Математический анализ Лекция 6

Никитин А.А.

МГУ им. М.В. Ломоносова, факультет ВМК Кафедра общей математики

Онлайн-курс по математике в Data Science 12 декабря, 2020г.

Формула Тейлора с остаточным членом в форме Пеано или локальная формула Тейлора

<u>ТЕОРЕМА</u>: Если существует конечная производная $f^{(n)}(x_0)$, $n \in \mathbb{N}$, то для остаточного члена формулы Тейлора (\star) справедлива следующая асимптотическая оценка:

$$r_n(f,x) = \overline{o}((x-x_0)^n), x \to x_0.$$

Доказательство.

Из условий (*) по правилу Лопиталя получаем:

$$\lim_{x\to x_0}\frac{r_n(f,x)}{(x-x_0)^n}=\lim_{x\to x_0}\frac{r_n'(f,x)}{n(x-x_0)^{n-1}}=\ldots=\lim_{x\to x_0}\frac{r_n^{(n)}(f,x)}{n!}=\frac{r_n^{(n)}(f,x_0)}{n!}=0.$$

Поэтому,
$$r_n(f,x) = \overline{o}((x-x_0)^n)$$
, $x \to x_0$.

Формула Тейлора с остаточным членом в форме Пеано

Замечание 1

При $x_0=0$ равенство $f(x)=\sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k + \overline{o}(x^n)$ называют формулой Маклорена.

Замечание 2

Формула Тейлора с остаточным членом в форме Пеано утверждает, что многочлен Тейлора "хорошо приближает" функцию f при $x \approx x_0$. Однако эта формула не даёт никакой оценки погрешности остаточного члена $(r_n(f,x))$ такой аппроксимации при конкретном x, что делает эту формулу непригодной для приближённых вычислений функций.

Получим формулу для $r_n(f,x)$, из которой можно будет судить о малости остатка.

Φ ормула $ext{Тейлора}$ с остаточным членом в Φ орме $ext{Лагранжа}$

 $rac{ ext{ТЕОРЕМА}}{(x_0,x)}$. Пусть $x>x_0$, $n\in\mathbb{Z}_+$; $f^{(n)}\in\mathcal{C}ig([x_0,x]ig)$, $\exists f^{(n+1)}$ на (x_0,x) . Тогда справедлива формула Тейлора (\star) , в которой:

$$r_n(f,x) = \frac{f^{(n+1)}(x_0 + \theta(x - x_0))}{(n+1)!} (x - x_0)^{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1},$$

где
$$0 < \theta < 1$$
, $\xi \in (x_0, x)$.

Доказательство.

Рассмотрим вспомогательную функцию:

$$\varphi(t) = f(t) - P_n(t) - M \cdot (t - x_0)^{n+1}, \text{ где } M = \frac{f(x) - P_n(x)}{(x - x_0)^{n+1}}.$$

Из формулы (*) выполняется:

$$\varphi(x_0)=\varphi'(x_0)=\ldots=\varphi^{(n)}(x_0)=0.$$

По теореме Лагранжа:

$$\exists x_1 \in (x_0, x) : 0 = \varphi(x) - \varphi(x_0) = \varphi'(x_1)(x - x_0) \Rightarrow \varphi'(x_1) = 0.$$

Далее, $\exists x_2 \in (x_0,x_1): \varphi''(x_2)=0$ и т.д., дойдём до точки x_{n+1} , такой что $\varphi^{(n+1)}(x_{n+1})=0$.

