三维几何学基础

MILO YIP

2015/9/21

大纲

- 1. 三维坐标系统
- 2. 点与矢量
- 3. 矩阵与几何变换
- 4. 四元数与三维旋转
- 5. 参考资料

游戏中的应用

- 任何与游戏中三维空间相关的地方
 - 游戏逻辑 (gameplay logic)
 - 计算几何(computational geometry)
 - 计算机图形(computer graphics)
 - 计算机动画(computer animation)
 - 计算物理(computational physics)
 - 声音与音乐计算(sound and music computing)
 - 人工智能(artificial intelligence)

1. 三维坐标系统

几何学 GEOMETRY

古希腊数学家欧几里得(Euclid)约于300BC著成13卷的《Elements》

1607年意大利传教士利玛窦(Matteo Ricci)和明朝科学家 徐光启(Paul Xu)合译了前6卷,定名为《**几何**原本》

欧几里得几何

- 从欧几里得几何,通过公理推导出
 - 等腰三角形底角相等
 - 三角形内角和是180°
 - 勾股定理
 - • • • •

解析几何

- 解析几何(Analytic geometry)由法国哲学家笛卡儿 (Descartes)于1637年著的《方法论》开创
 - 使用坐标系
 - 把几何问题转换为代数问题

"Cogito ergo sum (I think, therefore I am / 我思故我在)."

笛卡儿坐标系

- Cartesian coordinate system
- αn 维空间中,用n 个数值表示一点
 - 一维:用*x*表示数线上的一个点
 - 二维:用(x, y)表示平面上的一个点
 - 三维:用(x, y, z)表示立体空间中的一个点
- 原点(origin): $0 \cdot (0,0) \cdot (0,0,0)$
- 轴(axis):n个互相垂直的直线→直角坐标系

二维笛卡儿坐标系

• 扩展至三维时, 和应该指向前,还是后?

三维左手/右手坐标系

CC

- 不影响数学运算
- 把任意一个轴反转就能互换
- Unity 的世界坐标是左手的

轴与方向的映射

- $x \cdot y \cdot z$ 是数学中,轴的常用名字
- 需要映射至现实的概念
- 例:Unity 中的世界坐标 +x 右、+y 上、+z 前

常用软件的世界坐标

软件	利手	+x	+y	+z
Unity	左手	右	上	前
Unreal	左手	前	右	上
3ds Max	右手	右	前	上
Maya	右手	右	上或前	后或上

球坐标系

- spherical coordinate system
- 二维极座标 (r,θ) 扩展至三维
- 增加一个角度 φ (英文记为 phi)
- 有不同的约定,数学上常用:

http://mathinsight.org/spherical_coordinates

球坐标→笛卡儿坐标

$$x = r \sin \varphi \cos \theta$$
$$y = r \sin \varphi \sin \theta$$
$$z = r \cos \varphi$$

笛卡儿坐标→球坐标

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\varphi = \cos^{-1} \frac{z}{r}$$

$$\theta = \tan 2(y, x)$$

练习:三维坐标系统

- 1. 设一个坐标映射中,+x为东方,+z为北方,+y为上方,1个单位为1米。一只小鸟从(-200,0,400)起飞,往南直飞3公里,途中爬升了300米,然后往西直飞4公里。
 - 它现在的坐标是?
 - 它在地图上与出发地的距离是?
- 2. 写出一个绕y轴缧旋移动点在时间t的笛卡儿坐标。该点的初始位置为(r,0,0),xz平面上的圆形路径半径为r,xz平面上的角速度为 ω ,y轴上的移动速度为 ν 。

2. 点与矢量

矢量

- 矢量(vector)又称作向量
- 具有方向和大小
- 可写作 $\mathbf{a} \times \overrightarrow{a} \overrightarrow{\mathbf{g}} \overrightarrow{AB}$

位置矢量

点可表示为位置矢量(position vector)/矢径(radius vector)

游戏常见的标量/矢量

标量	矢量	
时间、质量		
面积、体积		
长度、距离	位置、位移	
速率、加速率	速度、加速度	
	力	
	 颜色	

矢量分解

• 三维矢量可分解成 3 个分量

$$\mathbf{v} = \begin{bmatrix} v_x & v_y & v_z \end{bmatrix}$$

• Unity: Vector3 $v = new \ Vector3(x, y, z)$

矢量与标量的乘法

• 矢量乘以标量(scalar)形成等比缩放(uniform scaling)

