Белорусский государственный университет Факультет прикладной математики и информатики

ИЗБРАННЫЕ РАЗДЕЛЫ МЕТОДОВ ОПТИМИЗАЦИИ

канд. физ.-мат. наук Войделевич А.С.

КОНСПЕКТ ЛЕКЦИЙ

СОДЕРЖАНИЕ

§ I	выпуклые множества	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	•	•	•		•	•	٠	٠	٠	٠	٠	٠	•	ರ
$\S 2$	Выпуклые функции .																									7

§1 ВЫПУКЛЫЕ МНОЖЕСТВА

Пусть \mathbb{A}^n-n -мерное аффинное пространство над полем \mathbb{R} , $n\in\mathbb{N}$. Зафиксируем некоторую точку $O\in\mathbb{A}^n$ в качестве начала координат. Далее будет отождествлять произвольную точку $P\in\mathbb{A}^n$ с её радиусом вектором \overrightarrow{OP} , а само пространство \mathbb{A}^n- с вещественным n-мерным векторным пространством \mathbb{R}^n . Для обозначения векторов и точек будем использовать строчные буквы, а для обозначения множеств — заглавные.

Опр. 1.1. Точка $\alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_m p_m \in \mathbb{R}^n$, где $p_i \in \mathbb{R}^n$, $\alpha_i \geqslant 0$ и $\sum_{i=1}^m \alpha_i = 1$, называется выпуклой комбинацией точек p_1, p_2, \ldots, p_m .

Опр. 1.2. Для произвольных точек $x, y \in \mathbb{R}^n$ множество

$$[x,y] \stackrel{\text{def}}{=} \{\alpha x + (1-\alpha)y \colon \alpha \in [0,1]\},\$$

состоящее из всех возможных выпуклых комбинаций точек x и y, называется отрезком (c концами x, y).

Опр. 1.3. Множество $X \subset \mathbb{R}^n$ называется выпуклым, если для произвольных двух точек $x, y \in X$ оно содержит весь отрезок [x, y].

Отметим, что согласно определению 1.3 пустое множество \varnothing и произвольное одноточечное множество $\{p\}, p \in \mathbb{R}^n$, являются выпуклыми.

Лемма 1.1. Множество X является выпуклым, если и только если X со-держит любую выпуклую комбинацию своих точек.

ightharpoonup Если множество X содержит любую выпуклую комбинацию своих точек, то, в частности, для любых двух точек $x,\,y\in X$ имеем $[x,y]\subset X$, а значит, X — выпуклое множество.

Обратное утверждение доказывается индукцией по количеству m точек $p_1, p_2, \ldots, p_m \in X$, входящих в выпуклую комбинацию $\alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_m p_m$. База индукции m=2 следует из определения 1.3. Предположим теперь, что множество X содержит всевозможные выпуклые комбинации своих точек размера $m \geq 2$. Докажем, что X также содержит любую выпуклую комбинацию размера m+1. Действительно, пусть $p_1, p_2, \ldots, p_{m+1} \in X$ и числа $\alpha_1, \alpha_2, \ldots, \alpha_{m+1} \geq 0$, такие что $\sum_{i=1}^{m+1} \alpha_i = 1$. Без нарушения общности будем считать, что $\alpha_1 < 1$ (иначе это выпуклая комбинация, состоящая из одной точки). Тогда

$$p = \alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_{m+1} p_{m+1} = \alpha_1 p_1 + (1 - \alpha_1) q$$

где $q=\frac{\alpha_2}{1-\alpha_1}p_2+\frac{\alpha_3}{1-\alpha_1}p_3+\ldots+\frac{\alpha_{m+1}}{1-\alpha_1}p_{m+1}$. Так как $\sum\limits_{i=2}^{m+1}\frac{\alpha_i}{1-\alpha_1}=1$, то согласно предположению индукции $q\in X$, а значит, $p\in X$. \lhd

Рассмотрим операции над выпуклыми множествами, которые сохраняют выпуклость.

Лемма 1.2. Пусть I — некоторое множество индексов произвольной мощности, а $\{X_i \subset \mathbb{R}^n : i \in I\}$ — семейство выпуклых множеств. Тогда множество $X = \bigcap X_i$ является выпуклым.

ightharpoonup Действительно, пусть $x, y \in X$. Тогда $x, y \in X_i$ для всех $i \in I$, а значит, $[x,y] \subset X_i$. Таким образом, $[x,y] \subset X$, т.е. множество X является выпуклым. \lhd

Выпуклой оболочкой $\operatorname{Conv} X$ произвольного множества $X\subset \mathbb{R}^n$ называется наименьшее (по вложению) выпуклое множество, содержащее X. Из леммы 1.2 следует, в частности, что $\operatorname{Conv} X$ — это пересечение всех выпуклых множеств, содержащих X.

Лемма 1.3. Пусть $F \colon \mathbb{R}^n \to \mathbb{R}^m$ — аффинное преобразование, т.е. преобразование, действующее по правилу $F \colon x \mapsto Ax + b$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Тогда для произвольных выпуклых множеств $X \subset \mathbb{R}^n$ и $Y \subset \mathbb{R}^m$ множества $F(X) \stackrel{\mathrm{def}}{=} \{Fx \colon x \in X\} \subset \mathbb{R}^m$ и $F^{-1}(Y) \stackrel{\mathrm{def}}{=} \{x \colon Fx \in Y\} \subset \mathbb{R}^n$ также являются выпуклыми.

ightharpoonup Пусть $y_1 = Fx_1$, $y_2 = Fx_2$ и $\alpha \in [0,1]$. Тогда утверждение леммы следует из равенства $\alpha y_1 + (1-\alpha)y_2 = \alpha Fx_1 + (1-\alpha)Fx_2 = F(\alpha x_1 + (1-\alpha)x_2)$, которое выполнено для любого аффинного преобразования F. \lhd

Лемма 1.4. Пусть $\{X_i \subset \mathbb{R}^{n_i} \colon 1 \leq i \leq m\}$ — семейство выпуклых множеств. Тогда прямое произведение

$$X_1 \times X_2 \times \ldots \times X_m \stackrel{\text{def}}{=} \{(x_1, x_2, \ldots, x_m) : x_i \in X_i, 1 \le i \le m\}$$

является выпуклым множеством в пространстве $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \ldots \times \mathbb{R}^{n_m}$.

ightharpoonup Пусть $x_i, \ \widetilde{x}_i \in X_i, \ 1 \leq i \leq m, \ и \ \alpha \in [0,1].$ Тогда

$$\alpha(x_1, x_2, \dots, x_m) + (1 - \alpha)(\widetilde{x}_1, \widetilde{x}_2, \dots \widetilde{x}_m) =$$

$$= (\alpha x_1 + (1 - \alpha)\widetilde{x}_1, \dots, \alpha x_m + (1 - \alpha)\widetilde{x}_m) \in X_1 \times X_2 \times \dots X_m, \quad (1.1)$$

так как $\alpha x_i + (1 - \alpha)\widetilde{x}_i \in X_i, 1 \le i \le m. \triangleleft$

Композиция операций, сохраняющих выпуклость, также, очевидно, сохраняет выпуклость. Следовательно, для произвольных выпуклых множеств $X_1, X_2, \ldots, X_m \in \mathbb{R}^n$ и вещественных чисел $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{R}$ множество

$$\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_m X_m \stackrel{\text{def}}{=} \left\{ \sum_{i=1}^m \alpha_i x_i \colon x_i \in X_i, 1 \le i \le m \right\}$$

является выпуклым. Действительно, эту линейную комбинацию множеств можно представить как композицию прямого произведения и аффинного преобразования. Отметим, что линейную композицию вида A+B называют суммой Минковского множеств $A,\,B\subset\mathbb{R}^n.$

Лемма 1.5. Замыкание \overline{X} выпуклого множества $X \subset \mathbb{R}^n$ выпукло.

