

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(川)特許出願公開番号 特開2003-10646 (P2003-10646A)

(43)公開日 平成15年1月14日(2003.1.14)

(51) Int.Cl.7		離別記号	FΙ					5	テーマコード(参考)
B 0 1 D	53/94		F 0 1	N	3/08			Α	3G091
B01J	23/63				3/10			Α	4D048
F 0 1 N	3/08				3/24			С	4G069
	3/10				3/28		3 0	1 C	
	3/24						3 0	1 G	
		審査請求	未請求	請求J	頁の数 5	OL	(全 !	(頁 6	最終頁に続く
(21)出願番号	寻	特願2001-205233(P2001-205233)	(71) Ł	出願人	000003	8609			
					株式会	社豊田	中央研	究所	
(22)出願日		平成13年7月5日(2001.7.5)			愛知県	愛知郡:	長 久手	町大字	長湫字横道41番
					地の1				
			(72)多	ぞ明者	坂野	幸次			
					愛知県	愛知郡	長久手!	叮大字	長湫字横道41番
			1		地の1	株式会	计曹ITI	中央研	奔所 内

(72)発明者 山崎 清

愛知県愛知郡長久手町大字長湫字橫道41番

地の1株式会社豊田中央研究所内

(74)代理人 100081776

弁理士 大川 宏

最終頁に続く

(54) 【発明の名称】 ディーゼル排ガス浄化装置及び排ガス浄化方法

(57) 【要約】

【課題】低温域から高温域まで高い水素生成活性を示しかつ耐熱性にも優れた水素生成触媒を用いることで、NO x 吸蔵触媒の硫黄被毒を抑制し耐久性を向上させる。

【解決手段】セリアとアルミナが共にnmスケールで分散してなる複合酸化物粉末を含む担体と、その担体に担持された貴金属と、よりなる水素生成触媒をNO、吸蔵触媒の上流側に配置した。この複合酸化物粉末は水蒸気の吸着能が高く、それを用いた水素生成触媒は水蒸気改質反応により比を生成する。またこの担体に担持された貴金属は、酸化されたとしてもメクル状態に還元されやすく活性が回復し、担体との相互作用が大きく高温における貴金属の粒成長が抑制される。これらの相乗効果によって水蒸気改質反応が促進され、低温域のディーゼル排ガス中でも効率よく比が生成される。

【特許請求の範囲】

【請求項1】 ディーゼルエンジンからの排ガス流路に配置され該排ガス中のNO、を捕捉するNO、吸蔵触媒と、該排ガス流路の該NO、吸蔵触媒の上流側に配置され該排ガス中の炭化水器及び水蒸気からH。を生成する水素生成触媒と、よりなり、

該水素生成触媒は、セリアとアルミナが共にnmスケールで分散してなる複合酸化物粉末を含む担体と、該担体に担持された貴金属と、よりなることを特徴とするディーゼル排ガス浄化装置。

【請求項2】 前記複合酸化物粉末においてFE-STEMの EDSを用いた重なりのない一つの粒子の、直径5 nmのビーム径による微少範囲分析を行った結果、各分析点の90%以上でCeとA1とが仕込み組成の±20%以内の組成比で検出されることを特徴とする請求項1に記載のディーゼル排ガス浄化装置。

【請求項3】 前記複合酸化物粉末にはセリアが50重量 %以上含まれていることを特徴とする請求項1に記載の ディーゼル排ガス浄化装置。

【請求項4】 前記貴金属は少なくともRhを含むことを 特徴とする請求項1に記載のディーゼル排ガス浄化装 置。

【請求項5】 請求項1~4のいずれかに記載のディーゼル排ガス浄化装置を用い、前記水素生成触媒の上流側でディーゼルエンジンからの排ガス中に炭化水素を供給し、水蒸気改質反応によって前記水素生成触媒で生成されたH₂を前記NO_x 吸蔵触媒に供給することを特徴とする排ガス浄化方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はディーゼルエンジンからの排ガス中で用いられる排ガス浄化装置と、ディーゼルエンジンからの排ガスを浄化する排ガス浄化方法に関し、詳しくはNO、吸蔵触媒を用いた排ガス浄化装置及び排ガス浄化方法に関する。

[0002]

【従来の技術】ガソリンエンジンからの排ガスを浄化する触媒として、NO、吸蔵還元型触媒が知られている。このNO、吸蔵還元型触媒は、アルミナなどの担体にアルカリ金属あるいはアルカリ土類金属などのNO、吸蔵材とPtなどの貴金属を担持してなり、酸素過剰のリーン雰囲気下では排ガス中のNOを酸化してNO、吸蔵材に吸蔵し、間欠的に燃料過剰のリッチ雰囲気とすることでNO、吸蔵材からNO、を放出させ排ガス中に多量に含まれる炭化水器(HC)及びCOなどの還元成分によってNO、をNoにまで還元する。したがってNO、吸蔵還元型触媒を用いることで、排ガス中のNO、を効率よく浄化することができる。時にHC及びCOも浄化することができる。

