계산이론

2022년 1학기 이은주

2장 유한 오토마타 <u>결정적 유한 인</u>식기와 비결정적 유한 인식기의 동치성

- [정의] **λ-closure(s)** : 상태 s에서 λ-transition 만을 이용하여 도달 가능한 상태들의 집합 (s도 포함)
 - λ -closure(s) = {s} \cup { q | $\delta(p,\lambda)$ =q, $p \in \lambda$ -closure(s) }
 - λ -closure(T) = $\bigcup_{s \in T} \lambda$ -closure(s)
- [정의] a-successor(s): 상태 s에서 입력기호 a에 의해 도달 가능한 상태들의 집합
 - a-successor(s) = $\bigcup_{qi \in T} \lambda$ -closure($\delta(q_i, a)$) where T = λ -closure(s)
 - 즉, T = λ-closure(s)
 - Ta = $\delta(T, a)$
 - a-successor(s) = λ -closure(Ta)

• [ex]

- λ -closure(A) = {A,B,D}
- λ -closure({A,C}) = λ -closure(A) $\cup \lambda$ -closure(C) = {A,B,C,D}

• a-successor(A):

$$T = \lambda\text{-closure}(A) = \{A, B, D\}$$

Ta =
$$\delta(T, a) = \delta(A, a) \cup \delta(B, a) \cup \delta(D, a) = \{A, C, D\}$$

$$\lambda$$
-closure(Ta) = λ -closure({A,C,D}) = {A,B,C,D}

$$\therefore$$
 a-successor(A) = {A,B,C,D}

• b-successor(C):

$$T = \lambda$$
-closure(C) = {C,D}

Tb =
$$\delta$$
(T, b) = δ (C, b) \cup δ (D, b) = {C}

$$\lambda$$
-closure(Tb) = λ -closure({C}) = {C,D}

$$\therefore$$
 b-successor(C) = {C,D}

• [ex]

$$\lambda$$
-closure(q_0) = { q_0 , q_1 , q_2 }

$$\delta(\{q_0, q_1, q_2\}, o) = \{q_0\}$$

$$\lambda\text{-closure}(\{q_0\}) = \{q_0, q_1, q_2\}$$

$$\therefore \text{ o-successor}(q_0) = \{q_0, q_1, q_2\} = A$$

$$\lambda$$
-closure({q₀,q₁,q₂}) = {q₀,q₁,q₂}

$$\delta(\{q_0, q_1, q_2\}, 1)) = \{q_1\}$$

$$\lambda$$
-closure($\{q_1\}$) = $\{q_1, q_2\}$

$$\therefore$$
 1-successor(A) = $\{q_1, q_2\}$

• [ex]

• marking A :

a-successor(A) =
$$\lambda$$
-closure($\delta(\{1,3,4\},a)$) = λ -closure($\{2\}$) = $\{2\}$ = B , Q'= $\{A,B\}$
b-successor(A) = Φ
c-successor(A) = λ -closure($\{3\}$) = $\{3,4\}$ = C , Q' = $\{A,B,C\}$

• marking B :

a-successor(B) =
$$\lambda$$
-closure($\delta(\{2\},a)$) = Φ
b-successor(B) = λ -closure($\{4\}$) = $\{4\}$ = D , Q' = $\{A,B,C,D\}$
c-successor(B) = Φ

• marking C :

a-successor(C) =
$$\Phi$$

b-successor(C) =
$$\Phi$$

c-successor(C) =
$$\lambda$$
-closure({3}) = {3,4} = C

• marking D :

$$a$$
-successor(D) = Φ

$$b$$
-successor(D) = Φ

$$c$$
-successor(D) = Φ

• [ex] nfa ⇒ dfa

초기화 : λ -closure(q_o) = $\{q_o\}$ = A , Q' = $\{A\}$

• marking A :

a-successor(A) =
$$\lambda$$
-closure($\{q_0, q_1, q_2\}$) = $\{q_0, q_1, q_2\}$ = B, Q' = $\{A, B\}$

$$b$$
-successor(A) = Φ

$$c$$
-successor(A) = Φ

• marking B :

a-successor(B) =
$$\{q_0, q_1, q_2\} = B$$

b-successor(B) = $\{q_1\} = C$, $Q' = \{A, B, C\}$
c-successor(B) = λ -closure($\{q_2\}$) = $\{q_1, q_2\} = D$, $Q' = \{A, B, C, D\}$

