## **Supporting Information**

Boyko et al. 10.1073/pnas.0902129106



Fig. S1. STRUCTURE results as in Fig. 2 for higher K. L'(K) defined as L(K)-L(K-1) where L(K) is the average of the mean In likelihood across all 10 runs for a given K. L'(K) = 1499.4, 1214.3, and 646.7 for K = 3, 4, and 5, respectively.





Fig. S2. Principal component analysis of African village dogs (all including admixed individuals) and American dogs. (A) PCA with the 89 microsatellite loci (n = 227). (B) PCA with the 300 SNP loci (n = 186).



Fig. S3. STRUCTURE analysis of 184 village dogs and 102 complex mixed breed dogs from the United States at 300 SNP loci.



Fig. S4. STRUCTURE analysis of village dogs and dogs from 126 dog breeds using 300 SNP loci. An African cluster is apparent at K = 2 while subsequent clusters detect structure between breed dog groups. L'(K) declines sharply beyond K = 6 (L'(K) = 2280.5, 1899.8, 1638.5, 1609.2, and 1122.0 for K = 3-7, respectively).

## African village + breed dog microsatellite PCA



Fig. S5. Principal component analysis of village dogs and dogs from five putatively African and Middle Eastern breeds across 89 microsatellite markers in 227 village dogs and 24 breed dogs.



Fig. S6. Haplotype network graphs of 582-bp region excluding indels for mtDNA clades A–C. Data from (6, 10) and this study. Red = Africa, blue hatching = East Asia; gray = other. Area of node proportional to number of dogs with that haplotype.

Table S1. Summary of sampling locations

| Country          | Region               | Location name                               | N       | N<br>(nonrel) | N<br>(auto) | Mal | Fem    | I/?/M | Location                                       | Elev           | Date     | mt DNA<br>haplotypes                                                   |
|------------------|----------------------|---------------------------------------------|---------|---------------|-------------|-----|--------|-------|------------------------------------------------|----------------|----------|------------------------------------------------------------------------|
| gypt             | Giza                 | Animal<br>Friends                           | 11      | 11            | 11          | 6   | 5      | 7/4/0 | 30° 02.724′ N,<br>31° 14.190′ E                | 80′            | 08/15/07 | vilA1 (2), vilA2 (3), vilA5 (2),<br>vilC3a, vilC2, vilA11a,<br>vilA12  |
| gypt             | Luxor                | shelter<br>ACE<br>(Animal Care<br>in Egypt) | 10      | 9             | 9           | 2   | 8      | 9/0/0 | 25° 41.406′ N,<br>32° 39.139′ E                | 240′           | 08/17/07 | vilA3 (3), vilC1a (2), vilA4,<br>vilA2, vilC2, vilA6                   |
| gypt             | Kharga               | Bagdad                                      | 7       | 4             | 7           | 3   | 4      | 4/0/0 | 24° 44.819′ N,<br>30° 35.524′ E                | 82′            | 08/18/07 | vilB1a (3), vilB2                                                      |
| gypt             | Kharga               | Jeddah                                      | 2       | 1             | 2           | 1   | 1      | 1/0/0 | 24° 52.949′ N,<br>30° 33.912′ E                | 138′           | 08/18/07 | vilB1a                                                                 |
| gypt             | Luxor                | Gouahera                                    | 6       | 6             | 5           | 2   | 4      | 5/0/0 | 25° 41.406′ N,<br>32° 39.139′ E                | 240′           | 08/19/07 | vilA1, vilA3,<br>vilA7 (2), vilA8 (2)                                  |
| gypt             | Luxor                | Armanti                                     | 1       | 1             | 1           | 0   | 1      | 1/0/0 | 25° 37.028′ N,<br>32° 32.565′ E                | 261′           | 08/19/07 | vilC1a [or vilC1b]                                                     |
| gypt             | Luxor                | La Galta                                    | 1       | 1             | 1           | 1   | 0      | 1/0/0 | 25° 40.974′ N,<br>32° 36.876′ E                | 266′           | 08/19/07 | vilA6                                                                  |
| gypt             | Luxor                | Ezba                                        | 2       | 2             | 2           | 2   | 0      | 2/0/0 | 32° 37.311′ E                                  | 276′           |          | vilB1b, vilC1b                                                         |
| gypt             | Luxor                | Comb                                        | 2       | 2             | 3           | 0   | 2      |       | 25° 42.163′ N,<br>32° 36.417′ E                | 251′           |          | vilB1b, vilC1b                                                         |
| gypt             | Luxor                | Bairat                                      | 2       | 2             | 2           | 0   | 2      |       | 25° 42.718′ N,<br>32° 37.428′ E                | 254′           |          | vilA9, vilA10                                                          |
| gypt             | Luxor                | Jazeera                                     | 4       | 3             | 4           | 4   | 0      |       | 25° 42.421′ N,<br>32° 37.782′ E                | 258′           |          | vilA3, vilA7, vilC4                                                    |
| Jganda           | mainland             | Napoli                                      | 10      | 10            | 3           | 7   | 3      |       | 1° 02.99′ N,<br>34° 10.892′ E                  | 3780′          |          | vilA1 (3), vilA2, vilA11a (2),<br>vilA11b (2), vilA13, vilB1b          |
| Jganda<br>Jganda | mainland<br>mainland | Walchwaba<br>Namabasa                       | 10<br>9 | 10<br>9       | 5<br>3      | 4   | 6<br>5 |       | 1° 02.805′ N,<br>34° 10.957′ E<br>1° 06.39′ N, | 3780′<br>3653′ | 07/17/07 | vilA6, vilA11a (2),<br>vilA11b (2), vilA13 (5)<br>vilA11a (4), vilA15, |
| Jganda           | mainland             | Mooni                                       | 20      | 20            | 3<br>7      | 9   | 11     |       | 34° 09.726′ E<br>1° 03.532′ N,                 | 3703′          | 07/17/07 | vilB1b (3), vilC3b                                                     |
| Jganda           | mainland             | Busoba                                      | 10      | 10            | 5           | 6   | 4      |       | 34° 12.078′ E<br>0° 58.133′ N,                 | 3926′          | 07/18/07 | vilA32 (5), vilB1b (5), vilC3b<br>vilA2, vilA6 (4), vilA13,            |
| Jganda           | mainland             | Buchenda                                    | 1       | 1             | 1           | 1   | 0      |       | 34° 10.237′ E<br>0° 57.514′ N,                 | 3925′          | 07/18/07 | vilA25, vilA33 (2), vilB4                                              |
| Jganda           | mainland             | Bunanimi                                    | 6       | 6             | 3           | 2   | 4      |       | 34° 18.194′ E<br>0° 57.596′ N,                 | 4026′          | 07/18/07 |                                                                        |
| Jganda           | mainland             | Nugisu                                      | 7       | 7             | 3           | 5   | 2      |       | 34° 11.597′ E<br>1° 05.376′ N,                 | 3665′          | 07/18/07 | vilA16, vilA27<br>vilA1, vilA2, vilA14,                                |
| Jganda           | mainland             | Navigyo                                     | 4       | 4             | 1           | 3   | 1      | 1/0/0 | 34° 10.766′ E<br>1° 05.095′ N,                 | 3631′          | 07/18/07 | vilA16, vilA25 (2), vilB1b<br>vilA5 (3), vilC2                         |
| Jganda           | mainland             | Butandiga                                   | 16      | 15            | 4           | 9   | 7      | 3/1/0 | 34° 10.977′ E<br>1° 04.334′ N,                 | 3814′          | 07/19/07 | vilA2, vilA6, vilA7,                                                   |
|                  |                      |                                             |         |               |             |     |        |       | 34° 12.093′ E                                  |                |          | vilA13, vilA16, vilA23,<br>vilA32, vilB1b (7), vilB4                   |
| Jganda           | mainland             | Kongoidi                                    | 7       | 7             | 3           | 4   | 3      | 3/0/0 | 1° 11.915′ N,<br>34° 07.152′ E                 | 3777′          | 07/19/07 | vilA2, vilA6 (4), vilB1b (2)                                           |
| Jganda           | mainland             | Komosingo                                   | 20      | 19            | 8           | 10  | 10     | 6/1/0 | 1° 12.584′ N,<br>34° 07.950′ E                 | 3804′          | 07/19/07 | vilA2, vilA6 (8), vilA11a (2),<br>vilA15, vilA24, vilA29,              |
| Jganda           | isles                | Mwoma<br>(Ddamba Is.)                       | 8       | 7             | 6           | 6   | 2      | 5/0/0 | 0° 2.414′ S,<br>32° 46.557′ E                  | 1135′          | 08/10/07 | vilB1b (5)<br>vilA23 (2), vilA30 (4), vilB1b                           |
| Jganda           | isles                | Busiro<br>(Koome Is.)                       | 3       | 2             | 2           | 3   | 0      | 2/0/0 | 0° 1.952′ S,<br>32° 44.843′ E                  | 1135′          | 08/10/07 | vilA30, vilB1b                                                         |
| Jganda           | isles                | Tabaliro<br>(Nsadzi Is.)                    | 5       | 4             | 5           | 3   | 2      | 3/2/0 | 0° 5.203′ S,<br>32° 35.750′ E                  | 1135′          | 08/10/07 | vilA5 (3), vilA6                                                       |
| Jganda           | isles                | Kisigala<br>(Koome Is.)                     | 7       | 6             | 5           | 5   | 2      | 5/0/0 | 0° 5.603′ S,<br>32° 41.094′ E                  | 1135′          | 08/10/07 | vilA31 (4), vilB1b (2)                                                 |
| Jganda           | isles                | Zingoola<br>(Koome Is.)                     | 11      | 11            | 5           | 9   | 2      | 3/2/0 | 0° 3.319′ S,<br>32° 42.941′ E                  | 1135′          | 08/11/07 | vilA2, vilA11a, vilA23,<br>vilA31 (3), vilB1b (5)                      |
| Namibia          | central              | Otavi                                       | 6       | 6             | 5           | 3   | 3      | 0/0/5 | 19° 39.192′ S,<br>17° 27.937′ E                | 5035′          | 08/23/07 |                                                                        |

