

VS78D12 Three-terminal positive voltage regulator

FEATURES

 Maximum output current I_{OM}:1.0 A

Output voltage V_O: 12 V

• Continuous total dissipation P_D : 1.5 W ($T_a = 25 ^{\circ}C$)

ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)

Parameter	Symbol	Value	Unit
Input Voltage	Vi	35	V
Thermal Resistance from Junction to Ambient	R _{0JA}	66.7	°C/W
Operating Junction Temperature Range	T _{OPR}	-40~+125	°C
Storage Temperature Range	T _{STG}	-65~+150	℃

 $\textbf{ELECTRICAL CHARACTERISTICSAT SPECIFIED VIRTUAL JINCTION TEMPERATURE} (Vi=19V, Io=500mA, Ci=0.33 \mu F, Co=0.1 \mu F, unless otherwise specified)$

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Output Voltage	Vo	T _J =25°C	11.64	12.0	12.36	V
		Io= 5mA-1A,	11.4	12.0	12.6	V
		15.5V≤ V _i ≤27V				
Load Regulation	ΔVo	I_O =5mA -1.0A, T_J =25°C			240	mV
		I _O =250mA - 750mA,T _J =25°C			120	mV
Line Regulation	ΔVο	14.5V≤ Vi ≤30V,T _J =25°C			240	mV
		16V≤V _i ≤22V,T _J =25°C			120	mV
Quiescent Current	Iq	T _J =25°C		4.4	8.0	mA
Quiescent Current Change	Δlq	5.0mA≤ I _O ≤1.0A			0.5	mA
		15V ≤V _i ≤ 30V			0.8	mA
Output Voltage Drift	△Vo/△T	I _O =5mA		1.5		mV/℃
Output Noise Voltage	V _N	f=10Hz to 100KHz,T _J =25°C		42		μV/Vo
Ripple Rejection	RR	f =120Hz, 15V≤ V _i ≤25V		60		dB
Dropout Voltage	V _d	I _O =1.0A,T _J =25°C		2.0		V
Output Resistance	R _O	f = 1KHz		18		mΩ
Short Circuit Current	Isc	T _J =25°C		200		mA

^{*} Pulse test.

TYPICAL APPLICATION

Note: Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulators.

