Supplementary Handout for Dis 12: Inference about Two Populations

1 Motivation

- Last discussion, we talked about how to conduct hypothesis testings on parameters obtained from one population.
- This week, we will look at how to conduct hypothesis for parameters obtained from two different populations.
- One immediate question: how to test something like

$$H_0: \mu_1 = \mu_2$$

 $H_1: \mu_1 \neq \mu_2$

where both sides of the equation contain something unknown (μ_1 on the left hand side, μ_2 on the right hand side)?

- Solution: we can rewrite the above hypotheses as the following:

$$H_0: \mu_1 - \mu_2 = 0$$

 $H_1: \mu_1 - \mu_2 \neq 0$

Now the left hand side is something unknown related to the population parameters & waiting to be tested, and the right hand side is a concrete number to test the unknown against.

- Similar to last discussion about the one population case, we will discuss how to test / compare the following three sets of population parameters:
 - 1. The population means $(\mu_1 \mu_2)$
 - 2. The population variances $(\frac{\sigma_1^2}{\sigma_2^2})$
 - 3. The population success proportions ($p_1 p_2$, from two binomial experiments)

2 General Approach

- The general testing approach that we will take is very similar to what we talked about last discussion:
 - If using the rejection region & test statistic method:
 - 1. Find out what distribution the test statistic follows.
 - 2. Set up significance level & the appropriate sizes for the tail-ends of the distribution. Find cutoff values to construct rejection region.
 - 3. Calculate test statistic from the given sample, and see if it falls within the rejection region.
 - * If test statistic falls within the rejection region, then we reject H_0 under the specified significance level.
 - * If test statistic doesn't fall within the rejection region, then we fail to reject H_0 under the specified significance level.

- If using the confidence interval method:
 - 1. Find out what distribution the test statistic follows.
 - 2. Construct (1α) level of confidence interval based on the confidence level (1α) and the associated cutoffs from the distribution.
 - 3. Check if the hypothesized null falls within the (1α) confidence interval:
 - * If the hypothesized null falls within the (1α) confidence interval, then we fail to reject H_0 at α significance level.
 - * If the hypothesized null doesn't fall within the (1α) confidence interval, then we reject H_0 at α significance level.

3 Inference about Two Populations

3.1 About the difference between two population means ($\mu_1 - \mu_2$)

3.2 About two population variances $(\frac{\sigma_1^2}{\sigma_2^2})$

- We are introduced to a new distribution: F distribution
 - F distribution usually looks like the following:

It looks very similar to the Chi-squared distribution. (In fact, F distribution is actually obtained by dividing a Chi-squared distribution by a different Chi-squared distribution.)

- A F distribution is denoted as the following:

$$F_{\nu_1,\nu_2}$$

Here, v_1 is the numerator degree of freedom, and v_2 is the denominator degree of freedom.

• The F distribution table is usually given for a right tail area only – how does one find the appropriate left tail cutoff value, if we are performing a two-tail test?

Solution: the left tail cutoff value can be found as right tail cutoff value from a slightly different F distribution (switching the numerator and denominator degree of freedom)

$$F_{1-\frac{\alpha}{2},\nu_1,\nu_2} = \frac{1}{F_{\frac{\alpha}{2},\nu_2,\nu_1}}$$

About the difference between two success proportions ($p_1 - p_2$)

$$H_0: P_1 - P_2 = D$$

Does $\hat{R} - \hat{R}$ follow a normal distribution?

i.e. Check if ALL of the following hold:

- D n, 8 = 5
- 2 n1(1-P1) >5
- 3 n2 p2 >5
- (1-12)≥5

test statistic

Pounds for CI:

$$(\hat{p}_1 - \hat{p}_2) \mp Z_{N_2} \times \sqrt{\hat{p}(1-\hat{p})(\frac{1}{N_1} + \frac{1}{N_2})}$$

Test statistic
$$= \frac{(\hat{p}_1 - \hat{p}_2^2)}{|\hat{p}_1 - \hat{p}_2|} \stackrel{?}{\sim} N(0, 1^2)$$

$$= \frac{(\hat{p}_1 - \hat{p}_2^2) - D}{|\hat{p}_1 - \hat{p}_2|} \stackrel{?}{\sim} N(0, 1^2)$$

$$= \frac{(\hat{p}_1 - \hat{p}_2^2) - D}{|\hat{p}_1 - \hat{p}_2^2|} \stackrel{?}{\sim} N(0, 1^2)$$
where $\hat{p} = \frac{|\hat{p}_1 n_1 + |\hat{p}_2|}{|n_1 + |n_2|}$
Bounds for CI:
$$(\hat{p}_1^2 - \hat{p}_2^2) + Z_{N_2} \times \sqrt{\frac{\hat{p}_1^2(1 - \hat{p}_2^2)}{|n_1|} + \frac{\hat{p}_2^2(1 - \hat{p}_2^2)}{|n_2|}}$$