### AI22 PROJECT TASK3

FINAL

### 1. Introduction

本实验的任务是利用机器学习的方式,进行直播平台恶意退款的识别。

根据给定的数据集(交易的基本信息+是否退款的标签),采用 RFM 框架,构建特征工程,并用神经网络和 self-sttention 自注意力机制对测试数据集进行训练,根据输入交易的特征预测其是否会发生退款。

### 2. Dataset

虎牙平台交易数据集,利用苹果渠道政策(120天内无条件退款),虎牙平台中的恶意退款行为,17列,730035行,正常交易72743笔,恶意退款2582笔。

| 字段                 | 信息            | 备注                                        |  |  |
|--------------------|---------------|-------------------------------------------|--|--|
| session_id         | 订单会话 id       | 字段格式为: 用户唯一识别 id/用户交易发生的 IP 地址            |  |  |
| version            | 版本            | 苹果充值程序的版本,而不是 app 的版本                     |  |  |
| prod_id            | 产品 ID         | 用户通过苹果充值实际购买物品的名称(虎牙币、金豆、银豆、开通会员、守护、续费贵族) |  |  |
| prod_name          | 产品名称          | 虎牙币、金豆、银豆、贵族、守护                           |  |  |
| amount             | 金额            | 实际花费的金钱                                   |  |  |
| unit               | 币种            | 苹果的实际结算币种                                 |  |  |
| exchange_rate      | 汇率            | 不同币种对应的汇率                                 |  |  |
| rmb_amount         | 以人民币结算<br>的金额 | 用户实际用币种支付的金额                              |  |  |
| invoice_amount     | 开票金额          | 可以开发票的金额,比例是固定的70%                        |  |  |
| ch_fee             | 渠道费用          | 苹果收取的渠道费, ios 是 30%的费用                    |  |  |
| ch_fee_rate        | 比例            | 在苹果渠道下,虎牙可以收到的费用比例                        |  |  |
| status_code        | 订单状态          | 包含三种,其中 CODE_REAR_RISK_FAIL 属于前置拦截        |  |  |
| ch_deal_time       | 渠道处理时间        | 订单交易的时间,订单完成状态,订单状态显示的时间                  |  |  |
| refund_time        | 退款时间          | 无退款则为空                                    |  |  |
| refund_desc        | 退款描述          | 0是用户发起,1是平台发起用户发起指的是用户自己提交退款申请,平台发        |  |  |
|                    |               | 起指的是 apple 接到它的上游渠道,例如银行或者信用卡渠道的申请进行的退    |  |  |
| refund_status_code | 退款状态码         | 款<br>有状态码就是有退款                            |  |  |

## 3. Proposed method

## 3.1 feature engineering

RFM 框架:

recency - 最近购物的时间

frequency - 购物频率

monetory - 消费金额

### 周期:

三天、七天、十五天、一个月、三个月

交易特征:

用户过去购买商品的次数和

用户过去购买金额的总和、均值、最大值、标准差

用户过去交易的当天购买时长均值、最大值、标准差

采用交易聚合策略,最终构建的特征为:

周期\*交易特征 一共 40 维

StandardScaler:数据标准化,针对每一个特征维度来做的,而不是针对样本。

划分训练集和数据集

under\_sampling: 欠采样,即去除一些反例使得正、反例数目接近。原数据样本中正负样本

不均衡, 所以采用随机欠采样

## 3.2 Model

1.LSTM: 长短期记忆神经网络

Model: "model"

| [(None, 1, 40)] | 0          |
|-----------------|------------|
|                 | 3          |
| (None, 1, 50)   | 18200      |
| (None, 50)      | 20200      |
| (None, 1)       | 51         |
|                 | (None, 50) |

-----

Total params: 38,451 Trainable params: 38,451 Non-trainable params: 0



2.CNN: 卷积神经网络

Model: "sequential\_1"

| Layer (type)                                | Output Shape   | Param # |
|---------------------------------------------|----------------|---------|
| conv1d_2 (Conv1D)                           | (None, 39, 32) | 96      |
| batch_normalization_2 (Batc hNormalization) | (None, 39, 32) | 128     |
| dropout_3 (Dropout)                         | (None, 39, 32) | 0       |
| conv1d_3 (Conv1D)                           | (None, 38, 64) | 4160    |
| batch_normalization_3 (Batc hNormalization) | (None, 38, 64) | 256     |
| dropout_4 (Dropout)                         | (None, 38, 64) | 0       |
| flatten_1 (Flatten)                         | (None, 2432)   | 0       |
| dense_3 (Dense)                             | (None, 64)     | 155712  |
| dropout_5 (Dropout)                         | (None, 64)     | 0       |
| dense_4 (Dense)                             | (None, 1)      | 65      |

