ENE 3031 - Fall 2014

Homework4 Solution

#1.

Use Inequality (8.14) to conclude that, for R given, X will assume the value x in $R_X = \{1, 2, 3, 4\}$ provided

 $F(x-1) = \frac{(x-1)x(2x-1)}{180} < R \le \frac{x(x+1)(2x+1)}{180} = F(x)$

By direct computation, F(1) = 6/180 = .033, F(2) = 30/180 = .167, F(3) = 42/180 = .233, F(4) = 1. Thus, X can be generated by the table look-up procedure using the following table:

$$R_1 = 0.83 \longrightarrow X = 4$$

 $R_2 = 0.24 \longrightarrow X = 4$
 $R_3 = 0.57 \longrightarrow X = 4$

#2.

The mean is (1/p) - 1 = 2.5, so p = 2/7. By Equation (9.21),

$$X = \lceil -2.97 \ln(1 - R) - 1 \rceil$$

Equation (9.21) R is a random number.

$$\left\lceil \frac{ln(1-R)}{ln(1-p)} \right\rceil - 1$$

#3.

Generate $X = 8[-\ln R]^{4/3}$

If $X \le 5$, set Y = X.

Otherwise, set Y = 5.

(Note: for Equation 8.6, it is permissible to replace 1 - R by R.)

#4.

Step 1: Set n = 0

Step 2: Generate R

Step 3: If $R \leq p$, set X = n, and go to step 4.

If R > p, increment n by 1 and return to step 2.

Step 4: If more geometric variates are needed, return to step 1.

#5.

Let us take g to be g(x)=1 for $0\leq x\leq 1$; that is the desity of U(0,1). Thus

$$\max_{x} \frac{f(x)}{g(x)} = 3 = c$$

So we'll use $\frac{f(x)}{cg(x)} = x^2$ in the above algorithm

Algorithm:

- 1) Generate two uniform random variables u_1 and u_2 from U(0,1).
- 2) If $u_2 \leq u_1^2$ accept u_1 as the random variable from f else go to step 1).

By looking at the shapes of f and g we can guess that this is not a terribly efficent algorithm.

Let us try to find a better majorizing function for f

Instead of using q(x) = 3 (the blue line), use q(x) = 3x (the magenta line)

To find g we need to find the normalizing constant k such that $k\int_0^1 3x dx=1$ Easy to show k=2/3 so that g(x)=2x for $0\leq x\leq 1$ and

$$\max_{x} \frac{f(x)}{g(x)} = 3/2 = c$$

This majorizing function reduces the rejection rate by 50%

To implement the rejection method we need to generate from g

Note that the cdf of is easy to derive. (Show $F(t)=t^2$); thus to generate from this distribution using the inverse method is simple: Generate u from U(0,1) and set $X=+\sqrt{u}$.

New Algorithm:

- 1) Generate two uniform random variables u_1 and u_2 from U(0,1).
- 2) If $u_2 \leq \frac{3\sqrt{u_1}}{2}$ accept u_1 as the random variable from f else go to step 1).

#6. ai = (x(i)-x(i-1))/(1/10)

i	LB (x _(i-1))	UB(x _(i))	Prob	Cum.Prob	a _i
1	0	0.54	0.1	0.1	5.4
2	0.54	0.76	0.1	0.2	2.2
3	0.76	1.01	0.1	0.3	2.5
4	1.01	1.32	0.1	0.4	3.1
5	1.32	2.44	0.1	0.5	11.2
6	2.44	3.26	0.1	0.6	8.2
7	3.26	3.29	0.1	0.7	0.3
8	3.29	4.65	0.1	0.8	13.6
9	4.65	5.42	0.1	0.9	7.7
10	5.42	5.84	0.1	1	4.2

$$X = X_{(i-1)} + a_i(U-(i-1)/10)$$

 $U1 = 0.24 -> X1=0.86 (i=3)$
 $U2=0.35 -> X1 = 1.165 (i=4)$