В одноканальную экспоненциальную СМО с интенсивностью λ поступают заявки, интенсивность обслуживания которых равна μ . Рассчитать характеристики функционирования системы: а) *нагрузку* и *загрузку*; б) средние значения *времён ожидания* и *пребывания* заявок в системе; в) средние значения *длины очереди* и *числа заявок* в системе. λ =3,5 c⁻¹; μ =7 c⁻¹.

В одноканальную экспоненциальную СМО с интенсивностью λ поступают заявки, средняя длительность обслуживания которых равна μ . Рассчитать характеристики функционирования системы: а) нагрузку и загрузку; б) средние значения времён ожидания и пребывания заявок в системе; в) средние значения длины очереди и числа заявок в системе. λ =0,1 c⁻¹; **b**=9,5 c⁻¹.

Для одноканальной экспоненциальной СМО определить *интенсивность* входящего потока заявок, при которой среднее число заявок в системе равно m при условии, что интенсивность обслуживания заявок равна μ . m=0.5; $\mu=3$ c⁻¹.

Для одноканальной экспоненциальной СМО определить значение интенсивности обслуживания заявок, при которой среднее время пребывания заявок в системе равно \boldsymbol{u} при условии, что интенсивность входящего потока заявок равна $\boldsymbol{\lambda}$. \boldsymbol{u} =2 c; $\boldsymbol{\lambda}$ =0.1 c⁻¹.

Для одноканальной экспоненциальной СМО при условии, что средняя длительность обслуживания заявок равна \boldsymbol{b} , определить при каком значении интенсивности поступления заявок в систему среднее число заявок в ней увеличится в $\boldsymbol{2}$ раза по сравнению с числом заявок при интенсивности $\boldsymbol{\lambda}$. $\boldsymbol{\lambda}$ =0,1 c⁻¹; \boldsymbol{b} =2 c.

Для одноканальной экспоненциальной СМО при условии, что средняя длительность обслуживания заявок равна \boldsymbol{b} , определить при каком значении dлительности обслуживания заявок среднее время пребывания заявок в системе увеличится в $\boldsymbol{2}$ раза по сравнению со средним временем пребывания при длительности обслуживания, равной \boldsymbol{b} . $\boldsymbol{\lambda}$ =0,1 c⁻¹; \boldsymbol{b} =2 c.

Для одноканальной экспоненциальной СМО при условии, что средняя длительность обслуживания заявок равна \boldsymbol{b} , определить при каком значении интенсивности поступления заявок в систему среднее время пребывания заявок в системе увеличится в \boldsymbol{k} раз по сравнению со средним временем пребывания при интенсивности поступления заявок $\boldsymbol{\lambda}$. \boldsymbol{k} =1,5; $\boldsymbol{\lambda}$ =0,1 \mathbf{c} -1; \boldsymbol{b} =5 \mathbf{c} .

Интенсивность поступления заявок в **К**-канальную СМО равна λ , интенсивность обслуживания равна μ . Определить: а) вероятность того, что обслуживающий прибор работает; б) вероятность того, что обслуживающий прибор простаивает; в) среднее число заявок, находящихся на обслуживании; г) среднее число простаивающих приборов. **К**=2; λ =5 c⁻¹; μ =4 c⁻¹.

Интенсивность поступления заявок в СМО равна 15 заявок в секунду, длительность обслуживания одной заявки 5 секунд. Определить число обслуживающих приборов, при котором в системе отсутствуют перегрузки.

Заявки поступают в 2-канальную СМО с интервалом 0,5 секунд, интенсивность обслуживания заявок 2 заявки в секунду, среднее время пребывания заявок в системе 5 секунд. Определить загрузку системы, среднюю длину очереди, среднее число заявок в системе, среднее число параллельно работающих приборов.

Заявки поступают в 4-канальную СМО с интенсивностью 2 заявки в минуту, средняя длительность обслуживания заявок 48 секунд, среднее время ожидания заявок 3,2 минуты. Определить *загрузку* системы, среднюю *длину очереди*, среднее *число заявок* в системе, среднее число параллельно работающих приборов.

CeMO

Нарисовать граф разомкнутой СеМО, содержащей n узлов, в которую поступает поток заявок с интенсивностью λ_0 . Рассчитать интенсивности потоков заявок и коэффициенты передач в узлах для заданной матрицы вероятностей передач \mathbf{P} .

$$n=2$$
; $\lambda_0=0,1$ c⁻¹; $P=\begin{bmatrix} 0 & 1 & 0 \\ 0.1 & 0.4 & 0.5 \\ 0 & 0.2 & 0.8 \end{bmatrix}$

Марковские процессы

В СМО с **К** идентичными приборами и одним общим накопителем емкостью **E** поступает однородный поток заявок с интенсивностью **λ** и средней длительностью обслуживания в приборе **b**. При условии, что протекающий в системе случайный процесс Марковский (входной поток – простейший, длительность обслуживания распределена по экспоненциальному закону, ДБ – с потерями, ДО – в порядке поступления):

- 1) выполнить кодирование состояний Марковского процесса по количеству заявок, находящихся в СМО;
- 2) нарисовать размеченный граф переходов Марковского процесса;
- 3) сформировать матрицу интенсивностей;
- 4) выписать систему уравнений для определения стационарных вероятностей состояний.

В СМО **К** идентичных приборов, каждое из которых может находиться в одном из двух состояний: выключено или включено. Включение/выключение приборов осуществляется в определенные моменты времени. Вероятности переходов