BF 01/02/07/06/05/04: Radial Leads

BQ 01/02/07/06/05/04 (Lead Free product available upon request)

CPM-83---- pitch = 5.08mm (0.200")

APPLICATIONS

- Commodity Product:
 - Supply decoupling
 - Filter
 - Integrators
 - Treatment of analog signals
 - Rejection of line perturbations, etc.

GENERAL DESCRIPTION

Dielectric: Metallized polyester film (Polyethylene teraphtalate)

Stacked-film

Leads: Radial tin - plated wire

Protection: Plastic case (UL 94: V-O) / Epoxy Resin

Marking: Logo

Nominal Capacitance Tolerance (EIA) DC Nominal Voltage Example: **T 100nK 63**

Delivery Mode: Bulk

Taped (reel or ammopack)

STANDARDIZATION

Generic specifications:

CEI 384-1/CECC 30000/UTE 83100

Sectional specifications:

CEI 384-2/CECC 30400/UTE 83151

Complies with special specification:

CECC 30401-063

DIMENSIONS

millimeters (inches)

Case	L max	H max	e max	ø ± 0.02
01	7.5 (0.295)	6.5 (0.256)	2.5 (0.098)	0.5 (0.020)
02	7.5 (0.295)	8.0 (0.315)	3.2 (0.126)	0.5 (0.020)
05	7.5 (0.295)	12.0 (0.472)	6.0 (0.236)	0.5 (0.020)
06	7.5 (0.295)	9.6 (0.378)	6.0 (0.236)	0.5 (0.020)
07	7.5 (0.295)	8.0 (0.315)	5.0 (0.197)	0.5 (0.020)
04	7.5 (0.295)	13.0 (0.512)	7.5 (0.295)	0.5 (0.020)

*L dimension measured 3mm above base of case

HOW TO ORDER

BF 01/02/07/06/05/04: Radial Leads

BQ 01/02/07/06/05/04 (Lead Free product available upon request)

CPM-83---- pitch = 5.08mm (0.200")

PERFORMANCE CHARACTERISTICS

Climatic Category	55/100/56 Performance Class 2
Capacitance Range	C_R 1nF to 2.2µF (E12)
Tolerance on C _R	±5%; ±10% (other values on request)
Nominal Voltages	VR_ 63/100/250/400V VR~ 40/ 63/160/200V
Category Voltage	$Vc = 0.8V_{R-}$ at 100°C
Test Voltage	Ve = 1.6V _R /2s at 25°C

• Tangent of Loss Angle: D.F.

Measurement Frequency	Capacitance	DF: Performance Category 2
1kHz	C _R ≤1µF	≤ 1.0%
100 Hz	C _R > 1µF	≤ 1.0%

• Insulation Resistance: IR

Measuring Points	C _R <= 0.33μF		C _R > 0.33µF		
	IR min (G Ω)		IR * C _R min (MΩ * μF)		
	Performance Class 2		Performance Class 2		
Between Terminals	V _{R-} ≤ 100V	V _{R-} > 100V	V _{R-} ≤ 100V	V _{R-} > 100V	
	3.75	7.5	1.25	2.5	
Between Terminals and Ground	≥ 30,000 Ω				

Max voltage gradient

V_{R-}	63	100	250	400
(dv/dt) _R max	38	40	110	270

PACKAGING

millimeters (inches)

16.5 ± 0.30	19.5 ± 0.50 (0.768 ± 0.020)
	16.5 ± 0.30 (0.65 ± 0.012)

Case	Quantity							
Vase	Re	eel	Ammo	Ammopack		ılk		
Suffix	DB	DD	DA	DC				
х	panasert	avisert	panasert	avisert	USA Std.	Europe / Asia Std.		
01	2500		2500		1000	5000		
02	18	1800		00	1000	3800		
07	1200		12	50	1000	2500		
06	900		11	00	1000	1500		
05	9	00	11	00	1000	1500		
04	7	50	7	50	1000	1000		

BF 01/02/07/06/05/04: Radial Leads BQ 01/02/07/06/05/04 (Lead Free product available upon request)

CPM-83---- pitch = 5.08mm (0.200")

CAPACITANCE VALUES (C_R) and NOMINAL VOLTAGES (V_R)

Capacitance Reference					
Range		BF o			
(C _R)		V _{R-} /			
	63/40 (voltage code: D)	100/63 (voltage code: E)	250/160 (voltage code: G)	400/200 (voltage code: I)	
1,000 pF	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
1,200	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
1,500	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
1,800	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
2,200 pF	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
2,700	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
3,300	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
3,900	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
4,700 pF	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
5,600	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
6,800	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
8,200	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
10,000 pF	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	BF01 or BQ01	
12,000		BF01 or BQ01	BF01 or BQ01	BF02 or BQ02	
15,000		BF01 or BQ01	BF01 or BQ01	BF02 or BQ02	
18,000		BF01 or BQ01	BF01 or BQ01	BF02 or BQ02	
22,000		BF01 or BQ01	BF01 or BQ01	BF02 or BQ02	
27,000		BF01 or BQ01	BF01 or BQ01	BF07 or BQ07	
33,000		BF01 or BQ01	BF02 or BQ02	BF07 or BQ07	
39,000		BF01 or BQ01	BF02 or BQ02	BF06 or BQ06	
47,000 pF	BF01 or BQ01	BF01 or BQ01	BF02 or BQ02	BF06 or BQ06	
56,000	BF01 or BQ01	BF01 or BQ01	BF07 or BQ07	BF04 or BQ04	
68,000	BF01 or BQ01	BF01 or BQ01	BF07 or BQ07	BF04 or BQ04	
82,000	BF01 or BQ01	BF01 or BQ01	BF07 or BQ07	BF04 or BQ04	
100 nF	BF01 or BQ01	BF01 or BQ01	BF07 or BQ07	BF04 or BQ04	
120	BF01 or BQ01	BF01 or BQ01	BF06 or BQ06		
150	BF01 or BQ01	BF01 or BQ01	BF06 or BQ06		
180	BF01 or BQ01	BF02 or BQ02	BF04 or BQ04		
220 nF 270 330 390	BF01 or BQ01 BF02 or BQ02 BF02 or BQ02 BF02 or BQ02	BF02 or BQ02 BF07 or BQ07 BF07 or BQ07 BF07 or BQ07	BF04 or BQ04		
470 nF 560 680 820	BF02 or BQ02 BF07 or BQ07 BF07 or BQ07 BF07 or BQ07	BF07 or BQ07 BF05* or BQ05 BF05* or BQ05 BF05* or BQ05			
1 μF 1.5 μF 2.2 μF	BF07 or BQ07 BF05* or BQ05 BF05** or BQ05	BF05 or BQ05		_	

^{*}Upon request - no change

BF04/BF06: New BQ range: New

^{**}Upon request & only available 50 V (V_R) - no change

5.08 Radial Leads 63/100/250/400 V-

METALLIZED POLYESTER FILM CAPACITOR HIGH PERFORMANCES – HIGH TEMPERATURE PULSE APPLICATIONS

APPLICATIONS

Non-inductive, self-healing, metallized polyester film capacitor, insulated* thermoplastic casing, epoxy resin sealed with stand-offs*. Radial connections with a lead spacing of 5.08 mm.

