STOR 635 HW 4

BY AMEER QAQISH

February 7, 2022

1 Solutions

1. Does convergence in probability imply conditional convergence in probability? That is, if $X_1, X_2, ..., X$ are random variables defined on the same probability space (Ω, \mathcal{F}, P) such that $X_n \to X$ in probability and \mathcal{G} is any sub- σ -field of \mathcal{F} , does one necessarily have for every $\varepsilon > 0$, $P(|X_n - X| > \varepsilon | \mathcal{G}) \to 0$ almost surely? What about L^p -convergence for $p \in (0, \infty)$ (i.e. if $X_n \to X$ in L^p , does this imply $E(|X_n - X|^p | \mathcal{G}) \to 0$ almost surely)? Prove or disprove with a counter-example.

Answer. Convergence in probability does not imply conditional convergence in probability. Define a sequence of random variables X_1, X_2, \ldots on $([0, 1], \mathcal{B}([0, 1]), P = \text{Lebesgue measure})$ by $X_1 = 1_{\left[0, \frac{1}{2}\right]}, X_2 = 1_{\left[\frac{1}{2}, 1\right]}, X_3 = 1_{\left[0, \frac{1}{4}\right]}, X_4 = 1_{\left[\frac{1}{4}, \frac{2}{4}\right]}, X_5 = 1_{\left[\frac{2}{4}, \frac{3}{4}\right]}, X_6 = 1_{\left[\frac{3}{4}, 1\right]}, X_7 = 1_{\left[0, \frac{1}{8}\right]}, \ldots$ Since $P(X_n = 0) \to 1$ as $n \to \infty$, $P(X_n > \varepsilon) = P(X_n = 1) = 1 - P(X_n = 0) \to 0$ for any $\varepsilon < 1$. Thus $X_n \to 0$ in probability. We have

$$P(X_n > \varepsilon \mid \mathcal{B}([0,1])) = 1_{\{X_n > \varepsilon\}} = 1_{(\varepsilon,\infty)}(X_n).$$

For any $\omega \in [0,1]$, $X_n(\omega) = 1$ for infinitely many n, so $1_{(\varepsilon,\infty)}(X_n(\omega))$ does not converge to 0. Thus for almost every $\omega \in [0,1]$, $P(X_n > \varepsilon \mid \mathcal{B}([0,1]))(\omega)$ does not converge to 0. L^p convergence does not imply that $E(|X_n - X|^p \mid \mathcal{G}) \to 0$ almost surely. Let X_1 , X_2, \ldots be as above, and let $p \in (0,\infty)$. We have $E(X_n^p) = E(X_n) \to 0$ as $n \to \infty$. Thus $X_n \to 0$ in L^p . We have

$$E(X_n^p \mid \mathcal{B}([0,1])) = X_n^p = X_n.$$

For every $\omega \in [0, 1]$, $X_n(\omega) = 1$ for infinitley many n, so $X_n(\omega)$ does not converge to 0. Thus for almost every $\omega \in [0, 1]$, $E(X_n^p | \mathcal{B}([0, 1]))(\omega)$ does not converge to 0.

2. Let $\{X_i\}_{i\geq 1}$ be i.i.d. integrable random variables with $E(X_i) = \mu$. Let $S_n = X_1 + \cdots + X_n$. Show that $E(X_1 \mid S_n)$ converges a.s. to $E(X_1)$.

Proof. Let $n \in \mathbb{N}$ be arbitrary. First we show that $E(X_i | S_n) = E(X_1 | S_n)$ for all $i \leq n$. Let $i \leq n$. Every set in $\sigma(S_n)$ is of the form $S_n^{-1}(A)$ with $A \in \mathcal{B}(\mathbb{R})$. For such a set,

$$\int X_i 1_{S_n^{-1}(A)} dP = \int X_i 1_A(S_n) dP$$

$$= \int X_i 1_A(X_1 + \dots + X_n) dP$$

$$= \int x_i 1_A(x_1 + \dots + x_n) dP_{(X_1, \dots, X_n)}.$$

2 Section 1

Since the X_i s are independent, $P_{(X_1,...,X_n)} = P_{X_1} \times ... \times P_{X_n}$. Since the X_i s are identically distributed, $P_{X_i} = P_{X_1}$ for all i. Hence

$$\int x_{i} 1_{A}(x_{1} + \dots + x_{n}) dP_{(X_{1}, \dots, X_{n})} =$$

$$\int x_{i} 1_{A}(x_{1} + \dots + x_{n}) dP_{X_{1}}(x_{1}) \cdots dP_{X_{1}}(x_{i}) \cdots dP_{X_{1}}(x_{n}) =$$

