CSE 250B: Machine Learning

Lecture 0: Overview

Inputs and outputs

Basic terminology:

- The input space, X.
 E.g. 32 × 32 RGB images of animals.
- The output space, \mathcal{Y} .

y: "bear"

E.g. Names of 100 animals.

After seeing a bunch of examples (x, y), pick a mapping

$$f: \mathcal{X} \to \mathcal{Y}$$

that accurately replicates the input-output pattern of the examples.

Learning problems are often categorized according to the type of *output space*: (1) discrete, (2) continuous, (3) probability values, or (4) more general structures.

Machine learning versus Algorithms

In both fields, the goal is to develop

procedures that exhibit a desired input-output behavior.

• Algorithms: the input-output mapping can be precisely defined.

Input: Graph *G*.

Output: MST of *G*.

• Machine learning: the mapping cannot easily be made precise.

Input: Picture of an animal.

Output: Name of the animal.

Instead, we simply provide examples of (input,output) pairs and ask the machine to *learn* a suitable mapping itself.

Discrete output space: classification

Binary classification:

• Spam detection

```
\mathcal{X} = \{\text{email messages}\}\
\mathcal{Y} = \{\text{spam}, \text{not spam}\}\
```

Credit card fraud detection

```
\mathcal{X} = \{ \text{descriptions of credit card transactions} \}
\mathcal{Y} = \{ \text{fraudulent}, \text{legitimate} \}
```

Multiclass classification:

Animal recognition

```
\mathcal{X} = \{ \text{animal pictures} \}
\mathcal{Y} = \{ \text{dog, cat, giraffe, } \ldots \}
```

News article classification

```
\mathcal{X} = \{\text{news articles}\}\
\mathcal{Y} = \{\text{politics}, \text{business}, \text{sports}, \ldots\}
```

Continuous output space: regression

A parent's concerns

How cold will it be tomorrow morning?

$$\mathcal{Y} = [-273, \infty)$$

• For the asthmatic

Predict tomorrow's air quality (max over the whole day)

$$\mathcal{Y} = [0, \infty)$$
 (< 100: okay, > 200: dangerous)

Insurance company calculations

In how many years will this person die?

$$\mathcal{Y} = [0, 200]$$

What are suitable predictor variables (\mathcal{X}) in each case?

Structured output spaces

The output space consists of structured objects, like sequences or trees.

Dating service

Input: description of a person *Output*: rank-ordered list of all possible matches

 $\mathcal{Y} = \mathsf{space} \ \mathsf{of} \ \mathsf{all} \ \mathsf{permutations}$

Example:

x = Tom

 $y = (Nancy, Mary, Chloe, \ldots)$

Language processing

Input: English sentence
Output: parse tree showing
grammatical structure

 $\mathcal{Y} = \mathsf{space} \ \mathsf{of} \ \mathsf{all} \ \mathsf{trees}$

Example:

x = "John hit the ball"

Conditional probability functions

Here $\mathcal{Y} = [0, 1]$ represents probabilities.

Dating service

What is the probability these two people will go on a date if introduced to each other?

If we modeled this as a classification problem, the binary answer would basically always be "no". The goal is to find matches that are slightly less unlikely than others.

Credit card transactions

What is the probability that this transaction is fraudulent?

The probability is important, because – in combination with the amount of the transaction – it determines the overall risk and thus the right course of action.

Course outline

- 1 Nonparametric methods
- 2 Classification using parametrized models
- 3 Combining classifiers
- 4 Representation learning

Nonparametric methods: nearest neighbor

Training set: a collection of (x, y) pairs:

Given any x, find its nearest neighbor in the training set and predict that neighbor's y value.

Issues: (1) What distance function? (2) How to speed up search?

Classification with parametrized models

Classifiers with a fixed number of parameters can represent a limited set of functions. Learning a model is about picking a good approximation.

Typically the x's are points in d-dimensional Euclidean space, \mathbb{R}^d :

Two ways to classify:

- Generative: model the individual classes.
- Discriminative: model the decision boundary between the classes.

Nonparametric methods: decision tree

Credit card fraud detection: use training data to build a tree classifier

What do nearest neighbor and decision trees have in common?

- Unbounded in size
- Can model arbitrarily complex functions

They are nonparametric methods.

Generative models

Fit a probability distribution – like a multivariate Gaussian – to each class. Thereafter use this *summary* rather than the data points themselves.

To classify a new point: find the most probable class.

Examples: Naive Bayes, Fisher discriminant.

Under the hood: Bayes' rule, linear algebra (eigenvalues, eigenvectors).

Discriminative models

Approximate the boundaries between classes by simple – e.g. linear – functions.

To classify a new point: figure out which side of the boundary it lies on.

Examples: support vector machine, logistic regression.

Under the hood: convex duality, optimization.

Richer classifiers via the kernel trick

We are good at finding linear classifiers in Euclidean space. But what if:

The boundary between classes is far from linear?
 Example: quadratic, or higher-order polynomial, or even stranger.

The data aren't even vectors of numbers?
 Example: documents, DNA sequences, parse trees.

The *kernel trick* handles these scenarios seamlessly, by mapping the data to a suitable Euclidean space in which linear classification is possible!

Generalization theory

- Complex, e.g. nonparametric, classifiers require a lot of training data to learn accurately.
- Simple, e.g. linear, classifiers require less.

What is the right notion of complexity? Are there formulas for how much data is enough? The answers are based on *large deviation theory*.

Example: Symmetric random walk.

A drunken man starts at the origin and at each time step either takes a step to the right or a step to the left. Where is he after n steps?

Answer: Not far from where he started! Most likely in $[-c\sqrt{n},c\sqrt{n}]$ (for some constant c), and all positions in this interval are about equally likely. Under the hood: probability theory.

Richer output spaces

Many classification methods were developed for the binary (two-label) case. Usually the output space is larger than this.

• $\mathcal{Y} = \text{several classes}$.

Examples:

x = image, y = name of object in image

x = news article, y = category (sports, politics, business, ...)

• $\mathcal{Y} = \text{structured objects.}$

Examples:

x = sentence in Swahili, y = transcription into English

x =sentence in English, y =parse tree

Extend binary classification to handle such cases!

Under the hood: error-correcting codes, dynamic programming.

Composing simple classifiers

A common situation in classifier learning:

Easy to find weak classifiers – not very accurate, but better than random

To increase accuracy, compose weak classifiers.

Example: boosting.

Final classifier is a linear combination of all these weak classifiers.

Generically improve the performance of any kind of classifier!

Representation learning

A handful of key primitives:

- 1 Dimensionality reduction and denoising.
- 2 Embedding and manifold learning.

Given data that lie in a non-Euclidean space, find an embedding into Euclidean space that preserves as much of the geometry as possible.

3 Metric learning.

Representation learning

A handful of key primitives:

1 Dimensionality reduction and denoising.

Given data in high-dimensional Euclidean space, project to a low-dimensional linear subspace while retaining as much of the signal as possible.

- 2 Embedding and manifold learning.
- 3 Metric learning.

Representation learning

A handful of key primitives:

- 1 Dimensionality reduction and denoising.
- 2 Embedding and manifold learning.
- 3 Metric learning.

Given data with only vague positional information, impose an Euclidean geometry that is suitable for classification.

Example: $\mathcal{X} = \{ \text{a collection of } m \text{ books} \}.$

A user supplies $\binom{m}{2}$ similarity ratings, such as:

("Pride and Prejudice", "Great Expectations"): similar

("Hamlet", "Great Expectations"): dissimilar

Represent each book by a vector, respecting these ratings.

Under the hood: linear algebra, semidefinite programming.

Deep learning

Multi-layer neural nets achieve state-of-the-art performance across a range of benchmark problems in natural language processing, speech, and vision.

Under the hood: stochastic gradient descent, dictionary learning, autoencoders.

Class details

Website: http://www.cs.ucsd.edu/~dasgupta/250B.

Grading:

• Regular homeworks: 50%.

• Two midterms: 25% each.

Course outline

- Nonparametric methods
- 2 Classification using parametrized models
 - Generative models
 - Discriminative models
 - Richer decision boundaries using the kernel trick
 - Richer output spaces
 - Generalization theory
- 3 Combining classifiers
 - Boosting, bagging, and random forests
 - Online learning
- 4 Representation learning
 - Linear projection
 - Embeddings
 - Metric learning
 - Deep learning