| Country | Region         | Location name                       | N  | N<br>(nonrel) | N<br>(auto) | Mal | Fem | I/?/M      | Location                        | Elev  | Date     | mtDNA<br>haplotypes                                                      |
|---------|----------------|-------------------------------------|----|---------------|-------------|-----|-----|------------|---------------------------------|-------|----------|--------------------------------------------------------------------------|
| Namibia | north          | Oshivelo                            | 4  | 4             | 4           | 2   | 2   | 2/0/2      | 18° 36.957′ S,<br>17° 09.995′ E | 3627′ | 08/23/07 | vilA13 (2), vilB1b, vilC5                                                |
| Namibia | north          | Oshikango                           | 6  | 6             | 6           | 3   | 3   | 6/0/0      | 18° 36.957′ S,<br>17° 09.995′ E | 3626′ | 08/24/07 | vilA11a, vilA13, vilA15 (3),<br>vilB1b                                   |
| Namibia | north          | Onhuno                              | 6  | 6             | 4           | 4   | 2   | 3/1/0      | 17° 30.905′ S,<br>15° 54.126′ E | 3629′ | 08/24/07 | vilA2, vilA13 (2), vilA17,<br>vilB1b (2)                                 |
| Namibia | north          | Ongha                               | 6  | 6             | 5           | 6   | 0   | 4/0/1      | 17° 38.623′ S,<br>15° 55.651′ E | 3615′ | 08/24/07 | vilA7, vilA11a, vilA16,<br>vilA18, vilB1b, vilB1a                        |
| Namibia | north          | Indiangungu                         | 6  | 5             | 4           | 6   | 0   | 4/0/0      | 17° 47.694′ S,<br>16° 00.280′ E | 3650′ | 08/24/07 | vilA7, vilA11a, vilA18,<br>vilA19, vilB3a                                |
| Namibia | north          | Ondandwa                            | 6  | 6             | 6           | 2   | 4   | 5/1/0      | 17° 54.945′ S,<br>15° 58.605′ E | 3595′ | 08/24/07 | vilA11a, vilA13, vilA15,<br>vilA16, vilA20, vilB3b                       |
| Namibia | north          | Olund                               | 6  | 6             | 4           | 3   | 3   | 2/1/1      | 17° 55.261′ S,<br>16° 0.123′ E  | 3573′ | 08/25/07 |                                                                          |
| Namibia | north          | Omaarara                            | 7  | 7             | 4           | 5   | 2   | 4/0/0      | 17° 51.249′ S,<br>15° 52.894′ E | 3606′ | 08/25/07 | vilA5 (3), vilA11a, vilA13,<br>vilA19 (2)                                |
| Namibia | north          | Okanbjengedhi                       | 11 | 11            | 7           | 6   | 5   | 6/0/1      | 17° 47.145′ S,<br>15° 43.760′ E | 3597′ | 08/25/07 | vilA11a (3), vilA13 (2), vilA15,<br>vilA20, vilA21, vilB1b (2),<br>vilC5 |
| Namibia | north          | Oshikuku                            | 6  | 6             | 4           | 4   | 2   | 3/1/0      | 17° 39.419′ S,<br>15° 29.081′ E | 3606′ | 08/25/07 |                                                                          |
| Namibia | north          | Omavela                             | 5  | 5             | 5           | 3   | 2   | 5/0/0      | 17° 42.038′ S,<br>15° 43.372′ E | 3588′ | 08/25/07 | vilA11a, vilA13, vilA23,<br>vilB1b, vilB3a                               |
| Namibia | north          | Endola                              | 7  | 7             | 6           | 5   | 2   | 6/0/0      | 17° 35.841′ S,<br>15° 43.313′ E | 3630′ | 08/26/07 | vilA5, vilA11a, vilA13 (3),<br>vilA17, vilA20                            |
| Namibia | north          | Onyvulae                            | 9  | 9             | 8           | 9   | 0   | 8/0/0      | 18° 04.315′ S,<br>16° 31.653′ E | 3656′ | 08/26/07 | -                                                                        |
| Namibia | north          | Onyati                              | 3  | 3             | 2           | 1   | 2   | 2/0/0      | 18° 13.108′ S,<br>16° 24.927′ E | 3609′ | 08/26/07 |                                                                          |
| Namibia | north          | Cham-Cham                           | 5* | 4             | 5           | 2   | 2   | 1/3/0      | 18° 28.495′ S,<br>16° 57.160′ E | 3603′ | 08/26/07 | vilA13 (2), vilA16, vilC6                                                |
| Namibia | central        | Tsumeb                              | 11 | 11            | 9           | 7   | 4   | 0/1/8      | 19° 14.942′ S,<br>17° 42.197′ E | 4223′ | 08/26/07 | vilA13 (2), vilA14 (3), vilB1b (2),<br>vilB1a, vilC2 (3)                 |
| Namibia | central        | Grootfontaine                       | 12 | 11            | 11          | 6   | 6   | 0/0/<br>11 | 19° 35.234′ S,<br>18° 06.170′ E | 4693′ | 08/27/07 | vilA7, vilA11a (4), vilA13,<br>vilA16 (4), vilC3a                        |
| America | Indiana        | Tippecanoe<br>Cty Humane<br>Society | 1  | 1             | 1           | 0   | 1   | 0/0/1      | 40° 24.089′ N,<br>86° 53.753′ W | 604′  | 08/23/07 |                                                                          |
| America | Virginia       | Norfolk SPCA                        | 1  | 1             | 1           | 1   | 0   | 0/0/1      | 36° 51.190′ N,<br>76° 14.878′ W | 23′   | 07/05/07 | vilB1b                                                                   |
| America | Puerto<br>Rico | Albergue<br>de Mayaguez             | 5  | 5             | 5           | 4   | 1   | 0/0/5      | 18° 12.760′ N,<br>67° 7.708′ W  | 948′  | 06/29/07 | vilA13 (2), vilA27, vilA28,<br>vilB1b                                    |
| America | Puerto<br>Rico | Albergue<br>de Ponce                | 11 | 10            | 11          | 4   | 7   | 0/0/<br>10 | 18° 00.356′ N,<br>66° 38.911′ W | 94′   | 06/30/07 | vilA2 (2), vilA11a (3), vilA16,<br>vilA25, vilA26, vilB1b (2)            |

