Solver setups

Name	Solver	Flags	Input
ACL2[_g]	ACL2	time-limit 5	SMT-LIB
		g:generalize	
CVC4[-Gen]	CVC4 (1.7)	lang=smt2quant-indtlimit=5000	SMT-LIB
		Gen:conjecture-gen	
CVC4-Gen-1.8	CVC4 (1.8)	lang=smt2quant-indtlimit=5000conjecture-gen	
Imandra	Imandra	default mode with 5 second server timeout	functional program encoding
Vampire[_gcx]	Vampire	-ind struct -t 5input_syntax smtlib	SMT-LIB
		g: -indgen on	
		c: -indoct on	
		x: -to lpo -drc off	
Zeno	Zeno	-t 5no-isa	functional program encoding
ZipperPosition	ZipperPosition	-t 5	.zf (native input format)
ZipRewrite		-t 5	.zf with definitions as rewrite rules

All benchmarks were run on an Intel Core i7-4702MQ CPU @ 2.20GHz with 8GB of RAM.

Benchmarks

benchmark set	example	count	NC)	il M	12.50 CO) ^{),}	A COLC	A Gen	l.o Vain	ipire Vair	Pire c	Dire ct	ipire &	pire sc	igire ser	Pire St.	Jen	' Ligh	lippetrosi
combined/combined_nat_list	$\forall n, x. (cons(n + s(n), x) + (x + x) =$	1	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
-	(cons(s(n) + n, x) ++ x) ++ x)	_				Ü	Ü		, and										
list/concat_assoc_1var_10occ	$ \forall v_0.((v_0 ++ v_0) ++ (((v_0 ++ v_0) ++ v_0) ++ (v_0 ++ ((v_0 ++ v_0) ++ (v_0 ++ v_0))) = ((v_0 ++ (v_0 ++ v_0)) ++ (v_0 ++ (v_0 ++ v_0)) ++ (v_0 ++ v_0)) ++ (v_0 ++ v_0))) $	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	36	0
$list/concat_assoc_1var_3occ$	$\forall v_0.(v_0 + (v_0 + v_0) = (v_0 + v_0) + v_0)$	1	0	1	0	0	0	0	0	0	0	1	1	1	1	0	0	1	0
list/concat_assoc_1var_4occ	$ \begin{vmatrix} \forall v_0.(v_0 ++ (v_0 ++ (v_0 ++ v_0)) = (v_0 ++ v_0) ++ (v_0 ++ v_0) \end{vmatrix} $	10	0	0	0	0	0	0	0	0	1	8	9	10	10	0	0	10	0
list/concat_assoc_1var_5occ	$ \forall v_0.(v_0 + + (((v_0 + v_0) + v_0) + v_0) + v_0) = v_0 + + ((v_0 + v_0) + (v_0 + v_0))) $	50	1	0	0	0	0	0	0	0	3	22	27	38	12	0	0	50	0
list/concat_assoc_1var_6occ	$ \forall v_0.((v_0 + v_0) + ((v_0 + (v_0 + v_0)) + v_0) = ((v_0 + v_0) + v_0) + (v_0 + (v_0 + v_0))) $	50	0	0	0	0	0	0	0	0	1	3	13	17	6	0	1	50	0
list/concat_assoc_1var_7occ	$ \forall v_0.(v_0 + ((v_0 + v_0) + ((v_0 + v_0) + (v_0 + v_0) + (v_0 + v_0))) = (v_0 + v_0) + ((v_0 + v_0) + (v_0 + v_0)) + (v_0 + v_0)) $	50	0	0	0	0	0	0	0	0	2	0	5	12	1	0	0	50	0
list/concat_assoc_1var_8occ	$ \forall v_0 \cdot (((v_0 + v_0) + v_0) + (((v_0 + v_0) + v_0) + ((v_0 + v_0)) + ((v_0 + v_0)) + ((v_0 + v_0)) + ((v_0 + v_0)) + ((v_0 + v_0))) $	50	0	0	0	0	0	0	0	0	0	1	1	2	1	0	0	47	0
list/concat_assoc_1var_9occ	$ \forall v_0 \cdot ((v_0 + ((v_0 + v_0) + (((v_0 + v_0) + v_0) + ((v_0 + v_0)))) + v_0 = v_0 + ((v_0 + v_0) + (((v_0 + v_0) + v_0) + (v_0 + (v_0 + v_0))))) $	50	0	0	0	0	0	0	0	0	1	1	1	2	1	0	0	47	0
list/concat_assoc_2var_4occ	$\forall x, y.(x ++ (y ++ (x ++ x)) = (x ++ y) ++ (x ++ x))$	1	0	1	0	0	0	0	0	0	1	1	1	1	1	0	1	1	0
list/concat_assoc_3var_3occ	$\forall x, y, z.(x ++ (y ++ z) = (x ++ y) ++ z)$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$list/pref_1var_1_2occ$	$\forall v_0.pref(v_0, v_0 ++ v_0)$	1	0	1	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0
$list/pref_1var_1_3occ$	$\forall v_0.pref(v_0, v_0 ++ (v_0 ++ v_0))$	2	0	2	0	0	0	0	0	0	1	2	2	2	2	0	1	2	0
list/pref_1var_1_4occ	$\forall v_0.pref(v_0, (v_0 ++ v_0) ++ (v_0 ++ v_0))$	5	0	5	0	0	0	0	0	0	2	5	5	5	5	0	2	5	0

benchmark set	example	count	_A CI	il ACT	72 % CV	^{JA} CY ^C	M Gen	Janai Janai	l.o Idra	ipite Val	ndite's	igite cx	Dire &	Dire sc	noire sect	dire of	dire 4) lip	Lewrite Rosition
list/pref_1var_1_5occ	$\forall v_0.pref(v_0, v_0 ++ (v_0 ++ ((v_0 ++ v_0) ++ v_0)))$	14	0	14	0	0	0	0	0	0	6	14	14	14	14	0	6	14	0
list/pref_1var_2_3occ	$\forall v_0.pref(v_0 ++ v_0, (v_0 ++ v_0) ++ v_0)$	2	0	2	0	0	0	0	0	0	1	0	1	1	0	0	1	0	0
list/pref_1var_2_4occ	$\forall v_0.pref(v_0 ++ v_0, (v_0 ++ v_0) ++ (v_0 ++ v_0))$	5	0	5	0	0	0	0	0	0	1	0	2	2	0	0	1	5	0
list/pref_1var_2_5occ	$\forall v_0.pref(v_0++v_0,(v_0++v_0)++(v_0++(v_0++v_0)))$	14	0	14	0	0	0	0	0	0	3	0	5	5	0	0	3	14	0
list/pref_1var_2_6occ	$ \forall v_0.pref(v_0 ++ v_0, ((v_0 ++ v_0) ++ (v_0 ++ v_0)) ++ (v_0 ++ v_0)) + $	42	0	42	0	0	0	0	0	0	9	0	15	14	0	0	9	42	0
$list/pref_1var_3_3occ$	$\forall v_0.pref(v_0 ++ (v_0 ++ v_0), (v_0 ++ v_0) ++ v_0)$	2	0	0	0	0	0	0	0	0	0	2	1	1	2	0	0	2	0
$list/pref_1var_3_4occ$	$\forall v_0.pref((v_0++v_0)++v_0,(v_0++(v_0++v_0))++v_0)$	10	0	0	0	0	0	0	0	0	2	0	2	2	0	0	2	0	0
$list/pref_1var_3_5occ$	$\forall v_0.pref(v_0 ++ (v_0 ++ v_0), v_0 ++ (((v_0 ++ v_0) ++$	28	0	0	0	0	0	0	0	0	4	0	4	4	0	0	4	28	0
	$(v_0) + (v_0)$																		
$list/pref_1var_3_6occ$	$ \forall v_0.pref((v_0 ++ v_0) ++ v_0, (v_0 ++ v_0) ++ ((v_0 ++ v_0) ++ (v_0 ++ v_0))) $	50	0	0	0	0	0	0	0	0	4	0	7	6	0	0	6	50	0
list/pref_1var_3_7occ	$ \begin{vmatrix} \forall v_0.pref(v_0 ++ (v_0 ++ v_0), (v_0 ++ (v_0 ++ (v_0 ++ v_0))) \\ v_0))) ++ (v_0 ++ (v_0 ++ v_0))) \end{vmatrix} $	50	0	0	0	0	0	0	0	0	6	0	8	8	0	0	8	50	0
list/pref_1var_4_4occ	$ \begin{vmatrix} \forall v_0.pref(((v_0 ++ v_0) ++ v_0) ++ v_0, (v_0 ++ (v_0 ++ v_0)) ++ v_0) \end{vmatrix} $	20	0	0	0	0	0	0	0	0	0	0	5	6	0	0	0	20	0
list/pref_1var_4_5occ	$ \begin{vmatrix} \forall v_0.pref(v_0 + (v_0 + (v_0 + v_0)), v_0 + ((v_0 + v_0)) \\ (v_0 + v_0)) + v_0) \end{vmatrix} $	50	0	0	0	0	0	0	0	0	5	0	7	6	0	0	5	0	0
list/pref_1var_4_6occ	$ \begin{vmatrix} \forall v_0.pref((v_0 + (v_0 + v_0)) + v_0, v_0 + (v_0 + (v_0 + (v_0 + v_0)))) \\ (v_0 + (v_0 + (v_0 + v_0)))) \end{vmatrix} $	50	0	0	0	0	0	0	0	0	3	0	3	3	0	0	4	50	0
list/pref_1var_4_7occ	$ \begin{vmatrix} \forall v_0.pref((v_0 + v_0) + (v_0 + v_0), ((v_0 + v_0) + (v_0 + v_0)) + ((v_0 + v_0) + v_0) \end{vmatrix} $	50	0	0	0	0	0	0	0	0	2	0	2	2	0	0	2	50	0
list/pref_1var_4_8occ	$ \begin{vmatrix} \forall v_0.pref((v_0 + v_0) + (v_0 + v_0), ((v_0 + (v_0 + v_0)) + (v_0 + v_0)) + ((v_0 + v_0) + (v_0)) \end{vmatrix} $	50	0	0	0	0	0	0	0	0	2	0	2	2	0	0	2	50	0
list/pref_1var_5_5occ	$ \begin{vmatrix} \forall v_0.pref((v_0 + v_0) + ((v_0 + v_0) + v_0), ((v_0 + v_0) + (v_0 + v_0)) \end{vmatrix} $	50	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	50	0
list/pref_1var_5_6occ	$ \begin{vmatrix} \forall v_0.pref(v_0 ++ (((v_0 ++ v_0) ++ v_0) ++ v_0), (v_0 ++ v_0) ++ (v_0 ++ ((v_0 ++ v_0) ++ v_0))) \end{vmatrix} $	50	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
list/pref_1var_5_7occ	$ \begin{vmatrix} \forall v_0.pref(v_0 ++ (v_0 ++ (v_0 ++ (v_0 ++ v_0))), v_0 ++ \\ (v_0 ++ ((v_0 ++ v_0) ++ ((v_0 ++ v_0) ++ v_0))) \end{vmatrix} $	50	0	0	0	0	0	0	0	0	1	0	1	1	0	0	2	50	0
list/pref_1var_5_8occ	$ \begin{vmatrix} \forall v_0.pref((v_0 + (v_0 + v_0)) + (v_0 + v_0), (v_0 + v_0) + ((v_0 + v_0) + ((v_0 + v_0) + (v_0 + v_0))) \end{vmatrix} $	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	50	0
list/pref_1var_5_9occ	$ \begin{vmatrix} \forall v_0.pref(v_0 ++ ((v_0 ++ v_0) ++ (v_0 ++ v_0)), (v_0 ++ v_0) ++ ((v_0 ++ v_0) ++ ((v_0 ++ v_0) ++ ((v_0 ++ v_0) ++ (v_0 ++ v_0)))) \end{vmatrix} $	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	50	0
$list/pref_2var_1_2occ$	$\forall x, y.pref(x, x ++ y)$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$list/reverse_expressions$	$\forall x. (revAcc(x) = rev(x))$	4	0	0	0	0	0	1	0	0	1	2	2	2	2	0	0	2	0
nat/add_assoc_1var_10occ	$ \forall v_0.(((v_0 + v_0) + ((v_0 + v_0) + (v_0 + (v_0 + v_0)))) + ((v_0 + v_0) + v_0) = (((((v_0 + v_0) + v_0) + v_0) + (v_0 + v_0)) + (v_0 + v_0)) $	50	0	0	0	50	0	0	0	0	3	0	0	1	0	0	2	43	0
nat/add_assoc_1var_3occ	$\forall v_0.(v_0 + (v_0 + v_0)) = (v_0 + v_0) + v_0$	1	0	1	0	1	0	0	0	0	1	1	1	1	1	0	1	1	0
nat/add_assoc_1var_4occ	$\forall v_0.((v_0 + (v_0 + v_0)) + v_0 = ((v_0 + v_0) + v_0) + v_0)$	10	0	0	0	10	0	0	0	0	4	8	10	10	10	0	2	10	0
nat/add_assoc_1var_5occ	$ \forall v_0.(((v_0 + v_0) + (v_0 + v_0)) + v_0 = (v_0 + (v_0 + v_0)) + (v_0 + v_0)) $	50	1	0	0	50	0	0	0	0	12	13	22	41	17	0	6	50	0
nat/add_assoc_1var_6occ	$ \forall v_0.((v_0 + ((v_0 + v_0) + v_0)) + (v_0 + v_0) = ((v_0 + v_0) + ((v_0 + v_0) + v_0)) + v_0) $	50	3	0	0	50	0	0	0	0	12	2	14	31	9	0	11	50	0
