Nombre y Apellido:

Justifique todas sus respuestas

Parte práctica.

1. (15 pts.) Sean W_1 y W_2 los subespacios de \mathbb{R}^4 definidos por

$$W_1 = \{(x, y, z, w) \in \mathbb{R}^4 : z = y - x, w = x + y\}$$
 y $W_2 = \langle (1, 1, 0, 1), (0, 1, 1, 0), (1, 0, -1, 1) \rangle$.

- a) Dar una base ordenada \mathcal{B} de W_2 contenida en su conjunto de generadores, y dar las coordenadas de un vector (x, y, z, w) en W_2 respecto de \mathcal{B} .
- b) Dar una base del subespacio $W_1 \cap W_2$, y calcular su dimensión.
- c) Dar una base del subespacio $W_1 + W_2$, y calcular su dimensión.

2. (15 pts.) Sea
$$C = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 3 & -1 & -1 \end{pmatrix} \in M_{3\times 3}(\mathbb{R}).$$

- a) Probar que C es inversible y determinar su inversa.
- b) Mostrar una base ordenada \mathcal{B} de \mathbb{R}^3 tal que C sea la matriz de cambio de base de la base ordenada canónica a la base ordenada \mathcal{B} .
- c) Calcular los autovalores de C. ¿Es C diagonalizable?
- 3. (15 pts.)
 - a) Definir una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$T(1,0,0) = (2,-1,0), T(-1,0,1) = (-2,1,0), T(0,1,-1) = (0,0,0).$$

¿Existe una única transformación que cumpla estas condiciones?

- b) Dar una descripción implícita de NuT, calcular su dimensión y mostrar una base.
- c) Dar una descripción implícita de Im T, calcular su dimensión y mostrar una base.
- d) Hallar $[T]_{\mathcal{C}}^{\mathcal{B}}$ donde \mathcal{C} es la base ordenada canónica de \mathbb{R}^3 y $\mathcal{B} = \{(1,0,-1),(-1,1,1),(1,0,-2)\}.$
- 4. (15 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) El subconjunto $\{(1,0,-2,0,1),(0,1,0,-1,2),(-2,1,4,-1,0)\}\subset\mathbb{R}^5$ puede extenderse a una base de \mathbb{R}^5 .
 - b) Si A y B son matrices inversibles, entonces la matriz A^2B^{-1} es inversible.
 - c) Sea $T: V \to W$ una transformación lineal tal que $T(v_i) = w_i$, para i = 1, ..., n. Si $\{w_1, ..., w_n\}$ genera W entonces $\{v_1, ..., v_n\}$ genera V.

Parte Teórica.

- 5. (20 pts.) Sea V un espacio vectorial sobre un cuerpo \mathbb{K} . Probar que:
 - a) Si S es un subconjunto linealmente independiente de V y α es un vector de V que no pertenece al subespacio generado por S, entonces el conjunto $S \cup \{\alpha\}$ es linealmente independiente.
 - b) Si V es de dimensión finita n, y S_0 es un subconjunto linealmente independiente de V, entonces S_0 es finito y existen vectores $\alpha_1, \ldots, \alpha_m$ de V tales que $S_0 \cup \{\alpha_1, \ldots, \alpha_m\}$ es una base de V.
- 6. (20 pts.) Sean V y W espacios vectoriales de dimensión finita sobre un cuerpo \mathbb{K} , y sea $T:V\to W$ una transformación lineal. Probar que $\dim(\operatorname{Im} T)+\dim(\operatorname{Nu} T)=\dim V$.

Parte práctica	1	2	3	4	Total
Evaluación					

Parte teórica	5	6	Total	Total General
Evaluación				