(9) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

[®] Off nl gungsschrift _® DE 199 46 173 A 1

(f) Int. Cl.⁷: C 12 N 9/00 C 12 N 5/16

(7) Aktenzeichen:

199 46 173.2

② Anmeldetag:

20. 9. 1999

(43) Offenlegungstag:

5. 4.2001

(1) Anmelder:

Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere, 18196 Dummerstorf, DE

(14) Vertreter:

Uexküll & Stolberg, 20354 Hamburg

② Erfinder:

Seyfert, Hans Martin, 18196 Kessin, DE

56 Entgegenhaltungen:

92 13 102 A1 wo

Barber M.C. u.a.: Elucidation of a promotor activity that directs the expression of acetyl-CoA carboxylase α with an alternative N-terminus in a tissue-restricted fashion, In: Biochem. J., 1998, Vol. 333, S. 17-25;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- Expression der bovinen Acetyl-Coenzym A Carboxylase α
- Die vorliegende Erfindung betrifft Nukleinsäuren, die eine DNA-Sequenz aufweisen, welche für bovine Acetyl-Coenzym A Carboxylase α kodiert und/oder die Expression dieses Enzyms in der Milchdrüse von Rindern reguliert. Die Erfindung betrifft ferner Verfahren zur Hemmung der Expression von Acca in der Milchdrüse von nichtmenschlichen Säugern sowie transgene nicht-menschliche Säuger.

Die vorliegende Erfindung betrifft insbesondere Nukleinsäuren, welche DNA-Sequenzen umfassen, die a) die in SEQ ID NO: 1 oder SEQ ID NO: 2 dargestellte Sequenz:

b) eine allelische Variante davon oder

c) eines Fragmentes der Sequenzen nach a) oder b) aufweisen, wobei ein Fragment mindestens einen der Bereiche von Nukleotid 933 bis 966, 2188 bis 2219 oder 3055 bis 3495 der SEQ ID NO: 1, den Bereich von Nukleotid 1 bis 441 der SEQ ID NO: 2 oder den entsprechenden Bereich einer allelischen Variante umfaßt.

Die Erfindung betrifft ferner Vektoren, insbesondere Expressionsvektoren, die entsprechende Nukleinsäuren umfassen. Dabei sind Expressionsvektoren bevorzugt, die Nukleinsäuren umfassen, die den Bereich von Nukleotid 2188 bis 2219 der SEQ ID NO: 1 oder den Bereich von Nukleotid 1 bis 3445 der SEQ ID NO: 1 umfassen.

Beschreibung

Die vorliegende Erfindung betrifft Nukleinsäuren, die eine DNA Sequenz aufweisen, welche für bovine Acetyl-Coenzym A Carboxylase α kodiert und/oder die Expression dieses Enzyms in der Milchdrüse von Rindern reguliert. Die Erfindung betrifft ferner Verfahren zur Hemmung der Expression von Accα in der Milchdrüse von nichtmenschlichen Säugern.

Mit zunehmender Bedeutung der Verfahren zur Erzeugung von transgenen Tieren und insbesondere der Expression von rekombinanten Proteinen in der Milch von transgenen Tieren gewinnen induzierbare Promotoren, welche die Expression von Genen in der Milchdrüse kontrollieren, ebenfalls an Bedeutung. Beispielsweise ist es wünschenswert, die

Expression der Enzyme zu kontrollieren, die die Zusammensetzung der Milch beeinflussen.

Die bovine Acetyl-Coenzym Λ Carboxylase α ist ein Enzym, das in der Milchdrüse induzierbar exprimiert wird und die Zusammensetzung der Milch wesentlich beeinflußt.

Acetyl-Coenzym A besteht aus Essigsäure, die über eine Thioester-Bindung an die Sulfhydrylgruppe von Coenzym A gebunden ist. Acetyl-Coenzym A besitzt ein hohes Acetyl-Gruppenübertragungspotential und ist deshalb ein wichtiges Zwischenprodukt bei einer Vielzahl von Biosyntheseverfahren der Zelle.

Acetyl-Coenzym A Carboxylase α (E.C. 6.4.1.2; nachfolgend als Accα bezeichnet) ist eines der Enzyme, die für die Synthese langkettiger Fettsäuren im Zytoplasma von Säugetieren benötigt werden. Accα katalysiert die Bildung von Malonyl-CoA aus Acetyl-CoA durch Aaslagerung einer CO₂-Gruppe an den C₂-Körper des Acetyl-CoA, wodurch dieser zu einem C₃-Körper verlängert wird. Bei dieser Reaktion handelt es sich um den Raten-limitierenden Schritt der Fettsäuresynthese (Numa, S. und Tanabe, T., Fatty acid metabolism and its regulation, Herausgeber S. Numa, New York 1984, 1–27).

Eine Vielzahl von Isoformen der Acetyl-Coenzym A Carboxylase wurde inzwischen isoliert. Dabei unterscheidet man zwischen einer Accα mit einem Molekulargewicht von 265 kDa und einer Accß mit einem Molekulargewicht von 275 bis 280 kDa, sowie zwischen verschiedenen Isoformen der Accα, die durch unterschiedliches Spleißen der mRNA erzeugt werden. Obwohl davon ausgegangen wird, daß Accα primär die Synthese langkettiger Fettsäuren im Zytoplasma von Säugetieren reguliert, während Accß an der Oxidation der Fettsäuren in den Mitochondrien beteiligt ist, konnte eine klare Aufteilung der verschiedenen Isoformen nach enzymatischer Aktivität experimentell nicht belegt werden (Ki-Han Kim, Annu. Rev. Nutr., Vol. 17 (1997), 77–99). Die Proteinsequenz der Accß unterscheidet sich von der Sequenz der Accα hauptsächlich im N-terminalen Bereich.

Fettsäuren erfüllen im Organismus eine Vielzahl von Funktionen, beispielsweise werden sie als Grundstoff für die Membransynthese, als Reservestoff oder als Nahrungsquelle für Säuglinge eingesetzt. Daher wurden aktive Accα Enzyme in einer Vielzahl von Zellen, darunter Zellen des fettspeichernden Gewebes, der Leber und der Milchdrüse, gefunden (Ki-Han Kim a.a.O.).

Die Aktivität der Accα und die Rate der Fettsäuresynthese einer Zelle schwanken in Abhängigkeit von Umwelteinflüssen, wie Hormonen, der Zusammensetzung der Nährmedien, der Entwicklungsbedingungen und von genetischen Faktoren (Ki-Han Kim a.a.O.). Aufgrund der vielfältigen Verwendung der Fettsäuren erfolgt die Regulation der enzymatischen Aktivität der Accα sowohl auf der Ebene der Transkription und Translation als auch durch Aktivierung und Inaktivierung des Proteins.

Accα und β sind Phosphoproteine, die bis zu 9 Mol Phosphat pro Mol Enzym tragen können. Accα kann durch Phosphorilierung inaktiviert werden. In Versuchen mit Accα, dessen Aminosäuresequenz an bestimmten Positionen verändert worden war, wurde festgestellt, daß die Phosphorilierung von Serin in Position 1200 für die Inaktivierung durch cAMP-abhängige Protein-Kinase und die Phosphorilierung von Serin in Position 79 für die Inaktivierung durch 5'-AMP-abhängige Protein-Kinase notwendig ist (Ha et al., J. Biol. Chem., Vol. 269, 22162–22168; und Ki-Han a.a.O.).

Eine erste Beschreibung des für Accα kodierenden Genes der Ratte wurde von Lopéz-Casillas et al. durchgeführt (Proc. Natl. Acad. Sci. USA, Vol. 85 (1988), 5784-5788). Dabei konnte gezeigt werden, daß dieses Gen gewebespezifisch von unterschiedlichen Promotoren 1 und 2 (PI und PII) exprimiert wird (Lopéz-Casillas et al., Gene, Vol. 83 (1998), 311-319). Es wurden jedoch nur die im 5'-Bereich des Gens gelegenen Exons charakterisiert, wobei sestgestellt wurde, daß Exon 5 das Startsignal für die Eiweißsynthese des Enzyms trägt.

Inzwischen wurde auch die cDNA des Accα Gens vom Menschen kloniert (Abu-Elheiga et al., Proc. Natl. Acad. Sci. USA, Vol. 92 (1995), 4011–4015). Das Gen erstreckt sich über etwa 460 Kb.

Ferner konnte das für Accß kodierende Gen des Menschen identifiziert werden (Widmer et al., Biochem. J., (1996), 015-022)

Die Kontrolle der Accα-Aktivität über die Expression des Gens von den Promotoren PI und PII ist im Stand der Technik ausführlich dargestellt worden. Auf der Ebene der Genexpression erfolgt die Kontrolle in zwei Stufen:

(i) Differenzierungs-abhängige und physiologische Aktivierung verschiedener Promotoren; sowie

55

(ii) Ausbildung verschiedener Spleißvarianten der mRNA, die sich im 5'-nicht-translatierten Bereich unterscheiden

Es konnten fünf verschiedene Formen von Accα mRNA identifiziert werden, die durch Expression von PI oder PII aus und verschiedene Spleißvorgänge der Transkripte erzeugt werden. Über die physiologische Bedeutung dieser Spleißvarianten ist nichts bekannt, obwohl die verschiedenen mRNAs Gewebe-spezifisch, also in Abhängigkeit des Zustands des Gewebes exprimiert werden.

Die Transkription vom Promotor PI führt zu Klasse 1 mRNAs, die Exon 1 an ihrem 5'-Ende aufweisen, während die Transkription vom PII-Promotor zu Klasse 2 mRNAs führt, welche Exon 2 als 5'-Ende aufweisen (Ki-Han a.a.O.).

Von der Ratte weiß man bezüglich der Promoteraktivierung, daß PI in der Leber und in adiposem Gewebe aktiv ist, durch die Stoffwechsellage des Tieres (Fasten/Anstittern führt zu starker Aktivierung, Laktation praktisch zur Abschaltung in adiposem Gewebe) reguliert wird und in der Milchdrüse zu allen Zeiten inaktiv ist.

Der PII-Promotor ist in fast allen Geweben konstitutiv aktiv. Der PII-Promotor der Ratte weist ferner Ansatzstellen für

Vermittler extra-zellulärer Signale auf (z. B. Insulin, Glukose-reguliertes Element, cAMP). Das zeigt, daß die Aktivität dieses – an sich konstitutiven – Promotors zusätzlich in Abhängigkeit von der Stoffwechsellage des Tieres reguliert wird. So wurde beispielsweise die Expression der verschiedenen Acα-Isoformen in der Milchdrüse während und nach der Schwangerschaft bestimmt. Dabei wurde festgestellt, daß die Aktivität des PII-Promotors unmittelbar nach der Geburt stark ansteigt, während eine Aktivität des PI-Promotors während dieser Phase nicht nachgewiesen werden konnte. Aus diesen Befunden wurde gefolgert, daß die Aktivität der Accα in der Milchdrüse vom PII Promotor reguliert wird (Ki-Han a.a.0.).

In der Ratte wurden Bindungssequenzen für eine Reihe von Transkriptionsfaktoren im Bereich der Sequenz des PI und PII-Promotors identifiziert (Ki-Han a.a.O.; Tac et al., J. Biol.Chem. 269 (1994) 10475–10488). Bezüglich ihrer entwicklungsspezifischen Aktivierung ist jedoch nichts bekannt.

Bei der Klonierung der Accα cDNA des Schafes wurden Transkripte unterschiedlicher Länge erhalten (Barber et al., Gene, Vol. 154 (1995), 271–275). Dabei wurde festgestellt, daß es sich um die Expression der für Accα kodierenden DNA von unterschiedlichen Promotoren aus handelt. In erweiternden Studien konnte beim Schaf ein bis dahin unbekannter, dritter Promotor (PIII) nachgewiesen werden, der insbesondere während der Laktation die Expression der Accα aktiviert (Barber et al., Biochem. J., Vol. 333 (1998), 17–25). Der PIII-Promotor liegt im Intron 5 des Gens und die Expression von diesem Promotors aus führt zur Bildung einer mRNA, deren Sequenz sich im 5'-Bereich (in den ersten 17 Aminosäuren) von der Sequenz aller anderen Accα mRNA-Sequenzen unterscheidet, da das dem PIII nachgeordnete Exon 5A nur bei Expression von diesem Promotor transkribiert wird. Von Exon 6 ab ist die Sequenz dieser mRNA identisch mit der Sequenz der übrigen Accα mRNA-Moleküle. Expression von dem PIII aus führt ferner zu einem Accα-Enzym, dessen Aminosäuresequenz 58 Aminosäuren kürzer als die übrigen Accα-Isoformen ist (die insgesamt 2347 Aminosäuren enthalten).

Von dem PIII-Promotor des Schafes sind jedoch bislang lediglich 350 bp bekannt, auf denen keine Bindungssequenzen für laktationsspezifische Transkriptionsfaktoren identifiziert wurden. Über die Sequenzen, welche eine Milchdrüsenspezifische Expression der Acca bei Nutztieren kontrollieren, ist fast nichts bekannt.

Insbesondere DNA-Sequenzen, die eine Expression der Acca beim wichtigsten Nutztier des Menschen, nämlich beim Rind, steuern, wurden ebenfalls im Stand der Technik noch nicht beschrieben. Die Sequenz könnte als Laktations-spezifischer, induzierbarer Promotor zur Expression von beliebigen Genen in der Milch von transgenen Säugetieren verwendet werden.

Die Verfügbarkeit dieser Sequenzen hätte ferner den Vorteil, daß der Fettgehalt der Milch gezielt verändert werden könnte. Die Reinigung rekombinanter Proteine aus der Milch transgener Kühe kann beispielsweise durch den hohen Fettgehalt der Milch sehr außwendig sein. Ein weiterer Vorteil von Milch mit verringertem Milchsett-Gehalt wäre, daß sogenannte Magermilch aus entsprechenden Kühen gewonnen werden könnte, ohne daß das Milchfett zuvor entfernt werden müßte.

Aufgabe der vorliegenden Ersindung war es daher, Nukleinsäuren zur Verfügung zu stellen, die DNA-Sequenzen aufweisen, welche für den Milchdrüsen-spezifischen Promotor der Λccα und/oder das Strukturgen der Λccα des Rindes kodieren.

Diese Aufgabe wurde nunmehr durch Nukleinsäuren gelöst, welche DNA-Sequenzen umfassen, die

- a) die in SEQ ID NO: 1 oder SEQ ID NO: 2 dargestellte Sequenz;
- b) eine allelischen Variante davon; oder
- c) eines Fragmentes der Sequenzen nach a) oder b)

aufweisen, wobei ein Fragment mindestens einen der Bereiche von Nukleotid 933 bis 966, 2188 bis 2219 oder 3055 bis 3495 der SEQ ID NO: 1, den Bereich von Nukleotid 1 bis 441 der SEQ ID NO: 2 oder den entsprechenden Bereich einer allelischen Variante umfaßt.

40

Im Rahmen der vorliegenden Erfindung werden als "allelische Varianten" natürlicherweise auftretende Variationen der für die bovine Accα kodierende DNA-Sequenz oder der entsprechenden PIII-Promotorsequenz bezeichnet.

Durch die vorliegende Erfindung werden erstmals Nukleinsäuren mit der Sequenz des Laktations-spezifischen Promotors der bovinen Accα (SEQ ID NO: 1) sowie der entsprechenden cDNA (SEQ ID NO: 2) zur Verfügung gestellt. Diese Nukleinsäuren sowie bestimmte Fragmente davon können zur Expression von Fremdgenen in der Milchdrüse von Rindern und zur Genotypisierung von Rindern verwendet werden.

Ferner ermöglicht die vorliegende Erfindung die Erzeugung transgener, nicht-menschlicher Säugetiere, deren Milch einen verringerten Fettgehalt aufweist. Dafür werden die DNA-Sequenzen, die für den Milchdrüsen-spezifischen Promotor der Accα oder für das Accα-Strukturgen kodieren, im Genom von nicht-menschlichen, transgenen Säugetieren mindestens teilweise durch eine Sequenz ersetzt, die durch Deletion oder Substitution von einzelnen oder mehreren Nukleotiden so verändert wurde, daß die Expression der Accα in der Milchdrüse gehemmt wird.

Bei der Sequenzanalyse der SEQ ID NO: 1 wurde festgestellt, daß der PIII Promotor der bovinen Accα eine Hauptbindungssequenz (sogenannte "high affinity binding site") und 10 kooperative DNA-Bindungsdomänen (sogenannte "low affinity binding sites") für den Transkriptionsfaktor STΛΤ5 aufweist (vgl. Übersichtsdarstellung Fig. 6A), wobei insbesondere der Bereich der Nukleotide 2188 bis 2219 der SEQ ID NO: 1 eine Häufung von mehreren STΛΤ5-Bindungssequenzen aufweist. Im Rahmen der vorliegenden Erfindung konnte gezeigt werden, daß die STΛΤS-Bindungssequenzen für die Promotoreigenschaften des PIII der Λccα wesentlich sind.

Als STATs ("signal transducers and activators of transcription") werden Transkriptionsfaktoren bezeichnet, die durch Interaktion mit bestimmten Zelloberflächenrezeptoren aktiviert werden und – als Folge dieser Aktivierung – in den Zellkern einwandern und an bestimmte DNA-Sequenzen binden können (James E. Darnell, Science, Vol. 277 (1997), 1630–1635). Die meisten STATs sind etwa 750 bis 795 Aminosäuren lang und benötigen den COOH terminalen Bereich für die Genaktivierung.

STAT 5A wurde als Wachstumsfaktor der Milchdrüse isoliert, der an den β-Casein-Promotor bindet (Wakao et al.,

EMBO J., Vol. 13 (1994), 2181–2191). STAT 5B weist eine Aminosäure-Sequenzhomologie von mehr als 90% zu STAT 5A auf und konnte ebenfalls in der Milchdrüse nachgewiesen werden. Obwohl ein proximales Promotorelement des β-Caseingens der Ratte zum Nachweis von STATSA-Aktivierung und DNA-Bindung verwendet wurde, war die Synthese von β-Casein in den STATSA deletierten (sogenannten "knock-out"-) Mäusen möglich. Das saure Molkeprotein ("whey acidic protein") konnte jedoch in diesen Mäusen nicht mehr exprimiert werden. Die Bedeutung der STAT5-Bindungsstellen für die quantitative Regulation Laktations-spezifischer Expression der Gene ist daher von dem jeweiligen Gen abhängig.

Die DNA-Bindungsmotive für STAT5 Faktoren wurden kürzlich identifiziert. Eine Hauptbindungssequenz (TTCNNNGAA, die "highaffinity-site") wird von der zentralen DNA-bindenden Domäne der STAT5 Faktoren gebunden (Darnell, JR, J. E. Science 277 (1997) 1630–1635; Becker et al., Nature 394 (1998) 145–151). Halbseiten dieses Palindroms werden von der Nterminalen Domäne gebunden, dersogenannten "kooperativen DNA-Bindungsdomäne" ("lowaffinitysites"; Vinkemeier et al., EMBO J. 15 (1996) 5616–5626; Xu et al., Science 273 (1996) 794–797)).

Kurze Beschreibung der Figuren

15

Fig. 1 Sequenz des PIII-Promotors der bovinen Acca.

Fig. 2 cDNA-Sequenz der von dem PIII-Promotor gebildeten Accα.

Fig. 3 Aminosäure-Sequenz der von dem PIII-Promotor gebildeten Acca.

Fig. 4 Vergleich der Aminosäure-Sequenz der von dem PIII-Promotor gebildeten Accα mit der von dem PI-Promotor gebildeten Accα.

Fig. 5A Nachweis des PIII-Promotors im Genom; Restriktionspaltung von DNA des Klons 91, wobei die folgenden Enzyme verwendet wurden:

B, BamHI; D, DraI; E, EcoRI; EV, EcoRV; H, HindIII; K, KpnI; P, PvuII; Sc, ScaI; St, StuI; X, XhoI.

Fig. 5B Southern-Blot des Gels nach Fig. 5A, wobei als Sonde Exon 5A aus Klon 357_2 verwendet wurde.

Fig. 6A Expression vom PIII-Promotor der bovinen Acca; Struktur der verwendeten Deletionsklone.

Fig. 6B Expression vom PIII-Promotor der bovinen Accα; Expressionsfrequenz der Deletionsklone in stabil transfizierten HC-11 Zellen.

Fig. 7 Genomische Anordnung der Acca Promotoren beim Rind.

Fig. 8 Expression der Accα vom PIII- und PII-Promotor in verschiedenen Geweben; die folgenden Gewebe wurden eingesetzt:

M: Marker; 1: Leber; 2: Adipose Gewebe; 3: Niere; 4: Gehirn; 5: Muskel; 6: Lunge; 7: Mischdrüse, nichtlaktierend; 8: laktierende Milchdrüse; K: PCR Kontrolle (identischer Ansatz ohne RNA).

Fig. 9 Verwendung des Mikrosatelliten zur Genotypisierung.

Die vorliegende Erfindung betrifft Nukleinsäuren, welche DNA-Sequenzen umfassen, die

35

- a) die in SEO ID NO: 1 oder SEQ ID NO: 2 dargestellte Sequenz;
- b) eine allelischen Variante davon; oder
- c) eines Fragmentes der Sequenzen nach a) oder b)

aufweisen, wobei ein Fragment mindestens einen der Bereiche von Nukleotid 933 bis 966, 2188 bis 2219 oder 3055 bis 3495 der SEQ ID NO: 1, den Bereich von Nukleotid 1 bis 441 der SEQ ID NO: 2 oder den entsprechenden Bereich einer allelischen Variante, umfaßt.

Die Erfindung betrifft ferner Vektoren, insbesondere Expressionsvektoren, die entsprechende Nukleinsäuren umfassen. Dabei sind Expressionsvektoren bevorzugt, die Nukleinsäuren umfasen, die den Bereich von Nukleotid 2188 bis 2219 der SEQ ID NO: 1 oder den Bereich von Nukleotid 1 bis 3445 der SEQ ID NO: 1 umfassen.

Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden Expressionsvektoren zur Verfügung gestellt, in denen die Nukleotide 2188 bis 2219 der SEQ ID NO: 1 oder 1 bis 3445 der SEQ ID NO: 1 operativ mit einem Strukturgen verknüpft sind. Als Strukturgen wird der Bereich eines Gens bezeichnet, der für ein Polypeptid kodiert. Im Rahmen der vorliegenden Erfindung können beliebige Strukturgen verwendet werden, wobei eine Verwendung von Fremdgenen (beliebigen Genen, die nicht für die natürliche Acca Sequenz kodieren) bevorzugt ist.

Diese Ausführungsform der Erfindung weist den besonderen Vorteil auf, daß beliebige Fremdgene unter der Kontrolle des Laktationsspezifischen und induzierbaren Promotors der Accα exprimiert werden können.

Gemäß einer weiteren Ausführungsform betrifft die vorliegende Erfindung Wirtszellen, die entsprechende Vektoren enthalten. Vorzugsweise handelt es sich dabei um eukaryotische Zellen, wobei nicht-menschliche Säugetierzellen, insbesondere Milchdrüsenepithelzellen, besonders bevorzugt sind.

Die Vektoren können nach beliebigen, im Stand der Technik bekannten Verfahren in die Wirtszellen eingebracht wer-

Beispielsweise kann die Liposomentechnik verwendet werden, wobei die Verwendung des LIPOFECTAMIN Reagentiensatzes der Firma GIBCO/BRL, entsprechend den Angaben des Herstellers, besonders bevorzugt ist.

Die vorliegende Erfindung umfaßt ferner transgene nichtmenschliche Säugetiere, die Zellen aufweisen, die einen entsprechenden Vektor enthalten.

Entsprechende Verfahren zum Austausch von DNA-Sequenzen im Genom von Säugetierzellen sind als "gene targetting" bekannt und erlauben den Einbau von Sequenzen an bestimmte Stellen in das Genom von Säugetieren (Tybulewicz et al., Cell, Vol. 65 (1991), 1153–1163; Liu et al., Genes & Dev., Vol. 11 (1997), 179–186). Dabei ist auch der Genaustausch selektiv in ausgewählten Gewebetypen – und nur in diesem Gewebe – möglich (Kühn et al., Science, Vol. 269 (1995), 1427–1429).

Im wesentlichen beruhen diese Verfahren auf der Beobachtung, daß Gewebekulturzellen extern zugesetzte, gereinigte DNA im Austausch zu einem homologen, im Zellkern vorhandenen Genombereich, in ihr Genom aufnehmen. Dieser

Prozess wird homologe Rekombination genannt. Bei Säugern erfolgt er spontan mit geringer Rate (ca. 10⁻⁵–10⁻⁶ Austauschereignisse/pro Zelle) in Differenzierungszuständen jenseits der Meiose.

Die Rekombination kann genutzt werden, um z. B. Deletionen oder Substitutionen einzelner oder mehrerer Nukleotide in einem Gen oder einem Promotor zu setzten. Dabei kann man beispielsweise ein größeres Stück (5–10 kbp) des Zielgenes isolieren, eine begrenzte Deletion einführen und dieses Konstrukt in Gewebekulturzellen des gleichen Organismus transfizieren.

Nach Rekombination kann auf Zellen selektiert werden, die das Konstrukt aufgenommen haben. Entsprechende Klone, in denen ein vollständiger Austausch tatsächlich erfolgt ist, werden beispielsweise durch Southern-Blot-Analysen verifiziert. Zellkerne mit verändertem Genom werden isoliert. Durch Klonierung können transgene Nutztiere erzeugt werden.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird aus dem Bereich des PIII-Promoters der Accα ein 3 kbp umfassendes Hindill Fragment isoliert, welches das vollständige Exon 5A beherbergt für entsprechende Austauschklonierungen mit einem "gene-targetting"-Vektor geeignet ist. Die 5'-gelegene HindIII Restriktionsschnittstelle findet sich an Position 2960 der SEQ ID Nr 1. Die in diesem Abschnitt genannten DNA-Abschnitte stellen jedoch lediglich Beispiele dar. Basierend auf der vorliegenden Erfindung ist es ohne weiteres möglich beliebige andere Promotoroder Genabschnitte zu isolieren, die für einen entsprechenden Austausch geeignet sind.

Die vorliegende Erfindung betrifft auch die Verwendung einer Nukleinsäure zur Expression von beliebigen Fremdgenen, wobei die DNA-Sequenz der Nukleinsäure die Nukleotide 2188 bis 2219 der SEQ ID NO: 1 umfaßt, die operativ mit einem Strukturgen verknüpft sind. Gemäß einer bevorzugten Abwandlung dieser Ausführungsform umfaßt die Nukleinsäure die Nukleotide 1 bis 3445 der SEQ ID NO: 1.

20

30

55

Bei der erfindungsgemäßen Verwendung zur Expression von Fremdgenen kann die Expression in eukaryotischen Zellen erfolgen, wobei die Expression in Zellen eines nicht-menschlichen Säugetiers, insbesondere in der Milchdrüse, bevorzugt ist.

Die vorliegende Erfindung stellt ferner Verfahren zur Verfügung, mit denen transgene, nicht-menschliche Säugetiere erzeugt werden können, deren Milch einen verringerten Fett-Gehalt aufweist. Bei diesen Verfahren verändert man die Sequenz des Milchdrüsenspezifischen Promotors der Acca oder des Acca-Strukturgens im Genom des transgenen nichtmenschlichen Säugetieres durch Deletion oder Substitution von einzelnen oder mehreren Nukleotiden so, daß die Expression der Acca in der Milchdrüse gehemmt wird.

Dabei kann ein entsprechendes Verfahren Schritte umfassen, bei denen man:

- a) eine Nukleinsäure erstellt, welche eine DNA-Sequenz umfaßt, die durch Deletion oder Substitution von einzelnen oder mehreren Nukleotiden von der DNA-Sequenz des Milchdrüsen-spezifischen Promotors der Accα oder von der DNA-Sequenz des Accα-Strukturgens abgeleitet wurde;
- b) die Zelle eines nicht-menschlichen Säugetiers mit der Nukleinsäure nach Stuse a) transfiziert;
- c) Zellen, in denen die natürliche DNA-Sequenz im Genom durch die entsprechende Nukleinsäure nach Stufe a) 35 ausgetauscht wude, auswählt und zu Tieren regeneriert.

Vorzugsweise handelt es sich bei den transgenen nichtmenschlichen Säugetieren um Rinder, Schafe oder Ziegen.

Bei den Versahren zur Erzeugung von nicht-menschlichen transgenen Säugetieren, deren Milch einen verringerten Milchsett-Gehalt aufweist, sind Versahren bevorzugt, bei denen die Sequenz des Milchdrüsen-spezifischen Promotors der Acca die Sequenz von Nukleotid 1 bis 3054 der SEQ ID NO: 1 umfaßt. Die mindestens eine Substitution oder Deletion kann im Bereich von Nukleotid 2205 bis 2213 der SEQ ID NO: 1 vorgenommen werden, wobei Substitutionen oder Deletionen im Bereich von Nukleotid 2188 bis 2239 der SEQ ID NO: 1 bevorzugt sind. Diese Bereiche des Promotors der Acca weisen eine hohe Dichte an STATS-Bindungssequenzen auf. Bereits die Deletion oder Substitution einzelner Nukleotide führt zu einer verringerten Laktations-spezifischen Expression der Acca. Aufgrund der konstitutiven Expression dieses Enzyms von dem PII-Promotor aus, erleiden die Tiere durch diese Veränderung des Genoms keine Nachteile.

Gemäß einer weiteren Ausführungsform der Erfindung werden Verfahren zur Erzeugung von nicht-menschlichen transgenen Säugetieren, deren Milch einen verringerten Milchfett-Gehalt aufweist, zur Verfügung gestellt, bei denen man mindestens eine Substitution oder Deletion im Bereich von Nukleotid 3055 bis 3495 der SEQ ID NO: 1 vornimmt. Beispielsweise könnte in dem genannten Bereich ein Stop-Codon eingeführt werden. Alternativ dazu kann man den gesamten Bereich von Nukleotid 3055 bis 3495 der SEQ ID NO: 1 deletieren. Bei den hier genannten Bereichen handelt es sich um DNA-Sequenzen, die nur in der von dem PIII-Promotor exprimierten cDNA vorliegen. Durch Veränderungen im Laktationsspezifischen Bereich der cDNA der Accα ist wiederum eine Verringerung der induzierbaren Λccα-Expression möglich, die sich nicht negativ auf die Gesundheit und das Wohlbefinden der Tiere auswirkt.

Die Erfindung betrifft dementsprechend auch transgene nichtmenschliche Säugetiere, die nach einem der obigen Verfahren erzeugt wurden und deren Milch einen verringerten Milchfett-Gehalt aufweist.

Gemäß einer weiteren Ausführungsform der Erfindung werden Verfahren zur Gewinnung von Milch mit verringertem Milchfett-Gehalt zur Verfügung gestellt, bei dem man die Milch von entsprechenden transgenen, nicht-menschlichen Säugetieren gewinnt.

Im Bereich der Nukleotide 933 bis 966 der SEQ ID NO: 1 wurde ein polymorpher Mikrosatellit identifiziert, der sich hervorragend zur Genotypisierung von Rindern eignet. Eine Genotypisierung von Rindern unter Verwendung dieser Sequenz weist den besonderen Vorteil auf, daß ein bestimmter Genotyp unmittelbar mit einer bestimmten Expressionsmenge der Accα während der Laktation und daher auch mit einem bestimmten Fettgehalt der Milch korreliert werden kann. Die Gewinnung einer Population von Rindern, die einen besonders hohen oder geringen Fettgehalt in der Milch aufweisen, ist daher auch durch klassische Zuchtverfahren möglich, indem solche Tiere miteinander gekreuzt werden, deren Genotyp auf eine entsprechende Aktivität des PIII-Promotors der Accα hinweist.

Dementsprechend betrifft die vorliegende Erfindung auch Verfahren zur Genotypisierung von Rindern, bei denen man

eine DNA-Sequenz des Genoms eines Rindes analysiert, wobei die DNA-Sequenz die Nukleotide 933 bis 966 der SEQ ID NO: 1 umfaßt.

Die Analyse der DNA-Sequenz kann eine Amplifikation der DNA mittels PCR umfassen, wobei vorzugsweise Primer eingesetzt werden, die in der PCR Reaktion mit den DNA-Sequenzen des Rindes hybridisieren, welche die Nukleotide 933 bis 966 der SEO ID NO: 1 flankieren. Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Form der Erfindung werden für die PCR die Primer:

AccmsP3f 5'-CATTTATCTGGCTTTGCATCTTAG und AccmsP3r 5'-CAGGTGGTCACAAAGAGTCTG

Die Analyse der amplifizierten DNA-Sequenz kann nach beliebigen Verfahren aus dem Stand der Technik erfolgen, beispielsweise kann die Analyse der Sequenz mittels Gelelektrophorese des amplifizierten Fragmentes durchführt werden.

Beispiel 1

Materialien und Verfahren:

1.1 Klonierungen

Alle Klonierungen wurden in handelsüblichen Vektoren vorgenommen. PCR Produkte wurden in den Vektor pKS+ (Stragene, LaJolla; USA) oder in den Vektor "pGEM Teasy" (Promega) kloniert. Expressionssequenzen für die Überprüfung der Promotoreigenschaften wurden in dem promotorlosen Vektor "pGL3 basic" (Promega) kloniert, der für das Reporter-Enzym Luciferase kodiert.

1.2 Sequenzierung

Die Sequenzierungen wurden mit den Sequenzierungsanlagen 310 (Perkin-Elmer, ABI) oder Licor 4200 (MWG) durchgeführt. Sequenzierungsreaktionen wurden mit Reagetiensätzen durchgeführt, die von den Anbietern der Sequenzierungsanlagen empfohlen werden.

1.3 PCR-Amplifikationen

Generell wurden "touch-down" Programme eingesetzt, entsprechen den Angaben von Don et al., 1991 (Nucl. Acids Res. Vol. 19, 4008). Oligonukleotidprimer wurden grundsätzlich so gestaltet, daß ihre optimale Anlagerungstemperatur (AT) 60 °C betrug, abgeleitet entsprechend der Faustformel: 2°C für jede A oder T Base und 4°C für G oder C. Oligonukleotidprimer wurden von der Firma ARK (Darmstadt) synthetisiert.

In einem typischen Programmablauf wurde, ausgehend von 70°C Anlagerungstemperatur (AT), in jedem der ersten 20 Zyklen, die AT um 0,5°C je Zyklus abgesenkt. Sodann wurden 30 weitere Zyklen mit jeweils 60°C AT angeschlossen. Ein Programmzyklus beinhaltete: Denaturierung bei 94°C, 1 min. gefolgt von 0.5 min bei AT zur Primer-Anlagerung, sowie eine Elongationsdauer von 3 min bei 70°C.

1.4 RT-PCR

Amplifikationen von mRNA Abschnitten wurden nach Überschreibung der RNA durch das Enzym "Reverse Transkriptase" (SuperScript, von GIBCO BRL) entsprechend den Angaben des Herstellers für diesen Reagentiensatz durch-

geführt. Als Startermoleküle für die cDNA-Synthese wurden typischerweise 25 pH des Sequenz-spezifischen Primeroligonukleotids eingesetzt, für einen 25 µl Reaktionsansatz. Als Matrizen dienten gesamt RNA Proben der entsprechenden Gewebe, die mit Reagentiensätzen von QIAGEN zur RNA-Extraktion gewonnen wurden.

1.5 Expression von Reportergen-Konstrukten in Gewebekulturzellen

Zur Überprüfung der Promotoreigenschaft von DNA-Fragmenten wurden Zellkulturen der murinen Milchdrüsenepi-55 thelzellinie HC-11 (Ball et al., EMBO J, Vol. 7 (1988), 2089-2095) stabil mit entsprechenden Reportergen-Konstrukten transfiziert. Von dieser permanenten Zellinie ist bekannt, daß sie auf die Gabe des Laktationshormons Prolaktin unter geeigneten Kulturbedingungen mit einer Steigerung der β-Caseinsynthese reagieren kann (Ball et al., 1988, am angegebenen Ort).

Die Zellen wurden entsprechend den Angaben von Welte et al. (Mol. Endo., Vol. 8, 1091-1102) in RPMI-1640 Medium gehalten, welchem 10% fötalem Kälberserum, 10 ng/ml EGF und 5 µg/ml Insulin zugesetzt wurden. Für die stabile Transfektion dieser Zellen mit den entsprechenden Reportergen-Konstrukten wurde ein übliches Transfektionsverfahren verwendet, welches auf der Liposomentechnik basiert. Zur Transfektion wurde der LIPOFECTAMIN Reagentiensatz entsprechend den Angaben des Herstellers (GIBCO BRL) verwendet.

Typischerweise wurden zur Transfektion der Zellen einer Kulturschale mit 9 cm Durchmesser 4 µg des linearisierten Reportergen-Konstruktes mit 1 µg des linearisierten Plasmides pSV2neo als Selektionsmarker für das Antibiotikum G418 vermischt.

Die Technik der Kotransfektion von unabhängigen Reportergen-Konstrukten und diesem Selektionsmarker wurde von Southern & Berg beschrieben (J. Mol. Appl. Genet. Vol. 1 (1982), 327-341).

6

10

15

20

Als Ergebnis einer solchen Transfektion wurden für jedes Reportergen-Konstrukt etwa 60–200 resistente Klone je transfizierter Kulturschale erhalten, die als Gruppe ("pool") gemeinsam aufgezogen wurden. Diese Gruppen wurden später auf die Expression der Reportergen-Konstrukte hin analysiert.

In Anlehnung an die Angaben von Welte et al. (a.a.O.) erfolgte die Analyse der Induzierbarkeit der Promotoren mittels Prolaktin durch einen Vergleich der Reportergen-Aktivität von Kulturen, die für zwei Tage konfluent im Wachstumsmedium gehalten wurden, mit der Aktivität von Kulturen, die für zwei Tage konfluent in einem Medium mit lediglich 5% FKS und ohne EGF, jedoch angreichert mit 0,1 µM Dexamethason und 5 µg/ml ovinem Prolaktin (SIGMA), gezogen worden waren.

Die Reportergen-Aktivität (Luciferase-Aktivität) wurde mit dem DUAL-LIGHT Reagentiensatz von Perkin-Elmer entsprechend den Angaben des Herstellers gemessen. Für die Bestimmung der Enzymaktivität wurde ein handelsübliches Luminometer (Firma BERTHOLD) eingesetzt. Die Enzymaktivität wird als Relative-Light-Units (RLU). angegeben. Die RLUs werden angegeben als 1000 RLUs je 10000 Zellen (vgl. Fig. 6A und B).

Beispiel 2

15

25

50

60

Isolierung der Milchdrüsen-Isoform der bovinen Acca cDNA

A) Erstellung der Acca cDNA-Sequenz entsprechend der vom Promotor PI gebildeten mRNA

Zur Erlangung von Informationen zur Gengstruktur der bovinen Acea wurde in Vorversuchen die von dem PI-Promotor aus gebildete cDNA-Sequenz isoliert.

Zunächst wurde durch den Sequenzvergleich der publizierten humanen und Hühnchen cDNA-Sequenzen konservierte Primersequenzen abgeleitet:

Accif: 5'-GGTTATTTCAGTGTTGCTGCTG und Accir: 5'-AGCAGTCCACCGTCGCTCA.

Die Amplifikation eines 530 bp langen cDNA Stückes der Accα des Rindes erfolgte in RT-PCR Amplifikationen unter Verwendung dieser Primer und von Gesamt-RNA aus Milchdrüsengewebe.

Das erhaltene cDNA Stück wurde subkloniert und sequenziert sowie als Hybridisierungssonde zur Isolation von genomischen Klonen aus einer Rinder-Genbank eingesetzt. Diese Genbank war in dem Bakteriophagen λ-EMBL3 angelegt worden und bereits mehrfach zur Isolation von bovinen Genen eingesetzt worden (Kozcan et al., Nucl. Acids Res. Vol. 19, (1991), 5591–5596; Seyfert et al., Gene, Vol. 143 (1994), 265–269).

Mittels dieser Sonde wurden dann aus der genannten Genbank zwei λ-Phagen isoliert, die Teilstücke des bovinen Λccα Genes trugen (Laborbezeichnung λ-Λc2 und λ-Λc3). Sie wurden genutzt, um erste Exons dieses Gens festzulegen. Wie sich später herausstellte, wurde hiermit Exon 9, das am weitesten im 5'-Bereich gelegene Exon des Gens isoliert. Von diesem Exon wurde nun ein nach 5'- gerichteter Primer abgeleitet und in Kombination mit einem, von der mittlerweile publizierten, ovinen cDNA-Sequenz der Accα abgeleiteten Primer von Exon 5 zur Isolation eines weiteren Teilstückes des bovinen Accα Genes eingesetzt. Unter Verwendung boviner genomischer DNA als Matrize entstand in "long-span" PCR Experimenten ein 14 kbp Amplifikat, von dem nach Subklonierung und Sequenzierung die Sequenzen der Exons 6-8 abgeleitet werden konnten.

B) Identifizierung der im 3'-Bereich gelegenen cDNA-Sequenzen

Die Identifizierung der im 3'-Bereich gelegenen cDNA-Sequenzen erfolgte in RT-PCR Experimenten, wobei die Primer unter Rückgriff auf die cDNA-Sequenz des Schafes abgeleitet wurden.

Mit diesen Verfahren konnte der größte Teil der bovinen cDNA Sequenz der Accα wurde ermittelt werden. Durch Kenntnis der Exon/Intron-Segmentierung des Genes war es ferner möglich, zwei Primer abzuleiten, die das Exon 5 des Genes (253 bp) als singuläre Bande amplifizieren:

Acex5f 5'-CTCTGAGGGCTCGTTTTCAAG; Acex5r: 5'-CTCATGTGTAAGGCCAAACCAT).

Diese Primersequenzen wurden dazu verwendet, um aus einer bovinen genomischen BAC-Genbank (BAC, "bacterial artificial chromosome"; Beschreibung der Bank in Cai et al., Genomics, Vol. 29 (1995), 413–425) einen BAC-Klon zu isolieren, der den 5'-Bereich des bovinen Accα Genes enthält. Dieser Klon erhielt die Laborbezeichnung "BAC91" und diente als Ausgangsmaterial zur Isolation des Promotors PIII, wie im folgenden dargestellt wird.

Durch Kenntnis der Exon/Intron Segmentierung im Bereich des Genansanges konnten hochspezisische Primer ermittelt werden, die für aussagekräftige RT-PCR Experimente sehr hilfreich waren, basierend auf RNA Proben aus der Milchdrüse. Hierfür wurde nach 5'- gerichtete Primer:

Acex6-7r 5'-TGGCGATGAGAACCTTCTCAATC

verwendet, dessen eine Hälfte an Exon7 bindet (kursiv), während der restliche Bereich von Exon 6 kodiert wird. Dieser Primer bindet unter üblicher Stringenz der PCR-Reaktion nicht an genomische DNA. Die Verwendung dieses Primers in RT-PCR Experimenten verhindert die unbeabsichtigte Bindung an genomische DNA, was zu falschen Ergebnissen führen könnte.

