

Time Series con DNN Oscar Rodriguez

Advanced Time Series Analysis 27 Agosto 2025

Repaso

.

Revisamos las bases de las series de tiempo y los modelos clásicos de pronóstico (AR, MA, ARIMA, VAR, ETS), destacando la importancia de la **estacionariedad**, **tendencias**, **estacionalidades**, entre otros. Sin embargo, estos enfoques presentan limitaciones debido a sus supuestos de **linealidad** y necesidad de **ajustes manuales**, lo que motiva explorar métodos más flexibles. En esta sesión introduciremos las redes neuronales aplicadas a series de tiempo, desde arquitecturas simples como **MLP** hasta modelos especializados (RNN, LSTM, GRU, TCN o Transformers), comparando su desempeño con los métodos tradicionales en ejemplos univariados y multivariados.

.

MLP

Red neuronal básica – Multi-Layer Perceptronde capas totalmente conectadas. Captura relaciones no lineales, pero no tiene memoria temporal..

RNN

Red neuronal –Recurrent Neural Network– que añade conexiones recurrentes (retroalimentación con estados pasados) que permiten mantener un "estado oculto" y procesar secuencias paso a paso, modelando dependencias temporales.

LSTM

Red neuronal –Long Short-Term Memory– Variante de RNN que introduce celdas de memoria y compuertas (input, output, forget) para manejar dependencias de largo plazo en secuencias.

GRU

-Gated Recurrent Unit- Variante más ligera de LSTM que combina compuertas de actualización y reinicio, con menos parámetros pero desempeño competitivo en muchas tareas secuenciales.

TCN

-Temporal Convolutional Network- Red convolucional 1D diseñada para secuencias. Usa convoluciones (filtro deslizante) para capturar dependencias de corto y largo plazo de manera paralela y más eficiente que las RNN.

Transformers

Tipo de red neuronal que usa mecanismos de atención en lugar de recurrencias o convoluciones, lo que les permite aprender relaciones entre todos los elementos de una secuencia de manera eficiente y precisa.

Requerimientos

Para generar los códigos de esta clase, es necesario instalar algunas librerias adicionales a las anteriormente usadas. Estas son numpy=1.26.4, pmdarima, prophet, scikit-learn, TensorFlow=2.16.2 y acceder a un *Repositorio Series de Tiempo* creado para esta clase.

.

O3 Actualiza

Activa el entorno con el comando conda activate AdvTimeSeries

En la terminal ejecuta el comando:

conda env update -n AdvTimeSeries -f AdvTimeSeries.yml

02 Descarga

Descarga el archivo **AdvTimeSeries.yml** desde la URL: https://github.com/orodriguezm1/T imeSeries

Obtener los códigos disponibles desde:

https://github.com/orodriguezm1/T imeSeries/tree/Dev

Multilayer Perceptron (MLP)

Sea $x \in \mathbb{R}^d$ la entrada. Un MLP con L capas ocultas se define como:

$$h^{(0)} = x$$

$$h^{(\ell)} = \sigma^{(\ell)}(W^{(\ell)}h^{(\ell-1)} + b^{(\ell)}), \quad \ell = 1, \dots, L$$

La salida es:

$$f(x) = \phi(W^{(L+1)}h^{(L)} + b^{(L+1)})$$

donde $\sigma^{(\ell)}$ son activaciones (ReLU, tanh, sigmoid) y ϕ depende de la tarea (identidad, softmax, etc.).

.

Multiple hidden layers Input layer Output layer

Recurrent Neural Network (RNN)

Sea $x_t \in \mathbb{R}^d$ la entrada en el tiempo t. Un RNN mantiene un estado oculto $h_t \in \mathbb{R}^m$:

$$h_t = \sigma(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$

La salida en el tiempo t es:

$$y_t = \phi(W_{hy}h_t + b_y)$$

donde σ es la activación recurrente (tanh, ReLU) y ϕ depende de la tarea (identidad, softmax, etc.).

Recurrent Neural Networks

.

.

.

Long Short-Term Memory (LSTM)

Sea $x_t \in \mathbb{R}^d$ la entrada en el tiempo t, con estado oculto $h_t \in \mathbb{R}^m$ y estado de celda $c_t \in \mathbb{R}^m$.

Las ecuaciones son:

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$$
 (puerta de entrada)
 $f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$ (puerta de olvido)
 $o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$ (puerta de salida)

$$\tilde{c}_t = \tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_c)$$
 (estado candidato)

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t$$

$$h_t = o_t \odot \tanh(c_t)$$

donde σ es la sigmoide, \odot el producto elemento a elemento.

Ejemplos

.

.

.

