Causal Structure Discovery between Clusters of Nodes Induced by Latent Factors

Chandler Squires¹²³, Annie Yun¹², Eshaan Nichani¹², Raj Agrawal¹²³, and Caroline Uhler¹²

¹LIDS, MIT

²IDSS, MIT

³CSAIL, MIT

GOAL:

RECOVER NON-EXOGENOUS LATENT VARIABLES WHEN LEARNING A CAUSAL STRUCTURE FROM DATA.

Exogenous latent variables (most other methods)

Non-exogenous latent variables (general)

Non-exogenous latent variables (ours)

MOTIVATION:

GENE REGULATORY NETWORKS

Observed variables = gene expression levels

Latent variables = activity of transcription
factories [1]

Clusters = spatially co-located genes

LATENT FACTOR CAUSAL MODEL (LFCM) ASSUMPTIONS:

(a) UNIQUE CLUSTER

Each observed node has one latent parent.

(b) BIPARTITE

No (observed \rightarrow observed) or (latent \rightarrow latent) edges.

(c) TRIPLE-CHILD

At least 3 children per latent node.

(d) DOUBLE-PARENT

At least two parents per non-source latent.

PROPOSED METHOD: EstimateLFCM

 $H_{vt}(A, B)$: the hypothesis that the submatrix $\Sigma_{A,B}$ of the covariance matrix is low-rank + diagonal.

- Corresponds to the <u>vanishing</u> of all <u>tetrads</u> (2 × 2 non-diagonal subdeterminants).
- Use *Wishart* test: divide sample tetrad by standard error, using formula from [2].

Phase 1: FindOrderedClusters

- 1. Add an undirected edge between observed nodes i and j if we accept $H_{vt}(\{i,j\},[p]\setminus\{i,j\})$
- 2. Add cliques of size ≥ 3 to thebeginning of the ordering and removethem from the graph
- 3. Repeat until graph is empty

Phase 2: MergeClusters

- 1. Merge cluster c_1 and c_2 if we accept $H_{vt}(c_1 \cup c_2, c_1 \cup c_2)$
- 2. Add a latent variable for each cluster, pointing to all nodes in the cluster.

Phase 3: LearnDAG

For each node in a cluster, add an edge to the later clusters if it is not conditionally independent of the nodes in that cluster given the other nodes in its cluster and previous clusters.

THEORETICAL RESULTS

IDENTIFIABILITY + CONSISTENCY (THEOREM 2):

Under a linear LFCM model and three appropriate faithfulness assumptions, our algorithm consistently recovers G^* .

COMPUTATIONAL COMPLEXITY (THEOREM 3):

Given p variables, our algorithm takes time at most $\mathcal{O}(p^6)$. A more fine-grained analysis in terms of the maximum cluster size and number of clusters is given in the paper.

EMPIRICAL RESULTS

Comparisons for clustering:

Spectral Clustering (SC)
 FindOneFactorClusters (FOFC) [3]

Setting:

- 50 random graphs
- Erdös-Rényi w/ density 0.5
- 10 latent nodes
- Other details in paper

Other results in paper

- Edge recovery performance
- Semi-synthetic experiment using Sachs protein signaling data

Our method recovers the ground truth clustering better than baselines.

REFERENCES

[1] Belyaeva, Anastasiya, et al. "Network analysis identifies chromosome intermingling regions as regulatory hotspots for transcription." *Proceedings of the National Academy of Sciences* 114.52 (2017): 13714-13719.
[2] Drton, Mathias, Hélène Massam, and Ingram Olkin. "Moments of minors of Wishart matrices." *The Annals of Statistics* 36.5 (2008): 2261-2283.
[3] Kummerfeld, Erich, and Joseph Ramsey. "Causal clustering for 1-factor

[3] Kummerfeld, Erich, and Joseph Ramsey. "Causal clustering for 1-factor measurement models." *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*. 2016.