# Álgebra Linear aplicada à análise de crédito

O principal tópico abordado nesse trabalho é a utilização de regressão logística para classificação de credores, classificando-os como bons ou mals.

### In [1]:

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

matplotlib inline

from collections import OrderedDict

# Bibliotecas de treinamento
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matcol
from sklearn.preprocessing import RobustScaler

# PCA
from sklearn.decomposition import PCA
```

### In [2]:

```
default = pd.read_csv("UCI_Credit_Card.csv",index_col="ID")
pd.set_option('display.max_columns', None)
default['EDUCATION']=np.where(default['EDUCATION'] == 5, 4, default['EDUCATION'])
default['EDUCATION']=np.where(default['EDUCATION'] == 6, 4, default['EDUCATION'])
default['EDUCATION']=np.where(default['EDUCATION'] == 0, 4, default['EDUCATION'])
default['MARRIAGE']=np.where(default['MARRIAGE'] == 0, 3, default['MARRIAGE'])
default.rename(columns = {'default.payment.next.month': "default"}, inplace = True)
default.rename(columns = lambda x: x.lower(), inplace = True)
default.head()
```

### Out[2]:

|    | limit_bal | sex | education | marriage | age | pay_0 | pay_2 | pay_3 | pay_4 | pay_5 | pay_6 | bill_ |
|----|-----------|-----|-----------|----------|-----|-------|-------|-------|-------|-------|-------|-------|
| ID |           |     |           |          |     |       |       |       |       |       |       |       |
| 1  | 20000.0   | 2   | 2         | 1        | 24  | 2     | 2     | -1    | -1    | -2    | -2    | 3!    |
| 2  | 120000.0  | 2   | 2         | 2        | 26  | -1    | 2     | 0     | 0     | 0     | 2     | 2(    |
| 3  | 90000.0   | 2   | 2         | 2        | 34  | 0     | 0     | 0     | 0     | 0     | 0     | 29;   |
| 4  | 50000.0   | 2   | 2         | 1        | 37  | 0     | 0     | 0     | 0     | 0     | 0     | 469   |
| 5  | 50000.0   | 1   | 2         | 1        | 57  | -1    | 0     | -1    | 0     | 0     | 0     | 8(    |
| <  |           |     |           |          |     |       |       |       |       |       |       | >     |

## Descrição dos Dados(Features)

- limit\_bal: Limite de crédito considerando o limite individual e familiar.
- sex: Gênero

- 1 = Homem
- 2 = Mulher
- education: Nível de escolaridade
  - 1 = Pós-Graduação
  - 2 = Universidade
  - 3 = Ensino Médio
  - 4 = Outros
- marriage: Estado Civil
  - 1 = Casado(a)
  - 2 = Solteiro(a)
  - 3 = Outros
- age: Idade(Anos)
- pay\_0 até pay\_6: Histórico de pagamentos entre os meses de Abril e Setembro de 2005.
  - Números Negativos = Pagou Adiantado
  - 0 = Pagou na data correta
  - 1 = Com um mês de atraso
  - 2 = Com dois meses de atraso, ...
- bill\_amt1 até bill\_amt6: Dívida acumulada nos meses de Abril e Setembro de 2005.
- pay\_amt1 até pay\_amt6: Montante pago em antecipado
- default:
  - 1 = Não pagou
  - 0 = Pagou

## Entendendo melhor os dados

### In [3]:

```
sim = default.default.sum()
   nao = len(default)-sim
 2
 4
   sim_perc = round(sim/len(default)*100, 1)
   nao_perc = round(nao/len(default)*100, 1)
   import sys
   plt.figure(figsize=(7,4))
 7
   sns.set_context('notebook', font_scale=1.2)
   sns.countplot('default',data=default, palette="Blues")
   plt.annotate('bom credor: {}'.format(nao), xy=(-0.3, 15000), xytext=(-0.3, 3000), size=
11 plt.annotate('mal pagador: {}'.format(sim), xy=(0.7, 15000), xytext=(0.7, 3000), size=1
   plt.annotate(str(nao_perc)+" %", xy=(-0.3, 15000), xytext=(-0.1, 8000), size=12)
   plt.annotate(str(sim_perc)+" %", xy=(0.7, 15000), xytext=(0.9, 8000), size=12)
13
   plt.title('Contagem dos Cartões de Crédito', size=18)
15
16 plt.box(False);
```

## Contagem dos Cartões de Crédito



Algumas renderizações dos dados.

#### In [4]:

