Statistical Learning and Data Science

Xinwei Deng

xdeng@vt.edu

Department of Statistics

Course Agenda

- Presentation and discussion
- Choose topics and literature review
- Conduct a mini-research project

Statistical Perspectives for Modern Data Analytics

• Matrix: an arrangement of multiple rows (or columns)

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- From statistical perspective, it is mainly for data matrix, or some statistic of data matrix.
 - E.g., Covariance matrix
- The matrix algebra is useful and meaningful in modern data analytics.
 - E.g., matrix completion problem.

Statistical Perspectives for Modern Data Analytics (Con't)

- Big Data: Data is so-called Big with multiple rows, multiple columns, multiple types, multiple collection channels, etc.
- From statistical perspective, the challenges in Big Data mainly come from dependency.
 - Dependency among rows.
 - Dependency among columns.
 - Dependency between past-time and current-time data points.
 - Dependency between computation efficiency and estimation accuracy.

Illustration of Dependency

- In statistics, the challenges in Big Data mainly come from dependency.
 - Dependency among rows and dependency among columns.

Statistical Perspectives for Modern Data Analytics (Con't)

• Data Analytics: In simple view, it is similar to machine learning.

Training

Prediction

- From statistical perspective, the key of data analytics is to understand the data generation mechanism:
 - Enable model inference.
 - Enable model prediction.

- Multi-response Regression and Model Selection
 - Structured Lasso with multiple responses.
 - Multi-response with consideration of covariance matrix.

- Discriminant Analysis (DA) for Classification
 - LDA and QDA.
 - Regularized discriminant analysis.
 - Discriminant analysis based approach for classification.

- Graphical Model via Covariance Matrix Estimation
 - Modified Cholesky decomposition approach.
 - Structured graphical model estimation.
 - Multiple graphical models.
 - Nonparametric approach for graphical model estimation.

- Spatial-Temporal Modeling
 - Gaussian process modeling in computer experiment.
 - Multivariate time series with spatial correction structure.

- Interface between machine learning and experimental design
 - Effective data collection for efficient modeling.
 - Active learning and sequential design.
 - Embrace experimental design thinking for large-scale statistical analysis.

- Statistical computation thinking in multivariate analysis
 - Tradeoff between computation efficiency and estimation accuracy.
 - Optimization-based data analytics.
 - Statistical computation thinking for data science.

Scope of Data and Modeling

- Scalar → Vector → Matrix → Tensor
 - Many common concepts.
- From simple to advance
 - Simple regression to regularized tensor regression
 - Old techniques can be original.
- The responses can be continuous, discrete, or both.
 - From logistic regression to image classification.
- Modeling strategy:
 - Global vs Local modeling
 - Parametric vs Nonparametric methods.

The Multivariate Data

x_1	x_2	x_3	 x_k	x_{k+1}	 	x_{p-1}	X_p

$$\mathbf{Y} = (y_{ij})$$
 is $n \times q$ output matrix

$$\mathbf{X} = (x_{ij})$$
 is $n \times p$ input matrix

Temporal/Functional Multivariate Data

x_1	x_2	x_3	 X_k	x_{k+1}	 	x_{p-1}	X_p

$$\mathbf{Y}(t) = (y_{ij}) \text{ is } n \times q$$
output matrix

$$\mathbf{X}(t) = (x_{ij}) \text{ is } n \times p \text{ input}$$

matrix

• At each time point, it is a multivariate data.

Tensor: a Generalization of Matrix

- Tensor: a *multidimensional* array.
- Example: fMRI data in Neuroscience: 3D brain images.
 - seek association between brain images (X) and clinical outcomes (Y).

Tensor Regression

- Tensor along time is a generalization of spatial-temporal structure.
 - Goal: predict the response on the future time point.

Topic 1:

Multi-response Regression

The Linear Model

- Consider the linear model $y = x'\beta + \epsilon$, $\epsilon \sim N(0, \sigma^2)$ where $x = (x_1, \dots, x_p)'$ and $\beta = (\beta_1, \dots, \beta_p)'$.
- ▶ With data $(x_i, y_i), i = 1, ..., n$, the log-likelihood is

$$L(\beta, \sigma^2) = \log \left\{ \prod_{i=1}^n \frac{1}{\sqrt{2\pi}} (1/\sigma^2)^{1/2} \exp(-\frac{(y_i - x_i'\beta)^2}{2\sigma^2}) \right\}$$
$$\propto -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - x_i'\beta)^2$$
$$= -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} (y - X\beta)^T (y - X\beta)$$

▶ The MLE of β is obtained by $\min - \log(L(\beta, \sigma^2))$,

$$\min_{\beta,\sigma^2} \frac{n}{2} \log \sigma^2 + \frac{1}{2\sigma^2} (y - X\beta)^T (y - X\beta).$$

Some Remarks

ightharpoonup Estimating β in MLE is equivalent to the OLS estimation, i.e.,

$$\min_{\beta} LS(\beta) = (y - X\beta)^T (y - X\beta)$$

- The negative log-likelihood or least squares both can be viewed as loss functions.
- Consider the regularization/penalty on the loss function, which is in the format of

Loss Function
$$+ \lambda Penalty$$

The penalized likelihood approach is the same as the penalized least squares when the penalty only involves β.

Lasso for Model Selection

The Lasso is to estimate β by

$$\hat{\beta}^{\text{Lasso}} = \operatorname{argmin}_{\beta} \{ (y - X\beta)^T (y - X\beta) + \lambda \sum_{j=1}^{p} |\beta_j| \}.$$

- ▶ Here is the penalty $P(\beta)$ is l_1 norm of β , i.e. $P(\beta) = \|\beta\|_1 = \sum_{j=1}^p |\beta_j|$.
- It is equivalent to the constraint/regularization problem:

$$\hat{eta}^{\mathrm{Lasso}} = \mathrm{argmin}_{eta} (y - X eta)^T (y - X eta)$$
 subject to $\sum_{j=1}^p |eta_j| \leq M$

The other related: adaptive Lasso, fused Lasso, and the generalized Lasso.

Group Lasso for Model Selection

Consider the predictor variables have a group structure by

$$\mathbf{x} = (x_{11}, \dots, x_{1k_1}, \dots, x_{p1}, \dots, x_{pk_p}),$$

where each group is x_{j1}, \ldots, x_{jk_i} .

- Such group structures can be non-overlapped or overlapped.
- The linear model can be written as

$$y = \sum_{i=1}^{p} \sum_{j=1}^{k_i} x_{ij} \beta_{ij} + \epsilon.$$

- ▶ The penalty term also accommodate the group structure:
 - ▶ Yuan and Lin (2006): $P(\beta) = \sum_{j=1}^{p} \sqrt{\beta_{j1}^2 + \dots + \beta_{jk_j}^2}$.
 - ▶ Zhao et al. (2006): $P(\beta) = \sum_{j=1}^{p} \max\{|\beta_{j1}|, \dots, |\beta_{jk_j}|\}.$
 - Group Bridge (Huang et. al., 2009) and Hierarchical LASSO (Zhou and Zhu, 2009).

Multi-response Linear Model

- In multi-response regression, the response vector $y = (y_1, \dots, y_q)'$ and the predictor vector $x = (x_1, \dots, x_p)'$.
- Consider the linear model

$$y = B'x + \epsilon, \quad \epsilon \sim N(0, \sigma^2 I),$$

where B is a $p \times q$ matrix of coefficients and the kth column β_k is coefficient vector associated with y_k regressing on x.

- Remark 1: For these q regression models, different response variable with the same predictor variables.
- Remark 2: One can also consider the model $y|x \sim N(B'x, \Sigma)$. Here Σ reflects the correlation structure among q response variables $y = (y_1, \ldots, y_q)'$.

Model Selection for Multi-response Model

▶ The log-likelihood function L(B) is

$$\log \left\{ \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} |\Sigma^{-1}|^{1/2} \exp(-\frac{(y_i - B'x_i)'\Sigma^{-1}(y_i - B'x_i)}{2}) \right\}$$

$$\propto \frac{n}{2} \log |\Sigma^{-1}| - \frac{1}{2} \sum_{i=1}^{n} (y_i - B'x_i)'\Sigma^{-1}(y_i - B'x_i)$$

with
$$\Sigma = \sigma^2 I$$
.

ightharpoonup Seeking sparse estimation of coefficient matrix B, consider penalized regression based on the log-likelihood function.

$$\begin{split} \hat{B} &= \arg\min \frac{1}{n} \sum_{i=1}^{n} (y_i - B' x_i)' (y_i - B' x_i) + \lambda P(B) \\ &= \arg\min \sum_{k=1}^{q} \frac{1}{n} \sum_{i=1}^{n} (y_{ik} - \beta'_k x_i)^2 + \lambda P(B). \end{split}$$

Penalty: Structured v.s. Non-Structured

The coefficient matrix B is in a matrix format as

$$\boldsymbol{B} = \left(\begin{array}{ccc} \beta_{11} & \dots & \beta_{q1} \\ \vdots & \ddots & \vdots \\ \beta_{1p} & \dots & \beta_{qp} \end{array} \right).$$

- One can pursue
 - A sparse coefficient matrix estimate B.
 - ▶ Some rows of \hat{B} become zero vectors.
 - Other patterns of interest on the sparsity.
- ▶ To encourage some rows of B being zeros for reducing number of predictors in the model, consider the penalty

$$P(B) = \lambda_1 \sum_{j=1}^{p} \sqrt{\sum_{k=1}^{q} \beta_{kj}^2} + \lambda_2 \sum_{j=1}^{p} \sum_{k=1}^{q} |\beta_{kj}|.$$

where λ_1 and λ_2 are tuning parameters.

