CS550 "Advanced Operating Systems"

Instructor: Professor Xian-He Sun

- Email: sun@iit.edu
- Office: SB235C
- Class time: Monday, Wed., 3:15pm-4:30pm, HH MEZZANINE
- Office hour: Monday, Wednesday, 4:45-5:45pm
- http://www.cs.iit.edu/~sun/cs550.html
- TA: Mr. Hua Xu, Email: hxu40@hawk.iit.edu
- Office Hour: 11am 12pm, Tuesday
- meet.google.com/kfp-pysg-cat
- Office Hour: 12pm 1pm, Tuesday & Thursday <u>meet.google.com/bnn-eqao-htg</u>
- Blackboard:
 - http://blackboard.iit.edu
- Substitute lecturer:
 - Anthony Kougkas, assistant research professor
 - akougkas@hawk.iit.edu

Research Related Term Projects (see BB)

- Keith Bateman kbateman@hawk.iit.edu
- Jaime Cernuda Garcia <u>jcernudagarcia@hawk.iit.edu</u>
- Neeraj Rajesh <u>nrajesh@hawk.iit.edu</u>
- Meng Tang <u>mtang11@hawk.iit.edu</u>
- Jie Ye j<u>ye20@hawk.iit.edu</u>
- Izzet Yildirim <u>iyildirim@hawk.iit.edu</u>

Storage systems, Parallel IO, IO & Machine Learning, Database Buffering

- Luke Logan <u>llogan@hawk.iit.edu</u>
 - Advanced OS
- Xiaoyang Lu xlu40@hawk.iit.edu
 - Heterogeneous Memory System
- Any other distributed system related topics

Term Project

- See http://www.cs.iit.edu/~sun/html/report2.html
- A two-page project proposal due by Jan. 29, 2024 (format and examples)
- Final project report is due on April 25, 2024

Example topics

- Study and practice of some middleware programming-environment, software packages, applications.
- Study and analyze some distributed environment, architectures, and network structures.
- Study the distributed solution of certain application package, algorithm, and system software.
- Performance metric, measurement, and benchmark.
- Study and practice of some visualization tools.
- Survey of certain topics.
- Any other topics that are relevant to this course.

Uniprocessor Operating Systems

Microkernel architecture

- Small kernel
- user-level servers implement additional functionality

Multiprocessor Operating Systems

- Like a uniprocessor operating system
- Manage multiple CPUs transparently to the user
- Each processor has its own hardware cache
 - Maintain consistency of cached data
 - Scalability issues
- Shared variable versus message passing

Multicomputer Operating Systems

- More complex than multiprocessor OS
 - Because communication must be through explicit message passing

Network Operating System

Network Operating System

- Employs a client-server model
 - Minimal OS kernel
 - Additional functionality as user processes

Network-Operating Systems

- Users are aware of multiplicity of machines.
 Access to resources of various machines is done explicitly by
 - Remote logging into the appropriate remote machine.
 - Transferring data from remote machines to local machines, via the File Transfer Protocol (FTP) mechanism.

Distributed Operating System

- Users not aware of multiplicity of machines.
- Manages resources in a distributed system
 - Seamlessly and transparently to the user
- Looks to the user like a centralized OS
 - But operates on multiple independent CPUs
- Provides transparency
 - Location, migration, concurrency, replication,...
- Presents users with a virtual uniprocessor

Middleware-based Systems

General structure of a distributed system as middleware.

Any Questions?

- Definition of distributed systems
- Design goals
- Examples

What is a distributed system?

"A distributed system is a collection of autonomous computing elements that appears to its users as a single coherent system."

-From our textbook, A. Tanenbaum

- Collection of autonomous computing elements:
 - Nodes can act independently from each other
 - Each one will have its own notion of time (lack of global clock)
 - Managing group membership can be exceedingly difficult
 - Open group: any node can join the distributed system
 - Closed group: only the members of that group can communicate with each other, and a separate mechanism is needed to let a node join or leave the group
 - Organization of the collection:
 - Overlay network
 - Structured and Unstructured
 - Always connected
 - e.g., Peer-to-peer (P2P) networks

Single coherent system:

- Appears as one
 - I.e., in a single coherent system the collection of nodes operates the same, no matter where, when, and how interaction between a user and the system takes place.
- Distribution transparency
 - I.e., The end user would not be able to tell exactly on which computer a process is currently executing, or even perhaps that part of a task has been spawned off to another process executing somewhere else.

A distributed system organized as middleware. The middleware layer extends over multiple machines and offers each application the same interface.

Key Characteristics

- Support for resource sharing
- Openness
- Concurrency
- Scalability
- Fault tolerance (reliability)
- Transparency

Resource Sharing

- Share hardware,software,data and information
- Hardware devices
 - Printers, disks, memory, ...
- Software sharing
 - Compilers, libraries, toolkits,...
- Data
 - Databases, files, ...