C) Erstellung der Acca cDNA Sequenz entsprechend der von PIII synthetisierten mRNA (SEQ ID NO: 2; Fig. 2)

Zur Erstellung der cDNA-Sequenz ausgehend von Accα mRNA-Molekülen aus der laktierenden Milchdrüse, wurde eine Gesannt-RNA-Probe dieses Gewebes eingesetzt, um mit dem "MARATHON" 5'-RACE Kit (Reagentiensatz) der Firma CLONETECH cDNA Kopien in klonierter From zu erhalten. Der Reagentiensatz wurde entsprechend den Angaben des Herstellers verwendet.

Dabei wurde ausgehend von 4 μg gesamt RNA aus Milchdrüsengewebe einer laktierenden Kuh und dem Accα spezifischen Primer Acex6-7r (Position 587-565 der cDNA-Sequenz; siehe oben) eine cDNA erstellt, mit dem genannten Reagentiensatz von CLONTECH doppelsträngig gemacht und an das 5 Ende der mitgelieferten "Adaptor"-Sequenz ligiert.

Anschließend wurde der 5'-Bereich der Accα cDNA in zwei PCR-Reaktionen unter Verwendung der Primer Acex6-7r, als Λοcα spezifischem, nach 5'- gerichtetem Primer, sowie zunächst dem Adaptor-Primer 1, in einer ersten PCR-Amplifikationsrunde amplifiziert. Mit dem Adaptor-Primer 2 wurde in einer zweiten, "nested" PCR Amplifikationsrunde nochmals amplifiziert. Beide Adaptor-Primer sind in dem Reagentiensatz von CLONETECH enthalten.

Das knapp 600 bp lange PCR-Fragment dieser Amplifikationsrunde wurde gelelektrophoretisch aufgereinigt und mit dem Genspezifischen Primer Acex6-7r direkt sequenziert (ABI310). Von dieser Sequenz wurde ein weiter innenliegender, nach 5'- gerichteteter, "nested"-Primer abgeleitet:

bAc_5Ar1 5'-TCTCTTCAGCTGTCGTCGGCCTTG,

(entsprechend cDNA-Position 358-340). Dieser Primer wurde eingesetzt, um von 1 μl-Restmenge des Reaktionsproduktes der ersten PCR-Runde und unter Verwendung des Adaptor-Primers 1 ein klonierbares PCR-Produkt zu erzeugen. Dies erbrachte Klone mit etwas unterschiedlicher Einsatzlänge.

Sequenzierung des Klones mit dem längsten cDNA Einsatz (357_2) erbrachte eine neue Sequenz von 358 bp, die nicht zur Leber-spezifischen Variante der bovinen Accα cDNA gehörte. Den Beweis über die Zugehörigkeit der cDNA-Sequenz von Klon 357_2 zur bovinen Accα erbrachte eine RT-PCR, in der RNA aus der laktierenden Milchdrüse des Rindes zur cDNA-Synthese mit dem genannten Primer Acex6-7r amplifiziert wurde. In der nachfolgenden RT-PCR Reaktion wurde das Oligonukleotid:

bAc_SAf2 5'-AGGCGGAAGCTGCTGAGATCTAC,

30

35

50

60

65

(Position 34-56 der cDNA Sequenz, abgeleitet von der Sequenz des Klons 357_2) mit dem auf Exon 6 gelegenen Oligonukleotid:

bAc_Ex6rn 5'-CAAATTCTGCTGGAGAGGCTACA,

(Position 539-517 der cDNA-Sequenz, bekannt aus den Vorversuchen von der leberspezifischen Accα-cDNA Sequenz) kombiniert und zur Amplifikation eines 506 bp langen Fragmentes genutzt. Dieses Fragment wurde als Klon 392 kloniert und sequenziert.

Die Sequenzierungen von Klon 357_2 und 392 ergeben die beigefügte cDNA-Sequenz der bovinen Acetyl-CoA-Carboxylase-α, wie sie in der Milchdrüse vorliegt (SEQ ID NO: 2; Fig. 2).

Die Sequenz der Reste 1–441 weicht deutlich von der Leberspezifischen Isoenzymform ab. Erst ab Position 442 der SEQ ID NO: 2 sind die Sequenzen identisch (entspricht Position. 568 der Leber-spezifischen Isoenzymform). Translation dieser cDNA Sequenz in die entsprechende Λminosäuresequenz des Proteins wird in SEQ ID NO: 3 gezeigt (Fig. 3; siehe auch vergleichende die Darstellung in Fig. 4).

Durch Vergleich dieser Sequenz mit den in den Vorversuchen ermittelten Teilsequenzen und der Accα-Genstruktur zeigt, daß der 5'-terminale, zur Leber-spezifischen cDNΛ divergierende Sequenzabschnitt ein eigenes Exon darstellt, welches an Exon 6 des den Strukturbereich des Genes kodierenden Abschnitt angespleißt wird.

Beispiel 3

Isolatierung des Promotors III (PIII) der bovinen Λccα

3.1 Die Isolation des bovinen PIII der Acca wurde ausgehend von

- zwei Oligonukleotidprimem die von der oben dargestellten cDNA-Sequenz abgeleitet wurden (bAc_5Ar1, siehe oben; bAc_5Ar2 (5'-CCACACAGC-ATCAGCTGATTTC, Position 132-111 der cDNA);
 - dem in den Vorversuchen erwähnten Klon BAC91; und
 - dem "Genome-Walker" Reagentiensatz von CLONETECH (entsprechend den Angaben des Herstellers eingesetzt):

vorgenommen. Im Prinzip umfaßt das Isolationsverfahren die folgenden Schritte:

- (i) der Zerschneidung der DNA des Gesamtgenoms oder von einem bereits isolierten Teilabschnitt des Genoms mit stumpf schneidenden Restriktionsendonukleasen;
- (ii) Ligation von Adaptoren bekannter Sequenz an die doppelsträngigen DNA-Enden; sowie
- (iii) der nachfolgenden PCR-Amplifikation des gesuchten Genomabschnittes, durch den Einsatz eines Genspezifischen Oligonukleotides, in Kombination mit einem an den Adaptor bindenden Oligonukleotid.

3.2 Detaillierter dargestellt, wurde der Promotor III in folgender Weise isoliert

Die DNA des Klons BAC91 wurde vollständig mit dem Restiktionsenzym EcoRV gespalten. Die Adaptor-Oligonukletide aus dem Reagentiensatz wurden anligiert. In zwei auseinandersolgenden PCR-Amplisikationsrunden wurde mit den Primerkombinationen (i) bAc_5Ar1 (Gen-spezifisch) und Adaptor-Primer 1 (Reagentiensatz) sowie (ii) bAc_5Ar2 (Gen-spezifischer "nested" Primer)/Adaptor-Primer 2 (Reagentiensatz, innenliegend im Vergleich zu Adaptor-Primer 1) ein 3.2 kbp langes PCR-Amplisikat erhalten.

Die Enden des PCR-Produktes wurden mit dem Klenow-Enzym vollständig aufgefüllt, das Produkt mit Sall gespalten (Schnittstelle im Adaptor-Primer 2), und in den Sall, kombiniert mit Smal, gespaltenen Vektor pKS+ (STRATAGENE) einkloniert. So wurde Klon 364 erhalten.

10

15

25

60

Grundsätzlich könnte die Isolation des in Klon 364 enthaltenen bovinen Genombereiches mit diesem Verfahren auch unter Verwendung von einem DNA-Präparat des Geamtgenoms an Stelle von Klon BAC91 durchgeführt werden. Der Einsatz von BAC91 erhöht jedoch die Konzentration der Accα spezifischen Genabschnitte um den Faktor 1000. Dies erleichterte die Vermehrung des gesuchten Genomabschnittes in den PCR-Reaktionen und vermied eine Analyse falscher Amplifikate.

Die vollständige Sequenzierung des Klons 364, basierend auf segmentweiser Subklonierung und unter Einsatz weiterer, anhand der Sequenzierungsergebnisse abgeleiteter Oligonukleotid-Primer führte zu der PIII-Promotorsequenz der Accα (Position 1–3186, SEQ ID NO: 1; Fig. 1). Das Sequenzende, von Postion 3187–3690, wurde durch Direktsequenzierung des BΛC91 Klones erhalten, unter Verwendung des von der cDNΛ abgeleiteten Oligonukleotidprimers bAc_5Af2 (siehe oben).

Der Vergleich der Promoter- mit der cDNA-Sequenz zeigt, daß das Transkript, welches zu cDNA Klon 357_2 geführt hat, bei Position 3055 dieser Sequenz beginnt. Damit ist diese Position als +1 eines Exons ausgewiesen. Das Exon endet mit Position 3495, wie durch den Vergleich mit der cDNA-Sequenz ersichtlich und in Kombination mit der Tatsache, daß das nachfolgend stehende "GT"-Dinukleotid in aller Regel den 5'-Spleißdonor eines Introns darstellt. Das Startkodon "ATG" für die Eiweißsynthese des Enzymes Accα findet sich an Position 3443-3445.

3.3 Charakteristika der Sequenz

Die Sequenz stellt einen Promotor ohne "TATA-Box" dar, weist jedoch eine Vielzahl von DNA-Bindungsstellen von Transkriptionsfaktoren auf.

Bei Position 2205 beginnt das Sequenzmotif TTCGTGGAA, welches eine Hauptbindungsstelle für den Transkriptionsfaktor STATS darstellt (vgl. Fig. 1).

Zwischen Position 932 und 967 liegt ein Mikrosatellit mit 18 Wiederholungen des Dinukleotids "TG". Dieser Mikrosatellit ist in unterschiedlichen Tieren polymorph, kann mit den Oligonukleotidprimern AccmsP3f (5'-CATT-TATCTGGCTTTGCATCTTAG, Position 801-824) in Kombination mit AccmsP3r (5'-CAGGTGGTCACAAA-GAGTCTG, Position 998-978) zur Typisierung von in der Natur vorkommenden, allelischen Varianten dieses Promotors genutzt werden (vgl. Beispiel 6).

Schnittstellen von Restriktionsendonukleasen zur Erstellung der Expressionsklone (siehe Beispiel 4):
Food V Schnittstelle (Position 1-6, Seguenz GATATC, Spallung in GAT-3'/5'-ATC): Die ersten drei Nu

EcoRV Schnittstelle (Position 1-6, Sequenz GATATC, Spaltung in GAT-3'/5'-ATC): Die ersten drei Nukleotide dieser Schnittstelle wurden ergänzt, denn die zur Erstellung von Klon 364 verwendete DNA des BAC91 war vollständig mit diesem Enzym gespalten worden. Genomisch ist eine Schnittstelle an dieser Position vorhanden, es werden jedoch die ersten drei Nukleotide durch den Schnitt der Restriktionsendonuklease verloren. Daher befindet sich diese Schnittstelle nicht mehr in Klon 364.

PvuII: An Position 3173 findet sich eine PvuII-Schnittstelle. Diese wurde genutzt, um aus Klon 364 den Promotorbereich bis Position 3172 auszuschneiden, in Kombination mit KpnI (5'-gelegene KpnI Schnittstelle in dem Klonierungsbereich des Vektors pKS+), und Einklonierung in den KpnI/SmaI gespaltenen Expressionsvektor pGL3 basic (PROMEGA). Dies erbrachte den in Fig. 6A dargestellten Expressionsklon 1 (Labornummer 397).

EcoRI: Bei Position 677 findet sich eine Schnittstelle für dieses Enzym. Zur Deletion der 5'gelegenen Promotoranteile wurde Klon 397 mit KpnI/EcoRI vollständig gespalten, die Überhänge mit Klenow-Enzyn geglättet und der Vektor stumpf religien. Dies erbrachte den dargestellten Expressionsklon 2 (vgl. Fig. 6A; Labornummer 422).

MstII. Die singuläre MstII Schnittstelle bei 2345 wurde zur Deletion der 5'-gelegenen Promotorabschnitte genutzt: Klon 397 wurde mit KpnI und MstII vollständig gespalten, die Überhänge mit Klenow-Enzym aufgefüllt und der Vektor stumpf religiert. Dies erbrachte den Expressionsklon 3 (vgl. Fig. 6A; Labornummer 423).

Genomische Anordnung des PiII in Relation zu anderen Exons der bovinen Acco:

"Long-span" PCR Amplifikationen (mit dem Reagentiensatz von ROCHE/BOEHRINGER, Primer AccEx5f und bAc_5Ar1 und BAC91 als Matrize) zeigten, daß PIII etwa 15 kbp 3'-von Exon 5 gelegen ist. Der Promotorbereich liegt etwa 5,8 kbp 5' vor Exon 6, wie ebenfalls mittels "long-span" PCR Amplifikationen mit den Primern bAc_5Af2 und bAc_Ex6rn zeigten. In Fig. 6A ist die ungefähre genomische Anordnung der übrigen Promotoren der bovinen Acca dargestellt, sowie die Kenntnis bezüglich der anderen Exons in diesem Genabschnitt zusammengefaßt.

Beispiel 4

Nachweis der Promotoreigenschaft von PIII

Die Erstellung von Expressionskonstrukten mit dem Promotor PIII und zwei Deletionsvarianten (Expressionsklon 2 os und 3; vgl. Fig. 6A;) wurde in Beispiel 3 dargestellt.

Diese Konstrukte wurden stabil in die murine Milchdrüsenepithelzellinie HC-11 transfiziert und jeweils als Gruppen von 60-100 Klonen aufgezogen. Jede dieser drei verschiedenen Gruppen stabil transfizierter Zellen wurde in sechs Kul-

turschalen ausgebracht (übliche Kulturplatten mit 6 Vertiefungen). Alle Zellkulturen wurden nach der Aussaat bis zur Konfluenz gezogen. Sodann wurde von jedem Konstrukt die Hälfte der Subkulturen (drei Schalen) für weitere sechs Tage in Wachstumsmedium (10% fötales Kälberserum) belassen. Die andere Hälfte wurde nach dem Erreichen der Konfluenz für zwei Tage in Hungermedium gehalten (ohne EGF, nur 5% fötales Kälberserum). Anschließend wurde ihnen für vier Tage Induktionsmedium (Hungermedium, mit Prolaktin (5 µg/ml) und Dexamethason (0,1 µM) angereichent) gegeben. Die Expression des Reportergens in Abhängigkeit des verwendeten Expressionskonstruktes und des Mediums wird in Fig. 6B dargestellt.

Diese Ergebnisse zeigen eindeutig, daß

10

15

20

25

35

- das als PIII bezeichnete Genomfragment ein Promotor ist, weil seine Verwendung als Promotor die Bildung des Reporter-Enzymes in Milchdrüsenepithelzellen antreibt;
- das Laktationshormon Prolaktin die Aktivität dieses Promotors in diesen Milchdrüsenepithelzellen reguliert; und
 eine Deletion des 5'- Bereiches (bis zu der MstII Restriktionsschnittstelle) zu einem massiven Verlust der Promotoraktivität führt, was von einem Verlust der regulierenden Wirkung des Prolaktins begleitet ist.

Zur Einordnung und zum Vergleich der Ergebnisse der in Fig. 6B dargestellten Ergebnisse wurden diese Reportergen-Konstrukte auch transient in verschiedenen anderen Zellen geprüft und mit Reportergen-Konstrukten verglichen, die von PI angetrieben wurden. Es zeigte sich, daß

- PIII (Klon 397) in humanen Milchdrüsenepithelzellen (MCF7) etwa die 10-fache Stärke eines 2.9 kbp großen PI Promotorstückes hat (PIII Expression 25-fach über der des leeren Vektrors pGL3-Basic, in diesem Vergleich);
- PIII in humanen Leberzellen (HepRI) ebenfalls etwa die 10 fach Stärke von PI aufweist, in diesen Zellen im Gegensatz zu den Milchdrüsenepithelzellen jedoch:
 - (i) weder eine Prolaktinwirkung nachweisbar ist und
 - (ii) die Deletion des 5'-gelegenen Promotorbereiches (bis zur MstII Schnittstelle, was die STAT5-Bindungsstelle einschließt) zu einer Steigerung der Expression führt (1,5-fach gegenüber dem langen Promotorfragment).

Auch die Beobachtung, daß die Deletion der STATS Ansatzstelle in Leberzellen zu einer Steigerung der Expression des Reportergen-Konstruktes führt, bestätigt daß STATS, je nach Promotortyp, auch als Repressor der Transkription wirken kann (vgl. auch Luo, G. & Yu-Lee, L.-Y., J. Biol.Chem. Vol. 272 (1997), 26841–26849). Somit konnte gezeigt werden, daß in unterschiedlichen Zellzypen die gleiche STATS Bindungsstelle in Abhängigkeit von dem übrigen, zelltypspezifischen Besatz des Promotors mit anderen Transkriptionsfaktoren unterschiedlich wirken kann.

Beispiel 5

Nachweis der Gewebespezifität des Promotors

Zur Untersuchung der gewebespezisischen Aktivitierung von PIII wurde RNA von unterschiedlichen Geweben des Rindes isoliert und in RT-PCR Experimenten vergleichend Accα Transkripte von zwei verschiedenen Promotoren, PII und PIII, dargestellt (Fig. 8).

Zunächst wird die genomische Anordnung der unterschiedlichen Promotoren der Accα anhand von Fig. 7 erläutert. Der Leberspezifische Promotor PI liegt am weitesten im 5'-Bereich. (d. h. am "Genanfang"). Die Aktivität dieses Promotors wird stark in Abhängigkeit von der Stoffwechsellage des Tieres reguliert.

In etwa 11 kbp Abstand findet sich beim Rind der konstitutiv exprimierte PII. Es besteht gegenwärtig noch eine gewisse Unsicherheit bezüglich der genauen Anordnung und Sequenz. Bisher wurde beim Rind sicher Exon 3 identifiziert, kloniert und sequenziert. Es umfaßt 47 bp. Im 5'angrenzenden Bereich von Exon 3 in etwa 1 kbp Entfernung befindet sich ein Sequenzmotifvon 6 bp, welches in 5 unterschiedlichen 5'-RACE Klonen der bovinen Acca als 5'-terminale cDNA Basen gefunden wurden, die mit einem nach 5'-gerichteten Oligonukleotid angeprimt wurden, dessen Sequenz von Exon 3 abgeleitet worden war. Es ist anzunehmen, daß diese 6 bp von dem vermutlich sehr kurzen Exon 2 herrühren. Jedoch ist ein Sequenzmotiv von sechs bp kein ausreichender Nachweis für ein Exon. Um diese Unsicherheit darzulegen, wird Exon2 in Fig. 7 besonders gekennzeichnet (*) und der Abstand zu Exon 3 als nicht gesichert bezeichnet. Aus dieser Unsicherheit heraus wurde dem von Exon 3 abgeleitete Oligonukleotid die Laborbezeichnung bAc_xf (5'-TCCTCGGA-GATGCTTAGTGAC) gegeben, dessen Bezeichnung der Nachvollziehbarkeit wegen hier beibehalten wird. Bezüglich der Anordung und Sequenzen der übrigen Exons bestehen keine Unsicherheiten.

Die Bedeutung des PII und der Darstellung des Exons 3 liegt darin, daß sich der Nachweis der Transkripte, die von diesem konstitutiv aktiven Promotor gebildet werden, als aussagekräftige positiv-Kontrollen zum Nachweis von Acα-Transkripten eignen.

Für das in Fig. 8 dargestellte Experiment wurde RNA aus 8 unterschiedlichen Geweben entnommen und jeweils eine einzelsträngige Accα cDNA mit dem Primer bAc_Ex6rn erzeugt. Von diesen Proben wurden jeweils zwei identische PCR-Ansätze erstellt, wobei zur PCR Amplifikation entweder der nach 3'gerichteten Primer bAc_5Af2 (Fig. 8) oder der von Exon 3 abgeleiteten Primer bAc_xf verwendet wurde. PCR-Produkte wurden mit dem "Touch-down" Standardprogramm erzeugt und Gel-elektrophoretisch aufgetrennt.

Die in Fig. 8 verwendeten Abkürzungen weisen auf die folgenden Gewebe hin, die für die PCR eingesetzt wurden: 1: Leber; 2: Adipose Gewebe; 3: Niere; 4: Gehirn; 5: Muskel; 6: Lunge; 7: Mischdrüse, nichtlaktierend; 8: laktierende Milchdrüse; K: PCR Kontrolle (identischer Ansatz ohne RNA).

Im Ergebnis zeigt sich:

1. Der Promotor PIII treibt die Bildung eines einheitlichen Transkriptes an, während von PII 2 Typen von Transkripten gebildet werden. Klonierung und Sequenzierung zeigte, daß sich diese beiden Transkripte durch Gegenwart oder Abwesenheit von Exon 4 unterscheiden. Die durch Sequenzierung gefundene Exon-Zusammensetzung der Transkripte ist angegeben.

2. Die PIII-Aktivität ist gewebespezifisch. Keine Transkripte finden sich in Gehirn und Muskel. Bedingt durch die Durchführung der Experimente mittels RT-PCR lassen die in Fig. 8 dargestellten Experimente keine Aussage über unterschiedliche Transkriptmengen zu. Sofern auch nur Spuren von Transkriptmengen vorhanden sind, werden sie mit dieser Technik und unter den gewählten Bedingungen als kräftige Bande in der Gelelktrophorese dargestellt.

3. In allen Geweben wird durch die Aktivität des Promotors PII Acca gebildet. Dieses Ergebnis steht im Einklang mit den Befunden von der Ratte.

Diese Ergebnisse belegen, daß die Aktivität des PIII Promotors ganz oder teilweise gehemmt werden kann, ohne daß solche Tiere dadurch lebensunfähig werden, weil diese aufgrund der Aktivität von PII zur Acca Bildung befähigt sind. Die lebensnotwendige Grundausstattung der Zellen mit diesem Enzyme ist somit gewährleistet.

