# TEST REPORT

Reference No. ..... : WTD18S01100421-1E

FCC ID...... : 2AA3H-ESB2118

Applicant ...... : Shenzhen 3nod Digital Technology Co., Ltd.

Address ...... : Bld D, No.8 Langhui Road, Tangxiayong Community, Songgang Street,

Baoan District, Shenzhen, China

Manufacturer .....: Shenzhen 3nod Digital Technology Co., Ltd.

Address ...... Bld D, No.8 Langhui Road, Tangxiayong Community, Songgang Street,

Baoan District, Shenzhen, China

Product ...... : Element 2.1 Sound Bar With Wireless Subwoofer

Model(s)..... : ESB2118

Brand ...... Gelement

Standards ...... : FCC CFR47 Part 15 C Section 15.247:2017

Date of Receipt sample..... : 2018-01-12

**Date of Test**...... : 2018-01-13 to 2018-04-03

**Date of Issue** ..... : 2018-04-04

Test Result ..... Pass

#### Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

#### Prepared By:

### Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

ERVIApproved by:

Zhong / Manager

Tested by:

Robin Zhou / Test Engineer

11 Zilou / Test Eligilicei

lobin.Zhou

## 1 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation) of USA, Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), IC(Industry Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.



Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. Electro Magnetic Compatibility (EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

# 1.1 Test Facility

A. Accreditations for Conformity Assessment (International)

| Country/Region | Accreditation Body         | Scope              | Note |
|----------------|----------------------------|--------------------|------|
| USA            |                            | FCC ID \ DOC \ VOC | 1    |
| Canada         |                            | IC ID \ VOC        | 2    |
| Japan          |                            | MIC-T \ MIC-R      | -    |
| Europe         | A2LA                       | EMCD\RED           | -    |
| Taiwan         | (Certificate No.: 4243.01) | NCC                | -    |
| Hong Kong      |                            | OFCA               | -    |
| Australia      |                            | RCM                | -    |
| India          |                            | WPC                | -    |
| Thailand       | International Services     | NTC                | -    |
| Singapore      |                            | IDA                | -    |

## Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. IC Canada Registration No.: 7760A

# **B.TCBs and Notify Bodies Recognized Testing Laboratory.**

| Recognized Testing Laboratory of         | Notify body number |
|------------------------------------------|--------------------|
| TUV Rheinland                            |                    |
| Intertek                                 |                    |
| TUV SUD                                  | Optional.          |
| SGS                                      |                    |
| Phoenix Testlab GmbH                     | 0700               |
| Element Materials Technology Warwick Ltd | 0891               |
| Timco Engineering, Inc.                  | 1177               |
| Eurofins Product Service GmbH            | 0681               |

# 2 Contents

|    | 20/57 7425                                   | Page |
|----|----------------------------------------------|------|
|    | LABORATORIES INTRODUCTION                    |      |
| 1  | 1.1 Test Facility                            |      |
| 2  | CONTENTS                                     |      |
| 2  | REVISION HISTORY                             |      |
| 3  | GENERAL INFORMATION                          |      |
| 4  |                                              |      |
|    | 4.1 GENERAL DESCRIPTION OF E.U.T             |      |
|    | 4.3 CHANNEL LIST                             |      |
|    | 4.4 TEST MODE                                |      |
| 5  | EQUIPMENT USED DURING TEST                   | 9    |
|    | 5.1 EQUIPMENTS LIST                          |      |
|    | 5.2 MEASUREMENT UNCERTAINTY                  |      |
| c  | 5.3 SUBCONTRACTED TEST SUMMARY               |      |
| 6  | CONDUCTED EMISSION                           |      |
| 7  |                                              |      |
|    | 2.1 E.U.T. OPERATION                         |      |
|    | 2.3 MEASUREMENT DESCRIPTION                  |      |
|    | 2.4 CONDUCTED EMISSION TEST RESULT           | 13   |
| 8  | RADIATED SPURIOUS EMISSIONS                  |      |
|    | 8.1 EUT OPERATION                            |      |
|    | 8.2 TEST SETUP                               |      |
|    | 8.3 SPECTRUM ANALYZER SETUP                  |      |
|    | 8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION | 18   |
|    | 8.6 SUMMARY OF TEST RESULTS                  | 19   |
| 9  | BAND EDGE MEASUREMENT                        | 25   |
|    | 9.1 TEST PRODUCE                             |      |
|    | 9.2 TEST SETUP                               |      |
| 10 | BANDWIDTH MEASUREMENT                        |      |
| 10 | 10.1 Test Procedure:                         |      |
|    | 10.1 TEST PROCEDURE                          |      |
|    | 10.3 TEST RESULT:                            |      |
| 11 | MAXIMUM PEAK OUTPUT POWER                    |      |
|    | 11.1 Test Procedure:                         |      |
|    | 11.2 TEST SETUP                              |      |
|    | 11.3 Test Result:                            |      |
| 12 | POWER SPECTRAL DENSITY                       |      |
|    | 12.1 TEST PROCEDURE:                         |      |
|    | 12.2 TEST SETUP                              |      |
| 13 | ANTENNA REQUIREMENT                          |      |

