Architettura degli Elaboratori

Lezione 11 – Circuiti combinatori per l'artimetica binaria

Giuseppe Cota

Dipartimento di Scienze Matematiche Fisiche e Informatiche Università degli Studi di Parma

Indice

- ☐ Semisommatore (half adder) e sommatore completo (full adder)
- ☐ Sommatore con calcolo anticipato del riporto
- ☐ Unità aritmetico logiche (ALU)

Sommatore (half adder) e sommatore completo (full adder)

Sommatore

- Il circuito (combinatorio) base per il calcolo dell'addizione è l'addizionatore a un bit ("full adder" o "addizionatore completo").
- Ha in ingresso:
 - due addendi A_i e B_i , da un bit ciascuno
 - il riporto in ingresso R_{i-1} , da un bit
- Ha in uscita:
 - la somma S_i , da un bit
 - il riporto in uscita R_i , da un bit
- È composto da due half adder o semisommatore.

Semisommatore (half adder)

 Il semisommatore non tiene conto di un eventuale riporto in ingresso.

A_i	B_i	S_i	R_i
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S_i = \overline{A_i}B_i + A_i\overline{B_i} = A_i \oplus B_i$$

$$R_i = A_iB_i$$

versione blackbox

Somma binaria

 Per poter effettuare la somma di due numeri interi su più bit occorre tener conto dei riporti.

Riporti	R_{n-1}	R_{n-2}	 R_{i-1}	 R_0	R_{-1}	
A		A_{n-1}	 A_i	 A_1	A_0	+
В		B_{n-1}	 B_i	 B_1	B_0	=
S		S_{n-1}	 S_i	 S_1	S_0	

A_i	B_i	R_{i-1}	S_i	R_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_i = (A_i \oplus B_i) \oplus R_{i-1}$$

$$R_i = A_i B_i + (A_i \oplus B_i) R_{i-1}$$

Sommatore completo (full adder)

A_i	B_i	R_{i-1}	S_i	R_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S_i = (A_i \oplus B_i) \oplus R_{i-1}$$

$$R_i = \underbrace{A_i B_i}_{} + (A_i \bigoplus B_i) R_{i-1}$$

Versione semplificata

Generatore di riporto

Propagatore di riporto

Ripple-carry adder a n bit

Ripple-carry adder a n bit (Sommatore a propagazione di riporto)

Sommatore con calcolo anticipato del riporto

Tempo necessario per il calcolo per un ripple-carry adder

- La rete per il calcolo della somma può produrre un risultato dopo che per ogni FA
 è divenuto stabile il riporto in ingresso R_i.
- Nel peggiore dei casi, se τ è il tempo di commutazione di una qualunque porta (ritardo di una porta):
 - Tempo per calcolare R_{n-1} : $\Delta_{R_{n-1}} = n \cdot 2\tau + \tau = (2n+1)\tau$
 - Tempo per calcolare S_{n-1} : $\Delta_{S_{n-1}} = \Delta_{R_{n-2}} + \tau = (2(n-1)+1)\tau + \tau = 2n\tau$

Rete lenta!

Calcolo anticipato del riporto

- È possibile ridurre i tempi di calcolo della somma con la tecnica del calcolo anticipato del riporto.
- Se poniamo:
 - Generatore di riporto $g_i = A_i B_i$
 - Propagatore di riporto $p_i = A_i \oplus B_i$
- Si ha:

$$- S_i = (A_i \oplus B_i) \oplus R_{i-1} = p_i \oplus R_{i-1}$$

$$- R_i = A_i B_i + (A_i \oplus B_i) R_{i-1} = g_i + p_i R_{i-1}$$

Calcolo anticipato del riporto Esempio adder 4 bit

Esempio adder 4 bit

$$R_0 = g_0 + p_0 R_{-1}$$

$$R_1 = g_1 + p_1 R_0 = g_1 + p_1 g_0 + p_1 p_0 R_{-1}$$

$$R_2 = g_2 + p_2 R_1 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 R_{-1}$$

$$R_3 = g_3 + p_3 R_2 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 R_{-1}$$

Se indico $G = g_3 + p_3g_2 + p_3p_2g_1 + p_3p_2p_1g_0$ e $P = p_3p_2p_1p_0$ posso scrivere:

$$R_3 = G + PR_{-1}$$

- Per il calcolo anticipato del riporto serve quindi un circuito in più chiamato look-ahead carry generator
 - Complico un po' il circuito sommatore, ma il calcolo è più veloce rispetto al sommatore di ripple.

Look-ahead carry generator per sommatore a 4 bit

Sommatore 4 bit con circuito look-ahead carry generator

Sommatore a 16 bit composto da 4 sommatori a 4 bit

Terminologia: Full adder a 4 bit = sommatore composto da 4 full adder a 1 bit

Unità aritmetico logiche (arithmetic logic unit, ALU)

Unità aritmetico logiche (arithmetic logic unit, ALU)

- Il circuito (combinatorio) algebrico completo è l'unità aritmeticalogica (Arithmetic-Logic Unit, ALU).
- È un dispositivo programmabile, capace di eseguire un repertorio di operazioni (per numeri interi):
 - aritmetiche (addizione, sottrazione, moltiplicazione, ecc)
 - logiche (negazione, somma e prodotto logico bit a bit, ecc)
 - di confronto (uguale, diverso, maggiore, ecc)
 - Il repertorio di operazioni varia secondo la ALU.
 - Esistono anche ALU per numeri reali.

Sottrazioni

- Se uso il complemento a due per rappresentare i numeri interi, allora con il sommatore posso fare sia somme che sottrazioni
- Se *A* e *B* sono due interi positivi
 - -A+B
 - $-A B = A + (-B) = A + \tilde{B} + 1$

Sommatore (di ripple) per sottrazioni versione 1

Ripple-carry adder (sommatore a propagazione di riporto) per sottrazioni/addizioni con XOR

Sommatore (di ripple) per sottrazioni versione 2

Ripple-carry adder per sottrazioni/addizioni con multiplexer

Overflow con numeri interi con complemento a 2

• Si verifica un overflow in una somma di due numeri di n cifre in complemento a 2 se e solo se i riporti in colonna n e n+1 sono diversi

	/	≠					
Riporto	R_3	R_2	R_1	R_0	R_{-1}		
Mporto	0	1	1	0			Decimale
		0	1	1	1	+	7
		0	0	1	0	=	2
Totale		1	0	0	1		-7
		S_3	S_2	S_1	S_0		

Overflow

Overflow con numeri interi con complemento a 2

• Si verifica un overflow in una somma di due numeri di n cifre in complemento a 2 se e solo se i riporti in colonna n e n+1 sono diversi

		≠					
Riporto	R_3	R_2	R_1	R_0	R_{-1}		
Riporto	0	1	1	0			Decimale
		1	0	1	1	+	-5
		1	1	0	0	=	-4
Totale		0	1	1	1		7
		S_3	S_2	S_1	S_0		

Overflow

Rete logica per controllo overflow versione 1

Controllo overflow

- <u>In modo alternativo</u>, dati due numeri interi a n bit posso dire che ho un overflow:
 - Se sommo due interi positivi e ottengo un numero negativo; oppure
 - Se sommo due interi negativi e ottengo un numero positivo.

Riporti	R_{n-1}	R_{n-2}		R_{i-1}	 R_0	R_{-1}	
A		A_{n-1}	•••	A_i	 A_1	A_0	+
В		B_{n-1}		B_i	 B_1	B_0	=
S		S_{n-1}		S_i	 S_1	S_0	

$$O = \overline{S_{n-1}} A_{n-1} B_{n-1} + S_{n-1} \overline{A_{n-1}} \, \overline{B_{n-1}}$$

Rete logica per controllo overflow versione 2

Overflow
$$V = \overline{S_{n-1}} A_{n-1} B_{n-1} + S_{n-1} \overline{A_{n-1}} \overline{B_{n-1}}$$

ALU semplificata a 1 bit

ALU semplificata a 1 bit

- Il multiplexer di destra attraverso l'ingresso di selezione *op* (operazione) presenta in uscita una di queste alternative:
 - (0) il risultato del calcolo di FA,
 - (1) il risultato dell'AND,
 - (2) il risultato dell'OR.
- Per quanto riguarda il FA, l'ingresso di controllo cb (complementa B) determina cosa viene sommato:
 - (0) somma $A_i + B_i + R_{i-1}$;
 - (1) somma $A_i + \overline{B}_i$ (sottrazione tramite complemento).
- In sostanza l'ALU nella slide precedente è in grado sommare o sottrarre due bit, farne l'AND o l'OR.

ALU n bit

ALU

Domande?

Riferimenti principali

- Appendice B di Calcolatori elettronici. Architettura e
 Organizzazione, Giacomo Bucci. McGraw-Hill Education, 2017.
 http://highered.mheducation.com/sites/dl/free/8838675465/1098336/
 AppB.pdf (download gratuito)
- Slide Architettura degli Elaboratori AA 2019/2020 corso di laura triennale in Informatica dell'Università di Ferrara, Prof. Davide Bertozzi.