Recall: An $n \times n$ matrix A defines a linear transformation

$$T_A \colon \mathbb{R}^n \to \mathbb{R}^n$$

given by $T_A(\mathbf{v}) = A\mathbf{v}$.

Next goal: Understand this linear transformation better.

Example.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

$$V \mapsto AV$$

$$a_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad Aa_2 = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \cdot a_1$$

$$a_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad Aa_2 = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} = 3 \cdot a_2$$

Example.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$T_{A} : \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$$

$$V \longmapsto AV$$

$$A\alpha_{1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$A\alpha_{2} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A\alpha_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$AV_{1} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} = 3 \cdot V_{2}$$

Definition

Let A be an $n \times n$ matrix. If $\mathbf{v} \in \mathbb{R}^n$ is a non-zero vector and λ is a scalar such that

$$Av = \lambda v$$

then we say that

- ullet λ is an eigenvalue of A
- \bullet v is an *eigenvector* of A corresponding to λ .

Example.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \qquad \text{We had:} \qquad A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot 2 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad A \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 3 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$So: \quad \lambda_1 = 2 \quad \text{and} \quad \lambda_2 = 3 \quad \text{are eigenvalues of } A.$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{is an eigenvector corresponding to } \lambda_1 = 2$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \quad \text{is an eigenvector corresponding to } \lambda_2 = 3$$

Example.

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{We had}: \quad A \cdot \begin{bmatrix} -1 \\ -1 \end{bmatrix} = 1 \cdot \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad A \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$So: \quad \Lambda_1 = 1 \quad \text{and} \quad \Lambda_2 = 3 \quad \text{are eigenvalues of } A.$$

$$\begin{bmatrix} -1 \\ -1 \end{bmatrix} \quad \text{is an eigenvector corresponding to } \lambda_1 = 1$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{is an eigenvector corresponding to } \Lambda_2 = 3$$

Computation of eigenvalues

Recall: $I_n = n \times n$ identity matrix:

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

Note

For any
$$v \in \mathbb{R}^n$$
 we have:
 $(\lambda I_n)v = \lambda(I_nv) = \lambda v$

Propostiton

If A be an $n \times n$ matrix then $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if the matrix equation

$$(A - \lambda I_n)x = 0$$

has a non-trivial solution.

Proof:
$$\lambda$$
 is an eigenvalue of A
there is a vector $v \neq 0$ such that $Av = \lambda v = (\lambda I_n)v$
there is a vector $v \neq 0$ such that $(A - \lambda I_n)v = 0$
the equation $(A - \lambda I_n)x = 0$ has a non-trivial solution.

Propostiton

If B is an $n \times n$ matrix then equation

$$Bx = 0$$

has M a non-trivial solution if and only of the matrix B is not invertible.

Proof: Bx = 0 has a non-trivial solution

I

not every column of B is a pivot column

B is not invertible

Propostiton

If A be an $n \times n$ matrix then $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if

$$\det(A - \lambda I_n) = 0$$

Proof:
$$\lambda$$
 is an eigenvalue of A

(A- λ 1_n) x = 0 has a non-trivial solution

t

A- λ 1_n is not invertible

det (A- λ 1_n) = 0

Example. Find all eigenvalues of the following matrix:

$$A = \left[\begin{array}{ccc} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array} \right]$$

Solution: We need to find RER such that det (A-AI)=0

$$\det (A - \lambda I) = \det \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

$$= \det \begin{bmatrix} 2 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 1 & 2 & 2 - \lambda \end{bmatrix}$$

$$= (2-\lambda)(3-\lambda)(2-\lambda) + 2 \cdot 1 \cdot 1 + 1 \cdot 1 \cdot 2$$

$$= (2-\lambda)(3-\lambda) \cdot 1 - (2-\lambda) \cdot 1 \cdot 2 - 1 \cdot 2 \cdot (2-\lambda)$$

$$= -\lambda^{3} + 7\lambda^{2} - 11\lambda + 5$$

We obtain: λ is an eigenvalue of A if and only if $-\lambda^3 + 7\lambda - 11\lambda + 5 = 0$

Check: the only solutions of this equation are $\lambda_1 = 1$ and $\lambda_2 = 5$

We obtain: The matrix A has two eigenvalues: $\chi_1 = 1$ and $\chi_2 = 5$.

Definition

If A is an $n \times n$ matrix then

$$P(\lambda) = \det(A - \lambda I_n)$$

is a polynomial of degree n. $P(\lambda)$ is called the *characteristic polynomial* of the matrix A.

Upshot

If A is a square matrix then

eigenvalues of $A = \text{roots of } P(\lambda)$

Example.

$$A = \left[\begin{array}{ccc} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array} \right]$$

We had:

Corollary

An $n \times n$ matrix can have at most n distinct egigenvalues.

Proof: The characteristic polynomial $P(\lambda)$ of A is a polynomial of degree n, so it can have at most n distinct noots.

Computation of eigenvectors

Proposition

If λ is an eigenvalue of an $n \times n$ matrix A then

$$\begin{cases} \text{eigenvectors of } A \\ \text{corresponding to } \lambda \end{cases} = \begin{cases} \text{vectors in} \\ \text{Nul}(A - \lambda I_n) \end{cases}$$

VE Nul
$$(A-\lambda I)$$

$$(A-\lambda I)v = 0$$

$$Av = (\lambda I)v$$

$$Av = \lambda v$$

$$V = \lambda$$

Recall: If B is an mxn matrix then Nul(B) is a subspace of TR".

Corollary/Definition

If A is an $n \times n$ matrix and λ is an eigenvalue of A then the set of all eigenvectors corresponding to λ is a subspace of \mathbb{R}^n .

This subspace is called the *eigenspace* of A corresponding to λ .

Proposition

If λ is an eigenvalue of an $n \times n$ matrix A then

$$\begin{cases} \text{eigenspace of } A \\ \text{corresponding to } \lambda \end{cases} = \text{Nul}(A - \lambda I_n)$$

Example. Consider the following matrix:

$$A = \left[\begin{array}{ccc} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array} \right]$$

Recall that eigenvalues of A are $\lambda_1=1$ and $\lambda_2=5$. Compute bases of eigenspaces of A corresponding to these eigenvalues.

Solution.

$$\frac{\lambda_{1}=1}{\left(\begin{array}{c}\text{aigenspace of}\\\lambda_{1}=1\end{array}\right)}=\text{Nul}\left(\left(\begin{array}{c}2&2&1\\1&3&1\\1&2&2\end{array}\right)-\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{array}\right)$$

$$=\text{Nul}\left(\begin{bmatrix}1&2&1\\1&2&1\\1&2&1\end{bmatrix}\right)$$
We need to solve:
$$\begin{bmatrix}1&2&1\\1&2&1\\1&2&1\end{bmatrix}\begin{bmatrix}x_{1}\\x_{2}\\1&2&1\end{bmatrix}\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\end{bmatrix}=\begin{bmatrix}0\\0\\0\\0&0&0\end{bmatrix}$$

$$\begin{bmatrix}1&2&1\\1&2&1\\1&2&1\end{bmatrix}\begin{bmatrix}x_{1}\\x_{2}\\x_{3}\end{bmatrix}=\begin{bmatrix}0\\1\\1&2&1\\1&2&1\end{bmatrix}\begin{bmatrix}x_{2}\\x_{3}\\x_{2}\end{bmatrix}=\begin{bmatrix}-2\\1\\1&2&1\\1&2&1\end{bmatrix}$$
We obtain:
$$\begin{bmatrix}-2\\1\\0\end{bmatrix}\begin{bmatrix}-1\\0\\1&2&1\\1&2&1\end{bmatrix}=\begin{bmatrix}0\\1\\1&2&1\\1&2&1\\1&2&1\end{bmatrix}=\begin{bmatrix}0\\1\\1&2&1\\1&2&1\\1&2&1\end{bmatrix}=\begin{bmatrix}0\\1\\1&2&1\\1&2&1\\1&2&1\end{bmatrix}$$
where the obtain:
$$\begin{bmatrix}-2\\1\\0\end{bmatrix}\begin{bmatrix}-1\\0\\1&2&1\\1&2&1\end{bmatrix}=\begin{bmatrix}0\\1\\1&2&1\\1$$

$$\lambda_2 = 5$$

(eigenspace of
$$\lambda_2 = 5$$
) = Null (A-51)
= Null ($\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ - $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$
= Null $\begin{bmatrix} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{bmatrix}$

We need to solve:

$$\begin{bmatrix} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 2 & -3 \end{bmatrix} \begin{bmatrix} \times_1 \\ \times_2 \\ \times_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 2 & 1 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & 2 & -3 & 0 \end{bmatrix} \xrightarrow{\text{rod}} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ x_3 \end{bmatrix} \times_3$$
free

We obtain: