Referencia - ICPC

Mathgic

Agosto 2024

Github ACTUALIZADO HASTA LA SECCIÓN 9. Falta 10, 11, etc.

${\rm \acute{I}ndice}$

		OJO	4
1.		ructuras básicas Min stack	4
		Min queue	4
	1.3.	Heap actualizable	5
2.	Ord	enamiento	6
	2.1.	Merge sort	6
3.	Mai	semáticas	6
٠.		Criba de Eratóstenes	6
		3.1.1. Criba	6
		3.1.2. Criba sobre un rango	7
		3.1.3. Criba segmentada	7
		3.1.4. Criba lineal	7
	3.2.	Algoritmo extendido de Euclides	8
	3.3.		8
	3.4.		9
		3.4.1. Función Phi de Euler	9
		3.4.2. Función sigma	9
	2.5	3.4.3. Función de Moebius	10
	3.5. 3.6.	Exponenciación binaria	10 11
	5.0.	3.6.1. FFT	11
		3.6.2. Multiplicar polinomios	11
		6.6.2. Multiplical politionics	
4.	Spa	rse table	12
5.	Fen	wick Tree	12
	Seg	ment Tree	13
	Seg 6.1.	ment Tree Actualizaciones puntuales	13 13
	Seg 6.1.	ment Tree	13 13
6.	Seg 6.1. 6.2.	ment Tree Actualizaciones puntuales	13 13
6.	Seg 6.1. 6.2.	ment Tree Actualizaciones puntuales	13 13 14
6. 7.	Seg 6.1. 6.2. Sqr 7.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO	13 13 14 14 14
6. 7.	Seg 6.1. 6.2.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos t decomposition Algoritmo de MO	13 13 14 14
6. 7.	Seg 6.1. 6.2. Sqr 7.1.	ment Tree Actualizaciones puntuales	13 13 14 14 14
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DS1	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO Caminos mínimos Caminos mínimos	13 13 14 14 14 15 16
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DS1	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO Caminos mínimos 9.1.1. Dijkstra	13 13 14 14 14 15 16 16
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DS1	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford	13 13 14 14 14 15 16 16 16 16
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DS1	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos te decomposition Algoritmo de MO Graminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall	13 13 14 14 14 15 16 16 16 16 17
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSU Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO fos Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4. Johnson's algorithm	13 13 14 14 14 15 16 16 16 17 17
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSU Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO J fos Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4. Johnson's algorithm Árboles	13 13 14 14 15 16 16 16 17 17
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSU Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO J fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3 Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST	13 13 14 14 14 15 16 16 16 17 17 17
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSU Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO J fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3 Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST 9.2.2 LCA	13 13 14 14 14 15 16 16 16 17 17 17 17
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSI Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO J fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3 Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST 9.2.2 LCA 9.2.3 Sack	13 13 14 14 15 16 16 16 17 17 17 17 19 19
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSI Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO J fos Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4. Johnson's algorithm Árboles 9.2.1. MST 9.2.2. LCA 9.2.3. Sack Máximo flujo	13 13 14 14 15 16 16 16 17 17 17 17 19 20
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSI Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO J fos Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4. Johnson's algorithm Árboles 9.2.1. MST 9.2.2. LCA 9.2.3. Sack Máximo flujo 9.3.1. Algunos problemas de flujos	13 13 14 14 15 16 16 16 17 17 17 17 19 20 20
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSI Gra 9.1.	ment Tree Actualizaciones puntuales Actualizaciones sobre rangos decomposition Algoritmo de MO J fos Caminos mínimos 9.1.1. Dijkstra 9.1.2. Bellman-Ford 9.1.3. Floyd-Warshall 9.1.4. Johnson's algorithm Árboles 9.2.1. MST 9.2.2. LCA 9.2.3. Sack Máximo flujo 9.3.1. Algunos problemas de flujos 9.3.2. Edmonds-Karp	13 13 14 14 15 16 16 16 17 17 17 17 19 20 20 20
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSI Gra 9.1.	Ment Tree Actualizaciones puntuales Actualizaciones sobre rangos de decomposition Algoritmo de MO J fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3 Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST 9.2.2 LCA 9.2.3 Sack Máximo flujo 9.3.1 Algunos problemas de flujos 9.3.2 Edmonds-Karp 9.3.3 Dinic	13 13 14 14 15 16 16 16 17 17 17 17 19 20 20 21
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSI Gra 9.1.	## Actualizaciones puntuales Actualizaciones sobre rangos Actualizaciones sobre rangos	13 13 14 14 15 16 16 16 16 17 17 17 17 19 20 20 21 23
6. 7.	Seg 6.1. 6.2. Sqr 7.1. DSI Gra 9.1.	Ment Tree Actualizaciones puntuales Actualizaciones sobre rangos de decomposition Algoritmo de MO J fos Caminos mínimos 9.1.1 Dijkstra 9.1.2 Bellman-Ford 9.1.3 Floyd-Warshall 9.1.4 Johnson's algorithm Árboles 9.2.1 MST 9.2.2 LCA 9.2.3 Sack Máximo flujo 9.3.1 Algunos problemas de flujos 9.3.2 Edmonds-Karp 9.3.3 Dinic	13 13 14 14 15 16 16 16 17 17 17 17 19 20 20 21

0.Treap	2 5
1.Strings	26
11.1. KMP	26
11.1.1. Autómata de KMP	27
11.2. Suffix array	27
11.2.1. Construcción	27
11.2.2. Prefijo común más largo	28
11.3. Aho-Corasick	28
11.4. Suffix tree	29
2.Geometría	31
12.1. Convex hull	31
3. Utilidades	32
13.1. Plantilla tree	32
13.2. Números aleatorios	
$4. { m Bitmask}$	32
14.1. Útiles	33
14.2. Iterar	
14.3. Gospers' Hack	
5.Máximo de funciones	34
15.1. Li-Chao Tree	34

0.1. OJO

- a) Se usan macros (MAXN, LOGN, etc) con arreglos estáticos para más comodidad, pero puede causar RTE o MLE cuando los valores son grandes. Pensar en usar vector<> (STL) cuando sea conveniente.
- b) Temario (no oficial): https://youkn0wwho.academy/topic-list.
- c) agréguenle errores/consejos que hay que tener en cuenta sobre las implementaciones y no estemos mucho tiempo tratando de encontrar el error.

0.2. Algunas formulas

```
⊕ es el xor.

• a|b = a \oplus b + a \& b

• a \oplus (a \& b) = (a|b) \oplus b

• b \oplus (a \& b) = (a|b) \oplus a

• (a \& b) \oplus (a|b) = a \oplus b

• a + b = a|b + a \& b = a \oplus b + 2(a \& b)

• a - b = (a \oplus (a \& b)) - ((a|b) \oplus a) = ((a|b) \oplus b) - ((a|b) \oplus a)

• a - b = (a \oplus (a \& b)) - (b \oplus (a \& b)) = ((a|b) \oplus b) - (b \oplus (a \& b))
```

1. Estructuras básicas

1.1. Min stack

```
template<typename T> struct min_stack{
        stack<pair<T, T>> st;
2
        min_stack(){}
3
        min stack(const T &MAXVAL){init(MAXVAL);}
        void init(const T &MAXVAL){st.push(make_pair(MAXVAL, MAXVAL));}
5
        void push(const T &v){st.push(make_pair(v, min(v, st.top().second)));}
6
        T top(){return st.top().first;}
        void pop(){if(st.size() > 1)st.pop();}
8
        T minV(){return st.top().second;}
        int size(){return st.size() - 1;}
10
        bool empty(){return size() == 0;}
11
   };
12
```

1.2. Min queue

```
template<typename T> struct min_queue{
        min_queue(const T &MAXVAL){ p_in.init(MAXVAL); p_out.init(MAXVAL);}
2
        void push(const T &v){p_in.push(v);}
3
        T front(){transfer(); return p_out.top();}
        void pop(){transfer(); p_out.pop();}
        int size(){return p_in.size() + p_out.size();}
6
        T minV() {return min(p_in.minV(), p_out.minV());}
        bool empty(){ return size() == 0;}
8
        void transfer(){
             if(p_out.size()) return;
10
             while(p_in.size()){
11
                 p_out.push(p_in.top());
12
                 p_in.pop();
13
             }
14
        }
15
        min_stack<T> p_in, p_out;
16
    };
17
```

1.3. Heap actualizable

```
template < class TPriority, class TKey > class UpdatableHeap{
    public:
2
        UpdatableHeap(){
3
             TPriority a;
             TKey b;
5
             nodes.clear();
6
             nodes.push_back( make_pair(a, b) );
        pair<TPriority, TKey> top() {return nodes[1];}
9
        void pop(){
10
             if(nodes.size() == 1) return;
11
             TKey k = nodes[1].second;
             swap_nodes(1, nodes.size() - 1);
13
14
             nodes.pop_back();
             position.erase(k);
15
             heapify(1);
16
         }
17
        void insert_or_update(const TPriority &p, const TKey &k){
18
             int pos;
             if(is_inserted(k)){
20
                 pos = position[k];
21
                 nodes[pos].first += p;
22
             } else {
23
                 position[k] = pos = nodes.size();
24
25
                 nodes.push_back( make_pair(p, k) );
             }
26
             heapify(pos);
        }
28
        bool is_inserted(const TKey &k) {
             return position.count(k);
30
        }
31
         int get_size() {
32
             return (int)nodes.size() - 1;
33
34
        void erase(const TKey &k){
35
             if(!is_inserted(k)) return;
36
             int pos = position[k];
37
             swap_nodes(pos, nodes.size() - 1);
             nodes.pop_back();
39
             position.erase(k);
40
             heapify(pos);
41
        }
42
    private:
43
        vector<pair<TPriority, TKey>> nodes;
        map<TKey, int> position;
45
        void heapify(int pos){
46
             if(pos >= nodes.size()) return;
47
             while(1 < pos && nodes[pos / 2] <= nodes[pos]){
48
                 swap_nodes(pos / 2, pos);
49
                 pos /= 2;
50
             }
51
             int 1 = pos * 2, r = pos * 2 + 1, maxi = pos;
52
             if(1 < nodes.size() && nodes[1] > nodes[maxi]) maxi = 1;
             if(r < nodes.size() && nodes[r] > nodes[maxi]) maxi = r;
54
             if(maxi != pos){
55
                 swap_nodes(pos, maxi);
56
                 heapify(maxi);
57
```