```
# Creating a new dataframe with categorical variables
 2
    subset = default[['sex','education','marriage','pay_0', 'pay_2', 'pay_3', 'pay_4', 'pay
 3
 4
 5
    f, axes = plt.subplots(3, 3, figsize=(20, 15), facecolor='white')
    f.suptitle(' Frequência das Variáveis Categóricas')
    ax1 = sns.countplot(x="sex", hue="default", data=subset, palette="winter", ax=axes[0,0]
 7
    ax2 = sns.countplot(x="education", hue="default", data=subset, palette="hot",ax=axes[0]
ax3 = sns.countplot(x="marriage", hue="default", data=subset, palette="spring",ax=axes[
 9
    ax4 = sns.countplot(x="pay_0", hue="default", data=subset, palette="binary", ax=axes[1]
10
    ax5 = sns.countplot(x="pay_2", hue="default", data=subset, palette="summer", ax=axes[1, ax6 = sns.countplot(x="pay_3", hue="default", data=subset, palette="cool", ax=axes[1,2]
11
13
    ax7 = sns.countplot(x="pay_4", hue="default", data=subset, palette="autumn", ax=axes[2]
    ax8 = sns.countplot(x="pay_5", hue="default", data=subset, palette="rainbow", ax=axes[2
    ax9 = sns.countplot(x="pay_6", hue="default", data=subset, palette="icefire", ax=axes[2
15
```

Frequência das Variáveis Categóricas



A partir da análise visual, é notável que mulheres(2), graduados(2), solteiros(2) e todos os que costumam pagar na data prevista tendem a ser bons credores.

## Preparação dos dados

Antes de realizar qualquer operação com os dados, é preciso que as informações estejam formatadas adequadamente. Diante disso, faz-se necessário dispor os dados qualitativos no formato binário, fazendo alterações semelhantes ao do exemplo abaixo:

Tabela exemplo:

Sex:

Female

Tabela exemplo no formato binário:

| id | Male | Female |
|----|------|--------|
| 1  | 1    | 0      |
| 2  | 1    | 0      |
| 3  | 0    | 1      |

Os dados da segunda tabela, nessa formatação, são denominados dummy features

### In [5]:

```
#Formatando os dados
   default['grad_school'] = (default['education']==1).astype('int')
   default['university'] = (default['education']==2).astype('int')
   default['high_school'] = (default['education']==3).astype('int')
 5
   default.drop('education', axis=1, inplace=True)
 6
   default['male'] = (default['sex']==1).astype('int')
 7
8
   default.drop('sex', axis=1,inplace=True)
9
   default['married'] = (default['marriage'] == 1).astype('int')
10
11
   default.drop('marriage', axis=1, inplace=True)
   default.sample(2)
```

### Out[5]:

```
limit_bal age pay_0 pay_2 pay_3 pay_4 pay_5 pay_6 bill_amt1 bill_amt2 bill_am
   ID
       20000.0
                                 0
                                        -2
                                                                   15960.0
6972
                 37
                          0
                                               -1
                                                               0
                                                                                 0.0
                                                                                        -1953
                                        2
14075
       90000.0
                 28
                          1
                                 2
                                                2
                                                       2
                                                                   56889.0
                                                                             55407.0
                                                                                       64428
```

Os indivíduos que antecipam os pagamentos ou pagam na data prevista são bons credores. Diante disso, é útil resumi-los a variável 0 nas colunas pay\_0 a pay\_6, uma vez que, a predição ficará menos complexa.

#### In [6]:

```
pay_features = ['pay_0', 'pay_2','pay_3','pay_4','pay_5','pay_6']

