Linear Regression

Supervised Learning

Agenda

- Regression
- What is linear regression?
- Regression use case
- Linear regression line
- Error term and calculating the error term
- Which line best fits our data?
- Methods to get the best fit line
 - Ordinary least squares method
 - Gradient descent
- Error Analysis
- Assumptions of Linear regression
- Advantages and disadvantages
- Summary

Regression

- Regression generally means "stepping back towards the average".
- Regression analysis is also defined as the measure of average relationship between two or more variables.
- The predicted variable is known as **dependent/target/response**.
- The variable(s) which is used for prediction is known as independent/explanatory/regressor.

What is linear regression?

- Linear regression is one of the supervised learning algorithms that are used to identify a relationship between two or more variables.
- This relationship can be used to predict values for one variable, if value(s) of other variable(s) is given.
- A simple linear regression model (also called bivariate regression) has one independent variable X
 that has a linear relationship with the dependent variable Y.

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Here β_0 and β_1 are the parameters of the linear regression model.

Regression: Use case

Let us consider impact of a single variable for now.

We say, that only Age decides what the Blood pressure of a person should be.

Regression: Use case

Let us consider the following data:

 The task is to predict the blood pressure when the age is 40.

Age in years (x)	Blood pressure (y)
25	120
36	135
68	143
55	139
49	120
72	165
40	?

Linear Regression line

$$y = \beta_0 + \beta_1 x + \varepsilon$$

y = set of values taken by dependent variable Y

x = set of values taken by independent variable X

 β_0 = y intercept

 β_1 = slope

 ε = random error component

Linear Regression line

In context with our example,

Blood Pressure =
$$\beta_0 + \beta_1$$
 Age + ϵ

y = set of values taken by dependent variable, blood pressure

x = set of values taken by independent variable, age

 β_0 = Blood pressure value where the best fit line cuts the Y - axis (blood pressure)

 β_1 = beta coefficient for age

 ε = random error component

What is error term?

- Error term also called residual represents the distance of the observed value from the value predicted by regression line.
- In our example,

Error term = Actual blood pressure - Predicted blood pressure for each observation

Calculating the error term

- Equation of regression line is given by, $y = \beta_0 + \beta_1 x + \epsilon$
- Error term can be calculated as, $\varepsilon = y (\beta_0 + \beta_1 x)$
- We have an error term for every observation in the data.

$$\varepsilon_{i} = \gamma_{actual} - \gamma_{predicted}$$

- Squared error : $\varepsilon_i^2 = (y_{actual} y_{predicted})^2$
- Sum of squared errors = $\sum \epsilon_i^2$

Which line best fits our data?

- The regression line which best explains the trend in the data is the best fit line
- The line with the least error will be chosen as the best fitting line

Methods to get the best fit line

• Two methods can be used to find the best fit line

Ordinary Least Squares method

- The ordinary least square method is used to find the best fit line for given data.
- This method aims at minimizing the sum of squares of the error terms, that is, it determines those values of β_0 and β_1 at which the error terms are minimum.

$$\sum_{i=1}^{n} (yi - (\beta_0 + \beta_i xi))^2$$

Math behind OLS

- We have seen that the error term $\varepsilon = y (\beta_0 + \beta_1 x)$
- The OLS method minimizes $E = \sum \epsilon^2 = \sum (y (\beta_0 + \beta_1 x))^2$
- To minimize the error we take partial derivatives with respect to β_0 and β_1 and equate them to zero.

$$\delta E/\delta \beta_0 = 0$$

$$\delta E/\delta \beta_1 = 0$$

• So we get two equations with two unknowns, β_0 and β_1

Math behind OLS

So we get:

$$\delta E / \delta \beta_0 = \sum 2 (y - \beta_0 - \beta_1 x) (-1) = 0$$

$$\delta E / \delta \beta_1 = \sum 2 (y - \beta_0 - \beta_1 x) (-x_1) = 0$$

• Expanding these equations, we get β_0 and β_1 as:

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

$$\beta_1 = Cov(X,Y) / Var(X)$$

Here, \bar{y} is sample mean of y and \bar{x} is sample mean of x

Interpretation of β coefficients

- β_1 gives the amount of change in response variable per unit change in predictor variable.
- β_0 is the y intercept which means when X=0, Y is β_0 .
- ullet eta's have an associated p value, which is used to assess its significance in prediction of response variable.
- Depending on whether β 's take a positive value k or k the response variable increases or decreases respectively by k units for every one unit increment in a predictor variable, keeping all other predictor variables constant.

Measures of variation

Sum of squared error (SSE):

$$\Sigma (yi-\hat{y}i)^2$$

Sum of squared total (SST):

$$\Sigma (yi-\bar{y})^2$$

Sum of squared regression (SSR):

$$\Sigma(\hat{y}i-\bar{y})^2$$

yi = observed values of y

 $\hat{y}i = predicted values of y$

 \bar{y} = mean value of variable y

R-squared

• R² also called the **coefficient of determination** gives total percentage of variation in Y that is explained by predictor variable.

$$R^2 = \frac{\text{Explained Variation}}{\text{Total Variation}} = \frac{\text{SSR}}{\text{SST}}$$
 $0 \le R^2 \le 1$

- R² assumes that all the independent variables explain the variation in the dependent variable
- For simple linear regression, the squared correlation between the response variable Y and independent variable X is the R² value

Gradient descent

- Using the OLS method, we get the estimates of parameters of the linear regression model by minimizing the sum of the square of errors.
- The gradient descent is an optimization technique which finds the β parameters such that the error term is minimum.
- Computation speed for higher data dimension is more if parameter were to be obtained using the
 OLS method whereas the gradient descent does it faster.

Gradient descent

- An error function, also known as a loss function is used to calculate the cost associated with the deviation of observed data from predicted data.
- It is an iterative method which converges to the optimum solution.
- The estimates of the parameter are updated at every iteration.

Beta coefficient to estimate

Gradient descent

- Consider a ball rolling down the slope as shown below
- Any position on the slope is the loss of the current values of the coefficients (cost)
- The bottom of the slope where the cost function is minimum
- The objective is to find lowest point in the cost function by continuously trying different values of the parameters
- Repeating this process numerous times, the best parameters are such that the cost is minimum

Error analysis

Some of the Model evaluation metrics in regression are:

Mean Squared Error (MSE):

MSE =
$$1/n\sum_{i=1}^{n} (yi - \hat{y}i)^2$$

RMSE =
$$\sqrt{1/n}\sum_{i=1}^{n} (yi - \hat{y}i)^2$$

Mean absolute Error(MAE):

$$MAE = 1/n \sum_{i=1}^{n} |yi - \hat{y}i|$$

MAPE =
$$100(1/n)\sum_{i=1}^{n} |yi - \hat{y}i/yi|$$

Assumptions of Linear Regression

- The dependent variable must be numeric.
- Linear relationship between dependent and independent variables.
- Predictors must not show multicollinearity.
- Independence of observations should exist (absence of autocorrelation).
- The error terms should be homoscedastic.
- The error terms must follow normal distribution.

Advantages & disadvantages

Advantages

- Simple to implement
- It's easier to interpret the output coefficients.

Disadvantages

- It makes an assumption that the dependent and independent variables will have a linear relationship between them.
- It is sensitive to outliers
- Assumes independence between attributes.

Summary

In this module we discussed:

- Regression analysis and what is linear regression?
- Regression use case
- Linear regression line
- Error term and calculating the error term
- Which line best fits our data?
- Methods to get the best fit line: ordinary least squares and gradient descent.
- Error analysis and assumptions of Linear Regression.
- Advantages and disadvantages.

Thank you!

Happy Learning:)