稠密无端点全序

定义 DLWP理论包括如下语句:

- $\forall x : \neg (x < x)$
- $\forall x \ y: \ x < y \lor y < x \lor x = y$
- $\forall x \ y \ z : x < y \land y < z \implies x < z$
- $\forall x \ y : \exists z : \ x < y \implies x < z < y$
- $\forall x \exists y \ z : \ y < x < z$

注: 前三条件代表全序

DLWP模型举例

是 (\mathbb{Q} , <), (\mathbb{R} , <), ((0, 1), <)

 $\# (\mathbb{N}, <), ((0, 1], <)$

定理: 所有满足 DLWP且可数的模型都是同构的

证明 (back and forth): 不妨设两个满足题设的模型 M N, 由于二者可数, 其定义域枚举如下:

 $M: m_1, \ldots, m_k, \ldots$

 $N: n_1,, n_l, ...$

定义 $f: M \to N$

- 第一步: $f(m_1) = n_1$
- k+1 步:
 - 若 $m_{k+1} \in \text{dom}(f)$, 跳过此小步; 否则: 将已定义原像按序枚举为 $m_{i1} < m_{i2} < ... < m_{ix}$, 对应映射值 $f(m_{i1}), f(m_{i2}), ..., f(m_{ix})$, 因我们之前定义的方式是保序的,故 $f(m_{i1}) < f(m_{i2}) < ... < f(m_{ix})$; 若:
 - * $m_{k+1} > m_{ix}$: 由 $\mathcal{N} \models \mathsf{DLWP}$,故存在 $z \in N$ 使得 $f(m_{ix}) < z$ 成立,定义 $f(m_i) = z$
 - * $m_{k+1} < m_{i1}$: 同理存在 $y \in N$ 使得 $f(m_{i1}) > y$ 成立, 定义 $f(m_i) = y$
 - * $m_{i(j)} < m_{k+1} < m_{i(j+1)}$, 则存在 $z \in N$ 使得 $f(m_{i(j)}) < z < f(m_{i(j+1)})$, 定义 $f(m_i) = z$
 - 同理再看 n_{k+1} , 不属于 range(f) 跳至下一步,否则: 将已定义像按序枚举为 $n_{i1}, n_{i2}, ..., n_{ix}$, 对应逆映射值 $f^{-1}(n_{i1}), f^{-1}(n_{i2}), ..., f^{-1}(n_{iu})$, 有 $f^{-1}(n_{i1}) < f^{-1}(n_{i2}) < ... < f^{-1}(n_{iu})$. 若:
 - * $n_{k+1} > n_{iv}$: 由 $\mathcal{M} \models DLWP$,故存在 $z \in M$ 使得 $f^{-1}(n_{ix}) < z$ 成立,定义 $f(z) = n_{k+1}$
 - * $n_{k+1} < n_{i1}$: 同理存在 $y \in M$ 使得 $f(n_{i1}) > z$ 成立,定义 $f(z) = n_{k+1}$
 - * $n_{i(j)} < n_{k+1} < n_{i(j+1)}$, 则存在 $z \in M$ 使得 $f^{-1}(n_{i(j)}) < z < f^{-1}(n_{i(j+1)})$, 定义 $f(z) = n_{k+1}$

由定义知 f 是保序双射,故 $\mathcal{M} \cong \mathcal{N}$