Introduction to dark matter phenomenology

Joachim Pomper

Karl-Franzens University Graz

01.02.2022

Topic overview

- Astrophysical aspects
 - Rotational curves
 - The universe in standard cosmology
 - Dark matter in standard cosmology
- Particle physics aspects
 - Local thermodynamics
 - Boltzmann equation
 - Species and freeze out

Note: We use a system of unit where $c=\hbar=1$

Sub-cosmological scales

- Galactic scales of 10⁴ ly or 1 kpc.
- Visible matter of our galactic disc within 10 kpc.
- Stars are effectively collision free mass points ⇒ Use as tracers.
- Newtonian gravity is still a good approximation at this scales.

Sub-cosmological scales

- Galactic scales of 10⁴ ly or 1 kpc.
- Visible matter of our galactic disc within 10 kpc.
- Stars are effectively collision free mass points ⇒ Use as tracers.
- Newtonian gravity is still a good approximation at this scales.

Expectation from Newtonian gravity

Balance between gravitation and centrifugal force

$$\frac{GM(r)}{r^2} = \frac{v^2}{r}$$

$$\Rightarrow v = \sqrt{\frac{G M(r)}{r}}$$

For $r \gtrsim 10$ kpc we expect

$$v \propto \frac{1}{\sqrt{r}}$$

Observation from rotational curves (taken from[1])

For $r \gtrsim 10$ kpc we see

 $v \approx \text{const.}$

Dark matter halo model

Model assumptions:

- 1 DM is non dissipative
- 2 DM is spherically distributed

$$\Rightarrow
ho \propto \frac{M(r)}{r^3} pprox \frac{1}{r^2}$$

Dark matter halo of Milky Way:

$$M_{halo} pprox 10^{12} {
m M}_{\odot}$$
 $R_{halo} pprox 100 {
m kpc}$ $< v > pprox 200 {
m km/s}$

Cusp vs. Core problem

- "Cuspy" profiles favored by "gravitational only" dark matter
- "Cored" profiles favored by Observations of Dwarf galaxies.
- Hint on self-interacting dark matter

Assumptions of standard cosmology

- General relativity holds on macroscopic scales
- Spatial isotropy on cosmological scales
- Spatial homogeneity on cosmological scales

Perfect fluid matter

Energy momentum tensor

$$T^{\mu\nu} = (\rho + p)u^{\mu}u^{\nu} - p \eta^{\mu\nu}$$

Equation of state

$$p = \omega \rho$$

matter	ω	ρ
radiation	1/3	ρ_{rad}
incoherent matter	0	ρ_{m}
cosmological constant	-1	ρ_{Λ}

Symmetry ansatz for metric

Robertson Walker metric

$$ds^{2} = dt^{2} - R^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + \sin^{2}(\theta)d\phi^{2} \right)$$

Cosmic scale factor

$$k \in \left\{ egin{array}{lll} 1 & \dots & {\sf closed} \\ 0 & \dots & {\sf flat} \\ -1 & \dots & {\sf open} \end{array}
ight.$$

Equations describing the universe

Evolution of the universe is described by:

- Einstein equations
- Equations of state for matter contributions
- Matter conservation $D_{\nu} T^{\mu\nu} = 0$

Reduce to 2 fundamental equations:

- Friedmann equation for R(t)
- First law of thermodynamics

Equation for R(t)

Friedmann equation

$$H^2 + \frac{k}{R^2} = \frac{8\pi}{3m_{Pl}^2} (\rho_m + \rho_{rad} + \rho_{\Lambda})$$

Hubble parameter:

$$H(t) = \frac{\dot{R}(t)}{R(t)}$$

Dark energy density:

$$\rho_{\Lambda} = \frac{m_{Pl}^2 \Lambda}{8\pi}$$

Rewriting Friedmann equation

Relic density

$$\Omega = rac{
ho}{
ho_{crt}}$$

Critical density
$$ho_{\it crt} := rac{3 m_{\it Pl}^2 H^2}{8 \pi}$$

$$\rho_{crt} := \frac{3m_{Pl}^2H^2}{8\pi}$$

Rewriting Friedmann equation

Relic density

$$\Omega = rac{
ho}{
ho_{crt}}$$

Critical density
$$ho_{crt} := rac{3m_{Pl}^2H^2}{8\pi}$$

The Friedmann equation becomes

$$\Omega_m + \Omega_{rad} + \Omega_{\Lambda} = 1 + \frac{k}{H^2 R^2} =: 1 - \Omega_k$$

Modeling the state of the universe

State of the universe

$$(\Omega_m, \Omega_{rad}, \Omega_{\Lambda}, \Omega_k, H, \ldots)$$

• The state is time dependent.