• marking C :

a-successor(C) =
$$\Phi$$

b-successor(C) = $\{q_1\}$ = C
c-successor(C) = Φ

a-successor(C) =
$$\Phi$$

b-successor(C) = $\{q_1\}$ = C
c-successor(C) = λ -closure($\{q_2\}$) = $\{q_1,q_2\}$ = D

- [ex]
 - L(M) = { awa | w ∈ {a,b}* }을 인식하는 nfa M ⇒ dfa

- 초기화 : λ-closure(q_o) = {**q_o} = A**
- marking A :

a-successor(A) =
$$\{q_1\}$$
 = B

$$b$$
-successor(A) = Φ

• marking B :

a-successor(B) =
$$\{q_1, q_2\} = C$$

$$b$$
-successor(B) = $\{q_1\}$ = B

• marking C :

a-successor(C) =
$$\{q_1, q_2\}$$
 = C

b-successor(C) =
$$\{q_1\}$$
 = B

• [ex] L(M) = { wabb | w∈{a,b}*}을 인식하는 nfa M ⇒ dfa

• 초기화 : λ-closure(o) = **{0,1,2,4,7} = A**

• marking A :

a-successor(A) =
$$\lambda$$
-closure($\delta(\{0,1,2,4,7\},a)$) = λ -closure($\{3,8\}$)
= $\{1,2,3,4,6,7,8\}$ = B
b-successor(A) = λ -closure($\delta(\{0,1,2,4,7\},b)$) = λ -closure($\{5\}$)
= $\{1,2,4,5,6,7\}$ = C

• marking B :

a-successor(B) =
$$\lambda$$
-closure($\delta(\{1,2,3,4,6,7,8\},a)$) = λ -closure($\{3,8\}$) = B b-successor(B) = λ -closure($\delta(\{1,2,3,4,6,7,8\},b)$) = λ -closure($\{5,9\}$) = $\{1,2,4,5,6,7,9\}$ = D

marking C :

a-successor(C) = λ -closure($\delta(\{1,2,4,5,6,7\},a)$) = λ -closure($\{3,8\}$) = B b-successor(C) = λ -closure($\delta(\{1,2,4,5,6,7\},b)$) = λ -closure($\{5\}$) = C

• marking D :

a-successor(D) = λ -closure($\delta(\{1,2,4,5,6,7,9\},a)$) = λ -closure($\{3,8\}$) = B b-successor(D) = λ -closure($\delta(\{1,2,4,5,6,7,9\},b)$) = λ -closure($\{5,10\}$) = $\{1,2,4,5,6,7,10\}$ = E

• marking E :

a-successor(E) = λ -closure($\delta(\{1,2,4,5,6,7,10\},a)$) = λ -closure($\{3,8\}$) = B b-successor(E) = λ -closure($\delta(\{1,2,4,5,6,7,10\},b)$) = λ -closure($\{5\}$) = C

• 예제 2.13(70 page)

$$\delta(q_0, 0) = \{ q_0, q_1 \}$$

$$\delta(q_1, o) = \{q_2\}$$

$$\delta(q_2, o) = \emptyset$$

$$\delta(q_0, 1) = \{q_1\}$$

$$\delta(q_1, 1) = \{q_2\}$$

$$\delta(q_2, 1) = \{q_2\}$$

• 예제 2.13(70 page) 계속

 q_0 에서 $\{q_0, q_1\}, \{q_1\}$ 생성 $\delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1, q_2\}$ $\delta(q_0, 1) \cup \delta(q_1, 1) \cup \delta(q_2, 1) = \{q_1, q_2\}$ $\{q_0, q_1, q_2\}$ 와 $\{q_1, q_2\}$ 추가

• 예제 2.13(70 page) 계속

$$\delta(q_1, 0) \cup \delta(q_2, 0) = \{q_2\}$$
 $\delta(q_1, 1) \cup \delta(q_2, 1) = \{q_2\}$
 $\{q_1, q_2\} 으로 부터 \{q_2\}$
 $\{q_1\} 으로 부터 \{q_2\}$
 $\delta(q_2, 1) = \{q_2\}$
 $\delta(q_2, 0) 은 없으므로 trap 상태 (labeled \varnothing)$

• 예제 2.13(70 page) 계속