Полагая $\xi=x_{n+1}$, получим: $0=arphi^{(n+1)}(\xi)=f^{(n+1)}(\xi)-0-M\cdot(n+1)!$

Откуда
$$M=rac{f^{(n+1)}(\xi)}{(n+1)!}=\{\circ\}=rac{f(x)-P_n(x)}{(x-x_0)^{n+1}}\Rightarrow$$

$$\Rightarrow f(x) - P_n(x) = r_n(f, x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}, \ \xi \in (x_0, x).$$

1.

$$\begin{split} f(x) &= e^x, \ f^{(n)}(x) = e^x \ \Rightarrow \ f^{(n)}(0) = 1, \ n \in \mathbb{Z}_+; \\ e^x &= 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \overline{o}(x^n); \quad \left(r_n^{\text{nrp}} = \frac{x^{n+1}}{(n+1)!}e^{\theta x}\right) \end{split}$$

2.

$$f(x) = \sin x, f^{(n)}(x) = \sin \left(x + \frac{\pi n}{2}\right) \Rightarrow f^{(n)}(0) = \sin \frac{\pi n}{2} = \begin{cases} 0, & n = 2k, \\ (-1)^k, & n = 2k + 1; \end{cases}$$

$$\sin x = x - \frac{x^3}{3!} + \ldots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \overline{o}(x^{2n}); \left(r_n^{nrp} = \frac{x^{2n+1}}{(2n+1)!} \sin\left(\theta x + \frac{\pi n}{2} + \pi\right) \right)$$

3.

$$f(x) = \cos x, f^{(n)}(x) = \cos \left(x + \frac{\pi n}{2}\right) \Rightarrow f^{(n)}(0) = \cos \frac{\pi n}{2} = \begin{cases} 0, & n = 2k + 1, \\ (-1)^k, & n = 2k; \end{cases}$$

$$\cos x = 1 - \frac{x^2}{2!} + \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + \overline{o}(x^{2n+1}); \left(r_n^{\mathsf{nrp}} = \frac{x^{2n+2}}{(2n+2)!} \cos \left(\theta x + \frac{\pi n}{2} + \pi \right) \right)$$

4.

$$f(x) = \ln{(1+x)}, \ \ f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} \ \Rightarrow \ f^{(n)}(0) = (-1)^{n-1} (n-1)!;$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots + (-1)^{n-1} \frac{x^n}{n} + \overline{o}(x^n); \ \left(r_n^{\mathsf{nrp}} = \frac{(-1)^n x^{n+1}}{(n+1)(1+\theta x)^{n+1}}\right);$$

5. $f(x) = (1+x)^{\alpha}, \ \alpha \in \mathbb{R}; \ f^{(n)}(x) = \alpha \cdot (\alpha-1) \cdot \ldots \cdot (\alpha-n+1)(1+x)^{\alpha-n},$

$$f(0) = \alpha \cdot (\alpha - 1) \cdot \ldots \cdot (\alpha - n + 1);$$

$$(1 + x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha - 1)}{2!}x^{2} + \ldots + \frac{\alpha(\alpha - 1) \ldots (\alpha - n + 1)}{n!}x^{n} + \overline{o}(x^{n});$$

$$r_n^{\mathsf{nrp}} = \frac{\alpha(\alpha-1)\dots(\alpha-n)}{(n+1)!}(1+\theta x)^{\alpha-n-1}.$$

Пусть в последнем равенстве $\alpha=m\in\mathbb{N}$. В этом случае функция $(1+x)^{\alpha}$ является полиномом степени lpha, и поэтому все её производные порядка выше, чем α равны нулю. Таким образом имеем: $(1+x)^{lpha}=1+rac{lpha}{11}x+rac{lpha(lpha-1)}{21}x^2+\ldots+rac{lpha\cdot(lpha-1)\cdot\ldots2\cdot1}{n!}x^{lpha}$ (Бином Ньютона). Вычисление значений функции $y=\sin x$ с точностью arepsilon=0,001 для $x\in[0,1].$

Выпишем разложение $\sin x$ по формуле Тейлора с остаточным членом в форме Лагранжа в точке $x_0=0$:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!} + \frac{(\sin \xi)^{(2k+1)}}{(2k+1)!} x^{2k+1}.$$