# Reference No.: WTD18S01100421-1E Page 5 of 39

| 14 | FCC II | D: 2AA3H-ESB2118 RF EXPOSURE REPORT     | 39 |
|----|--------|-----------------------------------------|----|
| 15 | PHOT   | OGRAPHS-MODEL ESB2118 TEST SETUP PHOTOS | 39 |
|    |        | OGRAPHS - CONSTRUCTIONAL DETAILS        |    |
|    |        | Model ESB2118-External Photos           |    |
|    | 16.2   | MODEL ESB2118-INTERNAL PHOTOS           | 30 |

Reference No.: WTD18S01100421-1E Page 6 of 39

# 3 Revision History

| Test report No.   | Date of Receipt sample | Date of<br>Test             | Date of Issue | Purpose  | Comment | Approved |
|-------------------|------------------------|-----------------------------|---------------|----------|---------|----------|
| WTD18S01100421-1E | 2018-01-12             | 2018-01-13 to<br>2018-04-03 | 2018-04-04    | Original | -       | Valid    |

Reference No.: WTD18S01100421-1E Page 7 of 39

## 4 General Information

## 4.1 General Description of E.U.T

Product: Element 2.1 Sound Bar With Wireless Subwoofer

Model(s).: ESB2118

Operation Frequency: 2405.35-2477.35MHz, 37 Channels in total

Type of Modulation: QPSK

Antenna Gain:

ANT0: 3.5dBi

ANT1: 3.5dBi

Antenna installation: PCB printed antenna

This device does not support MIMO, and RF module employee two identical antennas.

## 4.2 Details of E.U.T.

Power Supply: 20V === 2A from SWITCHING ADAPTER

(SWITCHING ADAPTER INPUT: 100-240V~50/60Hz, 1.2A, Model:

ASSA79A-200200)

### 4.3 Channel List

Ratings:

| Channel<br>No. | Frequency<br>(MHz) | Channel<br>No. | Frequency<br>(MHz) | Channel<br>No. | Frequency<br>(MHz) |
|----------------|--------------------|----------------|--------------------|----------------|--------------------|
| 1              | 2405.35            | 2              | 2407.35            | 3              | 2409.35            |
| 4              | 2411.35            | 5              | 2413.35            | 6              | 2415.35            |
| 7              | 2417.35            | 8              | 2419.35            | 9              | 2421.35            |
| 10             | 2423.35            | 11             | 2425.35            | 12             | 2427.35            |
| 13             | 2429.35            | 14             | 2431.35            | 15             | 2433.35            |
| 16             | 2435.35            | 17             | 2437.35            | 18             | 2439.35            |
| 19             | 2441.35            | 20             | 2443.35            | 21             | 2445.35            |
| 22             | 2447.35            | 23             | 2449.35            | 24             | 2451.35            |
| 25             | 2453.35            | 26             | 2455.35            | 27             | 2457.35            |
| 28             | 2459.35            | 29             | 2461.35            | 30             | 2463.35            |
| 31             | 2465.35            | 32             | 2467.35            | 33             | 2469.35            |
| 34             | 2471.35            | 35             | 2473.35            | 36             | 2475.35            |
| 37             | 2477.35            | 38             | N/A                | 39             | N/A                |

### 4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

| Table 1 rests carried care rest to part relative |      |         |       |  |
|--------------------------------------------------|------|---------|-------|--|
| Test Items                                       | Mode | Channel | TX/RX |  |
| Maximum Peak Output Power                        | QPSK | 1/19/37 | TX    |  |
| Power Spectral Density                           | QPSK | 1/19/37 | TX    |  |
| Bandwidth                                        | QPSK | 1/19/37 | TX    |  |
| Band Edge                                        | QPSK | 1/37    | TX    |  |
| Radiated Spurious Emissions                      | QPSK | 1/19/37 | TX    |  |

