Thinking about Problems

Ryan Greenup & James Guerra

August 28, 2020

Contents

§ 1 Fibonacci Sequence	1
\P 1.1 Computational Approach $\dots\dots\dots\dots\dots\dots\dots\dots\dots$	1
\P 1.2 Exponential Generating Functions $\dots \dots \dots$	3
1.2.1 Motivation	3
1.2.2 Example	5
1.2.3 Derivative of the Exponential Generating Function	6
1.2.4 Homogeneous Proof	7
\P 1.3 Fibonacci Sequence and the Golden Ratio $\dots \dots \dots$	12

§ 1 Fibonacci Sequence

The Fibonacci Sequence appears to occur in nature very frequently (see [11, 1, 7, 8, 4, 10] This pops up all the time in natural sequences and fractals so we'll deal with ways to solve it The Fibonacci Sequence The Fibonacci Sequence and the Golden Ratio both occur in patterns observed in nature and are fundamentally related (see section \P 1.3), in this section we lay out a strategy to find an analytic solution to the Fibonacci Sequence by relating it to a continuous series and generalise this approach to any homogenous linear recurrence relation.

The hope is that by identifying relationships between discrete and continuos systems insights can be drawn with regard to the occurrence of patterns related to the *Fibonacci Sequence* and *Golden Ratio* in nature.

¶ 1.1 Computational Approach

The Fibonacci Numbers are given by:

$$F_n = F_{n-1} + F_{n-2} \tag{1}$$

This type of recursive relation can be expressed in *Python* by using recursion, as shown in listing 1, however using this function will reveal that it is extraordinarily slow, as shown in listing 2, this is because the results of the function are not cached and every time the function is called every value is recalculated¹, meaning that the workload scales in exponential as opposed to polynomial time.

The functools library for python includes the @functools.lru_cache decorator which will modify a defined function to cache results in memory [2], this means that the recursive function will only need to calculate each result once and it will hence scale in polynomial time, this is implemented in listing 3.

```
def rec_fib(k):
    if type(k) is not int:
        print("Error: Require integer values")
        return 0
    elif k == 0:
        return 0
    elif k <= 2:
        return 1
    return rec_fib(k-1) + rec_fib(k-2)</pre>
```

Listing 1: Defining the Fibonacci Sequence (1) using Recursion

```
start = time.time()
rec_fib(35)
print(str(round(time.time() - start, 3)) + "seconds")

## 2.245seconds
```

Listing 2: Using the function from listing 1 is quite slow.

```
from functools import lru_cache
     @lru_cache(maxsize=9999)
     def rec_fib(k):
         if type(k) is not int:
             print("Error: Require Integer Values")
             return 0
         elif k == 0:
             return 0
         elif k <= 2:
10
             return 1
11
         return rec_fib(k-1) + rec_fib(k-2)
13
  start = time.time()
  rec_fib(35)
  print(str(round(time.time() - start, 3)) + "seconds")
  ## 0.0seconds
```

Listing 3: Caching the results of the function previously defined 2

```
start = time.time()
rec_fib(6000)
print(str(round(time.time() - start, 9)) + "seconds")

## 8.3923e-05seconds
```

Restructuring the problem to use iteration will allow for even greater performance as demonstrated by finding F_{10^6} in listing 4. Using a compiled language such as *Julia* however would be thousands of times faster still, as demonstrated in listing 5.

```
def my_it_fib(k):
          if k == 0:
2
              return k
         elif type(k) is not int:
              print("ERROR: Integer Required")
              return 0
          # Hence k must be a positive integer
         i = 1
         n1 = 1
10
         n2 = 1
11
12
          # if k <=2:
              return 1
         while i < k:
            no = n1
             n1 = n2
18
             n2 = no + n2
19
             i = i + 1
20
         return (n1)
^{21}
^{22}
     start = time.time()
     my_it_fib(10**6)
     print(str(round(time.time() - start, 9)) + "seconds")
25
26
    ## 6.975890398seconds
```

Listing 4: Using Iteration to Solve the Fibonacci Sequence

In this case however an analytic solution can be found by relating discrete mathematical problems to continuous ones as discussed below at section .

¹Dr. Hazrat mentions something similar in his book with respect to *Mathematica*[®] [3, Ch. 13]

```
function my_it_fib(k)
       if k == 0
           return k
       elseif typeof(k) != Int
           print("ERROR: Integer Required")
           return 0
       end
       # Hence k must be a positive integer
       i = 1
       n1 = 1
       n2 = 1
13
       # if k <=2:
14
          return 1
15
       while i < k
16
          no = n1
17
          n1 = n2
          n2 = no + n2
          i = i + 1
20
21
       end
       return (n1)
22
23
  end
  @time my_it_fib(10^6)
25
26
       my_it_fib (generic function with 1 method)
         0.000450 seconds
   ##
28
```

Listing 5: Using Julia with an iterative approach to solve the 1 millionth fibonacci number

¶ 1.2 Exponential Generating Functions

1.2.1 Motivation

Consider the Fibonacci Sequence from (1):

$$a_n = a_{n-1} + a_{n-2}$$

$$\iff a_{n+2} = a_{n+1} + a_n \tag{2}$$

from observation, this appears similar in structure to the following *ordinary differential equation*, which would be fairly easy to deal with:

$$f''(x) - f'(x) - f(x) = 0$$

By ODE Theory we have $y \propto e^{m_i x}, \ i = 1, 2$:

$$f(x) = e^{mx} = \sum_{n=0}^{\infty} \left[r^m \frac{x^n}{n!} \right]$$

So using some sort of a transformation involving a power series may help to relate the discrete problem back to a continuous one.

1.2.2 Example

Consider using the following generating function, (the derivative of the generating function as in (4) and (5) is provided in section 1.2.3)

$$f(x) = \sum_{n=0}^{\infty} \left[a_n \cdot \frac{x^n}{n!} \right] \tag{3}$$

$$\implies f'(x) = \sum_{n=0}^{\infty} \left[a_{n+1} \cdot \frac{x^n}{n!} \right] \tag{4}$$

$$\implies f''(x) = \sum_{n=0}^{\infty} \left[a_{n+2} \cdot \frac{x^n}{n!} \right] \tag{5}$$

So the recursive relation from (2) could be expressed:

$$a_{n+2} = a_{n+1} + a_n$$

$$\frac{x^n}{n!} a_{n+2} = \frac{x^n}{n!} (a_{n+1} + a_n)$$

$$\sum_{n=0}^{\infty} \left[\frac{x^n}{n!} a_{n+2} \right] = \sum_{n=0}^{\infty} \left[\frac{x^n}{n!} a_{n+1} \right] + \sum_{n=0}^{\infty} \left[\frac{x^n}{n!} a_n \right]$$

And hence by applying (3):

$$f''(x) = f'(x) + f(x) \tag{6}$$

Using the theory of higher order linear differential equations with constant coefficients it can be shown:

$$f(x) = c_1 \cdot \exp\left[\left(\frac{1-\sqrt{5}}{2}\right)x\right] + c_2 \cdot \exp\left[\left(\frac{1+\sqrt{5}}{2}\right)\right]$$

By equating this to the power series:

$$f(x) = \sum_{n=0}^{\infty} \left[\left(c_1 \left(\frac{1 - \sqrt{5}}{2} \right)^n + c_2 \cdot \left(\frac{1 + \sqrt{5}}{2} \right)^n \right) \cdot \frac{x^n}{n} \right]$$

Now given that:

$$f(x) = \sum_{n=0}^{\infty} \left[a_n \frac{x^n}{n!} \right]$$

We can conclude that:

$$a_n = c_1 \cdot \left(\frac{1 - \sqrt{5}}{2}\right)^n + c_2 \cdot \left(\frac{1 + \sqrt{5}}{2}\right)$$

By applying the initial conditions:

$$a_0 = c_1 + c_2 \implies c_1 = -c_2$$
 $a_1 = c_1 \left(\frac{1+\sqrt{5}}{2}\right) - c_1 \frac{1-\sqrt{5}}{2} \implies c_1 = \frac{1}{\sqrt{5}}$

And so finally we have the solution to the Fibonacci Sequence 2:

$$a_{n} = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n} \right]$$

$$= \frac{\varphi^{n} - \psi^{n}}{\sqrt{5}}$$

$$= \frac{\varphi^{n} - \psi^{n}}{\varphi - \psi}$$
(7)

where:

