

> d his ful

(FILE 'HOME' ENTERED AT 11:47:41 ON 06 JAN 2006)

FILE 'REGISTRY' ENTERED AT 11:48:07 ON 06 JAN 2006

L1	1	SEA ABB=ON	PLU=ON	HYDROGEN PEROXIDE/CN SEL RN
L2	831	SEA ABB=ON	PLU=ON	7722-84-1/CRN OR L1
L3	1	SEA ABB=ON	PLU=ON	SODIUM THIOGLYCOLATE/CN SEL RN
L4	6	SEA ABB=ON	PLU=ON	L3 OR 367-51-1/CRN
L5	1	SEA ABB=ON	PLU=ON	SODIUM THIOSULFATE/CN SEL RN
L6	36	SEA ABB=ON	PLU=ON	L5 OR 7772-98-7/CRN
L*** DEL	0	S SODIUM DISULFITE/CN E SODIUM DISULFITE/CN		
L7	1	SEA ABB=ON	PLU=ON	"SODIUM DISULFITE (NA2S2O5) "/CN SEL RN
L8	40	SEA ABB=ON	PLU=ON	L7 OR 7681-57-4/CRN E POLYVINYL PYRROLIDONE/CN
L9	1	SEA ABB=ON	PLU=ON	POLYVINYL PYRROLIDONE/CN SEL RN
L10	298	SEA ABB=ON	PLU=ON	9003-39-8/CRN OR L9
L11	1	SEA ABB=ON	PLU=ON	BROMOCRESOL PURPLE/CN
L12	1	SEA ABB=ON	PLU=ON	BRÖMOTHYMOL BLUE/CN E MORPHOLINOPROPANE SULFONIC ACID/CN
L13	1	SEA ABB=ON	PLU=ON	"MORPHOLINOPROPANE SULFONIC ACID"/CN SEL RN
L14	10	SEA ABB=ON	PLU=ON	1132-61-2/CRN OR L13

FILE 'HCAPLUS, MEDLINE, BIOSIS, USPATFULL, USPAT2, WPIX' ENTERED AT 11:54:49 ON 06 JAN 2006

L15	295852	SEA ABB=ON	PLU=ON	L2 OR HYDROGEN PEROXIDE
L16	636950	SEA ABB=ON	PLU=ON	STERIL? OR DISINFEC?
L17	169003	SEA ABB=ON	PLU=ON	CASEIN?
L18	1976	SEA ABB=ON	PLU=ON	L15 AND L16 AND L17
L19	364959	SEA ABB=ON	PLU=ON	SOY?
L20	968	SEA ABB=ON	PLU=ON	L18 AND L19 D KWIC
L21	545	SEA ABB=ON	PLU=ON	L20 AND GAMMA? D KWIC D KWIC 20
L22	160265	SEA ABB=ON	PLU=ON	GAMMA? (5A) (STERIL? OR DISINFEC? OR RADIAT? OR IRRADI?)
L23	127	SEA ABB=ON	PLU=ON	L20 AND L22 D KWIC 10
L24	40761	SEA ABB=ON	PLU=ON	(CASEIN? OR TRYPT?) (10A) SOY?
L25	2202	SEA ABB=ON	PLU=ON	L15 AND L24
L26	142	SEA ABB=ON	PLU=ON	L22 AND L25 D KWIC D KWIC 10 D KWIC 32
L27	1189	SEA ABB=ON	PLU=ON	L4 OR SODIUM THIOGLYCOLATE
L28	30691	SEA ABB=ON	PLU=ON	L6 OR SODIUM THIOSULFATE
L29	5008	SEA ABB=ON	PLU=ON	L8 OR SODIUM DISULFITE
L30	112344	SEA ABB=ON	PLU=ON	L10 OR POLYVINYL PYRROLIDONE
L31	2940	SEA ABB=ON	PLU=ON	L11 OR BROMOCRESOL PURPLE OR BROMOCRESOL VIOLET
L32	4451	SEA ABB=ON	PLU=ON	L12 OR BROMOTHYMOL BLUE

L33 11461 SEA ABB=ON PLU=ON L14 OR MORPHOLINO SULFONIC ACID OR
MORPHOLINOSULFONIC ACID OR MOPS
 L34 229604 SEA ABB=ON PLU=ON AGAR
 L35 20 SEA ABB=ON PLU=ON L26 AND (L27 OR L28 OR L29)
D KWIC 20
D KWIC 15
D KWIC 5
 L36 4 SEA ABB=ON PLU=ON L15 AND (L27 OR L28 OR L29) AND L30 AND
(L31 OR L32)
D KWIC
D KWIC 3
 L37 4 SEA ABB=ON PLU=ON L15 AND (L11 OR L12) AND L10
 L38 10 SEA ABB=ON PLU=ON L15 AND (L31 OR L32) AND L10
D KWIC 5
 L39 2 SEA ABB=ON PLU=ON L38 AND L33
D KWIC 2
 L40 12152 SEA ABB=ON PLU=ON L24 AND L34
 L41 1180 SEA ABB=ON PLU=ON L40 AND L15
 L42 160 SEA ABB=ON PLU=ON L41 AND ((L27 OR L28 OR L29) OR (L31 OR
L32))
D KWIC 10
 L43 366 SEA ABB=ON PLU=ON L40 AND L22
D KWIC 100
 L44 97 SEA ABB=ON PLU=ON L43 AND L15
D KWIC 50
D KWIC 20
 L45 18 SEA ABB=ON PLU=ON L44 AND ((L27 OR L28 OR L29) OR (L31 OR
L32))
D KWIC 9

FILE 'STNGUIDE' ENTERED AT 12:13:53 ON 06 JAN 2006

D QUE STAT L35
D QUE STAT L36
D QUE STAT L39
D QUE STAT L45

L46 0 SEA ABB=ON PLU=ON L35 OR L36 OR L39 OR L45

FILE 'STNGUIDE' ENTERED AT 12:14:50 ON 06 JAN 2006

D QUE STAT L35
D QUE STAT L36
D QUE STAT L39
D QUE STAT L45

FILE 'HCAPLUS, USPATFULL, USPAT2, WPIX' ENTERED AT 12:15:14 ON 06 JAN 2006

L47 20 DUP REM L35 L36 L39 L45 (24 DUPLICATES REMOVED)
ANSWER '1' FROM FILE HCAPLUS
ANSWERS '2-20' FROM FILE USPATFULL
D L47 IBIB ABS HITIND 1-20
D KWIC 7
D IBIB KWIC 7

FILE HOME

FILE REGISTRY

Property values tagged with IC are from the ZIC/VINITI data file
provided by InfoChem.

STRUCTURE FILE UPDATES: 4 JAN 2006 HIGHEST RN 871209-00-6

DICTIONARY FILE UPDATES: 4 JAN 2006 HIGHEST RN 871209-00-6

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH JULY 14, 2005

Please note that search-term pricing does apply when conducting SmartSELECT searches.

* The CA roles and document type information have been removed from *
* the IDE default display format and the ED field has been added, *
* effective March 20, 2005. A new display format, IDERL, is now *
* available and contains the CA role and document type information. *

Structure search iteration limits have been increased. See HELP SLIMITS for details.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

FILE HCPLUS

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 6 Jan 2006 VOL 144 ISS 2
FILE LAST UPDATED: 4 Jan 2006 (20060104/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

FILE MEDLINE

FILE LAST UPDATED: 5 JAN 2006 (20060105/UP). FILE COVERS 1950 TO DATE.

On December 11, 2005, the 2006 MeSH terms were loaded.

The MEDLINE reload for 2006 will soon be available. For details on the 2005 reload, enter HELP RLOAD at an arrow prompt (=>). See also:

<http://www.nlm.nih.gov/mesh/>
http://www.nlm.nih.gov/pubs/techbull/nd04/nd04_mesh.html

http://www.nlm.nih.gov/pubs/techbull/nd05/nd05_med_data_changes.html
http://www.nlm.nih.gov/pubs/techbull/nd05/nd05_2006_MeSH.html

OLDMEDLINE is covered back to 1950.

MEDLINE thesauri in the /CN, /CT, and /MN fields incorporate the MeSH 2006 vocabulary.

This file contains CAS Registry Numbers for easy and accurate

FILE BIOSIS

FILE COVERS 1969 TO DATE.

CAS REGISTRY NUMBERS AND CHEMICAL NAMES (CNS) PRESENT
FROM JANUARY 1969 TO DATE.

RECORDS LAST ADDED: 4 January 2006 (20060104/ED)

FILE USPATFULL

FILE COVERS 1971 TO PATENT PUBLICATION DATE: 5 Jan 2006 (20060105/PD)

FILE LAST UPDATED: 5 Jan 2006 (20060105/ED)

HIGHEST GRANTED PATENT NUMBER: US6983486

HIGHEST APPLICATION PUBLICATION NUMBER: US2006005290

CA INDEXING IS CURRENT THROUGH 3 Jan 2006 (20060103/UPCA)

ISSUE CLASS FIELDS (/INCL) CURRENT THROUGH: 5 Jan 2006 (20060105/PD)

REVISED CLASS FIELDS (/NCL) LAST RELOADED: Oct 2005

USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Oct 2005

>>> USPAT2 is now available. USPATFULL contains full text of the <<<
>>> original, i.e., the earliest published granted patents or <<<
>>> applications. USPAT2 contains full text of the latest US <<<
>>> publications, starting in 2001, for the inventions covered in <<<
>>> USPATFULL. A USPATFULL record contains not only the original <<<
>>> published document but also a list of any subsequent <<<
>>> publications. The publication number, patent kind code, and <<<
>>> publication date for all the US publications for an invention <<<
>>> are displayed in the PI (Patent Information) field of USPATFULL <<<
>>> records and may be searched in standard search fields, e.g., /PN, <<<
>>> /PK, etc. <<<

>>> USPATFULL and USPAT2 can be accessed and searched together <<<
>>> through the new cluster USPATALL. Type FILE USPATALL to <<<
>>> enter this cluster. <<<
>>> <<<
>>> Use USPATALL when searching terms such as patent assignees, <<<
>>> classifications, or claims, that may potentially change from <<<
>>> the earliest to the latest publication. <<<

This file contains CAS Registry Numbers for easy and accurate substance identification.

FILE USPAT2

FILE COVERS 2001 TO PUBLICATION DATE: 5 Jan 2006 (20060105/PD)

FILE LAST UPDATED: 5 Jan 2006 (20060105/ED)

HIGHEST GRANTED PATENT NUMBER: US2004192897

HIGHEST APPLICATION PUBLICATION NUMBER: US2006004269

CA INDEXING IS CURRENT THROUGH 5 Jan 2006 (20060105/UPCA)

ISSUE CLASS FIELDS (/INCL) CURRENT THROUGH: 5 Jan 2006 (20060105/PD)

REVISED CLASS FIELDS (/NCL) LAST RELOADED: Oct 2005
USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Oct 2005

USPAT2 is a companion file to USPATFULL. USPAT2 contains full text of the latest US publications, starting in 2001, for the inventions covered in USPATFULL. USPATFULL contains full text of the original published US patents from 1971 to date and the original applications from 2001. In addition, a USPATFULL record for an invention contains a complete list of publications that may be searched in standard search fields, e.g., /PN, /PK, etc.

USPATFULL and USPAT2 can be accessed and searched together through the new cluster USPATALL. Type FILE USPATALL to enter this cluster.

Use USPATALL when searching terms such as patent assignees, classifications, or claims, that may potentially change from the earliest to the latest publication.