#Substituindo todos os valores negativos por 0
for p in pay_features:
    default.loc[default[p]<=0,p] = 0</pre>
```

# Regressão Linear

Vamos observar um exemplo com Regressão Linear e o porquê ela não é ideal para esse tipo de análise.

### In [7]:

## Regressão Linear: Distinguindo pagadores e não pagadores



Regressão Linear: Não pode distinguir entre pagadores e não pagadores



Regressão Linear prediz com mais precisão modelos em que a saída é um valor contínuo, enquanto que, Regressão Logística modela melhor casos em que é necessário uma resposta binária como True or False.

# Regressão Logística

A Regressão Logística é uma técnica estatística cujo o objetivo é predizer a ocorrência de um evento dado um cojunto de dados.

Nesse notebook, a Regressão Logística será usada para avaliar se um indivíduo é um bom credor, baseado em seus dados pessoais.

### Criando o Primeiro Modelo usando todos os dados

### In [8]:

```
#Bibliotecas úteis do sklearn
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_ma
from sklearn.preprocessing import RobustScaler
```

Como a Regressão Logística é um modelo de Machine Learning supervisionado, é preciso separar do DataFrame as labels e os dados. Dessa forma, o modelo modificará os parâmetros de uma função para que as informações inseridas, de cada usuário, nessa função, resultem nos valores 0 ou 1. De modo que, esses valores binários corresponderão a classificação 0 (bom credor) ou 1 (mal pagador).

```
f: \mathbb{R}^n \to k \in [0,1]
```

### In [9]:

```
#Armazenando as labels
y = default.copy()['default']
#Armazenando os dados
X = default.copy().drop('default', axis=1)
```

#### Normalizando os dados

Em tese, Regressão Logística não precisa de normalização de Dados, pois esta trabalha com probabilidades(veremos sobre isso adiante), porém a existência de outliers podem prejudicar a performance do modelo. Nesse sentido, a normalização faz-se necessária antes de implementar o modelo e para este fim, a função RobustScaler, do SKLEARN, é ideal, pois remove os valores que não estão entre o 1º e 2º quartil e normaliza os dados.

#### In [10]:

```
#Removendo os outliers
robust_scaler = RobustScaler()
X = robust_scaler.fit_transform(X)
X = pd.DataFrame(X, columns = default.drop("default", axis = 1).columns)
```

Em seguida, é necessário extrair alguns dados e labels de test, para que ao fim da modelagem sejam usados na avaliação da performance do modelo.

#### In [11]:

