

Avaluació Mòdul: OME

Curs: 2024-25

Grup:MAP33A

Data:28/11/24

Nom del alumne/a:

Qualificació:

Criteris de qualificació:

Temps: 90 min

Observacions: Cada nombres sense unitat resta 1 punt

Els exercicis 1 i 2 són per recuperar el examen del 06/11/24

Exercici 1: 3p

$$R_1 = 1 \Omega \dots R_6 = 6 \Omega$$

Calcula tensions, corrents i potències en les resistències.

	R_1	R_2	R_3	R_4	R_5	R_6	Total
Е	1,36 V	1,36 V	18V	4,5 V	4,5 V	12,2 V	18 V
1	1,36 A	0,68 A	6 A	1,13 A	0,9 A	2,03 A	8,03 A
R	1Ω	2Ω	3Ω	4Ω	5Ω	6Ω	2,24Ω
Р	1,36 W	0,92 W	108 W	5,1 W	4,05 W	24,7 W	144,5 W

Grup:MAP33A

Curs: 2024-25

Avaluació Mòdul: OME

Data:28/11/24

Exercici 2: 3 p

Indica la matriu per a calcular els corrents I_a , I_b , I_c , I_d , I_e . $R_1{=}1\Omega$... $R_6{=}6\Omega$

Avaluació Mòdul: OME

Curs: 2024-25

Grup:MAP33A

Data:28/11/24

Avaluació Mòdul: OME

Grup:MAP33A

Curs: 2024-25

Data:28/11/24

Exercici 3: 3 p

El gráfic mostra la tensió d'un condensador en funció del temps. Indica la pendent en $t_1=4 min$ i $t_2=19 min$ i calcula el corrent corresponent.

C = 300 mF

$$i(t) = \frac{C \cdot dv}{dt}$$

→
$$i(t=4 min) = C \cdot \frac{dv(t=4 min)}{dt} = 0.3 F \cdot 1.67 \frac{V}{s} = 0.5 A$$

$$i(t=4 min) = C \cdot \frac{dv(t=4 min)}{dt} = 0,3 F \cdot 1,67 \frac{V}{s} = 0,5 A$$

$$i(t=19 min) = C \cdot \frac{dv(t=19 min)}{dt} = 0,3 F \cdot 3,9 \frac{V}{s} = 1,17 A$$

Grup:MAP33A

Data:28/11/24

Curs: 2024-25

Avaluació Mòdul: OME

Exercici 4: 3 p

Per la bobina de la imatge calcula: mmf, Φ , H, B i R_{maq} .

$$\mu_r = 600$$

Senyala la direcció del camp magnètic.

$$mmf = 4 v \cdot 3 A = 12 Av$$

$$H = \frac{mmf}{l} = \frac{12 \, Av}{0.2 \, m} = 60 \frac{Av}{m}$$

$$\mu = \mu_r \cdot \mu_0 = 600 \cdot 4 \cdot \pi \cdot 10^{-7} \frac{T \cdot m}{Av} = 7,5 \cdot 10^{-4} \frac{T \cdot m}{Av}$$

$$B = \mu \cdot H = 7,5 \cdot 10^{-4} \frac{T \cdot m}{Av} \cdot 60 \frac{Av}{m} = 4,52 \cdot 10^{-2} T$$

$$\Phi = B \cdot S = 4,52 \cdot 10^{-2} \, 0,0001 \, m^2 = 4,52 \cdot 10^{-6} \, Wb$$

$$R_{mag} = \frac{mmf}{\Phi} = \frac{12 \, Av}{4.52 \cdot 10^{-6} \, Wb} = 2,65 \cdot 10^{6} \, \frac{Av}{Wb}$$