• Unity: v * 2.0f或2.0f * v

反方向矢量

• 以-1缩放等于把方向反转

$$\mathbf{v}' = -\mathbf{v}$$

$$= \begin{bmatrix} -v_x & -v_y & -v_z \end{bmatrix}$$

• Unity: -v

矢量加法

$$\mathbf{a} + \mathbf{b} = \begin{bmatrix} a_x + b_x & a_y + b_y & a_z + b_z \end{bmatrix}$$
• Unity: $\mathbf{a} + \mathbf{b}$

矢量减法

$$\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$$

$$= \begin{bmatrix} a_x - b_x & a_y - b_y & a_z - b_z \end{bmatrix}$$
• Unity: $\mathbf{a} - \mathbf{b}$

点和矢量的加减

运算	结果	意义
矢量 + 矢量	矢量	叠加
矢量 – 矢量	矢量	叠加反向矢量
点+矢量	点	把点平移
点-矢量	点	把点平移
点一点	矢量	两点间的距离/方向
点+点	?	无几何意义

大部分引擎不区分点和矢量,但我们要了解个别对象表示点还是矢量

用例:线性插值

- 线性插值(linear interpolation, LERP)
- $t \in [0, 1]$

LERP(
$$\mathbf{a}, \mathbf{b}, t$$
) = $\mathbf{a} + t(\mathbf{b} - \mathbf{a})$
= $(1 - t)\mathbf{a} + t\mathbf{b}$

• Unity: Vector3.Lerp(a, b, t)

模

- 模(magnitude)即矢量的大小/长度
- 利用勾股定理/畢氏定理(Pythagorean theorem)

$$\|\mathbf{v}\| = \sqrt{\left(\sqrt{v_x^2 + v_z^2}\right)^2 + v_y^2} = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

• Unity: v.magnitude

归一化和单位矢量

• 归一化(normalization)求相同方向但模为1的矢量

$$\hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{1}{\sqrt{v_x^2 + v_y^2 + v_z^2}} \mathbf{v}$$

- 模为1的矢量称为单位矢量(unit vector),记为 $\hat{\mathbf{v}}$
- 注意当 $\mathbf{v} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$, $\hat{\mathbf{v}}$ 无定义
- Unity: v.normalized或v.Normalize()

用例:球体相交测试

- 若球心距离小于半径之和,两球体便相交 $\|\mathbf{c}_1 \mathbf{c}_2\| \le r_1 + r_2$
- Unity: (c1 c2).magnitude $\leq r1 + r2$

优化

- 计算模需要开方运算
- 但由于模必然为非负数,可以把不等式左右侧平方

• 设
$$\mathbf{v} = \mathbf{c}_1 - \mathbf{c}_2$$

$$\|\mathbf{v}\| \le r_1 + r_2$$

$$\|\mathbf{v}\|^2 \le (r_1 + r_2)^2$$

$$v_x^2 + v_y^2 + v_z^2 \le (r_1 + r_2)^2$$

• Unity: 左侧用 Vector3.sqrMagnitude

有趣发现

测试时,只考虑 $\mathbf{c}_1 - \mathbf{c}_2$ 和 $r_1 + r_2$

两个球体相交⇔一个放大并平移后的球体与原点相交

点积

- 点积(dot product)/内积(inner product)
- 和矢量夹角相关的标量
- *n*维适用

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$
$$= a_x b_x + a_y b_y + a_z b_z$$

- Unity: Vector3.Dot(a, b)
- 模可以用点积来定义

$$\|\mathbf{v}\|^2 = \mathbf{v} \cdot \mathbf{v}$$

用例:求央角

$$\theta = \cos^{-1} \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}$$
$$= \cos^{-1} (\hat{\mathbf{a}} \cdot \hat{\mathbf{b}})$$

- 夹角必然为正数: $0 \le \theta \le \pi$
- 也可用于判断两矢量是否平行或垂直

用例:求方向上的投影

• 求a在û方向上的投影

$$d = \|\mathbf{a}\| \cos \theta$$
$$d = \|\mathbf{a}\| \|\hat{\mathbf{u}}\| \cos \theta$$
$$= \mathbf{a} \cdot \hat{\mathbf{u}}$$

用例:求平面上的投影

$$h = (\mathbf{p} - \mathbf{v}) \cdot \hat{\mathbf{n}}$$
$$\mathbf{p}' = \mathbf{p} - h\hat{\mathbf{n}}$$