2. Ordenamiento

2.1. Merge sort

Complejidad: Tiempo $O(n \log n)$ - Memoria extra O(n).

```
void merge_sort(int arr[], int ini, int fin){
2
         if(ini == fin) return;
         int mitad = (ini + fin) / 2;
3
        merge sort(arr, ini, mitad);
        merge_sort(arr, mitad + 1, fin);
6
         int tam1 = mitad - ini + 1, tam2 = fin - mitad;
7
         int mitad1[tam1], mitad2[tam2];
8
         for(int i = ini, idx = 0; i <= mitad; ++i, idx++)</pre>
             mitad1[idx] = arr[i];
10
         for(int i = mitad + 1, idx = 0; i \le fin; ++i, idx++)
11
             mitad2[idx] = arr[i];
12
13
        for(int i = ini, idx1 = 0, idx2 = 0; i \le fin; ++i){
14
             if(idx1 < tam1 \&\& idx2 < tam2) \{ /// si quedan elementos en ambas mitades \}
15
                 arr[i] = mitad1[idx1] < mitad2[idx2] ? mitad1[idx1++] : mitad2[idx2++];</pre>
16
             } else { /// si solo hay elementos en mitad1
17
                 arr[i] = idx1 < tam1 ? mitad1[idx1++] : mitad2[idx2++];
18
             }
19
         }
20
21
```

3. Matemáticas

3.1. Criba de Eratóstenes

3.1.1. Criba

Complejidad: Tiempo $O(n \log \log n)$ - Memoria extra O(n). Calcula los primos menores o iguales a n.

```
void criba(int n, vector<int> &primos){
        primos.clear();
2
        if(n < 2) return;
3
        vector<bool> no_primo(n + 1);
        no_primo[0] = no_primo[1] = true;
5
        for(long long i = 3; i * i <= n; i += 2){
6
             if(no_primo[i]) continue;
             for(long long j = i * i; j \le n; j += 2 * i)
                 no_primo[j] = true;
9
10
        primos.push_back(2);
11
        for(int i = 3; i \le n; i += 2){
12
             if(!no_primo[i])
13
                 primos.push_back(i);
14
```

```
15 }
16 }
```

3.1.2. Criba sobre un rango

Complejidad: Tiempo $O(\sqrt{b} \log \log \sqrt{b} + (b-a) \log \log (b-a))$ - Memoria extra $O(\sqrt{b} + b - a)$. Calcula los primos en el intervalo [a, b].

```
void criba_sobre_rango(long long a, long long b, vector<long long> &primos){
1
         a = max(a, 011);
2
         b = max(b, 011);
3
         long long tam = b - a + 1;
         vector<int> primos_raiz;
5
         criba(sqrt(b) + 1, primos_raiz);
6
         bool no_primo[tam] = {};
        primos.clear();
8
         for(long long p : primos_raiz){
9
             long long ini = p * max(p, (a + p - 1) / p);
10
             for(long long m = ini; m \le b; m += p){
                 no_primo[m - a] = true;
12
             }
13
         }
14
         for(long long i = 0; i < tam; ++i){</pre>
15
             if(no_primo[i] || i + a < 2) continue;</pre>
16
             primos.push_back(i + a);
17
         }
18
    }
19
```

3.1.3. Criba segmentada

Complejidad: Tiempo $O(\sqrt{n}\log\log\sqrt{n} + n\log\log n)$ - Memoria extra $O(\sqrt{n} + S)$. Cuenta la cantidad de primos menores o iguales a n.

```
int cuenta_primos(int n){
         if(n < 2) return 0;</pre>
2
         const int S = sqrt(n);
3
         vector<int> primos_raiz;
4
         criba(sqrt(n) + 1, primos_raiz);
5
         int ans = 0;
6
         vector<char> no_primo(S + 1);
7
         for(int ini = 0; ini \leq n; ini += S){
8
             fill(no_primo.begin(), no_primo.end(), false);
             for(int p : primos_raiz){
10
                  int m = p * max(p, (ini + p - 1) / p) - ini;
11
                  for(; m <= S; m += p) no_primo[m] = true;</pre>
12
             }
13
             for(int i = 0; i < S && i + ini <= n; ++i)</pre>
                  if(!no primo[i] && 1 < i + ini) ans++;</pre>
15
16
         return ans;
17
    }
```

3.1.4. Criba lineal

Complejidad: Tiempo O(n) - Memoria extra O(n). Calcula los primos menores o iguales a n y el menor primo que divide a cada entero en [2, n]. ADVERTENCIA: es O(n) pero tiene una constante grande.

```
void criba_lineal(int n, vector<int> &primos){
primos.clear();
if(n < 2) return;
vector<int> lp(n + 1);
```

```
for(long long i = 2; i \le n; ++i){
5
              if(!lp[i]){
6
                  lp[i] = i;
7
                  primos.push_back(i);
9
             for(int j = 0; i * (long long)primos[j] <= n; ++j){</pre>
10
                  lp[i * primos[j]] = primos[j];
11
                  if(primos[j] == lp[i])
12
                       break;
13
             }
14
         }
15
    }
16
```

3.2. Algoritmo extendido de Euclides

Complejidad: Tiempo $O(\log(\max(a,b)))$ - Memoria extra O(1). Encuentra una solución a la ecuación $ax + by = \gcd(a,b)$.

```
int gcd_extendido(int a, int b, int &x, int &y){
1
         if(!b){
2
             x = 1;
3
             y = 0;
             return a;
5
         }
         int x1, y1;
         int g = gcd_extendido(b, a % b, x1, y1);
8
         x = y1;
9
10
        y = x1 - y1 * (a / b);
        return g;
11
    }
12
```

3.3. Solución de ecuaciones diofánticas lineales

Complejidad: Tiempo $O(\log(\max(a,b)))$ - Memoria extra O(1). Encuentra una solución a la ecuación ax + by = c o determina si no existe solución.

```
bool encuentra_solucion(int a, int b, int c, int &x, int &y, int &g){
1
        g = gcd_extendido(abs(a), abs(b), x, y);
2
        if(c % g) return false;
3
        x *= c / g;
4
        y *= c / g;
5
        if(a < 0) x = -x;
        if(b < 0) y = -y;
7
        return true;
8
   }
9
      Cambia a la siguiente (anterior) solución |cnt| veces. g := gcd(a, b).
   void cambia_solucion(int &x, int &y, int a, int b, int cnt, int g = 1) {
        x += cnt * b / g;
2
3
        y = cnt * a / g;
   }
4
      Cuenta la cantidad de soluciones x, y con x \in [minx, maxx] y y \in [miny, maxy].
   int cuenta_soluciones(int a, int b, int c, int minx, int maxx, int miny, int maxy) {
        int x, y, g;
2
        if(!encuentra_solucion(a, b, c, x, y, g)) return 0;
3
        /// ax + by = c ssi (a/q)x + (b/q)y = c/q
4
```

/// Dividimos entre q para simplificar y no dividir a cada rato

5

6

a /= g;

b /= g;

```
/// Signos de a, b nos sirven para pasar a la
8
        /// siguiente (anterior) solucion
9
        int sign a = a > 0 ? +1 : -1;
10
        int sign_b = b > 0 ? +1 : -1;
11
        /// pasa a la minima solucion tal que minx <= x
12
        cambia_solucion(x, y, a, b, (minx - x) / b);
13
        /// si \ x < minx, pasa a la siguiente para que minx <= x
14
        if(x < minx) cambia_solucion(x, y, a, b, sign_b);</pre>
15
        if (x > maxx) return 0; /// si \ x > maxx, entonces no hay x solution tal que x in [minx, maxx]
16
        int lx1 = x;
17
        /// pasa a la maxima solucion tal que x \le maxx
18
        cambia_solucion(x, y, a, b, (maxx - x) / b);
19
        if(x > maxx) cambia_solucion(x, y, a, b, -sign_b); /// si x > maxx, pasa a la solucion anterior
20
        int rx1 = x;
        /// hace todo lo anterior pero con y
22
        cambia_solucion(x, y, a, b, -(miny - y) / a);
23
        if(y < miny) cambia_solucion(x, y, a, b, -sign_a);</pre>
24
        if(y > maxy) return 0;
25
        int 1x2 = x;
26
        cambia solucion(x, y, a, b, -(maxy - y) / a);
27
        if(y > maxy) cambia_solucion(x, y, a, b, sign_a);
        int rx2 = x;
29
        /// como al encontrar las x tomando y como criterio no nos asegura
30
        /// que esten ordenadas, entonces las ordenamos
31
        if(lx2 > rx2) swap(lx2, rx2);
        /// obtenemos la interseccion de los intervalos
33
        int lx = max(lx1, lx2);
        int rx = min(rx1, rx2);
35
        if(lx > rx) return 0; /// no existen soluciones, interseccion vacia
36
        /// las soluciones (por x) van de b en b (b/g en b/g pero dividimos al principio)
37
        return (rx - lx) / abs(b) + 1;
    }
39
```