FILE WPIX
FILE LAST UPDATED: 30 DEC 2005 <20051230/UP>
MOST RECENT DERWENT UPDATE: 200601 <200601/DW>
DERWENT WORLD PATENTS INDEX SUBSCRIBER FILE, COVERS 1963 TO DATE

>>> FOR A COPY OF THE DERWENT WORLD PATENTS INDEX STN USER GUIDE,
PLEASE VISIT:
[<<](http://www.stn-international.de/training_center/patents/stn_guide.pdf)

>>> FOR DETAILS OF THE PATENTS COVERED IN CURRENT UPDATES, SEE
<http://scientific.thomson.com/support/patents/coverage/latestupdates/>

>>> FOR INFORMATION ON ALL DERWENT WORLD PATENTS INDEX USER
GUIDES, PLEASE VISIT:
<http://scientific.thomson.com/support/products/dwpi/>

>>> FAST-ALERTING ACCESS TO NEWLY-PUBLISHED PATENT
DOCUMENTATION NOW AVAILABLE IN DERWENT WORLD PATENTS INDEX
FIRST VIEW - FILE WPIFV.
FOR FURTHER DETAILS:
<http://scientific.thomson.com/support/products/dwpifv/>

>>> THE CPI AND EPI MANUAL CODES WILL BE REVISED FROM UPDATE 200601.
PLEASE CHECK:
<http://scientific.thomson.com/support/patents/dwpiref/reftools/classificat>

>>> PLEASE BE AWARE OF THE NEW IPC REFORM IN 2006, SEE
[<](http://www.stn-international.de/stndatabases/details/ipc_reform.html)

FILE STNGUIDE
FILE CONTAINS CURRENT INFORMATION.
LAST RELOADED: Dec 30, 2005 (20051230/UP).

=> fil stng
FILE 'STNGUIDE' ENTERED AT 12:18:08 ON 06 JAN 2006
USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY, JAPAN SCIENCE
AND TECHNOLOGY CORPORATION, AND FACHINFORMATIONSZENTRUM KARLSRUHE

FILE CONTAINS CURRENT INFORMATION.

LAST RELOADED: Dec 30, 2005 (20051230/UP).

```
=> d que stat 135
L1      1 SEA FILE=REGISTRY ABB=ON PLU=ON HYDROGEN PEROXIDE/CN
L2      831 SEA FILE=REGISTRY ABB=ON PLU=ON 7722-84-1/CRN OR L1
L3      1 SEA FILE=REGISTRY ABB=ON PLU=ON SODIUM THIOGLYCOLATE/CN
L4      6 SEA FILE=REGISTRY ABB=ON PLU=ON L3 OR 367-51-1/CRN
L5      1 SEA FILE=REGISTRY ABB=ON PLU=ON SODIUM THIOSULFATE/CN
L6      36 SEA FILE=REGISTRY ABB=ON PLU=ON L5 OR 7772-98-7/CRN
L7      1 SEA FILE=REGISTRY ABB=ON PLU=ON "SODIUM DISULFITE (NA2S2O5) "/
CN
L8      40 SEA FILE=REGISTRY ABB=ON PLU=ON L7 OR 7681-57-4/CRN
L15     295852 SEA L2 OR HYDROGEN PEROXIDE
L22     160265 SEA GAMMA? (5A) (STERIL? OR DISINFEC? OR RADIAT? OR IRRADI?)?
L24     40761 SEA (CASEIN? OR TRYPT?) (10A) SOY?
L25     2202 SEA L15 AND L24
L26     142 SEA L22 AND L25
L27     1189 SEA L4 OR SODIUM THIOGLYCOLATE
L28     30691 SEA L6 OR SODIUM THIOSULFATE
L29     5008 SEA L8 OR SODIUM DISULFITE
L35     20 SEA L26 AND (L27 OR L28 OR L29)
```

```
=> d que stat 136
L1      1 SEA FILE=REGISTRY ABB=ON PLU=ON HYDROGEN PEROXIDE/CN
L2      831 SEA FILE=REGISTRY ABB=ON PLU=ON 7722-84-1/CRN OR L1
L3      1 SEA FILE=REGISTRY ABB=ON PLU=ON SODIUM THIOGLYCOLATE/CN
L4      6 SEA FILE=REGISTRY ABB=ON PLU=ON L3 OR 367-51-1/CRN
L5      1 SEA FILE=REGISTRY ABB=ON PLU=ON SODIUM THIOSULFATE/CN
L6      36 SEA FILE=REGISTRY ABB=ON PLU=ON L5 OR 7772-98-7/CRN
L7      1 SEA FILE=REGISTRY ABB=ON PLU=ON "SODIUM DISULFITE (NA2S2O5) "/
CN
L8      40 SEA FILE=REGISTRY ABB=ON PLU=ON L7 OR 7681-57-4/CRN
L9      1 SEA FILE=REGISTRY ABB=ON PLU=ON POLYVINYL PYRROLIDONE/CN
L10     298 SEA FILE=REGISTRY ABB=ON PLU=ON 9003-39-8/CRN OR L9
L11     1 SEA FILE=REGISTRY ABB=ON PLU=ON BROMOCRESOL PURPLE/CN
L12     1 SEA FILE=REGISTRY ABB=ON PLU=ON BROMOTHYMOL BLUE/CN
L15     295852 SEA L2 OR HYDROGEN PEROXIDE
L27     1189 SEA L4 OR SODIUM THIOGLYCOLATE
L28     30691 SEA L6 OR SODIUM THIOSULFATE
L29     5008 SEA L8 OR SODIUM DISULFITE
L30     112344 SEA L10 OR POLYVINYL PYRROLIDONE
L31     2940 SEA L11 OR BROMOCRESOL PURPLE OR BROMOCRESOL VIOLET
L32     4451 SEA L12 OR BROMOTHYMOL BLUE
L36     4 SEA L15 AND (L27 OR L28 OR L29) AND L30 AND (L31 OR L32)
```

```
=> d que stat 139
L1      1 SEA FILE=REGISTRY ABB=ON PLU=ON HYDROGEN PEROXIDE/CN
L2      831 SEA FILE=REGISTRY ABB=ON PLU=ON 7722-84-1/CRN OR L1
L9      1 SEA FILE=REGISTRY ABB=ON PLU=ON POLYVINYL PYRROLIDONE/CN
L10     298 SEA FILE=REGISTRY ABB=ON PLU=ON 9003-39-8/CRN OR L9
L11     1 SEA FILE=REGISTRY ABB=ON PLU=ON BROMOCRESOL PURPLE/CN
L12     1 SEA FILE=REGISTRY ABB=ON PLU=ON BROMOTHYMOL BLUE/CN
L13     1 SEA FILE=REGISTRY ABB=ON PLU=ON "MORPHOLINO PROPANE SULFONIC
ACID"/CN
L14     10 SEA FILE=REGISTRY ABB=ON PLU=ON 1132-61-2/CRN OR L13
L15     295852 SEA L2 OR HYDROGEN PEROXIDE
L31     2940 SEA L11 OR BROMOCRESOL PURPLE OR BROMOCRESOL VIOLET
```

L32 4451 SEA L12 OR BROMOTHYMOL BLUE
 L33 11461 SEA L14 OR MORPHOLINO SULFONIC ACID OR MORPHOLINOSULFONIC ACID
 OR MOPS
 L38 10 SEA L15 AND (L31 OR L32) AND L10
 L39 2 SEA L38 AND L33

=> d que stat 145

L1	1 SEA FILE=REGISTRY ABB=ON	PLU=ON	HYDROGEN PEROXIDE/CN
L2	831 SEA FILE=REGISTRY ABB=ON	PLU=ON	7722-84-1/CRN OR L1
L3	1 SEA FILE=REGISTRY ABB=ON	PLU=ON	SODIUM THIOGLYCOLATE/CN
L4	6 SEA FILE=REGISTRY ABB=ON	PLU=ON	L3 OR 367-51-1/CRN
L5	1 SEA FILE=REGISTRY ABB=ON	PLU=ON	SODIUM THIOSULFATE/CN
L6	36 SEA FILE=REGISTRY ABB=ON	PLU=ON	L5 OR 7772-98-7/CRN
L7	1 SEA FILE=REGISTRY ABB=ON	PLU=ON	"SODIUM DISULFITE (NA2S2O5) "/ CN
L8	40 SEA FILE=REGISTRY ABB=ON	PLU=ON	L7 OR 7681-57-4/CRN
L11	1 SEA FILE=REGISTRY ABB=ON	PLU=ON	BROMOCRESOL PURPLE/CN
L12	1 SEA FILE=REGISTRY ABB=ON	PLU=ON	BROMOTHYMOL BLUE/CN
L15	295852 SEA L2 OR HYDROGEN PEROXIDE		
L22	160265 SEA GAMMA? (5A) (STERIL? OR DISINFEC? OR RADIAT? OR IRRADI?)		
L24	40761 SEA (CASEIN? OR TRY? (10A) SOY?		
L27	1189 SEA L4 OR SODIUM THIOGLYCOLATE		
L28	30691 SEA L6 OR SODIUM THIOSULFATE		
L29	5008 SEA L8 OR SODIUM DISULFITE		
L31	2940 SEA L11 OR BROMOCRESOL PURPLE OR BROMOCRESOL VIOLET		
L32	4451 SEA L12 OR BROMOTHYMOL BLUE		
L34	229604 SEA AGAR		
L40	12152 SEA L24 AND L34		
L43	366 SEA L40 AND L22		
L44	97 SEA L43 AND L15		
L45	18 SEA L44 AND ((L27 OR L28 OR L29) OR (L31 OR L32))		

=> dup rem l35 l36 l39 l45

FILE 'HCAPLUS' ENTERED AT 12:18:36 ON 06 JAN 2006
 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
 PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
 COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'USPATFULL' ENTERED AT 12:18:36 ON 06 JAN 2006
 CA INDEXING COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'USPAT2' ENTERED AT 12:18:36 ON 06 JAN 2006
 CA INDEXING COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'WPIX' ENTERED AT 12:18:36 ON 06 JAN 2006
 COPYRIGHT (C) 2006 THE THOMSON CORPORATION
 PROCESSING COMPLETED FOR L35
 PROCESSING COMPLETED FOR L36
 PROCESSING COMPLETED FOR L39
 PROCESSING COMPLETED FOR L45
 L48 20 DUP REM L35 L36 L39 L45 (24 DUPLICATES REMOVED)
 ANSWER '1' FROM FILE HCAPLUS
 ANSWERS '2-20' FROM FILE USPATFULL

=> d 148 ibib abs kwic 1-20

L48 ANSWER 1 OF 20 HCAPLUS COPYRIGHT 2006 ACS on STN DUPLICATE 3

ACCESSION NUMBER: 2004:138606 HCPLUS
 DOCUMENT NUMBER: 140:160137
 TITLE: Gamma-sterilizable casein
 -soy-peptone-agar culture medium for the
 detection of microorganisms in hydrogen
 peroxide-containing air and on surfaces with
 hydrogen peroxide
 INVENTOR(S): Horn, Juergen
 PATENT ASSIGNEE(S): Biotest AG, Germany
 SOURCE: Ger. Offen., 7 pp.
 CODEN: GWXXBX
 DOCUMENT TYPE: Patent
 LANGUAGE: German
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
DE 10233346	A1	20040219	DE 2002-10233346	20020723
US 2004106186	A1	20040603	US 2003-623241	20030718
EP 1394264	A1	20040303	EP 2003-16728	20030722
EP 1394264	B1	20041103		
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK				
AT 281531	E	20041115	AT 2003-16728	20030722
ES 2230526	T3	20050501	ES 2003-3016728	20030722
HK 1065568	A1	20050715	HK 2004-106678	20040903
PRIORITY APPLN. INFO.:			DE 2002-10233346	A 20020723

AB The invention concerns a culture medium that is gamma-sterilizable and also resists the inhibiting effect of hydrogen peroxide during culturing of microorganisms; the culture medium includes 2-10% sodium thioglycolate, 5-20% sodium thiosulfate and 10-30% sodium disulfite for neutralizing hydrogen peroxide; the effect is increased in the presence of sodium pyruvate. To protect the color indicators during gamma radiation, polyvinylpyrrolidone and MOPS are added. Thus a medium contained in a 1 L volume with water (g): Microbial Content Test Agar 23; agar containing casein, soy peptone, sodium chloride, lecithin and sorbitan monooleate 12; polyvinylpyrrolidone 10; betaine 0.03; glycine 0.05; L-cystine 0.025; L-proline 0.025; sodium pyruvate 0.25; L-asparagine 0.025; D-glucose 2.5; sodium thioglycolate 1.0; sodium disulfite 2.5; sodium thiosulfate 6.0; brom cresol purple 0.025; bromthymol blue 0.025. The mixture was autoclaved; after cooling the following sterile filtrated ingredients were added (mL): yeast extract (from a mixture of 10 g yeast in 100 mL water) 2.5; 1M phosphate buffer pH 7.3 20; 4M MOPS buffer pH 7.4 6; L-ascorbic acid (from a solution of 1 g sodium ascorbate in 2 mL water) 0.5.