【0003】ところがディーゼルエンジンは酸素過剰下で燃料を燃焼させるため、その排ガス中には多量の酸素

が含まれている。そのためNO。を直接還元浄化することは、きわめて困難であった。そこで排ガス中に軽油などのHCを供給し、排ガス雰囲気を還元雰囲気とする方法が 提案されている。しかしHCによるNO。の還元力は高いとはいえず、またHCによるNO。の還元反応は比較的高温域で生じるので、低温域でHCを供給すると逆にHCの排出量が増大するという不具合もあった。

【0004】またディーゼルエンジンの排ガスには硫黄成分が含まれ、それが触媒上でさらに酸化されてNO、吸蔵材と反応するために、NO、吸蔵能が徐々に低下するという問題がある。この現象は硫黄被毒と称されている。そしてHCを供給しても、硫黄被毒したNO、吸蔵材を低温域から還元することは困難であり、硫黄被毒を解消することはできない。

【0005】これらの問題を解決するために、還元活性の高い水素の利用が注目されている。水素は低温域から還元活性が高く、硫黄被毒したNO_x吸蔵材を容易に還元できるためNO_x吸蔵能を回復することができる。

【0006】しかし水素を直接的にNO_x 吸蔵触媒に供給するには、その貯蔵法が問題となり実用的ではない。そこで化学反応によって水素を製造し、生成した水素を排ガス中に供給することが提案されている。例えば特開2000-170523号公報には、NO_x吸蔵手段の上流側にHC処理手段を配置し、さらにその上流側にHC注入手段を配置した排ガス浄化装置が開示されている。

【0007】この排ガス浄化装置によれば、HC注入手段によって供給されたHCがHC処理手段によって部分酸化され、COとH₂が生成する。このCOとH₂によって硫黄被器したNO_x 吸蔵手段を還元することができ、NO_x 吸蔵能を回復することができる。

[0008]

【発明が解決しようとする課題】水素を製造する方法と して、次式に示すHCの水蒸気改質反応が知られている。

[0009]

 $C_nH_n+nH_2O\rightarrow nCO+$ $(n+m/2)H_2$ $(-\Delta H<O)$ この水蒸気改質反応は大きな吸熱を伴うので、外部から必要な熱を供給する必要がある。そこで多くの場合には反応ガス中に酸素を添加し、次式に示す部分酸化反応や酸化反応の反応熱を利用して、水蒸気改質反応の進行を促進させることが行われている。

[0010]

 $C_nH_m+n/2O_2 \rightarrow nCO+m/2H_2 = (-\Delta H>O)$ $C_nH_m+(n+m/4)O_2 \rightarrow nCO_2+m/2H_2 = (-\Delta H>O)$ なお水蒸気改質反応においては、次式に示すCOシフト反応が同時に進行する。

【0011】 $C0+ H_20 \rightarrow C0_2 + H_2 = (-\Delta H > 0)$ また上記した反応を促進するために、各種の触媒が利用されている。例えば特別昭56-9184月号公報には、ジルコニアにRhを担持した水素生成触媒が開示されている。しかしジルコニアは耐熱性が低く、使用時の熱により比表

面積が減少し、これにより担持されているRhの分散性が 低下して水素生成能が低下するという不具合があった。

【0012】そこで特公平6-4135号公報や特開平3-80937号公報には、イットリアあるいはセリアなどを添加して部分安定化されたジルコニア担体にRhを担持した水素生成触媒が開示されている。また特開平4-265156号公報にはアルカリ金属、アルカリ土類金属を含有するセリアに貴金属を担持した水素生成触媒が、特開平11-226404号公報にはアルカリ土類金属、希土類元素で安定化されたジルコニアにRhを担持した水素生成触媒が開示されている。

[0013]

【発明が解決しようとする課題】ところで水素生成触媒をディーゼルエンジンの排ガス中で用いる場合には、水素生成触媒は低温から高温まで様々な温度条件下で使用されることになる。したがって水素生成触媒には、低温域から高活性であり、かつ耐熱性に優れていることが求められている。

【0014】しかしながら従来の水素生成触媒では、この二つの条件を満たすものはなかった。そのためこの水素生成触媒をNO_x、吸蔵触媒の上流側に配置した排ガス浄化装置では、NO_x、吸蔵触媒の硫黄被毒を解消することが困難であり、NO_xの排出量が徐々に増大するという不具合があった。

【0015】本発明はこのような事情に鑑みてなされたものであり、低温域から高温域まで高い水素生成活性を示し、かつ耐熱性にも優れた水素生成触媒を用いることで、NO、吸蔵触媒の硫黄被毒を抑制し耐久性を向上させることを目的とする。

[0016]

【課題を解決するための手段】上記課題を解決する本発明のディーゼル排ガス浄化装置の特徴は、ディーゼルエンジンからの排ガス流路に配置され排ガス中のNO_x を捕捉するNO_x 吸蔵触媒と、排ガス流路のNO_x 吸蔵触媒の上流側に配置され排ガス中のHC及び水蒸気からHLを生成する水素生成触媒と、よりなり、水素生成触媒は、セリアとアルミナが共にnmスケールで分散してなる複合酸化物粉末を含む担体と、担体に担持された貴金属と、よりなることにある。

【0017】上記水素生成触媒における複合酸化物粉末は、FE-STEMの EDSを用いた重なりのない一つの粒子の、直径5mmのビーム径による微少範囲分析を行った結果、各分析点の90%以上でCeとAIとが仕込み組成の±20%以内の組成比で検出されることが望ましい。

【0018】また複合酸化物粉末にはセリアが50重量%以上含まれていることが望ましく、貴金属は少なくともRhを含むことが望ましい。

【0019】そして本発明の排ガス浄化方法の特徴は、本発明のディーゼル排ガス浄化装置を用い、水楽生成触媒の上流側でディーゼルエンジンからの排ガス中にIICを

供給し、水蒸気改質反応によって水素生成触媒で生成されたII-をNO_x 吸蔵触媒に供給することにある。

[0020]

【発明の実施の形態】本発明の排ガス浄化装置では、セリアとアルミナが共にnmスケールで分散してなる複合酸化物粉末を含む担体と、担体に担持された貴金属と、よりなる水素生成触媒をNO、吸蔵触媒の上流側に配置している。この複合酸化物粉末は水蒸気の吸着能が高く、この複合酸化物を用いた水素生成触媒はディーゼル排ガス中に豊富に存在するHCと水蒸気を利用してHLを生成する。またこの担体に担持された貴金属は、酸化されたとしてもメタル状態に還元されやすく、これによって貴金属のに活性が回復する。さらに担体と貴金属との相互作用が大きく、高温における貴金属の粒成長が抑制される。これらの相乗効果によって水蒸気改質反応が促進されると考えられ、低温域のディーゼル排ガス中でも効率よくHLが生成される。

【0021】すなわち本発明のディーゼル排ガス浄化装置及び排ガス浄化方法によれば、排ガス中の NO_x は NO_x 吸蔵触媒によって吸蔵される。また NO_x 吸蔵触媒に吸蔵された NO_x は、水素生成触媒によって生成した H_2 及びCO(主として H_2)によって還元浄化される。これにより排ガス中の NO_x は再び NO_x 吸蔵触媒によって吸蔵され、高い NO_x 浄化率が得られる。

【0022】そして排ガス中の硫黄酸化物によって NO_x 吸蔵触媒が硫黄被毒したとしても、低温域から多量の H_z が NO_x 吸蔵触媒に流入できるので、硫黄被毒した NO_x 吸蔵触媒を低温域から速やかに還元することができ、 NO_x 吸蔵能が速やかに回復する。これにより硫黄被毒を高度に再生することができ、 NO_x 浄化率が向上する。

【0023】本発明にいう複合酸化物粉末において、セリアとアルミナとがnmスケールで分散している状態は、FE-STEMの EDSを用いた重なりのない一つの粒子の、直径5nmのビーム径による微少範囲分析を行った結果、各分析点の90%以上でCeとA1とが仕込み組成の±20%以内の組成比で検出されることで確認することができる。なおFE-STEMは、Field Effect-Scanning Transmission Electron Microscopyの略称であり、EDS は、Energy Dispersion Spectroscopyの略称である。

【0024】この複合酸化物粉末では、互いに固溶しないセリアとアルミナが互いの障壁として作用するために、高温時のシンタリングが抑制され、高温耐久後にもメン細孔の細孔容積を高く維持することができる。なおメン細孔とは、1UPACでは径が2~50nmの細孔をいうが、分子の吸着特性などから 1.5~ 100nmの細孔を意味する場合もある。ここでいうメツ細孔は、水銀ボロシメークを用いて原理上測定可能な下限値 3.5nmから 100nmの範囲の細孔を意味する。

【0025】この複合酸化物粉末においては、X線回折によるCeO。(220)の半値幅から計算により求めたセリ

アの結晶子径が、 600℃で5時間の焼成後において5~10nm、 800℃で5時間の焼成後において10~20nm、1000℃で5時間の焼成後において35nm以下となる特性を有することが望ましい。このような特性を有すれば、高温に曝された後にもシンタリングが一層少なくなり、 600℃で5時間の焼成後に細孔直径が 3.5~ 100nmの細孔容積が0.07cc/g以上であり、かつ 800℃で5時間の焼成後に細孔直径が 3.5~ 100nmの細孔容積が0.04cc/g以上という特性を有するようになる。これにより高温耐久後にも細孔容積が十分に確保される。

【0026】さらに、600℃で5時間の焼成後に細孔直径が3.5~100nmの細孔容積が0.13cc/g以上であり、800℃で5時間の焼成後に細孔直径が3.5~100nmの細孔容積が0.10cc/g以上であることがより望ましい。また600℃で5時間の焼成後に細孔直径が3.5~100nmの細孔容積が0.19cc/g以上であり、800℃で5時間の焼成後に細孔直径が3.5~100nmの細孔容積が0.15cc/g以上という特性を有することがさらに望ましい。

【0027】そして、この複合酸化物粉末を含む担体に 貴金属を担持してなる水素生成触媒においては、貴金属 がメソ細孔に高分散状態で担持され、かつそのメソ細孔 が反応場となるため、活性がきわめて高い。さらに、高 温耐久後にも貴金属の担持サイトであるメソ細孔が十分 に存在するとともに、比表面積も充分に大きく確保され ている。そして酸化物のシンタリングが抑制されている ため貴金属の粒成長も抑制され、高温耐久後の活性の低 下が大きく抑制される。

【0028】またセリアは、上記複合酸化物粉末に50重量%以上含まれていることが好ましく、75重量%以上含まれていることが特に望ましい。したがってアルミナは50重量%未満が好ましく、25重量%未満が特に望ましい。セリアが75重量%未満あるいは50%未満となると、低温域における水素生成能が低下するようになる。

【0029】この複合酸化物粉末を製造するには、先ずセリウム化合物とアルミニウム化合物とが溶解した水溶液又は水を含む溶液からセリア前駆体及びアルミナ前駆体又はそれらの前駆体の化合物の沈殿を析出させる。

【0030】セリウム化合物とアルミニウム化合物としては、一般に塩が用いられ、塩としては、硫酸塩、硝酸塩、塩化物、酢酸塩などが利用できる。また塩を均一に溶解する溶媒としては、水、アルコール類が使用できる。さらに、例えば硝酸アルミニウムの原料として、水酸化アルミニウムと硝酸と水とを混合して用いてもよい。

【0031】沈殿の析出方法は、主にアンモニア水などの添加によってpHを調節して行うが、様々な調節方法により、さらに特徴的な複合酸化物の前駆体とすることができる。例えば、セリウム化合物とアルミニウム化合物を含む水溶液又は水を含む溶液から、これらの酸化物前駆体又はそれらの前駆体の化合物の沈殿をほぼ同時に析

出させる方法、又は、アルミナ前駆体が沈殿するよりも 先にセリア前駆体を析出させる方法(又はその逆)がある。

【0032】前者のほぼ同時に析出させる方法については、アンモニア水などを瞬時に添加し強撹拌する方法や、過酸化水素などを加えることでセリア前駆体とアルミナ前駆体の沈殿し始めるpHを調節した後、アンモニア水などで沈殿を析出させる方法などがある。

【0033】また後者については、アンモニア水などで中和させる際にかかる時間を十分に長くし、好ましくは10分以上で中和させる方法や、pHをモニターしながらセリア前駆体沈殿が析出するpH又はアルミナ前駆体の沈殿が折出するpHに、段階的に中和する又はそのような段間に保つような緩衝溶液を添加する方法などがある。

【0034】なおアンモニア水以外に、炭酸アンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどを溶解した水溶液、アルコール溶液が使用できる。焼成時に揮散するアンモニア、炭酸アンモニウムが特に好ましい。なお、アルカリ性溶液のpHは、9以上であることが前駆体の析出反応を促進するのでより好ましい。

【0035】そして、このようにして得られた沈殿を焼成することによって複合酸化物粉末とする。

【0036】熟成工程を行った場合には、加温の熱によって溶解・再析出が促進されるとともに粒子の成長が生じる。この熟成工程は、室温以上、好ましくは 100~2 00℃で、さらに好ましくは 100~150℃で行うことが望ましい。 100℃未満の加温では熟成の促進効果が小さく、熟成に要する時間が長大となる。また 200℃より高い温度では、水蒸気圧がきわめて高くなるために、高圧に耐える大がかりな装置が必要になり、製造コストが非常に高くなって好ましくない。そして得られた沈殿物を焼成することで、比較的結晶性が高く大きな粒径の結晶子をもつ複合酸化物粉末が製造される。

【0037】この焼成工程は、大気中で行えばよく、その温度は 300~ 900℃の範囲が望ましい。焼成温度が 3 00℃より低いと、実質上、担体としての安定性に欠ける。また 900℃より高温での焼成は比表面積の低下をまねき、担体としての利用法から考えても不必要である。

【0038】なお、沈殿物が析出した溶液をそのまま加熱して蒸発乾固させ、さらに焼成すれば、蒸発乾固中に熟成工程を行うことができるが、室温以上好ましくは 100℃以上で保持して熟成する方がよい。

【0039】水素生成触媒の担体は、上記複合酸化物粉末を含めばよく、上記複合酸化物粉末のみから構成してもよいし、上記複合酸化物粉末と多孔質酸化物粉末を混合して構成することもできる。この多孔質酸化物としては、アルミナ、セリア、ジルコニア、チタニア、シリカなどの一種又は複数種を用いることができる。上記複合酸化物粉末とで混合した担体と

する場合には、上記複合酸化物粉末が50重量%以上とすることが望ましい。担体中の上記複合酸化物粉末の量がこれより少ないと、水器生成活性が低下し実用的でない。

【0040】水梁生成触媒において、担体に担持される 貴金属としては、Pt、Rh、Pd、Irなどから選択すること ができるが、少なくともRhを含むことが望ましい。少な くともRhを担持することにより、水素生成活性が特に向 上する。この貴金属の担持量は、担体 1 リットルあたり 0.1~10gとするのが好ましい。担持量がこれより少な いと水素生成活性が低く、これより多く担持しても水素 生成活性が飽和するとともに貴金属どうしの粒成長が生 じる場合がある。

【0041】 NO_x 吸蔵触媒は、酸化物担体に NO_x 吸蔵材と貴金属とを担持してなるものであり、例えば従来の NO_x 吸蔵還元型触媒を用いることができる。酸化物担体としてはアルミナ、シリカ、チタニア、ジルコニア、セリア、あるいはこれらの複数種よりなる複合酸化物の中から一種又は複数種を選択して用いることができる。 NO_x 吸蔵材はアルカリ金属、アルカリ土類金属あるいは希土類元素から一種又は複数種を選択して用いることができる。 NO_x 吸蔵材はアルカリ金属としては NO_x の酸化活性が高いPt が特に望ましいが、場合によってはRh、Pd、Ir などをIr かったり0.01~1.0年ルの範囲が好ましく、貴金属の担持量は酸化物担体1リットルあたり0.01~1.0年ルの範囲が好ましく、貴金属の担持量は酸化物担体1リットルあたり0.1~10gの範囲が好ましい。

【0042】水素生成触媒及びNO_x吸蔵触媒の形状は、 粉末状、ペレット状、ハニカム基材のセル表面にコート されたハニカム形状などとすることができる。

【0043】本発明のディーゼル排ガス浄化装置では、水素生成触媒が排ガスの上流側に配置され、その下流側にNO_x 吸蔵触媒が配置される。両者の間隔には特に制限がなく、互いに接した状態で配置してもよい。また一つのハニカム基材の排ガス上流側部分に水素生成触媒を形成し、下流側部分にNO_x 吸蔵触媒を形成することもできる。

【0044】そして酸素過剰雰囲気で燃焼されたディーゼル排ガスが先ず水素生成触媒と接触し、排ガス中のHCと水蒸気によって水蒸気改質反応が生じてH。が生成する。またNO_x 吸蔵触媒では、排ガス中のNO_x がNO_x 吸蔵材に吸蔵され、排出が抑制される。水素生成触媒で生成したH。によって排ガス中のNO_x が還元浄化されるとともに、硫黄被毒したNO_x 吸蔵触媒が還元されNO_x 吸蔵能が回復する。

【0045】なお排ガス中には水蒸気が豊富に存在するものの、HCが不足してHLの生成量に不足する場合がある。このような場合には、排ガス中に軽油、プロピレンなどのHCを添加することも好ましい。これにより水蒸気改質反応がより促進され、多量のHLを生成することがで

きる。またエンジンへの影響もない。このHCの添加は、 水素生成触媒より上流側で行う必要があり、排ガス中の 酸素量と同程度のモル量を添加することが好ましい。

[0046]

【実施例】以下、実施例及び比較例により本発明を具体的に説明する。

【0047】(実施例1)硝酸アルミニウム9水和物0.2モル(75.1g)を2000mlのイオン交換水に混合し、プロベラ撹拌器で5分間撹拌して溶解した。そこへ濃度28重量%の硝酸セリウム水溶液304g(CeO.換算で0.5モル相当)を混合し、さらに5分間撹拌した。得られた混合水溶液に、25%アンモニア水177gを加え、さらに10分間撹拌して沈殿物を含む水溶液とした。これを2気圧の加圧下にて120℃で2時間熱処理する熟成工程を行い、沈殿物を熟成した。

【0048】その後、熟成された沈殿物を含む水溶液を100℃/時間の昇温速度で加熱し、400℃で5時間仮焼成し、さらに600℃で5時間焼成して複合酸化物粉末を調製した。得られた複合酸化物粉末は、約89重量%のCe02と約11重量%のAl₂02から構成されている。

