1 Working With Propositional Statements

Exercise. Use truth tables to show that the following pairs of statements are equivalent:

$$\neg (s \land t)$$
 and $\neg s \lor \neg t$

$$\neg(s \lor t)$$
 and $\neg s \land \neg t$

Exercise. Write English sentences that illustrate the above two equivalence laws.

•
$$\neg (s \land t)$$
 and $\neg s \lor \neg t$:

•
$$\neg (s \lor t)$$
 and $\neg s \land \neg t$:

Exercise. Which of the following are equivalent to $t \to s$?

$$\bullet \ \neg s \to \neg t$$

$$\bullet \ \neg t \to \neg s$$

$$\bullet$$
 $s \rightarrow t$

• if
$$s$$
 then t

• if
$$t$$
 then s

•
$$\neg s$$
, if $\neg t$

$$\bullet \ \neg s \lor t$$

$$\bullet$$
 $s \lor \neg t$

$$\bullet \neg t \lor s$$

$$ullet$$
 s is sufficient for t

$$\bullet$$
 t is sufficient for s

$$\bullet$$
 s is necessary for t

$$\bullet$$
 t is necessary for s

•
$$\neg(t \land \neg s)$$

Exercise. Lets use real statements. Let a, b and c be the lengths of sides of a triangle $\triangle abc$ where c is the hypotenuse.

If $\triangle abc$ is a right triangle then $a^2 + b^2 = c^2$.

Rewrite this implication using sufficient, necessary, if, and negations.

- •
- •
- •
- •