

FCC PART 15C TEST REPORT

No.I19Z60823-IOT06

For

TCL Communication Ltd.

Tablet PC

9029W

with

FCC ID: 2ACCJBT16

Hardware Version: 02

Software Version: v5F5U

Issued Date: 2019-06-06

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S.Government.

Test Laboratory:

CTTL, Telecommunication Technology Labs, CAICT

No. 52, Huayuan North Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2512, Fax:+86(0)10-62304633-2504

Email: cttl_terminals@caict.ac.cn, website: www.caict.ac.cn,

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I19Z60823-IOT06	Rev.0	1st edition	2019-06-06

CONTENTS

CONTI	ENTS	3
1.	TEST LATORATORY	6
1.1.	INTRODUCTION & ACCREDITATION	6
1.2.	TESTING LOCATION	6
1.3.	TESTINGENVIRONMENT	6
1.4. 1.5.	Project data Signature	
2.	CLIENT INFORMATION	8
2.1. 2.2.	APPLICANT INFORMATION	
3.	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT(AE)	9
3.1. 3.2. 3.3. 3.4.	ABOUT EUT INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST INTERNAL IDENTIFICATION OF AE USED DURING THE TEST GENERAL DESCRIPTION	9 9
4.	REFERENCE DOCUMENTS	10
4.1. 4.2.	DOCUMENTS SUPPLIED BY APPLICANT	
5.	LABORATORY ENVIRONMENT	10
6.	SUMMARY OF TEST RESULTS	11
6.1. 6.2.	SUMMARY OF TEST RESULTSSTATEMENTS	
6.3.	EXPLANATION OF RE-USE OF TEST DATA	11
7.	TEST EQUIPMENTS UTILIZED	12
8.	MEASUREMENT UNCERTAINTY	13
8.1.	TRANSMITTER OUTPUT POWER	13
8.2.	PEAK POWER SPECTRAL DENSITY	13
8.3.	OCCUPIED 6DB BANDWIDTH	13
8.4.	BAND EDGES COMPLIANCE	13
8.5.	SPURIOUS EMISSIONS	13
8.6.	AC POWER-LINE CONDUCTED EMISSION	13
ANNEX	X A: MEASUREMENT RESULTS	14

A.1. MEA	SUREMENT METHOD	14
A.2. MAX	IMUM PEAK OUTPUT POWER	15
A.2.1 AN	TENNA GAIN	15
A.2.2. MA	AXIMUM PEAK OUTPUT POWER-CONDUCTED	15
A.2.3. MA	AXIMUM AVERAGE OUTPUT POWER-CONDUCTED	17
A.3. PEAR	K POWER SPECTRAL DENSITY	18
A.4. OCC	UPIED 6DB BANDWIDTH	18
Fig. 1	OCCUPIED 6DB BANDWIDTH (802.11A, CH 149)	19
Fig. 2	OCCUPIED 6DB BANDWIDTH (802.11A, CH 157)	19
Fig. 3	OCCUPIED 6DB BANDWIDTH (802.11A, CH 165)	20
Fig. 4	OCCUPIED 6DB BANDWIDTH (802.11n-HT20, CH 149)	20
FIG. 5	OCCUPIED 6DB BANDWIDTH (802.11N-HT20, CH 157)	21
Fig. 6	OCCUPIED 6DB BANDWIDTH (802.11n-HT20, CH 165)	21
Fig. 7	OCCUPIED 6DB BANDWIDTH (802.11n-HT40, CH 151)	22
Fig. 8	OCCUPIED 6DB BANDWIDTH (802.11n-HT40, CH 159)	22
A.5. TRA	NSMITTER SPURIOUS EMISSION	23
A.5.1 TRA	ANSMITTER SPURIOUS EMISSION - CONDUCTED	23
Fig. 9	CONDUCTED SPURIOUS EMISSION (802.11A, CH149, 30 MHz-1 GHz)	25
Fig. 10	CONDUCTED SPURIOUS EMISSION (802.11A, CH149, 1 GHz -12 GHz)	25
Fig. 11	CONDUCTED SPURIOUS EMISSION (802.11A, CH149, 12 GHz-25 GHz)	26
FIG. 12	CONDUCTED SPURIOUS EMISSION (802.11A, CH149, 25 GHz-40 GHz)	26
FIG. 13	CONDUCTED SPURIOUS EMISSION (802.11A, CH157, 30 MHz-1 GHz)	27
Fig. 14	CONDUCTED SPURIOUS EMISSION (802.11A, CH157, 1 GHz -12 GHz)	27
FIG. 15	CONDUCTED SPURIOUS EMISSION (802.11A, CH157, 12 GHz-25 GHz)	28
Fig. 16	CONDUCTED SPURIOUS EMISSION (802.11A, CH157, 25 GHz-40 GHz)	28
Fig. 17	CONDUCTED SPURIOUS EMISSION (802.11A, CH165, 30 MHz-1 GHz)	29
Fig. 18	CONDUCTED SPURIOUS EMISSION (802.11A, CH165, 1 GHz -12 GHz)	29
Fig. 19	CONDUCTED SPURIOUS EMISSION (802.11A, CH165, 12 GHz-25 GHz)	30
Fig. 20	CONDUCTED SPURIOUS EMISSION (802.11A, CH165, 25 GHz-40 GHz)	30
Fig. 21	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH149, 30 MHz-1 GHz)	31
FIG. 22	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH149, 1 GHz -12 GHz)	31
FIG. 23	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH149, 12 GHz-25 GHz)	32
FIG. 24	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH149, 25 GHz-40 GHz)	32
FIG. 25	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH157, 30 MHz-1 GHz)	33
Fig. 26	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH157, 1 GHz -12 GHz)	33
Fig. 27	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH157, 12 GHz-25 GHz)	34
FIG. 28	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH157, 25 GHz-40 GHz)	34
FIG. 29	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH165, 30 MHz-1 GHz)	35
FIG. 30	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH165, 1 GHz -12 GHz)	35
FIG. 31	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH165, 12 GHz-25 GHz)	36
FIG. 32	CONDUCTED SPURIOUS EMISSION (802.11n-HT20, CH165, 25 GHz-40 GHz)	36
FIG. 33	CONDUCTED SPURIOUS EMISSION (802.11n-HT40, CH151, 30 MHz-1 GHz)	37
FIG. 34	CONDUCTED SPURIOUS EMISSION (802.11n-HT40, CH151, 1 GHz -12 GHz)	37
Fig. 35	CONDUCTED SPURIOUS EMISSION (802.11N-HT40, CH151, 12 GHz-25 GHz)	38

