Haberman's survival dataset

- Title: Haberman's Survival Data
- Sources: (a) Donor: Tjen-Sien Lim (<u>limt@stat.wisc.edu</u>) (b) Date: March 4, 1999
- Number of Instances: 306
- Number of Attributes: 4 (including the class attribute)
- Attribute Information:
 - Age of patient at time of operation (numerical)
 - Patient's year of operation (year 1900, numerical)
 - Number of positive axillary nodes detected (numerical)
 - Survival status (class attribute) 1 = the patient survived 5 years or longer 2 = the patient died within 5 year

Importing dataset and going through summary statistics

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import seaborn as sns
import warnings

warnings.filterwarnings("ignore")

path = "/content/sample_data/haberman.csv"

df = pd.read_csv(path)

df.head()
```

Observations

- There are 306 entries
- No missing values
- · 4 attributes including class attribute

Objective

Attributes - Age of patient, year of operation, Number of positive axillary nodes to be used to predict if a patient will survive after 5 years

Plotting 1-D histograms

```
#Plotting 1-D histograms on attributes
sns.FacetGrid(df, hue="status", size=5) \
    .map(sns.distplot, "age") \
    .add_legend();
plt.title("Age vs Status")
plt.show();
```


- Age alone can't determine whether the patient will live after 5 years as there is no clear separation between attributes
- Lesser the age, more the chances that patient will live after 5 years
- above age of 90 the chances of surving after surgery is nil

```
sns.FacetGrid(df, hue="status", size=5) \
    .map(sns.distplot, "year") \
    .add_legend();

plt.title("Year vs Status")
plt.show();
```


• There is no clear relation b/w year and status

```
sns.FacetGrid(df, hue="status", size=10) \
    .map(sns.distplot, "nodes") \
    .add_legend();

plt.title("Nodes vs Status")
plt.show();
```


- Patients with 1 & 2 axilary nodes have the highest survival rate
- For patients above 55 axilary nodes the survival rate is nil

 Axilary nodes are the only attribute which provides some significant information about the survival rate of patients

Descriptive statistics

#Splitting the dataframe into survived and died

haberman_survived = df.loc[df["status"]==1]
haberman_dead = df.loc[df["status"]==2]

#Descriptive statistics of both dataframes

haberman_survived.describe()

	age	year	nodes	status
count	225.000000	225.000000	225.000000	225.0
mean	52.017778	62.862222	2.791111	1.0
std	11.012154	3.222915	5.870318	0.0
min	30.000000	58.000000	0.000000	1.0
25%	43.000000	60.000000	0.000000	1.0
50%	52.000000	63.000000	0.000000	1.0
75%	60.000000	66.000000	3.000000	1.0
max	77.000000	69.000000	46.000000	1.0

- mean of 2.79 and 75% quartile value of 3 indicates that most of the survived patients (75%) were having 3 or less nodes
- Chances of a person surviving with higher number of nodes is very low

haberman dead.describe()

	age	year	nodes	status
count	81.000000	81.000000	81.000000	81.0
mean	53.679012	62.827160	7.456790	2.0
std	10.167137	3.342118	9.185654	0.0

• 50 percentile value of axilary nodes for died patients is 4. Which indicates that lesser number of nodes does not guarantee that patient will survive

```
50% 53.000000 63.000000 4.000000 2.0
```

- Box Plot

```
#Plotting box plots
sns.boxplot(x='status',y='nodes', data=df)
plt.legend()
plt.show()
```

No handles with labels found to put in legend.

- There are many outlier points for survived class
- Though 75th percentile of survived class is at node = 5, there are many exceptions on that

CDF and PDF

```
#Plotting PDF and CDF of nodes on both dataframes
counts,bin_edges = np.histogram(haberman_survived["nodes"],bins =5,density = True)
pdf = counts/(sum(counts))
```

```
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf,label = "survived_pdf")
plt.plot(bin_edges[1:],cdf,label = "survived cdf")
counts,bin edges = np.histogram(haberman dead["nodes"],bins =5,density = True)
pdf = counts/(sum(counts))
cdf = np.cumsum(pdf)
plt.plot(bin_edges[1:],pdf,label = "dead_pdf")
plt.plot(bin_edges[1:],cdf,label = "dead_cdf")
plt.xlabel("Nodes")
plt.ylabel("probability")
plt.title("CDF and PDF")
plt.legend()
plt.show()
```


- The above plot re-validtaes the descriptive statistics that lesser number of nodes does not guarantee that patient will survive
- Higher number of occurances of patients dying and surviving are at lowe nodes
- CDF shows that patients with lower nodes have better chances of surviving but its not guranteed

Pair Plots

```
#Plotting pair-plots
sns.set style("whitegrid");
sns.pairplot(df, hue="status", size=3);
```


- Conclusions

- There is no clear separation of classes on any of the setter plots
- patients having age less than 40 and axilary nodes less than 10 have very high chance of surviving
- The survival rate of patients having nodes less than 5 have improved after year 1965

