

FIG.1

$\gamma_i(p)$	$\chi_{i,1}(p)$	\cdots	$\chi_{i,j_{\text{others}}}(p)$
---------------	-----------------	----------	---------------------------------

$\gamma_{i+1}(p)$	$\chi_{i+1,1}(p)$	\cdots	$\chi_{i+1,j_{\text{others}}}(p)$
-------------------	-------------------	----------	-----------------------------------

FIG.2

FIG.3

FIG.4

FIG.5

FIG.6A

FIG.6B

FIG.7A

FIG.7B

	$R_b(4)$	$R_c(4)$	R_{TC}	$R_p(4)$	$E_p(4)$	$E_p(4) \cdot p$
CASE1	0.7931	0.1957	—	1	0.6379	2.552
CASE2	0.8448	0.1837	0.0612	1	0.6379	2.552

FIG.8

FIG.9

FIG.10

FIG.11

FIG.12

$R_b(4)$	$R_p(4)$	$A_p(p)$	$R_{RED}(4)$	$R_C(4)$	$R_{Others}(4)$	$E_p(4)$	$E_p(4) \cdot p$
0.9392	0.8821	8.482	0.2230	0.3309	0.0288	0.4443	1.777

FIG.13

FIG.14

FIG.15

FIG.16

CPU PERFORMANCE	$R_b(4)$	$R_p(4)$	$A_p(p)$	$R_{RED}(4)$	$R_C(4)$	$R_{Others}(4)$	$E_p(4)$	$E_p(4) \cdot p$
ACTUAL (ACTUALLY MEASURED VALUE)	0.9392	0.8821	8.482	0.2230	0.3309	0.0288	0.4443	1.777
FIVE TIMES (PREDICTED VALUE)	0.9073	0.8821	8.482	0.0960	0.7121	0.0124	0.1846	0.7384

FIG.17

PROCESSING No	$E_p(4)$	$\sum_{i=1}^p \tau_i(p)$	p
1	0.1846	64.6	4
2	0.7219	2000.3	10
3	0.3000	512.1	2
4	1	1000	1

FIG.18

FIG.19

FIG.20

No.	(RED),1	(RED),2	(C),1	(C),2	(RED),1+(RED),2	(C),1+(C),2
#1	10	40	100	99	50	199
#2	11	40	101	100	51	201
#3	10	38	104	100	48	204
#4	9	39	98	98	48	196

FIG.21

FIG.22

FIG.23

FIG.24

FIG.25

FIG.27

FIG.26

FIG.28

MAGNIFICATION	$(R_b(4))_E$	$(R_p(4))_E$	$(A_p(4))_E$	$(R_{RED}(4))_E$	$(R_c(4))_E$	$(R_{others}(4))_E$	$(E_p(4))_E$	$(E_p(4))_{E \cdot p}$
$A_{CPU}=5$	0.9688	0.8821	8.482	0.3333	0	0.0430	0.6850	2.740
$A_C=\infty$								
$A_{CPU}=5$	0.9583	0.8821	8.482	0.2953	0.1141	0.0381	0.6002	2.401
$A_C=19.2$								

FIG.29

FIG.30

FIG.31

TUNING	$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_{RED}(4)$	$R_C(4)$	$R_{Others}(4)$	$E_p(4)$	$\max(\tau_i)$
BEFORE TUNING	0.9392	0.8821	8.482	0.2230	0.3309	0.0288	0.4443	37
AFTER FIRST TUNING	0.9508	0.8821	8.482	0.2672	0.1983	0.0345	0.5389	30.5

FIG.32

FIG.33

FIG.34

j	ALGORITHM	$A_p(4)$	$E_p(4)$	τ	$(p)_j$	$A_p(4) > (p)_j$	$(p)_T$
1	UNSUITABLE FOR PARALLEL PROCESSING	5.000	0.5682	110	7.782	x	-
2	SUITABLE FOR PARALLEL PROCESSING	∞	0.9167	120	6.618	o	7

FIG.35

FIG.36

PROCESSING NO.	$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_{RED}(4)$	$R_C(4)$	$E_p(4)$	$E_p(4) \cdot p$
1	1.000	1.000	∞	0.0000	0.08333	0.9167	3.667
2	1.000	1.000	∞	0.0000	0.08333	0.9167	3.667
3	1.000	1.000	∞	0.0000	0.08333	0.9167	3.667
4	1.000	1.000	∞	0.0000	0.08333	0.9167	3.667
5	1.000	0.8000	5.000	0.4545	0.09091	0.5682	2.273

FIG.37

FIG.38

$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_C(4)$	$E_p(4)$	$E_p(4) \cdot p$
0.9286	1.000	∞	0.4808	0.4821	1.928

FIG.39

FIG.40

$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_{RED}(4)$	$E_p(4)$	$E_p(4) \cdot p$
0.9398	0.8973	9.737	0.3141	0.7184	2.874

FIG.41

FIG.42

$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_c(4)$	$E_p(4)$	$E_p(4) \cdot p$
0.9375	0.9557	22.57	0.5263	0.4647	1.859

FIG.43

FIG.44

$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_c(4)$	$R_w(4)$	$E_p(4)$	$E_p(4) \cdot p$
0.9704	1.000	∞	0.3158	0.1108	0.5564	2.226

FIG.45

FIG.46

$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_C(4)$	$R_W(4)$	$E_p(4)$	$E_p(4) \cdot p$
0.7875	1.000	∞	0.1418	0.2778	0.4521	1.808

FIG.47

FIG.48

$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_{RED}(4)$	$R_C(4)$	$E_p(4)$	$E_p(4) \cdot p$
1.000	0.9524	21.01	0.1333	0.2000	0.7000	2.800

FIG.49

FIG.50

$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_C(4)$	$R_W(4)$	$E_p(4)$	$E_p(4) \cdot p$
1.000	1.000	∞	0.2000	0.1000	0.7000	2.800

FIG.51

FIG.52

R _b (4)	R _p (4)	A _p (4)	R _{TC} (4)	R _C (4)	R _W (4)	E _p (4)	E _p (4)·p
0.8231	1.000	∞	0.0344	0.1089	0.0888	0.6321	2.528

FIG.53

FIG.54

$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_{TC}(4)$	$R_C(4)$	$R_W(4)$	$E_p(4)$	$E_p(4) \cdot p$
0.8571	1.000	∞	0.0385	0.1282	0.2340	0.5137	2.055

FIG.55

FIG.56

$R_b(8)$	$R_p(8)$	$A_p(8)$	$R_{RED}(8)$	$R_{TC}(8)$	$R_C(8)$	$R_W(8)$	$E_p(8)$	$E_p(8) \cdot p$
0.9286	0.9790	47.62	0.0592	0.0296	0.1124	0.1080	0.6552	5.242

FIG.57

FIG.58

$R_b(4)$	$R_p(4)$	$A_p(4)$	$R_{RED}(4)$	$E_p(4)$	$E_p(4) \cdot p$
0.6250	0.8988	9.881	0.3103	0.4796	1.918

FIG.59