Exercises Lecture 2, 2.4 maandag 6 september 2021 14:20

Let xij = { 1 if student i is assigned project

yik = { | if project j is assigned to room k

otherwise

d = lowest number assigned by a student to a project he/she has to do

Let M be a "large" constant

max d
s.t
$$d + M \times j \in Cj + M$$
 $i=1,...,n, j=1,...,p$ (1)
 $\sum_{i=1}^{n} \times j + M y_{ik} \leq m_k + M$ $j=1,...,p, k=1,...,p$ (2)
 $\sum_{j=1}^{p} \times j = 3$ $i=1,...,n$ (3)
 $\sum_{k=1}^{p} y_{jk} = 1$ $j=1,...,p$ (4)

$$x_{ij} \in \{0,1\}$$
 $i=1,...,p$ (5)
 $y_{jk} \in \{0,1\}$ $j=1,...,p$ (6)

Here are some explanations:

Constraint (1) ensures that d = Cij when xij=1

- (2) ensures that max m_k students can be assigned to project; when $y_{jk}=1$
- (3) ensures that each student gets precisely 3 projects
- (4) ensures that each project is assigned to one room.