§ 1.4 曲线运动-圆周运动

圆周运动

时刻	t	$t+\Delta t$	Δt
位矢	$\vec{r}(t)$	$\vec{r}(t+\Delta t)$	
位移			Δr
速度	$\vec{v}(t)$		
加速度	$\vec{a}(t)$		
角度	$\theta(t)$	$\theta(t+\Delta t)$	
角位移			$\Delta heta$
角速度	ω		
角加速度	α		

线量

角量

一. 描述圆周运动的物理量

- 1. 角位移(angular displacement) $\Delta\theta$
- 2. 角速度(angular velocity)

$$\omega = \frac{\mathrm{d}\,\theta}{\mathrm{d}\,t} = \dot{\theta}$$

3. 角加速度(angular acceleration)

$$\alpha = \frac{\mathrm{d}\,\omega}{\mathrm{d}\,t} = \ddot{\theta}$$

4. 线速度(linear velocity)

$$v = \frac{\mathrm{d} s}{\mathrm{d} t} = \frac{R \, \mathrm{d} \theta}{\mathrm{d} t} = R \omega$$

5. 线加速度(linear acceleration)

$$\vec{a} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}(v \cdot \vec{e}_t) = \frac{\mathrm{d}v}{\mathrm{d}t}\vec{e}_t + v\frac{\mathrm{d}\vec{e}_t}{\mathrm{d}t}$$

$$\frac{\mathrm{d}\vec{e}_t}{\mathrm{d}t} = \lim_{\Delta t \to 0} \frac{\Delta \vec{e}_t}{\Delta t} = \frac{\mathrm{d}\theta}{\mathrm{d}t} \vec{e}_n = \omega \vec{e}_n = \frac{\mathbf{v}}{R} \vec{e}_n$$

讨论:

 \vec{e}_t \vec{e}_n : 切向和法向单位矢量

(1) $\Delta \vec{e}_t$ 的大小:

当
$$\Delta t \rightarrow 0$$
时, $\Delta \theta \rightarrow 0$,有 $\left|\Delta \vec{e}_t\right| = \Delta \theta \cdot \left|\vec{e}_t\right| = \Delta \theta$ $\left|\vec{e}_t\right| = \Delta \theta$

(2) $\Delta \vec{e}_t$ 的方向:

$$\Delta \vec{e}_t \perp \vec{e}_t \rightarrow \Delta \vec{e}_t // \vec{e}_n$$

$$\Delta \vec{e}_t = \Delta \theta \cdot \vec{e}_n$$

 \vec{e}_t 和x轴夹角: $\theta(t)+90^\circ$

 $\vec{e}_t(t+\Delta t)$ 和x轴夹角: $\theta(t+\Delta t)+90^{\circ}$

$$a_t = \frac{\mathrm{d}\,\boldsymbol{v}}{\mathrm{d}\,t}$$

一 切向加速度

(tangential acceleration)

 a_t 是引起速度大小改变的加速度。

$$a_n = \frac{v^2}{R}$$

一 法向加速度/向心加速度

(normal/centripetal acceleration)

 α_n 是引起速度方向改变的加速度。

思考题:

左图中,加速度 \vec{a}_1 、 \vec{a}_2 、 \vec{a}_3 分别是什么情形?

₫₄情形是否存在?

角量与线量的关系

- 例5:一质点作半径为0.1m的圆周运动,角位移 $\theta = 2 + 4t^2$,求:
 - (1) t=2s时其法向加速度大小 a_n 和切向加速度大小 a_{τ} ;
 - (2) 半径与加速度方向夹角是45度的时刻t₁,并求从计时零点到t₁时刻的角位移。(角度单位rad)

解: 根据角位移 $\theta = 2 + 4t^2$

角速度
$$\omega = \frac{\mathrm{d}\,\theta}{\mathrm{d}\,t} = 8t$$

角加速度
$$\alpha = \frac{\mathrm{d}\omega}{\mathrm{d}t} = 8$$
 (rad/s²)

切向加速度大小 $a_{\tau} = r\alpha = 0.8 \text{m/s}^2$

切向加速度大小 $a_n = \omega^2 r = r(8t)^2$

§ 1.5 运动的相对性

相对运动是指不同参考系中观察同一物体的运动。

仅讨论一参考系 S' 相对另一参考系 S 以速度 \overline{U} 平动时的情形:

 \vec{v} :绝对速度 (absolute velocity) \vec{v}' :相对速度 (relative velocity)

 \vec{u} : 牵连速度 (connected velocity)

$$\vec{v} = \vec{v}' + \vec{u}$$
 称为伽利略速度变换 (Galilean velocity transformation)

加速度关系: 在S'相对于S平动的条件下

$$\vec{a} = \vec{a}' + \vec{a}_0$$

若
$$\vec{u} = \text{const.}$$
 则 $\vec{a}_0 = \frac{d\vec{u}}{dt} = 0$,有 $\vec{a} = \vec{a}'$

例6:

一客车在水平马路上以20m/s的速度向东行驶,而雨滴在空中以10m/s的速度竖直下落.求雨滴相对于车厢的速度的大小和方向.

 $\begin{array}{c|c}
 & & \downarrow \\
 & \downarrow \\$

(2) 以小车为参考系S'

雨滴的速度 $\vec{v} = \vec{v} - \vec{v}_0 = -10\vec{j} - 20\vec{i}$

例7:

一男孩乘坐一铁路平板车,在平直铁路上匀加速行驶,其加速度为*试*,他沿车前进的斜上方抛出一球,设抛球时对车的加速度的影响可以忽略,如果使他不必移动他在车中的位置就能接住球,则抛出的方向与竖直方向的夹角应为多大?

例3: 一男孩乘坐一铁路平板车,在平直铁路上匀加速行驶,其加速度为*a*,他沿车前进的斜上方抛出一球,设抛球时对车的加速度的影响可以忽略,如果使他不必移动他在车中的位置就能接住球,则抛出的方向与竖直方向的夹角应为多大?

解: 抛出后车的位移:

$$\Delta x_1 = v_0 t + \frac{1}{2}at^2$$

球的位移:

$$\Delta x_2 = (v_0 + v_0' \sin \theta)t$$

$$\Delta y_2 = (v_0' \cos \theta)t - \frac{1}{2}gt^2$$

小孩接住球的条件为: $\Delta x_1 = \Delta x_2$

$$\Delta y = 0$$

$$\frac{1}{2}at^2 = v_0'(\sin\theta)t$$

$$\frac{1}{2}gt^2 = v_0'(\cos\theta)t$$

两式相比得:

$$\frac{a}{g} = \mathbf{t}\mathbf{g}\boldsymbol{\theta}$$

$$\boldsymbol{\theta} = \mathbf{t}\mathbf{g}^{-1} \left(\frac{a}{g}\right)$$
51