Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ (БИЛЕТЫ К ЭКЗАМЕНУ)

II CEMECTP

Лекторы: *Мусатов Даниил Владимирович Райгородский Андрей Михайлович*

Авторы:

Николай Спицын Артемий Клячин

Полина Подзорова

Дмитрий Савичев

Полина Чубенко

Ирина Климанова

Даниил Дрябин Проект на Github

Содержание

15	Матрицы Адамара. Определение. Равносильность попарной ортогональности строчек и попарной ортогональности столбцов. Канонический вид (нормальная форма). Достижение верхней оценки в неравенстве Адамара	2
16	Существование матриц Адамара при $n=1$ и 2. Необходимость делимости на 4 при $n>3$. Гипотеза Адамара. Комбинаторная переформулировка гипотезы (через систему подмножеств мощности $\frac{n}{2}$ в множестве из $n-1$ элемента). Утверждение о плотности матриц Адамара в натуральном ряде (б/д)	2
17	Попытка построить матрицу для $n=2^k$ путем наложения единиц на минус единицы (получается только k строчек). Решение для $n=2^k$ через кронекеровское произведение.	3
18	Разброс (уклонение, дискрепанс) системы подмножеств относительно раскраски. Теорема о верхней оценке (б/д)	4
19	Коды, исправляющие ошибки. Расстояние Хэмминга. Понятие (n,M,d)-кода. Число ошибок, исправляемых кодом. Граница Хэмминга	4
20	Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x)$. Теорема о равенстве нижних и верхних пределов (формулировка). Неравенство $\lambda_1 \leqslant \lambda_2$. Постулат Бертрана (б/д). Теорема Адамара, Валле-Пуссена (б/д). «Дырки» между соседними простыми числами (б/д).	5
21	Степень вхождения простого числа в факториал и центральный биномиальный коэффициент. Неравенство для C^n_{2n}	6
22	Показатель. Показатель элемента из множества \mathbb{Z}_m делит $\varphi(m)$. Первообразный корень (определение и значения при $m\leqslant 7$). Пример модуля, по которому не существует первообразного корня. Теорема о существовании первообразного корня (б/д).	7
23	Индексы. Корректность определения в случае первообразного корня. Таблицы индексов. Решение степенных сравнений (умение).	7
24	Теорема Дирихле о диофантовых приближениях (формулировка и доказательство любым способом)	9

25	Конечные цепные дроби. Каноническая запись. Подходящие дроби. Рекуррентные соотношения для числителей и знаменателей подходящих дробей (б/д).	
	Следствия: несократимость подходящих дробей, возрастание подходящих дробей с четными номерами и убывание подходящих дробей с нечетными номерами.	10
26	Рекуррентные соотношения для числителей и знаменателей подходящих дробей (доказательство)	11
27	Определение бесконечной цепной дроби. Доказательство сходимости соответствующих подходящих цепных дробей (можно пользоваться без доказательства соотношениями на их коэффициенты)	12
28	Бесконечные периодические цепные дроби. Теорема о периодичности дроби для квадратичной иррациональности (доказательство в одну сторону). Умение находить периодическую цепную дробь по её значению, и наоборот, нахождение значения дроби по её периоду.	12
29	Квадратичные иррациональности. Множество $\mathbf{Z}[\sqrt{m}$	13
30	Пара (a, b), где a + b $\sqrt{2}$ = $(1+\sqrt{2})^n$ является решением уравнения Пелля $a^2-2b^2=\pm 1.$	14
31	Связь между решениями уравнения Пелля $a^2 - 2b^2 = \pm 1$ и элементами $Z[\sqrt{2}]$ нормой 1	15
32	Алгебраические и трансцендентные числа. Существование трансцендентных чисел (из соображения мощности). Степень алгебраического числа. Теорема Лиувилля $(6/д)$.	15
33	Определение решётки (эквивалентность двух определений) и дискретного подмножества. Определитель решётки. Независимость значения определителя от выбора базиса.	15
34	Определение решётки и его определителя. Решётка $\Lambda_{\overline{a}}$ и её определитель	16
35	Определение равномерной распределённой последовательности по модулю 1. Является ли \sqrt{n} p.p. (mod 1) последовательностью?	17
36	Определение равномерной распределённой последовательности по модулю 1. Является ли р.р. (mod 1) последовательность a^n при а $<$ 1?	17

37	Определение всюду плотности. Последовательность $\ln n$ всюду плотна на $[0,1]$	18
38	Определение всюду плотности. Если последовательность равномерно распределена по модулю 1, то она и всюду плотна.	18
39	Тригонометрические суммы. Критерий Вейля для р.р. (mod 1) (формулировка). Последовательность αn при иррациональном α является р.р. (mod 1). Что происходит при рациональном α ?	18
40	Определение равномерной распределённой последовательности по модулю 1. Являются ли р.р. (mod 1) последовательности а) $1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \dots$ б) $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \dots$	19
41	Определение равномерной распределённой последовательности по модулю 1. Пусть последовательность x_n р.р. (mod 1) и m — фиксированное целое число, не равное нулю. Докажите, что последовательность mx_n также р.р. (mod 1). Верно ли, что если m — не целое, то это не верно?	19
42	Описание алгоритма AKS (6 шагов). Лемма об оценке r (б/д). Оценка сложности алгоритма. Тождество $(X+a)^p=X^p+a(\bmod p)$	20
49	Китайская теорема об остатках	21
51	Сравнения второй степени. Квадратичные вычеты и невычеты. Тождество для $\left(\frac{a}{p}\right)$	21
52	Сравнения второй степени. Квадратичные вычеты и невычеты. Формула для $\binom{2}{p}$ (тождеством с суммой по $\left[\frac{2ax}{p}\right]$ можно пользоваться без доказательства)	23
53	Матрицы Адамара. Кронекеровское произведение и общая формулировка про $A\cdot B.$	24
54	Матрицы Адамара. (Первая) конструкция Пэли с квадратичными вычетами при $n=p+1, p=4m+3.$	25
55	Матрицы Адамара. (Вторая) конструкция Пэли с квадратичными вычетами при $n=2p+2, p=4m+1.$	25
56	(n,M,d)-коды. Граница Плоткина	27

57	Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x)$. Теорема о равенстве нижних и верхних пределов (формулировка). Неравенство	
	$\lambda_2 \geqslant \lambda_3$	28
58	Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x)$. Теорема о равенстве нижних и верхних пределов (формулировка). Неравенство $\lambda_3 \leqslant \lambda_1$.	29
59	Порядки(показатели) элементов в системах вычетов. Равенство $ord(g^l)=\frac{ord(g)}{gcd(l,ord(g))}.$ Следствие: если есть порядок k , то есть порядки и всех делителей k	29
69	Алгебраические и трансцендентные числа. Существование трансцендентных чисел (из соображения мощности). Теорема Лиувилля (б/д). Конструкция трансцендентного числа с помощью цепной дроби и теоремы Лиувилля. Сводка результатов о трансцендентности: $e, \pi, e + \pi, \pi + e^{\pi}, \alpha^{\beta}$ (теорема Гельфонда), вывод про e^{π} из теоремы Гельфонда.	30
70	Умение: решать уравнения Пелля	31
71	Иррациональность числа е.	33
72	Определение решётки и дискретного подмножества. Любая дискретная подгруппа \mathbb{R}^n является решёткой	33
73	Двумерная теорема Минковского. Ее уточнение для замкнутых множеств (б/д).	34
74	Применение двумерной теоремы Минковского для передоказательства теоремы Дирихле. Теорема Дирихле о совместном диофантовом приближении $(6/д)$	35
75	Критический определитель решётки. Переформулировка теоремы Минковского через критический определитель. Теорема Минковского–Главки и история ее улучшений ($6/д$). Многомерный октаэдр, его объём.	35
76	Равномерно распределенные последовательности (mod 1): три эквивалентные формулировки	35
77	Является ли ln n p.p. (mod 1) последовательностью?	36
78	Определение р.р. (mod 1) последовательности. Вывод интегрального призна- ка из того, что последовательность р.р. (mod 1). Формулировка интегрального признака через комплекснозначную функцию (б/д).	36

79	Определение p.p. (mod 1) последовательности. Вывод p.p. (mod 1) последовательности из интегрального признака. Формулировка интегрального признака	
	через комплекснозначную функцию (б/д)	36
81	Сумма Гаусса	37
82	Асимптотическая оценка $[1,2,\dots,n]$ снизу. Более грубая оценка, верная для $n>7.$ (б/д)	38
83	Алгоритм АКS. Определение и неравенства, связывающие числа $p,r,\log_2 n$ (б/д). Определение множеств I,P . Определение группы G , неравенство $ G >\log_2^2 n$. Утверждения о делителе $h(X)$ многочлена X^r-1 (б/д). Группа \mathcal{G}	39
84	Алгоритм АКS. Верхняя оценка на r (б/д). Обоснование неравенства $p>r>\log_2^2 n$ для подходящего делителя p числа n . Вывод тождества $(X+a)^{n/p}=X^{n/p}+a$ (mod X^r-1,p). Определение перестановочности многочлена и числа. Утверждения о свойствах перестановочности	40
87	Нижняя оценка разброса (уклонения) величиной $\frac{\sqrt{n}}{2}$ с помощью матриц Адамара.	41
88	Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x)$. Теорема Чебышёва (верхняя оценка)	42
89	Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x)$. Теорема Чебышёва (нижняя оценка)	43
90	Постулат Бертрана для n » 0	43
91	Показатели. Первообразные корни. Существование по модулю p	44
92	Показатели. Первообразные корни. Существование по модулю $p^{\alpha}, \ \alpha \geqslant 2$: формулировка и доказательство леммы. Существование по модулю $2p^{\alpha}$	45
93	Показатели. Первообразные корни. Существование по модулю $p^{\alpha}, \alpha \geqslant 2$: формулировка леммы (б/д) и вывод существования из неё. Существование по модулю $2p^{\alpha}.$	46
94	Показатели. Первообразные корни. Несуществование по модулю $2^n, n > 3$	46
95	Показатели. Первообразные корни. Несуществование по модулям, отличным от $2^n, p^{\alpha}, 2p^{\alpha}.$	47

96	Теорема Лиувилля	47
97	Доказательство иррациональности чисила e . Тождество Эрмита	48
98	Доказательство трансцендентности числа e	48
100	Доказательство теоремы Минковского-Главки для октаэдра: переформулировка условия теоремы через Λ_a и неравенства на р и п. Сведение теоремы к неравенству	49
101	Теорема Минковского-Главки для октаэдра (формулировка). Доказательство неравенства.	51
103	Алгоритм AKS. Верхняя оценка на r : вывод из утверждения о нижней оценке $[1,2,\ldots,n]$	52
104	Алгоритм AKS. Определение и неравенства, связывающие параметры $p,r,\log_2 n,t,$ группы $G,\mathcal{G},$ многочлена $h(x)$ (б/д). Неравенство $ \mathcal{G} >C_{t+l}^{t-1}$	52
105	Алгоритм AKS. Определение и неравенства, связывающие $p,r,\log_2 n,t,$ группы $G,\mathcal{G},$ многочлена $h(x)$ (б/д). Неравенство $ \mathcal{G} \leqslant n^{\sqrt{t}}$ при $n\neq p^k.$	53
106	Алгоритм AKS. Определение и неравенства, связывающие $p,r,\log_2 n,t,$ группы $G,\mathcal{G},$ многочлена $h(x)$ (б/д). Неравенство $C_{t+l}^{t-1}>n^{\sqrt{t}}.$	53

15 Матрицы Адамара. Определение. Равносильность попарной ортогональности строчек и попарной ортогональности столбцов. Канонический вид (нормальная форма). Достижение верхней оценки в неравенстве Адамара.

Определение: *Матрицей Адамара* порядка n называется матрица H_n размера $n \times n$ такая, что все её элементы равны ± 1 и выполнено следующее свойство: $H_nH_n^T=nE_n$. Можно переформулировать так: матрица Адамара — это матрица из ± 1 , у которой все строки попарно ортогональны.

Утверждение (задача 20.1): Ортогональность строк матрицы Адамара равносильна ортогональности ее столбцов

 $H_n H_n^T = n E_n \Rightarrow \frac{H_n}{\sqrt{n}} \frac{H_n^T}{\sqrt{n}} = E_n$

Получили, что $\frac{H_n}{\sqrt{n}}$ и $\frac{H_n^T}{\sqrt{n}}$ - взаимно-обратные \Rightarrow их можно переставить местами. Условие $H_n^T H_n = n E_n$ равносильно ортогональности столбцов (в обратную сторону равносильность доказывается аналогично).

Замечание: строки/столбцы матрицы Адамара можно менять местами, умножать на -1, при этом она останется матрицей Адамара.

Определение: Матрицы Адамара, получаемые друг их друга многократным применением таких операций называются *эквивалентными*. *Каноническим видом (нормальной формой)* матрицы Адамара называется эквивалентная ей матрица, в которой первая строка и первый столбец состоят только из 1.

Неравенство Адамара: Если у действительной матрицы A размера $n \times n$ все элементы по модулю меньше 1, то $|\det A| \leq n^{n/2}$.

Утверждение (задача 20.2): Для матриц Адамара в этом неравенстве достигается верхняя оценка, то есть $|\det A| = n^{n/2}$

16 Существование матриц Адамара при n=1 и 2. Необходимость делимости на 4 при n>3. Гипотеза Адамара. Комбинаторная переформулировка гипотезы (через систему подмножеств мощности $\frac{n}{2}$ в множестве из n-1 элемента). Утверждение о плотности матриц Адамара в натуральном ряде (б/д).

1.
$$n = 1$$
: (1)

2.
$$n = 2$$
: $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Утверждение (задача 20.5): Если n>2 - порядок матрицы Адамара, то n $\stackrel{.}{:}$ 4.

\Lambda Так как любую матрицу Адамара можно привести к каноническому виду, рассмотрим нормальную форму матрицы Адамара порядка n. Из того, что первая строка состоит только из единиц следует то, что во всех остальных строках будет $\frac{n}{2}$ единиц и $\frac{n}{2}$ минус единиц (иначе не будет ортагональности с первой строкой).

Рассмотрим две произвольные строчки. Пусть у них на одних и тех же местах стоят x единиц. Тогда мест где в первой строке стоит -1, а во второй $1: \frac{n}{2} - x$ (столько же когда в первой строке 1, а во второй -1). Получается, что мест где в обоих строках стоит $-1: n - (\frac{n}{2} - x) - (\frac{n}{2} - x) - x = x$. Распишем скалярное произведение этих строк:

 $1 \cdot 1 \cdot x + (-1) \cdot (-1) \cdot x + 1 \cdot (-1) \cdot (\frac{n}{2} - x) + (-1) \cdot 1 \cdot (\frac{n}{2} - x) = 4x - n = 0 \Rightarrow x = \frac{n}{4} \Rightarrow n : 4$ **Гипотеза Адамара:** Матрица Адамара существует для любого числа вида 4k.

Комбинаторная переформулировка: В множестве мощности n существует n-1 подмножество мощности $\frac{n}{2}$, такие что каждые 2 подмножества имеют ровно $\frac{n}{4}$ общих элементов.

Утверждение (о плотности в натуральном ряде): $\forall n$ на отрезке $[n; n + O(n^{0.525})]$ есть порядки матриц Адамара.

17 Попытка построить матрицу для $n=2^k$ путем наложения единиц на минус единицы (получается только k строчек). Решение для $n=2^k$ через кронекеровское произведение.

"Наивный подход": возьмем первую строчку состоящую только из 1, вторую - первая половина из единиц, вторая из минус единиц. Повторяем те же действия с каждой из полученных половин (делаем так чтобы каждая половина давала вклад ноль в скалярное произведение). Так как мы каждый раз увеличиваем количество блоков из одной и той же цифры в строке в 2 раза, то через k шагов мы получим строку в которой будут чередоваться 1 и -1 и продолжить процесс мы не сможем.

Конструктивный подход: Воспользуемся определением кронекеровского произведения и утверждением о том, что кронекеровское произведение матриц Адамара является матрицей Адамара (см. билет 53):

$$H_4 = H_2 \otimes H_2$$

. . .

$$H_{2^k} = H_{2^{k-1}} \otimes H_2$$

18 Разброс (уклонение, дискрепанс) системы подмножеств относительно раскраски. Теорема о верхней оценке (б/д).

Определение 18.1. Пусть $\mathcal{M} = \{M_1, M_2, ..., M_s\}$, где $\forall M_i \subset \mathcal{R}$ (\mathcal{R} - конечное множество) – система подмножеств, а χ – раскраска множества \mathcal{R} в 2 цвета.

$$\chi(j) = \begin{cases} 1, & \text{если } j\text{-ый элемент } \mathcal{R} \text{ окрашен в первый цвет} \\ -1, & \text{если } j\text{-ый элемент } \mathcal{R} \text{ окрашен во второй цвет} \end{cases}$$

Тогда разброс (уклонение) системы подмножеств \mathcal{M} относительно раскраски χ обозначается $disc(\mathcal{M}, \chi)$, и по определению

$$disc(\mathcal{M}, \chi) = \max_{i=1,\dots,s} |\sum_{j \in M_i} \chi(j)|$$

Равно максимальной разности между количеством элементов покрашеных в разные цвета на определённых множествах.

Определение 18.2. Пусть $\mathcal{M} = \{M_1, M_2, ..., M_s\} \subset \mathcal{R}$ – система подмножеств. Тогда разброс (уклонение) системы подмножеств \mathcal{M} обозначается $disc(\mathcal{M})$, и по определению

$$disc(\mathcal{M}) = \min_{\chi} disc(\mathcal{M}, \chi)$$

Теорема 18.1 (о верхней оценке). $Ecnu |\mathcal{R}| = n, mo \ \forall \mathcal{M} : |\mathcal{M}| \leqslant n \ верно, что <math>disc(\mathcal{M}) \leqslant 6\sqrt{n}$

19 Коды, исправляющие ошибки. Расстояние Хэмминга. Понятие (n,M,d)-кода. Число ошибок, исправляемых кодом. Граница Хэмминга.

В этом билете n — число символов (0 и 1) в каждом кодовом слове. Для канала связи известно, что на каждое кодовое слово приходится не более k ошибок. (под ошибкой подразумевается замена 0 на 1, и наоборот) M — число кодовых слов. Очевидно, что $M \leq 2^n$.

Определение 19.1 (Расстояние Хэмминга). Пусть $\vec{a} = a_1 a_2 ... a_n$, $\vec{b} = b_1 b_2 ... b_n$ – кодовые слова. Расстояние Хэмминга между \vec{a} и \vec{b} обозначается $d(\vec{a}, \vec{b})$. По определению

$$d(\vec{a}, \vec{b}) = \sum_{i=1}^{n} I_{\{a_i \neq b_i\}}$$

- количество позиций, на которых символы отличаются.

Пусть d – минимальное расстояние между словами, то есть

$$d = \min_{a,b} d(\vec{a}, \vec{b})$$

- самое маленькое расстояние, которое можно построить в рамках определённого кода.

Замечание. $d(\vec{a}, \vec{b})$ можно рассматривать как метрику, соответственно можно ввести понятие шара:

$$B_r(\vec{a}) = \{\vec{b} : d(\vec{a}, \vec{b}) \leqslant r\}$$

Объемом шара назовем количество кодовых слов в нём. Так как в допускается не более чем r ошибок, а количество способов выбрать i позиций для i ошибок соответсвенно равно C_n^i , то

$$V(B_r(\vec{a})) = \sum_{i=0}^r C_n^i$$

Определение 19.2. (n, M, d)-код это код, в котором каждое слово длины n, всего слов M, минимально расстояние между кодовыми словами d

Утверждение 19.1. (n, M, d)-код исправляет вплоть до $[\frac{d-1}{2}]$ ошибок.

A. Если у каждого шара 2r < d, то если канал допускает не более r ошибок, слово однозначно восстанавливается, поскольку шары не пересекаются Пусть $r = \left[\frac{d-1}{2}\right]$. Тогда утверждение выполнено.

Замечание (Граница Хэмминга для (n, M, d)-кода).

$$|M| \leqslant \frac{2^n}{\sum\limits_{i=0}^r C_n^i}, r = \left[\frac{d-1}{2}\right]$$

A. $|M| \cdot \sum_{i=0}^{r} C_n^i \leqslant 2^n$, так как сумма объемов непересекающихся шаров не больше объема всего пространства.

20 Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x)$. Теорема о равенстве нижних и верхних пределов (формулировка). Неравенство $\lambda_1 \leqslant \lambda_2$. Постулат Бертрана (б/д). Теорема Адамара, Валле-Пуссена (б/д). «Дырки» между соседними простыми числами (б/д).

Распределение простых чисел в натуральном ряде Определение

$$\pi(x)=\sum\limits_{p\leqslant x}1$$
— количество простых чисел, не превосходящих х.
$$\theta(x)=\sum\limits_{p\leqslant x}ln(p)$$

$$\psi(x)=\sum\limits_{(\alpha,p):p^{\alpha}\leqslant x}ln(p)$$

Теорема (о равенстве верхних и нижних пределов (формулировка))

$$\lambda_1 = \overline{\lim}_{x \leftarrow \infty} \frac{\theta(x)}{x}, \lambda_2 = \overline{\lim}_{x \leftarrow \infty} \frac{\psi(x)}{x}, \lambda_3 = \overline{\lim}_{x \leftarrow \infty} \frac{\pi(x)}{x/\ln(x)}$$

За μ_i обозначим соответствующие нижние пределы.

Тогда $\lambda_1 = \lambda_2 = \lambda_3, \mu_1 = \mu_2 = \mu_3.$ Утверждение. $\lambda_1 \leqslant \lambda_2$

Теорема (Постулат Бертрана (формулировка))

$$\forall x \; \exists p : p \in [x, 2x]$$

Теорема (Адамара, Валле-Пуссена)

$$\pi(x) \sim \frac{x}{\ln x}$$

«Дырки» между соседними простыми

Теорема (Чебышёв) $\exists a, b: 0 < a < b < \infty$ такие, что $\frac{ax}{ln(x)} \le \pi(x) \le \frac{bx}{ln(x)}$ На лекции Райгородский указал конкретные границы: a = ln(2), b = 4ln(2)

21 Степень вхождения простого числа в факториал и центральный биномиальный коэффициент. Неравенство для C_{2n}^n

Лемма 21.1.

$$[2x] - 2[x] \leqslant 1$$

ede[x] - целая часть x.

