ACM 模板

by tokitsukaze 2018.11.21

目录

1.数	据结	5构	. 4
	1.1	RMQ	. 4
		1.1.1 一维 RMQ	4
		1.1.2 下标 RMQ	5
		1.1.3 二维 RMQ	5
	1.2	并查集	. 7
		1.2.1 dsu	. 7
	1.3	树状数组	. 7
		1.3.1 一维 bit	
		1.3.2 二维 bit	. 8
	1.4	线段树	. 9
		1.4.1 一维线 <mark>段树</mark>	
		1.4.2 动态开点线段树	11
		1.4.3 多棵动态开点线段树的分裂与合并	12
	1.5	Trie	15
		1.5.1 Trie	
		1.5.2 01Trie	
		1.5.3 动态开点 01 Trie	17
		主席树	
		Treap	
	1.8	LCA	
		1.8.1 dfs+ST O <mark>(nlo</mark> gn)预处理,O(1)查询	24
		1.8.2 树链剖分 O(n)预处理,O(logn)查询	25
		1.8.3 离线 Tarjan <mark>O(n)</mark>	
		树链剖分	
	1.1	0 KD-tree	29
	1.1	1 k 叉哈夫曼树	34
2.字	符串	1	35
	2.1	KMP	35
		2.1.1 kmp	
		2.1.2 exkmp	
	2.2	manacher	
		2.2.1 插分隔符	
		2.2.2 不插分隔符	
		AC 自动机	
	2.4	hash	
		2.4.1 hash	
		2.4.2 BKDRHash	42
		2.4.3 Hash_map	43
	2.5	回文树	44
3.图	论		45
	3.1	链式前向星	45
	3.2	最短路	45

		3.2.1 Dijkstra	45
		3.2.2 spfa	46
	3.3	floyd 求最小环 hdu1599	47
	3.4	最小生成树	48
		3.4.1 prim	48
		3.4.2 kruskal	49
	3.5	最小树形图(待补)	50
	3.6	二分图匹配	50
		3.6.1 匈牙利算法	50
	3.7	网络流	
		3.7.1 Dinic	
		3.7.2 ISAP	
		3.7.3 High Level Preflow Push	56
	3.8	费用流	60
		3.8.1 Min Cost Max Flow	60
		强连通分量	62
	3.10) 双连通分量	63
		3.10.1 边双连通-桥-割点	
	3.11	1 2-sat	
		3.11.1 染色法 输出字典序最小的解 O(n*m)	
		3.10.2 强连通缩点法 输出任意一组解 O(n+m)	
4.数			
	4.1	素数筛与分解质因数	
		4.1.1 埃氏筛	
		4.1.2 线性筛	
		4.1.3 区间筛	
		4.1.4 分解质因数	
		Miller_Rabin + Pollard_rho	
	4.3	exgcd	
		4.3.1 exgcd	
		4.3.2 xa+yb=c	
	4.4	逆元	
		4.4.1 费马小定理	
		4.4.2 扩展欧几里得	
		4.4.3 公式	
		4.4.4 逆元打表	
		中国剩余定理	
	4.6	欧拉函数	
		4.6.1 直接求某个数的欧拉函数 O(sqrt(n))	
	. =	4.6.2 线性筛 O(n)	
		莫比乌斯函数	
	4.8	组合数	
		4.8.1 小范围	
		4.8.2 大范围	78

4.9 Lucas 定理	78
4.10 第二类 Stirling 数	79
4.11 线性基	
4.12 Berlekamp-Massey	81
4.13 原根	83
4.13.1 原根性质	
4.13.2 指标法则	83
4.13.3 求素数原根与指标表	83
4.14 ex Baby-Step-Giant-Step a^x≡b (mod c)	85
5.多项式	86
5.1 FFT	86
5.2 NTT	87
5.3 FWT	89
5.4 拉格朗日插值	90
6.矩阵	92
6.1 矩阵基本操作	
6.2 矩阵快速幂	93
6.3 高斯消元	
6.3.1 同余方程 mod=2 时 异或加速	93
7.博弈论	94
7.1 威佐夫博弈	
7.2 SG 函数	94
7.2.1 sg 表	
7.2.2 记忆化搜索求 sg 表	95
7.3 阶梯博弈	
7.4 SJ 定理	96
8.dp	96
8.1 LIS	
8.2 LPS	96
8.3 数位 dp	97
9.Other	
9.1 FastIO	98
9.1.1 fast input	98
9.1.2 FastIO	
9.2 网格整数点共有多少个正方形	
9.3 模拟退火	
9.3.1 简单版 ->模拟退火求费马点	
9.3.2 复杂版	
9.4 矩形面积并	
9.5 判断星期几	
9.6 hash_map	
9.7 O(1)快速乘	
9.8 快速模	
9.9 离散化	
: : : ** * · · =	, ,

NTT 常用 mod	108
斐波那契数列性质	110

1.数据结构

1.1 RMQ

```
1.1.1 一维 RMQ
int v[MAX],maxx[MAX][22],minn[MAX][22];
void RMQ(int n)
  int i,j;
  for(i=1;i<=n;i++)
    maxx[i][0]=minn[i][0]=v[i];
    for(j=1;1<<(j-1)<=n;j++)
      maxx[i][j]=0;
      minn[i][j]=INF;
    }
  }
  for(j=1;1<<(j-1)<=n;j++)
    for(i=1;i+(1<<j)-1<=n;i++)
    {
      int t=1<<(j-1);
      maxx[i][j]=max(maxx[i][j-1],maxx[i+t][j-1]);
      minn[i][j]=min(minn[i][j-1],minn[i+t][j-1]);
    }
int query(int l,int r)
  int j=(int)(log10(r-l+1)/log10(2))+1;
  int i=r-(1<<(j-1))+1;
  return max(maxx[l][j-1],maxx[i][j-1]);
//return min(minn[l][j-1],minn[i][j-1]);
```

```
1.1.2 下标 RMQ
int v[MAX],maxx[MAX][22],minn[MAX][22];
int pmax(int a,int b){return v[a]>v[b]?a:b;}
int pmin(int a,int b){return v[a]<v[b]?a:b;}
void RMQ(int n)
{
  int i,j;
  for(i=1;i<=n;i++)
    maxx[i][0]=minn[i][0]=i;
  for(j=1;1<<(j-1)<=n;j++)
    for(i=1;i+(1<<j)-1<=n;i++)
      int t=1<<(j-1);
      maxx[i][j]=pmax(maxx[i][j-1],maxx[i+t][j-1]);
      minn[i][j]=pmin(minn[i][j-1],minn[i+t][j-1]);
  }
int query(int l,int r)
  int j=(int)(log10(r-l+1)/log10(2))+1;
  int i=r-(1<<(j-1))+1;
  return pmax(maxx[l][j-1],maxx[i][j-1]);
//return pmin(minn[l][j-1],minn[i][j-1]);
1.1.3 二维 RMQ
int v[302][302];
int maxx[302][302][9][9],minn[302][302][9][9];
void RMQ(int n,int m)
{
  int i,j,ii,jj;
  for(i=1;i<=n;i++)
    for(j=1;j<=m;j++)
      maxx[i][j][0][0]=minn[i][j][0][0]=v[i][j];
```

```
}
 for(ii=0;(1<<ii)<=n;ii++)
    for(jj=0;(1<<jj)<=m;jj++)
      if(ii+jj)
      {
        for(i=1;i+(1<<ii)-1<=n;i++)
          for(j=1;j+(1<< jj)-1<=m;j++)
            if(ii)
            {
              minn[i][j][ii][jj]=min(minn[i][j][ii-1][jj],minn[i+(1<<(ii-1))][j][ii-1][jj]);
              maxx[i][j][ii][jj]=max(maxx[i][j][ii-1][jj],maxx[i+(1<<(ii-1))][j][ii-1][jj]);
            }
            else
              minn[i][j][ii][jj]=min(minn[i][j][ii][jj-1],minn[i][j+(1<<(jj-1))][ii][jj-1]);
              maxx[i][j][ii][jj]=max(maxx[i][j][ii][jj-1],maxx[i][j+(1<<(jj-1))][ii][jj-1]);
            }
          }
        }
    }
 }
int query(int x1,int y1,int x2,int y2)
 int k1=0;
 while((1 << (k1+1)) <= x2-x1+1) k1++;
 int k2=0;
 while((1<<(k2+1))<=y2-y1+1) k2++;
 x2=x2-(1<<k1)+1;
 y2=y2-(1<< k2)+1;
max(maxx[x1][y1][k1][k2],maxx[x1][y2][k1][k2]),max(maxx[x2][y1][k1][k2],maxx
[x2][y2][k1][k2]))
//return
2][y2][k1][k2]));
```

1.2 并查集

```
1.2.1 dsu
struct dsu
  int pre[MAX];
  void init(int n)
  {
    int i;
    for(i=1;i<=n;i++)
      pre[i]=i;
    }
  }
  int find(int x)
  {
    if(pre[x]!=x) pre[x]=find(pre[x]);
    return pre[x];
  }
  void merge(int a,int b)
  {
    int ra,rb;
    ra=find(a);
    rb=find(b);
    if(ra!=rb) pre[ra]=rb;
}dsu;
1.3 树状数组
1.3.1 一维 bit
struct Fenwick_Tree
  #define type int
  type bit[MAX];
  int n;
  void init(int _n){n=_n;mem(bit,0);}
  int lowbit(int x){return x&(-x);}
  void insert(int x,type v)
    while(x<=n)
```

```
{
       bit[x]+=v;
       x+=lowbit(x);
    }
  }
  type get(int x)
    type res=0;
    while(x)
       res+=bit[x];
       x-=lowbit(x);
    }
    return res;
  }
  type query(int l,int r)
    return get(r)-get(l-1);
  }
  #undef type
}tr;
1.3.2 二维 bit
struct Fenwick_Tree
  #define type int
  type bit[MAX][MAX];
  int n,m;
  void init(int _n,int _m){n=_n;m=_m;mem(bit,0);}
  int lowbit(int x){return x&(-x);}
  void update(int x,int y,type v)
  {
    int i,j;
    for(i=x;i<=n;i+=lowbit(i))</pre>
      for(j=y;j\leq m;j+=lowbit(j))
      {
         bit[i][j]+=v;
    }
  type get(int x,int y)
```

```
type i,j,res=0;
    for(i=x;i>0;i-=lowbit(i))
      for(j=y;j>0;j-=lowbit(j))
        res+=bit[i][j];
    }
    return res;
  type query(int x1,int x2,int y1,int y2)
  {
    x1--;
    y1--;
    return get(x2,y2)-get(x1,y2)-get(x2,y1)+get(x1,y1);
  #undef type
}tr;
1.4 线段树
1.4.1 一维线段树
struct Segment_Tree
{
  #define type int
  #define Is (id<<1)
  #define rs (id<<1|1)
  int n,ql,qr;
  type a[MAX],v[MAX<<2],tag[MAX<<2],qv;
  void pushup(int id)
  {
  void pushdown(int id)
  {
    if(!tag[id]) return;
  void build(int l,int r,int id)
    tag[id]=0;
    if(l==r)
    {
```

```
v[id]=a[l];
    return;
  int mid=(l+r)>>1;
  build(I,mid,ls);
  build(mid+1,r,rs);
  pushup(id);
}
void update(int l,int r,int id)
  if(l>=ql\&&r<=qr)
  {
    return;
  }
  pushdown(id);
  int mid=(l+r)>>1;
  if(ql<=mid) update(l,mid,ls);</pre>
  if(qr>mid) update(mid+1,r,rs);
  pushup(id);
}
type query(int l,int r,int id)
{
  type res=0;
  if(l>=ql&&r<=qr) return v[id];
  pushdown(id);
  int mid=(l+r)>>1;
  if(ql<=mid) res+=query(l,mid,ls);</pre>
  if(qr>mid) res+=query(mid+1,r,rs);
  return res;
}
void build(int _n){n=_n;build(1,n,1);}
void upd(int l,int r,int v)
  ql=l;
  qr=r;
  qv=v;
  update(1,n,1);
type ask(int l,int r)
  ql=l;
  qr=r;
  return query(1,n,1);
```

```
}
  #undef type
  #undef Is
  #undef rs
}tr;
1.4.2 动态开点线段树
//空间大小是 nlogm,n 为插入的节点总数,m 为区间长度
struct Segment Tree
{
  #define type int
  int root,tot,ls[MAX*20],rs[MAX*20],ql,qr;
  type v[MAX*20],tag[MAX*20],qv;
  void init()
    root=0;
    Is[0]=rs[0]=0;
   v[0]=0;
   tag[0]=-1;
    tot=1;
  }
  int newnode()
    Is[tot]=rs[tot]=0;
    v[tot]=0;
    tag[tot]=-1;
    return tot++;
  void pushdown(int id)
  {
    if(tag[id]==-1) return;
    if(!ls[id]) ls[id]=newnode();
    if(!rs[id]) rs[id]=newnode();
    tag[id]=-1;
  void pushup(int id)
  void update(int l,int r,int &id)
```

```
if(!id) id=newnode();
    if(l>=ql\&&r<=qr)
      v[id]=(r-l+1)*qv;
      tag[id]=qv;
      return;
    pushdown(id);
    int mid=(l+r)>>1;
    if(ql<=mid) update(l,mid,ls[id]);</pre>
    if(qr>mid) update(mid+1,r,rs[id]);
    pushup(id);
  }
  type query(int l,int r,int &id)
  {
    if(!id) return 0;
    if(l>=ql&&r<=qr) return v[id];
    int mid=(l+r)>>1;
    type res=0;
    if(ql<=mid) res+=query(l,mid,ls[id]);</pre>
    if(qr>mid) res+=query(mid+1,r,rs[id]);
    return res;
  #undef type
}tr;
```