•
$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.61 \dots$$

•
$$\psi = 1 - \varphi = \frac{1 - \sqrt{5}}{2} \approx 0.61 \dots$$

1.2.3 Derivative of the Exponential Generating Function

Differentiating the exponential generating function has the effect of shifting the sequence to the backward: [5]

$$f(x) = \sum_{n=0}^{\infty} \left[a_n \frac{x^n}{n!} \right]$$

$$f'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{n=0}^{\infty} \left[a_n \frac{x^n}{n!} \right] \right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} \left(a_0 \frac{x^0}{0!} + a_1 \frac{x^1}{1!} + a_2 \frac{x^2}{2!} + a_3 \frac{x^3}{3!} + \dots \frac{x^k}{k!} \right)$$

$$= \sum_{n=0}^{\infty} \left[\frac{\mathrm{d}}{\mathrm{d}x} \left(a_n \frac{x^n}{n!} \right) \right]$$

$$= \sum_{n=0}^{\infty} \left[\frac{a_n}{(n-1)!} x^{n-1} \right]$$

$$\implies f'(x) = \sum_{n=0}^{\infty} \left[\frac{x^n}{n!} a_{n+1} \right]$$

$$(9)$$

Inductive Proof JAMES

This can be shown for all derivatives by way of induction, for

$$f^{(k)}(x) = \sum_{n=0}^{\infty} \frac{a_{n+k} \cdot x^n}{n!} \quad \text{for } k \ge 0$$
 (10)

Assume that. $f^{(k)}\left(x\right)=\sum_{n=0}^{\infty}\frac{a_{n+k}\cdot x^n}{n!}$ Using this assumption, prove for the next element \$k+1\$\$

We need $f^{(k+1)}(x) = \sum_{n=0}^{\infty} \frac{a_{n+k+1} \cdot x^n}{n!}$

$$\begin{split} \mathsf{LHS} &= f^{(k+1)}(x) \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \left(f^{(k)}(x) \right) \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{n=0}^{\infty} \frac{a_{n+k} \cdot x^n}{n!} \right) \quad \text{by assumption} \\ &= \sum_{n=0}^{\infty} \frac{a_{n+k} \cdot n \cdot x^{n-1}}{n!} \\ &= \sum_{n=1}^{\infty} \frac{a_{n+k} \cdot x^{n-1}}{(n-1)!} \\ &= \sum_{n=0}^{\infty} \frac{a_{n+k+1} \cdot x^n}{n!} \\ &= \mathsf{RHS} \end{split}$$

Thus, if the derivative of the series shown in (3) shifts the sequence across, then every derivative thereafter does so as well, because the first derivative has been shown to express this property (9), all derivates will.

1.2.4 Homogeneous Proof

An equation of the form:

$$\sum_{i=0}^{n} \left[c_i \cdot f^{(i)}(x) \right] = 0 \tag{11}$$

is said to be a homogenous linear ODE: [12, Ch. 2]

Linear because the equation is linear with respect to f(x)

Ordinary because there are no partial derivatives (e.g. $\frac{\partial}{\partial x}(f(x))$)

Differential because the derivates of the function are concerned

Homogenous because the RHS is 0

A non-homogeous equation would have a non-zero RHS

There will be k solutions to a kth order linear ODE, each may be summed to produce a superposition which will also be a solution to the equation, [12, Ch. 4] this will be considered as the desired complete solution (and this will be shown to be the only solution for the recurrence relation (12)). These k solutions will be in one of two forms:

1.
$$f(x) = c_i \cdot e^{m_i x}$$

2.
$$f(x) = c_i \cdot x^j \cdot e^{m_i x}$$

where:

- - This is referred to the characteristic equation of the recurrence relation or ODE [6]
- $\exists i, j \in \mathbb{Z}^+ \cap [0, k]$
 - These is often referred to as repeated roots [6, 13] with a multiplicity corresponding to the number of repetitions of that root [9, §3.2]

Unique Roots of Characteristic Equation

Example An example of a recurrence relation with all unique roots is the fibonacci sequence, as described in section 1.2.2.

