EE5110: Probability Foundations for Electrical Engineers

July-November 2015

Scribe: Aseem Sharma

Lecture 10: The Borel-Cantelli Lemmas

Lecturer: Dr. Krishna Jagannathan

Then, almost surely, only finitely many A_n 's will occur.

The Borel-Cantelli lemmas are a set of results that establish if certain events occur infinitely often or only

Lemma 10.1 (First Borel-Cantelli lemma) Let $\{A_n\}$ be a sequence of events such that $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$.

finitely often. We present here the two most well-known versions of the Borel-Cantelli lemmas.

Lemma 10.2 (Second Borel-Cantelli lemma) Let $\{A_n\}$ be a sequence of independent events such that $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$. Then, almost surely, infinitely many A_n 's will occur.

It should be noted that only the second lemma stipulates independence. The event " A_n occurs infinitely often $(A_n \ i.o.)$ " is the set of all $\omega \in \Omega$ that belong to infinitely many A_n 's. It is defined as

$$\{A_n \ i.o.\} \triangleq \bigcap_{n=1}^{\infty} \underbrace{\bigcup_{m=n}^{\infty} A_m}_{B_n}. \tag{10.1}$$

Here, B_n is the event that at least one of $A_n, A_{n+1}, A_{n+2}, \ldots$ occur. Hence, $\{A_n \ i.o.\}$ is the event that for every $n \in \mathbb{N}$, there exists at least one $m \in \{n, n+1, \ldots, \infty\}$ such that A_m occurs. Taking complement of both sides in (15.1), we get the expression for the event that A_n occurs finitely often $(A_n \ f.o.)$

$${A_n f.o.}$$
 = $\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m^c$.

In order to prove the Borel-Cantelli lemmas, we require the following lemma.

Lemma 10.3 If
$$\sum_{i=1}^{\infty} p_i = \infty$$
, then $\lim_{n \to \infty} \prod_{i=1}^{n} (1 - p_i) = 0$.

Proof: Since $\ln(1-p_i) \leq -p_i$,

$$\prod_{i=1}^{n} (1 - p_i) = \prod_{i=1}^{n} e^{\ln(1 - p_i)}$$

$$\leq \prod_{i=1}^{n} e^{-p_i}$$

$$= e^{-\sum_{i=1}^{n} p_i}.$$

Taking limit on both the sides gives

$$\lim_{n \to \infty} \prod_{i=1}^{n} (1 - p_i) \le \lim_{n \to \infty} e^{-\sum_{i=1}^{n} p_i}$$

$$= 0.$$

We now proceed towards proving the Borel-Cantelli lemmas.

Proof:

1. First, note that the assumption $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$ implies $\lim_{n \to \infty} \sum_{m=n}^{\infty} \mathbb{P}(A_m) = 0$. Next, since $B_{n+1} \subset B_n$, we can use continuity of probability to write

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty}\bigcup_{m=n}^{\infty}A_{m}\right) = \mathbb{P}\left(\bigcap_{n=1}^{\infty}B_{n}\right)$$

$$= \lim_{n \to \infty}\mathbb{P}\left(B_{n}\right)$$

$$= \lim_{n \to \infty}\mathbb{P}\left(\bigcup_{m=n}^{\infty}A_{m}\right)$$

$$\leq \lim_{n \to \infty}\sum_{m=n}^{\infty}\mathbb{P}(A_{m})$$

$$= 0$$

We have used the union bound in writing the '\le ' above. Since $\mathbb{P}\left(\bigcap_{n=1}^{\infty}\bigcup_{i=n}^{\infty}A_{i}^{c}\right)\geq 0$, we conclude that $\mathbb{P}\left(\bigcap_{n=1}^{\infty}\bigcup_{i=n}^{\infty}A_{i}^{c}\right)=0$. This implies that, A_{n} occurs finitely often.

2. The event that that A_n occurs finitely often $(A_n f.o.)$ is given by

$${A_n f.o.}$$
 = $\bigcup_{n=1}^{\infty} \bigcap_{i=n}^{\infty} A_i^c$.

Now.

