PD1_EksploracjaDanych

March 30, 2021

1 Eksploracja zbioru danych

1.1 Wczytanie danych

Aby uatwi analize zamienimy nazwy dni i miesicy na wartoci liczbowe.

```
[2]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from pandas_profiling import ProfileReport
   sns.set()
   import calendar
   df_fire = pd.read_csv('forest_fires_dataset.csv')
   df_fire_att = pd.read_csv('attributes_forest_fires.csv')
[3]: days_name = [each_string.lower() for each_string in calendar.day_abbr]
   months_name = [each_string.lower() for each_string in calendar.month_abbr]
   def dayToNum(day):
       return days_name.index(day) + 1
   def monthToNum(month):
       return months_name.index(month)
   df_fire.day = df_fire.day.apply(dayToNum)
   df_fire.month = df_fire.month.apply(monthToNum)
```

Naszym zadaniej jest przeprowadzenie eksploracji danych zbioru dotyczcego poarów w pónocno-wschodnim regionie Portugalii. Na pocztku rzumy okiem na nasze dane

```
[4]: df_fire.head()
[4]:
      Χ
         Y
            month
                   day
                        FFMC
                               DMC
                                           ISI
                                               temp
                                                        RH
                                                           wind
                                                                 rain
                                                                       area
      7
                     5
                        86.2
                              26.2
                                     94.3
                                           5.1
                                                 8.2 51.0
                3
                                                             6.7
                                                                  0.0
                                                                        0.0
     7 4
                     2
   1
               10
                        90.6
                              35.4
                                    669.1 6.7 18.0 33.0
                                                            0.9
                                                                   0.0
                                                                        0.0
   2 7 4
               10
                     6
                        90.6
                             43.7
                                    686.9 6.7 14.6 33.0
                                                             1.3
                                                                  0.0
                                                                        0.0
   3 8 6
                                     77.5 9.0
                                                                  0.2
                3
                     5
                        91.7
                              33.3
                                                8.3 97.0
                                                             4.0
                                                                        0.0
   4 8
        6
                3
                     7
                        89.3 51.3
                                   102.2 9.6 11.4 99.0
                                                                  0.0
                                                                        0.0
                                                             1.8
```

Dokadne Opisy poszczególnych kolumn znajduj si w tabeli poniej janienie FFMC, DC, ISI skrótów linkiem: DMC, znajduj si pod tym https://www.nwcg.gov/publications/pms437/cffdrs/fire-weather-index-system

[5]: df_fire_att

[5]:		name	type	description
	0	Х	integer	x-axis spatial coordinate within the Montesinh
	1	Y	integer	y-axis spatial coordinate within the Montesinh
	2	month	string	month of the year: 'jan' to 'dec'
	3	day	string	day of the week: 'mon' to 'sun'
	4	FFMC	float	FFMC index from the FWI system: 18.7 to 96.20
	5	DMC	float	DMC index from the FWI system: 1.1 to 291.3
	6	DC	float	DC index from the FWI system: 7.9 to 860.6
	7	ISI	float	ISI index from the FWI system: 0.0 to 56.10
	8	temp	float	temperature in Celsius degrees: 2.2 to 33.30
	9	RH	float	relative humidity in %: 15.0 to 100
	10	wind	float	wind speed in km/h: 0.40 to 9.40
	11	rain	float	outside rain in $mm/m2$: 0.0 to 6.4
	12	area	float	the burned area of the forest (in ha): 0.00 to

[6]: df_fire.describe()

	_	-						
[6]:		Х	Y	month	day	FFMC	DMC	\
	count	517.000000	517.000000	517.000000	517.000000	517.000000	517.000000	
	mean	4.669246	4.299807	7.475822	4.259188	90.644681	110.872340	
	std	2.313778	1.229900	2.275990	2.072929	5.520111	64.046482	
	min	1.000000	2.000000	1.000000	1.000000	18.700000	1.100000	
	25%	3.000000	4.000000	7.000000	2.000000	90.200000	68.600000	
	50%	4.000000	4.000000	8.000000	5.000000	91.600000	108.300000	
	75%	7.000000	5.000000	9.000000	6.000000	92.900000	142.400000	
	max	9.000000	9.000000	12.000000	7.000000	96.200000	291.300000	
		DC	ISI	temp	RH	wind	rain	\
	count	517.000000	517.000000	517.000000	517.000000	517.000000	517.000000	
	mean	547.940039	9.021663	18.889168	44.288201	4.017602	0.021663	
	std	248.066192	4.559477	5.806625	16.317469	1.791653	0.295959	
	min	7.900000	0.000000	2.200000	15.000000	0.400000	0.000000	
	25%	437.700000	6.500000	15.500000	33.000000	2.700000	0.000000	
	50%	664.200000	8.400000	19.300000	42.000000	4.000000	0.000000	
	75%	713.900000	10.800000	22.800000	53.000000	4.900000	0.000000	
	max	860.600000	56.100000	33.300000	100.000000	9.400000	6.400000	

area count 517.000000 mean 12.847292 std 63.655818 min 0.000000 25% 0.000000

```
50% 0.520000
75% 6.570000
max 1090.840000
```

