Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 3: lista M 14 24 stycznia 2018 r.

- **M14.1.** 1 punkt Załóżmy, że nieosobliwa macierz $A = [a_{ij}^{(1)}] \in \mathbb{R}^{n \times n}$ jest symetryczna, tj. $a_{ij}^{(1)} = a_{ji}^{(1)}$ dla $i, j = 1, 2, \ldots, n$. Załóżmy ponadto, że do rozwiązania układu równań liniowych $A\boldsymbol{x} = \boldsymbol{b}$ można zastosować metode eliminacji bez wyboru elementów głównych.
 - a) Wykazać, że wówczas wielkości $a_{ij}^{(k)}$, otrzymywane w tej metodzie kolejno dla $k=2,3,\ldots,n,$ są takie, że $a_{ij}^{(k)}=a_{ji}^{(k)}$ dla $i,j=k,k+1,\ldots,n.$
 - b) Wskazać, jak można wykorzystać ten fakt dla zmniejszenia kosztu metody eliminacji.
- **M14.2.** I punkt Niech $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ będzie macierzą dominującą przekątniowo, tj. taką, że

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad (i = 1, 2, \dots, n).$$

Wykazać, że metoda eliminacji Gaussa bez wyboru elementów głównych zachowuje tę własność, tzn. że wszystkie macierze $A^{(k)}$ są dominujące przekątniowo. Wywnioskować stąd, że każda macierz dominująca przekątniowo jest nieosobliwa i posiada rozkład LU.

M14.3. I punkt Niech dla $p \in \{1, 2, \infty\}$ symbol $\|\cdot\|_p : \mathbb{R}^{n \times n} \to \mathbb{R}_+$ oznacza normę macierzy indukowaną przez p-tą normę wektorową. Wykazać, że dla dowolnych macierzy $A, B \in \mathbb{R}^{n \times n}$ zachodzi nierówność

$$||AB||_p \leqslant ||A||_p ||B||_p$$
.

M14.4. I punkt Niech $E \in \mathbb{R}^{n \times n}$ spełnia nierówność $\|E\| < 1$. Wykazać, że I-E jest macierzą nieosobliwą, a jej odwrotność spełnia nierówność

(1)
$$||(I-E)^{-1}|| \le \frac{1}{1-||E||}.$$

M14.5. $\boxed{1 \text{ punkt}}$ Jak ocenimy uwarunkowanie układu $A \boldsymbol{x} = \boldsymbol{b},$ o macierzy

$$A = \left[\begin{array}{cc} 1 & 1 + \varepsilon \\ 1 - \varepsilon & 1 \end{array} \right],$$

dla $0 < \varepsilon \leq 0.01$?

M14.6. I punkt Załóżmy, że wszystkie wartości własne λ_i macierzy $A \in \mathbb{R}^{n \times n}$ są rzeczywiste i spełniają nierówności

$$0 < \alpha \leqslant \lambda_i \leqslant \beta$$
 $(i = 1, 2, \dots, n).$

Wykazać, że metoda iteracyjna Richardsona

$$x^{(k+1)} = (I - \tau A)x^{(k)} + \tau b$$
 $(k \ge 0),$

zastosowana do rozwiązania układu równań liniowych Ax = b, jest zbieżna, jeśli $0 < \tau < 2/\beta$.