

OF

AD A060144

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A Report No. CG-D-58-78

STUDY OF DEEPWATER PORT
OIL TRANSFER CONTROL SYSTEMS

IAN C. ROBSON FREDERIC R. HARRIS, INC. LAKE SUCCESS, NEW YORK WILLIAM W. SCHERKENBACH HITTMAN ASSOCIATES, INC. COLUMBIA, MD.

JUNE 1978 FINAL REPORT

Document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for

162700

U.S. DEPARTMENT OF TRANSPORTATION
United States Coast Guard
Office of Research and Development
Washington, D.C. 20590

78 10 10 130

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report do not necessarily reflect the official view or policy of the Coast Guard; and they do not constitute a standard, specification, or regulation.

This report, or portions thereof may not be used for advertising or sales promotion purposes. Citation of trade names and manufacturers does not constitute endorsement or approval of such products.

Technical Report Documentation Page 3. Recipient's Catalog No. 2. Government Accession No. D-58-78 4. Title and Subtitle Study of Deepwater Port 978 Oil Transfer Control Systems . 8. Performing Organization Report No. C. /Robson .W. /Scherkenbach 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Frederic R. Harris, Inc. Hittman Assoc. Ind. 3003 New Hyde Park Road 9190 Red Branch Rd. DOT-CG-64503-A Lake Success, N.Y. 11040 Columbia, Md. 21045 12. Sponsoring Agency Name and Address Final Report Apr U.S. Department of Transportation ₱77 ₩ - Jun 78 U.S. Coast Guard Office of Research and Development 2100 2nd St. S.W., Washington, D.C. 20590 14. Sponsoring Agency Code G-DSA-1/TP44 15. Supplementary Notes 16. Abstract This report deals with the description, reliability and rating of oil transfer control systems in Deepwater Ports.

A typical oil transfer control system is hierarchically defined along with equipment description and purpose, reliability, spill risk, effects of failure and alternative procedures. A numerical rating system is presented which enables the design reviewer to compare a proposed control system with a benchmark system. Equipment Staging Diagram, Fault Trees and a Failure Mode and Effects Analysis are presented

for the defined control system to aid in its analysis.

18. Distribution Statement 17. Key Words Deepwater Ports, Oil Transfer, Control Document is available to the U.S. Systems, Design Review, Equipment Staging Public through the National Technical Information Service, Springfield Diagrams, Fault Trees, Failure Mode and Effects Analysis. Virginia 22161 19. Security Classif. (of this report)

20. Security Classif. (of this page)

21. No. of Pages | 22. Price

Unclassified

Unclassified

380

Form DOT F 1700.7 (8-72)

Reproduction of completed page authori

TABLE OF CONTENTS

			Page
1.0	INTRODUCTION		
	1.1	STUDY OBJECTIVES	1-2
	1.2	STUDY APPROACH	1-2
	1.3	REPORT STRUCTURE AND USES	1-4
	1.4	DEEPWATER PORTS	1-6
2.0	SYSTEM CHARACTERIZATION		
	2.1	INTRODUCTION	2-1
	2.2	DWP BASIC FUNCTIONS	2-5
	2.3	DEVELOPMENT OF DIAGRAMS	2-6
3.0	NUME	RICAL RATING SYSTEM	3-1
	3.1	INTRODUCTION	3-1
	3.2	DESIGN ADEQUACY	3-4
	3.3	RELIABILITY/FAILURE EFFECTS RATING	3-8

APPENDICES:

- APPENDIX A FAILURE MODES AND EFFECTS
 ANALYSIS
- APPENDIX B ELEMENT FAULT TREES
- APPENDIX C ELEMENT RELIABILITY/EFFECTS RATING SHEETS
- APPENDIX D EFFECTS RATING FACTOR WORKSHEETS
- APPENDIX E EQUIPMENT DESCRIPTION
- APPENDIX F SCENARIOS

FIGURES

FIGU	JRE NO.		Page
	2-1	Single Point Mooring - Basic Line Diagram	2-11
	2-2	Sea Island - Basic Line Diagram	2-12
	2-3	Functional Staging Diagram	2-13
	2-4	Tanker Control	2-14
	2-5	Line-Up Tanker Valve System	2-15
	2-6	Move Oil Through Tanker System	2-16
	2-7	Shutdown Tanker System	2-17
	2-8	Tanker Communications System	2-18
	2-9	S.P.M. Basic Platform	2-19
	2-10	Sea Island Basic Platform	2-20
	2-11	Line-Up Offshore System	2-21
	2-12	Loading Unit Range and Drift Diagram	2-22
	2-13	Move Oil Through Offshore System	2-23
	2-14	Pressure Measurement	2-24
	2-15	Flow Control	2-25
	2-16	Basic Platform with Booster Pumps	2-26
	2-17	Booster Pumps Controls	2-27
	2-18	Basic Platform with Surge Protection	2-28
	2-19	Surge Relief System	2-29
	2-20	Basic Platform with Metering	2-30
	2-21	Pigging Arrangement Diagram	2-31
	2-22	Shutdown Offshore System	2-32
	2-23	Drainage and Slop System	2-33
	2-24	Emergency Shutdown System	2-34
	2-25	Communications System	2-35
	2-26	Communication Multiplex	2-36
	2-27	Communications Direct Line	2-37
	2-28	Basic Onshore Facilities	2-38
	2-29	Line-Up Onshore System	2-39

FIGURES (CONT'D.)

2-30	Onshore Valve Manifold	2-40
2-31	Onshore Tank Level Measurement	2-41
2-32	Move Oil to Onshore Storage	2-42
2-33	Basic Onshore Facilities with Booster Pumps	2-43
2-34	Basic Onshore Facilities with Metering	2-44
2-35	Basic Onshore Facilities with Surge Protection	2-45
2-36	Shutdown Onshore System	2-46
3-1	Surge Relief System Fault Tree	3-12

TABLES

TABLE NO.		Page
3-1	DWP Element Hierarchy	3-2
3-2	ESD to Element Map	3-3
3-3	Design Adequacy Checklist	3-6
3-4	Element/Reliability/Effects Rating Sheet	3-13
3-5	Effects Weighting Factor Worksheet	3-15
3-6	Failure Effects Weighting Factors	3-17
3-7	Element/Reliability/Effects Rating Sheet	3-19

REFERENCES

- Code of Federal Regulations, Title 33, Navigation and Navigable Waters, Subchapter NN, Deepwater Ports. Federal Register, Volume 40, No. 217.
- Risk Analysis Methods for Deepwater Port Oil Transfer Systems - Report No. CG-D-69-76, June 1976.
- 3. Code of Federal Regulations, Title 46, Shipping, Subchapter J, Electrical Engineering.
- 4. MIL-STD.-882, 15 July 1969. System Safety Program for Systems and Associated Subsystems and Equipment.
- 5. Considine, Douglas M., ed., Encyclopedia of Instrumentation and Control, McGraw-Hill, Inc., 1971.

ABBREVIATIONS

AE - AIR ELIMINATOR

DPS - DIFFERENTIAL PRESSURE SWITCH

DS - DRIFT SWITCH

DWP - DEEPWATER PORT

EMC - ELECTRIC MAGNETIC CONTROL

DMG - EMERGENCY VALVE

EMF - ELECTROMOTIVE FORCE

ESD - EQUIPMENT STAGING DIAGRAM

FCV - FLOW CONTROL VALVE

FE - FLOW ELEMENT

FI - FLOW INDICATOR

FIG - FLOW INTEGRATER

FIR - FLOW INTEGRATING RECORDING

FMEA - FAILURE MODES AND EFFECTS ANALYSIS

FSD - FUNCTIONAL STAGING DIAGRAM

FT - FLOW TRANSMITTER

HL - HIGH LEVEL

HHL - HIGH HIGH LEVEL

HI - HIGH

HP - HIGH PRESSURE

IND - INDICATOR

LI - LEVEL INDICATOR

LL - LOW LEVEL

LLL - LOW LOW LEVEL

LP - LOW PRESSURE

LS - LEVEL SWITCH

LT - LEVEL TRANSMITTER

MBTF - MEAN BARRELS TO FAILURE

MOV - MOTOR OPERATED VALVE

OSD - OPERATIONAL SEQUENCE DIAGRAM

PC - PRESSURE CONTROLLER

PCV - PRESSURE CONTROL VALVE

PI - PRESSURE INDICATOR

PLEM - PIPELINE END MANIFOLD

POSN - POSITION

PR - PRESSURE RECORDER

PS - PRESSURE SWITCH

PT - PRESSURE TRANSMITTER

QR - QUANTITY RECORDER

SI - SPEED INDICATOR

SP - SAMPLER

SPM - SINGLE POINT MOORING

SR - SPEED REGULATOR

SS - SIGNAL SELECTOR

SW - SWITCH

TI - TEMPERATURE INDICATOR

TS - TEMPERATURE SWITCH

TT - TEMPERATURE TRANSMITTER

ULCC - ULTRA LARGE CRUDE CARRIER

VIB SW - VIBRATION SWITCH

VLCC - VERY LARGE CRUDE CARRIER

XA - ALARM

PRODUCT PIPING LINES WITH BLANK ENDS CONNECTION TO PRODUCT, OR MECHANICAL LINK, OR INSTRUMENT SUPPLY PNEUMATIC SIGNAL ELECTRIC SIGNAL -EQUIPMENT STAGING NUMBER 12211-LOCALLY MOUNTED INSTRUMENT BOARD MOUNTED INSTRUMENT 12211-EQUIPMENT STAGING NUMBER INTERLOCK MOTOR OPERATED VALVE BALL VALVE 080 Z FLOW CONTROL VALVE CHECK VALVE GATE VALVE M 十十 FLOW MEASURING DEVICE (ORIFICE PLATE) 'AND' GATE 'OR' GATE EQUIPMENT STAGING HIERARCHICAL NUMBER (12000)

1.0

INTRODUCTION

1.1 STUDY OBJECTIVES

In light of the importance of the safe and efficient transfer of oil in Deepwater Ports (DWPs), it was the intent of this study to examine in detail the oil transfer control system in order to aid the design review process. Specifically, the objectives were:

- to evaluate normal procedures and controls used in DWP crude oil transfer operations
- to evaluate types of failures that might occur in the control system
- to evaluate emergency procedures and controls which would be employed when normal procedures and controls are inoperative.

With offloading rates in DWPs approaching 300,000 barrels per hour, the performance and reliability of the oil tranfer equipment and controls are of critical importance. Reaction times previously adequate in lower volume systems are inadequate in the specification of a modern Deepwater Port.

With increasing loading rates, there has been a steady shift in control technology towards automatic and electronic control systems. This changing state-of-the-art makes it difficult for those evaluating, reviewing, and approving control system designs to assure that certain minimum standards are met.

1.2 STUDY APPROACH

The first step in the study was to describe a Deepwater Port. The one described consists of the following major systems:

- Tanker
- Offshore Facilities (Platforms and SPM 's/Sea Island)
- Onshore Facilities
- Communications

Once the major physical systems were determined, a Functional Staging Diagram (FSD) was developed. The FSD is a hierarchical block diagram structure which is used to determine and display the interdependency of functions necessary for a system to operate (see 2.3.2 for a complete description).

Equipment Staging Diagrams (ESD) were then constructed for a Deepwater Port utilizing the generic functions of the FSD as a guide (see 2.3.3 for a complete description of ESD). The ESDs evolved from a top down approach in which systems were described in terms of subsystems, elements, and equipment.

Ordinarily, the next step in the approach would have been to construct Operational Sequence Diagrams (OSD) which are useful in displaying information-decision-action relationships in highly complex systems. Several factors contributed to shifting from OSDs to a Failure Modes and Effects Analysis (FMEA). One of the primary reasons was that the DWP oil transfer control system was not as complex as was originally anticipated. This was combined with the fact that the oil transfer control system's operational

sequence of system lineup, movement of cargo, and shutdown were readily displayed in the ESDs. The detailed equipment sequences, if available, were described in the FMEA.

Multiple Activity Charts (MAC) are useful in analyzing scheduling problems, work load balance and manpower utilization in specific and complex systems. Because of the generic nature of the DWP described herein, MACs were not considered the appropriate means of displaying the information. Instead, a more qualitative method is used in the narrative description of oil transfer control systems.

As the study progressed through the definition phase, which included the hierarchical description of the offloading process and its associated equipment, it became apparent that the best way to meet the reliability objectives was through a combination of Fault Trees and Failure Modes and Effects Analysis. This provided a blend of theoretical and operational points of view with the emphasis placed on operational and design experience since the intended user was a design reviewer. Reliability Block Diagrams could have been used in lieu of Fault Trees, but it was determined that the explicitness of Fault Trees (especially since they were not complex) would be easier to understand and would be more flexible under changing design than would be Reliability Block Diagrams.

The Failure Modes and Effects Analysis emphasized extremely important aspects of oil transfer control systems, based on actual operational experience. Failure modes were explicitly described, alternative procedures which would mitigate either the failure or the effects of the failure were synthesized by

knowledgeable design experts, and scenarios were postulated which quantified the spill sizes which could result from critical equipment failures. Maintenance actions were recommended which would keep the equipment as close to designed condition as possible.

1.3 REPORT STRUCTURE AND USES

The primary intended user of this report is the design reviewer in the United States Coast Guard. The information presented is structured to provide the reviewer first with specific descriptive material and then with the means to use this material so that an informed decision can be made as to the acceptability of a design.

Section 2.0 provides the specific background material, Section 3.0 describes the Numerical Rating System, and the Appendices contain further backup material and worksheets.

Section 2.0, System Characterization, is functionally oriented, and it is formatted around a hierarchical DWP equipment structure. This makes it possible for the reviewer to obtain information knowing either the physical structure or the functional structure. For example, the design reviewer could directly obtain information on an overspeed trip used by a tanker by looking at ESD 11200 and finding that the overspeed trip is number 11213/01. The review could then turn to Section 11213/01 in Appendix E for more information. On the other hand, the reviewer might not know that an overspeed trip was required. The reviewer could still get information on it by searching the functional headings of Pump Protection Devices, Start Pumping, or Move Oil Through Tanker Systems.

In this report, the location of the DWP Central Control Station has not been fixed. This is deliberate because there is no generally accepted practice within the industry which locates the central control of a terminal in any one place. Existing Deepwater Ports show a variety of locations determined by whether or not the DWP in an extension to existing facilities, by the distance between the on and offshore facilities, or by the established practices of the owner(s).

Wherever "Central Control Station" is referred to in this report, its location can be ignored; the communications link completes the "loop" of those control systems considered and the location becomes irrelevant.

Section 3.0, the Numerical Rating System, is an extension of Section 2.0 in that the reviewer will draw upon the concepts and criteria presented to describe the system being evaluated and to numerically rate this proposed system against the benchmark system of Section 2. The rating system is comprised of two major parts: the Design Adequacy Rating and the Reliability/Effects Rating. An example of how to use the Rating System is given to aid in the understanding of the procedure.

The Appendices contain various backup material including:

A. Failure Modes and Effects Analysis of the control system presented in Section 2.0. This analysis is a systematic procedure which identifies and assesses the likelihood, consequences, and corrective action which should be taken for significant modes of failure.

- B. Fault Trees of the control system identified in Section 2.0, including equations which quantify the equipment relationships of the fault tree to determine the element probability of failure.
- C. Element Reliability/Effects Rating Sheet, including a blank set for the design reviewer and a completed set on the control system identified in Section 2.0.
- D. Effects Rating Factor Worksheet, including a blank set for the use of the design reviewer and a completed set on the control system identified in Section 2.0.
- E. Equipment Description, including:

A general section which discusses the type of instrumentation used in the control systems.

A section dealing with information in the form of technical manual excerpts.

A section devoted to the specific components of the control systems.

F. Scenarios of Failure of vital elements and their resultant effects.

1.4 DEEPWATER PORTS

Deepwater Ports, as defined in the "Deepwater Port Act of 1974," are:

"...any fixed or floating manmade structures other than a vessel, or any group of such structures, located beyond the territorial sea and off the coast of the United States and which are used or intended for use as a port or terminal for the loading or unloading and further handling of oil... The term includes all associated components and forms, mooring buoys, and similar appurtenances..."

This study considers the Control Systems of those ports covered by The Act and designed only for the offloading of oil.

Two distinctly different types of offshore facilities exist and are in operation today, although the fundamental function of the port remains the same. These are:

- 1. Single Point Mooring
- 2. Sea Island

The Control Systems of a Deepwater Port are concerned with two major functions:

- The actual transfer, measurement and control of the oil.
- 2. The prevention and minimization of any adverse impact from failure of the oil transfer system.

A narrative description of the basic functions of a Deepwater Port and a discussion on the development of the various diagrams used in this report can be found in Section 2.0.

1.4.1. TANKERS

The control systems associated with the handling of VLCC crude oil cargoes are concerned with:

- Levels in the tanks
- Cargo pumps
- Stripping pumps
- Valve operation

Investigations have revealed that these controls are kept as simple as possible and apart from pump protection devices which automatically shut down the pump under abnormal conditions, no other automatic control loops are installed.

Remote control from a central control room is common on today's tankers. From this central location, the ship's crew control the main cargo and stripping pumps, switch tanks according to the remote level readings and operate the valves required to route the oil from the tanks via the pumps to the ship's manifold. Details of the component parts of these control systems are fully described in Appendix E.

1.4.2 OFFSHORE FACILITIES

1.4.2.1 Platforms and Single Point Moorings (Figure 2-1)

This type of facility utilizes a buoy or floating turntable to which the tanker is moored "bow on." Floating flexible hoses connected from the ship's manifold to a swivel on the S.P.M. provide the flexible link between the tanker and the Deepwater Port facilities.

Block valves on the seabed at the pipeline end manifold (PLEM) provide the necessary isolation in the event of an emergency. Single Point Moorings can be connected directly by submarine pipeline to shore facilties, or they can be part of a complex involving an intermediate pumping platform and other S.P.M.s.

The Control Systems on an S.P.M. platform, which includes booster pumps and/or metering facilities, are extensive and complex.

If the terminal facilities are such that the rapid closure of a valve or the quick starting or stopping of a pump could propagate a surge pressure condition, then a surge relief system should be included. Various monitors and controls are necessary to ensure the function and availability of this relief system at all times.

It is normal practice to install a block valve at the platform end of each submarine pipeline to shore. This valve serves the purpose of emergency shutdown of the facilities effectively isolating, for instance, a ruptured submarine pipeline from the tanker. This valve would also be used to provide a pressure shutoff for pipeline leak testing.

1.4.2.2 Sea Island (Figure 2-2)

This type of Deepwater Port provides a fixed structure against which the loaded tanker berths and is moored. Fully articulated loading arms are connected to the ship's manifold and provide the flexible link between the tanker and the piping systems on the structure. These loading arms will, within certain limitations, follow the movement of the tanker as it unloads its cargo.

The controls associated with the piping systems on the central platform of the Sea Island can be simple, monitoring only pressures and flow rates, or they can be complex and comparable to those described for an S.P.M. platform. The same control systems would be required for booster pumps, metering, and surge relief as that found on the S.P.M. platform.

1.4.3 ONSHORE FACILITIES

Large tank farms containing numerous tanks or underground storage cavities are necessary to store the cargoes of oil discharged from VLCCs. The pipelines from these tanks are connected to the submarine lines through a valve manifold which, as the number of submarine lines and tanks increases, becomes more complex. Electrical interlocks become necessary to prevent the accidental opening of valves and to ensure the correct routing of the oil through the onshore facilities. Where the tank farm is some distance from the shore, the installation of booster pumps may be required in order to move the oil to storage. Custody transfer or leak detection would require the inclusion of a metering station and, where the possibility of surge pressures exist, a protection system would be included. The levels in the tanks are continuously monitored by level instruments which, in exceptional cases, may be used to determine volumes for custody transfer. However, these remote reading level instruments are used mainly as an operational tool to prevent overfilling and overemptying.

1.4.4 COMMUNICATIONS

This essential link between the basic components of any Deepwater Port can be achieved in many ways.

In this study, only the communications which play a part in the control systems are considered.

Where the offshore facilities are only a short distance from shore, a communications submarine cable is laid on the seabed. An economic break point exists, however, as the distance offshore became greater. At this point, it becomes more economical to install a communications radio link. Both types will carry voice as well as instrumentation signals.

As the facilities become more and more complex involving an interchange of many signals, a system of coded communications is necessary. These coded signals may be transmitted by either the submarine cable or radio.

2.0 SYSTEM CHARACTERIZATION

2.0 SYSTEM CHARACTERIZATION

2.1 INTRODUCTION

This section deals with the basic functions of a DWP and explains the development of the Line Diagrams, Functionnal Staging Diagram and Equipment Staging Diagrams contained in this report. The method employed to develop these diagrams was based upon the progressive expansion of successive diagrams until a detailed list of components was obtained.

The initial Line Diagrams (Figures 2-1 and 2-2) show the two types of Deepwater Ports considered in this report. It is from these two basic diagrams that all other Line Diagrams have been developed.

The Functional Staging Diagram (Figure 2-3) takes the operational sequence of the functions required in moving oil from the tanker to the onshore storage and displays it as a three-level hierarchical block diagram. It is from a combination of these two basic Line Diagrams and the Functional Staging Diagram that the Equipment Staging Diagrams were developed.

A logic numbering system was developed to identify the individual functions and components of the Equipment Staging Diagrams, and to serve as a cross-reference throughout this report.

2.2 DWP BASIC FUNCTIONS

The following narrative is designed to familiarize the reader with the basic operational techniques and equipment employed in importing crude oil at a Deepwater Port. It is assumed that the tanker is moored or berthed and that the connection to the hoses or loading arms has been completed.

2.2.1 PREPARATIONS

The first step in the actual offloading of oil requires that equipment on the tanker and at the offshore and onshore facilities be made ready and "lined-up" to receive the oil.

On the tanker, the piping systems from the tanks to the suction of the pumps must be prepared by opening the appropriate valves. A sequence of tanker cargo tank emptyings will be followed which maintains the ship at an acceptable trim. This means that tank levels must be continuously monitored and when required, the tanks must be switched to and from the pump suction systems. The piping route from the pump's discharge to the ship's manifold must be prepared by opening the appropriate valves.

The offshore facilities, whether they be a platform complex serviced by S.P.M.s or a sea island, must also be made ready to receive the oil from the tanker. The necessary valves must be opened to route the oil to the submarine pipes which will carry it ashore. If the facilities include booster pumps and metering stations, then these also must be readied to receive the oil. The

appropriate valves must be opened to route the oil to the booster pumps and/or the selected meters. The automatic sampler must be adjusted and made ready to extract the proper quantity of oil from the pipeline for analysis.

It is normal practice to leave one valve in the system closed. On a platform complex served by S.P.M.'s, this valve would be the isolating valve at the top of the submarine pipe riser; for a sea island platform, it would be the valve at the base of each loading arm.

At the same time, the onshore facilities must be "lined-up" to route the oil to the receiving storage tanks. This may be via a booster pumping station and/or a metering station.

The need for booster pumping is determined by the distance the oil has to travel.

Metering stations serve dual functions; to precisely measure the quantity of oil being transferred for custody purposes and/or to compare offshore metered measurements with onshore metered measurements as a means of detecting leaks.

Before pumping commences, the surge protection equipment, if installed, must be checked and made ready to deal with a surge if it should occur.

2.2.2 PUMPING

At the request of the terminal operators, the ship starts pumping at a very low flow rate. This causes a pressure build-up against the closed submarine pipe riser or loading arm valve(s) on the offshore facilities.

This procedure tests the hose or loading arm connections to the ship's manifold. If the connections prove leak tight, the pipe riser or loading arm valve is opened. The ship is then requested to increase its pumping rate in stages until the authorized offloading flow rate has been attained.

As the ship's storage tanks empty, full tanks must be brought onto line. The ship's operators monitor the levels in the tanks and control the opening and closing of tanker valves from the ship's central control room. This control room also houses the controls and indicators for the main cargo and stripping pumps.

The most common type of pump prime mover employed on VLCCs is the steam turbine. This type of prime mover has the advantage of variable speeds, thus being able to control the rate of pumping over a large range.

Once the oil moves from the ship, port operating personnel monitor and control the flow from a central control room. It is normal practice to group all controls on a mimic control panel which, apart from housing the controls and indicators, has a mimic display of the piping system on the platform.

DWP oil transfer systems which are required to accommodate multiple crude oils that cannot be contaminated with each other are provided with a "pigging" system. Separation of crude oil cargoes is accomplished by placing a pig at the interface of the two crude types. In this way, both crudes are transferred through the transfer systems simultaneously.

Pigs are available in many shapes and they can be fabricated from various materials. For DWP service, spherical pigs made of neoprene are the most widely used. A more detailed description of pigging systems is given in Appendix E.

When booster pumps are necessary to assist the ship's pumps in moving the oil ashore, automatic controls ensure that the flow rate and system pressure are synchronized with the ship's pumps.

Metering stations which are continuously measuring the quantity of oil passing through the facilities are monitored from the central control room where flow rates, accumulated quantities, pressures and proving procedures are displayed and controlled.

Alarms and remote indicators warn the operators if the surge protection system, when installed, is available to deal with a surge situation.

2.2.3 SHUTDOWN

As the level in each of the ship's tanks is reduced, full cargo tanks are brought on line. Relatively small quantities of oil remain in the tanks at levels below the suction capabilities of the main cargo pumps. This oil is removed from the tanks and pumped into the piping system by a series of small pumps called "stripping pumps." This stripping operation usually occupies the last hour or so of the discharging time. The main cargo pumps are shut down as "stripping" begins.

When stripping is complete, the oil in the ship's manifold is allowed to drain back to the tanks and the valves are closed. In the case of operations at an S.P.M. facility, each hose valve is closed including the undersea valve at the PLEM. The hose is then disconnected from the ship and capped while filled with oil (they are drained only prior to a storm). For a Sea Island operation using loading arms, the outboard arm is allowed to drain back to the ship before disconnection takes place; the inboard arm is drained to the platform slop (drainage) system.

At the conclusion of cargo transfer to shore storage, the facilities are shut down in a sequence which ensures that the piping system is "packed" with oil. This sequence of valve closing starts at the SPM's or loading arms and finishes at the storage tank onshore.

Booster pumps, in parallel operation at a given station, if installed, are shut down one at a time as the flow rate decreases. Likewise, the meters, in parallel operation, if installed, are taken off-line as the flow rate decreases. The onshore facilities are also shut down in a similar sequence and manner. The final levels in the receiving storage tanks are noted and the total quantity computed.

2.3 DEVELOPMENT OF DIAGRAMS

2.3.1 LINE DIAGRAMS

The text of this report has been supplemented by the inclusion of a series of pictorial presentations in the form of Line Diagrams. These are simple one line diagrams, drawn isometrically for clarity, which lend themselves to a progressive expansion whereby each succeeding diagram reveals further detail until all the component parts of the control systems appear.

Beginning with the two basic diagrams (Figures 2-1 and 2-2) which illustrate the major component parts of a Deepwater Port, further diagrams have been developed on a sequence basis which follows the route of the oil from the tanker to the onshore storage facilities.

The major components of a DWP--tanker, offshore facilities and onshore facilities--have been dealt with individually and within themselves have been broken down to show the various control systems involved.

The next step in this progression was to develop Line Diagrams which show the component parts of each control system. At this stage, it became possible to prepare Equipment Staging Diagrams which are discussed in further detail later in this section.

2.3.2 FUNCTIONAL STAGING DIAGRAM

Concurrently with the development of the basic line diagrams, a Functional Staging Diagram was produced (Figure 2-3). This takes the form of a hierarchical block diagram. The purpose of the diagram is to show how the basic requirement to transfer oil is broken down into the functional details of moving oil from the tanker through the offshore and onshore piping systems, and finally to the onshore storage facilities. The basis upon which this diagram developed depended on the established operational technique presently in use at existing Deepwater Ports. This takes into account the preparation of the major component parts to receive the oil, the movement

of the oil through them and the shutdown sequence upon completion of the operation. Not only has the normal operational shutdown been considered but also the case of emergency shut down where protective controls come into play.

The Communications System, although not a separate functional component, is so intricately woven into the fabric of the overall operation that it has been included at this level rather than at the equipment level where some of its importance could be lost.

2.3.3 EQUIPMENT STAGING DIAGRAMS

These diagrams are the product of both the Line Diagrams and the Functional Staging Diagram. Each of the lower level functions shown in Figure 2-3 head their own breakdown of the equipment components for the various control systems required to perform those functions.

All functions and equipment components are shown on the equipment staging diagrams in a hierarchical manner, such that all are identified by a logic numbering sequence which is described and explained later in this section.

Appendix A contains the Failure Modes and Effects Analysis (FMEA's) which lists each piece of equipment, its function, potential failure modes, effects of failure, reliability and recommended corrective action.

2.3.4 NUMBERING SYSTEM

The logic employed in the numbering system presented in the Equipment Staging Diagrams is set to follow a hierarchical sequence.

The numbering system is based upon utilizing a five-digit number. For the purposes of the explanation, the five-digit number is represented by the following five letters:

ABCDE

A is given the value one. This signifies that the function is the import of oil. A further functional breakdown is given by B. B is numbered:

- 1. Discharge oil from tanker
- 2. Move oil through offshore piping
- 3. Move oil through onshore piping

For example, a number given the value 12000, can be understood to be the import of oil through offshore piping. C is designed to give a further functional breakdown of the import of oil through the tanker, offshore and onshore systems. C is a number:

- 1. Line-up system
- 2. Move oil through system
- 3. Shutdown system
- 4. Communications system

Now 12200 can be understood as the moving of oil through the offshore piping system.

D separates C into further functional categories. These categories are too numerous to list, but they can be found through study of the equipment staging diagrams found later in this report. For example, 12240 can be understood to mean that during the movement of oil in the offshore piping system there exists a system for the relief of pressure surges.

The numbering system is based upon utilizing a five-digit number. For the purposes of the explanation, the five-digit number is represented by the following five letters:

ABCDE

A is given the value one. This signifies that the function is the import of oil. A further functional breakdown is given by B. B is numbered:

- 1. Discharge oil from tanker
- 2. Move oil through offshore piping
- 3. Move oil through onshore piping

For example, a number given the value 12000, can be understood to be the import of oil through offshore piping. C is designed to give a further functional breakdown of the import of oil through the tanker, offshore and onshore systems. C is a number:

- 1. Line-up system
- 2. Move oil through system
- 3. Shutdown system
- 4. Communications system

Now 12200 can be understood as the moving of oil through the offshore piping system.

D separates C into further functional categories. These categories are too numerous to list, but they can be found through study of the equipment staging diagrams found later in this report. For example, 12240 can be understood to mean that during the movement of oil in the offshore piping system there exists a system for the relief of pressure surges.

Lastly, E signifies the equipment function. For example, 12241 is known as the Surge Relief Availability Control consisting of a valve actuator.

This, in short, is a summary of the numbering system logic used in this report.

2.3.5 CONTROL SYSTEM DIAGRAMS

The remainder of this section contains a graphical representation of the benchmark control system which was developed for use in the Numerical Rating System of Section 3.

(10000) SINGLE POINT MOORING - BASIC LINE DIAGRAM FIGURE 2-1,

FIGURE 2-2, SEA ISLAND - BASIC LINE DIAGRAM (10000)

FIGURE 2-3, FUNCTIONAL STAGING DIAGRAM -

FIGURE 2-4, TANKER CONTROLS (11000)

FIGURE 2-5, LINE-UP TANKER VALVE SYSTEM - 11100 ESD

FIGURE 2-6, MOVE OIL THROUGH TANKER SYSTEM - 11200 ESD

FIGURE 2-7, SHUTDOWN TANKER SYSTEM - 11300 ESD

FIGURE 2-9, S.P.M. BASIC PLATFORM (12000)

FIGURE 2-10, LINE-UP OFFSHORE SYSTEM - 12100 ESD

FIGURE 2-11, LINE-UP OFFSHORE SYSTEM - 12100 ESD

FIGURE 2-12, LOADING UNIT RANGE & DRIFT DIAGRAM (12110)

2-13, MOVE OIL THROUGH OFFSHORE SYSTEM - 12200 ESD FIGURE

FIGURE 2-14, PRESSURE MEASUREMENT (12211)

FIGURE 2-15, FLOW CONTROL (12213 & 12214)

FIGURE 2-16, BASIC PLATFORM WITH BOOSTER PUMPS (12200)

FIGURE 2-17, BOOSTER PUMPS CONTROLS (12230)

FIGURE 2-18, BASIC PLATFORM WITH SURGE PROTECTION (12240)

FIGURE 2-19, SURGE RELIEF SYSTEM (12240)

FIGURE 2-20, BASIC PLATFORM WITH METERING (12200)

FIGURE 2-21, PIGGING ARRANGEMENT DIAGRAM

FIGURE 2-22, SHUTDOWN OFFSHORE SYSTEM - 12300 ESD

FIGURE 2-23, DRAIN AND SLOP SYSTEM (12330)

FIGURE 2-24, EMERGENCY SHUTDOWN SYSTEM (12340)

FIGURE 2-25, COMMUNICATIONS SYSTEM - 12400 ESD

NOTE; TRANSMISSION OF MULTIPLEX SIGNALS FROM AND TO, ON AND OFF SHORE, Either by Radio Link or submarine cable.

FIGURE 2-26, COMMUNICATION MULTIPLEX (12400)

NOTE: TRANSMISSION OF SIGNALS FROM & TO ON-SHORE AND OFF-SHORE, EACH CONDUCTOR IS DEDICATED TO ONE FUNCTION ONLY

FIGURE 2-27, COMMUNICATIONS DIRECT WIRE (12400)

FIGURE 2-28, BASIC ON-SHORE FACILITIES (13000)

FIGURE 2~29, LINE-UP ONSHORE SYSTEM - 13100 ESD

FIGURE 2-30, ONSHORE VALVE MANIFOLD (13110)

FIGURE 2-31, ONSHORE TANK LEVEL MEASUREMENT (13121)

FIGURE 2-32, MOVE OIL TO ONSHORE STORAGE - 13200 ESD

FIGURE 2-33, BASIC ONSHORE FACILITIES WITH BOOSTER PUMPS (13200)

FIGURE 2-34, BASIC ONSHORE FACILITIES WITH METERING (13200)

FIGURE 2-35, BASIC ONSHORE FACILITIES WITH SURGE PROTECTION (13200)

FIGURE 2-36, SHUTDOWN ONSHORE SYSTEM - 13300 ESD

NUMERICAL RATING SYSTEM

3.1 INTRODUCTION

In any rating system, there exists a blend of subjective judgment and objective performance. Rating systems which crank out a single number lack "real world" assumptions, and decisions based purely on "experience" lack completely objective information. Ideally, decisions or ranking of selections should be made with all information being objective. However, this is not always possible.

The system described here is one which utilizes the objective reliability and failure effects data and tempers it with the professional judgment of the design reviewer. This is the philosophy that flows through this entire document. Probabilities of failure, spill risks, fault trees, etc., are presented, but so also are discussions of applicability, design criteria, applied engineering principles, and actual operating experience.

This section is an extension of the previous sections - the design reviewer will draw upon the concepts and criteria presented in them to describe the system he is evaluating and to numerically rate this proposed system against a benchmark system. In order to do this, the functional to equipment structuring of the Equipment Staging Diagram must be consolidated to a purely equipment/element oriented network. Table 3-1 depicts this network through the element level. Table 3-2 maps the consolidated network to the ESD. For definition purposes, an element is a functional grouping of equipments.

TABLE 3-1. DWP ELEMENT HIERARCHY

TABLE 3-2. ESD TO ELEMENT MAP

	PIPING	PUMPS	VALVES	TANKS	SAMPLERS	SURGE RELIEF	DRAIN SLOPS	EMERGENCY SHUTDOWN	COMMUNICATIONS	NOT APPLICABLE
TANKER	_					_	_			
11110	1		•							
11210	1	•								-
11220			•							-
11310		•							-	
11320	•									
11330								•		
11340										
11410	+		Ť				-		•	-
11420	\top								•	
OFFSHOR	E									
12110				1						1
12120			•							
12210										
12220	-		-		•					
12230	+	•							_	
12240	+		_	1		•		-		-
12250	-		-		-		-	-	_	
12260	+-				-				_	
12310		•								
12320			•							
12330	1						•			
12340	-									
12410	1				-				•	
12420	1								•	
ONSHORE				_	_		-		-	_
13110	1			1	!	1	1			1
13120										
13210	1	•			-					
13220	1		•	•						
13230	1									•
13240	T									
13310	1	•								
13320			•					1		
13330	1				-		•			-
13340	1			1			-			
13410									•	
13420	1			1		-				

3.2 DESIGN ADEQUACY

The design adequacy is the measure of the suitability of a Deepwater Port to perform its functions safely. It is intended to serve as a guideline in the review of any DWP. The evaluation of any proposed DWP should include an examination of the plans of the facility to insure that the proper amount of control equipment is installed. Otherwise, a lack of certain control equipment could result in a higher probability of failure, and a greater risk of an oil spill.

A checklist has been developed to serve as a guideline in the evaluation of the control system design of any proposed DWP. First, it is important that all pertinent design material be gathered. This includes studying preliminary schematics, design drawings, equipment lists, and direct feedback from the DWP applicants.

A considerable amount of time can be spent in searching through the preliminary design material for those pieces of equipment that operate as a control function, and secondly, determining the exact number of like equipment. In this report, descriptions of DWP control equipment include design criteria, catalog cuts, reliability, effects of failure, spill risk, procedural alternatives, and maintenance information. A general understanding of DWP control equipment can be gained by reading Section 2.0 and Appendix E.

In an effort to preserve procedural clarity, one element in the DWP control system is provided as an example. The element is the Offshore Surge Relief System, as taken from Table 3-1. The following is the step-by-step procedure upon which all control elements of a DWP should be evaluated.

<u>Step 1</u> - Gather and study all available preliminary design material for the proposed element.

This includes the examination of drawings, equipment lists, and applicant sources. The material written in Section 2.0 and Appendix E on DWP equipment should also be reviewed.

<u>Step 2</u> - Construct a Design Adequacy Checklist.

This list should include all equipment considered essential in controlling the transfer of oil in Deepwater Ports. The design reviewer can use the ESD's of Section 2.0 to construct a checklist for all or part of the system in question.

Step 3 - Compare proposed element equipment against those presented in the Design Adequacy Checklist.

The typed portion of Table 3-3 is constructed from Figure 2-13. (Scanning the related figure will acquaint the reviewer with the Offshore Surge Relief Equipment usually found on a typical DWP.) By comparing the checklist with the material gathered in step number one, it is possible to see if the proposed element has an adequate amount of control equipment. It may have extra pieces of equipment, and these should be entered under the element heading. Each piece of proposed control equipment is checked against the typical DWP equipment list as shown in Table 3-3. In an actual review, the handwritten information in Table 3-3 would be extracted from a DWP applicant's proposed design and compared with the Design Adequacy Checklist.

TABLE 3-3. DESIGN ADEQUACY CHECKLIST

OFFSHORE

DWP Sil F	nt I EVALL	JATOR _	J. Mandato
	EQUIPMENT	V	COMMENTS
SURGE RELIEF SYSTEM 12240			
12241	SURGE RELIEF AVAILABILITY CONTROL		
	Valve Actuator 12241/01	V	One valve actua
12242	SURGE RELIEF AVAILABILITY MONITOR		
	Level Switch 12242/01	/	One L5.
	Alarm - High 12242/02	/	One XA-hig
	Alarm - Low 12242/03	/	One XA-low
12243	RELIEF VALVE PRESSURIZATION MEDIUM MONITOR		
	Pressure Indicator 12243/01	\checkmark	Six PI in 2

TABLE 3-3. DESIGN ADEQUACY CHECKLIST

(Continued)

OFFSHORE

Port I EVALL	JATOR	Mandato
EQUIPMENT	V	COMMENTS
Pressure Switch 12243/02	/	One P.5
Alarm - Low 12243/03	/	One XA-low
RELIEF VALVE PRESSURIZATION MEDIUM CONTROLLER		
Pressure Control Valves 12244/01	/	Five PCVin siries
	\$25000 E	
	6	
	Pressure Switch 12243/02 Alarm - Low 12243/03 RELIEF VALVE PRESSURIZATION MEDIUM CONTROLLER Pressure Control Valves 12244/01	Pressure Switch 12243/02 Alarm - Low 12243/03 RELIEF VALVE PRESSURIZATION MEDIUM CONTROLLER Pressure Control Valves 12244/01

3.3 RELIABILITY/FAILURE EFFECTS RATING

Once the design reviewer determines that a complete control system is proposed, through the use of the Design Adequacy Procedure described above, the system can then be rated numerically.

Figure 3-1 contains the fault tree for the Surge Relief System. Appendix B contains the fault trees for all of the individual elements of the oil transfer control system identified in Table 3-1. These fault trees will be needed in the execution of the numerical rating system. Additionally, Appendix B gives the reader background information on fault tree methodology.

3.3.2 NUMERICAL RATING SYSTEM PROCEDURE

The rating system is structured around the combination of a Reliability rating and a Failure Effects rating. These ratings will enable the professional design reviewer to make an informed decision on the acceptability of the applicant's design. The procedure builds upon previous sections in this report and is accomplished in five major steps. These steps are presented in this section and their use is illustrated in the continuation of the example of the Surge Relief System.

Step 1 - Fill out an Element Reliability/Effects rating sheet for each element in the proposed system Columns (1-7)

Table 3.4 is an example of the Element Reliability/Effects rating sheet partially filled out for the Offshore Surge Relief System Element.

By walking through the first seven columns of the table as follows, a more complete picture of the numerical rating system can now be realized:

Column (1) should list all equipment found in the particular element. These equipment are readily transcribed from the Design Adequacy Checklist previously constructed.

Column (2) lists the Equipment Probability of Failure which is obtained through the use of the Failure Modes and Effects Analysis (FMEA) Summary in Appendix A. The Probability of Failure is calculated as $(1-e^{-1/MBTF})$, where MBTF is obtained in Appendix C. For large MBTF, on the order of 10,000 barrels or more, the Probability of Failure can be closely approximated by the reciprocal of the MBTF, i.e., $\frac{1}{MBTF}$.

 $\underline{\text{Column (3)}}$ lists the benchmark Equipment Probability of Failure which is always 10^{-12} . This probability is assumed to be as close to the perfect piece of equipment as can reasonably be expected.

Column (4) lists the Effects Weighting Factors obtained from Table 3-5, the Effects Weighting Factor Worksheet (taken from Appendix D). This worksheet is filled out for the Surge Relief System identified in this report with space for additional equipment. It should be noted that the weights given to the various effects may be changed by the design reviewer to highlight current concerns for a particular effect. Table 3-6 contains the legend for the various effects categories and the weights given to these effects by the study team.

Column (5) lists the Effects Weighting Factor Fraction which is computed by dividing each individual Effects Weighting Factor in Column (4) by the Sum of the Effects Weighting Factors (≨Fi) (bottom of Column [4]). This procedure normalizes the effects within the element.

Column (6) lists the Effects Weighted Probability of Failure which is calculated by multiplying, for each equipment, the Equipment Probability of Failure (2) by the Effects Weighting Factor Fraction (5).

Column (7) lists the Benchmark Effects Weighted Probability of Failure which is calculated by multiplying, for each equipment, the Benchmark Equipment Probability of Failure (3) by the Effects Weighting Factor Fraction (5).

Step 2 - Calculate the Element Effects Weighted Probability of Failure, Line (8)

Line (8) lists the Element Effects Weighted Probability of Failure which is calculated from the applicable element fault tree found in Appendix B. In this instance, Figure 3-1 is the element fault tree for the Surge Relief System. Using the equation given in Figure 3-1, and inserting the appropriate Effects Weighted Probability of Failure for each piece of equipment in the fault tree, it is possible to calculate the Element Effects Weighted Probability of Failure.

Step 3 - Calculate the Benchmark Element Effects Weighted Probability of Failure, Line (9)

Line (9) lists the Benchmark Element Effects Weighted Probability of Failure which is calculated from the applicable element fault tree found in Appendix B. Again, using the equation in Figure 3-1, and inserting the Benchmark Effects Weighted Probability of Failure for each piece of equipment, it is possible to arrive at the Benchmark Element Effects Weighted Probability of Failure as shown in Table 3-4.

Note that at the equipment level, there will be the need to recalculate the Effects Weighted Probability of Failure if there is more than one piece of a particular equipment in the proposed system. The procedure is the same as that prescribed in Step 1 above, once the applicable series/parallel arrangement is determined and the Equipment Probability of Failure is recalculated.

For the Surge Relief System, there are five pressure control valves in series ("or" gate) and six pressure indicators also in series. Since these equipments are in series, their probability of failure is calculated by referring to Appendix B. The recalculated Equipment Probability of Failure for the pressure indicators is then:

$$1-(e^{1\times10^{-12}} \cdot e^{1\times10^{-12}} \cdot e^{1\times10^{-12}} \cdot e^{1\times10^{-12}} \cdot e^{1\times10^{-12}}$$

 $e^{1\times10^{-12}}) = 1-e^{6\times10^{-12}}$

or 6×10^{-12} . This means that the pressure indicators have a very good probability of not failing. It also means that their reliability rating will approach one. They will never equal one, because no piece of equipment can be considered 100 percent reliable. Likewise for the pressure control valves, their probability of failure is:

Figure 3-1. Surge Relief System Fault Tree.

TABLE 3-4. ELEMENT/RELIABILITY/EFFECTS RATING SHEET

ELIMIN DESCRIPTION OFFSHORE SAREE RECLER SYSTEM

(1) (9)	EPECIS WEIGHID BENCIAME E-FECTS PROMABLITY OF WLIGHTE (3)x(5) OF FAILURE (3)x(5)	3.58 × 10-7	4,0 x 10 x		1.5k10-14 1.5k10-14		1.5×10-14		-	
(5)	ING FACTOR EFFECTS FRACTION F, FALLINE FALLINE FRACTION F, FALLINE	.358	0%0	7040 G.OK	.01S 1.5k(.015 1.5x	1.09		
(4)	EFFECTS WEIGHTING FACTOR (F _L)	hr	9	9	+			,	C	The Control of the Co
(3)	BEHRINARK EQUIP- 1271 PRORABILITY OF FAILURE	10-12	10-12	01-01	21-01		71-01	10-15	10-15	
(2)	EQUIPART PROBABILITY OF FAILURE	8-01	10-01	٦١-٥١	10-12		10-12	21-01	10-12	
Θ	EQUIMENT IDENTIFICATION NAMES	1.224! Value Value () ACTANTOR	1242 (a)	(or High Level	los com level	12243	6 Inductor	/ez switch	103 Alarm	

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

NORWALIZED ELEMENT RELIABILITY RATING { 1- [(9) + (8)] }

ELEMENT/RELIABILITY/EFFECTS RATING SHEET TABLE 3-4. (Cont.)

٤	(2)	BINCHMAK EPFCIS MIGHTED PROBABILITY OF FAILURE (3)x(5)	61-0777	A.R. A.O.								
SURGE RELIEF SYSTEM	(9)	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	11-712.00	4.47 MIO							3.49 XIO-45	3.49 410-51
SURGE R	(5)	EFFECTS WEIGHT- ING FACTOR FRACTION E.	3 (1.
OFFSHORE	(7)	EFFECTS WEIGHTING FACTOR (F1)	19	2						ΣFi = 67	(8) ELEMENT EFFECTS WEIGHTED PROBABILIT OF FAILURE	AT EFFECTS WEIGHTED 1
ELEMENT DESCRIPTION	(3)	BEIXTHWARK EQUIP- TENT PROBABILITY OF FAILURE	41.01	o l							(8) ELEMENT EFFECTS	(9) BENCHMARK ELENES
	(2)	EQUINDATE PROBABILITY OF FAILURE	o c	2								
	(1)	EQUIPAINT IDEVITEICATION NEBER	Pressure Phressure	water								

NORWALIZED ELEMENT RELIABILITY RATING { 1. [(9) + (8)] } .499

TABLE 3-5. EFFECTS WEIGHTING FACTOR WORKSHEET

OFFSHORE E	QUIPMENT	MAJOR	MEDIUM	MINOR	CATASTROPHIC HAZARD	CRITICAL	MARGINAL	NECL IGIBLE HAZARD	LONG	SHORT	Fi EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	E	F	G	н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING	10	9	8_	10	9	7	1	5	3	SUMMATION
12212	Temperature Monitor										
	/01 Temperature Indicat	or						1			1
12213	Flow Rate Monitor										
	/01 Measuring Device						7		5		12
	- Orifice Plate										
	~ Sonic Meter										
	- P/D Meter										
	- Turbine Meter										
	/02 Flow Transmitter							1	5		6
	/03 Flow Indicator							1	5		6
12214	Flow Rate Controller										
	/01 Flow Regulator							1	5		6
	/02 Control Valve Activator							1	5		6
	/03 Limit Switches			8				1	5		14
	• SAMPLING										
12220	/01 Sampler							1			1
	SURGE RELIEF SYSTEM										
12241	Surge Relief Availability Control										
	/01 Valve Actuator	10				9			5		24

TABLE 3-5. EFFECTS WEIGHTING FACTOR WORKSHEET (Continued)

OFFSHORE EX	QUIPMENT	MAJOR SPILL	MEDIUM	MINOR	CATASTROPHIC HAZARD	CRITICAL HAZARD	MARGINAL HAZARD	NEGLIGIBLE HAZARD	LONG	SHORT	F _i EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	E	F	G	н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
12242	Surge Relief Avail- ability Monitor /01 Level Switch /02 Alarm - High							1	5		6
12243	/03 Alarm - Low							1			1
	Pressurization Medium Monitor /01 Pressure Indicator /02 Pressure Switch /03 Alarm - Low					103	7	1			1 7 7
12244	Relief Valve Pressurization. Medium Controller /01 Pressure Control Valves			8			7				15
12331	• DRAIN & SLOPS HANDLING Drain Tank Level Monitor /01 Level Switch /02 Alarm		9	8							9

TABLE 3-6. FAILURE EFFECTS WEIGHTING FACTORS

FAI	LURE EFFECTS	WEIGHTING FACTOR FOR DETRIMENTAL EFFECT OF CONTROL COMPONENT FAILURE ON THE IMPORT OF OIL
A.	Major oil spill	10
В.	Medium oil spill	9
C.	Minor oil spill	8
D.	Catastrophic hazard level	10
E.	Critical hazard level	9
F.	Marginal hazard level	7
G.	Negligible hazard level	1
H.	Long delay	5
I.	Short delay	3

Definitions of Failure Effects

- A. will release more than 100,000 gallons of oil 1
- B. will release between 10,000 to 100,000 gallons of oil 2
- C. will release less than 10,000 gallons of oil 1
- D. will cause death or severe injury to personnel, or system loss 2
- E. will cause personnel injury or major system damage, or will require immediate corrective action for personnel or system survival ²
- F. can be counteracted or controlled without injury to personnel or major system damage $^{2}\,$
- G. will not result in personnel injury or system damage 2
- H. will delay the import of oil by more than 1 hour
- I. will delay the import of oil by less than 1 hour

¹Reference 1

²Reference 3

$$1-(e^{1\times10^{-10}} \cdot e^{1\times10^{-10}} \cdot e^{1\times10^{-10}} \cdot e^{1\times10^{-10}} \cdot e^{1\times10^{-10}})$$

= $1-e^{5\times10^{-10}}$

or 5×10^{-10} . The new Effects Weighted Probability of Failure is then 9.0×10^{-14} and 1.12×10^{-10} respectively. These values are entered as shown in Table 3-7. Substituting the Effects Weighted Probability of Failure into the applicable Failure equation in Figure 3-1, we get:

P (Failure) =
$$(1.12 \times 10^{-10})$$
 . $(9.0 \times 10^{-14} + 9.0 \times 10^{-14} + 1.5 \times 10^{-14})$. 3.58×10^{-9} . $(9.0 \times 10^{-14} + 1.04 \times 10^{-13})$

= 2.33x10⁻⁴⁴ as the Element Effects Probability of Failure.

Similarly, the Benchmark Element Effects Weighted Probability of Failure is calculated by substituting the Benchmark Effects Weighted Probability of Failure into the same Element Probability Equation in Figure 3-1 as done in the calculations above.

P (Failure) =
$$(1.04 \times 10^{-12})$$
 . $(9.0 \times 10^{-14} + 9.0 \times 10^{-14} + 1.5 \times 10^{-14})$ x (3.58×10^{-13}) x $(9.0 \times 10^{-14} + 1.04 \times 10^{-13} + 1.12 \times 10^{-12})$

= 9.54x10⁻⁵⁰ as the Benchmark Effects Probability of Failure

TABLE 3-7. ELEMENT/RELIABILITY/EFFECTS RATING SHEET

ELEMENT DESCRIPTION OFF SHORE SURGE RELIEF SYSTEM.

(3)	(2)	(3)	(1)	(2)	(9)	6
EQUINDAT IDEATIFICATION ATM TAR	EQUINGET FORMELITY OF FAILURE	HENCINARK EQUIP- LENT PROBABILITY OF FAILURE	HEFECTS WEIGHTING FACTOR (F1)	FFFFCTS WEIGHT- INC FACTOR FRACTION F.	EFFCIS WELGITED PROMABLITY OF FAILURE (2)×(5)	HENCHWARK EFFECTS WITGHTED PROBABILITY OF FAILURE (3)x(5)
12241						
Volve for	9-0	21-01	24	.358	3.58 × 10-9	3.58 × 10-13
122.42						
ol Switch	21-01	21-01	و	060.	9.0 × 10-14	9.0 × 10-14
A High Lawel	10-12	21-01	9	060.		0.0 x
63 Law lavel	21-01	21-01		060.		
12243						
A Indicator	8×10-18	6×(0-12	1	\$10·	9.0 × 10 14	9.0 × 10-14
12 Switch	21-01	21-01	7	.104.		1.04×10-13
63 Alova.	21-01	10_12	7	+01.	1.04 × 10-18	1.04×10-13
			EFI = (CONST)			
-	4					

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

FAILIRE	+ (3)]
OF	0
BABILITY	-1
HIED PRO	FATING
WEIGH	SIL LTY
EITECIS	RELIA
DEPT	ELENENT
(9) HENCHMARK ELLYBOTT EPPECTS MEJCHTED PROBABILITY OF FALLINEE.	MORWALIZED ELEMENT RELIABILITY RATING 1- [(*) + (3)]
6	

ELEMENT/RELIABILITY/EFFECTS RATING SHEET TABLE 3-7. (Cont.)

ELINEAR DESCRIPTION OFFSHORE SURGE RELIEF SYSTEM.

(1)	(2)	(3)	. (7)	(5)	(9)	(7)
EQUIPMENT IDENTIFICATION NAMER	EQUIPENT PROBABILITY OF FAILNE	BENCHARK EQUIP- FENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F ₁)	EPPECTS WEIGHT- ING FACTOR FRACTION F_{i} $\sum_{i} F_{i}$	EFECTS WEIGHTED PROPABILITY OF FAILIRE (2)x(5)	BENCHARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
12244 Alcanal	0-01×S	21-01×S	$ \overline{\delta} $.724	1.12 × 10 ⁻¹⁰	1.12 × 10 ⁻¹²
			Σ Fi = 67			
				0	44	

(8) ELEMENT EFFECTS MEIGHTED PROPABILITY OF FAILURE 7.35×10^{-44}

(9) REMOTERING EFFECTS WEIGHTED PROPABILITY OF FAILURE 9.54 x 10-50

FORWLIZED FIRENT RELIABILITY KATUR: | 1- [(9) + (9)] |

Step 4 - Calculate the Normalized Element Reliability

Once the Element Effects Weighted Probability of Failure (Step 2), and the Benchmark Element Effects Weighted Probability of Failure (Step 3) are calculated, the Normalized Element Reliability Rating can be calculated by the expression:

For example, it is now possible to calculate the Normalized Element Reliability Rating for the Surge Relief Systems as follows:

 $1-(9.54 \times 10^{-50} \div 2.33 \times 10^{-44}) = .999$ is the Surge Relief System's Reliability Rating.

This same procedure is utilized for all the control equipment elements found in a Deepwater Port.

Step 5 - Compare the Element Effects Weighted Probability of Failure with the Benchmark Element Effects Weighted Probability of Failure

This comparison is intended to be a relative one. As more Deepwater Ports are reviewed and their performance documented, the design reviewer will be able to establish a more definitive benchmark system. In the interim, the system, as mentioned in Step 3, should be considered the benchmark system.

Step 6 - Calculate the Control System Effects Weighted Probability of Failure

Once the Element Effects Weighted Probability of Failure is calculated for all elements, the Control System Effects Weighted Probability of Failure is readily calculated. Because of the definition of the Elements, their relationship for reliability purpose is in series. Thus, the Control System Effects Weighted Probability of Failure is the product of all the Element Effects Weighted Probabilities of Failure.

APPENDIX A

FAILURE MODES AND EFFECTS ANALYSIS (FMEA)

NOTE

Mean Barrels to Failure figures were obtained from actual DWP operational statistics from two DWP's in the Carribean. These figures are identified by an asterisk (*). The remaining MBTF are estimates based on failure rates for similar equipment found in the WASH-1400 report. Since the failure rates were based on time of operation or cycles and were converted to Barrels of oil throughput on engineering judgment and DWP volumes, there remains uncertainty as to the accuracy of these particular MBTFs. As more actual data are gathered, these data should be updated.

FAILURE MODES AND EFFECT ANALYSIS (FMEA)

SUBSYSTEM (1) 11100 LINE UP TANKER SYSTEM ELEMENTS (2) 11110 LINE UP VALVES ON TANKER

SOLUTION	CORRECT ACTION RECONVENDED (10)		Use test button periodically to check circuit con- timuities of in- dicator panel	Same as above	Check when locally cycling valve		On failure, check circuit continuity and repair	Same as above	Same as above	Same as above	Periodic menual cycling recommended to ensure menual readiness
	CAUSE OF FAILURE (9)		Filament burnout; age; electrical short in wiring and circuitry	Same as above	Act of nature; human error; mechanical wear, possible stem breakage.		Age; electrical short in wiring and circuitry; corrosion	Same as above	Age; electrical short in wiring and circuitry; corrosion	Same as above	Not enough available man- power
MEAN BARBETS	TO FALLURE (MBTF) (8)		1 × 10 ¹² BBL	1 x 10 ¹² BBL	1 × 10 ¹² BBL		1 × 10 ¹¹ BBL	1 x 10 ¹¹ BBL	1 × 10 ¹¹ BBL	1 x 10 ¹¹ BBL	1 × 10 ¹² BBL.
	EFFECTS CATEGORIES (7)		6,1	G,I	б,н		G, I	6,1	6,1	6,1	н, 9
EFFECTS ON	EQUIPMENT (6)		Delay in pumping oil from tanker; requires visual checks	Same as above	No visual con- firmation of valve line up. Requires manual cycling of the valves.		Delay in lining up valves, thus requiring push button local	Same as above	Delay in lining up valves thus requiring manual local	Same as above	Inability to achieve valve line up until mampower opens or closes valves.
	FAILURE MODE (5)		A) Bulb burn- out	B) Circuitry Failure	Stems and No visual convalve actuators firmation of fail to rise valve line up when valve Requires manuis open. cycling of the valves.		A) Button contacts worn	B) Circuitry Failure	A) Button contacts worn	B) Circuitry failure	A) Manpower unavailable to open or close valves menually
MITFICATION	FUNCTION (4)		Assures proper valve line up		Assures proper value line up		Regulates proper valve line up		Regulates proper valve line up		Regulates proper valve line up
EQUIPMENT IDENITFICATION	EQUIPMENT (3)	11111 Valve Line Up Monitor	/01 Remote Indicator		/02 Local Indicator	11112 Valve Line Up Controller	/01 Push Button Remote		/02 Push Button Local		/03 Marual Local

FAILURE MODES AND EFFECT AVAINSIS (FNEA)

SUBSYSTEM (1) 11100 LINE UP TANKER SYSTEM ELDMENTS (2) 11110 LINE UP VALVES ON TANKER (CONE.)

SOLUTION	CORRECT ACTION RECOMMENDED (10)	Periodic lubrica- tion and in- spection	Same as above
	CAUSE OF FAILURE (9)	Age; electrical short in wiring and circuitry; corrosion	Same as above
	TO FAILURE (MBTF) (8)	1 × 10 ⁸ BBL	1 × 10 ⁸ BBL
	EFFECTS CATEGORIES (7)	۳. ۲. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳	F,H
EFFECTS ON	FOUTPMENT (6)	Limit switches will not be tripped, thus indicating improper valve line up. Fails to open or close valve.	Same as above
	FAILURE (5)	A) Circuitry failure	B) Jammed gears
EQUIPMENT IDENTIFICATION	FUNCTION (4)	Opens or closes valve	
EQUIPMENT II	EQUIPMENT (3)	/04 Valve Actuator	

P-A060	FIED	HARRIS (FREDERIC R) INC NEW YORK STUDY OF DEEPWATER PORT OIL TRANSFER CONTROL SYSTEMS.(U) JUN 78 I C ROBSON, W W SCHERKENBACH USCG-D-58-78 NL											
	20F4 AD60144	# 1 : Brok	dilibit	est vib		dith the transfer of the trans	** 1-15 H	65 12 1 65 1 65 1 15 int 2500 15 int 2500 16 h 15 2pr pr	d J (1 No.6)	4 8 1 200 4 6 1 200 1 001 200 1 001 2 00 1 1 0 0 1 0 0 0	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*** 1
d No. 201 d Top Sch million Sch d on Sch d	## h #4 B *** ** *** ** * *	day in this is the s	11 iii	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	daintaini endinaini indinaini dainaini dainaini filinaini filinaini	of such define a first a first define first a great		48 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	M h () () () () () () () () () (45 0 1755 1755 175 175 175	d S (SUN) + R (Refe R) Market R in Market Refe R - 1		The state of the s
e iti e kii enhee inhee id i nh		01 :: 1 03 :: 2 05 :: 2 1000:: 1 1000:: 1 11 :: 2 11 :: 2 1	6 65 5 6 7 1 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7 7 1 7	dy region on region of the region	413 :: 3 14 12 12 12 12 12 12 12	0 1 1 1 1 1 1 1 1 1	47 1 11 43 11 45 11 47 12 47 1	d mid nerill + heis hebit 1 miles hebit 1 miles heise 1 miles he	Gill 2 th Gib Billin	entropic chicken propin chicken chicken chicken propin chicken		TRIA I	dili dina dina fina
10 k 10 k 10 k 10 k 10 k 10 k 10 k 10 k	To the last transition of the last transition	d mil milk d mil milk d milk milk milk d milk milk d milk milk d milk milk d milk milk d milk milk d m	G 55 G: 5: F: 1: 10: 5: 10: 5: 10: 5: 10: 5: 10: 5: 10: 5:	(日) 原(第 日) (・ 日本 (田 田田) (田 田田) (田 田田) (田)	distribution of the control of the c	185 135 135 135 135 135 135 135 135 135 13	42 1:35%	45 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	William I	A LITE	4 001 100 g (500 500 g 1 5 00 50 g 1 5 00 50 g 1 7 7 7 7 7 1 7 7 7 7 7	1.11 mg	48 1 M 45 5 M 7
11111	thinks a	4 11 12 13 14 15 15 15 15 15 15 15	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# 11 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	47.1 (1) (47.1) (47.1) (47.1) (47.1) (40.1) (40.1)	d Mil milh this bibli	di has da nasa	et ::	di din chinhi pri in pri in pri in pri h pri h pri h	4 W 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1 M 1	-	TOTAL STATE OF THE PARTY OF THE	
6 6 mms		9 - 0 9 - 0 9 - 0	÷	e_b	* E C		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(S) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	1.000			- <u>-</u>	
-				10 A C C C C C C C C C C C C C C C C C C	. 00	(W)		# 1 10 1	190,11 180 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		#10 #21 #1 #1		

20F

AD A060144

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963 A

FATLIRE MODES AND EFFECT ANALYSIS (FMEA)

SUBSYSTEM (1) 11200 MOVE OIL THROUGH TANGER SYSTEM ELEMENTS (2) 11210 START PURPING

SOLUTION	CORRECT ACTION RECOMMENDED (10)		Oil sludge blockage Periodic inspecof tap; cold tion, cleaning, weather (freezing); and calibration incorrect calibration.	Same as above	Same as above	Repair or replace on failure. Use redundant equip- ment if relia- bility is low.	Same as above	Periodic inspection necessary to wnsure accurate output and proper paper supply for recorder.	
	CAUSE OF FAILURE (9)		Oil sludge blocka of tap: cold weather (freezing incorrect cali- bration.	Same as above	Same as above	Electrical short in wiring and circuitry; age; corrosion; light- ning.	Same as above	Electrical short in wiring and circuitry; age; corrosion.	Same as above
	MEAN BARRELS TO FAILURE (MBTF) (8)		1 × 10 ¹² BBL	1 × 10 ¹² BBL.	1 × 10 ¹² BBL	1 × 10 ¹² BBL	1 x 10 ¹² BBL	1 × 10 ¹² bbl.	1 × 10 ¹² BBL
	EFFECTS CATEGORIES (7)		C.F.I	C,F,I	C,F,I	6,1	6,1	1,5	6,1
EFFECTS ON	EQUIPMENT (6)		False high pressure reading could result in premature purp shutdown. False low pressure readings could result in rupture of tanker piping with possible spills.	Same as above	Same as above	Zero pressure readings could result in pum shutdown.	Same as above	No hard copy of pressure. Readings: no pumping delay if pressure indicator operable.	Same as above
	FATLURE MODE (5)		A) Needle indicator stuck	B) Rourdon tube or bellows rupture	C) Other internal failure	A) Circuit fails	B) Spurious signals	A) Clock fails	B) Pen or thermal print fails
MIFICATION	FUNCTION (4)		Denotes oil pressure in line			Transmits pressure signal		Records pressure vs. time history	
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	11211 Pressure	/01 Pressure Indicator			/02 Pressure Transmitter		/03 Pressure Recorder	

FAILURE NODES AND EFFECT ANALYSIS (FMFA)

SUBSYSTEM (1) 11200 NOVE OIL THROUGH TANKER SYSTEM ELEMENTS (2) 11210 START PUMPING (Cont.)

	SOLUTION	CORRECT ACTION RECOMPENDED (10)	Repair or replace on failure.	Periodic testing	Same as above		Periodic lubri- cation and in- spection rec- commended	Periodic inspec- tion and cali- bration		Same as above
		CAUSE OF FALLIRE (9)	Electrical short in wiring and circuitry; age.	Age; electrical short in wiring and circuitry; corrosion.	Same as above		Cold weather (freezing) incorrect call- bration age; electrical short	Same as above		Age; stress; corrosion bearing failure
	MEAN BARRETS	TO FAILURE (MBTF) (8)	1 × 10 ¹⁰ BBL	1 × 10 ¹² BBL	$1 \times 10^{12} BBL$		1 × 10 ⁸ BBL	$1 \times 10^{12} \text{BBL}$		1 × 10 ¹⁰ BBL
		EFFECTS CATEOORIES (7)	C,F,I	C,F,I	C,F,I		C, F, H	S -pa		н,
THE CONTRACTOR	EFFECTS ON	EQUIPMENT (6)	Fails to shut-down pump, could result in line rupture.	Fails to visually & audibly alert operator of significant pressure increases or decreases.	Same as above		Valve failing to close or open properly may cause steam turbine pump to over pressurize the line and rupture it.	No visual confirma- tion of pump speed		Steam turbine purp continues to run at un-controllable rate, thus jeopardizing tanker pipeline
		FATLURE MODE (5)	A) Bourdon tube or bellows rupture	A) Bulb r burnout. s.	B) Horn malfunction		A) Valve actuator fails to control steam feed line	A) Internal circuit fails		A) Spring/ balls fail
EQUIPMENT IDENTIFICATION	NITE ICALION	FUNCTION (4)	Shuts down pumps if high line pressure	Notifies operator of extremely low or high line pressures			Regulates pumping rate by opending or closing valve to steam feed of turbine pump	Indicates rpm's of steam turbine pump		Turns off purp due to excessive pump rpm's
SOL TIMES TING	EQUIPMENT IDE	EQUIPMENT (3)	/04 Pressure Switch	/05 Alarm		11212 Flow Controller	/01 Speed Regulator	/02 Speed Indicator	11213 Pump Protection Devices	/01 Overspeed Trip

FAILURE MODES AND EFFECT ANALYSIS (FMEA)

SUBSYSTEM (1) 11200 MOVE OIL THROUGH TANNER SYSTEM ELEMENTS (2) 11210 START PUMPING (Cont.)

SOLUTION	CORRECT ACTION RECOMENDED (10)	Same as above	Sane as above	Periodic inspection	Periodic inspection	Periodic inspection and calibration
	CAUSE OF FAILURE (9)	Age; stress; corrosion bearing failure	Thermocuple burnout; tap blocked; age; corrosion	0il sludge blockage; corrosion	Age; oil sludge blockage; corro- sion	Age; corrosion; electrical short in circuitry and wiring
MEAN DADDET C	TO FAILURE (METF) (8)	1 × 10 ¹⁰ BBL	1 × 10 ¹⁰ BBL	1 × 10 ¹⁰ BBL	1 × 10 ¹⁰ BBL	1 x 10 ¹⁰ BBL
	EFFECTS CATEGORIES (7)	н,я	н. я	т. г. s. s.	н,я	Е, н
EFFECTS ON	EQUIPMENT (6)	Same as above	Catastrophic pup and/or steam turbine fails due to contrinued operation at high temperature	Catastrophic pump and/or steam tur- bine failure due to low lube levels	Same as above	Catastrophic pump/turbine failure
	FALLURE MODE (5)	B) Other internal failure	A) Thermocouple fails	A) Bourdon tube or bellows rupture	B) Other internal failure	A) Circuit fails
NIFICATION	FUNCTION (4)		Turns off pump if high tempera- tures are detected	Turns off purp and steam turbine if low lube pressure indi- cated		Turns on alarm if A) Circuit excess in either fails temperature, overspeed, or low lube exists
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)		/02 Temperature Switch	/03 Low Lube Pressure Trip		/04 Alarm

FAILURE MODES AND EFFECT ANALYSIS (FNEA)

SUBSYSTEM (1) 11200 MOVE OIL THROUGH TANKER SYSTEM ELEMENTS (2) 11220 SWITCH TANKS ON TANKERS

NOTATION	CORRECT ACTION RECOMMENDED (10)		Redundant indica- cators and/or	periodic mainten- ance			Same as above	Make backup person- nel available.	Train personnel		Upon failure, check circuitry continuity and repair	Same as above
	CAUSE OF FALLURE (9)		Age; electrical short in wiring	and circuitry; sludge buildup			Same as above	Not enough avail- able marpower; human error	Same as above		Age; electrical short in wiring and circuitry	Same as above
O PROGRAM IN THE	TO FAILURE (MBTF) (8)		$1 \times 10^{12} \text{BBL}$				(6-100) x 10 ⁶ BBL	1×10^{12} BBL	$1 \times 10^{12} \text{ BBL}$		1 × 10 ¹¹ BBL	$1 \times 10^{11} \text{ BBL}$
	EFFECTS CATECORIES (7)		6,1				G, I	6,1	6,1		6, I	6,1
EFFECIS ON	EQUIPMENT (6)		Fails to indi-	float stuck in low position will result in	premature tank switching; float stuck in	will result in low suction	Same as above	Inability to gage tanks levels until arrival of manpower	Same as above		Delay in lining up valves, thus requiring push button local	Same as above
	FAILURE (5)		A) Circuit fails				B) Float stuck	A) Marpower unavail- able to dip	B) Incorrect readings		A) Button contacts worn	B) Circuitry fails
NTIFICATION	FUNCTION (4)		Indicates tank quantities					Indicates tank quumities			Initate valve position change	
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	Monitor	/01 Level Indicator	• Float gage read switch	• Float gage tape	• Metric tape	• Pheumatic	/02 Memual Dipping		11222 Value Line Up Controller	/01 Push Button Remote	

FAILURE MODES AND EFFECT ANALYSIS (FNFA)

SUBSYSTEM (1) 11200 MOVE OIL THROUGH TANKER SYSTEM ELEMENTS (2) 11220 SWITCH TANKS ON TANGERS (Conc.)

NOLLITION	CORRECT ACTION (10)	Upon failure check circuit continuity, and repair	Same as above	Make backup person- nel available	Periodic lubrica- tion and inspec- tion	Same as above	Redundant or backup limit switches to ensure overall reliability	Same as above		Use test button periodically to to check circuit continuities of indicator panel	Same as above
	CAUSE OF FAILURE (9)	Age; electrical short in wiring and circuitry	Same as above	Not enough available manpower	Age; electrical short in wiring and circuitry	Same as above	Age; electrical short in wiring and circuitry	Same as above		Filament burnout; age; electrical short in wiring and circuitry	Same as above
MEAN BARBET C	TO FAILURE (PETF) (8)	1 × 10 ¹¹ BBL	1×10^{11} BEL	1 × 10 ¹² BBL	1 × 10 ⁸ BBL	1 × 10 ⁸ BBL	1 × 10 ⁶ BBL	3 × 10 ⁹ BBL		1 × 10 ¹² bbl.	$1 \times 10^{12} BBL$
	EFFECTS CATEGORIES (7)			6,1	Н,	F,H	F, н,	F,H,		C,F,I	C,F,I
EFFECTS ON	EQUIPMENT (6)	Delay in lining up valves thus requiring man- ual local	Same as above	Inability to achieve valve line up until marpower opens or closes valves	Fails to open or close	Same as above	Remote indi- cators will not confirm opening or closing of valves	Value interlock fails to block other value operations		Delay in pumping oil from tank; requires visual check	Same as above
	FATLURE MODE (5)	A) Button contacts worn	B) Circuitry fails	A) Marpower unavail- able or in ade- quate	A) Circuitry failure	B) Jammed	A) Circuit fails	B) Contacts fail due mechanical wear		A) Bulb bum- out	B) Circuit
TIFICATION	FUNCTION (4)	Initiates valve position change		Initiates valve position change	Opens or closes valve		Shuts off valve actuator when valve opens or closes; acts as valve interlock mechanism			Assures proper valve line up	
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	/02 Push Button Local		/03 Merual local	/04 Valve Actuator		/O5 Limit Switches		11223 Valve Line Up Monitor	/01 Remote indicator	

FAILURE MODES AND EFFECT ANALYSIS (FMEA)

SUBSYSTEM (1) 11200 MOVE OIL THROUGH TANKER SYSTEM ELEMENTS (2) 11220 SWITCH TANKS ON TANKER (Cont.)

NOLLYTION	CURRECT ACTION RECOTATION (10)	Check when locally cycling walve
	CAUSE OF FATLINE (9)	Act of nature; human error; mechanical wear; steam breakage
MEAN BARRELS	TO FAILURE (MBTF) (8)	1 × 10 ¹² BBL
	EFFECTS CATEGORIES (7)	C,F,I
EFFECTS ON		No visual.con- firmation of valve line up; requires man- ual check
	FATLURE MODE (5)	A) Stems on actuators fail to rise when valve is open
UIPMENT IDENTIFICATION	FUNCTION (4)	Assures proper valve line up
EQUIPMENT IL	EQUIPMENT (3)	/02 Local indicator

FATILIRE MODES AND EFFECT ANALYSIS (FMEA)

SURSYSTEM (1) 11300 SHUTDOAN TANKER SYSTEM (Cont.)

	NOLITION	CORRECT ACTION RECOMMENDED (10)	Repair or replace on failure.	Periodic testine	Same as above		Periodic inspection and calibration	Periodic inspection, cleaning, and lubrication.	Same as above
		CAUSE OF FAILURE (9)	Electrical short in wiring and circuitry: age.	Age: electrical short in wiring and circuitry; corrosion.	Same as above		Same as above	Cold weather (freezing);in- correct call- bration; age; electrical short in wiring and circuitry.	Same as above
	MEAN BARRETS	TO FAILURE (MEIF) (8)	1 × 10 ¹¹ BBL	1 × 10 ¹² BBL	$1 \times 10^{12} \text{BBL}$		1 × 10 ¹² BBL	1 × 10 ⁸ BBL	1 × 10 ⁸ BBL
		EFFECTS CATEOORIES (7)	C.F.I	C.F.1	C,F,I		U	C,F,H	С, F, H
	EFFECTS ON	EQUIPMENT (6)	Fails to shut-down pump, could result in line rupture.	Fails to visually & audibly alert operator of significant pressure increases or decreases.	Same as above		No visual con- firmation of pump speed	Valve failing to close causes system pressuri- zation with line ruptures, punp overloads, etc.; Valve failing to open causes pumping and tank emptying irregularities	Same as above
(mail:)		FATLURE MODE (5)	A) Bourdon tube or bellows rupture	A) Bulb burnout	B) Horn mal- function		A) Internal circuit fails	A) Gears jammed in valve ac- tuator	B) Failure of electro/ hydraulic control system
10 SIOP PUPLING	NTIFICATION	FUNCTION (4)	Shuts down pumps if high discharge pressure occurs	Notifies operator of extremely low or high line pressure			Indicates rpm's of steam turbine pump	Regulates proper pumping rate by opening or closing valve to steam feed of turbine pump	
ELEMENTS (2) 11310 STOP PURPLING	EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	/04 Pressure Switch	/05 Alarm		11312 Flow Rate Controller	/01 Speed Indicator	/02 Speed Rerulator	

FATLURE MODES AND EFFECT ANALYSIS (FMEA)

SUBSYSTEM (1) 11300 SHUTDOMN TANKER SYSTEM ELEMENTS (2) 11310 STOP PUMPING

	SOLUTION	SOLUTION CORRECT ACTION RECOMMENDED (10) e Periodic inspection, cleaning, and calibration		Oil sluge blockage Periodic inspecof tap; cold tion, cleaning, weather (freezing); and calibration incorrect cali-bration.	tion, cleaning, g); and calibration Same as above			Same as above	Periodic in- spection necessary to ensure accurate output and proper paper supply for recorder.	Repair on failure
		CAUSE OF FAILURE (9)		Oil sludge blockag of tap; cold weather (freezing) incorrect call- bration.	Same as above	Same as above	Electrical short in wiring and circuitry; age; corrosion; light- ning.	Same as above	Electrical short in wiring and circuitry; age; corrosion.	Same as above
	MFAN BARRETS	TO FAILURE (METF) (8)		1 × 10 ¹² BBL	1 × 10 ¹² bbl.	1 x 10 ¹² BBL	1 × 10 ^{1 2} BBL	1 x 10 ¹² BBL	1 × 10 ¹² BBL	1 × 10 ¹² BBL
		EFFECTS CATECORIES (7)		C,F,I	C,F,I	C,F,I	6,1	G,1	1,2	6,1
	EFFECTS ON	EQUIPMENT (6)		False high pressure reading could result in premeture pump shirdown. False low pressure result in rupture of tanker piping with possible spills.	Same as above	Same as above	Zero pressure readings could result in pump shutdown.	Same as above	No hard copy of pressure. Readings; no puming delay if pressure indicator operable.	Same as above
		FAILURE MODE (5)		A) Needle indicator stuck	B) Bourdon tube or bellows rupture	C) Other internal failure	A) Circuit fails	B) Spurious signals	A) Clock fails	B) Pen or thermal print fails
10 STOP PUMPING	NITFICATION	FUNCTION (4)		Denotes oil pressure in line			Transmits pressure signal to recorder		Records a pressure versus time history	
ELEMENTS (2) 11310 STOP PUMPING	EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	11311 Pressure Monitor	/01 Pressure Indicator			/02 Pressure Transmitter		/03 Pressure Recorder	

SUBSYSTEM (1) 11300 SHUTDOM TANKER SYSTEM ELEMENTS (2) 11310 STOP PUPPING

NOTALINO	NOT TOTAL	CORRECT ACTION RECOMPENDED (10)		oil sludge blockage Periodic inspec- of tap; cold tion, cleaning, weether (freezing); and calibration incorrect cali- bration.	Same as above	Same as above	Repair or replace on failure. Use redundant equip- ment if relia- bility is low.	Same as above	Periodic inspection necessary to ensure accurate output and proper paper supply for recorder.	Repair on failure
		OF FAILURE (9)		Oil sludge block of tap; cold weather (freezing incorrect cali- bration.	Same as above	Same as above	Electrical short in wiring and circuitry; age; corrosion; light- ning.	Same as above	Electrical short in wiring and circuitry; age; corrosion.	Same as above
	MEAN BARRELS	OFFICE (8)		1 × 10 ¹² BBL	1 × 10 ¹² 88.	1 × 10 ¹² BBL	1 × 10 ¹² BBL	$1 \times 10^{12} \text{BBL}$	1 x 10 ¹² BBL	1 × 10 ¹² BBL
		CATEGORIES (7)		C,F,1	C,F,I	C.F.1	1,0	6,1	6,1	6,1
NO SECURE		EQUIPMENT (6)		False high pressure reading could result in pressure pump shutdown. False low pressure results could result in repure of tarker piping with possible spills.	Same as above	Same as above	Zero pressure readings could result in pump shutdown.	Same as above	No hard copy of pressure. Readings; no pumping delay if pressure indicator operable.	Same as above
		HODE (5)		A) Needle Indicator stuck	B) Bourdon tube or bellows repture	C) Other internal failure	A) Circuit fails	B) Spurious	A) Glock fatls	B) Fen or thermal print
INDICIPLICATION		FUNCTION (4)		Denotes oil pressure in line			Transmits pressure signal to recorder		Records a pressure versus time history	
EDITOGRAF INBUTETCATION	10000	BQUIPAENT (3)	11311 Pressure Monitor	/01 Presure Indicator			/02 Pressure Transmitter		/03 Pressure Recorder	

	SOLUTION	CORRECT ACTION RECOMPENDED (10)		Periodic inspection and calibration	Same as above	Same as above	Periodic main- tenance	Same as above	Periodic inspec- tion and calibra- tion
		CAUSE OF FAILIRE (9)		Age; stress; corrosion; bearing failure	Same as above	Thermocouple burnout; tap blocked; age; corrosion	Age; electrical short in wiring and circuitry; oil sludge block- age; corrosion; bearing failure	Age; oil sludge blockage; corro- sion	Age: corrosion electrical short in circuitry and wiring
	MEAN BARRETS	TO FAILURE (METF) (8)		1 × 10 ¹⁰ BBL	1 x 10 ¹⁰ BBL	1 × 10 ¹⁰ BR.	1 × 10 ¹⁰ BRL	1 x 10 ¹⁰ BBL	1 × 10 ¹⁰ BBL
		EFFECTS CATEGORIES (7)		Е,Н	Е,Н	н,	н,я	н"э	н,
	EFFECTS ON	EQUIPMENT (6)		Steam turbine pum continues to run at uncontrollable rate, thus jeopardizing tanker pipeline	Same as above	Gatastrophic pum and/or steam turbine fails due to continued operation at high tempera- tures	Catastrophic pump and/or steam turbine failure due to low lube levels	Same as above	Catastrophic pump/turbine failure
SYSTEM (Cont.)		FAILURE MODE (5)		A) Spring/balls fail	B) Other internal failure	Thermocouple fails	A) Bourdon tube or bellows ruptures	B) Other internal failure	A) Circuit fails
00 SHUTDOAN TANKER SYSTEM 10 STOP PURPING	NTIFICATION	FUNCTION (4)		Turns off purp due to excessive purp rpm's		Turns off purp if high tempera- tures are de- tected	Turns off pump due to low lubri- cation		Turns on alarm if either excess temperature, over- speed, or low lube exists
SURSYSTEM (1) 11300 ELEMENTS (2) 11310	EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	11313 Pump Protection Devices	/01 Overspeed Trip		/02 Temperature Switch	/03 Low Lube Pressure Trip		/04 Alarm

SUBSYSTEM (1) 11300 SHUTDOAN TANGER SYSTEM ELEMENTS (2) 11320 DISPLACE OIL, FROM HOSE/LOADING ARM

SOLUTION	CORRECT ACTION RECOMMENDED (10)		Periodic inspection, cleaning, and calibration		Properly trained personnel
	CAUSE OF FAILURE (9)		Oil sludge on tap; cold weather (freezing); incorrect calibra- tion		thman error
	MEAN BARRELS BETWEEN FAILURES (MTBF) (8)		1 × 10 ¹² BBL		25 × 10 ⁶ BBL
	EFFECTS CATEGORIES (7)		C,F,I e in er sible		6,1
EFFECTS ON	EQUIPMENT (6)		False high pressure readings result in premature pump shutdown. False low pressure readings result in rupture of tanker piping with possible spill.		Oil spill will occur if discornect is attempted without draining lines.
	FAILURE MODE (5)		A) Needle indicator stuck		Drain left closed
ENTIFICATION	FUNCTION (4)		Denotes oil pressure		Empties hose/ loading arm
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	11321 Pressure Monitor	/01 Pressure Indicator	11322 Hose/Loading Arm Drain	/01 Manual Procedure Local

	SEE	CAUSE OORRECT ACTION OF FAILURE (9) RECOMMENDED (10)	Electrical short Periodic testing in wiring and and inspection circuitry; age; to ensure proper corrosion.	Electrical short Same as above in wiring and circuity; age.
		MEAN BARRELS TO FAILURE (MBIF) (8)	1 x 10 ¹⁰ BBL	1 x 10 ¹⁰ BBL
	EFFECTS ON	EQUIPMENT (6) CATEGORIES (7)	Delay in shutdown; requires control room shutdown or shutdown from pump room.	Delay in shutdown; requires midships shutdown or shutdown from punp room.
SYSTEM WN SYSTEM		FAILURE MODE (5)	A) Circuitry failure	B) Circuitry failure
SUBSYSTEM (1) 11300 SHUTDOMN TANKER SYSTEM SLEVENTS (2) 11330 EMERCENCY SHUTDOMN SYSTEM	MITFICATION	FUNCTION (4)		Shutsdown ships B) Circuitry steam turbine pumps failure
SUBSYSTEM (1) 113 ELEMENTS (2) 113	EQUIPMENT IDENTIFICATION	EQUIPMENT (3) 11330	/01 Midships remote Shutsdown ships Pump shutdown steam turbine Switch pumps.	/02 Control room Remote pump Shutdown Switch

SUBSYSTEM (1) 11300 SHUTDOMN TANKER SYSTEM ELEMENTS (2) 11340 CLOSE TANKER VALVES

	NOTATIOS	CORRECT ACTION RECOMMENDED (10)		Use test button periodically to check circuit continuities of indicator panel	Same as above	Check when locally cycling valve		On failure, check circuit conti- nuity and repair	Same as above	Same as above	Same as above
		CAUSE OF FAILURE (9)		Filament burnout; age; electrical short in wiring	Same as above	Act of nature; human error; mechanical wear, possible stem breakage.		Age; electrical short in wiring and circuitry; corrosion	Same as above	Age; electrical short in wiring and circuitry; corrosion	Same as above
	MEAN BARRELS	TO FAILURE (METF) (8)		1 × 10 ¹² BBL	$1 \times 10^{12} \text{ BBL}$	1 × 10 ¹² BBL		1×10^{11} BBL	$1 \times 10^{11} \text{ BBL}$	$1 \times 10^{11} \text{ BBL}$	1×10^{11} BBL
		EFFECTS CATEGORIES (7)		6,1	6,1	С,н		6, I	6,1	G, I	1,5
	EFFECTS ON	EQUIPMENT (6)		Delay in pumping oil from tanker; requires visual checks	Same as above	No visual confirmation of valves closing. Requires manual cycling of the valves.		Delay in closing valves, thus requiring push button local	Same as above	Delay in closing valves thus requiring manual local	Same as above
ß		FATLURE MODE (5)		A) Bulb burnout	B) Circuitry Failure	Stems and valve actuators fail to rise when valve is open.		A) Button contacts worn	B) Circuitry Failure	A) Button contacts worn	B) Circuitry failure
LALLOSE IMMER VALVI	TIFICATION	FUNCTION (4)		Assures proper valve line up		Assures proper value line up		Regulates proper valve line up		Regulates proper valve line up	
THE THE PARTY OF THE PARTY AND THE PARTY OF	EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	11341 Valve Line Up Monitor	/01 Remote Indicator		/02 Local	11341 Valve Line Up Controller	/01 Push Button Remote		/02 Push Button Local	

FAILURE MODES AND EFFECT ANALYSIS (FMEA)

SUBSYSTEM (1) 11300 SHUTDOAN TANKER SYSTEM ELEMENTS (2) 11340 CLOSE TANKER VALVES (CORE.)

SOLITION	USE CORRECTION (9) RECONSTRUCTION (1) CORRECTION (1	Age; electrical Periodic lubrica short in Wiring tion and in- and circuitry; spection corrosion	Same as above Same as above
	1 x 10 ¹² BBL ROLE POWER 1 x 10 ¹² BBL ROLE POWER 1	1 x 10 ⁸ BHL Age; elec short in and circu corrosion	1 x 10 ⁸ BBL Same
EPPECTS ON	FALLURE MODE (5) EQUIPMENT (6) CATEGORIES (7) T A) Manpower Inability to G,H unavailable close valves to open until manpower to open until manpower or close opens or closes valves valves manually	Limit switches F,H will not be tripped, thus indicating indicating improper valve line up. Fails to open or close valve.	Same as above F,H
	FAILURE (5) A) Manpower unavailable of to open to or close of valves menually	A) Circuitry I failure w	B) Jammed S
EQUIPMENT IDENTIFICATION	FUNCTION (4) Regulates proper valve line up	Opens or closes valve	
EQUIPMENT I	EQUIMENT (3) /03 Manual Local	/04 Valve Actuator	

SUBSYSTEM (1) 11400 TANGER COMMUNICATIONS SYSTEM ELEMENTS (2)

SOLUTION	CORRECT ACTION RECOMPENDED (10)		Initiate walkie- talkie or visual communication	Initiate visual commulcation	Replace with new battery		Initiate radio communications
	CAUSE OF FAILURE (9)		Electrical short in circuitry and wiring.	Electrical short in circuitry and wiring.	Battery wears out from use		Electrical short in circuitry and wiring.
MEAN BADDET C	TO FAILURE (MITF) (8)		1 × 10 ¹² BH.	1 × 10 ¹² BBL	$1 \times 10^{12} \text{BBL}$		1 × 10 ¹² BBL
	EFFECTS CATEGORIES (7)		6,1	6,1	6,1		6,1
IFFECTS ON	EQUIPMENT (6) G		No two-way radio communications between tanker and control center	No short rance two-way communi- cations between tanker and personnel on foot	Same as above		No direct linkup by wire between tanker and control center
	FAILURE MODE (5)		A) Internal circuit fails	A) Internal circuit fails	B) Battery wears down		A) Break in wire
EQUIPMENT IDENTIFICATION	FUNCTION (4)		Provides tanker communications with offshore or onshore control	Provides tanker communications with personnel on short-range basis			Direct line communication
EQUIPMENT ID	EQUIPMENT (3)	11410 Radio	/01 VHF	/02 Walkie- Talkie		11420 Voice	/01 SP Phone

SUBSYSTEM (1) 12100 LINE UP OFFSHORE SYSTEM ELEMENTS (2) 12110 HOSE/LOADING ARM CONNECTION TO TANKER

	SOLUTION	CORRECT ACTION RECOMMENDED (10)		Periodic inspection. cleaning, and calibration	Same as above
		CAUSE OF FALLIRE (9)		Oil sludre block- age of tap: cold weather (freezing) incorrect cali- brations.	Same as above
	9	a ed		BBC	BBL
	MEAN BADDET C	TO FAILURE (MBTF) (8)		1 × 10 ¹² BB.	1 × 10 ¹² BBL
		EFFECTS CATEORLES (7)		G. F. II.	С, F, Н
1	EFFECTS ON	EQUIPMENT (6)		False high pressure readings will result in premature conclusion of a fluid in the hose/loading arm. This will result in draining the hose/loading arm and delay pumping. Likewise, false low pressure readings will result in a premature conclusion of no fluids in the hose/loading arm and cause possible damage to the arm as it is moved, or aid spill if hose is uncapped prior to connection to the man it of the arm as it is moved.	Same as above
The state of the s		FAILURE (5)		A) Needle indicator stuck	B) Bourdon tube or bellows fail
Test of the latest the latest	DITIFICATION	FUNCTION (4)		Detects presence of fluid in the hose/loading arm	
	EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	12111 0t1 In Hose/Loading Arm Detector	/01 Pressure Indicator	

Same as above

Same as above

 $1 \times 10^{12} BBL$

C.F.H

Same as above

C) Other internal failure

FAILURE MODES AND EFFECT ANALYSIS (FMEA)

	NOLLITION	CORRECT ACTION RECOMMENDED (10)		Train persorrel
		CAUSE OF FAILURE (9)		Hunan error
	MEAN BARRETS	TO FAILURE (MBTF) (8)		25 × 10 ⁶ BRL*
		CATEGORIES (7)		G,N
TANER (Cont.)	EFFECTS ON	EQUIPMENT (6)		As soon as pumping begins, oil spill will
RE SYSTEM Rei CONNECTION TO		FAILURE MODE (5)		A) Drain left open
JURYSTEM (1) 12100 LINE UP OFFSHORE SYSTEM LINEBATS (2) 12110 HISSE/LIANDING ART CONNECTION TO TANGER (Cont)	COURTENT IDENTIFICATION	FUNCTION (4)		Empties hose/ loading arm
SURSYSTEM (1) 12 ELPPENTS (2) 121	EQUIPMENT ID	BOUTHENT (3)	12112 Hose/ Loading Arm Drain	/01 Marual Procedure

SUBSYSTEM (1) 12100 LINE UP OFFSHORE SYSTEM ELEMENTS (2) 12120 LINE UP VALVES

SOLUTION	CORRECT ACTION RECOMMENDED (10)		Upon failure, check circuit continuity and repair	Same as above	Same as above	Same as above	Periodic manual cvclinc to ensure manual readiness	Periodic inspection and lubrication	Same as above	Redundant or backup limit switches to ensure overall reliability	Same as above
	CAUSE OF FALLIRE (9)		Age; electrical short in wiring and circuitry: corrosion	Same as above	Age; electrical short in wiring and circuitry: corrosion	Same as above	Not enough available mannower	Age: electrical short in wiring and circuitry corrosion.	Same as above	Age; electrical short in wiring and circuitry; corrosion.	Same as above
HEAN BARRETS	TO FAILURE (MBIF) (8)		1 × 10 ¹¹ BBL	1 x 10 ¹¹ BBL	1 × 10 ¹¹ BBL	1 x 10 ¹¹ BBL	1 x 10 ¹² BBL	1 × 10 ⁸ BBL	$1 \times 10^8 \text{ BBL}$	3 × 10 ⁹ BBL	3 × 10 ⁹ BBL
	EFFECTS CATEORLES (7)		66 G,I	6.1	66 G,I		н'9		F ,Н	ors C,F,H rm sing	с С, F, Н
EFFECTS ON	EQUIPMENT (6)		Delay in lining up valves, thus requiring push button local	Same as above	Delay in lining up valves, thus requiring push button local	Same as above	Inability to achieve valve line un until mannower opens or closes valves	Fails to open or close	Same as above	Remote indicators will not confirm opening or closing of valves	Valve interlock fails to block other valve operations
	FAILURE MODE (5)		A) Button contacts worn	B) Circuitry failure	A) Button contacts worn	B) Circuitry fails	A) Mempower unavailable or inade- quate	A) Circuitry failure	B) Jammed •ears	A) Circuitry fails	B) Contacts fail
TIFICATION	FUNCTION (4)		Regulates proper valve line up		Regulates proper valve line up		Regulates proper valve line up	Opens or closes valve		Shuts off valve actuator when valve opens or closes. Acts as a valve interlock mechanism	
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	12121 Valve Line Up Controller	/01 Push Button Remote		/02 Push Button Local		/03 Marual Local	/04 Valve Actuator		/05 Limit Switches	

Check when locally cycling valve Use test button periodically to check circuit continuities of indicator panel CORRECT ACTION RECOMPENDED (10) Same as above SOLUTION Filament burnout; age; electrical short in wiring and circuitry. Act of nature; human error; mechanical wear; posssible stem breakage OF FAILURE (9) Same as above 1×10^{12} BRL MEAN BARRELS TO FAILURE (MBTF) (8) $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ EFFECTS
CATEGORIES (7) G,1 6,1 C,H Delay in pumping oil from tanker, requires visual check No visual con-firmation of valve line up, requires manual cycling of the valves EQUIPMENT (6) Same as above EFFECTS ON A) Stems on valve activators fail to rrise when cy valve is va B) Circuitry failure SURSYSTEM (1) 12100 LINE UP OFFSHORE SYSTEM (Cont.) ELEMENTS (2) 12120 LINE UP VALVES (Cont.) A) Bulb burnout FAILURE (5) Assures proper valve line up Assures point valve line up FUNCTION (4) EQUIPMENT IDENTIFICATION /01 Remote Indicator /02 Local Indicator EQUIPMENT (3) 12122 Valve Line Up Monitor

Repair or replace on failure. Use redundant equip-ment if relia-bility is low. Periodic in-spection necessary to ensure accurate output and proper paper supply for recorder. Repair on failure Oil sludge blockage Periodic inspecof tap; cold tron, cleaning, weather (freezing); and calibration incorrect calibration. CORRECT ACTION RECOMMENDED (10) Same as above Same as above Same as above SOLUTION Electrical short in wiring and circuitry; age; corrosion. Electrical short in wiring and circuitry; age; corrosion. OF FAILURE (9) Same as above Same as above Same as above Same as above MEAN BARRELS TO FAILURE (MBTF) (8) $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ $1 \times 10^{12} \text{BBL}$ $1 \times 10^{12} BBL$ $1 \times 10^{12} \, BBL$ EFFECTS
CATEGORIES (7) C,F,I C,F,I C.F.I G,I G,1 G,I G,1 False high pressure readings result in reduced throughput. False low pressure readings could result in rupture of off—shore pipnig with possible spill No hard copy of pressure readings Zero pressure reading will result in pump shutdown. EQUIPMENT (6) Same as above Same as above Same as above Same as above EFFECTS ON A) Needle indicator stuck internal B) Spurious signals Bourdon tube or bellows rupture B) Pen or thermal print SUBSYSTEM (1) 12200 NOVE THROUGH OFFSHORE SYSTEM ELEMENTS (2) 12210 ESTABLISH FLOW Transmits pressure A) Circuit signal to recorder fails FAILURE MODE (5) C) Other Record a pressure A) Clock versus time history fails 8 Donates proper oil pressure in line FUNCTION (4) EQUIPMENT IDENTIFICATION Transmitter /01 Pressure Indicator /03 Pressure Recorder 12211 Pressure /02 Pressure EQUIPMENT (3) Monitor

SUBSYSTEM (1) 12200 MOVE THROUGH OFFSHORE SYSTEM ELEMENTS (2) 12210 ESTABLISH FLOW (Cont.)

EQUIPMENT IDENTIFICATION	MIFICATION		EFFECTS ON		MEAN BARBETS		SOLUTION
(2)	(%) NOILLAND	FAILURE (5)	EQUIPMENT (6)	EFFECTS CATEGORIES (7)	TO FAILURE (METF) (8)	CAUSE OF FAILURE (9)	CORRECT ACTION RECOMMENDED (10)
CO THEMEN	Lawring 14	751					
/04 Alarm	Notifies operator of extremely low or high pressure	A) Circuit failure	Fails to visibly and audibly alert operator of sig- nificant pressure increases or decreases	C,F,I	1 × 10 ¹² BBL	Electrical short in wiring and circultry; age; cotrosion.	Periodic testing to ensure proper working order
		B) Bulb burnout	Same as above	C,F,1	$1 \times 10^{12} BBL$	Same as above	Same as above
		C) Horn mal- function	Same as above	C,F,I	1 × 10 ¹² BBL	Same as above	Same as above
12212 Tempera- ture Monitor							
/01 Tempera- ture Indicator	Indicates oil temperature	A) Needle indicator stuck	False high temperature readings will result in false wolume calculations and wrong pump speeds	U	1 × 10 ¹² BBL	Electrical short in wiring and circultry; age; corrosion; in- correct cali- bration	Periodic inspec- tion, cleaning, and calibration
		B) Bulb breaks;	Same as above	o	1 × 10 ¹² bel.	Same as above	Same as above
12213 Flow Rate Monitor					,		
/01 Measuring Device • Orifice • Sonic Meter	Meters fluid flow rate	A) Metering device jammed or blocked	False flow rates result in in- correct volume calculation for custody transfer; pumping delays or stoppages if used for leak detection	π μ΄ μυδ	1 × 10 ⁸ BBL 14 × 10 ⁶ BBL	Oil sludge blockage; cold weather (freezing); incorrect calibration.	Isolate blockage and remove. Periodic cleaning and inspection

SUBSYSTEM (1) 12200 MOVE THROUGH OFFSHORE SYSTEM ELPHENTS (2) 12210 ESTABLISH FLOW (Cont.)

EQUIPMENT (3) FUNCT 12214 Flow Rate Controller /01 Flow Indicator rate and of flow /02 Flow /03 Flow Transmitter rate flow of flow of flow	FUNCTION (4) Indicates flow rate at a remote location Acts on signal from transmitter and operates the flow regulator Thransmits flow rate signal to flow controller	FAILURE MODE (5) A) Circuitry fails A) Circuitry fails A) Circuitry fails	EQUIPMENT (6) EQUIPMENT (6) fication of flow rate Cause inbalance and damage to flow regulator Same as above	G,H F,H G,H	YEAN BARRELS TO FAILURE (MEIF) (8) $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$	CAUSE OF FAILURE (9) Age; electrical shorts in wiring and circultry; corrosion Same as above	SOLUTION CORRECT ACTION RECOTTENED (10) Periodic inspection and calibration Same as above
/04 Flow Regulator	Regulates flow rates by opening or closing valves	A) Circuitry fails	Results in flow rate fluctuations	F.H	$1 \times 10^{12} BBL$	Same as above	Same as above

SUBSYSTEM (1) 12220 HOVE OIL, THROUGH OFFSHORE SYSTEM ELPHENTS (2) 12220 SAMPLING EFFECTS ON EQUIPMENT IDENTIFICATION

	CAUSE OF FAILURE (9)	Age; corrosion, mechanical wear
MFAN PARRETS	TO FAILURE (METF) (8)	1 × 10 ¹⁰ BBL
EPPECIS ON	EQUIPMENT (6) CATECORIES (7)	Valve failing to close results in possible oil spill. Valve failing to open will result in no crude samples.
	FAILURE MODE (5)	
PPENT IDENTIFICATION	FUNCTION (4)	Samples crude oil for quality con- trol and liability purposes
EQUIPMENT II	EQUIPMENT (3)	/01 Sampler

CORRECT ACTION
RECOMPENDED (10)
Periodic inspection and lubrication

SOLUTION

SUBSYSTEM (1) 12200 MOVE OIL THROUGH OFFSHORE SYSTEM ELEMENTS (2) 12230 BOOSTER PURPING

SOLUTION	CORRECT ACTION RECOMPADED (10)		e Periodic inspec- tion, cleaning, and calibration	Same as above	Same as above	Repair or replace on failure. Use redundant equip- ment if relia- bility is low	Same as above	Periodic inspection of paper supply	Repair on failure	Repair or replace on failure.
	CAUSE OF FAILURE (9)		Material blockage of tap; cold weather (freezing); incorrect calibration.	Same as above	Same as above	Electrical short in wiring and circuitry; age; corrosion.	Same as above	Electrical short in wiring and circuitry; age; corrosion	Same as above	Electrical short in wiring and circultry; age.
MEAN BADDETC	TO FAILURE (METF) (8)		1 × 10 ¹² BBL.	1 × 10 ¹² 8BL	1 × 10 ¹² BHL	1 × 10 ¹² BBL	1 × 10 ¹² BBL	1 x 10 ¹² BBL	1 × 10 ¹² BBL	1 × 10 ¹⁰ BBL
	EFFECTS CATEGORIES (7)		C, F, I	C,F,1	C,F,1	6,1	6,1	gs G,I	6,1	d C.F.I
EFFECTS ON	EQUIPMENT (6)		False high pressure readings result in premeture pump shutdown. False high pressure readings result in rupture of offshore pipting with possible oil spill.	Same as above	Same as above	Zero pressure readings will result in pump shutdown	Same as above	No hard copy of pressure readings	Same as above	Fails to shut- down pump, could result in line rupture
	FAILURE MODE (5)		A) Needle indicator stuck	B) Bourdon tube or bellows rupture	C) Other internal failure	A) Circuit fails	B) Spurious signals	A) Clock y fails	B) Pen or thermal print fails	A) Bourdon tube or bellows rupture
MITFICATION	FUNCTION (4)		Donates proper oil pressure in line			Transmits pressure signal to recorder		Records a pressure versus time history		Shuts down pumps if high discharge pressure occurs
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	12231 Pressure Monitor	/01 Pressure Indicator			/02 Pressure Transmitter		/03 Pressure Recorder		/04 Pressure Switch

CORRECT ACTION
RECOMMENDED (10)
Periodic testing

SOLUTION

Same as above

Same as above

Electrical short in wiring and circuitry; age; corrosion Electrical short in wiring and circuitry; age; currosion OF FALLURE (9) Same as above Same as above Same as above PEAN BARRELS TO FAILURE (PBTF) (8) 1 × 10¹² BBL. 1 × 10¹² BBL. 1 x 10¹² BBL 1 x 10¹² BBL. 1 x 10¹² BBL. EQUIPMENT (6) CATECORIES (7) Fails to visually C.F.I and audibly alert operator of significant pressure Ö Ö False high temperature readings will result in false volume calculations and wrong pump speeds Same as above Same as above increases or decreases Same as above EFFECTS ON SUBSYSTEM (1) 12200 MAVE OIL THROUGH OFFSHORE SYSTEM ELAPENTS (2) 12230 BOOSTER PUMPING (Cont.) A) Circuitry failure A) Needle indicator stuck C) Horn mal-function burnout B) Bulb breaks FATLURE MODE (5) B) Bulb Notifies operator of extremely low or high line pressures Indicates oil temperature FUNCTION (4) EQUIPMENT IDENTIFICATION /01 Temperature Indicator 12232 Tempera-ture Monitor EQUIPMENT (3) /05 Alarm

Periodic inspection, cleaning, and calibration

Same as above

Periodic inspection and cali- bration
Age: electrical short in Wiring and circuitry; corrosion
1 × 10 ¹² BBL
н'9
Cause imbalance and damare to flow controller
A) Circultry fails
Transmits flow rate signal to signal selector

/01 Flow Element

12233 Flow Mondtor 12234 Flow Rate Controller /01 Flow Transmitter

SUBSYSTEM (1) 12200 MOVE OIL THROUGH OFFSHORE SYSTEM ELEMENTS (2) 12230 BOOSTER PUPPING (Cont.)

	SOLUTION	CORRECT ACTION RECOMMENDED (10)	Same as above	Same as above	Same as above	Periodic inspection, cleaning, and lubrication		Periodic testing and inspection	Redundant floats and/or maintenance
		CAUSE OF FAILURE (9)	Same as above	Same as above	Same as above	Age; electrical short in wiring and circuitry; and sludge blockage		Age; electrical short in wiring and circuitry; oil sludge block- age; corrosion; bearing failure	Same as above
	MEAN DADDET C	TO FAILURE (MBTF) (8)	1 × 10 ¹² BBL	$1 \times 10^{12} \text{BEL}$	1 × 10 ¹² BBL	$1 \times 10^2 \text{BH}.$		1 × 19 ¹⁰ bb.	(6-100) × 10 ⁶ BBL*
		EFFECTS CATEGORIES (7)	F,H	F ,н	и, б	С, F, Н		C.F.1	C,F,1
(:	EFFECTS ON	EQUIPMENT (6)	Results in flow rate fluctuations and possible controller damage	Same as above	Same as above	Results in possible damage to pump		Electrical short and/or float stuck in low position will result in purps continuing to run. Float stuck in high position will shut off pumps.	Same as above
		FAILURE MODE (5)	A) Circuitry fails	A) Circuitry fails	A) Circuitry r fails ug	1 A) Janmed or blocked		A) Circultry fallure	B) Float stuck in high or low posi- tion
	NTIFICATION	FUNCTION (4)	Regulates flow rates by opening or closing valves	Equalizes tanker and offshore pressures	Compares flow rate signals from tanker and offshore pumping stations and equalizes the flow rates via the flow controller	Controls pump speed A) thus maintaining desired flow rate		Turn off pumps if packing glands leak excessively	
	EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	/02 Flow Controller	/03 Pressure Controller	/04 Signal Selector	/05 Flow Regulator	12235 Pump Pro- tection Devices	/01 Level Switch	

Corrosion; sludge Periodic inspec-blockage; leaky tion and cleaning float Low suction occur-Same as above ing such as when tank levels are low Oil sludge block- I age, bearing failure OF FAILURE (9) Same as above (6-100) × 106 BRL* MEAN BARRELS TO FAILIRE (MBTF) (8) 1 × 10⁴ BBL 1 x 10⁴ BBL $1 \times 10^{12} BBL$ EFFECTS
CATEOORIES (7) C,F,I E,H E,H Ŀ Fails to shutdown pumps; result in a line rubture and possible oil spill Improper float seal will result in a minor spill Results in a short delay as the operator will not immediately be aware Excess vibrations fail to
shut off pumps,
excess temperature will shut
off pumps EQUIPMENT (6) EFFECTS ON (Cont.) A) Float does not seal afroutlet SUBSYSTEM (1) 12200 NOVE OIL THROUGH OFFSHORE SYSTEM ELEMENTS (2) 12230 BOOSTER PUMPING (2) Turns off pumps if A) Circuitry low suction occurs failure Turns off pumps due A) Pendulum to excess vibration fails A) Circuttry failure FATLURE MODE (5) Notifies operator the pumps are either leaking, vibrating, draw-ing a low suction Bleeds off any trapped air in line before it reaches pumps FUNCTION (4) EQUIPMENT IDENTIFICATION /03 Differen-tial pres-sure switch /04 Air Elimi-nator /02 Vibration Switch EQUIPMENT (3) /05 Alarm

Periodic testing and inspection

CORRECT ACTION RECOMPENDED (10)

SOLUTION

Periodic testing to ensure proper working order

Same as above

Same as above

 $1 \times 10^{12} BBL$

Ŀ

Same as above

burnout

B) Bulb

Same as above

Same as above

1 x 10¹²BBL

Ŀ

Same as above

C) Horn mal-function

Periodic lubrica-tion and inspec-tion Periodic inspec-tion and cleaning CORRECT ACTION RECONMENDED (10) Same as above Same as above SOLUTION Age; electrical short in wiring and circuitry; oil sludge blockage; corrosion Age; electrical short in wiring and circuitry, corrosion OF FALLURE (9) Same as above Same as above (6-100) × 10⁶ BBL* MEAN BARRELS TO FAILURE (MBTF) (8) $1 \times 10^{12} BBL$ 1 x 10⁸ BBL 1 x 108 BBL EFFECTS
CATEGORIES (7) A,E,H G,H Electrical short and/or float stuck in high position will set off high level alarm. Electrical short and/or float stuck in low position could result in oil spill pipeline and put main pipeline in jeopardy of rupturing Failing to close will result in possible overflow of surge tank, failing to open will isolate surge tank from main offshore EQUIPMENT (6) Same as above Same as above EFFECTS ON A) Circuitry failure A) Circuitry failure B) Float stuck in high or low position SUBSYSTEM (1) 12200 FLAW THROUGH OFFSHORE SYSTEM ELEPENTS (2) 12240 RELIEF OF PRESSURE SURGES B) Jammed FAILURE MODE (5) Opens or Closes surge relief sys-tem to main off-shore pipeline Indicates high fluid levels in surge tank and sets off alarm FUNCTION (4) EQUIPMENT IDENTIFICATION 12241 Surge Relief Availability Control 12242 Surge Relief Availability Monitor /01 Valve Actuator EQUIPMENT (3) /01 Level Switch

SUBSYSTEM (1) 12200 FLOW THROUGH OFFSHORE SYSTEM ELEMENTS (2) 12240 RELIEF OF PRESSURE SURGES (Cont.)

NOITITION		CORRECT ACTION RECOMENDED (10)	Periodic inspection and testing	Same as above	Same as above		e Periodic inspection, cleaning, and calibration
		CAUSE OF FAILURE (9)	Electrical short in wiring and circuitry; age; corrosion	Same as above	Same as above		Material blockage of tap; cold weather (freez- ing): incorrect calibrations
	MEAN BARRELS	TO FAILURE (METF) (8)	1 × 10 ¹² BBL.	$1 \times 10^{12} BBL$	1 × 10 ¹² BBL	;	1 × 10 ¹² BBL
		EFFECTS CATEGORIES (7)	н,	н, о	Н,5		5
EBERCHS ON	ALECTO ON	EQUIPMENT (6)	Fails to visually alert operator of high levels in surge tank, thus creating possible spill. Low levels could indicate leak from the main transfer line	Same as above	Same as above		False high pressure readings will result in setting lower value pressures and the surge tank filling prematurely. False low pressure readings will result in many pressure surges not being relieved and pipeline being overstressed.
		FAILURE MODE (5)	A) Circuitry failure	B) Bulb burn- out	C) Horn mal- function		A) False high or low pressure readings
DOM: 10 MINO 04771	ENTIPICATION	FUNCTION (4)	Notifies operator of fluid level in surge tark				Denotes proper inert gas pres- sure for surge relief system
21 (2) CINEAR	EQUIPMENT LIENTIFICATION	EQUIPMENT (3)	/02 Alarm			12243 Relief Valve Pres- surization Medium Monitor	/01 Pressure Indicator

SUBSYSTEM (1) 12200 FLOW THROUGH OFFSHORE SYSTEM ELEMENTS (2) 12240 RELIEF OF PRESSURE SURGES (Cont.)

SOLUTION	CORRECT ACTION RECOMPENDED (10)	Repair or replace a failure	Periodic testing		Periodic inspection
	CAUSE OF FAILURE (9)	Electrical short in wiring and circuitry, age; corrosion	Electrical short in wiring and curcultry; age corrosion		Age; electrical short in whring and circuitry corrosion; low inert gas supply
	MEAN BARRELS TO FALLURE (MBTF) (8)	1 × 16 ¹⁰ вн.	1 × 10 ¹² bBL		1 × 10 ¹⁰ BBL
	EFFECTS CATEGORIES (7)	Sa,	ĵs.		٦, ٣
FFFECTS ON	EQUIPMENT (6)	Fails to actuate at a alam; resultant low pressure will result in tank filling	Fails to visually and audibly alert operator of low pressure in inert gas supply		Surge relief tank would prematurely fill
	FAILURE MODE (5)	A) Circuitry failure	A) Circuitry failure		A) Low pressure of inert gas supply
EQUIPMENT IDENTIFICATION	FUNCTION (4)	Sets off alarm if inert gas pres- sure to surge relief valve actu- ator and control valves is low	Notifies operator of low surge relief inert gas pressure. Results in sattching to standby inert gas supply		Controls back pres- A) Low pressure applied to sure of relief valves by inert gas inert gas which supply is overcome by a relief surge
EQUIPMENT IL	EQUIPMENT (3)	/02 Pressure Switch	/03 Alarm	12244 Relief Valve Pres- surization Medium Controller	/01 Pressure Control Valves

HEAN BARRELS TO FAILURE (MBTF) (8) $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ EFFECTS
CATECORIES (7) C,F,I C,F,I C.F.I G,I G,1 G,I False high pressure readings result in pre-mature pump shutdown. False high pressure readings result in runture of offshore piping with possible oil No hard copy of pressure readings Zero pressure reading will result in pump shutdown EQUIPMENT (6) Same as above Same as above Same as above EFFECTS ON A) Needle indicator stuck C) Other internal failure B) Spurious signals B) Bourdon tube or bellows rupture A) Circuit fails A) Clock fails FAILURE MODE (5) SUBSYSTEM (1) 12300 SHUTDOAN OFFSHORE SYSTEM ELEMENTS (2) 12310 BOOSTER PUAPING SHUTDOAN Records a pres-sure versus time history Denotes proper oil pressure in line Transmits pressure signal to recorder FUNCTION (4) EQUIPMENT IDENTIFICATION /02 Pressure transmitter /01 Pressure Indicator /03 Pressure Recorder 12311 Pressure Monitor EQUIPMENT (3)

Same as above

Same as above

Same as above

Same as above

Periodic inspection, cleaning, and calibration

Material blockage F of tap; cold weather (free- a zing); incorrect calibration

CORRECT ACTION RECOMMENDED (10)

OF FAILURE (9)

SOLUTION

Periodic inspection necessary to ensure accurate output and proper paper supply for recorder

Electrical short in wiring and circuitry; age; corrosion Repair or replace on failure

Same as above

 $1 \times 10^{12} BBL$

G,I

Same as above

B) Pen or thermal print fails

Repair or replace on failure. Use redundant equipment if reliability is low

Electrical short in wiring and circuitry; age; corrosion Same as above

Same as above

SUBSYSTEM (1) 12300 SHJIDOAN OFFSIORE SYSTEM ELEMENTS (2) 12310 BOOSTER PUMPING SHJIDOAN (Cont.)

NOILLION	CAUSE CORRECT ACTION OF FAILURE (9) RECONTENDED (10)	Electrical short Repair or replace in wiring and on failure circuitry; age	Electrical short Periodic testing in wiring and to ensure proper circuitry; age; working order corrosion	Same as above Same as above	Same as above Same as above		Electrical short Periodic inspec- in wiring and tion, cleaning, circultry; age; and calibration correct calibra- tion				Age; electrical Repair or replace short in wiring on failure and circuitry	Age, electrical Periodic inspecsion tin with tion, cleaning, and circuitry; and lubrication oil sludge block-
OFFICE OF STREET	TO FAILURE (METF) (8)	1 × 10 ¹⁰ BBL	1 × 10 ¹² BBL	$1 \times 10^{12} BBL$			1 × 10 ¹² BBL				1 x 10 ¹² BBL	1 x 10 ¹² BBL
	EPPECTS CATEGORIES (7)	C,F,I	C,F,I				5 - T				С,Н	С, F, H
EFFECTS ON	EQUIPMENT (6) CA	Fails to shut- down pump, could result in line rupture	Fails to visually and audibly alert operator of sig- nificant pressure increases or decreases	Same as above	Same as above		False high False high tempera- temperature ture readings will readings result in purp shut- down				Could cause pump speed to vary from overspeed to stop	Same as above
	FAILURE MODE (5)	A) Bourdon tube or bellows rupture	A) Circuitry failure	B) Bulb burnout	C) Horn mal- function		A) False high temerature readings				A) Circuitry failure	A) Jammed or blocked
TIFICATION	FUNCTION (4)	Shuts down pumps if high discharge pressure occurs	Notifies operator of extremely low or high pressures				Indicates proper of Lemperature				Transmits flow rate signal to indicator	Controls pump speed, thus maintaining desired flow
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	/04 Pressure Switch	/05 Alarm			12312 Tempera- ture Monitor	/01 Temperature Indicator	12313 Flow Monitor	/01 Flow element	12314 Flow Rate Controller	/01 Flow Transmitter	/02 Flow Regulator

SUBSYSTEM (1) 12300 SHJIDOMN OFFSBORE SYSTEM ELEMENTS (2) 12310 BOOSTER FUMPING SHJIDOMN (Cont.)

SOLUTION	CORRECT ACTION RECOMMENDED (10)	Same as above	Same as above	Same as above		Periodic testing and inspection	Same as above	- Same as above	Same as above
	CAUSE OF FAILURE (9)	Same as above	Same as above	Same as above		Electrical short in wiring and circuitry: age; oil sludge block- age; corrosion; bearing failure	Same as above	Oil sludpe; block- Same as above age; bearing failure	Low suction occurring such as when tank levels are low
MEAN BARDETS	TO FAILURE (METF) (8)	1 × 10 ¹² BBL	1 × 10 ¹² BBL	1 × 10 ¹² BBL		1 × 10 ¹² BBL	(6-100) × 10 ⁶ BBL*	1 × 10 ¹² BBL	1 × 10 ¹² BBL
EFFECTS ON	EQUIPMENT (6) CATEGORIES (7)	Results in flow Fill rate fluctuations and possible controller damage	Same as above F.H	Same as above G,H		Electrical short C,F,I and/or float stuck in low position will result in purps continuing to run	Float stuck in C,F,I high position will shut off pump	Excess vibrations E,H fail to shut off pumps. Excess temperature will shut off pumps	Purp continues E,H to run with lack of fluid. Excess temperature and vibrations shut purps off
	FATLURE MODE (5)	A) Circuitry fails	A) Circuitry fails	A) Circultry r fails ng		A) Circuitry failure	B) Float stuck in high or low posi- tion	A) Circuitry failure	A) Circuitry failure
TIFICATION	FUNCTION (4)	Regulates flow rates by opening or closing valves	Equalizes tanker and offshore pressures	Compares flow rate t signals from tanker and offshore pumping stations and equal- izes the flow care via the flow con- troller		Turns off pumps if packing glands leak excessively		Turns off pumps due to excess vibration	Turns off pumps if low suction occurs
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	/03 Flow Controller	/04 Pressure Controller	/05 Signal Selector	12315 Pump Pro- tection Devices	/01 Level Switch		/02 Vibration Switch	/03 Differential Pressure Switch

SUBSYSTEM (1) 12300 SIUTDOM OFFSHORE SYSTEM ELPHENTS (2) 12310 BOOSTER PUPPING SHUIDOMN (CORE.)

NOLLLION	CORRECT ACTION RECOMMENDED (10)	Periodic inspection and cleaning	Periodic testing to ensure proper working order	Same as above	Same as above
	CAUSE OF FAILURE (9)	Corrosion: sludge blockage; leaky float	Same as above	Same as above	Same as above
OFFICE PARTIES	TO FAILURE (METF) (8)	(6-100) × 106 BBL*	1 × 10 ¹² Bell.	$1 \times 10^{12} \text{BBL}$	$1 \times 10^{12} BBL$
	EFFECTS CATEOORIES (7)	C.F.1	íz.	ĹL.	<u>s.</u>
EFFECTS ON	EQUIPMENT (6)	Improper float seal will result in a minor spill	Results in a short delay as the operator will not immedi- ately be aware	Same as above	Same as above
	FAILURE MODE (5)	A) Float does not seal air outlet	A) Circuitry failure	B) Bulb burnout	C) Horn mal- function
NTIFICATION	FUNCTION (4)	Bleeds off any trapped air in line before it reaches pumps	Notifies operator the numps are either leaking, vibrating, draw- ing a low suction		
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	/04 Air Elimi- nator	/05 Alarm		

Filament burnout;
age; electrical
short in wiring
and circuitry; human error; mechanical wear; possible stem breakage Age; electrical short in wiring and circuitry; Age; electrical short in wiring and circuitry; Not enough available men-power CALISTE (9) Act of nature; Same as above Same as above Same as above corrosion corrosion corrosion 1 x 10¹¹ BBL $1 \times 10^{12} \text{ BBL}$ 1 x 10¹¹ BBL 1 x 10¹¹ BBL 1 x 10¹¹ BBL MEAN BARRELS TO FAILURE (MBTF) (8) 1 x 10¹²BBL 1 x 10¹²BBL 1 x 10¹²BBL EFFECTS
CATEGORIES (7) G,H G,H G, I 6,1 G,I 6,1 Delays in packing system; requires visual checks Delay in lining up valves; thus requiring manual local A) Stems of No visual convalve actu- firmation of acres fail value line up; to rise requires manual when value cycling of the is open values Delay in lining up valves, thus requiring push button local A) Manpower Inability to unavailable achieve line up to open or until manpower close opens or closes EQUIPMENT (6) Same as above Same as above Same as above EFFECTS ON B) Circuitry failure B) Circuitry failure B) Circuitry failure A) Button contacts A) Button contacts worn A) Bulb burnout FATLURE MODE (5) WORTH SUBSYSTEM (1) 12300 SHUTDOMN OFFSHORE SYSTEM ELEMENTS (2) 12320 PACK SYSTEM Regulates proper valve line up Regulates proper valve line up Regulates proper valve line up Assures proper valve line up Assures proper valve line up FUNCTION (4) EQUIPMENT IDENTIFICATION /02 Push Button Local /01 Push Button Remote 12321 Valve Line Up Monitor /02 Local Indicator /01 Remote Indicator 12322 Valve Line Up Controller EQUIPMENT (3) /03 Marual Local

Use test button periodically to check circuit continuities of indicator pamel

CORRECT ACTION RECOMMENDED (10)

SOLUTION

Check when locally cycling valve

Same as above

Upon failure, check circuit continuities and repair

Same as above

Same as above

Periodic manual cycling to ensure manual readiness

valves

Same as above

Repair or replace on failure. Use redundant equip-ment if relia-bility is low Repair or replace on failure Periodic inspec-tion, cleaning, and calibration CORRECT ACTION RECOMMENDED (10) Redundant limit switches Same as above Same as above Same as above Same as above SOLUTION Oil sludge blockage of tap: cold weather (free-zing); incorrect calibration Electrical short in wiring and circuitry; age; corrosion Age; electrical short in wiring and circuitry; corrosion Age; electrical short in wiring and circuitry: OF FAILURE (9) Same as above Same as above Same as above Same as above CAUSE corrosion MEAN BARRELS TO FAILURE (MBTF) (8) 1 x 10⁸ BBL 3 x 109 BBL $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ 1 x 108 BBL 3 x 109 BBL 1 x 10¹²BBL EFFECTS
CATEGORIES (7) False high pressure C,F,I readings will fail to combletely pack offshore piping. False low pressure readings may result in overstressing and rupturing the pipeline C,F,H C,F,H C,F,I F,H F,H G,I Remote indicators will not confirm opening or closing Valve interlock fails to block other valve readings; thus uncertainty of packed system Fails to open or close EQUIPMENT (6) Same as above Same as above Same as above Zero nressure EFFECTS ON operations of valves A) Needle indicator stuck A) Circuitry failure SUBSYSTEM (1) 12300 SHUTDOMN OFFSHORE SYSTEM (Cont.) FLEMENTS (2) 12320 PACK SYSTEM (Cont.) A) Circuitry failure B) Contacts fail A) Circuit fails internal tube or bellows B) Bourdon rupture failure B) Jammed FATLURE NODE (5) Gears C) Other closes: acts as a valve interlock mechanism Transmits pressure signal to recorder Shuts off valve actuator when valve opens or Opens or closes Denotes proper oil pressure in pipeline FUNCTION (4) EQUIPMENT IDENTIFICATION /02 Pressure Transmitter /04 Valve Actuator /05 Limit Switches /01 Pressure Indicator 12323 Pressure EQUIPMENT (3) Monitor

	SOLUTION	CYRRECT ACTION RECOMENDED (10)	Same as above	Periodic inspec- tion necessary to ensure accurate output and proper paper supply for recorder	Repair or replace on Yailure	Periodic testing to ensure proper working order	Same as above	Same as above
		CAUSE OF FAILURE (9)	Same as above	Electrical short in wiring and circultry: age; corrosion	Same as above	Electrical short in wiring and circuitry; age; corrosion	Same as above	Same as above
	MFAN BARRELS	TO FAILURE (MBIF) (8)	$1 \times 10^{12} BBL$	1 × 10 ¹² BBL	1 × 10 ¹² BBL	1 × 10 ¹² BBL	1 × 10 ¹² BBL	$1 \times 10^{12} BBL$
		(6) CATEORIES (7)	ove G,I	ov of G, I eadings	C, I	udibly case or	pove	bove
•	EFFECTS ON	EQUIPMENT (6)	Same as above	No hard copy of pressure readings	Same as above	y Fails to visually and audibly alert operator of significant pressure increase or decrease	Same as above	- Same as above
OFFSHORE SYSTEM (Cont.)		FAILURE MODE (5)	B) Spurious signals	A) Clock fails	B) Pen or thermal print fails	A) Circuitry failure	B) Bulb burnout	C) Horn mal- function
12300 SHUTDOWN OFFSHORI 12320 PACK SYSTEM	EQUIPMENT IDENTIFICATION	FUNCTION (4)		Records a pressure versus time history		Notifies operator of extremely low or high line pressure		
SUBSYSTEM (1) 12 ELEMENTS (2) 12	EQUIPMENT II	BOUTPMENT (3)		/03 Pressure Recorder		/04 Alarm		

SUBSYSTEM (1) 12300 SHJTDGAN OFFSHORE SYSTEM ELPHENTS (2) 12330 DRAIN AND SLOPS HANDLING

SOLUTION	CORRECT ACTION RECOMMENDED (10)	Periodic testing and inspection	Same as above	Periodic testing	Same as above	Same as above
	CAUSE OF PAILURE (9)	Age; electrical short in wiring and circuitry; corrosion	Same as above	Electrical short in wiring and circuitry; age; corrosion	Same as above	Same as above
MEAN RABBETS	10 FALLIRE (MBTF) (8)	3 × 10 ⁹ BBL	(6-100) x 10 ⁶ BBL*	1 × 10 ¹² BBL	$1 \times 10^{12} \text{BBL}$	$1 \times 10^{12} BBL$
EFFECTS ON	EQUIPMENT (6) CATECORIES (7)	Level switch B stuck in high nosition will cause unrecessary draining of drain/slop tank; level switch stuck in low position may result in oil overflow	Same as above ()	Fails to usually C and audibly alert operator of low fluid levels in drain/slop tank	Same as above C	Same as above C
EPFE	FATLURE MODE (5) EQUIF	A) Circuitry level sw failure stuck in position cause un draining slop tan switch s low position result in result in	B) Float Same stuck in high or low posi- tion	A) Circuitry Fails failure and a opera fluid drain	B) Bulb Same burnout	C) Horn mal- Same function
EQUIPMENT IDENTIFICATION	FUNCTION (4)	h Detects high or low fluid level in drain tank		Notifies operator of high or low fluid levels in drain/slop tank		
EQUIPMENT IL	EQUIPMENT (3) 12331 Drain Tank Level Monitor	/01 Level Switch Detects hi low fluid in drain t		/02 Alam		

	SOLITION	OF FAILURE (9) RECOMMENDED (10)		Filament burnout; Use test button age; electrical periodically to short in wiring check circuit and circuitry; continuities of corrosion indicator panel	Same as above Same as above		Cold weather Periodic cycling (freezing); age; and maintenance mechanical wear; checks mechanical seizing	Same as above Same as above	Şame as above Same as above
	MEAN BARRELS	TO FAILURE (MBIF) (8)		1 × 10 ¹² BBL	1 × 10 ¹² BBL		1 × 10 ⁸ BBL	.1 x 10 ⁸ BBL	1×10^8 BBL.
		EFFECTS CATEGORIES (7)		íz.	is.		∢	<	<
	FFFECTS ON	EQUIPMENT (6)		It will become immediately apparent if the emergency shutdown valve closes but is not indicated at the control panel	Same as above		If valve fails to close when reeded, a major oil spill could occur. If valve closes prematurely, a pressure shock will result with possible need for surge relief system	Same as abovè	Same as above
JE SYSTEM		FAILURE MODE (5)		A) Bulb burnout	B) Circuitry failure		A) Hydraulic failure	B) Pheumatic failure	C) Cearing or mechanical failure
12300 SHUIDOAN OFFSHORE SYSTEM 12340 EMERCENCY SHUIDOAN SYSTEM	ENTIFICATION	FUNCTION (4)		Assures proper line up of ener- gency stutdom valve			Opens or closes emergency stut- down valves		
SUBSYSTEM (1) 123 ELEMENTS (2) 123	EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	12341 Valve Monitor	/01 Remote Indicator		12342 Valve Line Up Controller	/01 Valve Actuator		

SUBSYSTEM (1) 12300 SHUTDOAN OFFSHORE SYSTEM ELPHENTS (2) 12340 BYERGENCY SHUTDOAN SYSTEM (Cont.)

SOLUTION	CORRECT ACTION RECOMMENDED (10)	Electrical short: Redundant equipage; wear ments to increase reliability	t Periodic testing and inspection	Same as above	Same as above
CAUSE OF FAILURE (9)		Electrical shor age: wear	Electrical short in wiring and circuitry; age; corrosion	Same as above	Same as above
MEAN BARREIS TO FAILURE (MEIF) (8)		1 × 10 ¹⁰ BBL	1 × 10 ¹² BBL	$1 \times 10^{12} \text{BBL}$	$1 \times 10^{12} \text{BBL}$
	EFFECTS CATBOORTES (7)	ρ ρ	Iy B	, æ	, e
FFECTS ON	EQUIPMENT (6)	If no reserve supply of inert gas, then emer- gency shutdown valve will have to be manually cycled	Fails to visually and audibly alert operator of significant pressure increases or decreases		
FATLIRE MODE (5)		A) Circuitry failure	A) Circuitry failure	B) Bulb burnout	C) Horn mal- function
EQUIPMENT IDENTIFICATION	FUNCTION (4)	Monitors the pressure of the inert gas supply to valve actuator; low pressure sets off alarm	Norifies operator of low pressure in the inert gas supply		
EQUIPMENT	EQUINENT (3) 12343 Valve Actuating Medium Monitor	/01 Pressure Switch	/02 Alarm		

	SOLUTION	CORRECT ACTION RECOMMENDED (10)				
		OF FAILURE (9)		Break in cable; corrosion; age		Age of electrical components bat- teries in walkie- talkie
	MEAN BARRELS TO FAILIRE (MBTF) (8)			1 x 10 ¹² BBL		1 × 10 ¹² 68L
	EPPECTS ON	EQUIPMENT (6) CATEGORIES (7)		A) Cable link Delay in communi- up failure cations, requiring use of radio		Delay in communi- cations
NEUS	M)	FAILURE MODE (5)				A) Radio's fail to operate
SUBSYSTEM (1) 12400 COMMINICATION SYSTEM ELEMENTS (2) 12410 VOICE	EQUIPMENT IDENTIFICATION	FUNCTION (4)		Provides direct non-interference voice communica- tion between off- shore and onshore control points		Provides direct communication between mobile personnel on offsions and the central control point
SUBSYSTEM (1) 1 ELEMENTS (2) 1	EQUIPMENT I	EQUIPMENT (3)	12411 Wire		12412 Radio	

SUBSYSTEM (1) 12400 COMMINICATION SYSTEM ELEMENTS (2) 12420 DATA

SOLUTION	CORRECT ACTION RECOMMENDED (10)		
CAUSE OF FAILURE (9)		Break in cable; corrosion, age	
MEAN BARRELS TO FALLIRE (MBTF) (8)		1 × 10 ¹² BBL	
	(6) CATEGORIES (7)	ommuni- equiring to	
EFFECTS ON	EQUIPMENT (6)	Delay in α cations; rouse of radi	
FAILURE MODE (5)		A) Cable link Delay in communi- up failure cations; requiring use of radio	
EQUIPMENT IDENTIFICATION	FUNCTION (4)	Provides direct non-interference data commisca- tion (i.e. pres- sure, temperature, valve line up readings, etc.) between offshore and onshore con- trol points	
EQUIPMENT I	EQUIPMENT (3) 12421 Wire		12422 Radio

Provides direct data commications between onshore and offshore points.
Used when offshore controls are distant

Age of electrical components; electrical short in wiring and circuitry

 $1 \times 10^{12} BBL$

A) Radio fails Delay in communito operate cation

Periodic manual cycling to ensure manual readiness. Check when locally cycling valve Use test button periodically to check circuit continuities of indicator panel CORRECT ACTION RECOMMENDED (10) Upon failure, check circuit continuity and repair Same as above Same as above Same as above SOLUTION Filament burnout;
age; electrical
short in wiring
and circuitry;
corrosion Not enough avail-able manpower. human error; mechanical wear; possible stem breakage Age; Electrical short in wiring and circuitry Age; electrical short in wiring and circuitry corrosion. Act of Nature; CAUSE OF FAILURE (9) Same as above Same as above corrosion. MEAN BARRELS TO FAILURE (MBIF) (8) 1 X 10¹¹ BBL 1 X 10¹¹ BBL BBL 1 X 10¹¹ BBL 1 X 10¹²BBL 1 x 10¹²BBL 1 X 10¹²BBL 1 X 10¹¹ B CATEGORIES (7) 6,1 G,I G,H C,I G.H G,I G,I value activation of value ators fail line up; requires to rise menual cycling of when valve the valves. Delay in pumping oil into tanks, A) Button Delays in lining contacts up valves, thus worn requiring push bottom local. A) Button Delay in Inning contacts up valves thus worn requiring manual manpower opens or closes valves A) Manpower Inability to unavail- achieve valve able to line up until open or manpower opens close or closes valves manually. Same as above Same as above EQUIPMENT (6) EFFECTS ON local A) Stems on N value actu- ators fail 1 B) Circuifailure B) Circuitry failure FATLURE MODE (5) A) Bulb SUBSYSTEM (1) 13100 LINE UP ONSHORE SYSTEM ELEMENTS (2) 13110 LINE UP MANIFOLD VALVES Regulates proper valve line up Regulates proper valve line up Regulates proper valve line up Assures proper value line up Assures proper value line up FUNCTION (4) BOUTPARY IDENTIFICATION 13112 Valve Line Up 13111 Value 1fne up /03 Mamual Local /02 Push Button local /01 Push button Remote /02 Local Indicator EQUIPMENT (3) /01 Remote Indicator Controller Indicator

FAILURE MODES AND EFFECT ANALYSIS (FMEA)

SUBSYSTEM (1) 13100 LINE UP ONSHORE SYSTEM ELEMENTS (2) 13110 LINE UP MANIFOLD VALVES (Con't.)

SOLUTION	CORRECT ACTION RECOMMENDED (10)	Repair or replace on failure.	Periodic lubrica- tion and inspec- tion recommended	Redundant of back- up limit switches to ensure overall reliability.	
	CAUSE OF FAILURE (9)	Age; Electrical short in wiring and circuitry corrosion.	Same as above	Age; Electrical short in wiring and circuitry corrosion.	Same as above
Contract to the Contract of th	TO FAILURE (MBTF) (8)	1 X 10 ⁸ BBL	1 X 10 ⁸ BBL	3 X 10 ⁹ BBL	3 X 10 ⁹ BBL
	EFFECTS TO FAILURE CATEGORIES (7) (MBTF) (8)	н, н	Н,Я	С, F, Н	С, F, Н
EFFECTS ON	EQUIPMENT (6)	Limit switches will not be trip- ped: Thus indi- cating improper valve line up.	Same as above	Remote indicator will not confirm opening or closing of valves.	B) Mechanical Same as above wear of components
	FAILURE MODE (5)	A) Circuitry failure	B) Jammed Gearing	A) Circuitry failure	B) Mechanical wear of components
NTIFICATION	FUNCTION (4)	Opens or closes valves.		Shuts off valve actuator when valve opens or closes.	
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	/04 Valve Actuator		/05 Limit Switches	

SURSYSTEM (1) 13100 LINE UP ONSIORE SYSTEM ELEMENTS (2) 13120 TANK SELECTION

SOLUTION	CORRECT ACTION RECOMMENDED (10)		Repair or replace on failure	Use test button periodically () check circuit continuties of indicator panel	Same as above	Locally check when near tanks; use re- dundant floats and/ or periodic main- tenance.	Periodic inspection and cleaning.	Periodic testing and inspection.	Same as above	Same as above
	CAUSE OF FAILURE (9)		Electrical short in wiring and circui- try; age; corrosion.	Electrical short in wiring and circuitry; age; corrosion.	Same as above	Electrical short in wiring and circuitry; age; corrosion; oil sludge blockage	Electrical short in wiring and circuitry; age corrosion.	Electrical short in wiring and circuitry; age; corrosion,	Same as above	Same as above
	MEAN BARRELS TO FAILURE (MBTF) (8)		1 × 10 ¹² BBL	1 × 10 ¹² BBL	1. x 10 ¹² BBL	(6-100) x 10 ⁶ BBL	1 × 10 ¹² BBL	1 × 10 ¹² BBL	$1 \times 10^{12} BBL$	$1 \times 10^{12} BBL$
EFFECTS ON	BOUTMENT (6) CATEGORIES (7)		Delay in pumping I into tank; required visual checks of local indicator; may need to switch tanks	Delay in pumping I into tank; requires visual check of local indicator; may need to switch tanks	Same as above I	If remote indicator 1 (6 fails and float stuck in high position. Tank will be switched before properly filled. Float stuck in low position may result in tank being over filled	Fails to shut off I tank inlet/outlet valve. Tank will over fill.	Fails to visually C,I and audibly alert operator of high tank levels.	Same as above C,I	Same as above C, I
	FATLURE MODE (5)		A) Circuitry failure	A) Bulb Burnout	B) Circuitry failure	A) Float stuck in high or low position	A) Circuitry failure	A) Circuitry failure	B) Bulb burnout	C) Horn Mal- function
IFICATION	HUNCTION (4)		Transmits signal of tank levels to remote indicator	Denotes fluid level in tanks		Denotes fluid levels in tanks	Sets off level alarm if tank levels are high	Notifies operator of high tank levels		
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	13121 Tank Level Monitor	/01 Level trans- mitter	/02 Remote Indicator		/03 Local Indicator	/04 Level switches	/05 Level alarm		

Electrical short Upon failure check in wiring and cir-circuit continuity cultry; age; and repair. Not enough avail- Periodic manual able man power. cycling to ensure manual readiness. Electrical short Periodic lubrica-in wiring and cir-tion and inspect-cultry; age; cor- ion. rosion. CORRECT ACTION RECOMPENDED (10) Electrical short Redundant limit in wiring and cir- switches. cultry; age; cor-Eelectrical short Same as above in wiring and circuitry; age; Same as above Same as above Same as above SOLUTION OF FAILURE (9) Same as above Same as above Same as above corrosion. corrosion. 1 X 10¹¹ BBLS MEAN BARRELS TO FAILURE (MBTF) (8) 3 X 109 BRLS 1 X 10¹¹ BBL 1 X 10¹¹ BBL 1 X 10¹² BBL 3 X 109 BBLS 1 X 10¹¹ BBL EPPECTS
CATEGORIES (7) C,F,H C,F,H G.I G.H F,E G.1 G,1 G,I Limit switches F,1
will not be tripped; thus indicating
improper tank
selection. Remote indicators will not confirm opening or closing of valves. Delay in selecting tank; thus requiring push button local. Delay in selecting tank, thus requiring manual local. A) Manpower Inability to unavailable select proper to open or tank until manclose val- power opens or ves manual- closes valves. EQUIPMENT (6) Same as above Same as above Same as above EFFECTS ON A) Fails to open or close tank inlet/out-let valves. B) Mechanical wear of B) Circuitry failure contracts worn. B) Circuitry failure. A) Circuitry failure. A) Button contacts worn. component SUBSYSTEM (1) 13100 LINE UP ONSHORE SYSTEM ELEMENTS (2) 13120 TANK SLECTION (Cont.) A) Button FATLURE (5) Regulates proper valve line up to tank. Regulates proper valve line up to tank. Regulates proper valve line up to tank. Shuts off valve actuator when valve opens or closes. Opens or closes valves to tanks. FUNCTION (4) EQUIPMENT IDENTIFICATION /04 Valve Actuator /05 Limit Switches 13122 Tank Valve Controller /03 Marrual local /02 Push button Local /01 Push button Remote EQUIPMENT (3)

F. lament burnout; Use test button age; electrical periodically to short in wiring 6 check circuit concircuitory; cortinuities of indirosion. Act of nature; Ch human error; cy mechanical wear; possible stem breakage. CAUSE OF FAILURE (9) Same as above MEAN BARRELS TO FAILURE (MBTF) (8) 1 x 10¹²BBL 1 x 10¹²BBL 1 X 10¹²BBL EFFECTS
CATECORIES (7) G,I G,H G,1 A) Stems on No visual confir-valve act- mation of valve uators fail line up, requires to rise manual cycling of when valves the valves. Delay in pumping oil into tanks.
Requires visual check. EQUIPMENT (6) Same as above EFFECTS ON B) Circuitry failure. A) Bulb burnout. SUBSYSTEM (1) 13100 LINE UP ONSHORE SYSTEM ELEMENTS (2) 13120 TANK SELECTION (Cont.) FAILURE MODE (5) Assures proper tank valve line up. Assures proper valve line up. FUNCTION (4) EQUIPMENT IDENTIFICATION 13123 Tank Valve /02 Local Indicator EQUIPMENT (3) /01 Remote Indicator Monitor

CORRECT ACTION RECOMMENDED (10)

SOLUTION

Check when locally cycling valve.

Same as above

Oil sludge blockage of tap; cold weather (free-zing); incorrect calibration Electrical short in wiring and circuitry; age; corrosion Electrical short in wiring and circultry; age corrosion OF FAILURE (9) Same as above Same as above Same as above MEAN BARRELS TO FATLURE (MBTF) (8) $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ EFFECTS
CATEGORIES (7) C,F,I C,F,I G.I 6,1 G, I False high pressure readings result in reduced throughput. False low pressure readings could result in rupture of pipeline with possible oil spill Zero bressure readings will result in pump shutdown No hard copies of pressure readings EQUIPMENT (6) Same as above Same as above Same as above PFECTS ON A) Needle indicator stuck B) Spurious signals B) Bourdon tube or bellows rupture internal failure Transmits pressure A) Circuit signal to recorder fails SUBSYSTEM (1) 13200 MOVE OIL, TO ONSHORE STORAGE ELEMENTS (2) 13210 BOOSTER PUMPING FAILURE MODE (5) C) Other Records pressure A) Clock versus time history fails Denotes proper oil pressure in pipeline FUNCTION (4) EQUIPMENT IDENTIFICATION /02 Pressure Transmitter /01 Pressure Indicator 13211 Pressure Monitor /03 Pressure Recorder EQUIPMENT (3)

Same as above

Same as above

Periodic inspection, cleaning, and calibration

CORRECT ACTION RECOMMENDED (10)

NOLLIMOS

Periodic inspection necessary to ensure accurate output and proper paper supply for recorder

Same as above

 $1 \times 10^{12} BBL$

6,1

Same as above

B) Pen or thermal print fails

Repair or replace on failure. Use redundant equipment if relia-

bility is low

Same as above

SURSYSTEM (1) 13200 HOVE OIL TO ONSHORE STORKGE ELPMENTS (2) 13210 BOOSTER PUMPING (Cont.)

EQUIPMENT IDENTIFICATION	NTIFICATION		EFFECTS ON		MEAN BADDET C		SOLUTION
EQUIPMENT (3)	FUNCTION (4)	FAILURE MODE (5)	EQUIPMENT (6) C	EPPECTS CATEGORIES (7)	PATLINE (PETF) (8)	CAUSE OF FAILURE (9)	CORRECT ACTION RECOMMENDED (10)
/04 Pressure Satch	Shuts down pumps if high discharge pressure occurs	A) Circuitry failure	Fails to shutdown pumps; results in line rupture	1,7	1 × 10 ¹⁰ BBL*	Electrical short in wiring and circuitry; age; corrosion	Repair or replace on failure
/05 Alarm	Notifies operator of extremely low or high pressures	A) Circuitry failure	Fails to visually and audibly alert operator of significant pressure increases or decreases	C,F,I	1 × 10 ¹² BBL	Electrical short in wiring and circuitry; age; corrosion	Periodic testing to ensure proper working order
		B) Bulb burnout	Same as above	C,F,1	$1 \times 10^{12} BBL$	Same as above	Same as above
		C) Horn mal- function	Same as above	C,F,I	$1 \times 10^{12} \text{BBL}$	Same as above	Same as above
13212 Temperature Monitor							
/01 Temperature Indicator	Indicates oil temperature	A) Needle indicator stuck	False high tempera- ture readings will result in false volume calculations and wrong pump speeds	a- G	1 x 10 ¹² BBL	Electrical short in wiring and circuitry; age; corrosion; in- correct calibra- tion	Periodic inspection and calibration
		B) Bulb breaks;	Same as above	U	1×10^{12} BBL	Same as above	Same as above
13213 Flow Monitor							
/01 Flow Element							
13214 Flow Rate Controller							
/01 Flow Transmitter	Transmits flow rate signal to indicator	A) Circuitry failure	Cause imbalance and damage to flow controller	н'9	$1 \times 10^{12} BBL$	Age; electrical Periodic inspesshort in circuitry tion and cali- and wiring bration	Periodic inspec- tion and cali- bration

SUBSYSTEM (1) 13200 MOVE OIL TO ONCHORE STORAGE ELEMENTS (2) 13210 BOCSTER PUMPING (Comt.)

