Compiler Optimization Notes

May 22, 2022

1 Local Optimizations

Local Optimizations never goes away because this is always a piece of what happens even when we talk about even more sophiscated types of optimizations.

First we will talk about how to represent the code within a function or procedure, that's using something called a flow graph which is made of basic blocks. Next we will contrast two different abstractions for doing local optimizations.

1.1 Basic Blocks/Flow graphs

1.1.1 Basic Blocks

A basic block is a sequence of instructions (3-address statements). There are some requirements for basic block:

- Only the first instruction can be reached from outside the blcok. The reason why this property is useful is that within a basic block, we just march instruction by instruction through the block, this simplies things at least within a basic block.
- All the statements are executed consecutively if the first one is.
- The basic block must be maximal. i.e., they cannot be made larger without violating conditions.

1.1.2 Flow graphs

Flow graph is a graph representation of the procedure. In flow graph, basic blocks are the nodes, and the edge for $B_i \to B_j$ stands for a path from node B_i to node B_j . So how will $B_i \to B_j$ happen? There are two possibilities:

- Either first instruction of B_j is the target of a goto at end of B_i .
- B_i physically follows B_i which doesn't end in an unconditional goto.

1.1.3 Partitioning into Basic Blocks

- Identify the leader of each basic block
 - First instruction
 - Any target of a jump
 - Any instruction immediately following a jump
- Basic block starts at leader and ends at instruction immediately before a leader(or the last instruction).

An example of flow graph is shown below:

Figure 1: Example of a flow graph

1.1.4 Reachability of Basic Blocks

There is one thing interesting need to mention here. So the source code is below:

Listing 1: An example

The corresponding flow graph is shown in 2:

We can see that the box in green is unreachable from the entry. So why is that interesting? Typically, after compiers construct the control flow graph, they will go through and remove any unreachable nodes. Just do depth first traversal of the graph from the entry node and mark all

Figure 2: Example of a flow graph

those visited nodes. So unmarked nodes will be deleted. This will help the compiler get a better optimization result.

So why do these unreachable nodes appear? The anwser is it is not the job of the front-end of the compiler to clean up the unreachable nodes.

1.2 Local optimizations

Local optimizations are those occur within the basic blocks.

1.2.1 common subexpression elimination

There're some types of local optimizations. One is called **common subexpression elimination**. Subexpressions are some arithmetic expressions that occur on the right hand of the instructions. The goal of this common subexpression elimination is to identify expressions that are guaranteed to produce identical values at runtime and arrange to only perform the associated computation once (when the first instance of the expression is encountered).

```
a = b + c;
d = b + c;
```

Listing 2: Subexpression example

In the example 2, b + c is so called coomon subexpression, we could replace the instruction containing common subexpression with an assign expression.

```
a = b + c;
d = a
```

Listing 3: code snippet applied common subexpression elimination to 2

You may wonder why this kind of redundancy can occure in code? Are we programmers stupid to do so? In fact, the redundancy most comes from the stage when compilers turn your source code. For example, when you use arrays, you need to do some arithmetic to generate the address of

the array element you are accessing. So every time you referece the same array element, compiler will calculate the same address again. Similarly, if you access offsets within fields. Last example is access to parameters in the stack.

1.3 Abtraction 1:DAG

DAG is the acronym for Directed Acyclic Graph. The Directed Acyclic Graph (DAG) is used to represent the structure of basic blocks, to visualize the flow of values between basic blocks, and to provide optimization techniques in the basic block. DAG is an efficient method for identifying common sub-expressions.¹

The parse tree and DAG of the expression a + a * (b + c) + (b + c) * d is shown in 3.

Figure 3: Example of a DAG

In DAG, some of the computation are reused. So we can generate optimizaed code based on DAG.

The optmized code for the DAG3 is:

```
t1 = b - c;

t2 = a * t1;

3 t3 = a + t2;

4 t4 = t1 * d;

5 t5 = t3 + t4;
```

Listing 4: code

1.3.1 How well do DAGs hold up across statements?

We have seen that DAGs can be useful in a long arithmetic expression. So how well do DAGs perform in sequence of instructions?

```
a = b + c;
b = a - d;
c = b + c;
d = a - d;
```

Listing 5: code

The corresponding DAG is shown in 4.

