Math 312

Worksheet for November 11

Jacob Harkins jah6863@psu.edu

May 20, 2024

Exercise 1) Use the $\epsilon - \delta$ definition of continuity to prove the function $f(x) = \frac{x-2}{x-5}$ is continuous at a = -2.

First find δ .

Let $|\delta| < 1$

$$\begin{aligned} &\left| \frac{x-2}{x-5} - \frac{4}{7} \right| = \left| \frac{7x - 14 - 4x + 20}{7x - 35} \right| \\ &= \left| \frac{3x+6}{7x - 35} \right| = \left| \frac{3}{7} \cdot \frac{x+2}{x-5} \right| \end{aligned}$$

Since $|\delta| < 1, x - 5 > 0$

$$\implies \left| \frac{3}{7} \frac{x+2}{x-5} \right| < |x+2| < \epsilon$$

So $\delta = \min(\epsilon, 1)$

Proof:

Let $\epsilon > 0$, $\delta = \min(\epsilon, 1)$

Case 1: $\epsilon < 1$

$$0 < |x+2| < \delta = \epsilon$$

$$\implies \epsilon > |x+2| > \left| \frac{x+2}{x-5} \right| = \left| \frac{x-2}{x-5} - \frac{4}{7} \right| > 0$$

Case 2: $\epsilon \geq 1$

$$0 < |x+2| < \delta = 1$$

$$\implies 1 > |x+2| > \left| \frac{x+2}{x-5} \right| = \left| \frac{x-2}{x-5} - \frac{4}{7} \right| = |f(x) - f(a)|$$

Therefore it holds true for both cases, and the limit f(x) as $x \to -2 = f(-2)$. So the function is continuous at -2.

Exercise 2) Use the $\epsilon - \delta$ definition of continuity to prove that the function $f(x) = 7x^2 + 5x - 14$ is continuous for all real numbers a.

First find δ .

Let |x + a| < 1

$$\left| \frac{f(x) - f(a)}{x - a} \right| = \left| \frac{7x^2 + 5x - 14 - 7a^2 - 5a + 14}{x - a} \right|$$

$$= \left| \frac{7x^2 + 5x - 7a^2 - 5a}{x - a} \right| = \left| \frac{7(x + a)(x - a) + 5(x - a)}{x - a} \right|$$

$$= \left| 7(x - a + 2a) + 5 \right| < \left| 12 + 14a \right| = C$$

$$\implies \delta = \frac{\epsilon}{12 + 14a}$$

Proof:

Let $\epsilon > 0$, $\delta = \min(\frac{\epsilon}{12+14a}, 1)$.

Case 1: $\frac{\epsilon}{12} \leq 1$

$$0 < |x - a| < \delta = \frac{\epsilon}{12 + 14a}$$

$$\implies \frac{\epsilon}{12 + 14a} > |x - a|$$

$$\epsilon > |(12 + 14a)(x - a)|$$

$$= |(7(1 + 2a) + 5)(x - a)| > |(7(x - a + 2a) + 5)(x - a)|$$

$$= |(7(x + a) + 5)(x - a)| = |7x^2 - 7a^2 + 5x - 5a - 14 + 14| = |f(x) - f(a)|$$

Case 2: $\frac{\epsilon}{12} > 1$ $\implies \delta = 1$

$$0 < |x - a| < \delta = 1 < \frac{\epsilon}{12 + 14a}$$

$$\implies \frac{\epsilon}{12 + 14a} > |x - a|$$

$$\epsilon > |(12 + 14a)(x - a)|$$

$$= |(7(1 + 2a) + 5)(x - a)| > |(7(x - a + 2a) + 5)(x - a)|$$

$$= |(7(x + a) + 5)(x - a)| = |7x^2 - 7a^2 + 5x - 5a - 14 + 14| = |f(x) - f(a)|$$

Exercise 3) Use the $\epsilon - \delta$ definition of continuity to prove that if f and g are continuous at a, and k, s are any two nonzero real numbers then the function h = kf + sg defined as h(x) = kf(x) + sg(x) is also continuous at a.

