

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE CIENCIAS

Lic. en Actuaría

Proyecto final:

Querétaro de Arteaga

Asignatura:

Demografía

Profesora:

Karina Orozco Galicia

Ayudante:

René Carrillo Deaquino

Alumnos:

Sánchez Navarro Juan Carlos Zamudio Lorenzo Sofía Alejandra

Grupo: 9215

Ciclo Escolar: 2020-2

Fecha:

Junio de 2020

<u>ÍNDICE</u>

1.	. If	NTRODUCCION	1
2.	F	UENTES DE INFORMACIÓN	2
	Cer	nsos y Conteos	2
	Reg	gistros administrativos	2
	Enc	uestas	3
	Erro	ores en la información	3
3.	Е	VALUACIÓN Y CORRECCIÓN DE LA INFORMACIÓN	3
	EVA	ALUACIÓN	3
	a.	Pirámides poblacionales	3
	b.	Índice de Whipple	6
	c.	Índice de Myers	7
	d.	Índice de Naciones Unidas	8
	e.	Porcentaje de No Especificados	9
	f.	Modelos de crecimiento	9
	CO	RRECCIÓN	. 11
	a.	Prorrateo	. 11
	b.	Promedios móviles ponderados (método de 1/16)	. 13
	c.	Diagrama de Lexis	. 15
4.	C	OMPONENTES DEMOGRÁFICOS	. 17
	MC	PRTALIDAD	. 17
	a.	Tasa Bruta de Mortalidad	. 17
	b.	Tasa Tipificada de Mortalidad	. 18
	c.	Tasas específicas de mortalidad	. 18
	d.	Mortalidad Infantil	. 20
	e.	Tabla de Mortalidad	. 21
	f.	Causas de mortalidad	. 25
5.	F	ECUNDIDAD	. 31
	a.	Medición del registro tardío de los nacimientos	. 31
	b.	Tasa Bruta de Natalidad	. 31
	c.	Medidas resumen de la fecundidad	. 32

	d.	Otros Indicadores	. 33
6.	ľ	MIGRACIÓN	. 36
;	a.	Matriz Migratoria	. 36
	b.	Tasas de Migración bajo método directo	. 36
	c.	Método prospectivo y retrospectivo	. 38
7.	E	ECUACIÓN COMPENSADORA	. 41
	a.	Crecimiento Total	. 41

1. INTRODUCCIÓN

Querétaro de Arteaga es uno de los treinta y un <u>estados</u> que, junto con la <u>Ciudad de México</u>, forman los <u>Estados Unidos Mexicanos</u>. Su capital y ciudad más poblada es <u>Santiago de Querétaro</u>. Está ubicado en la <u>región centro norte</u> del país limitando al norte con <u>Guanajuato y San Luis Potosí</u>, al sur con <u>Hidalgo y Estado de México</u> y al oeste con <u>Michoacán</u>. Con 11,684 km², es el quinto estado menos extenso —por delante de <u>Colima</u>, <u>Aquascalientes</u>, <u>Morelos y Tlaxcala</u>, el menos extenso— y con 156.45 hab / km², el séptimo más <u>densamente poblado</u>, por detrás del <u>Estado de México</u>, <u>Morelos</u>, <u>Tlaxcala</u>, <u>Aquascalientes</u>, <u>Guanajuato y Puebla</u>. Fue fundado el 23 de diciembre de 1823. Forma parte de la Alianza Bajío-Occidente.

Querétaro se ha distinguido en los últimos años por ser uno de los dos estados del país con la mayor dinámica de crecimiento económico, desde 1994 hasta la fecha ha mantenido un crecimiento mayor al <u>nacional</u>, esto debido a que empresas nacionales y trasnacionales de los sectores <u>industrial</u>, comercial y de servicios se han asentado en el estado. En el año <u>2000</u> se da el salto a la industria manufacturera y a partir de <u>2005</u> hace presencia la <u>industria aeroespacial</u>, siendo esta última una de las de mayor desarrollo en la entidad por lo que Querétaro se ha convertido en el cuarto centro de actividades aeroespaciales más importantes del mundo solo detrás de Singapur, Dubái y Bangalore. ¹

En el presente trabajo de investigación se lleva a cabo un estudio demográfico general, que tiene como finalidad conocer el estado actual de la entidad. En base a observaciones se está estudiando a las poblaciones de forma cualitativa y cuantitativa. Todo el estudio está basado en indicadores y tasas que fueron presentadas a lo largo del curso, tomando en cuenta información adquirida del sitio oficial del INEGI, tal como el uso de bases de CENSOS y CONTEOS, de 2010 y 2005 respectivamente, así como otro tipo de información que será presentada a lo largo del proyecto.

¹ https://es.wikipedia.org/wiki/Quer%C3%A9taro

2. FUENTES DE INFORMACIÓN

Las fuentes de información son instrumentos institucionales, mediante los cuales se recogen datos de interés demográfico. Éstos, proveen datos captados a través de la observación de sucesos que experimenta la población y así poder estudiar un gran número de características de dicha población.

Las fuentes de información toman en cuenta:

- Población: Para la demografía, la población es un conjunto de personas vinculadas por nexos reproductivos que puede identificarse por particularidades culturales, sociales, geográficas, políticas o de otro tipo.²
- **Espacio**: Lugar que ocupa la población que desea analizarse.
- **Tiempo:** Dicha información de la población se recoge en un periodo de tiempo determinado.

Tenemos tres tipos de fuentes de información a la hora de querer realizar un estudio demográfico:

- 1. Censos y conteos
- 2. Registros administrativos
- 3. Encuestas

Censos y Conteos

Censo: De acuerdo con el INEGI, un censo se define como el proceso de recopilar, analizar y publicar datos relativos a todas las unidades de estudio en un universo en un momento determinado. Los censos permiten conocer características de la población tales como: estructura, composición por sexo, edad, estado civil, parentescos, nacionalidad, lengua, entre otras.

Conteo: El Conteo de Población y Vivienda es un censo nacional compilado por el gobierno de México, tomado de manera intermedia entre los censos generales nacionales más completos.³

En nuestro estudio demográfico se utilizó la información proporcionada por el INEGI respecto al CENSO de 2010 y CONTEO de 2005.

Registros administrativos

Hacen referencia a los datos que provienen del Registro Civil. Su finalidad es recopilar y clasificar información de eventos que suceden en la población, se centran en el registro de

² https://definicion.de/demografia

³ https://en.wikipedia.org/wiki/Conteo de Poblaci%C3%B3n y Vivienda

nacimientos, defunciones, matrimonios, etc. Sus características principales son la universalidad y continuidad.

Encuestas

Una encuesta es el proceso de recolección, compilación y publicación. Es dirigida a una parte o muestra de las unidades de observación. Incluye la determinación de objetivos de alcances, diseños muestrales y metodologías, presupuesto, capacitación, levantamiento de la información, procesamiento y difusión de los datos.⁴

Errores en la información

En general, la información demográfica que se recopila de estas fuentes está expuesta a diversos tipos de errores. Estos errores pueden ser de **cobertura** o de **contenido** de la información.

- Los errores de cobertura se presentan en los registros administrativos, así como en los censos y encuestas, y surgen cuando las personas o evento no se registran, se registran en un tiempo que no correspondía o en su caso se registran más de una vez.
- Los errores de contenido se refieren a los casos en que las personas o evento se han contabilizado pero sus características se registran incorrectamente, de igual manera pueden generarse por mentir en las encuestas, hacer una mala interpretación o simplemente de desconocer de la información que se está siendo solicitada.

3. EVALUACIÓN Y CORRECCIÓN DE LA INFORMACIÓN

EVALUACIÓN

Una vez recopilada toda la información es muy importante que la calidad de estos sea lo mejor posible, pues ésta es la base de las estimaciones de la población de los años siguientes, por lo que su evaluación, calidad y fiabilidad constituyen un elemento central para el conocimiento de la realidad demográfica y la planificación del desarrollo de los países o entidades. La evaluación de los procesos y metodologías que se presentaron a lo largo del curso pueden ayudar a planificar y obtener mejores resultados en el futuro. Hacer una evaluación de los datos es crucial ya que permitirá identificar cuándo es necesario realizar ajustes y correcciones que contribuyan a mejorar la calidad de la información obtenida de las distintas fuentes utilizadas.

a. Pirámides poblacionales

En esencia, una pirámide poblacional está definida como un doble histograma que representa a la población segmentada por edad y por sexo. La cual está conformada por tres tipos:

⁴ http://www.cis.es/cis/opencms/ES/1 encuestas/ComoSeHacen/queesunaencuesta.html

- Pirámide joven: Altos niveles de fecundidad y mortalidad. Caracterizada porque en su población más del 40% son menores de 15 años y menos del 5% son mayores de 65 años.
- **Pirámide en transición:** La mortalidad y la fecundidad se encuentran a la baja. Caracterizada porque en su población más del 30% son menores de 15 años, menos del 6% son mayores de 65 años y la mayoría de la población se encuentra entre los 15-65 años.
- **Pirámide vieja:** Bajos niveles de fecundidad y mortalidad. Caracterizada porque en su población el 25% aproximadamente tienen 15 años y más del 15% son mayores de 65 años.

