2 L'entropie de Shannon en tant que borne

2.1 Trouver l'intrus, version Roberval

On dispose de 9 pièces, l'une d'elles est fausse et son poids diffère de celui des autres pièces (disons de 10%). On se pose deux questions :

- Q1 trouver la fausse pièce sachant qu'elle est plus lourde que les autres,
- Q2 trouver la fausse pièce et déterminer si elle est plus ou moins lourde que les autres.

Pour répondre à ces questions, le seul outil à disposition est une balance de type Roberval (figure 1) qui permet seulement des pesées comparatives (la balance est en équilibre, penche à gauche ou penche à droite).

Questions générales. -

- 1. Quelle est la quantité d'information maximale que peut apporter une pesée?
- 2. Quelle première pesée choisir pour glaner le maximum d'information?

Résolution de Q1. -

- 1. Quelle est l'entropie de la question Q1?
- 2. Est-il toujours possible de trouver la fausse pièce en une seule pesée? Pourquoi? Et en deux pesées?
- 3. Comment isoler pratiquement la fausse pièce à la deuxième pesée ?

Résolution de Q2. -

[Une solution plus formelle avec entropies conditionnelles sera également possible si le cours est suffisamment avancé avant le TD.]

On souhaite maintenant non seulement identifier la fausse pièce mais également savoir si elle est plus ou moins lourde que les autres (question Q2).

- 1. Quelle est l'entropie de la question Q2?
- 2. La première pesée utilisée pour Q1 étant optimale, elle est réutilisée pour Q2. Supposons qu'à cette première pesée, la balance penche à gauche : cela implique que la fausse pièce se trouve parmi les 6 pièces présentes sur les plateaux. 2 pesées sont elles suffisantes pour trouver une fausse pièce parmi 6 ET savoir si elle est plus lourde ou plus légère que les vraies pièces?
- 3. Donner une procédure pratique en 3 pesées au maximum permettant de déterminer laquelle des pièces est fausse et de savoir si elle est plus ou moins lourde que les autres.

2.2 Trouver l'intrus, version Columbo

On dispose maintenant d'une balance numérique (figure 2) qui fonctionne de 0 à 1 kg par pas de 0.1g.

La masse d'une pièce authentique est de 10 g.

FIGURE 1 – Balance de Roberval. Gilles Personne de Roberval (mathématicien et physicien français 1602-1675).

FIGURE 2 – Balance numérique

5 sacs contiennent des pièces, dans l'un d'eux les pièces sont fausses et pèsent chacune 0.5 g de moins que les vraies pièces.

Pour utiliser la balance, on peut prendre le nombre de pièces souhaité dans chaque sac.

- 1. Donner un encadrement de l'entropie de la balance.
- 2. Les sacs contiennent chacun 37 pièces. Est-il possible d'identifier le sac de fausses pièces en une seule pesée?
- 3. Même question si les sacs contiennent chacun 3 pièces.