Definizioni ed dimostrazioni di teoremi per il corso di Fondamenti Matematici per l'Informatica

Facchini Luca

A.A. 2023/24

Sommario

In questo documento sono presenti le definizioni e le dimostrazioni dei teoremi richiesti dal Prof. Ghiloni R. per l'esame del corso di Fondamenti Matematici per l'Informatica dell'anno accademico 2023/24.

Indice

I Ordinamento numeri naturali e seconda forma induzione	3
1 Ordinamento dei numeri naturali	3
2 Seconda forma del principio di induzione	3
II Esistenza e unicità del quoziente e del resto nella divisione euclidea	4
3 Esistenza e unicità del quoziente e del resto della divisione euclidea	4
III Teorema di esistenza e unicità della rappresentazione in base $b \geq 2$ di n	n 5
4 Esistenza e unicità della rappresentazione in base $b \geq 2$	5
IV Esistenza e unicità di MCD e MCM	6
5 Massimo comune divisore (MCD)	6
6 Minimo comune multiplo (MCM)	7
V Teorema fondamentale dell'aritmetica	8
7 Teorema di esistenza e unicità della fattorizzazione in numeri primi	8
VI Teorema cinese del resto	ę
8 Teorema cinese del resto	9
VII Teorema di Fermat-Eulero e Crittografia RSA	10

9 Teorema di Fermat-Eulero	10
10 Teorema fondamentale della crittografia RSA	10
VIII Equivalenza tra la congiungibilità con cammini e la congiungibilità con passeggiate, dimostrazione che è relazione di equivalenza	1 11
11 Teorema di equivalenza tra la congiungibilità con cammini e la congiungibilità con passeggiate	1 11
12 La relazione di congiungibilità è una relazione di equivalenza	11
IX Relazione fondamentale dei grafi finiti e Lemma delle strette di mano	12
13 Teorema della relazione fondamentale tra il numero dei lati e i gradi dei vertici di un grafo finito	1 12
14 Lemma delle strette di mano	13
X Teorema caratterizzante degli alberi finiti	13
15 Teorema caratterizzante degli alberi finiti	13
XI Teorema di esistenza dell'albero di copertuta per i grafi finiti	14
16 Teorema di esistenza dell'albero di copertura per i grafi finiti	15

Parte I

L'ordinamento dei numeri naturali è un buon ordinamento e seconda forma del principio di induzione

1 Ordinamento dei numeri naturali

Teorema I.1. L'insieme dei numeri naturali $\mathbb N$ è un insieme ordinato rispetto alla relazione d'ordine \leq .

Ipotesi I.1.1. Sia $A \subseteq \mathbb{N}$.

Tesi I.1.2. Se $A \subseteq \mathbb{N}$ non ha un minimo allora $A = \emptyset$, dunque \mathbb{N} è un insieme ben ordinato.

Dimostrazione. Definiamo con B il complementare di A, $(B:=A^C=\mathbb{N}\setminus A)$, verifichiamo l'ipotesi per induzione di prima forma su B, dunque che $\{0,1,\ldots,n\}\in B\ \forall n\in\mathbb{N}\Rightarrow A=\emptyset$. Assumiamo che \mathbb{N} non sia ben ordinato e che dunque se $A\neq\emptyset$ allora A non ha un minimo.

Base Induttiva $(0 \in B)$. Dunque $0 \notin A$ altrimenti questo ne sarebbe il minimo, dunque $\{0\} \subseteq B$ in quanto B è definito come il complementare di $A.\checkmark$

Passo Induttivo $(n \in B \Rightarrow n+1 \in B)$. Supponendo ora che $0, 1, \ldots, n \in B$, allora $0, 1, \ldots, n \notin A$, ciò implica che $n+1 \in A$ questo però lo renderebbe un minimo il che è inammisibile in quanto A non ha un minimo per ipotesi. Dunque $n+1 \in B$, e quindi $\{0, 1, \ldots, n, n+1\} \subseteq B$.

Il passo induttivo è stato fatto e dunque per induzione di prima forma su B abbiamo che $A = \emptyset$, e quindi se $A \neq \emptyset$ questo ammette un minimo, quindi per la definizione di insieme ben ordinato \mathbb{N} è un insieme ben ordinato.

2 Seconda forma del principio di induzione

Teorema I.2. Seconda forma del principio di induzione:

Ipotesi I.2.1. Sia P(n) una serie di proposizioni indicizzata su \mathbb{N} , assumendo che:

- 1. P(0) sia vera.
- 2. $\forall n \in \mathbb{N} \text{ se } P(0), P(1), \dots, P(n) \text{ sono vere.}$

Tesi I.2.2. Se le ipotesi sono verificate allora P(n) è vera $\forall n \in \mathbb{N}$.

Dimostrazione. Sia $A := \{n \in \mathbb{N} \mid P(n) \text{ è falsa}\}$, dimostriamo che $A = \emptyset$. Supponendo che $A \neq \emptyset \Rightarrow \exists n \in \mathbb{N} : n = \min(A)$.

Base Induttiva (P(0)). Quindi abbiamo che esiste un minimo su A, per la bese induttiva (1) $0 \notin A$ dunque $0 \neq \min(A)$ in quanto P(0) è vera.

Passo Induttivo $(P(n) \Rightarrow P(n+1))$. Inoltre se k < n $k \notin A$ in quanto $n = \min(A)$ e dunque P(k) è vera, a questo punto per il passo induttivo (2) abbiamo che $\forall k < n$ P(k) è vera e dunque P(n) è vera, il che và in contraddizione con la definizione dell'esistenza di un minimo su A. Dunque $A = \emptyset$, e quindi P(n) è vera $\forall n \in \mathbb{N}$.

Parte II

Teorema dell'esistenza e dell'unicità del quoziente e del resto della divisione euclidea

Esistenza e unicità del quoziente e del resto della divisione euclidea

Teorema II.1. Il quoziente ed il resto della divisione euclidea di un numero naturale n per un numero naturale $m \neq 0$ esistono ed sono unici.

Ipotesi II.1.1. Siano $n, m \in \mathbb{N}$ con $b \neq 0$.

Tesi II.1.2. Esistono ed sono unici due numeri naturali $q, r \in \mathbb{N}$ tali che $\begin{cases} n = m \cdot q + r \\ 0 < r < m \end{cases}$.

Dimostrazione.

Esistenza. Si procede per induzione di seconda forma su n partendo da n=0.

Base Induttiva (n=0). Per n=0 si ha che $0=0\cdot m+0$, dunque q=0 e r=0 allora $\forall m\in\mathbb{Z}$ P(0) è verificate.

Passo Induttivo $(\forall k < n \ P(k) \Rightarrow P(n))$. Per $n \geq 1$ si supponga che $\forall k < n \ P(k)$ sia verificata, dobbiamo verificare l'esistenza del quoziente e del resto della divisione euclidea di n per m.

 $n < m \land n \ge 0$ allora $n = m \cdot 0 + n$, dunque q = 0 e r = n, e quindi $\forall n < m \ P(n)$ è verificata.

 $n \geq m \wedge m > 0$ allora poniamo k := n - m, ovvervando che $0 \leq k < n$ allora per ipotesi induttiva

 $\exists q, r \in \mathbb{N} \text{ t.c. } \begin{cases} k = m \cdot q + r \\ 0 \le r < (n - m) \end{cases}, \text{ vale quindi: } n = k + m = (qm + r) + m = (q + 1)m + r \text{ quindi il sistema} \\ \text{è scrivibile come: } \begin{cases} n = m \cdot (q + 1) + r \\ 0 \le r < m \end{cases}, \text{ quindi il passo induttivo è stato fatto, e grazie al principio} \\ \text{on } r = m \cdot (q + 1) + r \\ \text{on } r = m \cdot (q + 1) + r \\ \text{on } r = m \cdot (q + 1) + r \end{cases}$ di induzione di 2° forma \exists sempre q, r della divisione eucludea di n per m con $n, m \in \mathbb{N}$ m > 0.

 $n < 0 \land m > 0$ Grazie alla dimostrazione precedente, $\exists q, r \in \mathbb{N}$ t.c. $\begin{cases} -n = m \cdot q + r \\ 0 \le r < m \end{cases}$, Vale: $-n = m \cdot q + r = m \cdot$

 $qm + r \Rightarrow n = -qm - r = (-q)m - r$. Se r = 0 n = (-q)m, Supponendo che r > 0 ovvero $0 < r < m \Leftrightarrow 0 < m - r < m \text{ vale: } n = (-q)m - r = (-q)m - m + m - r = (-q - 1)m + (m - r),$ quindi: -q-1 è il quoziente e m-r è il resto, dunque $\forall n<0$ P(n) è verificata.

m < 0 allora -m > 0 dunque $\exists q, r \in \mathbb{N}$ tali che $n = -m \cdot q + r$ con $0 \le r < -m = |m| = |-m|$, dunque $n = m \cdot (-q) + r$, e quindi q = -q, e quindi $\forall m < 0 \ P(n)$ è verificata.

Il passo induttivo è verificato, dunque per induzione di seconda forma su n abbiamo che esistono il quoziente ed il resto della divisione euclidea di n per m.

Unicità. Proviamo che q = q', r = r': Se r' > r a meno di riordinamento, allora vale che: qm - q'm = $r'-r \Leftrightarrow m(q-q')=r'-r$. Effettuando l'operazione al modulo otteniamo: |m(q-q')|=|r'-r|, dunque |r'-r| < m, questo è vero se e solo se $0 \le |q-q'| < 1$, Questo implica che q=q' in quanto $q,q' \in \mathbb{N}$. Quindi $mq + r = mq' + r' \Rightarrow q = q'$ e r = r'. Quindi il quoziente ed il resto della divisione euclidea di n per m sono unici.

Parte III

Teorema di esistenza e unicità della rappresentazione in base $b \ge 2$ di n

4 Esistenza e unicità della rappresentazione in base $b \ge 2$

Teorema III.1. Un numero naturale n può essere sempre rappresentato in base $b \geq 2$ in modo unico.

Ipotesi III.1.1. Siano $n, b \in \mathbb{N}$ con $b \geq 2$.

Tesi III.1.2. Esiste una rappresentazione di n in base b, ovvero una successione $\{\varepsilon_i\}$ con le seguenti proprietà:

1. $\varepsilon_{i\in\mathbb{N}}$ definitivamente nulla, ovvero dopo qualche $i_0\in\mathbb{N}\Rightarrow \forall j>i_0:\varepsilon_j=0.$

2.
$$\varepsilon_i \in I_b := \{0, 1, \dots, b-1\} \quad \forall i \in \mathbb{N} \quad (0 \le \varepsilon_i < b).$$

3.
$$\sum_{i \in \mathbb{N}} \varepsilon_i \cdot b^i = n.$$

Inoltre se esiste $\{\varepsilon_i'\}_{i\in\mathbb{N}}$ rappresentazione di n in base b allora $\varepsilon_i=\varepsilon_i'$ $\forall i\in\mathbb{N}$.

Dimostrazione.

Esistenza. Si procede per induzione di seconda forma su n partendo da n = 0.

Base Induttiva (n=0). Per n=0 si ha che $0=0\cdot b^0$, dunque $\varepsilon_0=0$ e quindi $\forall n\in\mathbb{N}\ P(n)$ è verificata.

Passo Induttivo ($\forall k < n \ P(k) \Rightarrow P(n)$). Per $n \ge 1$ si supponga che $\forall k < n \ P(k)$ sia verificata, e dunque che esista una rappresentazione di k in base b. Eseguiamo la divisione euclidea di n per b, dunque $\exists q, r \in \mathbb{N}$ tali che $n = b \cdot q + r$ con $0 \le r < b$, per ipotesi $b \ge 2$ dunque $0 < q < qb \le qb + r = n$, per ipotesi induttiva è vero che q è rappresentabile come una successione $\{\delta_i\}_{i \in \mathbb{N}}$ con le proprietà (1),(2),(3), inoltre vale che:

$$n = \left(\sum_{i \in \mathbb{N}} \delta_i b^i\right) b + n \Rightarrow n = \sum_{i \in \mathbb{N}} \delta_i b^{i+1} + r \quad \text{Definiamo: } \epsilon_0 = r$$
$$n = \epsilon_0 + \sum_{j \ge 1} \delta_{j-1} b^j = \sum_{i \in \mathbb{N}} \epsilon_i b^i$$

Unicità. Procediamo per induzione di seconda forma su n da n=0

Base Induttiva (n=0). Per n=0 $\epsilon_i=0$ $\forall i\in\mathbb{N}$, questa è l'unica rappresentazione di 0 in base b.

Passo Induttivo $(\forall k < n \ P(k) \Rightarrow P(n))$. Assumendo che esistano $\{\epsilon_i\}_{i \in \mathbb{N}} \ \{\epsilon'_i\}_{i \in \mathbb{N}}$ coin le proprietà (1),(2),(3), proviamo che $\epsilon_i = \epsilon'_i \ \forall i \in \mathbb{N}$. Dalla dimostrazine precendete osserviamo:

$$n = \sum_{i \in \mathbb{N}} \epsilon_i b^i = \sum_{i \in \mathbb{N}} \epsilon'_i b^i$$
$$\Rightarrow \epsilon_0 + b(\sum_{i \ge 1} \epsilon_i b^{i-1}) = \epsilon'_0 + b(\sum_{i \ge 1} \epsilon'_i b^{i-1})$$

Dove ϵ_0 e ϵ_0' sono i resti della divisione euclidea di n per b, in quanto questi uguali in entrambi i casi per il torema dell'unicità del quoziente e del resto questi sono uguali. Inoltre dato che $\sum_{i\geq 1}\epsilon_i b^{i-1} = \sum_{i\geq 1}\epsilon_i' b^{i-1}$ per ipotesi, dato che sono < n allora la loro rappresentazione è unica quindi $\forall i>1$ $\epsilon_i=\epsilon_i'$, unendo, otteniamo che $\epsilon_i=\epsilon_i'$ $\forall i\in\mathbb{N}$. Il passo induttivo è stato fatto e l'unicità della rappresentazione è stata dimostrata.

Parte IV

Teorema di esistenza e unicità del massimo comune divisore e del minimo comune multiplo

5 Massimo comune divisore

Teorema IV.1. Il massimo comune divisore tra due numeri n e m esiste ed è unico.

Ipotesi IV.1.1. Siano $n, m \in \mathbb{Z}$ con n, m non entrambi nulli.

Tesi IV.1.2. Esiste $\exists d$ che è MCD di n, m se:

- 1. d|n e d|m.
- 2. se c|n e c|m allora $\Rightarrow c|d$.

Inoltre: Se \exists M.C.D tra n, m allora questo è unico e lo indichiamo con (n, m).

Lemma IV.1.3 (Lemma utile). $d \in espremibile come combinazione lineare <math>di \ n \in m$.

$$\exists x, y \in \mathbb{Z} : d = nx + my$$

Dimostrazione.

Unicità. Supponendo che $\exists d_1, d_2 \in \mathbb{N}$ che rispettino (1) e (2). Applichiamo allora queste ottenedo:

(1)
$$d_1 | n \wedge d_1 | m$$

(2)
$$c = d_1 \ d_1 | n \wedge d_1 | m \Rightarrow d_1 | d_2$$

applicando l'inverso si ottiene che $d_2|d_1$, dunque $d_1=\pm d_2$, ma dato che $d_1,d_2\in\mathbb{N}$ allora $d_1=d_2$, e quindi il M.C.D è unico.

Esistenza. Sia $S := \{nx + my \mid x, y \in \mathbb{Z}\}$, definito come l'insieme delle combinazioni lineari di n e m, questo insieme è non vuoto in quanto $nn + mm > 0 \in S$. Esiste dunque un minimo elemento in S, chiamiamolo $d = \min S$, vale che:

$$d|n \wedge d|m$$

$$\exists c \in \mathbb{Z} : c|n \wedge c|m \Rightarrow c|d$$

in quanto $d \in S$. Dalla proprietà (2) si deduce

$$c|xm + ym$$

Si prova ora che d|n tramite la divisione euclidea di n per d, ottendendo dunque n=qd+r, ponendo per assurdo che r>0 allora $r\in S$ e quindi $d\neq \min S$ in quanto r< d, assumendo che sia vero:

$$r = n - qd = n - q(xn + ym) =$$

$$= n - qnx - qmy =$$

$$= n(1 - qn) + m(-qy) \in S$$

dunque è verificato che il resto della divisione euclidea è in S, e quindi che il min $S \neq d$ ma per definzione $d := \min S$, il che è un assurdo e quindi r = 0 il che dimostra che d|n, analogamente si dimostra che d|m.

6 Minimo comune multiplo

Teorema IV.2. Il minimo comune multiplo tra due numeri n e m esiste ed è unico.

Ipotesi IV.2.1. Siano $n, m \in \mathbb{Z}$

Tesi IV.2.2. $\exists ! M \in \mathbb{N}$ che è m.c.m di n e m, se:

- 1. $n|M \wedge m|M$.
- 2. Se $n|c \wedge m|c \Rightarrow M|c$ per qualche $c \in \mathbb{N}$.

Inoltre: Se \exists m.c.m tra n e m allora questo è unico e lo indichiamo con [n,m], e vale se n,m non sono entrambi nulli vale che: $[n,m] = \frac{n \cdot m}{(n,m)}$, altrimenti [n,m] = 0.

Dimostrazione.

Unicità. Supponiamo che esistano $M_1, M_2 \in \mathbb{N}$ che rispettino (1) e (2), applicando queste otteniamo:

(1)
$$M_1|n \wedge M_1|m$$

(2)
$$c = M_1 \ c | n \wedge c | m \Rightarrow M_1 | c$$

applicando l'inverso si ottiene che $M_2|c$, dunque $M_1=\pm M_2$, ma dato che $M_1,M_2\in\mathbb{N}$ allora $M_1=M_2$, e quindi il m.c.m è unico.

