

生物统计与试验设计

Biostatistics and Experimental Design

主讲: 杨泽峰

扬州大学农学院

第二章 描述性统计数

- ▶2.1 变量与次数分布
- ▶2.2 次数分布表
- ▶2.3 次数分布图
- ▶2.4 集中趋势的统计数
- ▶2.5 离散趋势的统计数

2.4 集中趋势的统计数

反映变量集中性的特征数是平均数(mean),平均数是数量资料的代表值,表示整个资料内变数的中心位置,并且可以作为一组资料的代表,与另一组资料进行比较。

平均数主要包括有算术平均数、中位数、众数、几何平均数及调和平均数。其中最常用的是算术平均数。

- ◆ 算术平均数 (arithmetic mean) 是指总体或样本资料中各观察值的总和除以观察值 个数所得到的商,简称平均数或均数。
- ◆ 总体的算术平均数用 \(\mu\) 表示;
- ◆ 样本的算术平均数用 ȳ 表示。

(1) 样本的算术平均数

设某一资料包含 n 个观察值: y_1 , y_2 , ..., y_n , 则样本平均数:

$$\overline{y} = \frac{\overline{y}_1 + \overline{y}_2 + \cdots \overline{y}_n}{n} = \frac{\sum_{i=1}^n y_i}{n}$$

其中: \sum 为求和符号; $\sum_{i=1}^{n} y_i$ 表示从一个观察值 y_i 累加到 n 个观察值 y_n 。

(1) 样本的算术平均数

【例 2-6】: 测得 20 株某品种玉米的叶片数为 13、14、14、15、14、16、15、16、15、17、

16、14、15、16、15、16、17、15、16、15,试求该品种玉米平均每株的叶片数是多少:

计算:

$$\sum y = 13 + 14 + \dots + 15 = 304$$

$$\overline{y} = \frac{\sum y}{n} = \frac{13 + 14 + \dots + 15}{20} = \frac{304}{20} = 15.2$$
 (片)

2.4.1 算数平均数

(1) 样本的算术平均数

平均数的基本性质:

① 样本各观察值与平均数之差的和为零,即离均差之和等于零。

$$\sum (y - \overline{y}) = 0$$

② 样本各观察值与平均数之差的平方和为最小,即离均差平方和为最小。

$$\sum (y - \overline{y})^2 = \sum (y - a)^2, \ \mathbf{其中常数} \, a \neq \overline{y}$$

(2) 总体的算术平均数

对于总体而言,通常用 μ 表示总体平均数,具有N个观察值的有限总体的平均数成为总体

平均数。总体数的计算公式为:

$$\mu = \frac{y_1 + y_2 + \dots + y_N}{N} = \frac{\sum_{i=1}^{N} y_i}{N}$$
 或简写为 $\mu = \frac{\sum_{i=1}^{N} y_i}{N}$

2.4.2 几何平均数

计算平均增长率,需要用几何平均数 (geometric mean),记为 G。G 的定义为:

$$G = (y_1 \cdot y_2 \cdots y_n)^{\frac{1}{n}}$$

对上式取对数得:

$$\lg G = \frac{\lg y_1 + \lg y_2 + \dots + \lg y_n}{n} = \frac{\sum (\lg y)}{n}$$

因而可知,几何平均数是观察值对数的算术平均数的反对数。

2.4.3 调和平均数

计算平均速率,需要用到调和平均数 (harmonic mean), 记为 H。

$$H = \frac{1}{\frac{1}{n} \left(\frac{1}{y_1} + \frac{1}{y_2} + \dots + \frac{1}{y_n} \right)} = \frac{1}{\frac{1}{n} \sum \frac{1}{y}}$$

由上可知,调和平均数是观察值倒数的算术平均数的反倒数。

就同一资料而言,往往具有 $\bar{y} > G > H$ 的关系。

H 具有最能减少极端大观察值的作用。

2.4.4 众数

众数 (mode) 是以出现频率最大定义的,计作 M_0 。

如 100 个麦穗小穗数中,18 个小穗出现的频率最大,故 $M_0=18$ 。

对于连续性变量,则只能通过次数分布表求解:

$$M_0 = L + \frac{f_2}{f_1 + f_2}i$$

其中: L 为次数最多组的低限, f_1 为次数最多组上方组的次数,

 f_2 为次数最多组下方组的次数, i 为组距。

表 2-6 100 个麦穗每穗小穗数的次数分布

编号	每穗小穗数	次数
1	15	7
2	16	17
3	17	27
4	18	29
5	19	14
6	20	6

2.4.5 中位数

中位数 (median), 又称中数, 记作 M_d 。

中位数以比它大和比它小的观察值各占 50%而定义的。将观察值按大小依次排列,当观察 值数目为奇数时,最中间的观察值就是 M_a ; 当观察值数目为偶数时,最中间的两个观察值 的算术平均数为 M_d 。

由次数分布表计算中位数:
$$M_d = L_{M_d} + \frac{\frac{n}{2} - A}{f_{M_d}}i$$

其中: L_{M_d} 为中位数所在组的低限, f_{M_d} 为中位数所在组的次数,n为样本容量,A为中 位数所在组上方各组的累积次数, i 为组距。

2.4.5 中位数

【例2-7】 根据次数分布表求取众数和中位数。

表 2-3 102 株水稻株高(cm)的次数分布表

编号	组区间	组中值	次数
1	101-102	101.5	2
2	102-103	102.5	3
3	103-104	103.5	7
4	104-105	104.5	13
5	105-106	105.5	16
6	106-107	106.5	18
7	107-108	107.5	15
8	108-109	108.5	14
9	109-110	109.5	8
10	110-111	110.5	5
11	111-112	111.5	1

(1) 众数:

$$M_0 = L + \frac{f_2}{f_1 + f_2}i = 106 + \frac{15 \times 1}{16 + 15} = 106.4839$$

(2) 中位数

$$M_d = L_{M_d} + \frac{\frac{n}{2} - A}{f_{M_d}} i = 106 + \frac{\frac{102}{2} - 41}{18} \times 1 = 106.5556$$