



#### **Mathematics for Machine Learning**

Lecture 1 (11.04.2024)

#### Introduction to MML

Mahammad Namazov

#### **Table of contents**

Introduction

Goals

7

Logistics

**Course Contents** 

# Introduction

What do we do here?

#### **Mathematics**

- It is boring: When you do not understand but memorize
  - Equations
  - o Theorems
  - o Axioms
- It is interesting: When you focus on the true nature
  - o Why do we need math?
  - o What do numbers, vectors, equations, ... try to tell us?
- The way to interpret the process, to find a solution to problem, to generalize use cases, identify malfunctions, to prepare antidots for catastrophic issues and tons of things can be handled by mathematics.

#### Solve the Problems

Problem 1:

$$3x = 6$$

Problem 2:

$$3x + y = 9$$
$$4x - 2y = 5$$

Problem 3:

$$2x + 4y - z = 5$$

$$7x - 2y + 3z = 6$$

$$9x + 2y + 2z = 11$$

Problem 4:

$$2x + 4y = 5$$

Let's increase dimensionality!

### Simple Multi-Layer Perceptron



- Given 3-dimensional input, we predict 2-dimensional output
- Nothing is given in between!
- Even we do not know, how correct if we map the input to output!

# Mathematics, again!

- We need to know:
  - o Linear Algebra
  - o Probability Theory (consequently, Statistics)
  - Calculus
- **Linear Algebra** will make computations of **Calculus** easier to solve **Statistical** optimization problems.
- Two terminology differences come to play in this course:
  - Vectors are not arrows (in the most cases), but lists of features;
  - o Matrices are not tables of coefficients (in the most cases), but linear mapping objects;

# Goals

What will we have at the end?

## Understanding

- You will see the specific subset of the Mathematics for Machine Learning. That will allow you to:
  - 。 Gain more focused background in ML;
  - Learn, develop and apply mathematics in two dimensions: Code + Paper;

# **Analysis**

- Rather than memorizing equations, we will learn algorithmic approaches. That will be helpful in the long-term to:
  - Develop Machine Learning tools (e.g., Linear Regression, SVM, Perceptron);
  - Understand what is going on in the background of Machine Learning frameworks (e.g., Tensorflow, PyTorch);
  - Gain ability of reading mathematical results to express performance of what you implement (e.g., accuracy metrics, loss functions);

# **Problem Solving**

- Google or not to Google, that is what matters:
  - You can search a solution in web, but blind search will not direct you to the solution!
  - o You will have an intuition what to search, which modifications should be made;

#### To sum up:

- You will have specific math knowledge for ML;
- You will be able to develop a model from scratch (REALLY, SCRATCH)
- You will see mathematical tricks to save time;
- You will play with math to build a model;
- You will take the first step to be ML architect, rather than copy-paste coder in Python;

# **Course Contents**

How do we reach to our destination?

# Linear Algebra

- Vectors
- Vector spaces
- Linear Transformation
- Linear Equation Systems
- Analytic Geometry
- Matrix Decompositions

#### **Vector Calculus**

- Partial Differentiation
- Gradient
- Backpropagation
- Automatic Differentiation

# **Probability Theory (Statistics)**

- Discrete and Continuous probabilities
- Summary Statistics and Independence
- Probability Distributions

## **Machine Learning Applications**

- Data, Model and Learning
- Linear Regression
- Dimensionality Reduction
- Multi-layer Perceptron Model

# Course Logistics

Book, exercises, exam

#### **Book and References**

- "Mathematics for Machine Learning" by Deisenroth, M. P., Faisal, A. A., & Ong, C. S.
  - https://mml-book.github.io/book/mml-book.pdf
- Specific Youtube videos as suggestion (but not included in exam)
- Colab Notebooks for exercises



#### Schedule

- Lectures: Every Thursday at 16:30, F.0.530 (2 hours)
- Exercises: Every Friday at 13:00, F.1.110 (3 hours)
- Each exercise class will cover contents of 2 weeks: One for programming, one for exercises
- Note: No lectures on 9<sup>th</sup> and 30<sup>th</sup> of May

#### **Achievement**

- You have only one exam
- Expected to be:
  - First session: 15.08.2024 (place and time will be provided)
  - Second session: 05.09.2024 (place and time will be provided)
- Exam contents:
  - Theoretical background;
  - Mathematical questions;
  - Coding snippets

# The End

Thanks for your attention!

Mahammad Namazou