Part.1 信号的分析与调制

- 通信模型与通信分类
- 信息度量(信息量)
- 系统性能指标(速率/误码信)
- 信道分析(香农公式)

Part.2 信号的调制

- 线性调制与解调 (AM/DSB/SSB/VSB)
- 线性系统性能分析
- 非线性调制与解调 (角度调制:调频波表达式/最大频偏/调频指数)
- 复用技术(了解)

Part.3 信号的传输

- 数字基带传输(常用码/AMI码/HDB3码/无码间串扰)
- 数字频带传输 (2ASK/2FSK/2PSK/2DPSK /解调波形与流程图)

Part.4 信号的接收

● 确知信号接收(接收结构图)

Part.5 基于性能编码

- 信源编码(A律13折线/哈夫 曼压缩编码)
- 信道编码(最小码距/检错纠错/所有码组/循环码/监督矩阵/校验矩阵)

Part.6 同步系统(了解)

- 载波同步
- 位同步(微分整流波形/延迟相乘法波形)
- 群同步(起止同步信号波形/ 巴克码信号波形)
- 网同步

通信 原理(D)

@GhostKING学长

24 最小码距

例1

通信 原理(D)

对于非线性(常规)码组101001、110101、010000求最小码距。

两两比对找最小差异个数

101001

010000

110101

010000

101001

110101

3个差异 4个差异

3个差异

例2

通信 原理(D)

通信 原理(D)

@GhostKING学长

24 最小码距

例1

通信 原理(D)

对于非线性(常规)码组101001、110101、010000求最小码距。 两两比对找最小差异个数

 $d_{min}=3$

例 2 通信 原理(D)

通信 原理(D)

@GhostKING学长

25 纠错与检错性能

例3

通信 原理(D)

已知dmin=3,分别求在用于检错、纠错和同时用于纠错与检错的检纠码数

同检纠时,d_{min}-1=e+t,且e>t

纠错数 t=1

检错数 e=0

通信 原理(D)

@GhostKING学长

26 矩阵综合

例4

通信 原理(D)

已知某线性码的监督矩阵H, 求其生成矩阵

$$\mathbf{H} = \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

通信 京理(D)

@GhostKING学长

26 矩阵综合

例5

通信 原理(D)

已知(7,3)线性分组码的监督方程,求其生成矩阵

$$\begin{cases} x_6 + x_3 + x_2 + x_1 = 0 \\ x_5 + x_2 + x_1 + x_0 = 0 \\ x_6 + x_5 + x_1 = 0 \\ x_5 + x_4 + x_0 = 0 \end{cases}$$

x6	x 5	x4	x3	x2	x1	x0
1	0	0	1	1	1	0
0	1	0	0	1	1	1
1	1	0	0	0	1	0
0	1	1	0	0	0	1

$$H= \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

通信 原理(D)

@GhostKING学长

26 矩阵综合

例5

通信 原理(D)

已知(7,3)线性分组码的监督方程,求其生成矩阵

$$\begin{cases} x_6 + x_3 + x_2 + x_1 = 0 \\ x_5 + x_2 + x_1 + x_0 = 0 \\ x_6 + x_5 + x_1 = 0 \\ x_5 + x_4 + x_0 = 0 \end{cases}$$

$$H= \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

通信 原理(D)

@GhostKING学长

26 矩阵综合

例6

通信 原理(D)

已知(7,4)循环码的全部码组,求其生成矩阵和监督矩阵

0000000	0100111	1000101	1100010
0001011	0101100	1001110	1101001
0010110	0110001	1010011	1110100
0011101	0111010	1011000	1111111

$$G= \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$$\mathbf{H} = \begin{pmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

@GhostKING学长

26 矩阵综合

例7 通信 原理(D)

已知(7,3)循环码的生成多项式g(x)=x4+x3+x2+1,写出全部码字、生成矩阵和监督矩阵

x6	x5	x4	x 3	x2	x1	x0
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	1	1	0	1	0
1	1	1	0	1	0	0
1	1	0	1	0	0	1
1	0	1	0	0	1	1
0	1	0	0	1	1	1
1	0	0	1	1	1	0

x6	x 5	x4	x 3	x2	x1	x0
1	1	1	0	1	0	0
0	1	1	1	0	1	0
0	0	1	1	1	0	1

$$G = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$
 行初等变换得
$$G = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

通信 京理(D)

@GhostKING学长

26 矩阵综合

例7

通信 原理(D)

已知(7,3)循环码的生成多项式g(x)=x4+x3+x2+1,写出全部码字、生成矩阵和监督矩阵

x6	x 5	x4	x 3	x2	x1	x0
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	1	1	0	1	0
1	1	1	0	1	0	0
1	1	0	1	0	0	1
1	0	1	0	0	1	1
0	1	0	0	1	1	1
1	0	0	1	1	1	0

$$G = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix} \quad \text{行初等变换得} \quad G = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$H= \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$