Openness

- Definition?
- Hardware extensions
 - Adding peripherals, memory, communication interfaces...
- Software extensions
 - Operating systems features
 - Communication protocols

Concurrency

- In a single system several processes are interleaved
- In distributed systems: there are many systems with one or more processors
 - Many users simultaneously invoke commands or applications
 - Many server processes run concurrently, each responding to different client request

Scalability

- Scale of system
 - Few PCs servers ->dept level systems->local area networks->internetworked systems->wide are network...
 - Ideally, system and application software should not change as systems scales
- Scalability depends on all aspects
 - Hardware
 - Software
 - networks

Fault Tolerance

- Definition?
- Two approaches:
 - Hardware redundancy
 - Software recovery
- In distributed systems:
 - Servers can be replicated
 - Databases may be replicated
 - Software recovery involves the design so that state of permanent data can be recovered

Transparency in a Distributed System

Transparency	Description
Access	Hide differences in data representation and how a resource is accessed
Location	Hide where a resource is located
Migration	Hide that a resource may move to another location
Relocation	Hide that a resource may be moved to another location while in use
Replication	Means that users do not know whether a replica or a master provides a service.
Concurrency	Hide that a resource may be shared by several competitive users
Failure	Hide the failure and recovery of a resource
Persistence	Hide whether a (software) resource is in memory or on disk

Pitfalls When Developing Distributed Systems

- False assumptions made by first time developer:
 - The network is reliable.
 - The network is secure.
 - The network is homogeneous.
 - The topology does not change.
 - Latency is zero.
 - Bandwidth is infinite.
 - Transport cost is zero.
 - There is one administrator.

Supercomputers, Clusters, Grids, Clouds

[GCE08] "Cloud Computing and Grid Computing 360-Degree Compared"

Cluster Computing Systems

Cluster Computing Systems

Computer clusters using commodity processors, network interconnects, and operating systems.

Distributed Information Systems

Transaction processing systems

Cloud Computing Systems

Organization of clouds

Cloud computing is characterized by an easily usable and accessible pool of virtualized resources.

Cloud services:

- Infrastructure-as-a-Service (laaS) covering the hardware and infrastructurelayer
- □ Platform-as-a-Service (PaaS) covering the platform layer
- □ Software-as-a-Service (SaaS) in which their applications are covered

Distributed Pervasive Systems

Electronic health care systems

Monitoring a person in a pervasive electronic health care system, using (a) a local hub or (b) a continuous wireless connection.

Distributed vs. Single Systems

- Data sharing
 - Multiple users can access common database, data files,...
- Device/resource sharing
 - Printers, servers, CPUs,....
- Communication
 - Communication with other machines...
- Flexibility
 - Spread workload to different & most appropriate machines
- Extensibility
 - Add resources and software as needed

Disadvantages of Distributed Systems

Software

Little software exists compared to PCs

Networking

Still slow and can cause other problems (e.g. when disconnected)

Security

Data may be accessed by unauthorized users

What is Middleware

- Software above the operating system but below the application program
- Middleware refers to the software that is common to multiple applications and builds on the network transport services to enable ready development of new applications and network services
- DCOM, Java RMI, Cloud

Middleware Layer

Middleware Organization

Wrapper or Adapter

Middleware Organization

Interceptor

Technical Challenges

The changing environment

 Computing world has changed, and middleware must adapt to this ever-changing environment

Architecture

 New technological advances impose changes in established middleware architecture

Dynamic configuration

 Dynamic changes in system configuration will be inherent characteristics of future computing environments.

Client/Server Organization

- Server: a software module manages a set of resources of a particular type using certain policies and methods.
 - Servers may be run in different machines
 - Mail server, http server
 - A machine can maintain more than one server
- Client: a software module requests services from servers.
- Centralized server versus by distributed servers
 - centralized server: e.g. printer and mail
 - distributed servers: e.g. file servers
- Proxy server and caches: middleman between origin server and clients

Peer-to-Peer Organization

- All processes play similar roles, interacting cooperatively as peers to perform a distributed activity or computation without any distinction between clients and servers.
- Fully distributed and parallel
- For Example
 - Remote memory access
 - Process migration
 - P2P file exchange

Mobile Code Organization

Mobile codes

- Programs that function as they are transferred from one host to the other. Instead of sending requests associated with input data to a server for processing, the mobile code approach uploads codes to the server for execution
- E.g. Javascript code, Java Applets

Mobile agent

- can travel from host to host autonomously, carrying their code as well as running state.
- Itinerary mobility (proactive mobility)
- Security in mobile agents
 - Server protection
 - Agent protection

Summary

- Course information
- Definition of distributed systems
- Design goals
- Examples

- Readings
 - Chapter 1 of textbook

Any Questions?

X. Sun (IIT) CS550: Distributed OS Lecture Page 43

Questions?

- •What is the difference between operating system and (software) system?
- •What is the difference between Network OS and Distributed OS?
- •What is the difference between Distributed OS and Distributed (software) system?
- •What is middleware?
- •What is the difference between middleware and distributed (software) system?