데이기반프로그래밍(2)

신봉균 20191624

2023-04-05

코드 6-1

중량-연비-그래프

산점도는 두 변수의 데이터 분포를 나타내는 것이기 때문에 두 개의 변수에 대한 자료가 필요하다. wt 와 mpg 에 각각 중량과 연비자료를 저장한 후에 plot()함수를 이용하여 산점도를 나타낸다. plot()함수의 첫 번째, 두 번째 매개변수가 산점도를 작성하고자 하는 2 개의 변수 wt 와 mpg 인데, wt 가 그래프에서 x 축, mpg 는 y 축이 된다. plot() 함수의 매개변수 pch 는 점의 모양을 지정하기 위한 것으로 pch 값에 따른 점의 모양은 [그림 6-2]와 같다.

```
vars= c('mpg','disp','drat','wt') #대상 변수
target = mtcars[,vars]
head(target)
##
                    mpg disp drat
## Mazda RX4
                    21.0 160 3.90 2.620
## Mazda RX4 Wag
                    21.0 160 3.90 2.875
## Datsun 710
                    22.8 108 3.85 2.320
## Hornet 4 Drive
                    21.4 258 3.08 3.215
## Hornet Sportabout 18.7 360 3.15 3.440
## Valiant
                    18.1 225 2.76 3.460
pairs(target,
 main= 'Multi Plots')
```

Multi Plots

mtcars 데이터셋에는 11 개의 변수가 있는데 이 중 4 개의 변수인 mpg(연비), disp (배기량), drat(리어액슬기어비), wt(중량)만 선택하여 target 데이터셋을 새로 만들었다.

pairs()함수를 이용하여 4 개의 변수에 대한 다중 산점도를 함. 4 개의 변수가 대각선에 표기되어있다. 대각석을 기준으로 오른쪽 위와 왼쪽 아래와 대칭을 이루는 구조이다. 이와 같이 다중 산점도는 여러 변수들 간의 추세를 한눈에 파악할 수 있어서 편리하다.

```
color= c('red','green','blue') #점의 색상
plot(iris.2,
    main='Iris plot',
    pch=c(point),
    col= color[point])
```

Iris plot

iris[,3:4] iris 데이터의 모든 row, col 은 3 번째 4 번째 데이터만 불러온다.

as.numeric(iris*Species*) ** 는팩터타입으로되어있는 ** *iris***Species** 를 숫자로 바꾸는 함수이다. 그 결과 setosa, versicolor, virginica 품종이 각각 1,2,3,으로 변환되었다.

plot()함수를 이용하여 산점도를 작성할때 매개변수를 pch 는 품종을 나타내는 point 벡터에서 선택하고, 점의 색은 color 벡터에 있는 값에서 선택한다.

위 데이터를 분석하면 꽃잎의 길이가 커지면 꽃잎의 폭이 커지는 것을 알 수 있다.

virginica 의 품종은 다른 두품중에 비해 꽃잎의 길이와 폭이 제일 크다는 것도 알 수 있다.

```
beers= c(5,2,9,8,3,7,3,5,3,5) #자료입력
bal= c(0.1,0.03,0.19,0.12,0.04,0.0095,0.07,0.06,0.02,0.05) #자료입력
```

```
tbl = data.frame(beers, bal) #데이터 프레임 생성
tbl
##
     beers
              bal
## 1
         5 0.1000
         2 0.0300
## 2
## 3
         9 0.1900
## 4
         8 0.1200
## 5
         3 0.0400
## 6
         7 0.0095
## 7
         3 0.0700
## 8
         5 0.0600
## 9
         3 0.0200
         5 0.0500
## 10
plot(bal~beers, data=tbl) #희귀식 도출
res= lm(bal~beers, data= tbl) #회귀선 그리기
abline(res)
```



```
cor(beers,bal)
## [1] 0.6797025
```

beers 는 맥주를 마신 정도이고 bal 혈중 알콜농도를 나타내며 plot()함수를 사용하여 **혈중알콜농도=f(맥주를마신 정도)** 즉, 맥주 마신 정도별 혈중알콜농도를 나타내는 그림을 그렸으며 위와 같은 그림이 나왔다. 거기에 lm(), abline()함수를 사용하여 회귀선을 그려 넣었다. lm()은 회귀식 도출 abline()은 회귀선을 그리는 역할을 한다.

cor() 함수와 tbl 데이터 프레임 안에있는 beers 와 bal 를 이용하여 **corelation coeficient** 구했으며 결과는 약 0.68 이 나았으며 이와 같은 숫자는 강한 양의 상관관계를 가지고 있다고 해석한다.

