Жадные алгоритмы

Разрабтать жадный алгоритм решения задачи, определяемой своим вариантом. Доказать его корректность, оценить скорость и объём затрачиваемой оперативной памяти.

Реализовать программу на языке C или C++, соответствующую построенныму алгоритму. Формат входных и выходных данных описан в варианте задания.

Варианты

1. Размен монет

На первой строке заданы два числа, N и р > 1, определяющие набор монет некоторой страны с номиналами р0, р1, ..., рN−1. Нужно определить наименьшее количество монет, которое можно использовать для того, чтобы разменять заданную на второй строчке сумму денег М ≤ 232 - 1 и распечатать для каждого і-го номинала на і-ой строчке количество участвующих в размене монет. Кроме того, нужно обосновать почему жадный выбор неприменим в общем случае (когда номиналы могут быть любыми) и предложить алгоритм, работающий при любых входных данных.

Пример:

Входной файл	Выходной файл
3 5 71	1 4 2

2. Выбор отрезков

На координатной прямой даны несколько отрезков с координатами [Li, Ri]. Необходимо выбрать минимальное количество отрезков, которые бы полностью покрыли интервал [0, M]. Формат входных данных: на первой строчке располагается число N, за которым следует N строк на каждой из которой находится пара чисел Li, Ri; последняя строка содержит в себе число M. Формат выходных данных: на первой строке число К выбранных отрезков, за которым следует К строк, содержащих в себе выбранные отрезки в том же порядке, в котом они встретились во входных данных. Если покрыть интервал невозможно, нужно

распечатать число 0.

Пример:

Входной файл	Выходной файл
3	
-1 0 -5 -3	0
2 5	
1	
Входной файл	Выходной файл
2	
-1 0 0 1	1 0 1
1	0 1

3. Максимальный треугольник

Заданы длины N отрезков, необходимо выбрать три таких отрезка, которые образовывали бы треугольник с максимальной площадью. Формат входных данных: на первой строке находится число N, за которым следует N строк с целыми числами-длинами отрезков. Формат выходных данных: если никакого треугольника из заданных отрезков составить нельзя — 0, в противном случае на первой строке площадь треугольника с тремя знаками после запятой, на второй строке — длины трёх отрезков, составляющих этот треугольник. Длины должны быть отсортированы.

Пример:

Входной файл	Выходной файл
4 2 1 3 5	0
Входной файл	Выходной файл
4 3 5 3 4	6.000 3 4 5

4. Откорм бычков

Бычкам дают пищевые добавки, чтобы ускорить их рост. Каждая добавка содержит некоторые из N действующих веществ. Соотношения

количеств веществ в добавках могут отличаться. Воздействие добавки определяется как

```
c1a1 + c2a2 +· · ·+cNaN,
```

где аі — количество і-го вещества в добавке, сі — неизвестный коэффициент, связанный с веществом и не зависящий от добавки. Чтобы найти неизвестные коэффициенты сі, Биолог может измерить воздействие любой добавки, использовав один её мешок. Известна цена мешка каждой из $M (M \ge N)$ различных добавок. Нужно помочь Биологу подобрать самый дешевый наобор добавок, позволяющий найти коэффициенты сі. Возможно, соотношения веществ в добавках таковы, что определить коэффициенты нельзя.

Входные данные: в первой строке текста — целые числа М и N; в каждой из следующих М строк записаны N чисел, задающих соотношение количеств веществ в ней, а за ними — цена мешка добавки. Порядок веществ во всех описаниях добавок один и тот же, все числа — неотрицательные целые не больше 50. Выходные данные: -1 если определить коэффциенты невозможно, иначе набор добавок (и их номеров по порядоку во входных данных). Если вариантов несколько, вывести какой-либо из них.

Пример:

Входной файл	Выходной файл
3 3 1 0 2 3 1 0 2 4 2 0 1 2	-1
D 1 - 3 -	
Входной файл	Выходной файл

5. Оптимальная сортировка чисел

Дана последовательность длины N из целых чисел 1, 2, 3. Необходимо найти минимальное количество обменов элементов последовательности, в результате которых последовательность стала бы отсортированной. Входные данные: число N на первой строке и N чисел на второй строке. Выходные данные: минимальное количество обменов.

Пример:

Входной файл	Выходной файл
--------------	---------------

3	1
3 2 1	1

6. Топологическая сортировка

Заданы N объектов с ограничиениями на расположение вида «А должен находиться перед В». Необходимо найти такой порядок расположения объектов, что все ограничения будут выполняться. Входные данные: на первой строке два числа, N и M, за которыми следует M строк с ограничениями вида «А В» ($1 \le A$, $B \le N$) определяющими относительную последовательность объектов с номерами A и B. Выходные данные: -1 если расположить объекты в соответствии с требованиями невозможно, последовательность номеров объектов в противном случае.

Пример:

Входной файл	Выходной файл
3 2	
1 2 2 3	1 2 3
2 3	