1.4.3 多棵动态开点线段树的分裂与合并

```
//空间大小是 nlogm,n 为插入的节点总数,m 为区间长度 struct Segment_Tree {
    #define type int int s[MAX*20],top;//内存池 int root[MAX],tot,ls[MAX*20],rs[MAX*20],ql,qr,n; type v[MAX*20],tag[MAX*20],qv; void init() {
    top=0; mem(root,0);
```

```
ls[0]=rs[0]=0;
  v[0]=0;
  tot=1;
}
int newnode()
{
  int t;
  if(top) t=s[--top];
  else t=tot++;
  ls[t]=rs[t]=0;
  v[t]=0;
  return t;
}
void delnode(int x)
{
  s[top++]=x;
void pushup(int id)
  v[id]=v[ls[id]]+v[rs[id]];
void pushdown(int id)
  if(tag[id]==-1) return;
  if(!ls[id]) ls[id]=newnode();
  if(!rs[id]) rs[id]=newnode();
  tag[id]=-1;
int split(int l,int r,int &id)
{
  if(!id) return 0;
  if(q|<=|\&\&r<=qr)
    int temp=id;
    id=0;
    return temp;
  int t=newnode();
  int mid=(l+r)>>1;
  if(ql<=mid) ls[t]=split(l,mid,ls[id]);</pre>
  if(qr>mid) rs[t]=split(mid+1,r,rs[id]);
  pushup(t);
```

```
pushup(id);
  return t;
int merge(int a,int b)
  if(!a||!b) return a+b;
  ls[a]=merge(ls[a],ls[b]);
  rs[a]=merge(rs[a],rs[b]);
  if(!ls[a]&&!rs[a])
    v[a]+=v[b];//把 b 的信息合并给 a
  else
  {
    pushup(a);
    //此处可能需要更新其他东西
  delnode(b);
  return a;
}
void update(int l,int r,int &id)
{
  if(!id) id=newnode();
  if(l>=ql\&&r<=qr)
    v[id]=(r-l+1)*qv;
    tag[id]=qv;
    return;
  }
  pushdown(id);
  int mid=(l+r)>>1;
  if(ql<=mid) update(l,mid,ls[id]);
  if(qr>mid) update(mid+1,r,rs[id]);
  pushup(id);
type query(int l,int r,int &id)
  if(!id) return 0;
  if(l>=ql&&r<=qr) return v[id];
  int mid=(l+r)>>1;
  type res=0;
  if(ql<=mid) res+=query(l,mid,ls[id]);</pre>
  if(qr>mid) res+=query(mid+1,r,rs[id]);
  return res;
```

```
}
  #undef type
}tr;
1.5 Trie
1.5.1 Trie
struct Trie
  #define type int
  struct trie
  {
    int v;
    trie *next[26];
    trie()
    {
      v=0;
      for(int i=0;i<26;i++) next[i]=NULL;
    }
  }*root;
  void insert(trie *p,char *s)
    int i=0,t;
    while(s[i])
      t=s[i]-'a';
      if(p->next[t]==NULL) p->next[t]=new trie;
      p=p->next[t];
      p->v++;//按情况改
      i++;
  }
  int find(trie *p,char *s)
  {
    int i=0,t;
    while(s[i])
      t=s[i]-'a';
      if(p->next[t]==NULL) return 0;
      p=p->next[t];
      i++;
    }
```

```
return p->v;//按情况改
  //删除前缀为 s 的字符串
  void del(char *s)
  {
    int i=0,t,temp;
    trie *p,*pre;
    pre=p=root;
    while(s[i])
      t=s[i]-'a';
      if(p->next[t]==NULL) return;
      if(!s[i+1])
      {
        temp=p->next[t]->v;
        p->next[t]=NULL;
        break;
      }
      pre=p;
      p=p->next[t];
      i++;
    }
    i=0;
    p=root;
    while(s[i])
      t=s[i]-'a';
      if(p->next[t]==NULL) return;
      p=p->next[t];
      p->v-=temp;
      i++;
    }
  #undef type
}tr;
1.5.2 01Trie
数组大小(x+1)*MAX:插入的值的最大值<2^x<MAX
Trie.Insert(1,x,v);
Trie.Delete(1,x,v);
Trie.query(1,x,v);
Trie.clear(1,17);
*/
```

```
struct Trie
  int cnt[32*MAX],val[32*MAX];
  void Insert(int x,int pos,int v)
  {
    if(pos<0)
      cnt[x]++;
      val[x]=v;
      return;
    }
    Insert((x < 1)|((v > pos)&1),pos-1,v);
    cnt[x]=cnt[x<<1]+cnt[x<<1|1];
  }
  void Delete(int x,int pos,int v)
    if(pos<0)
    {
      cnt[x]--;
      return;
    Delete((x<<1)|((v>>pos)&1),pos-1,v);
    cnt[x]=cnt[x<<1]+cnt[x<<1|1];
  }
  void clear(int x,int pos)
  {
    cnt[x]=0;
    if(pos<0) return;
    clear(x<<1,pos-1);</pre>
    clear(x<<1|1,pos-1);
  int query(int x,int pos,int v)//查询与 v 异或的最大值 并返回
  {
    if(pos<0) return val[x];</pre>
    int temp=(v>>pos)&1;
    temp | =x<<1;
    if(cnt[temp^1]) return query(temp^1,pos-1,v);
    return query(temp,pos-1,v);
}tr;
```

1.5.3 动态开点 01Trie

```
数组大小(x+1)*MAX:插入的值的最大值<2^x<MAX
Trie.Insert(1,x,v);
Trie.Delete(1,x,v);
Trie.query(1,x,v);
Trie.clear(1,x);
*/
struct Trie
  int root,tot,ls[MAX*31],rs[MAX*31],val[MAX*31],cnt[MAX*31];
  void init()
  {
    root=0;
    ls[0]=rs[0]=0;
    val[0]=cnt[0]=0;
    tot=1;
  }
  int newnode()
    Is[tot]=rs[tot]=0;
    val[tot]=0;
    return tot++;
  void Insert(int &x,int pos,int v)
    if(!x) x=newnode();
    if(pos<0)
    {
      cnt[x]++;
      val[x]=v;
      return;
    }
    if((v>>pos)&1) Insert(rs[x],pos-1,v);
    else Insert(ls[x],pos-1,v);
    cnt[x]=cnt[ls[x]]+cnt[rs[x]];
  }
  void Delete(int x,int pos,int v)
  {
    if(pos<0)
      cnt[x]--;
      return;
    if((v>>pos)&1) Delete(rs[x],pos-1,v);
```

```
else Delete(ls[x],pos-1,v);
    cnt[x]=cnt[ls[x]]+cnt[rs[x]];
  int query(int x,int pos,int v)
    if(pos<0) return val[x];
    int temp=(v>>pos)&1;
    if(temp)
    {
       if(cnt[rs[x]]) return query(rs[x],pos-1,v);
       else return query(ls[x],pos-1,v);
    }
    else
    {
       if(cnt[ls[x]]) return query(ls[x],pos-1,v);
       else return query(rs[x],pos-1,v);
    }
  }
}tr;
```

1.6 主席树

```
struct president_tree
{
    #define type int
    int root[MAX],ls[40*MAX],rs[40*MAX],tot,ql,qr;
    type sum[40*MAX],qv;
    void init()
    {
        mem(root,0);
        tot=1;
        ls[0]=rs[0]=sum[0]=0;
    }
    int newnode(int x)
    {
        ls[tot]=ls[x];
    }
}
```

```
rs[tot]=rs[x];
    sum[tot]=sum[x];
    return tot++;
  }
  void insert(int l,int r,int &id,int pre) //set(ql,ql,v)
  {
    id=newnode(pre);
    sum[id]+=qv;
    if(l==r) return;
    int mid=(l+r)>>1;
    if(ql<=mid) insert(l,mid,ls[id],ls[pre]);
    else insert(mid+1,r,rs[id],rs[pre]);
  }
  int kindcnt(int l,int r,int id) //set(ql,qr)
  {
    if(ql<=l&&r<=qr) return sum[id];
    int mid=(l+r)>>1;
    int res=0;
    if(ql<=mid) res+=kindcnt(l,mid,ls[id]);</pre>
    if(qr>=mid+1) res+=kindcnt(mid+1,r,rs[id]);
    return res;
  int kthsmall(int l,int r,int id,int pre,int k)
    if(l==r) return I;
    int mid=(l+r)>>1;
    int temp=sum[ls[id]]-sum[ls[pre]];
    if(temp>=k) return kthsmall(l,mid,ls[id],ls[pre],k);
    else return kthsmall(mid+1,r,rs[id],rs[pre],k-temp);
  int kthbig(int l,int r,int id,int pre,int k)
  {
    if(l==r) return l;
    int mid=(l+r)>>1;
    int temp=sum[rs[id]]-sum[rs[pre]];
    if(temp>=k) return kthbig(mid+1,r,rs[id],rs[pre],k);
    else return kthbig(l,mid,ls[id],ls[pre],k-temp);
  void set(int l,int r,type v=0){ql=l;qr=r;qv=v;}
}pt;
```

1.7 Treap

```
struct Treap
{
  #define type II
  struct node
    int ch[2],fix,sz,w;
    type v;
    node(){}
    node(type x)
      v=x;
      fix=rand();
      sz=w=1;
      ch[0]=ch[1]=0;
    }
  }t[MAX];
  int tot,root,tmp;
  void init()
  {
    srand(unsigned(new char));
    root=tot=0;
    t[0].sz=t[0].w=0;
    mem(t[0].ch,0);
  }
  inline void maintain(int k)
    t[k].sz=t[t[k].ch[0]].sz+t[t[k].ch[1]].sz+t[k].w;
  inline void rotate(int &id,int k)
    int y=t[id].ch[k^1];
    t[id].ch[k^1]=t[y].ch[k];
    t[y].ch[k]=id;
    maintain(id);
    maintain(y);
    id=y;
  void insert(int &id,type v)
    if(!id) t[id=++tot]=node(v);
    else
```

```
{
       if(t[id].sz++,t[id].v==v)t[id].w++;
       else if(insert(t[id].ch[tmp=v>t[id].v],v),t[t[id].ch[tmp]].fix>t[id].fix)
rotate(id,tmp^1);
       }
  }
  void erase(int &id,type v)
    if(!id)return;
    if(t[id].v==v)
       if(t[id].w>1) t[id].w--,t[id].sz--;
       else
       {
         if(!(t[id].ch[0]&&t[id].ch[1])) id=t[id].ch[0]|t[id].ch[1];
         else
         {
           rotate(id,tmp=t[t[id].ch[0]].fix>t[t[id].ch[1]].fix);
           t[id].sz--;
           erase(t[id].ch[tmp],v);
    }
    else
    {
       t[id].sz--;
       erase(t[id].ch[v>t[id].v],v);
    }
  type kth(int k)//k small
    int id=root;
    if(id==0) return 0;
    while(id)
       if(t[t[id].ch[0]].sz>=k) id=t[id].ch[0];
       else if(t[t[id].ch[0]].sz+t[id].w>=k) return t[id].v;
       else
         k=t[t[id].ch[0]].sz+t[id].w;
         id=t[id].ch[1];
       }
    }
  }
```

```
int find(type key,int f)
{
  int id=root,res=0;
  while(id)
  {
    if(t[id].v<=key)
       res+=t[t[id].ch[0]].sz+t[id].w;
       if(f&&key==t[id].v) res-=t[id].w;
       id=t[id].ch[1];
    }
    else id=t[id].ch[0];
  }
  return res;
}
type find_pre(type key)
  type res=-LLINF;
  int id=root;
  while(id)
    if(t[id].v<key)
       res=max(res,t[id].v);
       id=t[id].ch[1];
    else id=t[id].ch[0];
  }
  return res;
type find_suc(type key)
{
  type res=LLINF;
  int id=root;
  while(id)
    if(t[id].v>key)
       res=min(res,t[id].v);
       id=t[id].ch[0];
    }
    else id=t[id].ch[1];
  return res;
```

```
}
  void insert(type v){insert(root,v);}
  void erase(type v){erase(root,v);}
  int upper_bound_count(type key){return find(key,0);}//the count >=key
  int lower_bound_count(type key){return find(key,1);}//the count >key
  int rank(type key){return lower bound count(key)+1;}
  #undef type
}t; //t.init();
1.8 LCA
       dfs+ST O(nlogn)预处理,O(1)查询
struct node{int to;int w;node(){}node(int _to,int _w):to(_to),w(_w){}};
int dis[MAX];
int path[2*MAX],deep[2*MAX],first[MAX],tot;
int dp[2*MAX][28];
vector<node> mp[MAX];
void dfs(int x,int pre,int h)
{
  int i;
  path[++tot]=x;
  first[x]=tot;
  deep[tot]=h;
  for(i=0;i<mp[x].size();i++)
  {
    int to=mp[x][i].to;
    if(to==pre) continue;
    dis[to]=dis[x]+mp[x][i].w;
    dfs(to,x,h+1);
    path[++tot]=x;
    deep[tot]=h;
  }
void ST(int n)
  int i,j,x,y;
  for(i=1;i<=n;i++)
    dp[i][0]=i;
  for(j=1;(1<<j)<=n;j++)
```

```
for(i=1;i+(1<<j)-1<=n;i++)
    {
      x=dp[i][j-1];
      y=dp[i+(1<<(j-1))][j-1];
      dp[i][j]=deep[x]<deep[y]?x:y;</pre>
    }
  }
}
int query(int l,int r)
  int len,x,y;
  len=(int)log2(r-l+1);
  x=dp[l][len];
  y=dp[r-(1<<len)+1][len];
  return deep[x]<deep[y]?x:y;
int LCA(int x,int y)
  int l,r,pos;
  l=first[x];
  r=first[y];
  if(l>r) swap(l,r);
  pos=query(l,r);
  return path[pos];
int getdist(int a,int b)
  return dis[a]+dis[b]-2*dis[LCA(a,b)];
void work(int n)
  for(int i=0;i<=n;i++) dis[i]=0;
  tot=0;
  dfs(1,0,0);
  ST(2*n-1);
}
1.8.2 树链剖分 O(n)预处理,O(logn)查询
       离线 Tarjan O(n)
1.8.3
```

1.9 树链剖分

```
size[]数组,以x为根的子树节点个数
top[]数组,当前节点的所在链的顶端节点
son[]数组,重儿子
deep[]数组,当前节点的深度
fa[]数组, 当前节点的父亲
idx[]数组,树中每个节点剖分后的新编号
rnk[]数组,idx的逆,表示线段上中当前位置表示哪个节点
*/
struct HLD
 #define type int
 struct edge{int a,b;type v;edge(int a,int b,type v=0):a( a),b( b),v( v){}};
 struct node{int to;type w;node(){}node(int _to,type _w):to(_to),w(_w){}};
 vector<int> mp[MAX];
 vector<edge> e;
 int deep[MAX],fa[MAX],size[MAX],son[MAX];
 int rnk[MAX],top[MAX],idx[MAX],tot;
 int n,rt;
 void init(int n)
   n=_n;
   for(int i=0;i<=n;i++) mp[i].clear();</pre>
   e.clear();
   e.pb(edge(0,0));
 void add edge(int a,int b,type v=0)
   e.pb(edge(a,b,v));
   mp[a].pb(b);
   mp[b].pb(a);
 }
 void dfs1(int x,int pre,int h)
   int i,to;
   deep[x]=h;
   fa[x]=pre;
   size[x]=1;
   for(i=0;i < sz(mp[x]);i++)
     to=mp[x][i];
```

```
if(to==pre) continue;
    dfs1(to,x,h+1);
    size[x]+=size[to];
    if(son[x] == -1 \mid | size[to] > size[son[x]]) \ son[x] = to;\\
  }
}
void dfs2(int x,int tp)
  int i,to;
  top[x]=tp;
  idx[x]=++tot;
  rnk[idx[x]]=x;
  if(son[x]==-1) return;
  dfs2(son[x],tp);
  for(i=0;i < sz(mp[x]);i++)
    to=mp[x][i];
    if(to!=son[x]\&\&to!=fa[x])\;dfs2(to,to);\\
  }
void work(int _rt)
{
  int i;
  rt=_rt;
  mem(son,-1);
  tot=0;
  dfs1(rt,0,0);
  dfs2(rt,rt);
}
int LCA(int x,int y)
  while(top[x]!=top[y])
    if(deep[top[x]]<deep[top[y]]) swap(x,y);</pre>
    x=fa[top[x]];
     if(deep[x]>deep[y]) swap(x,y);
     return x;
}
//node
void init_node()
{
  build(n);
}
```

```
void modify_node(int x,int y,type val)
  while(top[x]!=top[y])
    if(deep[top[x]]<deep[top[y]]) swap(x,y);</pre>
    update(idx[top[x]],idx[x],val);
    x=fa[top[x]];
     }
     if(deep[x]>deep[y]) swap(x,y);
     update(idx[x],idx[y],val);
}
type query_node(int x,int y)
  type res=0;
  while(top[x]!=top[y])
    if(deep[top[x]]<deep[top[y]]) swap(x,y);</pre>
    res+=query(idx[top[x]],idx[x]);
    x=fa[top[x]];
     if(deep[x]>deep[y]) swap(x,y);
     res+=query(idx[x],idx[y]);
     return res;
}
//path
void init path()
  v[idx[rt]]=0;
  for(int i=1;i<n;i++)
    if(deep[e[i].a]<deep[e[i].b]) swap(e[i].a,e[i].b);</pre>
    v[idx[e[i].a]]=e[i].v;
  build(n);
void modify_edge(int id,type val)
  if(deep[e[id].a]>deep[e[id].b]) update(idx[e[id].a],idx[e[id].a],val);
  else update(idx[e[id].b],idx[e[id].b],val);
void modify_path(int x,int y,type val)
  while(top[x]!=top[y])
```

```
if(deep[top[x]]<deep[top[y]]) swap(x,y);</pre>
      update(idx[top[x]],idx[x],val);
      x=fa[top[x]];
       if(deep[x]>deep[y]) swap(x,y);
       if(x!=y) update(idx[x]+1,idx[y],val);
  type query_path(int x,int y)
    type res=0;
    while(top[x]!=top[y])
      if(deep[top[x]]<deep[top[y]]) swap(x,y);</pre>
      res+=query(idx[top[x]],idx[x]);
      x=fa[top[x]];
       if(deep[x]>deep[y]) swap(x,y);
       if(x!=y) res+=query(idx[x]+1,idx[y]);
       return res;
  #undef type
}hld;
/**********attention!*<mark>**</mark>*
//hld.init(n)
//hld.add_edge(): undirected edge.
1.10 KD-tree
namespace kd tree
  const double alpha=0.75;
  const int dim=2;
  #define type int
                            //初始值
  const type NONE=INF;
  struct kdtnode
    bool exist;
    int l,r,sz,fa,dep,x[dim],mx[dim],mn[dim];
    type v,tag;
    kdtnode(){}
    void initval()
      sz=exist;tag=v;
```

```
if(exist) for(int i=0;i<dim;i++) mn[i]=mx[i]=x[i];
  }
  void null()
    exist=sz=0;
    v=tag=NONE;
    for(int i=0;i<dim;i++)
       mx[i]=-INF;
       mn[i]=INF;
    }
  void newnode(int x0,int x1,type val=NONE)
    x[0]=x0;
    x[1]=x1;
    I=r=fa=0;
    exist=1;
    v=val;
    initval();
  kdtnode(int a,int b,type d=NONE){newnode(a,b,d);}
};
struct KDT
{
  #define Is t[id].l
  #define rs t[id].r
  kdtnode t[MAX];
  int tot,idx,root;
  inline void pushup(int id)
    t[id].initval();
    t[id].sz+=t[ls].sz+t[rs].sz;
    t[id].tag=min({t[ls].tag,t[rs].tag,t[id].tag});
    for(int i=0;i<dim;i++)
    {
       if(ls)
      {
         t[id].mx[i]=max(t[id].mx[i],t[ls].mx[i]);
         t[id].mn[i]=min(t[id].mn[i],t[ls].mn[i]);
      }
      if(rs)
       {
         t[id].mx[i]=max(t[id].mx[i],t[rs].mx[i]);
```

```
t[id].mn[i]=min(t[id].mn[i],t[rs].mn[i]);
    }
  }
}
bool isbad(int id){return t[id].sz*alpha+3<max(t[ls].sz,t[rs].sz);}
int st[MAX],top;
void build(int &id,int l,int r,int fa,int dep=0)
  id=0;if(l>r) return;
  int m=(l+r)>>1; idx=dep;
  nth_element(st+l,st+m,st+r+1,[&](int x,int y){return t[x].x[idx]<t[y].x[idx];});
  id=st[m];
  build(ls,l,m-1,id,(dep+1)%dim);
  build(rs,m+1,r,id,(dep+1)%dim);
  pushup(id);
  t[id].dep=dep;
  t[id].fa=fa;
inline void init(int n=0)
  root=0;
  t[0].null();
  for(int i=1;i<=n;i++) st[i]=i;
  if(n) build(root,1,n,0);
  tot=n;
void travel(int id)
  if(!id) return;
  if(t[id].exist) st[++top]=id;
  travel(ls);
  travel(rs);
void rebuild(int &id,int dep)
  top=0;travel(id);
  build(id,1,top,t[id].fa,dep);
void insert(int &id,int now,int fa,int dep=0)
  if(!id)
    id=now;
    t[id].dep=dep;
```

```
t[id].fa=fa;
    return;
  if(t[now].x[dep]<t[id].x[dep]) insert(ls,now,id,(dep+1)%dim);</pre>
  else insert(rs,now,id,(dep+1)%dim);
  pushup(id);
  if(isbad(id)) rebuild(id,t[id].dep);
  t[id].dep=dep;
  t[id].fa=fa;
}
inline void insert(kdtnode x){t[++tot]=x;insert(root,tot,0,0);}
inline void del(int id)
  if(!id) return;
  t[id].null();
  int x=id;
  while(x)
  {
    pushup(x);
    x=t[x].fa;
  }
  if(isbad(id))
    x=t[id].fa;
    rebuild(root==id?root:(t[x].l==id?t[x].l:t[x].r),t[id].dep);
  }
}
kdtnode q;
Il dist(|| x,|| y){return x*x+y*y;}
Il getdist(int id)//点 q 离区域 t[id]最短距离
  if(!id) return LLINF;
  Il res=0;
  if(q.x[0]<t[id].mn[0]) res+=dist(q.x[0]-t[id].mn[0],0);
  if(q.x[1]<t[id].mn[1]) res+=dist(q.x[1]-t[id].mn[1],0);
  if(q.x[0]>t[id].mx[0]) res+=dist(q.x[0]-t[id].mx[0],0);
  if(q.x[1]>t[id].mx[1]) res+=dist(q.x[1]-t[id].mx[1],0);
  return res;
}
kdtnode a,b;
inline int check(kdtnode &x)//x 在矩形(a,b)内
{
  int ok=1;
  for(int i=0;i<dim;i++)
```

```
{
    ok&=(x.x[i]>=a.x[i]);
    ok&=(x.x[i]<=b.x[i]);
  return ok;
inline int allin(kdtnode &x)//x 的子树全在矩形(a,b)内
  int ok=1;
  for(int i=0;i<dim;i++)
    ok&=(x.mn[i]>=a.x[i]);
    ok&=(x.mx[i]<=b.x[i]);
  return ok;
inline int allout(kdtnode &x)//x 的子树全不在矩形(a,b)内
  int ok=0;
  for(int i=0;i<dim;i++)
    ok|=(x.mx[i]<a.x[i]);
    ok|=(x.mn[i]>b.x[i]);
  }
  return ok;
}
type res;
void query(int id)
  if(!id) return;
  if(allout(t[id])||t[id].sz==0) return;
  if(allin(t[id]))
    res=min(res,t[id].tag);
    return;
  if(check(t[id])&&t[id].exist) res=min(res,t[id].v);
  int l,r;
  I=Is;
  r=rs;
  if(t[l].tag>t[r].tag) swap(l,r);
  if(t[l].tag<res) query(l);</pre>
  if(t[r].tag<res) query(r);</pre>
}
```

```
ACM 模板 by tokitsukaze
   inline type query(kdtnode _a,kdtnode _b)
   {
     a=_a;b=_b;
     res=INF;
     query(root);
     return res;
   }
 }kd;
 #undef type
 #undef Is
 #undef rs
}
using namespace kd_tree;
1.11 k 叉哈夫曼树
/*
用两个队列代替优先队列 复杂度 On
注意: 小的先进 原数组记得先排序
*/
int a[MAX];
int Huffman(int k)
{
 int i,res,s;
 queue<int> q,d;
 s=((n-1)%(k-1)?k-1-(n-1)%(k-1):0);//计算要补多少个 0
 while(s--) q.push(0);
 for(i=1;i \le n;i++) q.push(a[i]);
 res=0;
 while(sz(q)+sz(d)>1)
 {
   s=0;
```

for(i=<mark>0;i<k</mark>;i++)

}

if(sz(q)&&sz(d))

if(q.front()<d.front())

s+=q.front();
q.pop();

```
else
         {
           s+=d.front();
           d.pop();
         }
       }
       else if(sz(q))
         s+=q.front();
         q.pop();
       }
       else if(sz(d))
         s+=d.front();
         d.pop();
       }
    }
    res+=s;
    d.push(s);
  return res;
}
```

2.字符串

2.1 KMP

```
2.1.1 kmp

int Next[MAX];
void getnext(char *b,int *Next,int len)
{
   int i,j;
   i=0;
   j=Next[0]=-1;
   while(i<len)
   {
      if(j==-1||b[i]==b[j]) Next[++i]=++j;
      else j=Next[j];
   }</pre>
```

```
}
int KMP(char *a,char *b,int lena,int lenb)
  int i,j;
  getnext(b,Next,lenb);
  i=j=0;
  while(i<lena)
    if(j==-1||a[i]==b[j])
       i++;
      j++;
    }
    else j=Next[j];
    if(j==lenb) break;//successful match
  return j==-1?0:j;
}
2.1.2 exkmp
struct exKMP
  int next[MAX];
  void getnext(char *s)
  {
    int i,j,pos,len;
    next[i=0]=len=strlen(s);
    while(s[i]==s[i+1]&&i+1<len)i++;
    next[1]=i;
    pos=1;
    for(i=2;i<len;i++)
       if(next[i-pos]+i<next[pos]+pos) next[i]=next[i-pos];</pre>
       else
         j=max(0,next[pos]+pos-i);
         while(i+j < len&&s[j] == s[j+i]) j++;
         next[i]=j;
         pos=i;
       }
    }
  void work(char *a,char *b,int *ex)
```

```
{
    int i=0,j,pos,lena,lenb;
    getnext(b);
    lena=strlen(a);
    lenb=strlen(b);
    i=0;
    while(a[i]==b[i]&&i<lenb&&i<lena) i++;
    ex[0]=i;
    pos=0;
    for(i=1;i<lena;i++)
      if(next[i-pos]+i<ex[pos]+pos) ex[i]=next[i-pos];</pre>
      else
      {
        j=max(0,ex[pos]+pos-i);
        while(i+j < lena & j < lenb & a[j+i] == b[j]) j++;
         ex[i]=j;
         pos=i;
      }
}exkmp;
2.2 manacher
2.2.1 插分隔符
```

```
2.2.1 独介闸付

struct Manacher

{

    int p[MAX<<1];

    char s[MAX<<1];

    int work(char *a)

    {

        int len,i,mid,r,res=0;

        len=strlen(a+1);

        for(i=1;i<=len;i++)

        {

            p[i]=0;

            s[2*i-1]='%';

            s[2*i]=a[i];

        }

        s[len=len*2+1]='%';

        mid=r=0;

        for(i=1;i<=len;i++)
```

```
{
       if(i < r) p[i] = min(p[2*mid-i],r-i);
       else p[i]=1;
       while(i-p[i]>=1&&i+p[i]<=len&&s[i-p[i]]==s[i+p[i]]) p[i]++;
       if(i+p[i]>r)
       {
         r=i+p[i];
         mid=i;
       res=max(res,p[i]-1);
    }
    return res;
  }
}la;
2.2.2 不插分隔符
struct Manacher
{
  int p[MAX];
  int work(char *s)//return max length of palindrome
    int r,mid,i,len,res=0;
    len=strlen(s+1);
    //odd
    r=mid=0;
    mem(p,0);
    for(i=1;i<=len;i++)
       //substring s[i,i]
       if(r>i) p[i]=min(p[2*mid-i],r-i);
       while(i+p[i]+1 \le len & s[i+p[i]+1] = s[i-p[i]-1])
       {
         //substring s[i-p[i]-1,i+p[i]+1]
         p[i]++;
       }
       if(i+p[i]>r)
         r=i+p[i];
         mid=i;
       res=max(res,p[i]*2+1);
    }
    //even
    r=mid=0;
```

```
mem(p,0);
    for(i=2;i<=len;i++)
      if(r>i) p[i]=min(p[2*mid-i],r-i+1);
      while(i+p[i] \le len \&s[i+p[i]] = s[i-p[i]-1])
         //substring s[i-p[i]-1,i+p[i]]
         p[i]++;
      }
      if(i+p[i]-1>r)
         r=i+p[i]-1;
         mid=i;
      res=max(res,p[i]*2);
    }
    return res;
}la;
2.3 AC 自动机
struct AC_Automaton
  static const int K=26;//may need change
  int next[MAX][K],fail[MAX],cnt[MAX],last[MAX];
  int root, tot;
  inline int getid(char c)//may need change
    return c-'a';
  }
  int newnode()
    mem(next[tot],0);
    fail[tot]=0;
    cnt[tot]=0;
    return tot++;
  }
  void init()
  {
    tot=0;
    root=newnode();
  }
```

```
void insert(char *s)
{
  int len,now,i;
  len=strlen(s);
  now=root;
  for(i=0;i<len;i++)
    int t=getid(s[i]);
    if(!next[now][t]) next[now][t]=newnode();
    now=next[now][t];
  }
  cnt[now]++;
}
void setfail()
{
  int i,now;
  queue<int>q;
  for(i=0;i<K;i++)
    if(next[root][i]) q.push(next[root][i]);
  while(!q.empty())
    now=q.front();
    q.pop();
    //suffix link
    if(cnt[fail[now]]) last[now]=fail[now];
    else last[now]=last[fail[now]];
    may need add something here:
    cnt[now]+=cnt[fail[now]];
    */
    for(i=0;i<K;i++)
      if(next[now][i])
        fail[next[now][i]]=next[fail[now]][i];
        q.push(next[now][i]);
      else next[now][i]=next[fail[now]][i];
    }
  }
int query(char *s)
```

```
{
    int len,now,i,res;
    len=strlen(s);
    now=root;
    res=0;
    for(i=0;i<len;i++)
      int t=getid(s[i]);
      now=next[now][t];
      int tmp=now;
      while(tmp&&cnt[tmp]!=-1)
        res+=cnt[tmp];
        cnt[tmp]=-1;
        tmp=last[tmp];
      }
    }
    return res;
  }
  //build fail tree
  vector<int> mp[MAX];
  void build_tree()
  {
    for(int i=0;i<=tot;i++) mp[i].clear();</pre>
    for(int i=1;i<tot;i++) mp[fail[i]].pb(i);</pre>
  }
}ac;
2.4 hash
2.4.1 hash
//seed 通常 rand()一个
//p 通常用 1e9+7 或者 1e9+9
//ull 比 mod 快
struct hash_table
{
  Il seed,p;
  II Hash[MAX],tmp[MAX];
  void set(Il _seed,Il _p)
    seed=_seed;
    p=_p;
  void work(char *s,int n)
```

```
{
    tmp[0]=1;
    Hash[0]=0;
    for(int i=1;i<=n;i++)
      tmp[i]=tmp[i-1]*seed%p;
      Hash[i]=(Hash[i-1]*seed+(s[i]-'a'))%p;//may need change
    }
  Il get(int l,int r)
    return ((Hash[r]-Hash[l-1]*tmp[r-l+1])%p+p)%p;
  }
};
2.4.2 BKDRHash
struct BKDRHash
{
  static const ull seed=1313131;//31,131,1313,13131,131313
  static const int p=2000007;
  ull Hash[MAX],tmp[MAX];
  ull val[MAX];
  int last[p+10],nex[MAX],cnt;
  void init()//clear hash table
  {
    mem(last,0);
    cnt=0;
  bool insert(ull x)
    int u=x%p;
    for(int i=last[u];i;i=nex[i])
      if(val[i]==x) return 1;
    nex[++cnt]=last[u];
    last[u]=cnt;
    val[cnt]=x;
    return 0;
  void work(char *s,int n)
  {
    tmp[0]=1;
    Hash[0]=0;
```

```
for(int i=1;i<=n;i++)
      tmp[i]=tmp[i-1]*seed;
      Hash[i]=Hash[i-1]*seed+s[i];
    }
  }
  ull get(int l,int r)
    return Hash[r]-Hash[l-1]*tmp[r-l+1];
}bkdr; //bkdr.init();
2.4.3 Hash_map
struct Hash_map
     static const int p=999917;
     II val[MAX],w[MAX];
     int tot,head[p],nex[MAX];
     int top,st[MAX];
     void clear(){tot=0;while(top) head[st[top--]]=0;}
    void add(int x,ll y){val[++tot]=y;nex[tot]=head[x];head[x]=tot;w[tot]=0;}
     bool count(II y)
     {
          int x=y%p;
          for(int i=head[x];i;i=nex[i])
      if(y==val[i]) return 1;
          return 0;
     II& operator [](II y)
          int x=y%p;
          for(int i=head[x];i;i=nex[i])
      if(y==val[i]) return w[i];
    }
          add(x,y);
          st[++top]=x;
    return w[tot];
}mp;
```

