Tax cases

 Project:
 Recalculation Ussel Bridge A12
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 EKL

 Description:
 Other variable taxes
 Version:
 F1.0

Hot water pipe

Tax case 1100-1199 = Hot water pipe

The hot water pipe variable load is based on Strackee's [912-275.R01] calculation. It should be noted, however, that in this calculation horizontal loads are transferred to the bridge via a frame that transfers its load to three cross beams. The other frames wear in the calculate their load on one cross beam. This does not correspond to the drawings and what has been done outside. Be in consultation with Rijkswaterstaat the taxes are determined as follows

Vertical load $F_z = 20 \text{ kN}$ per tube, per suspension point Horizontal load longitudinal ri. $F_x = 5 \text{ kN}$ per tube, per suspension point

The load has been translated per suspension point into 4 point loads on the cross beams

Variable load hot water pipe

Acceptance tax

Tax case 1400-1499 = Acceptance tax

The acceptance load of 1 MN must be applied to a surface of $0.25 \, \mathrm{mx} \, 3.0 \, \mathrm{m}$. For the global model, the load is applied to the bottom $0.25 \, \mathrm{m}$ from the K-band, so that the load is transferred via the K-band to the main beam. Given the size of the load and the fact that the bridge is not designed for this load from the design, it is expected that the bridge will not meet this acceptance load.

 $\label{eq:F} \text{K-related tax} \qquad \qquad \text{F} = \qquad \quad 1000 \; \text{kN}$

h = 0.25 m

q = 4000 kN / m over 0.25 m

Tax cases Project: Recalcul	ation I.Isselbrug A12 Date:	5/25/2018 Project number	BF7387 Name: FKI Descrip	tion: Other

2020-04-02

Page 2

Appendix

Appendix J - Tax combinations

IJssel Bridge

Tax cases			
Project:	Recalculation IJssel Bridge A12	Date:	10/19/2018
Project number:	BF7387	Name:	EKL
Description:	Tax combinations	Version:	F1.1

Tax combinations

	Permai	nent taxes		Traffic (with	Wind (with $\psi = 1$)	Others change rlijk (with	
	γ	Gj, sup	γGj , inf	$\psi = 1)$		$\psi = 1)$	
		6.10b	6.10a				
	6.10a	(incl. ξ)	and	γ Q, 1	γQ, 1	γQ, 1	
			6.10b				
New construction	1.4	1.25	0.9	1.5	1.65	1.65	
Renovation	1.3	1.15	0.9	1.3	1.6	1.5	
Use	1.25	1.15	0.9	1.25	1.5	1.3	
Disapproval	1.25	1.1	0.9	1.25	1.5	1.3	

6.10b

						Tax con	binations						
	1	grla	gr1b	5	gr2	1	V b		ГЬ	I	I	A1	a, b
TS (LM1)	1	1	0	0.8	0.8	0.8	0.64	0.8	0.64	0	0	0.8	0.64
UDL (LM1)	1	1	0	0.8	0.8	0.8	0.64	0.8	0.64	0	0	0.8	0.64
Single axis (LM2)	0	0	1	0	0	0	0	0	0	0	0	0	0
Horizontal load	0.8	0.8	0	1	1	0.64	0.8	0.64	0.8	0	0	0.64	0.8
Wind c F wk	0.3	0	0	0.3	0	0	0	0.3	0.3	0.3	0	0	0
F * w	0	1	0	0	1	1	1	0	0	0	1	0	0
Temperature	0.3	0.3	0	0.3	0.3	0.3	0.3	1	1	0.3	0.3	0	0
Inspection path	0	0	0	0	0	0	0	0	0	1	1	0	0
Impact on or under the bridge	0	0	0	0	0	0	0	0	0	0	0	1	1
Hot water pipe	1	1	1	1	1	1	1	1	1	1	1	1	1

b In these combinations is in the first column gr1a * ψ 0 , and the second column gr2 * ψ 0 . For the definition of the group traffic load gr1a and gr2 see NEN-EN

1991-2+C1
c Where traffic load is present on (parts of) the bridge, F * w may be used instead of F wk

							Tax com	binations							
		gr1a	gr1b	1	gr2		V	/ b			T b	I	I	A1	a, b
TS (LM1)	0.8	0.8	0	0.64	0.64	0.8	0.8	0.64	0.64	0.8	0.64	0	0	0.8	0.64
UDL (LM1)	0.8	0.8	0	0.64	0.64	0.8	0.8	0.64	0.64	0.8	0.64	0	0	0.8	0.64
Single axis (LM2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Horizontal load	0.64	0.64	0	0.8	0.8	0.64	0.64	0.8	0.8	0.64	0.8	0	0	0.64	0.8
Wind c F wk	0.3	0	0	0.3	0	0.3	0	0.3	0	0.3	0.3	0.3	0	0	0
F * w	0	1	0	0	1	0	1	0	1	0	0	0	1	0	0
Temperature	0.3	0.3	0	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0	0
Inspection path	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Impact on or under the bridge	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hot water pipe	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
a A1 = collision on or under the bridge	and collision														

 $b~In~these~combinations~is~in~the~first~column~gr1a~^*\psi~0~, and~the~second~column~gr2~^*\psi~0~.~For~the~definition~of~the~group~traffic~load~gr1a~and~gr2~see~NEN-EN~1991-2+C1~load~gr1a~load~gr2~see~NEN-EN~1991-2+C1~load~gr1a~load~gr2~see~NEN-EN~1991-2+C1~load~gr2~see~NEN-EN~1$

Tax cases			
Project:	Recalculation IJssel Bridge A12	Date:	10/19/2018
Project number:	BF7387	Name:	EKL
Description:	Tax combinations	Version:	F1.1

Ultimate limit state

Level:	use									
	6.1	0a			6.1	0b			6.	11b
	gr1a	gr2	grla	gr1b	gr2	7	f b	I	A	1 a, b
Own weight	0.9 / 1.25 0.9	/ 1.25 0.9 / 1.15	0.9 / 1.15 0.9 / 1	.15 0.9 / 1.15 0.9	9 / 1.15 0 , 9 / 1.	15			1	1
Resting load	0.9 / 1.25 0.9	/ 1.25 0.9 / 1.15	0.9 / 1.15 0.9 / 1	.15 0.9 / 1.15 0.9	9 / 1.15 0 , 9 / 1.	15			1	1
Shrink and creep	1	1	1	1	1	1	1	1	1	1
Preload	1	1	1	1	1	1	1	1	1	1
TS (LM1)	1	0.8	1.25	0	1	1	0.8	0	0.8	0.64
UDL (LM1)	1	0.8	1.25	0	1	1	0.8	0	0.8	0.64
Single axis (LM2)	0	0	0	1.25	0	0	0	0	0	0
Horizontal load	0.8	1	1	0	1.25	0.8	1	0	0.64	0.8
Wind c F wk	0	0	0	0	0	0.45	0.45	0	0	0
F * w	1.5	1.5	1.5	0	1.5	0	0	1.5	0	0
Temperature	0.39	0.39	0.39	0	0.39	1.3	1.3	0.39	0	0
Inspection path	0	0	0	0	0	0	0	1.3	0	0
Impact on or under the bridge	0	0	0	0	0	0	0	0	1	1
Hot water pipe	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1	1
a A1 = collision on or under the bridge	and collision									
Charles and the contract of the contract of				The standard section						

c Where traffic load is present on (parts of) the bridge, F * w may be used instead of F wk .

 $b \ In \ these \ combinations \ is \ in \ the \ first \ column \ gr1a \ *\psi \ 0 \ , and \ the \ second \ column \ gr2 \ *\psi \ 0 \ . For \ the \ definition \ of \ the \ group \ traffic \ load \ gr1a \ and \ gr2$

see NEN-EN 1991-2 + C1 e Where traffic load is present on (parts of) the bridge, F * w may be used instead of F wk . For the combinations with ψ 0 * F wk is assuming the wind load F * w with a load factor 1.5 * ψ 0 * F wk / F * w = 1.5 * 0.3 * 1.056 = 0.48.

Level:	cultivation									
	6.1	no.			6.1	10b			61	11b
	grla	gr2	gr1a	gr1b	gr2		ГЬ	I	A	1 a, b
Own weight	0.9 / 1.3 0.9	/ 1.3 0.9 / 1.15 0	.9 / 1.15 0.9 / 1.1	5 0.9 / 1.15 0.9	1.150,9/1.1	5			1	1
Resting load	0.9 / 1.3 0.9	/ 1.3 0.9 / 1.15 0	9 / 1.15 0.9 / 1.1	5 0.9 / 1.15 0.9	1.15 0 , 9 / 1.1	5			1	1
Shrink and creep	1	1	1	1	1	1	1	1	1	1
Preload	1	1	1	1	1	1	1	1	1	1
TS (LM1)	1.04	0.832	1.3	0	1.04	1.04	0.832	0	0.8	0.64
UDL (LM1)	1.04	0.832	1.3	0	1.04	1.04	0.832	0	0.8	0.64
Single axis (LM2)	0	0	0	1.3	0	0	0	0	0	0
Horizontal load	0.832	1.04	1.04	0	1.3	0.832	1.04	0	0.64	0.8
Wind c F wk	0	0	0	0	0	0.48	0.48	0	0	0
F * w	1.6	1.6	1.6	0	1.6	0	0	1.6	0	0
Temperature	0.45	0.45	0.45	0	0.45	1.5	1.5	0.45	0	0
Inspection path	0	0	0	0	0	0	0	1.5	0	0
Impact on or under the bridge	0	0	0	0	0	0	0	0	1	1
Hot water pipe	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1	1
a A1 = collision on or under the bridge	and collision									

Tax cases			
Project:	Recalculation IJssel Bridge A12	Date:	10/19/2018
Project number:	BF7387	Name:	EKL
Description:	Tax combinations	Version:	F1.1

Serviceability limit states

Characteristic load combinations - cf. 6.14b

	Characteristic load combinations (6.14)									
	gr1a	gr1b	gr2	W	b	T	b	I		
Own weight	1	1	1	1	1	1	1	1		
Resting load	1	1	1	1	1	1	1	1		
Shrink and creep	1	1	1	1	1	1	1	1		
Preload	1	1	1	1	1	1	1	1		

Page 5

TS (LM1)	1	0	0.8	0.80	0.64	0.8	0.64	0
UDL (LM1)	1	0	0.8	0.8	0.64	0.8	0.64	0
Single axis (LM2)	0	1	0	0	0	0	0	0
Horizontal load	0.8	0	1	0.64	0.8	0.64	0.8	0
Wind c F wk	0	0	0	0	0	0.3	0.3	0
F * w	1	0	1	1	1	0	0	1
Temperature	0.3	0	0.3	0.3	0.3	1	1	0.3
Inspection path	0	0	0	0	0	0	0	1
Impact on or under the bridge	0	0	0	0	0	0	0	0
Hot water pipe	1	1	1	1	1	1	1	1

b In these combinations is in the first column gr1a * ψ 0 , and the second column gr2 * ψ 0 . For the definition of the group

traffic loads gr1a and gr2 see NEN-EN 1991-2 + C1

e Where traffic load is present on (parts of) the bridge, F * w may be used instead of F wk . For the

combinations with ψ 0 * F wk assume the wind load F * w with a load factor 1.0 * ψ 0 * F wk / F * w = 1.0 * 0.3 * 1.056

Frequent load combinations - cf. 6.15b for cracking

	Frequent load combinations (6.15b)									
	grla	gr1b	gr2	W.	T	I				
Own weight	1	1	1	1	1	1				
Resting load	1	1	1	1	1	1				
Shrink and creep	- 1	1	1	1	1	1				
Preload	1	1	1	1	1	1				
TS (LM1)	0.8	0	0.8	0.4	0.4	0				
UDL (LM1)	0.8	0	0.8	0.4	0.4	0				
Single axis (LM2)	0	0.8	0	0	0	0				
Horizontal load	0.8	0	0.8	0.4	0.4	0				
Wind c F wk	0	0	0	0	0	0				
F * w	0	0	0	0.6	0	0				
Temperature	0.3	0	0.3	0.3	0.8	0.3				
Inspection path	0	0	0	0	0	0				
Impact on or under the bridge	0	0	0	0	0	0				
Hot water pipe	1	1	1	1	1	1				

c Where traffic load is present on (parts of) the bridge, F * w may be used instead

Page 6

Tax cases Recalculation IJssel Bridge A12 10/19/2018 Project: Date: BF7387 Project number: Name: EKL Tax combinations Description: Version: F1.1

Quasi-permanent load combinations - cf. 6.16b

	Qua	si-permanent ta	ax combination:	s (6.16b)		
	gr1a	gr1b	gr2	W.	T	I
Own weight	1	1	1	1	1	1
Resting load	1	1	1	1	1	1
Shrink and creep	1	1	1	1	1	1
Preload	1	1	1	1	1	1
TS (LM1)	0.4	0	0	0.4	0.4	0
UDL (LM1)	0.4	0	0	0.4	0.4	0
Single axis (LM2)	0	0	0	0	0	0
Horizontal load	0.4	0	0	0.4	0.4	0
Wind F wk	0	0	0	0	0	0
F * w	0	0	0	0	0	0
Temperature	0.3	0.3	0.3	0.3	0.3	0.3
Inspection path	0	0	0	0	0	0
Impact on or under the bridge	0	0	0	0	0	0
Hot water pipe	1	1	1	1	1	1

Tax cases			
Project:	Recalculation IJssel Bridge A12	Date:	10/19/2018
Project number:	BF7387	Name:	EKL
Description:	Reduced tax combinations Version:		F1.1

Tax combinations

Tax combinations

		nent taxes	γ Gj , inf	Traffic (with $\psi = 1$)	Wind (with $\psi = 1$)	Others change rlijk (with $\psi = 1$)
		6.10b	6.10a			
	6.10a	(incl. ξ)	and	γQ, 1	γQ, 1	γQ, 1
			6.10b			
New construction	1.4	1.25	0.9	1.5	1.65	1.65
Renovation	1.3	1.15	0.9	1.3	1.6	1.5
Use	1.25	1.15	0.9	1.25	1.5	1.3
Dicapproval	1.25	1.1	0.0	1.25	1.5	1.2

6.10b

						Tax con	ibinations						
	gı	rla	gr1b		gr2	7	W b		Γb	I	I	A	l a, b
TS (LM1)	1	0.9	0	0.8	0.72	0.8	0.64	0.8	0.64	0	0	0.8	0.64
UDL (LM1)	1	0.9	0	0.8	0.72	0.8	0.64	0.8	0.64	0	0	0.8	0.64
Single axis (LM2)	0	0	1	0	0	0	0	0	0	0	0	0	0
Horizontal load	0.8	0.72	0	1	0.9	0.64	0.8	0.64	0.8	0	0	0.64	0.8
Wind c F wk	0.3	0	0	0.3	0	0	0	0.3	0.3	0.3	0	0	0
F * w	0	1	0	0	1	1	1	0	0	0	1	0	0
Temperature	0.3	0.3	0	0.3	0.3	0.3	0.3	1	1	0.3	0.3	0	0
Inspection path	0	0	0	0	0	0	0	0	0	1	1	0	0
Impact on or under the bridge	0	0	0	0	0	0	0	0	0	0	0	1	1
Hot water pipe	1	1	1	1	1	1	1	1	1	1	1	1	1
a A1 = collision on or under the bridge	and collision												

b In these combinations is in the first column gr1a * ψ 0 , and the second column gr2 * ψ 0 . For the definition of the group traffic load gr1a and gr2 see NEN-EN

c Where traffic load is present on (parts of) the bridge, F * w may be used instead of F wk

6.10a

							Tax com	binations							
	8	grla	gr1b		gr2		7/	V b			T b	I	I	A	l a, b
TS (LM1)	0.8	0.72	0	0.64	0.576	0.8	0.8	0.64	0.64	0.8	0.64	0	0	0.8	0.64
UDL (LM1)	0.8	0.72	0	0.64	0.576	0.8	0.8	0.64	0.64	0.8	0.64	0	0	0.8	0.64
Single axis (LM2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Horizontal load	0.64	0.576	0	0.8	0.72	0.64	0.64	0.8	0.8	0.64	0.8	0	0	0.64	0.8
Wind c F wk	0.3	0	0	0.3	0	0.3	0	0.3	0	0.3	0.3	0.3	0	0	0
F * w	0	1	0	0	1	0	1	0	1	0	0	0	1	0	0
Temperature	0.3	0.3	0	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0	0
Inspection path	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Impact on or under the bridge	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hot water pipe	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
a A1 = collision on or under the bridge or	nd collision														

b In these combinations is in the first column gr1a * ψ 0 , and the second column gr2 * ψ 0 . For the definition of the group traffic load gr1a and gr2 see NEN-EN 1991-2 + C1

c Where traffic load is present on (parts of) the bridge, F * w may be used instead of F wk .

Tax cases			
Project:	Recalculation IJssel Bridge A12	Date:	10/19/2018
Project number:	BF7387	Name:	EKL
Description:	Reduced tax combinations Version:		F1.1

Ultimate limit state

Level:	use													
		6.1	0a					6.1	0b				6.1	1b
	gı	rla	g	r2	g	rla	gr1b	g	r2		T b	I	Al	a, b
Own weight	0.9 / 1.25 0.9	/ 1.25 0.9 / 1.25	0.9 / 1.25 0.9 / 1	1.15 0.9 / 1.15 0.	.9 / 1.15 0 .9 / 1.	15 0.9 / 1.15 0.9	/ 1.15 0.9 / 1.15	0.9 / 1.15					1	1
Resting load	0.9 / 1.25 0.9	/ 1.25 0.9 / 1.25	0.9 / 1.25 0.9 / 1	1.15 0.9 / 1.15 0.	.9 / 1.15 0 .9 / 1.	15 0.9 / 1.15 0.9	/ 1.15 0.9 / 1.15	0.9 / 1.15					1	1
Shrink and creep	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Preload	1	1	1	1	1	1	1	1	1	1	1	1	1	1
TS (LM1)	1	0.9	0.8	0.72	1.25	1,125	0	1	0.9	1	0.8	0	0.8	0.64
UDL (LM1)	1	0.9	0.8	0.72	1.25	1,125	0	1	0.9	1	0.8	0	0.8	0.64
Single axis (LM2)	0	0	0	0	0	0	1.25	0	0	0	0	0	0	0
Horizontal load	0.8	0.72	1	0.9	1	0.9	0	1.25	1,125	0.8	1	0	0.64	0.8
Wind c F wk	0.45	0	0.45	0	0.45	0	0	0.45	0	0.45	0.45	0	0	0
F * w	0	1.5	0	1.5	0	1.5	0	0	1.5	0	0	1.5	0	0
Temperature	0.39	0.39	0.39	0.39	0.39	0.39	0	0.39	0.39	1.3	1.3	0.39	0	0
Inspection path	0	0	0	0	0	0	0	0	0	0	0	1.3	0	0
Impact on or under the bridge	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Hot water pipe	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1	1

a A1 = collision on or under the bridge and collision

b In these combinations is in the first column gr1a * ψ 0, and the second column gr2 * ψ 0. For the definition of the group traffic load gr1a and gr2 see NEN-EN 1991-2 + C1

e Where traffic load is present on (parts of) the bridge, F * w may be used instead of F wk . For the combinations with ψ 0 * F wk , the wind load F * w with a is assumed

load factor 1.5 * ψ 0 * F wk / F * w = 1.5 * 0.3 * 1.056 = 0.48.

Level:	cultivation	1												
		6.	10a					6.	10b				6.	11b
	g	r1a		gr2	g	r1a	gr1b	gr1	gr2		T b	I	A	1 a, b
Own weight	0.9 / 1.3 0.9	/ 1.3 0.9 / 1.3 0.	9 / 1.3 0.9 / 1.15	0.9 / 1.15 0.9 /	1.15 0 .9 / 1.15 0	0.9 / 1.15 0.9 / 1.1	5 0.9 / 1.15 0.9	/ 1.15					1	1
Resting load	0.9 / 1.3 0.9	/ 1.3 0.9 / 1.3 0.	9 / 1.3 0.9 / 1.15	0.9 / 1.15 0.9 /	1.15 0 .9 / 1.15 0	0.9 / 1.15 0.9 / 1.1	15 0.9 / 1.15 0.9	/ 1.15					1	1
Shrink and creep	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Preload	1	1	1	1	1	1	1	1	1	1	1	1	1	1
TS (LM1)	1.04	0.936	0.832	0.7488	1.3	1.17	0	1.04	0.936	1.04	0.832	0	0.8	0.64
UDL (LM1)	1.04	0.936	0.832	0.7488	1.3	1.17	0	1.04	0.936	1.04	0.832	0	0.8	0.64
Single axis (LM2)	0	0	0	0	0	0	1.3	0	0	0	0	0	0	0
Horizontal load	0.832	0.7488	1.04	0.936	1.04	0.936	0	1.3	1.17	0.832	1.04	0	0.64	0.8
Wind c F wk	0.48	0	0.48	0	0.48	0	0	0.48	0	0.48	0.48	0	0	0
F * w	0	1.6	0	1.6	0	1.6	0	0	1.6	0	0	1.6	0	0
Temperature	0.45	0.45	0.45	0.45	0.45	0.45	0	0.45	0.45	1.5	1.5	0.45	0	0
Inspection path	0	0	0	0	0	0	0	0	0	0	0	1.5	0	0
Impact on or under the bridge	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Hot water pipe	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1	1
a A1 = collision on or under the bridg		1.5				1.5	1.0					1.0	•	

b In these combinations is in the first column gr1a * ψ 0 , and the second column gr2 * ψ 0 . For the definition of the group traffic load gr1a and gr2 see NEN-EN 1991-2 + C1

c Where traffic load is present on (parts of) the bridge, F * w may be used instead of F wk . For the combinations with ψ 0 * F wk , the wind load F * w with a is assumed

load factor 1.6 * ψ 0 * F wk / F * w = 1.6 * 0.3 * 1.056 = 0.51.

Tax cases Project: Recalcul	ation I.Isselbrug A12 Date:	5/25/2018 Project number	BF7387 Name: FKI Descrip	tion: Other

2020-04-02

Page 9

Appendix

Appendix K - Fatigue Taxes

IJssel Bridge

Main bridge connections

Detail Type A	A: Weld against end of thickenir	ng plate		
Code	Cross beam	Additional description	Detail category	Source / explanation
A1	6-7	Thickening plate end 350 mm wide	58	Hot spot voltage based on TNO report [R11499]
A2	19-20	Thickening plate end 350 mm wide	58	Hot spot voltage based on TNO report [R11499]
A3	39-40	Thickening plate end 550 mm wide	58	Hot spot voltage based on TNO report [R11499]
A4	57-58	Thickening plate end 550 mm wide	58	Hot spot voltage based on TNO report [R11499]
A5	74-75	Thickening end 530 mm wide	58 (75.4 after repair) Hot sp	oot voltage based on report TNO [R11499] (after repair, see 100313038-A-VSS)
Detail Type I	3: Flange spacers at the level of	rivet in section division		
Code	Cross beam	Additional description	Detail category	Source / explanation
B1	11-12	Wideners above and below (narrow	46	Hot spot voltage based on TNO report [R11499]
B2	21-22	Extenders at the top (no cover plate)	40	Hot spot voltage based on TNO report [R11499]
В3	28-29	Extenders at the top (no cover plate)	46	Hot spot voltage based on TNO report [R11499]
B4	36-37	Extenders at the top (no cover plate)	40 (100 after repair)	Hot spot voltage based on report TNO [R11499] (after repair, see 100313038-A-VSS)
B5	46-47	Extenders at the top (no cover plate)	46	Hot spot voltage based on TNO report [R11499]
В6	60-61	Extenders at the top (no cover plate)	46	Hot spot voltage based on TNO report [R11499]
В7	69-70	Extenders at the top (no cover plate)	40 (100 after repair)	Hot spot voltage based on report TNO [R11499] (after repair, see 100313038-A-VSS)
В8	79-80	Extenders at the top (no cover plate)	46	Hot spot voltage based on TNO report [R11499]
Detail Type (: Riveted joints bridge sections			
Code	Cross beam	Additional description	Detail category	Source / explanation
CI	11-12	Riveting in section division in field 1	80	RBK. Voltage based on net cross-section. Ratio of gross / net cross-section = 1.00
C2	21-22	Riveting in section division in field 1	80	RBK. Voltage based on net cross-section. Gross / net diameter ratio = 1.03
C3	28-29	Riveting in section division in field 2	80	RBK. Voltage based on net cross-section. Gross / net diameter ratio = 1.03
C4	36-37	Riveting in section division in field 2	80	RBK. Voltage based on net cross-section. Gross / net diameter ratio = 1.03
C5	46-47	Riveting in section division in field 2	80	RBK. Voltage based on net cross-section. Ratio gross / net diameter = 1.10
C6	60-61	Riveting in section division in field 3	80	RBK. Voltage based on net cross-section. Ratio of gross / net cross-section = 1.00
C7	69-70	Riveting in section division in field 3	80	RBK. Voltage based on net cross-section. Gross / net diameter ratio = 1.03
C8	79-80	Riveting in section division in field 3	80	RBK. Voltage based on net cross-section. Ratio gross / net diameter = 1.10
Datail Type I). Vortical plant stiffeners incide	e - weld with main beam bottom flange		
Code	Cross beam	Additional description	Detail category	S/
D1-D84		stiffener at the bottom vertical	69	Source / explanation Hot spot voltage based on TNO report [R11499]
Detail Type I	E: Vertical pleat stiffeners inside	- weld with main beam body		
Code	Cross beam	Additional description	Detail category	Source / explanation
E1-E84	With every crossbeam	Weld between stiffener and body flange	80	Hot spot voltage based on TNO report [R11499]
Detail Type I	: Vertical outside crimp stiffen	er - weld with main beam bottom flange		
Code	Cross beam	Additional description	Detail category	Source / explanation
F1-F28	With almost everyone	Flange stiffener across entire width	71	Based on report TNO [R11499], appendix D Table 8.4, Detail 1
Detail Type O	G: X-seam in the main spar bott	om flange		
Code	Cross beam	Additional description	Detail category	Source / explanation
G1	2	x-seam in main spar bottom flange	90	NEN-EN 1993-1-9 Table 8.3 Detail 5, For flange thickness t> 25 mm is the detail category
G2	5	x-seam in main spar bottom flange	90	multiplied by factor $k = (25 \text{ mm}/\text{t}) 0.2$
G3	7	x-seam in main spar bottom flange	90	
G4	11	x-seam in main spar bottom flange	90	
G5	13	x-seam in main spar bottom flange	90	
G6	15	x-seam in main spar bottom flange	90	
G7	17	x-seam in main spar bottom flange	90	

