Лекция 14

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ПРЕДЕЛЫ ФУНКЦИЙ. ПРОИЗВОДНАЯ ФУНКЦИИ

Продолжим рассматривать примеры вычисления пределов последовательностей.

4. Найти предел последовательности

$$\frac{3n^3+n-1}{n+2}$$
 при $n\to\infty$.

Наибольшая степень в числителе и знаменателе — третья, поэтому поделим числитель и знаменатель на n^3 . Получим

$$x_n = \frac{3n^3 + n - 1}{n + 2} = \frac{3 + \frac{1}{n^2} - \frac{1}{n^3}}{\frac{1}{n^2} + \frac{2}{n^3}}.$$

Воспользоваться теоремой 4 для вычисления предела отношения двух последовательностей невозможно, так как предел последовательности

$$\frac{1}{n^2} + \frac{2}{n^3}$$

стоящей в знаменателе, равен 0.

Рассмотрим последовательность

$$y_n = \frac{1}{x_n} = \frac{n+2}{3n^3 + n - 1} = \frac{\frac{1}{n^2} + \frac{2}{n^3}}{3 + \frac{1}{n^2} - \frac{1}{n^3}}.$$

Предел этой последовательности равен 0:

$$\lim_{n \to \infty} y_n = \frac{\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^3} \right)}{\lim_{n \to \infty} \left(3 + \frac{1}{n^2} - \frac{1}{n^3} \right)} = \frac{\lim_{n \to \infty} \frac{1}{n^2} + \lim_{n \to \infty} \frac{2}{n^3}}{\lim_{n \to \infty} 3 + \lim_{n \to \infty} \frac{1}{n^2} - \lim_{n \to \infty} \frac{1}{n^3}} = \frac{0}{3} = 0.$$

Так как последовательность y_n — бесконечно малая, то

$$x_n = \frac{1}{y_n},$$

согласно теореме 1, бесконечно большая последовательность.

Таким образом,

$$\lim_{n\to\infty}\frac{3n^3+n-1}{n+2}=\infty.$$

Правило. Если у общего члена последовательности степень числителя больше степени знаменателя, то последовательность бесконечно большая.

Пределы функций

Рассмотрим функцию y = 2x + 1. Фиксируем точку $x_0 = 0$. Пусть x_n — некоторая последовательность, сходящаяся к x_0 при n, стремящемся к ∞ . Рассмотрим, например, последовательность

$$x_n = \frac{1}{n}$$
.

Она сходится к 0

$$\left(\lim_{n\to\infty}\frac{1}{n}=0\right).$$

Подставив в функцию вместо $x x_n$, получим новую последовательность

$$y_n = \frac{2}{n} + 1$$
.

Нас интересует, как ведет себя эта последовательность. Последовательность y_n сходится к 1 при n, стремящемся к $\infty \left(\lim_{n\to\infty} y_n = 1\right)$.

Рассмотрим, как геометрически изображается связь между последовательностями x_n и y_n (рис. 30).

Рис. 30. Связь между последовательностями x_n и y_n

Нас интересует, как ведет себя последовательность y_n , если последовательность x_n сходится к x_0 .

Определение предела функции

Определение. Число a называется пределом функции y(x) при x, стремящемся к x_0 , если для любой последовательности x_n , удовлетворяющей условиям: x_n принадлежит области определения X функции y(x), $x_n \neq x_0$ и $\lim_{n \to \infty} x_n = x_0$,

$$\left(x_n \in X, \quad x_n \neq x_0, \quad \lim_{n \to \infty} x_n = x_0\right),$$

соответствующая последовательность $y_n = y(x_n)$ сходится к a.

Это записывают так:

$$\lim_{x \to x_0} y(x) = a$$

Теоремы о предельном переходе при выполнении арифметических операций над функциями

Пусть на множестве X рассматриваются функции y(x) и z(x). Пусть $x_0 \in X$ и $\lim_{x \to x_0} y(x) = a$, $\lim_{x \to x_0} z(x) = b$. Тогда:

Теорема 1. Предел суммы (разности, произведения) двух функций при x, стремящемся к x_0 , равен сумме (разности, произведению) пределов этих функций, т. е.

$$\lim_{x \to x_0} (y(x) + z(x)) = a + b = \lim_{x \to x_0} y(x) + \lim_{x \to x_0} z(x),$$

$$\left(\lim_{x \to x_0} (y(x) - z(x)) = a - b = \lim_{x \to x_0} y(x) - \lim_{x \to x_0} z(x), \\ \lim_{x \to x_0} (y(x) \cdot z(x)) = a \cdot b = \lim_{x \to x_0} y(x) \cdot \lim_{x \to x_0} z(x)\right).$$

Теорема 2. Пусть $b \neq 0$. Тогда

$$\lim_{x \to x_0} \frac{y(x)}{z(x)} = \frac{a}{b} = \frac{\lim_{x \to x_0} y(x)}{\lim_{x \to x_0} z(x)}.$$

Примеры вычисления пределов функций

1. Найдем

$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$
.

Если мы попытаемся воспользоваться теоремой 2, то увидим, что при x, стремящемся к 1, числитель и знаменатель дроби стремятся к 0. Такая ситуация называется неопределенностью «ноль на ноль» $\left(\frac{0}{0}\right)$. Пока теоремой 2 воспользоваться нельзя. Заметим, что в числителе стоит разность квадратов. Используя формулу

$$a^2 - b^2 = (a - b)(a + b),$$

получим

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2.$$

2. Найдем

$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x + 2}.$$

Попытаемся использовать теорему 2. Найдем предел числителя:

$$\lim_{x \to -2} (x^2 + 3x + 2) = 4 - 6 + 2 = 0.$$

Найдем предел знаменателя:

$$\lim_{x \to -2} (x+2) = -2 + 2 = 0.$$

Имеем неопределенность типа «ноль на ноль».

