

Joint Author Sentiment Topic Model

Subhabrata Mukherjee
Max Planck Institute for Informatics

Gaurab Basu and Sachindra Joshi
IBM India Research Lab
April 25, 2014

- > Identify topics direction, story and acting
 - Story has facets plot and narration

- > Identify topics direction, story and acting
 - Story has facets plot and narration
- Identify facet sentiments great (plot), powerful (story), sloppy (acting) etc.

- > Identify topics direction, story and acting
 - Story has facets plot and narration
- ➤ Identify facet sentiments great (plot), powerful (story), sloppy (acting) etc.
- Overall review rating aggregation of facet-specific sentiments

- Identify topics direction, story and acting
 - Story has facets plot and narration
- ➤ Identify facet sentiments great (plot), powerful (story), sloppy (acting) etc.
- Overall review rating aggregation of facet-specific sentiments
- Why joint modeling?
 - > Sentiment words help locating topic words and vice-versa
 - Neighboring words establish semantics / sentiment of terms

- > Overall rating varies for authors with different topic preferences
 - > Positive for those with greater preference for acting and narration
 - Negative for acting

- Overall rating varies for authors with different topic preferences
 - Positive for those with greater preference for acting and narration
 - Negative for acting
- Affective sentiment value varies for authors
 - ➤ How much negative is "does not quite make the mark" for me?

- Overall rating varies for authors with different topic preferences
 - Positive for those with greater preference for acting and narration
 - Negative for acting
- Affective sentiment value varies for authors
 - ➤ How much negative is "does not quite make the mark" for me?
- Author-writing style helps in locating / associating facets and sentiments
 - E.g. topic switch, verbosity, use of content and function words etc.
 - The author makes a topic switch in above review using the function word however

- Overall rating varies for authors with different topic preferences
 - Positive for those with greater preference for acting and narration
 - Negative for acting
- Affective sentiment value varies for authors
 - ➤ How much negative is "does not quite make the mark" for me?
- Author-writing style helps in locating / associating facets and sentiments
 - E.g. topic switch, verbosity, use of content and function words etc.
 - The author makes a topic switch in above review using the function word however
- Traditional works learn a global model independent of the review author

Why care about writing style or coherence?

- ➤ Better association of facets to topics by detecting *semantic-syntactic class transitions* and *topic switch*
- > semantic dependencies association between facets to topics
- > syntactic dependencies connection between facets and background words required to make the review coherent and grammatically correct

> Show that author identity helps in rating prediction

- > Show that author identity helps in rating prediction
- ➤ Author-specific generative model of a review that incorporates author-specific
 - ➤ topic and facet preferences

- > Show that author identity helps in rating prediction
- ➤ Author-specific generative model of a review that incorporates author-specific
 - ➤ topic and facet preferences
 - *>grading style*

- > Show that author identity helps in rating prediction
- ➤ Author-specific generative model of a review that incorporates author-specific
 - ➤ topic and facet preferences
 - *>grading style*
 - >writing style

- > Show that author identity helps in rating prediction
- ➤ Author-specific generative model of a review that incorporates author-specific
 - ➤ topic and facet preferences
 - *>grading style*
 - >writing style
 - >maintain coherence in reviews

1. LDA Model

1. LDA Model

2. Author-Topic Model

1. LDA Model

3. Joint Sentiment Topic Model

2. Author-Topic Model

1. LDA Model

3. Joint Sentiment Topic Model

2. Author-Topic Model

4. Topic Syntax Model

Visit Restaurant

How to write it?

JAST Model

JAST Model

1. For each document d, author a chooses overall rating $r \sim Multinomial(\Omega)$ from author-specific overall document rating distribution

JAST Model

- 2. For each topic z and each sentiment label I, draw $\xi_{z,I} \sim Dirichlet(y)$ 3. For each class c and each sentiment label I = 0, draw $\xi_{c,I} \sim Dirichlet(\delta)$

4. Choose author-specific class transition distribution ${m \pi}$

5. For each word \boldsymbol{w} in the document

5. For each word **w** in the document

b. If c=1, Draw $z, l \sim Multinomial(\phi_{a,r})$. Draw $w \sim Multinomial(\xi_{z,l})$.

