微观经济学证明

2024年11月9日

专题一:偏好关系与效用函数

- 1. **命题 1.1.1**: 如果偏好关系 ≿ 是理性的,则:
- (1)≻ 既是非自反的,又是可传递的。
- (2)~是自反的,可传递的,且是对称的。
- (3) 若 $x \succ y \succsim z$,则 $x \succ z$ 。

(证明见 ppt page 4 或答案 page 3)

- 2. **例题 1.2.1:** 假设 $X = \{x, y, z\}, \mathcal{B} = \{\{x, y\}, \{x, y, z\}\}$, 定义选择结构,
- $(1)(\mathcal{B}, C_1(\cdot)), C_1(\cdot) \not\supset C_1(\{x, y\}) = \{x\}, C_1(\{x, y, z\}) = \{x\};$
- $(2)(\mathcal{B}, C_2(\cdot)), C_2(\cdot) \not\supset C_2(\{x, y\}) = \{x\}, C_2(\{x, y, z\}) = \{x, y\}.$
- 证明 (1) 满足 W.A., 证明 (2) 不满足 W.A.。

(证明见 ppt page 9)

3. **命题 1.3.1:** 由理性偏好关系 \succeq 导出的选择结构 ($\mathcal{B}, C^*(\cdot, \succeq)$) 满足 W.A.

证明: 假定某一 $B \in \mathcal{B}$, 有 $x, y \in B$, 且 $x \in C^*(B, \succeq)$ 。根据 $C^*(B, \succeq)$ 的定义,有 $x \succeq y$ 。假定某一 $B' \in \mathcal{B}$, $x, y \in B'$, 有 $y \in C^*(B', \succeq)$, 也就是说 $\forall z \in B'$, 均有 $y \succeq z$ 。由上 $x \succeq y$,根据传递性,则 $x \succeq z$,因此 $x \in C^*(B', \succeq)$ 。

4. **例 1.3.1:** $X = \{x, y, z\}$, $\mathcal{B} = \{\{x, y\}, \{y, z\}, \{x, z\}\}, C(\{x, y\}) = \{x\}, C(\{y, z\}) = \{y\}, C(\{x, z\}) = \{z\}.$ 选择结构是否满足 W.A.? 是否可被理性化?

(证明见 ppt page 12)

- 5. **命题 1.3.2:** 选择结构 ($\mathcal{B}, C(\cdot)$),
- (1)满足弱公理;
- (2)8包含了三元及三元以下所有子集,

则存在理性化与 \mathcal{B} 相关的 $C(\cdot)$ 的理性偏好关系 \succsim (也就是说对于所有 $B \in \mathcal{B}$,有 $C(B) = C^*(B, \succeq)$),且是唯一的偏好关系。

思路:找到一个理性的偏好关系使得我们观察到的选择规则 C(•)与我们找到的理性偏好形成的选择规则等价。(观察到的选择规则与理论上的选择规则等价)。

两步: 第一步证明选择的偏好是理性的。第二步证明两个选择结构是等价的。

证明:给定选择结构就会有一个显示偏好关系 ≿*,其实若二者是一一对应的,显示偏好关系 ≿* 就是我们要找的那个理性偏好关系。这样就需要证明两点:(1)选择结构是理性的;(2)两个选择结构是等同的。

(1) 选择结构是理性的,即满足完备性和传递性。

完备性:由(b), $\{x,y\} \in \mathcal{B}$ 。x,y至少有一个被选,也就是 $C(\{x,y\})$ 中的一个元素,则或者 $x \gtrsim^* y$,或者 $y \gtrsim^* x$,或者二者兼有,故完备。

传递性: 假设 $x \succsim^* y, y \succsim^* z$, 往证 $x \succsim^* z$ 。若考虑 $\{x, y, z\} \in \mathcal{B}$,只需证明 $x \in C(\{x, y, z\})$,因为这意味着 $x \succsim^* z$ 。 $C(\{x, y, z\}) \neq \emptyset$,则三者之一将被选择。

如果 $x \in C(\{x, y, z\})$, 直接证毕;

如果 $y \in C(\{x,y,z\})$, 由于假设中 $x \succsim^* y$, 由 W.A. 自然 $x \in C(\{x,y,z\})$;