3.4. Funciones multiplicativas

3.4.1. Función Phi de Euler

Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. lp[i] es el menor primo que divide a i. Cuenta la cantidad de coprimos con n menores a n.

```
int phi(int n){
        if(n <= 1) return 1;
2
         if(!dp[n]){
3
             int pot = 1, p = lp[n], n0 = n;
             while(n0 \% p == 0){
5
                 pot *= p;
6
                 n0 /= p;
             }
             pot \neq p;
             dp[n] = pot * (p - 1) * phi(n0);
10
         }
        return dp[n];
12
    }
13
```

3.4.2. Función sigma

Sigma 0 (σ_0). Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. lp[i] es el menor primo que divide a i. Cuenta la cantidad de divisores de n.

```
long long sigma0(int n){
if(n <= 1) return 1;</pre>
```

```
if(!dp[n]){
3
             long long exp = 0, p = lp[n], n0 = n;
4
             while(n0 \% p == 0){
5
                 exp++;
                 n0 /= p;
             }
             dp[n] = (exp + 1) * sigma0(n0);
9
10
        return dp[n];
11
    }
12
```

Sigma 1 (σ_1). Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. lp[i] es el menor primo que divide a i. Calcula la suma de los divisores de n.

```
long long sigma1(int n){
1
         if(n <= 1) return 1;</pre>
2
         if(!dp[n]){
3
             long long pot = 1, p = lp[n], n0 = n;
             while(n0 \% p == 0){
                  pot *= p;
6
                  n0 /= p;
             }
             pot *= p;
9
             dp[n] = (pot - 1) / (p - 1) * sigma1(n0);
10
         }
11
         return dp[n];
12
    }
13
```

3.4.3. Función de Moebius

Complejidad: Tiempo O(d) - Memoria extra O(n). d es la cantidad de factores primos de n. 1p[i] es el menor primo que divide a i. Devuelve 0 si n no es divisible por algún cuadrado. Devuelve 1 o -1 si n es divisible por al menos un cuadrado. Devuelve 1 si n tiene una cantidad par de factores primos. Devuelve -1 si n tiene una cantidad impar de factores primos.

```
int moebius(int n){
         if(n <= 1) return 1;</pre>
2
         if(dp[n] == -7){
3
             int exp = 0, p = lp[n], n0 = n;
             while(n0 \% p == 0){
                  exp++;
6
                  n0 /= p;
             }
             dp[n] = (exp > 1 ? 0 : -1 * moebius(n0));
10
         return dp[n];
11
    }
12
```

3.5. Exponenciación binaria

Iterativa. Complejidad: Tiempo $O(\log b)$ - Memoria extra O(1).

```
int bin_exp(int a, int b) {
   int ans = 1;
   while(b) {
      if(b % 2) ans *= a;
      a *= a;
      b /= 2;
   }
   return ans;
}
```

Recursiva. Complejidad: Tiempo $O(\log b)$ - Memoria extra O(1).

```
int bin_exp(int a, int b){
    if(!b) return 1;
    int tmp = bin_exp(a, b / 2);
    if(b % 2) return tmp * tmp * a;
    return tmp * tmp;
}
```

3.6. Transformada de Fourier

3.6.1. FFT

Complejidad: Tiempo $O(n \log(n))$ - Memoria extra $O(n \log(n))$, donde n es el grado del polinomio P.

```
using comp = complex<double>;
    const double PI = acos(-1);
    vector<comp> FFT(vector<comp> &P, bool inversa){
3
        int n = P.size();
        if(n == 1) return P;
5
        vector<comp> Pe, Po;
6
        for(int i = 0; i < n; ++i)
             if(i % 2) Po.push_back(P[i]);
             else Pe.push_back(P[i]);
9
        vector<comp> eval_Pe = FFT(Pe, inversa);
10
        vector<comp> eval_Po = FFT(Po, inversa);
11
        vector<comp> eval(n);
12
        double angulo = 2 * PI / n * (inversa ? -1 : 1);
13
        comp w(1), w_n(cos(angulo), sin(angulo));
14
        for(int i = 0; i < n / 2; ++i){
15
            eval[i] = eval Pe[i] + w * eval Po[i];
16
             eval[i + n / 2] = eval_Pe[i] - w * eval_Po[i];
             if(inversa){
18
                 eval[i] /= 2;
19
                 eval[i + n / 2] /= 2;
20
            }
            w = w_n;
22
        }
        return eval;
24
25
```

3.6.2. Multiplicar polinomios

Complejidad: Tiempo $O(n \log(n))$ - Memoria extra $O(n \log(n))$, donde n es el grado máximo polinomio A y B.

```
vector<int> multiplicar(vector<int> A, vector<int> B){
1
        vector<comp> cA(A.begin(), A.end()), cB(B.begin(), B.end());
2
         int n = 1;
3
         while(n < A.size() + B.size()) n *= 2;</pre>
         cA.resize(n);
5
         cB.resize(n);
6
         vector<comp> val_A = FFT(cA, false);
         vector<comp> val_B = FFT(cB, false);
8
         for(int i = 0; i < n; ++i) val_A[i] *= val_B[i];</pre>
9
         val_A = FFT(val_A, true);
10
         vector<int> res(n);
11
         for(int i = 0; i < n; ++i) res[i] = round(val_A[i].real());</pre>
12
         int carry = 0;
13
         for(int i = 0; i < n; i++){
14
             res[i] += carry;
15
             carry = res[i] / 10;
16
```

```
res[i] %= 10;
res[i] %= 10;
return res;
}
```

4. Sparse table

Complejidad: Tiempo de precalculo $O(n \log n)$ - Tiempo en responder $O(\log(r - l + 1))$ - Tiempo en responder para operaciones idempotentes O(1) - Memoria extra $O(n \log n)$. LOGN es $\lceil \log_2(\texttt{MAXN}) \rceil$.

```
struct sparse_table{
1
        int n, NEUTRO;
2
        vector<vector<int>> ST;
3
        vector<int> lg2;
4
        int f(int a, int b){return a + b;}
5
         sparse_table(int _n, int data[]){
             n = n;
             NEUTRO = 0;
             lg2.resize(n + 1);
9
             lg2[1] = 0;
             for(int i = 2; i \le n; ++i) lg2[i] = lg2[i / 2] + 1;
11
             ST.resize(lg2[n] + 1, vector<int>(n + 1, NEUTRO));
12
             for(int i = 0; i < n; ++i) ST[0][i] = data[i];</pre>
13
             for(int k = 1; k \le lg2[n]; ++k){
                 int fin = (1 << k) - 1;
1.5
                 for(int i = 0; i + fin < n; ++i)
16
                     ST[k][i] = f(ST[k-1][i], ST[k-1][i+(1 << (k-1))]);
             }
18
        }
19
        int query(int 1, int r){
20
             if(1 > r) return NEUTRO;
             int ans = NEUTRO;
22
             for(int k = lg2[n]; 0 \le k; --k){
                 if(r - 1 + 1 < (1 << k)) continue;
24
                 ans = f(ans, ST[k][1]);
                 1 += 1 << k;
26
             }
27
             return ans;
28
        }
        int queryIdem(int 1, int r){
30
             if(1 > r) return NEUTRO;
31
             int lg = lg2[r - 1 + 1];
32
             return f(ST[lg][l], ST[lg][r - (1 << lg) + 1]);
33
        }
34
    };
35
```

5. Fenwick Tree

Complejidad: Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
BIT[pos] += x;
10
                   pos += lsb(pos);
11
              }
12
         }
13
          int sum(int pos){
14
              int res = 0;
              while(pos){
16
                   res += BIT[pos];
17
                   pos -= lsb(pos);
18
              }
19
              return res;
20
         }
21
    };
22
```

6. Segment Tree

Nodo del Segment Tree:

```
struct node{
int val, lazy;
node():val(0), lazy(0){}/// inicializa con el neutro y sin lazy pendiente
node(int x, int lz = 0):val(x), lazy(lz){}
const node operator+(const node &b)const{
    return node(val + b.val);
}
```

6.1. Actualizaciones puntuales

Complejidad: Tiempo de precalculo O(n) - Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
struct segment_tree{
        struct node{...};
2
        vector<node> nodes;
3
         segment_tree(int n, int data[]){
4
             nodes.resize(4 * n + 1);
5
             build(1, n, data);
6
        void build(int left, int right, int data[], int pos = 1){
             if(left == right){
9
                 nodes[pos].val = data[left];
                 return;
11
             }
             int mid = (left + right) / 2;
13
             build(left, mid, data, pos * 2);
             build(mid + 1, right, data, pos * 2 + 1);
1.5
             nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
16
17
        void update(int x, int idx, int left, int right, int pos = 1){
18
             if(idx < left || right < idx) return;</pre>
19
             if(left == right){
20
                 nodes[pos].val += x;
21
                 return;
22
             }
23
             int mid = (left + right) / 2;
24
             update(x, idx, left, mid, pos * 2);
25
             update(x, idx, mid + 1, right, pos * 2 + 1);
26
             nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
27
```

