

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 143 (2018) 189-196

www.elsevier.com/locate/procedia

8th International Conference on Advances in Computing and Communication (ICACC-2018)

A general variable neighborhood search algorithm for the k-traveling salesman problem

Pandiri Venkatesh, Gaurav Srivastava, Alok Singh

School of Computer & Information Sciences, University of Hyderabad, Hyderabad - 500 046, Telangana, India.

Abstract

This paper addresses a variant of the traveling salesman problem, i.e., k-traveling salesman problem (k-TSP). Given a set of n cities and a fixed value $1 < k \le n$, the k-TSP is to find a minimum length tour by visiting exactly k of the n cities. The k-TSP is a combination of both subset selection and permutation characteristics. In this paper, we have proposed a general variable neighborhood search algorithm for the k-TSP. A variable neighborhood descent consisting of two neighborhood structures is used as local search in our approach. To the best of the authors knowledge, this is the first metaheuristic approach for the k-TSP. Moreover, to present the computational experiments, a set of benchmark instances is generated by using the standard TSPLIB.

© 2018 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) Selection and peer-review under responsibility of the scientific committee of the 8th International Conference on Advances in Computing and Communication (ICACC-2018).

Keywords: k-traveling salesman problem; general variable neighborhood search; heuristic; variable neighborhood descent

1. INTRODUCTION

The k-traveling salesman problem (k-TSP) is a variant of the traveling salesman problem (TSP), and a special case of the prize collecting traveling salesman problem (PCTSP). The PCTSP was introduced by Balas $et\ al.$ [3]. In this problem, a salesman gets a prize by visiting a city and pays a penalty by not visiting a city. The objective of the PCTSP is to minimize the total distance and total penalty while collecting the given amount of prize. If the associated penalties of all cities are zero, then the PCTSP becomes a quota traveling salesman problem (QTSP). The k-TSP is a special case of the QTSP, where all the prizes are unitary and the quota is k. k-TSP, being a special case of the PCTSP, is also NP-Hard[6, 2]. The k-TSP consists in finding a subset of k cities and arranging them in order to minimize the total distance traveled by the salesman. The important applications of this problem arise in the design of distributed networks and rural healthcare delivery.

E-mail address: venkatesh78.p@gmail.com, gauravsrignp@gmail.com, *alokcs@uohyd.ernet.in (Alok Singh).

There are several constant factor approximation schemes known for the k-TSP[5, 7, 1, 8, 4]. The best known approximation ratio, i.e., a 2-approximation scheme for the k-TSP is given in [8]. However, there are no metaheuristic approaches available for the k-TSP to the best of the authors knowledge. Compared to other variants of TSP, the k-TSP did not get that much attention from the researchers. Thus, still it needs to be explored by the researchers from different fields. In this paper we have proposed a simple and efficient general variable neighborhood search (GVNS) algorithm for the k-TSP by incorporating the variable neighborhood descent.

The remainder of this paper is organized as follows: Section 2 formally defines the k-TSP. The proposed GVNS approach for the k-TSP is described in Section 3. Section 4 presents the computational results on the test instances. Finally, Section 5 concludes the paper by summarizing the contributions made and suggests directions for future research.

2. PROBLEM DEFINITION

Given a complete undirected graph G = (V, E), where $V = \{1, 2, ..., n\}$ is the set of cities, $E = \{(i, j) | i, j \in V\}$ is the set of edges and a distance d_{ij} is associated with each edge $(i, j) \in E$. The objective of the k-TSP is to find a minimum length Hamiltonian cycle among all the Hamiltonian cycles over subgraphs induced by the subsets of k cities. We will denote such a subset of k vertices by k. By introducing binary variable k to indicate whether city k is part of the subset k or not k or

$$Minimize \sum_{i \in V} \sum_{j \in V} d_{ij} x_{ij} \tag{1}$$

subject to:

$$\sum_{i \in V} y_i = k,\tag{2}$$

$$\sum_{(i,j)\in E} x_{ij} + \sum_{(j,i)\in E} x_{ji} = 2y_i \quad \forall i \in V,$$
(3)

$$\sum_{i \in S} \sum_{j \in S} x_{ij} \le |S| - 1, \quad \forall S \subset V' \subset V$$

$$\tag{4}$$

$$x_{ij}, y_i \in \{0, 1\} \quad \forall (i, j) \in E, i \in V.$$
 (5)