如果 $z \in C(\{x,y,z\})$, 由于假设中 $x \gtrsim^* z$, 那么 $y \in C(\{x,y,z\})$, 自然 $x \in C(\{x,y,z\})$ 。

 $(2) \gtrsim^*$ 理性化 \mathcal{B} 上的 $C(\cdot) \iff \forall B \in \mathcal{B}, C(B) = C^*(B, \succsim^*)$ 。

假设 $x \in C(B)$,对于 $\forall y \in B$,由显示偏好定义 $x \succsim^* y$,再根据 $C^*(B, \succsim^*)$ 定义, $x \in C^*(B, \succsim^*)$ 。即 $C(B) \subset C^*(B, \succsim^*)$ 。

假设 $x \in C^*(B, \succeq^*)$,根据 $C^*(B, \succeq^*)$ 的定义,对于 $\forall y \in B, x \succeq^* y$ 。因此,对于每个 $y \in B$ 必存在某一集合 $B_y \in \mathcal{B}$,使得 $x, y \in B_y$,且 $x \in C(B_y)$ 。(会在 x, y 共同存在情况下 x 被选,并和每一个对比选择)因为 $C(B) \neq \emptyset$,由 W.A. 就是 $x \in C(B)$ 。即 $C^*(B, \succeq^*) \subset C(B)$ 。

综合, $C(B) = C^*(B, \succeq^*)$ 。

(3) 唯一性。包含所有含二元子集就可保证。

6. 命题 1.4.1:

- (1) 如果 ≿ 是强单调的,则它是单调的;
- (2) 如果 ≿ 是单调的,则它是局部非饱和的。

(问题 (1) 的证明参见 ppt page 17)

证明 (2): 若 \succsim 为单调,构造 y 满足条件,对于 $\forall x \in X$ 和 $\varepsilon > 0$, $e = (1, 1, \ldots, 1) \in \mathbb{R}^L$, $y = x + \frac{\varepsilon}{\sqrt{L}}e$,那么 $|y - x| < \varepsilon$,且 $y \succ x$ 。

7. **命题 1.5.1:** u 是代表偏好关系 \succeq 的一个效用函数,那么对于任意一个严格递增函数 $f: \mathbb{R} \to \mathbb{R}$, $v(\cdot) = f(u(\cdot))$ 是一个代表和 $u(\cdot)$ 一样偏好的效用函数。

(证明参见 ppt page 19)

8. 命题 1.5.2: 当偏好关系 ≿ 是理性时, 才可用一个效用函数来表示。

(证明参见 ppt page 20)

9. 命题 1.5.3: 词典式偏好关系是理性的。

(证明参见 ppt page 21)

10. 命题 1.5.4: 不存在代表词典式偏好关系的效用函数。

证明: **(反证法)** 假设存在这样的一个效用函数 $u(\cdot)$ 。对于每一个 x_1 ,可选择一个有理数 $r(x_1)$,使得 $u(x_1,2)>r(x_1)>u(x_1,1)$ 。如果 $x_1>x_1'$,那么 $u(x_1,2)>r(x_1)>u(x_1,1)>u(x_1,2)>r(x_1')>u(x_1,1)>v(x_1',2)>r(x_1',2)>r(x_1',2)>r($

11. 命题 1.5.5: 词典式偏好关系不是连续的。

(证明参见 ppt page 22)

12. **定义 1.5.3**: 证明偏好为凸与效用函数的拟凹性之间是等价的。 (证明参见 ppt page 24)

专题二: 消费者选择与需求理论

1. 命题 2.1.1: 瓦尔拉斯预算集是凸集。

(证明参见 ppt page 29)

2. **命题 2.2.1:** 若 $p \gg 0$, w > 0, 且 $u(\cdot)$ 连续,则 UMP 有一个解。

证明: 若 $p \gg 0$, w > 0,对于 $x \in B_{p,w}$,有 $x_l \leq w/p_l$, $\forall l = 1, ..., L$ 。那么, $B_{p,w}$ 是有界闭集,故是紧集。连续函数在紧集上必有一个最大值。

