

SATELLITARI DI NAVI

DOMINIO DI RIFERIMENTO E OBIETTIVI

- **DATASET**: IMMAGINI SATELLITARI A COLORI ETICHETTATE CON:
 - 1 (SHIP): RAPPRESENTAZIONE COMPLETA DI UNA NAVE
 - **0** (**NO SHIP**): RAPPRESENTAZIONE PARZIALE DI UNA NAVE O NESSUNA NAVE
- **OBIETTIVO**: SVILUPPO DI DUE MODELLI SUPERVISIONATI PER LA CLASSIFICAZIONE DI IMMAGINI

- POSSIBILI DOMINI APPLICATIVI:
 - SENSORI MONTATI SU MISSILI ANTINAVE
 - DRONI PER OPERAZIONI DI RICERCA DI NAVI DISPERSE

PREPROCESSING

- *• LE IMMAGINI IN FORMATO RGB $(80 \times 80 \times 3)$ Sono state portate in scala di Grigi (80×80)
 - LE **FEATURES** SONO STATE **NORMALIZZATE**, PORTANDOLE A MEDIA 0 E VARIANZA 1

ANALISI ESPLORATIVA – CORRELAZIONE (1)

- LE IMMAGINI
 PRESENTANO

 CORRELAZIONE
- UTILIZZO DI
 MODELLI DI
 APPRENDIMENT
 O AUTOMATICO
 CHE SIANO IN
 GRADO DI
 GESTIRLA

Prime cento immagini (classe 1)

Matrice di correlazione

ANALISI ESPLORATIVA – CORRELAZIONE (2)

- LE IMMAGINI PRESENTANO
 CORRELAZIONE
- UTILIZZO DI
 MODELLI DI
 APPRENDIMENT
 O AUTOMATICO
 CHE SIANO IN
 GRADO DI
 GESTIRLA

Cento immagini centrali (classe 0)

Matrice di correlazione

ANALISI ESPLORATIVA – CORRELAZIONE (3)

- LE IMMAGINI PRESENTANO
 CORRELAZIONE
- UTILIZZO DI
 MODELLI DI
 APPRENDIMENT
 O AUTOMATICO
 CHE SIANO IN
 GRADO DI
 GESTIRLA

Cento immagini casuali

Matrice di correlazione

ANALISI ESPLORATIVA – DISTRIBUZIONE DELLE CLASSI

• 4000 IMMAGINI IN TOTALE

• RAPPORTO 3:1 A FAVORE DELLA CLASSE 0 (NO SHIP)

 OPERAZIONI DI *RESAMPLING* PER EQUILIBRARE LE CLASSI

ANALISI ESPLORATIVA – RESAMPLING

• UNDERSAMPLING

• ELIMINAZIONE DI 688 ELEMENTI (32.8%):

RAPPORTO 2:1

OVERSAMPLING

• GENERAZIONE DI 354 ELEMENTI (25.1%):

RAPPORTO 3:2

ANALISI ESPLORATIVA - PCA

Varianza spiegata	Componenti
0.6	4
0.7	9
0.8	24
0.9	84
0.95	195
0.99	615

- SELEZIONE DELLE PRIME **84 COMPONENTI** (1.31%)
- VARIANZA SPIEGATA DEL 90%
- COMPLESSITÀ RIDOTTA

SVM - MOTIVAZIONI

• MODELLO STORICO MA COMUNQUE MOLTO USATO NELLA **IMAGE RECOGNITION**

• SEMPLICITÀ CONCETTUALE

• BUONA VELOCITÀ DI **ADDESTRAMENTO** E **INFERENZA**.

SVM - STRUTTURA

• SVM SOFT MARGIN (SVC DELLA LIBRERIA SKLEARN)

• KERNEL: RADIAL BASIS FUNCTION

• PENALITÀ PER GLI ERRORI DI CLASSIFICAZIONE: C=8

SVM - ESPERIMENTI

- RICERCA **SEQUENZIALE** E **INDIPENDENTE** I MIGLIORI **IPERPARAMETRI**:
 - 1. MIGLIOR KERNEL TRA LINEARE, RADIAL BASIS FUNCTION, POLINOMIALE, SIGMOID (C=1)
 - □□ → MIGLIOR KERNEL RISULTA ESSERE RADIAL BASIS FUNCTION
 - 3. MIGLIOR C TRA 1 E 10 (KERNEL=RBF)
 - \square \rightarrow MIGLIOR **C** RISULTA ESSERE **8**.