【0049】FE-STEMの EDSを用い、この複合酸化物粉末の重なりのない一つの粒子を直径0.5nmのビーム径により元素分析を行った。結果を図1に示す。分析条件は、(株)日立製作所製「 HD-2000」を使用し、加速電圧 200kVで測定した。この装置は EDX検出器 (NCRAN社製 Vatage EDX system) を備え、試料から発生する特性 X線によって高感度で元素分析ができるようになっている。

【0050】図1からわかるように、直径 $0.5 \, \text{nm}$ のビーム径によりきわめて微小な部分を分析しても、CeとAlの組成分布は理論原子比(Ce:Al=71:29)を中心として $\pm 10\%$ 以内と、狭い範囲に集中していることが明らかである。もし例えば CeO_2 及び Al_2O_3 が $0.5 \, \text{nm}$ 以上の粒子として存在するとすれば、上記測定によってCeが 100%あるいは Alが 100%の部分が多数検出されるはずである。

【0051】次に、上記の複合酸化物粉末85gと、固形分15重量%のセリアゾル 100g、及びイオン交換水を混合・粉砕し、スラリーを調製した。次に容量35cc、セル数 200/in² のコージェライト製ハニカム基材を用意し、上記スラリーをウェットコートした後、 200℃で1時間乾燥し 500℃で3時間焼成してコート層を形成した。コート層は4g形成された。

【0052】このコート層をもつハニカム基材に、所定 濃度の硝酸ロジウム水溶液の所定量を含浸させ、大気中 300℃で3時間焼成してRhをコート層に5重量光担持した。こうして水素生成触媒を調製した。

【0053】一方、 Al₂O₃粉末とアルミナゾル及びイオン交換水を混合・粉砕し、スラリーを調製した。次に容量35cc、セル数 200/in² のコージェライト製ハニカム

基材を用意し、上記スラリーをウェットコートした後、 200℃で1時間乾燥し 500℃で3時間焼成してコート層 を形成した。コート層は4g形成された。

【0054】このコート層をもつハニカム基材に、所定 濃度の硝酸白金水溶液の所定量を含浸させ、乾燥・焼成してPtを2重量%担持した。さらに所定濃度の酢酸バリウム水溶液の所定量を含浸させ、乾燥・焼成してバリウムを0.008モル担持した。これを炭酸アンモニウム水溶液で処理し、担持されたバリウムを炭酸塩化した。これによりNO、吸蔵触媒を調製した。

【0055】触媒モデルガス評価装置内の前段に上記水素生成触媒を配置し、その後段に上記 NO_x 吸蔵触媒を配置して実施例1の浄化装置とした。そして表1に示すディーゼル排ガス相当のリーンモデルガスと、 C_3H_6 を含むリッチモデルガスをそれぞれ57秒間と3秒間ずつ入りガス温度 400° で交互に流し、その時の触媒最後尾から排出された60秒間の NO_x 濃度を測定した。そして入りガス中のNOとの関係から NO_x 浄化率を算出し、結果を表2に示す。

【0056】またリッチモデルガスの流入時に、水素生成触媒から流出するガスをサンプリングし、H₋濃度を測定した。結果を表2に示す。

【0057】 さらに表1に示す両モデルガスにそれぞれ $S0_2$ を50 ppm添加したガスを用い、上記と同様にしてN0、浄化率を測定した。結果を表2に示す。

【0058】(比較例1)複合酸化物粉末に代えてCeO₂粉末を用いたこと以外は実施例1と同様にして水素生成触媒を調製した。そして実施例1と同様のNO_x吸蔵触媒と共に同様に評価装置に配置し、同様にしてNO_x浄化率、H₂濃度及び SO₂を含むガスを用いた場合のNO_x浄化率を測定して、結果を表2に示す。

【0059】なお比較例1の水素生成触媒は、水蒸気改質反応によりHLを生成する。

【0060】(比較例2)複合酸化物粉末に代えて Al. 0.粉末を用いたこと以外は実施例1と同様にして水素生成触媒を調製した。そして実施例1と同様のNO、吸蔵触

媒と共に同様に評価装置に配置し、同様にしてNO_x 浄化 率、Ha濃度及び SO_cを含むガスを用いた場合のNO_x 浄化 率を測定して、結果を装2に示す。

【0061】なお比較例2の水素生成触媒は、部分酸化 反応によりH₂を生成する。

【0062】(比較例3)複合酸化物粉末に代えてTiO。粉末を用いたこと以外は実施例1と同様にして水素生成触媒を調製した。そして実施例1と同様のNO、吸蔵触媒と共に同様に評価装置に配置し、同様にしてNO、浄化率及びHa濃度を測定して、結果を表2に示す。