A.

$$2x = 2([x] + \{x\}) = 2[x] + 2\{x\},$$
$$[2x] - 2[x] = 2[x] + [2\{x\}] - 2[x] = [2\{x\}] \le 1$$

Теорема 21.1.

$$C_{2n}^n \leqslant \prod_{p \leqslant 2n} p^{[\log_p(2n)]}$$

Δ. Центральный биномиальный коэффициент: $C_{2n}^n = \frac{(2n)!}{n! \cdot n!}$

$$C_{2n}^{n} = \frac{(2n)!}{n! \cdot n!} = \prod_{p \leq 2n} p^{\left[\frac{2n}{p}\right] + \left[\frac{2n}{p^2}\right] + \dots - 2\left(\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots\right)},$$

где $\left[\frac{2n}{p}\right] + \left[\frac{2n}{p^2}\right] + \dots$ - степень вхождения простого числа p в разложение факториала (2n)! на простые множители, а $\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots$ - степень вхождения простого числа p в разложение (n)! на простые множители.

$$C_{2n}^n = \prod_{p \leqslant 2n} p^{\left[\frac{2n}{p}\right] + \left[\frac{2n}{p^2}\right] + \ldots - 2\left(\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \ldots\right)} = \prod_{p \leqslant 2n} p^{\left(\left[\frac{2n}{p}\right] - 2\left[\frac{n}{p}\right]\right) + \left(\left[\frac{2n}{p^2}\right] - 2\left[\frac{n}{p^2}\right]\right) + \ldots}$$

Заметим, что таких слагаемых не больше $[\log_p(2n)]$ и воспользуемся леммой.

$$C_{2n}^n = \prod_{p\leqslant 2n} p^{\left(\left[\frac{2n}{p}\right]-2\left[\frac{n}{p}\right]\right)+\left(\left[\frac{2n}{p^2}\right]-2\left[\frac{n}{p^2}\right]\right)+\dots}\leqslant \prod_{p\leqslant 2n} p^{\left[\log_p(2n)\right]}$$

22 Показатель. Показатель элемента из множества \mathbb{Z}_m делит $\varphi(m)$. Первообразный корень (определение и значения при $m \leqslant 7$). Пример модуля, по которому не существует первообразного корня. Теорема о существовании первообразного корня (б/д).

Определение Показатель (порядок) числа a по модулю m обозначается $ord_m(a)$ и по определению $ord_m(a) = \min\{\delta \in \mathbb{N} : a^{\delta} \equiv 1 \pmod m\}$.

Утверждение 22.1. $\varphi(m) \equiv 0 \pmod{\delta}$ (то есть показатель элемента делит $\varphi(m)$)

A. Предположим, что это не так. Тогда $\varphi(m) = k\delta + r, r \in (0, \delta)$. Тогда $1 \equiv a^{\varphi(m)} = a^{k\delta + r} \equiv a^r \pmod{m}$ э противоречие с определением показателя.

Определение g называется nepsoofpaзным корнем по модулю <math>m, если его показатель равен $\varphi(m)$.

Значения первообразного корня для $m \leqslant 7$

m	Первообразный корень
2	1
3	2
4	3
5	2
6	5
7	3

Однако для m=8 первообразного корня не существует.

Теорема 22.1 (Теорема о существовании первообразного корня (6/д)). Первообразный корень существует только для $m \in \{2, 4, p^{\alpha}, 2p^{\alpha}\}$, где p – простое нечетное, $\alpha \in \mathbb{N}$.

23 Индексы. Корректность определения в случае первообразного корня. Таблицы индексов. Решение степенных сравнений (умение).

Определение Зафиксируем первообразный корень g по модулю m. Пусть (a, m) = 1. Индексом $\gamma = ind_g(a)$ числа a по модулю m при основании g называется такое минимальное число γ , что $a \equiv g^{\gamma} \pmod{m}$. Индекс можно интерпретировать как дискретный логарифм.

Теорема 23.1 (Корректность определения в случае первообразного корня). Пусть g – первообразный корень по модулю m. Степени $g:g^l,0\leqslant l<\varphi(m)$ несравнимы между собой и образуют приведённую систему вычетов. Из этого следует, что индекс для первообразного корня определён корректно.

 \blacktriangle . Докажем, что все степени g не сравнимы по модулю m.

Предположим противное: пусть $\exists k, m : g^k \equiv_m g^m$. (Без ограничения общности $0 \leq m < k < \varphi(m)$) Тогда $g^k - g^m \equiv_m 0$

$$g^k - g^m = g^k(g^{k-m} - 1) \equiv_m 0$$

Получается, что $g^{k-m} \equiv_m 1$, но $k-m < \varphi(m)$, а значит g – не первообразный корень. Противоречие.

Утверждение 23.1 (б/д). Пусть $\varphi(m) = p_1^{\alpha_1} \cdot ... \cdot p_s^{\alpha_s}$ – каноническое разложение числа $\varphi(m)$ на простые множители, (g,m)=1. В этом случае g – первообразный корень в \mathbb{Z}_m тогда и только тогда, когда g НЕ является решением ни одного из сравнений $g^{\frac{\varphi(m)}{p_k}} \equiv 1 \pmod{m}$ при k=1,2,...,s.

Утверждение 23.2 (б/д). Сравнение вида $x^n \equiv a \pmod{m}$, где m имеет вид p^{α} или $2p^{\alpha}$, $(a,m)=1,d:=(n,\varphi(m))$ разрешимо тогда и только тогда, когда $d|ind_g(a)$, где g- первообразный корень. Более того, если сравнение разрешимо, то оно имеет d решений.

Утверждение 23.3 (б/д). Пусть k = ord(g). $g^{k_1} \equiv g^{k_2} \pmod{m}$ тогда и только тогда, когда $k_1 \equiv k_2 \pmod{k}$

Пример. Алгоритм решения сравнения $x^n \equiv a \pmod{m}$.

(только если по модулю m существует первообразный корень, то есть $m \in \{2, 4, p^{\alpha}, 2p^{\alpha}\}$)

- 1) Находим первообразный корень g (любой, на практике обычно минимальный) с помощью утверждения 1.
- 2) Находим $ind_a(a)$ перебором (достаточно перебрать значения от 1 до $\varphi(m)$)
- 3) С помощью утверждения 2 проверяем, есть ли решения у сравнения.
- 4) Сравнение можно переписать в виде $q^{n \cdot ind_g(x)} \equiv x^n \equiv a \equiv q^{ind_g(a)} \pmod{m}$
- 5) Используя утверждение 3, переписываем сравнение в виде (напоминание: $ord(g) = \varphi(m)$):

$$n \cdot ind_g(x) \equiv ind_g(a) \pmod{\varphi(m)}$$

6) Решая линейное сравнение относительно $ind_g(x)$ в пункте 5, получаем решения $ind_g(x) \in \{k_1, ..., k_l\}$. Тогда решением исходного сравнения будут $x \in \{q^{k_1}, ..., q^{k_l}\}$.

Примеры решения степенных сравнений:

Пример 1 $x^8 \equiv 5 \pmod{17}$

Это сравнение вида $x^n \equiv a \pmod{m}$

$$n = 8, \varphi(m) = \varphi(17) = 16$$

$$d = (n, \varphi(m)) = (8, 16) = 8$$

Найдем первообразный корень (перебором):

$$\varphi(m) = 16 = 2^4$$
.

g=3 не является решением $g^{\frac{\varphi(17)}{2}}=g^8\equiv 1\pmod{17},$ следовательно, g=3 – первообразный корень.

Подбором находим, что $ind_g(a) = ind_3(5) = 5, ind_3(5)$ не делится на d = 8. Значит, решений у сравнения $n \cdot ind_g(x) \equiv ind_g(a) \pmod{\varphi(m)}$ нет.

Пример 2 $x^4 \equiv 4 \pmod{17}$

 $\varphi(17)=16, d=(4,16)=4, g=3$ – первообразный корень $ind_3(4)=12, ind_3(4)$ делится на d=4. Значит, есть d=4 различных решения.

Решаем сравнение $4 \cdot ind_3(x) \equiv 12 \pmod{16}$, получаем, что $ind_3(x) \in \{3,7,11,15\}$. Тогда искомые решения: $x \in \{g^3, g^7, g^{11}, g^{15}\} = \{10, 11, 7, 6\}$ (по модулю 17).

24 Теорема Дирихле о диофантовых приближениях (формулировка и доказательство любым способом).

Теорема 24.1 (Дирихле). Если α – иррациональное, то существует бесконечно много различных $\frac{p}{q} \in \mathbb{Q} : \left| \alpha - \frac{p}{q} \right| \leqslant \frac{1}{q^2}.$ Замечание. $\frac{p}{q}$ может быть как сократимой, так и несократимой дробью

A. Рассмотрим $Q \in \mathbb{N}$. Разобьём отрезок [0, 1] на Q частей.

Пусть $A = \{\{\alpha x\} : x \in \{0,1,...,Q\}\}$, где $\{\cdot\}$ — дробная часть числа $(\{x\} = x - [x])$. |A| = Q + 1.

По принципу Дирихле $\exists x_1, x_2 \in 0, 1, ..., Q: |\{\alpha x_1\} - \{\alpha x_2\}| \leqslant \frac{1}{Q}$, то есть x_1, x_2 попадут в один отрезок. Без ограничения общности $x_1 > x_2$

$$|\{\alpha x_1\} - \{\alpha x_2\}| = |\alpha x_1 - [\alpha x_1] - \alpha x_2 + [\alpha x_2]| = |\alpha(x_1 - x_2) - ([\alpha x_1] - [\alpha x_2])| \leqslant \frac{1}{Q}$$

Положим $q = x_1 - x_2, p = [\alpha x_1] - [\alpha x_2]$, при этом $q \leq Q$.

$$|\alpha q - p| \leqslant \frac{1}{Q}$$

Разделим неравенство на q.

$$\left|\alpha - \frac{p}{q}\right| \leqslant \frac{1}{qQ} \leqslant \frac{1}{q^2}$$

Таким образом, мы доказали существование приближения. Докажем, что их бесконечно

Пусть $a = \left| \alpha - \frac{p}{q} \right|, a > 0$. Выберем Q' так, чтобы $\frac{1}{Q'} < a$.

По доказанному $\exists p', q' : \left| \alpha - \frac{p'}{q'} \right| \leqslant \frac{1}{q'Q'}.$

Получается, что $\frac{p'}{q'}$ аппроксимирует $\alpha: \left|\alpha - \frac{p'}{q'}\right| \leqslant \frac{1}{q'^2}$. С другой стороны,

$$\left|\alpha - \frac{p'}{q'}\right| \leqslant \frac{1}{Q'} < a = \left|\alpha - \frac{p}{q}\right|$$

Получается, что $\frac{p'}{q'}$ и $\frac{p}{q}$ — различные и аппроксимируют α . Повторяем этот процесс, и получаем, что существует бесконечно много различных аппроксимаций.

25 Конечные цепные дроби. Каноническая запись. Подходящие дроби. Рекуррентные соотношения для числителей и знаменателей подходящих дробей (б/д). Следствия: несократимость подходящих дробей, возрастание подходящих дробей с четными номерами и убывание подходящих дробей с нечетными номерами.

Опр Конечной цепной дробью называется выражение вида

$$[a_0;a_1,a_2,...,a_n]=a_0+rac{1}{a_1+rac{1}{\ddots}},$$
 где $a_0\in Z,a_i\in N\ \forall i>=1$

 a_i -элементы цепной дроби, или неполные частные

Каноническая запись цепной дроби определяется индуктивно:

$$1 [a_0] = \frac{a_0}{1}$$

2 Пусть для всех дробей с n элементами каноническая запись определена

3
$$[a_0; a_1, ..., a_n] = a_0 + \frac{1}{[a_1; a_2, ..., a_n]} = a_0 + \frac{1}{p/q} = \frac{pa_0 + q}{p}$$

Опр

$$[a_0; a_1, ..., a_k] = rac{p_k}{q_k}$$
 - k-ая подходящая дробь

Теорема

$$p_{k+2} = a_{k+2}p_{k+1} + p_k$$
$$q_{k+2} = a_{k+2}q_{k+1} + q_k$$

Следствие 1

$$1 \frac{p_{k+2}}{q_{k+2}} - \frac{p_{k+1}}{q_{k+1}} = \frac{(-1)^{k+1}}{q_{k+1}q_{k+2}}$$

2 Каноническая запись цепной дроби является несократимой

 \blacktriangle

$$p_{k+2} - p_k = a_{k+2}p_{k+1}, \ q_{k+2} - q_k = a_{k+2}q_{k+1}$$

$$\frac{p_{k+2} - p_k}{q_{k+2} - q_k} = \frac{a_{k+2} p_{k+1}}{a_{k+2} q_{k+1}}$$

$$p_{k+2}q_{k+1} - p_kq_{k+1} = p_{k+1}q_{k+2} - p_{k+1}q_k$$

Обозначим ЛЧ
$$b(k+2)$$
, ПЧ $-b(k+1)$
 $b(1) = p_1q_0 - q_1p_0 = (a_0a_1 + 1) * 1 - a_1a_0 = 1$

$$p_{k+2}q_{k+1} - q_{k+2}p_{k+1} = (-1)^{k+1} \Longrightarrow \frac{p_{k+2}}{q_{k+2}} - \frac{p_{k+1}}{q_{k+1}} = \frac{(-1)^{k+1}}{q_{k+1}q_{k+2}}$$

Предположим, что каноническая запись цепной дроби сократима. Тогда $\frac{p_{k+2}}{q_{k+2}}$ - сократима, тогда $\exists \ d: \ p_{k+2}, q_{k+2} \ \vdots \ d \Longrightarrow p_{k+2}q_{k+1} - q_{k+2}p_{k+1} \ \vdots \ d$. Противоречие

Замечание

Из этого утверждения следует, что подходящие дроби с четными номерами меньше, чем с нечетными

Следствие 2

Подходящие дроби с четными номерами возрастают, с нечетными - убывают

$$p_{k+2} = a_{k+2}p_{k+1} + p_k * q_k$$

$$q_{k+2} = a_{k+2}q_{k+1} + q_k * p_k$$

$$p_{k+2}q_k = a_{k+2}p_{k+1}q_k + p_kq_k$$

$$q_{k+2}p_k = a_{k+2}q_{k+1}p_k + q_k p_k$$

$$p_{k+2}q_k - q_{k+2}p_k = a_{k+2}(p_{k+1}q_k - q_{k+1}p_k) = a_{k+2}(-1)^k$$

$$\frac{p_{k+2}}{q_{k+2}} - \frac{p_k}{q_k} = \frac{a_{k+2} * (-1)^k}{q_k q_{k+2}}$$

При четном k правая часть положительна, при нечетном - отрицательна

26 Рекуррентные соотношения для числителей и знаменателей подходящих дробей (доказательство).

▲ Будем доказывать по индукции

1 Basa:
$$k=0$$
; $[a_0]=\frac{a_0}{1}=\frac{p_0}{q_0}, [a_0;a_1]=a_0+\frac{1}{a_1}=\frac{a_0a_1+1}{a_1}=\frac{p_1}{q_1}, [a_0;a_1,a_2]=a_0+\frac{1}{a_1+\frac{1}{a_2}}=a_0+\frac{1}{a_1+\frac{1}{a_2}}=a_0+\frac{a_2}{a_1a_2+1}=\frac{a_0a_1a_2+a_0+a_2}{a_1a_2}=\frac{p_2}{q_2}$

$$a_0a_1a_2+a_0+a_2=a_2a_0a_1+a_2+a_0=a_2*p_1+p_0\Longrightarrow$$
 Сошлось! Ура!

$$a_0 + \frac{1}{[a_1; a_2, \dots, a_{k+2}]} = [a_0; a_1, \dots, a_{k+2}] = \frac{p_{k+2}}{q_{k+2}}$$

$$2\ a_0+rac{1}{[a_1;a_2,...,a_{k+2}]}=[a_0;a_1,...,a_{k+2}]=rac{p_{k+2}}{q_{k+2}}$$
 Положим $[a_1;a_2,...,a_i]=rac{p'_i}{q'_i}$. Тогда $rac{p_{k+2}}{q_{k+2}}=a_0+rac{p'_{k+2}}{q'_{k+2}}=rac{a_0p'_{k+2}+q'_{k+2}}{p'_{k+2}}$

$$p'_{k+2} = a_{k+2}p'_{k+1} + p'_k, \ q'_{k+2} = a_{k+2}q'_{k+1} + q'_k$$

$$\frac{p_{k+2}}{q_{k+2}} = \frac{a_0 a_{k+2} p'_{k+1} + a_0 p'_k + a_{k+2} q'_{k+1} + q'_k}{a_{k+2} p'_{k+1} + p'_k} = \frac{a_{k+2} (a_0 p'_{k+1} + q'_{k+1}) + a_0 p'_k + q'_k}{a_{k+2} p'_{k+1} + p'_k}$$

Теперь заметим, что
$$\frac{p_{k+2}}{q_{k+2}} = \frac{a_0 p'_{k+2} + q'_{k+2}}{p'_{k+2}} \implies p_i = a_0 p'_i + q'_i, q_i = p'_i \implies \frac{a_{k+2} (a_0 p'_{k+1} + q'_{k+1}) + a_0 p'_k + q'_k}{a_{k+2} p'_{k+1} + p'_k} = \frac{a_{k+2} p_{k+1} + p_k}{a_{k+2} q_{k+1} + q_k} \blacksquare$$

27 Определение бесконечной цепной дроби. Доказательство сходимости соответствующих подходящих цепных дробей (можно пользоваться без доказательства соотношениями на их коэффициенты).

Опр Бесконечной цепной дробью называется выражение вида:

$$[a_0; a_1, a_2, \ldots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1$$

Опр Bеличиной бесконечной цепной дроби называется предел её подходящих дробей, тоесть такое число $\alpha = \lim_{n \to \infty} \frac{P_n}{Q_n}$

Теорема

Соответствующие подходящие цепные дроби сходятся. $\exists \lim_{n \to \infty} \frac{P_n}{Q_n}$ \blacktriangle Согласно следствиям 1 и 2 из Теоремы о рекуррентных соотношениях для числителей

- и знаменятелей подходящих дробей последовательность дробей с четными номерами возрастает и ограничена сверху, а последовательность с нечетными номерами ограничена снизу и убывает, значит, обе эти последовательности имеют предел. $|\frac{P_n}{Q_n} - \frac{P_{n+1}}{Q_{n+1}}| = \frac{1}{Q_nQ_{n+1}}$ В силу того, что $Q_{n+2} = a_{n+2}Q_{n+1} + Q_n$, $Q_{n+2} \geqslant Q_n \Longrightarrow \frac{1}{Q_nQ_{n+1}} \longrightarrow 0 \Longrightarrow |\frac{P_n}{Q_n} - \frac{P_{n+1}}{Q_{n+1}}| \longrightarrow 0 \Longrightarrow$ пределы последовательностей совпадают, тогда и $\frac{P_n}{Q_n}$ сходится
- 28 Бесконечные периодические цепные дроби. Теорема о периодичности дроби для квадратичной иррациональности (доказательство в одну сторону). Умение находить периодическую цепную дробь по её значению, и наоборот, нахождение значения дроби по её периоду.

Опр Бесконечная цепная дробь вида

 $[a_0; a_1, ..., a_k, a_{k+1}, ..., a_{k+T}, a_{k+1}, ..., a_{k+T}, ...] = [a_0; a_1, ..., a_k, \overline{a_{k+1}, ..., a_{k+T}}]$ называется nepuoduческой с периодом $a_{k+1},...,a_{k+T}$. Набор $a_0,a_1,...,a_k$ называется npednepuodoм.

Опр Иррациональное число α называется $\kappa \epsilon a \partial p a m u u + n \delta u u p p a u u o + a a b n b n c m$ α - корень квадратного уравнения с целыми коэффициентами.

Теорема

Если
$$\alpha=[a_0;a_1,...,a_k,\overline{a_{k+1},...,a_n}]$$
, то α - квадратичная иррациональность \blacktriangle $\beta=[\overline{a_{k+1};a_{k+2},...,a_n}]=a_{k+1}+\frac{1}{\ddots +a_n+\frac{1}{[\overline{a_{k+1};a_{k+2},...,a_n}]=\beta}}$

$$\frac{a_n\beta+1}{\beta}$$
; $\frac{\beta}{a_n\beta+1} + a_{n-1} = \frac{\beta+a_{n-1}a_n\beta+a_{n-1}}{a_n\beta+1}$

 $\frac{a_n\beta+1}{\beta}; \ \frac{\beta}{a_n\beta+1}+a_{n-1}=\frac{\beta+a_{n-1}a_n\beta+a_{n-1}}{a_n\beta+1}$ Заметим, что раскрывая таким образом мы получаем дробь вида $\frac{c\beta+d}{c'\beta+d'}=\beta$

$$a_0 + \frac{1}{\cdot \cdot \cdot + a_k + \frac{1}{a}}$$

Заметим две прекрасные вещи:

Если β - решение квадратного уравнения, то $\frac{1}{\beta}$ - тоже является решением квадратного

уравнения $\Longrightarrow \frac{1}{\beta}$ - также квадратичная иррациональность. (Достаточно поделить уравнение для β на x^2)

Если β - решение квадратного уравнения, то $\forall \gamma \in N \ \beta + \gamma$ - решение квадратного уравнения, т.е. квадратичная иррациональность. (Если $c_2x^2 + c_1x + c_0 = 0$ - уравнение с корнем β , то $c_2(x-\gamma)^2 + c_1(x-\gamma) + c_0 = 0$ - уравнение с корнем $\beta + \gamma$).

Пользуясь тем, что прибавление к квадратичной иррациональности натурального числа и обратное к квадратичной иррациональности - квадратичная иррациональность, получаем, что α - квадратичная иррациональность

Нахождение периодической цепной дроби по её значению, и нахождение значения дроби по её периоду

Пусть дана периодическая цепная дробь $[5; \overline{1, 2, 1, 10}] = a$. Найти ее значение Алгоритм:

- 1. Выделяем часть с периодом: [1; 2, 1, 10] = x
- 2. Расписываем дробь, пока не дойдем до первого периода, приравниваем цепную дробь
- в знаменателе к x, всю дробь приравниваем к x: $x=1+\frac{1}{2+\frac{1}{1+\frac{1}{10+\frac{1}{[1;2,1,10]}}}}=1+\frac{1}{2+\frac{1}{1+\frac{1}{10+\frac{1}{x}}}}$ 3. Начинаем переворчивать: $x=1+\frac{1}{2+\frac{1}{1+\frac{1}{10x+1}}}=1+\frac{1}{2+\frac{10x+1}{11x+1}}=1+\frac{11x+1}{32x+3}=\frac{43x+4}{32x+3}\Longrightarrow$ $32x^2 - 40x - 4 = 0 \Longrightarrow x = \frac{\sqrt{33} + 5}{8}$ 4. Находим а. $a = 5 + \frac{1}{x} = 5 + \frac{8}{\sqrt{33} + 5} = \frac{33 + 5\sqrt{33}}{\sqrt{33} + 5}$

Пусть дано значение $a = \sqrt{2}$. Найти цепную дробь Алгоритм: 1. Выделяем целую часть: $1 + (\sqrt{2} - 1)$

- 2. 2. Если число уже встречалось в разложении, мы нашли период. Ура! Иначе переворачиваем дробную часть: $1 + \frac{1}{\frac{1}{\sqrt{2}-1}}$
- 3. Домножаем на сопряженное: $1 + \frac{1}{\sqrt{2}+1} = 1 + \frac{1}{\sqrt{2}+1}$
- 4. Вернуться к шагу 1

Таким образом, получим:

$$1 + \frac{1}{\sqrt{2}+1} = 1 + \frac{1}{2+(\sqrt{2}-1)}$$

 $\sqrt{2} - 1$ уже встречалось, значит, дробь: [1; $\overline{2}$]

29

сопряжение, замкнутость сложения, умножения. Согласованность сопряжения и умножения. Норма и её свойства. Квадратичные иррациональности. Множество $\mathbb{Z}[\sqrt{m}]$: сопряжение, замкнутость сложения, умножения. Согласованность сопряжения и умножения. Норма и её свойства. Опр Иррациональное число $\overline{\alpha}$ называется $\kappa \epsilon a \partial pamu \cdot u + o \check{u}$ uppauuoнaльностью, если α - корень квадратного уравнения с целыми коэффициентами.

