# 目录

| 自动  | n控制系统的基本概念                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1 | 控制系统的分类                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.2 | 控制系统的元件和信号                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.3 | 控制系统的基本要求                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 线性  | 连连续系统的数学模型                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.1 | 微分方程与传递函数                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 2.1.1 微分方程模型                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 2.1.2 拉普拉斯变换(Laplace Transform)                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 2.1.3 复数域模型                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 2.1.4 典型环节                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.2 | 系统框图                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 2.2.1 框图的结构变换                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 2.2.2 梅森 (Mason) 公式                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 线性  | 连连续系统的时域分析                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.1 | 动态性能指标                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.2 | 一阶系统                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 3.2.1 单位阶跃相应                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 3.2.2 一阶系统单位响应的特点                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.3 | 二阶系统                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 3.3.1 二阶系统的单位阶跃响应                                                 | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 3.3.2 具有零点的二阶系统的单位阶跃响应                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 3.3.3 二阶系统的单位脉冲响应                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 3.3.4 二阶系统的单位斜坡响应                                                 | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.4 | 高阶系统                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 3.4.1 典型三阶系统                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 3.4.2 一般的高阶系统                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.5 | 时域稳定性分析                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 3.5.1 劳斯(Routh)判据                                                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.6 | 稳态误差                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                                                   | Ι1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 根幼  | ]<br>]迹分析                                                         | .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.0 |                                                                   | L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 1.1<br>1.2<br>1.3<br>线性<br>2.1<br>2.2<br>3.3<br>3.4<br>3.5<br>3.6 | 1.1 控制系統的分类 1.2 控制系統的元件和信号 1.3 控制系統的基本要求   线性连续系統的数学模型 2.1 微分方程与传递函数 2.1.1 微分方程模型 2.1.2 拉普拉斯变换(Laplace Transform) 2.1.3 复数域模型 2.1.4 典型环节 2.2 系统框图 2.2.1 框图的结构变换 2.2.2 梅森(Mason)公式  线性连续系统的时域分析 3.1 动态性能指标 3.2 一阶系统 3.2 一阶系统 3.2 一阶系统 3.3.1 二阶系统单位响应的特点 3.3.2 具有零点的二阶系统的单位阶跃响应 3.3.2 具有零点的二阶系统的单位阶跃响应 3.3.3 二阶系统的单位阶跃响应 3.3.4 二阶系统的单位财跃响应 3.3.1 二阶系统的单位财跃响应 3.3.1 二阶系统的单位财跃响应 3.3.1 二阶系统的单位财政响应 3.3.2 具有零点的二阶系统的单位阶跃响应 3.3.3 二阶系统的单位财政响应 3.3.4 二阶系统的单位财政响应 3.3.6 高阶系统 3.4.1 典型三阶系统 3.4.1 典型三阶系统 3.4.1 水型三阶系统 3.4.1 水型三阶系统 3.4.1 水型三阶系统 3.4.2 型的高阶系统 3.4.1 水型三阶系统 4.1 公司系统 |

| 5 | 线性  | 连续系   | 统的频域分析            | 14 |
|---|-----|-------|-------------------|----|
|   | 5.1 | 控制系   | 统的频率特性            | 14 |
|   |     | 5.1.1 | 三种图形表示            | 14 |
|   |     | 5.1.2 | 典型环节的频率特性         | 14 |
|   |     | 5.1.3 | 系统开环频率特性绘制        | 15 |
|   | 5.2 | 闭环系   | 统频域稳定性分析          | 16 |
|   |     | 5.2.1 | 奈奎斯特(Nyquist)稳定判据 | 16 |
|   |     | 5.2.2 | 对数频率稳定判据          | 16 |
|   |     |       |                   |    |

# 1 自动控制系统的基本概念

#### 1.1 控制系统的分类

按是否满足叠加性和齐次性分为: 线性系统 or 非线性系统

按参数是否随时间变化分为: 定常(时不变)系统 or 时变系统(非线性系统: 自治系统 or 非自治系统)按信号的连续性分为: 连续系统 or 离散系统

按输入输出的数目分为: 单输入单输出系统(SISO)or 多输入多输出系统(MIMO)按是否存在反馈回路分为: 开环控制系统 or 闭环控制系统



图 1: 开环控制系统结构框图



图 2: 闭环控制系统结构框图

## 1.2 控制系统的元件和信号

表 1

| 测量元件 | 检测被控制的物理量                     |
|------|-------------------------------|
| 给定元件 | 给出与期望的被控量相对应的系统输入量            |
| 比较元件 | 求出测量元件测量的被控量实际值与给定元件给出的输入量的偏差 |
| 放大元件 | 将比较元件给出的偏差信号进行放大,推动执行元件控制被控对象 |
| 执行元件 | 直接推动被控对象使其被控量发生变化             |
| 校正元件 | 用串联或反馈的方式连接在系统中,以改善系统的性能      |

表 2: 系统的信号

| 输入信号 | r(t)                                      |
|------|-------------------------------------------|
| 输出信号 | y(t)                                      |
| 反馈信号 | b(t)                                      |
| 偏差信号 | $\varepsilon(t) = r(t) - f(t)$            |
| 误差信号 | $e(t) = y_r(t) - y(t) \label{eq:epsilon}$ |
| 干扰信号 | f(t)                                      |

#### 1.3 控制系统的基本要求

(1) 稳定性; (2) 快速性; (3) 平稳性; (4) 准确性。

# 2 线性连续系统的数学模型

#### 2.1 微分方程与传递函数

## 2.1.1 微分方程模型

根据实际物理规律列出微分方程,通式为:

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = b_m r^{(n)} + b_{m-1} r^{(m-1)} + \dots + b_1 r' + b_0 r^{(m-1)} + \dots + b_1 r' +$$

