haha

Tuesday 19th September, 2017

1 Introduction

2 bounds for the radius of confidence balls

These results are from Cai and Low 2004. I adapted it from "All of Non-parametric Statistics".

Let $\mathbf{Z}^n = (Z_1, \dots, Z_n)$ where $Z_i = \theta_i + \sigma_n \epsilon_n$, $i = 1, \dots, n$, $\epsilon_1, \dots, \epsilon_n$ are independent N(0, 1) random variables, $\theta^n = (\theta_1, \dots, \theta_n) \in \mathbb{R}^n$ is a vector of unknown parameters and σ_n is assumed known.

Theorem 1 (Cai and Low 2004). Fix $0 < \alpha < 1/2$. Let $\mathcal{B}_n = \{\theta : \|\hat{\theta} - \theta\| \le s_n\}$ be such that

$$\inf_{\theta \in \mathbb{R}^n} P_{\theta}(\theta \in \mathcal{B}_n) \ge 1 - \alpha.$$

Then, for every $0 < \epsilon < 1/2 - \alpha$,

$$\inf_{\theta \in \mathbb{R}^n} \mathcal{E}_{\theta}(s_n) \ge \frac{1}{2} \sigma_n (1 - 2\alpha - \epsilon) n^{1/4} (\log(1 + \epsilon^2))^{1/4}.$$

Proof. Let

$$a = \frac{\sigma_n}{n^{1/4}} (\log(1 + \epsilon^2))^{1/4}$$

and define

$$\Omega = \{\theta = (\theta_1, \dots, \theta_n) : |\theta_i| = a, i = 1, \dots, n\}.$$

Note that Ω contains 2^n elements. Let f_{θ} denote the density of a multivariate normal with mean θ and covariance $\sigma_n^2 I$ where I is the identity matrix. Define the mixture

$$q(y) = \frac{1}{2^n} \sum_{\theta \in \Omega} f_{\theta}(y).$$

Let f_0 denote the density of a multivariate normal with mean (0, ..., 0) and covariance $\sigma_n^2 I$.

It can be proved that $\int |f_0(x) - q(x)| dx \leq \epsilon$.

Define two events, $A = \{(0, ..., 0) \in \mathcal{B}_n\}$ and $B = \{\Omega \cap \mathcal{B}_n \neq \emptyset\}$. Every $\theta \in \Omega$ has norm

$$\|\theta\| = \sqrt{na^2} \stackrel{def}{=} c_n.$$

Hence, $A \cap B \subset \{2s_n \geq c_n\}$. For all $\theta \in \Omega$, we have

$$P_{\theta}(\Omega \cap \mathcal{B}_n \neq \emptyset) \ge P_{\theta}(\theta \in \mathcal{B}_n) \ge 1 - \alpha.$$

Hence, $Q(B) \ge 1 - \alpha$ and thus $P_0(B) \ge 1 - \alpha - \epsilon$. Then

$$P_0(2s_n \ge c_n) \ge P_0(A \cap B) \ge P_0(A) + P_0(B) - 1 \ge 1 - 2\alpha - \epsilon$$

Theorem 2. Fix $0 < \alpha < 1/2$. Let $\mathcal{B}_n = \{\theta : ||\hat{\theta} - \theta|| \leq s_n\}$ be such that

$$\inf_{\theta \in \mathbb{R}^n} P_{\theta}(\theta \in \mathcal{B}_n) \ge 1 - \alpha.$$

Then, for every $0 < \epsilon < 1/2 - \alpha$,

$$\sup_{\theta \in \mathbb{R}^n} \mathcal{E}_{\theta}(s_n) \ge \epsilon \sigma_n z_{\alpha + 2\epsilon} \sqrt{n} \sqrt{\frac{\epsilon}{1 - \alpha - \epsilon}}.$$

Acknowledgements

References