ĐẠI HỌC KHOA HỌC TỰ NHIÊN HÀ NỘI KHOA TOÁN-CƠ-TIN

 $(D\hat{e} \ g\hat{o}m \ 4 \ c\hat{a}u/4 \ trang)$

\vec{DE} KIỂM TRA GIỮA KỲ Môn: Toán rời rạc (MAT3500 3, 2022-2023)

Thời gian: 50 phút

- Điền các thông tin về Họ Tên, Mã Sinh Viên, Lớp trước khi bắt đầu làm bài.
- Trình bày lời giải vào các khoảng trống sau đề bài. Sử dụng mặt sau nếu thiếu khoảng trống.
- Không sử dụng tài liệu. Không trao đổi, bàn bạc khi làm bài.
- Điểm bài kiểm tra này chiếm 20% tổng số điểm của môn học. Tổng điểm nhỏ hơn hoặc bằng 10 thì giữ nguyên, còn ngược lại thì tính là 10 điểm.

Họ và Tên:			
•			
Mã Sinh Viên:	Lớn:		

Câu:	1	2	3	4	Tổng
Điểm tối đa:	3	3	3	3	12
Điểm:					

- 1. Cho mệnh đề $(p \oplus q) \land (\neg p \leftrightarrow q)$ với p,q là các mệnh đề lôgic.
 - (a) (1 điểm) Lập bảng chân trị cho mệnh đề trên.
 - (b) (2 điểm) Hãy xây dựng một mệnh đề lôgic phức hợp tương đương với mệnh đề đã cho trong đó chỉ sử dụng các toán tử ¬, ∧, ∨.

Lời giải:

(a) Bảng chân trị cho mệnh đề $(p \oplus q) \land (\neg p \leftrightarrow q)$.

p	q	$\neg p$	$p \oplus q$	$\neg p \leftrightarrow q$	$p \oplus q) \land (\neg p \leftrightarrow q)$
Т	Т	F	F	F	F
Т	F	F	T	Т	T
F	Т	Т	T	Т	T
F	F	Т	F	F	F

- (b) Từ các hàng có giá trị T trong bảng chân trị của $(p \oplus q) \land (\neg p \leftrightarrow q)$, ta xây dựng một dạng tuyển chuẩn tắc tương đương lôgic với nó.
 - Ta xây dựng mệnh đề A_1 thỏa mãn $A_1 = \mathsf{T}$ khi và chỉ khi $p = \mathsf{T}$ và $q = \mathsf{F}$. Một mệnh đề như vậy có thể là $A_1 = p \land \neg q$.
 - Ta xây dựng mệnh đề A_2 thỏa mãn $A_2 = \mathsf{T}$ khi và chỉ khi $p = \mathsf{F}$ và $q = \mathsf{T}$. Một mệnh đề như vậy có thể là $A_2 = \neg p \land q$.

• Theo bảng chân trị trên, $(p \oplus q) \land (\neg p \leftrightarrow q)$ có giá trị đúng khi và chỉ khi A_1 đúng hoặc A_2 đúng. Do đó, mệnh đề $A = A_1 \lor A_2 = (p \land \neg q) \lor (\neg p \land q)$ là một mệnh đề tương đương lôgic với $(p \oplus q) \land (\neg p \leftrightarrow q)$. A chỉ sử dụng các toán tử \neg, \land, \lor và do đó là một mệnh đề cần tìm.

- 2. (3 điểm) Cho S là tập được định nghĩa theo đệ quy như sau:
 - $5 \in S$
 - Nếu $x \in S$ thì $x + 5 \in S$

Gọi $5\mathbb{Z}^+ = \{n \mid n \in \mathbb{Z}^+ \text{ và } n \text{ chia hết cho } 5\}$. Chứng minh rằng $S = 5\mathbb{Z}^+$.

Lời giải: Ta chứng minh (a) $5\mathbb{Z}^+ \subseteq S$ và (b) $S \subseteq 5\mathbb{Z}^+$.

(a) Ta chứng minh rằng với mọi $n \in \mathbb{Z}^+$, $n \in S$ bằng cách chứng minh phát biểu P(m) sau

$$5m \in S$$

đúng với mọi $m \in \mathbb{Z}^+$.