nat/add_assoc_1var_7occ	$ \forall v_0.(((v_0 + v_0) + v_0) + (v_0 + (v_0 + (v_0 + v_0))) = ((v_0 + v_0) + v_0) + ((v_0 + (v_0 + v_0)) + v_0)) $	50	0	0	0	50	0	0	0	0	6	1	5	12	1	0	2	50	0

		1	ı						2										
							JA Gen	3075	\ ,		c	(ndire go	g c	t of	4		;xe
			<u> </u>	il MO	32%	^{SA} 640)X' (C	A. Gell Ina	igig &	ipire Vair	gire,	Dire cx	Bite &	njire ge	hire sc	igire of	gire,	· •	lippers
benchmark set	example	count	ACT.	<i>b</i> C.	, Cy	Cy.	Sept.	1110	1911	r. Jair	1911	1si	197	1911	1911	1811	Dir Ven	Tip,	lipe
nat/add_assoc_1var_8occ	$\forall v_0.(((v_0+(v_0+v_0))+(v_0+v_0))+(v_0+(v_0+v_0)))$	50	0	0	0	50	0	0	0	0	2	0	0	3	0	0	1	50	0
	$(v_0) = (v_0 + v_0) + (((v_0 + (v_0 + v_0)) + (v_0 + v_0)))$																		
	$(v_0)(v_0)(v_0)(v_0)(v_0)(v_0)(v_0)(v_0)$						_	_	_	_		_	_		_	_	_		_
$nat/add_assoc_1var_9occ$	$\forall v_0.(v_0 + (((v_0 + (v_0 + v_0)) + ((v_0 + (v_0 + v_0)) + (v_0 + v_0)) + v_0) = ((((v_0 + (v_0 + v_0)) + v_0) + v_0) + v_0) + v_0)$	50	0	0	0	50	0	0	0	0	1	0	0	0	0	0	0	47	0
	$((v_0 + v_0) + v_0) = ((((v_0 + (v_0 + v_0)) + v_0) + v_0) + v_0)$																		
nat/add_assoc_3var	$\forall x, y, z.(x + (y + z) = (x + y) + z)$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
nat/add_comm	$\forall x, y.(x+y=y+x)$	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
nat/add_comm_with_id	$\forall x, y. (id(x) + y = y + x)$	1	0	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1
nat/add_mix_2var_3occ	$\forall v_0, v_1.((v_1 + v_0) + v_0 = (v_0 + v_1) + v_0)$	30	2	6	2	5	2	18	2	2	17	20	23	30	30	2	12	30	3
nat/add_mix_2var_4occ	$\forall v_0, v_1.((v_0+(v_1+v_1))+v_1=((v_1+v_1)+v_1)+v_0)$	50	2	5	0	4	0	11	0	0	19	6	14	44	29	0	17	36	3
$nat/add_mix_2var_5occ$	$\forall v_0, v_1 \cdot ((v_1 + (v_0 + v_0)) + (v_0 + v_1) = (v_0 + (v_1 + v_0)) + (v_0 + v_1) = (v_0 + (v_1 + v_0)) + (v_0 + v_1) = (v_0 + v_1) + (v_0 + v_1) + (v_0 + v_1) = (v_0 + v_1) + (v_0 + v_1) + (v_0 + v_1) = (v_0 + v_1) + (v_0$	50	1	2	1	7	1	12	1	1	4	4	5	15	9	1	6	21	1
nat/add_mix_2var_6occ	(v_0)) + $(v_0 + v_1)$) $\forall v_0, v_1.(((v_0 + v_1) + (v_1 + v_1)) + (v_1 + v_0) =$	50	0	1	0	1	0	0	0	0	4	2	3	3	2	0	3	7	0
natif add=inix=2 var=500cc	$((v_1 + v_1) + (v_0 + v_1)) + (v_0 + v_1))$			1		1					1				_				O
$nat/add_mix_2var_7occ$	$\forall v_0, v_1.(((((v_0+v_1)+v_0)+v_0)+v_0)+(v_1+v_1) = v_1+(((v_0+(v_0+v_0))+(v_1+v_1))+v_0))$	50	0	0	0	4	0	2	0	0	1	1	1	2	0	0	2	2	1
nat/add_mix_3var_3occ	$\forall v_1 + (((v_0 + (v_0 + v_0)) + (v_1 + v_1)) + v_0))$ $\forall v_0, v_1, v_2.(v_1 + (v_2 + v_0)) = (v_1 + v_0) + v_2)$	50	6	4	35	38	36	47	29	27	48	24	27	45	50	50	36	50	44
