Story

From a Faraway Time & Place PERSIA ©Copyright 1990 Jordan Mechner

1990

9/25/2018

Stanford CS217

1990 | | | | | 2013

What Is The X Axis?

- Time?
- Heterogeneity?
- Compute Power?

- Screen Resolution?
- Wireless BW?
- Weight?

Compare Apples to Apples

Height: 381mm

Width: 381mm

Depth: 435mm

Weight: 15,800g

Price: £1,500

CPU: 500MHz

RAM: 128MB

Display: 1024 x 768

Storage: 30GB

Height: 115.2mm

Width: 58.6mm

Depth: 9.3mm

Weight: 137g

Price: £599

CPU: 1GHz

RAM: 512MB

Display: 960 x 640

Storage: 32GB

Different Platform

Tomorrow?

Today

Brains at the edge: machine learning goes mobile

This functionality will enhance applications including:

indoor navigation

augmented reality

language translation

image classification

speech recognition

and many more currently unknown applications

How Did We Come This Far?

Somewhere in Germany ...

9/25/2018

Hint: Gesetz = Law

"Frankly I did not expect to be this precise"

Invented DRAM

Dennard's Factor $\alpha = a/b$

9/25/2018

Scaling Magic

Scaling Magic

Power Dissipation ≈ CV²F

- C: Capacitance
 - Wire Length
 - Transistor Size
 - Switching Delay
- V: Supply Voltage
- F: Frequency
 - Clock Frequency

Dark Memory

Who Moved My Cheese?

Parameter	Dennard's Factor	500nm→350nm	90nm→65nm
Dimension Tox, L, W	1/α	0.7	0.7
Voltage V	1/α	0.7	1
Current I	1/α	0.7	1
Capacitance C	1/α	0.7	0.7
Delay (VC/I) RC	1/α	0.7	0.7
Power Dissipation (VI)	1/α²	0.5	1
CMOS Power <i>CV</i> ² <i>f</i>	1/α³	0.35	0.7

CV²f
$$\alpha^2$$
 (C/ α (V/ α)² α f)= CV²f
CV²f α^2 (C/ α V² f)= α CV²f

Michael Taylor

 α^2 (C/ α V² α f)

$$\alpha^2$$
 (C/ α V² α f) = CV²f

Shrink

- Limited Performance
- Diminished Returns

 α^2 (C/ α (V/d₁)² f/d₂)

DIM

- Lower Voltage by factor
 d₁
- Lower Freq by factor d_2
- Lower Performance

DIM

22 nm: 16 BCEs

1 000 000 000 transistors

16 RISC cores @2 GHz 8 MB LLC Ring or mesh interconnect

Source: Christian Märtin

The Rise of Multicore

- Dues Ex Machina
 - Beyond CMOS
- Time to reach the manufacturing scale

The Transistor Evolution

9/25/2018 Stanford CS217 Source:

Applied Materials® 30

Specialization

- Efficient Accelerators
- Orders of Magnitude better efficiency

Source: T. Noll, RWTH Aachen, via R. Leupers, "From ASIP to MPSoC", Computer Engineering Colloquium, TU Delft, 2006

Heterogeneous Computing

- Opportunity and need for specialization
 - > Heterogeneous multi-core system
 - ➤ On-chip accelerators
 - >GFLOPS/W

➤ Energy/(FL)OP

Introducing the Snapdragon 810 Processor

Advanced Graphics & Compute with the Adreno 430 – the best GPU Qualcomm Technologies' has ever made

4K primary & external display support with ecoPix and TruPalette and 3:1 pixel compression

Mobile industry's FIRST announced multi-channel 4G LTE SoC supporting Category 9 Carrier Aggregation

Location Cortex-A57 GPS, GLONASS, Beidou, Galileo Satellites Cortex-A53 CPUs Qualcomm® Adreno™ 430 GPU OpenGL ES 2.0/3.1 OpenCL 1.2 Full Memory Content Security I PDDR4 UFS2.0 Qualcomm[®] Hexagon™ DSP Display Engine 4K, Miracast, picture enhancement Sensor Engine USB Multimedia Dual Modem ISPs Processina 4th gen CAT 9 LTE 4K Encode/Decode Depth Assist Snapdragon Voice Activation Up to 3x20MHz CA Local Tone Studio Access Security Hybrid Auto Focus with Phase Detect

Not drawn to scale.

Qualcomm Technologies' FIRST 14-bit Dual ISP for highest quality, depth enabled photography. Up to 21MP for main camera with depth assist, phase detect, for sharper dual camera user experiences FIRST Announced ARM®v8-A/64-bit using Cortex®-A57+ Cortex®-A53

Mobile industry's FIRST announced dual channel 1600 MHz LPDDR4 memory

Qualcomm Technologies' FIRST UFS 2.0 Support

Greatly improved power management for DSP/Sensor Engine, Low Power Snapdragon Voice Activation (SVA), 12channel surround sound decode

Qualcomm Technologies' FIRST hardware implementation of 4K HEVC/ H.265 video encode. HEVC designed to deliver up to 50% better video compression

Qualcomm Adreno and Qualcomm Hexagon are pro

Memory ACCESs is >500× Arithmetic Energy

Operation	16 bit (integer)		64 bit (DP-FP)	
	E/op PJ	vs. Add	E/op PJ	vs. Add
ADD	0.18	1.0 ×	5	1.0 ×
Multiply	0.62	3.4 ×	20	4.0 ×
16-Word Register File	0.12	0.7 ×	0.34	0.07 ×
64-Word Register File	0.23	1.3 ×	0.42	0.08 ×
4 K-word SRAM	8	44 ×	26	5.2 ×
32 K-word SRAM	11	61 ×	47	9.4 ×
DRAM	640	3556×	2560	512 ×

The Right Tool

Vision: Machine Learning

- Start with Building Blocks of Machine Learning and Deep Learning
- Guest Lecture: Kian Katanforoosh (Stanford)
 - Machine Learning to Deep Learning Journey
- Guest Lecture: Hadi Esmaeilzadeh (UCSD)
 - Machine Learning Accelerators on FPGAs

Vision: Linear Algebra, Inference, Numerics

- Linear Algebra Basics
- Matrix Computations and their accelerators
- Neural Network Inference
- Guest Lecture: Yu-Hsin Chen (MIT & Nvidia)
 - Deep Learning Inference
- Guest Lecture: Robert Schreiber (Cerebras)
 - Understanding Numerical Errors

Vision: Training, Scaling Inference

- Training Basics
- Training Tradeoffs
- Precision and Sparsity
- Guest Lecture: Boris Ginsburg (Nvidia)
 - Training of DNNs
- Guest Lecture: Eric Chung (Microsoft)
 - Real-Time AI at Cloud Scale with Project Brainwave

Vision: Scaling, ML Benchmarks Performance

- Scaling Training
- Distributed Training
- CGRAs and FPGAs
- Guest Lecture: Cliff Young (Google)
 - MLPerf Benchmark
- Guest Lecture: Mikhail Smelyanskiy (Facebook)
 - Al at Facebook Datacenter Scale

- Locality
 - Blocking

- Locality
 - Blocking

Change the Nature

- Locality
 - Blocking

- Change the Nature
- Parallelism
 - Communication
 - Memory Partitioning

- Parallelism & locality
- Algorithm complexity vs.
 Memory behavior
- FLOP/Memory
- Algorithm changes memory behavior

Algorithm/Architecture Codesign