* Flame retardant case according to UL 94 VO.

Some examples of use:

Supply decoupling, filter, integrators, treatment of analog signals, rejection of line perturbations, pulse logic and timing circuit, lamp capacitor for electronic compact lamps, inverter for LCD monitors, automotive DC motor suppression.

STANDARDIZATION

Generic specifications:

CEI 384-1/CECC 30000/UTE 83100

Sectional specifications:

CEI 384-2/CECC 30400/UTE 83151

On the LNZ list:

Complies with type CPM-N

RAQ2 production, equivalent AQAP-4 of NATO

Schematic Cross Section

DIMENSIONS:

millimeters (inches)

Case	L max.	H max.	e max.	ø ± 0.02	Observations
01	7.5 (0.295)	6.5 (0.256)	2.5 (0.098)	0.5 (0.020)	1nF < C _r < 150nF
02	7.5 (0.295)	8.0 (0.315)	3.2 (0.126)	0.5 (0.020)	6.8nF < C _r < 220nF
05	7.5 (0.295)	12.0 (0.472)	6.0 (0.236)	0.5 (0.020)	47nF < C _r < 1500nF
06	7.5 (0.295)	9.6 (0.378)	6.0 (0.236)	0.5 (0.020)	33nF < C _r < 1000nF
07	7.5 (0.295)	8.0 (0.315)	5.0 (0.197)	0.5 (0.020)	22nF < C _r < 680nF

5.08 (0.200) +0.6 (0.024)

HOW TO ORDER

MARKING

T 100 nJ D Marking Nominal capacitance (EIA code) Tolerance (EIA code) DC nominal voltage

Example above: D = 63 Vdc, 100 nF, $\pm 5\%$

5.08 Radial Leads 63/100/250/400 V-

PERFORMANCE CHARACTERISTICS

Climatic category:	55/125/56 - Performance Class 1
Capacitance range:	C _r 1nF to 1500nF (E12)
Tolerances on C _r :	±5%, ±10% (other values on request)
Nominal voltages:	V _r /63/100/250/400 V V _r /40/63/160/200 V
Rated temperature:	85°C
Category voltages:	$V_C = 0.8 V_r$ at 100°C; 0.5 V_r at 125°C
Test voltage:	$V_e = 1.6 V_r / 2s$ at 25°C
Life test:	dC/C ≤ 5% after 125°C/2000h/0.625 V _r
Thermal shock:	-55/+125°C/time cycle 1 hr/5 cycles dC/C ≤ 8%; D.F. 1kHz ≤ 1%
Humidity test:	+40°C/93% RH/56 days dC/C ≤ 5%

• Tangent of Loss Angle: D.F.

Measurement Frequency	Capacitance	DF: Performance Category 2
1kHz	C _R ≤1µF	≤ 1.0%
100 Hz	C _R > 1µF	≤ 1.0%

• Insulation Resistance: IR

Measuring Points	C _R <= 0.33μF		C _R > 0.33µF	
	IR min (GΩ)		IR * C _R min (MΩ * μF)	
	Performance Class 2		Performance Class 2	
Between Terminals	V _R - ≤ 100V	V _{R-} > 100V	V _R - ≤ 100V	V _{R-} > 100V
	3.75	7.5	1.25	2.5
Between Terminals and Ground	≥30,000 Ω			

Max voltage gradient

V_{R-}	63	100	250	400
(dv/dt) _R max	250	300	400	600

PACKAGING

millimeters (inches)

	Panasert	Avisert
	16.5 ± 0.30	19.5 ± 0.50
"	(0.65 ± 0.012)	(0.768 ± 0.020)

(Other sizes according to standard CEI : 286-2) Dimensions: millimeters (inches)

Case	Quantity							
Oase	Re	eel	Ammo	opack	Bulk			
Suffix	DB	DD	DA	DC				
Х	panasert	avisert	panasert	avisert	USA Std.	Europe / Asia Std.		
01	2500		2500		1000	5000		
02	1800		20	00	1000	3800		
07	1200		12	50	1000	2500		
06	900		11	00	1000	1500		
05	900		11	00	1000	1500		
04	7	50	7	50	1000	1000		

5.08 Radial Leads 63/100/250/400 V-

CHARACTERISTICS CURVES

Nominal RMS Voltage vs. Frequency

Influence of the frequency on the impedance (room Temperature)

CAPACITANCE VALUES (C_R) AND NOMINAL VOLTAGES (V_R) VS CASE SIZE

Capacitance Range	Reference BJ V _{R-} /V _{R~}					
(C _R)						
	63/40	100/63	250/160	400/200		
1	BJ01	BJ01	BJ01	BJ01		
1.5	BJ01	BJ01	BJ01	BJ01		
2.2	BJ01	BJ01	BJ01	BJ01		
3.3	BJ01	BJ01	BJ01	BJ01		
4.7	BJ01	BJ01	BJ01	BJ01		
6.8	BJ01	BJ01	BJ01	BJ02		
10	BJ01	BJ01	BJ01	BJ02		
15	BJ01	BJ01	BJ01	BJ02		
22	BJ01	BJ01	BJ02	BJ07		
33	BJ01	BJ01	BJ02	BJ06		
47	BJ01	BJ01	BJ07	BJ05		
68	BJ01	BJ01	BJ07			
100	BJ01	BJ02	BJ06			
150	BJ01	BJ07	BJ05			
220	BJ01	BJ06				
330	BJ02	BJ05				
470	BJ02	BJ05				
680	BJ07					
1000	BJ06					
1500	BJ05					

BH 01/02/07/06/05:

Radial Leads (Lead Free Product)

CPM-N---- pitch = 5.08mm (0.200")

APPLICATIONS

- · Supply decoupling
- Filter
- Integrators
- Treatment of analog signals
- Rejection of line perturbations, etc.

Specifically designed of working in severe environmental conditions such as automotive applications: engine control, multiplexing, system, etc.