Proof Consider the linear recurrence relation (12):

$$\sum_{i=0}^{n} [c_i \cdot a_i] = 0, \quad \exists c \in \mathbb{R}, \ \forall i < k \in \mathbb{Z}^+$$

This implies:

$$\sum_{n=0}^{\infty} \left[\sum_{i=0}^{k} \left[\frac{x^n}{n!} c_i a_n \right] \right] = 0 \tag{12}$$

$$\sum_{n=0}^{\infty} \sum_{i=0}^{k} \frac{x^n}{n!} c_i a_n = 0 \tag{13}$$

$$\sum_{i=0}^{k} c_i \sum_{n=0}^{\infty} \frac{x^n}{n!} a_n = 0 \tag{14}$$

By implementing the exponential generating function as shown in (3), this provides:

$$\sum_{i=0}^{k} \left[c_i f^{(i)} \left(x \right) \right] \tag{15}$$

Now assume that the solution exists and all roots of the characteristic polynomial are unique (i.e. the solution is of the form $f(x) \propto e^{m_i x}$: $m_i \neq m_j \forall i \neq j$), this implies that [12, Ch. 4]:

$$f(x) = \sum_{i=0}^{k} [k_i e^{m_i x}], \quad \exists m, k \in \mathbb{C}$$

This can be re-expressed in terms of the exponential power series, in order to relate the solution of the function f(x) back to a solution of the sequence a_n , (see section for a derivation of the exponential power series):

$$\sum_{i=0}^{k} [k_i e^{m_i x}] = \sum_{i=0}^{k} \left[k_i \sum_{n=0}^{\infty} \frac{(m_i x)^n}{n!} \right]$$

$$= \sum_{i=0}^{k} \sum_{n=0}^{\infty} k_i m_i^n \frac{x^n}{n!}$$

$$= \sum_{n=0}^{\infty} \sum_{i=0}^{k} k_i m_i^n \frac{x^n}{n!}$$

$$= \sum_{n=0}^{\infty} \left[\frac{x^n}{n!} \sum_{i=0}^{k} [k_i m_i^n] \right], \quad \exists k_i \in \mathbb{C}, \ \forall i \in \mathbb{Z}^+ \cap [1, k]$$

$$(16)$$

Recall the definition of the generating function from ??, by relating this to (16):

$$f(x) = \sum_{n=0}^{\infty} \left[\frac{x^n}{n!} a_n \right]$$
$$= \sum_{n=0}^{\infty} \left[\frac{x^n}{n!} \sum_{i=0}^k \left[k_i m_i^n \right] \right]$$
$$\implies a_n = \sum_{n=0}^k \left[k_i m_i^n \right]$$

This can be verified by the fibonacci sequence as shown in section 1.2.2, the solution to the characteristic equation is $m_1=\varphi, m_2=(1-\varphi)$ and the corresponding solution to the linear ODE and recursive relation are:

$$f(x) = c_1 e^{\varphi x} + c_2 e^{(1-\varphi)x}, \quad \exists c_1, c_2 \in \mathbb{R} \subset \mathbb{C}$$

$$\iff a_n = k_1 n^{\varphi} + k_2 n^{1-\varphi}, \quad \exists k_1, k_2 \in \mathbb{R} \subset \mathbb{C}$$

Repeated Roots of Characteristic Equation

Example Consider the following recurrence relation:

$$a_{n} - 10a_{n+1} + 25a_{n+2} = 0$$

$$\implies \sum_{n=0}^{\infty} \left[a_{n} \frac{x^{n}}{n!} \right] - 10 \sum_{n=0}^{\infty} \left[\frac{x^{n}}{n!} + \right] + 25 \sum_{n=0}^{\infty} \left[a_{n+2} \frac{x^{n}}{n!} \right] = 0$$
(17)

By applying the definition of the exponential generating function at (3):

$$f''(x) - 10f'(x) + 25f(x) = 0$$

By implementing the already well-established theory of linear ODE's, the characteristic equation for (??) can be expressed as:

$$m^{2} - 10m + 25 = 0$$

 $(m-5)^{2} = 0$
 $m = 5$ (18)

Herein lies a complexity, in order to solve this, the solution produced from (18) can be used with the *Reduction of Order* technique to produce a solution that will be of the form [13, §4.3].

$$f(x) = c_1 e^{5x} + c_2 x e^{5x} (19)$$

(19) can be expressed in terms of the exponential power series in order to try and relate the solution for the function back to the generating function, observe however the following power series identity (TODO Prove this in section):

$$x^k e^x = \sum_{n=0}^{\infty} \left[\frac{x^n}{(n-k)!} \right], \quad \exists k \in \mathbb{Z}^+$$
 (20)

by applying identity (20) to equation (19)

$$\implies f(x) = \sum_{n=0}^{\infty} \left[c_1 \frac{(5x)^n}{n!} \right] + \sum_{n=0}^{\infty} \left[c_2 n \frac{(5x^n)}{n(n-1)!} \right]$$
$$= \sum_{n=0}^{\infty} \left[\frac{x^n}{n!} (c_1 5^n + c_2 n 5^n) \right]$$