**Note** :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

# 5 Equipment Used during Test

# 5.1 Equipments List

|        | 5.1 Equipments List                                  |                         |             |                                       |                             |                         |
|--------|------------------------------------------------------|-------------------------|-------------|---------------------------------------|-----------------------------|-------------------------|
| Condu  | cted Emissions                                       | 1                       |             | 1                                     |                             |                         |
| Item   | Equipment                                            | Manufacturer            | Model No.   | Serial No.                            | Last<br>Calibration<br>Date | Calibration<br>Due Date |
| 1.     | EMI Test Receiver                                    | R&S                     | ESCI        | 101155                                | 2017-09-12                  | 2018-09-11              |
| 2.     | LISN                                                 | SCHWARZBECK             | NSLK 8128   | 8128-289                              | 2017-09-12                  | 2018-09-11              |
| 3.     | Limiter                                              | York                    | MTS-IMP-136 | 261115-001-<br>0024                   | 2017-09-12                  | 2018-09-11              |
| 4.     | Cable                                                | Laplace                 | RF300       | -                                     | 2017-09-12                  | 2018-09-11              |
| 3m Ser | mi-anechoic Chamber                                  | for Radiation Emis      | sions       |                                       |                             |                         |
| Item   | Equipment                                            | Manufacturer            | Model No.   | Serial No.                            | Last<br>Calibration<br>Date | Calibration<br>Due Date |
| 1      | Spectrum Analyzer                                    | R&S                     | FSP30       | 100091                                | 2017-04-29                  | 2018-04-28              |
| 2      | Broad-band Horn<br>Antenna(1-18GHz)                  | SCHWARZBECK             | BBHA 9120 D | 667                                   | 2017-04-09                  | 2018-04-08              |
| 3      | Broadband<br>Preamplifier                            | COMPLIANCE<br>DIRECTION | PAP-1G18    | 2004                                  | 2017-04-13                  | 2018-04-12              |
| 4      | Coaxial Cable<br>(above 1GHz)                        | Тор                     | 1GHz-18GHz  | EW02014-7                             | 2017-04-13                  | 2018-04-12              |
| 5      | Spectrum Analyzer                                    | R&S                     | FSP40       | 100501                                | 2017-10-20                  | 2018-10-19              |
| 6      | Broad-band Horn<br>Antenna(18-40GHz)                 | SCHWARZBECK             | BBHA 9170   | BBHA917065<br>1                       | 2017-10-25                  | 2018-10-24              |
| 7      | Microwave<br>Broadband<br>Preamplifier<br>(18-40GHz) | SCHWARZBECK             | BBV 9721    | 100472                                | 2017-10-25                  | 2018-10-24              |
| 8      | Cable                                                | Тор                     | 18-40GHz    | -                                     | 2017-10-25                  | 2018-10-24              |
| 3m Sei | mi-anechoic Chamber                                  | for Radiation Emis      | sions       |                                       |                             |                         |
| Item   | Equipment                                            | Manufacturer            | Model No.   | Serial No                             | Last<br>Calibration<br>Date | Calibration<br>Due Date |
| 1      | Test Receiver                                        | R&S                     | ESCI        | 101296                                | 2017-04-13                  | 2018-04-12              |
| 2      | Trilog Broadband<br>Antenna                          | SCHWARZBECK             | VULB9160    | 9160-3325                             | 2017-04-13                  | 2018-04-12              |
| 3      | Active Loop Antenna                                  | Beijing Dazhi           | ZN30900A    | -                                     | 2017-04-09                  | 2018-04-08              |
| 4      | Amplifier                                            | ANRITSU                 | MH648A      | M43381                                | 2017-04-13                  | 2018-04-12              |
| 5      | Cable                                                | HUBER+SUHNER            | CBL2        | 525178                                | 2017-04-13                  | 2018-04-12              |
| 6      | Coaxial Cable<br>(below 1GHz)                        | Тор                     | TYPE16(13M) | -                                     | 2017-09-12                  | 2018-09-11              |
| RF Co  | nducted Testing                                      |                         |             | · · · · · · · · · · · · · · · · · · · |                             |                         |

| Item | Equipment                   | Manufacturer | Model No.  | Serial No. | Last<br>Calibration<br>Date | Calibration<br>Due Date |
|------|-----------------------------|--------------|------------|------------|-----------------------------|-------------------------|
| 1    | Spectrum Analyzer (9k-6GHz) | R&S          | FSL6       | 100959     | 2017-09-12                  | 2018-09-11              |
| 2    | Coaxial Cable               | Тор          | 10Hz-30GHz | -          | 2017-09-12                  | 2018-09-11              |
| 3    | Antenna Connector*          | Realacc      | 45RSm      | -          | 2017-09-12                  | 2018-09-11              |

<sup>&</sup>quot;\*": The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

## 5.2 Measurement Uncertainty

| Parameter                             | Uncertainty                       |
|---------------------------------------|-----------------------------------|
| Radio Frequency                       | ± 1 x 10 <sup>-6</sup>            |
| RF Power                              | ± 1.0 dB                          |
| RF Power Density                      | ± 2.2 dB                          |
| De diete d Occurient Euriceians to de | ± 5.03 dB (30M~1000MHz)           |
| Radiated Spurious Emissions test      | ± 5.47 dB (1000M~25000MHz)        |
| Conducted Spurious Emissions test     | ± 3.64 dB (AC mains 150KHz~30MHz) |

### 5.3 Subcontracted

| Whether parts | of tests for the product have been subcontracted to other labs: |
|---------------|-----------------------------------------------------------------|
| ☐ Yes         | ⊠ No                                                            |

If Yes, list the related test items and lab information:

Test Lab: N/A Lab address: N/A

FCC Designation No.: N/A. Test Firm Registration No.: N/A

Test items: N/A

Reference No.: WTD18S01100421-1E Page 11 of 39

# 6 Test Summary

| Test Items                             | Test Requirement       | Result           |
|----------------------------------------|------------------------|------------------|
|                                        | 15.247                 |                  |
| Radiated Spurious Emissions            | 15.205(a)              | Pass             |
|                                        | 15.209(a)              |                  |
| Conducted Emissions                    | 15.207(a)              | Pass             |
| Bandwidth                              | 15.247(a)(2)           | Pass             |
| Maximum Peak Output Power              | 15.247(b)(3),(4)       | Pass             |
| Power Spectral Density                 | 15.247(e)              | Pass             |
| Band Edge                              | 15.247(d)              | Pass             |
| Antenna Requirement                    | 15.203                 | Pass             |
| RF Exposure                            | 1.1307(b)(1)           | Pass             |
| Note: Pass=Compliance; NC=Not Complian | ce; NT=Not Tested; N/A | =Not Applicable. |

Reference No.: WTD18S01100421-1E Page 12 of 39

## 7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: Fre

| Fraguency (MUz) | Limit (dBμV) |           |  |  |  |
|-----------------|--------------|-----------|--|--|--|
| Frequency (MHz) | Qsi-peak     | Average   |  |  |  |
| 0.15 to 0.5     | 66 to 56*    | 56 to 46* |  |  |  |
| 0.5 to 5        | 50           | 60        |  |  |  |
| 5 to 30         | 60           | 50        |  |  |  |

## 2.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

Test Voltage: AC 120V, 60Hz

**EUT Operation:** 

The test was performed in Transmitting mode, the worst test data (QPSK modulation Low channel) were shown in the report.

## 2.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.



## 2.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

### 2.4 Conducted Emission Test Result

Remark: only the worst data (QPSK modulation Low channel mode) were reported

#### Live line:



#### Neutral line:



Reference No.: WTD18S01100421-1E Page 15 of 39

# 8 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

| LIIIIIL.           |              |              |                         |                                      |
|--------------------|--------------|--------------|-------------------------|--------------------------------------|
| _                  | Field Strei  | ngth         | Field Strength Limit at | 3m Measurement Dist                  |
| Frequency<br>(MHz) | uV/m         | Distance (m) | uV/m                    | dBuV/m                               |
| 0.009 ~ 0.490      | 2400/F(kHz)  | 300          | 10000 * 2400/F(kHz)     | 20log <sup>(2400/F(kHz))</sup> + 80  |
| 0.490 ~ 1.705      | 24000/F(kHz) | 30           | 100 * 24000/F(kHz)      | 20log <sup>(24000/F(kHz))</sup> + 40 |
| 1.705 ~ 30         | 30           | 30           | 100 * 30                | 20log <sup>(30)</sup> + 40           |
| 30 ~ 88            | 100          | 3            | 100                     | 20log <sup>(100)</sup>               |
| 88 ~ 216           | 150          | 3            | 150                     | 20log <sup>(150)</sup>               |
| 216 ~ 960          | 200          | 3            | 200                     | 20log <sup>(200)</sup>               |
| Above 960          | 500          | 3            | 500                     | 20log <sup>(500)</sup>               |

# 8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

**EUT Operation:** 

The test was performed in transmitting mode, the test data were shown in the report.

## 8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10:2013.

The test setup for emission measurement below 30MHz.



The test setup for emission measurement from 30 MHz to 1 GHz.





The test setup for emission measurement above 1 GHz.

# 8.3 Spectrum Analyzer Setup

| -           | •                    |          |
|-------------|----------------------|----------|
| Below 30MHz |                      |          |
|             | Sweep Speed          | . Auto   |
|             | IF Bandwidth         | 10kHz    |
|             | Video Bandwidth      | 10kHz    |
|             | Resolution Bandwidth | 10kHz    |
| 30MHz ~ 1GH | z                    |          |
|             | Sweep Speed          | Auto     |
|             | Detector             | PK       |
|             | Resolution Bandwidth | . 100kHz |
|             | Video Bandwidth      | 300kHz   |
| Above 1GHz  |                      |          |
|             | Sweep Speed          | Auto     |
|             | Detector             | PK       |
|             | Resolution Bandwidth | .1MHz    |
|             | Video Bandwidth      | 3MHz     |
|             | Detector             | Ave.     |
|             | Resolution Bandwidth | .1MHz    |
|             | Video Bandwidth      | 10Hz     |

Reference No.: WTD18S01100421-1E Page 18 of 39

#### 8.4 Test Procedure

- 1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- 8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

## 8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTD18S01100421-1E Page 19 of 39

# 8.6 Summary of Test Results

Test Frequency: 9kHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

## ANT0

| F                      | Receiver | Detector    | Turn           | RX An      | tenna  | Corrected              | 0        | FCC F<br>15.247/20 |        |
|------------------------|----------|-------------|----------------|------------|--------|------------------------|----------|--------------------|--------|
| Frequency              | Reading  | Detector    | table<br>Angle | l l Factor | Factor | Corrected<br>Amplitude | Limit    | Margin             |        |
| (MHz)                  | (dBµV)   | (PK/QP/Ave) | Degree         | (m)        | (H/V)  | (dB)                   | (dBµV/m) | (dBµV/m)           | (dB)   |
| Low Channel 2405.35MHz |          |             |                |            |        |                        |          |                    |        |
| 243.59                 | 40.18    | QP          | 80             | 1.8        | Н      | -11.62                 | 28.56    | 46.00              | -17.44 |
| 243.59                 | 32.49    | QP          | 127            | 1.4        | V      | -11.62                 | 20.87    | 46.00              | -25.13 |
| 4810.70                | 48.61    | PK          | 282            | 1.8        | V      | -1.06                  | 47.55    | 74.00              | -26.45 |
| 4810.70                | 44.33    | Ave         | 282            | 1.8        | V      | -1.06                  | 43.27    | 54.00              | -10.73 |
| 7216.05                | 41.77    | PK          | 294            | 1.3        | Н      | 1.33                   | 43.10    | 74.00              | -30.90 |
| 7216.05                | 34.51    | Ave         | 294            | 1.3        | Н      | 1.33                   | 35.84    | 54.00              | -18.16 |
| 2348.70                | 45.26    | PK          | 168            | 1.8        | V      | -13.19                 | 32.07    | 74.00              | -41.93 |
| 2348.70                | 39.90    | Ave         | 168            | 1.8        | V      | -13.19                 | 26.71    | 54.00              | -27.29 |
| 2356.67                | 43.41    | PK          | 291            | 1.6        | Н      | -13.14                 | 30.27    | 74.00              | -43.73 |
| 2356.67                | 38.73    | Ave         | 291            | 1.6        | Н      | -13.14                 | 25.59    | 54.00              | -28.41 |
| 2485.35                | 44.97    | PK          | 360            | 1.2        | V      | -13.08                 | 31.89    | 74.00              | -42.11 |
| 2485.35                | 36.43    | Ave         | 360            | 1.2        | V      | -13.08                 | 23.35    | 54.00              | -30.65 |

|                           | Receiver | Datastan    | Turn                             | RX An  | tenna                  | Corrected | 0        | FCC F<br>15.247/20 |        |  |
|---------------------------|----------|-------------|----------------------------------|--------|------------------------|-----------|----------|--------------------|--------|--|
| Frequency                 | Reading  | Detector    | etector table Angle Height Polar | Factor | Corrected<br>Amplitude | Limit     | Margin   |                    |        |  |
| (MHz)                     | (dBµV)   | (PK/QP/Ave) | Degree                           | (m)    | (H/V)                  | (dB)      | (dBµV/m) | (dBµV/m)           | (dB)   |  |
| Middle Channel 2441.35MHz |          |             |                                  |        |                        |           |          |                    |        |  |
| 243.59                    | 40.88    | QP          | 182                              | 1.6    | Н                      | -11.62    | 29.26    | 46.00              | -16.74 |  |
| 243.59                    | 33.84    | QP          | 222                              | 1.6    | V                      | -11.62    | 22.22    | 46.00              | -23.78 |  |
| 4882.70                   | 49.40    | PK          | 236                              | 1.4    | V                      | -0.62     | 48.78    | 74.00              | -25.22 |  |
| 4882.70                   | 45.40    | Ave         | 236                              | 1.4    | V                      | -0.62     | 44.78    | 54.00              | -9.22  |  |
| 7324.05                   | 41.83    | PK          | 193                              | 1.3    | Н                      | 2.21      | 44.04    | 74.00              | -29.96 |  |
| 7324.05                   | 34.94    | Ave         | 193                              | 1.3    | Н                      | 2.21      | 37.15    | 54.00              | -16.85 |  |
| 2332.65                   | 45.15    | PK          | 316                              | 1.1    | V                      | -13.19    | 31.96    | 74.00              | -42.04 |  |
| 2332.65                   | 37.75    | Ave         | 316                              | 1.1    | V                      | -13.19    | 24.56    | 54.00              | -29.44 |  |
| 2377.07                   | 43.59    | PK          | 346                              | 1.7    | Н                      | -13.14    | 30.45    | 74.00              | -43.55 |  |
| 2377.07                   | 37.70    | Ave         | 346                              | 1.7    | Н                      | -13.14    | 24.56    | 54.00              | -29.44 |  |
| 2483.71                   | 43.11    | PK          | 330                              | 1.4    | V                      | -13.08    | 30.03    | 74.00              | -43.97 |  |
| 2483.71                   | 36.69    | Ave         | 330                              | 1.4    | V                      | -13.08    | 23.61    | 54.00              | -30.39 |  |

