OLAP vs. OLTP

Online Transaction Processing (OLTP) and Online Analytical Processing (OLAP) are two fundamental types of data processing systems used in databases and data warehouses.

<u>OLTP</u> focuses on managing real-time operational transactions, while **<u>OLAP</u>** is designed for complex analysis and decision-making based on historical data.

Note: In some cases, data architecture designs consider OLAP engine is part of Data Warehouse, in some cases one of Data Warehouse layer serves the need of OLAP engine.

To provide a clear comparison, below is a table outlining the key differences across various aspects, based on established definitions and use cases from industry sources.

Aspect	OLTP (Online Transaction Processing)	OLAP (Online Analytical Processing)
Purpose	Handles day-to-day operational tasks, such as processing real-time transactions (e.g., bank withdrawals, e-commerce orders). ²³	Supports strategic decision- making through data analysis, reporting, and insights (e.g., sales trends over years). ⁴⁵
Data Focus	Deals with current, real-time data that is constantly updated; emphasizes accuracy and integrity for individual records. 46	Works with historical, aggregated data from multiple sources; focuses on long-term patterns and summaries. ⁷⁸

¹ OLAP vs. OLTP | Key Differences | Blog | ByteHouse

1

² OLAP vs. OLTP | Compare | aws.amazon

³ OLAP vs. OLTP | Key Differences | Fundamentals | Snowflake

⁴ OLAP vs. OLTP | Key Differences in DBMS | DBMS | GeeksForGeeks

⁵ OLAP vs. OLTP | Key Differences | Topics | Think | IBM

Query Type	Simple, standardized queries (e.g., INSERT, UPDATE, DELETE) involving few records; optimized for speed in transactions. ⁶⁹	Complex, ad-hoc queries (e.g., aggregations, joins across large datasets) involving many records; may include multidimensional analysis. ²⁵
Database Design	Typically uses normalized relational databases (e.g., roworiented storage) to minimize redundancy and ensure data consistency. ²¹⁰	Often employs denormalized structures like data warehouses or cubes (e.g., columnar storage, star/snowflake schemas) for efficient querying. 410
Performance	High throughput for many small transactions; response times in milliseconds; prioritizes write operations and concurrency. 1011	Optimized for read-heavy operations; queries can take seconds to minutes due to large-scale aggregations. 510
Users	Front-line employees, customers, or applications (e.g., cashiers, online shoppers); many concurrent users performing routine tasks. 9	Analysts, managers, or executives (e.g., data scientists, business intelligence teams); fewer users but with advanced querying needs. ³
Data Volume	Processes small amounts of data per transaction but handles high volumes of transactions overall. 911	Deals with very large datasets (terabytes to petabytes) for comprehensive analysis. 711
Operations	Frequent writes (inserts, updates, deletes) with some reads; requires strong ACID compliance for transaction integrity. 610	Primarily read-only with batch updates; focuses on summarization and multidimensional views. ²⁴
Examples	Banking systems, retail POS, airline reservations. ²	Business intelligence tools, sales forecasting, market research reports. 8

⁶ OLAP vs. OLTP | Key Differences | Resources | StitchData

 $^{^7}$ OLAP vs. OLTP | Key Differences | Blog | DataCamp

 $^{^{\}rm 8}$ OLAP vs. OLTP | Key Differences | Blog | Estuary

 $^{^{9}}$ OLAP vs. OLTP | Key Differences | Questions | StackOverflow

 $^{^{10}}$ OLAP vs. OLTP \mid Key Differences \mid Comments \mid DataEngineering \mid Reddit

¹¹ OLAP vs. OLTP | Comparison | Blog | InerWorks