Z powyszej tabeli momy zauway, e kolumny rain i area s gownie wypenione zerami.

```
[33]: print('Liczba rekordów, gdzie w kolumnie area nie ma zera: ' ,df_fire[df_fire.

→area != 0 ].shape[0])

print('Liczba rekordów, gdzie w kolumnie rain nie ma zera: ' ,df_fire[df_fire.

→rain != 0 ].shape[0])
```

```
Liczba rekordów, gdzie w kolumnie area nie ma zera: 270
Liczba rekordów, gdzie w kolumnie rain nie ma zera: 8
```

Powysze obliczenia potwierdzaj to. Mniej wicej poowa rekordów zawiera zero w kolumnie area i tylko 8 z 517 zawiera co innego ni zero w kolumnie rain.

```
[6]: df_fire.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 517 entries, 0 to 516
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	X	517 non-null	int64
1	Y	517 non-null	int64
2	month	517 non-null	int64
3	day	517 non-null	int64
4	FFMC	517 non-null	float64
5	DMC	517 non-null	float64
6	DC	517 non-null	float64
7	ISI	517 non-null	float64
8	temp	517 non-null	float64
9	RH	517 non-null	float64
10	wind	517 non-null	float64
11	rain	517 non-null	float64
12	area	517 non-null	float64

dtypes: float64(9), int64(4)
memory usage: 52.6 KB

Dziki funkcji info() wiemy, e w naszej ramce danych nie ma wartoci null

```
[7]: df_fire.hist(bins = 15, figsize=(18, 12))
plt.show()
```


Powysze histogramy obrazuj rozkady poszczególnych kolumn. Wida w nich wyranie to co rzucio nam si w oczy przy uyciu funkcji describe(), tzn kolumny area i rain s wypenione prawie cakowicie zerami. Dodatkowo moemy zauway, e rozkad temperatury jest mocno zbliony do rozkadu normalnego. Oprócz tego moemy zauway, e cecha dotyczca uczszczania do lasu przez ludzi ma rozkad skony prawostronny.

```
[8]: sns.histplot(df_fire.area[(df_fire.area < 300) & (df_fire.area != 0)])
```

[8]: <AxesSubplot:xlabel='area', ylabel='Count'>

Po odrzuceniu skrajnie duych wartoci i wartoci zerowych widzimy, e rozkad obszaru objtego poarem ma ju rozkad podobny do 1/x.

```
[9]: sns.countplot(data = df_fire, x = 'day', color="RoyalBlue")
```

[9]: <AxesSubplot:xlabel='day', ylabel='count'>


```
[10]: sns.barplot(data = df_fire, x = 'day', y = 'RH', color="RoyalBlue")
```

[10]: <AxesSubplot:xlabel='day', ylabel='RH'>

Z dwóch powyszych wykresów wida to co byo wida ju wczeniej. Najwicej poarów miao miejsce w pitek sobote i niedziele. Jest to do logiczne zwaszcza, gdy spojrzymy na drugi wykres. Wida z niego e najwicej ludzi przychodzi do lasu wanie w weekendy. To wanie ludzie mog by zatem przyczynom wielu poarów.

```
[11]: sns.countplot(data = df_fire, x = 'month', color="RoyalBlue")
```

[11]: <AxesSubplot:xlabel='month', ylabel='count'>

Ten wykres pokazuje natomiast ilo poarów w rónych miesicach. Szczególnie duo poarów jest w sierpniu i wrzeniu. Zaskakujco duo poarów jest równie w marcu.

```
[25]: sns.boxplot(x="month", y="temp", data=df_fire, color="RoyalBlue")
```

[25]: <AxesSubplot:xlabel='month', ylabel='temp'>

Widzimy, e temperatura jest zapewne istotnym czynnikiem w poarach, widzimy jednak, e nie zaley to tylko od temperatury. W czerwcu i libcu temperatury s porównywalne z temperaurami w sierpniu i wrzeniu, a jednak ilo poarów w tych miesicach jest znaczca.

