24

Contents 7 Data Structure 7.1 Treap . . 1 Basic 1.1 .vimrc . 1 8 Others 1.5 python-related 2 flow 2.1 ISAP 2.4 Kuhn Munkres 最大完美二分匹配 2.7 Max flow with lower/upper bound 2.8 HLPPA (稠密圖 flow) sy on 2.9 Flow Method 3 Math 3.2 NTT . 3.3 Fast Walsh Transform 3.4 Poly operator 3.5 O(1)mul 3.6 Linear Recurrence 3.7 Miller Rabin $\dots \dots$ 3.8 Faulhaber $(\sum_{i=1}^{n} i^p) \dots$ 3.9 Chinese Remainder . . 3.10Pollard Rho 3.11Josephus Problem 3.12Gaussian Elimination 3.14Discrete sqrt 3.16Prefix Inverse 3.17 Roots of Polynomial 找多項式的根 . . . 3.18Primes } } } 3.20Result 1.3 Misc 4 Geometry 4.1 definition . . . 4.2 Intersection of 2 lines 4.3 halfPlaneIntersection 10 4.6 Intersection of 2 segments 10 4.7 Intersection of circle and segment 4.8 Intersection of polygon and circle 4.9 Intersection of 2 circles 11 4.10Circle cover 11 4.11Convex Hull trick 11 4.12Tangent line of two circles 12 12 12 4.15Min Enclosing Circle 13 4.16Min Enclosing Ball 13 13 4.18Li Chao Segment Tree 13 4.19Area of Rectangles 14 4.20Min dist on Cuboid 14 4.21Heart of Triangle 14 14 15 15 15 16 5.6 Maximum General graph Matching 16 5.7 Minimum General Weighted Matching 5.8 Maximum General Weighted Matching 5.10BCC based on vertex 19 5.11Min Mean Cycle 19 5.12Directed Graph Min Cost Cycle 19 5.13K-th Shortest Path 20 21 5.15差分約束 21 21 6 String 21 21 6.4 SuffixAutomata 6.5 Aho-Corasick 23 6.7 BWT . . . 6.8 ZValue Palindrome 23 6.9 Smallest Rotation 23

6.10Cyclic LCS

```
24
   7.2 Link-Cut Tree . . . . . . . . . . . . . . . .
   7.3 Black Magic . . . . . . . . . . . . . . . . . .
                                                                  25
   8.1 SOS dp . . . . . . . . . . . . . . .
                                                                  25
   8.2 Find max tangent(x,y is increasing) . . . . . .
                                                                  25
   Basic
1.1 .vimrc
set nu rnu ts=4 sw=4 bs=2 ai hls cin mouse=a
color default
inoremap {<CR> {<CR>}<C-o>0
inoremap jk <Esc>
nnoremap J 5j
nnoremap K 5k
nnoremap run :w<bar>!g++ -std=c++17 -Wfatal-errors -o
     test "%" && echo "done." && time ./test<CR>
1.2 Increase Stack Size
//stack resize (linux)
#include <sys/resource.h>
void increase_stack_size() {
   const rlim_t ks = 64*1024*1024;
   struct rlimit rl;
   int res=getrlimit(RLIMIT_STACK, &rl);
   if(res==0){
     if(rl.rlim_cur<ks){</pre>
       rl.rlim_cur=ks:
       res=setrlimit(RLIMIT_STACK, &rl);
編譯參數:-std=c++14 -Wall -Wshadow (-fsanitize=
     undefined)
void dbg() { cerr << '\n'; }</pre>
void abg() { cerr << '\n'; }
template<class T, class ...U> void dbg(T a, U ...b) {
    cerr << a << ' ', dbg(b...); }
template<class T> void org(T l, T r) { while (l != r)
    cerr << *l++ << ' '; cerr << '\n'; }
#define debug(args...) (_col(1), dbg("(" + string(#args
    ) + ") = (", args, ")"), _col(0))
#define orange(args...) (_col(2), cerr << "[" + string
    (#args) + ") = ", org(args), _col(0))</pre>
mt19937 gen(chrono::steady_clock::now().
     time_since_epoch().count());
int randint(int lb, int ub)
{ return uniform_int_distribution<int>(lb, ub)(gen); }
#define SECs ((double)clock() / CLOCKS_PER_SEC)
#pragma GCC optimize("03,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
struct KeyHasher {
   size_t operator()(const Key& k) const {
     return k.first + k.second * 100000:
typedef unordered_map<Key,int,KeyHasher> map_t;
__builtin_popcountll
                             //換成二進位有幾個1
__builtin_clzll
                             //返回左起第一個1之前0的個數
__builtin_parityll
                             //返回1的個數的奇偶性
__builtin_mul_overflow(a,b,&h) //回傳a*b是否溢位
1.4 check
for ((i=0;;i++))
     echo "$i"
     python3 gen.py > input
     ./ac < input > ac.out
     ./wa < input > wa.out
```

```
diff ac.out wa.out || break
done
```

1.5 python-related

```
parser:
int(eval(num.replace("/","//")))
from fractions import Fraction
from decimal import Decimal, getcontext
getcontext().prec = 250 # set precision
itwo = Decimal(0.5)
two = Decimal(2)
format(x, '0.10f') # set precision
N = 200
def angle(cosT):
  """given cos(theta) in decimal return theta"""
  for i in range(N):
  cosT = ((cosT + 1) / two) ** itwo 
 sinT = (1 - cosT * cosT) ** itwo 
 return sinT * (2 ** N)
pi = angle(Decimal(-1))
```

flow

```
2.1
      ISAP
struct Maxflow {
  static const int MAXV = 20010;
  static const int INF = 1000000;
  struct Edge {
    int v, c, r;
    Edge(int _v, int _c, int _r):
      v(_v), c(_c), r(_r) {}
  int s, t;
  vector<Edge> G[MAXV*2];
  int iter[MAXV*2], d[MAXV*2], gap[MAXV*2], tot;
  void init(int x) {
    tot = x+2;
    s = x+1, t = x+2;
    for(int i = 0; i <= tot; i++) {</pre>
      G[i].clear()
      iter[i] = d[i] = gap[i] = 0;
  void addEdge(int u, int v, int c) {
    G[u].push_back(Edge(v, c, SZ(G[v]) ));
G[v].push_back(Edge(u, 0, SZ(G[u]) - 1));
  int dfs(int p, int flow) {
    if(p == t) return flow;
    for(int &i = iter[p]; i < SZ(G[p]); i++) {</pre>
      Edge &e = G[p][i]
      if(e.c > 0 \& d[p] == d[e.v]+1) {
        int f = dfs(e.v, min(flow, e.c));
        if(f) {
           e.c -= f;
           G[e.v][e.r].c += f;
          return f;
    if((--gap[d[p]]) == 0) d[s] = tot;
    else {
      d[p]++;
      iter[p] = 0;
      ++gap[d[p]];
    return 0;
  int solve() {
    int res = 0;
    gap[0] = tot;
    for(res = 0; d[s] < tot; res += dfs(s, INF));</pre>
    return res;
  void reset() {
    for(int i=0;i<=tot;i++) {</pre>
      iter[i]=d[i]=gap[i]=0;
} } flow;
```

2.2 MinCostFlow

```
struct zkwflow{
  static const int maxN=10000;
struct Edge{ int v,f,re; ll w;};
int n,s,t,ptr[maxN]; bool vis[maxN]; ll dis[maxN];
  vector<Edge> E[maxN];
  void init(int _n,int _s,int _t){
    n=_n, s=_s, t=_t;
    for(int i=0;i<n;i++) E[i].clear();</pre>
  void addEdge(int u,int v,int f,ll w){
    E[u].push_back({v,f,(int)E[v].size(),w});
    E[v].push\_back({u,0,(int)}E[u].size()-1,-w});
  bool SPFA(){
    fill_n(dis,n,LLONG_MAX); fill_n(vis,n,false);
    queue<int> q; q.push(s); dis[s]=0;
    while (!q.empty()){
       int u=q.front(); q.pop(); vis[u]=false;
       for(auto &it:E[u]){
         if(it.f>0&&dis[it.v]>dis[u]+it.w){
           dis[it.v]=dis[u]+it.w;
           if(!vis[it.v]){
             vis[it.v]=true; q.push(it.v);
    return dis[t]!=LLONG_MAX;
  int DFS(int u,int nf){
    if(u==t) return nf;
     int res=0; vis[u]=true;
    for(int &i=ptr[u];i<(int)E[u].size();i++){</pre>
       auto &it=E[u][i];
       if(it.f>0&&dis[it.v]==dis[u]+it.w&&!vis[it.v]){
         int tf=DFS(it.v,min(nf,it.f));
         res+=tf,nf-=tf,it.f-=tf;
         E[it.v][it.re].f+=tf;
         if(nf==0){ vis[u]=false; break; }
      }
    }
    return res;
  pair<int,ll> flow(){
    int flow=0; ll cost=0;
    while (SPFA()){
       fill_n(ptr,n,0)
       int f=DFS(s,INT_MAX);
       flow+=f; cost+=dis[t]*f;
    return{ flow,cost };
  } // reset: do nothing
} flow;
2.3 Dinic
struct Dinic{
  struct Edge{ int v,f,re; };
  int n,s,t,level[MXN];
  vector<Edge> E[MXN];
  void init(int _n, int _s, int _t){
    n = _n; s = _s; t = _t;
    for (int i=0; i<n; i++) E[i].clear();</pre>
  void add_edge(int u, int v, int f){
    E[u].PB({v,f,SZ(E[v])});
    FE[v].PB({v,f,SZ(E[v])});
    E[v].PB({u,0,SZ(E[u])-1});
  bool BFS(){
    for (int i=0; i<n; i++) level[i] = -1;</pre>
    queue<int> que;
    que.push(s);
    level[s] = 0;
    while (!que.empty()){
       int u = que.front(); que.pop();
       for (auto it : E[u]){
         if (it.f > 0 && level[it.v] == -1){
           level[it.v] = level[u]+1;
           que.push(it.v);
    } } }
    return level[t] != -1;
```

int DFS(int u, int nf){

```
if (u == t) return nf;
    int res = 0;
    for (auto &it : E[u]){
      if(it.f > 0 \&\& level[it.v] == level[u]+1){
        int tf = DFS(it.v, min(nf,it.f));
        res += tf; nf -= tf; it.f -= tf;
        E[it.v][it.re].f += tf;
        if (nf == 0) return res;
    if (!res) level[u] = -1;
    return res;
  int flow(int res=0){
    while ( BFS() )
     res += DFS(s,2147483647);
    return res;
} }flow;
```

2.4 Kuhn Munkres 最大完美二分匹配

```
struct KM{ // max weight, for_min_negate the weights
   int n, mx[MXN], my[MXN], pa[MXN];
   11 g[MXN][MXN], lx[MXN], ly[MXN], sy[MXN];
  bool vx[MXN], vy[MXN];
void init(int _n) { // 1-based
     n = _n;
     for(int i=1; i<=n; i++) fill(g[i], g[i]+n+1, 0);</pre>
  void addEdge(int x, int y, ll w) \{g[x][y] = w;\}
  void augment(int y) {
     for(int x, z; y; y = z)
  x=pa[y], z=mx[x], my[y]=x, mx[x]=y;
  void bfs(int st) {
     for(int i=1; i<=n; ++i) sy[i]=INF, vx[i]=vy[i]=0;</pre>
     queue<int> q; q.push(st);
     for(;;) {
       while(q.size()) {
          int x=q.front(); q.pop(); vx[x]=1;
for(int y=1; y<=n; ++y) if(!vy[y]){
    ll t = lx[x]+ly[y]-g[x][y];
             if(t==0){
               pa[y]=x
               if(!my[y]){augment(y);return;}
               vy[y]=1, q.push(my[y]);
            }else if(sy[y]>t) pa[y]=x,sy[y]=t;
       } }
       11 cut = INF;
       for(int y=1; y<=n; ++y)
  if(!vy[y]&&cut>sy[y]) cut=sy[y];
        for(int j=1; j<=n; ++j){
  if(vx[j]) lx[j] -= cut;
  if(vy[j]) ly[j] += cut;</pre>
          else sy[j] -= cut;
        for(int y=1; y<=n; ++y) if(!vy[y]&&sy[y]==0){
          if(!my[y]){augment(y); return;}
          vy[y]=1, q.push(my[y]);
    } }
   ĺl solve(){
     fill(mx, mx+n+1, 0); fill(my, my+n+1, 0); fill(ly, ly+n+1, 0); fill(lx, lx+n+1, -INF);
     for(int x=1; x<=n; ++x) for(int y=1; y<=n; ++y)</pre>
       lx[x] = max(lx[x], g[x][y])
     for(int x=1; x<=n; ++x) bfs(x);
     11 \text{ ans} = 0;
     for(int y=1; y<=n; ++y) ans += g[my[y]][y];
     return ans;
} }graph;
```

2.5 Directed MST

```
/* Edmond's algoirthm for Directed MST
 * runs in O(VE) */
const int MAXV = 10010;
const int MAXE = 10010;
const int INF = 2147483647;
struct Edge{
  int u, v, c;
  Edge(int x=0, int y=0, int z=0) : u(x), v(y), c(z){}
int V, E, root;
```

```
Edge edges[MAXE];
inline int newV(){ return ++ V; }
inline void addEdge(int u, int v, int c)
{ edges[++E] = Edge(u, v, c); }
bool con[MAXV]
int mnInW[MAXV], prv[MAXV], cyc[MAXV], vis[MAXV];
inline int DMST(){
  fill(con, con+V+1, 0);
  int r1 = 0, r2 = 0;
  while(1)
     fill(mnInW, mnInW+V+1, INF);
     fill(prv, prv+V+1, -1);
     REP(i, 1, E){
       int u=edges[i].u, v=edges[i].v, c=edges[i].c;
if(u != v && v != root && c < mnInW[v])</pre>
         mnInW[v] = c, prv[v] = u;
    fill(vis, vis+V+1, -1);
fill(cyc, cyc+V+1, -1);
    r1 = 0;
bool jf = 0;
REP(i, 1, V){
       if(con[i]) continue ;
if(prv[i] == -1 && i != root) return -1;
       if(prv[i] > 0) r1 += mnInW[i];
       int s;
       for(s = i; s != -1 && vis[s] == -1; s = prv[s])
         vis[s] = i;
       if(s > 0 \& vis[s] == i){
           // get a cycle
          jf = 1; int v = s;
          do{
            cyc[v] = s, con[v] = 1;
r2 += mnInW[v]; v = prv[v];
          }while(v != s);
         con[s] = 0;
     if(!jf) break ;
     REP(i, 1, E)
       int &u = edges[i].u;
       int &v = edges[i].v;
       if(cyc[v] > 0) edges[i].c -= mnInW[edges[i].v];
if(cyc[u] > 0) edges[i].u = cyc[edges[i].u];
       if(cyc[v] > 0) edges[i].v = cyc[edges[i].v];
       if(u == v) edges[i--] = edges[E--];
  } }
  return r1+r2;
```

SW min-cut (不限 S-T 的 min-cut) 2.6

```
// global min cut
struct SW{ // O(V^3)
  int n,vst[MXN],del[MXN];
  int edge[MXN][MXN],wei[MXN];
  void init(int _n){
    n = _n; FZ(edge); FZ(del);
  void addEdge(int u, int v, int w){
    edge[u][v] += w; edge[v][u] += w;
  void search(int &s, int &t){
    FZ(vst); FZ(wei);
    s = t = -1;
    while (true){
       int mx=-1, cur=0;
       for (int i=0; i<n; i++)</pre>
         if (!del[i] && !vst[i] && mx<wei[i])</pre>
      cur = i, mx = wei[i];
if (mx == -1) break;
      vst[cur] = 1;
       s = t; t = cur;
       for (int i=0; i<n; i++)
         if (!vst[i] && !del[i]) wei[i] += edge[cur][i];
  int solve(){
    int res = 2147483647;
    for (int i=0,x,y; i<n-1; i++){
      search(x,y);
      res = min(res,wei[y]);
```

del[y] = 1;

```
for (int j=0; j<n; j++)
        edge[x][j] = (edge[j][x] += edge[y][j]);
}
return res;
}
}graph;</pre>
```

2.7 Max flow with lower/upper bound

```
// flow use TSAP
// Max flow with lower/upper bound on edges
// source = 1 , sink = n
int in[ N ] , out[ N ];
int l[ M ] , r[ M ] , a[ M ] , b[ M ];//0-base,a下界,b
     上界
int solve(){
  flow.init(n); //n為點的數量,m為邊的數量,點是1-
  for( int i = 0 ; i < m ; i ++ ){
    in[ r[ i ] ] += a[ i ];
out[ l[ i ] ] += a[ i ];
flow.addEdge( l[ i ] , r[ i ] , b[ i ] - a[ i ] );
// flow from l[i] to r[i] must in [a[ i ], b[ i ]]
  int nd = 0;
  for( int i = 1 ; i <= n ; i ++ ){
  if( in[ i ] < out[ i ] ){</pre>
       flow.addEdge( i , flow.t , out[ i ] - in[ i ] );
nd += out[ i ] - in[ i ];
     if( out[ i ] < in[ i ] )</pre>
        flow.addEdge( flow.s , i , in[ i ] - out[ i ] );
  // original sink to source
  flow.addEdge( n , 1 , INF );
if( flow.maxflow() != nd )
     // no solution
     return -1;
  int ans = flow.G[ 1 ].back().c; // source to sink
flow.G[ 1 ].back().c = flow.G[ n ].back().c = 0;
  // take out super source and super sink
  for( size_t i = 0 ; i < flow.G[ flow.s ].size() ; i</pre>
     ++ ){
flow.G[ flow.s ][ i ].c = 0;
     Edge &e = flow.G[ flow.s ][ i ];
     flow.G[ e.v ][ e.r ].c = 0;
  for( size_t i = 0 ; i < flow.G[ flow.t ].size() ; i</pre>
    ++ ){
flow.G[ flow.t ][ i ].c = 0;
Edge &e = flow.G[ flow.t ][ i ];
     flow.G[ e.v ][ e.r ].c = 0;
  flow.addEdge( flow.s , 1 , INF
  flow.addEdge( n , flow.t , INF );
  flow.reset();
  return ans + flow.maxflow();
```

2.8 HLPPA (稠密圖 flow)

```
template <int MAXN, class T = int>
struct HLPP {
  const T INF = numeric_limits<T>::max();
  struct Edge {
    int to, rev; T f;
  int n, s, t;
 vector<Edge> adj[MAXN];
 deque<int> lst[MAXN];
 vector<int> gap[MAXN];
  int ptr[MAXN];
 T ef[MAXN];
  int h[MAXN], cnt[MAXN], work, hst=0/*highest*/;
 void init(int _n, int _s, int _t) {
    n=_n+1;    s = _s;    t = _t;

    for(int i=0;i<n;i++) adj[i].clear();</pre>
  void addEdge(int u,int v,T f,bool isDir = true){
    adj[u].push_back({v,adj[v].size(),f});
    adj[v].push_back({u,adj[u].size()-1,isDir?0:f});
```

```
void updHeight(int v, int nh) {
     work+
     if(h[v] != n) cnt[h[v]]--;
     h[v] = nh;
     if(nh == n) return;
     cnt[nh]++, hst = nh; gap[nh].push_back(v);
     if(ef[v]>0) lst[nh].push_back(v), ptr[nh]++;
   void globalRelabel() {
     work = 0;
     fill(h, h+n, n);
     fill(cnt, cnt+n, 0);
     for(int i=0; i<=hst; i++)</pre>
     lst[i].clear(), gap[i].clear(), ptr[i] = 0;
queue<int> q({t}); h[t] = 0;
     while(!q.empty()) {
       int v = q.front(); q.pop();
for(auto &e : adj[v])
          if(h[e.to] == n && adj[e.to][e.rev].f > 0)
            q.push(e.to), updHeight(e.to, h[v] + 1);
       hst = h[v];
   } }
   void push(int v, Edge &e) {
  if(ef[e.to] == 0)
       lst[h[e.to]].push_back(e.to), ptr[h[e.to]]++;
     T df = min(ef[v], e.f);
     e.f -= df, adj[e.to][e.rev].f += df;
     ef[v] -= df, ef[e.to] += df;
   void discharge(int v) {
     int nh = n;
     for(auto &e : adj[v]) {
       if(e.f > 0) {
          if(h[v] == h[e.to] + 1) {
            push(v, e);
            if(ef[v] <= 0) return;</pre>
          else nh = min(nh, h[e.to] + 1);
     if(cnt[h[v]] > 1) updHeight(v, nh);
     else {
        for(int i = h[v]; i < n; i++) {</pre>
          for(auto j : gap[i]) updHeight(j, n);
gap[i].clear(), ptr[i] = 0;
   T solve() {
     fill(ef, ef+n, 0);
ef[s] = INF, ef[t] = -INF;
     globalRelabel();
     for(auto &e : adj[s]) push(s, e);
for(; hst >= 0; hst--) {
       while(!lst[hst].empty()) {
          int v=lst[hst].back(); lst[hst].pop_back();
          discharge(v);
if(work > 4 * n) globalRelabel();
     return ef[t] + INF;
} };
```

2.9 Flow Method

```
Maximize c^T x subject to Ax \le b, x \ge 0; with the corresponding symmetric dual problem, Minimize b^T y subject to A^T y \ge c, y \ge 0.

Maximize c^T x subject to Ax \le b; with the corresponding asymmetric dual problem, Minimize b^T y subject to A^T y = c, y \ge 0.

Minimum vertex cover on bipartite graph = Maximum matching on bipartite graph

Minimum edge cover on bipartite graph = vertex number - Minimum vertex cover(Maximum matching)

Independent set on bipartite graph =
```

找出最小點覆蓋,做完dinic之後,從源點dfs只走還有流量的邊,紀錄每個點有沒有被走到,左邊沒被走到的點跟右邊被走到的點就是答案

vertex number - Minimum vertex cover(Maximum matching)

```
Maximum density subgraph ( \sum W_e + \sum W_v ) / IVI

Binary search on answer:
For a fixed D, construct a Max flow model as follow:
Let S be Sum of all weight( or inf)

1. from source to each node with cap = S

2. For each (u,v,w) in E, (u->v,cap=w), (v->u,cap=w)

3. For each node v, from v to sink with cap = S + 2 * D

- deg[v] - 2 * (W of v)

where deg[v] = \sum weight of edge associated with v

If maxflow < S * IVI, D is an answer.

Requiring subgraph: all vertex can be reached from source with edge whose cap > 0.
```

3 Math

3.1 FFT

```
// const int MAXN = 262144;
// (must be 2^k)
// before any usage, run pre_fft() first
typedef long double ld;
typedef complex<ld> cplx; //real() ,imag()
const ld PI = acosl(-1);
const cplx I(0, 1);
cplx omega[MAXN+1];
void pre_fft(){
  for(int i=0; i<=MAXN; i++)
  omega[i] = exp(i * 2 * PI / MAXN * I);</pre>
// n must be 2^k
void fft(int n, cplx a[], bool inv=false){
  int basic = MAXN / n;
  int theta = basic;
  for (int m = n; m >= 2; m >>= 1) {
    int mh = m >> 1;
for (int i = 0; i < mh; i++) {
  cplx w = omega[inv ? MAXN-(i*theta%MAXN)</pre>
                              : i*theta%MAXN];
       for (int j = i; j < n; j += m) {
         int k = j + mh;
         cplx x = a[j] - a[k];
         a[j] += a[k];
         a[\bar{k}] = w * \bar{x};
    theta = (theta * 2) % MAXN;
  int i = 0;
  for (int j = 1; j < n - 1; j++) {
    for (int k = n >> 1; k > (i ^= k); k >>= 1);
    if (j < i) swap(a[i], a[j]);</pre>
  if(inv) for (i = 0; i < n; i++) a[i] /= n;
cplx arr[MAXN+1];
inline void mul(int _n,ll a[],int _m,ll b[],ll ans[])
{
  int n=1,sum=_n+_m-1;
  while(n<sum)</pre>
    n << =1;
  for(int i=0;i<n;i++)</pre>
    double x=(i<_n?a[i]:0), y=(i<_m?b[i]:0);
    arr[i]=complex<double>(x+y,x-y);
  fft(n,arr);
  for(int i=0;i<n;i++)</pre>
    arr[i]=arr[i]*arr[i];
  fft(n,arr,true);
  for(int i=0;i<sum;i++)</pre>
    ans[i]=(long long int)(arr[i].real()/4+0.5);
```

3.2 NTT

```
// Remember coefficient are mod P
/* p=a*2^n+1
n 2^n p a root
16 65536 65537 1 3
20 1048576 7340033 7 3 */
```

```
// (must be 2^k)
template<LL P, LL root, int MAXN>
struct NTT{
  static LL bigmod(LL a, LL b) {
     LL res = 1;
     for (LL bs = a; b; b >>= 1, bs = (bs * bs) % P)
       if(b&1) res=(res*bs)%P;
     return res;
  static LL inv(LL a, LL b) {
     if(a==1)return 1;
     return (((LL)(a-inv(b\%a,a))*b+1)/a)\%b;
  LL omega[MAXN+1];
  NTT() {
     omega[0] = 1;
     for (int i=1; i<=MAXN; i++)
  omega[i] = (omega[i-1]*r)%P;</pre>
  // n must be 2^k
  void tran(int n, LL a[], bool inv_ntt=false){
     int basic = MAXN / n , theta = basic;
for (int m = n; m >= 2; m >>= 1) {
       int mh = m \gg 1;
       for (int i = 0; i < mh; i++) {
   LL w = omega[i*theta%MAXN];</pre>
          for (int j = i; j < n; j + m) {
            int k = j + mh;

LL x = a[j] - a[k];

if (x < 0) x += P;
            a[j] += a[k];
            if(a[j] > P) a[j] -= P;

a[k] = (w * x) \% P;
       theta = (theta * 2) % MAXN;
     int i = 0;
for (int j = 1; j < n - 1; j++) {
       for (int k = n \gg 1; k \gg (i ^= k); k \gg = 1);
       if (j < i) swap(a[i], a[j]);
     if (inv_ntt) {
       LL ni = inv(n,P);
       reverse( a+1 , a+n );
for (i = 0; i < n; i++)
a[i] = (a[i] * ni) % P;
  }
const LL P=2013265921, root=31;
const int MAXN=4194304;
NTT<P, root, MAXN> ntt;
```

3.3 Fast Walsh Transform

```
/* xor convolution:
* x = (x0, x1) , y = (y0, y1)
 * z = (x0y0 + x1y1 , x0y1 + x1y0 )
 * x' = (x0+x1, x0-x1), y' = (y0+y1, y0-y1)
* z' = ((x0+x1)(y0+y1), (x0-x1)(y0-y1))
 *z = (1/2) *z'
 * or convolution:
 * x = (x0, x0+x1), inv = (x0, x1-x0) w/o final div
 * and convolution:
* x = (x0+x1, x1), inv = (x0-x1, x1) w/o final div */const int MAXN = (1<<20)+10;
inline LL inv( LL x ) {
  return mypow( x , MOD-2 );
inline void fwt( LL x[ MAXN ] , int N , bool inv=0 ) {
  for( int d = 1; d < N; d <<= 1) {
     int d2 = d << 1;
     for( int s = 0 ; s < N ; s += d2 )
       for( int i = s , j = s+d ; i < s+d ; i++, j++ ){
  LL ta = x[i], tb = x[j];
  x[i] = ta+tb;</pre>
         x[j] = ta-tb;
          if(x[i] >= MOD ) x[i] -= MOD;
if(x[j] < 0 ) x[j] += MOD;</pre>
```

```
fill(b+n, b+N, 0);
  if( inv )
    for( int i = 0 ; i < N ; i++ ) {
    x[ i ] *= inv( N );
    x[ i ] %= MOD;</pre>
                                                                          void Exp(int n, LL a[], LL b[]) {
                                                                            // Newton method to solve g(a(x)) = \ln b(x) - a(x)
                                                                            // b' = b - g(b(x)) / g'(b(x))

// b' = b (1 - lnb + a)

static LL lnb[MAXN], c[MAXN], tmp[MAXN];
3.4 Poly operator
                                                                            assert(a[0] == 0); // dont know exp(a[0]) \mod P
struct PolyOp {
                                                                            if (n == 1) {b[0] = 1; return;}
Exp((n+1)/2, a, b);
fill(b+(n+1)/2, b+n, 0);
#define FOR(i, c) for (int i = 0; i < (c); ++i)
NTT<P, root, MAXN> ntt;
  static int nxt2k(int x) {
                                                                            Ln(n, b, lnb);
     int i = 1; for (; i < x; i <<= 1); return i;</pre>
                                                                            fill(c, c+n, 0); c[0] = 1;
                                                                            FOR(i, n) {
  // c[i]=sum{j=0~i}a[j]*b[i-j] -> c[i+j]+=a[i]*b[j](加
                                                                               c[i] += a[i] - lnb[i];
                                                                              if (c[i] < 0) c[i] += P;
if (c[i] >= P) c[i] -= P;
  // if c[i-j]+=a[i]*b[j] (減法卷積)
  // (轉換成加法捲積) -> reverse(a); c=mul(a,b);
  reverse( c );
void Mul(int n, LL a[], int m, LL b[], LL c[]) {
                                                                            Mul(n, b, n, c, tmp);
                                                                            copy(tmp, tmp+n, b);
     static`LL aa[MAXN], bb[MAXN];
                                                                      } polyop;
     int N = nxt2k(n+m)
    copy(a, a+n, aa); fill(aa+n, aa+N, 0); copy(b, b+m, bb); fill(bb+m, bb+N, 0);
                                                                       3.5 O(1)mul
     ntt.tran(N, aa); ntt.tran(N, bb);
     FOR(i, N) c[i] = aa[i] * bb[i] % P;
                                                                       LL mul(LL x,LL y,LL mod){
                                                                         LL ret=x*y-(LL)((long double)x/mod*y)*mod;
// LL ret=x*y-(LL)((long double)x*y/mod+0.5)*mod;
    ntt.tran(N, c, 1);
  void Inv(int n, LL a[], LL b[]) {
   // ab = aa^-1 = 1 mod x^(n/2)
                                                                          return ret<0?ret+mod:ret;</pre>
                                                                       }
    // (b - a^-1)^2 = 0 mod x^n
     // bb - a^{-2} + 2 ba^{-1} = 0
                                                                       3.6
                                                                               Linear Recurrence
    // bba - a^-1 + 2b = 0
    // bba + 2b = a^{-1}
                                                                       // Usage: linearRec({0, 1}, {1, 1}, k) //k'th fib
                                                                       typedef vector<ll> Poly;
     static LL tmp[MAXN];
     if (n == 1) {b[0] = ntt.inv(a[0], P); return;}
Inv((n+1)/2, a, b);
                                                                       //S:前i項的值,tr:遞迴系數,k:求第k項
                                                                       ll linearRec(Poly& S, Poly& tr, ll k) {
     int N = nxt2k(n*2);
                                                                          int n = tr.size()
                                                                         auto combine = [&](Poly& a, Poly& b) {
  Poly res(n * 2 + 1);
     copy(a, a+n, tmp);
fill(tmp+n, tmp+N, 0);
                                                                            rep(i,0,n+1) rep(j,0,n+1)
     fill(b+n, b+N, 0);
                                                                            res[i+j]=(res[i+j] + a[i]*b[j])%mod;
for(int i = 2*n; i > n; --i) rep(j,0,n)
res[i-1-j]=(res[i-1-j] + res[i]*tr[j])%mod;
     ntt.tran(N, tmp); ntt.tran(N, b);
     FOR(i, N) {
       LL t1 = (2 - b[i] * tmp[i]) % P;
       if (t1 < 0) t1 += P;
b[i] = b[i] * t1 % P;
                                                                            res.resize(n + 1);
                                                                            return res;
    ntt.tran(N, b, 1);
fill(b+n, b+N, 0);
                                                                         Poly pol(n + 1), e(pol);
                                                                          pol[0] = e[1] = 1;
                                                                          for (++k; k; k /= 2) {
  if (k % 2) pol = combine(pol, e);
  void Div(int n, LL a[], int m, LL b[], LL d[], LL r
       ]) {
                                                                            e = combine(e, e);
     // Ra = Rb * Rd mod x^(n-m+1)
    // Rd = Ra * Rb^{-1} mod
                                                                          ll res = 0;
     static LL aa[MAXN], bb[MAXN], ta[MAXN], tb[MAXN];
                                                                          rep(i,0,n) res=(res + pol[i+1]*S[i])%mod;
     if (n < m) {copy(a, a+n, r); fill(r+n, r+m, 0);</pre>
                                                                          return res;
          return;}
    // d: n-1 - (m-1) = n-m (n-m+1 terms)
copy(a, a+n, aa); copy(b, b+m, bb);
                                                                       3.7 Miller Rabin
     reverse(aa, aa+n); reverse(bb, bb+m);
    Inv(n-m+1, bb, tb);
Mul(n-m+1, ta, n-m+1, tb, d);
                                                                                                               2, 7, 61
2, 13, 23, 1662803
                                                                       // n < 4,759,123,141
                                                                       // n < 1,122,004,669,633
                                                                       // n < 3,474,749,660,383
     fill(d+n-m+1, d+n, 0); reverse(d, d+n-m+1);
                                                                                                                 6
                                                                                                                      pirmes <= 13
    // r: m-1 - 1 = m-2 (m-1 terms)
Mul(m, b, n-m+1, d, ta);
                                                                       // n < 2^{64}
                                                                       // 2, 325, 9375, 28178, 450775, 9780504, 1795265022
     FOR(i, n) \{ r[i] = a[i] - ta[i]; if (r[i] < 0) r[i] \}
                                                                       // Make sure testing integer is in range [2, n-2] if
                                                                       // you want to use magic.
                                                                       LL magic[]={}
  void dx(int n, LL a[], LL b[]) { REP(i, 1, n-1) b[i -1] = i * a[i] % P; }
                                                                       bool witness(LL a,LL n,LL u,int t){
                                                                          if(!a) return 0;
  void Sx(int n, LL a[], LL b[]) {
                                                                          LL x=mypow(a,u,n);
                                                                          for(int i=0;i<t;i++) {</pre>
    b[0] = 0;
    FOR(i, n) b[i+1] = a[i] * ntt.inv(i+1, P) % P;
                                                                            LL nx=mul(x,x,n)
                                                                            if(nx==1&&x!=1&&x!=n-1) return 1;
  void Ln(int n, LL a[], LL b[]) {
   // Integral a' a^-1 dx
                                                                            x=nx;
     static LL a1[MAXN], a2[MAXN], b1[MAXN];
                                                                          return x!=1;
                                                                       }
     int N = nxt2k(n*2);
     dx(n, a, a1); Inv(n, a, a2);
                                                                       bool miller_rabin(LL n) {
    Mul(n-1, a1, n, a2, b1);
Sx(n+n-1-1, b1, b);
                                                                         int s=(magic number size)
                                                                          // iterate s times of witness on n
```

