Stat 440 Group Project Report Spring, 2015

Data Management for Bike Sharing Markets in Washington D.C.

Group 17

Haiqian Wang Yang Xu Yufei Gui Yuting Zheng

Contents

•	Introduction	Pg3
•	Methods	Pg5
•	Results	
	o Data checking	Pg6
	Descriptive statistics of data set	Pg10
	o Compare total counts by season for 2 years	Pg11
	o Compare total counts for casual users and registered users	Pg12
	o Compare rental counts on working days and non-working days	Pg12
	o Analysis of total count of rental bikes under different weather	
	situation from 2011 to 2012	Pg13
	o Analysis of total count of rental bikes under different time of the	
	day from 2011 to 2012	Pg14
•	Conclusion	Pg15
•	Discussion	Pg15
•	Reference	Pg16

Introduction

The project that our team works on is the data management on bike sharing markets in Washington D.C. from 2011 to 2012. The data set that we used is the data set from UCI machine learning repository. Two data sets, Day.csv and Hour.csv, are collected from Capital Bankshare System, Washington D.C., USA. They record from 2011 to 2012 and have 16 variables in common with exception that variable "hr" only shows in Hour.csv. Most variables are related to weather, date, season and etc. since they are influential to the renting behavior. Hour.csv contains 17379 observations aggregated by two-hour basis while Day.csv contains 731 observations aggregated by daily basis.

The research interest in this data set primarily focus on the significant meaning of the bike rental system to the real world transportation system. Nowadays, more a more people decide to choose bikes instead of private cars or public transportation. For research interest in economy aspects, as the rental bike system becoming more prosperous, they provide more jobs for the local people. For the possible research interest in environment aspect, since bike is a kind of green transportation, people could research the relationship between the increases in the use of bikes with different environment index. For the transportation aspects, the research interest could concentrate on whether the rental bike system could have positive impacts on relieving the heavy transportation pressure.

The purpose of our project is to prepare and analyze the data to explore the potential factors that will influence the bike sharing markets. Moreover, we also research the possible trend of bike sharing markets from 2011 to 2012.

Note: Column B in both files must have their width enlarged to read in SAS correctly, that is eliminating "#" symbol.

Attributes of day data set

Data Set Name	PROJECT.DAY	Observations	731
Member Type	DATA	Variables	16
Engine	V9	Indexes	0
Created	05/11/2015 20:58:08	Observation Length	128
Last Modified	05/11/2015 20:58:08	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label			
Data Representation	WINDOWS_64		
Encoding	wlatin1 Western (Windows)		

Attributes of hour data set

Data Set Name	PROJECT.HOUR	Observations	17379
Member Type	DATA	Variables	17
Engine	V9	Indexes	0
Created	05/11/2015 20:58:08	Observation Length	136
Last Modified	05/11/2015 20:58:08	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label			
Data Representation	WINDOWS_64		
Encoding	wlatin1 Western (Windows)		

Methods

The methods that we applied are listed below:

- 1. Read the raw data files: day.csv and hour.csv related to our project;
- 2. Check and clean data including bad observations;
- 3. Name labels to different variables;
- 4. Set formats for variables;
- 5. Derive new variables by calculating related existed variables;
- 6. Subset data;
- 7. Merge Data;
- 8. Use freq and means descriptive statistics like mean, maximum and minimum to help us make a more comprehensive conclusion.

Data Checking

Check missing values

No missing values in day data set

The FREQ Procedure

Number of Variable Levels					
Variable	Label	Levels			
instant	Instant	731			
date	Date	731			
season	Season	4			
year	Year	2			
month	Month	12			
holiday	Holiday	2			
weekday	Weekday	7			
workingday	Working day	2			
weathersit	Weather Situation	3			
temp	Normalized Temperature in Celsius	499			
atemp	Normalized feeling temperature in Celsius	690			
hum	Normalized humidity	595			
windspeed	Normalized wind speed	650			
casual	Count of casual users	606			
registered	Count of registered users	679			
cnt	Count of total rental bikes	696			

