Jun 2009 As-total μg/L	Jun 2 As-to μg/l	tal	Jun 2011 As-total μg/L		lay 2012 As-total µg/L	May As- με		May 201 As-tota μg/L		Jul 200 As-tota µg/L	af	Aug 2009 As-total μg/L	Sep 2 As-to µg/	tal	Nov 2009 As-total µgL	Jul 2010 As-total µg/L	As	2010 -total ig/L	Nov 201 As-total μg/L		Jul 2011 As-total µg/L	Aug 2 As-to μg/l	tal	Sep 2011 As-total µg/L	A	et 2011 us-total µg/L	Oct 2012 As-total µg/L	
Animas River upstre A56 ("upstream")	am of the conf	luence with m	ainstem Ce.	ment Cree	k	2.5	U				60000		(0.000)		2	5 U	2.5	U		200000	62162062		60000	0.0000000000000000000000000000000000000			010000		00000		1000000	1000000				2.5	U 25 L
A60 A61 A64 A65 A66															2 2 2	.5 U .5 U .5 U .5 U	2.5 2.5 2.5 2.5 2.5	U U U																			2.5 U 2.5 U 2.5 U 2.5 U
A68	4.0 U	4.0	U 4.0	U U	4.0 U	2.5	U 4.0	U	4.0 T	J 4.0	U	4.0	U	2.5 τ	7 2		2.5	U	4.0	U	4.0	17 4.0	U	4.0 U	4.0	U	1.0 U	1.0	U	4.0 U	7 4.0	U	4.0	U	4.0 t	2.5	
Animas River betwee A69A A70B	en mainstem Co	ement Creek a	nd mainste	m Mineral	l Creek																															2.5 2.5	U U
Animas River downs A71B	stream of the co	mfluence with	mainstem	Mineral C	reek																															2.5	U
A72 A73 A73B A75D A75B Bakers Bridge	4.0 U	4.0	U 4.0	U U	4.0 T	2.5 2.5 2.5	U		4.0 t	J 4.0	U	4.0	U	2.5	2 2 2 2	.5 U .5 U .5 U .5 U .5 U	2.5 2.5 2.5 2.5 2.5 2.5	ט טט ט	4.0	U	4.0	U 4.0	U	4.0 U	4.0	U	1.0 U	1.0	U	4.0 U	7 4.0	U	4.0	U	4.0 U	2.5	U 2.5 U U 2.5 U U 2.5 U U 2.5 U U U 2.5 U 2.5 U U 2.5 U
Mainstem Cement C CC48 CC49	7.7	6.6	4.0	U U	5.0		4.0	U	4.0 ₹	J 4.0	U	4.0	U	2.5	5	.0 U	4.4	1D	4.0	U	4.0	U 4.0)	5.4	4.0	U	1.0 U	4.3		4.0 U	ž 4.0	U	4.0	U	4.0 U	7 4.8 4.7	
Mainstem Mineral C M34 Sampling Date Metal-fraction Units Animas River upstre A56 ("upstream")	4.0 U Feb 2010 As-diss ug/L	Mar 2010 As-diss µg/L	Apr 2 As-d μg/	liss L	4.0 U Mar 2011 As-diss µg/L	April 2014 As-diss µg/L	May 20 As-dis ug/L	109 s	4.0 U Jan 2009 As-diss µg/L	J 4.0 Jun 20 As-di µg/l	ss	4.5 Jun 2011 As-diss µg/L		2.5 U Iay 2012 As-diss µg/L	May As- με	diss /L	3.2 May 201 As-diss µg/L		4.0 Jul 200 As-diss µg/L	9 . s	4.0 Aug 2009 As-diss µg/L	U 4.0 Sep 2 As-d μg/	iss	4.0 U Nov 2009 As-diss µgL	4.0 Jul 2010 As-diss µg/L	Sep A:	1.0 U 2010 diss g/L	1.0 Nov 201 As-diss µg/L		4.0 U Jul 2011 As-diss µg/L	J 4.0 Aug 2 As-di µg/l	55	4.0 Sep 2011 As-diss µg/L	0	4.0 Uet 2011 As-diss µg/L	Oct 2012 As-diss µg/L	
A60 A61 A64 A65 A66 A68	4.0 U	4.0	U 4.0	o U	4,0 T	J 0.5	U 4.0	U	4.0 T	J 4.0	U	4.0	U	0.5 t	0	.5 U .5 U .5 U .5 U .5 U	0.5 0.5 0.5 0.5 0.5 0.5	บ บ บ บ	4.0	U	4.0	U 4.0) U	4.0 U	4.0	U	1.0 U	1.0	U	4.0 U	ž 4.0	U	4.0	U	4.0 U		0.5 t 0.5 t 0.5 t 0.5 t
Animas River betwee A69A A70B	en mainstem Co	ement Creek a	nd mainste	m Mineral	l Creek																															0.5 0.5	U U
Animas River downs A71B A72 A73 A73B A75D A75B Bakers Bridge	4.0 U	onfluence with		Mineral C	ireek 4.0 U	0.5 0.5 0.5	U	U	4.0 T	J 4.0	· U	4.0	U	0.5 T	0		0.5 0.5 0.5 0.5 0.5	u u u u	4.0	U	4.0	U 4.0) U	4.0 U	4.0	U	1.0 U	1.0	U	4.0 U	7 4.0	υ	4.0	U	4.0 L	7 0.5 0.5 0.5 0.5 0.5 0.5	U U 0.5 U
Mains tem Cement C CC48 CC49	Greek 4.0 U	4.0	U 4.0	U U	4.0 t	7	4.0	U	4.0 3	J 4.0	U	4.0	U	0.5	5	.0 U	0.5	U	4.0	U	4.0	U 4.0	U	4.0 U	4.0	U	1.0 U	1.0	U	4.0 U	4.0	U	4.0	U	4.0 U	2.5	
Mainstem Mineral C M34	Oreek 4.0 U	4.0	U 4.0	U	4.0 U	3	4.0	U	4.0 (J 4.0	U	4.0	U	0.5	7 2	.5 U	0.5	U	4.0	U	4.0	U 4.0	U	4.0 U	4.0	U	1.0 U	1.0	U	4.0 U	7 4.0	U	4.0	U	4.0 U	7 2.5	U 0.5 U

prepared by: SJP (1/20/14) checked by: Emily (1/23/14)

Appendix Le: Total and DissolvedBerylliumConcentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

			PRE-RUNO	FF PERI	OD		г –				RUNOFF	PERIOD													Pe	OST-RUNO	FF PERI	OD							
Sampling Date	Feb 2010	Mar 2010			Mar 2011	April2014	May 2009	Jun 2		Jun 2010	Jun 201			May 201		lay 2014		ul 2009	Aug 200		p 2009	Nov2009	Jul 201		ep 2010	Nov201		Jul 2011	Aug 20		Sep 2011	Oct 26		Oct 2012	Sept 2014
Metal-fraction Units	Be-total µg/L	Be-total µg/L	Be-tot μg/L		Be-total µg/L	Be-total μg/L	Be-total μg/L	Be-te		Be-total µg/L	Be-tota μg/L		-total ig/L	Be-tota μg/L		Зе-total µg/L		e-totai μg:L	Be-total μg/L		le-total μg/L	Be-total μg/L	Be-tota μg/L		Be-total μg/L	Be-tota μg/L		Be-total µg/L	Be-tot μg/L		Be-total µg/L	Be-to μg/l		Be-total µg/L	Be-total µg/L
Animas River upst	ream of the confl	uence with m	ainstem Cem	ıent Creel	k onenonenenenen	one hondradistrative load buy		0000000000000000	ones nones non								nnsamba nba	10.1274-1949-199					onen nonen nonen non				vene horsens ho						nononononon		pacificant and a particular
A56 ("upstream")						2.0 U								2.0	U	2.6	U																	t0.0 (J 2.0 U
A60														2.0	U	2.0	U																		2.0 U
A61														2.0	U	2.0	U																		2.0 U
A64 A65														2.0 2.0	U	2.0	U																		2.0 U 2.0 U
A66														2.0	U	2.0	U																		2.0 U
A68	1.0 U	1.0	U 1.0	U	1.0 U	2.0 U	1.0	U 1.6	U U	1.0 ₹	7 1.0	U :	2.0 U	2.0	U	2.0	U	1.0 U	1.0	U	1.0 U	1.0	3 1.0	U	0.2 U	0.2	U	1.0 T	1.0	U	1.0	U 1.0	U	10.0 L	J 2.0 U
Animas River betw	veen mainstem Ce	ment Creek e	ind mainsten	n Mineral	Creek		l																												
A69A																																		10.0 T	
A70B																																		10.0 L	3
Animas River down	nstream of the co	nfluence with	mainstem 3:	Iineral Cr	reek																														
A71B A72	1.0 U	1.0	U 1.0	U	1.0 U		1.0	U 1.6	U	1.0 3	7 1.0	U :	2.0 U	2.0	U	2.0	11	1.0 U	1.0	37	1.0 37	1.0 3	7 10	11	0.2 U	0.2	17	1.0 1	1.0	17	1.0	U 1.0	17	10.0 L	
A72 A73						2.0 U		-						2.0	U	2.0	U																	10.0 T	J 2.0 U
A73B A75D						2.0 U								2.0 2.0	U		U																	10.0 U	J 2.0 U
A75B Bakers Bridge						2.0 U								2.0 2.0			U																	10.0 U	
						2.0 0								2.0	U	2.0	U																	10.0 (3 2.0 U
Mainstem Cement CC48	Creek 1.3	1.3	1.0	U	1.0 U		1.0	77 1.6	0 17	1.0 3	7 10	U :	2.0 U	2.0	U	2.0	U	1.0 U	1.2		1.2	1.2	1.0	17	1.3	1.4		1.0 T	1.0	U	1.0	1.0	U	10.0 T	J 10.0 U
CC49	1.5	1.5	1.0		1.0 0		1.0	0 1.1		1.0	2 130		2.0 0	2.0	0	2.0	٠	1.0 0	1.2		1.2	12	1.0	U	1.5	1.+		1.0	1.0	U	1.0	1.0	U	10.0 L	
Mainstem Mineral	l Canali																																		
M34	1.0 U	1.0			1.0 U		1.0	U 1.0		1.0 ₹	1.0		2.0 U	2.0		2.0	U	1.0 U	1.0	U	1.0 U		1.0	U	0.2 U	0.2	U	1.0 T	1.0	U	1.0	0 1.0		10.0 T	
Sampling Date Metal-fraction	Feb 2010 Be-diss	Mar 2010 Be-diss	Apr 20 Be-di:		Mar 2011 Be-diss	April2014 Be-diss	May 2009 Be-diss	Jun 2 Be-d		Jun 2010 Be-diss	Jun 201 Be-diss		y 2012 e-diss	May 201 Be-diss		ay 2014 Be-diss		ul 2009 Be-diss	Aug 200: Be-diss		ep 2009 Be-diss	Nov2009 Be-diss	Jul 2010 Be-diss		ep 2010 Be-diss	Nov 201 Be-diss		Jul 2011 Be-diss	Aug 20 Be-di:		Sep 2011 Be-diss	Oct 26 Be-di		Oct 2012 Be-diss	Sept 2014 Be-diss
Units	ug/L	μg/L	μg/L	,	μg/L	μg/L	ug/L	μg		µg/L	µg/L		ig/L	μg/L		µg/L		μ <u>e</u> L	μg/L		μg/L	μg/L	µg/L		μg/L	μg/L		μg/L	μg/L		μg/L	де/I		µg/L	μg/L
Animas River upstr AS6 ("upstream")	tream of the confl	uence with m	ainstem Cem	ient Creel	k denderendende	2.0 U	000000000000000000000000000000000000000	eleneration de la				10000000000		2.0	9044888408	2.0	0144000000	56000000000		necessor					100000000000	entrantantan			100000000000	nonen anna				20 t	J 20 U
A60						au u									essenien U		U																	600 N	2.0 U
A61														2.0	U		U																		2.0 U
A64 A65														2.0	U	2.0	U																		2.0 U 2.0 U
A66														2.0	U	2.0	U																		2.0 U
A68	1.0 U	1.0	U 1.0	U	1.0 U	2.0 U	1.0	U 1.6	u u	1.0 3	1.0	U :	2.0 U	2.0	U	2.0	U	1.0 U	1.0	U	1.0 U	1.0 3	1.0	U	0.2 U	0.2	U	1.0 T	1.0	U	1.0	U 1.0	U	2.0 L	J 2.0 U
Animas River betw	veen mainstem Ce	ment Creek e	end mainsten	ı Mineral	Creek																														
A69A A70B																																		2.0 L 2.0 L	
Animas River dows	nstream of the co	nfluence with	mainstem k	Lineral Cr	reek																														_
A71B A72	1.0 U	1.0	77 1.0	17	1.0 U		1.0	37 1.0	n 17	10 7	7 10	17	20 17	2.0	17	2.0	17	1.0 U	1.0	17	1.0 37	10 3	7 10	17	0.2 13	0.2	17	10 1	. 10	17	1.0	1.0	17	2.0 U	
A73	1.0				1.0	2.0 U	1.0							2.0	U	2.0	U	1.0			1.0				0.2	-								2.0 L	J 2.0 U
A73B														2.0	U		U																	2.0 t	
A75D A75B						2.0 U								2.0 2.0	U	2.0	U																	2.0 T	
Bakers Bridge						2.0 U	l							2.0			U																	2.0 €	
Mainstem Cement	Creek						l																												
CC48	1.2	1.1	1.0	U	1.3		1.0	U 1.0	U	1.0 7	7 1.0	U :	2.0 U	2.0	U	2.0	U	1.0 U	1.1		1.2	1.2	1.0	U	0.2 U	1.1		1.0 T	1.1		1.1	1.0	U	10.0 U	
CC49							l																											10.0 U	J
Mainstem Mineral	1.0 U	1.0	17 1.0				1.0	77 1.6		10 7							17	1.0 U	1.0		1.0 U	10 3			0.2 77	0.2		10 7						10.0 L	7 2.0 17

prepared by: SJP (1/20/14) checked by: Emily (1/23/14)

Appendix 1.f: Total and Dissolved Cadmium Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

ı		PI	RE-RUNOFF PE	RIOD					RUNOFF PER	IOD			_					PO	ST-RUNOFF P	ERIOD					
Metal-fraction Units	Feb 2010 Cd-total µg/L	Mar 2010 Cd-total μg/L	Apr2010 Cd-total μg/L	Mar2011 Cd-total μg/L	April2014 Cd-total μg/L	May 2009 Cd-total µg/L	Jun 2 009 Cd-total μg/L	Jun 2010 Cd-total μg/L	Jun 2011 Cd-total μg/L	May 2012 Cd-total μg/L	May 2013 Cd-total μg/L	May 2014 Cd-total μg/L	Jul2009 Cd-total µg/L	Aug 2009 Cd-total µg/L	Sep 2009 Cd-total µg/L	Nov 2009 Cd-total µg/L	Jul 2010 Cd-total μg/L	Sep 2010 Cd-totai μg/L	Nov 2010 Cd-total μg/L	Jul 2011 Cd-total µg/L	Aug 2011 Cd-total μg/L	Sep 2011 Cd-total µg/L	Oct 2011 Cd-total µg/L	Oct 2012 Cd-total µg/L	Sept 2014 Cd-total µg/L
Animas River upstrea. A56 ("upstream")	m of the confli	ence with main.	stem Cement Cree	sk	0.596 JD						1.6 D	1.33 D												1.0 D	0.99 JD
A60 A61 A64 A65 A66 A68	2.0	1.7	4:0	2.6	3.2 D	1.5	0.9	1.1	1.1	8.9 JE	1.3 D 1.2 D 1.3 D 1.3 D 1.4 D 1.5 D	1.17 D 1.83 D 1.49 D 1.37 D 1.5 D 1.52 D		1.0	1.3	1.6	0.8	1.3	1.3	0.8	1.0	1.1	1.2	1.3 D	0.93 JD 0.99 JD 0.93 JD 0.94 JD 1.0 D 1.1 D
Animas River between A69A A70B	ı mainstem Cer	nens Creek and	mainstem Minera	il Creek																				3.0 D 2.7 D	
Animas River downstr A71B	ream of the cor	fluence with mo	tinstem Mineral C	reek																				2.0 D	
A72 A73 A73B A75D A75B Bakers Bridge	2.5	2.8	2.9	2.7	2.18 D 1.43 D 0.689 JD	1.2	0.8	0.9	0.9	0.9 ЛЭ	1.4 D 1.0 JD 0.5 U 0.9 JD 1.0 D 0.7 JD	1.65 D 1.27 D 0.5 U 0.924 JE 0.896 JE 0.601 JE		1.7	1.9	2.7	1.2	1.7	2.0	0.8	1.4	1.7	1.7	2.1 D 2.2 D 1.5 D 1.3 D 1.1 D 0.8 JD	1.1 D 0.97 JD 0.58 JD 0.51 JD 0.51 JD
Mainstem Cement Cro CC48 CC49	se k 5.5	5.6	4.8	5.0		2.1	3.3	2.3	2.0	2.8 D	3.3 D	3.7 D	4.4	6.4	6.7	6.3	4.8	5.8	6.8	3.1	5.3	5.7	7.1	5.7 D 5.5 D	4.7 D
Maintstem Mineral C M34	reek	1.1	1.8	1.2		0.3	0.2	0.3	0.4	0.5 17	0.5 17	0.7 .00	0.4	0.7	0.7	0.9	0.4	0.7	0.7	0.3	0.5	0.7	0.6	9.7 D	5.0 U
	Feb 2010 Cd-diss ug/L	Mar 2010 Cd-diss µg/L	Apr2010 Cd-diss μg/L	Mar 2011 Cd-diss μg/L	April2014 Cd-diss μg/L	May 2009 Cd-diss ug/L	Jun 2009 Cd-diss µg/L	Jun 2010 Cd-diss µg/L	Jun 2011 Cd-diss µg/L	May 2012 Cd-diss µg/L	May 2013 Cd-diss μg/L	May 2014 Cd-diss μg/L	Jul2009 Cd-diss µg/L	Aug 2009 Cd-diss µg/L	Sep 2009 Cd-diss µg/L	Nov 2009 Cd-diss µg/L	Jul 2010 Cd-diss µg/L	Sep 2010 Cd-diss µg/L	Nov 2010 Cd-diss µg/L	Jul 2011 Cd-diss µg/L	Aug 2011 Cd-diss µg/L	Sep 2011 Cd-diss µg/L	Oct 2011 Cd-diss µg/L	Oct 2012 Cd-diss µg/L	Sept 2014 Cd-diss µg/L
Animas River upstrea. A S6 ("upstream")	m of the confli	ence with main.	stem Cement Cree	ek	0.582						0.7	0.97												0.6	0.86
A60 A61 A64 A65 A66 A68	1.8	1.6	4,1	2.7	3.0	0.9	0.8	0.9	0.9	0.9	0.7 1.0 0.9 0.9 0.9 1.0	1.01 1.51 1.35 1.31 1.4 1.33	0.8	1.0	1.2	1.7	0.8	1.3	1.4	0.8	0.9	1.1	1.1	1.2	0.99 0.93 1.0 1.1 1.1
Animas River between A69A A70B	ı mainstem Cer	není Creek and	mainstem Minera	il Creek																				2.7 2.7	
Animas River downsti A71B A72	ream of the cor	fluence with me	tinstem Mineral C	Preek		0.6	0.8	0.7	0.8	0.9	1.0 D	1.4	0.9	1.8	1.8	2.8	1.1	1.8	2.1	0.7	1.3	1.7	1.6	1.9	1.2
A73 A73B A75D	2.0	2.7	2.7	2.0	1.79	0.0	0.0	0.7	0.8	0.9	0.7 JD 0.3 0.5	1.09 0.564 0.711	0.9	1.0	1.0	2.0		1.0	2.1	0.7	1.5	1.7	1.0	1.7 1.4 1.1	1.0 0.57 0.54
A75B Bakers Bridge					0.533						0.5 0.3	0.694 0.422												1.1	0.52 0.35
Mainstem Cement Cro CC48 CC49	5.5	5.3	4.9	5.3		2.1	3.4	2.2	2.0	2.9	3.2 D	3.8	4.6	6.6	6.6	6.4	4,4	5.7	6.7	3.1	5.6	5.9	7.0	5.1 D 5.6 D	
Mainstem Mineral Cr	eek	1.0	2.0	1.1		0.3	0.2	0.2 U	0.2	0.3	0.5 U	0.6	0.3	0.7	0.7	1.0	0.4	0.7	0.8	0.2	0.5	0.7	0.6	na m	0.39

prepared by: SJP (1/20/14) checked by: Emilv(1/23/14)

updated by: Beth (2/9/15) checked by: Emily (2/10/15)

Appendix 1.g: Total and Dissolved Chromium Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Rick Assessment Upper Animas Mining District

			PRE-RUN	OFFPER	RIOD		\neg				F	UNOFFP	FRIOD														POS	I-RUNO	FFPER	IOD								
SamplingDate Metal-fraction Units	Feb 2010 Cr-total gg/L	Mar 2010 Cr-total gg/L	Apr 26 Cr-tot ag L)10 :a1	Mar 2011 Cr-total µg/L	April 20 Cr-tota 9g/L	á	May 2009 Cr-total µg/L	Jun 2009 Cr-total pg/L	Jun : Cr-ti	010 rai	Jun 2011 Cr-total pg/L	M C	ny 2012 r-total pg/L	May 20 Cr-tot gg/L	ıl	May 2014 Cr-total µg/L		Jul 2009 Cr-total pg4.	Aug 26 Cr-tot gg/L	al	Sep 2009 Cr-total gg/L	Nov 20 Cr-tot: pg/L	al	Jul 2010 Cr-total pg/L	Sep : Cr-t 92	:010 stal	Nov 201 Cr-total gg/L	0 .	Jul 2011 Cr-total pg/L	Cr	2011 rotal 4L	Sep 201 Cr-total gg/L	1	Oct 2011 Cr-total gg/L	Oct 2 Cr-10 gg/l	rai	Sept 2014 Cr-total gg/L
Animas River upst A 56 ("upstream")	ream of the cor	fluen cewith	mainstom C	encent Cre	ek	5.0	100		0.000.000.000.000	0.0000000000000000000000000000000000000	888888	200000000000000000000000000000000000000	0236535	805280525280	5.0		3.0	w	POSTERNA SE	0000000	2000000	en en en en	8000000000	V36535420	12160120120	20020000	3/2/05/2/05	0.00000000	2022020	12023023	8000808080	0286838481	eraneraner	3053545105	20012000	5,0	i i	50 U
							Direction Co.								5.0		5.0	U	2014600166001	contronce													NA CONTROLL				econecon.	5.0 U
A61							- 1								5.0	U	5.0	U																				5.0 U
A64 A65							- 1								1.2	3D	5.0	U																				5.0 U 5.0 U
A66	2.0 U	2.0	U 20	**	10 1	J 5.0		2.0 T				4.0			1.0	U	5.0	U	20 U	2.0		20 1						8.5	**	5.0		a tr	5.0	U	5.0		U	5.0 U 5.0 U
A.00						2.0	Ů	2.0	2.0	0 33	0	2.0	U	3.0	2.0	U	2.0	0	2.0	2.0	0	2.0	2.0	U	2.0	U 0.	, ,	0.3	U	3.0		.0 0	2.0	C	2.0	0 3.0	· ·	3.0 0
Animas River betn A69A A70B	reen mainstem	Cement Cree	e ana mainsi	ин минег	el Crees																															5.0 5.0	U	
Animas River doss. ATIB	nstream of the	confluencew	ith mainsten	Mineral (Creek		- 1																													5.0	U	
A72 A73	2.0 U	2.0	U 2.0	U	5.0 1	J 5.0	.,	2.0 t	J 2.0	U 5.6	U	5.0	U	5.0 U	1.0 1.0	U	5.0	U	2.0 U	2.0	U	2.0 T	J 2.0	U	5.0 1	U 0.	U	8.5	U	5.0	U :	0 U	5.0	U	5.0		U	5.0 U 5.0 U
A73B A75D						5.0									1.0	Ü	5.0	U																		5.8 5.0	D	5.0 U 5.0 U
A 75B Bakers Bridge						5.0	- 1								5.0 5.0	Ü	5.0 5.0	U.																		5.0 5.0	U	5.0 U 5.0 U
Mainstem Cement CC48 CC49	Cheek 2.0 U	4.3	2.0	U	5.0 1	ij.		2.0 E	J 2.0	U 5.0	U	5.0	U	5.0 U	10.0	U	5.0	Ū	2.0 U	2.0	U	2.0 T	J 2.0	U	5.0 1	U 0.	U	0.5	U	5.0	U :	0 U	5.0	U	5.0		U 5 D	5.0 U
Mainstem Mineral	Creek	2.0	U 2.0	TT.	10 1		- 1	2.0 T	J 2.0	U 5.0	rr.	10		50 U	1.0		5.0	,,	2.0 U		U	2.0 T		U	5.0 1	U a		0.5	υ	5.0	υ 4	n U	5.0	11	3.0	EI 5.0	U	5.0 U
SamplingDate Metal-fraction	Feb 2010 Cr-diss	Mar 2010 Cr-diss		10	Mar 2011 Cr-diss	April 20 Cr-dis		May 2009 Cr-diss	Jun 2009 Cr-diss	Jun :	919	Jun 2011 Cr-diss	М	ny 2012 r-diss	May 20 Cr-di		May 2014 Cr-diss		Jul 2009 Cr-diss	Aug 20 Cr-d	909	Sep 2009 Cr-diss	Nov 20 Cr-di	99	Jul 2010 Cr-diss	Sep :	010	Nov 201 Cr-diss	θ.	Jul 2011 Cr-diss	Au	2011 diss	Sep 201 Cr-dis	1 (Oct 2011 Cr-diss	Oct 2 Cr-d	12 :	Sept 2014 Cr-diss
Units	ugL	gg/L	gg1		pg/L	gg/L		ugL	ggL	98		ng/L		r-mss gg/L	pg/L		pgL	_	ng/L	gg/L		gg/L	gg/L		ggL	92		gg&		ag/L		A.	gg/L	8	gg/L	rg/l		Eg.L
Animas River upst A56 ("upstream")	ream of the cor	ifluen cowith	mainston C	енсев Сте	rek	1.0	e.								1.0	u.	1.0	g																		1.0	100	1.0 U
A60							- 1								1.0	U	1.0 1.0	U																				1.0 U 1.0 U
A64							- 1								1.0	U	1.0	U																				1.0 U
A65 A66							- 1								1.0	U	1.0	U																				1.0 U 1.0 U
A68	2.0 U	2.0	U 2.0	U	5.0 1	J 1.0	U	2.0 t	J 2.0	U 53	U	5.0	U	1.0 U	1.0	U	1.0	U	2.0 U	2.0	U	2.0 t	2.0	U	5.0 1	U 0.	U	0.5	U	5.0	U S	0 U	5.0	U	5.0	U 1.0	U	1.0 U
Animas River betw A69 A A70B	reen mainszem	Сетент Стеві	k and mains:	om Miner	al Creek																																U U	
Animas River doss. A71B	nstream of the	confluences	ith mainsten	Mineral I	Creek																																U	
A72	2.0 U	2.0	U 2.0	U	5.0 1		[2.0 T	J 2.0	U 5.0	U	5.0	U	1.0 U	5.0	U	1.0	U	2.0 U	2.0	U	2.0 T	J 2.0	U	5.0 1	U 0.	U	0.5	U	5.0	υ :	0 U	5.0	U	5.0	U 2.3		1.0 U
A73 A73B						1.0	- 1								5.0 1.0	U	1.0	U																		1.0 1.0		1.0 U 1.0 U
A75D A75B						1.0	U								1.0	U	1.0	U																		1.0		1.0 U 1.0 U
Bakers Bridge						1.0	U									U	1.0	U																		1.0		1.0 U
Mainstem Cement CC48 CC49	Cherik 2.0 U	2.0	U 2.0	U	5.0	U		2.0 t	J 2.0	U 53	U	5.0	U	1.0 U	10.0	U	1.0	U	2.0 U	2.0	U	2.0 t	J 2.0	U	5.0	U 0.	ט	0.5	U	5.0	υ :	0 U	5.0	U	5.0	U 5.0		5.0 U
Mainstem Mineral							I											I																				
M34	2.0 U	2.0	U 2.0	U	5.0 1	J		2.0 t	J 2.0	U 5.0	U	5.0	U	1.0 U	5.0	U	1.0	U	2.0 U	2.0	U	2.0 T	2.0	U	5.0 1	U 0.	U	0.5	U	5.0	U :	0 U	5.0	U	5.0	U 5.0	U	1.0 U

prepared by: SJP (1/20/14) checked by: Emily(1/23/14)

updated by Beth (2/9/15) checked by Emily(2/10/15)

Appendix Lh: Total and Dissolved Copper Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

			PRE-RUNOFF P	PERIOD					RUNOFF PER	TOD			1					P	OST-RUNOFF	PERIOD					
Sampling Date Metal-fraction	Feb 2010 Cu-total	Mar 2010 Cu-total	Apr 2010 Cu-total	Mar 2011 Cu-total	April 2014 Cu-total	May 2009 Cu-total	Jun 2009 Cu-total	Jun 2010 Cu-total	Jun 2011 Cu-total	May 2012 Cu-total	May 2013 Cu-total	May 2014 Cu-total	Jul 2009 Cu-total	Aug 2009 Cu-total	Sep 2009 Cu-total	Nov 2009 Cu-total	Jui 2010 Cu-total	Sep 2010 Cu-total	Nov 2010 Cu-total	Jul 2011 Cu-total	Aug 2011 Cu-total	Sep 2011 Cu-total	Oct 2011 Cu-total	Oct 2012 Cu-total	Sept 2014 Cu-total
Units	µg/L	$\mu g L$	µgЪ	μg/L	μgL	μg/L	µg/L	µgL	µg/L	µg/L	µg.L	µg/L	μg/L	µg/L	μg/L	µg/L									
Animas River upstr AS6 ("upstream")	ram of the con	Auence with mai	nstem Cement Cr	reek	3:3 JD						46.0 D	25.9 D												2.5 τ	3.9 JD
140											33.1 D	27.1 D													4.1 JD
A61											21.7 D	33.5 D													5.0 D
A64											20.1 D 25.7 D														4.6 D 5.0 JD
A66											24.9 D														5.1 D
A68	6.2	7.7	22.3	14.7	20.5 D	21.2	5.8	10.0 U	10.9	5.9 D	28.9 D	27.2 D	4.0	3.9	4.0	5.1	10.0 U	4.0 L	F 4.0 L	J 20.0 U	20.0 U	7 20.0 U	7 20.0 U	4.5 J	0 4.7 JD
Animas River betwe A69 A A70 B	een mainstem C	emeni Creek an	d mainstem Mine	ral Creek																				27.8 E 27.1 E	
Animas River down	istream of the c	onfluence with z	nainstem Mineral	l Creek																					
A72	42.0	40.5	34.9	33.5		36.1	14.8	13.4	16.5	12.0 D		34.0 D	15.7	40.7	34.1	46.7	19.8	33.6	31.4	20.0 U	22.2	28.8	24.2	18.1 E 18.0 E	10.3 D
A73 A73B					19.3 D						22.8 D 8.5 D	11.8 D												15.9 E 13.1 E	4.3 JD
A75D A75B					13.5 D						20.6 D 21.5 D													12.6 E 5.2 E	
Bakers Bridge					7.9 D						16.3 D													2.5 U	
Mainstem Cement CC48	Creek 122	116	110	90.9		64.3	94.6	78.0	61.3	61.5 D	80.1 D	80.4 D	115	224	192	159	126	174	141	82.8	147	156	136	73.7 E	76.1 D
CC49	122	110	110	90.9		04.3	94.0	78.0	01.3	01.3 D	80.1 D	80.+ D	113	224	192	139	120	174	1+1	62.6	147	130	130	66.9 E	
Mainstem Mineral	Creek																								
M34 Sampling Date	13.1 Feb 2010	13.8 Mar 2010	21.6 Apr 2010	19.4 Mar 2011	April 2014	14.5 May 2009	8.5 Jun 2009	10.0 U Jun 2010	12.8 Jun 2011	5.7 D May 2012	9_2 D May 2013	22.4 D May 2014	6.6 Jul 2009	12.0 Aug 2009	12.8 Sep 2009	18.1 Nov 2009	10.0 U Jul 2010	11.7 Sep 2010	12.3 Nov 2010	20.0 U Jul 2011	20.0 U Aug 2011	7 20.0 U Sep 2011	20.0 U Oct 2011	5.6 E Oct 2012	4.9 JD Sept 2014
Metal-fraction	Cu-diss	Cu-diss	Cu-diss	Cu-diss µg/L	Cu-diss µg/L	Cu-diss ug/L	Cu-diss µg/L	Cu-diss µg/L	Cu-diss µg/L	Cu-diss µg/L	Cu-diss µg/L	Cu-diss µg/L	Cu-diss	Cu-diss	Cu-diss µg/L	Cu-diss µg/L	Cu-diss µg/L	Cu-diss µg/L	Cu-diss	Cu-diss µg/L	Cu-diss	Cu-diss	Cu-diss	Cu-diss	Cu-diss µg/L
Animas River upstr						ugas	pgr	pgr	pg/L	ugr			pg.c	jig/L	µg/L	µg/L	hãr	har	jig/L	µg/L	pgr	ligit	Jig/L		
A56 ("upstream")					2.1						8.4	13.4												67 J	2.4
A60											7.8	12.6													2.8
A61 A64											9.6 8.5	16.5 14.3													3.4 3.5
A65											8.9	14.1													3.0
A66 A68	3.0 U	3.0 U	8.3	10.0 U	6.0	4.5	3.7	10.0 U	10.0 U	4.3	9.1 10.3	13.9 11.3	3.0 T	7 3.0 U	7 3.0 17	3.0 T	10.0 U	4.0 1	7 4.0 L	J 20.0 U	20.0 U	7 20.0 U	7 20.0 U	2.7	3.5 3.3
Animas River betwe									10.0	1.0							10.0	1.0			20.0		. 20.0 0		2.5
A69A A70B	еен татыет с	етелі Стеек ан	а таныет элпе	тиі Стеек																				16.3 24.8	
Animas River down A71B	istream of the c	onfluence with n	nainstem Mineral	l Creek																				8.7	
A72	35.9	35.2	19.2	25.2		3.6	4.5	10.0 U	10.0 U	4.1	7.6 D	6.4	4.8	17.4	14.7	36.9	10.0 U	13.0	14.5	20.0 U	20.0 U	7 20.0 U	7 20.0 U	9.5	3.0
A73 A73B					2.5						5.0 D 2.0	4.9 3.8												4.3 3.1	1.9 1.4
A75D					2.1						3.7	4.2												0.6 J	1.9
A75B Bakers Bridge					2.5						3.7 3.5	4.1 3.7												0.7 J 0.5 T	2.0
1					2.7						2.3													0.5	1.7
Mainstem Cement CC48 CC49	Creek 119	109	110	89.1		56.3	90.6	72.0	55.6	61.2	79.3 D	65.4	110	221	189	152	118	166	140	76.6	145	148	139	74.4 E 78.3 E	
Mainstem Mineral		11.2	123			3.9				1.7		3.1	3.0 3	7 34	1.7	9.5	10.0 17	40 1	7 40 1		9	7 20.0 1			
M34	10.3	11.2	12.5	10.2		5.9	3.0 U	10.0 U	10.0 U	1.7	2.5 U	3.1	5.0 1	3 5.4	3.7	9.3	10.0 U	4.0 l	/ 4.0 l	J 20.0 U	20.0 T	: 20.0 E	7 20.0 U	3.8 J	J 1.3

prepared by: SJP (1/20/14) checked by: Emily (1/23/14)

Appendix 1.i: Total and Dissolved Iron Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

			PRE-RUNOFF F	ERIOD				,	RUNOFF PERIO	OD			т —					PC	OST-RUNOFF F	PERIOD					
Sampling Date Metal-fraction	Feb 2010 Fe-total	Mar 2010 Fe-total	Apr 2010 Fe-total	Mar 2011 Fe-total	April 2014 Fe-total	May 2009 Fe-total	Jun 2009 Fe-total	Jun 2010 Fe-total	Jun 2011 Fe-total	May 2012 Fe-total	May 2013 Fe-total	41760 Fe-total	Jul 2009 Fe-total	Aug 2009 Fe-total	Sep 2009 Fe-total	Nov 2009 Fe-total	Jul 2010 Fe-total	Sep 2010 Fe-total	Nov 2010 Fe-total	Jul 2011 Fe-total	Aug 2011 Fe-total	Sep 2011 Fe-total	Oct 2011 Fe-total	Oct 2012 Fe-total	Sept 2014 Fe-total
Units Animas River upstre	μg/L	µg/L	µg/L	μg/L	μg/L	μgL	µg/L	μg/L	μgT.	нуТ.	μg/L	цgL	µg/L	μg/L	µg/L	µg/L	цgL	µg/L	μgЪ	µgТ.	μgЪ	μgT.	µg/L	μg/L	μg/L
A56 ("upstream")	um oj ine conj.	шенсе шин тал	isiem Cemeni Cr	er.	142 I						63.5	413												500 U	100 U
											202	408													100 **
A61											257 218 J	427													100 U
A64											130 J	497													100 U
A65											699	420													100 U
A66 A68	293	235	225	208	334	1100	100 17	376	544	111 г	669 437	675 536	100 U	115	151	234	100 U	129	169	189	116	158	1.69	500 U	111 J 100 U
						1100	100 0									271								,,,,	
Animas River beisse. A69A A70B	en mainstem C	ement Creek an	i mainstem Mines	ral Creek																				5100 D 4890 D	
Animas River downs	tream of the co	nfluence with n	ainstem Mineral	Creek																					
A71B A72	7710	7090	4190	5080		5300	948	986	1950	1270	2680	7200	1060	2990	3330	5490	1320	3230	4330	787	1750	2500	2740	4640 D 4240 D	1340
A73		7050	4130	2000	3850	3300	210	,,,,	1,,,,	1210	4210	2580	1000	2330	3330	5450	1520	3230	4550	101	1750	1700	2140	3210 D	1080
A73B A75D					2730						1520 4610	1400 2530												2790 D 2330 D	
A75B											4810	2440												1060 JD	585
Bakers Bridge					1460						3560	1530												500 U	317
Mainstem Cement C CC48	reek 21700	19400	12700	14800		3950	4440	4160	3610	6510	17200	16600	6030	10800	13400	18600	5460	11500	14200	5230	7290	8630	11700	15100 D	8870 D
CC49		1,7400	12700	14000		3750	*****	4100	7010	4510	17200	10000	0030	10000	15400	18000	5400	11500	14200	2230	1270	60.70	11700	14400 D	8810 D
Mainstem Mineral C N34	freek 6830	6380	4180	6080		2130	1060	1.040	4200	1170	2720	6330	1340	3560	3500	8290	1780	4300	4870	754	2430	3340	3100	4630 D	1510
Sampling Date	Feb 2010	Mar 2010	Apr 2010	Mar 2011	April 2014	May 2009	Jun 2009	Jun 2010	Jun 2011	May 2012	May 2013	41760	Jul 2009	Aug 2009	Sep 2009	Nov 2009	Jul 2010	Sep 2010	Nov 2010	Jul 2011	Aug 2011	Sep 2011	Oct 2011	Oct 2012	Sept 2014
Metal-fraction Units	Fe-diss ug/L	Fe-diss µg/L	Fe-diss µg/L	Fe-diss µg/L	Fe-diss µg/L	Fe-diss ug/L	Fe-diss µg/L	Fe-diss μg/L	Fe-diss µg/L	Fe-diss µg/L	Fe-diss µg/L	Fe-diss µg/L	Fe-diss µg/L	Fe-diss µg/L											
Animas River upstre A56 ("upstream")	am of the conf.	luence with mai	istem Cement Cr	eek	<100 U						ton ti	100 U								1010101010101				100 11	100 U
Personal Action					ennennen et et en ennen et et e	Denistration denistration						OZOGOZENSKO (LANCES)	en venevenevenev												
A60 A61											100 U	100 U													100 U
A64											100 U	100 U													100 U
A65											100 U	100 U													100 U
A66											100 U	100 U													100 U
A68	100 U	100 U	100 U	100 U	J 100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	100 U	' 100 U	100 U	100 U	10.0 U	10.0 U	100 U	100 U	100 U	100 U	100 U	100 U
Animas River beisse	n mainstem C	ement Creek an	mainstem Mines	ral Creek																					
A69A A70B																								2180 2270	
Animas River downs A71B	tream of the co	nfluence with n	ainstem Mineral	Creek																				2480	
A72	3250	2500	1940	1800		100 U	343	224	199	746	628	913	463	1340	1500	3020	556	1610	2160	280	703	1050	1300	2480	443
A73					557						249 J	284	1											1020	115 J
A73B A75D											120 J	157 J	1											810	104 J
A75D A75B					100 U						144 J 137 J	100 U	1											100 U	100 U
Bakers Bridge					100 U						100 U	100 U												100 U	100 U
Mainstem Cement C	rook																								
CC48	13300	9640	8610	10000		2000	3090	2300	2320	5360	4360	4590	3670	7750	9530	11600	4300	9010	11700	3600	5520	7110	8730	11300 D	1420
CC49													1											11500 D	
Mainstem Mineral C	reek												1												
M34	2490	2470	1700	2390		139	374	173	100 U	512	554	545	764	2440	2050	4160	1190	3170	3900	337	1740	2400	2400	3510 D	858

prepared by: SJP (1/20/14) checked by: Emily(1/23/14) undated by: Beth (2/9/15) checked by: Emily(2/10/15)

Appendix 1.j: Total and Dissolved Lead Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

			PRE-RUNOFF F	PERIOD		1			RUNOFF PE	RIOD									PC	OST-RUNOFF I	PERIOD					
Sampling Date	Feb 2010	Mar 2010	Apr 2010	Mar 2011	April 2014	May 2009	Jun 2009	Jun 2010	Jun 2011	May 2012	May 2013	May 2014	Jul 2		ug 2009	Sep 2009	Nov 2009	Jul 2010	Sep 2010	Nov 2010	Jul 2011	Aug 2011	Sep 2011	Oct 2011	Oct 2012	Sept 2014
Metal-fraction Units	Pb-total ug/L	Pb-total ug/L	Pb-total µg/L	Pb-total µg/L	Pb-total μg/L	Pb-total µg/L	Pb-total µg/L	Pb-total µg/L	Pb-total µg/L	Pb-total µg/L	Pb-total μg/L	Pb-totai μg/L	Pb-t		Pb-total μg/L	Pb-total µg/L	Pb-total µg/L									
Animas River upstr	eam of the con																									
A56 ("upstream")					2.4 D						81.3 E	14.1	D												2.3 E	19 D
A60											34.7 E	15.0	D													1.8 D
A61											23.1 E															2.0 D
A64											24.9 E 50.5 E		D D													1.7 D 2.8 D
A66											51.1 E		D													2.8 D
A68	2.7	2.4	4.4	5.4	3.9 D	52.3	2.5	15.3	19.6	2.8 I	43.3 E	14.7	D 2.	.1	1.4	2.0	1.9	1.5	2.2	1.7	4.9	1.7	1.7	1.7	2.9 D	
Animas River betwe	een mainstem C	ement Creek ar	ed mainstem Mine	ral Creek																						
A69A A70B													- 1												6.2 E	
A/0B													- 1												5.8 D	,
Animas River down A71B	istream of the c	onfluence with	mainstem Minera.	l Creek									- 1												4.5 E	
A72	8.9	6.6	14.7	9.2		99.8	3.3	12.3	24.8	4.3 I			D 4:	.0	4.5	5.8	6.2	5.8	5.6	7.0	6.0	4.8	5.6	5.6	4.8 D	3.42 D
A73 A73B					6.3 D						33.7 E		D D												3.8 E	
A75D					5.5 D						32.6 E	11.2	D												5.2 D	1.6 D
A75B BakersBridge					5.4 D						34.5 E 26.0 E		D D												1.5 E	D 2.1 D
Mainstem Cement	Crook																									
CC48	19.0	17.0	19.7	17.8		18.0	11.1	24.1	22.1	11.9 I	30.3 E	24.5	D 14	1.0	15.4	17.3	18.6	19.6	18.2	17.4	14.8	20.0	21.0	20.5	13.5 E	13.3 D
CC49													- 1												13.0 E)
Mainstem Mineral													- 1													
M34 Sampling Date	5.9 Feb 2010	6.3 Mar 2010	24.8 Apr 2010	11.5 Mar 2011	April 2014	15.6 May 2009	3.1 Jun 2009	7.9 Jun 2010	45.7 Jun 2011	3.2 I May 2012	12.2 E May 2013	25.5 May 2014	D 2: Jul 2		3.2 aug 2009	5.2 Sep 2009	10.5 Nov 2009	4.1 Jul 2010	4.1 Sep 2010	7.0 Nov 2010	3.5 Jul 2011	3.9 Aug 2011	4.1 Sep 2011	4.7 Oct 2011	2.4 E Oct 2012	2.1 D Sept 2014
Metal-fraction	Pb-diss	Pb-diss	Pb-diss	Pb-diss	Pb-diss	Pb-diss	Pb-diss	Pb-diss	Pb-diss	Pb-diss	Pb-diss	Pb-diss	Pb-c	diss	Pb-diss	Pb-diss										
Units Animas River upstr	ugL eam of the con-	µg/L fluence with ma	μg/L Instem Cement Cr	μg/L reek	μg/L	ug/L	μg/L	µg/L	µg/L	µgЪ	µg/L	μg/L	μg	g/L	µg/L	μg/L	µg/L	µgЪ	μg/L	μg/L	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L
A56 (reference)					0.4						0.6	3.0													0.2 J	0.216
											0.7	0.9	- 1													0.322
A61											0.7	1.0	- 1													0.342
A64											1.2	1.0	- 1													0.294
A65											1.3	0.9	- 1													0.280
A68	1.0 U	1.0 t	1.0 U	1.0 T	J 0.1 U	1.0 1	J 1.0 U	1.0 U	1.0 T	7 0.6	1.3	1.1	1.	.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	0.2 U	J 1.0 T	7 1.0 L	7 1.0 1	7 1.0 7	J 0.1 J	
Animas River beiss	oon meinstem (omoni Crook m	ed mainston Mina	omi Crook																						
A69A	еен тапыет С	ement Creek w	а тапнет запе	Jul Creek																					0.2 J	
A70B													- 1												3.0	
Animas River down	istream of the c	onfluence with	mainstem Minera	l Creek									- 1													_
A71B A72	2.7	1.3	1.0 U	1.5		1.0 3	7 1.0 U	1.0 1	1.0 T	7 0.1 t	7 1.2 E	0.1	U 1:	.0 U	1.0 U	1.0 37	1.0 37	1.0 13	0.2 U	0.2 U	7 1.0 T	7 10 1	7 1.0 1	L 1.0 1	0.1 U 3 0.2 J	
A73					0.1 U						0.7 J	0.2													0.1 U	0.1 U
A73B											0.3	0.1	J												0.1 t	
A75D A75B					0.1 U						0.8	0.3	- 1												0.1 U	
Bakers Bridge					0.1 U						0.5	0.3	- 1												0.1 T	
Mainstem Cement	Creek																									
CC48	13.2	14.2	14.3	15.1		4.2	9.6	0.8	9.0	8.0	13.1 E	6.9	13	3.0	16.8	14.5	16.2	17.4	16.8	17.1	8.5	19.2	21.4	18.7	11.2 E	
CC49																									11.3 D)
Mainstem Mineral	Creek					10 3					0.5 U		. Г.	.0 U							7 10 T			1.0 1		0.1 U
M34	1.5	2.0	1.7	4.2		1.0 ₹	J 1.0 U	1.0 U	1.0 %	7 0.1 J	0.5 E	0.1	. l:	u tr	1.0 U	1.0 U	1.0 U	1.0 U	0.2 U	0.2 U	3 1.0 T	/ 1.0 L	7 1.0 7	⊔ 1.U 1	J 0.5 L	: 0.1 U

prepared by: SJP (1/20/14) checked by: Emily (1/23/14)

updated by: Beth (2/9/15) checked by Emily (2/10/15)

Appendix 1.k: Total and Dissolved Manganese Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upner Animas Mining District

		1	PRE-RUNOFF P	ERIOD					RUNOFF PERI	OD								PC	ST-RUNOFF I	PERIOD					
Sampling Date Metal-fraction	Feb 2010 Mn-total	Mar 2010 Mn-total	Apr 2010 Mn-total	Mar 2011 Mu-totai	April 2014 Mn-total	May 2009 Mn-total	Jun 2009 Mn-total	Jun 2010 Mn-total	Jun 2011 Mn-total	May 2012 Mn-total	May 2013 Mu-total	41760 Mn-total	Jul 2009 Mn-total	Aug 2009 Mn-total	Sep 2009 Mn-total	Nov 2009 Mn-total	Jul 2010 Mn-total	Sep 2010 Mn-total	Nov 2010 Mn-total	Jul 2011 Mn-totai	Aug 2011 Mn-total	Sep 2011 Mn-total	Oct 2011 Mn-total	Oct 2012 Mn-total	Sept 2014 Mn-total
Units Animas River upstro	µg/L	µg/L	μg/L	µg/L	μg/L	μgL	μg/L	µg/L	μg/L	μg/L	μg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μ <u>ο</u> /L	µg/L	μg/L	μg/L	μg/L
A56 ("upstream")	sum oj ine conj	пиенсе чин ти	asiem Cemeni Cr	CEA	187						567	287												189 E	482
160											348	30.2													424
A61											477	917													481
A64 A65											412 578	756 771													576 630
A66											635	944													862
A68	3550	2830	3980	3200	3390	697	697	435	550	715	988	1300	676	1290	1580	2320	668	1280	1770	571	868	1120	1300	13-50	D 835
Animas River betwe A69A A70B	en mainstem C	emens Creek and	d mainstem Mine	ral Creek																				2640 E 2550 E	
Animas River down	stream of the c	onfluence with n	winstem Mineral	Creek																					
A71B A72	2710	3110	1850	2440		755	492	311	397	488	734	898	596	1380	1430	2470	734	1450	1690	439	923	1290	1220		D 884
A73 A73B					1860						609 230	689 333												1470 E	
A75D A75B					1100						571 592	507 493												909 E 839 E	
Bakers Bridge					638						468	327												561 E	
Mainstem Cement (
CC48 CC49	5120	5490	3190	4950		809	1810	865	739	1660	1510	1770	2850	4900	5100	5530	3190	4780	5140	1790	3780	4490	4700	5070 5140 D	D 3590 D
Mainstem Mineral (M34	Creek 615	559	328	567		219	130	112	313	123	151	242	174	401	374	596	209	440	429	115	275	394	302	428	D 226
Sampling Date Metal-fraction	Feb 2010 Mn-diss	Mar 2010 Mn-diss	Apr 2010 Mn-diss	Mar 2011 Mn-diss	April 2014 Mn-diss	May 2009 Mn-diss	Jun 2009 Mn-diss	Jun 2010 Mn-diss	Jun 2011 Mn-diss	May 2012 Mn-diss	May 2013 Mn-diss	41760 Mn-diss	Jul 2009 Mn-diss	Aug 2009 Mn-diss	Sep 2009 Mn-diss	Nov 2009 Mn-diss	Jul 2010 Mn-diss	Sep 2010 Mn-diss	Nov 2010 Mn-diss	Jul 2011 Mn-diss	Aug 2011 Mn-diss	Sep 2011 Mn-diss	Oct 2011 Mn-diss	Oct 2012 Mn-diss	Sept 2014 Mn-diss
Units	ugL	μg/L	μg/L	µg/L	ли-uss µg/L	ug/L	µg/L	µg/L	μg/L	µg/L	μg/L	μgL	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	ли-diss µg/L	ли-сиз µg/L	дgL	μg/L	ли-diss µg/L	μg/L
Animas River upstra A56 ("upstream")	tam of the conj	fluence with mai.	nstem Cement Cr	eek	172						140	196												184	469
A61											153 328	189 786													416 464
A64											240	639													569
A65 A66											304 343	655 805													614 860
A68	3560	2710	3730	3160	3340	3.40	636	335	415	699	656	1220	668	1320	1540	2380	649	1310	1790	537	821	1140	1310	1340	826
Animas River betwe	en mainstem C	ement Creek and	l mainstem Mine	ral Creek																					
A69A A70B																								2590 2540	
Animas River down A71B	stream of the c	onfluence with n	nainstem Mineral	Creek																				1660	
A72	2710	2920	1770	2340		219	450	241	305	471	478	823	603	1420	1370	2490	736	1590	1690	405	923	1290	1180	1580	863
A73 A73B					1830						341 109	624 294												1440 1210	811 419
A75D					1090						232	408												847	371
A75B					584						233	394 246												856	363
Bakers Bridge					384						149	246												546	254
Mainstem Cement C CC48	5290	5200	3040	4940		766	1770	811	731	1620	1440	1740	2830	4810	4920	5270	3280	5030	5220	1740	3890	4900	4620	5050	D 710
CC49													1								.530	.,,,,,			D
Mainstem Mineral (
M34	630	634	324	530		160	120	84.9	150	115	128	184	169	410	336	592	212	435	456	104	293	406	303	43.5	D 221

prepared by: SJP (1/20/14) checked by: Emily(1/23/14) updated by: Beth (2/9/15) checked by Emily(2/10/15)

Appendix Ll: Total and Dissolved Nickel Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

			PRE-RUNOFF I	ERIOD					RUNOFF PE	RIOD				\neg						PO	ST-RUNOFF F	ERIOD					
Metal-fraction Units	Feb 2010 Ni-total µg/L	Mar 2010 Ni-total μg/L	Apr 2010 Ni-total µg/L	Mar 2011 Ni-total µg/L	April 2014 Ni-total µg/L	May 2009 Ni-total μg/L	Jun 2009 Ni-total μg/L	Jun 2010 Ni-total µg/L	Jun 2011 Ni-total µg/L	May 201: Ni-total μg/L	Ni-t		May 2014 Ni-total μg/L	2	ful 2009 Ni-total µg/L	Aug 2009 Ni-total μg/L	Sep 2009 Ni-total µg:L	Nov 2009 Ni-total µg/L	Jul 2010 Ni-total µg/L	Sep 2010 Ni-total µg/L	Nov 2010 Ni-total µg/L	Jul 2011 Ni-total µg/L	Aug 2011 Ni-total μg/L	Sep 2011 Ni-total µg/L	Oct 2011 Ni-total µg/L	Oct 2012 Ni-total µg/L	Sept 2014 Ni-total µg/L
Animas River upsire AS6 ('upstream')	um of the confl	uence with mai	nstem Cement Ci	eek	2.5 U						2	5 U	2.5 1	tir.												2.5 t	J 25 U
A60 A61 A64 A65 A66 A68	2.0 U	2.0 U	2.0 U	4.0 3	J 2.5 U	2.0 U	7 2.0 U	4.0 U	4.0 1	J 2.5	2. 2. 2. 2.	.5 U .5 U .5 U .5 U	2.5 1 2.5 1 2.5 1 2.5 1 2.5 1 2.5 1	U U U U	2.0 U	2.0 U	7 2.0 U	2.0 U	4.0 U	0.7 단	0.7 U	4.0 U	4,0 t	F 4.0	U 4.0 t	; 2.5 t	2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U
Animas River betwee Ad9A A70B	en mainstem Ce	ment Creek an	d mainstem Mine	ral Creek																						4.6 J 4.4 J	D D
Animas River downs A71B A72 A73 A73B A75D A75B Bakers Bridge	tream of the co	nfluence with n	nainston Minera 2.0 U		2.5 U 2.5 U 2.5 U	2.0 U	7 2.0 U	4.0 U	4.0 1	J 2.5	U 2.	5 U 5 U 5 U	2.5 1 2.5 1 2.5 1 2.5 1 2.5 1 2.5 1	U U U	2.0	3.9	3.3	6.3	4.0 U	0.7 U	5.4	4.0 U	4.0 t	7 4.0	Ū 4.0 ₹	3.7 J 7 4.6 J 3.8 J 2.9 J 2.5 L 2.5 L	D 2.5 U D 2.5 U D 2.5 U J 2.5 U J 2.5 U
Mainstem Cement C CC48 CC49	reek 17.8	17.9	9.7	14.8		2.0	6.6	4.3	4.0 1	J 4.8	JD 5.	.0 U	3.5 1	m	10	16.3	15.7	17.3	10	15.1	17.1	6.4	12.3	14	13.4	16.4 I 22.7 I	
Mainstem Mineral C	Creek	3.2	20 17	40 3	_	20 1	7 20 17	40 17	40 1	7 25		5 17	05 1	11	2.0 17	2.3	2.0 U	3.7	40 17	0.7 17	0.7 17	40 17	40 T	4.0	17 40 1	7 26 1	D 25 U
Sampling Date Metal-fraction Units Animas River upstre	Feb 2010 Ni-diss ug/L	Mar 2010 Ni-diss μg/L	Apr 2010 Ni-diss µg/L	Mar 2011 Ni-diss µg/L	April 2014 Ni-diss µg/L	May 2009 Ni-diss ug/L	Jun 2009 Ni-diss µg/L	Jun 2010 Ni-diss µg/L	Jun 2011 Ni-diss µg/L	May 201: Ni-diss μg/L	2 May	2013 diss	May 2014 Ni-diss μg/L	3		Aug 2009 Ni-diss µg/L	Sep 2009 Ni-diss µg/L	Nov 2009 Ni-diss µg/L	Jul 2010 Ni-diss µg/L	Sep 2010 Ni-diss µg/L	Nov 2010 Ni-diss µg/L	Jul 2011 Ni-diss µg/L	Aug 2011 Ni-diss µg/L	Sep 2011 Ni-diss µg/L	Oct 2011 Ni-diss µg/L	Oct 2012 Ni-diss µg/L	Sept 2014 Ni-diss µg/L
A56 ("upstream")					0 S U						0	5 U	0.5	U												0.5 T	J 05 U
A60 A61 A64 A65 A66 A68	2.0 U	2.0 U	2.0 U	4.0 3	J 0.5 U	2.0 U	7 2.0 U	4.0 U	4.0 1	J 0.5	0. 0. 0.	.5 U .5 U .5 U .5 U .5 U	0.5 1 0.5 1 0.5 1 0.5 1 0.5 1	U U U	2.0 U	2.0 U	. 2.0 U	2.0 U	4.0 U	0.7 Ū	0.7 U	' 4.0 U	4.0 t	7 4.0	U 4.0 t	7 0.5 T	0.5 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U
Animas River betwee A69A A70B	en mainstem Ce	ment Creek an	d mainstem Mine	ral Creek																						4.8 5.2	
Animas River downs A71B A72 A73 A73B A75D A75B Bakers Bridge	stream of the co	nfluence with n	nainstem Minera 3.4	Creek 5.8	0.9 J 0.8 J	2.0 U	? 2.0 U	4.0 U	4.0 1	J 0.9	1. 0. 0.	5 U 5 U 4 6 I 5 I	0.606 J 0.5 R 0.8 J 0.5 R 0.5 R	J U	2.0 U	3.0	3.7	6.4	4.0 U	0.7 U	4.2	4.0 U	4.0 t	7 4.0	U 4.0 t	4.9 5.9 4.8 3.3 2.3 2.4 0.6 J	1.1 0.9 J 1.9 1.0 J 1.0 J
Mainstem Cement C CC48 CC49	reek 19.4	16.3	10.3	16.4		2.2	5.3	4.0 U	4.0	J 4.9	5.	.0 U	3.1		9.1	15.0	15.7	17.4	8.6	16.5	16.2	6.0	13.0	14.5	13.7	12.4 I 13.5 I	
Mainstem Mineral C	Creek	3.3	20 77			20 1		40 17			, ,	c 17	0.5 3	,,	20 77	2.1	2.3	4.1	4.0 77	0.7 17	0.7 17		10 T	7 40	17 40 1	7 25 1	7 05 1

prepared by: SJP (1/20/14) checked by: Emily(1/23/14)

updated by: Beth (2/9/15) checked by Emily (2/10/15)

Appendix I.m: Total and Dissolved Selenium Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

			PRE-RUN	OFFPER	TOD		1			Б	UNOFF PE	RIOD					$\overline{}$									POST-RU	NOFF PI	ERIOD								
Sampling Date Metal-fraction Units	Feb 2010 Se-total µg/L	Mar 2010 Se-total ng/L	Apr 20 Se-tot pg/L	ai	Mar 2011 Se-total ng/L	April 2014 Se-total µg/L	May 2009 Se-total ng/L	Jun 200: Se-total ng/L		tal	Jun 2011 Se-total µg/L	May : Se-to	tal	May 201: Se-total ng/L	s	ay 2014 e-total ng/L	Se	l 2009 ⊢total ag/L	Aug 2009 Se-total ng/L	9 5	iep 2009 Se-total ng/L	Nov 2009 Se-total pg/L	s	ni 2010 e-total ng/L	Sep 2010 Se-total pg/L	Se-	2010 total	Jul 2011 Se-total ng/L		Aug 2011 Se-total µg/L	Sep 2 Se-to ng/	tal	Oct 2011 Se-total ng/L	Oct 2 Se-to Hg/	al	Sept 2014 Se-total µg/L
Animas River upstrei A 56 ("upstream")	am of the conf	uence with s	nainstem Cen	sent Creek		5.0 U						0886880	SSSSSSS	2.5	e e	5.0 1	1 55	80000000		202200	2612 (2612)		XXXXX			5155155	53503505	2012/2012	(13.0333)		(SKSK688)			2.5	o t	5.0 U
A60 A61 A64 A65 A66 A68	1.0 U	1.6	1.0	U	1.0 U		1.0	U 1.0	U 1.0	U	1.0	U 2.5	Ū	2.5 2.5 2.5 2.5 2.5 2.5	U U U U	5.0 T 5.0 T 5.0 T 5.0 T 5.0 T 5.0 T		1.0 U	1.0	U	1.0 U	T 1.0	U	1.0 U	0.2	U 0.	.2 U	1.0	Ū	1.0 0	1.0	Ū	1.0		U	5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U
Animus River beövee A69A A70B	m mainstem C	ment Creek	and mainsten	s Mineral	Creek																													2.5 2.5	U	
Animas River downs. A71B	tream of the ce	nfluence wit	h mainstem 3	dineral Cr	reck																													2.5	T!	I
A710 A72 A73 A73B A75D A75B Bakers Bridge	1.0 U	1.0	1.0	U	1.0 U	5.0 U 5.0 U 5.0 U	1.0	U 1.0	U 1.0	U	1.0	U 2.5	U	2.5 2.5	U U U	5.0 T 5.0 T 5.0 T 5.0 T 5.0 T 5.0 T		1.0 U	1.0	U	1.0 U	f 1.0	U	1.0 U	0.2	U 0.	.2 U	1.0	U	1.0 (1.0	Ū	1.0	U 2.5 2.5 2.5 2.5 2.5 2.5	U U	5 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U
Mainstem Cement C CC48 CC49	heek 1.0 U	1.3	1.0	U	1.0 U	,	1.0	U 1.0	U 1.0	U	1.0	U 2.5	υ	5.0	U	5.0 T	U	1.0 U	1.0	U	1.0 U	1.0	U	1.0 U	0.2	U 0.	.2 U	1.0	U	1.0 (1.0	U	1.0		U	5.0 U
Mainstem Mineral C	Treek	1.0	1.0		1.0 T	,	1.0	U 1.0	T. 10		1.0			2.5		sn t	, l	10 11	1.0	**	10 [1.0		10 U	0.2	TT 0	2 U	1.0		10 0		U	1.0		U	5.0 U.I
	Feb 2010 Se-diss ug/L	Mar 2010 Se-diss ng/L	Apr 26 Se-di ng/L	55	Mar 2011 Se-diss ug/L	April 2014 Se-diss ng/L	May 2009 Se-diss ug/L	Jun 200 Se-diss ng/L	Jun 2	iss	Jun 2011 Se-diss ng/L	May : Se-d	iss	May 201. Se-diss ng/L	S M	ry 2014 e-diss ug/L	50	l 2009 ⊢diss 1g/L	Aug 2009 Se-diss ng/L		iep 2009 Se-diss ng/L	Nov 2009 Se-diss ng/L	Ju S	ol 2010 ie-diss ng/L	Sep 2010 Se-diss ng/L	Nov Se-	2010 diss	Jul 2011 Se-dist ng/L	1 A	Aug 2011 Se-diss ng/L	Sep 2 Se-d ng	011 iss	Oct 2011 Se-diss ng/L	Oct 2 Se-d ng/)12 :	Sept 2014 Se-diss ug/L
Animus River upstre A56 ("upstream")	am of the conf	uence with s	nainstem Cen	sent Creek	00000000	1.6 U			35335333	200000	3000000	000000		0.5	u .	10 1			22222	2020	200000	10000000	1000000	20000000	varya.	0.000.000	1000000	200000	32032	0000000	333333		200000	0.5	U	10 U
A60 A61 A64 A65 A66 A68	1.0 U	1.0	U 1.0	Ü	1.0 U	J 1.0 U	1.0	U 1.0	U 1.0	Ū	1.0	U 0.5	υ	0.5 0.5 0.5 0.5 0.5 0.5	U U	1.0 T 1.0 T 1.0 T 1.0 T 1.0 T	0 0 0	1.0 U	1.0	U	1.0 U	f 1.0	Ū	1.0 U	0.2	U 0.	.2 U	1.0	U	1.0 T	1.0	Ū	1.0	U 0.5	Ü	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U
Animas River betwee A69A A70B	n mainstem C	ment Creek	and mainsten	s Mineral	Creek																													0.5 0.5	U	ļ
Animus River downs A71B A72 A73 A73B A75D A75B Bakers Bridge	1.0 U	nfluence wit			neek	1.0 U 1.0 U 1.0 U	1.0	U 1.0	U 1.0	Ū	1.0	U 0.5	υ	2.5 2.5 0.5 0.5 0.5 0.5	U U U	1.0 T 1.0 T 1.0 T 1.0 T 1.0 T	0	1.0 U	1.0	ū	1.0 U	1.0	U	1.0 U	0.2	U 0.	.2 U	1.0	U	1.0 t	1.0	U	1.0	0.5 U 0.5 0.5 0.5 0.5 0.5	U U U U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U
Mainstem Cement C CC48 CC49	heek 1.0 U	1.0	U 1.0	U	1.0 U	J	1.0	U 1.0	U 1.0	U	1.0	U 0.5	υ	5.0	υ	1.0 T	IJ	1.0 U	1.0	U	1.0 U	1.0	U	1.0 U	0.2	U 0.	.2 U	1.0	U	1.0 U	1.0	U	1.0	U 3.2 2.5	ID U	5.0 U
Mainstem Mineral C M34	reek 1.0 U	1.0	U 1.0	**	10 1	,	1.0	II 10	U 10		1.0			2.6	11	10 T	, [10 U	1.0	TT.	10 [. 10	11	10 II	0.3	TT 0	3 11	1.0	**	10 7			1.0	II 25	**	1.0 11

orenared by: SJP (1/28/14) checked by: Emily (1/23/14) updated by: Beth (2/9/15) checked by: Emily (2/10/15)

Appendix I. n: Total and Dissolved Silver Con centrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Zoological Risk Assessment Upper Animas Mining District

			PRE-RUN	OFF PER	TOD		_					RU	OFF PER	TOD														P	OST-RUN	OFF PE	RIOD									\neg
Sampling Date Metal-fraction Units	Feb 2010 Ag-total ng/L	Mar 2010 Ag-total pg/L	Apr 2: Ag-to µg/I	tal	Mar 2011 Ag-total ug/L	April 2 Ag-to ng/I	al	May 2009 Ag-total µg/L	Jun 2 Ag-te pg/	ital	Jun 2010 Ag-total ng/L		in 2011 .g-total .pg/L	May Ag-t pg	otal	May 201 Ag-tota ng/L		May 2014 Ag-total ug/L		Jul 2009 Ag-total ug/L	As	ig 2009 g-total ig/L	Sep 2 Ag-to µg/	etal	Nov 2009 Ag-total µg/L	Jul 20 Ag-tot pg/L	tal	Sep 2010 Ag-total µg/L	Nov . Ag-t µg	otal	Jul 201 Ag-tot: pg/L	al	Aug 2011 Ag-total ng/L	Ag-	2011 total g/L	Oct 20 Ag-to pg/I	tal	Oct 2012 Ag-total pg/L	Sept : Ag-t ug/	otal
Animas River upstr A56 ("upstream")	eam of the con	bsence with n	raimsem Cer	nent Creek	100000000000000000000000000000000000000	14.5	g g	ASTRONOMICS	V20000000	2000000	NEZ DEZ EXE	V0.00000	28/24/28/20	100000000	988888	2.5	i H	2.5	33 4 63		1000000	22222	10.000.000	222222	200200000000	2022222	110.000.000	2002000	22.22.22	000000	8008080	19091939	000000000	0.000.000	10.020.020	2000000	2022000	9.6	U 2.	602007600
A60 A61 A64 A65 A66 A68	0.5 U	0.5	Ū 0.5	Ü	0.5 1			0.5	U 0.5	i U	0.5	Ü	0.5 U	2.	s u	2.5 2.5 2.5 2.5 2.5 2.5 2.5	U U	2.5 2.5 2.5 2.5 2.5 2.5 2.5	U U U U U U	0.5	Ü	0.5 T	1 0.5	S U	0.5 U	0.5	Ü	0.1	U 0.	1 U	0.5	U	0.5	0	.5 U	0.5	Ü	2.5	2.: 2.: 2.: 2.:	5 U 5 U 5 U 5 U
Animas River betwe A69A A70B	cen mainstem C	ement Creek	and mainster	n Mineral	Creek																																	2.5 2.5	U U	
Animas River down A71B A72 A73 A73B A75D A75B Bakers Bridae	stream of the c	mfluence with		Mineral Ci U	0.5 I	2.5 2.5	n n	0.5	0.5	יט	0.5	U	0.5 U	2.:	5 U	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	Ω Ω	2.5 2.5 2.5	00000	0.5	U	0.5 T	0.5	υ	0.5 U	0.5	U	0.1	U 0.	1 U	0.5	Ū	0.5	r 0	.5 U	0.5	U	2.5 2.5 2.5	U 2.: U 2.: U 2.: U 2.: U 2.: U 2.:	5 U 5 U
Mainstem Cement (CC48 CC49	Oneek 0.5 U	0.5	U 0.5	Ū	0.5	IJ		0.5	U 0.5	U	0.5	U	0.5 U	2.	s u	5.0	U	2.5	U	0.5	U	0.5 T	0.5	U	0.5 U	0.5	U	0.1	U 0.	1 U	0.5	Ū	0.5	n 0	.5 U	0.5	Ü	2.5 2.5		S U
Mainssem Mineral M34				11	0.5				rr ns				0.5 11		5 17	2.5	17		11	0.5		лс т			0.5 11	0.5	п	0.1		1 11		п	0.5		.5 U		FF.	2.5	rr 2 ·	
Sampling Date Metal-fraction Units Animas River upstr	0.5 U Feb 2010 Ag-diss µg/L eam of the conf	0.5 Mar 2010 Ag-diss µg/L bænce with n	Apr 20 Ag-di pg/I	310 lss	Mar 2011 Ag-diss µg£	April 2 Ag-di µg/I	ss	0.5 May 2009 Ag-diss µg/L	Jun 2 Ag-d µg/	009 iss	0.5 Jun 2010 Ag-diss µg/L	31	0.5 U in 2011 i.g-diss i.g-L	2. Мау Ад-	2012 Hiss	May 201 Ag-dis: µg/L	13 1	2.5 May 2014 Ag-diss gg/L		Jul 2009 Ag-diss µg/L	Au A	0.5 U g 2009 g-diss ag/L	O.: Sep 2 Ag-d µg/	009 iss	0.5 U Nov 2009 Ag-diss µg/L	Jul 20 Ag-di gg/L	10 ss	0.1 Sep 2010 Ag-diss µg/L	U 0. Nov: Ag-	2010 diss	0.5 Jul 201 Ag-dis µg/L	ll is	0.5 Aug 2011 Ag-diss µg/L	Sep	2011 diss	O.5 Oct 20 Ag-di µg/I)11 iss	Oct 2012 Ag-diss gg/L	Sept : Ag-c pg/	2014 Siss L
Ac6 ("upstream") Ac6 Ac1 Ac4 Ac5 Ac6 Ac8	0.5 U	0.5	Ū 0.5	U	0.5	U 0.5	U U	0.5	U 0.5	Ü	0.5	Ū	0.5 U	0.	5 U	0.5 0.5 0.5 0.5 0.5 0.5	U U U U	0.5 0.5 0.5 0.5 0.5 0.5		0.5	U	0.5 U	0.5	S U	0.5 U	0.5	U	0.1	U 0.	ı U	0.5	Ū	0.5	U 0	5 U	0.5	U	0.5	0.: 0.: 0.: 0.:	S U S U
Animas River betwe A69A A70B	en mainstem C	anent Creek	and majuster	n Mineral	Creek																																	0.5 0.5	U	
Animas River down A71B A72 A73 A73B A75D A75B Bakers Bridge	n teum of the c 0.5 U	mfluence with		Mineral Ci U	0.5 ¹	0.5	n n	0.5	U 0.5	U	0.5	U	0.5 U	0.	s U	2.5 2.5 0.5 0.5 0.5	U	0.5	999999	0.5	U	0.5 t	. 0.1	5 U	0.5 U	0.5	υ	0.1	U 0.	1 U	0.5	U	0.5	U 0	.5 U	0.5	U	0.5	U 0.:	S U S U S U
Mainstem Cement (CC48 CC49	Oreek 0.5 U	0.5	U 0.5	U	0.5	IJ		0.5	U 0.5	U	0.5	U	0.5 U	0.	S U	5.0	Ū	0.5	Ū	0.5	U	0.5 T	0.5	υ	0.5 U	0.5	U	0.1	U 0.	1 U	0.5	U	0.5	U 0	.5 U	0.5	Ū	2.5 2.5	U 2.:	5 U
Mainstem Mineral M34	Creek	0.5	0.5	U	0.5	J		0.5	U 0.5	U	0.5	U	ns U		s U	2.5	U	0.5	U	0.5	U	0.5 T	0.5	U	0.5 U	0.5	U	0.1	U n	1 U	0.5	U	0.5	U n	s U	0.5	U	25	U 0.:	5 U

prepared by: SJP (1/20/14) checked by: Emily (1/23/14) updated by Beth (2/9/15) checked by Emily (2/10/15)

Appendix 1.0: Total and Dissolved Zine Concentrations in Surface Water Samples Collected Between 2009 and 2014 Baseline Ecological Risk Assessment Upper Animas Mining District

1			PRE-RUNOFF	PERIOD					RUNOFF PER	OD			_					PC	ST-RUNOFF P	ERIOD					
Sampling Date	Feb 2010	Mar 2010	Apr 2010	Mar 2011	April2014	May 2009	Jun 2009	Jun 2010	Jun 2011	May 2012	May 2013	May 2014	Jul 2009	Aug 2009	Sep 2009	Nov 2009	Jul 2010	Sep 2010	Nov2010	Jul 2011	Aug 2011	Sep 2011	Oct 2011	Oct 2012	Sept 2014
Metal-fraction Units	Zn-total us/L	Zn-total us/L	Zu-total µg/L	Zn-total ug/L	Zn-total µg/L	Zu-total µg/L	Zn-total µg/L	Zn-total μg/L	Zn-total µg/L	Zn-total µg/L	Zn-total μg/L	Zn-totai µg/L	Zn-total μg/L	Zn-totai μg/L	Zn-total µg/L	Za-total µg/L	Zn-total µg/L	Zn-total µg/L	Zn-total μg/L	Zn-total µg/L	Za-total µg/L	Zn-total µg/L	Zn-total µg/L	Zn-total μg/L	Zu-total ug/L
Animas River upstre						750							,,,,,,	ALC:								7,5	700		
A56 ("upstream")					247						467	396												189 D	255
A60											384	426	l												267
A61											375	547	l												263
A64											358	504	l												259
A65											395	502	l												293
A66 A68											400	516	l								290				340
A08	663	597	1180	874	1020	405	324	318	307	289	454	491	270	333	413	581	273	380	441	252	290	317	399	306 D	273
Animas River betwee A69A A70B	en mainstem Ci	ement Creek and	l mainstem Mine	ral Creek																				1170 D 1150 D	
Animas River do sus	tream of the co	nfluence with m	ainstem Minera	l Creek																					
A71B A72	1060	1320	966	1080		306	303	221	237	293	453	489	310	659	650	1140	393	717	704	251	469	573	600	731 D 726 D	391
A73	1000	1320	900	1080	768	300	505	221	237	293	453 352	489 426	310	039	050	1140	393	/1/	/80	251	409	3/3	000	685 D	
A73B											119	204	l											557 D	
A75D A75B					483						288 283	306 296	l											545 D 445 D	
Bakers Bridge					273						221	195	l											264 D	
Mainstem Cement C	reek																								
CC48 CC49	2570	2730	1840	2430		641	1130	655	551	1070	1180	1270	1600	2580	2690	2890	1720	2710	2620	1100	1970	2160	2510	2560 D 2590 D	
Mainstem Mineral C													l												
MB4 Sampling Date	285 Feb 2010	251 Mar 2010	573 Apr 2010	357 Mar 2011	April2014	90 May 2009	94.7 Jun 2009	56.8 Jun 2010	77.7 Jun 2011	80.2 May 2012	121 May 2013	196 May 2014	92 Jul 2009	194 Aug 2009	189 Sep 2009	280 Nov 2009	114 Jul 2010	196 Sep 2010	236 Nov2010	62.8 Jul 2011	132 Aug 2011	169 Sep 2011	157 Oct 2011	177 D Oct 2012	110 Sept 2014
Metal-fraction	Zn-diss	Zn-diss	Zn-diss	Zu-diss	Zn-diss	Zu-diss	Zn-diss	Zn-diss	Zn-diss	Zn-diss	Zn-diss	Zu-diss	Zu-diss	Zu-diss	Zn-diss	Zu-diss	Zn-diss	Zn-diss							
Units Animas River upstre	ug/L	μg/L	µg/L	μg/L	µg/L	ug/L	µg/L	μg/L	µg/L	μg/L	µg/L	μg/L	µg/L	μg/L											
A56 ("upstream")	штој іне сопјі	tuence wan mair	isiem Cemeni Ci	res	241						224	161												189	250
A60											242 305	360 509	l												266
A64											280	452	l												253 260
A65											296	455	l												293
A66											292	461	l												341
A68	702	610	985	874	1030	295	270	286	274	281	347	446	268	332	407	567	261	410	436	237	282	311	393	300	270
Animas River betwee	en mainstem Ci	emeni Creek and	l mainstem Mine	ral Creek																					
A69A A70B																								1160 1160	
Animas River downs	tream of the co	nfluence with m	ainstem Minera	l Creek									l												
A71B A72	1110	1230	864	972		133	249	206	217	284	369	453	313	636	617	1120	392	762	754	228	467	590	549	743 733	362
A73	1110	1230	00+	912	701	155	277	200	211	207	242	364	J.17	0.50	017	1120	392	102	1.04	220	707	390	249	682	327
A73B											79.0	178	I											561	180
A75D					367						140	217	I											427	152
A75B					121						140	210	I											442	149
Bakers Bridge					174						66.5	111	I											241	87.7
Mainstem Cement C													l												
CC48 CC49	2670	2600	1600	2340		611	1080	660	614	1070	1160	1310	1620	2650	2570	2650	1800	2730	2890	1090	2140	2430	2400	2590 D 2710 D	
													I											2.10	
Mainstem Mineral C	7eek 178	202	100	212		481	72.5	68.6	50.0 17	68.7	100	146	00.7	180	176	117	104	106	242	51.4	121	170	142	173 D	98.8
DUT	248	171	+27	312		+0.1	14.2	0.60	20.0 U	08.2	100	140	00.7	100	110	317	100	190	292	29,9	131	170	142	1/0 D	70.0

prepared by: SJP (1/20/14) checked by: Emily (1/23/14) updated by: Beth (2/945) checked by: Emily (2/10/15)