EQUIPMENT IDENTIFICATION	TIFICATION		EFFECTS ON				SOLUTION
					MEAN BARRELS		
EQUIPMENT (3)	FUNCTION (4)	FAILURE MODE (5)	EQUIPMENT (6)	EFFECTS CATEGORIES (7)	TO FAILURE (METF) (8)	OF FAILURE (9)	CORRECT ACTION RECOMMENDED (10)
/06 Flow Regulator Controls pump speed thus ma taining desirv flow rate	r Controls pump speed thus main- taining desired flow rate	A) Jarmed or blocked	Results in possible damage to pump	С, F, Н	1 × 10 ¹² 88L	Age; electrical short in wiring and circuitry; and sludge blockage	Periodic inspec- tion, cleaning, and lubrication
/02 Flow Controller	Regulates flow rates by opening or closing valves	A) Circuitry fails	Results in flow rate fluctuations and possible controller damage	F,Н	1 x 10 ¹² BBL	Same as above	Same as above
/03 Pressure Controller	Equalizes offshore A) Circuitry and onshore pressures	A) Circuitry fails	Same as above	н,	1 × 10 ¹² BBL	Same as above	Same as above
/04 Stgnal Selector	Compares flow rate A) Circuitry signals from tanker fails and offshore pumping stations and equalizes the flow controller.	A) Circuitry r falls ng	Same as above	н'5	1 × 10 ¹² 88L	Same as above	Same as above
13215 Pum Pro- tection Devices							
/01 Level Switch	Turns off pumps if A) Circuitry packing glands leak failure excessively	A) Circuitry failure	Electrical short and/or float stuck in float stuck in purpose continuing to run. Float stuck in high position will shut off purps	C,F,1	3 × 10 ⁹ BBL	Electrical short in wiring and circuitry; age; old sludge blockage; corrosion; bearing failure	Periodic testing and inspection
		B) Float stuck in high or low position	Same as above	C,F,1	(6-100) × 10 ⁶ BBL*	Same as above	Same as above

SUBSYSTEM (1) 13200 MOVE OIL TO ONSHDRE STORAGE ELEMENTS (2) 13210 BOOSTER PUMPING (Cont.)

SOLUTION	CORRECT ACTION RECOMMENDED (10)	Same as above	- Same as above	Periodic inspection and cleaning	Periodic testing to ensure proper working order	Same as above	Same as above
	CAUSE OF FAILURE (9)	Oil sludee block- ave: bearing failure	low suction occur- Same as above ring such as when tank is low	Corrosion: sludee blockage; leaky float	Same as above	Same as above	Same as above
MEAN BABBETS	TO FAILURE (METF) (8)	1 × 10 ¹⁰ BBL	1 × 10 ¹⁰ ви.	1 × 10 ¹² BBL	1 × 10 ¹² BBL	$1 \times 10^{12} \text{BBL}$	$1 \times 10^{12} \text{BBL}$
	EFFECTS CATEGORIES (7)	# H	о. Н	C.F.I	(tu	(Le	[54
EFFECTS ON	EQUIPMENT (6)	Excess vibrations fail to shut off burns; excess temperature will shut off pumps	Purp continues to run with lack of fluid. Excess temperature and vibration will shut off pump	Improper float seal will result in a minor spill	Results in a short delay as the operator will not immediately be aware	Same as above	Same as above
	FAILURE MODE (5)	A) Perdulum fails	A) Circuitry failure	A) Float does not seal air outlet	A) Circuitry failure	B) Bulb burnout	C) Horn mal-
NTFICATION	FUNCTION (4)	Turns off pumps due to excess vibration	Turns off nums if low suction occurs	Bleeds off any trapped air in line before it reaches pumps	Notifies operator the pumps are sither leaking, vibrating, drawing a low suction		
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	/02 Vibration Switch	/03 Differential Pressure Switch	/04 Air Elimi- nator	/05 Alarm		

SUBSYSTEM (1) 13200 MOVE OIL TO ONSHORE STORAGE ELEMENTS (2) 13220 TANK SMITCHING

SOLUTION	ORRECT ACTION RECOMMENDED (10)	Use test button periodically to check circuit continuities of indicator panel	Same as above	Check when locally cycling valve		Repair or replace on failure	Use test button periodically to check circuit continuities of indicator panel	Same as above	Redundant floats and/or periodic maintenance
	CAUSE OF FAILURE (9)	Filament burnout; age; electrical short in wiring and circuitry; corrosion	Same as above	Act of nature; human error; mechanical wear; possible stem breakage		Age; electrical short in whring and circuitry; corrosion	Age; electrical short in wiring and circuitry; corrosion	Same as above	Age; electrical short in wiring and circuitry; corrosion; sludge blockage
MEAN DADOTT C	TO FAILURE (MBIF) (8)	1 × 10 ¹² BBL	$1 \times 10^{12} BBL$			$1 \times 10^{12} BBL$	1 × 10 ¹² BBL	$1 \times 10^{12} \text{BBL}$	(6-100) × 10 ⁶ BBL*
	EFFECTS CATEORLES (7)	ing 6,1	6,1	6,н		8 9	1 8 11	1	ı
EFFECTS ON	EQUIPMENT (6)	Delay in pumping oil into tanks; requires visual check	Same as above	No visual con- firmation of valve line up; requires manual cycling of the valves		Delay in pumping oil; requires switching to another tank	Delay in pumping oil requires visual check of local indicator	Same as above	Electrical short and/or float stuck in low position will result in pumps continuing to run. Float stuck in high position will shut off pumps
	FAILURE MODE (5)	A) Bulb burnout	B) Circuitry failure	A) Stems on valve actu- ators fail to rise when valve's oper.		A) Circuitry failure	A) Circuitry failure	B) Bulb burnout	A) Float stuck in high or low posi- tion
ENTIFICATION	FUNCTION (4)	Assures proper valve line up		Assures proper valve line up		Transmits tank level signal to remote and local indicators	Denotes proper tank levels		Denotes proper tank levels
EQUIPMENT IDENTIFICATION	EQUIPMENT (3) 13221 Tank Valve Line Up Monitor	/01 Remote Indicator		/02 Local Indicator	13222 Tank Level Monitor	/01 Level Transmitter	/02 Remote Indicator		/03 Local Indicator

SUBSYSTEM (1) 13200 MOVE OIL, TO ONSHORE STORAGE ELEMENTS (2) 13220 TANK SMITCHING (Conc.)

NOLLILION	CORRECT ACTION RECOMMENDED (10)	Periodic testing and inspection	Same as above	Periodic testing to ensure proper working order	Same as above	Same as above		Upon failure, check circuit continuity and repair	Same as above	Same as above	Same as above
	CAUSE OF FALLURF. (9)	Age; electrical short in wiring and circuitry; corrosion; mechanical wear	Same as above	Age: electrical short in whring and circultry: corrosion	Same as above	Same as above		Age; electrical short in wiring and circuitry; corrosion	Same as above	Are: electrical short in wiring and circuitry: corrosion	Same as above
	TO FAILURE (MBTF) (8)	3 × 10 ⁹ BBL	(6-100) × 10 ⁶ BBL*	1 × 10 ¹² BBL	$1 \times 10^{12} BBL$	$1 \times 10^{12} BBL$		$1 \times 10^{11} \text{ BBL}$	$1 \times 10^{11} \text{ BBL}$	$1 \times 10^{11} \text{ BBL}$	1×10^{11} BBL
	EFFECTS CATEGORIES (7)	н	9) 1	C.1.	C, I	1,0		ing 6,1 uir-	6,1	ine 6.1 ir- 1	G.I
EFFECTS ON	EQUIPMENT (6)	Electrical short and/or float stuck in low position will result in pumps continuing to run. Float stuck in high position will shut off pumps	Same as above	Fails to visually and audibly alert operator of significant oil levels increases or decreases in tanks	Same as above	Same as above		Delay in switching tanks, thus requir- ing push button local	Same as above	Delav in switchine tanks thus requir- ing menual local	Same as above
	FATLURE MODE (5)	A) Circuitry failure	B) Float stuck Same as above in high	A) Circultry failure	B) Bulb burnout	C) Horn mal- function		A) Button contacts worn	B) Circuitry failure	A) Button contacts worn	B) Circuitry failure
TIFICATION	FUNCTION (4)	Close tank inlet valve if tank level is high		Notifies operator of extramely high tank levels				Regulates proper valve line up		Regulates proper valve line up	
EQUIPMENT IDENTIFICATION	BOUTPMENT (3)	/04 Level Switches		/05 Level Alarm			13223 Manifold and Tank Valve Line Up Controller	/01 Push Button Remote		/02 Push Button Local	

SUBSYSTEM (1) 13200 MOVE OIL TO ONSHORE STORAGE ELEMENTS (2) 13220 TANK SMITCHING (Cont.)

SOLUTION	CORRECT ACTION	Periodic manual cycling to ensure manual readiness	Periodic inspection and lubrication	Redundant or backup limit switches to ensure overall reliability	Same as above
	CAUSE OF FAILURE (9)	Age: electrical short in wiring and circuitry; corrosion	Age; electrical short in wiring and circuitry; corrosion	Age; electrical short in wiring and circuitry; corrosion	Same as above
	MEAN BANNELS TO FAILURE (MBTF) (8)	1 x 10 ¹² BBL	1 × 10 ⁸ BBL	3 × 10 ⁹ BBL	3 × 10 ⁹ BBL
	EFFECTS CATEGORIES (7)	G, H	н,	ors C,F,H rm sing	С, F, Н
EFFECTS ON	EQUIPMENT (6)	Inability to switch tanks until manpower opens or closes valves	Limit switches will not be tripped, thus indicating improper tank switching	Remote indicators will not confirm opening or closing of valves	Same as above
	FAILURE MODE (5)	A) Manpower unavailable to open or close valves marually	A) Fails to open or close tank inlet/out- let valves	A) Circuitry failure	B) Mechanical wear of components
EQUIPMENT IDENTIFICATION	FUNCTION (4)	Regulates proper valve line up	Opens or closes valves	Shuts off valve actuator when valve opens or closes	
EQUIPMENT I	EQUIPMENT (3)	/03 Manual Local	/04 Valve Actuator	/05 Limit Switches	

SUBSYSTEM (1) 13200 MOVE OIL TO ONSHORE STORAGE ELEMENTS (2) 13240 RELIEF OF PRESSURE SURGES

SOLUTION	CORRECT ACTION RECOMMENDED (10)		Periodic inspection and	Periodic in- spection and lubrication	Periodic testing and inspection.	Redundant floats and/or maint- enance.	Periodic testing to ensure proper working order	Same as above	Same as above
	CAUSE OF FAILURE (9)		Age; Electrical short in wiring and circuitry; corrosion.	Same as above	Age; electrical short in wiring and circuitry; corrosion.	Same as above	Electrical short in wiring and cir- cuitry; age; cor-	Same as above	Same as above
MEAN BADDET C	TO FAILURE (METF) (8)		1 x 10 ⁸ BBL	1 x 10 ⁸ BBL	1 x 10 ¹² BBL	(6-100) X 10 BBL*	1 х 10 ¹² вв с	1 x 10 ¹² BBL	1 x 10 ¹² BBL
EFFECTS ON	EQUIPMENT (6) CATECORIES (7)		Failing to close A,E,H will result in possible overflow of surge tank. From main offshore pipeline, and put main pipeline in veopardy of rupturing.	Same as above A,E,H	Electrical short G,H and/or float stuck in high position will set off high level alarm; electrical short and/or float stuck in low position could result in oil spill.	Same as above G,H	Fails to visually G.H and audibly alert operator of high levels in surge trank, thus creator a possible spill; low levels could indicate leak from the main transfer line.	Same as above G,H	Same as above G,H
	FAILURE MODE (5)		A) Circuitry m failure.	B) Jammed gearing.	A) Circuitry failure	B) Float stuck in high or low position	A) Circuitry L failure	B) Bulb burnout	C) Horn mal- function
TIFICATION	FINCTION (4)	rol	Opens or closes surge relief system to main offshore pipe line.	[to	Indicates high fluid levels in surge tank and sets off alram.		Notifies operator of high fluid level in surge tank.		
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	13241 Surge Relief Availability Control	/01 Valve Actuator	13242 Surge Relief Availability Monitor	/01 Level switch		/02 Alarm		

SUBSYSTEM (1) 13200 MOVE OIL TO ONSHORE STORAGE ELEMENTS (2) 13240 RELIEF OF PRESSURE SURGES (con't)

SOLUTION	CORRECT ACTION RECOMMENDED (10)		Periodic inspet- ion; cleaning and ;) calibration.	Repair or replace on failure	Periodic testing to ensure proper working order		Periodic inspection.
	CAUSE OF FALLIRE (9)		Material blockage of tap: cold weather (freezing) incorrect calibra- tion.	Electrical short in wiring and circultry; age; corrosion.	Electrical short in wiring and circuity; age; corrosion.		Age; electrical short in wiring and circuitry; corrosion.
MEAN BARRETS	TO FAILURE (ABIF) (8)		1 X 10 ¹² BBL	1 X 10 ¹² BBL	1 x 10 ¹² BBL		1 X 10 ¹⁰ BBL
EFFECTS ON	ECULPMENT (6) CATEOORIES (7)		False high pressure readings will result in sectiful lower value pressures and the surge tank filling prematurly false low pressure readings will result in many pressure surges not being relieved and the pipeline being over stressed.	Fails to actuate alarm; resultant- low pressure will result in tark filling.	Fails to usually F and audibly alert operator of low pressure in the inert gas supply		Surge relief F tank would pre- maturally fill.
	FAILURE (5)		ssure or low or low ef pressure readings.	n A) Circuitry failure mge cctuator ilves	itor A) Circuitry elief failure sure.		A) Low pres- trol sure of t gas inert gas supply.
EQUIPMENT IDENTIFICATION	FUNCTION (4)	96	Denotes proper inert gas pressure for surge relief system.	Sets off alarm fit insert gas pressure to surge rellef valve actuator and control valves is low.	Notifies operator of low surge relief inert gas pressure.	ation er	Back pressure applied to control valves by inert gas is overcome by relief surges.
DOUTHENT II	EQUIPMENT (3)	13243 Relief Valve Pressurization Medium Monitor	/01 Pressure indicator	/02 Pressure Switch	/03 Alarm	13244 Relief Valve Pressurization Medium Controller	/01 Pressure Control valves

Repair or replace on failure. Use redundant equip-ment if relia-bility is low Periodic inspec-tion necessary to ensure accurate output and proper paper supply for recorder Repair or replace on failure. Periodic inspec-tion, cleaning, and calibration Repair on failure CORRECT ACTION RECOMMENDED (10) Same as above Same as above Same as above SOLUTION Material blockage F of tap; cold weather (free-zing); incorrect calibration Electrical short in wiring and circuitry; age; corrosion Electrical short in wiring and circuitry; age. Electrical short in wiring and circuitry: age: CAUSE OF FAILURE (9) Same as above Same as above Same as above Same as above corrosion MEAN BARRELS TO FAILURE (MBTF) (8) 1 x 10¹²BBL 1 x 10¹²BBL 1 x 10¹²BBL $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ 1 x 10¹²BBL 1 x 10 10 BBL EFFECTS
CATECORIES (7) C,F,1 C,F, I C,F,1 C,F,I G,1 G, 1 G,I C,1 False high pressure readings result in pre-mature pump Fails to shut-down pump, could result in line rupture shutdow. False high pressure readings result in rupture of onshore piping with possible No hard copy of pressure readings Zero pressure readings will result in pump shutdown EQUIPMENT (6) Same as above Same as above Same as above Same as above EFFECTS ON oil spill B) Pen or thermal print fails A) Roundon F tube or e bellows rupture A) Needle indicator stuck B) Spurious signals internal tube or bellows B) Bruttdon rupture failure Transmits pressure A) Circuit signal to recorder fails FAILURE MODE (5) C) Other Records pressure A) Clock versus time history fails SUBSYSTEM (1) 13300 SHUTDOAN ONSHORE SYSTEM ELEMENTS (2) 13310 BOOSTER PUMPING Shuts down pumps in high discharge pressure occurs Denotes proper oil pressure in line FUNCTION (4) EQUIPMENT IDENTIFICATION /02 Pressure Transmitter /01 Pressure Indicator /03 Pressure Recorder /04 Pressure Switch 13311 Pressure EQUIPMENT (3) Monitor

Periodic testing to ensure proper working order Periodic inspec-tion, cleaning, and calibration CORRECT ACTION RECOMPENDED (10) Repair or replace on failure Periodic inspec-tion, cleaning, and lubrication Same as above Same as above Same as above SOLUTION Electrical short in wiring and circuitry; age; corrosion Electrical short in wiring and circuitry; age; corrosion Age: electrical short in wiring and circuitry; oil sludge block-age Age; electrical short in wiring and circuitry CAUSE OF FAILURE (9) Same as above Same as above Same as above MEAN BARRELS TO FAILURE (MBTF) (8) $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ 1 x 10¹² BBL 1 x 10¹² BBL. $1 \times 10^{12} BBL$ EFFECIS CATECORIES (7) C.F.H F, I 0 5 G,H False hish temperature readings will result in false volume calculations Fails to visually and audibly alert operator of significant increases or decreases in pressure Could cause pump speed to vary from overspeed to stop EQUIPMENT (6) and wrong pump speeds Same as above Same as above EFFECTS ON A) Circuitry failure A) Needle indicator stuck A) Circuitry failure (Cont.) C) Horn malfunction A) Jammed or blocked B) Bulb burnout FAILURE MODE (5) B) Bulb breaks SUBSYSTEM (1) 13300 SHUTDOMN ONSHORE SYSTEM ELANGMIS (2) 13310 BOOSTER PUNPING (2) Notifies operator of extremely low or high pressures Controls pump speed, thus main-taining desired flow rate Transmits flow rate signal to indicator Indicates oil FUNCTION (4) EQUIPMENT IDENTIFICATION 13312 Temperature /01 Temperature Indicator 13313 Flow Monitor /01 Flow Element Transmitter 13314 Flow Rate Controller /05 Flow Regulator EQUIPMENT (3) /05 Alarm /01 Flow Monitor

SUBSYSTEM (1) 13300 SHJTDOM ONSHORE SYSTEM ELEMENTS (2) 13310 BOOSTER PUMPING (Cont.)

SOLUTION	CORRECT ACTION RECOMPENDED (10)	Same as above	Same as above	Same as above		Periodic testing and inspection	Redundant floats and/or maintenance	Periodic testing and inspection	Same as above
	CAUSE OF FAILURE (9)	Same as above	Same as above	Same as above		Age; electrical short in whring and circuitry; oil sludge block- age; corrosion: bearing failure	Same as above	Oil sludge block- age; bearing failure	Low suction occurring such as when tank levels are low
	MEAN BARRELS TO FAILURE (METF) (8)	1 × 10 ¹² BBL	1 x 10 ¹² BBL	1 × 10 ¹² BBL		1 × 10 ¹⁰ BBL*	(6-100) x 10 ⁶ BBL*	1 × 10 ¹⁰ sbl.	1 × 10 ¹⁰ BBL.
EFFECTS ON	EPPECTS EQUIPMENT (6) CATEGORIES (7)	Results in flow F.H rate fluctuations and possible controller damage	Same as above F,H	Same as above G,H		Electrical short C,F,I and/or float stuck in low rosition will result in mynes continuing to run. Float stuck in high position will shut off pumps	Same as above C,F,1 ((Excess vibrations E,H fail to shut off bumps	Fails to stutdown F.H counce, result in a line rupture and possible oil spill
	FATLURE MODE (5)	A) Circuitry R fails r		Circuttry fails			B) Float S stuck in high or low posi-tion	A) Circuitry E failure f	A) Circuitry F failure p
TIFICATION	FUNCTION (4)	Regulates flow rates by opening or closing valves	Equalizes offshore A) Circuitry and onshore pressures	Compares flow rate A) signals from tanker and offshore pumping startions and equalizes the flow rates via the flow controller		Nurns off pumos if A) Circuitry packing glands leak failure excessively		Turns off pumps due to excess vibration	Turns off pumps if low suction occurs
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	/02 Flow Controller	/03 Pressure Controller	/05 Signal Selector	13315 Pum Pro- tection Devices	/Ol Level Switch		/02 Vibration Switch	/03 Differential Pressure Switch

SUBSYSTEM (1) 13300 SHUTDOAN ONSHORE SYSTEM ELEMENTS (2) 13310 BOOSTER PUMPING (Cont.)

SOLUTION	CORRECT ACTION RECOMPENDED (10)		Periodic testing to ensure proper working order	Same as above	Same as above
	CAUSE OF FAILURE (9)	Corrosion; sludge blockage; leaky float	Same as above	Same as above	Same as above
	TO FAILIRE (MBTF) (8)	1×10^{12} BBL	1 × 10 ¹² BBL	$1 \times 10^{12} BBL$	$1 \times 10^{12} BBL$
	EFFECTS CATEGORIES (7)	C,F,I	Ĺte	Ĺ	Ĺs.
EFFECIS ON	EQUIPMENT (6)	Improper float seal will result in a minor spill	Results in a short delay as the operator will not immediately be aware	Same as above	Same as above
	FAILURE MODE (5)	A) Float does not seal air outlet	A) Circuitry failure	B) Bulb burnout	C) Horn mal- function
NTIFICATION	FUNCTION (4)	Bleeds off any trapped air in line before it reaches pumps	Notifies operator the purps are either leaking, vibrating, draw- ing a low suction		
EQUIPMENT IDENTIFICATION	EQUIPMENT (3)	/04 Air Elimi- nator	/05 Alarm		

SUBSYSTEM (1) 13300 SHUTDOWN ONSHORE SYSTEM ELEMENTS (2) 13320 PACK SYSTEM

	1						
EQUIPMENT IDENTIFICATION	MITFICATION		FFFECIS ON		PFAN BARRETS		SOLUTION
EQUIPMENT (3)	FUNCTION (4)	FAILURE MODE (5)	EQUIPMENT (6) CAT	EFFECTS CATEGORIES (7)	TO FAILURE (METF) (8)	CAUSE OF FAILURE (9)	CORRECT ACTION RECOMPENDED (10)
13321 Valve Line Up Monitor							
/01 Remote Indicator	Assures proper valve line up	A) Bulb burn- out	Delay in packing system; requires visual check	6,1	1 × 10 ¹² BBL	Filament burnout; electrical short in wiring and circuitry; corrosion	Use test button periodically to check circuit continuities of indicator panel
		B) Circuitry failure		G.I	$1 \times 10^{12} BBL$		Same as above
/02 Local Indicator	Assures proper valve line up	A) Stems on value actuators fail to rise when value is open	No visual con- firmation of valve line up; requires mænual cycling of the valves	н.	1 x 10 ¹² BBL	Act of nature; human error; mechanical wear; possible stem breakage	Check when locally cycling valve
13322 Valve Line Up Controller							
/01 Push Button Remote	Regulates proper valve line up	A) Button contacts worn	A) Button con- Delav in lining tacts worn up valves, thus requiring push button local	6.1	1 × 10 ¹¹ BBL	Age: electrical short in wiring and circuitry; corrosion	Upon failure, check circuit continuity and repair
		B) Circuitry failure	Same as above		$1 \times 10^{11} \text{ BBL}$	Same as above	Same as above
/02 Push Button Local	Regulates proper valve line up	A) Button contacts worn	Delay in lining up valves, thus requiring manual local	G,I	1 × 10 ¹¹ BBL	Age; electrical short in wiring and circuitry; corrosion	Same as above
		B) Circuitry failure	Same as above		$1 \times 10^{11} \text{ BBL}$	Same as above	Same as above
/03 Marual Local	Revulates proper valve line up	A) Manrower unavailable to open or close valves manually	Inability to achieve line up until marpower open valves	В, Н	1 × 10 ¹² BBL.	Not errouch available membower	Periodic manual cycling to ensure manual readiness
/04 Value Actuator	100						

/04 Valve Actuator /05 Limit Switches

A-63

Oil sludge blockage of tap; cold weather (freezing); incorrect calibration Electrical short in wiring and circuitry; age; corrosion Electrical short in wiring and circuitry; age; corrosion CAUSE OF FAILURE (9) Same as above Same as above Same as above MEAN BARRELS TO FAILURE (MBTF) (8) $1 \times 10^{12} BBL$ 1 x 10¹²BBL $1 \times 10^{12} BBL$ $1 \times 10^{12} BBL$ 1 x 10¹²BBL $1 \times 10^{12} BBL$ EFFECTS
CATEGORIES (7) C,F,I C,F,I C,F,I G,I G,I G,1 False high pressure readings will fail to completely pack onshore piping. False low pressure readings may result in overstressing and rupturing the pipeline EQUIPMENT (6) Same as above Same as above Same as above EFFECTS ON A) Needle indicator stuck (Cont.) C) Other internal failure B) Spurious signals Bourdon tube or bellows Transmits pressure A) Circuit signal to recorder fails FAILURE MODE (5) Records a pressure A) Clock versus time history fails SUBSYSTEM (1) 13300 SHUTDOAN ONSHORE SYSTEM ELEMENTS (2) 13320 PACK SYSTEM (Denotes proper oil pressure in line FUNCTION (4) EQUIPMENT IDENTIFICATION /02 Pressure Transmitter /01 Pressure Indicator /03 Pressure Recorder 13323 Pressure EQUIPMENT (3) Monitor

Same as above

Same as above

Periodic inspection, cleaning, and calibration

CORRECT ACTION RECOMMENDED (10)

SOLUTION

Periodic inspection necessary to ensure accurate output and proper paper supply for recorder

Repair on failure

Same as above

 $1 \times 10^{12} BBL$

6,1

Same as above

B) Pen or thermal print fails

Repair or replace on failure. Use redundant equipment if reliability is low

Same as above

	NOLLITIOS	CORRECT ACTION RECOMPENDED (10)	Periodic testing to ensure proper working order	Same as above	Same as above
		CAUSE OF FAILURE (9)	Electrical short in wiring and circuitry; age; corrosion	Same as above	Same as above
	MEAN BADDETS	TO FAILURE (PBTF) (8)	1 × 10 ¹² BBL	$1 \times 10^{12} \text{BBL}$	$1 \times 10^{12} BBL$
		EFFECTS CATEGORIES (7)	C,F,1		
	EFFECTS ON	EQUIPMENT (6)	Fails to visually and audibly alert operator of significant pressure increases or decreases or	Same as above	Same as above
SYSTEM (Cont.)		FAILURE MODE (5)	A) Circuitry failure	8) Bulb burnout	C) Horn mal- function
SUBSYSTEM (1) 13300 SHUTDOMN ONSHORE SYSTEM ELEMENTS (2) 13320 PACK SYSTEM (EQUIPMENT IDENTIFICATION	FUNCTION (4)	Notifies operator of extremely low or high line pressures		
SUBSYSTEM (1) 1 ELEMENTS (2) 1	EQUIPMENT	EQUIPMENT (3)	/04 Alaxm		

CORRECT ACTION RECOMMENDED (10)

SOLUTION

Periodic testing and inspection.

Periodic testing.

Same as above

Same as above

Same as above

Same as above

Age; Electrical short in wiring and circuitry; corrosion. CAUSE OF FAILURE (9) Age; electrical short in wiring and circuitry; corrosion. Same as above Same as above (6-100) X 10⁶ BBL* HEAN BARRELS TO FAILURE (MBTF) (8) 3 X 109 BBL 1 X 10¹²BBL 1 x 10¹²BBL 1 X 10 28EL EPPECTS
CATEGORIES (7) 8 v υ ပ Level switch stock in high position will cause urnecessary draining of drain, slops tank level switch stuck in low position may result in oil over-flow. Fails to visually and audibly alert operator of low fluid levels in drain/slop tank. EQUIPMENT (6) B) Float stuck Same as above in high or low postion. Same as above Same as above EFFECTS ON A) Circuitry failure A) Circuitry failure C) Horn mal-function B) Bulb burnout FAILURE (5) SUBSYSTEM (1) 13300 SHUTDOWN ONSIDRE SYSTEM ELEMENTS (2) 13330 DRAIN AND SLOPS HANDLING Notifies operator of high or low fluid levels in drain tank. Detects high or low fluid level in drain tank. FUNCTION (4) EQUIPMENT IDENTIFICATION 13331 Drain Tank Level Montior /01 Level switch EQUIPMENT (3) /02 Alarm

SUBSYSTEM (1) 13300 SHLITDOWN ONSINDE SYSTEM ELPHENTS (2) 13340 PHERGENCY SHUTDOWN SYSTEM

EQUIPMENT (3) FUNCTION (4) 13341 Value Line Up Monitor 13342 Value Line Up Controller /01 Valve actuator Opens or closes emergency shut- down valve. /02 Alarm /02 Alarm /03 Motifies operator of Low pressure such the inert gas supply to the valve actuator-low pressure sets off alarm. /02 Alarm /03 Motifies operator of Low pressure in the inert cas supply /03 Alarm /04 Motifies operator of Low pressure in the inert cas supply /05 Alarm /05 Motifies operator of Low pressure in the inert cas supply /05 Alarm /06 Motifies operator of Low pressure in the inert cas supply /03 Alarm /04 Motifies operator of Low pressure in the inert cas supply /05 Alarm /05 Motifies operator of Low pressure in the inert cas supply /05 Alarm /05 Motifies operator of Low pressure in the inert cas supply /15 Alarm /16 Alarm /17 Alarm /18 Alar	g	A) Bulb burnout B) Circuitry failure A) Hydraulic failure C) Cearing or mechanical failure A) Circuitry failure A) Circuitry A) Circuitry A) Circuitry A) Circuitry A) Circuitry A) Circuitry A) Circuitry	EQUIPMENT (6) CATEGORS EQUIPMENT (6) CATEGORS immediately parent if the emergency shutdown valve closes but is not indicated at the control panel. Same as above F If valve fails to A close when needed, a major oil spill could occur. If valve closes pre maturely A a pressure shock will result with possible need for surge realief system. A If no reserve surply B for inert gas, then emergency shutdown valves will have to be marnally cycled. Fails to visually B and audibly a left	CATEGORIES (7) CATEGORIES (7) the see the chown but is at the chown but is at the first of the chown but is at the chown but is at the first of the chown but is satisfied. A A A A A A A A A A A A A A A A A A A	1 x 10 ¹² BBL 1 x 10 ¹² BBL 1 x 10 ¹³ BBL 1 x 10 ¹⁹ BBL 1 x 10 ¹⁰ BBL 1 x 10 ¹⁰ BBL	CAUSE CAUSE CAUSE CORRECT ACTION Filament burnout; Use test button electrical short periodically to in wiring and circheck circuit cultry; corrosion. continuties of indicator panel. Same as above Same as above	CORRECT ACTION RECORDED (10) Use test button periodically to check circuit continuties of indicator panel. Same as above Same as above checks. Same as above Same as above reliability. Redandant equipment to increase reliability. Periodic testing and inspection.
		Bulb burnout	decreases. Same as above	, m	1 X 10 ¹² BBL	Same as above	Same as above
		3) Bulb burnout	Same as above	æ	1 X 10 ^{1 2} BBL	Same as above	Same as above
	Ü	C) Horn mal-	Same as above	Д	1 X 10 ¹² BH	Same as above	Same as above

APPENDIX B

ELEMENT FAULT TREES

APPENDIX B RELIABILITY/FAULT TREE PROCEDURES

The fault tree is a comprehensive description of system failure possibilities expressed in symbolic form. The corresponding failure probabilities can be be evaluated if a basic set of failure-rate data is available and if a set of Boolean algebraic equations can be written to describe the symbolic failure relationships shown on the fault tree diagram. The data are then substituted in the ordinary algebraic equations that correspond to the failure relationships to provide a resultant numerical prediction.

To illustrate this procedure, a fault event will be developed by tracing the following major steps in the predictive technique.

- Fault tree diagram
- Equivalent algebraic equations
- Input data source
- Prediction results

The example will be taken from the Surge Relief System. The two basic operations in the fault tree are the "and" gate and the "or" gate. The Surge Relief System will fail only if the Surge Relief Availability Control fails and the Surge Relief Availability Monitor fails, and the Relief Valve Pressurization Medium Controller fails. All events under an "and" gate must fail before the event above the gate is considered failed. SURGE RELIEF

The probability of the Surge Relief System failing is:

P (Surge Relief

System Failure) = P (Surge Relief Availability Control Failure) ●

P (Surge Relief Availiability Monitor Failure) ●

P (Relief Valve Pressurization Medium Monitor Failure) •

P (Relief Valve Pressurization Medium Controller Failure)

On the other hand, Figure B-2 is an example of an "or" gate. The Surge Relief Availiability Monitor will fail if the Level Switch fails or the High Level Alarm fails. Any event which fails under an "or" gate will cause the event above the gate

FIGURE B-2 "OR" GATE EXAMPLE

The probability of the Surge Relief Availability Monitor failing is:

P (Surge Relief Availability Monitor Failure)

= P (Level Switch Failure) + P (High Level Alarm)

The above equations are useful approximations for the specific DWP applications where the exponential distribution is assumed to approximate equipment failure and the failure rates are less and 10^{-4} .

 $P(failure) = (A \cdot B) + C + (D \cdot E \cdot F)$

 $P(failure) = A + B + C + D + E + F + (G \cdot H) + I + J + K + L$

 $P(failure) = A \cdot B$

P(failure) = A . B

P(failure) = A · B

P(failure) = A · B · C

 $P(failure) = (A \cdot B) + C + D + (E \cdot F \cdot G)$

P(failure) = A + B + C + D + E + F + G + H + I + J + K + L + M + N + O + P + Q) B-10

 $P(failure) = A + B + C + D + E + (F \cdot G) + H + I + J + K + L + M$

P(failure) = A

 $P(failure) = A + (B \cdot C)$

 $P(failure) \approx A + B + C$

 $P(failure) = (A \cdot B) + (C \cdot D)$

 $P(failure) = (A \cdot B) + C + D + (E \cdot F \cdot G)$

P(failure) = A + B + C + D + E + F + G + H + I + J + K + L + N + 0 + P + QB-19

 $P(failure) = (A + B + C + D) \cdot E$

 $P(failure) = A + B + C + D + E + (F \cdot G) + H + I + J$

 $P(failure) = A + (B \cdot C)$

P(failure) = A + B + C

APPENDIX C

ELEMENT RELIABILITY/EFFECTS RATING SHEET

ELEMENT DESCRIPTION TANKER VALVES

COUNTRY COUN		The second secon					
EQUIPMENT EQUIPMENT PROBABILITY PROBABILIT	ω	(2)	(3)	(7)	(5)	(9)	(7)
	EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- TENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F ₁)	EFFECTS WEIGHT- ING FACTOR FRACTION F: FRACTION F:	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHMARK EFFECTS WEIGHTED PROPABILITY OF FAILURE (3)x(5)
	111115,11223,						
Lockt 10-12 10-12 10-12 6 E. 11222 12322 10-11 10-12 4 E. 11342 10-11 10-12 4 E. 11342 10-11 10-12 4 E. 10-12 10-12 10-12 12 E. 10-14 10-12 10-12 12 E. 10-15 10-12 12 E. 10-16 10-17 10-12 E. 10-17 10-12 12 E. 10-18 10-19 12 E. 10-18 10-19 12 E. 10-19 10-12 12 E. 10-19	(01 Indicator	21_01	21-01	J	.083	8.3410-14	8.3 × 10-14
11342 10-12 10-12 14 10-12 15-12 14 10-12 10-12 14 10-12 10-12 10-12 12 12 12 12 12 12 12	62 Judentor	2,01	21-01	ٯ	.125	1.25x10-13	1.25 410-13
Push Burbou 0 - 11 10 - 12 4 Push Burbou 0 - 11 10 - 12 4 Push Burbou 0 - 12 10 - 12 10 - 12 NATURE 0 - 12 10 - 12 12 Linnit 10 - 12 10 - 12 12 Switcher 10 - 12 Switcher							
Push Button 0 - 12 0 - 12 4 4 6 6 6 6 6 6 6 6	11342						
Push Bultan O - 11		10-11	10-12	#	580.	8.3410-13	× 3 × 10,4
10-12 10-12 6 6 6 6 6 6 6 6 6		10-11	10-12	7	.083	8.3×10-13	\$ 3 × 10-14
While 10-8 10-12 12 Limit 10-12 10-12 12 Switches 10-12 12	Ĭ	21-01	10-12	و	.125	1.25 ×10-13	1.25 × 10-13
Switcher 10-12 12		9-01	10-12	77	35.	2.5 XIO-9	2.5 × 10-13
		10-15	11-01	12	٠. کړ.	2.5 ×10-13	2.5 × 10-13
7F. = 4.00							
7F. = 4.82							
7F: = 4.8							
				ΣFi = 48			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

2.5 NIO-13

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 2.5 × 10 - 13 NORMALIZED ELEMENT RELIABILITY RATING 1.1- [(9) + (8)] 1.1.0 **

* 100% Reliable

ELEMENT DESCRIPTION THUKER PUMPS

(1)	(3)	(3)	(7)	(5)	(9)	(7)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- FINT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (Fi)	EFFECTS WEIGHT- ING FACTOR FRACTION F_{i} $\sum_{i} F_{i}$	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHMARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
11311, 11311						
Pressure	10-12	21-01	81	951.	1.29110-13	1.39×10-13
62 TEANSMITTER	10-12	21-01	ナ	٩٣٥٠	2.9410-14	2.9 × 10-14
As Recoence	10-12	21-01	J -	P50.	2.9710-14	4.9 XIO -14
Sy Pressure	10-10	10-12	80	139	1.29×10-11	1.29 ×10-13
OS ALPRIM	10-12	10-12	80	.129		1.29810-13
112 12, 11312						
SPECT SI INDICATOR	8_01	21-01	-	200.	1,01,2	21-0140-6
52 REGILATOR	10-12	10-12	30	451.	1,44410-13	1.44410-13
11213, 11313						
S. TRIP	0-0	10-12	工	1010	1.01 ×10-11	1.01 ×10.1
			EFi = con'T			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

NORWALIZED ELEMENT RELIABILITY RATING $\frac{1}{3}$, 1- [(9) + (8)],

THUKER PUMPS (CONT.)

			_		_		_	_	_	 _	_	 	
	(2)	BENCHMARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)	1.01 XID-13	1.01X10-13	1.01 × 10-13								
	(9)	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	1.01×10-1	1.01 × 10-1	1.01 10-1								
(1,000) - 11,101	(5)	EFFECTS WEIGHT- ING FACTOR FRACTION $\overline{F_1}$ $\overline{\sum}$ Fi	101.	101	101.								
ובומוכוו	(7)	EFFECTS WEIGHTING FACTOR (Fi)	F1	エー	立								ΣF1 = 139
ELEMENT DESCRIPTION	(3)	BENCHMARK EQUIP- LENT PROBABILITY OF FAILURE	4-01	21-01	21-01								
	(2)	EQUIPMENT PROBABILITY OF FAILURE	0-0		10-10								
	(1)	EQUIPMENT IDENTIFICATION NUMBER	62 SWITCH	63 Pressure switch	54 PURKM								

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 5.35 + 16"

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 8.56% 10-13
NORMALIZED ELEMENT RELIABILITY RATING 11-[(0) + (8)]; .984

ELEMENT DESCRIPTION THUKER THUKS

(3)	(2)	(3)	(7)	(5)	(9)	(7)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- PENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F ₁)	EFFECTS WEIGHT- INC FACTOR FRACTION F: FRACTION F:	EFFECTS WEIGHTED PROBABILITY OF FAILIRE (2)x(5)	BENCHMARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
11231						
O INDICATOR	10-11	10-11	1	7.	4.0 × 10-6	2-0140.4
SOUPPING S	10-12	10-12	9	ی	6.0410-13	
	-		ΣFi = 10			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 2.4 X 10 25

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 2.44 IG-25 NORMALIZED ELEMENT RELIABILITY RATING 1.1-[(9) + (8)] / 1.0 **

* 100% Reliable

ELEMENT DESCRIPTION THRUKER PIPING

(3)	(2)	(3)	(7)	(5)	(9)	(2)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- LENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F ₁)	EFFECTS WEIGHT- ING FACTOR FRACTION F. FRACTION F.	EFFECIS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHMARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
11321						
Pressure	10-12	10-12	81	818.	8.18 × 1013	8.18×10-13
11333					1	
hanual for procedure	4410-8	21-01	*	.182	7.28110-9	1.82×10-13
			ΣF _t = 22			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE S. 45 X10-21
(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 1.48 X10-25

NORWALIZED ELEMENT RELIABILITY RATING { 1- [(9) + (8)] }

ELEMENT DESCRIPTION THUKER EMERGENCY SHATDOLON SYSTEM

(1)	(2)	(3)	(7)	(5)	(9)	(2)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- LENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (Fi)	EFFECTS WEIGHT- ING FACTOR FRACTION $\overline{E_1}$ $\overline{\Sigma}$ Fi	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENGRARK EFFECTS WILGHTED PROBABILITY OF FAILURE (3)x(5)
11330						
MIDSHIPS OF REMOTE						
PUMP SHUTDOWN	10-10	10-12	76	٠.	5410-11	5×10-13
CONTROL 03 ROOM						
SHUTDOWN SWITCH	10-10	10-12	丁 で	ls.	1.01 X.S	5410-13
			ΣFi = 48			
				-	10	

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE A.S. ID-21
(9) BENCHWARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE A.S. VIO-35

NORMALIZED ELEMENT RELIABILITY RATING 1 1- [(9) + (8)] / O.999

HARRIS (FREDERIC R) INC NEW YORK STUDY OF DEEPWATER PORT OIL TRANSFER CONTROL SYSTEMS.(U) F/G 15/5 AD-A060 144 JUN 78 I C ROBSON, W W SCHERKENBACH DOT-CG-64503-A UNCLASSIFIED USCG-D-58-78 NL 3014 AD A060144 000 000 Minis

30F4

AD A060144

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A ELEMENT DESCRIPTION THINKER COMMUNDICATIONS

					3	
(1)	(2)	(3)	(7)	(5)	(9)	(2)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- LENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F;)	EFFECTS WEIGHT- INC FACTOR FRACTION F:	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHVARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
01411						
ST VHF	21-01	10-12	t	.33	3.3311013	333410-13
WALKIE -	21-01	10-12	J	.33	3.33×10-13	3.33 × 10-13
			•			
11420						
Smond as 19	10-18	10-12	J	.33	3.33×10-13	3.33 4 10-13
			ΣFi = 13			
					88-	

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 3.69410 38

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 3.69 LD 38

NORWALIZED ELEMENT RELIABILITY RATING 1 1- [(9) + (8)] 1 1 0

* 100% Reliable

ELEMENT DESCRIPTION OFF SHORE VALVES

		The state of the s	1000			
(1)	(2)	(3)	(4)	(5)	(9)	(7)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- PENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (Fi)	EFFECTS WEIGHT- ING FACTOR FRACTION F. FRACTION F.	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHMARK EFFECTS WEIGHTED PROPABILITY OF FAILURE (3)x(5)
।वावा, ।वडय						
PRICH BUTTONO /OI REMOTE	<u>"-</u> 0]	10-12	5	.071	7.1410-13	7.01 × 1.5
OZ LOCAL	10-01	10-12	5	.071	2.1410-13	7.1410-14
MANUAL COUNT	10-1	10-12	9	.107	1.07XIO-13	1.01 × 10-13
OF PRIVATOR	6 _0	10-12	4	P18.	3.14410-9	2.14×10-13
65 SWITCHES	3.3 ×10-10	21-01	9	.357	01-01461-1	3.5410-13
ושבצו פצוצו						
O SWDERTOR	10-12	10-12	7	.071	7.1×10-14	7.1XIO-19
POCAL LOCAL OF	10-12	10-12	و.	501.	1.07410-1	1.07×10-13
			ΣF1 = 56			
					6	

(8) ELPMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 2,257 KIO-1

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 5.64 % (0-13

NORMALIZED ELEMENT RELIABILITY RATING 1 1- [(4) + (8)]

ELEMENT DESCRIPTION OFFSHORE BOOSTER PLANTES

(3)	(2)	(3)	(7)	(5)	(9)	(7)
EQUIPMENT IDENTIFICATION MARBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- TENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F1)	EFFECTS WEIGHT- ING FACTOR FRACTION FI	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHPARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
1223,12311						
Pressure	10-12	10-12	00	.093	9.3410-14	4.3410-14
/oz TRANSMITTER	10-12	10-13	5	150.	2.1710-14	21-01×10-14
OS RESURE	10-12	10-12	7	180	2.1410-14	7-01 110-14
Pressure /	10.10	71-01	0	.052	5.211012	5.2410-14
	10-12	10"	81	.093	9.3×10-14	9.3×10-14
13234, 14512						
6 INDICATOR	10-12	دا-0)	4	\$00.	S.OXIG.IS	5.0110-15
1323, 12313						
PLEW FUT	٦,-01	10-12	エ	.072	7.2×10-14	7.2410-14
			ΣFi = (2077.)			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

NORWALIZED ELEMENT RELIABILITY RATING 1.- [(9) + (8)], (9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

ELEMENT DESCRIPTION OFFSHORE BOOSTER PRIMPS (CONT.)

(1)	(2)	(3)	(7)	(5)	(9)	(3)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHARK EQUIP- PENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (Fi)	EFFECTS WEIGHT- ING FACTOR FRACTION F. FRACTION F.	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHVARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
12434,12314						
O TEMBENITER	10-12	10-12	12	.662	6.2410-14	6.2410"
162 CONTROLLER	10-15	10-12	12	. 062	6.2410-14	6.2410-14
/os compouer	10-12	10-12	13	.062	6.2410-14	6.2410-14
A SELECTOR	10-12	10-12	9	.03/	3.1.X.1014	3.1 ×10-14
OS REGILIATOR	10-12	10-12	12	. 062	6.2×10"	6.2410-14
J235, 12315						
Panitch 19	10-10	71-01	18	.043	9.3410	9.3410-14
VIBREATIONS 62 SWITCH	4-01	10-12	7	. ma	7.2410-6	7.2110-1
PRESSURE 03 SWITCH	10-1	10-15	工	.03	7.2410-6	7.2×10-14
64 ELIMINATOR	9 -0	21_01	18	93	9.3XID-B	9.3 x 10-4
65 FHEREM	10-15	10-11	_	. 636	3.6410-14	3.6 XID-14
			ΣFi = 194			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE | . 15 X 10-5

(9) BENCHVARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE | OO KNOTE | OO

* 100% Reliable

ELEMENT DESCRIPTION OFFSHORE PIPING

(1)	(2)	(3)	(7)	(5)	(9)	(1)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- FENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (Fi)	EFFECIS WEIGHT- ING FACTOR FRACTION F: FRACTION F:	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHVARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
13111						
Pressure	10-12	21-01	30	891.	1.68 ×10-13	1.68%10-13
ואוז						
HOSE COMPINAL MANAGE 19/	10-15	10"2	و	.050	5.0×10-14	5.0×10-14
13311						
of zaduston	10-12	10-12	8)	151	1.5410-13	1.8×10-13
02 Transmitter	10-12	10-12	J	.033	3.3 ×10-14	3.3410-14
Dressuve 63 Recorder	21-01	21-01	7	.033	33410-14	3.3 × 10-14
64 AIARM	10-15	10-12	18	151.	1.51 × 10-13	1.51 ×10-13
			ΣFi = (court)			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

NORWALIZED ELEMENT RELIABILITY RATING 1 1- [(9) + (8)];

-	_
-	129 921212
	92
-	2/12
-	JUN O
	TOTS LLC
,	C
	ET EMENT DESCRIPTION
	ENENT

(1)	(2)	(3)	(7)	(5)	(9)	(7)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPPENT PROBABLITY OF FAILURE	BEXCPMRK EQUIP- :EXT PROBABILITY OF FAILIRE	EFFECTS VEIGHTING FACTOR (F ₁)	EFFECTS WEIGHT- ING FACTOR FRACTION $\overrightarrow{F_1}$ $\overrightarrow{\sum} F_1$	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)×(5)	BENCHWARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
11	71-2.	71-71		ď	S. OKO. A	8.0410.15
A Jud Cator		2				
2213						21-
Measuring (a) Device	0-01	10-12	7.1	-	LOKIO.	1.0×10
7214						
MON	7-4	21-01	7	080	5.0XID-14	5.0 NIO-14
FION		2,-01	17		1.0110-13	1.0×10-13
Plow Town		71-01	ی	080	5,0410-14	S,OKIO"
FICAL WORK		10.15	12	•	1.0110-13	
			ΣFi = 119			
	1				6-1	

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE | LOONIO

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 7.75 % 10-13 NORMALIZED ELEMENT RELIABILITY RATING | 1- [(4) + (8)] | .499

	(2)	BENCHWARK EFFI WEIGHTED PROB OF FAILURE (3)		101							
9	(9)	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)		01_01							
SAMPLIN	(5)	EFFECTS WEIGHT- ING FACTOR FRACTION F:									
SFFSHORE	(7)	EFFECTS WEIGHTING FACTOR (F ₁)		_					,		ΣFi =
ELEMENT DESCRIPTION OFFSHORE SAMPLING	(6)	BENCHMARK EQUIP- LENT PROBABILITY OF FAILURE		1.01							
	(2)	EQUIPMENT PROBABILITY OF FAILURE		10-10							
	(1)	EQUIPMENT IDENTIFICATION NUMBER	12320	61 SAMPLER							

BABILITY OF FAILURE 10	(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE
------------------------	---

ELAMINI DESCRIPTION OFF SHORE SURGE RELIEF SYSTEM.

(3)	(2)	(3)	(4)	(5)	(9)	(3)
EQUIPENT IDENTIFICATION NUMBER	EQUITYENT PROBABILITY OF FAILNRE	BENJIWAK EQUIP- ITAT PROBABILITY OF FAILIRE	EFFECTS WELGITING FACTOR (F ₁)	EFFECIS WEIGHT- ING FACTOR FRACTION F _T . \$\int\$F\$	EFFECIS WELGITED PROBABILIY OF FAILURE (2)x(5)	BINCHARK EFFCIS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
12241 Value 6 Actualist	a -O	₂₁ -01	24	.358	3.58 × 10-7	3.58 × 10-13
127.42		,				
/ Lavel of Switch	21-01	21-01	و	060.	9.0 × 10-14	9.0 × 10-14
/ High Lawel	21-01	21-01	9	060.	9.0 × 10 - 14	9.0 × 10-14
63 Low level	10-11	10-12	_	060.		1.5 × 10-14
19742						
Received of Indicator	6×10-18	6×(0-12		510.	9.0 × 10-14 9.0 × 10-14	9.0 × 10-14
7 Pracsure	21-01	21-01	۲	.104	1.04 × 10-13	1.04×10-13
03 Alarm.	21-01	10-12	7	+01.	1.04 × 10-15	1.04×10-13
			ΣFi = (CONST)			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

(9) BENCHMARK ELPTENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

NORMALIZED ELPMENT RELIABILITY RATING 1 1 - { (9) + (8) } }

ELIMIN DESCRIPTION OFFSHORE SUCCE RELIEF SYSTEM.

