Relacijska algebra

Iztok Savnik, FAMNIT

Viri

- Prosojnice: "Cow Book", R.Ramakrishnan, http://pages.cs.wisc.edu/~dbbook/
- Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, McGraw-Hill, 3rd ed., 2007.

Relacijski povpraševalni jeziki

- <u>Povpravševalni jezik</u>: Omogoča urejanje podatkov in poizvedovanje po podatkih v podatkovni bazi.
- Relacijski model podpira enostavne PJ z veliko izrazno močjo:
 - Formalne osnove v logiki.
 - Omogoča optimizacijo poizvedb.
- Povpraševalni jezik != Programski jezik !
 - PJ ni "Računsko kompleten".
 - PJ ni namenjen za kompleksne izračune.
 - PJ podpira enostaven in učinkovit dostop do velikih zbirk podatkov.

Formalni relacijski povpraševalni jeziki

- Dva formalna (matematična) jezika tvorita osnovo za "realne" povpraševalne jezke (npr. SQL) in njihovo implementacijo:
 - Relacijska algebra: Bolj proceduralen jezik, uporaben za predstavitev plana izvajanja poizvedb.
 - <u>Relacijski račun</u>: Omogoča uporabnikom opisati kaj želijo in ne toliko kako to izračunati – deklarativni jezik.

Osnove

- Poizvedba je izvršena nad instancami relacij in rezultat poizvedbe je instanca neke relacije.
 - Sheme vhodnih relacij so fiksne.
 - Shema rezultata je tudi fiksna -- določi se s pravili gradnikov povpraševalnega jezika.
- Notacija osnovana na poziciji oz. imenih atributov:
 - Notacija osnovana na poziciji primernejša za programe; notacija osnovana na imenih je bolj berljiva.
 - Obe se uporabljata v SQL.

Primer podatkovne baze

Mornarji(mid:integer, mime:string, ocena:integer, star:integer)

Ladje(<u>lid:integer</u>, lime:string, barva:string)

Rezervacije(mid:integer, lid:integer, datum:date)

Primeri relacij

• Relaciji "Mornarji" in "Rezervacije" za naše primere.

 Uporabljali bomo notaciji osnovani na poziciji in imenih.

 Imena atributov v vmesnih in končnem rezutatu poizvedb se podedujejo od vhodnih relacij. *R1*

mid	<u>lid</u>	<u>dan</u>
22	101	10/10/96
58	103	11/12/96

S1

mid	mime	ocena	star	
22	novak	7	45.0	
31	kranjc	8	55.5	
58	petelin	10	35.0	

S2

mid	mime	ocena	star
28	volk	9	35.0
31	kranjc	8	55.5
44	jauk	5	35.0
58	petelin	10	35.0

OPB, Algebra

Relacijska algebra

- Osnovne operacije
 - Selekcija (δ) Izbere podmnožico n-teric iz relacije.
 - Projekcija (Π) Izbere določene stolpce relacije.
 - Produkt (x) Omogoča kombiniranje dveh relacij.
 - Razlika (-) N-terice iz prve in ne iz druge relacije.
 - <u>Unija</u> (U) N-terice iz obeh relacij.
- Dodatne operacije
 - Presek, <u>Stik</u>, Deljenje, Preimenovanje.
 - Niso nujne, so pa ZELO (!) koristne.
- Vsaka operacija vrne relacijo kot rezultat.
 - Operacije se lahko sestavljajo funkcijski jezik.

Projekcija

- Izbere atribute, ki so v *listi projekcije* iz relacije.
- Shema rezultata vsebuje samo atribute, ki so v listi projekcije z istimi imeni kot v vhodni relaciji.
- Duplikati?
 - Realni sistemi tipično ne odstranijo duplikate, če uporabnik tega ne zahteva. (Zakaj ne?)

mime	ocena	
volk	9	
kranjc	8	
jauk	5	
petelin	10	

 $\pi_{mime,ocena}(S2)$

star 35.0 55.5

$$\pi_{star}(S2)$$

Selekcija

- Izbere vrstice, ki zadoščajo pogoju selekcije.
- Ni duplikatov v rezulatu. (Zakaj?)
- Shema rezulata je identična shemi vhodnih relacij.
- Relacija, ki je rezultat je lahko vhodna relacija drugi relacijski operaciji! (Kompozicija operacij.)

mid	mime	ocena	star
28	volk	9	35.0
58	petelin	10	35.0

 $\sigma_{ocena>8}(S2)$

mime	ocena
volk	9
petelin	10

$$\pi_{\text{mime,ocena}}(\sigma_{\text{ocena}} > 8^{(S2)})$$

Unija, Presek, Razlika

- Vse operacije so binarne in vhodni relaciji morata biti <u>unija-kompatibilni</u>:
 - Enako število atributov.
 - Pripadajoča' polja imajo enake tipe.
- Kaj je *shema* rezultata?

mid	mime	ocena	star
22	novak	7	45.0

*S*1- *S*2

mid	mime	ocena	star
22	novak	7	45.0
31	kranjc	8	55.5
58	petelin	10	35.0
44	jauk	5	35.0
28	volk	9	35.0

*S*1∪*S*2

mid	mime	ocena	star
31	kranjc	8	55.5
58	petelin	10	35.0

 $S1 \cap S2$

Produkt

- Kartezijski produkt: vsaka vrstica S1 se poveže z vsako vrstico R1.
- Shema rezultata ima po en atribut za vsak atribut relacij S1 in R1; imena od operandov.
 - Konflikt: S1 in R1 imata atribut mid.

(mid)	mime	ocena	star	(mid)	lid	day
22	novak	7	45.0	22	101	10/ 10/ 9
22	novak	7	45.0	58	103	11/ 12/ 9
31	kranjc	8	55.5	22	101	10/ 10/ 9
31	kranjc	8	55.5	58	103	11/ 12/ 9
58	petelin	10	35.0	22	101	10/ 10/ 9
58	petelin	10	35.0	58	103	11/ 12/ 9

• <u>Preimenovanje</u>: $\rho(C(1 \rightarrow mid1, 5 \rightarrow mid2), S1 \times R1)$

Stik (Join)

Stik s pogojem:

$$R \bowtie_{\mathcal{C}} S = \sigma_{\mathcal{C}}(R \times S)$$

(mid)	mime	ocena	star	(mid)	lid	dan
22	novak	7	45.0	58	103	11/ 12/ 96
31	kranjc	8	55.5	58	103	11/ 12/ 96

$$S1 \bowtie S1.mid < R1.mid$$
 $R1$

- Shema rezultata: enako kot kartezijski produkt.
- Manj n-teric kot produkt; da se izračunati hitreje.
- Včasih ga imenujejo *theta-stik.*

Stiki

 <u>Equi-Stik</u>: Poseben primer stika, kjer je pogoj stika uporablja samo pogoj enačaj.

mid	mime	ocena	star	lid	dan
22	novak	7	45.0	101	10/ 10/ 96
58	petelin	10	35.0	103	11/ 12/ 96

$$S1\bowtie_{mid} R1$$

- Shema rezultata: podobno kot kartezijski produkt; samo ena vrednost enačenih atributov je v rezultatu.
- Naravni Stik: Equi-Stik po vseh skupnih atributih.

Deljenje

- Ni osnovna operacija; uporabna za izražanje vprašanj kot na primer:
 - Poišči mornarje, ki so rezervirali vse ladje.
- Naj ima \underline{A} dva atributa \underline{x} in \underline{y} ; \underline{B} pa samo en atribut \underline{y} :
 - $-A/B = \left\{ \langle x \rangle \mid \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B \right\}$
 - A/B vsebuje vse n-terice x (mornarji) tako da za vsako n-terico y (ladja) v B, obstaja n-terica xy v A.
 - Ali: Če množica vrednosti y (ladje) povezana z vrednostjo x (mornarji) v A vsebuje vse vrednosti y v B, potem je vrednost x v A/B.
- V splošnem sta x in y lahko poljubna seznama atributov; y je seznam atrributov v B, in $x \cup y$ je seznam atributov v A.

Primer deljenja A/B

sno	pno
s1	p1
s1	p2
s1	р3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

pno	
p2	
<i>B</i> 1	

pno
p2
p4
<i>B2</i>

A/B3

A

OPB, Algebra

Izražanje A/B z osnovnimi operacijami

- Deljenje ni nujno potrebna operacija; uporabna bljižnica.
 - To je načeloma res tudi za stike, čeprav omogočajo stiki učinkovito implementacijo poizvedb.
- Ideja: A/B = izračunaj vse vrednosti x, ki niso izločene z vrednostjo y v B.
 - x je izločena z y v primeru, da z dodajanjem vrednosti y iz B dobimo n-terico xy, ki ni v A.

