output line. One of these data inputs will be connected to the output based on the values of selection lines. Since there are 'n' selection lines, there will be 2ⁿ possible combinations of zeros and ones. So, each

Multiplexer is a combinational circuit that has maximum of 2ⁿ data inputs, 'n' selection lines and single

combination will select only one data input. Multiplexer is also called as Mux.

4x1 Multiplexer

4x1 Multiplexer has four data inputs I₃, I₂, I₁ & I₀, two selection lines s₁ & s₀ and one output Y. The **block** diagram of 4x1 Multiplexer is shown in the following figure.

	1	1	l ₃	
From Truth table, we can directly write the Boolean function for output, Y as				
$Y = S_1{}'S_0{}'I_0 + S_1{}'S_0I_1 + S_1S_0{}'I_2 + S_1S_0I_3$				
We can implement this Boolean function using Inverters, AND gates & OR gate. The circuit diagram of 4x1 multiplexer is shown in the following figure.				
s ₁ — s ₀ —		13)———	

 I_1

Implementation of Higher-order Multiplexers. Now, let us implement the following two higher-order Multiplexers using lower-order Multiplexers.

Selection Inputs

of first stage as inputs and to produce the final output.

Truth table of 8x1 Multiplexer is shown below.

 I_5

 I_4

S2 S₁ S_0

4x1

Multiplexer

Let the 8x1 Multiplexer has eight data inputs I₇ to I₀, three selection lines s₂, s₁ & s0 and one output Y. The

Output

2x1

We can implement 8x1 Multiplexer using lower order Multiplexers easily by considering the above Truth table. The **block diagram** of 8x1 Multiplexer is shown in the following figure.

Let the 16x1 Multiplexer has sixteen data inputs I₁₅ to I₀, four selection lines s₃ to s₀ and one output Y. The

 S_0

Selection Inputs

S₁

S2

Output

Y

l8

of first stage as inputs and to produce the final output.

Truth table of 16x1 Multiplexer is shown below.

 S_3

The same selection lines, s₂, s₁ & s₀ are applied to both 8x1 Multiplexers. The data inputs of upper 8x1

The outputs of first stage 8x1 Multiplexers are applied as inputs of 2x1 Multiplexer that is present in second

stage. The other selection line, s₃ is applied to 2x1 Multiplexer.

If s₃ is zero, then the output of 2x1 Multiplexer will be one of the 8 inputs Is₇ to I₀ based on the values of selection lines s_2 , $s_1 \& s_0$.

Multiplexer.

I₀ We can easily understand the operation of the above circuit. Similarly, you can implement 8x1 Multiplexer and 16x1 multiplexer by following the same procedure. 8x1 Multiplexer 16x1 Multiplexer 8x1 Multiplexer In this section, let us implement 8x1 Multiplexer using 4x1 Multiplexers and 2x1 Multiplexer. We know that 4x1 Multiplexer has 4 data inputs, 2 selection lines and one output. Whereas, 8x1 Multiplexer has 8 data inputs, 3 selection lines and one output. So, we require two 4x1 Multiplexers in first stage in order to get the 8 data inputs. Since, each 4x1 Multiplexer produces one output, we require a 2x1 Multiplexer in second stage by considering the outputs

If s₃ is one, then the output of 2x1 Multiplexer will be one of the 8 inputs I₁₅ to I₈ based on the

values of selection lines s2, s1 & s0. Therefore, the overall combination of two 8x1 Multiplexers and one 2x1 Multiplexer performs as one 16x1