Introduction to NP-completeness

- The classes of P and NP
- · Polynomial reduction
- NP-complete problems and proofs
- NP-hard problems
- Approximate algorithms

Class NP problems

- We are talking about *polynomially verifiable* properties
- Example
 - Problem: give a graph, decide if it is a Hamiltonian
 - An undirected graph is a Hamiltonian if it contains a Hamilton cycle: a path starts with some node, visits each node exactly once, and returns the starting node
 - Verification
 - Given a path, we can efficiently verify if it is a Hamilton cycle

Class P problems

- Practical considerations
- What kind of problems can be solved practically or efficiently
 - An algorithm is *efficient* if there exists a polynomial p(n) such that the algorithm can solve any instance of size n in a time in O(p(n))
- Decision problems
 - For those problems, the answer is either yes or no
- *P* is the class of decision problems that can be solved by a polynomial-time algorithm

Definition of class NP

- NP is the class of decision problems X that admit a proof system F ⊆ X×Q such that there exists a polynomial p(n) and a polynomial-time algorithm A such that
 - For all $x \in X$, there exists a $q \in Q$ such that $\langle x, q \rangle \in F$ and moreover the size of q is at most p(n), where n is the size of of x
 - For all pairs $\langle x, q \rangle$, algorithm *A* can verify whether or not $\langle x, q \rangle \in F$. In other words $F \in P$.

Examples of class NP problems

- Is a graph G Hamiltonian?
 - X is the set of all Hamiltonian graphs
 - Q is set of sequence of graph nodes
 - Define ${}^<\!G,\,\sigma{}^>\!\in F$ if and only if nodes σ specifies a Hamiltonian cycle in Graph G
- Is a number **n** a composite number?
 - X is the set of all composite numbers
 - -Q = N is the proof space
 - $F = \{ < n, q > | 1 < q < n \text{ and } q \text{ divides } n > \}$

P and NP

- Theorem $P \subseteq NP$
 - Consider an arbitrary decision problem $X \in P$. Let $Q = \{0\}$ and $F = \{\langle x, 0 \rangle \mid x \in X\}$
 - For any $x \in X$, q is 0
 - For any ${<}x,\,q{>},$ we can directly verify it by verifying if $x\in X$ and $q{=}0$

Polynomial Reduction

- Let A and B be two problems. We say A is polynomially Turing reducible to B, denoted A ≤_T PB, if there exists an algorithm for solving A in a time that would be polynomial if we could solve arbitrary instances of problem B at unit cost.
- When $A \leq_{T}^{p} B$ and $B \leq_{T}^{p} A$ both hold, we say that A and B are polynomially Turing equivalent and write $A \equiv_{T}^{p} B$

$HAM \equiv_T^p HAMD$

- HAM find a Hamilton cycle in a graph
- HAMD decides if a graph is Hamiltonian

```
HamD(Graph G)
{
    c = Ham(G);
    if (c is a Hamiltonian cycle in G)
    return true;
    else
    return false;
}
```

```
HAMD \leq_T^p HAM
```

```
Ham(Graph G=<N, A>) {
    if (!HamD(G))
        return no solution;
    for each edge e in A
        if (!HamD(N, A-{e}))
        A = A -{e};
    return the unique cycle remaining in G
}
```

 $HAM \leq_T^p HAMD$

Polynomial many-one reduction

- Let X and Y be decision problems defined on sets of instances I and J. Problem X is polynomially many-one reducible to problem Y if there exists a function $f: I \rightarrow J$ computable in polynomial time such that $x \in X$ if and only if $f(x) \in Y$ for any instance $x \in I$ of problem X. This is denoted $X \leq_m^p Y$ and function f is called the reduction function.
- When $X \leq_m^p Y$ and $Y \leq_m^p X$ both hold, we say that X and Y are polynomially many-one equivalent and we write as $X \equiv_m^p Y$

Theorem

• If X and Y are two decision problems and such that $X \leq_p^p Y$, then $X \leq_p^p Y$

TSP and TSPD

- TSP
 - Given a graph with weighted edges, find a tour that begins and ends at the same node after having visited each node exactly once and whose the total cost of tour is the minimum possible; The answer is undefined is no such tour exists
- TSPD
 - Decide whether or not there exists a valid tour whose total cost does not exceed L.

$HAMD \leq_m^p TSPD$

- Proof
 - Let G = <N, A> be a graph with n nodes. We'd like to decide if it is Hamiltonian. Define f(G) as an instance of TSPD consisting of the complete graph H=<N, N×N>. The cost function is as follows

$$c(u,v) = \begin{cases} 1 & if \{u,v\} \in A \\ 2 & otherwise \end{cases}$$

- Let the bound L be n.
- Any Hamiltonian cycle in G translates into a tour in H that has exactly cost n.
- If there is no Hamiltonian cycles in G, any valid tour in H must use at least one edge of cost 2 and the total cost will exceed L.
 Therefore, G is a yes instance of HAMD iff H is a yes instance of TSPD.

NP-complete problems

- A decision problem X is NP-complete if
 - $X \in NP$ and
 - $Y ≤_T^p X$ for every problem Y ∈ NP
- Theorem
 - Let *X* be an *NP-complete* problem. Consider a decision problem $Z \in NP$ such that $X \leq_T^p Z$. Then *Z* is also NP-complete
- We don't know if P=NP but we conjecture that P≠NP

SAT-3-CNF is NP-complete

- First SAT-3-CNF \in NP
- Second, $SAT CNF \leq_T^p SAT 3 CNF$
 - For any Boolean formula $\beta\in \text{CNF},$ we construct efficiently a Boolean formula $\gamma=f(\beta)\in 3\text{-CNF}$ that is satisfiable is and only if β is satisfiable
 - Transform each clause x in β to y in γ as follows, assuming that the clause contains k literals
 - If $k \le 3$, directly map: y = x
 - If k=4. Let $x=l_1+l_2+l_3+l_4$ and u be a new Boolean variable » Take $y=(l_1+l_2+u)(\overline{u}+l_3+l_4)$
 - If k>=4, let $x = l_1 + l_2 + ... + l_k$ and $u_1, u_2, ... u_{k-3}$ be new Boolean variables

 » Take $y = (l_1 + l_2 + u_1)(\overline{u_1} + l_3 + u_2)...(\overline{u_{k-3}} + l_{k-1} + l_k)$
 - We can show that given any fixed values of the literals in x, x is true if and only if y is satisfiable with a suitable assignment for the u_i's

SAT-CNF is **NP-complete**

- SAT
 - Given a Boolean formula, decide whether or not it is satisfiable
- CNF
 - A literal is either a Boolean variable or its negation
 - A clause is a literal or disjunction of literals
 - A CNF formula is either a clause or conjunction of clauses
 - A k-CNF formula is a CNF formula with clause contains at most k literals
- Cook's Theorem: SAT-CNF is NP-complete

3COL is NP-complete

- 3COL: given a graph G, is G 3 colorable?
- First $3COL \in NP$
- Second, $SAT 3 CNF \le_T^p 3COL$
 - Given a 3CNF formula γ , create a graph as follows
 - For all Boolean variables x₁, x₂, ..., x_t, create a graph representation as follows

Widget for clause

• For each clause create a widget and connect to the "Boolean" graph

NP-hard problems

• A problem is NP-hard if there exists a NP-complete problem Y that can be polynomially Turing reduced to it: $Y \leq_r^p X$

Approximating algorithms

- It's hard to find a practical algorithm to solve NP-hard problems
- Sometimes we are satisfied approximate solutions
 - The solution may be within a range of the optimal, may be not

The metric traveling salesperson

- A special case of TSP which satisfies metric property.
 - A distance matrix is said to have metric property if the triangle inequality holds: for any three towns i, j, and k
 - $distance(i, j) \le distance(i,k) + distance(k,j)$
- An approximate algorithm
 - 1. Find a minimum spanning tree
 - 2. Build a tour through preorder search starting and ending at the root
- The algorithm find a tour of cost <= 2*minimum possible cost

Proof

- Let H* denote an optimal tour and H is the tour returned by the approximation algorithm. Then c(T) ≤ c(H*). We want c(H) ≤ 2c(H*).
- A full walk W of T lists the vertices when they are first visited and also whenever they are returned after visit a subtree. We have c(W)=2c(T)
- * The tour can be generated from the walk W by deleting repeating nodes, which does not increase the cost, i.e., $c(H) \le c(W)$

