# **Cloud Engineer Assessment Task 1**

### **Problem Statement:**

### **Overview**

Deploy a Python web application in a Cloud-based Kubernetes solution.

## **Application Functionality**

The python web application should just have a simple static page that displays the values stored in the environment variables "ATC\_USERNAME" & "ATC\_PASSWORD".

# **Expected Outcome**

Your solution should contain the following items.

- IAC templates (preferrably terraform) used to provision the cloud infrastructure
- Kubernetes deployment files
- Python program used to host the application
- Dockerfile used to containerize the application
- Clear documentation on how to deploy your solution

## <u>Note</u>

If the candidate is comfortable with any other programming language other than python such as nodejs, ruby, etc., he/she is free to use them provided the functionality of the application should be the same.

### **Solution Statement: -**

## Deployment of a sample application called "Weather App" on an EKS cluster.

- The EKS infrastructure has been deployed using terraform on the AWS account.
- 2. The deployment has been done using the kubernetes manifest files.
- 3. The application has been exposed to the public using an alb controller and the same is accessible using the ALB endpoint.

## Setting up of EKS infrastructure using Terraform

The terraform files have been uploaded to the Google Drive Folder - EKS-Terraform.

### **Commands used to Provision the Infrastructure:**

# terraform init #terraform plan #terraform apply

## **Screenshot of the Solution:**

#### VPC:



### **Subnets:**



### **EKS Cluster:**



```
vishnu-tf@ttnpl-3760:~$ eksctl get cluster atc-eks-FDkz5AY4
NAME
                       VERSION STATUS CREATED
                                                               VPC
                                                                                       SUBNETS
                                    SECURITYGROUPS
                                                             PROVIDER
                                                               vpc-003b2483f521559d7
                       1.20
                               ACTIVE 2022-02-17T09:04:07Z
atc-eks-FDkz5AY4
                                                                                       subnet-02b8a23b42d79feb9
,subnet-0ad72e1d5a7b06314,subnet-0d4688b08d8eaee62
                                                     sg-01191eaa8b307ec88
                                                                             EKS
vishnu-tf@ttnpl-3760:~$
```

## **Application Code:**

• Uploaded on the Google Drive Folder - Weather-App

Docker File:

```
FROM node AS source
RUN mkdir -p /node/weather-app
ADD src/ /node/weather-app
WORKDIR /node/weather-app
RUN npm install

FROM node:alpine
ARG APP_VERSION=V1.1
LABEL org.label-schema.version=$APP_VERSION
ENV NODE_ENV="production"
COPY --from=source /node/weather-app /node/weather-app
WORKDIR /node/weather-app
EXPOSE 3000
ENTRYPOINT ["./bin/www"]
```

```
FROM node AS source

RUN mkdir -p /node/weather-app

ADD src/ /node/weather-app

WORKDIR /node/weather-app

RUN npm install

FROM node:alpine

ARG APP_VERSION=V1.1

LABEL org.label-schema.version=$APP_VERSION

ENV NODE_ENV="production"

COPY --from=source /node/weather-app /node/weather-app

WORKDIR /node/weather-app

EXPOSE 3000

ENTRYPOINT ["./bin/www"]
```

Build the image and push it into the docker hub

#sudo docker image build -t vishnunvv/weather-app:2.0 #docker push vishnunvv/weather-app

# **Application Deployment**

 Deployment eks manifests are uploaded on the google drive folder EKS Manifests

## **Application Deployment file**

```
apiVersion: apps/v1
kind: Deployment
metadata:
 name: weather-app
spec:
 selector:
  matchLabels:
   app: weather-app
 replicas: 2 # tells deployment to run 2 pods matching the template
 template:
  metadata:
   labels:
    app: weather-app
  spec:
   containers:
   - name: weather-app
    image: vishnunvv/weather-app:2.0
    ports:
    - containerPort: 3000
```

```
vishnu-tf@ttnpl-3760:~/eks-manifests$ kubectl get deploy
NAME
              READY
                      UP-TO-DATE
                                    AVAILABLE
                                                AGE
weather-app
              2/2
                                                26h
vishnu-tf@ttnpl-3760:~/eks-manifests$
vishnu-tf@ttnpl-3760:~/eks-manifests$ kubectl get pod
                                        STATUS
                                                  RESTARTS
                                READY
                                                              AGE
weather-app-6cb44b7b7b-jh5m7
                                        Running
                                1/1
                                                              26h
                                                  0
weather-app-6cb44b7b7b-qxcf9
                                1/1
                                        Running
                                                  0
                                                              26h
vishnu-tf@ttnpl-3760:~/eks-manifests$
```