Esistenza. Supponendo che n, m non sono entrambi nulli, altrimenti $[n, m] \exists := 0$ allora:

$$\Rightarrow (n,m) \mid n \Leftrightarrow n = n'(n,m)$$
 per qualche $n' \in \mathbb{Z}$
 $\Rightarrow (n,m) \mid m \Leftrightarrow m = m'(n,m)$ per qualche $m' \in \mathbb{Z}$

Definendo $M:=\frac{n\cdot m}{(n,m)}$ e sostituendo n,m otteniamo che:

$$M = \frac{n'm'(n,m)(n,m)}{(n,m)} = n'm'(n,m)$$

ma per per la proprietà associativa della moltiplicazione, e per la definizione precedente di n', m' otteniamo che:

$$M = \begin{cases} (n'(n,m))m' &= nm' \\ (m'(n,m))n' &= n'm \end{cases} \Rightarrow n'm = nm'$$

quindi la proprietà (1) è verificata perchè n|M e m|M. Per verificare la proprietà (2) controlliamo che per $c \in \mathbb{Z}$ vale che $n|c \wedge m|c \Rightarrow M|c$?

$$\frac{(n,m)|n,n|c\Rightarrow (n,m)|c}{(n,m)|m,m|c\Rightarrow (n,m)|c}\Rightarrow c=c'(n,m)$$

Inoltre per definizione di $n', m' \Rightarrow (n', m') = 1$, dunque $n'|c' \wedge m'|c' \Rightarrow n'm'|c'$, moltiplicando l'equazione per (n, m) otteniamo: $n'm'(n, m)|c'(c, m) \Rightarrow M|c$, dunque la proprietà (2) è verificata e l'esistenza dimostrata.

Parte V

Teorema fondamentale dell'aritmetica

7 Teorema di esistenza e unicità della fattorizzazione in numeri primi

Teorema V.1. Ogni numero naturale $n \ge 2$ è scrivibile come prodotto di numeri primi in modo unico, a meno di riordinamento

Ipotesi V.1.1. Sia un numero $n \in \mathbb{Z}, n \geq 2$.

Tesi V.1.2. Esistono numeri primi $p_1, p_2, \ldots, p_k > 0$ tali che $n = p_1 \cdot p_2 \cdot \ldots \cdot p_k$. Se anche q_1, q_2, \ldots, q_l sono numeri primi tali che $n = q_1 \cdot q_2 \cdot \ldots \cdot q_l$ allora esiste una bigezzione $\delta : \{1, 2, \ldots, l\} \rightarrow \{1, 2, \ldots, k\}$ tale che $q_i = p_{\delta(i)}$.

Dimostrazione.

Esistenza. Si procede perinduzione di 2° forma shiftata su n, partendo da n = 2. Se n = 2 è scrivibile come prodotto di numeri primi e ogni numero k < n è scrivibile come prodotto di numeri primi allora n è scrivibile come prodotto di numeri primi.

Base Induttiva (n=2). Per n=2 si ha che 2=2, dunque 2 è scrivibile come prodotto di numeri primi.

Passo Induttivo ($\forall k < n \ P(k) \Rightarrow P(n)$). Per n > 2 si supponga che $\forall k < n \ P(k)$ sia verificata, e dunque che k sia scrivibile come prodotto di numeri primi, la dimostrazione si suddivide in due casi:

- \bullet Se n è primo allora n è scrivibile come prodotto di numeri primi.
- Se n non è primo allora esstono almento due numeri d_1, d_2 tali che $1 < d_1, d_2 < n$ $n = d_1 \cdot d_2$. Per ipotesi induttiva in quanto $d_1, d_2 < n$ allora d_1, d_2 sono scrivibili come prodotto di numeri primi: $d_1 = p_1 \cdot p_2 \cdot \ldots \cdot p_k$ e $d_2 = q_1 \cdot q_2 \cdot \ldots \cdot q_l$, dunque $n = p_1 \cdot p_2 \cdot \ldots \cdot p_k \cdot q_1 \cdot q_2 \cdot \ldots \cdot q_l$, e quindi n è scrivibile come prodotto di numeri primi.

Il passo induttivo è verificato, dunque per induzione di 2° forma shiftata su n abbiamo che n è scrivibile come prodotto di numeri primi.

Unicità. Siano $n = p_1 \cdot p_2 \cdot \ldots \cdot p_k = q_1 \cdot q_2 \cdot \ldots \cdot q_h$ con p_i, q_j numeri primi, inoltre si supponga che per $k \leq h$. Si procede per induzione di seconda forma shiftata su k da k = 1.

Base Induttiva (k=1). Per k=1 si ha che $n=p_1=q_1\cdot q_2\cdot\ldots\cdot q_h$ dunque $q_j|p_1\forall i\in\{1,2,\ldots,h\}$, il che è possibile ma $\Leftrightarrow q_j=\pm 1 \vee q_j=\pm p_1$, in quanto però abbioamo definito per ipotesi che $q_j>1$ allora l'unica possibilità è che $q_j=p_1$, ma se h>1 allora $q_j=p_1$ $\forall j\in\{1,2,\ldots,h\}$, che comporta che se $h>k\Rightarrow n=q_1\ldots q_h\geq q_1q_2\Rightarrow p_1^2>p_1$ in quanto $p_1>1$, il che è un assurdo, dunque h=k=1, e quindi $n=p_1=q_1$.

Passo Induttivo $(\forall h < k \ P(h) \Rightarrow P(k))$. Sia ora k > 1 allora $p_k | n = q_1 \dots q_n$ dunque in quanto q_1, \dots, q_n sono primi \exists almeno un $p_k | q_j$ allora $p_k = q_j$ in quanto come detto precedentemente p_k, q_k primi > 1. Seguendo la divisione euclidea $p_1 \cdot \dots p_{k-1} = q_1 \cdot \dots \cdot q_{j-1} \cdot q_{j+1} \cdot \dots \cdot q_n$, questi sono numeri < n per ipotesi induttiva dunque hanno lo stesso numero di elementi: k-1=h-1 e che eiste una bigezzione $\delta: \{1,2,\dots,h-1\} \to \{1,2,\dots,k-1\}$, possiamo ora definire una bigezzione $\sigma: \{1,2,\dots,h\} \to \{1,2,\dots,k\}$ tale che:

$$\sigma(i) : \begin{cases} \delta(i) & \text{se } i \neq j \\ k & \text{se } i = j \end{cases}$$

dunque è stata definita una bigezzione tale che $q_i = p_{\sigma(i)} \quad \forall i \in \{1, 2, \dots, h\}.$

Il passo induttivo è verificato, dunque per induzione di seconda forma shiftata su k abbiamo che se n è scrivibile come prodotto di numeri primi allora questa è unica a meno di riordinamento in quanto esiste una bigezione tra gli indici delle sequenze di numeri primi.