Опр Пусть $\alpha=a+b\sqrt{m}$ — квадратичная иррациональность. Назовем число $\alpha=a-b\sqrt{m}$ сопряженным к α числом

Утверждение

Множество $\mathbf{Z}[\sqrt{m}] = \{\mathbf{a} + \mathbf{b}\sqrt{m} | \ \mathbf{a}, \ \mathbf{b} \in Z \ \} \subset \mathbf{R}$ замкнуто относительно операций:

1 Сопряжения

- 2 Сложения
- 3 Умножения

1 a -
$$b\sqrt{m} = a + (-b)\sqrt{m}$$
; a, $-b \in Z \Longrightarrow a - b\sqrt{m} \in \mathbb{Z}[\sqrt{m}]$

$$2 \ a_1 + b_1 \sqrt{m} + a_2 + b_2 \sqrt{m} = (a_1 + a_2) + (b_1 + b_2) \sqrt{m}; \ (a_1 + a_2), \ (b_1 + b_2) \in Z \Longrightarrow a_1 + b_1 \sqrt{m} + a_2 + b_2 \sqrt{m} \in \mathbb{Z}[\sqrt{m}]$$

$$3 (a_1+b_1\sqrt{m})*(a_2+b_2\sqrt{m}) = (a_1a_2+b_1b_2m) + (a_1b_2+a_2b_1)\sqrt{m}; (a_1a_2+b_1b_2m), (a_1b_2+a_2b_1) \in Z \Longrightarrow (a_1+b_1\sqrt{m})*(a_2+b_2\sqrt{m}) \in Z[\sqrt{m}] \blacksquare$$

Сопряжённость для квадратичной иррациональности согласована с общим определением. В алгебре сопряженными к элементу α над полем F называются корни неприводимого многочлена $f(x) \in F[x]$, для которого $f(\alpha) = 0$. Это согласовано с определением комплексного сопряжения. А именно, для комплексного числа $z \in C$ R его сопряжённое — это второй корень квадратного многочлена, у которого первый корень — это z.

Опр

Для $\alpha \in \mathbb{Z}[\sqrt{m}]$ определим норму $\mathbb{N}(\alpha) = \alpha \overline{\alpha}$.

Свойства

$$1 \ N(\alpha) \in Z \blacktriangle N(\alpha) = \alpha \overline{\alpha} = (a + b\sqrt{m}) * (a - b\sqrt{m}) = a^2 - b^2 m \in Z \blacksquare$$

$$2 \ N(\alpha\beta) = N(\alpha) * N(\beta)$$

$$\Delta \alpha = a_1 + b_1 \sqrt{m}, \ \beta = a_2 + b_1 \sqrt{m}.$$

$$\alpha\beta = (a_1a_2 + b_1b_2m) + (a_1b_2 + a_2b_1)\sqrt{m}$$

$$\overline{\alpha\beta} = (a_1a_2 + b_1b_2m) - (a_1b_2 + a_2b_1)\sqrt{m}$$

$$N(\alpha\beta) = ((a_1a_2 + b_1b_2m) + (a_1b_2 + a_2b_1)\sqrt{m})((a_1a_2 + b_1b_2m) - (a_1b_2 + a_2b_1)\sqrt{m}) =$$

$$= (a_1 + b_1\sqrt{m})(a_2 + b_2\sqrt{m}) * (a_1 - b_1\sqrt{m})(a_2 - b_2\sqrt{m}) = (a_1 + b_1\sqrt{m})(a_1 - b_1\sqrt{m}) * (a_2 + b_2\sqrt{m})(a_2 - b_2\sqrt{m}) = N(\alpha)N(\beta)$$

30 Пара (a, b), где $a + b\sqrt{2} = (1 + \sqrt{2})^n$ является решением уравнения Пелля $a^2 - 2b^2 = \pm 1$.

Опр Уравнение вида $x^2 - my^2 = 1$, где m — натуральное число, не являющееся точным квадратом, называется уравнением Пелля. Решение (1, 0) называется тривиальным. Решение (x, y) называется положительным, если x > 0 и y > 0.

Определим a_n и b_n при помощи равенства $(1+\sqrt{2})^n=a_n+b_n\sqrt{2}$

1.
$$(1+\sqrt{2})^n=\sum_{k=0}^n C_n^k(\sqrt{2})^k$$
 $(1-\sqrt{2})^n=\sum_{k=0}^n C_n^k(-\sqrt{2})^k$. При четных $\mathbf{k}\ (-\sqrt{2})^k=(\sqrt{2})^k\in N\Longrightarrow (-\sqrt{2})^k\in a_n$. При нечетных $\mathbf{k}\ (-\sqrt{2})^k=-(\sqrt{2})^k\not\in Z\Longrightarrow (-\sqrt{2})^k\in -b_n$ Таким образом, $(1-\sqrt{2})^n=a_n-b_n\sqrt{2}$

2.
$$a_n^2 - 2b_n^2 = (a_n - b_n\sqrt{2})(a_n + b_n\sqrt{2}) = (1 + \sqrt{2})^n(1 - \sqrt{2})^n = (-1)^n$$

Отсюда заключаем, что такие a_n и b_n : $(1+\sqrt{2})^n=a_n+b_n\sqrt{2}$ являются решениями уравнения Пелля $a^2-2b^2=\pm 1$.

31 Связь между решениями уравнения Пелля $a^2-2b^2=\pm 1$ и элементами $Z[\sqrt{2}]$ нормой 1.

Утверждение

Любой элемент $\mathbf{Z}[\sqrt{2}]$ нормы 1 является решением уравнения $a^2-2b^2=1$, любое решение уравнения $a^2-2b^2=1$ - элемент $\mathbf{Z}[\sqrt{2}]$ нормы 1

> -> Пусть (a,b) - решение уравнения Пелля $a^2-2b^2=1,$ тогда $(a+b\sqrt{2})(a-b\sqrt{2})=1\Longrightarrow N(a+b\sqrt{2})=1; a,b\in Z[\sqrt{2}]$

$$ightharpoonup$$
 <- Пусть a, b $\in Z[\sqrt{2}],\ N(a+b\sqrt{2})=1\Longrightarrow (a+b\sqrt{2})(a-\sqrt{2})=1=a^2-2b^2\Longrightarrow (a,b)$ - решение уравнения Пелля

Аналогичное утверждение можно сформулировать для $a^2 - 2b^2 = -1$

32 Алгебраические и трансцендентные числа. Существование трансцендентных чисел (из соображения мощности). Степень алгебраического числа. Теорема Лиувилля (б/д).

Опр Число α - алгебраическое, если существует многочлен с целыми коэффициентами, корнем которого является α

Обозначим множество алгебраических чисел A. Это множество счетно (достаточно занумеровать все многочлены)

Опр $R \setminus A$ $(C \setminus A)$ имеет мощность континуум, все числа из этого множества - mpancuendent dental d

Опр *Степень алгебраического числа* - это минимальная степень уравнения, корнем которого является это число

Теорема Лиувилля

Пусть α - алгебраическое число степени d, тогда $\exists c=c(\alpha)$: неравенство $|\alpha-\frac{p}{q}|\leqslant \frac{c}{q^d}$ не имеет решени в $\frac{p}{q}$

33 Определение решётки (эквивалентность двух определений) и дискретного подмножества. Определитель решётки. Независимость значения определителя от выбора базиса.

Опр Пусть $(e_1,...,e_k)$ — набор линейно независимых векторов в R^n . Решётка - абелева группа, порождённая $\{e_i\}$. Иными словами, решётка есть множество $\Lambda = \{a_1e_1+...+a_ke_k\}, a_i \in Z$

Эквивалентность

<- Для $\Lambda = \{a_1e_1 + ... + a_ke_k\}, a_i \in Z$ выполяняются ассоциативность и коммутативность сложения, существует нейтральный по сложению $(\overline{0})$ и к каждому $\overline{a} = a_1e_1 + ... + a_ke_k$ обратный $-\overline{a} = -a_1e_1 - ... - a_ke_k$, значит, Λ - абелева группа. Причем $\{e_i\}$ - базис

-> Любой элемент абелевой группы, порожденной $\{e_i\}$ имеет вид $\overline{a} = a_1e_1 + ... + a_ke_k$, где $a_i \in Z \Longrightarrow \overline{a} \in \Lambda$

Опр Подмножество X пространства \mathbb{R}^n называется дискретным, если для любой точки х \in X существует окрестность этой точки, не содержащая других точек множества Χ.

Опр Определителем $det\Lambda$ решётки Λ называется определитель матрицы, составленной из координат её базисных векторов. Он равен объёму фундаментального параллелепипеда, то есть параллелепипеда, составленного из базисных векторов.)

Утверждение

Определитель решетки не зависит от выбора базиса

▲ Пусть A, B - матрицы в разных базисах, S - матрица перехода от A к B. Тогда B = A * S. В силу того, что векторы нового безиса - это ЛК векторов старого базиса с какими-то целочисленными коэффициентами, матрица S целочисленная. По этим же соображениям, S^{-1} - целочисленная матрица. Тогда

$$detB = detA \ detS, detA = detS^{-1} detB \Longrightarrow \frac{1}{detS} = detS^{-1} \Longrightarrow detS^{-1} detS = 1. \Longrightarrow detS = \pm 1 \Longrightarrow detA = detB$$

Определение решётки и его определителя. Решётка $\Lambda_{\overline{a}}$ и её 34 определитель.

Опр Дано простое число р и зафиксирован вектор $\overline{a}=(\frac{a_1}{p},...,\frac{a_n}{p}),$ где $a_i\in Z.$ Определим множество $\Lambda_{\overline{a}} = \{l\overline{a} + \overline{b}, l \in Z, \overline{b} \in Z^n\}$

Утверждение

 $\Lambda_{\overline{a}}$ - решетка

 \blacktriangle Заметим, что все это множество порождается векторами $(\overline{a}, \overline{e_1}, \overline{e_2}, ..., \overline{e_n})$. Покажем, что если убрать из этого набора векторов $\overline{e_1}$, они все равно будут порождать множество $\Lambda_{\overline{a}}$.

Заметим, что если все a_i :p, то ничего нового мы не получим, т.е. \overline{a} линейно выражается через $(\overline{e_1},...\overline{e_n})$, и мы нашли базис, порождащий это множество, тогда $\Lambda_{\overline{a}}$ - решетка.

Предположим, какой-то из $a_i \not p$; Пусть БОО это a_1 . Научимся из вектора $\gamma = (\frac{1}{p}, ..., \frac{la_n}{p})$ получать вектор \overline{a} и вектор $\overline{e_1}$.

Возьмем в качестве $\overline{b}=k\overline{e_1}$, тогда $l\overline{a}+\overline{b}=(\frac{la_1+kp}{p},\frac{la_2}{p},...,\frac{la_n}{p})$ Заметим, что всегда можно выбрать l и k так, чтобы $la_1+kp=1$, т.к. $(a_1,p)=1$

Покажем, что $(\gamma, e_2, ..., e_n)$ образуют базис. Для начала заметим, что $\overline{e_1} = p\gamma - la_2\overline{e_2} - la_3\overline{e_3} - la_3\overline{e_3}$... $la_n\overline{e_n}$. $l\overline{a}=\gamma-\overline{b}$. Мы умеем выражать все базисные векторы и $l\overline{a}\Longrightarrow$ умеем выражать $\overline{a}\Longrightarrow$ нашли базис \blacksquare

Найдем $det\Lambda_{\overline{a}}$

Заметим, что матрица, составленная из базисных векторов $\Lambda_{\overline{a}}$ нижняя треугольная, $\operatorname{diag}(\frac{1}{n},1,1,...,1)$, исходя из того, какой базис мы нашли. Тогда $\det\Lambda_{\overline{a}}=\frac{1}{n}$

35 Определение равномерной распределённой последовательности по модулю 1. Является ли \sqrt{n} p.p. (mod 1) последовательностью?

Послед-ность $x_1, x_2, \ldots, x_n, \ldots$ - равномерно распределена по модулю 1, если:

$$\forall a, b \in [0, 1] \lim_{N \to \infty} \frac{|\{i = 1, \dots, N : \{x_i\} \in [a, b)\}|}{N} = b - a$$

или, что равносильно (по сути речь про вероятность, что дробная часть числа из первых N окажется на отрезке b - a):

$$\forall \gamma \in [0, 1] \lim_{N \to \infty} \frac{|\{i = 1, \dots, N : \{x_i\} \leqslant \gamma\}|}{N} = \gamma$$

Пример: \sqrt{n} . Второе определение: Фиксируем γ и N. Последовательность: $\sqrt{1}, \sqrt{2}, \dots, \sqrt{N}$. Пусть переменная k принимает значения целых частей, которые возникают в такой последовательности; $k \in \{1, [\sqrt{2}], [\sqrt{3}], \dots\} = \{1, 2, 3, \dots, [\sqrt{N}]\}$.

 $\{x_n\}\leqslant \gamma$. Это может возникнуть, если число x_n имеет вид $k^2,k^2+1,\ldots,(k+\gamma)^2=k^2+2k\gamma+\gamma^2$. Таких чисел с точностью до O(1) $2k\gamma$. Тогда общее количество таких n: $|\{n:\{\sqrt{n}\}\leqslant\gamma\}|=\sum_{k=1}^{[\sqrt{N}]}(2k\gamma+O(1))=2\gamma\frac{[\sqrt{N}][\sqrt{N}+1]}{2}+O(\sqrt{N})=N\gamma+O(\sqrt{N})$. Тогда

$$\forall \gamma \in [0,1] \lim_{N \to \infty} \frac{|\{i=1,\dots,N: \{x_i\} \leqslant \gamma\}|}{N} = \lim_{N \to \infty} \frac{N\gamma + O(\sqrt{N})}{N} = \gamma$$

Отсюда эта последовательность p.p. (mod 1) по определению.

36 Определение равномерной распределённой последовательности по модулю 1. Является ли р.р. (mod 1) последовательность a^n при а < 1?

Послед-ность $x_1, x_2, \ldots, x_n, \ldots$ - равномерно распределена по модулю 1, если:

$$\forall a, b \in [0, 1] \lim_{N \to \infty} \frac{|\{i = 1, \dots, N : \{x_i\} \in [a, b)\}|}{N} = b - a$$

или, что равносильно (по сути речь про вероятность, что дробная часть числа из первых N окажется на отрезке b - a):

$$\forall \gamma \in [0, 1] \lim_{N \to \infty} \frac{|\{i = 1, \dots, N : \{x_i\} \leqslant \gamma\}|}{N} = \gamma$$

 a^n при a < 1 не является р.р. (mod 1).

lack Очевидно, что $\{a^n\}=a^n$. Возьём $\gamma=a+\varepsilon<1$. Тогда $\forall n\ a^n< a<\gamma;$ для этого γ : $\lim_{N\to\infty} \frac{|\{i=1,\dots,N:\{x_i\}\leqslant\gamma\}|}{N}=1\neq\gamma$

- 37 Определение всюду плотности. Последовательность $\ln n$ всюду плотна на [0,1].
- 38 Определение всюду плотности. Если последовательность равномерно распределена по модулю 1, то она и всюду плотна.

Последовательность x_n всюду плотна на отрезке [a, b], если \forall [c, d] \subset [a, b] \exists бесконечного много номеров N таких, что $\{x_N\} \in [c,d]$.

 $\{ln(n)\}$ всюду плотна на [0; 1].

 \blacktriangle Зафиксируем N. Тогда $[x_n] = k \in \{1, \dots, [ln(N)]\}$. $\{ln(n)\} \in [c; d] \Leftrightarrow ln(n) \in [k+c; k+d] \Rightarrow n \in [e^{k+c}; e^{k+d}]$. Для N число подходящих n будет $\sum_{k=1}^{[ln(N)]} (e^{k+d} - e^{k+c}) = \frac{e(e^{ln(N)} - 1)}{e-1} (e^d - e^c) N \frac{e(e^d - e^c)}{e-1} \to \infty$

Теорема. Если последовательность x_n p.p. mod 1, то она всюду плотна на отрезке [0, 1].

▲ Из определения равномерной распределённости по модулю 1, $\forall c < d \in [0;1]$ $\lim_{N \to \infty} \frac{|k|k \leqslant N, \{x_k\} \in [c;d]|}{N} = d - c$, т.е. для любого подотрезка \exists бесконечное количество точек в нём. \blacksquare

39 Тригонометрические суммы. Критерий Вейля для р.р. (mod 1) (формулировка). Последовательность αn при иррациональном α является р.р. (mod 1). Что происходит при рациональном α ?

Тригонометрическая сумма - сумма вида $\sum_{k=1}^N e^{2i\pi kx}$ Критерий Вейля. x_n р.р. mod 1 тогда и только тогда, когда:

$$\forall h \in \mathbb{Z} \setminus \{0\} : \frac{1}{N} \sum_{n=1}^{N} e^{2i\pi h x_n} \to 0$$

 $x_n = \alpha n$ при $\alpha \in \mathbb{Q}$ принимает ограниченное количество значений \Rightarrow быть p.p. mod 1 не может.

 $\alpha \notin \mathbb{Q}$. Применим критерий Вейля:

$$\forall h \in \mathbb{Z} \setminus \{0\} : \frac{1}{N} \sum_{n=1}^{N} e^{2i\pi h\alpha n} = \frac{1}{N} e^{2i\pi h\alpha} \frac{e^{2i\pi h\alpha N} - 1}{e^{2i\pi h\alpha} - 1}$$

Знаменатель не равен нулю в силу иррациональности α ; по формуле Эйлера $(e^{ix} = cos(x) + isin(x))$ числитель не превышает 2, следовательно, это значение стремится к нулю; критерий Вейля выполняется \Rightarrow последовательность равномерно распределена по модулю 1.

40 Определение равномерной распределённой последовательности по модулю 1. Являются ли р.р. (mod 1) последовательности а) $1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \dots$ б) $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \dots$

Послед-ность $x_1, x_2, \ldots, x_n, \ldots$ - равномерно распределена по модулю 1, если:

$$\forall a, b \in [0, 1] \lim_{N \to \infty} \frac{|\{i = 1, \dots, N : \{x_i\} \in [a, b)\}|}{N} = b - a$$

- а) Равномерно распределена mod 1.
- ▲ Разбиваем на "блоки"по знаменателям. Тогда количество чисел из N-ого блока, которые попадают в отрезок (b-a) можно оценить как (b-a)N+C, где |C|<2. Доля чисел от 1 до M, где $\frac{N(N-1)}{2}<=M<\frac{N(N+1)}{2}$ (то есть M находится в блоке N+1), попадающих в этот отрезок как $\frac{1}{M}(\sum_n[(b-a)n+C]+D)$, где D это "остаток"из дробей со знаменателем N+1. Так как C, D это линейные функции от N, то при делении на M они будут стремится к 0, и останется в точности (b-a). ■
- б) Не равномерно распределена mod 1.
- ▲ Разобъём её на "блоки" по знаменателям. Рассмотрим отрезок $[0; \frac{1}{2}]$. Если смотреть на концы блоков, то там ровно половина попадает в первый отрезок. А если посмотреть на все числа до середины N-ого блока, то доля чисел, попадающих на отрезок $[0; \frac{1}{2}]$ будет $\frac{2}{3}$ (по индукции), что противоречит существованию предела (а, значит, и определению равномерной распределённости по модулю 1).
- 41 Определение равномерной распределённой последовательности по модулю 1. Пусть последовательность x_n р.р. (mod 1) и m фиксированное целое число, не равное нулю. Докажите, что последовательность mx_n также р.р. (mod 1). Верно ли, что если m не целое, то это не верно?

Послед-ность $x_1, x_2, \dots, x_n, \dots$ - равномерно распределена по модулю 1, если:

$$\forall a, b \in [0, 1] \lim_{N \to \infty} \frac{|\{i = 1, \dots, N : \{x_i\} \in [a, b)\}|}{N} = b - a$$

Теорема. Если последовательность x_n p.p. (mod 1) и m — фиксированное целое число, не равное нулю, то последовательность mx_n также p.p. (mod 1).

 $\blacktriangle x_n$ равномерно распределено по модулю 1 по критерию Вейля равносильно тому, что:

$$\forall h \in \mathbb{Z} \setminus \{0\} : \frac{1}{N} \sum_{n=1}^{N} e^{2i\pi h x_n} \to 0$$

Критерий Вейля для mx_n , где m - целое число, отличное от 0:

$$\forall h \in \mathbb{Z} \setminus \{0\} : \frac{1}{N} \sum_{n=1}^{N} e^{2i\pi h(mx_n)} = \frac{1}{N} \sum_{n=1}^{N} e^{2i\pi(hm)x_n} \to 0$$

Это верно, так как hm - подмножество целых чисел, т.е. для них это выполнялось по критерию Вейля для x_n . Виват!

Контрпример к важности целостности коэффициента. См. билет 39: αn , где α - иррациональное - равномерно распределённая последовательность. Тогда можно взять последовательность $\sqrt(2)n$, она будет равномерно распределённой, и домножить её на нецелое $m=\sqrt(2)$, получить последовательность 2n, которая не является равномерно распределённой.

42 Описание алгоритма AKS (6 шагов). Лемма об оценке r (б/д). Оценка сложности алгоритма. Тождество $(X + a)^p = X^p + a \pmod{p}$.

