《計算機網路》

- 一、網路傳送封包之自動重傳要求(Automatic Repeat Request)機制有 Go-back-N和 Selective repeat 兩種。請問:
 - (一)Go-back-N和 Selective repeat 有何不同? (10分)
 - (二)Go-back-N 之滑動視窗大小 (sliding window size) 有何限制?為何? (10 分)

今年題目大致來說尙稱簡單,考生只要以平常心作答,一般考生可得 75 分,比較用功的考生可得 85 分以上。

第一題:是常見的考題,小心作答即可拿到高分。

試題評析 第二題:網路設備的功能,困難度不大。

第三題:Ethernet 的最小訊框長度問題,爲基本題。

第四題:Shannon's Law,是歷年常考的問題,在T1的線路上計算理論的最大頻寬。

第五題:名詞解釋題,只要將平常所知的內容寫出即可。

【擬答】

(一)Go back N 與 Selective repeat 是接收到錯誤封包的處理方法

1.Go back N: 接收端對於錯誤 frame 後所收到的資料不予以回應,發送端需從錯誤的 frame 起開始全部重送。

Time ---

2. Selective repeat: 只將錯誤的 frame 重送,其他的 frame 正常接收。

(二)須滿足 Sliding Window Size <= (Max Sequence Number +1)/2,以防止 Sliding Window 機制失誤假設可用的 Sequence number 爲 0~9,window size = 6(超過一半),Sender 可連續送出 0、1、2、3、4、5 這五筆資料,若 Receiver 正確收到後回應 ACK,接下來預期會收到 6、7、8、9、0、1。若回應時 ACK 遺失,則 Sender 會 因爲 time-out 重送 0、1、2、3、4、5 這五筆資料,而 Receiver 誤以爲新資料到達將造成誤用 5 號資料。

1-1

二、通常網路互連(interconnection)都須透過介接設備,請說明下列各種介接設備之功能有何不同:信號再生器(repeater)、橋接器(bridge)、路由器(router)、閘道器(gateway)。(20分)【擬答】

Application layer	Application gateway
Transport layer	Transport gateway
Network layer	Router
Data link layer	Bridge, switch
Physical layer	Repeater, hub

Packet (supplied by network layer)

Frame Packet TCP User header header data CRC

Frame (built by data link layer)

- 1.訊號再生器(Repeater):將衰減的訊號還原,以利於遠距離傳送,對應到 OSI 第一層。
- 2.橋接器(Bridge)
 - (1)可用來連接不同 MAC 的兩個區域網路。
 - (2)對應至 OSI 的第二層。
 - (3)具有四項功能: Filtering、Forwarding、Buffering、Learning。
- 3.路徑器(Router)
 - (1)對應至 OSI 第三層。
 - (2)可用來連接不同通訊協定(Data Link Layer)的網路。
 - (3) 具路徑選擇的功能。
- 4. 閘通道(Gateway)
 - (1)對應至 OSI 第七層。
 - (2)用來連接兩個完全不同的網路。
- 三、乙太網路(Ethernet)協定 IEEE802.3 定義傳輸速率(transmission rate)是 10 Mbps,請說明 為何規定最小訊框(frame)長度為 64 bytes。(20 分)

【擬答】

爲了達到碰撞偵測(Collision Detection)的目的,Ethernet網路的網路直徑爲2500公尺,來回時間(Round-Trip Time)經過計算後是51.2us,以Ethernet網路的傳送速度10Mbps計算,爲維持碰撞偵測,所以一個Ethernet Frame最小長度爲10Mbps*51.2us=512bits=64bytes

四、依據項農理論(Shannon theory),有一條 T1 載體(carrier)在信號雜訊比(signal-to-noise ratio, SNR)為 20dB 之環境下,其最大傳輸速率(transmission rate)為何?(20 分) (Note: $\log_{10} 2 = 0.301$)

【擬答】

T1 專線有 24 個語音頻道,每個頻道佔 4kHz 頻寬,共 96kHz 頻寬 訊號雜訊比由分貝導出 => 20db = $10*\log 10$ S/N => S/N=100根據 Shanonn's Law 最大傳送速率 = 96KHz * $\log 10(1+100)$ = 96KHz * 6.658 = 639.168 Kbps

五、請說明下列名詞:(20分)

- (−)Bit stuffing
- (二)Pulse stuffing
- (三)Multipath fading
- (四)Frequency Hopping Spreading spectrum

【擬答】

(一)位元填充(0 bit stuffing): Sender 送出資料時若有連續出現 5 個 bit 1 就在後面加上 bit 0 做爲同步。

(a) 0110111111111111111110010

HDLC 資料連結層的控制協定裡,訊框(Frame)是以 0x7e(01111110)作爲旗號(Flag)來標示一個訊框的開始與結束,訊框內爲了避免有 0x7e 資料被誤認是旗號,於是將資料當中每逢 5 個連續的 1 時,就塞入一個 0,如此就不會再有連續 6 個 1 的資料。在接收端,只要收到連續 5 個 1,這時後面若是跟著 1 代表收到的是旗號,如果跟著 0,就代表是當初防混淆所塞(Stuff)進去的 bit,將之拋棄。

- (二)Pulse Stuffing:在TDM分時多工時,爲了解決各線路速率快慢不一的差異,在速度較慢的頻道進入多工器 (MUX)輸入端前塞進去一些Pulse 補足一個 Time slot 的訊號長度的作法。
- (三)Multipath fading(多路徑衰退):延遲的電波可能因位相位的改變而與訊號相抵銷稱之。如微波傳送可在接收端聚焦,但仍然有一些會發散,這些發散的電波經由大氣層折射,而比直接波晚送達到接收端,就可能發生多路徑衰退現象。
- (四)Frequency Hopping Spread Spectrum(FHSS 跳頻技術):在同步、且同時的情況下,接受兩端以特定型式的窄頻載波來傳送訊號,主要使用在無線網路的展頻技術上。對於一個非特定的接受器,FHSS 所產生的跳動訊號對它而言,只算是脈衝雜訊。FHSS 所展開的訊號可依特別設計來規避雜訊或 One-to-Many 的非重覆的頻道,並且這些跳頻訊號必須遵守 FCC 的要求,使用 75 個以上的跳頻訊號、且跳頻至下一個頻率的最大時間間隔(Dwell Time)為 400ms,此為藍芽採用的技術。

2010 高點檢事官電資組 全套詳解

