-Artificial Neural Network-

Chapter 9 Self Organization Map(SOM)

朝陽科技大學 資訊管理系 李麗華 教授

Introduction

- It's proposed by Kohonen in 1980.
- SOM is an unsupervised two layered network that can organize a topological map from a random starting point.
 SOM is also called Kohnen's self organizating feature map.
 - The resulting map shows the natural relationships among the patterns that are given to the network.
- The application is good for clustering analysis.

Network Structure

- One input layer
- One competitive layer which is usually a 2-Dim grid

Input layer : f(x) : x

Output layer: competitive layer with

topological map relationship

Weights : randomly assigned

Concept of Neighborhood

- ①Center: the winning node C is the center.
- ②Distance:

$$r_{j} = \sqrt{(N_{x} - C_{x})^{2} + (N_{y} - C_{y})^{2}}$$

③R Factor(鄰近係數)

$$RF_i$$
: $f(r_i,R) = e^{(-r_i/R)}$

$$e^{(-rj/R)} \rightarrow 1$$
 when $r_j = \emptyset$

$$e^{(-rj/R)} \rightarrow \emptyset$$
 when $r_i = \infty$

$$e^{(-rj/R)} \rightarrow 0.368$$
 when $r_j = R$

N is the node is output N to C

r_i is the distance from N to C

R: the radius of the neighborhood

r_i: distance from N to C

The longer the distance, the smaller the neighborhood area.

⊕R Factor Adjustment : R_n=R-rate · Rⁿ⁻¹ , R-rate<1.0
</p>

Learning

- Setup network
- 2. Randomly assign weights to W
- 3. Set the coordinate value of the output layer N(x,y)
- 4. Input a training vector X
- 5. Compute the winning node
- 6. Update weight △W with R factor
- 7. $\eta^{n} = \eta$ -rate $\cdot \eta^{n-1}$ $R^{n} = R$ -rate $\cdot \eta^{n-1}$
- 8. Repeat from 4 to 7 until converge

Reuse the network

- 1. Setup the network
- 2. Read the weight matrix
- 3. Set the coordriate value of the output layer N(x,y)
- 4. Read input vector
- 5. Compute the winning node
- 6. Output the clustering result Y.

Computation process

1. Setup network

$$X_1 \sim X_n$$
 (Input Vector)
 N_{jk} (Output)

2. Compute winning node

$$net_{jk} = \sqrt{\sum_{i} (X_{i} - W_{ijk})^{2}}$$

$$net_{j^{*}k^{*}} = \min_{j \bullet k} [net_{jk}]$$

3.
$$Y_{jh} = \begin{cases} 1 & j=j*&k=k* \\ if & \end{cases}$$

 φ others

Computation process (cont.)

4. Update Weights

- 5. Repeat 1-4 for all input
- 6. $\eta^{n} = \eta$ -rate η^{n-1} $R^{n} = R_{-rate} \cdot R^{n-1}$
- 7. Repeat until converge

Example

- Let there be one 2-Dim clustering problem.
- The vector space include 5 different clusters and each has 2 sample sets.

	91.		
	X1	X2	
1	-0.9	-0.8	
2	-0.8	0.6	
3	0.9	0.6	
4	0.7	-0.4	
5	-0.2	0.2	
6	-0.7	-0.6	
7	-0.9	0.8	
8	0.7	0.6	
9	0.8	-0.8	
10	0.1	-0.2	

Solution

- ①Setup an 2X9 network
- ②Randomly assign weights rj
- ③Let R=2.0 η =1.0 RF_{jk}= e^{-R}
- ④代入第一個pattern[-0.9, -0.8]
 - $net_{00} = [(-0.9 + 0.2)^2 + (-0.8 + 0.8)^2] = 0.49$
 - $net_{01} = [(-0.9 0.2)^2 + (-0.8 + 0.4)^2] = 1.37$
 - $net_{02}=[(-0.9+0.3)^2+(-0.8-0.6)^2]=2.32$
 - $net_{10} = [(-0.9 + 0.4)^2 + (-0.8 0.6)^2] = 1.71$
 - $net_{11} = [(-0.9 + 0.3)^2 + (-0.8 0.2)^2] = 1.36$
 - $net_{12}=[(-0.9+0.6)^2+(-0.8+0.2)^2]=0.45$
 - $net_{20} = [(-0.9 + 0.7)^2 + (-0.8 0.2)^2] = 1.04$
 - $net_{21} = [(-0.9 0.8)^2 + (-0.8 + 0.6)^2] = 2.93$
 - $net_{22}=[(-0.9+0.8)^2+(-0.8+0.6)^2]=0.05$ [MIN]

 $\min[net_{jk}] \longrightarrow net_{22}$ Winning Node

	X1	X2	
W_{i00}	-0.2	-0.8	
W_{i01}	0.2	-0.4	
W_{i02}	0.3	0.6	
W_{i10}	-0.4	0.6	
W_{i11}	-0.3	0.2	
W_{i12}	-0.6	-0.2	
W_{i20}	0.7	0.2	
W_{i21}	0.8	-0.6	440
W _{i22}	-0.8	-0.6	010

Solution (cont.)

©Update weight

$$r_{00} = \sqrt{(0-2)^2 + (0-2)^2} = 2.282 \quad RF_{00} = 0.243$$

$$r_{01} = \sqrt{(0-2)^2 + (1-2)^2}$$

$$r_{02} = \sqrt{(0-2)^2 + (2-2)^2}$$

$$r_{22} = \sqrt{(2-2)^2 + (2-2)^2} = \phi$$

$$RF_{22} = 1$$

$$\triangle W_{00} = \eta \cdot (X_1 - W_{00}) \cdot RF_{00}$$

$$1.0 \times (-0.9+0.2) \times (0.243) = -0.17_{0.01010010110111010110}$$