Navjinder Singh Virdee

+91-9592603034 navjindervirdee@gmail.com www.linkedin.com/in/navjindervirdee www.github.com/navjindervirdee

Computer Science and Machine Learning Student

A final-year *Computer Engg* student at **Thapar University.** Throughout my academic years, I have always been amongst the **top students**, and would continue to do my best in the future as well. Completed **Deep Learning Specialization**, **Machine Learning Course** and **Data Structures and Algorithms Specialization** from Coursera. I enjoy participating in online competitive coding contests and machine learning challenges on CodeChef, HackerRank, and Kaggle.

Education

B.E in Computer Engineering Thapar University, Punjab, India	C.G.P.A - 8.95 Graduation - 2019
Class XII (CBSE) Budha Dal Public School, Punjab, India	Percentage - 94%(PCM) Year - 2015
Class X (CBSE) Budha Dal Public School, Punjab, India	C.G.P.A - 10.0 Year - 2013

Work Experience

Software Developer Intern

Times Internet Limited, Times Group

Jun 2016 - Jul 2016

Build a **Search Suggester**, based on the queries searched by the users, for **Dineout** website. My task was to design and implement a program which would take all the searched queries of the past 7 days, as Input everyday, then computes the most popular queries and stores them as suggestions in the database. Used **Eclipse IDE** and **Java** language to develop the project and **MySQL** DBMS for storing the computed suggestions in the database.

Projects

AI Plays 2048 (Deep Reinforcement Learning)

2018

The task was to teach the computer to play 2048 game by itself without any kind of human help. Trained a Deep Q Network using a Convolutional Neural Network to play the famous 2048 game. Used Python to develop the project and achieved a highest tile of 4096 in the game.

Neural Networks from Scratch

2018

Implemented LSTM, CNN, NN using only Numpy library. Used Python to develop the project in Jupyter Notebook.

- Long Short-Term Memory Network: Predicted people's first names by training the algorithm on a dataset of 20,000 names. Achieved a perplexity score of 1.05.
- **Convolutional Neural Network:** Classified HandWritten images of digits (0-9) by training the algorithm on a dataset of 30,000 images of 28x28 pixels. Achieved an accuracy of 87% on test dataset.
- Neural Network: Implemented one-hidden layer neural network to classify the Iris dataset. Achieved accuracy of 97%

Assembled Phi X174 Genome Using Overlap Graph, K-mer Composition, DeBruijn Graph

2017

This Capstone Project was part of Data Structures and Algorithms Specialization on Coursera. In this Project I:

- Developed algorithms for constructing overlap and debruijn graphs.
- Developed two algorithms for detecting and correcting the errors in the reads:
 - Tip removal algorithm
 \$\dots\$ Bubble detection and removal algorithm
- Developed the following algorithms for finding cycles in the directed graphs:
 - Eulerian Cycle algorithm
 Greedy Hamiltonian Cycle algorithm

Advanced Shortest Paths - Contraction Hierarchies Algorithm, Bidirectional Dijkstra, A-star Algorithm

This project was part of Algorithms on Graphs course on Coursera. The task was to implement following algorithms:

- Implemented **Contraction Hierarchies Algorithm**, learned to improve the efficiency of the algorithm by *pre-processing* the graph. Learned about working of algorithms used in navigation apps.
- Developed A-star Algorithm, and learned to use *coordinates* to improve the efficiency of the algorithm by doing a directed search in the graph.
- Developed Bidirectional Dijkstra Algorithm, and learned about its applications in the social networks.

Professional Development

Deep Learning Specialization(Coursera)

Jan - April 2018

- Neural Networks and Deep Learning & Improving Neural Networks
 - Understood the major technology trends driving Deep Learning.
 - Easily able to implement and train efficient (vectorized) deep neural networks.
 - Understood the concepts of hyperparameter tuning, regularization and optimization.
 - Learned about how to apply end-to-end learning, transfer learning, and multi-task learning.
- Convolution Networks and Sequence Models
 - Understood how to build a convolutional neural network, including recent variations such as residual networks.
 - Learned to apply CNN for Face Detection, Neural Style Transfer and Object Detection.
 - Learned how to build and train Recurrent Neural Networks (RNNs), and commonly-used variants such as GRUs and LSTMs.
 - Learned to apply sequence models to natural language problems, including text synthesis.

Machine Learning Course(Coursera)

Jun - Jul 2017

- Learned Supervised Algorithms parametric/non-parametric algorithms, SVM, kernels, neural networks.
- Learned Unsupervised Algorithms clustering, dimensionality reduction, recommender systems.
- Learned bias/variance theory; innovation process in machine learning and Al.
- Learned ways to apply learning algorithms to building smart robots, text understanding, computer vision, and other areas.

Data Structures and Algorithms Specialization(Coursera)

Jan - Jun 2017

- Algorithmic ToolBox & Data Structures:
 - o Learned algorithmic techniques Dynamic programming, Divide and Conquer, Greedy Algorithms.
 - Learned about tradeoffs and time complexities involved in using each data structure -Big-O notation,
 Amortised Analysis.
 - Implemented advanced data-structures-Hash Tables, Trees, Priority-Queues, Disjoint Sets, Lists.
- Algorithms on Graphs and Strings:
 - Learned **shortest paths algorithms** from the basic ones to those which open door for 1000000 times faster algorithms used in Google Maps and other navigational services.
 - Learned minimum spanning trees which are used to plan road and computer networks and also find applications in clustering and approximate algorithms.
 - Learned search algorithms used by search engines to make sense of all text information and make search
 efficient and to find disease-causing mutations in the human genome.

Honors and Awards

- Received Merit Scholarship, for being in top 10% amongst 423 COE students in 2016-2017.
- Awarded Gold Medal for being in the top 4% amongst 12,760 participants in Week of Code 36 (Hackerrank).
- Achieved 4th position (Country-Rank) in the Rookie Rank 4 competitive coding contest(HackerRank).
- Amongst the top 10% out of 9000 participants on Kaggle in Titanic: ML from Disaster Challenge.