Data Pre-processing

- 1. Extract Target Variable: Indexing: loc, iloc, name
- 2. Extract Predictor Variable: Indexing: loc, iloc, names, slicing
- 3. Train-Test Split

From sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(x,y,test_size = 0.20, train_size = 0.80, random_state = 34)

- 4. How to findout the number of missing values?
 - Isna().sum()
 - Isnull().sum()
- 5. How to handle missing values?
 - a. Fill it Mean(Unskewed), Median(Skewed), Mode(Categorical)
 - b. Omission:

Omit the row if missing values are more in the row (> 80%)
Omit the column if missing values are more in the column (> 80%)

- c. Backward/Forward fill df.bfill() df.ffill()
- d. dropna()
- e. From sklearn import SimpleImputer SimpleImputer(missing_values = np.nan, strategy = 'mean')
- f. fillna()

6.	Standardizing the data
	Standard Scalar klearn.preprocessing import StandardScalar std = StandardScalar() transform(df['Age','Salary'])
b.	Min Max Scalar:
from sklearn.preprocessing import MinMaxScalar mms = MinMaxScalar() mms.fit_transform(df['Age','Salary'])	
7.	Encoding the Data
a.	Label Encoding:
from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit_transform(df['City'])	
b.	One Hot Encoding
C.	Pd.get_dummies()