6.2. Actualizaciones sobre rangos

Complejidad: Tiempo de precalculo O(n) - Tiempo en responder $O(\log n)$ - Tiempo de actualización $O(\log n)$ - Memoria extra O(n).

```
struct segment_tree{
        struct node{...};
2
3
        vector<node> nodes;
         segment_tree(int n, int data[]){...}
        void build(int left, int right, int data[], int pos = 1){...}
5
        void combine_lazy(int lz, int pos){nodes[pos].lazy += lz;}
6
        void apply_lazy(int pos, int tam){
            nodes[pos].val += nodes[pos].lazy * tam;
             nodes[pos].lazy = 0;
9
        }
10
        void push_lazy(int pos, int left, int right){
11
             int tam = abs(right - left + 1);
12
             if(1 < tam){
13
                 combine_lazy(nodes[pos].lazy, pos * 2);
                 combine_lazy(nodes[pos].lazy, pos * 2 + 1);
15
             }
16
             apply_lazy(pos, tam);
17
        }
18
        void update(int x, int l, int r, int left, int right, int pos = 1){
19
             push_lazy(pos, left, right);
20
             if(r < left || right < 1) return;</pre>
21
             if(1 <= left && right <= r){
22
                 combine_lazy(x, pos);
                 push_lazy(pos, left, right);
24
                 return;
25
             }
26
             int mid = (left + right) / 2;
             update(x, 1, r, left, mid, pos * 2);
28
            update(x, 1, r, mid + 1, right, pos * 2 + 1);
29
            nodes[pos] = nodes[pos * 2] + nodes[pos * 2 + 1];
30
        node query(int 1, int r, int left, int right, int pos = 1){...}
32
   |};
```

7. Sqrt decomposition

7.1. Algoritmo de MO

Complejidad: Tiempo en responder $O((n+q)\sqrt{n}F + q\log(q))$, donde O(F) es la complejidad de add() y remove().

```
const int block_size = 300; /// Ajustable
struct query {
   int l, r, block, i;
   bool operator<(const query &b) const {
      if(block == b.block) return r < b.r;
}</pre>
```

```
return block < b.block;</pre>
6
         }
7
    };
8
    void add(int idx){/**TO-DO*/}
9
    void remove(int idx){/**TO-DO*/}
10
     int get_answer(){return 0; /**TO-DO*/}
     vector<<mark>int</mark>> solve(vector<query> &queries) {
12
         vector<int> answers(queries.size());
13
         sort(queries.begin(), queries.end());
14
         int l_act = 0;
15
         int r_act = -1;
16
         for(query q : queries){
17
             while(l_act > q.l) add(--l_act);
18
              while(r_act < q.r) add(++r_act);</pre>
19
             while(l_act < q.1) remove(l_act++);</pre>
20
             while(r_act > q.r) remove(r_act--);
21
              answers[q.i] = get_answer();
22
         }
23
         return answers;
24
    }
25
```

8. DSU

Complejidad: Tiempo $O(\log(n))$ - Memoria O(n), donde n es la cantidad total de elementos. La complejidad temporal es por cada función.

P[MAXN]: guarda el representante para cada nodo.

RA[MAXN]: guarda el rango (peso) del conjunto de cada representante para el small to large.

```
struct dsu{
         struct action{
2
3
             int x_p, y_p, rank_y;
         };
4
         vector<int> RA, P;
5
         vector<action> actions;
6
         dsu(int n){
7
             RA.resize(n, 1);
             P.resize(n);
9
             iota(P.begin(), P.end(), 0);
         }
11
         int root(int x){
12
             return x == P[x] ? x : P[x] = root(P[x]);
13
14
         bool join(int x, int y, bool recording){
15
             x = root(x);
16
             y = root(y);
             if(x == y) return false;
18
             if(RA[x] >= RA[y]) swap(x, y);
19
             if(recording) actions.push_back({x, y, RA[y]});
20
             RA[y] += RA[x];
21
             P[x] = y;
22
             return true;
23
         }
24
         void rollback(int cnt){
             while(cnt-- > 0 && actions.size()){
26
                 action act = actions.back();
27
                 actions.pop_back();
28
                 RA[act.y_p] = act.rank_y;
                 P[act.x_p] = act.x_p;
30
             }
```

```
32 }
33 };
```

9. Grafos

```
struct edge{
1
         int from, to;
2
         int64_t w;
3
          const bool operator<(const edge &b)const{</pre>
              return w > b.w;
5
         }
6
     };
     struct pos{
8
9
         int from;
         int64_t c;
10
          const bool operator<(const pos &b)const{</pre>
11
              return c > b.c;
12
         }
13
    |};
14
```

9.1. Caminos mínimos

9.1.1. Dijkstra

Complejidad: Tiempo $O(|E|\log |V|)$ - Memoria extra O(|E|). dist[MAXN] es el arreglo de distancias mínimas desde el nodo inicial a todos los demás.

```
int64_t dijkstra(int a, int b, vector<edge> graph[]){
         int64_t dist[MAXN];
2
        bool vis[MAXN];
3
         fill(dist, dist + MAXN, LLONG_MAX);
4
         memset(vis, 0, sizeof(vis));
5
        priority_queue<pos> q;
6
         q.push(pos{a, 0});
        dist[a] = 0;
         while(!q.empty()){
9
             pos act = q.top();
10
             q.pop();
11
             if(vis[act.from]) continue;
12
             vis[act.from] = true;
13
             for(edge &e : graph[act.from]){
14
                 if(dist[e.to] <= dist[act.from] + e.w) continue;</pre>
15
                 dist[e.to] = dist[act.from] + e.w;
                 q.push(pos{e.to, dist[e.to]});
17
             }
19
        return dist[b];
20
21
```

9.1.2. Bellman-Ford

Complejidad: O(|V||E|).

```
vector<int> bellman_ford(int s, int n, vector<edge> &edges, bool cycles = false){
vector<int> d(n, (cycles ? 0 : INT_MAX));
d[s] = 0;
vector<int> P(n, -1); /// Predecesor
for(int i = 0; i < n - 1; ++i){
for(edge &e : edges){
    if(d[e.from] == INT_MAX) continue;</pre>
```

```
if(d[e.to] > d[e.from] + e.w){
8
                      d[e.to] = d[e.from] + e.w;
9
                      P[e.to] = e.from;
10
                 }
11
             }
12
         }
13
         int last_relax = -1;
14
         for(edge &e : edges){
15
             if(d[e.from] == INT_MAX) continue;
16
             if(d[e.to] > d[e.from] + e.w){
17
                 d[e.to] = d[e.from] + e.w;
18
                 P[e.to] = e.from;
19
                 last_relax = e.to;
20
             }
21
         }
22
         if(last_relax == -1) return d;
23
        return {}; /// VACIO
24
    }
25
    9.1.3. Floyd-Warshall
       Complejidad: O(|V|^3).
    vector<vector<int>>> floyd_warshall(int n){
         vector<vector<int>>> d(n, vector<int>(n, INT_MAX));
2
         /// aqui inicializa con la lista/matriz de adyacencia
3
         /// luego calcula la dp
4
         for(int k = 0; k < n; ++k){
5
             for(int i = 0; i < n; ++i){
6
                 for(int j = 0; j < n; ++j){
                      if(d[i][k] == INT_MAX) continue;
8
                      if(d[k][i] == INT_MAX) continue;
                      if(d[i][j] > d[i][k] + d[k][j]) d[i][j] = d[i][k] + d[k][j];
10
                 }
11
             }
12
         }
13
         return d;
14
    }
15
```

9.1.4. Johnson's algorithm

Complejidad: $O(|V||E|\log |V|)$. Sea $p:V\to\mathbb{R}$ una función potencial del grafo. El algoritmo es como sigue:

- 1. Hacemos una transformación en el grafo cambiando los pesos w a w'(u,v) = w(u,v) + p(u) p(v).
- 2. Calculamos la distancia mínima $d': V \times V \to \mathbb{R}$ desde cada nodo a todos los demás con Dijkstra.
- 3. Finalmente, la distancia mínima de u a v en el grafo original es d(u,v) = d'(u,v) p(u) + p(v).

La función potencial p puede ser cualquiera. Usando Bellman-Ford se puede calcular el potencial p(u) como el camino más corto que termina (o empieza) en u.

