Indoor Localisation with Sensor fusion of PDR and single RTT Wi-FI

Annie Marandi CS19M009 Sai Rohitth Chiluka ED18B027

Problem definition

- Hands-on approach to indoor localization using sensor fusion of PDR and Wi-Fi RTT.
- We are only considering Single access point for Wi-Fi RTT.
- Initial position is also known.

Background

➤ IMU (Inertial Measurement Unit): Its a type of sensor that measures angular rate, force and magnetic field.

➤ WIFI-RTT: feature added to IEEE 802.11mc. Allow devices to measure distance to nearby Wi-Fi routers using round-trip time for signal to travel.

IMU Types:

Accelerometer: Measure acceleration

Gyroscope: Angular velocity (pitch, roll, yaw)

Magnetometer: measure magnetic fields

Errors

- Bias: constant offset of the output value from input value. Eg- bias over temperature, bias instability, etc.
- Gyro-drift: from integrating angular velocity to get orientation.

Step Length

Orientation

Sensor fusion using complementary filter

Acceleration

Remove gravity component with low-pass filter:

acceleration = acceleration - (alpha * gravity + (1 - alpha) * acceleration)

Low-pass filter: Passes signals with frequency lower than the cutoff.

$$\alpha = dt / (RC + dt)$$

Where, α is the alpha, dt is the time interval

$$RC = 1/2\pi f$$

Where, f is cutoff frequency

Step detect

Raw acceleration readings

Acceleration remove gravity with LPF

Step length

$$L = K\sqrt[4]{a_{max} - a_{min}}$$

Where, K = 0.68 - 0.37 * v + 0.15 *pow(v,2)

and, v is the average step velocity

PDR

$$X_{t} = X_{t-1} + L_{t} \begin{bmatrix} sin(\theta_{t}) \\ cos(\theta t) \end{bmatrix}$$

Where, L is the step length

and, θ is the heading w.r.t phone

RTT range simulation

Effect of Position of AP

> Effect of Radius of circle

Effect of update frequency

Single RTT Localization

Using PDR estimate position and find the closest point to this estimate:

$$x = x_a + (x_p - x_a) * r/d$$

$$y = y_a + (y_{pdr} - y_a) * r/d$$

Kalman filter

Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

$$\begin{split} \bar{\mu}_t &= A_t \; \mu_{t-1} + B_t \; u_t \\ \bar{\Sigma}_t &= A_t \; \Sigma_{t-1} \; A_t^T + R_t \\ K_t &= \bar{\Sigma}_t \; C_t^T (C_t \; \bar{\Sigma}_t \; C_t^T + Q_t)^{-1} \\ \mu_t &= \bar{\mu}_t + K_t (z_t - C_t \; \bar{\mu}_t) \\ \Sigma_t &= (I - K_t \; C_t) \; \bar{\Sigma}_t \\ return \; \mu_t, \Sigma_t \end{split}$$

Walking Simulation

Android App

Thank You!