Лабораторная работа №6 Проектирование электрических фильтров

1. Теоретические сведения

Передаточная функция фильтра нижних частот в общем случае имеет вид

$$K(p) = \frac{K_0}{a_0 + a_1 p + \dots + a_n p^n}$$

В знаменателе выражения находится степенной полином специальной формы. В качестве полинома могут использоваться полиномы

- Баттерворта
- Чебышёва
- Бесселя

Выбор полинома определяет равномерность AЧX в полосе пропускания и скорость убывания в переходной зоне. Сравнение AЧX фильтров приведено на рис.1.

Рис.1. Сравнение АЧХ фильтров

1 – фильтр Бесселя, 2 – фильтр Баттерворта, 3 – фильтр Чебышёва

Степень полинома определяет порядок фильтра. Увеличение порядка фильтра на 1 приводит к увеличению наклона передаточной характеристики в переходной зоне на 20 дБ/дек. Например, фильтр, описанный полиномом 3 степени, будет иметь наклон передаточной характеристики $3 \cdot 20 = 60$ дБ/дек.

При построении фильтров, обеспечивающих быстрый переход от полосы пропускания к полосе заграждения, необходимо использовать полиномы высоких порядков. При реализации передаточной характеристики удобно представить полином высокого порядка как произведение полиномов более низких порядков:

$$K(p) = \frac{K_0}{a_0 + a_1 p + \dots + a_n p^n} = \frac{K_1}{(1 + a_1 p)} \cdot \frac{K_2}{(1 + a_2 p + b_2 p^2)} \cdot \dots \cdot \frac{K_m}{(1 + a_m p + b_m p^2)}$$

Множители вида $\frac{K_1}{(1+a_1p)}$ описывают действительные полюсы передаточной характеристики фильтра.

Множители вида $\frac{K_2}{(1+a_2p+b_2p^2)}$ соответствуют паре комплексно сопряженных полюсов.

Перечисленные полиномы специальных видов имеют n/2 пар комплексно-сопряженных корней в случае четного порядка. В случае нечетного порядка добавляется один действительный корень.

Множители, соответствующие действительному полюсу и паре комплексно-сопряженных полюсов, могут быть реализованы типовыми ячейками на операционных усилителях:

Рис.2. Реализация действительного полюса

$$K(p) = \frac{\alpha}{1 + (C_1(R_1 + R_2) + (1 - \alpha)R_1C_2)\boldsymbol{p} + R_1R_2C_1C_2\boldsymbol{p}^2}$$

Рис.3. Схема Саллена-Ки. Реализация пары комплексно-сопряженных полюсов

Выражение в знаменателе коэффициента передачи схемы Саллена-Ки может быть упрощено. Если принять $R_1=R_2=R\,$ и $\,{\it C}_1={\it C}_2={\it C}_1\,$ выражение примет вид

$$K(p) = \frac{\alpha}{1 + RC(3 - \alpha)\boldsymbol{p} + R^2C^2\boldsymbol{p}^2}$$

В этом случае задать коэффициенты полинома знаменателя и тем самым привести его к требуемому виду можно, установив соответствующие значения R, C и коэффициента усиления звена α .

2. Практическая часть

Методика расчета фильтра

Расчет фильтра нижних частот

- 1) Для конструирования n-полюсного фильтра (при четном n) необходимо последовательно соединить n/2 типовых секций, выполненных по схеме Саллена-Ки. Будем рассматривать фильтры четных порядков, при том же количестве задействованных операционных усилителей они обеспечивают более высокий порядок фильтра.
- 2) В каждой секции $R_1 = R_2 = R$, $C_1 = C_2 = C$. Коэффициент усиления каждой секции будем задавать в соответствии с полем K Таблицы 1 для выбранного типа фильтра.

Таблица 1. Параметры для расчета

	Фильтр Баттерворта	1 Yenhiilera l		Фильтр Чебышёва (0,2 дБ)		
Порядок	K	f_{H}	K	f_{H}	K	
2	1.568	1.231	1.842	0.907	2.114	
4	1.152 2.235	0.597 1.031	1.582 2.660	0.471 0.964	1.924 2.782	
6	1.068 1.586 2.483	0.396 0.768 1.011	1.537 2.448 2.846	0.316 0.730 0.983	1.891 2.648 2.904	

3) Значения R и C рассчитываются в соответствии с частотой среза, на которую настроена секция:

$$RC = \frac{1}{2\pi f_{\rm cp}}$$

У фильтров Баттерворта все секции настраиваются на одну $f_{
m cp}$, соответствующую частоте среза фильтра.