nat/add_mix_3var_4occ	$\forall v_0, v_1, v_2.(v_0 + (v_0 + v_2)) + v_1 = ((v_0 + v_2) + v_2)$	50	2	0	0	2	0	12	1	1	13	5	8	35	28	1	9	31	12
1140, 44421111125 (4121666	$v_0) + v_1$		_			_			_	_	10					-		01	
$nat/add_mix_3var_5occ$	$\forall v_0, v_1, v_2.((v_0 + v_1) + ((v_1 + v_2) + v_0)) = (v_2 + v_2)$	50	2	0	0	1	0	2	0	0	7	2	2	16	3	0	7	13	0
	$((v_1+v_0)+v_0))+v_1)$																		
nat/add_mix_3var_6occ	$\forall v_0, v_1, v_2.((v_1 + v_1) + (v_2 + (v_2 + (v_0 + v_0))) = (((v_0 + (v_0 + v_2)) + v_1) + v_1) + v_2)$	50	0	0	0	1	0	2	0	0	1	0	1	3	0	0	0	1	1
$nat/add_mix_3var_7occ$	$\forall v_0, v_1, v_2.(((v_2 + v_2) + v_0) + ((v_0 + (v_1 + v_1)) + (v_0 + (v_1 + v_1))) + (v_0 + (v_1 + v_1)) + ($	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
nat/add_mix_4var_4occ	$v_2) = ((v_2 + v_0) + v_1) + (v_0 + (v_2 + (v_1 + v_2))))$ $\forall v_0, v_1, v_2, v_3.(v_0 + (v_3 + (v_1 + v_2))) = ((v_1 + v_2) + (v_3 + (v_3 + v_3)))$	50	6	1	11	21	13	20	8	7	31	6	9	26	29	34	24	14	11
nat/add_mix_4var_4occ	$(v_0, v_1, v_2, v_3, (v_0 + (v_3 + (v_1 + v_2)) - ((v_1 + v_2) + v_3) + v_0)$	30	0	1	11	21	10	20	0	'	91	0	9	20	23	94	24	14	11
nat/add_mix_4var_5occ	$\forall v_0, v_1, v_2, v_3.(v_2 + (v_1 + (v_0 + (v_0 + v_3)))) = v_0 + v_0$	50	1	0	1	1	1	3	0	0	3	0	3	6	4	1	4	4	1
	$(((v_2+v_1)+v_0)+v_3))$																		
nat/add_mix_4var_6occ	$\forall v_0, v_1, v_2, v_3.(v_0 + ((v_0 + (v_1 + (v_2 + v_3))) + v_2) = (v_0 + ((v_2 + (v_3 + v_1)) + v_0)) + v_2)$	50	0	0	0	0	0	0	0	0	2	0	0	1	0	0	1	3	0
nat/add_mix_4var_7occ	$ \forall v_0, v_1, v_2, v_3. (((v_2 + (v_1 + v_0)) + ((v_0 + v_0) + v_3)) + ((v_0 + v_0) + v_3)) + ((v_0 + v_0) + v_3) + ((v_0 + v_0) + v_3) + ((v_0 + v_0) + v_3) + ((v_0 + v_0) + v_3)) + ((v_0 + v_0) + v_0) + ((v_0 + v_0) +$	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
,	$v_1 = ((((v_0 + v_1) + v_1) + v_3) + v_0) + v_2) + v_0)$																_		
$nat/add_mix_5var_5occ$	0, 1, 2, 0, 1 (((0 . 0) . 1) . (2 . 1)	50	1	0	1	1	1	5	0	0	4	0	1	3	1	8	11	6	2
	$(((v_4 + v_3) + v_1) + v_0) + v_2)$																		
$nat/add_mix_5var_6occ$	$\forall v_0, v_1, v_2, v_3, v_4.((v_1 + (v_3 + (v_0 + v_4))) + (v_2 + v_4)) = ((((v_4 + v_4) + v_1) + v_0) + v_2) + v_3)$	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0
nat/add_mix_5var_7occ	$ \forall v_0, v_1, v_2, v_3, v_4.(((v_1 + v_3) + v_4) + ((v_2 + v_3) + v_4) + ((v_2 + v_3) + v_4) + ((v_3 + v_4) + (v_4 + v_4) + ((v_4 + v_4) + v_4) + ((v_4 +$	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
,	$(v_0 + v_3)) = ((v_3 + v_0) + v_1) + ((v_4 + v_3) + v_3) + (v_4 + v_4) + (v_4 + v_3) + (v_4 + v_3) + (v_4 + v_4) + (v_4 + v_3) + (v_4 + v_4) + (v_4 + v_3) + (v_4 + v_4) + (v_4 + v_4)$, and the second
