Laboratorium Podstaw Automatyki Ćwiczenie 3 - Identyfikacja obiektu regulacji		
Nazwisko Imię	Grupa	Data i godzina zajęć
Szczypek Jakub	Grupa 5a	21.03.2022r. godz.17.00 Poniedziałek

1. Cel ćwiczenia:

Celem ćwiczenia jest identyfikacja parametrów zastępczego, rzeczywistego obiektu regulacji.

2. Wstęp teoretyczny

Ćwiczenie polega na wyznaczeniu parametrów systemu dynamicznego, nieskończenie wymiarowego, jakim jest doświadczalny obiekt cieplny, którego konstrukcja jest pokazana na rysunku 1.

Rysunek 1 – układ doświadczalny

Do identyfikacji zostaną użyte 3 różne wzory:

• Transmitancja zastępcza Kupfmullera I rzędu z opóźnieniem:

$$G(s) = \frac{ke^{-s\tau}}{Ts+1}$$

• Transmitancja zastępcza Kupfmullera II rzędu z opóźnieniem:

$$G(s) = \frac{ke^{-s\tau}}{(T_1s+1)(T_2s+1)}$$

• Transmitancja Strejca bez opóźnienia:

$$G(s) = \frac{k}{(Ts+1)^n}$$

Parametry modelu k, T, τ, (model I rzędu z opóźnieniem) , k, T1 , T2 ,τ (model II rzędu z opóźnieniem) oraz k, T, n (model bez opóźnienia) należy wyznaczono w oparciu o doświadczalny przebieg odpowiedzi skokowej modelu, zapisany w formacie MATLAB-a.

3. Realizacja ćwiczenia:

```
load("pomiary_3out.mat");
size(pomiary_3out);
czas = 1:1:300;
plot(czas, pomiary_3out);
```



```
figure
y1=pomiary_3out(:,1) - pomiary_3out(1,1);
plot(czas, y1)
grid on
title("Czujnik 1")
```



```
figure
y2=pomiary_3out(:,2) - pomiary_3out(1,2);
plot(czas, y2)
grid on
title("Czujnik 2")
```



```
figure
y3=pomiary_3out(:,3) - pomiary_3out(1,3);
plot(czas, y3)
grid on
title("Czujnik 3")
```


Czujnik 1

```
k1 = (y1(300,1)-y1(1,1))/1.0; %Wzmocnienie statyczne obiektu
tau = 7.5;
n = 10;
[ld,md]=pade(tau, n);
T = 29; %Oszacowanie stałej czasowej
T1 = 4;
T2 = 28;
T1 2 = 16;
T2_2 = 20;
[l,m]=series(ld,md,[k1],[T,1]); %model obiektu I rzędu z opóźnieniem
[12, m2] = series (ld, md, [k1], [T1*T2, T1+T2, 1]); %model obiektu II rzędu z
opóźnieniem
13 = [k1];
m3 = [T1_2*T2_2, T1_2 + T2_2, 1]; %model obiektu II rzędu bez opóznienia
y1m1 = step(1, m, czas);
y1m2 = step(12, m2, czas);
y1m3 = step(13, m3, czas);
u1 = ones(size(y1));
y1exper = iddata(y1, u1, 1);
y1model1 = tf(1, m);
y1model2 = tf(12, m2);
y1model3 = tf(13, m3);
compare(y1exper, y1model1, 300); %funkcja porównująca
title("Oszacowanie modelem Kupfmullera I rzędu z opóźnieniem")
legend("Location", "best")
grid
```



```
compare(y1exper, y1model2, 300);
title("Oszacowanie modelem Kupfmullera II rzędu z opóźnieniem")
legend("Location", "best")
grid
```



```
compare(y1exper, y1model3, 300);
title("Oszacowanie modelem Kupfmullera II rzędu bez opóźnienia")
legend("Location", "best")
grid
```


100 150 Time (seconds)

```
MSE1 = sum((y1-y1m1).^2)

MSE1 = 0.0432

MSE2 = sum((y1-y1m2).^2)

MSE2 = 0.0234

MSE3 = sum((y1-y1m3).^2)
```