Appendix 2.5

Total metals concentrations in sediment samples collected in September 2014

Baseline Ecological Risk Assessment

Upper Animas River Mining District

Sample Location	Units	Aluminum	Arsenic	Beryllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Zinc
Animas River abov	e mainstem C	ement Creek													
A56 ("upstream")	mg/kg dw	9310 D	20.2 D	2.94 JD	11.6 D	3.6 D	244 D	21700 D	1180 D	9250 D	0.06 D	7.13 D	<1 U	3.62 D	3220 D
A60	mg/kg dw	7730 D	20.4 D	<2.03 U	9.55 D	3.88 D	262 D	23400 D	1610 D	7460 D	0.07 D	6.26 D	<1.02 U	5.96 D	2130 D
A61	mg/kg dw	9280 D	20.5 D	2.1 JD	4.95 D	3.55 D	286 D	22800 D	1400 D	8210 D	0.05 D	6.52 D	<0.995 U	5.23 D	2330 D
A64	mg/kg dw	9610 D	21.3 D	3.0 JD	7.93 D	3.55 D	264 D	24500 D	1120 D	6850 D	0.13 D	6.84 D	<1.01 U	4.88 D	2730 D
A65	mg/kg dw	8190 D	19.4 D	<1.99 U	6.82 D	3.76 D	271 D	25000 D	1220 D	8180 D	0.03 D	6.49 D	<0.997 U	3.61 D	1700 D
A66	mg/kg dw	9190 D	23.7 D	<2.03 U	9.17 D	3.7 D	243 D	25700 D	1190 D	8190 D	0.05 D	7.11 D	<1.01 U	4.81 D	2500 D
A68	mg/kg dw	7700 D	17.5 D	<1.97 U	10.8 D	3.73 D	216 D	24000 D	1240 D	9430 D	0.02 JD	6.56 D	<0.985 U	2.9 D	2480 D
Animas River betw	een mainstem	Cement Creek a	nd mainstem N	Aineral Creek											
A69A	mg/kg dw														
A70B	mg/kg dw														
Animas River belo	w mainstem M	ineral Creek													
A71B	mg/kg dw														
A72	mg/kg dw	9960 D	26.8 D	<2.03 U	3.03 D	3.01 D	133 D	42000 D	499 D	3400 D	0.05 D	5.33 D	<1.02 U	1.83 D	858 D
A73	mg/kg dw	6770 D	20.5 D	<2.04 U	2.7 D	3.5 D	113 D	36800 D	435 D	2780 D	0.02 JD	5.5 D	<1.02 U	1.24 D	749 D
A73B	mg/kg dw	6620 D	19.9 D	<2.03 U	2.72 D	3.68 D	98.8 D	35200 D	540 D	2480 D	0.04 D	8.16 D	<1.01 U	1.25 D	659 D
A75D	mg/kg dw	7660 D	17.5 D	<2.03 U	3.73 D	3.72 D	103 D	30800 D	339 D	3750 D	<0.02 U	8.2 BD	<1.02 U	0.948 JD	1080 D
A75B	mg/kg dw	6640 D	9.22 D	<1.99 U	1.99 D	5.01 D	67 D	20100 D	98 D	2070 D	<0.01 U	6.71 D	<0.994 U	0.512 ЛД	578 D
Bakers Bridge	mg/kg dw	8040 D	16.2 D	<1.99 U	4.63 D	4.74 D	92 D	27200 D	244 D	3970 D	0.02 JD	12.1 BD	<0.997 U	1.02 D	1700 D
mainstem Cement	Creek														
CC48	mg/kg dw														
CC49	mg/kg dw														
mainstem Mineral	Creek														
M34	mg/kg dw	29100 D	32.7 D	<2.01 U	1.87 D	2.79 D	127 D	89000 D	237 D	1160 D	0.05 D	5.93 BD	<1.01 U	0.896 JD	666 D

Lab Qualifiers:

U = undetected B = blank contamination

D = diluted sample < = less than

Appendix 2.1

Total metals concentrations in sediment samples collected in May 2012

Baseline Ecological Risk Assessment Upper Animas River Mining District

Sample Location	Units 2	Aluminum	Arsenic I	Beryllium (Cadmium C	hromium	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Zinc
Animas River abov	e mainstem Cen	nent Creek		•							•				
A56 ("upstream")	mg/kg dw														
A60	mg/kg dw														
A61	mg/kg dw														
A64	mg/kg dw														
A65	mg/kg dw														
A66	mg/kg dw														
A68	mg/kg dw	9050 D	25.9 D	<2.01 U	13.4 D	4.97 D	374 D	29100 D	1890 D	12200 D	0.081 D	8.95 D	1.29 D	7.09 D	3030 D
Animas River betw	een mainstem C	ement Creek an	d mainstem Mi	neral Creek											
A69A	mg/kg dw														
A70B	mg/kg dw														
Animas River belo	w mainstem Min	eral Creek													
A71B	mg/kg dw														
A72	mg/kg dw	12200 D	40.6 D	<1.97 U	2.8 D	6.1 D	152 D	57500 D	581 D	2710 D	0.072 D	6.38 D	2.03 D	1.99 D	748 D
A73	mg/kg dw														
A73B	mg/kg dw														
A75D	mg/kg dw														
A75B	mg/kg dw														
Bakers Bridge	mg/kg dw														
mainstem Cement	Creek														
CC48	mg/kg dw														
CC49	mg/kg dw														

mainstem Mineral Creek

M34 mg/kg dw

Lab Qualifiers: U = undetected

D = diluted sample

< = less than

Appendix 2.2

Total metals concentrations in sediment samples collected in October 2012 Baseline Ecological Risk Assessment

Sample Location			Arsenic	Beryllium (admium (Chromium	Copper	Iron	Lead M	/Ianganese	Mercury	Nickel 5	Selenium	Silver
Animas River abo								****** T	4 400 70	****	0.45	- 44 P		
A56 ("upstream")	mg/kg dw	10300 D	31.9 D	<2.01 U	4.66 D	7.47 D	250 D	35600 D	1490 D	3140 D	0.17 D	7.61 D	1.64 D	7.15 D
A60	mg/kg dw													
A61	mg/kg dw													
A64	mg/kg dw													
A65	mg/kg dw													
A66	mg/kg dw													
A68	mg/kg dw	15300 D	89.5 D	6.77 D	24.2 D	5.69 D	745 D	45300 D	3030 D	22300 D	0.19 D	16.5 D	2.86 D	13.3 D
Animas River bety	veen mainstem (Cement Creek an	d mainstem M	lineral Creek										
A69A	mg/kg dw													
A70B	mg/kg dw													
Animas River belo	w of mainstem I	Mineral Creek												
A71B	mg/kg dw													
A72	mg/kg dw	21500 D	36.3 D	<2.00 U	1.81 D	4.05 D	179 D	56900 D	542 D	1470 D	0.06 D	4.79 D	1.83 D	2.76 D
A73	mg/kg dw	11800 D	25.5 D	<1.97 U	3.64 D	4.02 D	223 D	51600 D	729 D	4140 D	0.05 D	6.84 D	1.43 D	2.32 D
A73B	mg/kg dw	31900 D	39.4 D	3.24 JD	4.24 D	5.02 D	292 D	70700 D	468 D	2610 D	0.09 D	12.1 D	2.89 D	3.09 D
A75D	mg/kg dw	15600 D	13.2 D	<1.97 U	4.87 D	3.73 D	152 D	33700 D	231 D	3010 D	0.04 D	9.09 D	1.4 D	0.724 JD
A75B	mg/kg dw	48600 D	37.2 D	5.98 D	10.5 D	5.16 D	413 D	84500 D	435 D	3820 D	0.07 D	16.5 D	3.26 D	2.18 D
Bakers Bridge	mg/kg dw	37400 D	29.7 D	4.85 JD	18.6 D	5.21 D	357 D	68400 D	378 D	10500 D	0.06 D	31.6 D	3.1 D	1.71 D
mainstem Cement	Creek													
CC48	mg/kg dw													
CC49	mg/kg dw	5310 D	40.6 D	<1.99 U	0.595 D	4.62 D	55.6 D	143000 D	282 D	478 D	0.06 D	2.85 D	0.747 JD	2.0 D
mainstem Mineral	Creek													
M34	mg/kg dw	22400 D	21.1 D	<1.98 U	0.888 D	3.44 D	53.8 D	46500 D	129 D	1430 D	0.02 D	4.64 D	1.74 D	0.651 JD

Lab Qualifiers:

U = undetected B = blank contamination

D = diluted sample <= less than

Appendix 2.3

Total metals concentrations in sediment samples collected in May 2013

Baseline Ecological Risk Assessment

Upper Animas River Mining District

Sample Location	Units	Aluminum	Arsenic	Bervllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury Nickel	Selenium	Silver	Zinc
2001 FRQ 000 WIND STORY OF WIND DESCRIPTION			Ausenic	Derymum	Caumun	Caronnan	Copper	1100	Leau	wanganese	mercury meker	Seichian	Suver	ZAIR
Animas River abov														
A56 ("upstream")	mg/kg dw	8250 D	20.3 D	<1.97 U	12.8 D	4.65 BD	267 JD	26100 D	1820 BD	9760 D	5.99 D	0.548 JD	7.06 D	2330 D
A60	mg/kg dw	9160 D	24.4 D	<2.01 U	14.7 D	4.86 BD	286 D	24400 D	2100 BD	12600 D	7.58 D	<0.502 U	4.05 D	3180 D
A61	mg/kg dw	10600 D	44.0 D	2.53 JD	11.3 D	4.71 BD	466 D	27500 D	2120 BD	11000 D	7.19 D	<0.505 U	7.34 D	2840 D
A64	mg/kg dw	10500 D	44.2 D	2.77 JD	11.9 D	4.42 BD	336 D	30000 D	1770 BD	9670 D	7.2 D	0.905 JD	7.14 D	3470 D
A65	mg/kg dw	9250 D	30.3 D	<2.02 U	10.3 D	4.76 BD	328 D	28800 D	1840 BD	12900 D	6.68 D	<0.504 U	5.53 D	2590 D
A66	mg/kg dw	8370 D	26.9 D	<1.99 U	8.44 D	5.68 BD	257 D	29600 D	1750 BD	7830 D	5.92 D	<0.497 U	5.06 D	1950 D
A68	mg/kg dw	7650 D	26.3 D	<2.01 U	13.7 D	5.21 BD	352 D	28800 D	2180 BD	10300 D	8.76 D	<0.501 U	9.22 D	2830 D
Animas River betw	een mainster	mCementCreek:	and mainstem!	Mineral Creek										
A69A	mg/kg dw													
A70B	mg/kg dw													
Animas River belov	v of mainster	mMineralCreek												
A71B	mg/kg dw													
A72	mg/kg dw	11800 D	26.1 D	<1.97 U	1.15 D	6.41 BD	77.8 D	45800 D	299 BD	1210 D	4.88 D	1.04 D	1.3 D	386 D
A73	mg/kg dw	9220 D	31.9 D	<2.02 U	4.1 D	5.6 BD	176 D	55700 D	591 BD	3320 D	6.07 D	0.717 JD	2.78 D	998 D
A73B	mg/kg dw	10600 D	30.4 D	<2.00 U	3.56 D	4.72 BD	140 D	67100 D	593 BD	4340 D	9.78 D	<0.5 U	1.65 D	964 D
A75D	mg/kg dw	8550 D	18.2 D	<1.99 U	3.88 D	4.99 BD	108 D	34400 D	367 BD	3730 D	7.27 D	<0.498 U	1.37 D	1030 D
A75B	mg/kg dw	7220 D	13.3 D	<1.99 U	2.65 D	5.45 BD	82.7 D	26000 D	354 BD	2340 D	5.93 D		1.51 D	672 D
Bakers Bridge	mg/kg dw	7360 D	15.9 D	<1.98 U	2.46 D	7.38 BD	116 D	28200 D	328 BD	2130 D	7.36 D		1.08 D	2080 D

main stem Cement Creek

CC48 mg/kg dw CC49 mg/kg dw

main stem Mineral Creek

M34 mg/kg dw

Lab Qualifiers:

U = undetected B = blank contamination

D = diluted sample < = less than

Appendix 2.4

Total metals concentrations in sediment samples collected in April 2014

Baseline Ecological Risk Assessment

Upper Animas River Mining District

Sample location	Units	Alumint	ım	Arsenic	Beryllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Zinc
Animas River abov	ve mainstem Ce	ment Cree	k													
A56 ("upstream")	mg/kg dw	15100	D	33.1 D	6.35 D	17.8 D	4.72 D	432 D	40700 D	1220 D	12700 D	0.171 D	9.92 D	1.62 JD	7.64 D	6200 D
A60	mg/kg dw	13400	D	16.4 D	<2.01 U	5.84 D	6.35 D	166 D	33500 D	554 D	3400 D	0.033 D	9.62 D	<1.0 U	3.48 D	1530 D
A61	mg/kg dw	13500	D	19.8 D	2.99 JD	9.02 D	5.28 D	638 D	32000 D	891 D	6400 D	0.091 D	8.56 D	1.1 JD	4.28 D	2530 D
A64	mg/kg dw	10700	D	18.8 D	<2.02 U	6.25 D	5.15 D	199 D	31400 D	1050 D	4920 D	0.053 D	7.44 D	<1.01 U	3.59 D	1950 D
A65	mg/kg dw	13100	D	21.8 D	2.16 JD	10.2 D	5.49 D	331 D	31600 D	900 D	10300 D	0.073 D	9.9 D	<1.01 U	3.87 D	2890 D
A66	mg/kg dw	11700	D	18.3 D	2.24 JD	18.3 D	4.07 D	378 D	31700 D	1230 D	20500 D	0.06 D	10.1 D	<1.0 U	4.13 D	4380 D
A68	mg/kg dw	13000	D	19.1 D	2.82 JD	15.7 D	4.21 D	390 D	32400 D	1080 D	19700 D	0.056 D	10.3 D	<0.998 U	4.35 D	4890 D
Animas River betw	veen mainstem	Cement Cı	reek ar	nd mainstem N	Mineral Creek											
A69A	mg/kg dw															
A70B	mg/kg dw															
Animas River belo	w mainstem M	ineral Cree	ek													
A71B	mg/kg dw															
A72	mg/kg dw	18900	D	37 D	<2.0 U	1.7 D	3.45 D	145 D	74600 D	470 D	1710 D	0.039 D	4.33 D	1.05 JD	1.68 D	616 D
A73	mg/kg dw	40700	D	33.8 D	4.2 JD	5.6 D	2.83 D	284 D	109000 D	297 D	7120 D	0.036 D	7.19 D	<1.0 U	1.35 D	1450 D
A73B	mg/kg dw															
A75D	mg/kg dw	29900	D	28.5 D	3.66 JD	6.75 D	4.39 D	223 D	67900 D	261 D	6900 D	0.038 D	13.1 D	1.06 JD	1.27 D	2910 D
A75B	mg/kg dw															
Bakers Bridge	mg/kg dw	27300	D	25.9 D	3.51 JD	14.6 D	4.28 D	199 D	62100 D	248 D	13100 D	0.043 D	22 D	1.16 JD	1.33 D	6030 D

mainstem Cement Creek

 $\begin{array}{ccc} CC48 & mg/kg \ dw \\ CC49 & mg/kg \ dw \end{array}$

mainstem Mineral Creek

M34 mg/kg dw

Lab Qualifiers:

U = undetected B = blank contamination

D = diluted sample < = less than

Appendix 3.1: Dissolved Metals Concentrations in Pore Water Samples Collected in April 2014 Baseline Ecological Risk Assessment Upper Animas River Mining District

Sample Location	Units H	lardness (mg/L)	Aluminum	Arsenic	Beryllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Selenium	Silver	Zinc
Animas River abov	e mainsten	ı Cement Creek													
A56 ("upstream")	$\mu g/L$	136	23.8 Ј	<0.500 U	<2.00 U	0.232	<1.00 U	1.3	<100 U	0.964	4.87 J	<0.500 U	<1.00 U	<0.500 U	124
A60	μg/L	158	20.9 J	0.547 J	<2.00 U	0.809	<1.00 U	1.41	<100 U	<0.100 U	<2.00 U	<0.500 U	<1.00 U	<0.500 U	353
A61	$\mu g/L$	853D	6170 D	<5.00 U	<20.0 U	100 D	<10.0 U	2250 D	<1000 U	13.4 D	78300 D	77.5 D	<10.0 U	<5.00 U	29900 D
A64	$\mu g/L$	141	<20.0 U	<0.500 U	<2.00 U	0.279	<1.00 U	1.83	<100 U	<0.100 U	4.27 J	<0.500 U	<1.00 U	<0.500 U	264
A65	$\mu g/L$	349.5	671	<0.500 U	<2.00 U	22.4	0.8 J	53.8	<100 U	2.00	18450	11.3	<1.00 U	<0.500 U	6230
A66	μg/L	141	<20.0 U	<0.500 U	<2.00 U	0.546	1.83 J	1.4	<100 U	0.123 J	226	<0.500 U	<1.00 U	<0.500 U	307
A68	μg/L	149	42.2 J	<0.500 U	<2.00 U	1.67	<1.00 U	3.46	<100 U	<0.100 U	1540	<0.500 U	<1.00 U	<0.500 U	675
A69A A70B	μg/L μg/L														
Animas River belo	w mainsten	ı Mineral Creek													
A71B		0.5				• • •	4.00.77		400.77	0.450				.0.700.77	4.000
A72	μg/L	256	517	<0.500 U	<2.00 U	2.98	<1.00 U	8.07	<100 U	0.453	448	1.95	<1.00 U	<0.500 U	1630
A73	μg/L	185	29.2 J	<0.500 U	<2.00 U	2.03	<1.00 U	2.28	341	<0.100 U	1870	1.19	<1.00 U	<0.500 U	709
A73B	μg/L														
A75D	μg/L	135	27.7 J	<0.500 U	<2.00 U	0.387	<1.00 U	1.67	<100 U	<0.100 U	185	<0.500 U	<1.00 U	<0.500 U	173
A75B	μg/L														
Bakers Bridge	μg/L	125	47 J	<0.500 U	<2.00 U	0.334	1.15 J	2.21	<100 U	<0.100 U	325	<0.500 U	<1.00 U	<0.500 U	115

mainstem Cement Creek

CC48 μg/L CC49 μg/L

mainsem Mineral Creek

 $M34 \hspace{1cm} \mu g/L$

Appendix 3.2: Dissolved Metals Concentrations in Pore Water Samples Collected in September 2014 Baseline Ecological Risk Assessment Upper Animas River Mining District

Sample Location	Unite I	Iardness (mg/L)	Aluminum	Arsenic	Beryllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Nickel	Selenium	Silver	Zinc
Animas River abov	**************************************	www.comentermore.com/statemore.com/			, mun	Cadmium	Cinvanum	Соррсі		escatu.	angancsc		centum		2.444
A56 ("upstream")	μg/L	129	28.4 J	<0.500 U	<2.00 U	1.16	<1.00 U	4.15	<100 U	0.523	689	<0.500 U	<1.00 U	<0.500 U	463
A60	μg/L	340	119	<2.50 U	<2.00 U	3.86 D	<5.00 U	2.67 JD	<100 U	<0.500 U	6.46	<2.50 U	<5.00 U	<2.50 U	1630
A61	$\mu g/L$	496.5	2604.5 D	<3.8 U	<11.0 U	106.5 D	<7.5 U	95.9 JD	<550 U	65.6 D	63800 D	37.8 D	<7.5 U	<3.8 U	18490 D
A64	μg/L														
A65	μg/L	389	401	<2.50 U	<2.00 U	22 D	<5.00 U	47.2 D	<100 U	0.579 JD	16200	13.4 D	<5.00 U	<2.50 U	4760
A66	μg/L	118	<20.0 U	<0.500 U	<2.00 U	0.296	<1.00 U	1.27	<100 U	<0.100 U	2.57 J	<0.500 U	<1.00 U	<0.500 U	179
A68	μg/L	121	42.8 J	<0.500 U	<2.00 U	1.06	<1.00 U	4.13	<100 U	0.258	590	<0.500 U	<1.00 U	<0.500 U	294
Animas River betw	veen mains	tem Cement Cre	ek and mainsten	n Mineral Cre	ek										
A69A	μg/L														
A70B	$\mu g/L$														
Animas River belo	w mainster	n Mineral Creek	•												
71B	μg/L														
A72	μg/L	160	46.9 J	<0.500 U	<2.00 U	1.40	<1.00 U	2.87	338	<0.100 U	995	1.31	<1.00 U	<0.500 U	407
A73	μg/L	151	23.3 J	<0.500 U	<2.00 U	0.374	<1.00 U	1.18	<100 U	<0.100 U	2.45 J	1.35	<1.00 U	<0.500 U	362
A73B	μg/L	49	<20.0 U	<0.500 U	<2.00 U	<0.100 U	<1.00 U	0.915 J	<100 U	<0.100 U	3.37 J	0.581 J	<1.00 U	<0.500 U	32.9
A75D	μg/L	96	40 J	<0.500 U	<2.00 U	0.786	<1.00 U	2.60	107 J	0.205	290	1.52	<1.00 U	<0.500 U	190
A75B	μg/L														
Bakers Bridge	$\mu g/L$	271	35.2 J	3.74	<2.00 U	<0.100 U	3.23	<0.500 U	1260	0.193 J	5870	0.85 J	<1.00 U	<0.500 U	13.3 J
mainstem Cement	Creek														
CC48	μg/L														
CC49	$\mu g/L$														
mainstem Mineral	Creek														
M34	μg/L	139	45.7 J	<0.500 U	<2.00 U	0.127 J	<1.00 U	1.18	<100 U	<0.100 U	27.6	<0.500 U	<1.00 U	<0.500 U	48.2

prepared by: SJP (2/16/1

Appendix 4: Tissue residue data for benthic invertebrates collected from the Animas River in September 2014 Baseline Ecological Risk Assessment Upper Animas River Mining District

Sampling		Aluminum	Arsenic	Beryllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Zinc
location	Analysis	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww	mg/kg ww
A56	Total Recoverable Metals	91.8 D	0.141 JD	0.09 JD	0.347 D	0.44 D	5.79 D	57.9 D	2.63 D	31.2D D	<0.025 U	0.0704 JD	0.256 D	<0.0614 U	99.8 D
A60	Total Recoverable Metals	120 D	0.13 JD	0.1 JD	0.545 D	0.703 D	19.5 D	73.4 D	5.25 D	25.6D D	<0.049 U	<0.123 U	<0.246 U	<0.123 U	108 D
A68	Total Recoverable Metals	212 D	0.631 D	0.1 JD	1.16 D	0.834 D	18 D	986 D	7.57 D	60.5D D	<0.053 U	0.155 ЛД	0.265 JD	<0.132 U	240 D
A72	Total Recoverable Metals	261 D	<0.16 U	<0.1 U	0.204 D	0.649 D	11.5 D	1190 D	2.27 D	17.3D D	<0.064 U	<0.16 U	<0.321 U	<0.16 U	49.9 D
A73	Total Recoverable Metals	251 D	0.208 JD	<0.1 U	0.281 D	0.61 ДД	9.98 D	847 D	2.02 D	32.6D D	<0.066 U	0.173 JD	<0.33 U	<0.165 U	59.3 D
A75D	Total Recoverable Metals	78.4 D	<0.368 U	<0.3 U	0.235 D	0.978 ЛД	4.52 D	105 D	0.689 D	50.6D D	<0.147 U	<0.368 U	<0.735 U	<0.368 U	56.2 D
Bakers Bridge	Total Recoverable Metals	114 D	<0.139 U	<0.1 U	0.478 D	0.615 D	5.28 D	156 D	0.761 D	76.6D D	<0.056 U	0.477 D	<0.279 U	<0.139 U	106 D

Sampling		Aluminum	Arsenic	Beryllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Zinc
location	Analysis	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw
A56	Total Recoverable Metals	303 D	0.47 JD	0.30 JD	1.15 D	1.45 D	19.1 D	191 D	8.7 D	103 D	0.041 U	0.23 JD	0.84 D	0.10 U	329 D
A60	Total Recoverable Metals	396 D	0.43 JD	0.33 JD	1.80 D	2.32 D	64.4 D	242 D	17.3 D	84 D	0.081 U	0.20 U	0.41 U	0.20 U	356 D
A68	Total Recoverable Metals	700 D	2.08 D	0.33 JD	3.83 D	2.75 D	59.4 D	3254 D	25.0 D	200 D	0.087 U	0.51 ЛД	0.87 JD	0.22 U	792 D
A72	Total Recoverable Metals	861 D	0.26 U	0.17 U	0.67 D	2.14 D	38.0 D	3927 D	7.5 D	57 D	0.106 U	0.26 U	0.53 U	0.26 U	165 D
A73	Total Recoverable Metals	828 D	0.69 JD	0.17 U	0.93 D	2.01 ЛД	32.9 D	2795 D	6.7 D	108 D	0.109 U	0.57 JD	0.54 U	0.27 U	196 D
A75D	Total Recoverable Metals	259 D	0.61 U	0.50 U	0.78 D	3.23 JD	14.9 D	347 D	2.3 D	167 D	0.243 U	0.61 U	1.21 U	0.61 U	185 D
Bakers Bridge	Total Recoverable Metals	376 D	0.23 U	0.17 U	1.58 D	2.03 D	17.4 D	515 D	2.5 D	253 D	0.092 U	1.57 D	0.46 U	0.23 U	350 D

D = diluted; J = estimated value; U = not detected; dw = dry weight; ww = wet weight

notes

all non-detected values were divided by half before calculating the dry weight concentrations

The moisture content of the benthic invertebrates was not measured and was assumed to equal 70% (= 30% dry matter); hence, the www values were multiplied by a factor of 3.3 to convert them to dw values

Sampling		Aluminum	Arsenic	Beryllium	Cadmium	Chromium	Copper	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Silver	Zinc
location	Analysis	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw	mg/kg dw
A56	Total Recoverable Metals	303 Đ	0.47 JD	0.30 JD	1.15 D	1.45 Đ	19.1 D	191 D	8.7 D	103 D	0.041 U	0.23 JD	0.84 D	0.10 U	329 Đ
A60	Total Recoverable Metals	396 D	0.43 JD	0.33 JD	1.80 D	2.32 D	64.4 D	242 Đ	17.3 D	84 D	0.081 U	0.20 U	0.41 U	0.20 ⊍	356 D
A68	Total Recoverable Metals	700 D	2.08 D	0.33 JD	3.83 Đ	2.75 D	59.4 D	3254 D	25.0 D	200 D	0.087 U	0.51 JD	0.87 JD	0.22 ₺	792 D
A72	Total Recoverable Metals	861 D	0.26 ∪	0.17 U	0.67 D	2.14 D	38.0 D	3927 D	7.5 D	57 Đ	0.106 €	0.26 U	0.53 U	0.26 U	165 D
A73	Total Recoverable Metals	828 D	0.69 JD	0.17 U	0.93 D	2.01 JD	32.9 Đ	2795 D	6.7 D	108 D	0.109 ⊍	0.57 JD	0.54 U	0.27 U	196 D
A75D	Total Recoverable Metals	259 D	0.61 U	0.50 U	0.78 D	3.23 JD	14.9 D	347 D	2.3 D	167 D	0.243 U	0.61 U	1.21 U	0.61 U	185 D
Bakers Bridge	Total Recoverable Metals	376 Đ	0.23 U	0.17 U	1.58 D	2.03 D	17.4 D	515 D	2.5 D	253 Đ	0.092 ป	1.57 D	0.46 ⊍	0.23 ป	350 D

Appendix 7.1.a: Calculating hardness-specific benchmarks and HQs for aluminum in surface water samples collected during the pre-runoff period Baseline Ecological Risk Assessment Upper Animas River Mining District

		PRE-RUNOFF PERIOD																										
Sampling Date	2/10		ss.	ii ii	ii.	пí	nc	3/10		ss.	ii ii	n. nc	п	nc	4/10		ss.	n. m	n. on	пc	nc	3/11		ss:	ion	n. on	пх	u C
Metal-fraction	Al-total		dne g/L	cric	enchr	eric	quation IQ	Al-total		dness g/L)	crion	benchm. equation	criterion HQ	quation IQ	Al-total		dne g/L)	chin erio	benchr equatic	criterio HQ	quation IQ	Al-total		dne g/L)	ㅎ ㅎ	ıchr ıatio	criterion HQ	equation HQ
Units	μg/L	pН	hard (mg	ber crit	pen edu	criteri HQ	equ H	μg/L	pН	har (mg	ben crit	pen	eri H	eq. H	μg/L	pН	har (m)	ber crit	pen edu	eri H	할	μg/L	pН	harc (mg	ben crite	pen edn	crit H	ip H
M34	5950	4.97	309	87		68		5360	5.02	308	87		62		2160	6.22	150	87	851	25	2.5	4830	5.12	247	87		56	
CC48	8610	3.50	571	87		99		8100	3.42	541	87		93		5020	3.93	301	87		58		7540	3.54	493	87		87	
A56 ("upstream")	NS							NS							NS							NS						ı "
A68	269	6.74	202	87	1279	3.1	0.2	177	6.82	179	87	1084	2.0	0.2	368	6.85	148	87	835	4.2	0.4	275	7.18	172		1026		0.3
A72	4440	5.07	352	87		51		4090	5.04	337	87		47		1980	6.09	177	87	1067	23	1.9	3310	5.30	273	87		38	
A73	NS							NS							NS							NS						ı "
A75D	NS							NS							NS							NS						
Bakers Bridge	NS							NS							NS							NS						

NS = not sampled

criterion HQ = hazard quotient calculated using the chronic benchmark criterion; equation HQ = hazard quotient calculated using the chronic benchmark equation HQ = hazard quotient calculated using the chronic benchmark equation HQ = hazard quotient calculated using the chronic benchmark equation HQ = hazard quotient calculated using the chronic benchmark equation HQ = hazard quotient calculated using the chronic benchmark equation HQ = hazard quotient calculated using the chronic benchmark equation HQ = hazard quotient calculated using the chronic benchmark equation HQ = hazard quotient calculated using the chronic benchmark equation HQ = hazard quotient calculated using the chronic benchmark equation HQ = hazard quotient $HQ = \text{ha$

 $the \ chronic \ surface \ water \ benchmarks \ for \ aluminum \ were \ calculated \ using \ the \ following \ equation: \\ e^{(1.3695*lnhardness)+0.1158}$

The procedures for calculating the chronic HQs are as follows:

- use the chronic hardness-dependent equation if (a) pH \geq 7.0 and (b) hardness \leq 220 mg/L
- use the more stringent of the chronic hardness-dependent equation or the 87 ug/L chronic total recoverable Al criterion if (a) pH \leq 7.0 and (b) hardness \leq 220 mg/L
- use the 87 ug/L chronic total recoverable Al criterion if hardness > 220 mg/L

a surface water pH was not measured in April 2014. To support the calculations, it was assumed that surface water pH fell below 7.0 based on pH values from previous years

Appendix 7.1.b: Calculating hardness-specifide nch marks and HQs for a luminum in surface waters amples collected during the run off period and the surface waters amples collected during the run off period during the run of period during the run off period during the run off period during the run of period during the run ofBaseline Ecological Risk Assessment Upper Animas River Mining District

																							R	RUNOI	F PER	IOD																						
Sampling Date Metal-fraction	5/09 Al-total		dness	erion .	chm. ation	erion	ation	6/09 Al-tota	ı	dness	ichm. eríon	nchm. uation	erion	5	6/10 Al-total		dness ohm.	erion	chm. ation	erion	ation	6/11 Al-tota	1	dness	ichm. erion	ohm. atíon	erion	atron	5/12 Al-total		dness	erion	chm. ation	erion	2	5/13 Al-total		dness	ichm. erion	chm. ation	erion	ation	5/14 Al-tota	al	dness	chm. erion	chm.	enon atíon
Units	µg/L	pН	har	erite .	n ben	H	oba HO	µg/L	pН	har	ber orit	pen equ	orit HQ	ÒH	μg/L	pН	har	aji	pen cdr	eril HQ	oba HO	µg/L	pН	har	ber crit	pen edt	in HQ	ÒH nba	μgL	pН	har	ber orit	pen equ	orit HQ	ÒH	µg/L	pН	har.	ber orit	ben equ	in OH	equ HQ	µg/L	pН	har	ben crit	ben equ	를 입 를 요
M34	1130	6.49	52	87	199	13	5.7	773	7.30	72	-	311	- 0	2.5	665	7.00	49		184		3.6		7.19		-	205		11	824	7.07	77	-	341				7.23	79		354		3.6	2610	6.83	92	87	436	30 6.0
CC48	1780	5.40	81	87	366	20	4.9	2920	4.29	189	87	1168	34	2.5	1750	5.34	88	87	410	20	4.3	1610	5.24	76	87	335	19	4.8	2690	4.43	177	87	1067	31	2.5	2690	4.43	129	87	692	31	3.9	3280	4.60	126	87	670	38 4.9
A56 ("upstream")	NS							NS							NS							NS							NS							817	7.61	65	-	271		3.0	392	7.44	79		354	- 1.1
A60	NS							NS							NS							NS							NS							370	7.66	74	-	323		1.1	452	7.44	78		347	1.3
A61	NS							NS							NS							NS							NS							322	7.38	78	-	347		0.9	549	7.36	80		360	1.5
A64	NS							NS							NS							NS							NS							343	7.54	63	-	259		1.3	514	7.35	76		335	1.5
A65	NS							NS							NS							NS							NS							698	7.47	65	-	271		2.6	454	7.24	80		360	- 1.3
A66	NS							NS							NS							NS							NS							653	7.45	64	-	265		2.5	547	7.15	79		354	- 1.5
A 68	1010	7.15	49	-	184		5.5	165	7.51	65	-	271		0.6	348	6.98	50	87	189	4.0	1.8	540	7.28	53	-	205		2.6	154	7.37	71	-	305		0.5	534	7.39	66		276		1.9	508	7.09	87		404	13
A72	3060	7.08	45		164		19	679	7.09	78	-	347	🛭	2.0	585	6.51	54	87	210	6.7	2.8	1200	6.50	55	87	215	14	5.6	713	6.59	86	87	397	8.2	1.8	938	6.87	82	87	372	11	2.5	2340	6.33	103	87	508	27 4.6
A73	NS							NS							NS							NS							NS							1280	7.25	71	-	305		4.2	1050	7.19	88		410	2.6
A73B	NS							NS							NS							NS							NS							666	7.26	37	-	125		5.3	640	7.24	54		210	3.0
A75B	NS							NS							NS							NS							NS							1650	7.42	61	-	248		6.6	1040	7.29	70		300	3.5
A75D	NS							NS							NS							NS							NS							1630	7.49	60	-	243		6.7	1060	7.44	76		335	- 3.2
Bakers Bridge	NS							NS							NS							NS							NS							1310	7.64	58		232		5.7	734	7.63	73		317	- 23
criterion HQ = haza shading shows HQ				ig the c	hronic l	enchr	nark er	iterion; e	quation	n HQ =		quotient		edusing	the chr	onic ber	nchmark	equat	ion																													

snaumganows $m.2^{p}$: 1.0 or nignesting $\frac{1}{2}$ the chronic surface water benchmarks for aluminum were calculated using the following equation: $e^{(1.38)^4 n}$ hardwee) 0.1158

The procedures for calculating the chronic HQs are as follows:
- use the chronic hardness-dependent equation if (a) pH ≥ 7.0 and (b) hardness ≤ 220 mg/L
- use the more stringent of the chronic bardness-dependent equation or the 87 ug/L chronic total recoverable Al criterion if (a) pH ≤ 7.0 and (b) hardness ≤ 220 mg/L
- use the more stringent of the chronic bardness-dependent equation or the 87 ug/L chronic total recoverable Al criterion if hardness ≤ 220 mg/L
- use the 87 ug/L chronic total recoverable Al criterion if hardness ≤ 220 mg/L

Appendix 7.1.c: Calculating hardness-specific benchmarks and HQs for aluminum in surface water samples collected during the post-runoff period Baseline Ecological Risk Assessment Upper Animas River Mining District

																			POST-	RUNG	FF PEI	TOD																				1						
Sampling Date Metal-fraction Units	7/09 Al-total µg/L	pH .	hardness benchm.	criterion benchm.	equation	HQ equation HO	8/09 Al-to μg/I		hardness	benchm.	benchm.	criterion	equation	9/09 Al-tot µg/L		hardness	benchm.	benchm.	criterion HO	equation HQ	11/09 Al-tota μg/L	pН	hardness	benchm. criterion	benchm. equation	HQ equation	НÓ	7/10 Al-total μg/L	pН	hardness	criterion	benchm. equation	criterion HQ	equation HQ	9/10 Al-tota μg/L	pH	hardness	benchm. criterion	benchm.	criterion HQ	equation							
M34 CC48 CC49 A56 (reference)	933 4120 NS NS	7.19 3.95 2		42 87		7	2630 7110 NS NS	3.5			###	19830		2480 7050 NS NS		0 15 5 47			100000000		4590 7850 NS NS		238 495	87 87		53 90		1200 5270 NS NS	6.77 3.57		87 87	584	14 61	2.1	2960 7230 NS NS	6.73 3.45		87 87	###	100000								
A60 A61 A64 A65	NS NS NS						NS NS NS							NS NS NS							NS NS NS							NS NS NS							NS NS NS													
A66 A68 A69A A70B	NS 117 NS NS	7.61	85	39		- 0.3	NS	7.1	8 135	-	737	-	0.2	NS		1 14	1	78	2	0.2	NS 189 NS NS	6.52	167	87	986	2.2	0.2	NS 50 NS NS	6.92	97	87	468	0.6	0.1	NS	7.52	144		805	-	0.2							
A71B A72 A73 A73B	NS 812 NS NS	6.88 1	.09	37 54	9 9.	3 1.5	NS 208 NS NS	0 6.4	211	87	###	24	1.5	NS 2080 NS NS	6.4	6 19	9 87	##	# 24	1.7	NS 2750 NS NS	5.93	296	87		32		NS 1090 NS NS	6.41	136	87	744	13	1.5	NS 2180 NS NS	6.48	245	87		25								
A75B A75D	NS NS						NS NS							NS NS							NS NS							NS NS							NS NS													
Bakers Bridge	NS						NS							NS							NS	POST	-RUN	OFF I	PERIO	D		NS							NS													
Bakers Bridge Sampling Date Metal-fraction	NS 11/10 Al-total		dness	terion nchm.	ration	nation	7/11 Al-to	1	dness -	nchm.	nchm.	terion	ration	NS 8/11 Al-tot		duess	nchm.	nchm.	terion	ration 2		POST						NS 10/11 Al-total		dness	terion	renm.	terion 2	ration	NS 10/12 Al-tota	l	dness	nchm.	nchm.	terion	nation	9/14 Al-tot	- 1	-dness	nchm.	nchm.	terion >	nation 2
Sampling Date Metal-fraction Units M34 CC48	11/10 Al-total µg/L 3080 7930	pH . 6.40 2 3.51 5	- 1	criterion 87 ##	# 33	위를 5 2.2	7/11 Al-to µg/I 563 2710	tal pH 7.2	ssauparduess 4 191		271		uoinenba OH 2.1	8/11 Al-tot µg/L 1600 5830	al pH	<u> </u>	4 87	80	uomenha 5 18 67	2.0	9/11 Al-tota μg/L 2610 6770	pH 6.68	RUNe ssoup.reu 188 474	benchm. criterion	# equation	HQ equation	- ♀ ¹ 2.3	10/11 Al-total μg/L 2170 6810		<u>P</u> 2	87 Standard	68 benchm.	OH OH 25 78	uoipanion OH 2.4	10/12 Al-tota µg/L 3390 7670	pH 6.15 3.40	220 515	87 87	henchm.	39 88	를 유 2.4 	Al-tot μg/L 1260 4890	al pH	1 Hardness 67	8	613		uoipenba OH 2.1
Sampling Date Metal-fraction Units M34	11/10 Al-total µg/L 3080	6.40 2	19	87 ##	# 3:	위를 5 2.2	7/11 Al-to µg/I 563	tal pH 7.2	8 65		271	5 5 I		8/11 Al-tot µg/L 1600	al pH	1 <u>2</u> 2 14	4 87	80	5 18	2.0	9/11 Al-tota µg/L 2610	pH 6.68	hardness 881	benchm. criterion	# equation	OE HO	- ♀ ¹ 2.3	10/11 Al-total μg/L 2170		<u>P</u> 2	87 87	890	25	OH 2.4	10/12 Al-tota μg/L 3390	1	220 515 545	87 87 87	###	39 88 90	를 유 2.4 	Al-tot μg/L	pH 7.0: 4.0:	5 118 0 67 4 114 8 111	8 87 4 87 1 87	613 282 584 563	56.2 2.2 2.0	17.3 0.3 0.3
Sampling Date Metal-fraction Units M34 CC48 CC49 A56 ("upstream") A60 A61 A64 A65 A66	11/10 AI-total µg/L 3080 7930 NS	6.40 2 3.51 5	219	87 ## 87	## 3: - 9	OH B 12.2	7/11 Al-to:	tal pH 7.2 pH 4.5	8 65	87	271 ###	31	2.3	8/11 Al-tot µg/L 1600 5830 NS NS NS NS NS NS NS	al pF 6.8	1 E 2 14 5 39	4 87 8 87	80	5 18 67	OH 2.0	9/11 Al-tota µg/L 2610 6770 NS NS NS NS NS NS NS NS	pH 6.68 3.51	188 474	87 penchm.	h benchm.	uoigenba OH 30 78	- 연 2.3 	10/11 Al-total µg/L 2170 6810 NS NS NS NS NS NS	3.24	<u>R</u> 3	87 87	890	25 78		10/12 AI-tota µg/L 3390 7670 7800 50 NS NS NS	3.40 3.43 7.39	220 515 545 168	87 87 87 	### 994	39 88 90 	2.4 0.1	Al-tot <u>µg/L</u> 1260 4890 NS 188 174 168 150 160 174	pH 7.0. 4.00 6.64 7.3 6.20 7.0 6.99	5 118 0 67 4 114 8 111 7 111 6 113 1 117 9 120	8 87 4 87 1 87 1 3 87 7 0 87	613 282 584 563 563 577 605	56.2 2.2 2.0 1.7 2.0	0.3 0.3 0.3 0.3 0.3 0.3 0.3
Sampling Date Metal-fraction Units M34 CC48 CC49 A56 ("upstream") A60 A61 A64 A65 A66 A68 A69A A70B A71B	11/10 AI-total µg/L 3080 7930 NS	7.26 I	219 517	87 ## 87 88	## 33: - 9: :12	아 등 등 등 2.2 5 2.2 1 0.1	7/11 Al-to:	pH 7.2 pH 7.2 7.4	8 65 4 191	87	271 ### 276	31	0.8	8/11 Al-tot	pH 6.8 3.4 7.2	1 E 2 14 2 14 5 39	4 87 8 87	56	5 18 67	0.1	9/11 Al-total	pH 6.68 3.51	1888 474	penchim.	### cduation	uolpenba 30	- ♀ ⁴ 2.3	10/11 Al-total µg/L 2170 6810 NS	6.87	<u>E</u> 3 155 435	87 87 87	759	25 78 0.6	0.1	10/12 Al-tota µg/L 3390 7670 7800 50 NS NS NS NS NS NS 02520 2460 2780	3.40 3.43 7.39 7.42 5.54 6.05 6.10	220 515 545 168 174 297 295 263	87 87 87 87 87	### 994	39 88 90 29 28 32	2.4 0.1	Al-tot µg/L 1260 4890 NS 188 174 168 150 160 174 164 NS NS NS	al pH 7.0. 4.06 6.64 7.3 6.26 7.0 6.95 7.7	5 118 0 67 4 114 8 111 7 111 6 113 1 117 9 120 1 114	8 87 4 87 1 87 1 3 87 7 0 87 4	613 282 584 563 563 577 605 627 584	56.2 2.2 2.0 1.7 2.0 	0.3 0.3 0.3 0.3 0.3 0.3 0.3
Sampling Date Metal-fraction Units M34 CC48 CC49 A56 ("upstream") A60 A61 A64 A65 A66 A68 A69A A70B	11/10 AI-total µg/L 3080 7930 NS	6.40 2 3.51 5	219 517	87 ## 87 88	## 33: - 9: :12	아 등 등 등 2.2 5 2.2 1 0.1	7/11 Al-to:	tal pH 7.2 pH 7.2 4.5	8 65	87	271 ### 276	31	0.8	8/11 Al-tot	pH 6.8 3.4 7.2	1 E 2 14 2 14 5 39	4 87 8 87	56	5 18 67	0.1	9/11 Al-total	pH 6.68 3.51	1888 474	penchim.	h benchm.	uolpenba 30	- ♀ ⁴ 2.3	10/11 Al-total µg/L 2170 6810 NS	3.24	<u>E</u> 3 155 435	87 87 87	759	25 78 0.6	0.1	10/12 Al-tota µg/L 3390 7670 7800 50 NS NS NS NS NS NS S 02520 2460	3.40 3.43 7.39 7.42 5.54 6.05	220 515 545 168 174 297 295 263 261 251 217	87 87 87 87 87 87 87 87 87	### 994 ### 	39 88 90 29 28 32 30 28 23	2.4 0.1	Al-tot µg/L 1260 4890 NS 188 174 168 150 160 174 164 NS NS	pH 7.0.0 6.6-6.44 7.33 6.22 7.0 6.99 7.7	5 118 5 118 6 67 6 113 7 111 6 113 1 117 9 120 0 144 4 142 4 83	8 87 4 87 1 87 1 3 87 7 0 87 4 4	5 2 2 2 3 5 5 6 5 6 6 6 6 7 5 7 6 0 6 2 5 8 8 0 7 8 3	13 13 32 34 53 77 55 27 34	3 5 13 32 56.2 34 2.2 53 2.0 53 77 1.7 27 2.0 34 39 78

criterion HQ = hazard quotient calculated using the chronic benchmark criterion; equation HQ = hazard quotient calculated using the chronic benchmark equation shading shows HQ > 1.0 or highest HQ

The chronic surface water benchmarks for aluminum were calculated using the following equation: $e^{(1.569791 \, hardsem).0.1158}$ The procedures for calculating the chronic HQs are as follows:
- use the chronic hardness-dependent equation if (a) pH \geq 7.0 and (b) hardness \leq 220 mg/L
- use the more stringent of the chronic hardness-dependent equation or the 87 ug/L chronic total recoverable Al criterion if (a) pH \leq 7.0 and (b) hardness \leq 220 mg/L
- use the more stringent of the chronic hardness-dependent equation or the 87 ug/L chronic total recoverable Al criterion if (a) pH \leq 7.0 and (b) hardness \leq 220 mg/L
- use the 87 ug/L chronic total recoverable Al criterion if hardness \geq 220 mg/L

Appendix 7.2: Calculating hardness-specific benchmarks and HQs for dissolved cadmium in surface water samples Baseline Ecological Risk Assessment Upper Animas River Mining District

								PRE-R	UNOF	F PERIOD						\neg																							
Sampling Date	2/10		Ĥ	3/1		hess.	į	4/10	hess	Jim.	3/11	hess	ii.	4/14	hess hm.																								
Metal-fraction Units	Cd-diss ug/L	Tall (Ĭ H	O pg/		Ĭ.	≝ но	Cd-diss	nar	≝ но	Cd-diss µg/L	Marc	≝ но	Cd-diss	ben lar	но																							
M34 CC48 A.56 ("upstream") A60 A61 A64	1.10		0.99 1 1.57 3	1 1.0	00 3		.99 1.0 .51 3.5			0.58 3.5 0.97 5.0	1.10		0.84 1.3 1.41 3.8		131 0.52	1.1																							
A65 A66 A68 A72 A73										0.57 7.2 0.65 4.4					151 0.58 182 0.67																								
A73B A75D														1.02	133 0.53	1.9																							
A75B Bakers Bridge														0.53	127 0.51	1.0																							
												OFF P	ERIOD																										
Sampling Date Metal-fraction	5/09 Cd-diss	arches	endhm	6/8 Cd-6	liss	ardnes		6/10 Cd-diss	ardnes	e chin	6/11 Cd-diss	ardnes	#	5/12 Cd-diss	ardnes enclun	0	5/13 d-diss	ardnes enchm		5/14 Od-diss	ardnes enchm																		
Units M34 CC48 A56 ("upstream") A60 A61			0.26 1 0.36 5		20 7		33 0.6 .68 5.0	0.10		0.25 0.4 0.38 5.7			0.26 0.8 0.34 5.8		77 0.35 177 0.65	0.8 4.5	3.20 0.70 0.70 1.00	79 0.35 129 0.51 65 0.31 74 0.34 78 0.35	5 0.7 1 6.3 1 2.3 4 2.1 5 2.9	3.83 0.97 1.01 1.51	92 0.4 126 0.5 79 0.3 78 0.3 80 0.3	0 7.6 5 2.7 5 2.9 6 4.2																	
A64 A65 A68 A72 A73 B A75D A75B Bakers Bridge										0.25 3.6 0.27 2.6					71 0.33 86 0.38	2.7 2.4	0.90 0.90 1.00 1.00 0.70 0.30 0.50 0.50	82 0.36 71 0.33 37 0.20 60 0.29 61 0.29 58 0.28	1 2.9 3 0 3 0 1 3.2 5 2.7 3 2.1 0 1.5 0 1.7 9 1.7 8 1.1	1.31 1.40 1.33 1.40 1.09 0.56 0.71 0.69 0.42	70 0.3 73 0.3	6 37 5 4.0 8 3.5 3 3.2 8 2.8 7 2.1 4 2.1 2 2.1																	
Sampling Date	7/09	a		8/8		8	_	9/89	8	-	11/09		-	7/10	8 2		9/10	POST	-RUNOI	T PERI 11/10	OD		7/11	ø	2	8/11	8	-	9/11	ø	e	10/11		_	10/12	8 -	9/14		i
Metal-fraction Units	Cd-diss	i ar di	Pendi	Cd-6	liss	Ĕ.	но но	Cd-diss	mrdp	а Но	Cd-diss ng/L	nardir	ы Б	Cd-diss	nar dhe bench	0	d-diss µg/L	nar de Dendu	- (Id-diss µg/L	nardır. Dendir	но	Cd-diss	nar dhe	Д НО	Cd-diss	, and and	а НО	Cd-diss	nar dhe	е но	Cd-diss ng/L	narche	HO E	Cd-diss	bendu h	Cd-di	ss -	
M34 CC48 CC49 A56 ("upstream") A60 A61 A64 A65	0.30 4.60		0.39 0 0.95 4				.67 1.0 .34 4.9			0.59 1.2 1.35 4.9	1.00 6.40	238 495	0.81 1.2 1.40 4.6	0.40 4.40	114 0.47 345 1.07			199 0.71 509 1.43			219 0.7 517 1.4				0.31 0.7 0.69 4.5			0.56 0.9 1.19 4.7			1.68 1.0 1.36 4.3			0.59 1,0 1.27 5.5	5.10 5.60	220 0.76 515 1.45 545 1.51 168 0.62	.5 5.08 .7 0.86 0.99 0.93 1.01 1.05	111 65 111 111 111 111	7
A66 A68 A69A A70B A71B															97 0.41																				2.70 2.70 1.90	174 0.64 297 0.96 295 0.95 263 0.87	.9 1.08 .8 .8	12	
A72 A73 A73B A75D A75B Bakers Bridge	0.90	109	0.45 2	0 1.8	30 2	211 0	.74 2.4	1.80	199	0.71 2.5	2.80	296	0.95 2.9	1.10	136 0.53	2.1	1.80	245 0.83	3 2.2	2.10	232 0.8	0 2.6	0.70	75 (0.34 2.1	1.30	161	0.60 2.2	1.70	210 0	1.74 2.3	1.60	183 (0.67 2.4	1.70 1.40 1.10 1.10	261 0.87 251 0.84 217 0.76 191 0.69 193 0.69 183 0.67	.0 1.01 .9 0.57 .6 0.54 .6 0.52	8. 9: 8.	A 17 14 47

shading shows HQs > 1.0

the hardness-specifichronic surfacewater benchmarks for cadmiumwere calculated using the following equation: ((1.101672-lnhardness)*0.041838)* (0.041838)* (0.041838)*

								PRE-R	UNOFF	PERIOD																														
Sampling Date	2/10		ģ	3/10		É		4/10	see	É	3/11	ness	į	4/14	ness	Í	1																							
Metal-fraction Units	Cr-diss	, de	<u> </u>	Cr-di		bend	но	Cr-diss	a de	E HO	Cr-diss	- E	E HO	Cr-diss	hard	E HO																								
M34	1.0		187 0.	01 1.0	30	8 186		1.0		103 0.01	2.5		155 0.02			_ 110	1																							
CC48 A56 ("upstream")	1.0	571	309 0.0	1.0	54	1 295	0.00	1.0	301 1	183 0.01	2.5	493	274 0.01		131	92 0.03																								
A60 A61																																								
A 64																																								
A65 A66 A68 A72 A73																																								
A68			132 0.0										116 0.02		151	104 < 0.0	 1 																							
A72 A73	1.0	352	208 0.0	1.0	33	7 200	0.00	1.0	177]	118 0.01	2.5	273	169 0.01		182	121 < 0.0	 1																							
A73B A75D																94 0.0																								
A75B																																								
Bakers Bridge											DIT	NOFE D	ERIOD	0.5	127	90 0.0							1																	
Sampling Date	5/09	SS	ś	6/05	9 💈	É	П	6/10	8	ż	6/11	ž	d d	5/12	S	ż	5/13	2	ż	5/14	9	á	1																	
Metal-fraction	Cr-diss	, į	al chr	Cr-di		and a		Cr-diss	Ę	age of	Cr-diss	Ę	ancha	Cr-diss	Ť	al chr	Cr-dis		nden.	Cr-diss	Ą	- F																		
Units M34	ug/L 1.0	52	<u>→</u> H	O μg/I 02 1.0		2 57	HO 0.02	μg/L 2.5	49	<u>→ HO</u> 41 0.06	µg/L 5 2.5	53	<u>→ HO</u>	μg/L 0.5	77	→ HO 60 0.0	μg/L 2.5		HO 61 0.04	μg/L 0.5	92	HO 69 0.01	1																	
CC48 A56 ("upstream")			62 0.0			9 125				67 0.04			59 0.04			118 0.0	5.0	129	91 0.05 52 0.01	0.5	126	90 0.01 61 0.01																		
A60																	0.5		58 0.01		78	60 0.01																		
A61																	0.5		60 0.01 51 0.01	0.5		62 0.01 59 0.01																		
A65																	0.5	65	52 0.01	0.5	80	62 0.01																		
A66 A68	1.0	49	41 0.0	02 1.0	65	5 52	0.02	2.5	50	42 0.06	2.5	53	44 0.06	0.5	71	56 0.0	0.5		51 0.01 53 0.01			61 0.01																		
A72			39 0.1							45 0.06			45 0.06		86	66 0.0		82	63 0.04 56 0.04			76 0.01 67 0.01																		
A64 A65 A66 A68 A72 A73 A73B																	0.5	37	33 0.02	0.5	54	45 0.01																		
A75D A75B																	0.5		49 0.01			59 0.01 55 0.01																		
Bakers Bridge																			47 0.01	0.5	73	57 0.01																		
Sampling Date	7/89			8/09	0 2			9/89	· ·		11/09	2		7/10	2		9/10	- 2		POST-1		F PERIOI	7/11	2		8/11	12		9/11	2		10/11			10/12	2		9/14	2	
Metal-fraction	Cr-diss		- He	Cr-di		- F		Cr-diss	- Đ	il di	Cr-diss	ě	in chin	Cr-diss	ē	Į.	Cr-dis		ndpu	Cr-diss		in chin	Cr-diss	- Ę	in Chin	Cr-diss	į	ig ig	Cr-diss	- Ē	Ē	Cr-diss	- je	ą	Cr-diss		ndpi.	Cr-diss	į.	
Units M34	μg/L 1.0	2	<u>≅</u> H	O μg/I		6 123	HO	μg/L 1.0	<u>3</u>	E HO 107 0.01	μg/L 1.0	220	E HO 151 0.01	μg/L 2.5	114	E HO 83 0.0:	μg/L 0.3		B HO 130 <0.0	μg/L 0.3	210	HO 141 <0.0	μg/L 2.5	3	E HO 52 0.05	μg/L 5 2.5	344	HO 100 0.03	μg/L 2.5	100 1	HO 24 0.02	μg/L 2.5	155	E HO 106 0.02	µg/L 2.5	220	<u>≅ HO</u> 141 0.02		118	но
CC48			179 0.0										275 0.00			204 0.0			281 <0.0			285 <0.0		191 1				230 0.01			65 0.01			247 0.01	2.5	515	284 0.01	2.5	67	
CC49 A56 ("upstream")																																					297 0.01 113 <0.01		114	3 0.01
4.60																																			"			0.5	111 4	0.01
A64																																							111 1	
A65																																							117 1	
A61 A64 A65 A66 A68	1.0	85	65 0.0	02 1.0	13	5 95	0.01	1.0	141	98 0.01	1.0	167	113 0.01	2.5	97	72 0.0	0.3	144	100 < 0.0	0.3	154	106 < 0.0	2.5	66	53 0.05	2.5	111	81 0.03	2.5	140	98 0.03	2.5	138	96 0.03			117 < 0.01	0.5		
A 69A A 70B																																					181 <0.01 180 <0.01			
A71B												225		١				215			222								١			١			0.5	263	164 < 0.01			
A71B A72 A73	1.0	109	80 0.1	1.0	21	1 137	0.01	1.0	199 1	130 0.01	1.0	296	180 0.01	2.5	136	95 0.0	0.3	245	154 < 0.0	0.3	232	148 < 0.0	2.5	75	59 0.04	2.5	161	109 0.02	2.5	210 1	36 0.02	2.5	183	122 0.02			163 0.01 157 < 0.01			
A73B A75D																																			0.5	217	140 <0.01 126 <0.01	0.5	83 92	54 0.01
A75B																																			0.5	193	127 < 0.01	0.5	85	55 0.01
Bakers Bridge																				1			1						L						0.5	183	122 < 0.01	0.5	99 '	74 0.01

the hardness-specific hronic surface water benchmarks for chromium were calculated using the following equation: e^{(0.8194} In hardness)+0.53-

							PRE-	RUNOF	F PERIOD]																							
Sampling Date	2/10	sseu	Ė	3/10	2	É	4/10		i	3/11	ness	Ė	4/14	ness	j j	1																							
Metal-fraction Units	Cu-dis:		E HO	Cu-di	-	E E	Cn-di O µg/L	-	но но	Cu-dis	-	но но	Cu-dis		HC	,																							
M34	10.3	309	23 0.4	11.2	308	3 23 0	5 12.3	150	13 1.0	16.2	247	19 0.8	1		- n	Ĭ																							
CC48 A56 ("upstream")	119	571	40 33	109	541	38 2	9 110	301	23 4.8	89.1	493	35 2.5	2.07	131	11 0.2																								
A60 A61																																							
A64																																							
A65 A66																																							
A68 A72			16 0.						13 0.7					151	13 0.5																								
A73	35.9	352	26	35.2	337	/ 25 @	A 19.2	2 177	15 1.3	25.2	273	21 112		182	15 0.2																								
A73B A75D													2 14	133	11 0.2																								
A75B																																							
Bakers Bridge	_								RUNOF.	F PERIO	Ð		2.49	127	11 0.2				1			7																	
Sampling Date	5/09	less	ġ	6/89		É	6/16		È	6/11	ssa	Ė	5/12	less	ģ	5/13		È	5/14	less	Ė	1																	
Metal-fraction Units	Cu-dis:		Б В но	Cu-di	=	e e	Cu-di	iss 🖶	E HO	Cu-dis	, Ę	e ec	Cu-dist	, p	en d.	Cu-di	=	€ 8 HO	Cu-dis	s #	E HO	.[
M34	3.9	52	5.1 0.3	1.5	72	6.8 0	2 5.0		4.9 1.0	5.0		5.2 1.0			7.2 0.2	1.3	79	7.3 0.2	3.1		8.3 0.4	ī																	
CC48 A56 ("upstream")	56.3	81	7.5	90.6	189	9 15 5	9 72.0	88	8.0 9.0	55.6	76	7.1 7.8	61.2	177	15 4.2	79.3 8.4		11 7.1 6.2 1.4	65.4 13.4		11 6.0 7.3 1.8																		
A60																7.8	74.0	6.9 1.1	12.6	78	7.2 1.7																		
A61 A64																9.6 8.5		7.2 1.3 6.0 1.4	16.5 14.3	76	7.4 2.2 7.1 2.0	i i																	
A65 A66																8.9 9.1		6.2 1.4 6.1 1.5			7.4 1.9 7.3 1.9																		
A68			4.9 0.5						5.0 1.0			5.2 1.0			6.7 0.6	10.3	66	6.3 1.6	11.3	87	8.0 1.4																		
A72 A73	3.6	45	4.5 0.1	4.5	78	7.2 0	.6 5.0	54	5.3 0.9	5.0	35	5.4 0.9	4.1	86	7.9 0.5	7.6 5.0		7.6 1.0 6.7 0.7			9.2 0.7 8.0 0.6																		
A73B A75D																		3.8 0.5 5.8 0.6			5.3 0.7 7.1 0.6																		
A75B Bakers Bridge																3.7	61.0	5.9 0.6	4.1	70	6.6 0.6																		
Bakers Bridge													<u> </u>			3.5		OST-RUN			6.8 0.5																		
Sampling Date	7/09	less	Ė	8/09	ssa	É	9/69	ssa	É	11/09	ess	Ė	7/10	ess	Ė	9/16	ssa	Ė	11/10	ess	Ė	7/1	2	Ė	8	8/11 💈	É	9/11	2	Ė	10/11	ess	Ė	10/12	iess	É	9/14	ess	Ė
Metal-fraction Units	Cu-dis:		E HO	Cu-di	=	- E	Cu-di O ug/I	-	E HO	Cu-dis	ard.	E HO	Cu-dis:	, p	5 HC	Cu-di μg/I		E HO	Cu-dis	s #	E HO	Cu-d		- E		u-diss ₹ ug/L ₹	- E	Cu-d		- но	Cu-diss	in the	E 100	Cu-dis	, #	5	Cu-diss		HO F
M34	1.5	91	8.3 0.3	3.4	186	5 15 0	2 3.7	156	13 0.3	9.5		19 0.5	5.0		10 0.5	2.0	199	16 0.1	2.0		17 0.1	10.	.0 65	6.2	1.6 1	10.0 14-	1 12 0	.8 10.0	188	15 0.7	10.0		13 0.8	3.8		18 0.2	1.5	118	10 0.1
CC48 CC49	110	293	22 4	221	467	7 33 6	6 189	470	34 5.6	152	495	35 4.3	118	345	26 4.6	166	509	36 4.6	140	517	36 3.8	76.	.6 191	16	1.9 1	145 39	8 29 5	0 148	474	34 4.4	139	435	31 4.4			36 2.0 38 2.1		67	6.4 10.3
A56 ("upstream") A60																																				14 0.1	2.4		10 0.2 9.8 0.3
A61																																					3.4	111	9.8 0.4
A64 A65																																							9.9 0.3 10 0.3
A66		0.5	50.00				. , ,		12 6 -	١,,				0.7	0.5								0 65	c 0 300	popos .	100 ***		B80 10 0	- 140	12 07	100	120		1 ,,		11 02	3.5	120	10 0.3
A68 A69A	1.5	85	7.8 0.3	1.5	135	5 12 0	1.5	141	12 0.1	1.5	167	14 0.1	5.0	97	8.7 0.6	2.0	144	12 0.2	2.0	154	13 0.2	10.	.U 66	6.3	1:00 1	10.0 11	1 9.8	30 g 10.0	140	12 0.8	10.0	138	12 0.8	16.3	297	14 0.2 23 0.7	3.3	114	10 0.3
A70B A71B																																		24.8 8.7		23 1.1 20 0.4			
A72	4.8	109	9.6 0.5	17.4	211	17	0 14.7	199	16 0.9	36.9	296	23 1.6	5.0	136	12 0.4	13.0	245	19 0.7	14.5	232	18 0.8	10.	.0 75	7.0	1.4 1	10.0 16	1 13 0	.7 10.0	210	17 0.6	10.0	183	15 0.7	9.5	261	20 0.5			12 0.2
A73 A73B																																		4.3 3.1	251 217	20 0.2 17 0.2			12 0.2 7.6 0.2
A75D A75B																																		0.6	191	16 0.0 16 0.0	1.9	92	8.3 0.2
Bakers Bridge																									\perp											16 0.0 15 0.0			
shading shows HQs	>10	8																																					

the hardness-specific chronic surface water benchmarks for copper were calculated using the following equation: 6.834 in hardness)-1.7428

Appendix 7.5: Calculating hardness-specific benchmarks and HQs for dissolved manganese in surface water samples Baseline Ecological Risk Assessment Upper Animas River Mining District

				PI	E-RUNO	FFPERIOD						7																				
Sampling Date	2/10	ies.	3/10	ies.	4/10	ies.	3/11	esa	É	4/14	E.	1																				
Metal-fraction	Mn-diss	ar de	Mn-diss		Mu-diss		Mu-dis	is E	E E	Mu-díss	ardr ench																					
Units M34	ug/L 630	309 2402 0.3		308 2399 O.		2 2 HO	O μg/L 2 530	247 2	ž HO 229 0.2	μg/L	E & H	읙																				
CC48	5290	571 2947 1.8				301 2381 1		493 2																								
A56 ('upstream')				3666		7,600			7444.544	172	131 1805 0	1																				
A60																																
A61 A64																																
A65																																
A66 A68 A72		29996	22	PROB	310		200		779496397		1869	200																				
A68 A72	3560 2710	202 2085 1.7 352 2509 1.1				148 1880 2 177 1995 0.				3340	151 1892 1	8																				
A73	2.10	202 2000 300404	2020	227 2172 3246		2 2 0.	1 2540		202 NORTH	1830	182 2014 0	9																				
A73B A75D																																
A75B										1090	133 1814 0	٥																				
Bakers Bridge										584	127 1786 0	3																				
							RUNOFF	PERIOD	,									Į														
Sampling Date Metal-fraction	5/09 Mn-diss	the shift	6/09 Mn-diss	the sh	6/10 Mn-diss	dnes ch m.	6/11 Mn-dis	nes .	E E	5/12 Mn-diss	the sh	5/13 Mn-di		Į.	5/14 Mn-dis	dhesi ich m.																
Metal-fraction Units	Mn-diss ug/L	E E HO	MB-diss	h gar	MB-diss	h den to	Mn-dis	a E	j HO	Mn-diss ug/L	n per	MB-di	, E	ğ mo	Ma-dis	hare bene	но															
M34	160	52 1327 0.1	120	72 1479 0.		49 1301 0.		53 1	_ 110		77 1512 0		79	1525 0.1		92 160	4 0.1	1														
CC48	766	81 1538 0.5	1770	189 2039 0.	9 811	88 1581 0.	5 731	76 1	505 0.5	1620	177 1995 0			1796 0.8				1														
A56 ("upstream") A60												140 153		1429 0.1 1492 0.1		79 152 78 151																
A61												328		1519 0.2		80 153																
A64												240		1414 0.2		76 150																
A65												304 343		1429 0.2 1422 0.2		80 153 79 152																
A66 A68 A72 A73	340	49 1301 0.3	636	65 1429 0.	4 335	50 1309 0.	3 415	53 1	335 0.3	699	71 1472 0			1436 0.5																		
A72	219	45 1264 0.2	450	78 1519 0.	3 241	54 1343 0.	2 305	55 1	352 0.2	471	86 1569 0			1544 0.3																		
A73 A73B												341 109		1472 0.2 1185 0.1		88 158 54 134																
A75D												232		1391 0.2		76 150																
A75B												233	61	1399 0.2	394	70 146																
Bakers Bridge			<u> </u>		1		<u> </u>					149	58			73 148 FFPERIOI		<u> </u>														
Sampling Date	7/09	Š É	8/09	š ć	9/09	SS É	11/09	S	É	7/10	Š Ė	9/10	SSS	ź ros	11/10	-		7/11	ess i		8/11	es E	9/11	S	É	10/11	ž č	1	0/12	Š É	9/14	ss t
Metal-fraction	Mu-diss	튄혈	Mu-diss	. E 8	Ma-diss	, fi fi	Mn-đis		ig p	Mn-diss	f f	Ma-di		ep Ep	Mu-dis			Mn-diss	한 형		Ma-diss	é é	Ma-di	ss Ē	ė,	Mu-diss	igh igh		u-diss	된 월	Mn-diss	: É É
Units	μg/L	E E HO	μg/L	Д <u>В</u> н		H E H	O μg/L	EL.	≧ HO	μg/L	E E H	O μg/L	Ē	≗ но	μg/L	g g	но	μg/L	<u>Б</u> Б	но	μg/L	E 5 1	iO μg/L	pg	≗ но	μg/L	ğ ğ		ıg/L	≝ № но	μg/L	∄ № но
M34 CC48	169 2830	91 1599 0.1 293 2360 1.2		186 2028 0.		156 1913 0. 470 2762 1		238 2			114 1723 0			2075 0.2		219 214			65 1429			144 1863 (398 2613			2036 0.2		155 1909 435 2693			20 2145 0.2 15 2848 18		118 1743 0.1 67 1444 0.5
CC49	2030	293 2300 0002	4610	-107 2750 SSE	4920	470 2702 mag	3270	495 2	010 001090	3280	545 2492 mag	2030	309	2037 3318	3220	31/ 203	1 00850	1740	191 2040	, 0.9	Deac	270 2013 SS	4900	4/4	LITTO ESSENCE	4020	455 Z09.			45 2902 1.8	, 10	07 1444 0.5
A56 ("upstream")																										1				68 1961 0.1		114 1723 0.3
A60 A61										l		1			1											l						111 1708 0.2 111 1708 0.3
A64					1		1			1		1			1											l						113 1718 0.3
A65										l		1			1											l					614	117 1738 0.4
A66	668	95 1552 04	1220	128 1922 0	1.540	141 1850 0.	. 2200	167 1	ne z SSNONO	640	07 1622 0		1.64	1942 0.7	1700	184 100	. o o	E27	66 1426		921	111 1708 (140	1915 06	1210	120 102	. 07	240 1	74 1984 0.7		120 1753 0.5 114 1723 0.5
A64 A65 A66 A68 A69A	668	80 1005 0.4	1520	150 1825 0.	1540	141 1850 0.	2380	10/ 1	90 / 福建議	649	97 1633 0	4 1310	144	1800 0.7	1/90	154 190	0.9	25/	00 1430	0.4	821	111 1/08 (0.5 1140	140 .	1840 0.6	1510	155 1859			97 2371 1.1	826	114 1/25 0.5
IA70B					1		1								1											l		2	540 2	95 2365 11		
A71B A72	603	109 1698 0.4	1420	211 2115 0	1270	199 2075 0.	2400	206 2	240 1183	77.6	126 1929 0		245	2222 0.7	1,000	222 210	2 00	405	75 1400		022	161 1933 (1200	210	2112 06	1,100	192 201			263 2276 0.7 261 2271 0.7	0.62	144 1863 0.5
A73	003	109 1098 0.4	1420	211 2115 0.	15/0	199 2075 0.	2490	290 2	200 002020	/56	150 1626 0	1 1590	245	2223 0.7	1690	202 218	0.0	405	/3 1495	7 (1.5	923	101 1955 (1290	. 10	6114 0.0	1190	100 201			51 22/1 0.7 51 2241 0.6		142 1854 0.4
A73B A75D										l		1			1											l		1	210 2	17 2135 0.6	419	83 1550 0.3
A75D A75B					1		1								1											l				91 2046 0.4		92 1604 0.2 85 1563 0.2
Bakers Bridge																																99 1644 0.2
shading shows HOs	i de la constanta de la consta	atr.								•								•								•						

stading shows HQs > 1.0

the hardness-specific chronic surface water benchmarks for dissolved manganese were calculated using the following equation: e^{0.330 % hethern/+}JF-0.0

Appendix 7.6: Calculating hardness-specific benchmarks and HQs for dissolved nickel in surface water samples Baseline Ecological Risk Assessment Upper Animas River Mining District

								PR	E-RUN	NOFF P	PERIOD																																
Sampling Date Metal-fraction Units	2/10 Ni-diss ug/L	nardness	enchm.	N	3/10 Ni-diss µg/L	hardness	hendun.		diss	rardness	но	3/11 Ni-dis: µg/L	hardness	ranchm.	4/14 Ni-dis	, į	bendun.	но																									
M34 M34 A56 ("upstream") A60 A61 A64 A65	5.3	309 571	135 (227 (0.04	3.3		135 0.6 217 0.6	02 1	.0 1		'3 0.01 32 0.08	4.0		112 0.6 201 0.6	04		65 <	٦																									
A66 A68 A72 A73 A73B A75D		202 352					85 0.0 145 0.0				2 0.01 4 0.04			82 0.0 122 0.0	0.9	182	74 < 86	0.01																									
A75B Bakers Bridge																	64	- 1																									
												_	NOFF I	ERIOD								,			4																		
iampling Date Metal-fraction Units M34	5/09 Ni-diss ug/L 1.0	lar	30 (HQ N	6/09 Ni-diss µg/L 1.0	72	39 0.0	Qμg	diss /L	49 2	HQ 8 0.01	6/11 Ni-dis: µg/L 7 2.0	- Inardness	H pendim H 30 0.0	5/12 Ni-dis Ο μg/L 07 0.6	, į	Pendun.	HQ N	5/13 ii-diss µg/L 1.3	79 4	HQ 3 0.03	5/14 Ni-diss µg/L 0.3	92 Prarcquess	unpusq F	IQ .01																		
CC48 A56 (*upstream*) A60 A61 A64 A65	2.2	81	44 (0.05	5.3	189	89 0.0	06 2.	.0	88 4	7 0.04	2.0	76	41 0,4	05 4.9	177	84		0.3 0.3 0.3 0.3 0.3	65 3 74 4 78 4 63 3 65 3	5 0.04 6 0.01 10 0.01 12 0.01 5 0.01	0.3 0.3 0.3 0.3 0.3 0.3	79 78 80 76 80	43 0 42 0 43 0 41 0 43 0	.01 .01 .01 .01																		
.666 .68 .72 .73 .73B .75D .75B sakers Bridge	1.0						36 0.0 42 0.0				9 0.07			30 0.0 31 0.0			39 46	0.01 0.02	0.3 1.3 1.3 1.4 0.6 0.5	66 3 82 4 71 3 37 2 60 3 61 3	66 0.01 67 0.01 64 0.03 69 0.03 62 0.06 64 0.02 64 0.01 63 0.01	0.6 0.3 0.8 0.8 0.3 1 0.3	88 54 76 70		.01 .01 .01 .03 .01																		
akers Dringe												<u> </u>							0.3	30 3	0.01			FF PERI																			-
ampling Date Ietal-fraction Inits	7/09 Ni-diss µg/L		benchun.	N	8/09 Ni-diss µg/L	hardness	Henchm.	9/i Ni-e O ag	diss	hardness	но	11/09 Ni-dis: µg/L		H bendhii.	7/10 Ni-dis Q µg/L	, į	benchm.	N	9/10 (i-diss µg/L	hardness	но	11/10 Ni-diss µg/L	Ę	benchin.	N	7/11 ii-diss µg/L	lardness benclun.	но	8/11 Ni-diss µg/L	hardness	Homely.	9/11 Ni-di pg/I		benchm,	10/11 Ni-dis O µg/L	, į	Jendim.	10/1 Ni-dis	s į	Hendim.	9/14 Ni-dis) µg/L	, į	
M34 CC48 CC49 A56("upstream")	1.0 9.1	91 293	48 6 129 6				88 0.0 192 0.0				93 0.08			108 0.0 201 0.0			58 148			199 9 509 2	3 0 06 0.08	0.4 16.2		101 209 0				0.06 0.07			71 0.0 167 0.0			89 0.0 194 0.0			75 0. 180 0.	08 12.4 13.5	515 545	101 0.0 208 0.0 218 0.0 81 0.0	96 5.9 96 0.3	67 114	
A60 A61 A64 A65 A66																																									0.3 0.3 0.3 0.3	111 113 117 120	
A68 A69A A70B A71B A72							98 0.0										51				1 0			75			66 37							69 0.0 97 0.0			68 0. 87 0.	4.8 5.2 4.9	297 295 263	83 0.0 131 0.0 130 0.0 118 0.0 117 0.0)4)4)4	114	
473 473B 475D 475B Bakers Bridge	1.0	109	J0 (0.02	3.0	211	>0 U.I		1	.,, 9	.J 0,04	0.4	290	130 0.1	2.0	130	0, 1	0.03	0.4	±+0 1.	11 0	4.2	232	100 0	.04	2.0	.5 41	0.03	2.0	101	10 U.U	2.0	210	91 0.0	2.00	. 103	8/ 0.	4.8 3.3 2.3 2.4	251 217 191 193	117 0.0 113 0.0 100 0.0 90 0.0 91 0.0 87 0.0	0.9 03 1.9 03 1.0 03 1.0	142 83 92 85	

 $shading shows HQs > 1.0 \\ the hardness-specific hronic surface water benchmarks for dissolved nickel were calculated using the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054} \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054 \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054 \\ the hardness should be a finished by the following equation x {\it e}^{0.549 \, \text{in hardness}-0.054 \\ the hardness should be a finished by the hardness should be$

Appendix 7.7: Calculating hardness-specific benchmarks and HQs for dissolved lead in surface water samples Baseline Ecological Risk Assessment Upper Animas River Mining District