No.I19Z60823-IOT06 Page5 of 61

	Fig. 36	CONDUCTED SPURIOUS EMISSION (802.11n-HT40, CH151, 25 GHz-40 GHz)	. 38
	FIG. 37	CONDUCTED SPURIOUS EMISSION (802.11N-HT40, CH159, 30 MHz-1 GHz)	. 39
	FIG. 38	CONDUCTED SPURIOUS EMISSION (802.11N-HT40, CH159, 1 GHz -12 GHz)	. 39
	FIG. 39	CONDUCTED SPURIOUS EMISSION (802.11N-HT40, CH159, 12 GHz-25 GHz)	. 40
	FIG. 40	CONDUCTED SPURIOUS EMISSION (802.11N-HT40, CH159, 25 GHz-40 GHz)	. 40
	A.5.2 Tran	SMITTER SPURIOUS EMISSION - RADIATED	. 41
	A.6. BAND	EDGES COMPLIANCE	. 49
	A6.1 BAND	EDGES - CONDUCTED.	. 49
	FIG. 41	BAND EDGES (802.11A, 5745MHz)	. 50
	FIG. 42	BAND EDGES (802.11A, 5825MHz)	. 50
	FIG. 43	BAND EDGES (802.11n-HT20, 5745MHz)	. 51
	FIG. 44	BAND EDGES (802.11n-HT20, 5825MHz)	. 51
	FIG. 45	BAND EDGES (802.11n-HT40, 5755MHz)	. 52
	FIG. 46	BAND EDGES (802.11n-HT40, 5795MHz)	. 52
	A6.2 BAND	Edges - Radiated	. 53
	FIG. 47	BAND EDGES (802.11A, 5745MHz)	. 54
	FIG. 48	BAND EDGES (802.11A, 5825MHz)	. 54
	FIG. 49	BAND EDGES (802.11n-HT20, 5745MHz)	. 55
	FIG. 50	BAND EDGES (802.11n-HT20, 5825MHz)	. 55
	FIG. 51	BAND EDGES (802.11n-HT40, 5755MHz)	. 56
	FIG. 52	BAND EDGES (802.11n-HT40, 5795MHz)	. 56
	A.7. AC Po	WERLINE CONDUCTED EMISSION	. 57
	FIG. 53	AC POWERLINE CONDUCTED EMISSION-802.11A	. 58
	FIG. 54	AC POWERLINE CONDUCTED EMISSION-802.11A	. 59
	FIG. 55	AC POWERLINE CONDUCTED EMISSION-IDLE.	60
A	NNEX B: A	CCREDITATION CERTIFICATE	61

1. TEST LATORATORY

1.1. Introduction & Accreditation

Telecommunication Technology Labs, CAICT is an ISO/IEC 17025:2005 accredited test laboratory under NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM (NVLAP) with lab code 600118-0, and is also an FCC accredited test laboratory (CN5017), and ISED accredited test laboratory (CN0066). The detail accreditation scope can be found on NVLAP website.

1.2. Testing Location

Conducted testing Location: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Radiated testing Location: CTTL(huayuan North Road)

Address: No. 52, Huayuan North Road, Haidian District, Beijing,

P. R. China100191

Radiated testing Location: CTTL(BDA)

Address: No.18A, Kangding Street, Beijing Economic-Technology

Development Area, Beijing, P. R. China 100176

1.3. TestingEnvironment

Normal Temperature: $15-35^{\circ}$ C Extreme Temperature: $-20/+55^{\circ}$ C Relative Humidity: 20-75%

1.4. Project data

Testing Start Date: 2018-05-30 Testing End Date: 2018-08-06

1.5. Signature

差雪

Jiang Xue

(Prepared this test report)

教力力

Zheng Wei

(Reviewed this test report)

高家

Gao Hong

(Approved this test report)

2. CLIENT INFORMATION

2.1. Applicant Information

Company Name: TCL Communication Ltd.

7/F, Block F4, TCL Communication Technology Building, TCL

Address: International E City, Zhong Shan Yuan Road, Nanshan District,

Shenzhen, Guangdong, P.R. China 518052

City: Shenzhen,
Postal Code: 518052
Country: China

Telephone: 0086-755-36611722

Fax: /

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

7/F, Block F4, TCL Communication Technology Building, TCL

Address: International E City, Zhong Shan Yuan Road, Nanshan District,

Shenzhen, Guangdong, P.R. China 518052

City: Shenzhen
Postal Code: 518052
Country: China

Telephone: 0086-755-36611722

Fax: /

3. <u>EQUIPMENT UNDER TEST (EUT) AND ANCILLARY</u> <u>EQUIPMENT(AE)</u>

3.1. About EUT

Description Tablet PC
Model name 9029W
FCC ID 2ACCJBT16

WLAN Frequency Range ISM Band: 5725MHz~5850MHz

Type of modulation OFDM

Voltage 3.9V DC by Battery

Note: Photographs of EUT are shown in ANNEX C of this test report. Components list, please refer to documents of the manufacturer; it is also included in the original test record of Telecommunication Metrology Center of MIIT of People's Republic of China.

