Modelo Encoder-Decoder LSTM-MLP na previsão de vazões em MG

Resultados parciais

Welson de Avelar Soares Filho Prof. Dr. Leonardo Goliatt

Hipótese

"O emprego de dados de chuva e vazão exógenas, à montante, na modelagem chuva-vazão, pode aprimorar o resultado de previsão para uma dada vazão endógena, à jusante."

Visto que é muito usual o emprego <u>apenas</u> de observações passadas (*lags*) da vazão-alvo para realizar a previsão (*forecast*) de vazão, adicionar variáveis auxiliares poderia, segundo a hipótese, aprimorar o resultado.

Utilizar dados de chuva adicionaria ainda a possibilidade de, preemptivamente, testar e verificar a possibilidade de ocorrência de vazões anormais, e.g. acima da média histórica, com intuito de prever enchente.

Modelagem

Três modelagens do problema realizadas

Além de usar dados da vazão "y" (target) as features exógenas foram empregadas das seguintes formas:

- sem chuvas de outras estações e sem vazões de outras estações (à montante da estação-alvo);
- com chuvas de outras estações e sem vazões de outras estações; e
- usando dados de chuva e vazão de outras estações (sempre à montante)

Metodologia

Os rios principais nas bacias de estudo foram divididos em 3 segmentos.

Extensão do rio, em km, dividido em 3 partes

Com este valor, partindo do ponto onde o rio é considerado formado/iniciado, segundo comitê da bacia, percorreu-se até encontrar uma estação de vazão (convencional ou telemétrica) com dados de vazão.

O período analisado é:

- início em 1º de janeiro de 2013
- fim em 31 de dezembro de 2023

Dados de frequência diária.

Com o código da estação a ser estudada em mãos, à montante, numa distância até 50km (em linha reta) a partir desta, buscou-se por dados de chuva e vazão de outras estações (convencionais ou telemétricas)

Por que 50km, afinal? Dada a característica do ciclo hidrológico, ou seja, toda água à montante, num dado momento, vai passar na estação-alvo, não faria sentido usar todos os dados existentes à montante de tal estação. Os dados auxiliares importam, mas eles são usados como dados exógenos, visando um modelo de previsão mais apurado, mas não são o objeto de estudo deste trabalho. E sem utilizar um "corte", poderia ter de carregar muitíssimos dados quando estivesse, por exemplo, na foz da bacia hidrográfica (toda a bacia está à montante, é impraticável!)

Algumas dificuldades encontradas foram:

- nenhuma estação dentro da distância calculada com dados para análise; neste caso, continuou-se em direção à jusante procurando até encontrar alguma estação (comprometeu o cálculo das demais distâncias)
- posições atualizadas das estações ao longo do rio; foi usado um sistema *on-line* da empresa Rhama Sistemas que contribuiu neste trabalho (exportação do *shapefile* atualizado para o QGis com as estações)

Os experimentos

Modelos

Dois modelos serviram de comparativo

O modelo principal foi a rede LSTM

- SeasonalNaive
- DecisionTree
- LSTM

Modelos-base

- 1. SeasonalNaive: escolhido por ser uma baseline muito comum dentro do campo de pesquisa de séries temporais; seasonal porque os dados de vazão respeitam uma sazonalidade
- 2. Basicamente por ser agnóstico à escala dos dados de entrada; demanda menos engenharia de código para ter um modelo pronto para executar

As expectativas

A rede LSTM ser melhor

Bom, não necessariamente melhor, mas um resultado próximo ao DecisionTree, porém com menos complexidade na modelagem;

A rede neural tem capacidade de aprender bem várias interações entre os dados sem demandar uma engenharia de código. Será?

Variáveis que podem afetar o resultado

- O tempo de execução da rede é longo
- Capacidade de computação "parruda"
- A rede é mais gananciosa, precisa de mais dados para aprender
- Se o resultado for semelhante ao DT, então meio que perderia o sentido usar a rede LSTM (:-/)

Primeira rodada: sem chuva e sem vazões, apenas vazão target

Neste cenário, terei apenas dados da vazão alvo para trabalhar.

É como se não fosse possível adquirir dados auxiliares que podem contribuir no aprimoramento da previsão.

Estou testando modelagens distintas.

Os resultados apresentados são para o <u>trecho alto da Bacia do Rio</u> <u>Doce</u>.

Foi calculado intervalos de previsão. Mas o que são eles?

...veja a explicação ----

Primeiro cenário: sem chuva e sem vazões, apenas vazão target

Em previsões, muitas vezes estamos interessados em uma distribuição de previsões em vez de apenas uma previsão pontual, porque queremos ter uma noção da incerteza em torno da previsão.

Para isso, podemos criar intervalos de previsão.

Os intervalos de previsão têm uma interpretação intuitiva, pois apresentam um intervalo específico da distribuição da previsão. Por exemplo, um intervalo de previsão de 95% significa que, em 95 de 100 vezes, esperamos que o valor futuro esteja **dentro** do intervalo estimado. Portanto, um intervalo mais amplo indica maior incerteza sobre a previsão, enquanto um intervalo mais estreito sugere maior confiança.

Os intervalos usados no trabalho foram de 85% e 95%.

Modelo	MAPE	RMSE	MAE
SeasonalNaive	0.5841633734797252	21.26080122680664	21.26080122680664
SeasonalNaive-lo-85	3.92933696370726	143.00939759521484	143.00939759521484
SeasonalNaive-hi-85	5.097663710666711	185.53100004882813	185.53100004882813
SeasonalNaive-lo-95	5.561098499470356	202.39784821777343	202.39784821777343
SeasonalNaive-hi-95	6.729425456055624	244.91945830078126	244.91945830078126

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.13710836289301087	4.99009999999998	4.99009999999998
DecisionTreeRegressor-lo-85	0.009585853118397188	0.348880000000012	0.348880000000012
DecisionTreeRegressor-hi-85	0.2838025789044189	10.32907999999998	10.32907999999998
DecisionTreeRegressor-lo-95	0.022490816121862028	0.8185600000000051	0.8185600000000051
DecisionTreeRegressor-hi-95	0.2967075419078838	10.79876000000001	10.798760000000001

Modelo	MAPE	RMSE	MAE
LSTM	0.08352692450909702	3.0399874755859386	3.0399874755859386
LSTM-lo-85	0.8502240038934645	30.944157688903807	30.944157688903807
LSTM-hi-85	0.06203713378416567	2.257860095214845	2.257860095214845
LSTM-lo-95	1.1441249295100486	41.64077004699707	41.64077004699707
LSTM-hi-95	0.37302793522349986	13.576463610839845	13.576463610839845

Conclusão para horizonte de 1 dia

Para previsão de 1 dia apenas a rede LSTM se saiu melhor se considerar apenas a previsão pontual.

Contudo, se considerar os intervalos de previsão, o DecisionTree mostrou um comportamento melhor, já que não houve intervalo inferior abaixo de 0, o que não faz sentido, como foi na rede LSTM. Uma vazão negativa não é algo que eu consiga interpretar. Isso pode mostrar que usando apenas dados temporais da vazão target implica em muita incerteza para a rede LSTM quando se deseja avaliar a previsão para um único dia. Eu acho...

O SeasonalNaive só está ali pra completar tabela.

Mas continuemos

Modelo	MAPE	RMSE	MAE
SeasonalNaive	0.7135561234072085	28.61495905521772	27.95273395385742
SeasonalNaive-lo-85	3.499989039409989	136.45479507145137	136.31746232503255
SeasonalNaive-hi-85	4.927101286224406	192.320345872406	192.22293023274742
SeasonalNaive-lo-95	5.023308211401074	195.80160081749034	195.70591803385415
SeasonalNaive-hi-95	6.4504204065650805	251.68581366302934	251.6113833984375

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.16141398507487784	6.544367154278555	6.298766666666655
DecisionTreeRegressor-lo-85	0.2906790252177806	13.43638377283246	11.596427500000004
DecisionTreeRegressor-hi-85	0.6135069953675364	26.098665683245873	24.193960833333335
DecisionTreeRegressor-lo-95	0.36025612712833005	16.493522152975252	14.351942500000002
DecisionTreeRegressor-hi-95	0.6830840972780856	29.16107352817596	26.949475833333327

Modelo	MAPE	RMSE	MAE
LSTM	0.0598599891350719	2.5922549094455887	2.354346573893229
LSTM-lo-85	0.2370559192581505	9,902204508642258	9.414241194661457
LSTM-hi-85	0.3699994078605697	15.33356906833061	14.448436061604818
LSTM-lo-95	0.18171145651957818	8.294129956596851	7.295408288574218
LSTM-hi-95	0.6399211210592398	27.213617305204732	25.219502091471355

Conclusão para horizonte de 3 dias

Para previsão de 3 dias a rede LSTM novamente se saiu melhor - considerando a previsão pontual.