							I	PRE-RU	NOFF	PERIOD]																							
Sampling Date Metal-fraction Units	2/10 Pb-diss ug/L	hardness	H benchin.	3/10 Pb-di pg/l	ss į	benchm.	P	4/10 b-diss μg/L	hardness	OH Pendim.	3/11 Pb-diss µg/L	harchess	HC Penchin	4/14 Pb-diss µg/L	hardness	OH bendun.																								
M34 CC48 A56 ("upstream") A60 A61 A64	1.5		8.4 0. 15.7 0.	2 2.0	308	8.4 14.9	0.2	1.7		3.9 0.4 8.2 1.8	4.2	247 493	6.6 0.6 13.5 1.1			3.4 0.1																								
A66 A68 A72 A73 A73B A75D			5.4 0. 9.6 0.			9.2				3.8 0.1 4.7 0.1			4.5 0.1 7.4 0.2	0.05	182	3.9 0.01 4.8 0.01 3.4 0.01																								
A75B Bakers Bridge														0.05	127	3.3 0.02																								
			,						,			OFF P	ERIOD				_					,]																	
Units	5/09 Pb-diss ug/L	hardnes	H benchin	6/0: Pb-di µg/l		benchim		6/10 b-diss µg/L	hardnes	HQ	6/11 Pb-diss µg/L	hardnes	HC HC	5/12 Pb-diss µg/L		HQ HQ	5/13 Pb-dis µg/L	hardhes	HQ HQ	5/14 Pb-diss µg/L	hardnes	HQ HQ																		
M34 CC48 A 56 ("upstream") A 60 A 61 A 64 A 65	0.5 4.2		1.2 0. 2.0 2			1.8 5.0				1.1 0.4 2.2 3.7	9.5		1.3 0.4 1.9 4.8			1.9 0.1 4.7 1.7		129 65 74 78 63	1.9 0.1 3.3 3.9 1.6 0.4 1.8 0.4 1.9 0.4 1.5 0.8 1.6 0.8	6.9 1.0 0.9 1.0 1.0	126 79 78 80 76	2.3 0.05 3.2 2.1 1.9 0.5 1.9 0.5 2.0 0.5 1.9 0.5 2.0 0.4																		
A66 A68 A72 A73 A73B A75D A75B			1.1 0. 1.0 0.			1.6 1.9				1.2 0.4 1.3 0.4			1.3 0.4 1.3 0.4			1.7 0.4 2.1 0.02	1.5 1.3 1.2 0.7 0.3 0.8 0.8	64 66 82 71 37 60 61	1.5 1.0 1.6 0.8 2.0 0.6 1.7 0.4 0.8 0.4 1.4 0.6 1.5 0.5 1.4 0.4	1.1 3 1.1 5 0.1 4 0.2 4 0.1 5 0.3 6 0.3	79 87 103 88 54 76 70	1.9 0.6 2.2 0.5 2.6 0.02 2.2 0.1 1.3 0.1 1.9 0.2 1.7 0.2 1.8 0.2	2																	
Bakers Bridge																	0.5	36	1.4 0.4			F PERIOI																		
	7/09 Pb-diss	rdnes	archin	8/0! Pb-di	ss 🗐	nchm		9/09 b-diss	rdnes	and m	11/09 Pb-diss	rches	mchm	7/10 Pb-diss	ırdnes	mdun	9/10 Pb-dis		archin	11/10 Pb-diss	rches	sıclım	7/11 Pb-dis	s Ē	mdnm	8/11 Pb-diss		archin	9/11 Pb-diss	rdnes	mdım	10/11 Pb-diss	ırdnes	nchm	10/12 Pb-diss		melun	9/14 Pb-diss	rches	sochun
Units M34 CC48 CC49 A56 ("upstream") A60 A61	ng/L 0.5 13	91 293	2.3 0. 7.9 1.	2 0.5	186	5 4.9	0.1	иg/L 0.5 14.5	156 4 470 1	<u>≱ HQ</u> 4.1 0.1 12.9 1.1	μg/L 0.5 16.2	238 495	5 HC 6.4 0.1 13.6 1.2	μg/L 0.5 17.4	114 345	2.9 0.2 9.4 1.9	0.1	199	5.3 0.0 14.0 12	0.1	219	5.8 0.02 14.2 1.2	0.5	65	1.6 0.3 5.1 1.7	0.5	144		рд/L 0.5 21.4	188 : 474 1	2 HQ 5.0 0.1 13.0 1.6	0.5	155	2 HQ 4.0 0.1 11.9 1.6	0.3 11.2 11.3	220 515 545	5.9 0.0 14.2 0.8 15.0 0.8 4.4 0.0	4 0.1 14.2 5 0.2 0.3	67 114 111 111	3.0 0.02 1.6 8.7 2.9 0.07 2.8 0.11 2.8 0.12 2.9 0.10
A64 A65 A66 A68 A69A A70B	0.5	85	2.1 0.	2 0.5	135	3.5	0.1	0.5	141	3.7 0.1	0.5	167	4.4 0.1	0.5	97	2.4 0.2	0.1	144	3.7 0.0	0.1	154	4.0 0.02	0.5	66	1.6 0.3	0.5	111	2.8 0.2	0.5	140	3.6 0.1	0.5	138	3.6 0.1	0.1 0.2 3.0	297	4.6 0.0 8.0 0.0 8.0 0.4	0.3 0.4 2 0.4 2	117 120	3.0 0.09 3.1 0.14 2.9 0.13
A71B A72 A73 A73B A75D A75B Bakers Bridge	0.5	109	2.8 0.	2 0.5	211	5.6	0.1	0.5	199	5.3 0.1	0.5	296	8.0 0.1	0.5	136	3.5 0.1	0.1	245	6.6 0.0	0.1	232	6.2 0.02	2 0.5	75	1.8 0.3	0.5	161	4.2 0.1	0.5	210	5.6 0.1	0.5	183	4.8 0.1	0.05 0.05	261 251 217 191 193		3 0.1 1 0.05 1 0.05 1 0.05 1 0.14	142 83 92 85	3.7 0.01 3.7 0.01 2.1 0.02 2.3 0.02 2.1 0.07 2.5 0.02

Appendix 7.8: Calculating hardness-specific benchmarks and HQs for dissolved silver in surface water samples Baseline Ecological Risk Assessment Upper Animas River Mining District

							PRE-RU	NOFF P	ERIOD]																			
Sampling Date Metal-fraction	2/16 Ag-dissol	dness	chm.	3/10 Ag-dissol	dness	chm.	4/16 Ag-dissol	dnes	chm.	3/11 Ag-dissol	dness	chm.	4/14 Ag-dissol	chross																				
Units	μg/L	ra d	E HO	μg/L	ğ	₹ HQ	μg/L	토 .	E HQ	μg/L	ğ	HQ	µg/L	∄ ∄ HQ																				
M34 CC48 A56 ("upstream") A60	0.60 0.25		0.52 1.1 1.50 0.2	0.50 0.25		0.52 1.0 1.37 0.2	0.25 0.25		0.15 1.7 0.50 0.5	0.25 0.25	247 493	0.36 0.7 1.17 0.2		131 0.12 2.1																				
A61 A64 A65																																		
A66 A68 A72 A73			0.25 1.0 0.65 0.4			0.20 1.2 0.61 0.4			0.15 1.7 0.20 1.2		172 273	0.19 13 0.42 0.6	1	151 0.15 1.6 182 0.21 1.2	1																			
A73B													l																					
A75D A75B													l	133 0.12 2.0																				
Bakers Bridge										RUN	OFF PE	RIOD	0.25	127 0.11 2.2					1															
Sampling Date Metal-fraction	5/09 Ag-dissol	eul	m43	6/09 Ag-dissol	eaup	H ₄	6/10 Ag-dissol	dne	Ep.	6/11 Ag-dissol	ghe	ekin.	5/12 Ag-dissol	the chm	5/13 Ag-disso	, ilnes	5/14 Ag-dissol	dhes chun	1															
Units	μg/L	Tal.	₹ HO	μg/L	ğ	∮ но	μgL	īğ.	Ē HQ	μg/Ł	har	₹ HQ	μg/L	∄ ∄ _{HQ}	µg/L	E E HO) μg/L	2 2 HQ	1															
M34 CC48	0.25 0.25		0.02 10 3 0.05 4.8	0.25 0.25	189	0.04 5.9 0.22 1.1	0.25 0.25		0.02 11.4 0.06 4.1	0.25 0.25		0.03 9.9 0.05 5.3		77 0.05 5.2 177 0.20 1.2	2.50	79 0.05 25 129 0.12 21	0.25	92 0.07 3.8 126 0.11 2.2																
A56 ("upstream") A60															0.25 0.25	65 0.04 74 74 0.04 5.0	0.25	79 0.05 5.0 78 0.05 5.1	8															
A61 A64															0.25	78 0.05 \$.1 63 0.03 7.4		80 0.05 4.9 76 0.05 5.3																
A65 A66															0.25 0.25	65 0.04 71 64 0.03 72	0.25	80 0.05 4.9 79 0.05 5.0																
A68 A72	0.25		0.02 11.4 0.02 13.1	0.25		0.04 70 0.05 5.1			0.02 11.0 0.03 9.6	0.25 0.25		0.03 9.9 0.03 9.3		71 0.04 6.0 86 0.06 4.3	0.25	66 0.04 6.8 82 0.05 23	0.25	87 0.06 4.2 103 0.08 3.2																
A73	0.25	42	0.02 233323	0.23	76	O.US REALES	0.23	34 0	7.03 EB.0	0.23	22	U.U3 (2)94(8)3	0.23	80 U.U0 ((M)(8)	1.25	71 0.04 30	0.25	88 0.06 4.1																
A73B A75D															0.25 0.25	37 0.01 18 60 0.03 8.0	0.25	54 0.03 9.6 76 0.05 5.3																
A75B Bakers Bridge															0.25 0.25	61 0.03 7.8 58 0.03 8.5	0.25 0.25	70 0.04 6.1 73 0.04 5.7																
S V D	7/00	_		0.00	2		0.00			11/00	8		1 200		1 0/10		_	UNOFF PERIOD	_			0/11		Long			16/11			19/19		Lana		$\overline{}$
	7/09 Ag-dissol	ar du	enchr	Ag-dissol	ar dh	HO HO	9/09 Ag-dissol	ardn.	ench	Ag-dissol	ardh	enchr	7/10 Ag-dissol	ardne	9/10 Ag-disso ug/L	hardn. Penchr	Ag-dissol	ardh ench	7/11 Ag-disso	a a a	g	8/11 Ag-dissol	ardhe -	9/11 Ag-disso	a å	en per per per per per per per per per per per	10/11 Ag-dissol	ardn	enehr	12/12 Ag-dissol	ardh enchr	9/14 Ag-diss	히 분 등	
Units M34	μg/L 0.25		<u>- HO</u>	μg/L 0.25		0.22 11	µg/L 0.25		E HO	µg/Ł 0.25	238		μg/L 0.25	114 0.09 2.7	0.05	199 0.25 0.2	0.05	219 0.29 0.2	0.25		.04 7.0	µg/L 0.25	144 0.14			0.22 1.1	µg/L 0.25		2 HO	μg/L 1.25	220 0.29		118 0.	
CC48 CC49	0.25	293	0.48 0.5	0.25	467	1.06 0.2	0.25	470 1	1.08 0.2	0.25	495	1.18 0.2	0.25	345 0.63 0.4	0.05	509 1.23 0.0	4 0.05	517 1.27 0.0	0.25	191 0.	.23	0.25	398 0.81 0	.3 0.25	474	1.09 0.2	0.25	435 ().94 0.3	1.25 1.25	515 1.26 545 1.39	0.9		
A56 ("upstream") A60																														0.25	168 0.18	0.25 0.25	114 0. 111 0.	
A61 A64																																0.25 0.25		
A65 A66																																0.25	117 0.	10 2.5
A68	0.25	8.5	0.06 4.4	0.25	135	0.13 2.0	0.25	141 0	0.14 1.8	0.25	167	0.18 1.4	0.25	97 0.07 3.5	0.05	144 0.14 0.4	0.05	154 0.16 0.3	0.25	66 0.	.04 6.8	0.25	111 0.09 2	8 0.25	140	0.13 1.9	0.25	138	0.13 1.9		174 0.19 🖔	0.25	114 0.	
A69A A70B																														0.25 0.25	297 0.49 295 0.48	0.5		
A71B A72	0.25	109	0.09 2.9	0.25	211 (0.27 0.9	0.25	199 0	0.25 1.0	0.25	296	0.49 0.5	0.25	136 0.13 2.0	0.05	245 0.35 0.1	0.05	232 0.32 0.2	0.25	75 0.	.05 5.5	0.25	161 0.17	5 0.25	210	0.27 0.9	0.25	183 (0.21 12	0.25 0.25	263 0.40 261 0.39	0.6 0.25	144 0.	
A73 A73B																														0.25 0.25	251 0.37 217 0.28			
A75D A75B																														0.25 0.25	191 0.23 193 0.23	1.1 0.25	92 0.	07 3.8
Bakers Bridge shading shows HQs >	VIII-0000000000000000000000000000000000	,																												0.25	183 0.21			

shading shows HQs > 1.0

the hardness-specificchronic surface water benchmarks for dissolved silver were calculated using the following equation: e^(1.72*take@ata)>10.51

									PRE-RI	UNOFF	PERIOD	,							ור																								
Sampling Date Metal-fraction	2/10	mesn	Hi		3/10	dness.	d d	T	4/10	iness	Ę	3/		Į,		4/14	thess	É.	1																								
Metai-fraction Units	Zn-diss	, ž	ĕ	то	Za-diss	38.0	ĕ.	то .	Zn-diss	ğ	ě "	Zn-		Ĭ	WO.	Zn-diss	är	ğ 100																									
434 :C48 .56 ("upstream") .60 .61	328	309 571	338 591		292 2600		337 563		499		175 21 330 41	31	2 2- 40 49				131	155 1.6																									
A65 A66 A72 A73 A73B A75D		202 352			610 1230		206 366				173 5. 204 4.		74 11 72 21			701	182	176 5.8 209 3.4 157 2.3																									
N75B Bakers Bridge																		151 1 2																									
unces Di roge				_				_					RUNOF	FPER	OD	277	12/	ADA GURA	2						\neg																		
Sampling Date Metal-Iraction Units M34 CC48 M34 C64 M34 A60 A60 A60 A64 A66 A66 A66 A72 A73 A73 A75B Bakers Bridse	5/09 Zn-diss ug/L 48.1 611	52 81 49		HO 0.7 6.1	6/09 Za-diss <u>ug/L</u> 72.5 1080 270 249	72 189	90 216 82 97	HO 0.8 5.0 5.0	286	50	63 1 108 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6// Zn- O ng 1 25 1 61	11 diss 5/L 2 / L	3 68 94 3 68 94	HO 3 0.4 1 65	281	71	96 0.7 204 53 89 3.2 106 2.7	224 242 305 280 296 292 347 369 242 79.0 140 140	79 129 65.0 74.0 78.0 63.0 65.0 64.0 66.0 37.0 60.0 61.0	82 2 92 2 97 3 80 3 82 3 81 3 83 4 101 3	0 146 6 1310 7 361 6 360 2 509 5 452 6 455 6 461 2 446 6 453 7 364 6 369 2 509 8 217 8 210 9 111	92 92 126 79.0 78.0 80.0 76.0 87.0 54.0 76.0 76.0 73.0	5 150 8 5 150 98 5 99 5 99 5 99 6 99 7 99 8 99 9 99 107 6 124 6 124 6 124 6 108 6 99 8 8 6 9 99 9	17 11 18 16 17 12 16 17 12 14 12 14 12 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14																		
																						POS	T-RUNG	OFF PERI	OD																		_
ampling Date Ietal-fraction nits	7/09 Zn-diss	ardness	enchm.		8/09 Zn-diss ug/L	ardness	enchm.	но	10/09 Za-diss μg/L	ardness	penchm.	Za-		benchm.	но	7/10 Zu-diss µg/L	ardness	DH Denchm.	9/10 Zn-dis ng/L		H benchm.	11/10 Zn-di	iss Ē	benchm.	2	7/11 Zn-diss µg/L	ardness	он Бенер	8/11 Zn-diss ug/L	ardness	HO HO	9/11 Zn-diss µg/L	ardness	enchm.	10/11 Zn-diss µg/L	ardness	enchm.	10/12 Za-dis µg/L		но	9/14 Zn-diss µg/L	ardness	
M34 CC48 CC49 A56 ("upstream") A60	88.7	91 293	111 322		180 2650		213	0.8	175		182 14 495 5.	3:	7 2	38 26	7 12 9 51	106		137 0.8 374 4.8	196	199 509	227 0. 532 8	9 242	219	247 7 540	.0	54.4	65 1	82 0.7	131		2 RO 169 0.8 426 5.0	170		115 0.8 199 4.9	142	155 435	181 0.8 461 5.2	173 2590 2710		8 0.7 8 4.8 6 4.8	99 394 250 266 253 260	118 67 114 111 111 111 113	1111
A64 A65 A66 A68 A69A A70B	268	85	105 🖔	2.6	332	135	159 🎆	2.1	407	141	166 22	50 50	57 16	57 19	3 29	261	97	118 22	410	144	169 2	436	154	179	2.4	237	66 ;	83 2.9	282	111	133 21	311	140	65 19	393	138	162 2.4	300 1160 1160 743		6 3.6 4 3.6	293 341	117 120 114	1
171B 172 173 173B 175D 175B Jakers Bridge Inding shows HOs≥		109	131	2.4	636	211	239	2.7	617	199	227	11	20 29	96 32	5 34	392	136	160 24	762	245	274 2	8 754	232	2 261 📆	2.9	228	75	93 2.4	467	161	187 25	590	210	38 25	549	183	210 26		261 29 251 28 217 24 191 21 193 22 183 21	0 25 0 24 5 23 8 20 0 20	362 327 180 152 149 87.7	144 142 83 92 85 99	1 1

the hardness-specific chronic surface water benchmarks for dissolved zinc were calculated using the following equation: e^{((0.8.779 hardness))} 0.97.0970 986

$Appendix\ 8.2:\ Calculating\ sample-specific\ HQs\ for\ dissolved\ metals\ in\ pore\ water\ samples\ collected\ in\ September\ 2014$ Baseline Ecological Risk Assessment Upper Animas River Mining District

Parameter Service and		Hardness (mg/L)	MARKET STREET	luminu	MI AND THE STATE OF	1000 60000	on consessor o	promotogic	NAME OF TAXABLE		770	TANGERSON	a lances		MCMM SEE	001000000	-	C OWNERS	HW050VS300V	10000000	SECTION OF	-	se i suossis	BENNESS FOR	NASSER ENGINEE	Sample Location	MI III SAME		e processions	Lead	and the same of the	n in supplier	anganese	· pointerentinen	SECTION STREET		accessors.	11 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	SOURCE POSSE	(CONTRACTOR	CO. Sec	OSCUES TANK	To.	2000000000
ESSENSATION CONTRACTOR CO.					BM F				вм но	3 03152000		BM H			Di	м но		400000	вм но			BM F		600m	Section and the					Sections	вм но		BM HO	01.93000		BM HO	KARRESTA	BM	PO.		BM	HO.		вм но
Animas River ab			30 1 7	20.1			500 FT				T1 10						42.00 TO							TT 50	5000 O	Animas River abov	remainstem C		0.530	0.520		600	1796 0.38	-0.500 T	0.05		41.00 TT			100 11			463	
A56 ("upstream")	μgiL	129	40.4 3	20.4	87 0	33 (0	200 0	0.22 1	1.50 0.00	2.00	0 1.0	0.00 1.	2 1.0		.10 0	21 2.3	<1.00 U	0.5	91 0.01	4.12	+.1.	, ,, ,	~100	0 30	1000 0.1	A56 ("upstream")	μgL	129	0.525	0.223	3.3 0.10	049	1790 0.34	<0.300 C	0.23	0.00	V1.00 C	0.2 4.0	0.1	7.200 0	0.27 0.1	-1	+03	VIV 3.0
			***	***	67 1		3 50 51	0.53 .			T1 10	0.44		4 D 2	04 17	07 74	~F 00 T1		302 0.01	247	m 241			TT 50	1000 0.3				+0.500 FT	0.24	0.000		2490 0.00	+2 50 T	1.05	44 aat	46.00 TT	36 14	0.5	240 11	131 06	٠. I	1620	and the
A60	µg.L	340																							1000 0.		μgL	340					2513 223											
A61	µg1	497	2604.5 D	2694.3	87 198	333	C3.8 U	Ls t	130 0.0	<11.0	U 3.3	0.00 222	105.	5 9 10	16.3 1.4	42 603.25	<2.5 U	3.73	273 0.01	95.9	10 95.5	22 88	<220	U 2/5	5000 07	A61	μgl	497	63.6 D	0.00	15.0 1000	93800 E	2813 (1823)	37.8 1	37.8	777 0.19	<0.5 U	5.8 4.6	0.8	<3.8 U	1.9 1.2	L6 18	18490 D	## (3013)
A64	μg.L																									A64	μgL		I						13.4									
A65	μgiL	389																							1000 0.1		μgL	3 89					2594 6.25											
A66	μe.L	118																							1000 0.3	7200	μg·L	118					1743 0.00											
A68	μεί	121	42.8 3	42.8	87 0	49 <0	300 U	0.25 1	150 0.0	<2.00	U 1.0	0.66 [.:	5 1.0	6 I.	.05 0.4	49 2.2	<1.00 U	0.5	87 0.01	4.13	4.13	3 11 6	4 <100	U 50	1000 6.1	A68	μgi	121	0.258	0.258	3.1 0.08	590	1758 0:34	<0.500 U		61 0.00	<1.00 U	0.5 4.6	0.1 <0	0.500 U	0.25 0.1	2.4	294	## 2.0
																													ı													- 1		
Animas River bet	weenmai	stem Cement Creek	nd mainsten	Minera	1Crreek																					Anim as River betw	eenmainsten	o Cement Creek	and mainste	m Mineral	1Crreek											- 1		
A69A	μg.L																									A69A	με1.		ı													- 1		
A20B	μg1																									A70B	µg1		ı													- 1		
																													ı													- 1		
Animas River bel	ow mains	em Mineral Creek																								Anim as River belo	wmainstem l	Iineral Creek	ı													- 1		
71B	μe1.																									71B	μe1.		I .													- 1		
A72	μg1	160																							1000 0.3		µg·L						1929 0.52										407	833559
A73	ue1	151																							1000 0.1		μe1.	151					1892 0.00											## 2.1
A73B	µg.L	49																							1000 0.5		με1.	49					1301 0.00											63 0.5
A75D	μg1.	96	40 3	40	87 0	46 <0	500 U	0.25 1	150 0.01	<2.00	U 1.0	0.66 1.	5 0.78	5 0.	786 0.4	41 1.9	<1.00 U	0.5	72 0.01	2.6	2.6	8.6	3 107	J 107	1000 0.1	A75D	µg-L	96	0.205	0.205	2.4 0.09	290	1627 0.18	1.52	1.52	50 0.03	<1.00 U	0.5 4.6	0.1	0.500 U	0.25 0.1	3.6	190	併刊 1.6
A75B	µe.L																									A75B	με1.		ı													- 1		
Bakers Bridge	µg1	271	35.2 3	35.2	87 6	4	3.74	3.74 1	150 0.03	<2.00	U 1.0	0.66 1.	5 < 0.10	0 U 0	3.5 0.9	90 0.6	3.23	3.23	168 0.02	< 0.500	U 0.25	5 21 6	0 1260	1260	1000	Bakers Bridge	μgL	271	0.193 3	0.193	7.3 0.03	5870	2299 2.6	0.85 3	0.85	## 0.01	<1.00 U	0.5 4.6	0.1	0.500 U	0.25 0.4	0.6	13.3 3	## 0.0
																													I .													- 1		
mainsten Cemen	Creek					1																				mainstem Cement	Creek		ı					I								- 1		
CC48	μgE					1							1													CC48	μgL		I					I								- 1		
CC49	μgL					1							1													CC49	μgL		I					I								- 1		
l						1																							ı					I								- 1		
mainsten Miner	Creek					1																				mainstem Mineral	Creek		ı					I								- 1		
M34	μg£	139	45.7 3	45.7	87 0	53 <0	500 U	0.25 1	150 0.00	<2.00	U 1.0	0.66	0.12	7 J 0.1	127 0.5	54 0.2	<1.00 U	0.5	97 0.01	1.18	1.18	3 12 6	1 <100	U 50	1000 0.1			139	<0.100 U	0.05	3.6 0.01	27.6	1841 0.01	<0.500 E	0.25	69 0.00	<1.80 U	0.5 4.6	0.1 <0	0.500 U	0.25 0.1	1.9	48.2	## 0.3
BM = benchmark:	HO = har	rd auotient				_							-							-						BM = benchmark; H	n hered o		•					_					_			- "		

the hardness specific chronic surface water benchmarks for colonium were calculated using the following countion: (II.10.17.2: In hardness)*(0.041838)*e^{0.3070} nations;4-(4)) the hardness specific chronic surface water benchmarks for chronium were calculated using the following countion: e^{0.0070} nations;4-(3.0070 nations;4-(4)) the hardness specific chronic surface water benchmarks for copying two even calculated using the following countion: e^{0.0070} nations;4-(3.0070 nations;4-(4)) the hardness specific chronic surface water benchmarks for copying the following countion: e^{0.0070} nations;4-(3.0070 nations;4-(4)) the hardness specific chronic surface water benchmarks for colonium were calculated using the following countion: e^{0.0070} nations;4-(4.0070 nations;4-(4.0070

the hardness-specific drevoic surface water benchmarks for dissolved marganese were calculated using the following equation: \$\varepsilon^2\$. The hardness-specific drevoic surface water benchmarks for dissolved mixed mixed using the following equation: \$\varepsilon^2\$. When hardness-specific drevoic surface water benchmarks for dissolved nicked were calculated using the following equation: \$\varepsilon^2\$. When hardness-specific drevoic surface water benchmarks for dissolved nicked were calculated using the following equation:

\[\varepsilon^2\$ \text{Non-bardness} \text{Advision-state} \text{The hardness-specific drevoic surface water benchmarks for dissolved nicked were calculated using the following equation:

\[\varepsilon^2\$ \text{Non-bardness} \text{The hardness-specific drevoic surface water benchmarks for dissolved nicked were calculated using the following equation:

\[\varepsilon^2\$ \text{Non-bardness} \text{The hardness-specific drevoic surface water benchmarks for dissolved nicked were calculated using the following equation:

\[\varepsilon^2\$ \text{Non-bardness} \text{The hardness-specific drevoic surface water benchmarks for dissolved nicked were calculated using the following equation:

\[\varepsilon^2\$ \text{Non-bardness} \text{The hardness-specific drevoic surface water benchmarks for dissolved nicked were calculated using the following equation:

\[\varepsilon^2\$ \text{Non-bardness} \text{The hardness-specific drevoic surface water benchmarks for dissolved nicked were calculated using the following equation:

\[\varepsilon^2\$ \text{Non-bardness} \text{The hardness-specific drevoic surface water benchmarks for dissolved nicked were calculated using the following equation:

\[\varepsilon^2\$ \text{Non-bardness} \text{The hardness-specific drevoic surface water benchmarks for dissolved nicked were calculated using the following equation:

\[\varepsilon^2\$ \text{Non-bardness} \text{The hardness-specific drevoic surface water benchmarks for dissolved nicked with the hardness for dissolved ni

use measures—species, tasses, a same, a same was described in a first of a first of a structure of a structure

the hardness-secific chronic surface water benchmarks for caderium were calculated using the following equation (() 1.01472-in hardness)**0.041838**pe**0.748**pe**netwee-excit the hardness percific chronic starface water benchmarks for chronium were calculated using the following equation (**Persistance**CH**) in the hardness percific chronic starface water benchmarks for copys were calculated using the following equation (**Persistance**CH**) in the hardness percific chronic starface water benchmarks for copys were calculated using the following equation (**Persistance**CH**) in the hardness percific chronic starface water benchmarks for copys were calculated using the following equation (**Persistance**CH**) in the hardness percific chronic starface water benchmarks for chronic s

the hardness-specific chronic surface water benchmarks for dissolved managemen were calculated using the following equation: \$\tilde{e}^{0.311}\$ "shatteness-2Pci fic thronic surface water benchmarks for dissolved mixagemen were calculated using the following equation: \$\tilde{e}^{0.311}\$ "shatteness-2Pci fic thronic surface water benchmarks for dissolved nickel were calculated using the following equation: \$\tilde{e}^{0.347}\$ hereass-2024 the hardness-specific chronic surface water benchmarks for dissolved lead were calculated using the following equation: $((1.46203 \cdot ln \text{ hardness})^*0.145712)^*e^{(1.27 \cdot ln \text{ hardness})+0.145712)^*e^{(1.27 \cdot ln \text{ hardness})+0.145712)}$

the hardness-specific chronic surface water benchmarks for dissolved silver were calculated using the following equation: e^{0.79*}histose^{0.05}11 the hardness-specific chronic surface water benchmarks for dissolved zinc were calculated using the following equation: 0.986*e^{0.0860*}histose^{0.0860*}hist

prepared by: SJP (2/22/15) reviewed by: prepared by: SIP (2/16/15)

Appendix 8.1: Calculating sample-specific HQs for dissolved metals in pore water samples collected in April 2014 Baseline Ecological Risk Assessment Upper Animas River Mining District

Maria Caracana		Hardness (mg/L)		Mucrin	Market State	D 500		Arreni	e	SOCIETY OF		Berry	Qines			duium		Kill Kelling	Chromia	1000	i e	opper.	as less		Leen	1010	Sample Location	57.17.10.00		1 (000000000000000000000000000000000000	Lead	0.000	sari mass	Min	restores	200000000	STATE OF THE PARTY	Nidel		10000000	Seleniam	R822 8	10000000000	Silver		Bayes	Zinc
Animas River alon			*********		BM HO	300 EXERT			BM	но н	X220000	wante.		HO		BM	но			вм но	* CONTROL	вм н	0		BM		Animas River abov			a sensemen		BM H	O		BM	t HO	E0050000000		вм но	2 8000565633	BV	но		30000000 #	M HO	22311120	вм но
A36 ("upstream")	μeL	136	23.8 J	23.8			0.500 U	0.25				U 1	.0 0.6	1.5	0.232			<1.00 U		95 0.01	1.3			100 U 50			A56 ('upstream')	HET.	136	0.964	0.964			7 J 4.			<0.500 U				0.5 4.6	0.1	<0.500 U			124	160 0.5
, , ,																																															
A.60	μρί.	158																		108 0.60								μgĽ	158																.16 1.5		184 1.9
A61	μ¢Τ	853	6170 D																							0.5		µ8£	853																		D 851 35.6
A64	µa/L	141	<20.0 U		\$7 0.1 \$7 7.1															98 0.01		12 0.1 26 2.1		100 U 50			A64	ugL ugL	141 350	<0.100 T 2.00		3.7 0. 9.5 0.			27 185 450 250						0.5 4.6					254	166 1.6 378 16.5
A60	μαL unL	350 141	<20.0 U																	207 0.00 98 0.02				100 U 50 100 U 50		0.05	A65	uzL	350 141	0.123 J		9.5 0. 3 3.7 0.													.03 0.4 .14 (2018)		
1.00	ugil.	141			87 0.5															103 0.00								UST.	141																		174 3.9
2200	heer	149	40.5 4	42.2	0. 0		1.200 0	0.25	120	0.00	200	0 1	0.0		1.00	0.24	2.9	-2.00 0	0.5	103 0.00	3,40	13 0	′ II `	400 0 20	1000	0.02	7100	MACE	107	S0.100 C	0.00	3.9 0.	1.54		100	4 0.02	-0.30 C	0.23	-3 0.00	-1.00 C	0.5 4.0	0.2	-0.200 C	0.20 0		0.12	1.4 3.5
Animus River betw	veen mainst	no Ceno ent Creek an	II I mainstem	fineral	rreek																						Animas River betw	een mainstem	Cement Creek an	il d mainstero :	fineral C	rreck															
A69A	μgL																										A69A	μgĽ		I																	
A70B	µg/L																										A70B	µgî.																			
																											I			1																	
Animus River belo	or mainstens	Mineral Creek																									Animas River belov	mainsten X	ineral Creek																		
ANB		256		417	en 5099	26		0.76	140		-200			meter	3.00	0.54	904000	-100 **	0.5	160 0.00	0.00	20.0	. II.		1000	0.05	ANB		256	0.457	0.463						1.05		114 0.00	-1.00 7			-0.500.51		.3\$ 0.7	1,000	751 88590
4.72	ueL	230			87 0.3															123 0.00							472	uel.	185																22 12		
4.73R	uel.	100	29.2 0	29.2	0. 0.	"	1.200 C	0.20	120	0.00	200	0 1	0.0		2.00	0.00	3.0	-1.00 C	0.5	123 0.00	2.20	1.5 0	*	341 34	1000	0.541	473B	DECT.	100	S.100 C	0.00	4.9 0.	10.	0 10	110 202	3 0.92	1.45	1.19	64 0.01	~1.00 C	0.5 4.4	0.2	40.200 C	0.20 0	20 6.0	.07	262 33
A75D	ust.	135	27.7 I	27.7	\$7 0.3	s <	500 U	0.25	150	0.00	<2.00	U 1	0.6	1.5	0.387	0.53	0.7	3.00 U	0.5	95 0.01	1.67	12 6.3	1 <	300 U 50	1000	0.05	A75D	ug.L	135	<0.100 T	0.05	3.5 0.	15 15	5 1:	85 182	3 0.10	<0.500 U	0.25	67 0.00	<1.00 T	0.5 4.6	0.1	<0.500 U	0.25 0	13 10000	173	159 1.1
A75B	µg1.																						·				A75B	μgĽ																	- Innerence	1	
Bakers Bridge	µg1	125	47.3	47	\$7 0.5	5 <0	.500 U	0.25	150	0.00	<2.00	U 1	.0 0.6	1.5	0.334	0.50	0.7	1.15 3	1.15	89 0.01	2.21	11 0.3	2 <	100 U 50	1000	0.05	Bakers Bridge	µgT.	125	<0.100 T	0.05	3.2 0	12 32	5 33	25 177	7 0.18	<0.500 U	0.25	63 0.00	<1.00 L	0.5 4.6	0.1	<0.500 U	0.25 0	11 23	115	148 0.5
																											I			1																	
mainstens Cement	Creek		I			1					l .										I		- 1				таїнськи Сепсені (reek		I							I									1	
CC48	μgL		I			1					l										I		- 1				CC48	μgL		I							I									1	
CC49	μgL																										CC49	Mar.																			
mainstem Mineral	Creek					1																					mainusem Mineral	rook					- 1				I			I						1	
VDT.	urL																										AS4	ust																			
BM=bendmark B	IOm Second	motiont				_																	_				BM = beachmark: H	~									_			_							

the hardonss-specific chronic surface water benchmarks for dissolved cademain were calculated using the following equation: (1,101672-in hardness)*0.041838\$\sqrt{g}\text{m}^{2}\text{m}^{2}\text{hardness} + 6400\$
the hardonss-specific chronic surface water benchmarks for dissolved chronic were calculated using the following equation (\$\text{p}^{2}\text{hardness} + 51000\$
the hardonss-specific chronic surface water benchmarks for dissolved copier were calculated using the following equation (\$\text{p}^{2}\text{hardness} + 51000\$
the hardons-specific chronic surface water benchmarks for dissolved managene were calculated using the following equation (\$\text{p}^{2}\text{hardness} + 51000\$
the hardons-specific chronic surface water benchmarks for dissolved saids were calculated using the following equation (\$\text{d} \text{hardness} + 51000\$
the hardons-specific chronic surface water benchmarks for dissolved saids were calculated using the following equation (\$\text{d} \text{hardness} \text{v} \text{hardness} \text{v} \text{hardness} \text{v} \text{hardness} \text{v} \text{hardness} \text{v} \text{hardness} \text{v} \text{v} \text{hardness} \text{v} \text{hardness} \text{v} \text{hardness} \text{v} \text{hardness} \text{v} \text{hardness} \text{v} \text{v} \text{hardness} \text{v} \text{calculated using the following equation (\$\text{hardness} \text{v} \text{hardness} \text{v} \text{hardness} \text{v} \text{v} \text{hardness} \text{hardness} \text{v} \text{hardness} \text{hardness} \text{hardness} \text{v} \text{hardness} \text{v} \text{hardness} \text{hardness} \text{hardness} \text{v} \text{hardness} \text{hardness} \text{hardness} \text{hardness} \text{hardness} \text{hardness} \text{hardness} \text{hardness} \text{har

the hardens-specific chronic surface water benchmarks for dissolved chromium were calculated using the following equation \$\frac{1}{2}\text{Permanese-1.33}\$
the hardens-specific chronic surface water benchmarks for dissolved copper were calculated using the following equation \$\frac{1}{2}\text{Permanese-1.32}\$
the hardens-specific chronic surface water benchmarks for dissolved incolorance were calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$
the hardens-specific chronic surface was benchmarks for dissolved incide lawer calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$
the hardens-specific chronic surface water benchmarks for dissolved incide were calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$
the hardens-specific chronic surface water benchmarks for dissolved size were calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$
the hardens-specific chronic surface water benchmarks for dissolved size were calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$
the hardens-specific chronic surface water benchmarks for dissolved size were calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$

The surface of the surface water benchmarks for dissolved size were calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$

The surface of the surface water benchmarks for dissolved size were calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$

The surface of the surface water benchmarks for dissolved size were calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$

The surface of the surface water benchmarks for dissolved size were calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$

The surface of the surface water benchmarks for dissolved size were calculated using the following equation \$\frac{1}{2}\text{Permanese-1-120}\$

The surface of the surface water benchmarks for dissolved size were calcul

prepared by: SJP (2/22/15) reviewedby:

ProUCL calculations for total Cd in the Animas River above mainstem Cement Creek

User Selected Options	
Date/Time of Computation	2/19/2015 9:04
From File	WorkSheet.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

General Statistics Fotal Number of Observations	40	Number of Distinct Observations	22
otal Namber of Observations	40	Number of Missing Observations	
Minimum	0.8	Mean	1.382
Maximum	4	Median	1.3
SD	0.632	Std. Error of Mean	0.3
Coefficient of Variation	0.458	Skewness	2.637
Normal GOF Test			
Shapiro Wilk Test Statistic	0.719	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.94	Data Not Normal at 5% Significance Level	
.illiefors Test Statistic	0.238	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.14	Data Not Normal at 5% Significance Level	
Data Not Normal at 5% Significance Level			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1.55	95% Adjusted-CLT UCL (Chen-1995)	1.59
		95% Modified-t UCL (Johnson-1978)	1.55
Gamma GOF Test			
A-D Test Statistic	1.681	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.175	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level		-	
Gamma Statistics			
(hat (MLE)	7.296	k star (bias corrected MLE)	6.76
heta hat (MLE)	0.189	Theta star (bias corrected MLE)	0.20
nu hat (MLE)	583.7	nu star (bias corrected)	541.
MLE Mean (bias corrected)	1.382	MLE Sd (bias corrected)	0.53
		Approximate Chi Square Value (0.05)	488.
Adjusted Level of Significance	0.044	Adjusted Chi Square Value	486.
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	1.532	95% Adjusted Gamma UCL (use when n<50)	1.53
ognormal GOF Test			
Shapiro Wilk Test Statistic	0.896	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.94	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.144	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.14	Data Not Lognormal at 5% Significance Level	
Data Not Lognormal at 5% Significance Level			
ognormal Statistics			
Minimum of Logged Data		Mean of logged Data	0.25
Maximum of Logged Data	1.386	SD of logged Data	0.35
Assuming Lognormal Distribution			
95% H-UCL		90% Chebyshev (MVUE) UCL	1.60
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	1.707 2.142	97.5% Chebyshev (MVUE) UCL	1.85
Nonparametric Distribution Free UCL Statistics Data do not follow a Discernible Distribution (0.05)			
para do not follow a discernible distribution (0.05)			
Nonparametric Distribution Free UCLs	1 5 4 5	OFFIC Lookkeife LIC	4 -
95% CLT UCL	1.546		1.5
95% Standard Bootstrap UCL	1.546	·	1.6
95% Hall's Bootstrap UCL	1.733 1.587	· ·	1.55
95% BCA Bootstrap UCL			1.01
90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	1.682 2.006		1.81 2.37

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

ProUCL calculations for total Cu in the Animas River above mainstem Cement Creek

User Selected Options			
Date/Time of Computation	2/19/2015 9:04		
From File	WorkSheet.xls		
Full Precision Confidence Coefficient	OFF 95%		
Number of Bootstrap Operations	2000		
General Statistics			
Total Number of Observations		40 Number of Distinct Observations	31
Number of Detects Number of Distinct Detects		32 Number of Non-Detects 29 Number of Distinct Non-Detects	8
Minimum Detect		3.9 Minimum Non-Detect	4
Maximum Detect		33.5 Maximum Non-Detect	20
Variance Detects		120.4 Percent Non-Detects 15.53 SD Detects	20% 10.97
Mean Detects Median Detects		12.8 CV Detects	0.707
Skewness Detects		0.274 Kurtosis Detects	-1.67
Mean of Logged Detects		2.436 SD of Logged Detects	0.835
Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value		0.825 Shapiro Wilk GOF Test 0.93 Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic		0.24 Lilliefors GOF Test	
5% Lilliefors Critical Value Detected Data Not Normal at 5% S	Sanificance Lovel	0.157 Detected Data Not Normal at 5% Significance Level	
Kaplan-Meier (KM) Statistics using Mean	Normal Critical Values and ot	er Nonparametric UCLs 13.43 Standard Error of Mean	1.705
Mean SD		13.43 Standard Error of Mean 10.57 95% KM (BCA) UCL	1.705
95% KM (t) UCL		16.3 95% KM (Percentile Bootstrap) UCL	16.4
95% KM (z) UCL		16.23 95% KM Bootstrap t UCL	16.41
90% KM Chebyshev UCL 97.5% KM Chebyshev UCL		18.54 95% KM Chebyshev UCL 24.07 99% KM Chebyshev UCL	20.86 30.39
27.274MV CHEDYSHEV OCE		24.07 33/WWW.Chebyshev.oez	30.33
Gamma GOF Tests on Detected Ob	oservations Only		
A-D Test Statistic 5% A-D Critical Value		2.253 Anderson-DarlingGOF Test 0.761 Detected Data Not Gamma Distributed at 5% Signif	icance Level
K-S Test Statistic		0.225 Kolmogrov-Smirnoff GOF	Todatee Ee Ter
5% K-S Critical Value		0.158 Detected Data Not Gamma Distributed at 5% Signif	icance Level
Detected Data Not Gamma Distrib	uted at 5% Significance Level		
Gamma Statistics on Detected Dat	a Only		
k hat (MLE) Theta hat (MLE)		1.78 k star (bias corrected MLE) 8.72 Theta star (bias corrected MLE)	1.634 9.499
nu hat (MLE)		113.9 nu star (bias corrected)	104.6
MLE Mean (bias corrected)		15.53 MLE Sd (bias corrected)	12.14
Gamma Kaplan-Meier (KM) Statist	ics		
k hat (KM)	0.05	1.613 nu hat (KM)	129.1
Approximate Chi Square Value (12 95% Gamma Approximate KM-U		103.8 Adjusted Chi Square Value (129.05, β) 16.69 95% Gamma Adjusted KM-UCL (use when n<50)	103 16.83
Gamma ROS Statistics using Imput	red Non-Detects		
GROS may not be used when data	set has > 50% NDs with many		
GROS may not be used when kstar For such situations, GROS method			
		nputed using gamma distributionon KM estimates	
Minimum	,	0.632 Mean	13.49
Maximum		33.5 Median	7.958
SD k hat (MLE)		10.73 CV 1.458 k star (bias corrected MLE)	0.796 1.366
Theta hat (MLE)		9.249 Theta star (bias corrected MLE)	9.877
nu hat (MLE)		116.7 nu star (bias corrected)	109.2
MLE Mean (bias corrected)		13.49 MLE Sd (bias corrected)	11.54 0.044
Approximate Chi Square Value (10	9.24. a\	Adjusted Level of Significance (β) 86.12 Adjusted Chi Square Value (109.24, β)	85.35
95% Gamma Approximate UCL (u		17.11 95% Gamma Adjusted UCL (use when n<50)	17.26
Lognormal GOF Test on Detected G	Observations Only		
Shapiro Wilk Test Statistic		0.819 Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		0.93 Detected Data Not Lognormal at 5% Significance Le	evel
Lilliefors Test Statistic 5% Lilliefors Critical Value		0.219 Liffiefors GOF Test 0.157 Detected Data Not Lognormal at 5% Significance Le	vel
Detected Data Not Lognormal at 5	% Significance Level		
Lognormal ROS Statistics Using Imp	puted Non-Detects		
Mean in Original Scale		13.43 Mean in Log Scale	2.248
SD in Original Scale 95% t UCL (assumes normality of	POS datal	10.72 SD in Log Scale 16.29 95% Percentile Bootstrap UCL	0.87 16.25
95% t UCL (assumes normality of 95% BCA Bootstrap UCL	nos data)	16.29 95% Percentile Bootstrap UCL 16.1 95% Bootstrap t UCL	16.25
95% H-UCL (Log ROS)		18.95	-
DL/2 Statistics			
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale SD in Original Scale		13.77 Mean in Log Scale 10.52 SD in Log Scale	2.294 0.852
95% t UCL (Assumes normality)		16.57 95% H-Stat UCL	19.37
DL/2 is not a recommended method	od, provided for comparisons		
Nonparametric Distribution Free U	JCL Statistics		
Data do not follow a Discernible D		evel	

Suggested UCL to Use 95% KM (BCA) UCL 16.2 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL calculations for total Pb in the Animas River above mainstem Cement Creek

User Selected Options

Date/Time of Computation 2/19/2015 9:04
From File WorkSheet.xls
Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Sta	atistics
-------------	----------

General Statistics		
Total Number of Observations	40 Number of Distinct Observations	33
	Number of Missing Observations	0
Minimum	1.4 Mean	11.57
Maximum	52.3 Median	2.85
SD	15.03 Std. Error of Mean	2.376
Coefficient of Variation	1.299 Skewness	1.732
Normal GOF Test		
Shapiro Wilk Test Statistic	0.69 Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.94 Data Not Normal at 5% Significance	Level
Lilliefors Test Statistic	0.284 Lilliefors GOF Test	
5% Lilliefors Critical Value	0.14 Data Not Normal at 5% Significance	Level
Data Not Normal at 5% Significance Level		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL	15.57 95% Adjusted-CLT UCL (Chen-199	5) 16.17
	95% Modified-t UCL (Johnson-197	78) 15.68
Gamma GOF Test		
A-D Test Statistic	2.903 Anderson-Darling Gamma GOF Tes	:
5% A-D Critical Value	0.787 Data Not Gamma Distributed at 5%	Significance Level
K-S Test Statistic	0.252 Kolmogrov-Smirnoff Gamma GOF T	est
5% K-S Critical Value	0.145 Data Not Gamma Distributed at 5%	Significance Level
Data Not Gamma Distributed at 5% Significance Level		
Gamma Statistics		
k hat (MLE)	0.796 k star (bias corrected MLE)	0.753
Theta hat (MLE)	14.53 Theta star (bias corrected MLE)	15.36
nu hat (MLE)	63.69 nu star (bias corrected)	60.25
MLE Mean (bias corrected)	11.57 MLE Sd (bias corrected)	13.33
	Approximate Chi Square Value (0.0	5) 43.4
Adjusted Level of Significance	0.044 Adjusted Chi Square Value	42.86
Assuming Gamma Distribution		
95% Approximate Gamma UCL (use when n>=50))	16.06 95% Adjusted Gamma UCL (use w	hen n<50) 16.26
Lognormal GOF Test		
Shapiro Wilk Test Statistic	0.841 Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.94 Data Not Lognormal at 5% Significa	nce Level
Lilliefors Test Statistic	0.226 Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.14 Data Not Lognormal at 5% Significa	nce Level
Data Not Lognormal at 5% Significance Level		
Lognormal Statistics		
Minimum of Logged Data	0.336 Mean of logged Data	1.703
Maximum of Logged Data	3.957 SD of logged Data	1.21
Assuming Lognormal Distribution		
95% H-UCL	19.12 90% Chebyshev (MVUE) UCL	18.84
95% Chebyshev (MVUE) UCL	22.37 97.5% Chebyshev (MVUE) UCL	27.25
99% Chebyshev (MVUE) UCL	36.85	
Nonparametric Distribution Free UCL Statistics		
Data do not follow a Discernible Distribution (0.05)		
Nonparametric Distribution Free UCLs		
95% CLT UCL	15.48 95% Jackknife UCL	15.57
95% Standard Bootstrap UCL	15.41 95% Bootstrap-t UCL	16.6
95% Hall's Bootstrap UCL	15.85 95% Percentile Bootstrap UCL	15.66
95% BCA Bootstrap UCL	16.02	25.00
90% Chebyshev(Mean, Sd) UCL	18.7 95% Chebyshev(Mean, Sd) UCL	21.93
97.5% Chebyshev(Mean, Sd) UCL	26.41 99% Chebyshev(Mean, Sd) UCL	35.22
Suggested UCL to Use		
Suggested UCL to Use 95% Chehyshev (Mean, Sd) HCl	71.93	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

21.93

95% Chebyshev (Mean, Sd) UCL

ProUCL calculations for total Zn in the Animas River above mainstem Cement Creek

User Selected Options

Date/Time of Computation 2/19/2015 9:04
From File WorkSheet.xls
Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

General	Statistics
---------	------------

General Statistics		
Total Number of Observations	40 Number of Distinct Observations	39
	Number of Missing Observations	0
Minimum	252 Mean	432
Maximum	1180 Median	382
SD	202.5 Std. Error of Mean	32.01
Coefficient of Variation	0.469 Skewness	2.21
Normal GOF Test		
Shapiro Wilk Test Statistic	0.755 Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.94 Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.187 Lilliefors GOF Test	
5% Lilliefors Critical Value	0.14 Data Not Normal at 5% Significance Level	
Data Not Normal at 5% Significance Level		
•		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
		406.6
95% Student's-t UCL	485.9 95% Adjusted-CLT UCL (Chen-1995)	496.6
	95% Modified-t UCL (Johnson-1978)	487.8
Gamma GOF Test		
A-D Test Statistic	1.516 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.75 Data Not Gamma Distributed at 5% Significance L	evel
K-S Test Statistic	0.144 Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.14 Data Not Gamma Distributed at 5% Significance L	evel
Data Not Gamma Distributed at 5% Significance Level		
Data Not Gamma Distributed at 5% Significance Eever		
Gamma Statistics		
	5 505 L	
k hat (MLE)	6.606 k star (bias corrected MLE)	6.127
Theta hat (MLE)	65.4 Theta star (bias corrected MLE)	70.51
nu hat (MLE)	528.4 nu star (bias corrected)	490.1
MLE Mean (bias corrected)	432 MLE Sd (bias corrected)	174.5
	Approximate Chi Square Value (0.05)	439.8
Adjusted Level of Significance	0.044 Adjusted Chi Square Value	438
Assuming Gamma Distribution		
95% Approximate Gamma UCL (use when n>=50))	481.4 95% Adjusted Gamma UCL (use when n<50)	483.4
337774pproximate dumina dec (ase when its 30))	102.1 55% rajusted damma dec (dec When in 50)	103.1
Lognormal GOF Test		
_	and the second of	
Shapiro Wilk Test Statistic	0.9 Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.94 Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.115 Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.14 Data appear Lognormal at 5% Significance Level	
Data appear Approximate Lognormal at 5% Significance Level		
Lognormal Statistics		
Minimum of Logged Data	5.529 Mean of logged Data	5.991
Maximum of Logged Data	7.073 SD of logged Data	0.373
Waxiiiaii oi Eoggea Data	7.073 3D OI TOEBECK DAKK	0.575
Assuming Lognormal Distribution		
	470 000 01 1 1 (A D (UE) 110)	505.4
95% H-UCL	478 90% Chebyshev (MVUE) UCL	
95% Chebyshev (MVUE) UCL	540.6 97.5% Chebyshev (MVUE) UCL	589.4
99% Chebyshev (MVUE) UCL	685.4	
Nonparametric Distribution Free UCL Statistics		
Data appear to follow a Discernible Distribution at 5% Significance	Level	
Nonparametric Distribution Free UCLs		
95% CLT UCL	484.6 95% Jackknife UCL	485.9
		507.2
95% Standard Bootstrap UCL		
95% Hall's Bootstrap UCL	511.2 95% Percentile Bootstrap UCL	483.4
95% BCA Bootstrap UCL	494.5	
90% Chebyshev(Mean, Sd) UCL	528 95% Chebyshev(Mean, Sd) UCL	571.5
97.5% Chebyshev(Mean, Sd) UCL	631.9 99% Chebyshev(Mean, Sd) UCL	750.5
Suggested UCL to Use		
area a la distribui	40F 0 0F0/ M1-4/5- 4 F MCI	407.0

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

485.9 or 95% Modified-t UCL

487.8

95% Student's-t UCL

ProUCL calculations for total Cd from sampling location A72 in the Animas River below mainstem Mineral Creek

110	er	Se	lec	ted	O	atio	ns

Date/Time of Computation 2/19/2015 9:12
From File WorkSheet_a.xls
Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

General Statistics

General Statistics			
Total Number of Observations	24	Number of Distinct Observations	14
		Number of Missing Observations	0
Minimum	0.8	Mean	1.648
Maximum		Median	1.675
SD		Std. Error of Mean	0.139
Coefficient of Variation		Skewness	0.494
Coefficient of Variation	0.413	SKEWHESS	0.454
Normal GOF Test			
Shapiro Wilk Test Statistic	0.01	Shapiro Wilk GOF Test	
·			
5% Shapiro Wilk Critical Value		Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value	0.181	Data appear Normal at 5% Significance Level	
Data appear Approximate Normal at 5% Significance Level			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1.887		1.892
35% Student's-t OCL	1.007	, , ,	1.889
		95% Modified-t UCL (Johnson-1978)	1.009
Gamma GOF Test			
A-D Test Statistic	0 520	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significant	امیرم ا م
		Kolmogrov-Smirnoff Gamma GOF Test	re revei
K-S Test Statistic		5	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear Gamma Distributed at 5% Significance Level			
Gamma Statistics			
k hat (MLE)	6.005	k star (bias corrected MLE)	5.353
		•	
Theta hat (MLE)		Theta star (bias corrected MLE)	0.308
nu hat (MLE)		nu star (bias corrected)	256.9
MLE Mean (bias corrected)	1.648	MLE Sd (bias corrected)	0.712
		Approximate Chi Square Value (0.05)	220.8
Adjusted Level of Significance	0.0392	Adjusted Chi Square Value	218.5
A CONTRACTOR OF THE PROPERTY O			
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	1.917	95% Adjusted Gamma UCL (use when n<50)	1.938
Lognormal GOF Test			
-	0.030	Shaning Milly Lagranmal COF Task	
Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value		Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.181	Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Significance Level			
I am a second constant a			
Lognormal Statistics	0.222	Many of land of Data	0.415
Minimum of Logged Data		Mean of logged Data	0.415
Maximum of Logged Data	1.065	SD of logged Data	0.424
Assuming Lagranus Distribution			
Assuming Lognormal Distribution	1.000	000/ Ch - h h / A A / I / E \ I / C I	2.002
95% H-UCL		90% Chebyshev (MVUE) UCL	2.092
95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	2.569
99% Chebyshev (MVUE) UCL	3.114		
A CONTRACTOR OF THE CONTRACTOR			
Nonparametric Distribution Free UCL Statistics			
Data appear to follow a Discernible Distribution at 5% Significance	Level		
Nonnarametric Distribution Free LICLs			
Nonparametric Distribution Free UCLs	1.077	OFFICE LANGE LICE	1 007
95% CLT UCL	1.877		1.887
95% Standard Bootstrap UCL	1.868	·	1.901
95% Hall's Bootstrap UCL	1.883	•	1.881
95% BCA Bootstrap UCL	1.898		
90% Chebyshev(Mean, Sd) UCL	2.066		2.256
97.5% Chebyshev(Mean, Sd) UCL	2.519	99% Chebyshev(Mean, Sd) UCL	3.036
Suggested UCL to Use			

Suggested UCL to Use

95% Student's-t UCL 1.887

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

$ProUCL\ calculations\ for\ total\ Cu\ from\ sampling\ location\ A72\ in\ the\ Animas\ River\ below\ main stem\ Mineral\ Creek$

Unit Control	Date/Time of Computation From File				
Teach Processing 1976 19		2/19/2015 9:13			
Carelination Conflicion Conflicion Content Con	Euß Dracision				
Comp Standards					
Total Number of Diservations	Number of Bootstrap Operations	2000			
Semines of Districts Districts 1 1 1 1 1 1 1 1 1	General Statistics				
10 10 10 10 10 10 10 10					
Maximum Debects					
Median Debetes					
Month Detects 7.29					
Secure Content Conte			27.36	SD Detects	10.82
Name Golf Test on Detected Only September Se					
Sopin Wilk Test Statistic					
Sopin Wilk Test Statistic	Normal GOE Tast on Dataste Only				
Dillefore of Ciffical Value Data Statistics Data Statistics of Ciffical Value Data sappers Normal at 5% Significance Level Data 50 5% SM MP (Percentile Bootstrape) UCL Data 50 5% SM MP (Percentile Boo			0.948	Shapiro Wilk GOFTest	
Selicition Critical Value Selicition Critical Value and other Selicition Critical Value Selicitical Value Seliciti					
Man					
Mean	Detected Data appear Normal at	5% Significance Level			
10.66 598.NM (ECA) UCL 30.35 599.NM (ECA) UCL 30.36 599.NM (EC	Kaplan-Meier (KM) Statistics usin	g Normal Critical Values and othe	r Nonpai	rametric UCLs	
S95.6 MM (pt C1					
95% KM Chebyshev UC. 30.5 95% KM Boostrap UC. 30.5					
Sp. Sp. McNebsysher UCL 40.76 99% KM Chebysher UCL 40.076 10.074	95% KM (z) UCL				
A D Test Statistic					
A D Test Statistic					
SRA + D Critical Value		bservations Only	0.504	Anderson Parking GOE Tast	
SR K S C FICKED Value SR Spenificance Level					e Level
Samma Statistics on Detected Data Only Samma Statistics Samma Statistic Samma Statisti					Loud
Khat (MLE)		stributed at 5% Significance Level	0.102	betected data appear damina distributed at 5% significand	ELEVE
Khat (MLE)	C	0-1			
27.3 m start (bias corrected) 27.3 m start (bias correcte		ta Only	5.898	k star (bias corrected MLE)	5.158
MLE Mean (bias corrected) 27.36 MLE 5d (bias corrected) 30.56					
Shart (KM)					
k hat (KM)				,	
Approximate Chi Square Value (304.43, a) 265 Adjusted Chi Square Value (304.43, B) 262.4 95% Gamma Approximate KM-UCL (use when n>50) 30.84 95% Gamma Adjusted KM-UCL (use when n>50) 31.14 95% Gamma ADS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tised observations at multiple DLs GROS may not be used when katar of detected data is small such as > 0.17 For such situations, GROS methot lends to yield inflated values of UCLs and BTVs For such situations, GROS methot dends to yield inflated values of UCLs and BTVs For such situations, GROS method tends to yield inflated values of UCLs and BTVs For such situations, GROS method tends to yield inflated values of UCLs and BTVs For such situations, GROS method tends to yield inflated values of UCLs and BTVs For such situations, GROS method tends to yield inflated values of UCLs and BTVs For such situations, GROS method tends to yield inflated values of UCLs and BTVs For such situations, GROS method tends to yield inflated values of UCLs and BTVs For such situations, GROS method tends to yield inflated values of UCLs and BTVs For such situations, GROS method tends to the situation on KM estimates ### Adjusted Liver Discovered MLE ##		tics	6,342	nu hat (KM)	304.4
GROS may not be used when data set has > 500K NDs with many fiel observations at multiple DLS GROS may not be used when katar of detected data is small such as < 0.1 For such situations, GROS methol ends to yield inflated values of UCLs and BTVs For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum	Approximate Chi Square Value (3		265	Adjusted Chi Square Value (304.43, β)	262.4
GROS may not be used when data set has > 50fk NDs with many tied observations at multiple DLS GROS may not be used when kata is small such as x 0.1 For such situations, GROS method tends to yield inflated values of UCLs and BTVs For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates ### AG	95% Gamma Approximate KM-L	JCL (use when n>=50)	30.84	95% Gamma Adjusted KM-UCL (use when n<50)	31.14
GROS may not be used when kstar of detected data is small such as < 0.1 For such situations, GROS method tends to yield inflated values of UCLs and BTVs For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates Minimum				maine a mulainte Ole	
For such situations, GROS method tends to yield inflated values of UCLs and BIVs For gamma distributed detected data, BIVs and UCLs may be computed using gamma distribution on KM estimates Minimum 46.7 Median 27.4 Maximum 46.7 Median 27.4 SD 10,79 CV 0.401 Khat (MLE) 5.867 k star (pias corrected MLE) 5.162 Theta hat (MLE) 4.888 Theta star (bias corrected MLE) 5.162 nu hat (MLE) 281.6 nu star (bias corrected MLE) 5.162 nu hat (MLE) 281.6 nu star (bias corrected MLE) 5.162 nu hat (MLE) 281.6 nu star (bias corrected) 11.85 Adjusted Level of Significance (β) 0.0392 Approximate Chi Square Value (247.76, q) 21.23 Adjusted Chi Square Value (247.76, q) 21.0 95% Gamma Approximate UCL (use when ne>50) 31.41 95% Gamma Adjusted UCL (use when ne>50) 31.75 Lognormal GOF Test on Detected Observations Only Shapiro Wilk CoF Test 10.85% Significance Level 11.86 Napiro Wilk CoF Test 10				vations at multiple DLS	
Maximum 1.0.3 Mearl 26.92 Median 27.4					
SD		data, BTVs and UCLs may be comp			
k hat (MLE) 5.867 k star (bias corrected MLE) 5.121 Theta hat (MLE) 4.588 Theta star (bias corrected MLE) 5.215 un bat (MLE) 281.6 nu star (bias corrected) 247.8 MLE Mean (bias corrected) 26.92 MLE 5d (bias corrected) 11.85 Approximate Chi Square Value (247.76, α) 212.3 Adjusted Level of Significance (β) 0.0392 Approximate Chi Square Value (247.76, α) 31.41 95% Gamma Adjusted UCL (use when n>50) 31.75 Lognormal GOF Test on Detected Observations Only Shapiro Wilk GOF Test 5.85 Shapiro Wilk GOF Test Shapiro Wilk Test Statistic 0.928 Shapiro Wilk GOF Test 5.85 Shapiro Wilk GOF Test Shapiro Wilk Critical Value 0.914 Detected Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.177 Lilliefors GOF Test Spis Lilliefors Critical Value 0.185 Detected Data appear Lognormal at 5% Significance Level Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale 3.203 Sol in Original Scale 10.82 Sol in Log Scale 3.203 Sol in Original Scale 10.82 Sol in Log Scale 3.203 SOS% BLA LOL (Log ROS) 3.2.29 3.2.29				Mean	26,92
Theta hat (MLE)	Maximum		10.3 46.7	Median	27.4
MLE Mean (bias corrected) 26.92 MLE 5d (bias corrected) Adjusted Level of Significance (β) 0.0392 Approximate Chi Square Value (247.76, α) 21.23 Adjusted Chi Square Value (247.76, β) 21.0 95% Gamma Approximate UCL (use when n≥50) 31.41 95% Gamma Adjusted UCL (use when n<50) 31.75 Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic 0.928 Shapiro Wilk Critical Value 0.914 Detected Data appear Lognormal at 5% Significance Level Utillefors Test Statistic 0.177 Utillefors GOF Test 95% Shapiro Wilk Critical Value 0.914 Detected Data appear Lognormal at 5% Significance Level Utillefors Test Statistic 0.177 Utillefors GOF Test 95% Lillefors Critical Value 0.918 Detected Data appear Lognormal at 5% Significance Level Utillefors Test Statistic 0.177 Utillefors GOF Test 95% Lillefors Critical Value 0.918 Detected Data appear Lognormal at 5% Significance Level Utillefors Test Statistic 0.177 Utillefors GOF Test 95% Lillefors Critical Value 0.918 Detected Data appear Lognormal at 5% Significance Level Utillefors Test Statistic 0.177 Utillefors GOF Test 0.178 Detected Data appear Lognormal at 5% Significance Level Utillefors Critical Value 0.185 Detected Data appear Lognormal at 5% Significance Level Utillefors Critical Value 0.185 Detected Data appear Lognormal at 5% Significance Level 0.185 Detected Data appear Lognormal Detected Data appear Normal Detected Data appear Lognormal Detected Data Detected Data appear Logn	Maximum SD		10.3 46.7 10.79	Median CV	27.4 0.401
Adjusted Level of Significance (β) 0.0392 Approximate Chi Square Value (247.76, α) 2112.3 Adjusted Chi Square Value (247.76, β) 2110 95% Gamma Approximate UCL (use when n≥50) 31.41 95% Gamma Adjusted UCL (use when n≤50) 31.75 Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic 0.928 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.914 Detected Data appear Lognormal at 5% Significance Level Utililefors Test Statistic 0.177 Lillifefors GOF Test 5% Lillifefors Critical Value 0.185 Detected Data appear Lognormal at 5% Significance Level 0.177 Lillifefors GOF Test 5% Lillifefors Critical Value 0.185 Detected Data appear Lognormal at 5% Significance Level 0.177 Lillifefors GOF Test 5% Lillifefors Critical Value 0.185 Detected Data appear Lognormal at 5% Significance Level 0.177 Lillifefors GOF Test 5% Lillifefors Critical Value 0.185 Detected Data appear Lognormal at 5% Significance Level 0.177 Lillifefors GOF Test 5% Lillifefors Critical Value 0.185 Detected Data appear Lognormal at 5% Significance Level 0.177 Lillifefors GOF Test 5% Lillifefors Critical Value 0.185 Detected Data appear Lognormal at 5% Significance Level 0.177 Lillifefors GOF Test 5% Lillifefors CoF Test 5% Lillifefo	Maximum SD k hat (MLE) Theta hat (MLE)		10.3 46.7 10.79 5.867 4.588	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE)	27.4 0.401 5.162 5.215
95% Gamma Approximate UCL (use when n>=50) 31.41 95% Gamma Adjusted UCL (use when n<50) 31.75 Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic 0.928 Shapiro Wilk GOF Test 586 Shapiro Wilk Critical Value 0.914 Detected Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.177 Lilliefors GOF Test 586 Lilliefors Critical Value 0.185 Detected Data appear Lognormal at 5% Significance Level Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale 26.89 Mean in Log Scale 3.203 50 in Original Scale 95% EUCL (assumes normality of ROS data) 30.68 95% Percentile Bootstrap UCL 30.62 95% Bootstrap UCL 30.89 95% Hord (Log ROS) 32.52 UCL suing Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed KM Mean (logged) 3.2 95% HUCL (KM-Log) 3.2.9 KM Standard Error of Mean (logged) 0.0926 UL/2 Statistics 01/2 Normal 01/2 Log-Transformed Mean in Original Scale 26.63 Mean in Log Scale 3.183 50 in Original Scale 3.184 50 in Original Scale 3.285 60 Wean in Log Scale 3.286 60 Wean in Log Scale 3.287 60 Wean in Log Scale 3.288 60 Wean in	Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE)		10.3 46.7 10.79 5.867 4.588 281.6	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	27.4 0.401 5.162 5.215 247.8
Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 1.014 Detected Data appear Lognormal at 5% Significance Level 1.015 Lilliefors GOF Test 1.017 Lilliefors GOF Test 1.018 Detected Data appear Lognormal at 5% Significance Level 1.018 Lilliefors GOF Test 1.018 Detected Data appear Lognormal at 5% Significance Level 1.018 Lilliefors GOF Test 1.018 Detected Data appear Lognormal at 5% Significance Level 1.018 Lilliefors GOF Test 1.018 Detected Data appear Lognormal at 5% Significance Level 1.018 Lilliefor Test 1.018 Detected Data appear Lognormal at 5% Significance Level 1.018 Lilliefor Edet Test 1.018 Detected Data appear Lognormal at 5% Significance Level 1.018 Lilliefor Edet Test appear Lognormal at 5% Significance Level 1.018 Lilliefor Edet Test 1.018 Detected Data appear Lognormal at 5% Significance Level 1.018 Lilliefor Edet Test 1.018 Detected Data appear Lognormal at 5% Significance Level 1.018 Lilliefor Edet Test 1.018 Detected Data appear Lognormal at 5% Significance Level 1.018	Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)		10.3 46.7 10.79 5.867 4.588 281.6 26.92	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β)	27.4 0.401 5.162 5.215 247.8 11.85
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 1914 Detected Data appear Lognormal at 5% Significance Level 11 Lilliefors Test Statistic 10 Life Tritical Value 10 Lognormal at 5% Significance Level 10 Lognormal ROS Statistics Using Imputed Non-Detects 10 Lognormal ROS Statistics 10 Lognormal ROS Statistics Using Imputed Non-Detects 10 Lognormal ROS Statistics 10 Lognormal ROS Statistics 10 Lognormal ROS Statistics 10 Lognormal ROS Statistics 10 Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed 10 Lognormal Distribution Am KEstimates when Detected data are Lognormally Distributed 10 Lognormal Distribution Am KEstimates when Detected data are Lognormally Distributed 10 Lognormal ROS Statistics 10 Lognorma	Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2	47.76, α)	10.3 46.7 10.79 5.867 4.588 281.6 26.92	Median CV kstar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level (Square Value (247.76, β)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210
S86 Shapiro Wilk Critical Value	Maximum SD k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2	47.76, α)	10.3 46.7 10.79 5.867 4.588 281.6 26.92	Median CV kstar (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level (Square Value (247.76, β)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210
Lilliefors Test Statistic \$\% Lilliefors Critical Value Detected Data appear Lognormal at 5% Significance Level Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale 26.89 Mean in Log Scale 3.203 SD in Original Scale 26.89 Mean in Log Scale 3.203 SD in Original Scale 3.203 SD\$ LOC Logsumes normality of ROS data) 30.68 95% Percentile Bootstrap UCL 30.28 95% BCA Bootstrap UCL 30.62 95% Bootstrap t UCL 30.81 95% H-UCL (Log ROS) 32.25 UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed KM Mean (logged) 3.2 95% H-UCL (KM -log) 32.29 KM SD (logged) 0.441 95% Critical H Value (KM-log) 1.93 KM Standard Error of Mean (logged) 0.0926 ULZ Statistics 0.0926 0.0926 0.0926 0.0926 ULZ Statistics 0.0926 0.0926 0.0926 0.0926 0.0926 0.0926 0.0926 ULZ Statistics 0.0926 0.	Maximum SD khat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2- 95% Gamma Approximate UCL (Lognormal GOF Test on Detected	47.76, α) use when n>=50)	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210
Detected Data appear Lognormal at 5% Significance Level	Maximum SD khat (MLE) Theta hat (MLE) ru hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2- 95% Gamma Approximate U.C. (Lognormal GOF Test on Detected Shapiro Wilk Test Statistic	47.76, α) use when n>=50)	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (247.76, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210
Mean in Original Scale 5.88 Mean in Log Scale 3.203 Do in Original Scale 10.82 SD in Log Scale 0.445 95% t LUCL (lassumes normality of ROS data) 30.68 95% Percentile Bootstrap UCL 30.81 95% t LUCL (group ROS) 32.52 30.81 95% H-UCL (log ROS) 32.59 32.59 UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed MKM Mean (logged) 32.2 95% H-UCL (KM-Log) 32.29 KM SD (logged) 0.441 95% Critical H Value (KM-Log) 1.93 KM Standard Error of Mean (logged) 0.0926 1.95 DL/2 Statistics 0.0926 1.00 DL/2 Statistics Original Scale 26.63 Mean in Log Scale 3.183 SD in Original Scale 26.63 Mean in Log Scale 0.474 95% t UCL (Assumes normality) 30.54 95% H-Stat UCL 32.78 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics 1.116 50 in Log Scale 3.183 Nonparametric Distribution Free UCL Statistics 1.95 Medical Scale 3.95 Medical Scale 3.95 Medical Scale 3.95 Medical Scale 3.95 Medical S	Maximum SD khat (MLE) Theta hat (MLE) u hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2- 95% Gamma Approximate UCL Lognormal GOF Test on Detected Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic	47.76, α) use when n>=50)	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210
Mean in Original Scale 5.88 Mean in Log Scale 3.203 Do in Original Scale 10.82 SD in Log Scale 0.445 95% t LUCL (lassumes normality of ROS data) 30.68 95% Percentile Bootstrap UCL 30.81 95% t LUCL (group ROS) 32.52 30.81 95% H-UCL (log ROS) 32.59 32.59 UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed MKM Mean (logged) 32.2 95% H-UCL (KM-Log) 32.29 KM SD (logged) 0.441 95% Critical H Value (KM-Log) 1.93 KM Standard Error of Mean (logged) 0.0926 1.95 DL/2 Statistics 0.0926 1.00 DL/2 Statistics Original Scale 26.63 Mean in Log Scale 3.183 SD in Original Scale 26.63 Mean in Log Scale 0.474 95% t UCL (Assumes normality) 30.54 95% H-Stat UCL 32.78 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics 1.116 50 in Log Scale 3.183 Nonparametric Distribution Free UCL Statistics 1.95 Medical Scale 3.95 Medical Scale 3.95 Medical Scale 3.95 Medical Scale 3.95 Medical S	Maximum SD Khat (MLE) Theta hat (MLE) ru hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2- 295% Gamma Approximate UCL (Lognormal GOF Test on Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	47.76, α} use when n>=50) Observations Only	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210
Spin Original Scale 10.82 Spin Intog Scale 0.445	Maximum SD khat (MLE) Theta hat (MLE) ru hat (MLE) ru hat (MLE) ru hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2 95% Gamma Approximate UCL Lognormal GOF Test on Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lillilefor's Test Statistic 5% Lilliefor's Critical Value Detected Data appear Lognormal	47.76, α) use when n>=50) Observations Only at 5% Significance Level	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210
95% BCA Bootstrap UCL 95% H-UCL (Log ROS) 32.52 UCL susing Lognormal Distribution and KM Estimates when Detected data are Lognormally Distributed KM Mean (logged) 3.2 95% H-UCL (KM -Log) 3.2.95 KM Standard Error of Mean (logged) 0.0926 DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Basin in Original Scale 26.63 Mean in Log Scale 3.183 SD in Original Scale 95% t UCL (Assumes normality) 3.05.4 95% H-Stat UCL 3.2.78 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (f UCL) 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Maximum SD khat (MLE) Theta hat (MLE) In that (MLE) In that (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2- 295% Gamma Approximate UCL Lognormal GOF Test on Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognormal Lognormal ROS Statistics Using Im	47.76, α) use when n>=50) Observations Only at 5% Significance Level	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (247.76, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level	27.4 0.401 5.162 5.215 5.215 247.8 11.85 0.0392 210 31.75
95% H-UCL (Log ROS) 32.52 UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormality Distributed KM Mean (logged) 3.2 95% H-UCL (KM -Log) 32.29 KM SD (logged) 0.441 95% Critical H Value (KM-Log) 1.93 KM Standard Error of Mean (logged) 0.0926 DL/2 Statistics DL/2 Normal DIV/2 Log-Transformed BU/2 Log-Transformed DL/2 Iog-Transformed 0.3 1.83 SD in Original Scale 3.63 Mean in Log Scale 3.183 SD in Original Scale 1.1.16 SD in Log Scale 0.474 95% t UCL (Assumes normality) 30.54 95% H-Stat UCL 32.78 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data a appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (f) UCL 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Maximum SD khat (MLE) Theta hat (MLE) ru hat (MLE) ru hat (MLE) ru hat (MLE) Approximate Chi Square Value (2- 95% Gamma Approximate UCL Lognormal GOF Test on Detected Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognormal Lognormal ROS Statistics Using In Mean in Original Scale SD in Original Scale	47.76, α} use when n>=50) Observations Only at 5% Significance Level equited Non-Detects	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (247,76, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75
KM Mean (logged) 3.2 95% H-UCL (KM -Log) 32.29 KM SD (logged) 0.441 95% Critical H Value (KM-Log) 1.93 KM St (logged) 0.0926 DL/2 Statistics DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 26.63 Mean in Log Scale 3.183 SD in Original Scale 11.16 SD in Log Scale 0.474 95% t UCL (Assumes normality) 3.05.4 95% H-Stat UCL 32.78 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (f) UCL 3.0.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Maximum SD khat (MLE) mu hat (MLE) mu hat (MLE) mu hat (MLE) mu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2-95% Gamma Approximate UCL (Lognormal GOF Test on Detected Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilllefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognormal ROS Statistics Using Im Mean in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SD to Lassumes normality of 5% to UCL (assumes normality of 5% t	47.76, α} use when n>=50) Observations Only at 5% Significance Level equited Non-Detects	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75
KM Mean (logged) 3.2 95% H-UCL (KM -Log) 32.29 KM SD (logged) 0.441 95% Critical H Value (KM-Log) 1.93 KM St (logged) 0.0926 DL/2 Statistics DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 26.63 Mean in Log Scale 3.183 SD in Original Scale 11.16 SD in Log Scale 0.474 95% t UCL (Assumes normality) 3.05.4 95% H-Stat UCL 32.78 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (f) UCL 3.0.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Maximum SD khat (MLE) nu hat (MLE) nu hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2-95% Gamma Approximate UCL (1-10 N) Normal GOF Test on Detected Shapiro Wilk Critical Value Lillilefors Test Statistic S% Shapiro Wilk Critical Value Lillilefors Critical Value Detected Data appear Lognormal Cognormal ROS Statistics Using Im Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality of 1-10 N) Norma	47.76, α} use when n>=50) Observations Only at 5% Significance Level equited Non-Detects	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) ustar (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75
KM Standard Error of Mean (logged) 0.0926 DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale 26.63 Mean in Log Scale 3.183 SD in Original Scale 11.16 SD in Log Scale 0.474 95% t UCL (Assumes normality) 30.54 95% H-Start UCL 3.278 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (1) UCL 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Maximum SD khat (MLE) nu hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2-95% Gamma Approximate UCL (100 Normal GOF Test on Detected Shapiro Wilk Critical Value Lilliefors Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognormal Lognormal ROS Statistics Using In Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality 65% BCA Bootstrap UCL 95% H-UCL (Log ROS)	47.76, α) use when n>=50) Observations Only at 5% Significance Level exputed Non-Detects	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 32.52	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75
DL/2 Statistics DL/2 Normal DL/2 Log-Transformed Mean in Original Scale So in Original Scale 11.16 SD in Log Scale 11.16 SD in Log Scale 11.16 SD in Log Scale 0.474 95% t UCL (Assumes normality) 30.54 95% H-Stat UCL 32.78 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (1) UCL 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL	Maximum SD khat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) Maproximate Chi Square Value (2-95% Gamma Approximate UCL Lognormal GOF Test on Detected Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognormal ROS Statistics Using Immean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL (assumes normality of 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	47.76, α) use when n>=50) Observations Only at 5% Significance Level exputed Non-Detects	10.3 46.7 10.79 5.867 4.588 281.6.2 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 32.52	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM-Log)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75
DU/2 Normal Mean in Original Scale 3.183 Sin Original Scale 3.184 95% t UCL (Assumes normality) 30.54 95% t NOL1 (Assumes normality) 30.74 95% t UCL (Assumes normality) 30.75 Sin Original Scale 30.78 Sin Original Scale 30	Maximum SD khat (MLE) Theta hat (MLE) Theta hat (MLE) un hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2.95% Gamma Approximate UCL (1.05% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognormal ROS Statistics Using In Mean in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SS% t UCL (assumes normality of 95% t UCL (assumes normality of 95% t UCL (assumes normality of 95% t UCL susing Lognormal Distributio KM Mean (logged) KM SD (logged)	47.76, α) use when n>=50) Observations Only at 5% Significance Level exputed Non-Detects of ROS data) n and KM Estimates when Detect	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 32.52 0.441	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) u star (bias corrected MLE) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) Adjusted Chi Square Value (247.76, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale SD in Log Scale SD S% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81
Mean in Original Scale 26.63 Mean in Log Scale 3.183 50 in Original Scale 11.16 S0 in Log Scale 0.474 95% t LUCL (Assumes normality) 30.54 95% H-Stat LUC. 32.78 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (1) UCL 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL	Maximum SD khat (MLE) Theta hat (MLE) Theta hat (MLE) un hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2.95% Gamma Approximate UCL (1.05% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognormal ROS Statistics Using In Mean in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SS% t UCL (assumes normality of 95% t UCL (assumes normality of 95% t UCL (assumes normality of 95% t UCL susing Lognormal Distributio KM Mean (logged) KM SD (logged)	47.76, α) use when n>=50) Observations Only at 5% Significance Level exputed Non-Detects of ROS data) n and KM Estimates when Detect	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 32.52 0.441	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) u star (bias corrected MLE) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) Adjusted Chi Square Value (247.76, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale SD in Log Scale SD S% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81
95% t UCL (Assumes normality) 30.54 95% H-Stat UCL 32.78 DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (1) UCL 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL	Maximum SD khat (MLE) uhat (MLE) Theta hat (MLE) uhat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2-95% Gamma Approximate UCL (1-95% Gamma Approximate UCL (1-195% Hata) (1-195% Hata) (1-195% H-UCL (1	47.76, α) use when n>=50) Observations Only at 5% Significance Level exputed Non-Detects of ROS data) n and KM Estimates when Detect	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 32.52 0.441	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) ustar (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM - Log) 95% Critical H Value (KM-Log)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81
DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (1) UCL 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL	Maximum SD khat (MLE) Intertain Ast (MLE) The Ast (MLE) In that Ast (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2-95% Gamma Approximate UCL (2-95% Gamma Approximate UCL (2-95% Gamma Approximate UCL (2-95% Shapiro Wilk Critical Value Lilllefors Test Statistic S% Shapiro Wilk Critical Value Detected Data appear Lognormal ROS Statistics Using Im Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of 95% t UCL susing Lognormal Distributio KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logg	47.76, α) use when n>=50) Observations Only at 5% Significance Level exputed Non-Detects of ROS data) n and KM Estimates when Detect	10.3 46.7. 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 20.441 0.0926	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) Adjusted Chi Square Value (247.76, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale SD in Log Scale SDS% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81
Nonparametric Distribution Free UCL Statistics Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (†) UCL 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Maximum SD khat (MLE) nu hat (MLE) Theta hat (MLE) the hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2-95% Gamma Approximate UCL Usgnormal GOF Test on Detected Shapiro Wilk Cretical Value Lilliefors Pest Statistic S% Shapiro Wilk Critical Value Lilliefors Critical Value Detected Data appear Lognormal ROS Statistics Using ImMean in Original Scale SD in Original Scale 95% t UCL (assumes normality of 95% H-UCL (Log ROS) UCLs using Lognormal Distributio KM Mean (logged) KM Standard Error of Mean (logg) KM Standard Error of Mean (logg) Ly Statistics U/2 Normal Mean in Original Scale SD (2 Normal Mean in Original Scale SD in Original Scale	47.76, α) use when n>=50) Observations Only at 5% Significance Level exputed Non-Detects of ROS data) n and KM Estimates when Detect	10.3 46.7. 10.79 5.867 4.588 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 30.62 32.52 2441 0.0926	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Ellilefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) DL/2 Log-Transformed Mean in Log Scale	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81 32.29 1.93 0.474
Detected Data appear Normal Distributed at 5% Significance Level Suggested UCL to Use 95% KM (1) UCL 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL	Maximum SD khat (MLE) Theta hat (MLE) The hat (MLE) The hat (MLE) The hat (MLE) MLE Mean (bias corrected) MLE Mean (bias corrected) Approximate Chi Square Value (2-95% Gamma Approximate UCL (2-95% Gamma Approximate UCL (2-95% Shapiro Wilk Critical Value Lillilefors Test Statistic SW Shapiro Wilk Critical Value Detected Data appear Lognormal ROS Statistics Using In Mean in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SW LUCL (assumes normality of 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distributio KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logg DL/2 Statistics DL/2 Statistics DL/2 Normal Mean in Original Scale SD SW t UCL (Assumes normality) SW turns and the summary of the sum	47.76, α) (use when n>=50) Observations Only at 5% Significance Level oputed Non-Detects of ROS data) n and KM Estimates when Detected	10.3 46.7. 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 32.52 0.441 0.0926	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) Adjusted Level of Significance (B) Adjusted Level of Significance (B) Adjusted Chi Square Value (247.76, B) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81 32.29 1.93 0.474
Suggested UCL to Use 95% KM (1) UCL 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Maximum SD Sh Hat (MLE) Theta hat (MLE) Theta hat (MLE) The MLE MLE Mean (bias corrected) Approximate Chi Square Value (2- 95% Gamma Approximate UCL (6) Lognormal GOF Test on Detected Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Shapiro Wilk Critical Value Detected Data appear Lognormal Lognormal ROS Statistics Using In Mean in Original Scale 95% LIUC (Lassumes normality of 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distributio KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logg DL/2 Statistics DL/2 Normal Mean in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended meth	47.76, a) (use when n>=50) Observations Only at 5% Significance Level inputed Non-Detects of ROS data) in and KM Estimates when Detect ed)	10.3 46.7. 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 32.52 0.441 0.0926	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) Adjusted Level of Significance (B) Adjusted Level of Significance (B) Adjusted Chi Square Value (247.76, B) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81 32.29 1.93 0.474
95% KM (t) UCL 30.66 95% KM (Percentile Bootstrap) UCL 30.38 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Maximum SD khat (MLE) Theta hat (MLE) Theta hat (MLE) The MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2- 95% Gamma Approximate UCL (2- 95% Gamma Approximate UCL (2- SS Shapiro Wilk Critical Value Lilliefors Wilk Critical Value Lilliefors Test Statistic S% Shapiro Wilk Critical Value Lilliefors Critical Value Detected Data appear Lognormal Lognormal ROS Statistics Using In Mean in Original Scale SD in Original Scale SD in Original Scale SS & H-UCL (Log ROS) UCLs using Lognormal Distributio KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logg DL/2 Statistics D in Original Scale SD in Original Scale	47.76, α) use when ro=50) Observations Only at 5% Significance Level reputed Non-Detects of ROS data) n and KM Estimates when Detect ed) tod, provided for comparisons an	10.3 46.7. 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 32.52 0.441 0.0926	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) Adjusted Level of Significance (B) Adjusted Level of Significance (B) Adjusted Chi Square Value (247.76, B) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81 32.29 1.93 0.474
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Maximum SD khat (MLE) Theta hat (MLE) The tah tat (MLE) The tah tat (MLE) The tah tat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2- 95% Gamma Approximate UCL (4 Shapiro Wilk Test Statistic SW Shapiro Wilk Critical Value Lilliefors Test Statistic SW Shapiro Wilk Critical Value Detected Data appear Lognormal Lognormal ROS Statistics Using Im Mean in Original Scale SD in Original Scale SD in Original Scale SD in Original Scale SSW t UCL (assumes normality of 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distributio KM Mean (logged) KM Sto (logged) KM Sto (logged) KM Standard Error of Mean (logg DL/2 Statistics DL/2 Statistics DL/2 Normal Mean in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended meth Nonparametric Distribution Free Detected Data appear Normal Distribution	47.76, α) use when ro=50) Observations Only at 5% Significance Level reputed Non-Detects of ROS data) n and KM Estimates when Detect ed) tod, provided for comparisons an	10.3 46.7. 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 32.52 0.441 0.0926	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) MLE Sd (bias corrected) Adjusted Level of Significance (B) Adjusted Level of Significance (B) Adjusted Chi Square Value (247.76, B) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log)	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81 32.29 1.93 0.474
	Maximum SD khat (MLE) Theta hat (MLE) u hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2- 95% Gamma Approximate UCL (1- Lognormal GOF Test on Detected Shapiro Wilk Test Statistic 5% Lalilefors Critical Value Lilliefors Test Statistic 5% Lalilefors Critical Value Lilliefors Test Statistic 5% Lalilefors Critical Value Detected Data appear Lognormal Lognormal ROS Statistics Using In Mean in Original Scale SD in Original Scale SS% t UCL (Log ROS) UCLs using Lognormal Distributio KM Mean (logged) KM Standard Error of Mean (logg DL/2 Statistics DL/2 Normal Mean in Original Scale SD in Original Sc	47.76, α) use when ro=50) Observations Only at 5% Significance Level reputed Non-Detects of ROS data) n and KM Estimates when Detect ed) tod, provided for comparisons an	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 32.52 26d data 3.2.52 26d data 3.41 0.0926 26.63 11.16 30.544 30.544	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) Adjusted Chi Square Value (247.76, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM-Log) 95% Gritical H Value (KM-Log) DL/2 Log-Transformed Mean in Log Scale SD in Log Scale SD in Log Scale 95% H-Stat UCL cal reasons	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81 32.29 1.93 3.183 0.474 32.78
	Maximum SD khat (MLE) Theta hat (MLE) The hat (MLE) The hat (MLE) The hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2- 95% Gamma Approximate UCL (2- 95% Gamma Approximate UCL (2- SS Shapino Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognormal Lognormal ROS Statistics Using In Mean in Original Scale SD in Original Scale SD in Original Scale SS% t UCL (assumes normality of 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distributio KM Mean (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (logg DL/2 Statistics SD in Original Scale SD in Original Formal Mean in Original Scale SD in Original Scale SD in Original Formal Mean in Original Scale SD in Original Scale SD in Original Formal Mean in Original Scale SD in Original Scale SD in Original Formal Mean in Original Scale SD in Original Scale SD in Original Formal Mean in Original Scale SD in Original Scale	47.76, α) (use when n>=50) Observations Only at 5% Significance Level Inputed Non-Detects of ROS data) In and KM Estimates when Detect ed) It is a superior of the comparisons and the comparisons are comparisons and the comparisons and the comparisons and the comparisons and the comparisons are comparisons and the com	10.3 46.7 10.79 5.867 4.588 281.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.68 30.62 20.441 0.0926 26.63 11.16 30.54 d historic	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (B) Adjusted Level of Significance (B) Adjusted Chi Square Value (247.76, B) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level SD in Log Scale SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log) DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Lal reasons	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81 32.29 1.93 3.183 0.474 32.78
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician	Maximum SD khat (MLE) Theta hat (MLE) u hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (2- 95% Gamma Approximate UCL (1- Lognormal GOF Test on Detected Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Ishington Statistic Using In Mean in Original Scale SD in Original Scale SO in Original Scale SO in Original Scale ICL (Log ROS) UCL susing Lognormal Distributio KM Mean (logged) KM Standard Error of Mean (logge DL/2 Statistics DL/2 Normal Mean in Original Scale SD in Original Sc	47.76, α) use when n>=50) Observations Only at 5% Significance Level uputed Non-Detects of ROS data) n and KM Estimates when Detect ed) tool, provided for comparisons and UCL Statistics tributed at 5% Significance Level	10.3 46.7 10.79 5.867 5.867 2.81.6 26.92 212.3 31.41 0.928 0.914 0.177 0.185 26.89 10.82 30.66 32.52 26.63 11.16 30.54 4 historic	Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) us tar (bias corrected) MLE Sd (bias corrected) Adjusted Levid of Significance (β) Adjusted Levid of Significance (β) Adjusted Chi Square Value (247.76, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM -Log) 95% Critical H Value (KM-Log) DL/2 Log-Transformed Mean in Log Scale SD in Log Scale SD in Log Scale SD in Log Scale 95% H-Stat UCL Lal reasons	27.4 0.401 5.162 5.215 247.8 11.85 0.0392 210 31.75 3.203 0.445 30.28 30.81 32.29 1.93 3.183 0.474 32.78