return (res % lcm + lcm) % lcm;

```
if(n<2) return 0;</pre>
  if(!(n\&1)) return n == 2;
                                                                     LL solve(int n){ // n>=2,be careful with no solution
  ll u=n-1; int t=0;
// n-1 = u*2^t
                                                                        LL res=CRT(x[0],m[0],x[1],m[1]),p=m[0]/\_gcd(m[0],m
                                                                             [1])*m[1];
  while(!(u&1)) u>>=1, t++;
                                                                        for(int i=2;i<n;i++){</pre>
                                                                          res=CRT(res,p,x[i],m[i]);
  while(s--){
                                                                          p=p/__gcd(p,m[i])*m[i];
    LL a=magic[s]%n;
    if(witness(a,n,u,t)) return 0;
                                                                        return res;
  return 1;
                                                                     3.10 Pollard Rho
       Faulhaber (\sum_{i=1}^{n} i^{p})
3.8
                                                                     // does not work when n is prime O(n^{(1/4)})
                                                                     LL f(LL x, LL mod){ return add(mul(x,x,mod),1,mod); }
                                                                      LL pollard_rho(LL n) {
/* faulhaber's formula
                                                                        if(!(n&1)) return 2;
 * cal power sum formula of all p=1~k in 0(k^2) */
                                                                        while(true){
#define MAXK 2500
                                                                          LL y=2, x=rand()%(n-1)+1, res=1;
for(int sz=2; res==1; sz*=2) {
const int mod = 10000000007;
int b[MAXK]; // bernoulli number
int inv[MAXK+1]; // inverse
int cm[MAXK+1] [MAXK+1]; // combinactories
                                                                             for(int i=0; i<sz && res<=1; i++) {</pre>
                                                                               x = f(x, n);
                                                                               res = \_gcd(abs(x-y), n);
int co[MAXK][MAXK+2]; // coeeficient of x^j when p=i
                                                                             }
inline int getinv(int x) {
                                                                            y = x;
  int a=x,b=mod,a0=1,a1=0,b0=0,b1=1;
  while(b) {
                                                                          if (res!=0 && res!=n) return res;
    int q,t;
                                                                     } }
    q=a/b; t=b; b=a-b*q; a=t;
t=b0; b0=a0-b0*q; a0=t;
                                                                     3.11 Josephus Problem
    t=b1; b1=a1-b1*q; a1=t;
                                                                     int josephus(int n, int m){ //n人每m次
  return a0<0?a0+mod:a0;</pre>
                                                                           int ans = 0;
                                                                           for (int i=1; i<=n; ++i)
inline void pre() {
                                                                               ans = (ans + m) \% i;
  /* combinational */
                                                                          return ans;
  for(int i=0;i<=MAXK;i++) {</pre>
                                                                     }
    cm[i][0]=cm[i][i]=1;
     for(int j=1;j<i;j++)</pre>
                                                                      3.12 Gaussian Elimination
       cm[i][j]=add(cm[i-1][j-1],cm[i-1][j]);
                                                                     const int GAUSS_MOD = 100000007LL;
  /* inverse */
                                                                     struct GAUSS{
  for(int i=1;i<=MAXK;i++) inv[i]=getinv(i);</pre>
                                                                          int n;
  /* bernoulli */
                                                                          vector<vector<int>> v;
  b[0]=1; b[1]=getinv(2); // with b[1] = 1/2 for(int i=2;i<MAXK;i++) {
                                                                          int ppow(int a , int k){
   if(k == 0) return 1;
                                                                               if(k % 2 == 0) return ppow(a * a % GAUSS_MOD ,
    if(i&1) { b[i]=0; continue; }
    b[i]=1;
                                                                                    k >> 1);
    for(int j=0;j<i;j++)
                                                                               if(k % 2 == 1) return ppow(a * a % GAUSS_MOD ,
    k >> 1) * a % GAUSS_MOD;
       b[i]=sub(b[i],
                  mul(cm[i][j],mul(b[j], inv[i-j+1])));
                                                                           vector<int> solve(){
  /* faulhaber */
                                                                               vector<int> ans(n);
  // sigma_x=1~n {x^p} = 
// 1/(p+1) * sigma_j=0~p {C(p+1,j)*Bj*n^(p-j+1)}
                                                                               REP(now , 0 , n){
    REP(i , now , n) if(v[now][now] == 0 && v[i ][now] != 0)
  for(int i=1;i<MAXK;i++) {</pre>
    co[i][0]=0;
                                                                                    swap(v[i] , v[now]); // det = -det;
if(v[now][now] == 0) return ans;
int inv = ppow(v[now][now] , GAUSS_MOD - 2)
    for(int j=0;j<=i;j++)
co[i][i-j+1]=mul(inv[i+1], mul(cm[i+1][j], b[j]))</pre>
  }
                                                                                    REP(i , 0 , n) if(i != now){
                                                                                         int tmp = v[i][now] * inv % GAUSS_MOD;
/* sample usage: return f(n,p) = sigma_x=1\sim (x^p) */
                                                                                         REP(j , now , n + 1) (v[i][j] +=
GAUSS_MOD - tmp * v[now][j] %
inline int solve(int n,int p) {
  int sol=0,m=n;
                                                                                              GAUSS_MOD) %= GAUSS_MOD;
  for(int i=1;i<=p+1;i++) {</pre>
    sol=add(sol,mul(co[p][i],m));
                                                                               m = mul(m, n);
  return sol;
                                                                               return ans;
                                                                           // gs.v.clear() , gs.v.resize(n , vector<int>(n + 1
3.9 Chinese Remainder
                                                                                 , 0));
                                                                     } gs;
LL x[N],m[N];
LL CRT(LL x1, LL m1, LL x2, LL m2) {
                                                                     3.13 ax+by=gcd
  LL g = __gcd(m1, m2);
if((x2 - x1) % g) return -1;// no sol
                                                                     PII gcd(int a, int b){
    if(b == 0) return {1, 0};
  m1 /= g; m2 /= g;
  pair<LL,LL> p = gcd(m1, m2);

LL lcm = m1 * m2 * g;

LL res = p.first * (x2 - x1) * m1 + x1;
                                                                        PII q = gcd(b, a \% b);
                                                                        return {q.second, q.first - q.second * (a / b)};
```

3.14 Discrete sqrt

3.15 Romberg 定積分

3.16 Prefix Inverse

```
void solve( int m ){
  inv[ 1 ] = 1;
  for( int i = 2 ; i < m ; i ++ )
    inv[ i ] = ((LL)(m - m / i) * inv[m % i]) % m;
}</pre>
```

3.17 Roots of Polynomial 找多項式的根

```
const double eps = 1e-12;
const double inf = 1e+12;
double a[ 10 ], x[ 10 ]; // a[0..n](coef) must be
int n; // degree of polynomial must be filled
int sign( double x ){return (x < -eps)?(-1):(x>eps);}
double f(double a[], int n, double x){
  double tmp=1,sum=0;
  for(int i=0;i<=n;i++)</pre>
  { sum=sum+a[i]*tmp; tmp=tmp*x; }
  return sum;
double binary(double l,double r,double a[],int n){
  int sl=sign(f(a,n,l)), sr=sign(f(a,n,r));
  if(sl==0) return 1; if(sr==0) return r;
  if(sl*sr>0) return inf;
  while(r-l>eps){
    double mid=(l+r)/2;
    int ss=sign(f(a,n,mid));
    if(ss==0) return mid;
    if(ss*sl>0) l=mid; else r=mid;
  return 1;
```

```
void solve(int n,double a[],double x[],int &nx){
  if(n==1){ x[1]=-a[0]/a[1]; nx=1; return; }
  double da[10], dx[10]; int ndx;
for(int i=n;i>=1;i--) da[i-1]=a[i]*i;
  solve(n-1,da,dx,ndx);
  nx=0;
  if(ndx==0){
     double tmp=binary(-inf,inf,a,n);
     if (tmp<inf) x[++nx]=tmp;</pre>
     return;
  double tmp;
  tmp=binary(-inf,dx[1],a,n);
  if(tmp<inf) x[++nx]=tmp;</pre>
  for(int i=1;i<=ndx-1;i++){</pre>
     tmp=binary(dx[i],dx[i+1],a,n);
     if(tmp<inf) x[++nx]=tmp;</pre>
  tmp=binary(dx[ndx],inf,a,n);
  if(tmp<inf) x[++nx]=tmp;</pre>
} // roots are stored in x[1..nx]
3.18 Primes
```

```
/* 12721, 13331, 14341, 75577, 123457, 222557, 556679
* 999983, 1097774749, 1076767633, 100102021, 999997771
* 1001010013, 1000512343, 987654361, 999991231
* 999888733, 98789101, 987777733, 999991921, 1010101333
* 1010102101, 10000000000039, 1000000000000037
* 2305843009213693951, 4611686018427387847

* 9223372036854775783, 18446744073709551557 */
int mu[N], p_tbl[N];
vector<int> primes;
void sieve() {
  mu[ 1 ] = p_tbl[ 1 ] = 1;
for( int i = 2 ; i < N ; i ++ ){
   if( !p_tbl[ i ] ){</pre>
        p_tbl[ i ] = i;
        primes.push_back( i );
mu[ i ] = -1;
      for( int p : primes ){
  int x = i * p;
        if( x >= M ) break;
        p_{tbl}[x] = p;
        mu[x] = -mu['i];
if(i%p==0){
           mu[x] = 0;
           break;
} } } }
vector<int> factor( int x ){
   vector<int> fac{ 1 };
  while( x > 1 ){
  int fn = SZ(fac), p = p_tbl[ x ], pos = 0;
     while (x \% p == 0)
        x /= p;
for( int i = 0 ; i < fn ; i ++ )
fac.PB( fac[ pos ++ ] * p );
   } }
   return fac;
```

3.19 Phi

3.20 Result

- Lucas' Theorem : For $n,m\in\mathbb{Z}^*$ and prime P, $C(m,n)\mod P=\Pi(C(m_i,n_i))$ where m_i is the i-th digit of m in base P.
- Stirling approximation : $n! \approx \sqrt{2\pi n} (\tfrac{n}{e})^n e^{\tfrac{1}{12n}}$

```
• Stirling Numbers(permutation |P|=n with k cycles):
   S(n,k) = \text{coefficient of } x^k \text{ in } \prod_{i=0}^{n-1} (x+i)
- Stirling Numbers(Partition n elements into k non-empty set):
  S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n
• Pick's Theorem : A=i+b/2-1
   其面積 A 和內部格點數目 i 、邊上格點數目 b 的關係
• Catalan number : C_n = {2n \choose n}/(n+1)
  C_n^{n+m} - C_{n+1}^{n+m} = (m+n)! \frac{n-m+1}{n+1} for n \ge m
  C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)!n!}
  C_0 = 1 and C_{n+1} = 2(\frac{2n+1}{n+2})C_n
  C_0 = 1 and C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i} for n \ge 0
• Euler Characteristic:
  planar graph: V-E+F-C=1 convex polyhedron: V-E+F=2
   V,E,F,C : number of vertices, edges, faces(regions), and compo-
• Kirchhoff's theorem :
   A_{ii} = deg(i), A_{ij} = (i,j) \in E ?-1:0, Deleting any one row, one
   column, and cal the det(A)
• Polya' theorem (c 為方法數,m 為總數):
  (\sum_{i=1}^m c^{\gcd(i,m)})/m
• 錯排公式: (n 個人中,每個人皆不再原來位置的組合數):
   dp[0] = 1; dp[1] = 0;
   dp[i] = (i-1)*(dp[i-1] + dp[i-2]);
• Bell 數 (有 n 個人, 把他們拆組的方法總數):
   B_n = \sum_{\substack{k=0 \\ n}}^{n} s(n, k) \quad (second - stirling)
  B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k
• Wilson's theorem
  (p-1)! \equiv -1 (mod \ p)
• Fermat's little theorem :
  a^p \equiv a \pmod{p}
• Euler's totient function:
  A^{B^C} mod p = pow(A, pow(B, C, p - 1)) mod p
• 歐拉函數降冪公式: A^B \mod C = A^B \mod \phi(c) + \phi(c) \mod C
• 6 的倍數:  (a-1)^3 + (a+1)^3 + (-a)^3 + (-a)^3 = 6a
```

Geometry

4.1 definition

```
typedef long double ld;
const ld eps = 1e-8;
int dcmp(ld x) {
  if(abs(x) < eps) return 0;</pre>
 else return x < 0 ? -1 : 1;
struct Pt {
 ld x, y;
Pt(ld _x=0, ld _y=0):x(_x), y(_y) {}
 Pt operator+(const Pt &a) const {
    return Pt(x+a.x, y+a.y);
 Pt operator-(const Pt &a) const {
   return Pt(x-a.x, y-a.y);
 Pt operator*(const ld &a) const {
    return Pt(x*a, y*a);
 Pt operator/(const ld &a) const {
   return Pt(x/a, y/a);
  ld operator*(const Pt &a) const {
   return x*a.x + y*a.y;
  ld operator^(const Pt &a) const {
   return x*a.y - y*a.x;
 bool operator<(const Pt &a) const {</pre>
    return x < a.x | | (x == a.x && y < a.y);
```

```
//return dcmp(x-a.x) < 0 || (dcmp(x-a.x) == 0 \&\&
        dcmp(y-a.y) < 0);
  bool operator==(const Pt &a) const {
    return dcmp(x-a.x) == 0 \&\& dcmp(y-a.y) == 0;
};
ld norm2(const Pt &a) {
  return a*a;
ld norm(const Pt &a) {
  return sqrt(norm2(a));
Pt perp(const Pt &a) {
  return Pt(-a.y, a.x);
Pt rotate(const Pt &a, ld ang) {
  return Pt(a.x*cos(ang)-a.y*sin(ang), a.x*sin(ang)+a.y
      *cos(ang));
struct Line {
  Pt s, e, v; // start, end, end-start
  ld ana:
  Line(Pt _s=Pt(0, 0), Pt _e=Pt(0, 0)):s(_s), e(_e) { v
       = e-s; ang = atan2(v.y, v.x); }
  bool operator<(const Line &L) const {</pre>
    return ang < L.ang;</pre>
};
struct Circle {
 Pt o; ld r;
  Circle(Pt _o=Pt(0, 0), ld _r=0):o(_o), r(_r) {}
```

4.2 Intersection of 2 lines

```
Pt LLIntersect(Line a, Line b) {
  Pt p1 = a.s, p2 = a.e, q1 = b.s, q2 = b.e;
  1d f1 = (p2-p1)^{(q1-p1)}, f2 = (p2-p1)^{(p1-q2)}, f;
  if(dcmp(f=f1+f2) == 0)
     return dcmp(f1)?Pt(NAN,NAN):Pt(INFINITY,INFINITY);
  return q1*(f2/f) + q2*(f1/f);
}
```

4.3 halfPlaneIntersection

```
// for point or line solution, change > to >=
bool onleft(Line L, Pt p) {
  return dcmp(L.v^{(p-L.s)}) > 0;
} // segment should add Counterclockwise
// assume that Lines intersect
vector<Pt> HPI(vector<Line>& L) {
  sort(L.begin(), L.end()); // sort by angle
int n = L.size(), fir, las;
  Pt *p = new Pt[n];
  Line *q = new Line[n];
 while(fir < las && !onleft(L[i], p[fir])) fir++;</pre>
    q[++las] = L[i];
    if(dcmp(q[las].v^q[las-1].v) == 0) {
      las-
      if(onleft(q[las], L[i].s)) q[las] = L[i];
    if(fir < las) p[las-1] = LLIntersect(q[las-1], q[</pre>
        las]);
  while(fir < las && !onleft(q[fir], p[las-1])) las--;</pre>
  if(las-fir <= 1) return {};</pre>
  p[las] = LLIntersect(q[las], q[fir]);
  int m = 0;
  vector<Pt> ans(las-fir+1);
  for(int i = fir ; i <= las ; i++) ans[m++] = p[i];</pre>
  return ans:
```

4.4 Convex Hull

```
double cross(Pt o, Pt a, Pt b){
 return (a-o) ^ (b-o);
```

```
vector<Pt> convex_hull(vector<Pt> pt){
 sort(pt.begin(),pt.end());
  int top=0:
 vector<Pt> stk(2*pt.size());
  for (int i=0; i<(int)pt.size(); i++){</pre>
   while (top >= 2 && cross(stk[top-2],stk[top-1],pt[i
        ]) <= 0)
      top--;
   stk[top++] = pt[i];
 for (int i=pt.size()-2, t=top+1; i>=0; i--){
   while (top >= t && cross(stk[top-2],stk[top-1],pt[i
       ]) <= 0)
      top--;
   stk[top++] = pt[i];
 stk.resize(top-1);
  return stk:
```

4.5 Convex Hull 3D

```
struct Pt{
  Pt cross(const Pt &p) const
   { return Pt(y * p.z - z * p.y, z * p.x - x * p.z, x * p.y - y * p.x); }
} info[N];
int mark[N][N],n, cnt;;
double mix(const Pt &a, const Pt &b, const Pt &c)
{ return a * (b ^ c); }
double area(int a, int b, int c)
{ return norm((info[b] - info[a]) ^ (info[c] - info[a])
double volume(int a, int b, int c, int d)
{ return mix(info[b] - info[a], info[c] - info[a], info
     [d] - info[a]); }
struct Face{
   int a, b, c; Face(){}
   Face(int a, int b, int c): a(a), b(b), c(c) {}
   int &operator [](int k)
   { if (k == 0) return a; if (k == 1) return b; return
vector<Face> face;
void insert(int a, int b, int c)
{ face.push_back(Face(a, b, c)); }
void add(int v) {
  vector <Face> tmp; int a, b, c; cnt++;
for (int i = 0; i < SIZE(face); i++) {
    a = face[i][0]; b = face[i][1]; c = face[i][2];</pre>
     if(Sign(volume(v, a, b, c)) < 0)
mark[a][b] = mark[b][a] = mark[b][c] = mark[c][b] =</pre>
             mark[c][a] = mark[a][c] = cnt;
     else tmp.push_back(face[i]);
  face = tmp;
for (int i = 0; i < SIZE(tmp); i++) {
    a = face[i][0]; b = face[i][1]; c = face[i][2];
    coth insent(b a v);</pre>
     if (mark[a][b] == cnt) insert(b, a, v);
if (mark[b][c] == cnt) insert(c, b, v);
     if (mark[c][a] == cnt) insert(a, c, v);
}}
int Find(){
  for (int i = 2; i < n; i++) {
     Pt ndir = (info[0] - info[i]) \wedge (info[1] - info[i])
     if (ndir == Pt()) continue; swap(info[i], info[2]);
     for (int j = i + 1; j < n; j++) if (Sign(volume(0, 1, 2, j)) != 0) {
        swap(info[j], info[3]); insert(0, 1, 2); insert
(0, 2, 1); return 1; } } return 0; }
int main() {
  for (; scanf("%d", &n) == 1; ) {
  for (int i = 0; i < n; i++) info[i].Input();</pre>
     sort(info, info + n); n = unique(info, info + n) -
     face.clear(); random_shuffle(info, info + n);
if (Find()) { memset(mark, 0, sizeof(mark)); cnt =
        for (int i = 3; i < n; i++) add(i); vector<Pt>
              Ndir:
```

```
p = p / norm( p ); Ndir.push_back(p);
} sort(Ndir.begin(), Ndir.end());
       int ans = unique(Ndir.begin(), Ndir.end()) - Ndir
       .begin();
printf("%d\n"
    printf("%d\n", ans);
} else printf("1\n");
} }
double calcDist(const Pt &p, int a, int b, int c)
{ return fabs(mix(info[a] - p, info[b] - p, info[c] - p
     ) / area(a, b, c)); }
//compute the minimal distance of center of any faces
double findDist() { //compute center of mass
  double totalWeight = 0; Pt center(.0, .0, .0);
  Pt first = info[face[0][0]];
for (int i = 0; i < SIZE(face); ++i) {
    Pt p = (info[face[i][0]]+info[face[i][1]]+info[face
         [i][2]]+first)*.25;
     double weight = mix(info[face[i][0]] - first, info[
         face[i][1]]
          - first, info[face[i][2]] - first);
    totalWeight += weight; center = center + p * weight
  } center = center / totalWeight;
double res = 1e100; //compute distance
  for (int i = 0; i < SIZE(face); ++i)</pre>
    res = min(res, calcDist(center, face[i][0], face[i
         ][1], face[i][2]));
    return res; }
```

4.6 Intersection of 2 segments

4.7 Intersection of circle and segment

4.8 Intersection of polygon and circle

```
if(cosC > 1) C = 0;
else if(cosC < -1) C = PI;
if(a > r) {
    s = (C/2)*r*r;
    h = a*b*sin(C)/c;
    if(h < r && B < PI/2) s -= (acos(h/r)*r*r - h*
        sqrt(r*r-h*h));
}
else if(b > r) {
    theta = PI - B - asin(sin(B)/r*a);
    s = 0.5*a*r*sin(theta) + (C-theta)/2*r*r;
}
else s = 0.5*sin(C)*a*b;
ans += abs(s)*dcmp(v[i]^v[(i+1)%n]);
}
return abs(ans);
}
```

4.9 Intersection of 2 circles4.10 Circle cover

```
#define N 1021
#define D long double
struct CircleCover{
  int C; Circ c[N]; //填入C(圓數量),c(圓陣列)
  bool g[N][N], overlap[N][N];
  // Area[i] : area covered by at least i circles
  D Area[ N ];
  void init( int _C ){ C = _C; }
bool CCinter( Circ& a , Circ& b , Pt& p1 , Pt& p2 ){
     Pt o1 = a.0, o2 = b.0;
     D r1 = a.R , r2 = b.R;
if( norm( o1 - o2 ) > r1 + r2 ) return {};
if( norm( o1 - o2 ) < max(r1, r2) - min(r1, r2) )
           return {};
     D d2 = (o1 - o2) * (o1 - o2);
     D d = sqrt(d2);
     if( d > r1 + r2 ) return false;
     Pt u=(01+02)*0.5 + (01-02)*((r2*r2-r1*r1)/(2*d2));
D A=sqrt((r1+r2+d)*(r1-r2+d)*(r1+r2-d)*(-r1+r2+d));
     Pt v=Pt( o1.Y-o2.Y , -o1.X + o2.X ) * A / (2*d2);
p1 = u + v; p2 = u - v;
     return true;
  struct Teve {
     Pt p; D ang; int add;
     Teve() {}
     Teve(Pt _a, D _b, int _c):p(_a), ang(_b), add(_c){}
bool operator<(const Teve &a)const</pre>
     {return ang < a.ang;}
  }eve[ N * 2 ];
   // strict: x
                     = 0, otherwise x = -1
  bool disjuct( Circ& a, Circ &b, int x )
{return sign( norm( a.0 - b.0 ) - a.R - b.R ) > x;}
bool contain( Circ& a, Circ &b, int x )
{return sign( a.R - b.R - norm( a.0 - b.0 ) ) > x;}
  bool contain(int i, int j){
     contain(c[i], c[j], -1);
  void solve(){
     for( int i = 0 ; i \leftarrow C + 1 ; i + + )
        Area[ i ] = 0;
     for( int i = 0; i < C; i ++ )

for( int j = 0; j < C; j ++ )

overlap[i][j] = contain(i, j);

for( int i = 0; i < C; i ++ )

for( int j = 0; j < C; j ++ )
          or( int j = 0 ; j < Ć ; j ++ )
g[i][j] = !(overlap[i][j] || overlap[j][i] ||
                           disjuct(c[i], c[j], -1));
     for( int i = 0 ; i < C ; i ++ ){
        int E = 0, cnt = 1;
        for( int j = 0 ; j < C ;</pre>
           if( j != i && overlap[j][i] )
             cnt ++;
        for( int j = 0 ; j < C ;</pre>
           if( i != j && g[i][j] ){
             Pt aa, bb;
             CCinter(c[i], c[j], aa, bb);
```

4.11 Convex Hull trick

```
/* Given a convexhull, answer querys in O(\lg N)
CH should not contain identical points, the area should
be > 0, min pair(x, y) should be listed first */
double det( const Pt& p1 , const Pt& p2 )
{ return p1.X * p2.Y - p1.Y * p2.X; }
struct Conv{
  int n;
  vector<Pt> a;
  vector<Pt> upper, lower;
  Conv(vector<Pt> _a) : a(_a){
     n = a.size();
    int ptr = 0;
for(int i=1; i<n; ++i) if (a[ptr] < a[i]) ptr = i;
    for(int i=0; i<=ptr; ++i) lower.push_back(a[i]);
for(int i=ptr; i<n; ++i) upper.push_back(a[i]);</pre>
     upper.push_back(a[0]);
  int sign( LL x ){ // fixed when changed to double
  return x < 0 ? -1 : x > 0; }
  pair<LL,int> get_tang(vector<Pt> &conv, Pt vec){
     int l = 0, r = (int)conv.size() - 2;
     for(; l + 1 < r; ){
int mid = (l + r) / 2;
       if(sign(det(conv[mid+1]-conv[mid],vec))>0)r=mid;
       else l = mid;
     return max(make_pair(det(vec, conv[r]), r)
                 make_pair(det(vec, conv[0]), 0));
  void upd_tang(const Pt &p, int id, int &i0, int &i1){
     if(det(a[i0] - p, a[id] - p) > 0) i0 = id;
     if(det(a[i1] - p, a[id] - p) < 0) i1 = id;
  void bi_search(int l, int r, Pt p, int &i0, int &i1){
     if(l == r) return;
     upd_tang(p, l % n, i0, i1);
     int sl=sign(det(a[l % n] - p, a[(l + 1) % n] - p));
    for(; l + 1 < r; ) {
  int mid = (l + r) / 2;
       int smid=sign(det(a[mid%n]-p, a[(mid+1)%n]-p));
       if (smid == sl) l = mid;
       else r = mid;
    upd_tang(p, r % n, i0, i1);
  int bi_search(Pt u, Pt v, int l, int r) {
     int sl = sign(det(v - u, a[l % n] - u));
     for(; l + 1 < r; )
       int mid = (l + r) / 2;
       int smid = sign(det(v - u, a[mid % n] - u));
       if (smid == sl) l = mid;
       else r = mid;
    return 1 % n;
  // 1. whether a given point is inside the CH
  bool contain(Pt p) {
    if (p.X < lower[0].X \mid | p.X > lower.back().X)
     int id = lower_bound(lower.begin(), lower.end(), Pt
         (p.X, -INF)) - lower.begin();
```

```
if (lower[id].X == p.X) {
      if (lower[id].Y > p.Y) return 0;
    }else if(det(lower[id-1]-p,lower[id]-p)<0)return 0;</pre>
    id = lower_bound(upper.begin(), upper.end(), Pt(p.X
    , INF), greater<Pt>()) - upper.begin();
if (upper[id].X == p.X) {
      if (upper[id].Y < p.Y) return 0;</pre>
    }else if(det(upper[id-1]-p,upper[id]-p)<0)return 0;</pre>
    return 1:
  // 2. Find 2 tang pts on CH of a given outside point
  // return true with i0, i1 as index of tangent points
  // return false if inside CH
 bool get_tang(Pt p, int &i0, int &i1) {
   if (contain(p)) return false;
    i0 = i1 = 0;
    int id = lower_bound(lower.begin(), lower.end(), p)
    - lower.begin();
bi_search(0, id, p, i0, i1);
bi_search(id, (int)lower.size(), p, i0, i1);
    id = lower_bound(upper.begin(), upper.end(), p,
         greater<Pt>()) - upper.begin();
    bi_search((int)lower.size() - 1, (int)lower.size()
         -1 + id, p, i0, i1);
    bi_search((int)lower.size() - 1 + id, (int)lower.
         size() - 1 + (int)upper.size(), p, i0, i1);
    return true;
  // 3. Find tangent points of a given vector
  // ret the idx of vertex has max cross value with vec
  int get_tang(Pt vec){
    pair<LL, int> ret = get_tang(upper, vec);
    ret.second = (ret.second+(int)lower.size()-1)%n;
    ret = max(ret, get_tang(lower, vec));
    return ret.second;
  // 4. Find intersection point of a given line
  // return 1 and intersection is on edge (i, next(i))
  // return 0 if no strictly intersection
  bool get_intersection(Pt u, Pt v, int &i0, int &i1){
   int p0 = get_tang(u - v), p1 = get_tang(v - u);
if(sign(det(v-u,a[p0]-u))*sign(det(v-u,a[p1]-u))<0){</pre>
      if (p0 > p1) swap(p0, p1);
     i0 = bi_search(u, v, p0, p1);
     i1 = bi\_search(u, v, p1, p0 + n);
     return 1;
   }
   return 0;
} };
```

4.12 Tangent line of two circles

```
vector<Line> go( const Cir& c1 , const Cir& c2 , int
    sign1 ){
  // sign1 = 1 for outer tang, -1 for inter tang
  vector<Line> ret;
 double d_sq = norm2(c1.0 - c2.0);
  if( d_sq < eps ) return ret;</pre>
 double d = sqrt( d_sq );
Pt v = ( c2.0 - c1.0 ) / d;
 v.Y * c + sign2 * h * v.X };
    Pt p1 = c1.0 + n * c1.R;
    Pt p2 = c2.0 + n * ( c2.R * sign1 );
if( fabs( p1.X - p2.X ) < eps and
fabs( p1.Y - p2.Y ) < eps )
      p2 = p1 + perp(c2.0 - c1.0);
    ret.push_back( { p1 , p2 } );
  return ret;
```

4.13 KD Tree

```
struct KDTree{ // O(sqrtN + K)
  struct Nd{
    LL x[MXK],mn[MXK],mx[MXK];
    int id,f;
```

```
Nd *1,*r;
  }tree[MXN],*root;
  int n,k;
  LL dis(LL a, LL b){return (a-b)*(a-b);}
  LL dis(LL a[MXK],LL b[MXK]){
    LL ret=0;
    for(int i=0;i<k;i++) ret+=dis(a[i],b[i]);</pre>
    return ret;
  void init(vector<vector<LL>> &ip,int _n,int _k){
    n=_n, k=_k;
    for(int i=0;i<n;i++){</pre>
      tree[i].id=i;
      copy(ip[i].begin(),ip[i].end(),tree[i].x);
    root=build(0,n-1,0);
  Nd* build(int l,int r,int d){
    if(l>r) return NULL;
    if(d==k) d=0;
    int m=(l+r)>>1;
    nth_element(tree+l,tree+m,tree+r+1,[&](const Nd &a,
         const Nd &b){return a.x[d]<b.x[d];});</pre>
    tree[m].f=d;
    copy(tree[m].x,tree[m].x+k,tree[m].mn);
    copy(tree[m].x,tree[m].x+k,tree[m].mx);
    tree[m].l=build(l,m-1,d+1);
    if(tree[m].l){
      for(int i=0;i<k;i++){</pre>
        tree[m].mn[i]=min(tree[m].mn[i],tree[m].l->mn[i
        tree[m].mx[i]=max(tree[m].mx[i],tree[m].l->mx[i
            1);
    } }
    tree[m].r=build(m+1,r,d+1);
    if(tree[m].r){
      for(int i=0;i<k;i++){</pre>
        tree[m].mn[i]=min(tree[m].mn[i],tree[m].r->mn[i
        tree[m].mx[i]=max(tree[m].mx[i],tree[m].r->mx[i
            ]);
    } }
    return tree+m;
  LL pt[MXK],md;
  int mID;
  bool touch(Nd *r){
    LL d=0;
    for(int i=0;i<k;i++){</pre>
      if(pt[i]<=r->mn[i]) d+=dis(pt[i],r->mn[i]);
        else if(pt[i]>=r->mx[i]) d+=dis(pt[i],r->mx[i])
    return d<md;</pre>
  void nearest(Nd *r){
    if(!r||!touch(r)) return;
    LL td=dis(r->x,pt);
    if(td<md) md=td,mID=r->id;
    nearest(pt[r->f]< r->x[r->f]?r->l:r->r);
    pair<LL,int> query(vector<LL> &_pt,LL _md=1LL<<57){</pre>
    mID=-1, md=\_md;
    copy(_pt.begin(),_pt.end(),pt);
    nearest(root)
    return {md,mID};
} }tree;
4.14 Lower Concave Hull
```

```
struct Line {
  mutable ll m, b, p;
  bool operator<(const Line& o) const { return m < o.m;</pre>
  bool operator<(ll x) const { return p < x; }</pre>
};
struct LineContainer : multiset<Line, less<>>> {
  // (for doubles, use inf = 1/.0, div(a,b) = a/b)
  const ll inf = LLONG_MAX;
  ll div(ll a, ll b) { // floored division
```

4.15 Min Enclosing Circle

```
struct Mec{ // return pair of center and r
  int n;
  Pt p[ MXN ], cen;
  double r2;
  void init( int _n , Pt _p[] ){
    n = _n;
    memcpy( p , _p , sizeof(Pt) * n );
  double sqr(double a){ return a*a; }
  Pt center(Pt p0, Pt p1, Pt p2) {
    Pt a = p1-p0;
    Pt b = p2-p0;
double c1=norm2( a ) * 0.5;
    double c2=norm2( b ) * 0.5;
    double d = a \wedge b;
    double x = p0.X + (c1 * b.Y - c2 * a.Y) / d;
    double y = p0.Y + (a.X * c2 - b.X * c1) / d;
    return Pt(x,y);
  pair<Pt,double> solve(){
    random_shuffle(p,p+n);
    for (int i=0; i<n; i++){</pre>
       if (norm2(cen-p[i]) <= r2) continue;</pre>
      cen = p[i];
      r2 = 0;
      for (int k=0; k<j; k++){
  if (norm2(cen-p[k]) <= r2) continue;
  cen = center(p[i],p[k]);</pre>
           r2 = norm2(cen-p[k]);
    } } }
    return {cen,sqrt(r2)};
} }mec;
```

4.16 Min Enclosing Ball

```
L[0]=(sol[0]*m[1][1]-sol[1]*m[0][1])/det;
L[1]=(sol[1]*m[0][0]-sol[0]*m[1][0])/det;
res=outer[0]+q[0]*L[0]+q[1]*L[1];
       radius=norm2(res, outer[0]);
       break;
     case 4:
       for (i=0; i<3; ++i) q[i]=outer[i+1]-outer[0], sol
   [i]=(q[i] * q[i]);</pre>
       for (i=0;i<3;++i) for(j=0;j<3;++j) m[i][j]=(q[i]
       * q[j])*2;
det= m[0][0]*m[1][1]*m[2][2]
          + m[0][1]*m[1][2]*m[2][0]
          + m[0][2]*m[2][1]*m[1][0]
          - m[0][2]*m[1][1]*m[2][0]
- m[0][1]*m[1][0]*m[2][2]
           - m[0][0]*m[1][2]*m[2][1];
        if ( fabs(det)<eps ) return;</pre>
       for (j=0; j<3; ++j) {
    for (i=0; i<3; ++i) m[i][j]=sol[i];
          - m[0][2]*m[1][1]*m[2][0]
- m[0][1]*m[1][0]*m[2][2]
                   - m[0][0]*m[1][2]*m[2][1]
                ) / det;
          for (i=0; i<3; ++i) m[i][j]=(q[i] * q[j])*2;
       } res=outer[0];
       for (i=0; i<3; ++i ) res = res + q[i] * L[i];
       radius=norm2(res, outer[0]);
}}
void minball(int n){ ball();
  if( nouter < 4 ) for( int i = 0 ; i < n ; i ++ )
  if( norm2(res, pt[i]) - radius > eps ){
       outer[ nouter ++ ] = pt[ i ]; minball(i); --
            nouter
       if(i>0){ Pt Tt = pt[i]
          memmove(&pt[1], &pt[0], sizeof(Pt)*i); pt[0]=Tt
}}}
double solve(){
  // n points in pt
random_shuffle(pt, pt+n); radius=-1;
  for(int i=0;i<n;i++) if(norm2(res,pt[i])-radius>eps)
     nouter=1, outer[0]=pt[i], minball(i);
  return sqrt(radius);
```

4.17 Minkowski sum

```
vector<Pt> minkowski(vector<Pt> p, vector<Pt> q){
  int n = p.size() , m = q.size();
  Pt c = Pt(0, 0);
  for( int i = 0; i < m; i ++) c = c + q[i];
  c = c / m;
  for( int i = 0; i < m; i ++) q[i] = q[i] - c;
  int cur = -1;
  for( int i = 0; i < m; i ++)

if( (q[i] ^ (p[0] - p[n-1])) > -eps)

if( cur == -1 || (q[i] ^ (p[0] - p[n-1])) >
                              (q[cur] ^{(p[0] - p[n-1])})
          cur = i;
  vector<Pt> h:
  p.push_back(p[0]);
  for( int i = 0; i < n; i ++)
while( true ){
       h.push_back(p[i] + q[cur]);
       int nxt = (cur + 1 == m ? 0 : cur + 1);

if((q[cur] ^ (p[i+1] - p[i])) < -eps) cur = nxt;

else if( (q[nxt] ^ (p[i+1] - p[i])) >
                    (q[cur] ^ (p[i+1] - p[i])) ) cur = nxt;
        else break;
  for(auto &&i : h) i = i + c;
  return convex_hull(h);
```

4.18 Li Chao Segment Tree

```
struct LiChao_min{
   struct line{
     ll m,c;
```

```
line(ll _m=0,ll _c=0){ m=_m; c=_c; }
ll eval(ll x){ return m*x+c; } // overflow
  };
  struct node{
    node *l,*r; line f;
    node(line v){ f=v; l=r=NULL; }
  typedef node* pnode;
pnode root; ll sz,ql,qr;
#define mid ((l+r)>>1)
  void insert(line v,ll l,ll r,pnode &nd){
     /* if(!(ql<=l&&r<=qr)){
       if(!nd) nd=new node(line(0,INF));
       if(ql<=mid) insert(v,l,mid,nd->l)
       if(qr>mid) insert(v,mid+1,r,nd->r);
       return;
     } used for adding segment */
     if(!nd){ nd=new node(v); return; }
    ll trl=nd->f.eval(l),trr=nd->f.eval(r);
    11 vl=v.eval(l), vr=v.eval(r);
    if(trl<=vl&trr<=vr) return;</pre>
    if(trl>vl&&trr>vr) { nd->f=v; return; }
    if(trl>vl) swap(nd->f,v)
     if(nd->f.eval(mid)<v.eval(mid))</pre>
       insert(v,mid+1,r,nd->r);
    else swap(nd->f,v),insert(v,l,mid,nd->l);
  11 query(ll x,ll l,ll r,pnode &nd){
    if(!nd) return INF;
     if(l==r) return nd->f.eval(x);
    if(mid>=x)
       return min(nd->f.eval(x),query(x,1,mid,nd->l));
    return min(nd->f.eval(x),query(x,mid+1,r,nd->r));
  /* -sz<=ll query_x<=sz */
  void init(ll _sz){ sz=_sz+1; root=NULL; }
  void add_line(ll m,ll c,ll l=-INF,ll r=INF){
    line v(m,c); ql=l; qr=r; insert(v,-sz,sz,root);
  11 query(ll x) { return query(x,-sz,sz,root); }
};
```

4.19 Area of Rectangles

```
struct AreaofRectangles{
#define cl(x) (x<<1)</pre>
#define cr(x) (x<<111)
    ll n, id, sid;
    pair<ll, ll> tree[MXN<<3];</pre>
                                  // count, area
    vector<ll> ind;
    tuple<ll,ll,ll,ll,ll> scan[MXN<<1];</pre>
    void puli(int i, int l, int r){
   if(tree[i].first) tree[i].second = ind[r+1] -
             ind[l];
         else if(l != r){
             int mid = (l+r)>>1;
             tree[i].second = tree[cl(i)].second + tree[
                  cr(i)].second;
         else
                 tree[i].second = 0;
    void upd(int i, int l, int r, int ql, int qr, int v
         if(ql <= l \& r <= qr){
             tree[i].first += v
             pull(i, l, r); return;
         int mid = (l+r) >> 1
         if(ql <= mid) upd(cl(i), l, mid, ql, qr, v);
         if(qr > mid) upd(cr(i), mid+1, r, ql, qr, v);
         pull(i, 1, r);
    void init(int _n){
        n = _n; id = sid = 0;
ind.clear(); ind.resize(n<<1);</pre>
         fill(tree, tree+(n<<2), make_pair(0, 0));</pre>
    void addRectangle(int lx, int ly, int rx, int ry){
         ind[id++] = lx; ind[id++] = rx;
         scan[sid++] = make_tuple(ly, 1, lx, rx);
         scan[sid++] = make_tuple(ry, -1, lx, rx);
    }
```

```
ll solve(){
          sort(ind.begin(), ind.end());
          ind.resize(unique(ind.begin(), ind.end()) - ind
               .begin());
          sort(scan, scan + sid);
ll area = 0, pre = get<0>(scan[0]);
          for(int i = 0; i < sid; i++)
               auto [x, v, l, r] = scan[i];
               area += tree[1].second * (x-pre);
              upd(1, 0, ind.size()-1, lower_bound(ind.
begin(), ind.end(), l)-ind.begin(),
                    lower_bound(ind.begin(),ind.end(),r)-
                    ind.begin()-1, v);
              pre = x;
          return area;
}rect;
```

4.20 Min dist on Cuboid

```
typedef LL T;
Tr;
x0+L, y0, H, W, L);
if(j>=0 && j< 2) turn(i, j+1, x, y0+W+z, y0+W-y,
x0, y0+W, L, H, W);
  if(i<=0 && i>-2) turn(i-1, j, x0-z, y, x-x0,
                         x0-H, y0, H, W, L);
  if(j<=0 && j>-2) turn(i, j-1, x, y0-z, y-y0, x0, y0-H, L, H, W);
T solve(T L, T W, T H,
T x1, T y1, T z1, T x2, T y2, T z2){
  if( z1!=0 && z1!=H ){
    if( y1==0 || y1==W )
      swap(y1,z1), swap(y2,z2), swap(W,H);
  else swap(x1,z1), swap(x2,z2), swap(L,H);
  if (z1==H) z1=0, z2=H-z2;
  r=INF; turn(0,0,x2-x1,y2-y1,z2,-x1,-y1,L,W,H);
  return r;
}
```

4.21 Heart of Triangle

```
Pt inCenter( Pt &A, Pt &B, Pt &C) { // 内心
  double a = norm(B-C), b = norm(C-A), c = norm(A-B); return (A * a + B * b + C * c) / (a + b + c);
Pt circumCenter( Pt &a, Pt &b, Pt &c) { // 外心
  Pt bb = b - a, cc = c - a;

double db=norm2(bb), dc=norm2(cc), d=2*(bb ^ cc);
  return a-Pt(bb.Y*dc-cc.Y*db, cc.X*db-bb.X*dc) / d;
Pt othroCenter( Pt &a, Pt &b, Pt &c) { // 垂心
  Pt ba = b - a, ca = c - a, bc = b - c;
  double Y = ba.Y * ca.Y * bc.Y,
A = ca.X * ba.Y - ba.X * ca.Y
    x0=(Y+ca.X*ba.Y*b.X-ba.X*ca.Y*c.X) / A,
     y0 = -ba.X * (x0 - c.X) / ba.Y + ca.Y;
  return Pt(x0, y0);
```

5 Graph

5.1 DominatorTree

```
struct DominatorTree{ // O(N)
#define REP(i,s,e) for(int i=(s);i<=(e);i++)</pre>
#define REPD(i,s,e) for(int i=(s);i>=(e);i--)
   int n , m , s;
  vector< int > g[ MAXN ] , pred[ MAXN ];
vector< int > cov[ MAXN ];
int dfn[ MAXN ] , nfd[ MAXN ] , ts;
int par[ MAXN ]; //idom[u] s到u的最後一個必經點
   int sdom[ MAXN ] , idom[ MAXN ];
   int mom[MAXN], mn[MAXN];
inline bool cmp(int u , int v)
```

```
{ return dfn[ u ] < dfn[ v ]; }
   int eval( int u ){
     if( mom[ u ] == u ) return u;
     int res = eval( mom[ u ] );
if(cmp( sdom[ mn[ mom[ u ] ] ] , sdom[ mn[ u ] ] ))
    mn[ u ] = mn[ mom[ u ] ];
      return mom[ u ] = res;
  void init( int _n , int _m , int _s ){
  ts = 0; n = _n; m = _m; s = _s;
  REP( i, 1, n ) g[ i ].clear(), pred[ i ].clear();
  void addEdge( int u , int v ){
  g[ u ].push_back( v );
  pred[ v ].push_back( u );
   void dfs( int u ){
      dfn['u ] = ts;
     nfd[ ts ] = u;
for( int v : g[ u ] ) if( dfn[ v ] == 0 ){
        par[ v ] = u;
         dfs(v);
   void build(){
     REP( i , 1 , n ){
    dfn[ i ] = nfd[ i ] = 0;
    cov[ i ].clear();
        mom[i] = mn[i] = sdom[i] = i;
     dfs( s );
REPD( i , n , 2 ){
  int u = nfd[ i ];
  if( u == 0 ) continue;
}
        for( int v : pred[ u ] ) if( dfn[ v ] ){
           eval( v ):
           if( cmp( sdom[ mn[ v ] ] , sdom[ u ] ) )
sdom[ u ] = sdom[ mn[ v ] ];
        cov[ sdom[ u ] ].push_back( u );
        mom[u] = par[u];
         for( int w : cov[ par[ u ] ] ){
           eval( w );
           if( cmp( sdom[ mn[ w ] ] , par[ u ] ) )
           idom[w] = mn[w];
else idom[w] = par[u];
        cov[ par[ u ] ].clear();
     REP( i , 2 , n ){
int u = nfd[ i ];
        if( u == 0 ) continue ;
if( idom[ u ] != sdom[ u ] )
           idom[ u ] = idom[ idom[ u ] ];
```

5.2 MaximumClique 最大團

```
#define N 111
struct MaxClique{ // 0-base
  typedef bitset<N> Int;
  Int linkto[N] , v[N];
  int n:
  void init(int _n){
     n = _n;
for(int i = 0 ; i < n ; i ++){</pre>
        linkto[i].reset(); v[i].reset();
  void addEdge(int a , int b)
{ v[a][b] = v[b][a] = 1; }
int popcount(const Int& val)
  { return val.count(); }
  int lowbit(const Int& val)
  { return val._Find_first(); }
  int ans , stk[N];
int id[N] , di[N] , deg[N];
  Int cans;
  void maxclique(int elem_num, Int candi){
     if(elem_num > ans){
        ans = elem_num; cans.reset();
for(int i = 0 ; i < elem_num ; i ++)
   cans[id[stk[i]]] = 1;</pre>
```

```
int potential = elem_num + popcount(candi);
     if(potential <= ans) return;</pre>
     int pivot = lowbit(candi);
     Int smaller_candi = candi & (~linkto[pivot]);
     while(smaller_candi.count() && potential > ans){
       int next = lowbit(smaller_candi);
       candi[next] = !candi[next];
       smaller_candi[next] = !smaller_candi[next];
       potential -
       if(next == pivot || (smaller_candi & linkto[next
            ]).count()){
          stk[elem_num] = next;
         maxclique(elem_num + 1, candi & linkto[next]);
  } } }
  int solve(){
    for(int i = 0; i < n; i ++){
       id[i] = i; deg[i] = v[i].count();
     sort(id , id + n , [&](int id1, int id2){
            return deg[id1] > deg[id2]; })
    for(int i = 0; i < n; i ++) di[id[i]] = i;
for(int i = 0; i < n; i ++)
  for(int j = 0; j < n; j ++)
    if(v[i][j]) linkto[di[i]][di[j]] = 1;</pre>
    Int cand; cand.reset();
for(int i = 0; i < n; i ++) cand[i] = 1;</pre>
     ans = 1;
     cans.reset(); cans[0] = 1;
    maxclique(0, cand);
    return ans;
} }solver;
```

5.3 MaximalClique 極大團

```
#define N 80
struct MaxClique{ // 0-base
  typedef bitset<N> Int;
  Int lnk[N] , v[N];
  int n;
  void init(int _n){
    n = _n;
     for(int i = 0; i < n; i ++){
       lnk[i].reset(); v[i].reset();
  void addEdge(int a , int b)
{ v[a][b] = v[b][a] = 1; }
  int ans , stk[N], id[N] , di[N] , deg[N];
  void dfs(int elem_num, Int candi, Int ex){
     if(candi.none()&&ex.none()){
       cans.reset();
for(int i = 0 ; i < elem_num ; i ++)</pre>
         cans[id[stk[i]]] = 1;
       ans = elem_num; // cans is a maximal clique
    int pivot = (candilex)._Find_first();
    Int smaller_candi = candi & (~lnk[pivot]);
    while(smaller_candi.count()){
  int nxt = smaller_candi._Find_first();
       candi[nxt] = smaller_candi[nxt] = 0;
       ex[nxt] = 1;
       stk[elem_num] = nxt;
       dfs(elem_num+1,candi&lnk[nxt],ex&lnk[nxt]);
  } }
  int solve(){
     for(int i = 0; i < n; i ++){
       id[i] = i; deg[i] = v[i].count();
    sort(id , id + n , [&](int id1, int id2){
    return deg[id1] > deg[id2]; });
for(int i = 0; i < n; i ++) di[id[i]] = i;
for(int i = 0; i < n; i ++)
       for(int j = 0; j < n; j ++)
  if(v[i][j]) lnk[di[i]][di[j]] = 1;</pre>
     ans = 1; cans.reset(); cans[0] = 1;
     dfs(0, Int(string(n,'1')), 0);
     return ans;
} }solver;
```

5.4 Strongly Connected Component

```
struct Scc{
  int n, nScc, vst[MXN], bln[MXN];
vector<int> E[MXN], rE[MXN], vec;
  void init(int _n){
    n = _n;
for (int i=0; i<MXN; i++)</pre>
       E[i].clear(), rE[i].clear();
  void addEdge(int u, int v){
    E[u].PB(v); rE[v].PB(u);
  void DFS(int u){
    vst[u]=1;
    for (auto v : E[u]) if (!vst[v]) DFS(v);
    vec.PB(u);
  void rDFS(int u){
    vst[u] = 1; bln[u] = nScc;
     for (auto v : rE[u]) if (!vst[v]) rDFS(v);
  void solve(){
    nScc = 0;
    vec.clear();
    FZ(vst);
    for (int i=0; i<n; i++)
      if (!vst[i]) DFS(i);
     reverse(vec.begin(),vec.end());
    FZ(vst);
    for (auto v : vec)
       if (!vst[v]){
         rDFS(v); nScc++;
};
```

5.5 Dynamic MST

```
/* Dynamic MST 0( Q lg^2 Q )
 (qx[i], qy[i])->chg weight of edge No.qx[i] to qy[i]
delete an edge: (i, \infty)
add an edge: change from \infty to specific value
const int SZ=M+3*MXQ;
int a[N],*tz;
int find(int xx){
  int root=xx; while(a[root]) root=a[root];
  int next; while((next=a[xx])){a[xx]=root; xx=next; }
  return root:
bool cmp(int aa,int bb){ return tz[aa]<tz[bb]; }</pre>
int kx[N],ky[N],kt, vd[N],id[M], app[M];
bool extra[M];
void solve(int *qx,int *qy,int Q,int n,int *x,int *y,
    int *z,int m1,long long ans){
  if(Q==1)
    for(int i=1;i<=n;i++) a[i]=0;
    z[ qx[0] ]=qy[0]; tz = z;
for(int i=0;i<m1;i++) id[i]=i;
    sort(id,id+m1,cmp); int ri,rj;
    for(int i=0;i<m1;i++){</pre>
      ri=find(x[id[i]]); rj=find(y[id[i]]);
      printf("%lld\n",ans);
    return:
  int ri,rj;
  //contract
  kt=0:
  for(int i=1;i<=n;i++) a[i]=0;
  for(int i=0;i<Q;i++){</pre>
    ri=find(x[qx[i]]); rj=find(y[qx[i]]); if(ri!=rj) a[
        ri]=rj;
  int tm=0;
  for(int i=0;i<m1;i++) extra[i]=true;</pre>
  for(int i=0;i<Q;i++) extra[ qx[i] ]=false;</pre>
  for(int i=0;i<m1;i++) if(extra[i]) id[tm++]=i;</pre>
  tz=z; sort(id,id+tm,cmp);
  for(int i=0;i<tm;i++){</pre>
    ri=find(x[id[i]]); rj=find(y[id[i]]);
    if(ri!=rj){
      a[ri]=rj; ans += z[id[i]];
```

```
kx[kt]=x[id[i]]; ky[kt]=y[id[i]]; kt++;
  for(int i=1;i<=n;i++) a[i]=0;</pre>
  for(int i=0;i<kt;i++) a[ find(kx[i]) ]=find(ky[i]);</pre>
  int n2=0;
  for(int i=1;i<=n;i++) if(a[i]==0)</pre>
  vd[i]=++n2;
  for(int i=1;i<=n;i++) if(a[i])</pre>
  vd[i]=vd[find(i)];
  int m2=0, *Nx=x+m1, *Ny=y+m1, *Nz=z+m1;
  for(int i=0;i<m1;i++) app[i]=-1;
for(int i=0;i<Q;i++) if(app[qx[i]]==-1){</pre>
    Nx[m2]=vd[ x[ qx[i] ] ]; Ny[m2]=vd[ y[ qx[i] ] ];
    Nz[m2]=z[ qx[i] ];
    app[qx[i]]=m2; m2++;
  for(int i=0;i<Q;i++){ z[ qx[i] ]=qy[i]; qx[i]=app[qx[</pre>
       for(int i=1;i<=n2;i++) a[i]=0;</pre>
  for(int i=0;i<tm;i++){</pre>
    ri=find(vd[ x[id[i]] ]); rj=find(vd[ y[id[i]] ]);
    if(ri!=rj){
       a[ri]=rj; Nx[m2]=vd[_x[id[i]] ]
       Ny[m2]=vd[y[id[i]]]; Nz[m2]=z[id[i]]; m2++;
  int mid=Q/2;
  solve(qx,qy,mid,n2,Nx,Ny,Nz,m2,ans);
  solve(qx+mid,qy+mid,Q-mid,n2,Nx,Ny,Nz,m2,ans);
int x[SZ],y[SZ],z[SZ],qx[MXQ],qy[MXQ],n,m,Q;
void init(){
  scanf("%d%d",&n,&m);
  for(int i=0;i<m;i++) scanf("%d%d%d",x+i,y+i,z+i);</pre>
  scanf("%d",&0):
  for(int i=0;i<Q;i++){ scanf("%d%d",qx+i,qy+i); qx[i</pre>
       ]--; }
void work(){ if(Q) solve(qx,qy,Q,n,x,y,z,m,0); }
```