I/?/M denotes number of indigenous (<25% admixed), uncertain (25–60% admixed), and admixed (>60% admixed) dogs (unrelated genotyped dogs only) N (nonrel) denotes number of dogs sequenced across D-loop, excluding relatives; N (auto) denotes number of dogs with SNP and/or microsatellite genotyping \*Sex was not recorded for one dog from Cham-Cham

Table S2. Pairwise  $F_{ST}$  in village dogs between regions based on 89 microsatellite markers

|          | Giza  | Kharga | Luxor | NA_cent | NA_north | UG_isles | UG_main | America |
|----------|-------|--------|-------|---------|----------|----------|---------|---------|
| Giza     | _     |        |       |         |          |          |         |         |
| Kharga   | 7.79% | _      |       |         |          |          |         |         |
| Luxor    | 0.57% | 7.35%  | _     |         |          |          |         |         |
| NA_cent  | 2.22% | 12.40% | 4.42% | _       |          |          |         |         |
| NA_north | 2.85% | 11.01% | 3.90% | 3.71%   | _        |          |         |         |
| UG_isles | 4.35% | 13.24% | 5.62% | 4.97%   | 5.18%    | _        |         |         |
| UG_main  | 1.62% | 10.33% | 3.22% | 2.50%   | 2.37%    | 2.47%    | _       |         |
| America  | 2.38% | 12.73% | 4.13% | 0.25%   | 3.55%    | 4.33%    | 2.22%   | _       |

Table S3. Multiple sequence alignment of the 60 mtDNA haplotypes found in the 337 village dogs

