Efficient Access Control For NDN based IoT platform

Supervisor:
Prof. Sukumar Nandi

Presented by:
Deshmukh Shubham Madhukar
(194101017)

Need Of Named Data Networking (NDN)

- Alternative to TCP/IP
 - IP address space, Speed
- Content based
- In-network caching
- Security
- Architecture

Brief About NDN

Incorporation of NDN in IoT

- Scalability
- Security

Comparative Study

- MQTT
- HoPP
- NDNIoT

MQTT: Message Queuing Telemetry Transport

- Architecture
- Feature
 - LightWeight
 - Bi-directional
 - Reliable Message Delivery (QoS)

MQTT: Architecture

- Basic Concepts:
 - Publish/Subscribe
 - Client/broker
- Basic Functionality
 - Connect
 - Publish
 - Subscribe

MQTT: Client/Broker

MQTT - Basic Functionality: Connect

MQTT - Basic Functionality: Publish

MQTT - Basic Functionality: Subscribe

MQTT: QoS

- QoS 0:
 - No guarantee of delivery
 - At most once

MQTT: QoS

- QoS 1:
 - At least once
 - Settings on broker side

MQTT: QoS

- QoS 2:
 - Exactly once
 - Safest and slowest

HoPP: Hop based pull protocol

- Terminologies
 - Stud network
 - Content Proxies
 - Stable and powerful gateway
 - More than one CPs
 - Role: Data Caches and Persistence Access Point
- Architecture
 - Establishing and maintaining routing system
 - Publishing Content
 - Subscribing Content

HoPP: Establishing and Maintaining a routing table

- Building DODAG (Destination Oriented Directed Acyclic Graph)
- A CP node announces Prefix Advertisement Messages (PAM) into the broadcast domain
- PAMs include a name prefix to set up default routes and a distance number starting with 0
- Nodes in the vicinity
 - Adjust their forwarding table
 - Rebroadcast PAMs with an incremented distance number until the DODAG converges

HoPP: Establishing and Maintaining a routing table

(a) Establishing a routing DODAG by prefix advertisements

HoPP: Publishing the content

- A node with new data
 - Select the name (from predefined scheme accessible by local controller)
 - Advertise the content name to the upstream router via Name Advertisement message (NAM)
- Connection is established
- Data is transferred.

HoPP: Subscribing the content

- Names follows the application-specific logic
- Names can be learned by issuing interest on topic
- Corresponding CP will respond to the interest

(b) Pubish and Subscribe operations

NDNIoT: NDN based IoT protocol

- Architecture
- Advantages over other protocol

NDNIoT: NDNIoT provides simple solution. How?

- data-centric security directly in a local network system instead of relying on secured sessions and trusted cloud servers
- Naming conventions provide an open environment for applications and services

NDNIoT: NDNIoT provides simple solution. How?

- Support different communication interfaces e.g. Bluetooth, Wi-Fi, Ethernet, 802.15.4 (low-rate wireless personal area networks (LR-WPANs))
- Supports content multicast and in-network caching
- Developers focus on the data itself without worrying about DNS or IP config

NDNIoT: Advantage

- Auto configuration
- Service Discovery
- Data-centric security
- Content Delivery

NDNIoT: Architecture

* work in progress

NDNIoT: Architecture

- Bootstrapping
 - Two types: security and network
 - Needed for newly added devices
 - To communicate with other IoT devices
 - Build the trust relationship between local IoT system
 - Sign and verify NDN data packets

NDNIoT: Architecture

- Service Discovery
 - Find services in local IoT network
 - Advertise the own services to other nodes
 - Prefix discovery and prefix registration (similar to HoPP)

Survey:

-	TCP/IP based	NDN based	
	MQTT	HoPP	NDN-IoT
Transport	TCP	NA	NA_
Pub/Sub	4	~	Y/
Push	~	×	Y,
Pull	×	\checkmark	٧,
Flow Control	✓	1	4
Reliability	(Q0,Q1,Q2)	1	~

Research Areas:

- Publish/Subscribe (explained(tutorial) in recent ACM ICN 2020 conference[sept 29 - oct 1])
- Access Control

Proposed Access Control:

- Access Control
 - Authentication
 - Authorisation
- Different Access Control in NDN
 - Attribute based
 - Role based

Proposed Access Control: Attribute-role based

Fig. 3.2 Flow of Access Control Policy

Plan for Future

- Validation of proposed Access control
- Implementation of proposed Access control

Conclusion

NDNIoT can be promising alternative to TCP/IP based MQTT