Beispiel 6

Einsatz des TG18-Mikrosatelliten im Bereich des PIII zur Genotypisierung

Der in der Sequenz des PIII im Beispiel 3 (Fig. 1; SEQ ID NO: 1) identifizierte Mikrosatellit ist polymorph und kann daher zur Genotypisierung eingesetzt werden.

Die DNA von acht Zuchtbullen wurde mit den Primern AccMSP3f und AccMSP3r in PCR Reaktionen amplifiziert. Dabei zeigten sich wenigstens drei unterschiedliche Allele (vgl. Fig. 9).

Basierend auf der in Beispiel 3 gezeigten DNA-Sequenz des PIII-Promotors lassen sich somit Oligonukleotidprimer ableiten, durch deren Einsatz allelische Varianten von PIII in der Zuchtpopulation von Rindern nachgewiesen werden können. Durch Korrelation verschiedener Allele mit Leistungsparametern im Milchfettgehalt können natürlich vorkommende Leistungsvarianten des Promotors aufgedeckt und züchterisch nutzbar gemacht werden.

11

15

30

35

40

45

50

55

60

SEQUENZPROTOKOLL

```
Forschungsanstalt für die Biologie landwirtschaftlicher Nutztiere
   <110>
              Expression der bovinen Acetyl-Coenzym A Carboxylas
  <120>
   <130> P50515
   <140>
   <141>
10
   <160> 3
   <170> PatentIn Vers. 2.0
15 <210> 1
   <211> 3690
   <212> DNA
   <213> Rind
   <220>
   <221> satellite
   <222> (933)..(966)
     <221> protein_bind
25     <222> (2188)..(2219)
   <220>
   <221> exon
   <222> (3055)..(3495)
30 <223> Exon 5A
   <400> 1
   gatatcatcc catttatata tccagaacag gcaaatctat aaagacagaa agtagattag 60
   tcattgctta ggactgggga gtggtttgag ggaaatatgg actgactgct gccgagtaca 120
   gggtttcttt ggcgggtgct gaaaatgttc caaaatggac ttgtgatgat ggttcgcaac 180
   totgtgactg taaggaaaac cattgaatta tatactgtaa atggccaaaa tatatggtat 240
   gtgaattctg tctcaataaa gttaaggatt tttaaaatgg gtgtatgatc catacacaaa 300
   aattagttgc atttctatgt actagctagc aatgagcaag caaaaaaaaa aaaaaaactt 360
   aaataatttt attcagaatg gcatcaaaaa gaataaaata cttaggaatc aattgaacaa 420
   aaaagcataa gacttgtaca ttaaaattgt tacattgctg agagaaatta aagtctgctg 480
   ctactgcggt ttagtcactt aagtcatatc tgattctttc tcagccccgt ggactgtagc 540
   ccaccagget cctctgtccg tgggatttcc caggcaagaa cactgcagtg agttgccatt 600
    tccttctcca ggggatcttt ccaacccagg aactgaacct atgtctcctg cttggcaggt 660
    gaattettta cecegagtee tetgeettge aaggtggatg ettaaceaet agageaceag 720
55 ggaagttcca cagctaaacc tttttatata taaaaaggtt gatcctcttc ttcttcttct 780
    tttttttttt tcccaatatt catttatctg gctttgcatc ttagttgtgg tatgtgtggt 840
    cttccatcat cattgctggg ctctttggtt gcaacatgcg aatttttagc tgtggtgtgt 900
 60
```

gagatctagt accctagtat	gtgtgtgttt	ttgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	960	
gtgtgtgctt tttgtgtcag	actctttgtg	accacctgga	ctgtagtcca	tcaggctcct	1020	
ttgtcagtgg aatttcccag	gcgagaatac	cggagtgggt	tgccatttcc	tagttccctg	1080	5
accaaggatc aaacccagcc	gcacctcccc	caccccgcc	ccccaggtt	gggagtgtag	1140	
agtctcagcc cctggagcag	gagggaagtc	cctaacagca	gactgatttt	ccaaagaggt	1200	10
acatccctga tgcaagattt	ctttgcttgg	gaaagcccca	gcgtaaaaac	actgtctccc	1260	10
agcgtgtgct gcagtataac	tcagactgcc	ttgcaacgga	gccagctaaa	tgcatcactg	1320	
tctgccggat asactgctac	gtcatccttg	gtgcttggca	tgtttcaatg	ctggggtcag	1380	15
tgtgggcttc tagttggatt	tggtgccagg	tatgtgtcta	ctttggacac	tctcttttca	1440	
tgttagatta aaaatgaggg	tgccttgaat	ttggaggaac	gaatgtgcga	atgtggcctt	1500	
ttatttcttg tgttctcaca	ttataggaag	atggtgggca	gcatccgtaa	aagatgagaa	1560	20
acactagctt tgttttggag	ctgggtgtgc	cctgttagcg	tttggttgtt	ttagaaagat	1620	
ccctttggtg aagggaagca	caagcttgat	tcccgagagt	gcctctttag	tatattttt	1680	25
tatataatca agagcaaaat	aacctgcttt	ttttctatat	gccattcttt	gctttttgaa	1740	لي
tgttgaactt aacaaaggca	gagagtgatt	ctcttctgga	aagtgcctga	tctagagacc	1800	
cttagatgtg tgtaaaaatt	aagctgcttc	tacatctgtg	gtcaccgtaa	ttgttctgaa	1860	30
ccasaggett cagtgetett	ttttttgaga	cttgttatcc	tgaagagaga	tcaagatagg	1920	
aggattcctc tgcatctgct	tctttaaagg	aaaaagtaaa	ctttactgac	tttatcagac	1980	
gttagcacag tgtaaaagga	gtgatgcaga	gttcggaaac	caatccagga	cttcctcttt	2040	35
ttttttatta tgactaatgg	tcatattgag	tgagtggcct	gattgagtct	tttcaccttg	2100	
ggtcacctga atgtcctaac	atcaaggttt	atcttaataa	tttatcttct	atttgatttt	2160	40
tatctgtgtt ccagatcatt	tgtgtacttc	tgttttgaag	ggttttcgtg	gaatgttaat	2220	-10
agattcgcgg catagttgca	tcagataaga	gttaaccatt	tgtattcaac	atttcggtga	2280	
gaaggaattt ttctgtggtg	g cctgaatcag	gttagatgtg	actctggtga	attaatacca	2340	45
ttcctgagga cttggctcag	g gaaatcatga	tettttetge	catgacaagg	gagcagtatt	2400	
ttcagcatct acttaatta	a aagctaaaac	aggataccat	ttccctttca	gtcaccattt	2460	
ctttatttaa gtggcttat	gctctgtggc	aaatgagcat	aacaatagat	gtgtccccgt	2520	50
ggcttttagg cagggtttt	t ctcccctgct	taaacgccgg	gttagacctg	tgtctaaaat	2580	
acttgtctgg gccccttta	c gtttctgtga	cttttatcca	catcctctct	gttatcctgt	2640	55
ttgtgccagc tccagtctt	ttctcaaatt	ttagtgaata	agatcttaga	tttttgttgt	2700	
ttttaaaaaa ggtgtgtgt	a caccactact	ctggccttaa	aattagagtt	gtgaccccca	2760	
ctttattcca agttcctca	g tggtggcgtg	tctcgtcctt	ctgaccggct	tgctttccct	. 2820	60

```
cttgacctgc tctcccccg tcttggagtc tgasactcag tcttacttgt tgtgattggg 2880
   tctcagaaat cacctgttct ttcctcctcc ctctagattt cctgacccca ttatttctg 2940
5 ggcatagctg tecteataag ettggtette tetttttgee etgageette eetgteaegt 3000
   gcccctggca gcctggagag gccgcggagc ctctctagtg accgtcagaa gaaa gtg
                                                                      3057
                                                                      3105
   acc gtt gtt aaa gca ctt ttg ctg cag cta agg cgg aag ctg ctg aga
10
   tot act tha gag tha tac ctg ctt cha tat the tee ccc tet ett ctc
                                                                      3153
   tgt ccc ctt ggg aaa tca gct gat gct gtg tgg gag ccc agt gta atg
                                                                      3201
15 ggg ggg ggg gca aac agg agg gga agt atg gag att ggg gac aga gta
                                                                      3249
                                                                      3297
   gac and aag act gtg gtt tga ggc cat gag gag tac tct act ctg act
   gaa gca ggt cca aga agt agg cag aag gca cag tat ctt ttg tcc tcc
                                                                      3345
                                                                      3393
20 tgg gtt tta agc acc tgc agc ggg agg acg aac tcc agc ttg tgt tta
   caa ggc cga cag ctg aag aga aaa acc tct att cct ttg cca tct tga
                                                                      3441
   tat gga ggg ttc tgc gga gga gag taa gga aat gag ata tta cat gct
                                                                      3489
   tca aag gtaagtgtta gagggcccta tctaggcaat atatgccttt taaaagcagt
                                                                      3545
   aaaggcgttg acagctaagc cctggaatta tgggcagtct gatttgatga tttttttgtg 3605
  ggtctgtagg aaactctttt ttttcttaag gaatgaatta aatctatgtt gctcctgatt 3665
                                                                      3690
   ctgaccttat tttcctcaga ttgac
```

```
<210> 2

<211> 7255

<212> DNA

<213> Rind

40

<220>

<221> CDS

<222> (389)..(7255)
```

45 <400> 2
gtgaccgttg ttaaagcact tttgctgcag ctaaggcgga agctgctgag atctactta 60
gagttatacc tgcttctata tttctccccc tctcttctc gtccccttgg gaaatcagct 120
gatgctgtgt gggagcccag tgtaatggga gggggggcaa acaggagggg aagtatggag 180
attggggaca gagtagacaa aaagactgtg gtttgaggcc atgaggagta ctctactctg 240
actgaagcag gtccaagaag taggcagaag gcacagtatc ttttgtcctc ctgggttta 300
agcacctgca gcgggaggac gaactccagc ttgtgtttac aaggccgaca gctgaagaga 360
aaaacctcta ttcctttgcc atcttgat atg gag ggt tct gcg gag gag agt
Met Glu Gly Ser Ala Glu Glu Ser
1 5

⁵⁰ aag gaa atg aga tat tac atg ctt caa aga tcc agc atg-tct ggc ttg 460

65

Lys	Glu 10	Met	Arg	Tyr	Tyr	Met 15	Leu	Gln	Arg	Ser	Ser 20	Met	Ser	Gly	Leu		
cac His 25	cta Leu	gtc Val	aag Lys	caa Gln	ggt Gly 30	cga Arg	gac Asp	cga Arg	aag Lys	aaa Lys 35	ata Ile	gac Asp	tca Ser	cag Gln	cga Arg 40	508	5
gat Asp	ttc Phe	act Thr	gta Val	gcc Ala 45	tct Ser	cca Pro	gca Ala	gaa Glu	ttt Phe 50	gtt Val	act Thr	cgt Arg	ttt Phe	ggt Gly 55	ggg Gly	556	10
aat Asn	aaa Lys	gtg Val	att Ile 60	gag Glu	aag Lys	gtt Val	ctc Leu	att Ile 65	gcc Ala	aac Asn	aat Asn	ggc Gly	att Ile 70	gca Ala	gct Ala	604	1.5
gtg Val	aaa Lys	tgc Cys 75	atg Met	aga Arg	tcc Ser	atc Ile	cgc Arg 80	cgg Arg	tgg Trp	tct Ser	tat Tyr	gag Glu 85	atg Met	ttt Phe	cga Arg	652	15
aat Asn	gaa Glu 90	cgt Arg	gca Ala	atc Ile	cga Arg	ttt Phe 95	gtt Val	gtc Val	atg Met	gtc Val	aca Thr 100	cct Pro	gaa Glu	gac Asp	ctg Leu	700	20
aaa Lys 105	gcc Ala	aat Asn	gca Ala	gaa Glu	tac Tyr 110	att Ile	aag Lys	atg Met	gcg Ala	gat Asp 115	cac His	tac Tyr	gtg Val	ccc Pro	gtg Val 120	748	25
cca Pro	gga Gly	ggc Gly	ccc Pro	aac Asn 125	aac Asn	aac Asn	aac Asn	tat Tyr	gca Ala 130	aat Asn	gtg Val	gag Glu	tta Leu	att Ile 135	ctt Leu	796	30
gac Asp	att Ile	gct Ala	aaa Lys 140	agg Arg	atc Ile	ccc Pro	gtg Val	caa Gln 145	gca Ala	gtt Val	tgg Trp	gct Ala	ggc Gly 150	tgg Trp	ggt Gly	844	30
cat His	gct Ala	tct Ser 155	gag Glu	aat Asn	ccc Pro	aag Lys	ctc Leu 160	cca Pro	gaa Glu	ctt Leu	ctc Leu	ttg Leu 165	aaa Lys	aat Asn	ggc Gly	892	35
atc Ile	gcc Ala 170	Phe	atg Met	ggt Gly	cct Pro	cca Pro 175	agc Ser	caa Gln	gcc Ala	atg Met	tgg Trp 180	gct Ala	ctg Leu	ggg Gly	gat Asp	940	40
aag Lys 185	Ile	gca Ala	tct Ser	tcc Ser	ata Ile 190	gtg Val	gct Ala	caa Gln	act Thr	gct Ala 195	ggt Gly	atc Ile	cca Pro	act Thr	ctt Leu 200	988	45
cca Pro	tgg Trp	agt Ser	ggc Gly	agt Ser 205	ggt Gly	ctt Leu	tgt Cys	gtg Val	gac Asp 210	Trp	cac His	gaa Glu	aat Asn	gat Asp 215	ttt Phe	1036	43
tca Ser	aaa Lys	cga	att Ile 220	Leu	aat Asn	gtt Val	cct Pro	cag Gln 225	gaa Glu	cta Leu	tat Tyr	gaa Glu	aaa Lys 230	GLY	tat Tyr	1084	50
gtg Val	aag Lys	gat Asp 235	Val	gat Asp	gat Asp	ggg Gly	ctg Leu 240	Lys	gca Ala	gcg Ala	gag Glu	gaa Glu 245	gtt Val	gga Gly	tat Tyr	1132	55
cca Pro	gta Val 250	Met	atc Ile	aag Lys	gcc Ala	tca Ser 255	Glu	gga Gly	gga Gly	gga Gly	ggg Gly 260	Lys	gga Gly	atc Ile	aga Arg	1180	
aaa	gto	880	aat	gca	gat	gac	ttc	cct	aac	ctc	ttc	cga	cag	gtt	caa	1228	60

	Lys 265	Val	Asn	Asn	Ala	Asp 270	Asp	Phe	Pro	Asn	Leu 275	Phe	Arg	Gln	Val	Gln 280	
5	gct Ala	gaa Glu	gtt Val	cct Pro	ggg G1y 285	tct Ser	cct Pro	atc Ile	ttt Phe	gtc Val 290	atg Met	aga Arg	cta Leu	gcc Ala	aaa Lys 295	cag Gln	1276
10	tct Ser	cgt Arg	cat His	ctg Leu 300	gag Glu	gtg Val	cag Gln	atc Ile	tta Leu 305	gca Ala	gat Asp	cag Gln	tat Tyr	ggc Gly 310	aat Asn	gct Ala	1324
	atc Ile	tct Ser	ttg Leu 315	ttt Phe	ggt Gly	cgt Arg	gat Asp	tgc Cys 320	tct Ser	gtg Val	caa Gln	cgc Arg	agg Arg 325	cat His	cag Gln	aag Lys	1372
15	att Ile	att Ile 330	gaa Glu	gaa Glu	gct Ala	cct Pro	gct Ala 335	gct Ala	att Ile	gct Ala	act Thr	cca Pro 340	gca Ala	gta Val	ttt Phe	gaa Glu	1420
20	cat His 345	atg Met	gaa Glu	cag Gln	tgt Cys	gcg Ala 350	gtg Val	aaa Lys	ctt Leu	gcc Ala	agg Arg 355	atg Met	gtt Val	ggt Gly	tat Tyr	gtg Val 360	1468
25	agt Ser	gcg Ala	ggg Gly	act Thr	gtg Val 365	gaa Glu	tac Tyr	ctc Leu	tac Tyr	agc Ser 370	cag Gln	gat Asp	ggc Gly	agc Ser	ttc Phe 375	tac Tyr	1516
	ttt Phe	ctg Leu	gaa Glu	ctg Leu 380	aac Asn	cct Pro	cgg Arg	cta Leu	cag Gln 385	gtg Val	gag Glu	cac His	ccc Pro	tgt Cys 390	aca Thr	gag Glu	1564
30	atg Met	gtg Val	gcc Ala 395	gat Asp	gtc Val	aac Asn	ctc Leu	cct Pro 400	gct Ala	gcg Ala	cag Gln	ctc Leu	cag Gln 405	att Ile	gcc Ala	atg Met	1612
35	ggg Gly	atc Ile 410	cct Pro	ctg Leu	tac Tyr	aga Arg	atc Ile 415	aag Lys	gat Asp	atc Ile	cga Arg	atg Met 420	atg Met	tac Tyr	ggg Gly	gtc Val	1660
40	tct Ser 425	ccc Pro	tgg Trp	ggc Gly	gat Asp	gct Ala 430	ccc Pro	att Ile	gat Asp	ttt Phe	gaa Glu 435	aat Asn	tcg Ser	gct Ala	cac His	gtt Val 440	1708
	cct Pro	tgc Cys	cca Pro	agg Arg	ggc Gly 445	cat His	gtt Val	att Ile	gct Ala	gct Ala 450	cgt Arg	atc Ile	act Thr	agt Ser	gaa Glu 455	aat Asn	1756 ·
45	cca Pro	gat Asp	gag Glu	ggt Gly 460	ttt Phe	aag Lys	ccc Pro	agc Ser	tca Ser 465	Gly	aca Thr	gtt Val	caa Gln	gag Glu 470	ctg Leu	aat Asn	1804
50	ttt Phe	cgc Arg	agc Ser 475	Asn	aag Lys	aac Asn	gtt Val	tgg Trp 480	ggt Gly	tat Tyr	ttc Phe	agt Ser	gtt Val 485	gct Ala	gct Ala	gca Ala	1852
55	gga Gly	ggg Gly 490	ctt Leu	cat His	gaa Glu	ttt Phe	gct Ala 495	gat Asp	tct Ser	cag Gln	ttt Phe	ggt Gly 500	His	tgc Cys	ttt Phe	tcc Ser	1900
	tgg Trp 505	Gly	gaa Glu	aac Asn	cga Arg	gag Glu 510	Glu	gca Ala	att Ile	tca Ser	aac Asn 515	Met	gtt Val	gtg Val	gct Ala	ttg Leu 520	1948
60	aag	gag	ctg	tct	atc	cgg	ggc	gac	ttc	cgg	acc	aca	gtc	gag	tac	ctg	1996

Lys	Glu	Leu	Ser	Ile 525	Arg	Gly	Asp	Phe	Arg 530	Thr	Thr	Val	Glu	Tyr 535	L u		
atc Ile	aaa Lys	ctg Leu	ctg Leu 540	gag Glu	act Thr	gaa Glu	agc Ser	ttt Phe 545	cag Gln	ttg L u	aac Asn	aga Arg	att Ile 550	ggc Gly	acg Thr	2044	5
ggc Gly	tgg Trp	ctg Leu 555	gac Asp	aga Arg	ctg Leu	ata Ile	gca Ala 560	gaa Glu	aaa Lys	gta Val	cag Gln	gcg Ala 565	gag Glu	cga Arg	cct Pro	2092	10
gac Asp	acc Thr 570	atg Met	ctg Leu	gga Gly	gtt Val	gtc Val 575	tgt Cys	ggg Gly	gct Ala	ctc Leu	cat His 580	gtg Val	gca Ala	gac Asp	gtg Val	2140	
agc Ser 585	ctg Leu	cgg Arg	aat Asn	agc Ser	atc Ile 590	tcc Ser	aac Asn	ttc Phe	ctt Leu	cac His 595	tcc Ser	tta Leu	gag Glu	agg Arg	ggt Gly 600	2188	15
caa Gln	gtc Val	ctc Leu	act Thr	gct Ala 605	cat His	acc Thr	ctt Leu	ctg Leu	aat Asn 610	aca Thr	gta Val	gat Asp	gtt Val	gaa Glu 615	ctt Leu	2236	20
atc Ile	tac Tyr	gag Glu	gga Gly 620	gtg Val	aag Lys	tat Tyr	gta Val	ctg Leu 625	aag Lys	gtg Val	act Thr	cga Arg	cag Gln 630	tcc Ser	ccg Pro	2284	25
aac Asn	tcc Ser	tac Tyr 635	gtg Val	gtg Val	atc Ile	atg Met	aac Asn 640	ggc Gly	tcg Ser	tgt Cys	gtg Val	gaa Glu 645	gta Val	gac Asp	gtg Val	2332	20
cat His	cga Arg 650	ctg Leu	agc Ser	gac Asp	ggt Gly	gga Gly 655	ctg Leu	ctc Leu	ttg Leu	tcc Ser	tat Tyr 660	Asp	gtc Val	agc Ser	agt Ser	2380	30
tac Tyr 665	acc Thr	acg Thr	tac Tyr	atg Met	aag Lys 670	gag Glu	gag Glu	gtg Val	gat Asp	aga Arg 675	tat Tyr	cgc Arg	atc Ile	aca Thr	att Ile 680	2428	35
ggc Gly	aat Asn	aaa Lys	act Thr	tgt Cys 685	gtg Val	ttt Phe	gag Glu	aag Lys	gaa Glu 690	aat Asn	gac Asp	cct Pro	tcg Ser	gtg Val 695	ctg Leu	2476	40
cgc Arg	tca Ser	ccc Pro	tct Ser 700	Ala	ggg Gly	aag Lys	ttg Leu	atc Ile 705	cag Gln	tac Tyr	att Ile	gtg Val	gag Glu 710	Asp	gga Gly	2524	
ggc Gly	cac His	gtg Val 715	Phe	gct Ala	ggc Gly	cag Gln	tgc Cys 720	Tyr	gcc	gag Glu	atc Ile	gag Glu 725	AST	atg Met	aag Lys	2572	45
atg Met	gta Val 730	Met	acc Thr	tta Leu	aca Thr	gcc Ala 735	Ala	gag Glu	tct Ser	ggc Gly	tgt Cys 740	TT6	cat His	tat Tyr	gtc Val	2620	50
aag Lys 745	cgg Arg	cct Pro	gga Gly	gca Ala	gct Ala 750	Leu	gac Asp	ccg Pro	ggc Gly	tgt Cys 755	Val	ata Ile	gcc	aaa Lys	atg Met 760	2668	55
caa Gln	ctg Leu	gac Asp	aac Asn	ccc Pro 765	Ser	aag Lys	gto	cag Gln	Cag Gln 770	Ala	gag Glu	ctt Leu	cac	aca Thr 775	GIŸ	2716	
agt	ctg	сса	cgg	ato	cag	ago	aca	gcg	cto	aga	ggc	gag	aag	ctc	cac	2764	60