| vilA1   | TG-TCCTCAACTTTCTGTTTAAATGTCCTACTCATTCACAGCAC |  |  |  |  |  |
|---------|----------------------------------------------|--|--|--|--|--|
| vilA2   |                                              |  |  |  |  |  |
| vilA3   |                                              |  |  |  |  |  |
| vilA4   |                                              |  |  |  |  |  |
| vilA5   | A.C.T                                        |  |  |  |  |  |
| vilA6   |                                              |  |  |  |  |  |
| vilA7   |                                              |  |  |  |  |  |
| vilA8   |                                              |  |  |  |  |  |
| vilA9   |                                              |  |  |  |  |  |
| vilA10  |                                              |  |  |  |  |  |
| vilA11a |                                              |  |  |  |  |  |
| vilA11b | C                                            |  |  |  |  |  |
| vilA12  |                                              |  |  |  |  |  |
| vilA13  |                                              |  |  |  |  |  |
| vilA14  |                                              |  |  |  |  |  |
| vilA15  |                                              |  |  |  |  |  |
| vilA16  |                                              |  |  |  |  |  |
| vilA17  |                                              |  |  |  |  |  |
| vilA18  |                                              |  |  |  |  |  |
| vilA19  |                                              |  |  |  |  |  |
| vilA20  | A.C                                          |  |  |  |  |  |
|         |                                              |  |  |  |  |  |
| vilA21  | T                                            |  |  |  |  |  |
| vilA22  |                                              |  |  |  |  |  |
| vilA24  |                                              |  |  |  |  |  |
| vilA24  |                                              |  |  |  |  |  |
| vilA25  | T                                            |  |  |  |  |  |
| vilA26  |                                              |  |  |  |  |  |
| vilA27  | T                                            |  |  |  |  |  |
| vilA28  |                                              |  |  |  |  |  |
| vilA29  |                                              |  |  |  |  |  |
| vilA30  | <del>-</del> C A                             |  |  |  |  |  |
| vilA31  |                                              |  |  |  |  |  |
| vilA32  |                                              |  |  |  |  |  |
| vilA33  |                                              |  |  |  |  |  |
| vilA34  | <del>-</del> G                               |  |  |  |  |  |
| vilB1a  | .A TT.C A GGA C CTTGT                        |  |  |  |  |  |
| vilB1b  | .A TT.C A GGA C CTTGT                        |  |  |  |  |  |
| vilB2   | .A T.TT.C A GGA C CTTGT                      |  |  |  |  |  |
| vilB3a  | .A T C A GGA C CTTGT                         |  |  |  |  |  |
| vilB3b  | .A T C A GGA C CTTGT                         |  |  |  |  |  |
| vilB4   | .A TT.C A G A C CTTGT                        |  |  |  |  |  |
| vilC1a  | .AT.TGC A.C.GC                               |  |  |  |  |  |
| vilC1b  | CAT.TGC A.C.GC                               |  |  |  |  |  |
| vilC2   | .AT.T C A.C.GCT C TTGT                       |  |  |  |  |  |
| vilC3a  | .AT.T C A.C.GC TTGT                          |  |  |  |  |  |
| vilC3b  | .AT.T C A.C.GC                               |  |  |  |  |  |
| vilC4   | .AT.T                                        |  |  |  |  |  |
| vilC5   | .AT.T CT.A.C.GC                              |  |  |  |  |  |
| vilC6   | .AT.T CT.A.C.GC CC TTGT                      |  |  |  |  |  |

Table S4. Haplotype diversity in various regions in Africa (Pires et al., 2006 and this study) and East Asia (Savolainen et al., 2002).

| Region                | # Samples | # Haplotypes | Area 10 <sup>3</sup> km <sup>2</sup> |
|-----------------------|-----------|--------------|--------------------------------------|
| Egypt                 | 42        | 18           | 1002                                 |
| NW Africa             | 29        | 15           | 163                                  |
| Uganda                | 148       | 23           | 241                                  |
| Namibia (north)       | 91        | 22           | 824                                  |
| Japan                 | 96        | 26           | 378                                  |
| Sichuan               | 48        | 11           | 485                                  |
| Tibet                 | 23        | 13           | 1230                                 |
| China (Non-specified) | 22        | 10           | 9598                                 |
| Shanxi                | 20        | 12           | 157                                  |
| Korea                 | 11        | 5            | 220                                  |
| Thailand              | 10        | 9            | 513                                  |
| Guangxi               | 8         | 6            | 237                                  |
| Indonesia             | 7         | 5            | 1905                                 |
| Liaoning              | 6         | 5            | 146                                  |
| Mongolia              | 2         | 2            | 1564                                 |
| Cambodia              | 2         | 2            | 181                                  |
| Anhui                 | 2         | 1            | 139                                  |
| New Guinea            | 1         | 1            | 463                                  |
| Philippines           | 1         | 1            | 300                                  |
| Vietnam               | 1         | 1            | 332                                  |

