Clase práctica Resolución en lógica de primer orden

Paradigmas de Lenguajes de Programación

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

12/11/2024

¿Qué es?

- Procedimiento para determinar la **insatisfactibilidad** de una fórmula.
- Es útil como técnica de **demostración por refutación** (i.e., probar que τ es válida mostrando que $\neg \tau$ es insatisfactible).
- Consiste en la **aplicación sucesiva** de una regla de inferencia a un conjunto de cláusulas.

Satisfactibilidad y validez

En general,

- Una asignación asocia variables a valores del dominio.
- Una fórmula au es **válida** sii toda asignación la hace verdadera.
- Una fórmula τ es **satisfactible** sii alguna asignación la hace verdadera.

El siguiente hecho permite utilizar al método como técnica de demostración:

au es válida sii $\neg au$ es insatisfactible

Cláusulas y FNC

El método trabaja con fórmulas en forma normal conjuntiva.

- Conjunción de disyunciones de literales, siendo un *literal* una fórmula atómica o su negación.
- Una cláusula es cada una de estas disyunciones de literales.
 Las representamos en notación de conjuntos.

Ejemplo:

$$\{\neg menor(X, Y), menor(c, Y)\}$$

representa la cláusula

$$\forall X. \forall Y. (\neg \mathsf{menor}(X, Y) \lor \mathsf{menor}(c, Y))$$

Cláusulas y FNC

De esta manera, notamos a una fórmula en FNC como un conjunto de cláusulas. Este se entiende como la conjunción de todas ellas.

Por ejemplo, el conjunto que contiene a las cláusulas

- $\{\neg menor(X, Y), menor(c, Y)\}$
- $\{impar(Z), mayor(Z, w)\}$

representa la fórmula

 $\forall X. \forall Y. (\neg \mathsf{menor}(X, Y) \lor \mathsf{menor}(c, Y)) \land \forall Z. (\mathsf{impar}(Z) \lor \mathsf{mayor}(Z, w))$

La regla de resolución en el marco proposicional

$$\frac{\sigma_i = \{A_1, \dots, A_m, Q\} \qquad \sigma_j = \{B_1, \dots, B_n, \neg Q\}}{\tau = \{A_1, \dots, A_m, B_1, \dots, B_n\}}$$

- A τ se la llama **resolvente** (de σ_i y σ_i)
- La regla se apoya en el hecho de que la siguiente proposición es una tautología:

$$(\alpha \lor P) \land (\beta \lor \neg P) \Leftrightarrow (\alpha \lor P) \land (\beta \lor \neg P) \land (\alpha \lor \beta)$$

• El conjunto de cláusulas $\{\sigma_1, \dots, \sigma_k\}$ es lógicamente equivalente a $\{\sigma_1, \dots, \sigma_k, \tau\}$

Método de Resolución

Repaso

Estrategia

- Para demostrar que la fórmula τ es universalmente válida Demostramos que $\neg \tau$ es insatisfactible.
- Para demostrar que τ se deduce de $\sigma_1, \ldots \sigma_n$ Demostramos que $\sigma_1, \ldots, \sigma_n, \neg \tau$ es insatisfactible.

Esquema general

- Expresar la o las fórmulas como cláusulas.
- Aplicar sucesivamente un paso de resolución (generando nuevas cláusulas)...
- Hasta llegar a la cláusula vacía o concluir que no es posible llegar a ella.
- Importante: al aplicar resolución suelen presentarse varias opciones.
 Conviene tener un plan.

Ejemplo para entrar en calor

Práctica 7 - Ejercicio 4

Un grupo de amigos quería juntarse a comer en una casa, pero no decidían en cuál. Prevalecían dos propuestas: la casa de Ana, que era cómoda y espaciosa, y la de Carlos, más chica pero con un amplio jardín y parrilla al aire libre. Finalmente acordaron basar su elección en el pronóstico del tiempo. Si anunciaban lluvia, se reunirían en la casa de Ana; y si no, en la de Carlos. (Desde ya, se juntarían en una sola casa.) Finalmente el grupo se juntó a comer en la casa de Ana, pero no llovió. Utilizar las siguientes proposiciones para demostrar - mediante el método de resolución - que el pronóstico se equivocó (anunció lluvia y no llovió, o viceversa).