|                         | Receiver | Detector    | Turn           | RX An  | tenna | Corrected    | Corrected<br>Amplitude | FCC Part<br>15.247/209/205 |        |  |
|-------------------------|----------|-------------|----------------|--------|-------|--------------|------------------------|----------------------------|--------|--|
| Frequency               | Reading  | Detector    | table<br>Angle | Height | Polar | Factor<br>ir |                        | Limit                      | Margin |  |
| (MHz)                   | (dBµV)   | (PK/QP/Ave) | Degree         | (m)    | (H/V) | (dB)         | (dBµV/m)               | (dBµV/m)                   | (dB)   |  |
| High Channel 2477.35MHz |          |             |                |        |       |              |                        |                            |        |  |
| 243.59                  | 42.24    | QP          | 46             | 2.0    | Н     | -11.62       | 30.62                  | 46.00                      | -15.38 |  |
| 243.59                  | 32.58    | QP          | 234            | 1.5    | V     | -11.62       | 20.96                  | 46.00                      | -25.04 |  |
| 4954.70                 | 48.17    | PK          | 238            | 1.4    | V     | -0.24        | 47.93                  | 74.00                      | -26.07 |  |
| 4954.70                 | 44.45    | Ave         | 238            | 1.4    | V     | -0.24        | 44.21                  | 54.00                      | -9.79  |  |
| 7432.05                 | 42.77    | PK          | 25             | 1.9    | Н     | 2.84         | 45.61                  | 74.00                      | -28.39 |  |
| 7432.05                 | 33.94    | Ave         | 25             | 1.9    | Н     | 2.84         | 36.78                  | 54.00                      | -17.22 |  |
| 2335.65                 | 46.76    | PK          | 168            | 1.6    | V     | -13.19       | 33.57                  | 74.00                      | -40.43 |  |
| 2335.65                 | 39.62    | Ave         | 168            | 1.6    | V     | -13.19       | 26.43                  | 54.00                      | -27.57 |  |
| 2380.52                 | 42.57    | PK          | 140            | 1.2    | Н     | -13.14       | 29.43                  | 74.00                      | -44.57 |  |
| 2380.52                 | 37.80    | Ave         | 140            | 1.2    | Н     | -13.14       | 24.66                  | 54.00                      | -29.34 |  |
| 2489.47                 | 42.62    | PK          | 320            | 1.6    | V     | -13.08       | 29.54                  | 74.00                      | -44.46 |  |
| 2489.47                 | 37.47    | Ave         | 320            | 1.6    | V     | -13.08       | 24.39                  | 54.00                      | -29.61 |  |

Reference No.: WTD18S01100421-1E Page 22 of 39

## ANT1

| F                      | Receiver | Detector    | Turn           | RX An  | tenna | Corrected | 0                      | FCC I<br>15.247/2 |        |  |
|------------------------|----------|-------------|----------------|--------|-------|-----------|------------------------|-------------------|--------|--|
| Frequency              | Reading  | Detector    | table<br>Angle | Height | Polar | Factor    | Corrected<br>Amplitude | Limit             | Margin |  |
| (MHz)                  | (dBµV)   | (PK/QP/Ave) | Degree         | (m)    | (H/V) | (dB)      | (dBµV/m)               | (dBµV/m)          | (dB)   |  |
| Low Channel 2405.35MHz |          |             |                |        |       |           |                        |                   |        |  |
| 252.38                 | 42.44    | QP          | 277            | 1.1    | Н     | -11.62    | 30.82                  | 46.00             | -15.18 |  |
| 252.38                 | 33.61    | QP          | 75             | 1.1    | V     | -11.62    | 21.99                  | 46.00             | -24.01 |  |
| 4810.70                | 48.61    | PK          | 77             | 1.2    | V     | -1.06     | 47.55                  | 74.00             | -26.45 |  |
| 4810.70                | 42.89    | Ave         | 77             | 1.2    | V     | -1.06     | 41.83                  | 54.00             | -12.17 |  |
| 7216.05                | 42.38    | PK          | 96             | 1.2    | Н     | 1.33      | 43.71                  | 74.00             | -30.29 |  |
| 7216.05                | 34.51    | Ave         | 96             | 1.2    | Н     | 1.33      | 35.84                  | 54.00             | -18.16 |  |
| 2344.46                | 46.21    | PK          | 185            | 1.4    | V     | -13.19    | 33.02                  | 74.00             | -40.98 |  |
| 2344.46                | 37.92    | Ave         | 185            | 1.4    | V     | -13.19    | 24.73                  | 54.00             | -29.27 |  |
| 2376.76                | 42.21    | PK          | 158            | 1.8    | Н     | -13.14    | 29.07                  | 74.00             | -44.93 |  |
| 2376.76                | 38.83    | Ave         | 158            | 1.8    | Н     | -13.14    | 25.69                  | 54.00             | -28.31 |  |
| 2488.06                | 42.60    | PK          | 334            | 1.3    | V     | -13.08    | 29.52                  | 74.00             | -44.48 |  |
| 2488.06                | 38.80    | Ave         | 334            | 1.3    | V     | -13.08    | 25.72                  | 54.00             | -28.28 |  |