3.2. Internal Identification of EUT used during the test

EUT ID*	IMEI	HW Version	SW Version
EUT1	/	02	v5F5U
EUT2	/	02	v5F5U

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description	SN	Remarks		
AE1	Battery	/	inbuilt		
AE2	Charger	/	18TCT-CH-0515		
AE3	Charger	/	18TCT-CH-0531		
AE4	USB Cable	/	18TCT-DC-0209		
AE1					
Model		TLp040J1			
Manufac	turer	BYD			
Capacita	ance	4000mAh	4000mAh		
Nominal	voltage	3.85V			
AE2					
Model		UC11US			
Manufac	turer	Chenyang			
Length o	of cable	/			
AE3					
Model		UC11US			
Manufacturer		PUAN			
Length of cable		/			
AF4					

Manufacturer /
Length of cable /

3.4. General Description

Equipment Under Test (EUT) is a Tablet PC with integrated antenna. It consists of normal options: Battery and Charger.

Manual and specifications of the EUT were provided to fulfil the test.

Samples undergoing test were selected by the Client.

4. REFERENCE DOCUMENTS

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

FCC CFR 47, Part 15, Subpart C and E:

15.205 Restricted bands of operation; 2016

15.209 Radiated emission limits, general requirements;

15.407 General technical requirements

Methods of Measurement of Radio-Noise Emissions from

ANSI C63.10 Low-Voltage Electrical and Electronic Equipment in the 2013

Range of 9 kHz to 40 GHz

UNII: KDB 789033

D02 General U-NII Test Procedures New Rules v02r01

2017-12

5. LABORATORY ENVIRONMENT

Conducted RF performance testing is performed in shielding room.

EMC performance testing is performed in Semi-anechoic chamber.

^{*}AE ID: is used to identify the test sample in the lab internally.

6. SUMMARY OF TEST RESULTS

6.1. Summary of Test Results

SUMMARY OF MEASUREMENT RESULTS	Sub-clause of Part15C	Sub-clause of IC	Verdict
Maximum Peak Output Power	15.407 (a)	1	BR
Peak Power Spectral Density	15.407 (a)	1	BR
Occupied 6dB Bandwidth	15.407 (e)	1	BR
Band Edges Compliance	15.407 (b)	1	BR
Transmitter Spurious Emission - Conducted	15.407	1	BR
Transmitter Spurious Emission - Radiated	15.407, 15.205, 15.209	/	BR
AC Powerline Conducted Emission	15.107, 15.207	1	BR
Transmitter Spurious Emission - Radiated < 30MHz	15.407, 15.209	/	BR

Please refer to ANNEX A for detail.

Terms used in Verdict column

Р	Pass, The EUT complies with the essential requirements in the standard.	
NM	Not measured, The test was not measured by CTTL	
NA	Not Applicable, The test was not applicable	
F	Fail, The EUT does not comply with the essential requirements in the	
	standard	

6.2. Statements

CTTL has evaluated the test cases requested by the client/manufacturer as listed in section 6.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.1.

This report only deals with the WLAN function among the features described in section 3.

6.3. Explanation of re-use of test data

The Equipment Under Test (EUT) model 9029W (FCC ID:2ACCJBT16) is a variant product of 9027W (FCC ID: 2ACCJBT13), according to the declaration of changes provided by the applicant and FCC KDB publication 484596 D01, spot check measurements were performed on this device, all the test results are derived from test report No. I18Z61163-IOT06. Please refer Annex A for detail spot check verification data and reference data.the spot check test results are consistent with basic model.

For detail differences between two models please refer the Declaration of Changes document. For this report, all the test cases are tested under normal temperature and normal voltage, and also under norm humidity, the specific condition is shown as follows:

Temperature 26° C Voltage 3.9V Humidity 44%

7. TEST EQUIPMENTS UTILIZED

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Vector Signal Analyzer	FSQ40	200089	Rohde & Schwarz	1 year	2019-05-17
2	Test Receiver	ESCI 3	100344	Rohde & Schwarz	1 year	2019-02-28
3	LISN	ENY216	101200	Rohde & Schwarz	1 year	2019-04-15
4	Shielding Room	S81	/	ETS-Lindgren	/	/

Radiated emission test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibratio n Due date
1	Test Receiver	ESU26	100235	Rohde & Schwarz	1 year	2019-03-01
2	BiLog Antenna	VULB9163	302	Schwarzbeck	3 years	2019-03-27
3	EMI Antenna	3115	00167250	ETS-Lindgren	3 Years	2020-05-21
4	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	3 years	2020-07-27

8. Measurement Uncertainty

8.1. Transmitter Output Power

Measurement Uncertainty: 0.387dB,k=1.96

8.2. Peak Power Spectral Density

Measurement Uncertainty: 0.705dB,k=1.96

8.3. Occupied 6dB Bandwidth

Measurement Uncertainty: 60.80Hz,k=1.96

8.4. Band Edges Compliance

Measurement Uncertainty: 0.62dB,k=1.96

8.5. Spurious Emissions

Conducted (k=1.96)

Frequency Range	Uncertainty(dB)			
30MHz ≤ f ≤ 2GHz	1.22			
2GHz ≤ f ≤3.6GHz	1.22			
3.6GHz ≤ f ≤8GHz	1.22			
8GHz ≤ f ≤12.75GHz	1.51			
12.75GHz ≤ f ≤26GHz	1.51			
26GHz ≤ f ≤40GHz	1.59			

Radiated (k=2)

Frequency Range	Uncertainty(dB)
9kHz-30MHz	/
30MHz ≤ f ≤ 1GHz	5.40
1GHz ≤ f ≤18GHz	4.32
18GHz ≤ f ≤40GHz	5.26

8.6. AC Power-line Conducted Emission

Measurement Uncertainty: 3.08dB,k=2

ANNEX A: MEASUREMENT RESULTS

A.1. Measurement Method

A.1.1. Conducted Measurements

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode.
- 3). Set the EUT to the required channel.
- 4). Set the spectrum analyzer to start measurement.
- 5). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

In the case of radiated emission, the used settings are as follows, Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz; Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 10Hz;

The measurement is made according to ANSI C63.10.

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

A.2. Maximum Peak Output Power

Measurement Limit and Method:

Standard	Limit (dBm)
FCC CRF Part 15.407(a)	< 30

A.2.1 Antenna Gain

Antenna gain is -1.3 dBi and the value is supplied by the applicant or manufacturer.

A.2.2. Maximum Peak Output Power-conducted

Measurement Results:

802.11a mode

	Data Rate		Test Result (dBm)	(dBm)	
Mode	(Mbps)	5745MHz (Ch149)	5785MHz (Ch157)	5825MHz (Ch165)	
	6	24.55	/	/	
	9	24.63	24.81	24.46	
	12	22.93	/	/	
000 110	18	22.56	/	/	
802.11a	24	23.29	/	/	
-	36	22.65	/	/	
-	48	21.16	/	/	
-	54	19.92	/	/	

The data rate 9Mbps is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT20 mode

	Data Rate	Test Result (dBm)		
Mode	Mode	5745MHz	5785MHz	5825MHz
	(Index)	(Ch149)	(Ch157)	(Ch165)
	MCS0	24.78	24.87	24.56
	MCS1	23.49	/	/
	MCS2	23.58	/	/
802.11n	MCS3	22.61	/	/
(20MHz)	MCS4	22.59	/	/
	MCS5	20.74	/	/
	MCS6	19.88	/	/
	MCS7	19.73	/	/

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

802.11n-HT40 mode

Data Data		Test Result (dBm)		
Mode	Mode Data Rate	5755MHz	5795MHz	
	(Index)	(Ch151)	(Ch159)	
	MCS0	25.16	24.48	
	MCS1	23.84	/	
	MCS2	23.87	/	
802.11n	MCS3	24.09	/	
(40MHz)	MCS4	23.25	1	
	MCS5	21.61	1	
	MCS6	20.09	/	
	MCS7	19.54	/	

The data rate MCS0 is selected as worse condition, and the following cases are performed with this condition.

Conclusion: PASS

A.2.3. Maximum Average Output Power-Conducted

Method of Measurement: See ANSI C63.10-clause 12.3.2.2 Method SA-1

802.11a mode

Mode	Test Result (dBm)		
Mode	5745MHz (Ch149) 5785MHz (Ch157) 5825MHz (Ch165)		
802.11a	17.55	18.81	18.02

802.11n-HT20 mode

Mode	Test Result (dBm)		
Wiode	5745MHz (Ch149) 5785MHz (Ch157) 5825MHz(Ch165)		
802.11n(20MHz)	16.55	16.59	16.00

802.11n-HT40 mode

Mada	Test Result (dBm) 5755MHz (Ch151) 5795MHz(Ch159)	
Mode		
802.11n(40MHz)	16.85	16.07

The spot check point is 802.11a Ch157 6Mbps, and the result is 18.95dBm.

Conclusion: PASS

A.3. Peak Power Spectral Density

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.407(a)	< 30 dBm/500 kHz

The measurement is made according to ANSI C63.10 and KDB789033 D02

Measurement Uncertainty:

-	
Measurement Uncertainty	0.75dB

Measurement Results:

Mode	Channel	Power Spectral Density (dBm/500kHz)	Conclusion
	149	5.13	Р
802.11a	157	5.56	Р
	165	4.59	Р
902 44 n	149	4.84	Р
802.11n HT20	157	5.15	Р
H120	165	4.77	Р
802.11n	151	2.12	Р
HT40	159	1.26	Р

Conclusion: PASS

A.4. Occupied 6dB Bandwidth

Measurement Limit:

Standard	Limit (kHz)
FCC 47 CFR Part 15.407 (e)	≥ 500

The measurement is made according to KDB789033 D02.

Measurement Uncertainty:

Measurement Uncertainty	60.80Hz
-------------------------	---------

Measurement Result:

Mode	Channel	Occupied 6dB Bandwidth (MHz)		conclusion
	149	Fig.1	16.35	Р
802.11a	157	Fig.2	16.30	Р
	165	Fig.3	16.35	Р
802.11n HT20	149	Fig.4	17.60	Р
	157	Fig.5	17.60	Р
	165	Fig.6	17.60	Р
802.11n	151	Fig.7	36.32	Р

HT40 159 Fig.8 36.32 P

Conclusion: PASS
Test graphs as below:

Fig. 1 Occupied 6dB Bandwidth (802.11a, Ch 149)

Fig. 2 Occupied 6dB Bandwidth (802.11a, Ch 157)

Fig. 3 Occupied 6dB Bandwidth (802.11a, Ch 165)

Fig. 4 Occupied 6dB Bandwidth (802.11n-HT20, Ch 149)

Fig. 5 Occupied 6dB Bandwidth (802.11n-HT20, Ch 157)

Fig. 6 Occupied 6dB Bandwidth (802.11n-HT20, Ch 165)

Fig. 7 Occupied 6dB Bandwidth (802.11n-HT40, Ch 151)

Fig. 8 Occupied 6dB Bandwidth (802.11n-HT40, Ch 159)

A.5. Transmitter Spurious Emission

Measurement Limit:

Standard	Frequency (MHz)	Limit (dBm/MHz)
FCC 47 CFR Part 15.407	5725MHz~5850MHz	< -27

The measurement is made according to ANSI C63.10.