P = "El pronóstico anunció lluvia."

A = "El grupo se reúne en la casa de Ana."

C = "El grupo se reúne en la casa de Carlos."

L = "Llueve en el día de la reunión."

Probémoslo

Tenemos...

- 1. $P \Rightarrow A \rightsquigarrow \neg P \lor A$
- 2. $\neg P \Rightarrow C \rightsquigarrow P \lor C$
- 3. $\neg (A \land C) \rightsquigarrow \neg A \lor \neg C$
- 4. A
- 5. ¬*L*

Queremos ver que:

$$(P \wedge \neg L) \vee (\neg P \wedge L)$$

Negación:

$$\neg((P \land \neg L) \lor (\neg P \land L)) \ \leadsto \ (\neg P \lor L) \land (P \lor \neg L)$$

Pasaje a FNC

Paso a paso

- 1. Eliminar implicación
- 2. Forma normal negada
- 3. Forma normal prenexa (opcional)
- 4. Forma normal de Skolem (dependencias = variables libres dentro del alcance del \exists)
- 5. Forma normal conjuntiva
- 6. Distribución de cuantificadores y renombre de variables

Expresando las cláusulas como conjuntos

2. {*P*, *C*}

3. $\{\neg A, \neg C\}$

4. {*A*}

5. $\{\neg L\}$

6. $\{\neg P, L\}$

7. $\{P, \neg L\}$

De 6 y 2: 8. $\{L, C\}$

De 8 y 3: 9. $\{L, \neg A\}$ De 9 y 4: 10. $\{L\}$

De 10 y 5: □

Ayuda: pensemos en lo que queremos demostrar y ¡hagamos un plan! Suponemos que el pronóstico no anunció lluvia o llovió...

La regla de resolución en primer orden

$$\frac{\sigma_i = \{A_1, \dots, A_m, P_1, \dots, P_k\} \quad \sigma_j = \{B_1, \dots, B_n, \neg Q_1, \dots, \neg Q_l\}}{\tau = S(\{A_1, \dots, A_m, B_1, \dots, B_n\})}$$

- S es el MGU de $\{P_1 \stackrel{?}{=} \dots \stackrel{?}{=} P_k \stackrel{?}{=} Q_1 \stackrel{?}{=} \dots \stackrel{?}{=} Q_l\}$ es decir, $S(P_1) = \dots = S(P_k) = S(Q_1) = \dots = S(Q_l)$.
- A τ se la llama **resolvente** (de σ_i y σ_j).
- Cada paso de resolución preserva satisfactibilidad (Teorema de Herbrand-Skolem-Gödel).

Resolución en lógica de primer orden

- ⚠ Cosas importantes para recordar¹ ⚠
 - Al skolemizar, usar la misma constante o función si y sólo si la variable que estamos eliminando es la misma (nunca para otras, aun si tienen el mismo nombre).
 - Para encontrar las dependencias, ver qué variables están libres dentro del alcance del ∃ (sin contar la que se está eliminando).
 - ¡No olvidarse de negar lo que se quiere demostrar! Y recordar que $\neg((\sigma_1 \wedge ... \wedge \sigma_n) \Rightarrow \tau) = \sigma_1 \wedge ... \wedge \sigma_n \wedge \neg \tau$.
 - Antes de empezar a aplicar pasos de resolución, convencerse de que lo que se quiere demostrar es verdadero, y trazar un plan para demostrarlo (mentalmente o por escrito).
 - Recordar bien cómo funciona la unificación, y sustituir siempre variables (ni funciones, ni constantes, ni predicados).

Ejemplo

Recuperatorio 2° parcial 1° Cuat. 2012

Cast.: $X \subseteq Y$ si y solo si cada elemento de X es un elemento de Y.

