Chapitre 6 : Structure électronique d'une molécule à plusieurs électrons

Pascal Parneix¹

Institut des Sciences Moléculaires d'Orsay Université Paris-Sud 11, Orsay

November 5, 2018

¹pascal.parneix@u-psud.fr

Plan du cours :

- 1 L'atome d'hydrogène et les systèmes hydrogénoïdes
- **2** Structure électronique d'un atome à n_e électrons
- **3** Calcul des énergies propres pour un atome à n_e électrons
- **S**pin-orbite pour un atome à n_e électrons
- 5 Structure électronique d'une molécule à un seul électron
- Structure électronique d'une molécule à plusieurs électrons
- Interaction d'un atome avec un champ extérieur
- États stationnaires rovibrationnels d'une molécule
- Interaction d'une molécule avec un champ électromagnétique

- Dans le cas d'une molécule à plusieurs électrons, l'interaction entre électrons doit maintenant être prise en compte. Partons d'un hamiltonien d'ordre zéro séparable construit comme une somme d'hamiltonien monoélectronique en négligeant l'interaction entre électrons.
- Comme dans le cas des atomes, nous allons effectuer un remplissage des électrons dans les différentes orbitales moléculaires, par ordre croissant des énergies mono-électroniques, en tenant compte du principe d'antisymétrie.
- Cette dernière contrainte impose un nombre maximal d'électrons dans chaque orbitale moléculaire. Les états moléculaires, comme dans le cas des atomes, s'écriront sous la forme de déterminants de Slater.

- Nous avons vu au chapitre précédent qu'un état moléculaire tel que $\lambda \neq 0$ était doublement dégénéré sans prendre en compte le spin de l'électron. En considérant deux états possibles de spin $(m_s=\pm 1/2)$, une telle orbitale moléculaire pourra contenir au maximum 4 électrons. Pour une orbitale σ $(\lambda=0)$, le nombre maximal d'électrons sera par contre égal à 2.
- Prenons l'exemple de la molécule H_2 . Sa configuration électronique fondamentale s'écrit $(\sigma_g 1s)^2$. Comme les deux électrons se trouvent sur la même orbitale moléculaire, on parlera d'électrons équivalents. Un seul déterminant de Slater est associé à cette configuration :

$$\Psi(\vec{r}_{1}, \vec{r}_{2}, \sigma_{1}, \sigma_{2}) = \frac{1}{\sqrt{2}} \begin{vmatrix} \sigma_{g} 1s(\vec{r}_{1})\chi_{+}(\sigma_{1}) & \sigma_{g} 1s(\vec{r}_{2})\chi_{+}(\sigma_{2}) \\ \sigma_{g} 1s(\vec{r}_{1})\chi_{-}(\sigma_{1}) & \sigma_{g} 1s(\vec{r}_{2})\chi_{-}(\sigma_{2}) \end{vmatrix} \\
= \frac{1}{\sqrt{2}} \sigma_{g} 1s(\vec{r}_{1})\sigma_{g} 1s(\vec{r}_{2}) \\
\times [\chi_{+}(\sigma_{1})\chi_{-}(\sigma_{2}) - \chi_{+}(\sigma_{2})\chi_{-}(\sigma_{1})]$$

• Ce déterminant de Slater peut s'écrire sous forme compacte $(0^+, 0^-)$.

• La configuration électronique fondamentale de H₂ est une configuration électronique à couche complète.

- Pour la molécule Li₂, on obtient $(\sigma_g 1s)^2 (\sigma_u^* 1s)^2 (\sigma_g 2s)^2$. On aura également un seul déterminant de Slater car les trois orbitales moléculaires sont complètes.
- Si nous considérons maintenant la molécule B_2 , nous remarquons que la dernière orbitale peuplée $(\pi_u 2p)$ n'est pas entièrement remplie car cette orbitale ne contient que 2 électrons.

$$(\sigma_g 1s)^2 (\sigma_u^* 1s)^2 (\sigma_g 2s)^2 (\sigma_u^* 2s)^2 (\pi_u 2p)^2$$

• Cette configuration électronique est donc dégénérée et le nombre d'états moléculaires associé sera égal à $C_4^2 = 6$.

