Задание 4

Замкнутость регулярных языков, теорема Майхилла-Нероуда и минимальные автоматы

Ключевые слова 1 :язык, регулярный язык, ДКА, полный ДКА, HKA, отношение эквивалентности, декартово произведение.

1 Построение минимального автомата

ДКА \mathcal{A} называется *минимальным* автоматом, распознающим L, если $L(\mathcal{A}) = L$ и не существует ДКА \mathcal{B} , такого что $L(\mathcal{B}) = L$ и число состояний автомата \mathcal{B} меньше числа состояний автомата \mathcal{A} .

Для доказательства существования и корректности построения минимального автомата мы будем использовать теорему Майхилла-Нероуда. Нам потребуется аналогичное отношению М.Н. отношение эквивалентности, определённое на состояниях.

Определение 1. Зафиксируем автомат \mathcal{A} , распознающий язык L. Пусть $\delta(q_0, x_i) = q_i$, а $\delta(q_0, x_j) = q_j$. Тогда $q_i \sim_L q_j$, тогда и только тогда, когда $x_i \sim_L x_j$. Данное отношение мы назовём соответствующим отношению Майхилла-Нероуда.

Обратите внимание, что это *два разных* отношения эквивалентности, потому что одно из них определено на множестве всех слов, а другое на множестве состояний. Мы обозначаем одинаково два разных отношения, потому что они схожи, но определены для разных объектах, поэтому это не приведёт к путанице.

Теорема 1. Для каждого регулярного языка, существует минимальный автомат, распознающий его. Состояния минимального автомата соответствуют классам эквивалентности по отношению Майхилла- $Hepoy\partial a \sim_L$

¹минимальный необходимый объем понятий и навыков по этому разделу)

Доказательство. В силу теоремы Майхилла-Нероуда, язык L регулярен тогда и только тогда, когда отношение \sim_L имеет конечный индекс. Рассмотрим автомат \mathcal{A} , построенный в доказательстве теоремы Майхилла-Нероуда и покажем, что он является минимальным. Допустим противное — пусть автомат \mathcal{B} имеет меньшее число состояний, чем \mathcal{A} . Тогда, по принципу Дирихле, существует два слова x_i и x_j , такие что $x_i \not\sim_L x_j$ и $\delta_{\mathcal{B}}(q_0, x_i) = \delta_{\mathcal{B}}(q_0, x_j) = q$. Так как $x_i \not\sim_L x_j$, то найдётся такое слово z, что $x_i z \in L$, а $x_j z \not\in L$. Но тогда с одной стороны $\delta(q, z) \in F$, т.к. $x_i z \in L$, а с другой стороны $\delta(q, z) \not\in F$, поскольку $x_j z \not\in L$ — приходим к противоречию.

Просто из факта того, что язык L имеет конечное число классов эквивалентности М.-Н., не совсем ясно как построить автомат \mathcal{A} , распознающий L. Однако, имея любой ДКА, распознающий L можно конструктивно построить по нему минимальный автомат. Рассмотрим регулярный язык L и распознающий его полный ДКА \mathcal{A} . Идея построения по автомату \mathcal{A} минимального состоит в склейке эквивалентных состояний. Под склейкой состояний $q_i \sim_L q_j$ мы понимаем удаление состояния q_j из автомата \mathcal{A} и направление всех переходов ведущих в него в состояние q_i .

Утверждение 1. Склеив все эквивалентные состояния автомата A, мы получим минимальный автомат.

Доказательство. Склейка состояний $q_i \sim_L q_j$ не изменит язык $L(\mathcal{A})$, потому что из состояния q_j по слову z, автомат \mathcal{A} попадает в принимающее состояние тогда и только тогда, когда он попадает в принимающее состояние по слову z из состояния q_i . Таким образом, склеив все эквивалентные состояния автомата \mathcal{A} , мы получим минимальный автомат, потому что в силу определения эквивалентности на состояниях каждое состояние соответствует классу эквивалентности М.-Н. и по теореме ??, он является минимальным.

Осталось привести алгоритм склейки состояний.

Алгоритм. На вход алгоритма подаётся ДКА \mathcal{A} .

1. В случае, если автомат \mathcal{A} не является полным, пополним автомат \mathcal{A} , добавив состояние q_D , такое что $q_D \xrightarrow{\Sigma} q_D$, и если $(q, \sigma) = \emptyset$, то теперь $(q, \sigma) = q_D$. Если в \mathcal{A} есть состояния, не достижимые из начального состояния, удалим их.

- **2.** Разделим множество состояний на два подмножества: множество принимающих состояний $F = Q_1$ и его дополнение $Q \setminus F = Q_2$.
- ${f i}+{f 1}.$ Пусть после i-ого шага алгоритма множество состояний Q разбито на j подмножеств Q_1,\ldots,Q_j . Зафиксируем символ $\sigma\in\Sigma$ сделаем следующее. Если для $q_k\in Q_k$ $q_k\stackrel{\sigma}{\to} q_l\in Q_l$, поместим состояние q_k в множество $Q_{k,l}$. Получили новое разбиение Q на подмножества $Q_{k,l}$ и повторяем для него эту процедуру для оставшихся символов $\sigma\in\Sigma$. Если после $|\Sigma|$ разбиений мы получили разбиение, в котором j подмножеств, то алгоритм останавливается, в противном случае он продолжает работу.

Склеив все состояния, попавшие в одно подмножество, получим минимальный автомат.

Упражнение 1. Доказать корректность данного алгоритма.

2 Задачи

Задача 2*. Даны два ДКА \mathcal{A} и \mathcal{B} . Верно ли, что $L(\mathcal{A}) = L(\mathcal{B})$ тогда и только тогда, когда для всех слов $w : |w| \leq |Q_{\mathcal{A}}||Q_{\mathcal{B}}|$, w лежит как в $L(\mathcal{A})$, так и в $L(\mathcal{B})$.

Будем называть алгоритм *эффективным*, если он реализуем за полиномиальное время. Например, программа на C, делает полиномиальное число тактов при исполнении алгоритма.

Задача 3. Предложите алгоритм, который проверяет порождают ли два регулярных выражения один и тот же язык или нет. Будет ли он эффективным?

Задача 4.

- 1. Постройте ДКА ${\cal A}$ распознающий все слова, в которых чётное число единиц.
- 2. Постройте ДКА ${\cal B}$ распознающий все слова, в которых нечётное число нулей.
- 3. Постройте автомат \mathcal{C} , распознающий все слова, в которых чётное число единиц и нечётное число нулей.
- 4*. Предложите алгоритм для построения пересечения языков, заданных ДКА.

Задача 5. Язык L задан автоматом \mathcal{A} . Построить минимальный автомат для языка \bar{L} .

Определим операцию обращения. Язык L^R состоит из всех слов, зеркальных к словам из языка L. То есть

$$L^{R} = \{ w \mid w = w_{1}w_{2} \dots w_{n}, \ w_{n}w_{n-1} \dots w_{1} \in L \}.$$

Задача 6^{\dagger} . Замкнуты ли регулярные языки относительно операции обращения? Предложите алгоритм построения ДКА для L^R по ДКА для L.

3 P.S.

На выходе с семинара меня спросили как рисовать в техе стрелочки подобно тем, которые я рисовал на доске. Не знаю не пробовал — можете поискать ответ в книжках или задать вопрос на http://tex.stackexchange.com. Я обычно пишу отдельно по каждому состоянию $q \xrightarrow{\sigma} p$.