

PROBLEME (10pt)

PARTIE A

Soit h la fonction dérivable sur \mathbb{R} définie par $h(x) = 1 + e^{2x-4}$ et $K = \left[1; \frac{5}{4}\right]$.

b Montrons que $h(K) \subset K$:

Comme h est croissante et $K = \left[1; \frac{5}{4}\right]$, on a :

$$h(K) = \left[h(1); h\left(\frac{5}{4}\right)\right]$$

Calculons:

$$h(1) = 1 + e^{2(1)-4} = 1 + e^{-2} \approx 1 + 0.1353 = 1.1353$$

$$h\left(\frac{5}{4}\right) = 1 + e^{2\cdot\frac{5}{4}-4} = 1 + e^{-1.5} \approx 1 + 0.2231 = 1.2231$$

Donc:

$$h(K) = [1,1353;1,2231] \subset \left[1; \frac{5}{4}\right]$$

Ainsi, $h(K) \subset K$. (0,5pt)

a Resoudre h(x)=x revient à resoudre h(x)-x=0On définit la fonction $\phi(x)=h(x)-x=1+e^{2x-4}-x$.

Existance

 $\phi \text{ est continue sur } K = \left[1; \frac{5}{4}\right].$

Calculons:

$$\phi(1) = 1 + e^{-2} - 1 = e^{-2} > 0$$
 ; $\phi\left(\frac{5}{4}\right) = 1 + e^{-1.5} - \frac{5}{4} \approx 1.2231 - 1.25 < 0$

Donc, $\phi(1)>0$ et $\phi\left(\frac{5}{4}\right)<0$, par le théorème des valeurs intermédiaires, il existe un $\lambda\in\left]1;\frac{5}{4}\right[$ tel que $\phi(\lambda)=0$, soit $h(\lambda)=\lambda$.

Unicité

$$\phi'(x) = h'(x) - 1 = 2e^{2x-4} - 1$$

Supposons que
$$\phi'(x) < 0$$

$$\phi'(x) < 0 \Longleftrightarrow 2e^{2x-4} - 1 < 0$$

$$\Longleftrightarrow e^{2x-4} < \frac{1}{2}$$

$$\Longleftrightarrow 2x - 4 < \ln\left(\frac{1}{2}\right)$$

$$\Longleftrightarrow 2x < 4 - \ln(2)$$

$$\Longleftrightarrow x < 2 - \frac{\ln(2)}{2}$$

$$\Longleftrightarrow x < 1, 7$$

Donc si $x \in]-\infty; 1, 7[$ alors $\phi'(x) < 0$

Comme
$$K = \left[1; \frac{5}{4}\right] \subset]-\infty; 1, 7[$$
 donc $\forall x \in K, \phi'(x) < 0$

Donc $\phi'(x) < 0$ sur K, donc ϕ est strictement décroissante sur K.

Or, une fonction continue et strictement monotone sur un intervalle admet **au plus une** racine. Comme on a déjà montré l'existence d'un λ , on en déduit que :

L'équation h(x) = x admet une **unique solution** $\lambda \in K$.

(0,5pt)

b On a :
$$h'(x) = 2e^{2x-4}$$

Encadrons $x \in K = \left[1; \frac{5}{4}\right]$:

$$x \in K \implies 1 \le x \le \frac{5}{4}$$

$$\implies 2 \le 2x \le \frac{5}{2}$$

$$\implies -2 \le 2x - 4 \le -\frac{3}{2}$$

$$\implies e^{-2} \le e^{2x-4} \le e^{-1.5}$$

$$\implies 2e^{-2} \le 2e^{2x-4} \le 2e^{-1.5}$$

$$\implies 0 \le 2e^{-2} \le 2e^{2x-4} \le 2e^{-1.5} \le \frac{1}{2}$$

$$\implies 0 \le 2e^{2x-4} \le \frac{1}{2}$$

Donc:
$$\forall x \in K, \quad 0 < h'(x) < \frac{1}{2}$$
 (0,25pt)

Soit $x \in K$, et $\lambda \in K$ l'unique solution de $h(\lambda) = \lambda$.

D'après l'inégalité des accroissements finis (ou le théorème de la moyenne) appliquée à h sur K, il existe $c \in [x; \lambda] \subset K$ tel que :

$$h(x) - h(\lambda) = h(x) - \lambda = h'(c)(x - \lambda)$$

Donc:

$$|h(x)-\lambda|=|h'(c)|\times |x-\lambda|\leq \frac{1}{2}|x-\lambda|$$

(0,25pt)

3 a Montrons par récurrence que $\forall n \in \mathbb{N}, W_n \in K$.

Initialisation:

On a $W_0=1\in K=\left[1;\frac{5}{4}\right]$. L'assertion est vraie au rang n=0.

Hérédité:

Supposons que pour un entier $n \in \mathbb{N}$, on ait $W_n \in K$.

Alors par définition :

$$W_{n+1} = h(W_n)$$

Or à la question 1.b), on a démontré que $h(K) \subset K$. Donc comme $W_n \in K$, on a $W_{n+1} \in h(K) \subset K$.

Conclusion:

Par le principe de récurrence, on a :

$$\forall n \in \mathbb{N}, \quad W_n \in K$$

(0,5pt)

b On veut montrer que :

$$|W_{n+1} - \lambda| \le \frac{1}{2}|W_n - \lambda|$$
 et $|W_n - \lambda| \le \left(\frac{1}{2}\right)^n$, $\forall n \in \mathbb{N}$

1) Inégalité de récurrence :

On sait que $W_{n+1} = h(W_n)$ et que λ est l'unique solution de $h(\lambda) = \lambda$.

D'après la question 2.c), on a pour tout $x \in K$:

$$|h(x) - \lambda| \le \frac{1}{2}|x - \lambda|$$

Or, à la question 3.a), on a montré que $\forall n, W_n \in K$. Donc :

$$|W_{n+1} - \lambda| = |h(W_n) - \lambda| \le \frac{1}{2}|W_n - \lambda|$$

2) Majoration par $\left(\frac{1}{2}\right)^n$ par récurrence :

On a $W_{n+1} = h(W_n)$ et $h(\lambda) = \lambda$.

D'après la question 2.c), pour tout $x \in K$, on a :

$$|h(x) - \lambda| \le \frac{1}{2}|x - \lambda|$$

Or, à la question 3.a), on a montré que $W_n \in K$ pour tout $n \in \mathbb{N}$, donc on peut appliquer cette inégalité à chaque itération :

$$\begin{aligned} |W_1 - \lambda| &\leq \frac{1}{2} |W_0 - \lambda| \\ |W_2 - \lambda| &\leq \frac{1}{2} |W_1 - \lambda| \\ |W_3 - \lambda| &\leq \frac{1}{2} |W_2 - \lambda| \\ &\vdots \\ |W_k - \lambda| &\leq \frac{1}{2} |W_{k-1} - \lambda| \end{aligned}$$

En multipliant ces inégalités **membre à membre**, on obtient :

$$|W_k - \lambda| \le \left(\frac{1}{2}\right)^k |W_0 - \lambda|$$

$$\forall k \in \mathbb{N}, \quad |W_k - \lambda| \le \left(\frac{1}{2}\right)^k$$

(0.5pt + 0.25pt)

c D'après la question précédente, on a :

$$|W_n - \lambda| \le \left(\frac{1}{2}\right)^n$$

$$|W_n-\lambda|\leq \left(\frac{1}{2}\right)$$
 Or $\left(\frac{1}{2}\right)^n\to 0$ quand $n\to +\infty$, done :

$$|W_n - \lambda| \to 0$$
 ce qui équivaut à $W_n \to \lambda$ quand $n \to +\infty$

Ainsi, la suite (W_n) **converge vers le réel λ **, qui est l'unique solution de l'équation h(x)=xdans l'intervalle K. (0,25pt)

PARTIE B

Soit f la fonction définie par :

$$f(x) = \begin{cases} \ln\left(\left|\frac{x-1}{x+1}\right|\right) & \text{si } x \in [0; +\infty[\\ x - \frac{e^x - 1}{e^x + 1}\right) & \text{si } x \in]-\infty; 0[\end{cases}$$

Déterminons le domaine de définition D_f de f.

Sur $[0; +\infty[$: on considère l'expression

$$f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right)$$

Cette expression est définie si :

- $x + 1 \neq 0 \Rightarrow x \neq -1$ (toujours vrai car $x \geq 0$)
- $\left| \frac{x-1}{x+1} \right| > 0 \Rightarrow \frac{x-1}{x+1} \neq 0 \Rightarrow x \neq 1$

Donc sur $[0; +\infty[$, la fonction est définie sauf en x=1.

Sur $]-\infty;0[$: on considère

$$f(x) = x - \frac{e^x - 1}{e^x + 1}$$

Cette expression est définie pour tout $x \in \mathbb{R}$, car le dénominateur $e^x + 1 > 0$ pour tout x.

Donc la fonction f est définie sur :

$$D_f =]-\infty; 1[\cup]1; +\infty[$$

(0,5pt)

 \bigcirc Étudions la continuité de f en 0.

La fonction f est définie par morceaux :

$$f(x) = \begin{cases} \ln\left(\left|\frac{x-1}{x+1}\right|\right) & \text{si } x \in [0; +\infty[\\ x - \frac{e^x - 1}{e^x + 1} & \text{si } x \in] - \infty; 0[\end{cases}$$

A-t-on
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x) = f(0)$$
 ?

Limite à gauche (vers 0^-):

Pour x < 0,

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} x - \frac{e^{x} - 1}{e^{x} + 1}$$
$$= 0 - \frac{1 - 1}{1 + 1}$$
$$= 0$$

$$\lim_{\mathbf{x}\to\mathbf{0}^-}\mathbf{f}(\mathbf{x})=\mathbf{0}$$

Limite à droite (vers 0^+):

Pour x > 0,

$$\lim_{x \to 0^{+}} f(x) = \ln \left(\left| \frac{x - 1}{x + 1} \right| \right)$$

$$= \ln \left(\left| \frac{-1}{1} \right| \right)$$

$$= \ln(1)$$

$$= 0$$

$$\lim_{\mathbf{x} \to \mathbf{0}^+} \mathbf{f}(\mathbf{x}) = \mathbf{0}$$

Conclusion:

La limite de f(x) en 0 existe et vaut 0.

De plus,
$$f(0) = \ln\left(\left|\frac{0-1}{0+1}\right|\right) = \ln(1) = 0$$

$$\mathbf{Donc}: \lim_{\mathbf{x} \to \mathbf{0}^-} \mathbf{f}(\mathbf{x}) = \lim_{\mathbf{x} \to \mathbf{0}^+} \mathbf{f}(\mathbf{x}) = \mathbf{f}(\mathbf{0}) \Rightarrow \mathbf{f} \text{ est continue en } \mathbf{0}$$

On a : x < 1, donc x - 1 < 0, donc : |x - 1| = -(x - 1) = 1 - x

De plus, dans ce cas x > 0, donc $f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right)$.

On remplace |x-1| par 1-x, et on obtient : $f(x) = \ln\left(\frac{1-x}{x+1}\right)$

Or, on sait que : $\ln\left(\frac{1-x}{1+x}\right) = \ln(1-x) - \ln(1+x)$

Donc: $f(x) = \ln(1-x) - \ln(1+x) \Rightarrow \frac{f(x)}{x} = \frac{\ln(1-x)}{x} - \frac{\ln(1+x)}{x}$ (0,5pt)

b Étudions la dérivabilité de f en 0.

On cherche la limite du taux d'accroissement : $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$ avec f(0)=0 (voir question 2)

À gauche (
$$x \rightarrow 0^-$$
) :

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{f(x)}{x}$$

$$= \lim_{x \to 0^{-}} \frac{x - \frac{e^{x} - 1}{e^{x} + 1}}{x}$$

$$= \lim_{x \to 0^{-}} 1 - \frac{e^{x} - 1}{x} \times \frac{1}{e^{x} + 1}$$

$$= 1 - 1 \times \frac{1}{2}$$

$$= \frac{1}{2}$$

$$\lim_{\mathbf{x}\to\mathbf{0}^{-}}\frac{\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{0})}{\mathbf{x}-\mathbf{0}}=\frac{1}{2}$$

À droite ($x \to 0^+$):

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{f(x)}{x}$$

$$= \lim_{x \to 0^{+}} \frac{\ln(1 - x)}{x} - \frac{\ln(1 + x)}{x}$$

$$= -1 - 1$$

$$= -2$$

$$\lim_{\mathbf{x} \to \mathbf{0}^+} \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{0})}{\mathbf{x} - \mathbf{0}} = -2$$

Conclusion:

$$\lim_{\mathbf{x}\to \mathbf{0}^+}\frac{\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{0})}{\mathbf{x}-\mathbf{0}}=-\mathbf{2} \text{ et } \lim_{\mathbf{x}\to \mathbf{0}^-}\frac{\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{0})}{\mathbf{x}-\mathbf{0}}=\frac{1}{2}$$

Donc la fonction f **n'est pas dérivable** en 0.

(0,5pt)

c Les tangentes en 0:

À gauche de 0 :

La pente de la demi-tangente est $\frac{1}{2}$, donc l'équation de la tangente gauche est :

$$y = \frac{1}{2}x$$

À droite de 0 :

La pente de la demi-tangente est -2, donc l'équation de la tangente droite est :

$$y = -2x$$

$$y = \frac{1}{2}x$$
 et $y = -2x$ (0,5pt)

4 Montrons que $\forall x \in]-\infty; 0[, f(x) = x - \frac{e^x - 1}{e^x + 1} = x + 1 - \frac{2e^x}{e^x + 1}]$

Démonstration:

$$x+1 - \frac{2e^x}{e^x + 1} = \frac{(x+1)(e^x + 1) - 2e^x}{e^x + 1}$$
$$= \frac{xe^x + x + e^x + 1 - 2e^x}{e^x + 1}$$

Partons du membre de droite :

$$= \frac{xe^{x} + x - e^{x} + 1}{e^{x} + 1}$$

$$= \frac{x(e^{x} + 1)}{e^{x} + 1} + \frac{-e^{x} + 1}{e^{x} + 1}$$

$$= x + \frac{-e^{x} + 1}{e^{x} + 1}$$

$$= x - \frac{e^{x} - 1}{e^{x} + 1} \mathbf{CQFD}$$

(0,25pt)

 $\mathbf{5}$ Calculons les limites de f aux bornes des intervalles de son domaine de définition. (0,5pt)

À gauche de 1 : $x \to 1^-$

Sur [0; 1[, on a :
$$f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right) = \ln\left(\frac{1-x}{x+1}\right)$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \ln \left(\frac{1 - x}{x + 1} \right)$$
$$= \ln(0^{+})$$
$$= -\infty$$

$$\lim_{x \to 1^{-}} f(x) = -\infty$$

À droite de 1 : $x \to 1^+$

Sur]1;
$$+\infty$$
[, même expression : $f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right)$

$$\lim_{x \to 1^+} f(x) = \ln \left(\frac{x-1}{x+1} \right)$$
$$= \ln(0^+)$$
$$= -\infty$$

$$\lim_{x \to 1^+} f(x) = -\infty$$

À gauche de $0: x \to -\infty$

Sur
$$]-\infty;0[$$
, on a $f(x)=x-\frac{e^x-1}{e^x+1}.$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x - \frac{e^x - 1}{e^x + 1}$$
$$= -\infty - \frac{-1}{1}$$
$$= -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

A droite de $0: x \to +\infty$

Sur]1;
$$+\infty$$
[, $f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right)$.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \ln \left(\left| \frac{x-1}{x+1} \right| \right)$$
$$= \ln(1)$$
$$= 0$$

$$\lim_{x \to +\infty} f(x) = 0$$

6 En déduire les équations des asymptotes à la courbe \mathscr{C}_f de f.

(0,25pt)

Asymptote verticale:

D'après la question précédente, on a :

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} f(x) = -\infty$$

Donc la droite x = 1 est une **asymptote verticale** à la courbe \mathscr{C}_f .

Asymptote horizontale:

On a également :

$$\lim_{x \to +\infty} f(x) = 0$$

Donc la droite y=0 est une **asymptote horizontale** à droite de la courbe \mathscr{C}_f .

Il y a une éventuelle branche parabolique Comme $\lim_{x \to -\infty} f(x) = +\infty$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x - \frac{e^x - 1}{e^x + 1}}{x} = \lim_{x \to -\infty} 1 - \frac{e^x - 1}{(e^x + 1)x} = 1$$

$$\lim_{x \to -\infty} \frac{f(x)}{x} - x = \lim_{x \to -\infty} x - \frac{e^x - 1}{e^x + 1} - x = \lim_{x \to -\infty} -\frac{e^x - 1}{e^x + 1} = 1$$

$$y = x + 1 \text{ est } AO \text{ en } -\infty$$

Asymptotes de \mathscr{C}_f : x=1 et y=0 et y=x+1 est AO en $-\infty$

7 Calculer f'(x) pour tout $x \in \mathbb{R} \setminus \{0, 1\}$.

(0,5pt)

Sur $]0;1[\cup]1;+\infty[:$

Pour x > 0, on a:

$$f(x) = \ln\left(\left|\frac{x-1}{x+1}\right|\right) = \ln\left(\frac{x-1}{x+1}\right) \quad \operatorname{car}\frac{x-1}{x+1} > 0$$

$$f'(x) = \frac{1}{x+1} - \frac{1}{x-1} \implies f'(x) = \frac{2}{(x+1)(x-1)}$$

Sur $]-\infty;0[$:

Pour x < 0, on a:

$$f(x) = x - \frac{e^x - 1}{e^x + 1}$$
 ou encore $f(x) = x + 1 - \frac{2e^x}{e^x + 1}$

$$f'(x) = 1 - \frac{2e^x(e^x + 1) - (e^x)(2e^x)}{(e^x + 1)^2} = 1 - \frac{2e^x(e^x + 1 - e^x)}{(e^x + 1)^2} = 1 - \frac{2e^x}{(e^x + 1)^2}$$

Donc:

$$f'(x) = 1 - \frac{2e^x}{(e^x + 1)^2}$$

$$f'(x) = \begin{cases} \frac{2}{(x+1)(x-1)} & \text{si } x \in]0; 1[\cup]1; +\infty[\\ 1 - \frac{2e^x}{(e^x+1)^2} & \text{si } x \in]-\infty; 0[\end{cases}$$

8 Étudier les variations de f.

(0,5pt)

On rappelle que le domaine de définition de f est :

$$D_f =]-\infty; 1[\cup]1; +\infty[$$

Sur $]-\infty;0[:$

On a montré précédemment :

$$f'(x) = 1 - \frac{2e^x}{(e^x + 1)^2}$$

$$= \frac{(e^x + 1)^2 - 2e^x}{(e^x + 1)^2}$$

$$= \frac{e^{2x} + 2e^x + 1 - 2e^x}{(e^x + 1)^2}$$

$$= \frac{e^{2x} + 1}{(e^x + 1)^2} > 0$$

 $f'(x) > 0 \text{ sur }] - \infty; 0[\Rightarrow f \text{ est strictement croissante sur }] - \infty; 0[$

Sur $]0;1[\cup]1;+\infty[:$

On a:

$$f'(x) = \frac{2}{(x+1)(x-1)}$$

Le signe de f'(x) dépend du signe de (x+1)(x-1).

x	$-\infty$	-1	0		1		$+\infty$
x + 1		0		+		+	
x-1				_	0	+	
(x+1)(x-1)				_	0	+	

- Sur]0; 1[, on a (x + 1)(x 1) < 0 donc f'(x) < 0: f est décroissante sur]0; 1[
- Sur $]1; +\infty[, (x+1)(x-1) > 0 \text{ donc } f'(x) > 0 : f \text{ est croissante sur }]1; +\infty[$

x	$-\infty$	0]	$+\infty$
f'	-	+ 0	_	+
f	/	0	/	0
	$-\infty$		$-\infty$	$-\infty$

Clique ici pour voir la figure sur géogébra

PARTIE C

Soit g la restriction de la fonction f à l'intervalle $I =]1; +\infty[$.

1 Montrons que g réalise une bijection de I vers un intervalle J.

On a vu que sur $]1;+\infty[$, la fonction f est définie et strictement croissante.

Or une fonction continue et strictement monotone est bijective de son domaine d'étude sur son image.

Donc, $g: I \to J$ est une bijection.

$$J=]-\infty;0[$$

(0,5pt)

2 Soit $y \in J =]-\infty; 0[$. On cherche l'expression de $g^{-1}(y)$.

Par définition:

$$y = g(x) = \ln\left(\frac{x-1}{x+1}\right)$$
 avec $x \in]1; +\infty[$

Posons $y = \ln\left(\frac{x-1}{x+1}\right)$. Exponentions :

$$e^y = \frac{x-1}{x+1}$$

On résout cette équation pour x:

$$e^{y}(x+1) = x - 1 \implies e^{y}x + e^{y} = x - 1$$

 $e^{y}x - x = -1 - e^{y} \implies x(e^{y} - 1) = -1 - e^{y}$
 $x = \frac{-1 - e^{y}}{e^{y} - 1} = \frac{-(1 + e^{y})}{e^{y} - 1} = 1 - \frac{2e^{y}}{e^{y} - 1}$

Donc:

$$g^{-1}(y) = 1 - \frac{2e^y}{e^y - 1}$$
 soit $g^{-1}(x) = 1 - \frac{2e^x}{e^x - 1}$

(0,25pt)

3 Pour tracer la courbe $C_{g^{-1}}$, on peut exploiter la symétrie par rapport à la droite y = x, puisque g^{-1} est la bijection réciproque de g.

On pourra donc obtenir $C_{q^{-1}}$ en prenant les points symétriques de ceux de C_q par rapport à la droite y=x.

Elle est définie sur $J =]-\infty;0[$ et a pour équation :

Clique ici pour voir la figure sur géogébra

Exercice 2 06 points

Dans le plan complexe rapporté à un repère orthonormé $(O; \vec{u}, \vec{v})$ d'unité graphique 1 cm, on considère les points A_0, A_1, A_2 d'affixe respective $z_0 = 5 - 4i, z_1 = -1 - 4i, z_2 = -4 - i$.

Soit f la fonction qui, à tout point M(z), associe le point $M^{\prime}(z^{\prime})$, tel que :

$$z' = \frac{1-i}{2}z + \frac{-3+i}{2}$$

1 a Trouvons l'affixe b du point B invariant par f. (0,5pt)

Soit $b \in \mathbb{C}$ tel que f(b) = b. On résout donc :

$$b = \frac{1-i}{2}b + \frac{-3+i}{2} \implies b - \frac{1-i}{2}b = \frac{-3+i}{2}$$

$$\implies b\left(1 - \frac{1-i}{2}\right) = \frac{-3+i}{2}$$

$$\implies b\left(\frac{2-(1-i)}{2}\right) = \frac{1+i}{2}$$

$$\implies \frac{1+i}{2}b = \frac{-3+i}{2}$$

$$\implies b = \frac{-3+i}{1+i}$$

$$\implies b = \frac{(-3+i)(1-i)}{(1+i)(1-i)}$$

$$\implies b = \frac{-3(1-i)+i(1-i)}{1^2+1^2}$$

$$\implies b = \frac{-3+3i+i-i^2}{2}$$

$$\implies b = \frac{-3+4i+1}{2}$$

$$\implies b = \frac{-2+4i}{2}$$

$$\implies b = -1+2i$$

$$b = -1 + 2i$$

b Établir la relation
$$b - z' = i(z - z')$$

(0,5pt)

On a:
$$z' = \frac{1-i}{2}z + \frac{-3+i}{2}$$
, et $b = -1+2i$

Calculons b - z':

$$b - z' = (-1 + 2i) - \left[\frac{1 - i}{2}z + \frac{-3 + i}{2}\right]$$

$$= -1 + 2i - \frac{1 - i}{2}z - \frac{-3 + i}{2}$$

$$= -1 + 2i + \frac{3 - i}{2} - \frac{1 - i}{2}z$$

$$= \frac{1}{2} + \frac{3i}{2} - \frac{1 - i}{2}z$$

$$= \frac{1 + 3i}{2} - \frac{1 - i}{2}z$$

Calculons maintenant i(z - z'):

$$\begin{split} i(z-z') &= i \left[z - \left(\frac{1-i}{2}z + \frac{-3+i}{2} \right) \right] \\ &= i \left[z - \frac{1-i}{2}z - \frac{-3+i}{2} \right] \\ &= i \left[\left(1 - \frac{1-i}{2} \right)z + \frac{3-i}{2} \right] \\ &= i \left[\frac{1+i}{2}z + \frac{3-i}{2} \right] \\ &= i \cdot \frac{1+i}{2}z + i \cdot \frac{3-i}{2} \\ &= \frac{i(1+i)}{2}z + \frac{i(3-i)}{2} \\ &= \frac{-1+i}{2}z + \frac{1+3i}{2} \\ &= \frac{1+3i}{2} - \frac{1-i}{2}z \end{split}$$

$$\text{Donc}: \boxed{b-z' = i(z-z')}$$

Autre raisonnment concis et astucieux

$$b - z' = (-1 + 2i) - \left[\frac{1 - i}{2}z + \frac{-3 + i}{2}\right]$$

$$= i \left[i + 2 - \frac{-i - 1}{2}z - \frac{3i + 1}{2}\right]$$

$$= i \left[\left(i + 2 - \frac{3i + 1}{2}\right) - \frac{-i - 1}{2}z\right]$$

$$= i \left[\frac{2i + 4 - 3i - 1}{2} + \frac{1 + i}{2}z\right]$$

$$= i \left[\frac{-i + 3}{2} + \frac{1 + i}{2}z\right]$$

$$= i \left(\frac{1 + i}{2}z + \frac{3 - i}{2}\right)$$

$$\mathbf{or} \ z - z' = z - \left[\frac{1 - i}{2}z + \frac{-3 + i}{2}\right] = z + \frac{-1 + i}{2}z + \frac{3 - i}{2} = \frac{1 + i}{2}z + \frac{3 - i}{2}$$

$$= i(z - z')$$

Interprétation géométrique :

$$b - z' = i(z - z') \implies \overrightarrow{BM'} = i.\overrightarrow{MM'}$$

Multiplier un vecteur complexe par i, c'est effectuer une rotation d'angle $\frac{\pi}{2}$ dans le sens direct. Donc le triangle BMM' est **rectangle en M'** (et orienté dans le sens direct). (0,5pt)