	Tax Cases	1 Toject. Necalculation 1033	selbrug A12 De	ate. 5/25/2016 Project number. BF/36/10
G8	19	x-seam in main spar bottom flange	90	
G9	22	x-seam in main spar bottom flange	90	
G10	23	x-seam in main spar bottom flange	90	
G11	25	x-seam in main spar bottom flange	90	
G12	28	x-seam in main spar bottom flange	90	
Detail Type	H: Flange widener near supports			
Code	Cross beam number	Additional description	Detail category	Source / explanation
H1	1	Welded flange widener on bottom flange	46	Hot spot voltage based on TNO report [R11499]
H2	26	Welded flange widener on bottom flange	46	Hot spot voltage based on TNO report [R11499]
Н3	54	Welded flange widener on bottom flange	46	Hot spot voltage based on TNO report [R11499]
Detail Type	I: Vertical pleat stiffener outside - w	eld with body Crossbeam		
Code	Cross beam number	Additional description	Detail category	Source / explanation
I1-I28	With almost everyone	Weld between stiffener and body	80	Based on report TNO [R11499], appendix D Table 8.4, Detail 7
	cross-dressing	main beam		
Oetail Type Code	J: Welded body Cross beam number		D . T .	
Code 11-128	Over the entire length	Additional description Longitudinal weld between body profile and body plate	Detail category 100	Source / explanation NEN-EN 1993-1-9 Table 8.2 Detail 7, for the voltage calculation by TNO
11-128	Over the chare length	Longitudinal weld between body profite and body plate	100	taking into account the moment of resistance at the location of the weld. This is one
				factor $1.74 / 1.49 = 1.17$ higher than the resistance moment for the lower flange.
				factor 1.747 1.49 – 1.17 higher than the resistance moment for the lower hange.
Detail Type	K: Rivet connection flange package			
Code	Cross beam number	Additional description	Detail category	Source / explanation
K1	Over the entire length	Rivet connection between flanges in the	101 (m 1 = 4.45; m 2 =	Obv "Fatigue IJssel bridge Rheden - non-absorbing rivet connections"
		flange package	6.45, 1st breakpoint =	section 4.2.
			6	
	M: Connection at intermediate supp			
Code	Cross beam number	Additional description	Detail category	Source / explanation
M1	B and C.	plate on body for introduction forces	90	NEN-EN 1993-1-9 Table NB.2 detail 17
Detail Type	N: Connections between main beam	and cross beams		
Code N1	Cross beam number all cross bars	Additional description Read	Detail category 36 *	Source / explanation NEN-EN 1993-1-9 Table 8.5 Detail 3
NI	an cross ours	rection .	40 (SN curve R value	Alternative method based on TNO reference 100315818 / ALL
			dependent)	Alchiauve include based on 1100 reference 1003130107 ALL
	all cross bars	Rivets	50	NEN-EN 1993-1-9 Table 8.1 Detail 14
N2	all cross bars	Rivets	50	NEN-EN 1993-1-9 Table 8.1 Detail 14
Detail Type	O: Welded crossbeam with bulbs an	d cover plate		
Code	Cross beam number	Additional description	Detail category	Source / explanation
01	all cross bars	With every bulb	36 *	Based on report TNO [R10405], Table 4, Detail 19 (assessment based on the
				normal voltage interval $\Delta\sigma$ wf in the root of the weld)
			80 (m = 5)	Based on report TNO [R10405], Table 4, Detail 19 (assessment based on the
				shear stress interval Δτ wf in the root of the weld) (damage category 36 * and 80 at
				add each other)
O2	all cross bars	weld with cover plate	36 *	Based on report TNO [R10405], Table 4, Detail 26 (assessment based on the
-		-		normal voltage interval $\Delta \sigma$ wf in the root of the weld)
			80 (m = 5)	Based on report TNO [R10405], Table 4, Detail 26 (assessment based on the
			(.m -)	
				shear stress interval Δτ wf in the root of the weld) (damage category 36 * and 80 at

Fatigue category connections

Detail Type 1: Wel	ld against end of thickening pl	ate		
Code	Cross beam	Additional description	Detail category	Source / explanation
1-1	3-4	Thickening plate end 380 mm wide	58	Hot spot voltage
1-2	11-12	Thickening plate end 380 mm wide	58 (75.4 after repair) Hot s	pot voltage (after repair, see 100313038-A-VSS)
1-3	15-16	Thickening plate end 380 mm wide	58	Hot spot voltage
1-4	18-19	Thickening plate end 380 mm wide	58	Hot spot voltage
Detail Type 2: Riv	eted joints bridge section			
Code	Cross beam	Additional description	Detail category	Source / explanation
2-1	14-15	Both sides between supports	80 (m = 5)	RBK. Voltage based on net cross-section. Gross / net cross-section ratio = 1.13
2-2	19-20	Both sides between supports	80 (m = 5)	RBK. Voltage based on net cross-section. Gross / net cross-section ratio = 1.13
2-3	30-21	Both sides between supports	80 (m = 5)	RBK. Voltage based on net cross-section. Gross / net cross-section ratio = 1.13
2-4	35-36	Both sides between supports	80 (m = 5)	RBK. Voltage based on net cross-section. Gross / net cross-section ratio = 1.13
Detail Type 3: Ver	tical pleat stiffeners inside and	I outside weld with main beam bottom flange		
Code	Cross beam	Additional description	Detail category	Source / explanation
3-1	With every	Weld between beveled pleat stiff and bottom flange	80	Appendix D Table 8.4, Detail 7
3-2	At support points	Weld between beveled pleat stiff and bottom flange	80	Appendix D Table 8.4, Detail 7
Detail Type 4: Riv	eted crossbeams with main be	am		
Code	Cross beam	Additional description	Detail category	Source / explanation
4-1	From 5 to 4	Riveted crossbeam connection with main beam	110 (m 1 = 4.45)	Obv "Fatigue IJssel bridge Rheden - non-absorbing rivet connections"
	carriers			paragraph 4.1.
4-2	1-17-33-49	Riveted crossbeam connection with main beam	110 (m 1 = 4.45)	Oby "Fatigue Ussel bridge Rheden - non-absorbing rivet connections"

reject name on 21 rees maner 2112 2 eeempalem ea

Detail Type 5: X-	-seam in the main spar bottom fla	ange		
Code	Cross beam	Additional description	Detail category	Source / explanation
5-1	5-6	V-seam at section division in the main spar bottom flange	71	NEN-EN 1993-1-9 Table 8.3 Detail 5
5-2	9-10	V-seam at section division in the main spar bottom flange	71	NEN-EN 1993-1-9 Table 8.3 Detail 5
5-3	23-24	V-seam at section division in the main spar bottom flange	71	NEN-EN 1993-1-9 Table 8.3 Detail 5
5-4	26-27	V-seam at section division in the main spar bottom flange	71	NEN-EN 1993-1-9 Table 8.3 Detail 5
5-5	40-41	V-seam at section division in the main spar bottom flange	71	NEN-EN 1993-1-9 Table 8.3 Detail 5
5-6	44-45	V-seam at section division in the main spar bottom flange	71	NEN-EN 1993-1-9 Table 8.3 Detail 5
Detail Type 6: FI	lank seal between the top plate an	d bottom flange		
Code	Cross beam	Additional description	Detail category	Source / explanation
6-1		In field	100	NEN-EN 1993-1-9 Table 8.3 Detail 7
6-2		At support points	100	NEN-EN 1993-1-9 Table 8.3 Detail 7
Detail Type 7: Ri	iveted connections between main	beam and cross beams		
Code	Cross beam	Additional description	Detail category	Source / explanation
7-1	End cross beam	Read	36 *	NEN-EN 1993-1-9 Table 8.5 Detail 3
			40 (SN curve R value	Alternative method based on TNO reference 100315818 / ALL
			dependent)	
7-1	End cross beam	Rivets	50	NEN-EN 1993-1-9 Table 8.1 Detail 14
7-2	Between cross beam	Read	36 *	NEN-EN 1993-1-9 Table 8.5 Detail 3
			40 (SN curve R value	Alternative method based on TNO reference 100315818 / ALL
			dependent)	
7-2	Between cross beam	Rivets	50	NEN-EN 1993-1-9 Table 8.1 Detail 14
Detail Type 8: Co	onnection at intermediate suppor	ts		
Code	Cross beam	Additional description	Detail category	Source / explanation
8-1	17 and 33	plate on body for introduction forces	90	NEN-EN 1993-1-9 Table NB.2 detail 17

Page 12

Fatigue load

 Project:
 Recalculation IJssel Bridge A12
 Date:
 5/25/2018

 Project number:
 BF7387
 Name:
 Ernst Klamer

 Description:
 Numbers of trucks fatigue calculation
 Version:
 F1.0

ESTIMATE TOTAL NUMBER OF TRUCKS OVER THE LIFE

Right lane (current) parallel lane has always been loaded (formerly as main lane to Germany (heavy traffic), now as parallel lane (little traffic))
Left lane (current) parallel lane has always been lightly loaded

 $Right lane \ (current) \ main \ lane \ was \ lightly \ loaded \ until \ 1990, \ from \ 1990 \ heavily \ loaded \ with \ heavy \ traffic$

IJssel Bridge A12

Left lane (current) main lane was heavily loaded until 1990, from 1990 lightly loaded

Assumption: Left lane sees 10% of the N obs of the right lane

HRB HRB PRB

Judge Rice Cook Left Rice Cook Judge Rice Cook Left Rice Cook

always

				HRB	PRB		ed down knocked		same
confuse	1 bridge	1961				1	990 199	0 direction	direction
unloaded	Open	1961							
umoaded	2 directions	1962							
	2 directions	1964		250000	125000	3750	0 375000	375000	37500
		1965		264706	132353	3970		397059	39706
		1966		279412	139706	4191		419118	41912
		1967		294118	147059	4411		441176	44118
		1968		308824	154412	4632		463235	46324
		1969		323529	161765	4852		485294	48529
past	2 bridges	1970		338235	169118	5073		507353	50735
•	each	1971		352941	176471	5294		529412	52941
	one direction	1972		367647	183824	5514	7 551471	551471	55147
		1973		382353	191176	5735	3 573529	573529	57353
		1974		397059	198529	5955	9 595588	595588	59559
		1975		411765	205882	6176	5 617647	617647	61765
		1976		426471	213235	6397	1 639706	639706	63971
		1977		441176	220588	6617	6 661765	661765	66176
		1978		455882	227941	6838	2 683824	683824	68382
		1979		470588	235294	7058	8 705882	705882	70588
		1980		485294	242647	7279	4 727941	727941	72794
		1981		500000	250000	7500	0 750000	750000	75000
		1982		514706	257353	7720	6 772059	772059	77206
		1983		529412	264706	7941	2 794118	794118	79412
		1984		544118	272059	8161	8 816176	816176	81618
		1985		558824	279412	8382	4 838235	838235	83824
		1986		573529	286765	8602	9 860294	860294	86029
		1987		588235	294118	8823	5 882353	882353	88235
		1988		602941	301471	9044	1 904412	904412	90441
		1989		617647	308824	9264	7 926471	926471	92647
		1990		632353	316176	632353	63235	316176	31618
		1991		647059	323529	647059	64706	323529	32353
		1992		661765	330882	661765		330882	33088
current	3 bridges	1993		676471	338235	676471	67647	338235	33824
situation		1994		691176	345588	691176		345588	34559
		1995		705882	352941	705882		352941	35294
		1996		720588	360294	720588		360294	36029
		1997		735294	367647	735294		367647	36765
		1998		750000	375000	750000		375000	37500
		1999		764706	382353	764706		382353	38235
		2000		779412	389706	779412		389706	38971
		2001		794118	397059	794118		397059	39706
		2002		808824	404412	808824		404412	40441
		2003		823529	411765	823525		411765	41176
		2004		838235	419118	838235		419118	41912
		2005		852941	426471	852941		426471	42647
		2006		867647	433824	867647		433824	43382
		2007 2008		882353 897059	441176	882353		441176	44118 44853
					448529	897059		448529	
		2009 2010		911765 926471	455882 463235	911765 926471		455882 463235	45588 46324
		2010		926471 941176	463235 470588	9264/1		463235 470588	46324 47059
		2011		955882	477941	955882		477941	47059
		2012		955882	485294	933882		485294	48529
		2013		985294	492647	985294		483294 492647	48329
		2014	measurement 2015	985294 1 million	500000	985294 1 million		492647 500000	49263 50000
		2016		1014706	507353	1014706	101471	507353	50735
		2017		1029412	514706	1029412	102941	514706	51471
		2017		1029412	314700	1029412	102941	314/06	314/1

	2018	1044118	522059	1044118	104412	522059	52206
	2019	1058824	529412	1058824	105882	529412	52941
	2020	1073529	536765	1073529	107353	536765	53676
	2021	1088235	544118	1088235	108824	544118	54412
	2022	1102941	551471	1102941	110294	551471	55147
	2023	1117647	558824	1117647	111765	558824	55882
	2024	1132353	566176	1132353	113235	566176	56618
	2025	1147059	573529	1147059	114706	573529	57353
Future	2026	1161765	580882	1161765	116176	580882	58088
	2027	1176471	588235	1176471	117647	588235	58824
	2028	1191176	595588	1191176	119118	595588	59559

	ian	accon rejec	ot. I todaloulation 10000	ibrag / til D	u.o. 0,	20,201011	ojoot	mannoon.	D. 700				pao	
			2029	1205882	602941			1205882		120588		602941		60294
			2030	1220588	610294			1220588		122059		610294		61029
			2031	1235294	617647			1235294		123529		617647		61765
			2032	1250000	625000			1250000		125000		625000		62500
			2033	1264706	632353			1264706		126471		632353		63235
			2034	1279412	639706			1279412		127941		639706		63971
			2035	1294118	647059			1294118		129412		647059		64706
			2036	1308824	654412			1308824		130882		654412		65441
			2037	1323529	661765			1323529		132353		661765		66176
			2038	1338235	669118			1338235		133824		669118		66912
			2039	1352941	676471			1352941		135294		676471		67647
			2040	1367647	683824			1367647		136765		683824		68382
			2041	1382353	691176			1382353		138235		691176		69118
			2042	1397059	698529			1397059		139706		698529		69853
			2043	1411765	705882			1411765		141176		705882		70588
			2044	1426471	713235			1426471		142647		713235		71324
			2045	1441176	720588			1441176		144118		720588		72059
			2046	1455882	727941			1455882		145588		727941		72794
			2047	1470588	735294			1470588		147059		735294		73529
			2048	1485294	742647			1485294		148529		742647		74265
			2049	1500000	750000			1500000		150000		750000		75000
			2050	1514706	757353			1514706		151471		757353		75735
1964 through 1989:						Total	HRB		HRB		PRB		PRB	
Western bridge		Eastern bridge				number	Right		Left		Right		Left	
						to 2017		24956618	1	9245588		28551471		2855147
						to 2050		67177206	2	3467647		49661765		4966176
						Total	HRB		HRB		PRB		PRB	
						number	Right		Left		Right		Left	
						through 1990		2324265	1	6982353		17235294		1723529
						1991 to 2010		15735294		1573529		7867647		786765
PRB HL1	PRB HL2	HRB HL1	HRB HL2			2011 through 2050		49117647		4911765		24558824		2455882
towards Germany		towards Utrecht												
						Average	Easter	n bridge (main ca	rriageway)			Western bri	dge	
from 1990						number	Right		Left		Right		Left	
Western bridge		Eastern bridge				through 1990		86084		628976		638344		63834
						1991 to 2010		786765		78676		393382		39338
						2011 through 2050		1227941		122794		613971		61397

 PRB HL1
 PRB HL2
 HRB HL1
 HRB HL2

 parallel track (PRB)
 main carriageway (HRB)
 main carriageway (HRB)

 local
 towards Germany
 towards Utrecht

Overview of numbers of heavy freight lanes per lane per bridge

Eastern Bridge

Western Bridge

Appendix

Appendix L - Influence lines

IJssel Bridge

Influence lines Main bridge

Influence line Main girder Field 1

L = 45 m

45 m

Influence line Main beam Support point pillar G

Support point G: L = 95 m

45 m 50 m

2020-04-02	Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v
Page 16	
	Influence line Main girder Field 2
	Field 2: $L = 50 \text{ m}$
	50 m
	Influence line Main beam Support point H

L = 155 m

50 m 105 m

Page 17

Influence line Main girder Field 3

L = 105 m

Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v	

2020-04-02

Influence line Crossbeam

L = 12 m

TC		1.	1		
ınt	luen	ce m	ne	ทแ	In

L = 2 m

Page 19

Bridge Influence Lines

Influence line Main girder Field 1 (and 3)

L = 40 m

Influence line Main	hoom	Support	naint	nillar D	(and	E٧
minuence fille Mail	ı beam	Support	pomi	Dinal D	tallu .	டு)

L = 80 m

40 m

40 m

Page 20

Influence line Main girder Field 2

L = 40 m

40 m

Influence line Crossbeam

L = 15 m

Appendix

Appendix M - Surcharge weight steel construction

IJssel Bridge

Tax cases

 Project:
 Recalculation IJssel Bridge
 Date:
 5/25/2018

 Project number BF7387
 Name:
 EKL

 Description Surcharge steel weight Main bridge
 Version:

Resume

Surcharge percentages on the steel weight per part in Scia Engineer

On the basis of some representative parts of the steel construction, a surcharge percentage has been determined for the weight of steel for the input in Scia Engineer.

In Scia Engineer, only the net structural cross-section of the profiles is entered, without connecting plates, rivets, stiffeners, etc.

Therefore, on subsequent pages, the weight is based on the net areas of the cross sections compared to the total

weight per part as it was actually performed, based on the running condition.

This difference can be expressed as a percentage. This percentage is taken into account when importing the weight of steel into

Scia Engineer, so that the own weight of the steel construction can be correctly taken into account.

Part	Specific location	Surcharge percentage
Main spar	at the bottom flange 500x20	35
Main spar	at the bottom flange 500x30	25
Main spar	at the bottom flange $500x30 + 350 * 30$	11
Main spar	at the bottom flange $500x30 + 530 * 10$ (as $500x30 + 550 * 30$)	20
Main spar	at the bottom flange $500x30 + 550 * 30$	20
Cross bars / consoles		38
K-bandage (bottom edge / diagonal)		11
K-bandage (vertical)	(means of connection charged on main beam)	0
Portal A (horizontal / diagonal)		14
Portal B (bottom edge / diagonal)		81
Portal C (horizontal / diagonal)		24
Cover plate / bulbs / edge strip 445x10		8

RHDHV Page 1 5/25/2018

Page 23

Tax cases

Project:Recalculation IJssel BridgeDate:5/25/2018Project number BF7387Name:EKLDescription Weight steel weight Main bridgeVersion:-

Weights in accordance with Renvooistat

Section A	L=	18825 n	nm		
		St. 52	St. 37	Total	Per part / piece
4 main beams excl lasse		36856	4293	41149	10287 kg
2 floor plate		44371	4215	48586	24293 kg
2 end cross members		1248	1548	2796	1398 kg
6 cross bars		3576	2791	6367	1061 kg
14 intermediate cross bars		8541	1405	9946	710 kg
		94592	14252	108844	
Section B	L=	18400 n	nm		
		St. 52	St. 37	Total	Per part / piece
4 main beams excl lasse		37391	3180	40571	10143 kg
2 floor plate		43203	2708	45911	22956 kg
8 cross bars		4659	3726	8385	1048 kg
12 intermediate cross bars		7320	1604	8924	744 kg
		92573	11218	103791	
Section C	L=	12185 n	nm		
		St. 52	St. 37	Total	Per part / piece
4 main beams excl lasse		19854	4633	24487	6122 kg
2 floor plate		29237	1850	31087	15544 kg
2 cross bars		1192	912	2104	1052 kg
10 intermediate cross member	s	7294	1927	9221	922 kg
2 Portals B		1237	634	1871	936 kg
2 Anchor beams		2063	2311	4374	2187 kg
		60877	12267	73144	
Section D	L=	14680 п	nm		
		St. 52	St. 37	Total	Per part / piece
4 main beams excl lasse		24739	4458	29197	7299 kg
2 floor plate		34724	2170	36894	18447 kg
6 cross bars		3576	2781	6357	1060 kg
10 intermediate cross member	S	6103	1051	7154	715 kg
		69142	10460	79602	

17850 mm

Section E

103136

25784 kg

4 main beams excl lasse	St. 52	44821	St. 37	6715	Total 51536	Per part / piece 12884 kg
2 floor plate		41923		2681	44604	22302 kg
8 cross bars		4796		4003	879	9 1100 kg
12 intermediate cross bars		7321		1214	853:	5 711 kg
		98861	1	4613	113474	
7	L=	25135 m	ım			
	St. 52		St. 37		Total	Per part / piece

23322

2 floor plate	62572	3720	66292	33146 kg
8 cross bars	4768	4806	9574	1197 kg
18 intermediate cross	bars 10980	1826	12806	711 kg
2 Portals C	1225	4342	5567	2784 kg
	159359	38016	197375	

79814

Page 24

Tax cases

Section F

4 main beams excl lasse

Project:Recalculation IJssel BridgeDate:5/25/2018Project number BF7387Name:EKLDescription Weight steel weight Main bridgeVersion:-

Section G	L =	15750 n	am.		
Section G	L-	St. 52	St. 37	Total	Per part / piec
4 main beams excl lasse		34864	7473	42337	10584 kg
2 floor plate		37299	2375	39674	19837 kg
6 cross bars		3644	3063	6707	1118 kg
12 intermediate cross bars		7321	1214	8535	711 kg
		83128	14125	97253	
Section H	L=	17125 n	nm		
		St. 52	St. 37	Total	Per part / piece
4 main beams excl lasse		38503	5004	43507	10877 kg
2 floor plate		42846	2581	45427	22714 kg
6 cross bars		3576	2953	6529	1088 kg
12 intermediate cross bars		8543	1421	9964	830 kg
		93468	11959	105427	
Section K	L=	15750 n	nm		
		St. 52	St. 37	Total	Per part / piece
2 main beams excl lasse		18428	2724	21152	10576 kg
1 floor plate		20328	1167	21495	21495 kg
3 cross bars		1788	1428	3216	1072 kg
6 intermediate cross bars		3661	607	4268	711 kg
		44205	5926	50131	
		G: 55	G:		
extra longitudinal rule floor		St. 52	St. 37	Total	
1 strip 100x8			4118	4118	
			4118	4118	

Tax cases

Project:Recalculation IJssel BridgeDate:5/25/2018Project number BF7387Name:EKLDescription Weight steel weight Main bridgeVersion:-

Summary per part

Main girder	Welding		
a	41149	2598 kg	
В	40571	1773 kg	
C	24487	1902 kg	
D	29197	1989 kg	
E	51536	4779 kg	
F	103136	3684 kg	
G	42337	2443 kg	
Н	43507	4276 kg	
K	21152	0 kg	
total	397072	23444 kg	

Intermediate crossbars		Crossbars wi	Crossbars with K-bandage		Portal A (end cross member)	
a	710 kg / piece	a	1061 kg / piece	Portal A	1398 kg / piece	
В	744 kg / piece	В	1048 kg / piece			
C	922 kg / piece	C	1052 kg / piece	Portal B		
D	715 kg / piece	D	1060 kg / piece	Portal B	936 kg / piece	
E	711 kg / piece	E	1100 kg / piece	Anchor beam	2187 kg / piece	
F	711 kg / piece	F	1197 kg / piece			
G	711 kg / piece	G	1118 kg / piece	Portal C		

H 830 kg/piece H 1088 kg/piece Portal C K 711 kg/piece K 1072 kg/piece average 752 kg/piece average 1088 kg/piece

Deck construction

a 48586 kg В 45911 kg C 31087 kg D 36894 kg Е 44604 kg 66292 kg F G 39674 kg Н 45427 kg K 21495 kg extra strip 4118 kg 384088 kg total

Total

		Renovation States
106 Intermediate cross members	752	79703
53 Crossbars	1088	57684
2 End crossbars	1398	2796
2 Main beams		420516
1 Deck construction		384088
2 Portal B	3123	6245
2 Portal C	2784	5567
		956599

9262 kN according to SCIA

2784 kg / piece

1% deviation

9384 kN

Page 26

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 EKL

 Description Surcharge steel weight
 Version:

Main beam (bottom flange 500x20)

Net cross section (as entered in Scia Engineer)

Part D Part C. 50603 [mm 2] A =A =50603 [mm 2] L= 12185 [mm] L= 14680 [mm] V= 6.17E + 08 [mm 3] V= 4 x per 12185 mm 4 x per 14680 mm number = number = Total = 2.47E + 09 [mm 3] Total = 2.97E + 09 [mm 3]

Total weight, cf statement supplier

The allowance is determined on the basis of part D (axis 4-5). The allowance is determined on the basis of part D (axis 5-7).

Weight Section C (4-5) Weight Section D (5-7)

2020-04-02

Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

 Weight = Weight = Weight = Weight = Weight = 1902 [kg]
 24487 [kg]
 Weight = 29197 [kg]

 Wording = 1902 [kg]
 Weight = Weight = 1989 [kg]
 1989 [kg]

 Total = 26389 [kg]
 Total = 31186 [kg]

V = 3.36E + 09 [mm 3] V = 3.97E + 09 [mm 3]

Total 3.36E + 09 [mm 3] Total 3,973E + 09 [mm 3]

Resume

Net volume 5.44E + 09 [mm 3] 100.0%

Total 7.33E + 09 [mm 3] 134.9% Surcharge percentage to be applied 35.0%

RHDHV Page 5 5/25/2018

Page 27

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 EKL

 Description: Surcharge steel weight
 Version:

Main beam (bottom flange 500x30)

Net cross section (as entered in Scia Engineer)

A = 55603 [mm 2]

Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

L = 18825 [mm] V = 1.05E + 09 [mm 3] number = 4 x per 18825 mm Total = 4.19E + 09 [mm 3]

Total weight, cf statement supplier

V =

The allowance is determined on the basis of part A (axis 0-2). There is partly an extra top plate of 350x30 mm. This has been removed from the cross-section.

