

专注于商业智能BI和大数据的垂直社区平台

极大似然估计

Allen

www.hellobi.com

课程目录

- 引子
- 极大似然估计简史
- 极大似然原理
- 极大似然估计法
- 示例
- 小结

引子

问题1:一位同学和一位老猎人外出打猎,突然一只野兔从前方窜过, 只听一声枪响,野兔倒下。

野兔是谁打中的呢?

问题2:一个箱子中装有形状大小完全相同的白球和黑球100个,其中一种颜色99个,另一种1个,现随机从中取一球,结果是黑色球。

箱中白球和黑球的个数?

极大似然估计简史

- 极大似然最早是由德国数学家高斯提出的
- 费希尔在1912年的文章中重新提出,并且证明了这个方法的一些性质,极大似然估计这一名称也是费希尔给出的
- 极大似然原理的直观想法是:一个随机试验如有若干个可能的结果A,
 B, C, ...。若在一次试验中,结果A出现,则一般认为试验条件对A
 出现有利,也即A出现的概率很大

极大似然估计原理

• 若一试验有n个可能结果 4, 4, 4, ··· , 4, ··· , 现在做一个试验 , 如果事件 4, 发生了 , 则认为事件 4, 在这n个可能结果中出现的概率最大

一次试验就出现的事件(应该)有较大的概率

• 简言之:极大似然估计就是在一次抽样中,如果得到观测值 x_1,x_2,\cdots,x_n ,则选取 $\hat{\theta}(x_1,x_2,\cdots,x_n)$ 作为 θ 的估计值,使得当 $\theta = \hat{\theta}(x_1,x_2,\cdots,x_n)$ 时,样本出现的概率最大

极大似然估计法

- 设 $X_1, X_2, ..., X_n$ 是取自具有概率函数 $\{f(x;\theta), \theta \in \Theta\}$ 的母体X的一个简单随机样本,样本 $X_1, X_2, ..., X_n$ 的联合概率函数在 X_i 取已知观测值 $x_i, i = 1, ..., n$ 时的值 $f(x_1,\theta)f(x_2,\theta)...f(x_n,\theta)$ 是 θ 的函数
- 用 $L(\theta) = L(\theta; x_1, x_2, \dots, x_n)$ 表示上式,称这个式子为样本的似然函数,即 $L(\theta) = L(\theta; x_1, x_2, \dots, x_n) = f(x_1, \theta) f(x_2, \theta) \dots f(x_n, \theta)$

极大似然估计法—离散型

- 若 $X_1, X_2, ..., X_n$ 是取自离散型母体X的一个简单随机样本 $L(\theta; x_1, x_2, ..., x_n)$ 就 是观测到 $(x_1, x_2, ..., x_n)$ 的概率,可以把 $L(\theta; x_1, x_2, ..., x_n)$ 看成是 θ 的一个测度
- 寻找观测值 (x_1,x_2,\dots,x_n) 的函数 $\hat{\theta} = \hat{\theta}(x_1,x_2,\dots,x_n)$,以 $\hat{\theta}$ 代替 θ 使得 $L(\hat{\theta};x_1,x_2,\dots,x_n) = \max_{\theta \in \Theta} L(\theta;x_1,x_2,\dots,x_n)$ 成立
- 那么满足上式的 $\hat{\theta}(x_1,x_2,\dots,x_n)$ 就是最可能产生 x_1,x_2,\dots,x_n 的参数 θ 的值,称 $\hat{\theta}(x_1,x_2,\dots,x_n)$ 为参数 θ 的极大似然估计值,统计量 $\hat{\theta}(x_1,x_2,\dots,x_n)$ 为参数 θ 的极大似然估计量

极大似然估计法—连续型

- 若 $X_1, X_2, ..., X_n$ 是取自连续型母体X的一个简单随机样本 $L(\theta; x_1, x_2, ..., x_n)$ 就 是观测到 $(x_1, x_2, ..., x_n)$ 的概率,可以把 $L(\theta; x_1, x_2, ..., x_n)$ 看成是 θ 的一个测度
- 寻找观测值 (x_1,x_2,\dots,x_n) 的函数 $\hat{\theta} = \hat{\theta}(x_1,x_2,\dots,x_n)$,以 $\hat{\theta}$ 代替 θ 使得 $L(\hat{\theta};x_1,x_2,\dots,x_n) = \max_{\theta \in \Theta} L(\theta;x_1,x_2,\dots,x_n)$ 成立
- 因为 $\ln x$ 是 x 的单调增函数,所以使用 $\ln L(\hat{\theta}; x_1, x_2, \cdots, x_n) = \max_{\theta \in \Theta} \ln L(\theta; x_1, x_2, \cdots, x_n)$ 也可求得极大似然估计值

极大似然估计法—步骤

• 1.构造似然函数 *L*(*\theta*)

离散型:
$$L(\theta; x_1, x_2, \dots, x_n) = \prod_{i=1}^n p(x_i, \theta)$$
 连续型: $L(\theta; x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i, \theta)$

- 2.取对数:ln *L*(θ)
- 3. $\Rightarrow \frac{d \ln L(\theta)}{d \theta} = 0$
- 4.解似然方程得到 θ 的极大似然估计值 $\hat{\theta}$

注意: 若似然方程无解或者似然函数不可导,不能用此方法

示例

- 例:若X是服从参数 $\lambda(\lambda>0)$ 的泊松分布 , x_1,x_2,\cdots,x_n 是来自总体X的一个样本值 , 求参数 λ 的极大似然估计值
- 1.X的分布律为 $P\{X=x\}=\frac{\lambda^x}{x!}e^{-\lambda}(x=0,1,\cdots,n)$, 所以似然函数为 $L(\lambda)=\prod_{i=1}^n\left(\frac{\lambda^{x_i}}{x_i!}e^{-\lambda}\right)$
- 2. In $L(\lambda) = -n\lambda + \left(\sum_{i=1}^{n} x_i\right) \ln \lambda \sum_{i=1}^{n} (x_i!)$
- 3.求导 $\frac{d}{d\lambda} \ln L(\lambda) = -n + \frac{\sum\limits_{i=1}^{n} x_i}{\lambda} = 0$, 解得极大似然估计值为 $\hat{\lambda} = \frac{\sum\limits_{i=1}^{n} x_i}{n} = \bar{x}$

示例

- 例:若总体X是 $X \sim N(\mu, \sigma^2)$, x_1, x_2, \cdots, x_n 是来自总体X的一个样本值 , 求参数 μ, σ^2 的极大似然估计值
- 1.X的概率密度为 $f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x-\mu)^2}{2\sigma^2}}$,所以似然函数为 $L(\mu, \sigma^2) = \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x_i-\mu)^2}{2\sigma^2}}\right)$
- 2.耳又寸娄文 $\ln L(\mu, \sigma^2) = \ln \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x_i \mu)^2}{2\sigma^2}} \right)$
- 3.求偏导 $\begin{cases} \frac{\partial \ln L(\mu, \sigma^2)}{\partial \mu} = 0 \\ \frac{\partial \ln L(\mu, \sigma^2)}{\partial \sigma^2} = 0 \end{cases}$,解得极大似然估计值为 $\hat{\mu} = \sum_{i=1}^n x_i \\ \frac{\partial \ln L(\mu, \sigma^2)}{\partial \sigma^2} = 0 \end{cases}$

小结

- 引子
- 极大似然估计简史
- 极大似然原理
- 极大似然估计法
- 示例
- 小结