TI Gamma-sterilizable casein-soy
 -peptone-agar culture medium for the detection of microorganisms in hydrogen peroxide-containing air and on surfaces with hydrogen peroxide

AB The invention concerns a culture medium that is gamma-sterilizable and also resists the inhibiting effect of hydrogen peroxide during culturing of microorganisms; the culture medium includes 2-10% sodium thioglycolate, 5-20% sodium thiosulfate and 10-30% sodium disulfite for neutralizing hydrogen peroxide; the effect is increased in the presence of sodium pyruvate. To protect

the color indicators during gamma radiation, polyvinylpyrrolidone and MOPS are added. Thus a medium contained in a 1 L volume with water (g): Microbial Content Test Agar 23; agar containing casein, soy peptone, sodium chloride, lecithin and sorbitan monooleate 12; polyvinylpyrrolidone 10; betaine 0.03; glycine 0.05; L-cystine 0.025; L-proline 0.025; sodium pyruvate 0.25; L-asparagine 0.025; D-glucose 2.5; sodium thioglycolate 1.0; sodium disulfite 2.5; sodium thiosulfate 6.0; bromcresol purple 0.025; bromthymol blue 0.025. The mixture was autoclaved; after cooling the following sterile filtrated ingredients were added (mL): yeast extract (from a mixture of 10 g yeast in 100 mL water) 2.5; 1M phosphate buffer pH 7.3 20; 4M MOPS buffer pH 7.4 6; L-ascorbic acid (from a solution of 1 g sodium ascorbate in 2 mL water) 0.5.

ST culture medium gamma sterilization quality control

antimicrobial hydrogen peroxide

IT Acid-base indicators

Antimicrobial agents

Culture media

Microorganism

Quality control

Sterilization and Disinfection

(gamma-sterilizable casein-soy

-peptone-agar culture medium for the detection of microorganisms in hydrogen peroxide-containing air and on surfaces with hydrogen peroxide)

IT Betaines

RL: BSU (Biological study, unclassified); BIOL (Biological study)

(gamma-sterilizable casein-soy

-peptone-agar culture medium for the detection of microorganisms in hydrogen peroxide-containing air and on surfaces with hydrogen peroxide)

IT Gamma ray

(irradn.; gamma-sterilizable

casein-soy-peptone-agar culture medium for the

detection of microorganisms in hydrogen peroxide

-containing air and on surfaces with hydrogen peroxide)

IT Air analysis

(microorganisms; gamma-sterilizable casein

-soy-peptone-agar culture medium for the detection of

microorganisms in hydrogen peroxide-containing air and on surfaces with hydrogen peroxide)

IT Sterilization and Disinfection

(radiation-induced, γ -irradn.;

gamma-sterilizable casein-soy

-peptone-agar culture medium for the detection of microorganisms in hydrogen peroxide-containing air and on surfaces with hydrogen peroxide)

IT 14265-44-2, Phosphate, biological studies

RL: BSU (Biological study, unclassified); BIOL (Biological study)

(buffer; gamma-sterilizable casein-

soy-peptone-agar culture medium for the detection of

microorganisms in hydrogen peroxide-containing air and on surfaces with hydrogen peroxide)

IT 76-59-5, Bromthymol blue 115-40-2, Bromcresol purple

RL: ARG (Analytical reagent use); BSU (Biological study, unclassified);

ANST (Analytical study); BIOL (Biological study); USES (Uses)

(gamma-sterilizable casein-soy

-peptone-agar culture medium for the detection of microorganisms in hydrogen peroxide-containing air and on surfaces with

hydrogen peroxide)

IT 56-40-6, Glycine, biological studies 56-89-3, L-Cystine, biological studies 70-47-3, L-Asparagine, biological studies 113-24-6, Sodium pyruvate 147-85-3, L-Proline, biological studies 367-51-1, Sodium thioglycolate 1132-61-2, MOPS 7681-57-4
7772-98-7, Sodium thiosulfate 9003-39-8,
Polyvinylpyrrolidone
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(gamma-sterilizable casein-soy
-peptone-agar culture medium for the detection of microorganisms in hydrogen peroxide-containing air and on surfaces with hydrogen peroxide)

IT 7722-84-1, Hydrogen peroxide, biological studies
RL: BUU (Biological use, unclassified); BIOL (Biological study); USES (Uses)
(gamma-sterilizable casein-soy
-peptone-agar culture medium for the detection of microorganisms in hydrogen peroxide-containing air and on surfaces with hydrogen peroxide)

L48 ANSWER 2 OF 20 USPATFULL on STN DUPLICATE 1
 ACCESSION NUMBER: 2005:157920 USPATFULL
 TITLE: Dry powders of metal-containing compounds
 INVENTOR(S): Gillis, Scott H., Concord, MA, UNITED STATES
 Schechter, Paul, Dover, MA, UNITED STATES
 Burrell, Robert E., Alberta, CANADA
 PATENT ASSIGNEE(S): Nucrust Pharmaceuticals Corp. a Canada corporation
 (U.S. corporation)

NUMBER	KIND	DATE
US 2005136128	A1	20050623
US 2004-998499	A1	20041129 (10)
Continuation of Ser. No. US 2002-277298, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2001-916757, filed on 27 Jul 2001, GRANTED, Pat. No. US 6692773 Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED		
Continuation-in-part of Ser. No. US 2002-159587, filed on 30 May 2002, PENDING Continuation-in-part of Ser. No. US 2002-131568, filed on 23 Apr 2002, PENDING		
Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING		
Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING		
Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-128208, filed on 23 Apr 2002, PENDING		
Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING		

NUMBER	DATE
US 2001-285884P	20010423 (60)
US 2001-285884P	20010423 (60)
US 2001-285884P	20010423 (60)

US 2001-285884P 20010423 (60)
DOCUMENT TYPE: Utility
FILE SEGMENT: APPLICATION
LEGAL REPRESENTATIVE: FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA,
02110, US
NUMBER OF CLAIMS: 72
EXEMPLARY CLAIM: 1
NUMBER OF DRAWINGS: 5 Drawing Page(s)
LINE COUNT: 3310

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Dry powders of metal-containing compounds are disclosed. Methods of preparing and using the dry powders, particularly in the treatment of a subject having a condition, are also disclosed. The metal-containing material can be, for example, an antimicrobial material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, and/or an MMP modulating material. In certain embodiments, the metal-containing material is an atomically disordered, silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf. . . .

DETD The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with P. acne and incubating them for 2 days at 37° C. in an anaerobic jar. At this. . . .

DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution. . . .

DETD . . . gel using Pseudomonas aeruginosa. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

DETD . . . that a dose of up to 10.sup.10 CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a {fraction (1/10)} volume of sterile PBS.

DETD . . . that a dose of up to 10.sup.9 CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.sup.9 CFU/ml.

DETD . . . that a dose of up to 10.sup.9 CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic

soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.sup.9 CFU/ml.

- DETD Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some . . .
- DETD . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate). . .
- DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4 . . .

L48 ANSWER 3 OF 20 USPATFULL on STN DUPLICATE 2
 ACCESSION NUMBER: 2005:150713 USPATFULL
 TITLE: Methods of treating conditions with a metal-containing material
 INVENTOR(S): Burrell, Robert E., Sherwood Park, CANADA
 Gillis, Scott H., Concord, MA, UNITED STATES
 Schechter, Paul, Dover, MA, UNITED STATES
 Naylor, Antony G., Cambridge, CANADA
 Moxham, Peter H., Sherwood Park, CANADA
 Wright, John B., San Antonio, TX, UNITED STATES
 Lam, Kan, San Antonio, TX, UNITED STATES
 PATENT ASSIGNEE(S): Nucryst Pharmaceuticals Corp., Alberta, CANADA (U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2005129624	A1	20050616
APPLICATION INFO.:	US 2004-985204	A1	20041110 (10)
RELATED APPLN. INFO.:	Continuation of Ser. No. US 2002-277358, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-159587, filed on 30 May 2002, PENDING Continuation-in-part of Ser. No. US 2002-128208, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131568, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2001-916757, filed on 27 Jul 2001, GRANTED, Pat. No. US 6692773 Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED		

DOCUMENT TYPE: Utility
 FILE SEGMENT: APPLICATION
 LEGAL REPRESENTATIVE: FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA, 02110, US

NUMBER OF CLAIMS: 71

EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 5 Drawing Page(s)

LINE COUNT: 3325

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Methods of treating conditions with a metal-containing material are disclosed. The metal-containing material can be, for example, an

antimicrobial material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, and/or an MMP modulating material. In certain embodiments, the metal-containing material is an atomically disordered, silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.
- DETD The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf.
- DETD The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with *P. acne* and incubating them for 2 days at 37° C. in an anaerobic jar. At this.
- DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution.
- DETD . . . gel using *Pseudomonas aeruginosa*. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and.
- DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4.
- DETD . . . that a dose of up to 10.^{sup.10} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a 1/10 volume of sterile PBS.
- DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.
- DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.
- DETD Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some.
- DETD . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate).
- DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the

medium turned turbid in 4. . .

L48 ANSWER 4 OF 20 USPATFULL on STN DUPLICATE 4
 ACCESSION NUMBER: 2004:261994 USPATFULL
 TITLE: Disinfecting solutions effective against bacterial endospores
 INVENTOR(S): Ammon, Daniel M., JR., Rochester, NY, UNITED STATES
 Borazjani, Roya Nicole, Rochester, NY, UNITED STATES
 Salamone, Joseph C., Fairport, NY, UNITED STATES

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2004204496	A1	20041014
APPLICATION INFO.:	US 2003-412795	A1	20030411 (10)
DOCUMENT TYPE:	Utility		
FILE SEGMENT:	APPLICATION		
LEGAL REPRESENTATIVE:	RITA D. VACCA, BAUSCH & LOMB INCORPORATED, ONE BAUSCH & LOMB PLACE, ROCHESTER, NY, 14604-2701		
NUMBER OF CLAIMS:	49		
EXEMPLARY CLAIM:	1		
LINE COUNT:	1087		

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention is directed to a biguanide-containing disinfecting solutions effective in inactivating bacteria endospores on surfaces, air-borne or in water. The methods of using the present invention are directed to disinfecting endospore laden surfaces, air and water with the subject biguanide-containing solutions.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

SUMM . . . is a dormant form and does not reproduce. Endospores are difficult to kill except by strong chemicals, high heat, or gamma irradiation. When conditions signal a favorable environment, the endospores will germinate and the emergent vegetative cell can resume to replicate.

SUMM . . . of bacteria endospores. The principal disinfecting agents for destruction or inactivation of bacteria endospores are formaldehyde, glutaraldehyde (at pH 8.0-8.5), hydrogen peroxide and peracetic acid (Dietz and Bohm, 1980; Bohm, 1990). Hypochlorites are sporicidal but are rapidly neutralized by organic matter and, therefore, while good for disinfecting non-wooden surfaces, are unsuitable for disinfecting most environmental sites or materials. Hydrogen peroxide and peracetic acid are not appropriate disinfecting agents if blood is present.

SUMM [0006] Although effective endospore disinfecting agents, formaldehyde, glutaraldehyde, hydrogen peroxide, peracetic acid and chlorine compounds are toxic to humans and largely dangerous to handle. Formaldehyde (formalin) is poisonous and a. . . vapor. The endospore disinfecting agent glutaraldehyde is likewise very corrosive and harmful if swallowed, inhaled, or absorbed through the skin. Hydrogen peroxide, while less dangerous to handle than formaldehyde and glutaraldehyde, may be harmful if swallowed and is known to cause eye. . .

DETD Determination of Minimal Inhibitory Concentration of Selected Test Solutions Against 10.^{sup.3} Endospores in Modified Trypticase Soy Broth on Cellulose Membrane

DETD . . . of the present study was to determine the minimal inhibitory concentration of selected test solutions against 10.^{sup.3} endospores in Modified Trypticase Soy Broth (MTSB) on cellulose membrane. To do this, 0.1 ml of a 10.^{sup.4} suspension of Bacillus

DET D stearothermophilus endospores in 50. . .
 [0038] Bacto.TM. Tryptic Soy Broth (TSB), (DIFCO
 #211825, Lot #0341002, Becton, Dickinson, & Co., Sparks, Md.)
 DET D [0039] Sodium thiosulfate --
 Na.sub.2S.sub.2O.sub.3.5H.sub.2O (Fisher #S-445)
 DET D [0052] Solutions to be evaluated were diluted with Modified
 Trypticase Soy Broth (MTSB) and then 10.sup.4 B.
 globigii spores were added to the diluted test solutions. Recovery of
 spores (as measured). . .
 DET D [0061] 3. Difco.TM. Tryptic Soy Agar (TSA), (DIFCO
 #236950, Lot #2190630, Becton, Dickinson, & Co., Sparks, Md.)

L48 ANSWER 5 OF 20 USPATFULL on STN DUPLICATE 5
 ACCESSION NUMBER: 2004:246735 USPATFULL
 TITLE: Compositions and methods of metal-containing materials
 INVENTOR(S): Burrell, Robert E., Alberta, CANADA
 Wright, John B., San Antonio, TX, UNITED STATES
 Lam, Kan, San Antonio, TX, UNITED STATES
 Yin, Hua Qing, Alberta, CANADA
 Naylor, Antony G., Ontario, CANADA
 Moxham, Peter H., Alberta, CANADA
 Gillis, Scott H., Concord, MA, UNITED STATES
 Schechter, Paul, Dover, MA, UNITED STATES
 Robert Stiles, James Alexander, Toronto, CANADA

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2004191329	A1	20040930
APPLICATION INFO.:	US 2003-690715	A1	20031022 (10)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED Continuation-in-part of Ser. No. US 2001-916757, filed on 27 Jul 2001, GRANTED, Pat. No. US 6692773 Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-128208, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131568, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-159587, filed on 30 May 2002, PENDING Continuation-in-part of Ser. No. US 2002-277673, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277356, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277298, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277362, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277358, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277320, filed on 22 Oct 2002, PENDING		

	NUMBER	DATE
PRIORITY INFORMATION:	US 2001-285884P	20010423 (60)
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	APPLICATION	
LEGAL REPRESENTATIVE:	FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA, 02110	

NUMBER OF CLAIMS: 33
EXEMPLARY CLAIM: 1
NUMBER OF DRAWINGS: 5 Drawing Page(s)
LINE COUNT: 3855

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Compositions and methods of metal-containing materials of metal-containing materials are disclosed. The metal-containing material can be, for example, an antimicrobial material, an anti-biofilm material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, anti-proliferative, MMP modulating material, an atomically disordered, crystalline material, and/or a nanocrystalline material. In certain embodiments, the metal-containing material is an atomically disordered, nanocrystalline silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD [0124] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf. . .

DETD [0159] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with P. acne and incubating them for 2 days at 37° C. in an anaerobic jar. At this. . .

DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution. . .

DETD . . . gel using Pseudomonas aeruginosa. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . .

DETD . . . that a dose of up to 10.^{sup.10} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a {fraction (1/10)} volume of sterile PBS.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD [0296] Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior

DETD to application to the incision. In some . . .
 . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate). . .
 DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4 . . .

L48 ANSWER 6 OF 20 USPATFULL on STN DUPLICATE 6
 ACCESSION NUMBER: 2004:227926 USPATFULL
 TITLE: Treatment of ungual and subungual diseases
 INVENTOR(S): Gillis, Scott H., Concord, MA, UNITED STATES

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2004176312	A1	20040909
APPLICATION INFO.:	US 2004-770132	A1	20040202 (10)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 2002-128208, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131568, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-159587, filed on 30 May 2002, PENDING Continuation-in-part of Ser. No. US 2002-277673, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277356, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277298, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277362, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277358, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277320, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2003-690774, filed on 22 Oct 2003, PENDING Continuation-in-part of Ser. No. US 2003-690724, filed on 22 Oct 2003, PENDING Continuation-in-part of Ser. No. US 2003-690715, filed on 22 Oct 2003, PENDING		

DOCUMENT TYPE: Utility
 FILE SEGMENT: APPLICATION
 LEGAL REPRESENTATIVE: FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA, 02110

NUMBER OF CLAIMS: 52
 EXEMPLARY CLAIM: 1
 NUMBER OF DRAWINGS: 5 Drawing Page(s)
 LINE COUNT: 3771

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The treatment of ungual and subungual diseases is disclosed.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD [0123] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf.

DETD [0158] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with *P. acne* and incubating them for 2 days at 37° C. in an anaerobic jar. At this . . .

DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution. . . .

DETD . . . gel using *Pseudomonas aeruginosa*. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

DETD . . . that a dose of up to 10.^{sup.10} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a {fraction (1/10)} volume of sterile PBS.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD [0296] Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some. . . .

DETD . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate). . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

L48 ANSWER 7 OF 20 USPATFULL on STN

DUPLICATE 7

ACCESSION NUMBER: 2004:171537 USPATFULL

TITLE: Methods of treating conditions using metal-containing materials

INVENTOR(S): Gillis, Scott H., Concord, MA, UNITED STATES
Schechter, Paul, Dover, MA, UNITED STATES
Stiles, James Alexander Robert, Toronto, CANADA

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2004131698	A1	20040708

APPLICATION INFO.: US 2003-690724 A1 20031022 (10)
RELATED APPLN. INFO.: Continuation-in-part of Ser. No. US 2000-628735, filed
on 27 Jul 2000, ABANDONED Continuation-in-part of Ser.
No. US 2001-916757, filed on 27 Jul 2001, GRANTED, Pat.
No. US 6692773 Continuation-in-part of Ser. No. US
2001-840637, filed on 23 Apr 2001, PENDING
Continuation-in-part of Ser. No. US 2002-128208, filed
on 23 Apr 2002, PENDING Continuation-in-part of Ser.
No. US 2002-131509, filed on 23 Apr 2002, PENDING
Continuation-in-part of Ser. No. US 2002-131511, filed
on 23 Apr 2002, PENDING Continuation-in-part of Ser.
No. US 2002-131568, filed on 23 Apr 2002, PENDING
Continuation-in-part of Ser. No. US 2002-159587, filed
on 30 May 2002, PENDING Continuation-in-part of Ser.
No. US 2002-277673, filed on 22 Oct 2002, PENDING
Continuation-in-part of Ser. No. US 2002-277356, filed
on 22 Oct 2002, PENDING Continuation-in-part of Ser.
No. US 2002-277298, filed on 22 Oct 2002, PENDING
Continuation-in-part of Ser. No. US 2002-277362, filed
on 22 Oct 2002, PENDING Continuation-in-part of Ser.
No. US 2002-277358, filed on 22 Oct 2002, PENDING
Continuation-in-part of Ser. No. US 2002-277320, filed
on 22 Oct 2002, PENDING

DOCUMENT TYPE: Utility

FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA,
02110

NUMBER OF CLAIMS: 42

EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 5 Drawing Page(s)

LINE COUNT: 3866

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Methods of treating conditions using metal-containing materials are disclosed. Exemplary conditions include bacterial conditions, biofilm conditions, microbial conditions, inflammatory conditions, fungal conditions, viral conditions, autoimmune conditions, idiopathic conditions, hyperproliferative conditions, noncancerous growths, cancerous conditions and combinations of such conditions. In certain embodiments, the metal-containing material is an atomically disordered, nanocrystalline silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD [0110] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf. . .

DETD [0145] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with *P. acne* and incubating them for 2 days at 37° C. in an anaerobic jar. At this. . .

DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially

10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution. . . .

DETD . . . gel using *Pseudomonas aeruginosa*. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

DETD . . . that a dose of up to 10.^{sup.10} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a {fraction (1/10)} volume of sterile PBS.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD [0267] Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some. . . .

DETD . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate). . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

L48 ANSWER 8 OF 20 USPATFULL on STN

DUPLICATE 8

ACCESSION NUMBER: 2004:168962 USPATFULL
 TITLE: Metal-containing materials
 INVENTOR(S): Gillis, Scott H., Concord, MA, UNITED STATES
 Schechter, Paul, Dover, MA, UNITED STATES
 Robert Stiles, James Alexander, Toronto, CANADA

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2004129112	A1	20040708
APPLICATION INFO.:	US 2003-690774	A1	20031022 (10)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED Continuation-in-part of Ser. No. US 2001-916757, filed on 27 Jul 2001, GRANTED, Pat. No. US 6692773 Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-128208, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131568, filed on 23 Apr 2002, PENDING		

Continuation-in-part of Ser. No. US 2002-159587, filed on 30 May 2002, PENDING Continuation-in-part of Ser. No. US 2002-277673, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277356, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277298, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277362, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277358, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2002-277320, filed on 22 Oct 2002, PENDING

DOCUMENT TYPE:

Utility

FILE SEGMENT:

APPLICATION

LEGAL REPRESENTATIVE:

FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA, 02110

NUMBER OF CLAIMS:

27

EXEMPLARY CLAIM:

1

NUMBER OF DRAWINGS:

5 Drawing Page(s)

LINE COUNT:

3727

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Metal-containing materials, as well as their preparation and use are disclosed. The metal-containing material can be, for example, an antimicrobial material, an anti-biofilm material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, anti-proliferative, MMP modulating material, an atomically disordered, crystalline material, and/or a nanocrystalline material. In certain embodiments, the metal-containing material is an atomically disordered, nanocrystalline silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD [0120] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches; and has shown a shelf. . .

