

Zhang Yanmei

ymzhang@bupt.edu.cn

QQ: 11102556

College of Computer Science & Technology

Beijing University of Posts & Telecommunications

9 Relations

- 9.1 Relations and Their Properties
 关系及关系性质
- 9.2 *n*-ary Relations and Their Applications *n*元关系及应用
- 9.3 Representing Relations 关系的表示
- 9.4 Closures of Relations 关系闭包
- 9.5 Equivalence Relations 等价关系
- 9.6 Partial Orderings 偏序关系

Relations and their properties

Zhang Yanmei

ymzhang@bupt.edu.cn

QQ: 11102556

College of Computer Science & Technology

Beijing University of Posts & Telecommunications

Ordered pair(序偶)

- An ordered pair (a, b) is a listing of the objects a and b in a prescribed order, with a appearing first and b appearing second.
- The ordered pairs $(a_1, b_1) = (a_2, b_2)$
 - if and only if
- $a_1 = a_2$ and $b_1 = b_2$

Cartesian product (笛卡尔积)

- If A and B are two nonempty sets, we define the *product set* or *Cartesian product* $A \times B$ as the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$
 - $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$

- The *Cartesian product* $A_1 \times A_2 \times \cdots \times A_m$ of the nonempty sets A_1, A_2, \cdots, A_m is the set of all ordered m-tuples $(m \pi \sharp)$ (a_1, a_2, \ldots, a_m) , where $a_i \in A_i$, $i = 1, 2, \ldots, m$
- Thus
 - $A_1 \times A_2 \times \dots \times A_m = \{(a_1, a_2, \dots, a_m) \mid a_i \in A_i, i = 1, 2, \dots, m\}.$

Partitions

- A *partition*(划分) or *quotient set*(商集) of a nonempty set A is a collection P of nonempty subsets of A such that
 - Each element of A belongs to one of the sets in P
 - If A_1 and A_2 are distinct elements of P, then $A_1 \cap A_2 = \emptyset$
- The sets in P are called the *blocks* or *cells* of the partition.

Example

- Let $A = \{a, b, c, d, e, f, g, h\}$.
- Consider the following subsets of A
 - $A_1 = \{a, b, c, d\}$
 - $A_2 = \{a, c, e, f, g, h\}$
 - $A_3 = \{a, c, e, g\}$
 - $A_4 = \{b, d\}$
 - $A_5 = \{f, h\}$

Relations

- The notion of a relation between two sets of objects is quite common and intuitively clear
- Examples
 - x is the father of y
 - *x* < *y*
- A relation is often described verbally and may be denoted by a familiar name or symbol.

Relations

- Discuss any possible relation from one abstract set to another.
- The only thing that really matters about a relation is that we know precisely which elements in A are related to which elements in B

Definition

- Let A and B be nonempty sets. A relation R from A to B is a subset of $A \times B$.
 - If $R \subseteq A \times B$ and $(a, b) \in R$, we say that a is related to b by R, and we also write a R b.
 - If a is not related to b by R, we write a R b.
- Frequently, A and B are equal. In this case, we often say that $R \subseteq A \times A$ is a relation on A.

Examples

- Let $A = \{1, 2, 3\}$ and $B = \{r, s\}$. Then $R = \{(1, r), (2, s), (3, r)\}$ is a relation from A to B.
- Let A and B be sets of real numbers. We define the following relation R (equals) from A to B:
 - a R b if and only if a = b
- Let $A = \{1, 2, 3, 4, 5\}$. Define the following relation R (*less than*) on A:
 - a R b if and only if a < b
 - $R = \{(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)\}$

Example

- Let A = R, the set of real numbers. Define the following relation R on A:
 - $\mathbf{x} R y$
- if and only if

$$x^2/4 + y^2/9 = 1$$

The set *R* consists of all points on the ellipse shown in Figure

Sets Arising from Relations

- Let $R \subseteq A \times B$ be a relation from A to B.
- Dom(R), the *domain* of R is a subset of A, is the set of all first elements in the pairs that make up R.
- Ran(R), the *range* of R is the set of elements in B that are second elements of pairs in R.