	Ser	Leu	Pro	Arg 780	Ile	Gln	Ser	Thr	Ala 785	Lu	Arg	Gly	Glu	Lys 790	Leu	His	
5	cga Arg	gtg Val	ttc Ph 795	cac His	tat Tyr	gtc Val	ctg Leu	gat Asp 800	aat Asn	ctg Leu	gtc Val	aat Asn	gtg Val 805	atg Met	aat Asn	gga Gly	2812
10	tac Tyr	tgc Cys 810	ctt Leu	cca Pro	gat Asp	cct Pro	ttc Phe 815	ttt Phe	agc Ser	agc Ser	agg Arg	gtg Val 820	aaa Lys	gac Asp	tgg Trp	gtt Val	2860
	gaa Glu 825	cgg Arg	ttg Leu	atg Met	aag Lys	acc Thr 830	ctc Leu	aga Arg	gac Asp	ccc Pro	tcc Ser 835	ttg Leu	cct Pro	ctc Leu	cta Leu	gaa Glu 840	2908
15	ttg Leu	cag Gln	gat Asp	atc Ile	atg Met 845	act Thr	agc Ser	gtc Val	tct Ser	ggt Gly 850	cgt Arg	atc Ile	ccg Pro	ccc Pro	aac Asn 855	gtg Val	2956
20	gaa Glu	aag Lys	tct Ser	atc Ile 860	aag Lys	aag Lys	gaa Glu	atg Met	gct Ala 865	cag Gln	tat Tyr	gcc Ala	agc Ser	aac Asn 870	atc Ile	aca Thr	3004
25	tcc Ser	gtg Val	ctc Leu 875	tgt Cys	cag Gln	ttt Phe	ccc Pro	agc Ser 880	cag Gln	cag Gln	att Ile	gcc Ala	aac Asn 885	atc Ile	cta Leu	gac Asp	3052
	agc Ser	cac His 890	gca Ala	gcc Ala	aca Thr	ctg Leu	aac Asn 895	cgg Arg	aaa Lys	tct Ser	gaa Glu	cgg Arg 900	gaa Glu	gtc Val	ttc Phe	ttc Phe	3100
30	atg Met 905	aac Asn	act Thr	cag Gln	agc Ser	atc Ile 910	gtc Val	cag Gln	ctg Leu	gtg Val	cag Gln 915	agg Arg	tac Tyr	cgc Arg	agt Ser	ggc Gly 920	3148
35	atc Ile	cga Arg	gga Gly	cac His	atg Met 925	aag Lys	gct Ala	gtg Val	gtg Val	atg Met 930	gac Asp	ctg Leu	ctg Leu	cgg Arg	cag Gln 935	tac Tyr	3196
40	ctg Leu	cga Arg	gta Val	gag Glu 940	aca Thr	caa Gln	ttc Phe	cag Gln	aac Asn 945	ggt Gly	cac His	tat Tyr	gac Asp	aaa Lys 950	tgc Cys	gtg Val	3244
	ttc Phe	gcc Ala	ctc Leu 955	cgg Arg	gag Glu	gag Glu	aac Asn	aag Lys 960	agt Ser	gat Asp	atg Met	aac Asn	act Thr 965	gtg Val	ctg Leu	aac Asn	3292
45			Phe			gct Ala											3340
50	atg Met 985	ctt Leu	atc Ile	gat Asp	cag Gln	ctg Leu 990	tgt Cys	ggc Gly	cgg Arg	ggc Gly	ccc Pro 995	Thr	ctc Leu	act Thr	Asp	gag Glu 1000	3388
55	ctg Leu	ctg Leu	aat Asn	Ile	ctc Leu 1005	acg Thr	gag Glu	cta Leu	Thr	caa Gln 1010	ctc Leu	agc Ser	aag Lys	Thr	acc Thr 1015	Asn	3436
	gcg Ala	aag Lys	Val	gcg Ala 1020	Leu	cga Arg	gca Ala	Arg	cag Gln 1025	gtt Val	ctt Leu	att Ile	Ala	tcc Ser 1030	cat His	ttg Leu	3484
60	сса	tcc	tat	gag	ctt	cgc	ctc	aac	caa	gtc	gag	tct	atc	ttc	cta	tcc	3532

Pro Ser Tyr Glu Leu Arg L u Asn Gln Val Glu Ser Ile Phe Leu Ser 1035 1040 1045	
gcc att gac atg tat gga cac cag ttc tgc atc gag aac ctg cag aaa Ala Ile Asp Met Tyr Gly His Gln Phe Cys Ile Glu Asn Leu Gln Lys 1050 1055 1060	3580
ctc atc ttg tcc gaa acg tcg att ttt gat gtc cta cca aac ttc ttc Leu Ile Leu Ser Glu Thr Ser Ile Phe Asp Val Leu Pro Asn Phe Phe 1065 1070 1080	3628
tat cac agc aac cag gtc gtg agg atg gca gct ctg gag gtg tat gtt Tyr His Ser Asn Gln Val Val Arg Met Ala Ala Leu Glu Val Tyr Val 1085 1090 1095	3676
cga agg gct tat atc gcc tat gaa ctt aat agc gta caa cac cgg cag Arg Arg Ala Tyr Ile Ala Tyr Glu Leu Asn Ser Val Gln His Arg Gln 1100 1105 1110	3724
ctg aag gac aac acc tgc gtg gtg gaa ttc cag ttc atg ctg ccc aca Leu Lys Asp Asn Thr Cys Val Val Glu Phe Gln Phe Met Leu Pro Thr 1115 1120 1125	3772 . 20
tcg cat cca aat aga ggg aac atc ccc acg cta aac aga atg tcc ttc Ser His Pro Asn Arg Gly Asn Ile Pro Thr Leu Asn Arg Met Ser Phe 1130 1135 1140	3820
tcc tcc aac ctc aac cac tac ggc atg act cac gta gcc agt gtc agc Ser Ser Asn Leu Asn His Tyr Gly Met Thr His Val Ala Ser Val Ser 1145 1150 1160	3868
gac gtg ctg ctg gac aac gcg ttc act ccg ccg tgt cag cgg atg ggc Asp Val Leu Leu Asp Asn Ala Phe Thr Pro Pro Cys Gln Arg Met Gly 1165 1170 1175	3916
ggg atg gtc tct ttt cgg acc ttt gaa gat ttt gtc agg atc ttt gat Gly Met Val Ser Phe Arg Thr Phe Glu Asp Phe Val Arg Ile Phe Asp 1180 1185 1190	3964
gaa gtg atg ggc tgc ttc tgt gat tcc cca ccc caa agc ccg aca ttc Glu Val Met Gly Cys Phe Cys Asp Ser Pro Pro Gln Ser Pro Thr Phe 1195 1200 1205	4012
cct gag gca ggt cac acg tct ctg tat gac gaa gac aag gtc ccc agg Pro Glu Ala Gly His Thr Ser Leu Tyr Asp Glu Asp Lys Val Pro Arg 1210 1215 1220	4060
gat gaa cca att cac att ttg aat gtg gct atc aaa aca gac tgt gac Asp Glu Pro Ile His Ile Leu Asn Val Ala Ile Lys Thr Asp Cys Asp 1225 1230 1235 1240	4108
atc gag gat gac agt cta gca gct atg ttc cga gag ttt acc cag caa Ile Glu Asp Asp Ser Leu Ala Ala Met Phe Arg Glu Phe Thr Gln Gln 1245 1250 1255	4156 50
aac aaa gct acc ctg gtt gaa cat ggg atc cga cgc ctt act ttc ctg Asn Lys Ala Thr Leu Val Glu His Gly Ile Arg Arg Leu Thr Phe Leu 1260 1265 1270	4204
gtt gca caa aag gat ttc agg aaa caa gtc aac tat gaa gtg gat cag Val Ala Gln Lys Asp Phe Arg Lys Gln Val Asn Tyr Glu Val Asp Gln 1275 1280 1285	4252
aga ttt cat aga gaa ttt cct aaa ttt ttc acg ttc cga gca agg gat	4300

			D B 1,,,		
	Arg Phe His 1290	Arg Glu Phe Pr 129	Lys Phe Phe 5	Thr Phe Arg Al	a Arg Asp
5	aag ttt gag Lys Phe Glu 1305	gaa gat cgt at Glu Asp Arg Il 1310	e Tyr Arg His	ctg gag cct go Leu Glu Pro Al 1315	cc cta gct 4348 La Leu Ala 1320
10	ttc cag tta Phe Gln Leu	gag ctg aac cg Glu Leu Asn Ar 1325	g atg aga aat g Met Arg Asn 1330	ttt gac ctt ac Phe Asp Leu Th	et gcc atc 4396 or Ala Ile 1335
	Pro Cys Ala	aat cac aag at Asn His Lys Me 1340	g cac ttg tat t His Leu Tyr 1345	ctt ggg gca gg Leu Gly Ala Al	La Dys Val
15	gaa gtg ggc Glu Val Gly 1355	aca gaa gtg ac Thr Glu Val Th	a gac tac agg r Asp Tyr Arg 1360	ttc ttt gtt cg Phe Phe Val Av 1365	gt gca atc 4492 rg Ala Ile
20	atc agg cat Ile Arg His 1370	tct gat ctg gt Ser Asp Leu Va 137	l Thr Lys Glu	gct tcc ttt ga Ala Ser Phe G 1380	aa tat Cta 4540 lu Tyr Leu
25	caa aat gaa Gln Asn Glu 1385	ggg gag cgg ct Gly Glu Arg Le 1390	eu Leu Leu Glu	gcc atg gat g Ala Met Asp G 1395	ag ttg gaa 4588 lu Leu Glu 1400
	gtc gcc ttt Val Ala Phe	aac aat aca aa Asn Asn Thr As 1405	it gtc cgg act in Val Arg Thr 1410	Asp Cys Asn A	ac atc ttc 4636 is Ile Phe 1415
30	Leu Asn Phe	gtt cct aca gt Val Pro Thr Va 1420	cc atc atg gac al Ile Met Asp 1425	cca tcg aag a Pro Ser Lys I 14	ie Giu Giu
35	tcc gtg cgg Ser Val Arg 1435	agc atg gtg at Ser Met Val Me	ng cgc tat gga et Arg Tyr Gly 1440	agt cgg ctg t Ser Arg Leu T 1445	gg aag ctg 4732 rp Lys Leu
40	cgt gtc ctc Arg Val Leu 1450	cag gca gaa co Gln Ala Glu Lo 14:	eu Lys lle Asn	att cgc ctg a l Ile Arg Leu T 1460	ca cca act 4780 hr Pro Thr
	gga aaa gca Gly Lys Ala 1465	att ccc atc c Ile Pro Ile A 1470	gc ctc ttc ctg rg Leu Phe Leu	acg aac gag t Thr Asn Glu S 1475	ct ggc tat 4828 er Gly Tyr 1480
45	tac ttg gac Tyr Leu Asp	atc agc ctg to lle Ser Leu T 1485	ac aag gaa gtg yr Lys Glu Val 1490	Inr Asp Ser A	gg aca gca 4876 org Thr Ala 1495
50	cag atc atg Gln Ile Met	ttt cag gca t Phe Gln Ala T 1500	at gga gac aas yr Gly Asp Lys 1505	GIN GIN PRO	ta cat gga 4924 eu His Gly 510
55	atg tta ato Met Leu Ile 1515	aac act ccg t Asn Thr Pro T	ac gtg acc aas yr Val Thr Lys 1520	a gac cag ctt o s Asp Gln Leu G 1525	aa too aag 4972 Sin Ser Lys
	agg ttc cag Arg Phe Glr 1530	gca cag tcc t n Ala Gln Ser L 15	ta ggg aca aca eu Gly Thr Thi 35	a tac ata tat g r Tyr Ile Tyr A 1540	gac atc cca 5020 Asp Ile Pro
60	gaa atg ttt	cgg cag tcc c	tg atc aaa ct	c tgg gaa tct a	atg tcc tcc 5068

Glu Met Ph Arg Gln S	r Leu Ile Lys Leu Tr	o Glu Ser Met Ser Ser	
1545 155	0 1555	1560	
caa gca ttc ctt cca cc	g ccc cct ctg cct tca	a gac ata ctg acg tac 5116	5
Gln Ala Phe Leu Pro Pr	o Pro Pro Leu Pro Ser	r Asp Ile Leu Thr Tyr	
1565	1570	1575	
act gag ctc gtg ttg ga	at gat caa ggt caa ctg	g gtt cac atg aac agg 5164	10
Thr Glu Leu Val Leu As	sp Asp Gln Gly Gln Let	u Val His Met Asn Arg	
1580	1585	1590	
ctt cca gga gga aat ga	ag att ggc atg gta gc	t tgg aaa atg acc ctt 5212	
Leu Pro Gly Gly Asn Gl	Lu Ile Gly Met Val Ala	a Trp Lys Met Thr Leu	
1595	1600	1605	
aaa agt cca gaa tat co	ca gac ggc cga gat at	c att gtt att ggc aat 5260	15
Lys Ser Pro Glu Tyr Pr	ro Asp Gly Arg Asp Il	e Ile Val Ile Gly Asn	
1610	1615	1620	
gac atc act tac cga at Asp Ile Thr Tyr Arg I 1625	le Gly Ser Phe Gly Pi	O GIR GIR ASP Dec 200	20
ttt ctc aga gct tct g	ag ctt gcc agg gca ga	g ggc atc cca cgc atc 5356	25
Phe Leu Arg Ala Ser G	lu Leu Ala Arg Ala Gl	u Gly Ile Pro Arg Ile	
1645	1650	1655	
tat gta gca gcc aac a	gt gga gca aga att gg	a ctg gca gag gaa att 5404	
Tyr Val Ala Ala Asn S	er Gly Ala Arg Ile Gl	y Leu Ala Glu Glu Ile	
1660	1665	1670 .	
cgt cat atg ttt cac g	tg gcc tgg gta gat cc	et gag gat cct tac aag 5452	30 .
Arg His Met Phe His V	al Ala Trp Val Asp Pr	o Glu Asp Pro Tyr Lys	
1675	1680	1685	
gga tac aaa tat tta t	at ctg acc cct caa ga	t tac aag aga gtc agt 5500	35
Gly Tyr Lys Tyr Leu T	yr Leu Thr Pro Gln As	p Tyr Lys Arg Val Ser	
1690	1695	1700	
Ala Leu Asn Ser Val H	at tgt gaa cat gtg ga is Cys Glu His Val Gl 10 171	aa gat gaa gga gaa tcc 5548 Lu Asp Glu Gly Glu Ser L5 1720	40
agg tac aag atc act g	ac att att ggg aag ga	aa gaa gga ctt gga gca 5596	
Arg Tyr Lys Ile Thr A	sp Ile Ile Gly Lys Gl	Lu Glu Gly Leu Gly Ala .	
1725	1730	1735	
gag aac ctt cga ggg t	ct gga atg att gct gg	gg gaa tcc tcg ttg gcc 5644	45
Glu Asn Leu Arg Gly S	Ser Gly Met Ile Ala Gl	ly Glu Ser Ser Leu Ala	
1740	1745	1750	
tac gac gag atc atc a	acc atc agc ctg gtt ac	ca tgc agg gcc att ggg 5692	50
Tyr Asp Glu Ile Ile 1	Thr Ile Ser Leu Val Tl	hr Cys Arg Ala Ile Gly	
1755	1760	1765	
att ggg gct tac ctc g	gtc cga ctg gga cag a	ga acc atc cag gtc gaa 5740	55
Ile Gly Ala Tyr Leu	Val Arg Leu Gly Gln A	rg Thr Ile Gln Val Glu	
1770	1775	1780	
Asn Ser His Leu Ile	ctg aca gga gct ggg g Leu Thr Gly Ala Gly A 790 . 17	cc ctc aac aaa gtc ctc 5788 la Leu Asn Lys Val Leu 95 1800	
ggt agg gaa gta tac	acc tcc aac aac cag c	tg ggg ggc atc cag atc 5836	60

	Gly	Arg	Glu		Tyr .805	Thr	Ser	Asn		Gln .810	Leu	Gly	Gly	11	Gln 1815	Ile	
5	atg Met	cac His	Asn	aat Asn .820	ggg Gly	gtg Val	acg Thr	His	agc S r L825	acc Thr	gtc Val	tgt Cys	Asp	gac Asp .830	ttc Phe	gag Glu	5884
10	ggg Gly	Val	ttc Phe 1835	acc Thr	gtc Val	ctg Leu	His	tgg Trp .840	ctg Leu	tct Ser	tac Tyr	Met	ccg Pro L845	aag Lys	agt Ser	gta Val	5932
	Tyr	agt Ser 1850	tca Ser	gtt Val	cct Pro	ctc Leu	ctg Leu 1855	aac Asn	tcc Ser	aag Lys	Asp	cca Pro 1860	ata Ile	gac Asp	aga Arg	gtc Val	5980
15	atc Ile 1865	Glu	ttt Phe	gtg Val	Pro	acg Thr 1870	aag Lys	gcg Ala	ccg Pro	Tyr	gac Asp .875	cct Pro	cgg Arg	tgg Trp	Met	ctg Leu 1880	6028
20	gca Ala	ggc Gly	cgg Arg	Pro	cac His 885	cca Pro	acc Thr	cag Gln	Lys	ggt Gly 1890	cag Gln	tgg Trp	ttg Leu	Ser	gga Gly L895	ttt Phe	6076
25	ttt Phe	gac Asp	Tyr	ggc Gly 1900	tct Ser	ttc Phe	tca Ser	Glu	atc Ile L905	atg Met	caa Gln	ccg Pro	Trp	gca Ala L910	cag Gln	act Thr	6124
	gtg Val	Val	gtt Val 1915	ggc Gly	aga Arg	gcc Ala	Arg	cta Leu 1920	gga Gly	gga Gly	ata Ile	Pro	gtg Val L925	gga Gly	gta Val	gtt Val	6172
30	Ala	gta Val L930	gaa Glu	acc Thr	cga Arg	aca Thr	gtg Val 1935	gag Glu	ctg Leu	agc Ser	Ile	ccg Pro 1940	gct Ala	gat Asp	cct Pro	gca Ala	6220
35	aac Asn 1945	Leu	gat Asp	tct Ser	Glu	gcc Ala 1950	aag Lys	att Ile	atc Ile	Gln	cag Gln 1955	gct Ala	ggc Gly	cag Gln	Val	tgg Trp 1960	6268
40	ttc Phe	cca Pro	gac Asp	Ser	gcg Ala L965	ttt Phe	aag Lys	acg Thr	Tyr	cag Gln L970	gcc Ala	att Ile	aag Lys	Asp	ttc Phe 1975	aac Asn	6316
	cgt Arg	gaa Glu	Gly	ctg Leu 1980	cct Pro	ctg Leu	atg Met	Val	ttt Phe 1985	gcc Ala	aac Asn	tgg Trp	Arg	ggc Gly 1990	ttc Phe	tcc Ser	6364
45		Gly				atg Met	Tyr					Lys					6412
50	Ile	gtg Val 2010	gac Asp	ggc Gly	tta Leu	cgg Arg	gag Glu 2015	tgc Cys	tcg Ser	cag Gln	Pro	gtg Val 2020	atg Met	gtc Val	tac Tyr	atc Ile	6460
55		Pro			Glu	ctc Leu 2030				Ser					Asp		6508
				Pro		cac His			Met					Glu			6556
60	gga	tcc	ett	ctg	gag	CCE	gaa	222	aca	gtc	gaa	atc	aaa	ttc	cgc	aga	6604