DETD [0155] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with *P. acne* and incubating them for 2 days at 37° C. in an anaerobic jar. At this. . .

DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution. . .

DETD . . . gel using *Pseudomonas aeruginosa*. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . .

DETD . . . that a dose of up to 10.sup.10 CFU was not lethal for the

animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a 1/10 volume of sterile PBS.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD [0275] Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some. . .

DETD . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate). . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . .

L48 ANSWER 9 OF 20 USPATFULL on STN

DUPPLICATE 9

ACCESSION NUMBER: 2004:139013 USPATFULL

TITLE: Gamma-sterilisable nutrient medium based on casein soya peptone agar

INVENTOR(S): Horn, Jurgen, Egelsbach, GERMANY, FEDERAL REPUBLIC OF

PATENT ASSIGNEE(S): Biostest AG, Dreieich, GERMANY, FEDERAL REPUBLIC OF (non-U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2004106186	A1	20040603
APPLICATION INFO.:	US 2003-623241	A1	20030718 (10)

	NUMBER	DATE
PRIORITY INFORMATION:	DE 2002-10233346	20020723
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	APPLICATION	
LEGAL REPRESENTATIVE:	Norris, McLaughlin & Marcus P.A., 30th Floor, 220 East 42nd Street, New York, NY, 10017	
NUMBER OF CLAIMS:	11	
EXEMPLARY CLAIM:	1	
LINE COUNT:	436	

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB A gamma-sterilisable nutrient medium based on casein soya peptone agar for the detection of microorganisms in hydrogen peroxide-bearing air or on hydrogen peroxide-bearing surfaces, with a content of between 2 and 10% by weight of sodium thioglycolate, between 5 and 20% by weight of sodium thiosulfate and between 10 and 30% by weight of sodium disulfite in each case with respect to the agar. Preferably the agar used is microbial content test agar and the nutrient medium may

contain between 0.1 and 0.25% by weight of sodium pyruvate with respect to the agar. If bromocresol purple and bromocresol violet are used as pH-indicators the nutrient medium may also contain polyvinylpyrrolidone.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- TI Gamma-sterilisable nutrient medium based on casein soya peptone agar
- AB A gamma-sterilisable nutrient medium based on casein soya peptone agar for the detection of microorganisms in hydrogen peroxide-bearing air or on hydrogen peroxide-bearing surfaces, with a content of between 2 and 10% by weight of sodium thioglycolate, between 5 and 20% by weight of sodium thiosulfate and between 10 and 30% by weight of sodium disulfite in each case with respect to the agar. Preferably the agar used is microbial content test agar and the nutrient. . .
- SUMM [0001] The invention relates to a gamma-sterilisable nutrient medium based on casein soya peptone agar for the detection of microorganisms in hydrogen peroxide-bearing air or on a hydrogen peroxide-bearing surface.
- SUMM [0003] Hydrogen peroxide can be used for fumigating isolators or entire rooms in order to destroy microorganisms which are possibly to be found therein. The hydrogen peroxide in gas form condenses on the fumigated surfaces, as a between 30% and 35% saturated solution. Prior to the start. . .
- SUMM [0004] Surprisingly the small amounts of hydrogen peroxide vapors are concentrated in the course of collecting 1000 liters of air in casein soya peptone agar, in accordance with United States Pharmacopoeia, 8th Supplement, USP-NF, <1116>, 4426-4431, on concentrations of over 100 ppm in agar. Spores are already restrained by levels of hydrogen peroxide concentration of 10 ppm and vegetative cells and microorganisms are already restrained by an even more markedly lower concentration of hydrogen peroxide. That adversely affects to a considerable degree the detectability of microorganisms which are still present.
- SUMM . . . which respect reference may be made to Journ. Applied and Environmental Microbiology 57: 2775-2776, 1991, Balkumar Marthi. Catalase breaks down hydrogen peroxide into water and oxygen. Catalase however is inactivated at 55° C., which presupposes drawing off agar at markedly below 55° . . . viable option because of gelling of the agar at temperatures around 50° C. In addition the oxygen resulting from the hydrogen peroxide causes bubbles and cracks in the agar, which causes extreme difficulty in detecting colonies which grow on the agar.
- SUMM . . . iodine and chlorine compounds, mercury (Merthiolate), formaldehyde and glutaraldehyde (Difco Handbook, D/E-Agar). That Difco Handbook does not describe neutralisation of hydrogen peroxide. The disadvantage of D/E-agar is the short durability life of the ready agar medium of only about two and a . . . and the changes in the medium in the event of radiation doses of 16-25 kgray, which are necessary for reliable gamma-sterilisation
- SUMM [0010] An object of the present invention is to afford a gamma-sterilisable nutrient medium for the detection of microorganisms in hydrogen peroxide-bearing air or on hydrogen peroxide-bearing surfaces, which does not suffer from the above-indicated disadvantages and which affords

enhanced operating results.

SUMM [0011] Another object of the present invention is to provide a gamma-sterilisable nutrient medium for the detection of microorganisms, which affords enhanced stability thereby facilitating storage and despatch and also providing a. . .

SUMM [0012] In accordance with the principles of the present invention the foregoing and other objects are now attained by a gamma-sterilisable nutrient medium based on casein soya peptone agar for the detection of microorganisms in hydrogen peroxide-bearing air or on a hydrogen peroxide-bearing surface, with the addition of between 2 and 10% by weight of sodium thioglycolate, between 5 and 20% by weight of sodium bisulfite and between 10 and 30% of sodium thiosulfate, in each case with respect to the agar. It was surprisingly found that agar medium based on casesin soya peptone agar neutralises hydrogen peroxide in levels of concentration as occur when collecting air-borne germs in isolators with hydrogen peroxide residual content, when the above-outlined additions are implemented.

SUMM [0013] Preferably the casein soya peptone agar employed is the Microbial Content Test Agar (MCT Agar; Difco 0553-07-4) which comprises casein soya peptone with the addition of sorbitan monooleate=Tween 80® and lethicin. Those media are also pH-stable by buffering in the pH-range. . .

SUMM [0015] The pH-indicators which are usually added, bromocresol purple and bromothymol blue, are destroyed by gamma irradiation at between 16 and 25 kgray, with the consequence of the agar being of a gray appearance, which causes substantial. . .

SUMM [0016] Surprisingly, the hydrogen peroxide -neutralising action of the nutrient media according to the invention can be boosted by the addition of between 0.05 and 0.25%. . .

SUMM . . . capable of neutralising 2% H₂O₂-solutions which are applied directly and permitting subsequent growth of microorganisms. In comparison for example normal soya casein peptone agar no longer permits germ growth after exposure with only 0.02% hydrogen peroxide.

DETD . . . Color Indicator for Applying to H₂O₂-Bearing Surfaces

Basic medium Microbial Content Test Agar (Difco 0553-07-4 = MCT Agar)	23	g
Agar-agar (comprising casein soya peptone, g	12	
common salt, lecithin, sorbitan-monooleate and agar)		
Polyvinylpyrrolidone (PVP 360) betaine (Sigma B3501) 0.03	10	g
Betaine (Sigma B3501)	0.03	g
L-glycine (Merck 104201)	0.05	g
L-proline (Merck 107434)	0.025	g
Pyruvic acid, Na-salt (Merck 106619) = sodium pyruvate	0.25	g
L-asparagine (Merck 101565)	0.025	g
Glucose (Merck 107074)	2.5	g
Sodium thioglycolate (Sigma T0632) g	1.0	
Sodium disulfite (Merck 106528) g	2.5	
Sodium thiosulfate (Merck 106516)	6.0	

g
 Bromocresol purple (Merck 103025) 0.025 g
 Bromothymol blue (Merck 103026) 0.025 g
 Aqua dest ad 1 liter
 Adjust pH to. . .
 DETD . . . g
 L-proline (Merck 107434) 0.025 g
 Pyruvic acid, Na-salt (Merck 106619) = sodium 0.25 g
 pyruvate
 L-asparagine (Merck 101565) 0.025 g
 Glucose (Merck 107074) 2.5 g
 Sodium thioglycolate (Sigma T0632) 1.0
 g
 Sodium disulfite (Merck 106528) 2.5
 g
 Sodium thiosulfate (Merck 106516) 6.0
 g
 Aqua dest ad 1 liter
 Adjust pH to 7.3 ± 0.2, autoclave for 15 min at
 121° C. and. . . (Na-salt Sigma A7631, 1 g in 2 ml 0.5 ml
 VE-water
 Cast in agar strips for air-borne germ collecting
 apparatus and subject to gamma.-sterilisation
 (dose 16 - 25 kgray).
 DETD [0024] Soy Bean Casein Digest Agar
 DETD . . . very marked growth restraints from 0.5% H.sub.20.sub.2.
 TABLE 1

H.sub.20.sub.2 concentration in the agar after application
 of 100 microliters of H.sub.20.sub.2 solutions

Concentra- tion of the agar applied	Agar	Agar	MCT agar Example 3	Soybean casein digest with 1% pyruvate	D/E
DETDX aureus 6538 after H.sub.20.sub.2 exposure - inoculum of 10-100 colony-forming units (CFU) per agar surface (Petri dish agar strip contact slide)	Example 1	Example 2	(standard	Example. . .	
Concentra- tion of the agar applied	Agar	Agar	MCT agar Example 3	Soybean casein digest with 1% pyruvate	D/E
DETDX residual	Example 1	Example 2	(standard	Example. . .	
Agar type	concentration	concentration		concentration	
Agar Example 1 (invention)	86	92		83	
Agar Example 2 (invention)	81	79		88	
MCT agar Example 3 (standard comparison)	0	0		91	

Soybean casein digest with 1% pyruvate	11	74
--	----	----

Example 4 (literature)		83
---------------------------	--	----

D/E-agar	7	92
----------	---	----

Example 5 (comparison)		94
---------------------------	--	----

DETD [0037] The culture media according to the invention can be gamma-sterilised without problems.

CLM What is claimed is:

1. A gamma-sterilisable nutrient medium- based on casein soya peptone agar for the detection of microorganisms in a hydrogen peroxide-bearing situation including the addition of between 2 and 10% by weight of sodium thioglycolate, between 5 and 20% by weight of sodium thiosulfate and between 10 and 30% by weight of sodium disulfite in each case with respect to the agar.
2. A gamma-sterilisable nutrient medium as set forth in claim 1 containing between 0.1 and 0.25% of sodium pyruvate with respect to the . . .
3. A gamma-sterilisable nutrient medium as set forth in claim 1 including at least one of bromocresol purple and bromocresol violet as a . . .
4. A gamma-sterilisable nutrient medium as set forth in claim 3 wherein the content of polyvinylpyrrolidone with respect to the agar is between. . .
5. A gamma-sterilisable nutrient medium as set forth in claim 1 including bromothymol blue as a pH-indicator and between 10 and 50% by. . .
6. A gamma-sterilisable nutrient medium as set forth in claim 5 wherein the content of polyvinylpyrrolidone with respect to the agar is between. . .
7. A gamma-sterilisable nutrient medium as set forth in claim 1 containing between 20 and 50% of morpholinopropane sulfonic acid and between 50. . .
8. A gamma-sterilisable nutrient medium as set forth in claim 1 wherein microbial content test agar is used as the agar.
9. A gamma-sterilisable nutrient medium as set forth in claim 1 including at least one selected from the group consisting of betaine, glycine,. . .
10. A gamma-sterilisable nutrient medium as set forth in claim 1 wherein the hydrogen peroxide -bearing situation is hydrogen-peroxide bearing air.
11. A gamma-sterilisable nutrient medium as set forth in claim 1 wherein the hydrogen peroxide -bearing situation is a hydrogen peroxide-bearing surface.