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)
(MHz)		
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Measurement Uncertainty:

Frequency Range	Uncertainty(dB)
30MHz ≤ f ≤ 2GHz	0.63
2GHz ≤ f ≤3.6GHz	0.82
3.6GHz ≤ f ≤8GHz	1.55
8GHz ≤ f ≤20GHz	1.86
20GHz ≤ f ≤22GHz	1.90
22GHz ≤ f ≤26GHz	2.20

A.5.1 Transmitter Spurious Emission - Conducted

Measurement Results:

802.11a mode

MODE	Channel	Frequency Range	Test Results	Conclusion
	440	30 MHz ~ 1 GHz	Fig.9	Р
		1 GHz ~ 12 GHz	Fig.10	Р
	149	12 GHz ~ 25 GHz	Fig.11	Р
		25 GHz ~ 40 GHz	Fig.12	Р
		30 MHz ~ 1 GHz	Fig.13	Р
802.11a	157	1 GHz ~ 12 GHz	3	Р
	157	12 GHz ~ 25 GHz		Р
		25 GHz ~ 40 GHz	Fig.16	Р
		30 MHz ~ 1 GHz	Fig.17	Р
	165	1 GHz ~ 12 GHz	Fig.18	Р
	165	12 GHz ~ 25 GHz	Fig.19	Р
		25 GHz ~ 40 GHz	Fig.20	Р

802.11n-HT20 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
	440	30 MHz ~ 1 GHz	Fig.21	Р
		1 GHz ~ 12 GHz	Fig.22	Р
	149	12 GHz ~ 25 GHz	Fig.23	Р
		25 GHz ~ 40 GHz	Fig.24	Р
	157	30 MHz ~ 1 GHz	Fig.25	Р
802.11n		1 GHz ~ 12 GHz	Fig.26	Р
HT20		12 GHz ~ 25 GHz	Fig.27	Р
		25 GHz ~ 40 GHz	Fig.28	Р
		30 MHz ~ 1 GHz	Fig.29	Р
	165	1 GHz ~ 12 GHz	Fig.30	Р
	105	12 GHz ~ 25 GHz	Fig.31	Р
		25 GHz ~ 40 GHz	Fig.32	Р

802.11n-HT40 mode

MODE	Channel	Frequency Range	Test Results	Conclusion
		30 MHz ~ 1 GHz	Fig.33	Р
	151	1 GHz ~ 12 GHz	Fig.34	Р
	151	12 GHz ~ 25 GHz	Fig.35	Р
802.11n		25 GHz ~ 40 GHz	Fig.36	Р
HT40		30 MHz ~ 1 GHz	Fig.37	Р
	150	1 GHz ~ 12 GHz	Fig.38	Р
	159	12 GHz ~ 25 GHz	Fig.39	Р
		25 GHz ~ 40 GHz	Fig.40	Р

Conclusion: PASS
Test graphs as below:

Fig. 9 Conducted Spurious Emission (802.11a, Ch149, 30 MHz-1 GHz)

Fig. 10 Conducted Spurious Emission (802.11a, Ch149, 1 GHz -12 GHz)

Fig. 11 Conducted Spurious Emission (802.11a, Ch149, 12 GHz-25 GHz)

Fig. 12 Conducted Spurious Emission (802.11a, Ch149, 25 GHz-40 GHz)

Fig. 13 Conducted Spurious Emission (802.11a, Ch157, 30 MHz-1 GHz)

Fig. 14 Conducted Spurious Emission (802.11a, Ch157, 1 GHz -12 GHz)

Fig. 15 Conducted Spurious Emission (802.11a, Ch157, 12 GHz-25 GHz)

Fig. 16 Conducted Spurious Emission (802.11a, Ch157, 25 GHz-40 GHz)

Fig. 17 Conducted Spurious Emission (802.11a, Ch165, 30 MHz-1 GHz)

Fig. 18 Conducted Spurious Emission (802.11a, Ch165, 1 GHz -12 GHz)

Fig. 19 Conducted Spurious Emission (802.11a, Ch165, 12 GHz-25 GHz)

Fig. 20 Conducted Spurious Emission (802.11a, Ch165, 25 GHz-40 GHz)

Fig. 21 Conducted Spurious Emission (802.11n-HT20, Ch149, 30 MHz-1 GHz)

Fig. 22 Conducted Spurious Emission (802.11n-HT20, Ch149, 1 GHz -12 GHz)

Fig. 23 Conducted Spurious Emission (802.11n-HT20, Ch149, 12 GHz-25 GHz)

Fig. 24 Conducted Spurious Emission (802.11n-HT20, Ch149, 25 GHz-40 GHz)

Fig. 25 Conducted Spurious Emission (802.11n-HT20, Ch157, 30 MHz-1 GHz)

Fig. 26 Conducted Spurious Emission (802.11n-HT20, Ch157, 1 GHz -12 GHz)

Fig. 27 Conducted Spurious Emission (802.11n-HT20, Ch157, 12 GHz-25 GHz)

Fig. 28 Conducted Spurious Emission (802.11n-HT20, Ch157, 25 GHz-40 GHz)

Fig. 29 Conducted Spurious Emission (802.11n-HT20, Ch165, 30 MHz-1 GHz)

Fig. 30 Conducted Spurious Emission (802.11n-HT20, Ch165, 1 GHz -12 GHz)

Fig. 31 Conducted Spurious Emission (802.11n-HT20, Ch165, 12 GHz-25 GHz)

Fig. 32 Conducted Spurious Emission (802.11n-HT20, Ch165, 25 GHz-40 GHz)

Fig. 33 Conducted Spurious Emission (802.11n-HT40, Ch151, 30 MHz-1 GHz)

Fig. 34 Conducted Spurious Emission (802.11n-HT40, Ch151, 1 GHz -12 GHz)

Fig. 35 Conducted Spurious Emission (802.11n-HT40, Ch151, 12 GHz-25 GHz)

Fig. 36 Conducted Spurious Emission (802.11n-HT40, Ch151, 25 GHz-40 GHz)

Fig. 37 Conducted Spurious Emission (802.11n-HT40, Ch159, 30 MHz-1 GHz)

Fig. 38 Conducted Spurious Emission (802.11n-HT40, Ch159, 1 GHz -12 GHz)

Fig. 39 Conducted Spurious Emission (802.11n-HT40, Ch159, 12 GHz-25 GHz)

Fig. 40 Conducted Spurious Emission (802.11n-HT40, Ch159, 25 GHz-40 GHz)

A.5.2 Transmitter Spurious Emission - Radiated

Measurement Limit:

Standard	Frequency (MHz)	Limit (dBm/MHz)	
FCC 47 CFR Part 15.407	5725MHz~5850MHz	< -27	

The measurement is made according to ANSI C63.10.

