CS2100 Computer Organisation Lab #9: Using Logisim I

Remember to bring this along to your lab!

(Week 12: 1 – 5 November 2021)

[This document is available on LumiNUS and module website http://www.comp.nus.edu.sg/~cs2100]

Name:	Student No:
Lab Group:	
Objective: You will learn to use logis	sim to analyse a simple circuit and create a 4-bit parallel adder.
Preparation (before the l	ab):
1. Download logisim from	m the following website:
http://www.cburch	.com/logisim/download.html
Logisim a graphical tool for designing	Getting Logisim
and simulating logic circuits Download	Logisim should run on any platform supporting Java, version 5 or later. 1. Logisim requires Java 5 or later. If you do not already have it on your computer, Java is available from java.sun.com.
Documentation Release History Q & A Comments Links	2. Download Logisim from Logisim's SourceForge.net page. You will three choices of which release to download. • A .jar file - runs on any platform, though not necessarily conveniently. • A MacOS .tar.gz file • A Windows .exe file If you use MacOS or Windows, I would recommend using the release specific to your platform.
[de] Deutsch [el] Ελληνικά [en] English [pt] Portuguès [ru] Русский	3. To execute the program: • With the generic . jar file: On Windows and MacOS systems, you will likely be able to start Logisim by double-clicking the JAR file. If that doesn't work, or if you use Linux or Solaris, you can type "java -jar logisim-XX.jar" at the command line.
♦ SOURCEFORGE	 With the MacOS X version: Once the downloaded .tar.gz version is uncompressed (this will likely happen automatically), just double-click the

If you find Logisim useful, please send me a comment!

Copyright and authorship

Logisim easier.

Copyright (c) 2005, Carl Burch.

folder.

Logisim is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Logisim icon to start. You may want to place the icon into the Applications

 With the Windows version: Just double-click the Logisim icon. You may want to create a shortcut on the desktop and/or in the Start menu to make starting

Logisim is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

2. Run **logisim** and you will see this screen:

3. Click on "Help" → "Tutorial" and read "Beginner's tutorial". Familiarise yourself with the basic working of the software. Go through the 5 steps in the tutorial and create some simple circuits yourself.

Procedure:

- 1. Download the file **lab9.circ** from LumiNUS Files or the CS2100 website.
- 2. Open **lab9.circ** in Logisim. Select the "Poke" tool $\stackrel{\bullet}{>}$ and then click on the inputs X, Y and Z to toggle their values, and observe the changes in the outputs.

3.	What is the	name of	f the	circuit?

Answer:		

- 4. The circuit has two outputs *S* and *C*, but they are not labelled. Add the labels correctly. Show your labTA.
- 5. Click "Project" → "Analyze Circuit". Click on "Table", and fill in the table below with what you have observed. (If you find that the outputs do not appear in the same column-order as in the table below, you can change the order by clicking on "Outputs".)

X	Y	Z	C	S
X 0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

6. Still at "Project" \rightarrow "Analyze Circuit". Click on "Minimized". Below the K-map of an output you should see the simplified SOP expressions for that output. Write down the simplified SOP expressions for the two outputs S and C.

S =		
C =		

- 7. Currently, the circuit you have is in the "main" circuit. Now, click on "Project" → "Add circuit...". A pop-up menu will appear asking for the circuit name. Enter the name with the answer you have for part 3 above. This will create a new entry with that name just below "main". Let's refer to this name as xxxx here for the subsequent parts.
- 8. Transfer the circuit you have in "main" (using the select button and click and hold the left mouse button to select the whole circuit, then press **ctrl-x** to cut) and paste it into the newly created "xxxx" circuit (click on "xxxx" making sure the magnifying glass is over it and press **ctrl-v** to paste).

- 9. Go back to the "main" circuit (which should be empty now). Create a **4-bit parallel adder** here by using 4 copies of the **xxxx** circuit you have created earlier. A partial diagram is shown below.
 - Each xxxx is represented by a block diagram. The labels are indicated in one of the block diagrams below for your reference.
 - The 4-bit inputs X and Y are created by clicking on the input pin button \blacksquare and specifying 4 data bits in the attribute table. Likewise, the 5-bit output S is created by clicking on the output pin button \blacksquare and specifying 5 data bits in the attribute table.
 - Splitters (refer to the Logisim tutorial, "Wire bundles" → "Splitters" for more details) are used to route the different bits in the inputs and outputs.

10. Show the completed 4-bit parallel adder circuit to your lab TA.

Report: 5 marks

Demonstration: Part 4 (2 marks), Part 10 (8 marks)

Total: 15 marks

Your graded report will be returned to you at your next lab.