Controls

EC 607, Set 06

Edward Rubin Spring 2021

Prologue

Schedule

Last time

The conditional independence assumption: $\{Y_{0i}, Y_{1i}\} \perp D_i | X_i$ I.e., conditional on some controls (X_i) , treatment is as-good-as random.

Today

- Omitted variable bias
- Good vs. bad controls

Upcoming

Topics: Matching estimators

Revisiting an old friend

Let's start where we left off: Returns to schooling.

We have two linear, population models

$$Y_i = \alpha + \rho s_i + \eta_i \tag{1}$$

$$Y_i = \alpha + \rho s_i + X_i' \gamma + \nu_i \tag{2}$$

We should not interpret $\hat{\rho}$ causally in model (1) (for fear of selection bias).

For model (2), we can interpret $\hat{\rho}$ causally **if** $\mathbf{Y}_{si} \perp \mathbf{I} \mathbf{s}_i | \mathbf{X}_i$ (CIA).

In other words, the CIA says that our **observable vector** X_i **must explain all** of correlation between s_i and η_i .

The OVB formula

We can use the omitted-variable bias (OVB) formula to compare regression estimates from **models with different sets of control variables**.

We're concerned about selection and want to use a set of control variables to account for ability (A_i) —family background, motivation, intelligence.

$$Y_i = \alpha + \beta s_i + v_i \tag{1}$$

$$Y_i = \pi + \rho s_i + A_i' \gamma + e_i \tag{2}$$

What happens if we can't get data on A_i and opt for (1)?

$$rac{\mathrm{Cov}(\mathrm{Y}_i,\,\mathrm{s}_i)}{\mathrm{Var}(\mathrm{s}_i)} =
ho + \gamma' \delta_{As}$$

where δ_{As} are coefficients from regressing A_i on s_i .

Interpretation

Our two regressions

$$Y_i = \alpha + \beta s_i + v_i \tag{1}$$

$$Y_i = \pi + \rho s_i + A_i' \gamma + e_i \tag{2}$$

will yield the same estimates for the returns to schooling

$$rac{ ext{Cov}(ext{Y}_i,\, ext{s}_i)}{ ext{Var}(ext{s}_i)} =
ho + \gamma' \delta_{As}$$

if (**a**) schooling is uncorrelated with ability ($\delta_{As} = 0$) or (**b**) ability is uncorrelated with earnings, conditional on schooling ($\gamma = 0$).

Example

Table 3.2.1, The returns to schooling

	•			
	1	2	3	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)
Controls	None	Age Dum.	2 + Add'l	3 + AFQT

Here we have four specifications of controls for a regression of log wages on years of schooling (from the NLSY).

Example

Table 3.2.1, The returns to schooling

	1	2	3	4	
Schooling 0.132		0.131 0.114		0.087	
	(0.007)	(0.007)	(0.007)	(0.009)	
Controls	None	Age Dum.	2 + Add'l	3 + AFQT	

Column 1 (no control variables) suggests a 13.2% increase in wages for an additional year of schooling.

Example

Table 3.2.1, The returns to schooling

	1	2	3	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)
Controls	None	Age Dum.	2 + Add'l	3 + AFQT

Column 2 (age dummies) suggests a 13.1% increase in wages for an additional year of schooling.

Example

Table 3.2.1, The returns to schooling

	1	2	3	4	
Schooling	0.132	0.131	0.114	0.087	
	(0.007)	(0.007)	(0.007)	(0.009)	
Controls	None	Age Dum.	2 + Add'l	3 + AFQT	

Column 3 (column 2 controls plus parents' ed. and self demographics) suggests a 11.4% increase in wages for an additional year of schooling.

Example

Table 3.2.1, The returns to schooling

		<u> </u>		
	1	2	3	4
Schooling	0.132	0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)
Controls	None	Age Dum.	2 + Add'l	3 + AFQT

Column 4 (column 3 controls plus AFQT[†] score) suggests a 8.7% increase in wages for an additional year of schooling.

Example

Table 3.2.1, The returns to schooling

	1	2	3	4
Schooling 0.132		0.131	0.114	0.087
	(0.007)	(0.007)	(0.007)	(0.009)
Controls	None	Age Dum.	2 + Add'l	3 + AFQT

As we ratchet up controls, the estimated returns to schooling drop by 4.5 percentage points (34% drop in the coefficient) from **Column 1** to **Column 4**.

$$\frac{\operatorname{Cov}(\mathbf{Y}_i, \mathbf{s}_i)}{\operatorname{Var}(\mathbf{s}_i)} = \rho + \gamma' \delta_{As}$$

If we think **ability positively affects wages**, then it looks like we also have **positive selection into schooling**.

Omitted: X₂ and X₃

Note

This OVB formula **does not** require either of the models to be causal.

The formula compares the regression coefficient in a **short model** to the regression coefficient on the same variable in a **long model**.[†]

The OVB formula and the CIA[†]

In addition to helping us think through and sign OVB, the formula

$$rac{ ext{Cov}(ext{Y}_i,\, ext{s}_i)}{ ext{Var}(ext{s}_i)} =
ho + \gamma' \delta_{As}$$

drives home the point that we're leaning *very* hard on the conditional independence assumption to be able to interpret our coefficients as causal.

- Q When is the CIA plausible?
- A Two potential answers
 - 1. Randomized experiments
 - 2. Programs with arbitrary cutoffs/lotteries

Control variables play an enormous role in our quest for causality (the CIA).
Q Are "more controls" always better (or at least never worse)?

