# (2/5/2024)

## Recap: Formulating IPs



There are different ways to formulate the same integer program:

$$P^1 \supsetneq P^2 \supsetneq P^3 \ \ \text{where as} \ \ K^1 = K^2 = K^3$$

where  $K^i = P^i \cap \mathbb{Z}^n$  for i = 1, 2, 3

## Recap: Clustering problem

Given: An integer k>1 and a collection of points  $X=\{x^1,x^2,\ldots\}$  together with distances between pairs of these points.

Goal: Partition X into k clusters  $C_1, \ldots, C_k$ , such that minimum distance between pairs of points in different clusters:

$$\min_{i \in C_p, j \in C_q, p \neq q} d(i, j)$$

is maximized. (d(i,j) measures the distance between points i and j)



## Lloyd's algorithm: K-Means clustering

Clustering problem: Partition X into clusters  $C_1, \ldots, C_k$  so as to maximize minimum distance between clusters :

$$d^* \ = \ \max_{C_1 \, \dots, \, C_k \text{ is a partition }} \left( \min_{i \in C_p, \, j \in C_q, \, p \neq q} d(i,j) \right)$$

- K-Means is the most popular clustering algorithm (it is a heuristic).
  - 1. Randomly pick k seed points (one for each cluster).
  - 2. Assign points to the closest seed to form the clusters.
  - 3. Change the seed points to a "central" point in each cluster
  - 4. Repeat until clusters do not change much.
  - 5. Return the best solution found during the search
- Easy to understand and implement.
- It is a good heuristic for the clustering problem (practical performance).

## K-Means example



# Clustering when $d(i, j) \in \{0, 1\}$

(points are either similar or dissimilar)

### Consider the following clustering problem:

- There are n objects  $N = \{1, \ldots, n\}$ .
- Any pair of objects  $i,j \in N$  is either similar or dissimilar [d(i,j) is either 0 (if similar) or 1 (if dissimilar)]
- We are given a set D that contains pairs of dissimilar objects (the other pairs are similar)
- We want to cluster the objects in exactly k clusters so that each cluster  $C_1,\ldots,C_k$  consists of items that are mostly similar to each other.  $K=\{1,\ldots,k\}$
- In addition, each cluster must contain at least  $\ell$  objects.
- Model this as an IP where we the objective is to minimizing the total number of pairs of dissimilar objects put in the same cluster.

### Input:

- n objects numbered  $1, 2, \ldots, n$
- Desired number of clusters k, and a lower bound  $\ell$  on the number of objects in a cluster
- A set D of pairs of dissimilar objects (i,e.  $\{i,j\} \in D$  means that objects i and j are dissimilar)

## Output:

• A partitioning of the objects into cluster  $C_1, C_2, \ldots, C_k$ 

Partitioning means:

(i) 
$$C_1 \cup C_2 \cup \cdots \cup C_k = \{1, 2, \ldots, n\}$$
, and

(ii) 
$$C_s \cap C_t = \emptyset$$
 for all  $s \neq t$ .

### Goal:

• Minimize the total number of pairs  $\{i, j\}$  where i and j are clustered in the same cluster, but are dissimilar (meaning,  $\{i, j\} \in D$ )

#### Decision variables

$$y_{is} \stackrel{\text{interpretation}}{=} \begin{cases} 1 & \text{if object } i \text{ is put in cluster } C_s \\ 0 & \text{otherwise.} \end{cases}$$
 
$$x_{ijs} \stackrel{\text{interpretation}}{=} \begin{cases} 1 & \text{if both objects } i \text{ and } j \text{ are put in cluster } C_s \\ 0 & \text{otherwise.} \end{cases}$$
 (only for  $i < j$ )

$$x_{ijs} \in \{0, 1\}$$
  $\forall i < j \in N , \forall s \in K$   
 $y_{is} \in \{0, 1\}$   $\forall i \in N , \forall s \in K$ 

#### Decision variables

$$y_{is} \stackrel{\text{interpretation}}{=} \begin{cases} 1 & \text{if object } i \text{ is put in cluster } C_s \\ 0 & \text{otherwise.} \end{cases}$$
 
$$x_{ijs} \stackrel{\text{interpretation}}{=} \begin{cases} 1 & \text{if both objects } i \text{ and } j \text{ are put in cluster } C_s \\ 0 & \text{otherwise.} \end{cases}$$
 (only for  $i < j$ )

$$x_{ijs} \in \{0, 1\}$$
  $\forall i < j \in N , \forall s \in K$   
 $y_{is} \in \{0, 1\}$   $\forall i \in N , \forall s \in K$ 

