Package 'optBuck'

May 11, 2022

Type	Package
Title	Optimal bucking
	0.4.0

Version 0.1.0

Author Lennart Noordermeer

Maintainer Lennart Noordermeer < lennart.noordermeer@nmbu.no>

Description This package contains functions for extracting and analyzing data from cut-to-length harvesters and optimizing the bucking. It uses harvester production report (.hpr) files as input. The main function is optBuck() which optimizes the bucking of tree stems using dynamic programming. The package is based on harvester production data retrieved from cut-to-length harvesters in the StanFord data format. Therefore, input data, units, variable names, and parameters follow this format. In case of the input data not originating from .hpr files, but for example from .pri files or field data, a set of taper functions are provided to transform the input data into the required format.

License LGPL (>= 3) Encoding UTF-8 LazyData true RoxygenNote 7.1.2

R topics documented:

BarkFunction
getBucking
getHarvestedArea
getLengthClasses
getLogs
getPermittedGrades
getPriceMatrices
getProductData
getSortimentOverview
getSpeciesGroupDefinition
getStemprofile
getStems
impute_top
optBuck
optBuck_hpr
plotBucking
predictStemprofile

2 BarkFunction

	PriceVolumeCalc	
	StemprofileIncrement	13
	strsplits	14
	track_trace	14
	VolumeCalc	15
Index		17

BarkFunction

BarkFunction

Description

Calculates diametervalues under bark

Usage

```
BarkFunction(
  DiameterValue,
  SpeciesGroupKey,
  SpeciesGroupDefinition,
  Top_ob,
  DBH,
  LogLength
)
```

Arguments

DiameterValue Numeric vector of diameters (mm)

SpeciesGroupKey

Species ID (see e.g. getProductData())

 ${\tt Species Group Definition}$

List of species group information, with speciesgroupkey as the name of the ele-

ments (see getSpeciesGroupDefinition())

Top_ob Top diameter ober bark

DBH in mm, for Skogforsk 2004 barkFunction categories

LogLength in cm

Value

Log volume in m3

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

See Also

optBuck

getBucking 3

getBucking getBucking

Description

Extract bucking outcomes from a .hpr file

Usage

```
getBucking(hprfile, PriceMatrices, ProductData, StemProfile, LengthClasses)
```

Arguments

hprfile Path to .hpr file

PriceMatrices list of prices matrices for all ProductKeys (see getPriceMatrices())

ProductData Matrix containing product data (see getProductData())

StemProfile Stem profiles for all stems in hprfile (see getStemProfile())

 ${\tt LengthClasses} \quad See \ getLengthClasses()$

Value

Output structure with bucking outcomes

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

OptBuck, Optbuck_hpr

getHarvestedArea getHarvestedArea

Description

Extract harvested area

Usage

getHarvestedArea(Stems)

Arguments

Stems output of getStems()

Value

Simple feature object of area around harvested trees

4 getLogs

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

Examples

```
Stems=getStems(hprfile)
getHarvestedArea(Stems)
```

getLengthClasses

getLengthClasses

Description

Extract the length classes for each assortment from .hpr files, needed for volume calculation when VolumeLengthCategory=="Length as defined in LengthClasses"

Usage

```
getLengthClasses(hprfile)
```

Arguments

hprfile

Path to input .hpr file

Value

List of length classes for assortments, element names correspond to product keys

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

See Also

optBuck

getLogs

getLogs

Description

Extract information on harvested logs from .hpr files

Usage

```
getLogs(hprfile)
```

Arguments

hprfile

Path to input .hpr file

getPermittedGrades 5

Value

data table with log information

Author(s)

Lennart Noordermeer < lennart . noordermeer @nmbu . no>

See Also

optBuck

 ${\tt getPermittedGrades}$

getPermittedGrades

Description

Extract the permitted stem grades for each assortment from .hpr files

Usage

getPermittedGrades(hprfile)

Arguments

hprfile

Path to input .hpr file

Value

List of permitted grades for assortments, element names correspond to product keys

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

optBuck

6 getProductData

getPriceMatrices

getPriceMatrices

Description

Extract product data from .hpr files

Usage

```
getPriceMatrices(hprfile)
```

Arguments

hprfile

Path to input .hpr file

Value

list of prices matrices for all ProductKeys. Element names are productkeys.