| Type of<br>Element | Physical<br>Element    | Governing<br>Equation                     | Energy <i>E</i> or Power 𝔻                     | Symbol                                                                                |
|--------------------|------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|
|                    | Electrical inductance  | $v_{21} = L \frac{di}{dt}$                | $E = \frac{1}{2}Li^2$                          | $v_2 \circ \overbrace{\qquad \qquad }^L \circ v_1$                                    |
|                    | Translational spring   | $v_{21} = \frac{1}{k} \frac{dF}{dt}$      | $E = \frac{1}{2} \frac{F^2}{k}$                | $v_2 \circ f$                                                                         |
| Inductive storage  | Rotational spring      | $\omega_{21} = \frac{1}{k} \frac{dT}{dt}$ | $E = \frac{1}{2} \frac{T^2}{k}$                | $\omega_2 \circ \bigcap^k \circ \uparrow_T$                                           |
|                    | Fluid inertia          | $P_{21} = I \frac{dQ}{dt}$                | $E = \frac{1}{2}IQ^2$                          | $P_2 \circ \bigcap^I Q \circ P_1$                                                     |
|                    | Electrical capacitance | $i = C \frac{dv_{21}}{dt}$                | $E = \frac{1}{2}Cv_{21}^2$                     | $v_2 \circ \stackrel{i}{\longrightarrow}   \stackrel{C}{\longrightarrow} v_1$         |
|                    | Translational mass     | $F = M \frac{dv_2}{dt}$                   | $E = \frac{1}{2}Mv_2^2$                        | $F \longrightarrow v_2 \qquad M \qquad v_1 = constant$                                |
| Capacitive storage | Rotational mass        | $T = J \frac{d\omega_2}{dt}$              | $E = \frac{1}{2}J\omega_2^2$                   | $T \longrightarrow \omega_1 = 0$ constant                                             |
|                    | Fluid capacitance      | $Q = C_f \frac{dP_{21}}{dt}$              | $E = \frac{1}{2} C_f P_{21}^2$                 | $Q \xrightarrow{P_2} C_f \longrightarrow P_1$                                         |
|                    | Thermal capacitance    | $q=C_t\frac{d\mathcal{T}_2}{dt}$          | $E=C_t\mathcal{I}_2$                           | $q \xrightarrow{\mathfrak{T}_2} C_l \xrightarrow{\mathfrak{T}_1} =$ constant          |
|                    | Electrical resistance  | $i=\frac{1}{R}v_{21}$                     | $\mathcal{P} = \frac{1}{R} v_{21}^2$           | $v_2 \circ \xrightarrow{R} \stackrel{i}{\longrightarrow} v_1$                         |
|                    | Translational damper   | $F=bv_{21}$                               | $\mathcal{P}=bv_{21}{}^2$                      | $F \xrightarrow{v_2} b v_1$                                                           |
| Energy dissipators | Rotational damper      | $T = b\omega_{21}$                        | $\mathcal{P}=b\omega_{21}^{2}$                 | $T \xrightarrow{\omega_2} b \circ \omega_1$                                           |
|                    | Fluid resistance       | $Q = \frac{1}{R_f} P_{21}$                | $\mathcal{P}=\frac{1}{R_f}P_{21}{}^2$          | $P_2 \circ \stackrel{R_f}{\longrightarrow} Q \circ P_1$                               |
|                    | Thermal resistance     | $q=\frac{1}{R_t}\mathcal{T}_{21}$         | $\mathcal{P} = \frac{1}{R_t} \mathcal{T}_{21}$ | $\mathcal{T}_2 \circ \overset{R_1}{\longrightarrow} \overset{q}{\circ} \mathcal{T}_1$ |

图 3: 三种常见系统的模型

#### 2.1.2 拉普拉斯变换(Laplace Transform)

正变换:  $F(s) = \mathcal{L}[f(t)] = \int_{0^-}^{\infty} f(t) \mathrm{e}^{-st} \mathrm{d}t$ 逆变换:  $f(t) = \mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi\mathrm{j}} \int_{\sigma-\mathrm{j}\infty}^{\sigma+\mathrm{j}\infty} F(s) \mathrm{e}^{st} \mathrm{d}s$ 

#### 拉普拉斯变换的性质

- 线性:  $af(t) + bg(t) \stackrel{\mathcal{L}}{\longleftrightarrow} aF(s) + bG(s)$
- 时移性质:  $f(t-t_0) \stackrel{\mathcal{L}}{\longleftrightarrow} \mathrm{e}^{-st_0} F(s)$
- 尺度变换:  $f(at) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{a} F(\frac{s}{a})$
- 频移性质:  $e^{-at}f(t) \stackrel{\mathcal{L}}{\longleftrightarrow} F(s+a)$
- 微分性质:  $\frac{\mathrm{d}^n}{\mathrm{d}t^n}f(t) \stackrel{\mathcal{L}}{\longleftrightarrow} s^nF(s) s^{n-1}f(0^-) s^{n-2}f'(0^-) \cdots f^{(n-1)}(0^-)$
- 积分性质:  $\int_0^t f(\tau) \mathrm{d} \tau \overset{\mathcal{L}}{\longleftrightarrow} \frac{F(s)}{s}$
- 卷积定理:  $f(t) * g(t) \stackrel{\mathcal{L}}{\longleftrightarrow} F(s)G(s)$
- 初值定理:  $\lim_{t\to 0^+} f(t) = \lim_{s\to\infty} sF(s)$

• 终值定理: F(s) 在虚轴和右半平面不存在极点且在原点处至多有一阶极点,  $\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$ 

#### 2.1.3 复数域模型

在零初始值的条件下,对微分方程进行拉氏变换得到复数域模型:

$$(a_ns^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0)Y(s)=(b_ms^n+b_{m-1}s^{m-1}+\cdots+b_1s+b_0)R(s)$$
 则传递函数 
$$G(s)=\frac{Y(s)}{R(s)}=\frac{b_ms^n+b_{m-1}s^{m-1}+\cdots+b_1s+b_0}{a_ns^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0}$$
 两种常用形式:

• 尾 1 标准型 (时间常数形式): 
$$G(s) = \frac{b_0}{a_0} \frac{d_m s^n + d_{m-1} s^{m-1} + \dots + d_1 s + 1}{c_n s^n + c_{n-1} s^{n-1} + \dots + c_1 s + 1} = K \frac{\prod\limits_{i=1}^m (T_i s + 1)}{\prod\limits_{i=1}^n (t_i s + 1)}$$

• 首 1 标准型 (零极点形式): 
$$G(s) = \frac{b_n}{a_n} \frac{s^n + h_{m-1}s^{m-1} + \dots + h_1s + h_0}{s^n + l_{n-1}s^{n-1} + \dots + l_1s + l_0} = K_g \frac{\prod\limits_{i=1}^m (s - z_i)}{\prod\limits_{j=1}^n (s - s_j)}$$

传递函数一般为有理真分式,分母次数大于等于分子次数,传递函数只取决于系统的结构和参数,与输入、输出的位置有关,但与输入信号无关,与单位脉冲响应互为拉氏变换对。

#### 2.1.4 典型环节

- 1. 比例环节: y(t) = Kr(t), G(s) = K
- 2. 惯性环节:  $Ty'(t) + y(t) = r(t), G(s) = \frac{1}{Ts+1}$
- 3. 积分环节:  $Ty'(t) = r(t), G(s) = \frac{1}{Ts}$

4. 振荡环节: 
$$T^2y''(t) + 2T\zeta y'(t) + y(t) = r(t)(0 < \zeta < 1), G(s) = \frac{1}{Ts^2 + 2\zeta Ts + 1} = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$$

- 5. 微分环节: y(t) = Tr'(t), G(s) = Ts
- 6. 一阶复合微分环节:  $G(s) = \frac{T_1 s}{T_2 s + 1}$
- 7. 延迟环节:  $y(t) = r(t \tau), G(s) = e^{-\tau s}$

#### 2.2 系统框图

#### 2.2.1 框图的结构变换

开环传递函数 G(s)H(s), 闭环传递函数  $\Phi(s)=\frac{Y(s)}{R(s)}=\frac{G(s)}{1+G(s)H(s)}$ 方框图:每个环节用方框表示,框中表明环节的传递函数,根据信号传递关系将各方框连接起来。



图 4: 方框图的基本单元

节点:用以表示信号或变量的点。节点所表示的变量等于流入该节点的信号之和,从节点流出的每一条分 支的信号都等于该节点所表示的变量。

支路:连接两个节点,并在中间用箭头标出信号流向的定向线段。支路的增益称为传输。

通路:沿箭头所指方向从一个节点穿过各相连支路到另一个节点。

前向通路:信号从输入节点向输出节点传递且每个节点只通过一次的通路。

回路: 起点和终点是同一节点且信号通过每个节点不多于一次的闭合通路。

| 变 | 换     | 原框图                                                                                                                | 等效 框图                                                                                                 |
|---|-------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1 | 分支点前移 | A G AG AG                                                                                                          | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                  |
| 2 | 分支点后移 | A G AG A                                                                                                           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                 |
| 3 | 相加点前移 | $ \begin{array}{c} A \\ \hline G \end{array} AG +  $ $ \begin{array}{c} AG - B \\ \hline B \end{array} $           | $ \begin{array}{c c} A + \bigotimes_{G} A - B & AG - B \\ B / G & 1 / G & B \end{array} $             |
| 4 | 相加点后移 | $\underbrace{A + \bigotimes_{B} A - B}_{G} AG - BG$                                                                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                 |
| 5 | 变单位反馈 | $A + \bigotimes_{G} B$                                                                                             | <u>A</u> 1/H + G G B                                                                                  |
|   | 相加加   | $ \begin{array}{c c} A + & A - B \\ \hline  & A - B \end{array} $                                                  | $ \begin{array}{c c}  & A-B \\  & + \bigotimes A-B \\  & + \bigotimes A-B \\  & - B \end{array} $     |
| 6 | 点变    |                                                                                                                    | <u>A + </u>                                                                                           |
|   | 换     | $ \begin{array}{c c} A + \bigotimes_{-B} A - B + \bigotimes_{-B + C} A - B + C \\ & + \downarrow_{C} \end{array} $ | $ \begin{array}{c c} A + \bigotimes_{A+C} + \bigotimes_{A-B+C} \\ + \mid_{C} - \mid_{B} \end{array} $ |

(a) 方框图的结构变换

| 方框 图                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 信号流图                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R(s) $G(s)$ $Y(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $R(s) \qquad G(s) \qquad Y(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c c} R(s) & E(s) & G(s) \\ \hline & + & - & - \\ \hline & & - & - \\ \hline & & & - \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R(s) = 1 - E(s) G(s) - Y(s) 1 - Y(s) $-H(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \underbrace{F(s)}_{F(s)} \underbrace{G_2(s)}_{F(s)} \underbrace{F(s)}_{G_2(s)} \underbrace{F(s)}_{F(s)} \underbrace{F(s)}_{F(s)}$ | $R(s)  1  E(s)  G(s)  \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{array}{c c} R(s) & E(s) \\ \hline H(s) & F(s) \\ \hline H(s) & F(s) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $R(s) = E(s)G(s) \begin{pmatrix} F(s) \\ 1 \\ Y(s)1 \\ Y(s)1 \end{pmatrix} \begin{pmatrix} Y(s) \\ Y($ |
| $R_1(s)$ $G_1(s)$ $G_2(s)$ $G_2(s)$ $G_2(s)$ $G_2(s)$ $G_2(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $R_{1}(s) \qquad G_{1}(s) \qquad Y_{1}(s)$ $R_{2}(s) \qquad G_{2}(s)$ $Y_{2}(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

(b) 方框图和信号流图的转换

#### 2.2.2 梅森 (Mason) 公式

$$P = \frac{1}{\Lambda} \sum P_k \Delta_k$$

$$\begin{split} P &= \frac{1}{\Delta} \sum P_k \Delta_k \\ \Delta &\text{ $\mathbb{A}$}$$
 系统框图的特征式,  $\Delta = 1 - \sum_a L_a + \sum_{bc} L_b L_c - \sum_{def} L_d L_e L_f + \cdots \end{split}$ 

 $\sum_a L_a$  所有回路增益之和;  $\sum_a L_b L_c$  每两个互不接触的回路增益乘积之和;  $\sum_{def} L_d L_e L_f$  每三个互不接触回路增益乘积之和;  $\sum_{def} L_d L_e L_f$ 

 $P_k$  第 k 条前向回路的通路增益;

 $\Delta_k$  在  $\Delta$  中去除与第 k 条前向通路相接触的(有公共节点)回路后的特征式,称为余因式;

#### 线性连续系统的时域分析 3

| 表 3: 典型输入信号 |
|-------------|
|-------------|

| 信号名称    | 像原函数                                                                                                                    | 像函数             |
|---------|-------------------------------------------------------------------------------------------------------------------------|-----------------|
| 单位冲激信号  | $\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases} \qquad \int_{-\infty}^{+\infty} \delta(t) dt = 1$ | 1               |
| 单位阶跃信号  | $u(t) = 1(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$                                                        | $\frac{1}{s}$   |
| 单位斜坡信号  | $r(t) = \begin{cases} t & t > 0 \\ 0 & t < 0 \end{cases}$                                                               | $\frac{1}{s^2}$ |
| 单位加速度信号 | $r(t) = \begin{cases} \frac{1}{2}t^2 & t > 0\\ 0 & t < 0 \end{cases}$                                                   | $\frac{1}{s^3}$ |

线性定常系统 (LTI) 的特性:系统对输入信号导数的响应等于系统对该输入信号响应的导数;系统对输入 信号积分的响应等于系统对该输入信号响应的积分。

#### 3.1 动态性能指标

延迟时间  $t_d$ : 系统响应从 0 上升到稳态值的 50% 所需的时间。

上升时间  $t_r$ : 对于振荡系统,系统响应从 0 上升到稳态所需的时间;对于无振荡系统,系统响应从稳态值 的 10% 上升到 90% 所需的时间。

峰值时间  $t_p$ : 系统响应第一次达到最大峰值的时间。

调节时间  $t_s$ : 系统响应与稳态值之差达到并维持误差  $\Delta$  所需的最小时间。

(最大)超调量  $\sigma\%$ : 系统响应超出稳态值的最大偏移量, $\sigma\%:=\frac{y(t_p)-y(\infty)}{y(\infty)}\times 100\%$ 据基本数 M 调节时间,中国中华