Sets Arising from Relations

- If R is a relation from A to B and $x \in A$.
- Define R(x), the R-relative set of x, to be the set of all y in B with the property that x is R-related to y.
 - $R(x) = \{ y \in B \mid x R y \}.$
- Similarly, if $A_1 \subseteq A$, then $R(A_1)$, the R-relative set of A_1 , is the set of all y in B with the property that x is R-related to y for some x in A_1 .
 - $R(A_1) = \{ y \in B \mid x R y \text{ for some } x \text{ in } A_1 \}$

Theorem

- Let R be a relation from A to B, and let A_1 and A_2 be subsets of A. Then
 - (a) If $A_1 \subseteq A_2$, then $R(A_1) \subseteq R(A_2)$
 - (b) $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$
 - (c) $R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)$

Proof of If $A_1 \subseteq A_2$ then $R(A_1)$ $\subseteq R(A_2)$

- If $y \in R(A_1)$, then x R y for some $x \in A_1$.
- Since $A_1 \subseteq A_2$, $x \in A_2$.
- Thus
 - $y \in R(A_2)$
- which proves part (a).

Proof of $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$

- If $y \in R(A_1 \cup A_2)$, then by definition x R y for some x in $A_1 \cup A_2$.
 - If x is in A_1 , then, since x R y, we must have $y \in R(A_1)$.
 - By the same argument, if x is in A_2 , then $y \in R(A_2)$.
 - In either case, $y \in R(A_1) \cup R(A_2)$.
 - Thus $R(A_1 \cup A_2) \subseteq R(A_1) \cup R(A_2)$.
- Conversely,
 - since $A_1 \subseteq (A_1 \cup A_2)$, part (a) tells us that $R(A_1) \subseteq R(A_1 \cup A_2)$.
 - Similarly, $R(A_2) \subseteq R(A_1 \cup A_2)$.
 - Thus $R(A_1) \cup R(A_2) \subseteq R(A_1 \cup A_2)$, and therefore part (b) is true.

Proof of $R(A_1 \cap A_2) \subseteq R(A_1) \cap R(A_2)$

- If $y \in R(A_1 \cap A_2)$, then, for some x in $A_1 \cap A_2$, $x \in X$.
- Since x is in both A_1 and A_2 , it follows that y is in both $R(A_1)$ and $R(A_2)$;
 - $y \in R(A_1) \cap R(A_2).$
- Thus part (c) holds.

• QED

■ Why "⊆" instead of "="?

- The strategy of this proof is one we have seen many times in earlier sections:
 - Apply a relevant definition to a generic object.

Example

- Let $A = \mathbb{Z}$, R be " \leq ", $A_1 = \{0, 1, 2\}$, and $A_2 = \{9, 13\}$. Then
 - $R(A_1)$ consists of all integers n such that $0 \le n$, or $1 \le n$, or $2 \le n$. Thus $R(A_1) = \{0, 1, 2, ...\}$
 - Similarly, $R(A_2) = \{9, 10, 11, ...\}$
 - So $R(A_1) \cap R(A_2) = \{9, 10, 11, ...\}$
 - On the other hand, $A_1 \cap A_2 = \emptyset$; thus $R(A_1 \cap A_2) = \emptyset$
- This shows that the containment in theorem 1(c) is not always an equality.

Theorem

- Let R and S be relations from A to B.
 - If R(a) = S(a) for all a in A,
 - then R = S
- Proof
 - If a R b, then $b \in R(a)$. Therefore, $b \in S(a)$ and a S b.
 - A completely similar argument shows that, if a S b, then a R b.
 - Thus R = S.

QED

Special Properties of Binary Relations

- Given:
 - A Universe U
 - A binary relation R on a subset A of U
- Special Properties:
 - Reflexive and Irreflexive (自反、反自反)
 - *Symmetric*, *Asymmetric*, and *Antisymmetric* (对称、非对称、反对称)
 - Transitive (传递)

Definition: [re]

- *R* is *reflexive* iff
 - $\forall x[x \in A \to (x, x) \in R]$
- Note:
 - if $A = \emptyset$ then the implication is true vacuously
 - The void relation on a void Universe is reflexive!
 - If U is not void then all vertices in a reflexive relation must have loops!

Definition: [ir]

- R is *irreflexive* iff
 - $\forall x[x \in A \rightarrow (x, x) \notin R]$

- Note:
 - if $A = \emptyset$ then the implication is true vacuously
 - Any void relation is irreflexive!

Examples

- [Re]
- Not [*Ir*]

- Not [*Re*]
- [*Ir*]

- Not [*Re*]
- Not [*Ir*]

Definition: [Sy]

- R is *symmetric* iff
 - $\forall x \forall y [(x, y) \in R \rightarrow (y, x) \in R]$

- Note:
 - If there is an arc (x, y) there must be an arc (y, x)

Definition: [As]

- R is Asymmetric iff
 - $\forall x \forall y [(x, y) \in R \rightarrow (y, x) \notin R]$

- Note:
 - If there is an arc (x, y) there must not be an arc (y, x)

Definition: [Ats]

- R is antisymmetric iff
 - $\forall x \forall y [(x, y) \in R \land (y, x) \in R \rightarrow x = y]$

Note:

- If there is an arc from x to y there cannot be one from y to x if $x \neq y$.
- You should be able to show that logically: if (x, y) is in R and $x \neq y$ then (y, x) is not in R.

Examples

- [*Sy*]
- Not [*As*]
- Not [*Ats*]

- Not [*Sy*]
- \blacksquare [As]
- [*Ats*]

- Not [*Sy*]
- Not [As]
- [Ats]

- $\bullet \quad \text{Not } [Sy]$
- Not [*As*]
- Not [*Ats*]

What about other 4 cases?

Definition: [tr]

- R is transitive iff
 - $\forall x \forall y \forall z [(x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R]$

- Note:
 - if there is an arc from x to y and one from y to z then there must be one from x to z.

Examples

• Not [*Tr*]

Examples in Mathematics

- \blacksquare = (equality)
- **■** ≠ (inequality)
- Ø (empty relation)

- Example 15
 - Is the "divides" relation on the set of positive integers transitive?
- Example 16
 - How many reflexive relations are there on a set with *n* elements?

Combing relations

- $R_2 \cup R_1$
- $R_2 \cap R_1$
- $R_2 R_1$
- $\blacksquare R_2 \oplus R_1$
- $\blacksquare R_1$
- Example 17-19

Composition

- Now suppose
 - \blacksquare A, B, and C are sets,
 - \blacksquare R is a relation from A to B, and
 - S is a relation from B to C.
- The *composition of R and S*, written as $S^{\circ}R$, is a relation from A to C and defined as: if a is in A and c is in C, then
 - \bullet a $S^{\circ}R$ c
 - if and only if
 - for some b in B, a R b and b S c.

Example

Let

- $A=\{1, 2, 3, 4\}$
- $R=\{(1, 1), (1, 2), (1, 3), (2, 4), (3, 2)\}$
- $S=\{(1,4),(1,3),(2,3),(3,1),(4,1)\}$

Then

$$S^{\circ}R = \{(1, 4), (1, 3), (1, 1), (2, 1), (3, 3)\}$$

Theorem

Let R be a relation from A to B and let S be a relation from B to C. Then, if A_1 is a subset of A, we have

$$(S^{\circ}R)(A_1) = S(R(A_1))$$

Proof of $(S^{\circ}R)(A_1) = S(R(A_1))$

$$\forall c \in S \circ R(A_{1})$$

$$\Leftrightarrow \exists a \in A_{1}, (a,c) \in S \circ R$$

$$\Leftrightarrow \exists a \in A_{1}, \exists b \in B, (a,b) \in R \land (b,c) \in S$$

$$\Leftrightarrow \exists b \in B, (\exists a \in A_{1}, (a,b) \in R) \land (b,c) \in S$$

$$\Leftrightarrow \exists b \in B, b \in R(A_{1}) \land (b,c) \in S$$

$$\Leftrightarrow c \in S(R(A_{1}))$$

$$(S \circ R)(A_{1}) = S(R(A_{1}))$$

- Let *R* be a relation on the set *A*. The power $R^n, n=1,2,3...$ are defined recursively by $R^1=R$ and $R^{n+1}=R^n \circ R$
- Example 22

Theorem 1

■ The relation R on a set A is transitive if and only if $R^n \subseteq R$ for n=1,2,3...

Homework

- § 9.1
 - **40**, 47, 48

§ 9.2: n-ary Relations

- An *n*-ary relation R on sets $A_1, ..., A_n$, written (with signature) $R:A_1 \times ... \times A_n$ or $R:A_1, ..., A_n$, is simply a subset $R \subseteq A_1 \times ... \times A_n$.
- The sets A_i are called the *domains* of R.
- The degree of R is n.
- R is functional in the domain A_i if it contains at most one n-tuple $(..., a_i,...)$ for any value a_i within domain A_i .

Example 1~2 P584

- Let R be the relation on N×N×N consisting of triples (a, b, c), where a, b, and c are integers with a < b < c.
- Let R be the relation on $Z \times Z \times Z$ consisting of all triples of integers (a, b, c) in which a, b, and c form an arithmetic progression. That is, $(a, b, c) \in R$ if and only if there is an integer k such that b = a + k and c = a + 2k, or equivalently, such that b a = k and c b = k.

Example 3~4 P584

- Let R be the relation on $Z \times Z \times Z^+$ consisting of triples (a, b, m), where a, b, and m are integers with $m \ge 1$ and $a \equiv b \pmod{m}$.
- Let R be the relation consisting of 5-tuples (A,N, S,D, T) representing airplane flights, where A is the airline, N is the flight number, S is the starting point, D is the destination, and T is the departure time.

Relational Databases

- A relational database is essentially just an n-ary relation R.
- A domain A_i is a *primary key* for the database if the relation R is functional in A_i .
- A *composite key* for the database is a set of domains $\{A_i, A_j, ...\}$ such that R contains at most 1 n-tuple $(..., a_i, ..., a_j, ...)$ for each composite value $(a_i, a_j, ...) \in A_i \times A_j \times ...$
- Example 5
- Example 6

Selection Operators

- Let A be any n-ary domain $A = A_1 \times ... \times A_n$, and let $C:A \rightarrow \{T,F\}$ be any *condition* (predicate) on elements (n-tuples) of A.
- Then, the *selection operator* s_C is the operator that maps any (n-ary) relation R on A to the n-ary relation of all n-tuples from R that satisfy C.
 - *I.e.*, $\forall R \subseteq A$, $s_C(R) = \{a \in R \mid s_C(a) = \mathbf{T}\}$

Selection Operator Example

- Suppose we have a domain
 A = StudentName × Standing × SocSecNos
- Suppose we define a certain condition on A,
 UpperLevel(name,standing,ssn) :≡
 [(standing = junior) ∨ (standing = senior)]
- Then, $s_{UpperLevel}$ is the selection operator that takes any relation R on A (database of students) and produces a relation consisting of *just* the upperlevel classes (juniors and seniors).

Projection Operators

- Let $A = A_1 \times ... \times A_n$ be any *n*-ary domain, and let $\{i_k\} = (i_1, ..., i_m)$ be a sequence of indices all falling in the range 1 to n,
 - That is, where $1 \le i_k \le n$ for all $1 \le k \le m$.
- Then the *projection operator* on *n*-tuples

is defined by:

$$P_{\{i_k\}}:A \longrightarrow A_{i_1} \times \ldots \times A_{i_m}$$

$$P_{\{i_k\}}(a_1,...,a_n) = (a_{i_1},...,a_{i_m})$$

Projection Example

- Suppose we have a ternary (3-ary) domain $Cars=Model \times Year \times Color$. (note n=3).
- Consider the index sequence $\{i_k\}=1,3.$ (m=2)
- Then the projection $P_{\{i_k\}}$ simply maps each tuple $(a_1,a_2,a_3) = (model, year, color)$ to its image:
- This open $(a_{i_1}, a_{i_2}) = (a_1, a_3) = (model, color)$ whole relation $R \subseteq Cars$ (a database of cars) to obtain a list of the model/color combinations available.
- Example 8

Join Operator

- Puts two relations together to form a sort of combined relation.
- If the tuple (A,B) appears in R_1 , and the tuple (B,C) appears in R_2 , then the tuple (A,B,C) appears in the join $J(R_1,R_2)$.
 - A, B, and C here can also be sequences of elements (across multiple fields), not just single elements.

Join Example

- Suppose R_1 is a teaching assignment table, relating *Professors* to *Courses*.
- Suppose R_2 is a room assignment table relating *Courses* to *Rooms*, *Times*.
- Then $J(R_1,R_2)$ is like your class schedule, listing (*professor*, *course*, *room*, *time*).
- Example 11

Homework

- § 9.2
 - **8**, 20

§ 9.3: Representing Relations

- Some ways to represent *n*-ary relations:
 - With an explicit list or table of its tuples.
 - With a function from the domain to {T,F}.
 - Or with an algorithm for computing this function.
- Some special ways to represent binary relations:
 - With a zero-one matrix.
 - With a directed graph.

The Matrix of a Relation

- Let $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$, R is a relation from A to B.
- The $m \times n$ matrix $M_R = [m_{ij}]$ defined by

$$m_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{if } (a_i, b_j) \notin R \end{cases}$$

- M_R is called the *connection matrix of R*.
- M_R provides an easy way to check whether R has a given property.

Example

Consider the matrix

$$M = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

- Since M is 3×4 , let
 - $A = \{a_1, a_2, a_3\} \text{ and } B = \{b_1, b_2, b_3, b_4\}.$
- Then $(a_i, b_j) \in R$ if and only if $m_{ij} = 1$.
 - $R = \{(a_1, b_1), (a_1, b_4), (a_2, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_3)\}$

Using Zero-One Matrices

- To represent a binary relation $R:A \times B$ by an $|A| \times |B|$ 0-1 matrix $\mathbf{M}_R = [m_{ij}]$, let $m_{ij} = 1$ iff $(a_i,b_i) \in R$.
- *E.g.*, Suppose Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally.
- Then the 0-1 matrix representation of the relation Likes:Boys × Girls relation is:

	Susan	Mary	Sally
Joe	\[\] 1	1	0
Fred	0	1	0
Mark		0	1

Zero-One Reflexive, Symmetric

- Terms: Reflexive, non-reflexive, irreflexive, symmetric, asymmetric, and antisymmetric.
 - These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

Obvious questions

- Given the connection matrix for two relations, how does one find the connection matrix for
 - The complement?
 - The relative complement?
 - The symmetric difference?

Combining Connection Matrices

- **Definition:** the *join* of two matrices M_1 , M_2 , denoted $M_1 \lor M_2$, is the component wise *boolean 'or'* of the two matrices.
- **Fact:** If M_1 is the connection matrix for R_1 and M_2 is the connection matrix for R_2 then the join of M_1 and M_2 , $M_1 \vee M_2$ is the connection matrix for $R_1 \cup R_2$.

