Пояснительная записка к Домашнему заданию №2 по курсу Архитектура вычислительных систем

Шагаров Дмитрий Александрович БПИ202

> Октябрь 2021

Описание полученного задания

номер варианта	номер задания	номер функции
70	14	5

Разработка сущностей

- 1. **Грузовик** (грузоподъемность кг целое, емкость топливного бака в литрах (целое), расход топлива на 100 км в литрах (действительное))
- 2. **Автобус** (пассажировместимость короткое целое, емкость топливного бака в литрах (целое), расход топлива на 100 км в литрах (действительное))
- 3. **Легковой автомобиль** (максимальная скорость короткое целое, емкость топливного бака в литрах (целое), расход топлива на 100 км в литрах (действительное))

Каждая сущность имеет функцию находения максимального расстояния, которое может пройти автомобиль в км (действительное число).

Все введеные сущности размещаются в разработанном контейнере, после чего к контейнеру применяется сортировка Шелла (ключ - значение функции максимального расстояния). Элементы контейнера до и после сортировки выводется в форматируемый поток.

Формат ввода

Программа расположена по пути AoCS/Task2/bin/Task2.

В программе предусмотрено два способа ввода данных при запуске из командной строки:

1. Использование генераторов случайных наборов данных -

команда

./Task2 -n number_of_vehicles out_path sorted_out_path

2. Ввод из заранее подготовленных тестовых файлов -

команда

./Task2 -f in_path out_path sorted_out_path

Второй способ предусматривает наличие файла in с описанием сущностей в формате: "одна строка = одно TC.

Первый параметр - число от 1 до 3, где 1 - легковое авто, 2 - автобус, 3 - грузовик.

Второй параметр - уникальное для каждого ТС свойство 80 - 320 целое для легкового авто, 10 - 70 целое для автобуса, 1000 - 4000 целое для грузовика.

Третий параметр - объем топливного бака 50 - 150 целое для легкового авто, 80 - 250 целое для автобуса, 200 - 800 целое для грузовика.

Последний параметр - расход 6 - 25 вещественное для легкового авто, 12 - 30 вещественное для автобуса, 20 - 45 вещественное для грузовика.

Параметры указываются через один пробел, для вещественных разделитель - точка. Окончание файла - пустая строка.

Пример такого файла - in_example.txt находится в папке с проектом. Для корректной работы программы необходимо наличие файла, передаваемого как in_path.

Структурная схема программного продукта с использованием объектно-ориентированного подхода и статической типизации.

Таблица типов

short, int, double	2 байта, 4 байта, 8 байт
class Vehicle	<u>20 байт</u>
int tank_volume	4 байта[0]
double consumption	8 байт[4]
указатель на таблицу	
виртуальных методов	8 байт[12]
class Car	<u>22 байта</u>
Vehicle поля	20 байт[0]
short max_speed	2 байта[20]
<u>class Bus</u>	22 байта
Vehicle поля	20 байт[0]
short max_passengers	2 байта[20]
class Truck	<u>24 байта</u>
Vehicle поля	20 байт[0]
int max_weight	4 байта[20]
class Container	<u>240032 байта</u>
int len, size	8 байт[0, 4]
Vehicle **storage	$igg \max 240024$ байта $[8]\ (=24\ *\ 10001)\ igg $

Память программы

4 байта[0]
8 байт[4]
240032 байта[8]
4 байта[240040]
$ig \ 12$ байт $[0,\ 4,\ 8]$
24 байта[12]
4 байта[0]
4 байта[0]

Class::method значит, что это метод класса

Стек вызовов

Возможны следующие варинты (| означает что вызыается одна из соответствующих функций, ? ? \rightarrow - что будет, если программа вызовет данную функцию)

main		
?ErrMessage1? \rightarrow main		
$\operatorname{StartMessage}$		
${f StartMessage}$		
Container::In (error \rightarrow main) Container::InRnd ?ErrMessage2? \rightarrow main		
Container::In Container::InRnd		
Container::Out		
Container::Out		
Container::ShellSortByMaxDistance		
${\color{red}\textbf{Container::ShellSortByMaxDistance}}$		
Container::Out		
Container::Out		
Container::Clear		
Container::Clear		
main		

Основные характеристики программы

интерфейсных модулей	модулей реализации
6	6 (+ main.cpp для тестирования)

общий размер исходных текстов	общий размер результатов тестов
12,82 K6	12,6 Мб

Результаты тестов

Тесты расположены в папке tests и были сгенерированы с использованием написанного случайного генератора тестов. Результаты расположены в папке test_results.

Время работы программы в тестах (в секунднах)			
	тесты из файлов	случайная генерация в программе	
1 элемент	0,000462	0,000487	
50 элементов	0,000558	0,000893	
500 элементов	0,003095	0,002449	
2500 элементов	0,021011	0,018616	
6000 элементов	0,083185	0,080179	
10000 элементов	0,233643	0,227567	

Как можно видеть, особо существенной разницы в зависимости от типа ввода нет. Разброс скорее обусловлен степенью начальной сортировки контейнера. Но файловый ввод все же слегка медленнее, так как требуется время, чтобы прочитать данные из файла.

Заключение

Объектно-ориентированный подход с использованием статической типизации показал заметно лучшие результаты как по времени (что для меня было немного неожиданным), так и по памяти (вполне ожидаемо). Память уменшилась в связи с тем, что в обобщенном ТС теперь не хранятся ссылки на каждое из возможных ТС. Кроме того, ООП позволяет писать более чита-бельный и лаконичный код с возможностью переиспользования кода (что так же отразилось на размерах исходников) (за счет методов класса и наследования). Однако опять же, ОПП в С++ заметно слабее (по удобности и возможностям) чем в том же С# или Java. Но, безусловно, даже так ООП подход кажется намного лучше процедурного.