A General Approach to Define Binders using Matching Logic

Xiaohong Chen and Grigore Rosu {xc3,grosu}@illinois.edu

University of Illinois at Urbana-Champaign August 2020

Motivation: K and Matching Logic

- The K formal language semantic framework (http://kframework.org)
 - K is a language to define the formal semantics of any programming languages.
 - Language tools (parsers, interpreters, verifiers, etc.) are generated automatically by K.
 - K has been used to define the formal semantics of many real-world languages.
 - K allows users to define binders easily.

K definitions = Matching logic theories

K Framework

Matching Logic is Expressive

- Many logical systems have been defined as matching logic theories.
 - FOL
 - Separation logic
 - Hoare logic
 - Temporal logics
 - Modal μ -calculus
 - ..
- new This paper studies logical systems where binders play a major role.
 - *λ*-calculus
 - π -calculus
 - Type systems
 - ..

Main Contribution

- 1. We propose a simple variant of matching logic that is more suitable to capture binders (Sections 3-4).
- 2. We define λ -calculus as a matching logic theory Γ^{λ} (Section 6).
 - **Key observation**: $\lambda x. e$ does two things: create the binding and build the term.
 - $[x: Var] e \equiv \text{intension } \exists x: Var. \langle x, e \rangle$, which captures the graph of the function $x \mapsto e$ and thus captures the binding;
 - $\lambda x.e \equiv \text{lambda} [x:Var] e$, which builds the term.
- 3. We prove the correctness of Γ^{λ} in terms of the following theorems:
 - a. (Conservative Extension, pp. 20, Theorem 36). $\vdash_{\lambda} e_1 = e_2$ iff $\Gamma^{\lambda} \vdash e_1 = e_2$
 - b. (Deductive Completeness, pp. 20, Theorem 36). $\Gamma^{\lambda} \models e_1 = e_2$ iff $\Gamma^{\lambda} \vdash e_1 = e_2$
 - c. (Representative Completeness, pp. 22, Section 8.2.2). For any λ -theory T, there is a matching logic model $M_T \models \Gamma^{\lambda}$ such that $T \vdash_{\lambda} e_1 = e_2$ iff $M_T \models e_1 = e_2$.
 - d. (Capturing All Models, pp. 19, Lemma 32). For any λ -calculus (concrete ccc) model A, there is a matching logic model $M_A \models \Gamma^{\lambda}$ such that $A \models_{\lambda} e_1 = e_2$ iff $M_T \models e_1 = e_2$.
- 4. We generalize it to other systems with binders such as System F, pure type systems, ... (Section 9).

Overview of the Talk

• A high-level overview of matching logic: Syntax and semantics.

• An example: The encoding of $\lambda x.e$ in matching logic.

Generalization to other binders (see Section 9).

Matching Logic

A very simple and minimal logic, serving as the foundation of K:

only 7 constructs

patterns
$$\varphi := x \mid X \mid \sigma \mid \varphi_1 \varphi_2 \mid \bot \mid \varphi_1 \rightarrow \varphi_2 \mid \exists x. \varphi$$

element variables (ranging over individual elements)

set variables (ranging over sets)

(set) symbols (built-in) application

propositional constraints

quantification

• The pattern matching semantics:

A pattern φ is interpreted as the set $|\varphi|$ of elements that match it.

- A matching logic model *M* consists of:
 - a nonempty carrier set *M*;
 - a binary application function $\cdot : M \times M \to \mathcal{P}(M)$;
 - a symbol interpretation $\sigma_M \subseteq M$ for every symbol σ ;
 - given a valuation ρ such that $\rho(x) \in M$ and $\rho(X) \subseteq M$, we define pattern interpretation $|\varphi|_{\rho}$ as (see right)

pattern interpretation

$$|x|_{\rho} = \{\rho(x)\} \quad |X|_{\rho} = \rho(X) \quad |\sigma|_{\rho} = \sigma_{M}$$

$$|\perp|_{\rho} = \emptyset$$

$$|\varphi_{1} \to \varphi_{2}|_{\rho} = M \setminus (|\varphi_{1}|_{\rho} \setminus |\varphi_{2}|_{\rho})$$

$$|\varphi_{1} \varphi_{2}|_{\rho} = \bigcup_{a_{1} \in |\varphi_{1}|_{\rho}, a_{2} \in |\varphi_{2}|_{\rho}} a_{1} \cdot a_{2}$$

$$|\exists x. \varphi|_{\rho} = \bigcup_{a \in M} |\varphi|_{\rho[a/x]}$$

Matching Logic Theories

- We use a theory Γ to axiomatically define the "target" systems/models.
- A theory has two components:
 - A set of symbols;
 - A set of patterns called <u>axioms</u>, which axiomatize/define the behaviors of the symbols;
 - We also introduce notations (syntactic sugar) so formulas/expressions of the other systems become well-formed patterns verbatim.
- M is a model of Γ , if all axioms ψ in Γ hold in M, i.e., $|\psi|_{\rho} = M$ for all valuations ρ .

In Section 4, we define the matching logic theories of equality $\varphi_1 = \varphi_2$, membership $x \in \varphi$, sorts, functions $f: s_1 \times \cdots \times s_n \to s$, pairs $\langle \varphi_1, \varphi_2 \rangle$, power sets 2^s of sort s. Then, we use them to define the theories of λ -calculus, System F, etc.

Theory of λ -Calculus: Γ^{λ}

the <u>set</u> of all pairs (graph): $\exists x: Var. \langle x, e \rangle$ The binding of x in e is created by the \exists -binder of matching logic.

the set of all pairs, <u>intensionalized</u>: intension $\exists x: Var. \langle x, e \rangle$ we introduce notation $[x: Var] e \equiv \text{intension } \exists x: Var. \langle x, e \rangle$

Thus, the set $\exists x: Var. \langle x, e \rangle$ is treated as one element, avoiding pointwise intension (see Section 4.4).

The matching logic encoding of $\lambda x.e$ is lambda [x:Var]e

where lambda is a normal symbol/constructor

Theory Γ^{λ} and Its Correctness

$$\lambda$$
-calculus $\stackrel{\text{encoding}}{\longrightarrow}$ matching logic (within theory Γ^{λ}) variables $x \longrightarrow x$ application $e_1 \, e_2 \longrightarrow e_1 \, e_2$ $\xrightarrow{\text{abstraction defined as a notation (syntactic sugar)}}$ abstraction $\lambda x. \, e \longrightarrow \lambda x. \, e \equiv \text{lambda} \, [x: Var] \, e$ $\xrightarrow{\text{beta-reduction added as an axiom verbatim}}$

beta-
deduction
$$(\lambda x. e)e' = e[e'/x] \longrightarrow (\lambda x. e)e' = e[e'/x]$$

equivalence
$$\vdash_{\lambda} e_1 = e_2$$
 if and only if $\Gamma^{\lambda} \vdash e_1 = e_2$ if and only if $\Gamma^{\lambda} \models e_1 = e_2$

lambda-calculus reasoning

matching logic reasoning

matching logic semantic validity

Conclusion

 We proposed a general approach to defining binders in matching logic, which is the minimal logical foundation of the K framework.

- We proposed a simple variant of matching logic (only 7 constructs);
- We studied untyped λ -calculus thoroughly and gave the encoding $\lambda x.e \equiv \text{lambda}[x:Var]e$. We proved the correctness.

• In the paper, we gave a systematic treatment of binders in many other systems such as System F, pure type systems, and π -calculus.