Insper Design para Manufatura

Seleção de Parâmetros de Corte

Fonte: P., G. M. Fundamentos da Moderna Manufatura - Vol. 1, 5ª edição. Grupo GEN, 2017.

Processos de remoção de materiais

Como removemos material? Formando cavaco!

Energia para romper o material.

 Ferramenta de elevada DUREZA, para aguentar os esforços.

Quanto de energia? De onde ela vem?

- A quantidade de energia depende do material a ser usinado.
- Quanto maior a dureza da peça mais difícil é a usinagem, maior demanda de energia.

Material	"Força" específica de corte [N/mm²]
Aços baixo carbono	1500
Aços alto carbono	1750
Aço inox	1900
Alumínio	400
Latão	550
Polímeros	150

Quanto de energia? De onde ela vem?

- O volume de material removido também tem influência!
- O que define o volume de material que estamos removendo?
 - Avanço f
 - $lue{}$ Profundidade axial de corte a_p
 - $lue{}$ Profundidade radial de corte a_e
- Ou seja, quanto maiores esses parâmetros maior o esforço de corte!

Mas e a velocidade de corte? Não influencia em nada?

- A velocidade de corte faz com que depositemos mais energia ao longo do tempo!
- Hein?! POTÊNCIA!!!

$$P_c = F_c \times V_c$$

Potência de corte = Força de corte × Velocidade de corte

 Então, quanto maior a velocidade de corte, mais rápido tende a ser o processo!

Então vamos remover o máximo de material, com a maior velocidade de corte e terminaremos nossas peças super rápido!!!

- Será que nossa máquina tem potência disponível para isso?
- Será que a ferramenta aguenta tanto esforço?
- Será que minha fixação aguenta???
- Será que essa estratégia não vai gerar MUITO calor?
- Vai fazer muito barulho, né? Vai vibrar demais...
- Acho que vai ser difícil atingir as tolerâncias...

Determinado os valores

Procedimento para determinar os parâmetros

Qual o material a ser <u>usinado?</u>

Qual o material da ferramenta?

Qual a (sub)operação? Desbaste ou acabamento?

Quais os limites da máquina de usinagem? Quais as dimensões do sobremetal?

TORNEAMENTO

Referências Torneamento

Profundidade de corte - a_p

Menor valor = raio de ponta da ferramenta

- Ver informação do fabricante.
- Para faceamento esse é o maior valor!

E o maior valor de a_p ?

- Regra genérica de 2 a 2,5 vezes o raio de ponta.
- Lembrando que quanto maior a profundidade, maiores os esforços!
- Testar e observar!

Material	Material a ser	Velocidade de Corte (m/min)				
Ferramenta	usinado	Avanço (mm/rot.)				
		0,1	0,2	0,4		
	Aços 1010 a 1025	280	236	200		
	Aços 1030 a 1045	240	205	175		
	Aços 1050 a 1060	200	170	132		
Metal Duro	Ferro Fundido	125	90	75		
(carbide)	Aço Liga	118	108	85		
	Alumínio Liga	224	190	160		
	Alumínio Puro	1320	1120	950		
	Latão	600	530	450		

FURAÇÃO

Aço rápido

Furação normal

Furação em ciclos

Alargamento

Diâmetro inicial

Diâmetro final

Comprimento

Qual o material a ser usinado?

Qual o material da ferramenta?

Qual a (sub)operação?

Quais os limites da máquina de usinagem? Quais as dimensões do sobremetal?

Referências – Furação

Material Ferramenta	Material a ser usinado	Velocidade de Corte (m/min)			
remannenta	usiliauo	Furação	Alargamento		
	Aços 1010 a 1025	30	18		
	Aços 1030 a 1045	25	16		
	Aços 1050 a 1060	20	14		
	Ferro Fundido	20	13		
Aço Rápido	Aço Liga	10	11		
HSS	Alumínio Liga	30	24		
	Alumínio Puro	45	27		
	Latão	32	28		
	Poliamida (Nylon)	30	30		
	Poliacetal	30	30		

Broca DORMER - Série A100 (Ref. Ø10mm) Alargador DORMER - Série B180 (Ref. Ø10mm)

FRESAMENTO

Referências – Fresamento

			_							
							Oper	ação		
Material Ferramenta	Material a ser usinado	Faceamento				Fresamento de Topo				
		Desbaste		Acaba	Acabamento		Desbaste		Acabamento	
		V _c	f _z	V _C	f _z	V _c	f _z	V _C	f _z	
	Aços 1010 a 1025	20	0,08	30	0,02	20	0,07	30	0,03	

0.03

0.03

0.06

80,0

0.08

Desbaste

15

10

15

200

40

0.02

0.02

0.03

0.04

0.04

Recomendações de a_p e a_e - Todos os Materiais

 a_e

70% do diâmetro da ferramenta

Igual ao diâmetro da ferramenta

Máximo 10% do diâmetro da

ferramenta

18

15

20

250

60

0.06

0.1

0.07

0.07

0.5

20

15

20

300

60

 a_{n}

Máximo de 1 mm

Máximo de 0.5 mm

Máximo 100% do

comprimento de corte da

ferramenta

15

10

15

230

40

Acos 1030 a 1045

Acos 1050 a 1060

Ferro Fundido

Alumínio Liga

Latão

 a_n

1 a 4 mm

Máximo 25% do diâmetro da

ferramenta

Máximo 50% do diâmetro da

ferramenta

Aço Rápido

(HSS)

Operação

Faceamento

Fresamento de topo

Fresamento lateral

Fresamento Lateral

Acabamento

 V_{c}

25

20

15

20

300

60

 f_z

0.08

0.05

0,04

0.08

0.05

0.05

Desbaste

20

15

10

15

200

40

Acabamento

0.2

0.15

0.1

0.2

0.1

0.2

a

70% do diâmetro da ferramenta

Igual ao diâmetro da ferramenta

Máximo de 2% do diâmetro da

ferramenta (mínimo de 0.1 mm)

0.02

0.05

0.01

0.03

0.15

Referências – Fresamento

- Cabeçote Faceador Walter F4033.B22.050.Z04.06.
- Ø50 mm, 4 dentes.
- Ferramenta de insertos intercambiáveis de Metal Duro.

	Operação									
Material a ser	Faceamento									
usinado	Desbaste					Acabamento				
	V _C	f _z	a _p	a _e	V _C	f _z	a _p	a _e		
Aços 1010 a 1025	175	0,2	0,4 a 2,5 mm	do diametro da	200	0,1	0,25 a 1 mm	De 100% a 50% do diâmetro da ferramenta		
Aços 1030 a 1045	125	0,15			150	0,08				
Aços 1050 a 1060	75	0,15			100	0,08				
Ferro Fundido	125	0,15			150	0,05				
Alumínio Liga	225	0,2			250	0,15				
Latão	225	0,18			250	0,08				

Obrigado