Алгоритм проверки n на простоту: Agarwal, Kayal, Saxena (AKS)

- 1. $n = a^b, b \ge 2 \Rightarrow n$ составное
- 2. Ищем наименьшее r, такое что $\operatorname{ord}_r n > \log_2^2 n$
- 3. Если хотя бы для одного числа a из диапазона $1\dots r$ выполнено $1<(a,n)< n\Rightarrow n$ составное $((a,n):=\mathrm{HOД}(a,n))$
- 4. Если $n \leq r$, то n простое
- 5. Если хотя бы для одного числа a в диапазоне $1\dots l = \sqrt{\varphi(r)} \cdot \log_2 n$ выполнено $(x+a)^n \neq x^n + a \pmod{x^r-1, n} \Rightarrow n$ составное
- 6. n простое

Лемма: $r \leq \max\{3, \lceil \log_2^5 n \rceil\}$

Сложность:

- 1. $n = a^b \Rightarrow b \leqslant \log_2 n \Rightarrow$ можно перебрать бинпоиском за poly $(\log_2 n)$
- 2. Из леммы следует, что шаг 2 можно сделать перебором за $\operatorname{poly}(\log_2 n)$
- 3. Перебираем числа меньше r и ищем НОД (за логарифм) \Rightarrow этот шаг выполняется за $\operatorname{poly}(\log_2 n)$
- 4. O(1)
- 5. Всего $\operatorname{poly}(\log_2 n)$ итераций. На каждой делаем бинарное возведение в степень $(\operatorname{poly}(\log_2 n))$, как только превышаем r делим на многочлен x^r-1 ($\operatorname{poly}(\log n)$, так как степень делимого $\leqslant 2r$, то есть у него $\operatorname{poly}(\log_2 n)$ коэффициентов)

Утверждение: $(x+a)^p = x^p + a \pmod{p}$

 $(x+a)^p = x^p + a^p + \sum_{i=1}^{p-1} C_p^i x^{p-i} a^i$

 $a^p = a \pmod{p}$ (малая теорема Ферма), $C_p^i = 0 \pmod{p}$ (доказывалось в прошлом семестре) $\Rightarrow (x+a)^p = x^p + a \pmod{p}$

49 Китайская теорема об остатках

Лемма 49.1. Пусть (a,b) = 1, тогда $\exists c : ac \equiv 1 \pmod{b}$

\Delta. Рассмотрим числа a, 2a, ..., (b-1)a. Они образуют приведённую систему вычетов, а значит есть остаток 1.

Теорема 49.1 (Китайская теорема об остатках). Пусть $n_1, n_2, ..., n_k \in \mathbb{N}$ попарно взаимно простые, а $r_1, r_2, ..., r_k \in \mathbb{Z}$. Тогда $\exists ! M$ по модулю $\prod_{i=1}^k n_i$ решение системы сравнений:

$$\begin{cases} M \equiv r_1 \pmod{n_1} \\ M \equiv r_2 \pmod{n_2} \\ \dots \\ M \equiv r_k \pmod{n_k} \end{cases}$$

Δ. Пусть $N = \prod_{i=1}^k n_i; N_i = \frac{N}{n_i}; N_i^{-1}$ — обратный к N_i по модулю n_i . Существование N_i^{-1} можно обосновать по лемме, так как $(N_i, n_i) = 1$.

Покажем, что $M = \sum_{i=1}^{k} r_i N_i N_i^{-1}$ будет решением.

Рассмотрим M по модулю n_1 . Все слагаемые, кроме первого, содержат множитель N_i , который делится на n_1 . Получается, что $M \equiv r_1 N_1 N_1^{-1} \pmod{n_1} \equiv r_1 \pmod{n_1}$, то есть M является решением первого сравнения.

Аналогично проверяем все k сравнений.

Теперь докажем, что решение единственно по модулю N.

Пусть A и B – различные решения по модулю N. Тогда $A - B \equiv 0 \pmod{n_i}$. Так как n_i взаимно простые, то $A - B \equiv 0 \pmod{N}$. Получается, что A и B – одинаковые решения по модулю N.

Противоречие.

Сравнения второй степени. Квадратичные вычеты и невычеты. 51Тождество для $\left(\frac{a}{p}\right)$

Определение 51.1. $x^2 \equiv a \mod m$ называется *сравнением второй степени*.

Будем считать, что m = p – нечётное простое число, (a, p) = 1.

Замечание. У сравнения второй степени либо нет решений, либо их два.

▲. По теореме Лагранжа у сравнения второй степени не более 2.

Пусть x_0 – решение сравнения $x^2 \equiv a \mod p$.

Тогда $-x_0$ – также решение, но $-x_0 \not\equiv x_0 \bmod p$

Определение 51.2. Число *а* называется *квадратичным вычетом*, если у сравнения $x^2 \equiv$ $a \mod p$ два решения. Число a называется $\kappa \epsilon a \partial p a m u v h u m h e \epsilon u v е c p a в нения$ $x^2 \equiv a \mod p$ нет решений.

Утверждение 51.1. По модулю p есть ровно $\frac{p-1}{2}$ квадратичных вычетов и $\frac{p-1}{2}$ квадратичных невычетов.

Утверждение было доказано в билете 12 (на "уд.").

Теорема 51.1. $a^{\frac{p-1}{2}} \equiv 1 \bmod p$, если $a - \kappa в a \partial p a m u ч н ы й вычет, <math>u \ a^{\frac{p-1}{2}} \equiv -1 \bmod p$, если $a - \kappa в a \partial p a m u ч н ы й невычет.$

A. По малой теореме Ферма $a^{p-1} \equiv 1 \mod p$ для всех a. Тогда

$$(a^{\frac{p-1}{2}} - 1)(a^{\frac{p-1}{2}} + 1) \equiv 0 \bmod p$$

Если a – квадратичный вычет, то

$$\exists x : x^2 \equiv a \bmod p \Rightarrow a^{\frac{p-1}{2}} \equiv (x^2)^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \bmod p$$

Доказательство для квадратичных невычетов аналогичное.

Определение 51.3. Символ Лежандра

$$\left(rac{a}{p}
ight) = egin{cases} 1, ext{если } a - ext{квадратичный вычет} \ -1, ext{если } a - ext{квадратичный невычет} \ 0, ext{если } (a,p)
eq 1 \end{cases}$$

Замечание.

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}$$

Следствие. Символ Лежандра мультипликативен.

Теорема 51.2.
$$\left(\frac{a}{p}\right) = (-1)^{\sum\limits_{x=1}^{p-1} \left[\frac{2ax}{p}\right]}$$

A. Пусть $x \in \{1, 2, ..., \frac{p-1}{2}\}$

 $a\cdot x$ загоним в систему вычетов от $-\frac{p-1}{2}$ до $\frac{p-1}{2}.$

Переход в новую систему вычетов происходит следующим образом: левая часть системы вычетов 1,2,...,p-1 остаётся такой же (то есть равна $\{1,2,...,\frac{p-1}{2}\}$), а правая будет равна $\{-\frac{p-1}{2},...,-2,-1\}$.

$$a \cdot x \equiv \varepsilon_x \cdot r_x \bmod p$$
,

где
$$\varepsilon_x \in \{-1,1\}, r_x \in \{1,2,...,\frac{p-1}{2}\}$$

Если $a\cdot x$ попадет в левую часть системы вычетов $\{1,\,2,\,\dots$ р - $1\}$, тогда $\varepsilon_x=1$, если в правую, то $\varepsilon_x=-1$.

Утверждается, что математически это записывается так:

$$\varepsilon_x = (-1)^{\left[\frac{2ax}{p}\right]}$$

Доказательство настолько скучное, что Райгородский не стал его рассказывать :) Доказать можно примерно так:

Пусть $a\cdot x\in [kp+1;(k+1)p-1]$ для некоторого k. Тогда $\frac{ax}{p}\in (k,k+1)$. Соответственно, $\frac{2ax}{p}\in (2k,2k+2)$.

Тогда если ax лежало в левой части, то $\left[\frac{2ax}{p}\right]=2k$ (то есть чётному числу), иначе $\left[\frac{2ax}{p}\right]=2k+1$ (то есть нечётному).

Покажем, что когда x пробегает значения от 1 до $\frac{p-1}{2}$, то r_x пробегает всю систему вычитов $1,2,...,\frac{p-1}{2}$:

Когда x пробегает значения от 1 до $\frac{p-1}{2}$, то значения ax по модулю m не могут повториться, поскольку иначе $(a,p)\neq 1$. Также значения r_x не могут повториться, так как иначе $\exists x_1,x_2\leqslant \frac{p-1}{2}$ т.ч. $x_1\neq x_2,ax_1\equiv_m r_x,ax_2\equiv_m -r_x\Rightarrow ax_1+ax_2\equiv_m 0\Rightarrow x_1+x_2\equiv_m 0,$ чего быть не может, поскольку x пробегает значения от 1 до $\frac{p-1}{2}$. Следовательно, когда x пробегает значения от 1 до $\frac{p-1}{2}$, то r_x пробегает всю систему вычетов $1,2,...,\frac{p-1}{2}$

С учетом этого,

$$\prod_{x=1}^{\frac{p-1}{2}}(ax) \equiv \varepsilon_1 \cdot \varepsilon_2 \cdot \ldots \cdot \varepsilon_{\frac{p-1}{2}} \cdot \prod_{x=1}^{\frac{p-1}{2}} r_x \equiv \varepsilon_1 \cdot \varepsilon_2 \cdot \ldots \cdot \varepsilon_{\frac{p-1}{2}} \cdot \prod_{x=1}^{\frac{p-1}{2}} x$$

Разделив обе части на $\prod_{x=1}^{\frac{p-1}{2}} x$ и используя выражение для ε_x , получаем:

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \equiv \varepsilon_1 \cdot \varepsilon_2 \cdot \dots \cdot \varepsilon_{\frac{p-1}{2}} \equiv (-1)^{\sum_{x=1}^{p-1} \left[\frac{2ax}{p}\right]}$$

52 Сравнения второй степени. Квадратичные вычеты и невычеты. Формула для $\binom{2}{p}$ (тождеством с суммой по $\left[\frac{2ax}{p}\right]$ можно пользоваться без доказательства).

Вся теория расписана в прошлом билете.

Теорема 52.1.

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$

Доказательство. Для удобства введём обозначение $p_1 = \frac{p-1}{2}$.

Без доказательства можно пользоваться утверждением:

$$\left(\frac{a}{p}\right) = (-1)^{\sum\limits_{x=1}^{p_1} \left[\frac{2ax}{p}\right]}$$

Рассмотрим нечётное a.

$$\left(\frac{2a}{p}\right) = \left(\frac{4 \cdot \frac{a+p}{2}}{p}\right) = \left(\frac{2^2}{p}\right) \cdot \left(\frac{\frac{a+p}{2}}{p}\right) = 1 \cdot (-1)^{\sum\limits_{x=1}^{p_1} \left[\frac{2 \cdot \frac{a+p}{2} \cdot x}{p}\right]}$$

Для удобства распишу отдельно показатель -1:

$$\sum_{x=1}^{p_1} \left[\frac{2 \cdot \frac{a+p}{2} \cdot x}{p} \right] = \sum_{x=1}^{p_1} \left[\frac{ax}{p} + x \right] = \sum_{x=1}^{p_1} \left[\frac{ax}{p} \right] + \sum_{x=1}^{p_1} x = \sum_{x=1}^{p_1} \left[\frac{ax}{p} \right] + \frac{p_1(p_1+1)}{2} = \sum_{x=1}^{p_1} \left[\frac{ax}{p} \right] + \frac{p^2-1}{8} = \sum_{x=1}^{p_1} \left[\frac{ax}{p} \right] + \sum_{x=1}^{p_2} \left[\frac{ax}{p} \right] + \sum_{x=1}^{p_3} \left[\frac{ax}{p} \right] + \sum_{x=1}^{p_4} \left[\frac{ax$$

Вернёмся к $\left(\frac{2a}{p}\right)$:

$$\frac{2a}{p} = (-1)^{\sum_{x=1}^{p_1} \left[\frac{ax}{p}\right]} \cdot (-1)^{\frac{p^2-1}{8}}$$

Тождество верно для любого нечётного a, поэтому можно подставить a=1.

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}} \cdot (-1)^{\sum_{x=1}^{p_1} \left[\frac{x}{p}\right]} = (-1)^{\frac{p^2 - 1}{8}},$$

так как $\left[\frac{x}{p}\right] = 0 \ (x \leqslant p_1 < p).$

53 Матрицы Адамара. Кронекеровское произведение и общая формулировка про $A \cdot B$.

Определение: Кронекеровским произведением матриц $A \in M_{a \times a}$ и $B \in M_{b \times b}$ называется матрица

$$C = A \otimes B = \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \dots & a_{nn}B \end{pmatrix} (c_{kb+l,pb+q} = a_{kp}b_{lq})$$

Замечание 1: Равенство в скобках выполняется в 0-индексации

Замечание 2: Иногда определение вводят наоборот, то есть берут матрицу A и умножают ее на элементы из B (так вводилось на лекции), но для наших нужд не важно какое выбирать.

Утверждение (задача 20.6): Кронекеровское произведение матриц Адамара является матрицей Адамара.

 \blacktriangle Рассмотрим две произвольные строки C с номерами kb+l, pb+q. Тогда их скалярное произведение равно

$$a_{k1}a_{p1}(b_l, b_q) + a_{k2}a_{p2}(b_l, b_q) + \ldots + a_{ka}a_{pa}(b_l, b_q) = (b_l, b_q)(a_k, a_p)$$

Так как мы берем 2 разные строчки, то либо $l \neq q$, либо $k \neq p$. Значит, так как A, B - матрицы Адамара либо $(b_l, b_q) = 0$, либо $(a_k, a_p) = 0 \Rightarrow (c_{kb+l}, c_{pb+q}) = 0 \ \forall kb+l \neq pb+q \Rightarrow C$ - матрица Адамара \blacksquare

54 Матрицы Адамара. (Первая) конструкция Пэли с квадратичными вычетами при n = p + 1, p = 4m + 3.

Определение: Для простого p определим $p \times p$ матрицу Якобсталя Q формулой $Q_{jl} = \left(\frac{j-l}{p}\right)$ (это символ Лежандра).

І конструкция Пэли: Пусть $p \equiv 3 \pmod{4}$. Тогда матрица

$$\left(\begin{array}{cc}
1 & e^T \\
e & Q - E_p
\end{array}\right)$$

где e — столбец из единиц, а E_p — единичная матрица, является матрицей Адамара порядка p+1.

\triangle Рассмотрим скалярное произведение строк a_1 и a_2 матрицы Q.

$$\sum_{b=1}^{p} \left(\frac{a_1 - b}{p} \right) \left(\frac{a_2 - b}{p} \right)$$

Пусть $x = a_1 - b, c = a_2 - a_1$. Получаем

$$\sum_{x=1}^{p} \left(\frac{x}{p}\right) \left(\frac{c+x}{p}\right) = \sum_{x=1}^{p-1} \left(\frac{x}{p}\right) \left(\frac{x \cdot x^{-1}(x+c)}{p}\right) = \sum_{x=1}^{p-1} \left(\frac{x}{p}\right)^2 \left(\frac{1+x^{-1}c}{p}\right)$$

При $x \neq 0$ $\left(\frac{x}{p}\right)^2 = 1$. Положим $y = 1 + x^{-1}c$. Так как $c \not\equiv 0 \pmod{p}$, то $x^{-1}c$ пробегает все числа $1 \dots p - 1 \Rightarrow y$ пробегает числа $2 \dots p$.

$$\sum_{x\not\equiv 0 \pmod p} \left(\frac{1+x^{-1}c}{p}\right) = \sum_{y\not\equiv 1 \pmod p} \left(\frac{y}{p}\right) = 0 - \left(\frac{1}{p}\right) = -1$$

Рассмотрим скалярное произведение строк искомой матрицы. По сравнению со скалярным произведением строк Q добавятся слагаемые $1, (-1) \cdot \left(\frac{a_1-a_2}{p}\right)$ и $(-1) \cdot \left(\frac{a_2-a_1}{p}\right)$ (раньше они умножались на нули). Эти символы Лежандра отличаюся в $\left(\frac{-1}{p}\right)$ раз. $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^{\frac{4m+2}{2}} = (-1)^{2m+1} = -1 \Rightarrow$ слагаемые с символом Лежандра сократятся \Rightarrow скалярное произведение любых двух строк искомой матрицы равно (-1)+1=0.

Очевидно, что если мы рассмотрим скалярное произведение первой строки с любой другой, мы получим 0, так как в Q было поровну единиц и минус единиц (ранее доказывалось, что в \mathbb{Z}_p поровну квадратичных вычетов и невычетов) и у нас добавилась одна единица и одна минус единица. \Rightarrow это матрица Адамара

55 Матрицы Адамара. (Вторая) конструкция Пэли с квадратичными вычетами при n=2p+2, p=4m+1.

Утверждение (свойства кронекеровского произведения):

- 1. $(A \otimes B)^T = A^T \otimes B^T$
- 2. $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$

- **Δ** 1. $C = A \otimes B, D = C^T$. Тогда $d_{pb+q,kb+l} = c_{kb+l,pb+q} = a_{kp}b_{lq} = (A)_{pk}^T(B)_{ql}^T \Rightarrow$ по определению $D = A^T \otimes B^T$
 - 2. Покажем, что это правда для случаев когда размеры A, C и B, D попарно равны и все матрицы квадратные. Тогда можно просто рассмотреть их произведение как блочных матриц.

$$\begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \dots & a_{nn}B \end{pmatrix} \begin{pmatrix} c_{11}D & \dots & c_{1n}D \\ \vdots & \ddots & \vdots \\ c_{n1}D & \dots & c_{nn}D \end{pmatrix} = \begin{pmatrix} R_{11} & \dots & R_{1n} \\ \vdots & \ddots & \vdots \\ R_{n1} & \dots & R_{nn} \end{pmatrix}$$

где $R_{ij} = \sum_{k=1}^{n} (a_{ik}B)(c_{kj}D)$ (утверждение из Википедии) = $(\sum_{k=1}^{n} a_{ik}c_{kj})BD = (AC)_{ij}BD \Rightarrow$ по определению получили $(AC) \otimes (BD)$

Лемма:

- 1. Если $p \equiv 1 \pmod{4}$, то Q_p симметрична
- 2. $Q_pQ_p^T=pE_p-I_p$, где I_p матрица состоящая полностью из единиц
- **▲** 1.

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^{\frac{4k}{2}} = 1 \Rightarrow \left(\frac{i-j}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{j-i}{p}\right) = \left(\frac{j-i}{p}\right) \Rightarrow Q_{ij} = Q_{ji}$$

2. В первой конструкции Пэли мы показали, что скалярное произведение различных строк Q_p равно -1. Скалярное произведение строк i,j - это элемент на позиции i,j в $Q_pQ_p^T$. Очевидно, что на диагонали будут стоять числа p-1, так как в каждой строке ровно p-1 ненулевой элемент, каждый из которых равен ± 1 . Таким образом, получается, что $Q_pQ_p^T=pE_p-I_p$

II конструкция Пэли: Пусть $p \equiv 1 \pmod{4}$. Если в матрице

$$A = \left(\begin{array}{cc} 0 & e^T \\ e & Q_p \end{array}\right)$$

где e — столбец из единиц размера $p,\ Q_p$ - матрица Якобсталя порядка $p,\$ заменить 0 на матрицу $M_0=\begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix},$ а ± 1 на матрицу $\pm \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}=\pm M_1,$ то получится матрица Адамара порядка 2p+2.

▲ Найдем AA^T (пригодится нам в будущем). В левом верхнем углу очевидно будет стоять p, так как просто перемножили столбец из единиц на строку. Остальные элементы первой строки/столбца будут нулями, так как они равны сумме всех символов Лежандра по p. Просто перемножая матрицы заметим, что в оставшемся пространстве у нас получится матрица $I_p + Q_p Q_p^T = I_p + pE_p - I_p = pE_p$ (по пункту 2 леммы). Таким образом, $AA^T = pE_{p+1}$

Пусть H - матрица которая получилась после замен. Тогда так как нули находятся только на главной диагонали

$$H = A \otimes M_1 + E_{p+1} \otimes M_0$$

$$HH^T=(A\otimes M_1+E_{p+1}\otimes M_0)(A\otimes M_1+E_{p+1}\otimes M_0)^T=(A\otimes M_1+E_{p+1}\otimes M_0)(A^T\otimes M_1^T+E_{p+1}\otimes M_0^T)$$

Заметим, что $M_1^T=M_1,M_0^T=M_0,M_1M_0=-M_0M_1$

$$HH^{T} = (A \otimes M_{1})(A^{T} \otimes M_{1}) + (E_{p+1} \otimes M_{0})(A^{T} \otimes M_{1}) + (A \otimes M_{1})(E_{p+1} \otimes M_{0}) + (E_{p+1} \otimes M_{0})(E_{p+1} \otimes M_{0}) =$$

$$= (AA^{T}) \otimes M_{1}^{2} + A^{T} \otimes (M_{0}M_{1}) - A \otimes (M_{0}M_{1}) + E_{p+1} \otimes M_{0}^{2}$$

 $A=A^T$ (по пункту 1 леммы), $AA^T=pE_{p+1}$. Матрицы M_0,M_1 являются матрицами Адамара $\Rightarrow M_i^2=M_i^TM_i=2E_2$

$$HH^T = pE_{p+1} \otimes 2E_2 + E_{p+1} \otimes 2E_2 = 2pE_{2p+2} + 2E_{2p+2} = (2p+2)E_{2p+2} \blacksquare$$

56 (n, M, d)-коды. Граница Плоткина

Определение 56.1. (n, M, d)-кодом называется код, в котором все кодовые слова имеют длину n, d — минимальное расстояние между словами (в смысле расстояния Хэмминга), M — количество кодовых слов.

Теорема 56.1 (Граница Плоткина). *Пусть задан* (n, M, d)-код. *Если* 2d > n, то $M \leq \left[\frac{2d}{2d-n}\right]$

A. Пусть $\vec{a_1}, \vec{a_2}, ..., \vec{a_M}$ – все кодовые слова. Запишем их в матрицу следующим образом (каждый вектор представляется в виде строчки):

$$\begin{pmatrix} \leftarrow \vec{a_1} \rightarrow \\ \leftarrow \vec{a_2} \rightarrow \\ \cdots \\ \leftarrow \vec{a_M} \rightarrow \end{pmatrix}$$

Полученная матрица имеет размер $M \times n$. Рассмотрим сумму $(a_{i_j}$ – элемент матрицы)

$$S = \sum_{k=1}^n \sum_{1\leqslant i < j \leqslant M} I_{\{a_{i_k} \neq a_{j_k}\}},$$
где $I_{\{a_{i_k} \neq a_{j_k}\}} = egin{cases} 1, a_{i_k} \neq a_{j_k} \\ 0, a_{i_k} = a_{j_k} \end{cases}$

S можно рассматривать следующим образом: фиксируем столбец k и смотрим количество несовпадающих пар в этом столбце. Пусть x — число единиц в этом столбце, тогда M-x — число нулей в этом же столбце. Тогда несовпадающих пар в этом столбце ровно $x(M-x)=Mx-x^2$. Максимум этого значения достигается при $x=\frac{M}{2}$, то есть $x(M-x)\leqslant \frac{M^2}{4}$. Получаем, что $S\leqslant n\cdot \frac{M^2}{4}$.

