

Characteristic-Based Flux Splitting for Implicit- Explicit Time Integration of Low-Mach Number Flows

Debojyoti Ghosh

Emil M. Constantinescu

Mathematics & Computer Science Argonne National Laboratory

13th U. S. National Congress on Computational Mechanics (USNCCM13) San Diego, CA, July 26 – 30, 2015

Motivation & Objectives

Numerical simulation of atmospheric flows

Governing equations: 2D Euler equations with gravitational

forces (conservation of mass, momentum and energy)

$$\frac{\partial}{\partial t} \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ e \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} \rho u \\ \rho u^{2} + p \\ \rho uv \\ (e+p)u \end{bmatrix} + \frac{\partial}{\partial y} \begin{bmatrix} \rho v \\ \rho uv \\ \rho v^{2} + p \\ (e+p)v \end{bmatrix} = \begin{bmatrix} 0 \\ \rho \mathbf{g} \cdot \hat{\mathbf{i}} \\ \rho \mathbf{g} \cdot \hat{\mathbf{j}} \\ \rho u \mathbf{g} \cdot \hat{\mathbf{i}} + \rho v \mathbf{g} \cdot \hat{\mathbf{j}} \end{bmatrix}$$

$$\circ \quad \mathbf{Mass, mome} \quad \mathbf{temperature} : \quad \mathbf{WRF} (\mathbf{NCAR})$$

Time scales: entropy $(u) \ll$ acoustic $(u \pm a)$

Time integration

- **Explicit time-integration** → time step size restricted by acoustic waves; 0 but acoustic waves do not significantly impact any atmospheric phenomenon.
- **Implicit time-integration** → Unconditionally stable; but requires solutions to **non-linear system** or **linearized approximation**.
- Implicit-Explicit (IMEX) time-integration → Integrate "fast" waves implicitly, "slow" waves explicitly.
 - > Characteristic-based partitioning of the hyperbolic flux (Acoustic waves integrated implicitly, entropy waves integrated explicitly)

Other (more popular) forms of the governing equations

- Exner pressure, velocity, potential temperature: COAMPS (US Navy), NMM (NCEP), MM5 (NCAR/PSU).
- Mass, momentum, potential WRF (NCAR), NUMA (NPS).

Giraldo, Restelli, Laeuter, 2010: Perturbation-based IMEX splitting of the hyperbolic flux (first-order perturbations implicit, higher-order perturbations explicit)

Selective preconditioning of acoustic modes

- Implicit Continuous Eulerian (ICE) technique (Harlow, Amsden, 1971)
- Preconditioning applied to stiff modes (Reynolds, Samtaney, *Woodward*, 2010)

Spatial Discretization

Conservative finite-difference discretization of a hyperbolic conservation law

$$u_t + f(u)_x = 0; \ f'(u) \in \Re$$

$$u_t + f(u)_x = 0; \ f'(u) \in \Re$$

$$\frac{du_j}{dt} + \frac{1}{\Delta x} [f(x_{j+1/2}, t) - f(x_{j-1/2}, t)] = 0$$

Weighted Essentially Non-Oscillatory (WENO) Schemes

- Weights depend on the local smoothness of the solution
- Optimal weights in smooth regions allow (2r-1)th order accuracy
- Near-zero weights for stencils with discontinuities → non-oscillatory behavior
- **Compact-Reconstruction WENO (CRWENO)** → Higher spectral resolution and lower absolute errors for same order of convergence

$$f_{j+1/2}^{(\text{WENO})} = \sum_{k=0}^{r} \omega_k f_{k,j+1/2}^{(r)} \qquad \omega_k = \omega(IS_k)$$

Smoothness indicator

WENO5

$$\hat{f}_{j+1/2}^{(5)} = \frac{1}{30} f_{j-2} - \frac{13}{60} f_{j-1} + \frac{47}{60} f_j + \frac{27}{60} f_{j+1} - \frac{1}{20} f_{j+2}$$