GENERAL DESCRIPTION

Dielectric: Metallized polyester film (Polyethylene teraphtalate)

Stacked-film

Leads: Radial tin - plated wire

Protection: Plastic case (UL 94: V-O) / Epoxy Resin

Marking: Logo

DC Normal Voltage Nominial Capacitance Tolerance (EIA) Batch Code Number Example: T D474KC8L

Delivery Mode: Bulk

Taped (reel or ammopack)

STANDARDIZATION

Generic specifications:

CEI 384-1/CECC 30000/UTE 83100

Sectional specifications:

CEI 384-2/CECC 30400/UTE 83151

On the LNZ List:

Complies with type CPM-N

RAQ2 production, equivalent AQAP-4 of NATO

DIMENSIONS

millimeters	(inches)
-------------	----------

Case	L max	H max	e max	ø ± 0.02
01	7.5 (0.295)	6.5 (0.256)	2.5 (0.098)	0.5 (0.020)
02	7.5 (0.295)	8.0 (0.315)	3.2 (0.126)	0.5 (0.020)
05	7.5 (0.295)	12.0 (0.472)	6.0 (0.236)	0.5 (0.020)
06	7.5 (0.295)	9.6 (0.378)	6.0 (0.236)	0.5 (0.020)
07	7.5 (0.295)	8.0 (0.315)	5.0 (0.197)	0.5 (0.020)

*L dimension measured 3mm above base of case

HOW TO ORDER

BH 01/02/07/06/05:

Radial Leads (Lead Free Product)

PERFORMANCE CHARACTERISTICS

Climatic Category	55/125/56 Performance Class 2
Capacitance Range	C _R 1nF to 2.2mF (E12)
Tolerance on C _R	±5%; ±10%
	(other values on request)
Nominal Voltages	VR_ 63/100/250/400V
	VR~ 40/63/160/200V
Category Voltage	$Vc = 0.8V_{R-}$ at $100^{\circ}C \& 0.5V_{R-}$ at $125^{\circ}C$
Test Voltage	Ve = 1.6V _R /2s at 25°C
Life Test	Delta C/C<= 5% after 125°C/1000h/0.5V _R .
Thermal Shock	-55/+125°C/time cycle 1hr/500 cycles delta C/C <=10% D.F. 1kHz<=1%
Humidity Test	85°C/85% HR/1000 h delta C/C <=10%

• Tangent of Loss Angle: D.F.

Measurement Frequency	Capacitance	DF: Performance Category 2
1kHz	C _R ≤1µF	≤ 1.0%
100 Hz	C _R > 1µF	≤ 1.0%

• Insulation Resistance: IR

Measuring Points	C _R <= 0.33μF		C _R > 0.33µF	
	IR min (GΩ)		IR * C (MΩ	
	Performai 2		Performance Class 2	
Between Terminals	V _{R-} ≤ 100V	V _{R-} > 100V	V _R - ≤ 100V	V _{R-} > 100V
	3.75	7.5	1.25	2.5
Between Terminals and Ground	- 30,000 Ω			

Max voltage gradient

V_{R-}	63	100	250	400
(dv/dt) _R max	38	40	110	270

PACKAGING

millimeters (inches)

	Panasert	Avisert
	16.5 ± 0.30	19.5 ± 0.50
"	(0.65 ± 0.012)	(0.768 ± 0.020)

(Other sizes according to standard CEI : 286-2) Dimensions: millimeters (inches)

Case	Quantity							
Ousc	Re	eel	Ammopack		Bulk			
Suffix	DB	DD	DA	DC				
х	panasert	avisert	panasert	avisert	USA Std.	Europe / Asia		
						Std.		
01	2500		2500		1000	5000		
02	1800		20	00	1000	3800		
07	1200		12	50	1000	2500		
06	900		11	00	1000	1500		
05	9	00	11	00	1000	1500		

BH 01/02/07/06/05:

Radial Leads (Lead Free Product)

CAPACITANCE VALUES (C_R) and NOMINAL VOLTAGES (V_R)

Capacitance Range		Refer B		
(C _R)		V _{R-} /		
	63/40 (voltage code: D)	100/63 (voltage code: E)	250/160 (voltage code: G)	400/200 (voltage code: I)
1,000 pF 1,200 1,500 1,800	BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01
2,200 pF 2,700 3,300 3,900	BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01
4,700 pF 5,600 6,800 8,200	BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01	BH01 BH02 BH02 BH07
10,000 pF 12,000 15,000 18,000 22,000 27,000 33,000 39,000	BH01 BH01 BH01 BH01 BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01 BH02 BH02 BH02 BH07	BH07 BH07 BH07 BH06 BH06 BH06 BH06 BH05
47,000 pF 56,000 68,000 82,000	BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH01	BH07 BH07 BH07 BH06	BH05
100 nF 120 150 180	BH01 BH01 BH01 BH01	BH01 BH01 BH01 BH02	BH06 BH05 BH05	
220 nF 270 330 390	BH01 BH02 BH02 BH07	BH02 BH07 BH07 BH07		
470 nF 560 680 820	BH07 BH07 BH07 BH07	BH05 BH05 BH05 BH05		
1 μF 1.5 μF 2.2 μF	BH07 BH05 BH05**	BH05		

^{**}Upon request & only available 50 V (V $_{\rm R}\!)$

CPM-85 - 7.5/10/15/22.5/27.5 (BT/BG/BO)

Schematic Cross Section

APPLICATIONS

- Commodity Product:
 - Decoupling with AC or pulse components
 - High current uses (TV deflection coils)
 - Capacitive dividers
 - Energy saving lamps, etc.

TECHNOLOGY

- Dielectric: Polyester film
- Stacked-film for pitch 7.5, 10 & 15mm (63Vdc...400Vdc)
 Wound capacitor for pitch 7.5 & 10 & 15mm (630Vdc/1000Vdc)
 for pitch 22.5 & 27.5mm (63Vdc/1000Vdc)
- Leads: Radial tinned copper wire
- Protection: Plastic case (UL94: V-O) / Polyurethane resin
- Marking: Logo
 Type
 Nominal Capacitance
 Tolerance (EIA)
 DC Nominal Voltage

Example: **T BN 47n J 400**

Delivery Mode: Bulk

Taped (reel)

PERFORMANCE CHARACTERISTICS

L (nH)	8	9	10	18	18	
Pitch (mm)	7.5	10	15			
Total Self Inducta	nce (L):	F	or lead le	ngth = 2mi	m	
Test Voltage:		\	$V_{\rm e} = 1.6 \rm U$	Indc/2 s at	20°C	
Category Voltage	:	\	$V_c = Un$ at	: 100°C & 0).5 Un at 1	25°C
-		\	√ _{R~} 40/63	3/115/200/	220/450 V	1
Nominal Voltages);	\	V _R _ 63/10	0/250/400	/630/1000) V
Tolerances on C _F	ξ:	=	±5%, ±10	%, ±20% (other value	es on request)
Capacitance Ran	ge:	(O _R 1 nF to	22 µF (E6))	
Climatic Category	/:	5	55/125/56	6 Performa	nce Class	2

Tangent of Loss Angle at 1 kHz: D.F. ≤ 100.10⁻⁴ for C >0.1µF

 $\leq 80.10^{-4} \text{ for C} \leq 0.1 \mu\text{F}$

Insulation Resistance: IR \geq 3.75 G Ω for C \leq 0.33 μ F

IR $(M\Omega)$ * $C(\mu F) \ge 1250$ s for $C > 0.33 \mu F$

measures at 10V for Un=63Vdc and 100V for others

dv/dt: (V/µsec)

G. 17 G. 11 (17 p. 1000)						
V _R -	63	100	250	400	630	1000
(dv/dt) _R max pitch: 7.5mm	60	75	120	300	440	
(dv/dt) _R max pitch: 10mm	30	40	50	110	112	800
(dv/dt) _R max pitch: 15mm	23	27	34	79	102	400
(dv/dt) _R max pitch: 22.5mm	8	9	14	25	25	380
(dv/dt) _p max pitch: 27.5mm	5	5	6	8	15	340

Thermal Resistance: Rth hot spot/ambient (°C/W)

Pitch (mm)	itch (mm) 7.5mm					10mm			15mm	1	2	22.5mr	n			27.5	mm		
Case	1	2	С	D	E0	4	5	6	9	10	11	12	13	16	P0	18	19	26	R68
Rth (stacked)	201	147		117	140	124	90	88	61	82									
Rth (wound)	201	147		117	140	124	90	123	86	75	64	53	48	42	40	33	30	27	23

STANDARDIZATION

Generic specifications:

CEI 384-1/CECC 30000/UTE 83100

Sectional specifications:

CEI 384-2/CECC 30400/UTE 83151

Pitch = 7.5mm / 10mm / 15mm / 22.5mm / 27.5mm

PACKAGING

• Reel

(Other sizes according to standard CEI : 286-2) Dimensions: millimeters (inches)

	T	aping Suffix EN	
		Lead Spacing Tol ±0.4 (0.016)	
	7.5 (0.295)	10 (0.394)	15 (0.590)
Р	12.7 ±1 (0.5 ±0.039)	25.4 (1.0 .±	
Н	16.5 ±0.3 (0.650 ±0.012)	16 +1.9 (0.600 +0.0	

• Bulk

Suffix		LG	KB	KC	KE	KH	KK	K3	K7
Leads	6mm	3.2mm	3.5mm	4mm	5mm	9mm	15mm	20mm	25mm
Length	+0/–1	±0.4	±0.5	±0.5	±0.5	±0.5	±0.5	±1	±1

Standard Suffix: - -Special MOQ for these special suffix

Pitch = 7.5mm

BN07

Pitch mm	Ordering Code	Vr-/Vr~	Cr	Case	Din L max	nensions (ı H max	mm) e max	Meel	OQ Bulk ⁽¹⁾	Ø +10% -0.5 mm	l ² t (A ² .sec)	Irms (A)
7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	BN074D0683+ BN074D0104+ BN074D0224+ BN074D0334+ BN074D0474+ BN074D0684+ BN074D0105+ BN074D0225+	63/40	68nF 100nF 220nF 330nF 470nF 680nF 1µF 2.2µF	1 1 1 1 1 2 2 D	9.3 9.3 9.3 9.3 9.3 10.1 10.1	8.2 8.2 8.2 8.2 10.2 10.2 12.2	3.3 3.3 3.3 3.3 5.2 5.2 6.2	8000 8000 8000 8000 10,000 10,000 8000	12,000 12,000 12,000 12,000 12,000 14,000 14,000 8000	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	8.33 x 10 ⁻⁴ 1.41 x 10 ⁻³ 2.79 x 10 ⁻³ 3.63 x 10 ⁻³ 5.11 x 10 ⁻³ 1.54 x 10 ⁻² 2.78 x 10 ⁻² 1.12 x 10 ⁻¹	0.357 0.48 0.53 0.64 0.84 1.33 1.77
7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	BN074E0333+ BN074E0473+ BN074E0104+ BN074E0224+ BN074E0334+ BN074E0474+ BN074E0684+ BN074E0105+	100/63	33nF 47nF 100nF 220nF 330nF 470nF 680nF 1µF	1 1 1 2 2 C D	9.3 9.3 9.3 9.3 10.1 10.1 10.1	8.2 8.2 8.2 10.2 10.2 11.2 12.2	3.3 3.3 3.3 3.3 5.2 5.2 5.2 6.2	8000 8000 8000 8000 10,000 10,000 10,000 8000	12,000 12,000 12,000 12,000 14,000 14,000 12,000 8000	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	4.52 x 10 ⁻⁴ 6.12 x 10 ⁻⁴ 1.41 x 10 ⁻³ 2.79 x 10 ⁻³ 7.85 x 10 ⁻³ 1.27 x 10 ⁻² 2.23 x 10 ⁻² 4.61 x 10 ⁻²	0.21 0.29 0.48 0.53 1.00 1.16 1.48 2.18
7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	BN074G0472+ BN074G0682+ BN074G0103+ BN074G0223+ BN074G0333+ BN074G0473+ BN074G0104+ BN074G01224+	250/115	4.7nF 6.8nF 10nF 22nF 33nF 47nF 100nF 220nF	1 1 1 1 1 1 2 D	9.3 9.3 9.3 9.3 9.3 9.3 10.1	8.2 8.2 8.2 8.2 8.2 8.2 10.2 12.2	3.3 3.3 3.3 3.3 3.3 5.2 6.2	8000 8000 8000 8000 8000 10,000 8000	12,000 12,000 12,000 12,000 12,000 12,000 14,000 8000	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	6.88 x 10 ⁻⁵ 9.61 x 10 ⁻⁴ 2.45 x 10 ⁻⁴ 3.62 x 10 ⁻⁴ 4.52 x 10 ⁻⁴ 6.11 x 10 ⁻⁴ 1.85 x 10 ⁻³ 8.93 x 10 ⁻³	0.05 0.08 0.14 0.19 0.21 0.29 0.53 1.53
7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	BN074I0102+ BN074I0222+ BN074I0322+ BN074I0472+ BN074I0103+ BN074I023+ BN074I0473+ BN074I0683+ BN074I0823+	400/200	1nF 2.2nF 3.3nF 4.7nF 10nF 22nF 33nF 47nF 68nF 82nF	1 1 1 1 1 1 2 2 C	9.3 9.3 9.3 9.3 9.3 10.1 10.1 10.1	8.2 8.2 8.2 8.2 8.2 10.2 10.2 11.2 12.2	3.3 3.3 3.3 3.3 3.3 5.2 5.2 5.2 6.2	8000 8000 8000 8000 8000 10,000 10,000 10,000 8000	12,000 12,000 12,000 12,000 12,000 12,000 14,000 14,000 12,000 8000	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	1.10 x 10 ⁻⁵ 3.63 x 10 ⁻⁵ 5.09 x 10 ⁻⁵ 6.88 x 10 ⁻⁵ 2.45 x 10 ⁻⁴ 3.62 x 10 ⁻⁴ 1.44 x 10 ⁻³ 1.65 x 10 ⁻³ 3.46 x 10 ⁻³ 5.03 x 10 ⁻³	0.02 0.03 0.04 0.05 0.14 0.19 0.38 0.40 0.59 0.71
7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	BN074K0102+ BN074K0152+ BN074K0222+ BN074K0332+ BN074K0682+ BN074K0103+ BN074K0153+ BN074K0223+ BN074K0273+	630/220	1nF 1.5nF 2.2nF 3.3nF 4.7nF 6.8nF 10nF 15nF 22nF 27nF	1 1 1 1 2 2 C D	9.3 9.3 9.3 9.3 10.1 10.1 10.1 10.1	8.2 8.2 8.2 8.2 10.2 10.2 11.2 12.2 12.2	3.3 3.3 3.3 3.3 5.2 5.2 5.2 6.2 6.2	8000 8000 8000 8000 8000 10,000 10,000 10,000 8000 8	12,000 12,000 12,000 12,000 12,000 14,000 14,000 12,000 8000 8000	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	9.0 x 10 ⁻⁷ 2.0 x 10 ⁻⁶ 2.3 x 10 ⁻⁶ 2.5 x 10 ⁻⁶ 5.7 x 10 ⁻⁶ 1.2 x 10 ⁻⁵ 2.6 x 10 ⁻⁵ 5.8 x 10 ⁻⁵ 1.2 x 10 ⁻⁴ 1.8 x 10 ⁻⁴	0.027 0.027 0.027 0.027 0.027 0.14 0.14 0.22 0.34 0.34