【0063】なお比較例3の水素生成触媒は、部分酸化 反応によりH。を生成する。

【0064】(比較例4)複合酸化物粉末に代えて Al_2 0 $_2$ 粉末を用いたこと、及びRhに代えてPtを担持したこと以外は実施例1と同様にして水素生成触媒を調製した。そして実施例1と同様の NO_x 吸蔵触媒と共に同様に評価装置に配置し、同様にして NO_x 浄化率及び H_2 濃度を測定して、結果を表2に示す。

【0065】なお比較例4の水素生成触媒は、部分酸化 反応によりbleを生成する。

【0066】(比較例5) NO_x 吸蔵触媒に代えて、バリウムを担持しなかったこと以外は実施例1のNO_x吸蔵触媒と同様に製造された触媒を用い、実施例1と同様の水素生成触媒の下流側に配置した。そして実施例1と同様にしてNO_x 浄化率及びH_a濃度を測定して、結果を表2に示す。

【0067】<評価>

[0068]

【表1】

ガス種(濃度)		NO (ppm)	CaHe (%)	(%)	(%)	
リーン	10.0	400		10.0	10.0	残部
リッチ	0.75	400	0.67	10.0	10.0	残部

[0069]

【表2】

	上流似触媒		下流似触媒		NO. 浄化率	Hz油在	NO. 浄化率
	担体	貴金属	担体	坦持金属	NO _x 浄化率		(SO ₂ 入り)
実施例1	Ca-Al複合酸化物	Rh	Ala0a	Pt, Ba	95 %	1.8 %	93 %
比較例1	CeOz	Rh	A7203	Pt, Ba	73 %	1.0 %	48 %
比較例2	A1:0:	Rh	AlzOs	Pt. Ba	60 % .	0.2 %	15 %
比較例3	T10.	Rh	AT20a	Pt. Ba	56 %	0.15%	_
比較例4	A1:0:	Pt	Ale0s	Pt. Ba	30 %	0.02%	_
比較例5	Ce一AT複合酸化物	Rh	A1203	Pt	.25 %	0.01%	_

【0070】表2より、実施例1の浄化装置は NO_x 净化率にきわめて優れ、これは水素生成触媒による H_x の生成量が多いことに起因していることが明らかである。また実施例1の浄化装置によれば、 SO_2 を含むガス中で使用しても高い NO_x 浄化率を示し、これは NO_x 吸蔵触媒の硫黄波器が抑制されたことに起因していると考えられる。【0071】(実施例2)図2に本実施例のディーゼル排ガス浄化装置の概略構成図を示す。この浄化装置は、

排ガス流路1に配置された水素生成触媒2と、排ガス流路1の水素生成触媒2の下流側に配置されたNO_x吸减触媒3とから構成されている。以下、各触媒の製造方法を説明し、構成の詳細な説明に代える。

【0072】実施例1で調製された複合酸化物粉末85g、固形分15重量%のセリアブル 100g及びイオン交換水を混合・粉砕し、スラリーを調製した。このスラリーを直径30mm、長さ20mm、セル数 400/in からなるコー

ジェライト製パニカム基材にウェットコートした後、200℃で1時間乾燥し 500℃で3時間焼成してコート層を形成した。コート層はパニカム基材1リットルあたり 400g形成した。

【0073】このコート層をもつハニカム基材に、所定 濃度の硝酸ロジウム水溶液の所定量を含浸させ、大気中 300℃で3時間焼成してRhを担持した。Rhは、ハニカム 基材1リットルあたり20g担持された。こうして水素生 成触媒2を調製した。

【0074】一方、y-Al₂O₃粉末 100g、TiO₂粉末 100g、CeO₂粉末20g、ベーマイト24g及びイオン交換水を混合・粉砕し、スラリーを調製した。このスラリーを直径30mm、長さ20mm、セル数 400/in² からなるコージェライト製ハニカム基材にウェットコートした後、 200℃で1時間乾燥し 500℃で3時間焼成してコート層を形成した。コート層はハニカム基材1リットルあたり 240g形成した。

【0075】そして所定濃度のジニトロジアンミン白金 硝酸溶液の所定量及び所定濃度の硝酸ロジウム水溶液の 所定量を含浸させ、大気中 300℃で3時間焼成して、コート層にPtとRhを担持した。さらに所定濃度の酢酸バリウム、硝酸カリウム及び硝酸リチウムの混合水溶液の所定量を含浸させ、大気中 300℃で3時間焼成して、コート層にBa、K及びLiを担持した。各金属の担持量は、ハニカム基材1リットルあたり、Ptが2g、Rhが 0.1g、Baが 0.2モル、Kが 0.1モル、Liが 0.1モルである。こうしてNO、吸蔵触媒3を調製した。

【0076】触媒モデルガス評価装置内の前段に上記水 素生成触媒2を配置し、その後段に上記NO_x 吸蔵触媒3 を配置して本実施例の浄化装置とした。そして表3に示 すモデルガスを3000ml/分で供給しながら、300℃で2 時間30分加熱する硫黄被毒処理を行った。

[0077]