	$(v_3)+v_2))$																		
nat/add_s_1var_2occ	$\forall x.(s(x) + x = x + s(x))$	2	1	2	1	2	1	1	1	1	2	2	2	2	2	1	1	2	1
nat/add_s_zero_mix_12	$\forall v_0, v_1, v_2, v_3, v_4, v_5.(s(v_0 + (((s(v_5) + s(v_2)) + (v_5) $	50	0	0	2	6	2	11	3	2	15	4	3	20	20	20	4	12	2
	$(s(s(v_1)) + v_3)) + s(v_4))) = (s(v_4 + v_1) + (s(s(s(s(v_2))))) + v_5)) + (v_0 + v_3))$																		
nat/add_s_zero_mix_15	$(s(s(s(s(v_2)))) + v_5)) + (v_0 + v_3))$ $\forall v_0, v_1.(s(s(s(s(v_0)) + s(s(v_1))) + v_5)) + v_5)$	50	0	0	1	1	0	4	1	1	2	1	1	3	5	7	0	3	1
hav, add D 2010 min 10	$s(s(s(zero)) + s(v_0)))) = s(zero) +$				1	1		1	1	1	_	1	1	3				3	1
	$s(s(s(s(s(s(s(v_1))) + (s(v_0) + v_0)))))))$																		
			•	,											•				

							Δ.	^	\ . 9			4ر	4 ا	A 1					
			A CT	ih pol	12 % CV). 	JA Gen	JA Gert	ndra	ilite	ibite c	Dire CA	gire &	Jair Jair	Dire sc	igire &	igire 7	, S	Lewrite Lippers
benchmark set	example	count	Þ.	<i>₽</i> °	0,	0,	0,	10	7.0	7.0	7.0	7.0	7.0	7.0	√.0	7.0	Ve.	Ar.	1718
nat/add_s_zero_mix_18	$ \forall v_0, v_1, v_2, v_3, v_4, v_5, v_6. (s(s(s(s(s(s(s(s(s(s(s(s(s) + s(s(s) + s(s(s(s(s(s(s(s(s(s(s(s(s(s(s) + s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s$	50	0	0	0	0	0	1	0	0	1	0	0	1	2	5	1	0	0
nat/add_s_zero_mix_21		50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nat/add_s_zero_mix_24	$ \begin{vmatrix} \forall v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8.(((s(zero) + (s(s(v_6) + v_7) + (v_3 + s(v_4)))) + s(s(s(v_2)))) + \\ s(s(s(v_1) + v_8) + s(s(v_5) + (s(v_4) + v_0))) = \\ s(s((s(s(((s(v_4) + v_4) + ((v_8 + v_5) + (s(s(v_3 + s(s(v_2 + (v_6 + s(v_0))))))))))) + \\ s(s(v_3 + s(s(v_2 + (v_6 + s(v_0))))))))))) + \\ zero))) + v_7) + v_1))) \end{aligned} $	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nat/add_s_zero_mix_27	$ \begin{vmatrix} \forall v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8. (s(s(s(v_0) + v_6)) + s(s(s(v_5) + (s(s(s(v_3) + v_7)) + s(s(s(s(s(s(v_4)) + s(v_2)) + (s(v_1) + v_8)))))))) &= s(v_2 + s(s(s(v_3)))) + (s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s($	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nat/add_s_zero_mix_3	$\forall v_0, v_1.(v_1 + s(v_0) = s(v_0 + v_1))$	34	14	18	32	34	31	29	32	32	34	34	34	34	34	32	30	34	32
nat/add_s_zero_mix_30	$ \forall v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9.(s(s(s(v_7))) + \\ ((v_6 + s(s(s(v_4) + s(v_5)))) + (s(v_8) + s(s(((v_3 + (s(v_7) + v_1)) + s(s(zero))) + s(s(v_9 + s(s(v_2) + s(v_0))))))))))))))))))))))))))))))))))))$	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nat/add_s_zero_mix_6		50	7	8	29	33	26	37	32	33	44	33	32	50	49	37	25	47	34