2.5 回文树

```
struct Palindrome_Tree
  int len[MAX],next[MAX][26],fail[MAX],last,s[MAX],tot,n;
  int cnt[MAX],deep[MAX];
  int newnode(int I)
    mem(next[tot],0);
    fail[tot]=0;
    deep[tot]=cnt[tot]=0;
    len[tot]=l;
    return tot++;
  }
  void init()
  {
    tot=n=last=0;
    newnode(0);
    newnode(-1);
    s[0]=-1;
    fail[0]=1;
  }
  int get_fail(int x)
    while(s[n-len[x]-1]!=s[n]) x=fail[x];
    return x;
  void add(int t)//attention the type of t is int
    int id, now;
    s[++n]=t;
    now=get_fail(last);
    if(!next[now][t])
      id=newnode(len[now]+2);
      fail[id]=next[get_fail(fail[now])][t];
      deep[id]=deep[fail[id]]+1;
      next[now][t]=id;
    last=next[now][t];
    cnt[last]++;
  }
```

```
ACM 模板 by tokitsukaze
 void count()
 {
   for(int i=tot-1;~i;i--) cnt[fail[i]]+=cnt[i];
}pam; //pam.init();
                                3.图论
3.1 链式前向星
//注意 这里 MAX 指的是边数 双向边要*2
int head[MAX],tot;
struct node
 int to,v,next;
}mp[MAX];
void init()
 mem(head,-1);
 tot=0;
void add(int x,int y,int v)
```

3.2 最短路

mp[tot].v=v;
mp[tot].to=y;

head[x]=tot++;

mp[tot].next=head[x];

3.2.1 Dijkstra

```
struct node
{
  int id;
  int v;
  node(){}
  node(int a,int b) :id(a),v(b){}
  friend bool operator <(node a,node b){return a.v>b.v;}
};
vector<node> mp[MAX];
```

```
bool flag[MAX];
int dis[MAX];
void dij(int s)
  priority_queue<node> q;
  node t,to;
  mem(dis,0x3f);
  mem(flag,0);
  dis[s]=0;
  q.push(node(s,0));
  while(!q.empty())
    t=q.top();
    q.pop();
    if(flag[t.id]) continue;
    flag[t.id]=1;
    for(int i=0;i<sz(mp[t.id]);i++)
      to=mp[t.id][i];
      if(dis[to.id]>dis[t.id]+to.v)
        dis[to.id]=dis[t.id]+to.v;
        q.push(node(to.id,dis[to.id]));
      }
}
3.2.2 spfa
//最长路 dis 变为-INF 松弛改成<
struct node
{
  int id;
  int v;
  node(){}
  node(int a,int b) :id(a),v(b){}
};
vector<node> mp[MAX];
int dis[MAX];
bool flag[MAX];
void spfa(int s)
{
  queue<node> q;
```

```
node t,to;
  mem(dis,0x3f);
  mem(flag,0);
  dis[s]=0;
  flag[s]=1;
  q.push(node(s,dis[s]));
  while(!q.empty())
  {
    t=q.front();
    q.pop();
    flag[t.id]=0;
    for(int i=0;i<sz(mp[t.id]);i++)
       to=mp[t.id][i];
       if(dis[to.id]>dis[t.id]+to.v)
         dis[to.id]=dis[t.id]+to.v;
         if(!flag[to.id])
           q.push(node(to.id,dis[to.id]));
           flag[to.id]=1;
       }
    }
  }
}
```

3.3 floyd 求最小环 hdu1599

```
int mp[111][111],dis[111][111],ans,n;
void floyd()
{
   int i,j,k;
   for(k=1;k<=n;k++)
   {
      for(i=1;i<k;i++)
      {
        if(mp[k][i]==INF) continue;
        for(j=i+1;j<k;j++)
      {
        if(mp[k][j]==INF) continue;
        ans=min(ans,mp[k][i]+mp[k][j]+dis[i][j]);
      }
}</pre>
```

```
}
    for(i=1;i<=n;i++)
      if(dis[i][k]==INF) continue;
      for(j=1;j<=n;j++)
         if(dis[k][j]==INF) continue;
         dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
  }
int main()
  int m,i,a,b,w;
  while(~scanf("%d%d",&n,&m))
    mem(mp,0x3f);
    mem(dis,0x3f);
    ans=INF;
    while(m--)
      scanf("%d%d%d",&a,&b,&w);
      mp[a][b]=mp[b][a]=dis[a][b]=dis[b][a]=min(mp[a][b],w);
    }
    floyd();
    if(ans==INF) puts("It's impossible.");
    else printf("%d\n",ans);
  }
  return 0;
}
```

3.4 最小生成树

```
3.4.1 prim

struct node
{
   int id;
   int v;
   node(){}
   node(int a,int b) :id(a),v(b){}
   friend bool operator <(node a,node b){return a.v>b.v;}
```

```
};
vector<node> mp[MAX];
bool flag[MAX];
int dis[MAX],ans;
void prim()
  node t,to;
  priority_queue<node> q;
  mem(dis,0x3f);
  mem(flag,0);
  dis[1]=0;
  q.push(node(1,dis[1]));
  ans=0;
  while(!q.empty())
  {
    t=q.top();
    q.pop();
    if(flag[t.id]) continue;
    flag[t.id]=1;
    ans+=dis[t.id];
    for(int i=0;i<sz(mp[t.id]);i++)
    {
      to=mp[t.id][i];
      if(!flag[to.id]&&dis[to.id]>to.v)
      {
         dis[to.id]=to.v;
        q.push(node(to.id,dis[to.id]));
      }
    }
  }
}
3.4.2 kruskal
int pre[MAX],ans;
struct node
  int x,y,v;
  node(){}
  node(int a,int b,int c):x(a),y(b),v(c){}
  friend bool operator<(node a,node b)
  {
    return a.v<b.v;
  }
```

```
}a[MAX];
void init(int n)
  for(int i=1;i<=n;i++) pre[i]=i;
}
int find(int x)
  if(pre[x]!=x) pre[x]=find(pre[x]);
  return pre[x];
}
void merge(node s)
  int rx,ry;
  rx=find(s.x);
  ry=find(s.y);
  if(rx!=ry)
    pre[rx]=ry;
    ans+=s.v;
  }
}
void kruskal(int n,int m,node *s)
  init(n);
  ans=0;
  sort(s,s+m);
  for(int i=0;i<m;i++) merge(s[i]);
}
```

3.5 最小树形图(待补)

3.6 二分图匹配

最小点覆盖的点数=最大匹配数 最小路径覆盖的边数=顶点数 n-最大匹配数 最大独立集=最小路径覆盖=顶点数 n-最大匹配数

3.6.1 匈牙利算法

```
vector<int> mp[MAX];
int link[MAX],used[MAX];
int dfs(int x)
```

```
{
  int i,to;
  for(i=0;i < sz(mp[x]);i++)
    to=mp[x][i];
    if(!used[to])
      used[to]=1;
      if(link[to]==-1||dfs(link[to]))
        link[to]=x;
        return 1;
      }
    }
  return 0;
int hungary(int n)//返回最大匹配数
  mem(link,-1);
  int i,res=0;
  for(i=1;i<=n;i++)
    mem(used,0);
    if(dfs(i)) res++;
  }
  return res;
}
3.7 网络流
3.7.1 Dinic
struct Dinic
  static const int N=1010;
  struct node
  {
    int from,to,cap,flow;
    node(int u,int v,int c,int f) :from(u),to(v),cap(c),flow(f){}
  };
  int s,t;
  vector<node> edge;
```

```
vector<int> mp[N];
int vis[N],dist[N],id[N];
void init(int n)
  edge.clear();
  for(int i=0;i<=n;i++)
    mp[i].clear();
    id[i]=dist[i]=vis[i]=0;
  }
}
void add(int from,int to,int cap)
  edge.pb(node(from,to,cap,0));
  edge.pb(node(to,from,0,0));
  int m=edge.size();
  mp[from].pb(m-2);
  mp[to].pb(m-1);
}
bool bfs()
  int i,x;
  mem(vis,0);
  queue<int>q;
  q.push(s);
  dist[s]=0;
  vis[s]=1;
  while(!q.empty())
    x=q.front();
    q.pop();
    for (i=0;i<mp[x].size();i++)
      node &e=edge[mp[x][i]];
      if(!vis[e.to]&&e.cap>e.flow)
        vis[e.to]=1;
         dist[e.to]=dist[x]+1;
        q.push(e.to);
    }
  }
  return vis[t];
}
```

```
int dfs(int x,int a)
    if(x==t||!a)return a;
    int flow = 0, f;
    for(int &i=id[x];i<mp[x].size();i++)</pre>
       node &e=edge[mp[x][i]];
       if(dist[x]+1==dist[e.to]\&\&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
         e.flow+=f;
         edge[mp[x][i]^1].flow-=f;
         flow+=f;
         a-=f;
         if(!a) break;
       }
    }
    return flow;
  int maxflow(int _s,int _t)
    s=_s;
    t=_t;
    int res=0;
    while(bfs())
       mem(id,0);
       res+=dfs(s,INF);
    }
    return res;
}dc;
3.7.2 ISAP
struct ISAP
  static const int N=100010;
  struct node
    int from,to,cap,flow;
    node(){}
    node(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
  };
```

```
int p[N],num[N],cur[N],d[N];
int t,s,n;
bool vis[N];
vector<int> mp[N];
vector<node> edge;
void init(int n)
  n=_n;
  for(int i=0;i<=n;i++)
    mp[i].clear();
    d[i]=INF;
    vis[i]=num[i]=cur[i]=0;
  edge.clear();
void add(int from,int to,int cap)
  edge.pb(node(from,to,cap,0));
  edge.pb(node(to,from,0,0));
  int m=edge.size();
  mp[from].pb(m-2);
  mp[to].pb(m-1);
}
bool bfs()
{
  queue<int> q;
  d[t]=0;
  vis[t]=1;
  q.push(t);
  while(!q.empty())
    int u=q.front();
    q.pop();
    for(int i=0;i<mp[u].size();i++)
      node &e=edge[mp[u][i]^1];
      if(!vis[e.from]&&e.cap>e.flow)
        vis[e.from]=true;
        d[e.from]=d[u]+1;
        q.push(e.from);
      }
    }
```

```
}
  return vis[s];
int augment()
  int u=t,flow=INF;
  while(u!=s)
  {
    node &e=edge[p[u]];
    flow=min(flow,e.cap-e.flow);
    u=edge[p[u]].from;
  u=t;
  while(u!=s)
  {
    edge[p[u]].flow+=flow;
    edge[p[u]^1].flow-=flow;
    u=edge[p[u]].from;
  }
  return flow;
}
int maxflow(int _s,int _t)
{
  s=_s;
  t=_t;
  int flow=0;
  bfs();
  if(d[s]>=n) return 0;
  for(int i=0;i<n;i++)</pre>
    if(d[i]<INF) num[d[i]]++;
  }
  int u=s;
  while(d[s]<n)
    if(u==t)
      flow+=augment();
      u=s;
    bool ok=false;
    for(int i=cur[u];i<mp[u].size();i++)</pre>
    {
      node &e=edge[mp[u][i]];
```

```
if(e.cap>e.flow&&d[u]==d[e.to]+1)
        {
           ok=true;
           p[e.to]=mp[u][i];
           cur[u]=i;
           u=e.to;
           break;
        }
      }
      if(!ok)
         int mn=n-1;
         for(int i=0;i<mp[u].size();i++)
           node &e=edge[mp[u][i]];
           if(e.cap>e.flow) mn=min(mn,d[e.to]);
         if(--num[d[u]]==0) break;
         num[d[u]=mn+1]++;
         cur[u]=0;
         if(u!=s) u=edge[p[u]].from;
      }
    }
    return flow;
}isap;
3.7.3 High Level Preflow Push
struct High_Level_Preflow_Push
  static const int N=10010;
  struct node{int v,cap,index;};
  vector<node> edge[N];
  vector<int> List[N];
  vector<list<int>::iterator> listit;
  list<int> dlist[N];
  int highest,highestActive,vis[N],excess[N],height[N],n;
  void init(int _n)
    n=_n;
    for(int i=0;i<=n;i++) edge[i].clear();</pre>
  void add(int u,int v,int cap)
```

```
{
  edge[u].push_back(node{v,cap,edge[v].size()});
  edge[v].push_back(node{u,0,edge[u].size()-1});
}
void globalRelabel(int t)
{
  int u,i,hp,v,index;
  queue<int> q;
  for(i=0;i<=n;i++)
    height[i]=n;
    List[i].clear();
    dlist[i].clear();
    vis[i]=0;
  height[t]=0;
  q.push(t);
  while(!q.empty())
    u=q.front();
    q.pop();
    for(i=0;i<edge[u].size();i++)
       v=edge[u][i].v;
       index=edge[u][i].index;
       if(height[v]==n&&edge[v][index].cap>0)
         height[v]=height[u]+1;
         vis[height[v]]++;
         q.push(hp=v);
    }
  for(i=0;i<n;i++)
    if(height[i]<n)</pre>
       listit[i]=dlist[height[i]].insert(dlist[height[i]].begin(),i);
       if(excess[i]>0) List[height[i]].push_back(i);
    }
  }
  highest=height[hp];
  highestActive=height[hp];
}
```

```
void push(int u,node &e)
{
  int v,df;
  v=e.v;
  df=min(excess[u],e.cap);
  e.cap=e.cap-df;
  edge[v][e.index].cap=edge[v][e.index].cap+df;
  excess[u]=excess[u]-df;
  excess[v]=excess[v]+df;
  if(excess[v]>0&&excess[v]<=df) List[height[v]].push_back(v);
}
void discharge(int u)
  int i,nh,v,cap,h;
  nh=n;
  for(i=0;i<edge[u].size();i++)
    v=edge[u][i].v;
    cap=edge[u][i].cap;
    if(cap>0)
      if(height[u]==height[v]+1)
         push(u,edge[u][i]);
         if(excess[u]==0) return;
      else nh=min(nh,height[v]+1);
    }
  h=height[u];
  if(vis[h]==1)
  {
    for(i=h;i<=highest;i++)
      for(list<int>::iterator it=dlist[i].begin();it!=dlist[i].end();it++)
         vis[height[*it]]--;
         height[*it]=n;
      }
      dlist[i].clear();
    highest=h-1;
  }
  else
```

```
{
    vis[h]--;
    listit[u]=dlist[h].erase(listit[u]);
    height[u]=nh;
    if(nh==n) return;
    vis[nh]++;
    listit[u]=dlist[nh].insert(dlist[nh].begin(),u);
    highestActive=nh;
    highest=max(highest,highestActive);
    List[nh].push_back(u);
  }
int maxflow(int s,int e)
  int i,u;
  if(s==e) return 0;
  highestActive=0;
  highest=0;
  for(i=0;i<=n;i++) height[i]=vis[i]=excess[i]=0;
  height[s]=n;
  listit.resize(n);
  for(i=0;i<n;i++)
  {
    if(i!=s)
    {
      listit[i]=dlist[height[i]].insert(dlist[height[i]].begin(),i);
    }
  }
  vis[0]=n-1;
  excess[s]=INF;
  excess[e]=-INF;
  for(i=0;i<edge[s].size();i++) push(s,edge[s][i]);</pre>
  globalRelabel(e);
  while(highestActive>=0)
    if(List[highestActive].empty()==1)
       highestActive--;
       continue;
    u=List[highestActive].back();
    List[highestActive].pop_back();
    discharge(u);
  }
```

```
return excess[e]+INF;
}
}hlpp;
```

