Practical Algorithms

Maps & Hash Tables

Yiannis Giannakopoulos

(with thanks to Michele Sevegnani)

School of Computing Science University of Glasgow

The Map ADT

Dictionaries: Motivation

- Many real-life data sets consist of (key,value) entries
- Examples:
 - (URL, IP address)
 - (student ID, grade)
- Abstraction of a (partial) function:

www.glasgow.ac.uk 30.209.16.93

The Map ADT

- A map models a <u>dynamic</u> and <u>searchable</u> collection of (key,value) pairs (called entries or elements)
 - Other names: associative array, dictionary, symbol table, ...
 - Multiple entries with the same key are not allowed (keys must be unique)
- Main map operations
 - INSERT(M,k,v): add an entry (k,v) to map M
 - DELETE(M,k): remove the entry with key k from map M (return NIL if it does not exist)
 - SEARCH(M,k): return the value v of the entry with key k in map M (return NIL if it does not exist)
- Auxiliary map operation
- IS-EMPTY(M): test whether M contains no entries (returns a Boolean value)

- ASCII character encoding (128 entries)
 - <u>keys</u>: integers {0,1,...,127}, <u>values</u>: characters

0	NUL	16	DLE	32		48	0	64	ര	80	Р	96	•	112	р
1	SOH	17	DC1	33	!	49	1	65	Α	81	Q	97	a	113	q
2	STX	18	DC2	34	"	50	2	66	В	82	R	98	b	114	r
3	ETX	19	DC3	35	#	51	3	67	C	83	S	99	С	115	s
4	EOT	20	DC4	36	\$	52	4	68	D	84	Τ	100	d	116	t
5	ENQ	21	NAK	37	%	53	5	69	Е	85	U	101	е	117	u
6	ACK	22	SYN	38	8	54	6	70	F	86	٧	102	f	118	٧
7	BEL	23	ETB	39	•	55	7	71	G	87	W	103	g	119	W
8	BS	24	CAN	40	(56	8	72	Н	88	Χ	104	h	120	Х
9	HT	25	EM	41)	57	9	73	Ι	89	Υ	105	i	121	у
10	LF	26	SUB	42	*	58	:	74	J	90	Z	106	j	122	z
11	VT	27	ESC	43	+	59	;	75	K	91	[107	k	123	{
12	FF	28	FS	44	,	60	<	76	L	92	\	108	l	124	1
13	CR	29	GS	45	-	61	=	77	М	93]	109	m	125	}
14	S0	30	RS	46		62	>	78	N	94	^	110	n	126	~
15	SI	31	US	47	/	63	?	79	0	95		111	0	127	DEL

- INSERT(M, 65, 'A')
- INSERT(M, 71, 'G')
- INSERT(M, 113, 'q')
- INSERT(M, 109, 'm')
- SEARCH(M, 65)
- INSERT(M, 83, 'S')
- DELETE(M, 113)
- SEARCH(M, 113)

 $\mathsf{M} = \{\}$

- INSERT(M, 65, 'A')
- INSERT(M, 71, 'G')
- INSERT(M, 113, 'q')
- INSERT(M, 109, 'm')
- SEARCH(M, 65)
- INSERT(M, 83, 'S')
- DELETE(M, 113)
- SEARCH(M, 113)

```
M = \{\}
M = \{(65, 'A')\}
```

- INSERT(M, 65, 'A')
- INSERT(M, 71, 'G')
- INSERT(M, 113, 'q')
- INSERT(M, 109, 'm')
- SEARCH(M, 65)
- INSERT(M, 83, 'S')
- DELETE(M, 113)
- SEARCH(M, 113)

```
M = \{\}
M = \{(65, 'A')\}
M = \{(65, 'A'), (71, 'G')\}
```