用例:反射矢量

- 把矢量v于一个平面上反射
- 平面的法矢量(normal vector)为 n̂

$$\mathbf{r} = \mathbf{v} - 2(\mathbf{v} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$$

• Unity: Vector3.Reflect

用例:点于扇形内测试

$$\cos^{-1}\left(\frac{\mathbf{p} - \mathbf{c}}{\|\mathbf{p} - \mathbf{c}\|} \cdot \hat{\mathbf{u}}\right) < \theta \qquad \qquad \mathbf{及} \qquad \|\mathbf{p} - \mathbf{c}\| < r$$

优化:检测点是否在扇形之内

叉积

叉积(cross product)是垂直于两个矢量的矢量

$$n = a \times b$$

- $= \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) \,\hat{\mathbf{n}}$
- $= \begin{bmatrix} a_y b_z a_z b_y & a_z b_x a_x b_z & a_x b_y a_y b_x \end{bmatrix}$
- 有别于点积,叉积一般只于三维空间中有定义
- Unity: Vector3.Cross(a, b)

叉积的左右手法则

• 在右手坐标系,用右手法则定义积方向

• 在左手坐标系,则使用左手法则

叉积的反交换律

• $\mathbf{a} \times \mathbf{b}$ 和 $\mathbf{b} \times \mathbf{a}$ 的结果是不同的

• 实际上,它满足反交换律 $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$

用例:求三角形法线

$$\hat{n} = \frac{u \times v}{\|u \times v\|}$$

- 因反交换律,交换 u 和 v 会反转法线
- 需要顶点的缠绕顺序(winding order)来定义正反面

阿达马积

- 阿达马积(Hadamard product)是各分量相乘的矢量积
- 数学文献中常记作 $\mathbf{a} \cdot \mathbf{b}$,在《RTR》中记作:

$$\mathbf{a} \otimes \mathbf{b} = \begin{bmatrix} a_x b_x & a_y b_y & a_z b_z \end{bmatrix}$$

- 常用于颜色的运算,把RGB颜色当作三维矢量,如: 出射光颜色 = 入射光颜色 ⊗ 反照率
- 着色器语言中,通常 a*b 就代表阿达马积

总结: 点和矢量

- 矢量缩放、加法、减法
- 模、归一化、单位矢量
- 点积、叉积、阿达马积
- LERP、投影、求法线

矢量运算一覧

运算	记法	结果	维度	交换	反交换	结合
乘以标量	SV	矢量	n维	-	-	-
加法	a + b	矢量	n维	✓	×	✓
减法	a - b	矢量	n维	×	✓	×
点积	a · b	标量	n维	✓	×	_
叉积	$\mathbf{a} \times \mathbf{b}$	矢量	3维	×	✓	×
阿达马积	a⊗b	矢量	n维	√	×	√

练习: 点和矢量

- 1. 写出检测矢量a、b是否接近垂直(夹角在1°以内)的不等式。
- 2. 设两个球体($i = \{A, B\}$)的球心初始位置为 \mathbf{c}_i ,以匀速 \mathbf{v}_i 移动。
 - 写出球心在时间t的位置函数 $\mathbf{x}_i(t)$;
 - 写出判断两球体在时间*t*相交的不等式;
 - 写出判断两移动球体碰撞的不等式。如两移动球体将会碰撞,求碰撞时间 t_0 。
- 3. 给定一个三维单位矢量 $\hat{\mathbf{u}}$ (3个分量皆不为0),生成两个垂直于 $\hat{\mathbf{u}}$ 的单位矢量 $\hat{\mathbf{v}}$ 和 $\hat{\mathbf{w}}$,且 $\hat{\mathbf{v}}$ 垂直于 $\hat{\mathbf{w}}$ 。

3. 矩阵与几何变换

矩阵与图形学

• 1963年 Timothy E. Johnson 开发了史上首个三维计算机 软件 Sketchpad III

• 当中使用到矩阵变换,他把此工作归功于一名 PhD 学生 Larry E. Roberts ¹

矩阵

• 矩阵 (matrix) 是 $m \times n$ 个元素所组成的长方形数组:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- 矩阵及其乘法最常用作表示线性变换(linear transformation)
- Unity的4×4矩阵:Matrix4x4

矩阵乘法

- $n \times m$ 的矩阵 $n \times m$ 的矩阵 $n \times m$ 的矩阵 $n \times m$
- 得 $n \times p$ 的矩阵 \mathbb{C}

$$C_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj}$$

- 满足结合律 (AB)C = A(BC)
- 一般情况下不满足交换律 $AB \neq BA$
- 直接实现 $O(n^3)$
- Coppersmith-Winograd算法 $O(n^{2.376})$,但n需极大
- Unity: a * b

矩阵乘法例子

```
\begin{bmatrix} a_{11} & a_{12} \\ \cdot & \cdot \\ a_{31} & a_{32} \\ \cdot & \cdot \end{bmatrix} \begin{bmatrix} \cdot & b_{12} & b_{13} \\ \cdot & b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} \cdot & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ \cdot & \cdot & \cdot \\ \cdot & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix}
```

单位矩阵

• 单位矩阵(identity matrix)是方形的($n \times n$),记作 \mathbf{I}_n

$$\mathbf{I}_{1} = \begin{bmatrix} 1 \end{bmatrix}, \ \mathbf{I}_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \cdots, \ \mathbf{I}_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

• 是矩阵乘法的单位元,对于 $m \times n$ 的A:

$$AI_n = I_m A = A$$

• Unity: Matrix44.identity

逆矩阵

- 一些方形矩阵能求出它在乘法上的逆
- 这称为逆矩阵(inverse matrix)
- 记作**A**⁻¹

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$
$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

- 求逆是一个比较耗时的运算
- Unity: a.inverse

转置

- 把一个矩阵转置(transpose),即把行和列互换
- 记作 **A**^T
- 若 $\mathbf{B} = \mathbf{A}^{\mathrm{T}} \, \mathrm{M} \, b_{ji} = a_{ij}$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -6 & 7 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 \\ 2 & -6 \\ 3 & 7 \end{bmatrix}$$

•
$$(A^{T})^{T} = A$$
, $(A^{T})^{-1} = (A^{-1})^{T}$, $(AB)^{T} = B^{T}A^{T}$

• Unity: a.transpose

以矩阵表示线性变换

 变换(transformation)是指把矢量从一个空间映射至 另一空间

$$\mathbf{v}' = f(\mathbf{v})$$

- 线性变换要满足
 - 1. 可加性:

$$f(\mathbf{v} + \mathbf{u}) = f(\mathbf{v}) + f(\mathbf{u})$$

2. 齐次性:

$$f(a\mathbf{v}) = af(\mathbf{v})$$

矩阵和三维空间变换

- 矩阵可以表示多种三维空间变换
 - 平移(translation)
 - 旋转(rotation)
 - 缩放 (scaling)
 - 切变(shearing)
 - 反射 (reflection)
 - 投影 (projection)

以矩阵表示矢量

- 为了以矩阵来变换矢量,须把矢量表示为矩阵
- 行矩阵(row matrix)即1×n矩阵

$$\mathbf{v}_1 = \begin{bmatrix} v_x & v_y & v_z \end{bmatrix}$$

• 列矩阵 (column matrix) 即 $n \times 1$ 矩阵

$$\mathbf{v}_2 = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \mathbf{v}_1^{\mathrm{T}}$$

• Unity和《RTR》使用列矩阵,《GEA》使用行矩阵

对矢量进行线性变换

• 使用列矩阵表示矢量时,用这样的矩阵乘法表示变换:

$$\begin{bmatrix} v'_{x} \\ v'_{y} \\ v'_{z} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix}$$

• 为什么不直接展开运算,而要引入矩阵?

变换串接

• 如果要对矢量进行多次线性变换:

$$\mathbf{v}' = \mathbf{M}_3(\mathbf{M}_2(\mathbf{M}_1\mathbf{v}))$$

• 由于矩阵乘法具有结合律,可以改写成:

$$\mathbf{v}' = (\mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1) \mathbf{v}$$

- 要把 M_1 , M_2 , M_3 施于大量矢量时,先计算 $M = M_3 M_2 M_1$
- 无论线性变换有多复杂,最后施于矢量时都是花费相同的运算量!

