Machine learning from scratch

Lecture 2: Convex optimization

Alexis Zubiolo alexis.zubiolo@gmail.com

Data Science Team Lead @ Adcash

February 2, 2017

Context reminder

living area (m²)	# bedrooms	intercept	price (1000's BGN)
50	1	1	30
76	2	1	48
26	1	1	12
102	3	1	90

$$h(\mathbf{x}) = \sum_{j=0}^{d} \theta_{j} x_{j} = \theta^{T} \mathbf{x}$$

Context reminder

living area (m^2)	# bedrooms	intercept	price (1000's BGN)
50	1	1	30
76	2	1	48
26	1	1	12
102	3	1	90

$$h(\mathbf{x}) = \sum_{j=0}^{d} \theta_{j} x_{j} = \theta^{T} \mathbf{x}$$

Suppose we chose the following loss function:

$$\ell(y,\hat{y}) = \frac{1}{2}(y - \hat{y})^2$$

This leads to the following least squares cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} \left(h\left(\mathbf{x}^{(i)}\right) - y^{(i)} \right)^{2}$$

This problem the **ordinary least squares** (OLS) regression model.

Thank you! Questions?

alexis.zubiolo@gmail.com

https://github.com/azubiolo/itstep