5. For each word **w** in the document

b. If c=1, Draw $z, l \sim Multinomial(\phi_{a,r})$. Draw $w \sim Multinomial(\xi_{z,r})$.

c. If c=2, Draw \mathbf{z}^{old} , $\mathbf{I} \sim Multinomial(\phi_{\mathbf{a},r})$. Draw $\mathbf{w} \sim Multinomial(\xi_{\mathbf{z}^{old},r})$.

5. For each word **w** in the document

5. For each word **w** in the document

a. Draw $c \sim Multinomial (\pi^{c^{old}})$

b. If c=1, Draw z, $I \sim Multinomial(\phi_{a,r})$. Draw $w \sim Multinomial(\xi_{z,r})$.

c. If c=2, Draw \mathbf{z}^{old} , $\mathbf{I} \sim Multinomial(\phi_{a,t})$. Draw $\mathbf{w} \sim Multinomial(\xi_{z^{old},t})$.

5. For each word **w** in the document

b. If c=1, Draw z, $I \sim Multinomial(\phi_{a,r})$. Draw $w \sim Multinomial(\xi_{z,r})$.

c. If c=2, Draw \mathbf{z}^{old} , $\mathbf{I} \sim Multinomial(\phi_{a,t})$. Draw $\mathbf{w} \sim Multinomial(\xi_{z^{old},t})$.

d. If $c \neq 1$, 2, Draw $w \sim Multinomial(\xi_{c,l})$.

Review Coherence and Syntactic **Dependencies**

 $A \rightarrow Authors$

 $R \rightarrow Ratings$

 $T \rightarrow Topics$

 $L \rightarrow Topic \ Labels$

 $C \rightarrow Classes$

 $W \rightarrow Words$

 $\Omega \rightarrow Author\ Rating\ Distribution$

 $\phi \rightarrow$ Author Topic Label Distribution

 $\xi \rightarrow Topic \ Label \ Word \ Distribution$

 $\pi \rightarrow Author\ Class\ Distribution$

$$A \rightarrow Authors$$
 $R \rightarrow Ratings$
 $T \rightarrow Topics$
 $L \rightarrow Topic Labels$
 $C \rightarrow Classes$
 $W \rightarrow Words$

$$\Omega \rightarrow$$
 Author Rating Distribution $\phi \rightarrow$ Author Topic Label Distribution $\xi \rightarrow$ Topic Label Word Distribution $\pi \rightarrow$ Author Class Distribution

$$P(A, R, T, L, C, W, \Omega, \phi, \xi, \pi; \alpha, \beta, \gamma, \delta) = P(\Omega) \times P(r|\Omega) \times P(r|\Omega) \times P(\phi; \alpha) \times P(z, l|\phi_r) \times P(\pi; \beta) \times P(c|\pi) \times P(\xi; \gamma, \delta) \times P(w|\xi_{z|l}, \xi_{c|l}, \pi_c)$$

$$A \rightarrow Authors$$
 $R \rightarrow Ratings$
 $T \rightarrow Topics$
 $L \rightarrow Topic Labels$
 $C \rightarrow Classes$
 $W \rightarrow Words$

$$\Omega \rightarrow$$
 Author Rating Distribution $\phi \rightarrow$ Author Topic Label Distribution $\xi \rightarrow$ Topic Label Word Distribution $\pi \rightarrow$ Author Class Distribution

$$P(A, R, T, L, C, W, \Omega, \phi, \xi, \pi; \alpha, \beta, \gamma, \delta) = P(\Omega) \times P(r|\Omega) \times P(r|\Omega) \times P(\phi; \alpha) \times P(z, l|\phi_r) \times P(\pi; \beta) \times P(c|\pi) \times P(\xi; \gamma, \delta) \times P(w|\xi_{z|l}, \xi_{c|l}, \pi_c)$$

$$A \rightarrow Authors$$
 $R \rightarrow Ratings$
 $T \rightarrow Topics$
 $L \rightarrow Topic Labels$
 $C \rightarrow Classes$

 $W \rightarrow Words$

$$\Omega \rightarrow$$
 Author Rating Distribution $\phi \rightarrow$ Author Topic Label Distribution $\xi \rightarrow$ Topic Label Word Distribution $\pi \rightarrow$ Author Class Distribution

$$P(A, R, T, L, C, W, \Omega, \phi, \xi, \pi; \alpha, \beta, \gamma, \delta) = P(\Omega) \times P(r|\Omega) \times P(r|\Omega) \times P(\phi; \alpha) \times P(z, l|\phi_r) \times P(\pi; \beta) \times P(c|\pi) \times P(\xi; \gamma, \delta) \times P(w|\xi_{z|l}, \xi_{c|l}, \pi_c)$$

$$A \rightarrow Authors$$
 $R \rightarrow Ratings$
 $T \rightarrow Topics$
 $L \rightarrow Topic Labels$
 $C \rightarrow Classes$

