NMMB538 - DÚ2 Jan Oupický

1

Chceme ukázat, že $F/F^{p^i}, i \geq 0, p = char(F)$ je čistě neseparabilní. Toto tělesové rozšíření je zřejmě algebraické, jelikož $\forall \alpha \in F : m_{\alpha,F^{p^i}} = x^{p^i} - \alpha^{p^i} \in F^{p^i}[x]$. Chceme tedy ukázat, že $\forall \alpha \in F$ je čistě neseparabilní.

Využijeme prop. S.5 implikaci $(ii) \implies (i)$. Čistě z definice F^{p^i} tedy dokážeme nalézt dané $j \ge 0$ tž. $\alpha^{p^{i^j}} \in F^{p^i}$ (j = 1). Rozšíření je tedy čistě neseparabilní.

2

Máme char(K) = p. Předpokládejme, že K je perfektní, neboli $a \mapsto a^p$ je automorfimus K. Máme tedy $F = K(x), F^p = (K(x))^p$. Víme, že platí $a, b \in K[x] : (a+b)^p = a^p + b^p$. Tudíž $f(x) = \sum f_i x^i \in K[x] \implies (f(x))^p = \sum f_i^p x^{ip}$. Díky tomu, že je K perfektní, víme $\forall a \in K \exists b \in K : b^p = a$. Poté již nahledéneme, že $(K(x))^p = K(x^p) = F^p$.

Chceme tedy spočítat $[F:F^p] = [K(x):K(x^p)]$. x je algebraický prvek nad $K(x^p)$, protože $g(T) = T^p - x^p \in K(x^p)[T] = F^p[T]$. Tento polynom je m_{x,F^p} , protože kdyby existoval $f \in F^p[T]: deg(f) < deg(g)$, tak by f|g. Zároveň ale $g(T) = T^p - x^p = (T-x)^p$, takže by f musel být polynom, který je tvaru $(T-x)^i$, i < p, ale to nemůže být polynom $F^p[T] = K(x^p)[T]$, protože x^i se v tam nevyskytují.

Zároveň zřejmě $K(x^p)(x) = K(x, x^p) = K(x)$, takže

$$p = \deg m_{x,F^p} = [K(x) : K(x^p)] = [F : F^p]$$

Není důvod proč stejný postup nebude fungovat pro $[F:F^{p^i}]$, takže $[F:F^{p^i}]=p^i$. Stejně tak symetricky můžeme nově definovat D=K(x) a hodnotu $[K(x,y):K(x^p,y^p,x)]=[D(y):D(y^p)]$ spočítat obdobně. Máme tedy $[K(x,y):K(x^p,y^p)]=p^2$.

Nyní spočteme hodnoty $N_{F|F_p}(\alpha)$, $\alpha=x^2+1$ a $Tr_{F|F_p}(\alpha)$. Víme, že x je čistě neseparabilní. Tudíž $[F:F^p]_s<[F:F^p](\iff [K(x^p)(x):K(x^p)]_s<[K(x^p)(x):K(x^p)])$. Dále máme rovnost $[F:F^p]=[F:F^p]_s\cdot [F:F^p]_i=p\implies [F:F^p]_s=1, [F:F^p]_i=p$. Pro výpočet normy a stopy použijeme tedy prop S.12, kde s=1,t=p. Jediný prvek $\operatorname{Hom}_{F^p}(F,\bar{F^p})$ je tedy identita na F. Takže $\sigma(\alpha)=\alpha\implies N_{F|F_p}(\alpha)=\alpha^p=(x^2+1)^p=x^{2p}+1, Tr_{F|F_p}(\alpha)=p(x^2+1)=0$.

Nyní předpokládejmě, že K není perfektní. Tudíž musí být K nekonečné těleso s charakteristikou p, kde Frobeinův endomorfismus není surjektivní. Tudíž $K(x)^p \neq K(x^p)$. Poté rozšíření F/F^p nebude konečného stupně, jelikož v K(x) existuje nekonečně mnoho prvků z K, které nejsou tvaru $a^p, a \in K$ tudíž nejsou v F^p .

3

Mějme tedy $K \subset L$ separabilní rozšíření těles. Dokážeme L perfektní $\iff K$ perfektní. Platí $char(K) = 0 \iff char(L) = 0$, tedy v případě nulové charakteristiky je to zřejmé. Uvažujme tedy p = char(K) = char(L).

 \Rightarrow : L je perfektní, tudíž je Frobeinův endomorfimus surjektivní na L. Zároveň $\forall a \in K: a^p \in K$, tudíž Frobeinův endomorfimus nemůže zobrazit prvek $a \in K \subset L$ na prvek, který je mimo K. Takže je Frobeinův endomorfismus surjektivní i na K neboli K je perfektní.

 \Leftarrow : To, že je Frobeinův endomorfimus surjektivní můžeme vyjádřit, že $K=K^p$. Tedy K je perfektní $\iff K^p=K$. Dále z definice separability platí, že L/K je algebraické rozšíření. Algebraické rozšíření můžeme zapsat takto $L=\cup_{a\in L}K(a)$. a je algebraické nad K a tedy K(a) je rozšíření konečného stupně. Pokud ukážeme, že K(a) je perfektní, tak bude i L perfektní, jelikož je to sjednocení perfektních těles.

Označme $[K(a):K]=n\in\mathbb{N}$. Označme $f(x)=m_{a,K}$. Díky perfektnosti K platí $(K(a))^p=K(a^p), K=K^p, f(a)=0 \implies (f(a))^p=\iff f(a^p)=0 \text{ tedy } [K(a^p):K]=n$. Máme tedy:

 $n = [K(a):K] = [K(a):K(a^p)] \cdot [K(a^p):K], [K(a^p):K] = n \implies [K(a):K(a^p)] = 1$ Neboli $K(a) = K(a^p) = (K(a))^p$ tedy K(a) je perfektní. Takže L je perfektní.

4