	Leu Glu Pro 0 2060	Glu Gly Thr Va 2065	il Glu Ile Lys I 20	Phe Arg Arg	
aag gat ctg Lys Asp Leu 2075	gtg aaa acc a Val Lys Thr b	atg cgt cgg gt Met Arg Arg Va 2080	g gac cca gtc t al Asp Pro Val 1 2085		6652 5
ttg gct gag Leu Ala Glu 2090	Arg Leu Gly '	acc ccc gag ct Thr Pro Glu Le 095	cc agc gtg gcc g eu Ser Val Ala (2100	gag cgg aag Glu Arg Lys	6700
gag ctg gag Glu Leu Glu 2105	agc aag ctg Ser Lys Leu 2110	aag gag cga ga Lys Glu Arg Gl	ag gag ttc ctc o Lu Glu Phe Leu 1 2115	ctt ccc atc Leu Pro Ile 2120	6748
tac cac cag Tyr His Gln	gtg gcc gtg Val Ala Val 2125	cag ttt gca ga Gln Phe Ala As 213	ac ctg cac gac a sp Leu His Asp ' 30	acc ccg ggc Thr Pro Gly 2135	6796
Arg Met Gln	gag aag ggg Glu Lys Gly 2140	gtc att aac ga Val Ile Asn As 2145	ac atc ctg gat sp Ile Leu Asp 2	tgg aag act Trp Lys Thr 150	6844 20
tca cgc acc Ser Arg Thr 2155	Phe Phe Tyr	tgg cgg ctg ag Trp Arg Leu A 2160	gg cgg ctg ttg rg Arg Leu Leu 2165	ctg gag gac Leu Glu Asp	6892
ctg gtc aag Leu Val Lys 2170	Lys Lys Ile	cac aat gcc a His Asn Ala A 175	at ccc gag ctg sn Pro Glu Leu 2180	aca gac ggc Thr Asp Gly	6940
cag atc cag Gln Ile Gln 2185	gcc atg cta Ala Met Leu 2190	agg cgc tgg t Arg Arg Trp P	tt gtg gag gtg he Val Glu Val 2195	gag gga acc Glu Gly Thr 2200	6988
gtg aag gcc Val Lys Ala	tat gtc tgg Tyr Val Trp 2205	gac aac aac a Asp Asn Asn L 22	ag gat ctg gtg ys Asp Leu Val 10	gag tgg ctg Glu Trp Leu 2215	7036
gag aaa cag Glu Lys Gln	ctc aca gag Leu Thr Glu 2220	gaa gac ggc g Glu Asp Gly V 2225	tc cgc tcg gtg al Arg Ser Val 2	att gaa gag Ile Glu Glu 230	7084
aac atc aag Asn Ile Lys 2235	Tyr Ile Ser	aga gac tac g Arg Asp Tyr V 2240	tc ctc aag cag al Leu Lys Gln 2245	atc cgc agc Ile Arg Ser	7132
ttg gtc cag Leu Val Glr 2250	n Ala Asn Pro	gag gtt gcc a Glu Val Ala M 2255	itg gat tcc atc let Asp Ser Ile 2260	gtc cac atg Val His Met	7180
acg cag cad Thr Gln His 2265	atc tcg ccc Ile Ser Pro 2270	acc cag cga g Thr Gln Arg A	ca gaa gtc gtt la Glu Val Val 2275	cgg atc ctc Arg Ile Leu 2280	7228 50
tcg acg atg Ser Thr Me	g gac tcg ccc t Asp Ser Pro 2285	tca acg tag Ser Thr			7255 55

- .00

<210> 3 <211> 2288 <212> PRT <213> Rind <400> 3 Met Glu Gly Ser Ala Glu Glu Ser Lys Glu Met Arg Tyr Tyr Met Leu 10 Gln Arg Ser Ser Met Ser Gly Leu His Leu Val Lys Gln Gly Arg Asp 20 25 30 Arg Lys Lys Ile Asp Ser Gln Arg Asp Phe Thr Val Ala Ser Pro Ala 35 Glu Phe Val Thr Arg Phe Gly Gly Asn Lys Val Ile Glu Lys Val Leu
50 60 Ile Ala Asn Asn Gly Ile Ala Ala Val Lys Cys Met Arg Ser Ile Arg 65 70 75 80 Arg Trp Ser Tyr Glu Met Phe Arg Asn Glu Arg Ala Ile Arg Phe Val 85 90 95 Val Met Val Thr Pro Glu Asp Leu Lys Ala Asn Ala Glu Tyr Ile Lys 100 105 110 Met Ala Asp His Tyr Val Pro Val Pro Gly Gly Pro Asn Asn Asn Asn 115 120 125 Tyr Ala Asn Val Glu Leu Ile Leu Asp Ile Ala Lys Arg Ile Pro Val 130 135 140 Gln Ala Val Trp Ala Gly Trp Gly His Ala Ser Glu Asn Pro Lys Leu 145 150 155 160 Pro Glu Leu Leu Lys Asn Gly Ile Ala Phe Met Gly Pro Pro Ser 165 170 175 Gln Ala Met Trp Ala Leu Gly Asp Lys Ile Ala Ser Ser Ile Val Ala 180 185 190 Gln Thr Ala Gly Ile Pro Thr Leu Pro Trp Ser Gly Ser Gly Leu Cys 195 200 205 Val Asp Trp His Glu Asn Asp Phe Ser Lys Arg Ile Leu Asn Val Pro 210 215 220 Gln Glu Leu Tyr Glu Lys Gly Tyr Val Lys Asp Val Asp Asp Gly Leu 225 230 235 Lys Ala Ala Glu Glu Val Gly Tyr Pro Val Met Ile Lys Ala Ser Glu 245 250 255 Gly Gly Gly Lys Gly Ile Arg Lys Val Asn Asn Ala Asp Asp Phe 260 265 270 $_{55}$ Pro Asn Leu Phe Arg Gln Val Gln Ala Glu Val Pro Gly Ser Pro Ile $_{\mbox{275}}$ Phe Val Met Arg Leu Ala Lys Gln Ser Arg His Leu Glu Val Gln Ile 290 295 300 Leu Ala Asp Gln Tyr Gly Asn Ala Ile Ser Leu Phe Gly Arg Asp Cys

305					310					315					320		
Ser	Val	Gln	Arg	Arg 325	His	Gln	Lys	Ile	Ile 330	Glu	Glu	Ala	Pr	Ala 335	Ala	5	
Il	Ala	Thr	Pr 340	Ala	Val	Phe	Glu	His 345	Met	Glu	Gln	Cys	Ala 350	Val	Lys		
Leu	Ala	Arg 355	Met	Val	Gly	Tyr	Val 360	Ser	Ala	Gly	Thr	Val 365	Glu	Tyr	Leu	10	
Tyr	Ser 370	Gln	Asp	Gly	Ser	Phe 375	Tyr	Phe	Leu	Glu	Leu 380	Asn	Pro	Arg	Leu		
Gln 385	Val	Glu	His	Pro	Cys 390	Thr	Glu	Met	Val	Ala 395	Asp	Val	Asn	Leu	Pro 400	15	
Ala	Ala	Gln	Leu	Gln 405	Ile	Ala	Met	Gly	Ile 410	Pro	Leu	Tyr	Arg	Ile 415	Lys		
Asp	Ile	Arg	Met 420	Met	Tyr	Gly	Val	Ser 425	Pro	Trp	Gly	Asp	Ala 430	Pro	Ile	20	
Asp	Phe	Glu 435	Asn	Ser	Ala	His	Val 440	Pro	Cys	Pro	Arg	Gly 445	His	Val	Ile	25	
Ala	Ala 450	Arg	Ile	Thr	Ser	Glu 455	Asn	Pro	Asp	Glu	Gly 460	Phe	Lys	Pro	Ser	2.5	
Ser 465	Gly	Thr	Val	Gln	Glu 470	Leu	Asn	Phe	Arg	Ser 475	Asn	Lys	Asn	Val	Trp 480	30	
Gly	Tyr	Phe	Ser	Val 485	Ala	Ala	Ala	Gly	Gly 490	Leu	His	Glu	Phe	Ala 495	Asp		
Ser	Gln	Phe	Gly 500	His	Cys	Phe	Ser	Trp 505	Gly	Glu	Asn	Arg	Glu 510	Glu	Ala	35	
Ile	Ser	Asn 515	Met	Val	Val	Ala	Leu 520	Lys	Glu	Leu	Ser	Ile 525	Arg	G1y	Asp		
Phe	Arg 530	Thr	Thr	Val	G1u	Tyr 535	Leu	Ile	Lys	Leu	Leu 540	Glu	Thr	Glu	Ser	40	
Phe 545	G1n	Leu	Asn	Arg	Ile 550	Gly	Thr	Gly	Trp	Leu 555	Asp	Arg	Leu	Ile	Ala 560		
G1u	Lys	Val	Gln	Ala 565	Glu	Arg	Pro	Asp	Thr 570	Met	Leu	Gly	Val	Val 575	Cys	45	
G1y	Ala	Leu	His 580	Val	Ala	Asp	Val	Ser 585	Leu	Arg	Asn	Ser	Ile 590	Ser	Asn	50	
Phe	Leu	His 595	Ser	Leu	G1u	Arg	Gly 600	Gln	Val	Leu	Thr	Ala 605	His	Thr	Leu		
Leu	Asn 610		Val	Asp	Va1	Glu 615	Leu	Ile	Tyr	Glu	Gly 620	Val	Lys	Tyr	Val	55	
Leu 625	Lys	Val	Thr	Arg	Gln 630		Pro	Asn	Ser	Tyr 635		Val	Ile	Met	Asn 640		
Gly	Ser	Cys	Val	Glu 645		Asp	Val	His	Arg 650	Leu	Ser	Asp	Gly	Gly 655	Leu	60	,

Leu Leu Ser Tyr Asp Val Ser Ser Tyr Thr Thr Tyr Met Lys Glu Glu 660 665 Val Asp Arg Tyr Arg Ile Thr Ile Gly Asn Lys Thr Cys Val Phe Glu 675 680 685 Lys Glu Asn Asp Pro Ser Val Leu Arg Ser Pro Ser Ala Gly Lys Leu 690 700 Ile Gln Tyr Ile Val Glu Asp Gly Gly His Val Phe Ala Gly Gln Cys 705 710 715 720 Tyr Ala Glu Ile Glu Val Met Lys Met Val Met Thr Leu Thr Ala Ala 725 730 735 Glu Ser Gly Cys Ile His Tyr Val Lys Arg Pro Gly Ala Ala Leu Asp 740 745 Pro Gly Cys Val Ile Ala Lys Met Gln Leu Asp Asn Pro Ser Lys Val 755 760 765 Gln Gln Ala Glu Leu His Thr Gly Ser Leu Pro Arg Ile Gln Ser Thr 770 780 Ala Leu Arg Gly Glu Lys Leu His Arg Val Phe His Tyr Val Leu Asp 785 790 795 800 Asn Leu Val Asn Val Met Asn Gly Tyr Cys Leu Pro Asp Pro Phe Phe 805 810 Ser Ser Arg Val Lys Asp Trp Val Glu Arg Leu Met Lys Thr Leu Arg 820 825 830 Asp Pro Ser Leu Pro Leu Leu Glu Leu Gln Asp Ile Met Thr Ser Val Ser Gly Arg Ile Pro Pro Asn Val Glu Lys Ser Ile Lys Lys Glu Met Ala Gln Tyr Ala Ser Asn Ile Thr Ser Val Leu Cys Gln Phe Pro Ser Gln Gln Ile Ala Asn Ile Leu Asp Ser His Ala Ala Thr Leu Asn Arg Lys Ser Glu Arg Glu Val Phe Phe Met Asn Thr Gln Ser Ile Val Gln 900 905 910 45 Leu Val Gln Arg Tyr Arg Ser Gly Ile Arg Gly His Met Lys Ala Val 915 920 925 Val Met Asp Leu Leu Arg Gln Tyr Leu Arg Val Glu Thr Gln Phe Gln 930 935 940 Asn Gly His Tyr Asp Lys Cys Val Phe Ala Leu Arg Glu Glu Asn Lys 945 950 955 960 55 Ser Asp Met Asn Thr Val Leu Asn Tyr Ile Phe Ser His Ala Gln Val 965 970 975 Thr Arg Lys Asn Leu Leu Val Thr Met Leu Ile Asp Gln Leu Cys Gly Arg Gly Pro Thr Leu Thr Asp Glu Leu Leu Asn Ile Leu Thr Glu Leu

	99	95			1	.000					1002				
Thr G		eu Se	r Lys		Thr .015	Asn	Ala	Lys		Ala .020	Leu	Arg	Ala	Arg	
Gln Va 025	al Le	eu Il		Ser L030	His	Leu	Pro		Tyr 1035	Glu	Leu	Arg	Leu	Asn 1040	
Gln V	al G	lu Se	r Ile 1045	Phe	Leu	Ser		Ile .050	Asp	Met	Tyr		His 1055	Gln	10
Phe C	ys I	le G1 106		Leu	Gln		Leu 1065	Ile	Leu	Ser	Glu	Thr 1070	Ser	Ile	
Phe A	sp Va 10		u Pro	Asn	Phe 1	Phe 1080	Tyr	His	Ser		Gln 1085	Val	Val	Arg	15
Met A	la A 90	la Le	u Glu		Tyr 1095	Val	Arg	Arg	Ala	Tyr 100	Ile	Ala	Tyr	Glu	
Leu A 105	sn S	er Va		His L110	Arg	Gln	Leu		Asp L115	Asn	Thr	Cys		Val 1120	20
Glu P	he G	ln Ph	e Met 1125	Leu	Pro	Thr		His L130	Pro	Asn	Arg		Asn 1135	Ile	25
Pro T	hr L	eu As 114		Met	Ser	Phe	Ser L145	Ser	Asn	Leu	Asn	His 1150	Tyr	Gly	
Met T	hr H: 11		l Ala	Ser		Ser L160	Asp	Val	Leu	Leu	Asp 1165	Asn	Ala	Phe	30
Thr P	ro P: .70	ro Cy	s Gln		Met 1175	Gly	Gly	Met		Ser 180	Phe	Arg	Thr	Phe	
Glu A 185			-:	1190					1195					1200	33
Ser P	ro P	ro Gl	n Ser 1205	Pro	Thr	Phe		Glu 1210	Ala	Gly	His	Thr	Ser 1215	Leu	
Tyr A	sp G	lu As 122	p Lys 0	Val	Pro		Asp 1225	Glu	Pro	Ile	His	Ile 1230	Leu	Asn	4(
	12	35	s Thr		1	1240					1245				4:
	250]	1255					L260					
Gly I 265	le A	rg Ar	g Leu	Thr 1270	Phe	Leu	Val		Gln 1275	Lys	Asp	Phe		Lys 1280	Se
Gln V	al A	sn Ty	r Glu 1285	Val	Asp	Gln		Phe 1290	His	Arg	Glu		Pro 1295	Lys	
		130					1305					1310			5.
J	13	15	u Pro			1320					1325				
	Asn P 330	he As	p Leu		Ala 1335	Ile	Pro	Cys		Asn 1340	His	Lys	Met	His	6

- Leu Tyr Leu Gly Ala Ala Lys Val Glu Val Gly Thr Glu Val Thr Asp 345 1350 1355 1360
- Tyr Arg Phe Phe Val Arg Ala Ile Ile Arg His Ser Asp Leu Val Thr 1365 1370 1375
 - Lys Glu Ala Ser Phe Glu Tyr Leu Gln Asn Glu Gly Glu Arg Leu Leu 1380 1385 1390
- Leu Glu Ala Met Asp Glu Leu Glu Val Ala Phe Asn Asn Thr Asn Val 1395
 1400
 - Arg Thr Asp Cys Asn His Ile Phe Leu Asn Phe Val Pro Thr Val Ile 1410 1415 1420
- Met Asp Pro Ser Lys Ile Glu Glu Ser Val Arg Ser Met Val Met Arg 425 1430 1435 1440
 - Tyr Gly Ser Arg Leu Trp Lys Leu Arg Val Leu Gln Ala Glu Leu Lys
 1445 1450 1455
 - Ile Asn Ile Arg Leu Thr Pro Thr Gly Lys Ala Ile Pro Ile Arg Leu 1460 1465 1470
- Phe Leu Thr Asn Glu Ser Gly Tyr Tyr Leu Asp Ile Ser Leu Tyr Lys
 1475 1480 1485
 - Glu Val Thr Asp Ser Arg Thr Ala Gln Ile Met Phe Gln Ala Tyr Gly 1490 1495 1500
- 30 Asp Lys Gln Gly Pro Leu His Gly Met Leu Ile Asn Thr Pro Tyr Val 505 1510 1515 1520
 - Thr Lys Asp Gln Leu Gln Ser Lys Arg Phe Gln Ala Gln Ser Leu Gly 1525 1530 1535
- Thr Thr Tyr Ile Tyr Asp Ile Pro Glu Met Phe Arg Gln Ser Leu Ile 1540 1545 1550
 - Lys Leu Trp Glu Ser Met Ser Ser Gln Ala Phe Leu Pro Pro Pro 1555 1560 1565
- Leu Pro Ser Asp Ile Leu Thr Tyr Thr Glu Leu Val Leu Asp Asp Gln 1570 1575 1580
- Gly Gln Leu Val His Met Asn Arg Leu Pro Gly Gly Asn Glu Ile Gly 585 1590 1595 1600
 - Met Val Ala Trp Lys Met Thr Leu Lys Ser Pro Glu Tyr Pro Asp Gly
 1605 1610 1615
- Arg Asp Ile Ile Val Ile Gly Asn Asp Ile Thr Tyr Arg Ile Gly Ser 1620 1630
 - Phe Gly Pro Glu Glu Asp Leu Leu Phe Leu Arg Ala Ser Glu Leu Ala 1635 1640 1645
- Arg Ala Glu Gly Ile Pro Arg Ile Tyr Val Ala Ala Asn Ser Gly Ala 1650 1655 1660
 - Arg Ile Gly Leu Ala Glu Glu Ile Arg His Met Phe His Val Ala Trp 1675 1670 1675
- 60 Val Asp Pro Glu Asp Pro Tyr Lys Gly Tyr Lys Tyr Leu Tyr Leu Thr

	1685	1690	1699	5
Pro Gln	Asp Tyr Lys An	g Val Ser Ala Leu 1705	Asn Ser Val His Cyr 1710	s Glu 5
	Glu Asp Glu G 1715	y Glu Ser Arg Tyr 1720	Lys Ile Thr Asp Ile 1725	e Ile
Gly Lys 1730		u Gly Ala Glu Asr 1735	Leu Arg Gly Ser Gly 1740	y Met
Ile Ala 745	Gly Glu Ser Se		Glu Ile Ile Thr Ile 1755	e Ser 1760
Leu Val	Thr Cys Arg A	a Ile Gly Ile Gly 1770	Ala Tyr Leu Val Arg	z Leu 15
Gly Gln	Arg Thr Ile G	n Val Glu Asn Ser 1785	His Leu Ile Leu Th	Gly
	Ala Leu Asn Ly 1795	s Val Leu Gly Arg	Glu Val Tyr Thr Se 1805	r Asn 20
Asn Gln 1810		e Gln Ile Met His 1815	Asn Asn Gly Val Th	
Ser Thr 825	Val Cys Asp A		. Phe Thr Val Leu Hi: 1835	25 S Trp 1840
Leu Ser	Tyr Met Pro Ly 1845	s Ser Val Tyr Ser 1850	Ser Val Pro Leu Leo 185	
Ser Lys	Asp Pro Ile A	p Arg Val Ile Glu 1865	Phe Val Pro Thr Ly 1870	s Ala
	Asp Pro Arg T: 1875	p Met Leu Ala Gly 1880	Arg Pro His Pro Th	r Gln
Lys Gly 1890	•	r Gly Phe Phe Asp 1895	Tyr Gly Ser Phe Se	r Glu
Ile Met 905	Gln Pro Trp A		Val Gly Arg Ala Ar 1915	g Leu 40 1920
Gly Gly	Ile Pro Val G 1925	y Val Val Ala Val 1930	Glu Thr Arg Thr Va	5
Leu Ser	Ile Pro Ala A 1940	p Pro Ala Asn Let 1945	ı Asp Ser Glu Ala Ly 1950	s Ile
	Gln Ala Gly G 1955	n Val Trp Phe Pro 1960	Asp Ser Ala Phe Ly 1965	s Thr
Tyr Gln 1970		p Phe Asn Arg Glu 1975	Gly Leu Pro Leu Me 1980	t Val
Phe Ala 985	Asn Trp Arg G		Met Lys Asp Met Ty 1995	r Asp 2000 55
Gln Val	Leu Lys Phe G 2005	y Ala Tyr Ile Val 2016	Asp Gly Leu Arg Gl	
Ser Gln	Pro Val Met V 2020	al Tyr Ile Pro Pro 2025	Gln Ala Glu Leu Ar 2030	g Gly

- Gly S r Trp Val Val Ile Asp Pro Thr Ile Asn Pro Arg His Met Glu 2035 2040 2045
- Met Tyr Ala Asp Arg Glu Ser Arg Gly Ser Val Leu Glu Pro Glu Gly 2050 2055 2060
 - Thr Val Glu Ile Lys Phe Arg Arg Lys Asp Leu Val Lys Thr Met Arg 065 2070 2075 2080
- Arg Val Asp Pro Val Tyr Ile His Leu Ala Glu Arg Leu Gly Thr Pro 2085 2090 2095
 - Glu Leu Ser Val Ala Glu Arg Lys Glu Leu Glu Ser Lys Leu Lys Glu 2100 2105 2110
- Arg Glu Glu Phe Leu Leu Pro Ile Tyr His Gln Val Ala Val Gln Phe 2115 2120 2125
 - Ala Asp Leu His Asp Thr Pro Gly Arg Met Gln Glu Lys Gly Val Ile 2130 2135 2140
 - Asn Asp Ile Leu Asp Trp Lys Thr Ser Arg Thr Phe Phe Tyr Trp Arg 145 2150 2155 2160
- Leu Arg Arg Leu Leu Clu Asp Leu Val Lys Lys Ile His Asn 25 2175 2175
 - Ala Asn Pro Glu Leu Thr Asp Gly Gln Ile Gln Ala Met Leu Arg Arg 2180 2185 2190
- 30 Trp Phe Val Glu Val Glu Gly Thr Val Lys Ala Tyr Val Trp Asp Asn 2195 2200 2205
 - Asn Lys Asp Leu Val Glu Trp Leu Glu Lys Gln Leu Thr Glu Glu Asp 2210 2215 2220
- Gly Val Arg Ser Val Ile Glu Glu Asn Ile Lys Tyr Ile Ser Arg Asp 225 2230 2235 2240
 - Tyr Val Leu Lys Gln Ile Arg Ser Leu Val Gln Ala Asn Pro Glu Val 2245 2250 2255
- Ala Met Asp Ser Ile Val His Met Thr Gln His Ile Ser Pro Thr Gln 2260 2265 2270
- Arg Ala Glu Val Val Arg Ile Leu Ser Thr Met Asp Ser Pro Ser Thr 2275 2280 2285

Patentansprüche

- 1. Nukleinsäure, welche eine DNA-Sequenz umfaßt, die
 - a) die in SEQ ID NO: 1 oder SEQ ID NO: 2 dargestellte Sequenz;
 - b) eine allelischen Variante davon; oder

20

50

55

60

65

- c) eines Fragmentes der Sequenzen nach a) oder b)
- aufweist, wobei das Fragment mindestens einen der Bereiche von Nukleotid 933 bis 966, 2188 bis 2219 oder 3055 bis 3495 der SEQ ID NO: 1, den Bereich von Nukleotid 1 bis 441 der SEQ ID NO: 2 oder den entsprechenden Bereich einer allelischen Variante umfaßt.
 - 2. Vektor, der eine Nukleinsäure nach Anspruch 1 umfaßt.
 - 3. Expressionsvektor, der eine Nukleinsäure umfaßt, die den Bereich von Nukleotid 2188 bis 2219 der SEQ ID NO: 1 aufweist.
 - 4. Expressionsvektor nach Anspruch 3, dadurch gekennzeichnet, daß die Nukleinsäure den Bereich von Nukleotid 1 bis 3445 der SEQ ID NO: 1 umfaßt.
 - 5. Expressionsvektor nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Nukleotide der SEQ ID NO: 1 in dem Vektor operativ mit einem Strukturgen verknüpft sind.
 - 6. Expressionsvektor nach Anspruch 5, dadurch gekennzeichnet, daß das Strukturgen ein Fremdgen ist.
 - 7. Wirtszelle, die einen Vektor nach einem der Ansprüche 2 bis 6 enthält.
 - 8. Wirtszelle nach Anspruch 7, dadurch gekennzeichnet, daß es sich um eine eukaryotische Zelle handelt.
 - 9. Wirtszelle nach Anspruch 8, dadurch gekennzeichnet, daß es sich um eine Zelle eines nicht-menschlichen Säugetiers handelt.
 - 10. Wirtszelle nach Anspruch 9, dadurch gekennzeichnet, daß es sich um eine Milchdrüsenepithelzelle handelt.