CRWENO5 (Compact finite difference scheme)

$$\frac{3}{10}\hat{f}_{j-1/2}^{(5)} + \frac{6}{10}\hat{f}_{j+1/2}^{(5)} + \frac{1}{10}\hat{f}_{j+3/2}^{(5)} = \frac{1}{30}f_{j-1} + \frac{19}{30}f_j + \frac{1}{3}f_{j+1}$$

Characteristic-based Flux Splitting (1)

Separation of acoustic and entropy modes in the flux for implicit-explicit time integration

1D Euler equations

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{u})}{\partial x} = 0$$

Semi-discrete ODE in time

$$\frac{\partial \mathbf{u}}{\partial t} = \hat{\mathbf{F}}(\mathbf{u}) = [\mathcal{D} \otimes \mathcal{A}(u)] \mathbf{u}$$

Example: Periodic density sine wave on a unit domain discretized by N=80 points.

Eigenvalues of the CRWENO5 discretization

Eigenvalues of the right-hand-side operator (u=0.1, a=1.0, dx=0.0125)

Discretization operator (e.g.:WENO5, CRWENO5) Flux Jacobian

$$\operatorname{eig}\left[\frac{\partial \hat{\mathbf{F}}}{\partial \mathbf{u}}\right] = \operatorname{eig}\left[\mathcal{D}\right] \times \operatorname{eig}\left[\mathcal{A}\left(\mathbf{u}\right)\right]$$
Time step size limit for linear stability

Eigenvalues of the right-hand-side of the ODE are the eigenvalues of the discretization operator times the characteristic speeds of the physical system

Characteristic-based Flux Splitting (2)

Splitting of the **flux Jacobian** based on its eigenvalues

$$\begin{split} \frac{\partial \mathbf{u}}{\partial t} &= \hat{\mathbf{F}} \left(\mathbf{u} \right) = \left[\mathcal{D} \otimes \mathcal{A} \left(u \right) \right] \mathbf{u} \\ &= \left[\mathcal{D} \otimes \mathcal{A}_{S} \left(u \right) + \mathcal{D} \otimes \mathcal{A}_{F} \left(u \right) \right] \mathbf{u} \\ &= \hat{\mathbf{F}}_{S} \left(\mathbf{u} \right) + \hat{\mathbf{F}}_{F} \left(\mathbf{u} \right) \\ &\text{"Slow" "Fast"} \\ &\text{flux Flux} \end{split}$$

$$egin{aligned} \mathcal{A}\left(\mathbf{u}
ight) &= \mathcal{R}\Lambda\mathcal{L} \ &= \mathcal{R}\Lambda_{S}\mathcal{L} + \mathcal{R}\Lambda_{F}\mathcal{L} \ &= \mathcal{A}_{\mathcal{S}}\left(\mathbf{u}
ight) + \mathcal{A}_{\mathcal{F}}\left(\mathbf{u}
ight) \ &\Lambda_{S} &= \left[egin{aligned} u & 0 & 0 & \Lambda_{F} &= & 0 \ 0 & 0 & 0 & u + a & u - a \end{aligned}
ight] \end{aligned}$$

Example: Periodic density sine wave on a unit domain discretized by N=80 points (CRWENO5).

$$\frac{\partial \mathbf{F}_{S,F}\left(\mathbf{u}\right)}{\partial \mathbf{u}} \neq \left[\mathcal{A}_{S,F}\right]$$

Small difference between the $\frac{\partial \mathbf{F}_{S,F}(\mathbf{u})}{\partial \mathbf{u}} \neq [\mathcal{A}_{S,F}]$ Small difference between the eigenvalues of the complete operator and the split operator.