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission	Field strength	Field strength	Measurement
(MHz)	(uV/m)	(uV/m) (dBµV/m)	
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Measurement Results:

802.11a mode

Mode	Channel	Frequency Range	Test Results	Conclusion
		1 GHz ~ 3 GHz		Р
	149	3 GHz ~ 7 GHz		Р
		7 GHz ~ 18 GHz		Р
		30 MHz ~1 GHz		Р
	157	1 GHz ~ 3 GHz		Р
802.11a		3 GHz ~ 7 GHz		Р
002.11a		7 GHz ~ 18 GHz		Р
		18 GHz ~ 26.5 GHz		Р
		26.5 GHz~ 40 GHz		Р
		1 GHz ~ 3 GHz		Р
	165	3 GHz ~ 7 GHz		Р
		7 GHz ~ 18 GHz		Р

802.11n-HT20 mode

Mode	Channel	Frequency Range	Test Results	Conclusion
		1 GHz ~ 3 GHz		Р
	149	3 GHz ~ 7 GHz		Р
		7 GHz ~ 18 GHz		Р
802.11n	157	30 MHz ~1 GHz		Р
(HT20)		1 GHz ~ 3 GHz		Р
		3 GHz ~ 7 GHz		Р
		7 GHz ~ 18 GHz		Р
		18 GHz ~ 26.5 GHz		Р

		26.5 GHz~ 40 GHz	 Р
		1 GHz ~ 3 GHz	 Р
165	165	3 GHz ~ 7 GHz	 Р
		7 GHz ~ 18 GHz	 Р

802.11n-HT40 mode

Mode	Channel	Frequency Range	Test Results	Conclusion
		30 MHz ~1 GHz		Р
		1 GHz ~ 3 GHz		Р
	454	3 GHz ~ 7 GHz		Р
000.44=	151	7 GHz ~ 18 GHz		Р
802.11n		18 GHz ~ 26.5 GHz		Р
(HT40)		26.5 GHz~ 40 GHz		Р
		1 GHz ~ 3 GHz		Р
	159	3 GHz ~ 7 GHz		Р
		7 GHz ~ 18 GHz		Р

Conclusion: PASS

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

 P_{Mea} is the field strength recorded from the instrument.

Average Results:

802.11a

Ch149

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency (MHz)	Result	loss	Factor	Reading	Pol.
(IVITZ)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5723.566	54.7	-36.5	34.2	56.985	Н
17991.200	41.0	-25.5	43.4	23.102	Н
17996.700	40.9	-25.5	43.4	23.002	V
18000.000	40.8	-26.5	46.4	20.905	Н
17992.300	40.8	-25.5	43.4	22.902	Н
17975.800	40.8	-25.5	43.4	22.902	Н

Ch157

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
17994.500	40.9	-25.5	43.4	23.002	Н
17992.300	40.8	-25.5	43.4	22.902	Н
18000.000	40.7	-26.5	46.4	20.805	V
17233.300	40.7	-26.6	40.1	27.201	Н
17963.700	40.7	-25.5	43.4	22.802	Н
17926.300	40.6	-25.5	43.4	22.702	Н

Fraguancy	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5850.100	48.2	-36.5	34.2	50.508	Н
17993.400	41.0	-25.5	43.4	23.102	Н
17998.900	41.0	-25.5	43.4	23.102	V
17981.300	40.8	-25.5	43.4	22.902	Н
18000.000	40.8	-26.5	46.4	20.905	Н
17235.500	40.7	-26.6	40.1	27.201	Н

Ch149

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5723.474	54.8	-36.5	34.2	57.085	Н
17234.400	43.5	-26.6	40.1	30.001	Н
17233.300	43.1	-26.6	40.1	29.601	V
17232.200	43.0	-26.6	40.1	29.501	Н
17238.800	42.9	-26.6	40.1	29.401	Н
17231.100	42.8	-26.6	40.1	29.301	Н

Ch157

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
18000.000	40.9	-26.5	46.4	21.005	Н
17996.700	40.9	-25.5	43.4	23.002	Н
17356.500	40.9	-26.6	40.1	27.401	V
17986.800	40.8	-25.5	43.4	22.902	Н
17997.800	40.7	-25.5	43.4	22.802	Н
17991.200	40.7	-25.5	43.4	22.802	Н

Fraguena.	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5848.468	58.0	-36.5	34.2	60.308	Н
17234.400	43.5	-26.6	40.1	30.001	Н
17233.300	43.1	-26.6	40.1	29.601	V
17232.200	43.0	-26.6	40.1	29.501	Н
17238.800	42.9	-26.6	40.1	29.401	Н
17231.100	42.8	-26.6	40.1	29.301	Н

Ch151

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5721.622	53.5	-36.5	34.2	55.785	Н
17982.400	41.0	-25.5	43.4	23.102	Н
18000.000	41.0	-26.5	46.4	21.105	V
17992.300	40.9	-25.5	43.4	23.002	Н
17998.900	40.8	-25.5	43.4	22.902	Н
17994.500	40.8	-25.5	43.4	22.902	Н

