PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-067620

(43) Date of publication of application: 09.03.1999

(51)Int.CI.

H01L 21/027 H01L 27/04

H01L 21/822

(21)Application number: 09-214850

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

08.08.1997

(72)Inventor: MORIHARA TOSHINORI

(54) SEMICONDUCTOR DEVICE WITH ALIGNMENT MARKS

(57)Abstract:

PROBLEM TO BE SOLVED: To improve accuracy in overlay by providing multiple conductive layer parts which extend at a constant spacing and are in parallel to each other on a semiconductor substrate and by forming multiple alignment marks on the conductive layer parts.

SOLUTION: A LOCOS oxide film 10 is formed on a silicon substrate 1. A layer of doped polysilicon is formed on the LOCOS oxide film 10 and is coated with resist. The resist is subjected to patterning into a specified form according to a photolithography process. Etching is performed in accordance with the pattern to form four conductive layers 4 as alignment marks 3 which extend at a constant space to each other and in parallel in one direction. An insulating layer is formed for covering the conductive layers 4. Traces 5 of approximately the same width as the conductive layers 4 and traces 6 of larger width than the conductive layers 4 are provided. The traces 5

and 6 are respectively connected to the conductive layers 4 through plugs.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-67620

(43)公開日 平成11年(1999)3月9日

(51) Int. Cl. 6

識別記号

FΙ

H 0 1 L 21/027

27/04

21/822

H 0 1 L 21/30 502 M

27/04

С

	審査請求 未請求 請求項の数7	OL	(全15頁)
(21)出願番号	特願平9-214850	(71)出願人	000006013 三菱電機株式会社
(22)出願日	平成9年(1997)8月8日	(72)発明者	東京都千代田区丸の内二丁目2番3号 森原 敏則 東京都千代田区丸の内二丁目2番3号 三菱 電機株式会社内
		(74)代理人	弁理士 深見 久郎 (外3名)

(54) 【発明の名称】アライメントマークを有する半導体装置

(57)【要約】

【課題】 重ね合せ精度が高く、かつチップ面積が増加 しないアライメントマークを有する半導体装置を提供す

【解決手段】 半導体装置製造過程でのフォトリソグラ フィ工程において、マスクとの重ね合せ位置を認識し、 決定するためのアライメントマークを有する半導体装置 であって、シリコン基板1と、シリコン基板1の上に一 定の距離を隔てて互いに平行に並んで延びる複数の導電 層4とを備え、導電層4は複数個のアライメントマーク を含む。

【特許請求の範囲】

., 74

【請求項1】 半導体装置製造過程でのフォトリソグラ フィ工程において、マスクとの重ね合せ位置を認識し、 決定するためのアライメントマークを有する半導体装置 であって、

半導体基板と、

前記半導体基板の上に一定の距離を隔てて互いに平行に 並んで延びる複数の導電層部分とを備え、

前記導電層部分は、複数個の前記アライメントマークを 含む、アライメントマークを有する半導体装置。

【請求項2】 前記導電層部分は、相対的に幅の広い第 1部分と、相対的に幅の狭い第2部分とを含む、請求項 1に記載のアライメントマークを有する半導体装置。

【請求項3】 前記複数の導電層部分の端部は互いに接 続される、請求項1または2に記載のアライメントマー クを有する半導体装置。

【請求項4】 半導体装置製造過程でのフォトリソグラ フィ工程において、マスクとの重ね合せ位置を認識し、 決定するためのアライメントマークを有する半導体装置 であって、

半導体基板と、

前記半導体基板の上に形成されたキャパシタとを備え、 前記キャパシタは、下部電極層と、前記下部電極層の上 に形成された誘電体層と、前記誘電体層の上に形成され た上部電極層とを含み、

前記下部電極層は、複数個の前記アライメントマークを 含む、アライメントマークを有する半導体装置。

【請求項5】 半導体装置製造過程でのフォトリソグラ フィ工程において、マスクとの重ね合せ位置を認識し、 決定するためのアライメントマークを有する半導体装置 であって、

半導体基板と、

前記半導体基板の上に一定の距離を隔てて互いに平行に 並んで延びる複数の下部導電層部分と、

前記下部導電層部分の上に一定の距離を隔てて互いに平 行に並んで延びる複数の上部導電層部分とを備え、

前記上部導電層部分と前記下部導電層部分は複数個の前 記アライメントマークを含む、アライメントマークを有 する半導体装置。

【請求項6】 前記上部導電層の幅は、前記下部導電層 40 の幅よりも広い、請求項5に記載のアライメントマーク を有する半導体装置。

【請求項7】 アライメントマーク検出光の波長 λ 。と、その入射角 θ と、前記フォトリソグラフィ工程で 用いる露光光の波長λ, と、前記複数のアライメントマ ークのピッチAとの間には

【数 1 】

$$2\lambda_1 \le A = \sqrt{\frac{n\lambda_0}{1 - \cos^2 \theta}} \qquad (n: 自然数)$$

で示す関係が成り立つ、請求項1~6のいずれか1項に 記載のアライメントマークを有する半導体装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、アライメントマ ークを有する半導体装置に関し、特に、チップ領域に形 成されるアライメントマークを有する半導体装置に関す るものである。

[0002]

【従来の技術】近年の半導体装置の高集積化に伴い、半 導体装置を製造する際には、半導体基板をいくつかのシ ョット領域に分割し、この領域ごとにパターンを転写す る露光方法が採用されている。この方法で半導体基板上 のパターンとフォトマスク上のパターンとの位置を高い 精度で重ね合せるためには、半導体基板上に形成される アライメントマークの位置を正確に認識する必要があ る。重ね合せ精度が 0.2 μ m以下であればダイシング ライン上にアライメントマークを配置することで所定の 精度を得ることができたが、重ね合せ精度を $0.1\mu m$ 20 以下にするためには、半導体素子が形成されるショット の中央部、すなわちチップ領域にアライメントマークを 配置する必要がある。以下、このような従来のアライメ ントマークの構造について説明する。

【0003】図46は従来の半導体基板を示す平面図、 図47は、図46中のショット領域を拡大して示す平面 図、図48は図47中のアライメントマークを拡大して 示す平面図である。これらの図を参照して、シリコン基 板200上には、1度の露光により露光されるショット 領域201が複数個形成される。各ショット領域201 は、半導体素子が形成されるチップ領域であり、またシ ョット領域201内には複数個のアライメントマーク2 03が形成される。1つのアライメントマーク203は Y軸方向に延びるアライメントマーク204aと、X軸 方向に延びるアライメントマーク204bにより構成さ れる。アライメントマーク204a、204bは、それ ぞれ、一定間隔をおいて形成された複数個のアライメン トパターン205a、205bからなる。

【0004】図49は、図48で示すアライメントパタ ーン205aの断面図である。図49を参照して、アラ イメントマーク204aの位置を検出するには、シリコ ン基板200の上方から矢印207で示される光が照射 される。この光がアライメントパターン205aで回折 して矢印208で示される回折光が検出される。この回 折光により、アライメントマーク204aの位置が認識 される。この認識された位置をもとにシリコン基板20 0とステッパのフォトマスク(図示せず)との位置合せ が行なわれ、シリコン基板200上に塗布されたレジス トにマスクパターンが転写される。

[0005]

【発明が解決しようとする課題】以上に示した従来のア

ライメントマークを用いた重ね合せ方法においては、半 導体素子が形成されるチップ領域に半導体素子として機 能しないアライメントパターンを形成する必要がある。 その結果、チップ領域の面積が大きくなり、さらなる微 細化に対応できないという問題があった。

【0006】そこで、この発明は、上述のような問題点を解決するためになされたものであり、重ね合せ精度が高く、かつ、チップ領域の面積が大きくならないアライメントマークを有する半導体装置を提供することを目的とする。

[0007]_ _ _

【課題を解決するための手段】この発明の1つの局面に従った半導体装置は、半導体装置製造過程でのフォトリソグラフィ工程において、マスクとの重ね合せ位置を認識し、決定するためのアライメントマークを有し、半導体基板と、複数の導電層部分とを備える。複数の導電層部分は、半導体基板の上に一定の距離を隔てて互いに平行に並んで延びる。導電層部分は複数個のアライメントマークを含む。

【0008】このように構成されたこの発明のアライメントマークを有する半導体装置においては、半導体素子を構成する導電層部分がアライメントマークを含むため、半導体素子とは別にアライメントマークを設ける必要がない。また、導電層部分はチップ領域に形成されるため、アライメントマークもショットの中央部、すなわちチップ領域に形成される。その結果、重ね合せ精度が高いだけでなくチップ領域の面積が拡大しないアライメントマークを有する半導体装置を提供することができる。

【0009】また、導電層部分は、相対的に幅の広い第 30 1部分と、相対的の幅の狭い第2部分とを含むことが好ましい。この場合、第1部分と第2部分との幅が異なるため、第1部分または第2部分のいずれかをアライメントマークとすることにより、アライメントマークが検出しやすくなる。

【0010】また、複数の導電層部分の端部は互いに接続されていることが好ましい。この場合、さまざまな形状のアライメントマークを提供することができる。

【0011】この発明の別の局面に従った半導体装置は、半導体装置製造過程でのフォトリソグラフィ工程に 40 おいて、マスクとの重ね合せ位置を認識し、決定するためのアライメントマークを有し、半導体基板と、キャパシタとを備える。キャパシタは、半導体基板の上に形成され、複数の下部電極層と、その下部電極層上に形成された誘電体層と、その誘電体層の上に形成された上部電極層とを含む。下部電極層は複数のアライメントマークを有する。

【0012】このように構成されたアライメントマーク を有する半導体装置においては、半導体素子を構成する キャパシタの下部電極層がアライメントマークを含むた 50

め、半導体素子と別にアライメントマークを設ける必要がない。また、下部電極層はチップ領域に形成されるため、アライメントマークもチップ領域に形成される。その結果、重ね合せ精度が高いだけでなく、チップ領域の面積が拡大しない半導体装置を提供することができる。

【0013】この発明の別の局面に従った半導体装置は、半導体装置製造過程でのフォトリソグラフィ工程において、マスクとの重ね合せ位置を認識し、決定するためのアライメントマークを有し、半導体基板と、複数の下部導電層部分と、複数の上部導電層部分とを備える。複数の下部導電層部分は、半導体基板の上に一定の距離を隔てて互いに平行に並んで延びる。複数の上部導電層部分は、下部導電層部分の上に一定の距離を隔てて互いに平行に並んで延びるように形成される。上部導電層部分と下部導電層部分は複数のアライメントマークを含む。

【0014】このように構成されたアライメントマークを有する半導体装置においては、半導体素子を構成する上部導電層部分と下部導電層部分は複数のアライメントマークを含むため、半導体素子と別にアライメントマークを設ける必要がない。また、上部および下部導電層部分はチップ領域に形成されるため、アライメントマークもチップ領域に形成される。その結果、重ね合せ精度が高いだけでなく、チップ領域の面積が拡大しないアライメントマークを有する半導体装置を提供することができる。