(Overcharged strip 350x10 over 8897 mm)

Weight Section A (0-2)

Weight = 41149 [kg]
Welding = 2598 [kg]
Plate = -2933 [kg]

Total = 40814 [kg]

5.2E + 09 [mm 3]

10tai – 40014 [kg]

Total 5.20E + 09 [mm 3]

Resume

Net volume 4.19E + 09 [mm 3] 100.0%

Total 5.20E + 09 [mm 3] 124.2% Surcharge percentage to be applied 25.0%

RHDHV Page 6 5/25/2018

Page 28

Tax cases

Project: Recalculation Ijsselbrug Date: 5/25/2018

Project number BF7387 Name: EKL
Description: Surcharge steel weight Version: -

Main beam (bottom flange 500x30 + 350 * 30)

Net cross section (as entered in Scia Engineer)

A = 68103 [mm 2]
L = 18400 [mm]
V = 1.25E + 09 [mm 3]
number = 4 x per 18400 mm

Total = 5.01E + 09 [mm 3]

Total weight, cf statement supplier

The allowance is determined on the basis of part B (axis 2-4). In part, the extra 350x30 mm top plate is absent. The flange has also been reduced in size 500x30 to 500x20. The content has been corrected for this.

Weight Section B (2-4)

Resume

 Net volume
 5.01E + 09 [mm 3]
 100.0%

 Total
 5.55E + 09 [mm 3]
 110.8%
 Surcharge percentage to be applied
 11.0%

2020-04-02

RHDHV Page 7 5/25/2018

Page 29

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 EKL

 Description: Surcharge steel weight
 Version:

Main beam (bottom flange 500x30 + 550 * 30)

Net cross section (as entered in Scia Engineer)

	Parts 14-16 and 18-20		Part 16-18
	h = 2995 mm at the middle of section 14-16		h = 2825 mm at the middle of section 16-17
A =	79243 [mm 2]	A =	77203 [mm 2]
L =	17125 [mm]	L=	15750 [mm]
V =	1.36E + 09 [mm 3]	V =	1215947250 [mm 3]
number =	4 x per 17125 mm	number =	2 x per 15750 mm
Total =	5.43E + 09 [mm 3]	Total =	2.43E + 09 [mm 3]

Total weight, cf statement supplier

The allowance is determined on the basis of parts H and K (axis 14-18). This is partly missing the extra 550x30 mm top plate, partly there is a plate of this 530x10 instead of 550x30 available. Also, the flange has been reduced 500x30 to 500x20. The content has been corrected for this.

Weight Section	H (14-16)		Weight Section	n K (16-17)
Weight =	43507 [kg]			
Welding =	4276 [kg]		Weight =	21152 [kg]
Plate =	1934 [kg]	(Fictionally extending bottom flange plate 550x30 instead of 530x10 over 5500 mm)	Welding =	0 [kg]
Plate =	2850 [kg]	(Fictionally extending bottom flange plate 550x30 over 1875 mm)	Total =	21152 [kg]
Plate =	102 [kg]	(Fictional pull-through bottom flange plate 500 * 30 instead of 500x20 over 650 mm)		
Total =	52669 [kg]			
			Weight per beam =	21152 [kg]
V =	6.71E + 09 [mm 3]		V =	2.69E + 09 [mm 3]
Total	6.71E + 09 [mm 3]		Total	2.69E + 09 [mm 3]

Resume

Net volume	7.86E + 09 [mm 3]	100.0%		
Total	9.40E + 09 [mm 3]	119.6%	Surcharge percentage to be applied	20.0%

RHDHV Page 8 5/25/2018

Page 30

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 EKL

 Description: Surcharge steel weight
 Version:

Cross beam

Net cross section (as entered in Scia Engineer)

Cross beam

Console (straight part) Console (running part 6380 [mm 2] A = 8000 [mm 2] A =7880 [mm 2] $\mathbf{A} =$ 5700 [mm] 336 [mm] 1459 [mm] V= V= V= 45600000 [mm 3] 2647680 [mm 3] 9308420 [mm 3] 1 x per cross beam 2 x per cross beam number = 2 x per cross beam number = number = Total = 45600000 [mm 3] Total = 5.30E + 06 [mm 3] Total = 18616840 [mm 3]

Total weight, cf statement supplier

Intermediate cross member

 Weight =
 752 [kg / piece]
 [Source: Renovation States]

 V =
 95784945 [mm 3]

 Total
 95784945 [mm 3]

Resume

Net volume $6.95E \pm 07 \text{ [mm 3]}$ 100.0%

 Really
 95784945 [mm 3]
 137.8%
 Surcharge percentage to be applied
 38.0%

RHDHV Page 9 5/25/2018

Page 31

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 EKL

 Description: Surcharge steel weight
 Version:

K-bandage (diagonal + bottom edge)

Net cross section (as entered in Scia Engineer) $$1/2\ \mathrm{DIN}\ 20$$

L80x80x8 A = 4138.4 [mm 2] A = 2459.3 [mm 2] L= 5700 [mm] L =3408 [mm] V = 23588880 [mm 3] V= 8381294.4 [mm 3] 2 x per K bandage Total = 23588880 [mm 3] Total = 16762589 [mm 3]

Total weight, cf statement supplier

The weight is determined as the weight of the crossbars including K-band minus the weight of the intermediate crossbars including consoles

 Crossbars
 Intermediate cross member

 Weight =
 1061 [kg / piece]
 Weight =
 -710 [kg / piece]
 [Source: Renovation States]

 V =
 -90500455 [mm 3]

 Total
 1.35E + 08 [mm 3]
 Total
 -90500455 [mm 3]

Resume

 Net volume
 4.0E + 07 [mm 3]
 100.0%

 Really
 4.5E + 07 [mm 3]
 110.7%
 Surcharge percentage to be applied
 11.0%

RHDHV Page 10 5/25/2018

Page 32

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 EKL

 Description: Surcharge steel weight
 Version:

 $Portal\ A-End\ transom\ (top\ edge+diagonal+bottom\ edge)$

Net cross section (as entered in Scia Engineer)

1/2 INP 20 L100x10 A =4138.4 [mm 2] A = 3831.5 [mm 2] L= 5700 [mm] L= 3321 [mm] V =23588880 [mm 3] V = 12724411.5 [mm 3] number = 2 x per K bandage 2 x per K bandage number = 47177760 [mm 3] 25448823 [mm 3] Total = Total =

Total weight, cf statement supplier

The weight is determined as the weight of gantry A (end cross member) minus the weight of the intermediate cross members (including bracket)

 End cross member

 Weight =
 1398 [kg / piece]
 Weight =
 -752 [kg / piece]
 [Source: Renovation States]

 V =
 -95784945 [mm 3]
 Total
 -95784945 [mm 3]

Resume

 Net volume
 7.3E + 07 [mm 3]
 100.0%

 Really
 8.2E + 07 [mm 3]
 113.3%
 Surcharge percentage to be applied
 14.0%

RHDHV Page 11 5/25/2018

Page 33

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 EKL

 Description: Surcharge steel weight
 Version:

Portal B (top edge + diagonal + bottom edge)

Net cross section (as entered in Scia Engineer)

2xL100x10 Bottom edge 22680 [mm 2] 3831.5 [mm 2] A = A = 5700 [mm] 5394 [mm] V= 1.29E + 08 [mm 3] V =20667111 [mm 3] number = 1 x per portal number = 2 x per portal Total = 1.29E + 08 [mm 3] Total = 41334222 [mm 3]

Total weight, cf statement supplier

The weight of the portal is determined as the weight of portal C minus the weight of the intermediate cross members (including console)

[Source: Renovation States]

Bottom edge (anchor beam) Portal B Intermediate cross member

2020-04-02

Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

 eight =
 2187 [kg / piece]
 Weight =
 936 [kg / piece]
 Weight =
 -710 [kg / piece]

 =
 2.79E + 08 [mm 3]
 V =
 119171975 [mm 3]
 V =
 -9.05E + 07 [mm 3]

Total 2.79E + 08 [mm 3]

Total 1.19E + 08 [mm 3]

Total -9.05E + 07 [mm 3]

Resume

Net volume $1.7E \pm 08 \; [mm \; 3 \;]$ 100.0%

 Really
 3.1E + 08 [mm 3]
 180.1%
 Surcharge percentage to be applied
 81.0%

RHDHV Page 12 5/25/2018

Page 34

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 EKL

 Description: Surcharge steel weight
 Version:

Portal C (top edge + diagonal + bottom edge)

Net cross section (as entered in Scia Engineer)

 Top and bottom edge - double UNP 260
 diagonal - double UNP 260

 A =
 9659 [mm 2]
 A =
 9659 [mm 2]

 L =
 5700 [mm]
 L =
 5394 [mm]

 V =
 55056300 [mm 3]
 V =
 52100646 [mm 3]

 number =
 2 x per K bandage
 number =
 2 x per K bandage

 Total =
 1.1E + 08 [mm 3]
 Total =
 104201292 [mm 3]

Total weight, cf statement supplier

The weight is determined as the weight of portal C minus the weight of the intermediate cross members (including console)

 Portal C
 Intermediate cross member

 Weight =
 2784 [kg / piece]
 Weight =
 -711 [kg / piece]
 [Source: Renovation States]

 V =
 -90605096 [mm 3]

 Total
 3.55E + 08 [mm 3]
 Total
 -90605096 [mm 3]

Resume

Net volume 2.1E + 08 [mm 3] 100.0%

Really 2.6E + 08 [mm 3] 123.2% Surcharge percentage to be applied 24.0%

RHDHV Page 13 5/25/2018

Page 35

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 EKL

 Description: Surcharge steel weight
 Version:

Edge strip deck

Net cross section (as entered in Scia Engineer)

 $\begin{array}{lll} t = 10 \text{ mm} \\ A = & 94400 \text{ [mm 2]} \\ L = & 223627 \text{ [mm]} \\ V = & 2.11E + 10 \text{ [mm 3]} \\ \text{number} = & 1 \text{ x} \\ \hline \textbf{Total} = & 2.11E + 10 \text{ [mm 3]} \\ \end{array}$

Total = 2.11E + 10 [mm 3]

Bulbs

A = 5136.8 [mm 2]

L = 295666 [mm]

V = 1.52E + 09 [mm 3]

number = 6 x

Total = 9.11E + 09 [mm 3]

 $\begin{array}{lll} t = 12 \text{ mm} & & \\ A = & 113280 \left[\text{mm 2} \right] \\ L = & 72039 \left[\text{mm} \right] \\ V = & 8160577920 \left[\text{mm 3} \right] \\ \text{number} = & \textbf{1} \, x \end{array}$

Total = 8.161E + 09 [mm 3]

Edge strip 100 * 8

A = 800 [mm 2]

295666 [mm]

236532800 [mm 3]

473065600 [mm 3]

L =

V=

number =

Total =

Bulbs 200%

A = 3424.5 [mm 2]

L = 295666 [mm]

V = 1.01E + 09 [mm 3]

number = 4 x

Total = 4.05E + 09 [mm 3]

Edge strip 445 * 10

A = 4450 [mm 2]

L = 295666 [mm]

V = 1.32E + 09 [mm 3]

number = 2 x

Total = 2.63E + 09 [mm 3]

Extra steel parts (not entered as profile cross-section in Scia Engineer)

Cover plates [Source: Renovation States] 48586 [kg] 45911 [kg] В 31087 [kg] 36894 [kg] D 44604 [kg] 66292 [kg] 39674 [kg] 45427 [kg] Н 21495 [kg] 4118 [kg] extra strip Weight = 384088 [kg] V =4.89E + 10 [mm 3] 4.89E + 10 [mm 3] Total

Resume

 Net volume
 4.6E + 10 [mm 3]
 100.0%

 Really
 4.9E + 10 [mm 3]
 107.4%

Surcharge percentage to be applied

8.0%

RHDHV Page 14 5/25/2018

Tax cases

Project:Recalculation IjsselbrugDate:5/25/2018Project number BF7387Name:AbdDescription Supplement steel weight surchargeVersion:-

Resume

Surcharge percentages on the steel weight per part in Scia Engineer

On the basis of some representative parts of the steel construction, a surcharge percentage has been determined for the weight of steel for the purpose of imports in Scia Engineer.

In Scia Engineer, only the net structural cross-section of the profiles is entered, without connecting plates, rivets, stiffeners, etc.

Therefore, on subsequent pages, the weight is based on the neat surfaces of the cross-sections compared to the total weight per part as it was actually executed.

this difference can be expressed as a percentage. This percentage is taken into account when importing the weight of steel into Scia Engineer, so that the self-weight of the steel construction can be correctly included.

Part	Specific location	Surcharge percentage
Cross beam	Between cross bars	0
Cross beam end	Cross beam at the end of the bridges	0
Longitudinal beam	Main beam without additional plate on the bottom flange	47
Longitudinal beam with plate	Main beam with additional plate on the bottom flange	41
Longitudinal beam prestressed	Main girder under the prestressed concrete part	168
Longitudinal beam buckle. with plate	Main beam with extra plate bottom fl. under the prestressed concrete part	107
Diagonal	K-bandages for normal cross bars	19
Bottom edge	K-bandages for normal cross bars	9
Bottom edge	K-bandages for supports	5

RHDHV Page 1 5/25/2018

Page 37

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 Abd

 Description: Supplement steel weight surcharge
 Version:

Cross beam

Net cross section (as entered in Scia Engineer)

THAT 45 DIE 45 (T piece) DIE 45 (Variable) 18259 [mm 2] A = $\mathbf{A} =$ 10101 [mm 2] $\mathbf{A} =$ 17659 [mm 2] average area L= 4726 [mm] L= 162 [mm] L= 325 [mm] V= 86292034 [mm 3] V =V =5739175 [mm 3] number = 1 x per cross beam number = 2 x per cross beam number = 2 x per cross beam Total = 86292034 [mm 3] Total = 3272724 [mm 3] Total = 11478350 [mm 3]

Extra steel parts (not entered as profile cross-section in Scia Engineer)

(* 2) = 16343.0886 [mm 3] (* 2) = 10291.86 [mm 3]

0.0%

Surcharge percentage to be applied

Resume

 Net volume
 1.01E + 08 [mm 3]
 100.0%

 Extra volume
 0 [mm 3]
 0.0%

Total $1.01E \pm 08 \text{ [mm 3]}$ 100.0%

RHDHV Page 2 5/25/2018

Page 38

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 Abd

 Description: Supplement steel weight surcharge
 Version:

End crossbeam

Net cross section (as entered in Scia Engineer)

DIE 45 + 300x20 DIE 45 + 300x20 (variable) DIE 45 (Variable) 24259 [mm 2] 23320 [mm 2] 16192 [mm 2] A =A =A =average area L= 6650 [mm] L= 1000 [mm] L= 325 [mm] V= $1.61E \pm 08 \ [mm\ 3\]$ V= 23320000 [mm 3] V =5262400 [mm 3] number = 1 x per cross beam number = 2 x per cross beam 2 x per cross beam number = Total = 1.61E + 08 [mm 3] Total = 46640000 [mm 3] Total = 10524800 [mm 3]

Extra steel parts (not entered as profile cross-section in Scia Engineer)

23mm 20mm hkop =14 12 Dkop = I rivet = (1/6) * π * h * (3 ((1/2) * D) 2 + h 2) (1/6) * π * h * (3 ((1/2) * D) 2 + h 2) 23mm 20mm 8171.54 [mm 3] 5145,929 [mm 3] (* 2) = 16343.0886 [mm 3] (* 2) = 10291.86 [mm 3] Resume 2.18E + 08 [mm 3] 100.0% Extra volume 0 [mm 3] 0.0% Surcharge percentage to be applied 0.0% Total 100.0% 2.18E + 08 [mm 3]

RHDHV Page 3 5/25/2018

Page 39

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 Abd

 Description: Supplement steel weight surcharge
 Version:

Main beam without additional plate bottom flange

Net cross section (as entered in Scia Engineer)

No extra plate at bottom flange 42920 [mm 2] 7771.9 [mm 2] L= L= 5992 [mm] 1670 [mm] 2.57E + 08 [mm 3] 12979073 [mm 3] number =1 x per side member number = 1 x per side member 12979073 [mm 3] Total = 2.57E + 08 [mm 3] Total =

Extra steel parts (not entered as profile cross-section in Scia Engineer)

Horizontal stiffeners Coupling plate Connection sleepers A = 17112 [mm 2] 125400 [mm 2] 177000 [mm 2] A = A =L= 5992 [mm] t= 12 [mm] t= 12 [mm] 1504800 [mm 3] I = V= 1.03E + 08 [mm 3] 2124000 [mm 3] 1 x per side member number =number = 4 x per side member Total = 1.03E + 08 [mm 3] Total = 4514400 [mm 3] Total = 8496000 [mm 3]

Number of rivets

Vertical stiffeners
A =

A = 3885.9 [mm 2]
L = 1356 [mm]
I = 5269280 [mm 3]
number = 2 x per side member
Total = 10538561 [mm 3]

Coupling plate 12

Total number of nails 12

196117 [mm 3]

V rivet =

23mm $(1/6)*\pi*h*(3((1/2)*D)2+h2)$ 20mm $(1/6)*\pi*h*(3((1/2)*D)2+h2)$ 8172 [mm 3] 5146 [mm 3]

47%

(* 2) = 16343 [mm 3] (* 2) = 10292 [mm 3]

Surcharge percentage to be applied

Resume

 Net volume
 2.70E + 08 [mm 3]
 100.0%

 Extra volume
 1.26E + 08 [mm 3]
 46.7%

Total 3.96E + 08 [mm 3] 146.7%

RHDHV Page 4 5/25/2018

Page 40

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 Abd

 Description: Supplement steel weight surcharge
 Version:

Main beam with additional plate bottom flange

Net cross section (as entered in Scia Engineer)

Extra plate at bottom flange

A = 50520 [m

 A =
 50520 [mm 2]
 A =
 3885.9 [mm 2]

 L =
 19200 [mm]
 L =
 1770 [mm]

 V =
 9.7E + 08 [mm 3]
 V =
 6878043 [mm 3]

 number =
 1 x per side member
 number =
 2 x per side member

Total = 9.7E + 08 [mm 3] Total = 13756086 [mm 3]

Extra steel parts (not entered as profile cross-section in Scia Engineer)

Horizontal stiffeners Coupling plate Connection sleepers $\mathbf{A} =$ 17112 [mm 2] A =125400 [mm 2] $\mathbf{A} =$ 177000 [mm 2] L= 19200 [mm] t= 12 [mm] t= 12 [mm] V= 2124000 [mm 3] 3.29E + 08 [mm 3] 1504800 [mm 3] 1 x per side member number = 8 x per stringer number = 8 x per stringer number =

Total = 3.29E + 08 [mm 3] Total = 12038400 [mm 3] Total = 16992000 [mm 3]

RHDHV

Resume

5/25/2018 Recalculation Ijsselbrug Date: Project: Project number BF7387 Name: Abd Description: Supplement steel weight surcharge Version:

Main beam without additional plate bottom flange at prestressed part

Net cross section (as entered in Scia Engineer)

No extra plate at bottom flange A =34480 [mm 2] L= 8860 [mm] V = 3.05E + 08 [mm 3] number = 1 x per side member Total = 3.05E + 08 [mm 3]

Extra steel parts (not entered as profile cross-section in Scia Engineer) Horizontal stiffeners Coupling plate Connection sleepers A = 17112 [mm 2] 125400 [mm 2] 177000 [mm 2] A = A = L= 8860 [mm] t= 12 [mm] t = 12 [mm] 1.52E + 08 [mm 3] V= V= V = 1504800 [mm 3] 2124000 [mm 3] number = number = 4 x per side member Total = 3.03E + 08 [mm 3] Total = 6019200 [mm 3] Total = **8496000** [mm 3] Top flange stiffeners A = 3885.9 [mm 2] 2000 [mm 2] 1440 [mm 2] 1770 [mm] L= 8860 [mm] L= 8860 [mm] L= V = 6878043 [mm 3] V= 17720000 [mm 3] V= 12758400 [mm 3] number = 4 x per side member number = 2 x per side member number = 1 x per side member Total = 27512172 [mm 3] Total = 35440000 [mm 3] Total = 12758400 [mm 3] Joint transition stiffeners body Joint transition stiffeners top flange Joint transition stiffeners lower flange 1980 [mm 2] 3040 [mm 2] A = 3400 [mm 2] A = A = L =2060 [mm] L =670 [mm] L =V =V= V= 7004000 [mm 3] 1326600 [mm 3] 2736000 [mm 3] number = 4 x per side member number = 4 x per side member number = 4 x per side member Total = 28016000 [mm 3] Total = 5306400 [mm 3] Total = 10944000 [mm 3] T piece top flange of main beam 7000 [mm 2] L= 8860 [mm] 62020000 [mm 3] 1 x per side member number = Total = 62020000 [mm 3] Number of M22 bolts Number of M20 bolts 176 Coupling plate 48 Body horizontally Body vertically 144 Total number of bolts Top flange 56 72 Bottom flange 30400 [mm 3] Total number of bolts 448 V =based on M22 number 48 -Total = 1459200 [mm 3] V = 25120 [mm 3] based on M20 number 448 -11253760 [mm 3] Total = 23mm 20mm hkop = 14 12 30 Dkop = V rivet = (1/6) * π * h * (3 ((1/2) * D) 2 + h 2) (1/6) * π * h * (3 ((1/2) * D) 2 + h 2) 23mm 20mm V 8172 [mm 3] 5146 [mm 3] a M22 380 (* 2) = 16343 [mm 3] (* 2) = 10292 [mm 3] 314 25120 M20 Resume Net volume $3.05E \pm 08 \text{ [mm 3]}$ 100.0% Extra volume 5.12E + 08 [mm 3] 167.7% Surcharge percentage to be applied 168% 8.18E + 08 [mm 3] 267.7% RHDHV 5/25/2018 Page 6

Page 42

 Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 Abd

 Description:
 Supplement steel weight surcharge
 Version:

Main beam with additional plate bottom flange at the prestressed part

Net cross section (as entered in Scia Engineer)

Extra plate at bottom flange

A = 42080 [mm 2] 3885.9 [mm 2] 4194 [mm] 1770 [mm] L= L= V= 1.76E + 08 [mm 3] V = 6878043 [mm 3] number = 1 x per side member number = 2 x per side member 13756086 [mm 3] 1.76E + 08 [mm 3] Total = Total =

Extra steel parts (not entered as profile cross-section in Scia Engineer)

Horizontal stiffeners Coupling plate Connection sleepers A =17112 [mm 2] A =125400 [mm 2] A =177000 [mm 2] L= 4194 [mm] t= 12 [mm] t = 12 [mm] V =V= V= 2124000 [mm 3] 71767728 [mm 3] 1504800 [mm 3] number = 2 x per side member number = 1 x per side member number = 1 x per side member Total = 1.44E + 08 [mm 3] Total = 1504800 [mm 3] Total = 2124000 [mm 3] T piece top flange of main beam Body stiffeners Top flange stiffeners 7000 [mm 2] 2000 [mm 2] 1440 [mm 2] 4194 [mm] 4194 [mm] 4194 [mm] L= L= L=

29358000 [mm 3] 8388000 [mm 3] V= 6039360 [mm 3] 1 x per side member 1 x per side member 2 x per side member number = number = number = 29358000 [mm 3] 16776000 [mm 3] 6039360 [mm 3] Total = Total = Total =

Number of M22 bolts Number of M20 bolts Coupling plate 12 Body horizontally Total number of bolts 12 Total number of bolts 25120 [mm 3] V =30400 [mm 3] based on M22 V= number 12 number 100 -Total = 364800 [mm 3] Total = 2512000 [mm 3]

M22 380 hkop = 14 12 314 25120 M20 Dkop = 35 30 V rivet = (1/6) * \pi * h * (3 ((1/2) * D) 2 + h 2) (1/6) * π * h * (3 ((1/2) * D) 2 + h 2) 23 mm8172 [mm 3] 5146 [mm 3]

100

100

based on M20

10292 [mm 3]

(* 2) = 16343 [mm 3] (* 2) =

Resume

bolts

v

 Net volume
 1.90E + 08 [mm 3]
 100.0%

 Extra volume
 2.02E + 08 [mm 3]
 106.3%
 Surcharge percentage to be applied
 107%

 Total
 3.92E + 08 [mm 3]
 206.3%
 ...
 ...

