[데이콘] 1회: 상점 신용카드 매출 예측 경진대회_4등

Description

2016.03.01~2019.02.28 까지의 카드 거래 데이터를 이용해 2019.03.01~2019.05.31 까지의 상점별 3개월 총매출을 예측하자.

Data field

• store id: 상점의 고유 아이디

• card_id : 사용한 카드의 고유 아이디

• card_company: 비식별화된 카드 회사

• trasacted_date:거래 날짜

• transacted_time: 거래시간(시:분)

• installment_term : 할부 개월 수(포인트 사용 시 할부 개월수 = 60개월 + 실제할부개월)

• region: 상점의 지역

• type_of_business: 상점의 업종

• amount: 거래액(단위는 원이 아니다)

Evaluate Metric

- MAE: 절댓값 오차의 평균 = |실제값 예측값| 의 평균
 - ㅇ 장점
 - 1. 매우 직관적인 지표라 성능지표ex) 자전거 대여 개수 예측 모델에서 MAE가 3이 나왔다면, 평균적으로 자전거 3대 정도를 잘못 예측
 - ㅇ 단점
 - 1. 잔차에 절댓값 씌우기에 실제 값에 대해 underestimates인지 overestimates인지 파악하기 힘들다
 - 2. 스케일에 의존적이다ex) 삼성전자의 주가가 10000원이고, 네이버가 5000원 일때, 두 주가를 예측하는 각각 모델의MSE가 1000이 나왔다면, 동일한 에러율이 아님에도 MAE 숫자는 동일하게 보여진다

Index

Issue

- 예측 날짜는 2019-03~2019-05로 동일하나, 제공 데이터의 마지막 날짜는 차이가 있다.
 - <mark>마지막 날짜부터 3개월만 예측하여 제출한다.</mark>(ex: store_id 111의 마지막 날짜는 2018-09월로 뒤 3개월인 2018-10~2018-12만 예측하여 제출)
 - 예측 기간이 길어질수록 오차가 크게 발생하여 바로 뒤 3개월만 예측하는 것이 정확도가 높았음

step1. Data Load & Resampling

전체적인 데이터, 결측치 확인

- col, num_of_unique, num_of_nan, dtype, front5_value 통해 데이터 확인
- 1) 9개 변수 중 2개의 변수(region, type_of_business)에서 결측치 확인
- => 결측치 비율이 높아서, region, type_of_business 두 변수 제거
- 2) date 정보를 object 에서 datetime 타입으로 변경

변수 선택, 파생 변수 생성 (일자 별 데이터) 등

- store_id 선택
- resampling 을 통한 파생 변수 생성

Day 단위로 Resampling	Month 단위로 Resampling
day_of_week 변수 생성 월 0 ~ 일 6	real_tot_day 변수 생성 한달 전체 거래 일 수 1) 월 단위 day_of_week 행 count
business_day 변수 생성 월~금 1, 토~일 0	real_business_day 변수 생성 한달 거래 중 business 일 수 1) 월 단위 business_day 행 sum
num_of_pay 변수 생성 일일 store_id 별 결제 건수 1) store_id별 하루 몇 번 결제되는지 count 2) *resample('1D') 시계열 메소드 활용	num_of_pay 변수 가공 월 store_id 별 결제 건수
num of revisit 변수생성	num of revisit 변수 가공

일일 store_id 별 단골의 결제 건수 1) store_id별 card_id가 3회 이상이라면 단골이라고 판단 2) store_id별 단골 card_id가 하루 몇번 결제되는지 count	월 store_id 별 단골의 결제 건수
installment_term 변수 가공 일 총 할부 개월 수 * <u>할부를 이용해서 일일 포인트 횟수</u> 를 count한 변수 생성하면 좋을 것 같 다	installmen_term 변수 가공 월 총 할부 개월 수
amount 변수 가공 일 매출 액	amount 변수 가공 월 매출 액

* resample 메소드의 시간 단위 구간 설정

10분 단위 구간 : resample('10T') 1시간 단위 구간 : resample('1H') 1일 단위 구간 : resample('1D') 1주일 단위 구간 : resample('1W')

step2. EDA

• target 데이터 분포 확인 왜도 = 분포의 비대칭도를 나타내는 통계량

*왜도

왜도=0:대칭인분포

왜도 > 0 : 오른쪽으로 긴 꼬리 왜도 < 0 : 왼쪽으로 긴 꼬리

- store_id 별 target 변수 특성과 분포가 각각 다르다
- 설명 변수의 분포 확인
- 다른 변수들이 'amount'와 같은 pattern을 가지는지 확인

step3. Modeling - Time Series

이동평균법 (단순 이동 평균, 지수 이동 평균)

일정기간별 이동평균을 계산하고 이들의 추세를 파악하여 다음 기간을 예측한다 시계열 자료에서 계절 변동과 불규칙 변동을 제거하여, 추세 변동과 순환 변동만 가진 시계열로 반환

지수평활법 (단순 지수 평활법, 홀트의 지수 평활법, 홀트-윈터스의 지수 평활법)

일정기간별이 아닌 모든 시계열 자료를 사용하여 평균을 구하며, 시간 흐름에 따라 최근 시계열에 더 많은 가중치를 부여해 미래를 예측한다

1. 이동 평균법

1-1. Simple Moving Average (단순 이동 평균)

Simple Moving Average

- 단순이동평균은 특정 기간 동안의 data를 단순 평균하여 계산한다. 따라서 그 기간 동안의 data 를 대표하는 값이 이동평균 안에는 그 동안의 data 움직임을 포함하고 있다.
- 이동평균의 특징인 지연(lag)이 발생하며 수학적으로 n/2 시간 만큼의 지연이 발생한다.
- 단순이동평균은 모든 데이터의 중요도를 동일하다고 간주한다.

$$SMA_t = rac{D_{t-(n-1)} + D_{t-(n-2)} + \cdots + D_{t-1} + D_t}{n}$$

- df.rolling(갯수).mean()
- window=3을 예로 들면, rolling의 경우 t 시점에 대한 값으로 t시점, t-1시점, t-2시점의 평균을 사용한다.
- 하지만 우리가 필요한 건 t시점에 대한 값으로 t-1시점, t-2시점, t-3시점의 평균을 구하는 것이다.

1-2. Exponential Moving Average (지수 이동 평균)

Exponential Moving Average

 지수이동평균은 가중이동평균 중의 하나로 단순이동평균보다 최근의 데이터에 높은 가중치를 부여하는 방법이다.

____ 2 ___ 2

$$EMA_t = D_t \times \frac{2}{N+1} + EMA_{t-1} \times (1 - \frac{2}{N+1})$$

• df.ewm(span=갯수).mean()

2. Exponential Smoothing (지수 평활법)

2-1. Simple Exponential Smoothing (단순 지수 평활법)

1) Simple Exponential Smoothing

- trend나 seasonality 반영을 하지 못함
- level 정도만 수평선으로 나옴

$$F_t = F_{t-1} + \alpha (D_{t-1} - F_{t-1})$$

$$F_t = (1 - \alpha)F_{t-1} + \alpha D_{t-1}$$

• F_t : 현재 시점의 예측 값

• F_{t-1} : 이전 시점의 예측 값

• D_{t-1} : 이전 시점의 실제 값

• α : smoothing 요소, $0 < \alpha < 1$

- 추세나 계절성 패턴이 없는 데이터를 예측할 때 쓰기 좋다
- ses_model = SimpleExpSmoothing(df)
- ses_result = ses_model.fit()
- ses_pred = ses.result.forecast(3)

2-2. Holt's Exponenetial Smoothing (홀트 지수 평활법)