(4)	BENCHARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)		1.12 × 10-12						
(9)	EPECIS WEIGHTED PROMBILITY OF FAILIRE: (2)x(5)		1.12 × 10-10						
(5)	EFFECTS WEIGHT- INC PACTOR FRACTION F:		.224						
(4)	FFFLCTS MELCHTING FACTOR (F _I)		15						ΣFi = 67
(3)	BENCHMRK EQUIP- 13M PROBABILITY OF FAILURE		5 × 10 ⁻¹²						
(2)	EQUITMENT PROMABILITY OF FAILURE		5×10-10						
3	EQUIPMENT IDENTIFICATION NUMBER	12244	Ol Control						

(8) ELPENT EPPECTS WEIGHTED PROBABILITY OF FAILURE 7.35×10^{-44}

(9) BENCHWAR ELEMENT EFFECTS WEIGHTED FROBABILITY OF FAILURE 9.54 x 10-50 NORWALIZED ELPSET RELIABILITY RATHG { 1- [(9) + (8)] }

ELEMENT DESCRIPTION OFFISHORE DRATED AND SLOPS HANDLING

	(7)	ED BENCHWARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)									
	(9)	EFFECTS WELGHTED PROBABILITY OF FAILURE (2)x(5)		1.76 XIO-10	4.7×10-7						
	(5)	EFFECTS WEIGHT- INC FACTOR FRACTION F: FRACTION F:		. 529	014.						
	(7)	EFFECTS WEIGHTING FACTOR (Fi)		6	Ø						YF; = 17
The state of the s	(3)	BENCHARK EQUIP- FENT PROBABILITY OF FAILURE		21-01	21-01						
	(2)	EQUIPMENT PROBABILITY OF FAILURE		3.3×(0-10	10-12						
	ω	EQUIPMENT IDENTIFICATION NUMBER	18331	101 CENEL					2		

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 4.7% OF SOLVEN

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 4.99 × 10 – 18

NORVALIZED ELEMENT RELIABILITY RATING 1.1 - [(0) + (8)] ; ... 999

C-17

ELEMENT DESCRIPTION OFFSHORE EMERGENCY SHUTDOWN SYSTEM

EQUIPMENT IDENTIFICATION NUMBER	(2)	(3)	(7)	(5)	(9)	(2)
	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- FENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F ₁)	EFFECTS WEIGHT- ING FACTOR FRACTION $F_{\underline{i}}$ $\sum_{\overline{F}} F_{\underline{i}}$	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHMARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
12342 VALUE (OI KETUATOR	0.01	1045	0	756.	2.57KID-4	3.57410-13
12343 Pressure	10.0	21-01	σ	.33.	3.21 10-11	3.21 × 10- 13
62 ALAKM	21-01	71-01	σ	125	3.91 × 10-13	3.21 ×10-13
			ΣFi = 38			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 3.60 X10 4

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 9.99 X 10-13 NORMALIZED ELEMENT RELIABILITY RATING | 1- [(9) + (8)] | _____999

ELEMENT DESCRIPTION OFF SHORE COMMUNICATIONS

EFFECTS CATION CATION CATION CATION CATION CATION CATION CATION PROBABILITY OF FAILURE FRACTI FRACTI TAMONO RAMONO	(0)	(6)	3	3	(5)	(6)	(2)
12412 - Voice 12411 - Wike 12422 - DATA 12423 - Wike 12421 - Wike	EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- TENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F;)	EFFECTS WEIGHT- INC FACTOR FRACTION F;	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHMARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
12411 - Wike 12412 - DATA 12423 - Wike 11425 - BAPID	12410 - Voice				i		
13426 - DATA 12421 - WICE 11422 - WICE 11422 - WICE	12411 - Wire						
IAYD - DATA IBYDY - WIRE INDY INDY INDY INDY INDY INDY INDY INDY	12/12 - RADIO						
IBY21 - WIRE IMA12 - RIMOID	12420 - DATA						
INDEX PAND	1244 - WIRE						
	INT. RHOID						
THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, NAMED IN COLUMN TWO I							
$\sum F_1 =$				ΣF1 =			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE.
(9) BENCHMARK ELEMENT EFFECTS WEIGHTED, PROBABILITY OF FAILURE.

MORMALIZED ELEMENT RELIABILITY RATING (9) + (8)],

C-19

		ELEMENT DESCRIPTION	ONSHORE	VACUES		
(1)	(2)	(3)	(4)	(5)	(9)	(7)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- FENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F_1)	EFFECTS WEIGHT- ING FACTOR FRACTION $\overline{F_1}$ $\overline{\sum}$ Fi	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHWARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
13751/52151						
(TEMOTE	10-12	21-01	1	160.	7.1×10-14	7.1 ×10-14
62 JUDICATOR	10-12	ا0-ہے	9	70l.	1.07 x10-13	1.07×10-13
(312, 13122)						
Aush Button	10-01	2-01	F	160.	7.1 ×10-15	7.1×10-14
OL LOCAL	11-01	10-12	- 5	120.	7.1 × 10-13	P01X1.7
OS LOCAL	10-01	10-15	ى	6107	1,01×10-1	1,07XIO-13
ON MATURIDE	10-8	10-12	51	F18.	3.14 × 10-9	21-01 X 112
65 Switches	3710-9	10-12	20	,357	1.07 × 10-1	3.57110-13
			ΣFi = 56			
		(8) ELEMENT EFFECTS	(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE		3.21 NIO"	

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 5-211/10-13 (8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

ELEMENT DESCRIPTION ON SHORE BOOSTER PUMPS

(1)	(3)	(3)	(7)	(5)	(9)	(2)
=	3	(5)				
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- FENT PROBABILITY OF FAILURE	EFFECTS WEIGHING FACTOR (Fi)	EFFECTS WEIGHT- ING FACTOR FRACTION E. FRACTION E.	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHWARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
13311						
O Indicator	10-12	10-12	18	.043	9.3×10-14	9.3 XID-14
OL TEMPSMITTER	2,-01	10-12	7	180	A,1110-14	2.1 × 10-14
62 RECORDER	10-12	10-15	J	leo.	2.1 1 10-14	2,1 × 10-14
Pressure to	0.01	21-01	ō	.052	S. 2 KIO-12	S.2 × 10-14
	21-01	101	89	.093	9.3×10-14	9.3×10-14
13312						
Temperature	10-12	71-01		38.	S,0×10.2	5.0×10-15
13313.						
A BLEMENT	101	10-15	F1	۵۲۵.	7.9 X 10-14	7.2 × 10-14
			P. J.			
			2.1 - (CDW 1)			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

(9) BENCHMARK ELLMENT EFFECTS MEIGHTED PROBABILITY OF FAILURE

NORMALIZED ELLMENT RELIABILITY RATING { 1- [(9) + (8)] / }

ELEMENT DESCRIPTION CAUSHORE BOOSTER PUMPS (CONT)

(1)	(2)	(3)	(7)	(5)	(9)	(2)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHMARK EQUIP- MENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (\mathbf{F}_1)	EFFECTS WEIGHT- ING FACTOR FRACTION $\vec{F_1}$ $\vec{\Sigma}_{\vec{F}_1}$	EFFECTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
13314						
Si Transmitte	10-15	ا 0	12	۴90°	6,2XID-14	4.2×10-14
102 Powercoure	10-12	10-15	21	290.	6.2XID-14	4-01XZ-9
log contraduce	10-13	21 <u>-</u> 01	72	290*	6.2×1014	6.2XID-14
by Selector	10-12	10-15	و	150.	3.1×10+	8,1 XIO-14
65 Resultant	10-15	10-15	12	۲90.	6.2 XID-14	6.2 NIO-14
13315						
בי ובייבר	10-10	يج_0ا	81	833	9.3410-12	4.3 ×10-14
OL SWITCH	[G ¹ 8	10-15	5 1	200.	7.2410-12	4.01×6.F
103 SWITCH	10-10	10-12	4	510.	7.2X10'12	7,2410-14
ON ELIMINATOR	10-15	21-01	8	8.	9.3×10-14	9.3 × 10-14
OF PLANEM	10-15	10_01	7	.036	3.6×10-19	3.6 × 10"
			ΣFi = 194			

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 2.16 XIO

(9) BENCHWARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE \.ODKIO"'

NORMALIZED ELEMENT RELIABILITY RATING 1 1- [(0) + (8)] 1

ELEMENT DESCRIPTION ONOSHORE THINKS

	\					
(1)	(2)	(3)	(7)	(5)	(9)	(7)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILURE	BENCHARK EQUIP- PENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F ₁)	EFFECTS WEIGHT- INC FACTOR FRACTION F:	EFFECTS WELGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHMARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
13333						
/or Transmitter		10-12	٦	.130	1.3×10-13	1.3×10-13
AS EMPICATOR		10-12	3	.130	1,3×10-13	1.3 X 10-13
OS JABORATO		10-12	3	051.	1.30 × 10-7	1.3×10-13
John Cauch	3.33	10-12	3	.130	4.3 × 10-"	1-3410-13
	21_01	10-15	11	.478	4.78×10-13	4.78XID-13
						*
3						
			ΣFi = 33			
					81-11	

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 1.13 XIO LS

NORMALIZED ELEMENT RELIABILITY RATING 1 1- [(9) + (8)] , .999

ELBENT DESCRIPTION CAUSHORE SURGE PELIEF SYSTEM

(E)	(2)	(3)	(4)	(5)	(9)	6
EQUIPMENT IDENTIFICATION NUMBER	EQUIPPENT PROBABILITY OF FAILURE	BENCHARK EQUIP- PENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F1)	EFFECTS WEIGHT- INC FACTOR FRACTION F:	EFFCTS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)×(5)
18241						
Sol Actuator	.01	10-12	24	COY.	4.01 × 10.4	4.07× 10-13
13242						
Cenel	10-12	21-01	و	201.	1.03 ×10-13	1.03 × 10.1
Lot Haven		10-13	و	.102	1.02 x 10-13	1.03 % 10-
Low Level		10-12	_	. 017	1.7 × 10-14	1.7×1014
13243						
101 Indicator	10-15	10-12	-	610.	1.7 × 10 -14	1.0 x 10-14
Prosper	10-15	10-15	6	911.	1.2×10-13	1.2 × 10-13
/03 AIARM	10-12	10-15	7	611.	1. 2 × 10 -13	1.2×10-13
			SFi = (cont)			

(8) ELEGENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

(9) BENCHWIK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

NORMALIZED ELEMENT RELIABILITY RATING | 1- [(9) + (8)] |

ELEMENT DESCRIPTION OWSHORE SURGE RELIEF SYSTEM

Э	(2)	(3)	(7)	(5)	(9)	ω
EQUIPENT IDENTIFICATION NUMBER	EQUIPERT PROBABILITY OF FAILURE	BENCIPARK EQUIP- IEM PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F ₁)	EFFECTS WEIGHT- INC FACTOR FRACTION F:	EPPECIS WEIGHTED PROBABLITY OF FAILURE (2)x(5)	BENCHARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
13244 Pressure	47	21-1.			=	21-
OJ Combrel Value	0	0		61.	1,2 x 10	1.2×10
			ΣFi = 64			

(8) ELDENT EFFECTS WELGITED PROBABILITY OF FAILURE 2,73 x (0-45)

(9) BENCHWARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE 2.73 Y/O-5/NORMALIZED ELEMENT RELIABILITY KATING | 1- [(0) + (8)] ; . 999

ELEMENT DESCRIPTION ON SHORE PIPING

(1)	(2)	(3)	(7)	(5)	(9)	(7)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROGABILITY OF FAILURE	BENCHMARK EQUIP- TENT PROBABILITY OF FAILURE	EFFECTS WEIGHTING FACTOR (F _I)	EFFECTS WEIGHT- ING FACTOR FRACTION $\overrightarrow{F_1}$ $\overrightarrow{\sum}$ Fi	EFFECTS WEIGHTED PROBABILITY OF FAILIRE (2)x(5)	BENCHMARK EFFECTS WEIGHTED PROPABILITY OF FAILURE (3)x(5)
13323						
PRESSURE 6) TADICATOR	71-01	ا0_ہے	8	.409	409 X 10-13	4. CAXIO 13
/02 TEAMSAITTER	10-12	ا0 <u>-</u> 12	+	18.	9,1210-14	9.1×10-14
A RECORDER	10-15	10-12	7	18.	9.1410-14	9.1×10-14
	71-01	10-12	8	604.	4.09 ×10-13	4.09 × 10-13
			•			
			ΣFi = 44			
		(8) ELEMENT EFFECTS	(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE	OF FAILURE	1710-12	
					11-	

+ 100% Relimble

ELEMENT DESCRIPTION ON SHORE DRATIN AND SLOPS HANDLING

	\	Note that the second state of the second state				
	(2)	(3)	(7)	(5)	(9)	(7)
CAUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FALLIRE	BENCHMARK EQUIP- YENT PROBABILITY OF FAILURE	EFFECTS WELGHTING FACTOR (F ₁)	EFFECTS WEIGHT- INC FACTOR FRACTION F:	EPPECIS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHVARK EFFECTS WEIGHTED PROBABILITY OF FAILURE (3)x(5)
18331 Level	3.3×10-10	21-01	σ	CE	01-01-20-1	51.3×15.13
101	21-01	10-15	00	OLA.	4.7110-13	4.7810-13
			ΣFi = 17			
					01	

(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE

(9) BENCHWARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE | ON 10-12

NORMALIZED ELEMENT RELIABILITY RATING 1.- [(9) + (8)];

ELEMENT DESCRIPTION ON SHORE EMERGENCY SHUTDOWN SYSTEM

		ELEMENT DESCRIPTION	1 3 10 100			
Θ	(2)	(6)	(7)	(5)	(9)	(7)
EQUIPMENT IDENTIFICATION NUMBER	EQUIPMENT PROBABILITY OF FAILNE	BENCHMARK EQUIP- :ENT PROBABILITY OF FAILURE	EFFECIS WEIGHTING FACTOR (F ₁)	EFFECIS WEIGHT- ING FACTOR FRACTION F: FRACTION F:	EPPECIS WEIGHTED PROBABILITY OF FAILURE (2)x(5)	BENCHWARK EFFECTS WIIGHTED PROBABILITY OF FAILURE (3)x(5)
13342 VALVE	10.8	10-12	01	755.	3.57 NO-P	3.57 KIO'13
13343 PRESSURE PRESSURE	9 '0	2,-01	6	.331	3.2110-11	3.21 XIO-13
62 PIFRM	21-01 دا-01	71-01	σ	(82,	3.21 XIO-13	3.21110-13
			ΣFi = 28			
		(8) ELEMENT EFFECTS	(8) ELEMENT EFFECTS WEIGHTED PROBABILITY OF FAILURE		3.60×10-9	
		(0)			9	

9,99×10-13

999

(9) BENCHMARK ELEMENT EFFECTS WEIGHTED PROBABILITY OF FALLURE NORWALIZED ELEMENT RELIABILITY RATING 12-[(9) + (8)],

C-28

APPENDIX D EFFECTS RATING FACTOR WORKSHEET

TANKER EQU	IPMENT	MAJOR SPILL	MEDIUM	MINOR SPILL	CATASTROPHIC HAZARD	CRITICAL HAZARD	MARGINAL HAZARD	NEGLIGIBLE HAZARD	LONG	SHORT	F i EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	E	F	G	Н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
	• <u>VALVES</u>										
11111	Valve Line Up Monitor										
11223	/01 Remote Indicator							1		3	4
	/02 Local Indicator							1	5		6
11112	Valve Line Up Controlle	r									
11222	/01 Push Button Remote							1		3	4
	/02 Push Button Local							1		3	4
	/03 Manual Local							1	5		6
	/04 Valve Actuator						7		5		12
	/05 Limit Switches						7		5		12
	• PUMPS										
11211	Pressure Monitor										
11311	/01 Pressure Indicator			8			7			3	18
11311	/02 Pressure Transmitte	br						1		3	4
	/03 Pressure Recorder							1		3	4
	/04 Pressure Switch			8			7			3	18
	/05 Alarm			8			7			3	18
	/ V Main										

TANKER EQUI	PMENT	MAJOR SPILL	MEDIUM SPILL	MINOR	CATASTROPHIC HAZARD	CRITICAL HAZARD	MARGINAL	NEGLIGIBLE HAZARD	LONG	SHORT	F _i EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	E	F	G	Н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
11212	Flow Rate Controller										
11312	/01 Speed Indicator							1			1
11213	/02 Speed Regulator			8			7		5		20
11313	Pump Protection Devices										
	/01 Overspeed Trip					9			5		14
	/02 Temperature Switch					9			5		14
	/03 Low Lube Pressure Trip					9			5		14
	/04 Alarm					9			5		14
	• TANKS										
11221	Tank Level Monitor										
	/01 Level Indicator							1		3	4
	- Float Gage Read Switch										
	- Float Gage Tape										
	- Metri Tape										
	- Pneumatic										
	/02 Manual Dipping							1	5		6
	• PIPING										
11321	Pressure Monitor										
	/01 Pressure Indicator			8			7			3	18

TANKER EQU	TPMENT	MAJOR	MEDIUM	MINOR	CATASTROPHIC HAZARD	CRITICAL HAZARD	MARGINAL HAZARD	NEGLIGIBLE HAZARD	LONG	SHORT	F i EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	Е	F	G	н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
11322	Hose/Loading Arm Drain /01 Manual Procedure							1		3	4
11330	• EMERGENCY SHUIDOWN SYSTEM /01 Midships Remote Pump Shutdown	10				9			5		24
11330	Switch /02 Control Room Remote Pump Shutdown Switch	10				9			5		24
11410	• COMMUNICATIONS Voice /01 SP Phone							1		3	4
11420	<u>Radio</u> /01 VHF /02 Walkie-Talkie							1		3	4

OFFSHORE EC	QUIPMENT	MAJOR	MEDIUM	MINOR	CATASTROPHIC HAZARD	CRITICAL HAZARD	MARGINAL HAZARD	NEGLIGIBLE HAZARD	LONG	SHORT	F _i EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	Е	F	G	Н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
	VALVES										
12121	Valve Line Up Controlle	r									
12322	/01 Push Button Remote							1		3	4
	/02 Push Button Local							1		3	4
	/03 Manual Local							1	5		6
	/04 Valve Actuator						7		5		12
	/05 Limit Switches			8			7		5		20
12122	Valve Line Up Monitor										
12321	/01 Remote Indicator							1		3	4
	/02 Local Indicator							1	5		6
	BOOSTER PUMPS										
12231	Pressure Monitor						_				10
12311	/01 Pressure Indicator			8			7	,		3	18
	/02 Pressure Transmitte	r						1		3	4
	/03 Pressure Recorder						7	1		3	4
	/04 Pressure Switch			8			7			3	10 18
12232	/05 Alarm Temperature Monitor			0			1			3	10
12312	/01 Temperature Indicat	or						1			1
12312	/ or resperature muteat							_			

OFFSHORE EQ	UIPMENT	MAJOR SPILL	MEDIUM SPILL	MINOR	CATASTROPHIC HAZARD	CRITICAL HAZARD	MARGINAL HAZARD	NEGLIGIBLE HAZARD	LONG	SHORT	F _i EQUIPMENT FAILURE EFFECTS WEIGHTING
NUMBER	NAME	A	В	С	D	E	F	G	H	I	FACTOR
TRANKS Y	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
12233	Flow Monitor										
12313	/01 Flow Element					9			5		14
12234	Flow Rate Controller										
12314	/01 Flow Transmitter						7		5		12
	/02 Flow Controller						7		5		12
	/03 Pressure Controller						7		5		12
	/04 Signal Selector							1	5		6
	/05 Flow Regulator						7		5		12
12235	Pump Protection Devices										
12315	/01 Level Switch			8			7			3	18
	/02 Vibration Switch					9			5		14
	/03 Differential Pressure Switch					9			5		14
	/04 Air Eliminator			8			7			3	18
	/05 Alarm						7				7
	• PIPING										
12111	Oil In Hose/Loading Arm Detector										
	/01 Pressure Indicator			8			7		5		20
12112	Hose Loading Arm Drain										
	/01 Manual Procedure							1	5		6
12211	Pressure Monitor										
12323	/01 Pressure Indicator			8			7			3	18

OFFSHORE F	EQUIPMENT	MAJOR	MEDIUM	MINOR	CATASTROPHIC HAZARD	CRITICAL HAZARD	MARGINAL HAZARD	NEGLIGIBLE HAZARD	LONG	SHORT	F _i EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	E	F	G	н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
	/02 Pressure Trans- mitter				The second secon			1		3	4
	/03 Pressure Recorder				1			1		3	4
	/04 Alarm			8			7			3	18
12212	Temperature Monitor								1		
	/01 Temperature Indicator							1			1
12213	Flow Rate Monitor										
	/01 Measuring Device						7		5		12
	- Orifice Plate										
	- Sonic Meter										
12214	Flow Rate Controller								İ		
	/01 Flow Indicator							1	5		6
	/02 Flow Controller						7		5		12
	/03 Flow Transmitter							1	5		6
	/04 Flow Regulator						7		5		12
	• SAMPLING										
12220	/01 Sampler							1			1
12241	• SURGE RELIEF SYSTEM Surge Relief Availability Control										
	/01 Valve Actuator	10				9			5		24

OFFSHORE EC	QUIPMENT	MAJOR SPILL	MEDIUM	MINOR	CATASTROPHIC HAZARD	CRITICAL HAZARD	MARGINAL HAZARD	NEGLIGIBLE HAZARD	LONG	SHORT	F i EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	Е	F	G	Н	I	WEIGHTING FACTOR
Carl to	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
12242	Surge Relief Availability Monitor /01 Level Switch							1	5		6
	/02 High Level Alarm							1	5		6
	/03 Low Level Alarm							1			1
12243	Relief Valve Pressurization Medium Monitor										
	/01 Pressure Indicator							1			1
	/02 Pressure Switch						7				7
	/03 Alarm						7				7
12244	Relief Valve Pressurization Medium Controller /01 Pressure Control Valves			8			7				15
12331	• DRAIN & SLOPS HANDLING Drain Tank Level Monitor /01 Level Switch /02 Alarm		9	8							9 8

OFFSHORE E	QUIPMENT	MAJOR SPILL	MEDIUM	MINOR	CATASTROPHIC HAZARD	CRITICAL HAZARD	MARGINAL HAZARD	NECL ICIBLE HAZARD	LONG	SHORT	F _i EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	E	F	G	н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
12341	EMERGENCY SHUIDOWN SYSTEM Valva Pagini m										
12341	Valve Position Monitor										
	/01 Remote Indicators						7				7
12342	Valve Line Up Controlle	T									
	/01 Valve Actuator	10									10
12343	Valve Actuating Medium Monitor										
	/01 Pressure Switch		9								9
	/02 Alarm		9								9
	• COMMUNICATIONS										
12410	<u>Voice</u>										
12411	- Wire										
12412	- Radio										
12420	<u>Data</u>										
12421	- Wire										
12422	- Radio										

onshore eq	UIPMENT	SPILL	MEDIUM	MINOR	CATASTROPHIC HAZARD	CRITICAL HAZARD	MARGINAL HAZARD	NEGL.IGTELE HAZARD	LONG	SHORT DELAY	F _i EQUIPMENT FAILURE EFFECTS WEIGHTING
NUMBER	NAME	A	В	С	D	E	F	G	Н	I	FACTOR
	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
	VALVES										
13111 13123	Valve Line Up Monitor										
13221	/01 Remote Indicator							1		3	4
13321	/02 Local Indicator							1	5		6
13112 13122	Valve Line Up Controlle	r r									
13223	/01 Push Button Remote							1		3	4
13322	/02 Push Button Local							1		3	4
	/03 Manual Local							1	5		6
	/04 Valve Actuator						7		5		12
	/05 Limit Switches			8			7		5		20
	BOOSTER PUMPS										
13211	Pressure Monitor										
13311	/01 Pressure Indicator			8			7			3	18
	/02 Pressure Transmitte	İ						1		3	4
	/03 Pressure Recorder							1		3	4
	/04 Pressure Switch						7			3	10
	/05 Alarm			8			7			3	18
13212	Temperature Monitor										
13312	/01 Temperature Indicat	or						1			1
13213	Flow Monitor										
13313	/01 Flow Element					9			5		14

ONSHORE EQU	JIPMENT	MAJOR	MEDIUM	MINOR	CATASTROPHIC HAZARD	CRITICAL	MARGINAL HAZARD	NEGLIGIBLE HAZARD	LONG	SHORT	F _i EQUIPMENT FAILURE EFFECIS
NUMBER	NAME	A	В	С	D	Е	F	G	н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
13214	Flow Rate Controller										
13314	/01 Flow Transmitter							1	5		6
	/02 Flow Controller						7		5		12
	/03 Pressure Controller						7		5.		12
	/04 Signal Selector							1	5		6
	/05 Flow Regulator						7		5		12
13215	Pump Protection Devices										
13315	/01 Level Switches			8			7			3	18
	/02 Vibration Switch					9			5		14
	/03 Differential Pressure Switch					9			5		14
	/04 Air Eliminator			8			7			3	18
	/05 Alarm						7				7
	• TANKS										
13222	Tank Level Monitor										1862
	/01 Level Transmitter									3	3
	/02 Remote Indicator									3	3
	/03 Local Indicator					100				3	3
30	/04 Level Switches									3	3
	/05 Level Alarm			8						3	11
	• SURGE RELIEF SYSTEM										
13241	Surge Relief Avail- ability Control										
	/01 Valve Actuator	10				9			5		24

ONSHORE EQU	JIPMENT	MAJOR	MEDIUM SPILL	MINOR	CATASTROPHIC HAZARD	CRITICAL	MARGINAL HAZARD	NEGLIGIBLE HAZARD	LONG	SHORT	F _i EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	E	F	G	н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING-	10	9	8	10	9	7	1	5	3	SUMMATION
13242	Surge Relief Avail- ability Monitor /01 Level Switch							1	5		6
	/02 High Level Alarm							1	5		6
	/03 Low Level Alarm								1		1
13243	Relief Valve Pressurization Medium Monitor										
	/01 Pressure Indicator							1			1
	/02 Pressure Switch						7				7
	/03 Alarm						7				7
13244	Relief Valve Pressurization Medium Controller /01 Pressure Control Valves						7				7
13323	PIPING Pressure Monitor										
	/01 Pressure Indicator			8			7			3	18
	/02 Pressure Transmitte	r						1		3	4
	/03 Pressure Recorder							1		3	4
	/04 Alarm			8			7			3	18

ONSHORE EQU	JIPMENT	MAJOR SPILL	MEDIUM	MINOR SPILL.	CATASTROPHIC HAZARD	CRITICAL	MARGINAL HAZARD	NEGLIGIBLE HAZARD	LONG	SHORT	F _i EQUIPMENT FAILURE EFFECTS
NUMBER	NAME	A	В	С	D	E	F	G	н	I	WEIGHTING FACTOR
	EFFECTS WEIGHTING	10	9	8	10	9	7	1	5	3	SUMMATION
13331	DRAIN & SLOPS HANDLING Drain Tank Level										
	Monitor										
	/01 Level Switch		9								9
	/02 Alarm			8							8
	EMERGENCY SHUIDOWN SYSTEM										
13341	Valve Position Monitor										
	/01 Remote Indicator						7				7
13342	Valve Line Up Controlle	er									
	/01 Valve Actuator	10									10
13343	Valve Actuating Medium Monitor										
	/01 Pressure Switch		9								9
	/02 Alarm		9								9

APPENDIX E EQUIPMENT DESCRIPTION

APPENDIX E EQUIPMENT DESCRIPTION

E-1 INTRODUCTION

Generally speaking, the term "Control System" implies the means required to operate automatically an assemblage of devices and equipment that will perform some desirable function and produce some desired result with a minimum of human intervention.

The control-mode, that is, the type of control action which the controller takes in directing the final controlling device, may vary from simple on-off action to the more complex proportional - plus - integral action. Table E-1 shows the various control modes as applied in general process control and as applied specifically to Deepwater Ports.

The interaction of control systems within a DWP must be carefully considered. For instance, an automatic flow control system on a platform complex would interact with the tanker pump controls. If the pump controls include pressure or flow control loops, then the platform flow control will act as a master controller, effectively changing the rate of pumping; however, time lags through long submarine pipelines may make this type of control undesirable. On the other hand, if the pump relies on manual adjustment to change the rate of flow, then the flow controller could control the pumps on an on-off basis through its protective devices, which is, again, undesirable. It can be assumed that if the type of pump control on board tankers cannot be determined, then the interaction with the flow control on the platform complex should be studied. Flow control, which is an integral part of the controls of a booster pumping station, would not directly interact with the ship's pumps.

CONTROL MODE	REACTION TIME	GENERAL APPLICATION	DWP APPLICATION
On-Off	Slow	Large capacity temperature and level installations. Storage tanks, hot water supply tanks.	Tanker storage tanks, onshore storage tanks, drain/slop tanks surge tanks, booster pump protection devices.
Proportional (P)	Slow to Moderate	Pressure, temperature, level where offset can be tolerated. Kettle reboiler level, drying oven temperature, pressure reducing stations.	Not normally used.
Proportional-plusderivative (rate ²) (P+D)	Moderate	Where increased stability with minimum offset and of reset ³ wind-up is required. Compressor discharge pressure.	Booster pumps controls which measure pressure.
Proportional-plus- integral (reset ³) (P+I)	Adjustable	Most applications including flow.	Main flow control. Metering flow control. Booster pumps controls which measure pressure.
Proportional-plus- integral-plus- derivative (P+1+D)	Adjustable	Batch control; processes with sudden upsets.	Not applicable

The deviation between actual value and the desired value or set point of a controlled variable that exists as a characteristic of proportional control. The degree of offset is proportional to the load conditions. Offset:

Where the output of the controller is proportional to the rate of change of the input. Rate:

3 .

1:

Where the rate of change of the output of the controller is proportional to the input. Reset:

TABLE E-1, CONTROL MODES VS. APPLICATION

E-1.1 VARIABLES

The process variables to be measured and controlled on a Deepwater Port complex are:

- Pressure
- Flow
- Level
- Temperature

These variables and the basic methods employed in their measurement and control are the subject of the following discussions.

PRESSURE

Pressure is the most commonly measured variable on a DWP oil transfer system. Gauges are located on the pipelines wherever it is considered an assistance to the operators, i.e., pump suction and discharge piping, the piping at the base of loading arms, sections of piping which can be subject to thermally induced pressure increases, adjacent to pressure switches and transmitters, adjacent to pressure regulators, and monitoring auxiliary compressed gas supplies.

Pressure indication, whether it be by gauges on the pipeline or by remote indicator or alarm, tells the operating personnel what is going on inside the piping systems. Examples of this are:

- The operation of remote pumping systems
- Whether control systems, such as flow and pressure regulators, are working correctly

- Whether other instruments, such as pressure transmitters and switches, are working correctly
- The level of oil in loading arm risers
- The correct setting of thermal and other relief systems

The most common method of determining the system pressure is by Pressure Gauge or Indicator mounted on the pipeline. Remote pressure indication employs a transmitter which is also connected directly to the pipeline and functions similarly to the gauge. Pressure switches, which initiate remote alarms, are also mounted and function similarly to the gauge. Section E-1.2 describes the principles and operation of these instruments.

FLOW

The measurement and control of flow rates through a DWP are necessary, not only for determining quantities, but also because of the design limitations of other equipment and facilities built into the oil transfer system. The velocities through hoses and loading arms are restricted, due in part to the vibration at excessive flow rates. The filling rates of fixed or floating roof tanks are restricted by the physical rate of tank venting or roof travel. The accuracy of flow metering is reduced if flow rates move outside recommended ranges.

Flow rate measurements are readily converted into totalized quantities and can, therefore, be used as accurate measurements for custory transfer or leak detection by differential flow measurement.

Various well proven methods of flow measurement are available although some, such as variable-area, electromagnetic and vortex meters, or open weirs and flumes, are not suitable for the high throughputs and large pipeline sizes of a DWP.

Table E-2 shows the various types, ranges and applications of those methods employed on DWPs. A more detailed discussion on metering appears later in this Appendix.

LEVEL

Essentially, the moving of crude oil through a Deepwater Port facility is the transfer of oil from one storage to another. Level measurements, therefore, become very important on the discharging tanker and at the onshore tank farm.

A variety of methods for continuous level measurement are in use today which range from the simple float and tape to a system employing nuclear radiation. Each has its own advantages and limitations. Table E-3 presents these together with ranges and accuracies.

The systems commonly used on oil tankers are the float and tape, gas bubbler, capacitance and resistance types. Normally, at least two level systems of different types are installed to provide redundancy for safety.

The float and tape system is the most commonly used method in the onshore storage tanks. This method has the advantage of good accuracy and proven performance over a number of years.

For point detection of liquid levels, the mechanical float

TYPE	RANGE (FOR DWP SIZES) ACCURACY	ACCURACY	LIMITATIONS	GENERAL APPLICATION	DWP APPLICATION	
Volumetric Meters (Lobed rotor)	2,500 врн to 12,500 врн	+ 0.20%	Large & bulky. Inaccurate at low flows. Not available above 16".	Batching & blending sta- tions, Custody transfer measurement.	Used extensively on early DWPs displaced by turbine meters in last decade.	
Velocity Meters (Turbines)	8,000 врн to 60,000 врн	+ 0.15%	Relatively high cost. Limited range of vis- cous liquids can be handled.	Batching & blending sta- tions. Custody transfer measurement.	Custody transfer and leak detection.	
Variable Head Meter Orifice Plate	Up to 72" pipe	+ 0.5%	Permanent pressure loss. Straightening vanes or straight lengths of pipe required upstream.	Flow measurement for remote indication and recording. Primary element for flow control loop.	Remote indication and primary element for automatic control system, particularly where no metering facilities are installed.	
Variable Head Meter Dall Tube	No upper limit	+ 0.5%	Permanent pressure loss. Straightening vanes or straight lengths of pipe required upstream. More costly than orifice plate.	Flow measurement for remote indication and recording. Primary element for flow control loop.	Remote indication and primary element for automatic control system, particularly where no metering facilities are installed.	
Sonic Meter	No upper limit	Unknown at high through- puts	Output varies with specific gravity of liquid. Unproven in large sizes. Probes subject to erosion.	Process units with relatively small flows and single specific gravity. Blending stations.	Remote indication and recording.	

TABLE E-2, PRIMARY ELEMENTS FOR FLOW MEASUREMENT

TYPE	RANGE	ACCURACY	LIMITATIONS	GENERAL APPLICATION	DWP APPLICATION
Float & Tape	0-75 Ft.	+ 1/16"	Float subject to accumuration of sludge in crude oil service.	Uniform storage tanks. Local and remote in- dicator.	Ships' tanks, remote indication. Onshore tanks, remote indication.
Float & Arm	6"-10 Ft.	+ 28 Span	Float subject to accumulation of sludge in crude oil service.	Indication and alarm levels in all types of tanks.	Onshore storage tanks.
Gas Bubbler	Gauge sensi- tivity to tank height	+ 18 Span	Requires density con- nection. Tank must be vented.	Ships' tanks, remote in- dication.	Ships' tanks, remote indication.
Continuous Radiation	1"-20 Ft.	+1-3% span	Requires density con- nection. Relatively	Molten metals, corrosive liquids, high temperature/ pressure applications.	Not used.
Capacitance	3" to Tank Height	+ 0.5% Span	Output affect by changes in resistence content of measured fluid.	Most applications. Aircraft fuel tanks.	Ships' tanks, remote in- dication.
Resistence (pressure sensi- tive sheath)	2 to 200 Ft.	1 1 1 1 1 1	Relatively Foor accuracy. Ships' tanks. or granular sc tanks.	Ships' tanks. All liquid or granular solid storage tanks.	Ships' tanks, remote in- dication.

TABLE E-3. LEVEL MEASURING SYSTEMS

arm level switch is installed which is readily adaptable to external mounting on the shells of floating roof tanks.

TEMPERATURE

Temperature measurements of the crude oil in a DWP are relatively unimportant unless quantity measurements for custody transfer or leak detection take place.

Metering stations measuring precise quantities have to take into account thermal changes and apply temperature correction factors to the measured volumes. This is done by means of automatic temperature compensating devices employing a resistance type temperature measuring probe.

Where temperature corrections are applied to onshore storage tank quantities, average temperature must be measured. Usually, a series of thermocouples are used which are connected to give an average reading. These can be installed around the tank perifery or, for tanks with floating roofs, it is more common to install a vertical bundle of thermocouples which pass through the roof and which average the temperatures at various levels.

E-1.2 CONTROL SYSTEMS COMPONENTS

The following is a general description of the component parts which make up control systems as shown in the following diagram. Only those components found on Deepwater Forts have been considered.

CONTROL SYSTEM COMPONENTS

PRIMARY ELEMENT

This is a device that detects or senses the value or change of value of the variable being measured; in other words, it is the first link in the measurement - control system chain.

The following are primary elements grouped by process variable:

• Pressure Measurement:

The primary elements for pressure measurement include the Bourdon Tube, Bellows or Diaphragm, all of which translate pressure into physical movement and can be used in any pressure measuring instrument whether it be a pressure gauge, transmitter or switch. Refer to Table E-4 for comparison.

The principle of operation is the elastic properties of the element which changes shape as pressure is applied internally. The resulting movement is amplified through linkage and gears to an indicating pointer or signal-producing

TYPE	RANGE (PSIG)	GENERAL APPLICATION	DWP APPLICATION
Bourdon Tube ("C" Type Helical Spiral)	0-100,000	Pressure Gauges, recorders and transmitters	All pressure instruments. Typical ranges: Oil transfer system - 0- 300 psig Loading Arms - 0- 15 psig Compressed Gas - 0-2000 psig
Bellows	0-100	Special applications where Bourdon Tubes would be im- practicable. Pressure receiving instruments.	Not used.
Metallic Diaphragm	0-200	Aircraft instruments	Not used.

TABLE E-4, PRESSURE ELEMENTS

device. The material used in the manufacture of these elements is varied. The most commonly used material on DWPs is 316 stainless steel which has good corrosion resisting properties in a marine environment.

Flow Measurement:

Orifice Plate

An Orifice Plate is a circular plate with a round hole in the center which is clamped in the pipeline between flanges. These flanges are drilled and tapped so that the pressure on each side of the plate can be sensed by a differential pressure measuring instrument. During flow conditions, the restriction of the orifice causes a pressure loss. This loss, measured as the difference between the upstream and downstream pressures, is proportional to the square root of the flow rate.

2. Positive Displacement (PD) Meter Rotor

This method of accurate flow quantity measurement employs the principle of a rotating mechanism having cavities of known volume. The flowing liquid rotates the meter which moves known volumes in the cavities from one side to the other. Each rotation transfers a measured quantity of liquid, therefore, the number of revolutions is a positive indication of the volume passed.

3. Turbine Meter Impeller

Just as accurate as the PD Meter, the Turbine

Meter requires less space and can handle greater flow rates. The impeller mounted inside a short length of machined pipe is free to rotate on bearings. The flowing liquid impinging on the impeller blades causes it to turn. A steady rotational speed is proportional to the liquid velocity - hence, the volume flow rate.

4. Dall Tube

This device employs the same principle of differential pressure measurement across a restriction in the pipeline as the Orifice Plate. The Dall Tube is much longer than the Orifice Plate but causes less permanent pressure loss.

5. Sonic Meters

Two probes are required in this type of flow measurement which uses the principle of variation in the speed of sound in a liquid which is proportional to variations in the velocity of that liquid. This is a recently developed technique which has the limitation of being affected by density changes in the flowing liquid.

The two probes, mounted diametrically opposite one another in the pipeline, are subject to erosion from solids in suspension.

Level Measurement:

1. Float and Tape

Liquid level in high-rise tanks, including ship's

tanks can be measured to better than ±1/8" with a float and tape arrangement. The float, usually made from a material such as 316 stainless steel, which is impervious to crude oils and a marine environment, travels inside a "still well" or perforated vertical pipe which protects the float from any disturbances in the tank. It is important that the specific gravity of the float is not changed by the accumulation of debris or sludge; this will have an adverse affect on the accuracy of level readings.

2. Float and Arm

The application of this type of level measuring element is generally confined to point indication of liquid levels for alarm initiation. Several principles of design are available, all of which achieve the basic requirement of transmitting the float movement to a switching device through some sort of sealing barrier. The most common types are those which employ the following methods: tube/rod arms, magnet and follower and bellows.

a. The tube/rod arrangement has a rod inside a tube, both of which are fixed to the float. The tube with the rod inside it passes through a sealing bulkhead to which it is welded. The tube is "pinched" on the float side of the bulkhead to provide a pivot point. The float/arm assembly moves up and down about the pivot; simultaneously, the internal rod moves a corresponding amount on the other side of the bulkhead. This movement actuates a switch mechanism.

- b. The magnet/follower principle is simply a magnet fixed to the float arm which actuates a follower on the other side of the sealing barrier.
- c. The bellows arrangement allows the arm to pass through the end of the bellows which, apart from providing a sealing barrier, also gives the flexibility necessary to transmit the float movement to a switch mechanism.

3. Capacitance

The principle of changes in a tank level varying the electrical capacitance of a probe is used in the design of these instruments. For conductive fluids, such as crude oil, an insulated vertical probe is used wherein the capacitance of the insulated sensor varies with the level. Electrical span and zero adjustment in the electric circuitry make it conveniently possible for capacitance systems to be adjusted for accurate, continuous measurement of liquid level.

Capacitance probes are also used as point sensing alarm elements.

4. Gas Bubbler

The pressure necessary to overcome the head of liquid in a tank is a measure of the level in that tank. Compressed air is pumped into the bottom of a tank and a pressure gauge mounted on the same air supply piping indicates the pressure

required to "bubble" air into the liquid. The scale of the gauge is calibrated in units of liquid level. Since crude oils vary in specific gravity, a system of specific gravity compensation has been devised. Two air pressure connections in the side of the tank are installed with a known vertical distance between them. ference in the pressures required to bubble air through both connections is related to specific gravity of the liquid in the tank. In other words, if the tank contained fresh water at 60°F and the connections were placed 2.31 feet apart, then the difference in pressure would be 1 psi. If the specific gravity of the water was increased, then the difference in pressure would also increase proportionally.

5. Resistance

This simple method uses a resistance strip inside a pressure-sensitive sleeving. Variations in level will short out the resistance strip at varying lengths. A simple potentiometer type circuit measures the changing resistance and relates it to level measurement.

Temperature Measurement:

1. Thermal Bulb

The principle is that which is used in the clinical thermometer where a temperature sensitive liquid expands within a confined tube or capillary. The industrial thermometer uses stainless steel bulbs and tubes normally filled with mercury. The

expansion of the mercury causes movement in an elastic element similar to the pressure measuring elements. This movement drives a pointer or actuates a switch or compensating mechanisms.

2. Resistance Wire

The characteristic relationship of electrical resistance to temperature in pure metals is utilized in this primary element. A simple resistance measuring circuit determines the resistance of a wire element which is subject to temperature variations and translates them into temperature measurements.

3. Thermocouple

A temperature measuring device based on the phenomenon that an electric current flows in a continuous circuit formed by wires of dissimilar metals if the junctions between the two wires are at different temperatures. The resulting EMF produced in the thermocouple circuit is measured and used for indication, compensation or control of the actual temperature.

INDICATORS

These instruments are mounted close to the measuring point of the variable to be measured. Most indicators incorporate a primary element as described in the foregoing section.

Generally, the local indicators used on a DWP are the simple fixed dial with a moving pointer.

The following list groups indicators by process variable:

Pressure Indicators

The well-known pressure gauge which employs a pointer driven around a circular seal by a primary element (usually a "C" type Bourdon tube).

Flow Indicators

Although not normally used on oil transfer systems, they are sometimes found on tank drainage systems to indicate flow or no flow conditions in a pipeline.

The principle used is simply a disc or target on a suitable arm, which is mounted in the direct line of flow. The velocity of the liquid moves the target which causes an indicator flag to appear on the outside of the pipe.

• Level Indicator

The most common is a vertical linear scale and pointer system installed on the outside of a tank. The pointer is driven up and down the scale by a float inside the tank, a cable or tape attaches the pointer to the float via a series of pulleys.

• Temperature Indicator

A thermometer, usually of the mercury-in-steel type with a circular dial and pointer driven by expansion within the primary element.

TRANSMITTERS

Transmitters take the output of the primary element, transform it into a transmittable form and transmit the resulting signal to remote receiving instruments.

Pressure Transmitter

The principle of operation is to take the movement produced by the primary element and apply it to a series of bellows and nozzles which produce a pneumatic signal relative to the measured pressure. For an electrical transmitter, the movement is used to vary the position of a mechanism producing a milliamp signal which is directly related to the measured pressure.

Flow Transmitter

Variable Head Meters (Orifice Plate and Dall Tube)

The flow transmitter accepts the two pressures produced by the variable head type of flow primary device. These low and high pressures are applied to either side of a sealed capsule which is fixed to a force balance beam. The resulting movement of the beam is translated into a pneumatic or electrical signal in a similar fashion to that found in the pressure transmitter.

2. Rotating Flow Meters (PD Meter and Turbine Meter)

The rotation of the meter internals produces a pulse signal either directly or by means of gearing. PD meters employ a system whereby a slotted disc

is rotated and cuts the light source of a photoelectric circuit. Turbine meters use a magnetic impulse generated by the tips of the turbine blades passing a magnetic source.

The pulse signal in both cases is transmitted to remote receiving instruments.

Level Transmitters

1. Float and Tape

As the float follows the varying liquid level in the tank, a drum, driven by a tension spring or electric drive takes up the slack and stores the tape. The revolutions of this drum are directly related to the position of the float and, hence, the liquid level in the tank. It is the rotational position of the drum which is electrically transmitted to the remote receiving instruments.

2. Capacitance and Resistance

Both these methods of level measurement transmit the varying capacitance or resistance, without transforming it, to the remote receiving instruments over a simple wire circuit.

3. Gas Bubbler

The pneumatic back pressure which is the output of the primary device may be transmitted without change to remote receiving instruments, or it may use a pressure transmitter as described earlier.

• Temperature Transmitters

1. Resistance Wire

The transmission of varying resistance output of the primary device requires no transmitter to transform it to a communicable signal. The receiving instrument measures the resistance output as one leg of a bridge circuit.

2. Thermocouple

The transmitting wires of a thermocouple circuit are known as compensating leads. The semi-rare metals used for the thermocouple itself would be too costly to use as transmission wires. It is the usual practice to use compensating leads of a less expensive material which has characteristics close to the metals used for the thermocouple. No transmitter is involved since the receiving instrument measures directly the EMF produced by the thermocouple.

SWITCHES

For the variables being considered, the switches which initiate remote indicators and alarms operate on the same principles as transmitters. The movement of the primary elements operates switch mechanisms instead of transmitting mechanisms.

ALARMS

Basically, "alarms" are receivers similar to other indicators, their function is to provide protection by maintaining critical points in a system under constant surveillance. In a

complex such as a DWP, where centralized control is common, the alarms would be grouped together into an annunciator mounted on a control panel. An annunciator displays a series of engraved translucent windows which become back-illuminated in the event of an alarm. Upon actuation of an alarm point, the alarm light will flash, illuminating the appropriate window, and the horn or audio device sounds. A means for silencing the alarm and switching the light to a steady "on" state is provided; a reset switch will extinguish the light only when the alarm condition has been rectified.

Because these devices must remain operable over long periods of inactivity, test circuits are built into the annunciator so that periodic testing of the system can be carried out.

RECEIVERS

The remote instruments which "receive" the signals from the transmitters fall into three basic categories:

Indicators
Recorders
Controllers

These instruments are usually mounted on the control panel in the central control station.

Indicators

of indicator is the most common. Two variations are available, those with a fixed scale and moving pointer, or those with a fixed pointer and moving scale. Which are used is immaterial and depends upon the designers choice.

2. Digital indicators lend themselves well to the remote indication of liquid levels and can be adopted for all other variables.

Recorders

Essentially, recorders are indicators which produce a permanent record. These receivers are generally panel mounted in control rooms and produce records on small strip charts. Certain variables which can be transformed to a digital form may be concentrated at a central recording station where they are recorded in digital form.

Controllers

These panel-mounted receiving instruments are the master link in a closed loop control system. Sometimes mounted integrally with records or indicators, the controller accepts the signal from the transmitter, considers it with respect to its own set point and mode of control and sends a controlling signal to the regulating device. The introduction to this Appendix explains the various control modes employed.

ACTUATORS

The actuators in this study are the devices which receive the controlling signal from a remote controller or from a command initiated by operating personnel, either locally or remotely. The actuator interprets the signal and "actuates" the regulating device, usually a valve.

On a Deepwater Port oil transfer system, the majority of

the valves, or regulators, are actuated electrically and are usually either fully open or fully closed.

Where more precise control is required between the two limits of open or closed, such as flow or pressure control at booster pumping station, the actuator uses a combination of electric and hydraulic or electric and pneumatic systems. In these cases, the electrics are the initiating and signalling devices and the hydraulics or penumatics are the driving force which actually moves the valve.

