

3-Terminal 1.5A Positive Voltage Regulator

Description

The 78XX series of three-terminal positive regulators are available in the TO-220AB /TO-252 package with several fixed output voltages making it useful in a wide range of applications.

Features

- ♦Output Current up to 1.5A
- Output Voltages of 5,6,8,10,12,15V
- **♦Thermal Overload Protection**
- **♦Short Circuit Protection**
- Output Transistor Safe Operating area (SOA)Protection

Internal Block Digram

Absolute Maximum Ratings

www.yfwdiode.com

Parameter		Symbol	Value	Unit
Input Voltage	V ₀ = 5V~15V	V _{IN}	35	V
Thermal Resistance Junction-Cas	R _{0 JC} 5		°C/W	
Thermal Resistance Junction-Air	TO-220AB	В	65	°C ////
mermai Resistance Junction-Ali	TO-252	R _{θ JA}	92	°C/W
Operating Temperature Range	T _{OPR} 0 ~ + 125		°C	
Storage Temperature Range	T _{STG}	-55 ~ + 150	°C	

Note1 .Absolute maximum ratings are those values beyond which damage to the device may occur. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Electrical Characteristics (7805)

 $(V_1 = 10V, I_0 = 0.5A, C_1 = 0.33\mu F, C_0 = 0.1\mu F, T_1 = -40^{\circ}C$ to 125°C, unless otherwise specified)

Parameter	Symbol		Min	Тур	Max	Unit	
Output Valtage	.,,	$T_j = 25^{\circ}C$, $I_0 = 5mA \sim 1A$		4.80	5.0	5.20	V
Output Voltage	Vo	V _I = 7V ~ 2	$V_1 = 7V \sim 20V, I_0 = 5mA \sim 1A$		5.0	5.25	V
	/	T 05°C	V _I = 7V ~ 25V			100	\/
Line Regulation ②	ΔV _O	T _j = 25°C	V _I = 8V ~ 12V			50	mV
Load Decidation (/	T 05%	I _O = 5mA ~ 1A			100	- mV
Load Regulation ②	ΔV_{O}	T _j = 25°C	I _O = 0.25A ~ 0.75A			50	
Quiescent Current	IQ	T _j = 25°C	T _j = 25°C			8.0	mA
Quiescent Current	Δl _Q	I _O =5mA ~ 1A				0.5	mA
Change		V _I = 7V ~ 25V				1.3	
Output Voltage Drift ③	ΔV /ΔΤ	I _O = 5mA			-0.8		mV/°C
Output Noise Voltage	V _N	10H _Z ≤ f ≤	$10H_Z \le f \le 100KH_Z$		42		μV/V _O
Ripple Rejection ③	RR	f = 120Hz,	f = 120Hz, V _i = 8V ~ 18V		73		dB
Output Resistance ③	Ro	f = 1kHz			15		mΩ
Short Circuit Current	I _{SC}	T _j =25°C , V _l = 30V			230		mA
Peak Out Current ③	I _{PK}	T _j =25°C			1.8		А
Dropout Voltage	V_d	T _j =25°C, I _O	,=1A		2.0		V

Note 2: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 3: These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (7806)

 $(V_{l}=11V,~I_{O}=0.5A,C_{l}=0.33\mu F,~C_{O}=0.1\mu F,~T_{j}\text{=-40 to 125}^{\circ}\text{C, unless otherwise specified})$

Parameter	Symbol	(Min	Тур	Max	Unit	
Output Valtage	.,	T _j = 25°C, I ₀	$T_j = 25^{\circ}\text{C}, I_0 = 5\text{mA} \sim 1\text{A}$		6.0	6.24	V
Output Voltage	Vo	V _I = 8V ~ 12	2V, I _O = 5mA ~ 1A	5.70	6.0	6.30	V
Line Deculation	/	T 05%	V ₁ = 8V ~ 25V			120	
Line Regulation ④	ΔV _O	T _j = 25°C	V _I = 9V ~ 13V			60	mV
Load Decidation	ΔV _O	T 05%	I _O = 5mA ~ 1A			120	- mV
Load Regulation ④		ΔV_0 $T_j = 25^{\circ}C$,	I _O = 0.25A ~ 0.75A			60	
Quiescent Current	ΙQ	T _j = 25°C				8.0	mA
Quiescent Current	ΔlQ	I _O =5mA ~ 1A				0.5	mA
Change		V _I = 8V ~ 25V				1.3	
Output Voltage Drift ⑤	ΔV /ΔΤ	I _O = 5mA			-0.8		mV/°C
Output Noise Voltage	V_N	10H _Z ≤f≤	$10H_Z \le f \le 100KH_Z$		76		μV/V _O
Ripple Rejection ⑤	RR	f = 120Hz,\	V _I = 8V ~ 18V	55	71		dB
Output Resistance ⑤	Ro	f = 1kHz			19		mΩ
Short Circuit Current	I _{SC}	T _j =25°C , V _i = 30V			230		mA
Peak Out Current ⑤	I _{PK}	T _j =25°C			1.8		Α
Dropout Voltage	V _d	T _j =25°C, I _O	=1A		2.0		V

Note 4: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 5: These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (7808)

 $(V_1 = 14V, I_0 = 0.5A, C_1 = 0.33\mu F, C_0 = 0.1\mu F, T_j = -40 \text{ to } 125^{\circ}C, \text{ unless otherwise specified})$

Parameter	Symbol	(Min	Тур	Max	Unit	
Output Voltage		$T_j = 25^{\circ}C$, $I_O = 5mA \sim 1A$		7.68	8.0	8.32	V
Output Voltage	Vo	V _I = 10.5V	V _I = 10.5V ~ 23V, I _O = 5mA ~ 1A		8.0	8.40	V
	/		V _I = 10.5V ~ 25V			160	
Line Regulation ⑥	ΔV _O	T _j = 25°C	V _I = 11.5V ~ 17V			80	mV
Load Decidation	/	T 05%	I _O = 5mA ~ 1A			160	
Load Regulation ⑥	ΔV _O	$T_j = 25^{\circ}C$,	I _O = 0.25A ~ 0.75A			80	mV
Quiescent Current	ΙQ	T _j = 25°C	T _j = 25°C			8.0	mA
Quiescent Current	Δl _Q	I _O =5mA ~ 1A				0.5	mA
Change		V _I = 10.5V ~ 25V				1.0	
Output Voltage Drift ⑦	ΔV /ΔΤ	I _O = 5mA			-0.8		mV/°C
Output Noise Voltage	V_N	10H _Z ≤f≤	$10H_Z \le f \le 100KH_Z$		52		μV/V _O
Ripple Rejection ⑦	RR	f = 120Hz,	f = 120Hz, V _i = 11.5V ~ 21.5V		73		dB
Output Resistance ⑦	Ro	f = 1kHz			17		mΩ
Short Circuit Current	I _{SC}	T _j =25°C , V _l = 30V			230		mA
Peak Out Current ⑦	I _{PK}	T _j =25°C			1.8		А
Dropout Voltage	V_{d}	T _j =25°C, I _O	= 1A		2.0		V

Note 6: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 7: These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (7809)

(V_I = 15V, I_O = 0.5A,C_I = 0.33 μ F, C_O = 0.1 μ F, T_j= -40 to 125°C, unless otherwise specified)