• Les déterminants de Slater peuvent s'écrire sous forme compacte $(-1^+,-1^-)$, $(+1^+,+1^-)$, $(-1^-,+1^-)$, $(-1^+,+1^+)$, $(-1^-,+1^+)$ et $(-1^+,+1^-)$.

Écriture équivalente :
$$(-1^+, -1^-) = (\pi_{-1}^+, \pi_{-1}^-)$$

Autre écriture pour les déterminants de Slater ?

• **D'**un point de vue général, pour une configuration moléculaire $(\lambda_{u/g})^x$ tel que $\lambda \neq 0$, le nombre d'états moléculaires (ou de déterminants de Slater) sera égale à C_4^x (avec $1 \leq x \leq 4$).

$$g = 4, 6, 4 \text{ ou } 1$$

- Les premières configurations électroniques excitées des molécules (de plus basse énergie) seront construites en prenant un électron de la dernière orbitale peuplée vers une orbitale plus haute en énergie.
- Par exemple, une configuration excitée de la molécule Li₂ pourra être

$$(\sigma_g 1s)^2 (\sigma_u^* 1s)^2 (\sigma_g 2s) (\sigma_g 2p)$$

Molécule	Configuration électronique fondamentale			
H ₂	$(\sigma_g 1s)^2$			
Li ₂	$(\sigma_g 1s)^2 (\sigma_u^* 1s)^2 (\sigma_g 2s)^2$			
Be ₂	$[\operatorname{Li}_2] (\sigma_u^* 2s)^2$			
B_2	$[\text{Li}_2] (\sigma_u^* 2s)^2 (\pi_u 2p)^2$			
C_2	$[\text{Li}_2] (\sigma_u^* 2s)^2 (\pi_u 2p)^4$			
N_2	[Li ₂] $(\sigma_u^*2s)^2(\pi_u2p)^4(\sigma_g2p)^2$			
O_2	[Li ₂] $(\sigma_u^* 2s)^2 (\sigma_g 2p)^2 (\pi_u 2p)^4 (\pi_g 2p)^2$			
F ₂	[Li ₂] $(\sigma_u^* 2s)^2 (\sigma_g 2p)^2 (\pi_u 2p)^4 (\pi_g 2p)^4$			
BH	$(\sigma 1s)^2(\sigma^*1s)^2(\sigma 2s)^2$			
CO	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p)^4 (\sigma 2p)^2$			
CO^+	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p)^4 (\sigma 2p)$			
NO	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p)^2 (\pi 2p)^4 (\pi^* 2p)$			
NO^+	$(\sigma 1s)^2 (\sigma^* 1s)^2 (\sigma 2s)^2 (\sigma^* 2s)^2 (\pi 2p)^4 (\sigma 2p)^2$			

Diagramme de corrélation

• On peut définir un critère de stabilité d'une configuration électronique, basé sur le paramètre empirique χ_s défini par :

$$\chi_s = (\mathcal{N} - \mathcal{N}^*)/2 \tag{1}$$

avec \mathcal{N} et \mathcal{N}^* le nombre d'électrons sur les orbitales moléculaires liante et anti-liante.

- La configuration moléculaire sera stable si $\chi_s > 0$. Plus ce paramètre prendra une valeur importante, plus la liaison chimique sera forte, c'est-à-dire plus l'énergie de liaison (profondeur du puits de potentiel) sera grande.
- Basé sur ce critère, on voit que la molécule H_2 , de configuration fondamentale $(\sigma_g 1s)^2$, est stable alors que la molécule He_2 , de configuration fondamentale $(\sigma_g 1s)^2 (\sigma_n^* 1s)^2$ n'est pas stable.

Termes moléculaires

- En négligeant l'interaction entre électrons, une configuration électronique est dégénérée.
- En physique atomique, nous avons vu que la prise en compte de l'interaction électrostatique entre électrons levait partiellement cette dégénérescence pour donner une structure en termes atomiques appelés les termes *LS* ou termes Russell-Saunders.
- Nous allons suivre la même idée pour déterminer les termes moléculaires.