코드 6-5

```
cor(iris[,1:4]) #4 개 변수 간 상관성 분석

## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
## Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
## Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
## Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000
```

실행 결과를 보면 4 개의 변수가 x 축,y 축 방향으로 나열되어 있고, 두 변수가 만나는 지점에 두 변수의 상관계수가 표시되어 있다. petal.legnth 와 petal.width 와의 상관관계가장 강하다.

```
month= 1:12 #자료 입력
late= c(5,8,7,9,4,6,12,13,8,6,6,4) #자료 입력
plot(month, #xdata
late, #ydata
main='지각생 통계', #제목
type= 'l',
lty=1, #선의 종류 (Line type) 선택
lwd=1, #선의 굵기 선택
xlab= 'Month',
ylab= 'Late cnt')
```

지각생 통계

선그래프를 작성하는 함수는 산점도를 작성할 때 사용한 plot()함수이다. plot()함수에서 매개변수 type 의 값을 1 선 그래프가 작성된다. type 의 값은 숫자가 아니라 알파벳이다.

그래프의 결과를 보면 지각생 수가 5 월에 급감했다가 7,8 월에는 급증하는 것을 알 수 있다.

```
month= 1:12
late1= c(5,8,7,9,4,6,12,13,8,6,6,4)
late2= c(4,6,5,8,7,8,10,11,6,5,7,3)
plot(month,
    late1, #x data
    main= 'Late Students', #y data
    type='b', #그래프의 종류 선택
    lty=1, #선의 종류 선택
    col= 'red', #선의 색 선택
    xlab= 'Month', #x 축 레이블
    ylab = 'Late cnt', #y 축 레이블
    ylim = c(1,15)) #y 축의 범위 제한
```

```
lines(month,
    late2,
    type = 'b',
    col='blue')
```

Late Students

lines()함수는

plot()함수로 작성한 그래프 위에 선을 겹쳐서 그리는 역할을 한다.

```
grp[i] = 'M'
 }
}
                                    #문자벡터를 팩터 타입으로 변경
grp = factor(grp)
grp = factor(grp, levels= c('H','M','L')) #레벨의 순서를 H,L,M -> H,M,L
                                            #myds 에 grp 칼럼추가
myds = data.frame(myds, grp)
## (3) Add new column-----
str(myds)
## 'data.frame':
                  506 obs. of 6 variables:
## $ crim: num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
## $ rm : num 6.58 6.42 7.18 7 7.15 ...
## $ dis : num 4.09 4.97 4.97 6.06 6.06 ...
## $ tax : num 296 242 242 222 222 311 311 311 311 ...
## $ medv: num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
## $ grp : Factor w/ 3 levels "H","M","L": 2 2 1 1 1 1 2 1 3 2 ...
head(myds)
       crim
                    dis tax medv grp
              rm
## 1 0.00632 6.575 4.0900 296 24.0
## 2 0.02731 6.421 4.9671 242 21.6
## 3 0.02729 7.185 4.9671 242 34.7
## 4 0.03237 6.998 6.0622 222 33.4
## 5 0.06905 7.147 6.0622 222 36.2
                                  Н
## 6 0.02985 6.430 6.0622 222 28.7
                                  Н
                 #주택 가격 그룹별 분포
table(myds$grp)
##
##
   H M L
## 132 247 127
## (4) histogram-----
par(mfrow= c(2,3)) #2x3 가상화면 분할
for (i in 1:5) {
 hist(myds[,i], main=colnames(myds)[i], col='yellow')
}
par(mfrow=c(1,1)) #2x3 가상화면 분할 해제제
```


(6) boxplot by group-----boxplot(myds\$crim~myds\$grp, main='1 인당 범죄율')

boxplot(myds\$dis ~ myds\$grp, main='작업센터까지의 거리')

작업센터까지의 거리

boxplot(myds\$tax~myds\$grp, main='재산세')

(7) scatter plot----pairs(myds[,-6])


```
## (8) scatter plot with group-----
point = as.integer(myds$grp) #점의 모양 지정
color = c('red','green','blue') #점의 색 지정
pairs(myds[,-6],pch= point, col=color[point])
```


(9) correlation coefficient----cor(myds[,-6])

```
## crim rm dis tax medv
## crim 1.0000000 -0.2192467 -0.3796701 0.5827643 -0.3883046
## rm -0.2192467 1.0000000 0.2052462 -0.2920478 0.6953599
## dis -0.3796701 0.2052462 1.0000000 -0.5344316 0.2499287
## tax 0.5827643 -0.2920478 -0.5344316 1.0000000 -0.4685359
## medv -0.3883046 0.6953599 0.2499287 -0.4685359 1.0000000
```