- Bước cơ sở: P(1) đúng vì theo định nghĩa của S, ta có $5 \in S$.
- Bước quy nạp: Giả sử P(k) đúng với số nguyên $k \ge 1$ nào đó, nghĩa là $5k \in S$. Ta chứng minh P(k+1) đúng, nghĩa là $5(k+1) \in S$. Thật vậy, theo giả thiết quy nạp $5k \in S$, và do đó theo định nghĩa của S ta cũng có $5k+5=5(k+1) \in S$.

Theo nguyên lý quy nạp, ta có điều cần chứng minh.

(b) Ta chứng minh phát biểu P(x) sau

$$x \in 5\mathbb{Z}^+$$

đúng với mọi $x \in S$ bằng quy nạp theo cấu trúc.

- Bước cơ sở: $5 = 5 \cdot 1 \in 5\mathbb{Z}^+$.
- Bước quy nạp: Giả sử P(x) đúng với $x \in S$ nào đó, nghĩa là $x \in 5\mathbb{Z}^+$. Ta chứng minh P(x+5) đúng. Thật vây, theo giả thiết quy nạp, x=5a với $a \in \mathbb{Z}^+$, và do đó $x+5=5(a+1) \in 5\mathbb{Z}^+$.

Theo nguyên lý quy nạp, ta có điều cần chứng minh.

3. (3 diểm) Tìm các ví dụ của hàm f(n) thỏa mãn các điều kiện (a) – (d) tương ứng. Cụ thể, ở (a),

	$f(n)$ là $O(n^3)$	$f(n)$ không là $O(n^3)$
$f(n)$ là $\Omega(n^3)$	(a)	(b)
$f(n)$ không là $\Omega(n^3)$	(c)	(d)

bạn cần tìm ví dụ về một hàm f(n) đồng thời là $O(n^3)$ và $\Omega(n^3)$ và chứng minh ví dụ bạn tìm ra là đúng. Tương tự cho các phần (b), (c), và (d).

Lời giải:

	$f(n)$ là $O(n^3)$	$f(n)$ không là $O(n^3)$
$f(n)$ là $\Omega(n^3)$	$f(n) = n^3$	$f(n) = n^4$
$f(n)$ không là $\Omega(n^3)$	$f(n) = n^2$	$f(n) = n^{3 + (-1)^n} = \begin{cases} n^2 & \text{n\'eu } n \text{ l\'e} \\ n^4 & \text{n\'eu } n \text{ ch\'an} \end{cases}$

Các ví dụ cho các phần (a), (b), (c) khá dễ và các bạn có thể tự kiểm tra lại. Ta chứng minh ví dụ cho phần (d): hàm f(n) định nghĩa bởi

$$f(n) = n^{3+(-1)^n} = \begin{cases} n^2 & \text{n\'eu } n \text{ l\'e} \\ n^4 & \text{n\'eu } n \text{ ch\'an} \end{cases}$$

là một hàm vừa không là $O(n^3)$ vừa không là $O(n^3)$. Nhắc lại rằng f(n) không là $O(n^3)$ nếu với mọi hằng số C, k, tồn tại số nguyên $n_{C,k} > k$ sao cho $|f(n_{C,k})| > C|n_{C,k}^3|$. Để chứng minh f(n) không là $O(n^3)$, ta chọn $n_{C,k} = 2 \cdot (|C| + |k| + 1) > k$ và theo định nghĩa

$$|f(n_{C,k})| = |n_{C,k}^4|$$

$$= |n_{C,k}| \cdot |n_{C,k}^3|$$

$$= 2 \cdot (|C| + |k| + 1) \cdot |n_{C,k}^3|$$

$$> C|n_{C,k}^3|.$$

Nhắc lại rằng f(n) không là $\Omega(n^3)$ nếu với mọi hằng số C>0,k, tồn tại số nguyên $n_{C,k}>k$ sao cho $|f(n_{C,k})|< C|n_{C,k}^3|$. Để chứng minh f(n) không là $\Omega(n^3)$, ta chọn $n_{C,k}=2(|k|+\lceil 1/C\rceil)+1>k$ và theo định nghĩa

$$|f(n_{C,k})| = |n_{C,k}^2|$$

$$< C \cdot (2(|k| + \lceil 1/C \rceil) + 1) \cdot |n_{C,k}^2|$$

$$= C|n_{C,k}^3|.$$

- 4. Tìm công thức tường minh cho các tổng sau:
 - (a) (1 điểm) $s(n) = \sum_{k=1}^{n} 5^k$
 - (b) (2 điểm) $t(n) = \sum_{k=1}^{n} k5^k$

