NITROGEN FAMILY

PREPARATION OF No

NH.NO. Heating $(NH_4)_2Cr_2O_7$ $Ba(N_3)_2$

PROPERTIES OF N.

 $Mq+N_2 \rightarrow Mq_2N_2$ $CaC_2 + N_2 \rightarrow CaCN_2 + C$ NITROLIME

OXIDES OF NITROGEN

N=N⁺-0⁻ +1 (NEUTRAL GAS) O+4 (ACIDIC BLUE SOLID)

OXIDES OF NITROGEN

N₀0 NH,NO3→ NO BROWN RING TEST $N_0O_3NO+N_2O_4 \rightarrow$ NO, Pb(NO₃), $\stackrel{\triangle}{\rightarrow}$

$N_2O_5 P_4O_{10} + HNO_3 \rightarrow$ OXYACIDS OF NITROGEN

 N_2O_4 **2NO**₂(g) $\stackrel{\text{low T}}{\rightarrow}$

COMMERCIAL PREPARATIONS OSTWALD'S PROCESS

NH_a+O_a→NO NO+O₂→NO₂ NO,+H,O→HNO,

REACTION WITH NON METALS

I₂+HNO₃→HIO₃+NO₂ P₄+HNO,→H,PO₄+NO, S/SO.+HNO.→H.SO.+NO. C + HNO, ->CO,+NO,

REACTION WITH METALS

Zn+dil. $HNO_3 \rightarrow Zn(NO_3)_2 + N_2O$ Cu+dil. $HNO_3 \rightarrow Cu(NO_3)_2 + NO$ $Zn+Conc. HNO_3 \rightarrow Zn(NO_3)_2+NO_3$

AMMONIA

COMMERCIAL PREPARATIONS HABER'S PROCESS

→2NH。 N,+3H,-DEACTTONIS

 $CuSO_A+NH_3+H_2O \longrightarrow$ $[Cu(NH_3)_A] SO_A + (NH_A)_2 SO_A$

OXOACIDS OF PHOSPHORUS

PHOSPHORUS TYPE

Hypo phosphorous acid (H₂PO₂)

P-H→ 2 $P-OH \rightarrow 1$ Basicity=1

 $P-OH \rightarrow 2$ Rasicity=2

Pyrophosphorous acid (H,P,O,)

P-H → 2 P_OH -> 2 Basicity=2

PHOSPHORIC TYPE

Hypophosphoric acid (H₄P₂O₆)

HO-P-P-OH Basicity=4 но он Orthophosphoric acid (H₂PO₄)

 $P-OH \rightarrow 3$ Basicity=3 Pyrophosphoric acid (H₄P₂O₇)

POH.

META PHOSPHORIC cyclo metaphosphoric (HPO.).

OH. HO $P-OH \rightarrow 3$

OXTDES OF PHOSPHORUS

HALIDES OF PHOSPHORUS

P. + 2SOCI. → PCI. P. + SO.CI. → PCI. + SO.

Properties

Properties $PCI_3 \left[\frac{5+3}{2} = 4 \rightarrow (3,1) \right]$

+ SO. + S.Cl.

PCI₅ 5+5 = 2 →(5,0) CI cı ci cl cl

In PCL aaseous & liquid phase exist as trigonal bipyramidal In solid phase, it exist

PCI₅→[PCI₄]·[PCI₆]

PH₃, phospheni

1. White phosphorous

form PH, & NaH, PO,

-Poisonous & show chemiluminescence -Soluble in CS, but insoluble in H,O

-In basic medium, it disproportionate to

P. + 3NaOH + 3H₂O \rightarrow PH₂ + 3NaH₂PO₂

Occurs in descrete units Hiahly reactive due to anale strain -Fumes in air due to formation of P_4O_{10}

white P at 473 K

2. Red phosphorous

Insoluble in water and CS. Non poisonous

No chemiluminescence

Obtained by heating white P at 573 K

Occurs as polymer. So it is less reactive

3. Black phosphorous

 α - black phosphorous - Prepared by heating Red P at 803 K

β- black phosphorous - Prepared by heating

CHEMICAL PROPERTIES

NH, > PH, > AsH, > SbH, > BiH, NH, > PH, > AsH, > SbH, > BiH,

(Reducing nature/ability to act as RA) BiH, > SbH, > AsH, > PH, > NH,

(Bi can easily release H and

NH, > SbH, > AsH, > PH,

(due to similar size of N

and H, NH, has high M.P)

BiH, > SbH, > NH, > AsH, > PH,

(As molecular mass $\uparrow \rightarrow BP \uparrow$)

N₂O₅ > P₂O₅ > As₂O₅ > Sb₂O₅ > Bi₂O₅ (Due to large size of Bi, it can easily release H⁺)

