Ve492: Introduction to Artificial Intelligence

Logical Agent and Propositional Logic

Paul Weng

UM-SJTU Joint Institute

Slides adapted from AIMA, UM, CMU

Logical Agents

Logical agents and environments

Wumpus World

Performance

- pick up gold = +1000,
- get eaten or fall in pit = -100

Environment

grid

Actuators

- move forward,
- turn left or right,
- pick up,
- shoot

Sensors

- Stench,
- Breeze,
- Glitter,
- Bump,
- * Scream

SSSSSS Stench S Stenc

2

3

4

3

4

2

1

1

A Knowledge-based Agent

```
function KB-AGENT(percept) returns an action
  persistent: KB, a knowledge base
              t, an integer, initially 0
  TELL(KB, PROCESS-PERCEPT(percept, t))
  action \leftarrow ASK(KB, PROCESS-QUERY(t))
  TELL(KB, PROCESS-RESULT(action, t))
  t←t+1
  return action
```

Logical Agents

So what do we TELL our knowledge base (KB)?

- Facts (sentences)
 - ♦ The grass is green ✓
 - ♦ The sky is blue
- Rules (sentences)
 - Eating too much candy makes you sick
 - * When you're sick you don't go to school
- Percepts and Actions (sentences)
 - Pat ate too much candy today

What happens when we ASK the agent?

- Inference new sentences created from old
 - Pat is not going to school today

Knowledge

- * Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
- Tell it what it needs to know (or have it Learn the knowledge)
- Then it can Ask itself what to do—answers should follow from the KB
- Agents can be viewed at the knowledge level
 i.e., what they know, regardless of how implemented
- A single inference algorithm can answer any answerable question
 - Cf. a search algorithm answers only "how to get from A to B" questions

Formal Language

- Syntax: What sentences are allowed?
- Semantics:

states

- What are the possible worlds?
- Which sentences are true in which worlds? (i.e., definition of truth)
- Model theory: how do we define whether a statement is true or not?
 - Truth and entailment
- Proof theory: what conclusion can we draw given a state of partial knowledge?
 - Soundness and completeness

Semantics

Logic Language

Natural language?

possible worlds states model assignt Sentences &, B

- Propositional logic
 - * Syntax: $P \vee (\neg Q \wedge R)$; $X \Leftrightarrow (R \Rightarrow S)$
 - Possible model: {P=true, Q=true, R=false, S=true, X=true} or 11011
 - Possible world: interpretations of symbols
 - * Semantics: $\alpha \wedge \beta$ is true in a world iff α is true and β is true (etc.)
- First-order logic
 - ♦ Syntax: $\forall x \exists y P(x,y) \land \neg Q(Joe,f(x)) ⇒ f(x)=f(y)$
 - * Possible model: Objects o_1 , o_2 , o_3 ; P holds for $<o_1,o_2>$; Q holds for $<o_3>$; $f(o_1)=o_1$; Joe= o_3 ; etc.
 - Possible world: interpretations of objects, predicates, and functions.
 - * Semantics: $\phi(\sigma)$ is true in a world if $\sigma = o_i$ and ϕ holds for o_i ; etc.

Summary

- World is deterministic
- ♦ State is partially-observable ✓

$$f(s) = a$$

- Planning agent instead of reflex agent
- Derives new facts from what it currently knows

Propositional Logic

Copyright © 2004 Creators Syndicate, Inc.

Propositional Logic

Symbol:

- ♦ Variable that can be true or false
- ♦ We'll try to use capital letters, e.g. A, B, P_{1.2}
- Often include True and False

Operators:

- → A: not A
- ♦ A ∧ B: A and B (conjunction)
- A V B: A or B (disjunction) Note: this is not an "exclusive or"
- * $A \Rightarrow B$: A implies B (implication). If A then B
- ♦ A ⇔ B: A if and only if B (biconditional)
- Sentences

Propositional Logic Syntax

- Given: a set of proposition symbols {X₁, X₂, ..., X_n}
 - ♦ Sentence → AtomicSentence | ComplexSentence
 - AtomicSentence → True | False | Symbol
 - * Symbol $\rightarrow X_1 \mid X_2 \mid ... \mid X_n$

```
(Sentence \( \) Sentence)
```

| (Sentence \times Sentence)

| (Sentence \Rightarrow Sentence)

| (Sentence ⇔ Sentence)

Example: Wumpus World

4

3

2

1

Logical Reasoning

- * B_{ij} = breeze felt
- S_{ii} = stench smelt
- $P_{ij} = pit here$
- W_{ij} = wumpus here
- * $G_{ij} = gold$

http://thiagodnf.github.io/wumpus-world-simulator/

Wumpus World: Tell KB

4

3

2

- There is no pit in [1, 1]:
 - * R1: $\neg P_{1,1}$
- A square is breezy iff there is a pit in a neighboring square:

* R2:
$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$* R3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

...

- The first two percepts:
 - * R4: $\neg B_{1,1}$ \checkmark
 - * R5: $B_{2,1}$ \checkmark

1

2

3

4

Truth from Semantics

- * A model specifies the truth value of every proposition symbol (e.g., P, $\neg P$, True, False)
- The truth value of complex sentences is defined in terms of the truth values of its elements:
 - PP, $P \land Q$, $P \lor Q$, $P \Rightarrow Q$, $P \Leftrightarrow Q$

Truth Tables

 $\alpha \vee \beta$ is <u>inclusive or</u>, not exclusive

α	β	$\alpha \wedge \beta$	α	β	$\alpha \vee \beta$
F	F	F	F	F	F
F	Т	F	F	Т	Т
Т	F	F	Т	F	Т
Т	Т	Т	Т	Т	Т

Truth Tables

 $\alpha \Rightarrow \beta$ is equivalent to $\neg \alpha \lor \beta$

				7
α	β	$\alpha \Rightarrow \beta$	$\neg \alpha$	$\neg \alpha \lor \beta$
F	F	Т	Т	Т
F	Т	Т	Т	Т
Т	F	F	F	F
Т	Т	Т	F	Т

Truth Tables

 $\alpha \Leftrightarrow \beta$ is equivalent to $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$

α	β	$\alpha \Leftrightarrow \beta$	$\alpha \Rightarrow \beta$	$\beta \Rightarrow \alpha$	$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
F	F	Т	Т	Т	Т
F	Т	F	Т	F	F
Т	F	F	F	Т	F
Т	Т	Т	Т	Т	Т

Propositional Logic Semantics

```
function PL-TRUE?(\alpha, model) returns true or false
   if \alpha is a symbol then return Lookup(\alpha, model)
   if Op(\alpha) = \neg then return not(PL-TRUE?(Arg1(\alpha), model))
   if Op(\alpha) = \Lambda then return and (PL-TRUE? (Arg1(\alpha), model),
                                     PL-TRUE?(Arg2(\alpha),model))
   if Op(\alpha) = \Rightarrow then return or (PL-TRUE? (Arg1(\alpha), model),
                                     not(PL-TRUE?(Arg2(\alpha), model)))
etc. (Sometimes called "recursion over syntax")
```

Logical Consequences

- Entailment: determines truth of sentence based on semantics (from outside)
- Inference: generates new sentence from current KB (from inside)

Two closely related, but very different, concepts

Entailment

Entailment: $\alpha \models \beta$ (" α entails β " or " β follows from α ") iff in every world where α is true, β is also true

* I.e., the α -worlds are a subset of the β -worlds [$\underline{models}(\alpha) \subseteq \underline{models}(\beta)$]

Usually we want to know if $KB \models query$

- $* models(KB) \subseteq models(query)$
- In other words
 - * KB removes all impossible models (any model where KB is false)
 - * If β is true in all of these remaining models, we conclude that β must be true

Entailment and implication are very much related

* However, entailment relates two sentences, while an implication is itself a sentence (usually derived via inference to show entailment)

Wumpus World: Model

- Possible worlds/models
- $P_{1,2} P_{2,2} P_{3,1}$

Wumpus World: KB

- Possible worlds/models
- \bullet $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
 - Nothing in [1,1]
 - Breeze in [2,1]

Wumpus World: Query 1

Possible worlds/models

$$(P_{1,2}, P_{2,2}, P_{3,1}) \leftarrow$$

- Knowledge base
 - Nothing in [1,1]
 - Breeze in [2,1]
- * Query α_1 :

 * No pit in [1,2] 7 $P_{1,2}$ + Lere is antailment!

Wumpus World: Query 2

- Possible worlds/models
- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
 - Nothing in [1,1]
 - Breeze in [2,1]

- * Query α_2 :
 - * No pit in [2,2]

Quiz: Wumpus World

- Possible worlds/models
- \bullet $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
 - Nothing in [1,1]
 - Breeze in [2,1]

* Query
$$\alpha_3$$
:
* No pit in [3,1] $\tau P_{3,1}$

Sentences as Constraints

Adding a sentence to our knowledge base constrains the number of possible models:

KB: Nothing

ossible	P	Q	R
Models	false	false	false
	false	false	true
	false	true	false
	false	true	true
	true	false	false
	true	false	true
	true	true	false

true

true

Sentences as Constraints

Possible

Models

Adding a sentence to our knowledge base constrains the number of possible models:

KB: Nothing

KB: $[(P \land \neg Q) \lor (Q \land \neg P)] \Rightarrow R \checkmark$

R false false false false false true false false true false true true false false true false true true false true true true true true

Sentences as Constraints

Adding a sentence to our knowledge base constrains the number of possible models:

KB: Nothing

KB: $[(P \land \neg Q) \lor (Q \land \neg P)] \Rightarrow R$

KB: R, $[(P \land \neg Q) \lor (Q \land \neg P)] \Rightarrow R$

Possible Models

Р	Q	R	
false	false	false	
false	false	true	
false	true	false	
false	true	true	
true	false	false	
true	false	true	
true	true	false	
true	true	true	

Validity and Satisfiability

- A sentence is valid if it is true in every model
 - * α entails β if and only if $\alpha \Rightarrow \beta$ is valid
 - A valid sentence is also called tautology
- A sentence is satisfiable if it is true in some model
- A sentence is unsatisfiable if it is true in no model

Logical Agents

Inference

Simple model checking
Efficient Model Checking via Satisfiability
Theorem proving

Simple Model Checking

```
mode P(KB) < model(2)
function TT-ENTAILS?(KB, \alpha) returns true or false
  return TT-CHECK-ALL(KB, \alpha, symbols(KB) U symbols(\alpha),{})
function TT-CHECK-ALL(KB, α, symbols, model) returns true or false
  if empty?(symbols) then
       if PL-TRUE?(KB, model) then return PL-TRUE?(\alpha, model)
       else return true
  else
       P \leftarrow first(symbols)
       rest ← rest(symbols)
       return and (TT-CHECK-ALL(KB, \alpha, rest, model U {P = true})
                     TT-CHECK-ALL(KB, \alpha, rest, model U {P = false }))
```

Simple Model Checking, contd.

- Same recursion as backtracking
- O(2ⁿ) time, linear space
- We can do much better!

Efficient Model Checking via Satisfiability

- Assume we have a hyper-efficient SAT solver; how can we use it to test entailment?
 - * Suppose $\alpha \models \beta \lor$
 - * Then $\alpha \Rightarrow \beta$ is true in all worlds (Deduction theorem)
 - * Hence $\neg(\alpha \Rightarrow \beta)$ is false in all worlds
 - * Hence $\alpha \land \neg \beta$ is false in all worlds, i.e., unsatisfiable
- So, add the negated conclusion to what you know, test for (un)satisfiability; also known as reductio ad absurdum
- Efficient SAT solvers operate on conjunctive normal form

Conjunctive Normal Form (CNF)

- Every sentence can be expressed as a conjunction of clauses
- A clause is a disjunction of literals
- A literal is a symbol or a negated symbol
- Conversion to CNF by a sequence of standard transformations:
 - $* B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
 - * $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
 - * $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
 - * $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
 - $* (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \quad (\not \vdash F_{2,1} \lor F_{2,1}) \land (\neg P_{2,1} \lor F_{2,1}) \quad (\not \vdash F_{2,1} \lor F_{2,1}) \quad (\not \vdash F_{2,1$

Inference via Theorem Proving

- KB: set of sentences
- Inference rule specifies when:
 - If certain sentences belong to KB, you can add certain other sentences to KB
- * Proof (KB $\vdash \alpha$) is a sequence of applications of inference rules starting from KB and ending in α
- Inference is a completely mechanical operation guided by syntax, no reference to possible worlds

Example of Inference Rules

- * Modus ponens: $\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$
- * And elimination: $\frac{\alpha \wedge \beta}{\alpha}$
- * Biconditional elimination: $\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$

Forward Chaining

* KB:

- ♦ A, B, D
- $A \wedge B \Longrightarrow C$
- $* C \wedge D \Longrightarrow E$
- $* C \wedge F \Longrightarrow G$

A,B,
$$A \wedge B \Rightarrow C$$

$$C \wedge D \Rightarrow E$$

$$E$$

Soundness and Completeness

- We want inference to be sound:
 - ⋄ If we can prove B from A (A \vdash B), then A \models B

- We would like inference to be complete:
 - ♦ If $A \models B$, then we can prove B from A (A \vdash B)
- These are properties of the relationship between proof and truth.

PL is Sound and Complete!

 Theorem: Sound and complete inference can be achieved in PL with one rule: resolution

$$* \frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

- * More generally, $\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma}$
- * More generally yet, $\frac{\alpha_1 \vee \cdots \vee \alpha_n \vee \beta, \neg \beta \vee \gamma_1 \vee \cdots \gamma_m}{\alpha_1 \vee \cdots \vee \alpha_n \vee \gamma_1 \vee \cdots \gamma_m}$
- KB assumed to be in CNF
- * Show KB $\models \alpha$ by showing unsatisfability of (KB $\land \neg \alpha$)