- INSERT(M, 65, 'A')
- INSERT(M, 71, 'G')
- INSERT(M, 113, 'q')
- INSERT(M, 109, 'm')
- SEARCH(M, 65)
- INSERT(M, 83, 'S')
- DELETE(M, 113)
- SEARCH(M, 113)

```
M = {}
M = {(65, 'A')}
M = {(65, 'A'), (71, 'G')}
M = {(65, 'A'), (71, 'G'), (113, 'q')}
```

- INSERT(M, 65, 'A')
- INSERT(M, 71, 'G')
- INSERT(M, 113, 'q')
- INSERT(M, 109, 'm')
- SEARCH(M, 65)
- INSERT(M, 83, 'S')
- DELETE(M, 113)
- SEARCH(M, 113)

```
M = {}
M = {(65, 'A')}
M = {(65, 'A'), (71, 'G')}
M = {(65, 'A'), (71, 'G'), (113, 'q')}
M = {(65, 'A'), (71, 'G'), (113, 'q'), (109, 'm')}
```

- INSERT(M, 65, 'A')
- INSERT(M, 71, 'G')
- INSERT(M, 113, 'q')
- INSERT(M, 109, 'm')
- SEARCH(M, 65)
- INSERT(M, 83, 'S')
- DELETE(M, 113)
- SEARCH(M, 113)

```
M = {}
M = {(65, 'A')}
M = {(65, 'A'), (71, 'G')}
M = {(65, 'A'), (71, 'G'), (113, 'q')}
M = {(65, 'A'), (71, 'G'), (113, 'q'), (109, 'm')}
return: 'A'
```

- INSERT(M, 65, 'A')
- INSERT(M, 71, 'G')
- INSERT(M, 113, 'q')
- INSERT(M, 109, 'm')
- SEARCH(M, 65)
- INSERT(M, 83, 'S')
- DELETE(M, 113)
- SEARCH(M, 113)

```
M = {}

M = {(65, 'A')}

M = {(65, 'A'), (71, 'G')}

M = {(65, 'A'), (71, 'G'), (113, 'q')}

M = {(65, 'A'), (71, 'G'), (113, 'q'), (109, 'm')}

return (65, 'A')

M = {(65, 'A'), (71, 'G'), (113, 'q'), (109, 'm'), (83, 'S')}
```

- INSERT(M, 65, 'A')
- INSERT(M, 71, 'G')
- INSERT(M, 113, 'q')
- INSERT(M, 109, 'm')
- SEARCH(M, 65)
- INSERT(M, 83, 'S')
- DELETE(M, 113)
- SEARCH(M, 113)

```
M = {}

M = {(65, 'A')}

M = {(65, 'A'), (71, 'G')}

M = {(65, 'A'), (71, 'G'), (113, 'q')}

M = {(65, 'A'), (71, 'G'), (113, 'q'), (109, 'm')}

return (65, 'A')

M = {(65, 'A'), (71, 'G'), (113, 'q'), (109, 'm'), (83, 'S')}

M = {(65, 'A'), (71, 'G'), (109, 'm'), (83, 'S')}
```

- INSERT(M, 65, 'A')
- INSERT(M, 71, 'G')
- INSERT(M, 113, 'q')
- INSERT(M, 109, 'm')
- SEARCH(M, 65)
- INSERT(M, 83, 'S')
- DELETE(M, 113)
- SEARCH(M, 113)

```
\begin{split} M &= \{ \} \\ M &= \{ (65, \ `A') \} \\ M &= \{ (65, \ `A'), \ (71, \ `G') \} \\ M &= \{ (65, \ `A'), \ (71, \ `G'), \ (113, \ `q') \} \\ M &= \{ (65, \ `A'), \ (71, \ `G'), \ (113, \ `q'), \ (109, \ `m') \} \\ return \ (65, \ `A') \\ M &= \{ (65, \ `A'), \ (71, \ `G'), \ (113, \ `q'), \ (109, \ `m'), \ (83, \ `S') \} \\ M &= \{ (65, \ `A'), \ (71, \ `G'), \ (109, \ `m'), \ (83, \ `S') \} \\ return \ NIL \end{split}
```

Map Implementations

What is the "best" way to implement such a data structure?

List-based Implementation

- We can implement a map using a doubly-linked list:
 - Values are stored as satellite data (attribute if small, pointer for larger structures)

- Performance
 - INSERT takes O(1) time (O(n)) if we first check for duplicates
 - SEARCH and DELETE take O(n) we need to traverse the entire list to look for an entry
- The list-based implementation is recommended only for maps of small size
 - · Can we do better?

Tree-based Implementation

- Using a self-balancing trees we can guarantee a worst-case running time of:
 - O(log n) for all the main map ADT operations
- Additionally, an in-order traversal allows us to get a sorted sequence of all the pairs stored in the map

Can we do even better?

Direct-address Tables

Assumptions

- Each element of our map M has an integer key drawn from the universe $U = \{0,1,..., m-1\}$
- Recall: no two elements have the same key
- A direct-address table is an <u>array</u> T[0,..,m 1] that can represent map M in the following way:
 - Each position (also called slot or bucket) in T corresponds to a key in the universe U
 - Slot k contains/points to the value of the element M with key k
 - · In other words: if (k,v)∈M then T[k]=v.
 - If no element has key k, then T[k] = NIL

Direct-address Table: Map Implementation

- Operations are trivial to implement
 - Each operation takes O(1) time
- · However, what if:
 - 1. The keys are not natural numbers?
 - 2. The universe U is much larger than the "actual" number of keys that we are expecting to use, i.e |U| >> m?
- Hashing deals with issues 1. and 2. by:
 - 1. Encoding
 - 2. Compression

element x = (key, value)

DIRECT-ADDRESS-INSERT(T,x)
T[x.key] = x.value

DIRECT-ADDRESS-SEARCH(T,k)
 return T[k]

DIRECT-ADDRESS-DELETE(T,k)
T[k] = NIL

Hash Tables

Hashing: Overview

21

The Hash Table Data Structure

- Generalizes direct-address tables by adding a hash function
- Consists of:
 - 1. An array T[0,..,m 1] of fixed size m (called hash table or bucket array)
- 2. A hash function h: $U \rightarrow \{0,1,...,m-1\}$ mapping keys to slots of T
- Hash collision: when two keys are mapped to the same slot of the hash table
 - That is, $h(k_1)=h(k_2)$ for $k_1 \neq k_2$ (where $k_1, k_2 \in U$)
 - In general, hash collisions are <u>unavoidable</u> (if |U| > m)
 - However: a "good" hash function spreads keys as "evenly" as possible over the slots of T
 - > Each backet should be used with equal probability for data randomly sampled from the universe U
- · Additionally: hash functions should be "simple" and fast to compute
- Under the above assumptions: hash tables support INSERT, DELETE and SEARCH operations in O(1) time "on average"

PA, 2024 22

- ASCII table with hash function $h(k) = k \mod 8$
 - $U = \{0,1,...,127\}$ and size of hash table T is m = 8
- · Insert (65, 'A'), (71, 'G'), (113, 'q'), (109, 'm') and (83, 'S') in hash table T

- ASCII table with hash function $h(k) = k \mod 8$
 - $U = \{0,1,...,127\}$ and size of hash table T is m = 8
- Insert (65, 'A'), (71, 'G'), (113, 'q'), (109, 'm') and (83, 'S')

- INSERT(T, (65, 'A'))
- $h(65) = 65 \mod 8 = 1$
- Insert element in slot 1

- ASCII table with hash function $h(k) = k \mod 8$
 - U = {0,...127} and size of hash table T is m = 8
- Insert (65, 'A'), (71, 'G'), (113, 'q'), (109, 'm') and (83, 'S')

- INSERT(T, (71, 'G'))
- $h(71) = 71 \mod 8 = 7$
- Insert element in slot 7

- ASCII table with hash function $h(k) = k \mod 8$
 - U = $\{0,...127\}$ and size of hash table T is m = 8
- Insert (65, 'A'), (71, 'G'), (113, 'q'), (109, 'm') and (83, 'S')

- INSERT(T, (113, 'q'))
- $h(113) = 113 \mod 8 = 1$
- Insert element in slot 1, but slot 1 is already occupied
- We say that keys 65 and 113 collide

- ASCII table with hash function $h(k) = k \mod 8$
 - U = $\{0,...127\}$ and size of hash table T is m = 8
- Insert (65, 'A'), (71, 'G'), (113, 'q'), (109, 'm') and (83, 'S')

- INSERT(T, (113, 'q'))
- $h(113) = 113 \mod 8 = 1$
- A (bad, in general) strategy to resolve collisions is to store only the most recent key/value
- We will study more sophisticated strategies to resolve collisions later in these lectures

- ASCII table with hash function $h(k) = k \mod 8$
 - U = $\{0,...127\}$ and size of hash table T is m = 8
- Insert (65, 'A'), (71, 'G'), (113, 'q'), (109, 'm') and (83, 'S')

- INSERT(T, (109, 'm'))
- $h(109) = 109 \mod 8 = 5$
- Insert element in slot 5

- ASCII table with hash function $h(k) = k \mod 8$
 - U = $\{0,...127\}$ and size of hash table T is m = 8
- Insert (65, 'A'), (71, 'G'), (113, 'q'), (109, 'm') and (83, 'S')

- INSERT(T, (83, 'S'))
- $h(83) = 83 \mod 8 = 3$
- Insert element in slot 3

Encoding

Encoding general keys as natural numbers

• Most hash functions operate on natural numbers, ie they assume as a universe of keys $U = \mathbb{N}$

- There are several methods (called hash codes) to convert/encode an arbitrary object as a natural number, e.g.
 - Integer casting
 - Component sum
 - Memory address
 - Polynomial hashing

Here we will only describe integer casting and component sum here, very briefly.

Integer Casting

- Most data types have a "natural" bit representation, in every programming language
 - So, we can use as key the integer corresponding to that binary number
 - Example: $10011_2 = 19_{10}$
- For example: Python uses 64-bit values to encode many fundamental types, e.g. float and int
 - So, integer casting can be readily used for types:
- For longer types, e.g. strings, we need to perform some kind of "merging"
 - For example, an object $(x_0, x_1, ..., x_{n-1})$ where all x_i are 64-bit integers can be represented as
 - $\circ \sum_{i=0}^{n-1} x_i$, or
 - $x_0 \oplus x_1 \oplus \cdots \oplus x_{n-1}$, where \oplus is the XOR operator
 - > This is known as component sum hashing

Compression: Hash Functions

$$\mathbb{N} \longrightarrow \{0,1,\ldots,m-1\}$$

Truncation

- Take the first/last few digits of the key
 - Problem: it may generate many collisions if there are regularities in the input keys

Example

- Student IDs consisting of 8 digits: 2023 1734
- Numbers are assigned sequentially
- Students in a given class/year will tend to have IDs close together, and all beginning with the same first few digits
- But: taking the <u>last</u> three digits will work a lot better!

Division

- Map a key k into one of m slots by taking the <u>remainder</u> of the division of k by m
 - The hash function is $h(k) = k \mod m$
 - > Python: k % m
- Good practice: to ensure that data is distributed fairly, we usually choose the table size
 m to be
 - Prime
 - Not "too close" to an exact power of 2
- If $m = 2^p$, then h(k) is just the p lowest-order bits of k
 - Examples: $101011_2 \% 10_2 = 1_2$, $101011_2 \% 100_2 = 11_2$
 - The analogous case for decimal numbers would be division by powers of 10:

```
234_{10} \% 10_{10} = 4_{10}, 234_{10} \% 100_{10} = 34_{10}
```