```
#Separando os dados de treino e test
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.15, random_state =
```

Após o tratamento dos dados, aparentemente, já é viável executar o modelo. Mas antes, vale entender a Matemática que compõe o modelo de Regressão Logística.

### A Matemática da Regressão Logística

Como dito anteriormente, este é um método de aprendizado supervisionado, ou seja, o modelo realiza a tarefa de aprender uma função que mapeia uma entrada para obter uma saída, com base em pares de entrada-saída.

O termo Logística deriva do termo log odds, no qual, odds refere-se a razão entre a probabilidade de um evento acontecer e a probabilidade de não acontecer. O modelo recebeu este nome devido a utilização de log odds no cálculo da Regressão.

$$Odds = \frac{P(event)}{1 - P(event)}$$

O gráfico da Regressão Logística é gerado a partir de uma função Sigmoide e uma das razões para usar essa curva é por se adequar melhor a modelos de classificação binária, uma vez que, os valores de saída podem ser interpretados como a probabilidade de um evento acontecer, já que estes variam entre 0 e 1.

$$p(X) = \frac{1}{1 + e^{-BX}}; p(x) \in [0, 1]; X, B \in \mathbb{R}^n$$



A Regressão Logística estimará o parâmetro B de modo que função Sigmoide atinja a maior similaridade.

### Estimando o parâmetro

- Suponha que exista N amostras com labels 0 ou 1.
- · Algumas amostras correspondem as Labels "1".
- Já outras amostras correspondem as Labels "0"
- O objetivo é estimar um B tal que, p(x) esteja o mais próximo de 1 nas amostras "1" e (1-p(x)) o mais próximo de 1 nas amostras "0"

$$\prod_{\substack{s \ em \ yi=1}} p(x_i) = p(x_1) * p(x_2) * \dots * p(x_n)$$

$$\prod_{\substack{s \ em \ yi=0}} 1 - p(x_i) = (1 - p(x_1)) * (1 - p(x_2)) * \dots * (1 - p(x_n))$$

$$L(B) = \prod_{\substack{s \ em \ yi=1}} p(x_i) * \prod_{\substack{s \ em \ yi=0}} (1 - p(x_i))$$

$$L(B) = \prod_{\substack{s \ em \ yi=1}} p(x_i)^{yi} * (1 - p(x_i))^{1-y_i}$$

Aplicando log odds para isolar o parâmetro BX e transformar o produtório em somatório

$$log(L(B)) = log(\prod_{s} p(x_i)^{y_i} * (1 - p(x_i))^{1 - y_i}) = l(b)$$

$$l(B) = \sum_{i=1} y_i \log \left(\frac{1}{1 + e^{-Bx_i}}\right) + (1 - y_i) \log \left(1 - p(x_i)\right)$$

$$l(B) = \sum_{i=1} y_i Bx_i + \log \left(\frac{1}{1 + e^{Bx_i}}\right)$$

$$l(B) = \sum_{i=1} Bx_i - \log 1 + e^{Bx_i}$$

$$B = arg \max_{B} l(B)$$

\$\$

Como essa equação é transcendental, não existe um B exato, entretanto, o Método de Newton oferece uma boa apromixação para este valor.

$$B^{t+1} = B^t - \frac{\nabla_B l(B^t)}{\nabla_{BB} l(B^t)}$$

Calculando o gradiente  $\nabla_B l$ 

$$\begin{split} \nabla_{B}l &= \sum_{i=1} \nabla_{B}[y_{i}Bx_{i}] - \nabla_{B}[log(1 + e^{Bx_{i}})] \\ \nabla_{B}l &= \sum_{i=1} y_{i}x_{i} - [\frac{1}{1 + e^{Bx_{i}}}e^{Bx_{i}}x_{i}] \\ \nabla_{B}l &= \sum_{i=1} y_{i}x_{i} - [\frac{1}{1 + e^{-Bx_{i}}}x_{i}] \\ \nabla_{B}l &= \sum_{i=1} [y_{i} - p(x_{i})]x_{i} \end{split}$$

Convertendo para a representação matricial

$$\nabla_B = X^T (Y - \hat{Y})$$

Calculando o gradiente  $\nabla_{BB}$ , que é uma matrix de Hessian

$$\nabla_{BB}l = \sum_{i=1} \nabla_{B}[y_{i} - p(x_{i})]x_{i}$$

$$\nabla_{BB}l = \sum_{i=1} \nabla_{B} - p(x_{i})x_{i}$$

$$\nabla_{BB}l = \sum_{i=1} \nabla_{B} - \left[\frac{1}{1 + e^{-Bx_{i}}}\right]x_{i}$$

$$\nabla_{BB}l = \sum_{i=1} \left[\frac{1}{1 + e^{-Bx_{i}}}\right]^{2}e^{-Bx_{i}}(-x_{i})x_{i}$$

$$\nabla_{BB}l = -\sum_{i=1} \left[\frac{e^{-Bx_{i}}}{1 + e^{-Bx_{i}}}\right]\left[\frac{1}{1 + e^{-Bx_{i}}}\right]x_{i}^{T}x_{i}$$

$$\nabla_{BB}l = -\sum_{i=1} p(x_{i})(1 - p(x_{i}))x_{i}^{T}x_{i}$$

Convertendo para forma matricial

$$\nabla_{BB}l = -X^T P(1 - P)X$$
$$\nabla_{BB}l = -X^T W X$$

Desse modo, iterando a fórmula abaixo obtemos o parâmetro B.

$$B^{t+1} = B^t + (X^T W X)^{-1} X^T (Y - \hat{Y}^t)$$

### Perspectiva Geométrica da Regressão Logística

Quando é aplicado ""log odds"" na Função Sigmoide, obtém-se a reta  $BX \in \mathbb{R}^n$ 



Ao calcular o vetor B com Método de Newton, geometricamente, a reta BX rotacionará até que os coeficientes de B convirjam em um vetor que torna a função Sigmoide o mais similar possível.



### Implementando o modelo

### In [12]:

```
# 1. Importando o modelo
from sklearn.linear_model import LogisticRegression

# 2. Criando uma instância para estimar
logistic_regression = LogisticRegression(n_jobs=-1, random_state=15)

# 3. Usando os dados de treino para treinar o modelo
logistic_regression.fit(X_train,y_train);
```

### Avaliando o Modelo

### In [13]:

```
def CMatrix(y pred test,y true):
 1
 2
        from pandas import DataFrame
 3
        CM = confusion_matrix(y_pred_test, y_test)
 4
        df = pd.DataFrame(
 5
            data={'Positive(Predicted)':CM[0,:],'Negative(Predicted)':CM[1,:]},
 6
            index=['Positive','Negative'])
 7
        return df
 8
9
   def model_metrics(X_test,y_test, logistic_regression):
        metrics = pd.DataFrame(index=['accuracy', 'precision', 'recall'],columns=['Logistic']
10
11
        y_pred_test = logistic_regression.predict(X_test)
12
        print()
        metrics.loc['accuracy', 'LogisticReg'] = accuracy_score(y_pred=y_pred_test, y_true=
13
        metrics.loc['precision', 'LogisticReg'] = precision_score(y_pred=y_pred_test, y_trut)
14
        metrics.loc['recall', 'LogisticReg'] = recall_score(y_pred=y_pred_test, y_true=y_text)
15
        metrics['metric_type'] = metrics.index
16
        #print(metrics)
17
        #print(CMatrix(y_pred_test=y_pred_test, y_true=y_test))
18
19
        return metrics
20
21 | metrics_model_1=model_metrics(X_test,y_test,logistic_regression)
```

### Analisando os coeficientes da função

O vetor parâmetro B possui um coeficiente para cada feature e os valores absolutos desses coeficientes representam a importância de cada feature no modelo de predição. Abaixo, há um gráfico com todos os valores de B atrelado as features correspondentes.

### In [14]:

```
logistic_regression.coef_[0]
default.columns
f,ax = plt.subplots(figsize=(8, 7))
coef_plot = sns.barplot(y=default.columns.drop('default'),x=abs(logistic_regression.coef)
```



Ao observar o gráfico, fica visível que os dados de pay\_amt1 a pay\_amt6 oferecem pouca informação para o modelo.

### Analisando a correlação entre as features

Outro fator importante a ser analisado é a correlação entre os dados, posto que, quando há grande correlação, os dados não oferecem tanta informação para o modelo. Diante disso, é válido observar o heatmap que demonstra a correlação entre as features utilizadas.

### In [15]:

### Out[15]:

Text(0.5, 1.0, 'MATRIZ DE CORRELAÇÃO - HEATMAP')



um mês é suficiente para o modelo, tendo em vista que as bill\_amts de outros meses apenas repetem a mesma informação.

Após essa análise, conclui-se que é recomendável remover do modelo pay\_amt1, pay\_amt2,..., pay\_amt6 e bill\_amt1,bill\_amt2,...,bill\_amt5, visto que, acrescentam pouca informação ao modelo. Desse modo, pensando na implementação em larga escala, a remoção dessas 11 features pode diminuir bastante os custos de processamento, armazenamento e coleta de dados de uma empresa.

## Re-implementando o modelo

Diante das alterações do conjunto, faz-se necessário re-implementar o modelo e avaliar as alterações nas métricas de predição.

#### In [16]:

```
#Removendo as features
              default2 = default.copy().drop(['pay_amt1','pay_amt2','pay_amt3','pay_amt4','pay_amt5'
              y_2 = default2['default']
              X_2 = default2.copy().drop('default',axis=1)
    6 #Removendo os outliers e normalizando
    7
              robust_scaler_2 = RobustScaler()
              X_2 = robust_scaler_2.fit_transform(X_2)
    8
10 #Separando os Dados
              X_train_2, X_test_2, y_train_2, y_test_2 = train_test_split(X_2,y_2, test_size=0.15, rain_test_split(X_2,y_2, test
11
12
13
              #Reimplementado o modelo
              logistic_regression_2 = LogisticRegression(n_jobs=-1, random_state=15)
14
15
16
              logistic_regression_2.fit(X_train_2,y_train_2)
17
              metrics_model_2 = model_metrics(X_test_2,y_test_2,logistic_regression_2)
18
19
```

## Comparando resultados

Com os resultados da nova implementação, é possível concluir que, realmente, os dados removidos eram irrelevantes. O gráfico demonstra a precisão, acurácia e recall das duas implementações

### In [17]:

```
metrics_model_2['model'] = 'model_2'
metrics_model_1['model'] = 'model_1'
g = sns.catplot(data=pd.concat([metrics_model_1,metrics_model_2]), kind='bar', y='Logis'
```



## **Utilizando PCA**

O Principal Component Analysys (PCA), é uma operação linear que utiliza Singular Value Decomposition(SVD) para reduzir um conjunto de features possivelmente correlacionadas num conjunto de valores de variáveis linearmente não correlacionadas chamadas de componentes principais.

## Matemática do PCA(exemplo explicativo)

Seja o conjunto de dados representado por X. No cálculo do PCA, primeiramente, obtem-se a média dos n valores de cada coluna de X.

$$\frac{\sum_{j} X_{ji}}{}$$

Agora, é necessário determinar a matriz de coavariancia, para tal, considere uma matriz auxiliar M obtida da seguinte forma:

$$M = X - \frac{\sum_{j} X_{ji}}{n}$$

Logo, a matriz de covariância C é:

$$C = \frac{M^T M}{n-1}$$

Diante disso, é preciso calcular os auto-valores e auto-vetores da matriz C. Os auto-valores  $\lambda$  de C são raízes do seguinte polinômio característico:

$$p_C(Y) = det(C - YI)$$

E os auto-vetores q pertencem ao conjunto:

$$(C - \lambda I)q = 0$$

Faz-se necessário calcular o quanto cada auto-vetor(componentes) representa na taxa de variação dos dados, para isso vamos analisar a variância de cada auto-valor:

$$var(\lambda) = \frac{\lambda}{\sum_{j} \lambda_{j}}$$

Logo, com o conjunto das variâncias dos auto-valores pode-se determinar as componentes principais do dado conjunto. A importância de cada componente é dada pelo valor da variância do auto-valor correspondente.

### Reduzindo o conjunto de dados às 13 principais componentes

### In [18]:

```
from sklearn.decomposition import PCA

#Definindo a dimensão dos dados

pca = PCA(13)

#PCA no conjunto de treino

pca_X = pca.fit(X)

X_pca = pd.DataFrame(pca_X.transform(X))

X_pca.head()
```

### Out[18]:

|   | 0         | 1        | 2         | 3        | 4        | 5         | 6         | 7         |          |
|---|-----------|----------|-----------|----------|----------|-----------|-----------|-----------|----------|
| 0 | -3.339702 | 1.209778 | -0.426773 | 0.309149 | 0.165696 | -0.348627 | 1.198143  | 0.979059  | -0.52719 |
| 1 | -2.915311 | 0.797967 | -0.547978 | 0.430450 | 0.294873 | -0.554742 | 1.188430  | 0.905603  | -0.86573 |
| 2 | -2.246350 | 0.234234 | -0.976335 | 0.378132 | 0.169322 | -0.271923 | 0.824479  | -0.652101 | -0.42399 |
| 3 | -2.267245 | 0.837629 | -0.186583 | 0.242701 | 0.055321 | -0.024043 | -0.120276 | -0.699375 | 0.12211  |
| 4 | 4.589981  | 5.525321 | -0.296593 | 0.641106 | 1.701635 | -2.372474 | 1.211485  | -0.488318 | 1.48947  |
| < |           |          |           |          |          |           |           |           | >        |

### In [19]:

```
#Fazendo o split no conjunto reduzido
X_train_pca, X_test_pca, y_train, y_test = train_test_split(X_pca, y, test_size = 0.15)
```

### In [20]:

```
from sklearn.linear_model import LogisticRegression

#2. Criando uma instância para estimar
logistic_regression_pca = LogisticRegression(n_jobs=-1, random_state=15)

#3. Usando os dados de treino para treinar o modelo
logistic_regression_pca.fit(X_train_pca,y_train);

8
9
```

### In [21]:

```
metrics_model_pca = model_metrics(X_test_pca,y_test,logistic_regression_pca)
```

### Nova correlação entre as veriáveis

#### In [22]:



#### Apenas a título de comparação das métricas

#### In [23]:

```
1 #Definindo a dimensão dos dados
   pca = PCA(9)
   #PCA no conjunto de treino
 4
   pca_X = pca.fit(X)
 6 | X_pca = pd.DataFrame(pca_X.transform(X))
 8 #Fazendo o split no conjunto reduzido
 9
   X_train_pca, X_test_pca, y_train, y_test = train_test_split(X_pca, y, test_size = 0.15)
10
11
   #2. Criando uma instância para estimar
   logistic_regression_pca = LogisticRegression(n_jobs=-1, random_state=15)
12
13
14 #3. Usando os dados de treino para treinar o modelo
15
   logistic_regression_pca.fit(X_train_pca,y_train)
16
   metrics_model_pca9 = model_metrics(X_test_pca,y_test,logistic_regression_pca)
17
18
19
```

### Avaliando as métricas

#### In [24]:

```
y_pred_test1 = logistic_regression.predict(X test)
   CM1 = confusion_matrix(y_pred = y_pred_test1, y_true = y_test)
   y_pred_test2 = logistic_regression_2.predict(X_test_2)
 5
   CM2 = confusion_matrix(y_pred = y_pred_test2, y_true = y_test)
 7 \text{ pca} = PCA(13)
   pca X = pca.fit(X)
   X_pca = pd.DataFrame(pca_X.transform(X))
 9
10 | X_train_pca, X_test_pca, y_train, y_test = train_test_split(X_pca, y, test_size = 0.15)
   logistic_regression_pca = LogisticRegression(n_jobs=-1, random_state=15)
12
   logistic_regression_pca.fit(X_train_pca,y_train)
13
   y_pred_test_pca13 = logistic_regression_pca.predict(X_test_pca)
14
15
   CM13 = confusion_matrix(y_pred = y_pred_test_pca13, y_true = y_test)
16
17 \text{ pca} = PCA(9)
18 pca_X = pca.fit(X)
   X pca = pd.DataFrame(pca X.transform(X))
20 X_train_pca, X_test_pca, y_train, y_test = train_test_split(X_pca, y, test_size = 0.15)
   logistic_regression_pca = LogisticRegression(n_jobs=-1, random_state=15)
22
   logistic_regression_pca.fit(X_train_pca,y_train)
23
24
   y_pred_test_pca9 = logistic_regression_pca.predict(X_test_pca)
25
   CM9 = confusion_matrix(y_pred = y_pred_test_pca9, y_true = y_test)
```

#### In [25]:

```
2
   f, axes = plt.subplots(2, 2, figsize=(20, 15), facecolor='white')
   f.suptitle(' Matrizes de Confusão')
 5
   plt.figure(figsize=(1, 1))
 6
   ax1 = sns.heatmap(CM1,annot=True, cmap="Blues", fmt="d",
 7
                xticklabels = ['Bom pagador', 'Mal pagador'],
                yticklabels = ['Bom pagador', 'Mal pagador'], ax=axes[0,0])
 8
 9
10
   plt.figure(figsize=(1, 1))
   ax2 = sns.heatmap(CM2,annot=True, cmap="Blues", fmt="d",
11
                xticklabels = ['Bom pagador', 'Mal pagador'],
12
                yticklabels = ['Bom pagador', 'Mal pagador'], ax=axes[0,1])
13
14
   plt.figure(figsize=(1, 1))
15
16
   ax3 = sns.heatmap(CM13,annot=True, cmap="Blues", fmt="d",
17
                xticklabels = ['Bom pagador', 'Mal pagador'],
                yticklabels = ['Bom pagador', 'Mal pagador'], ax=axes[1,0])
18
19
   plt.figure(figsize=(1, 1))
20
   ax4 = sns.heatmap(CM9,annot=True, cmap="Blues", fmt="d",
21
                xticklabels = ['Bom pagador', 'Mal pagador'],
22
                yticklabels = ['Bom pagador', 'Mal pagador'], ax=axes[1,1]);
23
24
```

#### Matrizes de Confusão



```
<Figure size 72x72 with 0 Axes>
```

### In [26]:

```
metrics_model_2['model'] = 'model_2'
metrics_model_1['model'] = 'model_1'
metrics_model_pca['model'] = 'pca_13'
metrics_model_pca9['model'] = 'pca_9'
g = sns.catplot(data=pd.concat([metrics_model_1,metrics_model_2,metrics_model_pca,metrics_model_pca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_model_nca,metrics_nca,metrics_model_nca,metrics_model_nca,metrics_model_n
```



# Simulação

Função para receber dados externos

### In [27]:

```
def cadastro(cliente):
 2
 3
        #transformando o dict em série
 4
        cliente = pd.Series(cliente)
 5
 6
        #dimensionando e normalizando
        info = cliente.values.reshape(1, -1)
 7
 8
        info = robust_scaler.transform(info)
 9
        #como "info" e "X" são np array, vamos converter para dataframe
10
11
        info = pd.DataFrame(info, columns = default.drop("default", axis = 1).columns)
12
        #vamos concatenar essa linha aos dados originais
13
        novos_dados = pd.concat([info, X])
14
15
16
        return novos dados
```

### In [28]:

```
def teste(novos_dados):
     1
     2
      3
                                    #Definindo a dimensão do dado
      4
      5
                                    pca_function = PCA(9)
      6
      7
                                    try:
                                                       pca_function_teste = pca_function.fit(novos_dados)
     8
     9
                                                       dado_reduzido = pd.DataFrame(pca_function_teste.transform(novos_dados))
 10
 11
                                                       prob = logistic_regression_pca.predict_proba(dado_reduzido[:1])[0][1]
12
13
                                                       if prob >= 0.25:
14
 15
                                                                         print(f"Esse vai dever\n\nScore: {round(100/prob, 3)}\nProb de dever: {round(100/prob, 3)}\nProb dever: {round(100/p
16
                                                       else:
                                                                         print(f"Camarada que paga!\n\nScore: {round(100/prob, 3)}\nProb de dever: {
17
18
19
                                    except ValueError:
 20
                                                       print("Dado com dimensão grande demais")
 21
```

### In [29]:

```
1  yuri = OrderedDict([("limit_bal", 4000), ("age", 30), ("pay_0", -5), ("pay_2", 0),("pay_2", 0),("pay_
```

Camarada que paga!

Score: 1494.585 Prob de dever: 6.69%

## In [30]: luiz = OrderedDict([("limit\_bal", 1000), ("age", 19), ("pay\_0", 0), ("pay\_2", 0),("pay\_ 2 cliente2 = cadastro(luiz) 3 teste(cliente2) Camarada que paga! Score: 640.948 Prob de dever: 15.6% In [31]: gustavo = OrderedDict([("limit\_bal", 30000), ("age", 19), ("pay\_0", 3), ("pay\_2", 4),(") 1 2 3 cliente3 = cadastro(gustavo) 4 teste(cliente3) Esse vai dever Score: 102.178 Prob de dever: 97.87% In [32]: ari = OrderedDict([("limit\_bal", 3000), ("age", 19), ("pay\_0", 0), ("pay\_2", -1),("pay\_ 1 3 4 cliente4 = cadastro(ari) teste(cliente4)

Camarada que paga!

Score: 1908.339 Prob de dever: 5.24%

## Referencias e dados

Logistic Regression - THE MATH YOU SHOULD KNOW <a href="https://www.youtube.com/watch?v=YMJtsYlp4kg">https://www.youtube.com/watch?v=YMJtsYlp4kg</a> (<a href="https://www.youtube.com/watch?v=YMJtsYlp4kg">https://www.youtube.com/watch?v=YMJtsYlp4kg</a>)

<u>https://www.kaggle.com/selener/prediction-of-credit-card-default/notebook</u> (<a href="https://www.kaggle.com/selener/prediction-of-credit-card-default/notebook">https://www.kaggle.com/selener/prediction-of-credit-card-default/notebook</a>)

Logistic Regression Details Pt1: Coefficients <a href="https://www.youtube.com/watch?v=BfKanl1aSG0">https://www.youtube.com/watch?v=BfKanl1aSG0</a> (<a href="https://www.youtube.com/watch?v=BfKanl1aSG0">https://www.youtube.com/watch?v=BfKanl1aSG0</a>)

Logistic Regression Details Pt 2: Maximum Likelihood <a href="https://www.youtube.com/watch?">https://www.youtube.com/watch?</a>
<a href="https://www.youtube.com/watch?v=BfKanl1aSG0&t=383s">https://www.youtube.com/watch?v=BfKanl1aSG0&t=383s</a>

Making Predictions with Data and Python: Predicting Credit Card Default | packtpub.com <a href="https://www.youtube.com/watch?v=zUqa6KcwRhs&app=desktop">https://www.youtube.com/watch?v=zUqa6KcwRhs&app=desktop</a> (https://www.youtube.com/watch?v=zUqa6KcwRhs&app=desktop)