

Incorporating Lessons Learned from Freelander-HERO Development and Operational Experience

Poramate Manoonpong (VISTEC, IST)

Address: Pillar 1 "Drive Value"

Technology Focus Areas

PTTEP's Pain Points

Drive Value

Improve operations and reduce unit cost for core E&P operations

Decarbonize

Reduce carbon emission thru CCUS, renewables & offsetting technologies

- Most confidential -

Diversify

Enabler for low carbon & future energy businesses

Focus Area Problem Statement

Contaminant Removal

High OPEX cost for absorbance for As removal which better than existing absorbent required changing every 1.5 – 2 years

Operation supports

High amount of sand found in multiple separators which required total shutdown for sand removal every 2-4 years

Finding technology for cleaning non pigable pipeline.

Maintenance and Inspection

Seeking new technology to predict integrity of aging platform with low effort (Not require internal inspection, difficult accessibility area)

nt

Problem Statement

Carbon Capture Utilization & Storage

Focus Area

Traditional carbon capture methods are inefficient and costly, exceeding 40 USD/tonCO₂, and require technology to utilize and store the captured CO₂.

Flaring and Venting Reduction

High CO₂ emission from flaring. Seeking technology for flare gas utilization.

Renewable Integration & Energy Efficiency

High CO₂ emissions from traditional combustion engines, such as gas turbines and diesel engines.

GHG Monitoring, Leak Detection

Seeking cost-efficient, unmanned technology to monitor GHG and detect leaks in confined spaces.

Focus Area

Problem Statement

Hydrogen Production

High cost and low efficiency of green H₂ production

High cost and low efficiency of blue H₂ production

Hydrogen Carrier

High cost of hydrogen transportation (ammonia cracking, hydrogen carriers)

Renewable Energy (Offshore Wind, etc.)

Seeking innovative wind turbine technology suitable for very low wind speed (Thailand)

Confidential

Address: Pillar 1 "Drive Value"

Technology Focus Areas

PTTEP's Pain Points

- Most confidential -

Drive Value

Improve operations and reduce unit cost for core E&P operations

Decarbonize

Reduce carbon emission thru CCUS, renewables & offsetting technologies

Diversify

Enabler for low carbon & future energy businesses

Focus Area Problem Statement

Contaminant Removal

Operation

supports

High OPEX cost for absorbance for As removal which better than existing absorbent required changing every 1.5 – 2 years

High amount of sand found in multiple separators which required total shutdown for sand removal every 2-4 years

Finding technology for cleaning non pigable pipeline.

Focus Area Problem Statement

Carbon Capture Utilization & Storage

Traditional carbon capture methods are inefficient and costly, exceeding 40 USD/tonCO₂, and require technology to utilize and store the captured CO₂.

Flaring and Venting Reduction

High CO₂ emission from flaring. Seeking technology for flare gas utilization.

Renewable Integration & Energy Efficiency

High CO₂ emissions from traditional combustion engines, such as gas turbines and diesel

Focus Area Problem

Problem Statement

Hydrogen Production

High cost and low efficiency of green H₂ production

High cost and low efficiency of blue H₂ production

Hydrogen Carrier

High cost of hydrogen transportation (ammonia cracking, hydrogen carriers)

Renewable Energy (Offshore Wind, etc.)

Seeking innovative wind turbine technology suitable for very low wind speed (Thailand)

Maintenance and Inspection

Maintenance and Inspection

2. Aging facility platform

Seeking new technology to predict integrity of aging platform with low effort (Not require internal inspection, difficult accessibility area)

Reduce cost and manpower for inspection

Inspection Tasks

Inspection Tasks

Inspection Robotics Technology Development

Magnetic Testing (MT)

HERO: 2 x Papers 1 x Invention Patent Filing

Inspection Robotics Technology Development

- Non-Destructive Testing (NDT):
 - Magnetic Testing (MT),
 - Ultrasonic thickness measurement (UTM/possible))
- Visual Inspection
- Vessels / Tanks / Pipes (static equipment inspection onshore)