A continuación, se presentarán las pirámides poblacionales construidas que corresponden a la información obtenida del CENSO 2010 y CONTEO 2005:

La siguiente pirámide poblacional está representada por grupos quinquenales, que se basa en el CENSO 2010; podemos observar que la población es joven, lo cual refleja que la entidad presentaba alta fecundidad y natalidad.

La siguiente pirámide fue desarrollada en R, y está estructurada de la forma Respecto a la Población Total para grupos quinquenales en base al CENSO 2010, de igual manera podemos observar que la población es joven reflejando alta fecundidad y natalidad.

Por último, tenemos la pirámide poblacional representada por grupos quinquenales basada en el CONTEO 2005, que, para no reiterar, apreciamos las mismas condiciones de las pirámides anteriores.

b. Índice de Whipple

Estima el grado de preferencia hacia los dígitos 0 y 5 por la población censada que declaró su edad entre 23 y 62 años.

El supuesto que se maneja es el de distribución uniforme en cada una de las edades individuales y para el grupo de edad asociado, así por ejemplo cinco veces la población censada que declaró tener treinta años cumplidos de edad debe ser aproximadamente igual a la suma de las personas que declararon tener 28, 29, 30, 31 y 32 años cumplidos de edad en el censo.

El índice de Whipple I_w se define como:

$$I_W = \frac{5(\sum_{i=15}^{12} P_{5i})}{\sum_{i=23}^{62} P_i} * 100$$

donde P_{5i} y P_i son las poblaciones censadas que declararon tener las edades cumplidas 5i e i respectivamente.

El criterio para evaluar el tipo de información con la que trabajaremos está basado en la siguiente tabla, la que está en base al valor que toma el índice de Whipple. ⁵

Rango de I_w	Clasificación de la información
100 a 104	muy precisa
105 a 109	precisa
110 a 124	aproximada
125 a 174	deficiente
175 a más	muy deficiente

A continuación, se presentan los resultados tras realizar los cálculos del índice de Whipple respecto a la entidad (los cálculos correspondientes se pueden encontrar en el Excel adjunto como referencia):

	Índice de Whipple de Querétaro						
	Censo	2010	Conteo 2005				
	Hombres	Mujeres	Hombres	Mujeres			
	112.585443	112.646037	117.719458	117.484562			
Información	REGULAR	REGULAR	REGULAR	REGULAR			

Como podemos observar la información está en un rango de **APROXIMADA** tomando en cuenta la tabla antes presentada, es decir que las personas optan por redondear su edad a números que terminan en 0 o 5, esto puede afectar la veracidad de nuestros datos.

6

⁵ http://intermat.fciencias.unam.mx/A-Mina-2012.pdf pp.10

De cierta forma con el paso de los años el índice mejoró, eso quiere decir que las personas al momento de registrarse en el censo dieron su edad con más precisión.

c. Índice de Myers

Este índice nos permite determinar la atracción o rechazo por declarar edades que terminan en cualquier dígito [0, 1,...,9]. El supuesto es que, si la gente declara bien su edad, el comportamiento es lineal, i.e., cada dígito debe tener 10% de la población.

El índice de Myers se define como:

$$IM = \sum_{j=0}^{9} |M_j|$$

donde:

$$M_{j} = \left\{ \frac{ajPj + a'jP'j}{\sum_{j=0}^{9} (ajPj + a'jP'j)} - 0.10 \right\} * 100 \ para \ j = 0,1, \dots ,9$$

con:

$$aj = j + 1 \ para \ j = 0,1,...,9$$

 $a'j = 9 - j \ para \ j = 0,1,...,9$

 $Pj = \sum_{\geq 1} P_{10i+j} \ para \ j = 0,1,...,9$. Es el número de personas que han declarado edad cumplida terminada en el dígito j y dentro de la población de 10 años y más cumplidos.

 $P'j = \sum_{\geq 2} P_{10i+j} \ para \ j = 0,1,...,9$. Es el número de personas que han declarado edad cumplida terminada en el dígito j y dentro de la población de 20 años y más cumplidos.

El rango que utilizamos para clasificar la concentración en cuanto a la preferencia de dígitos es:

Rango de I_M	Clasificación
0 a 4.99	Baja concentración en algún dígito
5 a 14.99	Baja concentración en algún dígito
15 a 29.99	Mediana concentración en algún dígito
30 a más	Muy alta concentración en alún dígito

Los índices de Myers en el estado de Querétaro obtenidos fueron los siguientes:

Índice de Myers de Querétaro						
Cens	o 2010	Conteo 2005				
Hombres	Mujeres	Hombres	Mujeres			
6.07876261	5.985816012	8.56791846	8.56922434			

Interpretando los datos que podemos encontrar en el Excel adjunto, en todos los casos se nota una fuerte preferencia por redondear edades que terminan en 0 y en 5, sin embargo, notamos que las edades que terminan en 2, 3 (en el caso del CENSO 2010) y el 8 (en el caso del CONTEO) son bastante repetitivos, teniendo así una clara diferencia con el rechazo que genera establecer edades que terminan en 1, 7 o en 9.

d. Índice de Naciones Unidas

El Índice de Naciones Unidas también es un indicador de la calidad de la información. Éste mide tanto la preferencia por ciertos dígitos como la omisión diferencial de individuos en algunas edades, en otras palabras, mide irregularidades en la información por edad y por sexo.

Los supuestos que se utilizan en este índice son:

- Debería existir un comportamiento lineal entre el grupo quinquenal que se está considerando, el anterior y el siguiente.
- La diferencia del índice de masculinidad de dos grupos consecutivos debe tender a cero.

El INU se define como:

$$INU = \frac{\sum |100 - 5CEHx|}{16} + \frac{\sum |100 - 5CEMx|}{16} + 3\frac{\sum |\Delta IM|}{16}$$

donde:

5CEHx es el coeficiente de edades de hombres.

5CEMx es el coeficiente de edades de mujeres.

La escala de valores que utilizamos para clasificar la calidad de la información se muestra a continuación:

INU > 40 la información es MALA $INU \in [20,40)$ la información es INTERMEDIA INU < 20 la información es BUENA

A continuación, se presentan los resultados del CENSO 2010 y CONTEO 2005 de Querétaro, en las cuales nos indica respecto a las condiciones anteriores la calidad de la información obtenida:

Censo 2010	Censo 2010 Querétaro				
INU =	INU =				
Informació	Información				
Conteo 200	5 Q	uerétaro			
INU =	INU = 18.4663043				
Información BUENA					

e. Porcentaje de No Especificados

Un problema que experimenta la información es la población no especificada (NE), que son las personas que no se incluyen en ningún grupo de edad por falta de información de ésta.

En el caso de Querétaro tenemos presentados los siguientes porcentajes de NE, tanto en CENSO 2010:

Edades	Hombres	Mujeres		Hombres	Mujeres
No especificado	6,482		6,459	0.357%	0.356%

Como en CONTEO 2005:

Edades Hombres		Mujeres	Hombres	Mujeres	
No especificado	22055	22,073	1.419%	1.420%	

Para corregir esta deficiencia más adelante se empleará el método conocido como prorrateo.

f. Modelos de crecimiento

En este apartado, tenemos tres tipos de modelos de crecimiento:

1. Modelo aritmético: La población incrementa en un mismo número en cada unidad de tiempo. La tasa asociada a este tipo de crecimiento está dada por:

$$r_{arit} = \frac{\left(\frac{P^{(n)}}{P^{(0)}} - 1\right)}{n}$$

 $oldsymbol{r_{arit}} = tasa~de~crecimiento~aritmético$

 $P^{(n)} = Población en el tiempo n$

 $P^{(0)} = Población en el tiempo 0$

n = tiempo entre las dos poblaciones

Suponiendo que la población ya obtenida tras aplicar el método de 1/16 (que se aplica más adelante), las poblaciones obtenidas de HOMBRES en el CENSO 2010 son de 887364 habitantes, y en el CONTEO 2005 la población es de 771750 habitantes. Teniendo en cuenta que la fecha del CENSO 2010 fue el 5 de Junio de 2010 y la del CONTEO 2005 fue el 17 de Octubre de 2005 el cálculo de la tasa aritmética y las poblaciones respectivas a mitad de año son las siguientes:

$$P_{30/06/2005} = 764333$$

 $P_{30/06/2010} = 888827$
 $n \approx 4.65479452$
 $r_{arit} = 0.7965$

En el caso de MUJERES tomando en cuenta las mismas condiciones anteriores, las poblaciones obtenidas en el CENSO 2010 son de 941033, y en el CONTEO 2005 la población es de 824549, el cálculo de la tasa aritmética y las poblaciones respectivas a mitad de año son las siguientes:

$$P_{30/06/2005} = 817076$$

 $P_{30/06/2010} = 942516$
 $n \approx 4.65479452$
 $r_{arit} = 0.7964$

2. Modelo geométrico: La población incrementa en un mismo porcentaje en cada unidad de tiempo, respecto a la población anterior. La tasa asociada a este tipo de crecimiento está dada por:

$$egin{aligned} r_{geo} &= \sqrt{\left(rac{P^{(n)}}{P^{(0)}}
ight)} - 1 \ r_{geo} &= tasa \ de \ crecimiento \ geométrico \ P^{(n)} &= Población \ en \ el \ tiempo \ n \ P^{(0)} &= Población \ en \ el \ tiempo \ 0 \ n &= tiempo \ entre \ las \ dos \ poblaciones \end{aligned}$$

