深度強化式學習 Ch1 Deep Reinforcement Learning

Alexander Zai, Brandon Brown

Outline

- 1-1 深度強化式學習中的『深度』
- 1-2 強化式學習
- 1-3 動態規劃 vs. 蒙地卡羅法
- 1-4 強化式學習架構
- 1-5 強化式學習有甚麼應用
- 1-6 為什麼要使用『深度』強化式學習
- 1-7 有用的說明工具-線圖(String diagram)

Deep Reinforcement Learning

深度強化式學習 Deep Reinforcement Learning

- 參數式模型 (Parametric Model)
 - ✔ 圖片分類器 Imagine Classifier

✓ 迴歸 Regression

● 參數式模型的參數 (Parameters)

- 深度學習模型具有層的概念
- 複合性(Compositionality): 高層複雜的訊息是由簡單的訊息所組成
 - 完整的句子(S)
 - 主詞名詞 (N)
 - 動詞片語 (VP)
 - 動詞 (V)
 - 名詞短語 (NP)
 - 定冠詞 (D)
 - 名詞 (N)

• 圖片分類

控制任務 (Control Tasks)

● 深度強化式學習的組成

● 處理自然語言時的資料分布

不同詞性的單字相距較遠

相同詞性的單字在同一群

強化式學習只需知道

● 最終目標

● 避免做的事情

回饋機制

正回饋值

負回饋值

1-3 動態規劃 vs. 蒙地卡羅法

- 動態規劃 Dynamic Programming
 - → 目標分解 Goal Decomposition

1-3 動態規劃 vs. 蒙地卡羅法

- 蒙地卡羅法Monte Carlo Methods
 - → 試誤學習 Trial and Error

1-4 強化式學習架構

● 將目標整合為損失函數 (Loss Function)

環境(environment)

1-4 強化式學習架構

● 環境是**動態序列**,依時間切割成一個個的**狀態(State)**

1-4 強化式學習與監督式學習

● 兩者之間的差異

強化式學習

- 1. 動作(Action)
- 2. 環境(Environment)
- 3. 回饋值(Reward)

監督式學習

- 1. 資料量大
- 2. 需要Label

動作Action \rightarrow 伺服器溫度降低,電費微幅提高 \rightarrow \rightarrow +10

1-4 代理人 (Agent)

● 代理人即是演算法

1-4 代理人 (Agent)

● 以深度學習演算法作為代理人

Python OpenAPI

- 不需自己重建新環境
- 利用『gym函示庫』來練習

程式碼

!pip install gym[box2d] import gym env = gym.make('CarRacing-v2')

1-5 通用人工智慧(AGI)

Artificial General Intelligence, AGI

- AGI 是人工智慧研究的終極目標
 - o 不受監督
 - o 技能可跨領域

強化式學習最有可能實現AGI

DeepMind DQN演算法可以應付多種遊戲目標是得分最大化

Rule-based演算法 只在單一遊戲表現良好

1-6 為何要使用『深度』強化式學習

- 強化式學習只可以應付單純的環境
- 井字遊戲
 - 使用記憶表(memory table)

- 深度強化式學習才能應付複雜的環境
- 打方塊遊戲
 - o 定義特徵(features)
 - ex. 球、橫桿、剩餘方塊的座標

Game play lookup table

圈叉位置只有固定幾個

為代理人的強化式學習

006 5

State s_{t+2}

1-7 線圖 (String diagram)

- 視覺化的溝通工具
 - o 表達資料在不同處理程序之間的流動