RHDHV Page 7 5/25/2018

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 Abd

 Description: Supplement steel weight surcharge
 Version:

Diagonal

Net cross section (as entered in Scia Engineer)

2L80x80x10

A = 3012.9 [mm 2]
L = 3355 [mm]
V = 10108280 [mm 3]
number = 1 x per diagonal
Total = 10108280 [mm 3]

Extra steel parts (not entered as profile cross-section in Scia Engineer)

Coupling plate diagonal

A = 114750 [mm 2]
t = 12 [mm]
V = 1377000 [mm 3]
number = 1 x diagonal
Total = 1377000 [mm 3]

Coupling plate between diagonal

A = 15000 [mm 2] t = 12 [mm] V = 180000 [mm 3] number = 2 x per diagonal Total = 360000 [mm 3]

Number of rivets

Coupling plate diagonal

Total number of nails

V = 16343 number 6 Total = 98059 [mm 3]

23mm 26mm

based on double "head" 23mm

hkop = 14 Dkop = 35

V rivet =

23mm $(1/6) * \pi * h * (3 ((1/2) * D) 2 + h 2)$ 20mm $(1/6) * \pi * h * (3 ((1/2) * D) 2 + h 2)$ 8172 [mm 3] 12198 [mm 3]

(* 2) = **16343** [mm 3]

(* 2) = **24396** [mm 3]

16

40

Resume

 Net volume
 10108280 [mm 3]
 100.0%

 Extra volume
 1835059 [mm 3]
 18.2%

 Total
 11943338 [mm 3]
 118.2%

Surcharge percentage to be applied 19%

RHDHV 5/25/2018 Page 8 Page 44 Tax cases 5/25/2018 Project: Recalculation Ijsselbrug Date: Project number BF7387 Name: Abd Description: Supplement steel weight surcharge Version: Bottom edge 1/2 DIE 26 Net cross section (as entered in Scia Engineer) 1/2 THAT 26 A = 4363.3 [mm 2] L =5700 [mm] 24870810 [mm 3] number = 1 x per bottom edge Total = 24870810 [mm 3] Extra steel parts (not entered as profile cross-section in Scia Engineer) Coupling plate diagonal 2 Connecting plate bottom edge 73700 [mm 2] 55900 [mm 2] A =A =t= t= 8 [mm] 12 [mm] V = V= 589600 [mm 3] 670800 [mm 3] 1 x per diagonal 2 x per bottom edge 589600 [mm 3] 1341600 [mm 3] Number of rivets Connecting plate bottom edge 11 Coupling plate diagonal 2 Total number of nails 16343 based on double "head" 23mm 17 Total = 277833 [mm 3] 23mm 26mm hkop = 14 Dkop = 35 40 V rivet = (1/6) * π * h * (3 ((1/2) * D) 2 + h 2) (1/6) * π * h * (3 ((1/2) * D) 2 + h 2) 23mm 20mm 8172 [mm 3] 12198 [mm 3] (* 2) = (* 2) = 16343 [mm 3] 24396 [mm 3] Resume 24870810 [mm 3] 100.0% Net volume

2209033 [mm 3]

27079843 [mm 3]

8.9%

108.9%

Surcharge percentage to be applied

9%

Extra volume

Total

RHDHV Page 9 5/25/2018

Page 45

Tax cases

 Project:
 Recalculation Ijsselbrug
 Date:
 5/25/2018

 Project number BF7387
 Name:
 Abd

 Description: Supplement steel weight surcharge
 Version:

Bottom edge 1/2 DIN 30

Net cross section (as entered in Scia Engineer)

1/2 DIN 30

Extra steel parts (not entered as profile cross-section in Scia Engineer)

 $Coupling\ plate\ diagonal$

A = 46215 [mm 2]
t = 12 [mm]
V = 554580 [mm 3]
number = 1 x per diagonal
Total = 554580 [mm 3]

Connecting plate bottom edge

A = 55900 [mm 2]
t = 12 [mm]
V = 670800 [mm 3]
number = 2 x per bottom edge
Total = 1341600 [mm 3]

Number of rivets

 Connecting plate bottom edge
 7

 Coupling plate diagonal
 11

 Total number of nails
 18

V = 16343 based on double "head" 23mm

number 18 **Total** = 294176 [mm 3]

23mm 26mm hkop = 14 16 Dkop = 35 40

V rivet =

23mm $(1/6) * \pi * h * (3 ((1/2) * D) 2 + h 2)$ 20mm $(1/6) * \pi * h * (3 ((1/2) * D) 2 + h 2)$ 8172 [mm 3] 12198 [mm 3]

https://translate.googleusercontent.com/translate_f

Surcharge percentage to be applied

2020-04-02

* 2) = **16343** [mm 3]

(* 2) =

5%

24396 [mm 3]

Resume

 Net volume
 43899120 [mm 3]
 100.0%

 Extra volume
 2190356 [mm 3]
 5.0%

tal 46089476 [mm 3] 105.0%

RHDHV Page 10 5/25/2018

Page 46

Appendix

Appendix N - Concrete stiffness

IJssel Bridge

Page 47

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Prestressed concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

Determination of modulus ratio of construction phase 3 (prestressing)

φο	=	ϕ RH β (f cm) β (t 0)			formula B.2
f cm	=	40 N / mm ²	>	$35 \text{ N} / \text{mm}^2$	
RH	=	80 %			
α 1	=	$= (35 / f_{cm}) 0.7$	=	0.911	
α 2	=	$= (35 / f_{cm}) 0.2$	=	0.974	
h o	=	200 mm			
ф кн	=	1.27692			formula B.3b
Cement class		S			
$\beta(f_{\text{cm}})$	=	$16.8 / \sqrt{\left(f_{ cm}\right)}$	=	2,656	formula B.4
β (t 0)	=	$1/(0.1+t8^{.20})$			formula B.5
t 0, T	=	21 days			
α	=	-1	cement cla	ass S	

```
t o
                                                 17 days
\beta (t _0 )
                                      1/(0.1+t\,\theta^{.20})
                                                                                    0.536
                                                                                                                         formula B.5
φο
                                       1.81748
                                                                                                                         formula B.2
β c (t, t o )
                                      ((tt \ 0) \ / \ (\beta \ H + tt \ 0)) \ 0.3
                                                                                                                         formula B.7
                                                24 days
α3
                                      = (35 / f_{cm}) 0.5
                                                                                    0.935
βн
                                              678
                                                                                                                         formula B.8b
\beta c (t, t_0)
                                                                                                                         formula B.7
                                       0.19645
                                      \phi \circ *\beta \circ (t,t \circ)
\phi\left(t,\,t_{\,\circ}\,\right)
                                                                                                                         formula B.1
\varphi(t, t_0)
                                       0.35704
Ест
                                          33000 N / mm<sup>2</sup>
E a
                                        210000 N / mm<sup>2</sup>
n 0 =
                                      = E_a / E_{cm}
                                                                                                                         NEN-EN 1994-2
n_0 =
                                             6.36
                                      permanent loads
Tax type
\psi \mathrel{_L} =
                                               1.1
                                      n_{\,\,0}\,(1+\psi_{\,\,L}\,\phi\,(t,\,t_{\,\,0}\,))
n L
                                                                                                                         NEN-EN 1994-2, formula 5.6
n L
                                                  9
Ес
                                          23700 N / mm<sup>2</sup>
```

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Prestressed concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

Determination of the modulus ratio for construction phase 4 (jacking)

φ ο	=	ϕ RH β (f cm) β (t 0)			formula B.2
f_{cm}	=	40 N / mm ²	>	$35 \text{ N} / \text{mm}^2$	
RH	=	80 %			
α 1	=	$= (35 / f_{cm}) 0.7$	=	0.911	
α 2	=	= $(35 / f_{cm})$ 0.2	=	0.974	
h o	_	200 mm			

 $\begin{array}{llll} \phi \, \text{RH} & = & 1.27692 & \text{formula B.3b} \\ \text{Cement class} & S & & & & & & \\ \beta \, (f_{\,\text{cm}}) & = & 16.8 \, / \, \sqrt{(f_{\,\text{cm}})} & = & 2,656 & \text{formula B.4} \\ & & & & & & & & \\ \beta \, (t_{\,0}) & = & 1 \, / \, (0.1 + t \, \theta^{20}) & & \text{formula B.5} \\ \end{array}$

t 0, T 28 days α -1 cement class S 24 days β (t $_0$) $1/(0.1+t\theta^{.20})$ 0.502 formula B.5 1.70396 formula B.2 β c (t, t o) $((tt_0)/(\beta_H + tt_0))_{0.3}$ formula B.7 36500 days (see phase 6) t α3 $= (35 / f_{cm}) 0.5$ 0.935 βн 678 formula B.8b β c (t, t o) 0.99449 formula B.7 $\varphi(t, t_0)$ φο*βι(t, t ο) formula B.1 $\phi \left(t,\,t_{\,o}\,\right)$ 1.69457 Ест 33000 N / mm² E a 210000 N / mm² $= E_a / E_{cm}$ NEN-EN 1994-2 $n_0 =$ 6.36 prestressing by imposed deformations Tax type $\psi \mathrel{_L} =$ 1.5 n L $n_{\,\,0}\,(1+\psi_{\,\,L}\,\phi_{\,}(t,\,t_{\,\,0}\,))$ NEN-EN 1994-2, formula 5.6

Page 49

n l E c

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

23

9300 N / mm²

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Prestressed concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

		odulus ratio for constru ϕ RH β (f cm) β (t 0)	iction pha	se 5 (pouring concrete)	
φο	=				formula B.2
f cm	=	40 N / mm ²	>	35 N / mm ²	
RH	=	80 %			
α 1	=	$= (35 / f_{cm}) 0.7$	=	0.911	
α 2	=	$= (35 / f_{cm}) 0.2$	=	0.974	
h o	=	200 mm			
$\phi \text{ RH}$	=	1.27692			formula B.3b
Cement class		S			
$\beta (f_{\text{cm}})$	=	$16.8/\sqrt{(f_{cm})}$	=	2,656	formula B.4
β(t 0)	=	$1/(0.1+t\theta^{20})$			formula B.5
t 0, T	=	60 days			
α	=	-1	cement	class S	
t o	=	56 days			
β (t $_{0}$)	=	$1/(0.1+t\theta^{.20})$	=	0.427	formula B.5
φο	=	1.44985			formula B.2
$\beta_{c}(t,t_{0})$	=	((tt o) / (β H + tt o))	0.3		formula B.7
t	=	36500 days			
α 3	=	$= (35 / f_{cm}) 0.5$	=	0.935	
βн	=	678			formula B.8b
$\beta{}_{c}(t,t{}_{0})$	=	0.99449			formula B.7
$\varphi(t,t_{\circ})$	=	φο*βι(t, t 0)			formula B.1
$\phi\left(t,t_{o}\right)$	=	1.44186			
Ест	=	33000 N / mm ²			
Еа	=	$210000\;N/mm^{2}$			
n 0 =	=	$= E_a / E_{cm}$			NEN-EN 1994-2
n 0 =	=	6.36			
Tax type		permanent loads			
Ψ L =	=	1.1			
n L	=	n 0 (1 + ψ L φ (t, t 0))		NEN-EN 1994-2, formula 5.6

n L

Еc

16

12800 N / mm²

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Prestressed concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

Determination of the modulus ratio for construction phase 6 (letting go)

φο	=	φ RH $β$ (f cm) $β$ (t 0)	•	991)	formula B.2
f cm	=	40 N / mm ²	>	35 N / mm ²	
RH	=	80 %			
a 1	=	$= (35 \ / \ f_{cm} \) \ \scriptscriptstyle 0.7$	=	0.911	
α 2	=	$= (35 \ / \ f_{\ cm} \) \ {\scriptstyle 0.2}$	=	0.974	
h o	=	200 mm			
$\phi \text{ RH}$	=	1.27692			formula B.3b
Cement clas	ss	S			
$\beta(f_{\text{cm}})$	=	$16.8 / \sqrt{\left(f_{ \text{cm}} \right)}$	=	2,656	formula B.4
β (t $_{0}$)	=	$1/(0.1 + t \theta^{.20})$			formula B.5

 $t_{0,T} = 90 \text{ days}$

 $\alpha \hspace{1.5cm} = \hspace{1.5cm} -1 \hspace{1.5cm} cement \ class \ S$

 $t \circ = 87 \text{ days}$

 $\beta (t \circ)$ = 1 / (0.1 + $t \circ 2^{0}$) = 0.394 formula B.5 $\phi \circ$ = 1.33531 formula B.2

 $\beta \circ (t, t_0)$ = $((tt_0) / (\beta_H + tt_0))_{0.3}$ formula B.7

t = 36500 days

 α 3 $$ = $$ = $(35 \, / \, f_{cm} \,)$ 0.5 $$ = $$ 0.935

 β H = 678 formula B.8b β c (t, t o) = 0.99448 formula B.7

 $\phi(t, t_0) = 1.32794$

 E_{cm} = 33000 N / mm² E_a = 210000 N / mm²

 $n_0 = = E_a / E_{cm}$ NEN-EN 1994-2

 $n_0 = = 6.36$

Tax type prestressing by imposed deformations

 $\psi_L = = 1.5$

 $n \; \text{L} \qquad \qquad = \qquad \quad n \; \text{o} \; (1 + \psi \; \text{L} \; \phi \; (t, t \; \text{o} \;)) \qquad \qquad \text{NEN-EN 1994-2, formula 5.6}$

 $n \ L$ = 19 $E \ c$ = 11000 N / mm²

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Prestressed concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

Determination of the modulus ratio for construction phases 7 and 8 (asphalt pavement and other permanent loads)

			_		-
φ ο	=	$\phi \; \text{RH} \; \beta \; (f \; \text{cm} \;) \; \beta \; (t \; \text{0} \;)$			formula B.2
f_{cm}	=	$40\;N\:/\:mm^2$	>	$35 \text{ N} / \text{mm}^2$	
RH	=	80 %			
α 1	=	$= (35 \ / \ f_{cm} \) \ \scriptscriptstyle 0.7$	=	0.911	
α 2	=	= $(35 / f_{cm})$ 0.2	=	0.974	
h o	=	200 mm			
$\phi \text{ RH}$	=	1.27692			formula B.3b
Cement class		S			
$\beta(f_{cm})$	=	$16.8/\sqrt{(f_{cm})}$	=	2,656	formula B.4
β (t $_0$)	=	$1/(0.1+t8^{.20})$			formula B.5

```
t 0, T
                                          120 days
α
                                            -1
                                                             cement class S
t o
                                          117 days
\beta (t _{0})
                                   1/(0.1+t\theta^{.20})
                                                                            0.372
                                                                                                              formula B.5
                                    1,26068
                                                                                                              formula B.2
β c (t, t o )
                                  ((tt \ 0) \ / \ (\beta \ H + tt \ 0)) \ 0.3
                                                                                                              formula B.7
                                      36500 days
α3
                                   = (35 / f_{cm}) 0.5
                                                                            0.935
βн
                                                                                                              formula B.8b
                                          678
β c (t, t o )
                                   0.99448
                                                                                                              formula B.7
\phi(t, t_0)
                                   \phi \circ *\beta \circ (t,t \circ)
                                                                                                              formula B.1
\phi(t, t_0)
                                    1.25372
Ест
                                      33000 N / mm<sup>2</sup>
E a
                                    210000 N / mm<sup>2</sup>
                                  = E_a / E_{cm}
                                                                                                             NEN-EN 1994-2
n 0 =
```

n 0 =

n L

Ес

Tax type permanent loads $\psi \, \iota = \qquad \qquad = \qquad \qquad 1.1$ $n \, \iota \qquad \qquad = \qquad \qquad n \, \circ \, (1 + \psi \, \iota \, \phi \, (t, t \, \circ \,))$

6.36

15

13900 N / mm²

NEN-EN 1994-2, formula 5.6

Page 52

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Prestressed concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

Determination of the modulus ratio for construction phase 9 (shrinkage and creep)

φο	=	φ RH $β$ (f cm) $β$ (t 0)	etion phase	> (formula B.2
f_{cm}	=	40 N / mm ²	>	$35 \text{ N} / \text{mm}^2$	
RH	=	80 %			
α 1	=	$= (35 / f_{cm}) 0.7$	=	0.911	
α 2	=	$= (35 / f_{cm}) 0.2$	=	0.974	
h 0	=	200 mm			
ф кн	=	1.27692			formula B.3b
Cement class		S			
$\beta (f_{\text{cm}})$	=	$16.8 / \sqrt{\left(f_{ cm}\right)}$	=	2,656	formula B.4
β (t $_{0}$)	=	$1/(0.1+t8^{20})$			formula B.5
t 0, T	=	1 days			
α	=	-1	cement cla	ass S	
t o	=	0 days			
β (t $_0$)	=	$1/(0.1 + t \theta^{.20})$	=	1,166	formula B.5
φο	=	3,9539			formula B.2
β c (t, t 0)	=	((tt 0) / (β H + tt 0)) (0.2		formula B.7
t	=	36500 days	<i>9.3</i>		Tormula B. /
·		30300 days			
α 3	=	$= (35 / f_{cm}) 0.5$	=	0.935	
βн	=	678			formula B.8b
$\beta {}_{c} (t, t {}_{0})$	=	0.9945			formula B.7
$\phi\left(t,t_{\circ}\right)$	=	φο*βο(t, tο)			formula B.1
$\phi \left(t,t _{\circ }\right)$	=	3.93214			

33000 N / mm²

Ест

NEN-EN 1994-2

Tax type primary and secondary effects due to shrinkage

 $\psi_L = = 0.55$

 $n \, \text{l}$ = $n \, \text{o} \, (1 + \psi \, \text{l} \, \phi \, (t, t \, \text{o} \,))$ NEN-EN 1994-2, formula 5.6

n L \$=\$ 20 $E\ \mbox{c} = 10400\ \mbox{N}\ /\ \mbox{mm}^2$

Page 53

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Prestressed concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

Determination of the modulus ratio for construction phase 10 (pre-tension loss

Determination of	of the mod	lulus ratio for constru	iction phase	e 10 (pre-tension loss	
φο	=	$\phi \; \text{RH} \; \beta \; (f \; \text{cm} \;) \; \beta \; (t \; \text{0} \;)$			formula B.2
f cm	=	$40\;N\:/\:mm^2$	>	$35 \text{ N} / \text{mm}^2$	
RH	=	80 %			
α 1	=	$= (35 / f_{cm}) 0.7$	=	0.911	
α 2	=	$= (35 / f_{cm}) 0.2$	=	0.974	
h o	=	200 mm			
ф кн	=	1.27692			formula B.3b
Cement class		S			
β (f cm)	=	$16.8/\sqrt{\left(f_{\text{cm}}\right)}$	=	2,656	formula B.4
β (t $_{0}$)	=	$1/(0.1+t8^{20})$			formula B.5
t 0, T	=	21 days			
α	=	-1	cement cla	ass S	
t o	=	17 days			
β (t 0)	=	$1/(0.1 + t \theta^{.20})$	=	0.536	formula B.5
φο	=	1.81748			formula B.2
β c (t, t 0)	=	((tt 0) / (β H + tt 0)) (0.3		formula B.7
t	=	36500 days			
α 3	=	$= (35 / f_{cm}) 0.5$	=	0.935	

formula B.8b formula B.7 678 0.99449 β c (t, t o) φο*βο(t, t ο) $\varphi(t, t_0)$ formula B.1 $\phi \left(t,\,t_{\,\circ }\right)$ 1.80747 Ест 33000 N / mm² E a 210000 N / mm² = = E a / E cm n 0 = NEN-EN 1994-2 n 0 = 6.36 Tax type permanent loads $\psi \mathrel{\text{L}} =$ 1.1 n L $n \circ (1 + \psi \mathrel{\text{L}} \phi \left(t, t \circ \right))$ NEN-EN 1994-2, formula 5.6 n L 19 Ес $11000 \; N \; / \; mm^2$

Page 54

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Reinforced concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

Determination of the modulus ratio for construction phase 6 (letting go)

φο	=	ϕ RH β (f cm) β (t 0)	-		formula B.2
f cm	=	40 N / mm²	>	35 N / mm ²	Tormala B.2
RH	=	80 %			
α 1	=	$= (35 / f_{cm}) 0.7$	=	0.911	
α 2	=	$= (35 / f_{cm}) 0.2$	=	0.974	
h 0	=	200 mm			
ϕ rh	=	1.27692			formula B.3b
Cement class		S			
$\beta(f_{\text{cm}})$	=	$16.8 / \sqrt{\left(f_{ \mathrm{cm}} \right)}$	=	2,656	formula B.4
β (t $_0$)	=	$1/(0.1+t8^{.20})$			formula B.5

```
t 0, T
                                            28 days
α
                                            -1
                                                             cement class S
                                            24 days
\beta (t _0 )
                                   1/(0.1+t\theta^{.20})
                                                                            0.502
                                                                                                              formula B.5
                                   1.70396
                                                                                                              formula B.2
β c (t, t o )
                                  ((tt_0)/(\beta_H + tt_0))_{0.3}
                                                                                                              formula B.7
                                      36500 days
α3
                                   = (35 / f_{cm}) 0.5
                                                                            0.935
\beta \; {\rm H}
                                          678
                                                                                                              formula B.8b
β c (t, t o )
                                   0.99449
                                                                                                              formula B.7
\phi(t, t_0)
                                   φο*βι(t, t ο)
                                                                                                              formula B.1
\phi \left( t,\,t_{\,o}\,\right)
                                    1.69457
Ест
                                      33000 N / mm<sup>2</sup>
Еа
                                    210000 N / mm<sup>2</sup>
n 0 =
                                   = E_a / E_{cm}
                                                                                                             NEN-EN 1994-2
n_0 =
                                         6.36
Tax type
                                  prestressing by imposed deformations
\psi \mathrel{_{L}} =
                                           1.5
n L
                                  n_0 (1 + \psi_L \phi(t, t_0))
                                                                                                             NEN-EN 1994-2, formula 5.6
                                            23
n L
Ес
                                        9300 N / mm<sup>2</sup>
```

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Reinforced concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

$Determination \ of \ the \ modulus \ ratio \ for \ construction \ phases \ 7 \ and \ 8 \ (asphalt \ pavement \ and \ other \ permanent \ loads)$

φ ο	=	ϕ RH β (f cm) β (t 0)		formula B.2
f_{cm}	=	40 N / mm	2 >	$35\;N\:/\:mm^2$	
RH	=	80 %			
α 1	=	$= (35 \ / \ f_{cm} \) \ _{0.7}$	=	0.911	
α 2	=	$= (35 / f_{cm}) 0.2$	=	0.974	
h o	=	200 mm			
ф кн	=	1.27692			formula B.3b

Cement class

t 0, T

 $\beta \, (f_{\, cm} \,) \qquad = \qquad 16.8 \, / \, \sqrt{\, (f_{\, cm} \,)} \qquad = \qquad 2,656 \qquad \qquad \text{formula B.4}$ $\beta \, (t_{\, 0} \,) \qquad = \qquad 1 \, / \, (0.1 + t \, \theta^{\, 20} \,) \qquad \qquad \qquad \text{formula B.5}$

60 days

-1 cement class S t o 56 days β (t $_0$) $1/(0.1+t\theta^{.20})$ 0.427 formula B.5 φο 1.44985 formula B.2 β c (t, t o) $((tt \ 0) \ / \ (\beta \ H + tt \ 0)) \ 0.3$ formula B.7 36500 days $= (35 / f_{cm}) 0.5$ α3 0.935 βн 678 formula B.8b $\beta\,{}_{c}\,(t,t\,{}_{0}\,)$ 0.99449 formula B.7 $\phi(t, t_0)$ $\phi \circ *\beta \circ (t,t \circ)$ formula B.1 $\varphi(t, t_0)$ 1.44186 Ест 33000 N / mm² Еа 210000 N / mm² = E a / E cm n 0 = NEN-EN 1994-2 n 0 = 6.36 Tax type permanent loads $\psi L =$ 1.1 $n_{\,\,0}\left(1+\psi_{\,\,L}\,\phi\left(t,\,t_{\,\,0}\,\right)\right)$ NEN-EN 1994-2, formula 5.6 n L n L 16 Ес 12800 N / mm²

Page 56

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Reinforced concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

Determination of the modulus ratio for construction phase 9 (shrinkage and creep)

 $10400 \; N \; / \; mm^2$

φο	=	φ RH $β$ (f cm) $β$ (t 0)		formula B.2
f cm	=	40 N / mm ²	35 N / mm ²	
RH	=	80 %		
α 1	=	$= (35 / f_{cm}) 0.7 =$	0.911	
α 2	=	$= (35 / f_{cm}) 0.2 =$	0.974	
h o	=	200 mm		
ф кн	=	1.27692		formula B.3b
Cement class		S		
$\beta (f_{\text{ cm }})$	=	$16.8 / \sqrt{(f_{cm})} =$	2,656	formula B.4
β (t 0)	=	$1/(0.1+t8^{20})$		formula B.5
t 0, T	=	1 days		
α	=	-1 ceme	ent class S	
t o	=	0 days		
β (t 0)	=	$1/(0.1 + t \theta^{20})$ =	1,166	formula B.5
φο	=	3,9539		formula B.2
$\beta c (t, t_0)$	=	$((tt _0) / (\beta _H + tt _0)) _{0.3}$		formula B.7
t	=	36500 days		
α 3	=	$= (35 / f_{cm}) 0.5 =$	0.935	
βн	=	678		formula B.8b
β c (t, t 0)	=	0.9945		formula B.7
$\phi \left(t,t_{\circ }\right)$	=	φο*βο(t, t 0)		formula B.1
$\phi \left(t,t_{\circ }\right)$	=	3.93214		
Ест	=	33000 N / mm²		
E a	=	210000 N / mm ²		
n 0 =	=	$=$ E $_{a}$ / E $_{cm}$		NEN-EN 1994-2
n 0 =	=	6.36		
Tax type		primary and secondary effe	cts due to shrinkage	
$\psi \mathrel{\text{\tiny L}} =$	=	0.55		
n L	=	$n_0(1 + \psi_L \phi(t, t_0))$		NEN-EN 1994-2, formula 5.6
n L	=	20		

Ес

Rigidity of concrete in accordance with NEN-EN 1994-2 art 5.4.2.2

Project:IJssel BridgeDate:5/25/2018Project number:BF7387Name:Ernst KlamerDescription:Reinforced concrete deckVersion:v0.5 Beta

Determination of stiffness per construction phase

Determination of the modulus ratio for construction phases 3 and 10 (prestressing)

φο	=	φ RH β (f cm) β (t 0)	ction phas	es 5 and 10 (prestressin	formula B.2
f cm	=	40 N / mm ²	>	35 N / mm ²	Torrifula B.2
RH	=	80 %		33 IV/ IIIII	
αι	=	$= (35 / f_{cm}) 0.7$	=	0.911	
α 2	=	$= (35 / f_{cm}) 0.2$	=	0.974	
h o	=	200 mm			
ф кн	=	1.27692			formula B.3b
Cement class		S			
$\beta(f_{\text{cm}})$	=	$16.8 / \sqrt{\left(\mathbf{f}_{ cm} \right)}$	=	2,656	formula B.4
β (t 0)	=	$1/(0.1+t\theta^{.20})$			formula B.5
t 0, T	=	21 days			
α	=	-1	cement c	lass S	
t o	=	17 days			
β (t 0)	=	$1/(0.1 + t \theta^{20})$	=	0.536	formula B.5
φο	=	1.81748			formula B.2
β c (t, t 0)	=	$((tt 0) / (\beta H + tt 0)) $).3		formula B.7
t	=	36500 days			
α 3		$= (35 / f_{cm}) 0.5$		0.025	
βн	=		=	0.935	0 1 5 01
β c (t, t 0)	=	678			formula B.8b
p * (4, * * *)	=	0.99449			formula B.7
$\phi\left(t,t_{\circ}\right)$	=	φο*βο(t, t 0)			formula B.1
$\phi\left(t,t_{\circ}\right)$	=	1.80747			
E cm	=	33000 N / mm ²			
E a	=	210000 N / mm ²			
n 0 =	=	= E a / E cm			NEN-EN 1994-2
n 0 =	=	6.36			
Tax type		permanent loads			
ψ L =	=	1.1			
n L	=	n 0 (1 + ψ L φ (t, t 0)))		NEN-EN 1994-2, formula 5.6
n L	=	19			
Ес	=	$11000\;N\:/\:mm^2$			

Appendix

Appendix O - Import SCIA - Main bridge global model

IJssel Bridge

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

1. Table of Contents

1. Table of Contents	1
2. Project	2
3. Model overview	2
3.1. 3D rendering model with construction phases	2
3.2. Construction model 1st span	3
3.3. Construction model 2nd span	3
3.4. Construction model 3rd span	4
3.5. 1st span calculation model	5
3.6. 2nd span calculation model	6
3.7. Calculation model 3rd span (to middle)	7
3.8. Construction model	8
4. Construction phasing	8
4.1. Construction stages	8
4.2. Construction phase 1	9
4.3. Construction phase 2	9
5. Dimensions	10
5.1. Construction model part 0-4	10
5.2. Construction model part 4-9	11
5.3. Construction model part 9-14	12
5.4. Construction model part 14-17	13
6. Impositions	14
6.1. Northern part bearings	14
6.2. Bearings southern part - construction phase 1	15
6.3. Bearings southern part - construction phase 2	15
6.4. Button supports	16
7. Materials	16
8. Main beam	17
8.1. Construction model	17
8.2. Main spar - Side view	18
8.3. Sections	18
8.4. Main beam sections	19
8.5. Main beam sections	19
8.6. Sections	20
9. Crossbars	98
9.1. 3D overview	98
9.2. Construction	98
9.3. Sections	99
9.4. Consoles	101
10. K-bandage normal cross beam	112
10.1. Construction model k-bandage	112
10.2. Construction model k-bandage	113
10.3. Construction model k-band normal crossbeam	114
10.4. Overview K-bandages 1st span	114
10.5. Overview K-bandages 2nd span	115

2020-04-02 Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

10.6. Sycryics K-bandages 3rd span	811
11. Portals	121
11.1. Construction model portal A north	121
11.2. Construction model Portal A abutment south	122
11.3. Construction model Portal B	123
11.4. Construction model Portal B	123
11.5. Construction model Portal C	124
11.6. Sections	124
12. Deck construction	130
12.1. Cover plate	130
12.2. Cover 1st and 2nd span	131
12.3. Deck 3rd span	131
12.4. 2D members	132
12.5. Bulbs and edge strips	132
12.6. Overview	132
12.7. Cross section deck	133
12.8. Sections	133
13. Settings net	135

1/136

Page 60

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

14. Solver settings

2. Project

License name Royal HaskoningDHV IJssel Bridge Project Main bridge Description Global model Author Ernst Klamer Date 03.05.2018 Construction General XYZ Number of knots: 6201 Number of bars: 3916 Number of plates: 528 Number of solids: Number of cross sections used: 101 Number of load cases: 234 Number of materials used: 18 9,810 Gravitational acceleration [m / s $_2$] National standard EC - EN

3. Model overview

3.1. 3D rendering model with construction phases

2/136

Page 61

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

3.2. Construction model 1st span

3.3. Construction model 2nd span

3/136

Page 62

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

3.4. Construction model 3rd span

4/136

Page 63

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

3.5. 1st span calculation model

Y. X

5/136

Page 64

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer

Current date 29.01.2019 Project file name Main Bridge v6.0.esa

3.6. 2nd span calculation model

Page 65

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

3.7. Calculation model 3rd span (to middle)

Page 66

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

3.8. Construction model

4. Construction phasing

4.1. Construction stages

Name	Phase sequence	Description	Global time
			[day]
ST1		1 placement part 0-14 and 20-34	
ST2		2 placement part 14-20	
ST3		3 Asphalt pavement	
ST4		4 Scratch side	
ST5		5 Inspection pad normal console	
ST6		6 Reinforced console inspection path	
ST7		7 Other permanent taxes	
ST8		8 Hot water pipe	

Page 67

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

4.2. Construction phase 1

4.3. Construction phase 2

Page 68

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

5. Dimensions

The dimensions are shown up to the symmetry line of the bridge.

5.1. Construction model part 0-4

v 7

10/136

Page 69

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

5.2. Construction model part 4-9

Page 70

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

5.3. Construction model part 9-14

Y. Z.

12/136

Page 71

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

5.4. Construction model part 14-17

Y. Z.

Page 72

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

6. Impositions

6.1. Northern part bearings

The supports of the river pillars of the southern half were also longitudinally secured in the first phase, to keep the model stable in construction phase 1. In this construction phase, the two parts of the bridge are not yet connected. In construction phase 2, the supports removed and replaced for final bearings.

Page 73

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

6.2. Bearings southern part - construction phase 1

6.3. Bearings southern part - construction phase 2

Page 74

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

6.4. Button supports

Name	Button	System	Type	X	Y.	\mathbb{Z} .	Rx	Ry Rz		Add	remove
Sn4	K736	GCS	Standard	Free	Fixed F	ixed Fixe	d Free Fr	ee ST1 - placeme	nt part 0-14 a	nd 20-34	No
Sn5	K737	GCS	Standard	Free	Fixed F	ixed Fixe	d Free Fr	ee ST1 - placeme	nt part 0-14 a	nd 20-34	No
Sn6	K79	GCS	Standard	Free	Fixed F	ixed Fixe	d Free Fr	ee ST1 - placeme	nt part 0-14 a	nd 20-34	No
Sn7	K80	GCS	Standard	Free	Fixed F	ixed Fixe	d Free Fr	ee ST1 - placeme	nt part 0-14 a	nd 20-34	No
Sn14	K3947	GCS	Standard	Free	Fixed F	ixed Fixe	d Free Fr	ee ST1 - placeme	nt part 0-14 a	nd 20-34	No
Sn15	K3948	GCS	Standard	Free	Fixed F	ixed Fixe	d Free Fr	ee ST1 - placeme	nt part 0-14 a	nd 20-34	No
Sn16	K4598	GCS	Standard	Free	Fixed F	ixed Fixe	d Free Fr	ee ST1 - placeme	nt part 0-14 a	nd 20-34	No
Sn17	K4599	GCS	Standard	Free	Fixed F	ixed Fixe	d Free Fr	ee ST1 - placeme	nt part 0-14 a	nd 20-34	No
Sn19	K5810	GCS	Standard	Free	Free	Fixed I	ree	Free Free ST1	- placement	part 0-14 and 20-34	No
Sn20	K5809	GCS	Standard	Free	Free	Fixed I	ree	Free Free ST1	- placement	part 0-14 and 20-34	No
Sn21	K5810	GCS	Standard	Fixed F	ree	Free	Free	Free Free ST1	- placement	part 0-14 and 20-34	ST2 - placement part 14-20
Sn22	K5809	GCS	Standard	Fixed F	ree	Free	Free	Free Free ST1	- placement	part 0-14 and 20-34	ST2 - placement part 14-20
Sn28	K6497	GCS	Standard	Free	Fixed F	ree	Free	Free Free ST1	- placement	part 0-14 and 20-34	No
Sn8	N3	GCS	Standard	Fixed F	ixed Fixe	d Free		Free Free ST1	- placement	part 0-14 and 20-34	No
Sn9	N4	GCS	Standard	Fixed F	ixed Fixe	d Free		Free Free ST1	- placement	part 0-14 and 20-34	No

7. Materials

Steel EC3

Sicci EC3								
Name	ρ	E mod	μ	Lower limit Upp	er limit	₽ y	F u	Color
	[kg/m3]	[MPa]		[mm]	[mm]	[MPa] [M	[Pa]	
		G mod	α					
		[MPa]	[m / mK]					
LQmc 52 (eg 324%)	25434.0 2.10	5434.0 2.1000th + 05		0.0	40.0	350.0	510.0	
		8.0769e + 04	0.00	40.0	80.0	350.0	510.0	
LQmc 52 (eg 216%)	16956.0 2.10	000 th + 05	0.3	0.0	40.0	350.0	510.0	
		8.0769e + 04	0.00	40.0	80.0	350.0	510.0	
LQmc 52 (eg 181%)	14209.0 2.10	000 th + 05	0.3	0.0	40.0	350.0	510.0	
		8.0769e + 04	0.00	40.0	80.0	350.0	510.0	
LQmc 52 (eg 138%)	10833.0 2.10	000e + 05	0.3	0.0	40.0	350.0	510.0	
		8.0769e + 04	0.00	40.0	80.0	350.0	510.0	
LQmc 52 (eg 135%)	10598.0 2.10	000e + 05	0.3	0.0	40.0	350.0	510.0	
		8.0769e + 04	0.00	40.0	80.0	350.0	510.0	
LQmc 52 (eg 125%)	9813.0 2.1	000e + 05	0.3	0.0	40.0	350.0	510.0	
		8.0769e + 04	0.00	40.0	80.0	350.0	510.0	
LQmc 52 (eg 120%)	9420.0 2.1	000e + 05	0.3	0.0	40.0	350.0	510.0	
		8.0769e + 04	0.00	40.0	80.0	350.0	510.0	
LQmc 52 (eg 111%)	8714.0 2.1	000e + 05	0.3	0.0	40.0	350.0	510.0	
		8.0769e + 04	0.00	40.0	80.0	350.0	510.0	

LQmc 52 (eg 108%)	8478.0 2.1000th + 05 8.0769e + 04	0.3 0.00	0.0 40.0	40.0 80.0	350.0 350.0	510.0 510.0
LQmc 52	7850.0 2.1000e + 05	0.3	0.0	40.0	350.0	510.0
	8.0769e + 04	0.00	40.0	80.0	350.0	510.0
QMC 37 (eg 138%)	10833.0 2.1000e + 05	0.3	0.0	40.0	215.0	340.0
	8.0769e + 04	0.00	40.0	80.0	215.0	340.0
QMC 37 (eg 124%)	9734.0 2.1000th + 05	0.3	0.0	40.0	215.0	340.0
	8.0769e + 04	0.00	40.0	80.0	215.0	340.0
QMC 37 (eg 124%)	9734.0 2.1000th + 05	0.3	0.0	40.0	215.0	340.0
	8.0769e + 04	0.00	40.0	80.0	215.0	340.0
QMC 37 (eg 111%)	8714.0 2.1000e + 05	0.3	0.0	40.0	215.0	340.0
	8.0769e + 04	0.00	40.0	80.0	215.0	340.0
QMC 37 (eg 108%)	$8478.0\ 2.1000th + 05$	0.3	0.0	40.0	215.0	340.0
	8.0769e + 04	0.00	40.0	80.0	215.0	340.0
QMC 37 (eg 0%)	$0.0\ 2.1000e + 05$	0.3	0.0	40.0	215.0	340.0
	8.0769e + 04	0.00	40.0	80.0	215.0	340.0
S 235 J2 (EN 10025-2)	7850.0 2.1000e + 05	0.3	0.0	3.0	235.0	360.0
	8.0769e + 04	0.00	3.0	16.0	235.0	360.0
			16.0	40.0	225.0	360.0
			40.0	63.0	215.0	360.0
			63.0	80.0	215.0	360.0
			80.0	100.0	215.0	360.0
			100.0	150.0	195.0	350.0
			150.0	200.0	185.0	340.0
			200.0	250.0	175.0	340.0

Page 75

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Name E mod Lower limit Upper limit \mathbb{F}_y $\mathbb{F}_{\mathfrak{u}}$ Color ρ [MPa] [MPa] [kg/m3] [MPa] [mm] [mm] $\mathbb{G}_{\mathrm{mod}}$ Œ [MPa] [m / mK]250.0 400.0 165.0 330.0

8. Main beam

8.1. Construction model

17/136

Page 76

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

8.2. Main spar - Side view

8.3. Sections

The colors in the following figures show the differences in bottom flange

Red: 500x20 Green 500x30

Yellow: 500x30 + 350x30 Pink: 500x30 + 530x10 Blue: 500x30 + 550x30

18/136

Page 77

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

8.4. Main beam sections

z. y x

8.5. Main beam sections

z. Y. **X**

19/136

Page 78

Project Ussel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Resident following Bridge (20.000)

Project file name Main Bridge v6.0.esa

```
8.6. Sections * 20, h = 2400) 1
```

Туре Graphic cross section 2120.0; 20.0; 500.0 Extensive Form type Thin-walled LQmc 52 (eg 135%) Part material

General Construction method

Color

Nod yy, nod zz

5,0603e-02 $A[m_2]$

2.2610e-02 A y [m 2], A z [m 2] 2.9113e-02 A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 6.3850e + 006.3850e + 00c y.ucs [mm], c z.ucs [mm] 0.0 -1439.1 0.00

α [deg]

I y [m 4], I z [m 4] 4.2278e-02 2.9871e-04 i y [mm], i z [mm] 914.0 76.8 W el.y [m 3], W el.z [m 3] 2.9378e-02 1.1948e-03 W $_{\text{pl.y}}$ [m $_{\text{3}}$], W $_{\text{pl.z}}$ [m $_{\text{3}}$] 4.1339e-02 2.2378e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 1.45e + 071.45e + 07M pl.z. + [Nm], M pl.z.- [Nm] 7.83rd + 057.83rd + 05 d_y [mm], d_z [mm] 0.0 0.0 0.0000e + 00I t [m 4], I w [m 6] 3,8773e-06 β_y [mm], β_z [mm] 0.0 310.4

Image

 \mathbf{Z}

50.0

2120.0 2400.0 y

300.0

230.0

20.0 500.0

Main beam (500 * 30, h = 2400) 1

Type Graphic cross section 2120.0; 30.0; 500.0 Extensive Form type Thin-walled Part material LQmc 52 (eg 125%)

Construction method General

Color

Nod yy, nod zz

A [m 2] 5,5603e-02

A y [m 2], A z [m 2] 2.9019e-02 2.7511e-02 6.4050e + 00 6.4050e + 00 A L [m 2 / m], A D [m 2 / m] 0.0 -1527.8 c y.ucs [mm], c z.ucs [mm] α [deg] 0.00

I y [m 4], I z [m 4] 4,6701e-02

20/136

4,0287e-04

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

i y [mm], i z [mm] 916.5 85.1 W el.y [m 3], W el.z [m 3] 3.0568e-02 1.6115e-03 W pl.y [m 3], W pl.z [m 3] 4.4859e-02 2.8628e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 1.57 th + 071.57th + 07 $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 1.00th + 061.00th + 06 d_y [mm], d_z [mm] 0.0 0.0 I t [m 4], I w [m 6] 5.1169e-06 0.0000e + 00 β y [mm], β z [mm] 0.0 443.7 Image

 \mathbf{Z}

50.0

2120.0 2400.0

y

673.5

0.0

300.0

230.0

30.0500.0

Main beam (500 * 30 + 350 * 30, h = 2400) 1

Type Graphic cross section
Extensive 2120.0; 30.0; 500.0; 30.0; 350.0

Form type Thin-walled
Part material LQmc 52 (eg 111%)

Construction method General

Color

Nod yy, nod zz $\hspace{1cm} d \hspace{1cm} d$

6.6103e-02 A [m 2] 3,8472e-02 2.9312e-02 A y [m 2], A z [m 2] A L [m 2 / m], A D [m 2 / m] 6.4650e + 006.4650e + 00c y.ucs [mm], c z.ucs [mm] -1673.5 0.0 0.00 α [deg] 5.4132e-02 5.1006e-04 I y [m 4], I z [m 4] i y [mm], i z [mm] 904.9 W el.y [m 3], W el.z [m 3] 3,2347e-02 2.0402e-03 W pl.y [m 3], W pl.z [m 3] 4,9073e-02 3.7816e-03 $M_{pl.y.} + [Nm], M_{pl.y.} - [Nm]$ 1.72e + 071.72e + 07 $M_{\ pl.z.}$ + [Nm], $M_{\ pl.z.}$ - [Nm] 1.32e + 061.32e + 06 d_y [mm], d_z [mm] 0.0 0.0 8,8178e-06 0.0000e + 00I t [m 4], I w [m 6]

 β y [mm], β z [mm]

Page 80

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

Z

50.0

2120.0

2400.0

y

300.0

230.0 30.0 350.0 30.0 30.0

Main beam (500 * 30 + 530 * 10, h = 3000) 1

Type Graphic cross section
Extensive 2720.0; 30.0; 500.0; 10.0; 530.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

Nod yy, nod zz d d d A $[m_2]$ 6.8103e-02

 $\begin{array}{ccccc} A \, [\, m \, z \,] & 6.8103 e-02 \\ A \, y \, [\, m \, z \,] , A \, z \, [\, m \, z \,] & 3.2898 e-02 & 3.6141 e-02 \\ A \, L \, [\, m \, z \, / \, m \,] , A \, D \, [\, m \, z \, / \, m \,] & 7.6850 e+00 & 7.6850 e+00 \\ c \, y \ ucs \, [\, mm \,] , c \, z \ ucs \, [\, mm \,] & 0.0 & -1953.1 \end{array}$

α [deg] 0.00 I y [m 4], I z [m 4] 8,6126e-02 5.2702e-04 i y [mm], i z [mm] 1124.6 W el.y [m 3], W el.z [m 3] 4.4096e-02 1,9888e-03 W pl.y [m 3], W pl.z [m 3] 6.6858e-02 3,5867e-03 M pl.y. + [Nm], M pl.y.- [Nm] 2.34e + 07 2.34e + 07 $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 1.26th + 061.26th + 060.0 d_y [mm], d_z [mm] 0.0 0.0000e + 00 I t [m 4], I w [m 6] 6.2441e-06 β y [mm], β z [mm] 599.8 0.0

Page 81

Project IJssel Bridge Part Main bridge Author Ernst Klamer 29.01.2019 Current date Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2720.0 3000.0 y 300.0

500.0

10.0

Main beam (500 * 30 + 550 * 30, h = 3000) 1

Type Graphic cross section

Extensive 2720.0; 30.0; 500.0; 30.0; 550.0

Thin-walled Form type LQmc 52 (eg 120%) Part material

Construction method General

Color

Nod yy, nod zz d

A [m 2] 7.9303e-02

3.6376e-02 A y [m 2], A z [m 2] 4.3696e-02 A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 7.7650e + 007.7650e + 00-2108.0 c y.ucs [mm], c z.ucs [mm] 0.0 0.00

α [deg]

2020-04-02 Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

I y [m 4], I z [m 4]	9.7693e-02	8.1890e-04
i y [mm], i z [mm]	1109.9	101.6
$W_{\text{ el.y}}\left[m\ 3\ \right],W_{\text{ el.z}}\left[m\ 3\ \right]$	4.6344e-02	2,9778e-03
$W_{ m pl.y}\left[m\ _3\ \right],W_{ m pl.z}\left[m\ _3\ \right]$	7.2129e-02	5.1532e-03
$M_{pl.y.}$ + $[Nm]$, $M_{pl.y.}$ - $[Nm]$	2.52nd + 07	2.52nd + 07
$M_{pl.z.}$ + $[Nm]$, $M_{pl.z.}$ - $[Nm]$	1.80 th + 06	1.80 th + 06
d_y [mm], d_z [mm]	0.0	0.0
I t [m 4], I w [m 6]	1.0121e-05	0.0000e + 00
β y [mm], β z [mm]	843.3	0.0

23/136

Page 82

IJssel Bridge Project Part Main bridge Author Ernst Klamer Current date 29.01.2019 Main Bridge v6.0.esa

Project file name

Image

 \mathbf{Z}

50.0

2720.0 3000.0

300.0 y

500.0

30.0

Main beam (500 * 20, h = 2406) 1

Type Graphic cross section Extensive 2126.0; 20.0; 500.0

2020-04-02 Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

Form type Part material Thin-walled LQmc 52 (eg 135%) Construction method General Color Nod yy, nod zz d d 5.0675e-02 $A\left[m_{\,2}\,\right]$ 2.2610e-02 2.9185e-02 A y [m 2], A z [m 2] 6.3970th + 00A L [m 2 / m], A D [m 2 / m] 6.3970th + 00c y.ucs [mm], c z.ucs [mm] -1442.4 0.0 α [deg] 0.00 I y [m 4], I z [m 4] 4.2528e-02 2.9871e-04 i y [mm], i z [mm] 916.1 76.8 W el.y $[m\ \mbox{\scriptsize 3}\],\,W$ el.z $[m\ \mbox{\scriptsize 3}\]$ 2.9485e-02 1.1948e-03 4.1491e-02 2.2380e-03 W pl.y [m 3], W pl.z [m 3] $M_{\text{ pl.y.}^+}[Nm],\,M_{\text{ pl.y.}^-}[Nm]$ 1.45e + 071.45e + 077.83rd + 05 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]7.83rd + 05 d_y [mm], d_z [mm] 0.0 0.0 I t [m 4], I w [m 6] 3.8765e-06 0.0000e + 00 β y [mm], β z [mm] 310.5 0.0

24/136

Page 83

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2126.0 2406.0 y

300.0

230.0

20.0 500.0

Main beam (500 * 20, h = 2416) 1

Type Graphic cross section
Extensive 2136.0; 20.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 135%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz $\hspace{1cm} d \hspace{1cm} d$

A [m 2] 5.0795e-02

2.9305e-02 2.2611e-02 A y [m $_2$], A $_z$ [m $_2$] 6.4170th + 00 6.4170th + 00 A L [m 2 / m], A D [m 2 / m] c y.ucs [mm], c z.ucs [mm] 0.0 -1447.8 $\alpha\,[deg]$ 0.00 I y [m 4], I z [m 4] 4.2948e-02 2.9871e-04 i y [mm], i z [mm] 919.5 76.7 W el.y [m 3], W el.z [m 3] 2.9665e-02 1.1948e-03 W $_{\text{pl.y}}$ [m $_{\text{3}}$], W $_{\text{pl.z}}$ [m $_{\text{3}}$] 4.1744e-02 2.2384e-03 M pl.y.+ [Nm], M pl.y.- [Nm] 1.46e + 07 1.46e + 07 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]7.83rd + 057.83rd + 05d y [mm], d z [mm] 0.0 0.0 0.0000e + 00I t [m 4], I w [m 6] 3.8750e-06

310.7

25/136

0.0

Page 84

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

Z

50.0

2136.0 2416.0 y

300.0

230.0

20.0500.0

Main beam (500 * 20, h = 2443) 1

Type Graphic cross section Extensive 2163.0; 20.0; 500.0 Form type Thin-walled LQmc 52 (eg 135%) Part material

Construction method General

Color

Nod yy, nod zz

5.1119e-02 A [m 2] A y [m 2], A z [m 2] 2.2613e-02 2.9629e-02 A L [m 2 / m], A D [m 2 / m] 6.4710e + 006.4710e + 00c y.ucs [mm], c z.ucs [mm] -1462.4 0.0 0.00 α [deg] 2.9871e-04 4.4095e-02 I y [m 4], I z [m 4] i y [mm], i z [mm] 928.8 76.4 W el.y [m 3], W el.z [m 3] 1.1948e-03 3,0152e-02 W pl.y [m 3], W pl.z [m 3] 2.2394e-03 4.2432e-02 M pl.y. + [Nm], M pl.y.- [Nm]1.49e + 07 1.49e + 07 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]7.84e + 057.84e + 05 d_y [mm], d_z [mm] 0.0 0.0

I t [m 4], I w [m 6] 3.8715e-06 0.0000e + 00311.2 0.0

 β y [mm], β z [mm]

26/136

Page 85

IJssel Bridge Project Part Main bridge Author Ernst Klamer Current date 29.01.2019 Project file name Main Bridge v6.0.esa

Image

50.0 Z

2163.0 2443.0 y

300.0

230.0

20.0500.0

Main beam (500 * 20, h = 2476) 1

Type Graphic cross section

Extensive 2196.0; 20.0; 500.0

Form type Thin-walled

Part material LQmc 52 (eg 135%)

Construction method General

Color

d $Nod\;yy,\,nod\;zz$ d 5.1515e-02 $A[m_2]$ 3.0025e-02 A y [m 2], A z [m 2] 2.2615e-02 A L [m 2 / m], A D [m 2 / m] 6.5370th + 00 6.5370th +00c y.ucs [mm], c z.ucs [mm] 0.0 -1480.3 α [deg] 0.00 I y [m 4], I z [m 4] 4.5521e-02 2.9872e-04 i y [mm], i z [mm] 940.0 3,0752e-02 W el.y [m 3], W el.z [m 3] 1.1949e-03 4.3279e-02 W pl.y [m 3], W pl.z [m 3] 2.2405e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 1.51st + 071.51st + 07 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]7.84e + 057.84e + 05 $d_{\;y}\,[mm],\,d_{\;z}\,[mm]$ 0.0 0.0

3,8678e-06

311.7

0.0000e + 00

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2196.0 2476.0 y

300.0

230.0

20.0

Main beam (500 * 20, h = 2508) 1

Type Graphic cross section
Extensive 2228.0; 20.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 135%)

d

Construction method General

Color Nod yy, nod zz

 d_y [mm], d_z [mm]

I t [m 4], I w [m 6]

 β y [mm], β z [mm]

5.1899e-02 $A[m_2]$ 2.2618e-02 3,0408e-02 A y [m 2], A z [m 2] A L [m 2 / m], A D [m 2 / m] 6.6010th + 00 6.6010th + 00c y.ucs [mm], c z.ucs [mm] 0.0 -1497.5 $\alpha\,[deg]$ 0.00 I y [m 4], I z [m 4] 4.6931e-02 2.9872e-04 i y [mm], i z [mm] 950.9 75.9 W el.y [m 3], W el.z [m 3] 3.1338e-02 1.1949e-03 W pl.y [m 3], W pl.z [m 3] 4.4106e-02 2.2417e-03 M pl.y.+ [Nm], M pl.y.- [Nm] 1.54e + 07 1.54e + 07 $M_{\ pl.z.}$ + [Nm], $M_{\ pl.z.}$ - [Nm] 7.85e + 057.85e + 05

0.0

312.2

3,8647e-06

0.0

0.0

0.0000e + 00

Page 87

Project IJssel Bridge Part Main bridge Author Ernst Klamer 29.01.2019 Current date Project file name

Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2228.0 2508.0 y

300.0

23900.0

20.0

Main beam (500 * 20, h = 2541) 1

Graphic cross section Type 2261.0; 20.0; 500.0 Extensive Thin-walled Form type Part material LQmc 52 (eg 135%) Construction method General

