2020 秋图论 final

2021年7月31日

1.(10 分) 证明 Ramsey 数 R(3,3) = 6.

2.(10 分) 设图 G 的最小度 $\delta(G) \geq 2$, 证明图 G 必含长至少为 $\delta(G) + 1$ 的圈.

 $3.(12\ \mathcal{H})$ 证明阶数 $n\geq 3$ 的 2 部简单平面图至多有 2n-4 条边, 并举例说明该上界是紧的.

 $4.(12 \ eta)$ 设 $N = (D_{xy}, c), f$ 是 N 中 (x, y) 流.C 为 N 中指定正向的 圈, 用 C^+ 和 C^- 分别表示 E(C) 中与 C 的正向和反向一致的边集. 令

$$\sigma(a) = \begin{cases} c(a) - f(a), & a \in C^+, \\ f(a), & a \in C^-. \end{cases}$$
 (1)

并令

$$\sigma = \min\{\sigma(a) : a \in E(C)\}. \tag{2}$$

定义

$$\overline{f}(a) = \begin{cases}
f(a) + \sigma, & a \in C^+, \\
f(a) - \sigma, & a \in C^-, \\
f(a), & o.w.
\end{cases}$$
(3)

证明: \overline{f} 是 N 中 (x,y) 流且流值不变.

 $5.(12\ \mathcal{G})$ 图 G 的色多项式 (chromatic polynomial) $\pi_k(G)$ 是 G 中不同点 k 染色的数目,

- (1) 若 G 是简单图, 则对任何 $e \in E(G)$, 均有 $\pi_k(G) = \pi_k(G-e) \pi_k(G \cdot e)$;
- (2) 求 *n* 阶树的色多项式.

- $6.(12\ eta)$ 设 $\mathscr{A}=\{A_1,A_2,\cdots,A_n\}$ 是 $X=\{1,2,\cdots,n\}$ 的子集族. 证明存在 $x\in X$ 使得 $A_1\bigcup\{x\},A_2\bigcup\{x\},\cdots,A_n\bigcup\{x\}$ 互不相同.
- - 8.(10 分) 证明:3 正则 Hamiltonian 图可以 3 边染色.
- $9.(12\ eta)$ 设 $n\geq 2s$. 用 P_n 表示 n 个点的路, I_1,I_2,\cdots,I_s 是 P_n 的 s 个 s 元独立集. 证明: 存在 P_n 的 s 元独立集 I 使得 $|I\cap I_i|\geq 1$ 对每一个 $1\leq i\leq s$ 成立.