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL calculations for total Pb from sampling location A72 in the Animas River below mainstem Mineral Creek

llcor	20	lected	Options

2/19/2015 9:13 Date/Time of Computation From File WorkSheet_a.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

General Statistics			
Total Number of Observations	24 Nur	nber of Distinct Observations	20
	Nur	nber of Missing Observations	0
Minimum	3.3 Me	an	12.77
Maximum	99.8 Me	dian	5.9
SD	19.88 Std	Error of Mean	4.057
Coefficient of Variation	1.556 Ske	wness	3.983
Normal GOF Test			
Shapiro Wilk Test Statistic	0.465 Sha	piro Wilk GOF Test	
5% Shapiro Wilk Critical Value		a Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.321 Lilli	efors GOF Test	
5% Lilliefors Critical Value		a Not Normal at 5% Significance Level	
Data Not Normal at 5% Significance Level		-	
Assuming Normal Distribution			
95% Normal UCL	95	5% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	19.73 95	5% Adjusted-CLT UCL (Chen-1995)	22.97
	95	5% Modified-t UCL (Johnson-1978)	20.27
Gamma GOF Test			
A-D Test Statistic	2.5 And	lerson-Darling Gamma GOF Test	
5% A-D Critical Value	0.767 Dat	a Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.28 Koli	nogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.182 Dat	a Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level			
Gamma Statistics			
k hat (MLE)		ar (bias corrected MLE)	1.095
Theta hat (MLE)		ta star (bias corrected MLE)	11.66
nu hat (MLE)		star (bias corrected)	52.57
MLE Mean (bias corrected)		ESd (bias corrected)	12.2
		proximate Chi Square Value (0.05)	36.91
Adjusted Level of Significance	0.0392 Adj	usted Chi Square Value	35.99
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	18.19 95	5% Adjusted Gamma UCL (use when n<50)	18.65
Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.829 Sha	piro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value		a Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic		efors Lognormal GOF Test	
5% Lilliefors Critical Value		a Not Lognormal at 5% Significance Level	
Data Not Lognormal at 5% Significance Level	0.101 000	a not zognormal at 370 3,g, inicance zever	
Lognormal Statistics			
Minimum of Logged Data	1.194 Me	an of logged Data	2.084
Maximum of Logged Data		of logged Data	0.812
Assuming Lognormal Distribution			
95% H-UCL	16.51 90	0% Chebyshev (MVUE) UCL	16.97
95% Chebyshev (MVUE) UCL		5% Chebyshev (MVUE) UCL	23.44
99% Chebyshev (MVUE) UCL	30.82	, , ,	
Nonparametric Distribution Free UCL Statistics			
Data do not follow a Discernible Distribution (0.05)			
Nonparametric Distribution Free UCLs			
95% CLT UCL		5% Jackknife UCL	19.73
95% Standard Bootstrap UCL		5% Bootstrap-t UCL	33.29
95% Hall's Bootstrap UCL		5% Percentile Bootstrap UCL	20.29
95% BCA Bootstrap UCL	24.4		
90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL		5% Chebyshev(Mean, Sd) UCL 9% Chebyshev(Mean, Sd) UCL	30.46 53.14
, , ,	33,11 3.		33.14
Suggested UCL to Use			

95% Chebyshev (Mean, Sd) UCL 30.46

 $Note: Suggestions\ regarding\ the\ selection\ of\ a\ 95\%\ UCL\ are\ provided\ to\ help\ the\ user\ to\ select\ the\ most\ appropriate\ 95\%\ UCL.$ These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

$ProUCL\ calculations\ for\ total\ Ni\ from\ sampling\ location\ A72\ in\ the\ Animas\ River\ below\ main stem\ Mineral\ Creek$

User Selected Options Date/Time of Computation	2/19/2015 9:13			
Pate/Time of Computation From File	WorkSheet_a.xls			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
General Statistics				
Total Number of Observations		24 Number of D	istinct Observations	11
Number of Detects		9 Number of N		15
Number of Distinct Detects			istinct Non-Detects	4
Minimum Detect Maximum Detect		2 Minimum No 7 Maximum No		0.7
Variance Detects		2.893 Percent Non-		62.50%
Mean Detects			500000	1.701
Median Detects		5.2 CV Detects		0.342
Skewness Detects		-0.416 Kurtosis Dete		-0.606
Mean of Logged Detects		1.538 SD of Logged	Detects	0.407
Normal GOF Test on Detects Only				
Shapiro Wilk Test Statistic		0.952 Shapiro Wilk	GOFTest	
5% Shapiro Wilk Critical Value			a appear Normal at 5% Significance Lev	el
Lilliefors Test Statistic		0.117 Lilliefors GOF		,
5% Lilliefors Critical Value Detected Data appear Normal at 5	% Significance Level	0.295 Detected Dat	ta appear Normal at 5% Significance Lev	ai
Detected Data appear Normai at 3	70 Significance Level			
Kaplan-Meier (KM) Statistics using	Normal Critical Values and	her Nonparametric UCLs		
Mean		2.559 Standard Erro		0.519
SD		2.219 95% KM (B)		3.864
95% KM (t) UCL		,	centile Bootstrap) UCL	3.713 3.397
95% KM (z) UCL 90% KM Chebyshev UCL		3.413 95% KM Bo 4.116 95% KM Che		4.822
97.5% KM Chebyshev UCL		5.801 99% KM Che		7.724
•				
Gamma GOF Tests on Detected Ob	servations Only			
A-D Test Statistic		0.298 Anderson-Da		
5% A-D Critical Value K-S Test Statistic		0.722 Detected dat 0.154 Kolmogrov-S	a appear Gamma Distributed at 5% Sign mirnoff GOE	aticance Level
5% K-S Critical Value			a appear Gamma Distributed at 5% Sign	ificance Level
Detected data appear Gamma Dist	tributed at 5% Significance L			
Gamma Statistics on Detected Dat	a Only		1.00	
k hat (MLE) Theta hat (MLE)		7.879 k star (bias co 0.63 Theta star (b		5.327 0.932
nu hat (MLE)		141.8 nu star (bias		95.88
MLE Mean (bias corrected)		4.967 MLE Sd (bias		2.152
Gamma Kaplan-Meier (KM) Statist	ics	4.004		
k hat (KM) Approximate Chi Square Value (63	97 al	1.331 nu hat (KM)	Square Value (63.87, β)	63.87 45.44
95% Gamma Approximate KM-U			a Adjusted KM-UCL (use when n<50)	3.597
	(,,	
Gamma ROS Statistics using Imput				
GROS may not be used when data			tiple DLs	
GROS may not be used when kstar				
For such situations, GROS method For gamma distributed detected d			stribution on KM estimates	
Minimum	310, 3113 314 3 423 110, 30 1	0.01 Mean	and the state of t	2.633
Maximum		7 Median		2.056
SD		2.25 CV		0.854
k hat (MLE)		0.714 k star (bias co		0.652
Theta hat (MLE)		3.69 Theta star (b 34.25 nu star (bias		4.038 31.3
nu hat (MLE) MLE Mean (bìas corrected)		2.633 MLE Sd (bias		3.261
mee mean (olds corrected)			el of Significance (β)	0.0392
Approximate Chi Square Value (31	.30, α)		Square Value (31.30, β)	18.87
95% Gamma Approximate UCL (u	use when n>=50)	4.222 95% Gamm	a Adjusted UCL (use when n<50)	4.369
10057 . 0 1				
Lognormal GOF Test on Detected (Shapiro Wilk Test Statistic	Joservations Only	0.901 Shapiro Wilk	GOE Test	
5% Shapiro Wilk Critical Value			a appear Lognormal at 5% Significance I	Level
Lilliefors Test Statistic		0.163 Lilliefors GOF		
5% Lilliefors Critical Value		0.295 Detected Dat	a appear Lognormal at 5% Significance	Level
Detected Data appear Lognormal :	at 5% Significance Level			
DOC C+-+i-+i				
Lognormal ROS Statistics Using Im: Mean in Original Scale	Jutea Worr-Detects	2.959 Mean in Log	Scale	0.89
SD in Original Scale		1.945 SD in Log Sca		0.632
95% t UCL (assumes normality of	ROS data)	3.639 95% Percer	ntíle Bootstrap UCL	3.589
95% BCA Bootstrap UCL		3.68 95% Bootst	rap t UCL	3.771
95% H-UCL (Log ROS)		3.926		
UCLs using Lognormal Distribution	and KM Estimates when the	ected data are Lozoormal	lv Distributed	
KM Mean (logged)	and Estanded when be	0.526 95% H-UCL		4.152
KM SD (logged)			l H Value (KM-Log)	2.444
KM Standard Error of Mean (logge	d)	0.238		
01/200				
DL/2 Statistics DL/2 Normal		DL/2 Log-Tra	nsformed	
DL/Z Normai Mean in Original Scale		UL/Z Log-1ra 2.794 Mean in Log		0.772
SD in Original Scale		2.035 SD in Log Sca		0.751
95% t UCL (Assumes normality)		3.506 95% H-Stat		4.07
DL/2 is not a recommended metho	xd, provided for comparison	and historical reasons		
Name and Division Co.	5C1 C+++1-+1			
Nonparametric Distribution Free L Detected Data appear Normal Dist		el		
verected para appear Normal DISI	moved of 2% pigningance fi	.,		
Suggested UCL to Use				
95% KM (t) UCL		3.449 95% KM (Per	centile Bootstrap) UCL	3.713

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL calculations for total Zn from sampling location A72 in the Animas River below mainstem Mineral Creek

User Selected Options

2/19/2015 9:13 Date/Time of Computation WorkSheet_a.xls From File Full Precision OFF Confidence Coefficient 95% 2000 Number of Bootstrap Operations

General Statistics			
Total Number of Observations	24	Number of Distinct Observations	24
		Number of Missing Observations	0
Minimum		Mean	599.7
Maximum		Median	531
SD		Std. Error of Mean	65.17
Coefficient of Variation	0.532	Skewness	0.766
Normal GOF Test			
Shapiro Wilk Test Statistic	0.912	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.916	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.136	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.181	Data appear Normal at 5% Significance Level	
Data appear Approximate Normal at 5% Significance Level			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	711.4	95% Adjusted-CLT UCL (Chen-1995)	717.8
		95% Modified-t UCL (Johnson-1978)	713.1
Gamma GOF Test			
A-D Test Statistic	0.379	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
K-S Test Statistic		Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance	Level
Detected data appear Gamma Distributed at 5% Significance Level	0.275	Detection and appear cannot be be better at 5% significance	2010.
Gamma Statistics			
k hat (MLE)	3.824	k star (bias corrected MLE)	3.373
Theta hat (MLE)	156.8	Theta star (bias corrected MLE)	177.8
nu hat (MLE)	183.5	nu star (bias corrected)	161.9
MLE Mean (bias corrected)	599.7	MLE Sd (bias corrected)	326.5
		Approximate Chi Square Value (0.05)	133.5
Adjusted Level of Significance	0.0392	Adjusted Chi Square Value	131.7
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	727.4	95% Adjusted Gamma UCL (use when n<50)	737.4
Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.956	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.916	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.126	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.181	Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Significance Level			
Lognormal Statistics			
Minimum of Logged Data	5.398	Mean of logged Data	6.26
Maximum of Logged Data	7.185	SD of logged Data	0.539
Assuming Lognormal Distribution			
95% H-UCL	758 5	90% Chebyshev (MVUE) UCL	808.1
95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	1032
99% Chebyshev (MVUE) UCL	1288		1002
33% diebysier (MVCL) det	1200		
Nonparametric Distribution Free UCL Statistics			
Data appear to follow a Discernible Distribution at 5% Significance	Level		
Nonparametric Distribution Free UCLs			
95% CLT UCL	706.9	95% Jackknife UCL	711.4
95% Standard Bootstrap UCL	708		729
95% Hall's Bootstrap UCL	716.9	95% Percentile Bootstrap UCL	705.5
95% BCA Bootstrap UCL	720.9		
90% Chebyshev(Mean, Sd) UCL	795.2	95% Chebyshev(Mean, Sd) UCL	883.8
97.5% Chebyshev(Mean, Sd) UCL	1007	99% Chebyshev(Mean, Sd) UCL	1248

Suggested UCL to Use

95% Student's-t UCL 711.4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

ProUCL calculations for total Cd from sampling location A73 in the Animas River below mainstem Mineral Creek

User Selected Options

Date/Time of Computation 2/19/2015 10:09 From File WorkSheet_b.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations 5 Number of Distinct Observations	
Number of Missing Observations	0
Minimum 0.97 Mean	1.524
Maximum 2.2 Median	1.27
SD 0.619 Std. Error of Mean	0.277
Coefficient of Variation 0.406 Skewness	0.458

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

0.792 Shapiro Wilk GOF Test Shapiro Wilk Test Statistic

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.259 Lilliefors GOF Test

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 2.114 95% Adjusted-CLT UCL (Chen-1995) 2.04 95% Modified-t UCL (Johnson-1978) 2.124

Gamma GOF Test

0.579 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.68 Detected data appear Gamma Distributed at 5% Significance Level

0.28 Kolmogrov-SmirnoffGamma GOF Test K-S Test Statistic

0.358 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics k hat (MLE)

Garrina Statistics		
k hat (MLE)	7.731 k star (bias corrected MLE)	3.226
Theta hat (MLE)	0.197 Theta star (bias corrected MLE)	0.472
nu hat (MLE)	77.31 nu star (bias corrected)	32.26
MLE Mean (bias corrected)	1.524 MLE Sd (bias corrected)	0.849
	Approximate Chi Square Value (0.05)	20.27
Adjusted Level of Significance	0.0086 Adjusted Chi Square Value	16.26

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 2.425 95% Adjusted Gamma UCL (use when n<50) 3.023

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.817 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value $0.762\ \ Data\ appear\ Lognormal\ at\ 5\%\ Significance\ Level$

Lilliefors Test Statistic 0.252 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Maximum of Logged Data 0	.788 SD of logged Data	0.405
Minimum of Logged Data -0.0	0305 Mean of logged Data	0.355

Assuming Lognormal Distribution

reserving cognerated biotribution					
95% H-UCL	2.656 90% Chebyshev (MVUE) UCL	2.344			
95% Chebyshev (MVUE) UCL	2.717 97.5% Chebyshev (MVUE) UCL	3.234			
99% Chebyshev (MVUE) UCL	4.249				

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free LICEs

Nonparametric distribution Free OCLS			
95% CLT UCL	1.979	95% Jackknife UCL	2.114
95% Standard Bootstrap UCL	1.933	95% Bootstrap-t UCL	3.187
95% Hall's Bootstrap UCL	2.885	95% Percentile Bootstrap UCL	1.95
95% BCA Bootstrap UCL	1.956		
90% Chebyshev(Mean, Sd) UCL	2.355	95% Chebyshev(Mean, Sd) UCL	2.731
97.5% Chebyshev(Mean, Sd) UCL	3.253	99% Chebyshev(Mean, Sd) UCL	4.279

Suggested UCL to Use

2.114 95% Student's-t UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/19/2015 10:09 From File WorkSheet_b.xls **Full Precision** OFF ConfidenceCoefficient Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	8.3 Mean	17.76
Maximum	22.8 Median	19.3
SD	5.983 Std. Error of Mean	2.676
Coefficient of Variation	0.337 Skewness	-1.196

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

0.881 Shapiro Wilk GOF Test

Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.202 Lilliefors GOF Test 5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 95% Adjusted-CLT UCL (Chen-1995) 23.46 20.63 95% Modified-t UCL (Johnson-1978) 23.23

Gamma GOF Test

0.483 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.679 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.24 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.358 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gar	nma Statistic	s

k hat (MLE)	8.447 k star (bias corrected MLE)	3.512
Theta hat (MLE)	2.102 Theta star (bias corrected MLE)	5.057
nu hat (MLE)	84.47 nu star (bias corrected)	35.12
MLE Mean (bias corrected)	17.76 MLE Sd (bias corrected)	9.477
	Approximate Chi Square Value (0.05)	22.56
Adjusted Level of Significance	0.0086 Adjusted Chi Square Value	18.29

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 27.65 95% Adjusted Gamma UCL (use when n<50) 34.1

Lognormal GOF Test

0.817 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value

0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.252 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 2.116 Mean of logged Data 2.817 3.127 SD of logged Data Maximum of Logged Data 0.418

Assuming Lognormal Distribution

32.07 90% Chebyshey (MVUE) UCL 95% H-UCI 27.89 95% Chebyshev (MVUE) UCL 32.41 97.5% Chebyshev (MVUE) UCL 38.68 99% Chebyshev (MVUE) UCL 51.01

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonnarametric Distribution Free LICLs

Nonparametric Distribution Free Oces			
95% CLT UCL	22.16	95% Jackknife UCL	23.46
95% Standard Bootstrap UCL	21.83	95% Bootstrap-t UCL	21.74
95% Hall's Bootstrap UCL	20.58	95% Percentile Bootstrap UCL	21.34
95% BCA Bootstrap UCL	20.66		
90% Chebyshev(Mean, Sd) UCL	25.79	95% Chebyshev(Mean, Sd) UCL	29.42
97.5% Chebyshev(Mean, Sd) UCL	34.47	99% Chebyshev(Mean, Sd) UCL	44.38

Suggested UCL to Use

23.46 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

2/19/2015 10:09 Date/Time of Computation From File WorkSheet_b.xls Full Precision Confidence Coefficient 95% 2000

Number of Bootstrap Operations

General Statistics

Total Number of Observations 5 Number of Distinct Observations Number of Missing Observations Minimum 2.6 Mean 11.14 Maximum 33.7 Median 6.3 SD 12.87 Std. Error of Mean 5.756 Coefficient of Variation 1.155 Skewness 2.022

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.73 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.357 Lilliefors GOF Test 0.396 Data appear Normal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 95% Adjusted-CLT UCL (Chen-1995) 26.17 95% Modified-t UCL (Johnson-1978) 24.28

Gamma GOF Test

A-D Test Statistic 0.419 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.688 Detected data appear Gamma Distributed at 5% Significance Level 0.26 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.363 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

0.65 k hat (MLE) 1.291 k star (bias corrected MLE) Theta hat (MLE) 8.628 Theta star (bias corrected MLE) 17.14 nu hat (MLE) 12.91 nu star (bias corrected) 6.498 MLE Mean (bias corrected) 11.14 MLE Sd (bias corrected) 13.82 Approximate Chi Square Value (0.05) 1.899 Adjusted Level of Significance 0.0086 Adjusted Chi Square Value 1.005

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 38.11 95% Adjusted Gamma UCL (use when n<50) 72.03

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.941 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.199 Lilliefors Lognormal GOF Test

0.396 Data appear Lognormal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.956 Mean of logged Data 1.976 Maximum of Logged Data 3.517 SD of logged Data 0.989

Assuming Lognormal Distribution

95% H-UCL 129.8 90% Chebyshev (MVUE) UCL 23.7 95% Chebyshev (MVUE) UCL 29.71 97.5% Chebyshev (MVUE) UCL 38.06 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 20.61 95% Jackknife UCL 23.41 95% Standard Bootstrap UCL 19.58 95% Bootstrap-t UCL 66.03 95% Hall's Bootstrap UCL 61.76 95% Percentile Bootstrap UCL 22 95% BCA Bootstrap UCL 22.6 90% Chebyshev(Mean, Sd) UCL 28.41 95% Chebyshev(Mean, Sd) UCL 36.23 97.5% Chebyshev(Mean, Sd) UCL 47.08 99% Chebyshev(Mean, Sd) UCL 68.41

Suggested UCL to Use

23.41 95% Student's-t UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/19/2015 10:09

 From File
 WorkSheet_b.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

Number of Bootstrap Operations 2000

General Statistics

5 Number of Distinct Observations	5
Number of Missing Observations	0
352 Mean	520.6
768 Median	426
192.2 Std. Error of Mean	85.93
0.369 Skewness	0.626
	Number of Missing Observations 352 Mean 768 Median 192.2 Std. Error of Mean

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.839 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.289 Lilliefors GOF Test

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 703.8
 95% Adjusted-CLT UCL (Chen-1995)
 687.7

 95% Modified-t UCL (Johnson-1978)
 707.8

Gamma GOF Test

A-D Test Statistic 0.503 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.679 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.289 Kolmogrov-SmirnoffGamma GOF Test

5% K-S Critical Value 0.358 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	9.607 k star (bias corrected MLE)	3.976
Theta hat (MLE)	54.19 Theta star (bias corrected MLE)	130.9
nu hat (MLE)	96.07 nu star (bias corrected)	39.76
MLE Mean (bias corrected)	520.6 MLE Sd (bias corrected)	261.1
	Approximate Chi Square Value (0.05)	26.31
Adjusted Level of Significance	0.0086 Adjusted Chi Square Value	21.66

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))
786.6 95% Adjusted Gamma UCL (use when n<50)
955.8

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.854 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.259 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Mlinimum of Logged Data
 5.864 Mean of logged Data
 6.202

 Maximum of Logged Data
 6.644 SD of logged Data
 0.36

Assuming Lognormal Distribution

95% H-UCL 833.3 90% Chebyshev (MVUE) UCL 769.8
95% Chebyshev (MVUE) UCL 883.1 97.5% Chebyshev (MVUE) UCL 1040
99% Chebyshev (MVUE) UCL 1349

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Nonparametric distribution Free OCES			
95% CLT UCL	661.9	95% Jackknife UCL	703.8
95% Standard Bootstrap UCL	645	95% Bootstrap-t UCL	1256
95% Hall's Bootstrap UCL	2521	95% Percentile Bootstrap UCL	651.6
95% BCA Bootstrap UCL	666.4		
90% Chebyshev(Mean, Sd) UCL	778.4	95% Chebyshev(Mean, Sd) UCL	895.2
97.5% Chebyshev(Mean, Sd) UCL	1057	99% Chebyshev(Mean, Sd) UCL	1376

Suggested UCL to Use

95% Student's-t UCL 703.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/19/2015 10:23 From File $WorkSheet_c.xls$ **Full Precision** OFF ConfidenceCoefficient Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	4.3 Mean	9.425
Maximum	13.1 Median	10.15
SD	3.927 Std. Error of Mean	1.964
Coefficient of Variation	0.417 Skewness	-0.797

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

0.942 Shapiro Wilk GOF Test

Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.227 Lilliefors GOF Test 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 95% Adjusted-CLT UCL (Chen-1995) 14.05 11.82 95% Modified-t UCL (Johnson-1978) 13.92

Gamma GOF Test

0.346 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.659 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.262 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.396 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

k hat (MLE)	6.149	k star (bias corrected MLE)	1.704
Theta hat (MLE)	1.533	Theta star (bias corrected MLE)	5.532
nu hat (MLE)	49.19	nu star (bias corrected)	13.63
MLE Mean (bias corrected)	9.425	MLE Sd (bias corrected)	7.221
		Approximate Chi Square Value (0.05)	6.319
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 20.33 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

0.889 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.234 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level

Lognormal Statistics Minimum of Logged Data 1.459 Mean of logged Data 2.573 SD of logged Data Maximum of Logged Data

Assuming Lognormal Distribution

28.53 90% Chebyshey (MVUE) UCL 95% H-UCI 16.55 95% Chebyshev (MVUE) UCL 19.74 97.5% Chebyshev (MVUE) UCL 24.16 99% Chebyshev (MVUE) UCL

2.16

0.502

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonnarametric Distribution Free LICLs

95% CLT UCL	12.65	95% Jackknife UCL	14.05
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	15.32	95% Chebyshev(Mean, Sd) UCL	17.98
97.5% Chebyshev(Mean, Sd) UCL	21.69	99% Chebyshev(Mean, Sd) UCL	28.96

Suggested UCL to Use

14.05 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

 Date/Time of Computation
 2/19/2015 10:23

 From File
 WorkSheet_c.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

 Total Number of Observations
 4 Number of Distinct Observations
 4 Number of Missing Observations
 4 Number of Missing Observations
 4 Number of Missing Observations
 5 SS

 Maximum
 1.7 Median
 4.2

 SD
 4.392 Std. Error of Mean
 2.196

 Coefficient of Variation
 0.806 Skewness
 1.428

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.889 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.282 Lilliefors GOF Test 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 10.62
 95% Adjusted-CLT UCL (Chen-1995)
 10.74

 95% Modified-t UCL (Johnson-1978)
 10.88

Gamma GOF Test

A-D Test Statistic 0.236 Anderson-Darling Gamma GOF Test

5% A-D Critical Value

K-S Test Statistic

0.199 Kolmogrov-Smirnoff Gamma GOF Test

K-S Critical Value

0.398 Detected data appear Gamma Distributed at 5% Significance Level

0.398 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 2.216 k star (bias corrected MLE) 0.721 Theta hat (MLE) 7.562 2.459 Theta star (bias corrected MLE) nu hat (MLE) 17.73 nu star (bias corrected) 5.766 MLE Mean (bias corrected) 5.45 MLE Sd (bias corrected) 6.42 Approximate Chi Square Value (0.05) 1.521 Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))
20.66 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.997 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.164 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 0.531 Mean of logged Data
 1.453

 Maximum of Logged Data
 2.46 SD of logged Data
 0.809

Assuming Lognormal Distribution

 95% H-UCL
 76.22
 90% Chebyshev (MVUE) UCL
 11.65

 95% Chebyshev (MVUE) UCL
 14.48
 97.5% Chebyshev (MVUE) UCL
 18.41

 99% Chebyshev (MVUE) UCL
 26.12

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 9.062 95% Jackknife UCL 10.62 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 12.04 95% Chebyshev(Mean, Sd) UCL 15.02 97.5% Chebyshev(Mean, Sd) UCL 19.16 99% Chebyshev(Mean, Sd) UCL 27.3

Suggested UCL to Use

95% Student's-t UCL 10.62

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/19/2015 10:23

 From File
 WorkSheet_c.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

 Total Number of Observations
 4 Number of Distinct Observations Number of Missing Observations
 4 Number of Missing Observations
 4 Number of Missing Observations
 5 Observations

 Minimum
 119 Mean
 265.3

 Maximum
 57 Median
 192.5

 SD
 197.8 Std. Error of Mean
 98.89

 Coefficient of Variation
 0.746 Skewness
 1.799

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.792 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.372 Lilliefors GOF Test 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 498
 95% Adjusted-CLT UCL (Chen-1995)
 523

 95% Modified-t UCL (Johnson-1978)
 512.8

Gamma GOF Test

A-D Test Statistic 0.446 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.659 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.344 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.397 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 2.996 k star (bias corrected MLE) 0.916 Theta hat (MLE) 88.55 Theta star (bias corrected MLE) 289.7 nu hat (MLE) 23.97 nu star (bias corrected) 7.325 MLE Mean (bias corrected) 265.3 MLE Sd (bias corrected) 277.2 Approximate Chi Square Value (0.05) 2.35 Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 826.6 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.91 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.303 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Mlinimum of Logged Data
 4.779 Mean of logged Data
 5.405

 Maximum of Logged Data
 6.323 SD of logged Data
 0.654

Assuming Lognormal Distribution

 95% H-UCL
 1521
 90% Chebyshev (MVUE) UCL
 506.8

 95% Chebyshev (MVUE) UCL
 618.7
 97.5% Chebyshev (MVUE) UCL
 774

 99% Chebyshev (MVUE) UCL
 1079

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs 95% CLT UCL

427.9 95% Jackknife UCL 498 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 561.9 95% Chebyshev(Mean, Sd) UCL 696.3 97.5% Chebyshev(Mean, Sd) UCL 882.8 99% Chebyshev(Mean, Sd) UCL 1249

Suggested UCL to Use

95% Student's-t UCL 498

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/19/2015 10:41 From File WorkSheet_d.xls **Full Precision** OFF Confidence Coefficient 95% 2000 Number of Bootstrap Operations

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	0.51 Mean	1.013
Maximum	1.43 Median	0.924
SD	0.364 Std. Error of Mean	0.163
Coefficient of Variation	0.359 Skewness	-0.285

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL $5.0\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.946 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level

0.196 Lilliefors GOF Test Lilliefors Test Statistic

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution 95% UCLs (Adjusted for Skewness) 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 95% Adjusted-CLT UCL (Chen-1995) 1.258 95% Modified-t UCL (Johnson-1978) 1.356

Gamma GOF Test

A-D Test Statistic 0.316 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.679 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.213 Kolmogrov-Smirnoff Gamma GOF Test

0.358 Detected data appear Gamma Distributed at 5% Significance Level 5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics k hat (MLE) Theta hat (MLE)

8.461 k star (bias corrected MLE) 3.518 0.12 Theta star (bias corrected MLE) 0.288 84.61 nu star (bias corrected) 35.18 MLE Mean (bias corrected) 1.013 MLE Sd (bias corrected) 0.54 Approximate Chi Square Value (0.05) 22.61 0.0086 Adjusted Chi Square Value Adjusted Level of Significance 18.33

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1.576 95% Adjusted Gamma UCL (use when n<50) 1.943

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.913 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.243 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

-0.673 Mean of logged Data Minimum of Logged Data -0.04750.358 SD of logged Data Maximum of Logged Data 0.405

Assuming Lognormal Distribution

1.776 90% Chebyshev (MVUE) UCL 95% H-UCL 1.567 95% Chebyshev (MVUE) UCL 1.816 97.5% Chebyshev (MVUE) UCL 2.162 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs	
95% CLT UCL 1.20	1 95% Jackknife UCL 1.36
95% Standard Bootstrap UCL 1.25	5 95% Bootstrap-t UCL 1.437
95% Hall's Bootstrap UCL 1.44	6 95% Percentile Bootstrap UCL 1.251
95% BCA Bootstrap UCL 1.23	8
90% Chebyshev(Mean, Sd) UCL 1.50	1 95% Chebyshev(Mean, Sd) UCL 1.722
97.5% Chebyshev(Mean, Sd) UCL 2.03	9 99% Chebyshev(Mean, Sd) UCL 2.632

Suggested UCL to Use

95% Student's-t UCL 1.36

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

lear	ام	ected	Ont	ione

Date/Time of Computation 2/19/2015 10:41 From File WorkSheet_d.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	4.4 Mean	13.8
Maximum	20.6 Median	13.5
SD	6.183 Std. Error of Mean	2.765
Coefficient of Variation	0.448 Skewness	-0.791

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL $5.0\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.949 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.223 Lilliefors GOF Test 0.396 Data appear Normal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	19.7	95% Adjusted-CLT UCL (Chen-1995)	17.3
		95% Modified-t UCL (Johnson-1978)	19.53

Gamma GOF Test A-D Test Statistic

0.42 Anderson-Darling Gamma GOF Test

5% A-D Critical Value $0.681\ \ {\rm Detected\ data\ appear\ Gamma\ Distributed\ at\ 5\%\ Significance\ Level}$ K-S Test Statistic 0.29 Kolmogrov-Smirnoff Gamma GOF Test 0.358 Detected data appear Gamma Distributed at 5% Significance Level 5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

Camma Statistics		
k hat (MLE)	4.36 k star (bias corrected MLE)	1.877
Theta hat (MLE)	3.165 Theta star (bias corrected MLE)	7.352
nu hat (MLE)	43.6 nu star (bias corrected)	18.77
MLE Mean (bias corrected)	13.8 MLE Sd (bias corrected)	10.07
	Approximate Chi Square Value (0.05)	9.951
Adjusted Level of Significance	0.0086 Adjusted Chi Square Value	7.311
Accuming Commo Distribution		

95% Approximate Gamma UCL (use when n>=50)) 26.03 95% Adjusted Gamma UCL (use when n<50) 35.43

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.838 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value

0.762 Data appear Lognormal at 5% Significance Level 0.318 Lilliefors Lognormal GOF Test Lilliefors Test Statistic 5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics Minimum of Logged Data

Maximum of Logged Data	3.025 SD of logged Data	a (0.607	
Assuming Lognormal Distribution				
95% H-UCL	40.22 90% Chebyshev	v (MVUE) UCL	25.5	

1.482 Mean of logged Data

2.506

95% H-UCL	40.22 90% Chebyshev (MVUE) UCL	25.5
95% Chebyshev (MVUE) UCL	30.65 97.5% Chebyshev (MVUE) UCL	37.79
99% Chebyshev (MVUE) UCL	51.82	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Nonparametric Distribution Free UCLS			
95% CLT UCL	18.35	95% Jackknife UCL	19.7
95% Standard Bootstrap UCL	17.84	95% Bootstrap-t UCL	19.07
95% Hall's Bootstrap UCL	18.42	95% Percentile Bootstrap UCL	17.76
95% BCA Bootstrap UCL	17.04		
90% Chebyshev(Mean, Sd) UCL	22.1	95% Chebyshev(Mean, Sd) UCL	25.85
97.5% Chebyshev (Mean, Sd) UCL	31.07	99% Chebyshev(Mean, Sd) UCL	41.31

Suggested UCL to Lice

95% Student's			10

 $Note: Suggestions\ regarding\ the\ selection\ of\ a\ 95\%\ UCL\ are\ provided\ to\ help\ the\ user\ to\ select\ the\ most\ appropriate\ 95\%\ UCL.$ These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Number of Bootstrap Operations

 Date/Time of Computation
 2/19/2015 10:41

 From File
 WorkSheet_d.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	1.6 Mean	11,22
Maximum	32.6 Median	5.5
SD	12.44 Std. Error of Mean	5.562
Coefficient of Variation	1.108 Skewness	1.837

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

2000

Normal GOF Test

Shapiro Wilk Test Statistic 0.786 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.301 Lilliefors GOF Test

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 23.08
 95% Adjusted-CLT UCL (Chen-1995)
 25.25

 95% Modified-t UCL (Johnson-1978)
 23.84

Gamma GOF Test

A-D Test Statistic 0.306 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.689 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.246 Kolmogrov-SmirnoffGamma GOF Test

5% K-S Critical Value 0.363 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.196 k star (bias corrected MLE)	0.612
Theta hat (MLE)	9.379 Theta star (bias corrected MLE)	18.34
nu hat (MLE)	11.96 nu star (bias corrected)	6.119
MLE Mean (bias corrected)	11.22 MLE Sd (bias corrected)	14.34
	Approximate Chi Square Value (0.05)	1.701
Adjusted Level of Significance	0.0086 Adjusted Chi Square Value	0.875

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))
40.36 95% Adjusted Gamma UCL (use when n<50)
78.47

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.975 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.195 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.47 Mean of logged Data	1.945
Maximum of Logged Data	3.484 SD of logged Data	1.108

Assuming Lognormal Distribution

reserving cogneration	
95% H-UCL 25	3.8 90% Chebyshev (MVUE) UCL 26.6
95% Chebyshev (MVUE) UCL 33	64 97.5% Chebyshev (MVUE) UCL 43.42
99% Chebyshev (MVUE) UCL 62	54

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Nonparametric distribution Free OCLS			
95% CLT UCL	20.37	95% Jackknife UCL	23.08
95% Standard Bootstrap UCL	19.31	95% Bootstrap-t UCL	58.77
95% Hall's Bootstrap UCL	76.93	95% Percentile Bootstrap UCL	20.92
95% BCA Bootstrap UCL	22.9		
90% Chebyshev(Mean, Sd) UCL	27.9	95% Chebyshev(Mean, Sd) UCL	35.46
97.5% Chebyshev(Mean, Sd) UCL	45.95	99% Chebyshev(Mean, Sd) UCL	66.56

Suggested UCL to Use

OFOCCE I II	1101	22.00
95% Student's-		23.08

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

0.22

User Selected Options

Number of Bootstrap Operations

Date/Time of Computation 2/19/2015 10:41 From File WorkSheet_d.xls **Full Precision** OFF Confidence Coefficient 95%

General Statistics

Coefficient of Variation

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	181 Mean	360.6
Maximum	545 Median	306
SD	149.6 Std. Error of Mean	66.89

0.415 Skewness

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

2000

Normal GOF Test

Shapiro Wilk Test Statistic 0.933 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.242 Lilliefors GOF Test

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 503.2 95% Adjusted-CLT UCL (Chen-1995) 477.7 95% Modified-t UCL (Johnson-1978) 504.3

Gamma GOF Test

0.292 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.68 Detected data appear Gamma Distributed at 5% Significance Level

0.224 Kolmogrov-SmirnoffGamma GOF Test K-S Test Statistic

0.358 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics k hat (MLE)

Gaillia Statistics		
k hat (MLE) 6.865	k star (bias corrected MLE)	2.879
Theta hat (MLE) 52.53	Theta star (bias corrected MLE)	125.2
nu hat (MLE) 68.65	nu star (bias corrected)	28.79
MLE Mean (bias corrected) 360.6	MLE Sd (bias corrected)	212.5
	Approximate Chi Square Value (0.05)	17.55
Adjusted Level of Significance 0.0086	Adjusted Chi Square Value	13.85

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 591.7 95% Adjusted Gamma UCL (use when n<50) 749.5

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.941 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value $0.762\ \ Data\ appear\ Lognormal\ at\ 5\%\ Significance\ Level$

Lilliefors Test Statistic 0.197 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 5.198 Mean of logged Data 5.813 Maximum of Logged Data 6.301 SD of logged Data 0.442

Assuming Lognormal Distribution

680.2 90% Chebyshev (MVUE) UCL 95% H-UCL 574.3 95% Chebyshev (MVUE) UCL 670.7 97.5% Chebyshev (MVUE) UCL 804.4 99% Chebyshev (MVUE) UCL 1067

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonnarametric Distribution Free LICEs

Nonparametric distribution Free OCLS			
95% CLT UCL	470.6	95% Jackknife UCL	503.2
95% Standard Bootstrap UCL	458.1	95% Bootstrap-t UCL	607.3
95% Hall's Bootstrap UCL	828.2	95% Percentile Bootstrap UCL	459.8
95% BCA Bootstrap UCL	449.4		
90% Chebyshev(Mean, Sd) UCL	561.3	95% Chebyshev(Mean, Sd) UCL	652.2
97.5% Chebyshev(Mean, Sd) UCL	778.3	99% Chebyshev(Mean, Sd) UCL	1026

Suggested UCL to Use

503.2 95% Student's-t UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/19/2015 10:47 From File WorkSheet_d.xls **Full Precision** OFF ConfidenceCoefficient Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	0.51 Mean	0.877
Maximum	1.1 Median	0.948
SD	0.258 Std. Error of Mean	0.129
Coefficient of Variation	0.295 Skewness	-1.402

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

0.895 Shapiro Wilk GOF Test

Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.28 Lilliefors GOF Test 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution 95% UCLs (Adjusted for Skewness) 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 1.18 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)

Gamma GOF Test

0.455 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

0.992

K-S Test Statistic 0.318 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	12.62	star (bias corrected MLE)	3.322
Theta hat (MLE)	0.0695 1	Theta star (bias corrected MLE)	0.264
nu hat (MLE)	101 r	nu star (bias corrected)	26.57
MLE Mean (bias corrected)	0.877 1	VILE Sd (bias corrected)	0.481
	, i	Approximate Chi Square Value (0.05)	15.82
Adjusted Level of Significance	N/A A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1.472 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

0.839 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.322 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics Minimum of Logged Data -0.673 Mean of logged Data -0.1720.0953 SD of logged Data Maximum of Logged Data 0.345

Assuming Lognormal Distribution

1.605 90% Chebyshev (MVUF) UCL 95% H-UCI 1.331 95% Chebyshev (MVUE) UCL 1.535 97.5% Chebyshev (MVUE) UCL 1.819 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonnarametric Distribution Free LICLs

95% CLT UCL	1.089	95% Jackknife UCL	1.18
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	1.264	95% Chebyshev(Mean, Sd) UCL	1.439
97.5% Chebyshev(Mean, Sd) UCL	1.683	99% Chebyshev(Mean, Sd) UCL	2.161

Suggested UCL to Use

1.18 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Date/Time of Computation 2/19/2015 10:47 From File WorkSheet_d.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	4.1 Mean	12.18
Maximum	21.5 Median	11.55
SD	8.824 Std. Error of Mean	4.412
Coefficient of Variation	0.725 Skewness	0.129

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL $5.0\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.85 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level 0.285 Lilliefors GOF Test Lilliefors Test Statistic 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution 95% UCLs (Adjusted for Skewness) 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 22.56 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)

Gamma GOF Test

A-D Test Statistic 0.484 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance Level

19.74

22.61

2.253

0.305 Kolmogrov-Smirnoff Gamma GOF Test K-S Test Statistic

5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	2.182 k star (bias corrected N	ALE) 0.712
Theta hat (MLE)	5.579 Theta star (bias correct	ted MLE) 17.09
nu hat (MLE)	17.46 nu star (bias corrected)	5.698
MLE Mean (bias corrected)	12.18 MLE Sd (bias corrected) 14.43
	Approximate Chi Squar	re Value (0.05) 1.488
Adjusted Level of Significance	N/A Adjusted Chi Square Va	alue N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 46.63 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

0.848 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level 0.273 Lilliefors Lognormal GOF Test Lilliefors Test Statistic 5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics Minimum of Logged Data

Maximum of Logged Data	3.068 SD of logged Data	0.844
Assuming Lognormal Distribution		
95% H-UCL	217.4 90% Chebyshev (MVUE) UCL	27.01
OFFICE A TANKET LICE	22 C2 C7 E8/ Ch-hh (NA/UE) UCI	42.05

1.411 Mean of logged Data

95% Chebyshev (MVUE) UCL 33.68 97.5% Chebyshev (MVUE) UCL 42.95 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

stuis Distuibution Fues IICI

Nonparametric Distribution Free UCLs			
95% CLT UCL	19.43	95% Jackknife UCL	22.56
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev (Mean, Sd) UCL	25.41	95% Chebyshev(Mean, Sd) UCL	31.41
97.5% Chebyshev(Mean, Sd) UCL	39.73	99% Chebyshev(Mean, Sd) UCL	56.07

Suggested UCL to Use

95% Student's-t UCL 22.56

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

2/19/2015 10:47 Date/Time of Computation From File WorkSheet_d.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations 4 Number of Distinct Observations Number of Missing Observations Minimum 1.5 Mean 12.13 Maximum 34.5 Median 6.25 SD 15.46 Std. Error of Mean 7.73 Coefficient of Variation 1.275 Skewness 1.622

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.808 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.294 Lilliefors GOF Test 0.443 Data appear Normal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution 95% UCLs (Adjusted for Skewness) 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 95% Adjusted-CLT UCL (Chen-1995)

31.54 95% Modified-t UCL (Johnson-1978) 31.36

Gamma GOF Test

A-D Test Statistic 0.354 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.67 Detected data appear Gamma Distributed at 5% Significance Level 0.293 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.404 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 0.804 k star (bias corrected MLE) 0.368 Theta hat (MLE) 15.08 Theta star (bias corrected MLE) 32.98 nu hat (MLE) 6.432 nu star (bias corrected) 2.941 MLE Mean (bias corrected) 12.13 MLE Sd (bias corrected) 20 Approximate Chi Square Value (0.05) 0.355 Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

100.4 95% Adjusted Gamma UCL (use when n<50) 95% Approximate Gamma UCL (use when n>=50)) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.92 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.257 Lilliefors Lognormal GOF Test

0.443 Data appear Lognormal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.405 Mean of logged Data 1.758 Maximum of Logged Data 3.541 SD of logged Data 1.458

Assuming Lognormal Distribution

95% H-UCL 54710 90% Chebyshev (MVUE) UCL 33.59 95% Chebyshev (MVUE) UCL 43.52 97.5% Chebyshev (MVUE) UCL 57.3 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 24.84 95% Jackknife UCL 30.32 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 35.31 95% Chebyshev(Mean, Sd) UCL 45.82 97.5% Chebyshev(Mean, Sd) UCL 60.4 99% Chebyshev(Mean, Sd) UCL 89.04

Suggested UCL to Use

30.32 95% Student's-t UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Number of Bootstrap Operations

Date/Time of Computation 2/19/2015 10:47
From File WorkSheet_d.xls
Full Precision OFF
Confidence Coefficient 95%

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	183 Mean	301.8
Maximum	445 Median	289.5
SD	108 Std. Error of Mean	54.01
Coefficient of Variation	0.358 Skewness	0.665

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

2000

Normal GOF Test

Shapiro Wilk Test Statistic 0.949 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.271 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 428.9
 95% Adjusted-CLT UCL (Chen-1995)
 409.8

 95% Modified-t UCL (Johnson-1978)
 431.9

Gamma GOF Test

A-D Test Statistic 0.281 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.233 Kolmogrov-SmirnoffGamma GOF Test

5% K-S Critical Value 0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	10.42 k star	(bias corrected MLE)	2.771
Theta hat (MLE)	28.96 Theta	star (bias corrected MLE)	108.9
nu hat (MLE)	83.35 nu sta	ar (bias corrected)	22.17
MLE Mean (bias corrected)	301.8 MLE 5	Sd (bias corrected)	181.3
	Appro	oximate Chi Square Value (0.05)	12.47
Adjusted Level of Significance	N/A Adjus	ted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 536.6 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.965 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.233 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 5.209 Mean of logged Data 5.661 Maximum of Logged Data 6.098 SD of logged Data 0.363

Assuming Lognormal Distribution

 95% H-UCL
 578.3
 90% Chebyshev (MVUE) UCL
 464.7

 95% Chebyshev (MVUE) UCL
 538.5
 97.5% Chebyshev (MVUE) UCL
 640.9

 99% Chebyshev (MVUE) UCL
 842

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Nonparametric distribution rice occs			
95% CLT UCL	390.6	95% Jackknife UCL	428.9
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	463.8	95% Chebyshev(Mean, Sd) UCL	537.2
97.5% Chebyshev(Mean, Sd) UCL	639.1	99% Chebyshev(Mean, Sd) UCL	839.2

Suggested UCL to Use

95% Student's-t UCL 428.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

	2/19/2015 10:55			
From File	WorkSheet_d.xls			
Full Precision Confidence Coefficient	OFF 95%			
Number of Bootstrap Operation				
General Statistics				
Total Number of Observations			Number of Distinct Observations	9
Number of Detects Number of Distinct Detects			Number of Non-Detects Number of Distinct Non-Detects	1
Minimum Detect		0.601	Minimum Non-Detect	0.5
Maximum Detect Variance Detects			Maximum Non-Detect Percent Non-Detects	0.5 20%
Mean Detects			SD Detects	0.0814
Median Detects			CV Detects	0.117
Skewness Detects Mean of Logged Detects			Kurtosis Detects SD of Logged Detects	1.436 0.117
Note: Sample size is small (e.g.,				
guidance provided in ITRC Tech For example, you may want to t Chebyshev UCL can be compute	use Chebyshev UCL to estim	ate EPC (ITRC, 2	2012).	
Normal GOF Test on Detects Or	nty			
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value			Shapiro Wilk GOF Test Detected Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic			Lilliefors GOF Test	
5% Lilliefors Critical Value	+ F0/ 511611	0.443	95% UCLs (Adjusted for Skewness)	
Detected Data appear Normal a	it 5% Significance Level			
Kaplan-Meier (KM) Statistics us	ing Normal Critical Values a			
Mean SD			Standard Error of Mean 95% KM (BCA) UCL	0.0522 N/A
95% KM (t) UCL			95% KM (Percentile Bootstrap) UCL	N/A N/A
95% KM (z) UCL		0.744	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL 97.5% KM Chebyshev UCL			95% KM Chebyshev UCL 99% KM Chebyshev UCL	0.886 1.177
			•	
Gamma GOF Tests on Detected A-D Test Statistic	Observations Only	0.275	Anderson-Darling GOF Test	
5% A-D Critical Value			Detected data appear Gamma Distributed at 5% Signific	ance Level
K-S Test Statistic 5% K-S Critical Value		0.222	Kolmogrov-Smirnoff GOF Detected data appear Gamma Distributed at 5% Signific	
5% K-5 Critical Value Detected data appear Gamma E	Distributed at 5% Significanc		Detected data appear Gamma Distributed at 5% Signific	ance Level
Gamma Statistics on Detected I	Data Only			
k hat (MLE)			k star (bias corrected MLE)	24.62
Theta hat (MLE) nu hat (MLE)			Theta star (bias corrected MLE) nu star (bias corrected)	0.0283 197
MLE Mean (bias corrected)			MLE Sd (bias corrected)	0.141
Gamma Kaplan-Meier (KM) Stat	tistics			
k hat (KM)	(433.53)		nu hat (KM)	423.6 357.4
Approximate Chi Square Value (95% Gamma Approximate KM			Adjusted Chi Square Value (423.63, β) 95% Gamma Adjusted KM-UCL (use when n<50)	0.78
Gamma ROS Statistics using Imp GROS may not be used when do GROS may not be used when ks For such situations, GROS meth	ata set has > 50% NDs with r star of detected data is smal od tends to yield inflated va	such as < 0.1 lues of UCLs ar		
Minimum	o oata, or vs and occs may i		Mean	0.657
Maximum			Median	0.689
		0.115 38.64		0.175
k hat (MLE)		38.64	k star (bias corrected MLE) Theta star (bias corrected MLE)	15.59
k hat (MLE) Theta hat (MLE) nu hat (MLE)		38.64 0.017 386.4	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	15.59 0.0421 155.9
k hat (MLE) Theta hat (MLE) nu hat (MLE)		38.64 0.017 386.4	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected)	15.59 0.0421
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (38.64 0.017 386.4 0.657	k star (bias corrected MLE) Theta star (bias corrected MLE) nut star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (155.89, β)	15.59 0.0421 155.9 0.166 0.0086
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)		38.64 0.017 386.4 0.657	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE 3d (bias corrected) Adjusted Level of Significance (β)	15.59 0.0421 155.9 0.166 0.0086
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognormal GOF Test on Detecte	L (use when n>=50)	38.64 0.017 386.4 0.657 128 0.8	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50)	15.59 0.0421 155.9 0.166 0.0086
chat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognomal GOF Test on Detecte Shapiro Wilk Test Statistic	L (use when n>=50)	38.64 0.017 386.4 0.657 128 0.8	k star (bias corrected MLE) Theta star (bias corrected MLE) nut star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (155.89, β)	15.59 0.0421 155.9 0.166 0.0086 117 N/A
Ahat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic	L (use when n>=50)	38.64 0.017 386.4 0.657 128 0.8 0.967 0.748	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted velo fisjanificance (β) Adjusted Chi Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test	15.59 0.0421 155.9 0.166 0.0086 117 N/A
SD k hat (MLE) Theta hat (MLE) ru hat (MLE) ru hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic %% Shapiro Wilk Critical Value Lilliefors Test Statistic Sk Shapiro Wilk Critical Value betieted Data appear Lognorm	L (use when n>=50) ed Observations Only	38.64 0.017 386.4 0.657 128 0.8 0.967 0.748	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) MLE Sd (bias corrected) Adjusted tevel of Significance (β) Adjusted tevel of Significance (β) Adjusted ucl (bi Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev	15.59 0.0421 155.9 0.166 0.0086 117 N/A
k hat (MLE) Theta hat (MLE) Thu hat (MLE) MLE Mean (bias corrected) MLE Mean (bias corrected) 95% Gamma Approximate UC Lognormal GOF Test on Detect Sys Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognorm	L (use when n>=50) ed Observations Only al at 5% Significance Level	38.64 0.017 386.4 0.657 128 0.8 0.967 0.748	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted velo fisjanificance (β) Adjusted Chi Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test	15.59 0.0421 155.9 0.166 0.0086 117 N/A
k hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognormal GOF Test on Detects Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognorm Lognormal ROS Statistics Using Mean in Original Scale	L (use when n>=50) ed Observations Only al at 5% Significance Level	38.64 0.017 386.4 0.657 128 0.8 0.967 0.748 0.226 0.443	k star (bias corrected MLE) Theta star (bias corrected MLE) mustar (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted tevel of significance (β) Adjusted chi of Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale	15.59 0.0421 155.9 0.166 0.0086 117 N/A
k hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognomal GOF Test on Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Shapiro Wilk Critical Value Detected Data appear Lognorm Lognomal ROS Statistics Using Mean in Original Scale	L (use when n>=50) ed Observations Only al at 5% Significance Level Imputed Non-Detects	38.64 0.017 386.4 0.657 128 0.8 0.967 0.748 0.226 0.443	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted (cold of Significance (β) Adjusted Chi Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale SD in Log Scale	15.59 0.0421 155.9 0.166 0.0088 117 N/A
k hat (MLE) Theta hat (MLE) Theta hat (MLE) THE A HAT (MLE) MLE Mean (bias corrected) MLE Mean (bias corrected) MLE Mean (bias corrected) MS (MLE)	L (use when n>=50) ed Observations Only al at 5% Significance Level Imputed Non-Detects	38.64 0.017 38.64 0.657 128 0.8 0.967 0.743 0.226 0.443 0.666 0.109 0.764 0.724	k star (bias corrected MLE) Theta star (bias corrected MLE) mustar (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted tevel of significance (β) Adjusted chi of Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale	15.59 0.0421 155.9 0.166 0.0086 117 N/A
k hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognormal GOF Test on Detects Shapiro Wilk Test Statistic \$% Shapiro Wilk Critical Value Lilliefors Test Statistic \$% Lilliefors Test Statistic \$% Lilliefors Critical Value Detected Data appear Lognorm Lognormal ROS Statistics Using Moan in Original Scale \$50 in Original Scale \$55 ti UCL (assumes normality	L (use when n>=50) ed Observations Only al at 5% Significance Level Imputed Non-Detects	38.64 0.017 38.6.4 0.657 128 0.8 0.967 0.748 0.226 0.443	k star (bias corrected MLE) Theta star (bias corrected MLE) un star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) Adjusted Unit Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	15.59 0.0421 155.9 0.166 0.0086 117 N/A
k hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognomnal GOF Test on Detect Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Libitions Test Statistic Side for Statistic Value Detected Data appear Lognorm Lognormal ROS Statistics Using Mean in Original Scale SS in Original Scale UC (assumes normality 95% BCA BOASTIAP UCL 95% H-UCL (Log ROS) UCLS using Lognormal Distributi	L (use when n>=50) ed Observations Only all at 5% Significance Level Imputed Non-Detects y of ROS data)	38.64 0.017 38.6.4 0.657 128 0.8 0.967 0.748 0.226 0.443 0.666 0.109 0.764 0.722	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted (vol of Significance (β) Adjusted vol of Significance (β) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Ulliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale 50 in Log Scale 50 in Log Scale 50 Significance Lev are Lognormally Distributed	15.59 0.0421 155.9 0.166 0.0086 117 N/A eel eel -0.427 0.171 0.735
k hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognomal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognorm Lognomal ROS Statistics Using Mean in Original Scale Spisk tUC (assumes normality 95% BCA Bootstrap UCL 95% H-UCL (log ROS) UCLs using Lognormal Distribut KM Mean (logged)	L (use when n>=50) ed Observations Only all at 5% Significance Level Imputed Non-Detects y of ROS data)	38.64 0.017 38.64 0.657 128 0.8 0.967 0.748 0.226 0.443 0.266 0.109 0.766 0.109 0.764 0.722 0.795 0.70	k star (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted (bias (bias corrected) Adjusted (bis (bias corrected) Adjusted (bi Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM -Log)	15.59 0.0421 155.9 0.166 0.0086 117 N/A rel -0.427 0.171 0.736 0.765
k hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) MLE Mean MLE Test on Detecte Shapiro Wilk Test Statistic SM Shapiro Wilk Critical Value Lilliefors Test Statistic SM Shapiro Wilk Critical Value Detected Data appear Lognorm Lognormal ROS Statistics Using Mean in Original Scale SD in Original Scale DI in Original Scale SM MLE CL (Log ROS) UCLS using Lognormal Distribut MCM Mean (logged) MCM SO (logged)	L (use when n>=50) ed Observations Only al at 5% Significance Level Imputed Non-Detects y of ROS data) ion and KM Estimates when	38.64 0.017 38.64 0.657 128 0.8 0.967 0.748 0.226 0.443 0.266 0.109 0.766 0.109 0.764 0.722 0.795 0.70	k star (bias corrected MLE) Theta star (bias corrected MLE) un star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Sdapisted Chi Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% HUCL (KM-Log) 95% Critical Hyblie (KM-Log)	15.59 0.0421 155.9 0.166 0.0086 117 N/A rel -0.427 0.171 0.736 0.765
chat (MLE) theta hat (MLE) up that (MLE) MLE Mean (bias corrected) MLE Mean (All Corrected) MLE MEAN (All Corrected) MLE MEAN (MLE MEAN (MLE) MLE MEAN (MLE) MLE MLE MLE) MLE	L (use when n>=50) ed Observations Only al at 5% Significance Level Imputed Non-Detects y of ROS data) ion and KM Estimates when	38.64 0.017 386.4 0.657 128 0.8 0.967 0.748 0.226 0.443 0.764 0.772 0.795	k star (bias corrected MLE) Theta star (bias corrected MLE) un star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Sdapisted Chi Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL are Lognormally Distributed 95% HUCL (KM-Log) 95% Critical Hyblie (KM-Log)	15.59 0.0421 155.9 0.166 0.0086 117 N/A rel -0.427 0.171 0.736 0.765
Chat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) MLE Mean (All Color of Mean (All Color of Mean (All Color of Mean (All Color of Mean (Mean (All Color of Mean (Mean (Me	L (use when n>=50) ed Observations Only al at 5% Significance Level Imputed Non-Detects y of ROS data) ion and KM Estimates when	38.64 0.017 38.64 0.657 128 0.86 0.967 0.748 0.262 0.443 0.266 0.109 0.764 0.722 0.795 0.795	k star (bias corrected MLE) Theta star (bias corrected MLE) un star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted (seel of Significance (β) Adjusted Chi Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Levilliefors GOF Test Detected Data appear Lognormal at 5% Significance Levilliefors GOF Test Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal est 6% Significance Levilliefors GOF est 6% Significance Levilliefors GOF est 6% Significance Levilliefors GOF e	15.59 0.0421 155.9 0.166 0.0086 117 N/A el el el -0.427 0.171 0.736 0.765
khat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognorm Lognormal ROS Statistics Using Mean in Original Scale S95% tUC (Lognormal Scale S95% H-UCL (Log ROS) UCLS using Lognormal Distribut KM Mean (logged) KM Standard Error of Mean (log NCM Standard Error of Mean (log	L (use when n>=50) ed Observations Only al at 5% Significance Level Imputed Non-Detects y of ROS data) ion and KM Estimates when	38.64 0.017 386.4 0.657 128 0.86 0.967 0.748 0.226 0.443 0.764 0.772 0.795 Detected data 0.431 0.159 0.0823	k star (bias corrected MLE) Theta star (bias corrected MLE) un star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted velor of Significance (β) Shapiro Wilk GOF Tex Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale SD in Log Scale SD in Log Scale SS% Bootstrap t UCL are Lognormally Distributed 95% H-UCL (KM-Log) DL/2 Log-Transformed Mean in Log Scale	15.59 0.0421 155.9 0.166 0.0088 117 N/A eel eel -0.427 0.171 0.736 0.765
khat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognorm Lognormal ROS Statistics Using Mean in Original Scale S95% tUC (Lognormal Scale S95% H-UCL (Log ROS) UCLS using Lognormal Distribut KM Mean (logged) KM Standard Error of Mean (log NCM Standard Error of Mean (log	L (use when n>=50) ed Observations Only all at \$% Significance Level Imputed Non-Detects y of ROS data) ion and KM Estimates when	38.64 0.017 386.4 0.657 128 0.8 0.967 0.748 0.262 0.443 0.722 0.795 0.70	k star (bias corrected MLE) Theta star (bias corrected MLE) un star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted (seel of Significance (β) Adjusted Chi Square Value (155.89, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Levilliefors GOF Test Detected Data appear Lognormal at 5% Significance Levilliefors GOF Test Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal at 5% Significance Levilliefors GOF est Detected Data appear Lognormal est 6% Significance Levilliefors GOF est 6% Significance Levilliefors GOF est 6% Significance Levilliefors GOF e	15.59 0.0421 155.9 0.166 0.0086 117 N/A eel eel -0.427 0.171 0.735
Chat (MLE) Theta hat (L (use when n>=50) ed Observations Only al at 5% Significance Level Imputed Non-Detects y of ROS data) ion and KM Estimates when sged)	38.64 0.017 386.4 0.657 128 0.88 0.967 0.748 0.222 0.443 0.764 0.775 0.795 0.795 0.0823	k star (bias corrected MLE) Theta star (bias corrected MLE) un star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Stapiro Wilk GOF Tex Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Detected Data appear Lognorma	15.59 0.0421 155.9 0.166 0.0086 117 N/A el el el -0.427 0.171 0.735 0.765
k hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic 5% Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Billiefors Test Statistic 5% Shapiro Wilk Critical Value Detected Data appear Lognorm Lognormal ROS Statistics Using Mean in Original Scale 50 in Original Scale 55% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distribut MM Mean (logged) KM Standard Error of Mean (log DL/2 Statistics DL/2 Normal Mean in Original Scale 50 Syst UCL (Susumes normality DL/2 is not a recommended me Nonparametric Distribution Fre	L (use when n>=50) ed Observations Only all at 5% Significance Level Imputed Non-Detects y of ROS data) ion and KM Estimates when sged} y) thod, provided for comparis e UCL Statistics	38.64 0.017 386.4 0.657 128 0.88 0.967 0.748 0.226 0.443 0.668 0.109 0.764 0.722 0.795 Detected data 0.431 0.1595 0.0823	k star (bias corrected MLE) Theta star (bias corrected MLE) un star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Stapiro Wilk GOF Tex Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Detected Data appear Lognorma	15.59 0.0421 155.9 0.166 0.0086 117 N/A el el el -0.427 0.171 0.735 0.765
k hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Detected Data appear Lognorm Lognormal ROS Statistics Using Mean in Original Scale Shapiro Wilk Critical Value Mean in Original Scale Shapiro Wilk Critical Value Mean in Original Scale Shapiro Wilk Mean (logged) KM Standard Error of Mean (log DL/2 Statistics DL/2 Statistics DL/2 Statistics DL/2 Statistics DL/2 Normal Mean in Original Scale Shi Critical Wilk Mean in Original Scale Shi Original Scale Shi Critical Wilk Mean in Original Scale Shi Original Scale Shi Original Scale Normal Test Commended me Normarametric Distribution Fre Detected Data appear Normal IT	L (use when n>=50) ed Observations Only all at 5% Significance Level Imputed Non-Detects y of ROS data) ion and KM Estimates when sged} y) thod, provided for comparis e UCL Statistics	38.64 0.017 386.4 0.657 128 0.88 0.967 0.748 0.226 0.443 0.668 0.109 0.764 0.722 0.795 Detected data 0.431 0.1595 0.0823	k star (bias corrected MLE) Theta star (bias corrected MLE) un star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Stapiro Wilk GOF Tex Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Detected Data appear Lognorma	15.59 0.0421 155.9 0.166 0.0086 117 N/A el el el -0.427 0.171 0.735 0.765
Le hat (MLE) Theta hat (MLE) Theta hat (MLE) Theta hat (MLE) MLE Mean (bias corrected) MLE Corrected MLE Corrected MLE Corrected MLE	L (use when n>=50) ed Observations Only all at 5% Significance Level Imputed Non-Detects y of ROS data) ion and KM Estimates when sged} y) thod, provided for comparis e UCL Statistics	38.64 0.017 386.4 0.657 128 0.8 0.967 0.748 0.262 0.443 0.722 0.795 0.795 0.70	k star (bias corrected MLE) Theta star (bias corrected MLE) un star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Adjusted velor of Significance (β) Stapiro Wilk GOF Tex Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev Detected Data appear Lognorma	15.59 0.0421 155.9 0.166 0.0086 117 N/A el el el -0.427 0.171 0.735 0.765

Note: Suggestions regarding the selection of a 95% UCL. are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options Date/Time of Computation 2/19/2015 10:55			
From File WorkSheet_d.xls Full Precision OFF			
Confidence Coefficient 95% Number of Bootstrap Operations 2000			
General Statistics Total Number of Observations		Number of Distinct Observations	
Number of Detects Number of Distinct Detects		Number of Non-Detects Number of Distinct Non-Detects	
Minimum Detect		Minimum Non-Detect	2.
Maximum Detect		Maximum Non-Detect	2.
Variance Detects Mean Detects		Percent Non-Detects	209 5.65
Median Detects		CV Detects	0.59
Skewness Detects		Kurtosis Detects	0.074
Mean of Logged Detects	2.071	SD of logged Detects	0.75
Note: Sample size is small (e.g., <10), if data are collected us guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 201 For example, you may want to use Chebyshev UCL to estima Chebyshev UCL can be computed using the Nonparametric a	(2) to compute te EPC (ITRC,)	e statistics of interest. 2012).	
Normal GOF Test on Detects Only	M/A	Shapira Will GOE Tact	
Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	N/A 0.748	Shapiro Wilk GOF Test Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic		Ulliefors GOF Test	
5% Lilliefors Critical Value Detected Data appear Approximate Normal at 5% Significan		95% UCLs (Adjusted for Skewness)	
Kaplan-Meier (KM) Statistics using Normal Critical Values an Mean		erametric UCLs . Standard Error of Mean	2.68
SD		95% KM (BCA) UCL	N/A
95% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL 90% KM Chebyshev UCL		95% KM Bootstrap t UCL 95% KM Chebyshev UCL	N/A 19.8
97.5% KM Chebyshev UCL 97.5% KM Chebyshev UCL		99% KM Chebyshev UCL 99% KM Chebyshev UCL	34.83
Gamma GOF Tests on Detected Observations Only			
A-D Test Statistic	0.244	Anderson-Darling GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Signif	icance Level
K-S Test Statistic 5% K-S Critical Value		Kolmogrov-Smirnoff GOF Detected data appear Gamma Distributed at 5% Signif	icance Level
Detected data appear Gamma Distributed at 5% Significance			
Gamma Statistics on Detected Data Only			
k hat (MLE)		k star (bias corrected MLE)	0.9 10.55
Theta hat (MLE) nu hat (MLE)		Theta star (bias corrected MLE) nu star (bias corrected)	7.204
MLE Mean (bias corrected)		MLE Sd (bias corrected)	10.01
Gamma Kaplan-Meier (KM) Statistics			
k hat (KM)		nu hat (KM)	24.27
Approximate Chi Square Value (24.27, α) 95% Gamma Approximate KM-UCL (use when n>=50)		Adjusted Chi Square Value (24.27, β) 95% Gamma Adjusted KM-UCL (use when n<50)	10.81 18.18
GROS may not be used when kstar of detected data is small For such situations, GROS method tends to yield inflated val For gamma distributed detected data, BTVs and UCLs may b Minimum	ues of UCLs ar e computed u 0.01	sing gamma distribution on KM estimates Mean	7.602
Maximum SD	16.3 6.481	Median	7.9 0.852
k hat (MLE)		k star (bias corrected MLE)	0.33
Theta hat (MLE)		Theta star (bias corrected MLE)	23.01
nu hat (MLE)		nu star (bias corrected)	3.304
MLE Mean (bias corrected)	7.602	MLE 5d (bias corrected) Adjusted Level of Significance (β)	13.23 0.0086
Approximate Chi Square Value (3.30, α) 95% Gamma Approximate UCL (use when π>=50)		Adjusted Chi Square Value (3.30, β) 95% Gamma Adjusted UCL (use when n<50)	0.178 N/A
Lognormal GOF Test on Detected Observations Only	33.00	33/0 Gamma Aujusted Gee (use when 1150)	19/4
Shapiro Wilk Test Statistic	0.937	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		Detected Data appear Lognormal at 5% Significance Le	evel
Lilliefors Test Statistic 5% Lilliefors Critical Value		: tilliefors GOF Test : Detected Data appear Lognormal at 5% Significance Lo	vel
Detected Data appear Lognormal at 5% Significance Level			
Lognormal ROS Statistics Using Imputed Non-Detects			
Mean in Original Scale SD in Original Scale		Mean in Log Scale . SD in Log Scale	1.68
95% t UCL (assumes normality of ROS data)	13.7		11.88
95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	11.92 170.3	95% Bootstrap t UCL	14.32
UCLs using Lognormal Distribution and KM Estimates when E KM Mean (logged)	Detected data 1.84		34.7
KM SD (logged)	0.745	95% Critical H Value (KM-Log)	3.84
KM Standard Error of Mean (logged)	0.385		
DL/2 Statistics DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	7.85	Mean in Log Scale	1.702
SD in Original Scale 95% t UCL (Assumes normality)	6.132 13.7	SD in Log Scale 95% H-Stat UCL	1.054
DL/2 is not a recommended method, provided for compariso			213.2
Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Normal Distributed at 55	% Significance	Level	
Suggested UCL to Use			
95% KM (I) UCL	13.82	95% KM (Percentile Bootstrap) UCL	N/A
Warning: One or more Recommended UCL(s) not available!			
Note: Suggestions regarding the selection of a 95% UCL are p			
Recommendations are based upon data size, data distribution. These recommendations are based upon the results of the size.			
However, simulations results will not cover all Real World da			ian.

1778118

2/19/2015 10:55 Date/Time of Computation WorkSheet_d.xls From File Full Precision Confidence Coefficient 95% 2000 Number of Bootstrap Operations

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	0.6 Mean	7.78
Maximum	26 Median	5.4
SD	10.45 Std. Error of Mean	4.673
Coefficient of Variation	1 343 Skewness	1 961

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.739 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.379 Lilliefors GOF Test

0.396 Data appear Normal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution 95% UCLs (Adjusted for Skewness) 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)

19.85

18.43

Gamma GOF Test

A-D Test Statistic 0.331 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.698 Detected data appear Gamma Distributed at 5% Significance Level 0.247 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.367 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 0	.765 k star (bias corrected MLE)	0.439
Theta hat (MLE)	0.17 Theta star (bias corrected MLE)	17.71
nu hat (MLE) 7	.652 nu star (bias corrected) 4	4.394
MLE Mean (bias corrected)	7.78 MLE Sd (bias corrected) 1	11.74
	Approximate Chi Square Value (0.05)	0.883
Adjusted Level of Significance 0.0	0086 Adjusted Chi Square Value C	0.382

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 38.7 95% Adjusted Gamma UCL (use when n<50) 89.41

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.954 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.211 Lilliefors Lognormal GOF Test

0.396 Data appear Lognormal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.511 Mean of logged Data 1.271 Maximum of Logged Data 3.258 SD of logged Data 1.475

Assuming Lognormal Distribution

95% H-UCL 1856 90% Chebyshev (MVUE) UCL 21.5 95% Chebyshev (MVUE) UCL 27.75 97.5% Chebyshev (MVUE) UCL 36.42 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	15.47	95% Jackknife UCL	17.74
95% Standard Bootstrap UCL	14.71	95% Bootstrap-t UCL	36.7
95% Hall's Bootstrap UCL	53.89	95% Percentile Bootstrap UCL	16.08
95% BCA Bootstrap UCL	17.76		
90% Chebyshev(Mean, Sd) UCL	21.8	95% Chebyshev(Mean, Sd) UCL	28.15
97.5% Chebyshev(Mean, Sd) UCL	36.97	99% Chebyshev(Mean, Sd) UCL	54.28

Suggested UCL to Use

17.74 95% Student's-t UCL

 Date/Time of Computation
 2/19/2015 10:55

 From File
 WorkSheet_d.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	126 Mean	215.8
Maximum	273 Median	221
SD	59.41 Std. Error of Mean	26.57
Coefficient of Variation	0.275 Skewness	-0.862

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.926 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.191 Lilliefors GOF Test

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

 Assuming Normal Distribution
 95% UCLs (Adjusted for Skewness)

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 272.4
 95% Adjusted-CLT UCL (Chen-1995)

 95% Modified-t UCL (Johnson-1978)
 95% Modified-t UCL (Johnson-1978)

Gamma GOF Test

A-D Test Statistic 0.35 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.679 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.208 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.357 Detected data appear Gamma Distributed at 5% Significance Level

248.6

270.7

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	14.14 k star (bias corrected MLE)	5.789
Theta hat (MLE)	15.26 Theta star (bias corrected MLE)	37.28
nu hat (MLE)	141.4 nu star (bias corrected)	57.89
MLE Mean (bias corrected)	215.8 MLE Sd (bias corrected)	89.69
	Approximate Chi Square Value (0.05)	41.4
Adjusted Level of Significance	0.0086 Adjusted Chi Square Value	35.39

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 301.8 95% Adjusted Gamma UCL (use when n<50) 353

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.884 Shapiro Wilk Lognormal GOF Test

 5% Shapiro Wilk Critical Value
 0.762
 Data appear Lognormal at 5% Significance Level

 Lilliefors Test Statistic
 0.217
 Lilliefors Lognormal GOF Test

 5% Lilliefors Critical Value
 0.396
 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.836 Mean of logged Data	5.339
Maximum of Logged Data	5.609 SD of logged Data	0.312

Assuming Lognormal Distribution

95% H-UCL	319.5	90% Chebyshev (MVUE) UCL	306.8
95% Chebyshev (MVUE) UCL	347.7	97.5% Chebyshev (MVUE) UCL	404.5
99% Chebyshev (MVUE) UCL	516.1		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Tromporative Distribution Free Costs			
95% CLT UCL	259.5	95% Jackknife UCL	272.4
95% Standard Bootstrap UCL	254.5	95% Bootstrap-t UCL	262.4
95% Hall's Bootstrap UCL	256.4	95% Percentile Bootstrap UCL	252.2
95% BCA Bootstrap UCL	245.2		
90% Chebyshev(Mean, Sd) UCL	295.5	95% Chebyshev(Mean, Sd) UCL	331.6
97.5% Chebyshev(Mean, Sd) UCL	381.7	99% Chebyshev(Mean, Sd) UCL	480.2

Suggested UCL to Use

95% Student's-t UCL 272.4

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

imas River above mai	Arsenic	Beryllium	Cadmium	Copper	Lead	Manganese	Mercury	Selenium	Silver	Zinc	Cr	Ni	
imas River above mai 0	24.4		14.7 1	286 1	2100 1	12600 1		0.502 0	4.05 1	3180 1	4.97	1 8.95	1 May-12
61		1.0 2.53 1		466 1	2120 1	11000 1		0.505 0	7.34 1	2840 1	5.69		1 Oct-12
64	44.2			336 1	1770 1	9670 1		0.905 1	7.14 1	3470 1	4.86		1 May-13
65 66	30.3 26.9			328 1 257 1	1840 1 1750 1	12900 1 7830 1		0.504 0 0.497 0	5.53 1 5.06 1	2590 1 1950 1	4.71 4.42		1
.68	26.3			352 1	2180 1	10300 1		0.501.0	9.22 1	2830 1	4.76	1 6.68	1
.68	25.9			374 1	1890 1	12200 1	0.081 D	1.29 1	7.09 1	3030 1	5.68		1
.68	89.5		24.2 1	745 1	3030 1	22300 1	0.19 D	2.86 1	13.3 1	11500 1	5.21	1 8.76	1
60	16.4	1 2.01 0	5.84 1	166 1	554 1	3400 1	0.033 D	1.0 0	3.48 1	1530 1	6.35	9.62	1 Apr-14
61	19.8	1 2.99 1	9.02 1	638 1	891 1	6400 1	0.091 D	1.1 1	4.28 1	2530 1	5.28	1 8.56	1
64	18.8	1 2.02 0	6.25 1	199 1	1050 1	4920 1	0.053 D	1,01 0	3.59 1	1950 1	5.15	1 7.44	1
65	21.8	1 2.16 1	10.2 1	331 1	900 1	10300 1	0.073 D	1.01 0	3.87 1	2890 1	5.49	1 9.9	1
66	18.3	1 2.24 1	18.3 1	378 1	1230 1	20500 1	0.06 D	1.0 0	4.13 1	4380 1	4.07	1 10.1	1
68	19.1	1 2.82 1	15.7 1	390 1	1080 1	19700 1	0.056 D	0.998 0	4.35 1	4890 1	4.21	1 10.3	1
60	20.4	1 2.03 0	9.55 1	262 1	1610 1	7460 1	0.07 D	1.02 0	5.96 1	2130 1	3.88	1 6.26	1 Sep-14
51	20.5	1 2.1 1	4.95 1	286 1	1400 1	8210 1	0.05 D	0.995 0	5.23 1	2330 1	3.55	1 6.52	1
54	21.3	1 3.0 1	7.93 1	264 1	1120 1	6850 1	0.13 D	1.01 0	4.88 1	2730 1	3.55	1 6.84	1
65	19.4	1 1.99 0	6.82 1	271 1	1220 1	8180 1	0.03 D	0.997 0	3.61 1	1700 1	3.76	1 6.49	1
56	23.7	1 2.03 0	9.17 1	243 1	1190 1	8190 1	0.05 D	1.01 0	4.81 1	2500 1	3.7	1 7.11	1
58	17.5	1 1.97 0	10.8 1	216 1	1240 1	9430 1	0.02 JD	0.985 0	2.9 1	2480 1	3.73	1 6.56	1
count	20	20	20	20	20	20	14	20	20	20			
Max	89.5		1 24.2						1 13.3 1				
Min	16.4		0 4.95						0 2.9 1				
IVIII:													
nimas River downstre		arsenic	beryllium	cadmium	copper	lead	manganese	nickel	selenium	silver	Zinc	Hg	Cr
nimas River downstre	eam of	arsenic	beryllium	cadmium	copper	lead	manganese	nickel	selenium	silver	Zinc	Hg	Cr
nimas River downstre ainstem Mineral Creo 72 Ma	eam of ek ay-12 12200	1 40.6	1 1.97	0 2.8	1 152	1 581	1 2710	1 6.38	1 2.03 1	. 1.99	1 748	1 0.072	1 6.1
nimas River downstrr ainstem Mineral Crec 72 Ma 72 O	eam of ek	1 40.6 1 36.3	1 1.97 1 2.0	0 2.8 1.81	1 152 1 179	1 581 1 542	1 2710 1 1470	1 6.38 1 4.79	1 2.03 1 1 1.83 1	. 1.99 2.76	1 748 1 646	1 0.072 1 0.06	1 6.1 1 4.05
nimas River downstrr ainstem Mineral Cree 72 Ma 72 O 72 Ma	eam of ek	1 40.6 1 36.3 1 26.1	1 1.97 1 2 0 1 1.97 0	0 2.8 1.81 1.15	1 152 1 179 1 77.8	1 581 1 542 1 299	1 2710 1 1470 1 1210	1 6.38 1 4.79 1 4.88	1 2.03 1 1 1.83 1 1 1.04 1	. 1.99 2.76 1.3	1 748 1 646 1 386	1 0.072 1 0.06	1 6.1 1 4.05 6.41
nimas River downstrr ainstem Mineral Crev 72 Ma 72 O 72 Ma 72 A	eam of ek	1 40.6 1 36.3 1 26.1 1 37	1 1.97 1 2 0 1 1.97 0 1 2.0 0	0 2.8 1.81 1.15 1.7	1 152 1 179 1 77.8 1 145	1 581 1 542 1 299 1 470	1 2710 1 1470 1 1210 1 1710	1 6.38 1 4.79 1 4.88 1 4.33	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1	. 1.99 2.76 1.3 1.68	1 748 1 646 1 386 1 616	1 0.072 1 0.06 1 0.039	1 6.1 1 4.05 6.41 1 3.45
nimas River downstrr ainstem Mineral Cree 72 Ma 72 Ma 72 Ma 72 Aq 72 Se	eam of ek 12200 12200 12500 18900 18900 19p-14 18900 19p-14 19960 19	1 40.6 1 36.3 1 26.1 1 37 1 26.8	1 1.97 1 2 0 1 1.97 0 1 2.0 0 1 2.03 0	0 2.8 1.81 1.15 1.7 3.03	1 152 1 179 1 77.8 1 145 1 133	1 581 1 542 1 299 1 470 1 499	1 2710 1 1470 1 1210 1 1710 1 3400	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0	. 1.99 2.76 1.3 1.68 1.83	1 748 1 646 1 386 1 616 1 858	1 0.072 1 0.06 1 0.039 1 0.05	1 6.1 1 4.05 6.41 1 3.45 1 3.01
nimas River downstre ainstem Mineral Cree 72 Ma 72 O 72 Ma 72 Aq 72 Se 73 O	eam of ek 12200 12200 12200 1	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5	1 1.97 1 2 0 1 1.97 0 1 2.0 0 1 2.03 0 1 1.97 0	0 2.8 1.81 1.15 1.7 3.03 3.64	1 152 1 179 1 77.8 1 145 1 133 1 223	1 581 1 542 1 299 1 470 1 499 1 729	1 2710 1 1470 1 1210 1 1710 1 3400 1 4140	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1	. 1.99 2.76 1.3 1.68 1.83	1 748 1 646 1 386 1 616 1 858 1 1000	1 0.072 1 0.06 1 0.039 1 0.05 1 0.05	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02
nimas River downstre ainstem Mineral Cree 72 Ma 72 O 72 Ma 72 Ap 72 Ap 72 Se 73 O 73 Ma	eam of ek 12200 12200 12500 12	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9	1 1.97 1 2 0 1 1.97 0 1 2.0 0 1 2.03 0 1 1.97 0 1 2.02 0	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176	1 581 1 542 1 299 1 470 1 499 1 729 1 591	1 2710 1 1470 1 1210 1 1710 1 3400 1 4140 1 3320	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1	. 1.99 2.76 1.3 1.68 1.83 2.32 2.78	1 748 1 646 1 386 1 616 1 858 1 1000 1 998	1 0.072 1 0.06 1 1 0.039 1 0.05 1 0.05	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6
nimas River downstrr ainstem Mineral Cree 72 Ma 72 O 72 Ma 72 Se 72 Se 73 O 73 Ma 73 A	eam of ek 12200 12	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8	1 1.97 1 2 0 1 1.97 0 1 2.0 0 1 2.03 0 1 1.97 0 1 2.02 0 1 4.2 1	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297	1 2710 1 1470 1 1210 1 1710 1 3400 1 3320 1 7120	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0	1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450	1 0.072 1 0.06 1 0.039 1 0.05 1 0.05 1 0.036	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83
nimas River downstrr aainstem Mineral Cree 72 Ma 72 O 72 Ma 72 A _I 72 Se 73 O 73 Ma 73 A _I	eam of ek 12200 12200 12500 12	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5	1 1.97 1 2 0 1 1.97 0 1 2.0 0 1 2.03 0 1 1.97 0 1 2.02 0	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435	1 2710 1 1470 1 1210 1 1710 1 3400 1 3320 1 7120	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0	1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749	1 0.072 1 0.06 1 0.039 1 0.05 1 0.05 1 0.036 1 0.036	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5
nimas River downstrr ainstem Mineral Cree 72 Ma 72 O 72 Ma 72 Ap 72 Se 73 O 73 Ma 73 Ap 73 Se	eam of ek 12200 12	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5	1 1.97 1 2 0 1 1.97 0 1 2.0 0 1 2.03 0 1 1.97 0 1 2.02 0 1 4.2 1	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435	1 2710 1 1470 1 1210 1 1710 1 3400 1 3320 1 7120 1 2780	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0	. 1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450	1 0.072 1 0.06 1 0.039 1 0.05 1 0.05 1 0.036 1 0.036	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83
nimas River downstrr ainstem Mineral Cree 72 Ma 72 O 72 Ma 72 Ap 72 Se 73 O 73 Ma 73 Ap 73 Se 73B O	eam of ek 12200 12200 12200 1	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5 1 39.4	1 1.97 1 2 0 1 1.97 0 1 2.03 0 1 2.03 0 1 1.97 0 1 2.02 0 1 4.2 1 1 2.04 0 1 3.24 1 1 2 0	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593	1 2710 1 1470 1 1210 1 1710 1 3400 1 4140 1 3320 1 7120 1 2780 1 2610 1 4340	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5 1 12.1 1 9.78	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0	. 1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 964	1 0.072 1 0.06 1 0.039 1 0.05 1 0.05 1 0.036 1 0.02 1 0.02	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72
nimas River downstre ainstem Mineral Cree 72 Ma 72 O 72 Ma 72 A 72 Se 73 O 73 Ma 73 A 73 A 73 Se 73B O 73B Ma	eam of ek 12200 12	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5 1 39.4 1 30.4 1 19.9	1 1.97 1 2 0 1 1.97 0 1 2.03 0 1 2.03 0 1 1.97 0 1 2.02 0 1 4.2 1 1 2.04 0 1 3.24 1	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540	1 2710 1 1470 1 1210 1 1710 1 3400 1 4140 1 3320 1 7120 1 2780 1 2610 1 4340	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5 1 12.1 1 9.78	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0	. 1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 964 1 659	1 0.072 1 0.06 1 0.039 1 0.05 1 0.05 1 0.036 1 0.02 1 0.02	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5
nimas River downstrr ainstem Mineral Cree 72 Ma 72 O 72 Ma 72 See 73 O 73 Ma 73 Ap 73 Se 73 Se 73 Se 73 Se	eam of ek 12200 12	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5 1 39.4 1 30.4 1 19.9	1 1.97 1 2 0 1 1.97 0 1 2.03 0 1 2.03 0 1 1.97 0 1 2.02 0 1 2.02 0 1 4.2 1 1 2.04 0 1 3.24 1 1 2 3 0 1 2.03 0 1 5.98 1	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56 2.72	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8 1 413	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540 1 435	1 2710 1 1470 1 1210 1 1710 1 3400 1 4140 1 3320 1 7120 1 2780 1 2610 1 4340 1 2480	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5 1 12.1 9.78 1 8.16 1 16.5	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0 1 3.26 1	1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65 1.25	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 964 1 659 1 5320	1 0.072 1 0.06 1 0.039 1 0.05 1 0.05 1 0.036 1 0.02 1 0.02	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72
nimas River downstrr ainstem Mineral Cree 72 Ma 72 O 72 Ma 72 Se 72 Se 73 O 73 Ma 73 Se 73 Se	eam of ek 12200 12200 12800 18900 18	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5 1 39.4 1 30.4 1 19.9 1 37.2	1 1.97 1 2 0 1 1.97 0 1 2.00 0 1 2.03 0 1 1.97 0 1 2.02 0 1 4.2 1 1 2.04 0 1 3.24 1 1 2 0 1 2.03 0	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56 2.72 10.5	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8 1 413	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540 1 435	1 2710 1 1470 1 1210 1 1710 1 3400 1 3320 1 7120 1 2780 1 2610 1 4340 1 2480 1 3820	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5 1 12.1 9.78 1 8.16 1 16.5	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0	. 1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65 1.25	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 964 1 659	1 0.072 1 0.06 1 0.039 1 0.05 1 0.05 1 0.036 1 0.02 1 0.02	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72 1 3.68
nimas River downstrr ainstem Mineral Crev 72 Ma 72 O 72 Ma 72 Se 72 Se 73 O 73 Ma 73 Se 73 Se 73 Ma 73 Se 73B Ma 73B Ma 73B Ma	eam of ek 12200 12	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5 1 30.4 1 19.9 1 37.2 1 13.3	1 1.97 1 2 0 1 1.97 0 1 2.03 0 1 2.03 0 1 1.97 0 1 2.02 0 1 2.02 0 1 4.2 1 1 2.04 0 1 3.24 1 1 2 3 0 1 2.03 0 1 5.98 1	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56 2.72 10.5 2.65	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8 1 413 1 82.7 1 67	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540 1 435 1 354	1 2710 1 1470 1 1210 1 1710 1 3400 1 3320 1 7120 1 2780 1 2610 1 4340 1 2480 1 3820 1 2340	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5 1 12.1 1 9.78 1 8.16 1 16.5 1 5.93	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0 1 3.26 1	1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65 1.25 2.18	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 964 1 659 1 5320	1 0.072 1 0.06 1 0.039 1 0.05 1 0.036 1 0.036 1 0.036 1 0.02 1 0.09 1 0.04 1 0.07	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72 1 3.68 1 5.16
nimas River downstrr tainstem Mineral Cree 72 Ma 72 O 72 Ap 72 Se 73 O 73 Ma 73 Ap 73 Se 73B O 73B Ma 73B Se 73B Se 73B Se	eam of ek	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5 1 39.4 1 19.9 1 37.2 1 13.3 1 9.22	1 1.97 1 2 0 1 1.97 0 1 2.03 0 1 2.03 0 1 2.02 0 1 4.2 1 1 2.04 0 1 3.24 1 1 2 0 1 2.03 0 1 5.98 1 1 1.99 0	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56 2.72 10.5 2.65 1.99	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8 1 413 1 82.7 1 67	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540 1 435 1 354 1 98	1 2710 1 1470 1 1210 1 1710 1 3400 1 4140 1 3320 1 7120 1 2780 1 2610 1 4340 1 3820 1 3820 1 2340	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 7.19 1 5.5 1 12.1 1 9.78 1 8.16 1 16.5 1 5.93 1 6.71	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0 1 3.26 1 1 0.588 1	1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65 2.18 1.51 0.512	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 964 1 659 1 5320 1 672	1 0.072 1 0.06 1 0.039 1 0.05 1 0.036 1 0.036 1 0.036 1 0.02 1 0.09 1 0.04 1 0.07	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72 1 3.68 1 5.16 5.45
nimas River downstres rainstem Mineral Cree 72 Ma 72 O 72 Ma 72 A 72 Se 73 O 73 Ma 73 A 73 Se 73B Ma 73B Se 75B O 75B Ma	eam of ek	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5 1 39.4 1 30.4 1 19.9 1 37.2 1 13.3 1 9.22 1 13.3	1 1.97 1 2 0 1 1.97 0 1 2.00 0 1 2.03 0 1 1.97 0 1 2.02 0 1 2.03 0 1 2.02 0 1 2.03 0 1 2.03 0 1 2.03 0 1 2.03 0 1 3.24 1 1 2 0 1 2.03 0 1 5.98 1 1 1.99 0	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56 2.72 10.5 2.65 1.99	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8 1 413 1 82.7 1 67 1 152	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540 1 435 1 354 1 98 1 98	1 2710 1 1470 1 1210 1 1710 1 3400 1 4140 1 3320 1 7120 1 2780 1 2610 1 4340 1 2480 1 3820 1 2340 1 3820	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5 1 12.1 1 9.78 1 8.16 1 16.5 1 16.5 1 9.79 1 9.09	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0 1 3.26 1 1 0.588 1 1 0.994 0	. 1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65 1.25 2.18 1.51 0.512	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 964 1 659 1 5320 1 672 1 578 1 1930	1 0.072 1 0.06 1 0.039 1 0.05 1 0.036 1 0.036 1 0.036 1 0.02 1 0.09 1 0.04 1 0.07	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72 1 3.68 1 5.16 5.45 0 5.01
72 Ma 72 Ma 72 Ma 72 Ma 72 Ma 72 Ma 72 Se 73 O 73 Ma 73 Se 73 Se 73 Se 73 Ma 73 Ma 73 Se 73 Ma 74 Ma 75 Ma 75 Ma 75 Ma 75 Ma 75 Ma 75 Ma	eam of ek	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5 1 39.4 1 30.4 1 19.9 1 37.2 1 13.3 1 9.22 1 13.2 1 8.2	1 1.97 1 2 0 1 1.97 0 1 2.03 0 1 1.97 0 1 2.03 0 1 1.97 0 1 2.02 0 1 4.2 1 1 2.04 0 1 3.24 1 1 2 0 1 2.03 0 1 5.98 1 1 1.99 0 1 1.99 0 1 1.99 0	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56 2.72 10.5 2.65 1.99 4.87 3.88	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8 1 413 1 82.7 1 67 1 152 1 108	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540 1 435 1 354 1 98 1 231 1 367	1 2710 1 1470 1 1210 1 1710 1 3400 1 4140 1 3320 1 7120 1 2780 1 2610 1 4340 1 2480 1 3820 1 2340 1 2340 1 2070 1 3010	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5 1 12.1 1 9.78 1 8.16 1 16.5 1 5.93 1 6.71 1 9.09 1 7.27	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0 1 3.26 1 1 0.588 1 1 0.994 0 1 1.4 1	. 1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65 1.25 2.18 1.51 0.512 0.724	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 964 1 659 1 5320 1 672 1 578 1 1930	1 0.072 1 0.06 1 0.039 1 0.05 1 0.05 1 0.036 1 0.02 1 0.09 1 0.09 1 0.07 1 0.07	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72 1 3.68 1 5.16 5.45 0 5.01
nimas River downstrr ainstem Mineral Cree 72 Ma 72 O 72 Ma 72 A ₁ 72 Se 73 O 73 Ma 73 Se 73 Se 73 Ma 73 Se 73B Ma 73B Ma 73B Ma 73B Ma 73B Ma 73B Ma 73B Se 75B Se 75B Se	ay-12 12200 ct-12 21500 ay-13 11800 pr-14 9960 ay-13 9220 pr-14 40700 ay-13 10600 ay-13 6620 ct-12 31900 ay-13 6620 ct-12 48600 ay-13 7220 ay-13 7220 ay-13 7220 ay-13 7220 ay-13 7220	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 30.4 1 30.4 1 19.9 1 37.2 1 13.3 1 9.22 1 13.2 1 18.2 1 28.5	1 1.97 1 2 0 1 1.97 0 1 2.03 0 1 1.97 0 1 2.03 0 1 2.04 0 1 2.04 0 1 3.24 1 1 2 0 1 2.03 0 1 1.99 0 1 1.99 0 1 1.99 0 1 1.99 0	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56 2.72 10.5 2.65 1.99 4.87 3.88 6.75	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8 1 413 1 82.7 1 67 1 152 1 108 1 223	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540 1 435 1 354 1 98 1 231 1 367 1 261	1 2710 1 1470 1 1210 1 1710 1 3400 1 3320 1 7120 1 2780 1 2610 1 4340 1 2480 1 3820 1 2340 1 2070 1 3010 1 3730 1 6900	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.97 1 7.19 1 5.5 1 12.1 1 9.78 1 8.16 1 16.5 1 5.93 1 6.71 1 9.09 1 7.27 1 13.1	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0 1 3.26 1 1 0.588 1 1 0.994 0 1 1.4 1 1 0.498 0	1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65 1.25 2.18 1.51 0.512 0.724 1.37	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 964 1 659 1 5320 1 672 1 578 1 1930 1 1930	1 0.072 1 0.039 1 0.055 1 0.055 1 0.036 1 0.036 1 0.02 1 0.02 1 0.04 1 0.07 1 0.04 1 0.04 1 0.04 1 0.04	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72 1 3.68 1 5.16 5.45 0 5.01 1 3.73 1 4.99
nimas River downstrr ainstem Mineral Crev 72 Ma 72 O 72 Ma 72 Se 72 Se 73 O 73 Ma 73 Se 73 Ma 73 Se 73B Ma 73B Ma 73B Ma 73B Ma 73B Se 75B O 75B Ma 75B Se 75B Se 75D A	awn of ek	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 30.4 1 19.9 1 37.2 1 13.3 1 9.22 1 13.2 1 18.2 1 28.5 1 7.5	1 1.97 1 2 0 1 1.97 0 1 2.03 0 1 2.03 0 1 2.02 0 1 2.04 0 1 2.04 0 1 2.03 0 1 2.03 0 1 2.03 0 1 2.03 0 1 2.03 0 1 2.03 0 1 2.03 0 1 1.99 0 1 1.99 0 1 1.99 0 1 1.99 0 1 3.66 1	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56 2.72 10.5 2.65 1.99 4.87 3.88 6.75 3.73	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8 1 413 1 82.7 1 67 1 152 1 108 1 223 1 108	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540 1 435 1 354 1 98 1 231 1 367 1 367 1 361	1 2710 1 1470 1 1210 1 1710 1 3400 1 3320 1 7120 1 2780 1 2610 1 4340 1 2480 1 3820 1 2340 1 2070 1 3010 1 3730 1 6900 1 3750	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5 1 12.1 1 9.78 1 8.16 1 16.5 1 5.93 1 6.71 1 9.09 1 7.27 1 13.1 1 8.2	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0 1 3.26 1 1 0.588 1 1 0.994 0 1 1.4 1 1 0.498 0 1 1.06 1	1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65 1.25 2.18 1.51 0.512 0.724 1.37 1.27 0.948	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 7749 1 1720 1 964 1 659 1 5320 1 672 1 1930 1 1030 1 1030	1 0.072 1 0.06 1 0.039 1 0.05 1 0.036 1 0.036 1 0.02 1 0.09 1 0.04 1 0.07 1 0.01 1 0.04 1 0.038 1 0.038	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72 1 3.68 1 5.16 5.45 0 5.01 1 3.73 1 4.99 4.39
nimas River downstrenainstem Mineral Cree 72 Ma 72 O 72 Ma 72 Ap 72 See 73 O 73 Ma 73 See 73 See 73B O 73B Ma 73B See 75B Ma 75B See 75D Ma 75D Ap 75D Se akers Bridge	eam of ek	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5 1 39.4 1 19.9 1 37.2 1 13.3 1 9.22 1 13.2 1 18.2 1 28.5 1 29.7	1 1.97 1 2 0 1 1.97 0 1 2.03 0 1 2.03 0 1 2.02 0 1 2.02 0 1 2.04 0 1 2.02 0 1 4.2 1 1 2.04 0 1 3.24 1 1 2 0.03 0 1 5.98 1 1 1.99 0 1 1.99 0 1 1.99 0 1 1.99 0 1 3.66 1 1 2.03 0	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56 2.72 10.5 2.65 1.99 4.87 3.88 6.75 3.73	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8 1 413 1 82.7 1 152 1 108 1 223 1 103 1 357	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540 1 435 1 354 1 367 1 367 1 367 1 361 1 361 1 361 1 378	1 2710 1 1470 1 1210 1 1710 1 3400 1 4140 1 3320 1 7120 1 2780 1 2610 1 4340 1 2480 1 2340 1 3820 1 3820 1 3010 1 3730 1 3730 1 3750 1 10500	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 7.19 1 5.5 1 12.1 1 9.78 1 8.16 1 16.5 1 5.93 1 6.71 1 9.09 1 7.27 1 13.1 1 8.2 1 31.6	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0 1 3.26 1 1 0.588 1 1 0.994 0 1 1.4 1 1 0.498 0 1 1.06 1 1 1.02 0	1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65 1.25 2.18 1.51 0.512 0.724 1.37 1.27 0.948 1.71	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 659 1 5320 1 672 1 578 1 1930 1 1030 1 2910 1 1080	1 0.072 1 0.06 1 0.039 1 0.05 1 0.036 1 0.036 1 0.036 1 0.02 1 0.09 1 0.04 1 0.07 1 0.01 1 0.01 1 0.04 1 0.038	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72 1 3.68 1 5.16 5.45 0 5.01 1 3.73 1 4.99 4.39 0 3.72
72 Ma 72 Ma 72 Ma 72 Ma 72 Ma 72 Ma 72 Ap 72 Ap 72 Ap 72 Ap 72 Ap 72 Ap 73 Ap 74 Ap 75 Ap	eam of ek	1 40.6 1 36.3 1 26.1 1 37 1 26.8 1 25.5 1 31.9 1 33.8 1 20.5 1 39.4 1 30.4 1 19.9 1 37.2 1 13.3 1 9.22 1 13.2 1 18.2 1 28.5 1 17.5 1 29.7 1 15.9	1 1.97 1 2 0 1 1.97 0 1 2.03 0 1 2.03 0 1 2.02 0 1 4.2 1 1 2.04 0 1 3.24 1 1 2 0 1 2.03 0 1 1.99 0 1 1.99 0 1 1.99 0 1 1.99 0 1 3.66 1 2.03 0 1 3.66 1 2.03 0 1 4.85 1	0 2.8 1.81 1.15 1.7 3.03 3.64 4.1 5.6 2.7 4.24 3.56 2.72 10.5 2.65 1.99 4.87 3.88 6.75 3.73 18.6 2.46	1 152 1 179 1 77.8 1 145 1 133 1 223 1 176 1 284 1 113 1 292 1 140 1 98.8 1 413 1 413 1 140 1 152 1 167 1 152 1 108 1 223 1 108 1 10	1 581 1 542 1 299 1 470 1 499 1 729 1 591 1 297 435 1 468 1 593 1 540 1 435 1 354 1 98 1 231 1 367 1 261 1 339 1 378 1 378	1 2710 1 1470 1 1210 1 1710 1 3400 1 4140 1 3320 1 7120 1 2610 1 2480 1 2480 1 3820 1 3820 1 3820 1 3610 1 3730 1 6900 1 3750 1 10500 1 10500	1 6.38 1 4.79 1 4.88 1 4.33 1 5.33 1 6.84 1 6.07 1 7.19 1 5.5 1 12.1 1 9.78 1 8.16 1 16.5 1 5.93 1 6.71 1 9.09 1 7.27 1 13.1 1 8.2 1 31.6 1 7.36	1 2.03 1 1 1.83 1 1 1.04 1 1 1.05 1 1 1.02 0 1 1.43 1 1 0.717 1 1 1.0 0 1 1.02 0 1 2.89 1 1 0.5 0 1 1.01 0 1 3.26 1 1 0.588 1 1 0.994 0 1 1.4 1 1 0.498 0 1 1.06 1 1 1.02 0 1 3.1 1	. 1.99 2.76 1.3 1.68 1.83 2.32 2.78 1.35 1.24 3.09 1.65 1.25 2.18 1.51 0.512 0.724 1.37 1.27 0.948	1 748 1 646 1 386 1 616 1 858 1 1000 1 998 1 1450 1 749 1 1720 1 964 1 659 1 5320 1 672 1 578 1 1930 1 1930 1 2910 1 1080 1 1880	1 0.072 1 0.039 1 0.055 1 0.036 1 0.036 1 0.09 1 0.09 1 0.04 1 0.01 1 0.04 1 0.038 1 0.02 1 0.038	1 6.1 1 4.05 6.41 1 3.45 1 3.01 1 4.02 1 5.6 2.83 1 3.5 1 5.02 4.72 1 3.68 1 5.16 5.45 0 5.01 1 3.73 1 4.99 4.39 0 3.72 1 5.21 7 3.8

ProUCL calculations for As in sediment of the Animas River above mainstem Cement Creek

User Selected Options

2/18/2015 10:36 Date/Time of Computation From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General	Statistics

Total Number of Observations	20 Number of Distinct Observations	2
	Number of Missing Observations	
Minimum	16.4 Mean	27.4
Maximum	89.5 Median	21.5
SD	16.51 Std. Error of Mean	3.69
Coefficient of Variation	0.602 Skewness	3.14
Normal GOF Test		
Shapiro Wilk Test Statistic	0.593 Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.905 Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.313 Lilliefors GOF Test	
5% Lilliefors Critical Value	0.198 Data Not Normal at 5% Significance Level	
Data Not Normal at 5% Significance Level		
Assuming Normal Distribution		
95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	33.81 95% Adjusted-CLT UCL (Chen-1995)	36.2
	95% Modified-t UCL (Johnson-1978)	34.2
Gamma GOF Test		
A-D Test Statistic	1.88 Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.745 Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.259 Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.194 Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level		
Gamma Statistics		
k hat (MLE)	5.168 k star (bias corrected MLE)	4.42
Theta hat (MLE)	5.307 Theta star (bias corrected MLE)	6.19
nu hat (MLE)	206.7 nu star (bias corrected)	17
MLE Mean (bias corrected)	27.43 MLE Sd (bias corrected)	13.0
	Approximate Chi Square Value (0.05)	147.
Adjusted Level of Significance	0.038 Adjusted Chi Square Value	145.
Assuming Gamma Distribution		
95% Approximate Gamma UCL (use when n>=50))	32.97 95% Adjusted Gamma UCL (use when n<50)	33.4
Lognormal GOF Test		
Shapiro Wilk Test Statistic	0.79 Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.905 Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.221 Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.198 Data Not Lognormal at 5% Significance Level	
Data Not Lognormal at 5% Significance Level		
Lognormal Statistics		
Minimum of Logged Data	2.797 Mean of logged Data	3.21
Maximum of Logged Data	4.494 SD of logged Data	0.40
Assuming Lognormal Distribution		
95% H-UCL	32.25 90% Chebyshev (MVUE) UCL	34.2
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	37.68 97.5% Chebyshev (MVUE) UCL 51.6	42.3
Nonparametric Distribution Free UCL Statistics		
Data do not follow a Discernible Distribution (0.05)		
Nonparametric Distribution Free UCLs		
95% CLT UCL	33.5 95% Jackknife UCL	33.8
95% Standard Bootstrap UCL	33.45 95% Bootstrap-t UCL	42.9
95% Hall's Bootstrap UCL	53.96 95% Percentile Bootstrap UCL	33.7
95% BCA Bootstrap UCL	37.12	
90% Chebyshev(Mean, Sd) UCL	38.5 95% Chebyshev(Mean, Sd) UCL	43.5
97.5% Chebyshev(Mean, Sd) UCL	50.48 99% Chebyshev(Mean, Sd) UCL	64.1
Suggested UCL to Use		
95% Student's-t UCL	33.81 or 95% Modified-t UCL	34.2

${\bf ProUCL\ calculations\ for\ Be\ in\ sediment\ of\ the\ Animas\ River\ above\ mainstem\ Cement\ Creek}$

Date/Time of Computation From File	2/18/2015 10:42 WorkSheet.xls OFF			
Full Precision Confidence Coefficient	95%			
Number of Bootstrap Operation				
General Statistics			W. J. (844) . 84	
Total Number of Observations Number of Detects			Number of Distinct Observations Number of Non-Detects	3
Number of Distinct Detects			Number of Distinct Non-Detects	
Minimum Detect		2.1	Minimum Non-Detect	1.9
Maximum Detect Variance Detects			Maximum Non-Detect Percent Non-Detects	2.0
Mean Detects			SD Detects	55 1.4
Median Detects			CV Detects	0.47
Skewness Detects		2.668	Kurtosis Detects	7.5€
Mean of Logged Detects		1.045	SD of Logged Detects	0.35
Normal GOF Test on Detects Onl Shapiro Wilk Test Statistic	y	0.616	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value			Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic			Lilliefors GOF Test	
5% Lilliefors Critical Value Detected Data Not Normal at 5%	Significance Level	0.295	Detected Data Not Normal at 5% Significance Level	
Kaplan-Meier (KM) Statistics usin	ng Normal Critical Values	and othe	r Nonparametric UCLs	
Mean			Standard Error of Mean	0.2
SD OF OC MAR (+) LLC1			95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	2.9
95% KM (t) UCL 95% KM (z) UCL			95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	3.48
90% KM Chebyshev UCL			95% KM Chebyshev UCL	3.54
97.5% KM Chebyshev UCL		4.016	99% KM Chebyshev UCL	4.94
Gamma GOF Tests on Detected A-D Test Statistic	Observations Only	1 120	Anderson-DarlingGOF Test	
5% A-D Critical Value			Detected Data Not Gamma Distributed at 5% Significance	e Level
K-S Test Statistic			Kolmogrov-Smirnoff GOF	
5% K-S Critical Value Detected Data Not Gamma Distr	ibuted at 5% Significanc		Detected Data Not Gamma Distributed at 5% Significance	e Level
Gamma Statistics on Detected D				
k hat (MLE)	ata Omy	7.606	k star (bias corrected MLE)	5.14
Theta hat (MLE)			Theta star (bias corrected MLE)	0.59
nu hat (MLE) MLE Mean (bias corrected)			nu star (bias corrected) MLE Sd (bias corrected)	92.6 1.34
Gamma Kaplan-Meier (KM) Stati	stics			
k hat (KM)			nu hat (KM)	215.
Approximate Chi Square Value (: 95% Gamma Approximate KM			Adjusted Chi Square Value (215.90, β) 95% Gamma Adjusted KM-UCL (use when n<50)	180. 2.93
Gamma ROS Statistics using Imp	uted Non-Detects			
GROS may not be used when da	ta set has > 50% NDs wit			
GROS may not be used when kst				
For such situations, GROS methors are gamma distributed detected			octs and BTVs puted using gamma distributionon KM estimates	
Minimum			Mean	1.49
Maximum			Median	0.62
SD Is book (BALE)		1.727	CV k star (bias corrected MLE)	1.15 0.39
k hat (MLE) Theta hat (MLE)			Theta star (bias corrected MLE)	3.73
nu hat (MLE)			nu star (bias corrected)	15.9
MLE Mean (bias corrected)		1.492	MLE Sd (bias corrected)	2.36
	*5.07. 1	7.020	Adjusted Level of Significance (β)	0.03
Approximate Chi Square Value (: 95% Gamma Approximate UCL			Adjusted Chi Square Value (15.97,β) 95% Gamma Adjusted UCL (use when n<50)	7.49 3.17
Lognormal GOF Test on Detected	d Observations Only			
Shapiro Wilk Test Statistic			Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value Lilliefors Test Statistic			Detected Data Not Lognormal at 5% Significance Level Lilliefors GOF Test	
5% Lilliefors Critical Value	50/ Cirnificance Lovel		Detected Data Not Lognormal at 5% Significance Level	
Detected Data Not Lognormal at				
Lognormal ROS Statistics Using I Mean in Original Scale	rriputea Non-Detects		Mean in Log Scale	0.51
SD in Original Scale	1000 1		SD in Log Scale	0.56
95% t UCL (assumes normality 95% BCA Bootstrap UCL	or KUS data)	2.508		2.50 2.86
95% H-UCL (Log ROS)		2.575		
			DL/2 Log-Transformed	
DL/2 Statistics DL/2 Normal				
DL/2 Normal Mean in Original Scale			Mean in Log Scale	
DL/2 Normal Mean in Original Scale SD in Original Scale		1.398	SD in Log Scale	0.47
DL/2 Normal Mean in Original Scale		1.398 2.462	SD in Log Scale 95% H-Stat UCL	

Suggested UCL to Use

2.885 95% KM (% Bootstrap) UCL 95% KM (t) UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ED_000552_00016309-00366 1778118

ProUCL calculations for Cd in sediment of the Animas River above mainstem Cement Creek

User Selected Options	User	Selected	Options	
-----------------------	------	----------	---------	--

Date/Time of Computation 2/18/2015 10:50

From File WorkSheet.xls
Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

General Statistics			
Total Number of Observations	20	Number of Distinct Observations	20
		Number of Missing Observations	0
Minimum	4.95	Mean	11.12
Maximum		Median	10.25
SD Confficient of Manietics		Std. Error of Mean	1.035
Coefficient of Variation	0.416	Skewness	1.254
Normal GOF Test			
Shapiro Wilk Test Statistic	0.917	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.905	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value	0.198	Data appear Normal at 5% Significance Level	
Data appear Normal at 5% Significance Level			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	12.91	95% Adjusted-CLT UCL (Chen-1995)	13.14
		95% Modified-t UCL (Johnson-1978)	12.96
Communication COST Total			
Gamma GOF Test A-D Test Statistic	0.156	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significan	nce Level
K-S Test Statistic		Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significan	nce Level
Detected data appear Gamma Distributed at 5% Significa	ance Level		
Course Charleston			
Gamma Statistics k hat (MLE)	6.801	k star (bias corrected MLE)	5.814
Theta hat (MLE)		Theta star (bias corrected MLE)	1.913
nu hat (MLE)		nu star (bias corrected)	232.6
MLE Mean (bias corrected)		MLE Sd (bias corrected)	4.613
		Approximate Chi Square Value (0.05)	198.3
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	195.8
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	13.05	95% Adjusted Gamma UCL (use when n<50)	13.21
		55757743	
Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.992	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value		Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value Data appear Lognormal at 5% Significance Level	0.198	Data appear Lognormal at 5% Significance Level	
Data appear Logitorinar at 3% significance Level			
Lognormal Statistics			
Minimum of Logged Data		Mean of logged Data	2.334
Maximum of Logged Data	3.186	SD of logged Data	0.395
Assuming Lognormal Distribution			
95% H-UCL	13.28	90% Chebyshev (MVUE) UCL	14.12
95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	17.39
99% Chebyshev (MVUE) UCL	21.11		
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Si	gnificance	Level	
Data appear to rollow a Discernible Distribution at 5% 31	5 micanice	Level	
Nonparametric Distribution Free UCLs			
95% CLT UCL	12.83		12.91
95% Standard Bootstrap UCL	12.84	•	13.35
95% Hall's Bootstrap UCL	13.78		12.89
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	13.13		15.69
90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	14.23 17.58		15.63 21.42
5, 15.0 Shebyonev(ivicall, 5d) OCE	17.30	3370 Shebyshev(ividan, 34) OCE	21.72

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

12.91

For additional insight the user may want to consult a statistician.

Suggested UCL to Use 95% Student's-t UCL

ProUCL calculations for Cu in sediment of the Animas River above mainstem Cement Creek

User Selected Options

Date/Time of Computation

2/18/2015 10:56

20 Number of Distinct Observations

19

421.5

512.2

From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

Cu

General Statistics Total Number of Observations

Minimum 166 Mean 339 Maximum 745 Median 305 Data Median 31.5 Coefficient of Variation 32.5 Shapiro Wilk GOF Test 5% Shapiro Wilk GOF Test 5% Shapiro Wilk GOF Test 5% Lilliefors GOF Test 5% Lilliefors GOF Test 5% Lilliefors GOF Test 5% Lilliefors GOF Test 5% Significance Level 5% Lilliefors GOF Test 5% Significance Level 5% Lilliefors GOF Test 5% Significance Level 5% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Modified-t UCL (Chen-1995) 40.4 95% Modified-t UCL (Johnson-1978) 3.5 Camma GOF Test 4-D Test Statistic 5.57 Coefficial Value 6.57 Coefficial Value 6.57 Coefficial Value 7.596 7.5
SD 141.1 Std. Error of Mean 31.5 Coefficient of Variation 0.416 Skewness 1.77 Normal GOF Test Shapiro Wilk Test Statistic 0.832 Shapiro Wilk GOF Test Shapiro Wilk Critical Value 0.905 Data Not Normal at 5% Significance Level Lilliefors Critical Value 0.12 Lilliefors GOF Test S% Lilliefors Critical Value 0.13 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 394 95% Adjusted-CLT UCL (Chen-1995) 404, 95% Modified-t UCL (Johnson-1978) 35 Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test S% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.4 Theta hat (MLE) 52.
Coefficient of Variation O.416 Skewness 1.772 Normal GOF Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Uilliefors Test Statistic O.21 Lilliefors GOF Test Significance Level Uilliefors Critical Value O.198 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% Student's-t UCL 95% Adjusted-CLT UCL (Chen-1995) 404. 95% Modified-t UCL (Johnson-1978) 359 Gamma GOF Test A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.48 Theta hat (MLE) 5.22
Normal GOF Test Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Lilliefors Test Statistic 0.21 Lilliefors GOF Test Swith Lilliefors Critical Value Data Not Normal at 5% Significance Level Lilliefors Critical Value Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Data Not Normal Distribution 95% Normal UCL 95% Normal UCL 95% Student's-t UCL 394 95% Adjusted-CLT UCL (Chen-1995) 404 95% Modified-t UCL (Johnson-1978) 395 Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.48 Theta hat (MLE) 5.22
Shapiro Wilk Test Statistic 0.832 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.905 Data Not Normal at 5% Significance Level Lilliefors Critical Value 0.912 Lilliefors GOF Test 5% Lilliefors Critical Value 0.928 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL (Shem-1995) 404, 95% Modified-t UCL (Johnson-1978) 359 Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.154 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.194 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.44 Theta hat (MLE) 5.24
5% Shapiro Wilk Critical Value Lilliefors Test Statistic 0.21 Lilliefors GOF Test 5% Lilliefors Critical Value 0.198 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% Student's-t UCL 394 95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 404. 95% Modified-t UCL (Johnson-1978) 359 Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test K-S Test Statistic 0.743 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.44 Theta hat (MLE) 52.
Lilliefors Test Statistic 0.21 Lilliefors GOF Test 5% Lilliefors Critical Value 0.198 Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% Student's-t UCL 394 95% Adjusted-CLT UCL (Chen-1995) 404. 95% Modified-t UCL (Johnson-1978) 395 Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level 5% K-S Critical Value 0.194 Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.44 Theta hat (MLE) 7.596 k The Statistic (MLE) 6.45
5% Lilliefors Critical Value Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% Student's-t UCL 394 95% Adjusted-CLT UCL (Chen-1995) 404 95% Modified-t UCL (Johnson-1978) 356 Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level 5% K-S Critical Value 0.194 Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.48 Theta hat (MLE) 5.22
Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% Student's-t UCL 394 95% Adjusted-CLT UCL (Chen-1995) 404, 95% Modified-t UCL (Johnson-1978) 35 Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.154 Kolmogrov-Smirnoff Gamma GOF Test O.154 Vollmogrov-Smirnoff Gamma GOF Test Control Value 0.194 Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.4 Theta hat (MLE) 7.596 k Star (bias corrected MLE) 52.
Assuming Normal Distribution 95% Normal UCL 95% Student's-t UCL 95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 404. 95% Modified-t UCL (Johnson-1978) 35 Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test S'A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Lev K-5 Test Statistic 0.154 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.194 Detected data appear Gamma Distributed at 5% Significance Lev Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.4 Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 52.
95% Normal UCL 95% Student's-t UCL 394 95% Adjusted-CLT UCL (Chen-1995) 404 95% Modified-t UCL (Johnson-1978) 359 Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level 5% K-S Critical Value 0.194 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.47 Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 5.50 AD Adjusted - CLT VCL (Chen-1995) 404 404 404 405 Adjusted for Skewness) 404 404 405 Adjusted for Skewness) 404 405 405 405 406 405 406 405 406 406 406 406 406 406 406 406 406 406
95% Student's-t UCL 95% Modified-t UCL (Chen-1995) 404. 95% Modified-t UCL (Johnson-1978) 35 Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.154 Kollmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.194 Detected data appear Gamma Distributed at 5% Significance Leve Detected data appear Gamma Distributed at 5% Significance Leve Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.4 Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 52.
Gamma GOF Test A-D Test Statistic O.578 Anderson-Darling Gamma GOF Test A-D Test Statistic O.578 Anderson-Darling Gamma GOF Test S% A-D Critical Value O.743 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic O.154 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value O.194 Detected data appear Gamma Distributed at 5% Significance Level Camma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.4 Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 5.2
Gamma GOF Test A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test Control Value 0.743 Detected data appear Gamma Distributed at 5% Significance Level K-5 Test Statistic 0.154 Kolmogrov-Smirnoff Gamma GOF Test When the control Value 0.194 Detected data appear Gamma Distributed at 5% Significance Level Control Value 0.194 Detected data appear Gamma Distributed at 5% Significance Level Comma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.40 Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 52.
A-D Test Statistic 0.578 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.743 Detected data appear Gamma Distributed at 5% Significance Lew K-5 Test Statistic 0.154 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.194 Detected data appear Gamma Distributed at 5% Significance Lew Detected dat
5% A-D Critical Value K-S Test Statistic 0.154
K-S Test Statistic 0.154 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.194 Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.4 Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 52.
5% K-S Critical Value 0.194 Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.4 Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 52.
Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.4 Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 52.
Gamma Statistics k hat (MLE) 7.596 k star (bias corrected MLE) 6.4 Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 52.
k hat (MLE) 7.596 k star (bias corrected MLE) 6.4 Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 52.
Theta hat (MLE) 44.68 Theta star (bias corrected MLE) 52
pulbat (MLE) 202.9 pulstar (bias corrected) 250
ilu ilat (MEE) 505.8 ilu stai (bias corrected) 255.
MLE Mean (bias corrected) 339.4 MLE Sd (bias corrected) 133.
Approximate Chi Square Value (0.05) 223.
Adjusted Level of Significance 0.038 Adjusted Chi Square Value 220.
Assuming Gamma Distribution
95% Approximate Gamma UCL (use when n>=50) 394.6 95% Adjusted Gamma UCL (use when n<50) 399.
Lognormal GOF Test
Shapiro Wilk Test Statistic 0.956 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.905 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.135 Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.198 Data appear Lognormal at 5% Significance Level
Data appear Lognormal at 5% Significance Level
Lognormal Statistics
Minimum of Logged Data 5.112 Mean of logged Data 5.7
Maximum of Logged Data 6.613 SD of logged Data 0.36
Assuming Lognormal Distribution

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Chebyshev (MVUE) UCL

99% Chebyshev (MVUE) UCL

reoriparametric distribution free octs			
95% CLT UCL	391.3	95% Jackknife UCL	394
95% Standard Bootstrap UCL	389.5	95% Bootstrap-t UCL	422
95% Hali's Bootstrap UCL	516.4	95% Percentile Bootstrap UCL	392.5
95% BCA Bootstrap UCL	398.8		
90% Chebyshev(Mean, Sd) UCL	434.1	95% Chebyshev(Mean, Sd) UCL	477
97.5% Chebyshev(Mean, Sd) UCL	536.5	99% Chebyshev(Mean, Sd) UCL	653.4

615.7

396.9 90% Chebyshev (MVUE) UCL

459.5 97.5% Chebyshev (MVUE) UCL

Suggested UCL to Use

95% H-UCL

399.3 95% Adjusted Gamma UCL

ProUCL calculations for Cr in sediment of the Animas River above mainstem Cement Creek

User Selected Options

Date/Time of Computation 2/23/2015 8:37
From File WorkSheet.xls
Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics			
Total Number of Observations	20	Number of Distinct Observations	19
Total Hamber of Observations		Number of Missing Observations	0
Minimum	3.55	Mean	4.651
Maximum		Median	4.735
SD		Std. Error of Mean	0.185
Coefficient of Variation		Skewness	0.261
Normal GOF Test Shapiro Wilk Test Statistic	0 9/15	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value		Data appear Normal at 5% Significance Level	
Data appear Normal at 5% Significance Level			
Assuming Normal Distribution		050(110) (4.1) + 1.6 (4.1)	
95% Normal UCL	4.074	95% UCLs (Adjusted for Skewness)	4.057
95% Student's-t UCL	4.9/1	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	4.967 4.973
		33% Modificate Oct (Johnson-1375)	4.575
Gamma GOF Test			
A-D Test Statistic		Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Si	gnificance Level
K-S Test Statistic		Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.193	Detected data appear Gamma Distributed at 5% Si	gnificance Level
Detected data appear Gamma Distributed at 5% Significance Level			
Gamma Statistics			
k hat (MLE)	33.44	k star (bias corrected MLE)	28.45
Theta hat (MLE)	0.139	Theta star (bias corrected MLE)	0.163
nu hat (MLE)	1337	nu star (bias corrected)	1138
MLE Mean (bias corrected)	4.651	MLE Sd (bias corrected)	0.872
		Approximate Chi Square Value (0.05)	1061
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	1055
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	4.99	95% Adjusted Gamma UCL (use when n<50)	5.018
loor t			
Lognormal GOF Test	0.043	d : will b Loos T :	
Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value Lilliefors Test Statistic		Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value		Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Significance Level	0.150	Data appear Logitorinar at 3/8 Significance Level	
Lognormal Statistics Minimum of Logged Data	1 267	Mean of logged Data	1.522
Maximum of Logged Data		SD of logged Data	0.178
Maximum of Logged Data	1.040	35 of logged bata	0.178
Assuming Lognormal Distribution			
95% H-UCL		90% Chebyshev (MVUE) UCL	5.209
95% Chebyshev (MVUE) UCL	5.462	97.5% Chebyshev (MVUE) UCL	5.813
99% Chebyshev (MVUE) UCL	6.503		
Nonparametric Distribution Free UCL Statistics			
Data appear to follow a Discernible Distribution at 5% Significance	Level		
Nonparametric Distribution Free UCLs			
95% CLT UCL	4.955	95% Jackknife UCL	4.971
95% Standard Bootstrap UCL	4.944		4.983
95% Hall's Bootstrap UCL	4.967	·	4.941
95% BCA Bootstrap UCL	4.984		4.541
90% Chebyshev(Mean, Sd) UCL	5.206		5.457
97.5% Chebyshev(Mean, Sd) UCL	5.806		6.491
· /			

Suggested UCL to Use 95% Student's-t UCL

4.971

ProUCL calculations for Hg in sediment of the Animas River above mainstem Cement Creek

User Selected Options

2/18/2015 11:01 Date/Time of Computation From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

General Statistics			
Total Number of Observations	14	Number of Distinct Observations	13
		Number of Missing Observations	0
Minimum	0.02	Mean	0.0705
Maximum	0.19	Median	0.058
SD	0.0442	Std. Error of Mean	0.0118
Coefficient of Variation	0.627	Skewness	1.715
Normal GOF Test			

Shapiro Wilk Test Statistic 0.844 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.874 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.192 Lilliefors GOF Test

0.237 Data appear Normal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 0.0914 95% Adjusted-CLT UCL (Chen-1995) 0.0957 95% Modified-t UCL (Johnson-1978) 0.0923

Gamma GOF Test

A-D Test Statistic 0.292 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.742 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.129 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.23 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 3.323	2 k star (bias corrected MLE)	2.657
Theta hat (MLE) 0.021:	2 Theta star (bias corrected MLE)	0.0265
nu hat (MLE) 95	3 nu star (bias corrected)	74.41
MLE Mean (bias corrected) 0.070	5 MLE Sd (bias corrected)	0.0432
	Approximate Chi Square Value (0.05)	55.54
Adjusted Level of Significance 0.031	2 Adjusted Chi Square Value	53.38

Assuming Gamma Distribution

0.0944 95% Adjusted Gamma UCL (use when n<50) 95% Approximate Gamma UCL (use when n>=50)) 0.0983

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.981 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.874 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.16 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.237 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -3.912 Mean of logged Data -2.81 Maximum of Logged Data -1.661 SD of logged Data 0.581

Assuming Lognormal Distribution

95% H-UCL 0.101 90% Chebyshev (MVUE) UCL 0.104 95% Chebyshev (MVUE) UCL 0.12 97.5% Chebyshev (MVUE) UCL 0.141 99% Chebyshev (MVUE) UCL 0.183

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	0.0899	95% Jackknife UCL	0.0914
95% Standard Bootstrap UCL	0.0891	95% Bootstrap-t UCL	0.106
95% Hall's Bootstrap UCL	0.204	95% Percentile Bootstrap UCL	0.0911
95% BCA Bootstrap UCL	0.0951		
90% Chebyshev(Mean, Sd) UCL	0.106	95% Chebyshev(Mean, Sd) UCL	0.122
97.5% Chebyshev(Mean, Sd) UCL	0.144	99% Chebyshev(Mean, Sd) UCL	0.188

Suggested UCL to Use

95% Student's-t UCL 0.0914

ProUCL calculations for Pb in sediment of the Animas River above mainstem Cement Creek

User Selected Options

Date/Time of Computation 2/18/2015 10:57
From File WorkSheet.xls
Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Canaval	Statistics

General Statistics			
Total Number of Observations	20	Number of Distinct Observations	20
		Number of Missing Observations	0
Minimum	554	Mean	1508
Maximum		Median	1320
SD		Std. Error of Mean	130.1
Coefficient of Variation	0.386	Skewness	0.809
Normal GOF Test			
Shapiro Wilk Test Statistic	0.944	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.905	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.178	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.198	Data appear Normal at 5% Significance Level	
Data appear Normal at 5% Significance Level			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1733	95% Adjusted-CLT UCL (Chen-1995)	1747
		95% Modified-t UCL (Johnson-1978)	1737
Gamma GOF Test			
A-D Test Statistic	0.281	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significand	ce Level
K-S Test Statistic		Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear Gamma Distributed at 5% Significant			
Gamma Statistics			
k hat (MLE)	7.178	k star (bias corrected MLE)	6.134
Theta hat (MLE)		Theta star (bias corrected MLE)	245.9
nu hat (MLE)		nu star (bias corrected)	245.4
MLE Mean (bias corrected)		MLE Sd (bias corrected)	609
,		Approximate Chi Square Value (0.05)	210.1
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	207.5
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	1761	95% Adjusted Gamma UCL (use when n<50)	1783
Lognormal GOF Test			
Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value		Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value Data appear Lognormal at 5% Significance Level	0.198	Data appear Lognormal at 5% Significance Level	
Lognormal Statistics Minimum of Logged Data	6 3 1 7	Mean of logged Data	7.247
Maximum of Logged Data		SD of logged Data	0.394
Maximum of Eogged Data	0.010	SD OF TOESEE Data	0.554
Assuming Lognormal Distribution			
95% H-UCL	1807	90% Chebyshev (MVUE) UCL	1921
95% Chebyshev (MVUE) UCL	2106	97.5% Chebyshev (MVUE) UCL	2364
99% Chebyshev (MVUE) UCL	2869		
Nonparametric Distribution Free UCL Statistics			
Data appear to follow a Discernible Distribution at 5% Sign	ificance	Level	
Nonparametric Distribution Free UCLs			
95% CLT UCL	1722	95% Jackknife UCL	1733
95% Standard Bootstrap UCL	1718	95% Bootstrap-t UCL	1766
95% Hall's Bootstrap UCL	1765	95% Percentile Bootstrap UCL	1711
95% BCA Bootstrap UCL	1744		
90% Chebyshev(Mean, Sd) UCL	1899	95% Chebyshev(Mean, Sd) UCL	2076
97.5% Chebyshev(Mean, Sd) UCL	2321	99% Chebyshev(Mean, Sd) UCL	2803

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

1733

Suggested UCL to Use 95% Student's-t UCL

Date/Time of Computation 2/18/2015 11:00
From File WorkSheet.xls
Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	20	Number of Distinct Observations Number of Missing Observations	19 0
Minimum	3400	Mean	10617
Maximum		Median	9550
SD		Std. Error of Mean	1127
Coefficient of Variation		Skewness	1.162
Coefficient of Variation	0.475	Skewness	1.102
Normal GOF Test			
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.905	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value	0.198	Data appear Normal at 5% Significance Level	
Data appear Approximate Normal at 5% Significance Level			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	12566	95% Adjusted-CLT UCL (Chen-1995)	12784
		95% Modified-t UCL (Johnson-1978)	12615
Gamma GOF Test			
A-D Test Statistic	0.449	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic		Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected data appear Gamma Distributed at 5% Significance			
Gamma Statistics			
k hat (MLE)	5 150	k star (bias corrected MLE)	4,418
Theta hat (MLE)		Theta star (bias corrected MLE)	2403
nu hat (MEE)		nu star (bias corrected)	176.7
MLE Mean (bias corrected)		MLE Sd (bias corrected)	5051
WEE Weath (Stad corrected)	10017	Approximate Chi Square Value (0.05)	147
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	144.8
,			
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	12766	95% Adjusted Gamma UCL (use when n<50)	12954
Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.965	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.905	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.111	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.198	Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Significance Level			
Lognormal Statistics			
Minimum of Logged Data	8.132	Mean of logged Data	9.17
Maximum of Logged Data		SD of logged Data	0.461
Assuming Lognormal Distribution			
95% H-UCL	13177	90% Chebyshev (MVUE) UCL	14006
95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	17668
99% Chebyshev (MVUE) UCL	21850		1,000
Indipine (mide) deb			

95% CLT UCL	12471	95% Jackknife UCL	12566
95% Standard Bootstrap UCL	12438	95% Bootstrap-t UCL	13047
95% Hall's Bootstrap UCL	12981	95% Percentile Bootstrap UCL	12460
95% BCA Bootstrap UCL	12792		
90% Chebyshev(Mean, Sd) UCL	13999	95% Chebyshev(Mean, Sd) UCL	15530
97.5% Chebyshev(Mean, Sd) UCL	17657	99% Chebyshev(Mean, Sd) UCL	21833

Suggested UCL to Use

95% Student's-t UCL 12566

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCL Statistics

Nonparametric Distribution Free UCLs

ProUCL calculations for Ni in sediment of the Animas River above mainstem Cement Creek

User Selected Options

Date/Time of Computation 2/23/2015 8:37 From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

3	er	e	al	Sta	tis	tì	cs

General Statistics Total Number of Observations	20	Number of Distinct Observations	20
Total Number of Observations	20	Number of Missing Observations	0
Minimum	5.92	Mean	8.224
Maximum	16.5	Median	7.32
SD		Std. Error of Mean	0.534
Coefficient of Variation	0.291	Skewness	2.335
Normal GOF Test			
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value Data Not Normal at 5% Significance Level	0.198	Data Not Normal at 5% Significance Level	
·			
Assuming Normal Distribution		950/1101 /a lt 1 15 01 3	
95% Normal UCL	0.140	95% UCLs (Adjusted for Skewness)	0.404
95% Student's-t UCL	9.148	95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)	9.401 9.195
Gamma GOF Test A-D Test Statistic	0.919	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic		Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level		-	
Gamma Statistics			
k hat (MLE)	16.13	k star (bias corrected MLE)	13.74
Theta hat (MLE)	0.51	Theta star (bias corrected MLE)	0.599
nu hat (MLE)	645	nu star (bias corrected)	549.6
MLE Mean (bias corrected)	8.224	MLE Sd (bias corrected)	2.219
		Approximate Chi Square Value (0.05)	496.2
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	492.2
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	9.109	95% Adjusted Gamma UCL (use when n<50)	9.183
Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.872	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.905	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.182	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.198	Data appear Lognormal at 5% Significance Level	
Data appear Approximate Lognormal at 5% Significance Level			
Lognormal Statistics			
Minimum of Logged Data		Mean of logged Data	2.076
Maximum of Logged Data	2.803	SD of logged Data	0.243
Assuming Lognormal Distribution		2007 CL	
95% H-UCL		90% Chebyshev (MVUE) UCL	9.547
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	10.16	97.5% Chebyshev (MVUE) UCL	11.01
Nonparametric Distribution Free UCL Statistics			
Data appear to follow a Discernible Distribution at 5% Significance	e Level		
Nonparametric Distribution Free UCLs	0.403	OFR/ In-addunific LICI	0.440
95% CLT UCL	9.103		9.148
95% Standard Bootstrap UCL	9.073	•	9.687
95% Hall's Bootstrap UCL	12.83 9.488	· ·	9.099
95% BCA Bootstrap UCL	9.488		10.55
90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	11.56		13.54
Suggested LICI to Line			
Suggested UCL to Use 95% Student's-t UCL	9.148	or 95% Modified-t UCL	9.195
			HAVE STATE OF THE PARTY OF THE

ProUCL calculations for Se in sediment of the Animas River above mainstem Cement Creek

