Završni ispit iz predmeta "Elektronika 2"

31.1.2017.

Zadatak 1 – 8 bodova

Za pojačalo na slici zadano je $U_{DD}=12~{\rm V}$, $R_g=1~{\rm k}\Omega$, $C_G=20~{\rm nF}$, $R_1=3~{\rm M}\Omega$, $R_2=6~{\rm M}\Omega$, $R_S=1~{\rm k}\Omega$, $C_S=5~{\rm \mu F}$ i $R_T=1~{\rm k}\Omega$. Parametri FET-a su $K=2,5~{\rm mA/V^2}$ i $U_{GS0}=1~{\rm V}$. Zanemariti porast struje odvoda s naponom u_{DS} u području zasićenja.

- a) Izračunati struju I_{DQ} i napone U_{GSQ} i U_{DSO} u statičkoj radnoj točki (**2 boda**).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku niskofrekvencijsku analizu (1 bod).
- c) Izračunati pojačanje $A_{Vg} = U_{iz} / U_g$ na srednjim frekvencijama (2 boda).
- d) Izračunati donju graničnu frekvenciju pojačanja A_{Vg} (3 boda).

Zadatak 2 – 8 bodova

Za pojačalo na slici zadano je:

$$U_{CC} = 12 \text{ V}$$
, $R_g = 2 \text{ k}\Omega$,

$$C_B = 2.5 \ \mu\text{F}, \ R_1 = 600 \ \text{k}\Omega,$$

$$R_2 = 120 \text{ k}\Omega$$
, $R_E = 500 \Omega$,

$$C_E = 100 \,\mu\text{F} R_T = 4 \,\text{k}\Omega \,\text{i}$$

 $C_T = 20 \text{ pF}$. Parametri tranzistora su

$$\beta \approx h_{fe} = 100$$
, $U_{\gamma} = 0.7$ V,

$$r_{bb'} = 50 \ \Omega$$
, $C_{b'e} = 30 \ \text{pF}$ i

 $C_{b'c} = 2 \text{ pF}$. Zanemariti porast struje

kolektora s naponom u_{CE} normalnom

aktivnom području. Naponski ekvivalent temperature $U_T = 25 \,\mathrm{mV}$.

- a) Izračunati struju I_{CQ} i napon U_{CEQ} tranzistora u statičkoj radnoj točki (2 boda).
- b) Nacrtati nadomjesnu shemu pojačala za dinamičku visokofrekvencijsku analizu (1 bod).
- c) Izračunati pojačanje $A_{Vg} = U_{iz} / U_g$ na srednjim frekvencijama (2 boda).
- d) Izračunati gornju graničnu frekvenciju pojačanja A_{Vg} (3 boda).

Zadatak 3 – 8 bodova

Za pojačalo na slici zadano je $U_{CC}=12~{\rm V}$, $R_C=5~{\rm k}\Omega$, $R_B=150~{\rm k}\Omega$, $R_E=2.5~{\rm k}\Omega$ i $R_T=200~\Omega$. Parametri tranzistora su $\beta_1\approx h_{f\rm el}=100$, $\beta_2\approx h_{f\rm e2}=100$ i $U_\gamma=0.7~{\rm V}$. Zanemariti serijski otpor baze $r_{bb'}$ i porast struje kolektora s naponom u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_T=25~{\rm mV}$.

- a) Izračunati statičku radnu točku (2 boda).
- b) Odrediti tip povratne veze i nacrtati
 A-granu pojačala za mali signal uzevši u obzir opterećenje β-grane (1 bod).
- c) Odrediti pojačanje A-grane (2 boda).
- d) Odrediti koeficijent povratne veze β (1 bod).
- e) Odrediti pojačanja $A_{Vf} = u_{iz} / u_{ul}$ i $A_{If} = i_{iz} / i_{ul}$ (2 boda).

Zadatak 4 – 6 bodova

U pojačalu s povratnom vezom zadani su prijenosna funkcija osnovnog pojačala i koeficijent povratne veze:

$$A(j\omega) = \frac{-10^{3} (1 + j\omega/10^{5})}{(1 + j\omega/10^{4})(1 + j\omega/10^{6})^{2}}, \qquad \beta(j\omega) = \frac{\beta_{0}}{1 + j\omega/10^{6}}.$$

Grafičkim postupkom (crtanjem Bodeovog dijagrama) odrediti β_0 uz koje će pojačalo biti stabilno s faznim osiguranjem $F.O.=45^{\circ}$. Koliko je pri tome amplitudno osiguranje?

Na dijagramima označiti koordinatne osi, a u aproksimiranim karakteristikama upisati nagibe pojedinih odsječaka.

(Bodeov dijagram: 4 boda, β_0 : 1 bod, A.O.: 1 bod)