ł

11. Transgenes nicht-menschliches Säugetier, dadurch gekennzeichnet, daß es Zellen nach Anspruch 9 aufweist. 12. Transgenes nicht-menschliches Säugetier nach Anspruch 11, dadurch gekennzeichnet, daß es sich um ein Rind handelt. 13. Verwendung einer Nukleinsäure zur Expression von Fremdgenen, dadurch gekennzeichnet, daß die DNA-Sequenz der Nukleinsäure die Nukleotide 2188 bis 2219 der SEQ ID NO: 1 umfaßt, die operativ mit einem Strukturgen verknüpft sind. 14. Verwendung nach Anspruch 13, dadurch gekennzeichnet, daß die Nukleinsäure die Nukleotide 1 bis 3445 der SEQ ID NO: 1 umfaßt. 15. Verwendung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß die Expression in eukaryotischen Zellen 10 erfolgt. 16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, daß die Expression in Zellen eines nicht-menschlichen Säugetiers erfolgt. 17. Verwendung nach Anspruch 15, dadurch gekennzeichnet, daß die Expression in der Milchdrüse eine nichtmenschlichen Säugetiers erfolgt. 18. Verfahren zur Erzeugung von nicht-menschlichen transgenen Säugetieren, deren Milch einen verringerten Milchfett-Gehalt aufweist, bei dem man die DNA-Sequenz des Milchdrüsenspezifischen Promotors der Acca oder die DNA-Sequenz des Acca-Strukturgens im Genom der nicht-menschlichen transgenen Säugetiere mindestens teilweise durch eine Sequenz ersetzt, die durch Deletion oder Substitution von einzelnen oder mehreren Nukleotiden so verändert wurde, daß die Expression der Acca in der Milchdrüse gehemmt wird. 20 19. Verfahren nach Anspruch 18, bei dem man a) eine Nukleinsäure erstellt, welche eine DNA-Sequenz umfaßt, die durch Deletion oder Substitution von einzelnen oder mehreren Nukleotiden von der DNA-Sequenz des Milchdrüsen-spezifischen Promotors der Accα oder von der DNA-Sequenz des Accα-Strukturgens abgeleitet wurde; b) die Zelle eines nicht-menschlichen Säugetiers mit der Nukleinsäure nach Stufe a) transfiziert; c) Zellen, in denen die natürliche DNA-Sequenz im Genom durch die entsprechende Nukleinsäure nach Stufe a) ausgetauscht wude, auswählt und zu Tieren regeneriert. 20. Verfahren nach Anspruch 18 oder 19, bei dem die transgenen nicht-menschlichen Säugetiere Rinder, Schafe oder Ziegen sind. 21. Verfahren nach einem der Ansprüche 18 bis 20, bei dem die Sequenz des Milchdrüsen-spezifischen Promotors der Acca die Sequenz von Nukleotid 1 bis 3054 der SEQ ID NO: 1 umfaßt. 22. Verfahren nach einem der Ansprüche 18 bis 21, bei dem man mindestens eine Substitution oder Deletion im Bereich Nukleotid 2205 bis 2213 der SEQ ID NO: 1 vornimmt. 23. Verfahren nach einem der Ansprüche 18 bis 22, bei dem man mindestens eine Substitution oder Deletion im Bereich von Nukleotid 2188 bis 2239 der SEQ ID NO: 1 vornimmt. 24. Verfahren nach Anspruch 18 oder 19, bei dem man mindestens eine Substitution oder Deletion im Bereich Nukleotid 3055 bis 3495 der SEQ ID NO: 1 vornimmt. 25. Verfahren nach Anspruch 24, bei dem man den gesamten Bereich von Nukleotid 3055 bis 3495 der SEQ ID NO: 1 deletiert. 26. Transgenes nicht-menschliches Säugetier, dadurch gekennzeichnet, daß es nach einem Verfahren der Ansprü-40 che 18 bis 25 erzeugt wurde. 27. Verfahren zur Gewinnung von Milch mit verringertem Milchfett-Gehalt, bei dem man die Milch von transgenen nichtmenschlichen Säugetieren nach Anspruch 26 gewinnt. 28. Verfahren zur Genotypisierung von Rindern, bei dem man eine DNA-Sequenz des Genoms eines Rindes analysiert, dadurch gekennzeichnet, daß die DNA-Sequenz die Nukleotide 933 bis 966 der SEQ ID NO: 1 umfaßt. 29. Verfahren nach Anspruch 28, bei dem die DNA-Sequenz mittels PCR amplifiziert. 45 30. Verfahren nach Anspruch 29, bei dem Primer eingesetzt werden, die in der PCR Reaktion mit der natürlichen DNA-Sequenzen des Rindes hybridisieren, welche die Nukleotide 933 bis 966 der SEQ ID NO: 1 flankieren. 31. Verfahren nach Anspruch 30, bei dem man die Primer 50 AccmsP3f 5'-CATTTATCTGGCTTTGCATCTTAG und AccmsP3r 5'-CAGGTGGTCACAAAGAGTCTG verwendet. 32. Verfahren nach einem der Ansprüche 28 bis 31, bei dem man die Analyse der Sequenz mittels Gelelektropho-55 rese des amplifizierten Fragmentes durchführt. Hierzu 13 Seite(n) Zeichnungen

60

DE 199 46 173 A1 C 12 N 9/00 5. April 2001

Fig. 1A

	► Klo	on 1				
1	GATATCATCC	CATTTATATA	TCCAGAACAG	GCAAATCTAT	AAAGACAGAA	AGTAGATTAG
				GGAAATATGG		
121	GGGTTTCTTT	GGCGGGTGCT	GAAAATGTTC	CAAAATGGAC	TTGTGATGAT	GGTTCGCAAC
181	TCTGTGACTG	TAAGGAAAAC	CATTGAATTA	TATACTGTAA	ATGGCCAAAA	TATATGGTAT
				TTTAAAATGG		
301	AATTAGTTGC	ATTTCTATGT	ACTAGCTAGC	AATGAGCAAG	CAAAAAAAA	AAAAAAACTT
361	AAATAATTTT	ATTCAGAATG	GCATCAAAAA	GAATAAAATA	CTTAGGAATC	AATTGAACAA
421	AAAAGCATAA	GACTTGTACA	TTAAAATTGT	TACATTGCTG	AGAGAAATTA	AAGTCTGCTG
481	CTACTGCGGT	TTAGTCACTT	AAGTCATATC	TGATTCTTTC	TCAGCCCCGT	GGACTGTAGC
541	CCACCAGGCT	CCTCTGTCCG	TGGGATTTCC	CAGGCAAGAA	CACTGCAGTG	AGTTGCCATT
601	TCCTTCTCCA Klon 2		CCAACCCAGG	AACTGAACCT	ATGTCTCCTG	CTTGGCAGGT
663			TOTO CONTROL	AAGGTGGATG	СПТАВССВСТ	AGAGCACCAG
100	GAATTUTTTA	CACCTAAACC	TCIGCCIIGC	TAAAAAGGTT	CITARCORCI	イタイク・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・イン・
				GCTTTGCATC		
701	COUNCYAL	CATTCCTCCC	CHITIAICIG	GCAACATGCG	AATTTTTAGC .	-TCTCTCTCTCT
041	CIICCAICAI	CATIOCIOGO	CICILIGGII		rpher Mikro	
001	Ca Camoma om	ACCCMACMAM		TTGTGTGTGT		
				ACCACCTGGA		
				CGGAGTGGGT		
1021	TTGTCAGTGG	AATTTCCCAG	GCGAGAATAC	CACCCCCCC	CCCCCACCTT	CCCACTCTAC
1081	ACCAAGGATC	CCTCCACCAC	CACCEAACTC	CCTAACAGCA	CACTGATTTT	CCDADCAGGT
1141	AGTCTCAGCC	TCC A A CA TENT	CHERTCCTTCC	GAAAGCCCCA	CCCTANANC	ACTGTCTCCC
1201	ACAICCUIGA	CCACTATAAC	TCAGACTGCC	TTGCAACGGA	CCCACCTAAA	TGCATCACTG
1201	TCTCCCGCAT	ADACTGCTAC	GTCATCCTTG	GTGCTTGGCA	TGTTTCAATG	CTGGGGTCAG
1381	TETEGECTTC	TAGTTGGATT	TGGTGCCAGG	TATGTGTCTA	CTTTGGACAC	TCTCTTTTCA
1441	TGTTAGATTA	AAAATGAGGG	TGCCTTGAAT	TTGGAGGAAC	GAATGTGCGA	ATGTGGCCTT
1501	TTATTTCTTG	TGTTCTCACA	TTATAGGAAG	ATGGTGGGCA	GCATCCGTAA	AAGATGAGAA
1561	ACACTAGCTT	TGTTTTGGAG	CTGGGTGTGC	CCTGTTAGCG	TTTGGTTGTT	TTAGAAAGAT
1621	CCCTTTGGTG	AAGGGAAGCA	CAAGCTTGAT	TCCCGAGAGT	GCCTCTTTAG	TATATTTTTT
1681	TATATAATCA	AGAGCAAAAT	AACCTGCTTT	TTTTCTATAT	GCCATTCTTT	GCTTTTTGAA
1741	TGTTGAACTT	AACAAAGGCA	GAGAGTGATT	CTCTTCTGGA	AAGTGCCTGA	TCTAGAGACC
1801	CTTAGATGTG	TGTAAAAATT	AAGCTGCTTC	TACATCTGTG	GTCACCGTAA	TTGTTCTGAA
1861	CCAAAGGCTT	CAGTGCTCTT	TTTTTTGAGA	CTTGTTATCC	TGAAGAGAGA	TCAAGATAGG .
1921	AGGATTCCTC	TGCATCTGCT	TCTTTAAAGG	AAAAAGTAAA	CTTTACTGAC	TTTATCAGAC
1981	GTTAGCACAG	TGTAAAAGGA	GTGATGCAGA	GTTCGGAAAC	CAATCCAGGA	CTTCCTCTTT
2041	TTTTTTATTA	TGACTAATGG	TCATATTGAG	TGAGTGGCCT	GATTGAGTCT	TITCACCITG
2101	GGTCACCTGA	ATGTCCTAAC	ATCAAGGTTT	ATCTTAATAA	STAT5 Bindu	
			<u>.</u>			
2161	TATCTGTGTT	CCAGATCATT	TGTGTACTTC	TGTTTTGAAG	GGTTITIUGIG	GAATGITAAT
2221	AGATTCGCGG	CATAGTTGCA	TCAGATAAGA	GTTAACCATT	TGTATTCAAC	ATTTCGGTGA
2281	GAAGGAATTT K1		CCTGAATCAG	GTTAGATGTG	ACTCTGGTGA	ATTAMTACCA
2241			GAAATCATCA	TCTTTTCTGC	CATGACAAGG	GAGCAGTATT
2341	TICCIGAGGA	ממידים מידים מ	ADGCTAAAAC	AGGATACCAT	TTCCCTTTCA	GTCACCATTT
2401	CTTTAGCATCI	CTCCCTTATC	GCTCTGTGGC	AAATGAGCAT	AACAATAGAT	GTGTCCCCGT
2521	GGCTTTTAGG	CAGGGTTTTT	CTCCCCTGCT	TAAACGCCGG	GTTAGACCTG	TGTCTAAAAT
2581	ACTTGTCTGG	GCCCCTTTAC	GTTTCTGTGA	CTTTTATCCA	CATCCTCTCT	GTTATCCTGT
2641	TTGTGCCAGC	TCCAGTCTTA	TTCTCAAATT	TTAGTGAATA	AGATCTTAGA	TTTTTGTTGT
2701	TTTTAAAAAA	GGTGTGTGTA	CACCACTACT	CTGGCCTTAA	AATTAGAGTT	GTGACCCCCA
2761	CTTTATTCCA	AGTTCCTCAG	TGGTGGCGTG	TCTCGTCCTT	CTGACCGGCT	TGCTTTCCCT
2821	CTTGACCTGC	TCTCCCCCCG	TCTTGGAGTC	TGAAACTCAG	TCTTACTTGT	TGTGATTGGG
2881	TCTCAGAAAT	CACCTGTTCT	TTCCTCCTCC	CTCTAGATTT	CCTGACCCCA	TTATTTTCTG
2941	GGCATAGCTG	TCCTCATAAG	CTTGGTCTTC	TCTTTTTGCC	CTGAGCCTTC	CCTGTCACGT
3001	CCCCCTCCCA	GCCTGGAGAG	GCCGCGGAGC	CTCTCTAGTG	ACCGTCAGAA	
3061	OCCUPATION OF THE PARTY OF THE	CPC4ALALAGO	GCAGCTAAGG	CGGAAGCTGC	TGAGATCTAC	TITAGAGTTA
21 21	Marine States Control Williams	TATATATE	CCCCTCTCT	CTCTGTCCCC	TTGGGAAATC	AGCTGATGCT
3181	GTGTGGGAGC	CCAGTGTAAT	GGGGGGGG	GCAAACAGGA	GGGGAAGTAT	GGAGATTGGG

ZEICHNUNGEN SEITE 2

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 46 173 A1 C 12 N 9/00 5. April 2001

Fig. 1B

3301	GCAGGTCCAA	GAAGTAGGCA	TGTGGTTTGA GAAGGCACAG	TATCTTTTGT	CCTCCTGGGT	TTTAAGCACC
3361	TGCAGCGGGA	GGACGAACTC	CAGCTTGTGT	TTACAAGGCC	GACAGCIGAA	GWGWWWWCC
3421	TCTATTCCTT	TGCCATCTTG	ATATGGAGGG	TTCTGCGGAG	GAGAGTAAGG	AAATGAGATA
			tron 5A			
3481	TTACATGCTT	CAAAGGTAAG	TGTTAGAGGG	CCCTATCTAG	GCAATATATG	CCTTTTAAAA
3541	GCAGTAAAGG	CGTTGACAGC	TAAGCCCTGG	AATTATGGGC	AGTCTGATTT	GATGATTTTT
3601	TTGTGGGTCT	GTAGGAAACT	CTTTTTTTC	TTAAGGAATG	AATTAAATCT	ATGTTGCTCC
2661	MC N TOTOTO A C	ርጥጥ ልጥጥጥር ር	TCAGATTGAC			

DE 199 46 173 A1 C 12 N 9/005. April 2001

Fig. 2A

1	GTGACCGTTG	TTAAAGCACT	TTTGCTGCAG	CTAAGGCGGA	AGCTGCTGAG	ATCTACTTTA
61	GAGTTATACC	TGCTTCTATA	TTTCTCCCCC	TCTCTTCTCT	GTCCCCTTGG	GAAATCAGCT
				GGGGGGCAA		
181	ATTGGGGACA	GAGTAGACAA	AAAGACTGTG	GTTTGAGGCC	ATGAGGAGTA	CTCTACTCTG
241	ACTGAAGCAG	GTCCAAGAAG	TAGGCAGAAG	GCACAGTATC	TTTTGTCCTC	CTGGGTTTTA
				TTGTGTTTAC		
				G GAGGGTTCT		
	Exon 5A	-	E	xon 6		
421	GAGATATTAC	ATGCTTCAAA	GATCCAGCAT	GTCTGGCTTG	CACCTAGTCA	AGCAAGGTCG
481	AGACCGAAAG	AAAATAGACT	CACAGCGAGA	TTTCACTGTA	GCCTCTCCAG	CAGAATTTGT
					. Exon7	
541	TACTCGTTTT	GGTGGGAATA	AAGTGATTGA	GAAGSTICTC	ATTGCCAACA	ATGGCATTGC
601	AGCTGTGAAA	TGCATGAGAT	CCATCCGCCG	GTGGTCTTAT	GAGATGTTTC	GAAATGAACG
661	TGCAATCCGA	TTTGTTGTCA	TGGTCACACC	TGAAGACCTG	AAAGCCAATG	CAGAATACAT
721	TAAGATGGCG	GATCACTACG	TGCCCGTGCC	AGGAGGCCCC	AACAACAACA.	ACTATGCAAA
781	TGTGGAGTTA	ATTCTTGACA	TTGCTAAAAG	GATCCCCGTG	CAAGCAGTTT	GGGCTGGCTG
841	GGGTCATGCT	TCTGAGAATC	CCAAGCTCCC	AGAACTTCTC	TTGAAAAATG	GCATCGCCTT
901	CATGGGTCCT	CCAAGCCAAG	CCATGTGGGC	TCTGGGGGAT	AAGATCGCAT	CTTCCATAGT
961	GGCTCAAACT	GCTGGTATCC	CAACTCTTCC	ATGGAGTGGC	AGTGGTCTTT	GTGTGGACTG
1021	GCACGAAAAT	GATTTTTCAA	AACGAATTTT	AAATGTTCCT	CAGGAACTAT	ATGAAAAAGG
1081	TTATGTGAAG	GATGTGGATG	ATGGGCTGAA	GGCAGCGGAG	GAAGTTGGAT	ATCCAGTAAT
1141	GATCAAGGCC	TCAGAAGGAG	GAGGAGGGAA	GGGAATCAGA	AAAGTCAACA	ATGCAGATGA
1201	CTTCCCTAAC	CTCTTCCGAC	AGGTTCAAGC	TGAAGTTCCT	GGGTCTCCTA	TCTTTGTCAT
1261	GAGACTAGCC	AAACAGTCTC	GTCATCTGGA	GGTGCAGATC	TTAGCAGATC	AGTATGGCAA
1321	TGCTATCTCT	TTGTTTGGTC	GTGATTGCTC	TGTGCAACGC	AGGCATCAGA	AGATTATTGA
1381	AGAAGCTCCT	GCTGCTATTG	CTACTCCAGC	AGTATTTGAA	CATATGGAAC	AGTGTGCGGT
1441	GAAACTTGCC	AGGATGGTTG	GTTATGTGAG	TGCGGGGACT	GTGGAATACC	TCTACAGCCA
1501	GGATGGCAGC	TTCTACTTTC	TGGAACTGAA	CCCTCGGCTA	CAGGTGGAGC	ACCCCTGTAC
.1561	AGAGATGGTG	GCCGATGTCA	ACCTCCCTGC	TGCGCAGCTC	CAGATTGCCA	TGGGGATCCC
1621	TCTGTACAGA	ATCAAGGATA	TCCGAATGAT	GTACGGGGTC	TCTCCCTGGG	GCGATGCTCC
1681	CATTGATTTT	GAAAATTCGG	CTCACGTTCC	TTGCCCAAGG	GGCCATGTTA	TTGCTGCTCG
1741	TATCACTAGT	GAAAATCCAG	ATGAGGGTTT	TAAGCCCAGC	TCAGGAACAG	TTCAAGAGCT
1801	GAATTTTCGC	AGCAATAAGA	ACGTTTGGGG	TTATTTCAGT	GTTGCTGCTG	CAGGAGGGCT
1861	TCATGAATTT	GCTGATTCTC	AGTTTGGTCA	CTGCTTTTCC	TGGGGAGAAA	ACCGAGAGGA
1921	AGCAATTTCA	AACATGGTTG	TGGCTTTGAA	GGAGCTGTCT	ATCCGGGGCG	ACTTCCGGAC
1981	CACAGTCGAG	TACCTGATCA	AACTGCTGGA	GACTGAAAGC	TTTCAGTTGA	ACAGAATTGG
2041	CACGGGCTGG	CTGGACAGAC	TGATAGCAGA	AAAAGTACAG	GCGGAGCGAC	CTGACACCAT
2101	GCTGGGAGTT	GTCTGTGGGG	CTCTCCATGT	GGCAGACGTG	AGCCTGCGGA	ATAGCATCTC
2161	CAACTTCCTT	CACTCCTTAG	AGAGGGGTCA	AGTCCTCACT	GCTCATACCC	TTCTGAATAC
2221	AGTAGATGTT	GAACTTATCT	ACGAGGGAGT	GAAGTATGTA	CTGAAGGTGA	CTCGACAGTC
2281	CCCGAACTCC	TACGTGGTGA	TCATGAACGG	CTCGTGTGTG	GAAGTAGACG	TGCATCGACT
2341	GAGCGACGGT	GGACTGCTCT	TGTCCTATGA	CGTCAGCAGT	TACACCACGT	ACATGAAGGA
2401	GGAGGTGGAT	AGATATCGCA	TCACAATTGG	CAATAAAACT	TGTGTGTTTG	AGAAGGAAAA
2461	TGACCCTTCG	GTGCTGCGCT	CACCCTCTGC	TGGGAAGTTG	AICCAGIACA	TTGTGGAGGA
2521	TGGAGGCCAC	GTGTTTGCTG	GCCAGTGCTA	TGCCGAGATC	SACCECCETO SACCECCETO	CACCACCTCT
2581	GACCTTAACA	GCCGCAGAGT	CTGGCTGTAT	ACTICATION	CCCACCAACC	GAGCAGCTCT TCCAGCAGGC
2641	TGACCCGGGC	TGTGTAATAG	TCCCACCCAT	CCVCVCCVCV	CCCAGCAAGG	GCGAGAAGCT
2701	TGAGCTTCAC	TECCACEACTC	TGCCACGGAI	TOTOCTO AT	CTCATCATO	GATACTGCCT
2/61	CCACCGAGIG	TICCACIAIG	CCACCCOCIA	. ACACMCCCMT	CAACCCTTCA	TGAAGACCCT
2821	CREACACCC	TICITIAGCA	CCTGGGIGAY	CCVCCVADAT	ATCACTACCG	TCTCTGGTCG
2041	TATCCCCCCC	. ICCIIGCCIC Baccreebaa	ACTCTAGAALL	CARCCADATO	GCTCAGTATG	CCAGCAACAT
2001	CACAMCCCOCC	CALCAIGGAAA	HALCEDECCE	CCACATTCCC	AACATCCTAG	ACAGCCACGC
3001	ACCCACACTIC	: DACCCCADAT	CTGAACGGG	AGTCTTCTTC	ATGAACACTO	AGAGCATCGT
3121	רים בריזיבריזים. ררם בריזיבריזים	CACCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	CIGACTCCCAT	CCGAGGACAC	ATGAAGGCTG	TGGTGATGGA
3101	COMBUIGHT	CAGRACTACE	GAGTAGAGA	: ACAATTCCAG	AACGGTCACT	ATGACAAATG
3241	. CC1GC1GCG	CTCCGGGAGG	AGAACAAGAC	TGATATGAAC	ACTGTGCTGA	ACTACATCTT
3301	. CG1011000 TCTCTCTTCTT	CAGGTCACCA	GGAAGAATCT	TCTGGTCACC	ATGCTTATC	ATCAGCTGTG
3361	. סוכונתנוטכו יייהפררפפפפר	CCCACCCTC	CTGATGAGCT	GCTGAATATC	CTCACGGAGC	TAACTCAACT
2201	. 100000000	, Journous W				

