Automatyczne oznaczanie zawartości tłuszczu wewnątrzmięśniowego z obrazów Dixona

Agnieszka Sabisz

Włodzimierz Bzyl

Piotr Artukowicz

Beata Brzeska

Arkadiusz Szarmach

Gdańsk, 6–8 czerwca 2019

Monitorowanie zmian zawartości tłuszczu

Tłuszcz w mięśniach szkieletowych:

- więcej u osób starszych
- może być skutkiem choroby (Duchenne'a, sarkopenia)

Celem jest program do:

- automatycznego oddzielenia mięśni uda z obrazu MR (moduł 1 [thigh])
- precyzyjnego oznaczania zawartości tłuszczu wewnątrzmięśniowego (moduł 2)

Dlaczego obrazy Dixona?

4 obrazy: in-phase, out-phase, water (W), fat (F).

Intensywność sygnału w obrazach W i F reprezentuje gęstości protonów pochodzących od –CH₂– i –CH₃, odpowiednio.

signal fat-fraction
$$\equiv \frac{S_F}{S_W + S_F}$$

true fat-fraction \approx signal fat-fraction

(dla małego *flip angle*)

Dane: obrazy Dixona, wybrane warstwy Program

Tłuszcz na obrazach in-phase i fat-fraction

Tłuszcz na obrazach in-phase i fat-fraction bez tła

Mięśnie na obrazach in-phase i fat-fraction bez tła

1 warstwa z mięśniami z wyciętą kością udową

True Fat Fraction ≈ Fat Fraction w obrazie fat-fraction fantomu F1

W. T. Dixon, Simple Proton Spectroscopic Imaging