振荡次数 N: 调节时间  $t_s$  内,响应偏离稳态值的次数。

#### 3.2 一阶系统

#### 3.2.1 单位阶跃相应

系统闭环传递函数 
$$G(s)=\frac{1}{Ts+1}$$
 输入  $r(t)=u(t), R(s)=\frac{1}{s}$  输出  $Y(s)=G(s)R(s)=\frac{1}{(Ts+1)s}, y(t)=1-\mathrm{e}^{-\frac{t}{T}}$  误差  $e(t)=1-y(t)=\mathrm{e}^{-\frac{t}{T}}$ 



图 6: 单位阶跃响应

#### 单位阶跃响应动态指标

$$\begin{split} t_d &= -T \ln 0.5 = 0.69T \\ t_r &= t_{0.9} - t_{0.1} = -T \ln \frac{0.1}{0.9} = 2.2T \\ t_s &= 3T(\Delta = 5\%) \end{split}$$

#### 3.2.2 一阶系统单位响应的特点

单位阶跃响应:  $y(t) = 1 - e^{-\frac{t}{T}}$ ,输出 y(t) 是初值为 0、终值为 1 的单调连续上升过程,稳态误差为 0. 单位脉冲响应:  $y(t) = \frac{1}{T}e^{-\frac{t}{T}}$ ,输出 y(t) 是初值为 1/T、终值为 0 的单调连续下降过程,稳态误差为 0。 单位斜坡响应:  $y(t) = t - T(1 - e^{-\frac{t}{T}})$ ,输出 y(t) 是初值为 0 的单调连续上升过程,终值趋于 r(t) - T,稳态误差为 T。





#### 3.3 二阶系统

闭环传递函数:  $G(s)=\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}$ ,其中  $\omega_n$  为无阻尼振荡频率, $\zeta$  为阻尼比特征方程:  $D(s)=s^2+2\zeta\omega_ns+\omega_n^2$ ,极点  $s_{1,2}=-\zeta\omega_n\pm\omega_n\sqrt{\zeta^2-1}$ 

#### 3.3.1 二阶系统的单位阶跃响应

## **3.3.1.1** 过阻尼( $\zeta > 1$ )

$$\begin{split} y(t) &= 1 - \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} (T_1 \mathrm{e}^{-\frac{t}{T_1}} - T_2 \mathrm{e}^{-\frac{t}{T_2}}) \\ \mathrm{其中时间常数} \ T_1 &= -\frac{1}{s_1} = \frac{1}{\omega_n (\zeta - \sqrt{\zeta^2 - 1})}, T_2 = -\frac{1}{s_2} = \frac{1}{\omega_n (\zeta + \sqrt{\zeta^2 - 1})} \\ \mathrm{以负指数上升至稳态值} \ 1, \ 无振荡,无稳态误差。 \end{split}$$

## **3.3.1.2** 临界阻尼( $\zeta = 1$ )

$$s_{1,2}=-\omega_n, y(t)=1-\mathrm{e}^{-\omega_n t}(1+\omega_n t)$$

**3.3.1.3** 欠阻尼(0<ζ<1)



图 8: 二阶系统的单位阶跃响应

$$\begin{split} s_{1,2} &= -\zeta \omega_n \pm \mathrm{j} \omega_n \sqrt{1-\zeta^2} = -\sigma \pm \mathrm{j} \omega_d \\ y(t) &= 1 - \frac{\mathrm{e}^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \sin(\omega_d t + \arccos \zeta) \end{split}$$

以指数为包络线衰减的正弦振荡,衰减速度取决于阻尼系数  $\sigma = \zeta \omega_n$ ,稳态分量为 1,无稳态误差。

#### 欠阻尼过程的动态性能:

峰值时间: 令 
$$\frac{\mathrm{d}y(t)}{\mathrm{d}t}\big|_{t=t_p}=0$$
,得  $t_p=\frac{\pi}{\omega_d}=\frac{\pi}{\omega_n\sqrt{1-\zeta^2}}$  超调量:  $\sigma\%=(y(t_p)-1)\times 100\%=\mathrm{e}^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}\times 100\%$  上升时间:  $t_r=\frac{\pi-\arccos\zeta}{\omega_n\sqrt{1-\zeta^2}}$  调节时间:  $p_r=\frac{\mathrm{e}^{-\zeta\omega_n t_s}}{\omega_n\sqrt{1-\zeta^2}}$ 

调节时间: 取 
$$\frac{\mathrm{e}^{-\zeta\omega_n t_s}}{\sqrt{1-\zeta^2}} \approx \Delta$$
,得  $t_s = \frac{1}{\zeta\omega_n} (\ln \frac{1}{\Delta\sqrt{1-\zeta^2}})$  忽略  $\frac{1}{2} \ln(1-\zeta^2)$  项,近似认为  $t_s(2\%) \approx \frac{4}{\zeta\omega_n}, t_s(5\%) \approx \frac{3}{\zeta\omega_n}$  延迟时间,中降函数决定。 $\omega_s t_s - \frac{1}{2} \ln \frac{2\sin(\omega_d t_d + \arccos \zeta)}{2}$ 

延迟时间:由隐函数决定,
$$\omega_n t_d = \frac{1}{\zeta} \ln \frac{2 \sin(\omega_d t_d + \arccos \zeta)}{\sqrt{1-\zeta^2}}$$

振荡次数: 阻尼振荡周期 
$$\tau_d = \frac{2\pi}{\omega_n\sqrt{1-\zeta^2}}$$
,故  $N = \frac{t_s}{\tau_d} = \begin{cases} \frac{2\sqrt{1-\zeta^2}}{\pi\zeta} & \Delta = 2\%\\ \frac{1.5\sqrt{1-\zeta^2}}{\pi\zeta} & \Delta = 5\% \end{cases}$ 

#### **3.3.1.4** 零阻尼( $\zeta = 0$ )

正弦等幅震荡无衰减。

$$s_{1,2}=\pm \mathrm{j}\omega_n, y(t)=1-\cos\omega_n t$$
, 动态指标  $\sigma\%=100\%, t_s=\infty$ 

#### **3.3.1.5** 负阻尼( $\zeta < 0$ )

当 
$$-1 < \zeta < 0$$
 时,

$$\begin{split} s_{1,2} &= -\zeta \omega_n \pm \mathrm{j} \omega_n \sqrt{1-\zeta^2} = -\sigma_n \pm \mathrm{j} \omega_d \\ y(t) &= 1 - \frac{\mathrm{e}^{-\zeta \omega_n t}}{\sqrt{1-\zeta^2}} \sin(\omega_d t + \arccos \zeta) \end{split}$$

以指数为包络线发散的正弦振荡,发散速度取决于 $-\zeta\omega_n$ 。

当
$$\zeta$$
<-1时,

$$\begin{split} s_{1,2} &= \omega_n (-\zeta \pm \sqrt{\zeta^2 - 1}) \\ y(t) &= 1 + \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} (\frac{1}{s_1} \mathrm{e}^{s_1 t} + \frac{1}{s_2} \mathrm{e}^{s_2 t}) \end{split}$$