 $W \rightarrow Words$

$$\Omega \rightarrow$$
 Author Rating Distribution $\phi \rightarrow$ Author Topic Label Distribution $\xi \rightarrow$ Topic Label Word Distribution $\pi \rightarrow$ Author Class Distribution

$$P(A, R, T, L, C, W, \Omega, \phi, \xi, \pi; \alpha, \beta, \gamma, \delta) = P(\Omega) \times P(r|\Omega) \times P(r|\Omega) \times P(\phi; \alpha) \times P(z, l|\phi_r) \times P(\pi; \beta) \times P(c|\pi) \times P(\xi; \gamma, \delta) \times P(w|\xi_{z|l}, \xi_{c|l}, \pi_c)$$

$$A \rightarrow Authors$$
 $R \rightarrow Ratings$
 $T \rightarrow Topics$
 $L \rightarrow Topic Labels$
 $C \rightarrow Classes$

 $W \rightarrow Words$

$$\Omega \rightarrow$$
 Author Rating Distribution $\phi \rightarrow$ Author Topic Label Distribution $\xi \rightarrow$ Topic Label Word Distribution $\pi \rightarrow$ Author Class Distribution

$$P(A, R, T, L, C, W, \Omega, \phi, \xi, \pi; \alpha, \beta, \gamma, \delta) = P(\Omega) \times P(r|\Omega) \times P(r|\Omega) \times P(\phi; \alpha) \times P(z, l|\phi_r) \times P(\pi; \beta) \times P(c|\pi) \times P(\xi; \gamma, \delta) \times P(w|\xi_{z|l}, \xi_{c|l}, \pi_c)$$

 $A \rightarrow Authors$ $R \rightarrow Ratings$ $T \rightarrow Topics$ $L \rightarrow Topic Labels$ $C \rightarrow Classes$

 $W \rightarrow Words$

 $\Omega \rightarrow$ Author Rating Distribution $\phi \rightarrow$ Author Topic Label Distribution $\xi \rightarrow$ Topic Label Word Distribution $\pi \rightarrow$ Author Class Distribution

$$P(A, R, T, L, C, W, \Omega, \phi, \xi, \pi; \alpha, \beta, \gamma, \delta) = P(\Omega) \times P(r|\Omega) \times P(r|\Omega) \times P(\phi; \alpha) \times P(z, l|\phi_r) \times P(\pi; \beta) \times P(c|\pi) \times P(\xi; \gamma, \delta) \times P(w|\xi_{z|l}, \xi_{c|l}, \pi_c)$$

- We use collapsed Gibb's sampling for estimating the parameters
- Conditional distribution for joint updation of the latent variables is given by :

- We use collapsed Gibb's sampling for estimating the parameters
- Conditional distribution for joint updation of the latent variables is given by :

$$P(z = k, l = u, c = c \mid a, r, z_{-i}, l_{-i}, c_{-i}, w) \propto$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k,u,1} + \gamma) \times \Omega_{a,r} \quad if \ c = 1$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k=k^{old},u,2} + \gamma) \times \Omega_{a,r}$$
 if $c = 2$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,u=0,c} + \delta) \times \Omega_{a,r}$$
 if $c \neq 1,2$

- We use collapsed Gibb's sampling for estimating the parameters
- Conditional distribution for joint updation of the latent variables is given by :

$$P(z = k, l = u, c = c \mid a, r, z_{-i}, l_{-i}, c_{-i}, w) \propto$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k,u,1} + \gamma) \times \Omega_{a,r} \quad if \ c = 1$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k=k^{old},u,2} + \gamma) \times \Omega_{a,r}$$
 if $c = 2$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,u=0,c} + \delta) \times \Omega_{a,r}$$
 if $c \neq 1,2$

- We use collapsed Gibb's sampling for estimating the parameters
- Conditional distribution for joint updation of the latent variables is given by :

$$P(z = k, l = u, c = c \mid a, r, z_{-i}, l_{-i}, c_{-i}, w) \propto$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k,u,1} + \gamma) \times \Omega_{a,r} \quad \text{if } c = 1$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k=k^{old},u,2} + \gamma) \times \Omega_{a,r}$$
 if $c = 2$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,u=0,c} + \delta) \times \Omega_{a,r}$$
 if $c \neq 1,2$