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty}\bigcap_{i=n}^{\infty}A_{i}^{c}\right) \leq \sum_{n=1}^{\infty}\mathbb{P}\left(\bigcap_{i=n}^{\infty}A_{i}^{c}\right) \quad \text{(Using union bound)}$$

$$= \sum_{n=1}^{\infty}\lim_{m\to\infty}\mathbb{P}\left(\bigcap_{i=n}^{m}A_{i}^{c}\right) \quad \text{(By continuity of probability)}$$

$$= \sum_{n=1}^{\infty}\prod_{i=n}^{m}\mathbb{P}\left(A_{i}^{c}\right) \quad \text{(By independence)}$$

$$= 0 \quad \text{(By lemma 15.3)} \tag{10.2}$$

Since $\mathbb{P}\left(\bigcup_{n=1}^{\infty}\bigcap_{i=n}^{\infty}A_{i}^{c}\right)\geq 0$, we conclude that $\mathbb{P}\left(\bigcup_{n=1}^{\infty}\bigcap_{i=n}^{\infty}A_{i}^{c}\right)=0$. This implies that, A_{n} occurs infinitely often.

We now illustrate the usefulness of the Borel-Cantelli lemmas using an example. Consider an experiment in which a coin is tossed independently many times. Let $\mathbb{P}(H_n)$ be the probability of obtaining head at the n^{th} toss (and similarly for T_n).

- 1. Suppose $\mathbb{P}(H_n) = \frac{1}{n}$, $n \geq 1$. Then $\sum_{n=1}^{\infty} \mathbb{P}(H_n) = \infty$. By the second Borel-Cantelli lemma, it follows that almost surely, infinitely many heads will occur. This might appear surprising at first sight, since as n becomes large, the probability of getting heads becomes vanishingly small. However, the decay rate 1/n is not 'fast enough.' In particular, for any n we choose (no matter how large), there occurs a heads beyond n almost surely!
- 2. Suppose now that $\mathbb{P}(H_n) = \frac{1}{n^2}$. Then $\sum_{n=1}^{\infty} \mathbb{P}(H_n) < \infty$, and hence by the first Borel-Cantelli lemma, almost surely, only finitely many heads will occur. In this case, the occurence of heads is decreasing fast enough that after a finite n, there will almost surely be no heads. Note that independence is not required in this case.

Exercises

- 1. Suppose that a monkey sits in front of a computer and starts hammering keys randomly on the keyboard. Show that the famous Shakespeare monologue starting All the worlds a stage will eventually appear (with probability 1) in its entirety on the screen, although our monkey is not particularly known for its good taste in literature. You can make reason- able additional assumptions to form a probability model; for example, you can assume that the monkey picks characters uniformly at random on the keyboard, and that the successive key strokes are independent.
- 2. Let $A_n, n \geq 1$ be a sequence of events such that $\mathbb{P}(A_n) \to 0$ as $n \to \infty$, and

$$\sum_{n=1}^{\infty} \mathbb{P}\left(A_n^c \cap A_{n+1}\right) < \infty$$

Show that almost surely, only finitely many of the A_n s will occur.

- 3. Online dating: On a certain day, Alice decides that she will start looking for a potential life partner on an online dating portal. She decides that everyday, she will pick a guy uniformly at random from among the male members of the dating portal, and go out on a date with him. What Alice does not know, is that her neighbor Bob is interested in dating her. Being of a shy disposition, Bob decides that he will not ask Alice out himself. Instead, he decides that he will go out on a date with Alice only on the days that Alice happens to pick him from the dating portal, of which he is already a member. For the first two parts, assume that 50 new male members and 40 new female members join the dating portal everyday.
 - (a) What is the probability that Alice and Bob would have a date on the nth day? Do you think Bob and Alice would eventually stop meeting? Justify your answer, clearly stating any additional assumptions.
 - (b) Now suppose that Bob also picks a girl uniformly at random everyday, from among the female members of the portal, and that Alice behaves exactly as before. Assume also that Bob and Alice will meet on a given day if and only if they both happen to pick each other. In this case, do you think Bob and Alice would eventually stop meeting?
 - (c) For this part, suppose that Alice and Bob behave as in part (a), i.e., Alice picks a guy uniformly at random, but Bob is only interested in dating Alice. However, the number of male members in the portal increases by 1 percent everyday. Do you think Bob and Alice would eventually stop meeting?

- 4. Let $\{S_n : n \ge 0\}$ be a simple random walk which moves to the right with probability p at each step, and suppose that $S_0 = 0$. Write $X_n = S_n S_{n-1}$.
 - (a) Show that $\{S_n = 0 \ i.o\}$ is not a tail event of the sequence $\{X_n\}$.
 - (b) Show that $\mathbb{P}(S_n = 0 \ i.o) = 0 \ \text{if} \ p \neq \frac{1}{2}$