2) Holt's Exponential Smoothing

- trend로 데이터를 예측하기 위해 Simple Exponential Smoothing에서 확장한 것이다.
- 예측을 위한 식 외에 level smoothing을 위한 식과 trend smoothing을 위한 식이 포함된다
- 생성된 예측은 선형적으로 나타나기 때문에 예측 범위가 멀어질 수록 over-forecast 되는 경향이 있다.
- · Forecast equation :

$$\hat{y}_{t+h|t} = l_t + hb_t$$

· Level equation :

$$l_t = \alpha y_t + (1 - \alpha)(l_{t-1} + b_{t-1})$$

· Trend Equation:

$$b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1}$$

- l_t : t 시점에서의 level(수준)의 추정을 나타낸다.
- b_t: t 시점에서의 추세(경사)의 추정을 나타낸다.
- lpha : level(수준)에 대한 smoothing parameter이고 다음과 같음 범위를 갖는다. 0<lpha<1
- β^* : trend(추세)에 대한 smoothing parameter이고 다음과 같은 범위를 갖는다. $0 < \beta^* < 1$
- level에 대한 식 l_t 는 t 시간에 대한 관측치 y_t 와 훈련 예측 $l_{t-1}+b_{t-1}$ 의 가중 평균을 나타낸다.
- trend에 대한 식 b_t 는 (l_t-l_{t-1}) 에 근거한 t시간에 대한 추정치와 이전 추정치인 b_{t-1} 의 가중 평균을 나타낸다.
- SES + trend(지속적인 추세)
- holt_model = Holt(df)
- holt result = holt model.fit()
- holt_pred = holt.result.forecast(3)

2-3. Holt-Winter's Exponential Smoothing (홀트-윈터스의 지수 평활법)

3) Holt-Winter's Exponential Smoothing

- Holt-Winter's 방법은 seasonality를 반영하기 위해 Holt's 방법에서 확장된 것이다.
- Holt-Winter's 방법은 예측식과 3개의 smoothing 식으로 구성되어 있다.
 - level에 대한 식 l_t
 - ullet trend에 대한 식 b-t
 - seasonal에 대한 요소 st
 - smoothing parameter에 해당하는 α, β*, γ
 - ullet seasonality의 빈도를 나타내기 위한 m
- seasonal이 변화하는 형태에 따라 두 가지 방법이 있다.
 - additive: seasonal의 변화가 일정하게 지속될 때
 - multiplicative : seasonal의 변화가 level에 비례적일 때
- Forecast equation

$$\hat{y}_{t+h|t} = l_t + hb_t + s_{t+h-m(k+1)}$$

Level equation

$$l_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(l_{t-1} + b_{t-1})$$

Trend equation

$$b_t = \beta^*(l_t - l_{t-1}) + (1 - \beta^*)b_{t-1}$$

· Seasonal equation

$$s_t = \gamma (y_t - l_{t-1} - b_{t-1}) + (1 - \gamma) s_{t-m}$$

• level에 대한 식은 t 시간에 대한 조정된 seasonally 관측치 (y_t-s_{t-m}) 와 non-seasonally 예측 치 $(l_{t-1}+b_{t-1})$ 의 가중 평균을 나타낸다.

- trend에 대한 식은 Holt's 선형식에서와 동일하다.
- seasonal에 대한 식은 현재 seasonal 지수 $(y_t-l_{t-1}-b_{t-1})$ 와 이전 seasonal 지수(m기간 전) 사이의 가중 평균을 나타낸다.
- SES + trend(지속적인 추세) + seasonality(계절성)
- 제일 작은 결과 값을 갖는 최적의 기간 p값 찾기
- es_model = ExponentialSmoothing(df, seasonal_periods=p, trend='add', seasonal='add')
- es_result = es_model.fit()
- es_pred = es.result.forecast(3)
- 1) 가법 방법은 계절 변동이 계열 전체에서 대략적으로 일정 할 때 선호
- 2) 곱셈 방법은 계절 변동이 계열 수준에 비례하여 변할 때 선호
- 3. ARMA (Autoregressive Moving Average, 자기회귀이동평균)

ARMA

• ARMA(p,q) 모형은 AR(p) 모형과 MA(q) 모형의 특징을 모두 가지는 모형이다. 즉, p개의 자기 자신의 과거값과 q개의 과거 백색 잡음의 선형 조합으로 현재의 값이 정해지는 모형이다.

$$Y_t = -\phi_1 Y_{t-1} - \phi_2 Y_{t-2} - \dots - \phi_p Y_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q}$$

- 많은 store_id들이 $|\phi|<1$ 의 AR 정상상태(stationary) 조건에 맞지 않아 1 이상의 p 값을 적용할 수 없다.
- 따라서 차분(difference)을 이용해 비정상상태(non-stationary)의 설명이 가능한 ARIMA를 추가로 진행한다.
- AR 모형 + MA 모형 = ARMA(p 자기회귀 차수, q 이동평균 차수)
- product를 이용해 여러가지 경우의 수로, 제일 작은 AIC 를 갖는 최적의 p, q값 찾기
- set_arma = sm.tsa.ARMA(df, oder=(p,q))
- set_result = set_arma.fit()
- set_pred = set_result.forecast(3)[0]
- 4. ARIMA (Autoregressive Integrated Moving Average, 자기)

A DIRACA LA LIA LILILIA DEL LA LINA LA LA RACCIONE ACCEDENTA

AKIMA(Autoregressive integrated Moving Average)

- ARIMA 모델은 Y_t 을 차분(difference)한 결과로 만들어지 시계열 $\nabla Y_t = Y_t Y_{t-1}$ 이 ARMA 모형을 따르면 원래의 시계열 Y_t 를 ARIMA 모형이라고 한다.
- 만약 d번 차분한 후예야 시계열 $\nabla^d Y_t$ 가 ARMA(p,q) 모형을 따른다면 적분 차수가(order of integration)가 d인 ARIMA 모형으로 ARIMA(p, d, q)로 표기한다.
- q=0인 경우에는 ARI(p,d), q=0인 경우에는 IMA(d,q)로 표기한다.
- p, d, q의 조합을 탐색하며 최적 parameter를 찾고 기준은 fit에 저장되어 있는 AIC(Akaike's Information Criterion)을 기준으로 한다. 다음과 같은 식을 가지며 작을 수록 좋은 모형이다.

AIC = -2log(Likelihood) + 2K

- k : 모델의 추정된 parameter의 갯수
- Likelihood : 모델의 likelihoood function의 최댓값
- 차분 + ARMA 모형 = ARIMA(p 자기회귀 차수, d 차분 횟수, q 이동평균 차수)
- product를 이용해 여러가지 경우의 수로, 제일 작은 AIC 를 갖는 최적의 p, d, a값 찾기
- set_arima = sm.tsa.arima_model.ARIMA(df, oder=(p,d,q))
- set result = set arima.fit()
- set pred = set result.forecast(3)[0]
- 과거 데이터가 지니고 선형 관계(correlation) 뿐만 아니라 추세 관계(cointegration) 까지 고려한 모델
- 선형관계

두 변수 X-Y 간에 correlation이 0보다 크면, X가 큰 값 나올 때 Y값도 큰 값을 가진다 두 변수 X-Y 간에 correlation이 0보다 작으면, X가 큰 값 나올 때 Y값은 작은 값을 가진다

• 추세관계

두 변수 X-Y 간에 cointegration이 0보다 크면, X 값이 이전 값보다 증가하면 Y값도 증가한다 두 변수 X-Y 간에 cointegration이 0보다 작으면, X 값이 이전 값보다 증가하면 Y값은 감소한다

• 선형관계와 추세관계

correlation이 0보다 작고 cointegration은 0보다 크다면, X가 큰 값이며 증가하는 추세에 있는 경우, Y는 현재는 작은 값이나 빠르게 증가하는 추세로 반응하게 된다

correlation이 0보다 크고 cointegration은 0보다 작다면, X가 큰 값이며 증가하는 추세에 있는 경우, Y는 현재는 큰 값이나 빠르게 감소하는 추세로 반응하게 된다

5. Facebook Prophet

Facebook Prophet

• prophet은 페이스북에서 개발한 시계열 예측 패키지이다. ARIMA와 같이 확률론적이고 이론적 인 모형이 아닌 몇가지 경험적 규칙(heuristic rule)을 사용하는 단순 회귀 모형이지만 단기적 예 측에서는 큰 문제 없이 사용할 수 있다.

