ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО МАТЕМАТИКА

19 май 2011 г. – <u>Вариант 2</u>

УВАЖАЕМИ ЗРЕЛОСТНИЦИ,

Тестът съдържа 28 задачи по математика от два вида:

- 20 задачи със структуриран отговор с четири възможни отговора, от които само един е верен;
- 8 задачи със свободен отговор.

Първите 20 задачи (от 1. до 20. включително) в теста са от затворен тип с четири възможни отговора, обозначени с главни букви от A до Γ, от които само един е верен. Отговорите на тези задачи отбелязвайте с черен цвят на химикалката в **листа за отговори**, а не върху тестовата книжка. За да отбележите верния отговор, зачертайте със знака кръгчето с буквата на съответния отговор. Например:

Ако след това прецените, че първоначалният отговор не е верен и искате да го поправите, запълнете кръгчето с грешния отговор и зачертайте буквата на друг отговор, който приемате за верен. Например:

За всяка задача трябва да е отбелязан не повече от един действителен отговор. Като действителен отговор на съответната задача се приема само този, чиято буква е зачертана със знака .

Отговорите на **задачите със свободен отговор (от 21. до 28. вкл.)** запишете в предоставения **свитък за свободните отговори**, като за задачи **от 26. до 28. вкл.** запишете пълните решения с необходимите обосновки.

ПОЖЕЛАВАМЕ ВИ УСПЕШНА РАБОТА!

Отговорите на задачите от 1. до 20. включително отбелязвайте в листа за отговори!

- **1.** Числото $x = -\left(\frac{1}{2}\right)^{-2}$ е от интервала:

- **A)** $(3;+\infty)$ **B)** $\left[-\frac{1}{4};+\infty\right]$ Γ) $\left[\frac{1}{4};+\infty\right]$
- 2. Стойността на израза $\sqrt[3]{\left(1-\sqrt{3}\right)^3} + \sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}$ е равна на:
 - **A)** $1-\sqrt{2}$
- **B)** $\sqrt{2}-1$ **B)** $1+\sqrt{2}-2\sqrt{3}$ **C)** $2\sqrt{3}-\sqrt{2}-1$
- 3. Ако x_1 и x_2 са корените на квадратното уравнение $6x^2+x-2=0$, то $2x_1$ и $2x_2$ са корени на уравнението:
- **A)** $12x^2 + 2x 4 = 0$ **B)** $3x^2 + x 1 = 0$ **B)** $3x^2 + x 4 = 0$ **C)** $6x^2 2x + 8 = 0$

- 4. Решенията на неравенството $\frac{x^2+x-6}{1-x^2} < 0$ са:
- **A)** $x \in (-\infty; -3) \cup (-1;1) \cup (2; +\infty)$
- **b**) $x \in (-3,-1) \cup (1,2)$
- **B)** $x \in (-\infty; -2) \cup (-1; 1) \cup (3; +\infty)$
- Γ) $x \in (-2, -1) \cup (1, 3)$
- 5. Дефиниционната област на израза $\frac{1}{\sqrt{x-1}}$ e:
- A) $x \in [0; +\infty)$
- **B)** $x \in (1; +\infty)$ **B)** $x \in (-\infty; 1) \cup (1; +\infty)$ Γ) $x \in [0; 1) \cup (1; +\infty)$
- **6.** Броят на реалните корени на уравнението $x^4 + x^2 = 20$ е:
- **A)** 0
- **Б)** 1
- **B)** 2

- **Γ**) 4
- 7. Стойността на израза $\sin \alpha + \cos \frac{\alpha}{2} + \operatorname{tg} 2\alpha + \cot \frac{3\alpha}{2}$ при $\alpha = 60^{\circ}$:
- **A)** e $1 \sqrt{3}$
- **b**) e 0
- **B**) e $2\sqrt{3}$

Г) не съществува

- **8.** Неравенството $\log_a \frac{1}{3} > \log_a \frac{1}{4}$ е вярно, когато:
 - **A)** a < 0
- **b)** 0 < a < 1
- **B)** a = 1

- Γ) a > 1
- **9.** Общият член на числова редица е $a_n = \sqrt{n^2 8n + 16} + 21$, $n \in \mathbb{N}$. Номерът n, за който a_n приема най–малка стойност, е:
- **A)** 1

Б) 4

B) 17

- **Γ**) 21
- 10. Разликата на аритметична прогресия, за която $a_3 = 3$ и $3a_2 a_4 = 4$, е равна на:
- **A)** $-\frac{1}{2}$
- **Б**) $\frac{1}{2}$

B) $\frac{5}{4}$

- Γ) $\frac{5}{2}$
- 11. В правоъгълна координатна система xOy е построена графиката на функцията $y=x^2-\frac{11}{3}x+2$. Точките A и B са пресечните на точки на графиката с абсцисната ос, а точката C е пресечната точка на графиката с ординатната ос. Ако AB=a и OC=b, то:
 - A) a < b

 $\mathbf{b}) \ a = b$

B) a > b

 Γ) a и b не могат да се сравнят.