Equation 1 represents the objective function for the k-TSP and it minimizes the total distance. 2 enforces the constraint of k-TSP, i.e., visiting exactly k cities. Equation 3 satisfies the constraints of indegree and outdegree of the visited cities. Equation 4 represents the sub tour elimination constraint. 5 enforces the binary nature of the decision variables x_{ij} and y_i .

3. General variable neighborhood search algorithm for the k-TSP

In this section, we give a brief introduction about the variable neighborhood search, and variable neighborhood descent followed by the details of proposed GVNS approach for the k-TSP.

Variable neighborhood search (VNS) is a metaheuristic proposed by Mladenović and Hansen[10] based on the systematic search of different neighborhood structures. The VNS is composed of two phases, viz.,

local search and shake phases. The local search phase will do the job of exploitation (finds local optimum), whereas the shake phase will do the job of exploration (escapes from local optimum).

The pseudo code of basic VNS is given in Algorithm1. Let S be a solution and F(S) be its fitness value, and let $\mathcal{N} = \{N_1, N_2, \dots, N_p\}$ be a set of p different neighborhood structures. The VNS algorithm starts by generating an initial(random) solution, and then the algorithm generates a random solution S' in the p^{th} neighborhood of S by using shake phase. The S' is used as input to the local search phase which tries to get an improved solution S'' in the p^{th} neighborhood of S'. If S'' is better than the current solution S, then the S will be replaced with S'' and the algorithm continues with the first neighborhood (i.e., p=1), otherwise, the algorithm moves to the next neighborhood structure. The termination condition can be maximum time, maximum number of iterations, or some other quality measurements. The basic VNS can be perceived as a method which combines both deterministic and stochastic changes of the neighborhood.

Algorithm 1: Pseudo code of basic VNS Input: Set of parameters for VNS Output: Best solution found $S \leftarrow \text{Generate_Initial_Solution}();$ while $Termination \ condition \ not \ satisfied \ do$ $p \leftarrow 1;$ while $p \leq p_{max} \ do$ $S' \leftarrow \text{Shake}(S, N_p);$ $S'' \leftarrow \text{Local_Search}(S', N_p);$ if F(S'') < F(S) then $S \leftarrow S'';$ $p \leftarrow 1;$ else $p \leftarrow p+1;$ return $best \ solution \ S;$

```
Algorithm 2: Pseudo code of VND

Input: Set of parameters for VND

Output: Best solution found
S \leftarrow \text{Generate\_Initial\_Solution}();

repeat

\begin{array}{c|c} p \leftarrow 1; \\ \text{while } p \leq p_{max} \text{ do} \\ & S' \leftarrow \text{Local\_Search}(S, N_p); \\ \text{if } F(S') < F(S) \text{ then} \\ & S \leftarrow S'; \\ & p \leftarrow 1; \\ \text{else} \\ & & p \leftarrow p+1; \\ \end{array}

until there is no improvement with respect to all p_{max} neighborhoods; return best solution S;
```

The variable neighborhood descent (VND)[10] is a simple variation of the basic VNS, which follows a deterministic way to change the neighborhood. The pseudo code of VND is given in Algorithm2. The VND starts by an initial solution S and p=1. The search starts by exploring the neighborhood $N_1(S)$ until there is no improvement possible. And then, the search continues in the neighborhood $N_2(S)$. If an improved solution is found in the neighborhood $N_2(S)$, then the VND goes back to the $N_1(S)$ to explore the neighborhood of this newly improved solution until there is no improvement possible. Otherwise, VND continues with $N_3(S)$, and so on. The final solution obtained by the VND is a local optimum with respect to all p_{max} neighborhoods. The VND is very often used as a local search method, as the chance of getting a good solution is high by using it than with a single neighborhood structure.

3.1. Proposed general variable neighborhood search (GVNS)

The general variable neighborhood search (GVNS)[9] is a variant of VNS[10] which uses the VND as the local search. The GVNS has been successfully applied to solve multiple variants of the TSP[13, 12, 11, 14]. The proposed VND explores the different neighborhood structures systematically by using the first improvement strategy[9]. The pseudo code of the proposed GVNS approach is given in Algorithm3. Notice that the proposed GVNS in Algorithm3 is similar to VNS in Algorithm1, where local search phase is replaced by VND and the termination condition is the maximum number of iterations. In fact, the GVNS can be seen as a multi start algorithm that uses shake phase and VND as its local search procedures. The components of the GVNS for k-TSP are discussed in following subsections.

3.1.1. Initial solution generation and shake phase:

The initial solution generation procedure starts by selecting a city uniformly at random and then an iterative process ensues. During each iteration a city which is not visited is selected uniformly at random and inserted into the best position in the salesman's tour. This procedure is repeated until the feasibility condition is satisfied, i.e., exactly k cities has to be visited. The initial solution S generated is used as input to the shake phase. During the shake phase, a random solution S' is generated in the p^{th} neighborhood of S.

3.1.2. Variable neighborhood descent (VND):

It is very common to use the VND as a local search in many algorithms as it systematically explores different neighborhood structures. The neighborhood structures can be designed according to the characteristics of a problem. Keeping this in mind, two neighborhood structures N_1 and N_2 are proposed for the problem under consideration. The N_1 addresses the characteristic of subset selection, whereas the N_2 addresses the characteristic of permutation.

The first neighborhood N_1 of a solution S uses the operation of exchange to form a new solution S', which means removing a city from the salesman's tour and adding an unvisited city in to the tour at best possible position. In detail, given a pair of cities $i \in V'$, $j \in V - V'$, and an edge $\{a, b\}$ of the tour, remove i from V' and add j to V' so that one edge $\{a, b\}$ becomes two edges $\{a, j\}$ and $\{j, b\}$. The second neighborhood N_2 of a solution S uses the operation of swap to form a new solution S'. That is, given a pair of cities i, j in the tour, i is moved to the place of j, and j is moved to the place of i.

The performance of VND also depends on the order in which the neighborhoods are explored. It is due to the fact that the initial neighborhood structures may be explored more than the final ones. We followed a deterministic order of exploring N_1 first and then N_2 . The proposed VND is based on the first improvement strategy. In both the neighborhoods N_1 and N_2 , if the VND encounters a better solution than the current solution, then it is immediately replaced by new better solution and the search starts again from the neighborhood N_1 . This process continues until it traverse both the neighborhoods and there is no improved solution found. Finally, the solution returned by VND is local optimum with respect to both the neighborhoods.

Algorithm 3: Pseudo code of GVNS for k-TSP

```
Input: Set of parameters for GVNS Output: Best solution found while iter \leq iter_{max} do

S \leftarrow \text{Generate.Initial\_Solution}();
p \leftarrow 1;
while p \leq p_{max} do
S' \leftarrow \text{Shake}(S, N_p);
S'' \leftarrow \text{VND}(S');
if F(S'') < F(S) then
S \leftarrow S'';
p \leftarrow 1;
else
p \leftarrow p + 1;
```

4. Computational results

return bestsolution S;

As our approach GVNS is the first metaheuristic approach, there were no benchmark instances available in the literature for the k-TSP. Hence, it is inevitable to generate the test instances. We generated our own

k-TSP test instances, which are actually derived from the TSPLIB¹. These instances have cities ranging from 14 to 200, and have a $n \times n$ distance matrix format. Our approach GVNS is executed on each test instance ten times independently, each time with a different random seed.

Our approach GVNS is implemented in C and executed on a Linux based 3.10 GHz Core-i5 system with 4 GB RAM. In all our experiments with the GVNS, we used the following parameters – GVNS is iterated 100 times, i.e., $iter_{max}$ =100, and only 2 neighborhoods are used, i.e., p_{max} =2. For comparison between these neighborhoods, the GVNS is executed individually with neighborhood N_1 (i.e., GVNS(N_1)), neighborhood N_2 (i.e., GVNS(N_2)) and both neighborhoods N_1 and N_2 (i.e., GVNS(N_1)).