Replace the + by the tolerance code: J=5% - K=10% - M=20% Replace the - - by the packaging suffix: - - = standard bulk - EN = taping on reel etc M=100 : M

Pitch = 10mm

BN10

Pitch mm	Ordering Code	Vr-/Vr~	Cr	Case	Dir L max	nensions (i H max	mm) e max	M Reel	OQ Bulk ⁽¹⁾	∅ +10% -0.5 mm	I ² t (A ² .sec)	Irms (A)
10 10 10 10 10 10	BN104D0224+ BN104D0334+ BN104D0474+ BN104D0484+ BN104D0105+ BN104D0155+ BN104D0225+	63/40	220nF 330nF 470nF 680nF 1µF 1.5µF 2.2µF	E0 E0 E0 E0 E0 4 5	12.7 12.7 12.7 12.7 12.7 12.7 12.7	9.2 9.2 9.2 9.2 9.2 10.2 13.6	4.2 4.2 4.2 4.2 4.2 5.2 5.2	6800 6800 6800 6800 6800 5600	14,000 14,000 14,000 14,000 14,000 10,000 8000	0.6 0.6 0.6 0.6 0.6 0.6 0.6	2.20 x 10 ⁻³ 3.54 x 10 ⁻³ 5.74 x 10 ⁻³ 6.84 x 10 ⁻³ 1.11 x 10 ⁻² 2.50 x 10 ⁻² 5.37 x 10 ⁻²	0.71 0.73 0.765 0.837 1.23 1.83 2.685
10 10 10 10 10 10 10	BN104E0683+ BN104E0104+ BN104E0154+ BN104E0224+ BN104E0334+ BN104E0474+ BN104E0684+ BN104E0105+	100/63	68nF 100nF 150nF 220nF 330nF 470nF 680nF 1000nF	E0 E0 E0 E0 E0 E0 4	12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	9.2 9.2 9.2 9.2 9.2 9.2 10.2 13.6	4.2 4.2 4.2 4.2 4.2 4.2 5.2 5.2	6800 6800 6800 6800 6800 6800 5600	14,000 14,000 14,000 14,000 14,000 14,000 10,000 8000	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	8.74 x 10 ⁻⁴ 1.33 x 10 ⁻³ 1.47 x 10 ⁻³ 2.20 x 10 ⁻³ 3.54 x 10 ⁻³ 5.74 x 10 ⁻³ 1.20 x 10 ⁻² 2.60 x 10 ⁻²	0.32 0.40 0.667 0.71 0.73 0.765 1.107 1.629
10 10 10 10 10 10 10	BN104G0333+ BN104G0473+ BN104G0683+ BN104G0104+ BN104G0154+ BN104G0224+ BN104G0334+ BN104G0474+	250/115	33nF 47nF 68nF 100nF 150nF 220nF 330nF 470nF	E0 E0 E0 E0 E0 4 4	12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	9.2 9.2 9.2 9.2 9.2 10.2 10.2	4.2 4.2 4.2 4.2 4.2 5.2 5.2 5.2	6800 6800 6800 6800 6800 5600 5600	14,000 14,000 14,000 14,000 14,000 10,000 10,000 8000	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	4.86 x 10 ⁻⁴ 6.01 x 10 ⁻⁴ 8.74 x 10 ⁻⁴ 1.33 x 10 ⁻³ 1.47 x 10 ⁻³ 3.16 x 10 ⁻³ 7.11 x 10 ⁻³ 1.44 x 10 ⁻²	0.21 0.26 0.32 0.4 0.5 0.73 1.1 1.57
10 10 10 10 10 10 10 10	BN104I0472+ BN104I0682+ BN104I0103+ BN104I0153+ BN104I0233+ BN104I0333+ BN104I0683+ BN104I0104+	400/200	4.7nF 6.8nF 10nF 15nF 22nF 33nF 47nF 68nF 100nF	E0 E0 E0 E0 E0 E0 E0 E0 5	12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7	9.2 9.2 9.2 9.2 9.2 9.2 9.2 10.2 13.6	4.2 4.2 4.2 4.2 4.2 4.2 4.2 5.2 5.2	6800 6800 6800 6800 6800 6800 6800 5600	14,000 14,000 14,000 14,000 14,000 14,000 14,000 10,000 8000	0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	6.03 x 10 ⁻⁵ 9.96 x 10 ⁻⁵ 1.13 x 10 ⁻⁴ 1.70 x 10 ⁻⁴ 3.31 x 10 ⁻⁴ 4.66 x 10 ⁻⁴ 6.01 x 10 ⁻⁴ 1.26 x 10 ⁻³ 2.72 x 10 ⁻³	0.043 0.07 0.088 0.129 0.157 0.213 0.26 0.35 0.52
10 10 10 10 10 10	BN104K0472+ BN104K0682+ BN104K013+ BN104K0153+ BN104K0223+ BN104K0473+	630/220	4.7nF 6.8nF 10nF 15nF 22nF 33nF 47nF	E0 E0 E0 E0 4 4 5	12.7 12.7 12.7 12.7 12.7 12.7 12.7	9.2 9.2 9.2 9.2 10.2 10.2 13.6	4.2 4.2 4.2 4.2 5.2 5.2 5.2	6800 6800 6800 6800 5600 5600	14,000 14,000 14,000 14,000 10,000 10,000 8000	0.6 0.6 0.6 0.6 0.6 0.6 0.6	2.16 x 10 ⁻⁵ 4.53 x 10 ⁻⁵ 9.74 x 10 ⁻⁵ 2.20 x 10 ⁻⁴ 4.74 x 10 ⁻⁴ 7.41 x 10 ⁻⁴ 9.16 x 10 ⁻⁴	0.05 0.07 0.08 0.10 0.14 0.18 0.24
10 10 10 10 10 10	BN104L0102+ BN104L0152+ BN104L0222+ BN104L0332+ BN104L0472+ BN104L0682+	1000/450	1nF 1.5nF 2.2nF 3.3nF 4.7nF 6.8nF	E0 E0 E0 4 5	12.7 12.7 12.7 12.7 12.7 12.7	9.2 9.2 9.2 10.2 13.6 13.6	4.2 4.2 4.2 5.2 5.2 5.2	6800 6800 6800 5600 5600 5600	14,000 14,000 14,000 10,000 8000 8000	0.6 0.6 0.6 0.6 0.6 0.6	1.8 x 10 ⁻⁵ 4.00 x 10 ⁻⁵ 7.00 x 10 ⁻⁵ 1.24 x 10 ⁻⁴ 2.51 x 10 ⁻⁴ 5.26 x 10 ⁻⁴	0.05 0.05 0.08 0.14 0.22 0.26

