PARIS DAUPHINE UNIVERSITY

C++ Project - Solving Kakuro

Elie ABI HANNA DAHER and Bilal EL CHAMI GitHub repository: github.com/elieahd/kakuro

Abstract-This document illustrate the work done for an academic project that consists of solving a Kakuro Grid as a contraint satisfaction problem (CSP) in C++.

of each column and row. So for the grid in the figure ?? we will have the following file

I. Introduction

Kakuro consists in filling a grid with numbers that sum up to a certain values for each column and row. Each cell needs to be filled with a value between 1 and 9.

The following example represents a 5x5 grid where the sum of each row has to be 15 and the sum of each column has to

	15	15	15	15	15			15	15	15	15	15
15						1	5	1	2	3	4	5
15						1	5	5	1	2	З	4
15						1	5	4	5	1	2	3
15						1	5	3	4	5	1	2
15						1	5	2	3	4	5	1

Fig. 1. Example of solving a 5x5 kakuro gird

II. IMPLEMENTATION

The following diagram reperesents the class diagrams of our project

Fig. 2. Class diagram

The initial grid of the kakuro will be present in a file, which will contain the possible values of a cell and the target sum

Fig. 3. File input

III. SOLVING - FORWARD CHECKING

```
if no free variable then
2.
          return true
3:
      end if
4:
      choose a free variable var
5:
      for each value v in var.domain do
6:
          assign value to var
7:
8:
          update the domains of the free variable
          if no domain is empty or inconsistent then
9:
```

if ForwardChecking() then

return true 12: end if end if 13: end for

Algorithm 1 Forward checking 1: procedure FORWARDCHECKING

return false 15: 16: end procedure

10:

11:

IV. MONTE CARLO KAKURO V. EXPERIMENTALS - SIMULATION

TABLE I SIMULATION PARAMETERS

3x3 grid	0.3 s
5x5 grid	0.3 s
10x10 grid	0.3 s

REFERENCES

[1] T. Cazenave. Monte-Carlo Kakuro