 $1° \text{ o.: } \forall X. \forall Y. (\mathsf{Inc}(X,Y) \Leftrightarrow (\forall Z. (\mathsf{Pert}(Z,X) \Rightarrow \mathsf{Pert}(Z,Y))))$

Claus.: $\{\neg Inc(X_1, Y_1), \neg Pert(Z_1, X_1), Pert(Z_1, Y_1)\}$

 $\{Inc(X_2, Y_2), Pert(f(X_2, Y_2), X_2)\}\$ $\{Inc(X_3, Y_3), \neg Pert(f(X_3, Y_3), Y_3)\}\$

Cast.: Ningún elemento pertenece al vacío.

 $\begin{array}{ll} 1 \text{``o.:} & \forall X. \neg \mathsf{Pert}(X, \emptyset) \\ \mathsf{Claus.:} & \{\neg \mathsf{Pert}(X_4, \emptyset)\} \end{array}$

Ejemplo

Recuperatorio 2° parcial 1° Cuat. 2012

- Representar en forma clausal la siguiente información referida a conjuntos, pertenencia (predicado Pert) e inclusión (predicado Inc).
 - i $\forall X. \forall Y. (\operatorname{Inc}(X, Y) \Leftrightarrow \forall Z. (\operatorname{Pert}(Z, X) \Rightarrow \operatorname{Pert}(Z, Y)))$ X está incluido en Y si y solo si cada elemento de X es un elemento de Y.
 - ii $\forall X. \neg Pert(X, \emptyset)$ Ningún elemento pertenece al vacío.
- Usar resolución para probar que el vacío está incluido en todo conjunto.
- Indicar justificando si la prueba realizada es SLD (volveremos sobre esto más adelante).

Ejemplo (cont.)

Recuperatorio 2° parcial 1° Cuat. 2012

A partir de ellas, se desea demostrar que:

Cast.: El vacío está incluido en todo conjunto.

1° o.: $\forall X.Inc(\emptyset, X)$ Neg.: $\exists X.\neg Inc(\emptyset, X)$

Claus.: $\{\neg Inc(\emptyset, c)\}$

¹Seguir las indicaciones de esta lista previene los errores más frecuentes en los parciales.

Ejemplo

Recuperatorio 2° parcial 1° Cuat. 2012

Cast.: $X \subseteq Y$ si y solo si cada elemento de X es un elemento de Y.

1° o.: $\forall X. \forall Y. (Inc(X, Y) \Leftrightarrow (\forall Z. (Pert(Z, X) \Rightarrow Pert(Z, Y))))$

Claus.: $\{\neg Inc(X_1, Y_1), \neg Pert(Z_1, X_1), Pert(Z_1, Y_1)\}$

 $\{Inc(X_2, Y_2), Pert(f(X_2, Y_2), X_2)\}\$ $\{Inc(X_3, Y_3), \neg Pert(f(X_3, Y_3), Y_3)\}\$

Cast.: Ningún elemento pertenece al vacío.

1° o.: $\forall X. \neg Pert(X, \emptyset)$ Claus.: $\{\neg Pert(X_4, \emptyset)\}$

Ejemplo (resolviendo)

Recuperatorio 2° parcial 1° Cuat. 2012

$$\frac{\{A_1,...,A_m,P_1,...,P_k\} \qquad \{B_1,...,B_n,\neg Q_1,...,\neg Q_l\}}{S(\{A_1,...,A_m,B_1,...,B_n\})}$$

donde *S* es el MGU de $\{P_1, ..., P_k, Q_1, ..., Q_l\}$.

- 1. $\{\neg Inc(X_1, Y_1), \neg Pert(Z_1, X_1), Pert(Z_1, Y_1)\}$
- 2. $\{Inc(X_2, Y_2), Pert(f(X_2, Y_2), X_2)\}$
- 3. $\{Inc(X_3, Y_3), \neg Pert(f(X_3, Y_3), Y_3)\}$
- 4. $\{\neg Pert(X_4, \emptyset)\}$
- 5. ${\neg Inc(\emptyset, c)}$
- 6. $(2 \text{ y 5}) \{ \text{Pert}(f(\emptyset, c), \emptyset) \} \ S = \{ X_2 := \emptyset, \ Y_2 := c \}$
- 7. (6 y 4) \square $S = \{X_4 := f(\emptyset, c)\}$

Ejemplo (cont.)