 $\phi \rightarrow$ Author Topic Label Distribution

- We use collapsed Gibb's sampling for estimating the parameters
- Conditional distribution for joint updation of the latent variables is given by :

$$P(z = k, l = u, c = c \mid a, r, z_{-i}, l_{-i}, c_{-i}, w) \propto$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k,u,1} + \gamma) \times \Omega_{a,r} \quad \text{if } c = 1$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k=k^{old},u,2} + \gamma) \times \Omega_{a,r} \quad \text{if } c = 2$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,u=0,c} + \delta) \times \Omega_{a,r} \quad \text{if } c \neq 1,2$$

 $\phi \rightarrow$ Author Topic Label Distribution

- We use collapsed Gibb's sampling for estimating the parameters
- Conditional distribution for joint updation of the latent variables is given by :

$$P(z = k, l = u, c = c \mid a, r, z_{-i}, l_{-i}, c_{-i}, w) \propto$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k,u,1} + \gamma) \times \Omega_{a,r} \quad \text{if } c = 1$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k=k^{old},u,2} + \gamma) \times \Omega_{a,r} \quad \text{if } c = 2$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,u=0,c} + \delta) \times \Omega_{a,r} \quad \text{if } c \neq 1,2$$

 $\xi \rightarrow Topic\ Label\ Word\ Distribution$

- We use collapsed Gibb's sampling for estimating the parameters
- Conditional distribution for joint updation of the latent variables is given by :

$$P(z = k, l = u, c = c \mid a, r, z_{i}, l_{i}, c_{i}, w) \propto$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k,u,1} + \gamma) \times \Omega_{a,r}$$
 if $c = 1$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k=k^{old},u,2} + \gamma) \times \Omega_{a,r}$$
 if $c = 2$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,u=0,c} + \delta) \times \Omega_{a,r}$$
 if $c \neq 1,2$

- We use collapsed Gibb's sampling for estimating the parameters
- Conditional distribution for joint updation of the latent variables is given by :

$$P(z = k, l = u, c = c \mid a, r, z_{-i}, l_{-i}, c_{-i}, w) \propto$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k,u,1} + \gamma) \times \Omega_{a,r} \quad if \ c = 1$$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,k=k^{old},u,2} + \gamma) \times \Omega_{a,r}$$
 if $c = 2$

$$(\#words_{a,r,k,u} + \alpha) \times (\#words_{w,u=0,c} + \delta) \times \Omega_{a,r}$$
 if $c \neq 1,2$

$$P(c = c | a, z = k, l = u, c_{i}, w) \propto$$

$$f_{1}(\xi) \times P(c | c^{old}, a) \text{ if } c = 1$$

$$f_{2}(\xi) \times P(c | c^{old}, a) \text{ if } c = 2$$

$$f_{3}(\xi) \times P(c | c^{old}, a) \text{ if } c \neq 1,2$$

$$P(c = c | a, z = k, l = u, c_{-i}, w) \propto$$

$$f_1(\xi) \times P(c | c^{old}, a) \text{ if } c = 1$$

$$f_2(\xi) \times P(c | c^{old}, a) \text{ if } c = 2$$

$$f_3(\xi) \times P(c | c^{old}, a) \text{ if } c \neq 1,2$$

given an unseen review r and its author a for each word w in the review its topic and topic-rating (k, u) are extracted from $\xi_{T \times L}[w]$ review rating is given by $argmax_r\Omega_{a,r}$

$$\Omega_{a,r} = \frac{\Sigma_{k,u} \mathbf{I}(r = argmax_{r^*} \phi_{a,r^*}[k,u]) \times \phi_{a,r}[k,u]}{K}$$

$$P(c = c | a, z = k, l = u, c_{-i}, w) \propto$$

$$f_1(\xi) \times P(c | c^{old}, a) \text{ if } c = 1$$

$$f_2(\xi) \times P(c | c^{old}, a) \text{ if } c = 2$$

$$f_3(\xi) \times P(c | c^{old}, a) \text{ if } c \neq 1,2$$

given an unseen review r and its author a for each word w in the review its topic and topic-rating (k, u) are extracted from $\xi_{T \times L}[w]$ review rating is given by $argmax_r\Omega_{a,r}$

$$\Omega_{a,r} = \frac{\Sigma_{k,u} \mathbf{I}(r = argmax_{r^*} \phi_{a,r^*}[k,u]) \times \phi_{a,r}[k,u]}{K}$$

Dataset for Evaluation

- > IMDB movie review dataset
- > TripAdvisor restaurant review dataset

Dataset	Authors	$egin{array}{l} \mathbf{Avg} \\ \mathbf{Rev}/ \\ \mathbf{Author} \end{array}$			Rev	v/ Rat	ing		$\begin{array}{c} {\rm Avg~Rev} \\ {\rm Length} \end{array}$	$egin{array}{c} \mathbf{Avg} \\ \mathbf{Words}/ \\ \mathbf{Rev} \end{array}$
Movie Review*	312	7	Po 10	os 00		eg		Total 2000	32	746
Movie Review⊥	65	23	Po 70			eg 62		Total 1467	32	711
Restaurant Review*	9	170	R 1 43	R2 134	R 3 501	R 4 612	R 5 237	Total 1526	16	71
Restaurant Review⊥	9	340	R 1 514	R 2 532	R 3 680	R 4 700	R 5 626	Total 3052	20	81

Baselines

- Lexical classification using majority voting
- ➤ Joint Sentiment Topic Model¹
- ➤ Author-Topic LR Model²
- ➤ Model Prior
 - \triangleright A sentiment lexicon is used to initialize the prior polarity of words in $\xi_{T\times L}[w]$
- 1. Chenghua Lin and Yulan He, Joint sentiment/topic model for sentiment analysis, CIKM '09, pp. 375-384.
- Subhabrata Mukherjee, Gaurab Basu, and Sachindra Joshi, Incorporating author preference in sentiment rating prediction of reviews, WWW 2013.

Model Initialization Parameters

Model	Movie	Restaurant
Parameters	Review	\mathbf{Review}
A	65	9
${ m R}$	2	5
${ m T}$	50	25
${ m L}$	3	3
\mathbf{C}	20	15
$\alpha = 1/T \times L$	0.007	0.013
$\gamma = 1/T \times L$	0.007	0.013
$\delta = 1/C \times L$	0.017	0.022
$\theta = 1/A \times C$	0.0007	0.007

Model Initialization Parameters

Model	Movie	Restaurant
Parameters	Review	\mathbf{Review}
A	65	9
R	2	5
$oxed{T}$	50	25
L	3	3
$igcup_{\mathbf{C}}$	20	15
$\alpha = 1/T \times L$	0.007	0.013
$\gamma = 1/T \times L$	0.007	0.013
$\delta = 1/C \times L$	0.017	0.022
$\theta = 1/A \times C$	0.0007	0.007

Model Initialization Parameters

	Model	Movie	Restaurant
Par	ameters	Review	\mathbf{Review}
	A	65	9
	R	2	5
	Γ	50	25
Minimize Model Perplexity	L	3	3
<u> </u>	C	20	15
$\alpha =$	$1/T \times L$	0.007	0.013
$\gamma =$	$1/T \times L$	0.007	0.013
$\delta =$	$1/C \times L$	0.017	0.022
$\theta =$	$1/A \times C$	0.0007	0.007

Model Comparison with Baselines

Model Comparison with Baselines

Models	Accuracy
Lexical Baseline	65
JST [9]	82.8
Mukherjee $et \ al. \ (2013) \ [12]$	84.39
\mathbf{JAST}	87.69

IMDB Movie Review Dataset

Model Comparison with Baselines

Models	Accuracy
Lexical Baseline	65
JST [9]	82.8
Mukherjee $et \ al. \ (2013) \ [12]$	84.39
\mathbf{JAST}	87.69

IMDB Movie Review Dataset

Models	MAE
Lexical Baseline (Hu et. al 2004)	1.24
JST [9]	1.01
Facet Specific General Author Preference [12]	0.75
Facet and Author Specific Preference [12]	0.71
\mathbf{JAST}	0.61

