P-adic Borel hyperbolicity of A_g

Xinwen Zhu

Stanford University

PKU Mathematics Forum August 2, 2023

Theorem (Fundamental theorem of algebra)

Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant polynomial function. Then $f(\mathbb{C}) = \mathbb{C}$.

Theorem (Fundamental theorem of algebra)

Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant polynomial function. Then $f(\mathbb{C}) = \mathbb{C}$.

Theorem (Little Picard theorem)

Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Then $\sharp (\mathbb{C} - f(\mathbb{C})) \leq 1$.

Theorem (Fundamental theorem of algebra)

Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant polynomial function. Then $f(\mathbb{C}) = \mathbb{C}$.

Theorem (Little Picard theorem)

Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Then $\sharp (\mathbb{C} - f(\mathbb{C})) \leq 1$.

Now, for $z_0 \in \mathbb{C}$ and $r \in \mathbb{R}_{>0}$, let

$$D(z_0, r) = \{z \in \mathbb{C} \mid |z - z_0| < r\}, \quad D(z_0, r)^{\times} = D(z_0, r) - \{z_0\}.$$

Theorem (Fundamental theorem of algebra)

Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant polynomial function. Then $f(\mathbb{C}) = \mathbb{C}$.

Theorem (Little Picard theorem)

Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Then $\sharp (\mathbb{C} - f(\mathbb{C})) \leq 1$.

Now, for $z_0 \in \mathbb{C}$ and $r \in \mathbb{R}_{>0}$, let

$$D(z_0, r) = \{z \in \mathbb{C} \mid |z - z_0| < r\}, \quad D(z_0, r)^{\times} = D(z_0, r) - \{z_0\}.$$

Theorem (Great Picard theorem)

Let $f: D(0,r)^{\times} \to \mathbb{C}$ be a holomorphic function with essential singularity at 0, then $\sharp(\mathbb{C} - f(D(0,r)^{\times})) \leq 1$.

Note that the exponential function $\exp:\mathbb{C}\twoheadrightarrow\mathbb{C}^\times:=\mathbb{C}-\{0\}$ shows that Picard's theorems are sharp.

Recall the Riemann sphere, also known as 1-dim. projective space, is

$$\mathbb{P}^1 = \mathbb{C} \cup \{\infty\} = (\mathbb{C}^2 - \{(0,0)\})/(z_1, z_2) \sim (\lambda z_1, \lambda z_2).$$

Recall the Riemann sphere, also known as 1-dim. projective space, is

$$\mathbb{P}^1=\mathbb{C}\cup\{\infty\}=(\mathbb{C}^2-\{(0,0)\})/(z_1,z_2)\sim(\lambda z_1,\lambda z_2).$$

Picard's theorems are equivalent to

Theorem

- **1** Every holomorphic map $f: \mathbb{C} \to \mathbb{P}^1 \{0, 1, \infty\}$ is constant.
- ② Every holomorphic map $f: D(0,r)^{\times} \to \mathbb{P}^1 \{0,1,\infty\}$ extends to a holomorphic map $\widetilde{f}: D(0,r) \to \mathbb{P}^1$.

Recall the Riemann sphere, also known as 1-dim. projective space, is

$$\mathbb{P}^1=\mathbb{C}\cup\{\infty\}=(\mathbb{C}^2-\{(0,0)\})/(z_1,z_2)\sim(\lambda z_1,\lambda z_2).$$

Picard's theorems are equivalent to

Theorem

- **1** Every holomorphic map $f: \mathbb{C} \to \mathbb{P}^1 \{0, 1, \infty\}$ is constant.
- **2** Every holomorphic map $f: D(0,r)^{\times} \to \mathbb{P}^1 \{0,1,\infty\}$ extends to a holomorphic map $\widetilde{f}: D(0,r) \to \mathbb{P}^1$.

A Riemann surface Σ is called hyperbolic if it can be uniformized by D(0,1), i.e. \exists a holomorphic covering map $D(0,1) \to \Sigma$.

Recall the Riemann sphere, also known as 1-dim. projective space, is

$$\mathbb{P}^1=\mathbb{C}\cup\{\infty\}=(\mathbb{C}^2-\{(0,0)\})/(z_1,z_2)\sim(\lambda z_1,\lambda z_2).$$

Picard's theorems are equivalent to

Theorem

- **1** Every holomorphic map $f: \mathbb{C} \to \mathbb{P}^1 \{0, 1, \infty\}$ is constant.
- **2** Every holomorphic map $f: D(0,r)^{\times} \to \mathbb{P}^1 \{0,1,\infty\}$ extends to a holomorphic map $\widetilde{f}: D(0,r) \to \mathbb{P}^1$.

A Riemann surface Σ is called hyperbolic if it can be uniformized by D(0,1), i.e. \exists a holomorphic covering map $D(0,1) \to \Sigma$. E.g.

- $\mathbb{P}^1 \{0, 1, \infty\};$
- Compact Riemann surfaces of genus $g \ge 2$.

Recall the Riemann sphere, also known as 1-dim. projective space, is

$$\mathbb{P}^1=\mathbb{C}\cup\{\infty\}=(\mathbb{C}^2-\{(0,0)\})/(z_1,z_2)\sim(\lambda z_1,\lambda z_2).$$

Picard's theorems are equivalent to

Theorem

- **1** Every holomorphic map $f: \mathbb{C} \to \mathbb{P}^1 \{0, 1, \infty\}$ is constant.
- **2** Every holomorphic map $f: D(0,r)^{\times} \to \mathbb{P}^1 \{0,1,\infty\}$ extends to a holomorphic map $\widetilde{f}: D(0,r) \to \mathbb{P}^1$.

A Riemann surface Σ is called hyperbolic if it can be uniformized by D(0,1), i.e. \exists a holomorphic covering map $D(0,1) \to \Sigma$. E.g.

- $\mathbb{P}^1 \{0, 1, \infty\};$
- Compact Riemann surfaces of genus $g \ge 2$.

The above form of Picard's theorem holds for all hyperbolic Riemann surfaces.

A complex algebraic variety is a space *locally* defined as the set of zeros of a system of polynomial equations in \mathbb{C}^n . E.g.

