

Type977 fitting for heat pump SIN-18TU Parametric Heat Pump calculation

Dani Carbonell

dani. carbonell@spf.ch

2019/03/12 at: 16:07:54 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
		[kW]
P_{Q_1}	1 st condenser polynomial coefficient	1.6031e+01
P_{Q_2}	2^{st} condenser polynomial coefficient	1.6862e + 02
P_{Q_3}	3^{st} condenser polynomial coefficient	4.5006e+01
P_{Q_4}	4 st condenser polynomial coefficient	-3.0845e+02
P_{Q_5}	5^{st} condenser polynomial coefficient	2.7295e + 02
P_{Q_6}	6 st condenser polynomial coefficient	-1.9880e + 02
P_{COP_1}	1 st COP polynomial coefficient	6.0450e+00
P_{COP_2}	2 st COP polynomial coefficient	5.1596e + 01
P_{COP_3}	3 st COP polynomial coefficient	4.8630 e-01
P_{COP_4}	4 st COP polynomial coefficient	-1.9286e+02
P_{COP_5}	5^{st} COP polynomial coefficient	-2.0545e+01
P_{COP_6}	6 st COP polynomial coefficient	-8.4732e+01
\dot{m}_{cond}	$3000.00 \ [kg/h]$	
\dot{m}_{evap}	$3000.00 \ [kg/h]$	
$COP_{nom} \text{ (A0W35)}$	4.64	
$Q_{cond,nom}$ (A0W35)	$17.39 \ [kW]$	
$Q_{evap,nom}$ (A0W35)	13.64 [kW]	
$W_{comp,nom}$ (A0W35)	3.75 [kW]	
RMS_{COP}	4.63e - 02	
$RMS_{Q_{cond}}$	1.09e - 01	
$RMS_{W_{comp}}$	5.19e - 02	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

		000			_				***	
$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
°C	^{o}C	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	4.16	4.10	1.5	15.44	15.40	0.3	3.72	3.76	1.18
35.00	0.00	4.67	4.70	0.6	17.54	17.50	0.2	3.75	3.72	0.87
35.00	5.00	5.19	5.22	0.5	19.80	19.90	0.5	3.81	3.81	0.01
50.00	-5.00	3.10	3.13	1.0	15.20	15.47	1.7	4.91	4.95	0.71
50.00	0.00	3.43	3.34	2.5	17.05	16.83	1.3	4.97	5.03	1.20
50.00	5.00	3.78	3.70	1.9	19.07	19.07	0.0	5.05	5.15	1.88
45.00	-5.00	3.50	3.55	1.2	15.40	15.43	0.2	4.40	4.35	1.03
45.00	0.00	3.90	3.92	0.5	17.34	17.17	1.0	4.44	4.38	1.50
45.00	5.00	4.31	4.35	0.9	19.44	19.48	0.2	4.51	4.48	0.70
55.00	0.00	2.90	2.90	0.0	16.64	16.50	0.9	5.74	5.69	0.92
55.00	5.00	3.19	3.21	0.6	18.59	18.65	0.3	5.83	5.82	0.30
35.00	10.00	5.70	5.70	0.1	22.22	22.30	0.4	3.90	3.91	0.29
35.00	15.00	6.20	6.17	0.5	24.80	24.70	0.4	4.00	4.00	0.13
50.00	10.00	4.12	4.05	1.7	21.26	21.30	0.2	5.17	5.26	1.84
50.00	15.00	4.45	4.38	1.6	23.60	23.53	0.3	5.31	5.38	1.28
45.00	10.00	4.70	4.75	1.0	21.70	21.80	0.4	4.61	4.59	0.57
45.00	15.00	5.09	5.14	0.9	24.12	24.12	0.0	4.74	4.69	0.95
55.00	10.00	3.47	3.50	1.0	20.70	20.80	0.5	5.97	5.94	0.48
55.00	15.00	3.74	3.78	1.2	22.97	22.95	0.1	6.14	6.07	1.27
Sum				19.2			8.9			17.10
RMS_{COP}	4.63e - 02									
$RMS_{Q_{cond}}$	1.09e - 01									
$RMS_{W_{comp}}$	5.19e - 02									

$\rm Meier/SIN\text{-}18TU/SIN\text{-}18TU\text{-}Qcond.pdf}$

Figure 1: Q_{cond} differences between experiments and fitted data

$\rm Meier/SIN\text{-}18TU/SIN\text{-}18TU\text{-}Qcomp.pdf$

Figure 2: W_{comp} differences between experiments and fitted data

$\rm Meier/SIN\text{-}18TU/SIN\text{-}18TU\text{-}COP.pdf$

Figure 3: COP differences between experiments and fitted data