WO 00/78779 44 PCT/US00/40281

What we claim is:

wherein $R^1 = CH_2OH$, $-CONR_5R_6$;

5

10

15

20

25

R³ is selected from the group consisting of C₁₋₁₅ alkyl, halo, NO₂, CF₃, CN, OR²⁰, SR²⁰, $N(R^{20})_2, \ S(O)R^{22}, \ SO_2R^{22}, \ SO_2N(R^{20})_2, \ SO_2NR^{20}COR^{22}, \ SO_2NR^{20}CO_2R^{22}, \ SO_2NR^{20}CON(R^{20})_2, \ SO$ $N(R^{20})_2 NR^{20}COR^{22}$, $NR^{20}CO_2^2R^{22}$, $NR^{20}CON(R^{20})_2$, $NR^{20}C(NR^{20})NHR^{23}$, COR^{20} , CO_2R^{20} , $CON(R^{20})_2, \quad CONR^{20}SO_2R^{22}, \quad NR^{20}SO_2R^{22}, \quad SO_2NR^{20}CO_2R^{22}, \quad OCONR^{20}SO_2R^{22}, \quad OC(O)R^{20}, \quad OCONR^{20}SO_2R^{22}, \quad$ C(O)OCH₂OC(O)R²⁰, and OCON(R²⁰)₂,-CONR⁷R⁸, C₂₋₁₅ alkenyl, C₂₋₁₅ alkynyl, heterocyclyl, aryl, and heteroaryl, wherein the alkyl, alkenyl, alkynyl, aryl, heterocyclyl and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, alkyl, NO2, heterocyclyl, aryl, heteroaryl, CF3, CN, OR20, SO_2R^{22} , $SO_2N(R^{20})_2$, $SO_2NR^{20}COR^{22}$, $SO_2NR^{20}CO_2R^{22}$, $S(O)R^{22}$, $N(R^{20})_{2}$ $SO_2NR^{20}CON(R^{20})_2$, $N(R^{20})_2$ $NR^{20}COR^{22}$, $NR^{20}CO_2R^{22}$, $NR^{20}CON(R^{20})_2$, $NR^{20}C(NR^{20})NHR^{23}$, COR²⁰, CO₂R²⁰, CON(R²⁰)₂, CONR²⁰SO₂R²², NR²⁰SO₂R²², SO₂NR²⁰CO₂R²², OCONR²⁰SO₂R²², OC(O)R²⁰, C(O)OCH₂OC(O)R²⁰, and OCON(R²⁰)₂ and wherein optional heteroaryl, aryl, and heterocyclyl substituent is optionally substituted with halo, NO2, alkyl, CF3, amino, mono- or di- alkylamino, alkyl or aryl or heteroaryl amide, NCOR22, NR20SO2R22, COR20, CO2R20, $CON(R^{20})_2, \ NR^{20}CON(R^{20})_2, \ OC(O)R^{20}, \ OC(O)N(R^{20})_2, \ SR^{20}, \ S(O)R^{22}, \ SO_2R^{22}, \ SO_2N(R^{20})_2, \ SO_2N(R^{2$ CN, and OR²⁰;

 R^5 and R^6 are each individually selected from H, C_1 - C_{15} alkyl optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, NO_2 , heterocyclyl, aryl, heteroaryl, CF_3 , CN, OR^{20} , SR^{20} , $N(R^{20})_2$, $S(O)R^{22}$, SO_2R^{22} , $SO_2N(R^{20})_2$, $SO_2NR^{20}COR^{22}$, $SO_2NR^{20}COR^{22}$, $SO_2NR^{20}CON(R^{20})_2$, $N(R^{20})_2$, $N(R^{20})_2$, $NR^{20}COR^{22}$, $NR^{20}CO_2R^{22}$, $NR^{20}COR^{20}$,

PCT/US00/40281

5

10

15

20

25

30

OCON(R²⁰)₂ and wherein optional heteroaryl, aryl, and heterocyclyl substituent is optionally substituted with halo NO₂, alkyl, CF₃, amino, mono- or di- alkylamino, alkyl or aryl or heteroaryl amide, NCOR²², NR²⁰SO₂R²², COR²⁰, CO₂R²⁰, CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, OC(O)R²⁰, OC(O)N(R²⁰)₂, SR²⁰, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, CN, and OR²⁰;

R⁷ is selected from the group consisting of hydrogen, C₁₋₁₅ alkyl, C₂₋₁₅ alkenyl, C₂₋₁₅ alkynyl, heterocyclyl, aryl and heteroaryl, wherein the alkyl, alkenyl, alkynyl, aryl, heterocyclyl and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, NO₂, heterocyclyl, aryl, heteroaryl, CF₃, CN, OR²⁰, SR²⁰, N(R²⁰)₂, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, SO₂NR²⁰COR²², SO₂NR²⁰CON(R²⁰)₂, N(R²⁰)₂ NR²⁰COR²², NR²⁰CO₂R²², NR²⁰CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, CON(R²⁰)₂, CON(R²⁰)₂, CON(R²⁰)₂, NR²⁰SO₂R²², SO₂NR²⁰CO₂R²², OCONR²⁰SO₂R²², OCONR²⁰SO₂R²², OCONR²⁰SO₂R²², OCON(R²⁰)₂ and wherein optional heteroaryl, aryl and heterocyclyl substituent is optionally substituted with halo, NO₂, alkyl, CF₃, amino, mono- of di- alkylamino, alkyl or aryl or heteroaryl amide, NCOR²², NR²⁰SO₂R²², COR²⁰, CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, OC(O)R²⁰, OC(O)N(R²⁰)₂, SR²⁰, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, CN, and OR²⁰;

R⁸ is selected from the group consisting of hydrogen, C₁₋₁₅ alkyl, C₂₋₁₅ alkenyl, C₂₋₁₅ alkynyl, heterocyclyl, aryl, and heteroaryl, wherein the alkyl, alkenyl, alkynyl, aryl, heterocyclyl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, NO₂, heterocyclyl, aryl, heteroaryl, CF₃, CN, OR²⁰, SR²⁰, N(R²⁰)₂, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, SO₂NR²⁰COR²², SO₂NR²⁰CON(R²⁰)₂, N(R²⁰)₂ NR²⁰CO₂R²², NR²⁰CO₂R²², NR²⁰CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, NR²⁰CO₂R²², NR²⁰CON(R²⁰)₂, SO₂NR²⁰CO₂R²², OCONR²⁰SO₂R²², SO₂NR²⁰CO₂R²², OCONR²⁰SO₂R²², OCON(R²⁰)₂ and wherein each optional heteroaryl, aryl, and heterocyclyl substituent is optionally substituted with halo, NO₂, alkyl, CF₃, amino, mono- or di- alkylamino, alkyl or aryl or heteroaryl amide, NCOR²², NR²⁰SO₂R²², COR²⁰, CON(R²⁰)₂, NR²⁰CON(R²⁰)₂, OC(O)R²⁰, OC(O)N(R²⁰)₂, SR²⁰, S(O)R²², SO₂R²², SO₂N(R²⁰)₂, CN, and OR²⁰;

R²⁰ is selected from the group consisting of H, C₁₋₁₅ alkyl, C₂₋₁₅ alkenyl, C₂₋₁₅ alkynyl, heterocyclyl, aryl, and heteroaryl, wherein the alkyl, alkenyl, alkynyl, heterocyclyl, aryl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from halo, alkyl, mono- or dialkylamino, alkyl or aryl or heteroaryl amide, CN, O-C₁₋₆ alkyl, CF₃, aryl, and heteroaryl;

R²² is selected from the group consisting of C₁₋₁₅ alkyl, C₂₋₁₅ alkenyl, C₂₋₁₅ alkynyl,

10

15

20

25

30

PCT/US00/40281

heterocyclyl, aryl, and heteroaryl, wherein the alkyl, alkenyl, alkynyl, heterocyclyl, aryl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from halo, alkyl, mono- or dialkylamino, alkyl or aryl or heteroaryl amide, CN, O-C₁ alkyl, CF₃, aryl, and heteroaryl; and

wherein R^2 and R^4 are selected from the group consisting of H, $C_{1.6}$ alkyl and aryl optionally substituted with halo, CN, CF_3 , OR^{20} and $N(R^{20})_2$, with the proviso that when R^2 is not hydrogen then R^4 is hydrogen, and when R^4 is not hydrogen then R^2 is hydrogen.

