Assignment 3

Evan Curry Wilbur

March 16, 2023

5.01

Compute 1+1+1+1+1 in the finite field \mathbb{F}_2 .

Solution.

$$1+1+1+1+1=1$$
.

5.02

Compute

$$\underbrace{1+1+1+\cdots+1}_{107}$$

in the finite field \mathbb{F}_2 .

Solution.

$$\underbrace{1 + 1 + 1 + \dots + 1}_{107} = 1.$$

5.03

Compute $(1 + x + x^2)^4$ as a polynomial with coefficients in \mathbb{F}_2 .

Solution

Using the Freshman's dream theorem, we are actually allowed to distribute the exponent across the addition so

$$(1+x+x^2)^4 = 1^4 + x^4 + (x^2)^4$$
$$= 1+x^2+x^8$$

5.04

Compute the product $(x^4 + x^3 + x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)$ in the collection of polynomials with coefficients in \mathbb{F}_2 .

Solution.

Worked this out on paper. Hopefully you can trust I did the algebra correctly since I'm too lazy to type up all the steps:

$$x^{12} + 2x^{11} + 2x^{10} + 3x^9 + 6x^8 + 6x^7 + 5x^6 + 6x^5 + 6x^4 + 3x^3 + 2x^2 + 2x + 1$$

5.05

Let $g(x) = x^3 + x + 1$ be a generating polynomial for a CRC. Figure out how to be a little clever in computing the CRC for the bytes

111000110101000110011110

so that you don't fill up a whole sheet of paper with an enormously long division.

Solution.

5.08

Verify that the CRC with generating polynomial $1 + x^2 + x^3 + x^4$ fails to detect two-bit errors that are a multiple of 7 bits apart.

Solution.

6.01

Factor the integers 1028 and 2057 into primes.

Solution.

$$1028 = 2^2 \times 257$$

$$2057 = 11^2 \times 17.$$

6.03

Find the reduction mod 88 of -1000.

Solution.

 $-1000 \cong 56 \mod 88$.

6.07

Prove in general that if r is the reduction of $N \mod m$, and if $r \neq 0$, then m-r is the reduction of $-N \mod m$.

Solution.

Let $r \cong N \mod m$ where 0 < r < m. So there exists a $q \in \mathbb{Z}$ such that N = qm + r. Then

$$\begin{split} N = qm + r \Rightarrow -N &= -qm - r \\ &= -qm - r + m - m \\ &= -(q+1)m + (m-r). \end{split}$$

Since 0 < r < m it follows that 0 < m - r. Furthermore, r > 0 hence m - r < m. Therefore, 0 < m - r < m and so m - r is the reduction of -N modulo m.

6.22

Show that for any integer n, the integers n and $n^2 + 1$ are relatively prime. Solution.

.......

6.37

Find gcd(1112, 1544) and express it in the form 1112x + 1544y for some integers x and y by hand computation.

Solution.

content...

6.49

Compute and reduce modulo the indicated modulus: $110 \times 124 \mod 3$ and also $12 + 1234567890 \mod 10$.

Solution.

content...

6.50

Compute $2^{1000}\%11$

Solution.

$$2^{10} \cong 1 \mod 11$$
 $(2^{10})^{100} \cong 1^{100} \mod 11$
 $2^{1000} \cong 1 \mod 11$

6.57

From the definition, find $\varphi(36), \varphi(18)$, and $\varphi(28)$.

Solution.

$$\varphi(36) = 12$$
$$\varphi(18) = 6$$
$$\varphi(28) = 12$$

6.52

????? Check with trevor that this is the correct problem. Waiting for reply

Solution.

content... \Box

6.80

Show that $x^2 - y^2 = 102$ has no solution in the integers.

Solution.

content... \Box

6.81

Show that $x^3 + y^3 = 3$ has no solution in the integers.

Solution.

content...

8.17 Show that $123456789123456789 + 234567891234567891 \neq 358025680358025680$ Solution. content... $\hfill \Box$