$$\int x_{i} 1_{A}(x_{1} + \dots + x_{i} + \dots + x_{n}) dP_{X_{1}}(x_{i}) \cdots dP_{X_{1}}(x_{1}) \cdots dP_{X_{1}}(x_{n}) =$$

$$\int x_{1} 1_{A}(x_{i} + \dots + x_{1} + \dots + x_{n}) dP_{X_{1}}(x_{1}) \cdots dP_{X_{1}}(x_{i}) \cdots dP_{X_{1}}(x_{n}) =$$

$$\int x_{1} 1_{A}(x_{1} + \dots + x_{n}) dP_{X_{1}}(x_{1}) \cdots dP_{X_{1}}(x_{n}) = \int X_{1} 1_{A}(S_{n}) dP.$$

Thus $\int X_i 1_A(S_n) dP = \int X_1 1_A(S_n) dP$ for all $A \in \mathcal{B}(\mathbb{R})$. Thus $E(X_i \mid S_n) = E(X_1 \mid S_n)$. Thus

$$n E(X_1 | S_n) = E(X_1 | S_n) + \dots + E(X_n | S_n) = E(S_n | S_n) = S_n.$$

Thus

$$E(X_1 \mid S_n) = \frac{S_n}{n}.$$

By the strong law of large numbers, $\frac{S_n}{n} \to E(X_1)$ a.s.

3. Let for a square integrable random variable X and a sub σ -field \mathcal{G} of \mathcal{F} , $var(X \mid \mathcal{G}) \doteq E(X^2 \mid \mathcal{G}) - E(X \mid \mathcal{G})^2$. Show that

$$var(X) = E(var(X \mid \mathcal{G})) + var(E(X \mid \mathcal{G})).$$

Proof. We have

$$E(\operatorname{var}(X \mid \mathcal{G})) = E(X^2) - E(E(X \mid \mathcal{G})^2),$$

$$var(E(X \mid \mathcal{G})) = E(E(X \mid \mathcal{G})^{2}) - E(E(X \mid \mathcal{G}))^{2} = E(E(X \mid \mathcal{G})^{2}) - E(X)^{2}.$$

Thus

$$E(\operatorname{var}(X \mid \mathcal{G})) + \operatorname{var}(E(X \mid \mathcal{G})) = E(X^2) - E(X)^2 = \operatorname{var}(X). \quad \Box$$

- **4.** Consider the Polya urn model: Start with R_0 red balls and B_0 black balls in an urn. At each step, draw a ball uniformly at random and put back two balls of the color drawn back into the urn. Let $\mathcal{F}_n = \sigma\{R_0, \ldots, R_n\}, n \geq 0$. Show that $X_n := R_n/(R_n + B_n)$ is a martingale with respect to \mathcal{F}_n .
- **Proof.** We assume that R_0 and B_0 are fixed numbers. For each $n \ge 0$, let $N_n = R_0 + B_0 + n$ be the number of balls in the urn after the nth draw. Note that N_n is not random. Since $B_n = N_n R_n$, B_n is \mathcal{F}_n -measurable. Thus X_n is \mathcal{F}_n -measurable. We have $0 \le X_n \le 1$, so $X_n \in L^{\infty}$ and is therefore integrable. Let $D_n = 1$ if the nth draw is a red ball, and let $D_n = 0$ if it is a blue ball. We have

$$X_{n+1} = 1_{\{D_n=1\}} \frac{X_n N_n + 1}{N_n + 1} + 1_{\{D_n=0\}} \frac{X_n N_n}{N_n + 1}.$$

Solutions 3

Taking the expectation given X_n and using $P(D_n = 1 \mid X_n = r) = r$ gives

$$E(X_{n+1} | X_n = r) = r \frac{r N_n + 1}{N_n + 1} + (1 - r) \frac{r N_n}{N_n + 1}$$
$$= \frac{r^2 N_n + r + r N_n - r^2 N_n}{N_n + 1}$$
$$= r.$$

Thus $E(X_{n+1} | X_n) = X_n$. Thus $(X_n)_{n \ge 0}$ is a martingale with respect to $(\mathcal{F}_n)_{n \ge 0}$. \square

5. Let ξ_1, ξ_2, \ldots be independent with $E(\xi_i) = 0$ and $\operatorname{Var}(\xi_m) = \sigma_m^2 < \infty$. Let $s_n^2 = \sum_{m=1}^n \sigma_m^2$ and $S_n = \sum_{m=1}^n \xi_m$. Show that $S_n^2 - S_n^2$ is a martingale.