Given the defenition of the exponential generating function from (3)

$$f(x) = \sum_{n=0}^{\infty} \left[a_n \frac{x^n}{n!} \right]$$

$$\iff a_n = c_{15}^n + c_2 n_5^n$$

Proof In order to prove the the solution for a $k^{\rm th}$ order recurrence relation with k repeated Consider a recurrence relation of the form:

$$\sum_{n=0}^{k} [c_i a_n] = 0$$

$$\implies \sum_{n=0}^{\infty} \sum_{i=0}^{k} c_i a_n \frac{x^n}{n!} = 0$$

$$\sum_{i=0}^{k} \sum_{n=0}^{\infty} c_i a_n \frac{x^n}{n!}$$

By substituting for the value of the generating function (from (3)):

$$\sum_{i=0}^{k} \left[c_i f^{(k)}(x) \right] \tag{21}$$

Assume that (21) corresponds to a charecteristic polynomial with only 1 root of multiplicity k, the solution would hence be of the form:

$$\sum_{i=0}^{k} \left[c_{i} m^{i} \right] = 0 \land m = B, \quad \exists ! B \in \mathbb{C}$$

$$\implies f(x) = \sum_{i=0}^{k} \left[x^{i} A_{i} e^{mx} \right], \quad \exists A \in \mathbb{C}^{+}, \quad \forall i \in [1, k] \cap \mathbb{N}$$
(22)
$$(23)$$

If we assume that (see section 1.2.4):

$$k \in \mathbb{Z} \implies x^k e^x = \sum_{n=0}^{\infty} \left[\frac{x^n}{(n-k)!} \right]$$
 (24)

By applying this to (22):

$$f(x) = \sum_{i=0}^{k} \left[A_i \sum_{n=0}^{\infty} \left[\frac{(xm)^n}{(n-i)!} \right] \right]$$

$$= \sum_{n=0}^{\infty} \left[\sum_{i=0}^{k} \left[\frac{x^n}{n!} \frac{n!}{(n-i)} A_i m^n \right] \right]$$

$$\frac{\infty}{n} \left[x^n \frac{k}{n!} \left[x^n \right] \right]$$
(25)

$$=\sum_{n=0}^{\infty} \left[\frac{x^n}{n!} \sum_{i=0}^k \left[\frac{n!}{(n-i)} A_i m^n \right] \right]$$
 (26)

Recall the generating function that was used to get 21:

$$f(x) = \sum_{n=0}^{\infty} \left[a_n \frac{x^n}{n!} \right]$$

$$\implies a_n = \sum_{i=0}^k \left[A_i \frac{n!}{(n-i)!} m^n \right]$$

$$= \sum_{i=0}^k \left[m^n A_i \prod_{i=0}^k \left[n - (i-1) \right] \right]$$
(27)

 $\because \ i \leq k$

$$= \sum_{i=0}^{k} \left[A_i^* m^n n^i \right], \quad \exists A_i \in \mathbb{C}, \ \forall i \in \mathbb{Z}^+$$

General Proof

In sections 1.2.4 and 1.2.4 it was shown that a recurrence relation can be related to an ODE and then that solution can be transformed to provide a solution for the recurrence relation, when the charecteristic polynomial has either complex roots or 1 repeated root. Generally the solution to a linear ODE will be a superposition of solutions for each root, repeated or unique and so a goal of our research will be to put this together to find a general solution for homogenous linear recurrence relations.

Power Series A further goal will be to prove (24) for the case of the integers. Sketching out an approach for this:

- Use the Generating function to get an ODE
- The ODE will have a solution that is a combination of the above two forms
- The solution will translate back to a combination of both above forms