A complex algebraic variety is a space *locally* defined as the set of zeros of a system of polynomial equations in \mathbb{C}^n . E.g.

- Affine *n*-space \mathbb{C}^n , also denoted by \mathbb{A}^n .
- $\mathbb{C}^{\times} = \{(x,y) \in \mathbb{C}^2 \mid xy = 1\}$, also denoted by \mathbb{G}_m .
- (Partial) flag varieties $\mathcal{F}\ell$ parameterizing chains of subspaces in \mathbb{C}^n with given dimensions. A special case is the projective n-space $\mathbb{P}^n = (\mathbb{C}^{n+1} \{(0, \dots, 0)\})/\mathbb{G}_m$, parameterizing lines in \mathbb{C}^{n+1} .
- $\Sigma \setminus \{z_1, \dots, z_r\}$ with Σ compact Riemann surfaces, called algebraic curves. E.g. $(\mathbb{C} \Lambda)/\Lambda \cong \{(x, y) \in \mathbb{C}^2 \mid 4y^2 = x^3 g_2x g_3\}$.
- Abelian varieties $A = \mathbb{C}^n/\Lambda$ by certain lattices.

A complex algebraic variety is a space *locally* defined as the set of zeros of a system of polynomial equations in \mathbb{C}^n . E.g.

- Affine *n*-space \mathbb{C}^n , also denoted by \mathbb{A}^n .
- $\mathbb{C}^{\times} = \{(x,y) \in \mathbb{C}^2 \mid xy = 1\}$, also denoted by \mathbb{G}_m .
- (Partial) flag varieties $\mathcal{F}\ell$ parameterizing chains of subspaces in \mathbb{C}^n with given dimensions. A special case is the projective n-space $\mathbb{P}^n = (\mathbb{C}^{n+1} \{(0,\ldots,0)\})/\mathbb{G}_m$, parameterizing lines in \mathbb{C}^{n+1} .
- $\Sigma \setminus \{z_1, \dots, z_r\}$ with Σ compact Riemann surfaces, called algebraic curves. E.g. $(\mathbb{C} \Lambda)/\Lambda \cong \{(x, y) \in \mathbb{C}^2 \mid 4y^2 = x^3 g_2x g_3\}$.
- Abelian varieties $A = \mathbb{C}^n/\Lambda$ by certain lattices.

On the other hand, D(0, r) and $D(0, r)^{\times}$ are not algebraic.

A complex algebraic variety is a space *locally* defined as the set of zeros of a system of polynomial equations in \mathbb{C}^n . E.g.

- Affine *n*-space \mathbb{C}^n , also denoted by \mathbb{A}^n .
- $\mathbb{C}^{\times} = \{(x,y) \in \mathbb{C}^2 \mid xy = 1\}$, also denoted by \mathbb{G}_m .
- (Partial) flag varieties $\mathcal{F}\ell$ parameterizing chains of subspaces in \mathbb{C}^n with given dimensions. A special case is the projective n-space $\mathbb{P}^n = (\mathbb{C}^{n+1} \{(0,\ldots,0)\})/\mathbb{G}_m$, parameterizing lines in \mathbb{C}^{n+1} .
- $\Sigma \setminus \{z_1, \dots, z_r\}$ with Σ compact Riemann surfaces, called algebraic curves. E.g. $(\mathbb{C} \Lambda)/\Lambda \cong \{(x, y) \in \mathbb{C}^2 \mid 4y^2 = x^3 g_2x g_3\}$.
- Abelian varieties $A = \mathbb{C}^n/\Lambda$ by certain lattices.

On the other hand, D(0, r) and $D(0, r)^{\times}$ are not algebraic.

The notion of algebraic varieties makes sense by replacing $\mathbb C$ by any field k. In addition, if $k \to k'$ is a field extension, an algebraic variety over k gives an algebraic variety over k'.

Polynomial/algebraic maps between algebraic varieties induce holomorphic maps between complex analytic spaces. It is natural to ask the converse: which holomorphic maps between complex analytic spaces are induced from algebraic maps between algebraic varieties.

Polynomial/algebraic maps between algebraic varieties induce holomorphic maps between complex analytic spaces. It is natural to ask the converse: which holomorphic maps between complex analytic spaces are induced from algebraic maps between algebraic varieties.

Theorem (Chow)

Every closed analytic subspaces in \mathbb{P}^n is algebraic.

Polynomial/algebraic maps between algebraic varieties induce holomorphic maps between complex analytic spaces. It is natural to ask the converse: which holomorphic maps between complex analytic spaces are induced from algebraic maps between algebraic varieties.

Theorem (Chow)

Every closed analytic subspaces in \mathbb{P}^n is algebraic.

The great Picard theorem and Chow's theorem together $(+\cdots)$ imply

Theorem

Every holomorphic map $f: S \to X$ from an algebraic variety to a hyperbolic algebraic curve is algebraic.

Polynomial/algebraic maps between algebraic varieties induce holomorphic maps between complex analytic spaces. It is natural to ask the converse: which holomorphic maps between complex analytic spaces are induced from algebraic maps between algebraic varieties.

Theorem (Chow)

Every closed analytic subspaces in \mathbb{P}^n is algebraic.

The great Picard theorem and Chow's theorem together $(+\cdots)$ imply

Theorem

Every holomorphic map $f: S \to X$ from an algebraic variety to a hyperbolic algebraic curve is algebraic.

This algebraicity theorem in turn implies the little Picard theorem. (Hint: if both $f: \mathbb{C} \to X$ and $f \circ \exp$ are polynomial maps, then f is constant.)

The notion of hyperbolicity for higher dimensional algebraic varieties has connections with different branches of mathematics: complex analysis, differential geometry, algebraic geometry and diophantine geometry.

The notion of hyperbolicity for higher dimensional algebraic varieties has connections with different branches of mathematics: complex analysis, differential geometry, algebraic geometry and diophantine geometry.

Definition

A complex algebraic variety is called Brody hyperbolic if every holomorphic map $f: \mathbb{C} \to X$ is constant.

The notion of hyperbolicity for higher dimensional algebraic varieties has connections with different branches of mathematics: complex analysis, differential geometry, algebraic geometry and diophantine geometry.

Definition

A complex algebraic variety is called Brody hyperbolic if every holomorphic map $f: \mathbb{C} \to X$ is constant.

When X is compact, this is equivalent to the so-called Kobayashi hyperbolicity, defined using metric and distance.

The notion of hyperbolicity for higher dimensional algebraic varieties has connections with different branches of mathematics: complex analysis, differential geometry, algebraic geometry and diophantine geometry.

Definition

A complex algebraic variety is called Brody hyperbolic if every holomorphic map $f: \mathbb{C} \to X$ is constant.

When X is compact, this is equivalent to the so-called Kobayashi hyperbolicity, defined using metric and distance.

Conjecture (Green-Griffith-Lang)

Assume that X is compact. Then TFAE:

- X is Brody hyperbolic;
- Every closed subvariety of X is of general type;
- There is no non-constant rational map from an abelian variety to X.

Let D be a bounded symmetric domain in a complex vector space, also known as hermitian symmetric domain. It is of the form

$$D = G/K$$

where G is the group of holomorphic automorphism of D, which is a real (semisimple) Lie group and K is a maximal compact subgroup of G.

Let D be a bounded symmetric domain in a complex vector space, also known as hermitian symmetric domain. It is of the form

$$D = G/K$$

where G is the group of holomorphic automorphism of D, which is a real (semisimple) Lie group and K is a maximal compact subgroup of G. E.g.

- $D(0,1) \cong \mathfrak{H} = \{z \in \mathbb{C} \mid \mathrm{Im} z > 0\} \cong \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2;$
- $\bullet \ \mathfrak{H}_g = \{Z \in M_g(\mathbb{C}) \mid Z = Z^T, \mathrm{Im} Z > 0\} \cong \mathrm{Sp}_{2g}(R)/\mathrm{U}_g.$

Let D be a bounded symmetric domain in a complex vector space, also known as hermitian symmetric domain. It is of the form

$$D = G/K$$

where G is the group of holomorphic automorphism of D, which is a real (semisimple) Lie group and K is a maximal compact subgroup of G. E.g.

- $D(0,1) \cong \mathfrak{H} = \{z \in \mathbb{C} \mid \mathrm{Im} z > 0\} \cong \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2;$
- $\bullet \ \mathfrak{H}_g = \{Z \in M_g(\mathbb{C}) \mid Z = Z^T, \mathrm{Im} Z > 0\} \cong \mathrm{Sp}_{2g}(R)/\mathrm{U}_g.$

There is a notion of arithmetic subgroup $\Gamma \subset G$. E.g., $\mathrm{SL}_2(\mathbb{Z}) \subset \mathrm{SL}_2(\mathbb{R})$.

Let D be a bounded symmetric domain in a complex vector space, also known as hermitian symmetric domain. It is of the form

$$D = G/K$$

where G is the group of holomorphic automorphism of D, which is a real (semisimple) Lie group and K is a maximal compact subgroup of G. E.g.

- $D(0,1) \cong \mathfrak{H} = \{z \in \mathbb{C} \mid \mathrm{Im} z > 0\} \cong \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2;$
- $\bullet \ \mathfrak{H}_g = \{Z \in M_g(\mathbb{C}) \mid Z = Z^T, \mathrm{Im} Z > 0\} \cong \mathrm{Sp}_{2g}(R)/\mathrm{U}_g.$

There is a notion of arithmetic subgroup $\Gamma \subset G$. E.g., $\mathrm{SL}_2(\mathbb{Z}) \subset \mathrm{SL}_2(\mathbb{R})$.

Theorem (Baily-Borel)

For an arithmetic subgroup $\Gamma \subset G$, $X = \Gamma \backslash D$ has a natural algebraic variety structure. Indeed, X admits a canonical compactification X^* , usually called the Bailey-Borel (or minimal) compactification of X, and X^* can be embedded into some projective space \mathbb{P}^n .

• If D = D(0,1), we recover many (but not all) hyperbolic algebraic curves.

- If D = D(0,1), we recover many (but not all) hyperbolic algebraic curves.
- For appropriate $\Gamma \subset \operatorname{Sp}_{2g}(\mathbb{R})$, the space

$$A_g := \Gamma \backslash \mathfrak{H}_g$$

can be identified as the moduli space of principally polarized abelian variety (with sufficiently small level). This is an algebraic variety defined over $\mathbb Q$.

- If D = D(0,1), we recover many (but not all) hyperbolic algebraic curves.
- For appropriate $\Gamma \subset \operatorname{Sp}_{2g}(\mathbb{R})$, the space

$$A_g := \Gamma \backslash \mathfrak{H}_g$$

can be identified as the moduli space of principally polarized abelian variety (with sufficiently small level). This is an algebraic variety defined over \mathbb{Q} .

This means that a map $f: S \to A_g$ corresponds to a family of abelian varieties $A \to S$.

- If D = D(0,1), we recover many (but not all) hyperbolic algebraic curves.
- For appropriate $\Gamma \subset \operatorname{Sp}_{2g}(\mathbb{R})$, the space

$$A_g := \Gamma \backslash \mathfrak{H}_g$$

can be identified as the moduli space of principally polarized abelian variety (with sufficiently small level). This is an algebraic variety defined over \mathbb{Q} .

This means that a map $f: S \to A_g$ corresponds to a family of abelian varieties $A \to S$.

• For general D and Γ congruent subgroup of G, the space $\Gamma \setminus D$ is a (connected component of a) Shimura variety.

It follows immediately from Liouville's theorem that $\Gamma \backslash D$ is Brody hyperbolic.

It follows immediately from Liouville's theorem that $\Gamma \backslash D$ is Brody hyperbolic. It is much more difficult to previous the analogous of great Picard theorem for X.

Theorem (Borel)

Every holomorphic map $f: D(0,r)^{\times} \to X$ extends to a holomorphic map $f: D(0,r) \to X^*$.

It follows immediately from Liouville's theorem that $\Gamma \backslash D$ is Brody hyperbolic. It is much more difficult to previous the analogous of great Picard theorem for X.

Theorem (Borel)

Every holomorphic map $f: D(0,r)^{\times} \to X$ extends to a holomorphic map $f: D(0,r) \to X^*$.

Corollary

Every holomorphic map $f: S \to X$ from an algebraic variety (over \mathbb{C}) is algebraic.

It follows immediately from Liouville's theorem that $\Gamma \backslash D$ is Brody hyperbolic. It is much more difficult to previous the analogous of great Picard theorem for X.

Theorem (Borel)

Every holomorphic map $f: D(0,r)^{\times} \to X$ extends to a holomorphic map $f: D(0,r) \to X^*$.

Corollary

Every holomorphic map $f: S \to X$ from an algebraic variety (over \mathbb{C}) is algebraic.

Corollary

The algebraic structure on X is unique.

This is extremely important for the arithmetic theory of Shimura varieties.

A little bit about *p*-adics

There are different absolute values $|\cdot|_{\nu}$ of \mathbb{Q} :

• $|\cdot|_{\infty}$ = the Archimedean absolute value: $|\frac{m}{n}|_{\infty} = \max\{\frac{m}{n}, -\frac{m}{n}\};$

A little bit about p-adics

There are different absolute values $|\cdot|_{\nu}$ of \mathbb{Q} :

- $\bullet \ |\cdot|_{\infty} = \text{the Archimedean absolute value:} \ |\tfrac{m}{n}|_{\infty} = \max\{\tfrac{m}{n}, -\tfrac{m}{n}\};$
- $|\cdot|_p$ = the p-adic absolute value: if $\frac{m}{n} = p^{\nu} \frac{m_1}{n_1}$ with $(m_1 n_1, p) = 1$, then $|\frac{m}{n}|_p = \frac{1}{p^{\nu}}$.

There are different absolute values $|\cdot|_v$ of \mathbb{Q} :

- $\bullet \ |\cdot|_{\infty} = \text{the Archimedean absolute value:} \ |\tfrac{m}{n}|_{\infty} = \max\{\tfrac{m}{n}, -\tfrac{m}{n}\};$
- $|\cdot|_p$ = the p-adic absolute value: if $\frac{m}{n} = p^{\nu} \frac{m_1}{n_1}$ with $(m_1 n_1, p) = 1$, then $|\frac{m}{n}|_p = \frac{1}{p^{\nu}}$.

They satisfy triangle inequalities: for $a,b\in\mathbb{Q}$,

$$|a+b|_{v}\leq |a|_{v}+|b|_{v},$$

There are different absolute values $|\cdot|_{\nu}$ of \mathbb{Q} :

- $\bullet \ |\cdot|_{\infty} = \text{the Archimedean absolute value:} \ |\tfrac{m}{n}|_{\infty} = \max\{\tfrac{m}{n}, -\tfrac{m}{n}\};$
- $|\cdot|_{\rho}=$ the p-adic absolute value: if $\frac{m}{n}=p^{\nu}\frac{m_1}{n_1}$ with $(m_1n_1,p)=1$, then $|\frac{m}{n}|_{\rho}=\frac{1}{p^{\nu}}$.

They satisfy triangle inequalities: for $a, b \in \mathbb{Q}$,

$$|a+b|_{\nu} \le |a|_{\nu} + |b|_{\nu}, \quad |a+b|_{p} \le \max\{|a|_{p}, |b|_{p}\}.$$

There are different absolute values $|\cdot|_v$ of \mathbb{Q} :

- $\bullet \ |\cdot|_{\infty} = \text{the Archimedean absolute value:} \ |\tfrac{m}{n}|_{\infty} = \max\{\tfrac{m}{n}, -\tfrac{m}{n}\};$
- $|\cdot|_{\rho}=$ the p-adic absolute value: if $\frac{m}{n}=p^{\vee}\frac{m_1}{n_1}$ with $(m_1n_1,p)=1$, then $|\frac{m}{n}|_{\rho}=\frac{1}{p^{\vee}}$.

They satisfy triangle inequalities: for $a, b \in \mathbb{Q}$,

$$|a+b|_{\nu} \le |a|_{\nu} + |b|_{\nu}, \quad |a+b|_{p} \le \max\{|a|_{p}, |b|_{p}\}.$$

The completion of \mathbb{Q} with respect to $|\cdot|_v$ is \mathbb{Q}_v , which is the set of Cauchy sequences $(a_n)_n$ in \mathbb{Q} (w.r.t. $|\cdot|_v$) modulo null sequence.

There are different absolute values $|\cdot|_{\nu}$ of \mathbb{Q} :

- $\bullet \ |\cdot|_{\infty} = \text{the Archimedean absolute value:} \ |\tfrac{m}{n}|_{\infty} = \max\{\tfrac{m}{n}, -\tfrac{m}{n}\};$
- $|\cdot|_{\rho}=$ the p-adic absolute value: if $\frac{m}{n}=p^{\vee}\frac{m_1}{n_1}$ with $(m_1n_1,p)=1$, then $|\frac{m}{n}|_{\rho}=\frac{1}{p^{\vee}}$.

They satisfy triangle inequalities: for $a, b \in \mathbb{Q}$,

$$|a+b|_{\nu} \le |a|_{\nu} + |b|_{\nu}, \quad |a+b|_{\rho} \le \max\{|a|_{\rho}, |b|_{\rho}\}.$$

The completion of \mathbb{Q} with respect to $|\cdot|_v$ is \mathbb{Q}_v , which is the set of Cauchy sequences $(a_n)_n$ in \mathbb{Q} (w.r.t. $|\cdot|_v$) modulo null sequence.

ullet $\mathbb{Q}_{\infty}=\mathbb{R}$, and $\overline{\mathbb{R}}=\mathbb{C}$ is complete, and $\dim_{\mathbb{R}}\mathbb{C}=2$.

There are different absolute values $|\cdot|_{\nu}$ of \mathbb{Q} :

- $\bullet \ |\cdot|_{\infty} = \text{the Archimedean absolute value:} \ |\tfrac{m}{n}|_{\infty} = \max\{\tfrac{m}{n}, -\tfrac{m}{n}\};$
- $|\cdot|_{\rho}=$ the p-adic absolute value: if $\frac{m}{n}=p^{\vee}\frac{m_1}{n_1}$ with $(m_1n_1,p)=1$, then $|\frac{m}{n}|_{\rho}=\frac{1}{p^{\vee}}$.

