Zadanie 1.

W ciągu 20 rzutów monetą liczymy serie 5 orłów. Każdy ciąg sąsiadujących ze sobą 5 orłów uznajemy za serię. Przyjmujemy zatem, że serie mogą "zachodzić na siebie", na przykład w ciągu

R	O	О	O	О	О	О	О	R	O	О	О	R	О	О	О	О	O	R	R
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

mamy 4 serie, zaczynające się od miejsc 2, 3, 4 i 14.

Oblicz wartość oczekiwaną liczby serii 5 orłów w 20 rzutach.

- (A) 2
- (B) 20/32
- (C) 1
- (D) 20/16
- (E) 1/2

Zadanie 2.

Na okręgu o obwodzie 1 wybieramy punkt X_0 , a następnie losowo i niezależnie wybieramy punkty $X_1,...,X_n$. Niech Y oznacza odległość od X_0 do najbliższego spośród punktów $X_1,...,X_n$, liczoną wzdłuż okręgu. Obliczyć E[Y].

(A)
$$E[Y] = \frac{1}{n+1}$$
.

(B)
$$E[Y] = \frac{1}{4} \frac{1}{n}$$
.

(C)
$$E[Y] = \frac{1}{2} \frac{1}{n+1}$$
.

(D)
$$E[Y] = \frac{1}{(n+1)^2}$$
.

(E)
$$E[Y] = \frac{1}{4^n}$$
.

Zadanie 3.

Niech X i Y będą zmiennymi losowymi o łącznym rozkładzie normalnym takim, że E[X] = E[Y] = 0, Var[X] = 1, Var[Y] = 5, Cov[X,Y] = -2. Obliczyć $E[Y^2 \mid X = x]$.

- (A) $E[Y^2 | X = x] = 5 + 4x^2$.
- (B) $E[Y^2 | X = x] = 1 + 4x^2$.
- (C) $E[Y^2 | X = x] = 1$.
- (D) $E[Y^2 | X = x] = 5$.
- (E) $E[Y^2 | X = x] = 4 + x^2$.

Wskazówka: Rozpatrz zmienną losową Z = Y + 2X.

Zadanie 4.

Niech $X_1, X_2, ..., X_n, ...$ będą niezależnymi zmiennymi losowymi o rozkładzie jednostajnym na przedziale [0, 2]. Niech

$$Y_n = X_1 \cdot X_2 \cdot \dots \cdot X_n.$$

Która z następujących równości jest prawdziwa?

(A)
$$\lim_{n\to\infty} \Pr(Y_n \le 1) = 0.$$

(B)
$$\lim_{n\to\infty} \Pr(Y_n \le 1) = 1/2.$$

(C)
$$\lim_{n\to\infty} \Pr(Y_n \le (2/e)^n) = 0.$$

(D)
$$\lim_{n\to\infty} \Pr(Y_n \le (2/e)^n) = 1/2$$
.

(E)
$$\lim_{n\to\infty} \Pr(Y_n \le (2/e)^n) = 1.$$

Wskazówka: Wykorzystaj Centralne Twierdzenie Graniczne.

Zadanie 5.

Załóżmy, że X,Y i Z są niezależnymi zmiennymi losowymi o standardowym rozkładzie normalnym N(0,1). Znaleźć liczbę a taką, że

$$\Pr\left(\frac{|X|}{\sqrt{X^2 + Y^2 + Z^2}} \le a\right) = 0.6.$$

- (A) a = 0.9785.
- (B) a = 0.6.
- (C) a = 0.565.
- (D) a = 0.750.
- (E) a = 0.825.

Wskazówka 1: Wykorzystaj prosty wzór wyrażający $\Pr(Y^2 + Z^2 > t)$. *Wskazówka 2:* Wykorzystaj geometryczną interpretację wetora $\frac{(X,Y,Z)}{\sqrt{X^2 + Y^2 + Z^2}}$.

Zadanie 6.

Niech $X_1,\ldots X_{10},X_{11},\ldots,X_{20}$ będą niezależnymi zmiennymi losowymi, przy tym $X_1,\ldots X_{10}$ mają rozkład normalny $N(\mu_1,\sigma^2)$, zaś X_{11},\ldots,X_{20} mają rozkład normalny $N(\mu_2,\sigma^2)$. Niech

$$\overline{X}_1 = \frac{1}{10} \sum_{i=1}^{10} X_i, \quad \overline{X}_2 = \frac{1}{10} \sum_{i=11}^{20} X_i, \quad \overline{X} = \frac{1}{20} \sum_{i=1}^{20} X_i.$$

Dobrać liczby α i β tak, żeby statystyka

$$\hat{\sigma}^2 = \alpha \sum_{i=1}^{20} \left(X_i - \overline{X} \right)^2 + \beta \left(\overline{X}_1 - \overline{X}_2 \right)^2$$

była nieobciążonym estymatorem parametru σ^2 .

- (A) $\alpha = 1/19$; $\beta = -1/19$.
- (B) $\alpha = 1/19$; $\beta = -5/19$.
- (C) $\alpha = 1/18$; $\beta = -2/18$.
- (D) $\alpha = 1/18$; $\beta = -5/18$.
- (E) $\alpha = 1/18; \beta = 0.$

Zadanie 7.