Fraguency.	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBµV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5852.010	49.6	-36.5	34.2	51.908	Н
17996.700	41.0	-25.5	43.4	23.102	Н
18000.000	41.0	-26.5	46.4	21.105	V
17997.800	40.9	-25.5	43.4	23.002	Н
17990.100	40.9	-25.5	43.4	23.002	Н
17995.600	40.8	-25.5	43.4	22.902	Н

Peak Results: 802.11a

Ch149

Fraguera.	Measurement	Cable	Antenna	Receiver	Antenna
Frequency (MHz)	Result	loss	Factor	Reading	Pol.
(IVITZ)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5724.290	68.6	-36.5	34.2	70.885	Н
17235.500	52.9	-26.6	40.1	39.401	Н
17906.500	52.0	-25.7	43.4	34.342	V
17905.400	52.0	-25.7	43.4	34.342	Н
17998.900	52.0	-25.5	43.4	34.102	Н
17960.400	51.9	-25.5	43.4	34.002	Н

Ch157

Frequency (MHz)	Measurement Result (dBµV/m)	Cable loss (dB)	Antenna Factor (dB/m)	Receiver Reading (dВµV)	Antenna Pol. (H/V)
17978.000	52.0	-25.5	43.4	34.102	Н
17937.300	51.8	-25.5	43.4	33.902	Н
17997.800	51.8	-25.5	43.4	33.902	V
17998.900	51.6	-25.5	43.4	33.702	Н
17235.500	51.6	-26.6	40.1	38.101	Н
17927.400	51.5	-25.5	43.4	33.602	Н

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBµV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5850.354	61.4	-36.5	34.2	63.708	Н
17236.600	52.4	-26.6	40.1	38.901	Н
17917.500	52.3	-25.5	43.4	34.402	V
17997.800	52.2	-25.5	43.4	34.302	Н
17949.400	52.2	-25.5	43.4	34.302	Н
17968.100	51.9	-25.5	43.4	34.002	Н

Ch149

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBµV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5723.497	71.8	-36.5	34.2	74.085	Н
17233.300	55.0	-26.6	40.1	41.501	Н
17236.600	55.0	-26.6	40.1	41.501	V
17237.700	54.7	-26.6	40.1	41.201	Н
17242.100	53.8	-26.6	40.1	40.301	Н
17241.000	53.8	-26.6	40.1	40.301	Н

Ch157

Fraguency	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
17990.100	52.6	-25.5	43.4	34.702	Н
17985.700	52.5	-25.5	43.4	34.602	Н
17996.700	52.2	-25.5	43.4	34.302	V
17821.800	52.0	-25.7	43.4	34.342	Н
17963.700	51.9	-25.5	43.4	34.002	Н
17349.900	51.8	-26.6	40.1	38.301	Н

Francisco de out	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5848.950	61.0	-36.5	34.2	63.308	Н
17233.300	55.0	-26.6	40.1	41.501	Н
17236.600	55.0	-26.6	40.1	41.501	V
17237.700	54.7	-26.6	40.1	41.201	Н
17242.100	53.8	-26.6	40.1	40.301	Н
17241.000	53.8	-26.6	40.1	40.301	Н

Ch151

Fraguanay	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5721.898	67.2	-36.5	34.2	69.485	Н
17980.200	52.5	-25.5	43.4	34.602	Н
17263.000	52.4	-26.6	40.1	38.901	V
17974.700	51.9	-25.5	43.4	34.002	Н
17899.900	51.8	-25.7	43.4	34.142	Н
17981.300	51.8	-25.5	43.4	33.902	Н

Ch159

Francisco de la constanta de l	Measurement	Cable	Antenna	Receiver	Antenna
Frequency	Result	loss	Factor	Reading	Pol.
(MHz)	(dBμV/m)	(dB)	(dB/m)	(dBμV)	(H/V)
5852.079	62.5	-36.5	34.2	64.808	Н
17995.600	52.8	-25.5	43.4	34.902	Н
17921.900	52.4	-25.5	43.4	34.502	V
17939.500	52.1	-25.5	43.4	34.202	Н
17991.200	51.9	-25.5	43.4	34.002	Н
17962.600	51.7	-25.5	43.4	33.802	Н

Conclusion: PASS

A.6. Band Edges Compliance

A6.1 Band Edges - conducted

Measurement Limit:

Standard	Limit (dBm/MHz)
	All emissions shall be limited to a level of −27 dBm/MHz
	at 75 MHz or more above or below the band edge
	increasing linearly to 10 dBm/MHz at 25 MHz above or
FCC 47 CFR Part 15.407(b)(4)	below the band edge, and from 25 MHz above or below
FCC 47 CFR Part 15.407(b)(4)	the band edge increasing linearly to a level of 15.6
	dBm/MHz at 5 MHz above or below the band edge, and
	from 5 MHz above or below the band edge increasing
	linearly to a level of 27 dBm/MHz at the band edge.

The measurement is made according to KDB 789033 D02

Measurement Uncertainty:

Measurement Uncertainty 0.75dB	
--------------------------------	--

Measurement Result:

Mode	Channel	Test Results	Conclusion
802.11a	5745 MHz	Fig.41	Р
002.11a	5825 MHz	Fig.42	Р
802.11n	5745 MHz	Fig.43	Р
HT20	5825 MHz	Fig.44	Р
802.11n	5755 MHz	Fig.45	Р
HT40	5795 MHz	Fig.46	Р

Conclusion: PASS
Test graphs as below:

Fig. 41 Band Edges (802.11a, 5745MHz)

Fig. 42 Band Edges (802.11a, 5825MHz)

Fig. 43 Band Edges (802.11n-HT20, 5745MHz)

Fig. 44 Band Edges (802.11n-HT20, 5825MHz)

Fig. 45 Band Edges (802.11n-HT40, 5755MHz)

Fig. 46 Band Edges (802.11n-HT40, 5795MHz)

A6.2 Band Edges - Radiated

Measurement Limit:

Standard	Limit (dBm/MHz)							
	at the band edge	27						
FCC 47 CFR	at 5 MHz above or below the band edge	15.6						
Part 15.407	at 25 MHz above or below the band edge	10						
	at 75 MHz or more above or below the band edge	-27						
	Note: increasing linearly from point to point.							

The measurement is made according to KDB 789033 D02

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Measurement Result:

Mode	Channel	Test Results	Conclusion
902.116	5745 MHz	Fig.47	Р
802.11a	5825 MHz	Fig.48	Р
802.11n	5745 MHz	Fig.49	Р
HT20	5825 MHz	Fig.50	Р
802.11n	5755 MHz	Fig.51	Р
HT40	5795 MHz	Fig.52	Р

Conclusion: PASS
Test graphs as below:

Fig. 47 Band Edges (802.11a, 5745MHz)

Fig. 48 Band Edges (802.11a, 5825MHz)

Fig. 49 Band Edges (802.11n-HT20, 5745MHz)

Fig. 50 Band Edges (802.11n-HT20, 5825MHz)

Fig. 51 Band Edges (802.11n-HT40, 5755MHz)

Fig. 52 Band Edges (802.11n-HT40, 5795MHz)

A.7. AC Powerline Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
110	60

Measurement uncertainty:

Expanded measurement uncertainty for this test item is U =3.2dB, k=2.

Measurement Result and limit:

WLAN (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Result With cl	Conclusion	
(1411 12)	Еппи (авру)	802.11a	Idle	
0.15 to 0.5	66 to 56			
0.5 to 5	56	Fig.53	Fig.55	Р
5 to 30	60			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

WLAN (Average Limit)

Frequency range	Average Limit	Result (Conclusion	
(MHz)	(dBμV)	802.11a	Idle	
0.15 to 0.5	56 to 46			
0.5 to 5	46	Fig.54	Fig.55	Р
5 to 30	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

The measurement is made according to ANSI C63.10.

Conclusion: PASS
Test graphs as below:

Traffic :Set.10

Fig. 53 AC Powerline Conducted Emission-802.11a

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.406500	38.8	2000.0	9.000	On	L1	19.9	18.9	57.7	
0.586500	44.9	2000.0	9.000	On	L1	19.9	11.1	56.0	
1.117500	37.2	2000.0	9.000	On	N	19.7	18.8	56.0	
1.356000	38.2	2000.0	9.000	On	N	19.6	17.8	56.0	
2.458500	36.6	2000.0	9.000	On	L1	19.7	19.4	56.0	
3.606000	36.3	2000.0	9.000	On	L1	19.6	19.7	56.0	-

Final Result 2

Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.271500	32.2	2000.0	9.000	On	L1	19.8	18.8	51.1	
0.595500	37.5	2000.0	9.000	On	L1	19.8	8.5	46.0	
0.928500	30.6	2000.0	9.000	On	L1	19.7	15.4	46.0	
1.257000	29.2	2000.0	9.000	On	L1	19.6	16.8	46.0	
2.436000	27.9	2000.0	9.000	On	L1	19.7	18.1	46.0	
3.624000	27.8	2000.0	9.000	On	L1	19.6	18.2	46.0	

Traffic :Set.11

Fig. 54 AC Powerline Conducted Emission-802.11a

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.424500	34.9	2000.0	9.000	On	N	19.9	22.4	57.4	
0.550500	44.5	2000.0	9.000	On	L1	19.9	11.5	56.0	
0.982500	39.8	2000.0	9.000	On	L1	19.6	16.2	56.0	
1.329000	39.1	2000.0	9.000	On	L1	19.6	16.9	56.0	
2.476500	38.4	2000.0	9.000	On	L1	19.7	17.6	56.0	
3.705000	37.5	2000.0	9.000	On	L1	19.6	18.5	56.0	

Final Result 2

Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.195000	34.2	2000.0	9.000	On	N	19.8	19.6	53.8	
0.555000	36.4	2000.0	9.000	On	N	19.9	9.6	46.0	
1.023000	30.9	2000.0	9.000	On	L1	19.6	15.1	46.0	
1.338000	30.1	2000.0	9.000	On	L1	19.6	15.9	46.0	
2.548500	29.2	2000.0	9.000	On	L1	19.7	16.8	46.0	
3.732000	27.7	2000.0	9.000	On	L1	19.6	18.3	46.0	

Idle: Set.10

Fig. 55 AC Powerline Conducted Emission-Idle

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.199500	46.3	2000.0	9.000	On	L1	19.8	17.4	63.6	
0.429000	40.8	2000.0	9.000	On	L1	19.9	16.4	57.3	
0.591000	46.6	2000.0	9.000	On	L1	19.9	9.4	56.0	
0.901500	37.8	2000.0	9.000	On	L1	19.7	18.2	56.0	
1.392000	38.0	2000.0	9.000	On	N	19.6	18.0	56.0	
2.413500	37.0	2000.0	9.000	On	L1	19.7	19.0	56.0	

Final Result 2

i illai ixes	Juit 2								
Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.231000	34.0	2000.0	9.000	On	L1	19.8	18.4	52.4	
0.262500	32.8	2000.0	9.000	On	L1	19.8	18.5	51.4	
0.595500	38.0	2000.0	9.000	On	L1	19.8	8.0	46.0	
0.937500	30.5	2000.0	9.000	On	L1	19.6	15.5	46.0	
1.329000	28.8	2000.0	9.000	On	L1	19.6	17.2	46.0	
2.476500	28.4	2000.0	9.000	On	L1	19.7	17.6	46.0	

ANNEX B: Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2018-09-28 through 2019-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program

*** END OF REPORT BODY ***