

VICERRECTORADO DOCENTE

CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

FORMATO DE INFORME DE PRÁCTICA DE LABORATORIO / TALLERES / CENTROS DE SIMULACIÓN – PARA ESTUDIANTES

CARRERA: Computación

ASIGNATURA: Simulación

NRO. PRÁCTICA: TÍTULO PRÁCTICA: Simulación Lavandería de carros

OBJETIVO ALCANZADO: Comprensión de las herramientas de simulación existentes para aplicar a diferentes ambientes virtuales

ACTIVIDADES DESARROLLADAS

Importar las librerías necesarias, en este caso para la simulación utilizaremos SIMPY

import simpy
import random
import json

2. Creamos las variables iniciales que nos servirán para definir nuestra simulación

```
max_vehiculos = 72
num_maquinas = 3
tiempo_lavado = 7
intervalo_llegada = 9
tiempo_simulacion = 40
tiempo_espera = 2
tiempo_traslado = 1
```

Esto nos permitirá tener un control inicial sobre los parámetros necesarios para moldear la simulación

3. Creación de las clases y métodos

```
class Lavanderia(object):
    def __init__(self, environment, numMaquinas, tLavado):
        self.env = environment
        self.maquinas = simpy.Resource(environment, numMaquinas)
        self.tLavado = tLavado
```

Tenemos la clase lavandería, que utilizará el número de máquinas como recurso, haciendo que cada máquina mientras esté en ejecución no pueda abastecer a más de un vehículo.

```
def traslado(self, vehiculo):
    print('El vehículo %s empieza traslado a las %.2f.' % (vehiculo, env.now))
    yield self.env.timeout(random.randint(tiempo_traslado, tiempo_traslado +4))
    print('El vehículo %s entra a la máquina a las %.2f.' % (vehiculo, env.now))

def lavar_vehiculo(self, vehiculo):
    yield self.env.timeout(random.randint(tiempo_lavado-2, tiempo_lavado+4))
    print("Suciedad removida al 100% del vehículo: " , vehiculo)

def esperar(self, vehiculo):
    print('El vehículo %s sale de la máquina y entra a la sala de espera a las %.2f.' % (vehiculo, env.now))
    yield self.env.timeout(random.randint(tiempo_espera, tiempo_espera+3))
    print('El vehículo %s sale de la lavandería %.2f.' % (vehiculo, env.now))
```

El procedimiento para el lavado empieza con el traslado, en el que tendremos una cantidad de tiempo variante por 4 minutos, así mismo el lavado tendrá un tiempo variante y la espera que será diferente aleatoriamente. Cada proceso guarda una de las máquinas, hace una espera virtual e imprime el tiempo que ha transcurrido.

4. Proceso

VICERRECTORADO DOCENTE

CONSEJO ACADÉMICO

Código: GUIA-PRL-001

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

Vamos a ejecutar la simulación con el siguiente método, que controlará el ingreso de los pacientes y su llegada inicial, así como llamará a los métodos internos para que se ejecuten a su tiempo

```
def ejecutar_simulacion(env, nMaquinas, tLavado, intervalo):
    lavanderia = Lavanderia(env, nMaquinas, tLavado)
    for i in range(5):
        env.process(llegada_vehiculo(env, 'Vehiculo-%d' % (i+1), lavanderia))

while True:
    yield env.timeout(random.randint(intervalo-2, intervalo+2))
    i+=1
    env.process(llegada_vehiculo(env, 'Vehiculo-%d' % (i+1), lavanderia))
```

5. Simulación

Iniciamos la ejecución mandando el proceso a ejecutar y seleccionando cual será el valor límite para que se detenga

```
print('Iniciando Lavandería...')
random.seed(77)
env = simpy.Environment()
env.process(ejecutar_simulacion(env, num_maquinas, tiempo_lavado, intervalo_llegada))
env.run(until=tiempo_simulacion)
```

6. Resultado

```
Iniciando Lavandería.
Llega vehiculo: Vehiculo-1 a la hora 0.00
Llega vehiculo: Vehiculo-2 a la hora 0.00
Llega vehiculo: Vehiculo-3 a la hora 0.00
Llega vehiculo: Vehiculo-4 a la hora 0.00
Llega vehiculo: Vehiculo-5 a la hora 0.00
El vehículo Vehiculo-1 empieza traslado a las 0.00.
El vehículo Vehiculo-2 empieza traslado a las 0.00.
El vehículo Vehiculo-3 empieza traslado a las 0.00.
El vehículo Vehiculo-2 entra a la máquina a las 2.00.
El vehículo Vehiculo-3 entra a la máquina a las 2.00.
Entra a lavarse: Vehiculo-2 a la hora 2.00. en la máquina
Entra a lavarse: Vehiculo-3 a la hora 2.00. en la máquina
El vehículo Vehiculo-1 entra a la máquina a las 3.00.
Entra a lavarse: Vehículo-1 a la hora 3.00. en la máquina
Suciedad removida al 100% del vehículo: Vehículo-2
Suciedad removida al 100% del vehículo: Vehículo-1
Vehiculo (Vehiculo-2) lavado a las 8.00.
El vehículo Vehiculo-2 sale de la máquina y entra a la sala de espera a las 8.00.
Vehiculo [Vehiculo-1] lavado a las 8.00.
El vehículo Vehiculo-1 sale de la máquina y entra a la sala de espera a las 8.00.
El vehículo Vehiculo-4 empieza traslado a las 8.00.
El vehículo Vehiculo-5 empieza traslado a las 8.00.
Llega vehiculo: Vehiculo-6 a la hora 9.00
El vehículo Vehiculo-2 sale de la lavandería 12.00.
Suciedad removida al 100% del vehículo: Vehiculo-3
El vehículo Vehiculo-1 sale de la lavandería 13.00.
El vehículo Vehiculo-4 entra a la máquina a las 13.00.
El vehículo Vehiculo-5 entra a la máquina a las 13.00.
Vehiculo [Vehiculo-3] lavado a las 13.00.
El vehículo Vehiculo-3 sale de la máquina y entra a la sala de espera a las 13.00.
Entra a lavarse: Vehiculo-4 a la hora 13.00. en la máquina
Entra a lavarse: Vehiculo-5 a la hora 13.00. en la máquina
El vehículo Vehiculo-6 empieza traslado a las 13.00.
El vehículo Vehiculo-3 sale de la lavandería 16.00.
Llega vehiculo: Vehiculo-7 a la hora 17.00
```

Tendremos los datos de la simulación, en este caso impresos en pantalla con tiempos de cada actividad, verificando los resultados observamos que se está ejecutando con normalidad.

RESULTADO(S) OBTENIDO(S): Una simulación realizada con las herramientas brindadas en clase

VICERRECTORADO DOCENTE

Código: GUIA-PRL-001

CONSEJO ACADÉMICO

Aprobación: 2016/04/06

Formato: Guía de Práctica de Laboratorio / Talleres / Centros de Simulación

CONCLUSIONES: Se pueden realizar simulaciones que permitan observar como es el proceso de un ambiente, esta ejecución se realiza en un tiempo muy corto.