9.2. Árboles

9.2.1. MST

Prim. Complejidad: Tiempo $O(|E|\log |V|)$. eCost [MAXN] es el arreglo de costos mínimos de cada nodo para incluirlo en el MST.

```
int64_t prim(vector<edge> graph[]){
int64_t e_cost[MAXN];
bool vis[MAXN];
```

```
memset(vis, 0, sizeof(vis));
4
         fill(e_cost, e_cost + MAXN, LLONG_MAX);
5
         int64 t ans = 0;
6
         priority_queue<edge> q;
7
         q.push(edge{1, 1, 0});
8
         while(q.size()){
             int node = q.top().to;
10
             int64_t w = q.top().w;
11
             q.pop();
12
             if(vis[node]) continue;
13
             vis[node] = true;
14
             ans += w;
15
             for(edge &e : graph[node]){
16
                  if(vis[e.to] || e_cost[e.to] <= e.w) continue;</pre>
                  e_{cost}[e.to] = e.w;
18
                  q.push(e);
19
             }
20
         }
21
         return ans;
22
    }
23
       Kruskal. Complejidad: Tiempo O(|E| \log |E|).
     int64_t kruskal(vector<edge> &edges, int n){
1
         sort(edges.begin(), edges.end());
2
         dsu mset(n);
3
         int64_t res = 0;
         for(edge &e : edges){
5
             if(mset.root(e.from) == mset.root(e.to)) continue;
             mset.join(e.from, e.to);
             res += e.w;
8
         }
9
         return res;
10
    }
11
       Boruvka. Complejidad: Tiempo O(|E|\log |V|). |V|=n. dsu. join() devuelve true si la unión se llevó a cabo
    o false en otro caso.
    int64_t boruvka(vector<edge> &edges, int n){
1
         dsu mset(n);
2
         int min_edge[n];
3
         int64_t res = 0;
         while(mset.cnt_comp > 1){
5
             fill(min_edge, min_edge + n, -1);
6
             for(int i = 0; i < edges.size(); ++i){</pre>
                 int u = mset.root(edges[i].from);
                  int v = mset.root(edges[i].to);
9
                  if(u == v) continue;
10
                  if(min_edge[u] == -1 || edges[i].w < edges[min_edge[u]].w) min_edge[u] = i;</pre>
11
                  if(min_edge[v] == -1 || edges[i].w < edges[min_edge[v]].w) min_edge[v] = i;</pre>
12
             }
13
             for(int i = 0; i < n; ++i){
14
                  int idx_e = min_edge[i];
15
                  if(idx_e == -1) continue;
16
                  res += mset.join(edges[idx_e].from, edges[idx_e].to) * edges[idx_e].w;
             }
18
         }
19
         return res;
20
    }
```

9.2.2. LCA

```
Complejidad: Tiempo de preproceso O(|V| \log |V|). Tiempo de LCA y n-ésimo ancestro O(\log |V|)
```

```
void precalc(int node, int p = 0, int d = 1){
         depth[node] = d;
2
        P[0][node] = p;
3
         for(int k = 1; k <= LOGN; ++k)</pre>
4
             P[k][node] = P[k - 1][P[k - 1][node]];
5
         for(int child : tree[node])
6
             if(p != child) precalc(child, node, d + 1);
7
    int LCA(int a, int b){
9
         if(depth[b] < depth[a]) swap(a, b);</pre>
10
         int dif = depth[b] - depth[a];
11
         for(int k = LOGN; 0 \le k; --k)
12
             if(is_on(dif, k)) b = P[k][b];
13
         if(a == b) return a;
14
         for(int k = LOGN; 0 \le k; --k){
15
             if(P[k][a] != P[k][b]){
16
                 a = P[k][a];
17
                 b = P[k][b];
18
             }
19
         }
20
        return P[0][a];
21
22
    int nth_ancestor(int u, int n){
23
         for(int k = LOGN; 0 \le k; --k)
24
             if(is_on(n, k)) u = P[k][u];
25
        return u;
26
    }
27
    9.2.3. Sack
       Complejidad: Tiempo O(|V| \log |V|).
    void precalc(int node, int p = 0){
1
         subtree_size[node] = 1;
2
         depth[node] = depth[p] + 1;
3
         for(int v : tree[node]){
4
             if(v == p) continue;
5
6
             precalc(v, node);
             subtree_size[node] += subtree_size[v];
8
    void add(int node, int x, int p = 0){
10
         /// add node here
11
         /// add subtree
12
        for(int v: tree[node])
13
             if(v != p && !big[v])
14
                 add(v, x, node);
16
    void dfs(int node, bool keep, int p = 0){
17
         int maxi = -1, big_child = -1;
18
         for(int v : tree[node]) /// Search for big_child
19
            if(v != p && subtree_size[v] > maxi)
20
               maxi = subtree_size[v], big_child = v;
21
         for(int v : tree[node])
22
             if(v != p && v != big_child)
23
                 dfs(v, false, node); /// run a dfs on small childs and clear them
24
         if(big_child != -1)
25
```

```
dfs(big_child, true, node), big[big_child] = 1; /// big_child marked as big and not cleared add(node, 1, p);
/// answer queries here
if(big_child != -1) big[big_child] = 0;
if(!keep) add(node, -1, p);
}
```

9.3. Máximo flujo

9.3.1. Algunos problemas de flujos

■ Maximum Weight Closure. Sea N_1 una clausura de G y $N_2 = V \setminus N_1$, tenemos que $w(N_1) = \sum_{i \in N_1^+} w_i - \sum_{i \in N_1^-} |w_i|$ y $Cap.Corte = \sum_{i \in N_2^+} w_i + \sum_{i \in N_1^-} |w_i|$. Entonces

$$Cap.Corte + w(N_1) = \sum_{i \in N_1^+} w_i + \sum_{i \in N_2^+} w_i.$$

- Mínima cobertura de vértices. En grafos generales el NP-Completo. En grafos bipartitos el máximo emparejamiento es igual al numero de vertices en la mínima cobertura. Para el problema con pesos en los nodos,
 unimos s a todos los nodos en L con capacidad igual al peso de cada nodo, unimos los nodos de R a t de la
 misma manera y unimos los nodos de L a R con capacidad infinita. El máximo flujo es el peso mínimo de la
 mínima cobertura.
- Máximo conjunto independiente. Cualquier conjunto independiente es el complemento de alguna cobertura de vértices.
- Mínimo cubrimiento de caminos independientes. En grafos generales es NP-hard. En DAG's duplicamos los nodos en un lado IN y un lado OUT. Conectamos s al lado OUT y el lado IN a t. Las aristas del DAG las agregamos del lado OUT al lado IN. Sea M el máximo emparejamiento de la red anterior, entonces el mínimo cubrimiento es |V| M.
- Mínimo cubrimiento de caminos NO necesariamente independientes. En grafos generales es NP-hard. En DAG's transformamos el DAG a su clausura transitiva y aplicamos el problema anterior.
- Teorema de Mirsky. En todo POSET, el tamaño de la cadena de mayor tamaño es igual al número de anticadenas necesarias para cubrir todos los elementos del conjunto.
- Teorema de Dilworth. En todo POSET, el tamaño de la anticadena de mayor tamaño es igual al número de cadenas necesarias para cubrir todos los elementos del conjunto.