3. 命题 2.2.2: 瓦尔拉斯需求函数的相关性质。

假设 $u(\cdot)$ 是连续效用函数,代表定义在消费集 $X=\mathbb{R}_+^L$ 上的局部非饱和的理性偏好关系。

- (1) 在 (p,w) 上,x(p,w) 具有零次齐次性.
- (2)满足瓦尔拉斯定律。
- (3) 凸性和唯一性:偏好关系 \gtrsim 是凸的,从而 $u(\cdot)$ 是拟凹性,那么 x(p,w) 是一个凸集;偏好关系 \gtrsim 是严格凸的,从而 $u(\cdot)$ 是严格拟凹性,则 x(p,w) 只有单一元素。

注: 零次其次性: $f(t\alpha) = t^n f(\alpha)$, 其中 n 为 0。

证明 (3): x(p,w) 是一个凸集等价于 $x, x', x \neq x'$,且 $\forall \alpha \in [0,1]$,令 $x'' = \alpha x + (1 - \alpha)x'$,则 $x'' \in x(p,w)$ 。

假设 x 和 x' 为 UMP 的最优解,则 $u(x) = u(x') \triangleq u^*$,根据 $u(\cdot)$ 的拟凹性,因为 $x'' = \alpha x + (1 - \alpha)x'$,所以 $u(x'') \ge u^*$ 。(达到最大效用)

由于 $p \cdot x \leq w, p \cdot x' \leq w$,可得 $p \cdot x'' = p \cdot [\alpha x + (1 - \alpha)x'] \leq w$,故 x'' 是 UMP 中一个可行选择,因此 $x'' \in x(p,w)$ 。

如果 $u(\cdot)$ 是严格拟凹,同样方法可证 x'' 是 UMP 中可行选择。

反证法,假设存在 UMP 中相异的最优解 x 和 x',则 $u(x) = u(x') \triangleq u^*$, $\forall \alpha \in (0,1)$,令 $x'' = \alpha x + (1-\alpha)x'$,则 $u(x'') > u^*$,这与 x 和 x' 是最优解是矛盾的,故不可能存在相异的最优解,只能有一个元素。

(证明 (1)(2) 参见 ppt page 33)

- 4. 命题 2.2.3: 间接效用函数的相关性质
- (1) 零次齐次性。
- (2) 在 w 上是严格递增的; $\forall l$,在 p_l 上是非递增的。
- (3) 拟凸性。
- (4) 在 p 和 w 上是连续的。(证略)

证明 (3): $\forall \bar{v}$, $\{(p,w): v(p,w) \leq \bar{v}\}$ 是凸的; 或者假设 $v(p,w) \leq \bar{v}$, $v(p',w') \leq \bar{v}$, 若 $\alpha \in [0,1]$, $(p'',w'') = (\alpha p + (1-\alpha)p', \alpha w + (1-\alpha)w')$, 那么 $v(p'',w'') \leq \bar{v}$. (线性组合的函数数值小于函数数值中的大者)

因此,往证任何满足 $p'' \cdot x \leq w''$ 的 x,一定有 $u(x) \leq \bar{v}$ 。

若 $p'' \cdot x \le w$,带入得 $\alpha p \cdot x + (1 - \alpha)p' \cdot x \le \alpha w + (1 - \alpha)w'$,则必有 $p \cdot x \le w$ 和 $p' \cdot x \le w'$ 中至少一个不等式成立。

若 $p \cdot x \leq w$, x 在 (p, w) 下可行, 则 $u(x) \leq v(p, w) \leq \bar{v}$,

若 $p' \cdot x \leq w'$, x 在 (p', w') 下可行, 则 $u(x) \leq v(p', w') \leq \bar{v}$,

 $u(x) \leq \bar{v}$ 得证。

(证明 (1)(2) 参见 ppt page 34)

- 5. **命题 2.3.1:** 假设 $u(\cdot)$ 是连续效用函数,代表定义在消费集上局部非饱和的理性偏好关系,且 $p \gg 0$,则
- (1) 当 w > 0 时, x^* 为 UMP 中最优,那么当要求达到的效用水平为 $u(x^*)$ 时, x^* 亦为 EMP 中最优,且 EMP 中最小支出为 w。
- (2) 当要求达到的效用水平 u > u(0) 时, x^* 为 EMP 中最优,那么当财富为 $p \cdot x^*$ 时, x^* 亦为 UMP 中最优,且 UMP 中最大效用为 u。

