

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Γραφοθεωρία Ομάδα Ασκήσεων Νο. 3

Ομάδα 7 Αξιώτης Κυριάχος Αρσένης Γεράσιμος

1 Χρωματισμοί κορυφών και ακμών

1.6~ Έστω G γράφημα όπου $\Delta(G) \leq 3.$ Δείξτε ότι το G είναι 4-ακμοχρωματίσιμο.

Θα δείξουμε ότι γραμμικό γράφημα L(G) του G είναι 4 χρωματίσιμο.

Λήμμα 1. $A\nu K_4 \subseteq L(G)$ τότε $\Delta(G) \geq 4$.

Απόδειξη. Έστω e_1, e_2, e_3, e_4 οι ακμές του G που στο L(G) είναι κορυφές 4-κλίκας. Αυτό σημαίνει ότι κάθε ζεύγος e_i, e_j θα πρέπει να έχει κοινό άκρο.

Έστω $e_1=\{u,v\}$ και χωρίς βλάβη της γενικότητας έστω $e_2=\{u,w\}$. Αν η e_3 έχει κοινό άκρο με την e_1 την κορυφή v, τότε αναγκαστικά $e_3=\{v,w\}$ ώστε να έχει κοινό άκρο και με την e_3 . Σε αυτή την περίπτωση όμως η e_4 δεν μπορεί να έχει κοινό άκρο και με τις 3 προηγούμενες ακμές.

Άρα η e_3 έχει κοινό άκρο με την e_1 το u, δηλαδή $e_3 = \{u, x\}$ για κάποια κορυφή x (διαφορετική από τις $\{u, v, w\}$).

Τέλος, η e_4 θα πρέπει να έχει κοινό άκρο με όλες τις υπόλοιπες και αυτό μπορεί να συμβεί μόνο αν $e_4=\{u,y\}$ για κάποια νέα κορυφή y.

Συνεπώς
$$\Delta(G) \geq d(u) = 4$$
.

Εφόσον $\Delta(G) \leq 3$, από το Λήμμα 1 έχουμε ότι το L(G) δεν μπορεί να περιέχει το K_4 ως υπογράφημα άρα δεν μπορεί να το περιέχει και ως ελάσσον.

Από την εικασία του Hadwinger για την περίπτωση k=4 (για το συγκεκριμένο k έχει αποδειχθεί ότι η εικασία ισχύει) έχουμε ότι $\chi(L(G))<4$ άρα μπορούμε να χρωματίσουμε τις ακμές του G με 4 (ή λιγότερα) χρώματα.

1.7 Δείξτε ότι υπάρχει c τέτοιο ώστε κάθε ένωση δύο επίπεδων γραφημάτων να έχει χρωματικό αριθμό το πολύ c.

Λήμμα 2.
$$A \nu G = G_1 \cup G_2$$
 τότε $\chi(G) \leq \chi(G_1) \cdot \chi(G_2)$.

Απόδειξη. Έστω $\chi(G_1)=k, \chi(G_2)=l$ και $\chi_{G_1}:V(G_1)\to [k], \chi_{G_2}:V(G_2)\to [l]$ οι συναρτήσεις χρωματισμού του καθενός.

Επεκτείνουμε τις παραπάνω συναρτήσεις ως εξής:

$$\overline{\chi_{G_i}}(u) = \left\{ egin{array}{ll} \chi_{G_i}(u) &, \ u \in V(G_i) \\ 1 &, \ \mbox{διαφορετικά} \end{array}
ight.$$

Ορίζουμε το σύνολο $S=\{(x,y)\mid x\in A,y\in B\}$ και χρωματίζουμε το G με χρώματα από το S ως εξής:

$$\chi_G(u) = (\overline{\chi_{G_1}}(u), \overline{\chi_{G_2}}(u))$$

Ο παραπάνω είναι έγχυρος χρωματισμός αφού αν $\chi_G(u)=\chi_G(v)$ τότε $\overline{\chi_{G_i}}(u)=\overline{\chi_{G_i}}(v)$ για i=1,2 επομένως $\{u,v\}\notin E(G_i)$ και έτσι $\{u,v\}\notin E(G)$.

Άρα
$$\chi(G) \leq |S| = \chi(G_1) \cdot \chi(G_2)$$
.

Από το θεώρημα των 4 χρωμάτων έχουμε ότι αν G_1, G_2 επίπεδα γραφήματα τότε $\chi(G_1), \chi(G_2) \le 4$ επομένως από το Λήμμα $2: \chi(G_1 \cup G_2) \le 16$.

2 Διαπεράσεις

2.1 (*) Για ποιά k και l το γράφημα $G_{k,l}=P_l^{[k]}$ είναι Χαμιλτονιανό;

Για k=1, κανένα από τα P_l με $l\geq 1$ δεν είναι Χαμιλτονιανό.

Για $k \geq 2,$ θα δείξουμε ότι για κάθε $l \geq 1$ το $P_l^{[k]}$ είναι Χαμιλτονιανό.

Παρατήρηση 3. Το $P_l^{[2]}=P_l\times P_l$ είναι ισόμορφο με την (l+1,l+1)-σχάρα η οποία είναι Χαμιλτονιανό γράφημα για κάθε $l\geq 1$ (διαπερνάμε όλες τις κορυφές της πρώτης στήλης από πάνω προς τα κάτω, της δεύτερης στήλης από κάτω προς τα πάνω κ.ο.κ.).

Λήμμα 4. Αν G είναι Χαμιλτονιανό τότε το $G \times P_k$ είναι επίσης Χαμιλτονιανό.

Απόδειξη. Το γράφημα $G \times P_k$ είναι ουσιαστικά το G όπου κάθε κορυφή του έχει αντικατασταθεί από ένα μονοπάτι P_k (και έχουν προστεθεί οι κατάλληλες ακμές μεταξύ κορυφών των μονοπατιών).

Ας πάρουμε ένα κύκλο Hamilton του G:

$$u_1 \to \ldots \to u_n \to u_1$$

Αυτός μπορεί να μετασχηματιστεί απευθείας σε κύκλο Hamilton του $G \times P_k$ ως εξής:

$$(u_1^1 \to \ldots \to u_1^k) \to \ldots \to (u_n^1 \to \ldots \to u_n^k) \to u_1^1$$

όπου στο παραπάνω u_i^j είναι η j-οστή κορυφή του μονοπατιού το οποίο έχει αντικαταστήσει την κορυφή u_i του G στον $G\times P_k$.

Από το Λήμμα 4 και την Παρατήρηση 3 έχουμε επαγωγικά ότι για κάθε $k\geq 2$ το $P_l^{[k]}$ είναι Χαμιλτονιανό για οποιδήποτε $l\geq 1$.

2.11 (*) Ένα τριγωνοποιημένο επίπεδο γράφημα έχει χρωματικό αριθμό 3 αν και μόνο αν είναι γράφημα Euler.

Θα θεωρήσουμε ότι το γράφημα περιέχει τουλάχιστον 3 χορυφές αφού διαφορετικά η πρόταση είναι τετριμμένη.

 Δ είχνουμε τις δύο κατευθύνσεις της εκφώνησης ως εξής:

 (\Rightarrow) Έστω (προς απαγωγή σε άτοπο) ότι το G (με $n(G) \geq 3$) τριγωνοποιημένο επίπεδο γράφημα το οποίο είναι 3-χρωματίσιμο αλλά $\delta \varepsilon \nu$ είναι γράφημα Euler.

Το G θα πρέπει να περιέχει τουλάχιστον μία χορυφή περιττού βαθμού, έστω $u \in V(G)$. Η u δεν μπορεί να έχει βαθμό 1 γιατί διαφορετικά θα βρίσκεται στο σύνορο μίας μόνο όψης f η οποία όμως θα πρέπει να έχει στο σύνορό της τουλάχιστον άλλες 2 χορυφές. Έστω v, w αυτές οι χορυφές και χωρίς βλάβη της γενικότητας έστω v η γειτονική της u. Τότε όμως μπορούμε να προσθέσουμε την αχμή $\{w,u\}$ και το γράφημα να παραμείνει επίπεδο. Αυτό είναι άτοπο γιατί το γράφημα είναι τριγωνοποιημένο, δηλαδή η προσθήχη μιας αχμής δεν θα έπρεπε να είναι εφικτή.

Συνεπώς $d(u) \geq 3$. Έστω $[v_0,v_1,\ldots,v_{k-1}]$ οι γειτονικές κορυφές τις u σε ορολογιακή διάταξη όπως εμφανίζονται στην επίπεδη εμβάπτιση του G. Αφού το γράφημα είναι τριγωνοποιημένο θα πρέπει να υπάρχουν οι ακμές $\{v_i,v_{(i+1)\mod k}\}$ για κάθε $i=0,\ldots,k-1$.

Άρα η γειτονιά της u ενάγει περιττό κύκλο και αυτό σημαίνει ότι χρειάζονται τουλάχιστον 4 χρώματα για το χρωματισμό της u και της γειτονιάς της. Άτοπο.

 (\Leftarrow) Έστω τριγωνοποιημένο επίπεδο γράφημα G με $n(G) \geq 3$ το οποίο είναι γράφημα Euler αλλά $\delta \varepsilon \nu$ είναι 3-χρωματίσιμο.

Από την εικασία του Hadwinger για k=4, έχουμε ότι $K_4 \leq G$, δηλαδή υπάρχει μια ακολουθία συνθλίψεων ακμών μετά από την οποία το γράφημα G' που απομένει περιέχει 4-κλίκα.

Κάθε κορυφή του G έχει άρτιο βαθμό (ως γράφημα Euler) και έτσι το ίδιο θα ισχύει και για κάθε γράφημα που προκύπτει από συνθλίψεις ακμών του G. Συνεπώς το G' θα είναι γράφημα Euler.