Most actuators, whether they be electric, electro/hydraulic or electro/pneumatic are fitted with a series of switches which initiate remote indication of the valve position and provide the switching necessary for interlocking systems such as that found on complex manifolds.

WARNING: All gauge components should be selected considering media, and ambient operating conditions, to prevent mis-application. Improper application can be detrimental to the gauge, cause failure and possibly personal injury or property damage.

The information contained in this catalog is offered as a guide to assist in making the proper selection of a pressure gauge.

Additional information is available from Dresser Industrial Valve and Instrument Division.

Pressure ranges — Select a gauge with a full scale pressure range of approximately twice the normal operating pressure. The maximum operating pressure should not exceed approximately 75% of the full scale range. Failure to select a gauge range within these criteria may ultimately result in fatigue failure of the Bourdon tube or bellows.

Operating conditions — The operating conditions to which a gauge will be subjected must be considered. Other than discoloration of the dial and hardening of the gaskets that will occur as ambient temperatures exceed 150 F., metal and phenoi case gauges, that are not liquid filled, can withstand continuous ambient temperatures as high as 350 F. Gauges with soft soldered joints, however, should not be subjected to temperatures above 150 F. Accuracy will be affected by approximately 1.5% per hundred degrees F. Gauges with welded Bourdon tube (system) joints will withstand 750 F, with silver brazed joints, 450 F, for short times without rupture although other parts of the gauge will be destroyed and calibration will be lost. If the gauge will be subjected to severe vibration or pressure pulsation, the use of a liquid filled gauge is recommended.

Cases — Five case styles and four different materials are offered — aluminum, stainless steel, cast iron and phenol. All cases are open front, with the dial between

the Bourdon tube and the window. An optional blowout disc can be supplied which will relieve case pressure buildup in the event a slow leak develops in the pressure element.

Pressure elements — Available for a wide variety of media: materials include: brass, phosphor bronze, alloy steel, AISI 316 stainless steel and K-monel. Proper selection of the Bouldon system or bellows material is dependent on the process fluid to which the system will be subjected. If the correct material is not available, the use of a diaphragm seal may be necessary to protect the system from the process fluid.

Movements — Movement parts are designed and protected to reduce friction and extend wear life. Each movement is ultrasonically cleaned and lubricated. Movements of 21/2" and 31/2" gauges, including bellows type, are stainless steel with Teflon* coated pinion gear and segment shaft, on 41/2" and larger sizes. gauges have stainless steel movement with bronze pinion and segment shaft.

Dials — Dials are uniformly graduated and have highly legible black markings. White or brushed aluminum backgrounds provide a high degree of resolution.

Pointers — Adjustable pointers are standard on Type 1009 gauges. Other gauges are supplied with non-adjustable pointers which can be reset by removing the ring, removing and resetting the pointer. Adjustable pointers are available as an option on these gauges.

Windows — The standard is glass: Non glare glass is optional for applications requiring that reflection be eliminated. Acrylic plastic or shatterproof glass windows are also available, to provide added resistance to breakage.

Rings — The rings, which enclose the window, are of several different types: friction, threaded, bayonet (cam), hinged, or snap design depending upon case.

SELECT YOUR OPERATING REQUIREMENT

ADJUSTABLE DIFFERENTIAL FULLY AUTOMATIC - DOUBLE ADJUSTMENTS

TYPES DA, DAF, DAH, DAHF, DAW, N3-DAW

Equipped with two outside adjustments - one for setting "high" pressure operating point and one for setting "low" pressure set point. Differential (difference between the "high" and "low" set points) is adjusted by the full set of the set of justable over the full scale.

Controls with mercury switch contacts are available SP-ST or in a variety of multiple circuits.

Controls with snap-action contacts have a switch indicator for visible operation and are available SP-DT or DP-DT. (2 SP-DT switches).

FIXED DIFFERENTIAL FULLY AUTOMATIC - SINGLE ADJUSTMENT

TYPES DS, DSF, DSH, DSHF, DSW, N3-DSW

Equipped with a single adjustment for setting operating point only. A single pointer on the scale sets the pressure point where switch operation occurs. Fixed differential is factory set and cannot be changed. Controls with mercury switch contacts have visible on/off operation and are available SP ST only.

Controls with snap-action contacts have switch indicator for visible on/off operation and are available SP-DT only.

SEMI-AUTOMATIC WITH MANUAL RESET SINGLE ADJUSTMENT

TYPES DR, DRF, DRH, DRHF, DRW, N3-DRW

A single adjustment sets the operating point to either "OPEN" or "CLOSE" the circuit automatically upon a pressure decrease or increase. A push button reset must be operated manually to restore the circuit to the original position after automatic operation.

Suffix -L after Type No. denotes control will operate automatically on an increase.

Suffix -U after Type No. denotes control will operate automatically on a decrease.

SELECT YOUR ENCLOSURE

INDOOR

GENERAL PURPOSE NEMA 1

TYPES DA, DR, DS: For applications where atmospheric conditions are normal. For protection against dust and light splashing. Heavy gauge plain case (steel) with glass fronted cover. Finish charcoal gray. V. NPT pressure connection. Electrical connection back of case of 2° Conduit or BX. Locking device to prevent tampering with adjustments. Available with flanged case.

Ormensions Page 65

OUTDOOR

WATERTIGHT - DUSTTIGHT NEMA 3S and 4

TYPES DAW, DRW, DSW; Meets hose test, also requirement for distright, dispright, weather insistent, weather weather meaning the distribution of the state of the

WEATHER RESISTANT (RAINTIGHT) NEMA 3R

TYPES N3 DAW, N3 DRW, N3 DSW. Similar to Waterlight except includes drain in cover and does not have removable 30 hub. Dimensions Page 65

E-2.2 PRESSURE

HAZARDOUS LOCATIONS

EXPLOSION PROOF

Class I Group C & D, NEMA 7 Class II, Group E. F. G. Class III, NEMA 9, 9A. Division 1

t, F. G. Class III, NEMA 9, 9A. Division I TYPES DAH, DRH, DSH. The control mechanism is an integral part of the case and cannot be removed in the field. For surface, panel or ppe mounting. Pressure connection is male thread with a female thread External adjust ments. Shatter proof glass fortied cover. Finish natural aluminum, Available with breather and drain.

Dimensions Page 65

Several important variables must be considered when selecting the type of case for the application. A gauge is subject to environmental and atmospheric conditions, and the gauge internals must be protected from these elements.

Type of mounting — stem, surface or flush is important, as is the pressure connection location, lower or back. General characteristics of case styles are described below.

The following cases are all open front design, with the dial between the pressure system and the window. For maximum safety, an Ashcroft Duragauge* solid front gauge should be specified (a solid wall is between the pressure system and window). Request Bulletin DLI-1

Comprehensive reference charts of case styles, materials, and physical characteristics of General Service Gauges are on pages 10 and 12, dimensional drawings are on pages 14-18.

Type 1009

Polished stainless steel case and bayonet lock ring in 21/2", 31/2", and 41/2" sizes. Maximum corrosion resistance. Available for stem, surface, or flush mounting, lower and back connected.

Type 1188/1220

Black, phenol turret cases in 41/2", 6", 81/2" sizes, with stainless steel snap ring. Lightweight, offers high resistance to corrosion. Stem or surface mounted; can be flush panel mounted with an accessory ring.

Type 1189

Aluminum case with threaded aluminum ring. Case and ring are black epoxy coated. 41/2" and 6" sizes. Stem, surface, or flush mounted.

Type 1010

Aluminum in 41/2" and 6" sizes; cast iron in 81/2", and 12", friction steel ring. Black epoxy coated. Stem, surface, or flush mounting: lower and back connection.

Type 1017/1187

Aluminum case in $4^{1/2}$ ", 6" and $8^{1/2}$ " sizes, with steel ring hinged at top, retained by a clamp screw at the bottom. Case and ring are black epoxy coated. Flush mounted, back connection only

UNIVERSAL CASE INSTRUMENTS ELECTRONIC

PNEUMATIC CONSOTROL

UNIVERSAL CASE INSTRUMENTS PNEUMATIC

PANELS &

DIGITAL

PRESSURE

LIQUID LEVEL

TEMPERATURE

SPEED,

WEIGHT, FORCE, TORQUE, DENSITY

PRODUCT

TELEMETERING

VALVES POSITIONERS OPERATORS PRIMARY DEVICES

Fig. B5158

Fig. 85163

Flow through a primary device results in a differential pressure, inferential of flow rate, across the device. This pressure is measured by the measuring elements and transmitters described on pages 815-823. Selection of a primary device is determined by (1) physical characteristics of the fluid, (2) maximum rate of flow, (3) static pressure, (4) size of pipeline, (5) allowable over all pressure loss

ORIFICE PLATES

Recommended for clean fluids only. Have more advantages—and suitable for more applications—than any other primary device

The square-edged orifice plate B5158-with identification tab for use with raised-face flanges, is furnished in stainless steel, Monel and other materials, to meet ASME and AGA standards. Orifice may be concentric recentric segmental, and quadrant edged. Available, without identification tab, for use with tab-type holding ring in ring-type-joint flances, and orifice fittings. Orifice flanges, holding rings, orifice fittings also available.

FLOW NOZZLES

Provide greater flow capacity and constant discharge coefficient over a wider range of flow rates than orifice plates. Widely used for steam flow, also for fluids containing moderate amounts of solids in suspension.

Forged flow nozzles are available in either flange-type—B5150 or welding-ring-type (not shown) for high pressure and high temperature applications. Furnished to ASME standards in carbon steel, 304 stainless steel, chrome moivbdenum and other materials. Fabricated, flange-type flow nozzles, in 304 stainless steel, are also available.

Recommended for water, sewage, sludges, slurries, chemicals, steam trade wastes, air and gases. Tube throat is smooth curve with no exposed sharp edges or channels to clag

Flow tube—B5517—features minimum pressure loss with large differential pressure for a given discharge. Also constant flow coefficients down to low Reynolds numbers and velocities for accuracy to within ± 1.0 percent of actual flow rate (± 0.5 when laboratory calibrated).

Tubes available with flanged ends, with holding flange for insertion between flanges, or for in-line welding. Materials include cast iron, Mechanite, forged steel, stainless steel. Polyester fiber glass, as well as special materials. VENTURI TURES

Recommended for fluids containing large amounts of suspended solids, for low net pressure loss.

Type PVW-B5161-is available with standard recovery cone; or with long recovery cone for lowest pressure loss of any venturi form. Manufactured to AWWA specifications.

Modified forms of Type PVW, multi-tap or single-tap, and with clean-out valves, manual flushing or continuous purge, are available for sewage (Type PVS) and sludge (Type PVSL) flow measurement.

Type PVF -B5162 -is lighter, less expensive than Type PVW. Type PVI B5162 is lighter, less expensive than Type PVW. Fabricated tube is welded inside section of steel pipe. Has conventional-form cones, and throat of stainless steel; plain, spigot, or flanged ends. Supplied with piezometer taps, as shown, or with single taps at entrance and throat.

One-piece-fabricated or bar stock-modified venturi tubes, ut piczometer rings, are also available in small sizes, generally below 6-inch, for slurries and fluids containing solids.

Type PVI—B5163—is used where space is insufficient for standard-form tube. Insert tube has integral holding ring for flange mounting, with single entrance tap, either external on the pipe—as shown—or integral with the throat tap in the holding ring (not shown). Cast from body and recovery cone, bronze throat liner, standard through 20-inch sizes; cast from body, steel plate recovery cone, standard for sizes above 20 inches. Also available in stainless steel.

Recommended where only comparative measurements are required, when fluid is clean, line is large, and velocity is high. For accurate quantitative measurements, Pitot tubes must be calibrated in the line.

The adjustable-type Pitot tube -B5160-is installed through The adjustable-type first tube—Bylov—is installed through a corporation cock or gate valve for insertion or removal while line is under pressure. Available in brass or stainless steel. Also supplied in fixed type, where insertion or withdrawal, with line under pressure, is not required.

An existing pipe elbow becomes a primary device when pres-An existing pipe chow becomes a primary device when pressure taps are employed under prescribed conditions. Elbow taps are easily and inexpensively installed by the user, and though not as accurate as other primary devices, provide a convenient method of repeatable flow measurement for con-

ACCESSORIES

B 16

E-2.4 FLOW

FOXBORO

ETILARUSSA ROFI EKEN'INMENASTI ZUES QUE TUSANUERI WOJĘI EUEKNUERI

FEATURES

THE DIAPHRAGM CAPSULE

The design of the differential pressure sensing element makes it possible to use a light, completely welded stainless steel, twin diaphragm capsule, sensitive to the slightest change in differential pressure. One 316 stainless steel diaphragm is seam-welded to each side of a 316 stainless steel back-up plate. Temperature-stable silicone fluid fills the space between diaphragms and plate. Very small holes drilled through the plate allow fluid to be transferred from one side of the capsule assembly to the other. This construction damps out effect of unwanted line noise. Position of connection holes parallel to capsule makes it impossible for mechanic's screwdriver to puncture diaphragm.

FAIL-PROOF OVERRANGE PROTECTION

Convoluted surface of the diaphragm fits the matching back-up plate. No need for "O"-ring seals. When overrange occurs and silicone fluid is displaced from one side of the capsule to the other, either diaphragm is supported by the plate and cannot be distorted. Recalibration not necessary.

SIMPLE RANGE AND

Range rod and range wheel (Figure B6434) provide continuous wide-range adjustment. Externally accessible zero-adjustment screw is protected by a sliding clip to discourage tampering (Figure B6434). No external or internal damping adjustment necessary—damping cannot be maladjusted through error or tamper. Permanent damping is designed to provide faithful output reproduction of measured differential.

ALL-METAL CONSTRUCTION

Assures lifetime, virtually maintenance-free operation. An Elgiloy metal disc acts as a leak-proof seal between cell body and transmitter mechanism. Other measuring parts exposed to process liquid can be either plated carbon steel, 316 stainless steel, or Monel metal. Optional diaphragm capsule materials are available for special corrosive applications. The transmitting mechanism has a weather-proof housing continuously purged with clear, dry operating air.

The basic components — body, force-balance transmitter system, and air connection block — are separate units. Process piping stresses are confined to body, air piping stresses to the air connection block. Force-balance system is completely isolated from exterior

There is essentially zero volume displacement with Foxboto d/p Cell Transmitters — no condensing or sealing chambers are necessary.

Fig. B6436. Typical Installation of d/p Cell Transmitter for Liquid Measurement.

SIMPLICITY OF INSTALLATION

Transmitter may be installed in any position. High and low pressure connection taps are at both ends of body for optional connection. The instrument is designed for simple close-coupling at the point of measurement (Figure B6436).

PRINCIPLE OF OPERATION

Pressure is applied through the high and low pressure connections to opposite sides of silicone-filled twindiaphragm capsule (A). Difference between pressures exerts force at lower end of force bar (B), which is balanced by a simple lever system consisting of force bar (B), range rod (E) and flexure connector (D), with Elgiloy metal disc (C) acting as a fulcrum together with range wheel (F). Range wheel adjusts the measurement span to any value within the limits of the diaphragm capsule. The force exerted by this capsule is opposed through the lever system by feedback bellows (K). In operation, flapper nozzle (H) detects the slightest variation in forces developed at the capsule and effects a counterbalancing of these changes by altering input pressure at relay (J), simultaneously changing feed-back bellows balancing pressure. Continuously adjusting bellows pressure maintains a state of force-balance between bellows and twin-diaphragm capsule.

The result is a pneumatic signal of 3-15 psi proportional to differential pressure.

Smith Meter Systems Division

Geosource Inc.

BULLETIN 2.0.3.8

SPECIFICATIONS

18" SENTRY SERIES TURBINE METER

GEOSOURCE

DECEMBER 1971

ASSEMBLY

MATERIALS OF CONSTRUCTION

DIMENSIONAL OUTLINE

E-2.7 FLOW

Flang	e g A.N.S.I.	150#	300#	400#	600#	900#
"A" Dim.		25"	28"	28"	29%"	31"
	Model CA&SA	1200	1520	1590	1800	-
Wt. (lbs.)	Model CS&SS	1350	1670	1740	1950	~

Notes

- Meter pressure rating and flange data per ANSI.
- Multiple pickup coils and condulets when specified.
 2nd coil 90 electrical degrees from base coil.
- Shipping weights include 20% packing weight.

Bulletin 1.5.4.1

K12-S3, S5, S6, S7 and M16-S3, S5 S6, METERS

September 1974

The K 12-S3, S5, S6, S7 and M16-S3, S5, S6 meters are designed for high capacity service on petroleum pipe lines and at tanker loading and unloading facilities for rates from 6000 up to 12,500 barrels per hour. They are dual-case meters with the metering unit installed in a welded steel housing.

no art agree at the state and the comment of the state of the state of the state of the state of the state of the

With the Smith Meter principle, illustrated below, the flow of liquid is literally undisturbed while it is being metered. Since energy is not wasted in arresting liquid velocity, slippage is reduced to a minimum, resulting in GREATER AC-CURACY. Low pressure drop due to streamlined flow and a minimum of friction means long life and low maintenance, thus assuring SUSTAINED ACCURACY. A. O. Smith Double Case Meters follow the original rotary design developed by Smith. The metering unit is installed in an outer housing with pressure balanced across the metering unit thus eliminating inner case distortion due to operating pressure and piping strain. The double-case construction affords ease of servicing. It is possible to remove a metering unit for inspection, cleaning or repair simply by removing the outer housing cover and removing the metering unit. The measuring unit is removed vertically, thus liquid spillage is kept to a minimum. The ease of removal of the metering unit is conducive to low maintenance costs and greater overall accuracy as the off-stream time encourages periodic preventitive maintenance inspection. Complete metering units are interchangeable between different meter housings.

APPLICATIONS

Available Registration

Product Pipe Lines; Crude Oil Pipe Lines; Barge and Tanker Loading and Unloading.

SPECIFICATIONS

NORMAL RATED	CAPACITY	Cubic M		U. S. Barrels Per Hour	
K12-S3, S5, S6 and S7 M16-S3, S5 and S6	Maximum Minimum Maximum Minimum	950 190 2000 400)	6,000 1,200 12,500 2,500	
WORKING PRESSURE	275 PSI 300 PSI 720 PSI 1440 PSI 275 PSI 300 PSI 720 PSI	50 100 19 21	Kg Cm ² Kg 3m ² Kg 3m ² Kg Cm ² Kg Cm ² Kg Cm ² Kg Cm ²	K12-S3 K12-S5 K12-S6 K12-S7 M16-S3 M16-S5 M16-S6	
FLANGES	12" 3 12" 6	50 lb. 100 lb. 100 lb. 150 lb. 100 lb.	ANSI ANSI ANSI ANSI ANSI	K12-S3 K12-S5, S6 K12-S7 M16-S3 M16-S5, S6	

MATERIALS OF CONSTRUCTION*

Meter Housing—welded steel construction Inner Meter Case—close grained cast iron

Rotor—close grained cast iron Block—close grained cast iron

Bearings, Shaft and Pins—stainless steel with phenolic Cam and Gears—steel

Blades—anodized high tensile aluminum alloy with wear strips Bushings—sintered iron

*Some internal meter parts are treated with ARMORLOY, a SOUD FILM LUBRICANT with certain corrosion resistant properties.

ADJUSTMENT

Dry, accessible calibration is made in extremely fine increments with any A. O. Smith adjustment device. These adjusting devices are protected from dirt and foreign matter, and may be sealed against unauthorized tampering. Various units are available for both gross and temperature compensated registration.

PRINCIPLE OF OPERATION

The rotor, which revolves on stainless steel ball bearings, has six evenly spaced slots. The slots control the position of three blades that are at 60° angles to each other. As liquid flows through the meter, the rotor and blades revolve around a fixed cam. Ball bearings fixed to the blades roll around the cam, causing the blades to move radially. The successive movement of the blades, outwardly toward the case wall, forms a measuring chamber of precise volume between the blades, the rotor, the case wall, the cover, and the bottom of the case. A continuous series of these closed chambers is produced, six for each revolution of the rotor. Neither the blades nor the rotor contact the stationary walls of the measuring chamber.

TYP	E OF KIT CLASS	CLASS A	CLASS B	CLASS C*				
Maximum	pressure	3 psig	3 psig	3 psig				
GUIDE W	IRE AND SPRING	MATERIALS OF CONSTRUCTION						
	Cap, Tube, and Washer		Steel					
Spring		Spring Steel						
Guide Wi	re	Stainless Stael						
PULLEY	ASSEMBLY		MATERIALS OF CONSTRUCT	ОИ				
Housing	& Cover	Cast Aluminum	Cast Aluminum	Nodular Iron				
Pulley		Defran	Cast Aluminum	Cast Aluminum				
Bearing		Teflon						
Shoft		Stainless Steel						
Floating Roof Tanks		1;	7¼ " Dia. Stainless Steel Pan F	loat				
Floats	All Other Tank Types		11-7/8" Dia. Polyethylene Float (below 3 psig)					
	Tanks from 3 thru 50 psig	1714" Dia. Stainless Steel Pan Float						
		1. D 2. D 2. D P EXA	SELECTION PROCEDURE etermine "Kit" number by referring f installation shown on pages 4 the etermine "Kit" Class by requirem ressure. MPLE KIT NO. 2 IE ROOF TANK FOR OUGH TANK SHELL	y 9.				
CRANK SCF IN SHIPPING POSITION	CRANKING							

TYPICAL LEVEL GAGING INSTALLATION OF MODEL 92020

E-2.9 LEVEL

Shand & Jurs

MODEL 92020 AUTOMATIC TANK LEVEL GAGE

DESCRIPTION

The Shand & Jurs Model 92020 Automatic Tank Level Gage is a float actuated tape driven gage, and by means of a digital counter indicates float travel accurately to 1/16 inch. Model 92020 meets all the specifications and recommendations of the American Petroleum Institute in accordance with API Bulletin 2509B.

Pioneers in automatic tank gaging, GPE Controls, Inc., has enjoyed a preeminent position for well over 30 years with Shand & Jurs gaging systems.

A stainless steel tape, accurately perforated, rotates an aluminum sprocket wheel with stainless steel pins, which in turn drives the digital readout counter. A stainless steel constant force motor maintains tension on the float throughout the gaging range. Beating loads are well distributed through filled fluorcarbon bushings rotating on polished stainless steel shafts.

Local readout is by means of digital counter featuring large black numerals on a white background. Remote reading is added by simply removing the counter housing cover, installing coupling, and bolting transmitter in its place. Gage calibration is quick and easy... loosen screws and swing open access plate; then, simply rotate large inch wheel until counter wheels are set. This is the fastest, and most positive calibration available on any float actuated counter type gage.

Choice of materials, rugged construction and counter housing sealed from gage head permits application of this gaging system to a wide variety of environmental conditions. Optional feature on gage head includes a hield crank for manually raising and lowering the float, an operational checker for manually jogging the tape to insure a "free" system, provision for high and low level limit switches.

To facilitate easy ordering, complete accessory kits are available for all standard and most special tank configurations and cover a broad selection of materials.

FEATURES

ACCURATE

Large digital readout driven by accurately perforated tape provides non-ambiguous and consistant data to meet API standards of accuracy.

- PELIABLE

Long contact arc of tape on sprocket and non-jamming construction of rotating parts assure reliability. Constant tension on float results in accurate reading; also, ventilated counter housing is non-fogging.

WERSATILE

Low copper aluminum body, carefully selected materials for internals, optional features and accessories make this system adaptable to most products and storage vessels.

ECONOMICAL

Limited number of mounting brackets minimize installation cost. Complete gaging system "kits" for each installation further reduce cost.

MODEL 92020 AUTOMATIC TANK GAGE

HOW TO ORDER

Specify:

- 1. Model 92020 Automatic Tank Level Gage.
- 2. Type of service: Normal, ammonia, or severe.
- Gage head only, gage head fitted for limit switch*, gage head with hand crank or gage head with hand crank and fitted for limit switch*. With or without Operation Checker.
- 4. Type of calibration: feet and inches, decimal feet
- 5. Type of readout: a. innage or outage b. maximum tank height
- 6. Type of installation:
 - a. Gage only (without tape for ground reading)**
 - b. Ground reading (fixed roof tank)
 - c. Ground reading (floating roof tank)
 - d. Roof reading
 - e. Turbulent tank (ammonia, LPG)
- Description of fluid to be gaged including pressure, temperature, specific gravity, etc.
- 8. Additional accessories required, specify in detail.
- *Limit switch must be ordered separately.
- ** Far roof reading, specify.

PRODUCT DATA SHEET 92020

CONTROLLING MATERIALS ON THE MOVE....
PROCESS CONTROLS ... GUIDING EQUIPMENT ... TANK FITTINGS ... MARINE TRANSPORTATION

Shand & Jurs

MODEL 92302

LIQUID LEVEL INDICATOR

DESCRIPTION

The Shand & Jurs Model 92302 Liquid Level Indicator is a reliable and inexpensive float actuated level gaging system, which utilizes a sturdy aluminum or redwood indicator board.

The target on the indicator board is accurate to within one inch. Large black numerals on a white background make the readout plainly visible. The indicator board is available with graduations in feet and inches or with graduations in meters. Half travel targets are available for special installations such as below ground tanks.

A choice of various materials is available which permits application of this gaging system to a wide variety of environmental conditions. A liquid seal is available for vapor tight installations to retain tank vapor space pressure and vacuum within the range accommodated by vacuum/pressure breather valves with standard settings. The liquid seal also protects gage board from corrosive tank vapors.

Guide wire assemblies and an anchor bar are recommended for tanks over 12 feet high or where product turbulence exists. The Model 92302 Liquid Level Indicator is also available with limit switches to provide for high and/or low level alarms, pump start and stop control, or a variety of other signaling functions.

HOW TO ORDER

Specify:

- 1. Model 92302 Liquid Level Indicator
 - a. Type of tank (if other than cone roof)
 - b. Type of service
- 2. Type of board material
- 3. Feet and inches or meter and decimeters calibration
- 4. Height of tank
- Additional accessories required, Limit Switches, inspection frames, etc. Specify in detail.

FEATURES

■ ECONOMICAL

Low cost and easy installation makes this an ideal solution to simple gaging problems.

■ VERSATILE

Standard materials suitable for most services.
Components of special materials readily available.

■ ACCURACY

Construction affords accuracy to the nearest inch.

RELIABLE

Non-jamming construction of movable parts assures reliability.

polyethylene float

FOR WIDE PRESSURE AND TEMPERATURE RANGES...

- REPLACES COSTLY STAINLESS STEEL FLOATS
- IDEAL FOR CAUSTICS, ACIDS AND VOLATILE LIQUID ENVIRONMENTS
- ADAPTS TO PRESENT GUIDE WIRE FLOAT GAGES
- **CORROSION RESISTANT**

SPECIFICATIONS

Materials: High Density Polyethylene and Glass Filled Polypropylene

Pressure Range: 3 psig Maximum

Temperature Range: -20° to 215° F

Specific Gravity Range: .5 to 1.3

Weight: 4 Pounds

CURRENT TRANSMITTER

DESCRIPTION

The Model X31420 Current Output Transmitter is a potentiometer type transmitter which transmits field information to a remote point. This transmitter is intended primarily for coupling to tape drive float type

Contained in a weather and explosion proof housing, the transmitter uses one 2,000 ohm potentiometer which is driven through a gear reduction of the input shaft. The output is a current which is proportional to the position of the wiper in the potentiometer. This current output signal is transmitted to a compatible receiver.

High and low level alarm switches are available to provide safety during loading or discharge of product. Alarm switches can be acutated within plus or minus one foot of desired range.

SPECIFICATIONS

INPUT POWER:

Transmitter: 30 V.DC \pm 1% at 40 ma 60 V.DC \pm 1% at 75 ma

Alarm Switches: 125/250 VAC/28 V DC

at 2.5 amp

INPUT SIGNAL: Shaft position

OUTPUT SIGNAL: 4-20 ma DC 10-50 ma DC

OUTPUT LOAD IMPEDANCE: 10 to 500 ohms

RANGE: 20 to 120 feet (10 foot increments)

WIRING: Four conductors

DESCRIPTION

The Telepulse II Level Gaging System provides liquid product storage facilities with the most reliable and accurate remote measurement system available. GPE's Telepulse II system has maintained a reputation for extreme dependability. This is why there are more than 5,000 installations in operation.

Continued modernization, physical expansion and computerized operation of present facilities demand the most reliable and proven gaging system on the market. Telepulse II is designed to keep in step with these requirements.

The Telepulse II Digital Electric Gaging System consists of two basic components, a Model 41411 Level Transmitter and a Model 42211 Receiver.

The Model 41411 Transmitter mounts directly to a floattype level gage and digitally encodes shaft position. The Transmitter utilizes magnetic pick-up coils for operation and, therefore, no contact is required. This principle of inductance provides for reliability, durability and extreme

When reading is required, a truly synchronous scan motor drives a magnet at a constant speed past the pick-up coils, inducing a voltage pulse. Two pulse signals are provided for: one for the fine increments (inch, decimal foot, or millimeter), and the other for unit increments (foot or decimeters).

The maximum duration between pulse signals is 100 milliseconds. These signals are transmitted in parallel to the Model 42211 Receiver located at a remote point.

The Model 42211 Receiver provides for digital display of level and temperature readings. Each tank is positively identified with a separate pushbutton. A reading is displayed only if proper tank is selected and function button is pushed. Function buttons are marked for level and temperature. (Data Logger is optional.)

The Receiver provides for optional connections for a Data Logger, which can be added at any time. In addition, provisions for computer interfacing is readily accommodated. The output for this option is 4-line BCD from dry contacts. The Telepulse II Receiver can accommodate the most complex computer programs, such as, high speed scanning of an entire storage facility during filling or unloading procedures to obtain up-to-date information on high and low level readings. Only slight modification to standard circuitry is necessary.

The Model 42211 Receiver is available in a standard sloping desk type console, which accommodates up to 100 points. For larger storage tank facilities, the Receiver electronics are easily expanded and can be adapted to sophisticated supervisory control systems.

Model 42211 Receiver with back panel removed showing solid state electronics with Data Logger Pin Connectors. Simple plug-in printed circuit boards for fast servicing.

GPE GAPAGITANIGE GLAUGING FOR GOND

DESCRIPTION

The Model 31430 is a continuous level gauging system, using a capacitance probe. The principle of measuring the level is based on the dielectric change between liquid and air, which provides a capacitance signal proportional to the tank liquid level.

The Capacitance Liquid Level Gauging System can be applied to both conductive and non-conductive fluids. Only two basic components are necessary to provide accurate and reliable level readings. A transmitter, which mounts directly to the storage tank, and a digital display located up to 1000 feet away, which displays a continuous level reading.

GPE's Capacitance Gauging System is available in two model options. For conductive fluids, such as water, wines, acids or most water-based products with a low dielectric constant, a teflon insulated cable probe is used. For non-conductive fluids, such as gasoline or petroleum based liquids with a high dielectric constant, a concentric tube probe is available.

The teflon insulated probe is normally anchored to the bottom of the tank and extends the full length of the tank and is terminated in the weatherproof transmitter housing. The Model 31430 Transmitter contains within its compact housing a highly reliable solid-state printed circuit board. This single P.C. board contains the entire electronics required to measure the capacitance of the probe and transmit this signal to the remotely located digital display.

To meet intrinsically safe requirements, the transmitter receives its power from a Power Supply/Barrier. The entire system, when connected per specification, is approved by Factory Mutual for Intrinsically Safe operation in Class I, Division 1, Group D hazardous areas.

The conductive probe provides an accuracy of \pm ½% over full range. To maintain this accuracy, it is essential that the probe is linear to the tank and the fluid measured is of conductive properties.

The concentric tube probe used for non-conductive liquids is rated at $\pm~1/2\%$ accuracy, and is installed in a rigid vertical fashion from tank bottom to tank top. It is available in 10 foot sections which are joined together to form the length required. For extremely high tanks or turbulent tanks, insulated support brackets are necessary to avoid probe damage or non-linear output.

ELECTRONIC CONSOTROL INSTRUMENTS

UNIVERSAL CASE INSTRUMENTS ELECTRONIC

PNEUMATIC CONSOTROL INSTRUMENTS

UNIVERSAL CASE INSTRUMENTS PNEUMATIC

SPECIAL PURPOSE INSTRUMENTS

PANELS &

DIGITAL

PRESSURE

FLOW

FIGUID FEAET

TEMPERATURE

SPEED.
POSITION.
ELECTRIC
MEASUREMENT

WEIGHT, FORCE, TORQUE, DENSITY

HUMIDITY &

PRODUCT

TELEMETERING

VALVES.
POSITIONERS,
OPERATORS

ACCESSORIES

BUOYANCY TRANSMITTERS
For Liquid Level or Density Measurement

Fig. 85692 Model 1784 Pneumatic Buoyancy Transmitter for Top-of-Vessel Mounting.

Fig. 85693 Model 61784 Electronic Buoyancy Transmitter for Top-of-Vessel Mounting.

Fig. B5694

Model 17B6 Pneumatic Buoyancy Transmitter for Side-of-Vessel Mounting.

MAINTENANCE-FREE OPERATION One-piece flexures throughout—no knife edge pivots, no wear. Eliminates routine maintenance. Side-of-vessel version incorporates flush flexure-seal at flange face—no collecting pockets for liquid that tend to solidify or compact.

HIGH PERFORMANCE FORCE-BALANCE OPERA-TION True force-balance operation (motion of element is less than 0.015 inch for full measuring span) means no element travel error, virtually no hysteresis, excellent repeatability and accuracy, mini-

mum dead band.

PROCESS PROVEN TRANSMITTER This is the widely accepted, reliable Foxboro force-balance d/p cell Transmitter mechanism. Only one calibration procedure for complete line of pneumatic and solid-state electronic force-balance transmitters for pressure, flow or liquid level. Common parts

IN-PROCESS CALIBRATION Transmitter can be calibrated simply by suspending weights from the upper force bar. Simple and accurate calibration.

minimize inventory requirements.

These force-balance transmitters measure and transmit—pneumatically or electronically—liquid level, interface or density by sensing the buoyant force exerted by a displacer element. They can be used in vented, pressurized, or evacuated vessels.

Level measurements are made as the surface liquid varies over the length of the displacer element. Displacers are available in lengths from 14 to 120 inches, or longer where required.

Density measurements are made with the displacer element completely submerged.

Level and density change caused by variations in buoyant force are converted to 3-15 psi or 10-50 ma d-c signals proportional to measurement. Signals are transmitted to standard Foxboro pneumotic or electronic CONSOTROL receivers which can be mounted up to several hundred feet away (pneumatic) or several thousand feet away (electronic).

There are four basic transmitter models in the series: Models 1784 Pneumatic and 61784 Electronic; and Models 1784* Pneumatic and 61786* Electronic.

OPEN OR CLOSED VESSEL MEASUREMENT Buoyancy transmitters can be applied to level or density measurement in vented, pressurized, or evacuated vessels with unsurpassed repeatability and accuracy.

*Where process requires, either of these transmitters can be installed in a vertical leg external from the vessel.

B 40

E-2.18 LEVEL

FOXBORO

ENGINEERING DATA

OBSERVATE ROLL SOMEON STATE OF THE CONTROLS (MADISTRESS)

CAN BE USED FOR DIRTY OR VISCOUS LIQUIDS-NOT AFFECTED BY TURBULENCE-SINGLE OR TWO STAGE OPERATION MINIMUM SPECIFIC GRAVITY 0.5-MAXIMUM TEMPERATURE 200°F.

Mercoid displacer controls utilize displacers that do not float on the surface of liquids as in conventional float types, but slay submerged. They are not affected by surface agitation. The displacer is solid and not affected by pressure.

OPERATING CHARACTERISTICS

OPERATING CHARACTERISTICS
The displacers are suspended on a cable from the armature of a magnetic head control with a spring partially supporting their weight. As the displacers become submerged in a rising liquid, their weight decreases, allowing the spring to move the cable and armature upward, thereby actuating the mercury switches.
The displacers are secured on the cable by clamps. Operating levels can be adjusted by loosening the cable as required. The buoyancy produced by the cable as required. The buoyancy produced by the cable with the spring to raise the armature; a second displacer must be partially submerged before any operation occurs on a rise. On a drop, however, the cable will not move for its full down position until the level falls to approximately the mid point of the lowest displacer (for B190 and 195-7 only). By spacing the displacers adjustable level operation and various stage operations can be provided.

CONSTRUCTION - all types. Standard displacers are porcelain (also available of other materials). Stops 316SS. Cable (10 ft.) 316 stainless steel

(longer lengths available). All enclosures equipped with 3.4° NPT conduit connection. Control case can be rotated 86° to facilitate writing. Terminal block for electrical connections. Standard Flange 4° 125r CI—other sizes and materials available

GENERAL PURPOSE (NEMA 1). Identified by letter "G" in type number as in 195G-4. Heavy gauge steel case finished in charcoal gray.

WEATHER RESISTANT (NEMA 2,3). Identified by letter "W" in type number as in 195-4W. EXPLOSION-PROOF suitable for Class 1, Group C & D; Class 2, Group É, F, & G. NEMA 7, 9, 9A. Identified by the letter "E" in type number as in 195-4E. VAPOR-PROOF—EXPLOSION-PROOF. Identified by letter "EV" in type number as in 195-4EV.

SINGLE STAGE OPERATION

SINGLE STAGE CONTROLS WILL OPERATE AT ANY SPECIFIC GRAVITY AND TEMPERATURE LISTED IN TABLES WITH STANDARD FACTORY SETTINGS

SERIES A190-SINGLE STAGE-Fixed Differential

SERIES B190-SINGLE STAGE-Adjustable Differentials

			100 F					500. Ł		
R			1 0		TB	A		C		TE
•	Max.	Min.	Max.	Min.	Min	Max	Min.	Max	Min.	Min
	116-1 2	6-1 2	114	6-3 4	2-1 2			AVAILA		
0.7	117	7-1/2	115-1 2	6	2-3 8	1	401	AVAILA	BLE	
1.8	118		115	5.1 2	2-1 4	118		115	14-3 4	3
0.0	118-1 2	8-1 2	115	5	2-1 8	118-1 2	8-1 2	114-1 2	4-3 8	2-7 8
0.1	119	,	114-1 2	4.5 8	2	119	8-1 2	114-1/2	4-1 8	2.5 8
1.1	119	9-1 2	114-1 2	4-3 8	1-7 8	119	,	114	3-7 8	2.1 2
1.2	129	9.1 2	114-1 2	14	1-3 4	119-1 2	•	114	3-1 4	2-3 8

Control can be factory set for other specific gravities.

Minimum differential (c) can be reduced, approximately 1' by removing the cable clamp from between the displacers and turning the lower displacer so the flasie is up. If a narrower differential is needed, use a Type A190 control.

ALL TWO STAGE TYPES ARE FACTORY SET FOR A GIVEN SPECIFIC GRAVITY AND TEMPERATURE FOR EACH APPLICATION

Specific gravity should not vary more than \pm .t from factory setting. Temperature should not vary more than \pm 50 F. from factory setting. Note: Single stage displacer controls with tolerate much wider fluctuations of specific gravity and temperature as indicated in tables.

TWO STAGE OPERATION

CIRCUITS AND ELECTRICAL RATINGS

SWITCH	SWITCH ACTION	Elec. rating Code	SINGLE	LOWER -	TAGE UPPER
	SPIST OPEN On Level DROP	A	-4821	-4820	-21
	SP ST OPEN On Level RISE	A	4820	-4821	-50
	SP DT ONE SWITCH	В	4810	-4810	-10
Mercury Switch Contacts	SP DT Two Switches Electrically Separate	Α	4815	-4815	- 15
Contacts	DP S1 Open on Drop Separate	А	-4813	-4814	-13
	DP ST Open on Rise Separate	A	4814	4813	-14
	DP DT	В	-4806	-4806	-06
Snap- Action	SP DT One Opens as other Croses	н	- 7810	-7810	- 10
Contacts	DP DT Two Switches	14	7806	-7806	-06

ELECTRICAL RATING - CAPACITY IAMPERES

	1		- C		
CODE	120V	240V	440V	125V	250V
Α.	100	5A	30	104	5.0
8	40	7A	10	44	24
**	12A	10.4	50	05A	0.254

WHEN ORDERING - Specify Type No., Circuit Suffix No., Specific H 12A 10A 5 C Gravity, Pressure & Temperature limitation and insertion Depth(s). (1) Available on special order

Maxivision dial

in 4½" and 6" sizes. Two level dial design, with graduations and pointer on the same plane, eliminates parallax reading errors.

mercury filled thermometers

ial ize	figure	conn.	material & type	mounting	cover	dial	pointer	move- ment
listant	reading 61RM	lower	phenol turret	remote, wall	plate	4½-6 onti-parallax		
1/2	64 RM	back	black other cases*	or flush w/1278 ring	glass	8½ conventional		
Every	Angle" — di		stein		glass	anti-	balanced adjust. black	1
"Any Angle" — direct reading				direct		parallox		
	60 RM	adjust.	phenol or iron			maxivision		stain. steel
uperh	eater — dista	nt reading						
	61RM lower gray		remote, wall	plate	conventional yellow with			
4½ 6 8½ 645	64RM	back	turret	w/1278 ring	glass	black numerals and red set hand	adjust. michro. black	
uperh	eater "Any An	gle" di	rect reading			conventional		
	60 RM	adjust.	gray phenol with threaded ring	direct		white with black numerals and red set hand		

35 jam nut 68A without lagging extension 70 INSERTION LENGTH	40 plain bulb 35 jam nut 68A without lagging extension 70H without lagging extension 70H	bulbs	bushings	w	alls
35 jam nut 68A without lagging extension 70H INSERTION LENGTH U	35 jam nut 68A without lagging extension 70H insertion tenoth "U" 21/3", 41/4", 71/4", 101/3" with lagging extension 71H			standard	heavy duty - solid bored
TO TO INSERTION LENGTH "U"	INSERTION LENGTH "U": 2½", 4½", 7½", 10½" With lagging extension 80A 70 70H Reside extension 80A 71 71H	40 plain bulb			_
	7 flexible extension 80A 71 71H	I' - 10 MM MUT THO	NOW MEETING WHOM	70 17 PE SUOTE CHOICE CHOICE	70H
insertion Length "U": 21/4", 4/4", 7/5" 55 flanged bare bulb LAGGING EXTENSION "T": 75 flanged 2" 3" 3"		0.800	3/4" NPT is standard: 1" NPT furnished on request of no extra charge.	- U. W. W. W	

Most accurate of temperature measuring systems for temperature ranges from -100 F to +600 F. System consists of DYNATHERM or other nickel-wound resistance bulb connected by standard 3-conductor cable to DYNA-LOG resistance-type receiver located up to several hundred feet from the point of measurement (see pages A14-A22). Changes in temperature produce changes in resistance which are measured by a Wheatstone bridge circuit in the DYNALOG instrument. Amplified unbalance signal actuates DYNAPOISE drive unit to rebalace bridge and simultaneously position pen, pointer, transmitter unit, control device or other instrument component, uniformly with temperature. Can also be used with Foxboro ERB Series Recorders (see pages A23, A24). For conversion of resistance measurement to 10-50 ma, d-c signal, see Model 694A Converter, next page.

Bulb can be installed bare for faster response required in many processes; or in well—of 1/4-inch naminal size or larger—for added protection against agitation, erosion, corrosion, and pressures in excess of 1000 psi, and for convenient bulb removal without interruption of process. Wells are available in steel, stainless steel, and other corrosion-resistant alloys in any length over 3-1/2 inches, see ACCESSORIES, page D4.

Special bulb assemblies for practically any application may be made from standard parts available from The Foxboro Company.

EXCLUSIVE DYNATHERM BULB FEATURES Bare bulb application virtually unlimited through all-stainless-steel, welded-tip bulb construction. Withstands pressures up to 1000 psi. Three times faster in response than well-mounted bulb. Accuracy and interchangeability are assured by use of precision-wound padder resistors isolated from heat-sensitive portion of bulb. Spring-loaded, hip-sensitive construction provides sustained tip-to-well contact, fastest response, maximum heat transfer, when bulb is mounted in well; stainless steel protective tube guarantees dependable bulb performance, even under severe conditions—tube is bendable, on minimum radius of 2 inches, for installation in difficult-to-reach locations; small size bulb, only 1/4-inch in diameter; available in insertion lengths from 3 inches to 10 feet or more; sensitive portion is only 1-5/8 inches long.

Temperature difference. Pen or output changes are equal for any given temperature difference change—whether at 100 F or 500 F. Hence, ideal for Btu calculator, for example.

- A DYNATHERM Bulb with Well DB-13N assembly. Diecast aluminum, weatherproof head; screw-cap with "O'ring seal; cadmium-plated iron connector, standard well.
- B DYNATHERM Bulb with Well DB-23S with well. 316 stainless steel, corrosion- and waterproof head; welded construction with sealed-in cable, standard well.
- C DYNATHERM Bulb, Bore DB-21B. Waterproof, entire head and bulb is 316 stainless steel, all-welded construction. non-removable head. Can be furnished with adjustable bushings or with any-pipe-size bushing welded to the extension tubing.

CENTERATURE SERVICE CHEMICOURTE

ELECTRONIC CONSOTROL INSTRUMENTS

UNIVERSAL CASE INSTRUMENTS ELECTRONIC

PNEUMATIC CONSOTROL INSTRUMENTS

UNIVERSAL CASE INSTRUMENTS PNEUMATIC

SPECIAL PURPOSE INSTRUMENTS

PANELS &

DIGITAL

PRESSURE

FLOW

LIQUID LEVEL

SPEED.
POSITION,
ELECTRIC
MEASUREMENT

WEIGHT, FORCE, TORQUE, DENSITY

HUMIDITY &

PRODUCT

TELEMETERING

VALVES.
POSITIONERS.
OPERATORS

THERMOCOUPLES

Provide widest range of temperature measurement of any measuring system—from as low as -325 to as high as +2800 F—higher than can be measured by either filled thermal or resistance bulb systems. May be wire type, with both elements in wire form; or PYOD type, with one element a closed tube, the other a wire welded to the inside bottom of the tube; or MINOX small-mass type with wire elements magnesium-oxide-insulated in a swaged small-diameter protective sheath. PYOD couples can be used bare on many applications where wire-type couples require protection tubes. Tubes are available for both, however, for protection against extreme temperatures, physical damage, and contamination. Thermocouples are available in the following materials:

Copper-Constantan Used for continuous service in measuring temperatures to 600 F; intermittent service to 700 F. Available as wire type, or as 1/8-inch OD midget PYOD, or as MINOX small-mass type.

Iron-Constantan Wire type used for continuous service in measuring temperatures up to 1550 F and for intermittent service up to 1750 F. PYOD types available with 9/16-inch OD, 1/4-inch OD (baby PYOD), 1/8-inch OD (midget PYOD). MINOX small-mass thermocouples are also available. Applications include liquids and molten metals.

Chromel-Alumel Wire or MINOX small-mass types. Used for temperatures above the range of iron-constantan thermocouples. For continuous service up to 2200 F and intermittent service to 2300 F.

Platinum Rhodium-Platinum Wire and MINOX smallmass types. Used for temperatures up to 2800 F. Wire type furnished with FLINTEX porcelain protection tube. SECTION B-MEASUREMENT

QUALITY CONSTRUCTION, WIDEST VARIETY Thermocouples are manufactured from selected and tested materials and matched to several Foxboro standard calibration curves based on a reference temperature of 75 F and conforming to those generally listed in industry. Couples and accessories, including wells, protection tubes, and extension wires, are available in widest variety of sizes and materials to suit virtually any application, see Accessories—page D5.

A Wire Type Couple, with steel well and universal weatherproof head. Connections—3/4 NPT—may be made with either rigid or flexible conduit. For tanks or pipes.

B Wire Type Couple with protection tube and universal connection head. Angie-type assemblies also available.

C Portable Couple of the Foxboro Pyon type. Constructed of an iron tube positive element—sheathing a constantan core negative element. Provides maximum strength and durability. Emf-producing junction is fully enclosed, safe from oxidation or contamination; insures exceptional

D Plotinum Couple with FLINTEX porcelain protection

E Portable Chromel-Alumel Couple for use in molten aluminum. Wires are not joined at the hot end; junction is made by the molten metal. Portable assemblies are available for all types of couples.

F Standard PYOD Couple, with protection tube, stuffing box, and connection head for installation indoors on furnaces, ovens or ducts. Supplied with weatherproof head, if desired.

G MINOX Thermocouples Small diameter elements—as small as 1/16-inch OD—for use where space is limited. Small mass results in fast response to temperature change. Metal sheath and magnesium oxide insulation assure complete protection of element wires.

ENGINEERING

BORDE STREETING AZZIEL TOLE

MERCURY CONTROL SWITCHES CHARLE VALASTICATED

PROVIDES VISIBILITY OF CONTACT ELEMENTS: UNAFFECTED BY DUST, DIRT, UNT GREASE ATMOSPHERIC CONDITIONS (HUMIDITY, CORROSIVE OR HAZARDOUS CUMES)

TILTING TYPE

SINGLE POLE - SINGLE THROW

0.6 ampere 120 volts 1.25 araperes 24 volts Differential angle 20^C Tilt Action - Slow **SWITCH NO. 6-47** WITH METAL-END CAPS

One electrode is attached to each metal cap with a small gap between them at one end of the tube and when the tube is titled in that direction, the mercury flows and bridges the gap to close a circuit. When titled in the opposite direction, the mercury flows away to restore the gap and open the circuit. Spring clips or holders are used for mounting purposes.

SP-ST SP-ST
1.75 amperes 120 volts
0.6 ampere 240 volts
Differential angle 8⁰
Tilt Action - Fast or Slow SWITCH NO. 6-65

Same as No. 6-47 described above except with higher electrical capacity.

