Théorie de l'information : DS du 7 mars 2023

Master Sciences et Technologies, mention Mathématiques ou Informatique, parcours Cryptologie et Sécurité informatique

Responsable : Gilles Zémor

Durée : 1h30. Sans document. Les exercices sont indépendants.

- Exercice 1.

- a) Soit $X = (X_0, X_1, X_2, X_3, X_4)$ la variable aléatoire de loi uniforme et prenant ses valeurs parmi les cinq décalés circulaires du quintuplet binaire (10100). Calculer $H(X_0)$ et $H(X_i|X_0)$ pour $i \neq 0$.
- b) Que vaut $H(X_iX_{i+1}X_{i+2})$ (où la somme des indices s'entend modulo 5)? En déduire, sans faire de calcul supplémentaire, la valeur de $H(X_{i+2}|X_iX_{i+1})$.
- EXERCICE 2. Soit la suite de variables aléatoires de Bernoulli X_0, X_1, \ldots, X_i construite de la manière suivante : X_0 est une variable de loi $P(X_0 = 1) = 1/3, P(X_0 = 0) = 2/3$. Pour définir les variables $X_i, i \ge 1$, on utilise une suite auxiliaire $Z_1, Z_2, \ldots, Z_i, \ldots$ où les Z_i sont des variables de Bernoulli indépendantes et uniformes, donc telles que $P(Z_i = 1) = P(Z_i = 0) = 1/2$. Pour $i \ge 1$, la variable X_i est définie ainsi :
 - $\operatorname{si} X_{i-1} = 1 \operatorname{alors} X_i = 0$
 - si $X_{i-1} = 0$, alors on pose $X_i = Z_i$.
 - a) Calculer la loi de X_1, X_2, \ldots et en déduire $H(X_i)$ pour tout i.
 - b) Pour $i \ge 1$, calculer $H(X_0, X_1, \dots, X_i)$. Quelle est la limite de $\frac{1}{i}H(X_0, \dots X_{i-1})$ lorsque $i \to \infty$?
 - c) Montrer que $(X_i, X_{i+1}, X_{i+2}, X_{i+3})$ suit la même loi quel que soit i. Si n = 4k, que devient la longueur moyenne de $X_0, X_1, \ldots, X_{n-1}$ si on coupe la suite en k blocs de taille 4, $(X_0, X_1, X_2, X_3), (X_4, X_5, X_6, X_7) \ldots$ et si on applique un codage de Huffman sur chaque bloc?
- EXERCICE 3. On considère une variable aléatoire X prenant ses valeurs dans l'ensemble $\{a,b,c,d,e,f,g\}$ avec la loi de probabilité

$$p = (p_a = \frac{1}{4}, p_b = \frac{7}{32}, p_c = \frac{3}{16}, p_d = \frac{5}{32}, p_e = \frac{3}{32}, p_f = \frac{1}{16}, p_g = \frac{1}{32}).$$

Quelles sont les valeurs possibles de la distribution des longueurs

$$(\ell_a, \ell_b, \ell_c, \ell_d, \ell_e, \ell_f, \ell_g)$$

d'un code de Huffman pour cette loi? Donner un code de Huffman correspondant pour chacun de ces cas. Quelle en est la longueur moyenne?

- EXERCICE 4. On considère l'ensemble des lois $p=(p_1,p_2,p_3,p_4)$ vérifiant la propriété $p_1 \ge 2p_2 \ge 2p_3 \ge 2p_4$, que l'on appelera (\star) .
 - a) Montrer que $p_1 \ge 2/5$.
 - b) A quelle loi π pensez-vous pour maximiser la valeur de son entropie parmi les lois vérifiant la propriété (\star)?
 - c) Montrer que votre hypothèse est vérifiée en écrivant que $H(\pi) H(p)$ est supérieure à une divergence de Kullback pour tout p vérifiant (\star) .
- EXERCICE 5. Soit le quadruplet $X=(X_1,X_2,X_3,X_4)$ de variables aléatoires choisi uniformément dans l'ensemble des 24 permutations de (1,2,3,4). On se propose de déterminer X (en d'autres termes de trier les quatre entiers) en n'effectuant que des comparaisons deux à deux. On cherche le nombre moyen de comparaisons d'un algorithme optimal (qui minimise donc le nombre moyen de comparaisons).
 - a) On commence par supposer $X_1 \leq X_2$ et $X_3 \leq X_4$. Faire la liste des 6 possibilités et proposer un algorithme de tri sous forme d'un arbre binaire qui est égal à un arbre de Huffman pour la loi uniforme sur un ensemble à six éléments. Quel est le nombre moyen de comparaisons de votre algorithme?
 - b) En déduire le nombre moyen de comparaisons d'un algorithme optimal de tri de quatre entiers.