Penalty: Hierarchical Structure via Re-parameterization

▶ Alternatively, we can consider a hierarchical structure to parameterize β_{kj} as

$$\beta_{jk} = \gamma_j \alpha_{kj}, \quad \gamma_j \ge 0.$$

- Such a parametrization provides the flexibility of obtaining a penalty with pursuing sparsity along the rows of B.
- Specifically, we can consider the penalty function as follows:

$$P(B) = \lambda_1 \sum_{j=1}^{p} \gamma_j + \lambda_2 \sum_{j=1}^{p} \sum_{k=1}^{q} |\alpha_{kj}|,$$

where λ_1 and λ_2 are tuning parameters.

Multi-response with Covariance Matrix Estimation

- ▶ The multi-response linear model $y = B'x + \epsilon$, $\epsilon \sim N(0, \Sigma)$.
- lacktriangle To estimate B and Σ , consider the negative log-likelihood which is

$$-\frac{n}{2}\log|\mathbf{\Sigma}^{-1}| + \frac{1}{2}\sum_{i=1}^{n}(\mathbf{y}_i - \mathbf{B}'\mathbf{x}_i)'\mathbf{\Sigma}^{-1}(\mathbf{y}_i - \mathbf{B}'\mathbf{x}_i)$$
$$= -\frac{n}{2}\log|\mathbf{\Sigma}^{-1}| + \frac{1}{2}tr[(\mathbf{Y} - \mathbf{X}\mathbf{B})\mathbf{\Sigma}^{-1}(\mathbf{Y} - \mathbf{X}\mathbf{B})^T]$$

lacktriangle Seeking the sparsity on B with the consideration of Σ , we can consider

$$\min - \log |\mathbf{\Sigma}^{-1}| + \frac{1}{n} tr[(\mathbf{Y} - \mathbf{X}\mathbf{B})\mathbf{\Sigma}^{-1}(\mathbf{Y} - \mathbf{X}\mathbf{B})^{T}]$$
$$+ \lambda_1 P_1(\mathbf{B}) + \lambda_2 P_2(\mathbf{\Sigma})$$

A few Remarks

- The complex of penalty is closely related to the complex of the model estimation.
- The MRCE (Rothman et al., 2010) is to consider an overall sparse structure on **B** and Σ^{-1} , which is

$$P_1(\mathbf{B}) = \sum_{i,j} |b_{ij}|, P_2(\mathbf{\Sigma}^{-1}) \sum_{i \neq j} |c_{ij}|,$$

where c_{ij} is the (i,j) element of Σ^{-1} .

Therefore, the MRCE is to consider

$$\min - \log |\mathbf{\Sigma}^{-1}| + \frac{1}{n} tr[(\mathbf{Y} - \mathbf{X}\mathbf{B})\mathbf{\Sigma}^{-1}(\mathbf{Y} - \mathbf{X}\mathbf{B})^T]$$

$$+ \lambda_1 \sum_{i,j} |b_{ij}| + \lambda_2 \sum_{i \neq j} |c_{ij}|.$$

Another Angle from Multivariate t-Distribution

- The multivariate t-distribution can be viewed as a scaled multivariate normal.
- ▶ Specifically, denote $w \sim \Gamma(\nu/2, \nu/2)$, which is independent of $z \sim N(\mathbf{0}, \Sigma)$. If defining

$$\boldsymbol{y} = \boldsymbol{\mu} + w^{-1/2} \boldsymbol{z},$$

Then $y \sim t(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \nu)$.

 Using the above result, one can develop multi-response regression using t-distribution as the random error, i.e.,

$$y = B'x + \epsilon, \ \epsilon \sim t(0, \Sigma, \nu).$$

Another Angle from Multivariate t-Distribution (Con't)

 Under t-distribution as the random error, the multi-response linear model is

$$y \sim t(B'x, \Sigma, \nu) \Leftrightarrow \sqrt{w}(y - B'x)|w \sim N(0, \Sigma)$$

▶ In addition, one can show that w|y still has a Gamma distribution, which is

$$w|\mathbf{y} \sim \Gamma(\frac{\nu+p}{2}, \frac{\nu+d\mathbf{y}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}{2})$$
$$\Rightarrow E(w|\mathbf{y}) = \frac{\nu+p}{\nu+d\mathbf{y}(\boldsymbol{\mu}, \boldsymbol{\Sigma})}$$

where $d_{\mathbf{y}}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is the square of Mahalanobis distance, $d_{\mathbf{y}}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (\mathbf{y} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \boldsymbol{\mu}).$

Therefore, we can develop an EM algorithm to obtain the parameter estimation.