SP-ST
1 amperes 120 volts
0.5 ampere 240 volts
Differential angle 10⁰
Tilt Action - Fast or Slot
Use Clip No. 7-151 SWITCH NO. 9-65

TILTING TYPE

SINGLE POLE - SINGLE THROW

SP-ST
4 amperes 120 volts
2 amperes 240 volts
1 amperes 440 volts AC
Non-Inductive rating
9A. 120V. 4½A. 240V.
Differential Angle 59
Tift Action - Fast or Slow
Use Clip No. 7-57

SP-ST
4 amperes 120 volts
2 amperes 240 volts
1 ampere 440 volts AC
Differential Angle 5⁰
Tilt Action - Fast or Slow
Use Clip No. 7-57

SWITCH NO. 9-35

ANTI-VIBRATION SWITCH
Minimizes false contact under severe high frequency vibrations. (The mils shown in the following values are actually double the amplitude 60 mils means 30 mils in each direction).

Cyles Per Second Vibration (Mils. 00.1")
Vertical: Horizontal

4 amperes 120 volts
2 amperes 240 volts
1 ampere 440 volts AC
Differential Angle 5°
Tilt Action - Fast or Slow
Use Clip No. 7-57
SWITCH NO. 9-43 MOMENTARY CONTACT

Electrodes are located in the center of the tube, hence, each time the tube is tilted, the mercury flows past the electrodes to provide a momentary "pulse".

TILTING TYPE

SINGLE POLE - SINGLE THROW

SP-ST 6 amperes 120 volts 3 amperes 240 volts 1 ampere 440 volts AC Differential Angle 2½° Tilt Action – Slow Use Clip No. 7-39

SWITCH NO. 9-78

10 amperes 120 volts 5 amperes 240 volts 3 amperes 440 volts AC Non-Inductive Rating 17A, 120V/240V, AC Differential Angle 8°
Tilt Action - Fast or Slow
Use Clip No. 7-59 SWITCH NO. 9-51

SP-ST
25 amperes 120 volts
15% amperes 240 volts
6 amperes 440 volts AC
Non-Inductive rating with
Type SF leads (page 41
25 amperes 120 volts 2875 watts
25 amperes 240 volts 5000 watts
Life Clip No. 7-191 Use Clip No. 7-191 SWITCH NO. 9-55 A HEAVY DUTY SWITCH

ALL TYPES AVAILABLE WITH OR WITHOUT LEADS - SEE PAGE 60. MOUNTING CLIPS - SEE PAGE 60. ENCAPSULATION - SEE PAGE 60.

Mercoid Hermetically Sealed Mercury Switches are backed by over fifty years of engineering know-how. The switches shown in this bulletin are standard items and can be varied to accommodate any need - such as longer tube lengths, changes in electrodes and with special lead construction.

Taylor 101 CIN

only one moving part for trouble-free performance

The flexible GROVEX tube (1) is the only moving part in the Grove Flexflo. Silent flexing action of the tube over a core (2) is controlled by the pressure in the jacket space (the area between the tube and the body). The Flexflo can never slam, stick, or

wedge. The core barrier (3) directs the incoming fluids up through the inlet slots (4) expanding the tube and down through the outlet slots (5). The flexible tube assures positive shutoff even though foreign matter may be trapped between the core and tube.

flexflo® performance features.

- Quiet Operation . . . The only moving part in the Flexflo is the expansible tube. Aggravating regulator noise problems are solved by installing Flexflos.
- Tight Shutoff . . . Positive shutoff is assured even with comparatively large particles in the flow stream. The expansible tube conforms to the core contour despite operational wear.
- Infinite Rangeability...The Flexflo features a core design that increases the flow range and eliminates the need for an expensive inner valve. The Flexflo can be sized to meet future loads and be used today without cycling. The core has a seating surface with a 5° slope toward the outlet slots,
- creating a long narrow orifice between the tube and core. Throttling action is much like a long taper needle valve in contrast to a needle point valve.
- Compact ... Minimum overall size is inherent with the Flexflo's simple clean design, in many applications, regulator station capacity has been increased without enlarging the station, by replacing massive, bulky conventional regulators with compact Flexflos. Large and expensive "formed and poured" concrete vaults are not required with Flexflos savings up to 50% are possible with compact, pre-cast vaults.
- Adaptable . . . Because of its unique design, the basic Flexflo is adaptable with only
- a change of pilots to pressure reducing, back pressure, relief, and automatic shutoff service, as well as motor valve operation reduce inventory stocks.
- Dependable ... The Flexflo is ideally suited for emergency or infrequent operation. The expansible tube gives tight shut-in during long periods of inaction and quick opening on demand. Unlike conventional valves, there are no metal-to-metal seals or stem packing. Leakage and valve sticking are eliminated.
- Ease of Inspection... Bolted construction design for ease of inline inspection.

how the flexflo° operates

Pressure differential controls tube travel. The fixed metering orifice "A" and variable orifice pressure regulator "B" control tube differential.

Pressure is controlled smoothly and accurately. Shutoff is positive. When the pres-

sure reduction is critical, wide open flow occurs when the pressure on top of tube is reduced to one-half inlet pressure. When pressure reduction is sub-critical, pressure no top of tube must be reduced to outlet pressure for wide open flow.

rotork

Catalog section 4 Publication number AE4/O Date of issue 3/77

Valve Actuator electrical specifications. Syncropak 1400 series and Syncroset.

Rotork A-Range electric actuators with their O-ring sealed enclosures have established an enviable reputation worldwide for reliable operation of motorized valves. The advantages of the Syncropak design with integral control package have become very apparent – reduced costs of hardware, building, cabling and installation, with simplified engineering, procurement and field start-up. During recent years the increased use of

procurement and field start-up.
During recent years the increased use of
Syncropak actuators in automatic
sequencing, supervisory and computer
control systems has given rise to a number
of additional requirements, dealt with by
special wiring diagrams. As a result of this
experience, the specification of Rotork
Syncropak is now further advanced by the
introduction of the new 1400-series of
wiring diagrams which supersede the
present 1200-series (1210-40 to 1211-53).
1400-series Syncropak not only covers all
the basic control requirements as hitherto
but also randily provides for the most
sophisticated supervisory and sequencing
requirements. Use of these standard
diagrams brings all the added advantages of
ready availability and assured reliability
from established quality control procedures
on proven products.

Contents	Page
A Range Syncropak and Syncroset	2 and 5
Environmental protection and Hazardous locations	3
Terminal compartment	3
Torque and Limit switches	4
Add-on-Pak 1	5
Syncropak control circuit	6
Remote indication	6
Schematic diagrams AC Remote control	7
Monitoring and Alarm circuits	8
DC Remote control	9
Schematic diagrams DC Remote control	9 and 10
Automatic sequencing and computer control	10
Truth tables for logic systems	11
Specification summary	12
Wiring diagram index	12

Rotork Inc. 19 Jet View Drive Rochester, NY 14624 tel-phone (716) 328 1550 teles 978-290 cables Rotork Rochester Rotork Controls of Canada Limited 55 Brisbane Road Downsview, Ontario M3J 283 telephone (416) 661-1200 teles 06-217760 E-2 28 ACTUATORS

Rotork Controls Limited Bath BA1 3JQ, England telephone (0225) 28451 telex 44823 cables Rotork Bath

PRODUCT FEATURES

- NO GEARING . . . provides full, direct power to valve stem
- AUTOMATIC . . . adaptable to any type of remote control signal
- EASY INSTALLATION . . . can be fitted to any valve, at any location
- LOWER MAINTENANCE/OPERATING COSTS . . . only one moving part
- EASILY CONTROLLED OPERATING SPEED . . . uses optional hydraulic orifice
- VALVE PROTECTED FROM OVERLOAD DAMAGE . . . uses optional adjustable relief valve
- EMERGENCY OPERATION . . . manual pump on all units operates actuator during power failure
- NO SIDE THRUST ON VALVE STEM . . . operator is mounted directly over valve
- "BALANCED TORQUE" achieved by Shafer's double vane design

CONSTRUCTION

• Simple, basic design with only one moving part, no power-absorbing gearing • Double-vane, balanced torque design • Fabricated from high quality steel plate, ground to precision tolerances • Composition seals for leakproof operation at high pressure • Bronze plates on rotor vanes, bronze bushings on heads provide low friction bearing surfaces • Rotor stops (externally adjustable) limit rotor travel for specific valve applications • Bottom head and rotor bore machined to match top works and stem of any valve

Shafer

BULLETIN RV-120

ROTARY VANE VALVE OPERATORS

E-2.29 ACTUATORS

PRINCIPAL OF OPERATION

SEQUENCE 1

The operator may be powered by line pressure, stored gas pressure, or by a central hydraulic system. In this diagram the operator is fitted with gas hydraulic tanks and will be powered by line pressure. However, at this time, the operator is in the open position and there is no pressure in the operator or tanks.

SEQUENCE 2

When the control is actuated, line pressure is admitted to the closing gas hydraulic tank and forces pressurized hydraulic fluid through the hand pump and into the operator's closing port. Pressure equalizing passages allow both closing quadrants to be pressurized providing balanced torque in pushing the vanes away from the stationary shoes. As the

rotor and vanes rotate clockwise (to close position), the oil in the remaining quadrants, also connected by a pressure equalizing passage, is pushed out of the operator's opening port.-through the hand pump and into the opening gas hydraulic tank. Back pressure in the opening tank is allowed to vent to atmosphere via the control exhaust port.

SEQUENCE 3

When the operator reaches the fully closed position, the control will neutralize and allow all remaining line pressure to vent to atmosphere, thus neutraling tank and operator pressure.

OPTIONAL LEVELING CHECK VALVE

For operators used in a rapid cycling application, and as a customer option, a leveling check or shuttle valve is installed between the tanks. During normal operation the tanks are locked apart, but during neutralization a spring centered shuttle valve allows rapid equalization of oil levels.

SEQUENCE 1 VALVE FULLY OPEN

SEQUENCE 2

VALVE CLOSING

SEQUENCE 3 VALVE FULLY CLOSED

PRODUCT FEATURES

- NO GEARING . . . provides full, direct power to valve stem
- AUTOMATIC . . . adaptable to any type of remote control signal
- · EASY INSTALLATION . . . can be fitted to any valve at any location
- LOWER MAINTENANCE/OPERATING COSTS . . . only one moving part
- EASILY CONTROLLED OPERATING SPEED . uses optional hydraulic orifice
- VALVE PROTECTED FROM OVERLOAD DAMAGE...uses optional adjustable relief valve
- LOCKS IN ANY POSITION . . special latch device locks valve in any desired position
- EMERGENCY OPERATION . . . manual pump on all units can operate actuator during power
- MOUNTED DIRECTLY OVER VALVE -CENTERED ON VALVE STEM . . . for positive "Balanced Thrust" operation with alignment compensating coupling.

BULLETIN LV-130

CONSTRUCTION

· Simple, basic design with no power-absorbing gearing. Hydraulic piston principle provides fast, smooth operation-without shock . Made from high quality steel plate, ground to precision tolerances . Composition seals and fibre wipers assure leakproof operation at high pressure . Low friction bearing surfaces are provided by a bronze coating on the piston diameter and bronze bushings in the heads . Piston is threaded to valve stem . Mounting bracket machined to fit valve bonnet or yoke tube . Special latch device provided to lock the valve in any position desired . Snubbers installed for wedge type gate valves

PRINCIPAL OF OPERATION

Full brute power ... without the slightest suggestion of shock. That's the story behind precision-built, quick-response linear valve operators by Shafer. Hydraulic pressure is applied directly to the valve stem through the piston. There are no in-between gears to rob the operator of its initially developed power or to slow down valve response. Operation is fast, positive and fully reliable every time.

Designed specifically for gate valve installations, Shafer linear operators feature a special double latch device for locking the valve into any desired position. It works like this: Gas pressure forces fluid into the operator through one latch. The fluid then flows back to the receiving tank through the other latch which had been opened previously by hydraulic pressure forcing the poppet away from the seat. When the pressure is removed, both latches close, retaining the fluid in the operator and locking the valve firmly in position.

PERFORMANCE CHARACTERISTICS

• Operated remotely or automatically by a variety of sensory and control devices • Can be furnished with a wide variety of high or low pressure pilot control mechanisms for almost any safety or other operation requirement • Actuator system will automatically close valves when a line break occurs, blow down an entire station if fire danger is imminent or function in complex storage and distribution systems

VALVE FULLY OPEN

VALVE CLOSING

VALVE FULLY CLOSED

Available for Weather-Proof, Submersible, Explosion-Proof or Nuclear Containment Service.

Limitorque Electrical Control Options

Type SB

(Single Compensating)

- Belleville spring assembly.
- Stem nut extension and tapered roller bearing rotate with stem nut and transmit thrust to spring pack.
- Indicators show amount of spring compression as standard on SB/SBD 0 and larger.

Type SBD (Double Compensating)

- Belleville spring assembly.
- Stem nut extension and dual tapered roller bearings rotate with stem nut and transmit thrust to spring pack.
- Indicators show amount of spring compression as standard on SB/SBD 0 and larger.

E-2.34 ACTUATORS

E-3 SPECIFIC COMPONENTS

The following section contains supplemental descriptions of the Equipment Staging Diagrams and Control System Diagrams of Section 2.3, "System Characterizaton". Each of the components listed on the ESD's which make up the various control systems is dealt with individually. A short description and purpose paragraph supplements the more general descriptions given in Section E-1 of this Appendix. The following are also considered for each component:

- Reliability Spill Risk
- Potential Failure Modes
- Effects of Failure
- Alternate Procedures

Standards and Regulations

The criteria for selecting components should follow the established industry standards and Federal regulations listed below. This is not to be considered an exhaustive list since it is limited to normal applications on a Deepwater Port; any specialized or unusual equipment may require other standards or regulations.

Code of Federal Regulations

- 33 C.F.R. 149, Subpart C. Pollution Prevention Equipment
- 33 C.F.R. 150, Subpart D. Oil Transfer Operations
- 46 C.F.R. 111.80, Special Requirements for Certain Locations and Systems
- 46 C.F.R. 111.80, Subpart 1. Application
- 46 C.F.R. 111.80, Subpart 5. Wiring Methods and Materials for Hazardous Locations

46 C.F.R. - 111.80, Subpart 8. Intrinsically Safe Systems 49 C.F.R. - 195, Transportation of Liquids by Pipelines

Industry Standards

ANSI B31.4 - Liquid Petroleum Transportation Piping Systems

ANSI Bl6.5 - Steel Pipe Flanges and Fittings

API RP500 - Electrical Installations at Petroleum Facilities

API RP550 - Manual on Installation of Refinery Instruments and Control Systems, Part I and II

API 2534 - Measurement of Liquid Hydrocarbons by Turbine Meter Systems

Maintenance

The analysis of the data collected and contained in this study has assumed that an adequate maintenance program would be followed. It is important and essential to the smooth operation of any Deepwater Port that it be properly maintained. With regard to the components that make up the control systems described in this report, maintenance, for the most part, would mean replacement of faulty or failed components. A program of preventative maintenance involving periodic inspection of components can go a long way to preventing unnecessary shutdown and interruptions.

11000 <u>DISCHARGE OIL FROM TANKER</u> (Fig. 2-4) 11100 Line Up Tanker Valve System (Fig. 2-5)

The control systems which monitor and control the operation of the valves can be either pneumatic, hydraulic, or electric. The latter appears to be the exception due to the hazardous nature of the cargo and the attendant risk of electrical sparks.

Whether the system is pneumatically or hydraulically actuated is immaterial since the basic principle and equipment are similar. Generally, the opening and closing of the valves is initiated from push buttons and/or levers in the remote control room where all controls and monitors are concentrated on a schematic type control panel or desk.

11101 <u>Valve Line Up Monitor</u> 11101/01 Remote Indicator

Description and Purpose - These panel mounted indicators tell the operator whether a valve is open or closed. They may be an electrically operated light, or a target type, whereby a disc is mechanically moved by a feedback pressure from the valve. In the case of the electric light, an interposing pressure sensitive switch is necessary to convert the pneumatic or hydraulic feedback signal from the valve actuator.

Reliability Spill Risk - The failure of a remote indicator could mislead an operator into believing a valve is closed when it is open or vice versa. Oil would then be routed incorrectly to a full tank or unconnected manifold and result in a spill.

<u>Potential Failure Modes</u> - Failure of a lamp may be fairly frequent but easily detected since most panels have a built in lamp testing feature. Failure of the pressure mechanical type of indicator would be caused by leaks in the hydraulic system.

Effects of Failure - No chain reaction whereby other equipment may be affected is anticipated.

<u>Alternate Procedure</u> - Reference to the local indicators built into the valve actuator will provide the required information.

11101/02 Local Indicator

Description and Purpose - Valve control systems which do not include a feedback system can be visually checked for position. Usually, a rod fitted to the main stem of the valve will indicate this, or if the valve is not of the rising stem type, an indicator on the actuator will give the required information. This information will be communicated to the central control room, usually over radio (walkie talkie).

11102 <u>Valve Line Up Controller</u> 11102/01 <u>Push Button Remote</u>

Description and Purpose - On tankers, this remote control can take the form of an electrical push button operating a hydraulic signal through a solenoid valve, or it can be a lever which directly operates a hydraulic or pneumatic valve. The purpose of these controls is to open or close the valves allowing oil from the various ship's tanks to

40F

AD A060144

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A flow through the pump suction and discharge to the ship's manifold on deck.

Reliability Spill Risk - If there is no remote indication of the valve position, the failure of the remote control to initiate the closing or opening of a valve could lead the operator into incorrectly believing a valve has been actuated. The result could be incorrectly routed oil, possibly to an unconnected manifold.

<u>Potential Failure Modes</u> - The most common mode of failure of push buttons is the wire connections becoming disconnected. A secondary type of failure would be the wearing out of mechanically moving parts inside the switch.

Failure of hydraulic or pneumatic valves would be the wearing of seals and "O" rings causing the valve to malfunction.

Effects of Failure - If not resulting in an obvious spill, the effects of failure would become apparent when pressure at the pump suction fell below an acceptable level. A time delay would be the most common effect of failure.

<u>Alternate Procedure</u> - With the failure of the remote controls, the alternative would be for the operator to go to the particular valve in question and initiate the opening or closing locally.

11102/02 Manual Local

<u>Description and Purpose</u> - This item is the hand wheel or lever provided on the valve to manually open or close it. With large-size valves, gearing is provided to reduce the

effort required, but this increases the number of turns of the hand wheel to open or close the valve.

Hydraulically operated valves will require the pumping of a lever in order to provide the required pressure to move the valve.

Reliability Spill Risk - Since this is a mechanical operation which takes place at the valve, no spill risk is considered.

<u>Potential Failure Modes</u> - For hand wheels, the most common failure would be the seizing of gears. For hydraulic actuators, the failure of seals would be most common.

<u>Effects of Failure</u> - Failures described above would result in a time delay, while the cause is determined and the situation corrected and brought back to normal.

<u>Alternate Procedure</u> - No alternative procedure for the local operation of the valve is possible.

11102/03 Push Button Local

<u>Description and Purpose</u> - It is unlikely that electric actuators would be employed on tankers carrying hazardous cargoes so the local push button considered would mechanically actuate a hydraulic or pneumatic valve either on the actuator or mounted adjacent to it. The purpose is to operate the valve from a local position in the event of the failure or absence of any remote control.

Reliability Spill Risk - No spill risk is envisaged on failure, unless the valve is to be closed in an emergency,

then the resorting to manual closing would take longer and the chances of a greater spill are increased.

<u>Potential Failure Modes</u> - Failures would be caused by the leaking seals and worn out mechanical parts.

Effects of Failure - As described above, failures would only result in a time delay, while the situation is remedied or the valve operated manually.

<u>Alternate Procedure</u> - The only alternative is to operate the valve manually.

11102/04 Valve Actuator

Description and Purpose - Hydraulically or pneumatically operated valves are installed on the latest classes of VLCCs and ULCCs. The actuators for rising stem types of gate valves employ a simple cylinder whereby the stem is integral with the piston and pressure on one side or the other will move the valve. Those valves requiring a rotational action have actuators either with opposing cylinders acting on a yoke, or hydraulic vane type motors connected directly to the stem of the valve.

Reliability Spill Risk - The failure of a valve actuator could prevent the closure of a valve and in the unlikely event of nothing else being able to prevent it (pump stopping, closing of other valves in the system), a spill would occur.

<u>Potential Failure Modes</u> - Failure of a valve actuator would most likely be caused by faulty seals or worn parts leaking hydraulic fluid.

Alternate Procedure - If the valve is fitted with a hand wheel, this can be used as an alternate method of operation. However, those fitted with a local manual pump would come up against the same actuator fault of leaking seals, etc.

11200 Move Oil Through Tanker System (Fig. 2-6)

11210 Start Pumping

Following the line up of the valves and tanks on the tanker, the request to start pumping must come from the terminal operators who have lined up the system to route the oil to the onshore storage.

Pump room operators rely a great deal on pressure indicators to tell them how the pump(s) is performing: These indicators, together with the known head (level) in the suction tank, tell them the approximate rate of pumping.

11211 Pressure Monitor
11211/01 Pressure Indicator

Description and Purpose - Pressure gauges are probably the most common instrument used on the tanker. They are an important tool and provide a variety of information to the operators.

Reliability Spill Risk - Most gauges, if not regularly maintained and calibrated, can give false readings and mislead operators. Although not a part of a control loop, they do serve an essential function in the movement of oil through pipelines and their malfunction could result in unnecessary action being taken.

Potential Failure Modes - The usual cause of failure involves the gauge being subjected to pressures greater than those it was designed for. This has the effect of straining the Bourdon Tube and results in the instrument giving false readings. Other causes of failure would be the effects of corrosion on the gearing and constant pressure fluctuations, as on a pump discharge, which will rapidly wear out the internal moving parts.

Effects of Failure - No chain reaction on other controls will take place.

<u>Alternate Procedures</u> - Redundant gauges could be installed at critical locations to increase the overall reliability.

11211/02 Pressure Transmitter

Description and Purpose - Pressure transmitters measure the varying pressures in a piping system and transform it into a signal, either pneumatic or electric, which can then be "transmitted" to a remote receiving instrument. Briefly, the principle of operation is the small movement produced in a sealed capsule or Bourdon Tube by the pressure being measured, this in turn causes movement of a force balance beam which acts on a system of bellows and nozzles for a pneumatic output or on a moving iron for an electrical signal output.

Reliability Spill Risk - False signals can be transmitted by this instrument if it malfunctions. Often it is the measuring part of a control loop and can therefore have an adverse affect on a regulating device. This type of instrument is of a proven design and has been used for a number of years. Its reliability is considered to be good.

Potential Failure Modes - Although most of these instruments are fitted with an over pressure protection device, this will only withstand in the order of 150 percent of the maximum of its design range. Failure therefore could be caused by hammer shocks and surges in the piping system. Corrosion of moving parts will also cause failure if the parts are not well maintained.

Effects of Failure - The pressure transmitter will be either a part of a control loop, or will provide the signal for a remote indicator or recorder. In the former case, the consequences of failure would have a more serious effect - for example, causing a controller to adjust pump speed either up or down, dependent upon the malfunction. In the latter case, an operator could be misled into taking incorrect action.

Alternate Procedure - In the event of failure, the alternative procedure is to manually read pressures and make the necessary adjustments by hand.

11211/03 Pressure Recorder

Description and Purpose - Usually mounted on a central control panel, this instrument receives the signal from the transmitter and records it on a time-base chart. The chart is driven by either a clockwork mechanism, or an electric synchronous motor. Two basic types of recorders are on the market, those having a circular chart, and those having a strip chart which is more compact and does not require frequent chart changing.

The mechanism which received the transmitted signal and drives the pen is a small pressure sensitive bellows or

helical wound tube for the pneumatic types, or an electrically amplified ammeter for the electronic types.

Reliability Spill Risk - The reliability of a recorder is good if properly maintained. Since they do not serve as a part of a control loop, then a failure would only affect the record itself.

<u>Potential Failure Modes</u> - Failure would be confined to a faulty chart drive or a malfunctioning pen drive.

Effects of Failure - No other controls would be affected by failure. Only incorrect records would result.

<u>Alternatve Procedure</u> - No alternate procedure would be required, unless the failure threatened to be long term, then manual recording would have to be done.

11211/04 Pressure Switch

Description and Purpose - Basically, this presusre instrument works on the same principle as a pressure transmitter whereby the movement of a bellows or capsule operates a switch. Different pressures require different elements. However, each has its own range and the set point or trip point can be adjusted within that range.

The purpose of the pressure switch is to draw the attention of operating personnel to the fact that a predetermined pressure has been reached.

Reliability Spill Risk - These instruments are considered fairly reliable. However, if one was to fail, it would not

initiate the appropriate function or alarm. Depending upon the application, the consequences of this could range from a high pressure in the system, to the cavitation of and damage to a pump. The risk of spill is minimal since the only source of pressure are the centrifugal pumps which usually have a shut off pressure well below the maximum for the piping, and fittings in the system.

Potential Failure Modes - As with any pressure instrument, the measuring element is subjected to fluctuations which eventually will fatigue the metal. This together with corrosion is the most common cause of failure.

Effects of Failure - By not alerting personnel to a potential pressure build up, the effects could be overpressurization of other equipment. No chain reaction within a control loop is envisaged.

Alternate Procedures - Immediate replacement by another switch would be the most effective alternate procedure.

11211/05 Alarm

Description and Purpose - The alarm in question would probably be one in a bank of alarms called an alarm annunciator. These would be a series of engraved translucent windows, back-lighted in the event of an alarm condition. The light will flash and an audible signal such as a bell or buzzer would sound. The physical acknowledgement of the alarm by pressing an appropriate button will silence the audible signal and steady the light. The light will not extinguish until the alarm condition has been corrected.

Reliability Spill Risk - The reliability of these annunciators is considered good apart from the life of the lamps. A test button is provided so that periodic tests can be carried out to determine if any lamps have failed.

<u>Potential Failure Modes</u> - As mentioned, lamps have a limited life. These, together with the occasional relay failure, are the potential sources of failure.

Effects of Failure - The failure of an alarm to call the attention of an operator will mean a delay in rectifying the cause of the alarm.

<u>Alternate Procedure</u> - No alternative procedures are envisaged since failure goes undetected.

11212 Flow Rate Controller

The most common type of pump driver employed on VLCCs is the steam turbine. This type of driver has the advantage of variable speeds, thus being able to control the rate of pumping over a fairly large range. Only those controls associated with the pump and its driver are considered here.

11212/01 Speed Indicator

<u>Description and Purpose</u> - A dial type tachometer is driven either directly from the drive shaft of gear box or from an electrical impulse generated by a transmitter mounted on the drive shaft.

This instrument would be calibrated in revolutions per minute related to the speed of the pump.

Reliability Spill Risk - No spill risk is envisaged and the reliability is considered good

<u>Potential Failure Modes</u> - With the mechanical drive type of instrument, failure would most likely be the drive cable. The electrical type could suffer from dirty contacts in a pump room environment.

Effects of Failure - Lack of speed indication would of course, deprive the operator of a means of estimating the quantity of oil being pumped.

<u>Alternate Procedure</u> - A reduction in speed, while a repair is affected, would be the most acceptable alternative procedure.

11212/02 Speed Regulator

<u>Description and Purpose</u> - A globe-type valve in the steam supply line to the turbine would be the normal method of regulating the speed.

Potential Failure Mode - Leaking glands would be the most common mode of failure. A valve could fail in the fully-open position in the extreme case of a mechanical breakage.

Effects of Failure - A badly leaking gland would involve the shutting down of the operation unless a bypass system is installed. If a valve failed in the fully open position, overspeeding of the pump would result.

<u>Alternate Procedure</u> - A bypass is an obvious alternate, if installed; otherwise, no alternate procedure is possible.

11213 Purp Protection Devices

As with any large and expensive installation, the minimal cost of protection devices is well worth the investment.

11213/01 Overspeed Trip

<u>Description and Purpose</u> - The obvious purpose of this device is to protect the pump and its driver from excessive speed. A ball and spring centrifugal element in the governor gives the signal which shuts down the steam supply.

Reliability Spill Risk - This instrument must be a reliable type. However, its failure would cause damage to the pump and/or its driver. The overspeeding of the pump would increase the quantity of oil being moved. This together with coincidental states of tank filling and booster pumping could result in a spill.

<u>Potential Failure Mode</u> ~ A sticking governor caused by dirt combined with old oil and grease is a potential source of failure. Other sources of potential failure are damage or corroded mechanical linkage.

Effects of Failure - If other protective devices failed to effect a shutdown, the failure of the overspeed switch could result in serious impeller and bearing damage to both the pump and the steam turbine.

Alternate Procedure - The manual shutting down of the system would be the most effective alternative procedure.

11213/02 Temperature Switch

Description and Purpose - A flexible capillary tube, liquid or gas filled, transmits the signal from the temperature sensing bulb at the pump to the remote switch. The switch is actuated by the movement caused by the expanding gas or liquid in the thermal system. Adjustment of the set point within a given range is generally a feature of this instrument.

Because of the nature of the equipment it is to protect, this instrument should be mounted away from any vibrations.

Reliability Spill Risk - If failure were to occur, then the pump and/or its driver could suffer damage - a spill local to the pump could happen.

<u>Potential Failure Mode</u> - The constant vibrations inherent in the pumping installation could fracture the capillary tubing. If this were to happen, the switch would not be initiated in the event of high temperature.

Effects of Failure - High temperature in the pumping system would, in the event of this instrument failure, result in damage to the pump and any adjacent piping equipment.

<u>Alternate Procedure</u> - Only where it is obvious to an operator that temperatures are excessive, can the alternative manual shutdown be initiated.

11213/03 Low Lube Pressure Trip

Description and Purpose - For the description of this instru-

ment, refer to 11211/04. The purpose of this application is to protect the pump and its driver from lack of lubrication. The pressure switch continuously monitors the lube oil distribution system to the bearings on the pump and driver.

Reliability Spill Risk - Good reliability must be a factor in the selection of this instrument. The possibility of a spill is minimal with the failure of this instrument.

<u>Potential Failure Modes</u> - Blocked pressure lines to the instrument could cause the nondetection of low pressure.

Effects of Failure - The effects of the failure of this switch would not be immediately apparent. Eventually, the bearings of the pump and driver would seize and cause considerable damage.

<u>Alternate Procedure</u> - There is no alternative procedure apart from manual lubrication and shutdown if the fault is visually detected.

11215/05 Alarm

Refer to 11211/05.

11220 Switch Tanks on Tanker

The class of tanker being considered in this study would have a central control room where tank levels, valve and pump controls would be displayed. It is from this control point that operators would switch tanks to the suction of the cargo pumps. The continuous monitoring and display

of levels in each of the ship's tanks informs the operator when to change from one tank to another. This would be done by remotely opening and closing the appropriate tank valves.

11221 <u>Tank Level Monitor</u> 11221/01 Level Indicator

<u>Description and Purpose</u> - Float type level measurement is used in ship's tanks but these are susceptible to fouling with crude sludge which affects the buoyancy of the float.

A further, less expensive but more reliable method is the "Metri-Tape." This takes the form of a hollow plastic tape attached to the side of the tank. As the level rises, the tape is squeezed and two wires running the length of the tape make contact. A simple resistance measuring circuit transmits the level to remote indicators in the control room.

The most widely used system of level measurement in ship's tanks works on the pneumatic back pressure principle. Briefly, the pressure required to pump air into the bottom of a tank having liquid in it can be related to the level of liquid in that tank. However, since crude oils vary in specific gravity some method of compensation is employed. Two air pressure points in the tank are used with a known distance between them. The difference in the pressures together with the known distance between them, gives a specific gravity correction factor. The back pressure transmitted to the control room indicates the tank levels on panel-mounted indicators.

Reliability Spill Risk - Since this study deals only with the offloading of oil from a tanker and therefore, the emptying of tanks, there can be no spill risk attached to this instrument at the tanker itself.

<u>Potential Failure Mode</u> - Failure of the pneumatic feed-back system due to tubing corrosion and fracture would be the main cause of malfunction.

Effects of Failure - The operator would be deprived of remote indication of the levels in the tank(s). In most cases, the remote readings would indicate zero; therefore, a failure would be obvious.

<u>Alternate Procedure</u> - It is common to employ more than one of the level measuring devices described above. If all else fails, resort to measurement by manual dipping.

11221/02 Manual Dipping

<u>Description and Purpose</u> - This method of level measurement calls for hand dipping of the tanks through hatches in the ship's deck, sometimes referred to as ullaging. The readings are relayed over walkie-talkie radio on the control room.

11.222 Valve Line Up Controller

The equipment involved in this procedure is the same as that discussed under 11102 and reference should be made to that section.

11223 Valve Line Up Monitor

The equipment involved in this procedure is the same as that discussed under 11101 and reference should be made to that section.

11300 Shutdown Tanker System (Fig. 2-7)

11310 Stop Pumping

The equipment associated with this procedure is the same as that discussed under 11210 and reference should be made to that section.

11311 Pressure Monitor

Refer to 11211.

11312 Flow Rate Controller

Refer to 11212.

11313 Pump Protection Devices

Refer to 11213.

11320 Displace Oil from Hoses/Loading Arms

To avoid spilling oil on the ship's deck when the hoses or loading arms are disconnected from the ship's manifold, a procedure of drainage and/or blanking-off must be followed. The displacement of oil in hoses under normal conditions is not required. Refer to 33CFR 150.421.

11321 <u>Pressure Monitor</u> 11321/01 <u>Pressure Indicator</u>

This instrument is identical to that described under section 11211/01. However, the purpose of this pressure gauge is as follows. This gauge will indicate the absence of positive pressure in the ship's manifold, and therefore, that it is safe to disconnect the manifold.

11322 <u>Hose/Loading Arm Drain</u> 11322/01 <u>Manual Procedure</u>

Following the completion of cargo discharge the oil in the ship's manifold is drained back through the ship's piping. Where the DWP is a Sea Island with loading arms these are also allowed to drain back through the ship's piping. In the case of the SPM type of DWP, the value at the end of each hose is closed before disconnection from the manifold takes place. After disconnecting an SPM hose from the tanker manifold, a blank flange is bolted on to the end of the hose. A small "telltale" valve on the manifold indicates when drainage is completed.

11330 Emergency Pump Shutdown System

In the event of an emergency, rapid shutdown of the ship's pumps may be necessary. A system is usually installed which will shut off the steam supply to the turbines. Switches positioned at the ship's manifold and in the control room will actuate a solenoid valve which in turn will close a valve in the steam supply line to the turbines.

11330/01 Midship's Remote Pump Shutdown Switch

Description and Purpose - Strategically positioned at the

manifold for easy access, but also protected against the environment and accidental operation, this switch would remotely close the turbine steam supply valve.

Reliability Spill Risk - The reliability of this control must be good, otherwise failure to initiate a shutdown could definitely perpetuate a spill or increase the risk of one.

<u>Potential Failure Mode</u> - Corrosion or fracture of pneumatic tubing would be the main causes of failure. However, a built in fail safe feature would be an asset.

Effect of Failure - Delay in initiation of pump shutdown.

Alternate Procedure - The only safe alternative, depending upon the degree of the emergency would be to manually shut down the pumping system in the pump room. Another alternative would be to close the manifold valves and rely on the protection devices to effect the shut down of the pumps. This method carries with it the risk of equipment damage.

11330/02 Control Room remote Pump Shutdown Switch

<u>Description and Purpose</u> - This control is the same as that described under 11330/01 except that it is mounted on the control panel in the control room.

11340 Close Tanker Valves

Refer to 11100.

11341 Valve Line Up Monitor

11341/01 Remote Indicator

Refer to 11101/01.

11341/02 Local Indicator

Refer to 11101/02.

11342 Valve Line Up Controller

11342/01 Push Button Remote

Refer to 11102/01.

11342/02 Manual Local

Refer to 11102/02.

11342/03 Push Button Local

Refer to 11102/03.

11342/04 Valve Actuator

Refer to 11102/04.

11400 Tanker Communication System (Fig. 2-8)

Communications within the tanker during operations, i.e., between personnel on deck and those in the control room pump room is by portable two-way UHF-FM radios. Aboard ship the sound-powered telephone links the various control and operating rooms (Refer to CRF 46 Part 113.30).

Communications between the tanker and the deepwater port during approach would be over a VHF-FM radio system. During docking and unloading operations, two-way portable FM radios are used, operating on a different channel from that used on the tanker.

11410 Radio

11410/01 VHF-FM (Marine)

Description and Purpose - Communications equipment and facilities on a deepwater port must meet the requirements of 47 CFR 81 and 83 and each portable means of communication used must be certified under 46 CFR 111.30-5 for operation in a Group D, Class 1, Division 1, atmosphere.

The purpose of the VHF-FM is to communicate the tankers arrival within the stipulated vicinity of the DWP and to arrange arrival and docking schedules.

Reliability Spill Risk - These radios have a high degree of reliability within their design range. No risk of a spill on failure since this system is not used for transfer operations.

Potential Failure Mode - Component and circuitry failure are the most common mode of failure.

Effects of Failure - Loss of communications.

Alternate Procedure - A backup short range radio when within range would be the alternative procedure to follow.

11410/02 Walkie-Talkie

Description and Purpose - Frequency modulated UHF-FM, short range, two-way transceivers which are hand held, usually having two channel selection. Their purpose is communication between the personnel on deck and deck officers during preparations for unloading.

Reliability Spill Risk - High reliability, if not abused. No direct spill risk involved; indirect risk of spill through loss of communications.

Potential Failure Mode - Components and circuitry failure are most common. Batteries running down.

Effects of Failure - Loss of local communications.

<u>Alternate Procedure</u> - Replacement of faulty set or replacement of batteries.

11420 <u>Voice</u>

11420/01 Sound Powered Telephone

Description and Purpose - Located at strategic location throughout the tanker, this system provides the basic communication system. The advantage of this system is that no power source is required. Apart from the call-up signal which utilizes a hand-operated generator, the system is sound powered (Refer to CFR 46 Part 113.30).

Reliability Spill Risk - Good reliability if of first class quality. Loss of communications could result in indirect risk of oil spill.

Potential Failure Mode - Component failure, particularly the hand generator for call-up.

Effects of Failure - Loss of local communications.

<u>Alternate Procedure</u> - Resort to walkie-talkie radio communications.

12000 MOVE OIL THROUGH OFFSHORE PIPELINE (Figs. 2-9 & 2-10)
12100 Line-Up Offshore System (Fig. 2-11)

Although the control systems associated with manipulation of Hoses, Loading Arms, and Corrosion Inhibition are not directly related to the control of the Oil Transfer System, they are discussed here as a matter of interest so that a complete and overall view of a Deepwater Port and its major components is maintained.

Hoses and Loading Arms - An exhaustive search has revealed that it is not normal to have controls on the hoses connecting an S.P.M. to a tanker manifold. The butterfly valve installed at the manifold end of hoses is for isolation when disconnected and it does not play a part in the control of oil transfer.

The fully articulated loading arms installed on modern terminals are hydraulically driven by a system of pistons, cylinders, rams and cables. Three movements of the arms are powered by these systems:

- a) Slewing of the complete arm
- b) Raising and lowering of the inboard section
- c) Raising and lowering of the outboard section

The controls which first of all select the arm to be maneuvered and then perform the other movements are concentrated on a panel usually in a small building adjacent to the bank or arms. Owing to the vast freeboard of the tankers, it is common to find a set of duplicate controls mounted on a pendant box located at the end of at least two of the arms, the procedure being to maneuver the first arm to the ship's rail from the control panel on the platform and then perform the rest of the operation from the remote pendant control on the ship's deck.

To save time, a Quick Connect/Disconnect Coupling (Q.C.D.C.) may be fitted to the end of each arm. This eliminates

the time involved in making bolted connections. This coupling is also hydraulically operated from the same control locations as the arms.

Each arm is fitted with a set of "Drift Switches" which in the event of ship movement beyond certain limits, will initiate alarms. (Fig. 2-12)

It should be noted that all loading arms are fully balanced by counterweights in an EMPTY condition and under no circumstances must attempts be made to operate them while full or partially full of oil.

Corrosion Inhibition - Corrosion Inhibition in large crude oil pipelines is not considered normal; however, where quantities of water may be expected to be mixed with crude oil have a high H₂S content, internal corrosion protection of the pipeline may be considered necessary. Two methods are employed using an amine base compound which gives a chemical protective barrier coating to the inside surface of the pipe. The first method is to introduce a high concentration slug, usually between "pigs," into the pipeline at periodic intervals. The second is to continuously inject a weaker solution of 10 to 50 ppm of the inhibitor during flowing conditions.

12110 Hose/Loading Arm Connection to Tanker (Fig. 2-12)

In the case of the connection of hoses from an S.P.M. to a tanker, the hoses will be full from the pervious operation. The procedure is for launches to bring the floating hoses along side the tanker and assist in the handling of the hoses to the ship's manifold. Prior to the unlocking of the Loading Arms, checks must be made to ensure they are empty. A low range pressure gauge at the base of each arm will indicate the level of oil, of any, in the loading arm. It should also be an operational procedure to open the drain valves at each arm just as a safeguard against a faulty pressure gauge.

12111 Oil In Hose/Loading Arm Detector

12111/01 Pressure Indicator

<u>Description and Purpose</u> - This instrument is identical to that described under Section 11211/01, however, the purpose of this gauge is as follows:

The following applies to loading arms only, hoses are not fitted with pressure gauges. Its low range is specifically selected to reflect the level of oil in the loading arm. During normal pumping operations, this gauge should be isolated to avoid overpressure damage.

12112 Hose/Loading Arm Drain

12112/01 Manual Procedure

Hoses are not normally drained of oil except prior to a tropical storm (Refer to Fed. Reg. 33. 150.421). The following applies to Loading Arms only.

Operators must manually open valves at the base of each loading arm prior to unlocking the arm stowing mechansim. Not until all oil has been drained from the arm must the drain valve be closed.

12120 Line-Up Valves

The large operational valves found on platform complexes are usually electric motor operated. This operator, generally called an actuator, is fitted to all valves of 12 inches and over.

12121 <u>Valve Line-Up Controller</u>

12121/01 Push Button Remote

Description and Purpose - This control would be located in the central control room of the platform complex. It would be mounted on a control panel which displays a mimic diagram of the oil transfer system and would constitute at least two illuminated push buttons for the basic open and close commands to the valve.

Feedback from the actuator limit switches illuminates the switches in a sequence indicating fully closed, open or with both buttons illuminated while between the two limits.

Reliability Spill Risk - The reliability of this remote control is generally good and with the feedback indication of the valve position, no risk of a spill is considered.

<u>Potential Failure Modes</u> - Wire connections to the switch are the most common mode of failure. Lamps also have a limited life and must be considered as a mode of failure.

Effects of Failure - Misleading information resulting from a failure could cause oil to be routed incorrectly.

<u>Alternate Procedure</u> - Failure of remote controls would call for operating the valve locally.

12121/02 Push Button Local

<u>Description and Purpose</u> - Switches are built into the valve actuator which initiate the opening, closing and stopping of the valve. Usually, these controls are of a sturdy manufacture and sealed against the elements.

Reliability Spill Risk - Under normal operations no spill risk is envisaged on failure. If the valve is to be closed in an emergency, then resorting to manual closing would take longer and the spill risk would be increased.

<u>Potential Failure Modes</u> - Failure would be through lack of use, where moving parts would seize due to corrosion.

<u>Effects of Failure</u> - As described above, failures would only result in a time delay while the situation is remedied or the valve is operated manually.

12121/03 Manual Local

<u>Description and Purpose</u> - This item is the hand wheel provided on the valve to manually open or close it. With large size valves, gearing is provided to reduce the effort required.

Reliability Spill Risk - Since this is a mechanical operation which takes place at the valve, no spill risk is considered.

<u>Potential Failure Modes</u> - The most common failure would be the seizing of gears and other moving parts.

<u>Effects of Failure</u> - Failures described above would result in a time delay while the cause is determined and the situation corrected and brought back to normal.

<u>Alternate Procedure</u> - No alternative procedure for the closing of a valve is possible, if both the actuator and hand wheel are inoperative.

12121/04 Valve Actuator

<u>Description and Purpose</u> - The actuator varies in size and complexity according to the size and function of the valve. Basically, it consists of an electric motor, a gearing system, limit switches and local push button controls. All electrical parts are housed in a explosion proof enclosure in accordance with CRF 46.111.80.

The function of the actuator is to open and close a valve.

Reliability Spill Risk - None during line-up.

<u>Potential Failure Modes</u> - Burnt out motors are a common failure caused by limit switch failure or by seized gearing or valve disc.

Effects of Failure - Failure of an actuator would result in a time delay in operating a valve by hand.

<u>Alternatice Procedure</u> - The only alternative is to operate the valve manually.

12121/05 Limit Switches

Description and Purpose - Limit switches can take many forms. They are driven from the gearing of the actuator and can be set to make or break contacts at any time during the travel of the valve. Limit switches ensure that the valve actuator stops when the limits of open or close have been reached. They also provide feedback for remote indication of valve positions and the switching necessary for interlocks.

Reliability Spill Risk - Fairly serious consequences could result with the failure of limit switches and mis-routing of oil could end in a spill.

<u>Potential Failure Modes</u> - Dirty contacts or the effects of corrosion are the main causes of failure.

Effects of Failure - Wrong information fed back to an operator or the failure to effect an interlock could have a chain reaction resulting in the misrouting of oil.

<u>Alternate Procedure</u> - Depending upon the effects of failure, various alternate procedures are possible. Primarily, these would involve the closing of other valves in the piping system.

12122 <u>Valve Line-Up Monitor</u> 12122/01 Remote Indicator

<u>Description and Purpose</u> - The lamps incorporated in the Push Button Remote (11222/01) are the remote indication of the valve position.

Reliability Spill Risk - Although limited in life, the failure of a lamp would result in minimal risk of an oil spill.

<u>Potential Failure Modes</u> - The failure of the lamp itself is the most common cause. Secondary to this would be the wire connections to the lampholder

<u>Effects of Failure</u> - Failure may create a short delay in operations while it was determined by the lamp test button that the lamp had in fact failed

Alternate Procedure - A check of the local indicators would soon confirm the valve position.

12122/02 Local Indicator

Description and Purpose - Valve actuators incorporate a local position indicator. This indicator is driven by the gearing in the actuator. On valves employing a rising stem, a rod fitted to the top of the stem gives a positive indication of the valve state.

Reliability Spill Risk - None during line-up.

Potential Failure Modes - Mechanical breakage is the only potential failure mode envisaged.

Effects of Failure - Failure of an indicator would have little effect other than a short delay while the valve position is determined.

<u>Alternate Procedure</u> - Remote indication on the central panel will give the valve position.

12200 12210	Move Oil Through Offshore System (Fig. 2-13)
	Establish Flow	

12211 Pressure Monitor (Fig. 2-14)

12211/01 Pressure Indicator

This instrument is identical to that described under Section 11211/01.

12211/02 Pressure Transmitter

This instrument is identical to that described under Section 11211/02.

12211/03 Pressure Recorder

This instrument is identical to that described under Section 11211/03.

12211/04 Alarm

This instrument is identical to that described under Section 11211/05.

12212 <u>Temperature Monitor</u> 12212/01 <u>Temperature Indicator</u>

<u>Description and Purpose</u> - This is a local instrument inserted into a pocket in the pipeline which displays the temperature of the pipe contents. Usually a mercury-insteel type is used where the expansion of the mercury in a stainless steel bulb drives the pointer mechanism. Other types employ the principle of variable electrical resistance with temperature change.

Reliability Spill Risk - Temperature indicators are basically very reliable. No risk of an oil spill on failure.

<u>Potential Failure Modes</u> - Corrosion in the pointer driving mechanism and glass breakage are the most frequent failure modes.

Effects of Failure - Since it is not an element in a control loop, the effect of failure is inconsequential.

Alternate Procedure - Replacement of the faulty instrument.

12213 Flow Rate Monitor (Fig. 2-15)

The monitoring of the flow rate is important to operators on facilities without metering. In this case, the flow rate measuring and controlling instruments provide the only means of knowing the ship's pumping rate, and of exercising some degree of control over it. Without it, the terminal is somewhat at the mercy of the ship's personnel who are not aware of the platform and onshore conditions.

12213/01 Measuring Devices

The measuring devices or primary elements for flow measurements are fully described in the introductory section of this appendix. This application would normally employ an orifice plate.

Reliability Spill Risk - The reliability of the orifice plate is excellent; there is little that can go wrong with it.

<u>Potential Failure Modes</u> - Sludge blockage of the pressure taps in orifice flanges.

Effects of Failure - The potential failure modes described above would result in incorrect flow measurement and control.

<u>Alternate Procedure</u> - Determination and correction of fault by reaming pressure taps.

12214 Flow Rate Controller 12214/01 Flow Indicator

<u>Description and Purpose</u> - This is a remote panel mounted instrument receiving an electrical signal from the flow transmitter.

Reliability Spill Risk - A circuitry failure such as an electrical short in wiring and solid state devices usually results in a malfunction. No spill risk.

<u>Potential Failure Modes</u> - As described in Reliability above, circuitry failure would be most common.

<u>Effects of Failure</u> - Lack of true flow rate indications. If not obviously faulty, operator could be mislead into taking corrective action.

<u>Alternate Procedure</u> - Request ship's estimate of pumping rate and check tank filling rate over a known period of time.

12214/02 Flow Controller

<u>Description and Purpose</u> - This panel mounted electronic instrument receives the signal from the transmitter and compares it with a preset "set-point" and produces a corrective signal to the flow regulator.

Reliability Spill Risk - Again, a circuitry or component failure would result in a malfuction. These instruments usually have built in circuitry which will cause it to fail safe, so no risk of spill exists.

Potential Failure Modes - Circuitry failure would be most common.

