Chapter 1

Derivative Formulæ

1.1 General Functions

For any two functions u and v:

$$(u+v)' = u' + v'$$

When there is a constant, c:

$$(c \cdot u)' = c \cdot u'$$

1.2 Trigonometric Functions

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

1.3 Product Rule

$$(u \cdot v)' = v \cdot u' + u \cdot v' \tag{1.1}$$

Example 1.1. To differentiate $f(x) = x^3 \sin x$, we let $u = x^3$ and $v = \sin x$:

$$u' = 3x^2$$

$$v' = \cos x$$

From Equation 1.1, we know:

$$f'(x) = vu' + uv'$$
$$= 3x^{2} \sin x + x^{3} \cos x$$

1.4 Quotient Rule

$$\left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2}$$

1.5 Chain Rule

The *chain rule* (in Leibniz's notation) can be written in the following way:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

Example 1.2. To differentiate $y = \sin^{10} t$, we let $x = \sin t$:

$$y = x^{10}$$

$$\therefore \frac{dy}{dx} = 10x^9$$

From the chain rule, we get:

$$\frac{dy}{dt} = 10x^9 \cos t \quad \because \quad \frac{dx}{dt} = \cos t$$

Finally, we need to substitute $x = \sin t$:

$$\frac{dy}{dt} = 10\sin^9 t \cos t$$

Example 1.3. To differentiate $\sin(10t)$, we let x = 10t and $y = \sin x$: We now have: $\frac{dx}{dt} = 10 \quad , \quad \frac{dy}{dx} = \cos x$

$$\frac{d}{dt}\sin(10t) = \frac{dy}{dt}$$

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

$$= 10\cos x$$

 $=10\cos(10t)$