|                           | Receiver | Detector    | Turn           | RX An  | tenna | Corrected | 0                      | FCC F<br>15.247/2 |        |  |
|---------------------------|----------|-------------|----------------|--------|-------|-----------|------------------------|-------------------|--------|--|
| Frequency                 | Reading  | Detector    | table<br>Angle | Height | Polar | Factor    | Corrected<br>Amplitude | Limit             | Margin |  |
| (MHz)                     | (dBµV)   | (PK/QP/Ave) | Degree         | (m)    | (H/V) | (dB)      | (dBµV/m)               | (dBµV/m)          | (dB)   |  |
| Middle Channel 2441.35MHz |          |             |                |        |       |           |                        |                   |        |  |
| 252.38                    | 42.24    | QP          | 319            | 1.2    | Н     | -11.62    | 30.62                  | 46.00             | -15.38 |  |
| 252.38                    | 34.83    | QP          | 5              | 1.1    | V     | -11.62    | 23.21                  | 46.00             | -22.79 |  |
| 4882.70                   | 47.23    | PK          | 333            | 1.0    | V     | -0.62     | 46.61                  | 74.00             | -27.39 |  |
| 4882.70                   | 42.26    | Ave         | 333            | 1.0    | V     | -0.62     | 41.64                  | 54.00             | -12.36 |  |
| 7324.05                   | 43.08    | PK          | 264            | 1.3    | Н     | 2.21      | 45.29                  | 74.00             | -28.71 |  |
| 7324.05                   | 33.43    | Ave         | 264            | 1.3    | Н     | 2.21      | 35.64                  | 54.00             | -18.36 |  |
| 2332.87                   | 46.30    | PK          | 71             | 1.7    | V     | -13.19    | 33.11                  | 74.00             | -40.89 |  |
| 2332.87                   | 38.62    | Ave         | 71             | 1.7    | V     | -13.19    | 25.43                  | 54.00             | -28.57 |  |
| 2371.32                   | 42.77    | PK          | 59             | 1.0    | Н     | -13.14    | 29.63                  | 74.00             | -44.37 |  |
| 2371.32                   | 38.02    | Ave         | 59             | 1.0    | Н     | -13.14    | 24.88                  | 54.00             | -29.12 |  |
| 2494.46                   | 44.02    | PK          | 27             | 1.1    | V     | -13.08    | 30.94                  | 74.00             | -43.06 |  |
| 2494.46                   | 37.97    | Ave         | 27             | 1.1    | V     | -13.08    | 24.89                  | 54.00             | -29.11 |  |

|           | Receiver                | Detector    | Turn           | RX An  | tenna | Corrected | Corrected<br>Amplitude | FCC F<br>15.247/2 |        |  |
|-----------|-------------------------|-------------|----------------|--------|-------|-----------|------------------------|-------------------|--------|--|
| Frequency | Reading                 | Detector    | table<br>Angle | Height | Polar | Factor    |                        | Limit             | Margin |  |
| (MHz)     | (dBµV)                  | (PK/QP/Ave) | Degree         | (m)    | (H/V) | (dB)      | (dBµV/m)               | (dBµV/m)          | (dB)   |  |
|           | High Channel 2477.35MHz |             |                |        |       |           |                        |                   |        |  |
| 252.38    | 41.05                   | QP          | 306            | 1.7    | Н     | -11.62    | 29.43                  | 46.00             | -16.57 |  |
| 252.38    | 34.45                   | QP          | 283            | 1.8    | V     | -11.62    | 22.83                  | 46.00             | -23.17 |  |
| 4954.70   | 48.18                   | PK          | 161            | 1.9    | V     | -0.24     | 47.94                  | 74.00             | -26.06 |  |
| 4954.70   | 41.06                   | Ave         | 161            | 1.9    | V     | -0.24     | 40.82                  | 54.00             | -13.18 |  |
| 7432.05   | 41.86                   | PK          | 57             | 1.8    | Н     | 2.84      | 44.70                  | 74.00             | -29.30 |  |
| 7432.05   | 34.69                   | Ave         | 57             | 1.8    | Н     | 2.84      | 37.53                  | 54.00             | -16.47 |  |
| 2333.31   | 46.60                   | PK          | 268            | 1.5    | V     | -13.19    | 33.41                  | 74.00             | -40.59 |  |
| 2333.31   | 38.41                   | Ave         | 268            | 1.5    | V     | -13.19    | 25.22                  | 54.00             | -28.78 |  |
| 2374.54   | 43.50                   | PK          | 151            | 1.4    | Н     | -13.14    | 30.36                  | 74.00             | -43.64 |  |
| 2374.54   | 36.70                   | Ave         | 151            | 1.4    | Н     | -13.14    | 23.56                  | 54.00             | -30.44 |  |
| 2485.47   | 44.09                   | PK          | 293            | 1.3    | V     | -13.08    | 31.01                  | 74.00             | -42.99 |  |
| 2485.47   | 36.86                   | Ave         | 293            | 1.3    | >     | -13.08    | 23.78                  | 54.00             | -30.22 |  |

# Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTD18S01100421-1E Page 25 of 39

# 9 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v04, April 5, 2017

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

#### 9.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Reference No.: WTD18S01100421-1E Page 26 of 39

# 9.2 Test Setup



## 9.3 Test Result

Test result plots shown as follows:













Reference No.: WTD18S01100421-1E Page 29 of 39

## 10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v04, April 5, 2017

#### 10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

## 10.2 Test Setup



### 10.3 Test Result:

ANT0:

| 6dE     | Bandwidth (     | MHz)  | 99% Bandwidth (MHz) |         |         |  |  |
|---------|-----------------|-------|---------------------|---------|---------|--|--|
| 2412MHz | 2437MHz 2462MHz |       | 2412MHz             | 2437MHz | 2462MHz |  |  |
| 1.563   | 1.563           | 1.563 | 1.934               | 1.928   | 1.928   |  |  |

### ANT1:

| 6dE                     | Bandwidth ( | MHz)    | 99% Bandwidth (MHz) |         |       |  |  |
|-------------------------|-------------|---------|---------------------|---------|-------|--|--|
| 2412MHz 2437MHz 2462MHz |             | 2412MHz | 2437MHz             | 2462MHz |       |  |  |
| 1.533                   | 1.533       | 1.533   | 1.934               | 1.928   | 1.928 |  |  |

ANT0

Test result plot as follows:







ANT1
Test result plot as follows:







Reference No.: WTD18S01100421-1E Page 33 of 39

## 11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v04, April 5, 2017

#### 11.1 Test Procedure:

558074 D01 DTS Meas Guidance v04, April 5, 2017

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3 MHz. VBW = 10 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

### 11.2 Test Setup



#### 11.3 Test Result:

#### ANT0:

|                                         | Test mode: QPSK         |  |  |  |  |  |  |  |
|-----------------------------------------|-------------------------|--|--|--|--|--|--|--|
| Maximum Peak Output Power (dBm)         |                         |  |  |  |  |  |  |  |
| Low Channel Middle Channel High Channel |                         |  |  |  |  |  |  |  |
| -2.47                                   | -2.47 -1.42 <b>0.05</b> |  |  |  |  |  |  |  |
| Limit: 1W/30dBm                         |                         |  |  |  |  |  |  |  |

#### ANT1:

| Test mode: QPSK                 |                |              |  |
|---------------------------------|----------------|--------------|--|
| Maximum Peak Output Power (dBm) |                |              |  |
| Low Channel                     | Middle Channel | High Channel |  |
| -2.57                           | -0.69          | -0.20        |  |
| Limit: 1W/30dBm                 |                |              |  |

Reference No.: WTD18S01100421-1E Page 34 of 39

# 12 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v04, April 5, 2017

#### 12.1 Test Procedure:

558074 D01 DTS Meas Guidance v04, April 5, 2017

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

### 12.2 Test Setup



#### 12.3 Test Result:

#### ANT0:

| Test mode : QPSK              |                |              |  |  |
|-------------------------------|----------------|--------------|--|--|
| Power Spectral (dBm per 3kHz) |                |              |  |  |
| Low Channel                   | Middle Channel | High Channel |  |  |
| -20.31                        | -19.94         | -18.65       |  |  |
| Limit: 8dBm per 3kHz          |                |              |  |  |

#### ANT1:

| Test mode : QPSK              |                |              |  |
|-------------------------------|----------------|--------------|--|
| Power Spectral (dBm per 3kHz) |                |              |  |
| Low Channel                   | Middle Channel | High Channel |  |
| -21.31                        | -19.33         | -18.92       |  |
| Limit: 8dBm per 3kHz          |                |              |  |

-70 dBm

-80 dBm

CF 2.40535 GHz

ANT0















## 13 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### Result:

The EUT has two PCB Printed Antenna, meets the requirements of FCC 15.203.



Reference No.: WTD18S01100421-1E Page 39 of 39

# 14 FCC ID: 2AA3H-ESB2118 RF Exposure Report

Note: Please refer to RF Exposure report: WTD18S01100421-2E

# 15 Photographs-Model ESB2118 Test Setup Photos

Note: Please refer to Photos: WTD18S01100421-3E.

# 16 Photographs - Constructional Details

## 16.1 Model ESB2118-External Photos

Note: Please refer to Photos: WTD18S01100421-3E.

## 16.2 Model ESB2118-Internal Photos

Note: Please refer to Photos: WTD18S01100421-3E.

====End of Report=====