Replace the + by the tolerance code: J=5% - K=10% - M=20% Replace the - - by the packaging suffix: - - = standard bulk - EN = taping on reel etc M=100 MOQ for standard bulk suffix - -

Pitch = 15mm

BN15

Pitch mm	Ordering Code	Vr-/Vr~	Cr	Case	Dir L max	nensions (ı H max	mm) e max	M Reel	OQ Bulk ⁽¹⁾	Ø +10% -0.5 mm	I ² t (A ² .sec)	Irms (A)
15 15 15 15 15 15 15	BN154D0684+ BN154D0105+ BN154D0155+ BN154D0225+ BN154D0335+ BN154D0475+ BN154D0825+	63/40	680nF 1µF 1.5µF 2.2µF 3.3µF 4.7µF 6.8µF 8.2µF	6 6 6 6 0 9 9 9	17.7 17.7 17.7 17.7 17.7 17.7 17.7	10.6 10.6 10.6 10.6 12.2 14.6 14.6	5.2 5.2 5.2 5.2 6.2 8.7 8.7	4000 4000 4000 4000 4000 2500 2500 2500	6000 6000 6000 6000 6000 8000 8000 8000	0.8 0.8 0.8 0.8 0.8 0.8 0.8	1.22 x 10 ⁻² 2.12 x 10 ⁻² 3.60 x 10 ⁻² 4.38 x 10 ⁻² 9.86 x 10 ⁻² 4.19 x 10 ⁻¹ 2.00 x 10 ⁻¹ 6.09 x 10 ⁻¹	0.83 0.96 1.43 1.783 2.674 3.808 5.50 6.200
15 15 15 15 15 15 15 15	BN154E0154+ BN154E0224+ BN154E0334+ BN154E0474+ BN154E01055+ BN154E0155+ BN154E0225+ BN154E0335+ BN154E0475+	100/63	150nF 220nF 330nF 470nF 1µF 1.5µF 2.2µF 3.3µF 4.7µF	6 6 6 6 6 6 9 9	17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7	10.6 10.6 10.6 10.6 10.6 10.6 12.2 14.6 14.6	5.2 5.2 5.2 5.2 5.2 5.2 6.2 8.7 8.7	4000 4000 4000 4000 4000 4000 4000 2500 25	6000 6000 6000 6000 6000 6000 6000 8000 8000	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	4.35 x 10 ⁻³ 5.53 x 10 ⁻³ 1.13 x 10 ⁻² 1.33 x 10 ⁻² 1.71 x 10 ⁻² 3.60 x 10 ⁻² 8.20 x 10 ⁻² 1.85 x 10 ⁻¹ 3.74 x 10 ⁻¹	0.43 0.64 0.72 0.96 0.96 1.43 2.111 3.168 4.51
15 15 15 15 15 15 15	BN154G0104+ BN154G0154+ BN154G0224+ BN154G0334+ BN154G0474+ BN154G0155+ BN154G0155+	250/115	100nF 150nF 220nF 330nF 470nF 680nF 1µF 1.5µF	6 6 6 6 6 9 9	17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7	10.6 10.6 10.6 10.6 10.6 12.2 14.6 14.6	5.2 5.2 5.2 5.2 5.2 6.2 8.7 8.7	4000 4000 4000 4000 4000 4000 2500 2500	6000 6000 6000 6000 6000 6000 8000 8000	0.8 0.8 0.8 0.8 0.8 0.8 0.8	2.58 x 10 ⁻³ 4.35 x 10 ⁻³ 5.57 x 10 ⁻³ 7.51 x 10 ⁻³ 1.17 x 10 ⁻² 2.44 x 10 ⁻² 5.28 x 10 ⁻² 1.19 x 10 ⁻¹	0.38 0.43 0.64 0.72 1.024 1.483 2.178 3.267
15 15 15 15 15 15 15	BN154I0473+ BN154I0683+ BN154I0104+ BN154I0154+ BN154I0224+ BN154I0334+ BN154I0474+	400/200	47nF 68nF 100nF 150nF 220nF 330nF 470nF	6 6 6 6 0 9 9	17.7 17.7 17.7 17.7 17.7 17.7 17.7	10.6 10.6 10.6 10.6 12.2 14.6 14.6	5.2 5.2 5.2 5.2 6.2 8.7 8.7	4000 4000 4000 4000 4000 2500 2500	6000 6000 6000 6000 6000 8000 8000	0.8 0.8 0.8 0.8 0.8 0.8	1.19 x 10 ⁻³ 1.59 x 10 ⁻³ 2.58 x 10 ⁻³ 4.35 x 10 ⁻³ 9.37 x 10 ⁻³ 2.11 x 10 ⁻² 4.27 x 10 ⁻²	0.191 0.28 0.38 0.43 0.70 1.05 1.50
15 15 15 15 15	BN154K0333+ BN154K0473+ BN154K0683+ BN154K0104+ BN154K0154+	630/220	33nF 47nF 68nF 100nF 150nF	6 6 10 10 9	17.7 17.7 17.7 17.7 17.7	10.6 10.6 12.2 12.2 14.6	5.2 5.2 6.2 6.2 8.7	4000 4000 4000 4000 2500	6000 6000 6000 6000 8000	0.8 0.8 0.8 0.8 0.8	4.90 x 10 ⁻⁴ 8.73 x 10 ⁻⁴ 4.11 x 10 ⁻³ 4.50 x 10 ⁻³ 1.00 x 10 ⁻²	0.14 0.20 0.32 0.46 0.70
15 15 15 15	BN154L0682+ BN154L0103+ BN154L0223+ BN154L0333+	1000/450	6.8nF 10nF 22nF 33nF	6 6 9 9	17.7 17.7 17.7 17.7	10.6 10.6 14.6 14.6	5.2 5.2 8.7 8.7	4000 4000 2500 2500	6000 6000 6000 8000	0.8 0.8 0.8 0.8	1.11 x 10 ⁻⁴ 2.41 x 10 ⁻⁴ 1.17 x 10 ⁻³ 2.62 x 10 ⁻³	0.14 0.22 0.60 0.76

