BELIEFS: STATE UNCERTAINTY

AA228/CS238 DECISION MAKING UNDER UNCERTAINTY¹

ROBERT MOSS
STANFORD UNIVERSITY

mossr@cs.stanford.edu
October 28,2020

¹ Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray. Algorithms for Decision Making. MIT Press, 2020.

Introduction: Beliefs

- A POMDP² is an MDP with state uncertainty
- The agent receives an *observation* of the current state rather than the true state (potentially imperfect observations)
- Using past observations, the agent builds a belief of their underlying state
 - Which can be represented by a probability distribution over true states

²Partially observable Markov decision process. "Partially observable" is key in understanding beliefs.

BELIEF REPRESENTATION

Beliefs can be represented in different ways:

- **Parametric**: The belief distribution is represented by a set of parameters for a fixed distribution family
 - E.g., Categorical distribution³ or multivariate normal (Gaussian) distribution
- Non-parametric: The belief distribution is represented by particles (or points sampled from the state space)

Depending on the representation, different algorithms can be used to update beliefs.

³A probability mass is assigned to each discrete category.

ALGORITHMS FOR UPDATING BELIEFS

Various algorithms can update the current belief:

- If the state space is *discrete* (or certain linear Gaussian assumptions are met), then we can perform *exact belief updates*:⁴
 - Recursive Bayesian estimation
 - Kalman filter
- Otherwise, we can use approximations based on linearization or sampling:
 - Extended Kalman filter
 - Unscented Kalman filter
 - Particle filter
 - Particle filter with rejection
 - Injection particle filter
 - Adaptive injection particle filter

 $^{^4}$ Meaning we arrive at an analytical solution without approximations.

BELIEF INITIALIZATION

Before any actions or observations, we start with an initial belief distribution

- We can encode prior knowledge in the initial distribution
- Generally want to use diffuse (i.e. spread out) initial distributions to avoid over confidence in the absence of information
 - In non-parametric representations, a diffuse initial prior may cause difficulties
 - Thus, we may wait until an informative observation is make to initialize our beliefs

EXAMPLE: LANDMARK BELIEF INITIALIZATION

Figure: Localization of an autonomous car using a landmark (Example 19.1).

Making a range r and bearing θ observation, we initialize our belief around the landmark.

OBSERVATION SPACE

- The agent receives an observation o, which belongs to some observation space \mathcal{O}
- The probability of observing o given action a and next state s' is: $O(o \mid a, s')$
 - If \mathcal{O} is continuous, then $O(o \mid a, s')$ is a probability density

DYNAMIC DECISION NETWORK FOR POMDPS

Figure: A dynamic decision network for the POMDP problem formulation.

BELIEF INFERENCE

- To infer the unknown belief distribution, we use recursive Bayesian estimation
 - Updates belief estimate recursively over time
 - Markov assumption: Only requires the current state, action, and observation
- Let b(s) represent the probability⁵ assigned to state s
 - A particular belief b belongs to a *belief space* \mathcal{B} (which contains all possible beliefs)
- For finite state and observation spaces, we can use a discrete state filter to perform exact inference

⁵or probability density for continuous state spaces

Belief Vector

- In the finite state case, we can represent beliefs using a categorical distribution⁶
 - Represented as a belief vector **b** of length |S|, therefore $\mathcal{B} \subset \mathbb{R}^{|S|}$
 - Sometimes \mathcal{B} is referred to as a probability simplex or belief simplex⁷
- The belief vector **b** must be strictly non-negative and sum to one:

$$b(s) \ge 0$$
 for all $s \in \mathcal{S}$ $\sum_{s} b(s) = 1$

• In vector notation:

$$\mathbf{b} \ge \mathbf{0} \qquad \mathbf{1}^{\mathsf{T}} \mathbf{b} = 1$$

• In Julia syntax:

all(
$$b \ge 0$$
) && sum(b) ≈ 1

⁶A probability mass is assigned to each discrete state.

