Automated Learning Robot

GROUP 20

Pradyumna Kumar 06D05015 Jayanth Tadinada 06D05016 Sharjeel Imam 06D05010

Problem Statement

Design and implementation of a self-learning robot

- 1. Manual bot control
- 2. Runtime capture of task
- 3. Task detection algorithm
- 4. Task encoding
- 5. Wireless transfer
- 6. Automated bot control

- Manual bot control
 - Firebird V movement using Zigbee

- 1. Manual bot control
- 2. Runtime capture of task
 - Overhead camera connected to a computer through USB
 - Bot is covered with a black disc with distinct colour markings to denote front and back sides of the bot

- 1. Manual bot control
- 2. Runtime capture of task
- 3. Task detection algorithm
 - Bot detection and its movement measurement using Matlab
 - Convert distances and angles from camera frame to actual arena frame

- 1. Manual bot control
- 2. Runtime capture of task
- 3. Task detection algorithm
- 4. Task encoding
 - Specific encoding for each task, as described below
 - 20F30R25B90L means: 20cm forward, 30° right turn, 25cm back and 90° left turn
 - All distances in actual arena frame

- 1. Manual bot control
- 2. Runtime capture of task
- 3. Task detection algorithm
- 4. Task encoding
- 5. Wireless transfer
 - Computer transfers encoded task to automatic bot using Zigbee

- 1. Manual bot control
- 2. Runtime capture of task
- 3. Task detection algorithm
- 4. Task encoding
- 5. Wireless transfer
- 6. Automated bot control
 - Decode the received task and perform it

Block Diagram

Project Plan

work Division Pradyumna	Sharjeel		Jayanth				
Task	27 th Sep	4 th Oct	11 th oct	18 th Oct	25 th Oct	1 st Nov	8 th Nov
Requirement Analysis							
Project Scope Analysis							
SRS							
Run time capture of task							
Task Detection Algorithm							
Task Endocing							
Task Parsing							
Task Decoding							
Manual Bot Control							
Finetuning task detection algorithm							
Wireless Transfer							
Integration							
Testing							
Documentation and Report Writing							

1. Light Conditions

- Glare due to direct light from tube lights (black arena didn't help)
- Orange and green colours looked white
- Solution: Turn off tube lights. Generate diffused light using a table lamp facing the roof

- 1. Light Conditions
- 2. Robot Movement Control
 - Wheel shaft interrupts are getting disabled after Zigbee reception
 - Solution: Re-enable the interrupts after every reception

- 1. Light Conditions
- 2. Robot Movement Control
- 3. Path detection
 - Intermediate error points due to random objects in the arena
 - Solution: The angle-gap between successive points cannot be greater than 70 degrees

- 1. Light Conditions
- 2. Robot Movement Control
- 3. Path detection
- 4. Wireless Transfer
 - Matlab sends an extra line-feed termination character after every serial transmission
 - Characters get repeated at the receiver
 - Solution: Ignore the extra character and include a delay after transmitting every character to prevent repetitions

Testing

Test Cases

1. Square with right turns

Encoded Path: 38f 90r 40f 95r 32f 95r 41f

Test Cases

2. Motion in 'Z'

Encoded Path: 32f 125r 45f 113l 40f

Test Cases

3. Equilateral Triangle

Encoded Path: 40f 127r 41f 66l 40b

Performance Metrics

Real time performance

Path is generated within 2 seconds of the teacher robot completing the task

Error

Error in distance: 20 – 25 %

Error in angle: 10 − 15 %

Larger the distance or angle, lower the error

Reusability

- 1. Separate functions/files for independent code modules
- 2. Intuitive function and variable naming
- 3. Fully documented code (both C and Matlab) using Doxygen
- 4. Inline comments in the code to explain the algorithm

Future Enhancements

- 1. Correcting the learner bot while it is performing the task
- 2. Better noise reduction for robust performance
- 3. Transmitting the command just after the teacher bot has finished performing a segment of the task
- 4. Detecting and encoding paths with arcs (like circles)
- 5. Extend this for tasks which cannot be captured by camera (like sensor readings) using coloured LEDs