#### Decision variables

$$y_{is} \stackrel{\text{interpretation}}{=} \begin{cases} 1 & \text{if object } i \text{ is put in cluster } C_s \\ 0 & \text{otherwise.} \end{cases}$$
 
$$x_{ijs} \stackrel{\text{interpretation}}{=} \begin{cases} 1 & \text{if both objects } i \text{ and } j \text{ are put in cluster } C_s \\ 0 & \text{otherwise.} \end{cases}$$
 (only for  $i < j$ )

$$\begin{array}{lll} \min & \sum_{\{i,j\} \in D} \sum_{s \in K} x_{ijs} & \longleftarrow & \text{dissimilar pairs in the same cluster} \\ \text{s.t.} & \sum_{s \in K} y_{is} = 1 & \forall i \in N & \longleftarrow & \text{objects} \\ & \sum_{i \in N} y_{is} \geq \ell & \forall s \in K & \longleftarrow & \text{clusters} \\ & \text{How do we say:} & x_{ijs} = & \begin{cases} 1 & \text{if } y_{is} = 1 \text{ and } y_{js} = 1 \\ 0 & \text{otherwise.} \end{cases} \\ & x_{ijs} \in \{0,1\} & \forall i < j \in N \;, \forall s \in K \end{cases}$$

• How do we say:

$$x_{ijs} = \begin{cases} 1 & \text{if } y_{is} = 1 \text{ and } y_{js} = 1 \\ 0 & \text{otherwise.} \end{cases}$$

using the fact that x and y take  $\{0,1\}$  values?

• First idea: We can write

$$x_{ijs} \ge y_{is} + y_{js} - 1$$

and

$$x_{ijs} \le \frac{1}{2}(y_{is} + y_{js})$$

- When both  $y_{is} = 1$  and  $y_{js} = 1$  the we have

$$x_{ijs} \ge 1 + 1 - 1 = 1$$
 and  $x_{ijs} \le \frac{1}{2}(1+1) = 1 \implies x_{ijs} = 1$ 

- If not, then we must have  $y_{is}+y_{js}\leq 1$  and

$$\underbrace{x_{ijs} \geq y_{is} + y_{js} - 1}_{x_{ijs} \geq 0}$$
 and  $\underbrace{x_{ijs} \leq \frac{1}{2}(y_{is} + y_{js})}_{x_{ijs} \leq 1/2} \Longrightarrow x_{ijs} = 0$ 

- It works! (because  $x_{ijs} \in \{0, 1\}\}$ )

• How do we say:

$$x_{ijs} = \begin{cases} 1 & \text{if } y_{is} = 1 \text{ and } y_{js} = 1 \\ 0 & \text{otherwise.} \end{cases}$$

using the fact that x and y take  $\{0,1\}$  values?

• First idea: We can write

$$x_{ijs} \ge y_{is} + y_{js} - 1$$

and

$$x_{ijs} \le \frac{1}{2}(y_{is} + y_{js})$$

- When both  $y_{is} = 1$  and  $y_{js} = 1$  the we have

$$x_{ijs} \ge 1 + 1 - 1 = 1$$
 and  $x_{ijs} \le \frac{1}{2}(1+1) = 1 \implies x_{ijs} = 1$ 

- If not, then we must have  $y_{is}+y_{js}\leq 1$  and

$$\underbrace{x_{ijs} \geq y_{is} + y_{js} - 1}_{x_{ijs} \geq 0} \quad \text{and} \quad \underbrace{x_{ijs} \leq \frac{1}{2}(y_{is} + y_{js})}_{x_{ijs} \leq 1/2} \Longrightarrow \ x_{ijs} = 0$$

- It works! (because  $x_{ijs} \in \{0,1\}\}$ )

• How do we say:

$$x_{ijs} = \begin{cases} 1 & \text{if } y_{is} = 1 \text{ and } y_{js} = 1 \\ 0 & \text{otherwise.} \end{cases}$$

using the fact that x and y take  $\{0,1\}$  values?

• First idea: We can write

$$x_{ijs} \ge y_{is} + y_{js} - 1$$

and

$$x_{ijs} \le \frac{1}{2}(y_{is} + y_{js})$$

- When both  $y_{is} = 1$  and  $y_{js} = 1$  the we have

$$x_{ijs} \ge 1 + 1 - 1 = 1$$
 and  $x_{ijs} \le \frac{1}{2}(1+1) = 1 \implies x_{ijs} = 1$ 

- If not, then we must have  $y_{is} + y_{js} \le 1$  and

$$\underbrace{x_{ijs} \geq y_{is} + y_{js} - 1}_{x_{ijs} \geq 0} \quad \text{and} \quad \underbrace{x_{ijs} \leq \frac{1}{2}(y_{is} + y_{js})}_{x_{ijs} \leq 1/2} \implies x_{ijs} = 0$$

- It works! (because  $x_{ijs} \in \{0,1\}\}$ )

## Clustering Problem: Formulation 0

Decision variables

$$y_{is} \stackrel{\text{interpretation}}{=} \begin{cases} 1 & \text{if object } i \text{ is put in cluster } C_s \\ 0 & \text{otherwise.} \end{cases}$$
 
$$x_{ijs} \stackrel{\text{interpretation}}{=} \begin{cases} 1 & \text{if both objects } i \text{ and } j \text{ are put in cluster } C_s \\ 0 & \text{otherwise.} \end{cases}$$
 (only for  $i < j$ )

$$\begin{array}{lll} & \min & \sum_{\{i,j\} \in D} \sum_{s \in K} x_{ijs} \\ & \text{s.t.} & \sum_{s \in K} y_{is} = 1 & \forall i \in N & \longleftarrow \text{ objects} \\ & \sum_{i \in N} y_{is} \geq \ell & \forall s \in K & \longleftarrow \text{ clusters} \\ & x_{ijs} \geq y_{is} + y_{js} - 1 & \forall i < j \in N \;, s \in K \\ & x_{ijs} \leq \frac{1}{2} (y_{is} + y_{js}) & \forall i < j \in N \;, s \in K \\ & x_{ijs} \in \{0,1\} & \forall i < j \in N \;, \forall s \in K \\ & y_{is} \in \{0,1\} & \forall i \in N \;, \forall s \in K \end{array}$$

We want to say:

$$x_{ijs} = \begin{cases} 1 & \text{if } y_{is} = 1 \text{ and } y_{js} = 1 \\ 0 & \text{otherwise.} \end{cases}$$

using the fact that x and y take  $\{0,1\}$  values?

