Aufgabe 1

- a) An welchen Stellen $x \in \mathbf{R}$ ist die Funktion f mit $f(x) = |\sin(x + \pi/2)|$ stetig, aber nicht differenzierbar?
- b) Untersuchen Sie die Funktion f mit

$$f(x) = \begin{cases} 1 & \text{für } x < -2\\ 2e^{-x} & \text{für } -2 \le x < 0\\ x^2 + 2|x - 1| & \text{für } x \ge 0 \end{cases}$$

auf Differenzierbarkeit an den Stellen $x_0 = -2$, $x_1 = 0$ und $x_2 = 1$

c) Existiert für die Funktion f mit

$$f(x) = \begin{cases} -\sqrt[3]{|x|} & \text{für } x < 0 \\ \sqrt[3]{x} & \text{für } x \ge 0 \end{cases}$$

die Ableitung an der Stelle $x_0 = 0$?

d) Bestimmen Sie für

$$f(x) = \begin{cases} x^2 - ax + 9 & \text{für } x < 3 \\ \frac{x^2 - a}{x - 2} & \text{für } x \ge 3 \end{cases}$$

 $a \in \mathbf{R}$ so, dass f an der Stelle $x_0 = 3$ differenzierbar ist.

e) Es sei

$$f(x) = \begin{cases} \frac{b}{x} & \text{für } x \le 2, x \ne 0 \\ 7 & \text{für } x = 0 \\ ax - 2a + 1 & \text{für } x > 2 \end{cases}.$$

- i) Ist f in $x_0 = 0$ differenzierbar?
- ii) Bestimmen Sie $a, b \in \mathbf{R}$ so, dass f an der Stelle $x_0 = 2$ differenzierbar ist.
- f) Bestimmen Sie für

$$f(x) = \begin{cases} b + (x - a)^2 & \text{für } x < 1 \\ \ln x & \text{für } x \ge 1 \end{cases}$$

 $a, b \in \mathbf{R}$ so, dass f an der Stelle $x_0 = 1$ differenzierbar ist.

g) Bestimmen Sie für

$$f(x) = \begin{cases} -2\sin x & \text{für } x \le -\frac{\pi}{2} \\ a\sin x + b & \text{für } |x| < \frac{\pi}{2} \\ \cos x & \text{für } x \ge \frac{\pi}{2} \end{cases}$$

 $a, b \in \mathbf{R}$ so, dass f auf \mathbf{R} differenzierbar ist

h) Es sei f eine reellwertige Funktion mit Definitionsmenge $D_f \subset \mathbf{R}$. Eine Stelle $x_0 \in D_f$ heißt Knickstelle von f, wenn f dort nicht differenzierbar ist, aber die linksseitige und die rechtsseitige Ableitung von f existieren. Ermitteln Sie jeweils die Knickstellen von f, berechnen Sie dort die einseitigen Ableitungen und fertigen Sie eine Skizze des Graphen von f an:

i)
$$f(x) = \frac{1}{2}x + |x|$$
 ii) $f(x) = |x^2 - 1|$

i) Zeigen Sie für $f: \mathbf{R} \to \mathbf{R}$ mit $f(x) = |x^3|$, dass f in $x_0 = 0$ differenzierbar ist mit der Ableitung $f'(x_0) = 0$, indem Sie zu jedem $\epsilon > 0$ ein $\delta > 0$ so angeben, dass für alle x mit $|x - x_0| < \delta$ gilt: $\left| \frac{f(x) - f(x_0)}{x - x_0} - 0 \right| < \epsilon$.

Lösungen zu Aufgabe 1

- a) an den Stellen $x_k = \frac{\pi}{2} \pm k\pi$ mit $k \in \mathbf{Z}$
- b) nicht differenzierbar in $x_0=-2$ und $x_2=1,$ differenzierbar in $x_1=0$
- c) nein
- d) $a = \frac{9}{2}$
- e) i) nein

ii)
$$a = -\frac{1}{2}, b = 2$$

- f) $a = \frac{1}{2}, b = -\frac{1}{4}$
- g) nicht möglich
- h) i) Knickstelle $x_0 = 0$, $f'_l(x_0) = -\frac{1}{2}$, $f'_r(x_0) = \frac{3}{2}$
 - ii) Knickstellen $x_{1/2}=\pm 1,\ f_l'(x_{1/2})=-2,\ f_r'(x_{1/2})=2$
- i) $\delta = \sqrt{\epsilon}$