Izločene vrednosti
$$x$$
: $\pi_X((\pi_X(A) \times B) - A)$

$$A/B$$
: $\pi_X(A)$ - Izločene vrednosti

Ekvivalence operacij RA

• <u>Selekcija:</u> $\delta_{c1 \wedge ... \wedge cn}(R) = \delta_{c1}(...(\delta_{cn}(R)...)$ (Razcep)

$$\delta_{c1}(\delta_{c2}(R)) = \delta_{c2}(\delta_{c1}(R))$$
 (Komutativnost)

* <u>Projekcija</u>: $\Pi_{a1}(R) = \Pi_{a1}(...(\Pi_{an}(R)...)$ (Razcep)

$$(R \bowtie S) = (S \bowtie R)$$
 (Komutativnost)

Dokaži:
$$R \bowtie (S \bowtie T) = (T \bowtie R) \bowtie S$$

OPB, Algebra

Ekvivalence operacij RA

Spuščanje selekcije/projekcije proti listom.

 $\delta(R \bowtie S) = \delta(R) \bowtie S$, če selekcija izbira samo atribute R.

 $\Pi(R \bowtie S) = \Pi(R) \bowtie S$, če projekcija uporabi samo atr. R.

- Projekcija:
 - Projekcija je komutativna s selekcijo, ki uporablja atribute projekcije.
- Selekcija, ki vsebuje primerjavo atributov obeh argumentov kartezijskega produkta se prevede v stik.

Poišči imena mornarjev, ki so rezervirali ladjo #103

- Rešitev 1: $\pi_{mime}(\sigma_{lid=103}^{Rezervacije}) \bowtie Mornarji)$
- * Rešitev 2: $\rho(Temp1,\sigma_{lid}=103^{Re}Zervacije)$ ρ (Temp2, Temp1 \bowtie Mornarji)

 π_{mime} (Temp 2)

* Rešitev 3: $\pi_{mime}(\sigma_{lid}=103)$ (Rezervacije $\bowtie Mornarji$)

Poišči vse mornarje, ki so rezervirali rdečo ladjo.

 Podatki o ladjah se nahajajo v relaciji Ladje; potrebujemo še en stik.

$$\rho(Temp,(\sigma_{barva} = Tdeca Ladje))$$

$$\pi_{mime}(Temp \bowtie Rezervacije \bowtie Mornarji)$$

Kako bi pohitrili vprašanje?

$$\pi_{\text{mime}}(\pi_{\text{mid}}((\pi_{\text{lid}}\delta_{\text{barva='rdeča'}}Ladje))) Rez) Mornarji)$$

Poišči vse mornarje, ki so rezervirali rdečo ali zeleno ladjo.

 Identificiramo vse rdeče in zelene ladje in potem poiščemo mornarje, ki so rezervirali eno izmed izbranih ladij:

```
ρ(Temp,δ<sub>barva='rdeča∨'barva='zelena'</sub>Ladje)
π<sub>mime</sub>(Temp∞Rezervacije∞Mornarji)
```

- Temp se da definirati z unijo! (Kako?)
- Kaj se zgodi, če je v zamenjan z ∧ ?

Poišči mornarje, ki so rezervirali rdečo in zeleno ladjo.

- Prejšnji način ne deluje.
- Poiščemo mornarje, ki so rezervirali rdeče ladje, mornarje, ki so rezervirali zelene ladje in potem naredimo presek.

$$\rho(Temp1_{\pi}_{mid}^{}(\sigma_{barva}=Tdeca}^{}Ladje)\bowtie Rezervacije))$$

$$\rho(Temp2_{\pi}_{mid}^{}((\sigma_{barva}=Zelena}^{}Ladje)\bowtie Rezervacije))$$

$$\pi_{mime}^{}((Temp1\cap Temp2)\bowtie Mornarji)$$

Poišči imena mornarjev, ki so rezervirali vse ladje

 Uporaba deljenja; sheme vhodnih relacij morajo biti pazljivo izbrane:

$$\rho(Temp,(\pi Mezervacije)/(\pi Ladje))$$
 $mid,lid Mornarji)$
 $\pi_{mime}(Temp Mornarji)$

... mornarje, ki so rezervirali vse ladje 'Delfin':

....
$$/\pi_{lid}(\sigma_{lime} = delfin^{Ladje})$$

Ponovitev

- Relacijski model ima formalne povpraševalne jezike, ki so enostavni in imajo veliko izrazno moč.
- Relacijska algebra je proceduralen jezik; uporabna je za interno predstavitev vprašanj.
- Veliko načinov za izražanje enega samega stavka; optimizator izbere tistega, ki poišče rezultat najhitreje.