1 Path-connected spaces

Definition 1.1. Let \mathcal{X} be a topological space. A continuous map $f:[0,1] \to \mathcal{X}$ is called path. If f(0) = x and f(1) = y, we say f is a path from x to y.

Definition 1.2. A space \mathcal{X} is called path-connected if it is nonempty and any two points in \mathcal{X} can be connected by a path.

Theorem 1.1. Any path-connected space is connected.

Proof. Suppose \mathcal{X} a path-connected space, take $x \in \mathcal{X}$. Then we consider all path from x to y for all $y \in \mathcal{X}$, we can see that all these path is connected cause [0,1] is connected. Then:

$$\bigcup_{y \in \mathcal{X}} f_y([0,1])$$

is connected cause every $f_y([0,1])$ (the path from x to y) is connected, and these path contain x.

Definition 1.3. Given a path $f:[0,1] \to \mathcal{X}$, one can consider the time-reversed path \bar{f} :

$$\bar{f}(t) = f(1-t)$$

Note that \bar{f} is continuous cause f is continuous.

Definition 1.4. let f and g be paths in the topological space \mathcal{X} . If f(1) = g(0), we can join these two paths into one $h: [0,1] \to \mathcal{X}$:

$$h(t) = \begin{cases} f(2t) & \text{if } t \le \frac{1}{2} \\ g(2t-1) & \text{if } t \ge \frac{1}{2} \end{cases}$$

Theorem 1.2. Show that \sim is equivalence relation: $x \sim y$ iff there is a path from x to y.

Proof.

- (Reflexivity) Obviously, there is a path from x to x.
- (Symmetry) Consider the time-reversed path.
- (Transitivity) Consider the concatenation of paths.

The equivalence class of point x for the equivalence relation \sim is called path-connected component of x.

Theorem 1.3. Show that the product of path-connected space is path-connected.

Proof. Suppose \mathcal{X} and \mathcal{Y} are path-connected spaces, for any $(a,b), (c,d) \in \mathcal{X} \times \mathcal{Y}$, we know there are paths $a \xrightarrow{f} c$ and $b \xrightarrow{g} d$. We claim h(t) = (f(t), g(t)) is a path from (a,b) to (c,d). We need to show that h is continuous. For any open sets $\bigcup_{\alpha} V_{\alpha} \times W_{\alpha}$ in $\mathcal{X} \times \mathcal{Y}$ for every α , we claim $h^{-1}(V_{\alpha} \times W_{\alpha}) = f^{-1}(V_{\alpha}) \cap g^{-1}(W_{\alpha})$.

- (\subseteq) For any $i \in [0,1]$ such that $h(i) \in V_{\alpha} \times W_{\alpha}$, we know $f(i) \in V_{\alpha}$ and $g(i) \in W_{\alpha}$, therefore $i \in f^{-1}(V_{\alpha}) \cap g^{-1}(W_{\alpha})$.
- (\supseteq) For any $i \in f^{-1}(V_{\alpha}) \cap g^{-1}(W_{\alpha})$, we know $h(i) = (f(i), g(i)) \in V_{\alpha} \times W_{\alpha}$ cause $f(i) \in V_{\alpha}$ and $g(i) \in W_{\alpha}$, therefore $i \in h^{-1}(V_{\alpha} \times W_{\alpha})$.

We can see that $h^{-1}(V_{\alpha} \times W_{\alpha})$ is open cause f and g are continuous. Then we claim $h^{-1}(\bigcup V_{\alpha} \times W_{\alpha}) = \bigcup h^{-1}(V_{\alpha} \times W_{\alpha})$.

- (\subseteq) For any $i \in [0,1]$ such that $h(i) \in \bigcup V_{\alpha} \times W_{\alpha}$, we know $h(i) \in V_{\alpha} \times W_{\alpha}$ for some α , therefore $i \in h^{-1}(V_{\alpha} \times W_{\alpha})$.
- (\supseteq) For any $i \in \bigcup h^{-1}(V_{\alpha} \times W_{\alpha})$, we know $i \in h^{-1}(V_{\alpha} \times W_{\alpha})$ for some α , therefore $h(i) \in V_{\alpha} \times W_{\alpha} \subseteq \bigcup V_{\alpha} \times W_{\alpha}$.

Therefore the inverse image of some open sets in $\mathcal{X} \times \mathcal{Y}$ is open, cause it is a union of some open sets, then h is continuous.

Hey, we are trying to obtain an arrow $h:[0,1] \to \mathcal{X} \times \mathcal{Y}$ from $f:[0,1] \to \mathcal{X}$ and $g:[0,1] \to \mathcal{Y}$, it is similar to the unique morphism in the product diagram!

(Although we didn't show that the product of topological spaces is really a categorical product)

Exercise 1.1. Show that the product of topological spaces is a categorical product.

Proof. Consider the topological product equipped with natural projections. Suppose \mathcal{Z} a topological space and $f: \mathcal{Z} \to \mathcal{X}, g: \mathcal{Z} \to \mathcal{Y}$ are continuous maps, then we claim $u: \mathcal{Z} \to \mathcal{X} \times \mathcal{Y}$ given by u(z) = (f(z), g(z)) is continuous. For any open sets in $\mathcal{X} \times \mathcal{Y}$, it has form $\bigcup_{\alpha} V_{\alpha} \times W_{\alpha}$ where V_{α} and W_{α} are open sets in \mathcal{X} and \mathcal{Y} , respectively. For each α , we claim $u^{-1}(V_{\alpha} \times W_{\alpha}) = f^{-1}(V_{\alpha}) \cap g^{-1}(W_{\alpha})$.

- (\subseteq) For any $z \in u^{-1}(V_{\alpha} \times W_{\alpha})$, we know $u(z) = (f(z), g(z)) \in V_{\alpha} \times W_{\alpha}$, therefore $z \in f^{-1}(V_{\alpha})$ and $z \in g^{-1}(W_{\alpha})$.
- (\supseteq) For any $z \in f^{-1}(V_{\alpha}) \cap g^{-1}(W_{\alpha})$, $u(z) = (f(z), g(z)) \in V_{\alpha} \times W_{\alpha}$ since $f(z) \in V_{\alpha}$ and $g(z) \in W_{\alpha}$, therefore $z \in u^{-1}(V_{\alpha} \times W_{\alpha})$.

Note that $u^{-1}(V_{\alpha} \times W_{\alpha})$ is open cause it is the intersection of two open sets. It is easy to show that $u^{-1}(\bigcup_{\alpha} V_{\alpha} \times W_{\alpha}) = \bigcup_{\alpha} u^{-1}(V_{\alpha} \times W_{\alpha})$, then $u^{-1}(\bigcup_{\alpha} V_{\alpha} \times W_{\alpha})$ is open cause it is the union of open sets. So u is continuous.

 $u \circ \pi_0 = f$ and $u \circ \pi_1 = g$ are trivial, u is unique cause $\mathcal{X} \times \mathcal{Y}$ is product in **Set**.