5.6 Maximum General graph Matching

```
// should shuffle vertices and edges
const int N=100005, E=(2e5)*2+40;
struct Graph{ // 1-based; match: i <-> lnk[i]
  int to[E],bro[E],head[N],e,lnk[N],vis[N],stp,n;
  void init(int _n){
  stp=0; e=1; n=_n;
    for(int i=1;i<=n;i++) head[i]=lnk[i]=vis[i]=0;</pre>
  void add_edge(int u,int v){
    to[e]=v,bro[e]=head[u],head[u]=e++;
    to[e]=u,bro[e]=head[v],head[v]=e++;
  bool dfs(int x){
    vis[x]=stp;
    for(int i=head[x];i;i=bro[i]){
      int v=to[i];
      if(!lnk[v]){ lnk[x]=v,lnk[v]=x; return true; }
    for(int i=head[x];i;i=bro[i]){
      int v=to[i];
      if(vis[lnk[v]]<stp){</pre>
         int w=lnk[v]; lnk[x]=v,lnk[v]=x,lnk[w]=0;
         if(dfs(w)) return true;
         lnk[w]=v, lnk[v]=w, lnk[x]=0;
      }
    return false;
  int solve(){
    int ans=0;
    for(int i=1;i<=n;i++) if(!lnk[i]) stp++,ans+=dfs(i)</pre>
    return ans;
}graph;
```

5.7 Minimum General Weighted Matching

```
struct Graph {
   // Minimum General Weighted Matching (Perfect Match)
   static const int MXN = 105;
```

```
int n, edge[MXN][MXN]
  int match[MXN],dis[MXN],onstk[MXN];
  vector<int> stk;
  void init(int _n) {
    n = _n;
for( int i = 0 ; i < n ; i ++ )</pre>
       for( int j = 0; j < n; j ++ )
edge[ i ][ j ] = 0;
  void add_edge(int u, int v, int w)
  \{ edge[u][v] = edge[v][u] = w; \}
  bool SPFA(int u){
    if (onstk[u]) return true;
    stk.PB(u);
    onstk[u] = 1;
    for (int v=0; v<n; v++){
       if (u != v && match[u] != v && !onstk[v]){
         int m = match[v]
         if (dis[m] > dis[u] - edge[v][m] + edge[u][v]){
           dis[m] = dis[u] - edge[v][m] + edge[u][v];
           onstk[v] = 1;
           stk.PB(v);
           if (SPFA(m)) return true;
           stk.pop_back();
           onstk[v] = 0;
    } } }
    onstk[u] = 0;
    stk.pop_back();
    return false;
  int solve() {
    // find a match
    for (int i=0; i<n; i+=2){
  match[i] = i+1;</pre>
       match[i+1] = i;
    while (true){
       int found = 0;
       for( int i = 0 ; i < n ; i ++ )
  onstk[ i ] = dis[ i ] = 0;</pre>
       for (int i=0; i<n; i++){</pre>
         stk.clear()
         if (!onstk[i] && SPFA(i)){
            found = 1;
           while (SZ(stk)>=2){
              int u = stk.back(); stk.pop_back();
int v = stk.back(); stk.pop_back();
              match[u] = v;
             match[v] = u;
       } } }
       if (!found) break;
     int ret = 0;
    for (int i=0; i<n; i++)
      ret += edge[i][match[i]];
    ret /= 2;
    return ret;
}graph;
```

5.8 Maximum General Weighted Matching

```
struct WeightGraph {
 static const int INF = INT_MAX;
 static const int N = 514;
  struct edge{
    int u,v,w; edge(){}
    edge(int ui,int vi,int wi)
      :u(ui),v(vi),w(wi){}
 };
 int n,n_x
 edge g[N*2][N*2];
 int lab[N*2]
  int match[N*2],slack[N*2],st[N*2],pa[N*2];
 int flo_from[N*2][N+1],S[N*2],vis[N*2];
 vector<int> flo[N*2];
 queue<int> q;
 int e_delta(const edge &e){
    return lab[e.u]+lab[e.v]-g[e.u][e.v].w*2;
 void update_slack(int u,int x){
```

```
if(!slack[x]||e_delta(g[u][x])<e_delta(g[slack[x]][</pre>
      x]))slack[x]=u;
void set_slack(int x){
  slack[x]=0;
  for(int u=1;u<=n;++u)</pre>
    if(g[u][x].w>0&&st[u]!=x&&S[st[u]]==0)
      update_slack(u,x);
void q_push(int x){
  if(x<=n)q.push(x);</pre>
  else for(size_t i=0;i<flo[x].size();i++)</pre>
    q_push(flo[x][i]);
void set_st(int x,int b){
  st[x]=b;
  if(x>n)for(size_t i=0;i<flo[x].size();++i)</pre>
    set_st(flo[x][i],b);
int get_pr(int b,int xr){
  int pr=find(flo[b].begin(),flo[b].end(),xr)-flo[b].
      begin();
  if(pr%2==1)-
    reverse(flo[b].begin()+1,flo[b].end());
    return (int)flo[b].size()-pr;
  }else return pr;
void set_match(int u,int v){
  match[u]=g[u][v].v;
  if(u<=n) return;</pre>
  edge e=g[u][v];
  int xr=flo_from[u][e.u],pr=get_pr(u,xr);
  for(int i=0;i<pr;++i)set_match(flo[u][i],flo[u][i</pre>
      ^1]);
  set_match(xr,v);
  rotate(flo[u].begin(),flo[u].begin()+pr,flo[u].end
void augment(int u,int v){
  for(;;){
    int xnv=st[match[u]];
    set_match(u,v);
    if(!xnv)return;
    set_match(xnv,st[pa[xnv]]);
    u=st[pa[xnv]],v=xnv;
} }
int get_lca(int u,int v){
  static int t=0;
  for(++t;u|v;swap(u,v)){
    if(u==0)continue;
    if(vis[u]==t)return u;
    vis[u]=t;
    u=st[match[u]]
    if(u)u=st[pa[u]];
  return 0:
void add_blossom(int u,int lca,int v){
  int b=n+1;
  while(b<=n_x&&st[b])++b;</pre>
  if(b>n_x)++n_x
  lab[b]=0,S[b]=0;
  match[b]=match[lca];
  flo[b].clear();
  flo[b].push_back(lca);
  for(int x=u,y;x!=lca;x=st[pa[y]])
    flo[b].push_back(x),flo[b].push_back(y=st[match[x
  ]]),q_push(y);
reverse(flo[b].begin()+1,flo[b].end());
  for(int x=v,y;x!=lca;x=st[pa[y]])
    flo[b].push_back(x),flo[b].push_back(y=st[match[x
         ]]),q_push(y);
  set_st(b,b);
  for(int x=1;x<=n_x;++x)g[b][x].w=g[x][b].w=0;
  for(int x=1;x<=n;++x)flo_from[b][x]=0;</pre>
  for(size_t i=0;i<flo[b].size();++i){</pre>
    int xs=flo[b][i];
    for(int x=1;x<=n_x;++x)</pre>
      if(g[b][x].w==0|ie_delta(g[xs][x])<e_delta(g[b][x]])
        g[b][x]=g[xs][x],g[x][b]=g[x][xs];
    for(int x=1;x<=n;++x)</pre>
```

```
if(flo_from[xs][x])flo_from[b][x]=xs;
  set_slack(b);
}
void expand_blossom(int b){
  for(size_t i=0;i<flo[b].size();++i)</pre>
    set_st(flo[b][i],flo[b][i])
  int xr=flo_from[b][g[b][pa[b]].u],pr=get_pr(b,xr);
  for(int i=0;i<pr;i+=2){
  int xs=flo[b][i],xns=flo[b][i+1];
  pa[xs]=g[xns][xs].u;</pre>
    S[xs]=1, S[xns]=0;
    slack[xs]=0, set_slack(xns);
    q_push(xns);
  S[xr]=1,pa[xr]=pa[b];
  for(size_t i=pr+1;i<flo[b].size();++i){</pre>
    int xs=flo[b][i];
    S[xs]=-1, set\_slack(xs);
  }
  st[b]=0;
bool on_found_edge(const edge &e){
  int u=st[e.u],v=st[e.v];
  if(S[v]==-1){
    pa[v]=e.u,S[v]=1;
int nu=st[match[v]];
    slack[v]=slack[nu]=0;
  S[nu]=0,q_push(nu);
}else if(S[v]==0){
  int lca=get_lca(u,v);
    if(!lca)return augment(u,v),augment(v,u),true;
    else add_blossom(u,lca,v);
  return false;
bool matching(){
  memset(S+1,-1,sizeof(int)*n_x);
  memset(slack+1,0,sizeof(int)*n_x);
  q=queue<int>();
  for(int x=1;x<=n_x;++x)</pre>
     if(st[x]==x\&\&!match[x])pa[x]=0,S[x]=0,q_push(x);
  if(q.empty())return false;
  for(;;){
    while(q.size()){
       int u=q.front();q.pop();
if(S[st[u]]==1)continue;
       for(int v=1;v<=n;++v)</pre>
         if(g[u][v].w>0&&st[u]!=st[v]){
            if(e_delta(g[u][v])==0){
              if(on_found_edge(g[u][v]))return true;
           }else update_slack(u,st[v]);
    int d=INF;
    for(int b=n+1;b<=n_x;++b)</pre>
       if(st[b]==b\&S[b]==1)d=min(d,lab[b]/2);
     for(int x=1;x<=n_x;++x)</pre>
       if(st[x]==x\&slack[x]){
         if(S[x]==-1)d=min(d,e_delta(g[slack[x]][x]))
         else if(S[x]==0)d=min(d,e_delta(g[slack[x]][x
              ])/2);
     for(int u=1;u<=n;++u){</pre>
       if(S[st[u]]==0){
         if(lab[u]<=d)return 0;</pre>
         lab[u]-=d;
       }else if(S[st[u]]==1)lab[u]+=d;
    for(int b=n+1;b<=n_x;++b)
       if(st[b]==b){
         if(S[st[b]]==0)lab[b]+=d*2;
         else if(S[st[b]]==1)lab[b]-=d*2;
    q=queue<int>();
     for(int x=1;x<=n_x;++x)</pre>
       if(st[x]==x&&slack[x]&&st[slack[x]]!=x&&e_delta
     (g[slack[x]][x])==0)
         if(on_found_edge(g[slack[x]][x]))return true;
    for(int b=n+1;b<=n_x;++b)
  if(st[b]==b&&S[b]==1&&lab[b]==0)expand_blossom(</pre>
  }
```

```
return false:
  pair<long long,int> solve(){
    memset(match+1,0,sizeof(int)*n);
     n_x=n;
     int n_matches=0;
     long long tot_weight=0;
     for(int u=0;u<=n;++u)st[u]=u,flo[u].clear();</pre>
     int w_max=0;
     for(int u=1;u<=n;++u)</pre>
       for(int v=1;v<=n;++v){</pre>
         flo_from[u][v]=(u==v?u:0);
         w_{max}=max(w_{max},g[u][v].w);
     for(int u=1;u<=n;++u)lab[u]=w_max;</pre>
     while(matching())++n_matches;
     for(int u=1;u<=n;++u)</pre>
       if(match[u]&&match[u]<u)</pre>
         tot_weight+=g[u][match[u]].w;
    return make_pair(tot_weight,n_matches);
  void add_edge( int ui , int vi , int wi ){
    g[ui][vi].w = g[vi][ui].w = wi;
  void init( int _n ){
    n = _n;
for(int u=1;u<=n;++u)</pre>
       for(int v=1;v<=n;++v)</pre>
         g[u][v]=edge(u,v,0);
} graph;
      Minimum Steiner Tree
```

5.9

```
// Minimum Steiner Tree 重要點的mst
// 0(V 3^T + V^2 2^T)
struct SteinerTree{
#define V 33
#define T 8
#define INF 1023456789
  int n , dst[V][V] , dp[1 << T][V] , tdst[V];
void init( int _n ){</pre>
     n = _n;
for( int i = 0 ; i < n ; i ++ ){</pre>
       for( int j = 0; j < n; j ++ ){
    dst[ i ][ j ] = INF;
    dst[ i ][ i ] = 0;
  } }
  void add_edge( int ui , int vi , int wi ){
  dst[ ui ][ vi ] = min( dst[ ui ][ vi ] , wi );
  dst[ vi ][ ui ] = min( dst[ vi ][ ui ] , wi );
  void shortest_path(){ // using spfa may faster
     for( int k = 0 ; k < n ; k ++ )
  for( int i = 0 ; i < n ; i ++ )</pre>
          }// call shorest_path before solve
  int solve( const vector<int>& ter ){
     int t = (int)ter.size();
for( int i = 0 ; i < ( 1 << t ) ; i ++ )
  for( int j = 0 ; j < n ; j ++ )
  dp[ i ][ j ] = INF;</pre>
     for( int i = 0; i < n; i ++ )
dp[0][i] = 0;
     for( int msk = 1 ; msk < ( 1 << t ) ; msk ++ ){</pre>
        if( msk == ( msk & (-msk) ) ){
          int who = __lg( msk );
for( int i = 0 ; i < n ; i ++ )
  dp[ msk ][ i ] = dst[ ter[ who ] ][ i ];</pre>
          continue;
       for( int i = 0 ; i < n ; i ++ ){</pre>
          tdst[ i ] = INF;
          for( int j = 0 ; j < n ; j ++ )</pre>
```

5.10 BCC based on vertex

```
struct BccVertex {
  int n,nScc,step,dfn[MXN],low[MXN];
  vector<int> E[MXN],sccv[MXN];
int top,stk[MXN];
  void init(int _n) {
    n = _n; nScc = step = 0;
for (int i=0; i<n; i++) E[i].clear();
  void addEdge(int u, int v)
{ E[u].PB(v); E[v].PB(u); }
void DFS(int u, int f) {
     dfn[u] = low[u] = step++;
     stk[top++] = u;
    for (auto v:E[u]) {
    if (v == f) continue;
    if (dfn[v] == -1) {
          DFS(v,u);
          low[u] = min(low[u], low[v]);
          if (low[v] >= dfn[u]) {
            int z
            sccv[nScc].clear();
            do {
               z = stk[--top];
               sccv[nScc].PB(z);
            } while (z != v)
            sccv[nScc++].PB(u);
       }else
          low[u] = min(low[u],dfn[v]);
  vector<vector<int>> solve() {
     vector<vector<int>> res;
     for (int i=0; i<n; i++)</pre>
       dfn[i] = low[i] = -1;
     for (int i=0; i<n; i++)
       if (dfn[i] == -1) {
          top = 0;
          DFS(i,i);
    REP(i,nScc) res.PB(sccv[i]);
     return res;
}graph;
```

5.11 Min Mean Cycle

```
/* minimum mean cycle O(VE) */
struct MMC{
#define E 101010
#define V 1021
#define inf 1e9
#define eps 1e-6
  struct Edge { int v,u; double c; };
  int n, m, prv[V][V], prve[V][V], vst[V];
  Edge e[E];
  vector<int> edgeID, cycle, rho;
  double d[V][V];
  void init( int _n )
  { n = _n; m = 0; }
// WARNING: TYPE matters
  for(int i=0; i<n; i++) d[0][i]=0;
for(int i=0; i<n; i++) {
       fill(d[i+1], d[i+1]+n, inf);
for(int j=0; j<m; j++) {
  int v = e[j].v, u = e[j].u;</pre>
```

```
if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
           d[i+1][u] = d[i][v]+e[j].c;
           prv[i+1][u] = v
           prve[i+1][u] = j;
  double solve(){
    // returns inf if no cycle, mmc otherwise
    double mmc=inf;
    int st = -1
    bellman_ford();
     for(int i=0; i<n; i++) {</pre>
       double avg=-inf;
      for(int k=0; k<n; k++) {
  if(d[n][i]<inf-eps) avg=max(avg,(d[n][i]-d[k][i])</pre>
             ])/(n-k));
         else avg=max(avg,inf);
      if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
    fill(vst,0); edgeID.clear(); cycle.clear(); rho.
         clear();
     for (int i=n; !vst[st]; st=prv[i--][st]) {
      vst[st]++
      edgeID.PB(prve[i][st]);
      rho.PB(st);
    while (vst[st] != 2) {
      if(rho.empty()) return inf;
       int v = rho.back(); rho.pop_back();
      cycle.PB(v);
      vst[v]++;
    reverse(ALL(edgeID));
    edgeID.resize(SZ(cycle));
    return mmc;
} }mmc;
```

5.12 Directed Graph Min Cost Cycle

```
// works in O(N M)
#define INF 1000000000000000LL
#define N 5010
#define M 200010
struct edge{
   int to; LL w;
   edge(int a=0, LL b=0): to(a), w(b){}
struct node{
  LL d; int u, next;
node(LL a=0, int b=0, int c=0): d(a), u(b), next(c){}
struct DirectedGraphMinCycle{
  vector<edge> g[N], grev[N];
LL dp[N][N], p[N], d[N], mu;
   bool inq[N];
  int n, bn, bsz, hd[N];
void b_insert(LL d, int u){
     int i = d/mu;
      if(i >= bn) return;
     b[++bsz] = node(d, u, hd[i]);
     hd[i] = bsz;
   void init( int _n ){
     n = _n;
for( int i = 1 ; i <= n ; i ++ )
  g[ i ].clear();
  void addEdge( int ai , int bi , LL ci )
{ g[ai].push_back(edge(bi,ci)); }
   LL solve(){
     fill(dp[0], dp[0]+n+1, 0);
for(int i=1; i<=n; i++){
        fill(dp[i]+1, dp[i]+n+1, INF);
        for(int j=1; j<=n; j++) if(dp[i-1][j] < INF){
  for(int k=0; k<(int)g[j].size(); k++)
    dp[i][g[j][k].to] =min(dp[i][g[j][k].to],</pre>
                                              dp[i-1][j]+g[j][k].w);
     mu=INF; LL bunbo=1;
     for(int i=1; i<=n; i++) if(dp[n][i] < INF){
  LL a=-INF, b=1;</pre>
        for(int j=0; j<=n-1; j++) if(dp[j][i] < INF){</pre>
```

```
if(a*(n-j) < b*(dp[n][i]-dp[j][i])){</pre>
             a = dp[n][i]-dp[j][i];
             b = n-j;
        } }
        if(mu*b > bunbo*a)
          mu = a, bunbo = b;
     if(mu < 0) return -1; // negative cycle</pre>
     if(mu == INF) return INF; // no cycle
     if(mu == 0) return 0;
for(int i=1; i<=n; i++)
    for(int j=0; j<(int)g[i].size(); j++)</pre>
        g[i][j].w *= bunbo;
     memset(p, 0, sizeof(p));
     queue<int> q;
     for(int i=1; i<=n; i++){
        q.push(i);
        inq[i] = true;
     while(!q.empty()){
        q.push(g[i][j].to);
                inq[g[i][j].to] = true;
     } } } }
     for(int i=1; i<=n; i++) grev[i].clear();
for(int i=1; i<=n; i++)
  for(int j=0; j<(int)g[i].size(); j++){
    g[i][j].w += p[i]-p[g[i][j].to];
}</pre>
          grev[g[i][j].to].push_back(edge(i, g[i][j].w));
     LL mldc = n*mu;
     for(int i=1; i<=n; i++){</pre>
        bn=mldc/mu, bsz=0;
       memset(hd, 0, sizeof(hd));
fill(d+i+1, d+n+1, INF);
b_insert(d[i]=0, i);
        for(int j=0; j<=bn-1; j++) for(int k=hd[j]; k; k=</pre>
             b[k].next){
          int u = b[k].u;
          LL du = b[k].d;
          if(du > d[u]) continue;
for(int l=0; l<(int)g[u].size(); l++) if(g[u][l
     ].to > i){
             if(d[g[u][l].to] > du + g[u][l].w){
               d[g[u][l].to] = du + g[u][l].w;
b_insert(d[g[u][l].to], g[u][l].to);
        for(int j=0; j<(int)grev[i].size(); j++) if(grev[
    i][j].to > i)
          mldc=min(mldc,d[grev[i][j].to] + grev[i][j].w);
     return mldc / bunbo;
} } araph;
```

5.13 K-th Shortest Path

```
// time: O(|E| \lg |E| + |V| \lg |V| + K)
// memory: O(|E| \lg |E| + |V|)
struct KSP{ // 1-base
    struct nd{
        int u, v; ll d;
        nd(int ui = 0, int vi = 0, ll di = INF)
        { u = ui; v = vi; d = di; }
};
struct heap{
        nd* edge; int dep; heap* chd[4];
};
static int cmp(heap* a,heap* b)
{ return a->edge->d > b->edge->d; }
struct node{
        int v; ll d; heap* H; nd* E;
        node(){}
        node(ll _d, int _v, nd* _E)
        { d = _d; v = _v; E = _E; }
        node(heap* _H, ll _d)
        { H = _H; d = _d; }
        friend bool operator<(node a, node b)
        { return a.d > b.d; }
```

```
int n, k, s, t;
ll dst[N];
  nd *nxt[ N ];
  vector<nd*> g[ N ], rg[ N ];
heap *nullNd, *head[ N ];
  void init( int _n , int _k , int _s , int _t ){
    n = _n;    k = _k;    s = _s;    t = _t;

    for( int i = 1 ; i <= n ; i ++ ){
   g[ i ].clear(); rg[ i ].clear();
   nxt[ i ] = NULL; head[ i ] = NULL;
   dst[ i ] = -1;</pre>
  void addEdge( int ui , int vi , ll di ){
    nd* e = new nd(ui, vi, di);
     g[ ui ].push_back( e );
    rg[ vi ].push_back( e );
  queue<int> dfsQ;
  void dijkstra(){
    while(dfsQ.size()) dfsQ.pop();
     priority_queue<node> Q;
    Q.push(node(0, t, NULL));
while (!Q.empty()){
       node p = Q.top(); Q.pop();
if(dst[p.v] != -1) continue;
       dst[ p.v ] = p.d;
       nxt[p.v] = p.E;
       dfsQ.push( p.v );
for(auto e: rg[ p.v ])
          Q.push(node(p.d + e->d, e->u, e));
  } }
  heap* merge(heap* curNd, heap* newNd){
     if(curNd == nullNd) return newNd;
     heap* root = new heap;
    memcpy(root, curNd, sizeof(heap));
if(newNd->edge->d < curNd->edge->d){
       root->edge = newNd->edge;
       root->chd[2] = newNd->chd[2];
root->chd[3] = newNd->chd[3];
       newNd->edge = curNd->edge;
       newNd->chd[2] = curNd->chd[2];
       newNd - chd[3] = curNd - chd[3];
     if(root->chd[0]->dep < root->chd[1]->dep)
       root->chd[0] = merge(root->chd[0],newNd);
       root->chd[1] = merge(root->chd[1],newNd);
     root->dep = max(root->chd[0]->dep, root->chd[1]->
          dep) + 1;
     return root;
  vector<heap*> V;
  void build(){
     nullNd = new heap;
     nullNd->dep = 0;
     nullNd->edge = new nd;
     fill(nullNd->chd, nullNd->chd+4, nullNd);
     while(not dfsQ.empty()){
       int u = dfsQ.front(); dfsQ.pop();
       if(!nxt[ u ]) head[ u ] = nullNd;
       else head[ u ] = head[nxt[ u ]->v];
       V.clear()
       for( auto&& e : g[ u ] ){
          int v = e->v;
         if( dst[ v ] == -1 ) continue;
          e->d += dst[ v ] - dst[ u ];
          if( nxt[ u ] != e ){
  heap* p = new heap
            fill(p->chd, p->chd+4, nullNd);
            p->dep = 1;
            p->edge = e;
            V.push_back(p);
       if(V.empty()) continue;
       make_heap(V.begin(), V.end(), cmp);
#define L(X) ((X<<1)+1)
#define R(X) ((X<<1)+2)
       for( size_t i = 0 ; i < V.size() ; i ++ ){</pre>
          if(L(i) < V.size()) V[i]->chd[2] = V[L(i)];
          else V[i]->chd[2]=nullNd;
          if(R(i) < V.size()) V[i]->chd[3] = V[R(i)];
```

sfail[tot]=(l>0&&diff[tot]==diff[f]?sfail[f]:f);

```
else V[i]->chd[3]=nullNd;
                                                                     return tot++:
      head[u] = merge(head[u], V.front());
                                                                   int getfail(int x){
                                                                     while(s[n-len[x]-1]!=s[n]) x=fail[x];
  } }
  vector<ll> ans;
                                                                     return x;
  void first_K(){
                                                                   int getmin(int v){
    ans.clear();
    priority_queue<node> Q;
                                                                     dp[v]=fac[n-len[sfail[v]]-diff[v]];
    if( dst[ s ] == -1 ) return;
ans.push_back( dst[ s ] );
if( head[s] != nullNd )
                                                                     if(diff[v]==diff[fail[v]])
                                                                          dp[v]=min(dp[v],dp[fail[v]]);
                                                                     return dp[v]+1;
    Q.push(node(head[s], dst[s]+head[s]->edge->d));
for( int _ = 1 ; _ < k and not Q.empty() ; _ ++ ){
  node p = Q.top(), q; Q.pop();</pre>
                                                                   int push(){
                                                                     int c=s[n]-'a',np=getfail(lst);
      ans.push_back( p.d );
                                                                     if(!(lst=nxt[np][c])){
                                                                       lst=newNode(len[np]+2,nxt[getfail(fail[np])][c]);
       if(head[ p.H->edge->v ] != nullNd){
         q.H = head[ p.H->edge->v ];
                                                                       nxt[np][c]=lst; num[lst]=num[fail[lst]]+1;
         q.d = p.d + q.H->edge->d;
         Q.push(q);
                                                                     fac[n]=n;
                                                                     for(int v=lst;len[v]>0;v=sfail[v])
      for( int i = 0 ; i < 4 ; i ++ )
  if( p.H->chd[ i ] != nullNd ){
    q.H = p.H->chd[ i ];

                                                                         fac[n]=min(fac[n],getmin(v));
                                                                     return ++cnt[lst],lst;
           q.d = p.d - p.H->edge->d + p.H->chd[i]->
                                                                   void init(const char *_s){
               edge->d;
                                                                     tot=lst=n=0;
                                                                     newNode(0,1), newNode(-1,1);
           Q.push( q );
                                                                     for(;_s[n];) s[n+1]=_s[n],++n,state[n-1]=push();
for(int i=tot-1;i>1;i--) cnt[fail[i]]+=cnt[i];
  } }
  void solve(){ // ans[i] stores the i-th shortest path
    dijkstra();
                                                                }palt;
    build()
    first_K(); // ans.size() might less than k
} }solver;
                                                                 6.2 KMP
5.14 SPFA
                                                                len-failure[k]:
bool spfa(){
                                                                 在k結尾的情況下,這個子字串可以由開頭
    deque<int> dq;
                                                                 長度為(len-failure[k])的部分重複出現來表達
    dis[0]=0;
    dq.push_back(0);
                                                                 failure[k]:
    inq[0]=1;
                                                                 failure[k]為次長相同前綴後綴
    while(!dq.empty()){
                                                                 如果我們不只想求最多,而且以0-base做為考量
         int u=dq.front();
                                                                 ,那可能的長度由大到小會是
         dq.pop_front();
                                                                 failuer[k] \ failure[failuer[k]-1]
         inq[u]=0;
                                                                 ^ failure[failure[failuer[k]-1]-1]..
         for(auto i:edge[u]){
                                                                 直到有值為0為止
             if(dis[i.first]>i.second+dis[u]){
                  dis[i.first]=i.second+dis[u];
                                                                 int failure[MXN];
                  len[i.first]=len[u]+1;
                  if(len[i.first]>n) return 1;
if(inq[i.first]) continue;
                                                                void KMP(string& t, string& p)
                  if(!dq.empty()&&dis[dq.front()]>dis[i.
                                                                     if (p.size() > t.size()) return;
for (int i=1, j=failure[0]=-1; i<p.size(); ++i)</pre>
                       first])
                      dq.push_front(i.first);
                                                                          while (j \ge 0 \& p[j+1] != p[i])
                      dq.push_back(i.first);
                                                                              j = failure[j];
                                                                          if (p[j+1] == p[i]) j++;
                  inq[i.first]=1;
                                                                          failure[i] = j;
    return 0;
                                                                     for (int i=0, j=-1; i<t.size(); ++i)</pre>
}
5.15 差分約束
                                                                         while (j \ge 0 \&\& p[j+1] != t[i])
                                                                              j = failure[j];
  約束條件 V_j - V_i \leq W 建邊 V_i - > V_j 權重為 W-> bellman-ford or spfa
                                                                          if (p[j+1] == t[i]) j++;
     String
                                                                          if (j == p.size()-1)
6.1 PalTree
                                                                              cout << i - p.size() + 1<<" ";
                                                                              j = failure[j];
// len[s]是對應的回文長度
                                                                }
                                                                     }
// num[s]是有幾個回文後綴
// cnt[s]是這個回文子字串在整個字串中的出現次數
                                                                 6.3
                                                                        SAIS
// fail[s]是他長度次長的回文後綴,aba的fail是a
const int MXN = 1000010;
                                                                 const int N = 300010;
struct PalT{
                                                                struct SA{
  int nxt[MXN][26],fail[MXN],len[MXN];
                                                                #define REP(i,n) for ( int i=0; i<int(n); i++ )</pre>
  int tot,lst,n,state[MXN],cnt[MXN],num[MXN];
                                                                 #define REP1(i,a,b) for ( int i=(a); i \leftarrow int(b); i \leftarrow i
                                                                   bool _t[N*2];
  int diff[MXN],sfail[MXN],fac[MXN],dp[MXN];
  char s[MXN] = \{-1\};
                                                                   int _s[N*2], _sa[N*2], _c[N*2], x[N], _p[N], _q[N*2],
                                                                   hei[N], r[N];
int operator [] (int i){ return _sa[i]; }
  int newNode(int 1,int f){
  len[tot]=1,fail[tot]=f,cnt[tot]=num[tot]=0;
    memset(nxt[tot],0,sizeof(nxt[tot]));
diff[tot]=(1>0?1-len[f]:0);
                                                                   void build(int *s, int n, int m){
```

memcpy(_s, s, sizeof(int) * n);

sais(_s, _sa, _p, _q, _t, _c, n, m);

```
mkhei(n);
  void mkhei(int n){
    REP(i,n) r[\_sa[i]] = i;
    hei[0] = 0;
    REP(i,n) if(r[i]) {
       int ans = i>0 ? max(hei[r[i-1]] - 1, 0) : 0;
       while(\_s[i+ans] == \_s[\_sa[r[i]-1]+ans]) ans++;
       hei[r[i]] = ans;
    }
  void sais(int *s, int *sa, int *p, int *q, bool *t,
       int *c, int n, int z){
    bool uniq = t[n-1] = true, neq;
    int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
          lst = -1;
#define MSO(x,n) memset((x),0,n*sizeof(*(x)))
#define MAGIC(XD) MS0(sa, n); \
    memcpy(x, c, sizeof(int) * z); \
    memcpy(x + 1, c, sizeof(int) * (z - 1)); \
    REP(i,n) if(sa[i] && !t[sa[i]-1]) sa[x[s[sa[i]-1]] 
    ]-1]]++] = sa[i]-1; \
memcpy(x, c, sizeof(int) * z); \
for(int i = n - 1; i >= 0; i--) if(sa[i] && t[sa[i
          ]-1]) sa[--x[s[sa[i]-1]]] = sa[i]-1;
    MSO(c, z);
    REP(i,n) uniq \&= ++c[s[i]] < 2;
    REP(i,z-1) c[i+1] += c[i];
    if (uniq) { REP(i,n) sa[--c[s[i]]] = i; return; }
for(int i = n - 2; i >= 0; i--) t[i] = (s[i]==s[i +1] ? t[i+1] : s[i]<s[i+1]);</pre>
    MAGIC(REP1(i,1,n-1) if(t[i] && !t[i-1]) sa[--x[s[i
          ]]]=p[q[i]=nn++]=i)
    REP(i, n) if (sa[i] && t[sa[i]] && !t[sa[i]-1]) {
       neq=lst<0||memcmp(s+sa[i],s+lst,(p[q[sa[i]]+1]-sa|)
            [i])*sizeof(int));
       ns[q[lst=sa[i]]]=nmxz+=neq;
    sais(ns, nsa, p + nn, q + n, t + n, c + z, nn, nmxz
          + 1);
    MAGIC(for(int i = nn - 1; i >= 0; i--) sa[--x[s[p[
         nsa[i]]]] = p[nsa[i]]);
}sa;
int´H[N], SA[N];
void suffix_array(int* ip, int len) {
  // should padding a zero in the back
  // ip is int array, len is array length
// ip[0..n-1] != 0, and ip[len] = 0
  ip[len++] = 0;
  sa.build(ip, len, 128);
for (int i=0; i<len; i++) {</pre>
    H[i] = sa.hei[i + 1];
    SA[i] = sa.\_sa[i + 1];
  // resulting height, sa array \in [0,len)
```

6.4 SuffixAutomata

```
// any path start from root forms a substring of S
// occurrence of P : iff SAM can run on input word P
// number of different substring : ds[1]-1
// total length of all different substring :
                                                           dsl[1]
// max/min length of state i : mx[i]/mx[mom[i]]+1
// assume a run on input word P end at state i:
// number of occurrences of P : cnt[i]
// first occurrence position of P : fp[i]-|P|+1
// all position of P : fp of "dfs from i through rmom"
const int MXM = 1000010;
struct SAM{
  int tot, root, lst, mom[MXM], mx[MXM]; //ind[MXM]
int nxt[MXM][33]; //cnt[MXM],ds[MXM],dsl[MXM],fp[MXM]
   // bool v[MXM]
  int newNode(){
     int res = ++tot;
     fill(nxt[res], nxt[res]+33, 0);
mom[res] = mx[res] = 0; //cnt=ds=dsl=fp=v=0
     return res;
  void init(){
```

```
tot = 0;
    root = newNode();
    lst = root;
  void push(int c){
    int p = lst;
    int np = newNode(); //cnt[np]=1
mx[np] = mx[p]+1; //fp[np]=mx[np]-1
     for(; p && nxt[p][c] == 0; p = mom[p])
       nxt[p][c] = np
     if(p == 0) mom[np] = root;
    else{
       int q = nxt[p][c];
       if(mx[p]+1 == mx[q]) mom[np] = q;
         int nq = newNode(); //fp[nq]=fp[q]
         mx[nq] = mx[p]+1;
for(int i = 0; i < 33; i++)
           nxt[nq][i] = nxt[q][i];
         mom[nq] = mom[q];
         mom[q] = nq;
         mom[np] = nq;
         for(; p && nxt[p][c] == q; p = mom[p])
           nxt[p][c] = nq;
    } }
    lst = np;
  void calc(){
    calc(root);
     iota(ind,ind+tot,1);
    sort(ind,ind+tot,[&](int i,int j){return mx[i]<mx[j</pre>
          ];});
    for(int i=tot-1;i>=0;i--)
cnt[mom[ind[i]]]+=cnt[ind[i]];
  void calc(int x){
    v[x]=ds[x]=1;dsl[x]=0; //rmom[mom[x]].push_back(x);
     for(int i=1;i<=26;i++){</pre>
       if(nxt[x][i]){
         if(!v[nxt[x][i]]) calc(nxt[x][i]);
         ds[x]+=ds[nxt[x][i]];
         dsl[x]+=ds[nxt[x][i]]+dsl[nxt[x][i]];
  } } }
  void push(const string& str){
    for(int i = 0; i < str.size(); i++)
push(str[i]-'a'+1);</pre>
} sam;
```

Aho-Corasick 6.5

```
struct ACautomata{
  struct Node{
    int cnt, i
    Node *go[26], *fail, *dic;
    Node (){
      cnt = 0; fail = 0; dic = 0; i = 0;
      memset(go,0,sizeof(go));
  }pool[1048576],*root;
  int nMem,n_pattern;
  Node* new_Node(){
    pool[nMem] = Node();
    return &pool[nMem++];
  void init() {
    nMem=0;root=new_Node();n_pattern=0;
    add("");
  void add(const string &str) { insert(root,str,0); }
  void insert(Node *cur, const string &str, int pos){
    for(int i=pos;i<str.size();i++){</pre>
      if(!cur->go[str[i]-'a'])
  cur->go[str[i]-'a'] = new_Node();
      cur=cur->go[str[i]-'a'];
    }
    cur->cnt++; cur->i=n_pattern++;
  void make_fail(){
    queue<Node*> que;
    que.push(root);
    while (!que.empty()){
```

```
Node* fr=que.front(); que.pop();
for (int i=0; i<26; i++){</pre>
         if (fr->go[i]){
           Node *ptr = fr->fail;
           while (ptr && !ptr->go[i]) ptr = ptr->fail;
           fr->go[i]->fail=ptr=(ptr?ptr->go[i]:root);
           fr->go[i]->dic=(ptr->cnt?ptr:ptr->dic);
           que.push(fr->go[i]);
  1 1 1 1
  void query(string s){
   Node *cur=root;
       for(int i=0;i<(int)s.size();i++){</pre>
           while(cur&&!cur->go[s[i]-'a']) cur=cur->fail;
           cur=(cur?cur->go[s[i]-'a']:root);
           if(cur->i>=0) ans[cur->i]++;
           for(Node *tmp=cur->dic;tmp;tmp=tmp->dic)
                ans[tmp->i]++;
  } }// ans[i] : number of occurrence of pattern i
}AC;
```

6.6 Z Value

```
int z[MAXN];
void Z_value(const string& s) { //z[i] = lcp(s[1...],s[
    i...])
  int i, j, left, right, len = s.size();
  left=right=0; z[0]=len;
for(i=1;i<len;i++) {</pre>
    j=max(min(z[i-left],right-i),0);
    for(;i+j<len&&s[i+j]==s[j];j++);
    z[i]=i
    if(i+z[i]>right) {
      right=i+z[i];
      left=i;
```

6.7 BWT

```
struct BurrowsWheeler{
#define SIGMA 26
#define BASE 'a'
  vector<int> v[ SIGMA ];
  void BWT(char* ori, char* res){
     // make ori -> ori + ori
     // then build suffix array
  void iBWT(char* ori, char* res){
     for( int i = 0 ; i < SIGMA ; i ++ )
     v[ i ].clear();
int len = strlen( ori );
     for( int i = 0 ; i < len ; i ++ )
       v[ ori[i] - BASE ].push_back( i );
     vector<int> a;
     for( int i = 0 , ptr = 0 ; i < SIGMA ; i ++ )
  for( auto j : v[ i ] ){</pre>
         a.push_back( j );
ori[ ptr ++ ] = BASE + i;
     for( int i = 0 , ptr = 0 ; i < len ; i ++ ){
  res[ i ] = ori[ a[ ptr ] ];</pre>
       ptr = a[ptr];
     res[len] = 0;
} bwt;
```

6.8 ZValue Palindrome

```
void z_value_pal(char *s,int len,int *z){
  len=(len<<1)+1;
   for(int i=len-1;i>=0;i--)
     s[i]=i&1?s[i>>1]:'@';
  z[0]=1;
   for(int i=1,l=0,r=0;i<len;i++){
     z[i]=i < r?min(z[l+l-i],r-i):1
     \label{eq:while} \begin{aligned} & \text{while}(i-z[i]) = 0\&\&i+z[i] < len\&\&s[i-z[i]] = -s[i+z[i]]) \end{aligned}
           ++z[i];
     if(i+z[i]>r) l=i,r=i+z[i];
} }
```

6.9 Smallest Rotation

```
//rotate(begin(s),begin(s)+minRotation(s),end(s))
int minRotation(string s) {
  int a = 0, N = s.size(); s += s;
  rep(b,0,N) rep(k,0,N) {
     if(a+k == b \mid \mid s[a+k] < s[b+k])
     {b += max(0, k-1); break;}
if(s[a+k] > s[b+k]) {a = b; break;}
  } return a;
6.10 Cyclic LCS
```

```
#define L 0
#define LU 1
#define U 2
const int mov[3][2]=\{0,-1,-1,-1,-1,0\};
int al,bl;
char a[MAXL*2],b[MAXL*2]; // 0-indexed
int dp[MAXL*2][MAXL];
char pred[MAXL*2][MAXL];
inline int lcs_length(int r) {
  int i=r+al,j=bl,l=0;
  while(i>r) {
    char dir=pred[i][j];
     if(dir==LU) l++;
    i+=mov[dir][0];
    j+=mov[dir][1];
  return 1;
inline void reroot(int r) \{ // r = new base row \}
  int i=r, j=1
  while(j<=bl&&pred[i][j]!=LU) j++;</pre>
  if(j>bl) return;
  pred[i][j]=L;
while(i<2*al&&j<=bl) {</pre>
    if(pred[i+1][j]==U) {
       pred[i][j]=L;
    } else if(j<bl&&pred[i+1][j+1]==LU) {</pre>
       i++;
       j++:
       pred[i][j]=L;
    } else {
       j++;
} } }
int cyclic_lcs() {
   // a, b, al, bl should be properly filled
  // note: a WILL be altered in process
              -- concatenated after itself
  char tmp[MAXL];
  if(al>bl) {
    swap(al,bl);
    strcpy(tmp,a);
    strcpy(a,b);
    strcpy(b,tmp);
  strcpy(tmp,a);
  strcat(a,tmp);
  // basic lcs
  for(int i=0;i<=2*al;i++) {</pre>
    dp[i][0]=0;
    pred[i][0]=U;
  for(int j=0;j<=bl;j++) {</pre>
    dp[0][j]=0;
    pred[0][j]=L;
  for(int i=1;i<=2*al;i++) {</pre>
    for(int j=1; j<=bl; j++) {</pre>
```

if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1]+1; else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
if(dp[i][j-1]==dp[i][j]) pred[i][j]=L;
else if(a[i-1]==b[j-1]) pred[i][j]=LU;

else pred[i][j]=U;

for(int i=0;i<al;i++) {</pre>

clcs=max(clcs,lcs_length(i));

} }
// do cyclic lcs

int clcs=0;

```
reroot(i+1);
// recover a
a[al]='\0':
return clcs;
```

Data Structure

7.1 Treap

```
struct Treap{
  int sz , val , pri , tag;
Treap *l , *r;
Treap( int _val ){
    val = _val; sz = 1;
    pri = rand(); l = r = NULL; tag = 0;
void push( Treap * a ){
  if( a->tag ){
    Treap *swp = a -> 1; a -> 1 = a -> r; a -> r = swp;
     int swp2;
    if( a->l ) a->l->tag ^= 1;
if( a->r ) a->r->tag ^= 1;
     a \rightarrow tag = 0;
} }
inline int Size( Treap * a ){ return a ? a->sz : 0; }
void pull( Treap * a ){
   a->sz = Size( a->l ) + Size( a->r ) + 1;
Treap* merge( Treap *a , Treap *b ){
  if( !a | | !b ) return a ? a : b;
  if( a->pri > b->pri ){
    push( a );
     a \rightarrow r = merge(a \rightarrow r, b);
    pull( a );
     return a:
  }else{
     push( b );
     b->l = merge(a, b->l);
    pull( b );
     return b;
void split_kth( Treap *t , int k, Treap*&a, Treap*&b ){
  if( !t ){ a = b = NULL; return; }
  push(t)
  if( Size( t->l ) + 1 <= k ){
    a = t
     split_kth(t\rightarrow r, k-Size(t\rightarrow l)-1, a\rightarrow r, b)
    pull( a );
  }else{
     split_kth( t->l , k , a , b->l );
    pull( b );
void split_key(Treap *t, int k, Treap*&a, Treap*&b){
  if(!t){ a = b = NULL; return;
  push(t);
  if(k \le t - val)
    b = t;
    split_key(t->l,k,a,b->l);
    pull(b);
  else{
    a = t;
    split_key(t->r,k,a->r,b);
    pull(a);
} }
```

7.2 Link-Cut Tree

```
struct Splay {
  static Splay nil, mem[MEM], *pmem;
Splay *ch[2], *f;
  int val, rev, size;
  Splay (int _val=-1) : val(_val), rev(0), size(1)
  \{ f = ch[0] = ch[1] = &nil; \}
 bool isr()
  { return f->ch[0] != this && f->ch[1] != this; }
  int dir()
```

```
{ return f->ch[0] == this ? 0 : 1; } void setCh(Splay *c, int d){
     ch[d] = c
     if (c != &nil) c->f = this;
    pull();
  void push(){
  if( !rev )
               ) return;
    swap(ch[0], ch[1]);
if (ch[0] != &nil) ch[0]->rev ^= 1;
if (ch[1] != &nil) ch[1]->rev ^= 1;
    rev=0;
  void pull(){
    size = ch[0] -> size + ch[1] -> size + 1;
     if (ch[0] != &nil) ch[0]->f = this;
     if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil, Splay::mem[MEM], *Splay::pmem = Splay::
    mem;
Splay *nil = &Splay::nil;
void rotate(Splay *x){
  Splay *p = x->f;
int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
  p->setCh(x->ch[!d], d);
  x->setCh(p, !d);
  p->pull(); x->pull();
vector<Splay*> splayVec;
void splay(Splay *x){
  splayVec.clear();
  for (Splay *q=x;; q=q->f){
     splayVec.push_back(q);
     if (q->isr()) break;
  reverse(begin(splayVec), end(splayVec));
for (auto it : splayVec) it->push();
while (!x->isr()) {
    if (x->f->isr()) rotate(x);
     else if (x->dir()==x->f->dir())
       rotate(x->f),rotate(x);
     else rotate(x), rotate(x);
int id(Splay *x) { return x - Splay::mem + 1; }
Splay* access(Splay *x){
  Splay *q = nil;
for (;x!=nil;x=x->f){
    splay(x)
    x \rightarrow setCh(q, 1);
    q = x;
  }
  return q;
void chroot(Splay *x){
  access(x):
  splay(x);
  x \rightarrow rev \land = 1;
  x->push(); x->pull();
void link(Splay *x, Splay *y){
  access(x);
  splay(x);
  chroot(y)
  x \rightarrow setCh(y, 1);
void cut_p(Splay *y) {
  access(y);
  splay(y)
  y->push();
  y->ch[0] = y->ch[0]->f = nil;
void cut(Splay *x, Splay *y){
  chroot(x);
  cut_p(y);
Splay* get_root(Splay *x) {
  access(x);
  splay(x);
  for(; x - > ch[0] != nil; x = x - > ch[0])
```

```
x->push();
splay(x);
return x;
}
bool conn(Splay *x, Splay *y) {
  x = get_root(x);
  y = get_root(y);
  return x == y;
}
Splay* lca(Splay *x, Splay *y) {
  access(x);
  access(y);
  splay(x);
  if (x->f == nil) return x;
  else return x->f;
}
```

7.3 Black Magic

```
#include <bits/extc++.h>
using namespace __gnu_pbds;
typedef tree<int,null_type,less<int>,rb_tree_tag,
    tree_order_statistics_node_update> set_t;
#include <ext/pb_ds/assoc_container.hpp>
typedef cc_hash_table<int,int> umap_t;
typedef priority_queue<int> heap;
#include<ext/rope>
using namespace __gnu_cxx;
int main(){
  // Insert some entries into s.
  set_t s; s.insert(12); s.insert(505);
  // The order of the keys should be: 12, 505.
  assert(*s.find_by_order(0) == 12);
  assert(*s.find_by_order(3) == 505);
  // The order of the keys should be: 12, 505.
 assert(s.order_of_key(12) == 0);
assert(s.order_of_key(505) == 1);
  // Erase an entry.
  s.erase(12);
  // The order of the keys should be: 505.
  assert(*s.find_by_order(0) == 505);
  // The order of the keys should be: 505.
  assert(s.order_of_key(505) == 0);
 heap h1 , h2; h1.join( h2 );
  rope<char> r[2];
 r[1] = r[0]; // persistenet
string t = "abc";
r[1].insert(0, t.c_str());
  r[ 1 ].erase( 1 , 1 );
  cout << r[ 1 ].substr( 0 , 2 );</pre>
```

8 Others

8.1 SOS dp

8.2 Find max tangent(x,y is increasing)

```
if (np < now && np != 0) now = np;
pnt[np++] = sum[i];
while(now<np&&!cross(pnt[now-1],pnt[now],sum[i+l]))
    now++;
calc = sum[i + l] - pnt[now - 1];
if (ans.y * calc.x < ans.x * calc.y)
    ans = calc,st = pnt[now - 1].x,ed = i + l;
}
return (double)(sum[ed].y-sum[st].y)/(sum[ed].x-sum[st].x);
}</pre>
```

8.3 Exact Cover Set

```
// given n*m 0-1 matrix
// find a set of rows s.t.
// for each column, there's exactly one 1
#define N 1024 //row
#define M 1024 //column
#define NM ((N+2)*(M+2))
char A[N][M]; //n*m 0-1 matrix
int used[N]; //answer: the row used
int id[N][M];
int L[NM],R[NM],D[NM],U[NM],C[NM],S[NM],ROW[NM];
void remove(int c)
  L[R[c]]=L[c]; R[L[c]]=R[c]
  for( int i=D[c]; i!=c; i=D[i] )
  for( int j=R[i]; j!=i; j=R[j] ){
       U[D[j]]=U[j]; D[U[j]]=D[j]; S[C[j]]--;
void resume(int c){
  for( int i=D[c]; i!=c; i=D[i] )
  for( int j=L[i]; j!=i; j=L[j] ){
    U[D[j]]=D[U[j]]=j; S[C[j]]++;
  L[R[c]]=R[L[c]]=c;
int dfs(){
  if(R[0]==0) return 1;
  int md=100000000,c;
  for( int i=R[0]; i!=0; i=R[i] )
     if(S[i]<md){ md=S[i]; c=i; }
  if(md==0) return 0;
  remove(c);
  for( int i=D[c]; i!=c; i=D[i] ){
    used[ROW[i]]=1
     for( int j=R[i]; j!=i; j=R[j] ) remove(C[j]);
    if(dfs()) return 1;
    for( int j=L[i]; j!=i; j=L[j] ) resume(C[j]);
    used[ROW[i]]=0;
  resume(c);
  return 0;
int exact_cover(int n,int m){
  for( int i=0; i<=m; i++ ){</pre>
    R[i]=i+1; L[i]=i-1; U[i]=D[i]=i;
    S[i]=0; C[i]=\bar{i};
  R[m]=0; L[0]=m;
  int t=m+1;
  for( int i=0; i<n; i++ ){</pre>
     int k=-1;
    for( int j=0; j<m; j++ ){</pre>
       if(!A[i][j]) continue;
       if(k==-1) L[t]=R[t]=t;
       else{ L[t]=k; R[t]=R[k]; }
k=t; D[t]=j+1; U[t]=U[j+1];
       L[R[t]]=R[L[t]]=U[D[t]]=D[U[t]]=t;
       C[t]=j+1; S[C[t]]++; ROW[t]=i; id[i][j]=t++;
  for( int i=0; i<n; i++ ) used[i]=0;</pre>
  return dfs();
                                       Hong~Long~Long~Long~
```

/| (00)

/_|_\/_/_|

AC I

(00)/---/

\/|

1/////==

Chong~Chong~Chong~

AC | NO BUG /== -*