⁷Simplex being the generalization of a triangle to arbitrary dimensions.

DISCRETE STATE FILTER: UPDATING BELIEFS

A filter is a process that remove noise from data.⁸

Due to the independece assumptions, if an agent with belief b takes an action a and receives an observation o, then the new belief b' becomes:

$$\begin{split} b'(s') &= P(s' \mid b, a, o) \\ &\propto P(o \mid b, a, s') P(s' \mid b, a) & \text{(Bayes' rule)} \\ &\propto O(o \mid a, s') P(s' \mid b, a) & \text{(observation definition)} \\ &\propto O(o \mid a, s') \sum_{s} P(s' \mid b, a, s) P(s \mid b, a) & \text{(law of total probability)} \\ &\propto O(o \mid a, s') \sum_{s} T(s' \mid s, a) b(s) & \text{(state transition model)} \end{split}$$

⁸Often used in signal processing, effectively "filtering" out the noise.

⁹For finite/discrete state and observation spaces.

KALMAN FILTER

To update beliefs with *continuous* state spaces, we integrate instead of sum:

$$b'(s') \propto O(o \mid a, s') \int T(s' \mid s, a)b(s) ds$$

A Kalman filter assumes that T and O are linear-Gaussian and b is Gaussian:

$$T(\mathbf{s}' \mid \mathbf{s}, \mathbf{a}) = \mathcal{N}(\mathbf{s}' \mid \mathbf{T}_s \mathbf{s} + \mathbf{T}_a \mathbf{a}, \ \Sigma_s)$$

$$O(\mathbf{o} \mid \mathbf{s}') = \mathcal{N}(\mathbf{o} \mid \mathbf{O}_s \mathbf{s}', \ \Sigma_o)$$

$$b(\mathbf{s}) = \mathcal{N}(\mathbf{s} \mid \mathbf{\mu}_b, \ \Sigma_b)$$

See Pluto notebook: StateEstimation.jl/kalman_filter.html

PARTICLE FILTER

- Particle filters represent the belief state as a collection of states.
- Each state in the approximated belief is called a particle.
- Useful in problems with large discrete states spaces or continuous problems not well approximated by linear-Gaussian dynamics.

Algorithm 1 Particle filter algorithm.

$$\begin{array}{ll} \textbf{function} \ \operatorname{ParticleFilter}(\mathbf{b}, T, O, a, o) \\ \mathbf{s}' \sim T(\mathbf{b}, a) & \rhd \ \operatorname{next \ states} \\ \mathbf{w} \leftarrow O(o \mid \mathbf{s}', a) & \rhd \ \operatorname{weights} \\ \operatorname{particles} \sim \operatorname{SetCategorical}\left(\mathbf{s}', \frac{\mathbf{w}}{\sum_i w_i}\right) & \rhd \ \operatorname{sample} \ \operatorname{with \ normalized \ weights} \\ \mathbf{return} \ \operatorname{particles} & \end{array}$$

See Pluto notebook: StateEstimation.jl/particle_filter.html

PARTICLE FILTER VARIANTS

Particle filter with rejection:

- Used in problems with discrete observations.
- Any sampled observation that does not equal the true observation is rejected.
- Problem of particle deprivation: lack of particles near the true state. 10

Injection particle filter:

• Inject random particles to protect against particle deprivation.

Adaptive injection particle filter:

• Inject particles adaptively based on a ratio of two exponentially moving averages of the mean particle weights (using *fast* and *slow* moving averages).

See Pluto notebook: StateEstimation.jl/particle_filter.html

¹⁰Due to low particle coverage given the stochastic nature of resampling.

EXACT BELIEF STATE PLANNING

REFERENCES

Kochenderfer, Mykel J., Tim A. Wheeler, and Kyle H. Wray. Algorithms for Decision Making. MIT Press, 2020.