Recuperatorio 2° parcial 1° Cuat. 2012

A partir de ellas, se desea demostrar que:

Cast.: El vacío está incluido en todo conjunto.

1° o.: $\forall X.Inc(\emptyset, X)$ Neg.: $\exists X.\neg Inc(\emptyset, X)$

Claus.: $\{\neg Inc(\emptyset, c)\}$

Otro ejemplo

Recuperatorio 2° parcial 2° Cuat. 2008

Dadas las siguientes definiciones de Descendiente y Abuela a partir de la relación Madre:

• Los hijos son descendientes:

 $\forall X. \forall Y. (\mathsf{Madre}(X,Y) \Rightarrow \mathsf{Descendiente}(Y,X))$

• La relación de descendencia es transitiva:

 $\forall X. \forall Y. \forall Z. (\mathsf{Descendiente}(X, Y) \land \mathsf{Descendiente}(Y, Z) \Rightarrow \mathsf{Descendiente}(X, Z))$

• La abuela es madre de alguien que es madre de la nieta:

 $\forall X. \forall Y. (\mathsf{Abuela}(X,Y) \Rightarrow \exists Z. (\mathsf{Madre}(X,Z) \land \mathsf{Madre}(Z,Y)))$

Demostrar usando resolución general que los nietos son descendientes; es decir, que

$$\forall X. \forall Y. (\mathsf{Abuela}(X, Y) \Rightarrow \mathsf{Descendiente}(Y, X))$$

<u>Ayuda</u>: tratar de aplicar el método a ciegas puede traer problemas. Conviene tener en mente lo que se quiere demostrar.

Otro ejemplo

Recuperatorio 2° parcial 2° Cuat. 2008

Otro ejemplo (cont.)

Recuperatorio 2° parcial 2° Cuat. 2008

```
Los hijos son descendientes.
Cast.:
1° o.:
               \forall X. \forall Y. (\mathsf{Madre}(X, Y) \Rightarrow \mathsf{Descendiente}(Y, X))
Claus.:
                       \{\neg Madre(X_1, Y_1), Descendiente(Y_1, X_1)\}\
Cast.:
              La relación de descendencia es transitiva.
1° o.:
                \forall X. \forall Y. \forall Z. (Descendiente(X, Y) \land Descendiente(Y, Z) \Rightarrow Descendiente(X, Z))
Claus.:
                       \{\neg \mathsf{Descendiente}(X_2, Y_2), \neg \mathsf{Descendiente}(Y_2, Z_2), \mathsf{Descendiente}(X_2, Z_2)\}
            La abuela es madre de alguien que es madre de la nieta.
Cast.:
1° o.:
               \forall X. \forall Y. (\mathsf{Abuela}(X, Y) \Rightarrow \exists Z. (\mathsf{Madre}(X, Z) \land \mathsf{Madre}(Z, Y)))
Claus.:
                         \{\neg Abuela(X_3, Y_3), Madre(X_3, medio(X_3, Y_3))\}
                         \{\neg \mathsf{Abuela}(X_4, Y_4), \mathsf{Madre}(\mathsf{medio}(X_4, Y_4), Y_4)\}
```

A partir de ellas, se desea demostrar que:

Cast.: Los nietos son descendientes 1° o.: $\forall X. \forall Y. (\mathsf{Abuela}(X,Y) \Rightarrow \mathsf{Descendiente}(Y,X))$ Neg.: $\exists X. \exists Y. (\mathsf{Abuela}(X,Y) \land \neg \mathsf{Descendiente}(Y,X))$ Claus.: $\{\mathsf{Abuela}(\mathsf{a},\mathsf{b})\}$ $\{\neg \mathsf{Descendiente}(\mathsf{b},\mathsf{a})\}$

Otro ejemplo

Recuperatorio 2° parcial 2° Cuat. 2008

Otro ejemplo (cont.)