DE 199 46 173 A1 C 12 N 9/00 5. April 2001

Fig. 2B

			rig. ED			
					CAGGTTCTTA	
3481	TTTGCCATCC	TATGAGCTTC	GCCTCAACCA	AGTCGAGTCT	ATCTTCCTAT	CCGCCATTGA
3541	CATGTATGGA	CACCAGTTCT	GCATCGAGAA	CCTGCAGAAA	CTCATCTTGT	CCGAAACGTC
					CAGGTCGTGA	
					CTTAATAGCG	
					ATGCTGCCCA	
					TCCTCCAACC	
3841	CGGCATGACT	CACGTAGCCA	GTGTCAGCGA	CGTGCTGCTG	GACAACGCGT	TCACTCCGCC
3901	GTGTCAGCGG	ATGGGCGGGA	TGGTCTCTTT	TCGGACCTTT	GAAGATTTTG	TCAGGATCTT
3961	TGATGAAGTG	ATGGGCTGCT	TCTGTGATTC	CCCACCCCAA	AGCCCGACAT	TCCCTGAGGC
4021	AGGTCACACG	TCTCTGTATG	ACGAAGACAA	GGTCCCCAGG	GATGAACCAA	TTCACATTTT
					AGTCTAGCAG	
					GGGATCCGAC	
					GAAGTGGATC	
					AAGTTTGAGG	
					CTGAACCGGA	
					TTGTATCTTG	
4441	GGTAGAAGTG	GGCACAGAAG	TGACAGACTA	CAGGTTCTTT	GTTCGTGCAA	TCATCAGGCA
4501	TTCTGATCTG	GTCACCAAGG	AAGCTTCCTT	TGAATATCTA	CAAAATGAAG.	GGGAGCGGCT
4561	CCTCCTGGAA	GCCATGGATG	AGTTGGAAGT	CGCCTTTAAC	AATACAAATG	TCCGGACTGA
					ATGGACCCAT	
					CTGTGGAAGC	
					GGAAAAGCAA	
					AGCCTGTACA	
					GACAAACAGG	
4921	TGGAATGTTA	ATCAACACTC	CGTACGTGAC	CAAAGACCAG	CTTCAATCCA	AGAGGTTCCA
4981	GGCACAGTCC	TTAGGGACAA	CATACATATA	TGACATCCCA	GAAATGTTTC	GGCAGTCCCT
5041	GATCAAACTC	TGGGAATCTA	TGTCCTCCCA	AGCATTCCTT	CCACCGCCCC	CTCTGCCTTC
5101	AGACATACTG	ACGTACACTG	AGCTCGTGTT	GGATGATCAA	GGTCAACTGG	TTCACATGAA
					AAAATGACCC	
					GACATCACTT	
					TCTGAGCTTG	
5261	CCCCAMCCCA	CCCCAAGAGAGG	MILLIGGIGIL	CACTCCACCA	AGAATTGGAC	TCCCACACCA
5401	AATTCGTCAT	ATGTTTCACG	TGGCCTGGGT	AGATCCTGAG	GATCCTTACA	AGGGATACAA
					GCTCTCAACT	
					ACTGACATTA	
5581	AGAAGGACTT	GGAGCAGAGA	ACCTTCGAGG	GTCTGGAATG	ATTGCTGGGG	AATCCTCGTT
5641	GGCCTACGAC	GAGATCATCA	CCATCAGCCT	GGTTACATGC	AGGGCCATTG	GGATTGGGGC
5701	TTACCTCGTC	CGACTGGGAC	AGAGAACCAT	CCAGGTCGAA	AATTCTCACT	TAATCCTGAC
5761	AGGAGCTGGG	GCCCTCAACA	AAGTCCTCGG	TAGGGAAGTA	TACACCTCCA	ACAACCAGCT
5821	GGGGGGCATC	CAGATCATGC	ACAACAATGG	GGTGACGCAC	AGCACCGTCT	GTGACGACTT
5001	CCACCCCCTC	TTCACCCTCC	TECACTECET	CTCTTACATC	CCGAAGAGTG	TATACACTTC
5041	COVOCOCOCO	CHCARCOTCO	ACCAMCCAAM	ACACACACTC	ATCGAGTTTG	TCCCCACGAA
5941	AGITCCICIC	CIGAACICCA	AGGAICCAAI	YCCCCCCCCC	CACCCAACCC	ACARACCTCA
6001	GGCGCCGTAT	GACCCTCGGT	GGATGCTGGC	AGGCCGGCCT	CACCCAACCC	AGAAAGGICA
9091	GTGGTTGAGT	GGATTTTTTG	ACTATGGCTC	TTTCTCAGAG	ATCATGCAAC	CGIGGGGACA
					GTGGGAGTAG	
					AACCTGGATT	
6241	GATTATCCAG	CAGGCTGGCC	AGGTTTGGTT	CCCAGACTCC	GCGTTTAAGA	CGTATCAGGC
6301	CATTAAGGAC	TTCAACCGTG	AAGGGCTGCC	TCTGATGGTC	TTTGCCAACT	GGAGAGGCTT
6361	CTCCGGTGGG	ATGAAAGATA	TGTACGACCA	GGTGCTGAAG	TTCGGCGCTT	ACATCGTGGA
6421	CGGCTTACGG	GAGTGCTCGC	AGCCCGTGAT	GGTCTACATC	CCGCCTCAGG	CCGAGCTCCG
6481	AGGCGGCTCC	TEGETEGTEA	TTGACCCCAC	CATCAACCCG	CGGCACATGG	AGATGTATGC
6541	GGACCGCGAG	ACCACCCAT		GCCGGAAGGG	ACAGTCGAAA	TCAAATTCCG
6601	CACABACCAT	CTCCTCAAAA	CCATCCCTCC	CCTCCACCCA	CTCTACATCC	ACTTGGCTGA
6663	CAGAAAGGAI	ACCCCCCACC	TCALGCGICG	CCACCCCAAC	CACCTCCACA	GCAAGCTGAA
0001	CCACCCACT	ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	1049061990	CCRCCRCCAAAG	CCCCTCCTCT	שייה בא כא כרייי שייה בא כא כרייי
0/21	GGAGCGAGAG	GAGTTCCTCC	TTCCCATCTA	CCACCAGGTG	GCCGTGCAGT	TIGOUGUES
6781	GCACGACACC	CCGGGCCGCA	TGCAGGAGAA	GGGGTCATT	AACGACATCC	TGGATTGGAA
6841	GACTTCACGO	ACCTTCTTCT	ACTGGCGGCT	GAGGCGGCTG	TTGCTGGAGG	ACCTGGTCAA
6901	GAAGAAAATC	CACAATGCCA	ATCCCGAGCT	GACAGACGGC	CAGATCCAGG	CCATGCTAAG
6961	GCGCTGGTTT	GTGGAGGTGG	AGGGAACCGT	GAAGGCCTAT	GTCTGGGACA	ACAACAAGGA
7021	TCTGGTGGAG	TGGCTGGAGA	AACAGCTCAC	AGAGGAAGAC	GGCGTCCGCT	CGGTGATTGA
7081	AGAGAACATO	AAGTACATCA	GCAGAGACTA	CGTCCTCAAG	CAGATCCGCA	GCTTGGTCCA
7141	GGCCAACCCA	GAGGTTGCCA	TGGATTCCAT	CGTCCACATO	ACGCAGCACA	TCTCGCCCAC
7201	CCACCCACCA	GAAGTCGTTC	CCATCCTC	GACGATGGAC	TCGCCCTCAA	CGTAG
1201		· municult	Junicololo	. ancantour		

DE 199 46 173 A1 C 12 N 9/00 5. April 2001

Pig. 3A

					5				1	.0				1	.5				2	0				2	5				3	(
	M				Ā				K	E				Y	M				S	S				L	H				Q	G
31																														
61 91	E	K	V	L	I	A	N	N	G	I	A.	A	V	K T.	C	M	R	S	I	R	R	W	S M	Υ	E	M	F	R V	N D	E V
121																														
151																														
181	Α	L	G	D	K	I	Α	S	S	I	v	Α	Q	T	Α	G	I	P	T	L	Р	W	S	G	S	G	L	С	V	D
211	W	Н	E	N	D	F	S	K	R	Ι	L	N	V	Р	Q	Ε	L	Y	E	K	G	Y	V	K	D	V	D	D	G	L
241	K	A	A	E	Ε	Ā	G	Y	P	V	M	Ι	K	A	S	E	G	G	G	G	K	G	I	R	K	V	N	N	A	D
271 301	D	F	P	N	L	F	R	Õ	V	Q	A.	E n	V	5	G	5	5	D T	F.	ν .	M	K V	л Г	A	A Q	Q H	5	K		I
331																				A									_	-
361																														
391	T	Ε	M	ν	Α	D	v	N	L	P	Α	Α	Q	L	Q	I	Α	M	G	I	P	L	Y	R	I	K	D	Ι	R	M
421																														
451																				E										
481 511																														
541																														T
571	M	L	G	٧	v	Ċ	G	Α	L	Н	ν	Α	D	ν	S	L	R	N	S	I	S	N	F	L	H	S	L	Ε		G
601	Q	٧																											R	_
631		P																		R										
661 691			S	5	Y	T	T	Y	M	K	E	E	٧	D	R	Υ	K	T	T V	E	9	N	K	T	V	F	I.	E	V	c
721			F.	3 T	E	v	M	ĸ	М	v	M	T	L	T	A	A	E	5	Ğ	C	I	H	Y	v	ĸ	R	P		Ă	
751																										G			P	
781	I	Q	S	T	Α	L	R	G	Ε	K	L	Н	R	ν	F	Н	Y	V	L	D	N	L	v	N					Y	_
811	L	P	D	P	F	F	S	S	R	V	K	D	M	Ā	E	R	Ľ	M	K	T	L	R	D	P	S	L	P	L	ŗ	E
841 871		Q	D	I	M	T	S	r V	5	G	R	T	P	P	N	V	E.	V V	5	I	K A	K D	T	M T.	A. N	Q P	Y K	A	5 E	N R
901		v	F	F	M	N	T	0	S	I	v	ŏ	L	v	0	R	Y	R	S	G	ī	R	Ġ	Н	M	K	Ä	v	v	M
931	D	L	L	R	Q	Y	L	R	٧	E	T	Q	F	Q	N	G	H	Y	D	K	С	v	F	Α	L	R	Ε	E	N	K
961																														
991																														
l021 l051																					Ş			S		F T.			A F	
1081	Y	Н	S	N	0	v	v	R	М	A	A	L	E	V.	Y	v	R	R	Ā	Ŷ					L			Ÿ		
1111																											P	T	ī	N
1141																								L			A			P
1171																							_	V		_		F		D
1201																				E	K			R T				K	H	_
1261	_				_		_	_		_																_				
1291	H	R	Ε	F	₽	K	F	F	T	F	R	Α	R	D	K	F	Ε	E	D	R	I	Y	R	H	L	E	P	A	L	A
1321	F	Q	L	E	L	N	R	M	R	N	F	D	L	T	A	I	P	C	A	N	H	K	M	H	L	Y	L	G	A	A
1351	K	Λ	E	٧	G	T	E	۷	T	D	Y	R	F	F	٧	R	A	I	I	R	H	S	D	L	УV	T	K	E	A	S
1381 1411	r' D	C	I N	H	Ų	N	E.	N	E	V	Ь П	Т	A T	T	A. M	D G	P	S	K	Į	v E	E	5	A M	R	S	M	v	M	R
1441	Y	G	S	R	Ĺ	·W	ĸ	L	R	v	L	Q	À	Ē	L	K	Ī	N	I	R	L	T	P	T	G	K	A	I	P	I
1471	R	L	F	L	T	N	Ε	S	G	Y	Y	L	D	I	5	L	Y	K	E	V	T	D	S	R	T	A	Q	I	М	F
1501	Q	A	Y	G	D	K	Q	G	P	L	H	G	M	L	I	N	T	P	Y	V	T	K	D	Ō	L	Õ	S	K	R	F
:531	Q	A	Q	S	L	G	T	T	Y	I	Y	D	I	P	E	M	F	R	Q	S	L	I	K	Ţ	W	E	S	M	2	2
.561 .591	N M	R	r T.	D T	G	<i>ح</i>	N	E	T	G	M	V	T.	W	K	M	T	L	K	S	P	E	Y	P	D	G	R	Ď	I	I
.621																														
.651	E	G	I	P	R	I	Y	ν	A	A	N	S	G	A	R	I	G	L	A	Ε	E	I	R	Н	M	F	H	٧	A	W
.681	V	D	Р	E	D	P	Y	K	G	Y	K	Y	L	Y	L	T	P	Q	D	Y	K	R	V	5	A	ŗ	N	S	V	H
.711	C	E	H	V	E	D	E	G	Ŀ	S	R	Y	K	_ I	Т	υ	1	1	G	K	Ľ	Ľ	G	10	G	A	-	1.4	u	K

Ασσα

 $\texttt{Acc} \underline{\alpha} \underline{\ MD}$

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 46 173 A1 C 12 N 9/00 5. April 2001

Fig. 3B

1741	G	S	G	М	I	Α	G	E	S	5	L	Α	Y	D	Ε	Ι	I	T	I	S	L	V	T	С	R	A	I	G	Ι	G
1771	Α	Y	L	v	'n	L	G	Q	R	T	I	Q	V	Ε	N	S	H	L	I	L	T	G	Α	G	A	L	N	K	v	L
1801	G	R	Ε	ν	Y	T	S	N	N	Q	L	G	G	I	Q	I	M	H	N	N	G	v	T	H	S	T	ν	С	D	D
1831	F	Ε	G	v	F	T	v	L	Н	W	L	S	Y	M	P	K	S	ν	Y	S	S	v	P	L	L	N	S	ĸ	D	P
1861	I	D	R	v	I	E	F	v	P	T	K	Α	P	Y	D	P	R	W	М	L	Α	G	R	P	H	P	T	Q	K	G
1891	Q	W	L	s	G	F	F	Ð	Y	G	S	F	S	Ε	I	M	Q	P	W	Α	Q	T	v	V	V	G	R	A	R	L
1921	G	G	I	P	v	G	v	\mathbf{v}	Α	ν	Ĕ	T	R	T	ν	E	L	S	I	P	A	D	P	A	N	L	D	S	E	Α
1951	K	I	I	Q	Q	Α	G	Q	v	W	F	P	D	S	Α	F	K	T	Y	Q	A	I	K	D	F	N	R	E	G	L
1981	P	L	М	V	F	Α	N	W	R	G	F	S	G	G	M	K	D	M	Y	D	Q	ν	L	K	F	G	Α	Y	I	٧
2011	Ď	G	L	R	E	C	S	Q	P	v	М	V	Y	I	P	P	Q	Α	E	L	R	G	G	S	W	v	v	I	D	P
2041	T	I	N	P	R	H	М	Ε	M	Y	A	D	R	Ε	S	R	G	S	ν	L	E	P	E	G	T	v	E	I	K	F
2071	R	R	K	D	L	٧	K	T	M	R	R	٧	D	P	V	Y	I	Н	L	Α	E	R	L	G	T	P	E	L	S	٧
2101																														
2131	L	Н	D	T	P	G	R	M	Q	E	K	G	٧	I	N	D	I	L	D	W	K	T	S	R	T	F	F	Y	W	R
2161	L	R	R	L	L	L	E	D	L	V	K	K	K	I	H	N	A	N	P	E	L	T	D	G	Q	I	Q	A	M	L
2191	R	R	M.	F	v	E	V	E	G	T	v	K	Α	Y	V	W	D	N	N	K	D	L	V	E	W	L	E	K	Q	L
2221	Т	E	Ε	D	G	V	R	S	v	I	E	E	N	I	K	Y	I	S	R	D	Y	V	L	K	Q	Ι	R	S	L	V
2251	Q	Α	N	P	E	v	·A	M	D	S	I	V	H	M	T	Q	H	I	S	P	T	Q	R	Α	E	V	V	R	I	L
2281	S	Т	M	D	S	P	S	T	*																					

Fig. 4

DE 199 46 173 A1 C 12 N 9/00 5. April 2001

DE 199 46 173 A1 C 12 N 9/00 5. April 2001

Expression in HC-11 Zellen (stabil transfiziert, 10 RLU/ 10 cells)

•	∢	œ	Verhältnis
Klon	nicht-induziert	Induziert	B/A
	Mittel ± S.E.M.	Mittel ± S.E.M.	
-	338.3 ± 24.2	1169 ± 138.4	3.5
7	218.7 ± 29.5	120.2 ± 31.3	9.0
m	21.3 ± 2.3	24.7 ± 6.1	1.2

n, 3; S.E.M.: mittlerer Fehler des Mittelwertes (s/ Quadratwurzel aus n)

Fig. 8

DE 199 46 173 A1 C 12 N 9/005. April 2001

N w nucl ic acid encoding bovin ac tyl co nzyme A carboxylase alpha and its promoter, for milk-sp cific production of proteins and for r gulating fat content of milk

Patent Number:

DE19946173

Publication date:

2001-04-05

Inventor(s):

SEYFERT HANS MARTIN (DE)

Applicant(s):

FORSCH DIE BIOLOG LANDW LICHER (DE)

Requested Patent:

DE19946173

Application Number: DE19991046173 19990920

Priority Number(s): DE19991046173 19990920

IPC Classification:

C12N9/00; C12N5/16

EC Classification:

C12N9/00L

Equivalents:

Abstract

A nucleic acid (I) comprising: (i) a sequence (S1) of 3690 base pairs (bp) or a sequence (S2) of 7255 bp; (ii) allelic variants of (i); or (iii) fragments of (i) or (ii) containing nucleotides (nt) 933-966, 2188-2219 or 3055-3495 of (S1), nt 1-441 of (S2), or the corresponding regions of their allelic variants, is new. Independent claims are also included for the following: (1) vectors that contain (I); (2) an expression vector containing a nucleic acid that includes the 2188-2219 nt region of (S1); (3) host cells containing a vector of (1) or (2); (4) a transgenic, non-human animal containing cells of (3); (5) producing a non-human transgenic mammal in which the milk has reduced fat content; and (6) genotyping cattle by analyzing the nt 933-966 region of (S1).

Data supplied from the esp@cenet database - 12