PAGE 1

SABANCI UNIVERSITY, CS 302 Automata Theory, Fall 2023 Midterm Examination QUESTION 1 (50 pts)

Name:

Surname:

Closed <u>book</u> and <u>notes</u> (of paper and electronic kind); Calculators are <u>not</u> allowed and all phones must be switched off; Duration: 60 minutes

- (a) (10 pts) State the definition of : (i) the extended transition function $\delta E(q,s)$ for an NFA $X = (Q, \Sigma, \delta, Q_0, F)$ and (ii) the language L(X) accepted by X.
- (b) (15 pts) Compute the NFA Y that accepts the language corresponding to the regular expression E = 0*.1.(0*.1.0*.1)*.0*
- (c) (25 pts) State the **pumping lemma** (PL) for regular languages and prove that the palindrome language $L := (\omega \in \{0,1\}^* | \omega = \omega^R)$ where ω^R denotes ω written in reverse is **not** a regular language using the PL.

PAGE 2

SABANCI UNIVERSITY, CS 302 Automata Theory, Fall 2023 Midterm Examination QUESTION 2 (50 pts)

Name:

Surname:

Closed <u>book</u> and <u>notes</u> (of paper and electronic kind); Calculators are <u>not</u> allowed and all phones must be switched off; Duration: 60 minutes

(a) (25 pts) Write down a regular expressions E_1 and E_2 over the set $\{0,1\}$ corresponding to the languages L_1 and L_2 where :(i) in each string in L_1 the number of 1's is an **even** number; and (ii) in each string in L_2 the number of 1's is an **odd** number.

(b) (25 pts) Compute minimal state DFAs X and Y that accept the complement languages L_1^c and L_2^c respectively where L_1 and L_2 are as defined in part (a).