Recuperatorio 2° parcial 2° Cuat. 2008

```
Cast.:
            Los hijos son descendientes.
1° o.:
               \forall X. \forall Y. (\mathsf{Madre}(X, Y) \Rightarrow \mathsf{Descendiente}(Y, X))
Claus.:
                      \{\neg Madre(X_1, Y_1), Descendiente(Y_1, X_1)\}\
Cast.:
              La relación de descendencia es transitiva.
1° o.:
                \forall X. \forall Y. \forall Z. (Descendiente(X, Y) \land Descendiente(Y, Z) \Rightarrow Descendiente(X, Z))
Claus.:
                      \{\neg \mathsf{Descendiente}(X_2, Y_2), \neg \mathsf{Descendiente}(Y_2, Z_2), \mathsf{Descendiente}(X_2, Z_2)\}
             La abuela es madre de alguien que es madre de la nieta.
Cast.:
1° o.:
               \forall X. \forall Y. (\mathsf{Abuela}(X, Y) \Rightarrow \exists Z. (\mathsf{Madre}(X, Z) \land \mathsf{Madre}(Z, Y)))
Claus.:
                        \{\neg Abuela(X_3, Y_3), Madre(X_3, medio(X_3, Y_3))\}
                          \negAbuela(X_4, Y_4), Madre(medio(X_4, Y_4), Y_4))
```

A partir de ellas, se desea demostrar que:

Cast.: Los nietos son descendientes 1° o.: $\forall X. \forall Y. (\mathsf{Abuela}(X, Y) \Rightarrow \mathsf{Descendiente}(Y, X))$ Neg.: $\exists X. \exists Y. (\mathsf{Abuela}(X, Y) \land \neg \mathsf{Descendiente}(Y, X))$ Claus.: $\{\mathsf{Abuela}(\mathsf{a}, \mathsf{b})\}$ $\{\neg \mathsf{Descendiente}(\mathsf{b}, \mathsf{a})\}$

Otro ejemplo (resolviendo)

Recuperatorio 2° parcial 2° Cuat. 2008

- 1. $\{\neg Madre(X_1, Y_1), Descendiente(Y_1, X_1)\}$
- 2. $\{\neg Descendiente(X_2, Y_2), \neg Descendiente(Y_2, Z_2), Descendiente(X_2, Z_2)\}$
- 3. $\{\neg Abuela(X_3, Y_3), Madre(X_3, medio(X_3, Y_3))\}$
- 4. $\{\neg Abuela(X_4, Y_4), Madre(medio(X_4, Y_4), Y_4)\}$
- 5. {Abuela(a, b)}
- 6. $\{\neg Descendiente(b, a)\}$

Resolvámoslo con nuestra herramienta.

Resolución SLD (Selective Linear Definite)

La resolución es cara, pero hay cupones de descuento...

- El método de resolución es completo, pero ineficiente.
- El espacio de búsqueda inicialmente cuadrático crece en cada paso.
- Resolución lineal reduce el espacio de búsqueda.
- Resolución SLD es lineal y (un poco) más eficiente, preservando completitud...
 ¡pero no puede aplicarse a cualquier conjunto de cláusulas!

Cómo mantenernos en línea

Si un conjunto de cláusulas $\mathcal C$ es insatisfactible, existe una secuencia de pasos de resolución *lineal* que lo refuta (prueba su insatisfactibilidad). Es decir, una secuencia de la forma:

donde C_0 y cada B_i es un elemento de C o algún C_j con j < i.