Combining Connection Matrices

- **Definition:** the *meet* of two matrices M_1 , M_2 , denoted $M_1 \wedge M_2$ is the component wise *boolean 'and'* of the two matrices.
- **Fact:** If M_1 is the connection matrix for R_1 and M_2 is the connection matrix for R_2 then the meet of M_1 and M_2 , $M_1 \wedge M_2$ is the connection matrix for $R_1 \cap R_2$.

Composite of relations

- Exmaple 5 P593
 - Find the matrix representing the relations $S \circ R$, where the matrices representing R and S are

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad Ms = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Example 6

• Find the matrix representing the relation R^2 , where the matrices representing R is

$$\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

The Digraph of a Relation

- If A is a finite set and R is a relation on A.
 - Draw a small circle, called a *vertex*, for each element of A and label the circle with the corresponding element of A.
 - Draw an arrow, called an *arc* or *edge*, from vertex a_i to vertex a_i if and only if $a_i R a_i$.
- The resulting pictorial representation of *R* is called a *directed graph* or *digraph* of *R*.

Using Directed Graphs

■ A directed graph or digraph $G=(V_G,E_G)$ is a set V_G of vertices (nodes) with a set $E_G \subseteq V_G \times V_G$ of edges (arcs,links). Visually represented using dots for nodes, and arrows for edges. Notice that a relation $R:A \times B$ can be represented as a graph $G_R=(V_G=A \cup B, E_G=R)$.

Matrix representation M_R :

	Susan	Mary	Sally
Joe		1	0
Fred	0	1	0
Mark	0	0	1

Example

- Let
 - $A = \{1, 2, 3, 4\}$
 - $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4), (4, 1)\}$
- Then

Example

Find the relation determined by

$$R = \{(1, 1), (1, 3), (2, 3), (3, 2), (3, 3), (4, 3)\}$$

Definitions

- If R is a relation on a set A and $a \in A$, then
 - the *in-degree* of a (relative to the relation R) is the number of $b \in A$ such that $(b, a) \in R$.
 - the *out-degree* of a is the number of $b \in A$ such that $(a, b) \in R$.

Example

Let $A = \{a, b, c, d\}$, and R be the relation on A that has the matrix

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

• Construct the digraph of *R*, and list in-degrees and out-degrees of all vertices

Solution

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

	a	b	С	d
in-degree	2	3	1	1
out-degree	71	1	3	2

Digraph of combined relations

- Given the digraphs for R₁ and R₂, find the digraphs for
 - $R_2 \cup R_1$
 - $R_2 \cap R_1$
 - $R_2 R_1$
 - $R_2 \oplus R_1$
 - R_1

Example: R from A to B

- Let
 - $A = \{a, b, c\}$
 - $B = \{1, 2, 3, 4\}$
 - $R = \{(a, 1), (a, 2), (c, 4)\}$
- Then *R* can be represented by the digraph

Definition

- If *R* is a relation on a set *A*, and *B* is a subset of *A*, the *restriction of R to B* is
 - $R \cap (B \times B)$

Let

- $A = \{a, b, c, d, e, f\}$
- $R = \{(a, a), (a, c), (b, c), (a, e), (b, e), (c, e)\}$
- $B = \{a, b, c\}$

Then

- $B \times B = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$
- The restriction of R to B is $\{(a, a), (a, c), (b, c)\}$

Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive/irreflexive/ symmetric/antisymmetric properties by graph inspection.

Reflexive:
Every node
has a self-loop

Irreflexive:
No node
links to itself

Symmetric: Every link is bidirectional

Antisymmetric:
No link is
bidirectional

These are non-asymmetric & non-antisymmetric

These are non-reflexive & non-irreflexive

Ways to ...

- Identify which properties does a relation R has:
 - $\blacksquare R$
 - Digraph of R
 - Matrix of R

Reflexive or Irreflexive

- R is a relation on a set A, Let M_R be the matrix of a relation R and Δ be the equality relation, then R is
 - $Reflexive \Leftrightarrow \Delta \subseteq R \Leftrightarrow all 1$'s on its main diagonal
 - *Irreflexive* $\Leftrightarrow \Delta \cap R = \emptyset \Leftrightarrow$ all 0's on its main diagonal

Symmetric

- The matrix $M_R = [m_{ij}]$ of a symmetric relation satisfies the property that
 - if $m_{ij} = 1$, then $m_{ji} = 1$
 - moreover, if $m_{ij} = 0$, then $m_{ji} = 0$
 - \blacksquare so that M_R is a symmetric matrix

Asymmetric

- The matrix $M_R = [m_{ij}]$ of a asymmetric relation satisfies the property that
 - if $m_{ij} = 1$, then $m_{ji} = 0$
 - note: $m_{ii} = 0$

Antisymmetric

- The matrix $M_R = [m_{ij}]$ of a antisymmetric relation satisfies the property that
 - if $i \neq j$, then $m_{ij} = 0$ or $m_{ji} = 0$

Transitive

- A relation R is transitive if and only if its matrix $M_R = [m_{ij}]$ has the property
 - if $m_{ij} = 1$ and $m_{jk} = 1$, then $m_{ik} = 1$
- $R^2 \subseteq R$
 - if a and c are connected by a path of length 2 in R, then they must be connected by a path of length 1.
 - if $a R^2 c$, then a R c

$$M_{R_{1}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad M_{R_{2}} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad M_{R_{2}}^{2} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

$$M_{R_{3}} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad M_{R_{4}} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad M_{R_{4}}^{2} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$M_{R_5} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M_{R_6} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M_{R_2}^2 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

$$M_{R_4}^2 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$M_{R_6}^2 = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Theorem

- R is transitive
 - If and only if
- $R^n \subseteq R \text{ for } n > 0.$

Proof: R transitive $\rightarrow R^n \subseteq R$

- Use a direct proof and a proof by induction:
 - Assume R is transitive.
 - Now show $R^n \subseteq R$ by induction.
- *Basis*: Obviously true for n = 1.
- Induction:
 - The induction hypothesis:
 - 'assume theorem is true for n'.
 - Show it must be true for n + 1

Proof: R transitive $\rightarrow R^n \subseteq R$

- $R^{n+1} = R^n$ o R so if (x, y) is in R^{n+1} then there is a z such that (x, z) is in R and (z, y) is in R^n .
- But since $R^n \subseteq R$, (z, y) is in R.
- \blacksquare R is transitive so (x, y) is in R.
- Since (x, y) was an arbitrary edge the result follows.

Proof: $R^n \subseteq R \rightarrow R$ transitive

• Use the fact that $R^2 \subseteq R$ and the definition of transitivity. Proof left to the

• Q. E. D.

Combining Relations

- A very large set of potential questions -
- Let R_1 and R_2 be binary relations on a set A:
- If
 - \blacksquare R_1 has property 1
 - \blacksquare R_2 has property 2,
- does
 - $R_1 * R_2$ have property 3
- where * represents an arbitrary binary set operation?

- If
 - \blacksquare R_1 is symmetric,
 - and
 - \blacksquare R_2 is antisymmetric,
- does it follow that
 - $R_1 \cup R_2$ is transitive?
- If so, prove it. Otherwise find a counterexample.

- Let R_1 and R_2 be transitive on A. Does it follow that
 - $R_1 \cup R_2$ is transitive?
- Consider
 - $A = \{1, 2\}$
 - $R_1 = \{(1, 2)\}$
 - $R_2 = \{(2, 1)\}$
- Then $R_1 \cup R_2 = \{(1, 2), (2, 1)\}$ which is not transitive! (Why?)

Homework

- § 9.3
 - **14**, 32