### **Configuring the Ingress Controller**

### Create IAM OIDC provider

eksctl utils associate-iam-oidc-provider \

- --region ap-south-1 \
- --cluster atc-eks-FDkz5AY4 \
- --approve

<u>Create a Kubernetes service account named alb-ingress-controller in the kube-system namespace</u>

# Create ClusterRole, ClusterRoleBinding & ServiceAccount kubectl apply -f

https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-controller/master/docs/examples/rbac-role.yaml

List Service Accounts kubectl get sa -n kube-system

```
vishnu-tf@ttnpl-3760:~/eks-manifests$ kubectl get sa -n kube-system | grep -i ingress
alb-ingress-controller 1 17h
vishnu-tf@ttnpl-3760:~/eks-manifests$
```

# Describe Service Account alb-ingress-controller kubectl describe sa alb-ingress-controller -n kube-system

### Create IAM Policy for ALB Ingress Controller

aws iam create-policy \

- --policy-name ALBIngressControllerIAMPolicy \
- --policy-document

https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-controller/master/docs/examples/iam-policy.ison

Note:- Experienced some error when we create the IAM policy using the above Json policy document using CLI, so created from the management console.

<u>Create an IAM role for the ALB Ingress Controller and attach the role to the service account</u>

eksctl create iamserviceaccount \

- --region ap-south-1 \
- --name alb-ingress-controller \
- --namespace kube-system \
- --cluster atc-eks-FDkz5AY4 \
- --attach-policy-arn

arn:aws:iam::969135465007:policy/ALBIngressControllerIAMPolicy \

- --override-existing-serviceaccounts \
- --approve

Verify using eksctl cli

eksctl get iamserviceaccount --cluster atc-eks-FDkz5AY4

```
vishnu-tf@ttnpl-3760:~/eks-manifests$ eksctl get iamserviceaccount --cluster atc-eks-FDkz5AY4
2022-02-18 18:52:06 [i] eksctl version 0.72.0
2022-02-18 18:52:06 [i] using region ap-south-1
NAMESPACE NAME
kube-system alb-ingress-controller arn:aws:iam::969135465007:role/eksctl-atc-eks-FDkz5AY4-addon-iamserviceacco-Role1-BOT8PMV00CG6
vishnu-tf@ttnpl-3760:~/eks-manifests$
```

### **Deploy ALB Ingress Controller**

kubectl apply -f

https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-controller/master/docs/examples/alb-ingress-controller.yaml

```
# Verify Deployment kubectl get deploy -n kube-system
```

### **Edit ALB Ingress Controller Manifest**

kubectl edit deployment.apps/alb-ingress-controller -n kube-system

```
spec:containers:- args:- --ingress-class=alb- --cluster-name=atc-eks-FDkz5AY4
```

```
vishnu-tf@ttnpl-3760:~/eks-manifests$ kubectl get deploy -n kube-system | grep alb
alb-ingress-controller 1/1 1 16h
vishnu-tf@ttnpl-3760:~/eks-manifests$
```

### <u>Ingress Manifest</u>

```
apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: ingress-weather-app
 labels:
  app: weather-app
 annotations:
  kubernetes.io/ingress.class: "alb"
  alb.ingress.kubernetes.io/scheme: internet-facing
spec:
 rules:
  - http:
    paths:
      - path: /*
       backend:
        serviceName: weather-app
        servicePort: 8080
```

```
vishnu-tf@ttnpl-3760:~/eks-manifests$ kubectl describe ingress ingress-weather-app
                 ingress-weather-app
Namespace:
                 default
Address:
                 2c1f58c5-default-ingresswe-928c-382980542.ap-south-1.elb.amazonaws.com
Default backend: default-http-backend:80 (<error: endpoints "default-http-backend" not found>)
Rules:
 Host
             Path Backends
             /* weather-app:8080 (10.0.1.206:3000,10.0.2.10:3000)
Annotations: alb.ingress.kubernetes.io/scheme: internet-facing
             kubernetes.io/ingress.class: alb
             <none>
Events:
vishnu-tf@ttnpl-3760:~/eks-manifests$
```

#### OUTPUT

The Application will show the Current Temperature when we input the City Name (The values will be random not Original)





It's 78.89 degrees in Delhi!