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

optBuck

getProductData

getProductData

Description

Extract product data from .hpr files

Usage

```
getProductData(hprfile)
```

Arguments

hprfile

Path to input .hpr file

Value

Information on ProductKeys, ProductNames, ProductGroupName, SpeciesGroupKey, DiameterUnderBark, DiameterClassLowerLimit, DiameterClassMAX, LengthClassLowerLimit, LengthClassMAX, VolumeDiameterCategory, DiameterTopPositions

Author(s)

getSortimentOverview 7

See Also

optBuck

getSortimentOverview

Description

Extract distribution of harvested volume over assortments

Usage

```
getSortimentOverview(Logs, ProductData)
```

Arguments

Logs otput from getLogs

ProductData output from getProductData

Value

figure in viewer

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

getLogs, getProductData

 ${\tt getSpeciesGroupDefinition}$

getSpeciesGroupDefinition

Description

Extract information on species groups from .hpr files

Usage

getSpeciesGroupDefinition(hprfile)

Arguments

hprfile Path to input .hpr file

Value

List of species group information, with speciesgroupkey as the name of the elements

getStems

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

optBuck

getStemprofile

getStemprofile

Description

Extract stem profiles from .hpr files

Usage

```
getStemprofile(hprfile)
```

Arguments

hprfile Path to input .hpr file

Logs Harvested logs (getLogs())

Value

Stem profiles of harvested stems with stem grades

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

See Also

optBuck

 ${\tt getStems}$

getStems

Description

Extract information on harvested stems from .hpr files

Usage

```
getStems(hprfile)
```

Arguments

hprfile

Path to input .hpr file

impute_top 9

Value

data table with stem information

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

optBuck

 $impute_top$

impute_top

Description

Impute unused top of stem into result matrix of optBuck (waste)

Usage

```
impute_top(tt)
```

Arguments

tt

matrix of log segments which maximize cumulative value

Value

new matrix which includes the tree top as waste

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

optBuck

Optimal bucking

Description

Optimizes the bucking

Usage

hello()

Examples

optBuck()

10 optBuck_hpr

optBuck_hpr

optBuck_hpr

Description

Calculate optimal bucking for all stems in a hpr file

Usage

```
optBuck_hpr(
  hprfile,
  PriceMatrices,
  ProductData,
  StemProfile,
  PermittedGrades,
  SpeciesGroupDefinition,
   ...
)
```

Arguments

hprfile Path to input .hpr file

PriceMatrices list of price matrices for all ProductKeys (see getPriceMatrices())

ProductData Matrix containing product data (see getProductData())

StemProfile Stem profiles for all stems in hprfile (see getStemProfile())

PermittedGrades

list with the same lenght of assortments, each element containing the stemgrades

allowed in each assortment (see getPermittedGrades())

SpeciesGroupDefinition

See getSpeciesGroupDefinition()

.. others

Value

result structure with optimum bucking solution for the stems in the input .hpr file

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

References

 $Skog forsk\ 2011.\ Introduction\ to\ Stan For D\ 2010.\ URL:\ Skog forsk.\ https://www.skog forsk.se/content assets/1a68cdce4af\ 2010-introduction-150826.pdf$

See Also

getPermittedGrades, getPriceMatrices, getProductData

plotBucking 11

plotBucking plotBucking

Description

Plot the bucking outcome

Usage

```
plotBucking(Bucking, StemProfile, Key)
```

Arguments

Bucking output structure of getBucking(), optBuck() or optBuck_hpr()

StemProfile (see getStemprofile())
Key StemKey of the stem to be plotted

Value

plot of bucking outcome

Author(s)

Lennart Noordermeer < lennart . noordermeer @nmbu . no>

Description

Predict and extract Norway spruce stem profiles using taper models based on the log dimensions, for cases when no stem profile is recorded in the hpr file.

Usage

```
predictStemprofile(hprfile, ProductData, PermittedGrades)
```

Arguments

hprfile Path to .hpr file

ProductData output of getProductData()

 ${\tt PermittedGrades}$

output of getPermittedGrades()

Value

Output structure with stem profile containing stem grades

Author(s)

12 PriceVolumeCalc

PriceVolumeCalc

PriceVolumeCalc

Description

Calculates log price volume, i.e., the volume which is used for price calculation

Usage

```
PriceVolumeCalc(
  VolumeDiameterAdjustment,
  VolumeDiameterCategory,
  VolumeLengthCategory,
  diameterPosition,
  DiameterValue,
  StartPos,
  StopPos,
  DiameterTopPosition,
  DiameterUnderBark = T,
  SpeciesGroupKey = NA,
  SpeciesGroupDefinition = NA,
  DBH = NA,
  LogLength = NA,
  LengthClasses = NA,
  ProductKey = NA
)
```

Arguments

VolumeDiameterAdjustment

Volume diameter adjustment according to stanford2010 (see getProductData()).