NH, > PH, > AsH, > SbH, > BiH, P₂O₅ hence have low thermal stability)

As,O₅ Amphoteric 5b,O, (

Bi₂O₅ Basic

OXYGEN FAMILY

p-BLOCK ELEMENTS

HALOGENS & NOBLE GAS

PHYSICAL PROPERTIES

Electron affinity - 5 > Se > Te > Po > O

CHEMICAL PROPERTIES

Hydrides

H,O > H,S > H,Se > H,Te

H,O > H,S > H,Se > H,Te

Acidic Character H,Te > H,Se > H,S > H,O

H,Te > H,Se > H,S > H,O HO > HoTe > HoSe > HoS

OXOACIDS OF SULPHUR

1) Thionous type

i) Dithionous acid (S,O,2-)

ii) Dithionic acid +5 H25206 (5,0,²⁻)

iii) Polythionic acid +5.0 **(S₄O₂²-)** HO−ÿ−S_{*}−S_{*}−ÖH

iv) Thiosulphuric acid +6,-2 H.S.O. (5,0,2-) HO-

2) Sulphurous type

i) Sulphurous acid H.SO.

H,S,O, (Oleum)

ii) Sulphuric acid H,50, iii) Pyrodisulphuric acid

(Caro's acid) HO-S-O-OH

i) Peroxo disulphuric acid

Preparation

 $\mathsf{FeS_2} + \mathsf{O_2} \longrightarrow \mathsf{Fe_2O_3} + \mathsf{SO_2}$ 250₂ + O₂ \(\overline{\pi_2}\) 25O₃

 $50_3 + H_2 50_4 \rightarrow H_2 5_2 0_7$ H,5,0, + H,0 -> 2H,50,(98%)

Properties Oxidising property

 $Cu + H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$ C + 2H₂SO₄ → CO₂ + 2SO, + 2H,O

50, + co → S + co,

50. + Fe _ FeS + FeO

3) Peroxo type

i) Peroxomono sulphuric acid

(Marshall's acid) HO-1-0-0-1-OH

H,50,

Contact process

35 + 2H,50, -> 350, + 2H,0

50₂ Properties

-Act as reducing agent(in aqueous medium) Act as oxidizing agent in the presence of

1. Act as a bleaching agent due to the formation of nascent atomic hydrogen in H,O

Rasicity=3

Properties

 $5O_3 \rightarrow 6/2=3(3,0) \rightarrow \text{bent shape (120°)}$ 100% oleum/sulphan → liquid SO.

ALLOTROPES OF SULPHUR

) Rhombic Sulphur [a1

-Exist in room temperature -Soluble in CS, but insoluble in H,O -Yellow in colou

-Exist below 369 K 2) Monoclinic Sulphur [B]

-Soluble in CS -Obtained by melting rhombic sulphur above 369 K

ransition Temperature:

369 K, at which both monoclinic & sulphur exist. Above this temperatur monoclinic exist, below this emperature rhombic sulphur exist

At elevated temperature (1000K) S₂ is dominant species and is paramagnetic like O₂ (Vapour) state has two unpaired electrons in π orbitals like O.

Electrom affinity/EGE

- Cl > F > Br > I
Oxidation State - F shows only (-1) O.S. in its

compounds - All other shows -ve & +ve O.S Bond dissociation energy

- Cl, > Br, > F, > I, Bond dissociation energy of F. is lower than that of Cl, & Br, due to its inter electronic repulsion

CHEMICAL PROPERTIES

1) Oxidising Power:

- F is the strongest oxidizing agent

- F, > Cl, > Br, > I, (OA) -F, displaces Cl., Br, & I,

-Cl, displaces Br, and I, -Br, + 2KI \rightarrow 2KBr + I, $-I_2 + KBr \rightarrow No reaction$

2) With H,O: - F+ H₂O → HF + O₂ (Release O₂ from H₂O, good oxidizing agent)

- Cl_2/Br_2 + $H_2O \rightarrow HCI$ + HOCI- I_2 + $H_2O \rightarrow No$ reaction

3) With Ha: Hydrides

Acidic Character → HI > HBr > HCl > HF

Reducina Power → HI > HBr > HCl > HF Thermal Stability \rightarrow HF > HCl > HBr > HI BP -> HF > HI > HBr > HCl

COMPOUNDS OF CHLORINE

1) Cl₂ Preparation : Commercial Deacon's Process $HCI + 1/20_2^{CuCl_2} \xrightarrow{H_2O} + 1/2 Cl_2$

Properties Greenish yellow coloured gas

$\text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{HOCl} + \text{HCl}$

With NH₃ colourless

1) NH, + Cl, -> NH, Cl + N, (excess) 2) NH, + Cl, -> NCl, + HCl

(excess) With Alkali

a) NaOH + $Cl_2 \rightarrow NaClO + NaCl + H_2O$ (Cold & dilute)

NaOH + Cl₂ \rightarrow NaClO₃ + NaCl + H₂O (Cold & Conc.) b) Ca(OH), + Cl, → Ca(OCI), + CaCl, + 2H,O (calcium hypochlorite)

$Ca(OCI)_2 + CaCI_2 \rightarrow Bleaching powder$

· Powerful bleaching agent due to oxidizing property

Bleaching powder \rightarrow Ca(OCI), + CaCI, Preparation of poisonous gas

1) Tear gas → CCI,NO, 2) Phosgene \rightarrow COCI,

3) Mustard gas

→ CI-(CH₂)₂-S-(CH₂)₂-CI

NH3+HCI → NH4CI Aqua regia (HCI:HNO3=3:1)

nitric oxide $Au \xrightarrow{Aqua regia} [AuCl_4]^- + NO$ $Pt \xrightarrow{\text{Apus regis}} [PtCl_{\lambda}]^{2-} + NO$

HCl is a strong acid which decomposes salt of weak acid

OXOACTOS OF HALOGEN CI -> HOCI HCIO, HCIO, HCIO.

Br→ HOBr, HBrO₂, HBrO₃, HBrO₄ \longrightarrow HOI, HIO, HIO, HIO, Acidic character
 → HClO < HClO₂ < HClO₃ < HClO₄ ?) Oxidising character

→ HClO < HClO₂ < HClO₃ < HClO₄

3) Stability: → HClO < HClO, < HClO, < HClO, < HClO, INTERHALOGEN COMPOUNDS empounds formed b/w 2 different halogens

Types: $XX^1 \rightarrow ICl, BrF$ XX,1→ CIF,, BrF $XX_{\epsilon}^{1} \longrightarrow BrF_{\epsilon}$

XX,1 -> IF, CIF, Properties and uses -CIF $_3$ & BrF $_3$ \rightarrow Uranium enrichment for flurinating (U²³⁵)

-IF \rightarrow Spectroscopically det -ICl \rightarrow Exist in 2 polymeric form α & β -Inter halogens are very reactive than halogens (except $\mathbf{F_2}$)

Structure $XX' \rightarrow X-X \rightarrow linear$ $XX_3 \rightarrow \frac{7+3}{2} = 5(3,2)T$ -Shaped

 $XX_s \longrightarrow \frac{7+5}{} = 6(5,1)$ Square Pyramidal XX,'->7+7 =7(7,0) Pentagonal bipyramidal

Generally it forms oxides of the type A.O. and A.O.

Acidic character increases with

I,O < NO < N,O, < NO, < N,O, < N,O

-In a group thermal stability of oxides decreases down the group

Nature of Oxides

Acidic

NOBLE GASES

All these, except Radon & Oganesson occu

Physical properties -Atomic radii→↑ down the group

-IE→ J down the group -He is having maximum ionisation energy of all known substances

-Ne is having high positive value of electron gain enthalpy -B.P→↑ down the group

-He is having lowest B.P among all known substance (4.2K) COMPOUNDS OF Xe

Xenon Fluoro compounds Preparation: $-Xe(g) + F_2(g) \xrightarrow{673 \text{ K.1 bor}} XeF_2(S)$

 $-Xe(g) + 2F_2(g) \xrightarrow{673 \text{ K.1 bar}} XeF_4(5)$ -Xe(g) + $3F_2(g) \xrightarrow{573 \text{ K.60-70 ber}} \text{XeF}_k(S)$

-XeF₄ + O,F, -XeF₄ + O, Structure

 $XeF_{2} \rightarrow \frac{8+2}{} = 5(2,3) \rightarrow linear$ $XeF_4 \rightarrow \frac{8+4}{2} = 6(4,2) \rightarrow square planar$ $XeF_6 \rightarrow \frac{8+6}{2} = 7(6,1) \rightarrow Distorted Octahedro$

Properties On reacting with H2O, they get hydrolys when XeF₂ hydrolyses, it gives Xe,HF & O₂

XENON-OXYGEN COMPOUND

Structure XeO₃ → 8/2=4(3,1) Pyramidal $XeOF_4 = \frac{8+4}{2} = 6(5,1) Sq.$ Pyramidal $XeO_2F_2 = \frac{8+2}{2} = 5(4,1)$ Sea saw

 $\overline{\text{XeF}_6 + \text{H}_2\text{O}} \rightarrow \text{XeOF}_4 + \text{HF}$

 $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + HF$