Le triangle BMM' est rectangle en M'

- Pour tout $n \in \mathbb{N}$, le point A_{n+1} est défini par la relation $A_{n+1} = f(A_n)$ et on pose $u_n = A_n A_{n+1}$.
 - (0.25pt + 0.25pt + 0.25pt + 0.25pt)Calculer les affixes des points A_3 , A_4 , A_5 et A_6 .

On a:
$$f(z) = \frac{1-i}{2}z + \frac{-3+i}{2}$$
 donc $f(A_n) = \frac{1-i}{2}A_n + \frac{-3+i}{2}$

$$\begin{split} z_{n+1} &= \frac{1-i}{2}z_n + \frac{-3+i}{2} \\ \text{D'où } A_{n+1} &= \frac{1-i}{2}A_n + \frac{-3+i}{2} \\ \text{On connaît : } z_0 &= 5-4i, \quad z_1 = -1-4i, \quad z_2 = -4-i \\ \text{Calculs successifs : } \\ z_3 &= f(z_2) = \frac{1-i}{2}(-4-i) + \frac{-3+i}{2} \\ &= \frac{(1-i)(-4-i)}{2} + \frac{-3+i}{2} \\ &= \frac{-4+4i-i+i^2}{2} + \frac{-3+i}{2} \\ &= \frac{-5+3i}{2} + \frac{-3+i}{2} \\ &= \frac{-8+4i}{2} \\ &= -4+2i \\ z_4 &= f(z_3) = \frac{1-i}{2}(-4+2i) + \frac{-3+i}{2} \\ &= \frac{(1-i)(-4+2i)}{2} + \frac{-3+i}{2} \\ &= \frac{-4+6i+2}{2} + \frac{-3+i}{2} \\ &= \frac{-2+6i}{2} + \frac{-3+i}{2} \\ &= \frac{-5+7i}{2} \\ z_5 &= f(z_4) = \frac{1-i}{2}\left(\frac{-5+7i}{2}\right) + \frac{-3+i}{2} \\ &= \frac{-5+7i+5i-7i^2}{4} + \frac{-3+i}{2} \\ &= \frac{-5+12i+7}{4} + \frac{-3+i}{2} \\ &= \frac{2+12i}{4} + \frac{-6+2i}{4} \\ &= \frac{-4+14i}{4} \\ &= \frac{-2+7i}{2} \end{split}$$

$$z_{6} = f(z_{5}) = \frac{1-i}{2} \left(\frac{-2+7i}{2}\right) + \frac{-3+i}{2}$$

$$= \frac{(1-i)(-2+7i)}{4} + \frac{-3+i}{2}$$

$$= \frac{-2+7i+2i-7i^{2}}{4} + \frac{-3+i}{2}$$

$$= \frac{-2+9i+7}{4} + \frac{-3+i}{2} \quad (\text{car } i^{2} = -1)$$

$$= \frac{5+9i}{4} + \frac{-6+2i}{4}$$

$$= \frac{-1+11i}{4}$$

$$z_{3} = -4 + 2i$$

$$z_{4} = \frac{-5 + 7i}{2}$$

$$z_{5} = \frac{-2 + 7i}{2}$$

$$z_{6} = \frac{-1 + 11i}{4}$$

b Representation des points

Voir les points sur Géo

c Démontrons que la suite (u_n) n'est pas géométrique.

(0,5pt)

On rappelle que $u_n = A_n A_{n+1} = |z_{n+1} - z_n|$. Calculons les premiers termes :