В числителе дроби стоит квадратный трехчлен. Разложим его на множители. Для этого найдем корни квадратного уравнения

$$x^2 + 3x + 2 = 0.$$

Они равны $x_1 = -1$, $x_2 = -2$.

Напомним, что для квадратного уравнения

$$ax^2 + bx + c = 0$$

корни x_1 , находятся по формуле

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

и разложение на множители записывается так:

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}).$$

Возвращаясь к нашему примеру, получим

$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x + 2} = \lim_{x \to -2} \frac{(x+1)(x+2)}{x+2} = \lim_{x \to -2} (x+1) = -1.$$

Предел функции при x, стремящемся к бесконечности ($x \to \infty$), вычисляется так же, как для последовательности.

Производная функции

Приращение функции

Приращение функции, обозначаемое через Δ_y , показывает, на сколько значение функции в точке $x_0 + \Delta_x$ отличается от значения функции в точке x_0 (рис. 31).

Рис. 31. Приращение функции

Приращение аргумента — Δ_{x} , приращение функции —

$$\Delta y = y(x_0 + \Delta x) - y(x_0).$$

Производная

Определение. Производной $y'(x_0)$ функции y(x) в точке x_0 называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x},$$

если этот предел существует. Итак,

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{y(x_0 + \Delta x) - y(x_0)}{\Delta x}.$$

Схема вычисления производной

- 1. Вычислить $y(x_0)$.
- 2. Вычислить $y(x_0 + \Delta x)$.
- 3. Найти приращение функции $\Delta y = y(x_0 + \Delta x) y(x_0)$.
- 4. Найти отношение $\frac{\Delta y}{\Delta x}$.
- 5. Найти предел отношения при $\Delta x \to 0$, т. е. производную $y'(x_0)$.

Найдем по определению производную функции $y = x^2$.

1.
$$y(x_0) = x_0^2$$
.

2.
$$y(x_0 + \Delta x) = (x_0 + \Delta x)^2$$
.

3.
$$\Delta y = (x_0 + \Delta x)^2 - x_0^2 = x_0^2 + 2x_0 \Delta x + (\Delta x)^2 - x_0^2 = 2x_0 \Delta x + (\Delta x)^2$$
.

4.
$$\frac{\Delta y}{\Delta x} = \frac{2x_0 \Delta x + (\Delta x)^2}{\Delta x} = \frac{(2x_0 + \Delta x)\Delta x}{\Delta x} = 2x_0 + \Delta x.$$

5.
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(2x_0 + \Delta x \right) = 2x_0.$$

Точка x_0 произвольная, поэтому $(x^2)' = 2x$.

Физический смысл производной

Пусть независимая переменная t — это время. Рассматриваемая функция s(t) — путь, пройденный точкой M от начальной точки O за время t (если t измеряется, например, в минутах, то s(3) — путь, пройденный точкой M от начальной точки O за 3 мин, s(5) — путь, пройденный точкой M от начальной точки O за 5 мин).

Тогда $s(t+\Delta t)$ — путь, пройденный точкой M от начальной точки O за время $t+\Delta t$.

На рис. 32 путь MM' пройден за 2 мин и равен s(3) - s(5).

Рис. 32. Путь, пройденный точкой за 2 мин

На рис. 33 путь MM' пройден за Δt мин и равен

$$s(t + \Delta t) - s(t) = \Delta s$$
.

Рис. 33. Путь, пройденный точкой за Δt мин

Средняя скорость v на заданном отрезке пути определяется как отношение пути ко времени, за которое этот путь пройден. Средняя скорость v на отрезке MM' на рис. 32 равна $\frac{s(5)-s(3)}{2}$, на рис. 33 — $\frac{\Delta s}{\Delta t}$. Если $\Delta t \to 0$, то $M' \to M$ и $\lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = s'(t)$ — это мгновенная скорость в точке M. Итак, производная пути по времени при $t=t_0$ — это мгновенная скорость движения точки M в момент t_0 .

Таким образом, $y'(x_0)$ — это скорость изменения функции y(x) в точке x_0 .

Таблица производных

$$1. \left(x^n\right)' = nx^{n-1}.$$

$$2. \left(\sin x\right)' = \cos x.$$

$$3. \left(\cos x\right)' = -\sin x.$$

$$4. \left(e^{x}\right)' = e^{x}.$$

$$5. \left(\ln x\right)' = \frac{1}{x}.$$

Формула перехода к дробному показателю: $\sqrt[m]{x^k} = (x)^{\frac{k}{m}}$.

Формула перехода к отрицательному показателю: $\frac{1}{x^k} = x^{-k}$.

Примеры использования формулы 1 из таблицы производных

$$\left(\sqrt{x}\right)' = \left(x^{\frac{1}{2}}\right)' = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\frac{1}{x^{\frac{1}{2}}}} = \frac{1}{2\sqrt{x}},$$

$$\left(\frac{1}{x}\right)' = \left(x^{-1}\right)' = -x^{-2} = -\frac{1}{x^2}.$$

Свойства производной

1.
$$(k)' = 0 (k$$
 — число).

2.
$$(u(x) + v(x))' = u(x)' + v(x)'$$
.

3.
$$(u(x)-v(x))'=u(x)'-v(x)'$$
.

4.
$$(u(x) \cdot v(x))' = u(x)' \cdot v(x) + u(x) \cdot v(x)'$$
.

5.
$$(k \cdot u(x))' = k \cdot (u(x))'$$
.

6.
$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u(x)' \cdot v(x) - u(x) \cdot v(x)'}{\left(v(x)\right)^2}.$$