카르노맵(Karnaugh Map)

이윤경

부울 대수

0과 1의 입력신호로 수학적인 계산을 하기 위해서 만들어진 수학

부울 대수의 기본 게이트

명칭	그래픽 기호	함수식	진리치표	명칭	그래픽 기호	함수식	진리치표
AND	Å=	X = AB	AB K 0000 010 100 111	NAND	Å=□-	X=(AB)'	AB K 0011 011 101 110
OR	Å=_D—	X = A+B	ABK 0000 011 101	NOR	Å ⇒>>	X=(A+B)	AB K 0010 100 100 1100
NOT	A>-	X = Y.	À K 0 1 1 0	XOR	Å⇒D—	X=(A⊕B	A B K 0 0 0 0 1 1 1 0 1 1 1 0
Buffe	r A — >—	X = A	A K 0 0 1 T	XNOR	Å⇒D⊶	X=(A⊙B	AB K 0010 100 1111

부울 대수의 기본 법칙

변수 X와 0, 1과 연산

$$X + 0 = X$$

$$X * 1 = X$$

$$X + 1 = 1$$

$$X * 0 = 0$$

동일 법칙

$$X + X = X$$

$$X * X = X$$

다중 부정

$$(X')' = X$$

상보 법칙

$$X + X' = 1$$

$$X * X' = 0$$

교환 법칙

$$XY = YX$$

$$X + Y = Y + X$$

결합 법칙

$$(XY)Z = X(YZ) = XYZ$$

$$(X + Y) + Z = X + (Y + Z) = X + Y + Z$$

분배 법칙

$$X(Y + Z) = XY + XZ$$

$$X + YZ = (X + Y)(X + Z)$$

드모르간의 법칙

$$(X + Y)' = X'Y'$$

$$(XY)' = X' + Y'$$

부울 식의 간략화 정리

$$XX + XY' = X$$

$$(X + Y)(X + Y') = X$$

$$X + XY = X$$

$$X(X + Y) X$$

$$(X + Y')Y = XY$$

$$XY' + Y = X + Y$$

x	y	z	최소항	최대항	F
0	0	0	$x'y'z'$ (m_0)	$x+y+z$ (M_0)	1
0	0	1	$x'y'z(m_1)$	$x+y+z'(M_1)$	0
0	1	0	$x'yz'(m_2)$	$x+y'+z\ (M_2)$	0
0	1	1	$x'yz (m_3)$	$x+y'+z'(M_3)$	0
1	0	0	$xy'z'$ (m_4)	$x' + y + z \ (M_4)$	0
1	0	1	$xy'z (m_5)$	$x' + y + z' (M_5)$	0
1	1	0	$xyz'(m_6)$	$x' + y' + z \ (M_6)$	0
1	1	1	$xyz (m_7)$	$x'+y'+z' (M_7)$	1

Q. x, y, z 숫자가 전부 같을 때만 1인 식,

F = m0 + m7 = M1 * M2 * M3 * ... * M6= x'y'z + xyz - 최소항 전개(논리곱의 합) = (x+y+z')(x+y'+z) ... (x'+y'+z) - 최대항 전개(논리합의 곱)

냉장고 문이 닫힌 상태 내부 등이 켜져있거나, 새벽에 문이 열리면 벨이 울리는 기계

X: 냉장고 문이 닫힘(0) / 열림(1)

Y: 새벽이 아님(0) / 새벽(1)

Z: 내부 등이 꺼진 상태(0) / 켜진 상태(1)

F: 벨x(0) / 벨o(1)

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F = X'Y'Z + X'YZ + XYZ' + XYZ$$
$$= X'Z(Y' + Y) + XY(Z' + Z)$$
$$= X'Z + XY$$

체계적인 방법을 적용하기 어렵다. 완전한 최소식을 얻지 못할 수도 있다

카르노맵(Karnaugh Map)

부울 함수를 visual diagram을 통하여 간소화 시키는 방법!!

특히 변수가 3변수 4변수로 이루어져 있을 때 유용

냉장고 문이 닫힌 상태 내부 등이 켜져있거나, 새벽에 문이 열리면 벨이 울리는 기계

X: 냉장고 문이 닫힘(0) / 열림(1)

Y: 새벽이 아님(0) / 새벽(1)

Z: 내부 등이 꺼진 상태(0) / 켜진 상태(1)

F: 벨x(0) / 벨o(1)

X	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

감사합니다!