MATH 435 ASSIGNMENT 10

ARNOLD JIADONG YU

1. Extension Fields

1.1. 2. Show that $Q(\sqrt{2}, \sqrt{3}) = Q(\sqrt{2} + \sqrt{3})$. proof: (\subseteq) .

$$(\sqrt{2} + \sqrt{3})^{-1} = \frac{1}{\sqrt{2} + \sqrt{3}} \cdot \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} - \sqrt{3}} = -\sqrt{2} + \sqrt{3} \in Q(\sqrt{2} + \sqrt{3})$$

i.e.

$$[(\sqrt{2} + \sqrt{3}) + (-\sqrt{2} + \sqrt{3})]/2 = \sqrt{3} \in Q(\sqrt{2} + \sqrt{3})$$

$$[(\sqrt{2} + \sqrt{3}) - (-\sqrt{2} + \sqrt{3})]/2 = \sqrt{2} \in Q(\sqrt{2} + \sqrt{3})$$

Therefore, $Q(\sqrt{2}, \sqrt{3}) \subseteq Q(\sqrt{2} + \sqrt{3})$ $(\supseteq).$

$$\sqrt{2} \in Q(\sqrt{2}, \sqrt{3}), \sqrt{3} \in Q(\sqrt{2}, \sqrt{3})$$

$$\implies \sqrt{2} + \sqrt{3} \in Q(\sqrt{2}, \sqrt{3})$$

Therefore, $Q(\sqrt{2}, \sqrt{3}) \supseteq Q(\sqrt{2} + \sqrt{3})$ Hence, $Q(\sqrt{2}, \sqrt{3}) = Q(\sqrt{2} + \sqrt{3}).$

1.2. 8. Let $F = Z_2$, and let $f(x) = x^3 + x + 1 \in F[x]$. Suppose that a is a zero of f(x) in some extension of F. How many elements does F(a) have? Express each member of F(a) in terms of a. Write out a complete multiplication table for F(a).

proof: $Z_2 = \{0, 1\}$, then f(0) = 1, f(1) = 1 which is nonzero. Hence f(x) doesn't have root in Z_2 , i.e. f(x) is irreducible in $Z_2[x]$. By Fundamental Theorem of Field Theorem, and Theorem 20.3 $F(a) \cong$ $F[x]/\langle p(x)\rangle$,

$$F(a) \cong F[x]/\langle f(x)\rangle = Z_2[x]/\langle x^3 + x + 1\rangle$$

$$\implies Z_2[x]/\langle x^3 + x + 1\rangle = c_2x^2 + c_1x + c_0 \ c_2, c_1, c_0 \in Z_2$$

$$\implies F(a) = c_2a^2 + c_1a + c_0 \ c_2, c_1, c_0 \in Z_2$$

and $|F(a)| = 2 \cdot 2 \cdot 2 = 8$. i.e. F(a) has 8 elements and they are

$$0, 1, a, a + 1, a^2, a^2 + 1, a^2 + a, a^2 + a + 1$$

and the multiplication table is

	0	1	a	a+1	
0	0	0	0	0	
1	0	1	a	a+1	
a		a	a^2	$a^2 + a$	
a +				$a^2 + 1$	
a^2				$a^2 + a + 1$	-
		$a^2 + 1$			
		$a^2 + a$			
$a^2 + a$	+1 0	$a^2 + a + 1$	$a^2 + 1$	a	
	a^2			$a^2 + a$ $a^2 + a$	
0	0			0 0	
1				$a^2 + a$ $a^2 + a$	
a				$+a+1$ a^2-	+ 1
a+1		+1 a	2	1 a	ι
a^2	$a^{2} +$	a	a^{2}	$^{2}+1$ 1	-
$a^2 + 1$				$a^2 - 1$ $a^2 - 1$	
		1 $a +$			2
$a^2 + a + 1$	1	a^2 -	+a	a^2 $a +$	- 1

1.3. 10. Let F(a) be the field described in Exercise 8. Show that a^2 and $a^2 + a$ are zeros of $x^3 + x + 1$. proof:

$$f([a^2]) = [a^2]^3 + [a^2] + [1] = [a^6 + a^2 + 1]$$

$$f([a^2 + a]) = [a^2 + a]^3 + [a^2 + a] + [1] = [a^6 + a^5 + a^4 + a^3 + a^2 + a + 1]$$

Moreover,

$$a^{3} = a + 1, a^{4} = a^{2} + a, a^{5} = a^{2} + a + 1, a^{6} = a^{2} + 1$$

Hence

$$f([a^2]) = [2a^2 + 2] = 0$$

$$f([a^2 + a]) = [4a^2 + 4a + 4] = 0$$

i.e. a^2 and $a^2 + a$ are zeros of $x^3 + x + 1$.

1.4. 59.* Let D be an integral domain and let F be the field of quotients of D. Show that if E is any field that contains D, then E contains a subfield that is ring-isomorphic to F. (Thus, the field of quotients of an integral domain D is the smallest field containing D.) proof: