BHARATIYA VIDYA BHAVAN'S

SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

End Semester Examination April/May 2019

Max. Marks: 60 Class: FYMCA

Course Code: MCA 25

Subject: **Probability and Statistics**Instructions: (1) All questions are compulsory.

(2) Use of scientific calculator is allowed.

(3) Assume any necessary data but justify the same.

Q.1(a)

(i)
$$f_X(x) = \int_{x}^{2} f(x, y) dy = \frac{4}{9} x(4 - x^2);$$
 $1 \le x \le 2$

= 0;

otherwise

Duration: 3 hrs

/05/2019

Semester: II

Date:

Time:

$$f_Y(y) = \int_{1}^{y} f(x, y) dx = \frac{4}{9} y(y^2 - 1);$$

= 0;

1≤y≤2

otherwise

(ii)
$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)} = \frac{\frac{8}{9}xy}{\frac{4}{9}y(y^2 - 1)} = \frac{2x}{y^2 - 1};$$
 $1 \le x \le y$

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_X(x)} = \frac{\frac{8}{9}xy}{\frac{4}{9}x(4-x^2)} = \frac{2y}{4-x^2}; \qquad x \le y \le 2$$

(b) n=6

Year	X=Year- 1995	У	x ²	y ²	ху
7	15	561	55	53819	1519

$$\overline{x} = \frac{\sum x_i}{n} = 2.5 , \quad \overline{y} = \frac{\sum y_i}{n} = 93.5, \ b_{yx} = \frac{\frac{\sum x_i y_i}{n} - \frac{\sum x_i}{n} \times \frac{\sum y_i}{n}}{\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2} = 6.657143$$

Regression of y on x is

$$y - \overline{y} = b_{vx}(x - \overline{x})$$

Hence y - 93.5 = 6.657143(x - 2.5)

To estimate asset in the year 2002, x=2002-1995=7

STITUTE SECH

BHARATIYA VIDYA BHAVAN'S

SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

Hence y-93.5 = 6.657143(7-2.5) : y=123.4571 Karl Pearson's coefficient of correlation is given by

$$r(x,y) = \frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n} - \left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)^{2}}} = 0.753635$$

Q.2: Consider an example of 2 dices.

Let $A=1^{st}$ dice show 1,2,3. $B=1^{st}$ dice show 3,4,5. C= sum of 2 numbers is 9.

∴ P(A)=
$$\frac{18}{36} = \frac{1}{2}$$
, P(B)= $\frac{18}{36} = \frac{1}{2}$, P(C)= $\frac{4}{36} = \frac{1}{9}$.

$$\therefore P(A \cap B) = \frac{6}{36} = \frac{1}{6} \text{ and } P(A) \times P(B) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \implies P(A \cap B) \neq P(A) \times P(B)$$

Now A
$$\cap$$
C={(3,6)} :: P(A \cap C)= $\frac{1}{36}$ and P(A)× P(C)= $\frac{1}{2} \times \frac{1}{9} = \frac{1}{18}$

$$\Rightarrow$$
 P(A \cap C) \neq P(A)× P(C)

$$\therefore P(B \cap C) = \frac{3}{36} = \frac{1}{12} \text{ and } P(B) \times P(C) = \frac{1}{2} \times \frac{1}{9} = \frac{1}{18} \implies P(B \cap C) \neq P(B) \times P(C)$$

:.
$$P(A \cap B \cap C) = \frac{1}{36}$$
 and $P(A) \times P(B) \times P(C) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{9} = \frac{1}{36}$

$$\Rightarrow P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$$

OR

Given that

The number of items produced by X: number of items produced by Y: number of items produced by Z=3:1:1

Let the event E₁ denotes that an item is produced by factory X

E₂ denotes that an item is produced by factory Y

E₃ denotes that an item is produced by factory Z

A denotes that an item is produced is defective

$$P(E_1) = 0.6$$
, $P(E_2) = 0.2$, $P(E_3) = 0.2$

Given $P(A/E_1)=0.03$, $P(A/E_2)=0.05$, $P(A/E_3)=0.03$.

(i)
$$P(A)=P(A/E_1)P(E_1)+P(A/E_2)P(E_2)+P(A/E_3)P(E_3)$$

= $0.03\times0.6+0.05\times0.2+0.03\times0.2=0.018+0.010+0.006=0.034$

(ii)
$$P(E_1/A) = \frac{P(A/E_1) \times P(E_1)}{P(A)} = \frac{0.03 \times 0.6}{0.0.34} = \frac{9}{17} = 0.5294$$

BHARATIYA VIDYA BHAVAN'S

SARDAR PATEL INSTITUTE OF TECHNOLOGY

210 CH

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

$$P(E_2/A) = \frac{P(A/E_2) \times P(E_2)}{P(A)} = \frac{0.05 \times 0.2}{0.0.34} = \frac{5}{17} = 0.2941$$

$$P(E_3/A) = \frac{P(A/E_3) \times P(E_3)}{P(A)} = \frac{0.03 \times 0.2}{0.0.34} = \frac{3}{17} = 0.1765$$

Q.3 Given population mean μ = 5 cm

Sample size n = 10

X	x ²
∑ 50.12	251.2278

Sample mean
$$\bar{x} = \frac{\sum x}{n} = 5.012 \text{ cm}$$

Sample standard deviation
$$s = \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2} = \sqrt{\frac{251.2278}{10} - \left(\frac{5.012}{10}\right)^2} = 0.05134$$

The null hypothesis H_0 is : average length of nail produced = 5 cm

Alternate hypothesis H_a is : average length of nail produced ≠ 5 cm

The test statistic
$$t = \frac{\bar{x} - \mu}{s / \sqrt{n-1}} = \frac{5.012 - 5}{0.05134 / \sqrt{10-1}} = 0.7012$$

Level of significance α =0.05

Critical value at 5% level of significance for 9 degrees of freedom is 1.833.

Since the calculated value of $|t_{\alpha}| = 0.7012$ is less than the critical value, the null hypothesis is accepted. \therefore The average height of the population is 5 cm.

OR

: Given n=100,
$$\overline{x} = 40$$
, $\sigma_{x} = 10$ $\therefore \Sigma x = \overline{x} \times n = 4000$
and $\sigma_{x} = \sqrt{\frac{\sum x_{i}^{2}}{n} - (\frac{\sum x_{i}}{n})^{2}} \therefore 10 = \sqrt{\frac{\sum x_{i}^{2}}{100} - (40)^{2}}$ This gives $\therefore \Sigma x^{2} = 170000$

For the correct data $\Sigma x = 4000 - (30 + 72) + (3 + 27) = 3928$

and
$$\Sigma x^2 = 170000 - (30^2 + 72^2) + (3^2 + 27^2) = 164654$$

Hence correct mean
$$\bar{x} = \frac{\sum x_i}{n} = \frac{3928}{100} = 39.28$$

and correct s.d.
$$\sigma_x = \sqrt{\frac{\sum x_i^2}{n} - (\frac{\sum x_i}{n})^2} = \sqrt{\frac{164654}{100} - (\frac{3928}{100})^2} = 10.18$$

Q. 4 Theory

OR

Given p= 0.001 = probability that an individual suffers a bad reaction

BHARATIYA VIDYA BHAVAN'S

SARDAR PATEL INSTITUTE OF TECHNOLOGY

MUNSHI NAGAR, ANDHERI (WEST), MUMBAI – 400 058, India (Autonomous College Affiliated to University of Mumbai)

$$n= 2000 = Sample size$$

 $q=1-p=0.999$

Mean
$$\lambda = np = 2000 \times 0.001 = 2$$

$$P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!},$$

$$P(X > 4) = 1 - P(X \le 4) = 1 - \sum_{x=0}^{4} \frac{e^{-2} \times 2^x}{x!} = 1 - e^{-2} \left(\frac{2^0}{0!} + \frac{2^1}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^3}{3!} + \frac{2^4}{4!} \right)$$

$$=1-0.94735=0.05265$$

$$P(X < 3) = P(X \le 2) = \sum_{x=0}^{2} \frac{e^{-2} \times 2^{x}}{x!} = e^{-2} \left(\frac{2^{0}}{0!} + \frac{2^{1}}{1!} + \frac{2^{2}}{2!} \right) = 0.6767$$

O. 5 (a) Assumed mean (a)=37.5, class width (c) = 5

Age (years)	Class Marks(x _i)	Frequency fi	Cumulative Freq	$u_i = \frac{x_i - a}{c}$	f_iu_i	$f_i u_i^2$
Σ		100		/	-5	275

The A.M. is given by
$$\bar{x} = a + c \times \frac{\sum f_i u_i}{\sum f_i} = 37.5 + 5 \times \frac{(-5)}{100} = 37.25$$

$$\sigma_x = c\sqrt{\frac{\sum (f_f u_i^2)}{N} - \left(\frac{\sum f_i u_i}{N}\right)^2} = 5\sqrt{\frac{275}{100} - \left(\frac{-5}{100}\right)^2} = 8.2878$$

Mode =
$$l_1 + \left(\frac{d_1}{d_1 + d_2}\right)(l_2 - l_1) = 35 + \left(\frac{5}{5 + 10}\right)(40 - 35) = 36.67$$

Karl Peareon's Coefficient of skewness=
$$\frac{Mean - Mode}{S \tan dard \ Deviation} = \frac{37.25 - 36.67}{8.2878}$$

= 0.06998

(b)
$$E(X) = \sum_{n=1}^{n} x P(x) = \sum_{n=1}^{n} x \times \frac{1}{n} = \frac{1}{n} \sum_{n=1}^{n} x = \frac{1}{n} \times \frac{n(n+1)}{2} = \frac{n+1}{2}$$