¶ 1.3 Fibonacci Sequence and the Golden Ratio

The *Fibonacci Sequence* is actually very interesting, observe that the ratios of the terms converge to the *Golden Ratio*:

$$\begin{split} F_n &= \frac{\varphi^n - \psi^n}{\varphi - \psi} = \frac{\varphi^n - \psi^n}{\sqrt{5}} \\ \iff \frac{F_{n+1}}{F_n} &= \frac{\varphi^{n+1} - \psi^{n+1}}{\varphi^n - \psi^n} \\ \iff \lim_{n \to \infty} \left[\frac{F_{n+1}}{F_n} \right] = \lim_{n \to \infty} \left[\frac{\varphi^{n+1} - \psi^{n+1}}{\varphi^n - \psi^n} \right] \\ &= \frac{\varphi^{n+1} - \lim_{n \to \infty} \left[\psi^{n+1} \right]}{\varphi^n - \lim_{n \to \infty} \left[\psi^n \right]} \\ \text{because } \mid \psi \mid < 0 \ n \to \infty \implies \psi^n \to 0 \text{:} \\ &= \frac{\varphi^{n+1} - 0}{\varphi^n - 0} \\ &= \varphi \end{split}$$

We'll come back to this later on when looking at spirals and fractals.

We hope to demonstrate this relationship between the ratio of successive terms of the fibonacci sequence without relying on ODEs and generating functions and by instead using limits and the *Monotone Convergence Theorem*, the hope being that this will reveal deeper underlying relationships between the *Fibonacci Sequence* and the *Golden Ratio* given that the both appear to occur in patterns observed in nature.

References

- [1] Benedetta Palazzo. The Numbers of Nature: The Fibonacci Sequence. June 27, 2016. URL: http://www.eniscuola.net/en/2016/06/27/the-numbers-of-nature-the-fibonacci-sequence/(visited on 08/28/2020) (cit. on p. 1).
- [2] Functools Higher-Order Functions and Operations on Callable Objects Python 3.8.5 Documentation. URL: https://docs.python.org/3/library/functools.html (visited on 08/25/2020) (cit. on p. 1).
- [3] Roozbeh Hazrat. *Mathematicaő: A Problem-Centered Approach*. 2nd ed. 2015. Springer Undergraduate Mathematics Series. Cham: Springer International Publishing: Imprint: Springer, 2015. 1 p. ISBN: 978-3-319-27585-7. DOI: 10.1007/978-3-319-27585-7 (cit. on p. 1).
- [4] Robert Lamb. How Are Fibonacci Numbers Expressed in Nature? June 24, 2008. URL: https://science.howstuffworks.com/math-concepts/fibonacci-nature.htm (visited on 08/28/2020) (cit. on p. 1).
- [5] Eric Lehman, Tom Leighton, and Albert Meyer. Readings | Mathematics for Computer Science | Electrical Engineering and Computer Science | MIT OpenCourseWare. Sept. 8, 2010. URL: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/readings/ (visited on 08/10/2020) (cit. on p. 6).
- [6] Oscar Levin. Solving Recurrence Relations. Jan. 29, 2018. URL: http://discrete.openmathbooks.org/dmoi2/sec_recurrence.html (visited on 08/11/2020) (cit. on p. 8).
- [7] Nikoletta Minarova. "The Fibonacci Sequence: Natures Little Secret". In: *CRIS Bulletin of the Centre for Research and Interdisciplinary Study* 2014.1 (2014), pp. 7–17. ISSN: 1805-5117 (cit. on p. 1).
- [8] Nature, The Golden Ratio and Fibonacci Numbers. 2018. URL: https://www.mathsisfun.com/numbers/nature-golden-ratio-fibonacci.html (visited on 08/28/2020) (cit. on p. 1).
- [9] Olympia Nicodemi, Melissa A. Sutherland, and Gary W. Towsley. *An Introduction to Abstract Algebra with Notes to the Future Teacher*. OCLC: 253915717. Upper Saddle River, NJ: Pearson Prentice Hall, 2007. 436 pp. ISBN: 978-0-13-101963-8 (cit. on p. 8).
- [10] Ron Knott. The Fibonacci Numbers and Golden Section in Nature 1. Sept. 25, 2016. URL: http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html (visited on 08/28/2020) (cit. on p. 1).
- [11] Shelly Allen. Fibonacci in Nature. URL: https://fibonacci.com/nature-golden-ratio/ (visited on 08/28/2020) (cit. on p. 1).
- [12] Dennis G Zill and Michael R Cullen. *Differential Equations*. 7th ed. Brooks/Cole, 2009 (cit. on pp. 7, 8).
- [13] Dennis G. Zill and Michael R. Cullen. "8.4 Matrix Exponential". In: *Differential Equations with Boundary-Value Problems*. 7th ed. Belmont, CA: Brooks/Cole, Cengage Learning, 2009. ISBN: 978-0-495-10836-8 (cit. on pp. 8, 10).