

학습 목표

삽입(Insertion) 정렬 알고리즘을 이해하고

시간복잡도를 계산할 수 있다

Data Structures in Python Chapter 5 - 1

- Binary Search
- Recursive Binary Search
- Bubble sort
- Selection sort
- Insertion sort

Agenda & Readings

- Agenda
 - Insertion sort algorithm
 - Time complexity
 - Summary sorting basics
 - Empirical Analysis
- Reference:
 - Problem Solving with Algorithms and Data Structures
 - Chapter 5 Search, Sorting and Hashing

Insertion Sort Algorithm

- Given is a list L of n value {L[0], ···, L[n-1]}
 - Divide list into sorted (left initially only one element) and sorted part (right):
 Sorted: {L[0]}
 Unsorted: {L[1], ..., L[n-1]}
 - In each pass, take left most element from unsorted part and place it into correct position of sorted part.
 - Reduce size of unsorted part by one and increase size of sorted part by one.
 After i-th pass:

Sorted: {L[0],...,L[i]} Unsorted: {L[i+1], ..., L[n-1-i]}

Repeat until unsorted part is an empty list - then all elements are sorted.

← Unsorted ← → →				
29	10	14	13	18
10	29	14	13	18
10	14	29	13	18
10	13	14	29	18
10	13	14	18	29

```
PASS 1 (1 Comp, 1 Shift)
PASS 2 (2 Comp, 1 Shift)
PASS 3 (3 Comp, 2 Shift)
PASS 4 (2 Comp, 1 Shift)
```

Insertion Sort Algorithm

- Given is a list L of n value {L[0], ···, L[n-1]}
 - Divide list into sorted (left initially only one element) and sorted part (right):
 Sorted: {L[0]}
 Unsorted: {L[1], ..., L[n-1]}
 - In each pass, take left most element from unsorted part and place it into correct position of sorted part.
 - Reduce size of unsorted part by one and increase size of sorted part by one.
 After i-th pass:

Sorted: {L[0],...,L[i]} Unsorted: {L[i+1], ..., L[n-1-i]}

Repeat until unsorted part is an empty list - then all elements are sorted.

← Unsorted ← →				
29	10	14	13	18
10	29	14	13	18
10	14	29	13	18
10	13	14	29	18
10	13	14	18	29

List to sort
PASS 1 (1 Comp, 1 Shift)
PASS 2 (2 Comp, 1 Shift)
PASS 3 (3 Comp, 2 Shift)
PASS 4 (2 Comp, 1 Shift)

Insertion Sort - Exercise

Total PASS 8 (26 Comp, 20 Shift)

Insertion Sort - Exercise

Insertion Sort - making room for the element to be inserted

 For example, to insert 10 into the sorted part of the list we need to store 10 into a temporary variable and move all the elements which are bigger than 10 up one position, then insert 10 into the empty slot.

Insertion Sort Code

```
def insertion sort(a):
   for i in range(1, len(a)):
       ivalue = a[i]
       while i > 0 and a[i - 1] > ivalue:
           a[i] = a[i - 1]
                           # this is "shift", not swap
           i = i - 1
       a[i] = ivalue
       #print(i, "-", a) # enable to see each pass
if name _ == '__main__':
   a = [54, 26, 93, 17, 77, 31, 44, 55, 20]
   print("before: ", a)
   insertion_sort(a)
                                   before: [54, 26, 93, 17, 77, 31, 44, 55, 20]
   print(" after: ", a)
                                   after: [17, 20, 26, 31, 44, 54, 55, 77, 93]
```

```
def swap(a, i, j):
    temp = a[i]
    a[i] = a[j]
    a[j] = temp
```

def swap(a, i, j): a[i], a[j] = a[j], a[i]

Insertion Sort - Big O

- For a list with n elements:
 - The number of comparisons in the WORST CASE?
 - pass 1 pass 2 pass 3 ... last pass 1 2 3 ··· n-3 n-2 n-1 $1 + 2 + \cdots + (n-3) + (n-2) + (n-1) = \frac{1}{2}(n^2 n)$
- Big O of the insertion sort is O(n²)
 - The number of data increases 10 times, then it takes a 100 times longer.
- Note 1: Best case O(n) ... when does this occur?
- Note 2: The number of shifts is equal or one smaller than the number of comparisons, so same order of magnitude.

