2022-2023: TD 5

1 Autour du théorème de Lévy

Dans cette section, nous donnons une version plus détaillée du théorème de continuité de Lévy.

Théorème 1 – *Continuité de Lévy*. Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires réelles. On suppose qu'il existe une fonction $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ telle que pour tout $t \in \mathbb{R}$, $\varphi_{X_n}(t) \xrightarrow[n \to +\infty]{} \varphi(t)$. Alors les assertions suivantes sont équivalentes.

- 1. La suite $(X_n)_{n\geq 0}$ converge en loi vers une variable aléatoire réelle X.
- 2. La suite $(X_n)_{n\geq 0}$ est tendue, c'est-à-dire que $\lim_{x\longrightarrow +\infty} \left(\sup_{n\geq 0} \mathbb{P}(|X_n|>x)\right)=0$
- 3. φ est la fonction caractéristique d'une variable aléatoire réelle X.
- 4. φ est continue sur \mathbb{R} .
- 5. φ est continue en 0.

On pourra se référer à [1, Thm. 3.3.17] pour une démonstration de ce théorème.

Exercice 1 – Convergence des fonctions caractéristiques mais pas convergence en loi. Trouver une suite de variables aléatoires réelles $(X_n)_{n\geq 0}$ qui ne converge pas en loi, mais telle que la suite des fonctions caractéristiques φ_{X_n} converge ponctuellement.

Exercice 2 – *Limite en loi de lois normales*. Quelles peuvent être les limites en loi d'une suite de variables aléatoires $(X_n)_{n\geq 0}$ où X_n suit une loi normale $\mathcal{N}(a_n,b_n)$ avec $a_n\in\mathbb{R}$ et $b_n\in\mathbb{R}_+$?

2 Divers

Exercice 3 – *Polynômes de Bernstein*. On veut donner une preuve probabiliste (et constructive) du théorème de Stone-Weierstrass sur [0,1]. Soit f une fonction continue de [0,1] dans \mathbb{R} . On définit, pour $n \ge 0$, la fonction polynomiale sur [0,1].

$$P_n: x \mapsto P_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

- 1. En écrivant $P_n(x) = \mathbb{E}\left[f\left(\frac{S_n}{n}\right)\right]$ où S_n suit la loi binomiale de paramètres (n,x), justifier la convergence simple de P_n vers f sur [0,1].
- 2. Soit $\delta > 0$. On note $\omega(f, \delta) = \sup\{|f(x) f(y)| | |x y| < \delta\}$ le module de continuité de f. Justifier l'inégalité

$$|f(x) - P_n(x)| \le \omega(f, \delta) + 2||f||_{\infty} P\left(\left|\frac{S_n}{n} - x\right| > \delta\right)$$

et en déduire une majoration de $||f - P_n||_{\infty}$. Conclure.

Exercice 4 – *Convergence des images*. Soit $(X_n)_n$ une suite de v.a. à valeurs dans \mathbb{R}^d , et X une v.a. à valeurs dans \mathbb{R}^d . Soit φ une fonction continue de \mathbb{R}^d dans \mathbb{R}^m . Montrer que $X_n \stackrel{n}{\to} X$ implique $\varphi(X_n) \stackrel{n}{\to} \varphi(X)$ pour les convergences p.s. en probabilité et en loi.

Exercice 5 – *Loi de Gumbel*. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées de loi exponentielle $\mathcal{E}(\lambda)$. Pour tout $n\in\mathbb{N}^*$, posons

$$M_n = \max_{k \in \llbracket 1,n \rrbracket} X_k.$$

- 1. Démontrer que la suite de variable aléatoire $(\lambda M_n \ln(n))_{n \ge 1}$ converge en loi. Déterminer la loi limite.
- 2. On souhaite démontrer que $\underbrace{M_n}_{\ln(n)} \xrightarrow[n \to +\infty]{p.s.} \frac{1}{\lambda}$.
 - (a) Démontrer que pour tout $\varepsilon > 0$,

$$\mathbb{P}\left(\liminf_{n \to +\infty} \left\{ \frac{M_n}{\ln(n)} > \frac{1}{\lambda} - \varepsilon \right\} \right) = 1.$$

(b) Démontrer que pour une suite $(n_k)_{k\geq 0}$ d'entiers bien choisis, on a pour tout $\varepsilon > 0$,

$$\mathbb{P}\left(\limsup_{k \to +\infty} \left\{ \frac{M_{n_k}}{\ln(n_k)} \le \frac{1}{\lambda} + \varepsilon \right\} \right) = 1.$$

(c) Conclure.

Exercice 6 – *Effacement des sauts de Poisson*. Soit $(N_t)_{t\geq 0}$ un processus de Poisson d'intensité $\lambda > 0$ d'instants de sauts $(T_n)_{n\geq 1}$. On propose d'effacer des sauts de $(N_t)_{t\geq 0}$ avec une probabilité $p\in]0,1[$ et donc de considérer un processus $(\tilde{N}_t)_{t\geq 0}$ avec moins de sauts que ceux de $(N_t)_{t\geq 0}$. Pour cela, on considère une suite $(\zeta_n)_{n\geq 0}$ de v.a. de Bernoulli de paramètre $p\in]0,1[$. On suppose la suite $(\zeta_n)_{n\geq 0}$ indépendante du processus $(N_t)_{t\geq 0}$ et on définit

$$\forall t>0, \quad \tilde{N}_t=\sum_{n>1}\mathbbm{1}_{T_n\leq t}\zeta_n\;.$$

1. Soit f une fonction mesurable positive sur \mathbb{R}_+ et $g_p(t) = -\log(1 - p + pe^{-f(t)})$ pour tout $t \ge 0$. Montrer que

$$\mathbb{E}\left[e^{-\sum_{n\geq 1}g_p(T_n)}\right] = e^{-\lambda p \int_0^{+\infty}(1-e^{-f(t)})dt}.$$

2. En déduire que $(\tilde{N}_t)_{t\geq 0}$ est un processus de Poisson d'intensité $p\lambda$.

Références

[1] R. Durrett, *Probability. Theory and examples*, vol. 49. Cambridge: Cambridge University Press, 2019. Disponible à l'adresse: https://services.math.duke.edu/~rtd/PTE/PTE5_011119.pdf.