Suponiendo que la población ya obtenida tras aplicar el método de 1/16 (que se aplica más adelante), las poblaciones obtenidas de HOMBRES en el CENSO 2010 son de 887364 habitantes, y en el CONTEO 2005 la población es de 771750 habitantes. Teniendo en cuenta que la fecha del CENSO 2010 fue el 5 de Junio de 2010 y la del CONTEO 2005 fue el 17 de Octubre de 2005 el cálculo de la tasa geométrico y las poblaciones respectivas a mitad de año son las siguientes:

$$P_{30/06/2005} = 764998$$

 $P_{30/06/2010} = 888702$
 $n \approx 4.65479452$
 $r_{geo} = 0.7302$

En el caso de MUJERES tomando en cuenta las mismas condiciones anteriores, las poblaciones obtenidas en el CENSO 2010 son de 941033, y en el CONTEO 2005 la población es de 824549, el cálculo de la tasa geométrico y las poblaciones respectivas a mitad de año son las siguientes:

$$P_{30/06/2005} = 817765$$

 $P_{30/06/2010} = 942385$
 $n \approx 4.65479452$
 $\boldsymbol{r_{geo}} = 0.7273$

3. Modelo exponencial: El incremento poblacional se produce de forma continua y no en cada unidad de tiempo. La tasa asociada a este tipo de crecimiento está dada por:

$$egin{aligned} r_{exp} &= rac{1}{n} \ln \left(rac{P^{(n)}}{P^{(0)}}
ight) \ r_{exp} &= tasa \ de \ crecimiento \ exponencial \ P^{(n)} &= Población \ en \ el \ tiempo \ n \ P^{(0)} &= Población \ en \ el \ tiempo \ 0 \ n \ = tiempo \ entre \ las \ dos \ poblaciones \end{aligned}$$

Suponiendo que la población ya obtenida tras aplicar el método de 1/16 (que se aplica más adelante), las poblaciones obtenidas de HOMBRES en el CENSO 2010 son de 887364 habitantes, y en el CONTEO 2005 la población es de 771750 habitantes. Teniendo en cuenta que la fecha del CENSO 2010 fue el 5 de Junio de 2010 y la del CONTEO 2005 fue el 17 de Octubre de 2005 el cálculo de la tasa exponencial y las poblaciones respectivas a mitad de año son las siguientes:

$$P_{30/06/2005} = 764998$$

 $P_{30/06/2010} = 888702$
 $n \approx 4.65479452$
 $r_{exp} = 0.7135$

En el caso de MUJERES tomando en cuenta las mismas condiciones anteriores, las poblaciones obtenidas en el CENSO 2010 son de 941033, y en el CONTEO 2005 la población es de 824549, el cálculo de la tasa exponencial y las poblaciones respectivas a mitad de año son las siguientes:

$$P_{30/06/2005} = 817765$$

 $P_{30/06/2010} = 942385$
 $n \approx 4.65479452$
 $r_{exp} = 0.7099$

CORRECCIÓN

a. Prorrateo

Para corregir la deficiencia en la información por no tener distribuidas las personas de NE, se emplea el método conocido como **prorrateo**. Este método consiste en distribuir a la población de NE en el resto de los quinquenios.

La fórmula de prorrateo es la siguiente:

$$\overline{P_x} = P_x * f$$

donde:

 $\overline{P_{x}}$: La población ajustada para el grupo de edad x.

 P_x : La población original para el grupo de edad x.

$$f = 1 + \frac{P_{NE}}{P_{Total} - P_{NE}}$$
. El factor de prorrateo.

A continuación, se presentarán las tablas con la población original por grupos quinquenales para el CENSO 2010, la población de NE ya está distribuida con el método ya mencionado:

CENSO 2010 Hombres			Censo 2010 Muj	jeres	
Factor de Prorrateo:		1.007360004	Factor de Prorrateo:		1.00691327
		_			
Edad	nPx	$\overline{nP_{x}}$	Edad	nPx	$\overline{nP_{\chi}}$
0-4	90972	91642	0-4	87944	88552

Edad	nPx	$\overline{nP_x}$	Edad	nPx	$\overline{nP_{\chi}}$
0-4	90972	91642	0-4	87944	88552
5-9	93230	93915	5-9	90311	90935
10-14	92453	93133	10-14	90155	90778
15-19	92904	93588	15-19	94337	94990
20-24	80717	81311	20-24	87803	88410
25-29	72317	72849	25-29	80983	81543
30-34	68081	68582	30-34	77088	77621
35-39	65728	66212	35-39	72710	73213
40-44	53763	54159	40-44	60512	60930
45-49	44472	44799	45-49	48977	49316
50-54	36628	36898	50-54	40242	40520
55-59	26912	27110	55-59	29376	29579
60-64	20110	20258	60-64	22881	23039
65-69	14757	14866	65-69	16805	16921
70-74	11421	11505	70-74	13280	13372
75-79	7562	7618	75-79	8932	8994
80-84	4641	4675	80-84	6119	6161
85 y más	4038	4068	85 y más	5835	5875
No especificado	6482		No especificado	6459	
Total	887188	887188	Total	940749	940749

De igual manera, se presentarán los resultados de la población ya prorrateada para el CONTEO 2005:

Conteo 2005 Hombres		Conteo 2005 Hombres	
Factor de Prorrateo:	1.02937909	Factor de Prorrateo:	1.02937909

Edad	nPx	$\overline{nP_{\chi}}$	Edad	nPx	$\overline{nP_{\chi}}$
0-4	82781	85213	0-4	82781	85213
5-9	85804	88325	5-9	85804	88325
10-14	89895	92538	10-14	89895	92538
15-19	79047	81369	15-19	79047	81369
20-24	68013	70011	20-24	68013	70011
25-29	60021	61784	25-29	60021	61784
30-34	59116	60853	30-34	59116	60853
35-39	51435	52946	35-39	51435	52946
40-44	43747	45032	40-44	43747	45032
45-49	35138	36170	45-49	35138	36170
50-54	27531	28340	50-54	27531	28340
55-59	19600	20176	55-59	19600	20176
60-64	15806	16270	60-64	15806	16270
65-69	11554	11893	65-69	11554	11893
70-74	8548	8799	70-74	8548	8799
75-79	6057	6235	75-79	6057	6235
80-84	3739	3849	80-84	3739	3849
85 y más	2872	2956	85 y más	2872	2956
No especificado	22055		No especificado	22055	
Total	772759	772759	Total	772759	772759

Como podemos observar en ambas poblaciones ya han sido distribuidas las personas de NE en todos los quinquenios, pero para ajustar aún mejor las poblaciones se emplea el método siguiente.

b. Promedios móviles ponderados (método de 1/16)

Este método consiste en otorgar un peso a cada grupo de edad cercano al grupo a corregir, el cual va a ser positivo si se trata de un grupo inmediato y negativo en caso contrario; esto se basa en el supuesto de que la probabilidad de que una persona de edad x haya declarado su edad como de un grupo de edad contiguo es razonable, pero haberla declarado fuera de esto es altamente improbable, por lo tanto, al grupo de edad en cuestión se le otorga un peso de 10, a sus inmediatos de 4 y a los dos siguientes de -1, con lo cual se obtiene un peso total de 16 y se corrige la información por grupo de edad obteniendo el promedio móvil ponderado.

La corrección por Promedios Móviles Ponderados se trabaja por grupos quinquenales de edad:

$$\begin{split} \hat{P}_x &= \frac{1}{16} (-{}_5P_{x-10} + 4 *_5 P_{x-5} + 10{}_5P_x + 4 *_5 P_{x+5} - {}_5P_{x+10}) \\ donde \ \hat{P}_x \ es \ el \ grupo \ que \ se \ est\'a \ corrigiendo. \end{split}$$

Después de aplicar el método, las poblaciones respectivas por cada año y sexo son las siguientes:

CENSO 2010 Hombres

Censo 2010 Mujeres

Edad	P_{χ}	$\widehat{P}_{\!\scriptscriptstyle \mathcal{X}}$	Edad
0-4	91642	91642	0-4
5-9	93915	93915	5-9
10-14	93133	94274	10-14
15-19	93588	91681	15-19
20-24	81311	82321	20-24
25-29	72849	73016	25-29
30-34	68582	69162	30-34
35-39	66212	64715	35-39
40-44	54159	55010	40-44
45-49	44799	44931	45-49
50-54	36898	36387	50-54
55-59	27110	27504	55-59
60-64	20258	20130	60-64
65-69	14866	15062	65-69
70-74	11505	11253	70-74
75-79	7618	7618	75-79
80-84	4675	4675	80-84
85 y más	4068	4068	85 y más
Total	887188	887364	Total

Edad	P_{χ}	\widehat{P}_{χ}
0-4	88552	88552
5-9	90935	90935
10-14	90778	92157
15-19	94990	93386
20-24	88410	88865
25-29	81543	81959
30-34	77621	77868
35-39	73213	72217
40-44	60930	61330
45-49	49316	49761
50-54	40520	39801
55-59	29579	30237
60-64	23039	22656
65-69	16921	17268
70-74	13372	13011
75-79	8994	8994
80-84	6161	6161
85 y más	5875	5875
Total	940749	941033

Conteo 2005 Hombres Conteo 2005 Mujeres \hat{P}_{r} \hat{P}_{r} Edad P_{x} Edad P_{x} 0-4 85213 85213 0-4 82260 82260 5-9 88325 88325 5-9 85379 85379 92538 90558 89554 10-14 10-14 91131 15-19 85788 86754 15-19 81369 82111 20-24 70011 69958 20-24 80862 80071 25-29 61784 62936 25-29 72416 73666 30-34 60853 59525 30-34 69172 68175 35-39 52946 35-39 59855 60015 53440 40-44 45032 44849 40-44 49143 49241 45-49 36170 36379 45-49 39147 39265 50-54 28340 27968 50-54 30411 29973 55-59 20176 20759 55-59 21599 22417 60-64 16270 60-64 17689 15865 18377 65-69 11893 12050 65-69 13322 13617

8774

6235

3849

2956

771750

c. Diagrama de Lexis

70-74

75-79

80-84

Total

85 y más

Consiste en una cuadrícula sobre dos ejes, uno representa la edad de las personas y el otro el tiempo calendario.

70-74

75-79

80-84

Total

85 y más

10012

7304

4755

4446

825379

9968

7304

4755 4446

824549

Para referirnos a la edad de la persona hay dos formas:

8799

6235

3849

2956

772759

- Edad exacta: Número de años, días y meses que tiene una persona.
- Edad cumplida: El número de aniversarios que ha vivido la persona.

El Diagrama de Lexis es importante ya que permite concentrar una información multidimensional sobre un mismo plano: fecha, edad y año de nacimiento.⁶

Para poder desarrollar esta sección se utilizó uno de los dos tipos de factores de separación que es el de Coale y Demeny, en nuestro caso la entidad correspondía a la región Norte, así que se hace uso de los factores correspondientes.

⁶ Notas del curso en Moodle.

En este apartado se calcularon las siguientes poblaciones:

Población de menores de un año a mitad de 2005 para hombres y mujeres:

En este caso se calculan dos poblaciones con apoyo de los Diagramas de Lexis, la de principios y finales de 2005 para poder calcular la población a mitad de año, los cálculos correspondientes estás desglosados en el Excel adjunto.

Una vez hechos los cálculos, en el caso de HOMBRES la población de menores de un año a mitad de 2005 es de 20419 hombres.

En el caso de MUJERES la población de menores de un año a mitad de 2005 es de 20073 mujeres.

• Población de menores de un año a mitad de 2010 para hombres y mujeres:

En este caso se calculan de manera análoga al anterior pero ahora usando las poblaciones de principios y finales de 2010 para poder calcular la población a mitad de año, los cálculos correspondientes estás desglosados en el Excel adjunto.

Una vez hechos los cálculos, en el caso de HOMBRES la población de menores de un año a mitad de 2010 es de 20625 hombres.

En el caso de MUJERES la población de menores de un año a mitad de 2005 es de 19989 mujeres.

Población de uno a cuatro años cumplidos a mitad de 2005 para hombres y mujeres:

En este caso es un poco más complejo hacer el cálculo correspondiente, pero básicamente utilizando la teoría de los diagramas de Lexis puedes facilitar el procedimiento, el cual viene desglosado en el Excel adjunto explicando cada paso.

Una vez hechos los cálculos, en el caso de HOMBRES la población de uno a cuatro años cumplidos a mitad de 2005 es de 75762 hombres.

En el caso de MUJERES la población de uno a cuatro años cumplidos a mitad de 2005 es de 75779 mujeres.

4. COMPONENTES DEMOGRÁFICOS

MORTALIDAD

Las poblaciones, como parte de su dinámica, sufren pérdidas, y la muerte es una de las formas en que éstas se presentan. La mortalidad hace referencia al volumen de muertes en una población.

Las principales causas de muerte no siempre son las mismas, epidemias, hambrunas, guerras, actos violentos, deterioro en la calidad de vida y muchas cosas más, han sido protagonistas causantes de muertes. El análisis de la mortalidad permite cuantificar el volumen de las defunciones en la población y hace posible que se puedan tomar las medidas necesarias para reducirla, tomando en consideración las causas predominantes.

En el intento de reducir la mortalidad, en México se han tomado medidas como la expansión del sistema educativo, infraestructura sanitaria, acceso al sistema de salud, entre otras. Sin embargo, dentro del mismo país siguen existiendo grandes desigualdades que también se reflejan en la mortalidad de las poblaciones.

Para poder estudiar nuestra entidad, se hace uso de distintos tipos de tasas que se presentaron a lo largo del curso, cada uno con su finalidad correspondiente para que así podamos hacer la construcción de una tabla de mortalidad que en el ámbito actuarial es un pilar muy importante.

a. Tasa Bruta de Mortalidad

Es el aumento de defunciones por cada mil habitantes, está dada por:

$$TBM = \frac{D_{totales}^t}{P_{totales}^t} * 1000$$

donde:

 $D_{totales}^{t}$: Defunciones de personas del año t.

P^t_{totales}: Población a mitad del año t.

En la teoría presentada en el curso se habla de una fórmula que se basa en errores de cobertura, y se usa para aproximar aún mejor, pero en nuestro estudio se hizo uso de la anterior.⁷

Las TBM correspondientes al estado de Querétaro, tanto para el año 2010 como en el 2005 son las siguientes:

2010:

TBM Hombres = 4.87 y **TBM Mujeres =** 3.68

⁷ Notas del curso en Moodle.

2005:

TBM Hombres = 4.77 y TBM Mujeres = 3.57

b. Tasa Tipificada de Mortalidad

Es el número de defunciones por cada mil habitantes de una población tipo (cualquiera), y se calcula como:

$$TTM = \frac{\sum (_n m_x *_n P_x^{tipo})}{\sum_n P_x^{tipo}} * 1000$$

donde en el numerador tenemos definidas las muertes esperadas de una población y en el denominador tenemos definido la población tipo a estudiar.

Las TTM correspondientes al estado de Querétaro, tanto para el año 2010 como en el 2005 son las siguientes:

2010:

TTM Hombres = 4.308 y TTM Mujeres = 3.013

2005:

TTM Hombres = 4.494 y **TTM Mujeres =** 3.252

En ambos casos notamos que la **TBM** > **TTM**, esto nos indica claramente que la población tipo con la que se está comparando es joven. Todos los cálculos están desglosados en el Excel adjunto.

c. Tasas específicas de mortalidad

Las tasas específicas de mortalidad se obtienen para cada grupo de edad. Es decir, este indicador refleja el número de defunciones en un determinado grupo de edad, por cada mil personas en la población dentro del mismo grupo.

La tasa específica de mortalidad se define como:

$$_{n}m_{x}=\frac{_{n}D_{x}}{_{n}P_{x}}$$

 $_{n}D_{x}$: son las defunciones en el grupo de edad (x, x + n)

 $_{n}P_{x}$: es la población a mitad de año en el mismo grupo.

A continuación, se muestran las tasas específicas de mortalidad para el estado de Querétaro del año 2010 para hombres y mujeres respectivamente.