9.3.2. Edmonds-Karp

Complejidad: Ford-Fulkerson $O\left(|E|\cdot maxFlow\right)$, Edmonds-Karp $O\left(|V||E|^2\right)$.

```
struct edge {
        int from, to;
        int64_t w; /// weight
3
        int64_t c; /// capacity
        int64_t f; /// flow
5
    };
6
    class ford_fulkerson {
1
    public:
2
        ford_fulkerson (vector<vector<edge>> &graph) : graph(graph){}
3
        int64_t get_max_flow(int s, int t){
             init();
5
             int64_t f = 0;
             while(find_and_update(s, t, f)){}
             return f;
8
        }
q
    private:
10
```

```
vector<vector<edge>> graph; /// graph (to, capacity)
11
        vector<edge> edges; /// List of edges (including the inverse ones)
12
        vector<vector<int>> edge_indexes; /// indexes of edges going out from each vertex
13
        void init(){
             edges.clear();
15
             edge_indexes.clear(); edge_indexes.resize(graph.size());
             for(int u = 0; u < graph.size(); u++){</pre>
17
                 for(edge &e : graph[u]){
                     edges.push_back({u, e.to, e.w, e.c, 0});
19
                     edges.push_back({e.to, u, -e.w, 0, 0});
                     edge_indexes[u].push_back(edges.size() - 2);
21
                     edge_indexes[e.to].push_back(edges.size() - 1);
22
                 }
23
             }
        }
25
        bool find_and_update(int s, int t, int64_t &flow){
             // Encontrar camino desat con BFS
            queue<int> q;
28
             // Desde donde llego y con que arista
29
             vector<pair<int, int>> from(graph.size(), make pair(-1, -1));
30
             q.push(s);
             from[s] = make_pair(s, -1);
32
            bool found = false;
33
             while(q.size() && (!found)){
34
                 int u = q.front(); q.pop();
                 for(int eI : edge_indexes[u]){
36
                     if((edges[eI].c > edges[eI].f) && (from[edges[eI].to].first == -1)){
                         from[edges[eI].to] = make_pair(u, eI);
38
                         q.push(edges[eI].to);
39
                         if(edges[eI].to == t) found = true;
40
                 }
42
             }
43
             if(!found) return false;
44
             // Encontrar cap. minima del camino de aumento
45
             int64_t u_flow = LLONG_MAX;
46
             int current = t;
47
             while(current != s) {
48
                 u_flow = min(u_flow, edges[from[current].second].c - edges[from[current].second].f);
49
                 current = from[current].first;
             }
51
             current = t;
             // Actualizar flujo
53
             while(current != s){
                 edges[from[current].second].f += u_flow;
55
                 edges[from[current].second^1].f -= u_flow; // Arista inversa
56
                 current = from[current].first;
57
             }
            flow += u flow ;
59
            return true;
61
    };
62
   9.3.3. Dinic
      Complejidad: O(|V|^2|E|).
    const int MAXV = 32767; /// 2^15 - 1
2
```

```
template<class T = int64_t> struct dinic{
 3
                   dinic(short V){this->V = V; if(V > MAXV){cout << "ERROR"; exit(0);}}</pre>
                   const static bool SCALING = true;
 5
 6
                   bool sorted = false;
 7
                   short s;
                   short t;
 9
                   short V;
10
                   int lim = 1; /// Para escalado
11
                    const T INF = numeric_limits<T>::max();
12
                    short level[MAXV]; /// distancia desde s
13
                    short ptr[MAXV]; /// arista por la que va explorando
14
15
                    struct edge{
16
                            short to, rev;
17
                            T cap, flow, mcap;
18
                            bool operator<(const edge &b)const{return mcap > b.mcap;}
19
                   };
20
21
                   vector<edge> adj[MAXV];
22
                   vector<short> adj_current[MAXV]; /// aristas del grafo de nivel
23
24
                   void add_edge(int u, int v, T cap, bool is_directed = true){
25
                             if(u == v) return;
26
                             adj[u].push_back({v, (short)adj[v].size(), cap, 0, cap + (is_directed ? 0 : cap)});
                             \verb|adj[v].push_back(\{u, (\verb|short|) | adj[u].size() - 1, is_directed ? 0 : cap, 0, cap + (is_directed ? 0 : cap, 0, cap + (is_direct
28
                   }
30
                   void mysort(){
31
                             if(sorted) return;
32
                            sorted = true;
33
                            for(int i = 0; i < V; ++i){
34
                                      sort(adj[i].begin(), adj[i].end());
35
                                      for(int j = 0; j < adj[i].size(); ++j){</pre>
36
                                                adj[adj[i][j].to][adj[i][j].rev].rev = j;
37
                                      }
                            }
39
                   }
40
41
                   bool bfs(){ /// Crea grafo de nivel
42
                            for(int i = 0; i < V; ++i){</pre>
43
                                      adj_current[i].clear();
                                      adj_current[i].reserve(adj[i].size());
45
                            }
46
47
                            queue<short> q;
48
                             q.push(s);
49
                            fill(level, level + V, -1);
                            level[s] = 0;
51
52
                             while(q.size()){
                                      short u = q.front(); q.pop();
53
                                      if(u == t) return true;
54
                                      for(int i = 0; i < (int)adj[u].size(); ++i){</pre>
55
                                                edge &e = adj[u][i];
56
                                                if(e.mcap < lim) break;</pre>
58
                                                if(level[e.to] == -1 \&\& e.cap - e.flow >= lim){
59
                                                         level[e.to] = level[u] + 1;
60
                                                         adj_current[u].push_back(i);
61
```

```
q.push(e.to);
62
                     } else if(level[e.to] == level[u] + 1 && e.cap - e.flow >= lim){
63
                          adj_current[u].push_back(i);
64
                     }
65
                 }
66
             }
67
68
             return false;
69
         }
70
        T dfs(short u, T flow){ /// Encuentra camino, bloquea aristas
72
             if(u == t) return flow;
73
             for(; ptr[u] < adj_current[u].size(); ++ptr[u]){</pre>
                 edge &e = adj[u][adj_current[u][ptr[u]]];
                 if(T pushed = dfs(e.to, min(flow, e.cap - e.flow))){
76
                     e.flow += pushed;
                     adj[e.to][e.rev].flow -= pushed;
                      if(e.cap - e.flow < lim) ptr[u]++;</pre>
79
                     return pushed;
80
                 }
81
             }
             return 0;
83
         }
84
85
         int64_t get_max_flow(short source, short sink){
             s = source;
87
             t = sink;
             mysort();
89
             int64_t flow = 0;
90
             for(lim = SCALING ? (1 << 30) : 1; 0 < lim; lim >>= 1){
91
                 while(bfs()){
                     fill(ptr, ptr + V, 0);
93
                     while(T pushed = dfs(s, INF)) flow += pushed; /// Bloquear flujo
94
                 }
95
             }
96
             return flow;
97
         }
98
    |};
99
           SCC
   9.4.
    9.4.1.
           Kosajaru
       Complejidad: Tiempo O(n).
    void dfs(int node, vector<int> &topo_ord){
         if(vis[node]) return;
2
         vis[node] = true;
3
         for(int v : graph[node]) dfs(v, topo_ord);
4
5
         topo_ord.push_back(node);
6
    void assign_scc(int node, const int id){
         if(vis[node]) return;
8
         vis[node] = true;
         scc[node] = id;
10
         for(int v : inv_graph[node]) assign_scc(v, id);
11
12
    int kosajaru(int n){ /// devuelve la cantidad de scc.
13
        memset(vis, 0, sizeof(vis));
14
         vector<int> topo_ord;
15
```

```
for(int i = 1; i <= n; ++i) dfs(i, topo_ord);</pre>
16
        reverse(topo_ord.begin(), topo_ord.end());
17
        memset(vis, 0, sizeof(vis));
18
        int id = 0;
19
        for(int u : topo_ord) if(!vis[u]) assign_scc(u, id++);
20
        return id;
21
22
    void build_scc_graph(int n, int n_scc){
23
        for(int u = 0; u < n; ++u)
24
             for(int v : graph[u])
                 if(scc[u] != scc[v])
26
                     scc_graph[scc[u]].push_back(scc[v]);
27
        for(int u = 0; u < n_scc; ++u){
28
             sort(scc_graph[u].begin(), scc_graph[u].end());
             auto it = unique(scc_graph[u].begin(), scc_graph[u].end());
30
             scc_graph[u].resize(it - scc_graph[u].begin());
31
             for(int v : scc_graph[u])
32
                 inv_scc_graph[v].push_back(u);
33
        }
34
    }
35
    9.5.
          2-Sat
       Complejidad: Tiempo en responder O(n).
    struct two_sat{
1
        int n;
2
        vector<vector<int>>> graph, inv_graph;
3
        vector<int> scc, ans;
4
        vector<bool> vis;
5
        two_sat(){}
6
        two_sat(int _n){
7
            n = n;
             graph.resize(2 * n);
9
             inv_graph.resize(2 * n);
10
             scc.resize(2 * n);
11
             vis.resize(2 * n);
12
             ans.resize(n);
13
        }
14
        void add_edge(int u, int v){
15
             graph[u].push_back(v);
16
             inv_graph[v].push_back(u);
17
18
        /// al menos una es verdadera
19
        void add_or(int p, bool val_p, int q, bool val_q){
20
             add_edge(p + (val_p ? n : 0), q + (val_q ? 0 : n));
21
             add_edge(q + (val_q ? n : 0), p + (val_p ? 0 : n));
22
23
        /// exactamente una es verdadera
24
        void add_xor(int p, bool val_p, int q, bool val_q){
             add_or(p, val_p, q, val_q);
26
             add_or(p, !val_p, q, !val_q);
27
        }
28
         /// p y q tienen el mismo valor
        void add_and(int p, bool val_p, int q, bool val_q){
30
             add_xor(p, !val_p, q, val_q);
31
        }
32
        /// Kosajaru
33
        void dfs(int node, vector<int> &topo_ord){...}
34
        void assign_scc(int node, const int id){...}
35
```

```
/// construye respuesta
36
         bool build_ans(){
37
             fill(vis.begin(), vis.end(), false);
38
             vector<int> topo_ord;
39
             for(int i = 0; i < 2 * n; ++i) dfs(i, topo_ord);</pre>
40
             fill(vis.begin(), vis.end(), false);
             reverse(topo_ord.begin(), topo_ord.end());
42
             int id = 0;
43
             for(int u : topo_ord) if(!vis[u]) assign_scc(u, id++);
44
             for(int i = 0; i < n; ++i){</pre>
45
                 if(scc[i] == scc[i + n]) return false;
46
                 ans[i] = (scc[i] < scc[i + n] ? 0 : 1);
47
             }
48
             return true;
49
         }
50
    };
51
```

10. Treap

AGREGAR PEQUEÑA DESCRIPCIÓN.

```
struct treap{
         typedef struct _node{
2
             long long x;
3
             int freq, cnt;
             long long p;
             _node *1, *r;
6
             node(long long _x): x(_x), p(((long long)(rand()) << 32 )^rand()),
             cnt(1), freq(1), l(nullptr), r(nullptr){}
             ~_node(){delete l; delete r;}
             void recalc(){
10
                 cnt = freq;
                 cnt += ((1) ? (1->cnt) : 0);
12
                 cnt += ((r) ? (r->cnt) : 0);
13
14
         }* node;
15
        node root;
16
         node merge(node 1, node r){
17
             if(!1 || !r) return 1 ? 1 : r;
18
             if(1->p < r->p){
19
                 r->1 = merge(1, r->1);
20
                 r->recalc();
21
                 return r;
22
             } else {
23
                 1->r = merge(1->r, r);
                 1->recalc();
25
                 return 1;
26
             }
27
         void split_by_value(node n, long long d, node &1, node &r){
29
             1 = r = nullptr;
30
             if(!n) return;
31
             if(n->x < d){
32
                 split_by_value(n->r, d, n->r, r);
33
                 1 = n;
34
             } else {
35
                 split_by_value(n->1, d, 1, n->1);
36
                 r = n;
37
             }
38
```

```
n->recalc();
39
        }
40
        void split_by_pos(node n, int pos, node &1, Node &r, int l_nodes = 0){
41
42
             1 = r = NULL;
             if(!n) return;
43
             int cur_pos = (n->1) ? (l_nodes + n->l->cnt) : l_nodes;
             if(cur_pos < pos){</pre>
45
                 splitFirstNodes(n->r, pos, n->r, r, cur_pos + 1);
46
47
             } else {
48
                 splitFirstNodes(n->1, pos, 1, n->1, 1_nodes);
49
50
             }
51
             n->recalc();
53
        treap(): root(NULL){}
54
         void insert_value(long long x){
55
             node 1, m, r;
56
             split_by_value(root, x, 1, m);
57
             split_by_value(m, x + 1, m, r);
58
             if(m){
59
                 m->freq++;
60
                 m->cnt++;
61
             } else m = new _node(x);
62
             root = merge(merge(1, m), r);
         }
64
        void erase_value(long long x){
65
             node 1, m, r;
66
             split_by_value(root, x, 1, m);
67
             split_by_value(m, x + 1, m, r);
68
             if(!m || m->freq == 1){
                 delete m;
70
                 m = nullptr;
71
             } else {
72
                 m->freq--;
73
                 m->cnt--;
74
75
             root = merge(merge(1, m), r);
76
         }
77
    };
```