(Not an error)

$$\operatorname{eig}\left[\frac{\partial \hat{\mathbf{F}}_{S}}{\partial \mathbf{u}}\right] \approx u \times \operatorname{eig}\left[\mathcal{D}\right] \quad \operatorname{eig}\left[\frac{\partial \hat{\mathbf{F}}_{F}}{\partial \mathbf{u}}\right] \approx \left\{u \pm a\right\} \times \operatorname{eig}\left[\mathcal{D}\right]$$

IMEX Time Integration with Characteristic-based Flux Splitting (1)

Apply Implicit-Explicit Runge-Kutta (PETSc - TSARKIMEX) time-integrators

$$\mathbf{U}^{(i)} = \mathbf{u}_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \hat{\mathbf{F}}_S \left(\mathbf{U}^{(j)} \right) + \Delta t \sum_{j=1}^{i} \tilde{a}_{ij} \hat{\mathbf{F}}_F \left(\mathbf{U}^{(j)} \right)$$
Stage values

$$\mathbf{u}_{n+1} = \mathbf{u}_n + \Delta t \sum_{i=1}^s b_i \hat{\mathbf{F}}_S \left(\mathbf{U}^{(i)} \right) + \Delta t \sum_{i=1}^s \tilde{b}_i \hat{\mathbf{F}}_F \left(\mathbf{U}^{(i)} \right)$$
Step completion

Non-linear system of

$$\hat{\mathbf{F}}_{F}(\mathbf{u}) = [\mathcal{D}(\omega) \otimes \mathcal{A}_{F}(\mathbf{u})] \mathbf{u}$$

$$\boldsymbol{\omega} = \omega [\mathbf{F}(\mathbf{u})]$$

Solution-dependent weights for the WENO5/CRWENO5 scheme

Linearized Formulation

Redefine the splitting as

$$\mathbf{F}_{F}(\mathbf{u}) = [\mathcal{A}_{F}(\mathbf{u}_{n})] \mathbf{u}$$

 $\mathbf{F}_{S}(\mathbf{u}) = \mathbf{F}(\mathbf{u}) - \mathbf{F}_{F}(\mathbf{u})$

Note: Introduces **no error** in the governing equation.

At the beginning of a time step:-

$$\operatorname{eig}\left[\frac{\partial \hat{\mathbf{F}}_{S}}{\partial \mathbf{u}}\right] = u \times \operatorname{eig}\left[\mathcal{D}\right], \ \operatorname{eig}\left[\frac{\partial \hat{\mathbf{F}}_{F}}{\partial \mathbf{u}}\right] = \{u \pm a\} \times \operatorname{eig}\left[\mathcal{D}\right]$$

Is F_F a good approximation at each stage?

IMEX Time Integration with Characteristic-based Flux Splitting (2)

Linearization of the WENO/CRWENO discretization: Within a stage, the non-linear coefficients are kept fixed.

Linear system of equations for implicit stages:

$$\left[\mathcal{I} - \Delta t \tilde{a}_{ii} \mathcal{D} \otimes \mathcal{A}_F\left(\mathbf{u_n}\right)\right] \mathbf{U}^{(i)} = \mathbf{u}_n + \Delta t \sum_{j=1}^{i-1} a_{ij} \hat{\mathbf{F}}_S\left(\mathbf{U}^{(j)}\right) + \Delta t \left[\mathcal{D} \otimes \mathcal{A}_F\left(\mathbf{u_n}\right)\right] \sum_{j=1}^{i-1} \tilde{a}_{ij} \mathbf{U}^{(j)},$$

$$i=1,\cdots,s$$

Preconditioning (Preliminary attempts)

$$\mathcal{P} = \left[\mathcal{I} - \Delta t \tilde{a}_{ii} \mathcal{D}^{(1)} \otimes \mathcal{A}_F \left(\mathbf{u_n} \right) \right] \approx \left[\mathcal{I} - \Delta t \tilde{a}_{ii} \mathcal{D} \otimes \mathcal{A}_F \left(\mathbf{u_n} \right) \right]$$

First order upwind discretization

Block n-diagonal matrices

- Block tri-diagonal (1D)
- Block penta-diagonal (2D)
- Block septa-diagonal (3D)
- **Jacobian-free approach** → Linear Jacobian defined as a function describing its action on a vector (MatShell)
- **Preconditioning matrix** → Stored as a sparse matrix (MatAIJ)

