1.3 – Differentialförstärkaren och DA-omvandlaren

- 1. Differentialförstärkaren nedan består av en inverterande OP-förstärkarkoppling samt en summator och skall dimensioneras för en differentialförstärkningsfaktor G_{DM} på en faktor 10. Matningsspänningen V_{CC} / V_{EE} är satt till ± 50 V.
- a) Härled en formel för differentialförstärkarens differentialförstärkningsfaktor G_{DM} via Kirchhoffs spänningslag. Tips: Differentialförstärkningsfaktorn G_{DM} är lika med ration av utsignalen U_{UT} genom insignalerna U₁ och U₂:

$$G_{DM} = \frac{U_{UT}}{U_1 - U_2}$$

- b) Dimensionera resistorer R₁ R₅ för en differentialförstärkningsfaktor G_{DM} på tio. Verifiera din lösning i LTspice.
- c) Visa att Common Mode-förstärkningen G_{CM} alltid är noll genom att undersöka differentialförstärkarens utsignal i *Common Mode*, alltså då insignaler U₁ och U₂ är lika stora.
- d) Beräkna differentialförstärkarens in- och utimpedans Z_{IN} samt Z_{UT} på båda ingångarna (se ingångar för U₁ samt U₂), både ifall OP-förstärkarna är buffrade eller inte. Beräkna på ingångarna för insignal Redogör för hur du enkelt kan öka differentialförstärkarens inimpedans Z_{IN}. Rita även ut kretsschemat med din lösning. **Tips:** Ett av de OP-förstärkarkopplingar vi har sett tidigare lämpar sig utmärkt för detta!

Differentialförstärkare.

2. Du har en 4-bitars DA-omvandlare nedan, som används för att omvandla ett 4-bitars digitalt värde till en motsvarande analog spänning U_{UT}.

Det 4-bitars digitala värdet skall omvandlas till en analog motsvarighet mellan 0-3,3 V. Samtidigt skall den totala strömmen genom DA-omvandlaren aldrig överstiga 5 mA. Utveckla kretsen samt dimensionera resistorerna för ändamålet. Förklara varför matningsspänningen V_{CC} / V_{EE} måste sättas till \pm 3,3 V istället för 3,3 V / 0 V i detta fall. Testa din lösning i LTspice och verifiera att denna fungerar som den ska.

4-bitars DA-omvandlare.