HOMBRES 2010			
Grupos de edac	$\overline{nP_{x}}$	$\overline{nD_x}$	$_{n}m_{\chi}$
<1	18038	267	0.01480208
1-4	73675	43	0.00058364
5-9	93976	27	0.00028731
10-14	94314	36	0.0003817
15-19	91788	104	0.00113305
20-24	82463	120	0.0014552
25-29	73131	121	0.00165457
30-34	69272	145	0.0020932
35-39	64846	166	0.00255991
40-44	55129	192	0.00348274
45-49	45032	217	0.0048188
50-54	36489	290	0.0079476
55-59	27586	282	0.01022258
60-64	20181	298	0.01476636
65-69	15098	343	0.02271824
70-74	11283	337	0.02986794
75-79	7634	371	0.04859838
80-84	4685	387	0.08260406
85 y más	4082	636	0.15580598

MUJERES 2010			
Grupos de edad	$\overline{nP_{x}}$	$\overline{nD_x}$	$_nm_x$
<1	17458	223	0.01277351
1-4	71163	42	0.00059019
5-9	90996	20	0.00021979
10-14	92185	32	0.00034713
15-19	93459	36	0.0003852
20-24	88963	41	0.00046087
25-29	82052	46	0.00056062
30-34	77978	45	0.00057709
35-39	72359	63	0.00087066
40-44	61473	113	0.00183821
45-49	49886	139	0.00278635
50-54	39921	191	0.00478445
55-59	30333	193	0.00636271
60-64	22715	256	0.01127009
65-69	17312	279	0.01611599
70-74	13048	300	0.02299203
75-79	9014	340	0.0377191
80-84	6178	406	0.06571706
85 y más	5892	811	0.13764426

A continuación, las tasas específicas de mortalidad del año 2005 de hombres y mujeres:

HOMBRES 2005			
Grupos de edad	$\overline{nP_{x}}$	$\overline{nD_x}$	$_{n}m_{\chi}$
<1	16658	290	0.01740905
1-4	68158	48	0.00070425
5-9	87978	27	0.00030689
10-14	90325	36	0.00039856
15-19	81532	76	0.00093215
20-24	69231	102	0.00147333
25-29	62339	121	0.001941
30-34	58955	121	0.00205241
35-39	52788	129	0.00244374
40-44	44265	173	0.00390828
45-49	35890	218	0.00607412
50-54	27500	193	0.00701818
55-59	20388	253	0.01240926
60-64	15625	265	0.01696
65-69	11879	263	0.02213991
70-74	8635	324	0.03752171
75-79	6155	306	0.04971568
80-84	3801	298	0.07840042
85 y más	2896	411	0.14191989

MUJERES 2005			
Grupos de edad	$\overline{nP_{\chi}}$	$\overline{nD_x}$	$_nm_x$
<1	16198	244	0.01506359
1-4	65674	38	0.00057862
5-9	85034	29	0.00034104
10-14	89390	26	0.00029086
15-19	86345	30	0.00034744
20-24	79537	35	0.00044005
25-29	73164	46	0.00062872
30-34	67596	60	0.00088763
35-39	59307	45	0.00075876
40-44	48552	79	0.00162712
45-49	38673	103	0.00266336
50-54	29433	120	0.00407706
55-59	21991	155	0.00704834
60-64	17410	210	0.01206203
65-69	13411	252	0.01879055
70-74	9799	257	0.02622717
75-79	7207	277	0.03843486
80-84	4677	341	0.07290999
85 y más	4367	646	0.14792764

d. Mortalidad Infantil

Usaremos el término de Mortalidad Infantil para referirnos a la mortalidad de menores de un año. La tasa de mortalidad infantil se define como:

$$_1q_0 = \frac{_1D_0^t}{N^t}$$

Esta tasa es uno de los principales indicadores que se utiliza para comparar los niveles de mortalidad entre distintas poblaciones ya que está relacionado directamente con los niveles de pobreza y calidad sanitaria.

Haciendo el análisis de acuerdo con los datos proporcionados para Querétaro, al hacer los cálculos correspondientes a los años 2005 y 2010 obtenemos lo siguiente:

HOMBRES 2005	MUJERES 2005	HOMBRES 2010	MUJERES 2010
_n q _x	$_{n}q_{x}$	_n q _x	_n q _x
0.013723263	0.011756203	0.012799616	0.01115223

Podemos decir de acuerdo con la mortalidad infantil obtenida que en todos los casos por cada 1000 nacimientos hay al menos una muerte, tanto para hombres como para mujeres nacidas en los años 2005 y 2010.

e. Tabla de Mortalidad

Cuando se proyecta una población es necesario estudiar el comportamiento de los fenómenos de fecundidad, mortalidad y migración; hablando de mortalidad, el mejor instrumento para medirla son las tablas de mortalidad o de vida.

Una tabla de mortalidad es un modelo teórico que describe la extinción de una cohorte o generación ficticia. Este modelo nos permite hipotetizar sobre el promedio de años de vida de dicha cohorte.

En nuestro caso se abordará la construcción de una tabla de mortalidad transversal ya que realizaremos un corte o foto en un punto del tiempo (2005 y/o 2010) para, con base en las tasas de mortalidad de ese momento, construir la tabla, y además será una tabla abreviada ya que trabajaremos con grupos quinquenales.

Supuestos:

- Tabla transversal
- Población cerrada. No hay migración, es decir, todos lo que nacieron van a morir en el mismo lugar.
- Homogeneidad de muerte en cada grupo de edad.

Características:

- Describen la mortalidad por edades quinquenales.
- Obtiene la probabilidad de morir lo cual es más exacto que la TBM.
- Calcula la ESPERANZA DE VIDA.

Notación:

- $l_0 := Nacimientos que se asumen en la tabla de mortalidad (Rádix).$
- $l_x := Población viva a principio del intervalo [x, x + n)(población fitcicia)$
- $_nq_x \coloneqq Probabilidad\ de\ morir\ en\ el\ intervalo\ de\ edad\ [x,x+n],$
- $_nd_x := N$ úm. de defunciones de la población ficticia en el intervalo [x, x + n).
- $_{n}L_{x} \coloneqq N \acute{u}m$. de años persona vividos dentro del intervalo [x, x + n].
- $T_x := N \acute{u}m$. de años persona vividos de la población ficticia a partir de la edad x en adelante.
- $e_x := Esperanza$ de vida. Promedio restante de vida en años para una persona viva al inicio del intervalo [x, x+n).⁸

_

⁸ Notas del curso en Moodle.

La tabla construida con todas las características mencionadas anteriormente se encuentra en el Excel adjunto, por el momento solo se expondrán los resultados más importantes que son la **PROBABILIDAD DE MORIR** en un intervalo de edad (en este caso en quinquenios) y la **ESPERANZA DE VIDA** de los años 2005 y 2010 del estado de Querétaro.

Probabilidad de morir:

Se expondrán en porcentajes las probabilidades de morir del año 2005 de hombres y mujeres para un mayor entendimiento:

HOMBRES 2005	
Grupos de edad	nqx
<1	1.37%
1-4	0.28%
5-9	0.15%
10-14	0.20%
15-19	0.46%
20-24	0.73%
25-29	0.97%
30-34	1.02%
35-39	1.21%
40-44	1.94%
45-49	2.99%
50-54	3.45%
55-59	6.02%
60-64	8.14%
65-69	10.49%
70-74	17.15%
75-79	22.11%
80-84	32.78%
85 y más	100.00%

MUJERES 2005	
Grupos de edad	n q x
<1	1.18%
1-4	0.23%
5-9	0.17%
10-14	0.15%
15-19	0.17%
20-24	0.22%
25-29	0.31%
30-34	0.44%
35-39	0.38%
40-44	0.81%
45-49	1.32%
50-54	2.02%
55-59	3.46%
60-64	5.85%
65-69	8.97%
70-74	12.31%
75-79	17.53%
80-84	30.83%
85 y más	100.00%

Podemos apreciar las probabilidades de cada uno de los grupos de edad para el año 2005, podemos notar que a partir de los 65 y más en el caso de hombres, las probabilidades son aún más altas que en los otros grupos de edad, pero en el caso de las mujeres son a partir de los 70 y más, eso lo podemos interpretar en que las mujeres tienen más probabilidades de llegar a una edad mayor que los hombres.

De igual manera, ahora presentaremos las probabilidades de morir del año 2010 de hombres y mujeres:

HOMBRES 2010	
Grupos de edad	nQx
<1	1.28%
1-4	0.23%
5-9	0.14%
10-14	0.19%
15-19	0.56%
20-24	0.72%
25-29	0.82%
30-34	1.04%
35-39	1.27%
40-44	1.73%
45-49	2.38%
50-54	3.90%
55-59	4.98%
60-64	7.12%
65-69	10.75%
70-74	13.90%
75-79	21.67%
80-84	34.23%
85 y más	100.00%

MILLEDEC 2010	
MUJERES 2010	
Grupos de edad	_n q _x
<1	1.12%
1-4	0.24%
5-9	0.11%
10-14	0.17%
15-19	0.19%
20-24	0.23%
25-29	0.28%
30-34	0.29%
35-39	0.43%
40-44	0.91%
45-49	1.38%
50-54	2.36%
55-59	3.13%
60-64	5.48%
65-69	7.75%
70-74	10.87%
75-79	17.23%
80-84	28.22%
85 y más	100.00%

De igual manera notamos comportamientos similares respecto a las probabilidades de morir del 2005, podemos interpretar los datos de la misma forma, las mujeres tienen más probabilidades de llegar a una edad mayor que los hombres.

• Esperanza de vida:

Tras construir la tabla de mortalidad obtenemos finalmente la esperanza de vida. Se expondrán los datos obtenidos de los años 2005 y 2010 para hombres y mujeres respectivamente, que se encuentran en el Excel adjunto:

HOMBRES 2005	
Grupos de edad	e _x
<1	72.95495
1-4	72.9686803
5-9	69.1730638
10-14	64.2755804
15-19	59.3984899
20-24	54.6644661
25-29	50.0501792
30-34	45.5137855
35-39	40.9574269
40-44	36.4303159
45-49	32.1000533
50-54	28.0129372
55-59	23.9241559
60-64	20.2960304
65-69	16.872048
70-74	13.5561248
75-79	10.8451062
80-84	8.21404456
85 y más	6

MUJERES 2005	
Grupos de edad	e _x
<1	77.73776
1-4	77.661823
5-9	73.8405412
10-14	68.9623075
15-19	64.0590019
20-24	59.1662862
25-29	54.2913134
30-34	49.4542325
35-39	44.663006
40-44	39.82331
45-49	35.1280948
50-54	30.5654918
55-59	26.143582
60-64	21.9918536
65-69	18.203914
70-74	14.7521519
75-79	11.4716522
80-84	8.37905825
85 y más	6

Con respecto a las tablas anteriores de probabilidades de morir, podemos corroborar con la esperanza de vida que las mujeres viven más que los hombres en el estado de Querétaro en el 2005, al menos hay una diferencia de 5 años desde los 20 años y menos. Por otro lado, comparten características algo similares a partir de los 60 años y más, pero aún así notamos que es mayor la esperanza de vida de las mujeres aún así en edades más grandes.

De igual manera, ahora presentaremos los datos obtenidos de la esperanza de vida de hombres y mujeres del año 2010:

HOMBRES 2010	
Grupos de edad	e _x
<1	73.78773
1-4	73.7434259
5-9	69.9146918
10-14	65.0113372
15-19	60.1310602
20-24	55.4587525
25-29	50.8457037
30-34	46.2471592
35-39	41.707631
40-44	37.2124933
45-49	32.8223239
50-54	28.5619282
55-59	24.6187126
60-64	20.7788639
65-69	17.1800712
70-74	13.9479767
75-79	10.7956427
80-84	8.0902666
85 y más	6

MUJERES 2010	
Grupos de edad	e _x
<1	78.3361
1-4	78.2184558
5-9	74.402303
10-14	69.4811049
15-19	64.5975318
20-24	59.7170618
25-29	54.849068
30-34	49.9959052
35-39	45.132922
40-44	40.3188699
45-49	35.6679571
50-54	31.1331096
55-59	26.8263153
60-64	22.6126056
65-69	18.7787877
70-74	15.1456118
75-79	11.6879854
80-84	8.60121071
85 y más	6

De igual manera como en el caso del 2005 podemos notar un comportamiento similar, pero en este caso en la mayoría de todos los grupos de edad a partir de los 50 años y más comparten similitudes de los años de esperanza de vida. Pero aún así podemos notar que hay una superioridad de parte de las mujeres sobre los hombres, ya que notando el cambio entre 2005 y 2010, las mujeres en Querétaro viven al menos 5 años más que los hombres.

f. Causas de mortalidad

Ahora bien, ya sabemos la probabilidad de muerte que se maneja en nuestro estado, para concluir con esta sección es importante saber de qué es que se está muriendo nuestra gente. Conocer esta información nos ayuda a crear proyectos de salud que mejoren la calidad de vida de los habitantes de Querétaro.

Para organizar mejor los datos recaudados lo separaremos en tres secciones: Conteo y Censo, Hombres y Mujeres y Menores de un año y Población total.

Comencemos con las gráficas correspondientes al Conteo 2005:

Para hombres menores de un año la causa más frecuente de mortalidad es la mortalidad neonatal precoz, es decir, cuando un niño muere en las primeras 24 horas de vida, esto representa cerca del 45% de la mortalidad infantil.

Cuando hablamos de un caso más general, las tres muertes más frecuentes en la población masculina son por enfermedades del sistema circulatorio, enfermedades del sistema digestivo y causas externas (accidentes); en ese orden.

Ya pasándonos a la categoría de mujeres de este mismo año, en los menores de un año la causa de muerte que deja más impacto sigue siendo la mortalidad neonatal precoz en este caso representando el 43% de la mortalidad infantil femenina.

Para la población total femenina notamos que las causas de muerte más comunes de este año fueron por enfermedades del sistema circulatorio, enfermedades endócrinas, nutricionales y metabólicas y tumores.

En conclusión, este año se debieron implementar programas de salud que promuevan una mejor alimentación para reducir los problemas del sistema digestivo, enfermedades

endócrinas, nutricionales y metabólicas, así como una mejora en la atención de las primeras 24 horas de nacimiento de cualquier bebé.

Nuestra siguiente categoría es la correspondiente al CENSO 2010, en la cual nos enfocaremos en resaltar si las causas de muerte siguen siendo las mismas y en misma proporción o disminuyeron.

Para los menores de un año en el 2010, la causa de muerte que sigue a la cabeza es la mortalidad neonatal precoz, sin embargo, se redujo el porcentaje de esta a menos del 41%.

Si comparamos esta gráfica con la del año 2005 podremos notar que hubo un cambio en el orden de las causas de muerte masculinas. Este año el orden es el siguiente: primero están las muertes por enfermedades del sistema circulatorio, luego las causas externas o accidentales y por último enfermedades del sistema digestivo. Lo que nos habla una mejora al menos en la alimentación de los hombres.

Lamentablemente en la siguiente categoría de mujeres menores de un año la mortalidad neonatal precoz aumentó al 43%.

Mientras que en las causas de mortalidad en hombres cambió, las causas de mortalidad femenina no solo se mantuvieron, sino que aumentaron en porcentaje, pues la muerte por enfermedades del sistema circulatorio aumentó del 23.5% al 25.8% en solo 5 años, las

muertes por enfermedades endócrinas, nutricionales y metabólicas y tumores se mantuvieron, lo que nos muestra que no hubo muchas mejoras.

Podemos concluir que las causas de muerte no cambiaron mucho para las mujeres en 5 años y si cambiaron fue para mal, sin embargo, hubo cambios positivos en las causas de mortalidad masculina, deberían implementarse programas de salud para tratamientos de cáncer por la alta mortalidad por tumores y seguir con programas que implementen una sana nutrición.

5. FECUNDIDAD

Según las notas del curso, denominaremos fecundidad cómo el estudio de los nacimientos desde el punto de vista de la concepción. Para tener acceso a esta información usamos los registros administrativos o las estadísticas vitales.

Sin embargo, los datos obtenidos en estos registros no nos indican la verdad de cuantos nacimientos hubo en ese año pues aún en pleno siglo XXI las personas registran a sus hijos mucho después del primer año de vida. Para corregir esta información haremos uso del siguiente método.

a. Medición del registro tardío de los nacimientos

Como lo mencionamos anteriormente, hoy día existen personas que registran a sus hijos hasta 10 años después por lo que es necesario agregarlos a los nacimientos de su año correspondiente. Para esto usaremos el modelo de triángulos visto en clase, en el cuál estimaremos en base a la información histórica de nacimientos y sus registros tardíos. La extensión de los cálculos de este modelo se encuentra en el Excel anexo, en la hoja "Tasas de Fecundidad".

Una vez aplicado este modelo se estimó un total de nacimientos de:

Hombres: Mujeres:

2005 19523	2005
2010 22745	2010

Ahora que estimamos el número real de nacimientos con base en estos datos calcularemos las tasas siguientes.

b. Tasa Bruta de Natalidad

Es el número de nacimientos por cada mil habitantes.

$$TBN = \frac{N\ Totales}{\overline{p}} * 1000$$

Para el año 2005 teníamos la siguiente Tasa Bruta de Natalidad

	2005		2005
	Hombres	N	lujeres
N _{Totales}	19,523	N _{Totales}	18,843
P _{Total}	764998	P _{Total}	817765
TBN	25.52019679	TBN	23.04167461

Lo que nos daría una Tasa Bruta de Natalidad del 2005 promedio de 24 nacimientos por cada mil habitantes.

Para el año 2010 no sería tan diferente pues los resultados fueron los siguientes:

	2010	20	10
ŀ	Hombres	Muj	eres
N _{Totales}	22,745	N _{Totales}	21,767
P _{Total}	888702	P _{Total}	942385
TBN	25.59343882	TBN	23.09777415

Con esto concluimos que en 5 años el cambio fue mínimo por lo que la población de Querétaro aún se mantiene como una población joven, pues la Tasa Bruta de Natalidad del 2010 promedio fue de 24 nacimientos por cada mil habitantes.

c. Medidas resumen de la fecundidad

Son indicadores que nos hablan de la cantidad de hijos que están teniendo las mujeres de acuerdo con las tasas específicas de fecundidad del momento.

Las tasas específicas fueron desarrolladas en el Excel anexo, en la hoja "Tasas de Fecundidad"

Tasa Global de Fecundidad:

Es el número promedio de hijos que tendría una mujer a lo largo de su vida fértil, es decir,

$$TGF = 5\sum_{r=15}^{45} n^f x$$

En el caso de Querétaro obtuvimos lo siguiente:

2005 TGF	2.622223138
2010 TGF	2.675222081

Podemos concluir que una mujer en Querétaro tiene de 2 a 3 hijos a lo largo de su vida fértil, ya que la TGF es mayor a 2.1 se da la fecundidad de reemplazo, es decir, que la población tiene el número suficiente de hijos para reemplazar la población actual. Características de una población joven.

Tasa Bruta de Reproducción

Número de hijas que en promedio tendría una cohorte de mujeres durante su vida fértil suponiendo que se comporta de acuerdo con las tasas específicas.

$$TBR = 5\sum_{x=15}^{45} nf_x^F$$

Veamos los resultados:

2005 TBR	1.287461102
2010 TBR	1.308021257

Lo que nos indicaría que una mujer del 2005 y 2010 tiene en promedio una hija en toda su vida fértil.

Descendencia Final Neta

Número de hijos e hijas que en promedio tendría una cohorte de mujeres durante su vida fértil, ahora tomando en cuenta el factor de supervivencia de la madre, es decir,

$$TGF = 5 \sum_{x=15}^{45} n^f x \ p(x)$$

El desarrollo de esta tasa se encuentra en el Excel anexo, en la hoja "Tasas de Fecundidad", mostraremos solo los resultados obtenidos.

2005 DFN	2.561139846
2010 DFN	2.61632951

Esto sigue promediando que una mujer tenga de 2 a 3 hijos en toda su vida fértil.

• Tasa Neta de Reproducción

Número promedio de hijas que tendría una cohorte de mujeres durante su vida fértil, tomando en cuenta el factor de supervivencia de la madre.

$$TBR = 5 \sum_{x=15}^{45} n f_x^F p(x)$$

Los resultados que obtuvimos fueron los siguientes

2005	TNR	1.273284127
2010	TNR	1.294104198
2010	TIVIX	1.25+10+150

d. Otros Indicadores.

• Edad Media de la Fecundidad

Es la edad promedio en que las mujeres tienen hijos.

Se calcula de la siguiente manera,
$$\widehat{m} = \frac{\sum_{x=15}^{45} x_i * nf_x}{\sum_{x=15}^{45} nf_x}$$

Donde x_i es la marca de clase correspondiente al grupo de edad.

Todo el desarrollo está en el Excel anexo, en la misma hoja de la tasa anterior. Para el estado de Querétaro tuvimos el siguiente resultado

2005	m	27.39717838
2010	\widehat{m}	27.10126329

Es decir, 27 es la edad en la que la mayoría de las mujeres en Querétaro tienen hijos y eso no ha cambiado mucho del 2005 al 2010.

Grados de Concentración

Representa la desviación estándar de las tasas específicas de fecundidad y nos da a conocer en qué edades se concentra mayormente la fecundidad, además nos informa si la población es de alta o baja fecundidad.

Para saber esto obtendremos los siguientes indicadores:

$$GC_{15} = \frac{5f_{15}}{\sum_{x=15}^{45} nfx} \qquad 15GC_{20} = \frac{5f_{20} + 5f_{25} + 5f_{30}}{\sum_{x=15}^{45} nf_x}$$
$$15GC_{35} = \frac{5f_{35} + 5f_{40} + 5f_{45}}{\sum_{x=13}^{45} nf_x}$$

Sabremos si una población es de alta o baja fecundidad si los grados de concentración toman los siguientes valores:

Fecundidad	5GC ₁₅	₁₅ GC ₂₀	₁₅ GC ₃₅
Alta	>10%	<75%	>15%
Baja	<10%	>75%	<15%

Para los años 2005 y 2010 obtuvimos los siguientes resultados:

	2005		2010
Grados	de Concentración	Grados d	le Concentración
₅ GC ₁₅	13%	₅ GC ₁₅	15%
₁₅ GC ₂₀	73%	₁₅ GC ₂₀	72%
₁₅ GC ₃₅	14%	₁₅ GC ₃₅	13%

Que según la tabla nos da como conclusión que Querétaro es una población con *ALTA* fecundidad.

• Edad Cúspide

La edad cúspide es temprana cuando la tasa especifica de fecundidad más alta se encuentra en el grupo de 20 a 24

La edad cúspide es dilatada cuando la tasa específica de fecundidad del grupo 20 a 24 es aproximadamente igual a la fecundidad del grupo de edad 25 a 29.

La edad cúspide es tardía se representa cuando la máxima fecundidad se alcanza al menos en el grupo de edad de 25 a 29 años.

La cúspide diferida se presenta cuando la máxima fecundidad se alcanza en los grupos extremos, es decir, en los grupos de 15 a 19 o de 30 a 34.

Para procesar esta información es necesario graficar las tasas específicas de fecundidad, lo que nos arrojó lo siguiente:

En ambas gráficas podemos deducir que la edad cúspide de Querétaro es *TEMPRANA* pues el grupo donde alcanza la máxima fecundidad es en el grupo de 20 a 24.

6. MIGRACIÓN

Según la Unión Internacional para el Estudio Científico de la Población, se le da el nombre de migración al desplazamiento, con traslado de residencia, de los individuos desde un lugar de origen a un lugar de destino o llegada y que implica atravesar los límites de una división geográfica.

Definiremos emigrantes como las personas que *salen* de un lugar de origen e inmigrantes como las personas que *llegan* al lugar de destino.

a. Matriz Migratoria

Esta matriz funciona como un método directo en el que podemos conocer a los Inmigrantes Internos, Inmigrantes Externos (ambos localizados en la fila correspondiente a nuestro estado) y a los Emigrantes Internos (se encuentran en la columna correspondiente al estado de Querétaro). Se ve de la siguiente manera:

Matriz Migratoria de Hombres 2005-2010

Se puede apreciar con mayor claridad en el Excel anexo, en la hoja "Migración Hombres 2005-2010" y "Migración Mujeres 2005-2010", la imagen fue solo un ejemplo visual.

Sin embargo, de esta obtuvimos los siguientes resultados:

Migración de Homb	ores 2005-2010	Migración de Mujeres 2005-2010		
Emigración Interna	20053	Emigración Interna	20841	
Inmigración Interna	45598	Inmigración Interna	48738	
Inmigración Total	63783	Inmigración Total	57501	

Aquí podemos darnos una idea de que Querétaro es una zona de atracción, es decir, que tiene más inmigrantes que emigrantes.

b. Tasas de Migración bajo método directo.

Una vez obtenidos el número de emigrantes e inmigrantes de la matriz migratoria, procedemos a calcular las siguientes tasas:

• Tasa Bruta de Inmigración

Para calcularla utilizaremos la siguiente formula:

$$TBI^{2005-2010} = \frac{Inmigrantes\ Totales}{\overline{P}_{Total}^{2010}} * 1000$$

De la cuál obtuvimos los siguientes resultados:

Hombres	Tasa Bruta de Inmigración	71.7709648
Mujeres	Tasa Bruta de Inmigración	61.0164635

Es decir que llegan aproximadamente 72 hombres de cualquier lado del mundo a residir en Querétaro y 61 mujeres por cada mil habitantes.

Tasa de Inmigración Interna

$$TII^{2005-2010} = \frac{Inmigrantes\ Internos}{\overline{P}_{Total}^{2010}} * 1000$$

En el estado de Querétaro la Tasa de Inmigración Interna fue de:

Hombres	Tasa de Inmigración Interna	51.3085376
Mujeres	Tasa de Inmigración Interna	51.7177162

De los 72 hombres que llegan a Querétaro 51 son mexicanos de cualquier otro estado y de las 61 mujeres también 51 son mujeres mexicanas, por cada mil habitantes.

• Tasa de Emigración Interna

$$TEI^{2005-2010} = \frac{Emigrantes\ Internos}{\overline{P}_{Total}^{2010}} * 1000$$

Los resultados de esta tasa fueron:

Hombres	Tasa de Emigración Interna	22.5643692
Mujeres	Tasa de Emigración Interna	22.1151652

Ahora, si bien muchos llegan a Querétaro aproximadamente 23 hombres y 22 mujeres salen de este estado para trasladarse a otro, por cada mil habitantes

• Tasa Bruta de Migración Interna

$$TBMI^{2005-2010} = \frac{Inmigrantes\ Internos + Emigrantes\ Internos}{\overline{P}_{Total}^{2010}} * 1000$$

Queremos medir en general todas las personas que se mueven a Querétaro o de Querétaro, lo que obtuvimos fue lo siguiente:

Hombres	Tasa Bruta de Migración Interna	73.8729068
Mujeres	Tasa Bruta de Migración Interna	73.8328815

En general, cerca de 74 hombres y 74 mujeres entraron o salieron de Querétaro entre el 2005 y el 2010.

Tasa Neta de Migración Interna

$$TBMI^{2005-2010} = \frac{Inmigrantes\ Internos - Emigrantes\ Internos}{\overline{P}_{Total}^{2010}} * 1000$$

Lo que queremos de esta tasa es el balance entre Inmigrantes y Emigrantes, el resultado fue el siguiente:

Hombres Tasa Neta de Migración Interna		28.7441685
Mujeres	Tasa Neta de Migración Interna	29.602551

Es decir, en promedio Querétaro aumentó 29 hombres y cerca de 30 mujeres a causa de la migración ambas tasas por cada mil habitantes.

Lo que nos ayuda a reafirmar nuestra hipótesis de que Querétaro es una zona de atracción.

c. Método prospectivo y retrospectivo

Como lo vimos en clase, los métodos indirectos utilizan poblaciones calculadas a diferentes momentos en el tiempo y las experiencias de mortalidad y fecundidad para encontrar por completo la población de inmigrantes.

Método prospectivo

Consiste en ubicarse en el primer periodo de tiempo (2005), y deducir la migración para el segundo periodo (2010).

En ambos métodos calculamos la población migratoria por sexo y por grupos de edad, los resultados fueron los siguientes:

Método Prospectivo Hombres					
Grupo de Edad	nPx ²⁰⁰⁵	nPEx ²⁰¹⁰	nPx ²⁰¹⁰	Saldo	
De 0 a 4 años	84816				
De 5 a 9 años	87978	84674	93976	9302	Inmigración
De 10 a 14 años	90325	87827	94314	6487	Inmigración
De 15 a 19 años	81532	90004	91788	1784	Inmigración
De 20 a 24 años	69231	81025	82463	1438	Inmigración
De 25 a 29 años	62339	68669	73131	4462	Inmigración
De 30 a 34 años	58955	61739	69272	7533	Inmigración
De 35 a 39 años	52788	58285	64846	6561	Inmigración
De 40 a 44 años	44265	51978	55129	3151	Inmigración
De 45 a 49 años	35890	43267	45032	1765	Inmigración
De 50 a 54 años	27500	34751	36489	1738	Inmigración
De 55 a 59 años	20388	26243	27586	1343	Inmigración
De 60 a 64 años	15625	19056	20181	1125	Inmigración
De 65 a 69 años	11879	14209	15098	889	Inmigración
De 70 a 74 años	8635	10344	11283	939	Inmigración
De 75 a 79 años	6155	7044	7634	590	Inmigración
De 80 a 84 años	3801	4494	4685	191	Inmigración
De 85 y más años	2896	3643	4082	439	Inmigración

Método Prospectivo Mujeres					
Grupo de Edad	nPx ²⁰⁰⁵	nPEx ²⁰¹⁰	nPx ²⁰¹⁰	Saldo	
De 0 a 4 años	81872				
De 5 a 9 años	85034	81746	90996	9250	Inmigración
De 10 a 14 años	89390	84907	92185	7278	Inmigración
De 15 a 19 años	86345	89237	93459	4222	Inmigración
De 20 a 24 años	79537	86169	88963	2794	Inmigración
De 25 a 29 años	73164	79330	82052	2722	Inmigración
De 30 a 34 años	67596	72922	77978	5056	Inmigración
De 35 a 39 años	59307	67335	72359	5024	Inmigración
De 40 a 44 años	48552	58931	61473	2542	Inmigración
De 45 a 49 años	38673	48015	49886	1871	Inmigración
De 50 a 54 años	29433	37989	39921	1932	Inmigración
De 55 a 59 años	21991	28627	30333	1706	Inmigración
De 60 a 64 años	17410	21010	22715	1705	Inmigración
De 65 a 69 años	13411	16196	17312	1116	Inmigración
De 70 a 74 años	9799	12083	13048	965	Inmigración
De 75 a 79 años	7207	8397	9014	617	Inmigración
De 80 a 84 años	4677	5559	6178	619	Inmigración
De 85 y más años	4367	4641	5892	1251	Inmigración

Lo que nos permite aproximar el número de migrantes por grupo de edad, que como aclaramos antes, dado que Querétaro es una zona de atracción se estima que haya más inmigrantes.

La extensión del cálculo de este método se encuentra en el Excel anexo, en la hoja "Prospectivo y Retrospectivo".

• Método retrospectivo

Consiste en ubicarse en el segundo periodo de tiempo (2010) y estimar la migración para el primer periodo (2005).

Método Retrospectivo Hombres					
Grupo de Edad	nPx ²⁰¹⁰	nPEx ²⁰⁰⁵	nPx ²⁰⁰⁵	Saldo	
De 0 a 4 años	91713	94134	84816	-9318	Inmigración
De 5 a 9 años	93976	94476	87978	-6498	Inmigración
De 10 a 14 años	94314	92115	90325	-1790	Inmigración
De 15 a 19 años	91788	82979	81532	-1447	Inmigración
De 20 a 24 años	82463	73730	69231	-4499	Inmigración
De 25 a 29 años	73131	69945	62339	-7606	Inmigración
De 30 a 34 años	69272	65592	58955	-6637	Inmigración
De 35 a 39 años	64846	55989	52788	-3201	Inmigración
De 40 a 44 años	55129	46071	44265	-1806	Inmigración
De 45 a 49 años	45032	37685	35890	-1795	Inmigración
De 50 a 54 años	36489	28907	27500	-1407	Inmigración
De 55 a 59 años	27586	21591	20388	-1203	Inmigración
De 60 a 64 años	20181	16603	15625	-978	Inmigración
De 65 a 69 años	15098	12958	11879	-1079	Inmigración
De 70 a 74 años	11283	9358	8635	-723	Inmigración
De 75 a 79 años	7634	6417	6155	-262	Inmigración
De 80 a 84 años	4685	4260	3801	-459	Inmigración
De 85 y más años	4082				

Método Retrospectivo Mujeres					
Grupo de Edad	nPx ²⁰¹⁰	nPEx ²⁰⁰⁵	nPx ²⁰⁰⁵	Saldo	
De 0 a 4 años	88621	91136	81872	-9264	Inmigración
De 5 a 9 años	90996	92323	85034	-7289	Inmigración
De 10 a 14 años	92185	93619	89390	-4229	Inmigración
De 15 a 19 años	93459	89145	86345	-2800	Inmigración
De 20 a 24 años	88963	82267	79537	-2730	Inmigración
De 25 a 29 años	82052	78237	73164	-5073	Inmigración
De 30 a 34 años	77978	72639	67596	-5043	Inmigración
De 35 a 39 años	72359	61865	59307	-2558	Inmigración
De 40 a 44 años	61473	50444	48552	-1892	Inmigración
De 45 a 49 años	49886	40640	38673	-1967	Inmigración
De 50 a 54 años	39921	31187	29433	-1754	Inmigración
De 55 a 59 años	30333	23776	21991	-1785	Inmigración
De 60 a 64 años	22715	18610	17410	-1200	Inmigración
De 65 a 69 años	17312	14482	13411	-1071	Inmigración
De 70 a 74 años	13048	10519	9799	-720	Inmigración
De 75 a 79 años	9014	8009	7207	-802	Inmigración
De 80 a 84 años	6178	5937	4677	-1260	Inmigración
De 85 y más					
años	5892				

Este método también nos hace una aproximación de migrantes que habrá lo que nos reafirma que hay más inmigrantes para Querétaro.

La extensión del cálculo de este método se encuentra en el Excel anexo, en la hoja "Prospectivo y Retrospectivo".

7. ECUACIÓN COMPENSADORA

Esta ecuación nos permite estimar el crecimiento total de nuestra población con base en los nacimientos, defunciones, emigrantes e inmigrantes descomponiéndolos entre dos momentos cuales quiera.

a. Crecimiento Total.

 $Crecimiento\ Total = (Nacimientos - Defunciones) + (Inmigrantes - Emigrantes)$

En nuestro caso usaremos la TBN, TBM, TBI y TBE para conseguir esta estimación, es decir,

$$r^{05-10} = (TBN^{05-10} - TBM^{05-10}) + (TBI^{05-10} - TBE^{05-10})$$

Para esta ecuación la variable faltante es la TBE $^{05-10}$, la cual obtendremos por complemento pues nuestra r^{05-10} será la tasa de crecimiento del modelo geométrico del capítulo 3.f, de la siguiente manera:

$$TBE^{05-10} = (TBN^{05-10} - TBM^{05-10}) - r^{05-10} + TBI^{05-10}$$

Donde

$$TBN^{05-10} = \frac{(TBN^{2005} + TBN^{2010})}{2}$$
$$TBM^{05-10} = \frac{(TBM^{2005} + TBM^{2010})}{2}$$

De donde obtuvimos los siguientes resultados:

Crecimiento total Hombres 2005-2010	
r ⁰⁵⁻¹⁰	0.73026779
TBN ⁰⁵⁻¹⁰	25.5480184
TBM ⁰⁵⁻¹⁰	4.82
TBI ⁰⁵⁻¹⁰	71.7709648
TBE 05-10	91.77

Crecimiento total Mujeres 2005-2010	
r ⁰⁵⁻¹⁰	0.72732626
TBN ⁰⁵⁻¹⁰	23.0697244
TBM ⁰⁵⁻¹⁰	4.82
TBI ⁰⁵⁻¹⁰	61.0164635
TBE 05-10	78.54

Dado que tanto para hombres como para mujeres el crecimiento poblacional es positivo, nos da a conocer que los nacimientos e inmigrantes superan en número a las defunciones y emigrantes.