Ayudantía 5 - Filtros Pasivos II y Semiconductores I: Diodos Electrónica y Electrotecnia

Pedro Morales Nadal

Edicson Solar Salinas

pedro.morales1@mail.udp.cl

edicson.solar@mail.udp.cl

(S) +56 9 30915977

© +56 9 92763279

Ingeniería Civil en Informática y Telecomunicaciones

7 de septiembre de 2025

¿Qué veremos?

- Filtros más pasivos y Ejercicios
- Semiconductores
 - ▶ ¿Qué son?
 - ► ¿PN?
 - Diodos
 - Ejercicios de eso

Mini Repaso de Filtros Pasivos

- RC Pasa Alta: Vout en el resistor
- RC Pasa Baja: Vout en el capacitor
- RL Pasa Alta: V_{out} en el inductor
- RL Pasa Baja: Vout en el resistor
- RLC: pueden comportarse como pasa banda o rechaza banda según conexión

Frecuencia de corte: $f_c = \frac{1}{2\pi RC}$ o $\frac{R}{2\pi L}$

Mini Repaso: Quien es quien?

¿Qué es la Resonancia?

- Fenómeno donde la impedancia reactiva total se anula.
- Solo ocurre en circuitos con L y C.
- Serie: $X_L = X_C \Rightarrow$ mínima impedancia
- Paralelo: $X_L = X_C \Rightarrow \text{máxima impedancia}$

Frecuencia de resonancia:

$$f_R = \frac{1}{2\pi\sqrt{LC}}$$

RLC Serie: Análisis

•
$$Z = R + j(\omega L - \frac{1}{\omega C})$$

- En $f_0 = f_R$: reactancias se cancelan $\Rightarrow Z = R$
- Corriente máxima, caída resistiva

$$f_R = rac{1}{2\pi\sqrt{LC}}$$

RLC Paralelo: Análisis

- En resonancia: $Z \to \infty$
- Corriente mínima
- Voltaje máximo en ramas paralelas

Comparación

	RLC Serie	RLC Paralelo
Impedancia mínima	En <i>f</i> ₀	No
Impedancia máxima	No	En <i>f</i> ₀
Corriente máxima	En <i>f</i> ₀	No
Voltaje máximo	No	En <i>f</i> ₀

Ejercicio 1: Resonancia en RLC Serie

Dado:

- $R = 100 \,\Omega$
- $L = 10 \, mH$
- $C = 1 \, \mu F$

Calcule:

- a) Frecuencia de resonancia (f_R)
- b) Impedancia total en f_R
- c) ¿Qué pasa con la corriente máxima si la señal de entrada máxima es de 10 V?

Ejercicio 2: RLC Paralelo

Datos:

- $L = 5 \, mH$
- $C = 2 \mu F$

Calcule la frecuencia de resonancia

Ejercicio 3: Diseñar filtro

En un circuito eléctrico, se desea diseñar un filtro pasa banda utilizando únicamente resistencias y capacitores. El filtro se compone de un filtro pasa alto y un filtro pasa bajo conectados en serie. y tiene aproximadamente un ancho de banda (BW) = 1 KHz. Las especificaciones del filtro son las siguientes:

- $R_1 = R_2 = 10 \,\mathrm{k}\Omega$
- $C_1 = 10.6 \,\mathrm{nF}$
- $C_2 = 6.37 \, \text{nF}$

Diséñelo

Ejercicio 4: Otro diseño de filtro...

Diseñe un filtro pasa banda RLC serie con:

- Frecuencia central $f_0 = 1 \, kHz$
- $L = 10 \, mH$

¿Cuánto debe valer *C*? ¿Y si quieres un ancho de banda de 500 Hz, cuánto debe valer *R*?

$$BW = \frac{R}{2\pi L}$$

Semiconductores

- ullet Aislantes \longrightarrow No metales
- ullet Conductores \longrightarrow Metales
- Semiconductores → ???

Semoconductores

4 ELECTRONES DE VALENCIA

·Ge·

·Si·

· Al

· P :

3 ELECTRONES DE VALENCIA

5 ELECTRONES DE VALENCIA

Cristales Dopar

Dopaje: Introducir impurezas para alterar propiedades eléctricas.

Materiales tipo P y N

```
Tipo P
.
. Ge .
. .. .
. Ge : B • Ge .
. .. .
. Ge .
```

Portador de carga: "agujero"

```
Tipo N
.
. Ge .
. ... • ..
. Ge : P : Ge .
. .. . .
. Ge .
```

Portador de carga: electrón

N

Diodos

Diodo

Cátodo

LED (Light Emitting Diode)

Materiales

Material	Voltaje
Ge	0.3 V
Si	0.7 V
Ideal	0 V

Curva de diodo

Ejercicio de diodos

Encontrar la potencia que consume el diodo (P_D) en función de V y R:

Videos (Hagan click)

Ejercicios misc de diodos (Video)

Presentación de diodos (Video)

¿DUDAS?

CHAO GENTE

