

Description

The VSM3N20 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =200V, I_D =3.9A $R_{DS(ON)}$ < 79mΩ @ V_{GS} =10V (Typ: 56mΩ)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Low gate to drain charge to reduce switching losses

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM3N20-S8	VSM3N20	SOP-8	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

U \ 7.	,			
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	200	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	3.9	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	2.8	А	
Pulsed Drain Current	I _{DM}	30	А	
Maximum Power Dissipation	P _D	3	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C	

Thermal Characteristic

Thermal Resistance, Junction-to-Case ^(Note 2)	$R_{ heta JC}$	41.7	°C/W

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	200	215	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =200V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)			'			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =3.7A	-	56	79	mΩ
Forward Transconductance	g FS	V _{DS} =50V,I _D =3.9A	7	-	-	S
Dynamic Characteristics (Note4)			'			
Input Capacitance	C _{lss}			4200		PF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, F=1.0MHz		163		PF
Reverse Transfer Capacitance	C _{rss}	r-1.0lvinz		75		PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}	V_{DD} =100V, I_{D} =2.2A V_{GS} =10V, R_{GEN} =6.5 Ω	-	15	-	nS
Turn-on Rise Time	t _r		-	13	-	nS
Turn-Off Delay Time	t _{d(off)}		-	26	-	nS
Turn-Off Fall Time	t _f		-	14	-	nS
Total Gate Charge	Qg	V 400V/I 0.04	-	38	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =100V, I_{D} =2.2A, V_{GS} =10V	-	9	-	nC
Gate-Drain Charge	Q_{gd}	VGS-IUV	-	15	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =3.7A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	3.9	Α

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Vds Drain-Source Voltage (V)

Figure 1 Output Characteristics

Vgs Gate-Source Voltage (V)
Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 BV_{DSS} vs Junction Temperature

Figure 8 Safe Operation Area

T_J-Junction Temperature(℃)

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance