Университет ИТМО

Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №1 (УИР 1) "Обработка результатов измерений: статистический анализ числовой последовательности"

по дисциплине "Моделирование"

Выполнили:

Студенты группы Р3334

Баянов Р. Д.

Кузнецов Д. А.

Вариант: 38

Преподаватель:

Авксентьев Е. Ю.

Санкт-Петербург 2024 г.

Оглавлени

e

Цель работы	3
Расчёт статистических характеристик заданной числовой последовательности	4
График значений заданной ЧП	6
Автокорреляционный анализ	7
Гистограмма распределения	8
Аппроксимация закона распределения	9
Генератор случайных чисел по заданным параметрам	10
Анализ сгенерированной последовательности	11
Автокорреляционное сравнение заданной и сгенерированной ЧП	12
Сравнения графиков двух ЧП	13
Корреляционная зависимость заданной и сгенерированной ЧП	14
Вывод	15

Цель работы

Изучение методов обработки и статистического анализа результатов измерений на примере заданной числовой последовательности путем оценки числовых моментов и выявления свойств последовательности на основе корреляционного анализа, а также аппроксимация закона распределения заданной последовательности по двум числовым моментам случайной величины.

Расчёт статистических характеристик заданной числовой последовательности

Для расчёта оценки математического ожидания, оценки дисперсии, оценки среднеквадратического отклонения, коэффициента вариации, доверительных интервалов были использованы формулы:

$$\widetilde{m} = \frac{\sum_{i=1}^{n} X_i}{n} \qquad \widetilde{D} = \frac{\sum_{i=1}^{n} (X_i - \widetilde{m})^2}{n-1}.$$

 $\widetilde{\sigma} = \sqrt{\widetilde{D}}$ — среднеквадратическое отклонение.

$$\widetilde{\sigma}_m = \frac{\widetilde{\sigma}}{\sqrt{n}}$$

 $\varepsilon_p = t_p \widetilde{\sigma}_m$, где t_p - t-оценка доверительного уровня. Определять этот параметр мы будем с помощью таблицы из методички.

Таблица 1

p	t_p	р	t_p
0,80	1,282	0,91	1,694
0,81	1,310	0,92	1,750
0,82	1,340	0,93	1,810
0,83	1,371	0,94	1,880
0,84	1,404	0,95	1,960
0,85	1,439	0,96	2,053
0,86	1,475	0,97	2,169
0,87	1,513	0,98	2,325
0,88	1,554	0,99	2,576
0,89	1,597	0,9973	3,000
0,90	1,643	0,999	3,290

 $v = \frac{\widetilde{\sigma}}{\widetilde{m}} -$ коэффициент вариации.

Характеристики заданной ЧП (вариант 38)									
Vanageranguatura			Кол	ичество сл	тучайных в	еличин			
Характеристика		10	20	50	100	200	300		
Мат.ож.	Знач.	39,641	66,556	62.094	70.269	64.800	63.561		
IVIAI.Oж.	%	37.633	4.712	2.308	10.554	1.949	03.301		
Пор. иит (0.0)	Знач.	1,296	1,439	1,620	1,740	1,595	1,766		
Дов. инт. (0,9)	%	26.614	18.516	8.267	1.472	9.683	1,700		
Пор. инт. (0.05)	Знач.	1,546	1,717	1,933	2,075	1,903	2,107		
Дов. инт. (0,95)	%	26.626	18.510	8.258	1.519	9.682	2,107		
Дов. инт. (0,99)	Знач.	2,032	2,256	2,540	2,727	2,501	2,770		
Дов. инт. (0,99)	%	26.643	18.556	8.303	1.552	9.711	2,770		
Пионована	Знач.	978.190	3398.003	3750.034	5535.453	3959.493	4669.721		
Дисперсия	%	79.052	27.233	19.695	18.539	15.209	4009.721		
С.к.о	Знач.	31.276	58.292	61.238	74.401	62.925	68.335		
	%	54.231	14.697	10.386	8.877	7.917	06.333		
К-т вариации	Знач.	0.789	0.876	0.986	1.059	0.971	1.075		
	%	26.605	18.512	8.279	1.488	9.674	1.073		

% - относительные отклонения рассчитанных значений от значений, полученных для выборки из трехсот величин

Заметим, что при увеличении количества значений в последовательности мы видим, что коэффициент корреляции стремится к значению выше 1, так как значения для последовательности из 300 элементов, мы считаем эталонной.

График значений заданной ЧП

Проанализировав данный график значений для заданной числовой последовательности, мы можем сделать вывод, что числовая последовательность не является: убывающей, периодической, возрастающей.

Автокорреляционный анализ

Формула для вычисления коэффициента автокорреляции для заданной ЧП:

$$r_{_{XX_{k}}}\!\!=\!\!rac{cov(X,X_{k})}{\sigma_{_{X}}^{^{2}}}$$
; где, $\mathbf{k}-\mathbf{c}$ двиг ЧП.

Сдви г ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК										
для зада	0,00869 9	0,00869 9	0,06711 4	0,0019 6	0,0618 5	0,0175 9	0,11615 7	0,0188 1	0,0214 2	0,06383 7
нной ЧП										

График, значений коэффициентов и сдвигов:

Как видно из графика и таблицы, между коэффициентами автокорреляции нет никакой тенденции или периодичности. Поэтому последовательность можно считать случайной.

Гистограмма распределения

Заметим, что основная масса значений в ЧП находится в диапазоне маленьких значений. Чаще всего встречаются значения от 0 до 36 и от 36 до 72. Чуть меньше от 72 до 216, и очень редко встречаются большие значения.

