Answer all questions. Each question carries one Mark.

 $(5 \times 1 = 5)$

Note: Write the answers in orderly at one place

- 1. If $(1+i)^{100}=2^{49}(x+iy)$, then $x^2+y^2=$

- D) 16
- 2. Which of the following statements is /are correct?
 - I) If $Z=1+i\sqrt{3}$, then $|ArgZ|+|Arg\bar{Z}|=\frac{2\pi}{3}$
 - II) $1, \omega, \omega^2$ are cube roots of unity then $(1 + \omega \omega^2)^5 + (1 \omega + \omega^2)^5 = -32$
 - A) Only I

B)

C) Both I & II

- D) Neither I nor II
- 3. If $a = cis\alpha$, $b = cis\beta$ then $\frac{1}{2} \left(ab + \frac{1}{ab} \right) =$
 - A) $sin(\alpha + \beta)$

C) $2\cos(\alpha-\beta)$

- $sin(\alpha \beta)$
- If α , β are the roots of equation $x^2 4x + 5$, then the quadratic equation whose roots are $\alpha^2 + \beta$ and $\alpha + \beta^2$ is
 - A) $x^2 5x + 17$
- B) $x^2 10x 34$ D) $x^2 10x + 34$
- C) $x^2 10x + 17$
- Which of the following is True?
 - Multiplicative Inverse of (3,4) is $(\frac{3}{25}, \frac{4}{25})$
 - The value of $(1+i)^{16} = 256$ B)
 - If 3 < x < 4, then the value of $x^2 7x + 12$ is positive
 - The minimum value of $x^2 8x + 17 \forall x \in R$ is 2.

SECTION-B

Answer any two of the following questions.

 $(2 \times 5 = 10)$

6. a) If
$$x + iy = \frac{3}{2 + \cos\theta + i\sin\theta}$$
, then show that $x^2 + y^2 = 4x - 3$

3M

- b) If Z = x + iy and the point P represents Z in the Argand Plane and $Arg\left(\frac{Z-1}{Z+1}\right) = \frac{\pi}{4}$, then find the Locus of P. 2M
- 7. If $\cos \alpha + \cos \beta + \cos \gamma = 0 = \sin \alpha + \sin \beta + \sin \gamma$, then prove that

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = \frac{3}{2} = \sin^2\alpha + \sin^2\beta + \sin^2\gamma$$

5M

8. a) Solve
$$2x^4 + x^3 - 11x^2 + x + 2 = 0$$

3M

b) If x is real, then Prove that
$$\frac{x}{x^2-5x+9}$$
 lies between $\frac{-1}{11}$ and 1.

2M