Color

I t [m 4], I w [m 6] β_y [mm], β_z [mm]

Nod yy, nod zz d

A [m 2] 5.2295e-02 2.2620e-02 3,0802e-02 A y [m $_2$], A $_z$ [m $_2$] A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 6.6670e + 00 6.6670e + 00 c y.ucs [mm], c z.ucs [mm] 0.0 -1515.4 α [deg] 0.00 4.8412e-02 2.9873e-04 I y [m 4], I z [m 4] i y [mm], i z [mm] 962.2 75.6 W el.y [m 3], W el.z [m 3] 3.1948e-02 1.1949e-03 W pl.y [m 3], W pl.z [m 3] 4.4966e-02 2.2429e-03 $M_{\text{ pl.y.}}\text{+}[Nm],\,M_{\text{ pl.y.}}\text{-}[Nm]$ 1.57th + 07 1.57th +07 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]7.85e + 057.85e + 05 d_y [mm], d_z [mm] 0.0 0.0

0.0000e + 00

0.0

3.8621e-06

312.7

Page 88

Project IJssel Bridge Part Main bridge Author Ernst Klamer Current date 29.01.2019 Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2261.0 2541.0 y

300.0

235000.0

20.0

Main beam (500 * 20, h = 2593) 1

Type Graphic cross section 2313.0; 20.0; 500.0 Extensive Form type Thin-walled LQmc 52 (eg 135%) Part material

Construction method General

Color

Nod yy, nod zz A [m 2] 5.2919e-02

A y [m 2], A z [m 2] 2.2624e-02 3.1423e-02 6.7710th + 00 6.7710th + 00A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] c y.ucs [mm], c z.ucs [mm] 0.0 -1543.4 0.00

α [deg]

5,0804e-02 2.9873e-04 I y [m 4], I z [m 4] 979.8 i y [mm], i z [mm] 75.1 W el.y [m 3], W el.z [m 3] 3.2917e-02 1.1949e-03

2020-04-02 Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

30/136

Page 89

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2313.0 2593.0 y

300.0

23500.0

20.0

Main beam (500 * 20, h = 2657) 1

Type Graphic cross section
Extensive 2377.0; 20.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 135%)
Construction method General

Color			
Nod yy, nod zz	d		d
A [m 2]		5.3687e-02	
A y [m 2], A z [m 2]		2.2628e-02	3.2186e-02
A L [m 2 / m], A D [m 2 / m]		6.8990th $+00$	6.8990th $+00$
c y.ucs [mm], c z.ucs [mm]		0.0	-1577.8
α [deg]		0.00	
I y [m 4], I z [m 4]		5.3846e-02	2.9874e-04
i _y [mm], i _z [mm]		1001.5	74.6
W el.y [m 3], W el.z [m 3]		3,4127e-02	1.1950e-03
W $_{pl.y}$ [m $_3$], W $_{pl.z}$ [m $_3$]		4,8039e-02	2.2471e-03
$M_{pl.y.}$ + $[Nm]$, $M_{pl.y.}$ - $[Nm]$		1.68e + 07	1.68e + 07
$M_{pl.z.+}$ [Nm], $M_{pl.z}$ [Nm]		7.86e + 05	7.86e + 05
d_y [mm], d_z [mm]		0.0	0.0
I t [m 4], I w [m 6]		3.8572e-06	0.0000e + 00
β y [mm], β z [mm]		314.2	0.0

Page 90

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2377.0 2657.0 y

300.0

500.0

230.0

20.0

Main beam (500 * 20, h = 2720) 1

Type Graphic cross section Extensive 2440.0; 20.0; 500.0 Form type Thin-walled Part material LQmc 52 (eg 135%) General

Construction method

Color

 $I_{t}[m_{4}], I_{w}[m_{6}]$

 β_y [mm], β_z [mm]

Nod yy, nod zz d

A [m 2] 5.4443e-02

A y [m $_2$], A z [m $_2$] 2.2632e-02 3.2934e-02 7.0250e + 00 A L [m 2 / m], A D [m 2 / m] 7.0250e + 00 c y.ucs [mm], c z.ucs [mm] 0.0 -1611.6 α [deg] 0.00 5.6947e-02 I y [m 4], I z [m 4] 2.9875e-04 i y [mm], i z [mm] 1022.7 74.1 W el.y [m 3], W el.z [m 3] 3.5335e-02 1.1950e-03 4.9742e-02 W $_{\text{pl.y}}$ [m $_{\text{3}}$], W $_{\text{pl.z}}$ [m $_{\text{3}}$] 2.2493e-03 M pl.y.+ [Nm], M pl.y.- [Nm] 1.74e + 07 1.74e + 07 $M_{\ pl.z.}$ + [Nm], $M_{\ pl.z.}$ - [Nm] 7.87e + 057.87e + 05d y [mm], d z [mm] 0.0 0.0

3.8569e-06

314.9

32/136

0.0000e + 00

0.0

Page 91

Project IJssel Bridge Part Main bridge Author Ernst Klamer 29.01.2019 Current date Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2440.0 2720.0 y

300.0

500.0 230.0

20.0

Main beam (500 * 20, h = 2784) 1

Type Graphic cross section
Extensive 2504.0; 20.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 135%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz $\hspace{1cm} d \hspace{1cm} d$

A [m 2] 5.5211e-02 A y [m 2], A z [m 2] 2.2636e-02 3.3693e-02 A L [m 2 / m], A D [m 2 / m] 7.1530th + 007.1530th + 00-1645.9 c y.ucs [mm], c z.ucs [mm] 0.0 α [deg] 0.00 I y [m 4], I z [m 4] 6.0207e-02 2,9876e-04 i y [mm], i z [mm] 1044.3 73.6 W el.y [m 3], W el.z [m 3] 3.6579e-02 1.1950e-03 W pl.y [m 3], W pl.z [m 3] 5.1497e-02 2.2516e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 1.80th + 07 1.80th + 07 M pl.z.+ [Nm], M pl.z.- [Nm] 7.88e + 057.88e + 050.0 d_y [mm], d_z [mm] 0.0 I t [m 4], I w [m 6] 3,8583e-06 0.0000e + 00

33/136

0.0

315.5

Page 92

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

2504.0 2784.0 y 300.0

230.0

500.0

20.0

Main beam (500 * 20, h = 2865) 1

Type Graphic cross section
Extensive 2585.0; 20.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 135%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz A [m 2] 5.6183e-02 2,2641e-02 A y [m $_2$], A z [m $_2$] 3,4651e-02 A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 7.3150th + 00 7.3150th + 00c y.ucs [mm], c z.ucs [mm] 0.0 -1689.2 α [deg] 0.00 6.4494e-02 2.9877e-04 I y [m 4], I z [m 4] i y [mm], i z [mm] 1071.4 72.9 W el.y [m 3], W el.z [m 3] 3,8179e-02 1.1951e-03 W pl.y [m 3], W pl.z [m 3] 5.3753e-02 2.2546e-03 M pl.y. + [Nm], M pl.y.- [Nm] 1.88th + 071.88th + 07 $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 7.89e + 057.89e + 05d y [mm], d z [mm] 0.0 0.0 I t [m 4], I w [m 6] 3.8623e-06 0.0000e + 00

34/136

0.0

316.1

Page 93

Project IJssel Bridge

Part Author Main bridge Ernst Klamer Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2585.0 2865.0 y

300.0

500.0

230.0

20.0

Main beam (500 * 20, h = 2939) 1

Type Graphic cross section Extensive 2659.0; 20.0; 500.0 Form type Thin-walled Part material LQmc 52 (eg 135%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz d

5,7071e-02 $A\left[m_{\,2}\,\right]$ 2,2646e-02 3.5523e-02 $A_y[m_2], A_z[m_2]$ A L [m 2 / m], A D [m 2 / m] 7.4630e + 007.4630e + 00c y.ucs [mm], c z.ucs [mm] -1728.7 0.0 0.00 α [deg] I y [m 4], I z [m 4] 6.8572e-02 2,9878e-04 i y [mm], i z [mm] 1096.1 72.4 W el.y [m 3], W el.z [m 3] 3,9666e-02 1.1951e-03 W pl.y [m 3], W pl.z [m 3] 5.5848e-02 2.2572e-03 $M_{pl.y.}$ + [Nm], $M_{pl.y.}$ - [Nm] 1.95th + 07 1.95th + 07 M pl.z. + [Nm], M pl.z.- [Nm] 7.90 th + 057.90th + 05 d_y [mm], d_z [mm] 0.0 0.0 I t [m 4], I w [m 6] 3,8678e-06 0.0000e + 00

316.5

0.0

Page 94

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2659.0 _{2939.0} y

300.0

500.0

230.0

20.0

Main beam (500 * 30, h = 2939) 1

Type Graphic cross section

Extensive 2659.0; 30.0; 500.0

Form type Thin-walled

Part material LQmc 52 (eg 125%)

Construction method General

Color

Nod yy, nod zz d d A [m 2] 6.2071e-02 3,5530e-02 A y [m 2], A z [m 2] 2,7554e-02 A L [m 2 / m], A D [m 2 / m] 7.4830e + 007.4830e + 000.0 c y.ucs [mm], c z.ucs [mm] -1828.2 α [deg] 0.00 7,5587e-02 4.0295e-04 I y [m 4], I z [m 4] i y [mm], i z [mm] 1103.5 80.6 W el.y [m 3], W el.z [m 3] 4.1344e-02 1.6118e-03 W pl.y [m 3], W pl.z [m 3] 6.0716e-02 2.8822e-03 $M_{\text{ pl.y.}}\text{+}[Nm],\,M_{\text{ pl.y.}}\text{-}[Nm]$ 2.13rd + 072.13rd + 07 $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 1.01st + 061.01st + 06d y [mm], d z [mm] 0.0 0.0 I t [m 4], I w [m 6] 4,9097e-06 0.0000e + 00

460.6

0.0

 β y [mm], β z [mm]

Page 95

IJssel Bridge Project Part Main bridge Author Ernst Klamer 29.01.2019 Current date Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

300.0

500.0

230.0

30.0

Main beam (500 * 30, h = 2963) 1

Type Graphic cross section 2683.0; 30.0; 500.0 Extensive Form type Thin-walled LQmc 52 (eg 125%) Part material General

Construction method

Color

Nod yy, nod zz

6.2359e-02 A [m 2] 2,7555e-02 3,5817e-02 A y [m 2], A z [m 2] A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 7.5310e + 00 7.5310e + 00 c y.ucs [mm], c z.ucs [mm] -1841.5 α [deg] 0.00 4.0295e-04 I y [m 4], I z [m 4] 7.7073e-02 1111.7 i y [mm], i z [mm] 80.4 W el.y [m 3], W el.z [m 3] 4.1854e-02 1.6118e-03 W $_{\text{pl.y}}$ [m $_{\text{3}}$], W $_{\text{pl.z}}$ [m $_{\text{3}}$] 6.1463e-02 2.8831e-03

2020-04-02 Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

$M_{pl.y.} + [Nm], M_{pl.y.} - [Nm]$	2.15e + 07	2.15e + 07
$M_{pl.z.+}[Nm], M_{pl.z}[Nm]$	1.01st + 06	1.01st + 06
d y [mm], d z [mm]	0.0	0.0
I t [m 4], I w [m 6]	4,9050e-06	0.0000e + 00
β_y [mm], β_z [mm]	461.1	0.0

37/136

Page 96

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

300.0

500.0

230.0

30.0

Main beam (500 * 30, h = 3061) 1

Type Graphic cross section
Extensive 2781.0; 30.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 125%)
Construction method General

2	\sim	\sim	~ 4	Δ
_	11/	l)-	٥4-	11/

Color Nod yy, nod zz	d		d
A [m 2]		6.3535e-02	
A y [m 2], A z [m 2]		2,7562e-02	3.6989e-02
A L [m 2 / m], A D [m 2 / m]		7.7270e + 00	7.7270e + 00
c yucs [mm], c zucs [mm]		0.0	-1895.4
α [deg]		0.00	
I y [m 4], I z [m 4]		8,3328e-02	4,0297e-04
i _y [mm], i _z [mm]		1145.2	79.6
W el.y $[m 3]$, W el.z $[m 3]$		4.3964e-02	1.6119e-03
W $_{pl.y}$ [m $_3$], W $_{pl.z}$ [m $_3$]		6.4547e-02	2.8866e-03
$M_{pl.y.}$ + $[Nm]$, $M_{pl.y.}$ - $[Nm]$		2.26e + 07	2.26e + 07
$M_{pl.z.+}[Nm], M_{pl.z}[Nm]$		1.01st + 06	1.01st + 06
d_y [mm], d_z [mm]		0.0	0.0
I t [m 4], I w [m 6]		4,8888e-06	0.0000e + 00
β y [mm], β z [mm]		463.1	0.0

38/136

Page 97

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

500.0

30.0

Main beam (500 * 30, h = 3101) 1	
Type	Graphic cross section
Extensive	2821.0; 30.0; 500.0
Form type	Thin-walled
Part material	LQmc 52 (eg 125%)

Construction method General

Color

 β y [mm], β z [mm]

 $Nod\;yy,\,nod\;zz$ d d 6.4015e-02 A [m 2] A y [m 2], A z [m 2] 2,7565e-02 3.7466e-02 7,8070th + 00 7,8070th + 00A L [m 2 / m], A D [m 2 / m] -1917.3 c y.ucs [mm], c z.ucs [mm] 0.0 α [deg] 0.00 4,0297e-04 I y [m 4], I z [m 4] 8.5968e-02 i y [mm], i z [mm] 1158.8 79.3 W el.y [m 3], W el.z [m 3] 4.4837e-02 1.6119e-03 W pl.y [m 3], W pl.z [m 3] 6.5823e-02 2.8880e-03 $M_{pl.y.}$ + [Nm], $M_{pl.y.}$ - [Nm]2.30th + 072.30th + 07M pl.z.+ [Nm], M pl.z.- [Nm] 1.01st + 061.01st + 06 $d_{\;y}$ [mm], $d_{\;z}$ [mm] 0.0 0.0 0.0000e + 00I t [m 4], I w [m 6] 4.8835e-06

39/136

0.0

463.8

Page 98

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

3101.0 y 300.0

500.0

230.0

30.0

Main beam (500 * 30 + 550 * 30, h = 3101) 1

Type Graphic cross section 2821.0; 30.0; 500.0; 30.0; 550.0 Extensive

Thin-walled Form type Part material LQmc 52 (eg 120%)

Construction method General

Color

d Nod yy, nod zz d A [m 2] 8.0515e-02

A y [m 2], A z [m 2] 4.3708e-02 3.7252e-02 A L [m 2 / m], A D [m 2 / m] 7.9670th + 007.9670th + 00c y.ucs [mm], c z.ucs [mm] 0.0 -2169.1

α [deg] 0.00

I y [m 4], I z [m 4] 1.0577e-01 8.1891e-04 i y [mm], i z [mm] 1146.2 100.9 W el.y [m 3], W el.z [m 3] 4.8763e-02 2,9779e-03 W $_{\text{pl.y}}$ [m $_{\text{3}}$], W $_{\text{pl.z}}$ [m $_{\text{3}}$] 7.6164e-02 5.1568e-03 M pl.y. + [Nm], M pl.y.- [Nm] 2.67e + 072.67e + 07 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]1.80 th + 061.80 th + 06 $d_{\;y}$ [mm], $d_{\;z}$ [mm] 0.0 0.0 I t [m 4], I w [m 6] 9,9326e-06 0.0000e + 00 β_y [mm], β_z [mm] 852.2 0.0

40/136

Page 99

IJssel Bridge Project Part Main bridge Author Ernst Klamer 29.01.2019 Current date Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

2821.0 3101.0

300.0

y

857.0

500.0

2390.0

30.0

Main beam (500 * 30 + 550 * 30, h = 3159) 1

Type Graphic cross section
Extensive 2879.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz $d \\ A \left[m \, {}_{2} \, \right] \\ 8.1211 e\text{-}02$

α [deg] 0.00 1.1059e-01 8.1892e-04 I y [m 4], I z [m 4] 100.4 i y [mm], i z [mm] 1166.9 W el.y [m 3], W el.z [m 3] 5,0176e-02 2,9779e-03 W pl.y [m 3], W pl.z [m 3] 7,8509e-02 5.1589e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 2.75e + 072.75e + 07 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]1.81st + 061.81st + 06d y [mm], d z [mm] 0.0 0.0 $I_{\,\mathrm{t}}\,[m_{\,4}\,],\,I_{\,\mathrm{w}}\,[m_{\,6}\,]$ 9.8327e-06 0.0000e + 00

41/136

0.0

Page 100

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer

29.01.2019 Main Bridge v6.0.esa Current date Project file name

Image

 \mathbf{Z}

50.0

2879.0 3159.0

y

864.8

300.0

500.0

35000

30.0

Main beam (500 * 30 + 550 * 30, h = 3257) 1

Type Graphic cross section 2977.0; 30.0; 500.0; 30.0; 550.0 Extensive

Thin-walled Form type Part material LQmc 52 (eg 120%)

Construction method General

Color

 β_y [mm], β_z [mm]

Nod yy, nod zz d 8.2387e-02 A [m 2] A y [m 2], A z [m 2] 4.3726e-02

3.8863e-02 A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 8.2790e + 008.2790e + 00 0.0 c y.ucs [mm], c z.ucs [mm] -2262.9 0.00 α [deg]

1.1903e-01 8.1893e-04 I y [m 4], I z [m 4] i y [mm], i z [mm] 1202.0 99.7 W el.y [m 3], W el.z [m 3] 5.2601e-02 2,9779e-03 W pl.y [m 3], W pl.z [m 3] 8.2517e-02 5.1624e-03 $M_{pl.y.}$ + [Nm], $M_{pl.y.}$ - [Nm]2.89e + 072.89e + 07 $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 1.81st + 061.81st + 06 d_y [mm], d_z [mm] 0.0 0.0 I t [m 4], I w [m 6] 9.6764e-06 0.0000e + 00

Page 101

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2977.0 3257.0 300.0 y 500.0 2550.0 30.0

Main beam (500 * 30 + 550 * 30, h = 3374) 1

Type Graphic cross section Extensive 3094.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

Nod yy, nod zz d 8,3791e-02 $A\left[m_{\,2}\,\right]$ 4,0256e-02 A y [m $_2$], A $_z$ [m $_2$] 4.3739e-02 A L [m 2 / m], A D [m 2 / m] 8.5130th + 00 8.5130th + 00c yours [mm], c zours [mm] 0.0 -2332.7 α [deg] 0.00 I y [m 4], I z [m 4] 1.2960e-01 8.1895e-04 i y [mm], i z [mm] 98.9 1243.7 W el.y [m 3], W el.z [m 3] 5.5558e-02 2.9780e-03 W pl.y [m 3], W pl.z [m 3] 8.7378e-02 5.1666e-03 3.06e + 07 $M_{\text{ pl.y.}^+}[Nm],\,M_{\text{ pl.y.}^-}[Nm]$ 3.06e + 071.81st + 06M pl.z.+ [Nm], M pl.z.- [Nm] 1.81st + 06d y [mm], d z [mm] 0.0 0.0 $I_{\,\mathrm{t}}\,[m_{\,4}\,],\,I_{\,\mathrm{w}}\,[m_{\,6}\,]$ 9.5085e-06 0.0000e + 00 β y [mm], β z [mm] 873.5 0.0

43/136

Page 102

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3094.0 300.0 300.0 500.0 550.0 230.0 30.0

Main beam (500 * 30 + 550 * 30, h = 3510) 1

Type Graphic cross section
Extensive 3230.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

Nod yy, nod zz $d \\ A \left[m \, {}_{2} \, \right] \\ 8.5423 \text{e-} 02$

 $\begin{array}{ccccc} A_y \, [m_{\,^2}], A_z \, [m_{\,^2}] & 4.3752e-02 & 4.1892e-02 \\ A_L \, [m_{\,^2}/m], A_D \, [m_{\,^2}/m] & 8.7850e+00 & 8.7850e+00 \\ c \, \text{vucs} \, [mm], c \, \text{zucs} \, [mm] & 0.0 & -2413.5 \\ \alpha \, [\text{deg}] & 0.00 & & \end{array}$

30.0

 I y [m 4], I z [m 4]
 1.4259e-01
 8.1897e-04

 i y [mm], i z [mm]
 1292.0
 97.9

 W ely [m 3], W elz [m 3]
 5,9079e-02
 2.9781e-03

 $\begin{array}{cccc} W_{\;ply}\left[m\;_{3}\right], W_{\;plz}\left[m\;_{3}\right] & 9.3131e\text{-}02 & 5.1715e\text{-}03 \\ M_{\;pl,y}+\left[Nm\right], M_{\;pl,y}\cdot\left[Nm\right] & 3.26e+07 & 3.26e+07 \end{array}$

1.81st + 06 0.0 $\underset{d}{M}_{pl.z.+} [Nm], \underset{d}{M}_{pl.z.-} [Nm]$ 1.81 st + 06I t [m 4], I w [m 6] 9.3359e-06 0.0000e + 00β y [mm], β z [mm] 882.9 0.0

44/136

Page 103

Project IJssel Bridge Part Main bridge Author Ernst Klamer Current date 29.01.2019 Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

 $\frac{3230.0}{300.0}3510.0$

y

500.0

550.0

3390

30.0

Main beam (500 * 30 + 550 * 30, h = 3645) 1

Type Graphic cross section

Extensive 3365.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled LQmc 52 (eg 120%) Part material

Construction method

Color

Nod yy, nod zz d

General

~	-	_	~ 4	^	_
ン	ハ	()_(N4-	()	

A [m 2]	8.7043e-02	
A y [m 2], A z [m 2]	4.3765e-02	4.3525e-02
A L [m 2 / m], A D [m 2 / m]	9.0550th + 00	9.0550th + 00
c yucs [mm], c zucs [mm]	0.0	-2493.2
α [deg]	0.00	
I y [m 4], I z [m 4]	1.5623e-01	8.1899e-04
i _y [mm], i _z [mm]	1339.7	97.0
W el.y [m 3], W el.z [m 3]	6.2664e-02	2.9781e-03
W pl.y [m 3], W pl.z [m 3]	9.8952e-02	5.1764e-03
M pl.y. + [Nm], M pl.y [Nm]	3.46e + 07	3.46e + 07
M pl.z.+ [Nm], M pl.z [Nm]	1.81 st + 06	1.81st + 06
d y [mm], d z [mm]	0.0	0.0
I t [m 4], I w [m 6]	9.1856e-06	0.0000e + 00
β y [mm], β z [mm]	891.3	0.0

45/136

Page 104

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3365.03645.0

y

500.0

550.0

30.0

Main beam (500 * 30 + 550 * 30, h = 3781) 1

Type Graphic cross section
Extensive 3501.0; 30.0; 500.0; 30.0; 550.0

 $\begin{tabular}{ll} Form type & Thin-walled \\ Part material & LQmc 52 (eg 120\%) \\ \end{tabular}$

Construction method General

Color

Nod yy, nod zz $\hspace{1cm} d \hspace{1cm} d$

A [m 2] 8.8675e-02

 $\alpha \, [deg] \hspace{1.5cm} 0.00$

8.1901e-04 I y [m 4], I z [m 4] 1.7075e-01 i y [mm], i z [mm] 1387.7 96.1 W el.y [m 3], W el.z [m 3] 2.9782e-03 6.6365e-02 W pl.y [m 3], W pl.z [m 3] 1.0493e-01 5.1813e-03 M pl.y. + [Nm], M pl.y.- [Nm]3.67e + 073.67e + 07 $M_{\ pl.z.}$ + [Nm], $M_{\ pl.z.}$ - [Nm] 1.81st + 061.81st + 06 $d_{\;y}$ [mm], $d_{\;z}$ [mm] 0.0 0.0 9.0526e-06 $I_{\,\mathrm{t}}\,[m_{\,4}\,],\,I_{\,\mathrm{w}}\,[m_{\,6}\,]$ 0.0000e + 00 β_y [mm], β_z [mm] 899.1 0.0

46/136

Page 105

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

500.0 y

550.0

39.00

30.0

Main beam (500 * 30 + 550 * 30, h = 3917) 1

Type Graphic cross section
Extensive 3637.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

Nod yy, nod zz $\hspace{1cm} d \hspace{1cm} d$

c yucs [mm], c zucs [mm] 0.0 $\alpha \, [deg] \, 0.00$

I y [m 4], I z [m 4] 1,8607e-01 8.1903e-04 i y [mm], i z [mm] 1435.4 95.2 $W_{\text{el.y}}$ [m 3], $W_{\text{el.z}}$ [m 3] 7.0154e-02 2.9783e-03 W pl.y [m 3], W pl.z [m 3] 1.1101e-01 5.1862e-03 $M_{pl.y.} + [Nm], M_{pl.y.} - [Nm]$ 3.89e + 073.89e + 071.82nd + 06M pl.z. + [Nm], M pl.z.- [Nm] 1.82nd + 06 d_y [mm], d_z [mm] 0.0 0.0

47/136

-2652.4

Page 106

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

3900

30.0

Main beam (500 * 30 + 550 * 30, h = 4071) 1

Type Graphic cross section
Extensive 3791.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz d d 9.2155e-02 A [m 2] A y [m 2], A z [m 2] 4,3801e-02 4,8677e-02 9.9070th + 009.9070th + 00A L [m 2 / m], A D [m 2 / m] c y.ucs [mm], c z.ucs [mm] 0.0 -2741.8 0.00 α [deg] I y [m 4], I z [m 4] 2.0440e-01 8.1905e-04 i y [mm], i z [mm] 1489.3 94.3 W el.y [m 3], W el.z [m 3] 7.4551e-02 2,9784e-03 W pl.y [m 3], W pl.z [m 3] 1.1804e-01 5.1917e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 4.13rd + 074.13rd + 071.82nd + 06M pl.z.+ [Nm], M pl.z.- [Nm] 1.82nd + 060.0 d_y [mm], d_z [mm] 0.0 I t [m 4], I w [m 6] 8.8213e-06 0.0000e + 00