【0015】また、上部導電層部分の幅は、下部導電層部分の幅よりも広いことが好ましい。この場合、上部導電層部分の位置を検出するために上部導電層部分に光を照射してもこの光が下部導電層部分まで達しないため、下部導電層部分からの反射光を検出することがない。その結果、上部導電層部分の位置を正しく認識することができる。

【0016】また、アライメントマーク検出光の波長 λ 。と、その入射角 θ と、フォトリソグラフィ工程で用いる露光光の波長 λ 」と、複数のアライメントマークのピッチAとの間には以下に示す関係が成り立つことが好ましい。

[0017]

【数2】

$$2\lambda_1 \le A = \sqrt{\frac{n\lambda_0}{1 - \cos^2 \theta}} \qquad (n: 自然数)$$

【0018】この場合、アライメントマークの位置をさらに正しく認識することができる。

[0019]

【発明の実施の形態】以下、この発明の実施の形態について、図面を参照して説明する。

【0020】(実施の形態1)図1は、この発明に従ったシリコン基板の平面図、図2は、シリコン基板に形成

されるショット領域の平面図である。これらの図を参照して、シリコン基板1には、ステッパを用いて一度で露光できるショット領域2が互いに間隔をあけて形成される。1つのショット領域2が1つのチップ領域となる。ショット領域2には、下層に位置するアライメントマーク3と、上層に位置するアライメントマーク103が形成される。アライメントマーク3、103は、ともに複数個設けられ、そのうちの1つは、重ね合せ精度を向上させるため、ショット領域2のほぼ中央部に設けられる

【0021】図3は、図2中のアライメントマーク3を示す平面図、図4は、図3中の1 V-1 V線に沿って見た断面を示す図、図5は、図3中の0 V-1 V線に沿って見た断面を示す図である。図 $3\sim5$ を参照して、シリコン基板1にLOCOS酸化膜10が形成される。LOCOS酸化膜100の上には互いに距離100の上には互いに距離100の上に延びる100の上に延びる100の中の横方向に延びるアライメントマークとしての1004本の導電層100が形成されている。また、図101中の縦方向に延びる101中でではずりも形成されている。導電層101を覆うようにたとえば 101年のS酸化膜からなる絶縁層101が形成され、スルーホール101を導電性のブラグ101を導電性のブラグ101を導電を表が形成され、スルーホール101を導電性のブラグ101を対象が充填する。

【0022】絶縁層9の表面には導電層4の幅とほぼ等しい幅を有する配線5と、導電層4の幅よりもはるかに大きい幅の配線6が設けられる。配線5、6は、互いにプラグ8を介して導電層4と接続される。また、図2中のアライメントマーク103においても、図3~5で示すような導電層4が形成される。導電層4の本数はこれに限定されるものではなく複数本あればよい。

【0023】次に、図3~図5で示すアライメントマークを有する半導体装置の製造方法について説明する。図6~図15は、図3~図5で示すアライメントマークを有する半導体装置の製造方法を示す図である。なお、図7は図6中のVII-VII線に沿って見た断面を示す図、図12は、図11中のXII-XII線に沿って見た断面図を示す図である。

【0024】図6および図7を参照して、シリコン基板 1上にLOCOS法を用いてLOCOS酸化膜10を形 40 成する。次に、LOCOS酸化膜10上にドープトポリ シリコンからなる層を形成し、この層の上にレジストを 塗布する。レジストをフォトリソグラフィ工程に従い、 所定の形状にパターニングして、このパターンに従って エッチングすることにより、互いに距離を隔てて一方向 に並んで延びる4本の導電層4を形成する。

【0025】図8を参照して、導電層4を覆うようにT EOS酸化膜からなる厚さ 0.3μ mの絶縁層9を形成する。絶縁層9を覆うようにレジスト12を塗布する。次に、シリコン基板1に矢印13で示す波長 λ_0 (2450

5 nm)の光を照射する。導電層4で反射して回折して 強めあった光を認識することにより、導電層4の位置が 認識される。

【0026】図9を参照して、認識された導電層4の位置のデータに基づいて、ステッパのフォトマスク120に対して所定の位置となるようにシリコン基板1が位置決めされる。波長が λ 」(800nm)の矢印121で示す光がレジスト12の照射領域12aに照射される。

【0027】図10を参照して、レジスト12を現像す 10 ることにより、スルーホール用のホールパターン14を 形成する。

【0028】図11および図12を参照して、レジスト12をマスクとして絶縁層9をエッチングすることにより、導電層4に達する内径0.6 μ mのスルーホール7を形成する。

【0029】図13を参照して、スルーホール7を充填するブラグ8を形成し、ブラグ8と絶縁層9とを覆うように厚さ800nmのドープトポリシリコン15をCVD法により形成する。ドープトポリシリコン15上にレジスト16を塗布する。シリコン基板1に矢印17で示す波長入。の光を照射して導電層4で反射して回折した光を検出して、導電層4の位置が認識される。

【0030】図14を参照して、認識された導電層4の位置のデータに基づいて、ステッパのフォトマスク122に対して、所定の位置となるようにシリコン基板1が位置決めされる。次に、フォトマスク122を介して矢印121で示す波長入」の光をレジスト16の照射領域16aに照射する。

【0031】図15を参照して、レジスト16を現像することにより、レジストパターン18を形成する。

【0032】図4および図5を参照して、レジストパターン18をマスクとして、ドープトポリシリコン15をパターニングすることにより、配線5、6が形成される。最後に、レジストパターン18を除去して半導体装置が完成する。

【0033】以上に示したアライメントマークを有する 半導体装置においては、図8および図13で示すよう に、半導体素子を構成する導電層4がアライメントマー クとして使用され、導電層4はチップ領域に形成され る。したがって、重ね合せ精度を低下させないだけでな くアライメントマークを半導体素子と別に設ける場合に 比べてチップ面積を小さくすることができる。

【0034】 (実施の形態2) 実施の形態2では、実施の形態1の図 $6\sim15$ と同様の工程でアライメントマークを製造するが、検出光の波長 λ 。等を限定する。

【0035】図16は、露光される導電層を示す断面図である。図16を参照して、この発明によれば、図8、9、13、14で示す工程において、矢印13および17で示す検出用の光の波長入。と、矢印12で示す露光用の光の波長入」と、導電層4と検出用の光がなす角度

(アライメントマーク検出光の入射角) θ と、導電層 4 の間の距離(アライメントマークのピッチ)Aとの間に は、以下で示す関係が成り立つようにする。

* [0036] 【数3】

$$2\lambda_1 \leq A = \sqrt{\frac{n\lambda_0}{1 - \cos^2 \theta}}$$

(n: 自然数)

... (1)

8

【0037】そのため、強い回折光を検出でき、アライ メントマークがさらに検出しやすくなる。なお、好まし い一例として、 $\lambda_0 = 800 \, \text{nm}$ 、 $\theta = 60^{\circ}$ 、 $\lambda_1 =$ 245 nmとした場合、最適なピッチ(A)は、51 6. 4 nm (n=250), 565. 7 nm (n=30)0)、611.01nm(n=350)となる。

【0038】(実施の形態3)図17は、この発明の実 施の形態3に従ったアライメントマークを示す平面図で あり、(A)は、1つの局面に従ったアライメントマー クを示し、(B)は別の局面に従ったアライメントマー クを示す。

【0039】(A)のアライメントマークでは、1本の 導電層21がシリコン基板上に延びている。図17の

(A) の横方向に延びる部分がアライメントマークであ るため、アライメントマークの端部が各々繋がった状態 になっている。また、導電層21の端部は、コンタクト ホール7を介して他の配線と接続される。

【0040】(B)においては、導電層22では、横方 向に延びる孔22aが形成されている。したがって、こ の孔22a間に挟まれた導電層22の部分がアライメン トマークとして機能する。また、導電層22は、その両 端部のスルーホール7により他の配線と接続される。

【0041】このように構成されたアライメントマーク を有する半導体装置においては、まず、実施の形態1で 示したアライメントマークを有する半導体装置と同様の 効果が得られる。さらに、アライメントマークの各端部 を接続して配線の形状を自由に変形することができる。

【0042】 (実施の形態4) 図18は、図2中のアラ イメントマーク3、103の別の局面に従ったものを示 す平面図であり、図19は、図18中のXIX-XIX 線に沿って見た断面を示す図である。これらの図を参照 して、シリコン基板1において、LOCOS酸化膜10 で囲まれた領域が活性領域36である。活性領域36に は不純物領域40が形成されている。不純物領域40の 間がチャネル領域であり、このチャネル領域上にゲート 酸化膜41を介してアライメントマークとしてのゲート 電極32が形成されている。ゲート電極32を覆うよう に絶縁層42が形成され、絶縁層42には不純物領域4 0に達するコンタクトホール37が形成されている。コ ンタクトホール37を充填するようにプラグ38が形成 されている。

【0043】ゲート電極32は、図18中の横方向に延 びるように、かつ、それぞれが一定の間隔を隔てるよう に形成されている。また、図示しないが、図 18 中の縦 50 領域 40 に達する内径 0.5 μ mのコンタクトホール 3

方向に延びるゲート電極も形成されている。絶縁層42 上にゲート電極32とほぼ平行に延びる配線33が形成 されている。配線33に対してほぼ垂直方向に幅の広い 配線34が延びている。配線34はプラグ38を介して 不純物領域40と接続されている。配線35は4本のゲ ート電極32と接続され、がつ、ゲート電極3~2の延び る方向と平行に絶縁層42上を延びている。

【0044】次に、上述のようなアライメントマークを 有する半導体装置の製造方法について説明する。図20 ~図28は、図18および図19で示すアライメントマ ークを有する半導体装置の製造工程を示す図である。な お、図21は、図20のXXI-XXI線に沿って見た 断面を示す図、図23は、図22のXXIIII-XXI II線に沿って見た断面を示す図である。図20および 21を参照して、シリコン基板1上にLOCOS法によ りLOCOS酸化膜10を形成する。LOCOS酸化膜 10により囲まれた領域が活性領域36となる。

【0045】図22および23を参照して、シリコン基 板1上に厚さ300nmのシリコン酸化膜を形成する。 このシリコン酸化膜上に厚さ800nmのドープトポリ シリコンを堆積する。ドープトポリシリコン上にレジス トを塗布し、このレジストを所定の形状にパターニング する。パターニングされたレジストをマスクとしてドー プトポリシリコンおよびシリコン酸化膜をエッチングす ることにより、アライメントマークとしてのゲート電極 32およびゲート酸化膜41を形成する。ゲート電極3 2をマスクとしてシリコン基板1に不純物イオンを注入 することにより、不純物領域40を形成する。

【0046】図24を参照して、シリコン基板1上に厚 さ500nmのSi〇2 からなる絶縁層42を堆積す る。絶縁層42上にレジスト43を塗布する。シリコン 基板1に矢印45で示す光を照射して、ゲート電極で反 射して回折した光を検出することにより、アライメント マークとしてのゲート電極32の位置を認識する。認識 されたゲート電極32の位置のデータに基づいて、ステ ッパのフォトマスク(図示せず)に対して、シリコン基 板1が所定の位置関係となるように位置決めされた後、 レジスト43が所定のパターンに従って露光される。

【0047】図25を参照して、露光されたレジスト4 3を現像することにより、コンタクトホールを形成する ためのホールパターン46が形成される。

【0048】図26を参照して、ホールパターン46に 従って絶縁層42をエッチングすることにより、不純物

7を形成する。

【0049】図27を参照して、コンタクトホール37 を充填するように、導電性のプラグ38を形成する。プ ラグ38と絶縁層42とに接するようにCVD法により 厚さ800nmのドープトボリシリコン48を堆積す る。ドープトポリシリコン48上にレジスト48を塗布 する。シリコン基板1に矢印47で示す光を照射し、ゲ ート電極32で反射して回折した光を検出することによ り、ゲート電極32の位置を認識する。認識されたゲー ト電極32の位置に基づき、フォトマスクに対して所定 10 の位置となるようにシリコン基板 1 が位置決めされた 後、レジスト49が所定のパターンに従って露光され

【0050】図28を参照して、露光されたレジスト4 9を現像することにより、レジスト49にホールパター ン50が形成される。

【0051】図19を参照して、レジスト49をマスク としてホールパターン50に従ってドープトポリシリコ ン48をエッチングして配線33、34、39を形成す る。最後に、レジスト49を除去して図18および図1 9で示す半導体装置が完成する。

【0052】このようなアライメントマークを有する半 導体装置においては、図27で示すように、半導体素子 を構成するゲート電極32をアライメントマークとして 使用し、このアライメントマークはチップ領域に形成さ れるため、重ね合せ精度が低下しないだけでなくアライ メントマークを半導体素子と別に設けた場合に比べて、 チップ面積が縮小し、半導体装置の微細化をさらに進め ることができる。

【0053】(実施の形態5)図29は、1つの局面に 従った図2中のアライメントマーク3、103の平面図 であり、図30は、図29中のXXX-XXX線に沿っ て見た断面を示す図である。これらの図を参照して、シ リコン基板1にLOCOS酸化膜10が形成されてい る。LOCOS酸化膜10で囲まれた領域に不純物領域 52が形成されている。シリコン基板1を覆うように厚 さ300nmのSiO2からなる絶縁層53が形成され ている。絶縁層53には不純物領域52に達するコンタ クトホール54が縦方向と横方向に一定間隔に形成され ている。コンタクトホール54を充填するように導電性 40 のプラグ55が形成されている。プラグ55と絶縁層5 3とに接するように図29中の横方向に延びるようにア ライメントマークとしてのストレージノード56が形成 されている。また、図示しないが、図29中の縦方向に 延びるアライメントマークとしてのストレージノードも 形成されている。ストレージノード56を覆うように厚 さ800nmのSiO₂からなる誘電体膜57が形成さ れている。誘電体膜57上にドープトポリシリコンから なるセルプレート58が形成されている。ストレージノ ード56と、誘電体膜57と、セルプレート58とがキ 50 して回折により強め合う光を検出する。これにより、ス

10

ャパシタを構成する。

【0054】キャパシタを覆うように厚さが約1000 nmでSiO2からなる絶縁層59が形成されている。 絶縁層59には、セルプレート58に達するスルーホー ル60が形成されており、スルーホール60内には導電 性のプラグ61が充填されている。絶縁層59とプラグ 61と接するように配線62が形成されている。

【0055】次に、図29および30で示すアライメン トマークを有する半導体装置の製造方法について説明す る。図31~37は、図29および30で示すこの発明 のアライメントマークを有する半導体装置の製造方法を 示す図である。図31を参照して、シリコン基板1上 に、LOCOS法により、LOCOS酸化膜10を形成 する。次に、シリコン基板1全面に不純物イオンを注入 することにより、シリコン基板1の表面に不純物領域5 2を形成する。シリコン基板1を覆うように厚さが30 0 nmでSiO₂ からなる絶縁層53を形成する。絶縁 層53上にレジストを塗布し、このレジストを所定の形 状にパターニングすることによりレジストパターンを形 成する。レジストパターンに従って絶縁層53をエッチ ングすることによりコンタクトホール54を形成する。 コンタクトホール54を埋込むプラグ55を形成した 後、絶縁層53とプラグ55とに接するように厚さ5~ 10 nmのドープトポリシリコンを堆積する。このドー プトポリシリコン上にレジストを塗布し、このレジスト を所定の形状にパターニングしてレジストパターンを形 成する。レジストパターンをマスクとしてドープトポリ シリコンをエッチングすることにより、互いに距離を隔 てて一方向に延びるストレージノード56を形成する。

【0056】図32を参照して、ストレージノード56 を覆うように厚さが5~10nmでSi2N3からなる 誘電体膜63を堆積する。誘電体膜63上にドープトポ リシリコンからなる導電層64を堆積する。導電層64 上にレジスト65を塗布する。シリコン基板1に矢印6 6で示す光を照射することにより、ストレージノード5 6で回折して強め合う光を検出する。これにより、スト レージノード56の位置が認識され、ステッパのフォト マスク(図示せず)に対して所定の位置となるようにシ リコン基板 1 が位置決めされる。次に、ステッパにより レジスト65は所定のパターンに露光される。

【0057】図33を参照して、露光されたレジストを 現像してレジストパターン67を形成する。

【0058】図34を参照して、レジストパターン67 に従って導電層64および誘電体膜63をエッチングす ることにより、誘電体膜57およびセルプレート58を 形成する。これにより、キャパシタが完成する。キャパ シタを覆うように厚さが1000nmでSiO2からな る絶縁膜59を堆積する。絶縁膜59上にレジスト68 を塗布する。シリコン基板1に矢印69で示す光を照射

トレージノード56の位置が認識され、この位置データ に基づきステッパのフォトマスク(図示せず)に対して 所定の位置となるようシリコン基板 1 が位置決めされ る。次に、ステッパを用いてレジスト68が所定のパタ ーンに露光される。

【0059】図35を参照して、露光されたレジスト6 8を現像することによりホールパターン70が形成され る。

【0060】図36を参照して、ホールパターン70に 従って絶縁層59をエッチングすることにより、スルー 10 ホール6.0が形成される。スルーホール60を充填する ように導電性のプラグ61を形成し、さらに、プラグ6 1と絶縁層59とに接するように厚さが500nmでA 1Siからなる導電層71を形成する。導電層71上に レジスト72を塗布する。シリコン基板1に矢印73で 示す光を照射して、回折により強め合う光を検出してス トレージノード56の位置を認識する。この位置データ に基づき、ステッパのフォトマスク(図示せず)に対し て所定の位置となるようにシリコン基板 1 が位置決めさ れ、レジスト72が所定のパターンに従って露光され

【0061】図37を参照して、露光されたレジスト7 2を現像することにより、レジストパターン74が形成 される。

【0062】図30を参照して、レジストパターン74 に従って導電層71をエッチングすることにより、配線 62が形成される。最後に、レジストパターン74を除 去して図30で示すアライメントマークを有する半導体 装置が完成する。

【0063】このような本発明のアライメントマークを 有する半導体装置においては、図32、34および36 で示すように、半導体素子を構成するストレージノード 56をアライメントマークとして用いるため、また、ア ライメントマークはチップ領域に形成されるため、重ね 合せ精度を低下させないだけでなくアライメントマーク を半導体素子とは別に設けた場合に比べて、チップの面 積が小さくなり半導体装置の微細化を図ることができ る。

【0064】 (実施の形態6) 図38は、別の局面に従 った図2中のアライメントマーク3,103の平面図で 40 ある。図39は、図38のXXXIX-XXXIX線に 沿って見た断面を示す図である。これらの図を参照し て、シリコン基板1にはLOCOS酸化膜10が形成さ れている。LOCOS酸化膜10上にはアライメントマ ークとしてのマーク80部aと、配線部80bとにより 構成される配線が形成される。マーク部80aの幅は、 配線部806の幅よりも広い。マーク部80aは、図3 8中の横方向に互いに間隔を隔てて延びるように形成さ れる。また、図示しないが、図38中の縦方向に延びる 配線も形成されている。配線を覆うように厚さが500 50 有する半導体装置の製造方法について説明する。図43

12

nmでSiO2からなる絶縁層81が形成されている。 【0065】次に、図38および39で示すアライメン トマークを有する半導体装置の製造方法について説明す る。図40は、図38および39で示すアライメントマ ークを有する半導体装置の製造方法を示す図である。図 40を参照して、シリコン基板1上にLOCOS法によ りLOCOS酸化膜10を形成する。LOCOS酸化膜 10上に厚さ100nmのドープトポリシリコンを堆積 し、このドープトポリシリコンを所定の形状にパターニ ングすることにより、マーク部80aと配線部80bと を形成する。マーク部80aと配線部80bとを覆うよ うに厚さが300nmでSiO2からなる絶縁層81を 形成する。絶縁層81上にドープトポリシリコン82を 形成し、ドープトポリシリコン82上にレジスト83を 塗布する。シリコン基板1に矢印84で示す光を照射す ることにより、マーク部80aで回折して強め合う光を 検出して、マーク部80aの位置を認識する。認識され たマーク部80aの位置データをもとにステッパのフォ トマスク(図示せず)に対して所定の位置となるように 20 シリコン基板 1 が位置決めされる。その後ステッパを用 いてレジスト83を露光する。

【0066】このようなアライメントマークを有する半 導体装置においては、半導体素子の一部である配線の一 部をアライメントマークとして使用するため、また、ア ライメントマークはチップ領域に形成されるため、重ね 合せ精度が低下しないだけでなくアライメントマークを 半導体素子と別に設けた場合に比べて、チップの面積が 小さくなり、半導体装置の集積化をさらに進めることが できる。また、検出される部分の幅を太くしているた 30 め、容易に検出を行なうことができる。

【0067】(実施の形態7)図41は、さらに別の局 面に従った図2中のアライメントマーク3、103の平 面図であり、図42は、図41中のXXXXII-XX XXII線に沿って見た断面を示す図である。図41お よび図42を参照して、シリコン基板1にLOCOS酸 化膜10が形成されている。LOCOS酸化膜10上に 厚さ100nmのドープトポリシリコンからなり、アラ イメントマークとしての導電層90aが図41中の横方 向に延びるように互いに距離を隔てて形成されている。 導電層90aを覆うように厚さが300nmでSiO₂ からなる絶縁層91が形成されている。絶縁層91の上 に厚さ100nmのドープトポリシリコンからなり、互 いに距離を隔てて導電層90aの真上に位置して延びる 導電層90bが形成されている。導電層90bの幅W2 は、導電層90aの幅W」よりも大きい。導電層90b を覆うように厚さが300nmでSiO2からなる絶縁 **層92が形成されている。まて、図示しないが、図41** 中の縦方向に延びる導電層も形成されている。

【0068】次に、図42で示すアライメントマークを

〜図45は、図41および42で示すアライメントマークを有する半導体装置の製造方法を示す図である。図43を参照して、シリコン基板1上にLOCOS法により、LOCOS酸化膜10を形成する。LOCOS酸化膜10上に厚さ100nmのドープトポリシリコンを堆積し、このドープトポリシリコン上にレジスト塗布する。レジストを所定の形状にパターニングしてレジストパターンを形成し、レジストパターンに従ってドープトポリシリコンをエッチングする。これにより、互いに距離を隔てて一方向に延びる導電層90aを形成する。

【0069】図44を参照して、導電層90aを覆うように絶縁層91を堆積し、絶縁層91の表面にドープトポリシリコン94を形成する。ドープトポリシリコン基板1 に矢印93で示す光を照射することにより、導電層90 aで回折して強め合う光を検出する。これにより、導電層90 aの位置を認識して、この位置データに基づいてステッパのフォトマスク(図示せず)に対して所定の位置となるようにシリコン基板が位置決めされる。次に、レジスト95が所定の形状にパターニングされ、レジストパターンとなり、このレジストパターンをマスクとしてドープトポリシリコン94をエッチングすることにより、導電層90aの上に位置し、互いに距離を隔てて一方向に延びる導電層90bを形成する。

【0070】図45を参照して、導電層90bを覆うように絶縁層92を堆積し、絶縁層92の表面にレジスト96を塗布する。シリコン基板1に矢印97で示す光を照射して導電層90bで回折して強め合った光を認識することにより、導電層90bの位置を認識する。この位置データに基づき、ステッパのフォトマスク(図示せず)に対して所定の位置となるようにシリコン基板1を位置決めする。その後、レジスト96を露光することにより、所定のレジストパターンを形成できる。

【0071】このようなアライメントマークを有する半 導体装置においては、図44および45で示すように、 半導体素子の一部である導電層90a、90bをアライ メントマークとして使用するため、また、アライメント マークはチップ領域に形成されるため、アライメントマ ークを半導体素子と別に設けた場合に比べてチップ領域 の面積が小さくなり、半導体装置のさらなる微細化を図 40 ることができるだけでなく、重ね合せ精度が低下しな い。また、下部に位置するアライメントマークとしての 導電層90aの幅は、上部に位置するアライメントマー クとしての導電層90bの幅よりも小さいため、導電層 90 bを光学顕微鏡などで認識する際に間違って導電層 90aを見てしまうことがない。さらに、導電層90b に光を照射する際には、導電層90bに遮られて導電層 90 aまで光が達しにくいため、導電層90 aで回折し た光を認識することがない。そのため、アライメントマ ーク90bを確実に認識することができる。

14

【0072】以上、この発明の実施の形態について説明したが、ここで示した実施の形態はさまざまに変形可能である。まず、上述の(1)で示す式は、実施の形態2だけでなく、実施の形態3~7についても適用可能である。すなわち、実施の形態3~7についても、上述の

(1) で示す式のような関係を成立させれば、さらに精度よくアライメントマークを検出することができる。また、それぞれの実施の形態で用いた絶縁層や導電層の材料や膜厚は必要に応じて適宜変更することができる。

【0073】今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

[0074]

しやすくなる。

30

【発明の効果】この発明の1つの局面に従ったアライメントマークを有する半導体装置は、半導体装置製造過程でのフォトリソグラフィ工程において、マスクと重ね合せ位置を認識し、決定するためのアライメントマークを有し、半導体基板と、複数の導電層部分とを備える。複数の導電層部分は半導体基板の上に一定の距離を隔てて互いに平行に並んで延びる。導電層部分は複数個のアライメントマークを含む。

【0075】このように構成されたこの発明のアライメントマークを有する半導体装置においては、重ね合せ精度が高くかつチップ領域の面積が拡大しないアライメントマークを有する半導体装置を提供することができる。【0076】また、導電層部分は、相対的に幅の広い第1部分と、相対的の幅の狭い第2部分とを含むことが好ましい。この場合、第1部分と第2部分との幅が異なるため、第1部分または第2部分のいずれかをアライメントマークとすることにより、アライメントマークを検出

【0077】また、複数の導電層部分の端部は互いに接続されていることが望ましい。この場合、さまざまな形状のアライメントマークを提供することができる。

【0078】この発明の別の局面に従った半導体装置は、半導体装置製造過程でのフォトリソグラフィエ程において、マスクとの重ね合せ位置を認識し、決定するためのアライメントマークを有し、半導体基板と、キャパシタとを備える。キャパシタは、半導体基板の上に形成され、複数の下部電極層と、その下部電極層上に形成された誘電体層と、その誘電体層の上に形成された上部電極層とを含む。下部電極層は複数のアライメントマークを有する。

【0079】このように構成されたアライメントマークを有する半導体装置においては、重ね合せ精度が高く、かつチップ領域の面積が拡大しない半導体装置を提供す 50 ることができる。

【0080】この発明の別の局面に従った半導体装置 は、半導体装置製造過程でのフォトリソグラフィ工程に おいて、マスクとの重ね合せ位置を認識し、決定するた めのアライメントマークを有し、半導体基板と、複数の 下部導電層部分と、複数の上部導電層部分とを備える。 複数の下部導電層部分は、半導体基板の上に一定の距離 を隔てて互いに平行に並んで延びる。複数の上部導電層 部分は、下部導電層部分の上に一定の距離を隔てて互い に平行に並んで延びるように形成される。上部導電層部 分と下部導電層部分は複数のアライメントマークを含 - tr. -

【0081】このように構成されたアライメントマーク を有する半導体装置においては、重ね合せ精度が高く、 かつ、チップ領域の面積が拡大しないアライメントマー クを有する半導体装置を提供することができる。