-----

Total params: 160,417 Trainable params: 160,225 Non-trainable params: 192







- 3.逻辑回归模型
- 4.GaussianNB 模型
- 5.svm 模型
- 6.KNN 模型
- 7.LDA 模型
- 8.随机森林模型
- 9.LSTM+attention:

```
class Mylstm_attn(nn. Module):
       def __init__(self, batch):
    super().__init__()
    self.hidden = 128
    self.batch = batch
                self.attn_weight = nn.Parameter(torch.randn(self.batch, 1, self.hidden))
self.rnn = nn.LSTM(input_size=1, hidden_size=self.hidden // 2, batch_first=True, num_layers=1,
bidirectional=True)
                 self.project = nn.Linear(self.hidden, 2)
                 self.activation = nn.Sigmoid()
self.attn_drop = nn.Dropout(p=0.3)
self.lstm_drop = nn.Dropout(p=0.3)
       def attention(self, H):
    M = torch.tanh(H)
                 a = torch.\,softmax(torch.\,bmm(self.\,attn\_weight[:M.\,shape[0]],\ M)\,,\ 2)
                a = torch.transpose(a, 1, 2)
return torch.bmm(H, a)
        def forward(self, X):
                output = X. unsqueeze(2)

output, _ = self.rnn(output)

output = self.lstm_drop(output)

output = output.transpose(1, 2)
                 output = self.attention(output)
output = output.transpose(1, 2)
                output = self.attn_drop(output)
output = self.project(output)
                 return output. squeeze()
       def test(self, X):
    output = X.unsqueeze(2)
                 output, _ = self.rnn(output)
output = output.transpose(1, 2)
                 output = self.attention(output)
output = output.transpose(1, 2)
output = self.project(output)
                 output = output.squeeze()
output = self.activation(output)
output = torch.argmax(output, dim=1)
                 return output
               else:
                      te:
    attention_score = self.mul_attention_score(Q, V, head)
    V = V.reshape(V.shape[0], V.shape[1], head, -1).transpose(1, 2)
    V = V.reshape(V.shape[0] * head, V.shape[2], V.shape[3])
    result = torch.bmm(attention_score, V)
    result = result.transpose(1, 2)
                       result = result.reshape(int(result.shape[0] / head), head, result.shape[1], result.shape[2])
result = result.reshape(result.shape[0], head * result.shape[2], result.shape[3]).transpose(1, 2)
               V=V. transpose (1, 2)
V=V. reshape (int (V. shape[0]/head), head, V. shape[1], V. shape[2])
V=V. reshape (V. shape[0], head*V. shape[2], V. shape[3]). transpose (1, 2)
result=result+V
               result=self.ffn_add_norm(result)
result=result.transpose(1,2)
                result=self.A(result)
                # result
```

#### 10. Self-attention:

return result

```
class Mylstm_attn(nn.Module):
    def __init__(self, batch):
        super().__init__()
        self.hidden = 128
        self.batch = batch
        self.attn_weight = nn.Parameter(torch.randn(self.batch, 1, self.hidden))
        self.rn = nn.ISTM(input_size=1, hidden_size=self.hidden // 2, batch_first=True, num_layers=1, biddirectional=True)
        self.project = nn.Linear/self.hidden, 2)
        self.activation = nn.Signoid()
        self.attn_drop = nn.Dropout(p=0.3)
        self.lstm_drop = nn.Dropout(p=0.3)

def attention(self, H):
        M = torch.softmax(torch.bum(self.attn_weight[:M.shape[0]], MO, 2)
        a = torch.transpose(a, 1, 2)
        return torch.bum(H, a)

def forward(self, X):
        output = X.umsqueeze(2)
        output = X.umsqueeze(2)
        output = self.lstm_drop(output)
        output = self.rstm_drop(output)
        output = self.rstm_drop(output)
        output = self.project(output)
        return output.self.project(output)
        return output.squeeze()

def test(self, X):
        output = Self.project(output)
        return output = self.project(output)
        output = self.project(output)
        output = self.project(output)
        output = self.froject(output)
        output = sel
```

# 4. Result

| RFM            | Accuracy of      | Precision of     | Recall score of  | F1 score of      |
|----------------|------------------|------------------|------------------|------------------|
| III M          | fraud/RFM status | fraud/RFM status | fraud/RFM status | fraud/RFM status |
| LSTM           | 0. 878099        | 0. 948529        | 0. 799587        | 0. 867713        |
| CNN            | 0. 872934        | 0. 941320        | 0. 795455        | 0. 862262        |
| 逻辑回归模型         | 0. 865702        | 0. 927536        | 0. 793388        | 0. 855233        |
| GaussianNB模型   | 0. 766528        | 0. 916129        | 0. 586776        | 0. 715365        |
| svm模型          | 0. 810950        | 0.914600         | 0. 685950        | 0. 783943        |
| KNN模型          | 0. 853305        | 0.880000         | 0.818181         | 0. 847965        |
| LDA模型          | 0. 844008        | 0. 923664        | 0. 750000        | 0. 827822        |
| 随机森林模型         | 0. 887396        | 0. 967581        | 0.801652         | 0.876836         |
| Self-attention | 0. 830578        | 0.861990         | 0. 787190        | 0. 822894        |
| Lstm_attention | 0. 462809        | 0. 480686        | 0. 925619        | 0. 632768        |