48/136

0.0

913.4

Page 107

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

300.0 3791.0 4071.0 500.0 y

3800

30.0

Main beam (500 * 30 + 550 * 30, h = 4245) 1

Type Graphic cross section
Extensive 3965.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz d d 9.4243e-02 A [m 2] $A_y[m_2], A_z[m_2]$ 4.3814e-02 5.0768e-02 A L [m 2 / m], A D [m 2 / m] 1.0255e + 011.0255e + 01c y.ucs [mm], c z.ucs [mm] 0.0 -2842.2 α [deg] 0.00 I y [m 4], I z [m 4] 8.1908e-04 2.2639e-01 93.2 i y [mm], i z [mm] 1549.9 W el.y [m 3], W el.z [m 3] 7.9654e-02 2.9785e-03 W pl.y [m 3], W pl.z [m 3] 1.2614e-01 5.1980e-03 $M_{\text{ pl.y.}^+}[Nm],\,M_{\text{ pl.y.}^-}[Nm]$ 4.42e + 074.42e + 07 $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 1.82nd + 061.82nd + 06d y [mm], d z [mm] 0.0 0.0 $I_{\,\mathrm{t}}\,[m_{\,4}\,],\,I_{\,\mathrm{w}}\,[m_{\,6}\,]$ 8.7112e-06 0.0000e + 00

0.0

Page 108

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

Z

50.0

300.0 3965.4245.0 500.0 550.0

3900

30.0

Main beam (500 * 30 + 550 * 30, h = 4419) 1

Type Graphic cross section Extensive 4139.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled

Part material LQmc 52 (eg 120%)

Construction method General

Color

I t [m 4], I w [m 6]

 β y [mm], β z [mm]

Nod yy, nod zz d d A [m 2] 9.6331e-02 A y [m 2], A z [m 2] 4.3826e-02 5.2851e-02 A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 1.0603rd + 011.0603rd + 01 c y.ucs [mm], c z.ucs [mm] 0.0 -2942.0 α [deg] 0.00 I y [m 4], I z [m 4] 2.4978e-01 8.1910e-04 92.2 i y [mm], i z [mm] 1610.3 W el.y [m 3], W el.z [m 3] 8.4900e-02 2.9785e-03 W pl.y [m 3], W pl.z [m 3] 1.3444e-01 5,2042e-03 $M_{\text{ pl.y.}}\text{+}[Nm],\,M_{\text{ pl.y.}}\text{-}[Nm]$ 4.71e + 074.71e + 07M pl.z.+ [Nm], M pl.z.- [Nm] 1.82nd + 061.82nd + 06d y [mm], d z [mm] 0.0 0.0

8,6189e-06

927.0

0.0000e + 00

50/136

Page 109

Project IJssel Bridge Part Main bridge Author Ernst Klamer Current date 29.01.2019 Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

300.0 4139.9 500.0⁴,419.0 550.0

3300

30.0

Main beam (500 * 30 + 550 * 30, h = 4592) 1

Type Graphic cross section 4312.0; 30.0; 500.0; 30.0; 550.0 Extensive

Form type Thin-walled Part material LQmc 52 (eg 120%)

Construction method General

Color

Nod yy, nod zz d

A [m 2] 9.8407e-02 A y [m 2], A z [m 2] 4.3838e-02 5.4915e-02 A L [m 2 / m], A D [m 2 / m] 1.0949e + 01 1.0949e + 01 c y.ucs [mm], c z.ucs [mm] 0.0 -3040.8

 $\alpha\,[deg]$ 0.00 8.1913e-04 I y [m 4], I z [m 4] 2,7444e-01 1670.0 91.2 i y [mm], i z [mm] W el.y [m 3], W el.z [m 3] 9.0255e-02 2.9786e-03 W pl.y [m 3], W pl.z [m 3]1.4286e-01 5.2105e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 5.00th +075.00th + 07

 $\begin{array}{l} M_{pl.z.+}\left[Nm\right],\,M_{pl.z.-}\left[Nm\right] \\ d_y\left[mm\right],\,d_z\left[mm\right] \end{array}$ 1.82nd + 06 0.0 1.82nd + 06 0.0 8.5426e-06 0.0000e + 00I t [m 4], I w [m 6] β y [mm], β z [mm] 932.5 0.0

51/136

Page 110

Project IJssel Bridge Part Main bridge Author Ernst Klamer 29.01.2019 Current date Main Bridge v6.0.esa Project file name

Image

 \mathbf{Z}

50.0

430209300.0

550.0

33000

30.0

Main beam (500 * 30 + 550 * 30, h = 4766) 1

Type Graphic cross section 4486.0; 30.0; 500.0; 30.0; 550.0 Extensive

Form type Thin-walled Part material LQmc 52 (eg 120%)

Construction method General

Color

2020-04-02 Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

Nod yy, nod zz A [m·z]	d	1.0050e-01	d
A y [m 2], A z [m 2]		4.3849e-02	5.6984e-02
A L $[m 2 / m]$, A D $[m 2 / m]$		1.1297e + 01	1.1297e + 01
c y.ucs [mm], c z.ucs [mm]		0.0	-3139.6
α [deg]		0.00	
I_y $[m_4]$, I_z $[m_4]$		3.0071e-01	8.1915e-04
i y [mm], i z [mm]		1729.8	90.3
W el.y [m 3], W el.z [m 3]		9.5781e-02	2.9787e-03
W pl.y [m 3], W pl.z [m 3]		1.5151e-01	5.2167e-03
M pl.y. + $[Nm]$, M pl.y $[Nm]$		5.30th + 07	5.30 th + 07
$M_{\text{ pl.z.+}}\left[Nm\right],M_{\text{ pl.z}}\left[Nm\right]$		1.83rd + 06	1.83rd + 06
d y [mm], d z [mm]		0.0	0.0
I t [m 4], I w [m 6]		8.4795e-06	0.0000e + 00
β y [mm], β z [mm]		937.4	0.0

52/136

Page 111

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

4,999,0300.0 550.0 *y*

38000

30.0

Main beam (500 * 30 + 550 * 30, h = 4950) 1

Graphic cross section Type Extensive 4670.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled LQmc 52 (eg 120%) Part material

Construction method General

Color

d $Nod\;yy,\,nod\;zz$ d

1.0270e-01 A [m 2]

A y [m 2], A z [m 2] 4.3860e-02 5,9163e-02 A L [m 2 / m], A D [m 2 / m] 1.1665e + 011.1665e + 01-3243.5 c y.ucs [mm], c z.ucs [mm] 0.0

α [deg]

0.00 I y [m 4], I z [m 4] 3,3011e-01 8.1918e-04 i y [mm], i z [mm] 1792.8 89.3 2.9788e-03 W el.y [m 3], W el.z [m 3] 1.0178e-01 W pl.y [m 3], W pl.z [m 3] 1.6086e-01 5.2234e-03 M pl.y. + [Nm], M pl.y.- [Nm] 5.63rd + 07 5.63rd + 07 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]1.83rd + 061.83rd + 06 d_y [mm], d_z [mm] 0.0 0.0 I t [m 4], I w [m 6] 8.4258e-06 0.0000e + 00 β y [mm], β z [mm] 941.7 0.0

53/136

Page 112

Project IJssel Bridge Part Main bridge Author Ernst Klamer Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

300.0

\$0070.0 4950.0

38000

30.0

Main beam (500 * 30 + 550 * 30, h = 5134) 1

Type Graphic cross section
Extensive 4854.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

Nod yy, nod zz d d d A $\lceil m_2 \rceil$ 1.0491e-01

 $A [m \ 2]$ 1.0491e-01 $A \ y [m \ 2]$ 4.3870e-02

 $\alpha \, [deg] \hspace{1.5cm} 0.00$

I y [m 4], I z [m 4] 3.6123e-01 8.1920e-04 1855.6 88.4 i y [mm], i z [mm] W el.y [m 3], W el.z [m 3] 1.0793e-01 2.9789e-03 W pl.y [m 3], W pl.z [m 3] 1.7041e-01 5.2300e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 5.96 + 075.96 + 07 $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 1.83rd + 061.83rd + 06 d_y [mm], d_z [mm] 0.0 0.0 I t [m 4], I w [m 6] 0.0000e + 00

I ; [m 4], I $_{\text{w}}$ [m 6] 8,3839e-06 0.0000e + 00 β y [mm], β z [mm] 945.4 0.0

54/136

Page 113

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

300.0

500.0 4854.0 5134.0 y

38000

30.0

Main beam (500 * 30 + 550 * 30, h = 5300) 1

Graphic cross section Type

5020.0; 30.0; 500.0; 30.0; 550.0 Extensive

Form type Thin-walled Part material LQmc 52 (eg 120%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz

A [m 2] 1.0690e-01 4.3879e-02 A y [m 2], A z [m 2]

6.3290e-02 A L [m 2 / m], A D [m 2 / m] 1,2365e + 01 1,2365e + 01 c y.ucs [mm], c z.ucs [mm] 0.0 -3439.9

α [deg] 0.00 I y [m 4], I z [m 4] 3,9080e-01 8.1923e-04 i y [mm], i z [mm] 1912.0 87.5 W el.y [m 3], W el.z [m 3] 1.1361e-01 2.9790e-03 W pl.y [m 3], W pl.z [m 3] 1.7920e-01 5.2360e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 6.27 th + 076.27th + 07M pl.z.+ [Nm], M pl.z.- [Nm] 1.83rd + 06 1.83rd + 06 d_y [mm], d_z [mm] 0.0 0.0000e + 00I t [m 4], I w [m 6] 8,3551e-06

55/136

0.0

948.2

Page 114

IJssel Bridge Project Part Main bridge Author Ernst Klamer 29.01.2019 Current date Project file name Main Bridge v6.0.esa

 \mathbf{Z}

50.0

300.0

500.0 5020.0 550.0 5,300.0 y

38000

30.0

Main girder (500 * 30 + 550 * 30, h = 5182) 1

Type Graphic cross section

Extensive 4902.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Collstruction method

 β y [mm], β z [mm]

Color

Nod yy, nod zz 1.0549e-01 $A[m_2]$ 4.3873e-02 6.1901e-02 A y [m $_2$], A $_z$ [m $_2$] $A \perp [m 2 / m], A \mid [m 2 / m]$ 1.2129e + 01 1.2129e + 010.0 -3373.9 c y.ucs [mm], c z.ucs [mm] 0.00 $\alpha\,[deg]$ I y [m 4], I z [m 4] 3,6963e-01 8.1921e-04 i y [mm], i z [mm] 1871.9 88.1 W el.y [m 3], W el.z [m 3] 1.0956e-01 2.9789e-03 W pl.y [m 3], W pl.z [m 3] 1.7293e-01 5.2317e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 6.05e + 076.05e + 07 $M_{\ pl.z.}$ + [Nm], $M_{\ pl.z.}$ - [Nm] 1.83rd + 061.83rd + 06 $d_{\;y}\,[mm],\,d_{\;z}\,[mm]$ 0.0 0.0 I t [m 4], I w [m 6] 8.3748e-06 0.0000e + 00

0.0

Page 115

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

300.0

500.0 4902.0 550.0 5182.0 y

38000

30.0

Main beam (500 * 30 + 550 * 30, h = 5026) 1

Type Graphic cross section
Extensive 4746.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

Nod yy, nod zz $\hspace{1cm} d \hspace{1cm} d$

1.0362e-01 $A \left[m_{\,2}\,\right]$ A y [m 2], A z [m 2] 4.3864e-02 6.0061e-02 A L [m 2/m], A D [m 2/m]1.1817th + 011.1817th + 01c y.ucs [mm], c z.ucs [mm] 0.0 -3286.3 α [deg] 0.00 8.1919e-04 I y [m 4], I z [m 4] 3.4275e-01 i y [mm], i z [mm] 1818.8 88.9 W el.y [m 3], W el.z [m 3] 1.0430e-01 2.9789e-03 5.2261e-03

W pl.y [m 3], W pl.z [m 3] 1,6478e-01 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 5.77e + 075.77e + 07M pl.z.+ [Nm], M pl.z.- [Nm] 1.83rd + 061.83rd + 06d y [mm], d z [mm] 0.0 0.0 I t [m 4], I w [m 6] 8.4072nd-06 0.0000e + 00 β y [mm], β z [mm] 943.3 0.0

57/136

Page 116

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

Z

50.0

300.0

5026.0 550.0 5026.0

3800

30.0

Main beam (500 * 30 + 550 * 30, h = 4880) 1

Type Graphic cross section Extensive 4600.0; 30.0; 500.0; 30.0; 550.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

Nod yy, nod zz d d d d $A \; [m \; _2 \;] \; 1.0186e\text{-}01$

 $\begin{array}{ccccc} A_{\,Y}[m_{\,2}\,], A_{\,z}[m_{\,2}\,] & 4.3856e\text{-}02 & 5.8335e\text{-}02 \\ A_{\,L}\,[m_{\,2}\,/m], A_{\,D}\,[m_{\,2}\,/m] & 1.1525e+01 & 1.1525e+01 \\ c_{\,YUCS}\,[mm], c_{\,ZUCS}\,[mm] & 0.0 & -3204.0 \end{array}$

 α [deg] 0.00

I y [m 4], I z [m 4] 3,1873e-01 8.1917e-04 i y [mm], i z [mm] 1768.9 89.7 2.9788e-03 W el.y [m $_3$], W el.z [m $_3$] 9.9477e-02 W pl.y [m 3], W pl.z [m 3] 1.5728e-01 5.2208e-03 $M_{pl.y.}$ + [Nm], $M_{pl.y.}$ - [Nm]5.50 th + 075.50 th + 07 $M_{\ pl.z.}$ + [Nm], $M_{\ pl.z.}$ - [Nm] 1.83rd + 061.83rd + 06 2020-04-02

 $\begin{array}{c} d_y \, [mm], \, d_z \, [mm] \\ I_t \, [m_4], \, I_w \, [m_6] \end{array}$ β y [mm], β z [mm] 0.0 8.4448e-06 0.0000e + 00940.2

58/136

Page 117

IJssel Bridge Project Part Main bridge Author Ernst Klamer Current date 29.01.2019 Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

300.0

4000.0 4880.0

550.0

y

38000

30.0

Main girder (500 * 30 + 550 * 30, h = 4822) 1

Type Graphic cross section 4,542.0; 30.0; 500.0; 30.0; 550.0 Extensive

Thin-walled Form type Part material LQmc 52 (eg 120%) General

Construction method

Color

Nod yy, nod zz d 1.0117e-01

2020-04-02 Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

A y [m 2], A z [m 2]	4.3852e-02	5.7648e-02
A L [m 2 / m], A D [m 2 / m]	1.1409e + 01	1.1409e + 01
c yucs [mm], c zucs [mm]	0.0	-3171.3
$\alpha[deg]$	0.00	
I y [m 4], I z [m 4]	3.0948e-01	8.1916e-04
i y [mm], i z [mm]	1749.0	90.0
W el.y $[m\ 3\],\ W$ el.z $[m\ 3\]$	9.7589e-02	2.9788e-03
$W_{pl.y}$ $[m 3]$, $W_{pl.z}$ $[m 3]$	1.5433e-01	5.2188e-03
$M_{pl.y.} + [Nm], M_{pl.y.} - [Nm]$	5.40th + 07	5.40th + 07
$M_{pl.z.}$ + $[Nm]$, $M_{pl.z.}$ - $[Nm]$	1.83rd + 06	1.83rd + 06
d_y [mm], d_z [mm]	0.0	0.0
I t [m 4], I w [m 6]	8.4618e-06	0.0000e + 00
β_y [mm], β_z [mm]	938.8	0.0

59/136

Page 118

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

300.0

4822.0 550.0 y

38000

Main beam (500 * 30, h = 4822) 1

Graphic cross section Type Extensive 4,542.0; 30.0; 500.0 Form type Thin-walled LQmc 52 (eg 125%) Part material General

Construction method

Color

Nod yy, nod zz d

A [m 2] 8.4667e-02

A y [m 2], A z [m 2] 2,7649e-02 5,7507e-02 A L [m 2 / m], A D [m 2 / m] 1.1249e + 011.1249e + 01c y.ucs [mm], c z.ucs [mm] -2840.8 0.0 0.00

α [deg]

2,5279e-01 4,0322e-04 I y [m 4], I z [m 4] i y [mm], i z [mm] 1727.9 69.0 W el.y [m 3], W el.z [m 3] 8.8985e-02 1.6129e-03 W pl.y [m 3], W pl.z [m 3] 1.2979e-01 2.9500e-03 $M_{\text{ pl.y.}^+}[Nm],\,M_{\text{ pl.y.}^-}[Nm]$ 4.54th + 074.54th + 071.03rd + 06 $M_{\ pl.z.}$ + [Nm], $M_{\ pl.z.}$ [Nm] 1.03rd + 06d y [mm], d z [mm] 0.0 0.0

I t [m 4], I w [m 6] 5.0821e-06 0.0000e + 00 β y [mm], β z [mm] 466.4 0.0

60/136

Page 119

Project IJssel Bridge Part Main bridge Author Ernst Klamer 29.01.2019 Current date Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

4,542.0 4823/0

300.0

230.0

30.0500.0

Main beam (500 * 30, h = 4733) 1

Type Graphic cross section
Extensive 4453.0; 30.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 125%)

Construction method General

Color

 β y [mm], β z [mm]

 $Nod\ yy, nod\ zz \qquad \qquad d \qquad \qquad d$

8.3599e-02 A [m 2] A y [m 2], A z [m 2] 2.7645e-02 5.6490e-02 A L [m $_2$ / m], A D [m $_2$ / m] 1.1071e + 011.1071e + 01-2793.8 c y.ucs [mm], c z.ucs [mm] 0.0 α [deg] 0.00 I y [m 4], I z [m 4] 2.4136e-01 4,0321e-04 i y [mm], i z [mm] 1699.2 69.4 W el.y [m $_3$], W el.z [m $_3$] 8.6392e-02 1.6128e-03 W pl.y [m 3], W pl.z [m 3] 1.2605e-01 2.9468e-03 M pl.y. + [Nm], M pl.y.- [Nm] 4.41e + 074.41e + 07M pl.z.+ [Nm], M pl.z.- [Nm] 1.03rd + 061.03rd + 06 $d_{\;y}$ [mm], $d_{\;z}$ [mm] 0.0 0.0 I t [m 4], I w [m 6] 5.0592e-06 0.0000e + 00

467.1 0.0

61/136

Page 120

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

4453.0 4733/.0

300.0

230.0 500.0 30.0

Main beam (500 * 30, h = 4587) 1

Type Graphic cross section
Extensive 4307.0; 30.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 125%)

Construction method General

Color

 β y [mm], β z [mm]

 $Nod\;yy,\,nod\;zz$ d d 8.1847e-02 A [m 2] A y [m 2], A z [m 2] 2.7639e-02 5.4818e-02 A L [m 2 / m], A D [m 2 / m] 1.0779th + 011.0779th + 01c y.ucs [mm], c z.ucs [mm] -2716.6 0.0 α [deg] 0.00 I y [m 4], I z [m 4] 2,2333e-01 4.0319e-04 i y [mm], i z [mm] 1651.9 70.2 W el.y [m 3], W el.z [m 3] 8.2210e-02 1.6127e-03 W pl.y [m 3], W pl.z [m 3] 1,2001e-01 2.9415e-03 $M_{pl.y.} + [Nm], M_{pl.y.} - [Nm]$ 4.20th + 074.20th + 07M pl.z.+ [Nm], M pl.z.- [Nm] 1.03rd + 061.03rd + 06 d_y [mm], d_z [mm] 0.0 0.0 I t [m 4], I w [m 6] 5.0235e-06 0.0000e + 00

62/136

0.0

468.2

Page 121

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z} 50.0

4307.0 458**ÿ**.0

300.0

230.0

30.0500.0

Main beam (500 * 30, h = 4440) 1 Type

Graphic cross section 4160.0; 30.0; 500.0 Extensive Form type Thin-walled Part material LQmc 52 (eg 125%) General

Construction method

Color

 β y [mm], β z [mm]

Nod yy, nod zz d d 8.0083e-02 A [m 2]

 $A_y[m_2], A_z[m_2]$ 2.7633e-02 5.3130e-02 A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 1.0485e + 011.0485e + 01c y.ucs [mm], c z.ucs [mm] 0.0 -2638.6 α [deg] 0.00

I y [m 4], I z [m 4] 2.0605e-01 4.0317e-04 i y [mm], i z [mm] 1604.1 71.0 W el.y [m 3], W el.z [m 3] 7,8092e-02 1.6127e-03 W pl.y [m 3], W pl.z [m 3] 1.1406e-01 2.9363e-03 $M_{\text{ pl.y.}^+}[Nm],\,M_{\text{ pl.y.}^-}[Nm]$ 3.99th + 073.99th + 071.03rd + 06M pl.z.+ [Nm], M pl.z.- [Nm] 1.03rd + 06 $d_{\;y}$ [mm], $d_{\;z}$ [mm] 0.0 0.0 I t [m 4], I w [m 6] 4,9903e-06 0.0000e + 00

0.0

2020-04-02

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

4160.0 444\(\)0.0

300.0

230.0

30,00

Main beam (500 * 30, h = 4301) 1

Type Graphic cross section
Extensive 4021.0; 30.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 125%)
Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz 7.8415e-02 A [m 2] 2.7627e-02 5.1528e-02 A y [m 2], A z [m 2] A L [m 2 / m], A D [m 2 / m] 1.0207th + 01 1.0207th + 01c y.ucs [mm], c z.ucs [mm] 0.0 -2564.7 $\alpha\,[deg]$ 0.00 1,9051e-01 4.0315e-04 I y [m 4], I z [m 4] i y [mm], i z [mm] 1558.7 71.7 W el.y [m 3], W el.z [m 3] 7.4281e-02 1.6126e-03 W $_{pl.y}$ [m $_{3}$], W $_{pl.z}$ [m $_{3}$] 1.0855e-01 2.9312e-03 3.80 th + 073.80th + 07 $M_{\text{ pl.y.}^+}[Nm],\,M_{\text{ pl.y.}^-}[Nm]$ $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 1.03rd + 061.03rd + 06d y [mm], d z [mm] 0.0 0.0 $I_{\,\mathrm{t}}\,[m_{\,4}\,],\,I_{\,\mathrm{w}}\,[m_{\,6}\,]$ 4.9616e-06 0.0000e + 00

469.7

64/136

Page 123

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

4021.0 430**y**.0

300.0

230.0

30.0

500.0

Main beam (500 * 30, h = 4182) 1

Type Graphic cross section
Extensive 3902.0; 30.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 125%)
Construction method General

Color

Nod yy, nod zz d

7.6987e-02 A [m 2] 2.7622e-02 5,0153e-02 A y [m 2], A z [m 2] A L [m 2 / m], A D [m 2 / m] 9.9690e + 00 9.9690e + 00 c y.ucs [mm], c z.ucs [mm] 0.0 -2501.3 $\alpha\,[deg]$ 0.00 I y [m 4], I z [m 4] 1.7781e-01 4.0313e-04 i y [mm], i z [mm] 1519.7 72.4 W el.y [m 3], W el.z [m 3] 7.1085e-02 1.6125e-03 W $_{\text{pl.y}}$ [m $_{\text{3}}$], W $_{\text{pl.z}}$ [m $_{\text{3}}$] 1.0393e-01 2.9270e-03 M pl.y. + [Nm], M pl.y.- [Nm]3.64e + 073.64e + 07

1.02nd + 06

1.02nd + 06

 $M_{\text{ pl.z.+}}\text{ [Nm], }M_{\text{ pl.z.-}}\text{ [Nm]}$

 $\begin{array}{l} d_y \, [mm], \, d_z \, [mm] \\ I_t \, [m_4], \, I_w \, [m_6] \end{array}$ 0.0 4.9393e-06 0.0 0.0000e + 00 β y [mm], β z [mm] 470.1

65/136

Page 124

Project IJssel Bridge Part Main bridge Author Ernst Klamer Current date 29.01.2019 Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3902.0 418\(\frac{1}{2} \).0

300.0

230.0

30.0

500.0

Main beam (500 * 30, h = 4063) 1

Type Graphic cross section 3783.0; 30.0; 500.0 Extensive Form type Thin-walled LQmc 52 (eg 125%) Part material

Construction method General

Color

Nod yy, nod zz d

2020-04-02 Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

A [m 2]	7,5559e-02	
A y [m 2], A z [m 2]	2.7617e-02	4,8773e-02
A L [m 2 / m], A D [m 2 / m]	9.7310 th + 00	9.7310th + 00
c yucs [mm], c zucs [mm]	0.0	-2437.8
α [deg]	0.00	
I y [m 4], I z [m 4]	1.6564e-01	4.0311e-04
i y [mm], i z [mm]	1480.6	73.0
W el.y [m 3], W el.z [m 3]	6.7948e-02	1.6124e-03
W pl.y [m 3], W pl.z [m 3]	9.9390e-02	2.9227e-03
$M_{pl.y.}$ + $[Nm]$, $M_{pl.y.}$ $[Nm]$	3.48e + 07	3.48e + 07
$M_{pl.z.+}$ [Nm], $M_{pl.z}$ [Nm]	1.02nd $+ 06$	1.02nd $+ 06$
d y [mm], d z [mm]	0.0	0.0
I t [m 4], I w [m 6]	4.9195e-06	0.0000e + 00
β_y [mm], β_z [mm]	470.3	0.0

66/136

Page 125

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3783.0 4063.0

300.0 230.0

500.0

Main beam (500 * 30, h = 4042) 1

Type Graphic cross section Extensive 3762.0; 30.0; 500.0 Form type Thin-walled Part material LQmc 52 (eg 125%)

Construction method General

Color

Nod yy, nod zz d d A [m 2] 7,5307e-02

4.8530e-02 A y [m $_2$], A z [m $_2$] 2.7616e-02 9.6890th + 00 9.6890th + 00 A L [m 2 / m], A D [m 2 / m] c y.ucs [mm], c z.ucs [mm] 0.0 -2426.5

α [deg] 0.00

4.0311e-04 I y [m 4], I z [m 4] 1.6355e-01 1473.7 73.2 i y [mm], i z [mm] W el.y [m 3], W el.z [m 3] 6.7401e-02 1.6124e-03 W pl.y [m 3], W pl.z [m 3] 9.8598e-02 2.9219e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 3.45e + 073.45e + 071.02nd + 06 M pl.z.+ [Nm], M pl.z.- [Nm] 1.02nd + 06d y [mm], d z [mm] 0.0 0.0 I t [m 4], I w [m 6] 4.9162e-06 0.0000e + 00 β y [mm], β z [mm] 0.0 470.3

