Documentación Vpython

FI2001-3 Mecánica 2018 Universidad de Chile

Junio

Resumen

El grupo de "Coordenadas uwu" surgió el año 2018 con la inciativa del profesor Alvaro Nuñez, junto con el apoyo del estudiante Rodrigo Jaeschke, para desarrollar animaciones de:

- Sistemas de coordenadas, vectores unitarios, curvas de coordenadas constante, etc
- Sistemas mecánicos sencillos, ilustrando coordenadas intrinsecas, velocidades, aceleraciones, etc
- Sistemas más complejos... flujo de energía, deformaciones elásticas, etc.

El grupo es conformado actualmente por estudiantes de segundo año de la FCFM, y está divididos en 3 grupos de trabajos:

- Grupo 1: Vale G., Palo V. y Martin M.
- Grupo 2: Boris C., Seba S. y Bastián F.
- Grupo 3: Bruno R., Tomás R y Feña S.

${\bf \acute{I}ndice}$

Lis	Lista de simbolos	
1.	Coordenadas y Cinematica	2
2.	Gravitación	2
3.	Trabajo y energia	3
4.	Movimiento relativo y sistemas no inerciales	3

Índice de tablas

Índice de figuras

Lista de simbolos

- α angular acceleration
- δ Kronecker delta
- ζ Riemann zeta function
- λ Lagrange multiplier
- χ chromatic number
- a aceleracion
- F fuerza
- t tiempo
- v velocidad
- ρ radio

Para el proyecto vamos a usar Python 3.6 y su paquete Vpython. Para descargar Python 3.6 y vpython se recomienda descargar anaconda (es un paquete en el que viene python y muuuchos paquetes muy útiles) para python.

1. Coordenadas y Cinematica

Problema de la gaviota

La fuerza es perpendicular a la superficie de las alas extendidas de la gaviota. Su magnitud depende de varios factores pero esencialmente es proporcional al cuadrado de la rapidez $|L| = kv^2$, donde k es una constante de proporcionalidad que asumiremos fija y conocida.

- 1. La gaviota, cuya masa es conocida e igual a m, desea surcar, a una altura H, una trayectoria circular horizontal de radio R a velocidad angular constante.
 - a) ¿Que valor debe tomar la inclinacion, β , de la gaviota?, β , es el angulo definido desde la vertical hasta la normal al plano de las alas de la gaviota.
 - b) Determine el valor necesario al cual la gaviota debe mantener la velodicidad angular
- 2. Para lanzarse al mar, la gaviota inicia un descenso en forma de helice. ie. el radio R y la velocidad angular siguen siendo constantes pero la gaviota adquiere ademas una velocidad vertical constante, dz, en direccion hacia el mar
 - a) si conocemos R y dz, ξ Que valor debe tomar la velocidad angular?
 - b) Determine la inclinacion β de la gaviota necesaria para esta trayectoria

 χ , α , ζ , λ , δ .

2. Gravitación

Explicación de simbolos que se ocuparán en los programas:

Problema de orbitas

 ρ , v, a, t, F.

- Interpretado ,
- Indentación obligatoria
- Distingue mayúsculas minúsculas
- No hay declaración de variables (dynamic typing)
- Orientado a objetos
- \blacksquare Garbage colector: quita los objetos a los que no haga referencia nada

- 3. Trabajo y energia
- 4. Movimiento relativo y sistemas no inerciales

Referencias

- [1] SITIO WEB VPYTHON Documentación y más http://vpython.org/
- [2] GLOWSCRIPT Almacén de documentos, online http://www.glowscript.org/
- [3] GRUPO EN GITHUB Archivos del grupo, Github https://github.com/vpythonfcfm
- [4] GRUPO EN GITLAB Archivos del grupo, GitLab https://gitlab.com/mecanica
- [5] DRIVE

 Documentación en drive

 https://drive.google.com/drive/folders/1NtJFtAmzxQd_YRu3f68Fnss4KQNrH-Un
- [6] PROGRAMAS UTILES PARA DESARROLLAR MEJOR LOS CÓDIGOS

 Beneficios alumnos Uchile

 https://www.u-cursos.cl/usuario/77a5152ba2963e5296264676485b1c05/mi_blog/o/
 23555
- [7] PRINCIPAL DE GLOSARIOS

 Programacion lineal y flujo en redes, segunda edicion

 http://mirrors.ibiblio.org/CTAN/macros/latex/contrib/glossaries-extra/
 glossaries-extra-manual.pdf
- [8] PRINCIPAL DE GLOSARIOS y H.D. SHERALI

 Programacion lineal y flujo en redes, segunda edicion

 https://es.sharelatex.com/learn/Lists_of_tables_and_figures
- [9] PRINCIPAL DE GLOSARIOS y H.D. SHERALI

 Programacion lineal y flujo en redes, segunda edicion

 https://tex.stackexchange.com/questions/255787/how-to-index-figures?utm_
 medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
- [10] PRINCIPAL DE GLOSARIOS y H.D. SHERALI

 Programacion lineal y flujo en redes, segunda edicion

 https://tex.stackexchange.com/questions/348640/how-to-effectively-use-list-of-symbols-:

 utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
- [11] PRINCIPAL DE GLOSARIOS y H.D. SHERALI Programacion lineal y flujo en redes, segunda edicion https://es.sharelatex.com/learn/Glossaries
- [12] PRINCIPAL DE GLOSARIOS y H.D. SHERALI Programacion lineal y flujo en redes, segunda edicion https://github.com/nlct/bib2gls
- [13] PRINCIPAL DE GLOSARIOS y H.D. SHERALI Programacion lineal y flujo en redes, segunda edicion https://ctan.org/pkg/bib2gls