2. The compound of claim 1 wherein R³ is selected from the group consisting of C₁₋₁₅ alkyl, halo, CF₃, CN, OR²0, SR²0, S(O)R²2, SO₂R²2, SO₂N(R²0)₂, COR²0, CO₂R²0, - CONR³R³, aryl and heteroaryl wherein the alkyl, aryl and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, aryl, heteroaryl, CF₃, CN, OR²0, SR²0, S(O)R²2, SO₂R²2, SO₂N(R²0)₂, COR²0, CO₂R²0 and CON(R²0)₂, and wherein each optional heteroaryl and aryl substituent is optionally substituted with halo, alkyl, CF₃ CN₂ and OR²0;

R⁵ and R⁶ are each individually selected from the group consisting of H, and C₁-C₁₅ alkyl optionally substituted with one aryl substitutent that is optionally substituted with halo or CF₃;

R⁷ is selected from the group consisting of C₁₋₁₅ alkyl, C₂₋₁₅ alkynyl, aryl, and heteroaryl, wherein the alkyl, alkynyl, aryl, and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, aryl, heteroaryl, CF₃, CN, and OR²⁰, and wherein each optional heteroaryl and aryl substituent is optionally substituted with halo, alkyl, CF₃ CN, and OR²⁰;

R⁸ is selected from the group consisting of hydrogen and C₁₋₁₅ alkyl;

 R^{20} is selected from the group consisting of H, C_{14} alkyl and aryl, wherein the alkyl and aryl substituents are optionally substituted with one alkyl substituent; and

 R^{22} is selected from the group consisting of C_{14} alkyl and aryl, wherein the alkyl and aryl substituents are optionally substituted with from 1 to 3 alkyl groups.

3. The compound of claim 1 wherein R^3 is selected from the group consisting of C_{1-15} alkyl, halo, CF_3 , CN, OR^{20} , CO_2R^{20} , $-CONR^7R^8$, aryl and heteroaryl, wherein the alkyl, aryl and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, alkyl, aryl, CF_3 , CN, OR^{20} , CO_2R^{20} or $CON(R^{20})_2$, and wherein each optional heteroaryl and aryl substituent is optionally substituted with halo, alkyl, CF_3 , CN, and OR^{20} ;

R⁵ and R⁶ are each individually selected from hydrogen and C₁₋₆ alkyl;

10

15

20

25

30

PCT/US00/40281

 R^7 is selected from the group consisting of C_{1-10} alkyl, aryl, and heteroaryl, wherein the alkyl, aryl and heteroaryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, aryl, heteroaryl, CF_3 , CN, and OR^{20} , and wherein each optional heteroaryl and aryl substituent is optionally substituted with halo, alkyl, CF_3 CN, and OR^{20} ;

 R^8 is selected from the group consisting of hydrogen and C_{1-15} alkyl; and R^{20} is selected from the group consisting of hydrogen and C_{1-4} alkyl.

4. The compound of claim 1 wherein R^3 is selected from the group consisting of C_{1-10} , alkyl, halo, CF_3 , CN, CO_2R^{20} , $-CONR^7R^8$, aryl and heteroaryl wherein the alkyl, aryl and heteroaryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, alkyl, CF_3 , CN, OR^{20} and $CON(R^{20})_2$;

R⁵ and R⁶ are each individually selected from hydrogen and C₁₋₆ alkyl;

 R^7 is selected from the group consisting of C_{1-10} alkyl, aryl, and heteroaryl, wherein the alkyl, aryl and heteroaryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, aryl, heteroaryl, CF_3 , CN, OR^{20} and wherein each optional heteroaryl and aryl substituent is optionally substituted with halo, alkyl, CF_3 , CN, and OR^{20} ;

 R^8 is selected from hydrogen and $C_{1\downarrow_{15}}$ alkyl; and R^{20} is selected from hydrogen and $C_{1\downarrow_4}$ alkyl.

5. The compound of claim 1 wherein R³ is selected from the group consisting of C₁₋₁₀ alkyl, halo, CF₃, CN, OR²⁰, CO₂R²⁰, -CONR⁷R⁸ and aryl; wherein the alkyl and aryl substituents are optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, alkyl, CF₃, CN, OR²⁰ and CON(R²⁰)₂;

R⁵ and R⁶ are each individually selected from hydrogen and C_{1.6};

 R^7 is selected from the group consisting of C_{110} alkyl, aryl, and heteroaryl, where the alkyl, aryl and heteroaryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, aryl, heteroaryl, CF_3 , CN, OR^{20} and wherein each optional heteroaryl and aryl substituent is optionally substituted with halo, alkyl, CF_3 CN, and OR^{20} ;

 R^8 is selected from hydrogen and C_{1-15} alkyl; and R^{20} is selected from hydrogen and C_{1-4} alkyl.