11. Strings

11.1. KMP

Complejidad: Tiempo O(|s|) - Memoria extra O(|s|).

```
vector<int> prefix_function(const string &s){
        int n = s.size();
2
        vector<int> pi(n);
        for (int i = 1; i < n; ++i) {
             int j = pi[i - 1];
             while (j \&\& s[i] != s[j]) j = pi[j - 1];
6
             if (s[i] == s[j]) j++;
             pi[i] = j;
8
        }
        return pi;
10
   |}
11
```

11.1.1. Autómata de KMP

Complejidad: Tiempo O(|s|k) - Memoria extra O(|s|k), donde k es el tamaño del alfabeto.

```
void compute_automaton(const string &s, vector<vector<int>>& aut){
1
        s += '#';
2
        int n = s.size();
3
        vector<int> pi = prefix_function(s);
4
        aut.assign(n, vector<int>(26));
        for (int i = 0; i < n; ++i) {
6
            for (int c = 0; c < 26; ++c) {
                 if (i \&\& 'a' + c != s[i]) aut[i][c] = aut[pi[i - 1]][c];
                 else aut[i][c] = i + ('a' + c == s[i]);
            }
10
        }
11
    }
12
```

11.2. Suffix array

11.2.1. Construcción

Complejidad: Tiempo $O(|s|\log(|s|))$ - Memoria O(|s|). Calcula la permutación que corresponde a los sufijos ordenados lexicográficamente. SA[i] es el índice en el cual empieza el *i*-ésimo sufijo ordenado.

```
int SA[MAXN], mrank[MAXN];
    int tmpSA[MAXN], tmpMrank[MAXN];
2
    void countingSort(int k, int n){
3
         int freqs[MAXN] = {};
         for(int i = 0; i < n; ++i){
5
             if(i + k < n) freqs[ mrank[i + k] ]++;</pre>
6
             else freqs[0]++;
         }
         int m = max(100, n);
9
         for(int i = 0, sfs = 0; i < m; ++i){
10
             int f = freqs[i];
11
             freqs[i] = sfs;
12
             sfs += f;
13
         }
14
         for(int i = 0; i < n; ++i){
15
             if(SA[i] + k < n) tmpSA[freqs[mrank[SA[i] + k]]++] = SA[i];
16
             else tmpSA[ freqs[0]++ ] = SA[i];
17
18
        for(int i = 0; i < n; ++i) SA[i] = tmpSA[i];</pre>
19
20
21
    void buildSA(string &str){
22
         int n = str.size();
23
         for(int i = 0; i < n; ++i){
24
             mrank[i] = str[i] - '#';
25
             SA[i] = i;
26
         }
         for(int k = 1; k < n; k <<= 1){
28
             countingSort(k, n);
             countingSort(0, n);
30
             int r = 0;
31
             tmpMrank[SA[0]] = 0;
32
             for(int i = 1; i < n; ++i){
                 if(mrank[ SA[i] ] != mrank[ SA[i - 1] ] || mrank[ SA[i] + k ] != mrank[ SA[i - 1] + k ])
34
                      tmpMrank[ SA[i] ] = ++r;
35
                 else
36
                     tmpMrank[ SA[i] ] = r;
37
```

```
}
38
             for(int i = 0; i < n; ++i) mrank[i] = tmpMrank[i];</pre>
39
        }
40
41
    inline bool suff_compare1(int idx,const string &pattern) {
42
        return (s.substr(idx).compare(0, pattern.size(), pattern) < 0);</pre>
43
44
    inline bool suff_compare2(const string &pattern,int idx) {
45
        return (s.substr(idx).compare(0, pattern.size(), pattern) > 0);
46
47
    pair<int,int> match(const string &pattern) {
48
         int *low = lower_bound (SA, SA + s.size(), pattern, suff_compare1);
49
         int *up = upper_bound (SA, SA + s.size(), pattern, suff_compare2);
50
        return make_pair((int)(low - SA),(int)(up - SA));
51
    }
52
```

11.2.2. Prefijo común más largo

Complejidad: Tiempo O(|s|) - Memoria O(|s|). Calcula la longitud del prefijo común más largo entre dos sufijos consecutivos (lexicográficamente) de s. lcp[i] guarda la respuesta para el i-ésimo sufijo y el (i-1)-ésimo sufijo.

```
int lcp[MAXN];
    void buildLCP(string &str){
         int n = str.size();
3
         int phi[n];
         phi[SA[0]] = -1;
5
         for(int i = 1; i < n; ++i) phi[ SA[i] ] = SA[i - 1];
6
         int plcp[n];
7
         int k = 0;
8
         for(int i = 0; i < n; ++i){
q
             if(phi[i] == -1){
10
                 plcp[i] = 0;
11
                 continue;
12
              while(i + k < n \&\& phi[i] + k < n \&\& str[i + k] == str[phi[i] + k]) k++; 
14
             plcp[i] = k;
             k = max(k - 1, 0);
16
         for(int i = 0; i < n; ++i) lcp[i] = plcp[SA[i]];</pre>
18
    }
```

11.3. Aho-Corasick

Construción en O(mk), donde m es el tamaño total de los strings y k el tamaño del alfabeto.

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y PEGUÉ porcuestionesdetiempo
    const int K = 10:
2
    struct Vertex {
3
        int next[K];
4
        bool output = false;
5
        int p = -1;
6
         char pch;
        int link = -1;
        int go[K];
9
        Vertex(int p=-1, char ch='$') : p(p), pch(ch) {
10
             fill(begin(next), end(next), -1);
11
             fill(begin(go), end(go), -1);
12
        }
13
    };
    vector<Vertex> t(1);
15
```

```
void add_string(string const& s) {
16
         int v = 0;
17
         for (char ch : s) {
18
             int c = ch - '0';
19
             if (t[v].next[c] == -1) {
20
                 t[v].next[c] = t.size();
21
                 t.emplace_back(v, ch);
22
             }
23
             v = t[v].next[c];
24
         }
        t[v].output = true;
26
27
    int go(int v, char ch);
28
    int get_link(int v) {
         if (t[v].link == -1) {
30
             if (v == 0 || t[v].p == 0)
31
                 t[v].link = 0;
32
             else
33
                 t[v].link = go(get_link(t[v].p), t[v].pch);
34
         }
35
        return t[v].link;
36
37
    int go(int v, char ch) {
38
         int c = ch - '0';
39
         if (t[v].go[c] == -1) {
             if (t[v].next[c] != -1)
41
                 t[v].go[c] = t[v].next[c];
42
             else
43
                 t[v].go[c] = v == 0 ? 0 : go(get_link(v), ch);
44
45
        return t[v].go[c];
    }
47
```

11.4. Suffix tree

COPIADO Y PEGADO POR

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y PEGUÉ porcuestionesdetiempo
    const int inf = 1e9;
2
    const int maxn = 1e6;
3
    int s[maxn];
    map<int, int> to[maxn];
    //Root is the vertex 0
6
    //f_pos[i] is the initial index with the letter of the edge that goes from the parent of i to i
    //len[i] is the number of letters in the edge that enters in i
    //slink[i] is the suffix link
    int len[maxn], f_pos[maxn], slink[maxn];
10
    int node, pos;
11
    int sz = 1, n = 0;
12
13
    int make_node(int _pos, int _len){
14
        f_pos[sz] = _pos;
15
        len [sz] = _len;
16
        return sz++;
17
18
19
    void go_edge(){
20
        while(pos > len[to[node][s[n - pos]]]){
21
            node = to[node][s[n - pos]];
22
            pos -= len[node];
23
```

```
}
24
    }
25
26
    void add_letter(int c){
27
         s[n++] = c;
28
         pos++;
29
         int last = 0;
30
         while(pos > 0){
31
             go_edge();
32
             int edge = s[n - pos];
33
             int &v = to[node][edge];
34
             int t = s[f_pos[v] + pos - 1];
35
             if(v == 0){
36
                  v = make_node(n - pos, inf);
                  //v = make_node(n - pos, 1);
38
                  slink[last] = node;
39
                  last = 0;
40
             } else if(t == c) {
41
                  slink[last] = node;
42
                  return;
43
             } else {
44
                  int u = make_node(f_pos[v], pos - 1);
45
                  to[u][c] = make_node(n - 1, inf);
46
                  to[u][t] = v;
47
                  f_pos[v] += pos - 1;
                  len [v] -= pos - 1;
49
                  v = u;
50
                  slink[last] = u;
51
                  last = u;
52
53
             if(node == 0) pos--;
             else node = slink[node];
55
         }
56
    }
57
58
    void correct(int s_size){
59
         len[0] = 0;
60
         for (int i = 1; i < sz; i++){
61
             if (f_pos[i] + len[i] - 1 >= s_size){
62
                  len[i] = (s\_size - f\_pos[i]);
63
             }
64
         }
65
    }
66
    void print_suffix_tree(int from){
68
         cout << "Edge entering in " << from << " has size " << len[from];</pre>
69
         cout << " and starts in " << f_pos[from] << endl;</pre>
70
         cout << "Node " << from << " goes to: ";</pre>
         for (auto u : to[from]){
72
             cout << u.second << " with " << (char)u.first << " ";</pre>
73
         }
74
         cout << endl;</pre>
75
         for (auto u : to[from]){
76
             print_suffix_tree(u.second);
77
78
    }
79
80
    void build(string &s){
81
         for (int i = 0; i < sz; i++){
```

```
to[i].clear();
83
         }
         sz = 1;
85
         node = pos = n = 0;
86
         len[0] = inf;
87
         for(int i = 0; i < s.size(); i++)</pre>
              add_letter(s[i]);
89
         correct(s.size());
     }
91
92
     void cutGeneralized(vector<int> &finishPoints){
93
         for (int i = 0; i < sz; i++){
94
              int init = f_pos[i];
95
              int end = f_pos[i] + len[i] - 1;
              int idx = lower_bound(finishPoints.begin(), finishPoints.end(), init) - finishPoints.begin();
97
              if ((idx != finishPoints.size()) && (finishPoints[idx] <= end)){//Must be cut
98
                  len[i] = (finishPoints[idx] - f_pos[i] + 1);
99
                  to[i].clear();
100
              }
101
         }
102
     }
103
104
105
     void build_generalized(vector<string> &ss){
106
         for (int i = 0; i < sz; i++){
              to[i].clear();
108
         }
109
         sz = 1;
110
         node = pos = n = 0;
111
         len[0] = inf;
112
         int sep = 256;
         vector<int> finishPoints;
114
115
         int next = 0;
         for (int i = 0; i < ss.size(); i++){</pre>
116
              for (int j = 0; j < ss[i].size(); j++){
117
                  add_letter(ss[i][j]);
118
119
             next += ss[i].size();
120
              finishPoints.push_back(next);
121
              add_letter(sep++);
122
              next++;
123
         }
124
          correct(next);
125
          cutGeneralized(finishPoints);
127
```