缩放变换

等比与非等比缩放

• 给定各轴的缩放比 $\mathbf{s} = \begin{bmatrix} s_x & s_y & s_z \end{bmatrix}^T$,把矢量缩放: $\mathbf{v}' = \mathbf{s} \otimes \mathbf{v}$ $= \begin{bmatrix} s_x v_x & s_y v_y & s_z v_z \end{bmatrix}^T$

• 以矩阵表示:

$$\mathbf{S} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix}$$

缩放的逆变换

• 使用缩放比的倒数:

$$\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix} \begin{bmatrix} \frac{1}{s_x} & 0 & 0 \\ 0 & \frac{1}{s_y} & 0 \\ 0 & 0 & \frac{1}{s} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

旋转变换

旋转性

- 当把个物体旋转时
 - 1. 在某线上的点保持不变,该线称为旋转轴
 - 2. 任意两点旋转后的距离保持不变
 - 3. 所有的点绕旋转轴旋转某个角度
 - 4. 对任何整数k,一个点旋转 $2\pi k + \theta$ 角度后不变
- 两个旋转变换串接后也是一个旋转变换(旋转集合与乘 法形成旋转群)

二维旋转

• 把 \mathbf{p} 绕原点逆时针旋转 θ 度至 \mathbf{p}'

$$\mathbf{p}' = \mathbf{p} \cos \theta + \mathbf{q} \sin \theta$$

$$x' = x \cos \theta + (-y \sin \theta)$$

$$y' = y \cos \theta + x \sin \theta$$

二维旋转矩阵

• 重新排列:

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$

• 写成矩阵形式:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

三维旋转

• 绕各主轴的三维旋转等价于二维旋转

$$\mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

旋转的逆变换

• 旋转的逆变换只需反方向旋转相同角度:

$$\mathbf{R}_{z}^{-1}(\theta) = \mathbf{R}_{z}(-\theta)$$

$$= \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \mathbf{R}_{z}^{T}$$

• 实际上,任何旋转矩阵的逆都是其转置矩阵:

$$\mathbf{R}^{-1} = \mathbf{R}^{\mathrm{T}}$$

因为旋转矩阵是一种正交矩阵(orthogonal matrix)

欧拉角

- 任何三维旋转都可以表示为3个欧拉角
- Unity 中使用的旋转次序是z x y: $\mathbf{v}' = [\mathbf{R}_y(yaw)\mathbf{R}_x(pitch)\mathbf{R}_z(roll)]\mathbf{v}$
- Unity 没有直接用欧拉角生成矩阵的函数

```
Matrix4x4 m = Matrix4x4.TRS(
    Vector3.zero,
    Quaternion.Euler(pitch, yaw, roll),
    Vector3.one);
```

平移变换

原始

平移 $\mathbf{t} = \begin{bmatrix} 4 & 2 & 0 \end{bmatrix}$

平移的问题

• 把点平移是很简单的:

$$\mathbf{p}' = \mathbf{p} + \mathbf{t}$$

• 然而,除非 $\mathbf{t} = \mathbf{0}$,这种变换并不能用 3×3 矩阵表示:

$$\mathbf{p} + \mathbf{t} \neq \begin{vmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{vmatrix} \mathbf{p}$$

齐次坐标

- 解决方法是齐次坐标(homogeneous coordinates)
- 把点或矢量表示为四维矢量

$$\mathbf{p} = egin{bmatrix} p_x \ p_y \ p_z \ p_w \end{bmatrix}$$

- $\triangle hop_w = 1$, $\triangle hop_w = 0$ (不受平移影响)
- 后话:在图形学中还会利用齐次坐标实现透示投影

平移与齐次坐标

• 使用齐次坐标后,点的平移可以用矩阵表示:

$$\mathbf{p'} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \\ 1 \end{bmatrix}$$

- 扩展缩放和旋转变换为4×4矩阵
 - 除 $m_{44} = 1$ 外其他新元素都设为0

刚体变换

• 刚体变换(rigid body transformation)只含旋转和平移 $\mathbf{v}' = \mathbf{T}\mathbf{R}\mathbf{v}$

$$= \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \\ v_w \end{bmatrix}$$

- 可从矩阵轻易因式分解为T和R
- 逆变换也容易求得

非等比缩放旋转平移

• 在刚体变换上加入非等比缩放

$$v' = TRSv$$

$$= \begin{bmatrix} s_x r_{11} & s_y r_{12} & s_z r_{13} & t_x \\ s_x r_{21} & s_y r_{22} & s_z r_{23} & t_y \\ s_x r_{31} & s_y r_{32} & s_z r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \\ v_w \end{bmatrix}$$

- 仅一次变换后仍可因式分解,两次以上无法分解
- 逆变换需采用矩阵求逆

模型空间

- 模型空间(model space)、物体空间(object space)、局部空间(local space)
- 用建模工具(如3ds Max)制作模型时的空间
- 原点通常是质心,或是中心点的底部

世界空间

- 世界空间(world space)
- 各个游戏中物体的位置/定向和缩放在这空间表示
- 每个物体的变换可表示为 $\mathbf{M}_{\text{model} o \text{world}}$
 - 常简称为世界矩阵(world matrix)
- 把网格顶点从模型空间变换至世界空间:

$$\mathbf{v}_{\text{world}} = \mathbf{M}_{\text{model} \rightarrow \text{world}} \mathbf{v}_{\text{model}}$$

• 如有逆矩阵 $\mathbf{M}_{\mathrm{world} \to \mathrm{model}} = \mathbf{M}_{\mathrm{model} \to \mathrm{world}}^{-1}$ 可反向变换: $\mathbf{v}_{\mathrm{model}} = \mathbf{M}_{\mathrm{world} \to \mathrm{model}} \mathbf{v}_{\mathrm{world}}$

变换法线

- 法线在非等比缩放后,便不会垂直于表面
- 这种情况需要用 $(\mathbf{M}^{-1})^{\mathrm{T}}$ 来变换法线

变换法线:证明

- 设 \mathbf{p}_1 , \mathbf{p}_2 为表面上接近的两点,切线 $\mathbf{t} = \mathbf{p}_2 \mathbf{p}_1$
- 变换后的切线t'等于两点分别变换后的差

$$\mathbf{t}' = \mathbf{M}\mathbf{p}_2 - \mathbf{M}\mathbf{p}_1 = \mathbf{M}(\mathbf{p}_2 - \mathbf{p}_1) = \mathbf{M}\mathbf{t}$$

• 变换前的法线须与切线垂直:

$$\mathbf{n} \cdot \mathbf{t} = 0 \Leftrightarrow \mathbf{n}^{\mathrm{T}} \mathbf{t} = 0 \Leftrightarrow \mathbf{n}^{\mathrm{T}} \mathbf{M}^{-1} \mathbf{M} \mathbf{t} = 0 \Leftrightarrow (\mathbf{n}^{\mathrm{T}} \mathbf{M}^{-1}) \mathbf{t}' = 0$$

- 变换后的法线须与切线垂直: $(\mathbf{n}'^{\mathrm{T}})\mathbf{t}' = 0$
- 结合两式的括号部分:

$$\mathbf{n'}^{\mathrm{T}} = \mathbf{n}^{\mathrm{T}} \mathbf{M}^{-1}$$
$$\mathbf{n'} = (\mathbf{n}^{\mathrm{T}} \mathbf{M}^{-1})^{\mathrm{T}}$$
$$= (\mathbf{M}^{-1})^{\mathrm{T}} \mathbf{n}$$

总结:矩阵与几何变换

- 矩阵乘法可表示线性变换
- 矩阵乘法可串接变换
- 三维缩放、旋转、平移可表示成4×4矩阵
- 以齐次坐标表示点

矩阵概念一览

正交矩阵	Q	$\mathbf{Q}^{-1} = \mathbf{Q}^{\mathrm{T}}$
逆矩阵	\mathbf{M}^{-1}	$\mathbf{M}\mathbf{M}^{-1} = \mathbf{M}^{-1}\mathbf{M} = \mathbf{I}$
转置矩阵	\mathbf{M}^{T}	行与列互换
矩阵乘法	Mv	线性变换
矩阵	M	$m \times n$ 个元素的数组
概念	符号	意义

常用线性变换一览

变换	符号	意义
缩放	S(s)	以s的比率作(等比/非等比)缩放
旋转	$\mathbf{R}_{z}(\theta)$	绕ζ轴旋转θ角度
平移	T(t)	平移t
刚体	TR	先旋转后平移 (两点距离不变)
通用	TRS	非等比缩放、旋转、平移
法线	$(\mathbf{M}^{-1})^{\mathrm{T}}$	M含非等比缩放时的法线变换矩阵

练习:矩阵和变性变换

- 1. 利用 AI = IA = I 及 $AA^{-1} = I$ 证明 $(A^{-1})^{-1} = A$ 。
- 2. 以 $\mathbf{R}_z(\theta)$ 和 $\mathbf{T}(\mathbf{t})$ 表示在 xy 平面上绕点 (3,4) 旋转 $\frac{\pi}{3}$ 的 变换。

4. 四元数与三维旋转

旋转矩阵的问题

- 花了9个实数去表示3个自由度
- 难以对两个旋转矩阵插值
- 用欧拉角会有万向节死锁问题(gimbal lock)

四元数

• 四元数(quaternion)由威廉·哈密顿(William Hamilton)于1843年发明

• Shoemake在1985年SIGGRAPH把四元数引进图形学²

四元数与复数

- 类似于复数z = a + ib,四元数可写成 $\mathbf{q} = \begin{bmatrix} q_x & q_y & q_z & q_w \end{bmatrix}$ $= \begin{bmatrix} \mathbf{q}_v & q_w \end{bmatrix}$ $= iq_x + jq_v + kq_z + q_w$
- 类似于复数中 $i^2 = -1$,四元数的分量有这些特性: $i^2 = j^2 = k^2 = ijk = -1,$ $jk = -kj = i, \quad ki = -ik = j, \quad ij = -ji = k,$
- Unity: new Quaternion(x, y, z, w)

四元数乘法

$$\mathbf{qr} = (iq_x + jq_y + kq_z + q_w)(ir_x + jr_y + kr_z + r_w)$$

$$= i(q_y r_z - q_z r_y + q_x r_w + q_w r_x)$$

$$+ j(q_z r_x - q_x r_z + q_y r_w + q_w r_y)$$

$$+ k(q_x r_y - q_y r_x + q_z r_w + q_w r_z)$$

$$+ q_w r_w - q_x r_x - q_y r_y - q_z r_z$$

$$= \left[\mathbf{q}_v \times \mathbf{r}_v + r_w \mathbf{q}_v + q_w \mathbf{r}_v \quad q_w r_w - \mathbf{q}_v \cdot \mathbf{r}_v \right]$$

这是点积和叉积的起源!

• Unity: q * r

模与归一化

• 四元数的模和四维矢量相似:

$$\|\mathbf{q}\| = \sqrt{q_x^2 + q_y^2 + q_z^2 + q_w^2}$$

- 模为1的四元数称为单位四元数
- 归一化

$$u = \frac{1}{\|q\|}q$$

以单位四元数旋转矢量

- 要令矢量v绕 \hat{u} 轴旋转 θ 角度
- 设

$$q = \begin{bmatrix} \hat{\mathbf{u}} \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{bmatrix}$$

$$q^* = \begin{bmatrix} -\hat{\mathbf{u}} \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{bmatrix}$$

$$\mathbf{v} = \begin{bmatrix} \mathbf{v} & \mathbf{0} \end{bmatrix}$$

• 则旋转后的矢量 \mathbf{v}' 在 \mathbf{v}' 的矢量部分 $\mathbf{v}' = q\mathbf{v}q^*$

用例:地球自转与公转

- 地球的自转轴与軌道平面有约23°的倾角
- 模拟地球自转和公转, 軌道平面为XZ
- 直接生成单位四元数

自转

```
public class EarthMovement : MonoBehaviour {
    public float t = 0.0f; // day
    public float earthRotationSpeed = 360.0f * Mathf.Deg2Rad;
   public float tilt = 23.0f * Mathf.Deg2Rad;
    void Update () {
        float halfTheta = t * earthRotationSpeed * 0.5f;
        Quaternion earthRotation = new Quaternion(
            0, Mathf.Sin(halfTheta), 0, Mathf.Cos(halfTheta));
        float halfTilt = tilt * 0.5f;
        Quaternion earthTilt = new Quaternion(
            0, 0, -Mathf.Sin(halfTilt), Mathf.Cos(halfTilt));
        transform.rotation = earthTilt * earthRotation;
```

公转

```
public class EarthMovement : MonoBehaviour {
    // ...
    public float orbitRadius = 2.0f;
    public float orbitSpeed = 360.0f / 365.24f * Mathf.Deg2Rad;

    void Update () {
        // ...
        float phi = t * orbitSpeed;
        transform.position = new Vector3(orbitRadius * Mathf.Cos(phi))
    }
}
```

单位四元数与旋转矩阵

	旋转矩阵	单位四元数	
旋转矢量	Rv	qvq*	
串接变换	R_2R_1v	$q_2q_1vq_1^*q_2^*$	
逆变换	$\mathbf{R}^{-1} = \mathbf{R}^{\mathrm{T}}$	$q^{-1} = q^*$	