6. The compound of claim 1 wherein $R^1 = CH_2OH$;

R³ is selected from the group consisting of CO₂R²⁰, -CONR⁷R⁸ and aryl; wherein the aryl substituent is optionally substituted with from 1 to 3 substituents independently selected

WH6 GH1202

from the group consisting of halo, C 1-6 alkyl, CF3, CN, OR20, and CON(R20)2;

R⁷ is selected from the group consisting of hydrogen, C₁₋₁₀ alkyl and aryl, wherein the alkyl and aryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, aryl, CF₃, CN, OR²⁰ and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ CN, and OR²⁰;

R⁸ is selected from hydrogen and C₁₋₁₅ alkyl; and

R²⁰ is selected from hydrogen and C₁₋₄ alkyl.

5

10

15

20

25

30

7. The compound of claim 1 wherein $R^1 = CH_2OH$;

 R^3 is selected from the group consisting of CO_2R^{20} , -CONR⁷R⁸ and aryl wherein the aryl substituent is optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, C_{1-6} alkyl, CF_3 and OR^{20} ;

 R^7 is selected from the group consisting of hydrogen, and C_{1-8} alkyl, wherein the alkyl substituent is optionally substituted with one substituent selected from aryl, CF_3 , CN, and OR^{20} and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF_3 CN, or OR^{20} ;

R⁸ is selected from hydrogen and C₁₋₈ alkyl; and

R²⁰ is selected from hydrogen and C₁₋₄ alkyl.

8. The compound of claim 1 wherein $R^1 = CH_2OH$;

R³ is selected from the group consisting of CO₂R²⁰, -CONR⁷R⁸, and aryl that is optionally substituted with from 1 to 2 substituents independently selected from the group of halo, C_{1.3} alkyl, CF₃ and OR²⁰;

 R^7 is selected from the group consisting of hydrogen, and $C_{1.5}$ alkyl, wherein the alkyl substituent is optionally substituted with aryl, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, QF_3 ;

R⁸ is selected from hydrogen and C₁₃ alkyl; and

R²⁰ is selected from hydrogen and C, alkyl.

9. The compound of claim 1 wherein $R^1 = CH_2OH$;

R³ is selected from the group consisting of CO₂R²⁰, -CONR⁷R⁸, and aryl that is optionally substituted with one substituent selected from the group of halo, C _{1.3} alkyl, and OR²⁰;

R⁷ is selected from the group consisting of hydrogen, and C_{1.5} alkyl, wherein the alkyl substituent is optionally substituted with aryl, and wherein each optional aryl substituent is optionally substituted with halo;

R⁸ is hydrogen; and

10

15

20

25

30

R²⁰ is selected from hydrogen and C₁₋₄ alkyl.

10. The compound of claim 1 wherein $R^1 = CH_2OH$;

R³ is selected from the group consisting of CO₂R²⁰, -CONR⁷R⁸, and aryl that is optionally substituted with one substituent selected from halo, C ₁₋₃ alkyl and OR²⁰;

R⁷ is selected from the group consisting of hydrogen, and C₁₋₅ alkyl, wherein the alkyl substituent is optionally substituted with aryl, and wherein each optional aryl substituent is optionally substituted with halo;

R⁸ is hydrogen; and

R²⁰ is selected from hydrogen and C₁₋₄ alkyl.

- 11. The compound of claim 10 wherein R⁷ is a methyl.
- 12. The compound of claim 10 wherein R₃ is -CO₂Et.
- 13. The compound of claim 1 wherein $R^1 = -CONHEt$;

 R^3 is selected from the group consisting of CO_2R^{20} , -CONR⁷R⁸, and aryl; that is optionally substituted with from 1 to 3 substituents independently selected from the group consisting of halo, C _{1.6} alkyl, CF₃, CN, OR²⁰, and CON(R²⁰)₂;

R⁷ is selected from the group consisting of hydrogen, C₁₋₁₀ alkyl and aryl, wherein the alkyl and aryl substituents are optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, aryl, CF₃, CN, and OR²⁰ and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ CN, and OR²⁰;

R⁸ is selected from hydrogen, and C₁₋₁₅ alkyl; and

R²⁰ is selected from hydrogen, and C₁₋₄ alkyl.

14. The compound of claim 1 wherein $R^1 = -CONHEt$;

R³ is selected from the group consisting of CO₂R²⁰, -CONR⁷R⁸, aryl that is optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, C_{1.6} alkyl, CF₃ and OR²⁰;

R⁷ is selected from the group consisting of hydrogen, C₁₋₈ alkyl, and aryl, wherein the alkyl and aryl substituents are optionally substituted with one substituent selected from the group consisting of halo, aryl, CF₃, CN, OR²⁰ and each optional aryl substituent is optionally substituted with halo, alkyl, CF₃ CN, and OR²⁰;

 R^8 is selected from hydrogen, and C_{1-8} alkyl; and

 R^{20} is selected from hydrogen, and C_{1-4} alkyl.