ightharpoonup Выберем произвольные точки $a, b \in \overline{X}$ и число $\alpha \in [0,1]$. Необходимо доказать, что $c \stackrel{\mathrm{def}}{=} \alpha a + (1-\alpha)b \in \overline{X}$. Существуют такие две последовательности точек $(a_k)_{k \in \mathbb{N}}$ и $(b_k)_{k \in \mathbb{N}} \subset X$, что $a_k \to a$ и $b_k \to b$. Тогда последовательность точек $(c_k)_{k \in \mathbb{N}} \subset X$, где $c_k = \alpha a_k + (1-\alpha)b_k$, сходится к c, а значит, $c \in \overline{X}$. \lhd

Опр. 1.4. Множества $X, Y \subset \mathbb{R}^n$ называются отделимыми, если существуют ненулевой вектор c и число d, такие что $c^\mathsf{T} x \geq d \geq c^\mathsf{T} y$ для любых $x \in X$ и $y \in Y$. Если известно, что неравенства строгие $c^\mathsf{T} x > d > c^\mathsf{T} y$, то говорят, что множества X и Y строго отделимы. Гиперплоскость, заданная уравнением $c^\mathsf{T} x = d$, называется разделяющей гиперплоскостью.

Отметим, что согласно определению, вектор c из уравнения гиперплоскости $c^{\mathsf{T}}x=d$ ненулевой.

Теорема 1.1. Если непересекающиеся множества X и $Y \subset \mathbb{R}^n$ выпуклы, замкнуты и одно из них ограничено, то они строго отделимы.

 \triangleright Пусть X — ограниченное множество и $d_X \stackrel{\text{def}}{=} \sup_{x_1,x_2 \in X} \|x_1 - x_2\|$ — его диаметр. Докажем, что найдутся точки $x_0 \in X$ и $y_0 \in Y$, для которых $\|x_0 - y_0\| = \inf_{x \in X, y \in Y} \|x - y\|$. Действительно, выберем произвольные две точки $x_1 \in X$ и $y_1 \in Y$. Пусть $\widetilde{Y} = Y \cap B_r(x_1)$, где $B_r(x_1)$ — шар радиуса $r = d_X + \|x_1 - y_1\|$ с центром в x_1 . Множества X и \widetilde{Y} являются компактными, а функция f, действующая по правилу $f \colon (x,y) \in X \times \widetilde{Y} \mapsto \|x-y\|$, — непрерывной. Так как декартово произведение компактных множеств компактно, то функция f достигает свое минимальное значение в некоторых точках $x_0 \in X$ и $y_0 \in \widetilde{Y}$. Если $y \in Y \setminus \widetilde{Y}$ и $x \in X$, то $\|x-y\| \geq \|x_1-y\| - \|x_1-x\| \geq d_X + \|x_1-y_1\| - d_X = \|x_1-y_1\|$, а значит, точки x_0, y_0 искомые.

Пусть $\Pi \stackrel{\mathrm{def}}{=} \{x \in \mathbb{R}^n \colon c^\mathsf{T} x = d\}$ — гиперплоскость, проходящая через середину отрезка $[x_0, y_0]$, перпендикулярно ему. Выберем $c = x_0 - y_0$ и $d = (\|x_0\|^2 - \|y_0\|^2)/2$. Докажем, что множества X и Y не пересекаются c указанной гиперплоскостью, а значит, лежат в разных открытых полупространствах относительно её. Предположим противное, а именно, что некоторая точка $y \in Y$ принадлежит плоскости Π . Треугольник c вершинами c0, c0, c0 является равнобедренным c0 основанием c0, c0, c0 и острым углом при вершине c0, так как c0, c0, c0 условию c0 — выпуклое множество, а значит, c0, c0, c0, c0. Пусть c0 — основание перпендикуляра, опущенного из вершины c0 на сторону c0, c0, c0. Тогда c0, c

Опр. 1.5. Гиперплоскость $\Pi \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n : c^{\mathsf{T}}x = d\}$ называется опорной к множеству X в точке x_0 , если $x_0 \in \Pi \cap \overline{X}$ и для всех $x \in X$ одновременно выполняется одно из неравенств: $c^{\mathsf{T}}x > d$ или $c^{\mathsf{T}}x < d$.

Напомним, что точка x называется граничной для множества X, если любая

её окрестность содержит как точки, принадлежащие данному множеству, так и не принадлежащие ему.

Лемма 1.6. Выпуклое множество $X \subset \mathbb{R}^n$ в каждой граничной точке имеет опорную гиперплоскость.

ightharpoonup Пусть x_0 — граничная точка множества X. Так как X — выпуклое множество, то x_0 — граничная точка замыкания \overline{X} . Следовательно, найдётся такая последовательность точек $(y_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n\setminus\overline{X}$, что $y_k\to x_0$. Согласно, теореме 1.1 для множеств $\{y_k\}$ и \overline{X} (выпуклость \overline{X} следует из леммы 1.5) найдётся такая гиперплоскость, заданная уравнением $c_k^\mathsf{T} x = d_k$, что $c_k^\mathsf{T} x > d_k > c_k^\mathsf{T} y_k$, $x\in\overline{X}$. Без нарушения общности будем считать, что $\|c_k\|=1$. Тогда, в силу построения, последовательность $(d_k)_{k\in\mathbb{N}}$ является ограниченной. Наконец, без нарушения общности будем считать, что $c_k\to c$ и $d_k\to d$. Тогда $c^\mathsf{T} x\geq d$, $x\in X$, и $c^\mathsf{T} x_0=d$. \lhd

Теорема 1.2. Произвольное выпуклое множество $X \subset \mathbb{R}^n$ можно отделить от точки y, ему не принадлежащей.

ightharpoonup Действительно, если $y \not\in \overline{X}$, то доказательство следует из теоремы 1.1, иначе — из леммы 1.6. \lhd

Теорема 1.3. Множесства X и $Y \subset \mathbb{R}^n$ отделимы тогда и только тогда, когда множество X-Y и точка $\{\mathbf{0}\}$ отделимы.

 $ightharpoonup \Pi$ усть множества X и Y отделимы. Тогда существуют такие $c \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ и $d \in \mathbb{R}$, что $c^\mathsf{T} y \le d \le c^\mathsf{T} x$ для всех $x \in X, y \in Y$. Следовательно, $c^\mathsf{T} (x - y) \ge 0$, а значит, гиперплоскость $\Pi = \{x \colon c^\mathsf{T} x = 0\}$ отделяет множество X - Y от нуля.

Предположим теперь, что множества X-Y и $\{{\bf 0}\}$ отделимы. Тогда существуют такие $c\in\mathbb{R}^n\setminus\{{\bf 0}\}$ и $d\in\mathbb{R}$, что $0\leq d\leq c^{\sf T}z$ для всех $z\in X-Y$. Следовательно, $c^{\sf T}y\leq c^{\sf T}x$ для всех $x\in X,\ y\in Y,$ а значит, $\sup_{y\in Y}c^{\sf T}y\leq \inf_{x\in X}c^{\sf T}x$. Выберем такое

число $\widetilde{d} \in \mathbb{R}$, что $\sup_{y \in Y} c^\mathsf{T} y \leq \widetilde{d} \leq \inf_{x \in X} c^\mathsf{T} x$. Тогда гиперплоскость $\Pi = \{x \colon c^\mathsf{T} x = \widetilde{d}\}$ отделяет множества X и Y. \lhd

Следствие 1.1. Пусть X, Y — непустые выпуклые непересекающиеся множества. Тогда X и Y отделимы.

Через $\operatorname{Int} X$ обозначим внутренность множества $X \subset \mathbb{R}^n$, т.е. множество всех внутренних точек X. Не сложно видеть, что, если X — выпуклое множество, то $\operatorname{Int} X$ также выпукло.

Следствие 1.2. Пусть $X, Y - выпуклые множества с непустой внутренностью, при этом <math>\operatorname{Int} X \cap \operatorname{Int} Y = \emptyset$. Тогда X и Y отделимы.

Упражнения

- 1. Пусть $X \subset \mathbb{R}^n$ непустое множество. Докажите, что любую точку p, принадлежащую выпуклой оболочке множества X, можно представить в виде выпуклой линейной комбинации не более чем n+1 точек множества X.
- 2. Пусть в \mathbb{R}^n заданы точки p_1, p_2, \ldots, p_s , где $s \geq n+2$. Докажите, что точки можно разбить на два непересекающихся множества так, что выпуклые оболочки этих двух множеств будут иметь непустое пересечение.

3. (Теорема Хелли) Пусть I — произвольное семейство индексов и $\{X_i\}_{i\in I}$ — семейство замкнутых выпуклых множеств в \mathbb{R}^n , из которых хотя бы одно компактно. Докажите, что если любое подсемейство из n+1 множеств имеет непустое пересечение, то и всё семейство имеет непустое пересечение.

§2 ВЫПУКЛЫЕ ФУНКЦИИ

Опр. 2.1. Функция $f: X \to \mathbb{R}$, заданная на выпуклом множестве $X \subset \mathbb{R}^n$, называется выпуклой, если для любых $x, y \in X$ и любого $\alpha \in [0,1]$ выполнено неравенство $f(\alpha x + (1-\alpha)y) \le \alpha f(x) + (1-\alpha)f(y)$. Если последнее неравенство строгое при $\alpha \in (0,1)$, то функция f называется строго выпуклой.

Лемма 2.1. Для того, чтобы функция $f: X \to \mathbb{R}$, определённая на выпуклом множестве X, была выпуклой, необходимо и достаточно, чтобы было выпуклым множество ері $f \stackrel{\mathrm{def}}{=} \{(x,y): x \in X, y \geq f(x)\} \subset X \times \mathbb{R}$. (Множество ері f называется надграфиком функции f.)

ightarrow Пусть $f\colon X \to \mathbb{R}$ — выпуклая функция. Выбрав произвольные две точки $z_1=(x_1,y_1),\, z_2=(x_2,y_2)\in \mathrm{epi}\, f$ и число $\alpha\in[0,1]$, докажем, что $\alpha z_1+(1-\alpha)z_2\in \mathrm{epi}\, f$, т.е. что $f\left(\alpha x_1+(1-\alpha)x_2\right)\leq \alpha y_1+(1-\alpha)y_2$. Так как $f(x_1)\leq y_1$ и $f(x_2)\leq y_2$, то необходимое неравенство следует из выпуклости функции f.

Предположим теперь, что ері f — выпуклое множество. Очевидно, что для произвольных двух точек $x_1, x_2 \in X$ пары $z_1 = (x_1, f(x_1)), z_2 = (x_2, f(x_2))$ принадлежат надграфику функции f. Следовательно, для произвольного числа $\alpha \in [0,1]$ имеем $\alpha z_1 + (1-\alpha)z_2 \in \operatorname{epi} f$, а значит, $f(\alpha x_1 + (1-\alpha)x_2) \leq \alpha f(x_1) + (1-\alpha)f(x_2)$. Другими словами, функция f выпукла. \triangleleft

Лемма 2.2 (Неравенство Йенсена). Пусть $f: X \to \mathbb{R}$ — выпуклая функция. Тогда для произвольных точек $x_1, x_2, \ldots, x_m \in X$ и чисел $\alpha_1, \alpha_2, \ldots, \alpha_m \geq 0$, таких что $\sum\limits_{i=1}^m \alpha_i = 1$, справедливо неравенство

$$f(\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_m x_m) \le \alpha_1 f(x_1) + \alpha_2 f(x_2) + \ldots + \alpha_m f(x_m). \tag{2.1}$$

ightarrow Докажем неравенство (2.1) индукцией по количеству точек m. База индукции m=2 следует из определения выпуклой функции. Предположим, что неравенство (2.1) верно при $m\geq 2$. Пусть $x_1,\,x_2,\,\ldots,\,x_{m+1}\in X$ и числа $\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_{m+1}\geq 0$, такие что $\sum_{i=1}^{m+1}\alpha_i=1$. Без нарушения общности будем считать, что

 $\alpha_1<1.$ Так как $\sum\limits_{i=2}^{m+1}\frac{\alpha_i}{1-\alpha_1}=1,$ то верна цепочка неравенств

$$f\left(\sum_{i=1}^{m+1} \alpha_i x_i\right) \le \alpha_1 f(x_1) + (1 - \alpha_1) f\left(\sum_{i=2}^{m+1} \frac{\alpha_i}{1 - \alpha_1} x_i\right) \le \sum_{i=1}^{m+1} \alpha_i f(x_i). \quad \triangleleft$$

Напомним, что точка x называется внутренней для множества X, если найдётся такое r>0, что $B_r(x)\subset X$.