Έστω x, y, z, w οι κορυφές τις 4-κλίκας του G'.

TODO: ... test

- 3 Επίπεδα γραφήματα
- 4 Τέλεια γραφήματα
- 5 Μερικές διατάξεις
- 6 k-δέντρα
 - 6.2 Καλούμε μερικό k-δέντρο κάθε υπογράφημα k-δέντρου. Δείξτε ότι το $K_{r,r}$ είναι μερικό r-δέντρο αλλά δεν είναι μερικό (k-1)-δέντρο.

Το $K_{r,r}$ είναι μερικό k-δέντρο αφού μπορούμε να το παράγουμε ως εξής:

Ξεκινάμε με το K_{r+1} και διαλέγουμε μία κορυφή του την οποία αναθέτουμε στο σύνολο X και τις υπόλοιπες τις αναθέτουμε στο σύνολο Y. Το Y είναι μια r-κλίκα επομένως μπορούμε να τοποθετήσουμε r-1 νέες κορυφές στο X κάθε μία από τις οποίες τις συνδέουμε με όλες τις κορυφές του Y.

Τώρα αφαιρούμε όλες τις αχμές μεταξύ χορυφών του Y χαι αυτό που μένει είναι το $K_{r,r}$.

Έστω τώρα ότι το $K_{r,r}$ ήταν μερικό (r-1)-δέντρο. Τότε θα πρέπει να περιέχει μια κορυφή u με d(u) < r (η τελευταία κορυφή που προσθέσαμε κατα της κατασκευή του (r-1)-δέντρου είχε βαθμό r-1). Αυτό όμως είναι άτοπο γιατί όλες οι κορυφές του $K_{r,r}$ έχουν βαθμό ίσο με r.

7 Άπειρα γραφήματα

7.3 (*) Χρησιμοποιώντας το λήμμα του Κőnig, αποδείξτε ότι αν το G είναι γράφημα όπου $|V(G)| = \aleph_0$ και κάθε υπογράφημά του είναι 3-χρωματίσιμο, τότε και το G είναι 3-χρωματίσιμο.

Έστω $V(G) = \{1, 2, ..., n, ...\}$. Συμβολίζουμε με G[k] το εναγόμεμο υπογράφημα του G με κορυφές τις $\{1, ..., k\}$.

Δημιουργούμε το εξής δέντρο T: Κάθε χόμβος του δέντρου εχτός της ρίζας αντιστοιχεί σε ένα έγχυρο 3-χρωματισμό του G[k] για χάποιο k. Συγχεχριμένα, η ρίζα έχει 3 παιδιά που αντιστοιχούν στους τρεις πιθανούς χρωματισμούς του G[1] χαι αν ένας χόμβος $u \in T$ αντιστοιχεί σε 3-χρωματισμό του G[k], τότε θεωρούμε το γράφημα $G[k+1] \supseteq G[k]$ χαθώς χαι χάθε 3-χρωματισμό του που συμφωνεί με το χρωματισμό του G[k]. Υπάρχουν 3 τέτοιοι

χρωματισμοί (3 επιλογές για το χρώμα της νεας κορυφής). και ώς παιδία της u θέτουμε τους έγκυρους από αυτούς τους χρωματισμούς.

Παρατηρούμε ότι ένας κόμβος u βρίσκεται σε απόσταση r από τη ρίζα του T αν και μόνο αν το u αντιστοιχεί σε έγκυρο 3-χρωματισμό του G[r].

Για το γράφημα T γνωρίζουμε ότι κάθε κόμβος έχει πεπερασμένο βαθμό (το πολύ 4) και ότι έχει άπειρο πλήθος κόμβων γιατί σύμφωνα με την προηγούμενη παρατήρηση, αν το G[k] είναι 3-χρωματίσιμο θα πρέπει να υπάρχει τουλάχιστον μια κορυφή u που να αντιστοιχεί στο χρωματισμό του. Ξέρουμε όμως ότι όλα τα G[k] για $k \in \mathbb{N}$ είναι 3-χρωματίσιμα άρα θα πρέπει να υπάρχει τουλάχιστον μια κορυφή για κάθε τέτοιο k.

Από το λήμμα του Κőnig έχουμε λοιπόν ότι πρέπει να υπάρχει άπειρο μονοπάτι P που να ξεκινάει από τη ρίζα. Το μονοπάτι αυτό ορίζει έναν 3-χρωματισμό του G (το χρώμα μιας κορυφής $w \in V(G)$ είναι το χρώμα που του αναθέτει ο χρωματισμός του G[w] στο μονοπάτι P). Ο χρωματισμός αυτός είναι έγκυρος γιατί διαφορετικά, αν υπάρχουν κορυφές $u,v \in V(G)$ με $\{u,v\} \in E(G)$ και ίδιο χρώμα, τότε ο χρωματισμός του $G[\max(u,v)]$ στο μονοπάτι P δεν θα ήταν έγκυρος.

8 Κανονικά γραφήματα και Ταιριάσματα

9 Διάφορα