Table 1. Results of GVNS approaches on instances with $k = \lfloor \frac{n}{4} \rfloor$

Instance	k	$GVNS(N_1)$			$GVNS(N_2)$			$GVNS(N_1 + N_2)$		
		Best	Worst	Average	Best	Worst	Average	Best	Worst	Average
att48	12	1925	1925	1925.00	2514	2662	2528.80	1925	1925	1925.00
bayg29	7	350	350	350.00	350	357	350.70	350	350	350.00
bays29	7	418	418	418.00	418	418	418.00	418	418	418.00
berlin52	13	686	707	688.10	742	763	744.10	679	679	679.00
bier127	31	11477	11941	11666.90	11994	13258	12120.40	10747	10770	10749.30
brazil58	14	6496	6500	6496.40	6496	6500	6496.40	4965	4965	4965.00
brg180	45	530	530	530.00	550	590	554.00	510	520	517.00
burma14	3	359	359	359.00	359	359	359.00	359	359	359.00
ch130	32	1319	1415	1328.60	1373	1598	1395.50	1130	1130	1130.00
ch150	37	1354	1444	1363.00	1483	1491	1483.80	1276	1276	1276.00
d198	49	5211	5236	5213.50	5250	5275	5252.50	5002	5127	5090.90
dantzig42	10	145	158	146.30	155	156	155.10	145	145	145.00
eil101	25	149	149	149.00	155	155	155.00	107	108	107.50
eil51	12	83	83	83.00	83	83	83.00	82	82	82.00
eil76	19	119	120	119.60	129	130	129.10	102	117	106.90
fri26	6	243	243	243.00	243	243	243.00	243	243	243.00
gr120	30	1411	1417	1411.60	1411	1417	1411.60	1396	1396	1396.00
gr137	34	18742	18764	18744.20	18742	18764	18744.20	17509	17509	17509.00
gr17	4	234	234	234.00	245	245	245.00	234	234	234.00
gr21	5	324	324	324.00	324	324	324.00	324	324	324.00
gr24	6	264	264	264.00	264	264	264.00	264	264	264.00
gr48	12	874	874	874.00	984	984	984.00	874	874	874.00
gr96	24	11383	12031	11447.80	11383	12031	11447.80	10821	11041	10856.30
hk48	12	2850	2850	2850.00	3304	3304	3304.00	2827	2827	2827.00
kroA100	25	5318	5341	5320.30	6226	6335	6236.90	5050	5050	5050.00
kroA150	37	6742	6756	6750.80	7286	7806	7338.00	6295	6648	6586.80
kroA200	50	7998	8273	8025.50	7998	8273	8025.50	6826	6961	6906.20
kroB100	25	4605	4605	4605.00	4930	4938	4930.80	4605	4605	4605.00
kroB150	37	7479	7573	7488.40	7802	7896	7811.40	6120	6180	6150.70
kroB200	50	8175	8381	8195.60	8175	8381	8195.60	6100	6539	6485.90
kroC100	25	6248	6248	6248.00	6577	6577	6577.00	4967	5363	5125.40
kroD100	25	5350	5485	5363.50	5495	5579	5503.40	4762	4787	4784.50
kroE100	25	3905	4014	3915.90	4569	4722	4584.30	3905	3910	3905.50
lin105	26	2779	2803	2781.40	2881	2905	2883.40	2606	2606	2606.00
pr107	26	8615	8705	8624.00	9266	9582	9297.60	8443	8443	8443.00
pr124	31	14516	14639	14528.30	15618	17016	15757.80	14325	14325	14325.00
pr136	34	24315	25528	24436.30	24315	25528	24436.30	21367	23857	23352.00
pr144	36	14437	14437	14437.00	14437	14437	14437.00	14327	14327	14327.00
pr152	38	20029	20029	20029.00	20029	20029	20029.00	20029	20029	20029.00
pr76	19	27179	27179	27179.00	28464	28464	28464.00	23450	23450	23450.00
rat195	48	584	598	586.70	648	705	653.70	565	575	570.50
rat99	24	302	302	302.00	305	305	305.00	291	291	291.00
rd100	25	1586	1607	1588.10	1675	1696	1677.10	1438	1500	1460.00
si175	43	5136	5240	5179.50	5695	5719	5697.40	4959	5096	5062.70
st70	17	120	120	120.00	120	120	120.00	120	120	120.00
swiss42	10	192	192	192.00	192	192	192.00	192	192	192.00
u159	39	9392	9459	9398.70	9534	9601	9540.70	9085	9085	9085.00
ulysses16	4	935	935	935.00	935	935	935.00	935	935	935.00

Tables 1, 2 and 3 report the performance of the aforementioned approaches $\text{GVNS}(N_1)$, $\text{GVNS}(N_2)$ and $\text{GVNS}(N_1 + N_2)$. These tables are only differs by k value, which is set as $k = \lfloor \frac{n}{4} \rfloor$, $k = \lfloor \frac{n}{2} \rfloor$, $k = \lfloor \frac{3 + n}{4} \rfloor$ respectively for table 1, 2 and 3. Please note that the n is the total number of cities in the instance and the salesman has to visit k cities by including the depot(i.e., first city). In all these tables, the first column represents the name of the instance with total number of cities in the end. The second column (k) shows the number of cities that needs to be visited by the salesman. The columns (Best, Worst & Average) reports the

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

Table 2. Results of GVNS approaches on instances with $k = \lfloor \frac{n}{2} \rfloor$

Instance	k	$GVNS(N_1)$			$GVNS(N_2)$			$GVNS(N_1 + N_2)$		
Instance	r.	Best	Worst	Average	Best	Worst	Average	Best	Worst	Average
att48	24	3865	3865	3865.00	4943	5404	4989.10	3603	3603	3603.00
bayg29	14	643	643	643.00	686	744	691.80	626	626	626.00
bays29	14	784	784	784.00	826	826	826.00	733	733	733.00
berlin52	26	2163	2163	2163.00	2269	2269	2269.00	2006	2041	2037.50
bier127	63	26835	27935	26945.00	28900	31153	29125.30	26107	26338	26133.30
brazil58	29	8235	8703	8281.80	11868	12222	11903.40	8062	8235	8092.10
brg180	90	1030	1050	1043.00	1100	1180	1108.00	1010	1030	1022.00
burma14	7	1298	1298	1298.00	1366	1366	1366.00	1272	1272	1272.00
ch130	65	2930	2952	2932.20	3145	3464	3176.90	2576	2653	2632.40
ch150	75	3140	3148	3140.80	3543	3650	3553.70	2935	3029	3002.40
d198	99	7378	7458	7386.00	7543	7623	7551.00	7086	7149	7130.40
dantzig42	21	284	285	284.10	296	310	297.40	260	260	260.00
eil101	50	242	252	247.00	276	281	276.50	234	239	236.10
eil51	25	198	201	198.30	198	201	198.30	175	175	175.00
eil76	38	233	233	233.00	252	254	252.20	219	222	221.40
fri26	13	446	446	446.00	489	489	489.00	414	414	414.00
gr120	60	3102	3233	3160.60	3502	3537	3505.50	2917	2919	2918.40
gr137	68	31933	32012	31940.90	33930	34011	33938.10	30897	31784	31401.20
gr17	8	517	517	517.00	517	517	517.00	517	517	517.00
gr21	10	982	999	983.70	918	918	918.00	918	918	918.00
gr24	12	512	512	512.00	512	512	512.00	504	504	504.00
gr48	24	1925	1986	1931.10	2034	2095	2040.10	1925	1925	1925.00
gr96	48	23653	24297	23717.40	23844	25609	24020.50	22027	22196	22094.60
hk48	24	4759	4759	4759.00	5409	5526	5420.70	4759	4759	4759.00
kroA100	50	11775	11893	11786.80	12646	12754	12656.80	10204	10208	10206.40
kroA150	75	12834	12834	12834.00	15061	15666	15121.50	12722	12762	12758.00
kroA200	100	15435	15732	15464.70	16159	16620	16205.10	14379	14542	14445.80
kroB100	50	11694	12238	11748.40	11694	12238	11748.40	9917	10328	10227.20
kroB150	75	13676	14192	13727.60	15329	15645	15360.60	12040	12350	12098.00
kroB200	100	15713	16106	15752.30	16593	17275	16661.20	13113	14051	13643.10
kroC100	50	12991	13181	13010.00	12991	13181	13010.00	9729	9820	9790.10
kroD100	50	11498	11626	11510.80	11498	11626	11510.80	9614	9705	9623.10
kroE100	50	10597	10950	10632.30	11430	11980	11485.00	10053	10065	10061.40
lin105	52	6130	6360	6153.00	6130	6360	6153.00	5920	5944	5922.40
pr107	53	19131	19775	19195.40	19425	20271	19509.60	18028	18028	18028.00
pr107 pr124	62	25038	25038	25038.00	27488	29355	27674.70	22998	24431	23908.10
pr124 pr136	68	50303	52668	50539.50	50303	52668	50539.50	47909	47919	47910.00
-		29283			29283	34914				
pr144	72 76	43976	34914 44433	29846.10	44094	45211	29846.10	28964	34644 43403	29532.00
pr152			44433	44021.70			44205.70	41641		41852.00
pr76	38	44675		44692.40	51378	52764	51516.60	41813	41970	41922.90
rat195	97	1176	1217	1195.10	1264	1342	1271.80	1146	1153	1149.30
rat99	49	622	622	622.00	638	657	639.90	574	585	582.30
rd100	50	4012	4033	4014.10	4052	4073	4054.10	3392	3554	3420.20
si175	87	10369	10374	10369.50	10835	10879	10839.40	10283	10342	10302.10
st70	35	302	311	302.90	302	311	302.90	302	306	302.40
swiss42	21	469	515	473.60	469	515	473.60	458	458	458.00
u159	79	18841	19850	19058.60	22879	23033	22894.40	18491	18556	18522.60
ulysses16	8	2210	2232	2212.20	2362	2362	2362.00	1685	1685	1685.00
ulysses22	11	2489	2489	2489.00	2498	2518	2500.00	1902	1958	1908.30

best, worst and average costs over ten independent runs, respectively. The best values are reported in bold for ease of identification. These tables clearly show that $GVNS(N_1+N_2)$ performed better than $GVNS(N_1)$ and $GVNS(N_2)$. When it comes to the comparison between two individual neighborhoods, $GVNS(N_1)$ performed better than $GVNS(N_2)$. Thus, it shows the importance of choosing a proper subset of cities to visit by a salesman rather than order of cities to visit. Figure 1 plots the solutions obtained by our GVNS approach for the instance eil51 with different k values(12, 25, 38). In all the plots of this figure, the cities are shown as circles having corresponding city numbers, and the first city(i.e., depot) where the salesman has to start and end is shown as black colored circle. This figure depicts the variation in tour and distance according to the k value.

5. Conclusions

In this paper, we have proposed a simple and efficient general variable neighborhood search algorithm for the k-TSP. The main component of the proposed GVNS approach is the variable neighborhood descent which uses two neighborhood structures based on exchange (N_1) and swap (N_2) operations. These two neighborhood structures effectively handle both the characteristics of the k-TSP, i.e., subset selection and permutation of the cities. To evaluate the proposed GVNS approach with different neighborhood structures,

Table 3. Results of GVNS approaches on instances with $k = \lfloor \frac{3 \, * \, n}{4} \rfloor$