Теперь рассмотрим S с другой стороны, переставив знаки суммирования:

$$S = \sum_{1 \le i \le j \le M} \sum_{k=1}^{n} I_{\{a_{i_k} \ne a_{j_k}\}}$$

Теперь S можно интерпретировать следующим образом: зафиксируем строки i и j (а

значит, и соответствующие кодовые слова $\vec{a_i}$ и $\vec{a_j}$). Тогда внутренняя сумма $\sum_{k=1}^n I_{\{a_{i_k} \neq a_{j_k}\}}$ – это в точности расстояние Хэмминга $d(\vec{a_i}, \vec{a_j})$. По определению (n, M, d)-кода $d(\vec{a_i}, \vec{a_j}) \geqslant d$, то есть $S \geqslant \frac{M(M-1)}{2} \cdot d$, где $(\frac{M(M-1)}{2} - \text{количество пар } (i,j))$.

$$\frac{M(M-1)}{2} \cdot d \leqslant S \leqslant n \cdot \frac{M^2}{4}$$
$$(M-1)d \leqslant n \cdot \frac{M}{2}$$
$$dM - \frac{nM}{2} \leqslant d$$
$$M(d - \frac{n}{2}) \leqslant d$$
$$M(2d - n) \leqslant 2d$$

Так как 2d-n — положительное, то можно разделить на него

$$M \leqslant \frac{2d}{2d - n}$$

Так как M – натуральное, получаем:

$$M \leqslant \left[\frac{2d}{2d-n}\right]$$

57 Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x)$. Теорема о равенстве нижних и верхних пределов (формулировка). Неравенство $\lambda_2 \geqslant \lambda_3$.

Постулат Бертрана. $\forall x \geqslant 2 \quad \exists \ \text{простое} \ p: x$ **Асимптотика** $<math>\forall x \quad \exists p: p \in [x; x + O(x^{0,525})]$

Неравенство Чебышёва $\exists a,b \in \mathcal{R}: 0 < a < b$ (на самом деле, близкие к единице) : $\frac{ax}{ln(x)} \leqslant \pi(x) \leqslant \frac{bx}{ln(x)}$

Определение $\pi(x) = \sum_{p \leqslant x} 1$ – количество простых чисел, не превышающих x

Определение $\theta(x) = \sum_{p \leqslant x} ln(p)$

Определение $\psi(x) = \sum_{(p,\alpha):p^{\alpha} \leqslant x} ln(p)$

Теорема о равенстве нижних и верхних пределов (формулировка)

Введем следующие обозначения:

$$\lambda_1 = \overline{\lim_{x \to \infty} \frac{\theta(x)}{x}}$$

$$\lambda_2 = \overline{\lim_{x \to \infty} \frac{\psi(x)}{x}}$$

$$\lambda_3 = \overline{\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)}}$$

 μ_1, μ_2, μ_3 – соответствующие нижние пределы.

Теорема: $\lambda_1 = \lambda_2 = \lambda_3, \mu_1 = \mu_2 = \mu_3$ Неравенство $\lambda_2 \leqslant \lambda_3$

Зафиксируем p и x. Тогда таких α , что $p^{\alpha} < x$, ровно $[log_p x] = [\frac{ln(x)}{ln(p)}]$.

Тогда
$$\psi(x) = \sum_{(p,\alpha):p^{\alpha} \leqslant x} ln(p) = \sum_{p \leqslant x} [\frac{ln(x)}{ln(p)} ln(p) \leqslant \sum_{(p,\alpha):p \leqslant x} ln(x) = ln(x) \sum_{p \leqslant x} 1 = ln(x)\pi(x).$$

$$\frac{\psi(x)}{x} \leqslant \frac{\pi(x)ln(x)}{x} = \frac{\pi(x)}{x/ln(x)}, \text{ r.e. } \lambda_2 \leqslant \lambda_3$$

58 Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x)$. Теорема о равенстве нижних и верхних пределов (формулировка). Неравенство $\lambda_3 \leqslant \lambda_1$.

Зафиксируем некоторое $\gamma \in (0; 1)$.

$$\theta(x) = \sum_{p \leqslant x} ln(p) \geqslant \sum_{x^{\gamma} \sum_{x^{\gamma}$$

Получаем неравенство:

 $\frac{\theta(x)}{x}\geqslant\gamma(\frac{\pi(x)}{x/ln(x)}-\frac{x^{\gamma}}{x}ln(x))$. Перейдя к верхнему пределу, получим, что $\frac{\theta(x)}{x}\geqslant\gamma\frac{\pi(x)}{x/ln(x)}$, т.е. $\lambda_1\geqslant\gamma\lambda_3\forall\gamma\in(0;1)$. Значит, $\lambda_1\geqslant\lambda_3$, и $\lambda_2\geqslant\lambda_1\geqslant\lambda_3$.

59 Порядки(показатели) элементов в системах вычетов. Равенство $ord(g^l) = \frac{ord(g)}{gcd(l,ord(g))}$. Следствие: если есть порядок k, то есть порядки и всех делителей k.

Порядки(показатели) элементов в системах вычетов

Рассмотрим систему вычетов по модулю m.

Определение Пусть gcd(g,m) = 1. Тогда показатель ord(g) = k — минимальное $k > 0, g^k \equiv 1$.

Если $gcd(g,m) \neq 1$, то рассматривать ord(g) бессмысленно, т.к. оно равно ∞ .

Равенство $ord(g^l) = \frac{ord(g)}{gcd(l, ord(g))}$

Обозначим $ord(g^l)$ за s, а ord(g) за k. По определению порядка, s — минимальное натуральное число такое, что $q^{ls} \equiv 1$. Заметим, что т.к. k – минимальное число такое, что $g^k \equiv 1$, то k|ls. Значит, мы ищем минимальное s такое, что k|ls, ведь если это верно, то несложно понять, что тогда s – порядок q^l .

Теперь сформулируем лемму:

Пусть $a,b \in \mathcal{N}, s$ — минимальное натуральное число, такое что, b|as. Тогда $s = \frac{b}{\gcd(a,b)}$.

Доказательство. $\frac{a}{\gcd(a,b)}$ — целое, поэтому $\frac{ab}{\gcd(a,b)}$ \vdots b, то есть $\frac{b}{\gcd(a,b)} \geqslant s$.

Пусть $a' = \frac{a}{gcd(a,b)}, b' = \frac{b}{gcd(a,b)}$). Тогда т.к. b|as, то b'|a's, а в силу того, что gcd(a',b')=1, то $b'|s\Rightarrow s\geqslant b'$. А т.к. $s\leqslant b'$, то s = b'.

Следствие: если есть порядок k, то есть порядки и всех делителей k.

Пусть существует $ord(k) < \infty \pmod{m}$. Тогда gcd(k, m) = 1.

Значит, если a|k, то gcd(a,m)=1. Тогда рассмотрим m чисел: a^1,\ldots,a^{m-1} . Если среди них все различные, тогда среди них есть 1, т.к. остатков от деления на m, отличных от 0, ровно m-1. В противном случае какие-то два различных числа равны, то есть $a^i \equiv a^{i+t} \pmod{m}$, где $t \neq 0$. Тогда $a^i(a^t - 1) \equiv 0 \pmod{m}$, а т.к. $gcd(a^i, m) = 1$, то $a^t \equiv 1$ \pmod{m} .

69 Алгебраические и трансцендентные числа. Существование трансцендентных чисел (из соображения мощности). Теорема Лиувилля (б/д). Конструкция трансцендентного числа с помощью цепной дроби и теоремы Лиувилля. Сводка результатов о трансцендентности: $e, \pi, e + \pi, \pi + e^{\pi}, \alpha^{\beta}$ (теорема Гельфонда), вывод про e^{π} из теоремы Гельфонда.

Определение α - алгебраическое число, если существует многочлен с целыми коэффициентами, корнем которого служит а. Определение Степень алгебраического числа - это минимальная степень уравнения, корнем которого является это число.

А - множество алгебраических чисел.

Заметим, что А - счётное множество (доказывалось на матлогике), но С континуально. Отсюда следует, что есть не алгебраические числа. **Определение** $\alpha \in \mathbb{C}$ - *трансцен* дентное, если оно не является алгебраическим.

Теорема (Лиувилль) Пусть α - алгебраическое степени d. Тогда $\exists c = c(\alpha)$, что неравенство $|\alpha - \frac{p}{q}| \leqslant \frac{c}{q^d}$ имеет лишь конечное число решений в $\frac{p}{q}$. (Если уменьшить c, то вообще не будет решений)

Конструкция трансцендентного числа с помощью цепной дроби и теоремы Лиувилля: **Теорема** $\forall \psi(q) \to +\infty \; \exists \alpha :$ неравенство $|\alpha - \frac{p}{q}| \leqslant \frac{1}{q\psi(q)}$ имеет б.м. решений в $\frac{p}{q}$.

Как пример можно взять $\psi(q) = e^q$. Из предыдущей теоремы возьмём число α . Предположим α - алгебраическое число, тогда $\exists d \in \mathbb{N} : |\alpha - \frac{p}{q}| > \frac{c}{q^d}$ выполняется для $\forall p,q$. Что противоречит предыдущей теореме (неравенство $|\alpha - \frac{p}{q}| \leqslant \frac{1}{q\psi(q)}$ имеет б.м. решений в $\frac{p}{q}$). То есть мы совершенно явно, с помощью аппарата цепных дробей, построили транс-

цендентное число α .

Сведения о некоторых числах: $e, \pi, \pi + e^{\pi}$ являются трансцендентными. Про $e + \pi$ на данный момент ничего неизвестно.

Теорема (Гельфонд) Пусть α, β алгебраические, при этом β иррациональное, а $\alpha \notin$ $\{0,1\}$. Тогда α^{β} трансцендентно.

Утверждение. e^{π} трансцендентно.

\Delta Предположим противное: e^{π} - алгебраическое. Заметим, что i - алгебраическое. Пусть $\alpha=e^{\pi}, \beta=i=\sqrt{-1}\Rightarrow \alpha^{\beta}=e^{i\pi}$, но $\alpha^{\beta}=e^{i\pi}=-1\Rightarrow \alpha^{\beta}$ - алгебраическое. Противоречие с теоремой Гельфонда.

70 Умение: решать уравнения Пелля.

Определение 70.1. Уравнение вида $x^2 - my^2 = 1$, где m – натуральное число, не являющееся точным квадратом, называется уравнением Пелля.

Решение (1,0) называется тривиальным.

Решение (x, y) называется *положительным*, если $x \ge 0$ и $y \ge 0$.

Замечание. Уравнение вида $x^2 - my^2 = 1$ не является уравнением Пелля по этому определению. Однако теория по решению данного уравнения есть во второй теореме и во втором примере.

Замечание. Ввиду симметрии для решения уравнения достаточно найти все положительные решения.

Замечание. Если m является полным квадратом, то, очевидно, у уравнения нет решений, кроме тривиальных.

Замечание. Пара (x,y) в $\mathbb{Z}[\sqrt{m}]$ имеет вид $x+y\sqrt{m}$. Норма числа $a=x+y\sqrt{m}$ в $\mathbb{Z}[\sqrt{m}]$ это $N(a) = a \cdot \overline{a} = (x + y\sqrt{m})(x - y\sqrt{m}) = x^2 - my^2$. Норма обладает свойством: $N(a) \cdot N(b) =$ $N(a \cdot b)$

Утверждение 70.1. Пара (x,y) является решением уравнения Пелля $(x^2 - my^2 = 1)$ тогда и только тогда, когда норма числа $x + y\sqrt{m}$ в $\mathbb{Z}[\sqrt{m}]$ равна единице.

$$N(x+y\sqrt{m})=(x+y\sqrt{m})(x-y\sqrt{m})=x^2-my^2$$

Утверждение 70.2. Пара (x,y) является решением уравнения $x^2 - my^2 = -1$ тогда uтолько тогда, когда норма числа $x + y\sqrt{m}$ в $\mathbb{Z}[\sqrt{m}]$ равна минус единице.

Определение 70.2. $\frac{P_k}{Q_k}=[a_0;a_1,a_2,...,a_k],(k=0,1,...,n)$ называется k-ой подходящей дробью к числу $[a_0;a_1,a_2,...,a_n].$

Теорема 70.1. Если $n-\partial$ лина периода цепной дроби, соответствующей \sqrt{m} , то решениями уравнения Пелля $x^2 - my^2 = 1$ являются в точности подходящие дроби числа \sqrt{m} вида $\frac{P_{kn-1}}{Q_{kn-1}}$, где kn – чётно.

Замечание. Способы находения корней уравнения $x^2 - my^2 = -1$. (У автора конспекта нет уверенности, что данные способы находят все корни уравнения, однако других способов он не знает)

Способ 1) Если n — длина периода цепной дроби, соответствующей \sqrt{m} , то решениями уравнения $x^2-my^2=-1$ являются подходящие дроби числа \sqrt{m} вида $\frac{P_{kn-1}}{Q_{kn-1}}$, где kn —

Способ 2) Находим а - минимальное положительное решение $x^2 - my^2 = 1$, находим b тривиальное (самое простое) решение $x^2 - my^2 = -1$, тогда $\pm (a^p \cdot b^{2k+1})$ будут решениями $x^2 - my^2 = -1$ для $\forall p, k \in \mathbb{Z}$.

Пример 1.

Найдите наименьшее положительное решение уравнения Пелля $x^2 - 6y^2 = 1$.

1) Найдём цепную дробь для $\sqrt{6}$:

$$\sqrt{6} = [2; \overline{2,4}]$$

- 2) Длина периода цепной дроби n=2, значит минимальное k, такое, что kn будет чётным, равно 1. Значит, минимальное решение – подходящие дроби вида $\frac{P_{kn-1}}{Q_{kn-1}} = \frac{P_1}{Q_1}$.

3) $\frac{P_1}{Q_1}=[2;2]=2+\frac{1}{2}=\frac{5}{2}.$ Получается, пара (x,y)=(5,2) является минимальным положительным решением уравнения Пелля.

Пример 2.

Найдите наименьшее положительное решение уравнения $x^2 - 2y^2 = -1$.

1) Найдём цепную дробь для $\sqrt{2}$:

$$\sqrt{2} = [1; \overline{2}]$$

- 2) Длина периода цепной дроби n=1, значит минимальное k, такое, что kn будет нечётным, равно 1. Значит, минимальное решение – подходящие дроби вида $\frac{P_{kn-1}}{Q_{kn-1}} = \frac{P_0}{Q_0}$.
- 3) $\frac{P_0}{Q_0} = [1] = \frac{1}{1}$.

Получается, пара (x,y)=(1,1) является решением уравнения (в данном случае оно является тривиальным).

4) Следующее решение $\frac{P_3}{Q_3} = [1; 2, 2] = \frac{7}{5}$. Получается, пара (x, y) = (7, 5) является решением уравнения.

Теорема 70.2. Пусть $\alpha = a_1 + b_1 \sqrt{m}$ – наименьшее нетривиальное положительное решение уравнения $x^2 - my^2 = 1$, то все решения этого уравнения имеют вид $\pm (\alpha)^k$, $k \in \mathbb{Z}$.

Следствие. В условиях предыдущей теоремы решениями уравнения Пелля будут пары:

$$\pm \left(\frac{(a_1 + b_1 \sqrt{m})^k + (a_1 - b_1 \sqrt{m})^k}{2}, \frac{(a_1 + b_1 \sqrt{m})^k - (a_1 - b_1 \sqrt{m})^k}{2\sqrt{m}} \right), k \in \mathbb{Z}$$

Пример 3.

Найдите все решения уравнения Пелля $x^2 - 6y^2 = 1$.

Из примера 1 мы знаем, что пара (x,y)=(5,2) является минимальным положительным решением уравнения Пелля.

Тогда общее решение имеет вид:

$$\pm \left(\frac{(5 + 2\sqrt{m})^k + (5 - 2\sqrt{m})^k}{2}, \frac{(5 + 2\sqrt{m})^k - (5 - 2\sqrt{m})^k}{2\sqrt{m}} \right), k \in \mathbb{Z}$$

Пример 4.

Решите уравнение $x^2 - 6xy + y^2 = 1$ в целых числах

$$x^2 - 6xy + y^2 = (x - 3y)^2 - 8y^2 = 1$$

Делаем замену z=x-3y, и уравнение сводится к уравнению Пелля $z^2-8y^2=1$

71 Иррациональность числа е.

Теорема 71.1. Число е - иррациональное.

A

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

Предположим противное: e - рациональное $\Rightarrow e = \frac{\dots}{k}$, тогда $e \cdot k! \in \mathbb{Z}$

$$e \cdot k! = A + \frac{1}{k+1} + \frac{1}{(k+1)(k+2)} + \dots,$$

где $A \in \mathbb{Z}$.

$$0 < \frac{1}{k+1} + \frac{1}{(k+1)(k+2)} + \dots < \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots = 1$$

Противоречие. Следовательно, e - иррациональное. \blacksquare

72 Определение решётки и дискретного подмножества. Любая дискретная подгруппа \mathbb{R}^n является решёткой.

Опр Пусть $(e_1, ..., e_k)$ — набор линейно независимых векторов в \mathbb{R}^n . Тогда дискретная абелева группа в \mathbb{R}^n , порождённая $\{e_i\}$, называется решёткой, а набор $(e_1, ..., e_k)$ называется базисом решётки. Иными словами, решётка есть множество $\Lambda = \{a_1e_1 + ... + a_ke_k\}, a_i \in \mathbb{Z}$

Опр Подмножество X пространства \mathbb{R}^n называется дискретным, если для любой точки $x \in X$ существует окрестность этой точки, не содержащая других точек множества X.

Теорема. Любая дискретная подгруппа \mathbb{R}^n является решёткой.

- \blacktriangle 1. Дискретное множество в \mathbb{R}^n является множеством изолированных точек: действительно, рассматриваем произвольную точку, принадлежащую множеству; по определению дискретности, она является изолированной точкой этого множества.
- 2. По определению группы, выполняется ассоциативность, наличие нейтрального элемента и наличие обратного элемента. В нейтральный элемент: это начало координат.
- 3. Мы выбрали начало координат. Возьмём расстояния всех точек до начала координат. Существует inf расстояний, отличный от нуля (так как иначе в любой эпсилон-окрестности начала координат существует точка из нашего множества), $\inf > 0$
- 4. Докажем, что inf достигается. Предположим противное тогда в любой эпсилон окрестности infinum'а существует бесконечное количество точек с радиусом, большим чем он. Но тогда обязательно найдутся две точки, расстояние между которыми меньше inf ⇒ в силу бытия подгруппой мы можем отложить это расстояние от нуля и получить противоречие тому, что мы выбрали inf. Значит, inf достигается.

- 5. Выбираем этот inf и так последовательно формируем базис: получаем базис размера k, получаем линейные подпространства размерности k, находим расстояние между ними, это и есть искомый вектор базиса, получаем базис размерности k+1.
- 6. Этот процесс должен оставиться не позднее, чем n. Почему так? Предположим противное. Тогда \exists точка в фундаментальной области, которая не была получена. Но она же находится в фундаментальной области, граничащей с нулём, в силу того, что это группа \Rightarrow противоречие тому, что мы всегда выбирали минимальные расстояния (мы нашли точку с меньшим расстоянием). Р.S. По сути мы просто пытаемся показать, что мы не можем найти n+1-й линейно независимый вектор в пространстве \mathbb{R}^n .

Доказательство 2:

- 1) В любом компакте содержится лишь конечное число точек из G
- 2) Будем рассматривать линейное пространство, порождённое нашей подгруппой G.
- 3) Выберем базис (в подпространстве) $e_1,...,e_k$ среди элементов нашей группы, и рассмотрим подгруппу $G_0 = Ze_1 + ... + Ze_k \subset G$.
- 4) Так как G дискретная, в G/G_0 содержится конечное количество элементов (по пункту 1), пусть $[G:G_0]=q$.
 - 5) G содержится в $1/qG_0$, и поэтому является решёткой.

73 Двумерная теорема Минковского. Ее уточнение для замкнутых множеств (6/д).

Двумерная теорема Минковского.

Th. Пусть $\Omega \subset \mathbb{R}^2$, Ω органичена и $\mu(\Omega) > 4$, Ω выпукло и симметрично относительно начала координат. Тогда $(\Omega \cap \mathbb{Z}^2) \setminus \{0\} \neq \emptyset$.

Доказательство: Рассмотрим $(\Omega \cap \frac{1}{m}\mathbb{Z}^2)$, $m \in \mathbb{N}$. Пусть $N_m = \left| (\Omega \cap \frac{1}{m}\mathbb{Z}^2) \right|$. Заметим, что с увеличением m суммарная площадь «квадратиков» на узлах решетки будет стремиться к $\mu(\Omega)$ хоть по

Жордану, хоть по Лебегу, то есть $\frac{N_m}{m^2} \to \mu(\Omega) > 4$. Значит $\exists m_0 : \forall m > m_0 \hookrightarrow \frac{N_m}{m^2} > 4 \Longrightarrow N_m > 4m^2 = (2m)^2$.

Рассмотрим две точки такой решетки с координатами $\left(\frac{a_1}{m},\frac{a_2}{m}\right)$ и $\left(\frac{b_1}{m},\frac{b_2}{m}\right)$. По модулю 2m существует ровно 2m вычетов для числителя первой и второй координат. Тогда число различных пар с точки зраения вычетов по модулю 2m ровно $(2m)^2$.

Но $N_m > (2m)^2$, значит существуют две различные точки $a' = \left(\frac{a_1}{m}, \frac{a_2}{m}\right)$ и $b' = \left(\frac{b_1}{m}, \frac{b_2}{m}\right)$ такие, что $a_1 \equiv b_1$ (2m) и $a_2 \equiv b_2$ (2m). Теперь рассмотрм точку $c' = \frac{a'-b'}{2}$, при этом так как $b' \in \Omega$, $-b' \in \Omega$. Так как Ω выпукла, значит и вель отрезок от a' ло b' лежит в Ω , при этои c' тоже в Ω , так как c' — середина отрезка. Но c' имеет целые координаты, при этом она пенулевая, так как $a' \neq b'$.

Уточнение двумерной теоремы Минковского для замкнутых множеств.

Th. Пусть $\Omega \subset \mathbb{R}^2$, Ω органичена и $\mu(\Omega) \geq 4$, Ω замкнуто, выпукло и симметрично относительно начала координат. Тогда $(\Omega \cap \mathbb{Z}^2) \setminus \{0\} \neq \emptyset$.

74 Применение двумерной теоремы Минковского для передоказательства теоремы Дирихле. Теорема Дирихле о совместном диофантовом приближении (б/д)

Теорема Дирихле.

Th. (Дирихле) Пусть $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Тогда \exists бесконечно много рациональных дробей $\frac{p}{q}$ таких, что

Доказательство: Рассмотрим $\Omega = \{(x,y)||x| \le Q, |\alpha x - y| \le Q^{-1}\}$

Тогда $\mu(\Omega)=2Q\cdot\frac{2}{Q}=4$ и Ω выпукло, замкнуто и симметрично. Тогда по теореме Минковского $\exists (q,p) \in (\Omega \cap \mathbb{Z}^2) \setminus \{0\}$. Тогда $0 \le q \le Q$, $|\alpha q - p| \le \frac{1}{Q} \Longrightarrow \left|\alpha - \frac{p}{q}\right| \le \frac{1}{qQ} \le \frac{1}{q^2}$.