12. Geometría

12.1. Convex hull

Complejidad: $O(n \log n)$. AGREGAR PEQUEÑA DESCRIPCIÓN.

```
/// MEJORAR ESTA COSA, SOLO LO COPIE Y PEGUÉ porcuestionesdetiempo
struct pt {
    double x, y;
};
int orientation(pt a, pt b, pt c) {
    double v = a.x*(b.y-c.y)+b.x*(c.y-a.y)+c.x*(a.y-b.y);
    if (v < 0) return -1; // clockwise</pre>
```

```
if (v > 0) return +1; // counter-clockwise
8
        return 0;
9
10
    bool cw(pt a, pt b, pt c, bool include_collinear) {
11
        int o = orientation(a, b, c);
12
        return o < 0 || (include_collinear && o == 0);
13
14
    bool collinear(pt a, pt b, pt c) { return orientation(a, b, c) == 0; }
15
    void convex_hull(vector<pt>& a, bool include_collinear = false) {
16
        pt p0 = *min_element(a.begin(), a.end(), [](pt a, pt b) {
             return make_pair(a.y, a.x) < make_pair(b.y, b.x);</pre>
18
        });
19
         sort(a.begin(), a.end(), [&p0](const pt& a, const pt& b) {
20
             int o = orientation(p0, a, b);
             if (o == 0)
22
                 return (p0.x-a.x)*(p0.x-a.x) + (p0.y-a.y)*(p0.y-a.y)
23
                     < (p0.x-b.x)*(p0.x-b.x) + (p0.y-b.y)*(p0.y-b.y);
24
             return o < 0;
25
        });
26
         if (include collinear) {
27
             int i = (int)a.size()-1;
             while (i \ge 0 \&\& collinear(p0, a[i], a.back())) i--;
29
             reverse(a.begin()+i+1, a.end());
30
        }
31
        vector<pt> st;
        for (int i = 0; i < (int)a.size(); i++) {</pre>
33
             while (st.size() > 1 && !cw(st[st.size()-2], st.back(), a[i], include_collinear))
                 st.pop_back();
35
             st.push_back(a[i]);
36
         }
37
        a = st;
    }
39
```

13. Utilidades

13.1. Plantilla tree

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;
```

13.2. Números aleatorios

mt19937_64 genera números de 64 bits.

```
random_device rd; // Inicializa el generador de numeros aleatorios
mt19937_64 generator(rd()); // Crea un generador Mersenne Twister con la semilla de random_device
uniform_int_distribution<long long> distribution(1, 1e18);
cout << distribution(generator) << '\n';
```

14. Bitmask

```
#define set_all(S, n) (S = (111 << (n)) - 111)

#define clear_trailing_ones(S) (S &= (S + 1))

#define set_last_bit_off(S) (S |= (S + 1))

#define is_power_of_two(S) (!((S) & ((S) - 1)))

#define nearest_power_of_two(S) ((int)pow(2, (int)((log((double)(S)) / log(2)) + 0.5)))

#define is_divisible_by_power_of_two(n, k) !((n) & ((111 << (k)) - 1))

#define modulo(S, N) ((S) & ((N) - 1)) // S % N, N potencia de 2
```

14.1. Útiles

Hay algunas funciones de gcc que nos pueden ayudar para hacer más eficiente nuestro código y evitar algunos bucles:

```
// one plus the index of the least significant 1-bit of x, or if x is zero, returns zero.

int __builtin_ffs (int x):

// number of leading 0-bits in x, starting at the most significant bit position. If x is 0 is undefined

int __builtin_clz (unsigned int x):

// number of trailing 0-bits in x, starting at the least significant bit position. If x is 0 undefined.

int __builtin_ctz (unsigned int x):

// number of 1-bits in x.

int __builtin_popcount (unsigned int x):

// he parity of x, i.e. the number of 1-bits in x modulo 2.

int __builtin_parity (unsigned int x):
```

14.2. Iterar

Dada una máscara m, iterar sobre todos sus subconjuntos

```
for(int x=m; x; ){
    --x &= m;
    //...
}
```

El código anterior itera las máscaras válidas desde la más grande hasta la más pequeña (ojo el código no itera sobre x = m) La complejidad de iterar sobre todas las submáscaras de todos los números de 1 a 2^n es $O(3^n)$.

14.3. Gospers' Hack

Sirve para generar todos las máscaras de n bits, que tengan exactamente k bits a 1 (y que sean menores o iguales que 2^n). Complejidad $O\left(\binom{n}{k}\right)$?

```
void GospersHack(int k, int n) {
         int set = (1 << k) - 1;
2
         int limit = (1 << n);</pre>
3
         while (set < limit){
4
             DoStuff(set);
5
             // Gosper's hack:
6
             int c = set & - set;
             int r = set + c;
8
             set = (((r \cdot set) >> 2) / c) | r;
9
         }
10
    }
11
```

DoStuff() is meant to be replaced with a function that processes each different value that set takes.

```
int mask = (1 << k) - 1, r,c;
while(mask <= (1 << n) - (1 << (n-k) )){

//...
c = mask & -mask;
r = mask + c;
mask = r | ( (r^mask) >> 2/c );
}
```

15. Máximo de funciones

15.1. Li-Chao Tree

Dado un conjunto A con M valores a evaluar, y N funciones (tales que cada una de ellas se intersecta con el resto a lo más una vez), te devuelve $\max_{i \in [N]} (f_i(a))$ en $\log(M)$ para cualquier $a \in A$.

```
struct Function {
1
        long long m;
2
        long long b;
        long long eval(long long x){
             if (m == LLONG_MIN) return LLONG_MIN;
            return m*x+b;
6
        }
        Function(){ m = LLONG_MIN;}
8
        Function(long long m_, long long b_): m(m_), b(b_){ }
    };
10
    struct LiChaoTree {
        vector<long long> values;
2
        long long maxV;
3
        Function *functions;
        LiChaoTree(vector<long long> &values_){
5
             values = values_;
6
            sort(values.begin(), values.end());
            functions = new Function[values.size() * 4];
            maxV = values.size();
        }
10
        //Range\ from\ l\ to\ r-1
11
        long long get(long long x){
12
             return get(x, 1, 0, maxV);
13
14
        long long get(long long x, int v, int l, int r){
15
             int m = (1 + r) / 2;
             long long mv = values[m];
17
            if (r - 1 == 1){
                 return functions[v].eval(x);
19
             } else if (x < mv){}
                 return max(functions[v].eval(x), get(x, 2 * v, 1, m));
21
            } else {
22
                 return max(functions[v].eval(x), get(x, 2 * v + 1, m, r));
23
             }
        }
25
        void addFunction(Function f){
            addFunction(f, 1, 0, maxV);
27
        void addFunction(Function f, int v, int l, int r){
29
             int m = (1 + r) / 2;
30
            long long mv = values[m];
31
             long long lv = values[1];
32
            bool lef = f.eval(lv) > functions[v].eval(lv);
33
            bool mid = f.eval(mv) > functions[v].eval(mv);
34
             if (mid){//Si el actual pierde en el medio
                 swap(functions[v], f);
36
37
            if (r - 1 == 1){
38
                 return;
            } else if (lef != mid){//El cruce esta en el lado izq.
40
                 addFunction(f, 2 * v, 1, m);
41
```