They satisfy triangle inequalities: for $a, b \in \mathbb{Q}$,

$$|a+b|_{\nu} \le |a|_{\nu} + |b|_{\nu}, \quad |a+b|_{\rho} \le \max\{|a|_{\rho}, |b|_{\rho}\}.$$

The completion of \mathbb{Q} with respect to $|\cdot|_v$ is \mathbb{Q}_v , which is the set of Cauchy sequences $(a_n)_n$ in \mathbb{Q} (w.r.t. $|\cdot|_v$) modulo null sequence.

- ullet $\mathbb{Q}_{\infty}=\mathbb{R}$, and $\overline{\mathbb{R}}=\mathbb{C}$ is complete, and $\dim_{\mathbb{R}}\mathbb{C}=2$.
- \mathbb{Q}_p , $\dim_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p = \infty$. The completion \mathbb{C}_p of $\overline{\mathbb{Q}}_p$ is algebraically closed.

In each case, the absolute value $|\cdot|_{\nu}$ extends uniquely to these fields.

There are several ways to make sense of p-adic plane \mathbb{C}_p as a geometric object.

There are several ways to make sense of p-adic plane \mathbb{C}_p as a geometric object. (Slightly) imprecisely, we may think it as a topological space with a base of topology given by closed disc

$$D^{+}(z_{0},r) = \{z \in \mathbb{C}_{p} \mid |z - z_{0}|_{p} \leq r\}.$$

There are several ways to make sense of p-adic plane \mathbb{C}_p as a geometric object. (Slightly) imprecisely, we may think it as a topological space with a base of topology given by closed disc

$$D^{+}(z_{0},r) = \{z \in \mathbb{C}_{p} \mid |z - z_{0}|_{p} \leq r\}.$$

There are also non-archimedean analogue of open disc

$$D(z_0, r) = \{ z \in \mathbb{C}_p \mid |z - z_0|_p < r \} = \cup_{r' < r} D^+(z_0, r')$$

There are several ways to make sense of p-adic plane \mathbb{C}_p as a geometric object. (Slightly) imprecisely, we may think it as a topological space with a base of topology given by closed disc

$$D^{+}(z_{0},r) = \{z \in \mathbb{C}_{p} \mid |z - z_{0}|_{p} \leq r\}.$$

There are also non-archimedean analogue of open disc

$$D(z_0, r) = \{z \in \mathbb{C}_p \mid |z - z_0|_p < r\} = \bigcup_{r' < r} D^+(z_0, r')$$

There are several ways to make sense of p-adic plane \mathbb{C}_p as a geometric object. (Slightly) imprecisely, we may think it as a topological space with a base of topology given by closed disc

$$D^{+}(z_{0},r) = \{z \in \mathbb{C}_{p} \mid |z - z_{0}|_{p} \leq r\}.$$

There are also non-archimedean analogue of open disc

$$D(z_0, r) = \{ z \in \mathbb{C}_p \mid |z - z_0|_p < r \} = \cup_{r' < r} D^+(z_0, r')$$

• If
$$|a|_p < r$$
, then $D^+(0,r) = D^+(a,r)$;

There are several ways to make sense of p-adic plane \mathbb{C}_p as a geometric object. (Slightly) imprecisely, we may think it as a topological space with a base of topology given by closed disc

$$D^{+}(z_{0},r) = \{z \in \mathbb{C}_{p} \mid |z - z_{0}|_{p} \leq r\}.$$

There are also non-archimedean analogue of open disc

$$D(z_0, r) = \{z \in \mathbb{C}_p \mid |z - z_0|_p < r\} = \bigcup_{r' < r} D^+(z_0, r')$$

- If $|a|_p < r$, then $D^+(0,r) = D^+(a,r)$;
- If $|a|_p = r$, then $D(a, r) \subset D^+(0, r)$;

There are several ways to make sense of p-adic plane \mathbb{C}_p as a geometric object. (Slightly) imprecisely, we may think it as a topological space with a base of topology given by closed disc

$$D^{+}(z_{0},r) = \{z \in \mathbb{C}_{p} \mid |z - z_{0}|_{p} \leq r\}.$$

There are also non-archimedean analogue of open disc

$$D(z_0, r) = \{z \in \mathbb{C}_p \mid |z - z_0|_p < r\} = \bigcup_{r' < r} D^+(z_0, r')$$

- If $|a|_p < r$, then $D^+(0,r) = D^+(a,r)$;
- If $|a|_p = r$, then $D(a, r) \subset D^+(0, r)$;
- The (Berkovich space of) $D(0, r)^{\times}$ is contractible.

"Analytic/holomorphic" functions $\mathcal{O}(D^+(z_0,r))$ on the closed disc are

$$\mathbb{C}_p\langle z\rangle:=\{f(z)=\sum a_i(z-z_0)^i\mid a_i\in\mathbb{C}_p, |a_i|_pr^i\to 0 \text{ as } i\to\infty\}.$$

"Analytic/holomorphic" functions $\mathcal{O}(D^+(z_0,r))$ on the closed disc are

$$\mathbb{C}_p\langle z\rangle:=\{f(z)=\sum a_i(z-z_0)^i\mid a_i\in\mathbb{C}_p, |a_i|_pr^i\to 0 \text{ as } i\to\infty\}.$$

In general, a function on U is analytic if its restriction to every closed disc inside it is analytic.

"Analytic/holomorphic" functions $\mathcal{O}(D^+(z_0,r))$ on the closed disc are

$$\mathbb{C}_{\rho}\langle z\rangle:=\{f(z)=\sum a_i(z-z_0)^i\mid a_i\in\mathbb{C}_{\rho}, |a_i|_{\rho}r^i\to 0 \text{ as } i\to\infty\}.$$

In general, a function on $\it U$ is analytic if its restriction to every closed disc inside it is analytic.

Some pathologies:

• In general, the anti derivative of an analytic function on $D^+(0,r)$ is only an analytic function on a smaller disc.

