Computer Networks

Jiaqi Zheng

Material with thanks Mosharaf Chowdhury, and many other colleagues.

Agenda

IP routers

IP routers

- Core building block of the Internet infrastructure
- \$120B+ industry
- Vendors: Cisco, Huawei, Juniper, Alcatel-Lucent (account for >90%)

Router definitions

- Router capacity = N x R
- N = Number of external router "ports"
- R = Speed ("line rate") of a port

Networks and routers

Many types of routers

- Core
 - R = 10/40/100 Gbps
 - NR = O(100) Tbps (Aggregated)
- Edge
 - R = 1/10/40
 - NR = O(100) Gbps
- Small business
 - R = 10/100/1000 Mbps
 - NR < 10 Gbps

What's inside a router?

What's inside a router?

- Linecards
 - Input linecards process packets on their way in
 - Output linecards process packets on way out
 - Input and output for the same port are on the same physical linecard
- Interconnect/switching fabric
 - Transfers packets from input to output ports

Input linecards

Tasks

- Receive incoming packets (physical layer stuff)
- Update the IP header
 »TTL, Checksum, Options and Fragment (maybe)
- Lookup the output port for the destination IP address
- Queue the packet at the switch fabric
- Challenge: speed!
 - 100B packets @ 40Gbps → new packet every 20 nano secs!
 - Typically implemented with specialized ASICs (network processors)

Looking up the output port

- One entry for each address → 4 billion entries!
- For scalability, addresses are aggregated

Example

- Router with 4 ports
- Destination address range mapping
 - 11 00 00 00 to 11 00 00 11: Port 1
 - 11 00 01 00 to 11 00 01 11: Port 2
 - 11 00 10 00 to 11 00 11 11: Port 3
 - 11 01 00 00 to 11 01 11 11: Port 4

Example

- Router with 4 ports
- Destination address range mapping
 - 11 00 00 00 to 11 00 00 11: Port 1
 - 11 00 01 00 to 11 00 01 11: Port 2
 - 11 00 10 00 to 11 00 11 11: Port 3
 - 11 01 00 00 to 11 01 11 11: Port 4

Longest prefix matching

Finding match efficiently

- Testing each entry to find a match scales poorly
 - On average: O(number of entries)
- Leverage tree structure of binary strings
 - Set up tree-like data structure

Longest prefix matching

Tree structure

Tree structure

Record port associated with latest match, and only override when it matches another prefix during walk down tree

Input linecards

- Main challenge is processing speeds
- Tasks involved:
 - Update packet header (easy)
 - LPM lookup on destination address (harder)
- Mostly implemented with specialized hardware

Output linecards

- Packet classification: map packets to flows
- Buffer management: decide when and which packet to drop
- Scheduler: decide when and which packet to transmit

Simplest: FIFO router

- No classification
- Drop-tail buffer management: when buffer is full drop the incoming packet
- First-In-First-Out (FIFO) Scheduling: schedule packets in the same order they arrive

Packet classification

- Classify an IP packet based on a number of fields in the packet header, e.g.,
 - Source/destination IP address (32 bits)
 - Source/destination TCP port number (16 bits)
 - Type of service (TOS) byte (8 bits)
 - Type of protocol (8 bits)
- In general fields are specified by range
 - Classification requires a multi-dimensional range search!

Scheduler

- One queue per "flow"
- Scheduler decides when and from which queue to send a packet
- Goals of a scheduling algorithm
 - Fast!
 - Depends on the policy being implemented (fairness, priority, etc.)

Priority scheduler

 Priority scheduler: packets in the highest priority queue are always served before the packets in lower priority queues

Round-robin scheduler

- Round robin: packets are served from each queue in turn
- Fair queuing (FQ): round-robin for packets of different size
- Weighted fair queueing (WFQ): serve proportional to weight
 - FQ gives equal weight to each flow

Connecting inputs to outputs: Switching fabric

- Mini-network
- Three primary ways to switch
 - Switching via shared memory
 - Switching via a bus
 - Switching via an inter-connection network
 - »For example, cross-bar

Context

- Crossbar fabric
- Centralized scheduler

Input ports

Output ports

Scheduling

- Run links at full capacity, fairness across inputs
- Scheduling formulated as finding a matching on a bipartite graph

 Practical solutions look for a good maximal matching (fast)

Summary

- IP routers form the backbone of the Internet
- Aims for speed while providing fairness