TripAdvisor Restaurant Review Dataset

_	Models	Acc.
set	Eigen Vector Clustering [2]	70.9
ata	Semi Supervised, 40% doc. Label [8]	73.5
3	LSM Unsupervised with prior info [10]	74.1
ADE	SO-CAL Full Lexicon [21]	76.37
	RAE Semi Supervised Recursive Auto Encoders	76.8
<u>S</u>	with random word initialization [20]	
ode	WikiSent: Extractive Summarization with	76.85
∑	Wikipedia + Lexicon [13]	
nin	Supervised Tree-CRF [14]	77.3
forr	RAE: Supervised Recursive Auto Encoders with	77.7
Per	10% cross-validation [20]	
do	JST: Without Subjectivity Detection using	82.8
th T	LDA [9]	
× ×	JST: With Subjectivity Detection [9]	84.6
Sor	Pang et al. (2002): Supervised SVM [16]	82.9
oari	Supervised Subjective MR, SVM [15]	87.2
om	Kennedy et al. (2006): Supervised SVM [6]	86.2
Comparison with Top Performing Models in IMDB Dataset	Appraisal Group: Supervised [25]	90.2
	JAST: Unsupervised HMM-LDA	87.69

Models	Acc.
Eigen Vector Clustering [2]	70.9
Semi Supervised, 40% doc. Label [8]	73.5
LSM Unsupervised with prior info [10]	74.1
SO-CAL Full Lexicon [21]	76.37
RAE Semi Supervised Recursive Auto Encoders	76.8
with random word initialization [20]	
WikiSent: Extractive Summarization with	76.85
Wikipedia + Lexicon [13]	
Supervised Tree-CRF [14]	77.3
Semi Supervised, 40% doc. Label [8] LSM Unsupervised with prior info [10] SO-CAL Full Lexicon [21] RAE Semi Supervised Recursive Auto Encoders with random word initialization [20] WikiSent: Extractive Summarization with Wikipedia + Lexicon [13] Supervised Tree-CRF [14] RAE: Supervised Recursive Auto Encoders with 10% cross-validation [20] JST: Without Subjectivity Detection using LDA [9] JST: With Subjectivity Detection [9] Pang et al. (2002): Supervised SVM [16] Supervised Subjective MR SVM [15]	77.7
10% cross-validation [20]	
JST: Without Subjectivity Detection using	82.8
LDA [9]	
JST: With Subjectivity Detection [9]	84.6
Pang et al. (2002): Supervised SVM [16]	82.9
buper vised subjective with projective	87.2
Kennedy et al. (2006): Supervised SVM [6]	86.2
Appraisal Group: Supervised [25]	90.2
JAST: Unsupervised HMM-LDA	87.69

Models	Acc.
Eigen Vector Clustering [2]	70.9
Semi Supervised, 40% doc. Label [8]	73.5
LSM Unsupervised with prior info [10]	74.1
SO-CAL Full Lexicon [21]	76.37
RAE Semi Supervised Recursive Auto Encoders	76.8
with random word initialization [20]	
WikiSent: Extractive Summarization with	76.85
Wikipedia + Lexicon [13]	
Supervised Tree-CRF [14]	77.3
RAE: Supervised Recursive Auto Encoders with	77.7
10% cross-validation [20]	
JST: Without Subjectivity Detection using	82.8
LDA [9]	
JST: With Subjectivity Detection [9]	84.6
Pang et al. (2002): Supervised SVM [16]	82.9
Supervised Subjective MR, SVM [15]	87.2
Kennedy et al. (2006): Supervised SVM [6]	86.2
Appraisal Group: Supervised [25]	90.2
JAST: Unsupervised HMM-LDA	87.69

Snapshot of Topic-Label-Word Extraction by JAST

Movie Review Dataset					Restaurant Review Dataset					
T=bad	T=good	T=actor	T=actor	T= actor	T=food	T=food	T=food	T=service	T=bad	
L=neg	L=pos	L=neg	L=pos	L=obj	L=obj	L=neg	L=pos	L=pos	L=neg	
bad	good	kevin	funny	cruise	food	bad	dish	ambience	average	
suppose	great	violence	comedy	name	diner	awful	price	face	noth	
bore	sometimes	comic	laugh	run	customer	seem	din	hearty	wasn	
unfortunate	different	early	joke	$_{ m ship}$	sweet	$_{ m just}$	first	pretty	bad	
stupid	hunt	someth	fun	group	kitchen	cheap	beautiful	exceptional	basic	
waste	truman	not	eye	patch	feel	wasn	chicken	diner	nor	
ridiculous	sean	long	talk	creature	meal	stop	quality	friendly	didn	
half	excellent	every	hour	tribe	front	cold	recommend	perfection	don	
terrible	relationship	support	act	big	home	quite	lovely	help	last	
lame	amaze	type	moment	rise	serve	small	taste	worth	probably	
dull	damon	somewhat	close	board	warm	loud	fun	extra	slow	
poorly	martin	question	scene	studio	waitress	no	available	effort	sometimes	
attempt	chemistry	fall	picture	sink	treat	common	definitely	warm	serious	

