Solving a cubic equation

We want to explicitly find the roots of

$$X^3 + 3pX + 2q = 0.$$

Let u_1, u_2, u_3 be the roots. Key observation:

$$\mathbf{Q}(p,q,\omega) \subset \mathbf{Q}(p,q,\omega,\sqrt{\Delta}) \subset \mathbf{Q}(\omega,u_1,u_2,u_3).$$

We find eigenvectors for the A_3 action.

$$z = u_1 + \omega u_2 + \omega^2 u_3$$

 $z' = u_1 + \omega^2 u_2 + \omega u_3$.

We know that

$$z^3, z'^3 \in \mathbf{Q}(\omega, p, q, \sqrt{\Delta}),$$

and

$$u_1 = \frac{z + z'}{3}, u_2 = \frac{\omega^2 z + \omega z'}{3}, u_3 = \frac{\omega z + \omega^2 z'}{3}.$$

Solving $X^3 + 3pX + 2q = 0$

$$z = u_1 + \omega u_2 + \omega^2 u_3$$

$$z^3 = (u_1^3 + u_2^3 + u_3^3 + 6u_1u_2u_3) +$$

$$3(u_1^2u_2 + u_2^2u_3 + u_3^2u_1)\omega +$$

$$3(u_1u_2^2 + u_2u_3^2 + u_3u_1^2)\omega^2.$$

$$u_1^3 + u_2^3 + u_3^3 + 6u_1u_2u_3 = s_1^3 + 3s_1s_2 + 9s_3 = -18q$$

$$u_1^2u_2 + u_2^2u_3 + u_3^2u_1 = A$$

$$u_1u_2^2 + u_2u_3^2 + u_3u_1^2 = B$$

Solving $X^3 + 3pX + 2q = 0$

$$A = u_1^2 u_2 + u_2^2 u_3 + u_3^2 u_1 \in \mathbf{Q}(\omega, p, q, \sqrt{\Delta})$$

$$B = u_1 u_2^2 + u_2 u_3^2 + u_3 u_1^2 \in \mathbf{Q}(\omega, p, q, \sqrt{\Delta})$$

Conjugates under $Gal(\mathbf{Q}(\omega, p, q\sqrt{\Delta})/\mathbf{Q}(\omega, p, q))$. So,

$$A+B\in\mathbf{Q}(\omega,p,q)$$

and

$$(A-B)^2 \in \mathbf{Q}(\omega,p,q).$$

Solving $X^3 + 3pX + 2q = 0$

$$A + B = u_1 u_2 (u_1 + u_2) + u_2 u_3 (u_2 + u_3) + u_3 u_1 (u_3 + u_1)$$

$$= s_1 s_2 - 3s_3 = 6q$$

$$A - B = (u_1 - u_2)(u_2 - u_3)(u_1 - u_3)$$

$$= \sqrt{\Delta}$$

$$\Delta = -2^2 3^3 (q^2 + p^3).$$

Solving $X^3 + 3pX + 2q = 0$: Plugging everything back

$$A = \frac{(A+B) + (A-B)}{2}$$

$$= 3q + \sqrt{-27(q^2 + p^3)}$$

$$B = 3q - \sqrt{-27(q^2 + p^3)}$$

$$z^3 = -18q + 3A\omega + 3B\omega^2$$

$$= -27q + 27\sqrt{q^2 + p^3}$$

$$z'^3 = -27q - 27\sqrt{q^2 + p^3}$$

Finally,

$$u_1 = \frac{z + z'}{3}$$

$$= \sqrt[3]{-q + \sqrt{q^2 + p^3}} + \sqrt[3]{-q - \sqrt{q^2 + p^3}}$$