(证明参见 ppt page 39)

- 6. **命题 2.3.2**: 支出函数 e(p, u) 的相关性质:
- (1) 在 p 上是一次齐次的。
- (2) 在 u 上严格递增; $\forall l$,在 p_l 上是非递减的。
- (3) 在 p 上是凹的。
- (4) 在 p 和 u 上是连续的。(证略)

(证明 (1)(3) 参见 ppt page 42)

证明 (2): 反证法: 如果 x' 和 x'' 分别为要求达到效用为 u' 和 u'' 的 EMP 最优, 不妨假设 u'' > u',假设 e(p,u) 在 u 上不是严格递增的,则非严格递增意味着 $p \cdot x' > p \cdot x'' > 0$ 。

令 $\tilde{x} = \alpha x''$, $\alpha \in (0,1)$,由于 u(x) 的连续性,当 $\alpha \to 1$ 时,可以有 $u(\tilde{x}) > u'$ (根据假设 $u(x'') \ge u''$ 和 u'' > u',现在还没有证明没有多余效用,故是大于等于),且 $p \cdot x' > p \cdot \tilde{x} > 0$ 。此与 x' 是要求达到效用为 u' 的 EMP 最优矛盾。

另外, $\forall k \neq l$,对于 p' 和 p'',有 $p_l'' \geq p_l'$, $p_k'' = p_k'$ 。令 x'' 为价格为 p'' 的 EMP 最优,那么 $e(p'',u) = p'' \cdot x'' \geq p' \cdot x'' \geq e(p',u)$,即 e(p,u) 在 p_l 上是非递减的。

- 7. 命题 2.3.3: 希克斯需求函数的相关性质:
- (1) 在 p 上是零次齐次的。
- (2) 没有超额效用。
- (3) 凸性和唯一性:偏好关系 \gtrsim 是凸的,从而 $u(\cdot)$ 是拟凹性的,则 h(p,u) 是一个凸集;偏好关系 \gtrsim 是严格凸的,从而 $u(\cdot)$ 是严格拟凹的,则 h(p,u) 只有单一元素。

(证明参见 ppt page 45)

专题三: 不确定性下的选择

- 1. **命题 3.1.1:** 如果 \mathcal{L} 上的偏好关系 ≿ 满足独立性公理,对于所有 $\alpha \in (0,1)$ 和 $L, L', L'' \in \mathcal{L}$,有:
 - (1) 当且仅当 $\alpha L + (1-\alpha)L'' \succsim \alpha L' + (1-\alpha)L''$ 时, $L \succsim L'$;
 - (2) 当且仅当 $\alpha L + (1-\alpha)L'' \sim \alpha L' + (1-\alpha)L''$ 时, $L \sim L'$;
 - (3) 如果 $L \succeq L' \perp L' \succeq L''$, 则 $\alpha L + (1 \alpha)L'' \succeq \alpha L' + (1 \alpha)L''$.

(证明参见 ppt page 59)

2. **例 3.3.1:** (风险规避和风险中性的例子)一个赌博,初始状态为 2 元的决策者得到或失去 1 元 (二者发生可能性相同)。

如果决策者是严格风险规避的,该赌博的 v.N-M 效用为 $\frac{1}{2}u(1) + \frac{1}{2}u(3)$,它严格小于初始状态效用 u(2)。

如果决策者是风险中性的,Jensen 不等式的等号须对 $\forall F(\cdot)$ 都成立,当且仅当伯努利效用函数 $u(\cdot)$ 是线性的。

Chapter 1 课后习题及答案

 $1.B.4^A$ 考虑一个理性偏好关系 \gtrsim 。证明若 u(x) = u(y) 意味着 $x \sim y$,而且 u(x) > u(y) 意味着 $x \succ y$,则 $u(\cdot)$ 是个代表偏好关系 \gtrsim 的效用函数。

证明: 首先,假设 $x \gtrsim y$,如果我们还有 $y \gtrsim x$,则 $x \sim y$,从而有 u(x) = u(y)。 另一方面,如果 $x \gtrsim y$,但 $y \gtrsim x$ 不成立,则 $x \succ y$,从而有 u(x) > u(y)。因此,如果 $x \gtrsim y$,那么 $u(x) \geq u(y)$ 。