Check missing values

No missing values in hour data set The FREQ Procedure

Number of Variable Levels				
Variable	Label	Levels		
instant	Instant	17379		
date	Date	731		
season	Season	4		
year	Year	2		
month	Month	12		
hour	Hour	24		
holiday	Holiday	2		
weekday	Weekday	7		
workingday	Working day	2		
weathersit	Weather Situation	4		
temp	Normalized Temperature in Celsius	50		
atemp	Normalized feeling temperature in Celsius	65		
hum	Normalized humidity	89		
windspeed	Normalized wind speed	30		
casual	Count of casual users	322		
registered	Count of registered users	776		
cnt	Count of total rental bikes	869		

We found that there are no missing values in two data sets by using proc freq.

Data checking by Holiday

Obs	Date	Holiday
17	01/17/2011	holiday
52	02/21/2011	holiday
105	04/15/2011	holiday
150	05/30/2011	holiday
185	07/04/2011	holiday
248	09/05/2011	holiday
283	10/10/2011	holiday
315	11/11/2011	holiday
328	11/24/2011	holiday
360	12/26/2011	holiday
367	01/02/2012	holiday
381	01/16/2012	holiday
416	02/20/2012	holiday
472	04/16/2012	holiday
514	05/28/2012	holiday
551	07/04/2012	holiday
612	09/03/2012	holiday
647	10/08/2012	holiday
682	11/12/2012	holiday
692	11/22/2012	holiday
725	12/25/2012	holiday

2011 Holiday Schedule

Monday, January 17, 2011 Martin Luther King Jr. Day
Monday, February 21, 2011 Washington's Birthday
Friday, April 15, 2011 DC Emancipation Day*
Monday, May 30, 2011 Memorial Day
Monday, July 4, 2011 Independence Day
Monday, September 5, 2011 Labor Day
Monday, October 10, 2011 Columbus Day
Friday, November 11, 2011 Veterans Day
Thursday, November 24, 2011 Thanksgiving Day
Monday, December 26, 2011 Christmas Day**

2012 Holiday Schedule

Monday, January 2, 2012 New Year's Day*

Monday, January 16, 2012 Martin Luther King Jr. Day

Monday, February 20, 2012 Washington's Birthday

Monday, April 16, 2012 DC Emancipation Day

Monday, May 28, 2012 Memorial Day

Wednesday, July 4, 2012 Independence Day

Monday, September 3, 2012 Labor Day

Monday, October 8, 2012 Columbus Day

Monday, November 12, 2012 Veterans Day*

Thursday, November 22, 2012 Thanksgiving Day

Tuesday, December 25, 2012 Christmas Day

In this section, we check whether the holiday listed in our SAS data set matches the 2011 and 2012 holiday schedule. In this procedure, we create a PROC print procedure and use where to subset the observations that are marked as holiday. The result of this check is that all the holidays in the SAS data set matches the actual holiday schedules. So there is no problem on holiday variable.

Check total rental counts differences from two data sets

We use hour data set to calculate the accumulated values of total counts of rental bikes for each day. By comparing the accumulated values named "sum_cnt" with the total counts named "cnt" in day data set, we have found that there is no difference between these two variables, which indicates that researchers make no mistake in calculating.

Descriptive statistics of data set

Descriptive statistics of day data set

The MEANS Procedure

Variable	Label	N	Mean	Std Dev	Minimum	Maximum
temp	Normalized Temperature in Celsius	731	0.4953848	0.1830510	0.0591304	0.8616670
atemp	Normalized feeling temperature in Celsius	731	0.4743540	0.1629612	0.0790696	0.8408960
hum	Normalized humidity	731	0.6278941	0.1424291	0	0.9725000
windspeed	Normalized wind speed	731	0.1904862	0.0774979	0.0223917	0.5074630
casual	Count of casual users	731	848.1764706	686.6224883	2.0000000	3410.00
registered	Count of registered users	731	3656.17	1560.26	20.0000000	6946.00
cnt	Count of total rental bikes	731	4504.35	1937.21	22.0000000	8714.00