Considerando os intervalos de previsão, aqui também a LSTM se saiu melhor que o DT. Observe os valores mínimo e máximo. No DT inicia pouco abaixo de $20\text{m}^3/\text{s}$ e vai até $80\text{m}^3/\text{s}$. A LSTM inicia pouco abaixo de $30\text{m}^3/\text{s}$ e termina pouco abaixo de $80\text{m}^3/\text{s}$. No entanto, não consigo vislumbrar uma interpretação de porque para prever mais dias à frente, a LSTM apresentou menos incerteza. O que pode ser?

Modelo	MAPE	RMSE	MAE
SeasonalNaive	0.5518403818875082	23.481671913361097	21.90537145472936
SeasonalNaive-lo-85	3.4940055721381937	142.6158719412942	142.36482464250835
SeasonalNaive-hi-85	4.597686363794582	186.3676097127746	186.1755686418806
SeasonalNaive-lo-95	4.956696591352414	201.93050643787413	201.75327962472096
SeasonalNaive-hi-95	6.0603772974768875	245.70964909931456	245.56402035435272

Sep 26

Sep 27

40-

Sep 25 2021

Sep 29

Sep 30

Oct 1

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.32585521004803664	16.345337462495447	12.970942857142855
DecisionTreeRegressor-lo-85	0.29087435068231476	14.653711544382094	11.810635
DecisionTreeRegressor-hi-85	0.3900209150395129	18.591148689492382	15.605847142857145
DecisionTreeRegressor-lo-95	0.28780318159112894	14.528799619663301	11.708116428571426
DecisionTreeRegressor-hi-95	0.39609180676344274	18.80155092460004	15.859930000000002

Sep 28

Período

Modelo	MAPE	RMSE	MAE
LSTM	0.08299057133220393	4.125491290613282	3.42916517944336
LSTM-lo-85	0.1297823198230591	7.195064411790584	5.6771998221261155
LSTM-hi-85	0.546466438933487	23.362168934763694	22.289625365339013
LSTM-lo-95	0.21150034750278723	10.2050103549529	9.021774366978237
LSTM-hi-95	1.0522575666489484	45.40547104912318	43.1873157296317

Conclusão para horizonte de 7 dias

Precisa falar qual resultado foi melhor?

O DT teve um comportamento muito destoante dos cenários anteriores. O modelo se perdeu e sequer os intervalos de previsão conseguiram "colocar" o valor observado dentro. Estranho...

Modelo	MAPE	RMSE	MAE
SeasonalNaive	0.4745395041007158	37.55729108248144	31.410506506347655
SeasonalNaive-lo-85	2.944976099675969	176.91291095924444	173.1060366512044
SeasonalNaive-hi-85	3.116582016618169	159.6631382777589	155.43435794108075
SeasonalNaive-lo-95	4.040690875622571	235.34265683864123	232.49449032552081
SeasonalNaive-hi-95	4.212296740982455	217.90208209931654	214.82280907226564

DecisionTreeRegressor (fh=15)

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.3922550519686515	39.75902986833725	29.902553333333337
DecisionTreeRegressor-lo-85	0.40569601048664716	43.26838310685369	32.125547
DecisionTreeRegressor-hi-85	0.4182498382586402	36.916215474975154	29.594840333333334
DecisionTreeRegressor-Io-95	0.4107487901840842	43.61801996489778	32.5081289999999
DecisionTreeRegressor-hi-95	0.4248648024232475	36.765370189616675	29.77454233333333

Modelo	MAPE	RMSE	MAE
LSTM	0.3181250149464334	31.69868860087244	24.017779862467446
LSTM-lo-85	0.3236832531635046	42.167608765065005	28.858983377685547
LSTM-hi-85	0.4111100531554166	24.308540895123368	21.8492266381836
LSTM-lo-95	0.3485018486330374	43.245758942581475	30.24754360921224
LSTM-hi-95	0.7018577968154304	40.651096514904296	35.2743122664388

Conclusão para horizonte de 15 dias

A rede LSTM superou aqui também, mas já não teve um resultado tão, digamos, avassalador. Tudo bem que parece ter um comportamento estranho nos dados observados, com uma subida íngreme e brusca.

Mas, novamente, analisando os intervalos de previsão, a rede LSTM captou o comportamento provável de subida da curva observada.

Conclusão final para "sem chuvas, sem vazões"

A rede LSTM teve um comportamento geral melhor.

Sem uso de variáveis exógenas, nos horizontes de previsão de 7 e 15 dias houve muita incerteza dos modelos escolhidos. Isso é possível de perceber quando vemos que o DT se perdeu nestes horizontes e com os intervalos de previsão largos para a rede LSTM.

Segundo cenário: com chuvas exógenas e sem vazões exógenas

Neste cenário, terei dados históricos da vazão alvo para trabalhar e dados de chuva de estações à montante.

Dados de previsão de chuva serão passados no horizonte de previsão. Afinal, previsão do tempo é possível de ser obtido externamente.

Os resultados apresentados são para o <u>trecho alto da Bacia do Rio</u> <u>Doce</u>.

Modelo	MAPE	RMSE	MAE
SeasonalNaive	0.5841633734797252	21.26080122680664	21.26080122680664
SeasonalNaive-lo-85	3.92933696370726	143.00939759521484	143.00939759521484
SeasonalNaive-hi-85	5.097663710666711	185.53100004882813	185.53100004882813
SeasonalNaive-lo-95	5.561098499470356	202.39784821777343	202.39784821777343
SeasonalNaive-hi-95	6.729425456055624	244.91945830078126	244.91945830078126

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.18732363794226184	6.817700000000002	6.817700000000002
DecisionTreeRegressor-lo-85	0.035517772899248096	1.2926800000000043	1.292680000000043
DecisionTreeRegressor-hi-85	0.33912950298527555	12.34272	12.34272
DecisionTreeRegressor-lo-95	0.028887246430170998	1.051360000000025	1.051360000000025
DecisionTreeRegressor-hi-95	0.3457600294543527	12.584040000000002	12.584040000000002

Horizonte de previsão: 1 dia

Modelo	MAPE	RMSE	MAE
LSTM	0.09005121365339201	3.277440936279298	3.277440936279298
LSTM-lo-85	0.08752407446867493	3.1854649475097645	3.1854649475097645
LSTM-hi-85	0.2083824723641665	7.584142596435548	7.584142596435548
LSTM-lo-95	0.07000250047712846	2.5477620056152332	2.5477620056152332
LSTM-hi-95	0.40869157562766095	14.874452502441407	14.874452502441407

Conclusão para horizonte de 1 dia

A rede LSTM saiu "vencedora" - se é que podemos dizer algo assim.

Inclusive os intervalos de previsão da rede LSTM também "cravaram" legal.

Vou parar de colocar o gráfico do SeasonalNaive porque ele não muda os números, não importa o cenário, a modelagem,... nada.

Horizonte de previsão: 3 dias

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.10627728666574543	4.897395618761739	3.98840000000001
DecisionTreeRegressor-lo-85	0.32801473754010907	15.923444996790112	13.21540000000002
DecisionTreeRegressor-hi-85	0.5373358021642232	22.1350154472757	21.0568666666668
DecisionTreeRegressor-lo-95	0.39383356710733747	18.726201876734105	15.824
DecisionTreeRegressor-hi-95	0.6031546317314512	24.95812115856346	23.66546666666664

Horizonte de previsão: 3 dias

Modelo	MAPE	RMSE	MAE
LSTM	0.05963969445136236	2.70452352249413	2.3866023824055986
LSTM-lo-85	0.15393506797779263	6.61348710217795	6.140289982096353
LSTM-hi-85	0.1567872915688352	6.544898500441984	5.9964465698242195
LSTM-lo-95	0.22896666781514527	9.574770724259412	9.093025247192381
LSTM-hi-95	0.3563981835922692	14.463511460634498	13.880276322428386

Conclusão para horizonte de 3 dias

A rede LSTM teve também melhores intervalos, mais estreitos se compararmos com o DT.

A rede tem, até aqui, apresentado resultados bons, não é mesmo?

