Fonksiyonun Bire Birliği

Cebirsel İnceleme

$$\forall x_{1}, x_{2} \in [-5, \infty) \text{ için } g(x_{1}) = g(x_{2})$$

$$2 \cdot \sqrt{x_{1} + 5} - 4 = 2 \cdot \sqrt{x_{2} + 5} - 4$$

$$2 \cdot \sqrt{x_{1} + 5} = 2 \cdot \sqrt{x_{2} + 5}$$

$$\sqrt{x_{1} + 5} = \sqrt{x_{2} + 5}$$

$$x_{1} + 5 = x_{2} + 5$$

$$x_{1} = x_{2} \qquad \text{olur.}$$

 $\forall x_1, x_2 \in [-5, \infty)$ için $g(x_1) = g(x_2)$ olduğunda $x_1 = x_2$ olduğundan fonksiyon bire birdir.

Grafik İnceleme y -6 -5 -4 -3 -2 -10 1 2 3 4 5 6 X g -2 -3 -4 -4 -5 -5

Yukarıdaki g fonksiyonunun grafiği incelendiğinde fonksiyonun tanım aralığındaki farklı x değerlerine karşılık gelen g(x) değerlerinin farklı olduğu görüldüğünden g fonksiyonu bire birdir.

Fonksiyonun Örtenliği

Cebirsel İnceleme: f fonksiyonuna uygulanan dönüşümlerle oluşan g fonksiyonunun tanım kümesi $[-5,\infty)$, görüntü kümesi $[-4,\infty)$ dır. $\forall y_1 \in [-4,\infty)$ için $y_1 = g(x_1)$ olacak şekilde

 $\exists x \in [-5, \infty)$ bulunduğundan g örten

Grafik İnceleme

Grafik incelendiğinde –4'ten küçük değerlere karşılık gelen en az bir x değeri bulunduğundan g örten fonksiyondur.

Fonksiyonun Tekliği-Çiftliği

Cebirsel İnceleme

fonksiyondur.

$$g(x) = 2 \cdot \sqrt{x+5} - 4 \text{ için}$$

 $g(-x) = 2 \cdot \sqrt{-x+5} - 4 \text{ ve}$
 $-g(x) = -2 \cdot \sqrt{x+5} + 4 \text{ olur.}$

 $g(-x) \neq g(x)$ olduğundan g fonksiyonu çift fonksiyon değildir.

 $g(-x) \neq -g(x)$ olduğundan g fonksiyonu tek fonksiyon değildir.

Yukarıdaki grafik incelendiğinde g fonksiyonunun grafiği orijine göre simetrik olmadığından g tek fonksiyon değildir. g fonksiyonunun grafiği y eksenine göre simetrik olmadığından g çift fonksiyon değildir. Bu nedenle g fonksiyonu ne tek ne çift fonksiyondur.