Regret bounds for lifelong learning

PIERRE ALQUIER and T.TIEN MAI CREST, ENSAE, Université Paris Saclay MASSIMILIANO PONTIL University College London & Istituto Italiano di Tecnologia

Abstract

We consider the problem of transfer learning in an online setting. Different tasks are presented sequentially and processed by a within-task algorithm. We propose a lifelong learning strategy which refines the underlying data representation used by the within-task algorithm, thereby transferring information from one task to the next. We show that when the within-task algorithm comes with some regret bound, our strategy inherits this good property. Our bounds are in expectation for a general loss function, and uniform for a convex loss. We discuss applications to dictionary learning and finite set of predictors. In the latter case, we improve previous $O(1/\sqrt{m})$ bounds to O(1/m), where m is the per task sample size.

Problem setting

Objective We wish to design a procedure (meta-algorithm) that,

▶ transfer the learned information from previous tasks to the next,

Let's define that $g \in \mathcal{G}$ is a feature map (common data representation) and $h_t \in \mathcal{H}$ is a task-specific function. Such that

$$f_t = h_t \circ g$$

is a good predictor for task t.

► control the *compound regret* of our procedure

$$\frac{1}{T} \sum_{t=1}^{T} \frac{1}{m_t} \sum_{i=1}^{m_t} \hat{\ell}_{t,i} - \inf_{g \in \mathcal{G}} \frac{1}{T} \sum_{t=1}^{T} \inf_{h_t \in \mathcal{H}} \frac{1}{m_t} \sum_{i=1}^{m_t} \ell(h_t \circ g(x_{t,i}), y_{t,i}).$$

Examples of Within Task Algorithms Given an online task (data) $S_t = ((x_{t,1}, y_{t,1}), \dots, (x_{t,m_t}, y_{t,m_t}))$ and a prescribed representation g.

Online Gradient Algortihm OGA

Given a step-size $\zeta > 0$ and $\theta_1 = 0$. Loop for $i = 1, \ldots, m_t$,

- 1. Predict $\hat{y}_{t,i}^g = h_{\theta_i} \circ g(x_{t,i})$,
- 2. $y_{t,i}$ is revealed, update $\theta_{i+1} = \theta_i \zeta \nabla_{\theta} \ell(h_{\theta} \circ g(x_{t,i}), y_{t,i})|_{\theta = \theta_i}$.
- A regret bound for OGA is $\beta(g, m_t) = O(1/\sqrt{m_t})$ (convex, Lipschitz).
- [3] provides bounds for $\beta(g, m_t)$ in $O(\log(m_t)/m_t)$ under additional assumptions.

Exponentially Weighted Aggregation EWA

Given a learning rate $\zeta > 0$; a prior distribution μ_1 on \mathfrak{R} . Loop for $i = 1, \ldots, m_t$,

- 1. Predict $\hat{y}_{t,i}^g = \int_{\mathcal{H}} h \circ g(x_{t,i}) \mu_i(\mathrm{d}h)$,
- 2. $y_{t,i}$ is revealed, update $\mu_{i+1}(\mathrm{d}h) = \frac{\exp(-\zeta \ell(h \circ g(x_{t,i}), y_{t,i}))\mu_i(\mathrm{d}h)}{\int \exp(-\zeta \ell(u \circ g(x_{t,i}), y_{t,i}))\mu_i(\mathrm{d}u)}$.
- A regret bound for EWA is $\beta(g, m_t) = \mathcal{O}(\sqrt{\log(|\mathcal{H}|)/m_t})$.
- better bound for EWA is $\beta(g, m_t) = O(\log |\mathfrak{R}|/m_t)$, under exp-concavity [2].

Lifelong learning procedure

EWA-LL Algorithm

- Input: datasets $S_t = ((x_{t,1}, y_{t,1}), \dots, (x_{t,m_t}, y_{t,m_t}))$ are given in sequence for different learning tasks $t = 1, \dots, T$; the points within each dataset are also given sequentially. A prior π_1 , a learning rate $\eta > 0$.
- 2: A learning algorithm for each task t which, for any representation g returns a sequence of predictions $\hat{y}_{t,i}^g$ and suffers a loss $\hat{L}_t(g) := \frac{1}{m_t} \sum_{i=1}^{m_t} \ell\left(\hat{y}_{t,i}^g, y_{t,i}\right)$.
- 3: **Loop:** For t = 1, ..., T
- i Draw $\hat{g}_t \sim \pi_t$.

ii Run the within-task learning algorithm on S_t and suffer loss $\hat{L}_t(\hat{g}_t)$.

iii Update

$$\pi_{t+1}(\mathrm{d}g) := \frac{\exp(-\eta \hat{L}_t(g))\pi_t(\mathrm{d}g)}{\int \exp(-\eta \hat{L}_t(\gamma))\pi_t(\mathrm{d}\gamma)}.$$

Theorem

If, for any $g \in \mathcal{G}$, $\hat{L}_t(g) \in [0, C]$ and the within-task algorithm has a regret bound $\mathcal{R}_t(g) \leq \beta(g, m_t)$, then

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{\hat{g}_{t} \sim \pi_{t}} \left[\frac{1}{m_{t}} \sum_{i=1}^{m_{t}} \hat{\ell}_{t,i} \right] \leq \inf_{\rho} \left\{ \mathbb{E}_{g \sim \rho} \left[\frac{1}{T} \sum_{t=1}^{T} \inf_{h_{t} \in \mathcal{H}} \frac{1}{m_{t}} \sum_{i=1}^{m_{t}} \ell\left(h_{t} \circ g(x_{t,i}), y_{t,i}\right) + \frac{1}{T} \sum_{t=1}^{T} \beta(g, m_{t}) \right] + \frac{\eta C^{2}}{8} + \frac{\mathcal{K}(\rho, \pi_{1})}{\eta T} \right\}.$$

where the infimum is taken over all probability measures ρ and $\mathcal{K}(\rho, \pi_1)$ is the Kullback-Leibler divergence between ρ and π_1 .

Finite Subset of Relevant Predictors

 \mathcal{G} is a set of K functions and \mathcal{H} is finite. Assume: $\ell(\cdot,y)$ is ζ_0 -expconcave and upper bounded by a constant C.

Then the EWA-LL algorithm with $\eta = (2/C)\sqrt{2\log(K)/T}$ using the EWA within task with $\zeta = \zeta_0$ satisfies

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}_{\hat{g}_{t} \sim \pi_{t}} \left[\frac{1}{m} \sum_{i=1}^{m} \hat{\ell}_{t,i} \right] \leq \min_{1 \leq k \leq K} \frac{1}{T} \sum_{t=1}^{T} \min_{h_{t} \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \ell(h_{t} \circ g_{k}(x_{t,i}), y_{t,i}) + \frac{\zeta_{0} \log |\mathcal{H}|}{m} + C\sqrt{\frac{\log K}{2T}}.$$

In particular, our O(1/m) bound improves upon [4] who derived an $O(1/\sqrt{m})$ bound.

Lifelong dictionary learning

 $\mathfrak{L} = \mathbb{R}^d$. $\mathfrak{D}_K = \{D_{d \times K} : \|D_{\cdot,j}\|_2 = 1, j = 1, ..., K\}$, let $\mathfrak{G} = \{x \mapsto Dx : D \in \mathfrak{D}_K\}$. Assume: $\|x_{t,i}\| \leq 1$ and ℓ is convex and Φ -Lipschitz w.r.t its 1^{st} component.

The prior π_1 : the columns of D are i.i.d. uniformly distributed on the d-dimensional unit sphere.

Algorithm EWA-LL for dictionary learning, with $\eta = (2/C)\sqrt{Kd/T}$, and using the OGA algorithm within tasks, with step $\xi = B/(\Phi\sqrt{2mK})$, satisfies

$$\frac{1}{T} \sum_{t=1}^{T} \frac{1}{m} \sum_{i=1}^{m} \hat{\ell}_{t,i} \leq \inf_{D \in \mathcal{D}_K} \frac{1}{T} \sum_{t=1}^{T} \inf_{h_t \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \ell(\langle h_t, Dx_{t,i} \rangle, y_{t,i}) + \frac{C}{4} \sqrt{\frac{Kd}{T}} (\log(T) + 7) + \frac{B\Phi}{\sqrt{T}} + \frac{\Phi B\sqrt{2K}}{\sqrt{m}}.$$

Figure 2: Cumulative loss of EWA-LL (N=1 in Figure 1: The cumulative loss of the oracle for the red and N=10 in blue) and cumulative loss of the first 15 tasks.

Acknowledgements: We are grateful to Mark Herbster for useful comments. This work was supported by the research programme *New Challenges for New Data* from LCL and GENES, hosted by the *Fondation du Risque*, from Labex ECODEC (ANR - 11-LABEX-0047) and EPSRC grant EP/P009069/1.

[1] Audibert. A randomized online learning algorithm for better variance control. In the 19th COLT. Springer, 2006.

[2] Gerchinovitz. Prediction of individual sequences and prediction in the statistical framework: some links around sparse regression and aggregation techniques. PhD thesis, U. Paris 11, 2011.

[3] Hazan, Agarwal, and Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning*, 69(2-3):169–192, 2007.

[4] Pentina and Lampert. A pac-bayesian bound for lifelong learning. In Proc. of the 31st ICML, 2014.

[5] Thrun and Pratt (Eds.). (2012). Learning to learn. Springer Science & Business Media.