K.S Test Statistic S78 K.S Critical Value Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics on Detected Data Only k hat (MLE) Gamma Statistics on Detected Data Only k hat (MLE) O.315 Theta star (bias corrected ML Theta hat (MLE) O.315 Theta star (bias corrected ML 1.539 MLE Sd (bias corrected) Gamma Kaplan-Meier (KM) Statistics k hat (KM) Gamma Kaplan-Meier (KM) Statistics k hat (KM) S6.55 Adjusted Chi Square Value (75.57, α) 95% Gamma Approximate KM-UCL (use when n>=50 Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50.1 For such situations, GROS method tends to yield inflated values of UCLs and BTVs For gamma distributed detected data, BTVs and UCLs may be computed using gamma distr Minimum 0.01 Mean Maximum 2.266 Median 0.0719 CV k hat (MLE) 0.293 k star (bias corrected ML Theta hat (MLE) 0.1095 Theta star (bias corrected) MLE Mean (bias corrected) 0.321 MLE Sd (bias corrected) Approximate Chi Square Value (11.30, α) 95% Gamma Approximate UCL (use when n>=50) 0.873 Shapiro Wilk GOF Test	
Total Number of Observations	
Number of Detects	
Number of Distinct Non-Minimum Detect Maximum Detect 2,955 Maximum Non-Detect	rvations 16
Maximum Detect	
Variance Detects 1.53 Sto Detects 1.55 Sto Detects 1.55 Skewness Detects 1.50 Detect	0.49
Meain Detects Mean of Logged Detects Skewness Detected Detects Skewness Detected Detects Skewness Detected Data appear Normal Critical Value Under Skewness Skewness Detected Data appear Normal at 5% Significance Level Skaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Mean School Skewness Skewness Detected Data appear Normal Critical Values and other Nonparametric UCLs Skewness Detected Data appear Normal Critical Values and other Nonparametric UCLs Skewness Detected Data Skewness School Skewness Skewness Detected Data Skewness School Skewness Skewness Detected Detected Deservations Only A-D Test Statistic Under Skewness Skewness Detected Deservations Only A-D Test Statistic Under Skewness Skewness Detected Data Only Skewness Detected Detected Data Only Skewness Detected Detected Data Only Skewness Detected Data Only Skewness Detected Det	1.03
Skewness Detects Mean of Logged Detects Mean of Logged Detects Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Shapiro Wilk Critical Value Detected Data appear Normal at 5% Significance Level Caplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCIs Mean Detected Data appear Normal at 5% Significance Level Caplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCIs Mean Detected Data appear Normal at 5% Significance Level Caplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCIs Mean Detected Data appear Normal at 5% Significance Level Caplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCIs Mean Detected Data appear Normal at 5% Significance Level Detected Data appear Normal Critical Values Despis KM (t) UCI Despis	0.899
Mean of Logged Detects Normal GOF Test on Detects Only Shapiro Wilk Test Statistic Ses Shapiro Wilk Critical Value Utiliefors Test Statistic Ses Shapiro Wilk Critical Value Utiliefors Test Statistic O.339 Utiliefors GOF Test Statistic O.443 Detected Data appear Normal at 5% Significance Level Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Mean O.743 Standard Error of Mean Significance Level Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Mean O.743 Standard Error of Mean Significance Level Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Mean O.743 Standard Error of Mean Significance Level Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Mean O.743 Standard Error of Mean Significance Level And Significance Level Kaplan-Meier (KM) Statistics O.748 Significance Level And Test Statistic O.749 Significance Level And Si	0.58
Shapino Wilk Test Statistic Sh Shapino Wilk Critical Value O.748 Detected Data appear No Critical Value O.748 Detected Data appear No Detected Data Option Detected Data Detected Dat	3.40: 0.50:
Sis Shapiro Wilk Critical Value Lilliefors Test Statistic 0.359 Lilliefors GOF Test Statistic 0.443 Detected Data appear Normal at 5% Significance Level Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLS Mean SD 0.54 95% KM (CL) 0.95% KM (1) UCL 0.95% KM (Chebyshev UCL 1.186 95% KM (Chebyshev UCL 1.186 95% KM (Chebyshev UCL 0.55% KM Chebyshev UCL 0.55% LOPEN CONTROLL 0	
Lilliefors Test Statistic	ormal at 5% Significance Level
Detected Data appear Normal at 5% Significance Level Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs Mean O.743 Standard Error of Mean SD	
Mean 0.743 Standard Error of Mean SD 0.54 95% KM (E) UCL 0.986 95% KM (E) UCL 0.998 95% KM (PC) UCL 0.986 95% KM (PC) UCL 0.986 95% KM (PC) UCL 1.186 95% KM Chebyshev UCL 1.186 95% KM Chebyshev UCL 1.666 99% KM Chebyshev UCL 1.666 99% KM Chebyshev UCL 4.666 99% KM Chebyshev UCL 4.666 99% KM Chebyshev UCL 4.67	rmal at 5% Significance Level
SD 0.54 95% KM (ξ) UCL 0.998 95% KM (Porcentile Boot 95% KM (z) UCL 0.986 95% KM (Porcentile Boot 90% KM Chebyshev UCL 1.186 95% KM Chebyshev UCL 37.5% KM Chebyshev UCL 1.666 99% KM Chebyshev UCL Gamma GOF Tests on Detected Observations Only 2.00 1 1.666 99% KM Chebyshev UCL Gamma GOF Tests on Detected Observations Only 2.059 Detected data appear Gamma Distributed at SM Significance Level Gamma Statistics 0.395 Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics on Detected Data Only 4.889 k star (bias corrected ML Khat (MLE) 0.315 Theta star (bias corrected ML Theta hat (MLE) 0.315 Theta star (bias corrected) MLE Mean (bias corrected) 1.539 MLE Sd (bias corrected) Gamma Kaplan-Meier (KM) Statistics khat (KM) Khat (KM) 1.889 nu hat (KM) Approximate Chi Square Value (75.57, α) 56.55 Adjusted Chi Square Value 95% Gamma Approximate KM-UCL (use when np=50 0.993 95% Gamma Adjusted it GROS may not be used when data set has > 50% NDs with many tied observations at multip 6ROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when k	
95% KM (t) UCL 95% KM (t) UCL 95% KM (z) UCL 95% KM Chebyshev UCL 1.1866 95% KM Chebyshev UCL 1.1866 95% KM Chebyshev UCL 97.5% KM Chebyshev UCL 1.1866 95% KM Chebyshev UCL 97.5% KM Chebyshev UCL 0.486 Anderson-Darling GOF Te 56% A-D Critical Value 0.659 Detected data appear Ga K-S Test Statistic 0.339 Kolmogrov. Smirnorf GoG SK K-S Critical Value 0.359 Detected data appear Ga Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics on Detected Data Only K hat (MLE) 4.889 k star (bias corrected ML Theta hat (MLE) 0.315 Theta star (bias corrected ML Theta hat (MLE) 0.315 Theta star (bias corrected) MLE Mean (bias corrected) 1.539 MLE Sd (bias corrected) Gamma Kaplan-Meier (KM) Statistics k hat (KM) Approximate Chi Square Value (75.57, α) 95% Gamma Approximate KM-UCL (use when n>=50 0.993 95% Gamma Adjusted if GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when katar of detected data is small such as < 0.1 For such situations, GROS method tends to yield inflated values of UCLs and BTVs For gamma distributed detected data, BTVs and UCLs may be computed using gamma distr Minimum 2.86 Median 2.0 1.719 CV k hat (MLE) 1.0.731 CV k hat (MLE) 1.0.732 Nu star (bias corrected) 1.0.743 Detected Data appear Log Detected Data	0.14
99% KM (z) UCL 90% KM (z) UCL 90% KM Chebyshev UCL 1.186 99% KM Chebyshev UCL 97.59 KM Chebyshev UCL 97.59 KM Chebyshev UCL 1.666 99% KM Chebyshev UCL 97.59 KM Chebyshev UCL 63mma GOF Tests on Detected Observations Only A-D Test Statistic 0.486 Anderson-Darling GOF Test S% A-D Critical Value 0.659 Detected data appear Ga K-S Test Statistic 0.399 Content of Management of Control of C	N/A strap) UCL N/A
99% KM Chebyshev UCL 97.5% KM Chebyshev UCL 1.666 99% KM Chebyshev UCL 1.66	
Gamma GOF Tests on Detected Observations Only A-D Test Statistic Sig A-D Critical Value Ciss A process Signature Common Statistic Ciss A process Circle Common Statistic Ciss A process Circle Common Statistic Ciss A process Ciss Circle Common Statistic Ciss Circle Common Statistic Ciss Circle Ciss Ciss Ciss Ciss Ciss Ciss Ciss Cis	1.38
AD Test Statistic 0.486 Anderson-Darling GOF Te SW A-D Critical Value 0.659 Detected data appear Ga 0.598 A-D Critical Value 0.395 (AD CRITICAL ORD) (AD C	2.21
5% A.D. Critical Value 5% K.S. Test Statistic 0.339 Kolmogrov-Smirnoff GOF 5% K.S. Critical Value Detected data appear Ga Detected data (MILE) 0.315 Theta star (bias corrected) 1.539 MLE Sd (bias corrected) 1.539 MLE Sd (bias corrected) Deservations at multip Deservations at Miles of Gamma Adjusted it Deservations at Miles of Gamma Adjusted it Deservations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.1 Manimum 2.86 Median D.719 CV Khat (MLE) 1.023 Ktar (bias corrected MLE) MLE Maan (bias corrected) 2.211 MLE Sd (bias corrected) Adjusted Level of Signific Approximate Chi Square Value (11.30, q) 95% Gamma Approximate UCL (use when n=50) D.76 95% Gamma Adjusted it Detected Data appear Lo Detected Data appear Lo 3.630 Gilliefors GOF Test 0.437 Padjusted Chi Square Value Detected Data appear Lo 0.360 Gilliefors GOF Test 0.437 Padjusted Chi Square Value Detected Data appear Lo 0.360 Gilliefors GOF Test 0.439 95% Bootstrap UCL 0.59% Shapiro Wilk Cottes Value 0.477 Adjusted Chi Square Value 0.479 95% Gamma Adjusted it 0.439 95% H-UCL (MC H-Os) WKM Mean (logged) 0.4039 95% Bootstrap UCL 0.59% Gritical H Value (KM KM Standard Err	st
Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics on Detected Data Only k hat (MLE) O.315 Theta star (bias corrected ML Theta hat (MLE) O.315 Theta star (bias corrected ML MLE Mean (bias corrected) J.539 MLE 5d (bias corrected) Gamma Kaplan-Meier (KM) Statistics k hat (KM) Approximate (KM) Statistics k hat (KM) Approximate Chi Square Value (75.57, α) J95% Gamma Approximate KM-UCL (use when no=50) Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when katar of detected data is small such as < 0.1 For such situations, GROS method tends to yield inflated values of UCLs and BTVs For gamma distributed detected data, BTVs and UCLs may be computed using gamma distr Minimum Asximum Diama (MLE) D.293 k star (bias corrected) All Mean (MLE) NLE Man (Bias corrected) Approximate Chi Square Value (11.30, α) PS% Gamma Approximate UCL (use when no=50) Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic Detected Data appear Lognormal at 5% Significance Level Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale PS% H-UCL (logs when no=50) UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormall KM Mean (logged) O.429 95% Gorbinal Scale PS% H-UCL (lognormal Distribution and KM Estimates when Detected data are Lognormall KM Mean (logged) O.429 95% Gritical H Value (KM MSD (logged) O.439 95% Gritical H Value (KM MSD (logged) O.429 95% Gritical H Value (KM MSD (logged) O.421 PLC Logger (MSD (Logged) O.422 PLC Logger (MSD (Logged) O.423 PLC Logger (MSD	mma Distributed at 5% Significance Lev
Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics on Detected Data Only k hat (MLE) 1.315 Theta star (bias corrected ML Theta hat (MLE) 1.329 MLE Sd (bias corrected) 1.539 MLE Sd (bias corrected) MLE Mean (bias corrected) 1.539 MLE Sd (bias corrected) Gamma Kaplan-Meier (KM) Statistics k hat (KM) 1.889 nu hat (KM) 3.89 nu hat (KM) 3.95% Gamma Approximate KM-UCL (use when no=50) 3.95% Gamma Approximate KM-UCL (use when no=50) 3.95% Gamma Approximate KM-UCL (use when no=50) 3.95% Gamma Approximate MA-UCL (use Mapproximate Maximum 3.95% Gamma Approximate MA-UCL (use Mapproximate Maximum) 3.95% Gamma Approximate MA-UCL (use when no=50) 3.95% Gamma Approximate MA-UCL (use when no=50) 3.95% Gamma Approximate MA-UCL (use when no=50) 4.77 Gamma Gamma Mapproximate MA-UCL (use when no=50) 4.78 Gamma Approximate MA-UCL (use when no=50) 4.76 Gamma Approximate MA-UCL (use when no=50) 4.77 Gamma GOF Test on Detected Observations Only Shapiro Wilk Coff Test 5% Shapiro Wilk Coff Test 6.85 Shapiro Wilk Coff Test 6.85 Shapiro Wilk Coff Test 6.95% Gamma Approximate MA-UCL (use when no=50) 6.95% Gamma Approximate MA-UCL (use when no=50) 7.76 Gamma Gof Test on Detected Observations Only Shapiro Wilk Coff Test 6.95% Gamma Approximate MA-UCL (use when no=50) 7.76 Gamma Gof Test on Detected Observations Only Shapiro Wilk Coff Test 6.95% Gamma Approximate MA-UCL (use when no=50) 7.76 Gamma Gof Test Only Shapiro Wilk Gof Test 7.77 Gamma Gof Test Only Shapiro W	Distributed at EW Circliff
k hat (MLE) A 4.889 k star (bias corrected MLE Theta hat (MLE) nu hat (MLE) 3.12 nu star (bias corrected) MLE Mean (bias corrected) Approximate Chi Square Value (75.57, α) 95% Gamma Approximate KM-UCL (use when ro=50) Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has be computed using gamma distr Minimum 0.01 Mean Maximum 0.02 Mean Maximum 0.03 Mean 0.01 Mean 0.02 Mean 0.03 Mean 0.03 Mean 0.04 Majusted Level GROS corrected ML 0.04 Majusted Level of Signific Corrected ML 0.05 Theta star (bias corrected ML 0.07 Majusted Chi Square Value 0.08 Majusted Chi Square 0.08 Majusted Chi Square 0.08 Majusted Chi Square 0.	mina distributed at 5% significance Lev
Theta hat (MLE) OBJECT OF THE STATE (DIAS CORRECTED IN LESS OF MELE SAT (DIAS CORRECTED IN LESS OF ME	
nu hat (MLE) Gamma Kaplan-Meier (KM) Statistics khat (KM) Approximate Chi Square Value (75.57, α) Somma Kaplan-Meier (KM) Statistics khat (KM) Approximate Chi Square Value (75.57, α) Somma Kaplan-Meier (KM) Statistics Samma Roy Statistics using Imputed Non-Detects Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when katar of detected data is small such as < 0.1 For such situations, GROS method tends to yield inflatted values of UCLs and BTVs For gamma distributed detected data, BTVs and UCLs may be computed using gamma distr Minimum 2.86 Median Naximum 2.86 Median No.19 CV Khat (MLE) 0.293 k star (bias corrected ML 1.095 Theta star (bias corrected ML 1.095 Theta star (bias corrected ML 1.173 nu star (bias corrected ML Approximate Chi Square Value (11.30, α) 95% Gamma Approximate UCL (use when n==50) Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test statistic S% Shapiro Wilk Critical Value Lilliefors Critical Value Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale 95% t DCL (nos gros) O.748 Detected Data appear Lognormal at 5% Significance Level Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale 0.525 Mean in Log Scale 0.595 Mean in Log Scale 0.595 Mean in Log Scale 0.689 95% Bootstrap UCL 0.789 95% BOotstrap UCL 0.795% H-UCL (kM-Log) KM Mean (logged) 0.402 0.403 0.403 0.439 0.479 0.471 0.480 0.403 0.403 0.403 0.403 0.403 0.403 0.403 0.404 0.403 0.404 0.403 0.404 0.404 0.405 0.405 0.407 0.40	
Gamma Kaplan-Meier (KM) Statistics k hat (KM) Approximate Chi Square Value (75.57, α) 56.55 Adjusted Chi Square Value 95% Gamma Approximate KM-UCL (use when ra-50 Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.1 GROS may not be used when katar of detected data is small such as < 0.2 Mean distributed detected data, BTVs and UCLs may be computed using gamma distr Minimum 2.86 Median D.19 CV Kha (MLE) D.293 K star (bias corrected MLE) D.19 CV Kha (MLE) D.293 K star (bias corrected MLE) D.21 ME Sd (bias corrected MLE) D.21 ME Sd (bias corrected) Adjusted Level of Signific and the star (bias corrected) Adjusted Level of Signific Approximate UCL (use when ro=50) D.76 95% Gamma Adjusted to 0.323 Shapiro Wilk GOF Test D.3748 Detected Data appear Log Detected Data appear Log Detected Data appear Log Data of Data appear Log Data data appear Log Data data data are Lognormal Log Scale D.3741 Detected Data appear Log Data data are Lognormal Log Scale D.3741 Data Data data are Lognormal Log Scale D.3741 Detected Data appear Log Data data are Lognormal Log Scale D.3741 Data Data are Lognormal Log Data data are Lognormal Log Company Log Data data are	11.1
k hat (KM) Approximate Chi Square Value (75.57, a) 95% Gamma Approximate KM-UCL (use when no=50) 63mma ROS Statistics using Imputed Non-Detects 6ROS may not be used when data set has > 50% NDs with marry tied observations at multiper for such situations, GROS method tends to vipeld inflated values of UCLs and BTVs 6ro gamma distributed detected data, BTVs and UCLs may be computed using gamma distr Minimum Maximum 2.86 Median 3.0.119 CV k hat (MLE) 0.293 k star (bias corrected) Approximate Chi Square Value (11.30, a) 95% Gamma Approximate UCL (use when no=50) 1.173 no us tar (bias corrected) Approximate Chi Square Value (11.30, a) 95% Gamma Approximate UCL (use when no=50) 1.076 95% Gamma Approximate UCL (use when no=50) 1.077 95% Gamma Approximate UCL (use when no=50) 1.078 Sk hapiro Wilk Critical Value 1.078 Test Statistic 0.087 Shapiro Wilk Critical Value 0.178 Detected Data appear Lo 0.296 Sc Sapiro Wilk Critical Value 0.297 Sk Shapiro Wilk Critical Value 0.298 St Statistics Using Imputed Non-Detects Mean in Original Scale 95% t UCL (assumes normality of ROS data) 95% B CA Bootstrap UCL 95% H-UCL (loge ROS) 0.429 95% H-UCL (KM -Log) KM Mean (logged) 0.429 95% Critical H Value (KK MS Sto) (logged) 0.429 95% Critical H Value (KK MS Sto) (logged) 0.429 95% Critical H Value (KK MS Sto) (logged) 0.429 95% Critical H Value (KK MS Sto) (logged) 0.429 95% Critical H Value (KK MS Sto) (logged) 0.429 95% Critical H Value (KK MS Sto) (logged) 0.429 0.429 95% Critical H Value (KK MS Sto) (logged) 0.429 0.439 95% Gritical H Value (KK MS Sto) (logged) 0.429 0.439 95% Gritical H Value (KK MS Sto) (logged) 0.429 0.439 0.	1,300
Approximate Chi Square Value (75.57, α) 95% Gamma Approximate KM-UCL (use when no=50) 63. Adjusted Chi Square Value 63. Approximate KM-UCL (use when no=50) 63. Adjusted Chi Square Value 64. Approximate KM-UCL (use when no=50) 65. Adjusted Chi Square Value 66. Approximate Chi Square Value 66. Approximate Chi Square Value 67. Appr	75.5
95% Gamma Approximate KM-UCL (use when ns=50 0.993 95% Gamma Adjusted Id Gamma ROS Statistics using Imputed Non-Detects GROS may not be used when data set has > 50% NDs with many tied observations at multip GROS may not be used when start of detected data is small such as < 0.1 For such situations, GROS method tends to yield inflated values of UCLs and BTVs For gamma distributed detected data, BTVs and UCLs may be computed using gamma distr Minimum 0.01 Mean Maximum 2.86 Median SD 0.719 CV k hat (MLE) 0.293 k star (bias corrected ML Theta hat (MLE) 1.095 Theta star (bias corrected ML Theta hat (MLE) 1.095 Theta star (bias corrected ML Theta hat (MLE) 1.095 Theta star (bias corrected) MLE Mean (bias corrected) 1.17.3 no us tar (bias corrected) Approximate CH3 (quare Value (11.30, α) 4.77 Adjusted Ch4 Square Value (19.5% Gamma Approximate VCL (use when ns=50) 0.76 95% Gamma Adjusted Level of Signific Approximate CH2 (use when ns=50) 0.76 95% Gamma Adjusted to Ucgnormal GOF Test on Detected Observations Only Shapiro Wilk Critical Value 0.748 Detected Data appear Lo Detected Data appear Lognormal at 5% Significance Level Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale 0.636 SD in Log Scale 0.555 Mean in Log Scale 0.578 Hear (in Log Scale 0.578) Hear (in Log Scale 0.579) Hear (LC (Log Scale 0.579) Hear (LC (LC (LC 0.741) Hear (LC 0.	
GROS may not be used when kstar of detected data is small such as < 0.1 for such situations, GROS method tends to yield inflated values of UCLs and BTVs for gamma distributed detected data, BTVs and UCLs may be computed using gamma distr Minimum 2.86 Median SD 0.719 CV khat (MLE) 0.293 kstar (bias corrected ML Theta hat (MLE) 1.095 Theta star (bias corrected ML Theta hat (bias corrected ML Thet	(M-UCL (use when n<50) 1.016
For gamma distributed detected data, BTVs and UCLs may be computed using gamma distr Minimum 0.01 Mean Maximum 2.86 Median SD 0.719 CV Khat (MLE) 0.293 k star (bias corrected ML Theta hat (MLE) 1.095 Theta star (bias corrected ML Theta hat (MLE) 1.095 Theta star (bias corrected ML Theta hat (MLE) 1.095 Theta star (bias corrected ML MILE) 1.095 Theta star (bias corrected ML MILE) 1.095 Theta star (bias corrected ML MILE) 1.095 Theta star (bias corrected) 2.211 MLE 5d (bias corrected) Adjusted Level of Signific Approximate Chi Square Value (11.30, α) 95% Gamma Approximate UCL (use when n≈50) 0.76 95% Gamma Adjusted Level of Signific Sparin Wilk Test Statistic 0.873 Shapiro Wilk GOF Test S% Shapiro Wilk Critical Value 0.488 Detected Data appear Lo 0.306 Lilliefors Critical Value 0.307 Lilliefors Critical Value 0.307 Lilliefors Critical Value 0.306 Lilliefors Critical Value 0.307 Lilliefors Critical Value 0.308 Lilliefors Critical Value 0.308 Lilliefors Critical Value 0.309 SW Bootstrap UCL 0.3	le DLs
Minimum	
Maximum	bution on KM estimates 0.32:
SD	0.03
Theta hat (MLE) ub at (MLE) MLE Mean (bias corrected) MLE Mean (bias corrected) MLE Mean (bias corrected) Adjusted Level of bias corrected) Adjusted Level of Signified Signified Level of Signified	2.24
nu hat (MLE) MLE Mean (bias corrected) MLE Mean (bias corrected) Adjusted Level of Signife Approximate Chi Square Value (11.30, α) 95% Gamma Approximate UCL (use when n=50) O,76 95% Gamma Approximate UCL (use when n=50) O,76 95% Gamma Adjusted to Union of Statistic Signife Sapiro Wilk Test Statistic Signife Multi-Signife Signife Signife O,443 Detected Data appear Lognormal at 5% Significance Level Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale O,525 She Din Original Scale O,536 Signife Signife O,525 Signife O,525 She Bootstrap UCL O,55% HCL (Log ROS) O,771 Signife O,741 UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally KM Mean (logged) O,462 95% CHICL (Log ROS) DL/2 Log-Transformed DL/2 Log-Transformed DL/2 Log-Transformed	
MLE Mean (bias corrected) Adjusted Level of Signific Approximate Chi Square Value (11.30, α) 95% Gamma Approximate UCL (use when no=50) Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic Sos Shapiro Wilk Critical Value Lilliefors Test Statistic O.36 Lilliefors GOF Test Spice Lilliefors GOF Test O.306 Lilliefors GOF Test Spice Lilliefors GOF Test Spice Lilliefors GOF Test Spice Lilliefors GOF Test Spice Lilliefors GOF Test O.430 Detected Data appear Log Detected Data appear Log Detected Data appear Log Detected Data appear Log Spice Lilliefors GOF Test O.430 Detected Data appear Log Detected Data appear Log Detected Data appear Log Despired Lognormal Scale O.525 Mean in Log Scale O.525 Mean in Log Scale O.536 SD in Log Scale O.539 Spice HUCL (assumes normality of ROS data) O.771 95% Percentile Bootstr O.589 Spice HUCL (assumes normality of ROS data) O.771 95% Percentile Bootstr O.589 Spice HUCL (assumes normality of ROS data) O.771 95% Percentile Bootstr O.771 95% Percentile Boots	I MLE) 1.136 11.3
Adjusted Level of Significant Approximate Chi Square Value (11.30, a) 4.77 Adjusted Level of Significant Square Value (11.30, a) 4.76 95% Gamma Approximate UCL (tuse when no=50) 0.76 95% Gamma Approximate UCL (tuse when no=50) 0.76 95% Gamma Adjusted it Conformal GOF Test on Detected Observations Only Shapiro Wilk Cretical Value 0.873 Shapiro Wilk GOF Test 0.748 Detected Data appear Lo Utiliefors Test Statistic 0.366 Utiliefors Critical Value 0.306 Utiliefors Coff Test 0.443 Detected Data appear Lo Desero D	0.60
95% Gamma Approximate UCL (use when no=50) 0.76 95% Gamma Adjusted it Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic 0.487 Shapiro Wilk Critical Value 0.748 Detected Data appear Lognormal Soft Statistics 0.306 Lilliefors Critical Value 0.306 Lilliefors GOF Test 0.430 Detected Data appear Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale 0.525 Mean in Log Scale 0.636 SD in Log Scale 0.636 S	ance (β) 0.038
Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic 598 Shapiro Wilk Critical Value Lilliefors Test Statistic 598 Lilliefors Critical Value Lognormal ROS Statistics Using Imputed Non-Detects Under Critical Value Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale 598 LUCL (assumes normality of ROS data) 598 LUCL (assumes normality of ROS data) 598 LUCL (log ROS) UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally KM Mean (logged) WM SO (logged) UCLS using Lognormal Distribution and KM Estimates when Detected data are Lognormally KM Mean (logged) UCLS using Lognormal Distribution and KM Estimates when Detected data are Lognormally KM Standard Error of Mean (logged) UCLS vising Lognormal Distribution and KM Estimates when Detected data are Lognormally KM Standard Error of Mean (logged) UCLS vising Lognormal Distribution and KM Estimates when Detected data are Lognormally CRM Standard Error of Mean (logged) UCLS vising Lognormal Distribution and KM Estimates when Detected data are Lognormally CRM Standard Error of Mean (logged) UCLS vising Lognormal Distribution and KM Estimates when Detected Data are Lognormally CRM Standard Error of Mean (logged) UCLS vising Lognormal Distribution and KM Estimates when Detected Data are Lognormally CRM Standard Error of Mean (logged) UCLS vising Lognormal Distribution and KM Estimates when Detected Data appear Lognormal Distribution and KM Estimates when Detected Data appear Lognormal Distribution and KM Estimates when Detected Data appear Lognormal Distribution and KM Estimates when Detected Data appear Lognormal Distribution and KM Estimates when Detected Data appear Lognormal Distribution and KM Estimates when Detected Data appear Lognormal Distribution and KM Estimates when Detected Data appear Lognormal Distribution and KM Estimates when Detected Data appear Lognormal Distribution and KM Estimates when Detected Data appear Lognormal Distribution and KM Estimates when Detected Data	
Shapiro Wilk Test Statistic Shapiro Wilk Crest Statistic O.748 Detected Data appear Lo Lilliefors Test Statistic Sha Lilliefors Critical Value Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale O.525 Mean in Log Scale SD in Original Scale O.585 Using Imputed Non-Detects Mean in Original Scale O.595 HUCL (Log ROS) O.741 95% Percentile Bootstr. 95% HUCL (Log ROS) O.745 USING BOOTSTAP UCL O.741 O.741 Will Mean (logged) Mean (logged) O.439 95% FULC (KM-Log) KM Standard Error of Mean (logged) O.422 DL/2 Statistics DL/2 Normal DL/2 Log-Transformed	JCL (use when n<50) N/A
5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Test Statistic 5% Lilliefors Test Statistic S% Lilliefors Test Statistic S% Lilliefors Test Statistic Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale Lognormal Log Scale Lognormal Logno	
5% Lilliefors Critical Value 0.443 Detected Data appear Log Detected Data appear Lognormal at 5% Significance Level 0.433 Detected Data appear Log Lognormal ROS Statistics Using Imputed Non-Detects 0.525 Mean in Original Scale 0.536 50 in Log Scale SD in Original Scale 0.636 50 in Log Scale 0.771 95% Percentile Bootstr 95% BCA Bootstrap UCL 0.859 95% BOOTSTAP UCL 95% BOOTSTAP UCL 0.741 UCLs using Lognormal Distribution and KM Estimates when Lognormally KM Mean (logged) 0.439 95% H-UCL (KM -Log) KM 50 (logged) 0.462 95% Critical H Value (Kf KM Standard Error of Mean (logged) 0.139 DL/2 Statistics DL/2 Statistics DL/2 Log-Transformed	gnormal at 5% Significance Level
Detected Data appear Lognormal at 5% Significance Level Lognormal ROS Statistics Using Imputed Non-Detects Mean in Original Scale 0.636 SD in Log Scale 95% t UCL (assumes normality of ROS data) 0.771 95% Percentile Bootstra 95% t UCL (ROS) 0.859 95% Bootstrap UCL 0.859 95% Bootstrap t UCL 95% t UCL (log ROS) 0.741 UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally KM Mean (logged) 0.462 95% Critical H Value (Kf KM Standard Error of Mean (logged) 0.139 DL/2 Statistics DL/2 Normal DL/2 Normal	t a Fox en en en e
Mean in Original Scale 0.525 Mean in Log Scale SD in Original Scale 0.636 SD in Log Scale 95%8 t UCL (lassumes normality of ROS data) 0.771 95% Percentile Bootstr 95%8 t UCL (lassumes normality of ROS data) 0.859 95% Bootstrap t UCL 95%8 t UCL (ROS) 0.741 0.741 UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally KM Mean (logged) 0.439 95% Critical H Value (KM KM SD (logged) 0.462 95% Critical H Value (KM KM Standard Error of Mean (logged) 0.139 DL/2 Statistics DL/2 Log-Transformed DL/2 Log-Transformed	gnormal at 5% Significance Level
SD in Original Scale 0.636 SD in Log Scale 95% tUC [assumes normality of ROS data] 0.771 95% Percentile Bootstr. 95% BCA Bootstrap UCL 0.889 95% Bootstrap t UCL 95% H-UCL [Log ROS] 0.741	
95% t UCL (assumes normality of ROS data) 0.771 95% Percentile Bootstr 95% BCA Bootstrap UCL 95% BOOTSTAP UCL 95% Bootstrap t UCL 95% K H-UCL (log ROS) 0.741 95% Bootstrap t UCL UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally KM Mean (logged) -0.439 95% H-UCL (KM -Log) KM SD (logged) 0.462 95% Critical H Value (Kf KM Standard Error of Mean (logged) 0.139 DL/2 Statistics DL/2 Statistics DL/2 Log-Transformed	-1.024 0.78
95% BCA Bootstrap UCL 0.859 95% Bootstrap t UCL 95% H-UCL (Log ROS) 0.741 UCLs using Lognormal Distribution and KM Estimates when Detected data are Lognormally KM Mean (logged) -0.439 95% H-UCL (KM -Log) KM 5D (logged) 0.462 95% Critical H Value (KI KM Standard Error of Mean (logged) 0.139 DL/2 Statistics DL/2 Normal DL/2 Log-Transformed	
KM Mean (logged) -0.439 95% H-UCL (KM -Log) KM SD (logged) 0.462 95% Critical H Value (Kf KM Standard Error of Mean (logged) 0.139 DL/2 Statistics DL/2 Normal DL/2 Log-Transformed	1.086
KM SD (logged) 0.462 95% Critical H Value (KI KM Standard Error of Mean (logged) 0.139 DL/2 Statistics DL/2 Normal DL/2 Normal DL/2 Log-Transformed	Distributed
KM Standard Error of Mean (logged) 0.139 DL/2 Statistics DL/2 Normal DL/2 Log-Transformed	0.889
DL/2 Normal DL/2 Log-Transformed	M-Log) 1.98
wear in Original Scale U.646 Mean in Log Scale	
SD in Original Scale 0.589 SD in Log Scale	-0.66 0.61
50 in Uriginal Scale 95% t UCL (Assumes normality) 0.874 95% H-Stat UCL DL/2 is not a recommended method, provided for comparisons and historical reasons	0.84
DL/2 is not a recommended method, provided for comparisons and historical reasons Nonparametric Distribution Free UCL Statistics	
Detected Data appear Normal Distributed at 5% Significance Level	
Suggested UCL to Use 95% KM (t) UCL 0.998 95% KM (Percentile Boot	strap) UCL N/A
95% KM (t) UCL 0.998 95% KM (Percentile Boot Warning: One or more Recommended UCL(s) not available!	strapy OCL N/A

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL calculations for Ag in sediment of the Animas River above mainstem Cement Creek

User Selected Options

Date/Time of Computation 2/18/2015 11:03 WorkSheet.xls From File Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics			
Total Number of Observations	20	Number of Distinct Observations Number of Missing Observations	20 0
Minimum	2.9	Mean	5.491
Maximum	13.3	Median	4.845
SD	2.429	Std. Error of Mean	0.543
Coefficient of Variation	0.442	Skewness	2
Normal GOF Test			
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value Data appear Approximate Normal at 5% Significance Level	0.198	Data appear Normal at 5% Significance Level	
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	6.43	95% Adjusted-CLT UCL (Chen-1995)	6.644
		95% Modified-t UCL (Johnson-1978)	6.471
Gamma GOF Test			
A-D Test Statistic	0.642	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significa	nce Level
K-S Test Statistic		Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significa	nce Level
Detected data appear Gamma Distributed at 5% Significant	e Level		
Gamma Statistics			
k hat (MLE)	7.105	k star (bias corrected MLE)	6.072
Theta hat (MLE)	0.773	Theta star (bias corrected MLE)	0.904
nu hat (MLE)	284.2	nu star (bias corrected)	242.9
MLE Mean (bias corrected)	5.491	MLE Sd (bias corrected)	2.228
		Approximate Chi Square Value (0.05)	207.8
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	205.3
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	6.418	95% Adjusted Gamma UCL (use when n<50)	6.498
Lognormal GOF Test			
Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value		Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value Data appear Lognormal at 5% Significance Level	0.198	Data appear Lognormal at 5% Significance Level	
Lognormal Statistics			
Minimum of Logged Data	1.065	Mean of logged Data	1.631
Maximum of Logged Data		SD of logged Data	0.37
Assuming Lognormal Distribution			
95% H-UCL	6.43	90% Chebyshev (MVUE) UCL	6.831
95% Chebyshev (MVUE) UCL	7.457	97.5% Chebyshev (MVUE) UCL	8.324
99% Chebyshev (MVUE) UCL	10.03		
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Sign	ificance	Level	
Nonparametric Distribution Free UCLs			
95% CLT UCL	6.384		6.43
95% Standard Bootstrap UCL	6.373	•	6.957
95% Hall's Bootstrap UCL	9.672		6.436
95% BCA Bootstrap UCL	6.694		7
90% Chebyshev(Mean, Sd) UCL	7.121		7.859
97.5% Chebyshev(Mean, Sd) UCL	8.883	99% Chebyshev(Mean, Sd) UCL	10.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

6.43

Suggested UCL to Use 95% Student's-t UCL

ProUCL calculations for Zn in sediment of the Animas River above mainstem Cement Creek

User Selected Options

 Date/Time of Computation
 2/18/2015 11:04

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics			
Total Number of Observations	20	Number of Distinct Observations	19
		Number of Missing Observations	0
Minimum		Mean	3172
Maximum		Median	2660
SD		Std. Error of Mean	474.9
Coefficient of Variation	0.67	Skewness	3.481
Normal GOF Test			
Shapiro Wilk Test Statistic	0.577	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.905	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.298	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.198	Data Not Normal at 5% Significance Level	
Data Not Normal at 5% Significance Level			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	3993	95% Adjusted-CLT UCL (Chen-1995)	4348
		95% Modified-t UCL (Johnson-1978)	4054
Gamma GOF Test			
A-D Test Statistic	1.438	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic		Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level			
Gamma Statistics			
k hat (MLE)	4 47	k star (bias corrected MLE)	3.833
Theta hat (MLE)		Theta star (bias corrected MLE)	827.5
nu hat (MLE)		nu star (bias corrected)	153.3
MLE Mean (bias corrected)		MLE Sd (bias corrected)	1620
,		Approximate Chi Square Value (0.05)	125.7
Adjusted Level of Significance	0.038	Adjusted Chi Square Value	123.7
Assuming Comma Distribution			
Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50))	3868	95% Adjusted Gamma UCL (use when n<50)	3930
		, , , , , , , , , , , , , , , , , , , ,	
Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.854	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.905	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.193	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value		Data appear Lognormal at 5% Significance Level	
Data appear Approximate Lognormal at 5% Significance L	_evel		
Lognormal Statistics			
Minimum of Logged Data	7.333	Mean of logged Data	7.946
Maximum of Logged Data	9.35	SD of logged Data	0.436
Assuming Lognormal Distribution			
95% H-UCL	3777	90% Chebyshev (MVUE) UCL	4017
95% Chebyshev (MVUE) UCL	4438	97.5% Chebyshev (MVUE) UCL	5021
99% Chebyshev (MVUE) UCL	6168		
Nonparametric Distribution Free UCL Statistics			
Data appear to follow a Discernible Distribution at 5% Sig	nificance	Level	
Nonnarametric Distribution Free LICLs			
Nonparametric Distribution Free UCLs 95% CLT UCL	3953	95% Jackknife UCL	3993
95% Standard Bootstrap UCL	3935		5347
95% Hall's Bootstrap UCL	7080	•	4031
95% BCA Bootstrap UCL	4441	· ·	1031
90% Chebyshev(Mean, Sd) UCL	4596		5242
97.5% Chebyshev(Mean, Sd) UCL	6137		7897
Suggested UCL to Use	2002	or OCD/ Madified \$ 1101	4054
95% Student's-t UCL	3993	or 95% Modified-t UCL	4054

 Date/Time of Computation
 2/18/2015 11:37

 From File
 WorkSheet_a.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	5	Number of Distinct Observations	5
		Number of Missing Observations	0
Minimum	9960	Mean	14872
Maximum	21500	Median	12200
SD	5021	Std. Error of Mean	2246
Coefficient of Variation	0.338	Skewness	0.625

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshey UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.873 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.303 Lilliefors GOF Test

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 19659
 95% Adjusted-CLT UCL (Chen-1995)
 19237

 95% Modified-t UCL (Johnson-1978)
 19764

Gamma GOF Test

A-D Test Statistic 0.437 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.679 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.308 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.358 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	L.42 k star (bias corrected MLE)	4.702
Theta hat (MLE)	302 Theta star (bias corrected MLE)	3163
nu hat (MLE)	14.2 nu star (bias corrected)	47.02
MLE Mean (bias corrected) 14	872 MLE Sd (bias corrected)	6858
	Approximate Chi Square Value (0.05)	32.28
Adjusted Level of Significance 0.0	086 Adjusted Chi Square Value	27.06

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 21660 95% Adjusted Gamma UCL (use when n<50) 25846

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.894 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.279 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Mlinimum of Logged Data
 9.206 Mean of logged Data
 9.563

 Maximum of Logged Data
 9.976 SD of logged Data
 0.33

Assuming Lognormal Distribution

 95% H-UCL
 22609
 90% Chebyshev (MVUE) UCL
 21419

 95% Chebyshev (MVUE) UCL
 24392
 97.5% Chebyshev (MVUE) UCL
 28518

 99% Chebyshev (MVUE) UCL
 36622
 36622

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	18566	95% Jackknife UCL	19659
95% Standard Bootstrap UCL	18189	95% Bootstrap-t UCL	31997
95% Hall's Bootstrap UCL	72144	95% Percentile Bootstrap UCL	18520
95% BCA Bootstrap UCL	18520		
90% Chebyshev(Mean, Sd) UCL	21609	95% Chebyshev(Mean, Sd) UCL	24661
97.5% Chebyshev(Mean, Sd) UCL	28896	99% Chebyshev(Mean, Sd) UCL	37216

Suggested UCL to Use

95% Student's-t UCL 19659

Date/Time of Computation 2/18/2015 11:39 From File WorkSheet_a.xls **Full Precision** OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	26.1 Mean	33.36
Maximum	40.6 Median	36.3
SD	6.52 Std. Error of Mean	2.916
Coefficient of Variation	0.195 Skewness	-0.318

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL $5.0\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.861 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level

0.274 Lilliefors GOF Test Lilliefors Test Statistic

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 95% Adjusted-CLT UCL (Chen-1995) 37.71 95% Modified-t UCL (Johnson-1978) 39.51

Gamma GOF Test

A-D Test Statistic 0.522 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.679 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.305 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.357 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	31.44	k star (bias corrected MLE)	12.71
Theta hat (MLE)	1.061	Theta star (bias corrected MLE)	2.625
nu hat (MLE)	314.4	nu star (bias corrected)	127.1
MLE Mean (bias corrected)	33.36	MLE Sd (bias corrected)	9.358
		Approximate Chi Square Value (0.05)	102
Adjusted Level of Significance	0.0086	Adjusted Chi Square Value	92.23
A 1 0 01 1 2 11			

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 41.55 95% Adjusted Gamma UCL (use when n<50) 45.96

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.845 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level 0.29 Lilliefors Lognormal GOF Test Lilliefors Test Statistic 5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

3.262 Mean of logged Data Minimum of Logged Data 3.491 3.704 SD of logged Data Maximum of Logged Data 0.202

Assuming Lognormal Distribution

41.86 90% Chebyshev (MVUE) UCL 95% H-UCL 42.4 95% Chebyshev (MVUE) UCL 46.5 97.5% Chebyshev (MVUE) UCL 52.18 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	38.16	95% Jackknife UCL	39.58
95% Standard Bootstrap UCL	37.76	95% Bootstrap-t UCL	39.89
95% Hall's Bootstrap UCL	36.05	95% Percentile Bootstrap UCL	37.58
95% BCA Bootstrap UCL	37.12		
90% Chebyshev(Mean, Sd) UCL	42.11	95% Chebyshev(Mean, Sd) UCL	46.07
97.5% Chebyshev(Mean, Sd) UCL	51.57	99% Chebyshev(Mean, Sd) UCL	62.37

Suggested UCL to Use

95% Student's-t UCL 39.58

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

UCL Statistics for Data Sets with Non-Detects

User Selected Options

2/18/2015 11:46 Date/Time of Computation From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	1.15 Mean	2.098
Maximum	3.03 Median	1.81
SD	0.791 Std. Error of Mean	0.354
Coefficient of Variation	0.377 Skewness	0.182

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.917 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value $0.762\,$ Data appear Normal at $5\%\,Significance\,Level$

Lilliefors Test Statistic 0.242 Lilliefors GOF Test

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCI 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 2.852 95% Adjusted-CLT UCL (Chen-1995) 2.711 95% Modified-t UCL (Johnson-1978) 2.857

Gamma GOF Test

A-D Test Statistic 0.321 Anderson-Darling Gamma GOF Test

0.679 Detected data appear Gamma Distributed at 5% Significance Level 0.239 Kolmogrov-Smirnoff Gamma GOF Test 5% A-D Critical Value

K-S Test Statistic

5% K-S Critical Value 0.358 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics 8.413 k star (bias corrected MLE) k hat (MLE) 3.499 Theta hat (MLE) 0.249 Theta star (bias corrected MLE) 0.6 nu hat (MLE) 84.13 nu star (bias corrected) 34.99 MLE Mean (bias corrected) 2.098 MLE Sd (bias corrected) 1.122 Approximate Chi Square Value (0.05) 22.45 Adjusted Level of Significance 0.0086 Adjusted Chi Square Value 18.2

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.269 95% Adjusted Gamma UCL (use when n<50) 4.034

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.931 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.211 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.14 Mean of logged Data 0.68 Maximum of Logged Data 1.109 SD of logged Data 0.396

Assuming Lognormal Distribution

95% H-UCL 3.603 90% Chebyshev (MVUE) UCL 3.212 95% Chebyshev (MVUE) UCL 3.715 97.5% Chebyshev (MVUE) UCL 4.413 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free LICLs

Nonparametric distribution Free octs			
95% CLT UCL	2.68	95% Jackknife UCL	2.852
95% Standard Bootstrap UCL	2.626	95% Bootstrap-t UCL	3.551
95% Hall's Bootstrap UCL	4.181	95% Percentile Bootstrap UCL	2.626
95% BCA Bootstrap UCL	2.602		
90% Chebyshev(Mean, Sd) UCL	3.159	95% Chebyshev(Mean, Sd) UCL	3.64
97.5% Chebyshev(Mean, Sd) UCL	4.307	99% Chebyshev (Mean, Sd) UCL	5.617

Suggested UCL to Use

95% Student's-t UCL 2.852

Date/Time of Computation 2/18/2015 11:47 From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	77.8 Mean	137.4
Maximum	179 Median	145
SD	37.33 Std. Error of Mean	16.69
Coefficient of Variation	0.272 Skewness	-1.086

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL $5.0\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.926 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level

0.254 Lilliefors GOF Test Lilliefors Test Statistic

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 172.9 95% Adjusted-CLT UCL (Chen-1995) 156.2 95% Modified-t UCL (Johnson-1978) 171.6

Gamma GOF Test

A-D Test Statistic 0.437 Anderson-Darling Gamma GOF Test

5% A-D Critical Value $0.679\ \ {\rm Detected\ data\ appear\ Gamma\ Distributed\ at\ 5\%\ Significance\ Level}$

K-S Test Statistic 0.288 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.357 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	14.01 k star (bias corrected MLE)	5.738
Theta hat (MLE)	9.803 Theta star (bias corrected MLE)	23.94
nu hat (MLE)	140.1 nu star (bias corrected)	57.38
MLE Mean (bias corrected)	137.4 MLE Sd (bias corrected)	57.34
	Approximate Chi Square Value (0.05)	40.97
Adjusted Level of Significance	0.0086 Adjusted Chi Square Value	35

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 192.4 95% Adjusted Gamma UCL (use when n<50) 225.2

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.856 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value $0.762\ \, {\rm Data\ appear\ Lognormal\ at\ 5\%\ Significance\ \, Level}$ 0.305 Lilliefors Lognormal GOF Test Lilliefors Test Statistic

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	4.354 Mean of logged Data	4.886
Maximum of Logged Data	5.187 SD of logged Data	0.317

Assuming Lognormal Distribution

95% H-UCL	205	90% Chebyshev (MVUE) UCL	196.2
95% Chebyshev (MVUE) UCL	222.7	97.5% Chebyshev (MVUE) UCL	259.4
99% Chebyshev (MVUE) UCL	331.4		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	164.8	95% Jackknife UCL	172.9
95% Standard Bootstrap UCL	162	95% Bootstrap-t UCL	160.5
95% Hall's Bootstrap UCL	156.7	95% Percentile Bootstrap UCL	160
95% BCA Bootstrap UCL	153.8		
90% Chebyshev(Mean, Sd) UCL	187.4	95% Chebyshev(Mean, Sd) UCL	210.1
97.5% Chebyshev(Mean, Sd) UCL	241.6	99% Chebyshev(Mean, Sd) UCL	303.5

Suggested UCL to Use

95% Student's-t UCL 172.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

Date/Time of Computation 3/2/2015 12:44 From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

General Statistics		
Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	3.01 Mean	4.604
Maximum	6.41 Median	4.05
SD	1.556 Std. Error of Mean	0.696
Coefficient of Variation	0.338 Skewness	0.385

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.868 Shapiro Wilk GOF Test 0.762 Data appear Normal at 5% Significance Level 5% Shapiro Wilk Critical Value 0.239 Lilliefors GOF Test Lilliefors Test Statistic 5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 6.087 95% Adjusted-CLT UCL (Chen-1995) 5.876 95% Modified-t UCL (Johnson-1978) 6 107

Gamma GOF Test

A-D Test Statistic 0.411 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.679 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.26 Kolmogrov-SmirnoffGamma GOF Test 5% K-S Critical Value 0.358 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 11.06	k star (bias corrected MLE)	4.557
Theta hat (MLE) 0.416	Theta star (bias corrected MLE)	1.01
nu hat (MLE) 110.6	nu star (bias corrected)	45.57
MLE Mean (bias corrected) 4.604	MLE Sd (bias corrected)	2.157
	Approximate Chi Square Value (0.05)	31.09
Adjusted Level of Significance 0.0086	Adjusted Chi Square Value	25.97

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 6.75 95% Adjusted Gamma UCL (use when n<50) 8.08

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.893 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.233 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value

0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics Minimum of Logged Data

Minimum of Logged Data Maximum of Logged Data	1.102 Mean of logged Data 1.858 SD of logged Data	1.481 0.339
Assuming Lognormal Distribution	7.404	6.694
95% H-UCL	7.101 90% Chebyshey (MVUE) UCL	6.68

95% H-UCL 7.101 90% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 7.627 97.5% Chebyshev (MVUE) UCL 8.936 99% Chebyshev (MVUE) UCL 11.51

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

remparametric Distribution free dets			
95% CLT UCL	5.748	95% Jackknife UCL	6.087
95% Standard Bootstrap UCL	5.617	95% Bootstrap-t UCL	8.093
95% Hall's Bootstrap UCL	7.589	95% Percentile Bootstrap UCL	5.73
95% BCA Bootstrap UCL	5.694		
90% Chebyshev(Mean, Sd) UCL	6.691	95% Chebyshev(Mean, Sd) UCL	7.636
97.5% Chebyshev(Mean, Sd) UCL	8.948	99% Chebyshev(Mean, Sd) UCL	11.53

Suggested UCL to Use

95% Student's-t UCL 6.087

Date/Time of Computation 2/23/2015 9:09 From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95%

Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations 4 Number of Distinct Observations Number of Missing Observations Minimum 0.039 Mean 0.072 Median 0.055

Maximum 0.0141 Std. Error of Mean 0.00704 SD Coefficient of Variation 0.255 Skewness 0.0886

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

0.997 Shapiro Wilk GOF Test Shapiro Wilk Test Statistic

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.145 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 0.0718 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)

Gamma GOF Test

A-D Test Statistic 0.197 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

0.0672

0.0719

K-S Test Statistic 0.173 Kolmogrov-SmirnoffGamma GOF Test

0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 19.99 k star (bias corrected MLE) 5.164 Theta hat (MLF) 0.00276 Theta star (bias corrected MLE) 0.0107 nu hat (MLE) 159.9 nu star (bias corrected) 41.32 0.0243 MLE Mean (bias corrected) 0.0553 MLE Sd (bias corrected) Approximate Chi Square Value (0.05) 27.58 Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

0.0828 95% Adjusted Gamma UCL (use when n<50) 95% Approximate Gamma UCL (use when n>=50)) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.993 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.16 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -3.244 Mean of logged Data -2.921 Maximum of Logged Data -2.631 SD of logged Data 0.262

Assuming Lognormal Distribution

95% H-UCL 0.0832 90% Chebyshev (MVUE) UCL 0.0769 95% Chebyshev (MVUE) UCL 0.0866 97.5% Chebyshev (MVUE) UCL 0.1 0.127

99% Chebyshev (MVUE) UCL

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Nonparametric Distribution Free UCL Statistics

0.0668 95% Jackknife UCL 0.0718 95% CLT UCL 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 0.0764 95% Chebyshev(Mean, Sd) UCL 0.0859 97.5% Chebyshev(Mean, Sd) UCL 0.0992 99% Chebyshev(Mean, Sd) UCL 0.125

Suggested UCL to Use

0.0718 95% Student's-t UCL

Date/Time of Computation 2/18/2015 11:49 From File WorkSheet.xls **Full Precision** OFF ConfidenceCoefficient Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations 5	Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum 299	Mean 478	3.2
Maximum 581	Median 4	.99
SD 108.7	Std. Error of Mean 48.	61
Coefficient of Variation 0.227	Skewness -1.4	28

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.888 Shapiro Wilk GOF Test

0.762 Data appear Normal at 5% Significance Level LillieforsTest Statistic 0.27 LillieforsGOFTest 5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 581.8 95% Adjusted-CLT UCL (Chen-1995) 525 95% Modified-t UCL (Johnson-1978)

Gamma GOF Test

0.487 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.679 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.299 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.357 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma	Statistics

k hat (MLE)	20.27 k star (bias corrected MLE)	8.242
Theta hat (MLE)	23.59 Theta star (bias corrected MLE)	58.02
nu hat (MLE)	202.7 nu star (bias corrected)	82.42
MLE Mean (bias corrected)	478.2 MLE Sd (bias corrected)	166.6
	Approximate Chi Square Value (0.05)	62.49
Adjusted Level of Significance	0.0086 Adjusted Chi Square Value	54.97

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 630.6 95% Adjusted Gamma UCL (use when n<50) 717

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.829 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

LillieforsTest Statistic 0.312 LillieforsLognormal GOF Test

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Logitorinai Statistics		
Minimum of Logged Data	5.7 Mean of logged Data	6.145
Maximum of Logged Data	6.365 SD of logged Data	0.261
Assuming Lognormal Distribution		

3370 11-OCL	033.4	30% Chebyshev (WWOL) OCL	047
95% Chebyshev (MVUE) UCL	722.9	97.5% Chebyshev (MVUE) UCL	828.3
99% Chebyshev (MVUE) UCL	1035		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonnarametric Distribution Free LICLs

Hosparometre Distribution Free Oces			
95% CLT UCL	558.1	95% Jackknife UCL	581.8
95% Standard Bootstrap UCL	548.5	95% Bootstrap-t UCL	555.4
95% Hall's Bootstrap UCL	529.1	95% Percentile Bootstrap UCL	541.2
95% BCA Bootstrap UCL	531.8		
90% Chebyshev(Mean, Sd) UCL	624	95% Chebyshev(Mean, Sd) UCL	690.1
97.5% Chebyshev(Mean, Sd) UCL	781.7	99% Chebyshev(Mean, Sd) UCL	961.8

Suggested UCL to Use

581.8 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

2/18/2015 11:50 Date/Time of Computation From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	1210 Mean	2100
Maximum	3400 Median	1710
SD	922.4 Std. Error of Mean	412.5
Coefficient of Variation	0.439 Skewness	0.748

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.905 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.264 Lilliefors GOF Test

0.396 Data appear Normal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 2979 95% Adjusted-CLT UCL (Chen-1995) 2926 95% Modified-t UCL (Johnson-1978) 3002

Gamma GOF Test

A-D Test Statistic 0.32 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.68 Detected data appear Gamma Distributed at 5% Significance Level

0.251 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.358 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	6.801 k star (bias corrected MLE)	2.854
Theta hat (MLE)	308.8 Theta star (bias corrected MLE)	735.9
nu hat (MLE)	68.01 nu star (bias corrected)	28.54
MLE Mean (bias corrected)	2100 MLE Sd (bias corrected)	1243
	Approximate Chi Square Value (0.05)	17.35
Adjusted Level of Significance	0.0086 Adjusted Chi Square Value	13.68

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3455 95% Adjusted Gamma UCL (use when n<50) 4381

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.938 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.219 Lilliefors Lognormal GOF Test

0.396 Data appear Lognormal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	7.098 Mean of logged Data	7.574
Maximum of Logged Data	8.132 SD of logged Data	0.431

Assuming Lognormal Distribution

Assuming Logitormal Distribution		
95% H-UCL	3853 90% Chebyshev (MVUE) UCL	3299
95% Chebyshev (MVUE) UCL	3844 97.5% Chebyshev (MVUE) UCL	4601
99% Chebyshev (MVUE) UCL	6087	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2779	95% Jackknife UCL	2979
95% Standard Bootstrap UCL	2696	95% Bootstrap-t UCL	4698
95% Hall's Bootstrap UCL	9488	95% Percentile Bootstrap UCL	2724
95% BCA Bootstrap UCL	2738		
90% Chebyshev(Mean, Sd) UCL	3338	95% Chebyshev(Mean, Sd) UCL	3898
97.5% Chebyshev(Mean, Sd) UCL	4676	99% Chebyshev(Mean, Sd) UCL	6204

Suggested UCL to Use

2979 95% Student's-t UCL

 Date/Time of Computation
 2/18/2015 11:52

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

lotal Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	4.33 Mean	5.142
Maximum	6.38 Median	4.88
SD	0.778 Std. Error of Mean	0.348
Coefficient of Variation	0.151 Skewness	1.157

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.921 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.232 Lilliefors GOF Test

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 5.884
 95% Adjusted-CLT UCL (Chen-1995)
 5.907

 95% Modified-t UCL (Johnson-1978)
 5.914

Gamma GOF Test

A-D Test Statistic 0.3 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.678 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.237 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.357 Rolling 104-3111111011 Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 57.7	1 k star (bias corrected MLE)	23.22
Theta hat (MLE) 0.089	1 Theta star (bias corrected MLE)	0.221
nu hat (MLE) 577.	1 nu star (bias corrected)	232.2
MLE Mean (bias corrected) 5.14	2 MLE Sd (bias corrected)	1.067
	Approximate Chi Square Value (0.05)	197.9
Adjusted Level of Significance 0.008	6 Adjusted Chi Square Value	184

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 6.032 95% Adjusted Gamma UCL (use when n<50) 6.489

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.947 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.218 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.466 Mean of logged Data	1.629
Maximum of Logged Data	1.853 SD of logged Data	0.146

Assuming Lognormal Distribution

95% H-UCL	6.004 90% Chebyshev (MVUE) UCL	6.144
95% Chebyshev (MVUE) UCL	6.599 97.5% Chebyshev (MVUE) UCL	7.229
99% Chebyshev (MVUE) UCL	8.468	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	5.714	95% Jackknife UCL	5.884
95% Standard Bootstrap UCL	5.643	95% Bootstrap-t UCL	6.52
95% Hall's Bootstrap UCL	9.599	95% Percentile Bootstrap UCL	5.67
95% BCA Bootstrap UCL	5.78		
90% Chebyshev(Mean, Sd) UCL	6.186	95% Chebyshev(Mean, Sd) UCL	6.658
97.5% Chebyshev(Mean, Sd) UCL	7.314	99% Chebyshev(Mean, Sd) UCL	8.603

Suggested UCL to Use

95% Student's-t UCL 5.884

Contidence Contidence			
Confidence Coefficient 95% Number of Bootstrap Operations 2000			
General Statistics Total Number of Observations	5	Number of Distinct Observations	
Number of Detects	4	Number of Non-Detects	
Number of Distinct Detects Minimum Detect		Number of Distinct Non-Detects Minimum Non-Detect	1
Maximum Detect		Maximum Non-Detect	1
Variance Detects		Percent Non-Detects	2
Mean Detects		SD Detects	0.5
Median Detects Skewness Detects		CV Detects Kurtosis Detects	0.3 -5.2
Mean of Logged Detects		SD of Logged Detects	0.3
Note: Sample size is small (e.g., <10), if data are collected			
guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2 For example, you may want to use Chebyshev UCL to esti	mate EP	(ITRC, 2012).	
Thebyshev UCL can be computed using the Nonparametric	and As	UCL Options of ProUCL 5.0	
Normal GOF Test on Detects Only Shapiro Wilk Test Statistic	0.819	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.748	Detected Data appear Normal at 5% Significance Level	
illiefors Test Statistic 5% Ulliefors Critical Value		Billiefors GOF Test	
Octoberors Critical Value Detected Data appear Normal at 5% Significance Level	U.443	Detected Data appear Normal at 5% Significance Level	
(aplan-Meier (KM) Statistics using Normal Critical Values			
vfean iD		Standard Error of Mean 95% KM (BCA) UCL	0.2 N/A
15% KM (t) UCL		95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.77	95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL		95% KM Chebyshev UCL	2
7.5% KM Chebyshev UCL	2.82	99% KM Chebyshev UCL	3.0
Gamma GOF Tests on Detected Observations Only A-D Test Statistic	0.56	Anderson-Darling GOF Test	
5% A-D Critical Value	0.657	Detected data appear Gamma Distributed at 5% Signific	ance Le
C-S Test Statistic		Kolmogrov-SmirnoffGOF	
5% K-S Critical Value Detected data appear Gamma Distributed at 5% Significar		Detected data appear Gamma Distributed at 5% Signific	ance Li
Samma Statistics on Detected Data Only			
: hat (MLE) Theta hat (MLE)		k star (bias corrected MLE) Theta star (bias corrected MLE)	0.5
nu hat (MLE)		nu star (bias corrected)	22
MtE Mean (bias corrected)		MtE Sd (bias corrected)	0.8
Samma Kaplan-Meier (KM) Statistics chat (KM)	0 034	nu hat (KM)	99
Approximate Chi Square Value (99.34, α)		Adjusted Chi Square Value (99.34, β)	68
95% Gamma Approximate KM-UCL (use when n>=50)	1.79	95% Gamma Adjusted KM-UCL (use when n<50)	2
Gamma ROS Statistics using Imputed Non-Detects		d de contra de contra de la contra de contra d	
	many w	s < 0.1	
GROS may not be used when kstar of detected data is sma	all such a		
GROS may not be used when kstar of detected data is sma For such situations, GROS method tends to yield inflated v	all such a values of		
GROS may not be used when kstar of detected data is sma For such situations, GROS method tends to yield inflated v For gamma distributed detected data, BTVs and UCLs may	all such a values of y be com	puted using gamma distribution on KM estimates	1.3
SROS may not be used when kstar of detected data is sma or such situations, GROS method tends to yield inflated v or gamma distributed detected data, BTVs and UCLs may Minimum	all such a values of y be com 0.364		
SROS may not be used when kstar of detected data is sm. for such situations, GROS method tends to yield inflicted v for gamma distributed detected data, BTVs and UCLs may Minimum Maximum 50	all such a values of y be com 0.364 2.03 0.673	puted using gamma distribution on KM estimates Mean Median CV	0.5
SROS may not be used when kstar of detected data is more for such situations, GROS method tends to yeld inflaered or gamma distributed detected data, BTVs and UCLs may finimum deadmum be that (MLE)	all such a values of y be com 0.364 2.03 0.673 3.378	puted using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE)	0.5 1.4
SROS may not be used when kstar of detected data is sme for such situations, GROS method tends to yield inflated v for gamma distributed detected data, BTVs and UCLs may Mainimum sidenium for chart (MLE) fleta hat (MLE)	all such a values of y be com 0.364 2.03 0.673 3.378 0.374	puted using gamma distribution on KM estimates Mean Median CV	0.5 1.4 0.6
SROS may not be used when kstar of detected data is more for such situations, GROS method tends to yeld inflated for gamma distributed detected data, BTVs and UCLs may fininum facinium b. ktar (MLE) to that (MLE) to that (MLE)	all such a values of y be com 0.364 2.03 0.673 3.378 0.374 33.78	puted using gamma distribution on KM estimates Mean Median CV kstar (bias corrected MLE) Theta star (bias corrected) nu star (bias corrected) MLE 5d (bias corrected)	0.: 1 0.: 14
SROS may not be used when kstar of detected data is smic for such situations, GROS method tends to yield inflated v for gamma distributed detected data, BTVs and UCLs may withinimum date in the data of the data of the data is the data of the data of the data of the data of the data is the data of the data	all such a values of y be com 0.364 2.03 0.673 3.378 0.374 33.78 1.263	puted using gamma distribution on KM estimates Mean Median CV k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE 3d (bias corrected) Adjusted Level of Significance (β)	1.4 0.5 1.4 1.0 0.0
SROS may not be used when kstar of detected data is smic for such situations, GROS method tends to yield inflated v for gamma distributed detected data, BTVs and UCLs may withinimum date in the data of the data of the data is the data of the data of the data of the data of the data is the data of the data	all such a values of y be com 0.364 2.03 0.673 3.378 0.374 33.78 1.263	puted using gamma distribution on KM estimates Mean Median CV kstar (bias corrected MLE) Theta star (bias corrected) nu star (bias corrected) MLE 5d (bias corrected)	1.4 0.5 1.4 1.0 0.0
SROS may not be used when kstar of detected data is sand for such situations, GROS method tends to yeld inflate for gamma distributed detected data, BTVs and UCLs may distributed watering the desired watering to the start (MLE) field that (MLE) the start (MLE) with a start (MLE)	all such a values of y be com 0.364 2.03 0.673 3.378 0.374 33.78 1.263	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) us tar (bias corrected) MLE 5d (bias corrected) Aljusted Level of Significance (β) Adjusted Level of Significance (β)	1.0.5 1.4 0.8 14 1.0 0.00 4.5
SROS may not be used when kstar of detected data is sand for such situations, GROS method tends to yeld inflavor core year man distributed detected data, BTVs and UCLs man Minimum and the start of the	all such a values of y be com 0.364 2.03 0.673 3.378 0.374 33.78 1.263 7.154 2.621	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) That star (bias corrected) MLE 5rd (bias corrected) MLE 5rd (bias corrected) Adjusted tevel of Significance (β) Adjusted to Significance (β) Shapiro Wāk GOF Test	1 0.5 1.4 0.6 14 1.0 0.00 4.5 N/A
SROS may not be used when kstar of detected data is smicro such situations, GROS method tends to yield inflated where such management of the state	all such a values of y be com 0.364 2.03 0.673 3.378 0.374 33.78 1.263 7.154 2.621	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) us tar (bias corrected) MLE Sd (bias corrected) Adjusted tevel of Significance (β) Adjusted tis (game Value (14.85, β) 95% Gamma Adjusted UCL (use when n <s0) 5%="" appear="" at="" data="" detected="" gof="" lev<="" lognormal="" shapiro="" significance="" td="" test="" wilk=""><td>12 0.: 14 1.: 0.0: 4.: N/A</td></s0)>	12 0.: 14 1.: 0.0: 4.: N/A
Lognormal GOF Test on Detected Observations Only Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Illiefors Test Statistic 5% Lilliefors Critical Value	all such a values of y be com 0.364 2.03 0.673 3.378 1.263 7.154 2.621 0.804 0.748 0.301 0.443	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) That star (bias corrected) MLE 5rd (bias corrected) MLE 5rd (bias corrected) Adjusted tevel of Significance (β) Adjusted to Significance (β) Shapiro Wāk GOF Test	1 0.5 1.4 0.8 14 1.0 0.00 4.5 N/A
SROS may not be used when kstar of detected data is smalers used in the state of th	all such a values of y be com 0.364 2.03 0.673 3.378 1.263 7.154 2.621 0.804 0.748 0.301 0.443	puted using gamma distribution on KM estimates Mean Median CV kstar (bias corrected MLE) Theta star (bias corrected MLE) mustar (bias corrected) MLE Std (bias corrected) MLE Std (bias corrected) Adjusted tevel of Significance (β) Adjusted Chi Square Value (14.85, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wāk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliedors GOF Test	1 0.5 1.4 0.8 14 1.0 0.00 4.5 N/A
SROS may not be used when kstar of detected data is smicro such situations, GROS method tends to yield inflated where such situations of the such states and UCLs may Minimum with a such such such situations of the such such such such such such such such	all such a values of y be com 0.364 2.03 0.673 3.378 0.374 33.78 1.263 7.154 2.621 0.804 0.748 0.301 0.443	puted using gamma distribution on KM estimates Mean Median CV kstar (bias corrected MLE) Theta star (bias corrected MLE) mustar (bias corrected) MLE Std (bias corrected) MLE Std (bias corrected) Adjusted tevel of Significance (β) Adjusted Chi Square Value (14.85, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wāk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliedors GOF Test	1 0.5 1.4 0.8 14 1.0 0.00 4.5 N/A
SROS may not be used when kstar of detected data is smicro such situations, GROS method tends to yield inflated to for such intuitions, GROS method tends to yield inflated with the state of the state	all such a values of y be come 0.364 2.03 0.673 3.378 0.374 4.2621 0.804 0.443 1.306 0.604	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) not star (bias corrected MLE) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted tis quare Value (14.85; β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wälk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliedros GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale SD in Log Scale	11.0.5.1.4.4.0.8.1.4.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
SROS may not be used when kstar of detected data is sand for such situations, GROS method tends to yeld inflore size of such states of the state of	all such a rolues of of be common of be common of be common of the commo	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) That star (bias corrected) MLE 5rd (bias corrected) MLE 5rd (bias corrected) Adjusted tevel of Significance (β) Adjusted tevel of Significance (β) Adjusted Chi Square Value (14.85, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wäk GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellisifions GGF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale 50 in Log Scale 50 in Log Scale 95% Percentile Bootstrap UCL	11.0.5.1.4.4.1.0.6.1.4.1.0.6.1.4.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
SROS may not be used when kstar of detected data is sm. or such situations, GROS method tends to yield infillated who or gamma distributed detected data, BTVs and UCLs may infinimum. Other of the detected data, BTVs and UCLs may infinimum to the the third (MLE) must (MLE) be the third (MLE) be the third (MLE) when the third (MLE) when the third (MLE) or third (MLE) or the third (MLE) or	all such a rolues of of be common of be common of be common of the commo	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) not star (bias corrected MLE) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted tis quare Value (14.85; β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wälk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliedros GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale SD in Log Scale	11.0.5.1.4.4.1.0.6.1.4.1.0.6.1.4.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
SROS may not be used when kstar of detected data is smo or such situations, GROS method tends to yeld inflavour or such situations, GROS method tends to yeld inflavour or parama distributed detected data, BTVs and UCLs may dinimum datadinum 0.00 in the (MLE) in the control of	sil such a ralutes of 0 conditions of 0 condit	puted using gamma distribution on KM estimates Mean Median CV Kara (bias corrected MLE) Theta star (bias corrected MLE) us star (bias corrected MLE) us star (bias corrected) MLE 5td (bias corrected) MLE 5td (bias corrected) Adjusted (bias corrected) Adjusted (bias corrected) Sadjusted (bias corrected) Adjusted (bias corrected) Sadjusted (bias	1 0.8 1.4 0.8 1.4 1.0 0.00 4.5 N/A
SROS may not be used when kstar of detected data is smo row such situations, GROS method tends to yeld inflowed for gamma distributed detected data, BTVs and UCLs may distributed by the MED of th	sil such a	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) That star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted volt of Significance (β) Adjusted volt of Significance (β) Adjusted volt of Significance (β) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Billeions GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale SD in Log Scale SD in Log Scale SD in Log Scale SD She Percentile Bootstrap UCL 95% Bootstrap t UCL ed data are Lognormally Distributed 95% H-UCL (KM + Log)	11 0.5 1.4 0.6 1.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SROS may not be used when kstar of detected data is smo toor such situations, GROS method tends to yield inflate or or gamma distributed detected data, BTVs and UCLs may inflatinum. O	sil such a ralutes of 0 conditions of 0 condit	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) That star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted volt of Significance (β) Adjusted volt of Significance (β) Adjusted volt of Significance (β) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Billeions GOF Test Detected Data appear Lognormal at 5% Significance Lev Mean in Log Scale SD in Log Scale SD in Log Scale SD in Log Scale SD She Percentile Bootstrap UCL 95% Bootstrap t UCL ed data are Lognormally Distributed 95% H-UCL (KM + Log)	11 0.5 1.4 0.6 1.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SROS may not be used when kstar of detected data is smore or such situations, GROS method tends to yeld inflowed here or gamma distributed detected data, BTVs and UCLs may Minimum the control of the c	alf such a rolutes of 0 conditions of 0 condit	puted using gamma distribution on KM estimates Mean Median CV kstar (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) us star (bias corrected) MLE 5tl (bias corrected) MLE 5tl (bias corrected) Adjusted (velo 61 significance (β) Adjusted CHO 61 significance (β) Adjusted CHO 61 significance (β) Shapiro Wilk GDF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GDF Test Detected Data appear Lognormal at 5% Significance Lev De	11 0.5 1.4 0.6 1.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SROS may not be used when kstar of detected data is smore or such situations, GROS method tends to yeld inflavors and inflamman distributed detected data, BTVs and UCLs may distributed the tend of tend of the tend of the tend of the tend of tend of the tend of tend of the tend of tend	all such a values of for be common of the co	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected) MLE Std (bias corrected) Adjusted (bias corrected) Adjusted Chi Square Value (14.85, β) 95% Gamma Adjusted UCL (use when n-SO) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Lev Lilliefons GOF Test Detected Data appear Lognormal at 5% Significance Lev Slilliefons GOF Test Detected Data appear Lognormal at 5% Significance Lev 48 Di in Log Scale SD in Log Scale 95 in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	11 0.5 1.4 0.8 1.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SROS may not be used when kstar of detected data is smore or such situations, GROS method tends to yeld inflore sor such situations, GROS method tends to yeld inflore or pamma distributed detected data, BTVs and UCLs may find inflore the state of the s	all such a values of for be common of the co	puted using gamma distribution on KM estimates Mean Median CV kstar (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) us star (bias corrected) MLE 5tl (bias corrected) MLE 5tl (bias corrected) Adjusted (velo 61 significance (β) Adjusted CHO 61 significance (β) Adjusted CHO 61 significance (β) Shapiro Wilk GDF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GDF Test Detected Data appear Lognormal at 5% Significance Lev De	10.9 1.4 0.8 14 1.0 0.00 0.0 N/A 0.3 1.7 2.3 2.6 2.4
SROS may not be used when kstar of detected data is smo for such situations, GROS method tends to yeld inflore sort programme distributed detected data, BTVs and UCLs manifinium. Maximum DS on the sort programme distributed detected data, BTVs and UCLs manifinium. Maximum DS on the sort programme data (MLE) and the sort programme data (MLE) and that (MLE) and th	all such a subsequence of a become of a be	puted using gamma distribution on KM estimates Mean Median CV Kara (bias corrected MLE) Theta star (bias corrected MLE) That as a folias corrected MLE) us star (bias corrected) MLE Std (bias corrected) MLE Std (bias corrected) MLE Std (bias corrected) Adjusted (bias corrected) Std (bias corrected) MLE Std (bias corrected) MLE Std (bias corrected) Std (bias correct	el
SROS may not be used when kstar of detected data is smicros such situations, GROS method tends to yeld inflate for gramma distributed detected data, BTVs and UCLs may Minimum 50 Khaft (MLE) Theta hat (MLE) The hat (MLE) Make Mean (bias corrected) Approximate Chi Square Value (14.85, α) 55% Gamma Approximate UCL (use when n>=50) Lognormal GOF Test on Detected Observations Only Shapiro Wilk Critical Value Lilliefors Test Statistic 5% The Comportant of Critical Value Lilliefors Test Statistic 5% Hallo Critical Value 10 In Original Scale 5% Hallo Critical Value Lilliefors Test Statistic 5% LOL (Assumes normality of ROS data) 5% Hallo Critical Value 10 In Original Scale 50 In Original Scale 5% TUCL (Assumes normality) 10 In Original Scale 5% TUCL (Assumes normality) 10 In Original Scale 5% TUCL (Assumes normality) 10 In Original Scale	all such a subsequence of a become of a be	puted using gamma distribution on KM estimates Mean Median CV Kara (bias corrected MLE) Theta star (bias corrected MLE) That as a folias corrected MLE) us star (bias corrected) MLE Std (bias corrected) MLE Std (bias corrected) MLE Std (bias corrected) Adjusted (bias corrected) Std (bias corrected) MLE Std (bias corrected) MLE Std (bias corrected) Std (bias correct	1 0.9 1.4 0.8 1.4 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0
SROS may not be used when kstar of detected data is small or such situations, GROS method tends to yeld inflow or or such situations, GROS method tends to yeld inflow or or such manufacture. In the control of the co	all such a convolute of the community of	puted using gamma distribution on KM estimates Mean Median CV Kstar (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected MLE) Theta star (bias corrected) MLE 5d (bias corrected) MLE 5d (bias corrected) Adjusted (bias (or start) MLE 5d (bias corrected) Adjusted (bias (bias corrected) Adjusted Chi Square Value (14.85, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wäk GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal at 5% Significance Lev Ellielons GGF Test Detected Data appear Lognormal a	1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

1778118

 Date/Time of Computation
 2/18/2015 11:55

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	1.3 Mean	1.912
Maximum	2.76 Median	1.83
SD	0.539 Std. Error of Mean	0.241
Coefficient of Variation	0.282 Skewness	0.982

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.941 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.242 Lilliefors GOF Test

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 2.425
 95% Adjusted-CLT UCL (Chen-1995)
 2.421

 95% Modified-t UCL (Johnson-1978)
 2.443

Gamma GOF Test

A-D Test Statistic 0.238 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.679 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.203 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.357 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	16.62 k star (bias corrected MLE)	6.782
Theta hat (MLE)	0.115 Theta star (bias corrected MLE)	0.282
nu hat (MLE)	166.2 nu star (bias corrected)	67.82
MLE Mean (bias corrected)	1.912 MLE Sd (bias corrected)	0.734
	Approximate Chi Square Value (0.05)	49.87
Adjusted Level of Significance	0.0086 Adjusted Chi Square Value	43.21

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))
2.6 95% Adjusted Gamma UCL (use when n<50)
3.001

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.979 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.198 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.262 Mean of logged Data	0.618
Maximum of Logged Data	1.015 SD of logged Data	0.274

Assuming Lognormal Distribution

95% H-UCL	2.653 90% Chebyshev (MVUE) UCL	2.61
95% Chebyshev (MVUE) UCL	2.927 97.5% Chebyshev (MVUE) UCL	3.367
99% Chebyshev (MVUE) UCL	4.23	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.308	95% Jackknife UCL	2.425
95% Standard Bootstrap UCL	2.267	95% Bootstrap-t UCL	2.572
95% Hall's Bootstrap UCL	4.682	95% Percentile Bootstrap UCL	2.298
95% BCA Bootstrap UCL	2.39		
90% Chebyshev(Mean, Sd) UCL	2.635	95% Chebyshev(Mean, Sd) UCL	2.962
97.5% Chebyshev(Mean, Sd) UCL	3.416	99% Chebyshev(Mean, Sd) UCL	4.309

Suggested UCL to Use

95% Student's-t UCL 2.425

Date/Time of Computation 2/18/2015 11:56 From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	5 Number of Distinct Observations	5
	Number of Missing Observations	0
Minimum	386 Mean	650.8
Maximum	858 Median	646
SD	175.9 Std. Error of Mean	78.66
Coefficient of Variation	0.27 Skewness	-0.674

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL $5.0\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.965 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.762 Data appear Normal at 5% Significance Level

0.222 Lilliefors GOF Test Lilliefors Test Statistic

5% Lilliefors Critical Value 0.396 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 818.5 95% Adjusted-CLT UCL (Chen-1995) 754.9 95% Modified-t UCL (Johnson-1978) 814.5

Gamma GOF Test

A-D Test Statistic 0.309 Anderson-Darling Gamma GOF Test

5% A-D Critical Value $0.679\ \ {\rm Detected\ data\ appear\ Gamma\ Distributed\ at\ 5\%\ Significance\ Level}$

K-S Test Statistic 0.251 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.357 Detected data appear Gamma Distributed at 5% Significance Level

....

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	14.95	k star (bias corrected MLE)	6.112
Theta hat (MLE)	43.54	Theta star (bias corrected MLE)	106.5
nu hat (MLE)	149.5	nu star (bias corrected)	61.12
MLE Mean (bias corrected)	650.8	MLE Sd (bias corrected)	263.2
		Approximate Chi Square Value (0.05)	44.14
Adjusted Level of Significance	0.0086	Adjusted Chi Square Value	37.92

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 901.1 95% Adjusted Gamma UCL (use when n<50) 1049

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.912 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.762 Data appear Lognormal at 5% Significance Level 0.272 Lilliefors Lognormal GOF Test Lilliefors Test Statistic

5% Lilliefors Critical Value 0.396 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	5.956 Mean of logged Data	6.444
Maximum of Logged Data	6.755 SD of logged Data	0.302

Assuming Lognormal Distribution

, issuming Engineering Ensurement			
95% H-UCL	947.9	90% Chebyshev (MVUE) UCL	916.4
95% Chebyshev (MVUE) UCL	1036	97.5% Chebyshev (MVUE) UCL	1202
99% Chebyshev (MVUE) UCL	1528		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	780.2	95% Jackknife UCL	818.5
95% Standard Bootstrap UCL	763.8	95% Bootstrap-t UCL	797.7
95% Hall's Bootstrap UCL	794	95% Percentile Bootstrap UCL	765.6
95% BCA Bootstrap UCL	745.2		
90% Chebyshev(Mean, Sd) UCL	886.8	95% Chebyshev(Mean, Sd) UCL	993.7
97.5% Chebyshev(Mean, Sd) UCL	1142	99% Chebyshev(Mean, Sd) UCL	1433

Suggested UCL to Use

95% Student's-t UCL 818.5

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

2/18/2015 12:25 Date/Time of Computation From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	6770 Mean	17123
Maximum	40700 Median	10510
SD	15852 Std. Error of Mean	7926
Coefficient of Variation	0.926 Skewness	1.9

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.748 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.381 Lilliefors GOF Test

0.443 Data appear Normal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness)

95% Student's-t UCL 35775 95% Adjusted-CLT UCL (Chen-1995) 38205 95% Modified-t UCL (Johnson-1978) 37030

Gamma GOF Test

A-D Test Statistic 0.515 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance Level

0.353 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	2.05	k star (bias corrected MLE)	0.679
Theta hat (MLE)	8354	Theta star (bias corrected MLE)	25214
nu hat (MLE)	16.4	nu star (bias corrected)	5.433
MLE Mean (bias corrected)	17123	MLE Sd (bias corrected)	20778
		Approximate Chi Square Value (0.05)	1.357
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 68540 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.875 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.305 Lilliefors Lognormal GOF Test

0.443 Data appear Lognormal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 8.82 Mean of logged Data 9.485 Maximum of Logged Data 10.61 SD of logged Data 0.786

Assuming Lognormal Distribution

95% H-UCL 201468 90% Chebyshev (MVUE) UCL 34933 95% Chebyshev (MVUE) UCL 43315 97.5% Chebyshev (MVUE) UCL 54949 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	30160	95% Jackknife UCL	35775
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	40900	95% Chebyshev(Mean, Sd) UCL	51671
97.5% Chebyshev(Mean, Sd) UCL	66620	99% Chebyshev(Mean, Sd) UCL	95985

Suggested UCL to Use

35775 95% Student's-t UCL

Date/Time of Computation 2/18/2015 12:26 From File WorkSheet.xls **Full Precision** OFF ConfidenceCoefficient Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	20.5 Mean	27.93
Maximum	33.8 Median	28.7
SD	6.092 Std. Error of Mean	3.046
Coefficient of Variation	0.218 Skewness	-0.466

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.937 Shapiro Wilk GOF Test

0.748 Data appear Normal at 5% Significance Level LillieforsTest Statistic 0.243 LillieforsGOFTest 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 95% Adjusted-CLT UCL (Chen-1995) 32.18 35.09 95% Modified-t UCL (Johnson-1978) 34.97

Gamma GOF Test

0.31 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.278 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	26.51	k star (bias corrected MLE)	6.794
Theta hat (MLE)	1.053	Theta star (bias corrected MLE)	4.11
nu hat (MLE)	212.1	nu star (bias corrected)	54.35
MLE Mean (bias corrected)	27.93	MLE Sd (bias corrected)	10.71
		Approximate Chi Square Value (0.05)	38.41
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 39.51 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.928 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level LillieforsTest Statistic 0.247 LillieforsLognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 3.02 Mean of logged Data 3.311 Maximum of Logged Data 3.52 SD of logged Data 0.228

Assuming Lognormal Distribution

39.34 90% Chebyshev (MVUF) UCL 95% H-UCI 37.47 95% Chebyshev (MVUE) UCL 41.79 97.5% Chebyshev (MVUE) UCL 47.79 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonnarametric Distribution Free LICLs

95% CLT UCL	32.94	95% Jackknife UCL	35.09
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	37.06	95% Chebyshev(Mean, Sd) UCL	41.2
97.5% Chebyshev(Mean, Sd) UCL	46.95	99% Chebyshev(Mean, Sd) UCL	58.23

Suggested UCL to Use

35,09 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

$ProUCL calculations for \ Cd \ in \ sediment of \ the \ Animas \ River \ at \ sampling location \ A73 \ below \ main stem Mineral \ Creek \ animas \ River \ at \ sampling \ location \ A73 \ below \ main \ stem Mineral \ Creek \ animas \ River \ at \ sampling \ location \ A73 \ below \ main \ stem Mineral \ Creek \ animas \ River \ at \ sampling \ location \ A73 \ below \ main \ stem Mineral \ Creek \ animas \ River \ at \ sampling \ location \ A73 \ below \ main \ stem Mineral \ Creek \ animas \ River \ at \ sampling \ location \ A73 \ below \ main \ stem Mineral \ Creek \ animas \ River \ at \ sampling \ location \ A73 \ below \ main \ stem Mineral \ Creek \ animas \ River \ animas \ River \ at \ sampling \ location \ A73 \ below \ main \ stem Mineral \ River \ animas \ River \ animas \ River \ animas \ anim$

User Selected Options

2/18/2015 12:30 Date/Time of Computation

WorkSheet.xls From File Full Precision OFF Confidence Coefficient 2000 Number of Bootstrap Operations

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	2.7 Mean	4.01
Maximum	5.6 Median	3.87
SD	1.21 Std. Error of Mean	0.605
Coefficient of Variation	0.302 Skewness	0.640

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.976 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.22 Lilliefors GOF Test

0.443 Data appear Normal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 5.433 95% Adjusted-CLT UCL (Chen-1995) 5.214 95% Modified-t UCL (Johnson-1978) 5.466

Gamma GOF Test

A-D Test Statistic 0.213 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level 0.182 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A
		Approximate Chi Square Value (0.05)	19.31
MLE Mean (bias corrected)	4.01	MLE Sd (bias corrected)	2.036
nu hat (MLE)	118.8	nu star (bias corrected)	31.04
Theta hat (MLE)	0.27	Theta star (bias corrected MLE)	1.034
k hat (MLE)	14.85	k star (bias corrected MLE)	3.88

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 6.445 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.995 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.176 Lilliefors Lognormal GOF Test

0.443 Data appear Lognormal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.993 Mean of logged Data 1.355 Maximum of Logged Data 1.723 SD of logged Data 0.302

Assuming Lognormal Distribution

95% H-UCL 6.588 90% Chebyshev (MVUE) UCL 5.812 95% Chebyshev (MVUE) UCL 6.629 97.5% Chebyshev (MVUE) UCL 7,762 99% Chebyshev (MVUE) UCL 9.988

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Nonparametric Distribution Free UCL Statistics

95% CLT UCL	5.005	95% Jackknife UCL	5.433
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	5.824	95% Chebyshev(Mean, Sd) UCL	6.646
97.5% Chebyshev(Mean, Sd) UCL	7.787	99% Chebyshev(Mean, Sd) UCL	10.03

Suggested UCL to Use

5.433 95% Student's-t UCL

Date/Time of Computation 2/18/2015 12:36 From File WorkSheet.xls **Full Precision** OFF ConfidenceCoefficient Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	113 Mean	199
Maximum	284 Median	199.5
SD	72.4 Std. Error of Mean	36.2
Coefficient of Variation	0.364 Skewness	-0.0356

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 1 Shapiro Wilk GOF Test

0.748 Data appear Normal at 5% Significance Level LillieforsTest Statistic 0.133 LillieforsGOFTest 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 284.2 95% Adjusted-CLT UCL (Chen-1995) 257.9 95% Modified-t UCL (Johnson-1978)

Gamma GOF Test

0.208 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.178 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	9.288	k star (bias corrected MLE)	2.489
Theta hat (MLE)	21.43	Theta star (bias corrected MLE)	79.97
nu hat (MLE)	74.3	nu star (bias corrected)	19.91
MLE Mean (bias corrected)	199	MLE Sd (bias corrected)	126.1
		Approximate Chi Square Value (0.05)	10.78
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 367.4 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.979 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level LillieforsTest Statistic

0.181 LillieforsLognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics Minimum of Logged Data 4.727 Mean of logged Data 5.239 Maximum of Logged Data 5.649 SD of logged Data 0.393

Assuming Lognormal Distribution

415.1 90% Chebyshev (MVUF) UCL 95% H-UCI 315.6 95% Chebyshev (MVUE) UCL 368.3 97.5% Chebyshev (MVUE) UCL 441.3 99% Chebyshev (MVUE) UCL 584.8

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonnarametric Distribution Free LICLs

95% CLT UCL	258.5	95% Jackknife UCL	284.2
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	307.6	95% Chebyshev(Mean, Sd) UCL	356.8
97.5% Chebyshev(Mean, Sd) UCL	425.1	99% Chebyshev(Mean, Sd) UCL	559.2

Suggested UCL to Use

284.2 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

Date/Time of Computation 3/2/2015 12:44 From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	2.83 Mean	3.988
Maximum	5.6 Median	3.76
SD	1.18 Std. Error of Mean	0.59
Coefficient of Variation	0.296 Skewness	1.024

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.948 Shapiro Wilk GOF Test 0.748 Data appear Normal at 5% Significance Level 5% Shapiro Wilk Critical Value 0.239 Lilliefors GOF Test Lilliefors Test Statistic 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL

95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 5.376 95% Adjusted-CLT UCL (Chen-1995) 5.281 95% Modified-t UCL (Johnson-1978) 5 427

Gamma GOF Test

0.238 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.204 Kolmogrov-SmirnoffGamma GOF Test 5% K-S Critical Value 0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 16.09 k star (bias corrected MLE) 419 Theta hat (MLE) 0.248 Theta star (bias corrected MLE) 0.952 nu hat (MLF) 128.7 nu star (bias corrected) 33 52 1.948 MLE Mean (bias corrected) 3.988 MLE Sd (bias corrected) Approximate Chi Square Value (0.05) 21.28 Adjusted Level of Significance Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 6.281 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.985 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.195 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value

0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics Minimum of Logged Data

Maximum of Logged Data 1.723 SD of logged Data 0.286 Assuming Lognormal Distribution 95% H-UCL 6.323 90% Chebyshev (MVUE) UCL 5 685 95% Chebyshev (MVUE) UCL 6.456 97.5% Chebyshev (MVUE) UCL 7.525 99% Chebyshev (MVUE) UCL 9.626

1.04 Mean of logged Data

1.352

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	4.958	95% Jackknife UCL	5.376
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	5.758	95% Chebyshev(Mean, Sd) UCL	6.56
97.5% Chebyshev(Mean, Sd) UCL	7.673	99% Chebyshev(Mean, Sd) UCL	9.859

Suggested UCL to Use

95% Student's-t UCL

Date/Time of Computation 2/23/2015 9:15 From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	0.02 Mean	0.0353
Maximum	0.05 Median	0.036
SD	0.015 Std. Error of Mean	0.00867
Coefficient of Variation	0.425 Skewness	-0.199

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.999 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.184 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 0.0606 95% Adjusted-CLT UCL (Chen-1995) 0.0485 95% Modified-t UCL (Johnson-1978) 0.0605

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE) 7.544 k star (bias corrected MLE) N/A Theta hat (MLE) 0.00468 Theta star (bias corrected MLE) N/A nu hat (MLE) 45.27 nu star (bias corrected) N/A MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A Approximate Chi Square Value (0.05) N/A Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.974 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.241 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -3.912 Mean of logged Data -3.411 Maximum of Logged Data -2.996 SD of logged Data 0.464

Assuming Lognormal Distribution

95% H-UCL 0.265 90% Chebyshev (MVUE) UCL 0.0632 95% Chebyshev (MVUE) UCL 0.0758 97.5% Chebyshev (MVUE) UCL 0.0932 99% Chebyshev (MVUE) UCL 0.127

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 0.0496 95% Jackknife UCL 0.0606 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A N/A 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 0.0731 0.0613 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 0.0895 99% Chebyshev(Mean, Sd) UCL 0.122

Suggested UCL to Use

0.0606 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 Date/Time of Computation
 2/18/2015 12:39

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	297 Mean	513
Maximum	729 Median	513
SD	187.5 Std. Error of Mean	93.75
Coefficient of Variation	0.366 Skewness	0

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.989 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.161 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 733.6
 95% Adjusted-CLT UCL (Chen-1995)
 667.2

 95% Modified-t UCL (Johnson-1978)
 733.6

Gamma GOF Test

A-D Test Statistic 0.217 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.209 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	9.315 k star (bias corr	rected MLE)	2.496
Theta hat (MLE)	55.07 Theta star (bias	corrected MLE)	205.6
nu hat (MLE)	74.52 nu star (bias co	orrected)	19.96
MLE Mean (bias corrected)	513 MLE Sd (bias corrected)		324.7
	Approximate Cl	hi Square Value (0.05)	10.82
Adjusted Level of Significance	N/A Adjusted Chi Sq	quare Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 946.1 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.977 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic 0.192 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 5.694 Mean of logged Data
 6.186

 Maximum of Logged Data
 6.592 SD of logged Data
 0.391

Assuming Lognormal Distribution

 95% H-UCL
 1063
 90% Chebyshev (MVUE) UCL
 811.6

 95% Chebyshev (MVUE) UCL
 946.5
 97.5% Chebyshev (MVUE) UCL
 1134

 99% Chebyshev (MVUE) UCL
 1501
 1501

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	667.2	95% Jackknife UCL	733.6
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	794.3	95% Chebyshev (Mean, Sd) UCL	921.7
97.5% Chebyshev(Mean, Sd) UCL	1098	99% Chebyshev (Mean, Sd) UCL	1446

Suggested UCL to Use

95% Student's-t UCL 733.6

Recommended UCL exceeds the maximum observation

Date/Time of Computation 2/18/2015 12:40
From File WorkSheet.xls
Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operation: 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	2780 Me an	4340
Maximum	7120 Median	3730
SD	1936 Std. Error of Mean	967.9
Coefficient of Variation	0.446 Skewness	1.527

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshey UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.866 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.291 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 6618
 95% Adjusted-CLT UCL (Chen-1995)
 6722

 95% Modified-t UCL (Johnson-1978)
 6741

Gamma GOF Test

A-D Test Statistic 0.345 Anderson-Darling Gamma GOF Test

5% A-D Critical Value

K-S Test Statistic

0.254 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value

0.395 Detected data appear Gamma Distributed at 5% Significance Level

0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	7.696	k star (bias corrected MLE)	2.091
Theta hat (MLE)	563.9	Theta star (bias corrected MLE)	2076
nu hat (MLE)	61.57	nu star (bias corrected)	16.73
MLE Mean (bias corrected)	4340	MLE Sd (bias corrected)	3001
		Approximate Chi Square Value (0.05)	8.477
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 8563 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.934 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.231 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 7.93 Mean of logged Data 8.309
Maximum of Logged Data 8.871 SD of logged Data 0.408

Assuming Lognormal Distribution

 95% H-UCL
 9408
 90% Chebyshev (MVUE) UCL
 6932

 95% Chebyshev (MVUE) UCL
 8115
 97.5% Chebyshev (MVUE) UCL
 9757

 99% Chebyshev (MVUE) UCL
 12983
 9757

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	5932	95% Jackknife UCL	6618
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	7244	95% Chebyshev(Mean, Sd) UCL	8559
97.5% Chebyshev(Mean, Sd) UCL	10385	99% Chebyshev(Mean, Sd) UCL	13971

Suggested UCL to Use

95% Student's-t UCL 6618

Date/Time of Computation 2/18/2015 12:42 From File WorkSheet.xls **Full Precision** OFF ConfidenceCoefficient Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	5.5 Mean	6.4
Maximum	7.19 Median	6.455
SD	0.761 Std. Error of Mean	0.38
Coefficient of Variation	0.119 Skewness	-0.283

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.959 Shapiro Wilk GOF Test

0.748 Data appear Normal at 5% Significance Level LillieforsTest Statistic 0.218 LillieforsGOFTest 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 95% Adjusted-CLT UCL (Chen-1995) 6.968 7.295 95% Modified-t UCL (Johnson-1978)

Gamma GOF Test

0.268 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.656 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.252 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	92.73	k star (bias corrected MLE)	23.35
Theta hat (MLE)	0.069	Theta star (bias corrected MLE)	0.274
nu hat (MLE)	741.9	nu star (bias corrected)	186.8
MLE Mean (bias corrected)	6.4	MLE Sd (bias corrected)	1.324
		Approximate Chi Square Value (0.05)	156.2
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 7.655 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Lognormal Statistics

Shapiro Wilk Test Statistic 0.956 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level LillieforsTest Statistic

0.224 LillieforsLognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Maximum of Logged Data

Minimum of Logged Data 1.705 Mean of logged Data 1.851 1.973 SD of logged Data 0.121

Assuming Lognormal Distribution

7.507 90% Chebyshey (MVUF) UCL 95% H-UCI 7.557 95% Chebyshev (MVUE) UCL 8.08 97.5% Chebyshev (MVUE) UCL 8.808 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonnarametric Distribution Free LICLs

95% CLT UCL	7.026	95% Jackknife UCL	7.295
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	7.541	95% Chebyshev(Mean, Sd) UCL	8.058
97.5% Chebyshev(Mean, Sd) UCL	8.776	99% Chebyshev(Mean, Sd) UCL	10.19

Suggested UCL to Use

7.295 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

			-	4.4
User	Sei	ected	Or	otions

 Date/Time of Computation
 2/18/2015 12:43

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
Number of Detects	2	Number of Non-Detects	2
Number of Distinct Detects	2	Number of Distinct Non-Detects	2
Minimum Detect	0.717	Minimum Non-Detect	1
Maximum Detect	1.43	Maximum Non-Detect	1.02
Variance Detects	0.254	Percent Non-Detects	50%
Mean Detects	1.074	SD Detects	0.504
Median Detects	1.074	CV Detects	0.47
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	0.0125	SD of Logged Detects	0.488

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	0.895 Standard Error of Mean	0.218
SD	0.309 95% KM (BCA) UCL	N/A
95% KM (t) UCL	1.409 95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.254 95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.55 95% KM Chebyshev UCL	1.847
97.5% KM Chebyshev UCL	2.259 99% KM Chebyshev UCL	3.067

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	8.721 k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.123 Theta star (bias corrected MLE)	N/A
nu hat (MLE)	34.88 nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A MLE Sd (bias corrected)	N/A

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	8.408	nu hat (KM)	67.27
		Adjusted Level of Significance (β)	0.00498
Approximate Chi Square Value (67.27, α)	49.39	Adjusted Chi Square Value (67.27, β)	41.13
95% Gamma Approximate KM-UCL (use when n>=50)	1.219	95% Gamma Adjusted KM-UCL (use when n<50)	1.464

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.895	Mean in Log Scale	-0.16
SD in Original Scale	0.357	SD in Log Scale	0.345
95% t UCL (assumes normality of ROS data)	1.315	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A	95% Bootstrap t UCL	N/A
DERVILLION (Log DOC)	1 6 2 7		

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed	
Mean in Original Scale	0.789 Mean in Log Scale	-0.335
SD in Original Scale	0.439 SD in Log Scale	0.491
95% t UCL (Assumes normality)	1.305 95% H-Stat UCL	2.243

 $\label{eq:decomparison} DL/2 \ is \ not \ a \ recommended \ method, provided \ for \ comparisons \ and \ historical \ reasons$

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 1.409 95% KM (% Bootstrap) UCL N/A Warning: One or more Recommended UCL(s) not available!