- propnet는 나는 문제도 시계될에 내면 외계군의 모영을 만든다.
 - 시간 데이터의 각종 특징을 임베딩하여 계절성 추정을 한다.
 - 나머지 데이터는 구간별 선형회귀(piecewise linear regression) 분석을 한다. 구간 구분점을 change point라고 한다.
- prophet을 사용하기 위해서는 ds, y 2개의 column만을 정의하여 사용해야 한다.
- prophet은 다음과 같이 Growth, Seasonality, Holidays로 구성되어 있다.

$$y(t) = g(t) + s(t) + h(t) + error$$

- g(t): Growth, 'linear'와 'logistic'으로 구분되어 있다.
- s(t): Seasonality
- h(t): Holidays, 계절성을 가지진 않지만 전체 추이에 영향을 주는 이벤트를 의미하며 이벤트의 효과는 독립적이라 가정한다.

Growth

- linear growth(+change point) : 추세가 변화하는 시점(change point)은 자동으로 탐지
- non-linear growth(=logistic growth): 자연적 상한성(capacity)이 존재하는 경우

Seasonality

- 사용자들의 행동 양식으로 주기적으로 나타나는 패턴
- 푸리에 급수를 이용해 패턴의 근사치를 찾는다

Holidays

- 주기성을 가지진 않지만 전체 추이에 큰 영향을 주는 이벤트가 존재
- 이벤트 앞뒤로 window 범위를 지정해 해당 이벤트가 미치는 영향의 범위를 설정할 수 있다
- from fbprophet import Prophet
- m = Prophet(growth = 'logistic' | 'linear')
- m.fit(df)
- future = m.make_future_dataframe(periods=)
- future['cap'] = 상한선 설정
- future['floor'] = 하한선 설정
- forecast = m.predict(future)
- m.plot(forecast): forecast 시각화
- m.plot_components(forecast) : trend, weekly, yearly 시각화

step4. Modeling - Regression

회귀 머신러닝 돌릴 수 있게 데이터 환경 만들어주기

Train data

- IJ ヒレム 숭애 연구 기증 못 연구 연락
- 2) DF의 index 데이터 가공해 변수 생성 날짜 데이터 => year 변수, month 변수 생성

Test data

- 1) 각 store id별 예측해야 할 201903~201905에 대한 dataframe 생성
- 2) year, month 외 알 수 없는 변수 값들은 각각 머신러닝을 통해 처리

회귀 머신러닝 실행

- k-fold cv
- LinearRegression, Ridge, Lasso, ElasticNet, GradientBoostingRegression, SupportVectorRegression, XGBRregressor 사용

step5. Modeling - Deep Neural Network

LSTM

- LSTM은 RNN(Recurrent Neural Neetwork)의 일종이다. RNN은 학습을 할 때, 현재 입력값 뿐만 아니라 이전에 들어온 입력 값을 함께 고려하기 때문에 시계열 데이터를 학습하기에 적합하다. 신경망 중간에 있는 hidden layer의 결과값들이 다시 입력값으로 들어가기 때문에 순환 (Recurrent) 신경망(Neural Network)이라는 이름이 붙었다.
- 그러나 RNN은 만약 데이터가 너무 길어져 이를 표현하는 신경망이 깊어져야만 할 경우 문제가 발생한다. RNN은 역전파(Backpropagation)라는 방법을 통해 학습하는데, 그래디언트가 너무 작아져 학습이 잘 안되는 문제(Vanishing Gradient Problem)가 발생할 수 있다. 이 문제를 해결 하기 위해 LSTM이 만들어졌다.
- LSTM은 cell state라는 개념을 도입하여 그 내부에 있는 gate들을 통해 어떤 정보를 기억하고 어떤 정보를 버릴지 추가적인 학습을 가능하게 한다. 이를 통해 RNN이 가진 문제를 해결할 수 있다.
- 신경망을 빠르고 수월하게 학습시키려면 데이터들의 범위를 -1에서 1사이의 값으로 정규화 (normalization)시켜야 한다.
- p_0 의 값이 0인 경우를 대비하여 아래와 같은 식으로 normalization 진행

$$n_i = ((p_i + 1)/(p_0 + 1)) - 1$$

• 예측한 값을 원래의 값으로 되돌릴 때는 아래와 같은 denormalization 수식을 사용한다.

$$p_i = (p_0 + 1)(n_i + 1) - 1$$