指数发散,发散速度取决于两个极点  $s_1, s_2$  的大小。

#### 3.3.2 具有零点的二阶系统的单位阶跃响应

闭环传递函数 
$$G(s)=\frac{\omega_n^2(\tau s+1)}{s^2+2\zeta\omega_n s+\omega_n^2}$$
 
$$Y_Z(s)=Y(s)+\frac{s}{z}Y(s), y_z(t)=y(t)+\frac{1}{z}\dot{y}(t), \ \ \mbox{其中系统零点}-z=-\frac{1}{\tau}$$
 
$$y(t)=1-\frac{\mathrm{e}^{-\zeta\omega_n t}}{\sqrt{1-\zeta^2}}\frac{l}{z}\sin(\omega_d t+\arccos\zeta+\psi)$$
 
$$\mbox{其中}\ \psi=\arccos\frac{z-\zeta\omega_n}{l}, l=\sqrt{(z-\zeta\omega_n)^2+\omega_d^2}=\sqrt{D(z)}, \frac{l}{z}=\frac{\sqrt{\zeta^2-2r\zeta^2+r^2}}{\zeta}, r=\frac{\zeta\omega_n}{\zeta}$$
 为复极点实部与零点之比。

$$r=rac{\zeta\omega_n}{z}$$
 为复极点实部与零点之比。 
添加左半平面的零点对动态性能的影响: 
上升时间: 
 $t_{rz}=rac{\pi-\arccos\zeta-\phi}{\omega_d}=t_r-rac{\psi}{\omega_d}$  
峰值时间: 
 $t_{pz}=rac{\pi-\psi}{\omega_d}=t_p-rac{\psi}{\omega_d}$  
超调量: 
 $\sigma\%=rac{l}{z}\mathrm{e}^{-\zeta\omega_nt_{pz}}=rac{l}{z}\mathrm{e}^{rac{\zeta\psi}{\sqrt{1-\zeta^2}}} imes\sigma\%$  
调节时间: 
 $\frac{1}{\zeta\omega_n}(\lnrac{1}{\Delta(1-\zeta^2)}-\lnrac{l}{z})=t_s-rac{1}{\zeta\omega_n}\lnrac{l}{z}$  
总而言之,峰值时间提前;超调量增大,振荡加剧; 
 $r=rac{\zeta\omega_n}{z}$  
越大影响越大。

#### 3.3.3 二阶系统的单位脉冲响应

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$



图 9: 二阶系统的单位脉冲响应

- 无阻尼:  $y(t) = \omega_n \sin(\omega_n t)$
- 欠阻尼:  $y(t) = \frac{\omega_n}{\sqrt{1-\zeta^2}} \mathrm{e}^{-\zeta\omega_n t} \sin(\omega_d t)$
- 临界阻尼:  $y(t) = \omega_n^2 t e^{-\omega_n t}$

• 过阻尼: 
$$y(t) = \frac{\omega_n}{2\sqrt{\zeta^2-1}} \bigg[ \mathrm{e}^{-(\zeta-\sqrt{\zeta^2-1})\omega_n t} - \mathrm{e}^{-(\zeta+\sqrt{\zeta^2+1})\omega_n t} \bigg]$$

单位脉冲响应是单位阶跃响应对时间的导数,第一次过零点时间是单位脉冲响应的峰值时间。单位脉冲响应是 系统传递函数的拉氏变换,可以反映系统的全部特性。

#### 3.3.4 二阶系统的单位斜坡响应

$$Y(s) = \frac{1}{s^2}G(s) = \frac{1}{s^2} - \frac{2\zeta}{\omega_n s} + \frac{2\zeta(s + \zeta\omega_n) + \omega_n(2\zeta^2 - 1)}{\omega_n(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

• 欠阻尼: 
$$y(t) = t - \frac{2\zeta}{\omega_n} + \frac{1}{\omega_n \sqrt{1-\zeta^2}} \mathrm{e}^{-\zeta\omega_n t} \sin(\omega_d t + \arctan\frac{2\zeta\sqrt{1-\zeta^2}}{2\zeta^2-1})$$

• 临界阻尼: 
$$y(t) = t - \frac{2}{\omega_n} + \frac{2}{\omega_n} e^{-\omega_n t} (1 + \frac{\omega_n t}{2})$$

$$\bullet \ \, \mbox{ } \mb$$

#### 3.4 高阶系统

### 3.4.1 典型三阶系统

以惯性环节和二阶环节串联的三阶典型系统分析: 
$$G(s) = \frac{\omega_n^2}{(Ts+1)(s^2+2\zeta\omega_n s+\omega_n^2)}$$
 
$$y(t) = 1 - \frac{\mathrm{e}^{-\beta\zeta\omega_n t}}{\zeta^2\beta(\beta-2)+1} - \frac{\beta\zeta}{\sqrt{\zeta^2\beta(\beta-2)+1}} \frac{\mathrm{e}^{-\zeta\omega_n t}}{\sqrt{1-\zeta^2}} \sin(\omega_d t+\gamma)$$
 其中  $\gamma = \arctan\frac{\zeta(\beta-2)\sqrt{1-\zeta^2}}{\zeta^2(\beta-2)+1}$  ,  $\beta = \frac{p}{\zeta\omega_n} = \frac{1}{T\zeta\omega_n}$   $\beta >> 1$ . 共轭复数极点为主导极点,响应主要呈现一阶特性, $\beta <<$ 

 $\beta >> 1$ ,共轭复数极点为主导极点,响应主要呈现二阶特性; $\beta << 1$ ,实极点为主导极点,响应主要呈现 一阶特性

当  $\beta \geq 5$  或  $\beta \leq \frac{1}{5}$  时,可按照主导共轭复数极点或主导实极点估算暂态特性。实极点使系统振荡性减弱,超调量减小,响应速度变慢,增加了系统的惯性。

#### 3.4.2 一般的高阶系统

对于一般的高阶系统,传递函数如下:

$$Y(s) = \frac{k \prod\limits_{i=1}^{m} (s-z_i)}{\prod\limits_{j=1}^{q} (s-s_j) \prod\limits_{k=1}^{r} (s^2+2\zeta_k \omega_{nk} s + \omega_{nk}^2)} \cdot \frac{1}{s} = \frac{1}{s} + \sum\limits_{j=1}^{q} \frac{A_j}{s-s_j} + \sum\limits_{k=1}^{r} \frac{B_k (s+\zeta_k \omega_{nk}) + C_k \omega_{nk} \sqrt{1-\zeta_k^2}}{s^2+2\zeta_k \omega_{nk} s + \omega_{nk}^2}$$

经过拉式反变换得 
$$y(t) = 1 + \sum_{j=1}^{q} \frac{A_j}{s - s_j} + \sum_{k=1}^{r} D_k e^{-\zeta_k \omega_{nk} t} \sin(\omega_{nk} t + \theta_k)$$
 
$$A_j = k \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{s(s - s_1)(s - s_2) \cdots (s - s_n)} (s - s_j) \Big|_{s = s_j}, D_k = 2 \Big| k \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{s(s - s_1)(s - s_2) \cdots (s - s_n)} (s - s_k) \Big|_{s = s_k} \Big|_{s = s_k}$$

- (1) 如果高阶系统的闭环极点全部具有负实部,即极点全部在复平面的左半平面,则系统单位阶跃响应的暂 态分量最终全部衰减为 0, 系统最终有稳态值
- (2) 在暂态分量中,每一项衰减的快慢取决于相应实数闭环极点的绝对值  $|s_i|$  或复数闭环极点的实部绝对 值  $|\zeta_k \omega_{nk}|$ ,系统闭环极点在复平面左半平面离虚轴越远,相对应的指数项衰减越快
- (3) 如果某一闭环极点靠近一零点,且与其他极点相距较远,则相应项的系数较小,在暂态分量中影响较小; 一对非常接近的闭环零极点称作一对偶极子,偶极子对暂态过程几乎没有影响



图 10: 系统阶跃响应和极点的关系



图 11: 系统脉冲响应和极点的关系

# 3.5 时域稳定性分析

稳定性定义:在扰动作用下系统偏离原来的平衡状态,扰动消除后系统能够恢复到原来的平衡状态。 判定线性定常系统稳定性的数学依据是:  $\lim k(t) = 0$ 。

线性定常系统稳定的充要条件是:闭环系统特征方程的根全部具有负实部,或者说闭环传递函数的极点全部在复平面的左半平面。

#### 3.5.1 劳斯(Routh)判据

(1) 特征方程不缺项; (2) 各项系数全是正实数; (3) 劳斯表第一列各元均大于零。

表 4: 劳斯表

其中, 
$$b_1=\frac{a_{n-1}a_{n-2}-a_na_{n-3}}{a_{n-1}}, b_2=\frac{a_{n-1}a_{n-4}-a_na_{n-5}}{a_{n-1}}, b_3=\frac{a_{n-1}a_{n-6}-a_na_{n-7}}{a_{n-1}}$$
  $c_1=\frac{b_1a_{n-3}-a_{n-1}b_2}{b_1}, c_2=\frac{b_1a_{n-5}-a_{n-1}b_3}{b_1}$ ,其他项以此类推

劳斯表的特征: (1) 劳斯表的某一行的所有元同乘(除)一个正数不改变 Routh 稳定判据的判定结果; (2) 劳斯表第一列元自上而下符号改变的次数等于具有正实部根的极点的个数。

特殊情况:

- 劳斯表某一行的第一项为 0: 以小量  $\varepsilon$  代替 0, 列写劳斯表完成后令  $\varepsilon \to 0^+$  判断符号。
- 劳斯表的某一行各项全为 0:

利用全零行上一行的系数构造一个辅助方程 F(s)=0,对辅助方程求导后的系数作为全零行各元。其中 辅助方程的根是系统虚轴上的极点。

#### 3.6 稳态误差

按输入端定义,E(s) = R(s) - H(s)Y(s),按输出端定义, $E'(s) = \frac{R(s)}{H(s)} - Y(s)$ 。对单位反馈系统,E(s) = E'(s)稳态误差:稳定系统在输入/干扰作用后,在 $t \to \infty$ 时响应的期望值与实际值的误差。

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{t \to \infty} y_r(t) - y(t)$$

#### 3.6.1 静态稳态误差

开环传递函数 
$$G(s) = \dfrac{K\prod\limits_{i=1}^{m}(\tau_{i}s+1)}{s^{v}\prod\limits_{j=1}^{q}(T_{j}s+1)\prod\limits_{k=1}^{r}(T_{k}^{2}s^{2}+2\zeta_{k}T_{k}s+1)}$$

其中 v 是开环传递函数中串联积分环节的个数。

具中 
$$v$$
 是并外传递函数中串联积分外节的个数。 
$$\varepsilon(s) = \varPhi_{\varepsilon}(s)R(s) \text{ 故 } e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s\varPhi_{\varepsilon}(s)R(s) = \lim_{s \to 0} s\frac{1}{1 + G(s)}R(s)$$
 
$$= \lim_{s \to 0} \frac{s^v \prod_{j=1}^q (T_j s + 1) \prod_{k=1}^r (T_k^2 s^2 + 2\zeta_k T_k s + 1)}{s^v \prod_{j=1}^q (T_j s + 1) \prod_{k=1}^r (T_k^2 s^2 + 2\zeta_k T_k s + 1) + K \prod_{i=1}^m (\tau_i s + 1)} R(s)$$

由此看出,只要 R(s) 分母阶次小于等于 v,系统稳态误差就等于 0,把偏差闭环传递函数分母 s 因子的阶

数 
$$v$$
 称作系统的无差度,称系统是  $v$  阶无静差。 $v=0,1,2$  的系统分别称作  $0$  型、I 型、II 型系统。单位阶跃响应, $e_{ss}=\lim_{s\to 0}sE(s)=\lim_{s\to 0}\frac{1}{1+G(s)}=\frac{1}{1+K_p}$ ,其中静态位置误差系数  $K_p:=\lim_{s\to 0}G(s)=\begin{cases}K&v=0\\\infty&v\geqslant 1\end{cases}$ 单位斜坡响应, $e_{ss}=\lim_{s\to 0}sE(s)=\lim_{s\to 0}\frac{1}{s(1+G(s))}=\lim_{s\to 0}\frac{1}{sG(s)}=\frac{1}{K_v}$ ,其中静态速度误差系数  $K_v:=\lim_{s\to 0}sG(s)=\begin{cases}0&v=0\\K&v=1\\\infty&v=2\end{cases}$ 单位加速度响应, $e_{ss}=\lim_{s\to 0}sE(s)=\lim_{s\to 0}\frac{1}{s^2(1+G(s))}=\lim_{s\to 0}\frac{1}{s^2G(s)}=\frac{1}{K_a}$ ,

其中静态加速度误差系数 
$$K_a := \lim_{s \to 0} s^2 G(s) = \begin{cases} 0 & v = 0, 1 \\ K & v = 2 \end{cases}$$

根轨迹分析 12

| 型别 | $K_p$    | $K_v$    | $K_a$ | $r = A \cdot 1(t)$ | r = At        | $r = \frac{1}{2}At^2$ |
|----|----------|----------|-------|--------------------|---------------|-----------------------|
| 0  | K        | 0        | 0     | $\frac{A}{1+K}$    | $\infty$      | $\infty$              |
| I  | $\infty$ | K        | 0     | 0                  | $\frac{A}{K}$ | $\infty$              |
| II | $\infty$ | $\infty$ | K     | 0                  | 0             | $\frac{A}{K}$         |

表 5: 静态误差和型别的关系

若输入信号是几种典型函数的组合,由叠加原理将每一个输入分量作用的各稳态误差分量叠加即可。

干扰信号作用下的稳态误差为输入信号和干扰信号分别产生的稳态误差分量之和  $e_{ss}=e_{ssr}+e_{ssf}$ , 其中  $e_{ssf} = \lim_{t \to \infty} s \Phi_{ef}(s) F(s) \circ$ 

#### 3.6.2 动态误差系数

将  $\Phi_e(s)$  展开成 Taylor 级数得  $\Phi_e(s) = \sum_{i=0}^{\infty} \frac{1}{i!} \Phi_e^{(i)}(0) s^i$ 。

定义  $c_i = \frac{1}{i!} \varPhi_e^{(i)}(0)$ ,称为系统的动态误差系数。 直接求导不便求解,一般将有理分式写成升幂级数形式,利用多项式除法即可得到动态误差系数。

#### 3.6.3 稳态误差的改善

- 1. 增大开环增益或增大扰动点前的前向通道增益;
- 2. 在扰动点前的前向通道加入串联积分;
- 3. 使用前馈补偿增加零点;
- 4. 串级控制,用内环抑制扰动信号。

# 根轨迹分析

当系统的某一或某些参量变化时,特征方程的根(闭环极点)在 s 平面上运动的轨迹称为根轨迹。通过根 轨迹图可以看出系统参量变化对系统闭环极点分布的影响,以及它们与系统性能的关系。

以系统开环增益为可变参量的根轨迹称为常规根轨迹。

曲 
$$G(s)H(s) = \frac{K\prod\limits_{j=1}^{m}(\tau_{z_{j}}s+1)}{\prod\limits_{i=1}^{n}(\tau_{p_{i}}s+1)} = \frac{K_{1}\prod\limits_{j=1}^{m}(s-z_{j})}{\prod\limits_{i=1}^{n}(s-p_{i})}$$
 其中  $K = \frac{\prod\limits_{j=1}^{m}|z_{j}|}{\prod\limits_{i=1}^{n}|p_{i}|}K_{1}$ ,得

• 幅值条件: 
$$|G(s)H(s)| = \frac{K_1 \prod\limits_{j=1}^m |s-z_j|}{\prod\limits_{i=1}^n |s-p_i|} = 1$$

• 相角条件: 
$$\angle G(s)H(s)=\sum\limits_{j=1}^{m}\angle(s-z_j)-\sum\limits_{i=1}^{n}\angle(s-p_i)=\pm(2k+1)\pi$$

相角条件是位于根轨迹上的充要条件,幅值条件确定开环增益  $K_1$ 。

闭环零点由前向通道 G(s) 的零点与反馈通道 H(s) 的零点构成,闭环极点与开环零极点和开环增益有关。

根轨迹分析 13

#### 绘制根轨迹的基本规则

- 1. 对称性、连续性和分支数: 系统根轨迹分支数等于开环极点数, 各条分支是连续的且对称于实轴。
- 2. 起终点: 根轨迹的 n 条分支从开环极点出发,有 m 条分支趋向开环零点,有 n-m 条分支趋向无穷远处。
- 3. 实轴根轨迹:对于实轴上的线段,若右侧的开环零极点数目之和为奇数,则该线段存在根轨迹。
- 4. 根轨迹渐近线:相位角为  $\varphi_a=\pm \frac{(2k+1)\pi}{n-m}$ ,和实轴交点的坐标  $\sigma_a=\frac{\sum\limits_{i=1}^n p_i-\sum\limits_{j=1}^m z_j}{n-1}$ 。
- 5. 分离点: 满足方程  $\frac{\mathrm{d}D(s)}{\mathrm{d}s} = 0$  或  $\sum_{i=1}^{n} \frac{1}{d-p_i} = \sum_{i=1}^{m} \frac{1}{d-z_i}$ , 分离角为  $\frac{(2q+1)\pi}{r}$ ,  $q = 0, 1, \dots, r-1$ .
- 6. 入、出射角: 令  $\varphi = \sum_{i=1}^m \angle(s-z_j) \sum_{i=1}^n \angle(s-p_i)$ ,极点出射角  $\varphi_{p_i} = \mp \pi + \varphi$ ,零点入射角  $\varphi_{z_j} = \pm \pi \varphi$ 。
- 7. 虚轴的交点: 令  $s=j\omega$ , 即  $D(j\omega)=0$  求出的解即为交点坐标,此时系统处于临界稳定状态。
- 8. 根之和: 若  $n-m \ge 2$ ,  $\sum_{i=1}^{n} p_i = -a_{n-1}$ 。

定理: 若系统有2个开环极点, 1个开环零点, 且在复平面存在根轨迹, 则复平面的根轨迹一定是以该零点为圆心的圆弧。



若开环零极点均为偶数个, 且关于一条平行于虚轴的直 线左右对称分布,则根轨迹一定关于该直线左右对称。



(b) 根轨迹对称性定理

#### 4.2 根轨迹分析系统性能

根据根轨迹确定系统稳定性对应的参数范围,根据系统型别和极点确定系统的稳态误差。根据幅值条件确 定系统的参数,计算系统的动态性能。

#### 4.3 特殊根轨迹

#### 正反馈系统的根轨迹(零度根轨迹) 4.3.1

- 幅值条件: |G(s)H(s)| = 1
- 相角条件:  $\angle G(s)H(s) = +2k\pi$

因此,修改常规根轨迹法则中关于相角条件的部分:

规则 3: 对于实轴上的线段,若右侧的开环零极点数目之和为偶数,则该线段存在根轨迹。

• 规则 4: 相位角为 
$$\varphi_a = \pm \frac{2k\pi}{n-m}$$

• 规则 7: 
$$\sum_{j=1}^m \angle(s-z_j) - \sum_{i=1}^n \angle(s-p_i) = 2k\pi$$

#### 4.3.2 参数根轨迹

对于参变量  $\lambda$ ,将特征方程写为  $D(s)=Q(s)+\lambda P(s)=0$ ,等效传递函数  $\bar{G}(s)\bar{H}(s)=\frac{\lambda P(s)}{Q(s)}$ ,则闭环极点与原系统相同,而闭环零点通常不同。

# 5 线性连续系统的频域分析

在正弦输入信号作用下,输出的稳态分量称为频率响应,频率响应与正弦输入信号的关系称为频率特性。 将传递函数中的 s 以 j $\omega$  代替得到频率特性  $G(j\omega) = |G(j\omega)| \angle G(j\omega)$ ,其中  $|G(j\omega)|$  是输出与输入信号幅值 之比,称为幅值特性, $\angle G(j\omega)$  是输出与输入信号相角之差,称为相频特性。

对数幅频特性  $L(\omega) = 20 \lg |G(j\omega)|$ , 对数相频特性  $\varphi(\omega) = \angle G(j\omega)$ 。

