Efficient Top-N Recommendation by Linear Regression

Mark Levy Mendeley

Social network products @Mendeley

Social network products @Mendeley

Social network products @Mendeley

- Social network products @Mendeley
- ERASM Eurostars project

- Make newsfeed more interesting
- First task: who to follow

- Multiple datasets
 - 2M users, many active
 - ~100M documents
 - author keywords, social tags
 - 50M physical pdfs
 - 15M <user,document> per month
 - User-document matrix currently ~250M non-zeros

- Approach as item similarity problem
 - with a constrained target item set
- Possible state of the art:
 - pimped old skool neighbourhood method
 - matrix factorization and then neighbourhood
 - something dynamic (?)
 - SLIM
- Use some side data

SLIM

- Learn sparse item similarity weights
- No explicit neighbourhood or metric
- L1 regularization gives sparsity
- Bound-constrained least squares:

$$\min_{\mathbf{w}_j} \quad \frac{1}{2} ||\mathbf{r}_j - R\mathbf{w}_j||_2^2 + \frac{\beta}{2} ||\mathbf{w}_j||_2^2 + \lambda ||\mathbf{w}_j||_1$$
subject to
$$\mathbf{w}_j >= 0$$
$$w_{j,j} = 0$$

SLIM

SLIM

Good:

- Outperforms MF methods on implicit ratings data [1]
- Easy extensions to include side data [2]

Not so good:

- Reported to be slow beyond small datasets [1]

[1] X. Ning and G. Karypis, SLIM: Sparse Linear Methods for Top-N Recommender Systems, Proc. IEEE ICDM, 2011.

[2] X. Ning and G. Karypis, Sparse Linear Methods with Side Information for Top-N Recommendations, Proc. ACM RecSys, 2012.

From SLIM to regression

- Avoid constraints
- Regularized regression, learn with SGD
- Easy to implement
- Faster on large datasets

$$\min_{\mathbf{w}_{j}} \quad \frac{1}{2} ||\mathbf{r}_{j} - R|_{j' \neq j} \mathbf{w}_{j}||_{2}^{2} + \frac{\beta}{2} ||\mathbf{w}_{j}||_{2}^{2} + \lambda ||\mathbf{w}_{j}||_{1}$$

 $R|_{j'\neq j}$ is the rating matrix with the entries of the j-th column set to zero

From SLIM to regression

Results on reference datasets

Table 1: Performance on ML-100K dataset

method	prec@5	prec@10	prec@15	prec@20	MRR	HR@10
itemKNN	0.350	0.296	0.267	0.246	0.593	0.230
CoFiSet	0.411				0.640	
SLIM	0.344	0.301	0.274	0.253	0.584	0.291
SGDReg	0.414	$\boldsymbol{0.358}$	0.324	0.298	0.664	0.386

Table 2: Performance on Epinions Trustlet dataset

method	prec@5	prec@10	prec@15	prec@20	MRR	HR@10
itemKNN	0.232	0.196	0.175	0.161	0.438	0.085
CoFiSet	0.244				0.433	
SLIM	0.232	0.205	0.187	0.174	0.411	0.151
SGDReg	0.291	$\boldsymbol{0.254}$	0.230	0.213	0.495	0.166

Results on reference datasets

Table 3: Performance on ML-10M dataset

method	prec@5	prec@10	prec@15	prec@20	MRR	HR@10
itemKNN						0.238
BPRKNN						0.327
SLIM						0.311
SGDReg	0.612	0.555	0.514	0.481	0.792	0.332

Table 3: Time to learn weights for 100 items

dataset	method	time (secs)
ML-10M	SLIM	1055.5(3.0)
ML-10M	SGDReg	$82.4\ (0.1)$

Results on reference datasets

Table 3: Performance on ML-10M dataset

method	prec@5	prec@10	prec@15	prec@20	MRR	HR@10
itemKNN						0.238
BPRKNN						0.327
SLIM						0.311
SGDReg	0.612	0.555	0.514	0.481	0.792	0.332

Table 3: Time to learn weights for 100 items

dataset	method	time (secs)
ML-10M	SLIM	1055.5(3.0)
ML-10M	SGDReg	$82.4\ (0.1)$

Results on Mendeley data

- Stacked readership counts, keyword counts
- 5M docs/keywords, 1M users, 140M non-zeros
- Constrained to ~100k target users
- Python implementation on top of scikit-learn
 - Trivially parallelized with IPython
 - eats CPU but easy on AWS
- 10% improvement over nearest neighbours

Our use case

Tuning regularization constants

- Relate directly to business logic
 - want sparsest similarity lists that are not too sparse
 - "too sparse" = # items with < k similar items</p>
- Grid search with a small sample of items
- Empirically corresponds well to optimising recommendation accuracy of a validation set
 - but faster and easier

Software release: mrec

- Wrote our own small framework
- Includes parallelized SLIM
- Support for evaluation
- BSD licence
- https://github.com/mendeley/mrec
- Please use it or contribute!

mrec 0.1.2 documentation »

Getting started with mrec

Install mrec

You can most easily install mrec with pip:

\$ sudo pip install mrec

Thanks for listening

mark.levy@mendeley.com

@gamboviol

https://github.com/gamboviol

https://github.com/mendeley/mrec

Real World Requirements

- Cheap to compute
- Explicable
- Easy to tweak + combine with business rules
- Not a black box
- Work without ratings
- Handle multiple data sources
- Offer something to anon users

Cold Start?

- Can't work miracles for new items
- Serve new users asap
- Fine to run a special system for either case
- Most content leaks
- ... or is leaked
- All serious commercial content is annotated

Degrees of Freedom for k-NN

- Input numbers from mining logs
- Temporal "modelling" (e.g. fake users)
- Data pruning (scalability, popularity bias, quality)
- Preprocessing (tf-idf, log/sqrt, ...)
- Hand crafted similarity metric
- Hand crafted aggregation formula
- Postprocessing (popularity matching)
- Diversification
- Attention profile

