

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

по лабораторной работе № __1__

Название:	Синхронные одноступенчатые триггеры со статическим и					
динамически	цинамическим управлением записью					
Дисциплина	: Архитектура ЭВМ					
Ступант	ИУ7-41Б		Е А Ворчоморо			
Студент	<u>ГРГУ /-41В</u> (Группа)	(Подпись, дата)	Е.А. Варламова (И.О. Фамилия)			
Песто породо	-		A IO Почор			
Преподавател	Ь	(Подпись, дата)	А.Ю. Попов (И.О. Фамилия)			

Цель работы — изучить схемы асинхронного RS-триггера, который является запоминающей ячейкой всех типов триггеров, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью.

1. Исследовать работу асинхронного RS-триггера с инверсными входами в статическом режиме. Для этого необходимо:

- собрать схему RS-триггера на ЛЭ И-НЕ;
- к выходам Q и \bar{Q} триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах S и R триггера, составить таблицу переходов.

Варианты включения:

1. Сброс

Рисунок 1 - Сброс асинхронного RS-триггера

2. Установка

Рисунок 2 - Установка асинхронного RS-триггера

3. После *Q* = 1 (режим хранения):

Рисунок 3 - Режим хранения асинхронного RS-триггера

4. Запрещённое состояние

Рисунок 4 - Запрещённое состояние асинхронного RS-триггера

NotS	NotR	Q_n	Q_{n+1}	Режим
1	1	0	0	хранение
1	1	1	1	хранение
1	0	0	0	0
1	0	1	0	0
0	1	0	1	1
0	1	1	1	1
0	0	0	X	запрещённое
0	0	1	X	запрещённое

Таблица 1 - Таблица переходов асинхронного RS-триггера

2. Исследовать работу синхронного RS-триггера в статическом режиме.

- собрать схему RS-триггера на ЛЭ И-НЕ;
- к выходам Q и \bar{Q} триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах S, R и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору S, R и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени tn), затем при C=1 (момент времени tn+1) определяется Qn+1 и снова при C=0 переход в режим хранения.

Варианты включения:

1. установка

Рисунок 5 - Установка синхронного RS-триггера: C = 0

Рисунок 6 - Установка синхронного RS-триггера: C = 1

2. Сброс

Pисунок 7 - Сброс синхронного RS-триггера: C=0

Pисунок 8 - Cброс синхронного RS-триггера: C=1

3. Хранение (предыдущее Q = 0)

Рисунок 9 - Режим хранения синхронного RS-триггера: C = 0

Рисунок 10 - Режим хранения синхронного RS-триггера: C = 1

4. Запрещённое состояние

Рисунок 11 - Запрещённое состояние синхронного RS-триггера: C=0

Рисунок 12 - Запрещённое состояние синхронного RS-триггера: C=1

<i>C</i>	S	R	Q_n	Q_{n+1}	Режим
0	*	*	0	0	
0	*	*	1	1	
1	0	0	0	0	хранение
1	0	0	1	1	
1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	1	1
1	1	0	1	1	1
1	1	1	0	X	запрещённое
1	1	1	1	X	запрещённое

Таблица 2 - Таблица переходов синхронного RS-триггера

3. Исследовать работу синхронного D-триггера в статическом режиме.

- собрать схему D-триггера на ЛЭ И-НЕ;
- к выходам Q и Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору D и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени tn), затем при C=1 (момент времени tn+1) определяется Qn+1 и снова при C=0 происходит переход в режим хранения.

Варианты включения:

1. Установка

Рисунок 13 - Установка синхронного D-триггера

2. Сброс

Рисунок 14 - Сброс синхронного D-триггера

При C = 0 изменение D не приведёт ни к каким изменениям, то есть триггер находится в режиме хранения.

<i>C</i>	D	Q_n	Q_{n+1}	Режим
0	*	0	0	хранение
0	*	1	1	
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

 Таблица 3 - Таблица переходов синхронного D-триггера

4. Исследовать схему синхронного **D**-триггера с динамическим управлением записью в статическом режиме.

- к выходам Q и Q триггера подключить световые индикаторы;
- задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста следует отметить реакцию триггера на изменения сигнала D при C=0 и при C=1, а также способность триггера принимать сигнал D только по перепаду 0/1 сигнала C.

1. Установка

Рисунок 15 - Установка синхронного D-триггера с динамическим управлением записью: D=1; C=0

Рисунок 16 - Установка синхронного D-триггера c динамическим управлением записью: D=1; C: 0 => 1

2. Сброс

Рисунок 17 - Сброс синхронного D-триггера c динамическим управлением записью: D=0; C=0

Рисунок 18 - Сброс синхронного D-триггера c динамическим управлением записью: D = 0; C: 0 = >1

C	D	Q_n	Q_{n+1}
0 => 1	0	0	0
0 => 1	0	1	0
0 => 1	1	0	1
0 => 1	1	1	1

Таблица 4 - Таблица переходов синхронного D-триггера с динамическим управлением записью

5. Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме.

- построить схему синхронного DV-триггера на основе синхронного D-триггера и мультиплексора MS 2-1
- подать сигнал генератора на вход счетчика и на С-вход DV-триггера;
- подать на входы D и V триггера сигналы с выходов 2-го и 3-го разрядов счетчика;
- снять временные диаграммы синхронного DV-триггера;
- объяснить работу синхронного DV-триггера по временным диаграммам.

Схема:

Рисунок 19 - Схема синхронного DV-триггера с динамическим управлением записью

Временные диаграммы:

Рисунок 20 - Временные диаграммы синхронного DV-триггера с динамическим управлением записью

Принцип работы:

V	C	D	Qn	Q_{n+1}
1	0 => 1	0	Qn	0
1	0 => 1	1	Qn	1
0	С	D	Qn	Qn

Таблица 5 - Таблица переходов синхронного DV-триггера с динамическим управлением записью

6. Исследовать работу DV-триггера, включенного по схеме TV-триггера

- на вход D подать сигнал Q, на вход C подать сигналы генератора, а на вход V с выхода 3-го разряда счетчика;
- снять временные диаграммы Т-триггера;
- объяснить работу синхронного Т-триггера по временным диаграммам.

Схема:

Рисунок 21 - Схема DV-триггера, включенного по схеме TV-триггера

Временные диаграммы:

Рисунок 22 - Временные диаграммы DV-триггера, включенного по схеме TV-триггера

Принцип работы:

V	C	Q_n	Q_{n+1}
1	0 => 1	0	1
1	0 => 1	1	0
0	С	Qn	Qn

Таблица 6 - Таблица переходов DV-триггера, включенного по схеме TV-триггера

То есть при включенном V и изменении C из 0 в 1 осуществляется сложение по модулю 2.

Вывод

Были изучены схемы асинхронного RS-триггера на элементах И-НЕ, синхронных RS- и D-триггеров со статическим управлением записью и DV-триггера с динамическим управлением записью, построены временные диаграммы и таблицы переходов.