 $1.C.2^B$ 证明弱公理(定义 1.C.1)等价于下列性质:

假设 $B, B' \in \mathcal{B}$,而且 $x, y \in B$ 和 $x, y \in B'$ 。那么如果 $x \in C(B)$ 且 $y \in C(B')$,我们必定有 $\{x, y\} \subseteq C(B)$ 和 $\{x, y\} \subseteq C(B')$ 。

证明:容易看出,问题中的性质等价于下列性质:如果 $B, B' \in \mathcal{B}$,而且 $x, y \in B$ 和 $x, y \in B'$,以及 $x \in C(B)$ 且 $y \in C(B')$,那么我们有 $x \in C(B')$ 和 $y \in C(B)$ 。所以,我们只要证明这个性质和弱公理等价即可。

首先,假设弱公理已经得到满足。假设 $B, B' \in \mathcal{B}$,而且 $x, y \in B$ 和 $x, y \in B'$,以及 $x \in C(B)$ 和 $y \in C(B')$ 。将弱公理应用两次,即可得到 $x \in C(B')$ 和 $y \in C(B)$ 。因此,题目中的性质也得到了满足。

其次,假设我们的性质已经得到满足,我们需要从这个性质推导出弱公理也得以满足的结论。令 $B \in \mathcal{B}, x, y \in B, x \in B'$ 和 $x \in C(B)$ 。另外,令 $B' \in \mathcal{B}, x, y \in B'$ 以及 $y \in C(B')$,于是上面的条件意味着 $x \in C(B')$ (和 $y \in C(B)$)。因此,满足弱公理。■

 $1.D.1^{B}$ 举出一个能被若干偏好关系理性化的选择结构的例子。注意:如果预算集族 \mathcal{B} 包含了 X 的所有二元子集,则至多存在一个理性化的偏好关系。

答案:最简单的例子是 $X = \{x, y\}, \mathcal{B} = \{\{x\}, \{y\}\}, C(\{x\}) = \{x\}, C(\{y\}) = \{y\}$ 。于是,X上的任何理性偏好关系都能理性化 $C(\cdot)$ 。■

 $1.D.2^A$ 证明如果 X 是有限的,则任何理性偏好关系都能生成一个非空选择规则; 也就是说,对于任何 $B\subseteq X$ 且 $B\neq\emptyset$,我们都有 $C(B)\neq\emptyset$ 。

证明:根据习题 1.*B*.5,令 $u(\cdot)$ 是个代表偏好关系 \succeq 的效用函数。由于 X 是有限的,对于任何 $B \subseteq X$ 且 $B \neq \emptyset$,存在 $x \in B$ 使得对于所有 $y \in B$ 我们都有 $u(x) \geq u(y)$ 。于是, $x \in C^*(B, \succeq)$,因此, $C^*(B, \succeq) \neq \emptyset$ 。

[这个题目也可以直接证明(不使用效用函数),但这种方法在本质上和问题 1.B.5 的证明是相同的。] \blacksquare

$$1.D.3^B$$
 令 $X = \{x, y, z\}$,考虑选择结构 $(\mathcal{B}, C(\cdot))$,其中:

$$\mathcal{B} = \{\{x, y\}, \{y, z\}, \{x, z\}, \{x, y, z\}\},\$$

$$C(\{x,y\})=\{x\}, \quad C(\{y,z\})=\{y\}, \quad C(\{x,z\})=\{z\}.$$

证明 $(\mathcal{B}, C(\cdot))$ 必定违背了弱公理。

证明: 反证。假设弱公理成立。

如果 $x \in C(X)$,则 $x \in C(\{x,z\})$,这与 $C(\{x,z\}) = \{z\}$ 矛盾。

如果 $y \in C(X)$, 则 $y \in C(\{x,y\})$, 这和 $C(\{x,y\}) = \{x\}$ 矛盾。

如果 $z \in C(X)$,则 $z \in C(\{y,z\})$,这与 $C(\{y,z\}) = \{y\}$ 矛盾。

因此, $(\mathcal{B}, C(\cdot))$ 必定违背弱公理。■