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Date/Time of Computation 2/18/2015 12:45 From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	1.24 Mean	1.923
Maximum	2.78 Median	1.835
SD	0.75 Std. Error of Mean	0.375
Coefficient of Variation	0.39 Skewness	0.297

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL $5.0\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.884 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.277 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 2.805 95% Adjusted-CLT UCL (Chen-1995) 2.599 95% Modified-t UCL (Johnson-1978) 2.814

Gamma GOF Test A-D Test Statistic

0.418 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.658 Detected data appear Gamma Distributed at 5% Significance Level

0.307 Kolmogrov-Smirnoff Gamma GOF Test K-S Test Statistic

5% K-S Critical Value 0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	8.664 k star (bias corrected MLE)	2.333
Theta hat (MLE)	0.222 Theta star (bias corrected MLE)	0.824
nu hat (MLE)	69.31 nu star (bias corrected)	18.66
MLE Mean (bias corrected)	1.923 MLE Sd (bias corrected)	1.259
	Approximate Chi Square Value (0.05)	9.871
Adjusted Level of Significance	N/A Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 3.635 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

0.878 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level 0.271 Lilliefors Lognormal GOF Test Lilliefors Test Statistic

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.215 Mean of logged Data 0.595 Maximum of Logged Data 1.022 SD of logged Data 0.398 Assuming Lognormal Distribution

95% H-UCL

4.059 90% Chebyshev (MVUE) UCL 3.056 95% Chebyshev (MVUE) UCL 3.569 97.5% Chebyshev (MVUE) UCL 4.282 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.539	95% Jackknife UCL	2.805
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	3.047	95% Chebyshev(Mean, Sd) UCL	3.557
97.5% Chebyshev(Mean, Sd) UCL	4.264	99% Chebyshev (Mean, Sd) UCL	5.653

Suggested UCL to Use

95% Student's-t UCL 2.805

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 12:46

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	749 Mean	1049
Maximum	1450 Median	999
SD	292 Std. Error of Mean	146
Coefficient of Variation	0.278 Skewness	0.992

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshey UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.908 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.317 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 1393
 95% Adjusted-CLT UCL (Chen-1995)
 1367

 95% Modified-t UCL (Johnson-1978)
 1405

Gamma GOF Test

A-D Test Statistic 0.354 Anderson-Darling Gamma GOF Test

5% A-D Critical Value

K-S Test Statistic

0.299 Kolmogrov-Smirnoff Gamma GOF Test

K-S Critical Value

0.394 Detected data appear Gamma Distributed at 5% Significance Level

0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	18.06	k star (bias corrected MLE)	4.682
Theta hat (MLE)	58.09	Theta star (bias corrected MLE)	224.1
nu hat (MLE)	144.5	nu star (bias corrected)	37.46
MLE Mean (bias corrected)	1049	MLE Sd (bias corrected)	484.9
		Approximate Chi Square Value (0.05)	24.44
Adjusted Level of Significance	I/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1608 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.938 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.28 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	6.619 Mean of logged Data	6.928
Maximum of Logged Data	7.279 SD of logged Data	0.271

Assuming Lognormal Distribution

 95% H-UCL
 1609
 90% Chebyshev (MVUE) UCL
 1472

 95% Chebyshev (MVUE) UCL
 1664
 97.5% Chebyshev (MVUE) UCL
 1930

 99% Chebyshev (MVUE) UCL
 2454
 2454

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

1289	95% Jackknife UCL	1393
N/A	95% Bootstrap-t UCL	N/A
N/A	95% Percentile Bootstrap UCL	N/A
N/A		
1487	95% Chebyshev(Mean, Sd) UCL	1686
1961	99% Chebyshev(Mean, Sd) UCL	2502
	N/A N/A N/A 1487	N/A 95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A 1487 95% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 1393

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/18/2015 13:09 From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	0
Minimum	6620	Mean	16373
Maximum	31900	Median	10600
SD	13593	Std. Error of Mean	7848
Coefficient of Variation	0.83	Skewness	1.566

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.865 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.331 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 39289 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)

36866

40472

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics k hat (MLE) Theta hat (MLE)

2.381 k star (bias corrected MLE) N/A 6877 Theta star (bias corrected MLE) N/A nu hat (MLE) 14.29 nu star (bias corrected) N/A MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A Approximate Chi Square Value (0.05) N/A Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic

0.949 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.269 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 8.798 Mean of logged Data 9.479 Maximum of Logged Data 10.37 SD of logged Data 0.807

Assuming Lognormal Distribution

95% H-UCL 7347437 90% Chebyshev (MVUE) UCL 36910 95% Chebyshev (MVUE) UCL 46345 97.5% Chebyshev (MVUE) UCL 59441 99% Chebyshev (MVUE) UCL 85165

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 29282 95% Jackknife UCL 39289 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A N/A 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 39917 95% Chebyshev(Mean, Sd) UCL 50581 97.5% Chebyshev(Mean, Sd) UCL 65383 99% Chebyshev(Mean, Sd) UCL 94459

Suggested UCL to Use

95% Student's-t UCL 39289

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets, For additional insight the user may want to consult a statistician.

2/18/2015 13:10 Date/Time of Computation From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	19.9 Mean	29.9
Maximum	39.4 Median	30.4
SD	9.76 Std. Error of Mean	5.635
Coefficient of Variation	0.326 Skewness	-0.23

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.998 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.187 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 46.35 95% Adjusted-CLT UCL (Chen-1995) 38.37 95% Modified-t UCL (Johnson-1978) 46.23

N/A

N/A

N/A

N/A

N/A

N/A

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics k hat (MLE) 13.25 k star (bias corrected MLE) Theta hat (MLE) 2.257 Theta star (bias corrected MLE) nu hat (MLE) 79.49 nu star (bias corrected) MLE Mean (bias corrected) N/A MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Level of Significance N/A Adjusted Chi Square Value

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.981 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.23 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value $0.512\,$ Data appear Lognormal at $5\%\, Significance\, Level$

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 2.991 Mean of logged Data 3.36 Maximum of Logged Data 3.674 SD of logged Data 0.345

Assuming Lognormal Distribution

95% H-UCL 93.07 90% Chebyshev (MVUE) UCL 47.55 95% Chebyshev (MVUE) UCL 55.52 97.5% Chebyshev (MVUE) UCL 66.6 99% Chebyshev (MVUE) UCL 88.35

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 39.17 95% Jackknife UCL 46.35 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 46.8 95% Chebyshev (Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 65.09 99% Chebyshev (Mean, Sd) UCL 85.96

Suggested UCL to Use 46.35 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 Date/Time of Computation
 2/18/2015 13:10

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	2.72 Mean	3.507
Maximum	4.24 Median	3.56
SD	0.761 Std. Error of Mean	0.44
Coefficient of Variation	0.217 Skewness	-0.314

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.996 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.195 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 4.79
 95% Adjusted-CLT UCL (Chen-1995)
 4.145

 95% Modified-t UCL (Johnson-1978)
 4.777

N/A

N/A

Gamma GOF Test

Not Enough Data to Perform GOF Test

 Gamma Statistics
 30.75 k star (bias corrected MLE)

 k hat (MLE)
 30.75 k star (bias corrected MLE)

 Theta hat (MLE)
 0.114 Theta star (bias corrected MLE)

 nu hat (MLE)
 184.5 nu star (bias corrected)

 MLE Mean (bias corrected)
 N/A MLE Sd (bias corrected)

 Approximate Chi Square Value (in the control of the co

MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A
Adjusted Level of Significance N/A Adjusted Chi Square Value (0.05) N/A
Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.985 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significar

5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.223 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Mlinimum of Logged Data
 1.001 Mean of logged Data
 1.238

 Maximum of Logged Data
 1.445 SD of logged Data
 0.224

Assuming Lognormal Distribution

 95% H-UCL
 6.116
 90% Chebyshev (MVUE) UCL
 4.858

 95% Chebyshev (MVUE) UCL
 5.469
 97.5% Chebyshev (MVUE) UCL
 6.318

 99% Chebyshev (MVUE) UCL
 7.986

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 4.23 95% Jackknife UCL 4.79 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 4.825 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 6.252 99% Chebyshev(Mean, Sd) UCL 7.881

Suggested UCL to Use

95% Student's-t UCL 4.79

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

ProUCL calculations for Cr in sediment of the Animas River at sampling location A73B below mainstem Mineral Creek

User	Se	lected	Options
------	----	--------	---------

 Date/Time of Computation
 3/2/2015 12:44

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	3.68 Mean	4.473
Maximum	5.02 Median	4.72
SD	0.703 Std. Error of Mean	0.406
Coefficient of Variation	0.157 Skewness	-1.384

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.908 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.304 Lilliefors GOF Test
5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level
Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 5.659
 95% Adjusted-CLT UCL (Chen-1995)
 4.794

 95% Modified-t UCL (Johnson-1978)
 5.605

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE) 57.31 k star (bias corrected MLE) N/A Theta hat (MLE) 0.0781 Theta star (bias corrected MLE) N/A nu hat (MLE) 343.9 nu star (bias corrected) N/A MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A Approximate Chi Square Value (0.05) N/A Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))

N/A

95% Adjusted Gamma UCL (use when n<50)

N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.892 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.315 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 1.303
 Mean of logged Data
 1.489

 Maximum of Logged Data
 1.613
 SD of logged Data
 0.164

 Assuming Lognormal Distribution
 5% H-UCL
 6.422
 90% Chebyshev (MVUE) UCL
 5.744

 95% Chebyshev (MVUE) UCL
 6.319
 97.5% Chebyshev (MVUE) UCL
 7.118

8.686

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

99% Chebyshev (MVUE) UCL

95% CLT UCL	5.141	95% Jackknife UCL	5.659
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	5.691	95% Chebyshev(Mean, Sd) UCL	6.243
97.5% Chebyshev(Mean, Sd) UCL	7.009	99% Chebyshev(Mean, Sd) UCL	8.513

Suggested UCL to Use

95% Student's-t UCL 5.659

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 Date/Time of Computation
 2/18/2015 13:10

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	98.8 Mean	176.9
Maximum	292 Median	140
SD	101.8 Std. Error of Mean	58.75
Coefficient of Variation	0.575 Skewness	1.418

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.901 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.308 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 348.5
 95% Adjusted-CLT UCL (Chen-1995)
 325

 95% Modified-t UCL (Johnson-1978)
 356.5

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	4.91	k star (bias corrected MLE)	N/A
Theta hat (MLE)	36.04	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	29.46	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.959 Shapiro Wilk Lognormal GOF Test

 5% Shapiro Wilk Critical Value
 0.767
 Data appear Lognormal at 5% Significance Level

 Lilliefors Test Statistic
 0.259
 Lilliefors Lognormal GOF Test

 5% Lilliefors Critical Value
 0.512
 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 4.593 Mean of logged Data
 5.07

 Maximum of Logged Data
 5.677 SD of logged Data
 0.553

Assuming Lognormal Distribution

 95% H-UCL
 308
 90% Chebyshev (MVUE) UCL
 338.4

 95% Chebyshev (MVUE) UCL
 411.9
 97.5% Chebyshev (MVUE) UCL
 514

99% Chebyshev (MVUE) UCL 714.6

Nonparametric Distribution Free UCL Statistics

 ${\tt Data\ appear\ to\ follow\ a\ Discernible\ Distribution\ at\ 5\%\ Significance\ Level}$

Nonparametric Distribution Free UCLs

95% CLT UCL	273.6	95% Jackknife UCL	348.5
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	353.2	95% Chebyshev(Mean, Sd) UCL	433
97.5% Chebyshev(Mean, Sd) UCL	543.8	99% Chebyshev(Mean, Sd) UCL	761.5

Suggested UCL to Use

95% Student's-t UCL 348.5

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

2/18/2015 13:11 Date/Time of Computation From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	468 Mean	533.7
Maximum	593 Median	540
SD	62.74 Std. Error of Mean	36.22
Coefficient of Variation	0.118 Skewness	-0.45

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.992 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.207 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 639.4 95% Adjusted-CLT UCL (Chen-1995) 583.2 95% Modified-t UCL (Johnson-1978) 637.9

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics k hat (MLE) Theta hat (MLE) nu hat (MLE)

106.7 k star (bias corrected MLE) 5.002 Theta star (bias corrected MLE) N/A 640.1 nu star (bias corrected) N/A MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A Approximate Chi Square Value (0.05) N/A Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.986 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value

0.767 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.222 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value $0.512\,$ Data appear Lognormal at $5\%\, Significance\, Level$

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 6.148 Mean of logged Data 6.275 Maximum of Logged Data 6.385 SD of logged Data 0.119

Assuming Lognormal Distribution

95% H-UCL 679.3 90% Chebyshev (MVUE) UCL 643.7 95% Chebyshev (MVUE) UCL 693.5 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 898.5

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 593.2 95% Jackknife UCL 639.4 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 642.3 95% Chebyshev (Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 759.9 99% Chebyshev (Mean, Sd) UCL 894.1

Suggested UCL to Use

639.4 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

 $Note: Suggestions\ regarding\ the\ selection\ of\ a\ 95\%\ UCL\ are\ provided\ to\ help\ the\ user\ to\ select\ the\ most\ appropriate\ 95\%\ UCL.$ These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 Date/Time of Computation
 2/18/2015 13:11

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	2480 Mean	3143
Maximum	4340 Median	2610
SD	1038 Std. Error of Mean	599.5
Coefficient of Variation	0.33 Skewness	1.702

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.802 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.363 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 4894
 95% Adjusted-CLT UCL (Chen-1995)
 4759

 95% Modified-t UCL (Johnson-1978)
 4992

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	15.11	k star (bias corrected MLE)	N/A
Theta hat (MLE)	208	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	90.66	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.818 Shapiro Wilk Lognormal GOF Test

 5% Shapiro Wilk Critical Value
 0.767
 Data appear Lognormal at 5% Significance Level

 Lilliefors Test Statistic
 0.356
 Lilliefors Lognormal GOF Test

 5% Lilliefors Critical Value
 0.512
 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Mlinimum of Logged Data
 7.816 Mean of logged Data
 8.02

 Maximum of Logged Data
 8.376 SD of logged Data
 0.309

Assuming Lognormal Distribution

 95% H-UCL
 7994
 90% Chebyshev (MVUE) UCL
 4799

 95% Chebyshev (MVUE) UCL
 5552
 97.5% Chebyshev (MVUE) UCL
 6597

99% Chebyshev (MVUE) UCL 8649

Nonparametric Distribution Free UCL Statistics

 ${\tt Data\ appear\ to\ follow\ a\ Discernible\ Distribution\ at\ 5\%\ Significance\ Level}$

Nonparametric Distribution Free UCLs

95% CLT UCL	4129	95% Jackknife UCL	4894
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	4942	95% Chebyshev(Mean, Sd) UCL	5757
97.5% Chebyshev(Mean, Sd) UCL	6887	99% Chebyshev(Mean, Sd) UCL	9108

Suggested UCL to Use

95% Student's-t UCL 4894

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/18/2015 13:11 From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	8.16 Mean	10.01
Maximum	12.1 Median	9.78
SD	1.98 Std. Error of Mean	1.143
Coefficient of Variation	0.198 Skewness	0.523

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use $guidance\ provided\ in\ ITRC\ Tech\ Reg\ Guide\ on\ ISM\ (ITRC,\ 2012)\ to\ compute\ statistics\ of\ interest.$ For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.99 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

0.214 Lilliefors GOF Test Lilliefors Test Statistic

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 13.35 95% Adjusted-CLT UCL (Chen-1995) 12.26 95% Modified-t UCL (Johnson-1978) 13.41

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	38.66	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.259	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	232	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.998 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.188 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 2.099 Mean of logged Data 2.291 Maximum of Logged Data 2.493 SD of logged Data 0.197

Assuming Lognormal Distribution

95% H-UCL 15.91 90% Chebyshev (MVUE) UCL 13.42 95% Chebyshev (MVUE) UCL 14.96 97.5% Chebyshev (MVUE) UCL 17.1 21.3

99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	11.89	95% Jackknife UCL	13.35
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	13.44	95% Chebyshev(Mean, Sd) UCL	15
97.5% Chebyshev(Mean, Sd) UCL	17.15	99% Chebyshev(Mean, Sd) UCL	21.39

Suggested UCL to Use

95% Student's-t UCL 13.35

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 13:12

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3 Number of Dis	tinct Observations	3
	Number of Mis	ssing Observations	0
Minimum	1.25 Mean		1.997
Maximum	3.09 Median		1.65
SD	0.968 Std. Error of M	lean	0.559
Coefficient of Variation	0.485 Skewness		1.405

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.904 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.307 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 3.628
 95% Adjusted-CLT UCL (Chen-1995)
 3.4

 95% Modified-t UCL (Johnson-1978)
 3.704

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	6.909	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.289	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	41.45	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.953 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.266 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 MInimum of Logged Data
 0.223 Mean of logged Data
 0.617

 Maximum of Logged Data
 1.128 SD of logged Data
 0.464

Assuming Lognormal Distribution

 95% H-UCL
 14.82
 90% Chebyshev (MVUE) UCL
 3.545

 95% Chebyshev (MVUE) UCL
 4.25
 97.5% Chebyshev (MVUE) UCL
 5.229

99% Chebyshev (MVUE) UCL 7.15

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	2.916	95% Jackknife UCL	3.628
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	3.673	95% Chebyshev(Mean, Sd) UCL	4.432
97.5% Chebyshev(Mean, Sd) UCL	5.486	99% Chebyshev(Mean, Sd) UCL	7.556

Suggested UCL to Use

95% Student's-t UCL 3.628

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/18/2015 13:12 From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	0
Minimum	659	Mean	1114
Maximum	1720	Median	964
SD	546.2	Std. Error of Mean	315.4
Coefficient of Variation	0.49	Skewness	1.145

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.943 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.275 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 2035 95% Adjusted-CLT UCL (Chen-1995) 1856 95% Modified-t UCL (Johnson-1978) 2070

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics k hat (MLE)

6.514 k star (bias corrected MLE) N/A Theta hat (MLE) 171.1 Theta star (bias corrected MLE) N/A nu hat (MLE) 39.09 nu star (bias corrected) N/A MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A Approximate Chi Square Value (0.05) N/A Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.986 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.221 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 6.491 Mean of logged Data 6.937 Maximum of Logged Data 7.45 SD of logged Data 0.483

Assuming Lognormal Distribution

95% H-UCL 9849 90% Chebyshev (MVUE) UCL 2016 95% Chebyshev (MVUE) UCL 2425 97.5% Chebyshev (MVUE) UCL 2994 99% Chebyshev (MVUE) UCL 4110

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 1633 95% Jackknife UCL 2035 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A N/A 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 2060 95% Chebyshev(Mean, Sd) UCL 2489 97.5% Chebyshev(Mean, Sd) UCL 3084 99% Chebyshev(Mean, Sd) UCL 4252

Suggested UCL to Use

95% Student's-t UCL 2035

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets, For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/18/2015 13:57

From File WorkSheet.xls
Full Precision OFF

Confidence Coefficient 95%
Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	6640 Mean	20820
Maximum	48600 Median	7220
SD	24060 Std. Error of Mean	13891
Coefficient of Variation	1.156 Skewness	1.731

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.76 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.381 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 61382
 95% Adjusted-CLT UCL (Chen-1995)
 58502

 95% Modified-t UCL (Johnson-1978)
 63695

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	1.248	k star (bias corrected MLE)	N/A
Theta hat (MLE)	16682	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	7.488	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.781 Shapiro Wilk Lognormal GOF Test

 5% Shapiro Wilk Critical Value
 0.767
 Data appear Lognormal at 5% Significance Level

 Lilliefors Test Statistic
 0.372
 Lilliefors Lognormal GOF Test

 5% Lilliefors Critical Value
 0.512
 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 MInimum of Logged Data
 8.801 Mean of logged Data
 9.492

 Maximum of Logged Data
 10.79 SD of logged Data
 1.126

Assuming Lognormal Distribution

 95% H-UCL
 3.02E+09
 90% Chebyshev (MVUE) UCL
 52502

 95% Chebyshev (MVUE) UCL
 67461
 97.5% Chebyshev (MVUE) UCL
 88224

99% Chebyshev (MVUE) UCL 129007

Nonparametric Distribution Free UCL Statistics

 ${\tt Data\ appear\ to\ follow\ a\ Discernible\ Distribution\ at\ 5\%\ Significance\ Level}$

Nonparametric Distribution Free UCLs

95% CLT UCL	43669	95% Jackknife UCL	61382
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	62493	95% Chebyshev(Mean, Sd) UCL	81370
97.5% Chebyshev(Mean, Sd) UCL	107569	99% Chebyshev(Mean, Sd) UCL	159034

Suggested UCL to Use

95% Student's-t UCL 61382

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 13:57

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	9.22 Mean	19.91
Maximum	37.2 Median	13.3
SD	15.11 Std. Error of Mean	8.727
Coefficient of Variation	0.759 Skewness	1.591

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.857 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.336 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 45.39
 95% Adjusted-CLT UCL (Chen-1995)
 42.83

 95% Modified-t UCL (Johnson-1978)
 46.72

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics k hat (MLF)

k hat (MLE) 2.895 k star (bias corrected MLE) N/A Theta hat (MLE) 6.877 Theta star (bias corrected MLE) N/A nu hat (MLE) 17.37 nu star (bias corrected) N/A MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A Approximate Chi Square Value (0.05) N/A Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))

N/A

95% Adjusted Gamma UCL (use when n<50)

N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.93 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.287 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 2.221 Mean of logged Data 2.808 Maximum of Logged Data 3.616 SD of logged Data 0.723

Assuming Lognormal Distribution

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 34.26 95% Jackknife UCL 45.39 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 46.09 95% Chebyshev(Mean, Sd) UCL 57.94 97.5% Chebyshev(Mean, Sd) UCL 74.4 99% Chebyshev(Mean, Sd) UCL 106.7

Suggested UCL to Use

95% Student's-t UCL 45.39

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 13:57

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	1.99 Mean	5.047
Maximum	10.5 Median	2.65
SD	4.734 Std. Error of Mean	2.733
Coefficient of Variation	0.938 Skewness	1.694

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.808 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.36 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 13.03
 95% Adjusted-CLT UCL (Chen-1995)
 12.4

 95% Modified-t UCL (Johnson-1978)
 13.47

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	1.931	k star (bias corrected MLE)	N/A
Theta hat (MLE)	2.613	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	11.59	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.875 Shapiro Wilk Lognormal GOF Test

 5% Shapiro Wilk Critical Value
 0.767
 Data appear Lognormal at 5% Significance Level

 Lilliefors Test Statistic
 0.325
 Lilliefors Lognormal GOF Test

 5% Lilliefors Critical Value
 0.512
 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 MInimum of Logged Data
 0.688 Mean of logged Data
 1.338

 Maximum of Logged Data
 2.351 SD of logged Data
 0.889

Assuming Lognormal Distribution

 95% H-UCL
 8316
 90% Chebyshev (MVUE) UCL
 11.75

 95% Chebyshev (MVUE) UCL
 14.86
 97.5% Chebyshev (MVUE) UCL
 19.18

99% Chebyshev (MVUE) UCL 27.66

Nonparametric Distribution Free UCL Statistics

 ${\tt Data\ appear\ to\ follow\ a\ Discernible\ Distribution\ at\ 5\%\ Significance\ Level}$

Nonparametric Distribution Free UCLs

95% CLT UCL	9.543	95% Jackknife UCL	13.03
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	13.25	95% Chebyshev(Mean, Sd) UCL	16.96
97.5% Chebyshev(Mean, Sd) UCL	22.12	99% Chebyshev(Mean, Sd) UCL	32.24

Suggested UCL to Use

95% Student's-t UCL 13.03

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 13:57

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
	_	Number of Missing Observations	0
Minimum	67	Mean	187.6
Maximum	413	Median	82.7
SD	195.4	Std. Error of Mean	112.8
Coefficient of Variation	1.042	Skewness	1.719

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.784 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.371 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 517
 95% Adjusted-CLT UCL (Chen-1995)
 492.8

 95% Modified-t UCL (Johnson-1978)
 535.6

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	1.562	k star (bias corrected MLE)	N/A
Theta hat (MLE)	120.1	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	9.373	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.836 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.347 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 4.205
 Mean of logged Data
 4.881

 Maximum of Logged Data
 6.023
 SD of logged Data
 0.995

Assuming Lognormal Distribution

 95% H-UCL
 2000919
 90% Chebyshev (MVUE) UCL
 454.7

 95% Chebyshev (MVUE) UCL
 579.6
 97.5% Chebyshev (MVUE) UCL
 752.9

 99% Chebyshev (MVUE) UCL
 1093

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 373.1 95% Jackknife UCL 517 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 526 95% Chebyshev(Mean, Sd) UCL 679.3 97.5% Chebyshev(Mean, Sd) UCL 892.1 99% Chebyshev(Mean, Sd) UCL 1310

Suggested UCL to Use

95% Student's-t UCL 517

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

ProUCL calculations for Cr in sediment of the Animas River at sampling location A75B below mainstem Mineral Creek

User Selected Options

Date/Time of Computation 3/2/2015 12:44
From File WorkSheet.xls
Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	5.01 Mean	5.207
Maximum	5.45 Median	5.16
SD	0.224 Std. Error of Mean	0.129
Coefficient of Variation	0.043 Skewness	0.898

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.967 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.249 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 5.584
 95% Adjusted-CLT UCL (Chen-1995)
 5.491

 95% Modified-t UCL (Johnson-1978)
 5.595

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics k hat (MLF) 819.2 k star (bias corrected MLF) N/A Theta hat (MLE) 0.00636 Theta star (bias corrected MLE) N/A N/A nu hat (MLE) 4915 nu star (bias corrected) N/A MLE Sd (bias corrected) N/A MLE Mean (bias corrected) Approximate Chi Square Value (0.05) N/A Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test Shapiro Wilk Test Statistic

Shapiro Wilk Test Statistic 0.971 Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.245 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 1.611 Mean of logged Data
 1.649

 Maximum of Logged Data
 1.696 SD of logged Data
 0.0427

Assuming Lognormal Distribution

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

5.419 95% Jackknife UCL 5.584 95% CLT UCL 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 5.594 95% Chebyshev (Mean, Sd) UCL 5.77 97.5% Chebyshev(Mean, Sd) UCL 6.013 99% Chebyshev(Mean, Sd) UCL 6.492

Suggested UCL to Use

95% Student's-t UCL 5.584

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 13:58

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	0
Minimum	98	Mean	295.7
Maximum	435	Median	354
SD	175.9	Std. Error of Mean	101.6
Coefficient of Variation	0.595	Skewness	-1.328

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.918 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.297 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 592.2
 95% Adjusted-CLT UCL (Chen-1995)

 95% Modified-t UCL (Johnson-1978)
 95% Modified-t UCL (Johnson-1978)

379.5

579.2

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE) 2.944 k star (bias corrected MLE) N/A Theta hat (MLE) 100.4 Theta star (bias corrected MLE) N/A nu hat (MLE) 17.66 nu star (bias corrected) N/A MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A Approximate Chi Square Value (0.05) N/A N/A Adjusted Level of Significance Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.851 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.339 Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 4.585
 Mean of logged Data
 5.51

 Maximum of Logged Data
 6.075
 S D of logged Data
 0.808

Assuming Lognormal Distribution

 95% H-UCL
 139915
 90% Chebyshev (MVUE) UCL
 697.6

 95% Chebyshev (MVUE) UCL
 876
 97.5% Chebyshev (MVUE) UCL
 1124

 99% Chebyshev (MVUE) UCL
 1610
 1610

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 462.7 95% Jackknife UCL 592.2 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hali's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 600.4 95% Chebyshev(Mean, Sd) UCL 738.4 97.5% Chebyshev(Mean, Sd) UCL 929.9 99% Chebyshev(Mean, Sd) UCL 1306

Suggested UCL to Use

95% Student's-t UCL 592.2

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

 $Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) \ may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.\\$

 Date/Time of Computation
 2/18/2015 13:58

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

General Statistics			
Total Number of Observations	3	Number of Distinct Observations	3
		Number of Missing Observations	0
Minimum	2070	Mean	2743
Maximum	3820	Median	2340
SD	942.1	Std. Error of Mean	543.9
Coefficient of Variation	0.343	Skewness	1.573

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.863 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.332 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 4332
 95% Adjusted-CLT UCL (Chen-1995)
 4166

 95% Modified-t UCL (Johnson-1978)
 4414

Gamma GOF Test

Not Enough Data to Perform GOF Test

 Gamma Statistics
 13.85 k star (bias corrected MLE)

 K hat (MLE)
 198 Theta star (bias corrected MLE)

 nu hat (MLE)
 83.13 nu star (bias corrected)

 MLE Mean (bias corrected)
 N/A

 198
 Theta star (bias corrected MLE)
 N/A

 83.13
 nu star (bias corrected)
 N/A

 N/A
 MLE Sd (bias corrected)
 N/A

 Approximate Chi Square Value (0.05)
 N/A

 N/A
 Adjusted Chi Square Value
 N/A

N/A

Adjusted Level of Significance
Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.893 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.314 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 7.88
Maximum of Logged Data 8.248 SD of logged Data 0.324

Assuming Lognormal Distribution

 95% H-UCL
 7558
 90% Chebyshev (MVUE) UCL
 4256

 95% Chebyshev (MVUE) UCL
 4944
 97.5% Chebyshev (MVUE) UCL
 5898

 99% Chebyshev (MVUE) UCL
 7773
 7773

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 3638 95% Jackknife UCL 4332 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 4375 95% Chebyshev(Mean, Sd) UCL 5114 97.5% Chebyshev(Mean, Sd) UCL 6140 99% Chebyshev(Mean, Sd) UCL 8156

Suggested UCL to Use

95% Student's-t UCL 4332

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/18/2015 13:58 From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	5.93 Mean	9,713
Maximum	16.5 Median	6.71
SD	5.89 Std. Error of Mean	3.401
Coefficient of Variation	0.606 Skewness	1.698

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.805 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.362 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 19.64 95% Adjusted-CLT UCL (Chen-1995) 18.87 95% Modified-t UCL (Johnson-1978) 20.2

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics k hat (MLE)

4.658 k star (bias corrected MLE) N/A Theta hat (MLE) 2.085 Theta star (bias corrected MLE) N/A nu hat (MLE) 27.95 nu star (bias corrected) N/A MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A Approximate Chi Square Value (0.05) N/A Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test Shapiro Wilk Test Statistic

0.839 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.345 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.512 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 1.78 Mean of logged Data 2.162 Maximum of Logged Data 2.803 SD of logged Data 0.559

Assuming Lognormal Distribution

95% H-UCL 178.7 90% Chebyshev (MVUE) UCL 18.58 95% Chebyshev (MVUE) UCL 22.64 97.5% Chebyshev (MVUE) UCL 28.27 99% Chebyshev (MVUE) UCL 39.34

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 15.31 95% Jackknife UCL 19.64 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 19.92 95% Chebyshev(Mean, Sd) UCL 24.54 97.5% Chebyshev(Mean, Sd) UCL 30.95 99% Chebyshev(Mean, Sd) UCL 43.55

Suggested UCL to Use

95% Student's-t UCL 19.64

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets, For additional insight the user may want to consult a statistician.

ProUCL calculations for Se in sediment of the Animas River at sampling location A75B below mainstem Mineral Creek

User Selected Options

 Date/Time of Computation
 2/18/2015 13:58

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3	Number of Distinct Observations	3
Number of Detects	2	Number of Non-Detects	1
Number of Distinct Detects	2	Number of Distinct Non-Detects	1
Minimum Detect	0.588	Minimum Non-Detect	0.994
Maximum Detect	3.26	Maximum Non-Detect	0.994
Variance Detects	3.57	Percent Non-Detects	33.33%
Mean Detects	1.924	SD Detects	1.889
Median Detects	1.924	CV Detects	0.982
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	0.325	SD of Logged Detects	1.211

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test on Detects Only Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	1.479 Standard Error of Mean	1.028
SD	1.26 95% KM (BCA) UCL	N/A
95% KM (t) UCL	4.482 95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	3.17 95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	4.564 95% KM Chebyshev UCL	5.962
97.5% KM Chebyshev UCL	7.901 99% KM Chebyshev UCL	11.71

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	1.667	k star (bias corrected MLE)	N/A
Theta hat (MLE)	1.154	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	6.667	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	1.378 nu hat (KM)	8.269
	Adjusted Level of Significance (β)	0.00136
Approximate Chi Square Value (8.27, α)	2.892 Adjusted Chi Square Value (8.27, β)	1.019
95% Gamma Approximate KM-UCL (use when n>=50)	4.228 95% Gamma Adjusted KM-UCL (use when n<50) 11.99

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.479	Mean in Log Scale	0.0399
SD in Original Scale	1.543	SD in Log Scale	0.989
95% t UCL (assumes normality of ROS data)	4.079	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A	95% Bootstrap t UCL	N/A
95% H-UCL (Log ROS)	14069		

DL/2 Statistics

DL/2 Log-Transformed
Mean in Log Scale -0.0162
SD in Log Scale 1.041
95% H-Stat UCL 37170

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 7.901
Manager Research and HCL assessed the assessment of the services and the services are services and the services are services and the services and the services are services and

Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

2/18/2015 13:58 Date/Time of Computation From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	0.512 Mean	1.401
Maximum	2.18 Median	1.51
SD	0.839 Std. Error of Mean	0.485
Coefficient of Variation	0.599 Skewness	-0.576

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.987 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.218 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 2.816 95% Adjusted-CLT UCL (Chen-1995) 2.026 95% Modified-t UCL (Johnson-1978) 2.789

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics k hat (MLE) 3.226 k star (bias corrected MLE) N/A Theta hat (MLE) 0.434 Theta star (bias corrected MLE) N/A nu hat (MLE) 19.35 nu star (bias corrected) N/A MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A Approximate Chi Square Value (0.05) N/A Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.925 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.291 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value $0.512\,$ Data appear Lognormal at $5\%\, Significance\, Level$

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -0.669 Mean of logged Data 0.174 Maximum of Logged Data 0.779 SD of logged Data 0.753

Assuming Lognormal Distribution

95% H-UCL 294.6 90% Chebyshev (MVUE) UCL 3.166 95% Chebyshev (MVUE) UCL 3.954 97.5% Chebyshev (MVUE) UCL 5.048 7.196 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 2.198 95% Jackknife UCL 2.816 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 2.854 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 4.427 99% Chebyshev(Mean, Sd) UCL 6.222

Suggested UCL to Use

2.816 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

 Date/Time of Computation
 2/18/2015 13:58

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	578 Mean	2190
Maximum	5320 Median	672
SD	2711 Std. Error of Mean	1565
Coefficient of Variation	1.238 Skewness	1.73

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.765 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data Not Normal at 5% Significance Level

Lilliefors Test Statistic 0.379 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 6760
 95% Adjusted-CLT UCL (Chen-1995)
 6435

 95% Modified-t UCL (Johnson-1978)
 7021

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics

k hat (MLE)	1.058	k star (bias corrected MLE)	N/A
Theta hat (MLE)	2070	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	6.349	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A
		Approximate Chi Square Value (0.05)	N/A
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.801 Shapiro Wilk Lognormal GOF Test

 5% Shapiro Wilk Critical Value
 0.767
 Data appear Lognormal at 5% Significance Level

 Lilliefors Test Statistic
 0.364
 Lilliefors Lognormal GOF Test

 5% Lilliefors Critical Value
 0.512
 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 6.36 Mean of logged Data 7.15
Maximum of Logged Data 8.579 SD of logged Data 1.24

Assuming Lognormal Distribution

 95% H-UCL
 4.08E+09
 90% Chebyshev (MVUE) UCL
 5684

 95% Chebyshev (MVUE) UCL
 7345
 97.5% Chebyshev (MVUE) UCL
 9652

99% Chebyshev (MVUE) UCL 14182

Nonparametric Distribution Free UCL Statistics

 ${\tt Data\ appear\ to\ follow\ a\ Discernible\ Distribution\ at\ 5\%\ Significance\ Level}$

Nonparametric Distribution Free UCLs

95% CLT UCL	4765	95% Jackknife UCL	6760
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	6886	95% Chebyshev(Mean, Sd) UCL	9013
97.5% Chebyshev(Mean, Sd) UCL	11965	99% Chebyshev(Mean, Sd) UCL	17764

Suggested UCL to Use

95% Student's-t UCL 6760

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/18/2015 14:19 From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	7660 Mean	15428
Maximum	29900 Median	12075
SD	10281 Std. Error of Mean	5141
Coefficient of Variation	0.666 Skewness	1.372

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.855 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.248 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 27525 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)

Gamma GOF Test

A-D Test Statistic 0.369 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.659 Detected data appear Gamma Distributed at 5% Significance Level

27653

28113

0.288 Kolmogrov-Smirnoff Gamma GOF Test K-S Test Statistic

5% K-S Critical Value 0.396 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 3.396 k star (bias corrected MLE) 1.016 Theta hat (MLF) 4542 Theta star (bias corrected MLE) 15188 8.126 nu hat (MLE) 27.17 nu star (bias corrected) MLE Mean (bias corrected) 15428 MLE Sd (bias corrected) 15307 Approximate Chi Square Value (0.05) 2.808 Adjusted Level of Significance Adjusted Chi Square Value N/A

Assuming Gamma Distribution

44642 95% Adjusted Gamma UCL (use when n<50) 95% Approximate Gamma UCL (use when n>=50)) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.91 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value $0.748\ \ Data\ appear\ Lognormal\ at\ 5\%\ Significance\ Level$

Lilliefors Test Statistic 0.256 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 8.944 Mean of logged Data 9.49 Maximum of Logged Data 10.31 SD of logged Data 0.627

Assuming Lognormal Distribution

95% H-UCL 78329 90% Chebyshev (MVUE) UCL 29207 95% Chebyshev (MVUE) UCL 35525 97.5% Chebyshev (MVUE) UCL 44293

99% Chebyshev (MVUE) UCL 61516

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Nonparametric Distribution Free UCL Statistics

95% CLT UCL 23883 95% Jackknife UCL 27525 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 30849 95% Chebyshev(Mean, Sd) UCL 37835 97.5% Chebyshev(Mean, Sd) UCL 47531 99% Chebyshev(Mean, Sd) UCL 66576

Suggested UCL to Use

27525 95% Student's-t UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 14:19

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

 Total Number of Observations
 4 Number of Distinct Observations
 4 Number of Missing Observations
 4 Number of Missing Observations
 0 Number of Missing Observations
 0 Number of Missing Observations
 0 Number of Missing Observations
 19.35

 Maximum
 28.5 Median
 17.85

 SD
 6.488 Std. Error of Mean
 3.244

 Coefficient of Variation
 0.335 Skewness
 1.283

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.895 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value
Lilliefors Test Statistic
0.32 Lilliefors GOF Test
5% Lilliefors Critical Value
0.43 Data appear Normal at 5% Significance Level
0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 26.91

 95% Modified-t UCL (Johnson-1978)
 27.33

Gamma GOF Test

A-D Test Statistic 0.343 Anderson-Darling Gamma GOF Test

5% A-D Critical Value

K-S Test Statistic

0.657 Detected data appear Gamma Distributed at 5% Significance Level

Note: Statistic

0.38 Kolmogrov-Smirnoff Gamma GOF Test

Note: Statistic Significance Level

Note: Statistic Significance Level

Note: Statistic Significance Level

Note: Statistic Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 12.9 k star (bias corrected MLE) 3,392 Theta hat (MLE) 5.705 1.5 Theta star (bias corrected MLE) nu hat (MLE) 103.2 nu star (bias corrected) 27.14 MLE Mean (bias corrected) 19.35 MLE Sd (bias corrected) 10.51 Approximate Chi Square Value (0.05) 16.26 Adjusted Level of Significance Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 32.3 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.944 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.278 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

5% Lilliefors Critical value 0.443 Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 2.58 Mean of logged Data
 2.923

 Maximum of Logged Data
 3.35 SD of logged Data
 0.318

Assuming Lognormal Distribution

 95% H-UCL
 33
 90% Chebyshev (MVUE) UCL
 28.47

 95% Chebyshev (MVUE) UCL
 32.62
 97.5% Chebyshev (MVUE) UCL
 38.38

99% Chebyshev (MVUE) UCL 49.6

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 24.69 95% Jackknife UCL 26.98 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 29.08 95% Chebyshev(Mean, Sd) UCL 33.49 97.5% Chebyshev(Mean, Sd) UCL 39.61 99% Chebyshev(Mean, Sd) UCL 51.63

Suggested UCL to Use

95% Student's-t UCL 26.98

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 14:19

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	3.73 Mean	4.808
Maximum	6.75 Median	4.375
SD	1.39 Std. Error of Mean	0.695
Coefficient of Variation	0.289 Skewness	1.31

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.866 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.248 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 6.431

 95% Adjusted-CLT UCL (Chen-1995)
 6.437

 95% Modified-t UCL (Johnson-1978)
 6.519

Gamma GOF Test

A-D Test Statistic 0.387 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.283 Kolmogrov-SmirnoffGamma GOF Test

5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	17.43	k star (bias corrected MLE)	4.525
Theta hat (MLE)	0.276	Theta star (bias corrected MLE)	1.063
nu hat (MLE)	139.5	nu star (bias corrected)	36.2
MLE Mean (bias corrected)	4.808	MLE Sd (bias corrected)	2.26
		Approximate Chi Square Value (0.05)	23.43
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))
7.428 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.894 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.252 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 1.316 Mean of logged Data 1.541
Maximum of Logged Data 1.91 SD of logged Data 0.272

Assuming Lognormal Distribution

 95% H-UCL
 7.388
 90% Chebyshev (MVUE) UCL
 6.751

 95% Chebyshev (MVUE) UCL
 7.634
 97.5% Chebyshev (MVUE) UCL
 8.86

99% Chebyshev (MVUE) UCL 11.27

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	5.951	95% Jackknife UCL	6.443
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	6.893	95% Chebyshev(Mean, Sd) UCL	7.838
97.5% Chebyshev(Mean, Sd) UCL	9.149	99% Chebyshev(Mean, Sd) UCL	11.72

Suggested UCL to Use

95% Student's-t UCL 6.443

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Date/Time of Computation 3/2/2015 12:45 From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	3.72 Mean	4.208
Maximum	4.99 Median	4.06
SD	0.609 Std. Error of Mean	0.304
Coefficient of Variation	0.145 Skewness	0.77

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.87 Shapiro Wilk GOF Test 0.748 Data appear Normal at 5% Significance Level 5% Shapiro Wilk Critical Value 0.284 Lilliefors GOF Test Lilliefors Test Statistic 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level

Assuming Normal Distribution 95% Normal UCL

95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 4.924 95% Adjusted-CLT UCL (Chen-1995) 4.833 95% Modified-t UCL (Johnson-1978) 4 943

Gamma GOF Test

0.421 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.656 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.32 Kolmogrov-SmirnoffGamma GOF Test 5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 65.57 k star (bias corrected MLE) 16.56 Theta hat (MLE) 0.0642 Theta star (bias corrected MLE) 0.254 nu hat (MLF) 524.6 nu star (bias corrected) 132.5 1.034 MLE Mean (bias corrected) 4.208 MLE Sd (bias corrected) Approximate Chi Square Value (0.05) 106.9 Adjusted Level of Significance Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5.215 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test Shapiro Wilk Test Statistic

0.87 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.287 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics Minimum of Logged Data

1.314 Mean of logged Data 1.607 SD of logged Data Maximum of Logged Data 0.142 Assuming Lognormal Distribution

1.429

95% H-UCL

5.097 90% Chebyshev (MVUE) UCL 5 101 95% Chebyshev (MVUE) UCL 5.505 97.5% Chebyshev (MVUE) UCL 6.067 99% Chebyshev (MVUE) UCL 7.171

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 4.708 95% Jackknife UCL 4.924 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 5.12 95% Chebyshev(Mean, Sd) UCL 5.534 97.5% Chebyshev(Mean, Sd) UCL 6.108 99% Chebyshev(Mean, Sd) UCL 7.235

Suggested UCL to Use

95% Student's-t UCL 4.924

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

4 Number of Distinct Observations

4

User Selected Options

Number of Bootstrap Operations

 Date/Time of Computation
 2/18/2015 14:19

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

General Statistics

Total Number of Observations	

	Number of Missing Observations	0
Minimum	103 Mean	146.5
Maximum	223 Median	130
SD	55.55 Std. Error of Mean	27.77
Coefficient of Variation	0.379 Skewness	1.2

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

2000

Normal GOF Test

Shapiro Wilk Test Statistic 0.872 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.256 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 211.9
 95% Adjusted-CLT UCL (Chen-1995)
 210

 95% Modified-t UCL (Johnson-1978)
 214.6

Gamma GOF Test

A-D Test Statistic 0.377 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.293 Kolmogrov-SmirnoffGamma GOF Test

5% K-S Critical Value 0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	10.15	k star (bias corrected MLE)	2.705
Theta hat (MLE)	14.43	Theta star (bias corrected MLE)	54.15
nu hat (MLE)	81.23	nu star (bias corrected)	21.64
MLE Mean (bias corrected)	146.5	MLE Sd (bias corrected)	89.07
		Approximate Chi Square Value (0.05)	12.07
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))

262.7 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.899 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.262 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 4.635 Mean of logged Data 4.937 Maximum of Logged Data 5.407 SD of logged Data 0.358

Assuming Lognormal Distribution

 95% H-UCL
 276.2
 90% Chebyshev (MVUE) UCL
 223.9

 95% Chebyshev (MVUE) UCL
 259.2
 97.5% Chebyshev (MVUE) UCL
 308.1

99% Chebyshev (MVUE) UCL 404.1

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Tronparametric Elementarion Troc Colle			
95% CLT UCL	192.2	95% Jackknife UCL	211.9
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	229.8	95% Chebyshev(Mean, Sd) UCL	267.6
97.5% Chebyshev(Mean, Sd) UCL	320	99% Chebyshev(Mean, Sd) UCL	422.9

Suggested UCL to Use

95% Student's-t UCL 211.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Jser Sel	lected	Options
----------	--------	---------

2/23/2015 9:17 Date/Time of Computation From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

General Statistics			
Total Number of Observations	3	Number of Distinct Observations	3
Number of Detects	2	Number of Non-Detects	1
Number of Distinct Detects	2	Number of Distinct Non-Detects	1
Minimum Detect	0.038	Minimum Non-Detect	0.02
Maximum Detect	0.04	Maximum Non-Detect	0.02
Variance Detects	2.00E-06	Percent Non-Detects	33.33%
Mean Detects	0.039	SD Detects	0.00141
Median Detects	0.039	CV Detects	0.0363
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	-3.245	SD of Logged Detects	0.0363

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	0.0327 Standard Error of Mean	0.00734
SD	0.00899 95% KM (BCA) UCL	N/A
95% KM (t) UCL	0.0541 95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	0.0447 95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	0.0547 95% KM Chebyshev UCL	0.0647
97.5% KM Chebyshev UCL	0.0785 99% KM Chebyshev UCL	0.106

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

Cumma statistics on secretica sata om,			
k hat (MLE)	1521	k star (bias corrected MLE)	N/A
Theta hat (MLE) 2.5	6E-05	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	6083	nu star (bias corrected)	N/A
MLE Mean (bias corrected) N/	/A	MLE Sd (bias corrected)	N/A

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	13.19 nu hat (KM)	79.15
	Adjusted Level of Significance (β)	0.00136
Approximate Chi Square Value (79.15, α)	59.66 Adjusted Chi Square Value (79.15, β)	46.69
95% Gamma Approximate KM-UCL (use when n>=50)	0.0433 95% Gamma Adjusted KM-UCL (use when n<50)	0.0554

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.0376 Mean in Log Scale	-3.283
SD in Original Scale	0.00268 SD in Log Scale	0.072
95% t UCL (assumes normality of ROS data)	0.0421 95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A 95% Bootstrap t UCL	N/A
95% H-UCL (Log ROS)	N/A	

DL/2 Statistics DL/2 Normal	DL/2 Log-Transformed			
Mean in Original Scale	0.0293 Mean in Log Scale	-3.698		
SD in Original Scale	0.0168 SD in Log Scale	0.786		
95% t UCL (Assumes normality)	0.0576 95% H-Stat UCL	10.03		
DL/2 is not a recommended method, provided for comparisons and historical reasons				

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

ouggesten der to dec	
95% KM (BCA) UCL N/A	
Warning: One or more Recommended UCL(s) not available!	

 $Note: Suggestions\ regarding\ the\ selection\ of\ a\ 95\%\ UCL\ are\ provided\ to\ help\ the\ user\ to\ select\ the\ most\ appropriate\ 95\%\ UCL.$ Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Date/Time of Computation 2/18/2015 14:19 From File WorkSheet.xls **Full Precision** OFF ConfidenceCoefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	231 Mean	299.5
Maximum	367 Median	300
SD	64.01 Std. Error of Mean	32
Coefficient of Variation	0.214 Skewness	-0.0237

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.923 Shapiro Wilk GOF Test

0.748 Data appear Normal at 5% Significance Level 0.231 Lilliefors GOF Test 5% Shapiro Wilk Critical Value

Lilliefors Test Statistic

5% LillieforsCritical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 374.8 95% Adjusted-CLT UCL (Chen-1995) 351.7 95% Modified-t UCL (Johnson-1978) 374.8

Gamma GOF Test

A-D Test Statistic 0.334 Anderson-Darling Gamma GOF Test

0.657 Detected data appear Gamma Distributed at 5% Significance Level 5% A-D Critical Value 0.27 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 28.67 k star (bias corrected MLE) 7 3 3 5 Theta hat (MLE) 10.45 Theta star (bias corrected MLE) 40.83 nu hat (MLE) 229.4 nu star (bias corrected) 58.68 MLE Mean (bias corrected) 299.5 MLE Sd (bias corrected) 110.6 Approximate Chi Square Value (0.05) 42.07 Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 417.8 95% Adjusted Gamma UCL (use when n<50) N/A

Shapiro Wilk Test Statistic 0.924 Shapiro Wilk Lognormal GOF Test 0.748 Data appear Lognormal at 5% Significance Level 0.242 LillieforsLognormalGOFTest 5% Shapiro Wilk Critical Value LillieforsTest Statistic 5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 5.442 Mean of logged Data 5 685 Maximum of Logged Data 5.905 SD of logged Data 0.217

Assuming Lognormal Distribution 95% H-UCL

413.1 90% Chebyshev (MVUE) UCL 396.9 95% Chebyshev (MVUE) UCL 441 97.5% Chebyshev (MVUE) UCL 502.2 99% Chebyshev (MVUE) UCL 622.4

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 352.1 95% Jackknife UCL 374.8 95% Standard Bootstrap UCL 95% Bootstrap-t UCL N/A N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 395.5 95% Chebyshev(Mean, Sd) UCL 439 97.5% Chebyshev(Mean, Sd) UCL 499.4 99% Chebyshev(Mean, Sd) UCL 617.9

Suggested UCL to Use

374.8 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Jaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

 Date/Time of Computation
 2/18/2015 14:20

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations 4 Number of Distinct Observations
Number of Missing Observations
Minimum 3010 Mean

 Minimum
 3010 Mean
 4348

 Maximum
 6900 Median
 3740

 SD
 1736 Std. Error of Mean
 868.1

 Coefficient of Variation
 0.399 Skewness
 1.757

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.792 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.385 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 6390
 95% Adjusted-CLT UCL (Chen-1995)
 6590

 95% Modified-t UCL (Johnson-1978)
 6517

Gamma GOF Test

A-D Test Statistic 0.537 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.385 Kolmogrov-SmirnoffGamma GOF Test

5% K-S Critical Value 0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 9.836 k star (bias corrected MLE) 2.626 Theta hat (MLF) 442 Theta star (bias corrected MLE) 1656 21.01 nu hat (MLE) 78.69 nu star (bias corrected) MLE Mean (bias corrected) 4348 MLE Sd (bias corrected) 2683 Approximate Chi Square Value (0.05) 11.6 Adjusted Level of Significance Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))
7876 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.851 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.356 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 8.01 Mean of logged Data 8.326 Maximum of Logged Data 8.839 SD of logged Data 0.357

Assuming Lognormal Distribution

 95% H-UCL
 8164
 90% Chebyshev (MVUE) UCL
 6628

 95% Chebyshev (MVUE) UCL
 7669
 97.5% Chebyshev (MVUE) UCL
 9114

99% Chebyshev (MVUE) UCL 11953

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

5775 95% Jackknife UCL 95% CLT UCL 6390 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 6952 95% Chebyshev(Mean, Sd) UCL 8131 97.5% Chebyshev(Mean, Sd) UCL 9769 99% Chebyshev(Mean, Sd) UCL 12985

Suggested UCL to Use

95% Student's-t UCL 6390

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Number of Bootstrap Operations

 Date/Time of Computation
 2/18/2015 14:20

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	7.27 Mean	9.415
Maximum	13.1 Median	8.645
SD	2.567 Std. Error of Mean	1.283
Coefficient of Variation	0.273 Skewness	1.512

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

2000

Normal GOF Test

Shapiro Wilk Test Statistic 0.874 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.3 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 12.44
 95% Adjusted-CLT UCL (Chen-1995)
 12.56

 95% Modified-t UCL (Johnson-1978)
 12.6

Gamma GOF Test

A-D Test Statistic 0.365 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.282 Kolmogrov-SmirnoffGamma GOF Test

5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	19.86	k star (bias corrected MLE)	5.132
Theta hat (MLE)	0.474	Theta star (bias corrected MLE)	1.834
nu hat (MLE)	158.9	nu star (bias corrected)	41.06
MLE Mean (bias corrected)	9.415	MLE Sd (bias corrected)	4.156
		Approximate Chi Square Value (0.05)	27.37
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 14.12 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.919 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.265 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 1.984 Mean of logged Data 2.217
Maximum of Logged Data 2.573 SD of logged Data 0.254

Assuming Lognormal Distribution

 95% H-UCL
 13.93
 90% Chebyshev (MVUE) UCL
 12.97

 95% Chebyshev (MVUE) UCL
 14.58
 97.5% Chebyshev (MVUE) UCL
 16.83

 99% Chebyshev (MVUE) UCL
 21.23

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Honparametric Distribution free della			
95% CLT UCL	11.53	95% Jackknife UCL	12.44
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	13.26	95% Chebyshev(Mean, Sd) UCL	15.01
97.5% Chebyshev(Mean, Sd) UCL	17.43	99% Chebyshev(Mean, Sd) UCL	22.18

Suggested UCL to Use

95% Student's-t UCL 12.44

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Number of Bootstrap Operations

Date/Time of Computation 2/18/2015 14:20
From File WorkSheet.xls
Full Precision OFF
Confidence Coefficient 95%

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
Number of Detects	2	Number of Non-Detects	2
Number of Distinct Detects	2	Number of Distinct Non-Detects	2
Minimum Detect	1.06	Minimum Non-Detect	0.498
Maximum Detect	1.4	Maximum Non-Detect	1.02
Variance Detects	0.0578	Percent Non-Detects	50%
Mean Detects	1.23	SD Detects	0.24
Median Detects	1.23	CV Detects	0.195
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	0.197	SD of Logged Detects	0.197

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

2000

Normal GOF Test on Detects Only Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	0.864 Standard Error of Mean	0.272
SD	0.385 95% KM (BCA) UCL	N/A
95% KM (t) UCL	1.505 95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	1.312 95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	1.681 95% KM Chebyshev UCL	2.051
97.5% KM Chebyshev UCL	2.565 99% KM Chebyshev UCL	3.574

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE)	52.01 k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.0236 Theta star (bias corrected MLE)	N/A
nu hat (MLE)	208.1 nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A MLE Sd (bias corrected)	N/A

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	5.03 nu hat (KM)	40.24
	Adjusted Level of Significance (β)	0.00498
Approximate Chi Square Value (40.24, α)	26.71 Adjusted Chi Square Value (40.24, β)	20.87
95% Gamma Approximate KM-UCL (use when n>=50)	1.302 95% Gamma Adjusted KM-UCL (use when n<50)	1.666

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	0.914 Mean in Log Scale	-0.159
SD in Original Scale	0.391 SD in Log Scale	0.426
95% t UCL (assumes normality of ROS data)	1.373 95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A 95% Bootstrap t UCL	N/A
95% H-UCL (Log ROS)	2.103	

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed		
Mean in Original Scale	0.805 Mean in Log Scale	-0.417	
SD in Original Scale	0.521 SD in Log Scale	0.776	
95% t UCL (Assumes normality)	1.418 95% H-Stat UCL	9.42	

 $DL/2\ is\ not\ a\ recommended\ method, provided\ for\ comparisons\ and\ historical\ reasons$

Nonparametric Distribution Free UCL Statistics

 ${\sf Data\ do\ not\ follow\ a\ Discernible\ Distribution\ at\ 5\%\ Significance\ Level}$

Suggested UCL to Use

95% KM (t) UCL 1.505 95% KM (% Bootstrap) UCL	N/A

Warning: One or more Recommended UCL(s) not available!

Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 14:20

 From File
 WorkSheet.xls

 Full Precision
 OFF

 ConfidenceCoefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	
	Number of Missing Observations	0
Minimum	0.724 Mean	1.078
Maximum	1.37 Median	1.109
SD	0.297 Std. Error of Mean	0.148
Coefficient of Variation	0.275 Skewness	-0.372

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.938 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.241 Lilliefors GOF Test

5% LillieforsCritical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's -t UCL
 1.427
 95% Adjusted-CLT UCL (Chen-1995)
 1.293

 95% Modified-t UCL (Johnson-1978)
 1.423

Gamma GOF Test

A-D Test Statistic 0.309 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.278 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	16.43 k	star (bias corrected MLE)	4.274
Theta hat (MLE)	0.0656 T	heta star (bias corrected MLE)	0.252
nu hat (MLE)	131.4 n	u star (bias corrected)	34.19
MLE Mean (bias corrected)	1.078 N	ALE Sd (bias corrected)	0.521
	Д	pproximate Chi Square Value (0.05)	21.82
Adjusted Level of Significance	N/A A	djusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50))

1.689 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.929 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

LillieforsTest Statistic 0.248 LillieforsLognormalGOFTest

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

 Lognormal Statistics
 0.0444

 Minimum of Logged Data
 -0.323 Mean of logged Data
 0.0444

 Maximum of Logged Data
 0.315 SD of logged Data
 0.292

Assuming Lognormal Distribution

 95% H-UCL
 1.733
 90% Chebyshev (MVUE) UCL
 1.548

 95% Chebyshev (MVUE) UCL
 1.761
 97.5% Chebyshev (MVUE) UCL
 2.056

 99% Chebyshev (MVUE) UCL
 2.636
 2.636

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	1.322	95% Jackknife UCL	1.427
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	1.523	95% Chebyshev(Mean, Sd) UCL	1.725
97.5% Chebyshev(Mean, Sd) UCL	2.005	99% Chebyshev(Mean, Sd) UCL	2.555

Suggested UCL to Use

95% Student's-t UCL 1.427

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.

 Date/Time of Computation
 2/18/2015 14:20

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	1030 Mean	1738
Maximum	2910 Median	1505
SD	884.1 Std. Error of Mean	442
Coefficient of Variation	0.509 Skewness	0 946

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshey UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.878 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value
Lilliefors Test Statistic
0.271 Lilliefors GOF Test
5% Lilliefors Critical Value
0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 2778
 95% Adjusted-CLT UCL (Chen-1995)
 2688

 95% Modified-t UCL (Johnson-1978)
 2813

Gamma GOF Test

A-D Test Statistic 0.39 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.659 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.311 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.396 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	5.458	3 k star (bias corrected MLE)	1.531
Theta hat (MLE)	318.3	3 Theta star (bias corrected MLE)	1135
nu hat (MLE)	43.66	5 nu star (bias corrected)	12.25
MLE Mean (bias corrected)	1738	MLE Sd (bias corrected)	1404
		Approximate Chi Square Value (0.05)	5.392
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 3947 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.888 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.278 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 6.937 Mean of logged Data
 7.366

 Maximum of Logged Data
 7.976 SD of logged Data
 0.497

Assuming Lognormal Distribution

 95% H-UCL
 5086
 90% Chebyshev (MVUE) UCL
 2999

 95% Chebyshev (MVUE) UCL
 3572
 97.5% Chebyshev (MVUE) UCL
 4369

 99% Chebyshev (MVUE) UCL
 5934
 4369

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL		2465	95% Jackknife UCL	2778
95% Standard Bootst	rap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap	UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap U	JCL	N/A		
90% Chebyshev(Mea	n, Sd) UCL	3064	95% Chebyshev(Mean, Sd) UCL	3664
97.5% Chebyshev(Mea	an, Sd) UCL	4498	99% Chebyshev(Mean, Sd) UCL	6136

Suggested UCL to Use

95% Student's-t UCL 2778

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 14:37

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	7360 Mean	20025
Maximum	37400 Median	17670
SD	14820 Std. Error of Mean	7410
Coefficient of Variation	0.74 Skewness	0.385

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.865 Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level
Lilliefors Test Statistic 0.291 Lilliefors GOF Test
5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 37463
 95% Adjusted-CLT UCL (Chen-1995)
 33735

 95% Modified-t UCL (Johnson-1978)
 37700

Gamma GOF Test

A-D Test Statistic 0.477 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.325 Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

2.195 k star (bias corrected MLE) 0.715 k hat (MLE) Theta hat (MLE) 9122 Theta star (bias corrected MLE) 27988 nu hat (MLE) 17.56 nu star (bias corrected) 5.724 MLE Mean (bias corrected) 20025 MLE Sd (bias corrected) 23674 Approximate Chi Square Value (0.05) 1.5 N/A Adjusted Level of Significance N/A Adjusted Chi Square Value

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50))
76391
95% Adjusted Gamma UCL (use when n<50)
N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.84 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.289 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 8.904 Mean of logged Data 9.66
Maximum of Logged Data 10.53 SD of logged Data 0.833

Assuming Lognormal Distribution

 95% H-UCL
 330609
 90% Chebyshev (MVUE) UCL
 43920

 95% Chebyshev (MVUE) UCL
 54715
 97.5% Chebyshev (MVUE) UCL
 69699

 99% Chebyshev (MVUE) UCL
 99131

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

32213	95% Jackknife UCL	37463
N/A	95% Bootstrap-t UCL	N/A
N/A	95% Percentile Bootstrap UCL	N/A
N/A		
42254	95% Chebyshev(Mean, Sd) UCL	52323
66299	99% Chebyshev(Mean, Sd) UCL	93751
	N/A N/A N/A 42254	N/A 95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A 42254 95% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 37463

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Date/Time of Computation 2/18/2015 14:37 From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	15.9 Mean	21,93
Maximum	29.7 Median	21.05
SD	6.96 Std. Error of Mean	3.48
Coefficient of Variation	0.317 Skewness	0.25

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.849 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level 0.295 Lilliefors GOF Test Lilliefors Test Statistic 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 30.11 95% Adjusted-CLT UCL (Chen-1995) 95% Student's-t UCL 28.11 95% Modified-t UCL (Johnson-1978) 30.19

Gamma GOF Test

A-D Test Statistic 0.494 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

0.329 Kolmogrov-Smirnoff Gamma GOF Test K-S Test Statistic

5% K-S Critical Value 0.395 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	13.17	k star (bias corrected MLE)	3.459
Theta hat (MLE)	1.665	Theta star (bias corrected MLE)	6.339
nu hat (MLE)	105.4	nu star (bias corrected)	27.67
MLE Mean (bias corrected)	21.93	MLE Sd (bias corrected)	11.79
		Approximate Chi Square Value (0.05)	16.67
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 36.39 95% Adjusted Gamma UCL (use when n<50)

Lognormal GOF Test

0.836 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.295 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Lognormal Statistics		
Minimum of Logged Data	2.766 Mean of logged Data	3.049
Maximum of Logged Data	3.391 SD of logged Data	0.321
Assuming Lognormal Distribution		
95% H-UCI	37.68 90% Chebyshey (MV/UE) UCI	32 39

43.71

95% Chebyshev (MVUE) UCL 37.13 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	27.65	95% Jackknife UCL	30.11
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	32.37	95% Chebyshev(Mean, Sd) UCL	37.09
97.5% Chebyshev(Mean, Sd) UCL	43.66	99% Chebyshev(Mean, Sd) UCL	56.55

Suggested UCL to Use

95% Student's-t UCL 30.11

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Jser	Se	lected	Options	
------	----	--------	---------	--

Number of Bootstrap Operations

Date/Time of Computation 2/18/2015 14:37 From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% 2000

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
Number of Detects	2	Number of Non-Detects	2
Number of Distinct Detects	2	Number of Distinct Non-Detects	2
Minimum Detect	3.51	Minimum Non-Detect	1.98
Maximum Detect	4.85	Maximum Non-Detect	1.99
Variance Detects	0.898	Percent Non-Detects	50%
Mean Detects	4.18	SD Detects	0.948
Median Detects	4.18	CV Detects	0.227
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	1.417	SD of Logged Detects	0.229

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test on Detects Only

Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	3.08 Standard Error of Mean	0.847
SD	1.198 95% KM (BCA) UCL	N/A
95% KM (t) UCL	5.073 95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	4.473 95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	5.621 95% KM Chebyshev UCL	6.772
97.5% KM Chebyshev UCL	8.369 99% KM Chebyshev UCL	11.51

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

Carrina Statistics on Detected Data Only			
k hat (MLE)	38.59	k star (bias corrected MLE)	N/A
Theta hat (MLE)	0.108	Theta star (bias corrected MLE)	N/A
nu hat (MLE)	154.3	nu star (bias corrected)	N/A
MLE Mean (bias corrected)	N/A	MLE Sd (bias corrected)	N/A

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	6.613 nu hat (KM)	52.91
	Adjusted Level of Significance (β)	0.00498
Approximate Chi Square Value (52.91, α)	37.2 Adjusted Chi Square Value (52.91, β)	30.15
95% Gamma Approximate KM-UCL (use when n>=50)	4.381 95% Gamma Adjusted KM-UCL (use when n<5	0) 5.405

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	2.992 Mean in Log Scale	1.004
SD in Original Scale	1.477 SD in Log Scale	0.496
95% t UCL (assumes normality of ROS data)	4.73 95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A 95% Bootstrap t UCL	N/A
95% H-11Ct /Log POS)	Q 721	

D) /2 (1-4:-4:-

DL/2 Statistics		
DL/2 Normal	DL/2 Log-Transformed	
Mean in Original Scale	2.586 Mean in Log Scale	0.705
SD in Original Scale	1.92 SD in Log Scale	0.833
95% t UCL (Assumes normality)	4.845 95% H-Stat UCL	42.74

 ${\tt DL/2}\ is\ not\ a\ recommended\ method, provided\ for\ comparisons\ and\ historical\ reasons$

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 5.073 95% KM (% Bootstrap) UCL N/A

Warning: One or more Recommended UCL(s) not available! Warning: Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Date/Time of Computation 2/18/2015 14:38 From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	2.46 Mean	10.07
Maximum	18.6 Median	9.615
SD	7.763 Std. Error of Mean	3.881
Coefficient of Variation	0.771 Skewness	0.158

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL $5.0\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.901 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.258 Lilliefors GOF Test 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Assuming Normal Distribution

Data appear Normal at 5% Significance Level

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 19.21 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)

Gamma GOF Test A-D Test Statistic 0.355 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.661 Detected data appear Gamma Distributed at 5% Significance Level 0.281 Kolmogrov-Smirnoff Gamma GOF Test

16.78

19.26

K-S Test Statistic

5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.812	k star (bias corrected MLE)	0.62
Theta hat (MLE)	5.558	Theta star (bias corrected MLE)	16.25
nu hat (MLE)	14.5	nu star (bias corrected)	4.958
MLE Mean (bias corrected)	10.07	MLE Sd (bias corrected)	12.79
		Approximate Chi Square Value (0.05)	1.133
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 44.08 95% Adjusted Gamma UCL (use when n<50)

Lognormal GOF Test

0.913 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Test Statistic 0.748 Data appear Lognormal at 5% Significance Level 5% Shapiro Wilk Critical Value 0.259 Lilliefors Lognormal GOF Test Lilliefors Test Statistic 5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

0.9 Mean of logged Data	2.009
2.923 SD of logged Data	0.956
401.9 90% Chebyshev (MVUE) UCL	24.09
	2.923 SD of logged Data

95% Chebyshev (MVUE) UCL 30.34 97.5% Chebyshev (MVUE) UCL 39.01 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	16.46	95% Jackknife UCL	19.21
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	21.72	95% Chebyshev(Mean, Sd) UCL	26.99
97.5% Chebyshev(Mean, Sd) UCL	34.31	99% Chebyshev(Mean, Sd) UCL	48.69

Suggested UCL to Use

95% Student's-t UCL 19.21

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/18/2015 14:38

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operation:
 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	92 Mean	191
Maximum	357 Median	157.5
SD	119.8 Std. Error of Mean	59.89
Coefficient of Variation	0.627 Skewness	1 22/

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshey UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.893 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value
Lilliefors Test Statistic
0.234 Lilliefors GOF Test
5% Lilliefors Critical Value
0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 331.9
 95% Adjusted-CLT UCL (Chen-1995)
 329

 95% Modified-t UCL (Johnson-1978)
 338.1

Gamma GOF Test

A-D Test Statistic 0.295 Anderson-Darling Gamma GOF Test

 5% A-D Critical Value
 0.659 Detected data appear Gamma Distributed at 5% Significance Level

 K-S Test Statistic
 0.26 Kolmogrov-Smirnoff Gamma GOF Test

 5% K-S Critical Value
 0.396 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 3.713 k star (bias corrected MLE) 1.095 Theta hat (MLE) 174.4 51.44 Theta star (bias corrected MLE) 8.759 nu hat (MLE) 29.7 nu star (bias corrected) MLE Mean (bias corrected) 191 MLE Sd (bias corrected) 182.5 Approximate Chi Square Value (0.05) 3.182 Adjusted Level of Significance Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 525.7 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.954 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.223 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 4.522 Mean of logged Data
 5.112

 Maximum of Logged Data
 5.878 SD of logged Data
 0.604

Assuming Lognormal Distribution

 95% H-UCL
 873
 90% Chebyshev (MVUE) UCL
 356.9

 95% Chebyshev (MVUE) UCL
 432.7
 97.5% Chebyshev (MVUE) UCL
 537.8

 99% Chebyshev (MVUE) UCL
 744.4

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 289.5 95% Jackknife UCL 331.9 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 370.7 95% Chebyshev(Mean, Sd) UCL 452.1 97.5% Chebyshev(Mean, Sd) UCL 565 99% Chebyshev(Mean, Sd) UCL 786.9

Suggested UCL to Use

95% Student's-t UCL 331.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

ProUCL calculations for Cr in sediment of the Animas River at Bakers Bridge below mainstem Mineral Creek

User Selected Options

Date/Time of Computation 3/2/2015 12:45 From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	4.28 Mean	5,403
Maximum	7.38 Median	4.975
SD	1.372 Std. Error of Mean	0.686
Coefficient of Variation	0.254 Skewness	1.554

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.864 Shapiro Wilk GOF Test 0.748 Data appear Normal at 5% Significance Level 5% Shapiro Wilk Critical Value 0.306 Lilliefors GOF Test Lilliefors Test Statistic 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 7.017 95% Adjusted-CLT UCL (Chen-1995) 7.1 95% Modified-t UCL (Johnson-1978) 7 106

Gamma GOF Test

0.387 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.291 Kolmogrov-SmirnoffGamma GOF Test 5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 22.87 k star (bias corrected MLE) 5.883 Theta hat (MLE) 0.236 Theta star (bias corrected MLE) 0.918 nu hat (MLF) 182.9 nu star (bias corrected) 47.07 2.227 MLE Mean (bias corrected) 5.403 MLE Sd (bias corrected) Approximate Chi Square Value (0.05) 32.32 Adjusted Level of Significance Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 7.867 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.906 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.274 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics Minimum of Logged Data

1.999 SD of logged Data Maximum of Logged Data 0.237 Assuming Lognormal Distribution 7.721 90% Chebyshev (MVUE) UCL 7 304

1.454 Mean of logged Data

1.665

95% H-UCL

95% Chebyshev (MVUE) UCL 8.168 97.5% Chebyshev (MVUE) UCL 9.368 99% Chebyshev (MVUE) UCL 11.72

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 6.531 95% Jackknife UCL 7.017 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 7.46 95% Chebyshev(Mean, Sd) UCL 8.393 97.5% Chebyshev(Mean, Sd) UCL 9.686 99% Chebyshev(Mean, Sd) UCL 12.23

Suggested UCL to Use

95% Student's-t UCL 7.017

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

2/23/2015 9:20 Date/Time of Computation From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	3 Number of Distinct Observations	3
	Number of Missing Observations	0
Minimum	0.02 Mean	0.041
Maximum	0.06 Median	0.043
SD	0.0201 Std. Error of Mean	0.0116
Coefficient of Variation	0.49 Skewness	-0 444

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.993 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.767 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.206 Lilliefors GOF Test

5% Lilliefors Critical Value 0.512 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 0.0748 95% Adjusted-CLT UCL (Chen-1995) 0.0569 95% Modified-t UCL (Johnson-1978) 0.0743

Gamma GOF Test

Not Enough Data to Perform GOF Test

Gamma Statistics k hat (MLE)

5.344 k star (bias corrected MLE) N/A Theta hat (MLE) 0.00767 Theta star (bias corrected MLE) N/A nu hat (MLE) 32.06 nu star (bias corrected) N/A MLE Mean (bias corrected) N/A MLE Sd (bias corrected) N/A Approximate Chi Square Value (0.05) N/A Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) N/A 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.951 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.767 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.268 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value $0.512\ \, {\rm Data\ appear\ Lognormal\ at\ 5\%\ Significance\ Level}$

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data -3.912 Mean of logged Data -3.291 Maximum of Logged Data -2.813 SD of logged Data 0.563

Assuming Lognormal Distribution

95% H-UCL 0.806 90% Chebyshev (MVUE) UCL 0.08 95% Chebyshev (MVUE) UCL 0.0976 97.5% Chebyshev (MVUE) UCL 0.122 99% Chebyshev (MVUE) UCL 0.17

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 0.0601 95% Jackknife UCL 0.0748 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A N/A 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 0.0758 95% Chebyshev(Mean, Sd) UCL 0.0915 97.5% Chebyshev(Mean, Sd) UCL 0.113 99% Chebyshev(Mean, Sd) UCL 0.156

Suggested UCL to Use

0.0748 95% Student's-t UCL

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positvely skewed data sets.

