







## Metropolis

# Algorithme de Metropolis (Gaussien)

La suite  $(X_n)_n$  obtenue admet une distribution stationnaire donnée par la densité f.

Peut-on utiliser cet algorithme si on a uniquement accès à  $g \propto f$ ?

Oui!  $f = \frac{g}{\int g}$  et la constante de normalisation  $\int g$  disparaît dans le rapport  $\frac{f(y)}{f(X_n)} = \frac{g(y)}{g(X_n)}$ 

## Quel est l'effet de $\sigma^2$ ?

 $\sigma^2$  contrôle le trade-off "exploration-exploitation"

Soit f une densité de probabilité. On suppose que  $X_n$  est déjà généré.  $X_{n+1}$  est défini par:

1. Générer  $\boldsymbol{y} \sim \mathcal{N}(X_n, \sigma^2)$ 

2. Générer  $u \sim \mathcal{U}([0,1])$ .

3. Si  $u < \min(1, \frac{f(y)}{f(X_n)})$  alors  $X_{n+1} = y$ , sinon  $X_{n+1} = X_n$ .

# L'algorithme

# L'algorithme

### Algorithme de Metropolis (Gaussien)

Soit f une densité de probabilité. On suppose que  $X_n$  est déjà généré.  $X_{n+1}$  est défini par:

- 1. Générer  $y \sim \mathcal{N}(X_n, \sigma^2)$
- 2. Générer  $\boldsymbol{u} \sim \mathcal{U}([0,1])$ .
- 3. Si  $u < \min(1, \frac{f(y)}{f(X_n)})$  alors  $X_{n+1} = y$ , sinon  $X_{n+1} = X_n$ .

La suite  $(X_n)_n$  obtenue admet une distribution stationnaire donnée par la densité f.

Peut-on utiliser cet algorithme si on a uniquement accès à  $g \propto f$ ?

Oui!  $f = \frac{g}{\int g}$  et la constante de normalisation  $\int g$  disparaît dans le rapport  $\frac{f(y)}{f(X_n)} = \frac{g(y)}{g(X_n)}$ 





- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)





#### Algorithme de Metropolis (Gaussien)

Soit f une densité de probabilité. On suppose que  $X_n$  est déjà généré.  $X_{n+1}$  est défini par:

- 1. Générer  $\mathbf{y} \sim \mathcal{N}(X_n, \sigma^2)$
- 2. Générer  $\boldsymbol{u} \sim \mathcal{U}([0,1])$ .
- 3. Si  $u < \min(1, \frac{f(y)}{f(X_n)})$  alors  $X_{n+1} = y$ , sinon  $X_{n+1} = X_n$ .

La suite  $(X_n)_n$  obtenue admet une distribution stationnaire donnée par la densité f.

### Avantages:



