Classe:

Secondes Devoir commun de mathématiques n°1

Janvier 2014

<u>Sujet :</u>

B

Durée : 2 heures -Calculatrice autorisée

Nom:	Note:
Prénom :	

Exercice 1 (sur 9 points)

On donne la représentation graphique d'une fonction f définie sur [-4;6] ainsi que le tableau de variation d'une fonction g définie aussi sur [-4;6].

х	-4	0	4	6
g	0 /	-4	3	• 0

1. Cocher la bonne réponse

	Aucune solution	
Dans $[-4; 6]$ l'équation $f(x) = 1$ possède	Exactement 3 solutions	
	Plus de 3 solutions	
	3	
Par la fonction f , -1 est un antécédent de	2	
	0	
	-1	
Le minimum de f sur $[-1; 6]$ est	2	
	5	
	4	
Le maximum de g sur $[-4; 6]$ est	0	
	3	
	aucune solution	
Dans $[-4; 6]$ l'équation $g(x) = 5$ possède	une seule solution	
	2 solutions	

2. Donner le tableau de variation de f par lecture graphique :

х	
f	

3. On admet que $g(\sqrt{3}) = 0$. Donner le tableau de signe de g(x).

х	
g(x)	

4. Donner l'ensemble des solutions de f(x) < 1

.....

5. Compléter le tableau ci-dessous par « vrai » , « faux » ou « on ne peut pas savoir » .

g(-4) < g(-1)	$g(-\pi) > g(\pi)$	g(-3) < g(5)

6. Une troisième fonction h est définie par $h(x) = \frac{2x-1}{2x+1}$

a. Donner son ensemble de définition.

.....

b. Compléter le tableau de valeurs ci-dessous (valeurs arrondies à 0.001 prés) :

х	-1	-0,8	-0,6	-0.4	-0.2	0	0,2	0,4
h(x)								

Exercice 2 (sur 10 points)

On considère, dans le plan muni d'un repère orthonormé (O; I, J), les points :

$$A(-3;3)$$
, $B(1;7)$ et $C(2,5;1,5)$.

On pourra faire le dessin au brouillon mais il n'est pas exigé .

1. Le triangle ABC est-il isocèle ? est-il équilatéral ? Justifier.

2. Calculer les coordonnées de K milieu de [AB].

3. Soit D le point tel que ABCD soit un parallélogramme. Calculer ses coordonnées.

- 4. Soit (C) le cercle de centre K et rayon $2\sqrt{2}$.
 - a. Montrer que A est un point de (C).
 - b. Le point H(1;-0,3) est-il sur (C)? Justifier.
- 5. Déterminer, par le calcul, l'équation de la droite (AB).

6. Calculer les coordonnées du point M, intersection de la droite (AB) avec l'axe des abscisses

Exercice 3 (sur 10 points)

Géraldine a décidé de changer son abonnement pour son téléphone pour passer à la 4G. Le tableau suivant donne les conditions d'abonnement :

		Opérateur A	Opérateur B	Opérateur C	Opérateur D
Conditions	Abon.	35€	15€	10€	5€
abonnement par mois	SMS	illimité	0,03€	0,04€	Les 100 premiers gratuits puis 0,10€

1. Indiquer ci-dessous, pour chaque opérateur, le montant que devrait payer Géraldine pour 100 SMS.

	Opérateur A	Opérateur B	Opérateur C	Opérateur D
Pour 100 SMS				

2. Indiquer ci-dessous, pour chaque opérateur, le montant que devrait payer Géraldine pour 200 SMS.

	Opérateur A	Opérateur B	Opérateur C	Opérateur D
Pour 200 SMS				

3. Si Géraldine envoie x SMS par mois. Déterminer, en fonction de x, le montant à payer pour chaque opérateur.

	Opérateur A	Opérateur B	Opérateur C	Opérateur D
Pour x SMS	f(x) =	g(x) =	h(x) =	$k(x) = \left\{ \begin{array}{c} \dots \\ \dots \end{array} \right.$

4. Dans le graphique donné en fin d'exercice , on a représenté les fonctions f, g, h et k. Indiquer la courbe correspondant à chaque fonction .

	Fonction f	Fonction g	Fonction h	Fonction k
Courbe				

- 5. Résoudre l'équation 0.03 x + 15 = 35
- 6. Compléter les pointillés ci-dessous pour indiquer quel opérateur Géraldine doit choisir en fonction du nombre x de SMS envoyés par elle. A et B ont pour coordonnées respectives (250 ; 20) et (500 ; 30)
- Si $0 \le x \le$... elle doit choisir l'opérateur ...
- Si
- Si
- C;

Exercice 4 (sur 9 points)

- 1. Indiquer dans le tableau ci-dessous les équations des droites représentées ci-dessous
- 2. Tracer les droites D₁ et D₂ dont les équations sont données dans le tableau.

D ₁	$y = \frac{1}{2}x + 4$
D ₂	y = -x - 2
D ₃	
D ₄	
D ₅	y =x - 6

3. Déterminer par le calcul les coordonnées du point d'intersection de D₁ et D₂

4. Dresser le tableau de signe de chacune des fonctions f et g définies sur \mathbb{R} par :

В

$$f(x) = -x - 2$$
 et $g(x) = \frac{1}{2}x + 4$

X	
f(x)	

x	
g(x)	

5. La première colonne du tableau de signe ci-contre ci-contre a été effacée. La compléter

 -8	<u>-3</u> 7		+∞
 +	0	_	

Exercice 5 (sur 16 points)

La figure donnée ci-contre est à compléter au fur et à mesure.

- 1. Constructions et lectures
 - a. Construire le vecteur $\vec{w} = \vec{u} + \vec{v}$ puis lire ses coordonnées. :

2. Soit D le point défini par la relation

$$\overrightarrow{BD} = 2 \overrightarrow{BA} - \overrightarrow{CB}$$

- a. Placer le point D.
- b. Déterminer les coordonnées du point D par le calcul.
- 3. On admet que le point D a pour coordonnées (4 ; 1)
 - a. Calculer les coordonnées du vecteur \overrightarrow{AB} et celles du vecteur \overrightarrow{CD}
 - b. Montrer que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires. Que peut-on en déduire pour les droites (AB)et (CD) ?

c. A l'aide la question précédent, déterminer la nature du quadrilatère ABCD . On justifiera .

4. On se donne l'algorithme suivant :

Saisir xA, yA, xB, yB, xC, yC, xD, yD		
Affecter à X la valeur $xB - xA$		
Affecter à Y la valeur $yB - yA$	ligne 3	
Affecter à X' la valeur $xD-xC$	ligne 4	
Affecter à Y' la valeur $yD-yC$	ligne 5	
Affecter à R la valeur	ligne 6	
Affecter à S la valeur		
Affecter à R' la valeur		
Affecter à S' la valeur		
Si et		
Afficher "le quadrilatère ABCD est un trapèze de bases [AB] et [CD]"		
Sinon	ligne 12	
$Si XY'-X'Y \neq 0 \ et \ RS'-R'S=0$	ligne 13	
Afficher "le quadrilatère ABCD est un trapèze de bases et "	ligne 14	
Sinon		
Afficher "le quadrilatère n'est pas un trapèze"	ligne 16	
FinSi	ligne 17	
FinSi	ligne 18	

- a. Compléter les lignes 6 à 9 pour déterminer les coordonnées des vecteurs \overrightarrow{AD} et \overrightarrow{BC}
- b. Compléter les lignes 10 et 14.
- c. Que va retourner cet algorithme si on donne en entrée les coordonnées des points A, B, C et D de notre exercice ?
- 5. On donne les points $P(\frac{2}{3}; 3)$, $E(\frac{1}{2}; \frac{9}{2})$ et F(1; 0). Montrer que les points E, P et F sont alignés.

6. Soit G(x; 3).

7.

a. Calculer abscisse x de G pour que A, G et C soient alignés.

- b. Que constate-t-on?
- a. Démontrer que, pour tous points O, A et B, on a: $\overrightarrow{BA} = \overrightarrow{OA} \overrightarrow{OB}$
 - b. En déduire que , pour tous points O , A , B et C , on a : $\overrightarrow{OA} \overrightarrow{OB} + \overrightarrow{AC} = \overrightarrow{BC}$