Analízis 3. (B és C szakirány)

Szükséges ismeretek a 6. gyakorlathoz

Jelen dokumentum ekkor lett frissítve: 2019/03/05 13:23

További kidolgozások elérhetőek ide kattintva. A gyakorlatok anyaga ide kattintva érhető el.

Forrás(ok): Dr. Szili László - Definíciók és tételek az előadásokon

1. Definiálja a normált terek közötti leképezések pontbeli folytonosságát.

Legyen $(X, ||.||_X)$ és $(Y, ||.||_Y)$ normált tér. Az $f \in X \to Y$ függvény folytonos az $a \in \mathcal{D}_f$ pontban (jelölés: $f \in C\{a\}$), ha

$$\forall \varepsilon > 0 \text{ számhoz } \exists \delta > 0, \quad \forall x \in K_{\delta}^{||\cdot||_X}(a) \cap \mathcal{D}_f \text{ esetén } f(x) \in K_{\varepsilon}^{||\cdot||_Y}(f(a)),$$

azaz, ha

$$\forall \varepsilon > 0 \text{ számhoz } \exists \delta > 0, \quad \forall x \in \mathcal{D}_f, \quad ||x - a||_X < \delta \text{ esetén } ||f(x) - f(a)||_Y < \varepsilon.$$

2. Mit jelent egy $\mathbb{R}^2 \to \mathbb{R}^1$ függvény pontbeli folytonossága?

Az $f \in \mathbb{R}^2 \to \mathbb{R}$ függvény folytonos az $a \in \mathcal{D}_f$ pontban, ha

$$\forall \varepsilon > 0 \text{ számhoz } \exists \delta > 0, \quad \forall x \in \mathcal{D}_f, \quad ||x - a|| < \delta \text{ esetén } |f(x) - f(a)| < \varepsilon,$$

ahol ||.|| tetszőleges norma az \mathbb{R}^2 lineáris téren.

3. Hogyan szól a folytonosságra vonatkozó átviteli elv?

Legyen $(X, ||.||_X)$ és $(Y, ||.||_Y)$ normált tér, $f \in X \to Y$ és $a \in \mathcal{D}_f$. Ekkor:

1.
$$f \in C\{a\} \iff \forall (x_n) : \mathbb{N} \to \mathcal{D}_f$$
, $\lim_{n \to +\infty} x_n \stackrel{||.||_X}{=} a \text{ sorozatra } \lim_{n \to +\infty} f(x_n) \stackrel{||.||_Y}{=} f(a)$.

2. Tegyük fel, hogy $(x_n): \mathbb{N} \to \mathcal{D}_f$, $\lim_{n \to +\infty} x_n \stackrel{||.||_X}{=} a$ és $\lim_{n \to +\infty} f(x_n) \stackrel{||.||_Y}{\neq} f(a)$. Ekkor az f függvény nem folytonos a-ban.

4. Írja le a torlódási pont definícióját.

Legyen (X, ||.||) normált tér és $\emptyset \neq A \subset X$. Ekkor $a \in X$ torlódási pontja az A halmaznak (jelölés: $a \in A'$), ha

$$\forall K(a) \subset X$$
 környezetre $K(a) \cap A$ végtelen halmaz.

5. Írja le normált terek közötti leképezésekre a határérték definícióját.

Legyen $(X, ||.||_X)$ és $(Y, ||.||_Y)$ normált tér. Az $f \in X \to Y$ függvénynek az $a \in \mathcal{D}'_f$ pontban van határértéke, ha létezik olyan $A \in Y$, hogy az

$$\widetilde{f}(x) = \begin{cases} f(x), & \text{ha } x \in \mathcal{D}_f \setminus \{a\} \\ A, & \text{ha } x = a \end{cases}$$

függvény folytonos az $a \in \mathcal{D}_{\widetilde{f}}$ pontban. Ha létezik ilyen A, akkor az egyértelmű, és azt az f függvény a-beli határértékének nevezzük. (Jelölés: $\lim_a f = A$).

6. Fogalmazza meg a függvények határértékére vonatkozó átviteli elvet.

Legyen $(X, ||.||_X)$ és $(Y, ||.||_Y)$ normált tér, $f \in X \to Y$ és $a \in \mathcal{D}'_f$. Ekkor:

1.
$$\lim_{a} f = A \iff \forall (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, x_n \xrightarrow[n \to +\infty]{||\cdot||_X} a \text{ esetén } f(x_n) \xrightarrow[n \to +\infty]{||\cdot||_Y} A.$$

2. Tegyük fel, hogy a $\mathcal{D}_f \setminus \{a\}$ halmazbeli (x_n) és (u_n) sorozatok mindegyike az $a \in \mathcal{D}_f'$ ponthoz konvergál és

1

$$\lim_{x \to +\infty} f(x_n) \neq \lim_{n \to +\infty} f(u_n).$$

Ekkor az f függvénynek nincs határértéke a-ban.