Сингулярное разложение (SVD)

Сингулярное разложение (Singular Value Decomposition) — декомпозиция вещественной матрицы с целью ее приведения к каноническому виду.

Определение 1 (Сингулярные числа и сингулярные векторы).

Неотрицательное вещественное число σ называется **сингулярным числом** матрицы M, когда существуют два вектора единичной длины $u \in K^m$ u $v \in K^n$ такие, что:

$$Mv = \sigma u, \ u \ M^*u = \sigma v.$$

Такие векторы и и v называются, соответственно, **левым сингулярным** вектором и **правым сингулярным** вектором, соответствующим сингулярному числу σ .

Определение 2 (Разложение матрицы).

Cингулярным разложением матрицы M порядка $m \times n$ является разложение следующего вида

$$M = U\Sigma V^*$$
.

где Σ — матрица размера $m \times n$ с неотрицательными элементами, у которой элементы, лежащие на главной диагонали — это сингулярные числа (а все элементы, не лежащие на главной диагонали, являются нулевыми), а матрицы U (порядка m) и V (порядка n) — это две унитарные матрицы, состоящие из левых и правых сингулярных векторов соответственно (а V^* — это сопряжеённо-транспонированная матрица κ V).

Геометрический смысл

Пусть матрице A поставлен в соответствие линейный оператор. Линейный оператор, отображающий элементы пространства R^n в себя, представим в виде последовательно выполняемых линейных операторов вращения и растяжения. Поэтому компоненты сингулярного разложения наглядно показывают геометрические изменения при отображении линейным оператором A множества векторов из векторного пространства в себя или в векторное пространство другой размерности.

Метод главных компонент (РСА)

Метод главных компонент (Principal Component Analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации.

В некоторых практических задачах требуется приближать заданную матрицу M некоторой другой матрицей M_k с заранее заданным рангом k. Известна следующая теорема, которую иногда называют теоремой Эккарта — Янга.

Теорема 1 (Теорема Эккарта-Янга).

Для данной матрицы $M \in R^{m \times n}$ существует ее аппроксимация меньшего ранга $M_k(rang(M_k) = k \leq rang(M)) : \forall B_k(rang(B_k) = k \leq rang(M)) ||M - M_k||_F$, где $||\cdot||_F$ - норма Фробениуса

Если потребовать, чтобы такое приближение было наилучшим в том смысле, что евклидова норма разности матриц M и M_k минимальна, при ограничении $rank(M_k) = k$ то оказывается, что наилучшая такая матрица M_k получается из сингулярного разложения матрицы M по формуле:

$$M_k = U\Sigma_k V^*$$

где Σ_k — матрица Σ , в которой заменили нулями все диагональные элементы, кроме k наибольших элементов.

Если элементы матрицы Σ упорядочены по невозрастанию, то выражение для матрицы M_k можно переписать в такой форме:

$$M_k = U_k \Sigma_k V_k^*$$

где матрицы U_k , Σ_k и V_k получаются из соответствующих матриц в сингулярном разложении матрицы M обрезанием до ровно k первых столбцов.

Таким образом видно, что приближая матрицу M матрицей меньшего ранга, мы выполняем своего рода сжатие информации, содержащейся в M: матрица M размера $m \times n$ заменяется меньшими матрицами размеров $m \times k$ и $k \times n$ и диагональной матрицей с k элементами. При этом сжатие происходит с потерями — в приближении сохраняется лишь наиболее существенная часть матрицы M.