Parte VI

Teorema cinese del resto

8 Teorema cinese del resto

Teorema VI.1.

Ipotesi VI.1.1. Siano $a, b, n, m \in \mathbb{Z}$ tali che n, m > 0 e sia il seguente sistema di congruenze:

$$\begin{cases} x \equiv a \mod n \\ x \equiv b \mod m \\ x \in \mathbb{Z} \end{cases}$$

Tesi VI.1.2. Il sistema ha soluzione se e solo se (n,m)|b-a, inoltre se c è una soluzione allora gli elementi di $[c]_{[n,m]}$ sono tutte e sole le soluzioni del sistema (le soluzioni in \mathbb{Z} sono: $c+k[n,m] \in \mathbb{Z}$ $k \in \mathbb{Z}$). Definiendo $S := \{x \in \mathbb{Z} \mid x \equiv a \mod n \land x \equiv b \mod m\}$ allora $S \neq \emptyset$ se e solo se (n,m)|b-a.

Dimostrazione.

 \Rightarrow) Supponiamo che $S \neq \emptyset$. Segliamo $c \in S$, ovvero $c \equiv a \pmod{n}$ e $c \equiv b \pmod{m}$, ovvero $\exists k, h \in \mathbb{Z}$ t.c.c = a + kn $e \in C = b + km$,

$$a + kn = + b + hm \Leftrightarrow a - b = -kn + hm$$

Ricordimo che (n, m)|n e (n, m)|m, dunque (n, m)|a - b.

 \Leftarrow) Supponiamo che (n,m)|a-b, ovvero $\exists k \in \mathbb{Z}$ t.c. a-b=k(n,m) (1), grazie all'algoritmo di euclide con sostituzione "a ritroso" $\exists r,s \in \mathbb{Z} : (n,m)=rn+sm$ (2), Da (1) e (2) segue che a-b=k(rn+sm)=(kr)n+(ks),

$$\Leftrightarrow a - b = (kr)n + (ks)$$

$$\updownarrow$$

$$c := a - k(rn) = b + k(sm)$$

$$\Rightarrow c = a - krn \Rightarrow c \equiv a \pmod{n}$$

$$\Rightarrow c = b + ksm \Rightarrow c \equiv b \pmod{m}$$

$$\Rightarrow c \in S$$

Insieme delle soluzioni S Dobbiamo provare che $S = [c]_{[n,m]}$,

$$S\subseteq [c]_{[n,m]}$$
 Sia $c'\in S$. Poiché $c\in S, valgono: c\equiv a(\mod n)\Leftrightarrow c=a+kn\quad k\in\mathbb{Z}$
$$c\equiv b(\mod m)\Leftrightarrow c'=a+kn\quad k\in\mathbb{Z}$$

$$c'\equiv a(\mod n)\Leftrightarrow c'=a+kn\quad k\in\mathbb{Z}$$

$$c'\equiv b(\mod m)\Leftrightarrow c'=b+hm\quad h\in\mathbb{Z}$$

$$\updownarrow$$

$$c-c'=a-a+(k'-k)n=b-b+(h'-h)m\Rightarrow n|c-c'$$

$$c-c'=b-b+(h'-h)m=a-a+(k'-k)n\Rightarrow m|c-c'$$

$$\Rightarrow n|c'-c\wedge m|c'-c\Rightarrow [n,m]|c'-c\Rightarrow c'\equiv c(\mod [n,m])$$

$$\Rightarrow c'\in [c]_{[n,m]}\Rightarrow S\subseteq [c]_{[n,m]}$$

$$c'\in [c]_{[n,m]}\Rightarrow c'=c+k[n,m]$$

$$\Rightarrow [c']_n=[c+k[n,m]]_n=[c]_n+[k[n,m]]_n=[c]_n+[k]_n[[n,m]]_n=[c]_n+0=[c]_n\Rightarrow c'\in S$$

Parte VII

Teorema di Fermat-Eulero e Crittografia RSA

Lemma VII.0.1. Sia $n \in \mathbb{N}$ $n \geq 2$. Allora $n = p_1^{m_1} \cdot p_2^{m_2} \cdot \ldots \cdot p_k^{m_k}$ con p_i numeri primi a due a due distinti, allora vale che:

- $\phi(n) = \phi(p_1^{m_1}) \cdot \phi(p_2^{m_2}) \cdot \ldots \cdot \phi(p_k^{m_k})$, in quanto p_i è primo allora
- $\bullet \Rightarrow (p_1^m p_1^{m-1}) \cdot (p_2^m p_2^{m-1}) \cdot \dots \cdot (p_k^m p_k^{m-1}).$

Lemma VII.0.2. Siano $\alpha, \beta \in (\mathbb{Z}/_{n\mathbb{Z}})^*$, allora:

- $\bullet \ (\alpha\beta)^{-1} = \alpha^{-1}\beta^{-1}$
- $(\alpha^{-1})^{-1} = \alpha$

Dimostrazione. Verifichiamo che la moltiplicazione tra le classi α, β moltiplicata per le inverse esiste in quanto $\alpha, \beta \in (\mathbb{Z}/_{n\mathbb{Z}})^*$, questa risulterà la classe di $[1]_n$ dunque che $(\alpha\beta)(\beta^{-1}\alpha^{-1}) = [1]_n$.

- $(\alpha\beta)(\alpha^{-1}\beta^{-1}) = \alpha(\beta\beta^{-1})\alpha^{-1}$ per la proprietà distributiva e associativa del prodotto in $(\mathbb{Z}/n\mathbb{Z})^*$, dunque $(\alpha(\beta\beta^{-1})\alpha^{-1} = \alpha[1]_n\alpha^{-1} = \alpha\alpha^{-1} = [1]_n$, dunque $\alpha\beta)^{-1} = \alpha^{-1}\beta^{-1} \checkmark$.
- $(\alpha^{-1})^{-1}\alpha^{-1} = \alpha^{-1}(\alpha^{-1})^{-1} = [1]_n$, dunque $(\alpha^{-1})^{-1} = \alpha$.

