Reelle Funktionen: Teil 1

Andreas Henrici

MANIT1 IT18ta ZH

1. Oktober 2018

- **Begriff einer Funktion**
- **Darstellungen von Funktionen**

Polynomfunktionen

Definition

- Eine Funktion f ist eine Vorschrift, die jedem Element einer Menge D genau ein Element einer Menge W zuordnet.
- D: Definitionsbereich
- W: Wertebereich
- $f: D \to W$, f ist eine Funktion von D nach W

Beispiel

 Jeder Person der Klasse IT18ta_ZH wird ihr Geburtsjahr zugeordnet. Hier ist also
D = {Studierende der Klasse IT18ta ZH}, W = N, d.h.

$$f(p) = \text{Geburtsjahr von } p$$

• Einem Quadrat mit Seitenlänge x wird seine Fläche zugeordnet,

$$f(x)=x^2.$$

Hier ist also $D = W = \mathbb{R}^+$.

Bemerkung

Nicht jedes Element aus W muss als Funktionswert vorkommen.

Funktionen können auch von mehreren Variablen abhängen!

Beispiel

Flächeninhalt eines Rechtecks mit Länge x und Breite y:

$$F(x, y) = x \cdot y$$
.

Hier ist also $D = (\mathbb{R}^+)^2$, $W = \mathbb{R}$.

Die kinetische Energie eines K\u00f6rpers,

$$E_{\rm kin}(m,v)=\frac{m\cdot v^2}{2}$$

(m und v bezeichnen die Masse bzw. Geschwindigkeit des Körpers). Hier ist also $D = (\mathbb{R}^+)^2$, $W = \mathbb{R}$.

Funktionsdarstellung: Tabelle

Darstellung mit Tabelle nur sinnvoll/eindeutig, falls *D* eine endliche Menge ist.

Darstellungen von Funktionen

Beispiel

Geburtsjahre der Studierenden der Klasse IT18ta ZH: ...

Beispiel

Die folgende Tabelle beschreibt die Funktion $y = 2 \cdot x + 2$, wenn sie auf den Definitionsbereich $D = \{1, 2, 3, \dots, 10\}$ eingeschränkt wird:

Χ										
f(x)	4	6	8	10	12	14	16	18	20	22

Hier haben wir aber schon eine Formel gegeben: $y = 2 \cdot x + 2 \dots$

Funktionsdarstellung: Formel

Darstellung durch eine Formel:

$$f: D \rightarrow W$$

 $x \mapsto f(x) = \dots$

Darstellungen von Funktionen

Kurznotation:

$$f(x) = \dots$$
 oder $y = \dots$, (wenn D und W klar sind)

Beispiel

Typisches Beispiel einer reellen Funktion:

$$f: \mathbb{R} \rightarrow \mathbb{R}$$

 $x \mapsto 2x + 2$

• Graphische Darstellung einer Funktion:

Abstrakte Definition des Graphen:

Definition

Der *Graph* einer Funktion $f: D \rightarrow W$ ist die Menge

$$Graph(f) = \{(x, f(x)) | x \in D\} \subseteq D \times W.$$

Spezielle Funktionen

Wichtige Beispiele von Funktionen:

Beispiel

• Identitätsfunktion:

$$f(x) = x$$
 für alle $x \in \mathbb{R}$

Graph: siehe unten

• Konstante Funktion:

$$f(x) = c$$
 für ein festes $c \in \mathbb{R}$

Graph: siehe unten

Nullstellen von Funktionen

Definition

Ein $x_0 \in D \subseteq \mathbb{R}$ einer Funktion $f: D \to \mathbb{R}$ heisst *Nullstelle* von f, falls

$$f(x_0)=0$$

gilt.

Überblick

Bemerkung

Graphisch bedeutet dies, dass an der Stelle x₀ die Funktionskurve von f die x-Achse schneidet.

Beispiel

Nullstellen der Funktion $f(x) = x^2 - 9$?

