Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа №3.4.2

Закон Кюри-Вейсса

Маршрут III

20 октября 2018 г. 27 октября 2018 г. Работу выполнил Ринат Валиев, 711 гр.

Под руководством Г.И. Лапушкина, к.ф.-м.н.

Постановка эксперимента

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

Оборудование: катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

Теоретическая часть

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотичным образом. При повышении температуры T возрастает дезориентирующее действие теплового движения частиц, магнитная восприимчивость парамагнетиков убывает: в постоянном магнитном поле — по закону Кюри:

$$\chi = \frac{C}{T},$$
 где C — постоянная Кюри. (1)

Для парамагнитных веществ, которые при понижении температуры становятся ферромагнитными, формула (1) должна быть видоизменена. При $T\to 0$ тепловое движение все меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках это происходит при температуре Кюри Θ , при этом применяется закон Кюри-Вейсса:

$$\chi \sim \frac{1}{T-\Theta_p},$$
 где Θ_p — температура, близкая к $\Theta.$

Иногда Θ_p называют парамагнитной, а Θ – ферромагнитной точками Кюри.

Рис. 1: Зависимость обратной величины магнитной восприимчивости от температуры

В нашей работе изучается $\chi(T)$ гадолиния при температурах выше точки Кюри, которая находится в интервале комнатных температур.

Экспериментальная установка

Схема установки для проверки закона Кюри-Вейсса показана на рис. 2. Исследуемый образец расположен внутри катушки. Температура образца регулируется с помощью термостата.

Обозначим через L самоиндукцию катушки с образцом и через L_0 – самоиндукцию в отсутствие образца. Получим: $(L-L_0) \sim \chi$. При изменении самоиндукции образца меняется период колебаний автогенератора: $\tau = 2\pi \sqrt{LC},\ C$ – емкость контура автогенератора.

Период колебаний в отсутствие образца: $\tau_0 = 2\pi\sqrt{L_0C}$. Тогда имеем соотношение: $(L-L_0) \sim (\tau^2 - \tau_0^2)$. Таким образом, $\chi \sim (\tau^2 - \tau_0^2)$.

Далее следует, что закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \sim (T - \Theta_p) \sim \frac{1}{\tau^2 - \tau_0^2}.$$

Разность температур исследуемого образца и воды в термопаре контролируется с помощью медно-константановой термопары и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружен в воду. Концы термопары подключены к цифровому вольтметру.

Рис. 2: Схема экспериментальной установки для проверки закона Кюри-Вейсса
1 - катушка с образцом, 2 - стеклянный сосуд с трансформаторным маслом, 3 - вода в термостате,
4 - ртутные термометр, 5 - термостат, 6 - термопара

Выполнение эксперимента

Измерения

В работе исследуется зависимость периода колебаний автогенератора от температуры сердечника катушки, затем определяется парамагнитная точка Кюри гадолиния.

- 1. Запишем параметры установки: k = 24 град/мВ, $\tau_0 = 9{,}045$ мкс.
- 2. Исследуем зависимость периода колебаний LC-генератора от температуры образца, отмечая период колебаний τ по частотомеру, а температуру образца T по показаниям дисплея и цифровому вольтметру (ΔU с учетом знака). Термопара подключена так, что при знаке " + " на табло вольтметра, температура образца выше температуры рабочей жидкости. Проведем измерения в диапазоне от 14° С до 40° С через 2° С. Результаты занесем в таблицу 1.

Для данной таблицы имеем погрешности:

$$\sigma(T_{\rm изм})=0.5~{\rm ^{\circ}C}~\sigma(\Delta U)=1.2~{\rm mkB}~\sigma(\tau)=0.001~{\rm mkc}$$

$$\sigma(T)=\sqrt{\sigma(T_{\rm изм})^2+\sigma(k\cdot\Delta U)^2}=0.5~{\rm ^{\circ}C}$$

Также в таблицу 1 добавим расчеты значений $(\tau^2-\tau_0^2)$ и $(\tau^2-\tau_0^2)^{-1}$ с дальнейшей целью построить график $\chi(T)$ и $1/\chi(T)$.

N	1	2	3	4	5	6	7
$T_{\text{изм}}$, °С	14,03	16,03	18,00	20,02	22,02	24,02	26,02
ΔU , мВ	-17,1	-18,0	-7,2	-17,1	-16,9	-16,1	-16,5
T, °C	13,6	15,6	17,8	19,6	21,6	23,6	25,6
τ , MKC	10,790	10,701	10,509	10,310	9,980	9,612	9,430
$(au^2 - au_0^2)$	34,612	32,699	28,627	24,484	17,788	10,579	7,113
$(\tau^2 - \tau_0^2)^{-1}$	0,029	0,031	0,035	0,041	0,056	0,095	0,141
N	8	9	10	11	12	13	14
$T_{\text{изм}}, ^{\circ}\text{C}$	28,01	30,01	32,01	34,02	36,01	38,02	40,01
ΔU , мВ	-17,0	-16,3	-16,0	-15,2	-14,7	-15,0	-14,0
T, °C	27,6	29,6	31,6	33,7	35,7	37,7	39,7
τ , MKC	10,790	10,701	10,509	10,310	9,980	9,612	9,430
$(au^2 - au_0^2)$	5,480	4,492	3,787	3,270	2,920	2,626	2,387
$(\tau^2 - \tau_0^2)^{-1}$	0,182	0,223	0,264	0,306	0,342	0,381	0,419

Таблица 1: Результаты измерений для зависимости $\tau(T)$. Также данные для нахождения ферромагнитной и парамагнитной точек Кюри через графики $\chi(T)$ и $1/\chi(T)$.

3. Как уже было отмечено, температура, при которой магнитная восприимчивость резко снижается, почти до нуля, носит название температуры Кюри – Θ . При температурах выше Θ процесс намагничивания ферромагнетика нарушается из-за интенсивного теплового движения атомов и молекул и материал перестает быть ферромагнитным и становится парамагнетиком.

Рис. 3: График зависимости $\chi(T)$. Данные из таблицы 1. $\left(\chi \sim (\tau^2 - \tau_0^2)\right)$

Из графика $\chi(T)$ (рис. 3) мы не можем определить точку Кюри Θ для гадолиния. Для этого нужно было брать больший диапазон значений температуры, где был бы виден резкий скачок. Оттуда легко найти Θ .

4. Теперь определим парамагнитную температуру Кюри для гадолиния из зависимости $1/\chi(T)$.

Рис. 4: График зависимости $1/\chi(T)$. Данные из таблицы 1. $\left(\chi \sim (\tau^2 - \tau_0^2)\right)$

Экстраполируя ту часть графика, где гадолиний ведем себя как парамагнетик, найдем Θ_p . Рассмотрев данное линейное уравнение (также записано на рис. 4) найдем точку пересечения с осью абсцисс. Результат – 18,7 °C.

Отметим, что для вычисленных значений $(\tau^2-\tau_0^2)$ относительная погрешность меньше $\varepsilon<0.1\%$, а также для прямой (y=a+bx) парамагнитной части кривой получаются коэффициенты:

$$\begin{cases} a = -0.3782 & \varepsilon = 0.3\% \\ b = 0.0202 & \varepsilon = 0.8\% \end{cases}$$

Итоги

В данной работе исследована зависимость магнитной восприимчивости χ гадолиния от температуры выше точки Кюри (табличная $\Theta=16$ °C). Также рассмотрена зависимость $1/\chi(T)$, откуда определена парамагнитная точка Кюри для гадолиния $\Theta_p=(18.7\pm0.5)$ °C. Относительная погрешность равна $\varepsilon=3\%$, что вполне неплохо. Табличная $\Theta_p=20$ °C для чистого гадолиния.