Replace the + by the tolerance code: J=5% - K=10% - M=20% Replace the - - by the packaging suffix: - - = standard bulk - EN = taping on reel etc M=100 MOQ for standard bulk suffix - -

Pitch = 22.5mm/27.5mm

BN22 Pitch = 22.5mm

Pitch	Ordering Code	Vr-/Vr~	Cr	Case		nensions (ı	nm)		OQ .	Ø +10%	l ² t	Irms
mm					L max	H max	e max	Reel	Bulk ⁽¹⁾	-0.5 mm	(A ² .sec)	(A)
22.5 22.5 22.5	BN224D0685+ BN224D0106+ BN224D0156+	63/40	6.8µF 10µF 15µF	11 12 13	26.7 26.7 26.7	15.2 17.6 19.6	7.7 7.7 10.2		1600 1600 1200	0.8 0.8 0.8	1.39 x 10 ⁻¹ 3.01 x 10 ⁻¹ 6.77 x 10 ⁻¹	2.09 3.07 4.6
22.5 22.5 22.5 22.5 22.5	BN224E0225+ BN224E0335+ BN224E0475+ BN224E0685+ BN224E0825+	100/63	2.2µF 3.3µF 4.7µF 6.8µF 8.2µF	11 11 11 13 13	26.7 26.7 26.7 26.7 26.7	15.2 15.2 15.2 19.6 19.6	7.7 7.7 7.7 10.2 10.2		1600 1600 1600 1200 1200	0.8 0.8 0.8 0.8 0.8	2.59 x 10 ⁻² 5.82 x 10 ⁻² 1.18 x 10 ⁻¹ 2.47 x 10 ⁻¹ 3.59 x 10 ⁻¹	1.08 1.60 2.30 3.30 4.00
22.5 22.5 22.5 22.5 22.5	BN224G0105+ BN224G0155+ BN224G0225+ BN224G0335+	250/115	1μF 1.5μF 2.2μF 3.3μF	11 11 12 13	26.7 26.7 26.7 26.7	15.2 15.2 17.6 19.6	7.7 7.7 7.7 10.2		1600 1600 1600 1200	0.8 0.8 0.8 0.8	1.64 x 10 ⁻² 3.68 x 10 ⁻² 7.92 x 10 ⁻¹ 1.78 x 10 ⁻¹	1.14 1.71 2.50 3.74
22.5 22.5 22.5 22.5 22.5 22.5	BN224I0334+ BN224I0474+ BN224I0684+ BN224I0105+ BN224I0155+	400/200	330nF 470nF 680nF 1µF 1.5µF	11 11 11 12 13	26.7 26.7 26.7 26.7 26.7	15.2 15.2 15.2 17.6 19.6	7.7 7.7 7.7 7.7 10.2		1600 1600 1600 1600 1200	0.8 0.8 0.8 0.8 0.8	3.64 x 10 ⁻³ 7.38 x 10 ⁻³ 1.54 x 10 ⁻² 3.34 x 10 ⁻² 7.52 x 10 ⁻²	0.383 0.54 0.80 1.16 1.75
22.5 22.5 22.5 22.5 22.5 22.5	BN224K0154+ BN224K0224+ BN224K0334+ BN224K0474+ BN224K0564+	630/220	150nF 220nF 330nF 470nF 560nF	11 11 12 13 13	26.7 26.7 26.7 26.7 26.7	15.2 15.2 17.6 19.6 19.6	7.7 7.7 7.7 10.2 10.2		1600 1600 1600 1200 1200	0.8 0.8 0.8 0.8 0.8	2.17 x 10 ⁻³ 4.66 x 10 ⁻³ 1.05 x 10 ⁻² 2.13 x 10 ⁻² 3.02 x 10 ⁻²	0.38 0.54 0.74 1.18 1.40
22.5 22.5 22.5 22.5 22.5	BN224L0333+ BN224L0473+ BN224L0683+ BN224L0104+ BN224L0124+	1000/450	33nF 47nF 68nF 100nF 120nF	11 11 12 13 13	26.7 26.7 26.7 26.7 26.7	15.2 15.2 17.6 19.6 19.6	7.7 7.7 7.7 10.2 10.2		1600 1600 1600 1200 1200	0.8 0.8 0.8 0.8 0.8	2.64 x 10 ⁻³ 5.35 x 10 ⁻³ 1.12 x 10 ⁻² 2.42 x 10 ⁻² 3.49 x 10 ⁻²	0.28 0.40 0.60 0.86 1.00

Replace the + by the tolerance code : J=5% - K=10% - M=20% Replace the - - by the packaging suffix : - - = standard bulk - EN = taping on reel etc EN = taping or standard bulk suffix - -