单位四元数→旋转矩阵

$$\mathbf{R} = \begin{bmatrix} 1 - 2q_y^2 - 2q_z^2 & 2q_xq_y - 2q_zq_w & 2q_xq_z + 2q_yq_w \\ 2q_xq_y + 2q_zq_w & 1 - 2q_x^2 - 2q_z^2 & 2q_yq_z - 2q_xq_w \\ 2q_xq_z - 2q_yq_w & 2q_yq_z + 2q_xq_w & 1 - 2q_x^2 - 2q_y^2 \end{bmatrix}$$

深圳一旧金山最短路径

大圆弧

旋转插值

- 单位四元数等价于单位四维球面 S^n 上的点
- 两个旋转间的插值等价于两点在四维球面上插值
- 可使用线性插值再归一化

LERP(q₁, q₂, t) =
$$\frac{(1 - t)q_1 + tq_2}{\|(1 - t)q_1 + tq_2\|}$$

LERP旋转不匀速

• 蓝色 LERP (未归一化前),紫色是匀速目标

球面插值

• 球面插值 (spherical linear interpolation, SLERP) $SLERP(q_1, q_2, t) = \frac{\sin((1 - t)\theta)}{\sin \theta} q_1 + \frac{\sin t\theta}{\sin \theta} q_2$

- 当中 $\theta = \cos^{-1}(\mathbf{q}_1 \cdot \mathbf{q}_2)$
- 匀速(t与角度变化成正比)

压缩单位四元数

- 三维旋转只有3个DOF,但四元数需储了4个数
- 方法
 - 利用单位四元数的模为1
 - 忽略其中一个分量,如 q_w
 - 用其他三个分量还原

$$q_w = \pm \sqrt{1 - q_x^2 - q_y^2 - q_z^2}$$

• 问题:怎样决定正负号?

解决方法

• 假设: q 和 -q 产生相同的旋转变换 $\mathbf{v}' = (-q)\mathbf{v}(-q)^*$ $= (-1q)\mathbf{v}(-1q)^*$ $= (q)(-1)\mathbf{v}(-1)(q^*)$ $= q(-1)(-1)\mathbf{v}q^*$ $= q\mathbf{v}q^*$

- 若来源的 $q_w \ge 0$,储存 q_x, q_y, q_z
- 若来源的 $q_w < 0$,储存 $-q_x, -q_y, -q_z$
- 那么可确保还原时 q_w 必为正

各种旋转表示法的比较

表示	储存量	串接	变换矢量	插值
3×3矩阵	9	45	15	×
四元数	4	28	30	✓
欧拉角	3	×	×	×
轴角	4	×	×	×
旋转矢量	3	X	X	X

总结: 四元数

- 四元数可以容易表示绕任意轴的旋转
- 非常紧凑
- 串接较矩阵快,变换较慢
- 避免欧拉角的万向节死锁
- 能实现球面线性插值(SLERP)

练习: 四元数

- 1. 相对于矩阵乘法的单位元是 I_n ,四元数乘法的单位元是 什么?
- 2. 证明单位四元数 q 的乘法逆元是 q*。
- 3. 表示绕x 轴旋转a 弧度,然后绕y 轴旋转b 弧度的四元数。
- 4. 写出一个矢量 \mathbf{v} 经 \mathbf{s} 倍的等比缩放,以单位四元数 \mathbf{q} 旋转,再平移 \mathbf{t} 的变换公式。
 - 这种变换称为SQT变换。推导两个SQT变换 (s_1, q_1, \mathbf{t}_1) 和 (s_2, q_2, \mathbf{t}_2) 的串接方式。
 - 推导SQT变换(s, q, t)的逆变换。
 - 比较SQT变换与4×4矩阵变换的优缺点。

5. 参考资料

- Gregory, Jason. Game engine architecture. Chpater 4. CRC Press, 2009. 中译本:《游戏引擎架构》第4章,叶劲峰译,电子工业出版社,2014.
- Lengyel, Eric. Mathematics for 3D game programming and computer graphics. Cengage Learning, 2012.
- Dunn, Fletcher, and Ian Parberry. 3D math primer for graphics and game development, 2nd Edition. CRC Press, 2011. 中译本: 《3D数学基础:图形与游戏开发》,史银雪/陈洪/王荣静译,清华大学出版社,2005.

- Johnson, Timothy E. "Sketchpad III: a computer program for drawing in three dimensions." Proceedings of the May 21-23, 1963, spring joint computer conference. ACM, 1963.
- 2. Shoemake, Ken. "Animating rotation with quaternion curves." ACM SIGGRAPH computer graphics. Vol. 19. No. 3. ACM, 1985. ←