Date/Time of Computation 2/18/2015 14:38
From File WorkSheet.xls
Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operation: 2000

General Statistics

 Total Number of Observations
 4 Number of Distinct Observations Number of Missing Observations
 4 Number of Missing Observations
 4 Number of Missing Observations
 4 Number of Missing Observations
 9 Number of Missing Observations
 5 Number of Missing Observations
 28 Number of Missing Observations
 299.5

 Maximum
 32 Median
 288
 28
 28
 28
 25
 25
 25
 25
 25
 25
 26
 25
 25
 25
 25
 25
 25
 26
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 25
 <td

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.876 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value
Lilliefors Test Statistic
0.286 Lilliefors GOF Test
5% Lilliefors Critical Value
0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 376.1
 95% Adjusted-CLT UCL (Chen-1995)
 36.1.4

 95% Modified-t UCL (Johnson-1978)
 377.4

Gamma GOF Test

A-D Test Statistic 0.426 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.321 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 28.76 k star (bias corrected MLE) 7.356 Theta hat (MLE) 40.72 10.42 Theta star (bias corrected MLE) nu hat (MLE) 230.1 nu star (bias corrected) 58.85 MLE Mean (bias corrected) 299.5 MLE Sd (bias corrected) 110.4 Approximate Chi Square Value (0.05) 42.21 Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n<=50)) 417.6 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.871 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.287 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

5% Lilliefors Critical value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

buta appear Eognormal at 5% Significance E

Lognormal Statistics
Minimum of Logged Data 5.497 Mean of logged Data 5.685
Maximum of Logged Data 5.935 SD of logged Data 0.215

Assuming Lognormal Distribution

 95% H-UCL
 411.2
 90% Chebyshev (MVUE) UCL
 395.7

 95% Chebyshev (MVUE) UCL
 439.3
 97.5% Chebyshev (MVUE) UCL
 499.9

 99% Chebyshev (MVUE) UCL
 618.8
 499.9

33% direbysitet (involvoel

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

Nonparametric Distribution Free UCL Statistics

95% CLT UCL 353 95% Jackknife UCL 376.1 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 397.1 95% Chebyshev(Mean, Sd) UCL 441.3 97.5% Chebyshev(Mean, Sd) UCL 502.7 99% Chebyshev(Mean, Sd) UCL 623.3

Suggested UCL to Use

95% Student's-t UCL 376.1

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

2/18/2015 14:38 Date/Time of Computation From File WorkSheet.xls Full Precision Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	2130 Mean	7425
Maximum	13100 Median	7235
SD	5216 Std. Error of Mean	2608
Coefficient of Variation	0.703 Skewness	0.104

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.913 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.246 Lilliefors GOF Test 5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 13563 95% Adjusted-CLT UCL (Chen-1995) 11860 95% Modified-t UCL (Johnson-1978) 13586

Gamma GOF Test A-D Test Statistic

0.336 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance Level

0.279 Kolmogrov-Smirnoff Gamma GOF Test K-S Test Statistic

5% K-S Critical Value 0.398 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

2.235 k star (bias corrected MLE) 0.725 k hat (MLE) Theta hat (MLE) 3323 Theta star (bias corrected MLE) 10237 nu hat (MLE) 17.88 nu star (bias corrected) 5.803 MLE Mean (bias corrected) 7425 MLE Sd (bias corrected) 8718 Approximate Chi Square Value (0.05) 1.54 N/A Adjusted Level of Significance N/A Adjusted Chi Square Value

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 27980 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

0.921 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.255 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 7.664 Mean of logged Data 8.672 Maximum of Logged Data 9.48 SD of logged Data 0.849

Assuming Lognormal Distribution

138250 90% Chebyshev (MVUE) UCL 16668 95% H-UCL 95% Chebyshev (MVUE) UCL 20798 97.5% Chebyshev (MVUE) UCL 26529 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 95% Jackknife UCL 13563 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 15250 95% Chebyshev(Mean, Sd) UCL 18794 97.5% Chebyshev(Mean, Sd) UCL 23713 99% Chebyshev (Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 13563

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

2/18/2015 14:38 Date/Time of Computation From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	7.36 Mean	18.27
Maximum	31.6 Median	17.05
SD	10.78 Std. Error of Mean	5.391
Coefficient of Variation	0.59 Skewness	0.475

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.962 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level Lilliefors Test Statistic 0.216 Lilliefors GOF Test 0.443 Data appear Normal at 5% Significance Level 5% Lilliefors Critical Value

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 30.95 95% Adjusted-CLT UCL (Chen-1995) 28.5 95% Modified-t UCL (Johnson-1978) 31.16

Gamma GOF Test

0.232 Anderson-Darling Gamma GOF Test A-D Test Statistic

5% A-D Critical Value 0.659 Detected data appear Gamma Distributed at 5% Significance Level 0.207 Kolmogrov-Smirnoff Gamma GOF Test 5% K-S Critical Value 0.396 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

Gairina Statistics			
k hat (MLE)	3.568	k star (bias corrected MLE)	1.059
Theta hat (MLE)	5.119	Theta star (bias corrected MLE)	17.25
nu hat (MLE)	28.55	nu star (bias corrected)	8.47
MLE Mean (bias corrected)	18.27	MLE Sd (bias corrected)	17.75
		Approximate Chi Square Value (0.05)	3.01
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 51.4 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.975 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value

0.748 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.197 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value

0.443 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 1.996 Mean of logged Data 2.758 Maximum of Logged Data 3.453 SD of logged Data 0.644

Assuming Lognormal Distribution

95% H-UCL 102.2 90% Chebyshev (MVUE) UCL 35.53 95% Chebyshev (MVUE) UCL 43.31 97.5% Chebyshev (MVUE) UCL 54.12 99% Chebyshev (MVUE) UCL

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

27.13	95% Jackknife UCL	30.95
N/A	95% Bootstrap-t UCL	N/A
N/A	95% Percentile Bootstrap UCL	N/A
N/A		
34.44	95% Chebyshev(Mean, Sd) UCL	41.76
51.93	99% Chebyshev(Mean, Sd) UCL	71.9
	N/A N/A N/A 34.44	N/A 95% Bootstrap-t UCL N/A 95% Percentile Bootstrap UCL N/A 34.44 95% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

30.95 95% Student's-t UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

Number of Bootstrap Operations

 Date/Time of Computation
 2/18/2015 14:38

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

General Statistics

Total Number of Observations	4 Number of Distinct Observations	4
	Number of Missing Observations	0
Minimum	1.02 Mean	1.285
Maximum	1.71 Median	1.205
SD	0.314 Std. Error of Mean	0.157
Coefficient of Variation	0.244 Skewness	1.074

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012).

2000

Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test

Shapiro Wilk Test Statistic 0.903 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.243 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 1.654
 95% Adjusted-CLT UCL (Chen-1995)
 1.633

 95% Modified-t UCL (Johnson-1978)
 1.668

Gamma GOF Test

A-D Test Statistic 0.33 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.657 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.275 Kolmogrov-SmirnoffGamma GOF Test

5% K-S Critical Value 0.394 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	23.81	k star (bias corrected MLE)	6.118
Theta hat (MLE)	0.054	Theta star (bias corrected MLE)	0.21
nu hat (MLE)	190.5	nu star (bias corrected)	48.95
MLE Mean (bias corrected)	1.285	MLE Sd (bias corrected)	0.52
		Approximate Chi Square Value (0.05)	33.89
Adjusted Level of Significance	N/A	Adjusted Chi Square Value	N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 1.856 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.924 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.243 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.0198 Mean of logged Data 0.234
Maximum of Logged Data 0.536 SD of logged Data 0.234

Assuming Lognormal Distribution

 95% H-UCL
 1.829
 90% Chebyshev (MVUE) UCL
 1.733

 95% Chebyshev (MVUE) UCL
 1.937
 97.5% Chebyshev (MVUE) UCL
 2.219

 99% Chebyshev (MVUE) UCL
 2.774

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	1.543	95% Jackknife UCL	1.654
95% Standard Bootstrap UCL	N/A	95% Bootstrap-t UCL	N/A
95% Hall's Bootstrap UCL	N/A	95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A		
90% Chebyshev(Mean, Sd) UCL	1.755	95% Chebyshev(Mean, Sd) UCL	1.968
97.5% Chebyshev(Mean, Sd) UCL	2.264	99% Chebyshev(Mean, Sd) UCL	2.845

Suggested UCL to Use

95% Student's-t UCL 1.654

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

ProUCL calculations for Se in sediment of the Animas River at Bakers Bridge below mainstem Mineral Creek

User Selected Options

Number of Bootstrap Operations

Date/Time of Computation 2/18/2015 14:38 From File WorkSheet.xls **Full Precision** OFF Confidence Coefficient 95% 2000

General Statistics

Total Number of Observations	4	Number of Distinct Observations	4
Number of Detects	2	Number of Non-Detects	2
Number of Distinct Detects	2	Number of Distinct Non-Detects	2
Minimum Detect	1.16	Minimum Non-Detect	0.496
Maximum Detect	3.1	Maximum Non-Detect	0.997
Variance Detects	1.882	Percent Non-Detects	50%
Mean Detects	2.13	SD Detects	1.372
Median Detects	2.13	CV Detects	0.644
Skewness Detects	N/A	Kurtosis Detects	N/A
Mean of Logged Detects	0.64	SD of Logged Detects	0.695

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0 $\,$

Normal GOF Test on Detects Only Not Enough Data to Perform GOF Test

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

Mean	1.313 Standard Error of Mean	0.754
SD	1.067 95% KM (BCA) UCL	N/A
95% KM (t) UCL	3.088 95% KM (Percentile Bootstrap) UCL	N/A
95% KM (z) UCL	2.554 95% KM Bootstrap t UCL	N/A
90% KM Chebyshev UCL	3.576 95% KM Chebyshev UCL	4.601
97.5% KM Chebyshev UCL	6.024 99% KM Chebyshev UCL	8.818

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

k hat (MLE) 4.4	62 k star (bias corrected MLE)	N/A
Theta hat (MLE) 0.4	77 Theta star (bias corrected MLE)	N/A
nu hat (MLE) 17	85 nu star (bias corrected)	N/A
MLE Mean (bias corrected) N/A	MLE Sd (bias corrected)	N/A

Gamma Kaplan-Meier (KM) Statistics

k hat (KM)	1.515 nu hat (KM)	12.12
	Adjusted Level of Significance (β)	0.00498
Approximate Chi Square Value (12.12, α)	5.306 Adjusted Chi Square Value (12.12, β)	3.132
95% Gamma Approximate KM-UCL (use when n>=50)	2.999 95% Gamma Adjusted KM-UCL (use when n<50)	5.08

Lognormal GOF Test on Detected Observations Only

Not Enough Data to Perform GOF Test

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	1.142 Mean in Log Scale	-0.618
SD in Original Scale	1.389 SD in Log Scale	1.507
95% t UCL (assumes normality of ROS data)	2.776 95% Percentile Bootstrap UCL	N/A
95% BCA Bootstrap UCL	N/A 95% Bootstrap t UCL	N/A
95% H-UCL (Log ROS)	9381	

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed	
Mean in Original Scale	1.252 Mean in Log Scale	-0.203
SD in Original Scale	1.291 SD in Log Scale	1.09
95% t UCL (Assumes normality)	2.771 95% H-Stat UCL	141.3

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 3.088 95% KM (% Bootstrap) UCL	N/A

Warning: One or more Recommended UCL(s) not available!

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

 Date/Time of Computation
 2/19/2015 11:31

 From File
 WorkSheet_e.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

Confidence Coefficient 95% Number of Bootstrap Operations 2000

General Statistics

 Total Number of Observations
 4 Number of Distinct Observations Number of Missing Observations
 4 Number of Missing Observations
 4 October Missing Obs

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 0.891 Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.277 Lilliefors GOF Test

5% Lilliefors Critical Value 0.443 Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 8544
 95% Adjusted-CLT UCL (Chen-1995)
 7810

 95% Modified-t UCL (Johnson-1978)
 8614

Gamma GOF Test

A-D Test Statistic 0.397 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.66 Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.304 Kolmogrov-SmirnoffGamma GOF Test

5% K-S Critical Value 0.397 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 2.371 k star (bias corrected MLE) 0.759 Theta hat (MLF) 1949 Theta star (bias corrected MLE) 6084 18.97 nu star (bias corrected) 6.075 nu hat (MLE) MLE Mean (bias corrected) 5302 4620 MLE Sd (bias corrected) Approximate Chi Square Value (0.05) 1.678 Adjusted Level of Significance N/A Adjusted Chi Square Value N/A

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 16724 95% Adjusted Gamma UCL (use when n<50) N/A

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.887 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.748 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.264 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.443 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

 Minimum of Logged Data
 7.438 Mean of logged Data
 8.213

 Maximum of Logged Data
 9.068 SD of logged Data
 0.796

Assuming Lognormal Distribution

 95% H-UCL
 60185
 90% Chebyshev (MVUE) UCL
 9897

 95% Chebyshev (MVUE) UCL
 12284
 97.5% Chebyshev (MVUE) UCL
 15597

99% Chebyshev (MVUE) UCL 22105

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

7363 95% Jackknife UCL 8544 95% CLT UCL 95% Standard Bootstrap UCL N/A 95% Bootstrap-t UCL N/A 95% Hall's Bootstrap UCL N/A 95% Percentile Bootstrap UCL N/A 95% BCA Bootstrap UCL N/A 90% Chebyshev(Mean, Sd) UCL 9623 95% Chebyshev(Mean, Sd) UCL 11889 97.5% Chebyshev(Mean, Sd) UCL 15034 99% Chebyshev(Mean, Sd) UCL 21212

Suggested UCL to Use

95% Student's-t UCL 8544

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets. For additional insight the user may want to consult a statistician.

ProUCL calculations for dissolved Al in pore water from the Animas River above the confluence with mainstem Cement Creek

ProUCL calculations for dissolv	ed Al in pore water fron	n the Anim	as River above the confluence with mainstem Cem	ent Creel
User Selected Options				
	3/5/2015 14:28			
	WorkSheet.xls			
	DFF			
Confidence Coefficient	95%			
Number of Bootstrap Operation:	2000			
General Statistics				
Total Number of Observations			Number of Distinct Observations	9
Number of Detects			Number of Non-Detects	3
Number of Distinct Detects			Number of Distinct Non-Detects	1
Minimum Detect			Mínimum Non-Detect	20
Maximum Detect			Maximum Non-Detect Percent Non-Detects	27.27%
Variance Detects Mean Detects			SD Detects	21.27%
Median Detects			CV Detects	1.72
Skewness Detects			Kurtosis Detects	4.375
Mean of Logged Detects			SD of Logged Detects	2.069
Normal GOF Test on Detects Only				
Shapiro Wilk Test Statistic			Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value			Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic 5% Lilliefors Critical Value			Lilliefors GOF Test Detected Data Not Normal at 5% Significance Level	
ว% เมษากร Critical Value Detected Data Not Normal at 5% !	Significance Level	0.515	Detected Data Not Normal at 5% Significance Level	
Kaplan-Meier (KM) Statistics using	Normal Critical Values an	d other Nor	parametric UCLs	
Mean			Standard Error of Mean	584.3
SD			95% KM (BCA) UCL	2035
95% KM (t) UCL		1980		1989
95% KM (z) UCL			95% KM Bootstrap t UCL	7837
90% KM Chebyshev UCL			95% KM Chebyshev UCL	3468
97.5% KM Chebyshev UCL		4570	99% KM Chebyshev UCL	6735
Gamma GOF Tests on Detected Of	oservations Only	0.450	Anderson Parling GOE Test	
A-D Test Statistic 5% A-D Critical Value			Anderson-Darling GOF Test Detected data appear Gamma Distributed at 5% Signific	canco!
K-S Test Statistic			Kolmogrov-Smirnoff GOF	carrod EBV6
5% K-S Critical Value			Detected data appear Gamma Distributed at 5% Signific	cance Leve
Detected data appear Gamma Dis	tributed at 5% Significance			
Gamma Statistics on Detected Dat	a Only	0.443	Land (Comments 184) 5	0.244
k hat (MLE) Thota hat (MLE)			k star (bias corrected MLE)	0.341 3689
Theta hat (MLE) nu hat (MLE)			Theta star (bias corrected MLE) nu star (bias corrected)	5.461
MLE Mean (bias corrected)			MLE Sd (bias corrected)	2155
Gamma Kaplan-Meier (KM) Statist	tics			
k hat (KM)	1		nu hat (KM)	5.679
Approximate Chi Square Value (5. 95% Gamma Approximate KM-UC			Adjusted Chi Square Value (5.68, β) 95% Gamma Adjusted KM-UCL (use when n<50)	1.159 4514
Gamma ROS Statistics using Imput GROS may not be used when data GROS may not be used when ksta	set has > 50% NDs with m r of detected data is small :	such as < 0.	1	
For such situations, GROS method				
	lata, BTVs and UCLs may be		I using gamma distribution on KM estimates	015.6
Minimum Maximum			Mean Median	915.6 42.8
SD		1904		2.08
k hat (MLE)			k star (bias corrected MLE)	0.195
Theta hat (MLE)			Theta star (bias corrected MLE)	4700
nu hat (MLE)		4.06	nu star (bias corrected)	4.286
MLE Mean (bias corrected)		915.6	MLE Sd (bias corrected)	2074
	1		Adjusted Level of Significance (β)	0.0278
Approximate Chi Square Value (4.			Adjusted Chi Square Value (4.29, β)	0.623
95% Gamma Approximate UCL (us		4684	95% Gamma Adjusted UCL (use when n<50)	6297
Lognormal GOF Test on Detected	Observations Only		el : Well cost :	
Shapiro Wilk Test Statistic			Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value			Detected Data appear Lognormal at 5% Significance Lev	vel
Lilliefors Test Statistic 5% Lilliefors Critical Value			Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Lev	vel
Detected Data appear Lognormal	at 5% Significance Level			
Lognormal ROS Statistics Using Im	puted Non-Detects	01.5 1	Many in Law Crafe	* ***
Mean in Original Scale			Mean in Log Scale SD in Log Scale	4.109 3.059
SD in Original Scale 95% t UCL (assumes normality o	f ROS data)		95% Percentile Bootstrap UCL	1966
95% BCA Bootstrap UCL		2394		7860
95% H-UCL (Log ROS)		10504481		
UCLs using Lognormal Distribution	and KM Estimates when f	Detected da	ata are Lognormally Distributed	
KM Mean (logged)		4.855	95% H-UCL (KM -Log)	25280
KM SD (logged) KM Standard Error of Mean (logge	ed)	2.005 0.646		5.165
DL/2 Statistics				
DL/2 Normal			DL/2 Log-Transformed	
Mean in Original Scale			Mean in Log Scale	4.666
SD in Original Scale			SD in Log Scale	2.302
95% t UCL (Assumes normality)	ad provide de-		95% H-Stat UCL	106111
DL/2 is not a recommended meth	υα, μτυνιαθα for compariso	uris and nist	onicai reaSONS	
Nonparametric Distribution Free U				
Detected Data appear Gamma Dis	tributed at 5% Significance	e Level		

Suggested UCL to Use 95% KM (Chebyshev) UCL 95% Adjusted Gamma KM-UCL Warning: Recommended UCL exceeds the maximum observation 3468 95% GROS Adjusted Gamma UCL 4514

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL calculations for disso	lved Cd in pore water from	the Anii	mas River above the confluence with mainstem (Cement Cree
User Selected Options				
Date/Time of Computation	3/5/2015 14:28			
From File	WorkSheet.xls			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	5 2000			
General Statistics				
Total Number of Observations		11	Number of Distinct Observations	11
Total Number of Observations		11	Number of Missing Observations	0
Minimum		0.270		NAME OF TAXABLE PARTY.
Minimum			Mean	23,58
Maximum			Median	1.67
SD Confficient of Manietien			Std. Error of Mean	12.15
Coefficient of Variation		1.708	Skewness	1.752
Normal GOF Test				
Shapiro Wilk Test Statistic			Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value			Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic			Lilliefors GOF Test	
5% Lilliefors Critical Value		0.267	Data Not Normal at 5% Significance Level	
Data Not Normal at 5% Significar	nce Level			
Assuming Normal Distribution				
95% Normal UCL			95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL		45.6	95% Adjusted-CLT UCL (Chen-1995)	50.42
			95% Modified-t UCL (Johnson-1978)	46.67
Gamma GOF Test				
A-D Test Statistic		0.806	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		0.809	Detected data appear Gamma Distributed at 5% Sign	ificance Level
K-S Test Statistic		0.245	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value		0.274	Detected data appear Gamma Distributed at 5% Sign	ificance Level
Detected data appear Gamma Di	istributed at 5% Significance Le	evel		
Gamma Statistics				
k hat (MLE)		0.357	k star (bias corrected MLE)	0.32
Theta hat (MLE)		66.14	Theta star (bias corrected MLE)	73.72
nu hat (MLE)		7.844	nu star (bias corrected)	7.038
MLE Mean (bias corrected)		23.58	MLE Sd (bias corrected)	41.7
			Approximate Chi Square Value (0.05)	2.192
Adjusted Level of Significance		0.0278	Adjusted Chi Square Value	1.778
Assuming Gamma Distribution				
95% Approximate Gamma UCL	(use when n>=50)	75.74	95% Adjusted Gamma UCL (use when n<50)	93.35
Lognormal GOF Test				
Shapiro Wilk Test Statistic		0.891	. Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value			Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic			Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value			Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Sig	znificance Level			
11 0	,			
Lognormal Statistics				
Minimum of Logged Data		-1.277	Mean of logged Data	1.28
Maximum of Logged Data			SD of logged Data	2.232
Assuming Lognormal Distribution	1			
95% H-UCL	•	2400	90% Chebyshev (MVUE) UCL	78.75
95% Chebyshev (MVUE) UCL			97.5% Chebyshev (MVUE) UCL	136.4
99% Chebyshev (MVUE) UCL		202.2	, , ,	130.4
שליים ליים ליים ליים ליים ליים ליים ליים		202.2		
Nonparametric Distribution Free	LICI Statistics			
Data appear to follow a Discernil		nce l evel		
Data appear to follow a Discernii	ore production at 370 digititle	LEVEI		
Nonparametric Distribution Free	HCIs			
95% CLT UCL		42 56	95% Jackknife UCL	45.6
95% Standard Bootstrap UCL		42.7		110.9
95% Standard Bootstrap CCL		142./	•	110.5

Nonparametric bistribation (Tee Octs			
95% CLT UCL	43.56	95% Jackknife UCL	45.6
95% Standard Bootstrap UCL	42.7	95% Bootstrap-t UCL	110.9
95% Hall's Bootstrap UCL	147.4	95% Percentile Bootstrap UCL	42.46
95% BCA Bootstrap UCL	50.92		
90% Chebyshev (Mean, Sd) UCL	60.02	95% Chebyshev(Mean, Sd) UCL	76.53
97.5% Chebyshev(Mean, Sd) UCL	99.44	99% Chebyshev (Mean, Sd) UCL	144.4

Suggested UCL to Use

95% Adjusted Gamma UCL 93.35

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

ProUCL calculations for dissolved Cu in pore water from the Animas River above the confluence with mainstem Cement Cree

User Selected Options				
Date/Time of Computation	3/5/2015 14:28			
From File	WorkSheet.xls			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
General Statistics				
Total Number of Observations		11	Number of Distinct Observations Number of Missing Observations	11 0
Minimum		1 27	Mean	223.9
Maximum			Median	3.46
SD			Std. Error of Mean	202.8
Coefficient of Variation			Skewness	3.304
Normal GOF Test				
Shapiro Wilk Test Statistic		0.379	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value			Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic			Lilliefors GOF Test	
5% Lilliefors Critical Value			Data Not Normal at 5% Significance Level	
Data Not Normal at 5% Significar	nce Level			
Assuming Normal Distribution				
95% Normal UCL			95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL		591.5	95% Adjusted-CLT UCL (Chen-1995)	773.4
			95% Modified-t UCL (Johnson-1978)	625.2
Gamma GOF Test				
A-D Test Statistic		1.64	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value			Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic			Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value			Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5	5% Significance Level			
Gamma Statistics				
k hat (MLE)		0.231	k star (bias corrected MLE)	0.229
Theta hat (MLE)			Theta star (bias corrected MLE)	979.2
nu hat (MLE)			nu star (bias corrected)	5.031
MLE Mean (bias corrected)			MLE Sd (bias corrected)	468.2
,			Approximate Chi Square Value (0.05)	1.167
Adjusted Level of Significance		0.0278	Adjusted Chi Square Value	0.895
Assuming Gamma Distribution				
95% Approximate Gamma UCL	(use when n>=50))	965.7	95% Adjusted Gamma UCL (use when n<50)	1259
Lognormal GOF Test				
Shapiro Wilk Test Statistic		0.82	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value			Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic			Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value			Data Not Lognormal at 5% Significance Level	
Data Not Lognormal at 5% Signifi	cance Level			
Lognormal Statistics				
Minimum of Logged Data		0.239	Mean of logged Data	2.299
Maximum of Logged Data		7.719	SD of logged Data	2.412
Assuming Lognormal Distribution	1			
95% H-UCL		19254	90% Chebyshev (MVUE) UCL	302.3
95% Chebyshev (MVUE) UCL		396.6	97.5% Chebyshev (MVUE) UCL	527.6
99% Chebyshev (MVUE) UCL		784.8		
Nonparametric Distribution Free Data do not follow a Discernible				
Nonparametric Distribution Free	UCLs		07077 11 15 1101	
95% CLT UCL		557.5		591.5
95% Standard Bootstrap UCL			95% Bootstrap-t UCL	7505
95% Hall's Bootstrap UCL			95% Percentile Bootstrap UCL	628.4
95% BCA Bootstrap UCL		833.1		,
90% Chebyshev(Mean, Sd) UCL		832.4		1108
97.5% Chebyshev(Mean, Sd) UCI	L	1491	99% Chebyshev(Mean, Sd) UCL	2242

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

2242

Suggested UCL to Use 99% Chebyshev (Mean, Sd) UCL

User Selected Options				
Date/Time of Computation	3/5/2015 14:29			
From File	WorkSheet.xls			
Full Precision	OFF			
Confidence Coefficient Number of Bootstrap Operation	95% s 2000			
General Statistics				
Total Number of Observations			Number of Distinct Observations	8
Number of Detects			Number of Non-Detects	
Number of Distinct Detects			Number of Distinct Non-Detects Minimum Non-Detect	0.1
Minimum Detect Maximum Detect			Maximum Non-Detect	0.5
Variance Detects			Percent Non-Detects	45,45%
Mean Detects		13.66	SD Detects	25.93
Median Detects		1.29	CV Detects	1.9
Skewness Detects Mean of Logged Detects			Kurtosis Detects SD of Logged Detects	5.155 2.418
Normal GOF Test on Detects On	hu			
Shapiro Wilk Test Statistic			Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value			Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic			Lilliefors GOF Test	
5% Lilliefors Critical Value Detected Data appear Approxim	nate Normal at 5% Significa		Detected Data appear Normal at 5% Significance Level	
Kaplan-Meier (KM) Statistics usi	ng Normal Critical Values a			
Mean			Standard Error of Mean	6.19
SD			95% KM (BCA) UCL	18.3 19.2
95% KM (t) UCL 95% KM (z) UCL			: 95% KM (Percentile Bootstrap) UCL : 95% KM Bootstrap t UCL	19.2 194.
90% KM Chebyshev UCL			95% KM Chebyshev UCL	34.
97.5% KM Chebyshev UCL			99% KM Chebyshev UCL	69.13
Gamma GOF Tests on Detected	Observations Only			
A-D Test Statistic			Anderson-Darling GOF Test	
5% A-D Critical Value K-S Test Statistic			! Detected data appear Gamma Distributed at 5% Significa: ! Kolmogrov-Smirnoff GOF	nce Leve
5% K-S Critical Value			Detected data appear Gamma Distributed at 5% Significa	ace Leve
Detected data appear Gamma D	istributed at 5% Significand			
Gamma Statistics on Detected D	lata Only			
k hat (MLE)			k star (bias corrected MLE)	0.27
Theta hat (MLE)			. Theta star (bias corrected MLE)	49.1 3.33
nu hat (MLE) MLE Mean (bias corrected)			' nu star (bias corrected) i MLE Sd (bias corrected)	25.9
Gamma Kaplan-Meier (KM) Stat	istics			
k hat (KM)			inu hat (KM)	3.51
Approximate Chi Square Value (95% Gamma Approximate KM			. Adjusted Chi Square Value (3.52, β) i 95% Gamma Adjusted KM-UCL (use when n<50)	0.38 68.0
Gamma ROS Statistics using Imp	outed Non-Detects			
GROS may not be used when da				
GROS may not be used when ks				
For such situations, GROS metho				
ror gamma distributed detected Minimum	rdata, BTVs and UCLs may		using gamma distribution on KM estimates . Mean	7.45
Maximum			Median	0.12
SD		19.69		2.64
(+ (* e) E)			k star (bias corrected MLE)	0.20
K nat (MLE)				
		0.195 38.21	. Theta star (bias corrected MLE)	
Theta hat (MLE) nu hat (MLE)		0.195 38.21 4.293	Theta star (bias corrected MLE) nu star (bias corrected)	36.8 4.45
Theta hat (MLE) nu hat (MLE)		0.195 38.21 4.293	. Theta star (bìas corrected MLE) inu star (bias corrected) i MLE Sd (bias corrected)	36.8 4.45 16.5
Theta hat (MLE) nu hat (MLE) MLE Mean (bìas corrected)	4.45 - 3	0.195 38.21 4.293 7.455	Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β)	36.8 4.45 16.5 0.027
Theta hat (MLE) nu hat (MLE) MLE Mean (bìas corrected)		0.195 38.21 4.293 7.455 0.909	. Theta star (bìas corrected MLE) inu star (bias corrected) i MLE Sd (bias corrected)	36.8 4.45 16.5 0.027 0.68
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (- 95% Gamma Approximate UCI Lognormal GOF Test on Detecte	(use when n>=50)	0.195 38.21 4.293 7.455 0.909	Theta star (bias corrected MLE) in u star (bias corrected) MLE Sd (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (4.46, β)	36.8 4.45 16.5 0.027 0.68
Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (- 95% Gamma Approximate UCI Lognormal GOF Test on Detecte	(use when n>=50)	0.195 38.21 4.293 7.455 0.909 36.53	Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test	36.8 4.45 16.5 0.027 0.68 48.7
Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (- 95% Gamma Approximate UCI Lognormal GOF Test on Detects Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	(use when n>=50)	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788	Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level	36.8 4.45 16.5 0.027 0.68 48.7
Intea har (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UCI Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic Lifter own of the Child Child Child Child Lifter of Set Statistic	(use when n>=50)	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted to Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lillielors GOF Test	36.8 4.45: 16.5 0.027: 0.68: 48.7
Theta har (MLE) uu hat (MLE) uu hat (MLE) Approximate Chi Square Value { 95% Gamma Approximate UCI Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic 3% Shapiro Wilk Critical Value Lilliefors Test Statistic 3% Lilliefors Critical Value	. (use when n>=50) d Observations Only	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179	Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level	36.8 4.45: 16.5 0.027: 0.68: 48.7
Theta har (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UC Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognorm.	. (use when n>=50) d Observations Only al at 5% Significance Level	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted to Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lillielors GOF Test	36.8 4.45: 16.5 0.027: 0.68: 48.7
Theta har (MLE) ru har (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (- 95% Gamma Approximate UCI Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic Siliefors Test Statistic Lilliefors Critical Value Lognormal ROS Statistics Using (. (use when n>=50) d Observations Only al at 5% Significance Level	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179 0.362	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted to Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lillielors GOF Test	36.8 4.45; 16.5 0.027; 0.68 48.7
Theta har (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UL Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognorm: Lognormal ROS Statistics Using I Mean in Original Scale 50 in Original Scale	(use when n>=50) d Observations Only al at 5% Significance Level imputed Non-Detects	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179 0.362 7.454 19.69	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Uilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SO in Log Scale	36.8 4.45; 16.5 0.027; 0.68 48.7;
Ineta har (MLE) ru har (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (- 95% Gamma Approximate UCI Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Liliefors Test Statistic Liliefors Test Statistic Mulliefors Test Statistic Lognormal ROS Statistics Using I Mean in Original Scale 50% t UCI, Lassumes normality 4 statistic Lassumes normality	(use when n>=50) d Observations Only al at 5% Significance Level imputed Non-Detects	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179 0.362 7.454 19.696 18.21	Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale 50 in Log Scale	36.8 4.45; 16.5 0.027; 0.68; 48.7; -2.2; 3.83; 18.3;
Theta har (MLE) ut hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UCI .ognormal GOF Test on Detecte shapiro Wilk Test Statistic 3% Shapiro Wilk Critical Value .illiefors Test Statistic 3% Lilliefors Critical Value .ognormal ROS Statistics Using I Wean in Original Scale 50 in Original Scale	(use when n>=50) d Observations Only al at 5% Significance Level imputed Non-Detects	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179 0.362 7.454 19.69	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale 50 in Log Scale 95% Peorstrapt UCL 95% Bootstrapt UCL	36.8 4.45; 16.5 0.027; 0.68; 48.7; -2.2; 3.83; 18.3;
Intea har (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UCI Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognormi. Lognormal ROS Statistics Using I Mean in Original Scale 95% t UCI (assumes normality 95% BCA Bootstrap UCI. 95% H-UCI (Log ROS)	. (use when n=50) d Observations Only al at 5% Significance Level imputed Non-Detects of ROS data)	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179 0.362 7.454 19.69 18.21 25.51	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Level of Significance (β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale 50 in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	36.8 4.45; 16.5 0.027; 0.68; 48.7; -2.2; 3.83; 18.3;
Theta har (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UCI Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Detected Data appear Lognorma Lognormal ROS Statistics Using I Mean in Original Scale 50 in Original Scale 95% tOL (assumes normality 95% BCA Bootstrap UCI 95% H-UCI (Log ROS) UCI.s using Lognormal Distributi	. (use when n=50) d Observations Only al at 5% Significance Level imputed Non-Detects of ROS data)	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179 0.362 7.454 19.69 18.21 25.51	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (4.46, β) - 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOFTest Detected Data appear Lognormal at 5% Significance Level Lillilefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale SD in Log Scale SP5% Bootstrap t UCL - 95% Bootstrap t UCL	36.8 4.45: 16.5 0.027: 0.68 48.7 -2.2: 3.83: 18.3: 24
Theta har (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UCL Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognorma Lognormal ROS Statistics Using I Moan in Original Scale 95% t UCL (assumes normality 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distributi KM Mean (logged)	(use when n>=50) d Observations Only al at 5% Significance Level imputed Non-Detects of ROS data) on and KM Estimates wher	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179 0.362 7.454 19.69 18.212 25.51 16469143 0 Detected dat -0.713 2.162	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Cliv Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale SD in Log Scale SD in Log Scale SD S% Percentile Bootstrap UCL 95% Bootstrap t UCL a are Lognormally Distributed 95% HUCL (KM-Log) 95% Critical H Value (KM-Log)	36.8 4.45: 16.5 0.027 0.68: 48.7 -2.22 3.83 18.3 24
Intea har (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UCL Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value S% Lilliefors Critical Value S% Lilliefors Critical Value United Statistics Using I Mean in Original Scale 95% HUC (Log ROS) UCLs using Lognormal Distributi KM Mean (logged) KM SD (logged) KM SD (logged) KM SD (logged) KM Standard Error of Mean (log	(use when n>=50) d Observations Only al at 5% Significance Level imputed Non-Detects of ROS data) on and KM Estimates wher	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179 0.362 7.454 1.969 18.21 2.5.51 164691143	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Cliv Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale SD in Log Scale SD in Log Scale SD S% Percentile Bootstrap UCL 95% Bootstrap t UCL a are Lognormally Distributed 95% HUCL (KM-Log) 95% Critical H Value (KM-Log)	36.8 4.45 16.5 0.027 0.68 48.7
Theta har (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UCL Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognorma Lognormal ROS Statistics Using I Mean in Original Scale SDi no riginal Scale 95% t UCL (assumes normality 95% BCA Bootstrap UCL	(use when n>=50) d Observations Only al at 5% Significance Level imputed Non-Detects of ROS data) on and KM Estimates wher	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179 0.362 7.454 19.69 18.212 25.51 16469143 0 Detected dat -0.713 2.162	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Cliv Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale SD in Log Scale SD in Log Scale SD S% Percentile Bootstrap UCL 95% Bootstrap t UCL a are Lognormally Distributed 95% HUCL (KM-Log) 95% Critical H Value (KM-Log)	36.8 4.45 16.5 0.027 0.68 48.7
Theta har (MLE) nu hat (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UCI Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic S% Shapiro Wilk Critical Value Lilliefors Test Statistic S% Lilliefors Critical Value Detected Data appear Lognorma. Lognormal ROS Statistics Using I Mean in Original Scale 95% HUCI, Gassumes normality 95% BCA Bootstrap UCL 95% HUCI, (Log ROS) UCLs using Lognormal Distributi KM Mean (logged) KM Standard Error of Mean (log MX Standard Error of Mean (log DL/2 Statistics DL/2 Statistics DL/2 Statistics DL/2 Statistics DL/2 Statistics	(use when n>=50) d Observations Only al at 5% Significance Level imputed Non-Detects of ROS data) on and KM Estimates wher	0.195 38.21 4.293 7.455 0.909 36.53 0.945 0.788 0.179 0.362 7.454 19.69 18.21 2.5.51 16469143 0.7113 2.162 0.7115	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Cliv Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Mean in Log Scale SD in Log Scale SD in Log Scale SD in Log Scale SD S% Percentile Bootstrap UCL 95% Bootstrap t UCL a are Lognormally Distributed 95% H UCL (KM -Log) 95% Critical H Value (KM-Log)	36.8 4.45 1.027 0.68 48.7 -2.2 3.83 18.3 24
Theta har (MLE) MLE Mean (bias corrected) Approximate Chi Square Value (95% Gamma Approximate UL Lognormal GOF Test on Detecte Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Lilliefors Test Statistic Lilliefors Critical Value Lilliefors Critical Value Lognormal ROS Statistics Using I Mean in Original Scale SD in Original Scale SD in Original Scale SSW EUC Losstrap UCL 95% H-UCL (Log ROS) UCLs using Lognormal Distributi KM Mean (logged) KM SD (logged) KM SD (logged) KM ST (logged)	. (use when n>=50) d Observations Only al at 5% Significance Level imputed Non-Detects of ROS data) on and KM Estimates when ged)	0.195 38.21 4.293 7.455 0.999 36.53 0.945 0.788 0.179 0.362 7.454 1.969 18.21 2.5.51 16469133 0 Detected dat -0.713 2.162 0.715 7.492 1.967	Theta star (bias corrected MLE) nu star (bias corrected) MLE 5d (bias corrected) Adjusted Level of Significance (β) Adjusted Chi Square Value (4.46, β) 95% Gamma Adjusted UCL (use when n<50) Shapiro Wilk GOF Test Detected Data appear Lognormal at 5% Significance Level Uilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Uilliefors GOF Test Detected Data appear Lognormal at 5% Significance Level Obstact Data appear Lognormal at 5% Significance Level Obstact Data appear Lognormal at 5% Significance Level Mean in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL a are Lognormally Distributed 95% H-UCL (KM-Log) 95% Critical H Value (KM-Log)	36.8 4.45: 16.5 0.027: 0.68: 48.7

Nonparametric Distribution Free UCL Statistics Detected Data appear Approximate Normal Distributed at 5% Significance Level

Suggested UCL to Use 95% KM (t) UCL

18.73 95% KM (Percentile Bootstrap) UCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options				
	/2015 14:29 kSheet.xls			
Full Precision OFF	Cheeckis			
Confidence Coefficient	95%			
Number of Bootstrap Operation:	2000			
General Statistics Total Number of Observations		11	Number of Distinct Observations	11
Number of Detects		10	Number of Non-Detects	1
Number of Distinct Detects			Number of Distinct Non-Detects	1
Minimum Detect Maximum Detect			Minimum Non-Detect Maximum Non-Detect	2
Variance Detects			Percent Non-Detects	9.09%
Mean Detects		17912	SD Detects	29057
Median Detects			CV Detects	1.622
Skewness Detects Mean of Logged Detects			Kurtosis Detects SD of Logged Detects	1.264 4.007
Normal GOF Test on Detects Only				
Shapiro Wilk Test Statistic			Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value			Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic 5% Lilliefors Critical Value			Lilliefors GOF Test Detected Data Not Normal at 5% Significance Level	
Detected Data Not Normal at 5% Sign	ificance Level	0.20	Secretary and Not Norman at 330 Significance Secretary	
Kaplan-Meier (KM) Statistics using No	rmal Critical Values an	d other Nor	parametric UCLs	
Mean		16284	Standard Error of Mean	8512
SD OFFICE MARKET DICE		26782		30726
95% KM (t) UCL 95% KM (z) UCL		31711 30285		30586 68468
90% KM Chebyshev UCL			95% KM Chebyshev UCL	53387
97.5% KM Chebyshev UCL		69441	99% KM Chebyshev UCL	100977
Gamma GOF Tests on Detected Obser	vations Only			
A-D Test Statistic			Anderson-Darling GOF Test	
5% A-D Critical Value K-S Test Statistic			Detected data appear Gamma Distributed at 5% Sig Kolmogrov-Smirnoff GOF	gniticance Leve
5% K-S Critical Value			Detected data appear Gamma Distributed at 5% Sig	gnificance Leve
Detected data appear Gamma Distrib	uted at 5% Significance			
Gamma Statistics on Detected Data O	nly			
k hat (MLE)			k star (bias corrected MLE)	0.222 80771
Theta hat (MLE) nu hat (MLE)			Theta star (bías corrected MLE) nu star (bías corrected)	4.435
MLE Mean (bias corrected)			MLE Sd (bias corrected)	38036
Gamma Kaplan-Meier (KM) Statistics				
k hat (KM)			nu hat (KM)	8.133
Approximate Chi Square Value (8.13, o 95% Gamma Approximate KM-UCL (u:			Adjusted Chi Square Value (8.13, β) 95% Gamma Adjusted KM-UCL (use when n<50)	2.328 56893
Gamma ROS Statistics using Imputed	Non-Detects			
GROS may not be used when data set	has > 50% NDs with m			
GROS may not be used when kstar of				
For such situations, GROS method ten			and BTVs Lusing gamma distribution on KM estimates	
Minimum	BIVS and OCLS may b		Mean	16284
Maximum		78300	Median	590
SD		28090		1.725
k hat (MLE) Theta hat (MLE)			k star (bias corrected MLE) Theta star (bias corrected MLE)	0.191 85381
nu hat (MLE)			nu star (bias corrected)	4.196
MLE Mean (bias corrected)		16284	MLE Sd (bias corrected)	37287
Approximate Chi Square Value (4.20, o	-A	0.001	Adjusted Level of Significance (β)	0.0278 0.593
95% Gamma Approximate UCL (use w			Adjusted Chi Square Value (4.20, β) 95% Gamma Adjusted UCL (use when n<50)	115211
Lognormal GOF Test on Detected Obs	ervations Only			
Shapiro Wilk Test Statistic	creations only	0.892	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value			Detected Data appear Lognormal at 5% Significance	e Level
Lilliefors Test Statistic 5% Lilliefors Critical Value			Lilliefors GOF Test Detected Data appear Lognormal at 5% Significance	a Lavat
Detected Data appear Lognormal at 5	% Significance Level	0.20	Detected Data appear Logitorinar at 5% significand	e Leves
Lognormal ROS Statistics Using Imput	ed Non-Detects			
Mean in Original Scale			Mean in Log Scale	5.649
SD in Original Scale	0C -(-+-)		SD in Log Scale	4.785
95% t UCL (assumes normality of RC 95% BCA Bootstrap UCL	o data)	31634 35146		30309 68483
95% H-UCL (Log ROS)		1.41E+15	22.2.2000000000000000000000000000000000	00-83
UCLs using Lognormal Distribution an	d KM Estimates when	Detected da		
KM Mean (logged)		5.995	95% H-UCL (KM -Log)	2.97E+11
KM SD (logged)		3.993 1.269	95% Critical H Value (KM-Log)	9.856
KM Standard Error of Mean (logged)				
KM Standard Error of Mean (logged)				
			DL/2 Log-Transformed	
KM Standard Error of Mean (logged) DL/2 Statistics DL/2 Normal Mean in Original Scale			Mean in Log Scale	5.932
KM Standard Error of Mean (logged) DL/2 Statistics DL/2 Normal			Mean in Log Scale SD in Log Scale	5.932 4.28 5.66E+12

Nonparametric Distribution Free UCL Statistics Detected Data appear Gamma Distributed at 5% Significance Level

Suggested UCL to Use
95% KM (Chebyshev) UCL
95% Adjusted Gamma KM-UCL
Warning: Recommended UCL exceeds the maximum observation 56893

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL calculations for dissolved Zn in pore water from the Animas River above the confluence with mainstem Cement Creek

User	Selected	Options

 Date/Time of Computation
 3/5/2015 14:29

 From File
 WorkSheet.xls

 Full Precision
 OFF

 Confidence Coefficient
 95%

 Number of Bootstrap Operations
 2000

General Statistics			
Total Number of Observations	11	Number of Distinct Observations	11
		Number of Missing Observations	0
Minimum		Mean	5735
Maximum		Median	675
SD	9691	Std. Error of Mean	2922
Coefficient of Variation	1.69	Skewness	2.038
Normal GOF Test			
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value	0.267	Data Not Normal at 5% Significance Level	
Data Not Normal at 5% Significance Level			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	11031	95% Adjusted-CLT UCL (Chen-1995)	12459
		95% Modified-t UCL (Johnson-1978)	11330
Gamma GOF Test			
A-D Test Statistic	0.829	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.791	Data Not Gamma Distributed at 5% Significance Leve	l
K-S Test Statistic	0.248	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.271	Detected data appear Gamma Distributed at 5% Sign	ificance Level
Detected data follow Appr. Gamma Distribution at 5% Sign	ificance Level		
Gamma Statistics			
k hat (MLE)	0.447	k star (bias corrected MLE)	0.386
Theta hat (MLE)	12831	Theta star (bias corrected MLE)	14870
nu hat (MLE)	9.833	nu star (bias corrected)	8.485
MLE Mean (bias corrected)	5735	MLE Sd (bias corrected)	9234
		Approximate Chi Square Value (0.05)	3.019
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	2.512
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50)	16118	95% Adjusted Gamma UCL (use when n<50)	19367
Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.879	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.221	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.267	Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Significance Level			
Lognormal Statistics			
Minimum of Logged Data	5.187	Mean of logged Data	7.208
Maximum of Logged Data	10.31	SD of logged Data	1.843
Assuming Lognormal Distribution			
95% H-UCL	120509	90% Chebyshev (MVUE) UCL	15021
95% Chebyshev (MVUE) UCL	19376	97.5% Chebyshev (MVUE) UCL	25421
99% Chebyshev (MVUE) UCL	37294		
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Sign	ificance Level		
Sate appear to tollow a Discellible Distribution at 3% Sign	carice Level		
Nonparametric Distribution Free UCLs	405	0F0/ 1 Novif- 1461	4400:
95% CLT UCL	10541		11031
95% Standard Bootstrap UCL	10420		23243
95% Hall's Bootstrap UCL	33946	95% Percentile Bootstrap UCL	10845
95% BCA Bootstrap UCL	12604	970/ 91 J. J. Jan. 9 D. 199	
	12604 14500 23982	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	18471 34807

95% Adjusted Gamma UCL 19367

Note: Suggestions regarding the selection of a 95% LICL are provided to help

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

Suggested UCL to Use

ProUCL calculations for Hardness in pore water from the Animas River above the confluence with mainstem Cement Creek

User Selected Options

Date/Time of Computation 3/9/2015 10:14
From File WorkSheet.xls
Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

General	Statistics
---------	------------

General Statistics			
Total Number of Observations	11	Number of Distinct Observations	10
		Number of Missing Observations	0
Minimum	118	Mean	296
Maximum	853	Median	158
SD	226.9	Std. Error of Mean	68.42
Coefficient of Variation	0.767	Skewness	1.649
Normal GOF Test			
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value	0.267	Data Not Normal at 5% Significance Level	
Data Not Normal at 5% Significance Level			
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	420	95% Adjusted-CLT UCL (Chen-1995)	444.9
		95% Modified-t UCL (Johnson-1978)	425.7
Gamma GOF Test			
A-D Test Statistic	0.755	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.737	Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.288	Kolmogrov-Smirnoff Gamma GOF Test	
5% K-S Critical Value	0.258	Data Not Gamma Distributed at 5% Significance Level	
Data Not Gamma Distributed at 5% Significance Level			
Gamma Statistics			
k hat (MLE)	2 201	k star (bias corrected MLE)	1.8
,		Theta star (bias corrected MLE)	164.5
Theta hat (MLE)			39.59
nu hat (MLE)		nu star (bias corrected)	
MLE Mean (bias corrected)	290	MLE Sd (bias corrected)	220.7
Adjusted Level of Significance	0.0279	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	26.17 24.41
Adjusted Level of Significance	0.0278	Adjusted Cili Square Value	24.41
Assuming Gamma Distribution			
95% Approximate Gamma UCL (use when n>=50))	447.7	95% Adjusted Gamma UCL (use when n<50)	480.1
Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.868	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.271	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.267	Data Not Lognormal at 5% Significance Level	
Data appear Approximate Lognormal at 5% Significance Level			
Lognormal Statistics			
Minimum of Logged Data	4.771	. Mean of logged Data	5.467
Maximum of Logged Data		SD of logged Data	0.676
Assuming Lognormal Distribution			
95% H-UCL	500		474.2
95% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	673
99% Chebyshev (MVUE) UCL	899.9		
Nonparametric Distribution Free UCL Statistics			
Data appear to follow a Discernible Distribution at 5% Significance	e Level		
Nonparametric Distribution Free UCLs			
95% CLT UCL	408.5		420
95% Standard Bootstrap UCL	403.1	·	505.1
95% Hall's Bootstrap UCL	557.7	•	410.2
95% BCA Bootstrap UCL	439.5		_
90% Chebyshev(Mean, Sd) UCL	501.3		594.2
97.5% Chebyshev(Mean, Sd) UCL	723.3	99% Chebyshev(Mean, Sd) UCL	976.7
Suggested UCL to Use			
		_	

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

95% Chebyshev (Mean, Sd) UCL

Appendix 17.a: Selected HQs associated with pore water and bulk sediment from the Dec. 2012 sediment toxicity test Baseline Ecological Risk Assessment Upper Animas River Mining District

December 2012 Hyalella azteca sediment toxicity test

6 V	G / 18 D:		Biomass ^a		Alt	ıminum I	IQs	Α	rsenic H	Qs	Ca	dmium H	Qs	С	opper H0	Qs]	Lead HQs	s	Ma	nganese I	IQs	2	Zinc HQs	,
Sampling location	Survival ^a (mean ±SE)	Signif.?b	(mean ±SE)	Signif.? b	PW _{initial}	PW_{final}	SED ^c	PW initial	PW_{final}	SED	PW _{initial}	PW_{final}	SED	PW _{initial}	$\mathrm{PW}_{\mathrm{final}}$	SED	PW _{initial}	$\mathrm{PW}_{\mathrm{final}}$	SED	PW _{initial}	$\mathrm{PW}_{\mathrm{final}}$	SED	$\mathrm{PW}_{\mathrm{initial}}$	$\mathrm{PW}_{\mathrm{final}}$	SED
A56 ("upstream")	62.5±8.2%	Y	20.3±1.9 μg/org	Y	<1		<1	<1		2.4	<1		1.9	1.5		2.1	2.7		16.2	2.8		5.0	<1		7.7
A68	56.3±3.2%	Y	22.6±1.6 μg/org	Y	1.7		<1	<1		2.5	<1	-	3.4	2.9		4.1	5.4	-	20.3	3.8	-	10.1	<1		16.6
A72	36.3±4.2%	Y	16.1±1.7 μg/org	Y	<1		<1	<1		1.4	1.4		<1	<1		1.3	<1		5.5	4.6		3.6	<1		2.1
A73B	5.0±1.9%	Y	4.0±1.7 μg/org	Y	<1		<1	<1		<1	<1		1.0	<1		1.6	<1		4.4	8.3		3.7	<1		2.7
A75B	48.8±5.2%	Y	17.8±1.9 μg/org	Y	<1		<1	<1		1.1	<1		2.1	<1		2.8	<1		3.4	5.2		3.7	<1		10.8
Bakers Bridge	76.3±3.8%	Y	26.2±1.0 μg/org	Y	<1		<1	<1		1.2	<1		3.4	<1		2.5	<1		3.7	4.0		7.3	<1		19.7
CC49	0%	Y	no survival	Y	12.9		<1	<1		2.0	3.1		<1	2.0		<1	3.4		1.6	3.2		<1	2.8		<1
M34	8.8±3.5%	Y	5.1±2.0 μg/org	Y	<1		<1	<1		<1	<1		<1	<1		<1	<1		1.2	4.6		1.0	<1		<1

HQ = hazard quotient; PW = pore water; SED = sediment

note 1: the "initial" pore water samples were collected before the organisms were added to the test beakers

note 2: no "final" pore water samples were collected at the end of the test

note 3: the PW HQs were derived using dissolved metals data and the standard chronic surface water benchmarks or hardness-depedent benchmark equations presented in Table 3.1 of the BERA a see Table 3.23 in the BERA

 $^{^{\}circ}$ is the result significantly different from the negative lab control?

^c All the sediment HQs presented in this table were derived using the "effect" benchmarks presented in Table 3.1 of the BERA

Appendix X: Dec. 2012 Upper Animas River sediment toxicity test Initial pore water chemistry data (dissolved metals) and chronic HQs

Sampling		Hardness	Initial	PW Alumi	num	Initial	PW Arser	nic	Initial I	W Berylli	um	Initial	PW Cadı	nium	Initial F	W Chrom	ium	Initial	PW Copp	er	Initia	al PW Iro	n
location	Units	(mg/L)	conc.	benchm.	HQ	conc.	benchm.	HQ	conc.	benchm.	HQ	conc.	benchn	n. HQ	conc.	benchm.	HQ	conc.	benchm.	HQ	conc.	benchm.	HQ
A56	ug/L	118	57.1	87	<1	1.93 J	150	<1	1.0 U	0.66	1.5	0.124	0.5	<1	0.5 U	85	<1	15.1	10	1.5	50 U	1000	<1
A68	ug/L	98	146	87	1.7	3.77	150	<1	1.0 U	0.66	1.5	0.123	0.4	<1	0.5 U	73	<1	25.6	8.8	2.9	50 U	1001	<1
A72	ug/L	182	27.6 J	87	<1	0.25 U	150	<1	1.0 U	0.66	1.5	0.931	0.7	1.4	0.5 U	121	<1	12.1	15	<1	50 U	1002	<1
A73B	ug/L	120	48.2 J	87	<1	0.25 U	150	<1	1.0 U	0.66	1.5	0.213	0.5	<1	0.5 U	86	<1	9.54	10	<1	224 J	1003	<1
A75B	ug/L	143	47.8 J	87	<1	1.14 J	150	<1	1.0 U	0.66	1.5	0.05	J 0.6	<1	0.5 U	99	<1	5.45	12	<1	820	1004	<1
Bbridge	ug/L	133	79.3	87	<1	0.802 J	150	<1	1.0 U	0.66	1.5	0.05	J 0.5	<1	0.5 U	94	<1	5.93	11	<1	169 J	1005	<1
CC-49	ug/L	161	1120	87	12.9	0.25 U	150	<1	1.0 U	0.66	1.5	1.91	0.6	3.1	0.5 U	109	<1	26.4	13	2.0	2120	1006	2.1
M-34	ug/L	158	38.8 J	87	<1	0.559 J	150	<1	1.0 U	0.66	1.5	0.412	0.6	<1	0.5 U	108	<1	6.06	13	<1	3680	1007	3.7

Sampling		Hardness	Initia	al PW Lea	d	Initial	PW Manga	nese	Initial	PW Nick	el	Initial	PW Seleni	um	Initial	PW Silve	er	Initia	al PW Zin	c
location	Units	(mg/L)	conc.	benchm.	HQ	conc.	benchm.	HQ	conc.	benchm.	HQ	conc.	benchm.	HQ	conc.	bench.	HQ	conc.	benchm.	. HQ
A56	ug/L	118	8.13	3.0	2.7	4870	1743	2.8	0.663 J	60	<1	0.659 J	5.0	<1	0.25 U	0.10	2.5	33.5	141	<1
A68	ug/L	98	13.3	2.5	5.4	6180	1639	3.8	1.96	51	<1	0.25	J 5.0	<1	0.25 U	0.07	3.4	29.0	119	<1
A72	ug/L	182	0.161 J	4.8	<1	9290	2014	4.6	1.62	86	<1	0.775	5.0	<1	0.25 U	0.21	1.2	27.5	209	<1
A73B	ug/L	120	0.5 U	3.1	<1	14500	1753	8.3	1.27	61	<1	1.13	5.0	<1	0.25 U	0.10	2.4	27.6	143	<1
A75B	ug/L	143	0.165 J	3.7	<1	9630	1858	5.2	0.662 J	70	<1	1.57	5.0	<1	0.25 U	0.14	1.8	26.1	168	<1
Bbridge	ug/L	133	0.14 J	3.4	<1	7320	1814	4.0	0.545 J	66	<1	0.977 J	5.0	<1	0.25 U	0.12	2.0	38.0	157	<1
CC-49	ug/L	161	14.5	4.2	3.4	6180	1933	3.2	5.67	78	<1	0.879 J	5.0	<1	0.25 U	0.17	1.5	516	187	2.8
M-34	ug/L	158	0.168 J	4.1	<1	8920	1921	4.6	2.68	77	<1	1.53	5.0	<1	0.25 U	0.16	1.5	37.9	184	<1

note 1: the "initial" pore water samples were collected before the organisms were added to the test beakers

note 2: no "final" pore water samples were collected at the end of the test

Appendix X: December 2012 Upper Animas River sediment toxicity test Sediment analytical chemistry and hazard quotients

Sampling			Alı	minum				A	rsenic					Beryllium				Ca	dmium				Ch	romium		\neg			Copper		\neg			Iron		\neg
location	Units	conc.	NE benchm.	E benchm.	NE HQ	EHQ	conc.	NE benchn	ı. E benchn	ı. NE HQ	EHQ	conc.	NE benchr	E benchm.	NE HQ	E HQ	conc.	NE benchm	E benchm	NE HQ	ΕHQ	cone.	NE benchm.	E benchm.	NE HQ	E HQ	conc.	NE benchm	E benchm.	NE HQ	ΕHQ	conc.	NE benchm	E benchm	NE HO	E HQ
A56	mg/kg dw	9790 I	26000	60000	<1	<1	79.6	D 9.8	33	8.1	2.4	2.76 JL	not avail.	not avail.	-	-	9.22	BD 0.99	4.98	9.3	1.9	5.48 D	43.4	111	<1	<1	306 D	31.6	149	9.7	2.1	28700 D	190000	250000	<1	<1
A68	mg/kg dw	14500 I	26000	60000	<1	<1	82.4	D 9.8	33	8.4	2.5	5.14 D	not avail.	not avail.	-	-	16.7	BD 0.99	4.98	16.9	3.4	8.8 D	43.4	111	<1	<1	605 D	31.6	149	19.1	4.1	43900 D	190000	250000	<1	<1
A72	mg/kg dw	24800 I	26000	60000	1.0	<1	45.6	D 9.8	33	4.7	1.4	1.0 U	not avail.	not avail.	-	-	3.28	BD 0.99	4.98	3.3	\ !	4.66 D	43.4	111	<1	<1	198 D	31.6	149	6.3	1.3	60600 D	190000	250000	<1	<1
A73B	mg/kg dw	17200 I	26000	60000	<1	<1	29.1	D 9.8	33	3.0	<1	1.0 U	not avail.	not avail.	Ι -	-	5.22	BD 0.99	4.98	5.3	1.0	4.7 D	43.4	111	<1	<1	232 D	31.6	149	7.3	1.6	48500 D	190000	250000	<1	<1
A75B	mg/kg dw	47400 I	26000	60000	1.8	<1	37.5	D 9.8	33	3.8	1.1	5.63 D	not avail.	not avail.	-	-	10.3	BD 0.99	4.98	10.4	2.1	5.42 D	43.4	111	<1	<1	415 D	31.6	149	13.1	2.8	81400 D	190000	250000	<1	<1
Bbridge	mg/kg dw	44800 I	26000	60000	1.7	<1	40.2	D 9.8	33	4.1	1.2	5.72 D	not avail.	not avail.	-	-	16.9	BD 0.99	4.98	17.1	3.4	5.26 D	43.4	111	<1	<1	377 D	31.6	149	11.9	2.5	78500 D	190000	250000	<1	<1
CC-49	mg/kg dw	4140 I	26000	60000	<1	<1	66.7	D 9.8	33	6.8	2.0	0.98 U	not avail.	not avail.	-	-	0.34	BD 0.99	4.98	<1	<1	4.71 D	43.4	111	<1	<1	57.8 D	31.6	149	1.8	<1	3E+05 D	190000	250000	1.5	1.2
M-34	mg/kg dw	32800 I	26000	60000	1.3	<1	21	D 9.8	33	2.1	<1	0.98 U	not avail.	not avail.	-	-	1.06	BD 0.99	4.98	1.1	<1	3.64 D	43.4	111	<1	<1	91.4 D	31.6	149	2.9	<1	62300 D	190000	250000	<1	<1
EVE-3-4	Ima-kg dw	1 000 ac	20000	00000	1,3	~1	- 21	9.8	1 33	1 4.1	1	0.98 0	not avant.	not avant.			1.00	0.99	4.98	1.1	~1	3.04 D	43,4	111	~1	~1	71.4 D	31.0	149	2.9	1	O2300 D	170000	±20000	=	

Sampling	П			Lead				Mar	iga nese			1		Nickel				Se	lenium				S	ilver					Zinc		\Box
location	Units	cone.	NE benchm	E benchm.	NE HQ	EHQ	conc.	NE benchm.	E benchm.	NE HQ	E HQ	conc.	NE benchm	E benchm.	NE HQ	E HQ	conc.	NE benchm	E benchm.	NE HQ	ΕHQ	cone.	NE benchm.	E benchm.	NE HQ	ΕHQ	conc.	NE benchm.	E benchm.	NE HQ	E HQ
A56	mg/kg dw	2070	35.8	128	57.8	16.2	6020	D 630	1200	9.6	5.0	8.58 I	22.7	48.6	<1	<1	0.26 U	0.9	4.7	<1	<1	10.3 D	1.0	3.7	10.3	2.8	3530 E	121	459	29.2	7.7
A68	mg/kg dw	2600	35.8	128	72.6	20.3	12100	D 630	1200	19.2	10.1	15.2 I	22.7	48.6	<1	<1	1.22 D	0.9	4.7	1.4	<1	12 D	1.0	3.7	12.0	3.2	7630 E	121	459	63.1	16.6
A72	mg/kg dw	704	35.8	128	19.7	5.5	4320	D 630	1200	6.9	3.6	7.18 I	22.7	48.6	<1	<1	0.25 U	0.9	4.7	<1	<1	3.53 D	1.0	3.7	3.5	1.0	968 E	121	459	8.0	2.1
A73B	mg/kg dw	557	35.8	128	15.6	4.4	4430	D 630	1200	7.0	3.7	11.5 I	22.7	48.6	<1	<1	0.25 U	0.9	4.7	<1	<1	3.29 D	1.0	3.7	3.3	<1	1240 E	121	459	10.2	2.7
A75B	mg/kg dw	436	35.8	128	12.2	3.4	4440	D 630	1200	7.0	3.7	16.1 I	22.7	48.6	<1	<1	1.11 D	0.9	4.7	1.2	<1	2.07 D	1.0	3.7	2.1	<1	4980 E	121	459	41.2	10.8
Bbridge	mg/kg dw	471	35.8	128	13.2	3.7	8790	D 630	1200	14.0	7.3	31 I	22.7	48.6	1.4	<1	0.25 U	0.9	4.7	<1	<1	2.2 D	1.0	3.7	2.2	<1	9060 E	121	459	74.9	19.7
CC-49	mg/kg dw	206	35.8	128	5.8	1.6	307	D 630	1200	<1	<1	1.89 I	22.7	48.6	<1	<1	0.45 U	0.9	4.7	<1	<1	1.2 D	1.0	3.7	1.2	<1	132 E	121	459	1.1	<1
M-34	mg/kg dw	152	35.8	128	4.2	1.2	1220	D 630	1200	1.9	1.0	4.52 I	22.7	48.6	<1	<1	0.45 U	0.9	4.7	<1	<1	0.56 JI	1.0	3.7	<1	<1	323 E	121	459	2.7	<1

Appendix 17.b: Selected HQs associated with pore water and bulk sediment from the November 2014 sediment toxicity test Baseline Ecological Risk Assessment Upper Animas River Mining District

November 2014 Hyalella azteca sediment toxicity test

	Survivala		Biomass ^a		Alı	ıminum H	IQs	A	rsenic H()s	Ca	dmium H	Qs	C	opper HQ)s	Lead	HQs	Ma	inganese H	IQs		Zinc HQs	
Sampling location	I	Signif.?b	(mean±SE)	Signif.?b	PW _{initial}	PW_{final}	SED°	PW _{initial}	PW_{final}	SED	PW _{initial}	PW _{final}	SED	PW _{initial}	PW _{final}	SED	PW _{initial} PW	final SED	PW _{initial}	PW_{final}	SED	PW _{initial}	PW _{final}	SED
A56 ("upstream")	43.8±9.2%	Y	14.3±3.2 μg/g	Y	1.6	<1	<1	<1	<1	<1	2.7	2.3	2.3	5.2	4.5	1.6	2.2 3.	0 9.2	6.3	4.8	7.7	1.1	<1	7.0
A60	77.5±6.5%	N	23.1±1.9 μg/g	Y	<1	<1	<1	<1	<1	<1	10.4	14.1	1.9	1.0	<1	1.8	<1 <	1 12.6	1.8	5.1	6.2	2.9	3.8	4.6
A68	70.0±10.0%	N	23.2±3.3 μg/g	Y	<1	<1	<1	<1	<1	<1	2.1	2.3	2.2	<1	<1	1.4	<1 <	1 9.7	<1	<1	7.9	1.2	1.2	5.4
A72	70.0±4.6%	N	27.9±2.4 μg/g	Y	<1	<1	<1	<1	<1	<1	4.4	3.4	<1	<1	<1	<1	<1 <	1 3.9	1.8	6.1	2.8	1.1	<1	1.9
A73	73.8±7.8%	N	21.2±2.4 μg/g	Y	<1	<1	<1	<1	<1	<1	1.3	1.9	<1	1.2	<1	<1	<1 <	1 3.4	<1	<1	2.3	1.5	1.9	1.6
A75D	76.3±7.5%	N	24.9±3.2 μg/g	Y	<1	<1	<1	<1	<1	<1	3.2	3.3	<1	<1	<1	<1	<1 <	1 2.6	1.3	1.7	3.1	1.0	1.1	2.4
Bakers Bridge	86.3±3.8%	N	30.7±2.2 μg/g	Y	1.6	<1	<1	<1	<1	<1	2.4	<1	<1	<1	<1	<1	<1 <	1 1.9	2.3	2.5	3.3	<1	<1	3.7

HQ = hazard quotient; PW = pore water; SED = sediment

note 1: the "initial" pore water samples were collected before the organisms were added to the test beakers

note 1: the 'miniar' pore water samples were collected to the end of the test note 2: the 'miniar' pore water samples were collected at the end of the test note 3: the PW HQs were derived using dissolved metals data and the standard chronic surface water benchmarks or hardness-depedent benchmark equations presented in Table 3.1 of the BERA

a see Table 3.23 in the BERA

see Table 3.23 in the BERA

All the sediment HQs presented in this table were derived using the "effect" benchmarks presented in Table 3.1 of the BERA

				izit		Junicar			PW.	inesi	\neg	intial 1	W Bar	Burs	isit	el PW	Cadusiu	10	inte	I PW 0	bronsis	m	irehia	PW Cor	abe.		retal	PW Iron		isi	id PW	.cad	ant		Mangane		in	M PW N	izizi	i	nitial P			init	d PW	Silver	т	inis	J PW	Zinc
Samplinglocation	Analysis	Units	Hardness	сове	hes	school .	HQ.	conc.	ben	chm. 1	HQ .	CORC.	bruck	m. HÇ	conc	. I E	epchin.	HQ	:0BC-	be	masa	HQ	conc.	beach	111 HQ	conc	. III	enchm.	HO	:0 E C.	bene	m. H	cone	- 1	benchm.	HQ	conc.	beach	as H	203	K.	benchm.	HO	-30.03	bee	xbm	HQ 6	oac.	perc.	thm.
A36	Dissolved Metals	ugil	155	13	31	\$7	1.6	1.5	2 1	50	\$	1.0 1	0.68	1.5	7.6		0.59	2.7	1.11	7	105	∀	67.5	13	5.2		0 U	1000	<	8.72	43	2.	1230	Ø	1909	6.3	1.13	75	_ <	1	17 J	4.6	Ą	0.636	1 0	36	4.0	193	13	31
A60	Dissolved Marais	uet	174	327	- 2	\$7	<>	0.25	U 1	50	Ċ.	1.0 1	0.66	1.5	6.6	Ĭ	29.0	10.4	1.27	7.	117	Δ	14.7	14	1.8		0 U	1000	4	2.41	43	V	35	(1)	1984	1.8	1.05	- \$3	_ <		0.5 U	4.6	۵	6,25	U 0	139	13	588	20	31
A68	Dissolved Metals	uet	155	29.0		87	</td <td>0.25</td> <td>U 1</td> <td>50</td> <td>4</td> <td>1.0 1</td> <td>0.65</td> <td>1.5</td> <td>1.234</td> <td>5</td> <td>0.59</td> <td>2.1</td> <td>0.5</td> <td>U</td> <td>106</td> <td>4</td> <td>4.37</td> <td>13</td> <td><\</td> <td>- 3</td> <td>0 U</td> <td>1000</td> <td>4</td> <td>0.473</td> <td>41</td> <td>) <</td> <td>2</td> <td>75</td> <td>1909</td> <td>Q.</td> <td>0.25</td> <td>U 73</td> <td><</td> <td></td> <td>0.5 U</td> <td>4.6</td> <td><</td> <td>6.25</td> <td>U 0</td> <td>16</td> <td>1.6</td> <td>213</td> <td>13</td> <td>31</td>	0.25	U 1	50	4	1.0 1	0.65	1.5	1.234	5	0.59	2.1	0.5	U	106	4	4.37	13	<\	- 3	0 U	1000	4	0.473	41) <	2	75	1909	Q.	0.25	U 73	<		0.5 U	4.6	<	6.25	U 0	16	1.6	213	13	31
A72	Dissolved Metals	ust	143	231	12	87	<₹	0.25	U 1	50	< 1	1.0 1	0.65	1.5	2.4	9	0.56	4.4	0.5	10	99	<1	3.37	12	<>	- 5	0 U	1000	<1	0.191	3 3.	<	343	6	1858	1.8	1.49	70	_ <		63 U	4.6	<1	6.25	U 6	134	1.8	182	16	53
A33	Dissolved Metals	usi	126	24.	12	87	<₹	0.25	U I	50	4	1.0 1	0.65	1.5	0.63		0.49	1.3	0.5	U	86	⊲	128	10	1.2	- 5	0 U	1000	4	0.799	3.	<	- 55	4	1753	4	1.04	61	- <		65 U	4.6	< 1	6.25	U 6	10	2.4	220	13	43
ATSD	Dissolved Metals	ugl.	127	2	3	\$7	<3	0.25	U 1	50	< 1	1.0 1	0.65	1.5	1.63	2	0.51	5.2	0.5	u	90	<1	4.05	11	<1	- 5	0 U	1000	<1	6299	3.	<	233	0	1736	1.3	0.716	J 64	<		0.5 U	4.6	<1	6.25	U 0	11.5	2.2	157	15	51
Baiers Bridge	Deschard Verals	1857	145	13		87	1.6	0.665	7 7	50	ব	101	0.66	1.5	1.3		0.56	2.6	0.5	111	100	< 0	7.82	17	- < ?	- 3	G 13	1000	< 0	0.632	- 1	<	475	30	1967	2.3	1.16	- 21	7		65 U	26	<3	0.25	U 0	214	18	67.8	177	10

				izito		Junion			M FW	Arresio	$\overline{}$	initial	FW Bo	dian	т	istisi I	W C≯#	sizo	in	ial PN	Chron	nuci		71 B.M. C	oppe.	$\overline{}$	irait s	PW Is	CO.	$\overline{}$	initial I	W Leas			PW X	ingmese	Т	initi	A PWN	klel		ritiza 1	W Seleti	uuo	in	iizi P\	N Silver	_	ż	isia P	W Zis	_
Samplinglecation	Analysis	Units	Hardness	сопе.	hes	aches.	HQ	coac.	be	nchm.	HQ	COBC.	penc	hm. H	4 O	onc.	beach	n HO	103	£.	benchm	HO	conc.	bead	tim. H	Q 60	ac.	beach	m. HK	gos (C 8	enches.	HO	conc.	be	ochus 3	Ю.	conc.	perch	ta H	Q 60	sc.	benchn	T HO	-30 03	b	eechm	HO	conc.	be	enchas	. H
A56	Dissolved Metals	ugi	155	134	31	\$7	1.6	1.5	7	150	<	1.0	0.6	6 1	.5	1.62	0.59	2.7	1.	11 2	106	A	67.5	1	3 5.	2	30 U	1000) <	\$	72	4.0	2.2	12360		1909	6.3	1.13	75	_ <		17 2	4.6	<	0.636	7	0.16	4.0	193		131	1.
A60	Dissolved Metals	uet	174	327	- 2	\$7	₹	0.25	U	150	Ċ,	1.0	0.0	6 1	.5	6.69	0.64	10.4	~	22 1	117	Δ	14.7	1 1	4 1.	.8	50 U	1000	1 4	1 2	43	4.6	Δ	3520	П	1984	1.8	1.65	- \$3	_ <		0.5 %	4.6	4	8,35	U	0.19	13	588	П	201	2'
A68	Dissolved Metals	uet	155	29.0		87	<1	0.25	U	150	4	1.0	0.6	0 1	.5	1.216	0.59	2.1		35 U	106	4	4.37	1 1	3 <	1	50 U	1000) (4	0.4	73	4.0	<	295	т	1909	Q.	0.25 5	J 75	<		0.5 3	4.6	< 1	6.25	U	0.16	1.6	213		131	T/
A72	Dissolved Metals	ust	143	23.5	12	87	<1	0.25	U .	150	< 4	1.0	0.6	6 1	.5	2.46	0.56	4.4		33 U	99	4	3.37	1 1	2 <	3	50 U	1000	1	6.1	91 3	3.7	<1	3430	П	1858	1.8	1.49	70	<	3	0.5 K	4.6	4	6.25	U	0.14	1.8	182		163	T.
A'3	Dissolved Metals	usi	126	24.4	12	\$7	<₹	0.25	U	150	4	1.0	3 0.0	8 1	.5	2.634	0.49	1.3		15 U	86	0	128	1 1	0 1.	2	50 U	1000) (4	6.7	99	3.1	<	55.4	Т	1753	4	1.04	61	1 <	3	65 1	4.6	4	6.25	U	0.10	2.4	220		143	T.
A75D	Dissolved Metals	ugi.	127	21	10	\$7	<3	0.25	U	150	< 4	1.0	0.0	6 1	.5	1.62	0.51	5.2		55 U	90	<	4.05	1 1	1 <	1	50 U	1000) <	62	99	3.3	<1	2320	П	1736	1.3	0.716	64	<	3	0.5 K	4.6	< 1	6.25	U	0.11	2.2	157	П	151	U
Bbeides	Descriptor Viscols	1957	145	131	8	87	1.6	0.665	171	150	<3	1.0	. 0.6	6 1	.5	3.35	0.56	2.6		55 11	100	< 0	7.82		7 3	3	30 U	100	1 3	0.6	হ ৷	3.8	<1	4750		1957	2.3	1.16	- 21	7		85 L	- 26	131	8.25	177	0.14	18	67.8	-	130	13

				final F	PW Ab	ıminum			W Arse				eryllium	final	PW Cadmis	ım	final I	W Chron	isum	fina	1PW Copp	er	fin	alPW Iron	,	fina	IPW Lea	d	final P	W Manga	nese	final	IPW Nic	kel	final	PW Selen	ium	fin:	IPW Sib	ver	fin:	alPW Zino	
Sampling Station	Analysis	Units	Hardness	conc.	ben	cbm. H	Q co	овс.	beachm	. HQ	conc.	ber	achm. HQ	COBC.	beachm.	HQ	conc.	ревсви	. HQ	COB C.	ben chm	HQ	COBC.	beachm	. HQ	COMC.	ben chm	. HQ	COBC.	beachm	. HQ	COBC.	benchi	n. HQ	COB C.	benchn	. HQ	COBC.	benchi	m. HQ	COB C.	benchm.	но
A56	DissolvedMetals	ug/L	114	64.5	8	7 <1		1.03 J	150	<1	1.0	U 0	0.66 1.5	1.08	0.47	2.3	1.82	83	<1	45.5	10	4.5	50 1	1000	<1	8.78	2.9	3.0	8210	1723	4.8	0.25 T	58	<1	1.07	J 4.6	<1	0.25	U 0.09	2.7	60.7	137	<1
A60	DissolvedMetals	ug/L	263	37.4	J 8	7 <1	1	1.03 J	150	<1	1.0	U 0	0.66 1.5	12.4	0.88	14.1	3.11	164	<1	11.7	20	<1	50	1000	<1	2.51	7.1	<1	11700	2276	5.1	0.25	118	<1	1.03	J 4.6	<1	0.25	U 0.40	<1	1100	292	3.8
A68	DissolvedMetals	ug/L	174	21.5	J 8	7 <1	1	0.25 T	150	<1	1.0	U 0	0.66 1.5	1.51	0.64	2.3	1.79	117	<1	4.51	14	<1	50	1000	<1	0.160	4.6	<1	520	1984	<1	0.25 T	83	<1	0.5	U 4.6	<1	0.25	U 0.19	1.3	243	201	1.2
A72	DissolvedMetals	ug/L	218	37.7	J 8	7 <1		0.25 U	150	<1	1.0	U 0	0.66 1.5	2.58	0.76	3.4	0.5	U 140	Δ	3.38	17	<1	281	1000	<1	0.1	5.8	<1	13100	2139	6.1	0.25 (101	<1	0.5	U 4.6	<1	0.25	U 0.29	<1	217	246	<1
A73	DissolvedMetals	ug/L	131	21.1	J 8	7 <1		0.25 U	150	⊲	1.0	U 0	0.66 1.5	0.968	0.52	1.9	0.5	U 92	Δ	2.36	11	<1	50 1	1000	<1	0.17 3	3.4	<1	158	1805	<1	1.59	65	⊴	0.5	U 4.6	<1	0.25	U 0.12	2.1	298	155	1.9
A75D	DissolvedMetals	ug/L	155	10	U 8	7 <1	2	0.25 U	150	<1	1.0	U 0	0.66 1.5	1.97	0.59	3.3	0.5	106	Δ	4.26	13	<1	50 1	1000	<1	0.137 J	4.0	<1	3150	1909	1.7	0.25 T	75	<1	0.5	U 4.6	<1	0.25	U 0.16	1.6	191	181	1.1
Bakers Bridge	DissolvedMetals	ug/L	182	72.4	- 8	7 <1		1.01 J	150	<1	1.0	U 0	0.66 1.5	0.479	0.67	<1	0.5	121	Δ	8.89	15	<1	50 1	1000	<1	1.31	4.8	<1	4970	2014	2.5	0.25 T	86	<1	1.47	J 4.6	<1	0.25	U 0.21	1.2	32.7	209	<1

note 1: a non detect value is shown at half of its detection limit