【0082】また、上部導電層部分の幅は、下部導電層 の幅よりも広いことが好ましい。この場合、上部導電層 部分の位置を検出するために上部導電層に光を照射して もこの光が下部導電層まで達しないため、下部導電層か らの反射光を検出することがない。その結果、上部導電 層の位置を正しく認識することができる。また、アライ メントマーク検出光の波長 λ 。と、その入射角 θ と、フ **ォトリソグラフィ工程で用いる露光光の波長λ」と、複** 数のアライメントマークのピッチAとの間には(1)で 示す関係が成り立つことが好ましい。この場合、アライ メントマークの位置をさらに正しく認識することができ る。

【図面の簡単な説明】

この発明によるアライメントマークを有する 半導体装置が形成されるシリコン基板を示す図である。

【図2】 図1中のショット領域を示す平面図である。

【図3】 この発明に従った1つのアライメントマーク を示す平面図である。

【図4】 図3中のIV-IV線に沿って見た断面を示 す図である。

【図5】 図3中のV-V線に沿って見た断面を示す図 である。

【図6】 図3で示すアライメントマークを有する半導 体装置の製造方法の第1工程を示す図である。

【図7】 図 6 中の V I I - V I I 線に沿って見た断面 40 を示す図である。

【図8】 図3で示すアライメントマークを有する半導 体装置の製造方法の第2工程を示す断面図である。

【図9】 図3で示すアライメントマークを有する半導 体装置の製造方法の第3工程を示す断面図である。

【図10】 図3で示すアライメントマークを有する半 導体装置の製造方法の第4工程を示す断面図である。

【図11】 図3で示すアライメントマークを有する半 導体装置の製造方法の第5工程を示す平面図である。

【図12】 図11中のXII-XII線に沿って見た 50 断面を示す図である。

図3で示すアライメントマークを有する半 【図13】 導体装置の製造方法の第6工程を示す断面図である。

【図14】 図3で示すアライメントマークを有する半 導体装置の製造方法の第7工程を示す断面図である。

図3で示すアライメントマークを有する半 【図15】 導体装置の製造方法の第8工程を示す断面図である。

検出用の光と露光用の光が照射されるアラ イメントマークを示す断面図である。

【図17】 この発明の実施の形態3に従ったアライメ ントマークとしての導電層を示す平面図であり、(A) は、1つの局面に従った導電層を示す平面図であり、

(B) は、別の形態に従った導電層を示す平面図であ る。

【図18】 この発明の実施の形態4に従ったアライメ ントマークを有する半導体装置を示す平面図である。

【図19】 図18中のXIX-XIX線に沿って見た 断面を示す図である。

【図20】 図18で示すアライメントマークを有する 半導体装置の製造方法の第1工程を示す平面図である。

図20中のXXI-XXI線に沿って見た 【図21】 断面を示す図である。

図18で示すアライメントマークを有する 【図22】 半導体装置の製造方法の第2工程を示す平面図である。

図22中のXXIII-XXIII線に沿 【図23】 って見た断面を示す図である。

図18で示すアライメントマークを有する 【図24】 半導体装置の製造方法の第3工程を示す断面図である。

図18で示すアライメントマークを有する 【図25】 半導体装置の製造方法の第4工程を示す断面図である。

【図26】 図18で示すアライメントマークを有する 半導体装置の製造方法の第5工程を示す断面図である。

【図27】 図18で示すアライメントマークを有する 半導体装置の製造方法の第6工程を示す断面図である。

【図28】 図18で示すアライメントマークを有する 半導体装置の製造方法の第7工程を示す断面図である。

この発明の実施の形態5に従ったアライメ ントマークを有する半導体装置を示す平面図である。

【図30】 図29中のXXX-XXX線に沿って見た 断面を示す図である。

図29で示すアライメントマークを有する 【図31】 半導体装置の製造方法の第1工程を示す断面図である。

【図32】 図29で示すアライメントマークを有する 半導体装置の製造方法の第2工程を示す断面図である。

図29で示すアライメントマークを有する 【図33】 半導体装置の製造方法の第3工程を示す断面図である。

図29で示すアライメントマークを有する 【図34】 半導体装置の製造方法の第4工程を示す断面図である。

図29で示すアライメントマークを有する 【図35】 半導体装置の製造方法の第5工程を示す断面図である。

30

16

【図36】 図29で示すアライメントマークを有する 半導体装置の製造方法の第6工程を示す断面図である。

【図37】 図29で示すアライメントマークを有する 半導体装置の製造方法の第7工程を示す断面図である。

【図38】 この発明の実施の形態6に従ったアライメントマークを有する半導体装置を示す平面図である。

【図39】 図38中のXXXIX-XXXIX線に沿って見た断面を示す図である。

【図40】 図38で示すアライメントマークを有する 半導体装置の製造工程を示す断面図である。

【図41】 この発明の実施の形態7に従ったアライメントマークを有する半導体装置を示す平面図である。

【図42】 図41中のXXXXII-XXXXII線 沿って見た断面を示す図である。

【図43】 図41で示すアライメントマークを有する

半導体装置の製造方法の第1工程を示す断面図である。

【図44】 図41で示すアライメントマークを有する 半導体装置の製造方法の第2工程を示す断面図である。

18

【図45】 図41で示すアライメントマークを有する 半導体装置の製造方法の第3工程を示す断面図である。

【図46】 従来のシリコン基板を示す平面図である。

【図47】 従来のショット領域を示す平面図である。

【図48】 従来のアライメントマークを示す平面図である。

10 【図49】 従来のアライメントマークを示す断面図である。

【符号の説明】

1 シリコン基板、4 ゲート電極、5,6 配線、2 1,23,90a,90b 導電層、56 下部電極 層、80a マーク部。

【図17】

【図22】

【図39】

【図18】

[図23]

【図24】

【図25】

【図31】

【図33】

【図32】

