Predicting Customer Churn in the Credit Card Industry

Section C - Team 55

Hong Anh Chu (hc392), Jiakai Liu (jl1256), Eiad Mohamed (em422), Anshuman Nemali (an297), Caiqing Xie (cx88)

The Team

Hong Anh Chu

Jiakai Liu

Eiad Mohamed

Anshuman Nemali

Caiqing Xie

Executive Summary

- → Data Mining is the solution to predicting customer churn rate.
 - Our data mining results offer insights for banks to reduce credit card customer churn rates in France, Germany, and Spain.
- → Tailoring strategies that reduce churn risk by enhancing retention and boosting brand loyalty.
- → Out of all 3 predictive modeling methods we tried,
 - KNN Neighbor gives the highest accuracy prediction.
 - ◆ After improving the model, we had higher accuracy (increase of 2%).
- → Addressing customers' balances is a challenging task due to the inability to reduce/eliminate customers' credit card debt, highlighting the importance of controlling other features.
- → While our model effectively predicts customer churn rates in Germany, Spain, and France, there is still a significant margin of error, emphasizing a need for commercial banks to innovate products with robust rewards programs and invest in understanding their customer base better.

Why Predict Customer Churn Rate?

Business Problems

- What factors play a significant role in determining if a customer will churn?
- Is there any regional variance in churn rates?
 If so, do the determining factors differ by region?

Potential Outcomes

- These insights will enable banks to make accurate predictions on potential churners
- Leading to tailored strategies that:
 - Reduce churn risk(Increase retention)
 - Increase revenue

Target Variable

 The primary target variable is 'Exited,' indicating whether a customer has churned (Yes/No).

Customer Churn Rate Prediction Saves Costs

Challenge 1

Credit card industry in Spain,

France, and Germany

- Largely cash-based transaction systems
- Increased adoption of credit cards
- Rise of digital banking/payments

Challenge 2

High churn rate implications

Challenge 3

- Customer dissatisfaction
 - (Mismatch between customer and product or service offering)
- Competitive offers elsewhere

Acquiring new customer costs more than retaining old customers

- Cost-effective
- Competitive edge
- Preventable

Data Mining Is The Solution to Predicting Churn Rate

Early identification of high-risk customers allows the bank to proactively retain them through incentives and personalized services

- Age, number of banking products, account balance, etc., affect churn rate
- These insights help banks:
 - Tailoring services and offers
 - Customer engagement strategies
 - Foster brand loyalty

Data Mining Road Map

- Data summary
- Find unique values
- Get target value Y

- 25/75 data split
- Dropping feature(s)
- 3. One-hot encoding
- **Data Standardization** 4.
- 5. Checking & Identifying

- Feature Importance
- Business application
- Ethical considerations
- Associated risk(s)

- Find missing values
- Interpret insights
 - Numerical features
 - b. Categorical features

- K-Fold
- Model Building
- Train & Predict
- RF, KKN neighbors,, log regression
- 5. Model Improvement
- 6. Evaluation
- Confusion matrix
- Precision, Recall, Accuracy 8.

Data Summary Provides Understanding of Data Set

> summary(bank_data) RowNumber CustomerId CreditScore Geography Surname :15565701 :350.0 Min. : 1 Min. Length: 10000 Min. Length: 10000 1st Qu.: 2501 1st Qu.:15628528 Class :character 1st Qu.:584.0 Class :character Median : 5000 Median :652.0 Median :15690738 Mode :character Mode :character :15690941 :650.5 Mean : 5000 Mean Mean 3rd Qu.: 7500 3rd Qu.:15753234 3rd Qu.:718.0 :10000 :850.0 Max. :15815690 Max. Max. Balance Gender Age Tenure NumOfProducts Length: 10000 Min. :18.00 Min. : 0.000 Min. Min. :1.00 Class :character 1st Qu.: 3.000 1st Qu.: 1st Qu.:32.00 1st Qu.:1.00 Median :37.00 Median : 5.000 Median : 97199 Median :1.00 Mode :character Mean :38.92 Mean : 5.013 Mean : 76486 Mean :1.53 3rd Qu.:44.00 3rd Ou.: 7.000 3rd Qu.:127644 3rd Qu.:2.00 Max. :92.00 Max. :10.000 Max. :250898 Max. :4.00 HasCrCard IsActiveMember EstimatedSalary Exited Min. :0.0000 Min. :0.0000 Min. 11.58 Min. :0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.: 51002.11 1st Qu.:0.0000 Median :1.0000 Median :1.0000 Median :100193.91 Median :0.0000 Mean :0.7055 Mean :0.5151 :100090.24 :0.2037 Mean Mean 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:149388.25 3rd Ou.:0.0000 :1.0000 :1.0000 :199992.48 :1.0000 Max. Max. Max. Max.