Cláusulas de Horn

- Cláusula de Horn
 - ▶ Cláusula de la forma $\forall X_1 \dots \forall X_m.C$ tal que la disyunción de literales C tiene a lo sumo un literal positivo.
- Cláusula de definición ("Definite Clause")
 - ▶ Cláusula de la forma $\forall X_1 ... \forall X_m.C$ tal que la disyunción de literales C tiene exactamente un literal positivo.
- Sea $H = P \cup \{G\}$ un conjunto de cláusulas de Horn (con nombre de variables disjuntos) tal que
 - P conjunto de cláusulas de definición y
 - G una cláusula sin literales positivos.
- $H = P \cup \{G\}$ son las cláusulas de entrada.
 - ▶ P se conoce como el programa o base de conocimientos y
 - ▶ *G* el goal, meta o cláusula objetivo.

Cláusulas de Horn

Cláusulas con a lo sumo un literal positivo.

- $\{P(X), P(Y), \neg Q(Y, Z)\}$
- $\{Q(e,Z)\}\ \checkmark$ \rightarrow cláusula de definición (hecho)
- $\{P(X), \neg P(e)\}\$ \checkmark \rightarrow cláusula de definición (regla)
- $\{P(X), \neg P(e), Q(X, Y)\}$
- $\{P(X), \neg P(e), \neg Q(X, Y)\} \checkmark \rightarrow \text{cláusula de definición (regla)}$
- $\{\neg P(X), \neg P(e), \neg Q(X, Y)\} \leftrightarrow \text{cláusula objetivo}$
- No toda fórmula puede expresarse como una cláusula de Horn ⚠

$$\forall X.(P(X) \lor Q(X))$$

Resolución SLD

2. para todo N_i en la secuencia, 0 < i < p, si N_i es

$$\{\neg A_1, \dots, \neg A_{k-1}, \neg A_k, \neg A_{k+1}, \dots, \neg A_n\}$$

entonces hay alguna cláusula de definición C_i de la forma $\{A, \neg B_1, \dots, \neg B_m\}$ en H, tal que A_k y A son unificables con MGU S, y N_{i+1} es $\{S(\neg A_1, \dots, \neg A_{k-1}, \neg B_1, \dots, \neg B_m, \neg A_{k+1}, \dots, \neg A_n)\}$.

Resolución SLD

Un secuencia de pasos de resolución SLD para un conjunto de cláusulas de Horn H es una secuencia

$$< N_0, N_1, \dots, N_p >$$

de cláusulas objetivo que satisfacen las siguientes dos condiciones:

- 1. $N_0 \in H$ (N_0 es la cláusula objetivo de H).
- 2. sigue en transparencia siguiente.

Resolución SLD

Un caso particular de la resolución general.

- Cláusulas de Horn con exactamente una cláusula objetivo.
- Resolvemos la cláusula objetivo con una cláusula de definición.
- Eso nos da otra cláusula objetivo.
- Repetimos el proceso con esta nueva cláusula...
- Hasta llegar a la cláusula vacía.
- Si se busca un resultado, computamos la sustitución respuesta componiendo todas las sustituciones que fuimos realizando.

$$\underbrace{\{R, \neg B_1, \dots, \neg B_n\}}_{\text{definición}} \underbrace{\{\neg A_1, \dots, \neg A_{k-1}, \neg A_k, \neg A_{k+1}, \dots, \neg A_m\}}_{\text{S}(\{\neg A_1, \dots, \neg A_{k-1}, \neg B_1, \dots, \neg B_n, \neg A_{k+1}, \dots, \neg A_m\})}_{\text{nuevo objetivo}}$$

donde S es el MGU de $\{R \stackrel{?}{=} A_k\}$.

Volviendo al primer ejercicio de LPO que resolvimos...

- {¬Inc(X₁, Y₁), ¬Pert(Z₁, X₁), Pert(Z₁, Y₁)}
 {Inc(X₂, Y₂), Pert(f(X₂, Y₂), X₂)}
 {Inc(X₃, Y₃), ¬Pert(f(X₃, Y₃), Y₃)}
 {¬Pert(X₄, ∅)}
 {¬Inc(∅, c)}
- 6. (2 y 5) {Pert(f(\emptyset , c), \emptyset)} $S = \{X_2 := \emptyset, Y_2 := c\}$ 7. (6 y 4) $\square S = \{X_4 := f(\emptyset, c)\}$

; Esto es SLD? ; Por qué, o por qué no?

Árbol de resolución

¡Es lineal!

- La resolución SLD es lineal: no hay vuelta atrás posible.
- Si el objetivo puede resolverse con más de una regla, elegir la correcta.
- Si hay más de una, elegir cualquiera.
- Si nos equivocamos, entonces lo que hicimos no es parte de la resolución SLD.
- Puede haber varias resoluciones SLD posibles.
- Prolog intenta buscar todas (resolución SLD + backtracking).

Resolución SLD

Ejemplo (computando una solución)

"Los enemigos de mis enemigos son mis amigos."

- 1. $\{amigo(A, B), \neg enemigo(A, C), \neg enemigo(C, B)\}$
- 2. {enemigo(Dulce Princesa, Rey Helado)}
- 3. {enemigo(Rey Helado, Ricardio)}
- 4. {enemigo(Rey Helado, Finn)}
- 5. $\{\neg amigo(Dulce Princesa, X)\}$
- 6. (1 y 5) { \neg enemigo(Dulce Princesa, C), \neg enemigo(C, B)} $S_6 = \{A := Dulce Princesa, <math>X := B\}$
- 7. (2 y 6) { \neg enemigo(Rey Helado, B)} $S_7 = \{C := \text{Rey Helado}\}$
- 8. (3 y 7) \square $S_8 = \{B := \text{Ricardio}\}\$ $S = S_8 \circ S_7 \circ S_6 =$ $\{A := \text{Dulce Princesa}, X := \text{Ricardio}, B := \text{Ricardio},$ $C := \text{Rey Helado}\}$

Resolución SLD y Prolog

Preguntas generales

- El mecanismo de búsqueda en la resolución SLD ; está determinado?
- ¿El método es completo?
- ¿Prolog usa resolución SLD? ¿Su método es completo?
 ¿Está determinado?
- ¿Dónde está el problema (o la diferencia)?

Resolución SLD y Prolog

El ejemplo anterior en Prolog

"Los enemigos de mis enemigos son mis amigos."

¿Cuál es la relación? ¿Cualquier ejemplo se puede traducir así? ¿Qué hay que tener en cuenta?

De Prolog a Resolución

Considerar las siguientes definiciones en prolog:

- ¿Qué sucede al realizar la consulta ?- preorder(bin(bin(nil,2,nil),1,nil),Lista).?
- Utilizar el método de resolución para encontrar la solución al problema. Para ello, convertir el programa a forma clausal.
- Indicar si el método de resolución utilizado es o no SLD, y justificar. En caso de ser SLD, ¿respeta el orden en que Prolog hubiera resuelto la consulta?

Resolución SLD y Prolog

Veamos ahora este ejemplo tomado de la práctica de Prolog:

- 1. natural(0).
- 2. natural(suc(X)) :- natural(X).
- 3. menorOIgual(X, suc(Y)) :- menorOIgual(X, Y).
- 4. menorOIgual(X,X) :- natural(X).

¿Qué pasa en Prolog si ejecutamos la consulta menorOIgual(0,X)?

¿Podremos encontrar la respuesta usando resolución?

Último ejercicio

2° parcial 1° Cuat. 2011

En este ejercicio usaremos el método de resolución para demostrar una propiedad de las relaciones binarias; a saber, que una relación no vacía no puede ser a la vez irreflexiva, simétrica y transitiva.

Para esto tomaremos una relación R y se demostrará que, si R satisface las tres propiedades mencionadas, entonces es vacía.

Dadas las siguientes definiciones:

- 1. R es irreflexiva: $\forall X. \neg R(X, X)$
- 2. R es simétrica: $\forall X. \forall Y. (R(X,Y) \Rightarrow R(Y,X))$
- 3. R es transitiva: $\forall X. \forall Y. \forall Z. ((R(X,Y) \land R(Y,Z)) \Rightarrow R(X,Z))$
- 4. R es vacía: $\forall X. \neg \exists Y. R(X, Y)$

Utilizando resolución, demostrar que sólo una relación vacía puede cumplir a la vez las propiedades 1 a 3. Indicar si el método de resolución utilizado es o no SLD (y justificar).

