CSE 331 HW2

EXPLANATION OF VERILOG FILES

• fullAdder.v

fullAdder module consist of 2 halfAdder module.

mux8x1.v

The mux8x1 module is consist of 2x mux4x1 module and their output is connected to mux2x1 module to obtain single bit output.

alu1Bit.v

The alu1Bit module consist of;

bit fullAdder

2x mux2x1

mux8x1

The module is similar to alu representation on the lecture. If the substation operation is held , then the "b" bit is inverted. SUB and SLT opcode uses substation operation behind. If these opcode is called then the "b" bit is inverted.

The "less" is input is 0.

alu1BitLsb

Essantially, it is same as the alu1Bit. But it's carry in is came from according to aluOp. If the aluOp does the substation in operation then the carry in becames 1 else 0.

Also less input came from alu1BitMsp's "set" output.

alu1BitMsb.v

The alu1BitMsb module consist of;

fullAdder

2x mux2x1

mux8x1

xorV and xorSet gate.

It is almost similar to alu1Bit , but it is using xorV and xorSet gate to detect overflow and indicate the sign of the result.

The "less" input is always 0. Also the value of "set" is directed to least significant bit alu's carry in input.

alu2Bit.v

The alu2Bit module consist of;

2x alu1Bit module.

It is used for create 32xAlu.

Alu4Bit.v

The alu4Bit module consist of; 2x alu2Bit module. It is used for create 32xAlu.

alu32.v

The alu32 module consist of ; alu1BitLsb, 7x alu4Bit, alu2Bit, alu1bitMsb

HANDWORKS:

• 1 BIT ALU with MSB:

It contains 2x mux2x1 for multiplication operations but I have not combined it for 32 bit alu.

ADD OPERATION ->> OPCODE ->> 000

\$ 1 .	Msgs				
→ /addTestbench/a	-268432364	20	2624	-268432364	
→ /addTestbench/b	3347	19	3859	3347	
→ /addTestbench/s	-268429017	39	6483	-268429017	
II → /addTestbench/alu_op	000	000			
// /addTestbench/c_out	St0				

• SUB OPERATION ->> OPCODE ->> 001

\$ 1▼	Msgs					
I → /subTestbench/a	-No Data-	20	2624	-2684323	54	
≖ - /subTestbench/b	-No Data-	19	3859	3347		
+	-No Data-	1	-1235	-2684357	11	
-/-/ /subTestbench/alu_op	-No Data-	001				
/subTestbench/c_out	-No Data-					

• MUL OPERATION ->> OPCODE ->> 010

XOR OPERATION ->> OPCODE ->> 011

≨ 1 •	Msgs													
I - / /xorTestbench/a	-No Data-	00000000	00000000	00000000	0010100	00000000	00000000	000010100	1000000	11110000	00000000	000011000	0010100	
	-No Data-	00000000	00000000	00000000	0010011	00000000	00000000	000011110	0010011	00000000	00000000	000011010	0010011	
+- /xorTestbench/s	-No Data-	00000000	00000000	00000000	0000111	00000000	00000000	000001010	1010011	11110000	00000000	000000010	0000111	
+	-No Data-	011												
/xorTestbench/c_out	-No Data-													

AND OPERATION ->> OPCODE ->> 100

OR OPERATION ->> OPCODE ->> 101

SLT OPERATION ->> OPCODE ->> 110

NOR OPERATION ->> OPCODE ->> 111

ALL 32 BIT ALU OPERATIONS

NOTE: ALL THE OPERATIONS USES ONLY ONE ADDER.

Muhammed Sinan Pehlivanoğlu 1901042664