Insertion Sort - Big O

- What if the data is already sorted?
 - Move elements?
 - Comparisons?

29	10	14	13	18
10	29	14	13	18
10	14	29	13	18
10	13	14	29	18
10	13	14	18	29

List to sort
PASS 1 (1 Comp, 1 Shift)
PASS 2 (2 Comp, 1 Shift)
PASS 3 (3 Comp, 2 Shift)

PASS 4 (2 Comp, 1 Shift)

pick 10 & inserted

pick 14 & inserted

pick 32 & inserted

pick 35 & inserted

	5	10	14	32	35
i	5	10	14	32	35
	5	10	14	32	35
	5	10	14	32	35
	5	10	14	32	35

List to	o sort	
PASS 1 (Comp,	Shift)
PASS 2 (Comp,	Shift)
PASS 3 (Comp,	Shift)
PASS 4 (Comp,	Shift)

Insertion Sort - Big O

- What if the data is in **reverse order**?
 - Move elements?
 - Comparisons?

29	10	14	13	18
10	29	14	13	18
10	14	29	13	18
10	13	14	29	18
10	13	14	18	29

List to sort
PASS 1 (1 Comp, 1 Shift)
PASS 2 (2 Comp, 1 Shift)
PASS 3 (3 Comp. 2 Shift)

PASS 4 (2 Comp, 1 Shift)

pick 10 & inserted

pick 14 & inserted

pick 32 & inserted

pick 35 & inserted

35	32	14	10	5
32	35	14	10	5
14	32	35	32	35
10	14	32	35	35
5	10	14	32	35

List	o sor	rt	
PASS 1	Con	np, Sl	nift)
PASS 2	Con	np, Sl	nift)
PASS 3	Coi	mp, SI	nift)
PASS 4	Coi	mp, Sl	nift)

Running Time Matters

- The usefulness of an algorithm in practice depends on the data size n and the complexity (Big O) of the algorithm (time and memory).
- In general algorithms with linear, logarithmic or low polynomial running time are acceptable.
 - $O(\log n)$
 - 0 (n)
 - $O(n^k)$ where k is a small constant, (in many cases k < 2 is ok)
- Algorithms with exponential or high polynomial running time are often of limited use.
 - O (n^k) where k is a large constant,
 say > 3
 - $O(2^n), O(n^n)$

Summary

- Insertion sort is a good middle-of-the-road choice for sorting lists of a few thousand items or less.
- Insertion sort is known faster than selection sort on average.
- For small lists, the insertion sort is appropriate due to its simplicity.
 For almost sorted lists, the insertion sort is a good choice.
- For large lists, all $O(n^2)$ algorithms, including the insertion sort, are prohibitively inefficient.

Summary - Simple Sorting Algorithms

- All sorting algorithms (bubble, selection, insertion sorts) discussed so far had an $O(n^2)$ average and the worst-case complexity
 - → In practice for large lists it is too slow.
- The Timsort algorithm (written in C not using the Python interpreter) used by Python combines elements from Merge sort and Insertion sort.
 - Worst case and average case complexity $O(n \log n)$
 - Very fast for almost sorted lists
- All comparison-based sorting algorithms require at least $O(n \log n)$ time in the worst and average case.

학습 정리

1) 교환(swap)과 이동(shift)를 비교했을 때, shift는 값을 단순히 덮어쓰는 것이기 때문에 swap보다 더 빠르다

2) 삽입 정렬은 요소가 적을 때에는 효율적이지만 요소가 많아질수록 $O(n^2)$ 의 시간복잡도를 가진다