Т.к. $|(\sin\xi)^{(2k+1)}|\leqslant 1$, то при $\forall \xi\in\mathbb{R}$ ошибка при замене функции $\sin x$ её многочленом Тейлора при всех x не превосходит $\dfrac{1}{(2k+1)!}x^{2k+1}$. При $|x|\leqslant 1$ получаем оценку погрешности приближения $\dfrac{1}{(2k+1)!}$. Остаётся

 $|x| \leqslant 1$ получаем оценку погрешности приолижения $\frac{1}{(2k+1)!}$. Остается подобрать такое k, при котором эта дробь меньше 0,001. Для этого достаточно взять k=3, т.к. $(2\cdot 3+1)!=7!=5040$. Таким образом с заданной точностью:

$$\sin x \approx x - \frac{x^3}{6} + \frac{x^5}{5!}.$$

Применение формулы Тейлора для приближённых вычислений

Пусть x = 1, получаем:

$$\left| \sin 1 - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} \right) \right| \approx \left| 0.8414709848078965 - 0.8416666666666667 \right| =$$

$$= 0.0001956818587701692.$$

График относительной ошибки:

Применение формулы Тейлора для приближённых вычислений

<u>Условия монотонно</u>сти функции

<u>УТВЕРЖДЕНИЕ</u>: Пусть для функции $f:(a,b)\mapsto \mathbb{R}$ существует производная $f':(a,b)\mapsto \mathbb{R}$, не меняющая своего знака на (a,b). Тогда функция f монотонная на (a,b) и справедливы следующие утверждения:

- $f'(x) > 0 \implies f$ возрастает на $(a,b) \implies f'(x) \geqslant 0$;
- $f'(x)\geqslant 0 \implies f$ не убывает на $(a,b)\implies f'(x)\geqslant 0;$
 - $f'(x) \equiv 0 \implies f = \text{const Ha}(a, b) \implies f'(x) \equiv 0$;
- $f'(x) \leqslant 0 \implies f$ не возрастает на $(a,b) \implies f'(x) \leqslant 0$;
 - $f'(x) < 0 \implies f$ убывает на $(a,b) \implies f'(x) \leqslant 0$;

<u>Док</u>азательство.

Левый столбец и третья строка уже обсуждались при рассмотрении теоремы Лагранжа:

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$$
, где $x_1, x_2 \in (a, b), \xi \in (x_1, x_2)$.

Из этой формулы видно, что при $x_1 < x_2$ знак разности $f(x_2) - f(x_1)$ совпадает со знаком производной $f'(\xi)$.

Правый столбец (необходимые условия) получается непосредственно из определения производной. Действительно, пусть, например, функция f-дифференцируема и возрастает на (a,b).

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Если $\Delta x>0$, то $f(x+\Delta x)-f(x)>0$, а если $\Delta x<0$, то $f(x+\Delta x)-f(x)<0$. Следовательно, дробь под знаком предела положительна и предел неотрицательный, т.е. $f'(x)\geqslant 0$.

Необходимые условия локального экстремума

Необходимые условия локального экстремума

УТВЕРЖДЕНИЕ: Если точка $x_0 \in (a,b)$ является точкой локального экстремума функции $f:(a,b) \mapsto \mathbb{R}$, то производная $f'(x_0)$ либо не существует, либо $f'(x_0) = 0$, либо $f'(x_0) = \infty$.

Доказательство.

См. теорему Ферма.

Первое достаточное условие локального экстремума

Пусть функция f непрерывна в точке x_0 и дифференцируема на $\overset{\smile}{U}(x_0)$, и пусть её производная f' меняет знак при переходе через эту точку. Тогда x_0 – точка строгого локального экстремума.

Доказательство.