nat/add_s_zero_mix_9	$\begin{cases} \forall v_0, v_1, v_2.((s(s(s(s(v_2))))) + s(v_0)) + v_1 = \\ s(s(s(v_2))) + s(v_0 + s(v_1))) \end{cases}$	50	7	4	17	18	10	30	12	14	31	10	8	37	40	31	13	30	12
nat/equal	$\forall x.equal(x,x,x)$	4	1	0	2	4	2	2	1	1	1	2	2	2	2	1	0	4	2
nat/leq_1var_1_2occ	$\forall v_0.(v_0 \le v_0 + v_0)$	1	0	1	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0
nat/leq_1var_1_3occ	$\forall v_0.(v_0 \le v_0 + (v_0 + v_0))$	2	0	2	0	0	0	0	0	0	1	2	2	2	2	0	2	2	0
$nat/leq_1var_1_4occ$	$\forall v_0.(v_0 \le (v_0 + (v_0 + v_0)) + v_0)$	5	0	5 14	0	0	0	0	0	0	3	5	5	5	5 14	0	4	5	0
nat/leq_1var_1_5occ nat/leq_1var_2_3occ	$\forall v_0.(v_0 \le (v_0 + (v_0 + v_0)) + (v_0 + v_0))$	14 2	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\frac{14}{2}$	0	0	0	$\begin{array}{c} 0 \\ 0 \end{array}$	0	0	7	14	14 2	14	14	0 0	12 2	14	0
nat/leq_1var_2_4occ	$ \forall v_0.(v_0 + v_0 \le (v_0 + v_0) + v_0) \forall v_0.(v_0 + v_0 \le (v_0 + (v_0 + v_0)) + v_0) $	5	0	5	0	0	0	0	0	0	$\frac{1}{2}$	1	2	2	0	0	2	5	0
nat/leq_1var_2_5occ	$ \forall v_0.(v_0 + v_0 \le (v_0 + (v_0 + v_0)) + v_0) $ $ \forall v_0.(v_0 + v_0 \le (v_0 + (v_0 + v_0)) + (v_0 + v_0)) $	14	0	14	0	0	0	0	0	0	5	0	5	5	0	0	6	14	0
nat/leq_1var_2_6occ	$ \forall v_0.(v_0 + v_0 \le (v_0 + (v_0 + v_0)) + (v_0 + v_0)) \forall v_0.(v_0 + v_0 \le (v_0 + (((v_0 + v_0) + v_0) + v_0)) + v_0) $	42	0	42	0	0	0	0	0	0	13	0	16	14	0	0	11	42	0
nat/leq_1var_3_3occ	$\forall v_0.(v_0 + (v_0 + v_0) \le (v_0 + v_0) + v_0)$	2	0	2	0	2	0	0	0	0	0	2	2	2	2	0	2	2	0
$nat/leq_1var_3_4occ$	$\forall v_0.((v_0 + v_0) + v_0 \le (v_0 + (v_0 + v_0)) + v_0)$	10	0	0	0	0	0	0	0	0	2	0	2	2	0	0	4	0	0
$nat/leq_1var_3_5occ$	$\forall v_0.((v_0+v_0)+v_0 \leq v_0+((v_0+v_0)+(v_0+v_0)))$	28	0	0	0	0	0	0	0	0	4	0	5	4	0	0	8	28	0
nat/leq_1var_3_6occ	$\forall v_0.((v_0 + v_0) + v_0 \le ((v_0 + v_0) + (v_0 + v_0)) + (v_0 + v_0))$	50	0	0	0	0	0	0	0	0	8	0	11	10	0	0	17	50	0
nat/leq_1var_3_7occ	$ \forall v_0.(v_0 + (v_0 + v_0) \le ((v_0 + v_0) + (v_0 + v_0)) + ((v_0 + v_0) + v_0)) $	50	0	0	0	0	0	0	0	0	9	0	9	9	0	0	28	50	0

							· 00	JA Gerr	%		C)	مل _ا م	Óo	σÇ	ار و	5 52	· 4.		.x©
			₩CT	ir Mai	32%	^{کله} ومرا ^د) ^M (Clo	Jana Jana	igig.	ipire Vair	Dire's	Dire CA	igire re	Vair	Jan Sire ser	gie e	ipire 7		lippeil
benchmark set	example	count	P	₽°	0,	0,	0,	M	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	Ve,	1116	1714
nat/leq_1var_4_4occ	$\forall v_0.(((v_0+v_0)+v_0)+v_0 \le (v_0+v_0)+(v_0+v_0))$	20	0	0	0	20	0	0	0	0	0	0	3	2	0	0	4	20	0