e.g.
$$H = H(t), \Omega_m = \Omega_m(t), \ldots$$

- Not all parameters are independent. e.g. Friedmann equation: $\Omega_m + \Omega_{rad} + \Omega_{\Lambda} = 1 - \Omega_k$
- Some parameters may be negligible. e.g. matter dominance at present time $(t_0): \Omega_{rad}(t_0) << \Omega_m(t_0)$

↑CDM-Modell (for more see [2])

Relevant matter contributions:

 Ω_{Λ} ... dark energy

 Ω_m ... incoherent matter

 Ω_b ... visible baryonic matter

 Ω_c ... cold dark matter

Matter composition

$$\Omega_m pprox \Omega_b + \Omega_c$$

Friedmann equation

$$\Omega_m + \Omega_\Lambda \approx 1$$

Further parameters:

 t_0 ... Age of the universe

 $H(t_0)$... Hubble constant

au ... Optical depth to reionization

 n_s ... Scalar power-law index

 σ_8 ... Amplitude of matter fluctuations

Only 6 parameters are independent.

Some suggestions on parameter estimates

- Matter density of the universe
 - count galaxy (cluster) number density
 - determine galaxy mass from rotation curves
 - cluster mass with virial theorem
 - mass determination by infall method
- Baryonic matter content from
 - primordial deuterium abundance measurements
 - Big Bang Nucleosynthesis (BBN) theory
- Large scale structure formation favors models with
 - a flat universe $\Omega_k \approx 0$
 - a matter content of $\Omega_k \approx 0.3$

Values of Planck-Collaboration (taken from [3], table 4, column 2)

The values originate from detailed analysis of the CMB anisotropies.

cosmic parameter	value	
Ω_{Λ}	0.693 ± 0.012	
Ω_m	0.308 ± 0.012	
Ω_b	0.048 ± 0.001	
Ω_c	0.258 ± 0.008	
Н ₀	$67.81 \pm 0.92 \ rac{ m km s^{-1}}{ m Mpc}$	
t_0	$13.799 \pm 0.038~\mathrm{Gyr}$	

Its no real dark matter talk without this plot

Total energy content of the universe

Local thermodynamics (LTD) (for more see [4], Chapter 3.1 - 3.3)

Physical comoving unit volume

$$V:=R^3$$

First law of LTD

$$d(\rho V) = -p d(V)$$

Conservation of entropy per comoving volume

$$dS = 0$$

Entropy density of the universe

$$s:=\frac{S}{V}$$

Phase-space distribution

$$f(\epsilon(\vec{p}), t) \stackrel{equilibrium}{=} \begin{cases} Fermi-Dirac \\ Bose-Einstein \\ Boltzmann \end{cases}$$

Number and energy density

$$n = g \int f(\vec{p}, t) \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3}$$

$$ho = g \int \epsilon(\vec{p}) f(\vec{p}, t) \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3}$$

Temperature - Expansion relation

Assume relativistic particles dominate energy density.

relativistic gas in equilibrium : $ho \propto g T^4$

$$H^{2} = \frac{8\pi}{3m_{Pl}^{2}} \rho \propto \frac{8\pi}{3m_{Pl}^{2}} gT^{4}$$

$$\downarrow$$

$$H \propto \frac{\sqrt{g}}{m_{Pl}} T^2$$

Time - Expansion relations

	radiation dominance	matter dominance	vacuum dominance
$p = \omega \rho$	$p=rac{1}{3} ho$	p = 0	$p = -\rho$
ho(R) *	$ ho \propto R^{-4}$	$ ho \propto R^{-3}$	$\rho \propto { m const.}$
R(t) **	$R \propto t^{1/2}$	$R \propto t^{3/2}$	$R\propto \exp\left(H_0t\right)$
H(t)	$H \propto t^{-1}$	$H \propto t^{-1}$	$H = H_0 = \text{const.}$

^{*} follows from first law of LTD

^{**} follows from Friedmann equation

Non equilibrium dynamics of $f(\epsilon(\vec{p}), t)$

Boltzmann equation

$$\underbrace{\mathcal{L}[f]}_{\text{Liouville operator}} = \underbrace{\mathcal{C}[f]}_{\text{Collision operator}}$$

Liouville operator models free dynamics

$$g\int L[f](\vec{p},t) \frac{\mathrm{d}^3\vec{p}}{(2\pi)^3} = \frac{\mathrm{d}n}{\mathrm{d}t} + 3Hn$$

Collision term

- C[f] models collisions of particles
 - with particles of the same species
 - with particles of other species
- If multiple species are involved multiple Boltzmann equations couple.
- Often lots of simplifications needed to get this term under control.

In modeling this term, particle physics comes into play !