3.8 费用流

```
3.8.1 Min Cost Max Flow
```

```
struct MCMF
  #define type int //int->INF II->LLINF
  static const int N=2005;
  struct node
    int from,to;
    type cap,flow,cost;
    node(){}
    node(int u,int v,type c,type f,type co):from(u),to(v),cap(c),flow(f),cost(co){}
  };
  int n,s,t;
  vector<node> edge;
  vector<int> mp[N];
  int vis[N],id[N];
  type d[N],a[N];
  void init(int _n)
    n= n;
    for(int i=0;i<=n;i++) mp[i].clear();</pre>
    edge.clear();
  void add(int from,int to,type cap,type cost=0)
  {
    edge.pb(node(from,to,cap,0,cost));
    edge.pb(node(to,from,0,0,-cost));
    int m=edge.size();
    mp[from].pb(m-2);
    mp[to].pb(m-1);
  bool spfa(type& flow,type& cost)
    for(int i=0;i<=n;i++)
```

```
{
    d[i]=INF;
    vis[i]=0;
  d[s]=0;vis[s]=1;id[s]=0;a[s]=INF;
  queue<int> q;
  q.push(s);
  while(!q.empty())
    int x=q.front();
    q.pop();
    vis[x]=0;
    for(int i=0;i<mp[x].size();i++)
      node& e=edge[mp[x][i]];
      int to=e.to;
      if(e.cap>e.flow&&d[to]>d[x]+e.cost)
        d[to]=d[x]+e.cost;
        a[to]=min(a[x],e.cap-e.flow);
        id[to]=mp[x][i];
        if(!vis[to])
           vis[to]=1;
           q.push(to);
    }
  if(d[t]==INF) return false;
  flow+=a[t];
  cost+=a[t]*d[t];
  int x=t;
  while(x!=s)
    edge[id[x]].flow+=a[t];
    edge[id[x]^1].flow-=a[t];
    x=edge[id[x]].from;
  }
  return true;
pair<type,type> mincost_maxflow(int _s,int _t)
  type flow=0,cost=0;
```

```
s=_s;
    t=_t;
    while(spfa(flow,cost));
    return MP(cost,flow);
  #undef type
}mcmf;
3.9 强连通分量
int scc,top,tot;
vector<int> mp[MAX];
int low[MAX],dfn[MAX],belong[MAX];
int stk[MAX],flag[MAX];
void init(int n)
{
  int i;
  for(i=1;i<=n;i++)
    mp[i].clear();
    low[i]=0;
    dfn[i]=0;
    stk[i]=0;
    flag[i]=0;
  scc=top=tot=0;
void tarjan(int x)
  int to,i,temp;
  stk[top++]=x;
  flag[x]=1;
  low[x]=dfn[x]=++tot;
  for(i=0;i<mp[x].size();i++)</pre>
  {
    to=mp[x][i];
    if(!dfn[to])
    {
      tarjan(to);
      low[x]=min(low[x],low[to]);
    else if(flag[to]) low[x]=min(low[x],dfn[to]);
  }
```

```
if(low[x]==dfn[x])
  {
    scc++;
    do
    {
      temp=stk[--top];
      flag[temp]=0;
      belong[temp]=scc;
    }while(temp!=x);
  }
}
3.10 双连通分量
3.10.1 边双连通-桥-割点
namespace Tarjan
{
  int bcc,top,tot,n;
  vector<int> mp[MAX];
  vector<PII > bridge;
 int low[MAX],dfn[MAX],belong[MAX],fa[MAX];
  int stk[MAX];
 int cut[MAX],add_block[MAX];
  void dfs(int x,int pre)
  {
    int to,i,tmp,k,son;
    stk[top++]=x;
    low[x]=dfn[x]=++tot;
    fa[x]=pre;
    son=k=0;
    for(auto to:mp[x])
      if(to==pre\&\&!k)
        k++;
        continue;
      if(!dfn[to])
        son++;
        dfs(to,x);
        low[x]=min(low[x],low[to]);
        if(x!=pre\&\&low[to]>=dfn[x])
```

```
{
        cut[x]=1;
        add_block[x]++;
      if(low[to]>dfn[x]) bridge.pb(MP(x,to));
    else low[x]=min(low[x],dfn[to]);
  }
  if(x==pre&&son>1)
    cut[x]=1;
    add_block[x]=son-1;
  if(low[x]==dfn[x])
    bcc++;
    do
    {
      tmp=stk[--top];
      belong[tmp]=bcc;
    }while(tmp!=x);
  }
void work(int _n,vector<int> e[])
{
  n= n;
  for(int i=1;i<=n;i++)
    mp[i]=e[i];
    low[i]=dfn[i]=fa[i]=stk[i]=0;
    cut[i]=add_block[i]=0;
  bcc=top=tot=0;
  bridge.clear();
  for(int i=1;i<=n;i++)
    if(!dfn[i]) dfs(i,i);
  }
void rebuild(vector<int> e[])
  int i,t;
  for(i=1;i<=n;i++) e[i].clear();
     for(i=1;i<=n;i++)
```

```
{
            t=fa[i];
            if(belong[i]!=belong[t])
      {
                 e[belong[i]].pb(belong[t]);
                 e[belong[t]].pb(belong[i]);
           }
      }
  }
}
3.11
         2-sat
3.11.1 染色法 输出字典序最小的解 O(n*m)
vector<int> mp[MAX];
bool flag[MAX];
int cnt,s[MAX];
void init(int n)
  int i;
  for(i=0;i<2*n;i++)
    mp[i].clear();
  }
  mem(flag,0);
}
bool dfs(int x)
{
  int i;
  if(flag[x^1]) return 0;
  if(flag[x]) return 1;
  s[cnt++]=x;
  flag[x]=1;
  for(i=0;i < sz(mp[x]);i++)
    if(!dfs(mp[x][i])) return 0;
  return 1;
void twosat(int n)
  int i;
  for(i=0;i<2*n;i++)
```

```
{
    if(!flag[i]&&!flag[i^1])
      cnt=0;
      if(!dfs(i))
        while(cnt) flag[s[--cnt]]=0;
        if(!dfs(i^1))//无解
          puts("NO");
          return;
      }
    }
 for(i=0;i<2*n;i+=2)
    if(flag[i]) printf("%d\n",i+1);
    else printf("%d\n",i+2);
  }
}
        强连通缩点法 输出任意一组解 O(n+m)
3.10.2
int scc,top,tot;
vector<int> mp[MAX];
int low[MAX],dfn[MAX],belong[MAX];
int stk[MAX],flag[MAX];
int pos[MAX],degree[MAX],ans[MAX],outflag[MAX],cnt;
vector<int> dag[MAX];
void init(int n)
{
  int i;
  for(i=0;i<2*n;i++)
    mp[i].clear();
    dag[i].clear();
    low[i]=0;
    dfn[i]=0;
    stk[i]=0;
    flag[i]=0;
    degree[i]=0;
    outflag[i]=0;
  scc=top=tot=0;
```

```
}
void tarjan(int x)
  int to,i,temp;
  stk[top++]=x;
  flag[x]=1;
  low[x]=dfn[x]=++tot;
  for(i=0;i<mp[x].size();i++)
    to=mp[x][i];
    if(!dfn[to])
      tarjan(to);
      low[x]=min(low[x],low[to]);
    }
    else if(flag[to]) low[x]=min(low[x],dfn[to]);
  if(low[x]==dfn[x])
    scc++;
    do
    {
      temp=stk[--top];
      flag[temp]=0;
      belong[temp]=scc;
    }while(temp!=x);
  }
}
void add(int x,int y)
  mp[x].pb(y);
void topsort(int n)
  int i,t;
  queue<int> q;
  cnt=0;
  for(i=1;i<=scc;i++)
    if(degree[i]==0) q.push(i);
    outflag[i]=0;
  while(!q.empty())
```

```
t=q.front();
    q.pop();
    if(outflag[t]==0)
      outflag[t]=1;
      outflag[pos[t]]=2;
    for(i=0;i<sz(dag[t]);i++)
      int to=dag[t][i];
      degree[to]--;
      if(degree[to]==0) q.push(to);
    }
  }
void builddag(int n)
  int i,j,to;
  for(i=0;i<2*n;i++)
    for(j=0;j<sz(mp[i]);j++)
      to=mp[i][j];
      if(belong[i]!=belong[to])
      {
         degree[belong[i]]++;
         dag[belong[to]].pb(belong[i]);
    }
void twosat(int n)
{
  int i;
  for(i=0;i<2*n;i++)
  {
    if(!dfn[i]) tarjan(i);
  for(i=0;i<n;i++)
    if(belong[2*i]==belong[2*i+1])//无解
      puts("NO");
      return;
```

```
}
    pos[belong[2*i]]=belong[2*i+1];
    pos[belong[2*i+1]]=belong[2*i];
}
builddag(n);
topsort(n);
cnt=0;
for(i=0;i<2*n;i++)
{
    if(outflag[belong[i]]==1) ans[cnt++]=i+1;
}
for(i=0;i<cnt;i++)
{
    printf("%d\n",ans[i]);
}</pre>
```

4.数论

4.1 素数筛与分解质因数

```
prime[x]表示 x 的最小质因数(x>=2)
prime[x]==x(x>=2),表示 x 是素数。
*/
4.1.1 埃氏筛
int p[MAX],tot,prime[MAX];
void init(int n)
  int i,j;
  tot=0;
  mem(prime,0);
  prime[1]=1;
  for(i=2;i<=n;i++)
    if(prime[i]) continue;
    p[tot++]=i;
    for(j=i;j \le n;j+=i)
      if(!prime[j]) prime[j]=i;
    }
  }
```

```
}
4.1.2 线性筛
int p[MAX],tot,prime[MAX];
void init(int n)
  int i,j;
  tot=0;
  mem(prime,0);
  prime[1]=1;
  for(i=2;i<=n;i++)
    if(!prime[i]) prime[i]=p[tot++]=i;
          for(j=0;j< tot \&p[j]*i<=n;j++)
    {
       prime[i*p[j]]=p[j];
       if(i%p[j]==0) break;
    }
  }
}
4.1.3 区间筛
II p[MAX],tot;
bool flag[MAX],prime[MAX];
void init(|| |,|| r)
  Il i,j,sq=sqrt(r+0.5);
  tot=0;
  for(i=0;i<=sq;i++) flag[i]=1;
  for(i=l;i<=r;i++) prime[i-l]=1;
  if(l==0) prime[0]=prime[1]=0;
  if(l==1) prime[0]=0;
  for(i=2;i \le sq;i++)
    if(!flag[i]) continue;
    for(j=i+i;j <= sq;j+=i) flag[j]=0;
    for(j=max(2LL,(l+i-1)/i)*i;j <=r;j+=i) prime[j-l]=0;
  for(i=l;i<=r;i++)
    if(prime[i-l]) p[tot++]=i;
  }
}
```

```
4.1.4 分解质因数
vector<int> res;
void work(int x)
{
    int t;
    res.clear();
    while(x>1)
    {
        t=prime[x];
        while(x%t==0&&x>1) x/=t;
        res.pb(t);
    }
}
```