Table S5. Microsatellite markers used in this study (see Parker et al., 2004, 2007)

| VI# | Marker name | Chrom number | Dye label* | Annealing temp | MgCl <sub>2</sub> conc | Electrophoresis conditions <sup>†</sup> | Notes                 |
|-----|-------------|--------------|------------|----------------|------------------------|-----------------------------------------|-----------------------|
|     | REN285G14   | 1            | PET        | 55             | 2                      | 2ul,multiplexed                         |                       |
|     | C01.673     | 1            | VIC        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
|     | REN112I02   | 1            | PET        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
|     | REN172C02   | 1            | 6-FAM      | 55             | 2                      | 2 ul, multiplexed                       |                       |
|     | FH2793      | 1            | 6-FAM      | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
|     | REN143K19   | 1            | 6-FAM      | 55             | 2                      | 2 ul, multiplexed                       |                       |
|     | FH2890      | 2            | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
|     | C02.466     | 2            | NED        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
|     | C02.894     | 2            | PET        | 55             | 1.5                    | 2 ul, multiplexed                       |                       |
| 1   | FH2895      | 3            | PET        | 58             | 1.5                    | 2 ul, multiplexed                       | removed (missingness  |
| 2   | REN157C08   | 3            | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 3   | C03.445     | 3            | NED        | 55             | 1.5                    | 2 ul, multiplexed                       |                       |
| 4   | FH2732      | 4            | 6-FAM      | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 5   | FH2776      | 4            | VIC        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 6   | REN160J02   | 4            | PET        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 7   | REN262N08   | 4            | 6-FAM      | 55             | 2                      | 5–10 ul                                 |                       |
| 8   | REN92G21    | 5            | 6-FAM      | 55             | 1.5                    | 2 ul, multiplexed                       | removed (het deficit) |
| 9   | REN285I23   | 5            | PET        | 55             | 2                      | 2 ul, multiplexed                       | removed (net denet)   |
| 0   | C05.414     | 5            | PET        | 55             | 1.5                    | 2 ul, multiplexed                       |                       |
| 1   | FH2752      | 6            | 6-FAM      | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 2   | REN210I14   | 6            | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 23  |             | 6            | PET        | 58             | 1.5                    |                                         |                       |
| 24  | REN37H09    | 7            | 6-FAM      | 55             |                        | 2 ul, multiplexed                       |                       |
|     | REN97M11    |              |            |                | 2                      | 2 ul, multiplexed                       |                       |
| 5   | REN286L19   | 7            | VIC        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 26  | FH2860      | 7            | 6-FAM      | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 7   | REN204K13   | 8            | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 8   | C08.373     | 8            | VIC        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 9   | C08.618     | 8            | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 0   | C09.173     | 9            | NED        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 1   | C09.474     | 9            | 6-FAM      | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 2   | FH2885      | 9            | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 3   | C10.781     | 10           | 6-FAM      | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 4   | REN73F08    | 10           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 5   | REN154G10   | 10           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 86  | REN164B05   | 11           | PET        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 37  | FH2874      | 11           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 88  | C11.873     | 11           | VIC        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 10  | REN213F01   | 12           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 11  | REN208M20   | 12           | 6-FAM      | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 12  | REN94K11    | 12           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 14  | REN286P03   | 13           | PET        | 55             | 1.5                    | 2 ul, multiplexed                       |                       |
| 15  | C13.758     | 13           | 6-FAM      | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 16  | C14.866     | 14           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 17  | FH3072      | 14           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
|     |             | 15           |            | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 18  | FH3802      |              | PET        |                |                        |                                         |                       |
| 19  | REN06C11    | 15           | PET        | 55<br>50       | 1.5                    | 2 ul, multiplexed                       |                       |
| 0   | REN144M10   | 15           | 6-FAM      | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 1   | REN85N14    | 16           | 6-FAM      | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 2   | FH3096      | 16           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 3   | C17.402     | 17           | NED        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 4   | REN50B03    | 17           | PET        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 5   | REN112G10   | 17           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 6   | REN186N13   | 18           | VIC        | 55             | 1.5                    | 2 ul, multiplexed                       |                       |
| 7   | FH2795      | 18           | NED        | 55             | 1.5                    | 2 ul, multiplexed                       |                       |
| 8   | C18.460     | 18           | PET        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 9   | FH2783      | 19           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 0   | REN91114    | 19           | VIC        | 55             | 1.5                    | 2 ul, multiplexed                       |                       |
| 51  | REN274F18   | 19           | NED        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 2   | FH2887      | 20           | 6-FAM      | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 3   | FH3109      | 20           | PET        | 55             | 1.5                    | 2 ul, multiplexed                       |                       |
| 4   |             |              | VIC        |                | 1.5                    | 2 ul, multiplexed<br>2 ul, multiplexed  |                       |
|     | REN293N22   | 20           |            | 55<br>55       |                        |                                         |                       |
| 5   | FH2914      | 21           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 6   | FH3069      | 21           | NED        | 55             | 2                      | 2 ul, multiplexed                       | 17.1                  |
| 57  | REN49F22    | 22           | PET        | 55             | 2                      | 5–10 ul                                 | removed (missingness  |