If use of lower-order bits is suitable, better to simply truncate

Example: Hashing by Division

- Suppose we want to allocate a hash table to hold roughly 5000 keys
- We pick m to be a prime close to 5000 but not near any power of 2
 - $-2^{12}=4069$
 - $-2^{13} = 8192$
- Primes near 5000:
 - 4987, 4993, 4999, 5003, 5009, 5011
- So, our hash function could be $h(k) = k \mod 5003$

Collision Resolution

PA, 2024

Chaining

- Each slot of the hash table points to its own (doubly) linked list (called chain)
- All elements that hash to the same slot are stored in that slot's list
 - List T[i] holds elements (k,v) for which h(k)=i, i=0,1,...,m-1
- Example: ASCII with m=9
- $U = \{0, ..., 127\}$
- Insert key sequence: 122, 71, 75, 37, 65, 109
- Assume that we use a hash function
 h: U → {0,...,8} such that:

$$h(37) = h(65) = h(122) = 3$$

$$h(71) = 6$$

$$h(75) = h(109) = 8$$

- Each slot of the hash table points to its own (doubly) linked list (called chain)
- All elements that hash to the same slot are stored in that slot's list
 - List T[i] holds elements (k,v) for which h(k)=i, i=0,1,...,m-1
- Example: ASCII with m=9
- \cdot U = {0, ..., 127}
- Insert key sequence: 122, 71, 75, 37, 65, 109
- Assume that we use a hash function
 h: U → {0,...,8} such that:

$$h(37) = h(65) = h(122) = 3$$

$$h(71) = 6$$

$$h(75) = h(109) = 8$$

- Each slot of the hash table points to its own (doubly) linked list (called chain)
- All elements that hash to the same slot are stored in that slot's list
 - List T[i] holds elements (k,v) for which h(k)=i, i=0,1,...,m-1
- Example: ASCII with m=9
- $U = \{0, ..., 127\}$
- Insert key sequence: 122, 71, 75, 37, 65, 109
- Assume that we use a hash function
 h: U → {0,...,8} such that:

$$h(37) = h(65) = h(122) = 3$$

$$h(71) = 6$$

$$h(75) = h(109) = 8$$

- Each slot of the hash table points to its own (doubly) linked list (called chain)
- All elements that hash to the same slot are stored in that slot's list
 - List T[i] holds elements (k,v) for which h(k)=i, i=0,1,...,m-1
- Example: ASCII with m=9
- $U = \{0, ..., 127\}$
- Insert key sequence: 122, 71, 75, 37, 65, 109
- Assume that we use a hash function
 h: U → {0,...,8} such that:

$$h(37) = h(65) = h(122) = 3$$

$$h(71) = 6$$

$$h(75) = h(109) = 8$$

- Each slot of the hash table points to its own (doubly) linked list (called chain)
- All elements that hash to the same slot are stored in that slot's list
 - List T[i] holds elements (k,v) for which h(k)=i, i=0,1,...,m-1
- Example: ASCII with m=9
- $U = \{0, ..., 127\}$
- Insert key sequence: 122, 71, 75, 37, 65, 109
- Assume that we use a hash function
 h: U → {0,...,8} such that:

$$h(37) = h(65) = h(122) = 3$$

$$h(71) = 6$$

$$h(75) = h(109) = 8$$

- Each slot of the hash table points to its own (doubly) linked list (called chain)
- All elements that hash to the same slot are stored in that slot's list
 - List T[i] holds elements (k,v) for which h(k)=i, i=0,1,...,m-1
- Example: ASCII with m=9
- $U = \{0, ..., 127\}$
- Insert key sequence: 122, 71, 75, 37, 65, 109
- Assume that we use a hash function
 h: U → {0,...,8} such that:

$$h(37) = h(65) = h(122) = 3$$

$$h(71) = 6$$

$$h(75) = h(109) = 8$$

- Each slot of the hash table points to its own (doubly) linked list (called chain)
- All elements that hash to the same slot are stored in that slot's list
 - List T[i] holds elements (k,v) for which h(k)=i, i=0,1,...,m-1
- Example: ASCII with m=9
 - $U = \{0, ..., 127\}$
 - Insert key sequence: 122, 71, 75, 37, 65, 109
- Assume that we use a hash function
 h: U → {0,...,8} such that:

$$h(37) = h(65) = h(122) = 3$$

$$h(71) = 6$$

$$h(75) = h(109) = 8$$

Open-Address Hashing

Collision Resolution by Open Addressing

- General scheme: if a collision occurs, an alternative cell is tried (or "probed") until an empty cell is found
 - Appropriate when memory availability is limited, and we cannot use auxiliary data structures (like linked lists in chaining)
 - The load factor needs to be at most $\alpha \le 1$: otherwise, we may overflow the hash table
- Rigorously, open addressing can be modelled by adding an extra parameter to our hash function:

```
h: U \times \{0,1,...,m-1\} \rightarrow \{0,1,...,m-1\}
```

where h(k,i) gives the slot that we should probe at our i-th try.

- Implicit assumption: each key should probe <u>all</u> slots
- Formally, this means that (h(k,0), h(k,1), ..., h(k,m-1)) is a permutation of (0, 1,..., m-1), for all $k \in U$

Open Addressing: Insertion

- For a given hash function h(k,i), the HASH-INSERT procedure takes as input a hash table T and a key k and
 - Returns the slot number where it stores k, or
 - Raises an error because T is already full

```
HASH-INSERT(T,k)
    i = 0
    while i < m
        j = h(k,i)
        if T[j] == NIL
            T[j] = k
            return j
        else i = i + 1
        error "hash table overflow"</pre>
```

Example: Linear Probing

- Hashing by division into a table of size m=8
- Open addressing by sequentially probing slot i+1 after slot i (wrapping around when i=m)

```
- i.e. h(k,i) = (k+i) \mod 8
```

```
HASH-INSERT(T,k)
    i = 0
    while i < m
        j = h(k,i)
        if T[j] == NIL
        T[j] = k
        return j
        else i = i + 1
        error "hash table overflow"</pre>
```

slot	Т
0	
1	113
2	
3	83
4	
5	109
6	
7	71
	71

Example: Linear Probing

- Hashing by division into a table of size m=8
- Open addressing by sequentially probing slot i+1 after slot i (wrapping around when i=m)

```
- i.e. h(k,i) = (k+i) \mod 8
```

```
HASH-INSERT(T,k)
    i = 0
    while i < m
        j = (k+i) % m
        if T[j] == NIL
        T[j] = k
        return j
        else i = i + 1
        error "hash table overflow"</pre>
```


Example: Insertion

- Hashing by division into a table of size m=8
- Open addressing by sequentially probing slot i+1 after slot i (wrapping around when i=m)

```
- i.e. h(k,i) = (k+i) \mod 8
```


Example: Insertion

- Hashing by division into a table of size m=8
- Open addressing by sequentially probing slot i+1 after slot i (wrapping around when i=m)

```
- i.e. h(k,i) = (k+i) \mod 8
```

```
HASH-INSERT(T,k)
    i = 0
    while i < m
        j = h(k,i)
        if T[j] == NIL
        T[j] = k
        return j
        else i = i + 1
        error "hash table overflow"</pre>
```


Example: Insertion

- Hashing by division into a table of size m=8
- Open addressing by sequentially probing slot i+1 after slot i (wrapping around when i=m)

```
- i.e. h(k,i) = (k+i) \mod 8
```


Hashing: Further Reading

"Introduction to Algorithms"

(4th edition)

by Cormen, Leiserson, Rivest, and Stein

Chapter 11

"Algorithms Illuminated"
(Omnibus edition)
by Roughgarden

Chapter 12

PA, 2024