Numerical & Categorical Gives Valuable Insights

1. Finding Missing Values

2. Variable Insights

- Numerical features:
 - CreditScore, Age, Tenure, NumOfProducts, Balance, EstimatedSalary
- Categorical features:
 - Geography, Gender, HasCrCard, IsActiveMember
- A deeper dive into individual features was performed to understand their distribution and relation to the target variable, 'Exited'.

Exited (Churners) Compared on Credit Score, Age, Tenure, Balance, and Estimated Salary

Observing Geography, Gender, HasCrCard, and IsActiveMember's distributions against Exited

KK-Nearest Neighbors Model Gives the Highest Accuracy

- K Nearest Neighbors
- > cat("K Nearest Neighbors Accuracy:", accuracy_kknn, "\n")
- K Nearest Neighbors Accuracy: 0.7214886
 - Random Forest
 - > cat("Random Forest Accuracy:", accuracy_rf, "\n")
 Random Forest Accuracy: 0.4057623
 - Logistic Regression
 - > cat("Logistic Regression Accuracy:", accuracy_lr, "\n")
 Logistic Regression Accuracy: 0.2040816

After Improving, KKN Neighbors Gives the Highest Accuracy, 2% Higher Than the Previous Model

Finding **optimal hyperparameters** (kmax, distance, and kernel):

```
library(kknn)
param_grid <- expand.grid(kmax = c(5, 7, 9), distance = c(1,2), kernel = c("optimal", "rectangular"))
kknn_model <- train(
    x = x_train,
    y = y_train,
    method = "kknn",
    tuneGrid = param_grid,
    trControl = k_fold)
print(kknn_model$bestTune)</pre>
```

When kmax = 9, distance = 1, and $kernel = rectangular \rightarrow The best kernel kk-near neighbor model:$

```
kmax distance kernel
10 9 1 rectangular
```

The **best accuracy** is **0.7414866** & is **2% higher** than the previous kernel k near neighbor model

```
> predictions_kknn <- predict(best_kknn_model, newdata = x_test)
> accuracy_kknn <- mean(predictions_kknn == y_test)
> cat("Best KK Nearest Neighbors Accuracy:", accuracy_kknn, "\n")
Best KK Nearest Neighbors Accuracy: 0.7414966
```

Confusion Matrix Gives Precision, Recall, & Accuracy

1. PRECISION = 0.270903

- Indicating that about **27.09**% of the samples predicted as Churn are truly Churn.

2. RECALL = 0.1591356

Indicating that the model successfully captured about
 15.91% of the positive class samples.

3. ACCURACY = 0.7414966

 Indicating that the model correctly predicted approximately 74.15% of the samples. > draw_confusion_matrices(confusion_matrix)

KK nearest neighbor Accuracy is: 0.7414966 Precision is: 0.270903

Recall is: 0.1591356

	Χ.	Predicted.Negative	Predicted.Positive
1	Actual Negative	1772	218
2	Actual Positive	428	81

The most important features are Age, NumOfProducts, and Balance

Feature

Business Deployment, Ethical Concerns, and Risks

Key Takeaway: Prioritize targeting older customers.

How? Increasing the number of credit products available and seeking customers with higher estimated salaries.

Business Deployment Consideration:

 Addressing customers' balances is a challenging task due to inability to reduce/eliminate customers' credit card debt, highlighting the importance of other features.

Ethics:

 Addressed privacy concerns by removing personal identifiers such as "CustomerID" and "Surname", in compliance with Europe's General Data Protection Regulation (GDPR).

Risks Associated:

- While our model effectively predict churn rates, there's still a significant margin of error, emphasizing a need for banks to innovate products and invest in understanding customer base better.
- Limited applicability to non-EU nations with different commercial banking systems.

Thank you!

Any questions?