"Analytic/holomorphic" functions $\mathcal{O}(D^+(z_0,r))$ on the closed disc are

$$\mathbb{C}_{\rho}\langle z\rangle:=\{f(z)=\sum a_i(z-z_0)^i\mid a_i\in\mathbb{C}_{\rho}, |a_i|_{\rho}r^i\to 0 \text{ as } i\to\infty\}.$$

In general, a function on U is analytic if its restriction to every closed disc inside it is analytic.

Some pathologies:

- In general, the anti derivative of an analytic function on $D^+(0,r)$ is only an analytic function on a smaller disc.
- The exponential function $\exp(z) = \sum_{i \geq 0} z^n/n!$ only converges for $|z|_p < \frac{1}{p^{1/(p-1)}}$.

Non-archimedean Picard's theorem

Theorem (non-archimedean little Picard theorem)

Every non-constant analytic function $f: \mathbb{C}_p \to \mathbb{C}_p$ is surjective.

Non-archimedean Picard's theorem

Theorem (non-archimedean little Picard theorem)

Every non-constant analytic function $f: \mathbb{C}_p \to \mathbb{C}_p$ is surjective.

Theorem (non-archimedean great Picard theorem)

Every analytic function $f:D(0,r)^{\times}\to\mathbb{C}_p$ with essential singularity at 0 is surjective.

Non-archimedean Picard's theorem

Theorem (non-archimedean little Picard theorem)

Every non-constant analytic function $f: \mathbb{C}_p \to \mathbb{C}_p$ is surjective.

Theorem (non-archimedean great Picard theorem)

Every analytic function $f:D(0,r)^{\times}\to\mathbb{C}_p$ with essential singularity at 0 is surjective.

As before, we can reformulate the above results as

Theorem

- **1** Every analytic function $\mathbb{C}_p \to \mathbb{C}_p^{\times}$ is constant.
- ② Every analytic function $f: D(0,r)^{\times} \to \mathbb{C}_p^{\times}$ extends to an analytic function $\widetilde{f}: D(0,r) \to \mathbb{P}^1$.
- **3** Every analytic map $S \to \mathbb{G}_m$ from an algebraic curve S is algebraic.

P-adic Brody hyperbolicity

We do not want to claim \mathbb{G}_m to be hyperbolic. For this reason,

Definition (Javanpeykar-Vezzani)

A *p*-adic variety X is called Brody hyperbolic if every analytic map $f:G\to X$ is constant, where G is an algebraic group over \mathbb{C}_p .

P-adic Brody hyperbolicity

We do not want to claim \mathbb{G}_m to be hyperbolic. For this reason,

Definition (Javanpeykar-Vezzani)

A *p*-adic variety X is called Brody hyperbolic if every analytic map $f: G \to X$ is constant, where G is an algebraic group over \mathbb{C}_p .

There is the analogue of GGL conjecture. Instead giving the formulation, we mention some evidences (even for the original GGL conjecture).

P-adic Brody hyperbolicity

We do not want to claim \mathbb{G}_m to be hyperbolic. For this reason,

Definition (Javanpeykar-Vezzani)

A *p*-adic variety X is called Brody hyperbolic if every analytic map $f: G \to X$ is constant, where G is an algebraic group over \mathbb{C}_p .

There is the analogue of GGL conjecture. Instead giving the formulation, we mention some evidences (even for the original GGL conjecture).

Theorem (Cherry, Kawamata, Ueno)

Let K = K with $\operatorname{char} K = 0$. Let X be a closed subvariety of an abelian variety A over K. Then the following are equivalent.

- ① X does not contain the translate of a positive-dimensional abelian subvariety of A.
- 2 Every closed integral subvariety of X is of general type.
- **3** If $K = \mathbb{C}$ or \mathbb{C}_p , the projective variety is Brody hyperbolic.

Main theorem

Theorem (Oswal-Shankar-Z.)

Every analytic map $f: D(0,r)^{\times} \to A_g$ defined over some finite extension K/\mathbb{Q}_p can be extended to an analytic map $\widetilde{f}: D(0,r) \to A_g^*$.

Main theorem

Theorem (Oswal-Shankar-Z.)

Every analytic map $f: D(0,r)^{\times} \to A_g$ defined over some finite extension K/\mathbb{Q}_p can be extended to an analytic map $\widetilde{f}: D(0,r) \to A_g^*$.

Corollary

Every analytic map $f: S \to A_g$ defined over some finite extension K/\mathbb{Q}_p with S an algebraic variety is algebraic.

Corollary

Every analytic map $f: G \to A_g$ defined over some finite extension K/\mathbb{Q}_p with G an algebraic group is constant.

Main theorem

Theorem (Oswal-Shankar-Z.)

Every analytic map $f: D(0,r)^{\times} \to A_g$ defined over some finite extension K/\mathbb{Q}_p can be extended to an analytic map $\widetilde{f}: D(0,r) \to A_g^*$.

Corollary

Every analytic map $f: S \to A_g$ defined over some finite extension K/\mathbb{Q}_p with S an algebraic variety is algebraic.

Corollary

Every analytic map $f: G \to A_g$ defined over some finite extension K/\mathbb{Q}_p with G an algebraic group is constant.

- Our proof requires K/\mathbb{Q}_p as above. Unfortunately, $K=\mathbb{C}_p$ is currently not allowed.
- By some standard arguments, the results hold with A_g replaced by Shimura varieties of abelian type.

The minimal compactification of A_g looks like

$$A_g^* = A_g \sqcup \partial A_g^* = \sqcup_{g' \leq g} A_{g'}.$$

Here $A_{g'}$ could appear in several boundary components and are equipped with appropriate level structures.

The minimal compactification of A_g looks like

$$A_g^* = A_g \sqcup \partial A_g^* = \sqcup_{g' \leq g} A_{g'}.$$

Here $A_{g'}$ could appear in several boundary components and are equipped with appropriate level structures. Such decomposition extend over \mathbb{Z}_p . Then for each $A_{g'},\mathbb{F}_p$, one can consider its tubular neighborhood in A_{g}^*,\mathbb{Q}_p . (These are p-adic analytic spaces, but not algebraic varieties.)

The minimal compactification of A_g looks like

$$A_g^* = A_g \sqcup \partial A_g^* = \sqcup_{g' \leq g} A_{g'}.$$

Here $A_{g'}$ could appear in several boundary components and are equipped with appropriate level structures. Such decomposition extend over \mathbb{Z}_p . Then for each A_{g',\mathbb{F}_p} , one can consider its tubular neighborhood in A_{g,\mathbb{Q}_p}^* . (These are p-adic analytic spaces, but not algebraic varieties.)

E.g. the tubular neighborhood of A_{g,\mathbb{F}_p} is contained in A_{g,\mathbb{Q}_p} , parameterizing those abelian varieties with (potentially) good reduction. It is the rigid analytic variety $\mathcal{A}_g^{\mathrm{rig}}$ associated to the formal completion of A_g/\mathbb{Z}_p (along p=0).

The minimal compactification of A_g looks like

$$A_g^* = A_g \sqcup \partial A_g^* = \sqcup_{g' \leq g} A_{g'}.$$

Here $A_{g'}$ could appear in several boundary components and are equipped with appropriate level structures. Such decomposition extend over \mathbb{Z}_p . Then for each A_{g',\mathbb{F}_p} , one can consider its tubular neighborhood in A_{g,\mathbb{Q}_p}^* . (These are p-adic analytic spaces, but not algebraic varieties.)

E.g. the tubular neighborhood of A_g , \mathbb{F}_p is contained in A_g , \mathbb{Q}_p , parameterizing those abelian varieties with (potentially) good reduction. It is the rigid analytic variety $\mathcal{A}_g^{\mathrm{rig}}$ associated to the formal completion of A_g/\mathbb{Z}_p (along p=0).

Proposition

Every analytic map $D(0,r)^{\times} \to A_g^*$ is contained in one of the above tubular neighborhoods.

The variety A_{g,\mathbb{F}_p} parameterizes abelian varieties (with polarization) over \mathbb{F}_p . It admits a decomposition

$$A_{\mathsf{g},\mathbb{F}_{p}}=\bigsqcup_{\phi}\mathcal{S}_{\phi},$$

where each S_{ϕ} is locally closed and two points $x,y\in A_g(\overline{\mathbb{F}}_p)$ belong to the same S_{ϕ} if the corresponding abelian varieties (with polarization) A_x and A_y are (quasi-)isogenous.

The variety A_{g,\mathbb{F}_p} parameterizes abelian varieties (with polarization) over \mathbb{F}_p . It admits a decomposition

$$A_{\mathsf{g},\mathbb{F}_{p}}=\bigsqcup_{\phi}\mathcal{S}_{\phi},$$

where each S_{ϕ} is locally closed and two points $x,y\in A_g(\overline{\mathbb{F}}_p)$ belong to the same S_{ϕ} if the corresponding abelian varieties (with polarization) A_x and A_y are (quasi-)isogenous.

As before, for each S_ϕ , one can consider its tubular neighborhood $]S_\phi[$ in $\mathcal{A}_g^{\mathrm{rig}}.$

The variety A_{g,\mathbb{F}_p} parameterizes abelian varieties (with polarization) over \mathbb{F}_p . It admits a decomposition

$$A_{g,\mathbb{F}_p} = \bigsqcup_{\phi} S_{\phi},$$

where each S_{ϕ} is locally closed and two points $x,y\in A_g(\overline{\mathbb{F}}_p)$ belong to the same S_{ϕ} if the corresponding abelian varieties (with polarization) A_x and A_y are (quasi-)isogenous.

As before, for each S_ϕ , one can consider its tubular neighborhood $]S_\phi[$ in $\mathcal{A}_g^{\mathrm{rig}}.$

Theorem

Every analytic map $D(0,r)^{\times} \to \mathcal{A}_g^{\mathrm{rig}}$ is contained in one of $]S_{\phi}[$ as above.

The variety A_{g,\mathbb{F}_p} parameterizes abelian varieties (with polarization) over \mathbb{F}_p . It admits a decomposition

$$A_{g,\mathbb{F}_p} = \bigsqcup_{\phi} S_{\phi},$$

where each S_{ϕ} is locally closed and two points $x,y\in A_g(\overline{\mathbb{F}}_p)$ belong to the same S_{ϕ} if the corresponding abelian varieties (with polarization) A_x and A_y are (quasi-)isogenous.

As before, for each S_ϕ , one can consider its tubular neighborhood $]S_\phi[$ in $\mathcal{A}_g^{\mathrm{rig}}.$

Theorem

Every analytic map $D(0,r)^ imes o \mathcal{A}_g^\mathrm{rig}$ is contained in one of $]S_\phi[$ as above.

The proof uses the Tate conjecture for abelian varieties over global function fields.

Fixing a point $x \in]S_{\phi}[$, Rapoport-Zink constructed a uniformzation map (i.e. an analytic map which is a topological covering)

$$RZ_x \rightarrow]S_{\phi}[$$
,

where RZ_x is certain rigid analytic space paramterizing abelian varieties with (quasi-)isogeny to the abelian variety A_x at x.

Fixing a point $x \in]S_{\phi}[$, Rapoport-Zink constructed a uniformzation map (i.e. an analytic map which is a topological covering)

$$RZ_x \to]S_\phi[$$
,

where RZ_x is certain rigid analytic space paramterizing abelian varieties with (quasi-)isogeny to the abelian variety A_x at x. In addition, there exists an analytic map

$$\pi_{GM}: \mathrm{RZ}_{\mathsf{x}} \to \mathcal{F}\ell,$$

called the (Grothendieck-Messing) period map.

Fixing a point $x \in]S_{\phi}[$, Rapoport-Zink constructed a uniformzation map (i.e. an analytic map which is a topological covering)

$$RZ_x \rightarrow]S_{\phi}[$$
,

where RZ_x is certain rigid analytic space paramterizing abelian varieties with (quasi-)isogeny to the abelian variety A_x at x. In addition, there exists an analytic map

$$\pi_{GM}: \mathrm{RZ}_{\mathsf{x}} \to \mathcal{F}\ell,$$

called the (Grothendieck-Messing) period map.

We may summarize the last (and the main) step of the proof as filling out dotted arrows in the following commutative

Cohomology of (algebraic) variety

Let X be a smooth (projective) algebraic variety over a field k (chark=0). There are various cohomology theory attached to X

- $\sigma: k \subset \mathbb{C}$, the singular/Betti cohomology $H_{\mathrm{B}}^*(\sigma X, \mathbb{Z})$;
- The étale cohomology $H^*_{\mathrm{et}}(X_{\overline{k}},\mathbb{Q}_p)$;
- The de Rham cohomology $H^*_{\mathrm{dR}}(X/k)$.

Cohomology of (algebraic) variety

Let X be a smooth (projective) algebraic variety over a field k (chark=0). There are various cohomology theory attached to X

- $\sigma: k \subset \mathbb{C}$, the singular/Betti cohomology $H_{\mathrm{B}}^*(\sigma X, \mathbb{Z})$;
- The étale cohomology $H^*_{\operatorname{et}}(X_{\overline{k}}, \mathbb{Q}_p)$;
- The de Rham cohomology $H^*_{\mathrm{dR}}(X/k)$.

Now let $f: X \to S$ be a family of smooth projective varieties. Then various cohomology theories of $\{X_s\}_s$ also vary in family, giving:

- a \mathbb{Z} -local system on σS ;
- a étale local system on $S_{\rm et}$;
- a vector bundle \mathcal{E} on S with a flat connection (the Gauss-Manin connection), and a decreasing filtration of \mathcal{E} by subbundles Fil^{\bullet} .

Cohomology of (algebraic) variety

Let X be a smooth (projective) algebraic variety over a field k (chark=0). There are various cohomology theory attached to X

- $\sigma: k \subset \mathbb{C}$, the singular/Betti cohomology $H_{\mathrm{B}}^*(\sigma X, \mathbb{Z})$;
- The étale cohomology $H^*_{\operatorname{et}}(X_{\overline{k}}, \mathbb{Q}_p)$;
- The de Rham cohomology $H^*_{\mathrm{dR}}(X/k)$.

Now let $f: X \to S$ be a family of smooth projective varieties. Then various cohomology theories of $\{X_s\}_s$ also vary in family, giving:

- a \mathbb{Z} -local system on σS ;
- a étale local system on $S_{\rm et}$;
- a vector bundle \mathcal{E} on S with a flat connection (the Gauss-Manin connection), and a decreasing filtration of \mathcal{E} by subbundles $\operatorname{Fil}^{\bullet}$.

There are various comparison isomorphisms between different cohomology theories.

Now the uniformization map $RZ_x \to A_g$ corresponds to a family of abelian varieties $A \to RZ_x$,

Now the uniformization map $RZ_x \to A_g$ corresponds to a family of abelian varieties $A \to RZ_x$, whose GM connection is canonically trivial by the theory of crystalline cohomology.

Now the uniformization map $RZ_x \to A_g$ corresponds to a family of abelian varieties $A \to RZ_x$, whose GM connection is canonically trivial by the theory of crystalline cohomology. The variation of the filtration Fil^{\bullet} (on RZ_x) defines the period map $RZ_x \to \mathcal{F}\ell$.

Now the uniformization map $RZ_x \to A_g$ corresponds to a family of abelian varieties $A \to RZ_x$, whose GM connection is canonically trivial by the theory of crystalline cohomology. The variation of the filtration Fil^{\bullet} (on RZ_x) defines the period map $RZ_x \to \mathcal{F}\ell$.

Now we have $D(0,r)^{\times} \to \mathrm{RZ}_{\times} \to \mathcal{F}\ell$. The following theorem, which can be regarded as the p-adic analogue of Schimd's theorem on limit Hodge structure, implies that this map a meromorphic and therefore extends to an analytic map $D(0,r) \to \mathcal{F}\ell$.

Now the uniformization map $RZ_x \to A_g$ corresponds to a family of abelian varieties $A \to RZ_x$, whose GM connection is canonically trivial by the theory of crystalline cohomology. The variation of the filtration Fil^{\bullet} (on RZ_x) defines the period map $RZ_x \to \mathcal{F}\ell$.

Now we have $D(0,r)^{\times} \to RZ_x \to \mathcal{F}\ell$. The following theorem, which can be regarded as the *p*-adic analogue of Schimd's theorem on limit Hodge structure, implies that this map a meromorphic and therefore extends to an analytic map $D(0,r) \to \mathcal{F}\ell$.

Theorem (Diao-Lan-Liu-Zhu)

Let $\mathbb L$ be a de Rham p-adic local system on $D(0,r)^{\times}$, with the associated filtered connection $(\mathcal E,\nabla,\mathrm{Fil}^{\bullet})$. Then $(\mathcal E,\nabla)$ admits a canonical extension (in the sense of Deligne) to a vector bundle $\overline{\mathcal E}$ on D(0,r) with logarithmetic pole. In addition, the filtration Fil^{\bullet} extends to a filtration of $\overline{\mathcal E}$ by vector bundles.

Now the uniformization map $RZ_x \to A_g$ corresponds to a family of abelian varieties $A \to RZ_x$, whose GM connection is canonically trivial by the theory of crystalline cohomology. The variation of the filtration Fil^{\bullet} (on RZ_x) defines the period map $RZ_x \to \mathcal{F}\ell$.

Now we have $D(0,r)^{\times} \to \mathrm{RZ}_{\times} \to \mathcal{F}\ell$. The following theorem, which can be regarded as the *p*-adic analogue of Schimd's theorem on limit Hodge structure, implies that this map a meromorphic and therefore extends to an analytic map $D(0,r) \to \mathcal{F}\ell$.

Theorem (Diao-Lan-Liu-Zhu)

Let $\mathbb L$ be a de Rham p-adic local system on $D(0,r)^{\times}$, with the associated filtered connection $(\mathcal E,\nabla,\operatorname{Fil}^{\bullet})$. Then $(\mathcal E,\nabla)$ admits a canonical extension (in the sense of Deligne) to a vector bundle $\overline{\mathcal E}$ on D(0,r) with logarithmetic pole. In addition, the filtration $\operatorname{Fil}^{\bullet}$ extends to a filtration of $\overline{\mathcal E}$ by vector bundles.

That $D(0,r) \to \mathcal{F}\ell$ lifts to $D(0,r) \to \mathrm{RZ}_x$ uses some theory of crystalline representations.

Thank You!

