

RAPPORT OSCILLOSCOPE

Jean Nanchen

DECEMBER 20, 2020 HES-SO – 3ÈME ANNÉE

Table des matières

2.	Introduction	2
	Création du projet	
	Configuration du Timer 1	
	Configuration de l'ADC	
	Affichage	
	Situation actuelle	
	Questions	
	Configuration du timing	7
	Configuration de l'ADC	8
	Sample-Rate Tuning	8
9	Annexes	q

2. Introduction

Le but de ce projet est d'échantillonner un signal à l'aide d'une entrée analogique et de l'afficher sur l'écran de notre discovery board.

3. CRÉATION DU PROJET

Le projet a d'abord été créé sur la base d'une configuration existante pour le discovery board.

De là, l'USB, le FatFS ainsi que l'Ethernet ont été désactiver.

Le RCC est configuré à 25MHz.

Les heap et le stack sont augmenté à 0x1000. L'IDE utilisé sera System Workbench.

Figure 1 - Configuration du RCC

4. CONFIGURATION DU TIMER 1

Le timer 1 est utilisé pour lancer les conversions AD.

Nous devons échantillonner des fréquences allant jusqu'à 1kHz. La fréquence d'échantillonnage (fs) doit être égale ou supérieur à :

$$fs_{min} = 2 * f_{inmax} = 2 * 1kHz = 2kHz$$

Nous choisissons une fréquence d'échantillonnage de 10kHz pour augmenter la précision.

ABP2 est la clock qui incrémente le Timer 1. Il est cadencé à 100MHz (Figure 1). Pour générer un timeout chaque 10kHz, nous devons régler le préscaler à 100 et le counter period à 100.

$$f_{timeout} = \frac{f_{abp2}}{prescaler*counterperiod} = \frac{100MHz}{100*100} = 10kHz$$

Figure 2 - Préscaler & Counter Period (Autoreload)

Figure 3 - Configuration du Timer 1

Sur la Figure 3 se trouve la configuration du Timer 1.

5. CONFIGURATION DE L'ADC

Nous avons configuré l'ADC de sorte qu'à chaque fois que le Timer 1 inverse sa sortie, une lecture ADC est lancée.

Figure 4 - Configration de l'ADC

6. AFFICHAGE

Pour l'affichage il a fallu coder une fonction doShowAnalogSignal() de la classe OscilloscopeController.

- Affichage du signal avec la fonction drawGraphPoints.
- Changement de l'axe du temps avec les boutons tactiles de l'écran
- Fonction de trigger

7. SITUATION ACTUELLE

Je n'ai pas eu le temps d'intégrer le RTOS à mon projet. J'ai préféré effectuer certaines des tâches supplémentaires.

Task	Résultat	Remarque
Tâche 1 – Projet STM32CubeMX	Fonctionnel	
Tâche 2 – Éteindre USB, FatFS et Ethernet	Fonctionnel	
Tâche 3 – Configuration du RCC	Fonctionnel	
Tâche 4 – Configuration de la génératrice de code	Fonctionnel	
de CubeMX		
Tâche 5 – Build et Debug	Fonctionnel	
Tâche 6 – Configuration du Timing	Fonctionnel	
Tâche 7 – Générateur de Fréquence Externe	Fonctionnel	
Tâche 8 - Configuration de l'ADC (Software Triggered)	Fonctionnel	
Tâche 9 – Configuration du timer Hardware (TIM)	Fonctionnel	
Tâche 10 – Configuration du ADC (Timer Triggered)	Fonctionnel	
Tâche 11 – XF Integration	Fonctionnel	
Tâche 12 – Application	Fonctionnel	
Tâche 13 – Oscilloscope GUI	Fonctionnel	
Tâche 14 – Sample-Rate Tuning	Fonctionnel	
Tâche 15 – RTOS Integration	Non effectué	temps
FA1 : Fonction Trigger	Fonctionnel	
FA2: Display – Axe du temps	Fonctionnel	
FA3 : Enregistrer les valeurs échantillonnées à l'aide du DMA		Non
		obligatoire

8. QUESTIONS

CONFIGURATION DU TIMING

#	Component	Timing
1	Conversion du signal analogue	1 kHz ou plus
2	Rafraichissement de l'écran	20 à 60 fois par seconde

Est-ce qu'il est possible d'exécuter le composant numéro 1 avec un XF ou bien faut-il un RTOS ? Justifiez votre réponse.

• Non, il est impossible d'exécuter le composant numéro 1 avec un XF ou un RTOS.

Est-ce qu'il est possible d'exécuter le composant numéro 2 avec un XF ou bien faut-il un RTOS ? Justifiez votre réponse.

• Oui, car ce sont des fréquences plus basses.

Si l'on combine un timer hardware avec un XF, lequel des deux doit être priorisé ? Justifiez votre réponse.

• Le timer hardware, il doit arrêter le programme un instant pour effectuer sa ISR.

CONFIGURATION DE L'ADC

Combien de mesures [Samples/s] le convertisseur A/D doit-il effectuer par seconde pour pouvoir échantillonner des signaux avec des fréquences jusqu'à 1 kHz ?

• Théorème de nyquist : fs = finmin * 2

Faut-il un filtre ? Si oui, quelle sera la fréquence de coupure de ce filtre ?

• Il faut un filtre anti-aliasing de 1kHz.

Est-ce que la fréquence donnée par le théorème d'échantillonnage ou devrait-elle être plus élevée ?

• Plus elle est élevée plus le signal reconstruit sera proche du signal échantillonné

Lequel des canaux du ADC3 doit être utilisé pour pouvoir mesurer / échantillonner le signal l'aide de la broche PA0 ?

Le canal IN0

Est-ce que le ADC pourrait-il éventuellement effectuer des mesures à des intervalles réguliers à l'aide de ses propres moyens ?

Non, uniquement en continu. Il faut un timer pour que ce soit précis.

SAMPLE-RATE TUNING

Quelle fréquence d'échantillonnage peut être atteinte ?

20kHz

Quel(s) composant(s) limite(nt) le système?

Au bout d'un moment, il n'y a que des interruptions et le XF n'arrive plus a être exécuté correctement. Il faut alors un DMA qui s'occupe de ca en parallèle.

9. ANNEXES

Table 1. STM32F76xxx and STM32F77xxx register boundary addresses (continued)

Boundary address	Peripheral	Bus	Register map
0x4001 7800 - 0x4001 7BFF	MDIOS		Section 38.4.10: MDIOS register map on page 1470
0x4001 7400 - 0x4001 77FF	DFSDM1		Section 17.8.16: DFSDM register map on page 555
0x4001 6C00 - 0x4001 73FF	DSI Host		Section 20.17: DSI Host register map on page 737
0x4001 6800 - 0x4001 6BFF	LCD-TFT		Section 19.7.26: LTDC register map on page 622
0x4001 5C00 - 0x4001 5FFF	SAI2		Section 36.5.18: SAI register map on page 1422
0x4001 5800 - 0x4001 5BFF	SAI1		Section 36.5.18: SAI register map on page 1422
0x4001 5400 - 0x4001 57FF	SPI6		Section 35.9.10: SPI/I2S register map on
0x4001 5000 - 0x4001 53FF	SPI5		page 1368
0x4001 4800 - 0x4001 4BFF	TIM11		Section 27.5.12: TIM10/TIM11/TIM13/TIM14
0x4001 4400 - 0x4001 47FF	TIM10		register map on page 1078
0x4001 4000 - 0x4001 43FF	TIM9		Section 27.4.13: TIM9/TIM12 register map on page 1068
0x4001 3C00 - 0x4001 3FFF	EXTI	APB2	Section 11.9.7: EXTI register map on page 325
0x4001 3800 - 0x4001 3BFF	SYSCFG		Section 7.2.9: SYSCFG register map on page 244
0x4001 3400 - 0x4001 37FF	SPI4		Section 35.9.10: SPI/I2S register map on page 1368
0x4001 3000 - 0x4001 33FF	SPI1		Section 35.9.10: SPI/I2S register map on page 1368
0x4001 2C00 - 0x4001 2FFF	SDMMC1		Section 39.8.16: SDMMC register map on page 1529
0x4001 2000 - 0x4001 23FF	ADC1 - ADC2 - ADC3		Section 15.13.18: ADC register map on page 483
0x4001 1C00 - 0x4001 1FFF	SDMMC2		Section 39.8.16: SDMMC register map on page 1529
0x4001 1400 - 0x4001 17FF	USART6		Section 34.8.12: USART register map on
0x4001 1000 - 0x4001 13FF	USART1	page 1307	
0x4001 0400 - 0x4001 07FF	TIM8		Section 25.4.27: TIM8 register map on page 958
0x4001 0000 - 0x4001 03FF	TIM1		Section 25.4.26: TIM1 register map on page 955

Figure 5 - Périphériques cadencés par APB2

