

What is claimed is:

- 1 1. A method of joining plastics comprising:
 - 2 a) creating a first surface diffusion zone containing therein a first polymerizable material, wherein said first surface diffusion zone is adjacent to a first surface of a first workpiece; and,
 - 3 b) creating a second surface diffusion zone containing therein a second polymerizable material, wherein said second surface diffusion zone is adjacent to a second surface of a second workpiece, and wherein said first polymerizable material and said second polymerizable material are capable of bonding with each other; and,
 - 4 c) bringing said first surface and said second surface into intimate contact at a bonding surface; and,
 - 5 d) causing said first polymerizable material and said second polymerizable material to react and join across said bonding surface.
- 6 2. A method of joining plastics as in claim 1 wherein at least one of said first surface or said second surface has at least one microfeature therein.
- 7 3. A method of joining plastics as in claim 1 wherein at least one of said first workpiece or said second workpiece is a high-performance engineered plastic.
- 8 4. A method of joining plastics as in claim 3 wherein at least one of said first workpiece or said second workpiece

3 is selected from the group consisting of polyetherimides,
4 polyphenylenes, and polyether-ether-ketones.

1 5. A method of joining plastics as in claim 4 wherein
2 said first workpiece and said second workpiece are
3 polyphenylenes and said first polymerizable material and
4 second polymerizable material are mixtures of styrene and
5 divinylbenzene.

1 6. A method of joining plastics as in claim 5 wherein
2 both of said mixtures have a ratio of approximately 9:1 by
3 volume of styrene to divinylbenzene.

1 7. A method of joining plastics comprising:
2 a) creating a first surface diffusion zone
3 containing therein a polymerizable material, wherein said
4 first surface diffusion zone is adjacent to a first joining
5 surface of a first workpiece; and,
6 b) providing a second workpiece having a second
7 joining surface; and,
8 c) bringing said first joining surface and said
9 second joining surface into intimate contact at a bonding
10 surface; and,
11 d) causing said polymerizable material to react and
12 join across said bonding surface.

1 8. A method of joining plastics as in claim 7 wherein at
2 least one of said first joining surface or said second
3 joining surface has at least one microfeature therein.

1 9. A method of joining plastics as in claim 7 wherein at
2 least one of said first workpiece or said second workpiece
3 is a high-performance engineered plastic.

1 10. A method of joining plastics as in claim 9 wherein at
2 least one of said first workpiece or said second workpiece
3 is selected from the group consisting of polyetherimides,
4 polyphenylenes, and polyether-ether-ketones.

1 11. A method of joining plastics as in claim 10 wherein
2 said first workpiece is a polyphenylene, said second
3 workpiece is a polyetherimide and said polymerizable
4 material is styrene.

1 12. A material comprising a plastic workpiece in
2 combination with a polymerizable material wherein said
3 polymerizable material is located in a surface diffusion
4 zone adjacent to a surface of said plastic workpiece.

1 13. A material as in claim 12 wherein said surface of said
2 plastic workpiece has at least one microfeature therein.

1 14. A material as in claim 12 wherein said plastic
2 workpiece is a high-performance engineered plastic.

1 15. A material as in claim 14 wherein said plastic
2 workpiece is selected from the group consisting of
3 polyetherimides, polyphenylenes, and
4 polyether-ether-ketones.

- 1 16. A material as in claim 15 wherein said workpiece is a
2 polyphenylene and said polymerizable material is selected
3 from the group consisting of styrene and mixtures of
4 styrene and divinylbenzene.
- 1 17. A microfluidic device comprising at least one
2 high-performance engineered plastic component joined by the
3 method of claim 1.
- 1 18. A microfluidic device as in claim 17 wherein at least
2 one of said high-performance engineered plastic components
3 is selected from the group consisting of polyetherimides,
4 polyphenylenes, and polyether-ether-ketones.
- 1 19. A microfluidic device as in claim 18 wherein at least
2 one of said high-performance engineered plastic component
3 is a polyphenylene.
- 1 20. A microfluidic device comprising at least one
2 high-performance engineered plastic component joined by the
3 method of claim 7.
- 1 21. A microfluidic device as in claim 20 wherein at least
2 one of said high-performance engineered plastic components
3 is selected from the group consisting of polyetherimides,
4 polyphenylenes, and polyether-ether-ketones.