LHC ERL – Design and Beam Dynamics Issues

Alex Bogacz – Jefferson Lab

Dario Pellegrini – EPF Lausanne/CERN

Andrea Latina and Daniel Schulte – CERN

RECIRCULATOR COMPLEX

TOTAL	CIRC	UMFERE	NCE ~	8.9 km
-------	------	--------	-------	--------

7000	
7000	60
16	16
2.5	20
0.05	0.10
4	4
80	40
1112	25 delivered 150 in linacs
25	25
2.2*10 ¹¹	4*10 ⁹
35	0.64
	16 2.5 0.05 4 80 1112 25 2.2*10 ¹¹

RECIRCULATOR COMPLEX

TOTAL	CIRCI	JMFEREN	CE~8.	9 km
--------------	-------	----------------	-------	------

7000	
7000	60
16	16
2.5	20
0.05	0.10
4	4
80	40
1112	25 delivered 150 in linacs
25	25
2.2*10 ¹¹	4*10 ⁹
35	0.64
	16 2.5 0.05 4 80 1112 25 2.2*10 ¹¹

RECIRCULATOR COMPLEX

TOTAL C	CIRCUMF	ERENCE~	8.9 km
---------	---------	----------------	--------

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ̂ _{x,y} [μm]	4	4
rms Beam divergence σ΄ _{x,y} [μrad]	80	40
Average Beam Current [mA]	1112	25 delivered 150 in linacs
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

RECIRCULATOR COMPLEX

TOTAL	CIRCUM	FERENCE	~ 8.9 km
--------------	---------------	----------------	----------

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ̂ _{x,y} [μm]	4	4
rms Beam divergence σ ['] x,y [μrad]	80	40
Average Beam Current [mA]	1112	25 delivered 150 in linacs
Bunch Spacing [ns]	25	25
Bunch Population	2.2*1011	4*10 ⁹
Bunch charge [nC]	35	0.64

RECIRCULATOR COMPLEX

TOTAL	CIRCUN	FERENCE	~ 8.9 km
-------	--------	----------------	----------

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ້ _{x,y} [μm]	4	4
rms Beam divergence σ ['] _{x,y} [μrad]	80	40
Average Beam Current [mA]	1112	25 delivered 150 in linacs
Bunch Spacing [ns]	25	25
Bunch Population	2.2*1011	4*10 ⁹
Bunch charge [nC]	35	0.64

RECIRCULATOR COMPLEX

0.5 Gev injector
Two SCRF linacs (20 GeV per pass)
Six 180° arcs, each arc 1 km radius
Re-accelerating stations
Switching stations
Matching optics
Extraction dump at 0.5 GeV

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS	
Beam Energy [GeV]	7000	60	
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16	
Normalized emittance γε _{x,y} [μm]	2.5	20	
Beta Function β [*] _{x,y} [m]	0.05	0.10	
rms Beam size σ _{x,y} [μm]	4	4	
rms Beam divergence σ ['] x,y [μrad]	80	40	
Average Beam Current [mA]	1112	25 delivered 150 in linacs	
Bunch Spacing [ns]	25	25	
Bunch Population	2.2*10 ¹¹	4*10 ⁹	
Bunch charge [nC]	35	0.64	

RECIRCULATOR COMPLEX

0.5 Gev injector
Two SCRF linacs (20 GeV per pass)
Six 180° arcs, each arc 1 km radius
Re-accelerating stations
Switching stations
Matching optics
Extraction dump at 0.5 GeV

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ̂ _{x,y} [μm]	4	4
rms Beam divergence σ ['] x,y [μrad]	80	40
Average Beam Current [mA]	1112	25 delivered 150 in linacs
Bunch Spacing [ns]	25	25
Bunch Population	2.2*1011	4*10 ⁹
Bunch charge [nC]	35	0.64

RECIRCULATOR COMPLEX

0.5 Gev injector
Two SCRF linacs (20 GeV per pass)
Six 180° arcs, each arc 1 km radius
Re-accelerating stations
Switching stations
Matching optics
Extraction dump at 0.5 GeV

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ _{x,y} [μm]	4	4
rms Beam divergence σ ['] x,y [μrad]	80	40
Average Beam Current [mA]	1112	25 delivered 150 in linacs
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

RECIRCULATOR COMPLEX

TOTAL	CIRCUM	FERENCE	~ 8.9 km
--------------	--------	----------------	----------

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ̂ _{x,y} [μm]	4	4
rms Beam divergence σ' _{x,y} [μrad]	80	40
Average Beam Current [mA]	1112	25 delivered 150 in linacs
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