9 Teorema di Fermat-Eulero

Teorema VII.1. Una qualsiasi classe invertibile elevata alla funzione di eulero è congruente alla classe unitaria.

Ipotesi VII.1.1. Sia n > 0.

Tesi VII.1.2. allora $\forall [\alpha]_n \in (\mathbb{Z}/n\mathbb{Z})^* \Rightarrow [\alpha]^{\phi(n)} = [1]_n$. Notare come le classi prese in considerazione sono invertibili.

Dimostrazione. Definiamo la funzione $L_{\alpha}: (\mathbb{Z}/n\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$ definita come $\beta \to \alpha\beta$. La presente è ben definitita per il lemma appena dimostrato, questa funzione è bigettiva, dimostriamo l'iniettività in quanto la surgettività ne sarà una conseguenza in quanto l'insieme di partenza e di arrivo sono uguali (vedi lemma cassetti). Supponiamo dunque, per assurdo, $\exists \beta_1, \beta_2 \in (\mathbb{Z}/n\mathbb{Z})^*$ tali che $L_{\alpha}(\beta_1) = L_{\alpha}(\beta_2) \Rightarrow \alpha\beta_1 = \alpha\beta_2 \to \beta_1 = (\alpha\alpha^{-1})\beta_1 = (\alpha^{-1})(\alpha\beta_1) \Leftrightarrow (\alpha^{-1})(\alpha\beta_2) = (\alpha^{-1}\alpha)\beta_2 = \beta_2$, dunque $\beta_1 = \beta_2$, e quindi L_{α} è iniettiva. Avendo dimostrato la bigettività di L_{α} possiamo dire che $L_{\alpha}(\beta_1) \dots L_{\alpha}(\beta_k) = \alpha\beta_1 \dots \alpha\beta_k$ inoltre essendo il prodotto su $(\mathbb{Z}/n\mathbb{Z})^*$ associativo possiamo dire che il precedente è $\alpha^k(\beta_1 \dots \beta_k)$, in quanto β_1, \dots, β_k sono tutti e i soli elementi in $(\mathbb{Z}/n\mathbb{Z})^*$ allora $\beta_1 \dots \beta_k = \alpha^k(\beta_1 \dots \beta_k)$ moltiplicando a sinistra e destra per $\beta_1^{-1} \dots \beta_k^{-1}$ ottenimao che $[1]_n = \alpha^k$, in quanto come dimostrato k è in numero di classi in $(\mathbb{Z}/n\mathbb{Z})^*$ e dunque $k = \phi(n) \Rightarrow [1]_n = \alpha^{\phi(n)} \quad \forall \alpha \in (\mathbb{Z}/n\mathbb{Z})^*$.

10 Teorema fondamentale della crittografia RSA

Teorema VII.2. Una classe invertibile elevata ad un esponente d è congruente alla classe unitaria se e solo se d è l'inverso moltiplicativo di c modulo $\phi(n)$.

Ipotesi VII.2.1. Sia c > 0 tale che: $(c, \phi(n)) = 1$ con n fissato > 0 e d > 0: $d \in [c]_{\phi(n)}^{-1}$.

Tesi VII.2.2. Allora P_c è invertibile, e la sua inversa è $P_c^{-1} = P_d$ dunque che $[d]_{\phi(n)}[c]_{\phi(n)} = [1]_{\phi(n)}$.

Dimostrazione. Questo è equivalente a dire che: $cd \equiv 1 \pmod{\phi(n)} \Rightarrow \exists k \in \mathbb{Z} : cd = 1 + k\phi(n)$, applicando ora P_c, P_d su una α classe otteniamo: $P_d(P_c(\alpha)) = (\alpha^c)^d = \alpha^{cd} = \alpha^{1+k\phi(n)} = \alpha\alpha^{k\phi(n)} = \alpha$, il che è verificato per le proprietà delle potenze e del prodotto in $(\mathbb{Z}/n\mathbb{Z})^*$ e in quanto $\alpha^{\phi(n)} = 1$ per il teorema di eulero. Quindi questo dimostra che $P_d(P_c(\alpha)) = \alpha$, equivalentemente $[c]_{\phi(n)}[d]_{\phi(n)} = [1]_{\phi(n)}$ il che significa che P_c è invertibile e che la sua inversa è P_d .

Parte VIII

Teorema di equivalenza tra la congiungibilità con cammini e la congiungibilità con passeggiate e Teorema la relazione di congiungibilita è una relazione di equivalenza

11 Teorema di equivalenza tra la congiungibilità con cammini e la congiungibilità con passeggiate

Teorema VIII.1. Due vertici di un grafo sono congiungibili per cammini se e solo se sono congiungibili per passeggiate.

Ipotesi VIII.1.1. Supponendo di avere G = (V, E) un grafo e $u, v \in V$ due vertici di G.

Tesi VIII.1.2. Allora u è congiungibile con v in G per cammini se e solo \Leftrightarrow se u è congiungibile con v in G per passeggiate.

Dimostrazione.

- ⇒ Banale, in quanto un cammino è una particolare passeggiata per definitzione.
- \Leftarrow Supponiamo che u,v siano congiungibili in G per passeggiate, allora definitmo: $\mathcal{P}:=\{P\mid P \text{ è una passeggiata da u a } v\}$ L'insieme delle passeggiate da u a v in G. $\mathcal{A}:=\{n\in\mathbb{N}\mid \exists P\in\mathcal{P}: L(P)=n\}$ L'insieme delle lunghezze delle passeggiate da u a v in G. In quanto $\mathcal{A}\subseteq\mathbb{N}$ allora grazie al teorema del buon ordinamento di \mathbb{N} allora:

$$\exists ! \min(\mathcal{A}) \Leftrightarrow \exists P_0 \in \mathcal{P} : L(P_0) = \min(\mathcal{A}) = m$$
$$\Rightarrow L(P_0) \le L(P) \quad \forall P \in \mathcal{P}$$

Dunque esiste un minimo dell'insieme \mathcal{A} . Dimostriamo ora per assurdo che P_0 sia un cammino da v a w: Assumendo che P_0 non sia un cammino da u a v: $P_0 = \{v_0, \ldots, v_{i-1}, v_i, v_{i+1}, \ldots, v_{j-1}, v_j, v_{j+1}, \ldots, v_k\}$, dunque $\exists i, j \in \{0, 1, \ldots, k\}$ tali che $v_i = v_j$, possiamo definire una passeggiata P_1 tale che $P_1 := \{u = v_0, \ldots, v_{i-1}, v_i = v_j, v_{j+1}, \ldots, v_{k=v}\}$, dunque $L(P_1) = L(P_0) - (j-i)$, in quanto $j - i \geq 1$ allora $L(P_1) < L(P_0)$, il che lo renderebbe un minimo, ma questo è un assurdo in quanto va contro la definizione di P_0 come minimo, dunque per assurdo P_0 è un cammino da u a v.

