1

Discrete Assignment EE1205 Signals and Systems

Kurre Vinay EE23BTECH11036

Question 11.9.3.8: Find the sum to indicated number of term in each of the geometric progressions in $\sqrt{7}$, $\sqrt{21}$, $3\sqrt{7}$, n terms

Solution:

variable	value	description
<i>x</i> (0)	$\sqrt{7}$	first term of the geometric progession
r	$\sqrt{3}$	common ratio of the geometeric progression
x(n)	$\sqrt{7(3^n)}u(n)$	n^{th} term of the geometric progession
y(n)	$\frac{x(0)(r^{n+1}-1)}{r-1}u(n)$	Sum of the n term of the geometric progression

Table: Input parameters

$$X(z) = x(0) \left(\frac{1}{1 - rz^{-1}} \right), \quad |rz^{-1}| < 1$$
 (1)

$$y(n) = x(n) * u(n)$$
(2)

$$Y(z) = X(z) U(z) \tag{3}$$

$$= \sqrt{7} \left(\frac{1}{1 - \sqrt{3}z^{-1}} \right) \left(\frac{1}{1 - z^{-1}} \right), \quad |z| > \sqrt{3}$$
 (4)

$$= \left(\frac{\sqrt{7}}{\sqrt{3}-1}\right) \left(\left(\frac{\sqrt{3}}{1-\sqrt{3}z^{-1}}\right) - \left(\frac{1}{1-z^{-1}}\right)\right) \tag{5}$$

$$\frac{1}{1 - rz^{-1}} \stackrel{\mathcal{Z}^{-1}}{\longleftrightarrow} r^n u(n), \quad |z| > r \tag{6}$$

$$y(n) = \sqrt{7} \left(\frac{\sqrt{3}^{n+1} - 1}{\sqrt{3} - 1} \right) u(n), \quad |z| > \sqrt{3}$$
 (7)

Fig. 0. STEM PLOT OF y(n)