А как получить бесконечно много таких дробей? Ну отметим полученную точку (p,q) и выберем $\frac{1}{D}$ так, чтобы прямые были ниже этой точки и повторить рассуждения выше.

Теорема Дирихле о совместном диофантовом приближении.

$$\alpha_1,\ldots,\alpha_n\notin\mathbb{Q}\Rightarrow\exists$$
 бесконечно много различных $(p_1/q,\ldots,p_n/q):|\alpha_i-p_i/q|\leqslant \frac{1}{q^{1+1/n}}$

Критический определитель решётки. Переформулировка тео-75 ремы Минковского через критический определитель. Теорема Минковского-Главки и история ее улучшений (б/д). Многомерный октаэдр, его объём.

Критический определитель $\Omega \subset \mathbb{R}^n$; $\Delta(G)$: $\Delta(G) = \inf\{\det \Lambda : (\Omega \cap \Lambda) \setminus \{0\} = \emptyset\}$

Переформулировка теоремы Минковского через критический определитель. Если Ω - выпукла и центрально симметрична относительно 0, то $\frac{Vol\Omega}{\Delta(\Omega)}\leqslant 2^n$.

Проблема: хочется оценить эту дробь снизу. Но мало ли чего хочется...

Теорема Минковского-Главки, 1945. $\forall \Omega \frac{Vol\Omega}{\Delta(\Omega)} \geqslant 1$ Теорема Шмидта, Роджерса, 50-60-е гг. $\geqslant cn$.

 $O^n = x : |x_1| + ... + |x_n| \le 1$ — n-мерный октаэдр (кросс-политоп, ортаэдр - линейная оболочка векторов (1,0,..0), (0,1,..0), ...

Объём п-мерного октаэдра: $Vol(O^n) = \frac{2^n}{n!}$

76 Равномерно распределенные последовательности (mod 1): три эквивалентные формулировки.

Теорема. Следующие условия (условие равномерной распределённости mod 1) для последовательности $x_1, x_2, \ldots, x_n, \ldots$ эквивалентны:

1)
$$\forall a, b \in [0, 1] \lim_{N \to \infty} \frac{|\{i = 1, \dots, N : \{x_i\} \in [a, b)\}|}{N} = b - a$$

2)
$$\forall \gamma \in [0, 1] \lim_{N \to \infty} \frac{|\{i = 1, \dots, N : \{x_i\} < \gamma\}|}{N} = \gamma$$

3) Отклонение
$$D_N=\sup_{0\leqslant \alpha<\beta\leqslant 1}|\frac{|\{n|n\leqslant N,\alpha\leqslant \{x_n\}<\beta\}|}{N}-(\beta-\alpha)|,\ \lim_{N\to\infty}D_N=0$$

lack

- 1) \Rightarrow 2): a = 0.
- $(2)\Rightarrow 3): D_N=\sup_{0\leqslant \alpha<\beta\leqslant 1}|\frac{|\{n|n\leqslant N,\alpha\leqslant \{x_n\}<\beta\}|}{N}-(\beta-\alpha)|\leqslant \sup_{\beta}|\frac{|\{i=1,\dots,N:\{x_i\}<\beta\}|}{N}-\beta|+\sup_{\alpha}|\frac{|\{i=1,\dots,N:\{x_i\}<\alpha\}|}{N}-\alpha|$ (по неравенству треугольника). Из п. 2) оба слагаемых стремятся к нулю $\Rightarrow\lim_{N\to\infty}D_N=0$
- $3) \Rightarrow 1)$ Условие (3) подразумевает, что если sup по а и b так стремится, то это выполняется для любых a, b, что равносильно, что для любых a, b предел равен b a.

77 Является ли ln n p.p. (mod 1) последовательностью?

Утверждение: ln(n) не является р.р. (mod 1) последовательностью.

▲ Числа, подходящие под условие, имеют вид $e^k, e^{k+1}, \dots e^{k+\gamma}$. Количество таких чисел - $e^{k+\gamma} - e^k = e^k(e^{\gamma} - 1)$ для конкретного k. Просуммируем от 1 до [ln(N)], так как именно столько у нас значений может принимать k (переменная, принимающая значения из множества целых частей от x_n):

$$F(N,\gamma) = \sum_{k=1}^{[ln(N)]} e^k(e^{\gamma} - 1) = (e^{\gamma} - 1) \cdot \frac{e^{[ln(N)]+1}}{e - 1} + O([ln(N)])$$

$$\lim_{n\to\infty}\frac{F(N,\gamma)}{N}=\frac{e^{\gamma}-1}{e-1}\lim_{n\to\infty}\frac{e^{[ln(N)]+1}+O([ln(N)])}{N}=\frac{e^{\gamma}-1}{e-1}\neq\gamma$$

- 78 Определение р.р. (mod 1) последовательности. Вывод интегрального признака из того, что последовательность р.р. (mod 1). Формулировка интегрального признака через комплекснозначную функцию (б/д).
- 79 Определение р.р. (mod 1) последовательности. Вывод р.р. (mod 1) последовательности из интегрального признака. Формулировка интегрального признака через комплекснозначную функцию (б/д).

Послед-ность $x_1, x_2, \ldots, x_n, \ldots$ - равномерно распределена по модулю 1, если:

$$\forall a, b \in [0, 1] \lim_{N \to \infty} \frac{|\{i = 1, \dots, N : \{x_i\} \in [a, b)\}|}{N} = b - a$$

Теорема об интегральном признаке. x_n - p.p. mod $1 \Leftrightarrow \forall$ функции f, определённой и

- непрерывной на $[0;1]\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(\{x_n\})=\int_0^1 f(x)dx.$ Введём индикатор "попадания"в отрезок: $I_{[a;b)}(x)=1$, если $x\in[a;b)$, 0 иначе. Но при этом $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N I_{[a;b)}(\{x_n\})=b-a=\int_0^1 I_{[a;b)}(\{x\})dx$, если x_n равномерно распределена.
- \Rightarrow . 1) Пусть x_n равномерно распределена.
- 2) Разобьём отрезок [0; 1] точками $a_1, a_2, \ldots, a_m; a_0 = 0, a_{m+1} = 1$ на конечное число подотрезков: $[0; a_1) \cup [a_1; a_2) \cup \cdots \cup [a_m; 1)$. Рассмотрим индикатор каждой из частей и эти индикаторы сложим. $\sum_{i=1}^{m+1} c_i I_{[a_{i-1}; a_i]}$ - ступенчатая функция.
- g(x) ступенчатая функция. Тогда учётом \mathbf{c} $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} g(\{x_n\}) = \int_{0}^{1} g(x) dx$. Таким образом, мы доказали для индикатора и для линейной комбинации индикаторов (ступенчатой функции). Тогда мы фиксируем f определённую и непрерывную на [0; 1), фиксируем $\varepsilon > 0$. Тогда $\exists f_1, f_2$ - ступенчатые,
- такие, что $f_1(x) \leqslant f(x) \leqslant f_2(x) \forall x, \int_0^1 (f_2(x) f_1(x)) dx < \varepsilon.$ 4) Отсюда: $\int_0^1 f(x) dx \varepsilon \leqslant \int_0^1 f_2(x) dx \varepsilon \leqslant \int_0^1 f_1(x) dx = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N f_1(\{x_n\}) \leqslant \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N f(\{x_n\}) \leqslant \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N f_2(\{x_n\}) = \int_0^1 f_2(x) dx \leqslant \int_0^1 f_1(x) dx + \varepsilon \leqslant \int_0^1 f(x) dx + \varepsilon$
- 5) Из рассуждения выше нижний и верхний предел лежат между $\int_0^1 f(x) dx \varepsilon$ и $\int_0^1 f(x) dx + \varepsilon$, так как ε - любой, то нижний и верхний пределы равны, значит, существует предел, равный $\int_0^1 f(x)dx$
- \leftarrow Пусть $\forall f$ выполняется условие. Тогда верны рассуждения из пункта 4, только в пункте 4 мы аппроксимировали непрерывную функцию индикаторами, а теперь мы хотим аппроксимировать индикатор непрерывными функциями: $\forall \varepsilon \; \exists g_1, g_2$ - непрерывные: $g_1(x) \leqslant I_{[a;b)} \leqslant g_2(x)$ и $\int_0^1 (g_2(x) - g_1(x)) dx \leqslant \varepsilon$. Далее аналогично.

Формулировка интегрального признака через комплекснозначную функцию. x_n - p.p. mod 1 $\Leftrightarrow \forall$ комплекснозначной функции f, имеющей период 1, $\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(\{x_n\})=\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(x_n)=\int_0^1 f(x)dx$

81Сумма Гаусса

Для начала узнаем, чему равны следующие суммы:

$$\sum_{x=1}^{k} e^{2\pi ix}$$

Она с очевидностью равна k, т.к. $e^{2\pi ix}=1 \ \forall x\in N$

Теперь рассмотрим такую сумму:

$$\sum_{x=1}^{q} e^{2\pi i \frac{ax}{q}}, \text{ где } (a,q) = 1$$

$$\sum_{x=1}^{q} e^{2\pi i \frac{ax}{q}} = e^{2\pi i \frac{a}{q}} * (\frac{e^{2\pi i a} - 1}{e^{\frac{2\pi i a}{q} - 1}}) = 0$$

Таким образом, если а и q взаимнопросты, сумма равна 0, иначе - q

Суммой Гаусса называется сумма вида $S = \sum_{r=1}^{q} e^{2\pi i \frac{ax^2}{q}}$. Посчитаем, чему равен ее

модуль

$$|S|^2 = S * \overline{S} = \sum_{x=1}^q e^{2\pi i \frac{ax^2}{q}} \sum_{y=1}^q e^{-2\pi i \frac{ay^2}{q}}.$$

Заметим, что суть данной суммы - суммирование по окружности через равные промежуточки. Поэтому разницы нет, начнем мы из точки "у"или из какой-то другой, полученной из "у"сдвигом по этой окружности. Результат не изменится. Поэтому давайте заменим по второй сумме "у"на "x + y". Продолжаем равенство:

$$= \sum_{x=1}^{q} e^{2\pi i \frac{ax^2}{q}} \sum_{y=1}^{q} e^{-2\pi i * \frac{ay^2 + 2axy + ax^2}{q}} = \sum_{x=1}^{q} \sum_{y=1}^{q} e^{-2\pi i \frac{ay^2 + 2axy}{q}} = \sum_{y=1}^{q} \sum_{x=1}^{q} e^{-2\pi i \frac{ay^2}{q}} = \sum_{y=1}^{q} e^{-2\pi i \frac{ay^2}{q}} = \sum_{x=1}^{q} e^{-2\pi i \frac{ay^2}{q}} = \sum_{$$

Обозначим
$$b = -2ay$$
; $\sum_{x=1}^{q} e^{-2\pi i \frac{2axy}{q}} = \sum_{x=1}^{q} e^{2\pi i \frac{bx}{q}} (*)$

Рассмотрим, каким может быть q;

- ightharpoonup Пусть q нечетное. Тогда 2a не делится на q, a у делится на q только при y=q. \Longrightarrow (*) = 0 $\forall y \neq q$. При $y=q \longrightarrow (*)=q$; $|S|^2=e^{-2\pi i a q}*q=q$
- ⊳ Пусть q четное. Тогда b делится на q \iff $y=q,\frac{q}{2}$ Рассуждая таким же образом, как в первом пункте, получим, что (*) не обнуляется только при двух значениях у. Тогда посчитаем сумму, учитывая это знание (подставляя в необнулившиеся слагаемые соответствующие у) $|S|^2=1*q+e^{-2\pi i\frac{a}{q}*\frac{q^2}{4}}*q=q+q*e^{\frac{-\pi ia}{2}*q}=\begin{cases} 2q & q\equiv 0(4)\\ 0 & q\equiv 2(4) \end{cases}$

Таким образом:

$$|S| = \begin{cases} \sqrt{q} & q \text{ - нечетное} \\ \sqrt{2q} & q \equiv 0(4) \\ 0 & q \equiv 2(4) \end{cases}$$

82 Асимптотическая оценка $[1,2,\ldots,n]$ снизу. Более грубая оценка, верная для n>7. (б/д)

Лемма: $m! \geqslant \left(\frac{m}{e}\right)^m$

- **▲** 1. База m = 1: $1 \ge \frac{1}{e}$
 - 2. Пусть для m верно. Покажем для m+1. Заметим, что $\left(\frac{m}{m+1}\right)^m$ убывает (так как $\frac{m}{m+1} < 1$) и стремится к e^{-1}

$$(m+1)! = (m+1) \left(\frac{m}{e}\right)^m = (m+1) \left(\frac{m}{m+1}\right)^m \left(\frac{m+1}{e}\right)^m > \frac{m+1}{e} \left(\frac{m+1}{e}\right)^m = \left(\frac{m+1}{e}\right)^{m+1} \blacksquare$$

Утверждение: $\mathrm{HOK}(1,\ldots,n) := [1,\ldots,n] \geqslant e^n$

$$[1,\ldots,n]\geqslant\prod_{p\text{ - IIDOCTOE},p\leqslant n}p$$

Количество простых чисел $\leq n : \pi(n) \sim \frac{n}{\ln n}, p_k \geqslant k$. Тогда

$$[1, \dots, n] \geqslant \left[\frac{n}{\ln n} (1 + o(1))\right]!$$

Так как по лемме $m! \geqslant \left(\frac{m}{e}\right)^m$, получаем

$$[1, \dots, n] \geqslant \left(\frac{n}{e \ln n} (1 + o(1))\right)^{\frac{n}{\ln n} (1 + o(1))} = e^{\ln \left(\frac{n}{e \ln n} (1 + o(1))\right) \frac{n}{\ln n} (1 + o(1))}$$

Распишем большой логарифм из степени

$$\ln\left(\frac{n}{e\ln n}(1+o(1))\right) = \ln n - 1 - \ln\ln n + \ln\left(1+o(1)\right) = \ln n \left(1 - \frac{1}{\ln n} - \frac{\ln\ln n}{\ln n} + \frac{\ln\left(1+o(1)\right)}{\ln n}\right)$$

Функция в последней скобки стремится к 1 при $n \to \infty \Rightarrow$ этот логарифм равен $\ln n(1+o(1))$

Подставив все назад в степень получаем

$$[1, \dots, n] \geqslant e^{n(1+o(1))^2} = e^{n(1+o(1))} \blacksquare$$

Утверждение (б/д): $[1, ..., n] \geqslant 2^n, n > 7$

83 Алгоритм АКS. Определение и неравенства, связывающие числа $p, r, \log_2 n$ (б/д). Определение множеств I, P. Определение группы G, неравенство $|G| > \log_2^2 n$. Утверждения о делителе h(X) многочлена $X^r - 1$ (б/д). Группа \mathcal{G} .

Замечание: Среди простых делителей числа n точно найдется число p с $\operatorname{ord}_r p > 1$ (так как $\operatorname{ord}_r n > \log_2^2 n > 1$).

Неравенство: $p > r > \log_2^2 n$

Определение:

$$I = \{ \left(\frac{n}{p}\right)^i p^j; \ i, j \geqslant 0 \}$$

$$P = \{ \prod_{a=0}^{l} (x+a)^{e_a}; e_a \geqslant 0 \}$$

Рассмотрим в I вычеты по модулю r. Получаем группу G. Обозначим t:=|G|.

Неравенство: $t \geqslant \operatorname{ord}_r n$ (так как в I есть элементы вида n^i , когда $i=j) > \log_2^2 n$ (по построению $r) \Rightarrow |G| > \log_2^2 n$. Так как G - подгруппа в \mathbb{Z}_r^* , то $|G| \leqslant |\mathbb{Z}_r^*| = \varphi(r)$

Утверждение: Пусть h(x) - неприводимый над \mathbb{Z}_p делитель x^r-1 . Тогда $\deg h(x)=\operatorname{ord}_r p>1$

Утверждение: Рассмотрим классы многочленов равные по модулю (h(x), p). Множетсво таких классов эквивалентности образует поле F, а в пересечении с P дает мультипликативную группу $\mathcal{G} \subset F^*$

84 Алгоритм AKS. Верхняя оценка на r (б/д). Обоснование неравенства $p > r > \log_2^2 n$ для подходящего делителя p числа n. Вывод тождества $(X+a)^{n/p} = X^{n/p} + a \pmod{X^r-1,p}$. Определение перестановочности многочлена и числа. Утверждения о свойствах перестановочности.

Обоснование неравенства: Рассматриваем корректность последнего шага. Мы знаем, что $(r,n)=1\Rightarrow (r,p)=1$ (p - делитель n, который мы выбрали в билете 83). Также p>r, в противном случае мы бы останавились на 3 или 4 шаге алгоритма. Тогда $p>r>\varphi(r)\geqslant \operatorname{ord}_r n>\log_2^2 n$ (последнее неравенство следует из построения r).

Тождество: $(x+a)^{n/p} = x^{n/p} + a \pmod{x^r - 1, p}$

$$(x+a)^p = x^p + a \pmod{x^r - 1, p}$$
 при $a = 0 \dots l \pmod{42}$

$$(x+a)^n = x^n + a \pmod{x^r - 1, n}$$
 при $a = 0 \dots l$ (следствие того, что мы прошли шаг 5)

Второе выражение так же выполняется, если мы заменим mod n на mod p, так как p - делитель n (в дальнейшем будем часто переходить к делителям таким образом). Дальше все тождества рассматриваем для $a=0\ldots l$.

Предположим, что $(x+a)^{n/p} \neq x^{n/p} + a \pmod{x^r-1,p}$. Возведем обе части в степень p. Получаем $(x+a)^n \neq (x^{n/p}+a)^p \pmod{x^r-1,p}$. По первому тождеству правая часть распишется как x^n+a . Получили, что $(x+a)^n \neq x^n+a \pmod{x^r-1,p}$ - противоречие со вторым тождеством \Rightarrow тождество верно \blacksquare

Определение: Пусть f(x) - многочлен, m - число. Считаем, что f(x) и m перестановочны, если $(f(x))^m = f(x^m) \pmod{x^r - 1, p}$

Утверждение 1: Если f перестановочно с m и g перестановочно с m, то $f\cdot g$ перестановочно с m

Замечание: $x^{mr} - 1 \vdots x^r - 1$

 \blacktriangle

$$x^{r} - 1 = (x - 1)(1 + x + \dots + x^{r-1})$$

$$x^{mr} - 1 = (x - 1)(1 + x + \dots + x^{r-1} + x^{r+1} + \dots + x^{mr-1}) =$$

$$= (x - 1)(1 \cdot (1 + \dots + x^{r-1}) + x^{r}(1 + \dots + x^{r-1}) + \dots x^{(m-1)r}(1 + \dots + x^{r-1})) =$$

$$= (x - 1)(1 + \dots + x^{r-1})(1 + \dots + x^{(m-1)r}) \vdots x^{r} - 1 \blacksquare$$

Утверждение 2: Если f перестановочно с m и m', то f перестановочно с mm'

$$(f(x))^{mm'} = (f(x^m))^{m'} \pmod{x^r - 1, p}$$

Пусть $y = x^m$. Тогда

$$f(y)^{m'} = f(y^{m'}) \pmod{y^r - 1, p}$$

 $y^{r}-1=x^{mr}-1\Rightarrow y^{r}-1$: $x^{r}-1$ (по замечанию) \Rightarrow тождество верно и по модулю $x^{r}-1$

(перешли к делителю). Получаем

$$(f(x))^{mm'} = f(y^{m'}) = f(x^{mm'}) \pmod{x^r - 1, p}$$

87 Нижняя оценка разброса (уклонения) величиной $\frac{\sqrt{n}}{2}$ с помощью матриц Адамара.

Теорема Если n - порядок матрицы Адамара, то $\exists \mathcal{M}: \forall \chi \hookrightarrow disc(\mathcal{M}, \chi) \geqslant \frac{\sqrt{n}}{2}$, где $\mathcal{M} = \{\mathcal{M}_1, \dots, \mathcal{M}_n\}, \forall i \ \mathcal{M}_i \subset \{1, 2, \dots, n\} = \mathcal{R}$

▲ В данном билете используются понятия, определённые в билетах "Матрицы Адамара" (билет 15) и "Разброс системы подмножеств относительно раскраски" (билет 18).

По определению:

$$disc(\mathcal{M}, \chi) = max | \sum_{j \in \mathcal{M}_i} \chi(j) |$$

Пусть H - матрица Адамара, которая имеет нормальный вид, J - матрица из единиц. Рассмотрим матрицу $\frac{H+J}{2}$, она состоит только из нулей и единиц. Рассмотрим \mathcal{M} , в которой за \mathcal{M}_i обозначим те позиции в i-ой строке, на которых стоят единицы. $\mathcal{M}_i \subset \{1, 2, \cdots, n\}$

Пусть

$$H\begin{pmatrix} v_1 \\ \cdots \\ v_n \end{pmatrix} = \begin{pmatrix} L_1 \\ \cdots \\ L_n \end{pmatrix}, v_i \in \{+1, -1\}$$
$$\begin{pmatrix} \frac{H+J}{2} \end{pmatrix} \begin{pmatrix} v_1 \\ \cdots \\ v_n \end{pmatrix} = \begin{pmatrix} (L_1+\lambda)/2 \\ \cdots \\ (L_n+\lambda)/2 \end{pmatrix}, v_i \in \{+1, -1\}, \lambda = \sum_{i=1}^n v_i$$

Тогда $\forall i$

$$(L_i + \lambda)/2 = (1...10...01...) \begin{pmatrix} v_1 \\ \cdots \\ v_n \end{pmatrix}$$

Будем с помощью v_i -ых задавать раскраску множества \mathcal{R} : $v_i = \chi(i)$. Тогда

$$|(L_i + \lambda)/2| = |\sum_{j \in \mathcal{M}_i} \chi(j)|$$

Следовательно, нам необходимо доказать, что для любого набора v_i (для любой раскраски множества \mathcal{R}), всегда найдётся $(L_i + \lambda)/2$ по модулю не меньшее $\frac{\sqrt{n}}{2}$.