VolumeDiameterCategory

Volume calculation method according to stanford2010 (see getProductData()).

VolumeLengthCategory

Volume length category according to stanford2010 (see getProductData()).

diameterPosition

numeric vector of diameter positions (cm) of a stem profile; 0,10,...,end

DiameterValue numeric vector of corresponding diameters (mm)

StartPos Starting position of log along the stem

StopPos Ending position of log

DiameterTopPosition

Position from top end of log where top diameter is measured. Cm

DiameterUnderBark

Logical TRUE/FALSE

SpeciesGroupKey

Species ID

 ${\tt Species Group Definition}$

List of species group information, with species groupkey as the name of the elements (see get Species Group Definition)

StemprofileIncrement 13

DBH Optional, in mm (see BarkFunction)
LogLength Optional, in cm (see BarkFunction)

LengthClasses List of length classes for the assortments (see getLengthClasses)

ProductKey Assortment key (see getProductData())

Value

Log volume in m3

Author(s)

Lennart Noordermeer <lennart.noordermeer@nmbu.no>

See Also

Buck

StemprofileIncrement StemprofileIncrement

Description

Predict Stemprofile at another point in time given a vector of new DBHs

Usage

StemprofileIncrement(Stemprofile, DBH2, breastheight)

Arguments

Stemprofile Stem profiles for all stems in hprfile (see getStemProfile)

DBH2 a numeric vector of new DBHs, of the same length as unique StemKeys in Stem-

profile

breastheight height in cm which is considered breastheight (numeric), typically 110 or 130.

Value

A new Stemprofile object in which the new diameters are added

Author(s)

14 track_trace

strsplits

strsplits

Description

Helper function: modified strsplit for multiple splits

Usage

```
strsplits(x, splits)
```

Arguments

x character vector to split

splits vector of character patterns used to split

Value

List of permitted grades for assortments

Author(s)

Lennart Noordermeer < lennart.noordermeer@nmbu.no>

See Also

getPriceMatrices

track_trace

track_trace

Description

helper function for optBuck: back-track optimum bucking solution

Usage

```
track_trace(m, tt)
```

Arguments

m matrix of potential cuts

tt matrix of log segment which maximize cumulative value

Value

Logical: "True" if whole and "False" if decimal

Author(s)

15 **VolumeCalc**

VolumeCalc

VolumeCalc

Description

Calculates log volume from all diameters as solid volume

Usage

```
VolumeCalc(
  diameterPosition,
  DiameterValue,
  StartPos,
  StopPos,
  DiameterTopPosition,
  DiameterUnderBark = T,
  SpeciesGroupKey = NA,
  SpeciesGroupDefinition = NA,
  DBH = NA,
  LogLength = NA
)
```

Arguments

diameterPosition

numeric vector of diameter positions (cm) of a stem profile; 0,10,...,end

numeric vector of corresponding diameters (mm) DiameterValue

Starting position of log along the stem StartPos

StopPos Ending position of log

DiameterTopPosition

Position from top end of log where top diameter is measured. Cm

DiameterUnderBark

Logical TRUE/FALSE

SpeciesGroupKey

Species ID

SpeciesGroupDefinition

List of species group information, with speciesgroupkey as the name of the ele-

ments(see getSpeciesGroupDefinition)

DBH Optional, in mm (see BarkFunction)

LogLength Optional, in cm (see BarkFunction)

Value

Log volume in m3

Author(s)

VolumeCalc VolumeCalc

See Also

Buck

Index

```
BarkFunction, 2
getBucking, 3
getHarvestedArea, 3
{\tt getLengthClasses,4}
getLogs, 4
{\tt getPermittedGrades}, {\tt 5}
getPriceMatrices, 6
{\tt getProductData}, {\color{red} 6}
getSortimentOverview, 7
getSpeciesGroupDefinition, 7
{\tt getStemprofile}, {\color{red} 8}
{\tt getStems}, \color{red} 8
impute\_top, 9
optBuck, 9
{\tt optBuck\_hpr},\, {\color{red} 10}
plotBucking, 11
predictStemprofile, 11
PriceVolumeCalc, 12
{\tt StemprofileIncrement}, 13
strsplits, 14
track_trace, 14
VolumeCalc, 15
```