Domain Name System

Richard T. B. Ma

School of Computing
National University of Singapore

CS 3103: Compute Networks and Protocols

Names Vs. Addresses

- □ Names are easier for human to remember
 - www.comp.nus.edu.sq vs. 137.132.90.2
- Addresses can be changed without changing names
 - move <u>www.comp.nus.edu.sq</u> to 203.126.100.199
- □ Name could map to multiple addresses
 - google.com maps to multiple replicas of the Web site and to different "nearby" addresses in different geographies to reduce latency
- □ Multiple names could map to the same address

Domain Name System (DNS)

- □ The Domain Name System is
 - a distributed database implemented in a hierarchy of DNS servers, and
 - an application-layer protocol that allows hosts to query the distributed database.
- □ The DNS servers are often UNIX machines
 - running the Berkeley Internet Name Domain (BIND) software.
- □ The DNS protocol runs over UDP on port 53.
- Used by other application-layer protocols
 - E.g., HTTP, SMTP, and FTP

A Typical Scenario

DNS: Other Use Cases

- Host aliasing
 - ❖ Canonical hostname → alias hostname
 - ❖ E.g., webserver1.abc.com → www.abc.com
- Mail server aliasing
 - ◆ Bob's account with Hotmail → bob@hotmail.com
 - Web and mail servers share the same
- Load distribution
 - Load balancing among replicated servers
 - * Rotate among the set of IP addresses in replies

Hierarchical Name Space

- Maximum 128 levels (level 0 to level 127)
- The label for each level is a string with maximum of 63 characters
- The root label is a null string

Hierarchical Name Space

Name allocation decentralized to domains

```
host.sub-subdomain.. . ..subdomain.domain[.ROOT]
```

host: machine name, can be an alias

sub-subdomain: department (comp, eng, ceg, math)

subdomain: institution, company, geography, provider

domain: most significant segment (edu, com, org, net, gov)

- □ Domain: a sub-tree of the domain name space
- Domain name
 - Fully Qualified Domain Name (FQDN)
 - * Partially Qualified Domain Name (PQDN)

Implementation

- Distributed database implemented in hierarchy of many name servers
 - * A distributed database storing resource records (RR)
 - Client-server query-reply
- □ Host, routers and name servers communicate to *resolve* domain names
 - core Internet function, implemented as application-layer protocol
 - complexity at network's "edge"

Distributed, Hierarchical Database

client wants IP for www.amazon.com; 1st approx:

- client queries a root server to find com DNS server
- client queries com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

Discussion: Design Choices

- Why not flat name space?
- Why not centralize DNS?
 - > Single point of failure
 - > Traffic volume
 - > Distant centralized database
 - Maintenance

Scalability!!

DNS: Root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD and Authoritative Servers

Top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- * Network Solutions maintains servers for com TLD
- Educause for edu TLD

Authoritative DNS servers:

- organization's DNS servers, providing authoritative hostname to IP mappings for organization's servers (e.g., Web, mail).
- can be maintained by organization or service provider

Local Name Server

- Does not strictly belong to hierarchy
 - * Like a "client" (the hierarchy is the "server")
- Each ISP (residential ISP, company, university) has one
 - * also called "default name server"
- When host makes DNS query, query is sent to its local DNS server
 - * acts as proxy, forwards query into hierarchy

DNS name resolution example

 Host at cis.poly.edu
 wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

DNS name resolution example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load?

DNS: caching and updating records

- Once (any) name server learns mapping, it caches the mapping
 - cache entries timeout (disappear) after some time
 - TLD servers typically cached in local name servers
 - Thus root name servers not often visited
- Update/notify mechanisms proposed IETF standard
 - * RFC 2136

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

Type=A (Address)

- name is hostname
- value is IP address

Type=NS (Name Server)

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

Type=CNAME (Canonical NAME)

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

Type=MX (Mail eXchange)

 value is name of mailserver associated with name

DNS protocol, messages

☐ query and reply messages, both with same

message format

← 2 bytes → 2 bytes →

msg header

- identification: 16 bit # for query, reply to query uses same #
- * flags:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

identification	flags	
# questions	# answer RRs	
# authority RRs	# additional RRs	
questions (variable # of questions)		
answers (variable # of RRs)		
authority (variable # of RRs)		
additional info (variable # of RRs)		

DNS protocol, messages

	← 2 bytes → 2 bytes →		
	identification	flags	
	# questions	# answer RRs	
	# authority RRs	# additional RRs	
name, type fields for a query	questions (variable # of questions)		
RRs in response to query	answers (variable # of RRs)		
records for authoritative servers	authority (variable # of RRs)		
additional "helpful"info that may be used	additional info (variable # of RRs)		

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into com TLD server:

```
(networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
```

- create authoritative server Type A record for www.networkuptopia.com; Type MX record for networkutopia.com
- ☐ How do people get IP address of your Web site?