Artificial Intelligence and Machine Learning

Exercises – Evaluation of Machine Learning Models

Question 1 (Confusion matrix and evaluation metrics) *

The evaluation of a neural network on a test dataset has produced the confusion matrix depicted in table 1:

Conf. mat.		gold					
		C_1	C_2	C_3	Σ		
predicted	C_1	25	4	9	38		
	C_2	8	31	0	39		
	C_3	2	3	18	23		
	Σ	35	38	27	100		

Table 1: Confusion matrix produced on a test set.

Please answer the following questions:

- 1. What is the accuracy of the model?
- 2. Compute precision, recall, and the F_1 -score separately for all classes C_k $(1 \le k \le 3)$.
- 3. What is the micro average precision/recall? What do you observe?
- 4. What is the macro average precision/recall?

Question 2 (Micro and macro averages)

When should you use micro average and when macro average?

Question 3 (Harmonic mean)

The F_1 -score is defined as the harmonic mean of precision and recall. Can you imagine why the harmonic mean is used and not the arithmetic mean?

Question 4 (Confusion matrix and evaluation metrics) ③

You have to evaluate a binary classifier on a test set. Table 2 lists the predictions of the model along with the correct labels. \oplus represents the positive class and \ominus the negative class.

Data point	1	2	3	4	5	6	7	8	9	10
Prediction	Θ	\oplus	\oplus	Θ	\oplus	\oplus	\oplus	Θ	\oplus	Θ
True label	\oplus	\oplus	Θ	Θ	\oplus	\oplus	Θ	\oplus	Θ	Θ

Table 2: Results on the test dataset.

Work through the following tasks:

- 1. Set up the confusion matrix.
- 2. Compute precision, recall, and the F_1 -score of your model.

Question 5 ⊗

Imagine you have trained a classification model to classify skin tissue samples as either cancerous or healthy. The model should avoid false negatives at all costs. Which evaluation metric (precision or recall) would you prefer? *Please explain your answer*.

Question 6 (Drawback of accuracy) ⊗

What advantage does the F_1 -score have over accuracy?

Question 7 (AUC and ROC) ®

For ten test instances, a logistic regression model outputs the probabilities (of the positive class \oplus) shown in table 3.

Data point	1	2	3	4	5	6	7	8	9	10
Gold Label	0	\oplus	Θ	Θ	\oplus	\oplus	Θ	Θ	Θ	\oplus
Probability	0.95	0.30	0.35	0.10	0.80	0.55	0.25	0.75	0.05	0.20

Table 3: Probabilities output by a logistic regression model for ten test instances.

Draw the ROC curve (*receiver operating characteristic*) and compute the AUC (*area under the curve*). Do not forget to label the axes! How do you rate the performance of the model?

Question 8 (Occam's razor) 🛞

What is meant by the term Occam's razor?

Question 9 (Bias and variance) *

Which statement concerning bias and variance is correct?

- □ Models suffering from high bias tend to overfitting.
- □ A high variance can be mitigated by adding more training examples.
- ☐ A decision stump has a low bias.
- ☐ The terms bias and variance are not related to overfitting and underfitting.
- \square None of the above is correct.

Question 10 (Overfitting and underfitting) *****

Complete figure 1 below using the following terms: *Underfitting, Overfitting, good Model, Train Error, Test Error*, and *Model Complexity*.

Figure 1: Complete the figure!

Question 11 (Early stopping) ⊗

What is *early stopping*?