系统传递函数的极点和零点都在 s 平面左半平面的系统称为最小相位系统。对于幅频特性相同的系统,最小相位系统具有的相位滞后是最小的。最小相位系统的幅频特性对应唯一的相频特性。

#### 5.1 控制系统的频率特性

#### 5.1.1 三种图形表示

奈奎斯特(Nyquist)图:以  $|G(j\omega)|$  为极径,以  $\angle G(j\omega)$  为极角绘制的极坐标频率特性图。 伯德(Bode)图:以为对数幅频、相频特性为纵轴、以十倍频程为横轴绘制的对数坐标图。 尼柯尔斯(Nichols)图:以对数幅频为纵轴、以相频为横轴并绘制等幅 M 线和等相  $\alpha$  线的半对数坐标图。

#### 5.1.2 典型环节的频率特性

比例环节: 
$$G(s) = K$$
 
$$\begin{cases} L(\omega) = 20 \lg K \\ \varphi(\omega) = 0 \end{cases}$$
 惯性环节:  $G(s) = \frac{1}{1+Ts} \begin{cases} L(\omega) = 20 \lg \sqrt{1+T^2\omega^2} \\ \varphi(\omega) = -\arctan T\omega \end{cases}$  积分环节:  $G(s) = \frac{1}{s} \begin{cases} L(\omega) = -20 \lg \omega \\ \varphi(\omega) = -\frac{\pi}{2} \end{cases}$  微分环节:  $G(s) = s \begin{cases} L(\omega) = 20 \lg \omega \\ \varphi(\omega) = \frac{\pi}{2} \end{cases}$  一阶比例微分环节:  $G(s) = 1+Ts \begin{cases} L(\omega) = 20 \lg \sqrt{1+T^2\omega^2} \\ \varphi(\omega) = \arctan T\omega \end{cases}$  二阶微分环节:  $G(s) = T^2s^2 + 2\zeta Ts + 1 \begin{cases} L(\omega) = 20 \lg \sqrt{(1-T^2\omega^2)^2 + (2\zeta T\omega)^2} \\ \varphi(\omega) = \begin{cases} \arctan(\frac{2\zeta T\omega}{1-T^2\omega^2}) & \omega \leq \frac{1}{T} \\ \pi - \arctan(\frac{2\zeta T\omega}{1-T^2\omega^2}) & \omega > \frac{1}{T} \end{cases}$ 

振荡环节: 
$$G(s) = \frac{1}{T^2 s^2 + 2\zeta T s + 1} \begin{cases} L(\omega) = -20 \lg \sqrt{(1 - T^2 \omega^2)^2 + (2\zeta T \omega)^2} \\ \varphi(\omega) = \begin{cases} -\arctan(\frac{2\zeta T \omega}{1 - T^2 \omega^2}) & \omega \leq \frac{1}{T} \\ -\pi + \arctan(\frac{2\zeta T \omega}{1 - T^2 \omega^2}) & \omega > \frac{1}{T} \end{cases}$$
延迟环节:  $G(s) = e^{-\tau s} \begin{cases} L(\omega) = 0 \\ \varphi(\omega) = -57.3^{\circ} \tau \omega \end{cases}$ 

#### 5.1.3 系统开环频率特性绘制

(a) 比例、惯性、积分、微分

最小相位系统 Nyquist 图的绘制: 起点  $\angle G(\mathrm{j}\omega) \to -90^\circ \cdot \nu$ ,若 n>m 终点在坐标原点,令  $\mathrm{Im}[G(\mathrm{j}\omega)]=0$  求出与实轴交点,关注象限。

(b) 一阶微分、二阶微分、振荡、延迟



系统 Bode 图的绘制:  $L(\omega) = \sum\limits_{i=1}^n L_i(\omega), \varphi(\omega) = \sum\limits_{i=1}^n \varphi_i(\omega)$ ,由各环节的 Bode 图相加得到。

- 1. 基准线: 低频段的斜率为  $-20\nu\mathrm{dB/dec}$ ,  $\nu$  为串联积分环节数,低频段或其延长线  $\omega=1$  处为  $20\lg K$ 。
- 2. 转折频率: 一阶环节在  $\frac{1}{T}$  处斜率变化  $\pm 20 \mathrm{dB/dec}$ ; 二阶环节在  $\omega_n$  处斜率变化  $\pm 40 \mathrm{dB/dec}$ 。
- 3. 二阶环节修正:转折频率处为  $20\lg(2\zeta)\mathrm{dB}$ ; 谐振频率  $\omega_r = \omega_n\sqrt{1-2\zeta^2}$  处为  $20\lg\frac{1}{2\zeta\sqrt{1-\zeta^2}}$ 。

#### 5.2 闭环系统频域稳定性分析

#### 5.2.1 奈奎斯特(Nyquist)稳定判据

奈奎斯特回线: 沿虚轴由下向上移动的直线段  $C_1$  和半径为无穷大的半圆  $C_2$  组成,包围右半平面所有的零极点。当 s 平面虚轴上存在开环极点时,奈奎斯特回线要从右边绕过无穷小半径的圆弧。

沿虚轴 s=0 到  $\infty$  对应的映射为开环 Nyquist 曲线,无穷大的半圆对应的映射为原点,沿虚轴  $s=-\infty$  到 0 对应的映射与 Nyquist 曲线关于实轴对称,无穷小半径圆弧对应映射为无穷大半径的圆弧。



Z = P - R = P - 2N,若 Z = 0,闭环系统稳定,若 Z > 0,闭环系统不稳定。其中 P 为右半平面开环极点个数,R 为映射曲线包围 (-1,j0) 点的圈数,N 为开环 Nyquist 曲线包围 (-1,j0) 点的圈数,Z 为右半平面闭环极点个数。

 $N = N_+ - N_-$ ,其中  $N_+$  为 Nyquist 曲线由上而下穿越次数, $N_-$  为 Nyquist 曲线由下而上穿越次数。若起始或终止于 (-1,j0) 点左侧的负实轴,则穿越次数为半次。

#### 5.2.2 对数频率稳定判据

单位圆外对应 0dB 以上的部分,单位圆内对应 0dB 以下的部分。负实轴对应相频特性的  $-180^{\circ}$  线。当 s 平面虚轴上存在开环极点时,在对数相频曲线最低频率处,由下向上补画一条通过相角  $\nu \cdot 90^{\circ}$  的曲线。

 $\varphi(\omega_c) \neq (2k+1)\pi$  和  $L(\omega) > 0$  时,若 Z = P - 2N = 0,系统稳定。

 $N = N_{+} - N_{-}$ ,其中在  $L(\omega) > 0$ dB 范围内, $N_{+}$  为相频特性由下向上穿越  $-180^{\circ}$  次数, $N_{-}$  为相频特性由上向下穿越  $-180^{\circ}$  次数。若起始或终止于  $-180^{\circ}$  线,则穿越次数为半次。