

32 位微控制器 HC32L072_HC32L073_HC32F072 系列的 MCU 开发工具

用户手册

Rev2.3 2023年12月

适用对象

产品系列	产品型号	产品系列	产品型号
L系列	HC32L072 HC32L073	F系列	HC32F072

本手册以 HC32L073PATA 为例进行说明。

声明

- ★ 小华半导体有限公司(以下简称:XHSC)保留随时更改、更正、增强、修改小华半导体产品和/或本文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC产品依据购销基本合同中载明的销售条款和条件进行销售。
- ★ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应 标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- ★ XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ★ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ★ 任何带有®或™标识的图形或字样是 XHSC 的商标。所有其他在 XHSC 产品上显示的产品或服务名称均为其各自所有者的财产。
- ★ 本通知中的信息取代并替换先前版本中的信息。

©2023 小华半导体有限公司 保留所有权利

目 录

适用]对象	₹		2
声	明			3
目	录			4
1	概过	<u> </u>		5
	1.1	开发工		5
	1.2	电路板	反部件简介	5
2	硬件	丰电路		7
	2.1	电路规	艰格	7
	2.2	硬件说	も明	7
		2.2.1	系统总览	8
		2.2.2	USB 接口	8
		2.2.3	调试接口	8
		2.2.4	UART 接口	8
		2.2.5	按键	9
		2.2.6	指示灯	9
		2.2.7	时钟	9
		2.2.8	测试针	9
		2.2.9	LCD	
		2.2.10	跳针设置	
3				
	3.1		/ersion	
	3.2		L073_DDL	
	3.3	HC32I	L073_template	12
	3.4	IDE 支	持包	12
4	工具	使用		13
	4.1	调试访	t明	13
	4.2	程序烷	8写	19
	4.3	低功料	· E模式程序调试	19
5	开发	文工具随板	6代码	20
	5.1	随板代	· · · · · · · · · · · · · · · · · · ·	20
	5.2		· 码功能描述	
版团	s修订	T记录		21

1 概述

1.1 开发工具简介

本系列 Evaluation Board(以下简称 EVB)是基于 HC32L073PATA 芯片设计的开发工具,介绍该 EVB 的使用方法。主要描述芯片所使用的硬件资源、软件开发环境、开发环境的安装使用说明、调试方法、随板代码及工具使用等,旨在帮助开发者便捷地进行开发工作。

关于芯片的规格,请参阅对应的"数据手册"。

1.2 电路板部件简介

注1:

使用前请阅读包装盒内的说明卡片。

MCU	MCU 最小系统及外设			
1	HC32L07/ HC32F07	11	LED (4)	
2	SWD/ISP 调试编程端口	12	AD/ DA IF	
3	复位按键(RST)	13	CODEC	
4	USB-FS 接口	14	液晶显示(LCD)	
5	用户按键(K1~K5)	15	Audio IF	
6	LDO	16	模式选择(BOOT0)	
7	SPI FLASH	17	MIC 麦克风	
8	CAN PHY	-	-	
9	I2C EEPROM/ IF	-	-	
10	UART IF	-	-	

2 硬件电路

2.1 电路规格

MCU 支持宽电压范围(1.8-5.5V),宽温度范围(-40-105℃)。

由于板上 LCD 屏的限制,建议开发工具的工作温度为-40℃~80℃,MCU 工作电压使用 3.3V。

使用过程中请确保工作条件不要超过绝对最大额定值。

2.2 硬件说明

建议先前往小华半导体官方网站 https://www.xhsc.com.cn 找到对应的芯片型号并下载。

HC32L073PATA-LQFP100

2.2.1 系统总览

EVB 硬件系统如下图所示:

2.2.2 USB 接口

USB 功能和 EVB 供电,请确保 USB 主机足够供电能力。

2.2.3 调试接口

EVB 配置 SWD 接口,用户使用此接口进行调试。

2.2.4 UART接口

EVB 配置 J2 接口,用户使用此接口进行串口调试。

2.2.5 按键

EVB 在 MCU 最小系统区域为用户提供 6 个物理按键:

丝印	管脚/功能
SYM/ RST	RESET/复位按键
K1	PC12/用户按键
K2	PD03/用户按键
К3	PD02/用户按键
K4	PD04/用户按键
K5	PD06/用户按键

2.2.6 指示灯

EVB 配置 6 个指示灯,分别为电源指示灯、用户指示灯。

丝印	管脚/功能
PWR	MCU 最小系统电源指示灯
D5	PE03/红色用户指示灯
D6	PE02/黄色用户指示灯
D3	PE01/蓝色用户指示灯
D4	PE00/绿色用户指示灯

2.2.7 时钟

EVB 配置 2 组外部时钟,分别为低速时钟 Y2 和高速时钟 Y3。

丝印	管脚/功能	连接外设	
Y2	PC14/ XTLI	- 32.768KHz 晶振	
	PC15/ XTLO		
Y3	PF00/ XTHI	- 高速晶振(以实际板级使用为准)	
	PF01/ XTHO		

2.2.8 测试针

EVB 配置 4 组 2x13 测试排针,连接至 MCU 引脚,提供用户测试或扩展功能。

2.2.9 LCD

LCD 驱动方式: 1/4Duty, 1/3Bias, 工作电压 3V3;

其它信息请参考下图:

EVB 硬件默认配置 LCD Bias 电压为外部电容分压模式,如需其他模式请根据数据手册调整。

2.2.10 跳针设置

EVB 上有三组跳针 J2/ BOOTO/ PwrTest, 上电前需对跳针状态进行确认,具体设置如下:

丝印	功能	设置	默认	
PwrTest	MCU 功耗测试选择	短接: 正常工作模式	短接	
		断开:串接万用表进行 MCU 功耗测试		
воото	MCU 模式选择	断开: 用户模式	₩ ८ ТТ	
		短接:BOOT 模式	断开	
J3	ADC 投票が生存と	短接:使用 AVDD 做检测信号	短接	
	ADC 检测选择输入源	断开:外部信号接 SIG-IN 做检测信号		

3 驱动库

本系列芯片支持第三方 IDE 开发,主要支持 IAR 和 Keil MDK 等主流开发环境,请参考《小华半导体 MCU 开发环境使用》文档熟悉相关配置和使用。

熟悉完 IDE 开发工具,请前往小华半导体官方网站 https://www.xhsc.com.cn 找到对应的芯片型号 **HC32L073PATA**,下载驱动库及样例。

HC32L073PATA-LQFP100 技术文档 开发工具 应用方案 产品特点 ₹ 一键下载 小华开发板 ☐ SK-HC32LFx7x-x9x-LQFP100Rev2.0.zip ☐ EV-HC32LF07x-LQFP100-Rev1.11.zip <u>.</u> 历史版本+ 驱动库及样例 ☐ hc32l07x_ddl.chm.zip 患 ☐ HC32L07x_DDL_Rev1.2.0.zip ₹ 历史版本+ IDE支持包 ☐ HC32L07x IDE Rev1.1.0.zip

3.1 DDL Version

请确认从官网获取最新版本驱动库及样例。

3.2 HC32L073 DDL

驱动库及样例支持包的主要结构示例可参考下图(具体构成以实际使用的 DDL 支持包为准)。

driver:

该目录下主要包括各个 IP 操作所使用的 API、数据结构的头文件及源文件,用户可直接用于自己的应用程序,也可以借此熟悉底层寄存器的操作。

example:

该目录主要包括各个 IP 常用功能的使用例程(同时支持 IAR 和 Keil 两种开发工具),用户可使用该样例快速熟悉各个 IP 常用功能的实现方式及驱动库的使用方法,该样例可以配合该系列芯片配套的 STK 直接进行下载、调试和运行。

mcu:

该目录主要包括该系列 MCU 工程所需的基本头文件启动文件,以及 IAR 和 Keil 工程文件及其配置文件。

3.3 HC32L073_template

template 主要提供该系列 MCU 对应的系统最小工程,用户如果希望针对特定型号的芯片新建开发自己的应用程序(包括特殊需求的驱动),不需从零开始建立工程,可直接使用该 template,直接开发应用相关的驱动或应用程序即。

3.4 IDE 支持包

IDE 支持包主要提供了该芯片用于 Keil MDK 的 pack 文件。

注意:

在使用 Keil 作为开发工具进行调试和下载时,需要确保正确安装该系列芯片的 Keil 工具支持包,或者将目录~/mcu/MDK/下的*.FLM 文件拷贝到个人电脑的 Keil 安装路径(~/Keil/ARM/Flash/)下,并在 Keil 工程配置下载选项中配置和选择该适合自己所使用芯片的*.FLM 文件。

4 工具使用

4.1 调试说明

CMSIS DAP 支持 WIN10 及以上的 PC 使用;若使用 win7 请向代理或 FAE 索取驱动文件。

打开设备管理器后,按以下步骤安装:

驱动开始安装,几秒后显示如下画面即表示安装正确。

4.2 程序烧写

HC32L072_HC32L073_HC32F072系列MCU可通过小华编程器进行程序烧写。

线编程器支持 UART 模式和 SWD 模式,接线方式如下图所示:

针对具体的烧写流程,请前往小华半导体官方网站 https://www.xhsc.com.cn 找到对应的芯片型号,参考小华编程器资料进行操作。

4.3 低功耗模式程序调试

在应用程序中,如果使用的芯片具备低功耗模式并需要进入低功耗模式,此时因为 SWD 功能关闭,程序将无法使用调试功能。

如果程序中需要使用该功能,建议在调试开发阶段,在程序一开始添加几秒钟的延时程序,或者添加外部 IO 控制程序等方法来决定是否执行该段程序,或者增加外部唤醒机制,以便在二次调试开发时 SWD 功能能够正常使用。

5 开发工具随板代码

5.1 随板代码下载和使用

本系列 EVB 使用的芯片支持主流的开发环境 IAR keil/ MDK 等;请移步官网 https://www.xhsc.com.cn。 在开发工具栏选取当前芯片的类别和型号,并下载相应的 EVB 随板代码。

5.2 随板代码功能描述

本系列 EVB 板使用的随板代码功能包含:

- 1) 上电后电源指示灯常亮,LCD 屏显示"HC:32";
- 2) USER 按键:

用户按键 K1 触发, D5-LED 点亮;

用户按键 K2 触发, D6-LED 点亮;

用户按键 K3 触发, D4-LED 点亮;

用户按键 K4 触发, D3-LED 点亮;

用户按键 K5 触发, D3/ D4/ D5/ D6-LED 全部点亮。

- 3) EEPROM: 通过 IIC 协议,MCU 与 BL24C02 交互数据;
- 4) Audio:通过 IIS 和 IIC 协议,MCU 与 WM8731 通讯,连上耳机输出一段声音。

版本修订记录

版本号	修订日期	修订内容	
Rev1.0	2019/11/25	初版发布。	
Rev2.1	2020/11/13	硬件版本图片变更;硬件对应丝印变更;芯片管脚名称变更(例: mode→boot0);描述文字调整(例: 在板调试系统→CMSIS DAP);删除开发工具安装说明等,详见《小华半导体 MCU 开发环境使用》文档;根据硬件版本号,手册版本号变更为 Rev2.1。	
Rev2.2	2022/07/15	公司 Logo 更新。	
Rev2.3	2023/12/12	1) 内容组织结构调整及模版更新,部分内容描述等细节修改; 2) 新增随板代码。	