Лемма 2.3. Выпуклая функция $f: X \to \mathbb{R}$ непрерывна во всех внутренних точках множества $X \subset \mathbb{R}^n$.

ightharpoonup Пусть x_0 — внутренняя точка множества X, а значит, $B_r(x_0) \subset X$ для некоторого r > 0. Пусть $\{e_1, e_2, \ldots, e_n\}$ — стандартный базис пространства \mathbb{R}^n . Тогда для любого $\alpha \in [0,1)$ справедливо неравенство

$$f(x_0 \pm \alpha r e_i) \le (1 - \alpha)f(x_0) + \alpha f(x_0 \pm r e_i).$$

Следовательно, $\varlimsup_{t\to +0} f(x_0\pm te_i) \le f(x_0)$, поэтому, $\varlimsup_{x\to x_0} f(x) \le f(x_0)$. Так как $f(x_0) \le \frac12 f(x_0+h) + \frac12 f(x_0-h)$ для любого $h\in B_r(\mathbf{0})$, то

$$f(x_0) \le \frac{1}{2} \underset{x \to x_0}{\underline{\lim}} f(x) + \frac{1}{2} \underset{x \to x_0}{\overline{\lim}} f(x).$$

Следовательно, $f(x_0)=\varliminf_{x\to x_0}f(x)=\varlimsup_{x\to x_0}f(x)$, т.е. функция f непрерывна в x_0 . \lhd

Опр. 2.2. Вектор $c \in \mathbb{R}^n$ называется субградиентом функции $f: X \to \mathbb{R}$ в точке $x_0 \in X \subset \mathbb{R}^n$, если $f(x) \geq f(x_0) + c^{\mathsf{T}}(x - x_0)$ для всех $x \in X$. Множество всевозможных субградиентов функции f в точке x_0 называется субдифференциалом функции f в точке x_0 и обозначается $\partial f(x_0)$.

Лемма 2.4. Пусть $f: X \to \mathbb{R}$ — выпуклая функция, а x_0 — внутренняя точка множества X. Тогда множество $\partial f(x_0)$ непусто.

ightharpoonup Пусть $c^{\mathsf{T}}x+by=d$ — уравнение опорной гиперплоскости к множеству ері f в точке $(x_0,f(x_0))$. Тогда $c^{\mathsf{T}}x+by\geq d$ при $(x,y)\in$ ері f и $c^{\mathsf{T}}x_0+bf(x_0)=d$. Докажем, что b>0. Так как $(x_0,f(x_0)+1)\in$ ері f, то $c^{\mathsf{T}}x_0+bf(x_0)+b\geq d$, т.е. $b\geq 0$. Если b=0, то $c^{\mathsf{T}}x\geq d$, $x\in X$, а значит, $c^{\mathsf{T}}(x-x_0)\geq 0$. Так как x_0 — внутренняя точка, то $x_0-tc\in X$ для некоторого положительного числа t>0. Следовательно, $-t\|c\|^2\geq 0$, т.е. c=0. Получено противоречие. Таким образом, b>0, а значит,

$$f(x) \ge -\frac{c^\mathsf{T} x}{b} + \frac{d}{b} \quad \text{if} \quad f(x_0) = -\frac{c^\mathsf{T} x_0}{b} + \frac{d}{b}.$$

Наконец, отнимая последнее равенство от неравенства, получаем, что

$$f(x)-f(x_0)\geq (\widetilde{c},x-x_0),$$
 где $\widetilde{c}=-rac{c}{b}.$ <

Имеет место следующее обобщение неравенства Йенсена.

Лемма 2.5. Пусть $f: \mathbb{R}^n \to \mathbb{R}$ — выпуклая функция, а $\xi: \Omega \to \mathbb{R}^n$ — случайный вектор. Тогда справедливо неравенство $f(E\xi) \leq Ef(\xi)$, при условии, что соответствующие математические ожидания существуют.

ightharpoonup Так как $f(x)-f(y)\geq c_y^\mathsf{T}(x-y)$, где $c_y\in\partial f(y)$, то $f(x)=\max_{y\in\mathbb{R}^n}(c_y^\mathsf{T}x+d_y)$. Следовательно,

$$f(E\xi) = \max_{y \in \mathbb{R}^n} (c_y^\mathsf{T} E \xi + d_y) = \max_{y \in \mathbb{R}^n} E(c_y^\mathsf{T} \xi + d_y) \le E \max_{y \in \mathbb{R}^n} (c_y^\mathsf{T} \xi + d_y) = Ef(\xi). \quad \lhd$$

Лемма 2.6. Если в точке $x_0 \in X$ выпуклая функция $f: X \to \mathbb{R} - \partial u \phi \phi$ еренцируема, то $\nabla f(x_0) \in \partial f(x_0)$.

$$ightarrow$$
 Пусть $x \in X$ и $t \in (0,1]$. Тогда $f\big(x_0 + t(x-x_0)\big) \leq (1-t)f(x_0) + tf(x)$, а значит, $\frac{f\big(x_0 + t(x-x_0)\big) - f(x_0)}{t} \leq f(x) - f(x_0)$. Устремляя t к 0 , получаем, что

$$f(x) \ge f(x_0) + \nabla f(x_0)^\mathsf{T} (x - x_0). \quad \triangleleft$$

Лемма 2.7. Если $f \in C^2(X)$, где X — открытое выпуклое множество, то для выпуклости функции f необходимо и достаточно, чтобы матрица $\nabla^2 f(x)$ была неотрицательно определённой ($\nabla^2 f(x) \succeq 0$). Если матрица $\nabla^2 f(x)$ положительно определена ($\nabla^2 f(x) \succ 0$), то f — строго выпуклая функция.

ightharpoonup Выберем произвольные точку $x_0 \in X$ и направление $\ell \neq \mathbf{0}$. Рассмотрим функцию $g(t) = f(x_0 + t\ell)$, заданную на интервале $T \stackrel{\mathrm{def}}{=} \{t \colon x_0 + t\ell \in X\}$. Очевидно, что функция f (строго) выпукла тогда и только тогда, когда (строго) выпуклы скалярные функции g при всевозможных $x_0 \in X$ и $\ell \in \mathbb{R}^n \setminus \{\mathbf{0}\}$. Имеем $g'(t) = \ell^\mathsf{T} \nabla f(x_0 + t\ell)$ и $g''(t) = \ell^\mathsf{T} \nabla^2 f(x_0 + t\ell)\ell$. Функция g выпукла тогда и только тогда, когда $g''(t) \geq 0$, что равносильно неотрицательной определённости матрицы $\nabla^2 f(x)$. Если $\nabla^2 f(x) \succ 0$, то g''(t) > 0, а значит, g — строго выпуклая функция. \lhd

В заключении рассмотрим операции над функциями, сохраняющие выпуклость. Будем писать, что $x \leq y$ для векторов $x, y \in \mathbb{R}^n$, если выполнены неравенства $x_i \leq y_i, 1 \leq i \leq n$.

Лемма 2.8. Пусть f, f_1, f_2, \ldots, f_m — выпуклые функции. Тогда следующие функции также являются выпуклыми:

- a) $g(x) = \sum_{i=1}^{m} c_i f_i(x)$, $\partial e c_i \ge 0$, $1 \le i \le m$;
- b) g(x) = f(Fx), где $Fx = Ax + b a\phi\phi$ инное преобразование;
- c) $g(x) = \max_{1 \le i \le m} f_i(x);$
- d) $g(x) = h(f_1(x), f_2(x), \dots, f_m(x)),$ где h выпуклая монотонно неубывающая функция, m.e. $h(y) \le h(\widetilde{y})$ для всех y и \widetilde{y} , таких что $y \le \widetilde{y}$.

ightharpoonup Доказательства утверждений тривиальным образом следуют из определения выпуклости. Для примера докажем выпуклость функции g из пункта d). Пусть $x, y \in X$ и $\alpha \in [0,1]$. Так как функции $f_i, 1 \leq i \leq m$, выпуклы по условию, то $f_i(\alpha x + (1-\alpha)y) \leq \alpha f_i(x) + (1-\alpha)f_i(y)$. Положим $u = (f_1(x), \dots, f_m(x))$ и $v = (f_1(y), \dots, f_m(y))$, тогда в силу монотонности функции h верно неравенство

$$h(f_1(\alpha x + (1-\alpha)y), \dots, f_m(\alpha x + (1-\alpha)y)) \le h(\alpha u + (1-\alpha)v).$$

Так как функция h выпукла, то $h(\alpha u + (1-\alpha)v) \le \alpha h(u) + (1-\alpha)h(v)$. Наконец, в силу определения функции g имеем

$$g(\alpha x + (1 - \alpha)y) = h(f_1(\alpha x + (1 - \alpha)y), \dots, f_m(\alpha x + (1 - \alpha)y)),$$

g(x) = h(u) и g(y) = h(v), а значит, $g\bigl(\alpha x + (1-\alpha)y\bigr) \le \alpha g(x) + (1-\alpha)g(y)$. Следовательно, g — выпуклая функция. \lhd

Упражнения

4. Докажите, что непрерывная выпуклая функция $f\colon [a,b] o \mathbb{R}$ удовлетворяет неравенству

$$f\left(\frac{a+b}{2}\right)(b-a) \le \int_a^b f(x) \, \mathrm{d}x \le \frac{f(a)+f(b)}{2}(b-a).$$

- 5. Докажите, что субдифференциал $\partial f(x_0)$ произвольной выпуклой функции f в точке x_0 является замкнутым выпуклым множеством.
- 6. Пусть $f(x) \stackrel{\text{def}}{=} \max_{1 \le i \le m} f_i(x)$, где $f_i(x)$ выпуклые функции, и пусть c_i субградиент функции f_i в точке x_0 . Докажите, что вектор $c \stackrel{\text{def}}{=} \sum_{i=1}^m \alpha_i c_i, \sum_{i=1}^m \alpha_i = 1$, где $\alpha_i \ge 0$ и $\alpha_i = 0$, если $f_i(x_0) < f(x_0)$, является субградиентом функции f(x).
- 7. (Неравенство Караматы) Пусть даны два упорядоченных по невозрастанию набора из n действительных чисел $\mathbf{a}=(a_1,a_2,\ldots,a_n)$ и $\mathbf{b}=(b_1,b_2,\ldots,b_n)$. Говорят, что набор \mathbf{a} мажсорирует набор \mathbf{b} , и пишут $\mathbf{a}\succ\mathbf{b}$, если $a_1\geqslant b_1,\,a_1+a_2\geqslant b_1+b_2,\ldots,a_1+a_2+\ldots+a_{n-1}\geqslant b_1+b_2+\ldots+b_{n-1},\,a_1+a_2+\ldots+a_n=b_1+b_2+\ldots+b_n.$ Докажите, что для любой выпуклой функции y=f(x), определённой на некотором промежутке I, и любых двух наборов $\mathbf{a}=(a_1,a_2,\ldots,a_n),\,\mathbf{b}=(b_1,b_2,\ldots,b_n)$ из этого промежутка, удовлетворяющих условию $\mathbf{a}\succ\mathbf{b}$, справедливо неравенство

$$f(a_1) + f(a_2) + \ldots + f(a_n) \ge f(b_1) + f(b_2) + \ldots + f(b_n).$$

8. Пусть f(x) и g(x) — выпуклая и вогнутая функции соответственно, определённые на выпуклом множестве X, причём для любого $x \in X$ выполняется неравенство $f(x) \ge g(x)$. Докажите, что существует линейная функция h(x), такая что

$$f(x) \ge h(x) \ge g(x)$$
 для каждого $x \in X$.