

leti

Reducing Static Power Consumption on Multiprocessor Real-Time systems

Séminaire MeFoSyLoMa

Vincent Legout, Mathieu Jan, Laurent Pautet

CEA LIST, Télécom ParisTech

Mars 1, 2013

Introduction

- Context: embedded hard real-time systems (e.g. automotive, ...)
 - Hard real-time: time constraints cannot be violated
- Reducing energy consumption has several advantages:
 - Increase the autonomy of battery-powered systems
 - Provide energy efficient or "green" solutions
- Target multiprocessor systems
 - Uniprocessor are now superseded by multiprocessor systems
 - No power-aware optimal multiprocessor scheduling algorithm

Objective

Schedule multiprocessor real-time systems to reduce consumption

Modeling the consumption of processors

Focusing on static consumption

- Dynamic and static consumption ($P = P_{dynamic} + P_{static}$)
 - $ightharpoonup P_{static} = constant (leakage current)$
- Static consumption now dominates dynamic consumption
 - Technology evolves: higher density, smaller supply voltage
- 2 software solutions to reduce consumption
 - Dynamic consumption: Dynamic Voltage & Frequency Scaling
 - Static consumption: Dynamic Power Management

DPM: Dynamic Power Management

Reduce static consumption by using the low-power states of processors

- In a low-power state:
 - Processor inactive and energy consumption reduced
 - \blacksquare Transition delay δ required to get back to the active state
- Several low-power states available
 - The lower the consumption, the higher the transition delay
- Break-Even Time (BET): smallest idle period for which activating a low-power state saves more energy than letting the processor idle

Objective: activate the most efficient low-power states without increasing the number of preemptions and migrations

DPM multiprocessor scheduling algorithms

The objective being to create large idle periods

- Partitioned scheduling (no migration)
 - Use uniprocessor DPM solutions on each processor
 - Cannot merge idle periods from different processors
- Global scheduling (migrations allowed)
 - Minimize the number of processors [Bhatti09]
 - Non-optimal scheduling algorithm
- Existing DPM scheduling algorithms are not suitable
 - Schedule decisions should be taken according to the workload
 - Instead, they use task characteristics (e.g. earliest deadline)

	$ au_{1}$	$ au_2$
WCET	1	2
Period	2	3

Approach

- Solve the problem off-line. Several advantages:
 - Compute a schedule in a hyperperiod
 - Without taking scheduling decisions for each task individually
 - But for the task set as a whole in a hyperperiod
 - Use linear programming to express constraints and objectives:
 - Real-time constraint: no deadline miss
 - Consumption objective: large idle periods
 - Ensure a maximal consumption in the worst case scenario
- Computation using the Worst Case Execution Time (WCET)
- Larger idle periods means minimizing the number of idle periods
- LPDPM: Linear Programming DPM

Task model

- \blacksquare m processors, n tasks (WCET C, period T), hyperperiod H
- Global utilization $U = \sum_{i=1}^{n} \frac{C_i}{T_i} (m-1 < U < m)$

Division in intervals, for example:

	$ au_{ extsf{1}}$	$ au_2$	$ au_3$
WCET	8.0	2.4	4
Period	4	4	6
Jobs	3	3	2

- Objective to compute all weights of all tasks on all intervals
 - $\mathbf{w}_{j,k}$ weight of job j on interval k

Initial linear system

- Set of constraints to keep the schedulability [Lemerre08]:
 - $|I_k|$: length of interval k
 - lacksquare J_k : set of jobs in interval k
 - \blacksquare E_j : set of intervals where j is present

$$\forall k, \sum_{j \in J_k} w_{j,k} \leq m$$

 $U \le m$ inside each interval

$$\forall k, \forall j, 0 \leq w_{j,k} \leq 1$$

 $0 \le u \le 1$ for each task inside each interval

$$\forall j, \sum_{k \in E_i} w_{j,k} \times |I_k| = j.c$$

All jobs are fully executed

Add an additional idle task τ'

Accounts for the time where processors are supposed to be idle

- Utilization of $\tau' = m U$, period = H
- As a consequence: global utilization U = m
- Only one processor can be idle simultaneously
- \blacksquare w_k weight of τ' on interval k
- lacksquare Objective: reduce the number of preemptions of au'

Add an additional idle task τ'

Accounts for the time where processors are supposed to be idle

- Utilization of $\tau' = m U$, period = H
- As a consequence: global utilization U = m
- Only one processor can be idle simultaneously
- \blacksquare w_k weight of τ' on interval k
- lacksquare Objective: reduce the number of preemptions of au'

Reducing the number of preemptions of au' (1)

Avoid intervals in which τ' is preempted (i.e. $0 < w_k < 1$)

- Maximize the number of intervals for which $w_k = 0$ and the number of intervals for which $w_k = 1$
- 2 binary variables f_k (full) and e_k (empty) such as:

$$f_k = egin{cases} 0 & \text{if } w_k = 1 \ 1 & \text{otherwise} \end{cases}$$
 $e_k = egin{cases} 0 & \text{if } w_k = 0 \ 1 & \text{otherwise} \end{cases}$ Minimize $\sum_k f_k + e_k$

						I_1	$^{\mid}$ $^{\mathrm{I}}_{2}$	I ₃	ļ I	4	
Interval	1	2	3	4	c_1	τ ₃	τ ₂	τ ₂ τ'	τ ₂	$\tau_3 \tau_1$	\ t
W_k	0.5	0	1	0.6	c_2	τ_2 τ_1 τ'	τ1 τ'	τ ₃	τ _{3.}	τ'	
					ō	4	4		8	1	2 ⁷ '

Reducing the number of preemptions of au' (1)

Avoid intervals in which τ' is preempted (i.e. $0 < w_k < 1$)

- Maximize the number of intervals for which $w_k = 0$ and the number of intervals for which $w_k = 1$
- 2 binary variables f_k (full) and e_k (empty) such as:

$$f_k = egin{cases} 0 & \text{if } w_k = 1 \ 1 & \text{otherwise} \end{cases}$$
 $e_k = egin{cases} 0 & \text{if } w_k = 0 \ 1 & \text{otherwise} \end{cases}$ Minimize $\sum f_k + e_k$

Reducing the number of preemptions of τ' (2)

Avoid preemptions of au' on interval boundaries

- Group full intervals and group empty intervals
- 2 binary variables fc_k and ec_k such as:

$$fc_k = egin{cases} 1 & \text{if } f_k = 1 \text{ and } f_{k+1} = 0 \\ 0 & \text{otherwise} \end{cases}$$
 $ec_k = egin{cases} 1 & \text{if } e_k = 1 \text{ and } e_{k+1} = 0 \\ 0 & \text{otherwise} \end{cases}$

Minimize
$$\sum_{k} f_k + e_k + fc_k + ec_k$$

Reducing the number of preemptions of τ' (2)

Avoid preemptions of au' on interval boundaries

- Group full intervals and group empty intervals
- 2 binary variables fc_k and ec_k such as:

$$\mathit{fc}_k = egin{cases} 1 & \text{if } \mathit{f}_k = 1 \text{ and } \mathit{f}_{k+1} = 0 \\ 0 & \text{otherwise} \end{cases}$$
 $\mathit{ec}_k = egin{cases} 1 & \text{if } \mathit{e}_k = 1 \text{ and } \mathit{e}_{k+1} = 0 \\ 0 & \text{otherwise} \end{cases}$

Minimize
$$\sum_{k} f_k + e_k + fc_k + ec_k$$

On-line schedule inside intervals

Using the weights computed off-line using the linear program

- Schedule impacts idle periods only when $0 < w_k < 1$
 - \blacksquare Solution: schedule τ' at the beginning or at the end the interval
- During the execution of τ' , activate the deepest low-power state
 - Processor stays idle if the idle period is not large enough

On-line schedule inside intervals

Using the weights computed off-line using the linear program

- Schedule impacts idle periods only when $0 < w_k < 1$
 - Solution: schedule τ' at the beginning or at the end the interval
- During the execution of τ' , activate the deepest low-power state
 - Processor stays idle if the idle period is not large enough

Experimental evaluation

- In a simulator, schedule random task sets with LPDPM and two existing optimal multiprocessor schedulers RUN & U-EDF
- No other DPM optimal multiprocessor scheduling algorithm
- RUN & U-EDF: schedulers reducing the number of preemptions
- 4 processors, 10 tasks
- 2000 task sets for each global utilization between 3.05 and 3.95
- Objective: evaluate the number and the length of the idle periods as well as the number of preemptions

Mean number of idle periods

Between 2 and 5 times less idle periods for LPDPM

Idle period lengths

Using all idle periods generated by all task sets

- RUN & U-EDF: smaller idle periods, with a length always < 120
- LPDPM: larger idle periods, can be twice as large

Mean total number of preemptions

- Fewer preemptions than U-EDF
- Less than 1.4 more preemptions than RUN

Conclusion and perspectives

- Contribution: LPDPM, an off-line optimal multiprocessor real-time scheduling algorithm reducing static consumption
 - LPDPM generates less and larger idle periods such that deeper low-power states can be activated. The total number of preemptions does not increase.
 - Simulation of the global consumption using the low-power states of the STM32L board (Cortex-M3): LPDPM is up to 8% more energy efficient than existing optimal scheduling algorithms

Perspectives

- When tasks do not use their WCET, schedule intervals to further extend the existing idle periods
- Temperature: impact on the energy consumption