Group number: 4

Group Name: Monica Tandel, Niranjan Pawar, Vasanthi Lingamdinne

ASSIGNMENT 1

Show that for any integer $k \ge 1$, if $a > b \ge 1$ and $b < F_{\{k+1\}}$ (where F_i is the i-th Fibonacci number), then Euclid's algorithm on a,b takes fewer than k iterations of the while loop. (Ignore swaps or use 2k instead.)

Pre condition:- k>=1, a>b>=1, $b<F_{k+1}$

Basis Case:- gcd(a,b) = gcd(b,r), where r = rem(a,b)

We can say that the value of r independent of a will always lie between $0 \le r \le b$, as b is the quotient.

 $gcd(b,r) = gcd(r,r_1)$ where $r_1 = rem(b,r)$

So we check the possible values of r_1 for all possible values of r.

If $b>r>=F_k$ then $r_1 < F_{k-1}$, If 0 < r < b/2 then $r_1 < F_{k-1}$,

If $b/2 = < r < F_k$ then $r_1 > F_{k-1}$ but $r_2 < F_{k-2}$

Because in division, for a value of r as the r_1 become large the value of r_2 gets smaller.

Termination:- This process keeps on going until when the $F_{(k=2)}=1$ and r_n must be

smaller than F₂ which is 0. I.e the gcd process will terminate at or before

 F_2 .

Correctness- We prove that it requires less than k steps of the Fibonacci series to

complete gcd(a,b).

Mathematical Example

The value of a does not matter.

Let K=12, so
$$F_{k+1=13}$$
=233,

As $b \le F_{k+1}$, we take upper bound for b which is F_{k+1} -1=232, so b=232,

Now r can be in the following range $0 \le r \le b$,

If b>r> F_k i.e 232>r=>144 then r_1 <89 If 0<r
b/2 i.e 0<r<116 then r_1 <89,

If $b/2 < r < F_k$ i.e 116=< r<144 then $r_1 > 89$ but $r_2 < 55$

Following with that process, $r_n < F_2 = 1$, or $r_n = 0$, thus $r_n = 0$ at k = 2, thus gcd is calculated before k steps.