Descriptive statistics of hour data set

The MEANS Procedure

Variable	Label	N	Mean	Std Dev	Minimum	Maximum
temp	Normalized Temperature in Celsius	17379	0.4969872	0.1925561	0.0200000	1.0000000
atemp	Normalized feeling temperature in Celsius	17379	0.4757751	0.1718502	0	1.0000000
hum	Normalized humidity	17379	0.6272288	0.1929298	0	1.0000000
windspeed	Normalized wind speed	17379	0.1900976	0.1223402	0	0.8507000
casual	Count of casual users	17379	35.6762184	49.3050304	0	367.0000000
registered	Count of registered users	17379	153.7868692	151.3572859	0	886.0000000
cnt	Count of total rental bikes	17379	189.4630876	181.3875991	1.0000000	977.0000000

No specific demand for bike sharing

Obs	date	cnt
1	09/15/2012	8714
2	09/29/2012	8555
3	09/22/2012	8395
4	03/23/2012	8362
5	05/19/2012	8294
6	09/09/2012	8227
7	07/25/2012	8173
8	09/21/2012	8167
9	10/05/2012	8156
10	06/02/2012	8120

According to the statistics in the means table, we found the largest value of total count of rental bikes in the "day.csv" is 8714 but the smallest value is 22 per day. So we double the whether the largest value is reliable. Then we sort the "day.csv" by descending order and then print the largest 10 values of the data set. Finally, we found that the largest 10 values are all in the range of 8000-9000 so we conclude that there is no problem on the value of total counts of rental bikes.

Results

Compare total counts by season for 2 years

Obs	Season	Total counts of rental bikes in 2011		Increase	Increase rate
1	Spring	150000	321348	171348	114%
2	Summer	347316	571273	223957	64%
3	Fall	419650	641479	221829	53%
4	Winter	326137	515476	189339	58%

Analyzed variables: season, total rental counts in 2011 and 2012.

In order to compare the counts of total rental bikes among different seasons for two years, we sort data by year and season, and then create two data sets by calculating the accumulated values for each season in 2011 and 2012. After that, we merge these two data sets and create two new variables named 'increase' and 'increase rate', which make it clear to see changes in total counts of rental bikes for each season between two years.

Therefore, it is obvious that there is a significant increase in bike sharing from 2011 to 2012 for the same season, especially for Spring. According to the result the table shows, we can draw the conclusion that people have a greater demand in bike rental in 2012, which indicates that an increasing number of people would like to accept the new rental market, regardless of seasons. Specifically, the number of bike-users reach the maximum in Fall for its comfortable weather in Washington D.C. in Fall.

Compare total counts for casual users and registered users

				Percentage of	Percentage of
	Total rentals of	Total rentals of	Total	rental of casual	rental of registered
Year	casual users	registered users	rental	users	users
2011	247252	995851	1243103	20%	80%
2012	372765	1676811	2049576	18%	82%

Analyzed variables: rentals of casual users, rentals of registered users and total rentals.

We found that users are categorized as casual users and registered users thus it is worth looking into it. We sort data by year and create three variables tot_casual (total rental counts of casual users), tot_registered (total rental counts of registered users) and total (rental counts in total). At the last observation of each year, we calculate the percentage of rental of casual users and percentage of rental of registered users.

Observing the result from table above, majority of total rentals are from registered users. It implies that rental services have quite loyal registered users and they probably are citizens of Washington D.C. Tourists may contribute to minority of rental counts from casual users. Also total rental counts increased by 65% which indicates that people are aware of benefits of riding bikes.

Compare rental counts on working and non-working days

Total counts on working days			Percentage of rental counts on holiday or weekend	rental counts on
2292410	1000269	3292679	30%	70%

Analyzed variables: rental counts on working days and nonworking days.

In this section, we create three variables, work_count (total rentals on working days), nonwork_count (total rentals on non-working days) and total (rentals in total). We found that about 70% of rentals happen on working days which implies that citizens of Washington D.C may ride bike to work or school. Therefore rental service plays a quite important role to their daily life.

Analysis of total count of rental bikes under different weather situation from 2011 to 2012

Obs	Weather Situation	bikes under different weather situation in	different weather	diff	Increase rate
1	Clear	835067	1422885	587818	70%
2	Mist & Cloudy	382924	613934	231010	60%
3	Light Precipitation	25112	12757	-12355	(49%)

Analyzed Variables: Weather Situation, Total Counts of Rental Bikes in different years

On the programming part, first, we read in the raw data into SAS. We sort the data by year and weather situation. And then we create two data set to display the total count of rental bikes in 2011 and 2012 by the method of conditional output. In this data step, we used by-statement and first and last variables to calculate the total rental bikes in 2011 and 2012. After creating and output the two data sets of total rental bikes, we applied a merge of these two sets by the weather situation variable. Next, we create a new variable called difference to hold the difference between the total count of rental bikes in 2011 and 2012 under three different weather condition. Moreover, we also create a new variable called increase rate to indicate the trend of the total rental bikes amount.

As for the results in the table, under the clear weather situation, there is an increase between 2011 and 2012. The total count of rent bikes in 2012 are 70% more than 2011. Similarly, the total count in 2012 under Mist & Cloudy weather is 60% more than 2011. However, under light precipitation weather, there is a dramatic decrease in 2012, which is 49% less than 2011. According to the results above, we can conclude that more people choose to rent bikes in 2012 than 2011 in the days that is not raining. This indicates that more and more people realize that bike is a more environmental-friendly transportation and riding bikes is also good for health. Moreover, it also indicates that the bike sharing market becomes more well-organized and well-developed.

Analysis of total count of rental bikes under different time of the day from 2011 to 2012

Obs	Time period	Total counts of rental bikes in 2011	Total counts of rental bikes in 2012	Increase	Increase rate
1	Morning	119905	195907	76002	63%
2	Night	590527	960190	369663	63%
3	Noon	532671	893479	360808	68%

Analyzed Variables: time, total counts in different years.

We divided the data into three parts as followings: we name a new variable as 'time' with three separate values as 'Morning', 'Noon' and 'Night', regarding to different ranges of hour as [0, 8), [8, 16) and [16, 23] respectively. We sort the data in hour.csv by year and time, knowing they are highly correlated, but not perfectly correlated. Based on our result, we have our total counts of rental bikes in 2012 more than the total counts of rental bikes in 2011 for all three time periods. The range for increase rate from 2011 to 2012 is 63%-68%, which is quite high, and the highest increase rate occurs in Noon. We think couple reasons for the distribution of increase rate is the advertisement for the bike rental shows a better feedback and more people try to rent bikes for transaction. Moreover, we also found that even the most increase rate turns out in Noon, the most increase amount for bikes rental occurs in Night, this show that more people use bike after their daily work in Night. To sum up, the amount for bikes rental increased a lot during these two years.

Conclusion

According to the results we described above, we have several conclusions.

- More people tends to rent bikes in fall in general.
- More people choose to become a registered users, which in some way indicates that the bike sharing market is in a good trend of developing.
- More people rent bikes on working days comparing with non-working days.
- Most people prefer renting bikes on clear days.
- Many people choose to rent bikes during the periods of noon and night.
- More people rent bikes in 2012 than 2011.

Discussion

Evaluating the whole project, there are several points that we believe are the limitations of the analysis.

- In the "hour.csv", there are lots of days that do not have the observations of all 24 hours.
- The data only contains the observations in 2011 to 2012, which makes the results and the conclusions not that convincing.
- There might be some factors that may not be reflected on the data we collected, such as the government policy, which may influence the results of the analysis.

Reference

Fanaee-T, Hadi, and Gama, Joao, "Event labeling combining ensemble detectors and background knowledge", Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg, doi:10.1007/s13748-013-0040-3.

Data source: https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset

Original Source: http://capitalbikeshare.com/system-data

Weather Information: http://www.freemeteo.com

Holiday Schedule: http://dchr.dc.gov/page/holiday-schedule