ЛЕКЦИЯ 4

1.4. Формальные теории (ФТ). Определения «выводимости» формул, «вывода» и «теоремы»

Формальные теории вначале разрабатывались для формализации логики и теории доказательства, т.е. для исследования «оснований математики» - ее фундамента. В настоящее время они используются и в прикладных задачах при создании «специальных исчислений». Формальные теории используют формальные языки и в их состав входят четыре компонента (алфавит, формулы, аксиомы, правила вывода).

Определение 1. **Формальная теория** Γ **– это**:

- 1. Множество символов алфавита A (как конечное, так и бесконечное);
- 2. F множество слов, составленных из символов алфавита A. Эти слова иначе называются формулами. Множество F может быть бесконечным
 - <u>Замечание1</u>: Множества F и A обозначают язык (сигнатуру).
- 3. Множество B (подмножество множества F) образует *аксиомы* (систему аксиом), т.е. $B \subset F$.
- 4. R множество отношений, т.е. $R \subset F^{n+1}$. Отношения из множества R называют «правилами вывода».
 - <u>Замечание 2:</u> Множество F строится «по индукции» (по структуре формул).
 - Замечание 3: Множество B может быть как конечным, так и бесконечным. Если оно бесконечно, то оно строится с помощью конечного множества схем аксиом и правил порождения конкретных аксиом.
 - Замечание 4: Множество правил вывода *R*, как правило, конечно. Замечание 5: Обычно аксиомы делятся на две группы:

- а) *логические аксиомы* общие для широкого класса ФТ, их называют *«чистой системой аксиом»* (*чистая логика*).
- б) нелогические (собственные) аксиомы для конкретной прикладной ФТ.

Определение 2. Формула G называется выводимой формулой из формул F_1, F_2, \ldots, F_n по правилу вывода R, если существует такое правило вывода R, что $(F_1, F_2, \ldots, F_n, G) \in R$. Символическое обозначение выводимости формулы G следующее:

$$\frac{F_1, F_2, \dots, F_n}{G} R,$$

где G — выводимая формула (заключение), $F_{\scriptscriptstyle 1}, F_{\scriptscriptstyle 2}, \ldots, F_{\scriptscriptstyle n}$ — посылки.

Определение 3. *Выводом* формулы G из формул $F_1, F_2,..., F_n$ формальной теории Γ называется последовательность формул $E_1, E_2,..., E_k$, где $E_k = G$, а любая E_i (i<k) может быть:

- 1) $E_i = F_j$, где j=1, 2,...., n.
- 2) E_{i} какая-либо из аксиом.
- 3) E_i выводима непосредственно из $E_{j1}, E_{j2}, \ldots, E_{jn}$, где jn<i Символическое обозначение вывода: $F_1, F_2, \ldots, F_n \models G$, где формулы F_1, F_2, \ldots, F_n называются гипотезами вывода.

Определение 4. Вывод, не использующий гипотез, называется $meope Mo \ddot{u}$ и обозначается в виде |--G|.

Утверждение. Если вывод Γ — G является правильно построенным (верным), тогда и вывод Γ , Δ — G является правильно построенным, где Γ , Δ — любые множества формул, т.е. добавление «лишних» гипотез сохраняет выводимость формулы.

Замечание: Существуют теоремы ФТ и другие теоремы о ФТ, которые называются *«метатеоремами»*, которые могут быть устанавливать важные выводы о самой ФТ.

Интерпретация ФТ

Определение 5. *Интерпретацией* ФТ в область интерпретации М (алгебраическая система) будем называть отображение I: F→M, которое каждой формуле формальной теории Г однозначно сопоставляет некоторое содержательное высказывание относительно объектов множества М. Если это высказывание истинно, то говорят, что «данная формула выполнима в данной интерпретации».

Определение 6. Интерпретация I называется «моделью» множества формул Γ , если все формулы этого множества выполнимы в интерпретации I. Если все ее теоремы выполнимы в интерпретации I.

Определение 7. Интерпретация I называется «моделью» формальной теории Γ , если все теоремы этой теории выполняются в интерпретации I, т.е. все выводимые формулы в теоремах истинны в данной интерпретации.

Определение 8. Формула *G* называется общезначимой (тавтологией), если она истинна в любой интерпретации и называется противоречивой (противоречием), если она ложна в любой интерпретации.

Определение 9. Формула G называется логическим следствием множества формул Γ , если формула G выполняется в любой модели Γ .

Определение 10. Формальная теория Γ называется «семантически непротиворечивой», если ни одна выводимая формула G в ее теоремах не является противоречием.

Определение 11. Формальная теория Γ называется *«формально непротиворечивой»*, если в ней не являются выводимыми одновременно формулы G и \overline{G} .

МЕТАТЕОРЕМА І. *Модель* для ФТ Г существует тогда и только тогда, когда ФТ Г семантически не противоречива.

МЕТАТЕОРЕМА 2. ФТ Г формально не противоречива тогда и только тогда, когда она *семантически не противоречива*

Определение 12. $\Phi \Gamma$ Γ называется *полной* (или *адекватной*), если каждому *истинному высказыванию* относительно M соответствует выводимая формула в некоторой теореме в $\Phi \Gamma$ Γ .

Определение 13. Если для множества М (алгебраической системы) существует формальная, полная и непротиворечивая теория Г, то М называется *аксиоматизируемым* множеством (формализуемым множеством).

Определение 14. Система аксиом (*аксиоматизация*) формально не противоречивой теории Γ называется *независимой*, если *никакая из аксиом не выводима* из остальных аксиом Γ по правилам вывода этой теории Γ .

Определение 14. ФТ Г называется *разрешимой*, если существует алгоритм, который для любой формулы этой теории способен определить: *является ли эта формула выводимой в некоторой теореме* этой теории.

Определение 15. Теория будет называться *полуразрешимой*, если существует алгоритм, который для любой формулы G теории Γ выдает ответ «Да», если формула G является выводимой в какой-либо теореме и, может быть, не выдает никакого ответа, если формула G не является выводимой в какой-либо теореме (т.е. алгоритм может зацикливаться).