Horizonte de previsão: 7 dias

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.22644652101329937	11.904046475763728	8.964085714285714
DecisionTreeRegressor-lo-85	0.17068377418222022	8.603302499515966	6.959891785714284
DecisionTreeRegressor-hi-85	0.3442853825795578	16.650584761096635	13.944633928571431
DecisionTreeRegressor-lo-95	0.16801063574486913	8.47555318199428	6.8913353571428555
DecisionTreeRegressor-hi-95	0.3542656502596356	17.10834224753566	14.374116071428576

Horizonte de previsão: 7 dias

Modelo	MAPE	RMSE	MAE
LSTM	0.1348435747215457	5.975211055902267	5.253616258021764
LSTM-lo-85	0.06814288031277517	3.8237836549173885	2.962013839285714
LSTM-hi-85	0.4055850508016346	16.761452142330654	16.28152785295759
LSTM-lo-95	0.42311879117286433	17.840397195234328	17.492697926984512
LSTM-hi-95	0.5075656084146972	21.123002121948698	20.37799609723773

Conclusão para horizonte de 7 dias

Curioso como que, aumenta o tempo de previsão, os modelos começam a deteriorar. Algo esperado, afinal, mais dias, mais incertezas.

Horizonte de previsão: 15 dias

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.288752876344278	26.57638826703132	20.57207999999996
DecisionTreeRegressor-lo-85	0.2877614634063354	31.329003999077234	22.817610333333334
DecisionTreeRegressor-hi-85	0.3102693978937684	23.648735605036705	19.233419333333327
DecisionTreeRegressor-lo-95	0.2892386546942952	31.756002438004966	23.065012333333335
DecisionTreeRegressor-hi-95	0.313305484773043	23.560891604133126	19.189775333333333

Horizonte de previsão: 15 dias

Modelo	MAPE	RMSE	MAE
LSTM	0.227969747292252	27.238215258472724	19.066520833333335
LSTM-lo-85	0.33320246620723853	35.63986894387316	26.638010553588867
LSTM-hi-85	0.31653773085915876	21.918424964637808	19.23027266642253
LSTM-lo-95	0.5118788983272189	44.30443679170422	36.76548260457357
LSTM-hi-95	0.6357442400691461	35.307662369132444	30.206701918945313

Conclusão para horizonte de 15 dias

A rede também se saiu bem, até aqui. Tá ficando repetitivo...

Conclusão final para "com chuvas, sem vazões"

A rede LSTM teve um comportamento geral melhor, de novo.

Acho que não tem mais nada de importante a salientar. Continuemos para o próximo cenário, ele vai ser importante...

Terceiro cenário: com chuvas exógenas e com vazões exógenas

Neste cenário, terei dados históricos da vazão alvo para trabalhar e também de estações de vazão à montante da estação alvo, bem como dados de chuva de estações à montante.

Dados de previsão de chuva serão passados no horizonte de previsão. Informações de vazões exógenas também serão passadas, mas na "vida real" estes dados não existirão. Só dá pra saber a vazão do rio indo lá medir, correto? De maneira que precisei utilizar um modelo auxiliar para gerar previsão das vazões exógenas. Isso aumenta a complexidade do trabalho, agora é previsão multivariada, e também as incertezas.

Os resultados apresentados são para o <u>trecho alto da Bacia do Rio</u> <u>Doce</u>.

Horizonte de previsão: 1 dia

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.07930144826392425	2.8862000000000023	2.8862000000000023
DecisionTreeRegressor-lo-85	0.16148946429896163	5.8774574999999984	5.8774574999999984
DecisionTreeRegressor-hi-85	0.002886567771113133	0.10505749999999381	0.1050574999999381
DecisionTreeRegressor-lo-95	0.16389348349924301	5.964952499999999	5.964952499999999
DecisionTreeRegressor-hi-95	0.005290586971394406	0.1925524999999908	0.1925524999999908

Horizonte de previsão: 1 dia

Modelo	MAPE	RMSE	MAE
LSTM	0.08488823457072414	3.089532763671876	3.089532763671876
LSTM-lo-85	0.008775725266960093	0.3193951538085926	0.3193951538085926
LSTM-hi-85	0.26390669163631925	9.60496321411133	9.60496321411133
LSTM-lo-95	0.20417182823566632	7.430894940185546	7.430894940185546
LSTM-hi-95	0.6588676214019651	23.97968474121094	23.97968474121094

Conclusão para horizonte de 1 dia

Pela primeira vez o DT se saiu melhor. E não apenas isso. Repare nos intervalos de previsão do modelo, também foram muito bons. O intervalo é mais estreito.

