

Tutorials

Jobs Practice

Contests

P

Ф

Articles

Videos

Problems

Quiz

≪ Prev

Next >>

Operations	Adjacency Matrix	Adjacency List
Storage Space	This representation makes use of VxV matrix, so space required in worst case is O(V ^2) .	In this representation, for every vertex we store its neighbours. In the worst case, if a graph is connected $O(V)$ is required for a vertex and $O(E)$ is required for storing neighbours corresponding to every vertex .Thus, overall space complexity is $O(V + E)$.
Adding a vertex	In order to add a new vertex to VxV matrix the storage must be increases to $(V +1)^2$. To achieve this we need to copy the whole matrix. Therefore the complexity is $O(V ^2)$.	There are two pointers in adjacency list first points to the front node and the other one points to the rear node. Thus insertion of a vertex can be done directly in O(1) time .
Adding an edge	To add an edge say from i to j, matrix[i][j] = 1 which requires O(1) time.	Similar to insertion of vertex here also two pointers are used pointing to the rear and front of the list. Thus, an edge can be inserted in O(1) time.

BB Dash	>
All	
Articles	
Videos	
> Problems	
Quiz	
Q Contest	
« »	

Operations	Adjacency Matrix	Adjacency List
Removing a vertex	In order to remove a vertex from V*V matrix the storage must be decreased to $ V ^2$ from $(V +1)^2$. To achieve this we need to copy the whole matrix. Therefore the complexity is $O(V ^2)$.	In order to remove a vertex, we need to search for the vertex which will require $O(V)$ time in worst case, after this we need to traverse the edges and in worst case it will require $O(E)$ time. Hence, total time complexity is $O(V + E)$.
Removing an edge	To remove an edge say from i to j, matrix[i][j] = 0 which requires O(1) time.	To remove an edge traversing through the edges is required and in worst case we need to traverse through all the edges. Thus, the time complexity is O(E) .
Querying	In order to find for an existing edge the content of matrix needs to be checked. Given two vertices say i and j matrix[i][j] can be checked in O(1) time.	In an adjacency list every vertex is associated with a list of adjacent vertices. For a given graph, in order to check for an edge we need to check for vertices adjacent to given vertex. A vertex can have at most O(V) neighbours and in worst can we would have to check for every adjacent vertex. Therefore, time complexity is O(V).

Mark as Read

Report An Issue

If you are facing any issue on this page. Please let us know.