Не ограничивая общности считаем, что

$$f'(x) > 0$$
 при $x \in U_{-}(x_0) = \{x \in U(x_0) | x < x_0\},$

$$f'(x) < 0$$
 при $x \in U_+(x_0) = \{x \in U(x_0) | x > x_0\},$

Тогда из теоремы Лагранжа:

$$f(x) - f(x_0) = f'(\xi)(x - x_0) < 0 \ \Rightarrow \ f(x) - f(x_0) < 0$$
 для $\forall x \in \overset{\circ}{U}(x_0)$.

Следовательно, x_0 – точка строгого локального максимума.

 $\underline{\text{Замечание}}$: Если при переходе через точку x_0 производная f' знак не меняет, то у функции f точке x_0 экстремума нет.

Достаточные условие локального экстремума

Достаточное условие локального экстремума в терминах старших производных

Утверждение: Пусть $f'(x_0)=\ldots=f^{(n-1)}(x_0),\ f^{(n)}(x_0)
eq 0$. Тогда

- 1) при чётном n, x_0 точка строгого экстремума (строгого минимума при $f^{(n)}(x_0)>0$, строгого максимума при $f^{(n)}(x_0)<0$).
- 2) при нечётном $n,\,x_0$ точка возрастания (точка убывания) при $f^{(n)}(x_0)>0$ $\big(f^{(n)}(x_0)<0\big).$

<u>Док</u>азательство.,

Используя формулу Тейлора с остаточным членом в форме Пеано, получим:

$$f(x) - f(x_0) = \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \overline{o}((x - x_0)^n) = \left(\frac{f^{(n)}(x_0)}{n!} + \alpha(x)\right)(x - x_0)^n$$

Поскольку $f^{(n)}(x_0) \neq 0$, а $\alpha(x) \to 0$, при $x \to x_0$, то сумма $\frac{f^{(n)}(x_0)}{n!} + \alpha(x)$

имеет знак $\frac{f^{(n)}(x_0)}{n!}$, когда x достаточно близко к x_0 . Откуда и вытекает требуемое.

Определение

Определение: Дифференцируемая на интервале (a,b) называется выпуклой вверх (выпуклой вниз) на этом интервале, если для всех $x \in (a,b)$ график функции расположен ниже (выше) касательной к этому графику для любой точки $x_0 \in (a,b)$, т.е.

$$\forall x, x_0 \in (a, b) \Rightarrow f(x) \leqslant f(x_0) + f'(x_0)(x - x_0) \ (f(x) \geqslant f(x_0) + f'(x_0)(x - x_0))$$

<u>Замечание</u>: У выпуклой вниз функции касательные к графику обладают свойством: большему значению x_0 соответствует больший наклон касательной, в случае выпуклой вверх функции — наклон уменьшается.

Определение

ОПРЕДЕЛЕНИЕ: Точки, разделяющие промежутки выпуклости вверх и вниз, называются точками перегиба.

ДОСТАТОЧНЫЕ ПРИЗНАКИ ВЫПУКЛОСТИ

<u>ТЕОРЕМА</u>: Если для $\forall x \in (a,b)$ выполняется условие $f''(x) \geqslant 0$, то функция f выпукла вниз на этом интервале, если же $f''(x) \leqslant 0$, то на этом интервале функция выпукла вверх.

Доказательство.

Применяя формулу конечных приращений Лагранжа, получаем:

$$f(x)$$
 — $(f(x_0) + f'(x_0)(x - x_0))$ = $(f(x) - f(x_0)) - f'(x_0)(x - x_0)$ = $(f(x) - f(x_0)) - f'(x_0)(x - x_0)$ = $(f'(x_1)(x - x_0) - f'(x_0)(x - x_0)) = (f'(x_1) - f'(x_0))(x - x_0)$ = $(f'(x_1) - f'(x_0))(x - x_0)$

где x_1 — некоторая точка расположенная между точками x и x_0 , а x_2 — некоторая точка, расположенная между x_1 и x_0 . Следовательно, при $x_1 \neq x_0$ знак рассматриваемой разности совпадает со знаком $f''(x_2)$, поскольку (x_1-x_0) и $(x-x_0)$ — суть числа одного знака. Это означает, что при условии положительности второй производной график функции f лежит выше выше касательной, т.е. функция выпукла вниз на (a,b). Случай отрицательной второй производной рассматривается аналогично.

НЕОБХОДИМОЕ УСЛОВИЕ ТОЧКИ ПЕРЕГИБА

 ${
m \underline{Y}}{}_{
m TBEP}{}_{
m M}{}_{
m ДЕНИЕ}$: В точке перегиба вторая производная равна нулю или не существует.

Замечание: Если сравнить данный факт с теоремой о достаточном условии локального экстремума в терминах старших производных, то во втором случае (когда локальный экстремум отсутствовал) точка, в которой была отлична от нуля нечётная производная, является точкой перегиба.

АСИМПТОТЫ

 \underline{O} пределение: Пусть $x_0\in\mathbb{R}$, функция задана по крайней мере на $\overset{\circ}{U}_-(x_0)$ или $\overset{\circ}{U}_+(x_0)$ и действует в \mathbb{R} . Прямая $x=x_0$ называется вертикальной асимптотой графика функции f, если $f(x_0-0)$ или $f(x_0+0)$ равны $+\infty$ или $-\infty$.

АСИМПТОТЫ

Определение: Пусть функция f определена при $\forall x>a$ ($\forall x<a$). Если существуют такие числа k и b, что

$$f(x) = kx + b + \overline{o}(1), x \to +\infty, (x \to -\infty),$$

то прямая kx+b называется наклонной асимптотой графика функции f при $x \to +\infty$ (при $x \to -\infty$).

Асимптоты

Уравнение наклонной асимптоты

 $\underline{ ext{ТЕОРЕМА}}$: Пусть функция f определена при $\forall x>a$ ($\forall x<a$). Прямая y=kx+b — наклонная асимптота функции f при $x\to\pm\infty$, тогда и только тогда, когда

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}, \quad b = \lim_{x \to \pm \infty} (f(x) - kx). \tag{*}$$

Доказательство.

Пусть y=kx+b – асимптота f, тогда $f(x)=kx+b+\overline{o}(1),\,x\to +\infty.$

Значит

$$\frac{f(x)}{x} = k + \frac{b + \overline{o}(1)}{x} \to k.$$

Далее, $f(x)-kx=b+\overline{o}(1) o b$.

Обратно, если выполнены равенства (*), то, обозначив $\alpha(x)=f(x)-kx-b$, получим, что $\alpha(x)\to 0$ при $x\to +\infty$ и $f(x)=kx+b+\overline{o}(1),\ x\to +\infty$, т.е. y=kx+b — асимптота графика функции f.

ГРАФИК ФУНКЦИИ

Π лан исследования функции при построении её графика.

- Найти область определения функции. Исследовать специальные свойства функции: чётность/нечётность, периодичность, свойство симметрии;
- 2 Установить интервалы знакопостоянства, корни;
- Найти интервалы непрерывности, точки разрыва;
- Исследовать асимптоты графика функции (вертикальные, наклонные). Проанализировать взаимное расположение графика функции и его асимптот;
- Найти участки монотонности функции, экстремумы (минимумы и максимумы);
- Найти промежутки выпуклости, точки перегиба.

Определение

Определение: Пусть $f:\langle a,b\rangle\mapsto\mathbb{R}$. Функция $F:\langle a,b\rangle\mapsto\mathbb{R}$ называется первообразной функцией для f на $\langle a,b\rangle$, если F — дифференцируема на этом промежутке и $F'(x)=f(x),\,\forall x\in\langle a,b\rangle$. При этом, в случае $a\in\langle a,b\rangle$ или $b\in\langle a,b\rangle$, производные F'(a) и F'(b) понимаются как односторонние.

