5. PK - Ball Sound

Wie entwickelt sich der Ton, der beim Zusammenstoß zweier Metallkugeln entsteht?

Leonard Hackel und Niklas Schelten

Herder Oberschule Berlin

21. März 2015

- Das Experiment
 - Vorführung
 - Zusammensetzung des Tons
 - Simulation
- Physikalische Analyse
 - Chirp
 - Physikalische Beschreibung des Tons
 - Verallgemeinerung
 - Peak
 - Frequenz

Experiment

Chirp

Chirp

Peak

Peak

PeakPeak

Chirp Frequenz

- Chirp Frequenz
 - → Anzahl der Peaks pro Sekunde

jugend⊙forscht HERDER

- Chirp Frequenz
 - → Anzahl der Peaks pro Sekunde
- Peak Frequenz

jugend@forscht

HERDER

- Chirp Frequenz
 - → Anzahl der Peaks pro Sekunde
- Peak Frequenz
 - → Anzahl der PeakPeaks pro Sekunde

jugend©forscht ☐ERDER

Simulation

Periodendauer

Periodendauer

$$\delta_n = \delta_1 \cdot b^{n-1}$$
 mit $0 < b < 1$

Amplitude

jugend@forscht ☐ ERDER

Amplitude

 $y_n = a \cdot y_{n-1}$ mit 0 < a < 1

Amplitude

- $y_n = a \cdot y_{n-1}$ mit $0 \le a < 1$
- $\bullet \Leftrightarrow y_n = a^n \cdot y_0$

• beides nach *n* umformen:

jugend@forscht ☐ERDER

• beides nach *n* umformen:

$$ightarrow$$
 Periode: $n=rac{\log\left(1-rac{t_n}{t_{ges}}
ight)}{\log b}$

beides nach *n* umformen:

$$ightarrow$$
 Periode: $n = \frac{\log\left(1 - \frac{t_n}{t_{ges}}\right)}{\log b}$
ightarrow Amplitude: $n = \frac{\log \frac{y_n}{y_0}}{\log a}$

$$\rightarrow$$
 Amplitude: $n = \frac{\log_{y_0}}{\log a}$

• beides nach *n* umformen:

$$ightarrow$$
 Periode: $n = \frac{\log\left(1 - \frac{t_n}{t_{ges}}\right)}{\log b}$
 $ightarrow$ Amplitude: $n = \frac{\log \frac{y_n}{y_0}}{\log a}$

• Gleichsetzen und nach y_n umformen:

jugend©forscht ⊢ERDER

• beides nach *n* umformen:

• Gleichsetzen und nach y_n umformen:

$$\rightarrow y_n = y_0 \cdot \left(1 - \frac{t_n}{t_{ges}}\right)^{\frac{\log a}{\log b}}$$

unterschiedliche rücktreibende Kräfte

- - Gravitation

- unterschiedliche r

 ücktreibende Kr

 äfte
 - Gravitation
 - Magnetkraft

- - Gravitation
 - Magnetkraft
 - Federkaft

- ullet unterschiedliche rücktreibende Kräfte o Potenz des Weges
 - Gravitation
 - Magnetkraft
 - Federkaft

- ullet unterschiedliche rücktreibende Kräfte o Potenz des Weges
 - Gravitation ightarrow nahezu s^0
 - Magnetkraft
 - Federkaft

- ullet unterschiedliche rücktreibende Kräfte o Potenz des Weges
 - Gravitation \rightarrow nahezu s^0
 - Magnetkraft $o s^{-2}$ (homogen)
 - Federkaft

- ullet unterschiedliche rücktreibende Kräfte o Potenz des Weges
 - Gravitation \rightarrow nahezu s^0
 - Magnetkraft $\rightarrow s^{-2}$ (homogen)
 - Federkaft $o s^1$

•
$$F = c \cdot s^a$$

$$\bullet$$
 $F = c \cdot s^2$

•
$$F = c \cdot s^a$$

 $\rightarrow E = \frac{c}{a+1} \cdot s^{a+1}$

•
$$F = c \cdot s^a$$

$$\rightarrow E = \frac{c}{a+1} \cdot s^{a+1}$$

Schwingung zwischen dieser und kinetischer Energie

•
$$F = c \cdot s^a$$

$$\rightarrow E = \frac{c}{a+1} \cdot s^{a+1}$$

Schwingung zwischen dieser und kinetischer Energie

$$\rightarrow \frac{m}{2}v^2 + \frac{c}{a+1} \cdot s^{a+1} = konst$$

Durch Ableiten:

jugend forscht HERDER

Verallgemeinerung - Ansatz

• Durch Ableiten:

$$\frac{m\cdot 2v\cdot\dot{v}}{2}+c\cdot s^a\cdot\dot{s}=0$$

Verallgemeinerung - Ansatz

• Durch Ableiten:

$$\frac{m\cdot 2v\cdot\dot{v}}{2}+c\cdot s^a\cdot\dot{s}=0$$

$$\Leftrightarrow m \cdot \ddot{s} + c \cdot s^a = 0$$

nicht-lineare Differentialgleichung

- nicht-lineare Differentialgleichung
- In "Simulation"Energieverlust durch Abnahme von v implementiert

- nicht-lineare Differentialgleichung
- In "Simulation"Energieverlust durch Abnahme von v implementiert
- erste Nullstelle entspricht der Zeitspanne bis zum nächsten Peak

• Peak Frequenz für jeden Peak gleich

- Peak Frequenz für jeden Peak gleich
- zwei Ursprünge:

jugend@forscht HERDER

- Peak Frequenz für jeden Peak gleich
- zwei Ursprünge:
 - Eigenfrequenz der Kugeln

- Peak Frequenz für jeden Peak gleich
- zwei Ursprünge:
 - Eigenfrequenz der Kugeln
 - Frequenz zwischen den Kugeln

stehende Welle in den Kugeln

• stehende Welle in den Kugeln

$$ightarrow f = rac{c}{\lambda} = rac{5170^m/s}{8 \cdot 0,017m} pprox 38 kHz$$

• stehende Welle in den Kugeln

$$ightarrow f = rac{c}{\lambda} = rac{5170^m/s}{8 \cdot 0,017m} pprox 38 kHz$$

→ nicht hörbar

• stehende Welle in den Kugeln

$$ightarrow~f=rac{c}{\lambda}=rac{5170^m/s}{8\cdot0,017m}pprox38kHz$$

- → nicht hörbar
- andere Wellenlängen messbar aber nicht hörbar

"Auftreff Frequenz"

• Arbeit von K. Mehraby, H Khadem-hosseini Beheshti und M Poursina¹

 $^{^{}m 1}$ Impact noise radiated by collision of two spheres: Comparison between numerical simulations, experiments and analytical results

"Auftreff Frequenz"

 Arbeit von K. Mehraby, H Khadem-hosseini Beheshti und M. Poursina¹

$$\to f = \frac{76,1}{r}Hz = \frac{76,1}{0.017}Hz \approx 4476Hz$$

¹ Impact noise radiated by collision of two spheres: Comparison between numerical simulations, experiments and analytical results

Frequenzanalyse

Frequenzanalyse

hörbare Frequenz 4406Hz "Auftreff Frequenz"

Frequenzanalyse

- hörbare Frequenz 4406*Hz* "Auftreff Frequenz"
- nicht hörbare Frequenz 39*kHz* Eigenfrequenz

Vielen Dank für Ihre Aufmerksamkeit