Validazione: 10-folds stratified cross validation

Metrica	Media	Intervallo di confidenza (95%)
Accuracy	0.967	(0.9588, 0.9745)
Recall	0.932	(0.9127, 0.9513)
Precision	0.935	(0.9152, 0.9541)
F1-Score	0.933	(0.9176, 0.9486)

RETE NEURALE - MOTIVAZIONI

- NUMEROSI ESEMPI DI SUCCESSO NEL RICONOSCIMENTO DI IMMAGINI
 - IMAGENET
 - MNIST
 - ..
- TOLLERANZA AL RUMORE
- TOLLERANZA ALLO **SBILANCIAMENTO**DELLE **CLASSI**

RETE NEURALE - STRUTTURA

• RETE A 3 STRATI:

• INPUT: 84 NODI

• **STRATO NASCOSTO**: 53 NODI, FUNZIONE DI ATTIVAZIONE *MISH*

• **OUTPUT**: SINGOLO NODO, FUNZIONE DI ATTIVAZIONE: **SIGMOID**

• FUNZIONE DI LOSS: BINARY CROSSENTROPY

• OTTIMIZZATORE SGD: ADAM

• **EPOCHE** DI ADDESTRAMENTO: 22

RETE NEURALE - ESPERIMENTI

- RICERCA SEQUENZIALE DEI MIGLIORI IPERPARAMETRI → COMPLESSITÀ RIDOTTA
 - 1. FUNZIONE DI ATTIVAZIONE STRATO NASCOSTO
 - 2. ARCHITETTURA STRATO NASCOSTO
 - 3. EPOCHE DI ADDESTRAMENTO OTTIMALI

Validazione: 10-folds stratified cross validation

Metrica	Media	Intervallo di confidenza (95%)
Accuracy	0.969	(0.9607, 0.9782)
Recall	0.937	(0.9189, 0.9541)
Precision	0.941	(0.9196, 0.9829)
F1-Score	0.939	(0.9214, 0.9560)

RISULTATI - CONFRONTO METRICHE (1)

 10-FOLDS STRATIFIED CROSS VALIDATION

▶ PERFORMANCE LEGGERMENTE MIGLIORI PER LA RETE NEURALE SU TUTTE LE METRICHE

RISULTATI – CONFRONTO METRICHE (2)

- TEST SET (400 IMMAGINI)
- ➤ RETE NEURALE: CONFERMA DEI VALORI OTTENUTI CON CROSS-VALIDATION
- SVM: PEGGIORAMENTO DEL 5% SULLA *PRECISION* RISPETTO ALLA CROSS-VALIDATION

RISULTATI – CONFRONTO COMPLESSITÀ TEMPORALE

➤ **RETE NEURALE**: DECISAMENTRE PIÙ LENTA AD ADDESTRARSI DI SVM

> SVM: TEMPI DI INFERENZA
RIDOTTI MA COMUNQUE VICINI
ALLA RETE NEURALE NN

RISULTATI - CURVE DI VALUTAZIONE (1)

CURVA ROC

> OTTIMI VALORI DI AUC PER ENTRAMBI I MODELLI

RISULTATI – CURVE DI VALUTAZIONE (2)

CURVA PRECISION-RECALL

- TOTTIMI VALORI DI **AUC** PER ENTRAMBI I MODELLI
- ADATTAMENTO DEL MODELLO ALLA SPECIFICA APPLICAZIONE
 - MISSILI ANTINAVE: **PRECISION ORIENTED**
 - RICERCA NAVI DISPERSE: RECALL ORIENTED

ABLATION – SCALA DI GRIGI VS RGB

• USANDO I DATI ORIGINALI **RGB** ABBIAMO RI-RICERCATO I MIGLIORI **IPERPARAMETRI** PER ENTRAMBI I MODELLI E LI ABBIAMO RI-

PROVATI:

PERFORMANCE **RGB**:

 SI OSSERVANO RISULTATI PARAGONABILI → LA SCELTA DEL PREPROCESSING CORRETTA