- SS1 Chemistry Lesson Note
- Week 2: Introduction to Chemistry II

1. Adverse Effects of Chemicals

Chemicals are useful, but if misused or mishandled, they can cause **serious harm** to people, animals, and the environment.

a. Drug Abuse

- Definition: The misuse or overuse of drugs without a doctor's prescription or supervision.
- **Examples:** Codeine, tramadol, marijuana, cocaine.
- Effects:
 - Addiction
 - o Mental illness
 - Organ damage (liver, kidney, brain)
 - o Death
- Chemistry helps identify harmful drug combinations and monitor dosages.

b. Poisoning

- Occurs when harmful chemicals enter the body by swallowing, inhaling, or through the skin.
- Examples of poisons:
 - Household cleaners (e.g., bleach)
 - Insecticides (e.g., Sniper)
 - Industrial waste
- **Symptoms:** Vomiting, difficulty breathing, unconsciousness.
- **★** Laboratory chemicals must be clearly labeled and stored securely.

c. Corrosion

Corrosion is the gradual destruction of materials (usually metals) by chemical reactions.

Examples:

- Rusting of iron
- o Acid rain damage to buildings
- Corrosion of pipelines
- Causes: Acidic chemicals, water, oxygen.

Chemical coatings and galvanization are solutions provided by chemistry to reduce corrosion.

d. Pollution

Definition: Introduction of harmful substances (pollutants) into the environment.

Types:

- o Air Pollution: Smoke from factories, vehicles (CO₂, SO₂, etc.)
- o Water Pollution: Chemical waste in rivers, oil spills
- o Soil Pollution: Pesticide and fertilizer runoff

Consequences:

- Health issues
- Climate change
- Death of aquatic life
- Poor agricultural productivity
- Environmental chemistry studies how to reduce these effects.

2. Scientific Method

The **scientific method** is the step-by-step procedure scientists use to **investigate problems** and find answers logically.

Steps in the Scientific Method

Step	Description	Example
1. Observation	Noticing a problem or phenomenor	n "My tap water has a bad smell."
2. Question	Asking a question about it	"Why does the water smell?"
3. Hypothesis	A possible explanation or guess	"It might contain decaying matter."
4. Experiment	Testing the hypothesis	Collect samples and test for bacteria
5. Result	Recording what happened	Bacteria was present in water sample
6. Conclusion	Final judgment from result	Water is contaminated – needs treatment

Application of Scientific Method in Daily Life

- Checking if fertilizers improve plant growth
- Investigating cause of food spoilage
- Creating new cleaning agents
- Testing new medicines and vaccines
- Chemistry relies heavily on the scientific method to ensure accuracy, safety, and reliability.

Chemist's Responsibilities

Chemists must:

- Avoid misuse of chemicals.
- Follow safety guidelines in labs.
- Label and store chemicals properly.
- Dispose of chemical waste responsibly.
- Use the scientific method to solve problems ethically.

Evaluation Questions