| M#  | Marker name | Chrom number | Dye label* | Annealing temp | MgCl <sub>2</sub> conc | Electrophoresis conditions <sup>†</sup> | Notes                 |
|-----|-------------|--------------|------------|----------------|------------------------|-----------------------------------------|-----------------------|
| 68  | REN107H05   | 22           | NED        | 55             | 2                      | 2 ul, multiplexed                       | removed (het deficit) |
| 69  | REN78I16    | 22           | PET        | 55             | 1.5                    | 2 ul, multiplexed                       |                       |
| 70  | FH3078      | 23           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 71  | C23.277     | 23           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 72  | REN181K04   | 23           | NED        | 58             | 1.5                    | 2 ul, multiplexed                       | removed (het deficit) |
| 73  | REN106I06   | 24           | PET        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 74  | FH3083      | 24           | PET        | 55             | 2                      | 2 ul, multiplexed                       | removed (het deficit) |
| 75  | REN54E19    | 25           | 6-FAM      | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 77  | REN87O21    | 26           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 78  | C26.733     | 26           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 79  | C27.442     | 27           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 80  | C27.436     | 27           | NED        | 55             | 2                      | 2 ul, multiplexed                       | removed (het deficit) |
| 81  | REN72K15    | 27           | PET        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 82  | FH2759      | 28           | PET        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 83  | FH2785      | 28           | 6-FAM      | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 84  | REN239K24   | 29           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 85  | FH3082      | 29           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 86  | REN51C16    | 30           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 87  | FH3053      | 30           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 88  | REN43H24    | 31           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 89  | FH2712      | 31           | PET        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 90  | FH2875      | 32           | 6-FAM      | 55             | 2                      | 5–10 ul                                 |                       |
| 91  | FH2790      | 33           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 92  | REN291M20   | 33           | NED        | 58             | 1.5                    | 2 ul, multiplexed                       |                       |
| 93  | REN160M18   | 34           | PET        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 94  | FH3060      | 34           | 6-FAM      | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 95  | REN314H10   | 34           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 96  | REN01G01    | 35           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 97  | REN112C08   | 35           | PET        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 98  | REN106I07   | 36           | PET        | 55             | 2                      | 5–10 ul                                 |                       |
| 99  | FH2708      | 37           | VIC        | 55             | 2                      | 2 ul, multiplexed                       |                       |
| 100 | REN86G15    | 38           | NED        | 55             | 2                      | 2 ul, multiplexed                       |                       |

<sup>\*</sup>Fluorescent dye labeled primers are available through Applied Biosystems (ABI).

†Multiplexed markers were combined into groups of 2 to 4 different dyes colors post PCR.