Diagrama de flujo de un procesador

ETAPAS DEL CICLO DE INSTRUCCIÓN

1. Fetch (Búsqueda):

- Descripción: El procesador obtiene la instrucción de la memoria.
- Componentes Involucrados: Contador de Programa (PC), Memoria.
- Función de los Componentes:
 - Contador de Programa (PC): Contiene la dirección de la siguiente instrucción a eiecutar.
 - Memoria: Almacena las instrucciones y datos.

2. Decode (Decodificación):

- Descripción: La instrucción obtenida se decodifica para determinar qué acción se debe tomar.
- Componentes Involucrados: Unidad de Control, Set de Instrucciones.
- Función de los Componentes:
 - Unidad de Control: Interpreta la instrucción y genera las señales de control necesarias.
 - Set de Instrucciones: Conjunto de instrucciones que el procesador puede ejecutar.

3. Execute (Ejecución):

- Descripción: La acción determinada por la instrucción se lleva a cabo.
- Componentes Involucrados: Unidad Aritmético-Lógica (ALU), Registros.
- Función de los Componentes:
 - Unidad Aritmético-Lógica (ALU): Realiza operaciones aritméticas y lógicas.
 - Registros: Almacenan temporalmente datos y resultados de las operaciones.

4.Store (Almacenamiento):

- Descripción: El resultado de la ejecución se almacena en un registro o en la memoria.
- Componentes Involucrados:Registros, Memoria.
- Función de los Componentes:

- Registros: Guardan temporalmente el resultado.
- Memoria: Almacena los datos a largo plazo.

DIAGRAMA DE FLUJO

Inicio: Comienzo del ciclo de instrucción.

- 1. Fetch: Obtención de la instrucción desde la memoria usando el Contador de Programa.
- 2. Decode: Decodificación de la instrucción utilizando la Unidad de Control y el Set de Instrucciones.
- 3. Execute: Ejecución de la instrucción usando la ALU y los registros.
- 4. Store: Almacenamiento del resultado en registros o memoria.

Fin: Fin del ciclo de instrucción y preparación para la siguiente instrucción.

Descripción de los Componentes en Cada Etapa:

- 1. Fetch (Búsqueda):
 - Contador de Programa (PC):Apunta a la dirección de la instrucción en memoria.
 - Memoria:La instrucción se carga desde la memoria a la Unidad de Control.
- 2. Decode (Decodificación):
 - Unidad de Control (UC): Interpreta la instrucción y genera las señales de control necesarias.
 - Set de Instrucciones (SI): Contiene las posibles instrucciones que el procesador puede ejecutar.
- 3. Execute (Ejecución):

- Unidad Aritmético-Lógica (ALU):Realiza las operaciones necesarias (suma, resta, AND, OR, etc.).
- Registros:Almacenan temporalmente los operandos y el resultado de la operación.

4. Store (Almacenamiento):

- Registros: Guardan el resultado temporalmente.
- Memoria:Puede almacenar el resultado a largo plazo si es necesario.

Fuentes: https://fisicotronica.com/alu-unidad-aritmetico-logica/,
https://www.edrawsoft.com/es/article/block-diagram-of-computer.html

Diseño de Solución de Almacenamiento para PYME

TIPOS DE ALMACENAMIENTO:

	HDD	SSD	NAS	CLOUD
CAPACIDAD	+++	++	Escalable	+++++
VELOCIDAD	++	++++	+++	++++
SEGURIDAD	++	+++	++++	++++
COSTE	bajo	medio	medio-alto	alto

1. HDD:

- Capacidad: Alta capacidad, comúnmente disponible en tamaños de 1TB a 10TB.
- Velocidad: Moderada, con tiempos de acceso y velocidades de lectura/escritura menores que las SSD.
- Costo: Económico, especialmente para grandes volúmenes de almacenamiento.

• Seguridad: Puede usar técnicas como RAID para redundancia, pero son más susceptibles a fallos mecánicos.

2. SSD:

- Capacidad:Menor en comparación con HDD, típicamente de 256GB a 2TB.
- Velocidad: Alta, con tiempos de acceso rápidos y mayores velocidades de lectura/escritura.
- Costo:Más caro que los HDD por GB.
- Seguridad: Menos susceptible a fallos mecánicos y pueden usar técnicas como RAID para redundancia.

3. NAS:

- Capacidad: Variable, puede configurarse con múltiples HDD o SSD para escalar capacidad.
- Velocidad: Depende de los discos utilizados y la red, pero generalmente adecuada para compartir archivos y copias de seguridad.
- Costo: Moderado a alto, dependiendo de la configuración y los discos usados.
- Seguridad:Ofrece opciones de RAID y copias de seguridad automáticas, acceso controlado a través de la red.

4. Almacenamiento en la Nube:

- Capacidad:Prácticamente ilimitada, escalable según necesidad.
- Velocidad: Depende de la conexión a Internet, generalmente buena pero puede variar.
- Costo: Pago por uso, puede ser costoso a largo plazo para grandes volúmenes de datos.
- Seguridad:Alta, con copias de seguridad automáticas, encriptación y acceso controlado.

CASO PRÁCTICO:

PYME que necesita alta capacidad para los datos de los clientes, Alta velocidad para los servidores de bases de datos internas y redundancia para las copias de seguridad

Solución y Recomendaciones

1. Alta Capacidad para Datos de Clientes:

Lo mas adecuado es un sistema NAS con discos HDD. Esto proporciona una gran capacidad de almacenamiento, seguridad de datos a través de la redundancia y un costo relativamente bajo.

Los HDD son económicos y adecuados para almacenar grandes volúmenes de datos. El NAS permite la gestión centralizada y segura de los datos a la vez que son accesibles via LAN.

2. Alta Velocidad para el Servidor de Bases de Datos:

En este caso un SSD es la solución adecuada. Esto mejorará significativamente los tiempos de respuesta y el rendimiento general del servidor.

Las SSD son mucho más rápidas que las HDD, lo cual es crucial para el rendimiento de las bases de datos.

3. Redundancia para la Seguridad de los Datos:

si se configura el NAS con RAID para proporcionar redundancia y se contrata un servicio de cloud para una capa adicional de protección tendremos redundancia a nivel de hardware, mientras que las copias de seguridad en la nube aseguran que los datos estén protegidos contra desastres físicos y al aprovechar que sólo subimos al servicio externo de cloud las copias de seguridad alogeramso los costes.

La combinación de HDD y SSD en un sistema NAS con copias de seguridad en la nube proporciona una solución equilibrada que satisface todas las necesidades de la empresa en términos de capacidad, velocidad, costo y seguridad.

Coste aprox	seagate Ironwolf	Crucial p3 plus 4tb gen4 interno	Qnap ts-433-4G	Dropbox Business 14,50€/mes/
1034€ + 174€/año Cloud	4x4TB = 320€	289€	425€	usuario 9tb

Fuentes: Amazon, Dropbox, https://kitsunenas.es/discos-duros-hdd-vs-ssd-en-servidores-nas-una-comparacion-detallada/, https://kitsunenas.es/nas-o-nube/

Estación de trabajo para IA

REQUISITOS NECESARIOS PARA IA Y MACHINE LEARNING

1. Procesador (CPU):

o Alta velocidad de reloj y múltiples núcleos para manejar tareas paralelas.

1. Memoria RAM:

- Los modelos de ML pueden requerir grandes cantidades de memoria para almacenar datos y parámetros intermedios durante el entrenamiento.
- Una mayor capacidad de RAM permite manejar conjuntos de datos más grandes y modelos más complejos.
- Al menos 32GB, preferiblemente 64GB o más.

1. Almacenamiento:

- SSD para tiempos de acceso rápidos y carga rápida de datos y modelos.
- o Almacenamiento adicional en HDD para grandes volúmenes de datos.

1. Tarjeta Gráfica (GPU):

- Están diseñadas para manejar operaciones de cálculo intensivo y paralelizable, como las operaciones de matrices y vectores, que son comunes en los algoritmos de machine Learning.
- Las GPUs tienen una gran cantidad de memoria de video (VRAM) que permite almacenar y procesar estos grandes conjuntos de datos de manera eficiente.
- Existen numerosas bibliotecas y frameworks de ML y DL que están específicamente optimizados para funcionar en GPUs, como TensorFlow, PyTorch, CUDA, y cuDNN. Estas herramientas aprovechan las capacidades de las GPUs para acelerar el desarrollo y entrenamiento de modelos.

PROPUESTA DE HARDWARE

1. Placa Base: ASUS ROG Strix X570-E Gaming

Precio: Aproximadamente €340

 Descripción: Esta placa base está diseñada para sistemas de alto rendimiento y es compatible con procesadores AMD Ryzen de 2ª y 3ª generación. Cuenta con enfriamiento avanzado, dos ranuras M.2 y entrega de energía robusta, adecuada para cargas de trabajo pesadas y juegos

2. CPU: AMD Ryzen 9 5950X

- o **Precio:** Aproximadamente €780
- Descripción: El Ryzen 9 5950X es un procesador de gama alta con 16 núcleos y 32 hilos, que ofrece una velocidad de reloj base de 3.4GHz y una velocidad boost de hasta 4.9GHz.

GPU: NVIDIA RTX 3090

o **Precio:** Aproximadamente €1,750

 Descripción: Esta tarjeta gráfica de alta gama viene con 24GB de RAM GDDR6X, proporcionando un rendimiento excepcional para tareas de IA, deep learning y juegos.
 Soporta trazado de rayos en tiempo real y gráficos mejorados por IA.

4. RAM: 64GB DDR4 3200 CL16 Kingston Fury Beast (32GB x2)

- Precio: Aproximadamente €260
- Descripción: Este kit de RAM ofrece alta velocidad y baja latencia, crucial para manejar grandes conjuntos de datos y ejecutar múltiples aplicaciones simultáneamente sin cuellos de botella.

5. SSD: 2TB M.2 PCIe 4.0 Kingston SNV2S

- Precio: Aproximadamente €150
- Descripción: Este SSD proporciona rápidas velocidades de lectura y escritura (3500 MB/s de lectura, 2800 MB/s de escritura), asegurando un acceso rápido a los datos y tiempos de carga reducidos, esenciales para aplicaciones de IA.
- 6. Caja: Minitower mATX DeepCool Matrexx 30 (Cristal Templado Lateral)
 - o **Precio:** Aproximadamente €40
 - o **Descripción:** Una caja compacta y estilizada con un panel lateral de cristal templado.
- 7. Fuente de Alimentación: EVGA SuperNOVA 850 G5, 80 Plus Gold 850W
 - Precio: Aproximadamente €140
 - Descripción: Esta unidad de fuente de alimentación proporciona una entrega de energía fiable y eficiente con una certificación 80 Plus Gold, asegurando que tus componentes reciban energía estable.

COSTES APROXIMADOS

ASUS ROG Strix X570-E Gaming: 340€

AMD Ryzen 9 5950X: 780€
 NVIDIA RTX 3090: 1,750€

• 64GB DDR4 3200 CL16 Kingston Fury Beast: 260€

• 2TB M.2 PCIe 4.0 Kingston SNV2S: 150€

• Minitower mATX DeepCool Matrexx 30: 40€

• **EVGA SuperNOVA 850 G5:** 140€

• Monitor de 29" LG 4K: 200€

Costo Total: 3,660 €

Fuentes: https://www.nvidia.com/en-us/ai-data-science/, https://www.pcware.com.co/que-computadora-necesito-para-inteligencia-artificial