BN27 Pitch = 27.5mm

Pitch mm	Ordering Code	Vr-/Vr~	Cr	Case	Din L max	nensions (ı ı H max	mm) ı e max	Reel Me	OQ Bulk ⁽¹⁾	Ø +10% -0.5 mm	I ² t (A ² .sec)	Irms (A)
27.5 27.5	BN274D0156+ BN274D0206+	63/40	15µF 20µF	16 16	31.7 31.7	19.6 19.6	10.2 10.2		960 960	0.8 0.8	4.07 x 10 ⁻¹ 7.24 x 10 ⁻¹	3.57 4.80
27.5 27.5 27.5	BN274E0825+ BN274E0106+ BN274E0126+	100/63	8.2μF 10μF 12μF	16 16 16	31.7 31.7 31.7	19.6 19.6 19.6	10.2 10.2 10.2		960 960 960	0.8 0.8 0.8	2.16 x 10 ⁻¹ 3.22 x 10 ⁻¹ 4.63 x 10 ⁻¹	3.12 3.80 4.56
27.5 27.5 27.5 27.5 27.5 27.5 27.5	BN274G0335+ BN274G0395+ BN274G0475+ BN274G0106+ BN274G0156+ BN274G0226+	250/115	3.3µF 3.9µF 4.7µF 6.8µF 10µF 15µF 22µF*	16 16 P0 P0 18 26 R68	31.7 31.7 31.7 31.7 31.7 31.7 32	19.6 19.6 22.6 22.6 26.2 31.6 37	10.2 10.2 13.7 13.7 15.2 21.2 22		960 960 1600 1600 1280 448 448	0.8 0.8 0.8 0.8 0.8 0.8 0.8	1.07 x 10 ⁻¹ 1.50 x 10 ⁻¹ 2.18 x 10 ⁻¹ 4.56 x 10 ⁻¹ 9.85 x 10 ⁻¹ 2.77 5.96	2.9 3.42 4.17 6.00 6.20 6.20 6.20
27.5 27.5 27.5 27.5 27.5 27.5	BN274I0155+ BN274I0225+ BN274I0335+ BN274I0475+ BN274I0685+ BN274I0106+	400/200	1.5µF 2.2µF 3.3µF 4.7µF 6.8µF 10µF *	16 P0 P0 18 19 R68	31.7 31.7 31.7 31.7 31.7 32	19.6 22.6 22.6 26.2 30.2 37	10.2 13.7 13.7 15.2 17.7 22		960 1600 1600 1280 1040 448	0.8 0.8 0.8 0.8 0.8 0.8	4.52 x 10 ⁻² 9.73 x 10 ⁻² 2.19 x 10 ⁻¹ 4.44 x 10 ⁻¹ 9.30 x 10 ⁻¹ 2.01	1.43 1.98 2.98 4.23 6.10 6.20
27.5 27.5 27.5 27.5 27.5 27.5	BN274K0564+ BN274K0684+ BN274K0105+ BN274K0225+ BN274K0335+ BN274K0435+	630/220	560nF 680nF 1µF 2.2µF 3.3µF * 4.3µF *	16 16 P0 19 R68 R68	31.7 31.7 31.7 31.7 32 32 32	19.6 19.6 22.6 30.2 37 37	10.2 10.2 13.7 17.7 22 22		960 960 1600 1040 448 448	0.8 0.8 0.8 0.8 0.8 0.8	1.77 x 10 ⁻² 2.61 x 10 ⁻² 5.69 x 10 ⁻² 2.73 x 10 ⁻¹ 6.14 x 10 ⁻¹ 1.04	1.61 1.70 1.90 4.20 6.20 6.20
27.5 27.5 27.5 27.5 27.5 27.5	BN274L0124+ BN274L0224+ BN274L0334+ BN274L06474+ BN274L0684+ BN274L0914+	1000/450	120nF 220nF 330nF 470nF 680nF 910nF *	16 P0 18 19 26 R68	31.7 31.7 31.7 31.7 31.7 31.7	19.6 22.6 26.2 30.2 31.6 37	10.2 13.7 15.2 17.7 21.2 22		960 1600 1280 1040 448 448	0.8 0.8 0.8 0.8 0.8	1.82 x 10 ⁻² 6.12 x 10 ⁻² 1.38 x 10 ⁻¹ 2.79 x 10 ⁻³ 5.85 x 10 ⁻³ 1.05	0.76 1.38 2.08 2.96 4.28 5.72

*only available standard bulk: no special lead length
Replace the + by the tolerance code: J=5% - K=10% - M=20%
Replace the - - by the packaging suffix: - - = standard bulk - EN = taping on reel etc
For values biggers >> see FFB range

19: MOQ for standard bulk suffix - -

BW 15: TIP & RING 15 Radial leads-250 V-

DESCRIPTION

Non inductive, stacked, self healing, metallised polyester film capacitor. Insulated thermoplastic casing, polyurethane resin sealed. Radial connections. Also available in SMD version. (see below)

APPLICATIONS

AVX's « TIP & RING » or « ringer » metallised polyester film capacitors are designed as a standard telecom filter to block –48 Volts DC telephone line voltage and pass subscriber's AC signal pulse (16 to 25 Hz, 70 to 90 Vrms). The typical ringing Signal is shown in the enclosed figure. The ringer film capacitors are ideal for telecom/modem applications. This is a complement range to the AVX's ceramic one.

STANDARDISATION

Generic specifications:

CEI 384-1/CECC 30000/UTE 83100

Sectional specifications:

CEI 384-2/CECC 30400/UTE 83151

DIMENSIONS AND CAPACITANCE VALUES

Size	Case			DV/DT (V/μsec)	I²t (A².sec)	Ur-/Ur~ 250/100			
		L max	H max	e max	LS ±0,4	Ø +10%-0,05			Capacitance
	6	17,5(0,689)	10,50(0,413)	5(0,197)	15(0,591)	0,80(0,031)	430	0,166	470 nF
	7	17,5(0,689)	13,5(0,531)	5(0,197)	15(0,591)	0,80(0,031)	300	0,183	680 nF
15	7	17,5(0,689)	13,5(0,531)	5(0,197)	15(0,591)	0,80(0,031)	300	0,276	820 nF
	8	17,5(0,689)	13,5(0,531)	6,25(0,246)	15(0,591)	0,80(0,031)	300	0,405	1µF
	9	17,5(0,689)	14,5(0,571)	8,50(0,335)	15(0,591)	0,80(0,031)	50	0,159	1,5µF
	9	17,5(0,689)	14,5(0,571)	8,50(0,335)	15(0,591)	0,80(0,031)	50	0,336	2,2μF

HOW TO ORDER

BW 15: TIP & RING 15 Radial leads-250 V-

PERFORMANCE CHARACTERISTICS

55 / 100 / 56 Climatic category Capacitance (Cr) See table Tolerance ±5% ±10 % Nominal voltage 250 V-Test voltage (1.4Ur-2sec) 350 V-Ur at 100°C Category voltage Tangent of loss angle at 1Khz (DF) < 80. 10-⁴ Insulation resistance between terminals under 100V-Ir * C> 1 Gohm μF > 30 Gohms Insulation resistance between terminals and case

MARKING

 $\begin{tabular}{lll} Logo \\ T BW 1 $\mu 0$ K & Type \end{tabular}$

250 V- Nominal capacitance

Tolerance(EIA code)

DC nominal voltage

SUFFIX		EN	LG	KB	KC	KE	KH	K7
Description	Connections	Tape§reel	Connections	Connections	Connections	Connections	Connections	Connections
	bulk length=		bulk length=					
	6mm±0.5		3.2mm±0.4	3.5mm±0.5	4mm±0.5	5mm±0.5	9mm±0.5	25mm±1

SCHEMATIC DRAWING

«TIP&RING» GRAPH

MOQ= primary packaging

Size	Case	Reel (EN) Minimum	Bulk (—) Quantity
15	6	4000	6000
15	7	4000	6000
15	8	3332	6000
15	9	2500	8000

BW 15: TIP & RING 15 Radial leads-250 V-

FILM CHIP CAPACITORS

« TIP&RING » film chip capacitors are designed also as a standard telecom filter

		Size Code	H max
470 nF	0474	5040/4030	4.6/5.5
680 nF	0684	6054/5040	4.4/4.6
820 nF	0824	6054/5040	5/5.7
1 μF	0105	6054/5040	5.7/6.6
1.5 uF	0155	6054	5.9

Standard range Extended range

PART NUMBER SCHEME

PERFORMANCE CHARACTERISTICS AND PACKAGING: see catalog film chip capacitors

NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures are indicated or that other measures may not be required. Specifications are typical and many not apply to all applications.