- **12.** Кое от твърденията НЕ е вярно за статистическия ред: 1; 2; 2; 3; 4; 4; 4; 5; 6; 6; 6; 7; 8; 8; 9 ?
- А) Медианата и средноаритметичното на реда са равни.
- **Б)** Ако се добави нов член на реда, равен на 4, то медианата на получения ред ще бъде 4,5.
- В) Ако се отстрани един член на реда, равен на 4, то модата на получения ред ще бъде по-малка от медианата.
- Г) Ако се добави нов член на реда, равен на 4, то модата на получения ред ще бъде по-малка от медианата.

13. На чертежа АВСДЕГ е правилен шестоъгълник. Ако в него е вписана окръжност с радиус $OH = 3\sqrt{3}$, то радиусьт на окръжността, вписана в четириъгълника *OBCD*, е равен на:

- **A)** $\sqrt{3}$ **B)** 3 Γ) $2\sqrt{3}$
- 14. В равнобедрения $\triangle ABC$ на чертежа CM ($M \in AB$) е медиана към основата и $MP \perp BC (P \in BC)$. Ако BP = 9 и PC = 16, то лицето на $\triangle ABC$ е равно на:

- **A)** 150
- **Б)**300
- **B)** 600
- **Г)**3600
- 15. В равнобедрен трапец с основи 6 ст и 10 ст е вписана окръжност. Радиусът на окръжността е:

- **A)** $\sqrt{15}$ cm **B)** $\sqrt{17}$ cm **B)** $2\sqrt{15}$ cm Γ) $2\sqrt{17}$ cm
- **16.** За триъгълника на чертежа отношението a^2 : b^2 е равно на:

- **A)** $\sqrt{2}:\sqrt{3}$ **B)** $\sqrt{2}:3$ **C)** $2:\sqrt{3}$

- 17. За успоредника ABCD на чертежа AD=6 , $AC=2\sqrt{19}$ и BD = 4. Дължината на страната AB е равна на:

- **A)** $\sqrt{10}$
- **b**) $\sqrt{18}$
- **B)** $\sqrt{41}$
- **Γ**) 10

			Разстоянието от центъра	1a
описаната око.	ло триъгълника он	сръжност до страната	<i>AB</i> е равно на:	
A) $2\sqrt{2}$	Б) 3√2	B) $4\sqrt{2}$	Γ) $5\sqrt{2}$	
19. Лицето на ј	ромб АВСО с диаг	онал $AC = 4\sqrt{3}$ и $\angle AB$	$C = 120^{\circ} \text{ e:}$	
A) $2\sqrt{3}$	Б) 8	B) $6\sqrt{3}$	Γ) $8\sqrt{3}$	
	BC , за който AC = а бъде числото:	$=5\sqrt{3}$, $BC=12$ in $S_{\triangle ABC}$	$=15\sqrt{3}$. Дължина на страна $^{\circ}$	га
A) $\sqrt{199}$	Б) √299	B) $\sqrt{399}$	Γ) $\sqrt{499}$	
Отговорите на	задачите от 21. до	о 25. включително запил	иете в свитъка за	
свободните от	<u>говори!</u>			
21.3a a > 0 u b	5 > 0 намерете стой	і́ността на числото lg <mark>с</mark> 1	$\frac{ab}{0}$, ако $\lg a = 7$ и $\lg b = 3$.	
22. Намерете с	бора от корените н	на уравнението $\sqrt{3x^2+1}$	$\overline{7x+5} = 2x+1.$	
графиките н двете графи	на функциите $f(x)$ ки и лежи в първи	$g(x) = x^2 + x - 17$ u $g(x) = x^2 + x - 17$	единица 1 ст са построен $2x-5$, а M е обща точка поазстоянието в сантиметри Φ	на
600 лв, на	учен – 10 души съ	_	– 4 души със средна запла в и производствен – 36 душ га във фирмата?	
_		_	с дължини 4 ст и 6 ст, по както 1 : 2 . Да се намеј	

третата страна на триъгълника.

<u>Пълните решения с необходимите обосновки на задачите от 26. до 28. включително</u> запишете в свитъка за свободните отговори!

- **26.** За членовете на аритметична прогресия a_1, a_2, a_3, \dots и геометрична прогресия b_1, b_2, b_3, \dots са в сила равенствата: $a_1 = 2b_1 = 2, a_6 = 3b_2, a_{15} = 4b_3$. Намерете първите три члена на двете прогресии.
- **27.** С помощта на цифрите 0, 1, 8 и 9 са записани всички трицифрени числа с различни цифри и по случаен начин е избрано едно от тях. Каква е вероятността това число да се дели на 9?
- **28.** В $\triangle ABC$ със страна $AB=\sqrt{10}$ точката O е центърът на вписаната окръжност, AO=2 и $BO=\sqrt{2}$. Да се намери лицето на $\triangle ABC$.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0$$
 $x_{1,2}=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ $ax^2+bx+c=a(x-x_1)(x-x_2)$ Формули на Виет $x_1+x_2=-rac{b}{a}$ $x_1x_2=rac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \ne 0$ е парабола с връх точката $(-\frac{b}{2a}; -\frac{D}{4a})$

Корен. Степен и логаритъм

$$\sqrt[2k]{a^{2k}} = |a| \qquad \qquad 2^{k+1}\sqrt{a^{2k+1}} = a \; ; \qquad \text{при } k \in \mathbb{N}$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad \qquad \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \qquad \sqrt[nk]{a} = \sqrt[nk]{a} \; ; \; \text{при} \quad a > 0 \; , \; n \ge 2 \; , \; k \ge 2 \; \text{ и } n, \; m, \; k \in \mathbb{N}$$

$$\log_a b = x \Leftrightarrow a^x = b \quad \log_a a^x = x \qquad a^{\log_a b} = b \; ; \quad \text{при} \quad b > 0, \; a > 0, \; a \ne 1$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = 1.2.3...(n-1)n = n!$ Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$ Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{1.2.3...(k-1)k}$

Вероятност $P(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}} 0 \le P(A) \le 1$

Прогресии

Аритметична прогресия:
$$a_n = a_1 + (n-1)d$$
 $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$ Геометрична прогресия: $a_n = a_1.q^{n-1}$ $S_n = \frac{a_nq - a_1}{q-1} = a_1 \cdot \frac{q^n - 1}{q-1}$ Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$h_c^{\ 2}=a_1b_1 \qquad r=\frac{a+b-c}{2} \qquad \sin\alpha=\frac{a}{c} \qquad \cos\alpha=\frac{b}{c} \qquad \operatorname{tg}\alpha=\frac{a}{b} \qquad \operatorname{cotg}\alpha=\frac{b}{a}$$
 Произволен триъгълник:
$$a^2=b^2+c^2-2bc\cos\alpha \qquad \qquad b^2=a^2+c^2-2ac\cos\beta$$

Произволен триъгълник:
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$
 $b^2 = a^2 + c^2 - 2ac \cos \beta$

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma \qquad \frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

Формула за медиана:
$$m_a^2 = \frac{1}{4} \left(2b^2 + 2c^2 - a^2 \right)$$
 $m_b^2 = \frac{1}{4} \left(2a^2 + 2c^2 - b^2 \right)$

$$m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$$

Формула за ъглополовяща:
$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - nm$$

Формули за лице

Триъгълник:
$$S = \frac{1}{2}ch_c \qquad S = \frac{1}{2}ab\sin\gamma \qquad S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$S = pr \qquad S = \frac{abc}{4R}$$

Успоредник:
$$S = ah_a$$
 $S = ab \sin \alpha$

Четириъгълник:
$$S = \frac{1}{2} d_1 d_2 \sin \varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

$lpha^{\scriptscriptstyle 0}$	0_0	30^{0}	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	
$\cot \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	$90^{\circ} - \alpha$	$90^{\circ} + \alpha$	$180^{\circ} - \alpha$
sin	$-\sin \alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$
tg	$-tg\alpha$	$\cot \alpha$	$-\cot \alpha$	$-tg\alpha$
cotg	$-\cot \alpha$	$\operatorname{tg} \alpha$	$-tg\alpha$	$-\cot \alpha$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \sin \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \sin \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \sin \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta + \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta + \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\beta + \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)}$$

$$\tan(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 + \cot(\beta + \beta)} = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\beta \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\beta \pm \beta)}{\cot(\beta \pm$$