Algoritmi e Strutture di Dati

Quick-sort

m.patrignani

140-quick-sort-06

copyright ©2019 maurizio.patrignani@uniroma3.it

1

Nota di copyright

- queste slides sono protette dalle leggi sul copyright
- il titolo ed il copyright relativi alle slides (inclusi, ma non limitatamente, immagini, foto, animazioni, video, audio, musica e testo) sono di proprietà degli autori indicati sulla prima pagina
- le slides possono essere riprodotte ed utilizzate liberamente, non a fini di lucro, da università e scuole pubbliche e da istituti pubblici di ricerca
- ogni altro uso o riproduzione è vietata, se non esplicitamente autorizzata per iscritto, a priori, da parte degli autori
- gli autori non si assumono nessuna responsabilità per il contenuto delle slides, che sono comunque soggette a cambiamento
- questa nota di copyright non deve essere mai rimossa e deve essere riportata anche in casi di uso parziale

Quick-sort

- Algoritmo di ordinamento in loco ma non stabile
- Tempo di esecuzione
 - nel caso peggiore $\Theta(n^2)$
 - nel caso migliore e medio $\Theta(n \log n)$
 - i fattori costanti nascosti nella notazione Θ sono abbastanza piccoli
- Introdotto da Hoare nel 1962
 - la versione che vedremo è una variante dovuta a Lomuto
- Basato sul paradigma divide et impera

140-quick-sort-06

copyright ©2019 maurizio.patrignani@uniroma3.it

3

Divide et impera nel quick-sort

Per ordinare un sottoarray A[p...r]

- Divide
 - A[p...r] viene ripartito (e risistemato) in due sottoarray non vuoti A[p...q-1] e A[q+1...r], in modo che ogni elemento del primo sia minore o uguale ad A[q] e ogni elemento del secondo sia maggiore ad A[q]
 - l'indice q viene calcolato dalla procedura di partizionamento
- Impera
 - i due sottoarray A[p...q-1] e A[q+1...r] sono ordinati, ricorsivamente
- Combina
 - non c'è niente da fare: A[p...r] è ordinato

Procedura QUICK SORT

- La procedura QUICK SORT ordina in loco l'intervallo A[p..r]
 - se p = r, allora l'intervallo contiene una sola casella ed è già ordinato: l'invocazione di QUICK SORT non ha effetto
 - $-\sec p > r,$ allora l'intervallo è un intervallo degenere e l'invocazione di QUICK SORT non ha effetto
- Il valore q ritornato da PARTITION è tale che $p \le q \le r$
- Per ordinare l'intero array viene invocata la procedura: QUICK_SORT(A,0,A.length-1)

140-quick-sort-06 copyright ©2019 maurizio.patrignani@uniroma3.it

Procedura PARTITION

- La procedura PARTITION viene invocata su un intervallo di almeno due elementi (p < r)
 - due casi base
 - i due elementi sono ordinati
 - i due elementi non sono ordinati

140-quick-sort-06 copyright ©2019 maurizio.patrignani@uniroma3.it

Esecuzione di PARTITION su 16

Caso base 1: PARTITION su una coppia ordinata

a

Esecuzione di PARTITION su 8 7

• Caso base 2: PARTITION su una coppia non ordinata

Tempo di esecuzione di PARTITION

- Le assegnazioni iniziali e finali richiedono tempo costante
- Nel caso peggiore, come nel caso migliore, il sottoarray A[p...r] viene scorso per intero da sinistra verso destra
- Il tempo di esecuzione $T_{PARTITION}(n) \in \Theta(n)$

140-quick-sort-06 copyright ©2019 maurizio.patrignani@uniroma3.it

11

Esercizi

- 1. Che cosa succederebbe nel QUICK_SORT se PARTITION(A,p,r) restituisse un valore q uguale a r?
- 2. Illustrare le operazioni di PARTITION sull'array A = <13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21>
- 3. Illustrare le operazioni di PARTITION su un array
 - già ordinato in senso decrescente
 - già ordinato in senso crescente
- 4. Quale valore restituisce PARTITION se tutti gli elementi dell'array A[p...r] hanno lo stesso valore?

Caso peggiore e migliore per QUICK SORT

- Il caso peggiore per QUICK_SORT è quando PARTITION elegge a *pivot* il valore massimo o minimo dell'array
 - in questo caso QUICK_SORT non ricorre su due sottoarray bilanciati, ma ricorre su un sottoarray più corto di una casella ed un sottoarray degenere
- Il caso migliore per QUICK_SORT è invece quando PARTITION elegge a *pivot* il valore mediano dell'array
 - in questo caso QUICK_SORT ricorre su due sottoarray bilanciati

140-quick-sort-06 copyright ©2019 maurizio.patrignani@uniroma3.it

15

Analisi del caso migliore per QUICK SORT

• Nel caso migliore il tempo di calcolo di QUICK_SORT su un array con *n* posizioni è

$$T(n) = 2 \cdot T(n/2) + \Theta(n)$$

• Questa equazione di ricorrenza può essere risolta con il teorema dell'esperto

$$T(n) = a \cdot T(n/b) + p(n^k)$$

• Nello speciale caso in cui

$$a=2$$
 $b=2$ $k=1$

• Che per $a = b^k$ si risolve in

$$T(n) = \Theta(n^k \log n) = \Theta(n \log n)$$

Analisi del caso peggiore per QUICK SORT

• Si ha

$$T(0) = a$$

 $T(n) = T(n-1) + \Theta(n)$

• Sappiamo che la soluzione di questa equazione di riccorrenza è

$$T(n) = a + \sum_{k=1}^{n} g(k)$$

• E dunque

$$T(n) = \sum_{k=1}^{n} \Theta(k) = \Theta\left(\sum_{k=1}^{n} k\right) = \Theta(n^{2})$$

140-guick-sort-06

copyright ©2019 maurizio.patrignani@uniroma3.it

17

Analisi del caso medio per QUICK SORT

- Si può dimostrare formalmente che nel caso medio QUICK SORT ha una complessità $\Theta(n \log n)$
 - l'analisi, però, è molto più complessa del caso migliore e del caso peggiore
- Nel seguito vedremo solamente due considerazioni intuitive che ci aiutano a giustificare questo risultato
 - 1. qual è la complessità nel caso in cui lo sbilanciamento della ricorsione non supera mai una determinata soglia
 - 2. qual è la complessità nel caso in cui ricorsioni sbilanciate si alternano a ricorsioni più bilanciate

40-quick-sort-06 copyright ©2019 maurizio.patrigna

Caso bilanciato 9-a-1

- Supponiamo che PARTITION divida il sottoarray in due parti che hanno una proporzione fissa
 - supponiamo che la proporzione sia 9-a-1
- Abbiamo

$$T(n) \le T(9n/10) + T(n/10) + cn$$

dove cn esplicita $\Theta(n)$

140-auick-sort-0

copyright ©2019 maurizio.patrignani@uniroma3.it

19

Alternanza di ricorsioni bilanciate e sbilanciate

- Supponiamo che nel 20% dei casi PARTITION produca una partizione meno bilanciata di 9-a-1
- Supponiamo che nell'albero delle chiamate ricorsive una ripartizione sbilanciata sia sempre seguita da una bilanciata
- Il costo di una ripartizione sbilanciata può essere assorbito dal costo della ripartizione bilanciata

21

Versione randomizzata di QUICK SORT

• E' possibile modificare QUICK_SORT in maniera che i casi peggiori non coincidano con disposizioni notevoli degli elementi

```
RANDOMIZED_PARTITION(A,p,r)

1. i = RANDOM(p,r)

2. SCAMBIA(A,r,i)

3. return PARTITION(A,p,r)

RANDOMIZED_QUICK_SORT(A,p,r)

1. if p < r then

2. q = RANDOMIZED_PARTITION(A,p,r)

3. RANDOMIZED_QUICK_SORT(A,p,q-1)

4. RANDOMIZED_QUICK_SORT(A,q+1,r)
```


23

Algoritmi di ordinamento per confronto

	caso migliore	caso medio	caso peggiore	in loco	stabile
SELECTION-SORT	$\Theta(n^2)$			si	si
INSERTION-SORT	$\Theta(n)$	$\Theta(n^2)$	$\Theta(n^2)$	si	si
MERGE-SORT	$\Theta(n \log n)$			no	si
HEAP-SORT	$\Theta(n \log n)$			si	no
QUICK-SORT	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$	si	no