13.15 Suppose that a B⁺-tree index on (*dept_name*, *building*) is available on relation *department*. What would be the best way to handle the following selection?

```
\sigma_{(building < \text{``Watson''}) \land (budget < 55000) \land (dept\_name = \text{``Music''})}(department)}
```

Answer: Using the index on ($dept_name$, building), we locate the first tuple having (building "Watson" and $dept_name$ "Music"). We then follow the pointers retrieving successive tuples as long as building is less than "Watson". From the tuples retrieved, the ones not satisfying the condition (budget < 55000) are rejected.

- **13.16** Show how to derive the following equivalences by a sequence of transformations using the equivalence rules in Section 13.2.1.
 - a. $\sigma_{\theta_1 \wedge \theta_2 \wedge \theta_3}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(\sigma_{\theta_3}(E)))$
 - b. $\sigma_{\theta_1 \wedge \theta_2}(E_1 \bowtie_{\theta_3} E_2) = \sigma_{\theta_1}(E_1 \bowtie_{\theta_3} (\sigma_{\theta_2}(E_2)))$, where θ_2 involves only attributes from E_2

Answer:

- a. Using rule 1, $\sigma_{\theta_1 \wedge \theta_2 \wedge \theta_3}(E)$ becomes $\sigma_{\theta_1}(\sigma_{\theta_2 \wedge \theta_3}(E))$. On applying rule 1 again, we get $\sigma_{\theta_1}(\sigma_{\theta_2}(\sigma_{\theta_3}(E)))$.
- b. $\sigma_{\theta_1 \wedge \theta_2}(E_1 \bowtie_{\theta_3} E_2)$ on applying rule 1 becomes $\sigma_{\theta_1}(\sigma_{\theta_2}(E_1 \bowtie_{\theta_3} E_2))$. This on applying rule 7.a becomes $\sigma_{\theta_1}(E_1 \bowtie_{\theta_3} (\sigma_{\theta_2}(E_2)))$.