Based on the DAG4, one optimizaed code is 6

 $^{^{1}} copied \ from \ https://wildpartyofficial.com/what-is-dag-in-compiler-construction$

Figure 4: Example of a DAG

```
a = b+c;
d = a-d;
c = d+c;
```

Listing 6: code

6 is not correct. B need to be overwritten but not yet. So if using DAGs, you need to be very careful.

DAGs make sense if you just have one long expression, but once you have sequence of instructions overwriting variables , DAGs are less appealing because this abstraction doesn't really include the concept of time.

1.4 Abtraction 2:Value numbering

We have seen drawbacks of DAGs. One way to fix the problem is to attach variable name to latest value. Value numbering is such abstraction.

The idea behind value numbering is there is a mapping between variables(static) to values(dynamic). So common subexpression means same value number.

1.4.1 Algorithm

```
Data structure:

VALUES = Table of

expression /* [OP, valnum1, valnum2] */

var /* name of variable currently holding expr */

For each instruction (dst = src1 OP src2) in execution order

valnum1=var2value(src1); valnum2=var2value(src2)
```

```
IF [OP, valnum1, valnum2] is in VALUES
           v = the index of expression
9
           Replace instruction with: dst = VALUES[v].var
10
      ELSE
11
           Add
               expression = [OP, valnum1, valnum2]
14
               var = tv
15
           to VALUES
16
           v = index of new entry; tv is new temporary for v
           Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var
18
                                    dst = tv
      set_var2value (dst, v)
19
```

Listing 7: code

1.4.2 Example

```
1. w = a^{1} * b^{2}

2. x = w^{3} + c^{4}

3. d = a^{1}

4. e = b^{2}

5. y = d^{1} * e^{2}

6. z = y^{3} + c^{4}

(*, 1, 2) = 3; VN(w) = 3

(*, 3, 4) = 5; VN(x) = 5

(*, 3, 4) = 5; VN(x) = 5
```

Figure 5: An example of value numbering.

Figure 5 shows a concrete example of how VN identifies computation redundancies within a basic block. The VN processes each instruction statically. It obtains the previously computed symbolic value of each operand on the RHS, assigning a unique number on encountering a new operand. Then, it hashes the symbolic values assigned to operands together with the operator to obtain a symbolic value for the computation. If the computed symbolic value for a computation is already present in the table of previously computed values, then the current computation is redundant. In this basic block, computations on Line 5 and 6 are redundant since the computations are already computed by instruction on Line 1 and 2.

2 Introduction to Data Flow Analysis

2.1 What is Data Flow Analysis?

Local Optimizations only consider optimizations within a node in CFG. Data flow analysis will take edges into account, which means composing effects of basic blocks to derive information at basic block boundaries.

Typically, we will do local optimization for the first step to know what happens in a basic block, step 2 is to do data flow analysis. In he third step, we will go back and revisit the individual instructions inside of the blocks.

 $^{{}^2} copied \ from \ https://www.researchgate.net/publication/283214075_Runtime_Value_Numbering_A_Profiling_Technique_to_Pinpoint_Redundant_Computations$

Data flow analysis is **flow-sensitive**, which means we take into account the effect of control flow. It is also a **intraprocedural analysis** which means the analysis is within a procedure. Data-flow analysis computes its solutions over the paths in a control-flow graph. The well-known, meet-over-all-paths formulation produces safe, precise solutions for general dataflow problems. All paths-whether feasible or infeasible, heavily or rarely executed-contribute equally to a solution.

Here are some examples of intraprocedural optimizations:

- constant propagation. Constant propagation is a well-known global flow analysis problem. The goal of constant propagation is to discover values that are constant on all possible executions of a program and to propagate these constant values as far forward through the program as possible. Expressions whose operands are all constants can be evaluated at compile time and the results propagated further.
- common subexpression elimination
- dead code elimination. Actually, source code written by programmers doesn't contain a lot of dead code, dead code happens to occur partly because of how the front end translates code into the IR. Doing optimizations will also turn code into dead.

2.2