IDEATION PHASE LITERATURE SURVEY

DATE	2 September 2022		
TEAM ID	PNT2022TMID15396		
PROJECT NAME	Predicting the energy output of wind turbine based on weather		
	condition		

Literature Survey:

S.No	Year	Author	Title	Algorithm	Disadvantage
1.	2012	A. M. Foley, P. G.Leahy, A.Marvuglia, and E. J. McKeogh.	Current methods and advances in forecasting of wind power generation	Data- Mining	Some of the data science related properties and terms are not well defined in detail
2.	2011	O. Kramer and F. Gieseke.	Analysis of wind energy time series with kernel methods and neural networks.	Support Vector Regression	Concentrated mostly on the wind power based on neural networks and kernel-based methods rather than including any other methods of data science and machine learning like support vector regression.
3.	2011	O. Kramer and F. Gieseke.	Short-term wind energy forecasting using Support vector regression.	Support Vector Regression	Should have worked out this paper based on the advanced techniques such as Neural networks
4.	2010	M. Schmidt and H. Lipson.	Age-fitness Pareto optimization.	ALPS Algorithm, Pareto	As it is a multi-objective approach if failure or interruption occurs in any

				Algorithm, Deterministic Crowding Algorithm.	one of the objectives then the system fails
5.	2009	A. Kusiak, H. Zheng, and Z. Song.	Short-term prediction of wind farm power: A data mining approach.	Data- Mining	Wind speed can be predicted fairly accurately based on its historical values; however, the power cannot be accurately y determined given a power curve model and the predicted wind speed.

REFERENCES:

- Current methods and advances in forecasting of wind power by AM Foley · 2012 · Cited by 1255 —
 In summary, five data-mining models used in wind speed and wind power prediction include SVM,
 MLP ANN, regression trees and random forests.
- 2. Analysis of wind energy time series with kernel methods and by O Kramer · 2011 · Cited by 21 This article shows how kernel methods and neural networks can serve as modeling, forecasting, and monitoring techniques, and, how they contribute to a successful.
- 3. Short-Term Wind Energy Forecasting Using Support Vector ...https://link.springer.com by O Kramer 2011 Cited by 65 In this paper we explore, if wind measurements based on the existing infrastructure of windmills in neighbored wind parks can be learned with a soft computing.
- 4. Age-Fitness Pareto Optimization | SpringerLinkhttps://link.springer.com > chapter
 by M Schmidt 2011 Cited by 194 We propose a multi-objective method, inspired by the Age
 Layered Population Structure algorithm, for avoiding premature convergence in.
- 5. Short-Term Prediction of Wind Farm Power: A Data Mining ...https://ieeexplore.ieee.org > document by A Kusiak · 2009 · Cited by 420 Abstract: This paper examines time series models for predicting the power of a wind farm at different time scales, i.e.