Telecom Churn Prediction By Jeet Mehta

Objective: Predict customer churn and identify key factors influencing churn to improve customer retention strategies. **Methods Used**: Univariate and Bivariate Analysis, PCA, Logistic Regression.

Business Problem

• Telecommunications Industry Challenges:

- With growing competition, customer churn has surged to an annual rate of 15-25%. This high turnover directly impacts profitability, as the cost of acquiring new customers is 5-10 times more than retaining existing ones.
- For established telecom operators, the priority is to **retain high-value**, **profitable customers** to sustain long-term growth.

• Project Objective:

To tackle this issue, telecom companies must accurately predict which customers are likely to churn. This project aims to analyze customer data from a leading telecom provider and build predictive models to identify customers at risk of leaving and highlight the key drivers behind their decision to churn.

Objective

In-Depth Customer Data Analysis:

• Perform a detailed examination of customer-level data from a major telecom provider to reveal trends and patterns that indicate potential churn.

Build Predictive Models:

• Develop advanced predictive models to identify customers at **high risk of leaving**, empowering the company to implement effective retention strategies.

Uncover Key Drivers of Churn:

• Pinpoint the main factors leading to customer churn, offering actionable insights to focus retention efforts on the most critical areas.

Univariate Analysis - Churn Based on Minutes of Usage

Insight: Customers with decreased minutes of usage (MOU) in the action phase show a higher churn rate compared

to the good phase.

Univariate Analysis - Churn Based on Number of Recharges

Insight: Customers with a reduced number of recharges in the action phase are more likely to churn.

Univariate Analysis - Churn Based on Recharge Amount

Insight: A drop in the recharge amount during the action phase corresponds to a higher churn rate.

Univariate Analysis - Churn Based on Volume-Based Cost

Customers with increased **volume-based cost** (VBC) in the action phase show a higher churn rate. They tend not to recharge monthly when in the action phase.

Analysis of ARPU (Average Revenue Per User)

Churned Customers: ARPU for churned customers is densely concentrated in the 0 to 900 range.

Non-Churned Customers: ARPU for non-churned customers is mostly in the 0 to 1000 range.

Analysis of Minutes of Usage (MOU)

Insight: Higher MOU is associated with a lower churn rate. Churned customers typically have MOU concentrated in

the **0** to **2500** range.

Bivariate Analysis - Recharge Amount & Number of Recharges

Insight: Customers with both a decrease in recharge amount and recharge number in the action phase show a

significantly higher churi

Bivariate Analysis - Recharge Amount & Volume-Based

Cost

Insight: A higher churn rate is seen when the recharge amount decreases and the volume-based cost increases in

the action phase.

Bivariate Analysis - Recharge Patterns

Insight: The number of recharges and the recharge amount are proportional. More recharges lead to a higher recharge amount.

PCA Model - Emphasizing Sensitivity/Recall

Model Goal: Focused on increasing Sensitivity/Recall over Accuracy.

Rationale: Retaining high-risk churn customers is the goal. Missing some non-churn customers is acceptable if it helps identify potential churners.

Logistic Regression Model (Without PCA)

Insight: Some features have high p-values, making them insignificant. Feature elimination was performed using Recursive Feature Elimination (RFE) and manual tuning.

Conclusion

Key Findings:

- High churn rate is associated with reductions in usage, recharge number, and recharge amount in the action phase.
- Volume-based cost increases also drive churn.
- Higher ARPU and MOU customers are less likely to churn.

Without PCA

• Model Performance:

- The logistic regression model without PCA shows good sensitivity and accuracy, comparable to models with PCA.
- This simpler model effectively identifies important predictor variables while maintaining clarity.

• Relevance:

- The logistic model without PCA highlights which variables are significant and can be acted upon for churn prediction.
- It offers better interpretability, making it more suitable for business decision-making.

Recommendations

1. Target Customers with Lower Usage:

• Customers with reduced minutes of usage for incoming local calls and outgoing ISD calls in the action phase (August) are more likely to churn.

2. Focus on Recharge and Usage Behavior:

- Customers with a decrease in **outgoing others charge in July** and **incoming others usage in August** should be targeted.
- Customers with an increased volume-based cost in the action phase are at higher risk of churn.

3. 3G and 2G Data Usage:

- High 3G recharge amounts in August correlate with higher churn rates.
- Customers with a decrease in 2G usage in August are more likely to churn.

4. Roaming and STD Usage:

- Customers with decreasing STD incoming minutes to fixed lines in August are probable churners.
- Roaming outgoing minutes of usage (roam_og_mou_8) has a positive coefficient, indicating that increased roaming usage leads to a higher likelihood of churn.

Key Focus Areas

- Provide Offers to:
 - Customers with declining usage in key services (local calls, ISD, 2G/3G data).
 - Customers showing increased volume-based cost during the action phase.
- Preemptive Targeting:
 - o Proactively offer special plans to retain customers who display patterns of potential churn.

Thank you