Let $\epsilon > 0$ such that $\epsilon_1 = \frac{\epsilon}{2k}$ and $\epsilon_2 = \frac{\epsilon}{2s}$. Since f(x) and g(x) are continuous, there exists a δ_1 and δ_2 such that $|x - a| < \delta_1 \implies |f(x) - f(a)| < \epsilon_1$ and $|x - a| < \delta_2 \implies |g(x) - g(a)| < \epsilon_2$.

Therefore let $\delta = \min(\delta_1, \delta_2)$. Note this δ satisfies both of the above equations.

Let $|x-a| < \delta$

$$\begin{aligned} &|h(x) - h(a)| \\ &= |kf(x) + sg(x) - kf(a) - sg(a)| \\ &\le |kf(x) - kf(a)| + |sg(x) - sg(a)| \\ &\le k|f(x) - f(a)| + s|g(x) - g(a)| < k\frac{\epsilon}{2k} + s\frac{\epsilon}{2s} = \epsilon \end{aligned}$$

Therefore the function is continuous.

Exercise 4) If $f: I \to R$ and $g: I \to R$ are functions defined on I, then we can form new functions $\max\{f,g\}$ and $\min\{f,g\}$ in the "obvious" way: $\max\{f,g\}(x) = \max\{f(x),g(x)\}\ \forall x \in I$, and similarly for $\min\{f,g\}(x)$

(a) Sketch graphs of $\max\{f,g\}$ and $\min\{f,g\}$ if $f(x)=\sin(x)$ and $g(x)=\cos(x)$ on $I=[-2\pi,2\pi]$.

Max:

Min:

(b) Show that $\max\{f(x),g(x)\}=\frac{|f(x)-g(x)|+f(x)+g(x)}{2}$. Give the formula for the min (no need to prove this one).

Proof by cases:

Case 1: f > g

$$\frac{|f(x) - g(x)| + f(x) + g(x)}{2} = \frac{f(x) - g(x) + f(x) + g(x)}{2}$$
$$= \frac{2f(x)}{2} = f(x)$$

Case 2: g > f

$$\frac{|f(x) - g(x)| + f(x) + g(x)}{2} = \frac{g(x) - f(x) + f(x) + g(x)}{2}$$
$$= \frac{2g(x)}{2} = g(x)$$

Case 3: g = f

$$\frac{|f(x) - f(x)| + f(x) + f(x)}{2} = \frac{f(x) - f(x) + f(x) + f(x)}{2}$$
$$= \frac{2f(x)}{2} = f(x)$$

The minimum function is $\frac{g(x)+f(x)-|f(x)-g(x)|}{2}$

(c) Show that if f and g are continuous on I, then so are $\max\{f,g\}$ and $\min\{f,g\}$. Don't use the $\epsilon - \delta$ definition of continuity. (Hint: Show that if $g: I \to R$ is continuous on I, then so is h(x) = |g(x)|.) First show that if $g: I \to R$ is continuous on I, then so is h(x) = |g(x)|.

Proof: note that $|x| = \sqrt{x^2}$

g(x) * g(x) is continuous and strictly non-negative.

 $\sqrt{g(x) * g(x)}$ is continuous and well defined at all points.

Therefore, $|g(x)| = \sqrt{g(x)^2}$ is continuous

Now prove original statement.

Since f(x) and g(x) are continuous, f(x) - g(x) is continuous.

$$\implies |f(x) - g(x)|$$
 is continuous

$$\implies |f(x) - g(x)| + f(x) + g(x)$$
 is continuous.

and since continuity is preserved over multiplication by constants,

$$\frac{|f(x)-g(x)|+f(x)+g(x)}{2}$$
 is continuous.

Similarly for min,

Since f(x) and g(x) are continuous, f(x) - g(x) is continuous.

$$\implies |f(x) - g(x)|$$
 is continuous

$$\implies -|f(x) - g(x)| + f(x) + g(x)$$
 is continuous.

and since continuity is preserved over multiplication by constants,

$$\frac{-|f(x)-g(x)|+f(x)+g(x)}{2}$$
 is continuous.

Page 4