【表3】

ガス種	(%)	CO ₂ (%)	SO ₂ (ppm)	H ₂ O (%)	N ₂
濃度	10	10	400	3.0	残部

【0078】そして硫黄被毒処理後の浄化装置に、表4に示すモデルガスを3000ml/分で供給しながら、10℃/分の昇温速度で室温から 600℃まで昇温する硫黄脱雕試験を行った。そしてその際に浄化装置からの出ガス中の硫黄濃度を全硫黄分析計によって測定し、結果を図3に示す。

[0079]

【表4】

ガス種	n-C _{1,8} H _{3.4} (ppm)	0 ₂ (%)	H ₂ O (%)	N ₂
渡度	320	0.25	10	残部

【0080】次に、硫黄脱雕試験後の浄化装置を用い、表1に示すディーゼル排ガス相当のリーンモデルガスと、CoHoを含むリッチモデルガスをそれぞれ57秒間と3秒間ずつ交互に流し、その時の触媒最後尾から排出された60秒間のNO、濃度を測定した。測定は入りガス温度200~500℃の間で100℃毎に行った。そして入りガス中のNOとの関係からNO、浄化率を算出し、結果を図4に示す。

【0081】(比較例6)水素生成触媒2を用いず、NO x 吸蔵触媒3のみを用いたこと以外は実施例2と同様にして、浄化装置を構成した。そして実施例2と同様にして硫黄濃度とNOx浄化率を測定し、結果を図3及び図4に示す。

【0082】<評価>図3より、実施例2の浄化装置は 比較例6に比べて高い硫黄脱離性を示していることがわ かる。これは、水素生成触媒2で生成したH₂によってNO 、吸蔵触媒3に被毒した硫黄酸化物の還元・脱離が促進 されたためと考えられる。

【0083】そして図4より、実施例2の浄化装置は比較例6に比べて高いNO_x 浄化率を示している。これは、比較例6の浄化装置ではNO_x 吸蔵触媒の硫黄被毒が解消されていないのに対し、実施例2の浄化装置では図3のように硫黄脱離量が多くNO_x吸蔵触媒のNO_x 吸蔵能が回復したためと考えられる。

【0084】さらに低温域においても実施例2の方が比較例6より高い NO_x 浄化率を示していることから、水素生成触媒2で生成した H_z がモデルガス中の NO_x あるいは NO_x 吸蔵触媒3から放出された NO_x を高効率で還元していると考えられる。

[0085]

【発明の効果】すなわち本発明のディーゼル排ガス浄化装置及び排ガス浄化方法によれば、低温域から NO_x 吸蔵触媒の硫黄被毒を解消して NO_x 吸蔵能を回復することができるので、低温域から効率よく NO_x を浄化することができ耐久性も向上する。

【図面の簡単な説明】

【図1】実施例1で調製された複合酸化物粉末の ø 0.5 nmの範囲の元素分析の結果を示し、AlとCeの原子比の分布図である。

【図2】本発明の一実施例の排ガス浄化装置の概略構成を示すブロック図である。

【図3】入りガス温度と出ガス中の硫黄濃度との関係を示すグラフである。

【図4】入りガス温度とNO、浄化率との関係を示すグラフである。

【符号の説明】

1:排ガス流路

嚴触媒

2:水素生成触媒

3:NO,吸

【図1】

【図2】

【図3】

[図4]

フロントページの続き

(51) Int. Cl. 7

識別記号

F 0 1 N 3/28

301

FI

B O 1 D 53/36 B O 1 J 23/56 1 0 1 A

301A

テーマコート (参考)

(72) 発明者 榊原 雄二

愛知県愛知郡長久手町大字長湫字橫道41番 地の1株式会社豊田中央研究所内

F ターム(参考) 3G091 AA18 AA28 AB01 AB06 BA01 BA11 BA14 BA39 CA18 DA01 DA02 DB10 FB02 FB03 FB10 FB11 FB12 FC04 FC07 FC08 GA06 GB01X GB04W GB05W GB10W GB10X GB17X HA08 4D048 AA06 AA18 AB02 AC02 BA01Y ВАОЗҮ ВЛОЗХ ВАОБУ ВАОТУ BAOSY BAIOX BAIAX BAI5X BA19X BA30X BA31Y BA33X BA41X BA42Y BB02 CC38 CC44 CC61 CD08 CD10 EA04 4G069 AA03 BA01A BA02A BA04A BA04B BA05A BA13B BB04A BB06A BB06B BC01A BC03B BC04B BC08A BC13B BC16A BC16B BC38A BC43A BC43B BC69A BC71A BC71B BC72A BC75A BC75B CA02 CA03 CA08 CA13 CA15 CC17 EA01Y EA02Y EA19 EB12Y EB14Y EC06Y EC07Y EC08Y EC14Y

EC15Y EC16Y EE09 FC08

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.