• This is same as

$$x_{ijs} = y_{is}y_{js}$$

- But we cannot write this in a linear integer program.
- So instead we wrote 2 linear inequalities

$$x_{ijs} \ge y_{is} + y_{js} - 1$$

and

$$x_{ijs} \le \frac{1}{2}(y_{is} + y_{js})$$

Question: Can we do better?

## Taking a step back: Multiplying binary variables

- Let  $y_1 \in \{0,1\}$  and  $y_2 \in \{0,1\}$  be two binary variables.
- Assume we are interested in their product  $y_1 \cdot y_2$ .
- How can we express their product  $x = y_1y_2$  using linear inequalities?

$$x = \begin{cases} 1 & \text{if } y_1 = 1 \text{ and } y_2 = 1 \\ 0 & \text{otherwise.} \end{cases}$$

• Consider the following inequalities:

$$x \le y_1$$

$$x \le y_2$$

$$x \ge 0$$

$$x \ge y_1 + y_2 - 1$$

### Claim

If  $y_1, y_2 \in \{0, 1\}$  and x satisfies the constraints above, then

$$x = y_1 y_2$$

### Claim

If  $x, y_1, y_2$  satisfy the McCormick constraints

$$x \le y_1,$$
  
 $x \le y_2,$   
 $x \ge y_1 + y_2 - 1,$   
 $x \ge 0,$ 

and

$$y_1, y_2 \in \{0, 1\}$$

then  $x = y_1 y_2$ .

### **Proof:**

| $\boldsymbol{y}_1$ | $oldsymbol{y}_2$ | constraints            |             | $\boldsymbol{x}$ |
|--------------------|------------------|------------------------|-------------|------------------|
| 0                  | 0                | $x \leq y_1,$          | $x \ge 0$   | 0                |
| 0                  | 1                | $x \leq y_1,$          | $x \ge 0$   | 0                |
| 1                  | 0                | $x \leq y_2,$          | $x \ge 0$   | 0                |
| 1                  | 1                | $x \ge y_1 + y_2 - 1,$ | $x \le y_1$ | 1                |

## Back to Formulation 0 for the Clustering Problem

### Decision variables

$$y_{is} = \begin{cases} 1 & \text{if } i \text{ in } C_s \\ 0 & \text{otherwise.} \end{cases} \qquad x_{ijs} = \begin{cases} 1 & \text{if both } i \text{ and } j \text{ are in } C_s \\ 0 & \text{otherwise.} \end{cases}$$

(Notice that we want  $x_{ijs}$  variable to be equal to  $y_{is} \cdot y_{js}$ )

$$\begin{array}{lll} & \min & \sum_{\{i,j\} \in D} \sum_{s \in K} x_{ijs} \\ & \text{s.t.} & \sum_{s \in K} y_{is} = 1 & \forall i \in N & \longleftarrow \text{ objects} \\ & \sum_{i \in N} y_{is} \geq \ell & \forall s \in K & \longleftarrow \text{ clusters} \\ & x_{ijs} \geq y_{is} + y_{js} - 1 & \forall i < j \in N \;, s \in K \\ & x_{ijs} \leq \frac{1}{2} (y_{is} + y_{js}) & \forall i < j \in N \;, s \in K \\ & x_{ijs} \in \{0,1\} & \forall i < j \in N \;, \forall s \in K \\ & y_{is} \in \{0,1\} & \forall i \in N \;, \forall s \in K \end{array}$$

## Clustering Problem: Formulation 1

Decision variables

$$y_{is} = \begin{cases} 1 & \text{if } i \text{ in } C_s \\ 0 & \text{otherwise.} \end{cases} \qquad x_{ijs} = \begin{cases} 1 & \text{if both } i \text{ and } j \text{ are in } C_s \\ 0 & \text{otherwise.} \end{cases}$$

$$\begin{array}{lll} & \min & \sum_{\{i,j\} \in D} \sum_{s \in K} x_{ijs} \\ & \text{s.t.} & \sum_{s \in K} y_{is} = 1 & \forall i \in N & \longleftarrow \text{ objects} \\ & \sum_{i \in N} y_{is} \geq \ell & \forall s \in K & \longleftarrow \text{ clusters} \\ & x_{ijs} \geq y_{is} + y_{js} - 1 & \forall i < j \in N \;, s \in K \\ & x_{ijs} \leq y_{is} & \forall i < j \in N \;, s \in K \\ & x_{ijs} \leq y_{js} & \forall i < j \in N \;, s \in K \\ & x_{ijs} \in \{0,1\} & \forall i < j \in N \;, s \in K \\ & y_{is} \in \{0,1\} & \forall i \in N \;, s \in K \end{array}$$

