

Marco Listanti

Lo strato Fisico

Parte 1 Rappresentazione digitale dell'informazione

Digital Networks

La tecniche di trasmissione digitale abilitano la rete al trattamento di qualsiasi flusso informativo

DIET Dept

Networking Group

Obiettivi e problemi

- Come ridurre il tempo di trasmissione di un "messaggio" (testo, immagine)?
 - Qual è la lunghezza di un "messaggio" ?
 - Quali vincoli che devono essere rispettati nella trasmissione di un "messaggio"?
- Può una rete gestire chiamate vocali o video ?
 - Qual è la banda richiesta per il supporto di una chiamata vocale o video ?
 - Quali sono i vincoli di qualità che devono essere soddisfatti?
- Qual è il tempo necessario a trasferire un messaggio senza errori ?
 - Per quale motivo si verificano errori in trasmissione ?
 - come è possibile rivelare e correggere gli errori in trasmissione ?
- Qual è la banda disponibile nei vari mezzi trasmissivi (rame, fibra, radio, ecc.) ?

Informazione a Blocchi vs. Stream

- Informazione a blocchi
- L'informazione è naturalmente strutturata in unità indipendenti (blocchi)
 - Text message
 - Data file
 - JPEG image
 - MPEG file
- Dimensione (size)
 - numero di bit (byte) per blocco

- Informazione Stream
- Informazione prodotta e trasmessa in modo continuo
 - Real-time voice
 - Streaming video
- Bit rate
 - misura la quantità di bit prodotti dalla sorgente in una unità di tempo

Delay di trasferimento di un messaggio

- numero di bit in un messaggio
- velocità del sistema di trasmissione (bit/s)
- t_{prop} tempo di propagazione lungo il mezzo trasmissivo
- lunghezza del collegamento
- velocità di propagazione sul mezzo trasmissivo (3x10⁸ m/s nel vuoto, 2x10⁸ m/s nei mezzi guidati)
 - L si riduce mediante tecniche di compressione
 - R si aumenta mediante adequate tecniche di trasmissione
 - d si riduce riducendo la lunghezza del collegamento (spesso impossibile...)

Delay minimo =
$$t_{prop}$$
 + L/R = d/c + L/R

Compressione

Algoritmi di compressione dati

- Riducono il numero di bit necessari alla rappresentazione dell'informazione riducendo la ridondanza
- Senza perdita (Lossless): l'informazione originale è ricostruita esattamente
 - zip, GIF, fax
- Con perdita (lossy): l'informazione decompressa non è identica all'originale
 - JPEG
- Rapporto di compressione (Compression Ratio) (R_c)
 - R_c = B_{orig}/B_{compr} (#bits file originale / #bits file compresso)
 - Compromesso tra numero di bit e qualità

$$R_c = \frac{B_{orig}}{B_{compr}} > 1$$

Immagine a colori

$$B_{orig} = 3 \times H \text{ pixel} \times W \text{ pixel} \times B \text{ bit/pixel} = 3 \cdot HWB \text{ bit}$$

Esempio: 8×10 inch picture a 400×400 pixel per inch² $400 \times 400 \times 8 \times 10 = 12.8 \cdot 10^6$ pixels 8 bits/pixel/color $12.8 \cdot 10^6$ pixel \times 3 byte/pixel = 38.4 megabyte

Esempi di informazione a blocchi

Tipo	Metodo	Formato	Originale	Compressed Ratio
Text	Zip	ASCII	Kbyte- Mbyte	2 <r<sub>c<6</r<sub>
Fax	CCITT Group 3	A4 page 200×100 pixel/in²	256 kbyte	5-54 kbyte (5 <r<sub>c<50)</r<sub>
Immagine a Colori	JPEG	8x10 in² photo 400² pixel/in²	38.4 Mbyte	1-8 Mbyte (5 <r<sub>c<30)</r<sub>

Stream Information

- Un segnale vocale nella forma originale è di tipo analogico
- Un segnale vocale deve essere digitalizzato e trasmesso in tempo reale : Campionamento e Codifica (Sampling and Coding)
- Il livello del segnale analogico varia nel tempo

The speech signal level varies with time

Digitalizzazione di segnali analogici

 Campionamento (sampling) del segnale analogico nel tempo e codifica (coding) dell'ampiezza dei campioni

 R_s = Bit rate = # bit/sample x # sample/second

Bit rate dei segnali digitalizzati

- Larghezza di banda (Bandwidth) W_s (Hz)
 - indica quanto "velocemente" il segnale varia nel tempo
 - lacktriangle Maggiore bandwidth ightarrow campioni più frequenti
 - Frequenza di campionamento minima \rightarrow $F_c = 2 \cdot W_s$
- Accuratezza della rappresentazione
 - Maggiore accuratezza → numero maggiore di bit per campione (minore rumore di quantizzazione)

Esempio: Voce & Audio

Codifica vocale (Telefonia)

- $W_s = 4 \text{ kHz} \rightarrow 8000 \text{ samp./sec}$
- 8 bit/sample
- $R_s = 8 \times 8000 = 64 \text{ kbit/s}$
- Nella telefonia mobile si usano codifiche con maggiore rapporto di compressione
 - $R_s = 8-12 \text{ kbit/s}$

CD Audio

- $W_s = 22 \text{ kHz} \rightarrow 44000 \text{ samp./sec}$
- 16 bit/sample
- R_s= $16 \times 44000 = 704$ kbps per canale
- MP3 usa una codifica con maggiore rapporto di compressione
 - $R_s = 50 \text{ kbit/s per canale audio}$

Segnale video

- Sequenza di "quadri" (picture frame)
 - ogni picture è digitalizzata e compressa
- Frequenza di ripetizione delle frame
 - 10-30-60 frame/sec in relazione all'obiettivo di qualità
- Risoluzione di ogni picture (Frame resolution)
 - Bassa risoluzione per servizio di videoconferenza
 - Risoluzione maggiore per servizio broadcast TV
 - HDTV frames

Rate = M bits/pixel x (WxH) pixel/frame x F frame/second

Frame Video

QCIF videoconferenza

30 frame/sec =

= 760,000 pixel/sec =

= 0.760 10⁶ pixel/sec

Broadcast TV

30 frame/sec =

= 10.4×10^6 pixel/sec

HDTV

30 frames/sec =

= 67×10^6 pixels/sec

Digital Video Signals

Tipo	Metodo	Formato	Originale	Compresso
Video Confer- enza	H.261	176x144 or 352x288 pix a 10-30 fr/sec	2-36 Mbit/s	64-1544 kbit/s
Full Motion	MPEG2	720x480 pix a 30 fr/sec	249 Mbit/s	2-6 Mbit/s
HDTV	MPEG2	1920×1080 a 30 fr/sec	1.6 Gbit/s	19-38 Mbit/s

Tipologia di informazioni stream

Constant bit-rate (CBR)

- Flussi informativi a bit rate costante
 - Es. sorgente telefonica produce un flusso stream a rate costante 64 kbit/s
- La rete deve fornire un canale di comunicazione con banda almeno uguale al bit rate della sorgente
 - Es. Rete telefonica: canali di comunicazione (circuiti) a 64 kbit/s

Variable bit-rate (VBR)

- Flussi informativi con bit rate variabile nel tempo
 - Es. sorgente video a qualità costante produce un flusso in cui il bit rate varia in funzione del movimento tra due picture consecutive
- La rete deve supportare in modo efficiente la variabilità del bit rate
 - Es. commutazione di pacchetto o rate-smoothing

Parametri di qualità per servizi di tipo Stream

- Possibili problemi introdotti dal transito in rete (Network Impairments)
 - Ritardo (Delay)
 - Per ogni servizio occorre individuare il vincolo sul ritardo massimo di attraversamento della rete
 - Variabilità del ritardo (Jitter)
 - Per ogni servizio occorre individuare il vincolo sulla variabilità massima consentita del ritardo di attraversamento della rete
 - Perdita di informazioni (Loss)
 - Per ogni servizio occorre individuare il vincolo sul percentuale massima di bit persi (per errori o congestione) sul totale dei bit trasmessi (Probabilità di perdita)
 - I protocolli di trasferimento sono progettati per gestire questi problemi

Introduzione alle trasmissioni numeriche

Schema di un sistema di trasmissione

Trasmettitore

- Converte il flusso informativo prodotto da una sorgente in un segnale adatto alla trasmissione
- Trasmette il segnale nel mezzo trasmissivo/canale di comunicazione

Ricevitore

- Riceve il segnale dal mezzo trasmissivo/canale di comunicazione
- Converte il segnale ricevuto in una forma utilizzabile dall'utente finale (destinazione)

Transmission Impairments

Canale di Comunicazione

- Coppie simmetriche
- Cavi coassiali
- Radio
- Fibra ottiche
- Light in air
- Infrarossi

Transmission Impairments

- Attenuazione del segnale
- Distorsione del segnale
- Rumore additivo
- Interferenza con altri segnali
- I transmission impairments limitano la lunghezza del collegamento

Trasmissioni analogiche a lunga distanza

Tratta Trasmissiva

- Ogni ripetitore ha lo scopo di rigenerare il segnale in uscita in modo che sia quanto più possibile simile a quello ricevuto in ingresso
- La rigenerazione è non ideale
 - Le distorsioni non sono completamente eliminate
 - Il rumore e le interferenze sono solo parzialmente rimosse
- La qualità del segnale diminuisce al crescere del numero di ripetitori
- Le comunicazioni analogiche sono distance-limited
- Analogia
 - Copie multiple di una cassetta musicale

Analog vs. Digital Transmission

Trasmissioni analogiche

tutti i dettagli del segnale devono essere ricostruiti accuratamente

- Trasmissioni numeriche
 - devono essere ricostruiti solo i livelli discreti del segnale
 - l'impulso originale era positivo o negativo?

Trasmissione numeriche a lunga distanza

Tratta Trasmissiva

- Un rigeneratore ricostruisce la sequenza iniziale di bit e la ritrasmette sulla tratta successiva
 - E' possibile progettare un rigeneratore in modo che la probabilità di errore sia piccola
 - Il segnale rigenerato è in pratica identico a quello originale
- Analogia
 - copie multiple di un file MP3
- Le comunicazioni numeriche sono possibili anche a lunghissima distanza
- Sistemi numerici vs. sistemi analogici
 - Minore potenza, distanze maggiori, costi ridotti
 - Funzioni più semplici di monitoraggio, multiplazione, codifica, ecc.

Segnale numerico binario

Bit rate = 1 bit / T seconds = 1/T

Per uno specifico mezzo trasmissivo

- Come possiamo aumentare il bit rate in trasmissione?
- Come possiamo ottenere un trasferimento affidabile?
- Ci sono limiti al bit rate e all'affidabilità della trasmissione?

Trasmissione ad impulsi

Obiettivo

Rendere massimo il rate di trasmissione degli impulsi in un canale, ovvero rendere T il più piccolo possibile

- Se in ingresso è trasmesso un impulso di breve durata, l'uscita sarà un impulso "allargato" e "arrotondato"
 - due impulsi consecutivi possono sovrapporsi tra loro

Domanda

- qual è la frequenza massima F di trasmissione degli impulsi in modo che non ci sia interferenza tra loro?
- Risposta
 - $F = 2 \cdot W_c$ impulsi/secondo
 - dove W_c è la larghezza di banda del canale (Bandwidth)

Larghezza di banda di un canale trasmissivo

- Se il segnale di ingresso ad un canale è una sinusoide di frequenza f allora
 - l'uscita sarà una sinusoide della stessa frequenza f
 - attenuata di un fattore A(f) che dipende dalla frequenza f
 - $A(f) \approx 1$, il segnale transita inalterato
 - A(f) ≈ 0, il segnale è bloccato
- La larghezza di banda W_c è definita come l'intervallo di frequenze per cui $A(f) \approx 1$

Canale passa basso ideale

Trasmissione ad impulsi multilivello

- Si consideri un canale con larghezza di banda W_c e una trasmissione ad un rate $2W_c$ impulsi/s (senza interferenza)
- Se l'ampiezza degli impulsi può assumere due valori (-A o +A), ogni impulso può rappresentare un solo bit informativo, quindi
 - Bit Rate = 1 bit/impulso $\times 2 \cdot W_c$ impulsi/sec = $2 \cdot W_c$ bit/s
- Se l'ampiezza degli impulsi può assumere valori appartenti all'insieme $\{-A, -A/3, +A/3, +A\}$, ogni impulso può rappresentare 2 bit quindi
 - Bit Rate = 2 bit/impulso $\times 2 \cdot Wc$ impulsi/sec = $4 \cdot W_c$ bit/s
- Se il segnale può assumere M = 2^m livelli, si ha
 - Bit Rate = m bit/impulso $\times 2 \cdot W_c$ impulsi/sec = $2 \cdot m \cdot W_c$ bit/s
- In assenza di rumore il bit rate può essere incrementato aumentando il valore di m (livelli del segnale)
 - Attenzione: aumentando m si riduce la distanza tra livelli adiacenti

