

Taller 1b - Manejo de Threads

El propósito de este taller es entender la forma como se manejan los threads para implementar aplicaciones concurrentes en Java, e identificar la necesidad sincronización para controlar el acceso concurrente a variables compartidas. El taller tiene dos partes. En la primera parte se va a incrementar un contador un número determinado de veces utilizando dos programas: monothread y multithread. En la segunda parte se seleccionará el mayor de los elementos de una matriz de enteros iniciada al azar.

Parte 1: Incremento de un contador

Ejemplo 1: Aplicación monothread para el incremento de un contador

El ejemplo a continuación muestra cómo manipular un contador en una aplicación monothread. El ejemplo consiste en llamar 1000 veces un método que incrementa 10000 veces un contador. Este programa es realizado utilizando únicamente el thread principal de la aplicación.

```
1 public class ContadorMonoThread{
       private int contador = 0;
 3
 40
       public void incrementar() {
 5
           for (int i = 0; i < 10000; i++) {
 6
               contador++;
 7
           }
 8
       }
 9
109
       public int getContador () {
11
           return contador;
12
       }
13
149
       public static void main(String[] args) {
15
           ContadorMonoThread c = new ContadorMonoThread();
16
17
           for (int i = 0; i < 1000; i++) {
18
               c.incrementar();
19
           }
20
21
           System.out.println(c.getContador());
22
       }
23 }
```

Responda:

1. ¿Al ejecutar el programa, el resultado corresponde al valor esperado?

```
Si corresponde al valor esperado de 1,000 * 10,000 = 10,000,000
```

Ejemplo 2: Aplicación multithread para el incremento de un contador

El ejemplo a continuación muestra un ejemplo de una aplicación multithread para la manipulación de un contador. El ejemplo consiste en crear 1000 threads que al ejecutarse, incremente 10000 veces un contador.

```
1 // Esta clase extiende de la clase Thread
 2 public class ContadorThreads extends Thread {
       // Variable de la clase. Todos los objetos de esta clase ven esta variable.
       private static int contador = 0;
 5
 6
       // Este método se ejecuta al llamar el método start().
 7
       // Cada thread incrementa 10 mil veces el valor del contador.
       public void run() {
80
           for (int i = 0; i < 10000; i++) {
9
10
               contador++;
           }
11
       }
12
13
       public static void main(String[] args) {
149
15
           // Se crea un array mil de threads
           ContadorThreads[] t = new ContadorThreads[1000];
16
17
           // Se crean e inician los mil threads del array.
18
19
           for (int i = 0; i < t.length; i++) {
20
               t[i] = new ContadorThreads();
21
               t[i].start();
22
           }
23
24
           System.out.println(contador);
25
       }
26 }
```

Responda:

2. ¿Al ejecutar el programa, el resultado corresponde al valor esperado? Explique.

```
No, ya que arroja un valor del contador menor a 10,000,000 (este cambia cada vez que se corre el programa).
```

3. Ejecute cinco veces el programa y escriba el resultado obtenido en cada ejecución.

Ejecución	Valor obtenido
1	9,093,606
2	8,848,053
3	9,094,813
4	9,152,867
5	9,100,589

4. ¿Hay acceso concurrente a alguna variable compartida? Si es así, diga en dónde.

Si hay acceso compartido por todos los threads a una variable, el contador que es static.

Parte 2: Elemento mayor en una matriz de enteros

Ejemplo 3: Aplicación multithread para encontrar el elemento mayor de una matriz de enteros

El ejemplo a continuación muestra cómo utilizar threads para que de manera concurrente se pueda encontrar el mayor de los elementos de una matriz de enteros.

```
//Generar la matriz con números aleatorios
public static void crearMatriz() {
   for (int i = 0; i < DIM; i++) {
       for(int j = 0; j < DIM; j++) {
           matriz[i][j] = ThreadLocalRandom.current().nextInt(0, INT_MAX);
       }
   }
   //Imprimir la matriz
   System.out.println("Matriz:");
   System.out.println("=======");
    imprimirMatriz();
}
//Imprimir la matriz en consola
private static void imprimirMatriz() {
   for (int i = 0; i < DIM; i++) {
       for (int j = 0; j < DIM; j++) {
           System.out.print(matriz[i][j] + "\t");
       System.out.println();
   }
}
```



```
@Override
    public void run() {
        for (int j = 0; j < DIM; j++) {
            if (this.mayorFila < matriz[this.fila][j]) {</pre>
                this.mayorFila = matriz[this.fila][j];
            }
        if (this.mayorFila > mayor) {
            try {
                Thread.sleep(250);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            mayor = this.mayorFila;
            String warn = String.format(
                    "====== Nuevo maximo encontrado ====== \n " +
                    "ID Thread: %d - Maximo local actual: %d - Maximo global: %d \n" +
                    "\n",
                    this.idThread,
                    mayor,
                    this.mayorFila
            );
            System.out.println(warn);
        }
        //Resultados
        String msg = String.format("ID Thread: %d - Maximo Local: %d - Maximo Global: %d",
                this.idThread,
                this.mayorFila,
                mayor);
        System.out.println(msg);
    }
    //Main
    public static void main(String[] args) {
        System.out.println("Busqueda concurrente por una matriz");
        //Iniciar la matriz
        MaximoMatriz.crearMatriz();
        System.out.println();
        System.out.println("Iniciando la busqueda por la matriz \n");
        //Iniciar busqueda
        MaximoMatriz[] bThreads = new MaximoMatriz[DIM];
        for (int i = 0; i < DIM; i++) {
            bThreads[i] = new MaximoMatriz(i, i);
            bThreads[i].start();
        }
   }
}
```


Responda:

1. Ejecute cinco veces el programa y escriba el resultado obtenido en cada ejecución.

Ejecución	Valor obtenido	Valor esperado
1	7	7
2	8	8
3	9	9
4	6	6
5	5	8

2. ¿Hay acceso concurrente a alguna variable compartida? Si es así, diga en dónde.

Las variables compartidas son: la matriz de enteros y el valor de "mayor"-

3. ¿Puede obtener alguna conclusión?

Debido a que todos se están ejecutando concurrentemente la variable mayor puede cambiar en medio de la ejecución de otro por ende puede perder el valor del mayor total ya que fue cambiado por la ejecución de otro Thread.