Instance	k	$GVNS(N_1)$			GVNS	$GVNS(N_2)$			$GVNS(N_1 + N_2)$		
		Best	Worst	Average	Best	Worst	Average	Best	Worst	Average	
att48	36	6714	6801	6722.70	6863	7444	6921.10	6563	6563	6563.00	
bayg29	21	1028	1028	1028.00	1055	1113	1060.80	999	999	999.00	
bays29	21	1204	1204	1204.00	1246	1246	1246.00	1194	1194	1194.00	
berlin52	39	4555	4642	4563.70	4860	4947	4868.70	4213	4441	4237.50	
bier127	95	54291	56616	54523.50	54490	56815	54722.50	50284	50903	50544.0	
brazil58	43	11614	12082	11660.80	14963	15747	15041.40	11614	11849	11637.5	
brg180	135	1610	1630	1618.00	1660	1780	1672.00	1510	1540	1524.00	
burma14	10	1693	1754	1699.10	1643	1656	1644.30	1642	1642	1642.00	
ch130	97	4403	4770	4439.70	4719	5139	4761.00	4213	4260	4227.60	
ch150	112	5255	5370	5266.50	5311	5426	5322.50	4637	4690	4656.10	
d198	148	9795	10037	9819.20	10045	10269	10067.40	9363	9483	9436.50	
dantzig42	31	478	496	479.80	478	496	479.80	442	457	443.50	
eil101	75	424	426	425.80	458	467	458.90	406	408	406.40	
eil51	38	309	309	309.00	316	327	317.10	287	287	287.00	
eil76	57	372	373	372.10	382	387	382.50	342	355	351.00	
fri26	19	682	682	682.00	689	689	689.00	601	601	601.00	
gr120	90	4727	4794	4748.10	5096	5195	5105.90	4501	4536	4520.20	
_	102	52699	53282	52757.30	52699	53282	52757.30	47465	48623	47943.5	
gr137	102	9 51	951	951.00	9 51	951	9 51.00	951	951	951.00	
gr17			1582			1582			1501		
gr21	15 18	1565 852	852	1566.70	1565 852	852	1566.70	1501 844	844	1501.00 844.00	
gr24				852.00			852.00				
gr48	36	3548	3627	3555.90	3548	3627	3555.90	3333	3352	3337.40	
gr96	72	41504	43679	41721.50	41504	43679	41721.50	31717	32965	32353.1	
hk48	36	7631	7883	7656.20	7963	8165	7983.20	7400	7411	7409.90	
kroA100	75	16288	16436	16315.30	18256	18580	18288.40	15740	15901	15772.2	
kroA150	112	20951	21457	21001.60	21792	22475	21860.30	18809	19223	19144.4	
kroA200	150	23898	25053	24013.50	24262	25677	24403.50	20135	20469	20289.6	
kroB100	75	16535	17282	16708.00	18663	19238	18720.50	15346	15493	15467.8	
kroB150	112	21876	22550	21943.40	21876	22550	21943.40	17349	17672	17554.8	
kroB200	150	25058	26124	25164.60	25058	26124	25164.60	20459	21272	20981.3	
kroC100	75	17531	17739	17551.80	18465	19047	18523.20	14871	16738	16002.4	
kroD100	75	17079	17243	17095.40	17721	17942	17743.10	15630	15793	15729.5	
kroE100	75	16169	16604	16402.70	17771	18506	17844.50	15179	15236	15214.1	
lin105	78	9444	9844	9484.00	9469	9877	9509.80	8999	9034	9008.90	
pr107	80	40731	41687	40826.60	40959	42699	41133.00	38579	39930	39128.8	
pr124	93	39978	40846	40388.80	41102	43281	41319.90	39203	39423	39236.8	
pr136	102	78807	82446	79170.90	78807	82446	79170.90	70790	74732	71782.4	
pr144	108	48403	54366	48999.30	48878	54823	49472.50	44657	50147	45206.0	
pr152	114	59070	59527	59115.70	59926	61777	60111.10	56727	57075	56761.8	
pr76	57	67800	68492	67869.20	70925	77449	71577.40	64990	65199	65018.9	
rat195	146	1787	1815	1793.50	1890	2064	1907.40	1713	1718	1715.80	
rat99	74	947	994	951.70	947	994	951.70	870	870	870.00	
rd100	75	6247	6268	6249.10	6247	6268	6249.10	5175	6136	5980.50	
si175	131	15907	16058	16005.40	16367	16614	16391.70	15723	15765	15749.5	
st70	52	482	487	482.50	494	510	495.60	477	486	480.10	
swiss42	31	773	918	787.50	773	918	787.50	760	760	760.00	
u159	119	31296	31895	31355.90	31296	31895	31355.90	27612	28182	28062.7	
ulysses16	12	3184	3264	3192.00	3184	3264	3195.20	3183	3183	3183.00	
ulysses22	16	3110	3124	3111.40	3240	3254	3241.40	2968	2968	2968.00	