12 La relazione di congiungibilità è una relazione di equivalenza

Teorema VIII.2. La relazione di congiungibilità in un grafo è una relazione di equivalenza su V.

Ipotesi VIII.2.1. Dato G = (V, E) un grafo,

Tesi VIII.2.2. La relazione di congiungibilità in G su V è una relazione di equivalenza su V dunque:

- 1. Riflessiva: $u \sim u \quad \forall u \in V$
- 2. Simmetrica: $u \sim v \Rightarrow v \sim u \quad \forall u, v \in V$
- 3. Transitiva: $u \sim v \wedge v \sim w \Rightarrow u \sim w \quad \forall u, v, w \in V$

Dimostrazione.

- 1. È verificana in quanto la passeggiata P = (u) è una passeggiata da u a u.
- 2. È verificabile in quato se esiste una passeggiata $P = (u = v_0, v_1, \dots, v_k = v)$ possiamo definire un'altra passeggiata $P' = (v = v_k, v_{k-1}, \dots, v_0 = u)$ detta "inversa" che è una passeggiata da v a u.
- 3. Supponendo ora che esistano le passeggiate $P_0 = (u = u_0, u_1, \dots, u_k = v)$ e $P_1 = (v = v_0, v_1, \dots, v_h = w)$ allora possiamo definire una passeggiata $P_2 = (u = v_0, v_1, \dots, u_{k-1}, u_k = v = v_1, v_2, \dots, v_h = w)$ che è una passeggiata da u a w.

Parte IX

Teorema della relazione fondamentale tra il numero dei lati e i gradi dei vertici di un grafo finito e Lemma delle strette di mano

13 Teorema della relazione fondamentale tra il numero dei lati e i gradi dei vertici di un grafo finito

Teorema IX.1.

Ipotesi IX.1.1. Sia G = (V, E) un grafo finito.

Tesi IX.1.2. Allora vale $2|E| = \sum_{v \in V} \deg_G(v)$

Dimostrazione. Sia $V=\{v_1,\ldots,v_n\}$ i vertici di G e $E=\{e_1,\ldots,e_k\}$ i lati di G con k:=|E|. Sia ora:

$$M_{ij} := \begin{cases} 0 & v_i \notin e_j \\ 1 & v_i \in e_j \end{cases} \quad \forall i \in \{1, \dots, n\}, j \in \{1, \dots, k\}$$

ovvero la matrice di adiacenza del grafo G. Allora:

$$(1) \sum_{j=1}^{k} \left(\sum_{i=1}^{n} M_{ij} \right) = \sum_{i=1}^{n} \left(\underbrace{|\{e \in E \mid v_i \in e\}|}_{|\{e \in E \mid v_i \in e\}|} \right) = \sum_{i=1}^{n} \deg_G(v_i)$$

$$(2) \sum_{i=1}^{n} m_{ij} = |\{i \in \{1, \dots, n\} \mid v_i \in e_j\}| = 2 \Rightarrow \sum_{i=1}^{n} \left(\sum_{j=1}^{k} M_{ij} \right) = \sum_{j=1}^{k} 2 = 2k = 2|E|$$

quindi per la proprietà commutativa della somma possiamo dire che:

$$\sum_{i=1}^{n} \sum_{j=1}^{k} m_{ij} = \sum_{j=1}^{k} \sum_{i=1}^{n} m_{ij} \stackrel{(1)}{=} \sum_{i=1}^{n} \deg_{G}(v_{i}) \stackrel{(2)}{=} 2|E|$$

14 Lemma delle strette di mano

Teorema IX.2.

Ipotesi IX.2.1. Sia G = (V, E) un grafo finito.

Tesi IX.2.2. Il numero di vertici con grado dispari è pari.

Dimostrazione. Definiamo $D:=\{v\in V\mid 2\mid \deg_G(v)\}$ l'insieme dei vertici con grado dispari e $P:=\{v\in V\mid 2|\deg_G(v)\}$ l'insieme dei vertici con grado pari $\Rightarrow P\cap D=\emptyset \land P\cup D=V$. Grazie alla relazione dondamentale dei grafi finiti:

$$\begin{aligned} 2|E| &= \sum_{v \in V} \deg_G(v) = \sum_{v \in P} \deg_G(v) + \sum_{v \in D} \deg_G(v) \\ &\sum_{v \in D} \deg_G(v) = 2|E| - \sum_{v \in P} \deg_G(v) \end{aligned}$$

In quanto $\deg_G(v) \ \forall v \in P$ è pari allora $\sum_{v \in P} \deg_G(v)$ è pari in quanto somma di numeri pari, inoltre 2|E| è pari in quanto qualsiasi numero moltiplicato per un numero pari è pari. Allora $\sum_{v \in D} \deg_G(v)$ è pari perchè è sottrazzione di pari, ma in quanto $\deg_G(v) \ \forall v \in D$ è dispari allora la somma di questi è pari \Leftrightarrow il numero di vertici con grado dispari è pari.

Parte X

Teorema caratterizzante degli alberi finiti

15 Teorema caratterizzante degli alberi finiti

Teorema X.1.