$nat/leq_1var_4_5occ$	$ \begin{vmatrix} \forall v_0 . ((v_0 + (v_0 + v_0)) + v_0 \le ((v_0 + (v_0 + v_0)) + v_0) + v_0 \end{vmatrix} $	50	0	0	0	0	0	0	0	0	4	0	8	7	0	0	10	0	0
$nat/leq_1var_4_6occ$	$ \forall v_0.((v_0 + v_0) + (v_0 + v_0) \le ((v_0 + v_0) + v_0) + ((v_0 + v_0) + v_0)) $	50	0	0	0	0	0	0	0	0	3	0	2	4	0	0	15	50	0
$nat/leq_1var_4_7occ$	$ \forall v_0.((v_0 + v_0) + (v_0 + v_0) \le ((v_0 + v_0) + ((v_0 + v_0)) + (v_0 + v_0)) + (v_0 + v_0) $	50	0	0	0	0	0	0	0	0	2	0	2	2	0	0	7	50	0
$nat/leq_1var_4_8occ$	$ \forall v_0.((v_0 + v_0) + (v_0 + v_0) \le (((v_0 + ((v_0 + (v_0 + v_0)) + v_0)) + v_0) + v_0) $	50	0	0	0	0	0	0	0	0	4	0	4	4	0	0	10	50	0
$nat/leq_1var_5_5occ$	$ \forall v_0.((v_0 + (v_0 + v_0)) + (v_0 + v_0) \le ((v_0 + v_0) + (v_0 + v_0)) + (v_0 + v_0) $	50	0	0	0	50	0	0	0	0	3	0	3	2	0	0	8	50	0
$nat/leq_1var_5_6occ$	$ \forall v_0.(v_0 + ((v_0 + (v_0 + v_0)) + v_0) \le (v_0 + (v_0 + v_0)) + (v_0 + (v_0 + v_0)) $	50	0	0	0	0	0	0	0	0	0	0	1	1	0	0	6	0	0
$nat/leq_1var_5_7occ$	$ \forall v_0.(((v_0 + (v_0 + v_0)) + v_0) + v_0 \le (((v_0 + (v_0 + v_0)) + (v_0 + v_0)) + v_0) + v_0) $	50	0	0	0	0	0	0	0	0	3	0	2	2	0	0	12	50	0
$nat/leq_1var_5_8occ$	$ \forall v_0.(v_0 + ((v_0 + v_0) + (v_0 + v_0)) \le ((v_0 + v_0) + ((v_0 + v_0) + v_0)) + (v_0 + v_0)) $	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	50	0
$nat/leq_1var_5_9occ$	$ \forall v_0.((v_0 + (v_0 + v_0)) + (v_0 + v_0) \le (v_0 + (v_0 + v_0)) + (((v_0 + v_0) + ((v_0 + v_0) + v_0)) + v_0)) $	50	0	0	0	0	0	0	0	0	3	0	2	2	0	0	9	50	0
nat/leq_2var_1_2occ	$\forall x, y.(x \leq x + y)$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
nat/mul_assoc_1var_3occ	$\forall x.(x \times (x \times x) = (x \times x) \times x)$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nat/mul_assoc_3var	$\forall x, y, z. (x \times (y \times z) = (x \times y) \times z)$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
nat/mul_comm	$\forall x, y.(x \times y = y \times x)$	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$nat/mul_distributvity$	$\forall x, y, z. (x \times (y+z) = (x \times y) + (x \times z))$	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
$tree/flatten0_flatten2$	$\forall t, l.(flatten0(t) ++ l = flatten2(t, l))$	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
$tree/flatten0_rotate_3var$	$ \forall p, x, y. (flatten0(node(node(p, x, p), y, p)) = flatten0(node(p, x, node(p, y, p)))) $	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$tree/flatten0_rotate_5var$	$ \forall p, q, r, x, y. (flatten0(node(node(p, x, q), y, r)) = flatten0(node(p, x, node(q, y, r)))) $	1	0	0	1	1	0	1	0	0	0	0	0	0	0	0	1	0	0