IT 56-40-6, Glycine, biological studies 56-89-3, L-Cystine, biological studies 70-47-3, L-Asparagine, biological studies 113-24-6, Sodium pyruvate 147-85-3, L-Proline, biological studies 367-51-1, Sodium thioglycolate 1132-61-2, MOPS 7681-57-4 7772-98-7, Sodium thiosulfate 9003-39-8, Polyvinylpyrrolidone (gamma-sterilizable casein-soy-peptone-agar culture medium for the

detection of microorganisms in hydrogen peroxide-containing air and on surfaces with hydrogen peroxide)

IT 7722-84-1, Hydrogen peroxide, biological studies
(gamma-sterilizable casein-soy-peptone-agar culture medium for the detection of microorganisms in hydrogen peroxide-containing air and on surfaces with hydrogen peroxide)

L48 ANSWER 10 OF 20 USPATFULL on STN DUPLICATE 10
ACCESSION NUMBER: 2003:293953 USPATFULL
TITLE: Methods of inducing apoptosis and modulating metalloproteinases
INVENTOR(S): Burrell, Robert E., Alberta, CANADA
Gillis, Scott H., Concord, MA, UNITED STATES
Schechter, Paul, Dover, MA, UNITED STATES
Wright, John B., San Antonio, TX, UNITED STATES
Lam, Kan, San Antonio, TX, UNITED STATES

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2003206966	A1	20031106
APPLICATION INFO.:	US 2002-277320	A1	20021022 (10)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED Continuation-in-part of Ser. No. US 2001-916757, filed on 27 Jul 2001, PENDING Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-128208, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131568, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-159587, filed on 30 May 2002, PENDING		

	NUMBER	DATE
PRIORITY INFORMATION:	US 2001-285884P	20010423 (60)
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	APPLICATION	
LEGAL REPRESENTATIVE:	SEAN P. DALEY, Fish & Richardson P.C., 225 Franklin Street, Boston, MA, 02110-2804	
NUMBER OF CLAIMS:	70	
EXEMPLARY CLAIM:	1	
NUMBER OF DRAWINGS:	9 Drawing Page(s)	
LINE COUNT:	3281	

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Methods of inducing apoptosis and modulating metalloproteinases, particularly with metal-containing compounds, are disclosed. The metal-containing material can be, for example, an antimicrobial material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, and/or an MMP modulating material. In certain embodiments, the metal-containing material is an atomically disordered, silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma

radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD [0119] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf. . . .

DETD [0156] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with P. acne and incubating them for 2 days at 37° C. in an anaerobic jar. At this. . . .

DETD anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution. . . .

DETD gel using Pseudomonas aeruginosa. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . . .

DETD was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

DETD that a dose of up to 10.^{sup.10} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a {fraction (1/10)} volume of sterile PBS.

DETD that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD [0280] Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some. . . .

DETD Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate). . . .

DETD was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

L48 ANSWER 11 OF 20 USPATFULL on STN

DUPLICATE 11

ACCESSION NUMBER: 2003:288288 USPATFULL

TITLE: Solutions and aerosols of metal-containing compounds
Burrell, Robert E., Alberta, CANADA

INVENTOR(S): Gillis, Scott H., Concord, MA, UNITED STATES

Schechter, Paul, Dover, MA, UNITED STATES

Wright, John B., San Antonio, TX, UNITED STATES

Lam, Kan, San Antonio, TX, UNITED STATES

Yin, Hua Qing, Alberta, CANADA
 Naylor, Antony G., Alberta, CANADA
 Moxham, Peter H., Alberta, CANADA

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2003203046	A1	20031030
APPLICATION INFO.:	US 2003-364983	A1	20030212 (10)
RELATED APPLN. INFO.:	Continuation of Ser. No. US 2002-277673, filed on 22 Oct 2002, PENDING Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED		
DOCUMENT TYPE:	Utility		
FILE SEGMENT:	APPLICATION		
LEGAL REPRESENTATIVE:	FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA, 02110		
NUMBER OF CLAIMS:	77		
EXEMPLARY CLAIM:	1		
NUMBER OF DRAWINGS:	5 Drawing Page(s)		
LINE COUNT:	3395		
CAS INDEXING IS AVAILABLE FOR THIS PATENT.			
AB	Solutions and aerosols of metal-containing compounds are disclosed. Methods of preparing and using the solutions and aerosols, particularly in the treatment of a subject having a condition, are also disclosed. The metal-containing material can be, for example, an antimicrobial material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, and/or an MMP modulating material. In certain embodiments, the metal-containing material is an atomically disordered, silver-containing material.		

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD [0127] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf. . . .

DETD [0162] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with *P. acne* and incubating them for 2 days at 37° C. in an anaerobic jar. At this. . . .

DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution. . . .

DETD . . . gel using *Pseudomonas aeruginosa*. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

DETD . . . that a dose of up to 10.sup.10 CFU was not lethal for the

animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a {fraction (1/10)} volume of sterile PBS.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD [0286] Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some. . .

DETD . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate). . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in '4. . .

L48 ANSWER 12 OF 20 USPATFULL on STN DUPLICATE 12
 ACCESSION NUMBER: 2003:276419 USPATFULL
 TITLE: Methods of treating skin and integument conditions
 INVENTOR(S): Burrell, Robert E., Alberta, CANADA
 Gillis, Scott H., Concord, MA, UNITED STATES
 Schechter, Paul, Dover, MA, UNITED STATES
 Wright, John B., San Antonio, TX, UNITED STATES
 Lam, Kan, San Antonio, TX, UNITED STATES
 Yin, Hua Qing, Alberta, CANADA

NUMBER	KIND	DATE
-----	-----	-----
PATENT INFORMATION:	US 2003194444	A1 20031016
APPLICATION INFO.:	US 2002-277362	A1 20021022 (10)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED Continuation-in-part of Ser. No. US 2001-916757, filed on 27 Jul 2001, PENDING Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-128208, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131568, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-159587, filed on 30 May 2002, PENDING Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING	

NUMBER	DATE	
-----	-----	
PRIORITY INFORMATION:	US 2001-285884P	20010423 (60)
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	APPLICATION	
LEGAL REPRESENTATIVE:	FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA,	

02110

NUMBER OF CLAIMS: 28
EXEMPLARY CLAIM: 1
NUMBER OF DRAWINGS: 9 Drawing Page(s)
LINE COUNT: 3178

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Methods of treating skin and integument conditions, particularly with metal-containing compounds, are disclosed. The metal-containing material can be, for example, an antimicrobial material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, and/or an MMP modulating material. In certain embodiments, the metal-containing material is an atomically disordered, silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD [0120] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf.

DETD [0155] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with P. acne and incubating them for 2 days at 37° C. in an anaerobic jar. At this.

DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution.

DETD . . . gel using Pseudomonas aeruginosa. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and.

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4.

DETD . . . that a dose of up to 10.sup.10 CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a 1/10 volume of sterile PBS.

DETD . . . that a dose of up to 10.sup.9 CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.sup.9 CFU/ml.

DETD . . . that a dose of up to 10.sup.9 CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.sup.9 CFU/ml.

DETD [0276] Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior

DETD to application to the incision. In some. . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate). . . .
 DETD was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

L48 ANSWER 13 OF 20 USPATFULL on STN DUPLICATE 13
 ACCESSION NUMBER: 2003:264887 USPATFULL
 TITLE: Methods of treating conditions with a metal-containing material
 INVENTOR(S): Burrell, Robert E., Alberta, CANADA
 Gillis, Scott H., Concord, MA, UNITED STATES
 Schechter, Paul, Dover, MA, UNITED STATES
 Naylor, Antony G., Alberta, CANADA
 Moxham, Peter H., Alberta, CANADA
 Wright, John B., San Antonio, TX, UNITED STATES
 Lam, Kan, San Antonio, TX, UNITED STATES

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2003185901	A1	20031002
APPLICATION INFO.:	US 2002-277358	A1	20021022 (10)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED Continuation-in-part of Ser. No. US 2001-916757, filed on 27 Jul 2001, PENDING Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131568, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-159587, filed on 30 May 2002, PENDING Continuation-in-part of Ser. No. US 2002-128208, filed on 23 Apr 2002, PENDING		

	NUMBER	DATE
PRIORITY INFORMATION:	US 2001-285884P	20010423 (60)
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	APPLICATION	
LEGAL REPRESENTATIVE:	FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA, 02110	
NUMBER OF CLAIMS:	71	
EXEMPLARY CLAIM:	1	
NUMBER OF DRAWINGS:	9 Drawing Page(s)	
LINE COUNT:	3356	

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Methods of treating conditions with a metal-containing material are disclosed. The metal-containing material can be, for example, an antimicrobial material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, and/or an MMP modulating material. In certain embodiments, the metal-containing material is an atomically disordered, silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.
- DETD [0122] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf. . .
- DETD [0157] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with P. acne and incubating them for 2 days at 37° C. in an anaerobic jar. At this. . .
- DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution. . .
- DETD . . . gel using Pseudomonas aeruginosa. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . .
- DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . .
- DETD . . . that a dose of up to 10.^{sup.10} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a {fraction (1/10)} volume of sterile PBS.
- DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.
- DETD . . . that a dose of up to 10⁹ CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.
- DETD [0280] Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some. . .
- DETD . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate). . .
- DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . .

L48 ANSWER 14 OF 20 USPATFULL on STN

DUPPLICATE 14

ACCESSION NUMBER: 2003:257329 USPATFULL

TITLE: Solutions and aerosols of metal-containing compounds

INVENTOR(S): Burrell, Robert E., Alberta, CANADA

Gillis, Scott H., Concord, MA, UNITED STATES
 Schechter, Paul, Dover, MA, UNITED STATES
 Wright, John B., San Antonio, TX, UNITED STATES
 Lam, Kan, San Antonio, TX, UNITED STATES
 Yin, Hua Qing, Alberta, CANADA
 Naylor, Antony G., Alberta, CANADA
 Moxham, Peter H., Alberta, CANADA

NUMBER	KIND	DATE
US 2003180379	A1	20030925
US 2002-277673	A1	20021022 (10)
Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED Continuation-in-part of Ser. No. US 2001-916757, filed on 27 Jul 2001, PENDING		
Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-128208, filed on 23 Apr 2002, PENDING		
Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING		

DOCUMENT TYPE:

FILE SEGMENT:

LEGAL REPRESENTATIVE:

NUMBER OF CLAIMS: 77

EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 9 Drawing Page(s)

LINE COUNT: 3353

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Solutions and aerosols of metal-containing compounds are disclosed. Methods of preparing and using the solutions and aerosols, particularly in the treatment of a subject having a condition, are also disclosed. The metal-containing material can be, for example, an antimicrobial material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, and/or an MMP modulating material. In certain embodiments, the metal-containing material is an atomically disordered, silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD [0126] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf. . .

DETD [0160] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with *P. acne* and incubating them for 2 days at 37° C. in an anaerobic jar. At this. . .

DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the

original solution. . . .

DETD . . . gel using *Pseudomonas aeruginosa*. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

DETD . . . that a dose of up to 10.^{sup.10} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a {fraction (1/10)} volume of sterile PBS.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD [0284] Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some. . . .

