Optimization

Convexity

CONVEX VS. NON-CONVEX

"...in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

- R. Tyrrell Rockafellar, in SIAM Review, 1993

Bernd Bischl © Optimization - 1/8

CONVEX SETS

A set of S is **convex**, if for all $\mathbf{x}, \mathbf{y} \in S$ and all $t \in [0, 1]$ the following applies:

$$\mathbf{x} + t(\mathbf{y} - \mathbf{x}) \in \mathcal{S}$$

Intuitively: If \mathbf{x} , \mathbf{y} are in \mathcal{S} , then the connecting line is also in \mathcal{S} .

The set in the left image is convex, the set in the right image is not convex (concave). Source: Wikipedia.

Bernd Bischl © Optimization - 2 / 8

Consider $f: \mathcal{S} \to \mathbb{R}$, where \mathcal{S} convex. The function is **convex** if for all $\mathbf{x}, \mathbf{y} \in \mathcal{S}$ and all $t \in [0, 1]$

$$f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) \le f(\mathbf{x}) + t(f(\mathbf{y}) - f(\mathbf{x})).$$

It is called **strictly convex**, if this is valid for "<" instead of "\(\le \)".

Left: A differentiable and strictly convex function. Right: A convex function that is non-differentiable in x = 0, which is not strictly convex.

Bernd Bischl © Optimization - 3 / 8

For a twice differentiable function f, convexity can determined from the **Hessian matrix**.

The function $f: \mathcal{S} \to \mathbb{R}$ is **convex iff** the Hessian matrix $\nabla^2 f(\mathbf{x})$ is positive semidefinite for all $\mathbf{x} \in \mathcal{S}$, i.e. if for all points \mathbf{x} and all vectors $\mathbf{d} \neq 0$ it applies:

$$\mathbf{d}^{\top} \nabla^2 f(\mathbf{x}) \mathbf{d} \geq 0.$$

If the Hessian matrix is positive definite (strict ">"), the function f is strictly convex.

Equivalent definition: A matrix is positive semidefinite if all eigenvalues are non-negative.

Bernd Bischl © Optimization - 4 / 8

Convex functions play a special role in optimization.

Let $f: \mathcal{S} \to \mathbb{R}$ be convex on the convex set \mathcal{S} . Then the following applies:

- Any local minimum of f is also a global minimum (see chapter Conditions for Optimality).
- If f is strictly convex, f has exactly one local minimum on S and it is also the unique global minimum of f on S (see chapter Conditions for Optimality).
- Sublevel sets $S_1 = \{ \mathbf{x} \mid f(\mathbf{x}) < a \}$ and $S_2 = \{ \mathbf{x} \mid f(\mathbf{x}) \leq a \}$, $a \in \mathbb{R}$, form convex sets.

Bernd Bischl © Optimization - 5 / 8

Example:

- **1** Local min: If [f convex \Leftrightarrow All eigenvalues positive], then global min
- 2 Local max: If [f concave \Leftrightarrow All eigenvalues negative], then global max
- Some eigenvalues positive and some negative ⇔ saddle point

Bernd Bischl © Optimization - 6 / 8

Example: Consider the function $f(x_1, x_2) = x_1^2 + x_2^2 - 2x_1x_2$.

Bernd Bischl © Optimization - 7/8

The gradient of the function is $\nabla f(x) = (2x_1 - 2x_2, 2x_2 - 2x_1)$ and the Hessian is

$$\nabla^2 f(x) = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

The matrix is positive semidefinite, since

$$\mathbf{d}^{\top} \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} \mathbf{d} = \mathbf{d}^{\top} \begin{pmatrix} 2d_1 - 2d_2 \\ -2d_1 + 2d_2 \end{pmatrix}$$
$$= 2d_1^2 - 2d_1d_2 - 2d_1d_2 + 2d_2^2$$
$$= 2d_1^2 - 4d_1d_2 + 2d_2^2 = 2(d_1 - d_2)^2 > 0.$$

So the function *f* is convex and every local minimum is also a global minimum.

Bernd Bischl © Optimization - 8 / 8