Parameter	Symbol	(Min	Тур	Max	Unit	
Output Voltage	V	$T_j = 25^{\circ}C$, $I_0 = 5mA \sim 1A$		8.64	9.0	9.36	V
Output Voltage	Vo	V _I = 11.5V	$V_1 = 11.5 V \sim 24 V, I_0 = 5 mA \sim 1A$ 8		9.0	9.45	V
	437		V _I = 11.5V ~ 25V			180	.,
Line Regulation ®	ΔV _O	T _j = 25°C	V _I = 12V ~ 17V			90	mV
Load Decidation	/	T 05%	I _O = 5mA ~ 1A			180	- mV
Load Regulation ®	ΔV _O	ΔV_{O} $T_{j} = 25^{\circ}C$,	I _O = 0.25A ~ 0.75A			90	
Quiescent Current	ΙQ	T _j = 25°C				8.0	mA
Quiescent Current	Δl _Q	I _O = 5mA ~ 1A				0.5	mA
Change		V _I = 11.5V ~ 26V				1.3	
Output Voltage Drift ⑨	ΔV /ΔΤ	I _O = 5mA			-1.0		mV/°C
Output Noise Voltage	V_N	10H _Z ≤f≤	$10H_Z \le f \le 100KH_Z$		52		μV/V _O
Ripple Rejection ⑨	RR	f = 120Hz,	f = 120Hz, V _I = 13V ~ 23V		71		dB
Short Circuit Current	I _{SC}	T _j =25°C , V _l = 30V			230		mA
Output Resistance 9	Ro	f = 1kHz			17		mΩ
Peak Out Current ⑨	I _{PK}	T _j =25°C			1.8		Α
Dropout Voltage	V_d	T _j =25°C, I _O	= 1A		2.0		V

Note 8: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 9: These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (7810)

 $(V_1 = 16V, I_0 = 0.5A, C_1 = 0.33 \mu F, C_0 = 0.1 \mu F, T_1 = -40 \text{ to } 125 ^{\circ}C, \text{ unless otherwise specified})$

Parameter	Symbol	(Min	Тур	Max	Unit	
Output Voltage	V	T _j = 25°C, I	$T_j = 25^{\circ}\text{C}, I_0 = 5\text{mA} \sim 1\text{A}$		10.0	10.40	V
Output Voltage	Vo	V _I = 12.5V	~ 25V, I _O = 5mA ~ 1A	9.50	10.0	10.50	V
Line Decodetion	/	T 05%	V _I = 12.5V ~ 25V			200	>/
Line Regulation 10	ΔV _O	T _j = 25°C	V _I = 13V ~ 25V			100	mV
Lead Dec Jeffer		T 0706	I _O = 5mA ~ 1A			200	- mV
Load Regulation @	ΔV _O	$T_j = 25^{\circ}C$,	I _O = 0.25A ~ 0.75A			100	
Quiescent Current	ΙQ	T _j = 25°C	T _j = 25°C			8.0	mA
Quiescent Current	ΔlQ	I _O = 5mA ~ 1A				0.5	mA
Change		V _I = 12.5V ~ 29V				1.0	
Output Voltage Drift 10	ΔV /ΔΤ	I _O = 5mA			-1.0		mV/°C
Output Noise Voltage	V _N	10H _Z ≤f≤	$10H_Z \le f \le 100KH_Z$		58		μV/V _O
Ripple Rejection 10	RR	f = 120Hz,	f = 120Hz, V ₁ = 13V ~23V		71		dB
Short Circuit Current	I _{SC}	T _j =25°C , V _i = 30V			230		mA
Output Resistance ①	Ro	f = 1kHz			17		mΩ
Peak Out Current 10	I _{PK}	T _j =25°C			1.8		Α
Dropout Voltage	V_{d}	T _j =25°C, I _O	= 1A		2.0		V

Note 10: Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Note 11: These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (7812)

(V_I = 19V, I_O = 0.5A,C_I = 0.33 μ F, C_O = 0.1 μ F, T_j= -40 to 125°C, unless otherwise specified)

