通訊系統電腦模擬與量測

Simulations and Measurements of Communication Systems

國立臺灣海洋大學通訊與導航工程學系

Oral Report_3

系級:通訊4A

學號:0086C035

姓名:余佳駿

Experiment # 9

Smart Antenna and Beamforming (PhaseShift • MVDR)

Conventional and Adaptive Beamformers

• 建立窄頻訊號

```
t = 0:0.001:0.3;
                            % Time, sampling frequency: 1kHz
     s = zeros(size(t));
     s = s(:);
     s(201:205) = s(201:205) + 1; % Pulse signal
此實驗驗證如何將數位訊號之波束成形
應用於天線陣列接收的窄頻訊號。
並比較兩種波束成形方法
phase shift beamformer (PhaseShift),
the minimum variance distortionless response
(MVDR) beamformer
Sensor 1
Sensor 2
                       Output
              Processor
Sensor L
             Additional
```

Information

Conventional and Adaptive Beamformers

· 設定接收訊號角度 & 加入雜訊

```
17
       % setting arrive Angle
18
       inputAngle = [45; 0];
       x = collectPlaneWave(ula,s,inputAngle,carrierFreq);
19
20
21
       % Create random number generator
22
       rs = RandStream.create('mt19937ar', 'Seed', 2008);
23
       % Add noise
24
       noisePwr = .5; % noise power
25
       noise = sqrt(noisePwr/2)*(randn(rs,size(x))+1i*randn(rs,size(x)));
26
       rxSignal = x + noise;
27
```


Phase Shift Beamformer

```
%% Phase Shift Beamformer
psbeamformer = phased.PhaseShiftBeamformer('SensorArray',ula,...
'OperatingFrequency',carrierFreq,'Direction',inputAngle,...
'WeightsOutputPort', true);

%% We can now obtain the output signal and weighting coefficients
[yCbf,w] = psbeamformer(rxSignal);

plot(t,abs(yCbf)); axis tight;
```

Phase Shift Beamformer延遲每個天線接收到的訊號,使訊號對齊,就好像它們同時到達所有天線一樣。在窄帶情況下,相當於每個天線接收到的訊號乘上一個相位因子

可以看到波束形成器的主波束正像預期的那樣指向所需的方向(45度)

Azimuth Angle (degrees)

Modeling the Interference Signals

• 建立干擾訊號模型 (30 度和 50 度 方位角)

```
%% Modeling the Interference Signals
       nSamp = length(t);
       s1 = 10*randn(rs,nSamp,1);
       s2 = 10*randn(rs,nSamp,1);
70
       % interference at 30 degrees and 50 degrees
       interference = collectPlaneWave(ula,[s1 s2],[30 50; 0 0],carrierFreq);
71
72
73
       %% To illustrate the effect of interference,
74
                                                     % noise power, 50dB SNR
75
       noisePwr = 0.00001;
       noise = sqrt(noisePwr/2)*(randn(rs,size(x))+1i*randn(rs,size(x)));
76
77
       rxInt = interference + noise;
                                                     % total interference + noise
78
       rxSignal = x + rxInt;
                                                     % total received Signal
79
80
       %% First, we'll try to apply the phase shift beamformer to retrieve the signal
81
       vCbf = psbeamformer(rxSignal);
82
```


在強干擾的情況下,若使用相移波束器, 目標訊號可能被干擾訊號所掩蓋。

MVDR Beamformer

波束形成的基本構想,是希望對每根陣列天線收到的訊號,乘以不同的 權重,使每跟訊號加總起來的訊號,可以有濾波的效果。所以我們假設經由 空間濾波後的訊號,可以表示成 $y = W^H X$ 。MVDR 演算法的基本假設有兩 個: 第一個是將訊號源入射角度的訊號能量維持在 OdB, 第二個是要讓收到 訊號的能量降到最低。這兩個假設組合在一起,就達到了濾除雜訊的效果。 收到訊號的能量,可以表示為

$$E\{|y|^2\} = E\{|W^HX|^2\} = W^H R_{xx}W$$

為了同時滿足兩個假設,使用了 Lagrange Multiplier

$$\begin{cases} \nabla_{W}[W^{H}R_{xx}W] - \lambda \nabla_{W}[W^{H}a(\theta_{s})] = 0 \\ W^{H}a(\theta_{s}) = 1 \end{cases}$$
 解出

可解出

$$\Rightarrow W = \frac{1}{a^{H}(\theta_{s})R_{xx}^{-1}A(\theta_{s})}R_{ss}^{-1}A(\theta_{s})$$

而W即為每根天線的權重值, $y=W^HX$ 可濾出想要的訊號。

88 **%% MVDR Beamformer** 89 % Define the MVDR beamformer mvdrbeamformer = phased.MVDRBeamformer('SensorArray',ula,... 90 'Direction', inputAngle, 'OperatingFrequency', carrierFreq,... 91

mvdrbeamformer.TrainingInputPort = true;

'WeightsOutputPort'.true):

[vMVDR, wMVDR] = mvdrbeamformer(rxSignal,rxInt);

$$\int \nabla_{W} [W^{H} R_{xx} W] - \lambda \nabla_{W} [W^{H} a(\theta_{s})] = 0$$

約束目標方向增益不變

$$W^H a(\theta_s) = 1$$

92 93 94

95 96

约束接收波束成形後在指定方向的能量

MVDR Beamformer

因此引入自適應波束形成器來解決這個問題。 這邊使用MVDR Beamformer

```
%% MVDR Beamformer
88
       % Define the MVDR beamformer
89
       mvdrbeamformer = phased.MVDRBeamformer('SensorArray',ula,...
90
           'Direction',inputAngle,'OperatingFrequency',carrierFreq,...
91
           'WeightsOutputPort', true);
92
93
94
       mvdrbeamformer.TrainingInputPort = true;
95
       [yMVDR, wMVDR] = mvdrbeamformer(rxSignal,rxInt);
96
```


OUTPUT

可以看到沿干擾方向(30度和50度)有兩個深度零點。波束形成器沿45度的目標方向也具有約0dB的增益。因此,MVDR波束形成器保留了目標信號並抑制了干擾信號。

Experiment # 10

MIMO Transmission (STBC \ MRC)

STBC Alamouti 2x1

空時分組編碼STBC (Space Time Block Coding)

STBC Alamouti的關鍵思想是利用空間多種性質,通過在不同的空間上發送相互正交的信號來增強通信系統的可靠性。

STBC Alamouti 2x1

```
32
           % bits to symbol mapping
33
           symbols = qammod(bits, M, "gray", "InputType", "bit", 'UnitAveragePower', true);
           symbols = reshape(symbols, 2, 1, []);
34
           X = zeros(2, 2, N);
35
36
37 Ė
           % STBC Alamouti
           % 1st interval, antena1:x1, antena2:x2
38
           X(:, 1, :) = symbols;
39
40
           % 2nd interval, antena1:x2*, antena2:-x1*
41
           X(1, 2, :) = conj(symbols(2, 1, :));
42
           X(2, 2, :) = -conj(symbols(1, 1, :));
43
44
45
           % transmission over Rayleigh fading channel
           H = sqrt(N0/2) * (randn(1, 2, N)+1j*randn(1, 2, N));
46
47
           n = sqrt(N0/2) * (randn(1, 1, N)+1j*randn(1, 1, N));
           y = sqrt(Es/2)*pagemtimes(H, X)+n; % y=HX+n
48
49
```


STBC Alamouti 2x1

(10.49)

(10.50)

MRC 1x2

最大比合併MRC (maximum ratio combining)

是一個分集接收技術,目的是改善接收端的信號質量。

MRC的原理是通過對多條接收天線上的信號進入行權組合,以最大化接收信號的訊雜比(SNR)。

R_x1 R_x2 ... R_xn_R 射頻 前端 前端 前端 前端 前端 前端 日本 A_{n₂} 本 A_{n₂} 和 A_{n₂}

MRC 1x2

```
% channel coding

% bits to symbol mapping
symbols = qammod(bits, M, "gray", "InputType", "bit", 'UnitAveragePower'
X = reshape(symbols, 1, 1, N);

% transmission over Rayleigh fading channel
H = sqrt(N0/2) * (randn(2, 1, N)+1j*randn(2, 1, N));
n = sqrt(N0/2) * (randn(2, 1, N)+1j*randn(2, 1, N));
y = sqrt(Es)*H.*X+n;
```


MRC 1x2

```
% transmission over Rayleigh fading channel
H = sqrt(N0/2) * (randn(2, 1, N)+1j*randn(2, 1, N));
n = sqrt(N0/2) * (randn(2, 1, N)+1j*randn(2, 1, N));
y = sqrt(Es)*H.*X+n;

norm_factor = squeeze(abs(H(1, 1, :)).^2+abs(H(2, 1, :)).^2);
y_hat = pagemtimes(pagectranspose(H), y);
y_hat = squeeze(y_hat)./norm_factor; % squeeze:刪除了長度為1 的維度
```

In summary, since the conjugate of a complex number inverts its phase but leaves the magnitude unchanged, the optimal w_i can be chosen as complex conjugates of h_i .

$$w_j = h_j^* \tag{7}$$

$$z = \left\{ h_1^* \cdot h_1 + h_2^* \cdot h_2 \right\} \cdot s + \text{noise} = \left\{ \left| h_1 \right|^2 + \left| h_2 \right|^2 \right\} \cdot s + \text{noise}$$

$$\hat{s} = \frac{z}{\left|h_1\right|^2 + \left|h_2\right|^2}$$

Output

Experiment # 11 #12

OFDM System & SDR (using FPGA)

四筆相異資料

1.	2.	3.	4.	5.	6.	7.
RS	PSS		SSS		Data	RS

Slot定序:設定各訊號放置Symbol位置如上:

第1和7層為RS訊號、第2層為PSS、第4層為SSS、

第6層為Data,第3和5層則留空(null)。

EVM 誤差向量幅度

```
%% === EVM calculation ===
for m = 1:Num_Layer
    err(m, :) = rn_Equal_Data(m, :) - sn_Data(m, :);
    evm(m) = nansum(abs(err(m, :)).^2, 2) ./ nansum(abs(sn_Data(m, :)).^2, 2);
    EVM(m) = 10 * log10(evm(m));
end
```


1.	2.	3.	4.		5.	6.		7.
RS	PSS		SSS			Data		RS
模擬	结果(加入	高斯白雜訊)			實	驗結果		
Rx1,EVM =	= -16.985 dB	Rx2,EVM = -17.29	05 dB	Rx1,EVI	VI = -18.4352 d	IB Rx2,E	VM = -18.2	2113 dB
1 100 100	* *	1 10 10 10		1		1 - 36	*	
о в о	***	o and o		Bem o		- BE 0	* *	***
-1 激 集		1 1 1 1 1 1		-1		-1	* *	
-1	0 1	-1 0	1	-1	0 1	-1	0	1
	Real -17.3643 dB	Rx4,EVM = -17.25	24 dB	Rx3,EVI	Real VI = -21.3793 d	IB Rx4,E	Real VM = -22.	7843 dB
1 4 4	100	1 ** **		1	* * *	1	* *	*
Be o	**	o o		E o	* * *	Be o	**	*
-	THE THE		City.				*	

1.	2.	3.	4.	5.	6.	7.
RS	PSS		SSS	Data	Data	RS

7symbol, 1data (index 6)

1.	2.	3.	4.	5.	6.	7.
RS	PSS		SSS		Data	RS

模擬結果(加入高斯白雜訊)

7symbol, 2data (index 5,6)

1.	2.	3.	4.	5.	6.	7.
RS	PSS		SSS	Data	Data	RS

模擬結果(加入高斯白雜訊)

實驗結果

結論

經由測試分析,我們得到當OFDM符元區間內具有兩個資料符元數,並在接收端等化處理後進行資料平均,相比於其他組合具有較優異的系統表現,得以在sub-6G環境下穩定送收,成功實現5G NR之MIMO通訊平台建置,根據此研究結果,可得到重複碼以及等化器處理對於系統穩定度之影響,因此可應用於進一步之系統效能之優化與改進。