## Comparing formulations 0 and 1

• Size of the formulation for n=40 objects and k=3 clusters:

|               | variables | constraints | nonzeros |
|---------------|-----------|-------------|----------|
| Formulation 0 | 2,460     | 4,723       | 14,280   |
| Formulation 1 | 2,460     | 7,063       | 16,620   |

 $-y_{is}$  variables:  $40 \times 3 = 120$ 

 $- x_{ijs}$  variables:  $\binom{40}{2} \times 3 = 780 \times 3 = 2340$ 

Solution time

|               | B& B nodes | Simplex iterations | Solution time  |
|---------------|------------|--------------------|----------------|
| Formulation 0 |            | 11,210,558         |                |
| Formulation 1 | 23,050     | 4,033,965          | 159.24 seconds |

- Form. 1 needs much fewer nodes to solve the IP.
- Surprisingly, Form. 1 is pprox 20% faster per B&B node (# of LPs)
- In both formulations x and y variables are declared binary
- Form.0 has 2 constraints for each  $x_{ijs}$  variable, Form.1 has 3.

## Comparing formulations 0 and 1

• Size of the formulation for n=40 objects and k=3 clusters:

|               | variables | constraints | nonzeros |
|---------------|-----------|-------------|----------|
| Formulation 0 | 2,460     | 4,723       | 14,280   |
| Formulation 1 | 2,460     | 7,063       | 16,620   |

-  $y_{is}$  variables:  $40 \times 3 = 120$ 

 $-x_{ijs}$  variables:  $\binom{40}{2} \times 3 = 780 \times 3 = 2340$ 

### Solution time:

|               | B& B nodes | Simplex iterations | Solution time  |
|---------------|------------|--------------------|----------------|
| Formulation 0 | 40,560     | 11,210,558         | 327.78 seconds |
| Formulation 1 | 23,050     | 4,033,965          | 159.24 seconds |

- Form. 1 needs much fewer nodes to solve the IP.
- Surprisingly, Form. 1 is  $\approx$  20% faster per B&B node (# of LPs)
- In both formulations x and y variables are declared binary
- Form.0 has 2 constraints for each  $x_{ijs}$  variable, Form.1 has 3.

### Why fewer nodes?

LP relaxation of these two formulations look like:

$$\begin{array}{llll} & \min & \sum_{\{i,j\} \in D} \sum_{s \in K} x_{ijs} \\ & \text{s.t.} & \sum_{s \in K} y_{is} = 1 & \forall i \in N & \longleftarrow & \text{objects} \\ & \sum_{i \in N} y_{is} \geq \ell & \forall s \in K & \longleftarrow & \text{clusters} \\ & x_{ijs} & \text{constraints} & \forall i < j \in N \;, s \in K \\ & 1 \geq x_{ijs} \geq 0 & 1 \geq y_{is} \geq 0 \end{array}$$

#### Formulation 0:

### Formulation 1:

$$x_{ijs} \ge y_{is} + y_{js} - 1$$

$$x_{ijs} \le \frac{1}{2}(y_{is} + y_{js})$$

$$x_{ijs} \le y_{is} + y_{js} - 1$$

$$x_{ijs} \le y_{is}$$

$$x_{ijs} \le y_{is}$$

$$x_{ijs} \le y_{is}$$

Now consider a feasible solution to the LP relaxation of F1

$$\underbrace{(x_{ijs} \leq y_{is}) \quad \text{AND} \quad (x_{ijs} \leq y_{is})}_{\text{solution feasible for F1}} \quad \Rightarrow \quad \underbrace{(x_{ijs} \leq \frac{1}{2}(y_{is} + y_{js}))}_{\text{also feasible for F0}}$$

• Therefore, Formulation 1 is better as its LP feasible region is smaller.

### Why fewer nodes?

LP relaxation of these two formulations look like:

$$\begin{array}{llll} & \min & \sum_{\{i,j\} \in D} \sum_{s \in K} x_{ijs} \\ & \text{s.t.} & \sum_{s \in K} y_{is} = 1 & \forall i \in N & \longleftarrow & \text{objects} \\ & \sum_{i \in N} y_{is} \geq \ell & \forall s \in K & \longleftarrow & \text{clusters} \\ & & x_{ijs} & \text{constraints} & \forall i < j \in N \;, s \in K \\ & & 1 \geq x_{ijs} \geq 0 & 1 \geq y_{is} \geq 0 \end{array}$$

#### Formulation 0:

### Formulation 1:

$$x_{ijs} \ge y_{is} + y_{js} - 1$$

$$x_{ijs} \le \frac{1}{2}(y_{is} + y_{js})$$

$$x_{ijs} \le y_{is} + y_{js} - 1$$

$$x_{ijs} \le y_{is}$$

$$x_{ijs} \le y_{is}$$

• Now consider a feasible solution to the LP relaxation of F1.

$$\underbrace{(x_{ijs} \leq y_{is}) \quad \text{AND} \quad (x_{ijs} \leq y_{is})}_{\text{solution feasible for F1}} \quad \Rightarrow \quad \underbrace{(x_{ijs} \leq \frac{1}{2}(y_{is} + y_{js}))}_{\text{also feasible for F0}}$$

• Therefore, Formulation 1 is better as its LP feasible region is smaller.