Ipotesi X.1.1. Sia T = (V, E) un grafo finito

Tesi X.1.2. Allora le sequenti affermazioni sono equipotenti:

- 1. Tè un albero.
- 2. $\forall v, v' \in V(T) \quad \exists ! \ cammino \ da \ v \ a \ v'.$
- 3. $T \ \dot{e} \ connesso \ e \ \forall e \in E(T), T e := (V, E \setminus \{e\}) \ non \ \dot{e} \ connesso.$
- 4. T non ha cicli $e \ \forall e \in \binom{V}{2} \setminus E(T), T + e := (V, E \cup \{e\})$ ha almeno un ciclo.
- 5. $T \ \dot{e} \ connesso \ e \ |E| = |V| 1$.

Dimostrazione.

 $1 \Rightarrow 5$) Si procede per induzione di prima forma su |V(T)| partendo da |V(T)| = 1.

Base Induttiva (|V(T)| = 1). In questo caso $T = (\{v\}, \emptyset)$ è un albero in quanto un singolo vertice, e $|E| = 0, |V| = 1 \Rightarrow |E| = |V| - 1 = 0$. \checkmark

Passo Induttivo $(|V(T)| \ge 2 \quad |V(T) - 1| \Longrightarrow)$. In quanto $|V(T)| \ge 2$ allora per il "Lemma delle foglie" questo ha almeno due foglie, sia dunque v una di queste, allora: il grafo T - v è un albero per il lemma sopracittato. Vale che |V(T - v)| = |V(T)| - 1, e |E(T - v)| = |E(T)| - 1, in quanto v è una foglia (e quinidi $\deg_T(v) = 1$) allora:

$$|V(T-v)| - 1 = |E(T-v)|$$

 $|V(T)| \nearrow 1 - 1 = |E(T)| \nearrow 1 - 1$
 $|V(T)| - 1 = |E(T)|$

il che è verificato in quanto T-v è un albero e |V(T-v)|=|V(T)|-1, dunque T è connesso e |E|=|V|-1.

 $1 \Leftarrow 5$) Si procede per induzione di prima forma su |V(T)| partendo da |V(T)| = 1.

Base Induttiva (|V(T)| = 1). Per |V(T)| = 1 abbiamo che $T = (\{v\}, \emptyset)$ verifica |E| = |V| - 1 = 0 ed è un albero in quanto è un singolo vertice.

Passo Induttivo ($|V(T)| \ge 2 \quad |V(T)-1| \Longrightarrow |V(T)|$). Sia T un grafo connesso che verifica la formula di Eulero |E| = |V| - 1 con |V(T)|. Sapendo che T è connesso si dimostra per assurdo come questo abbia almeno una foglia:

Dimostrazione. Supponiamo per assurdo che T non abbia foglie, quindi $\forall v \in V(T) \deg_T(v) \geq 2$, inoltre sappiamo per ipotesi che l'equazione di eulero è verificata, dunque:

$$\begin{split} 2|E| &= \sum_{v \in V(T)} \deg_T(v) \\ 2(|V|-1) &= \sum_{v \in V(T)} \deg_T(v) \\ 2|V|-2 &= \sum_{v \in V(T)} \deg_T(v) 2|V|-2 &\geq 2|V| \\ -2 &\geq 0 \end{split}$$

questo significa che se T non avesse foglie allora T non sarebbe connesso, il che è un assurdo, dunque T ha almeno una foglia.

Prendiamo in considerazione ora una foglia $v \in V(T)$, allora T - v è un grafo connesso in quanto T è connesso e v ne è una sua foglia, vale inoltre che:

$$\begin{split} |V(T-v)| &= |V(T)| - 1 \\ |E(T-v)| &= |E(T)| - 1 \\ |V(T-v)| - 1 &= |E(T-v)| \\ |V(T)| - 1 - 1 &= |E(T)| - 1 \\ |V(T)| - 2 &= |E(T)| - 1 \\ |V(T)| - 1 &= |E(T)| \end{split}$$

il che conferma l'ipotesi induttiva, dunque T è un albero in quanto connesso e T-v è un albero per ipotesi induttiva,

Verifichiamo inoltre che T sia un albero, prendiamo per assurdo che \exists un ciclo c in T, ogni vettore $v_i \in c$ ha $\deg_T(v_i) \geq 2$ altrimenti questo non potrebbe essere un ciclo, ma in quanto v è una foglia allora c è anche un ciclo in T - v, il che và contro l'ipotesi induttiva, dunque T è un albero.

Dunque in conclusione possiamo dire che il passo induttivo è stato fatto e che se il grafo T è connesso e |E| = |V| - 1 allora T è un albero.

Parte XI

Teorema di esistenza dell'albero di copertuta per i grafi finiti

16 Teorema di esistenza dell'albero di copertura per i grafi finiti

Teorema XI.1.

Ipotesi XI.1.1. Sia G = (V, E) un grafo finito connesso.

Tesi XI.1.2. G ammette almeno un albero di copertura.

Dimostrazione. Definiamo il seguente insieme: $e:=\{c:c\ \text{è un sottografo connesso di } G \land V(c)=V(G)\}$ in quanto $G\in e$ allora $\Rightarrow E\neq\emptyset$. Definiamo inoltre $S:=\{n\in\mathbb{N}:n=|E(C)|\ \text{per qualche }c\in e\}$ l'insieme delle cardinalità degli insiemi di lati dei sottografi connessi di G, anche questo non è vuoto $(S\neq\emptyset)$ in quanto $|E(G)|\in S$, in quanto G è un sottografo connesso di G. Dato che l'insieme $S\subseteq\mathbb{N}\land S\neq\emptyset$ allora per il teorema del buon ordinamento di \mathbb{N} S ha un minimo, definiamo questo minimmo: $\exists \bar{C}\in e:\min(S)=|V(\bar{C})|$. Per costruzuione $V(\bar{C})=V(G)$, dimostriamo dunque per assurdo ce \bar{C} è un albero: Se \bar{C} non fosse un albero allora $\exists e\in E(\bar{C}):\bar{C}-e$ è connesso, dunque $|E(\bar{C}-e)|=|E(\bar{C})|-1$, in quanto $\bar{C}-e:=(V(\bar{C}),E(\bar{C}\setminus\{e\}))$, questo però comporta che $|E(\bar{C}-e)|<|E(\bar{C})|$ il che è un assurdo in quanto và contro la definizione di \bar{C} come sottografo con $|E(\bar{C})|=\min(S)$, dunque \bar{C} è un albero.