Parameter	Symbol	C	Min	Тур	Max	Unit	
Output Valtage	V	T _j = 25°C, I ₀	T _j = 25°C, I _O =5mA ~ 1A		12.0	12.48	V
Output Voltage	Vo	V _I = 14.5V -	~ 27V, I _O =5mA ~ 1A	11.40	12.0	12.60	V
Line Degulation (A	^ \ /	T _i = 25°C	V _I = 14.5V ~ 30V			240	mV
Line Regulation ¹	$\triangle V_0$	I _O = 0.5A	V _I = 11.5V ~ 24V			120	ШУ
Lood Domitation (i)	A 1 /	T 050C	I _O = 5mA ~ 1A			240	>/
Load Regulation 12	$\triangle V_{O}$	T _j = 25°C,	I _O = 0.25A ~ 0.75A			120	mV
Quiescent Current	ΙQ	T _j = 25°C	T _j = 25°C			8.0	mA
Quiescent Current	$\triangle I_Q$	I _O =5mA ~ 1A				0.5	· mA
Change		V _I = 14.5V ~ 30V				1.0	
Output Voltage Drift 🔞	ΔV /ΔΤ	I _O = 5mA			-1.0		mV/°C
Output Noise Voltage	V _N	10H _Z ≤ f ≤ ′	$10H_Z \le f \le 100KH_Z$		76		μV/V _O
Ripple Rejection ③	RR	f = 120Hz,	V _I = 15V ~ 25V	55	71		dB
Output Resistance ⁽³⁾	Ro	f = 1kHz			18		mΩ
Short Circuit Current	I _{SC}	T _j =25°C , V _l = 30V			230		mA
Peak Out Current 13	I _{PK}	T _j =25°C			1.8		Α
Dropout Voltage	V_{d}	T _j =25°C, I _O	= 1A		2.0		V

Note 12: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 13: These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (7815)

 $(V_1 = 23V, I_0 = 0.5A, C_1 = 0.33\mu F, C_0 = 0.1\mu F, T_j = -40$ to 125°C, unless otherwise specified)

Parameter	Symbol	(Min	Тур	Max	Unit	
Output Voltage	.,	$T_j = 25^{\circ}C$, $I_0 = 5mA \sim 1A$		14.40	15.0	15.60	V
Output Voltage	Vo	V _I = 17.5V	~ 30V, I _O =5mA ~ 1A	14.25	15.0	15.75	V
5	ΔV _O	T _i = 25°C	V _I = 17.5V ~ 30V			300	mV
Line Regulation 19	70	I _O = 0.5A	V ₁ = 20V ~ 26V			150	IIIV
Load Decidation	/	T 05%	I _O = 5mA ~ 1A			300	mV
Load Regulation 19	ΔV _O	T _j = 25°C,	I _O = 0.25A ~ 0.75A			150	
Quiescent Current	ΙQ	T _j = 25°C	T _j = 25°C			8.0	mA
Quiescent Current	Δl _Q	I _O =5mA ~ 1A				0.5	mA
Change		V _I = 17.5V ~ 30V				1.0	
Output Voltage Drift 🔞	ΔV /ΔΤ	I _O = 5mA			-1.0		mV/°C
Output Noise Voltage	V _N	10H _Z ≤f≤	$10H_Z \le f \le 100KH_Z$		90		μV/V _O
Ripple Rejection 🔞	RR	f = 120Hz,	V _I = 18.5V ~ 28.5V	54	70		dB
Output Resistance ®	Ro	f = 1kHz			19		mΩ
Short Circuit Current	I _{SC}	T _j =25°C , V _i = 30V			230		mA
Peak Out Current 🔞	I _{PK}	T _j =25°C			1.8		А
Dropout Voltage	V_{d}	T _j =25°C, I _O	= 1A		2.0		V

Note 14: Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used. Note 15: These parameters, although guaranteed, are not 100% tested in production.

Typical Characteristics

Figure 1. Peak Output Current

Figure 3. Ripple Rejection Ratio vs. Output Voltage

Figure 8. Output Voltage vs. Input Voltage

Figure 2. Dropout Voltage vs. Junction Temperature

Figure4. Quiescent Current vs. Junction Temperature

Figure 9. Output Impedance ($m\Omega$) vs. Output Voltage

Application circuit

Note 1: To specify an output voltage, substitute voltage value for "MXX".

Note 2: Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulators.

Package Dimensions

TO-220AB

Package Dimensions

TO-252