- Nous devons nous poser la question des bons nombres quantiques qui pourront caractériser le système moléculaire.
- Comme aucune interation impliquant le spin des électrons n'a été introduite (hamiltonien non relativiste), l'hamiltonien commutera avec \vec{S}^2 et S_z .
- Ainsi un terme moléculaire pourra être étiqueté par sa valeur de S. Comme en physique atomique, on désignera un terme moléculaire par la valeur de la multiplicité de spin, égale à 2S+1.
- Comme le système est invariant par rotation autour de l'axe interatomique, l'hamiltonien commutera avec $L_z = \sum_i I_{i,z}$. Cependant l'énergie du système dépend de $\mid M \mid = \mid \sum_i m_i \mid$. Un terme moléculaire sera donc étiquetté par $\Lambda = \mid M \mid$. Quand $\Lambda = 0$, 1, 2, ... on parlera d'états moléculaires Σ , Π , Δ , ...

- L'hamiltonien commute également avec l'opérateur σ_V' de symétrie par rapport au plan (Oyz) contenant l'axe internucléaire. Ainsi le caractère +/- pourra caractériser un terme moléculaire.
- Cependant, on peut montrer que l'action de l'opérateur σ_V' sur un état $|\Lambda\rangle$ est telle que $\sigma_V' |\Lambda\rangle = \pm |-\Lambda\rangle$. Ainsi seuls les états Σ (Λ =0) auront un caractère +/-.
- Finalement, pour une molécule diatomique homonucléaire, l'hamiltonien commutera avec l'opérateur d'inversion et donc le caractère u/g caractérisera également un terme moléculaire.

- En posant \mathcal{N}_u le nombre d'électrons sur les orbitales *ungerade*, les termes moléculaires seront *gerade* (resp. *ungerade*) si $(-1)^{\mathcal{N}_u} = +1$ (resp. =-1).
- En notation spectroscopique, un terme moléculaire s'écrira alors

$$^{2S+1}\Lambda_{g/u}^{+/-}\operatorname{si}\Lambda=0$$

et,

$$^{2S+1}\Lambda_{g/u}\operatorname{si}\Lambda\neq0$$

• La dégénérescence d'un terme moléculaire ${}^{2S+1}\Lambda_{g/u}$ sera égale à $1\times(2S+1)$ si $\Lambda=0$ et à $2\times(2S+1)$ si $\Lambda\neq0$.

- Comme pour la détermination des termes atomiques, nous devons différentier le cas des électrons équivalents et non-équivalents du fait du principe d'antisymétrisation de la fonction d'onde multi-électronique.
- Tout d'abord, posons nous le problème des termes moléculaires associés à une orbitale moléculaire complète du type σ^2 , π^4 , δ^4 , ...
- Dans le cas de la molécule H_2 , nous avons écrit le déterminant de Slater associé à la configuration fondamentale $(\sigma_g 1s)^2$. Les deux électrons sont caractérisés par m=0 donc automatiquement on aura $\Lambda = \mid M \mid = 0$. Les deux projections de spin doivent être opposées donc automatiquement $M_S = 0$ donc automatiquement S = 0 (état singulet).

Cette configuration donnera lieu au terme moléculaire ${}^{1}\nabla$

 Par rapport à l'opérateur d'inversion, la forme du déterminant de Slater nous montre que la fonction d'onde se met sous la forme d'un produit de deux fonctions spatiales gerade.

$$\Psi(\vec{r}_{1}, \vec{r}_{2}, \sigma_{1}, \sigma_{2}) = \frac{1}{\sqrt{2}} \sigma_{g} 1s(\vec{r}_{1}) \sigma_{g} 1s(\vec{r}_{2}) \\
\times [\chi_{+}(\sigma_{1})\chi_{-}(\sigma_{2}) - \chi_{+}(\sigma_{2})\chi_{-}(\sigma_{1})]$$

- Ainsi la fonction d'onde bi-électronique sera automatiquement gerade.
- Pour la symétrie par rapport à l'opérateur σ'_V , nous avons vu au chapitre précédent que les orbitales moléculaires σ sont automatiquement symétriques (caractère +).
- Ainsi le produit des deux fonctions d'ondes mono-électroniques σ sera automatiquement symétrique.

- Le terme moléculaire d'un configuration $(\sigma_g 1s)^2$ complète pour une molécule diatomique homonucléaire sera donc $^1\Sigma_g^+$.
- Ce même raisonnement peut être suivi pour les configurations à couche complète du type π^4 , δ^4 ...