DETD . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X-100 (in 0.1% sodium citrate). . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

L48 ANSWER 15 OF 20 USPATFULL on STN DUPLICATE 15
 ACCESSION NUMBER: 2003:257328 USPATFULL
 TITLE: Dry powders of metal-containing compounds
 INVENTOR(S): Gillis, Scott H., Concord, MA, UNITED STATES
 Schechter, Paul, Dover, MA, UNITED STATES
 Burrell, Robert E., Alberta, CANADA

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 2003180378	A1	20030925
	US 6866871	B2	20050315
APPLICATION INFO.:	US 2002-277298	A1	20021022 (10)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED Continuation-in-part of Ser. No. US 2001-916757, filed on 27 Jul 2001, PENDING Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-128208, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131568, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser.		

DOCUMENT TYPE: NO. US 2002-159587, filed on 30 May 2002, PENDING
Utility
FILE SEGMENT: APPLICATION
LEGAL REPRESENTATIVE: FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA,
02110
NUMBER OF CLAIMS: 72
EXEMPLARY CLAIM: 1
NUMBER OF DRAWINGS: 9 Drawing Page(s)
LINE COUNT: 3343

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Dry powders of metal-containing compounds are disclosed. Methods of preparing and using the dry powders, particularly in the treatment of a subject having a condition, are also disclosed. The metal-containing material can be, for example, an antimicrobial material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, and/or an MMP modulating material. In certain embodiments, the metal-containing material is an atomically disordered, silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD [0119] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf. . . .

DETD [0162] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with *P. acne* and incubating them for 2 days at 37° C. in an anaerobic jar. At this. . . .

DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution. . . .

DETD . . . gel using *Pseudomonas aeruginosa*. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

DETD . . . that a dose of up to 10.^{sup.10} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a {fraction (1/10)} volume of sterile PBS.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic

soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.sup.9 CFU/ml.

- DETD [0304] Dressings (i)--(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some. . . .
- DETD . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM. X100 (in 0.1% sodium citrate). . . .
- DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

L48 ANSWER 16 OF 20 USPATFULL on STN

DUPPLICATE 16

ACCESSION NUMBER: 2003:243905 USPATFULL
 TITLE: Compositions of metal-containing compounds
 INVENTOR(S):
 Burrell, Robert E., Alberta, CANADA
 Gillis, Scott H., Concord, MA, UNITED STATES
 Schechter, Paul, Dover, MA, UNITED STATES
 Wright, John B., San Antonio, TX, UNITED STATES
 Lam, Kan, San Antonio, TX, UNITED STATES
 Yin, Hua Qing, Alberta, CANADA
 Naylor, Antony G., Alberta, CANADA
 Moxham, Peter H., Alberta, CANADA

NUMBER	KIND	DATE
--------	------	------

----- ----- -----

PATENT INFORMATION:
 APPLICATION INFO.: US 2003170314 A1 20030911
 RELATED APPLN. INFO.: US 2002-277356 A1 20021022 (10)
 Continuation-in-part of Ser. No. US 2000-628735, filed on 27 Jul 2000, ABANDONED Continuation-in-part of Ser. No. US 2001-916757, filed on 27 Jul 2001, PENDING Continuation-in-part of Ser. No. US 2001-840637, filed on 23 Apr 2001, PENDING Continuation-in-part of Ser. No. US 2002-131509, filed on 23 Apr 2002, PENDING Continuation-in-part of Ser. No. US 2002-131511, filed on 23 Apr 2002, PENDING

DOCUMENT TYPE: Utility

FILE SEGMENT: APPLICATION

LEGAL REPRESENTATIVE: FISH & RICHARDSON PC, 225 FRANKLIN ST, BOSTON, MA, 02110

NUMBER OF CLAIMS: 45

EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 9 Drawing Page(s)

LINE COUNT: 3249

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Compositions of metal-containing compounds are disclosed. Methods of preparing and using the compositions, particularly in the treatment of a subject having a condition, are also disclosed. The metal-containing material can be, for example, an antimicrobial material, an antibacterial material, an anti-inflammatory material, an anti-fungal material, an anti-viral material, an anti-cancer material, a pro-apoptosis material, and/or an MMP modulating material. In certain embodiments, the metal-containing material is an atomically disordered, silver-containing material.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . sterilized prior to use (e.g., without applying sufficient thermal energy to anneal out the atomic disorder). The energy used for sterilization can be, for example, gamma radiation or electron beam radiation. In some embodiments, ethylene oxide sterilization techniques are used to sterilize the substrate/coating.

DETD [0119] The coated dressings were sterilized using gamma radiation and a sterilization dose of 25 kGy. The finished dressing was packaged individually in sealed polyester peelable pouches, and has shown a shelf. . . .

DETD [0153] The inoculum was prepared by inoculating freshly autoclaved and cooled tubes of Tryptic soy broth (TSB) with *P. acne* and incubating them for 2 days at 37° C. in an anaerobic jar. At this. . . .

DETD . . . anaerobic jar at 37° C. for two hours. The silver was neutralized by addition of 0.4% STS (0.85% NaCl, 0.4% Sodium thioglycolate, 1% Tween.TM. 20) and the solution was serially 10-fold diluted with phosphate-buffered saline. 20 µL aliquots of the original solution. . . .

DETD . . . gel using *Pseudomonas aeruginosa*. The inoculum was prepared by placing 1 bacteriologic loopful of the organism in 5 mL of trypticase soy broth and incubating it for 3-4 h. The inoculum (0.1 mL) was then added to 0.1 mL of gel and. . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

DETD . . . that a dose of up to 10.^{sup.10} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS, and re-suspended in a {fraction (1/10)} volume of sterile PBS.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD . . . that a dose of up to 10.^{sup.9} CFU was not lethal for the animals. The bacteria were grown overnight in Tryptic soy broth, washed once in sterile PBS and resuspend in sterile PBS. The final concentration of the inoculum was 4+10.^{sup.9} CFU/ml.

DETD [0275] Dressings (i)-(iii) were gamma sterilized (25 kGy) prior to use. All dressings were moistened with sterile water prior to application to the incision. In some. . . .

DETD . . . Ind.). Using this technique, cells which stain brown are those being eliminated by apoptosis. Endogenous peroxidase was blocked with 3% hydrogen peroxide in methanol for 10 minutes at room temperature then cells were permeabilized with 0.1% Triton.TM.X-100 (in 0.1% sodium citrate) for. . . .

DETD . . . was accomplished by rinsing or placing a piece of the clear section of agar in the Petri dish plates into Tryptic soy broth in a test tube and incubating for 4 h or 16 h. If the medium turned turbid in 4. . . .

L48 ANSWER 17 OF 20 USPATFULL on STN

ACCESSION NUMBER: 2005:270526 USPATFULL

TITLE: Linkage of agents to body tissue using microparticles and transglutaminase

INVENTOR(S) : Green, Howard, Brookline, MA, UNITED STATES
 Compton, Bruce J., Lexington, MA, UNITED STATES
 Corey, George D., Newton, MA, UNITED STATES
 Djian, Philippe, Paris, FRANCE
 PATENT ASSIGNEE(S) : Pericor Science, Inc., Boston, MA, UNITED STATES (U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 6958148	B1	20051025
APPLICATION INFO.:	US 2000-620783		20000721 (9)
RELATED APPLN. INFO.:	Continuation-in-part of Ser. No. US 1999-359920, filed on 22 Jul 1999, PENDING Continuation-in-part of Ser. No. US 1999-234358, filed on 20 Jan 1999, Pat. No. US 6267957		

	NUMBER	DATE
PRIORITY INFORMATION:	US 1998-71908P	19980120 (60)
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	GRANTED	
PRIMARY EXAMINER:	Naff, David M.	
LEGAL REPRESENTATIVE:	Wolf, Greenfield & Sacks, P.C.	
NUMBER OF CLAIMS:	39	
EXEMPLARY CLAIM:	1	
NUMBER OF DRAWINGS:	1 Drawing Figure(s); 1 Drawing Page(s)	
LINE COUNT:	4173	

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Methods, products and kits are provided for attaching agents to a body tissue surface via microparticles using endogenous or exogenous transglutaminase. The microparticles have surface available transglutaminase substrate reactive groups. In an embodiment, the groups are part of a polymer containing at least two contiguous linked lysines or at least three contiguous linked glutamines.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . polyvinyl esters, polyvinyl halides, silicones, polyglycolic acid (PGA), polylactic acid (PLA), copolymers of lactic and glycolic acids (PLGA), polyanhydrides, polyorthoesters, polyvinylpyrrolidone, polyglycolides, polysiloxanes, polyurethanes and co-polymers thereof, alkyl cellulose, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, nitro celluloses, polymers of acrylic and . . . acrylate), poly(octadecyl acrylate), polyethylene, polypropylene, poly(ethylene glycol), poly(ethylene oxide), poly(ethylene terephthalate), poly(vinyl alcohols), polyvinyl acetate, poly vinyl chloride, polystyrene and polyvinylpyrrolidone.

DETD . . . agents are cosmetic colorants which include: acid red 195; aluminum stearate; anthocyanins; beta vulgaris; beta vulgaris; bismuth oxychloride; bromocresol green; bromothymol blue; calcium stearate; capsanthin/capsorubin caramel; CI 10006; CI 10020; CI 10316; CI 10316; CI 11680; CI 11710; CI 11725; CI 11920; . . .

DETD . . . ethanolamine thioglycolate; glyceryl thioglycolate; isoctyl thioglycolate; lithium sulfide; magnesium sulfide; magnesium thioglycolate; mercaptopropionic acid; potassium sulfide; potassium thioglycolate; sodium sulfide; sodium thioglycolate; strontium sulfide; strontium thioglycolate; thioglycerin; thioglycollic acid and its salts; thiolactic acid; and zinc sulfide.

DETD . . . glycoprotein, and mucopolysaccharide; amodimethicone;

acrylates; dimethicone copolymer; di-isobutyl adipate; isododecane; polypropylene glycol, glycerol, disaccharides, urea, dithiothreitol, edta, methyl paraben, propylparaben; polyvinylpyrrolidone and copolymers or derivatives thereof; for example, copolymers with the ethyl or butyl ester of PVA/MA (partially neutralized), copolymers with.

DETD Other compounds which are useful as hair fixatives include shellac, polyvinylpyrrolidone-ethyl methacrylate-methacrylic acid tarpolymer, vinyl acetate-crotonic acid copolymer, vinyl acetate-crotonic acid-vinyl neodeconate tarpolymer, poly(vinylpyrrolidone-ethylmethacrylate) methacrylic acid copolymer, vinyl methyl ether-maleic anhydride. . .

DETD . . . Peroxide; Cetalkonium Chloride; Cetylpyridinium Chloride; Chlorhexidine Hydrochloride; Clioquinol; Domiphen Bromide; Fenticlor; Fludazonium Chloride; Fuchsin, Basic; Furazolidone; Gentian Violet; Halquinols; Hexachlorophene; Hydrogen Peroxide; Ichthammol; Imidecyl Iodine; Iodine; Isopropyl Alcohol; Mafenide Acetate; Meralein Sodium; Mercufenol Chloride; Mercury, Ammoniated; Methylbenzethonium Chloride; Nitrofurazone; Nitromersol; Octenidine Hydrochloride; . . .

