JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering Electrical Science-II (15B11EC211)

Tutorial Sheet: 3

Q1[CO1] Find the differential equation for the voltage v for the circuit of Figure 1

Answer: $\frac{d^2v}{dt^2} + 1001 \frac{dv}{dt} + 1001 \times 10^3 v = \frac{dv_s}{dt} + 1000 v_s$

Figure 1

Q2[CO1] Find the natural response v_n (t) of the RLC (Fig.2) circuit, where R = 6Ω , L=7 H, and C= 1/42 F. The initial conditions are v(0) = 0 and i(0) = 10 A.

Answer: -84 (e^{-t}-e^{-6t}) Volts

Figure 2

Q3[CO1] A parallel RLC circuit (Fig. 2) has $R = 10\Omega$, C = 1 mF, L = 0.4 H, v(0) = 8 V, and i(0) = 0. Find the natural response $v_n(t)$ for t > 0. Answer: e^{-50t} (8 - 400t) V

Q4[CO1] Consider the parallel RLC circuit when R=25/3V, L=0.1H, C=1mF, v(0)=10V, and $i(0) \text{=-}0.6 A. \ Find the natural response } v_n(t) \ for \ t>0.$ Answer: $v_n(t) = 10 e^{-60t} \ cos \ 80t \ V$

Q5[CO1] Determine i(t) for t > 0 for the circuit shown in Figure 3.

Answer: $i(t) = 0.2 + 0.246 e^{-3.62t} - 0.646 e^{-1.38t}$ A for t > 0.

Q6[CO1] Find i(t) fort > 0 for the circuit shown in Figure 4 when R= 3 Ω ,L=1H,C=1/2F,and i_s =2e^{-3t} A. Assume steady state at t = 0⁻.

Answer: $i = 12e^{-t} - 14e^{-2t} + 2e^{-3t}$

Figure 4

Q7[CO1] Find the forced response for the inductor current i_f for the parallel RLC circuit shown in Figure 5 when $i_s=8e^{-2t}$ A. Let $R=6\Omega$, L=7H, and C=1/42 F.

Answer: $i_f = -12e^{-2t} A$

Figure 5