EM Algorithm for Parameter Estimation

- ▶ Suppose the data are $(x_i, y_i), i = 1, ..., n$, and $x \in \mathcal{R}^p$, $y \in \mathcal{R}^q$.
- ▶ With an initial estimation of μ and Σ , we can develop an EM algorithm for parameter estimation. At kth iteration

E-STEP Given current estimator $\hat{\mu}$ and $\hat{\Sigma}$, update the value of w_i ,

$$w_i^{(k)} = \frac{\nu + p}{\nu + d_i(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\Sigma}})},$$

where
$$d_{\hat{\boldsymbol{i}}}(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\Sigma}}) = (\boldsymbol{y} - \hat{\boldsymbol{\mu}})^T \hat{\boldsymbol{\Sigma}}^{-1} (\boldsymbol{y} - \hat{\boldsymbol{\mu}}).$$

M-STEP With the updated value of $w_i^{(k)}$, we can update the estimation of μ and Σ by

$$\min - \log |\mathbf{\Sigma}^{-1}| + \frac{1}{n} \sum_{i=1}^{n} w_i^{(k)} (\mathbf{y}_i - \mathbf{B}' \mathbf{x}_i)' \mathbf{\Sigma}^{-1} (\mathbf{y}_i - \mathbf{B}' \mathbf{x}_i)$$
$$+ \lambda_1 \sum_{i,j} |b_{ij}| + \lambda_2 \sum_{i \neq j} |c_{ij}|.$$

Topics 3:

Covariance Matrix Estimation

► The multi-response model is simplified as

$$y = \mu + \epsilon, \epsilon \sim N(0, \Sigma).$$

▶ With data y_i , i = 1, ..., n, it is equivalent to

$$\boldsymbol{y}_i \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), i = 1, \dots, n.$$

 \blacktriangleright To estimate μ and Σ , the log-likelihood function becomes

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log \left\{ \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} |\boldsymbol{\Sigma}^{-1}|^{1/2} \exp(-\frac{(\boldsymbol{y}_i - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_i - \boldsymbol{\mu})}{2}) \right\}$$
$$\propto \frac{n}{2} \log |\boldsymbol{\Sigma}^{-1}| - \frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{y}_i - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_i - \boldsymbol{\mu})$$
$$\propto \log |\boldsymbol{\Sigma}^{-1}| - tr[\boldsymbol{\Sigma}^{-1} \boldsymbol{S}],$$

where

$$S = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{y}_i - \boldsymbol{\mu}) (\mathbf{y}_i - \boldsymbol{\mu})^T.$$

Estimating Σ

Based on $L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \propto \frac{n}{2} \log |\boldsymbol{\Sigma}^{-1}| - \frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{y}_i - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_i - \boldsymbol{\mu}), \text{ it is easy to obtain the estimate of } \boldsymbol{\mu} \text{ as}$

$$\hat{\boldsymbol{\mu}} = \bar{\boldsymbol{y}} = \frac{1}{2} \sum_{i=1}^{n} \boldsymbol{y}_{i}.$$

▶ To estimate Σ , take the first derivative with respect to $\Omega = \Sigma^{-1}$

$$\frac{\partial}{\partial \mathbf{\Omega}} \left\{ -\log |\mathbf{\Omega}| + tr[\mathbf{\Omega} \mathbf{S}] \right\}$$
$$= -\mathbf{\Sigma} + \mathbf{S} = 0$$

Therefore, the estimate of Σ is

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{y}_i - \bar{\boldsymbol{y}}) (\boldsymbol{y}_i - \bar{\boldsymbol{y}})^T.$$

 \blacktriangleright What if taking the first derivative w.r.t. Σ ? (Take-home)

Why Estimating Σ⁻¹: Gaussian Graphical Model

$$\mathbf{\Omega} = \begin{pmatrix} c_{11} & c_{12} & \dots & c_{1q} \\ c_{21} & c_{22} & \dots & c_{2q} \\ \vdots & \ddots & \vdots & \vdots \\ c_{q1} & c_{q2} & \dots & c_{qq} \end{pmatrix}$$

concentration matrix $\mathbf{\Sigma}^{-1} \equiv \mathbf{\Omega} = (c_{ij})$

Data
$$\mathbf{Y} = (y_{ij})$$
 is an $n \times q$ matrix

• describe the **conditional dependency** among variables: if $c_{ij} = 0$ zero, then variables i and j are conditionally independent given the other variables.

Thank you!

Questions and Comments?