L48 ANSWER 18 OF 20 USPATFULL on STN

ACCESSION NUMBER: 2005:179474 USPATFULL

TITLE: Conjugates of agents and transglutaminase substrate linking molecules

INVENTOR(S): Green, Howard, Brookline, MA, UNITED STATES
Compton, Bruce, Lexington, MA, UNITED STATES
Corey, George, Newton, MA, UNITED STATES

Djian, Philippe, Paris, FRANCE
PATENT ASSIGNEE(S): Pericor Science, Inc., Boston, MA, UNITED STATES (U.S. corporation)

NUMBER	KIND	DATE
--------	------	------

PATENT INFORMATION: US 6919076 B1 20050719

APPLICATION INFO.: US 1999-359920 19990722 (9)

RELATED APPLN. INFO.: Continuation-in-part of Ser. No. US 1999-234358, filed on 20 Jan 1999, Pat. No. US 6267957

NUMBER	DATE
--------	------

PRIORITY INFORMATION: US 1998-71908P 19980120 (60)

DOCUMENT TYPE: Utility

FILE SEGMENT: GRANTED

PRIMARY EXAMINER: Naff, David M.

LEGAL REPRESENTATIVE: Wolf, Greenfield & Sacks, P.C.

NUMBER OF CLAIMS: 32

EXEMPLARY CLAIM: 1

NUMBER OF DRAWINGS: 3 Drawing Figure(s); 2 Drawing Page(s)

LINE COUNT: 3590

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Methods, products, compositions and kits are provided for attaching agents to tissue with a linking molecule in the presence of transglutaminase. The linking molecule and/or agent is a substrate of transglutaminase. The agent can be a nonprotein or an enzyme such as cholinesterase or phosphodiesterase. The transglutaminase may be exogenously added or be endogenous in tissue. In specific embodiments, the agent is not a transglutaminase substrate and the linking molecule is a substrate for transglutaminase containing at least two contiguous

linked glutamines or at least three contiguous linked lysines, and may be a polymer. A conjugate of the agent and the linking molecule may be applied to tissue, and in the presence of transglutaminase covalently bonded to the tissue via the linking molecule. A complementary linking molecule rich in lysines may be first attached to the tissue in the presence of transglutaminase, and then covalently bonded to a glutamine-containing linking molecule of the conjugate in the presence of transglutaminase. In another embodiment a linking molecule containing multiple glutamines is covalently bonded to tissue in the presence of transglutaminase, and an agent containing multiple lysines is covalently bonded to the linking molecule in the presence of transglutaminase. Alternatively, the linking molecule contains multiple lysines and the agent contains multiple glutamines. Two tissues can be sealed together by holding the tissues in contact with each other in the presence of transglutaminase.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

- DETD . . . agents are cosmetic colorants which include: acid red 195; aluminum stearate; anthocyanins; beta vulgaris; beta vulgaris; bismuth oxychloride; bromocresol green; bromothymol blue; calcium stearate; capsanthin/capsorubin caramel; CI 10006; CI 10020; CI 10316; CI 10316; CI 11680; CI 11710; CI 11725; CI 11920; . . .
- DETD . . . ethanolamine thioglycolate; glyceryl thioglycolate; isoctyl thioglycolate; lithium sulfide; magnesium sulfide; magnesium thioglycolate; mercaptopropionic acid; potassium sulfide; potassium thioglycolate; sodium sulfide; sodium thioglycolate; strontium sulfide; strontium thioglycolate; thioglycerin; thioglycollic acid and its salts; thiolactic acid; and zinc sulfide.
- DETD . . . glycoprotein, and mucopolysaccharide; amodimethicone; acrylates; dimethicone copolymer; di-isobutyl adipate; isododecane; polypropylene glycol, glycerol, disaccharides, urea, dithiothreitol, edta, methyl paraben, propylparaben; polyvinylpyrrolidone and copolymers or derivatives thereof; for example, copolymers with the ethyl or butyl ester of PVA/MA (partially neutralized), copolymers with. . .
- DETD Other compounds which are useful as hair fixatives include shellac, polyvinylpyrrolidone-ethyl methacrylate-methacrylic acid terpolymer, vinyl acetate-crotonic acid copolymer, vinyl acetate-crotonic acid-vinyl neodeconate terpolymer, poly(vinylpyrrolidone-ethylmethacrylate) methacrylic acid copolymer, vinyl methyl ether-maleic anhydride. . .
- DETD . . . Carbainide Peroxide; Cetalkonium Chloride; Cetylpridinium Chloride; Chlorhexidine Hydrochloride; Clioquinol; Domiphen Bromide; Fenticle; Fludazonium Chloride; Fuchsin, Basic; Furazolidone; Gentian Violet; Halquinols; Hexachlorophene; Hydrogen Peroxide; Ichthammol; Imidecyl Iodine; Iodine; Isopropyl Alcohol; Mafenide Acetate; Meralein Sodium; Mercufenol Chloride; Mercury, Ammoniated; Methylbenzethonium Chloride; Nitroflirazole; Nitromersol; Octenidine Hydrochloride; . . .

L48 ANSWER 19 OF 20 USPATFULL on STN

ACCESSION NUMBER: 74:51298 USPATFULL

TITLE: CROSS-LINKED COPOLYMER ACRYLONITRILE FIBERS OR FILMS

INVENTOR(S): Yamamoto, Akira, Otsu, Japan
 Nakaoji, Kunio, Otsu, Japan
 Oohara, Kunio, Otsu, Japan
 Momiyama, Zenjiro, Otsu, Japan
 Murakami, Heiichiro, Otsu, Japan
 Tomita, Akira, Otsu, Japan

PATENT ASSIGNEE(S) : Toyo Boseki Kabushiki Kaisha, United States (non-U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 3846386		19741105
APPLICATION INFO.:	US 1972-274207		19720724 (5)
RELATED APPLN. INFO.:	Division of Ser. No. US 1971-166313, filed on 26 Jul 1971, now patented, Pat. No. US 3759849 which is a division of Ser. No. US 1968-753515, filed on 19 Aug 1968, now patented, Pat. No. US 3626049		

	NUMBER	DATE
PRIORITY INFORMATION:	JP 1967-56502	19670902
	JP 1967-82509	19671222
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	Granted	
PRIMARY EXAMINER:	Levin, Stanford M.	
LEGAL REPRESENTATIVE:	Wenderoth, Lind & Ponack	
NUMBER OF CLAIMS:	1	
EXEMPLARY CLAIM:	1	
NUMBER OF DRAWINGS:	2 Drawing Figure(s); 1 Drawing Page(s)	
LINE COUNT:	1131	

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Cross-linked acrylic fibers or films which are of improved hot water-resistance and have a silky hand or feel, are obtained by (i) preparing an acidic solution of a copolymer obtained by copolymerizing in an acidic medium (a) a vinyl monomeric material consisting mainly of acrylonitrile and (b) a polymerizable unsaturated monomer having a halogenated s-triazinyl group or halogenated pyrimidinyl group in the presence of (c) a polymerizable unsaturated monomer having a group containing active hydrogen, a group capable of forming active hydrogen, a pyridyl group, a pyrazinyl group or quinolyl group, and/or (d) protein, and then (ii) extruding a very stable acidic solution of the resulting polymer into the form of fibers or films, and then heat-treating. The obtained fibers, for example, are useful in making woven or knitted fabrics of correspondingly superior properties.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . regard to the protein to be used in the present invention, particularly preferable are natural proteins such as cow milk casein, yeast protein, gelatin, corn protein and soybean protein. In addition, there can be used modified proteins such as cyanoethylated protein and carbamylethylated protein or synthetic proteins.

DETD . . . radical polymerization initiators soluble in the concentrated aqueous solution of zinc chloride, such as azobisisobutyronitrile, ammonium persulfate, potassium persulfate or hydrogen peroxide. The catalyst may also be a redox catalyst system in which is simultaneously used such reducing agents as sodium sulfite, acidic sodium sulfite, sodium thiosulfate or a ferrous salt. Further, the polymerization may also be conducted under the irradiation of radioactive rays such as, for. . .

DETD . . . AN, 6 parts of methyl methacrylate and 3.75 parts of 2-(p-vinyl anilino)-4,6-dichloropyrimidine (referred to as VAP). Then the solution was irradiated with gamma rays of 100 curies of Co.⁶⁰ at an intensity of 1.0 + 10.⁵ r./hr. at 30°C. for 3 hours to. . .

L48 ANSWER 20 OF 20 USPATFULL on STN
 ACCESSION NUMBER: 71:46550 USPATFULL
 TITLE: PROCESS FOR PRODUCING CROSS-LINKED ACRYLIC FIBERS OR FILMS
 INVENTOR(S): Yamamoto, Akira, Otsu, Japan
 Nakaoji, Kunio, Otsu, Japan
 Oohara, Kunio, Otsu, Japan
 Momiyama, Zenjiro, Otsu, Japan
 Murakami, Heiichiro, Otsu, Japan
 Tomita, Akira, Otsu, Japan
 PATENT ASSIGNEE(S): Toyo Boseki Kabushiki Kaisha, United States

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 3626049		19711207
APPLICATION INFO.:	US 1968-753515		19680819 (4)

	NUMBER	DATE
PRIORITY INFORMATION:	JP 1967-56502	19670902
	JP 1967-82509	19670902
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	Granted	
PRIMARY EXAMINER:	Woo, Jay H.	
LEGAL REPRESENTATIVE:	Wenderoth, Lind & Ponack	
NUMBER OF CLAIMS:	14	
NUMBER OF DRAWINGS:	2 Drawing Figure(s); 1 Drawing Page(s)	
LINE COUNT:	864	

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB Cross-linked acrylic fibers or films which are of improved hot water-resistance and have a silky hand or feel, are obtained by (i) preparing an acidic solution of a copolymer obtained by copolymerizing in an acidic medium (a) a vinyl monomeric material consisting mainly of acrylonitrile and (b) a polymerizable unsaturated monomer having a halogenated s-triazinyl group or halogenated pyrimidinyl group in the presence of (c) a polymerizable unsaturated monomer having a group containing active hydrogen, a group capable of forming active hydrogen, a pyridyl group, a pyrazinyl group or quinolyl group, and/or (d) protein, and then (ii) extruding a very stable acidic solution of the resulting polymer into the form of fibers or films, and then heat-treating. The obtained fibers, for example, are useful in making woven or knitted fabrics of correspondingly superior properties.

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

DETD . . . regard to the protein to be used in the present invention, particularly preferable are natural proteins such as cow milk casein, yeast protein, gelatin, corn protein and soybean protein. In addition, there can be used modified proteins such as cyanoethylated protein and carbamylethylated protein or synthetic proteins.

DETD . . . radical polymerization initiators soluble in the concentrated aqueous solution of zinc chloride, such as azobisisobutyronitrile, ammonium persulfate, potassium persulfate or hydrogen peroxide. The catalyst may also be a redox catalyst system in which is simultaneously used such reducing agents as sodium sulfite, acidic sodium sulfite, sodium thiosulfate or a ferrous salt. Further, the polymerization may also be conducted under the irradiation of radioactive rays such as, for. . .

DETD . . . AN, 6 parts of methyl methacrylate and 3.75 parts of 2-(p-vinyl anilino)-4,6-dichloropyrimidine (referred to as VAP). Then the solution was irradiated with gamma rays of 100 curies of Co.⁶⁰ at an intensity of 1.0+ 10.⁵ r./hr. at 30° C. for 3 hours to. . .

CLM What is claimed is:

. . . monomers (a) and (b) takes place in the presence of a protein selected from the group consisting of cow milk casein, yeast protein, gelatin, corn protein, soybean protein, cyanoethylated protein or carbamylethylated protein.