Último ejercicio

2° parcial 1° Cuat. 2011

Cast.: R es irreflexiva.

1° o.: $\forall X. \neg R(X, X)$

Claus.: $\{\neg R(X_1, X_1)\}$

Cast.: R es simétrica

1° o.: $\forall X. \forall Y. (R(X, Y) \Rightarrow R(Y, X))$ Claus.: $\{\neg R(X_2, Y_2), R(Y_2, X_2)\}$

Cast.: R es transitiva.

1° o.: $\forall X. \forall Y. \forall Z. ((R(X,Y) \land R(Y,Z)) \Rightarrow R(X,Z))$

Claus.: $\{\neg R(X_3, Y_3), \neg R(Y_3, Z_3), R(X_3, Z_3)\}$

Último ejercicio (cont.)

2° parcial 1° Cuat. 2011

Se desea demostrar que:

Cast.: R es vacía: 1° o.: $\forall X. \neg \exists Y. R(X, Y)$ Neg.: $\exists X. \exists Y. R(X, Y)$ Claus.: $\{R(a, b)\}$

Último ejercicio (resolviendo)

2° parcial 1° Cuat. 2011

- 1. $\{\neg R(X_1, X_1)\}$
- 2. $\{\neg R(X_2, Y_2), R(Y_2, X_2)\}$
- 3. $\{\neg R(X_3, Y_3), \neg R(Y_3, Z_3), R(X_3, Z_3)\}$
- 4. $\{R(a,b)\}$
- 5. $(4 \text{ y 2}) \{R(b,a)\} S = \{X_2 := a, Y_2 := b\}$
- 6. (5 y 3) $\{\neg R(X_6, b), R(X_6, a)\}$ $S = \{Y_3 := b, Z_3 := a\}$ renombrando X_3 a X_6
- 7. (6 y 4) $\{R(a,a)\}\ S = \{X_6 := a\}$
- 8. $(7 \text{ y } 1) \square S = \{X_1 := a\}$

¿Esta demostración por resolución es SLD? ¿Por qué, o por qué no?

Alternativa SLD

2° parcial 1° Cuat. 2011

- 1. $\{\neg R(X_1, X_1)\}$
- 2. $\{\neg R(X_2, Y_2), R(Y_2, X_2)\}$
- 3. $\{\neg R(X_3, Y_3), \neg R(Y_3, Z_3), R(X_3, Z_3)\}$
- 4. $\{R(a,b)\}$
- 5. (1 y 3) $\{\neg R(X_1, Y_3), \neg R(Y_3, X_1)\}\ S = \{X_3 := X_1, Z_3 := X_1\}\$
- 6. (5 y 4) $\{\neg R(b, a)\}\ S = \{X_1 := a, Y_3 := b\}$
- 7. (6 y 2) $\{\neg R(a,b)\}\ S = \{X_2 := a, Y_2 := b\}$
- 8. $(7 y 4) \Box S = \emptyset$

¿Es la única posible?

Otra alternativa SLD (más corta)

2° parcial 1° Cuat. 2011

- 1. $\{\neg R(X_1, X_1)\}$
- 2. $\{\neg R(X_2, Y_2), R(Y_2, X_2)\}$
- 3. $\{\neg R(X_3, Y_3), \neg R(Y_3, Z_3), R(X_3, Z_3)\}$
- 4. $\{R(a,b)\}$
- 5. (1 y 3) $\{\neg R(X_1, Y_3), \neg R(Y_3, X_1)\}\ S = \{X_3 := X_1, Z_3 := X_1\}\$
- 6. (5 y 2) $\{\neg R(X_2, Y_2)\}\ S = \{X_1 := X_2, Y_3 := Y_2\}$
- 7. (6 y 4) \square $S = \{X_2 := a, Y_2 := b\}$