Machine Learning

• • •

0

0

0

STUDI INDEPENDEN

Q About Dataset

Dataset yang dimiliki berupa data set yang diambil dari sumber Kaggle.com yang berjudul "Classification Income" dimana ketika dataset dibaca dengan fungsi "pd.read_csv" akan tampil seperti pada gambar dibawah ini:

	= pd .head	.read_csv(()	'income	_evaluati	on.csv')										
	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital- gain	capital- loss	hours- per-week	native- country	income
0	39	State-gov	77516	Bachelors	13	Never- married	Adm-clerical	Not-in-family	White	Male	2174	0	40	United- States	<=50l
1	50	Self-emp- not-inc	83311	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13	United- States	<=50
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40	United- States	<=50
3	53	Private	234721	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40	United- States	<=50
4	28	Private	338409	Bachelors	13	Married-civ- spouse	Prof-specialty	Wife	Black	Female	0	0	40	Cuba	<=501

Q Story Telling Dataset

Tujuan Project:

- Mengklasifikasikan pendapatan yang diperoleh setiap bulan
- Menentukan model algoritm yang terbaik

Tabel Dataset

Variabel	Tipe Data
Age	Int
Workclass	Obj
FNLWGT	Int
Eduation	Obj
Eduation – num	Int
Marital – status	Obj
Occupation	Obj
Relationship	Obj
Race	Obj
Sex	Obj
Capital – gain	Int
Capital – loss	Int
Hour – per – week	Int
Native – country	Obj
Income	Int

]: # checking types df.dtypes	of variables
]: age	int64
workclass	object
fnlwgt	int64
education	object
education-num	int64
marital-status	object
occupation	object
relationship	object
race	object
sex	object
capital-gain	int64
capital-loss	int64
hours-per-week	int64
native-country	object
income	int64
dtype: object	

Q Exploratory Data

Cek Kolom Workclass apakah ada data yang missing

0

0

0

```
df['workclass'].value counts()
In [14]:
Out[14]:
          Private
                               22696
          Self-emp-not-inc
                                2541
          Local-gov
                                2093
                                1836
          State-gov
                                1298
          Self-emp-inc
                                1116
          Federal-gov
                                 960
          Without-pay
                                  14
          Never-worked
         Name: workclass, dtype: int64
```



```
In [15]: shape0 = df.shape[0]
         for column in df.columns:
             df[column].replace(' ?', np.NaN, inplace=True)
         df = df.dropna().reset index().drop(columns=['index'])
         shape1 = df.shape[0]
         print(str(shape0 - shape1) + ' rows have been removed.')
         2399 rows have been removed.
In [16]: df['workclass'].value counts()
Out[16]: Private
                              22286
          Self-emp-not-inc
                               2499
          Local-gov
                               2067
          State-gov
                               1279
          Self-emp-inc
                                1074
          Federal-gov
                                943
                                 14
          Without-pay
         Name: workclass, dtvpe: int64
```

0

Data yang didapatkan ternyata pada kolom Workclass terdapat missing berupa "?" sehingga dilakukan removed sebanyak 2399 baris data.

Q Data Visualization

Data visualisasi dengan diagram lingkaran

Didapatkan hasil untuk klasifikasi jumlah masyarakat yang memiliki pendapatan diatas 50k sebanyak 7508 dan dibawah 50k sebanyak 22654 orang.

0

0

Q Data Visualization

0

0

Selanjutnya dibuat grafik untuk melihat perbandingan antara variable data terhadap klasifikasi yang memilki pendapatan diatas 50.000.

(a) Nilai pendapatan diatas USD 50.000 terhadap variable umur

Q Data Visualization

- (b) Nilai pendapatan diatas USD 50.000 terhadap variable fnlwgt
- (c) Nilai pendapatan diatas USD 50.000 terhadap variable hour-per-week (banyaknya jam kerja selama 1 pekan)
- **(d)** Nilai pendapatan diatas USD 50.000 terhadap variable tingkatan pendidikan

Q Feature Engineering & Feature Selection

Correlation Heatmap

0

0

0

Menentukan hubungan kedekatan data (korelasi) dengan data yang lainnya. Ini dilakukan untuk menentukan mana fitur yang sebaiknya dihilangkan agar load data lebih akurat dan memiliki performa terbaik.

Q Normalisasi Data

Metode normalisasi data yang digunakan adalah Min-Max Scalar. Cara kerjanya setiap nilai pada sebuah fitur dikurangi dengan nilai minimum fitur tersebut, kemudian dibagi dengan rentang nilai atau nilai maksimum dikurangi nilai minimum dari fitur tersebut.

Q Train Test Split

Split data dilakukan dengan membagi data menjadi Data Trainning dan Data Testing

Q Fitting Data

0

0

0

0

0

```
# membuat fungsi yang digunakan untuk menyesuaikan dan memprediksi algoritme yang diberikan melalui list.
def algoritm score list(show processing=False, standardized=False):
    scores list = []
    for algorithm in algorithms:
        if show processing:
            print('processing ' + str(algorithm) + ' algorithm...')
        if standardized:
            X tn = X train s
            X tt = X test s
        else:
            X tn = X train
            X tt = X test
        A = algorithm.fit(X tn, y train)
        y predict = A.predict(X tt)
        accuracy = accuracy_score(y_test,y_predict)
        scores_list.append([A, accuracy, standardized])
    print('all predictions finished')
    return scores list
```

0

Q Evaluasi Model Klasifikasi

0

Model Algoritm	Accuracy	Accuracy Standard
Decision Tree Classifier	0.814	0.814
K-Near Neighbors	0.769	0.834
Logistic Regression	0.792	0.851

Seperti yang terlihat setelah data dilakukan standardisasi terjadi peningkatan akurasi pada K-Nneighbors dan Logistic Regression yang sesuai dangan teori. Sedangkan pada model Decision Tree data yang standar maupun tidak standar tidak mempengaruhi akurasi.

Dalam contoh berikut data standar akan digunakan jika ada akurasi yang lebih besar setelah standarisasi, sehingga akan dilakukan pemodelan menggunakan Logistic Regression dan KNNeighbors.

Kesimpulan

Dari pengujian akurasi dataset oleh masing – masing algoritma tersebut dapat disajikan pada tabel. Berdasarkan nilai *accuracy* algoritma yang lebih akurat adalah DecisionTree dan LogisticRegression disusul oleh k-Nearest Neighbor.

Selain itu, Algoritma DecisionTree dan Logistic Regression tidak memerlukan proses data yang di standarisasi terlebih dahulu agar dapat bekerja dengan baik. Sedangkan untuk KNearestNeighbors, dengan dilakukan proses standarisasi data meningkatkan akurasi sebesar 4,6%.

Sekian

Kampus Merdeka