```
[32]: sns.boxplot(x="month", y="DMC", data=df_fire, color="RoyalBlue")
```

[32]: <AxesSubplot:xlabel='month', ylabel='DMC'>

Po obejrzeniu powyszego wykresu moemy wnioskowa, e to odpowiednia temperatura w poczeniu z nisk wilgotnocia sprzyja poarom. Warto ta jest cakiem wysoka w marcu co zgadza si ze wzrotem poarów w tym miesicu.

```
[12]: correlation = df_fire.corr()
fig, ax = plt.subplots(figsize=(12,12))
sns.heatmap(correlation, annot = True)
```

[12]: <AxesSubplot:>

Powysza macierz korelacji pokazuje nam które wartoci mog by ze sob skorelowane. Wida z niej na przykad, e temperatura jest skoreloawna ujemnie z iloci ludzi w lasach. Oznacza to, e im wiksza temperatura tym mniej ludzi chodzi do lasu. Jest to do zaskakujce, gdy w Polsce tendencja jest raczej odwrotna. Nie jest zaskoczeniem, e cechy oznaczajce wilgotno s ze sob skorelowane. Na ogó jednak kolumny nie s jednak ze sob skorelowane.

```
[13]: sns.regplot(data = df_fire, x = 'temp', y = 'RH')
```

[13]: <AxesSubplot:xlabel='temp', ylabel='RH'>

Widzimy z wykresu e wraz ze wzrostem temperatury maleje liczba lidzi w lesie. Spróbujmy jednak pozby si wartoci odstajcych aby zobaczy czy to zmieni tendencje.

```
[14]: sns.regplot(data = df_fire[(df_fire.temp > 8) & (df_fire.temp <= 30)], x = _{\sqcup} \hookrightarrow 'temp', y = 'RH')
```

[14]: <AxesSubplot:xlabel='temp', ylabel='RH'>

Wypaszcza to nieco krzyw dopasowanie, jednak nieznaczenie. By moe, gdy jest cieplej to wicej pada i std mniejsze zainteresowanie spacerami do lasu.

```
[15]: sns.scatterplot(data = df_fire, x = 'temp', y = 'rain')
```

[15]: <AxesSubplot:xlabel='temp', ylabel='rain'>

Nie moemy tego stwierdzi, gdy w wikszoci rekordów w kolumnie rain jest zerem. Sprawdmy jak koreluj ze sob inne wasnoci cige

```
[26]: sns.pairplot(df_fire[['DMC', 'DC', 'ISI', 'temp', 'RH', 'wind', 'area']])
```

[26]: <seaborn.axisgrid.PairGrid at 0x13a1148d0>

Oprucz analizowanej wczeniej zalenoci temperatury i liczby ludzi w lesie, ciekawe zalenoci wida pomidzy DC i DMC. adnie wyglda równie zaleno midzy DMC I DC a ISI. Relacja midzy temperatur a ISI przypomina troch relacje liniow. Na wykresach wyej wida równie zalenoc pomidy DMC a temoeratur, potwierdza to nasze przypuszczenia dotyczce ich zwizku z poarami w danych miesicach. Powysze wykresy punktowe potwierdzaj niejako to co mówia macie korelacji.

```
[30]: sns.histplot(data = df_fire, x = 'X', y = 'Y', bins = 7)
```

[30]: <AxesSubplot:xlabel='X', ylabel='Y'>

Powysza mapa prezentuje nam, w których obszarach lasu najczciej dochodzio do poarów

1.2 Narzdzia do automatycznej eksploracji danych

| 0/1 [00:00<?, ?it/s]

Render HTML: 0%| | 0/1 [00:00<?, ?it/s]

0%|

<IPython.core.display.HTML object>

Generate report structure:

[18]:

Profile report uatwia zdecydowanie eksploracje danych. Ma on jednak troche ogranicze. Za jego pomoc nie mona na przykad bliej przyjrze si poszczególnym rozkadom, nie bylibymy w stanie zobaczy, e rozkad zmiennej area ma posta 1/x. Drugim problemem jest ograniczona wizualizacja zmiennych kategorycznych, nie mona na przykad zobaczy boxplotów, które lepiej odzwierciedlaj rozkady z podziaem na kategori. Myle e pandas_profiling to wietne narzdzie, do rzucenia okiem na dane. Zapewnie nam ono podstawowe statystyki i wykresy. Powinnimy jednak zwróci uwage na to co jest ciekawe lub niepasujce i samodzielnie to pogebi.

[]: