STUDENT NAME:	
STUDENT ID NUMBER:	for the recently held FINAL EXAMINATION (FALL 2017)
COURSE NAME:	PHYSICS 1
COURSE NUMBER:	MSC1021
EXAMINATION DATE:	TIME:
EXAMINATION DURATION:	90 Minutes
ADDITIONAL MATERIALS ALLOWED TO USE:	Own brain, own memory and logics. CALCULATORS ARE ALLOWED.
SPECIAL INSTRUCTIONS:	No Cheating and Good Luck!

Please do not open the examination paper until directed to do so.

READ INSTRUCTIONS FIRST:

Desks should be free from all unnecessary items (books, notes, technology, food, water, clothes);

Use of any electronic device (Phone, iPod, iPad, laptop) is not allowed during the examination;

Cheating, talking to fellow students, singing, turning back are not allowed;

Write your Name (capital letters), ID number and Department name in each page of your examination paper;

Final answers must be written by only blue or black, non-erasable pen. Do not use highlighters or correction pen;

All answers should be written in the space provided for each question, unless specified the other way;

If additional space is required, you should notify Proctors;

If you have a problem please raise your hand and wait quietly for a Proctor;

You are not allowed to leave the examination room until you submit the examination papers.

CTUDENT NAME		****	
STUDENT NAME:	- п		
STUDENT ID NUMBER:		DEPARTMENT:	***************************************
Important: Please, write your solurite your final answers after the backside of pages for your internafter the word "Answer". There	e word "Answer", given in the mediate calculations <i>etc</i> , <u>but y</u>	last line of boxe ou have to write	es. You can use the
		(Total: 40 Points	s, Obtained:)
[1] A block whose mass m $k=80$ N/m . The block is put $x=0$ cm on a frictionless sufrequency (w) , the frequency maximum speed (v_m) (in a block (in m/s^2). Finally despring-block system.	ulled a distance $x=10 cm$ urface and released from ency (f) , the period (T) , m/s) and maximum acc	from its equivers at $t=0$ s. the magnitude relevation (a_r)	ilibrium position at Find the angular des of the n) of the oscillating
spring-block system.		(Max: 3 Point	ts, Obtained:
$x = x_m \cdot \omega_s(\omega t + \varphi)$ $x = 0.1 \cdot \omega_s(\omega t)$ $R = 0.628 s. f = \frac{1}{P} = \omega$ $\omega = 2\pi I \cdot f = 6.28 \cdot 1.$ $V_{max} = \omega \cdot X_m = 10.$ $\alpha_{max} = \omega^2 \cdot X_m = 100.$	$59 \frac{\text{rad}}{\text{5}} \approx 10 \frac{\text{rad}}{\text{5}}$ $0.1 \frac{\text{m/s}}{\text{5}} = 1 \frac{\text{m/s}}{\text{5}}$	$\frac{0.8 \text{kg}'}{80 \text{N/m}} = \frac{0.8 \text{kg}'}{80 \text{N/m}} $	$0=0.$ $6.28 \cdot \frac{1}{10} = 0.62$ $1) = 0.1 \cdot \omega s (10)$ accement functor spring-block sy
Answer: $\omega = 10 \frac{\text{rad}}{\text{s}}$, f = 1.6 Hz, 7 amax = 10 m/sz,	$\int_{\infty}^{\infty} 0.6 s$ $x(t) = 0$, 0.1-ωs(10-t)
[2] Two gliders move tow frictionless. Glider A has a gliders move with an initia with a final velocity whos the glider A?	a mass of 0.5 kg , and glid speed of $2 m/s$. After the	der B has a n ney collide, g	nass of 0.3 kg ; both lider B moves away

STUDENT NAME:	
STUDENT ID NUMBER:	DEPARTMENT:
$v_{A,l,x} = 2.0 \text{ m/s}$ $v_{B,l,x} = -2.0 \text{ m/s}$ $m_A = 0.50 \text{ kg}$ $m_B = 0.30 \text{ kg}$ (a) Before collision $v_{A,l,x} = v_{B,l,x} = 2.0 \text{ m/s}$ (b) Collision $v_{A,l,x} = v_{B,l,x} = 2.0 \text{ m/s}$	Let us write a total momentum conservation law for X axis: P: = Px where i and f stand for initial and final total momenta, respective initial and final total momenta, respective Pix = MAVAi + MB·VBi } Pfx = MA·VAi + MB·VBi } VAF = MA·VAi + MB·VBi - MB·VBF WAF = 0.5 kg (2 m/s) + 0.3 kg (-2 m/s) - 0.3 kg (2 m/s) 0.5 kg VAF = -0.4 m/s
Answer: $V_{Af} = -0.4$	m/s

[3] A rocket is launched from Earth (mass M_E , radius R_E) with velocity v_0 , and reaches the radial distance r = 6 R_E with velocity $v_0/10$. a) Express v_0 in terms of M_E and R_E . b) What would be the maximum height (h_{max}) that the rocket in the above problem could reach if launched vertically?

(Max: 4 Points, Obtained:

a) According to the Law of enservation of mechanical energy:
$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2$$

STUDENT NAME:
STUDENT ID NUMBER: DEPARTMENT:
b) At the maximum height how the velocity will be
Zero. A coording to the Law of conservation of Energy:
MVO GMEM O GMEM
2 RE hmax
GME = GME - VO F GAL GAL
max RE 2 hmax = (1.3) GALE
$\frac{1}{1} = \frac{1}{2} (1 - 0.845) \Rightarrow h = 6.45P$
hmax RE (1-0.843) => hmax 6.45 RE
Answer: $h_{\text{max}} = 6.45 R_{\text{E}}$

[4] Spring with a spring constant k = 1 N/m and an attached mass m oscillate on a smooth (frictionless) horizontal table. When the mass is at position $x_1 = 0.1$ m its velocity $v_1 = -2$ m/s, and at the position $x_2 = -0.2$ m it has velocity $v_2 = 1$ m/s. Find the mass m (in kg) and the Amplitude (in m) of the motion.

(Max: 5 Points, Obtained:____)

Ehery y conservation requires that
$$E = mV^2 + KX^2$$

remains constant.
Thus $mV_1^2 + KX_1^2 = mV_2^2 + KX_2^2$
 $\Rightarrow m = K(X_1^2 - X_1^2)/(V_1^2 - V_2^2)$
 $m = L \cdot ((-0.2)^2 - (0.1)^2)/((-2)^2 - 1^2) kg$
 $\Rightarrow m = 0.09 kg$ can be found by setting
 $V_2 = 0$, $x_2 = A$, so that
 $KA^2 = mV_1^2 + KX_1^2$
 $\Rightarrow A = \sqrt{mV_1^2 + KX_1^2} = \sqrt{0.09 \cdot (-2)^2 + 0.09 \cdot (0.1)^2}$
 $\Rightarrow A = 0.6 m$
Answer: $m = 0.09 kg$; $A = 0.6 m$

STUDENT NAME:	
STUDENT ID NUMBER:	DEPARTMENT:

[5] A mass m = 0.5 kg is attached to a string and whirled (rotated) in a vertical circle at a constant speed. The radius of the circle is r = 3 m. Calculate the minimum speed v_{min} required to keep the string taut (tight). You can use g=9.8 m/s^2

m/s^2 .	
TTO When the string makes	(Max: 3 Points, Obtained:)
the entripetal oforce is	T+mg. cost, this must be constant on. so the minimum tension T
in uniform circular motion	on. 58 the minimum tension T $\Rightarrow \theta = 0$, i.e., at the highest
point. Here I + mg = mV	. To keep the string taut
requires T>0, i.e., my > mg	, i.e., V2>rg or
V>Vr.g or V>V3m.g.	8m = 5.4 m/s > Vmin = 5.4 m/s
the state of the s	30
Answer: Vmin = 5.4 m/s	

[6] A ball with mass m_l , having a speed \mathbf{v} , collides with a second ball, which is at rest. After the completely elastic collision, the ball with mass m_l moves with a speed $\mathbf{v}/2$ along the direction, perpendicular to its initial direction (i.e. the ball gets scattered by 90°). Find the mass of the second ball in terms of m_l .

$V_{ii} = V$	V2i = 0	(Max: 5 Points, Obtained:)
before willision:> @	(m ₂)	
Clar callistan	Nyf=>	[0
after collision: ->	(m ₁)	
	(M2) V25	1
	10	7
The Law of Conservation o	f Linear,	Momentum along the
The Law of Conservation o X and y axes: (1) m2.V	= M2. V2.5	ind (x axis)
(2) O =	my V -	mz.Vz. wso (y axis)
$(3) m_1 \cdot V =$	$M_L \cdot \left(\frac{V}{2}\right)$	+ mz.Vz Conservation of kinetic
2	2	T _ z Cenergy for
		completely elastic
Answer:		colliston)

[7] The disk is rotating about its central axis like a merry-go-round. The angular position $\theta(t)$ of a reference line on the disk is given by $\theta(t)=-1-2t+5t^2$, with t in seconds and θ in radians. Determine the angular velocity function w(t) and angular acceleration function $\alpha(t)$ for the reference line. Calculate the values of $\theta(t)$ (in rad/s), w(t) (in rad/s), and $\alpha(t)$ (in rad/s²) at t=5 s.

(Max: 3 Points, Obtained:

Perferent $\omega(t) = \theta'(t) = -2 + 10 \cdot t$ $\omega(t) = \omega'(t) = 10$ $\omega(t) = 5s = -1 - 2 \cdot 5 + 5 \cdot 5 \quad \text{rad} = 114 \text{ radians}$ $\omega(t) = 5s = 10 \quad \frac{\text{rad}}{\text{s}^{2}}$ Answer: $\omega(t) = -2 + 10 \cdot t$; $\omega(t) = 10$; $\Delta(t = 5s) = 114 \quad \text{radians}; \quad \omega(t = 5s) = 48 \quad \text{rad}$

 $\mathcal{L}(t=5s)=10 \frac{rad}{s2}$

6

STUDENT NAME:		
STUDENT ID NUMBER:	DEPARTMENT:	

Answer: $\omega(t) = -2 + 10 t$; $\omega(t) = 10$; $\theta(t=5s) = 114$ radians; $\omega(t=5s) = 48$ rad $\omega(t=5s) = 10$ rad $\omega(t=5s) = 10$

[8] String fixed at both ends is $10 \, m$ long ($L=10 \, m$) and has a mass of $0.150 \, kg$. It is subjected to a tension force $T=100 \, N$ and set oscillating. a) What is the speed (v) of the waves on the string? b) What is the longest possible wavelength (λ) for a standing wave? c) Find the frequency (f) corresponding to this longest possible wavelength (λ) for a standing wave.

(Max: 4 Points, Obtained: _____)

a) the wave speed $V = \sqrt{T}$, T = tension for a, $\mu = m = tineor$ $V = \sqrt{T \cdot L} = \sqrt{\frac{100N \cdot 10m}{0.150 \, \text{kg}}} = \sqrt{6666.67} \, \text{M/s} \approx 82 \, \text{m/s}$ b) The bongest possible wavelength λ for a standing wave is related to the length of the string by $L = \frac{\lambda}{2}$, so $\lambda = 2L = 2 \cdot 10m = 20m$ c) The corresponding frequency is $f = \frac{V}{\lambda} = \frac{(82 \, \text{m/s})}{(20 \, \text{m})} \approx 4.1 \, \text{Hz}$ Answer: a) $V = 82 \, \text{m/s}$; b) $\lambda = 20 \, \text{m}$; c) $f = 4.1 \, \text{Hz}$.

STUDENT NAME:		
STUDENT ID NUMBER:	DEPARTMENT:	

[9] Two blocks with masses $m_1=5$ kg and $m_2=7$ kg are attached by a string, as shown in the figure below, over a pulley with mass M=2.00 kg. The pulley, which turns on a frictionless axle, is a hollow cylinder with radius r=0.05 m over which the string moves without slipping. The horizontal surface has coefficient of kinetic friction μ_k =0.350. Find the speed of the system when the block of mass m_2 has dropped 2.0 m. The moment of inertia of a hollow cylinder is $I = M*r^2$. (g=9.8 m/s². Hint: consider the work-energy theorem).

or 0 = (K1 - K2i) + (K2 - K2i) + (Krot - Krot i) + (Uf-Vi) or Kif+Kif+Krotf+Uf=Kii+Kzi+Kroti+Vi, which is

the Law of conservation of mechanical energy.