4.2 Miller_Rabin + Pollard_rho

```
const int S=20;
mt19937 rd(time(0));
II mul2(II a,II b,II p)
{
  II res=0;
  while(b)
    if(b&1) res=(res+a)%p;
    a=(a+a)%p;
    b>>=1;
  return res;
ll pow2(ll a,ll b,ll p)
  II res=1;
  while(b)
    if(b&1) res=mul2(res,a,p);
    a=mul2(a,a,p);
    b>>=1;
  return res;
int check(ll a,ll n,ll x,ll t)//一定是合数返回 1,不一定返回 0
  Il now,nex,i;
```

```
now=nex=pow2(a,x,n);
  for(i=1;i<=t;i++)
    now=mul2(now,now,n);
    if(now==1&&nex!=1&&nex!=n-1) return 1;
    nex=now;
  if(now!=1) return 1;
  return 0;
int Miller Rabin(II n)
  if(n<2) return 0;
  if(n==2) return 1;
  if((n&1)==0) return 0;
  ll x,t,i;
  x=n-1;
  t=0;
  while((x&1)==0) x>>=1,t++;
  for(i=0;i<S;i++)
    if(check(rd()%(n-1)+1,n,x,t)) return 0;
  }
  return 1;
II Pollard_rho(II x,II c)
  ll i,k,g,t,y;
  i=1;
  k=2;
  y=t=rd()%x;
  while(1)
  {
    t=(mul2(t,t,x)+c)%x;
    g = gcd(y-t+x,x);
    if(g!=1\&\&g!=x) return g;
    if(y==t) return x;
    if(i==k)
    {
      y=t;
      k+=k;
    }
  }
```

```
}
vector<II> fac;
void findfac(II n)
  if(Miller_Rabin(n))
  {
    fac.pb(n);
    return;
  }
  Il t=n;
  while(t \ge n) t = Pollard_rho(t, rd()%(n-1)+1);
  findfac(t);
  findfac(n/t);
void work(II x)
  fac.clear();
  findfac(x);
4.3 exgcd
4.3.1 exgcd
解 xa+yb=gcd(a,b)
返回值为 gcd(a,b)
其中一组解为xy
通解:
  x1=x+b/gcd(a,b)*t
  y1=y-a/gcd(a,b)*t
  (t 为任意整数)
II exgcd(II a,II b,II &x,II &y)
  if(b==0)
  {
    x=1;
    y=0;
    return a;
  }
  Il g,t;
 g=exgcd(b,a%b,x,y);
  t=x;
  x=y;
```

```
y=t-a/b*y;
  return g;
}
4.3.2 xa+yb=c
//xa+yb=c 有解条件 c%gcd(a,b)==0
Il linear equation(II a, II b, II c, II &x, II &y)
{
  Il g,t;
  g=exgcd(a,b,x,y);
  if(!c) x=y=0;
  else if((!a&&!b&&c)||c%g) return -1;//no solution
  else if(!a\&\&b) x=1,y=c/b;
  else if(a\&\&!b) x=c/a,y=-c/a;
  else
  {
    a/=g,b/=g,c/=g;
    x*=c,y*=c;
    t=x;
    x%=b;
    if(x<=0) x+=b;//or x<0
    II k=(t-x)/b;
    y+=k*a;
  return g;
}
4.4 逆元
4.4.1 费马小定理
//条件:mod 为素数
Il inv(Il x,Il p){return pow2(x,p-2);}
4.4.2 扩展欧几里得
条件:gcd(a,mod)==1
如果 gcd(a,mod)!=1 返回-1
*/
ll inv(ll a,ll p)
  II g,x,y;
  g=exgcd(a,p,x,y);
  return g==1?(x+p)%p:-1;
}
```

```
4.4.3 公式
a/b%mod=c
->a%(b*mod)/b=c
*/
4.4.4 逆元打表
p 是模
p要求是奇素数
*/
Il inv[MAX];
void getinv(int n,ll p)
{
 ll i;
 inv[1]=1;
 for(i=2;i<=n;i++) inv[i]=(p-p/i)*inv[p%i]%p;
4.5 中国剩余定理
//m 是除数 r 是余数 p 是除数的 LCM(也就是答案的循环节)
int CRT(int *m,int *r,int n)
 int p=m[0],res=r[0],x,y,g;
 for(int i=1;i<n;i++)
 {
   g=exgcd(p,m[i],x,y);
   if((r[i]-res)%g) return -1;//无解
   x=(r[i]-res)/g*x%(m[i]/g);
   res+=x*p;
   p=p/g*m[i];
   res%=p;
    return res>0?res:res+p;
4.6 欧拉函数
//应用: <=n 且与 n 互质的数的和: n*phi[n]/2
4.6.1 直接求某个数的欧拉函数 O(sqrt(n))
int Euler(int n)
{
```

```
int ans,i;
  ans=n;
  for(i=2;i*i<=n;i++)
    if(n%i==0)
    {
      ans=ans-ans/i;
      while(n%i==0) n/=i;
    }
  if(n>1) ans=ans-ans/n;
  return ans;
}
4.6.2 线性筛 O(n)
int prime[MAX],phi[MAX],cnt;
bool flag[MAX];
void Euler(int n)
{
  int i,j,k;
  cnt=0;
  mem(flag,0);
  for(int i=2;i<=n;i++)
  {
    if(!flag[i])
    {
      prime[cnt++]=i;
      phi[i]=i-1;
    }
    for(int j=0;j<cnt&&i*prime[j]<=n;j++)</pre>
      k=i*prime[j];
      flag[k]=1;
      if(i%prime[j]==0)
        phi[k]=phi[i]*prime[j];
         break;
      else phi[k]=phi[i]*(prime[j]-1);
    }
  }
}
```

4.7 莫比乌斯函数

```
int flag[MAX],mo[MAX],prime[MAX],cnt;
void init()
  int i,j,cnt;
  mem(flag,0);
  mem(mo,0);
  cnt=0;
  for(i=2;i<=MAX;i++)
  {
    if(!flag[i])
      prime[cnt++]=i;
      mo[i]=-1;
      for(j=i+i;j<=MAX;j+=i)
      {
        flag[j]++;
    }
  }
  mo[1]=1;
  for(i=2;2*i<=MAX;i++)
  {
    for(j=0;j<cnt\&\&prime[j]*i<MAX;j++)
      if(i%prime[j]==0)
        mo[prime[j]*i]=0;
        break;
      mo[prime[j]*i]=-mo[i];
  }
4.8 组合数
4.8.1 小范围
II C[1010][1010];
void init(int n)
  int i,j;
```

```
for(i=(C[0][0]=1);i <= n;i++)
  {
    for(j=(C[i][0]=1);j <= n;j++)
      C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
  }
}
4.8.2 大范围
II pow2(II a,II b)
{
  Il res=1;
  while(b)
  {
    if(b&1) res=res*a%mod;
    a=a*a%mod;
    b>>=1;
  return res;
}
Il inv(Il x){return pow2(x,mod-2);}
II fac[MAX],invfac[MAX];
void init(int n)
{
  II i;
  fac[0]=1;
  for(i=1;i \le n;i++) fac[i]=fac[i-1]*i\%mod;
  invfac[n]=inv(fac[n]);
  for(i=n-1;~i;i--) invfac[i]=invfac[i+1]*(i+1)%mod;
}
II C(int n,int m)
  if(m>n||m<0||n<0) return 0;
  return fac[n]*invfac[m]%mod*invfac[n-m]%mod;
4.9 Lucas 定理
//C(n,m) n,m<=1e18 p<=1e5
//p must be a prime number
Il Lucas(Il n,Il m,Il p)
  if(m==0) return 1;
```

```
return C(n%p,m%p)*Lucas(n/p,m/p,p)%p;
}
```

4.10 第二类 Stirling 数

4.11 线性基

```
struct Base
{
    #define type II
    #define mx 60
    type d[mx+3],p[mx+3],cnt;
    Base()
    {
        memset(d,0,sizeof(d));
        memset(p,0,sizeof(p));
        cnt=0;
    }
    bool insert(type x)
    {
        int i;
        for(i=mx;~i;i--)
        {
            if(!(x&(1LL<<i))) continue;
            if(!d[i])</pre>
```

```
{
      cnt++;
      d[i]=x;
      break;
    }
    x^=d[i];
  return x>0;
type query_max()
  int i;
  type res=0;
  for(i=mx;~i;i--)
    if((res^d[i])>res) res^=d[i];
  return res;
type query_min()
  for(int i=0;i<=mx;i++)
    if(d[i]) return d[i];
  return 0;
void rebuild()
{
  int i,j;
  cnt=0;
  for(i=mx;~i;i--)
    for(j=i-1;~j;j--)
      if(d[i]&(1LL << j)) d[i]^=d[j];
    }
  }
  for(i=0;i<=mx;i++)
    if(d[i]) p[cnt++]=d[i];
  }
type kth(type k)//能异或出的第 k 小的数 使用前先调用 rebuild
```

```
{
    type res=0;
    if(k>=(1LL<<cnt)) return -1;
    for(int i=mx;~i;i--)
    {
      if(k&(1LL<< i)) res^=p[i];
    return res;
  void merge(Base x)
    for(int i=mx;~i;i--)
      if(x.d[i]) insert(x.d[i]);
  }
};
4.12 Berlekamp-Massey
typedef vector<int> VI;
namespace linear_seq
  #define rep(i,a,n) for (int i=a;i<n;i++)
  #define SZ(x) ((int)(x).size())
  const II mod=1e9+7;
  Il powmod(Il a,Il b){Il res=1;a%=mod; assert(b>=0);
for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
  const int N=10010;
  Il res[N],base[N], c[N], md[N];
  vector<int> Md;
  void mul(|| *a,|| *b,int k)
  {
    rep(i,0,k+k) _c[i]=0;
    rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
    for (int i=k+k-1;i>=k;i--) if ( c[i])
      rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
    rep(i,0,k) a[i]=_c[i];
  }
  int solve(II n,VI a,VI b){
    Il ans=0,pnt=0;
    int k=SZ(a);
    assert(SZ(a)==SZ(b));
    rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
```

```
Md.clear();
  rep(i,0,k) if ( md[i]!=0) Md.push back(i);
  rep(i,0,k) res[i]=base[i]=0;
  res[0]=1;
  while ((1ll<<pnt)<=n) pnt++;
  for (int p=pnt;p>=0;p--) {
    mul(res,res,k);
    if ((n>>p)&1) {
      for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
      rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
    }
  rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
  if (ans<0) ans+=mod;
  return ans;
}
VI BM(VI s){
  VI C(1,1),B(1,1);
  int L=0,m=1,b=1;
  rep(n,0,SZ(s)){
    II d=0;
    rep(i,0,L+1) d=(d+(II)C[i]*s[n-i])%mod;
    if(d==0) ++m;
    else if(2*L <= n){
      VI T=C;
      ll c=mod-d*powmod(b,mod-2)%mod;//逆元
      while (SZ(C) < SZ(B) + m) C.pb(0);
      rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
      L=n+1-L; B=T; b=d; m=1;
    } else {
      ll c=mod-d*powm<mark>od(b,mod-2</mark>)%mod;//逆元
      while (SZ(C) < SZ(B) + m) C.pb(0);
      rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
      ++m;
    }
  }
  return C;
int gao(VI a, II n)
  VI c=BM(a);
  c.erase(c.begin());
  rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
  return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
```

```
}
};//linear seq::gao(VI{},n-1)
```

```
4.13 原根
4.13.1 原根性质
1.一个数 m 如果有原根,则其原根个数为 phi[phi[m]]。若 m 为素数,则其原根
个数为 phi[phi[m]]=phi[m-1]。
2.有原根的数只有 2,4,p^n,2*p^n (p 为质数,n 为正整数)
3.一个数的最小原根的大小是 O(n^0.25)的
4. 如果 g 为 n 的原根,则 g^d 为 n 的原根的充要条件是 gcd(d,phi[n])=1
4.13.2 指标法则
1. I(a*b) \equiv I(a)+I(b) \pmod{p-1}
2. I(a^k) \equiv k^*I(a) \pmod{p-1}
注: I(a)表示 a 的指标。
4.13.3 求素数原根与指标表
int p[MAX],tot,prime[MAX];
void init(int n)
{
 int i,j;
 tot=0;
 mem(prime,0);
 prime[1]=1;
 for(i=2;i<=n;i++)
   if(!prime[i]) prime[i]=p[tot++]=i;
        for(j=0;j<tot\&\&p[j]*i<=n;j++)
   {
     prime[i*p[j]]=p[j];
     if(i\%p[j]==0) break;
   }
 }
}
II pow2(II a,II b,II p)
{
 Il res=1;
 while(b)
   if(b&1) res=res*a%p;
   a=a*a%p;
```

```
b>>=1;
  return res;
int tp[MAX];
int find_root(int x)//求素数原根
  if(x==2) return 1;
     int f,phi=x-1;
     tp[0]=0;
     for(int i=0;phi&&i<tot;i++)</pre>
  {
          if(phi%p[i]==0)
    {
               tp[++tp[0]]=p[i];
               while(phi%p[i]==0) phi/=p[i];
          }
     }
     if(phi!=1) tp[++tp[0]]=phi;
     phi=x-1;
    for(int g=2;g<=x-1;g++)
  {
          f=1;
          for(int i=1;i<=tp[0];i++)
    {
               if(pow2(g,phi/tp[i],x)==1)
      {
                    f=0;
                    break;
          if(f) return g;
     return 0;
int I[MAX];
void get_I(int p)//求指标表
{
  int g,now;
  g=find_root(p);
  now=1;
  for(int i=1;i<p;i++)</pre>
    now=now*g%p;
```

```
I[now]=i;
    }
}
```

4.14 ex Baby-Step-Giant-Step a^x≡b (mod c)

```
Il exBSGS(Il a,Il b,Il c)
  Il i,g,d,num,now,sq,t,x,y;
  if(c==1) return b?-1:(a!=1);
  if(b==1) return a?0:-1;
  if(a%c==0) return b?-1:1;
  num=0;
  d=1;
  while((g=_gcd(a,c))>1)
    if(b%g) return -1;
    num++;
    b/=g;
    c/=g;
    d=(d*a/g)%c;
    if(d==b) return num;
  }
  mp.clear();
  sq=ceil(sqrt(c));
  t=1;
  for(i=0;i < sq;i++)
    if(!mp.count(t)) mp[t]=i;
    else mp[t]=min(mp[t],i);
    t=t*a%c;
  for(i=0;i < sq;i++)
  {
    exgcd(d,c,x,y);
    x=(x*b%c+c)%c;
    if(mp.count(x)) return i*sq+mp[x]+num;
    d=d*t%c;
  }
  return -1;
}
```

5.多项式

5.1 FFT

```
namespace FFT
  #define rep(i,a,b) for(int i=(a);i<=(b);i++)
  const double pi=acos(-1);
  const int maxn=(1<<19)+10;
  struct cp
  {
    double a,b;
    cp(){}
    cp(double _x,double _y){a=_x,b=_y;}
    cp operator +(const cp &o)const{return (cp){a+o.a,b+o.b};}
    cp operator -(const cp &o)const{return (cp){a-o.a,b-o.b};}
    cp operator *(const cp &o)const{return (cp){a*o.a-b*o.b,b*o.a+a*o.b};}
    cp operator *(const double &o)const{return (cp){a*o,b*o};}
    cp operator !()const{return (cp){a,-b};}
  }x[maxn],y[maxn],z[maxn],w[maxn];
  void fft(cp x[],int k,int v)
  {
    int i,j,l;
    for(i=0,j=0;i<k;i++)
      if(i>j)swap(x[i],x[j]);
      for(|=k>>1;(j^=|)<|;|>>=1);
    }
    w[0]=(cp)\{1,0\};
    for(i=2;i<=k;i<<=1)
      cp g=(cp){cos(2*pi/i),(v?-1:1)*sin(2*pi/i)};
      for(j=(i>>1);j>=0;j-=2)w[j]=w[j>>1];
      for(j=1;j<i>1;j+=2)w[j]=w[j-1]*g;
      for(j=0;j< k;j+=i)
      {
        cp *a=x+j,*b=a+(i>>1);
        for(l=0;l<i>>1;l++)
           cp o=b[l]*w[l];
           b[l]=a[l]-o;
           a[l]=a[l]+o;
```

```
}
    if(v)for(i=0;i< k;i++)x[i]=(cp){x[i].a/k,x[i].b/k};
  }
  //多项式 b 与多项式 c 相乘 结果存在 a
  //I1 为 b 的长度-1 I2 为 c 的长度-1
  void mul(int *a,int *b,int *c,int l1,int l2)
  {
    if(|1<128&&|2<128)
      rep(i,0,l1+l2)a[i]=0;
      rep(i,0,l1)rep(j,0,l2)a[i+j]+=b[i]*c[j];
      return;
    }
    int K;
    for(K=1;K<=|1+|2;K<<=1);
    rep(i,0,l1)x[i]=cp(b[i],0);
    rep(i,0,l2)y[i]=cp(c[i],0);
    rep(i,l1+1,K)x[i]=cp(0,0);
    rep(i,l2+1,K)y[i]=cp(0,0);
    fft(x,K,0);fft(y,K,0);
    rep(i,0,K)z[i]=x[i]*y[i];
    fft(z,K,1);
    rep(i,0,l1+l2)a[i]=(ll)(z[i].a+0.5);
  }
};
5.2 NTT
namespace NTT
  const II g=3;
  const II p=998244353;
  II wn[35];
  II pow2(II a,II b)
    Il res=1;
    while(b)
    {
      if(b&1) res=res*a%p;
      a=a*a%p;
      b>>=1;
```

```
}
  return res;
}
void getwn()
  for(int i=0;i<25;i++) wn[i]=pow2(g,(p-1)/(1LL<< i));
void ntt(VL &a,int len,int f)
  ll i,j=0,t,k,w,id;
  for(i=1;i<len-1;i++)
    for(t=len;j^=t>>=1,^j&t;);
    if(i<j) swap(a[i],a[j]);
  }
  for(i=1,id=1;i<len;i<<=1,id++)
    t=i<<1;
    for(j=0;j<len;j+=t)
       for(k=0,w=1;k<i;k++,w=w*wn[id]%p)
      {
         II x=a[j+k],y=w*a[j+k+i]%p;
         a[j+k]=(x+y)%p;
         a[j+k+i]=(x-y+p)%p;
    }
  }
  if(f)
    for(i=1,j=len-1;i< j;i++,j--) swap(a[i],a[j]);
    Il inv=pow2(len,p-2);
    for(i=0;i<len;i++) a[i]=a[i]*inv%p;
//结果存在 a
void mul(|| *a,|| *b,int |1,int |2)
{
  int len,i;
  for(len=1;len<=l1+l2;len<<=1);
  for(i=l1+1;i<=len;i++) a[i]=0;
  for(i=l2+1;i<=len;i++) b[i]=0;
  ntt(a,len,0);ntt(b,len,0);
  for(i=0;i<len;i++) a[i]=a[i]*b[i]%p;
```

```
ntt(a,len,1);
};//NTT::getwn();
5.3 FWT
namespace FWT
  Il inv2;//2 对 p 的逆元
  const II p=1e9+7;
  II pow2(II a,II b)
    Il res=1;
    while(b)
      if(b&1) res=res*a%p;
      a=a*a%p;
      b>>=1;
    return res;
  void fwt(II *a,int n,int f,int v)
    for(int d=1;d<n;d<<=1)
    {
      for(int m=d << 1, i=0; i < n; i+=m)
      {
        for(int j=0;j<d;j++)
          Il x=a[i+j],y=a[i+j+d];
          if(!v)
             if(f==1) a[i+j]=(x+y)%p,a[i+j+d]=(x-y+p)%p;//xor
             else if(f==2) a[i+j]=(x+y)%p;//and
             else if(f==3) a[i+j+d]=(x+y)%p;//or
          }
          else
             if(f==1) a[i+j]=(x+y)*inv2%p,a[i+j+d]=(x-y+p)%p*inv2%p;//xor
             else if(f==2) a[i+j]=(x-y+p)%p;//and
             else if(f==3) a[i+j+d]=(y-x+p)%p;//or
          }
        }
```

```
}
    }
  }
  //结果存在 a
  void XOR(II *a,II *b,int n)
    int len;
    for(len=1;len<=n;len<<=1);
    fwt(a,len,1,0);
    fwt(b,len,1,0);
    for(int i=0;i<len;i++) a[i]=a[i]*b[i]%p;
    inv2=pow2(2,p-2);
    fwt(a,len,1,1);
  }
  void AND(II *a,II *b,int n)
    int len;
    for(len=1;len<=n;len<<=1);</pre>
    fwt(a,len,2,0);
    fwt(b,len,2,0);
    for(int i=0;i<len;i++) a[i]=a[i]*b[i]%p;
    fwt(a,len,2,1);
  }
  void OR(II *a,II *b,int n)
  {
    int len;
    for(len=1;len<=n;len<<=1);
    fwt(a,len,3,0);
    fwt(b,len,3,0);
    for(int i=0;i<len;i++) a[i]=a[i]*b[i]%p;
    fwt(a,len,3,1);
};
```

5.4 拉格朗日插值

```
namespace polysum {
    #define rep(i,a,n) for (int i=a;i<n;i++)
    #define per(i,a,n) for (int i=n-1;i>=a;i--)
    const int D=101000;
    Il a[D],tmp[D],f[D],g[D],p[D],p1[D],p2[D],b[D],h[D][2],C[D];
```

```
II powmod(II a,II b){II
res=1;a\%=mod;assert(b>=0);for(;b;b>>=1){if(b\&1)res=res*a\%mod;a=a*a\%mod;}retu
rn res;}
 Il calcn(int d,Il *a,Il n) { // a[0].. a[d] a[n]
   if (n<=d) return a[n];
   p1[0]=p2[0]=1;
   rep(i,0,d+1) {
     Il t=(n-i+mod)%mod;
     p1[i+1]=p1[i]*t%mod;
   }
   rep(i,0,d+1) {
     Il t=(n-d+i+mod)%mod;
     p2[i+1]=p2[i]*t%mod;
   II ans=0;
   rep(i,0,d+1) {
     II t=g[i]*g[d-i]%mod*p1[i]%mod*p2[d-i]%mod*a[i]%mod;
     if ((d-i)&1) ans=(ans-t+mod)%mod;
     else ans=(ans+t)%mod;
   }
   return ans;
 void init(int M) {
   f[0]=f[1]=g[0]=g[1]=1;
   rep(i,2,M+5) f[i]=f[i-1]*i%mod;
   g[M+4]=powmod(f[M+4],mod-2);
   per(i,1,M+4) g[i]=g[i+1]*(i+1)%mod;
 }
 rep(i,0,m+1) tmp[i]=a[i];
   tmp[m+1]=calcn(m,tmp,m+1);
   rep(i,1,m+2) tmp[i]=(tmp[i-1]+tmp[i])%mod;
   return calcn(m+1,tmp,n-1);
 }
 if (R==1) return polysum(n,a,m);
   a[m+1]=calcn(m,a,m+1);
   II r=powmod(R,mod-2),p3=0,p4=0,c,ans;
   h[0][0]=0;h[0][1]=1;
   rep(i,1,m+2) {
     h[i][0]=(h[i-1][0]+a[i-1])*r%mod;
     h[i][1]=h[i-1][1]*r%mod;
   rep(i,0,m+2) {
```

```
Il t=g[i]*g[m+1-i]%mod;
    if (i&1)
p3=((p3-h[i][0]*t)%mod+mod)%mod,p4=((p4-h[i][1]*t)%mod+mod)%mod;
    else p3=(p3+h[i][0]*t)%mod,p4=(p4+h[i][1]*t)%mod;
}
c=powmod(p4,mod-2)*(mod-p3)%mod;
rep(i,0,m+2) h[i][0]=(h[i][0]+h[i][1]*c)%mod;
rep(i,0,m+2) C[i]=h[i][0];
    ans=(calcn(m,C,n)*powmod(R,n)-c)%mod;
    if (ans<0) ans+=mod;
    return ans;
}
}// polysum::init();</pre>
```

6.矩阵

6.1 矩阵基本操作

```
const II mod=1e9+7;
const int sz=10;
struct Matrix
{
  Il c[sz][sz];
  Matrix(){}
  friend Matrix operator *(Matrix a, Matrix b)
  {
    Matrix res;
    mem(res.c,0);
    for(int i=0;i<sz;i++)
       for(int j=0;j<sz;j++)
       {
         for(int k=0;k<sz;k++)
           res.c[i][j]=(res.c[i][j]+a.c[i][k]*b.c[k][j])%mod;
    return res;
  }
};
```

6.2 矩阵快速幂

```
Matrix matpow2(Matrix a,ll b)
{
  Matrix res;
  mem(res.c,0);
  for(int i=0;i<sz;i++)</pre>
  {
    res.c[i][i]=1;
  while(b)
    if(b&1) res=res*a;
    a=a*a;
    b>>=1;
  return res;
6.3 高斯消元
6.3.1 同余方程 mod=2 时 异或加速
int GE(Matrix a,int n,int m)
{
     int i,j;
  for(i=1,j=1;i<=n&&j<=m;j++)
  {
    int k=i;
    while(k \le n\&\&!a.c[k][j]) k++;
    if(a.c[k][j])
      for(int r=1;r<=m+1;r++)
             {
        swap(a.c[i][r],a.c[k][r]);
      for(int r=1;r<=n;r++)
        if(r!=i&&a.c[r][j])
        {
          for(k=1;k<=m+1;k++)
             a.c[r][k]^=a.c[i][k];
```

```
}
    i++;
}
for(j=i;j<=n;j++)
{
    if(a.c[j][m+1]) return -1;
}
return m-i+1;//返回解的个数
}
```

7.博弈论

7.1 威佐夫博弈

有两堆各若干个物品,两个人轮流从任一堆取至少一个或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

```
结论:
```

```
若两堆物品的初始值为 (x, y), 且 x < y, 则另 z=y-x; 记 w= (int) [ ( (sqrt (5) +1) /2) *z]; 若 w=x,则先手必败,否则先手必胜
```

7.2 SG 函数

```
//sg 函数
//f[m]:可改变当前状态的方式, N 为方式的种类, 要先从小到大 sort
//sg[]:0~n 的 sg 函数值
//flag[m]:为 x 后继状态的集合

7.2.1 sg 表
int f[111],sg[MAX];
void SG(int n,int m)
{
    int i,j,flag[111];
    mem(sg,0);
    for(i=1;i<=n;i++)
    {
        mem(flag,0);
        for(j=0;f[j]<=i&&j<m;j++)
```

```
{
      flag[sg[i-f[j]]]=1;
    for(j=0;;j++)
       if(!flag[j])
         sg[i]=j;
         break;
       }
    }
  }
}
7.2.2 记忆化搜索求 sg 表
int f[105],sg[MAX],m;
int dfs(int x)
  int i,j,flag[105];
  if(sg[x]!=-1) return sg[x];
  mem(flag,0);
  for(i=1;i<=m;i++)
  {
    if(x>=f[i])
       dfs(x-f[i]);
      flag[sg[x-f[i]]]=1;
    }
  for(i=0;;i++)
  {
    if(!flag[i])
      j=i;
       break;
    }
  return sg[x]=j;
}
```

7.3 阶梯博弈

0层为终点的阶梯博弈,等价于奇数层的 nim, 偶数层的移动不影响结果

7.4 SJ 定理

SJ 定理:

对于任意一个 Anti-SG 游戏, 如果我们规定当局面中所有的单一游戏的 SG 值为 0时, 游戏结束。

先手必胜当且仅当:

- (1)游戏的 SG 函数不为 0 且游戏中某个单一游戏的 SG 函数大于 1;
- (2)游戏的 SG 函数为 0 且游戏中没有单一游戏的 SG 函数大于 1。

8.dp

8.1 LIS

```
//最长上升子序列(>)nlogn 返回长度
//最长下降子序列(<) 把原数组取负数
int a[MAX],b[MAX],n;
int LIS()
{
    int i;
    mem(b,0x3f);
    for(i=0;i<n;i++)
    {
        *lower_bound(b,b+n,a[i])=a[i];//最长不下降子序列(>=)改为 upper_bound
    }
    return lower_bound(b,b+n,INF)-b;
}
```

8.2 LPS

```
/*
最长回文子序列
dp[i][j]表示子串[i,j]中最长回文子序列的长度
复杂度 O(n^2)
*/
```

```
int dp[2222][2222];
void LPS(char *s,int n)
  int i,j,len;
  for(i=1;i<=n;i++) dp[i][i]=1;
  for(len=2;len<=n;len++)
    for(i=1;i<=n-len+1;i++)
      j=i+len-1;
      if(s[i]==s[j]) dp[i][j]=dp[i+1][j-1]+2;
      else dp[i][j]=max({dp[i+1][j],dp[i][j-1],dp[i+1][j-1]});
    }
}
8.3 数位 dp
const int DIG=20+2;
II dp[DIG][2];
II gao(II x)
  const int base=10;
  int p[DIG],tot=0;
  if(x==-1) return 0;
  while(1)
  {
    p[tot++]=x%base;
    x/=base;
    if(!x) break;
  function<|l(int,int,int)|> dfs=[&](int pos,int lead,int sta,int limt)->|l
    if(pos==-1) return;
    if(!limt&&!lead&&dp[pos][sta]!=-1) return dp[pos][sta];
    II res=0;
    for(int i=(limt?p[pos]:base-1);~i;i--)
      res+=dfs(pos-1,lead&&i==0&&pos,,limt&&i==p[pos]);
    if(!limt&&!lead) dp[pos][sta]=res;
    return res;
  };
```

```
return dfs(tot-1,1,0,1);
}
```

9.0ther

9.1 FastIO

```
9.1.1 fast input
struct FastIO
{
  static const int S=200;
  int wpos;
  char wbuf[S];
  FastIO():wpos(0){}
  inline int xchar()
    static char buf[S];
    static int len=0,pos=0;
    if(pos==len) pos=0,len=fread(buf,1,S,stdin);
    if(pos==len) exit(0);
    return buf[pos++];
  inline int read()
  {
    int s=1,c=xchar(),x=0;
    while(c<=32) c=xchar();
    if(c=='-') s=-1,c=xchar();
    for(;'0'<=c&&c<='9';c=xchar()) x=x*10+c-'0';
    return x*s;
  }
  ~FastIO()
    if(wpos) fwrite(wbuf,1,wpos,stdout),wpos=0;
}io;
9.1.2 FastIO
namespace fastIO{
  #define BUF_SIZE 100000
```

```
#define OUT SIZE 100000
  #define II long long
  //fread->read
  bool IOerror=0;
//inline char nc(){char ch=getchar();if(ch==-1)IOerror=1;return ch;}
  inline char nc(){
    static char buf[BUF SIZE],*p1=buf+BUF SIZE,*pend=buf+BUF SIZE;
    if(p1==pend){
      p1=buf;pend=buf+fread(buf,1,BUF SIZE,stdin);
      if(pend==p1){IOerror=1;return -1;}
    }
    return *p1++;
  }
  inline bool blank(char ch){return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';}
  template<class T> inline bool read(T &x){
    bool sign=0; char ch=nc(); x=0;
    for(;blank(ch);ch=nc());
    if(IOerror)return false;
    if(ch=='-')sign=1,ch=nc();
    for(;ch>='0'\&\&ch<='9';ch=nc())x=x*10+ch-'0';
    if(sign)x=-x;
    return true;
  }
  inline bool read(double &x){
    bool sign=0; char ch=nc(); x=0;
    for(;blank(ch);ch=nc());
    if(IOerror)return false;
    if(ch=='-')sign=1,ch=nc();
    for(;ch>='0'\&ch<='9';ch=nc())x=x*10+ch-'0';
    if(ch=='.'){
      double tmp=1; ch=nc();
      for(;ch>='0'&&ch<='9';ch=nc())tmp/=10.0,x+=tmp*(ch-'0');
    }
    if(sign)x=-x;
    return true;
  }
  inline bool read(char *s){
    char ch=nc();
    for(;blank(ch);ch=nc());
    if(IOerror)return false;
    for(;!blank(ch)&&!IOerror;ch=nc())*s++=ch;
    *s=0;
    return true;
  }
```

```
inline bool read(char &c){
   for(c=nc();blank(c);c=nc());
   if(IOerror){c=-1;return false;}
   return true;
 }
 template<class T,class... U>bool read(T& h,U&... t){return read(h)&&read(t...);}
 //fwrite->print
 struct Ostream_fwrite{
   char *buf, *p1, *pend;
   Ostream fwrite(){buf=new char[BUF SIZE];p1=buf;pend=buf+BUF SIZE;}
// void out(char ch){putchar(ch);}
   void out(char
ch){if(p1==pend){fwrite(buf,1,BUF_SIZE,stdout);p1=buf;}*p1++=ch;}
   template<class T>void print(T x){
     static char s[33],*s1;s1=s;
     if(!x)*s1++='0';if(x<0)out('-'),x=-x;
     while(x)*s1++=x\%10+'0',x/=10;
     while(s1--!=s)out(*s1);
   void print(double x,int y){
     static || mul[]=
     000000LL};
     if(x<-1e-12)out('-'),x=-x;
     II x2=(II)floor(x);if(!y&&x-x2>=0.5)++x2;x-=x2;x*=mul[y];
     II x3=(II)floor(x);if(y&&x-x3>=0.5)++x3;print(x2);
     if(y>0){out('.');for(size t i=1;i<y&&x3*mul[i]<mul[y];out('0'),++i);print(x3);}
   }
   void print(char *s){while(*s)out(*s++);}
   void print(const char *s){while(*s)out(*s++);}
   void flush(){if(p1!=buf){fwrite(buf,1,p1-buf,stdout);p1=buf;}}
   ~Ostream fwrite(){flush();}
 }Ostream;
 template<class T>void print(T x){Ostream.print(x);}
 inline void print(char x){Ostream.out(x);}
 inline void print(char *s){Ostream.print(s);}
 inline void print(string s){Ostream.print(s.c_str());}
 inline void print(const char *s){Ostream.print(s);}
 inline void print(double x,int y){Ostream.print(x,y);}
 template<class T,class... U>void print(const T& h,const U&... t){print(h);print(t...);}
 void println(){print('\n');}
```

```
template<class T,class... U>void println(const T& h,const U&...
t){print(h);println(t...);}
  inline void flush(){Ostream.flush();}
  #undef II
  #undef OUT SIZE
  #undef BUF SIZE
};
using namespace fastIO;
9.2 网格整数点共有多少个正方形
struct node
    int x,y;
    void input()
         scanf("%d%d",&x,&y);
}p[511];
int main()
{
    int n,i,j,ans;
    while(~scanf("%d",&n))
    {
         map<pair<int,int>,int> mp;
         for(i=0;i<n;i++)
         {
              p[i].input();
              mp[MP(p[i].x,p[i].y)]=1;
         ans=0;
         for(i=0;i<n;i++)
              for(j=i+1;j<n;j++)
                   int a,b,c,d,e,f,g,h;
                   a=p[i].x;
                   b=p[i].y;
                   c=p[j].x;
                   d=p[j].y;
                   e=a+b+c-d;
                   f=-a+b+c+d;
                   g=a-b+c+d;
```

```
h=a+b-c+d;
                  if(abs(e\%2)+abs(f\%2)+abs(g\%2)+abs(h\%2)==0)
                       if(mp[MP(e/2,f/2)]&mp[MP(g/2,h/2)]) ans++;
             }
         printf("%d\n",ans/2);
    }
    return 0;
9.3 模拟退火
9.3.1 简单版 ->模拟退火求费马点
9.3.2 复杂版
//求矩形区域内一点到各点距离之和最短
//时间复杂度 cnt*c1*c2*n
int sgn(double x)
 if(fabs(x)<eps) return 0;
 else return x>0?1:-1;
}
struct Point
 double x,y;
 Point(){}
 Point(double a, double b)
   x=a;
   y=b;
 }
 void input()
    scanf("%lf%lf",&x,&y);
 }
};
typedef Point Vector;
Vector operator -(Vector a, Vector b){return Vector(a.x-b.x,a.y-b.y);}
double dot(Vector a, Vector b){return a.x*b.x+a.y*b.y;}
double dist(Point a,Point b){return sqrt(dot(a-b,a-b));}
double lx,ly;//矩形区域(0,0)-(lx,ly)
int check(double x,double y)
{
```

```
if(sgn(x)<0||sgn(y)<0||sgn(x-lx)>0||sgn(y-ly)>0) return 1;
 return 0;
double Rand(double r,double I)
 return(rand()%((int)(l-r)*1000))/(1000.0+r);
double getres(Point t,Point *p,int n)//求距离之和
 double res=0;
 for(int i=0;i<n;i++)
    res+=dist(t,p[i]);
 return res;
pair<Point,double> SA(Point *p,int n)//模拟退火
 srand(time(0));//重置随机种子
 const double k=0.85;//退火常数
 const int c1=30;//随机取点的个数
 const int c2=50;//退火次数
  Point q[c1+10];//随机取点
 double dis[c1+10];//每个点的计算结果
 int i,j;
 for(i=1;i<=c1;i++)
    q[i]=Point(Rand(0,lx),Rand(0,ly));
    dis[i]=getres(q[i],p,n);
 double tmax=max(lx,ly);
  double tmin=1e-3;
//int cnt=0;//计算外层循环次数
  while(tmax>tmin)
 {
   for(i=1;i<=c1;i++)
      for(j=1;j<=c2;j++)
        double ang=Rand(0,2*PI);
        Point z;
        z.x=q[i].x+cos(ang)*tmax;
        z.y=q[i].y+sin(ang)*tmax;
        if(check(z.x,z.y)) continue;
```

```
double temp=getres(z,p,n);
        if(temp<dis[i])</pre>
          dis[i]=temp;
          q[i]=z;
        }
    }
// cnt++;
    tmax*=k;
//cout<<cnt*c1*c2*n<<endl;//时间复杂度
  int pos=1;
  for(i=2;i<=c1;i++)
  {
    if(dis[i]<dis[pos])
      pos=i;
    }
  pair<Point,double> res;
  res=make_pair(q[pos],dis[pos]);
  return res;
9.4 矩形面积并
struct node
  II I,r,h;
  int tag;
  friend bool operator <(node a,node b)
    return a.h<b.h;
}seg[MAX<<1];//线段
II x[MAX<<1];//横坐标离散化
struct Segment_Tree
  #define Is (id<<1)
  #define rs (id<<1|1)
  Il n,ql,qr,qv;
  Il cover[MAX<<3], len[MAX<<3]; //注意这里要开 8 倍
  void build(II _n)
```

```
{
    mem(cover,0);
    mem(len,0);
    n=_n;
 void callen(int id,int l,int r)
    if(cover[id]) len[id]=x[r+1]-x[l];//被整段覆盖
    else if(l==r) len[id]=0;//不是一条线段
    else len[id]=len[ls]+len[rs];//是一条线段但又没有被整段覆盖
 }
 void update(int l,int r,int id)
    if(l>=ql\&&r<=qr)
      cover[id]+=qv;//覆盖情况
      callen(id,l,r);
      return;
    }
    int mid=(l+r)>>1;
    if(ql<=mid) update(l,mid,ls);</pre>
    if(qr>mid) update(mid+1,r,rs);
    callen(id,l,r);
 }
}tree;
int main()
 int n,i,tot,l,r,cnt;
 Il x1,y1,x2,y2,ans;
 while(~scanf("%d",&n)&&n)
 {
    tot=0;
    mem(x,0);
    for(i=0;i<n;i++)
      scanf("%||d%||d%||d%||d",&x1,&y1,&x2,&y2);
      //矩形的左下和右上坐标
      x[tot]=x1;
      seg[tot].tag=-1;
      seg[tot].l=x1;
      seg[tot].r=x2;
      seg[tot++].h=y1;
      //上边界
      x[tot]=x2;
```

```
seg[tot].tag=1;
      seg[tot].l=x1;
      seg[tot].r=x2;
      seg[tot++].h=y2;
     //下边界
    sort(seg,seg+tot);//线段按纵坐标升序
    sort(x,x+tot);//横坐标升序
    cnt=unique(x,x+tot)-x;
    tree.build(cnt-1);
    ans=0;
    for(i=0;i<tot;i++)
      if(i) ans+=(seg[i].h-seg[i-1].h)*tree.len[1];
      tree.ql=lower_bound(x,x+cnt-1,seg[i].l)-x;
      tree.qr=lower_bound(x,x+cnt-1,seg[i].r)-x-1;
     tree.qv=seg[i].tag;
      tree.update(0,cnt-1,1);
    printf("%lld\n",ans);
 }
 return 0;
9.5 判断星期几
int judge(int y,int m,int d)
{
 int res;
 if(m==1||m==2) m+=12,y--;//1 月 2 月当作前一年的 13,14 月
 if((y<1752)||(y==1752\&&m<9)||(y==1752\&&m==9\&\&d<3))
res=(d+2*m+3*(m+1)/5+y+y/4+5)%7;
 else res=(d+2*m+3*(m+1)/5+y+y/4-y/100+y/400)%7;
 return res+1;
}
9.6 hash_map
//放在 using namespace std;的下面
#define GLIBCXX PERMIT BACKWARD HASH
#include <ext/hash map>
using namespace __gnu_cxx;
```

struct str_hash{size_t operator()(const string& str)const{return
__stl_hash_string(str.c_str());}};

9.7 O(1)快速乘

9.8 快速模

```
typedef long long i64;
typedef unsigned long long u64;
typedef __uint128_t u128;
const int word bits=sizeof(u64)*8;
struct FastMod
{
 static u64 mod,inv,r2;
 u64 x;
 FastMod():x(0){}
 FastMod(u64 n):x(init(n)){}
 static u64 modulus(){return mod;}
 static u64 init(u64 w){return reduce(u128(w)*r2);}
 static void set mod(u64 m)
 {
    mod=m;
    assert(mod&1);
    inv=m;
    for(int i=0;i<5;i++) inv*=2-inv*m;
    r2=-u128(m)%m;
 }
 static u64 reduce(u128 x)
    u64 y=u64(x>>word_bits)-u64((u128(u64(x)*inv)*mod)>>word_bits);
    return i64(y)<0?y+mod:y;
  FastMod& operator+=(FastMod rhs)
 {
    x+=rhs.x-mod;
    if(i64(x)<0) x+=mod;
```

```
return *this;
}
FastMod operator+(FastMod rhs)const {return FastMod(*this)+=rhs;}
FastMod& operator*=(FastMod rhs)
{
    x=reduce(u128(x)*rhs.x);
    return *this;
}
FastMod operator*(FastMod rhs)const {return FastMod(*this)*=rhs;}
    u64 get()const {return reduce(x);}
}a[MAX];
u64 FastMod::mod,FastMod::inv,FastMod::r2;
// FastMod::set_mod(p);
```

9.9 离散化

```
struct Discretization
{
    #define type II
    vector<type> a;
    void init(){a.clear();}
    void add(type x){a.pb(x);}
    void work(){sort(all(a));a.resize(unique(all(a))-a.begin());}
    int get(type x){return lower_bound(all(a),x)-a.begin()+1;}
    int size(){return a.size();}
    #undef type
}di;
```

NTT 常用 mod

r*2^k+1	r	k	9	
3	1	1	2	
5	1	2	2	

17	1	4	3
97	3	5	5
193	3	6	5
257	1	8	3
7681	15	9	17
12289	3	12	11
40961	5	13	3
65537	1	16	3
786433	3	18	10
5767169	11	19	3
7340033	7	20	3
23068673	11	21	3
104857601	25	22	3
167772161	5	25	3
469762049	7	26	3
998244353	119	23	3
1004535809	479	21	3
2013265921	15	27	31
2281701377	17	27	3
3221225473	3	30	5
75161927681	35	31	3
77309411329	9	33	7
206158430209	3	36	22
2061584302081	15	37	7
2748779069441	5	39	3
6597069766657	3	41	5
39582418599937	9	42	5

79164837199873	9	43	5
263882790666241	15	44	7
1231453023109121	35	45	3
1337006139375617	19	46	3
3799912185593857	27	47	5
4222124650659841	15	48	19
7881299347898369	7	50	6
31525197391593473	7	52	3
180143985094819841	5	55	6
1945555039024054273	27	56	5
4179340454199820289	29	57	3

斐波那契数列性质

斐波那契通项公式:

$$F(n) = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right]$$

关于斐波那契的一些恒等式:

1: F(1)+F(2)+F(3)...+F(n)=F(n+2)-1

2: $F(1)^2 + F(2)^2 + F(3)^2 ... + F(n)^2 = F(n)F(n+1)$

3: F(1)+F(3)+F(5)+...F(2n-1)=F(2n)

4:F(2)+F(4)+F(6)+...F(2n)=F(2n+1)-1

5 : F(n)=F(m)F(n-m+1)+F(m-1)F(n-m) ps: $n \ge m$

6: $F(n-1)F(n+1)=F(n)^2+(-1)^n$

斐波那契的数论相关:

性质 1: $\gcd(F(n), F(m)) = F(\gcd(n, m))$

证明: 先证明斐波那契数列相邻两项是互素的。

反证法:假设不互素。那么有 a=gcd(F(n),F(n-1)),a>1.

那么对于 F(n)=F(n-1)+F(n-2).因为

a|F(n),a|F(n-1),所以a|F(n-2).

由于a|F(n-1),a|F(n-2).又可以获得a|F(n-3)...可以知道a|F(1)其中。F(1)=1.

如果 a|F(1)->a|1 那么与 a>1 不符。相邻互素得证.(其实 a|F(2)就已经不行了.)

那么再由上面斐波那契恒等式 5.可以推理。

$$\gcd(F(n), F(m))$$
= $\gcd(F(m)F(n-m+1) + F(m-1)F(n-m), F(m))$
= $\gcd(F(n-m), F(m))$

中间推导依靠一小点数论知识。观察开始式子和结果。

一直将上式递推下去。结合 gcd(n,m)=gcd(n-m,m).结果会是 gcd(a,b)=gcd(0,gcd(a,b))

那么就可以证明上述式子成立。

性质 2: $n \mid m \Leftrightarrow F(n) \mid F(m)$

证明:当n|m时。

$$\gcd(F(n), F(m)) = F(\gcd(n, m)) = F(n)$$
$$\Rightarrow F(n) \mid F(m)$$