Underwater

Inspection Robots

Robot (company)

Visual Inspection

NDT Inspection

Payload

Wheel Alignment (Curve Surface)

Discontinuous Surface

Adaptive Multifunctional Robot for maintenance and inspection

High Additional Payload

Walk on discontinuous surface

Performing complex

Inspection-like

High mobility of movement under various curve radius

Confidential

Extending the current robotics tech towards

Al-Powered NExt-Generation RobotiCs for InSpection and Maintenance (Al-NECS)

- To perform inspection in narrow space/gap
- To adaptively move on non ferromagnetic surface
- To adaptively climb on complex (non ferromagnetic) pipe structures

 (Optional) To inspect at splash zone and subsea locations

(Freelander)

HERO

(Freelander: HERO)

AI-NECS

Task 1: Bio-inspired hybrid rigid-soft extendable, floatable link/arm (*To perform inspection in narrow space/gap*)

Task 2: Adaptive joint compliant control (To adaptively move on non ferromagnetic surface)

Task 3: Intelligent multi-segmented body control (To adaptively climb on complex "non ferromagnetic" pipe structures)

Task 4: System integration and research translation to a centipede robot "CENTIPOT" (To navigate on non ferromagnetic structures)

(AI-NECS)

Task 1: Bio-inspired hybrid rigid-soft extendable, floatable link/arm (*To perform inspection in narrow space/gap*)

M213

M215

M216

M217

M217

M218

M219

Das, R., Ayali, A., Guershon, M., Ibraheem, A., Perlson, E. and Pinchasik, B.E., 2022. The biomechanics of ultra-stretchable nerves. Iscience, 25(11).

"Fe<mark>male loc</mark>us<mark>t can extend her body to 2-3 tim</mark>es when laying eggs in the ground, without causing damage"

(AI-NECS)

Task 1: Bio-inspired hybrid rigid-soft extendable, floatable link/arm (*To perform inspection in narrow space/gap*)

"Female locust can extend her body to 2-3 times when laying eggs in the ground, without causing damage"

(AI-NECS)

Task 1: Bio-inspired hybrid rigid-soft extendable, floatable link/arm (*To perform inspection in narrow space/gap*)

Task 2: Adaptive joint compliant control (*To adaptively move on non ferromagnetic surface*)

Task 3: Intelligent multi-segmented body control (To adaptively climb on complex "non ferromagnetic" pipe structures)

Task 4: System integration and research translation to a centipede robot "CENTIPOT" (To navigate on non terromagnetic structures)

AI-NECS

Al-Powered NExt-Generation RobotiCs for

InSpection and Maintenance

(AI-NECS)

Task 1: Bio-inspired hybrid rigid-soft extendable, floatable link/arm (*To perform inspection in narrow space/gap*)

Task 2: Adaptive joint compliant control (*To adaptively move on non ferromagnetic surface*)

Task 3: Intelligent multi-segmented body control (To adaptively climb on complex "non ferromagnetic" pipe structures)

Task 4: System integration and research translation to a centipede robot "CENTIPOT" (To navigate on non

Task 1: Bio-inspired hybrid rigid-soft extendable, floatable link/arm (*To perform inspection in narrow space/gap*)

Task 2: Adaptive joint compliant control (*To adaptively move on non ferromagnetic surface*)

Task 3: Intelligent multi-segmented body control (To adaptively climb on complex "non ferromagnetic" pipe structures)

Task 4: System integration and research translation to a centipede robot "CENTIPOT" (To navigate on non

(AI-NECS)

Task 1: Bio-inspired hybrid rigid-soft extendable, floatable link/arm (*To perform inspection in narrow space/gap*)

Task 2: Adaptive joint compliant control (*To adaptively move on non ferromagnetic surface*)

Task 3: Intelligent multi-segmented body control (To adaptively climb on complex "non ferromagnetic" pipe structures)

Task 4: System integration and research translation to a centipede robot "CENTIPOT" (To navigate on non ferromagnetic structures)

AI-NECS

Al-Powered NExt-Generation Robotics for

InSpection and Maintenance

(AI-NECS)

Task 1: Bio-inspired hybrid rigid-soft extendable, floatable link/arm (*To perform inspection in narrow space/gap*)

Task 2: Adaptive joint compliant control (To adaptively move on non ferromagnetic surface)

Task 3: Intelligent multi-segmented body control (To adaptively climb on complex "non ferromagnetic" pipe structures)

Task 4: System integration and research translation to a centipede robot "CENTIPOT" (*To navigate on non ferromagnetic structures*)

RESEARCHER TEAM

VISTEC:

Dr. Poramate Manoonpong (Project Lead)

Mr. Kanut Tarapongnivat (Project Member, Tasks 1&4)

Mr. Run Janna (Project Member, Tasks 2&4)

Mr. Worameth Nantareekurn (Project Member, Tasks 3&4)

PTTEP:

Mr. Suppachai Pewkliang

Dr. Chatawut Chanvanichskul

Mr. Santi Thuengsripan

Confidential

PROJECT TIMELINE (2025-2028)

DELIVERABLES

- Multipurpose inspection robot prototype (software and hardware) for static equipment inspection onshore.
- CENTIPOT robot prototype (software and hardware) for complex (non ferromagnetic) structures

HERO F-TECH AI-NECS (Freelander: (Freelander) HERO) Research Phase 0 Phase 1 Phase 2 Idea Investigation Lab test TRL 5 TRL 1 TRL 2 TRL 3 TRL 4 **Proof of Concept Basic Principle Lab Test Bench Scale Test Tech Concept** Phase **Adaptive Locomotion System Control System**

OVERALL PROJECT PHASES

Address: Pillar 1 "Drive Value"

Phase 5 Phase 3 Phase 4 Commercial Prototype test Pilot test

TRL 6 TRL 7 TRL 8 TRL 9 **Integrated Prototype Prototype in Relevant** Act. Sys. completed & Actual system proven

qualified through level and

demonstration

in Operational

Environment

(F-TECH & VT)

Advanced Hybrid LEgged-Wheeled RObot for Internal Vessel Inspection

(HERO & MT)

Al-Powered NExt-Generation RobotiCs for InSpection and Maintenance (AI-NECS & CENTIPOT & UT/ET)

Ground->pipe

Environment

through successful

Operation

2

Phase

3

Phase

Overall Timeline: From Zero to

HERO and AI-NECS

Adaptive locomotion control system development (F-TECH) TRL 3-4

HERO prototype development TRL 5 ♥

AI-NECS prototype development TRL 3-5 (2025-2027)

CENTIPOT prototype development TRL 5 (2027-2028)

NDT Inspection

MT

UT

2025

2030

PTTEP

HERO prototype deployment TRL 6 (Relevant **Environment**)

HERO pilot deployment TRL 7 (Operational **Environment**)

CENTIPOT prototype deployment TRL 6 (Relevant **Environment**)

CENTIPOT pilot deployment TRL 7 (Operational **Environment**)

MARKET SIZE

Inspection and Subsea Robot in Oil & Gas Industry → 30% of Global Inspection & Maintenance Robot Market

Global Inspection & Maintenance Robot Market → 4 Billion + (Y2025)

CAGR 14.75% (2023 - 2030)

TAM: Total Addressable Market
SAM: Serviceable Addressable Market
SOM Serviceable Obtainable Market

Freelander Robot Opportunity
in 5 major regions → 48% of
Inspection and Subsea Robot in Oil
& Gas Industry

PTTEP
PTTEP CONTACT POINT

MR. SUPPACHAI PEWKLIANG
Engineer, Technology Venture (OTM/A)

Discussion with

SOM 300 M

Freelander Robot Opportunity
in target regions → 25% of
Inspection and Subsea Robot in Oil
& Gas Industry

Thank you for your attention

Al-Powered NExt-Generation RobotiCs for InSpection and Maintenance