Lời giải:

(a) Ta có

$$s(n) = 5^{1} + 5^{2} + \dots + 5^{n-1} + 5^{n}$$

$$5s(n) = 5^{2} + \dots + 5^{n-1} + 5^{n} + 5^{n+1}$$

Và do đó $5s(n) - s(n) = 5^{n+1} - 5$, suy ra $s(n) = \frac{5^{n+1} - 5}{4}$.

(b) • Cách 1:

$$t(n) = 5 + 2 \cdot 5^{2} + \dots + n \cdot 5^{n}$$

$$5t(n) = 5^{2} + \dots + (n-1) \cdot 5^{n} + n \cdot 5^{n+1}$$

Và do đó

$$t(n) - 5t(n) = 5 + 5^{2} + \dots + 5^{n} - n \cdot 5^{n+1}$$
$$= \frac{5^{n+1} - 5}{4} - n \cdot 5^{n+1}$$

Suy ra $4t(n) = n \cdot 5^{n+1} - \frac{5^{n+1} - 5}{4}$, và do đó

$$t(n) = \frac{(4n-1) \cdot 5^{n+1} + 5}{16}.$$

• Cách 2: Để tìm công thức tổng quát của t(n), ta giải hệ thức truy hồi

$$t(n) = t(n-1) + n \cdot 5^n \quad (n > 1)$$

với điều kiện ban đầu t(1) = 5.

– Tìm nghiệm $t^{(h)}(n)$ của hệ thức thuần nhất t(n)=t(n-1). Đa thức đặc trung của hệ thức này là r-1=0. Do đó

$$t^{(h)}(n) = \alpha \cdot 1^n$$

với hằng số α nào đó.

– Tìm nghiệm riêng $t^{(p)}(n)$ của hệ thức truy hồi ban đầu. Chú ý rằng hệ thức có dạng t(n) = t(n-1) + F(n) với $F(n) = (1 \cdot n + 0) \cdot 5^n$ và do đó một nghiệm riêng $t^{(p)}(n)$ của hệ thức có dạng $t^{(p)}(n) = (p_1 n + p_0) \cdot 5^n$ với các hằng số p_0, p_1 nào đó. Thay nghiệm này vào hệ thức truy hồi, ta có

$$(p_1n + p_0) \cdot 5^n = (p_1(n-1) + p_0) \cdot 5^{n-1} + n \cdot 5^n$$

Suy ra $(4p_1-5)n+(4p_2+p_1)=0$ và do đó $4p_1-5=0$ và $4p_2+p_1=0$, suy ra $p_1=5/4$ và $p_2=-5/16$. Tóm lại,

$$t^{(p)}(n) = \left(\frac{5}{4}n - \frac{5}{16}\right) \cdot 5^n = \frac{5(4n-1)}{16} \cdot 5^n = \frac{(4n-1)5^{n+1}}{16}.$$

– Nghiệm t(n) của hệ thức đã cho có dạng

$$t(n) = t^{(p)}(n) + t^{(h)}(n) = \frac{(4n-1)5^{n+1}}{16} + \alpha \cdot 1^n.$$

Từ điều kiện ban đầu $t(1)=5,\,{\rm ta}$ có

$$t(1) = \frac{(4 \cdot 1 - 1)5^{1+1}}{16} + \alpha \cdot 1^1 = \frac{15 \cdot 5 - 16\alpha}{16} = 5.$$

Suy ra $\alpha=5/16.$ Tóm lại,

$$t(n) = \frac{(4n-1)5^{n+1}}{16} + \frac{5}{16} \cdot 1^n = \frac{(4n-1)5^{n+1} + 5}{16}.$$