Аппроксимация закона распределения

Так как мы имеем при выборке из заданной ЧП в 300 элементов коэффициент вариации больше 1, то для аппроксимации нашего набора чисел возьмём гиперэкспоненциальное распределение.

Рассчитаем три момента, так как аппроксимация с помощью гиперэкспоненциального распределения может осуществляться через три момента. Рассчитаем их по следующим формулам, v=1.075:

$$q \le \frac{2}{1+v^2} = 0.9278$$

Возьмём q = 0.9 и t = 63.561 — мат. ожидание

$$t_1 = \left[1 + \sqrt{\frac{1 - q}{2q} (v^2 - 1)} \right] * t = 6.9.471$$

$$t_2 = \left[1 - \sqrt{\frac{q}{2(1-q)}(v^2 - 1)}\right] * t = 10.370$$

Мы получили вероятность генерации числа q и мат. ожидания первой и второй экспоненциальных фаз.

Генератор случайных чисел по заданным параметрам

```
from scipy.stats import expon
import random
t1 = 69.471
t2 = 10.370
# Генерация выборок из экспоненциального распределения
data1 = expon.rvs(scale=t1, loc=0, size=300)
data2 = expon.rvs(scale=t2, loc=0, size=300)
# Инициализация пустого списка для результата
result = []
# Проходим по диапазону 300 значений
for in range(300):
  q = random.uniform(0, 1) # Генерация случайного числа от 0 до 1
   index = random.choice(range(300)) # Выбираем случайный индекс от 0 до
   value = data1[index] if q < 0.9 else data2[index]</pre>
   # Добавляем выбранное значение в результат
   result.append(value)
for val in result:
 print(val)
```

Данный код генерирует числовую последовательность по гиперэкспоненциальному распределению, основываясь на параметрах, которые мы высчитали ранее. Первые два массива создают по 300 чисел отталкиваясь от параметров t1 и t2. А дальше значения будут перераспределяться в результирующий массив на основе вероятности q.

Анализ сгенерированной последовательности

Характеристики сгенерированной ЧП (вариант 38)									
Характеристика			Ко	личество с.	пучайных в	величин			
1 1		10	20	50	100	200	300		
Мат.ож.	Знач.	102,997	84,189	70,719	68,529	69,921	64,895		
мат.ож.	%	58,714	29,731	8,974	5,600	7,745	04,893		
Дов. инт. (0,9)	Знач.	1,534	1,669	1,750	1,919	1,839	1,811		
	%	15,315	7,861	3,390	5,934	1,517			
Дов. инт. (0,95)	Знач.	1,830	1,991	2,088	2,289	2,194	2,161		
	%	15,315	7,861	3,390	5,934	1,517			
Дов. инт. (0,99)	Знач.	2,405	2,617	2,744	3,009	2,883	2,840		
	%	15,315	7,861	3,390	5,934	1,517			
Пионовона	Знач.	9247,973	7314,359	5674,054	6406,238	6124,568	5119,189		
Дисперсия	%	80,653	42,881	10,839	25,142	19,639	3119,109		
Cro	Знач.	96,166	85,524	75,326	80,039	78,260	71.540		
С.к.о	%	34,407	19,533	5,280	11,867	9,380	71,549		
К-т вариации	Знач.	0,934	1,016	1,065	1,168	1,119	1,103		
	%	15,315	7,861	3,390	5,934	1,517			

% - относительные отклонения рассчитанных значений от значений, полученных для выборки из трехсот величин

Отсюда мы видим, что сгенерированная последовательность не существенно отличается от оригинальной при выборке в 300 чисел, так как отклонения крайне малы. Это свидетельствует о правильном выборе распределения и о верном расчёте параметров для генерации ЧП.

Автокорреляционное сравнение заданной и сгенерированной ЧП

Сдв иг ЧП	1	2	3	4	5	6	7	8	9	10
К-т АК для зада нно й ЧП	0,00869	0,00869	0,06711	0,0019	0,0618	0,0175	0,116 157	0,018 81	0,021	0,063 837
К-т АК для зада нно й ЧП	0,02543	0,02543	0,01734 7	-0,012	0,0055 82	- 0,0699 6	0,020 393	0,011 39	0,108 74	0,0118
%	192.32	192.32	74.153	712.24 4%	90.968	497.72 6	99.98 0	160.5 53	607.6 56	81.52

Коэффициенты автокорреляции крайне низкие и не совпадают друг с другом, что говорит о том, что и заданная, и сгенерированная ЧП являются случайными.

Сравнения графиков двух ЧП

Ряд1 – сгенерированная, ряд2 - заданная

Последовательность 1 – заданная, последовательность 2 – сгенерированная тихдву

Из этих двух графиков мы чётко видим, что последовательности очень схожи, но ни в коем случае не одинаковые.

Корреляционная зависимость заданной и сгенерированной ЧП

Коэффициент корреляции двух ЧП равен k = 0.013841, это значение крайне невелико, что говорит о том, что эти ЧП никак друг на друга не влияют и никак друг от друга не зависят. Они не являются одинаковыми и никак не связаны, но при этом имеют похожий характер распределения значений.

Вывод

Выполнив данную лабораторную работу, мы вспомнили основы математической статистике и попробовали изучить заданную числовую последовательность. Выяснили, что по коэффициенту ковариации и с помощью аппроксимации можно построить ЧП очень похожую на изначальную по своим распределительным характеристикам. Сравнили эти две ЧП и поняли, что дисперсия и мат. ожидания у них хоть и отличаются, но эти значения не выйдут за пределы доверительных интервалов. К тому же эти значения отличаются не сильно.