On a :
$$z_{n+1} = \frac{1-i}{2}z_n + \frac{-3+i}{2}$$
 donc $z_{n+2} = \frac{1-i}{2}z_{n+1} + \frac{-3+i}{2}$

$$\begin{split} \frac{u_{n+1}}{u_n} &= \frac{|z_{n+2} - z_{n+1}|}{|z_{n+1} - z_n|} \\ &= \frac{|z_{n+2} - z_{n+1}|}{|z_{n+1} - z_n|} \\ &= \frac{\left|\frac{1-i}{2}z_{n+1} + \frac{-3+i}{2} - \left(\frac{1-i}{2}z_n + \frac{-3+i}{2}\right)\right|}{|z_{n+1} - z_n|} \\ &= \frac{\left|\frac{1-i}{2}z_{n+1} + \frac{-3+i}{2} - \frac{1-i}{2}z_n - \frac{-3+i}{2}\right|}{|z_{n+1} - z_n|} \\ &= \frac{\left|\frac{1-i}{2}z_{n+1} - \frac{1-i}{2}z_n\right|}{|z_{n+1} - z_n|} \\ &= \left|\frac{1-i}{2}\right| \frac{|z_{n+1} - z_n|}{|z_{n+1} - z_n|} \\ &= \left|\frac{1-i}{2}\right| \\ &= \frac{\sqrt{2}}{2} \\ u_0 &= |z_1 - z_0| \\ &= |-1 - 4i - (5 - 4i)| \\ &= |-1 - 5| \\ &= |-6| = 6 \end{split}$$

$$\boxed{u_0 = 6}$$

La suite (u_n) est géométrique de raison $\frac{\sqrt{2}}{2}$

- 3 Soit (v_n) la suite définie sur \mathbb{N} par :
 - a Exprimons v_n en fonction de n.

(0,5pt)

$$v_n = u_0 + u_1 + u_2 + \dots + u_n = \sum_{k=0}^n u_k.$$

$$v_{n} = u_{0} + u_{1} + u_{2} + \dots + u_{n}$$

$$= u_{p} \times \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^{n-p+1}}{1 - q}$$

$$= u_{0} \times \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}}{1 - \left(\frac{\sqrt{2}}{2}\right)}$$

$$= 6 \times \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}}{1 - \left(\frac{\sqrt{2}}{2}\right)}$$

$$= 6 \times \frac{1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}}{\frac{2 - \sqrt{2}}{2}}$$

$$= 6 \times \frac{2}{2 - \sqrt{2}} \left(1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right)$$

$$= \frac{12}{2 - \sqrt{2}} \left(1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right)$$

$$= \frac{12(2 + \sqrt{2})}{(2 - \sqrt{2})(2 + \sqrt{2})} \left(1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right)$$

$$= \frac{12(2 + \sqrt{2})}{4 - 2} \left(1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right)$$

$$= \frac{12(2 + \sqrt{2})}{2} \left(1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right)$$

$$= \frac{12(2 + \sqrt{2})}{2} \left(1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right)$$

$$= 6(2 + \sqrt{2}) \left(1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right)$$

$$v_n = 6(2 + \sqrt{2}) \left(1 - \left(\frac{\sqrt{2}}{2}\right)^{n+1}\right)$$

b La Convergente de (v_n) (0,5pt)

On a : $v_n = 6(2 + \sqrt{2}) \left(1 - \left(\frac{\sqrt{2}}{2} \right)^{n+1} \right)$

$$\lim_{x \to +\infty} v_n = \lim_{x \to +\infty} 6(2 + \sqrt{2}) \left(1 - \left(\frac{\sqrt{2}}{2} \right)^{n+1} \right)$$
$$= \lim_{x \to +\infty} 6(2 + \sqrt{2}) (1 - 0)$$
$$= \lim_{x \to +\infty} 6(2 + \sqrt{2})$$

$$(v_n)$$
 est convergente et $\lim_{n\to+\infty} v_n = 6(2+\sqrt{2})$

4 a Calculons en fonction de n le rayon r_n du cercle circonscrit au triangle BA_nA_{n+1} . (0,5pt)

On a :
$$\begin{cases} z' = \frac{1-i}{2}z + \frac{-3+i}{2} \\ A_{n+1} = \frac{1-i}{2}A_n + \frac{-3+i}{2} \\ (b-z') = i(z-z') \end{cases}$$

En considérant la question 1.b où BMM'est un triangle rectangle en M'.

Par analogie

 $(b-z')=i(z-z') \implies \overrightarrow{BA_{n+1}}=i\cdot \overrightarrow{A_nA_{n+1}}$ donc BA_nA_{n+1} est un trinagle rectangle en A_{n+1} Or, dans un triangle rectangle, le **rayon du cercle circonscrit** est égal à la moitié de l'hypoténuse.

Ici, l'hypoténuse est le segment $[BA_n]$, donc : $r_n = \frac{1}{2} \times |BA_n|$

Calculons $|BA_n|$. On sait que A_n est défini par récurrence :

$$z_n = A_n$$
 et $z_B = b = -1 + 2i$ \Rightarrow $|BA_n| = |z_n - b|$