RECIRCULATOR COMPLEX

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ̂ _{x,y} [μm]	4	4
rms Beam divergence σ' _{x,y} [μrad]	80	40
Average Beam Current [mA]	1112	25 delivered 150 in linacs
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

RECIRCULATOR COMPLEX

0.5 Gev injector
Two SCRF linacs (20 GeV per pass)
Six 180° arcs, each arc 1 km radius
Re-accelerating stations
Switching stations
Matching optics
Extraction dump at 0.5 GeV

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ້ _{x,y} [μm]	4	4
rms Beam divergence σ ['] x,y [μrad]	80	40
Average Beam Current [mA]	1112	25 delivered 150 in linacs
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64

RECIRCULATOR COMPLEX

TOTAL C	CIRCUMF	ERENCE~	8.9 km
---------	---------	----------------	--------

PROTONS	ELECTRONS
7000	60
16	16
2.5	20
0.05	0.10
4	4
80	40
1112	25 delivered 150 in linacs
25	25
2.2*1011	4*10 ⁹
35	0.64
	7000 16 2.5 0.05 4 80 1112 25 2.2*10 ¹¹

Cryo Unit Layout/Optics – Half-Cell 130º FODO

802 MHz RF, 5-cell cavity:

 $\lambda = 37.38 \text{ cm}$

 $L_c = 5\lambda/2 = 93.45 \text{ cm}$

Grad = 18 MeV/m (16.8 MeV per cavity)

 ΔE = 269.14 MV per Cryo Unit

10 GeV Linac Optics - Focusing Profile

$$E = 0.5 - 10.5 \text{ GeV}$$

19 FODO cells (19 \times 2 \times 16 = 608 RF cavities)

$$\left\langle \frac{\beta}{E} \right\rangle = \left(\frac{1}{L} \int \frac{\beta}{E} \, ds \right)_{\min}$$

Linac 1 – Multi-pass ER Optics

Linac 1 and 2 – Multi-pass ER Optics

Vertical Separation of Arcs

Vertical Spreaders (20 GeV) – Optics

Bends (4):

\$ang= 3 deg.

\$Lb=400 cm

\$B=0.9 Tesla

Quads (3):

\$G=14 Tesla/m

Bends (2):

\$ang= 1.86 deg \$Lb=400 cm

\$B=0.54 Tesla

Quads (7):

\$G=22-43 Tesla/m

Arc Optics – Emittance preserving FMC cell

Emittance dilution due to quantum excitations:

$$I_5 = \int_0^L \frac{H}{|\rho|^3} ds = \frac{\theta \langle H \rangle}{\rho^2}$$
$$H = \gamma D^2 + 2\alpha DD' + \beta D'^2$$

total emittance increase in Arc 1- 5: $\Delta \varepsilon_x^N = 4.9 \mu m \text{ rad}$

Jefferson Lab

Arc Optics – Emittance preserving FMC cell

Emittance dilution due to quantum excitations:

$$\square\square^{N} = \frac{55 r_0}{48\sqrt{3}} \frac{\hbar c}{mc^2} \square^{6} I_5$$

$$I_5 = \int_0^L \frac{H}{|\rho|^3} ds = \frac{\theta \langle H \rangle}{\rho^2}$$
$$H = \gamma D^2 + 2\alpha DD' + \beta D'^2$$

total emittance increase in Arc 1- 5: $\Delta \varepsilon_x^{N} = 4.9 \mu m \text{ rad}$

Arc Optics – Emittance preserving FMC cell

Emittance dilution due to quantum excitations:

$$ID^{N} = \frac{55 r_0}{48\sqrt{3}} \frac{\hbar c}{mc^2} D^{6} I_5$$

$$I_5 = \int_0^L \frac{H}{|\rho|^3} ds = \frac{\theta \langle H \rangle}{\rho^2}$$
$$H = \gamma D^2 + 2\alpha DD' + \beta D'^2$$

total emittance increase in Arc 1- 5: $\Delta \varepsilon_x^N = 4.9 \ \mu m \text{ rad}$

Jefferson Lab

Arc 1 Optics (10 GeV)

Arc 3 Optics (30 GeV)