 $H=(\overline{h_1},\ldots,\overline{h_n})$, т.е. $\overline{h_i}$ - i-ый столбец матрицы H. (Важное свойство $(h_i,\overline{h_j})=0,\ \forall i\neq j$)

$$(H\overline{v}, H\overline{v}) = L_1^2 + \ldots + L_n^2$$

$$(H\overline{v}, H\overline{v}) = (\overline{h_1} \cdot v_1 + \ldots + \overline{h_n} \cdot v_n, \overline{h_1} \cdot v_1 + \ldots + \overline{h_n} \cdot v_n) = (\overline{h_1}, \overline{h_1})v_1^2 + \ldots + (\overline{h_n}, \overline{h_n})v_n^2 = n \cdot 1 + \ldots + n \cdot 1 = n^2 \Rightarrow L_1^2 + \ldots + L_n^2 = n^2$$

$$(H+J)\overline{v}=egin{pmatrix} L_1+\lambda \ \cdots \ L_n+\lambda \end{pmatrix}$$
 ,где $\lambda=\sum_{i=1}^n v_i$ - чётное число

$$((H+J)\overline{v}, (H+J)\overline{v}) = (L_1+\lambda)^2 + \ldots + (L_n+\lambda)^2 = L_1^2 + \ldots + L_n^2 + 2\lambda \sum_{i=1}^n L_i + \lambda^2 n = n^2 + 2\lambda \sum_{i=1}^n L_i + \lambda^2 n$$

Используя структуру матрицы H - матрицы Адамара нормального вида, можно сказать, что $\sum_{i=1}^n L_i = \sum_{i=1}^n v_i \sum_{j=1}^n h_{ij} = v_1 \cdot n + v_2 \cdot 0 + \ldots + v_n \cdot 0 = \pm n$, следовательно

$$((H+J)\overline{v},(H+J)\overline{v}) = \lambda^2 n \pm 2\lambda n + n^2 \geqslant n^2$$

(Неравенство доказывается перебором целых значений в окрестности минимума) Так как $((H+J)\overline{v}, (H+J)\overline{v}) = (L_1+\lambda)^2 + \ldots + (L_n+\lambda)^2$, то $\exists k : L_k+\lambda \geqslant \sqrt{n} \Rightarrow \frac{(L_k+\lambda)}{2} \geqslant \frac{\sqrt{n}}{2}$, следовательно, для рассматриваемого \mathcal{M} верно:

$$disc(\mathcal{M}, \chi) = max |\sum_{j \in \mathcal{M}_k} \chi(j)| \ge |\sum_{j \in \mathcal{M}_k} \chi(j)| = \frac{(L_k + \lambda)}{2} \ge \frac{\sqrt{n}}{2}$$

Следовательно, $\exists \mathcal{M} : \forall \chi \hookrightarrow disc(\mathcal{M}, \chi) \geqslant \frac{\sqrt{n}}{2} \blacksquare$

88 Распределение простых чисел в натуральном ряде. Функции $\pi(x), \theta(x), \psi(x)$. Теорема Чебышёва (верхняя оценка)

$$\pi(x) = \sum_{p < =x} 1$$

$$\theta(x) = \sum_{p < =x} \ln(p)$$

$$\psi(x) = \sum_{(p,\alpha): p^{\alpha} < =x} \ln(p)$$

Теорема Чебышева

 $\exists x_0: \forall x \geqslant x_0$ выполнено: $\ln 2 * \frac{x}{lnx} \leqslant \pi(x) \leqslant 4ln2 \frac{x}{lnx}$

lacktriangle Введем $\lambda_1 = \overline{\lim_{x \to \infty} \frac{\theta(x)}{x}}, \ \lambda_2 = \overline{\lim_{x \to \infty} \frac{\psi(x)}{x}}, \ \lambda_3 = \overline{\lim_{x \to \infty} \frac{\pi(x)}{x}}.$ Аналогично определим μ_1, μ_2, μ_3 $\mu_1 = \underline{\lim_{x \to \infty} \frac{\theta(x)}{x}}, \ \mu_2 = \underline{\lim_{x \to \infty} \frac{\psi(x)}{x}}, \ \mu_3 = \underline{\lim_{x \to \infty} \frac{\pi(x)}{\frac{x}{\ln x}}}$

Лемма

$$\begin{array}{l} \lambda_1 = \lambda_2 = \lambda_3, \; \mu_1 = \mu_2 = \mu_3 \\ \blacktriangle \; \lambda_1 \; \leqslant \; \lambda_2 \; \text{- очевидно. Зафиксируем р. } \alpha \; : \; p^\alpha \; \leqslant \; x, [log_p(x)] \; = \; [\frac{ln(x)}{ln(p)}]; \quad \psi(x) \; = \\ \sum_{(p,\alpha):p^\alpha < = x} ln(p) \; = \; \sum_{p \leqslant x} [\frac{ln(x)}{ln(p)}] ln(p) \; \leqslant \; \sum_{p \leqslant x} ln(x) \; = \; ln(x) \sum_{p \leqslant x} 1 \; = \; \pi(x) * ln(x) \implies \frac{\psi(x)}{x} \; \leqslant \\ \frac{\pi(x)ln(x)}{x} = \frac{\pi(x)}{lnx} \Longrightarrow \lambda_2 \leqslant \lambda_3 \end{array}$$

Осталось показать, что $\lambda_1 \geqslant \lambda_3$. $\theta(x) = \sum_{p <=x} ln(p) \geqslant \sum_{x^{\gamma} < p <=x} ln(p)$, $\gamma \in (0,1)$, \sum_{x^{γ} $\frac{\theta(x)}{x}\geqslant\gamma(\frac{\pi(x)}{\frac{x}{1-x}}-\frac{x^{\gamma}}{x}*ln(x))\Longrightarrow\lambda_{1}\geqslant\gamma\lambda_{3}\Longrightarrow\lambda_{1}\geqslant\lambda_{3}$ Для μ_{i} доказывается аналогично, но в конце переходим к нижнему пределу, а не к верхнему

Теперь начинаем доказывать Теорему Чебышева. Рассмотрим $C_{2n}^n < 2^{2n}$; $C_{2n}^n = \frac{(2n)!}{n!n!} \geqslant$ $\prod_{n< p\leqslant 2n}p\Longrightarrow \prod_{n< p\leqslant 2n}p<2^{2n}.$ Прологарифмируем это по натуральному основанию. Получим:

 $\prod_{n=0}^{\infty} ln(p) \stackrel{n. Просуммируем правую и левую части$

выражения по степеням двойки. То есть пробежимся по всем $n=1,2,4,...,2^k$. Получим $\theta(2^{k+1}) < 2^{k+2} \ln 2$

Теперь рассмотрим произвольный х.

Очевидно, что для каждого такого х $\exists ! k : 2^k \leqslant x < 2^{k+1} \Longrightarrow \theta(x) \leqslant \theta(2^{k+1}) < 2^{k+2} ln2 \leqslant$ $4xln2 \Longrightarrow \frac{\theta(x)}{x} \leqslant 4ln2 \Longrightarrow \lambda_1 \leqslant 4ln2 \Longrightarrow \lambda_3 \leqslant 4ln2 \Longrightarrow \pi(x) \leqslant (4ln2 + \varepsilon) \frac{x}{lnx}$

Верхняя оценка доказана!

Распределение простых чисел в натуральном ряде. Функции 89 $\pi(x), \theta(x), \psi(x)$. Теорема Чебышёва (нижняя оценка)

Теперь докажем нижнюю оценку..

Теперь докажем нижного оценку..
$$C_{2n}^n > \frac{2^{2n}}{2n+1}; (C_{2n}^0 + C_{2n}^1 + \dots + C_{2n}^n + \dots + C_{2n}^2 n = 2^{2n}, C_{2n}^n - \text{ самое большое слагаемое})$$

$$C_{2n}^n = \frac{(2n)!}{n!n!} = \prod_{p\leqslant 2n} p^{\left[\frac{2n}{p}\right] + \left[\frac{2n}{p^2}\right] + \dots - 2\left(\left[\frac{n}{p}\right]\right) + \left[\frac{n}{p^2}\right] + \dots}} = \prod_{p\leqslant 2n} p^{\left(\left[\frac{2n}{p}\right] - 2\left[\frac{n}{p}\right]\right) + \left(\left[\frac{2n}{p^2}\right] - 2\left[\frac{n}{p^2}\right]\right) + \dots}}$$

Заметим, что
$$[2x]-2[x]\leqslant 1\Longrightarrow \leqslant \prod_{p\leqslant 2n}p^{[log_p(2n)]}=\prod_{p\leqslant 2n}p^{[\frac{ln(2n)}{ln(p)}]}$$

$$\tfrac{2^{2n}}{2n+1} < \prod_{p\leqslant 2n} p^{\left[\frac{\ln(2n)}{\ln(p)}\right]}$$

Логарифмируем по натруральному основанию. Получаем:
$$2nln(2)-ln(2n+1)<\sum_{p\leqslant 2n}ln(p)*[\frac{ln(2n)}{ln(p)}]=\psi(2n)$$

Как и в предыдущих рассуждениях, берем произвольный х,
$$x \in [2n, 2n+2)$$
 $\psi(x) \geqslant \psi(2n) > 2nln(2) - ln(2n+1) > (x-2)ln(2) - ln(x+1) \Longrightarrow \frac{\psi(x)}{x} > ln(2) - \frac{2ln(2)}{x} - \frac{ln(x+1)}{x}$.

И переходим к нижнему пределу:

$$\mu_2 \geqslant ln(2) \Longrightarrow \mu_3 \geqslant ln(2) \Longrightarrow \pi(x) \geqslant (ln(2) - \varepsilon) \frac{x}{ln(x)}$$

Ура!**■**

90 Постулат Бертрана для n » 0.

Постулат Бертрана

Для любого натурального n > 2 найдётся простое число на интервале (n, 2n).

1. Поскольку $n \gg 0$, можно считать, что n >= 4000 (Для меньших проверяется следующей последовательностью: 2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001 - все простые и для любого n на (n, 2n) найдется простое число (берем максимальное число из ряда, меньшее n, тогда 2p < 2n. При этом n < 2p, т.к. мы формируем ряд так, чтобы следующее за p число было меньше 2p))

2. Докажем следующее утверждение: $\prod_{p \le x} p \le 4^{x-1}$

Будем доказывать по индукции. Заметим, что х можно рассматривать как простое число, потому что если мы берем произвольный х, то очевидно между ближайшим снизу простым числом и х никаких новых множителей не добавится.

- 1 База: x = 2; 2 < 4 -> верно
- 2 В силу того, что x простое, оно нечетно. Тогда пусть x = 2m + 1, тогда $\prod_{p\leqslant 2m+1} p = \prod_{p\leqslant m} p \prod_{m< p\leqslant 2m+1} p <= 4^m*C_{2m+1}^m \leqslant 4^m*2^{2m} = 4^{2m}$
- 3. Положим, $\nu_p(x) = \max\{k: x:p^k\}$, тогда $\nu_p(n!) = \sum_{k=1}^\infty [\frac{n}{p^k}]$, $\nu_p(C_{2n}^n) = \sum_{k=1}^\infty [\frac{2n}{p^k}] 2[\frac{n}{p^k}]$ $[\frac{2n}{p^k}] 2[\frac{n}{p^k}] < 2[\frac{n$
- 4. Еще одно утверждение: Если $\frac{2n}{3} , то <math>\nu_p(C_{2n}^n) = 0$ $3p > 2n \Longrightarrow (3p)! > (2n)!$. В силу того, что 2p < 2n < 3p, в (2n)! на р делятся только множители р и $2p \Longrightarrow \nu_p((2n)!) = 2, \nu_p(n!) = 1 \Longrightarrow \nu_p(C_{2n}^n) = 0$.
- множители р и $2p \Longrightarrow \nu_p((2n)!) = 2, \nu_p(n!) = 1 \Longrightarrow \nu_p(C_{2n}^n) = 0.$ 5. $\frac{4^n}{2n} \leqslant C_{2n}^n \leqslant \prod_{p \leqslant \sqrt{2n}} 2n \prod_{\sqrt{2n} . Рассмотрим последние два произведения.$

Они верны в силу п4, п3(Если $\sqrt{2n} < p$, то $\nu_p(C_{2n}^k) \leqslant 1)$ \Longrightarrow оценка верна

$$4^n \leqslant (2n)^{1+\sqrt{2n}} \prod_{\sqrt{2n}$$

Если мы докажем, что $\Pi_2 \neq 1$, то между n и 2n есть простое число. Будем доказывать от противного. Пусть $\Pi_2 = 1$, тогда $4^n \leqslant (2n)^{1+\sqrt{2n}} \ \Pi_1 \leqslant /\pi.1/(2n)^{1+\sqrt{2n}} 4^{\frac{2n}{3}} \Longrightarrow 4^{\frac{n}{3}} \leqslant (2n)^{1+\sqrt{2n}}$

$$2n = ((2n)^{\frac{1}{6}})^6 \leqslant ([(2n)^{\frac{1}{6}}] + 1)^6$$

Заметим, что а $+1\leqslant 2^a\Longrightarrow 2n\leqslant 2^{[(2n)^{\frac{1}{6}}]6}\leqslant 2^{(2n)^{\frac{1}{6}}6}$

$$4^{n} = 2^{2n} \leqslant 2n^{3(1+\sqrt{2n})} \leqslant (2^{(2n)^{\frac{1}{6}}6})^{3(1+\sqrt{2n})} = 2^{(2n)^{\frac{1}{6}}18(1+\sqrt{2n})}$$

Теперь воспользуемся тем, что $18\leqslant 2\sqrt{2n}\implies 2^{(2n)^{\frac{1}{6}}18(1+\sqrt{2n})}=2^{(2n)^{\frac{1}{6}}(18+18\sqrt{2n})}\leqslant 2^{(2n)^{\frac{1}{6}}(20\sqrt{2n})}=2^{(2n)^{\frac{2}{3}}20}\Longrightarrow 2n<(2n)^{\frac{2}{3}}20\Longrightarrow (2n)^{\frac{1}{3}}<20\Longrightarrow 2n<8000\Longrightarrow n<4000.$ Противоречие \blacksquare

91 Показатели. Первообразные корни. Существование по модулю p.

Лемма: Если порядки чисел x_1, \ldots, x_k взаимно-просты, то порядок $x_1 \cdot \ldots \cdot x_k$ равен произведению порядков.

 \blacktriangle Докажем для двух чиел, для большего числа - по индукции. Пусть $\operatorname{ord}_n a =$ δ_a , ord $_n b = \delta_b$, $(\delta_a, \delta_b) = 1$. Тогда $(ab)^{\delta_a \delta_b} = (a^{\delta_a})^{\delta_b} (b^{\delta_b})^{\delta_a} = 1 \pmod{n}$. Докажем, что $k < \delta_a \delta_b$ не являются порядками. Пусть $(ab)^k = 1 \pmod{n}$. Возведем обе части в степень δ_a : $(a^{\delta_a})^k b^{k\delta_a} = b^{k\delta_a} = 1 \Rightarrow k\delta_a : \delta_b$, $(\delta_a, \delta_b) = 1 \Rightarrow k : \delta_b$. Аналогично показываем, что $k : \delta_a \Rightarrow \operatorname{ord}_n(ab) = \delta_a \delta_b \blacksquare$

Утверждение: Если p нечетное простое число то по модулю p существует первообразный корень.

\Delta Пусть $\delta_1, \ldots, \delta_{p-1}$ - показатели (порядки) чисел $1, \ldots, p-1$ соответственно. Рассмотрим $\tau:=[\delta_1,\dots,\delta_{p-1}]=q_1^{\alpha_1}\cdot\dots\cdot q_k^{\alpha_k}$ - каноническое разложение. $\forall i\in\{1,\dots,k\}\;\exists \delta\in\{\delta_1,\dots,\delta_n\}\;\exists a:\;\delta=aq_i^{\alpha_i},\;(a,q_i)=1\;$ (верно, так как если полная

степень делителя НОКа не входит ни в какое из чисел, то ее не должно быть в НОКе)

Зафиксируем i и найдем соответствующую ему δ . Выберем x такой что δ - его показатель. $1=x^{\delta}=x^{aq_i^{\alpha_i}}=(x^a)^{q_i^{\alpha^i}}\ (\mathrm{mod}\ p)\Rightarrow q_i^{\alpha_i}$ - порядок x^a (меньше не может быть так как иначе δ не был бы порядком x)

Рассмотрим $g=\prod_{i=1}^k x_i^{a_i}$ (по всем i). По лемме порядок g равен $q_1^{\alpha_1}\cdot\ldots\cdot q_k^{\alpha_k}=\tau\Rightarrow \tau\leqslant$ p-1 (так как это порядок).

Рассмотрим сравнение $x^{\tau} \equiv 1 \pmod{p}$. Все числа $1, \dots, p-1$ являются его корнями (так как τ - HOK их порядков) $\Rightarrow \tau \geqslant p-1$ (так как многочлен не может иметь больше корней чем его степень) $\Rightarrow \tau = p - 1 \Rightarrow g$ - первообразный корень. \blacksquare

92 Показатели. Первообразные корни. Существование по модулю $p^{\alpha}, \ \alpha \geqslant 2$: формулировка и доказательство леммы. Существование по модулю $2p^{\alpha}$.

Лемма:
$$\exists t: (g+pt)^{p-1} = 1 + pu, (p,u) = 1$$

$$(g+pt)^{p-1} = g^{p-1} + g^{p-2}(p-1)pt + p^2a = \underbrace{1+pv}_{g^{p-1}} + p(g^{p-2}(p-1)t + pa) = 1 + p(v + \underbrace{g^{p-2}(p-1)}_{\text{взаимно просто с } p} t + pa)$$

Так как t можно выбирать любым, легко можем подобрать его так, чтобы $v+g^{p-2}(p-1)t$ было взаимно просто с p. Тогда $u = v + g^{p-2}(p-1)t + pa$ - искомое

Утверждение 1: По модулю p^{α} , $\alpha > 2$ (p - нечетное простое) существует первообраз-

Утверждение: По модулю $2p^{\alpha}$ (p - нечетное простое) существует первообразный корень.

$$\varphi(2p^{\alpha}) = \varphi(2)\varphi(p^{\alpha}) = \varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1} = p^{\alpha-1}(p-1)$$

Для подсчета $\varphi(p^{\alpha})$ воспользовались тем, что чисел кратных p, которые меньше p^{α} всего $p^{\alpha-1}$.

Пусть g + pt - первообразный корень по модулю p^{α} . Если g + pt - нечетное, то это и есть первообразный корень по модулю $2p^{\alpha}$ (если $a=(g+pt)^{\varphi(2p^{\alpha})}$ нечетное, то a-1 - четное, а значит $a-1 : p^{\alpha} \Leftrightarrow a-1 : 2p^{\alpha}$)

Если q + pt - чётное, то берем $q + pt + p^{\alpha}$

93 Показатели. Первообразные корни. Существование по модулю p^{α} , $\alpha \geqslant 2$: формулировка леммы (б/д) и вывод существования из неё. Существование по модулю $2p^{\alpha}$.

Лемма: $\exists t: (g+pt)^{p-1} = 1 + pu, (p,u) = 1$

Утверждение 1: По модулю $p^{\alpha}, \alpha > 2$ (p - нечетное простое) существует первообразный корень.

\Delta Покажем, что найденный в лемме g+pt - первообразный корень по модулю p^{α} . Пусть δ - показатель q+pt по модулю p^{α} .

$$(g+pt)^{\delta} \equiv 1 \pmod{p^{\alpha}} \Rightarrow (g+pt)^{\delta} \equiv 1 \pmod{p}$$

g - первообразный корень по модулю $p \Rightarrow \delta \vdots (p-1)$. С друой строны δ делит $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1) \Rightarrow \delta = p^k(p-1), k \leqslant a-1$.

$$(g+pt)^{p-1}=1+pu, (p,u)=1$$
 (по лемме)

$$(g+pt)^{p(p-1)} = (1+pu)^p = 1+p^2u+p^3v = 1+p^2(u+pv) = 1+p^2u_1, (u_1,p) = 1$$

 $(u_1, p) = 1 \Rightarrow u_1$ не содержит делителя $p^{\alpha-2}$ (при $\alpha \neq 2$) $\Rightarrow (1 + gt)^{p(p-1)} \not\equiv 1 \pmod{p^{\alpha}}$ Будем повторять такой процесс для получившегося равенства пока не получим

$$(g+pt)^{p^{\alpha-1}(p-1)} = 1 + p^{\alpha}u_{\alpha-1} \equiv 1 \pmod{p^{\alpha}}$$

Следовательно, так как все меньшие δ вида $p^k(p-1)$ не подходят, порядком g+pt является $p^{\alpha-1}(p-1)=\varphi(p^\alpha)\Rightarrow g+pt$ - первообразный корень \blacksquare

Замечание: существование по модулю $2p^{\alpha}$ см. билет 93.

94 Показатели. Первообразные корни. Несуществование по модулю $2^n,\ n>3.$

Замечание: Покажем, что по модулям 2 и 4 первообразные корни существуют.

$$m=2$$
: $\varphi(2)=1,1^1\equiv 1\,(\mathrm{mod}\ 2)\Rightarrow 1$ - первообразный корень

$$m=4$$
: $\varphi(4)=2, 3^2=9\equiv 1\ (\mathrm{mod}\ 4),\ 3^1\not\equiv 1\ (\mathrm{mod}\ 4)\Rightarrow 3$ - первообразный корень

Утверждение: По модулю 2^{α} , $\alpha \geqslant 3$ не существует первообразных корней.

Пусть a=1+2t - нечетное. Покажем, что $a^{(2^{\alpha-2})}\equiv 1\ (\mathrm{mod}\ 2^{\alpha})$

$$(1+2t)^2 = 1+4t+4t^2 = 1+4\underbrace{t(t+1)}_{\text{METHOR}} = 1+8t_1$$

$$(1+2t)^4 = (1+8t_1)^2 = 1+16t_1+64t_1^2 = 1+16t_2$$

 $(1+2t)^{(2^k)} = 1 + 2^{k+2}t_k$

. . .

$$(1+2t)^{(2^{\alpha-2})} = 1 + 2^{\alpha}t_{\alpha-2} \equiv 1 \pmod{2^{\alpha}}$$

Следовательное любое нечетное число (то есть любое число, взаимно простое с 2^{α}) не является первообразным корнем ⇒ первообразных корней по этому модулю нет

95 Показатели. Первообразные корни. Несуществование по модулям, отличным от 2^n , p^{α} , $2p^{\alpha}$.