Polynome: Definition

Definition

Überblick

Eine *Polynomfunktion* bzw. ein *Polynom* oder eine *ganzrationale* Funktion ist eine Funktion der Form:

$$y = f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_1 \cdot x + a_0$$
 mit $a_n \neq 0$

Grad der Polynomfunktion n :

 $a_0, a_1, \ldots, a_n \in \mathbb{R}$: Koeffizienten

Definitionsbereich:

Bedeutung von Polynomen:

- Einfachste Funktionen mit vielfältigen Anwendungen
- Alle Operationen der Analysis (Ableitung, Integration) führen wieder auf Polynome
- Analysis: Kompliziertere Funktionen k\u00f6nnen durch Polynome approximiert werden (siehe nächste Folie)
- Theoretische Informatik: P-NP-Problem

Polynome vom Grad n = 0

Polynome vom Grad n = 0:

$$y=a_0 \qquad (a_0\neq 0)$$

Graph:

Bemerkung

Nach Konvention hat das Polynom y = 0 den Grad $-\infty$!

Polynome vom Grad n = 1

Polynome vom Grad n = 1:

$$y = mx + b$$
 $(m \neq 0)$

Graph:

Überblick

Bemerkung

Vertikale Geraden, d.h. Geraden parallel zur y-Achse, sind keine Graphen von Funktionen. Sie können aber durch eine Gleichung der Form x = a dargestellt werden.

Lineare Funktionen: Andere Darstellungen

Andere Darstellungen einer linearen Funktion:

• Punkt-Steigungsform:

$$\frac{y-y_1}{x-x_1}=m$$

Zwei-Punkte-Form:

$$\frac{y-y_1}{x-x_1}=\frac{y_2-y_1}{x_2-x_1}$$

Abbildung: Punkt-Steigungsform

Abbildung: Zwei-Punkte-Form

Polynome vom Grad n=2

Polynome vom Grad n = 2:

$$y = ax^2 + bx + c \quad (a \neq 0)$$

Graph:

Überblick

Bemerkung

Alle quadratischen Funktionen können durch Koordinatentransformationen aus $y = x^2$ erhalten werden!

Andere Darstellungen einer guadratischen Funktion:

Produktform, falls reelle Nullstellen existieren:

$$y = ax^2 + bx + c = a(x - x_1)(x - x_2)$$

Bestimmung von x_1, x_2 : Quadratische Gleichung lösen!

Scheitelpunktsform:

$$y = ax^2 + bx + c = a(x - x_0)^2 + y_0$$

Bestimmung von x_0 , y_0 : Quadratische Ergänzung oder direkt

$$S = \left(-\frac{b}{2a}, c - \frac{b^2}{4a}\right)$$

Nullstellen von Polynomen: Abspalten von Nullstellen

Satz

Überblick

Ist x_0 eine Nullstelle der Polynomfunktion y = f(x) vom Grad n, dann gibt es eine eindeutig bestimmte Polynomfunktion q(x) vom Grad n-1, so dass gilt:

$$f(x) = (x - x_0) \cdot q(x)$$
 für jedes $x \in \mathbb{R}$

Bestimmung von q(x) bei bekanntem x_0 : mit Polynomdivision!

Beispiel

• Polynom:

$$y = x^3 - 1$$

- Nullstelle: $x_0 = 1$
- Darstellung der Form

$$y = (x - 1) \cdot q(x)$$
?

Nullstellen von Polynomen: Mehrfache Nullstellen

Definition

Sei y = f(x) eine Polynomfunktion vom Grad n. Ein $x_0 \in \mathbb{R}$ heisst m-fache Nullstelle (oder Nullstelle der Multiplizität/Vielfachheit m) der Polynomfunktion f(x), falls es eine Polynomfunktion g(x) vom Grad n-m gibt, so dass gilt:

$$f(x) = (x - x_0)^m \cdot g(x)$$
 für jedes $x \in \mathbb{R}$

Beispiel

Polynom:

$$y = x^3 + 8x^2 + 13x + 6$$

- Nullstelle: $x_0 = -1$
- Vielfachheit dieser Nullstelle?

Nullstellen von Polynomen: Überblick

Satz

Eine Polynomfunktion vom Grad n hat höchstens n reelle Nullstellen.

Satz (Zerlegung in Linearfaktoren)

Falls eine Polynomfunktion n-ten Grades genau n reelle Nullstellen (mit Vielfachheiten) hat, so lässt sie sich darstellen als

$$f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x + a_0$$

= $a_n \cdot (x - x_1) \cdot (x - x_2) \cdot \dots \cdot (x - x_n)$

Beispiel (Fortsetzung)

Polynom:

$$v = x^3 + 8x^2 + 13x + 6$$

Zerlegung in Linearfaktoren?