

HABIB UNIVERSITY

Data Structures & Algorithms

CS/CE 102/171 Spring 2023 Instructor: Maria Samad

Binary Search Trees – Insertion

Student Name: _____

For the given trees, insert the specified nodes, by showing the Insertion Paths for each:

Insert Node 15

- Insertion Path = Root: 7 → Right: 9 → Right: 10 → Right: Null
- So insert Node 15 to the right of Node 10

Insert Node 11

- Insertion Path = Root: 7 → Right: 9 → Right: 10 → Right: 15 → Left: Null
- So insert Node 11 to the left of Node 15

Insert Pace:

- Insertion Path = Root: John → Right: Leon → Right:
 Zack → Left: Sam → Left: Null
- So insert Pace to the left of Sam

Insert James:

- Insertion Path = Root: John → Left: Bob → Right:
 Dave → Right: Null
- So insert James to the right of Dave

Insert J

- Insertion Path = Root: T → Left: R → Left: N →
 Left: H → Right: M → Left: Null
- So insert Node J to the left of Node M

Insert A

- Insertion Path = Root: T → Left: R → Left: N →
 Left: H → Left: E → Left: Null
- So insert Node A to the left of Node E

Insert 28

- Insertion Path = Root: 30 → Left: 20 → Right: 25 → Right: Null
- So insert Node 28 to the right of Node 25

Insert 33

- Insertion Path = Root: 30 → Right: 40 → Left: 35 → Left: Null
- So insert Node 33 to the left of Node 35