15. The compound of claim 1 wherein $R^1 = -CONHEt$;

R³ is selected from the group consisting of CO₂R²⁰,\ -CONR⁷R⁸, and aryl that is

PCT/US00/40281

WO 00/78779 50

optionally substituted with from 1 to 2 substituents independently selected from the group consisting of halo, C₁₋₃ alkyl, CF₃ and OR²⁰;

R⁷ is selected from the group consisting of hydrogen, and C₁₋₅ alkyl, wherein the alkyl substituent is optionally substituted with aryl, and wherein each optional aryl substituent is optionally substituted with halo, alkyl, CF₃;

R⁸ is selected from hydrogen, and C₁₋₃ alkyl; and

R²⁰ is selected from hydrogen, and C₁₋₄ alkyl.

16. The compound of claim 1 wherein R¹ = -CONHEt;

R³ is selected from the group consisting of CO₂R²⁰, -CONR⁷R⁸, and aryl that is optionally substituted with one substituent selected from halo, C ₁₋₃ alkyl and OR²⁰;

R⁷ is selected from the group consisting of hydrogen, and C₁₋₅ alkyl, wherein the alkyl substituted with aryl, and wherein each optional aryl substitutent is optionally substituted with halo;

R⁸ is hydrogen; and

R²⁰ is selected from hydrogen, and C₁₋₄ alkyl.

17. The compound of claim 1\wherein $R^1 = -CONHEt$;

R³ is selected from the group consisting of CO₂R²⁰, -CONR⁷R⁸, and aryl that is optionally substituted with one substituent selected from halo, C ₁₋₃ alkyl and OR²⁰;

R⁷ is selected from hydrogen, and C₁₋₃ alkyl;

R⁸ is hydrogen; and

R²⁰ is selected from hydrogen, and C₁₋₄ alkyl.

18. The compound of claim 10 where R is -CONHEt.

A compound matter of claim 1 wherein the compound is selected from ethyl1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-

yl}pyrazole-4-carboxylate, (4S,2R,3R,5R)-2-{6-amino-2-[4-(4-chlorophenyl)-

pyrazolyl]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-2-{6-amino-2-[4-

(4-methoxyphenyl)pyrazolyl]purin-9-yl}-5-(hydroxymethyl)oxolane-3,4-diol, (4S,2R,3R,5R)-

2-{6-amino-2-[4-(4-methylphenyl)pyrazolyl]purin-9-yl}-5-(hydroxymethyl)-oxolane-3,4-diol,

(1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-

yl}pyrazol-4-yl)-N-methylcarboxamide, 1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-

(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazole-4-carboxylic acid, (1-{9-

 $[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl\}pyrazol-4-like (as a constant of the constant o$

yl)-N,N-dimethylcarboxamide, (1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-

(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-ethylcarboxamide, 1-{9-

25

30

5

10

15

20

10

[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazole-4-carboxamide, 1-{9-[(4S,2R,3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-(cyclopentylmethyl)carboxamide, (1-{9-[(4S,2R, 3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)-N-[(4-chlorophenyl)methyl]carboxamide, Ethyl 2-[(1-{9-[(4S,2R, 3R,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-aminopurin-2-yl}pyrazol-4-yl)carbonylamino]acetate, and mixtures thereof.

20. A method for stimulating coronary vasodilatation in a mammal by administering to the mammal a therapeutically effective amount of a compound of claim 1 that is sufficient to stress the heart and induce a coronary steal situation for the purposes of imaging the heart.

21. The method of claim 20 wherein the therapeutically effective amount ranges from about 0.01 to about 100 mg/kg weight of the mammal.

22. The method of claim 20 wherein the mammal is a human.

23. A pharmaceutical composition comprising the compound of claim 1 and one or more pharmaceutical excipients;

more pharmaceutical excipients;

24. The pharmaceutical composition of claim 23 wherein the pharmaceutical composition is in the form of a solution.

25. The pharmaceutical composition of claim 23 wherein the composition is useful as an anti-inflammatory, in adjunctive therapy with angioplasty, as a platelet aggregation inhibitor, and as an inhibitor of platelet and neutrophil activation.

0/8>

add by