

e-Yantra MOOC: Software Foundation (Part I)

Week 4: Assignment 4 Generate Report Card for the Class

[Last Updated on: 26th April, 2021, 16:00 Hrs]

- Aim
- Given
- Procedure
 - o readMarkSheet()
 - o generateGradeCard()
- Expected Output
- Grading and Submission Instructions
- References

Aim

You are TA (Teaching Assistant) under a Professor in an academic institution. The end semester exams have been conducted for 5 subjects. Now the crucial task of gathering the data is to be done.

Professor has given you a CSV file with 6 columns, where the first column contains the name of student and the subsequent 5 columns contain the marks of that particular student gained in 5 subjects.

- Read the given CSV file and store the data in a Python dictionary. You need to then calculate
 the percentage of each student and give them a grade accordingly.
- The grades are to be given by following the below rule:
 - Percentage equal to or above 90% is given the grade 'O'
 - Percentage equal to or above 70% is given the grade 'A'
 - Percentage equal to or above 60% is given the grade 'B'
 - Percentage equal to or above 50% is given the grade 'C'
 - Percentage **equal to or above 40%** is given the grade 'D'
 - Percentage below 40% is given the grade 'Fail'
- Generate the Grade Card for all in the form of Python dictionary in the following manner:

• The skeleton code stub provided is to be used. It calls the functions readMarkSheet() and generateGradeCard() . Your task is to modify and complete these functions.

AI

Given

Two files are provided to solve this assigment.

- Skeleton program file: assignment4.py
 - The skeleton consists of three functions which you have to modify:
 - readMarkSheet()
 - generateGradeCard()
- Sample CSV file: week4_assignment4_sample.csv
 - The CSV file has 6 columns: name, subject_1, subject_2, subject_3, subject_4 and subject_5.

Procedure

- Open the skeleton program file, assignment4.py.
- You will notice pre-written comments included in skeleton program for your assistance to solve the assignment.
- Two functions to modify are:

readMarkSheet()

Function Name	readMarkSheet()
Purpose	Reads the input CSV file of Mark Sheet and creates a mapping of student name with his/her marks for each subject.
Input Arguments	file_name :[<i>str</i>] CSV file name of Mark Sheet
Output Arguments	<pre>name_marks_mapping : [dict] Mapping of each student's name and his/her marks for each subject as { Key : Value } pair</pre>
Example Call	name_marks_mapping = readMarkSheet(csv_file_name)

generateGradeCard()

Function Name	generateGradeCard()
Purpose	Generate the Grade Card for all students in the given mapping of student and their scores in all subjects with the grade each one has received.
Input Arguments	mapping_dict:[dict] Mapping of each student's name and his/her marks for each subject as { Key: Value } pair
Output Arguments	grade_card:[dict] Grade Card for all students with their scores in all subjects and the grade each one has received
Example Call	grade_card = generateGradeCard(name_marks_mapping)

• To run and debug your solution, type the below command in Terminal:

\$ python3 assignment4.py

This command will run the shell script assignment4.py.

• Refer the **Expected Output** section below and debug your code to get the correct output.

Expected Output

- The provided sample CSV file, week4_assignment4_sample.csv consists data with fields name, subject_1, subject_2, subject_3, subject_4 and subject_5.
- The content of this CSV file is shown below:

```
name,subject_1,subject_2,subject_3,subject_4,subject_5

Artus Syne,43,71,55,16,51

Evey Reburn,49,7,53,50,63

Giff Wickmann,63,37,21,87,9

Garrot Casetta,22,3,91,75,52

Roselle Maes,71,90,96,79,48

Torin Ziehms,71,31,83,1,25

Jaye Etock,92,9,2,78,55

Thomasina Tinkham,25,78,46,46,90

Adolphus Biernat,91,96,98,94,100

Rex Aspinell,34,75,51,38,99
```

 The expected output of program assignment4.py i.e., to generate the Grade Card for each student is shown below:

```
4
   'Artus Syne': {'marks': [43.0, 71.0, 55.0, 16.0, 51.0]},
   'Evey Reburn': {'marks': [49.0, 7.0, 53.0, 50.0, 63.0]},
    'Giff Wickmann': {'marks': [63.0, 37.0, 21.0, 87.0, 9.0]},
    'Garrot Casetta': {'marks': [22.0, 3.0, 91.0, 75.0, 52.0]},
    'Roselle Maes': {'marks': [71.0, 90.0, 96.0, 79.0, 48.0]},
    'Torin Ziehms': {'marks': [71.0, 31.0, 83.0, 1.0, 25.0]},
    'Jaye Etock': {'marks': [92.0, 9.0, 2.0, 78.0, 55.0]},
    'Thomasina Tinkham': {'marks': [25.0, 78.0, 46.0, 46.0, 90.0]},
    'Adolphus Biernat': {'marks': [91.0, 96.0, 98.0, 94.0, 100.0]},
    'Rex Aspinell': {'marks': [34.0, 75.0, 51.0, 38.0, 99.0]}
}
   'Artus Syne': {'subject_wise_marks': [43.0, 71.0, 55.0, 16.0, 51.0], 'grade_rece
   'Evey Reburn': {'subject_wise_marks': [49.0, 7.0, 53.0, 50.0, 63.0], 'grade_rece
   'Giff Wickmann': {'subject_wise_marks': [63.0, 37.0, 21.0, 87.0, 9.0], 'grade_re
    'Garrot Casetta': {'subject_wise_marks': [22.0, 3.0, 91.0, 75.0, 52.0], 'grade_r
    'Roselle Maes': {'subject_wise_marks': [71.0, 90.0, 96.0, 79.0, 48.0], 'grade_re
   'Torin Ziehms': {'subject_wise_marks': [71.0, 31.0, 83.0, 1.0, 25.0], 'grade_rec
   'Jaye Etock': {'subject_wise_marks': [92.0, 9.0, 2.0, 78.0, 55.0], 'grade_receiv
    'Thomasina Tinkham': {'subject_wise_marks': [25.0, 78.0, 46.0, 46.0, 90.0], 'gra
    'Adolphus Biernat': {'subject_wise_marks': [91.0, 96.0, 98.0, 94.0, 100.0], 'gra
    'Rex Aspinell': {'subject_wise_marks': [34.0, 75.0, 51.0, 38.0, 99.0], 'grade_re
}
```

• The first twelve lines above are the output of **readMarkSheet** function i.e. variable **name_marks_mapping** and,

the lines 13 to 24 are the output of generateGradeCard function i.e. variable grade_card.

Grading and Submission Instructions

<

- Navigate to the folder where the *ey-mooc-grader-sfc* application resides.
- To grade your solution, run the **check** command of the application as follows:

```
$ ./ey-mooc-grader-sfc check -w 4 -a 4 Week_4/Assignment_4/assignment4.py
```

- This will run your program **assignment4.py** against random test cases and grade it. Marks and appropriate remarks will be provided as shown in Figure 1.
- Your program file **assignment4.py** , marks scored and remarks will get uploaded to the MOOC portal.

Figure 1: Output of running check command for Week 4 Assignment 4

 You can verify this by running the status command of the application as given below, refer Figure 2.

Figure 2: Output of running status command for Week 4 Assignment 4

References

• Official Python documentation of CSV module

\$./ey-mooc-grader-sfc status -w 4 -a 4

• Blog on Python CSV Module by RealPython

4

<

- Blog on For Loops by RealPython
- Blog on Python Dictionary by Programiz
- Blog on Python Dictionary by RealPython
- Blog on Python Tuples by RealPython

All The Best!