 $lackвar{\Lambda}$ Пусть $n=p_1^{k_1}\cdot\ldots\cdot p_m^{k_m}.$ $\varphi(n)=\prod_{i=1}^m \varphi(p_i^{k_i})=\prod_{i=1}^m p_i^{k_i-1}(p_i-1).$ Предположим противное: пусть существует g - первообразный корень по модулю n. Из теоремы Эйлера верно

$$\begin{cases} g^{(p_1-1)p_1^{k_1-1}} \equiv 1 \pmod{p_1^{k_1}} \\ \dots \\ g^{(p_m-1)p_m^{k_m-1}} \equiv 1 \pmod{p_m^{k_m}} \end{cases}$$

Очевидно, что $\forall i \ z = \varphi(n)/2 = \frac{\prod_{i=1}^m p_i^{k_i-1}(p_i-1)}{2} \vdots (p_i-1)p_i^{k_i-1}$ (двойку можно забрать из любого множителя относящегося к простому делителю, отличному от i-ого). Тогда верно

$$\begin{cases} g^z \equiv 1 \pmod{p_1^{k_1}} \\ \dots \\ g^z \equiv 1 \pmod{p_m^{k_m}} \end{cases}$$

Пусть $g^z=1+p_1^{k_1}a=1+p_2^{k_2}b \Rightarrow p_1^{k_1}a=p_2^{k_2}b$. В силу взаимной простоты $p_1,p_2\Rightarrow$ $a : p_2^{k_2} \Rightarrow g^z = 1 + p_1^{k_1} p_2^{k_2} a_1$. По индукции будем присоединять все больше множителей и в итоге получим

$$g^z = 1 + p_1^{k_1} \cdot \ldots \cdot p_m^{k_m} t = 1 + nt \equiv 1 \pmod{n}, \ z = \varphi(n)/2 < \varphi(n) \Rightarrow$$

 $\Rightarrow g$ не является первообразным корнем по модулю n

96 Теорема Лиувилля

Пусть $\alpha-$ алгебраическое число степени d >=2. Тогда $\exists c=c(\alpha)$ неравенство $|\alpha - \frac{p}{q}| > \frac{c(\alpha)}{q^d} \forall p, q$

 \blacktriangle БОО можно считать, что q>0, тогда рассмотрим два случая:

- $1. \ |\alpha \frac{p}{a}| \geqslant 1 \Longrightarrow$ подойдет c = 1

2. Считаем, что $|\alpha-\frac{p}{q}|\leqslant 1$ Заметим, что $|\alpha-\frac{p}{q}|\geqslant |\frac{p}{q}|-|\alpha|\Longrightarrow |\frac{p}{q}|\leqslant |\alpha|+1$

Рассмотрим многочлен, корнем которого является α : $a_d x^d + ... + a_0 = \varphi(x)$. Этот многочлен не имеет рациональных корней, так как d - степень α . Из этого следует, что $\varphi(\frac{p}{q}) \neq 0$ $\varphi(\frac{p}{q}) = |a_d(\frac{p}{q})^d + a_{d-1}(\frac{p}{q})^{d-1} + ... + a_0| = |\frac{a_d p^d + a_{d-1} p^{d-1} q + ... + a_0 q^d}{q^d}| \geqslant \frac{1}{q^d}.$

$$\varphi(\frac{p}{q}) = |a_d(\frac{p}{q})^d + a_{d-1}(\frac{p}{q})^{d-1} + \dots + a_0| = \left|\frac{a_d p^d + a_{d-1} p^{d-1} q + \dots + a_0 q^d}{q^d}\right| \geqslant \frac{1}{q^d}.$$

Теперь рассмотрим над полем комплексных чисел

$$\varphi(\frac{p}{q}) = a_d(x - \alpha) \prod_{i=2}^d (x - \alpha_i)$$

$$|\varphi(\frac{p}{q})| = |a_d||\alpha - \frac{p}{q}| \prod_{i=2}^d |\alpha_i - \frac{p}{q}| \leqslant |a_d||\alpha - \frac{p}{q}| \prod_{i=2}^d (|\alpha_i| + |\frac{p}{q}|) \leqslant |a_d||\alpha - \frac{p}{q}| \prod_{i=2}^d (|\alpha_i| + |\alpha| + 1) \Longrightarrow$$

$$|\alpha - \frac{p}{q}| \geqslant \frac{1}{q^d} \frac{1}{|a_d|| \prod\limits_{i=2}^d (|\alpha_i| + |\alpha| + 1)} = \frac{1}{q^d} * c(\alpha) \blacksquare$$

97 Доказательство иррациональности чисила e. Тождество Эрмита

Теорема

е иррационально

$$lack e = \sum_{n=0}^{\inf} \frac{1}{n!}$$
. Предположим, $e = \frac{\dots}{k}$ (т.е что е рационально), тогда $Z \ni e^*k! = A + \frac{1}{k+1} + \frac{1}{(k+1)(k+2)} + \dots$ Рассмотрим $\frac{1}{k+1} + \frac{1}{(k+1)(k+2)} + \dots$ $\frac{1}{k+1} + \frac{1}{(k+1)(k+2)} + \dots < \frac{1}{2} + \frac{1}{4} + \dots = \frac{\frac{1}{2}}{1-\frac{1}{2}} = 1 \Longrightarrow 0 < \frac{1}{k+1} + \frac{1}{(k+1)(k+2)} + \dots < 1 \Longrightarrow \frac{1}{k+1} + \frac{1}{(k+1)(k+2)} + \dots \in Q \Longrightarrow A + \frac{1}{k+1} + \frac{1}{(k+1)(k+2)} + \dots \in Q.$ Противоречие \blacksquare

Тождество Эрмита

Рассмотрим производные многочлена f(x) степени ν .

Рассмотрим $\int_0^x f(t)e^{-t}dt$. Будем брать его по частям. $\int_0^x f(t)e^{-t}dt = -f(t)e^{-t}|_0^x + \int_0^x f'(t)e^{-t}dt = f(0) - f(x)e^{-x} + \int_0^x f'(t)e^{-t}dt = f(0) + f'(0) - (f(0) + f'(0))e^{-x} + \int_0^x f''(t)e^{-t}dt$. Заметим, что когда мы продифференциируем больше ν раз, интеграл обратится в ноль. Таким образом, получим: $\int_0^x f(t)e^{-t}dt = (f(0) + f'(0) + \dots + f^{(\nu)}(0)) - (f(x) + f'(x) + \dots + f^{(\nu)}(x)) = f(x)e^{-t}dt$ $f^{(\nu)}(x)e^{-x}=F(0)-F(x)e^{-x}$, где $F(x)=f(x)+f'(x)+...+f^{(\nu)}(x)$. То равенство, которое мы получили, называется тождством Эрмита

98 Доказательство трансцендентности числа $\it e$

Предположим, е - алгебраическое число, тогда существует многочлен $a_m x^m + ... + a_0, a_i \in$ Z, корнем которого является е.

$$e^{x} \int_{0}^{x} f(t)e^{-t}dt = e^{x}F(0) - F(x), x = 0,1,2,...,m$$

$$\sum_{x=0}^{m}a_{x}e^{x}\int_{0}^{x}f(t)e^{-t}dt=-\sum_{x=0}^{m}a_{x}F(x).$$
 ($\sum_{x=0}^{m}e^{x}a_{x}F(0)=F(0)(a_{m}e^{m}+...+a_{0}e^{0}=0)$) Воспользуемся тем, что в тождестве Эрмита мы можем использовать абсолютно любой многочлен. Давайте возьмем такой:

$$f(t) = \frac{1}{(n-1)!}t^{n-1}((t-1)(t-2)(t-3)...(t-m))^n$$

Рассмотрим левую часть равенства.
$$|\sum_{x=0}^m a_x e^x \int_0^x f(t) e^{-t} dt| \leqslant \sum_{x=0}^m |a_x| e^x \int_0^x |f(t)| e^{-t} dt \leqslant \sum_{x=0}^m |a_x| e^m \int_0^x \left| \frac{m^{mn+n-1}}{(n-1)!} \right| e^{-t} dt = \frac{e^m m^{n(m+1)-1}}{(n-1)!} \sum_{x=0}^m |a_x| \int_0^x e^{-t} = \frac{e^m m^{n(m+1)-1}}{(n-1)!} \sum_{x=0}^m |a_x| (1-e^{-x}) < \frac{e^m m^{n(m+1)-1}}{(n-1)!} \sum_{x=0}^m |a_x| = c_0 \frac{(m^{m+1})^n}{(n-1)!} < 1, n \geqslant n_0$$

Рассмотрим правую часть равенства

$$|-\sum_{x=0}^{m}a_xF(x)|$$

$$F(x) = f(x) + f'(x) + \dots + f^{(\nu)}(x), \nu = n(m+1) - 1$$

F(0) = 0 + 0 + ... + 0((n-1) раз. Покуда мы не возьмем n-1 производную, многочлен f(t) будет зануляться за счет множителя t^{n-1}) + $(-1)^{mn}(m!)^n + n * A$ (слагаемое после нулей получается за счет того, что мы избавились от $\frac{t^{n-1}}{(n-1)!}$, а следующее - за счет того, что мы берем производную и по второму множителю $((t-1)(t-2)(t-3)...(t-m))^n$, за счет чего возникает делимость на n)

Теперь рассмотрим F(x)

 $\forall x=1,2..m$ $f(x)+f'(x)+...+f^{(\nu)}(x)$ имеет первые п нулей по той же причине (пока мы не возьмем п производных, множитель $((t-1)(t-2)(t-3)...(t-m))^n$ будет обнулять функцию. А после производные будут делиться на п). Таким образом, $|-\sum_{x=0}^m a_x F(x)| = |\sum_{x=0}^m a_x F(x)| = |(-1)^{mn}(m!)^n * a_0 + nA + nB|, \exists n: n > |a_0|, n > n_0, (n, m!) = 1 \Longrightarrow |(-1)^{mn}(m!)^n * a_0 + nA + nB| \neq 0 \Longrightarrow |(-1)^{mn}(m!)^n * a_0 + nA + nB| \geqslant 1$

Таким образом, $\exists n: \forall N \geqslant n:$ Правая часть $\geqslant 1$, левая часть $<1 \Longrightarrow$ равенство не может быть достигнуто. Противоречие $\Longrightarrow e-$ трансцендентно

100 Доказательство теоремы Минковского-Главки для октаэдра: переформулировка условия теоремы через Λ_a и неравенства на р и п. Сведение теоремы к неравенству

Теорема Минковского-Главки: $\frac{Vol\Omega}{\Delta(\Omega)} \geqslant 1$, где Ω - произвольное тело; мы работаем с ней для октаэдра, но не на классе BCEX решёток (в критическом определителе у нас inf по всем решёткам), а переформулируем:

 $\forall \varepsilon > 0 \exists n_0 \forall n \geqslant n_0 \exists \Lambda \subset \mathbb{R}^n : \Lambda \cap \Omega \setminus \{0\} = \emptyset, \text{ a det } \Lambda \leqslant (Vol\Omega)(1+\varepsilon)$

Рассмотрим $\overline{a}=(a_1/p,a_2/p,\ldots,a_n/p),$ р - простое число, $a_i\in\mathbb{Z}$. Берём $<\mathbb{Z}^n,\overline{a}>=\{\overline{a}l+\overline{b}:l\in\mathbb{Z},\overline{b}\in\mathbb{Z}^n\}.$ Тогда $\Lambda_{\overline{a}}=<\mathbb{Z}^n,\overline{a}>$ - это вот эта решётка. Б.о.о. $1\leqslant a_i\leqslant p-1.$

Утверждение: $\det \Lambda_{\overline{a}} = \frac{1}{n}$

Переформулировка условия теоремы Минковского-Главки $\forall \varepsilon > 0 \exists n_0 \forall n \geqslant n_0 \exists \Lambda_{\overline{a}} \subset \mathbb{R}^n : \Lambda_{\overline{a}} \cap O^n \backslash \{0\} = \varnothing \ (\Lambda_{\overline{a}} \ \text{допустима относительно} \ O^n, \ \text{a} \ \det \Lambda_{\overline{a}} = \frac{1}{p} \leqslant (VolO^n)(1+\varepsilon) = \frac{2^n}{n!}(1+\varepsilon), \ \text{что, по сути}, \ p \geqslant \frac{n!}{2^n}(1-\varepsilon)$

```
Buner 100 (upodonmenue)
    Хотим найти, скольки роск Ла (в зыв-ти от а) попадал в оштаздр.
         IN = U O, | -3
Benomora: en evan \varphi-un: S(\bar{x}) = \frac{1}{1} e \alpha n \bar{x} \in \mathbb{Z}^n (un dun a solo)

\frac{p}{2} \sum_{k=1}^n S(\bar{q}(k+\bar{x})) = \frac{1}{1} \sum_{k=1}^n
 N= = fal+B.leZ, BeZ">
                                                 Bozonier epidem jua remme 1/ a 10" 12021 no ben anocostan
                      Purcupyen 800. min. aprocrae p. p 3 N! (1-E)
                                                                                                                                                                            Mpu n ≥ No p ≤ n! (1- €)
          p entpara, Benurung. Enspara, y epronosea no bean 150; 5p-1:

1. 2 ... 2 | Na 10 0 109 | 21.

p" a;=1 an=1 => odno "s stax charaeaux <1
```

101 Теорема Минковского-Главки для октаэдра (формулировка). Доказательство неравенства.

103 Алгоритм АКS. Верхняя оценка на r: вывод из утверждения о нижней оценке $[1, 2, \dots, n]$.

Лемма: $r \leq \max\{3, \lceil \log_2^5 n \rceil\}$

▲ Пусть $n\geqslant 3\Rightarrow B=\lceil\log_2^5 n\rceil\geqslant 10>7\Rightarrow$ можем применять оценку на $[1,\dots,B]$ из билета 80, то есть $[1,\dots,B]\geqslant 2^B$

Рассмотрим

$$S = n^{[\log_2 B]} \prod_{i=1}^{[\log_2^2 n]} (n^i - 1)$$

Возьмем минимальное r, такое что r не делит $S \Rightarrow n^i \not\equiv 1 \pmod{r}$ $i = 1, \dots, [\log_2^2 n] \Rightarrow$ если (r,n) = 1, то $\operatorname{ord}_r n > \log_2^2 n$.

Осталось доказать, что (r,n) = 1 и $r \leq B$. Воспользуемся тем, что $n^i - 1 < n^i$ и просуммируем степени по арифметической прогрессии.

$$S < n^{[\log_2 B]} \cdot n^{\frac{\left[\log_2^2 n\right] \left(\left[\log_2^2 n\right] + 1\right)}{2}} \leqslant n^{\log_2^4 n} = 2^{\log_2^5 n} \leqslant 2^B$$

Во втором неравенстве мы прибавили $\frac{\log_2^4 n}{2}$ и отняли $[\log_2 B] = [\log_2 \log_2^5 n]$. Очевидно, что второе является двойным логарифмом и оно меньше первого.

Предположим, что r>B. Тогда по определению r S делится на все числа меньшие r, то есть $S\geqslant [1,\ldots,B]\geqslant 2^B$ - противоречие $\Rightarrow r\leqslant B$

Пусть $r = p_1^{k_1} \cdot \ldots \cdot p_s^{k_s} \Rightarrow k_i \leqslant \log_2 B$, так как $r \leqslant B$. Предположим, что $\forall i \ n \ \vdots \ p_i$. Тогда $\forall i \ n^{[\log_2 B]} \ \vdots \ p_i^{[\log_2 B]} \ \vdots \ p_i^{k_i}$ (так как $k_i \leqslant \log_2 B$) $\Rightarrow n^{[\log_2 B]} \ \vdots \ r$ - противоречие, так как тогда $S \ \vdots \ r$. Следовательно, $\exists p_i \nmid n$. Перенумеруем p так что p_1, \ldots, p_t не делят $n, \ p_{t+1}, \ldots, p_s$ делят n. Тогда $p_1^{k_1} \cdot \ldots \cdot p_t^{k_t} \nmid \prod_{i=1}^{\lfloor \log_2 n \rfloor} (n^i - 1)$, так как иначе r делит S.

Рассмотрим

$$\frac{r}{(r,n)} = \underbrace{p_1^{k_1} \cdot \dots \cdot p_t^{k_t}}_{\text{не делит } S} \cdot \underbrace{p_{t+1}^{k'_{t+1}} \cdot \dots \cdot p_s^{k'_s}}_{\text{делит } S} \Rightarrow \frac{r}{(r,n)} \nmid S$$

Из того, что r выбиралось минимальным следует, что (r,n)=1. Следовательно $\operatorname{ord}_r n>\log_2^2 n$ и все доказано \blacksquare

104 Алгоритм АКS. Определение и неравенства, связывающие параметры $p, r, \log_2 n, t$, группы G, \mathcal{G} , многочлена h(x) (б/д). Неравенство $|\mathcal{G}| > C_{t+l}^{t-1}$.

Неравенства: $p>r>\log_2^2 n,\, \varphi(r)\geqslant |G|=t>\log_2^2 n,\, \deg h(x)>\operatorname{ord}_r p>1$

Утверждение (б/д): У многочлена степени k над любым полем $\leqslant k$ корней в поле. Лемма 1: $|\mathcal{G}| \geqslant C_{t+1}^{t-1}$

▲ Докажем, что если f(x), g(x) - многочлены из P (см. билет 83) степени $\leqslant t-1$, то они не совпадают в \mathcal{G} . Пусть $m \in G$

$$f(x^m) = (f(x))^m \pmod{x^r - 1, p}$$

$$f(x^m) = (f(x))^m \pmod{h(x), p}$$
 (перешли к делителю)

$$g(x^m) = (g(x))^m \pmod{h(x), p}$$

Предположим $f = g \pmod{h(x), p}$. Тогда $f(x^m) = g(x^m) \pmod{h(x), p}$. Рассмотрим многочлен f - g. $\deg(f - g) \leqslant t - 1$, а количество корней равно |G| = t (так как подходят все x^m) - противоречие $\Rightarrow f$ и g различны в \mathcal{G}

Рассмотрим в множестве P многочлены $x, x+1, \ldots, x+l$ - не равны по модулю h(x), так как $\deg h(x)>1$. Покажем, что они не совпадают и по модулю p. Так как $\log_2^2 n\leqslant r\Rightarrow \log_2 n\leqslant \sqrt{r}$

$$l = \sqrt{\varphi(r)} \log_2 n < \sqrt{r} \log_2 n \leqslant r \leqslant p$$

Найдем количество многочленов из P степени $\leq t-1$ (они все точно различные в $\mathcal G$ по доказанному выше). Выбираем из нашего списка многочленов степени 1 t-1 штуку с повторениями. Получаем

$$\overline{C}_{l+1}^{t-1} = C_{t+l}^{t-1}$$

Так как все эти многочлены лежат в $\mathcal{G} \Rightarrow |\mathcal{G}| \geqslant C_{t+l}^{t-1} \blacksquare$

105 Алгоритм AKS. Определение и неравенства, связывающие $p, r, \log_2 n, t$, группы G, \mathcal{G} , многочлена h(x) (б/д). Неравенство $|\mathcal{G}| \leq n^{\sqrt{t}}$ при $n \neq p^k$.

Неравенства: $p>r>\log_2^2 n,\ \varphi(r)\geqslant |G|=t>\log_2^2 n,\ \deg h(x)>\mathrm{ord}_r\ p>1$ Лемма 2: $|\mathcal{G}|\leqslant n^{\sqrt{t}}$ при $n\neq p^k$

▲ Рассмотрим в множестве I все элементы с $0 \le i, j \le [\sqrt{t}]$. Всего таких чисел $([\sqrt{t}] + 1)^2 > t$ чисел \Rightarrow среди них $\exists m_1, m_2 \ (m_1 > m_2)$, такие что $m_1 \equiv m_2 \ (\text{mod } r)$ (так как в группе G всего t различных элементов). Тогда

$$x^{m_1} = x^{m_2} \pmod{x^r - 1, p}$$
, так как $(x^{m_1 - m_2} - 1)x^{m_2} \vdots x^r - 1$ (см. замечание в билете 84)

Рассмотрим произвольное $f \in \mathcal{G}$. По построению \mathcal{G} он перестановочен с m_1 и m_2 . Следовательно, так как $h(x) \mid x^r - 1$

$$(f(x))^{m_1} = f(x^{m_1}) = f(x^{m_2}) = (f(x))^{m_2} \pmod{h(x), p}$$

Уравнение $(f(x))^{m_1} = (f(x))^{m_2}$ имеет $\leq \max\{m_1, m_2\} = m_1$ корней (уравнение относительно f(x)). Так как это выполнено для любого $f \in \mathcal{G}$, то $|\mathcal{G}| \leq m_1$.

По построению
$$m_1 = \left(\frac{n}{p}\right)^i \cdot p^j, \ 0 \leqslant i, j \leqslant [\sqrt{t}] \Rightarrow |\mathcal{G}| \leqslant m_1 \leqslant n^{\sqrt{t}} \blacksquare$$

106 Алгоритм AKS. Определение и неравенства, связывающие $p,r,\log_2 n,t,$ группы $G,\mathcal{G},$ многочлена h(x) (б/д). Неравенство $C_{t+l}^{t-1}>n^{\sqrt{t}}.$

Неравенства: $p > r > \log_2^2 n, \ \varphi(r) \geqslant |G| = t > \log_2^2 n, \ \deg h(x) > \operatorname{ord}_r p > 1$ Утверждение 1:

- 1. Если a>b, то $C_a^k>C_b^k$ $\forall k$
- 2. Если $\frac{n}{2} > a > b$, то $C_n^a > C_n^b$

\Delta 1. В переходе с неравенством добавляем b-a < 0 к каждому множителю

$$C_a^k = \frac{a!}{k! (a-k)!} = \frac{(a-k+1) \cdot \dots \cdot a}{k!} > \frac{(b-k+1) \cdot \dots \cdot b}{k!} = \frac{b!}{k! (b-k)!} = C_b^k$$

2. В переходе с неравенством добавляем a-b>0 к каждому множителю

$$C_n^a = \frac{n!}{a! (n-a)!} = \frac{n!}{a! b! (b+1) \cdot \dots \cdot (n-a)} > \frac{n!}{a! b! (a+1) \cdot \dots \cdot (n-b)} = \frac{n!}{b! (n-b)!}$$

Утверждение 2: $C_{2x+1}^x \geqslant 2^{x+1}$

- **Δ** 1. База: x=2 (при x=1 неверно, но нам важно на больших) $C_5^2=10\geqslant 2^3=8$
 - 2. Переход: пусть верно для x. Докажем для x + 1

$$C_{2x+3}^{x+1} = \frac{(2x+3)!}{(x+1)!(x+2)!} = \frac{(2x+1)!(2x+2)(2x+3)}{(x+1)!x!(x+1)(x+2)} = C_{2x+1}^x \cdot \frac{(2x+2)(2x+3)}{(x+1)(x+2)} =$$

$$= 2C_{2x+1}^x \frac{2x+3}{x+2} > 2C_{2x+1}^x \geqslant 2^{x+2} \blacksquare$$

Лемма 3: $C_{t+l}^{t-1} > n^{\sqrt{t}}$

lack Так как $t>\log_2^2 n \Rightarrow t>\sqrt{t}\log_2 n \Rightarrow t\geqslant [\sqrt{t}\log_2 n]+1.$ $l=\sqrt{\varphi(r)}\log_2 n\geqslant \sqrt{t}\log_2 n.$

$$C_{t+l}^{t-1} \geqslant C_{[\sqrt{t}\log_2 n]+1+l}^{[\sqrt{t}\log_2 n]} \geqslant C_{2[\sqrt{t}\log_2 n]+1}^{[\sqrt{t}\log_2 n]} \geqslant 2^{[\sqrt{t}\log_2 n]+1} > 2^{\sqrt{t}\log_2 n} = n^{\sqrt{t}} \blacksquare$$

Так как верны все леммы 1-3 из билетов 104-106, то $n=p^k$, но если k>1, то мы бы остановились еще на шаге 1 нашего алгоритма $\Rightarrow n=p\Rightarrow$ последний шаг алгоритма корректен