Nombre pair d'électrons u (0 ou 4)

• **S**i la molécule n'est pas homonucléaire, le terme moléculaire sera $^1\Sigma^+$, le caractère u/g n'ayant plus de raison d'être.

- Déterminons maintenant les termes moléculaires issus d'une configuration possédant des électrons non équivalents.
- La plus simple est la configuration $\sigma\sigma'$ dont la dégénérescence est égale à $C_2^1 \times C_2^1$ (=4). On aura automatiquement des termes tels que M=0 et donc des états Σ .
- Les couples possibles pour les projections de spin individuels sont (1/2, 1/2), (1/2, -1/2), (-1/2, 1/2) et (-1/2, -1/2).
- Pour ces 4 couples, on aura respectivement $M_S=1$, 0, 0 et -1. Cela va donner lieu à un état singulet (S=0) et à un état triplet (S=1).

On aura deux termes moléculaires $^{1}\Sigma$ et $^{3}\Sigma$

- Par rapport aux opérateurs de symétrie, on peut suivre le même raisonnement que celui suivi pour H₂.
- On en déduit que les termes moléculaires seront ${}^1\Sigma^+_{g/u}$ et ${}^3\Sigma^+_{g/u}$ pour une molécule homonucléaire ou ${}^1\Sigma^+$ et ${}^3\Sigma^+$ pour une molécule hétéronucléaire.
- Les termes moléculaires $^1\Sigma^+$ ou $^1\Sigma^+_{g/u}$ sont une fois dégénéré $(M_S{=}0)$ alors que $^3\Sigma^+$ ou $^3\Sigma^+_{g/u}$ sont triplement dégénérés $(M_S{=}0,\pm 1)$.

- Prenons comme second exemple, la configuration $\pi\pi'$ dont la dégénérescence est égale à $C_4^1 \times C_4^1$ (=16).
- Comme m et m' sont égaux à \pm 1, on en déduit que les différents couples possibles (m, m') sont (1,1), (1,-1), (-1,1) et (-1,-1) donnant respectivement M=2, 0, 0 et -2.
- Pour le spin, on trouve deux états de spin différents, à savoir S=0 et S=1.
- Ainsi, la configuration $\pi\pi'$ va donner deux fois les termes moléculaires ${}^1\Sigma$, ${}^3\Sigma$ et une fois les termes ${}^1\Delta$ et ${}^3\Delta$.

- Pour les deux termes ${}^1\Sigma$ (respectivement ${}^3\Sigma$) on aura un terme ${}^1\Sigma^+$ (respectivement ${}^3\Sigma^+$) et un terme ${}^1\Sigma^-$ (respectivement ${}^3\Sigma^-$).
- Les termes moléculaires $^1\Delta$ et $^3\Delta$ sont chacun doublement dégénérés mais ne sont pas symétriques ou antisymétriques par rapport à l'operateur σ'_V .
- Pour résumer, on trouve ${}^{1}\Sigma^{+}$ (1), ${}^{1}\Sigma^{-}$ (1), ${}^{3}\Sigma^{+}$ (3), ${}^{3}\Sigma^{-}$ (3), ${}^{1}\Delta$ (2) et ${}^{3}\Delta$ (6), les nombres entre parenthèses correspondant à la dégénérescence.

La somme des dégénérescences est bien égale à 16

- Regardons maintenant la situation pour une configuration à électrons équivalents.
- On s'attend, comme en physique atomique, à ce que le nombre de termes moléculaires soit plus faible que pour une configuration à électrons non équivalents du fait du principe de Pauli.
- Prenons la configuration π² dont la dégénérescence est égale à C₄² (=6) et dressons le tableau avec les valeurs des nombres quantiques individuels.

m	m'	٨	m _s	m_s'	Ms
1	1	2	1/2	-1/2	0
-1	-1	2	1/2	-1/2	0
1	-1	0	1/2	1/2	1
1	-1	0	1/2	-1/2	0
1	-1	0	-1/2	-1/2	-1
1	-1	0	-1/2	1/2	0

- On remarque que pour les états moléculaires Δ , seul l'état singulet est possible.
- Pour les états Σ , on aura un seul état singulet (de symétrie +) et un seul état triplet (de symétrie -).
- On aura ainsi les termes moléculaires :

$$^{1}\Delta$$
 (2), $^{1}\Sigma^{+}$ (1) et $^{3}\Sigma^{-}$ (3)

les nombres entre parenthèses correspondant à la dégénérescence.