Proof. $S_n^2 - s_n^2$ is adapted with respect to the natural filtration $\mathcal{F}_n = \sigma(S_1, \ldots, S_n) = \sigma(\xi_1, \ldots, \xi_n)$. $S_n^2 - s_n^2$ is integrable since $E(S_n^2) = s_n^2 < \infty$. We have

$$E(S_{n+1}^{2} | \mathcal{F}_{n}) = E((S_{n} + \xi_{n+1})^{2} | \mathcal{F}_{n})$$

$$= E(S_{n}^{2} + \xi_{n+1}^{2} + 2 S_{n} \xi_{n+1} | \mathcal{F}_{n})$$

$$= S_{n}^{2} + E(\xi_{n+1}^{2} | \mathcal{F}_{n}) + 2 S_{n} E(\xi_{n+1} | \mathcal{F}_{n})$$

$$= S_{n}^{2} + E(\xi_{n+1}^{2}) + 2 S_{n} E(\xi_{n+1})$$

$$= S_{n}^{2} + \sigma_{n+1}^{2}.$$

Thus

$$E(S_{n+1}^2 - S_{n+1}^2 \mid \mathcal{F}_n) = E(S_{n+1}^2 \mid \mathcal{F}_n) - S_{n+1}^2 = S_n^2 - S_n^2$$

Thus $S_n^2 - s_n^2$ is a martingale.

6. Let $\{X_n\}$, $\{Y_n\}$ be square integrable martingales with respect to the filtration $\{\mathcal{F}_n\}$. Let $X_0 = Y_0 = 0$. Show that

$$E(X_n Y_n) = \sum_{k=1}^n E((X_k - X_{k-1}) (Y_k - Y_{k-1})), \quad n \ge 1.$$

Proof. For each n,

$$X_n = \sum_{j=1}^n (X_j - X_{j-1}), \quad Y_n = \sum_{k=1}^n (Y_k - Y_{k-1}).$$

Thus

$$E(X_n Y_n) = \sum_{j,k=1}^{n} E((X_j - X_{j-1}) (Y_k - Y_{k-1})).$$

Let j < k be arbitrary. Since (Y_n) is a martingale, $E(Y_k | \mathcal{F}_j) = Y_j$ and $E(Y_{k-1} | \mathcal{F}_j) = Y_j$. Thus

$$E((X_{j} - X_{j-1}) (Y_{k} - Y_{k-1})) = E(E((X_{j} - X_{j-1}) (Y_{k} - Y_{k-1}) | \mathcal{F}_{j}))$$

$$= E((X_{j} - X_{j-1}) E(Y_{k} - Y_{k-1} | \mathcal{F}_{j}))$$

$$= E((X_{j} - X_{j-1}) 0)$$

$$= 0.$$

4 Section 1

Thus

$$E(X_n Y_n) = \sum_{k=1}^n E((X_k - X_{k-1}) (Y_k - Y_{k-1})).$$

7. Let $\{Y_n\}$ be a sequence of $\{\mathcal{F}_n\}$ -adapted integrable random variables. Let

$$X_n = \sum_{j=1}^n (Y_j - E(Y_j \mid \mathcal{F}_{j-1})), \quad n \ge 1$$

and $X_0 = 0$. Show that $\{X_n\}$ is a $\{\mathcal{F}_n\}$ -martingale.

Proof. For each j, since Y_j is integrable, $E(Y_j | \mathcal{F}_{j-1})$ is integrable. Therefore X_n is integrable. Clearly X_n is \mathcal{F}_n -measurable. We have

$$E(X_{n+1} | \mathcal{F}_n) = \sum_{j=1}^{n+1} (E(Y_j | \mathcal{F}_n) - E(E(Y_j | \mathcal{F}_{j-1}) | \mathcal{F}_n))$$

$$= \sum_{j=1}^{n} (Y_j - E(Y_j | \mathcal{F}_{j-1})) + E(Y_{n+1} | \mathcal{F}_n) - E(Y_{n+1} | \mathcal{F}_n)$$

$$= \sum_{j=1}^{n} (Y_j - E(Y_j | \mathcal{F}_{j-1}))$$

$$= X_n.$$

Thus $\{X_n\}$ is an \mathcal{F}_n -martingale.