(a) $k{=}12$ & $distance{=}82$

(b) k=25 & distance=175

(c) k=38 & distance=287

Fig. 1. Solutions of instance eil 51 obtained by GVNS with different \boldsymbol{k} values

test instances with various sizes are generated for the k-TSP. Computational results on these test instances show that the GVNS with both neighborhoods (i.e., $\text{GVNS}(N_1 + N_2)$) performs better than the two GVNS approaches with individual neighborhoods (i.e., $\text{GVNS}(N_1)$ & $\text{GVNS}(N_2)$). Our GVNS approach being the first metaheuristic approach will serve as the baseline for future metaheuristic approaches for the k-TSP. Similar approaches can be developed for other related problems where different neighborhoods need to be explored. As a future work, we intend to investigate the possibility of developing a population based metaheuristic approach by utilizing the components of GVNS to solve the profitable tour problem.

Acknowledgements

The first and second authors acknowledge the financial support received from the Council of Scientific & Industrial Research (CSIR), Government of India in the form of a Senior Research Fellowship.

References

- [1] S. Arora, G. Karakostas, A $2+\varepsilon$ approximation algorithm for the k-mst problem, in: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, 2000, pp. 754–759.
- [2] G. Ausiello, V. Bonifaci, S. Leonardi, A. Marchetti-Spaccamela, Prize-collecting traveling salesman and related problems, Handbook of Approximation Algorithms and Metaheuristics 40 (2007) 1–13.
- [3] E. Balas, The prize collecting traveling salesman problem, Networks 19 (6) (1989) 621-636.
- [4] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, M. Minkoff, Approximation algorithms for orienteering and discounted-reward tsp, SIAM Journal on Computing 37 (2) (2007) 653–670.
- [5] A. Blum, R. Ravi, S. Vempala, A constant-factor approximation algorithm for the k mst problem, in: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, ACM, 1996, pp. 442–448.
- [6] M. R. Garey, D. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, W. H. Freeman, San Francisco, 1979.
- [7] N. Garg, A 3-approximation for the minimum tree spanning k vertices, in: Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, IEEE, 1996, pp. 302–309.
- [8] N. Garg, Saving an epsilon: a 2-approximation for the k-mst problem in graphs, in: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, ACM, 2005, pp. 396–402.
- [9] P. Hansen, N. Mladenović, J. A. M. Pérez, Variable neighbourhood search: methods and applications, Annals of Operations Research 175 (1) (2010) 367–407.
- [10] N. Mladenović, P. Hansen, Variable neighborhood search, Computers & operations research 24 (11) (1997) 1097–1100.
- [11] N. Mladenović, R. Todosijević, D. Urošević, An efficient general variable neighborhood search for large travelling salesman problem with time windows, Yugoslav Journal of Operations Research 23 (1) (2013) 19–30.
- [12] N. Mladenović, R. Todosijević, D. Urošević, Two level general variable neighborhood search for attractive traveling salesman problem, Computers & Operations Research 52 (2014) 341–348.
- [13] N. Mladenović, D. Urošević, A. Ilić, et al., A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem, European Journal of Operational Research 220 (1) (2012) 270–285.
- [14] R. Todosijević, A. Mjirda, M. Mladenović, S. Hanafi, B. Gendron, A general variable neighborhood search variants for the travelling salesman problem with draft limits, Optimization Letters 11 (6) (2017) 1047–1056.