

Fonctionnalités avancées

-Nicolas Ribot - Licence GNU FDL - Version 1.0

magelium

Fonctionnalités avancées

- Requêtes spatiales avancées
- Utilisation avancée des index spatiaux
- Outils topologiques complexes (ST_RELATE)
- Validation et nettoyage topologique des données géographiques
- Schémas, héritage
- Bases de programmation en Pl/PgSQL
- Comprendre le plan d'une requête SQL avec PostgreSQL
- Analyse des performances des requêtes SQL
- Configuration de PostgreSQL : fichier postgresql.conf
- Optimisation de requêtes spatiales
- Optimisation du stockage physique

Requêtes spatiales avancées, index spatiaux

- Trouver tous les objets situés à une certaine distance d'un point. (st_distance)
- Refaire la même requête en utilisant l'index spatial et un filtre spatial
- Comparer les temps de résultats
- ◆cf. TP avancé 1.

magellium

Requêtes spatiales avancées

- Lister toutes les points formant tous les polygones des communes de France:
- st_numInteriorRing, st_geometryN, generate_series, ...
- cf. TP avancé 1

Requêtes spatiales avancées

- Reconstruire les départements de France a partir des limites administratives.
- st_buildArea vs st_polygonize
- cf. TP avancé 1

ST_Relate

Matrice d'intersection (DE-9IM) Dimensionally-extended, 9 intersection matrix

	Interior	Boundary	Exterior
Interior	$dim(I(a) \cap I(b))$	$dim(\ \emph{\textbf{I}}(a) \cap \emph{\textbf{B}}(b)\)$	$dim(\ \emph{\textbf{I}}(a) \cap \emph{\textbf{E}}(b)\)$
Boundary	$dim(\ m{B}(a) \cap m{I}(b)\)$	$dim(\ m{B}(a) \cap m{B}(b)\)$	$dim(\ m{B}(a) \cap m{E}(b)\)$
Exterior	$dim(\ \textbf{\textit{E}}(a) \cap \textbf{\textit{I}}(b)\)$	$dim({\it E}(a) \cap {\it B}(b))$	$dim(\ {\it E}(a) \cap {\it E}(b)\)$

Where:

 $T == \{0,1,2\}$

F == empty set

* == don't care

0 == dimensional 0 - point

1 == dimensional 1 - line

2 == dimensional 2 - area

Relations spatiales et mesures: st_relate

Interior	2	1	2
Boundary	1	0	1
Exterior	2	1	2

ST_Relate(a, b) = '212101212'

Relations spatiales : st_relate

Exemple: Trouver tous les pontons inclus dans le lac, ne touchant

pas les berges

Quels prédicats utiliser ? ST_Within? ST_Contains? ST Touches?

```
SELECT a.id
FROM docks a, lakes b
WHERE a.geom && b.geom
AND ST_Relate(a.geom, b.geom, 'TFFTFF212');
```