Effects of Failure - The fail safe feature would prevent any serious effects and also calls the attention of operators to the situation.

<u>Alternate Procedure</u> - Replacement of whole instrument or component card. Another alternative is to switch to manual control.

12214/03 Flow Transmitter

<u>Description and Purpose</u> - In the case of the orifice plate, the transmitter converts the pressure differential to an electrical signal which it transmits to the indicator and controller in the control panel.

The sonic transmitter converts the speed of the sonic signal into an electrical signal which it also transmits to the panel mounted instruments.

Both these transmitters are field mounted and their enclosure be explosion proof in accordance with CRF 46.111.80.

Reliability Spill Risk - Electric circuitry failure can be common but with the selection of good quality instruments reliability should increase. No spill risk envisaged.

Potential Failure Modes - Circuitry failure would be most common.

Effects of Failure - Faulty signals to the controller would result; in turn this could cause faulty flow regulation.

<u>Alternate Procedure</u> - Replacement of the whole instrument would result in a short reduction of flow rate. While this is done, manual control can be employed.

12214/04 Flow Regulator

<u>Description and Purpose</u> - This component in the flow control loop is the valve in the pipeline which receives the corrective signal from the controller and regulates the flow by either opening or closing. In large pipelines, the conventional type of pneumatically actuated globe valve cannot be used. These are limited in size. Ball valves or parallel plug type are usually employed using a conventional electric motor actuator.

Reliability Spill Risk - The valve itself is considered very reliable; however, the actuator could be troubled by electrical circuitry faults.

<u>Potential Failure Modes</u> - Electrical failures in the actuator as a primary mode, leaking seals in the valve would be considered secondary failure modes.

Effects of Failure - The failures considered in the actuator would probably leave the valve in its last position. Leaking seals could cause "creeping" in the valve which would soon become obvious to the operators.

Alternate Procedure - Resort to manual control while fault is corrected.

12220 Sampling

Although not a control system nor a part of one, automatic sampling is an integral part of any custody transfer installation.

The sample of crude oil taken must be representative of the total cargo discharged. The normal type of instrument extracts a small predetermined quantity for each unit of flow measured either by itself or by the metering system. The sample is automatically contained at the line pressure to prevent the loss of light ends. Normally, the total size of sample taken is between two and five gallons.

12220/01 <u>Sampler</u>

<u>Description and Purpose</u> - Two types of samplers are usually employed on large throughput terminals. The first employs a propeller inserted into the pipeline which drives a small rotating pump, the volume of which is adjustable. In this method, each small sample taken for a given number of propeller revolutions yields a total sample which is representative of the total cargo discharged.

The second system uses the signal from the flow transmitter (12214/03) which will periodically open and close a small valve for a given number of pulses from the transmitter. Again, this results in a total sample which is representative of the total cargo discharged.

12230 Booster Pumps Controls (Figs. 2-16 & 2-17)

The purpose of a booster pump station is to assist the tanker cargo pumps in moving the crude oil to shore storage

tanks. They become necessary when, due to long distances the friction in the submarine pipelines is too great for the ships' pumps to overcome. One of the major difficulties in the design and operation of booster pump stations is that the output from the ship with all its variations of flow rate and pressure due to tank changing and levels, is the input to the booster pumps. Controls are necessary so that the booster pumps can closely follow the variations from the ship. These controls continuously monitor the suction and discharge pressures and the discharge flow rate of the booster pumps, and control the input by regulating control valves.

Apart from these controls on the crude oil system, the pumps and their drivers are fitted with a variety of controls and protective devices.

12231 Pressure Monitor
12231/01 Pressure Indicator

This instrument is identical to that described under Section 11211/01.

12231/02 Pressure Transmitter

This instrument is identical to that described under Section 11211/02.

12231/03 Pressure Recorder

This instrument is identical to that described under Section 112 /03.

12231/04 Pressure Switch

This instrument is identical to that described under Section 11211/04.

12231/05 Alarm

This instrument is identical to that described under Section 11211/05.

12232 <u>Temperature Monitor</u> 12232/01 <u>Temperature Indicator</u>

This instrument is identical to that described under Section 12212/01.

12233 Flow Monitor 12233/01 Flow Element

This element is described under Section 12213/01.

12234 Flow Rate Controller 12234/01 Flow Transmitter

This instrument is identical to that described under Section 12214/03.

12234/02 Flow Controller

This instrument is identical to that described under Section 12214/02.

12234/03 Pressure Controller

<u>Description and Purpose</u> - This is a panel mounted electronic instrument which receives the signal from the pressure transmitter and a preset "set-point" produces a corrective signal to the signal selector. In all other aspects, the instrument is identical to that described under Section 12214/02

12234/04 Signal Selector

<u>Description and Purpose</u> - This instrument, which is panel mounted, accepts the signals from these sources:

- a) The suction pressure controller
- b) The discharge pressure controller
- c) The flow controller

It selects the signal calling for the greatest correction and passes it on to the regulating valve in the discharge piping.

Reliability Spill Risk - A circuitry or component failure would result in a malfunction. These instruments usually have a built-in fail safe feature. No risk of spill exists.

<u>Potential Failure Modes</u> - Circuitry failure would be the most common.

Effects of Failure - The fail safe feature would freeze the output signal and no further regulation would be possible.

<u>Alternate Procedure</u> - Replacement of parts or whole instrument. Alternatively, manual control would take over for a short while.

12234/04 Flow Regulator

Refer to 12214/04.

12235 Pump Protection Devices

Various built-in protection devices are necessary to prevent damage to the pump and driver. These devices will automatically shut down the pump when a preset point has been reached. Pumps fitted with mechanical seals on the impeller shaft have a system whereby any leakage is channeled to a chamber having a level switch, and when a certain level is reached, the pump will be shut down. A small bleedoff from the chamber will prevent initiation of shutdown by small accumulating leaks which are considered normal. A vibration switch will detect abnormal vibration caused through imbalance of the rotating parts due to accumulated sludge or wax. A differential pressure switch continuously monitors the difference between the suction and discharge pressures and is set to trip at a predetermined high pressure. This indicates that the pipe has been restricted on the downstream side of the pump, probably due to the accidental closure of a valve.

An air eliminator is generally mounted in the pipeline. This has the effect of momentarily slowing down the flow and allowing any air to escape and accumulate at the top of the tank where it is bled off.

Most of these devices which cause a shutdown also initiate an alarm on a remote panel. This not only notifies the operator of the shutdown, but also identifies the cause.

12235/01 Level Switch

<u>Description and Purpose</u> - This is the float and arm type of level switch which operates a mercury switch in an explosion proof enclosure when the critical level is attained.

Reliability Spill Risk - Although normally reliable, the material of the float should be carefully chosen to be impervious to crude oil and its various properties. Otherwise, it is reliable and spill risk is negligible.

Potential Failure Modes - Corrosion and leaking of the float.

Effects of Failure - The pump would continue to run and the mechanical seal would be further damaged. A minor spill may occur.

Alternate Procedure - This will mean the shutdown of the pump for a period of time while repairs were effected

12235/02 Vibration Switch

Description and Purpose - A vibration switch comprises a series of spring steel reeds of varying thickness enclosed in a switch housing and attached to the body of the pump. The set point can be adjusted to the degree of vibration which will cause certain of the reeds to vibrate. The reeds make electrical contact and initiate the shutdown.

Reliability Spill Risk - Failure will probably cause damage to the pump rather than an oil spill.

<u>Potential Failure Mode</u> - Corrosion of the reeds would cause a failure.

Effects of Failure - Whatever the cause of the vibration, if it continues, then the pump and its driver would be damaged.

<u>Alternate Procedure</u> - The cause of the vibration must be determined and any damage rectified. This will put the pump out of service for a period of time.

12235/03 Differential Pressure Switch

Description and Purpose - The principle of pressure measurement by bourdon type as described under Section 11211/01 is used. However, since two pressures are to be measured, two opposing tubes are used and the difference in their movements is the result of the differential pressure. This movement trips mercury switches which in turn initiate the shutdown and alarm.

Other aspects of this instrument are as described under Section 11211/04.

12235/04 Air Eliminator

<u>Description and Purpose</u> - Its function is to eliminate entrained air from the crude oil before it passes through the pump. The principle is the same as the float and arm of a level switch but instead of actuating a switch, a valve is opened on low oil level and the air is exhausted by line pressure. The valve closes as the level rises.

Reliability Spill Risk - The material of the float must be carefully chosen to be impervious to crude oil. Reliability is considered good but there is a risk of a minor spill in the event of failure.

Potential Failure Modes - Leaking of the float will cause excess air to accumulate and eventually find its way to the pump. A sticking valve could have the same effect if stuck closed or it could cause a minor spill if stuck open.

Alternate Procedure - The closing of an isolating valve installed after the release valve would stop a further spill of oil. The system should be shut down while the air elimination is replaced or repaired.

12235/05 Alarm

This instrument is identical to that described under Section 11211/05.

12240 Relief of Pressure Surges (Figs. 2-18 & 2-19)

The purpose of this system is to protect the piping and equipment from sudden high pressures caused by hammer shocks as a result of rapid valve closure during high flow rates. The large quantity of fluid to be relieved in order to reduce the pressure to a safe level prohibits the use of the conventional type relief valve. The type of relief valve normally installed the "Flexflow" valve manufactured by "Grove". This valve is simple in principle and only has

one moving part - a flexible neoprene sleeve. The line fluid will not flow past this sleeve until there is sufficient pressure to lift it against the pneumatic pressure applied on the outside. The pneumatic pressure, therefore, determines the relieving set pressure.

The size and number of valves to be employed is a function of the quantity of oil to be relieved and the minimum time in which this can be done. Each valve has its own individual characteristics and, therefore, requires individual testing "in-situ" to determine the pneumatic pressure required for a given relieve pressure. In order to do this, isolating valves and pressure test connections are required upstream of each relief valve.

The pressures involved are much higher than the normal 100 psig instrument or maintenance air found on some Sea Islands. Unless a high pressure air system is available, the normal practice is to use an inert gas such as nitrogen in banks of commercially filled containers. A system of leakproof small bore piping and valves supplies the gas pressure from a bank of cylinders to the relief valves. Due to the individual characteristics of the relief valves, the supply to each must be separately adjusted with a pressure regulating valve. A pressure switch monitoring the supply pressure of the gas will initiate an alarm on low pressure. Standby cylinders would then be opened to the system.

The surge vessel, in order to absorb the relieved quantity of fluid in a short period, must be fitted with large vents. To prevent an overflow through these vents, a level switch detects high level in the vessel and causes an isolating valve to close. This same protective system will come into play in the event of pneumatic pressure failure allowing fluid to pass the relief valves.

The following is a short discussion on the conditions necessary to create a surge.

Pressure surges, sometimes called "water hammer", can be created by the rapid opening or closing of a valve, or by the rapid starting or stopping of a pump. If the velocity of the liquid flowing in a pipe is suddenly diminished, then the energy given up by the liquid will be absorbed by compressing the liquid by stretching the pipe wall and by frictional resistance to pressure wave propagation.

"Water Hammer" is a series of pressure pulsations often accompanied by a sound comparable to that of striking the pipe with a hammer. When a valve is closed rapidly against a flowing liquid, the pressure is suddenly increased on the upstream side causing a high pressure wave to travel upstream of the valve. Likewise, on the downstream side, the pressure is suddenly reduced and a vapor pocket may be formed.

This cavity will eventually collapse and produce a high pressure wave which travels downstream of the valve.

A formula has been developed which gives the velocity of the pressure wave in the pipe where the valve has been closed instantaneously.

$$Vp = \sqrt{\frac{K g}{\omega}} \cdot \frac{1}{1 + \frac{Kd}{Ee}}$$
 (1)

where:

V_p = Velocity of the pressure wave. Ft./Sec.

K = Bulk Modulus of Compressibility
water = 300,000 psi
oil = 2,000 to 225,000 psi

g = Acceleration due to gravity = 32.2 Ft/Sec.²

 ω = Specific weight of the liquid lbs./cu. ft.

E = Modulus of Elasticity of the pipe material
 steel = 30,000,000 psi

d = Inside diameter of the pipe in inches

e = Thickness of pipe wall in inches

The following formula gives the magnitude of the pressure produced by arresting the velocity of liquid in the pipe:

$$p = \frac{\omega V}{g} \quad V_p \quad \frac{1}{144} \tag{2}$$

where:

p = Pressure in psi

ω = Specific weight of liquid lbs./cu. ft.

g = Acceleration due to gravity = 32.2 Ft./Sec.²

V_p = Velocity of the pressure wave Ft./Sec.

V = Initial Velocity of Liquid Ft./Sec.

The following formula gives the time it takes the pressure wave to travel along the pipe and return to the closed valve.

$$t = \frac{2x}{V_p S} \tag{3}$$

where: t = Total closing time of valve (sec.)

l = Length of pipe (Ft.) **

V_p = Velocity of the pressure wave (Ft./Sec.)

S = Empirically determined multiplier (indicates
 fraction of total valve closing action affect ing the flow velocity = .15*)

* The initial 85% of valve closure does not significantly contribute to the initiation of a pressure surge.

** "1" is the length of line between the valve in question and the origin of flow (storage tank, pump) or the nearest upstream surge suppressor (surge tank, surge relief valve, check valve, etc.)

Equation (3) gives the critical time for the closing of the valve. If the valve closes in a shorter time than "t", then a pressure wave will be created, the magnitude of which is determined by equation (2). It can be seen from equation (3) that the longer the pipeline, the slower the valve closure must be to avoid a pressure wave.

12241 Surge Relief Availability Control

12241/01 Valve Actuator

The purpose is to isolate the Surge Relief system when the tank is getting full.

<u>Description and Purpose</u> - This has to be a quick closing valve, usually a ball type requiring only a 90° turn to close from fully open. The actuator can be of the opposing cylinder type or the hydraulic vane motor type. Either are quick acting and their time of closure can be adjusted.

The signal to close comes to a solenoidvalve in a pneumatic pressure line. The released high pressure air or nitrogen forces the hydraulic fluid into the actuator and the valve is closed.

Reliability Spill Risk - The quality of this valve actuator and the tubing associated with its operation should be of first class quality. Reliability is good; however, failure would result in a spill.

<u>Potential Failure Modes</u> - Fracture of tubing is the most common cause of failure; piston seizure in cylinders occurs occasionally due to non-use.

Effects of Failure - If this valve does not close following a surge condition, the relief tank will continue to fill and oil will spill from its vent.

Alternate Procedure - Manual closure of the valve is the only alternative and will result in a delay. The oil transfer operation should be shut down as soon as possible.

12242 Surge Relief Availability Monitor 12242/01 Level Switch

<u>Description and Purpose</u> - The type of level switch normally used employs the principle of displacers rather than floats. In this particular case, the three displacers, usually made of a ceramic material, hang on a stainless steel wire suspended from a spring. The wire is attached to a steel rod which moves in a non-ferrous tube on the outside of which are magnetic followers connected to mercury switches.

As the level in the tank rises, the displacers become lighter as they are immersed by the liquid, the spring contracts and the steel rod moves, thus, actuating the mercury switches via the magnetic followers.

The housing of the switches must be explosion proof and meet the standards established by CRF 46.111.80

It is usual practice to house the displacers in a "still well", a perforated length of pipe, in order to minimize the affect of turbulence caused by inflow into the tank.

Reliability Spill Risk - Once installed, and as long as good quality level switches with stainless steel wire and fittings and mercury switches have been selected, the reliability is good.

Failure of this switch could result in an oil spill.

<u>Potential Failure Modes</u> - Displacers sticking in the still well would casue this instrument to fail.

Effects of Failures - Failure to detect high level in the tank and initiate the closing of the isolating valve, will continuously cause oil to flow into the tank and eventually spill from the vent.

<u>Alternate Procedure</u> - The pumping operation should be shut down and the valve closed manually.

12242/02 Alarms

This instrument is identical to that described under Section 11211/05.

12243 Relief Valve Pressurization Medium Monitor

The high pressure pneumatic system which keeps the relief valves closed is monitored by pressure guages and switches which will initiate alarms before a critical situation is reached.

12243/01 Pressure Indicator

This instrument is identical to that described under Section 11211/01.

12243/02 Pressure Switch

This instrument is identical to that described under Section 12211/04.

12243/03 Alarm

This instrument is identical to that described under Section 11211/05.

12244 Relief Valve Pressurization Medium Controller 12244/01 Pressure Control Valves

Description and Purpose - In order to maintain the pneumatic pressure at the set pressure required at the surge relief valves a series of pressure control valves are necessary. These valves are small valves which continuously monitor the pressure downstream and, if necessary, will open to allow the higher pressure upstream to bleed through until the desired pressure at the relief valve is achieved.

Reliability Spill Risk - Cost should be no object in selecting the best quality valves available. Given this, reliability is good, however, the risk of a spill does exist on failure.

Potential Failure Modes - Dirt in the pneumatic system could cause a pressure control valve to stick open or closed.

Effects of Failure - If the valve sticks open, the relief valve will be over pressurized and would not function in the event of a surge. If stuck closed, then the relief valve could become underpressured and leak oil into the surge tank.

<u>Alternate Procedure</u> - When detected, the particular relief valve should be isolated and the pressure control valve replaced.

12250 Metering (Fig. 2.20)

Metering is a means of precise quantity measurement which can be used for custody transfer and/or leak detection by comparison with other metering stations. The actual control functions of the metering equipment are covered in Fig. 2-15.

By definition, deepwater ports are built for the VLCC class of tanker and designed to accommodate the large discharge rates achieved by these tankers. Methods of quantity measurement must therefore, also be capable of accommodating the high flow rates. The equipment accepted in the industry as being capable of accurate measurement at high throughputs are turbine meters. These meters have the distinct advantages of being compact, mechanically simple and comparatively long lived.

Turbine meters have inherent performance characteristics such as flow rangeability within tolerable limits of linearity and repeatability. These are generally related to fluid properties such as density, viscosity and vapor pressure, and to the mechanical characteristics of the meter, such as rotor mass, bearing friction, etc. The combination of fluid properties and meter characteristics produces a deviation from an ideal of meter linearity and selection should be governed by an assessment of the characteristics of the turbine meters.

In considering metering at Deepwater Ports, it can be assumed that a high degree of accuracy is desired whether this be for custody transfer measurement or for comparison with onshore metering stations, as a means of leak detection or for both. This high degree of accuracy is only obtainable with frequent proving of each turbine meter during operating conditions. In simple terms, the prover is a mechanical fluid displacement device of precisely known volume. The fluid passing through the meter is also passed through the prover. The resulting comparison of the meter output with the known volume of the prover provides a factor which can be applied to the output readings of the meter.

Subsequent provings will show the drift or linearity of the meter and whether or not it is within the accepted tolerances.

Other factors which must be taken into account are temperature and pressure variations. Turbine meters are viscosity sensitive and for this fact alone temperature correction factors are important. Other effects of temperature variations would be to physically change the dimensions of the meter and/or the prover. Pressure variations will have similar effects by changing the physical dimensions of the meter and prover. The proving of a meter is best done during operating conditions when both the meter and the prover are subject to the same temperature and pressure.

The electrical components associated with metering have reached a high degree of sophistication and complexity, and the use of computers is becoming more and more necessary.

12260 Pigging (Fig. 2-21)

Crude Oil Transfer Systems may be provided with pipeline pigging systems for cleaning the interior walls of the pipeline, displacing the crude oil in the transfer system with seawater or for segregating (batching) two or more grades of crude oil transferred through the system simultaneously.

Pigs are readily available in three different shapes; spheres, cylinders and discs (refer to Appendix E for manufacturer's information).

The components of a pigging system are a launching barrel, a receiving barrel, launcher and receiver pipline valves, pig detector switches, pig diverter fittings and interconnecting small diameter piping to control crude oil flow upstream and downstream of the pig at the barrel.

Pigs move through the piping system as a result of the differential pressure which exists across the pig upstream and downstream. The velocity at which most pigs move through a system, at least for large diameter piping, should be in the order of five to six feet per second minimum.

<u>Description of Pig Types</u> - The following is a brief description of the three types of pigs readily available and which could be used for Deepwater Port Oil Transfer system service.

Pipeline Spheres - Pipeline spheres are hollow shell spheres fabricated of natural rubber, neoprene, nitrile, polyurethane or other materials compatible with the carrier liquid.
The sphere is filled with glycol or other liquid suitable for the service under pressure so that the outside diameter of the sphere is slightly larger than the inside diameter of the pipeline. The sphere is then forced into the pipeline under pipeline fluid pressure, slightly elongating the sphere. This tight or "interference" fit provides the seal between the pipe wall and the sphere to prevent excessive "leakage" of carrier liquid past the sphere as it moves through the system.

Pipeline Cylinders - Pipeline cylinders are solid cylinders usually fabricated of polyurethane. Most cylindrical pigs are "bullet" shaped to assist in negotiating pipeline bends and other fittings. The circumference of some cylindrical pigs are manufactured with criss-crossing bands of hard rubber material which facilitates and improves the "cleaning" action of the pigs. Cylindrical type pigs have the capability of negotiating very short radius turns and, further, can be used to clean or segregate product in pipeline systems having up to three line size changes in a given run.

Pipeline Discs - Pipeline Disc Pigs consist of a single or multiple sets of discs, usually cup shaped, which are connected end to end by articulated joints. Wire brushes, if the pigs function is cleaning, are placed between the cupped discs. The wire brushes are spring loaded radially for the purpose of providing a force against the pipe wall so that the necessary cleaning action can be

developed as the pig moves through the pipeline. For product segregation (batching) additional cupped discs are substituted for the brushes.

Pipeline discs may be used for other purposes such as line scraping or gauging wherein scraper cups and discs are employed to clean "encrusted" pipe walls (that brushes cannot clean) or shear welding icycles and other internal pipe projections to a given gauge (diameter).

Of the three types of pigs described above, the pipeline sphere is most universally used for Deepwater Ports service. It is expected that spheres will continue to be the dominant pigs used for Deepwater Port Service; hence, the following description of a pigging operation will be limited to spheres.

<u>Pigging Operation</u> - A brief description of a batching operation using pipeline spheres is presented below. It should be noted that a step-by-step procedure for a particular pigging operation may be somewhat different than herein below described due to the type of pig employed or the particular receiver/launcher piping arrangement selected or the type of product transferred. The batching operation described is keyed to the launching and receiving diagram (Figure 2-21).

Launching

- 1. Open the drain line and ensure that the launching barrel is completely empty of oil.
- Open the hinged closure and insert spheres of correct size for the pipeline, close the hinged closure and secure.

- 3. Close Valve B and open Valve A.
- 4. Lift launching pin and let the sphere roll down the barrel into the pipeline past Valve A.
- 5. Open bypass Valve M to pressurize the barrel and to apply positive pressure on the sphere to move it past the tee connection at Valve B.
- 6. Close bypass Valve M and Main Valve A.
- 7. Open Valve B to allow flow from the tanker to push the sphere through the main pipeline.

Receiving

- Valve D should be closed and Valve C open to allow the liquid ahead of the sphere to be routed into the pipeline.
- When the first sphere detector signals the arrival of the sphere, Valve D is opened and Valve C closed to allow sphere to move into the barrel. The drain connection in the receiving barrel is also opened to drain liquid from the barrel.
- 3. When the second sphere detector located downstream of Valve D signals the passing of the sphere, Valve D is closed and Valve E opened to allow liquid behind the sphere to flow into the other line.
- 4. After Valve D is fully closed, the drain connection in the receiving barrel is left open and liquid allowed to drain out until the barrel is empty. Liquid drainage

should be into an open funnel so that a visual check on the draining operation can be maintained and to ascertain when the barrel is completely drained.

Remove the sphere from barrel for cleaning, storage and reuse.

12300 Shutdown Offshore System (Fig. 2-22)

12310 Booster Pumping Shutdown

The sequential shutting down of a booster pumping station can begin when the ships' cargo pumps are replaced by the small stripping pumps. At this stage, due to the smaller quantities involved, only one booster pump would be in operation.

12311 Pressure Monitor

12311/01 Pressure Indicator

Refer to 11211/01

12311/02 Pressure Transmitter

Refer to 11211/02

12311/03 Pressure Recorder

Refer to 11211/03

02311/04 Pressure Switch

Refer to 11211/04

12311/05 Alarm

Refer to 11211/05

12312 Temperature Monitor

12312/01 Temperature Indicator

Refer to 12212/01

12313 Flow Monitor

12313/01 Flow Element

Refer to 12213/01

12314 Flow Rate Controller

12314/01 Flow Transmitter

Refer to 12214/03

12314/02 Flow Controller

Refer to 12214/02

12314/03 Pressure Controller

Refer to 12234/03

12314/04 Signal Selector

Refer to 12234/04

12314/05 Flow Regulator

Refer to 12214/04.

12315 Pump Protection Devices

12315/01 Level Switch

Refer to 12235/01

12315/02 Vibration Switch

Refer to 12235/02

12315/03 Differential Pressure Switch

Refer to 12235/03

12315/04 Air Eliminator

Refer to 12235/04.

12315/05 Alarm

Refer to 12211/04.

12320 Pack System

12321 Valve Line-Up Indicator

12321/01 Remote Indicator

Refer to 12122/01

12321/02 Visual Check

Refer to 12122/02

12322 Valve Line-Up Controller

12322/01 Push Button Remote

Refer to 12121/01.

12322/02 Push Button Local

Refer to 12121/02

12322/03 Manual Local

Refer to 12121/03

12322/04 Valve Actuator

Refer to 12121/04

12323 Pressure Monitor

12323/01 Pressure Indicator

Refer to 12211/01

12323/02 Pressure Transmitter

Refer to 11211/02.

12323/03 Pressure Recorder

Refer to 11211/03

12323/04 Alarm

Refer to 11211/04

12330 Drain and Slops Handling (Fig. 2-23)

The drain and slop system is not directly related to the oil transfer system but since its malfunction could result in a spill of crude oil, it has been included in this study.

The purpose of this system is two-fold, primarily it deals with the crude oil drained from the loading arms during normal operations, secondly, it collects surface water which could be contaminated with crude oil. An automatic pumpout system empties the tank(s) into the main crude system. In order to avoid overpressuring the transfer system with the automatic pumpout, the system must remain open to a storage tank onshore. If this is not possible, the automatic feature must be disposed of and the emptying of the slop tank becomes a manual operation.

12311 <u>Drain Tank Level Monitor</u> 12331/01 <u>Level Switch</u>

Refer to 12242/01

12331/02 Alarm

Refer to 12211/04

12340 Emergency Shutdown System (Fig. 2-24)

The emergency facility, although rarely used, must be available and able to perform its function at any time. Not only during dynamic conditions, but also during periods of no flow. The actuating medium, like the surge system, is a high pressure pneumatic supply, continuously monitored for availability. The actual closure of the valve must be timed such as to avoid the creation of a surge pressure wave. Refer to Section 12240 - Relief of Pressure Surges.

The valve would be a ball type requiring only a 90° revolution to travel from fully open to fully closed. The actuator would be hydraulically driven and the primary energy would be provided by compressed air or nitrogen.

12341 <u>Valve Position Monitor</u> 12341/01 Remote Indicator

<u>Description and Purpose</u> - This remote indicator of valve position is identical to that described under Section 12122/01. However, the switches on the actuator are mechanically initiated by the movement of the valve.

12342 <u>Valve Line-Up Controller</u> 12342/01 Valve Actuator

Refer to 12241/01

12343 <u>Valve Actuating Medium Monitor</u> 12343/01 <u>Pressure Switch</u>

Refer to 12231/04

12343/02 Alarm

Refer to 12211/04

12400 Communication System (Figs. 2-25, 2-26, and 2-27)

The communication link between the offshore and onshore facilities has to handle both voice and data information. Two distinct types of communication are used: submarine cable and radio. The distance involved has a bearing on the choice. For those DWP's where offshore facilities are a few miles from shore, submarine cables become uneconomical, and all communications would be accomplished over a radio system. Shorter distances generally involve both radio for pure voice communciation and submarine cable for voice (telephone) and data transmission. Where large

quantities of complex data are involved, the use of a multiplex coded system reduces the number of submarine cable conductors required.

The direct wire type of submarine cable where each function requires its own individual circuit is simple and uncomplicated. However, the number of circuits is limited by the physical size of the cable.

An alternative method used with submarine cables is to code the signals in such a way that a number of functions can be transmitted over a single contactor. This system requires an encoder and decoder at each end of the submarine cable.

Where distances are so great that a radio link has to be used for all communication, a similar system of signal coding or decoding will be required.

12410 <u>Voice</u>
12411 <u>Wire</u>
12411/01 Telephone

Description and Purpose - A standard "Private Automatic Branch Exchange" (P.A.B.X.) comprising of a central exchange with a system of stations distributed throughout the Deepwater Port, both on and offshore. Those stations in hazardous areas should be explosion proof. The purpose is to provide a verbal communication system.

Reliability Spill Risk - Reliability of a good quality system is very high. No direct risk of an oil spill or failure.

<u>Potential Failure Modes</u> - Component and circuitry failure are most common.

Effects of Failure - Loss of local verbal communications

Alternate Procedure - Use back-up radio communications.

12411/02 Submarine Cable

Description and Purpose - The link between the onshore and offshore facilities which carries the various types of voice and data communication signals. In order to protect the cable from mechanical damage, from dragging anchors, etc., it should be either buried in a trench or jetted into the seabed after installation. The specification for the multicore cable should include a continuous P.V.C. outer sheath covering twisted steel wire armouring for strength and each individual conductor must be P.V.C. insulated.

Reliability Spill Risk - A submarine cable probably suffers the highest risk of damage during installation. Following a successful installation and testing procedure, the reliability is high. Failure could result in loss of communications and the risk of an oil spill is present.

<u>Potential Failure Modes</u> - Mechanical damage by dragging anchors is the most common cause of failure.

Effects of Failure - Loss of communications.

Alternative Procedure - Resort to radio communications.

12412/01 Two-Way FM Portable Radios

Refer to 11410/02.

12420 <u>Data</u> 12421 <u>Wire</u> 12421/01 Encoder

Description and Purpose - Where numerous functions have to be communicated, a multiplex system requiring the coding of data is required. The encoder is the piece of equipment in the system which accomplishes the coding of each separate function for transmission along the submarine cable or radio.

Reliability Spill Risk - If well designed by an experienced company and properly installed and tested, the reliability will be high. There is a risk of an oil spill on failure.

<u>Potential Failure Modes</u> - Component and circuitry failure are the most common modes of failure.

Effects of Failure - Incorrect data communicated which could result in malfunction of valves and other equipment, as well as faulty display information.

<u>Alternate Procedure</u> - Operations should be terminated or reduced and communciations by telephone or radio resorted to.

12401/02 Decoder

<u>Description and Purpose</u> - This piece of equipment in the system decodes the signals coded by the encoder and is usually built into the same enclosure. All other aspects are the same as the encoder, refer to 12421/01.

12421/03 Submarine Cable

<u>Description and Purpose</u> - The specification for this cable is identical to that described under 12411/02. The only difference is that this cable is carrying coded signals.

12422 Radio

12422/01 Encoder

Refer to 12421/01

12422/02 Decoder

Refer to 12421/02

12422/03 R.F. Transceiver

Description and Purpose - This is the microwave radio link which replaces a submarine cable where distances are great. However, it is limited to "line of sight" operation, so if distances dictate it, repeater stations would be necessary. The coded signals from the encoder are received and transmitted to the offshore facilities where they are fed into the decoder, at the same time coded signals can be sent in the other direction.

Reliability Spill Risk - First class equipment which can tolerate a high degree of noise interference is very reliable. The risk of a spill is present on failure.

<u>Potential Failure Modes</u> - Component and circuitry failure are the most common failure modes.

Effects of Failure - Loss of communication and incorrect data could result in an oil spill.

<u>Alternate Procedure</u> - Reduce or shut down operations and resort to back-up verbal communications by V.H.F. radio.

13000	MOVE	OIL	THROUGH	ONSHORE	PIPING	(Fig. 2-2)	8)

13100	Line-Up	Onshore	System	(Fig. 2-29)
13110	Line-Up	Manifold	Valves	(Fig. 2-30)

The large quantities and variations of crude oil imported at Deepwater Ports from VLCC's necessitates a number of onshore storage tanks. Each tank will have its own pipeline which routes the oil from the shore end of the submarine pipelines. A manifold of valves is required to achieve the interconnection between the submarine pipelines and the tank pipelines.

Each valve is actuated by an electric motor "actuator" which drives the valve through gearing between its limits of open and closed. Each actuator has a system of limit switches.

The primary function of the limit switches is to stop the valve travel in both the fully open and fully closed positions. They also provide the switching which feeds back information to the remote control centers and inhibits the opening and closing of other valves. Each limit switch can be set to open or close at any time during the valve travel.

Interlocks become necessary where types of crude oil must be kept separate and to avoid the accidental opening of valves which would result in contamination.

Interlocks are an electrical circuit which prevents a valve being opened unless one or more other valves are closed.

The limit switches provide the switching that makes electrical interlocking possible.

13111 Valve Line-Up Monitor

13111/01 Remote Indicator

Refer to 12122/01

13111/02 Visual Check

Refer to 12122/02.

13112 Valve Line-Up Controller

13112/01 Push Button Remote

Refer to 12121/01.

13112/02 Push Button Local

Refer to 12121/02.

13112/03 Manual Local

Refer to 12121/03.

13112/04 Valve Actuator

Refer to 12121/04.

13112/05 Limit Switches

Refer to 12121/05.

13120 Tank Selection

13121 Tank Level Monitor (Fig. 2-31)

It is assumed that storage tanks at the shore end of a Deepwater Port facility would be large (in order of 750,000 bbl. capacity) and, therefore, would have floating roofs. Continuous reading level monitoring has reached a degree of sophistication whereby accuracies are claimed in the order to $\pm 1/8$ ". With the increase in tank diameters, this amounts to a considerable quantity of oil, thus making custody transfer measurements by this means unattractive. It is, therefore, normal for level instruments to be used only for filling and emptying operations and to alert operators to the dangers of overfilling or emptying.

13121/01 Level Transmitter

Description and Purpose - Basically, a level transmitter consists of a spring loaded drum around which a tape is wound, a float traveling inside a perforated pipe (still well) is attached to the free end of the tape. As the level rises, the slack in the tape is taken up on the drum, the revolutions of the drum are determined electrically and a signal is produced which is transmitted to remote read out indicators. The purpose of the still well is to prevent turbulence affecting the floats and tape, thus producing spurious signals. In order to alert operators to the possibility of overfilling tanks, alarm switches are fitted in the transmitter which initiate alarms when predetermined levels are reached.

Transmitters should be housed in explosion proof housings.

Reliability Spill Risk - The effects of a corrosive atmosphere on electronic cards and components will cause failure. Back-up level instruments minimize the risk of oil spill.

<u>Potential Failure Modes</u> - Failure of electronic components and circuits together with float sticking due to fouling on still well or build up of sludge are the most common causes of failure.

<u>Effects of Failure</u> - Incorrect information of level transmitted to remote indicators. Delays may occur while fault is investigated and rectified.

Alternate Procedure - Due to the time which repair or replacement of faulty transmitter will take manual reading of levels at the tank transmitted by walkie/talkie to control center is the only alternative.

13121/02 Local Indicator

<u>Description and Purpose</u> - The local indicator is driven by the transmitter and is usually located at the bottom of the tank. Depending upon the type chosen, the display is usually digital in terms of feet and inches.

Enclosures should be explosion proof.

Reliability Spill Risk - This instrument is as reliable as the transmitter. Circuitry or component faults caused by corrosion will result in failure. There is no spill risk involved.

Potential Failure Modes - Electronic component failure.

Effects of Failure - Incorrect locally displayed level information would not result in any chain reaction

<u>Alternate Procedure</u> - Repair or replacement of faulty indicator.

13121/03 Remote Indicator

<u>Description and Purpose</u> - Remotely mounted in the central control room, this indicator would usually be the digital type. Where a number of tanks are involved, a selective system would allow the interrogation of one tank level at a time. These displays may not be driven directly by the transmitter output but must be passed through a conversion system making it simpler for the signal to be transmitted and displayed.

Reliability Spill Risk - Well chosen and proven systems and components would be reliable, however, in locations prone to severe electrical storms, even these systems prove unreliable. Incorrect display of level information could lead to an oil spill.

<u>Potential Failure Modes</u> - Electronic component or circuitry failures are most common.

Effects of Failure - Delays in pumping operations may occur while investigations of the failure are made.

<u>Alternate Procedure</u> - If fitted, a test button would confirm circuitry failure. Local reading of tank levels is an alternate which will minimize delays.

13121/04 Level Switches

<u>Description and Purpose</u> - This level switch operates on the principle of a float actuating a mercury switch in

an explosion proof housing. The chamber in which the float operates is external to the tank and can be isolated for maintenance.

Reliability Spill Risk - Generally, very reliable, however, failure of the float will cause failure. An oil spill is possible on failure of a high level switch.

<u>Potential Failure Modes</u> - Corrosion and leaking of the float.

Effects of Failure - The alarm, either high or low, would fail to alert the operator to potential trouble. Also, any automatic action such as the closing of valves or stopping of pumps would not be initiated.

<u>Alternate Procedure</u> - Attention to the tank level displayed in the control center and the taking of action to switch tanks or stop filling would be the alternate procedure to follow.

13121/05 Alarms

Refer to 12211/04.

13122 <u>Tank Valve Controller</u> 13122/01 <u>Push Button Remote</u>

Refer to 12121/01.

13122/02 Push Button Local

Refer to 12121/02.

13122/03 Manual Local

Refer to 12121/03.

13122/04 Valve Actuator

Refer to 12121/04.

13122/05 Limit Switches

Refer to 12121/05.

13123 Tank Valve Monitor

13123/01 Remote Indicator

Refer to 12122/01.

12123/02 Visual Check

Refer to 12122/02.

13200 Move Oil To Onshore Storage (Figs. 2-32 & 2-33)

13210 Booster Pumping

13211 Pressure Monitor

13211/01 Pressure Indicator

Refer to 11211/01.

13211/02 Pressure Transmitter

Refer to 11211/02.

13211/03 Pressure Recorder

Refer to 11211/03.

13211/04 Pressure Switch

Refer to 11211/04.

13211/05 Alarm

Refer to 11211/05.

13212 Temperature Monitor

13212/01 Temperature Indicator

Refer to 12212/01.

13213 Flow Monitor

13213/01 Flow Element

Refer to 12213/01.

13214 Flow Rate Controller

13214/01 Flow Transmitter

Refer to 12214/03.

13214/02 Flow Controller

Refer to 12214/02.

13214/03 Pressure Controller

Refer to 12234/03.

13214/04 Signal Selector

Refer to 12234/04.

13214/05 Flow Regulator

Refer to 12214/04.

13215 Pump Protection Devices

13215/01 Level Switch

Refer to 12235/01

13215/02 Vibration Switch

Refer to 12235/02.

13215/03 Differential Pressure Switch

Refer to 12235/03.

13215/04 Air Eliminator

Refer to 12235/04.

13215/05 Alarm

Refer to 12211/04.

13220 Tank Switching

13221 Tank Valve Line-Up Monitor

13221/01 Remote Indicator

Refer to 12122/01.

13221/02 Visual Check

Refer to 12122/02.

13222 Tank Level Monitor

13222/01 Level Transmitter

Refer to 13121/01.

13222/02 Remote Indicator

Refer to 13121/03.

13222/03 Local Indicator

Refer to 13121/02.

13222/04 Level Switches

Refer to 13121/04.

13222/05 Level Alarms

Refer to 13121/05.

13223 Manifold Tanker Valve Line-Up Controller

13223/01 Push Button Remote

Refer to 12121/01.

13223/02 Push Button Local

Refer to 12121/02.

13223/03 Manual Local

Refer to 12121/03.

13223/04 Valve Actuator

Refer to 12121/04.

13223/05 Limit Switches

Refer to 12121/05.

13230 Metering (Fig. 2-34)

Refer to discussion 12250.

13240 Relief of Pressure Surges (Fig. 2-35)

Refer to discussion 12240.

13241 Surge Relief Availability Control

13241/01 Valve Actuator

Refer to 12241/01.

13242 Surge Relief Availability Monitor

13242/01 Level Switch

Refer to 12242/01.

13242/01 Alarm

Refer to 11211/05.

13243 Relief Valve Pressurization Medium Monitor

13243/01 Pressure Indicator

Refer to 11211/01.

13243/02 Pressure Switch

Refer to 12211/04.

13243/03 Alarm

Refer to 11211/05.

13244 Relief Valve Pressurization Medium Controller

13244/01 Pressure Control Valves

Refer to 12244/01.

13300 Shutdown Onshore System (Fig. 2-36)

13310 Booster Pumping Shutdown

13311 Valve Line-Up Monitor

13311/01 Pressure Indicator

Refer to 11211/01.

13311/02 Pressure Transmitter

Refer to 11211/02.

13311/03 Pressure Recorder

Refer to 11211/03.

13311/04 Pressure Switch

Refer to 11211/04.

13311/05 Alarm

Refer to 11211/05.

13312 Temperature Monitor

13312/01 Temperature Indicator

Refer to 12212/01.

13313 Flow Monitor

13313/01 Flow Element

Refer to 12213/01.

13314 Flow Rate Controller

13314/01 Flow Transmitter

Refer to 12214/03.

13314/02 Flow Controller

Refer to 12214/02.

13314/03 Pressure Controller

Refer to 12234/03.

13314/04 Signal Selector

Refer to 12234/04.

13314/05 Flow Regulator

Refer to 12214/04.

13315 Pump Protection Devices

13315/01 Level Switch

Refer to 12235/01.

13315/02 Vibration Switch

Refer to 12235/02.

13315/03 Differential Pressure Switch

Refer to 12235/03.

13315/04 Air Eliminator

Refer to 12235/04.

13315/05 Alarm

Refer to 12211/04.

13320 Pack System

13321 Valve Line-Up Monitor

13321/01 Remote Indicator

Refer to 12122/01.

13321/02 Visual Check

Refer to 12122/02.

13322 <u>Valve Line-Up Controller</u>

13322/01 Push Button Remote

Refer to 12121/01.

13322/02 Push Button Local

Refer to 12121/02.

13322/03 Manual Local

Refer to 12121/03.

13322/04 Valve Actuator

Refer to 12121/04.

13322/05 Limit Switches

Refer to 12121/05.

13323 Pressure Monitor

13323/01 Pressure Indicator

Refer to 11211/01.

13323/02 Pressure Transmitter

Refer to 11211/02.

13323/03 Pressure Recorder

Refer to 11211/03.

13323/04 Alarm

Refer to 11211/05.

13330 Drain and Slops Handling

This system is primarily installed to deal with the roof drains of the tanks. If it is a practice at the terminal being considered, then it has also to deal with water draw-off from each tank. The slops would be a mixture of oil and water and must be routed to a treatment and disposal system which is not a part of this study.

13331 Drain Tank Level Monitor

13331/01 Level Switch

Refer to 12242/01.

13331/02 Alarm

Refer to 12211/04.

13340 Emergency Shutdown System

Refer to discussion 12340.

13341 Valve Position Monitor

13341/01 Remote Indicator

Refer to 12341/01.

13342 Valve Line-Up Controller

13342/01 Valve Actuator

Refer to 12241/01.

13343 Valve Actuating Medium Monitor

13343/01 Pressure Switch

Refer to 12231/04.

13343/02 Alarm

Refer to 12211/04.

APPENDIX F SCENARIOS

APPENDIX F - SCENARIOS

F-1. INTRODUCTION

The following scenarios have been chosen to illustrate the results of control system failure during dynamic conditions. They have also been selected because they are three of the few locations on an oil transfer system where an "open end" exists and the failure of a control system would directly result in an oil spill.

F-2. ONSHORE STORAGE

FAILURE OF LEVEL ALARMS ON STORAGE TANK

Assuming maximum filling rate for 750,000 barrel tank = 75,000 B.P.H.

Assume size of inlet/outlet valve to be 36" with an actuator giving a closure rate of 12" per minute.

Assume this valve is a gate valve with characteristics as shown on attached graph (Fig. F-1)

Assume volume of tank roof to be 6,000 barrels.

Assume tank is 66 feet high (to upper rim) and contains approximately 11,360 barrels per foot. Roof travels at 6½ feet per hour.

Primary - High Level alarm in Level Transmitter (13222/01)
fails, Operator not made aware of high level in tank.
(61.5 feet).

<u>Secondary</u> - High High Level switch (13222/04) fails to actuate automatic shutdown of inlet/outlet valve. (Level switch at 62 feet.)

Level will continue to rise until roof is prevented from rising by structures (approximately 1 foot below rim.) Oil will initially come through the roof vents and support guides and find its way to the roof drains and so to the treatment and disposal system. The roof drain system is unable to accomodate 75,000 B.P.H. so the oil level will continue to rise until it overflows the rim of the tank. At what stage this is visually obvious is indeterminate but for the purposes of this exercise, assume a period of 0 to 15 minutes before action is taken to close the tank valve. The tank valve will take 3 minutes to close. If detection of overflow is immediate, then quantity of oil would be approximately 3,000 Bbls. It can be seen that some 40 minutes must elapse after the primary failure before the start of a spill. This is an extremely long time for the failure to remain undetected bearing in mind that the operator should be paying attention to the remote indication of tank levels and should have some program of tank filling and switching times. The chances of this type of spill would be remote. Figure F-2 shows the magnitude of a spill vs. time for this scenario.

Any spill which did occur would be contained within the diked tank area.

F-3 OFFSHORE

12330

DRAIN & SLOPS SYSTEM

Assume drain and slops tank is full.

Assume level switch failed at high level to start pump and to initiate high level alarm.

Assume unloading of tanker just completed.

The final step before disconnecting the loading arms is to drain the inboard section into the drain and slops tank. The assumption that the level switch failed to start the pump at high level would mean that the tank is full. When the drain valves to the loading arms are opened, the oil will overfill the tank and cause a spill from the tank vent pipe.

The magnitude of this spill could be in the order of 1,500 gallons for every 16" arm drained. Usually 4 loading arms would be used making the maximum amount spilt 6,000 gallons.

F-4. OFFSHORE

SURGE RELIEF SYSTEM

12240

Assume oil importation in progress.

A series of events and failures have to take place in order to result in a spill.

Assume firstly, that the surge system is full and that this state has not been brought to the attention of the operators. Secondly, that a condition of surge pressure must occur in the oil transfer system.

The first assumption can only happen if:

- a) The relief valves are passing oil due to the failure of a PCV (Pressure Control Valve 12244/01) to maintain the correct pneumatic pressure.
- b) Normally this would alarm in the control room so it has to be accompanied by the failure of a pressure switch (12243/02).
- c) As the oil filled the surge tank, the level switch (12242/01) would initiate alarms, therefore, we must assume that this instrument has also failed.

Usually the vents from surge tanks are large and taken to the maximum possible height in order to dissipate vapors. The normal operating pressures in the system would eventually fill the vent and the situation would be apparent from the resulting minor spill. However, if a surge pressure was created in the system by the rapid closure of a valve or the quick start or stop of booster pumps, the spill would be considerably larger. The surge would not have to be of the design magnitude since the leaking relief valve with its reduced pneumatic pressure would relieve a surge below the design set point. The magnitude of this spill is indeterminate since it requires detection and action by an operator. The worst situation would be at night when visual detection would be greatly reduced.

However, the series of events which have to take place before a spill can occur make it very unlikely. •:

FIGURE F - 1 GATE VALVE CHARACTERISTICS SCENARIO F.2

FIGURE F-2, SPILL MAGNITUDE SCENARIO F,2

	į		1	•		r í				~.													. 5	ī	13				,		-	:1	1001	l _ē	•
etric Mosseres	1	1	nches	inches	•	spect miles			1	squere inche	square yards	squere miles	•040			1	enuce:	Spunds .				DINI GENERAL	-		Cabic for			(138		-			2 001 021		
ersions from M	Meltiply by	LENGTH	2.0	•.0	2				ANEA	91.0			8.2 1,		MASS (weight)		0.038	2:	5	VOLUME		6.0	8.	6.74	*	2		TEMPERATURE (exect)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			:-	1:	•
Approximate Conversions from Matric Messeres	When You Know	1	millimaters	Contimeters	melors	Telers Filmeters			1	squere centimeters	squere meters	squere bilgmelers	hecteres (10,000 m			1	-	hilograms.	194 DOG 196				•	iners.	Cabic meters	Cubic maters		TEN		interestrat			0 0	1	i I
	Sympton			8		. 5				*	~	7,	2					2	•			ī -	-		``						1				
1000			ונוני! ווווי!				1		31	1011	1111	III				ĮŽ			lunin	n Hun		1			I IIII	,	J.m	1111			1			11	
,	[]"[" ."		''	1.	,	1.1.	"	' ''		T	1.	'1'	 '1'	"	.l.i.	"	"		["	""	1.	1	יין'	ľ	"	Ψ.	2	1.1.	"	"	"	1.1.	" "	""
	State				E	8	. !	•				٠,٠	1)					2				E T	1	-	-		.7	ì			٠				
C Messures	1				Centimeters	Centimeters	motors.				Square centimeters	statem enembers	aquare meters	hecteres			5 mario	h-lograms	ternes					liters	litera		Titlers	cubic melera			Celeius	temperature			
Appreximate Convergions to Metric Messures	Mehick by		LENGTH		52	2			AREA		5	6.0	•	: 2		MASS (weight)		0.45	•	VOLUME		• ;		.70	0.67				TEMPERATURE (exect)		E/S Isher	pubbracting.	ã		
Approximate Co	When You Keep		1		inches	3	speek.	•	-		squere inches	square loor	speed acente	BC104		1	994688	spunds	(2000 1b)			insapodns i	fluid auross	1000	-	-	sellone Control	cubic yards	TEMI		Fahrenhais	temperature			
	į						2 1				3	*	¥.	1								1	1:				17	. ?							