Introduction

Logic Circuit Laboratory

Logic Circuit Laboratory

Outline

- Lecturer
- Course Introduction
- Assessment
- Motivation
- Introduction to Logic circuit Laboratory
- Rules / Safety for Laboratory
- Devices

Analog device

source: http://www.onlyinyourstate.com

Digital Device

source: http://www.dmnews.com/

Computer -> Analog/ Digital

source: https://www.computerhope.com

6

Base number

Logic computer status

กำเนิด Logic

- 1. Intro to circuit analysis for CPE
- 2. Electronic for CPE
- 3. Digital circuit design

1. Intro to circuit analysis for CPE

R - Resistor

L - Inductor

C - Capacitor

Analog circuit

CPE -> Direct current circuit design

RLC = Passive component

10

1. Intro to circuit analysis for CPE

R – Resistor

L – Inductor

C - Capacitor

Analog circuit

CPE -> Alternating current circuit design Frequency response + Filter circuit

Digital?

2. Electronic for CPE

Electronic?

Electronic = Semiconductor + Passive component

2. Electronic for CPE

Electronic = Semiconductor + Passive component

2. Electronic for CPE

Electronic = Semiconductor + Passive component

4

2. Electronic for CPE

Transistor change the world

Electronic = Semiconductor + Passive component

Transistor change the world

2. Electronic for CPE

Digital?

3. Digital circuit design

INPUT			ОИТРИТ
×1	x ₂	хз	S
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	1

BOOLEAN ALGEBRA

17

3. Digital circuit design

EQUIVALENT CIRCUITS

3. Digital circuit design

KARNAUGH MAP

18

3. Digital circuit design

Logic Circuit Laboratory

Course Outline

1. Introduction

2. Logic Gats & Related Devices

3. Combination Circuits I

4. Combination Circuits II

5. Combination Circuits III

6. Sequential Circuit I

7. Sequential Circuit II

8. Sequential Circuit III

9. Sequential Circuit IV

10. FPGA I

11. FPGA II

12. Logic circuit project l

13. Logic circuit project II

14. Lab Exam

Digital + Lab logic Motivation

Combination Circuits I - III

Adder circuit

Subtractor circuit

Multiplier circuit

Divider circuit

22

Digital + Lab logic Motivation

The Full Adder Circuit

Digital + Lab logic Motivation

Sequential Circuit I - IV

Clock / Timer

Storage elements (Latches, Flip-Flops, Register)

Shift registers

Counters

RAM/ROM

26

Digital + Lab logic Motivation

FPGA - Model Base design

Digital + Lab logic Motivation

Basic CPU

Digital + Lab logic Motivation

Basic CPU

Digital + Lab logic Motivation

Basic CPU

Course Outline

- 1. Introduction
- 2. Logic Gates & Related Devices
- 3. Combination Circuits I
- 4. Combination Circuits II
- 5. Combination Circuits III
- 6. Sequential Circuit I
- 7. Sequential Circuit II

- 8. Sequential Circuit III
- 9. Sequential Circuit IV
- 10. FPGA I
- 11. FPGA II
- 12. Logic circuit project l
- 13. Logic circuit project II
- 14. Lab Exam

Assessment

Assessment

- Project Lab logic ทำกลุ่ม จะแจ้งขั้นตอนอีกครั้งหนึ่ง
- Lab exam ทำการสอบครั้งเดียว
- การเข้าแลป <=80%, หมดสิทธิ์สอบ
- คะแนน lab 50% จะแบ่งอัตราส่วนคะแนนจาก
 - ความสนใจเรียน
 - ใบงานในการเรียนแลป
 - การส่งงานภายในเวลาที่กำหนด

34

Group FB

- ไว้ติดต่อสื่อสาร
- Download Sheet Lab
- ประกาศคะแนน

