第 11 章 c: 积分路径无关;格林公式

数学系 梁卓滨

2016-2017 **学年** II

例 证明积分 $\int_{(1,1)}^{(2,3)} (x+y) dx + (x-y) dy$ 的值与路径无关,并计算积 分值。

解 只要说明向量场
$$F = (x + y, x - y)$$
 是梯度向量场:
$$(x + y, x - y) = \nabla f = (f_x, f_y)$$

$$\Rightarrow f_x = x + y$$

$$\Rightarrow f = \frac{1}{2}x^2 + xy + C(y)$$

$$\Rightarrow f_y = (\frac{1}{2}x^2 + xy + C(y))'_y = x + C'(y) = x - y$$

$$\Rightarrow C'(y) = -y \Rightarrow \pi \sin C(y) = -y$$

所以 $f = \frac{1}{2}x^2 + xy - \frac{1}{2}y^2$ 满足 $\nabla f = (f_x, f_y) = (x + y, x - y)$ 。所以该

⇒
$$C'(y) = -y$$
 ⇒ 不妨取 $C(y) = -y$ 所以 $f = \frac{1}{2}x^2 + xy - \frac{1}{2}y^2$ 满足 $\nabla f = (f_x, f_y) = (x + y, x - y)$ 。所以该曲线积分与路径无关,并且

 $\int_{(1,1)}^{(2,3)} (x+y)dx + (x-y)dy = f(2,3) - f(1,1) = \frac{5}{2}$

例 证明积分 $\int_{(1.0)}^{(2,1)} (2xy - y^4 + 3) dx + (x^2 - 4xy^3) dy$ 的值与路径无 关,并计算积分值。 解 只要说明向量场 $F = (2xy - y^4 + 3, x^2 - 4xy^3)$ 是梯度向量场: $(2xy - y^4 + 3, x^2 - 4xy^3) = \nabla f = (f_x, f_y)$ $\Rightarrow f_{y} = 2xy - y^{4} + 3$ $\Rightarrow f = x^2y - xy^4 + 3x + C(y)$ $\Rightarrow f_y = (x^2y - xy^4 + 3x + C(y))'_v = x^2 - 4xy^3 + C'(y) = x^2 - 4xy^3$ \Rightarrow C'(v) = 0 \Rightarrow $\neg Signature Triangleright Triangler$ 所以 $f = x^2 v - x v^4 + 3x$ 满足 $\nabla f = (f_x, f_y) = (2xy - y^4 + 3, x^2 - 4xy^3)$ 。所以该曲线积分与路径无

关,并且 $\int_{(1,0)}^{(2,1)} (2xy - y^4 + 3)dx + (x^2 - 4xy^3)dy = f(2,1) - f(1,0) = 11$

第 11 章 c: 积分路径无关;格林公式