Snapshot of Topic-Label-Word Extraction by JAST

Movie Review Dataset					Restaurant Review Dataset					
Γ =bad	T=good	T=actor	T=actor	T = actor	T=food	T=food	T=food	T=service	T=bad	
L=neg	L=pos	L=neg	L=pos	L=obj	L=obj	L=neg	L=pos	L=pos	L=neg	
bad	good	kevin	funny	cruise	food	bad	dish	ambience	average	
suppose	great	violence	comedy	name	diner	awful	price	face	noth	
$_{ m bore}$	$_{ m sometimes}$	comic	laugh	run	customer	seem	\dim	hearty	wasn	
unfortunate	$\operatorname{different}$	early	joke	$_{ m ship}$	sweet	$_{ m just}$	first	pretty	bad	
$_{ m stupid}$	hunt	someth	fun	group	kitchen	$_{ m cheap}$	beautiful	exceptional	basic	
waste	truman	not	eye	patch	feel	wasn	chicken	diner	nor	
ridiculous	sean	long	talk	creature	meal	stop	quality	friendly	didn	
$_{ m half}$	excellent	every	hour	tribe	front	cold	recommend	perfection	don	
terrible	relationship	support	act	big	home	quite	lovely	help	last	
$_{ m lame}$	amaze	type	moment	rise	serve	small	taste	worth	probably	
dull	damon	somewhat	close	board	warm	loud	fun	extra	slow	
poorly	$_{ m martin}$	question	scene	studio	waitress	no	available	effort	sometimes	
attempt	$_{ m chemistry}$	fall	picture	sink	treat	common	definitely	warm	serious	

Snapshot of Topic-Label-Word Extraction by JAST

Movie Review Dataset					Restaurant Review Dataset					
T=bad	T=good	T=actor	T=actor	T = actor	T=food	T=food	T=food	T=service	T=bad	
L=neg	L=pos	L=neg	L=pos	L=obj	L=obj	L=neg	L=pos	L=pos	L=neg	
bad	good	kevin	funny	cruise	food	bad	dish	ambience	average	
suppose	great	violence	comedy	name	diner	awful	price	face	noth	
bore	sometimes	comic	laugh	run	customer	seem	\dim	hearty	wasn	
unfortunate	different	early	joke	$_{ m ship}$	sweet	$_{ m just}$	first	pretty	bad	
$_{ m stupid}$	hunt	someth	fun	group	kitchen	$_{ m cheap}$	beautiful	exceptional	basic	
waste	truman	not	eye	patch	feel	wasn	chicken	diner	nor	
ridiculous	sean	long	talk	creature	meal	stop	quality	friendly	didn	
half	excellent	every	hour	tribe	front	cold	recommend	perfection	don	
terrible	relationship	support	act	big	home	quite	lovely	help	last	
lame	amaze	type	moment	rise	serve	small	taste	worth	probably	
dull	damon	somewhat	close	board	warm	loud	fun	extra	slow	
poorly	martin	question	scene	studio	waitress	no	available	effort	sometimes	
attempt	chemistry	fall	picture	sink	treat	common	definitely	warm	serious	

➤ Sentiment classification and aspect rating prediction models can be improved if author is *known*

- ➤ Sentiment classification and aspect rating prediction models can be improved if author is *known*
- Authorship information helps in identifying author topic preferences, and author writing style to maintain review coherence
 - Semantic-syntactic class transition and topic switch

- ➤ Sentiment classification and aspect rating prediction models can be improved if author is *known*
- Authorship information helps in identifying author topic preferences, and author writing style to maintain review coherence
 - Semantic-syntactic class transition and topic switch
- > JAST is unsupervised, with overhead of knowing author identity
- Performs better than all unsupervised/semi-supervised models and some supervised models

- Sentiment classification and aspect rating prediction models can be improved if author is known
- Authorship information helps in identifying author topic preferences, and author writing style to maintain review coherence
 - Semantic-syntactic class transition and topic switch
- > JAST is unsupervised, with overhead of knowing author identity
- Performs better than all unsupervised/semi-supervised models and some supervised models
- > It will be interesting to use JAST for authorship attribution task

QUESTIONS ???