### Why fewer nodes?

LP relaxation of these two formulations look like:

$$\begin{array}{llll} & \min & \sum_{\{i,j\} \in D} \sum_{s \in K} x_{ijs} \\ & \text{s.t.} & \sum_{s \in K} y_{is} = 1 & \forall i \in N & \longleftarrow & \text{objects} \\ & \sum_{i \in N} y_{is} \geq \ell & \forall s \in K & \longleftarrow & \text{clusters} \\ & x_{ijs} & \text{constraints} & \forall i < j \in N \;, s \in K \\ & 1 \geq x_{ijs} \geq 0 & 1 \geq y_{is} \geq 0 \end{array}$$

#### Formulation 0:

### Formulation 1:

$$x_{ijs} \ge y_{is} + y_{js} - 1$$

$$x_{ijs} \le \frac{1}{2}(y_{is} + y_{js})$$

$$x_{ijs} \le y_{is} + y_{js} - 1$$

$$x_{ijs} \le y_{is}$$

$$x_{ijs} \le y_{is}$$

$$x_{ijs} \le y_{is}$$

• Now consider a feasible solution to the LP relaxation of F1.

$$\underbrace{(x_{ijs} \leq y_{is}) \quad \text{AND} \quad (x_{ijs} \leq y_{is})}_{\text{solution feasible for F1}} \quad \Rightarrow \quad \underbrace{(x_{ijs} \leq \frac{1}{2}(y_{is} + y_{js}))}_{\text{also feasible for F0}}$$

• Therefore, Formulation 1 is better as its LP feasible region is smaller.

Observation 0: If  $x, y_1, y_2$  satisfy the constraints

$$x \geq y_1 + y_2 - 1$$
 
$$x \leq \frac{1}{2}(y_1 + y_2)$$
  $y_1, y_2 \in \{0, 1\}$  and  $x \in \{0, 1\}$ 

then  $x = y_1y_2$ . (i.e., x = 1 only when both  $y_1 = 1$  and  $y_2 = 1$ )

Without  $x \in \{0,1\}$ , the point  $\underbrace{(1,0,\frac{1}{2})}_{(y_1,y_2,x)}$  is feasible to the system above.

Observation 1: If  $x, y_1, y_2$  satisfy the constraints

$$x \le y_1, \quad x \le y_2,$$
  
 $x \ge 0, \quad x \ge y_1 + y_2 - 1,$   
 $y_1, y_2 \in \{0, 1\}$ 

then  $x = y_1 y_2$ . (Notice that x variable is not declared to be binary)

Observation 0: If  $x, y_1, y_2$  satisfy the constraints

$$x \geq y_1 + y_2 - 1$$
 
$$x \leq \frac{1}{2}(y_1 + y_2)$$
 
$$y_1, y_2 \in \{0, 1\} \text{ and } x \in \{0, 1\}$$

then  $x = y_1y_2$ . (i.e., x = 1 only when both  $y_1 = 1$  and  $y_2 = 1$ )

Without  $x \in \{0,1\}$ , the point  $\underbrace{(1,0,\frac{1}{2})}_{(y_1,y_2,x)}$  is feasible to the system above.

Observation 1: If  $x, y_1, y_2$  satisfy the constraints

$$x \le y_1, \quad x \le y_2,$$
  
 $x \ge 0, \quad x \ge y_1 + y_2 - 1,$   
 $y_1, y_2 \in \{0, 1\}$ 

then  $x = y_1y_2$ . (Notice that x variable is not declared to be binary)

## Clustering Problem: Formulation 1<sup>+</sup>

#### Decision variables

$$y_{is} = \begin{cases} 1 & \text{if } i \text{ in } C_s \\ 0 & \text{otherwise.} \end{cases} \qquad x_{ijs} = \begin{cases} 1 & \text{if both } i \text{ and } j \text{ are in } C_s \\ 0 & \text{otherwise.} \end{cases}$$

$$\begin{array}{llll} & \min & \sum_{\{i,j\} \in D} \sum_{s \in K} x_{ijs} \\ & \text{s.t.} & \sum_{s \in K} y_{is} = 1 & \forall i \in N & \longleftarrow & \text{objects} \\ & \sum_{i \in N} y_{is} \geq \ell & \forall s \in K & \longleftarrow & \text{clusters} \\ & x_{ijs} \geq y_{is} + y_{js} - 1 & \forall i < j \in N \;, s \in K \\ & x_{ijs} \leq y_{is}, \; x_{ijs} \leq y_{js} & \forall i < j \in N \;, s \in K \\ & \underbrace{x_{ijs} \in \{0,1\}} \;\; 1 \geq x_{ijs} \geq 0 & \forall i < j \in N \;, s \in K \\ & y_{is} \in \{0,1\} & \forall i \in N \;, s \in K \end{array}$$

## Comparing formulations 0, 1 and $1^+$

• Size of the formulation for n=40 objects and k=3 clusters:

|                   | variables | constraints | nonzeros |
|-------------------|-----------|-------------|----------|
| Formulation 0     | 2,460     | 4,723       | 14,280   |
| Formulation 1     | 2,460     | 7,063       | 16,620   |
| Formulation $1^+$ | 2,460     | 7,063       | 16,620   |

 $-y_{is}$  variables:  $40 \times 3 = 120$  ← binary

 $-\ x_{ijs}$  variables:  $\binom{40}{2} \times 3 = 780 \times 3 = 2340 \ \leftarrow$  continuous in F  $1^+$ 

Solution time

|                   |        |            | Solution time  |
|-------------------|--------|------------|----------------|
| Formulation 0     |        | 11,210,558 |                |
| Formulation 1     | 23,050 | 4,033,965  | 159.24 seconds |
| Formulation $1^+$ | 4,715  | 842,274    |                |

Formulation 1<sup>+</sup> is 5x faster than Formulation 1, that's pretty good!

## Comparing formulations 0, 1 and $1^+$

• Size of the formulation for n=40 objects and k=3 clusters:

|                   | variables | constraints | nonzeros |
|-------------------|-----------|-------------|----------|
| Formulation 0     | 2,460     | 4,723       | 14,280   |
| Formulation 1     | 2,460     | 7,063       | 16,620   |
| Formulation $1^+$ | 2,460     | 7,063       | 16,620   |

 $-y_{is}$  variables:  $40 \times 3 = 120$  ← binary

 $-x_{ijs}$  variables:  $\binom{40}{2} \times 3 = 780 \times 3 = 2340 \leftarrow$  continuous in F 1<sup>+</sup>

• Solution time:

|                   | B& B nodes | Simplex iterations | Solution time  |
|-------------------|------------|--------------------|----------------|
| Formulation 0     | 40,560     | 11,210,558         | 327.78 seconds |
| Formulation 1     | 23,050     | 4,033,965          | 159.24 seconds |
| Formulation $1^+$ | 4,715      | 842,274            | 32.87 seconds  |

Formulation 1<sup>+</sup> is 5x faster than Formulation 1, that's pretty good!

## Lets look at Formulation 1+ again

 $(y_{is}: \text{ item } i \text{ is in cluster } C_s, \quad x_{ijs}: \text{ both } i \text{ and } j \text{ are in cluster } C_s)$ 

### Formulation $1^+$ :

$$\begin{array}{lll} & \min & \sum_{\{i,j\} \in D} \sum_{s \in K} x_{ijs} \\ & \text{s.t.} & \sum_{s \in K} y_{is} = 1 & \forall i \in N & \longleftarrow \text{ objects} \\ & \sum_{i \in N} y_{is} \geq \ell & \forall s \in K & \longleftarrow \text{ clusters} \\ & x_{ijs} \geq y_{is} + y_{js} - 1 & \forall i < j \in N \;, s \in K \\ & x_{ijs} \leq y_{is}, \; x_{ijs} \leq y_{js} & \forall i < j \in N \;, s \in K \\ & \underbrace{x_{ijs} \in \{0,1\}} \;\; 1 \geq x_{ijs} \geq 0 & \forall i < j \in N \;, s \in K \\ & y_{is} \in \{0,1\} & \forall i \in N \;, s \in K \end{array}$$

Question: Even if we did not have the constraints  $x_{ijs} \le y_{is}$ ,  $x_{ijs} \le y_{js}$  would  $x_{ijs} = 1$  in an optimal sol. if either  $y_{is} = 0$  or  $y_{js} = 0$ ?

## Lets look at Formulation 1<sup>+</sup> again

$$(y_{is}: \text{ item } i \text{ is in cluster } C_s, \quad x_{ijs}: \text{ both } i \text{ and } j \text{ are in cluster } C_s)$$

### Formulation 1<sup>+</sup>:

Question: Even if we did not have the constraints  $x_{ijs} \leq y_{is}$ ,  $x_{ijs} \leq y_{js}$ , would  $x_{ijs} = 1$  in an optimal sol. if either  $y_{is} = 0$  or  $y_{js} = 0$ ?

Clustering Problem: Formulation 1<sup>++</sup>

$$y_{is} = \begin{cases} 1 & \text{if } i \text{ in } C_s \\ 0 & \text{otherwise.} \end{cases} \qquad x_{ijs} = \begin{cases} 1 & \text{if both } i \text{ and } j \text{ are in } C_s \\ 0 & \text{otherwise.} \end{cases}$$

IP Formulation:

$$\begin{array}{lll} \min & \sum_{\{i,j\} \in D} \sum_{s \in K} x_{ijs} \\ & \text{s.t.} & \sum_{s \in K} y_{is} = 1 & \forall i \in N & \longleftarrow & \text{objects} \\ & \sum_{i \in N} y_{is} \geq \ell & \forall s \in K & \longleftarrow & \text{clusters} \\ & x_{ijs} \geq y_{is} + y_{js} - 1 & \forall i < j \in N \;, s \in K \\ & x_{ijs} \leq y_{is}, \; x_{ijs} \leq y_{js} & \forall i < j \in N \;, s \in K \\ & x_{ijs} \geq 0 & \forall i < j \in N \;, s \in K \\ & y_{is} \in \{0,1\} & \forall i \in N \;, s \in K \end{array}$$

Note: This formulation allows  $x_{ijs}=1$  even when items i and j are in different clusters but this would never happen in an opt. solution.