La somme des dégénérescences est bien égale à 6

• Les termes moléculaires pour différentes configurations à électrons équivalents sont reportées ci-dessous.

Configuration électronique	Termes moléculaires	
σ^2	$^1\Sigma^+$	
π^2	$^{1}\Sigma^{+}$, $^{3}\Sigma^{-}$, $^{1}\Delta$	
δ^2	$^{1}\Sigma^{+}$, $^{3}\Sigma^{-}$, $^{1}\Gamma$	
π^3	² Π	
δ^3	$^2\Delta$	
π^4	$^1\Sigma^+$	
δ^4	$^1\Sigma^+$	

- Si la molécule est homonucléaire, nous devons préciser le caractère u/g.
- Pour une configuration à x électrons équivalents sur une orbitale g, les termes moléculaires seront, quelle que soit la valeur de x, gerade.
- Pour des électrons sur une orbitale moléculaire u, le caractère g/u dépendra de la parité de x. Si x est pair (respectivement impair), on aura des termes de symétrie g (respectivement u).
- Pour des configurations à 3 électrons équivalents, le calcul est très rapide en remarquant que cette configuration est le complémentaire d'une configuration à un seul électron. Par exemple, la configuration $(\pi)^3$ donnera les mêmes termes moléculaires que (π) , c'est-à-dire le terme moléculaire ${}^2\Pi$ de dégénérescence égale à 2×2 (=4).

- Prenons un exemple concret, à savoir la molécule Li₂. Sa configuration électronique fondamentale est $(\sigma_g 1s)^2 (\sigma_u^* 1s)^2 (\sigma_g 2s)^2$ qui donne le terme moléculaire $^1\Sigma_g^+$. Considérons les premières configurations électroniques excitées :
 - $(\sigma_g 1s)^2 (\sigma_u^* 1s)^2 (\sigma_g 2s) (\sigma_u^* 2s)$ qui donnera ${}^1\Sigma_u^+$ et ${}^3\Sigma_u^+$.
 - $(\sigma_g 1s)^2 (\sigma_u^* 1s)^2 (\sigma_g 2s) (\sigma_g 2p)$ qui donnera $^1\Sigma_g^+$ et $^3\Sigma_g^+$.
 - $(\sigma_g 1s)^2 (\sigma_u^* 1s)^2 (\sigma_g 2s) (\pi_u 2p)$ qui donnera ${}^1\Pi_u$ et ${}^3\Pi_u$.
 - $(\sigma_g 1s)^2 (\sigma_u^* 1s)^2 (\sigma_g 2s) (\pi_g^* 2p)$ qui donnera ${}^1\Pi_g$ et ${}^3\Pi_g$.
- Pour la molécule isoélectronique BH, les mêmes configurations électroniques et les mêmes termes moléculaires seront obtenus. Seul le caractère g/u disparaît car la molécule est hétéronucléaire.

Nomenclature

- En physique moléculaire, l'état électronique fondamental est noté par la lettre X.
- Les états électroniques excités de même multiplicité que l'état fondamental X sont identifiés par convention par les lettres A, B, C, ... par ordre croissant des énergies.
- Pour les états de multiplicité différente, on les étiquette par les lettres a, b, c, .. par ordre croissant des énergies.

- Nous avons vu qu'une configuration moléculaire va engendrer différents termes moléculaires qui pourront avoir des énergies différentes, du fait de l'interaction entre électrons.
- Pour connaître la position en énergie des différents termes moléculaires, il faudrait calculer la valeur moyenne de l'hamiltonien dans chacun des termes moléculaires.
- Par exemple, pour la configuration fondamentale π_g^2 de O_2 , l'état électronique fondamental sera le terme moléculaire $^3\Sigma_g^-$.

• La position en énergie des trois termes moléculaires associés à la configuration fondamentale $(\pi_g)^2$ de la molécule O_2 est reportée ci-dessous :