Пусть F — первообразная для функции f на $\langle a,b \rangle$. Тогда функция F(x)+C, где C — const, также является первообразной для f на $\langle a,b \rangle$, т.к. $\left(F(x)+C\right)'=F'(x)=f(x),\ \forall x\in\langle a,b\rangle$. Верно и обратное утверждение: если F и Φ — две первообразные функции f на $\langle a,b \rangle$, то $\Phi(x)=F(x)+C$, где C — const. B самом деле,

$$\big(F(x)-\Phi(x)\big)'=F'(x)-\Phi'(x)=f-f=0\Rightarrow {}^a\Rightarrow F(x)-\Phi(x)=\text{const.}$$

^аПо следствию из теоремы Лагранжа.

Определение

Определение: Операция перехода от данной функции к её первообразной называется (неопределённым) интегрированием. При этом, функции f ставится в соответствие некоторая произвольно выбранная первообразная F. Множество функций $\{F(x)+C \mid C \in \mathbb{R}\}$ называется неопределённым интегралом f на $\langle a,b \rangle$. Обозначение: $\int f(x) \, dx$.

Рассмотренные свойства первообразных дают возможность описать общий вид неопределённого интеграла для f на $\langle a,b \rangle$:

$$\int f(x)\,dx=F(x)+C,$$

где F – некоторая конкретная первообразная, $C={\sf const.}$

Точнее,

$$\int f(x) dx = \{F(x) + C \mid C \in \mathbb{R}\},\$$

но скобки по традиции опускают.

Введём обозначение: $\int d g(x) := \int g'(x) dx$.

Свойства неопределённого интеграла

$$\exists \int (\alpha f_1(x) \pm \beta f_2(x)) dx = \alpha \int f_1(x) dx \pm \beta \int f_2(x) dx^b.$$

^аСледует из определений.

 $^{^{}b}$ Равенство левой и правой части следует понимать как равенство с точностью до константы.

Свойства 1. и 2. показывают, что операции дифференцирования и (неопределённого) интегрирования обратны друг другу. Каждую формулу для производной вида F'(x)=f(x) можно истолковать как утверждение, что на соответствующем промежутке функция F является первообразной для f и, значит, в силу свойства 2.

$$\int f(x)\,dx=F(x)+C.$$

Поэтому, переписывая таблицу производных основных элементарных функций, получим таблицу неопределённых интегралов. Каждая из формул этой таблицы рассматривается на тех промежутках, на которых определена соответствующая подынтегральная функция.

Интегрирование по частям

Пусть на некотором промежутке функции u и v дифференцируемы и существует один из интегралов $\int u'(x) \, v(x) \, dx$ или $\int u(x) \, v'(x) \, dx$. Тогда на этом промежутке существует и другой. Причём:

$$\int u(x) \ v'(x) \ dx = u(x) \ v(x) - \int u'(x) \ v(x) \ dx.$$

Замена переменной в неопределённом интеграле

Если на некотором промежутке I_x выполнено: $\int f(x) dx = F(x) + C$, а $\varphi: I_t \mapsto I_x$ – дифференцируемая функция. Тогда на I_t выполнено равенство:

$$\int (f \circ \varphi)(t) \varphi'(t) dt = (F \circ \varphi)(t) + C^{a}.$$

a
Или $\int fig(arphi(t)ig)\cdotarphi'(t)\;dt=Fig(arphi(t)ig)+C.$

Доказательство

По теореме о производной сложной функции:

$$\big((F\circ\varphi)(t)+C\big)'=(F'\circ\varphi)(t)\cdot\varphi'(t)=(f\circ\varphi)(t)\cdot\varphi'(t)^{a}.$$

Откуда, по свойству 2. первообразной вытекает требуемое равенство.

aT.e.
$$\Big(Fig(arphi(t)ig)+C\Big)'=F'ig(arphi(t)ig)\cdotarphi'(t)=fig(arphi(t)ig)\cdotarphi'(t).$$