132 / 183

## Comparing the Formulations 0, 1, $1^+$ and $1^{++}$

• Size of the formulations:

|                      | variables | constraints | nonzeros |
|----------------------|-----------|-------------|----------|
| Formulation 0        | 2,460     | 4,723       | 14,280   |
| Formulation 1        | 2,460     | 7,063       | 16,620   |
| Formulation $1^+$    | 2,460     | 7,063       | 16,620   |
| Formulation $1^{++}$ | 2,460     | 2,383       | 7,260    |

Solution time

|                      | B& B nodes | Simplex iterations | Solution time  |
|----------------------|------------|--------------------|----------------|
| Formulation 0        |            | 11,210,558         |                |
| Formulation 1        | 23,050     | 4,033,965          | 159.24 seconds |
| Formulation $1^+$    | 4,715      | 842,274            |                |
| Formulation $1^{++}$ | 7,471      | 542,972            | 5.41 seconds   |

- Form.  $1^{++}$  enumerates more nodes but the speed up is 6x.
- LPs are now much easier to solve (fewer constraints and non-zeroes)

## Comparing the Formulations 0, 1, $1^+$ and $1^{++}$

• Size of the formulations:

|                      | variables | constraints | nonzeros |
|----------------------|-----------|-------------|----------|
| Formulation 0        | 2,460     | 4,723       | 14,280   |
| Formulation 1        | 2,460     | 7,063       | 16,620   |
| Formulation $1^+$    | 2,460     | 7,063       | 16,620   |
| Formulation $1^{++}$ | 2,460     | 2,383       | 7,260    |

• Solution time:

|                      | B& B nodes | Simplex iterations | Solution time  |
|----------------------|------------|--------------------|----------------|
| Formulation 0        | 40,560     | 11,210,558         | 327.78 seconds |
| Formulation 1        | 23,050     | 4,033,965          | 159.24 seconds |
| Formulation $1^+$    | 4,715      | 842,274            | 32.87 seconds  |
| Formulation $1^{++}$ | 7,471      | 542,972            | 5.41 seconds   |

- Form.  $1^{++}$  enumerates more nodes but the speed up is 6x.
- LPs are now much easier to solve (fewer constraints and non-zeroes).

## Clustering Problem: Formulation 2

Decision variables

$$y_{is} \overset{\text{interpretation}}{=} \begin{cases} 1 & \text{if object } i \text{ is put in cluster } C_s \\ 0 & \text{otherwise.} \end{cases}$$
 
$$z_{ij} \overset{\text{interpretation}}{=} \begin{cases} 1 & \text{if objects } i \text{ and } j \text{ are put in the same cluster} \\ 0 & \text{otherwise.} \end{cases}$$
 (only for  $i < j$ )

$$\begin{array}{lll} \min & \sum_{\{i,j\}\in D} z_{ij} \\ \text{s.t.} & \sum_{s\in K} y_{is} = 1 & \forall i\in N & \longleftarrow \text{ objects} \\ & \sum_{i\in N} y_{is} \geq \ell & \forall s\in K & \longleftarrow \text{ clusters} \\ & \text{How to say } z_{ij} = 1 & \text{when both } y_{is}, y_{js} = 1 \text{ for some } s\in K \\ & z_{ij} \geq 0 & \forall i< j\in N \\ & y_{is} \in \{0,1\} & \forall i\in N \ , s\in K \end{array}$$

## Clustering Problem: Formulation 2

Decision variables

$$y_{is} \stackrel{\text{interpretation}}{=} \begin{cases} 1 & \text{if object } i \text{ is put in cluster } C_s \\ 0 & \text{otherwise.} \end{cases}$$
 
$$z_{ij} \stackrel{\text{interpretation}}{=} \begin{cases} 1 & \text{if objects } i \text{ and } j \text{ are put in the same cluster} \\ 0 & \text{otherwise.} \end{cases}$$
 (only for  $i < j$ )

$$\begin{array}{lll} & & \sum_{\{i,j\}\in D} z_{ij} \\ & \text{s.t.} & & \sum_{s\in K} y_{is} = 1 & \forall i\in N & \longleftarrow & \text{objects} \\ & & & \sum_{i\in N} y_{is} \geq \ell & \forall s\in K & \longleftarrow & \text{clusters} \\ & & z_{ij} \geq y_{is} + y_{js} - 1 & \forall i< j\in N \;, s\in K \\ & & z_{ij} \geq 0 & \forall i< j\in N \\ & & y_{is} \in \{0,1\} & \forall i\in N \;, s\in K \end{array}$$

## Comparing the formulations

• Size of the formulation:

|                            | variables | constraints | nonzeros |
|----------------------------|-----------|-------------|----------|
| Formulation 0              | 2,460     | 4,723       | 14,280   |
| Formulation 1              | 2,460     | 7,063       | 16,620   |
| Formulation 1 <sup>+</sup> | 2,460     | 7,063       | 16,620   |
| Formulation $1^{++}$       | 2,460     | 2,383       | 7,260    |
| Formulation 2              | 900       | 2,383       | 7,260    |

Solution time

|                      | B& B nodes | Simplex iterations | Solution time  |  |
|----------------------|------------|--------------------|----------------|--|
| Formulation 0        |            | 11,210,558         |                |  |
| Formulation 1        | 23,050     | 4,033,965          | 159.24 seconds |  |
| Formulation $1^+$    | 4,715      | 842,274            |                |  |
| Formulation $1^{++}$ | 7,471      | 542,972            | 5.41 seconds   |  |
| Formulation 2        | 4,392      | 369,175            |                |  |

(Formulation 2 is 35% faster than Formulation  $1^{++}$ )

## Comparing the formulations

• Size of the formulation:

|                            | variables | constraints | nonzeros |
|----------------------------|-----------|-------------|----------|
| Formulation 0              | 2,460     | 4,723       | 14,280   |
| Formulation 1              | 2,460     | 7,063       | 16,620   |
| Formulation 1 <sup>+</sup> | 2,460     | 7,063       | 16,620   |
| Formulation $1^{++}$       | 2,460     | 2,383       | 7,260    |
| Formulation 2              | 900       | 2,383       | 7,260    |

Solution time:

|                      | B& B nodes | Simplex iterations | Solution time  |  |
|----------------------|------------|--------------------|----------------|--|
| Formulation 0        | 40,560     | 11,210,558         | 327.78 seconds |  |
| Formulation 1        | 23,050     | 4,033,965          | 159.24 seconds |  |
| Formulation $1^+$    | 4,715      | 842,274            | 32.87 seconds  |  |
| Formulation $1^{++}$ | 7,471      | 542,972            | 5.41 seconds   |  |
| Formulation 2        | 4,392      | 369,175            | 3.98 seconds   |  |

(Formulation 2 is 35% faster than Formulation  $1^{++}$ )

# Gurobi Output for Formulation 2

```
Gurobi log file for last model:
```

900 variables, all binary 2383 constraints, all linear; 7260 nonzeros 40 equality constraints 2343 inequality constraints 1 linear objective; 226 nonzeros.

Gurobi 9.1.1: outlev=1
threads=4

Gurobi Optimizer version 9.1.1 build v9.1.1rc0 (linux64)

Thread count: 32 physical cores, 64 logical processors, using up Optimize a model with 2383 rows, 900 columns and 7260 nonzeros

Model fingerprint: 0xae721739

Variable types: 0 continuous, 900 integer (900 binary)

Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [1e+00, 1e+00]

Bounds range [1e+00, 1e+00]

RHS range [1e+00, 1e+01]

```
(continued....)
```

Found heuristic solution: objective 81.0000000 Presolve removed 1662 rows and 554 columns

Presolve time: 0.00s

Presolved: 721 rows, 346 columns, 2274 nonzeros

Variable types: 0 continuous, 346 integer (346 binary)

Root relaxation: objective 0.000000e+00, 161 iterations, 0.00 se

Nodes|Current Node|Obj. Bounds|Work |Expl Unexpl | Obj | Depth IntInf | Incumbent BestBd|Gap | It/Node Time

| H<br>0 | 0   | 0   | 0 | 85  | 34.00<br>34.00 | 0.00  | 100%<br>100%<br>100% | -    | 0s<br>0s |
|--------|-----|-----|---|-----|----------------|-------|----------------------|------|----------|
|        |     |     |   |     |                |       | 95.6%<br>95.6%       |      |          |
| 0      | 2   | 1.5 | 0 | 121 | 34.00          | 1.50  | 95.6%                | -    | 0s       |
| *      | 271 | 239 |   | 17  | 32.00          | 9.04  | 71.7%                | 103  | 0s       |
| H      | 494 | 297 |   |     | 29.00          | 10.35 | 64.3%                | 93.5 | 0s       |

```
H 630 351
                  28.00 11.21 59.9% 94.5 0s
* 633 335 18 27.00 11.21 58.5% 94.3 0s
H 691 316
                  25.00 12.30 50.8% 95.0 0s
                  24.00 13.91 42.0% 95.5 1s
```

Explored 4392 nodes (369175 simplex iterations) in 3.98 seconds

Optimal solution found (tolerance 1.00e-04) Best objective 2.400e+01, best bound 2.400e+01, gap 0.0000%

369175 simplex iterations 4392 branch-and-cut nodes

### Cutting planes:

(continued....)

H 974 354

Gomory: 3

MIR: 7

Zero half: 26

RI.T: 128 BQP: 60

## Solving IPs: computation time

Consider the following LP formulation

$$\label{eq:continuous} \begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & A^1 x \geq b^1, \\ & A^2 x = b^2, \\ & x \geq 0 \end{array}$$

- The non-zeroes of this formulation is the number of nonzero entries in the matrices A<sup>1</sup> and A<sup>2</sup>.
- LPs are solved using either simplex or interior point algorithms,
- In both cases one has to solve (many, many) linear equations
- The computational burden per iteration typically grows with the number of non-zero entries of the constraint matrices  $A^1$  and  $A^2$
- It also grows with the number of rows of  $A^1$  and  $A^2$ .
- IP solution time depends on the number of B&B nodes and the LP solution time at each node.