У фильтров Чебышёва секции настраиваются на разные частоты среза. Для определения этих частот в таблице 1 приводятся нормировочные коэффициенты.

$$f_{\text{cp1}} = f_{\text{cp}} \cdot f_n$$

Таким образом, значения R и C секции фильтра Чебышёва могут быть рассчитаны с учетом нормирующих коэффициентов как

$$RC = \frac{1}{2\pi f_{\rm cp} \cdot f_{\rm H}}$$

Преобразование в фильтр высоких частот

Для преобразования ФНЧ, реализованного по схеме Саллена-Ки, в фильтр высоких частот необходимо поменять местами резисторы и конденсаторы.

Рис.4. Реализация звена ФВЧ схемой Саллена-Ки

При этом для фильтра Баттерворта ничего не больше не изменится (R, C и K останутся прежними). Для фильтров Чебышёва значение K останется тем же, а нормирующий коэффициент должен быть изменен на обратный

$$f_{\mathrm{H}\Phi^{\mathrm{B}\mathrm{Y}}} = \frac{1}{f_{\mathrm{H}}}$$

следовательно, требуется пересчет значений R и C.

Автоматизированный расчет схем средствами САПР

Система проектирования Multisim включает в себя инструмент для автоматизированного расчета фильтров. Вызвать этот инструмент можно из меню *Tools->Circuit Wizards->Filter Wizard*

Рис.5. Проектирование фильтра в среде Multitisim

Для расчета компонентов схемы фильтра пользователю необходимо выбрать тип фильтра и указать его основные параметры. Далее необходимо нажать кнопку Verify, после чего нажать кнопку Build Circuit. В результате на рабочем поле появится схема рассчитанного фильтра.

Задание

- 1) Разработайте схему ФНЧ 4 порядка Баттерворта на основе схемы Саллена-Ки в соответствии с номером варианта и данными таблицы 2 (в приложении).
- 2) Разработайте схему ФНЧ 4 порядка Чебышёва, допустимая неравномерность указана в таблице 2.
- 3) Преобразуйте фильтр Чебышёва в ФВЧ. Частота среза и порядок фильтра должны соответствовать параметрам построенного ранее ФНЧ.
- 4) Рассчитайте аналогичные фильтры средствами САПР Multisim. Проанализируйте АЧХ построенного фильтра. Найдите частоту среза и неравномерность коэффициента передачи в полосе пропускания.

Замените рассчитанные автоматически номиналы компонентов значениями из стандартных рядов номиналов. Повторно исследуйте АЧХ фильтра

3. Приложения

Таблица 1. Параметры для расчета

	Фильтр Баттерворта	Фильтр Чебышёва (0,5 дБ)		Фильтр Чебышёва (0,2 дБ)	
Порядок	K	fн	K	fн	K
2	1.568	1.231	1.842	0.907	2.114
4	1.152 2.235	0.597 1.031	1.582 2.660	0.471 0.964	1.924 2.782
6	1.068 1.586 2.483	0.396 0.768 1.011	1.537 2.448 2.846	0.316 0.730 0.983	1.891 2.648 2.904

Таблица 2. Варианты задания

	1	2	3	4	5	6	7	8	9	0
$f_{ m cp}$, к Γ ц	10	14	18	22	26	12	16	20	24	30
δК, дБ	0,2	0,5	0,2	0,5	0,2	0,5	0,2	0,5	0,2	0,5

Таблица 3. Стандартные ряды номиналов

E24	1.0	1.1	1.2	1.3	1.5	1.6	1.8	2.0
E12	1.0		1.2		1.5		1.8	
E6	1.0				1.5			

E24	2.2	2.4	2.7	3.0	3.3	3.6	3.9	4.3
E12	2.2		2.7		3.3		3.9	
E6	2.2				3.3			

E24	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1
E12	4.7		5.6		6.8		8.2	
E6	4.7				6.8			