200

250

300

Czujnik 2

MSE3 = 0.0408

0.1

0

50

-0.1

```
k2 = (y2(300,1)-y2(1,1))/1.0; %Wzmocnienie statyczne obiektu

tau = 50;
n = 10;
[ld,md]=pade(tau, n);

T = 40; %Oszacowanie stałej czasowej
T1 = 28;
T2 = 35;
T1_2 = 26;
T2_2 = 30;

[l,m]=series(ld,md,[k2],[T,1]); %model obiektu I rzędu z opóźnieniem
```

```
[12, m2] = series (ld,md,[k2], [T1*T2, T1+T2, 1]); %model obiektu II rzędu z
opóźnieniem
13 = [k2];
m3 = [T1_2*T2_2, T1_2 + T2_2, 1]; %model obiektu II rzędu bez opóznienia
y2m1 = step(1, m, czas);
y2m2 = step(12, m2, czas);
y2m3 = step(13, m3, czas);
u2 = ones(size(y2));
y2exper = iddata(y2, u2, 1);
y2model1 = tf(1, m);
y2model2 = tf(12, m2);
y2model3 = tf(13, m3);
compare(y2exper, y2model1, 300); %funkcja porównująca
title("Oszacowanie modelem Kupfmullera I rzędu z opóźnieniem")
legend("Location", "best")
grid
```



```
compare(y2exper, y2model2, 300);
title("Oszacowanie modelem Kupfmullera II rzędu z opóźnieniem")
legend("Location", "best")
grid
```



```
compare(y2exper, y2model3, 300);
title("Oszacowanie modelem Kupfmullera II rzędu bez opóźnienia")
legend("Location", "best")
grid
```


 $MSE1 = sum((y2-y2m1).^2)$

MSE1 = 0.4094

 $MSE2 = sum((y2-y2m2).^2)$

MSE2 = 1.1477

```
MSE3 = sum((y2-y2m3).^2)
MSE3 = 0.0457
```

Czujnik 3

```
k3 = (y3(300,1)-y3(1,1))/1.0; %Wzmocnienie statyczne obiektu
tau = 50;
n = 10;
[ld,md]=pade(tau, n);
T = 60; %Oszacowanie stałej czasowej
T1 = 38;
T2 = 40;
T1_2 = 41;
T2_2 = 43;
[l,m]=series(ld,md,[k3],[T,1]); %model obiektu I rzędu z opóźnieniem
[12, m2] = series (ld,md,[k3], [T1*T2, T1+T2, 1]); %model obiektu II rzędu z
opóźnieniem
13 = [k3];
m3 = [T1_2*T2_2, T1_2 + T2_2, 1]; %model obiektu II rzędu bez opóznienia
y3m1 = step(1, m, czas);
y3m2 = step(12, m2, czas);
y3m3 = step(13, m3, czas);
u3 = ones(size(y3));
y3exper = iddata(y3, u3, 1);
y3model1 = tf(1, m);
y3model2 = tf(12, m2);
y3model3 = tf(13, m3);
compare(y3exper, y3model1, 300); %funkcja porównująca
title("Oszacowanie modelem Kupfmullera I rzędu z opóźnieniem")
legend("Location", "best")
grid
```



```
compare(y3exper, y3model2, 300);
title("Oszacowanie modelem Kupfmullera II rzędu z opóźnieniem")
legend("Location", "best")
grid
```



```
compare(y3exper, y3model3, 300);
title("Oszacowanie modelem Kupfmullera II rzędu z opóźnieniem")
legend("Location", "best")
grid
```

Oszacowanie modelem Kupfmullera II rzędu z opóźnieniem

 $MSE1 = sum((y3-y3m1).^2)$

MSE1 = 0.0026

 $MSE2 = sum((y3-y3m2).^2)$

MSE2 = 0.0256

 $MSE3 = sum((y3-y3m3).^2)$

MSE3 = 0.0114

4. Wnioski:

Ćwiczenie okazało się bardzo wartościowe. Pozwoliło dokładnie zapoznać się z różnymi modelami identyfikacji, co może okazać się przydatne, gdyż w rzeczywistych problemach często pracujemy z obiektami o nieznanych właściwościach.

Najlepszy rezultat uzyskano modelem Kupfmullera I rzędu z opóźnieniem, podobnie bliskie wyniki dała identyfikacja modelem Kupfmullera II rzędu z opóźnieniem. Gorszą jakość uzyskano korzystając z modelu Strejca bez opóźnienia.

Błędy wynikały w dużej mierze z niedokładności przyjętych parametrów na podstawie odoświadczalnego przebiegu odpowiedzi skokowej modelu.