Arc 4 (with bypass) Optics (40 GeV)

turn no	E [GeV]	$\Delta E [MeV]$	Cryomodules
1	10.4	0.7	0
2	20.3	9.9	0
3	30.3	48.5	1
4	40.2	151	1
5	50.1	365	3
6	60.0	751	6
7	50.1	365	3
8	40.2	151	1
9	30.3	48.5	1
10	20.3	9.9	0
11	10.4	0.7	0
dump	0.5	0.0	

Frequency	$1604~\mathrm{MHz}$
Gradient	30 MV/m
Design	9 cells
Cells length	841 mm
Structure length	<1 m
Cavity per cryomodule	6
Cryomodule length	\sim 6 m
Cryomodule voltage	150 MV

1604 MHz RF

turn no	E [GeV]	$\Delta E [MeV]$	Cryomodules
1	10.4	0.7	0
2	20.3	9.9	0
3	30.3	48.5	1
4	40.2	151	1
5	50.1	365	3
6	60.0	751	6
7	50.1	365	3
8	40.2	151	1
9	30.3	48.5	1
10	20.3	9.9	0
11	10.4	0.7	0
dump	0.5	0.0	

Frequency	$1604~\mathrm{MHz}$
Gradient	30 MV/m
Design	9 cells
Cells length	$841~\mathrm{mm}$
Structure length	<1 m
Cavity per cryomodule	6
Cryomodule length	$\sim 6 \mathrm{m}$
Cryomodule voltage	150 MV

1604 MHz RF

Spreader 38m Recombiner 38m Injector RF Compensation Linac1 1008m RF Compensation + Doglegs + Doglegs + Matching 96m + Matching 120m Arc1,3,5 3142m Arc2,4,6 3142m Dump Recombiner 38m Bypass + Matching 20m Spreader 38m Linac2 1008m IP Line 196m

turn no	E [GeV]	$\Delta E [MeV]$	Cryomodules
1	10.4	0.7	0
2	20.3	9.9	0
3	30.3	48.5	1
4	40.2	151	1
5	50.1	365	3
6	60.0	751	6
7	50.1	365	3
8	40.2	151	1
9	30.3	48.5	1
10	20.3	9.9	0
11	10.4	0.7	0
dump	0.5	0.0	

Frequency	1604 MHz
Gradient	30 MV/m
Design	9 cells
Cells length	841 mm
Structure length	<1 m
Cavity per cryomodule	6
Cryomodule length	\sim 6 m
Cryomodule voltage	150 MV

1604 MHz RF

turn no	E [GeV]	$\Delta E [MeV]$	Cryomodules
1	10.4	0.7	0
2	20.3	9.9	0
3	30.3	48.5	1
4	40.2	151	1
5	50.1	365	3
6	60.0	751	6
7	50.1	365	3
8	40.2	151	1
9	30.3	48.5	1
10	20.3	9.9	0
11	10.4	0.7	0
dump	0.5	0.0	

-	4.00.4.3.fTT
Frequency	$1604~\mathrm{MHz}$
Gradient	$30 \mathrm{\ MV/m}$
Design	9 cells
Cells length	$841~\mathrm{mm}$
Structure length	<1 m
Cavity per cryomodule	6
Cryomodule length	$\sim 6 \mathrm{m}$
Cryomodule voltage	150 MV

ERL Design – Summary

- Multi-pass linac Optics in ER mode
 - Choice of linac RF and Optics 802 MHz SRF and 1300 FODO
 - Linear lattice: 3-pass 'up' + 3-pass 'down'
- Arc Optics Choice Emittance preserving lattices
 - Quasi-isochronous lattices
 - Flexible Momentum Compaction Optics
 - Balanced emittance dilution & momentum compaction
- Complete Racetrack Lattice Architecture
 - Vertical switchyard
 - Matching sections & path-length correcting 'doglegs'
 - Bypasses around the IR
 - SR Compensation with second harmonics RF

Tracking Simulations in the LHeC Recirculating Lattice

Overview

- ► The tool: PLACET2;
- End-to-end optics parameters;
- Synchrotron Radiation effect;
- Recombination Pattern and Long-Range Wakefields;
- Impact of Cavities misalignments.

PLACET2

New version of the tracking code PLACET equipped with the *recirculation module*. Allows to simulate the propagation of many bunches in recirculating lattices.

- description of multiple beamlines as standard sequences of elements;
- creation of links between them with runtime-evaluated routing criteria;
- new elements: injectors and dumps.

Each beamline sees the correct sequence of bunches even when the train is recombined \rightarrow Can compute *multibunch effects*.

Parallel tracking implemented over different beamlines.

End-to-end Optics

PLACET2 extracts the optics parameters from the particle distribution. A test bunch is followed from the injector to the dump. Basic validation of the setup.

Notable: the energy loss due to synchrotron radiation in Arc 6, the different average β in the arcs, the recovery of the mismatch generated in the linacs.

Synchrotron Radiation

Has an important impact on the operation of the machines:

- Heavy energy losses (750 MeV in Arc 6 at 60 GeV): introduction of compensating sections, reduction of the energy recovery efficiency.
- \rightarrow Impact evaluated in the early design phase.
 - Quantum excitation increases the emittance and the energy spread, what is the quality of the beam at collision? Can we complete the deceleration and reach the dump?
- \rightarrow Requires tracking studies.

Synchrotron Radiation

Evolution of the Longitudinal Phase Space

Synchrotron Radiation

Evolution of the Longitudinal Phase Space

Synchrotron Radiation and Beam-Beam

Transverse Plane at Dump

Aperture radius of the SPL cavity is 40 mm.

Long Range Wakefields

- Bunches entering the radio frequency cavities excite higher order modes of oscillation of the field,
- Bunches coming later are kicked by the excited modes, when they come back can establish a positive feedback,
- Dipolar modes are particularly strong, they can amplify the beam jitter and, in the worst case, cause beam loss.

Long Range Wakefields

- Bunches entering the radio frequency cavities excite higher order modes of oscillation of the field,
- Bunches coming later are kicked by the excited modes, when they come back can establish a positive feedback,
- Dipolar modes are particularly strong, they can amplify the beam jitter and, in the worst case, cause beam loss.

Effect of wakefields at IP

- Fill the machine with perfectly centred (single particle) bunches,
- Inject a bunch with some offset.
- Keep injecting perfect bunches and see how they are perturbed.

Multi-bunch effects are enhanced by the value of $\frac{\beta}{E} \to \text{low energy particles are more susceptible.}$

Multi-bunch effects are enhanced by the value of $\frac{\beta}{E} \to \text{low energy particles are more susceptible.}$

Multi-bunch effects are enhanced by the value of $\frac{\beta}{E} \to \text{low energy particles are more susceptible.}$

Multi-bunch effects are enhanced by the value of $\frac{\beta}{E} \to \text{low energy particles are more susceptible.}$

Multi-bunch effects are enhanced by the value of $\frac{\beta}{E} \to \text{low energy particles are more susceptible.}$

Multi-bunch effects are enhanced by the value of $\frac{\beta}{E} \to \text{low energy particles are more susceptible.}$

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of the arcs \rightarrow maximise the separation between the bunches at first and sixth turn.

Multi-bunch effects are enhanced by the value of $\frac{\beta}{E} \to \text{low energy particles are more susceptible.}$

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of the arcs \rightarrow maximise the separation between the bunches at first and sixth turn.

Multi-bunch effects are enhanced by the value of $\frac{\beta}{E} \to \text{low energy particles are more susceptible.}$

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of the arcs \rightarrow maximise the separation between the bunches at first and sixth turn.

Multi-bunch effects are enhanced by the value of $\frac{\beta}{E} \to \text{low energy particles are more susceptible.}$

The filling of the RF buckets of the LHeC can be controlled tuning the lengths of the arcs \rightarrow maximise the separation between the bunches at first and sixth turn.

Multi-bunch effects are enhanced by the value of $\frac{\beta}{E} \to \text{low energy particles are}$ more susceptible.

- Pattern 162435 is bad!
- Pattern 152634 is better!

Pattern and Long Range Wakefields

The pattern has an influence on the threshold current

Cavity misalignments

100 uncorrected orbits obtained for 300 μ m misalignments and 300 μ rad tilts.

Horizontal orbits without synchrotron radiation

Horizontal orbits with synchrotron radiation

Conclusions

- The LHeC study is progressing both on the lattice design:
 - Design of arcs with IR bypasses
 - Optimized Spreaders/Recombiners
 - Addition of SR compensation sections
- and on the beam dynamics simulations:
 - PLACET2 is in good state of development and is being productive
 - Impact of Synchrotron Radiation
 - Recombination Pattern and Long Range Wakefields
 - Cavities misalignments
- Next major steps:
 - Complete the lattice integration with the interaction region
 - Simulation of the ion cloud effect

Thanks for your attention!

and special thanks to:

Frank Zimmermann
Oliver Brüning
and
Max Klein

http://lhec.web.cern.ch