ARK Methods (PETSc)

ARKIMEX 2c

- 2nd order accurate
- 3 stage (1 explicit, 2 implicit)
- L-Stable implicit part
- Large real stability of explicit part

ARKIMEX 2e

- 2nd order accurate
- 3 stage (1 explicit, 2 implicit)
- L-Stable implicit part

ARKIMEX 3

- 3rd order accurate
- 4 stage (1 explicit, 3 implicit)
- L-Stable implicit part

ARKIMEX 4

- 4th order accurate
- 5 stage (1 explicit, 4 implicit)
- L-Stable implicit part

Example: 1D Density Wave Advection

Initial solution $\rho = \rho_{\infty} + \hat{\rho} \sin(2\pi x), u = u_{\infty}, p = p_{\infty}; \ 0 \le x \le 1$

$$M_{\infty} = 0.1$$

Eigenvalues

$$M_{\infty} = 0.01$$

CRWENO5, 320 grid points

Semi-implicit time step size limit determined by the flow velocity

Example: 1D Density Wave Advection (Computational Cost)

$$M_{\infty} = 0.1$$

$$M_{\infty} = 0.01$$

Example: Low Mach Isentropic Vortex Convection

Freestream flow

$$\left.\begin{array}{l}
\rho_{\infty} = 1 \\
p_{\infty} = 1 \\
u_{\infty} = 0.1 \\
v_{\infty} = 0
\end{array}\right\} M_{\infty} \approx 0.08$$

Vortex (Strength b = 0.5)

$$\rho = \left[1.0 - \frac{(\gamma - 1)b^2}{8\gamma\pi^2} \exp\left(1 - r^2\right)\right]^{\frac{1}{\gamma - 1}}$$

$$p = \left[1.0 - \frac{(\gamma - 1)b^2}{8\gamma\pi^2} \exp\left(1 - r^2\right)\right]^{\frac{\gamma}{\gamma - 1}}$$

$$u = u_{\infty} - \frac{b}{2\pi} \exp\left(\frac{1 - r^2}{2}\right) (y - y_c)$$

$$v = v_{\infty} + \frac{b}{2\pi} \exp\left(\frac{1 - r^2}{2}\right) (x - x_c)$$

- Optimal orders of convergence observed for all methods
- Time step size limited by the "slow" eigenvalues.

Eigenvalues of the right-hand-side operators

Grid:32² points, CRWENO5

Example: Vortex Convection (Computational Cost)

ARK 2c ARK 3

Example: Inertia – Gravity Wave

- Periodic channel 300 km x 10 km
- No-flux boundary conditions at top and bottom boundaries
- Mean horizontal velocity of 20 m/s in a uniformly stratified atmosphere ($M_\infty \approx 0.06$)
- Initial solution Potential temperature perturbation

Potential temperature perturbations at 3000 seconds (Solution obtained with WENO5 and ARKIMEX 2e, 1200x50 grid points)

CFL	Wall time (s)	Function counts	RK4
8.5	6149	24800	CFL ~ 1.0
13.6	4118	17457	Wall time:
17.0	3492	14820	5400 s Function counts:
20.4	2934	12895	24000

Eigenvalues of the right-hand-side operators

Grid: 300x10 points, CRWENO5

Cross-sectional potential temperature perturbations at 3000 seconds (y = 5 km) at various CFL numbers (0.2 - 13.6)

Conclusions

Characteristic-based flux splitting (Work in progress):

- Partitioning of flux separates the acoustic and entropy modes → Allows larger time step sizes (determined by flow velocity, not speed of sound).
- Comparison to alternatives
 - Vs. explicit time integration: Larger time steps → More efficient algorithm
 - Vs. implicit time integration: Semi-implicit solves a linear system without any approximations to the overall governing equations (as opposed to: solve non-linear system of equations or linearize governing equations in a time step).

To do:

- Improve efficiency of the linear solve
 - Better preconditioning of the linear system
- Extend to 3D flow problems

Thank you!

Acknowledgements

U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research