67/136

Page 126

Project IJssel Bridge Part Main bridge Author Ernst Klamer 29.01.2019 Current date Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3762.0 4042.0

300.0 230.0

30.0

500.0

Main beam (500 * 20, h = 4042) 1

Type Graphic cross section
Extensive 3762.0; 20.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 135%)

Construction method General

Color

Nod yy, nod zz $d \\ A \left[m_{\,2} \, \right] \\ 7.0307 \text{e-} 02$

4.8295e-02 A y [m 2], A z [m 2] 2.2700e-02 A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 9.6690th + 00 9.6690th + 00c y.ucs [mm], c z.ucs [mm] 0.0 -2309.9 0.00 α [deg] I y [m 4], I z [m 4] 1.4914e-01 2.9894e-04 i y [mm], i z [mm] 1456.4

65.2 W el.y [m 3], W el.z [m 3] 1.1958e-03 6.4566e-02 W pl.y [m 3], W pl.z [m 3] 9.0972e-02 2.2969e-03 M pl.y. + [Nm], M pl.y.- [Nm]3.18th + 073.18th + 07 $M_{\text{ pl.z.}} + [Nm], \, M_{\text{ pl.z.}} \cdot [Nm]$ 8.04e + 058.04e + 05 d_y [mm], d_z [mm] 0.0 0.0 I t [m 4], I w [m 6] 4,0959e-06 0.0000e + 00 β y [mm], β z [mm] 314.0 0.0

68/136

Page 127

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

3762.0 404**½**0

300.0

230.0

20.0500.0

Main beam (500 * 20, h = 3943) 1

Type Graphic cross section
Extensive 3663.0; 20.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 135%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz d

 $A\left[m_{\,2}\,\right]$ 6,9119e-02 2.2695e-02 4.7164e-02 A y [m 2], A z [m 2] 9.4710th + 00 9.4710th + 00 A L [m 2 / m], A D [m 2 / m] c y.ucs [mm], c z.ucs [mm] 0.0 -2258.2 0.00 α [deg] 1.4028e-01 2.9893e-04 I y [m 4], I z [m 4] i y [mm], i z [mm] 1424.6 65.8 W el.y [m 3], W el.z [m 3] 6.2123e-02 1.1957e-03 W pl.y [m 3], W pl.z [m 3] 8.7522e-02 2.2934e-03 3.06e + 07 M pl.y. + [Nm], M pl.y.- [Nm]3.06e + 07 $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 8.03rd + 058.03rd + 05 d_y [mm], d_z [mm] 0.0 0.0 4.0675e-06 $I_{\,\mathrm{t}}\,[m_{\,4}\,],\,I_{\,\mathrm{w}}\,[m_{\,6}\,]$ 0.0000e + 00

69/136

0.0

314.7

Page 128

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

50.0

3663.0 3943/0

300.0

230.0

300.0

Main beam (500 * 20, h = 3823) 1

Type Graphic cross section Extensive 3543.0; 20.0; 500.0 Form type Thin-walled LQmc 52 (eg 135%) Part material

Construction method General

Color Nod yy, nod zz d A [m 2] 6.7679e-02 2.2690e-02 4.5790e-02 A y [m $_2$], A z [m $_2$] A L [m 2 / m], A D [m 2 / m] 9.2310th + 009.2310th + 00c y.ucs [mm], c z.ucs [mm] 0.0 -2195.4 0.00 $\alpha\,[deg]$ I y [m 4], I z [m 4] 1,3000th-01 2.9891e-04 i y [mm], i z [mm] 1386.0 W el.y [m 3], W el.z [m 3] 5.9216e-02 1.1956e-03 2.2890e-03 8.3418e-02 W $_{pl.y}$ [m $_{3}$], W $_{pl.z}$ [m $_{3}$] M pl.y. + [Nm], M pl.y.- [Nm] 2.92e + 072.92e + 07M pl.z.+ [Nm], M pl.z.- [Nm] 8.01st + 058.01st + 05 d_y [mm], d_z [mm] 0.0 0.0 0.0000e + 004,0347e-06 I t [m 4], I w [m 6] β y [mm], β z [mm] 315.5 0.0

70/136

Page 129

Project IJssel Bridge 2020-04-02

Part Author Main bridge Ernst Klamer Current date Main bridge Ernst Klamer 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3543.0 3823/.0

300.0

230.0

20.0 500.0

Main beam (500 * 20, h = 3725) 1

Type Graphic cross section
Extensive 3445.0; 20.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 135%)
Construction method General

Color

I t [m 4], I w [m 6]

 β y [mm], β z [mm]

Nod yy, nod zz d

6.6503e-02 A [m 2] 4.4665e-02 2.2686e-02 A y [m $_2$], A z [m $_2$] 9.0350e + 00 9.0350e + 00 A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] c y.ucs [mm], c z.ucs [mm] 0.0 -2144.1 α [deg] 0.00 I y [m 4], I z [m 4] 1.2197e-01 2.9890e-04 i y [mm], i z [mm] 1354.3 67.0 W el.y [m 3], W el.z [m 3] 5,6887e-02 1.1956e-03 W pl.y [m 3], W pl.z [m 3] 8.0130e-02 2.2855e-03 M pl.y. + [Nm], M pl.y.- [Nm] 2.80 th + 072.80 th + 07M pl.z. + [Nm], M pl.z.- [Nm] 8.00 th + 058.00th + 05 d_y [mm], d_z [mm] 0.0 0.0

4.0092e-06

316.1

0.0000e + 00

Page 130

Project IJssel Bridge Main bridge Part Author Ernst Klamer Current date 29.01.2019 Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3445.0 372**5**/.0

300.0

230.0

20.0

500.0

Main beam (500 * 20, h = 3631) 1

Type Graphic cross section 3351.0; 20.0; 500.0 Extensive Form type Thin-walled Part material LQmc 52 (eg 135%) Construction method General

Color

Nod yy, nod zz d A [m 2] 6.5375e-02 4.3583e-02 A y [m $_2$], A $_z$ [m $_2$] 2.2681e-02 A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 8.8470th + 008.8470th + 00c yours [mm], c zours [mm] 0.0 -2094.7 α [deg] 0.00 2,9888e-04 1.1456e-01 I y [m 4], I z [m 4] 1323.8 i y [mm], i z [mm] 67.6 W el.y [m 3], W el.z [m 3] 5.4690e-02 1.1955e-03 W pl.y [m 3], W pl.z [m 3] 7.7031e-02 2.2821e-03 2.70e + 072.70e + 07 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 7.99 + 057.99 + 05M pl.z.+ [Nm], M pl.z.- [Nm] d y [mm], d z [mm] 0.0 0.0 I t [m 4], I w [m 6] 3.9861e-06 0.0000e + 00 β y [mm], β z [mm] 316.5 0.0

72/136

Page 131

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3351.0 363 JV.0

300.0

230.0

20.0

500.0

Main beam (500 * 20, h = 3538) 1

Type Graphic cross section
Extensive 3258.0; 20.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 135%)
Construction method General

Color

Nod yy, nod zz

A [m 2]

A y [m 2], A z [m 2]

A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m]

6.4259e-02

2.2677e-02 4.2510e-02 8.6610th + 00 8.6610th + 00

2020-04-02 Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

c y.ucs [mm], c z.ucs [mm]	0.0	-2045.8
α [deg]	0.00	
I y [m 4], I z [m 4]	1.0752e-01	2,9887e-04
i y [mm], i z [mm]	1293.5	68.2
W el.y [m 3], W el.z [m 3]	5.2554e-02	1.1955e-03
W pl.y [m 3], W pl.z [m 3]	7.4017e-02	2.2788e-03
$M_{pl.y.} + [Nm], M_{pl.y.} - [Nm]$	2.59th + 07	2.59th + 07
$M_{pl.z.}$ + $[Nm]$, $M_{pl.z.}$ - $[Nm]$	7.98e + 05	7.98e + 05
d y [mm], d z [mm]	0.0	0.0
I t [m 4], I w [m 6]	3,9646e-06	0.0000e + 00
β_y [mm], β_z [mm]	316.9	0.0

73/136

Page 132

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3258.0 3538/.0

300.0

230.0

20.0

Main beam (500 * 20, h = 3444) 1 Type

Graphic cross section Extensive 3164.0; 20.0; 500.0 Form type Thin-walled LQmc 52 (eg 135%) Part material

Construction method General

Color

Nod yy, nod zz d 6.3131e-02 $A\left[m_{\,2}\,\right]$

 $A_y[m_2], A_z[m_2]$ 2.2673e-02 4.1422e-02 A L [m 2 / m], A D [m 2 / m] 8.4730th + 008.4730th + 00c y.ucs [mm], c z.ucs [mm] 0.0 -1996.3

0.00 $\alpha\,[deg]$ 2,9886e-04 I y [m 4], I z [m 4] 1.0068e-01 i y [mm], i z [mm] 1262.8 68.8 W el.y [m 3], W el.z [m 3] 5.0431e-02 1.1954e-03 7.1023e-02 2,2754e-03 W $_{pl.y}$ [m $_{3}$], W $_{pl.z}$ [m $_{3}$] $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 2.49th + 07 2.49th + 07 $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 7.96e + 057.96e + 05d y [mm], d z [mm] 0.0 0.0 3,9444e-06 0.0000e + 00 $I_{\,\mathrm{t}}\,[m_{\,4}\,],\,I_{\,\mathrm{w}}\,[m_{\,6}\,]$ β y [mm], β z [mm] 317.1 0.0

74/136

Page 133

IJssel Bridge Project Main bridge Part Ernst Klamer Author 29.01.2019 Current date Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3164.0 3444.0 230.0

20.0

500.0

Main beam (500 * 20, h = 3382) 1

Type Graphic cross section 3102.0; 20.0; 500.0 Extensive Form type Thin-walled Part material LQmc 52 (eg 135%)

Construction method General

Color

Nod yy, nod zz

 $A\left[m_{\,2}\,\right]$ 6.2387e-02 2.2670e-02 4,0703e-02 A y [m 2], A z [m 2] A L [m 2 / m], A D [m 2 / m] 8.3490th + 00 8.3490th + 00c y.ucs [mm], c z.ucs [mm] 0.0 1963.7 α [deg] 0.00

2.9885e-04 9.6320e-02 I y [m 4], I z [m 4] i y [mm], i z [mm] 1242.5 69.2 W el.y [m 3], W el.z [m 3] 4,9051e-02 1.1954e-03 W pl.y [m 3], W pl.z [m 3] 6.9078e-02 2.2732e-03 $M_{\text{ pl.y.}}\text{+}[Nm],\,M_{\text{ pl.y.}}\text{-}[Nm]$ 2.42e + 072.42e + 07 $M_{\ pl.z.+}$ [Nm], $M_{\ pl.z.-}$ [Nm] 7.96e + 057.96e + 05d y [mm], d z [mm] 0.0 0.0 0.0000e + 003.9319e-06 I t [m 4], I w [m 6] β y [mm], β z [mm] 317.3 0.0

75/136

Page 134

IJssel Bridge Project Part Main bridge Author Ernst Klamer Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

3102.0 3382.0

300.0 230.0

20.0

500.0

Main beam (500 * 20, h = 3358) 1

Type Graphic cross section
Extensive 3078.0; 20.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 135%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz $\hspace{1cm} d \hspace{1cm} d$

A [m 2] 6.2099e-02 4.0424e-02 A y [m 2], A z [m 2] 2.2668e-02 A L [m 2 / m], A D [m 2 / m] 8.3010th + 008.3010th + 00c y.ucs [mm], c z.ucs [mm] 0.0 -1951.0 α [deg] 0.00 I y [m 4], I z [m 4] 9.4665e-02 2.9884e-04 i y [mm], i z [mm] 1234.7 69.4 W el.y [m 3], W el.z [m 3] 4.8522e-02 1.1954e-03 W pl.y [m 3], W pl.z [m 3] 6.8331e-02 2.2723e-03 $M_{pl.y.} + [Nm], M_{pl.y.} - [Nm]$ 2.39e + 072.39e + 07M pl.z.+ [Nm], M pl.z.- [Nm] 7.95 th + 057.95th +05d y [mm], d z [mm] 0.0 0.0 I t [m 4], I w [m 6] 3,9273e-06 0.0000e + 00

76/136

0.0

317.3

Page 135

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

3078.0 3358.0

300.0 230.0

20.0

500.0

Main beam (500 * 20, h = 3345) 1

 $M_{\text{ pl.y.}}\text{+}[Nm],\,M_{\text{ pl.y.}}\text{-}[Nm]$

Type Graphic cross section 3065.0; 20.0; 500.0 Extensive Form type Thin-walled LQmc 52 (eg 135%) Part material Construction method General

Color

Nod yy, nod zz d 6.1943e-02 $A\left[m_{\,2}\,\right]$ A y [m 2], A z [m 2] 2.2668e-02 4,0273e-02 $A \perp [m 2 / m], A \mid [m 2 / m]$ 8.2750e + 008.2750e + 00c y.ucs [mm], c z.ucs [mm] 0.0 1944.1 0.00 α [deg] I y [m 4], I z [m 4] 9.3776e-02 2.9884e-04 i y [mm], i z [mm] 1230.4 69.5 W el.y [m $_3$], W el.z [m $_3$] 4.8236e-02 1.1954e-03 W pl.y [m 3], W pl.z [m 3] 6.7928e-02 2.2718e-03

 $M_{\ pl.z.}$ + [Nm], $M_{\ pl.z.}$ - [Nm] 7.95th + 057.95th + 05 $d_{\;y}$ [mm], $d_{\;z}$ [mm] 0.0 0.0 3.9248e-06 I t [m 4], I w [m 6] 0.0000e + 00 β_y [mm], β_z [mm] 317.3

2.38th + 07

77/136

2.38th + 07

Page 136

IJssel Bridge Project Main bridge Part Ernst Klamer Author

2020-04-02

Current date Project file name 29.01.2019 Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3065.0 334**y**.0

300.0 230.0

20.0

500.0

Main beam (500 * 30, h = 3345) 1

Graphic cross section Type Extensive 3065.0; 30.0; 500.0 Form type Thin-walled LQmc 52 (eg 125%) Part material Construction method General

Color

 β_y [mm], β_z [mm]

d $Nod\;yy,\,nod\;zz$ A [m 2] 6.6943e-02

A y [m 2], A z [m 2] 2.7580e-02 4,0363e-02 $A \perp [m 2 / m], A \mid [m 2 / m]$ 8.2950e + 008.2950e + 00c y.ucs [mm], c z.ucs [mm] 0.0 -2050.6 α [deg] 0.00 I y [m 4], I z [m 4] 1.0318e-01 4,0301e-04 i y [mm], i z [mm] 1241.5 W el.y [m 3], W el.z [m 3] 5.0318e-02 1.6120e-03 W pl.y [m 3], W pl.z [m 3] 7.3811e-02 2,8968e-03 M pl.y. + [Nm], M pl.y.- [Nm] 2.58th + 07 2.58th + 07 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]1.01st + 061.01st + 06 d_y [mm], d_z [mm] 0.0 0.0 4,8659e-06 0.0000e + 00I t [m 4], I w [m 6]

0.0

Page 137

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3065.0 334<u>5</u>.0

 $\frac{300.0}{230.0}$

30.0

500.0

Main beam (500 * 30, h = 3298) 1

Type Graphic cross section
Extensive 3018.0; 30.0; 500.0
Form type Thin-walled
Part material LQmc 52 (eg 125%)
Construction method General

Color Nod yy, nod zz d A $[m_2]$ $A_y [m_2], A_z [m_2]$

A L [m 2 / m], A D [m 2 / m]
c y.ucs [mm], c z.ucs [mm]
α [deg]
I y [m 4], I z [m 4]
i y [mm], i z [mm]
W ety [m 3], W etz [m 3]
W pty [m 3], W ptz [m 3]
M pty.+ [Nm], M pty.- [Nm]

 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]

 d_y [mm], d_z [mm]

I t [m 4], I w [m 6]

6.6379e-02 2.7577e-02 3,9807e-02 8.2010th + 00 8.2010th + 000.0 -2025.0 0.00 9.9716e-02 4,0300e-04 1225.6 77.9 4.9242e-02 1.6120e-03 7.2245e-02 2,8951e-03 2.53rd + 072.53rd + 071.01st + 061.01st + 060.0 0.0 0.0000e + 004.8675e-06

2020-04-02

 β y [mm], β z [mm]

466.6

0.0

79/136

Page 138

Project IJssel Bridge Part Main bridge Author Ernst Klamer Current date 29.01.2019 Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3018.0 329<u>8</u>.0

30.0

500.0

Main beam (500 * 30 + 530 * 10, h = 3298) 1

Graphic cross section Type Extensive 3018.0; 30.0; 500.0; 10.0; 530.0

Form type Thin-walled Part material LQmc 52 (eg 120%) Construction method General

Color

Nod yy, nod zz

7.1679e-02 A [m 2]

3.9737e-02 3.2922e-02 A y [m 2], A z [m 2] 8.2810th + 00 8.2810th + 00 A L [m 2 / m], A D [m 2 / m]

20	2	Λ_	Ω	1_0	าว
Zυ	12	u-	U4	١-١	JZ

0.0 -21	
0.00	
1.0811e-01	5.2707e-04
1228.1	85.8
5,0955e-02	1,9889e-03
7.7272e-02	3,5974e-03
2.70e + 07	2.70e + 07
1.26th + 06	1.26th + 06
0.0	0.0
6,1043e-06	0.0000e + 00
610.4	0.0
	0.00 1.0811e-01 1228.1 5,0955e-02 7.7272e-02 2.70e + 07 1.26th + 06 0.0 6,1043e-06

80/136

Page 139

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3018.0 300.0 3298.0 y

30.0^{230.0}
500.0
10.0
530.0

Main beam (500 * 30 + 530 * 10, h = 3291) 1

Type Graphic cross section
Extensive 3011.0; 30.0; 500.0; 10.0; 530.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Colo

2020-04-02 Tax cases Project: Recalculation IJsselbrug A12 Date: 5/25/2018 Project number: BF7387 Name: EKL Description: Other v

Nod yy, nod zz	d	d		
A [m 2]		7.1595e-02		
A y [m 2], A z [m 2]		3.2921e-02	3,9653e-02	
A L [m 2 / m], A D [m 2 / m]		8.2670th + 00	8.2670th + 00	
c yours [mm], c zors [mm]		0.0	-2117.8	
α [deg]		0.00		
I y [m 4], I z [m 4]		1.0756e-01	5.2706e-04	
i y [mm], i z [mm]		1225.7	85.8	
W el.y [m 3], W el.z [m 3]		5.0789e-02	1,9889e-03	
W $_{pl.y}$ [m $_3$], W $_{pl.z}$ [m $_3$]		7.7021st-02	3,5971e-03	
$M_{pl.y.}$ + $[Nm]$, $M_{pl.y.}$ - $[Nm]$		2.70e + 07	2.70e + 07	
$M_{pl.z.}$ + $[Nm]$, $M_{pl.z.}$ - $[Nm]$		1.26th + 06	1.26th + 06	
d_y [mm], d_z [mm]		0.0	0.0	
I t [m 4], I w [m 6]		6,1069e-06	0.0000e + 00	
β_y [mm], β_z [mm]		610.2	0.0	

81/136

Page 140

IJssel Bridge Project Part Main bridge Author Ernst Klamer 29.01.2019 Current date

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

3011.0 3291.0 y 300.0

30.0^{230.0}

19300.0

Main beam (500 * 30 + 530 * 10, h = 3224) 1

Type Graphic cross section
Extensive 2944.0; 30.0; 500.0; 10.0; 530.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

Nod yy, nod zz d

α [deg] 0.00 1.0237e-01 5.2705e-04 I y [m 4], I z [m 4] i y [mm], i z [mm] 1202.5 86.3 W el.y [m 3], W el.z [m 3] 4.9214e-02 1,9889e-03 3,5947e-03 W $_{pl.y}$ [m $_{3}$], W $_{pl.z}$ [m $_{3}$] 7.4636e-02 $M_{\text{ pl.y.}}\text{+}[Nm],\,M_{\text{ pl.y.}}\text{-}[Nm]$ 2.61st + 072.61st + 07M pl.z.+ [Nm], M pl.z.- [Nm] 1.26th + 06 1.26th + 06 d_y [mm], d_z [mm] 0.0 0.0 $I_{\,\mathrm{t}}\,[m_{\,4}\,],\,I_{\,\mathrm{w}}\,[m_{\,6}\,]$ 6.1333e-06 0.0000e + 00 β y [mm], β z [mm] 608.1 0.0

82/136

Page 141

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

Z

50.0

2944.0

3224.0

30.0^{230.0} 15.00.0 530.0

Main beam (500 * 30 + 530 * 10, h = 3157) 1

Type Graphic cross section
Extensive 2877.0; 30.0; 500.0; 10.0; 530.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz d d

A [m 2] 6,9987e-02 3.2911e-02 3,8040e-02 A y [m 2], A z [m 2] A $_L$ [m $_2$ / m], A $_D$ [m $_2$ / m] 7,9990th + 00 7,9990th + 00 c yours [mm], c zours [mm] 0.0 -2042.2 0.00 α [deg] I y [m 4], I z [m 4] 9.7329e-02 5.2705e-04 i y [mm], i z [mm] 1179.3 86.8 W el.y [m 3], W el.z [m 3] 4.7659e-02 1,9888e-03 W pl.y [m 3], W pl.z [m 3] 7.2278e-02 3.5923e-03 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 2.53rd + 072.53rd + 07M pl.z. + [Nm], M pl.z.- [Nm] 1.26th + 061.26th + 06 $d_{\;y}\,[mm],\,d_{\;z}\,[mm]$ 0.0 0.0 I t [m 4], I w [m 6] 6.1626e-06 0.0000e + 00

83/136

0.0

605.8

Page 142

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

2877.0 300.0 3157.0 y

30.0^{230.0} 10.0 500.0

530.0

Main beam (500 * 30 + 530 * 10, h = 3090) 1

Type Graphic cross section Extensive 2810.0; 30.0; 500.0; 10.0; 530.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz d

6.9183e-02 A [m 2] A y [m 2], A z [m 2] 3.2905e-02 3.7230e-02 A L [m 2 / m], A D [m 2 / m] 7.8650e + 007.8650e + 00c y.ucs [mm], c z.ucs [mm] 0.0 2004.3 $\alpha\,[deg]$ 0.00 I y [m 4], I z [m 4] 9.2446e-02 5.2704e-04 i y [mm], i z [mm] 1156.0 87.3 W el.y [m $_3$], W el.z [m $_3$] 4.6125e-02 1,9888e-03 W pl.y [m 3], W pl.z [m 3] 6.9947e-02 3,5899e-03 M pl.y. + [Nm], M pl.y.- [Nm]2.45e + 072.45e + 07 $M_{pl.z.}$ + [Nm], $M_{pl.z.}$ - [Nm]1.26th + 061.26th + 06 d_y [mm], d_z [mm] 0.0 0.0 6.1951e-06 I t [m 4], I w [m 6] 0.0000e + 00

84/136

0.0

603.4

Page 143

Project IJssel Bridge
Part Main bridge
Author Ernst Klamer
Current date 29.01.2019
Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2810.0 3090.0 y

30.0^{230.0}

530.0

Main beam (500 * 30 + 530 * 10, h = 3081) 1

Type Graphic cross section
Extensive 2801.0; 30.0; 500.0; 10.0; 530.0

Form type Thin-walled
Part material LQmc 52 (eg 120%)

Construction method General

Color

 β y [mm], β z [mm]

Nod yy, nod zz d d

 $A\left[m_{\,2}\,\right]$ 6.9075e-02 3.2904e-02 3.7122e-02 A y [m $_2$], A $_z$ [m $_2$] A L [m 2 / m], A D [m 2 / m] 7.8470th + 007.8470th + 00-1999.2 c y.ucs [mm], c z.ucs [mm] 0.0 0.00 $\alpha\,[deg]$ I y [m 4], I z [m 4] 9.1802e-02 5.2703e-04 i y [mm], i z [mm] 1152.8 87.3 1,9888e-03 4.5920e-02 W el.y [m 3], W el.z [m 3] W pl.y [m 3], W pl.z [m 3] 3,5896e-03 6.9636e-02 $M_{\text{ pl.y.}} + [Nm], \, M_{\text{ pl.y.}} \cdot [Nm]$ 2.44th + 07 2.44th + 07 $M_{\ pl.z.}$ + [Nm], $M_{\ pl.z.}$ - [Nm] 1.26th + 061.26th + 06 $d_{\;y}\,[mm],\,d_{\;z}\,[mm]$ 0.0 0.0 6.1997th-06 I t [m 4], I w [m 6] 0.0000e + 00

0.0

Page 144

Project IJssel Bridge Part Main bridge Author Ernst Klamer Current date 29.01.2019

Project file name Main Bridge v6.0.esa

Image

 \mathbf{Z}

50.0

2801.0 3081.0 y 300.0

30.0^{230.0}

10.0

530.0

Main beam (500 * 30 + 550 * 30, h = 3081) 1

Type Graphic cross section 2801.0; 30.0; 500.0; 30.0; 550.0 Extensive

Thin-walled Form type Part material LQmc 52 (eg 120%)

Construction method General

Color

Nod yy, nod zz d d A [m 2] 8.0275e-02

3,7100e-02 A y [m 2], A z [m 2] 4.3706e-02 7.9270e + 00 A L [m 2 / m], A D [m 2 / m] 7.9270e + 00c y.ucs [mm], c z.ucs [mm] 0.0 -2157.0 α [deg] 0.00 1.0414e-01 8.1891e-04

I y [m 4], I z [m 4] 1139.0 101.0 i y [mm], i z [mm] W el.y [m 3], W el.z [m 3] 4.8280e-02 2,9778e-03 W pl.y [m 3], W pl.z [m 3] 7.5360e-02 5.1561e-03 $M_{\text{ pl.y.}^+}[Nm],\,M_{\text{ pl.y.}^-}[Nm]$ 2.64e + 072.64e + 071.80 th + 06M pl.z. + [Nm], M pl.z.- [Nm] 1.80th + 06 d y [mm], d z [mm] 0.0 0.0 I t [m 4], I w [m 6] 9,9684e-06 0.0000e + 00 β y [mm], β z [mm] 850.5 0.0

86/136