Série n°2

Statique des fluides

Exercice 1:

- 1. Calculer les forces de pression exercées par l'eau, supposées incompressible, sur le fond du récipient représenté ci-contre. Calculer la force effective, c'est-à-dire, retranchée de la force exercée par la pression atmosphérique sur le dessous du fond du récipient.
- 2. Calculez le poids W de l'eau dans le récipient.

Exercice 2:

Exprimez en fonction des grandeurs ρ , h, S et g :

- a) la masse m du liquide contenu dans ce récipient ;
- b) la force de pesanteur F_P du liquide contenu dans ce récipient ;
- c) la pression P exercée par ce liquide sur le fond du récipient ;

Concluez en écrivant une formule exprimant la pression P exercée par ce liquide sur le fond du récipient en fonction de la masse volumique du liquide ρ , de la hauteur h et de la gravitation g.

Exercice 3:

La figure ci-contre présente un cric hydraulique formé de deux pistons (1) et (2) de section circulaire.

2017/2018

Sous l'effet d'une action sur le levier, le piston (1) agit, au point A, par une force de pression Fp1/h sur l'huile. L'huile agit, au point B sur le piston (2) par une force Fh/p2.

On donne:

- Les diamètres de chacun des pistons : D1= 10 mm; D2= 100mm
- L'intensité de la force de pression en A : Fp1/h= 150 N.
- 1) Déterminer la pression PA de l'huile au point A.
- 2) Calculer la pression PB
- 3) En déduire l'intensité de la force de pression Fh/p2.

Exercice 4:

Considérons un tube en U, de section 1 cm², rempli avec 24 cm³ d'eau et 12 cm³ d'huile.

En tenant compte que la masse volumique de l'eau vaut 998 kg/m^3 et celle de l'huile vaut 840 kg/m^3 :

- a) Quelle est la hauteur h2 de l'huile?
- b) Quelle est la différence de hauteurs h2 h1 séparant les surfaces supérieures des deux liquides ?

Exercice 5:

La figure représente un barrage ayant les dimensions suivantes :

Longueur b=200 m, hauteur h=60 m

Le barrage est soumis aux actions de pression de l'eau.

Le poids volumique de l'eau est : $\varpi = 9.81.10^3 \text{ N/m}^3$

- 1) Calculer l'intensité de la résultante R des actions de pression de l'eau.
- 2) Calculer la position y₀ du centre de poussée G₀.

2017/2018

Rappel:

2017/2018 3