A No. There are such things as...

Defined

Q What's a bad control—when can a control make a bad situation worse?

A Bad controls are variables that are (also) affected by treatment.

Note As you'll see when we discuss DAGs, there are other types of bad controls too.

Q Okay, so why is it bad to control using a variable affected by treatment?

Hint It's a flavor of selection bias.

Let's consider an example...

Example

Suppose we want to know the effect of college graduation on wages.

- 1. There are only two types of jobs: blue collar and white collar.
- 2. White-collar jobs, on average, pay more than blue-collar jobs.
- 3. Graduating college increases the likelihood of a white-collar job.

Q Should we control for occupation type when considering the effect of college graduation on wages? (Will occupation be an omitted variable?)

A No. Imagine college degrees are randomly assigned. When we condition on occupation, we compare degree-earners who chose blue-collar jobs to non-degree-earners who chose blue-collar jobs. Our assumption of random degrees says **nothing** about random job selection.

Bad controls can undo valid randomizations.

Formal-ish derivation

More formally, let

- W_i be a dummy for whether i has a white-collar job
- Y_i denote i's earnings
- C_i refer to i's randomly assigned college-graduation status

$$egin{aligned} \mathbf{Y}_{i} &= \mathbf{C}_{i} \mathbf{Y}_{1i} + (1 - \mathbf{C}_{i}) \, \mathbf{Y}_{0i} \ \mathbf{W}_{i} &= \mathbf{C}_{i} \mathbf{W}_{1i} + (1 - \mathbf{C}_{i}) \, \mathbf{W}_{0i} \end{aligned}$$

Becuase we've assumed C_i is randomly assigned, differences in means yield causal estimates, *i.e.*,

$$E[Y_i \mid C_i = 1] - E[Y_i \mid C_i = 0] = E[Y_{1i} - Y_{0i}]$$

 $E[W_i \mid C_i = 1] - E[W_i \mid C_i = 0] = E[W_{1i} - W_{0i}]$

Formal-ish derivation, continued

Let's see what happens when we throw in some controls—*e.g.*, focusing on the the wage-effect of college graduation for white-collar jobs.

$$egin{aligned} E[\mathbf{Y}_i \mid \mathbf{W}_i = 1, \, \mathbf{C}_i = 1] - E[\mathbf{Y}_i \mid \mathbf{W}_i = 1, \, \mathbf{C}_i = 0] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{W}_{1i} = 1, \, \mathbf{C}_i = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{W}_{0i} = 1, \, \mathbf{C}_i = 0] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{W}_{1i} = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{W}_{0i} = 1] \ &= E[\mathbf{Y}_{1i} \mid \mathbf{W}_{1i} = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{W}_{1i} = 1] \ &+ E[\mathbf{Y}_{0i} \mid \mathbf{W}_{1i} = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{W}_{0i} = 1] \ &= \underbrace{E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} \mid \mathbf{W}_{1i} = 1]}_{\text{Causal effect on white-collar workers} + \underbrace{E[\mathbf{Y}_{0i} \mid \mathbf{W}_{1i} = 1] - E[\mathbf{Y}_{0i} \mid \mathbf{W}_{0i} = 1]}_{\text{Selection bias}} \ \end{aligned}$$

Formal-ish derivation, continued

By introducing a bad control, we introduced selection bias into a setting that did not have selection bias without controls.

Specifically, the selection bias term

$$E[\mathrm{Y}_{0i}\mid \mathrm{W}_{1i}=1]-E[\mathrm{Y}_{0i}\mid \mathrm{W}_{0i}=1]$$

describes how college graduation changes the composition of the pool of white-collar workers.

Note Even if the causal effect is zero, this selection bias need not be zero.

A trickier example

A timely/trickier example: Wage gaps (e.g., female-male or black-white).

- Q Should we control for occupation when we consider wage gaps?
 - What are we trying to capture?
 - If we're concerned about discrimination, it seems likely that discrimination also affects occupational choice and hiring outcomes.
 - Some motivate occupation controls with groups' differential preferences.

What's the answer?

Proxy variables

Angrist and Pischke bring up an interesting scenario that intersects omitted-variable bias and bad controls.

- We want to estimate the returns to education.
- Ability is omitted.
- We have a proxy for ability—a test taken after schooling finishes.

We're a bit stuck.

- 1. If we omit the test altogether, we've got omitted-variable bias.
- 2. If we include our proxy, we've got a back control.

With some math/luck, we can bound the true effect with these estimates.

Example

Returning to our OVB-motivated example, we control for occupation.

Table 3.2.1, The returns to schooling

	1	2	3	4	5
Schooling	0.132	0.131	0.114	0.087	0.066
	(0.007)	(0.007)	(0.007)	(0.009)	(0.010)
Controls	None	Age Dum.	2 + Add'l	3 + AFQT	4 + Occupation

Schooling likely affects occupation; how do we interpret the new results?

Conclusion

Timing matters.

The right controls can help tremendously, but bad controls hurt.

Table of contents

Admin

1. Schedule

Controls

- 1. Omitted-variable bias
 - The formula
 - Example
 - OVB Venn
 - OVB and the CIA
- 2. Bad controls
 - Defined
 - Example
 - Formalization(ish)
 - Trickier example
 - Bad proxy conundrum
 - Empirical example