Horizonte de previsão: 3 dias

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.09661785049491274	4.11644701978134	3.7555333333333345
DecisionTreeRegressor-Io-85	0.11723622702788751	5.130969786196411	4.549690833333337
DecisionTreeRegressor-hi-85	0.11168169472692814	6.416114282247506	4.3752875000000016
DecisionTreeRegressor-Io-95	0.11993338125257352	5.316910134176658	4.654985833333336
DecisionTreeRegressor-hi-95	0.11739181098133451	6.5471968755269945	4.598362500000003

Horizonte de previsão: 3 dias

Modelo	MAPE	RMSE	MAE
LSTM	0.07081249650532899	2.8996803800180726	2.7053678487141943
LSTM-lo-85	0.0863584393821577	4.017868186970422	3.4763711100260415
LSTM-hi-85	0.245765395625431	9.984442796017042	9.494438767496746
LSTM-lo-95	0.13619669195950526	5.954408898398271	5.4448070922851555
LSTM-hi-95	0.4755776736022647	18.895217984213936	18.507495204671226

Conclusão para horizonte de 3 dias

O DT deu uma perdida no final. A rede foi melhor.

Horizonte de previsão: 7 dias

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.11357446784358372	5.6077715934483034	4.781614285714286
DecisionTreeRegressor-lo-85	0.09809691894889139	6.578130859622908	4.357413571428572
DecisionTreeRegressor-hi-85	0.12905201673827607	5.908603151425685	5.205815000000002
DecisionTreeRegressor-lo-95	0.09556444209515831	6.725625504913093	4.27679499999999
DecisionTreeRegressor-hi-95	0.1315844935920091	6.063314642142798	5.2864335714285735

Horizonte de previsão: 7 dias

Modelo	MAPE	RMSE	MAE
LSTM	0.06076881335765568	3.3301614979940437	2.6022372514997207
LSTM-lo-85	0.14250218895534425	7.068551462651073	6.109103686523437
LSTM-hi-85	0.18275855566114416	8.030665601100283	7.223960801478795
LSTM-lo-95	0.22864969527806966	10.255259910889414	9.607667725481305
LSTM-hi-95	0.3365920615694224	14.144362531124598	13.498975951276506

Conclusão para horizonte de 7 dias

O DT ficou maluco!

Horizonte de previsão: 15 dias

Modelo	MAPE	RMSE	MAE
DecisionTreeRegressor	0.31282599560385377	40.8756013531218	27.82246
DecisionTreeRegressor-lo-85	0.3396896112442284	43.78057369339332	30.126526666666667
DecisionTreeRegressor-hi-85	0.3030868526584218	38.275815756673865	26.264254666666666
DecisionTreeRegressor-lo-95	0.34524767088064184	43.94568573084647	30.41608666666665
DecisionTreeRegressor-hi-95	0.3040205260192866	38.177761506768874	26.239862666666667

Horizonte de previsão: 15 dias

Modelo	MAPE	RMSE	MAE
LSTM	0.2828064938458371	33.678681322380086	23.923328153483073
LSTM-lo-85	0.3489838752681422	38.14870574491842	28.267819615275066
LSTM-hi-85	0.30302206212112953	24.96444865975405	20.646106787109375
LSTM-lo-95	0.515723251716476	45.30616862012189	37.35595514383952
LSTM-hi-95	0.4875191991729373	29.86115096898083	27.66679389038086

Conclusão para horizonte de 7 dias

A rede superou novamente e com intervalos de previsão mais bem comportados.

Conclusão final para "com chuvas, com vazões"

A rede LSTM teve um comportamento geral melhor. E de novo...

Conclusão até aqui para o trabalho

Lembrando que aqui estão apenas resultados para o que estou nomeando de "trecho alto" do Rio Doce, apesar de não ser de fato! Como falado no início, tive problemas para encontrar dados nos trechos DE FATO do rio.

Não realizei nenhum tipo de otimização de hiperparâmetro. Na real, até fiz uns experimentos com isso, mas o tempo de execução para otimizar a rede LSTM são absurdamente elevados e nem melhora tanto assim os números. É irrisório, de verdade mesmo. Isso quando não piora! Até onde pude compreender, isso se deve à estocasticidade do modelo, geração de números aleatórios. Fica difícil garantir **totalmente** a reprodutibilidade da rede. Enfim...

Eu não comentei lá em cima, mas a divisão de dados foi 80% treinamento e 20% teste. Não usei a base completamente, por isso os resultados estão em 2021, mas tenho dados até 2023!

Conclusão até aqui para o trabalho

Absolutamente quaisquer indagações podem ser feitas. Se deixei algo sem explicação, ou se expliquei mal, chega junto e me fala.