Prof. Martin Hofmann, PhD Dr. Ulrich Schöpp Sabine Bauer Ludwig-Maximilians-Universität München Institut für Informatik 22. Dezember 2017

6. Übung zur Vorlesung Grundlagen der Analysis

Aufgabe 6-1 (Stetigkeit und Ableitbarkeit) Definiere eine Funktion $f_k \colon \mathbb{R} \to \mathbb{R}$ für jedes $k \in \mathbb{N}$ wie folgt:

$$f_k(x) = \begin{cases} \frac{x^k}{|x|} & \text{falls } x \neq 0, \\ 0 & \text{sonst.} \end{cases}$$

- a) Für welche k ist f_k im Punkt 0 stetig?
- b) Für welche k ist f_k im Punkt 0 differenzierbar und was ist $f'_k(0)$?
- c) Für welche k ist f_k auf dem gesamten Definitionsbereich differenzierbar? Geben Sie die Ableitungsfunktion f_k' für solche k an.
- d) Für welche k ist f_k auf dem gesamten Definitionsbereich stetig differenzierbar?

Aufgabe 6-2 (Mittelwertsätze; 4 Punkte) Sei $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion mit f(1) = 3 und $f'(x) \le 2$ für alle x. Zeigen Sie, dass dann $f(x) \le 2x + 1$ für alle $x \ge 1$ gilt und dass $f(x) \ge 2x + 1$ für alle $x \le 1$ gilt.

Aufgabe 6-3 (L'Hospital) Bestimmen Sie folgende Grenzwerte.

- a) $\lim_{x\to 0} \left(\frac{1}{\sin x} \frac{1}{x}\right)$
- b) $\lim_{x\to\infty} \frac{x^2+e^{4x}}{2x-e^x}$

Aufgabe 6-4 (Substitutionsregel; 4 Punkte) Berechnen Sie folgende Integrale mit der Substitutionsregel.

a)
$$\int_{-1}^{1} \sqrt{x+1} \, dx$$

b)
$$\int_0^{\sqrt{\frac{\pi}{2}}} x \cos x^2 \, \mathrm{d}x$$

Aufgabe 6-5 (Partialbruchzerlegung; 4 Punkte) Bestimmen Sie jeweils die Stammfunktionen mit Hilfe einer Partialbruchzerlegung:

a)
$$\int \frac{5x-3}{x^2+2x-3} \, dx$$

c)
$$\int \frac{4x^3 - 2x + 4}{(x^2 + 1)(x - 1)^2} dx$$

b)
$$\int \frac{5x+6}{(x+2)^2} \, dx$$

d)
$$\int \frac{1}{x^4-1} \, dx$$

Abgabe: Sie können Ihre Lösung bis zum Mittwoch, den 24.01. um 10 Uhr über UniWorX abgeben. Es werden Dateien im txt-Format (reiner Text) oder im pdf-Format akzeptiert.