Trasmissione multilivello (PAM)

- Raggruppa i bit in parole di dimensione N=log₂M
 - M: numero di livelli
 - N: numero di bit trasmessi in un unico impulso
- Assegna ad ogni parola di N bit un livello tra gli M disponibili
 - I livelli adiacenti corrispondono a parole di codice che differiscono per un solo bit (Codifica di Gray)
 - Un errore tra due livelli adiacenti comporta un errore su un solo bit
- Esempio
 - N=3 000; 001; 011; 010; 110; 111; 101; 100

Trasmissione multilivello (PAM)

Esempio

Immaginiamo di voler trasmettere la sequenza binaria [0010110111], utilizzando un sistema PAM a M=4 livelli

Rumore

- Tutti i sistemi fisici introducono rumore
 - Gli elettroni vibrano a temperature superiori allo zero assoluto, il moto degli elettroni introduce rumore
- La presenza di rumore limita l'accuratezza della misura dell'ampiezza del segnale ricevuto
- L'effetto del rumore è modellabile come un <u>segnale additivo</u> rispetto al segnale utile
- Una misura del rumore consiste nel rapporto segnale-rumore (signal-tonoise ratio) (SNR)
- Gli errori nella rivelazione del segnale ricevuto appaiono quando la separazione tra i livelli del segnale è comparabile con il livello di rumore
- Il Bit Error Rate (BER) aumenta quando diminuisce l'SNR
- Il rumore pone un limite al numero di livelli che possono essere utilizzati nella trasmissione di impulsi e quindi un limite al bit rate in trasmissione

Signal-to-Noise Ratio

DIET Dept
ONetworking Group

Potenza media del rumore

Limite di Shannon alla capacità di un canale

$$C_{max} = W_c \cdot \log_2 \cdot (1 + SNR)$$
 bit/s

- C_{max} (capacità massima di canale) è una funzione della larghezza di banda e del rapporto segnale rumore
- Se il bit rate di trasmissione R è inferiore a C_{max} ($R < C_{max}$) è possibile ottenere un BER arbitrariamente piccolo
 - è necessario introdurre una codifica di linea opportuna
- Se R>C_{max}, non è possibile ridurre il BER a valori arbitrariamente piccoli
- La capacità C_{max} può essere utilizzata come una misura di riferimento per stabilire quanto un sistema di trasmissione reale è vicino alle migliori prestazioni possibili

Esempio

Calcolare la capacità limite di Shannon per un canale di comunicazione telefonico con $W_c = 3400$ Hz and SNR = 10000

$$C = W_c \log_2 (1 + SNR) = 3400 \log_2 (1 + 10000) =$$

= 3400 $\log_{10} (10001)/\log_{10} 2 = 45200 \text{ bit/s} =$
= 45.2 kbit/s

Si osservi che SNR = 10000 corrisponde a SNR (dB) = 10 $log_{10}(10000) = 40$ dB

Bit rate in sistemi di trasmissione numerici

Sistema	Bit Rate	Osservazioni
Telephone twisted pair	33.6-56 kbit/s	4 kHz telephone channel
Ethernet twisted pair	10 Mbps, 100 Mbit/s	100 meters of unshielded twisted copper wire pair
Cable modem	500 kbps-4 Mbps	Shared CATV return channel
ADSL twisted pair	64-640 kbps in, 1.536- 6.144 Mbit/s out	Coexists with analog telephone signal
2.4 GHz radio	2-11 Mbit/s	IEEE 802.11 wireless LAN
28 GHz radio	1.5-45 Mbit/s	5 km multipoint radio
Optical fiber	2.5-40 <i>G</i> bit/s	1 wavelength
Optical fiber	>1600 Gbit/s	Many wavelengths

Esempi di canali trasmissivi

Channel	Bandwidth	Bit Rate
Canale telefonico	3 kHz	33 kbit/s
Coppia simmetrica	1 MHz	1-6 Mbit/s
Cavo coassiale	500 MHz (6 MHz per canale)	30 Mbit/s/ channel
5 GHz radio (IEEE 802.11)	300 MHz (11 channels)	54 Mbit/s / channel
Fibra ottica	Molti TeraHertz	40 Gbit/s / wavelength

