

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	Alejandro Esteban Pimentel Alarcon
Asignatura:	Fundamentos de programación
Grupo:	3
No de Práctica(s):	04
Integrante(s):	Gómez Mendoza Jonan
No. de Equipo de cómputo empleado:	34 Perú
No. de Lista o Brigada:	
Semestre:	2020-1
Fecha de entrega:	9/09/2019
Observaciones:	
	CALIFICACIÓN:

Introducción

Los algoritmos son difíciles de seguir si solo se usan letras por ello será mejor usar una representación gráfica a esto se le llama diagrama de flujo. Los diagramas de flujo pueden llegar a ser muy complejos, usan ciertos símbolos para las acciones que hacen y a estos símbolos se les puede asignar mas de una interpretación cuando se hace el código. Los mas usados (por ahora) serán:

y

	Este es para el Inicio o fin, tiene una salida para el inicio una entrada para la salida
, , , , , , , , , , , , , , , , , , ,	Este será para la declaración de variables o para indicar algún proceso, tiene una entrada y una salida
$\langle \rangle$	Este es para tomar una decisión, tiene una entrada y dos salidas
	Este es para que el usuario pueda el meter el valor de alguna variable, tiene una entrada y una salida
	Este sirve para que aparezca en la pantalla lo que el programador quiera

Otra cosa a destacar es que todas las flechas de los diagramas deben de tener dirección y que todas las salidas deben llevar a un lado.

Objetivo

Elaborar diagramas de flujo que representen soluciones algorítmicas vistas como una serie de acciones que comprendan un proceso.

Actividades

Diagrama de flujo que reciba un número del 1 al 7, y que indique a qué día de la semana corresponde:

Diagrama de flujo que reciba tres números y verifique si son válidos como los ángulos de un triángulo:

Diagrama de flujo que reciba tres números como los lados de un triángulo, y que responda si se trata de un triángulo equilátero, isósceles, o escaleno:

Diagrama de flujo que reciba tres números como los lados de un triángulo, y que responda si se puede formar un triángulo con lados de esa longitud, o no:

Resultados con valores usando los diagramas:

Programa	Entrada	Salida
Día de la semana	3	Es Miércoles
Día de la semana	7	Es Domingo
Día de la semana	-2	Por favor pon un número que corresponda a un triángulo
Día de la semana	0	Por favor pon un número que corresponda a un triángulo
Día de la semana	9	Por favor pon un número que corresponda a un triángulo
Ángulos de triángulo	30,30,120	Los ángulos si corresponden a un triángulo
Ángulos de triángulo	-90,90,180	No cumple precondiciones
Ángulos de triángulo	0,30,150	No cumple precondiciones
Ángulos de triángulo	270,60,30	Los ángulos no corresponden a un triángulo
Tipos de triángulo	45,50,80	Es un triángulo escaleno
Tipos de triángulo	20,20,20	Es un triángulo equilatero
Tipos de triángulo	10,100,10	Por favor pon datos que correspondan a un triángulo
Tipos de triángulo	0,4,20	Por favor pon datos que correspondan a un triángulo
Triángulo aceptable	20,40,20	No corresponden a un triángulo
Triángulo aceptable	60,100,200	No corresponden a un triángulo
Triángulo aceptable	-3,6.12	No cumple precondiciones
Triángulo aceptable	4,5,9	No corresponden a un triángulo

Conclusión

Para seguir el procedimiento es mucho más fácil con un diagrama de flujo ademas se nota más rápido lo que se necesita como las precondiciones se logra más fácil construir el código así. Aprender a diseñar diagramas de flujo fue algo fácil solo hay que plantear bien el problema.