$2DM \rightarrow 2SM$ Scattering

Collision term

$$g\int C[f](\vec{p},t) \frac{\mathrm{d}^{3}\vec{p}}{(2\pi)^{3}} = -\langle \sigma v \rangle_{DM \to SM} (n_{DM})^{2} + \langle \sigma v \rangle_{SM \to DM} (n_{SM})^{2}$$

 $\langle \sigma v \rangle_{DM \to SM}$... Thermal crosssection average Møller velocity

Deviation from equilibrium

Assume SM particles are in equilibrium with photon bath.

If DM and SM in equilibrium

$$\langle \sigma v \rangle_{DM \to SM} \left(n_{DM}^{eq} \right)^2 = \langle \sigma v \rangle_{SM \to DM} \left(n_{SM}^{eq} \right)^2$$

Simplified Boltzmann equation for $n = n_{DM}$

$$\frac{\mathrm{d}n}{\mathrm{d}t} + 3H \, n = -\langle \sigma v \rangle_{DM \to SM} \left(n^2 - n_{eq}^2 \right)$$

Rewrite Boltzmann equation

Eliminate effects of expansion

$$Y:=\frac{n}{s}$$

Parametrize time over temperature

$$x := \frac{m_{DM}}{T} \propto \sqrt{t}$$

Reformulated simplified Boltzmann equation

$$\frac{\mathrm{d}Y}{\mathrm{d}t} = -\frac{s \left\langle \sigma v \right\rangle_{DM \to SM}}{x \ H} \left(Y^2 - Y_{eq}^2 \right)$$

Freeze out condition (for more see [4], Chapter 5.2)

Boltzmann equation

$$\frac{x}{Y_{eq}}\frac{\mathrm{d}Y}{\mathrm{d}t} = -\frac{\Gamma}{H}\left(\frac{Y^2}{Y_{eq}^2} - 1\right)$$

Scattering rate

$$\Gamma := Y_{eq} \ \langle \sigma v \rangle_{DM \to SM}$$

Freeze out condition

$$\Gamma \approx H$$

Freeze out (taken from [1])

WIMP-Miracle (for more see [1])

From solving Boltzmann equation one obtains Y_{Today}, x_f

Relic density

$$\Omega_c = rac{m_{DM} \; s_{Today} \, Y_{Today}}{
ho_{crt}}$$

Parametrize thermal average velocity

$$\langle \sigma v \rangle_{DM \to SM} \approx \frac{\alpha^2}{m_{DM}^2}$$

Constraint ratio $\frac{\alpha}{m_{DM}}$

$$1 \approx \frac{\Omega_c H^2}{1000} \approx \frac{10^{-25} {\rm cm~s}^{-1}}{\left<\sigma v\right>_{DM \to SM}} \approx \left(\frac{0.1}{\alpha}\right)^2 \left(\frac{m_{DM}}{100~{\rm GeV}}\right)^2$$

Summary

- Rotational curves first hinted a non visible, spherically distributed matter component.
- ACDM with Friedmann equation $\Omega_b + \Omega_c + \Omega_\Lambda pprox 1$
- ullet Cold dark matter relic density $\Omega_c = 0.258 \pm 0.008$
- Particle physics to model C[f] in Boltzmann equation
- Freeze out condition $\Gamma \approx H$
- WIMP Miracle: $\alpha \approx 0.01$, $m_{DM} \approx 100 \text{ GeV}$

End of the presentation

Thank you for your attention

Any questions?

Cusp vs. Core problem

"Cuspy" profiles favored by "dark matter only" simulations.

Navarrow-Frenk-White profile:

$$ho_{nfw}(r) = rac{
ho_0}{rac{r}{r_s} \left(1 + rac{r}{r_s}
ight)^2}$$

Einasto profile:

$$ho_{ein}(r) =
ho_0 \exp\left(rac{2}{\gamma}\left(1-rac{r^{\gamma}}{r_s^{\gamma}}
ight)
ight)$$

Cusp vs. Core problem

Profiles might be more "cored" than NFW and Einasto profile.

Burkert profile:

$$\rho_{nfw}(r) = \frac{\rho_0}{\left(1 + \frac{r}{r_s}\right) \left(1 + \left(\frac{r}{r_s}\right)^2\right)}$$

Cored profiles favored by

- data from dwarf galaxies
- self interacting models

References

M. Lisanti.

Lectures on Dark Matter Physics.

New Frontiers in Fields and Strings (2016).

National Aeronautics and Space Administration Goddard Space Flight Center -Graphical Parameter Comparisons.

https:

//lambda.gsfc.nasa.gov/education/graphic_history/parameters.cfm.

Accessed: 2022-01-05

P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, et al.

Planck2015 results

Astronomy and Astrophysics 594 (2016) A13.

E. W. Kolb, M. S. Turner.

The Early Universe, Band 69.

Westview Press, 1990.