 $X_1,...,X_n$ jest próbką z rozkładu o gęstości prawdopodobieństwa:

$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} x^{\frac{1}{\theta}-1} & dla \ 0 < x < 1, \\ 0 & w \ przeciwnym \ przypadku. \end{cases}$$

Niech $\hat{\theta}$ będzie estymatorem największej wiarogodności nieznanego parametru θ . Obliczyć funkcję ryzyka tego estymatora, tzn. $R(\theta) = E_{\theta} \left((\theta - \hat{\theta})^2 \right)$.

(A)
$$R(\theta) = \frac{1}{n}(\theta^2 + 2\theta)$$

(B)
$$R(\theta) = \frac{1}{n\theta^2}$$

(C)
$$R(\theta) = \frac{1}{\sqrt{n}}\theta$$

(D)
$$R(\theta) = \frac{1}{n}\theta$$

(E)
$$R(\theta) = \frac{1}{n}\theta^2$$

Wskazówka: Można obliczyć rozkład prawdopodobieństwa zmiennych losowych $Y_i = -\ln X_i$.

Zadanie 8.

Niech X_1, X_2, X_3, X_4, X_5 będzie próbką z rozkładu wykadniczego o gęstości prawdopodobieństwa:

$$f_{\theta}(x) = \begin{cases} \theta e^{-\theta x} & dla \ x > 0, \\ 0 & w \ przeciwnym \ przypadku. \end{cases}$$

Parametr θ jest nieznany. Wiadomo, że estymatorem największej wiarogodności tego parametru jest $\hat{\theta}=5/S_5$, gdzie $S_5=X_1+X_2+X_3+X_4+X_5$. Należy zbudować przedział ufności dla parametru θ postaci

$$\left[\underline{\theta}, \overline{\theta}\right] = \left[\underline{a} / S_5, \overline{a} / S_5\right]$$

Żądamy, żeby ten przedział był symetryczny w tym sensie, że $\Pr(\theta < \underline{\theta}) = \Pr(\theta > \overline{\theta})$. Wyznaczyć stałe \underline{a} i \overline{a} tak, żeby otrzymać przedział na poziomie ufności $1-\alpha=0.95$.

(A)
$$\underline{a} = 3.94$$
; $\overline{a} = 18.30$.

(B)
$$\underline{a} = -5 \log 0.975$$
; $\overline{a} = -5 \log 0.025$.

(C)
$$a = 0.83$$
; $a = 12.83$.

(D)
$$\underline{a} = 1.62$$
; $\overline{a} = 10.24$.

(E)
$$\underline{a} = 3.24$$
; $\overline{a} = 20.48$.

Wskaz ówka: Zmienna losowa S_5 ma rozkład Gamma.

Zadanie 9.

Urna zawiera r kul ponumerowanych liczbami 1,2,...,r. Liczba kul r jest nieznanym parametrem, o którm wiemy, że jest większy od 5. Wybieramy z urny 5 kul, losując je bez zwracania. Na podstawie numerów wylosowanych kul testujemy hipotezę zerową

$$H_0: r = 25$$

przeciwko alternatywie

$$H_1: r = 48$$
.

Obliczyć moc najmocniejszego testu na poziomie istotności $\alpha=0.2$. Z dokładnością do trzech cyfr po kropce dziesiętnej, moc jest równa

- (A) 0.800
- (B) 0.873
- (C) 0.900
- (D) 0.995
- (E) 0.975

Wskazówka: Można skonstruować test najmocniejszy na podanym poziomie istotności, który wykorzystuje tylko *najwższy* numer wylosowanej kuli.

Zadanie 10.

Zmienna losowa X przyjmuje wartości 1 lub 2 z jednakowym prawdopodobieństwem $\frac{1}{2}$. Zmienna losowa Y przyjmuje wartości $1,2,\ldots,k$. Dysponujemy próbką z łącznego rozkładu prawdopodobieństwa zmiennych losowych X i Y, złożoną z n par obserwacji. Niech n_{ij} oznacza liczbę takich par, dla których zmienna X przyjęła wartość i, zaś Y - wartość j ($i=1,2; j=1,2,\ldots,k$). W celu weryfikacji hipotezy o niezależności zmiennych X i Y, czyli hipotezy

$$H_0: \Pr(X=i, Y=j) = \frac{1}{2} \Pr(Y=j) \text{ dla } i = 1, 2; \quad j = 1, 2, ..., k,$$

używamy statystyki

$$\chi^{2} = \sum_{i=1}^{2} \sum_{j=1}^{k} \frac{\left(n_{ij} - n\hat{p}_{j} / 2\right)^{2}}{n\hat{p}_{j} / 2}$$
, gdzie $\hat{p}_{j} = \frac{n_{1j} + n_{2j}}{n}$.

Przy $n \to \infty$, rozkład tej statystyki zmierza do rozkładu chi-kwadrat z liczbą stopni swobody równą

- (A) 2k-1
- (B) k-1
- (C) k
- (D) 2k
- (E) 2(k-1)

Egzamin dla Aktuariuszy z 14 października 2000 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko:	 	 	
Pesel	 		

Zadanie nr	Odpowiedź	Punktacja⁴
1	Е	
2	С	
3	В	
4	D	
5	В	
6	D	
7	Е	
8	D	
9	Е	
10	С	
		_

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.