Formulário – Probabilidades e Aplicações – 2021/22

Espaço de resultados: Ω ; espaço de acontecimentos: (Ω, \mathcal{A}) , sendo \mathcal{A} uma σ -álgebra de partes de Ω (i.e., inclui \emptyset e é fechada para a complementação e para a união numerável de acontecimentos)

Medida de probabilidade em (Ω, A) : Fórmulas: (I) $P(A) \geq 0$ (não negatividade) $P(\overline{A}) = 1 - P(A)$; $P(\emptyset) = 0$; $P(A) \le 1$ (II) $P(\Omega) = 1$ $A \subset B \Longrightarrow P(B-A) = P(B) - P(A)$ $A \subset B \Longrightarrow P(A) \leq P(B) \pmod{monotonia}$ (III) $P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...,$ para A_1, A_2, \dots disjuntos 2 a 2 (aditividade) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ (regra da adição) Probabilidade condicional: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ Independência: $P(A \cap B) = P(A) P(B)$ Regra da multiplicação: $P(A_1 \cap A_2 \cap ... \cap A_n)$ $= P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)...P(A_n|A_1 \cap A_2 \cap ...A_{n-1})$ $P(A) = \sum_{j \geq 1} P(A \mid B_j) P(B_j)$, em que $\{B_j\}_{j \geq 1}$ é partição de Ω Teorema da Probabilidade Total: $P(B_i\mid A)=\frac{P(A\cap B_i)}{P(A)}=\frac{P(A|B_i)P(B_i)}{\sum\limits_{j\geq 1}P(A|B_j)P(B_j)},$ com $\{B_j\}_{j\geq 1}$ partição de Ω Teorema de Bayes:

$$P(A_1 \cup \ldots \cup A_n) = \sum_{i \in J} P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) - \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$

$distribui$ ç $ ilde{a}o$	$par \hat{a}m.$	P(X=i) ou $f(x)$	μ	μ σ^2 m		$\chi_{rac{1}{2}}$	eta_1	β_2
$U\{1, 2,, N\}$	$N\in\mathbb{N}$	$\frac{1}{N}, i = 1, 2,, N$	$\frac{N+1}{2} \qquad \frac{N^2-1}{12}$		plurimodal $\left[\frac{N+1}{2}\right]$		0	†
HG(n,N,p)	$N \in \mathbb{N},$ $n \in \{1,, N\}$ 0	$ \binom{Np}{i} \binom{N-Np}{n-i} / \binom{N}{n}, $ $ 0 \le i \le n, i \le Np, $ $ 0 \le n-i \le N-Np $	np	*				
bi(n,p)	$n \in \mathbb{N} \\ 0$	$\binom{n}{i} p^i (1-p)^{n-i},$ i = 0, 1, 2,, n	np	np(1-p)	$[p(n+1)] \ddagger$		$\frac{1-2p}{\sqrt{np(1-p)}}$	††
geom(p)	0	$(1-p)^{i-1}p,$ $i = 1, 2, 3, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	1		$\frac{2-p}{\sqrt{1-p}}$	$9 + \frac{p^2}{1-p}$
$Poisson(\lambda)$	$\lambda > 0$	$e^{-\lambda} \frac{\lambda^i}{i!},$ $i = 0, 1, 2, 3, \dots$	λ	λ	$[\lambda]$ **		$\frac{1}{\sqrt{\lambda}}$	$3 + \frac{1}{\lambda}$
U[a,b]	a < b	$\begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{c.contrário} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	plurimodal	$\frac{a+b}{2}$	0	$\frac{9}{5}$
$Exp(\lambda)$	$\lambda > 0$	$\begin{cases} 0, & x < 0 \\ \lambda e^{-\lambda x}, & x \ge 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	0	$\frac{\log 2}{\lambda}$	2	9
$N(\mu,\sigma)$	$\mu \in \mathbb{R}$ $\sigma > 0$	$\frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	μ	μ	0	3

^{*} $np(1-p)\frac{N-n}{N-1}$ ** modas $\lambda \in \lambda - 1$, se $\lambda \in \mathbb{N}$ † $3 - \frac{6}{5}\frac{N^2 + 1}{N^2 - 1}$ †† $3 + \frac{1 - 6p(1-p)}{np(1-p)}$ ‡ bimodal se $(n+1)p \in \{1, ..., n\}$

sample(x, size, replace = FALSE, prob = ...) ; dhyper, dbinom, dgeom, dpois; dunif, dexp, dnorm;
d,p,q,r (prefixos para cada distribuição implementada); dmultinom; rmultinom
plot ; abline ; hist ; table ; cumsum ; colSums ; rowSums ;
apply(matriz, 2, função) aplica a função especificada a uma das dimensões da matriz (1-linhas, 2-colunas).
nomedafunção <- function(arg1, arg2, ...) {instrução1; instrução2; ...}
for (variável in sequência) {instrução1; instrução2; ...}</pre>

 $\binom{n}{i}p^i(1-p)^{n-i} \longrightarrow e^{-\lambda}\frac{\lambda^i}{i!}$, quando $n \to \infty$ e $p = \frac{\lambda}{n} \to 0$; Processo de Poisson: $N_t \frown Poisson(\lambda t), N_0 = 0$ $\binom{Np}{i}\binom{N-np}{n-i}/\binom{N}{n} \ \longrightarrow \ \binom{n}{i}p^i(1-p)^{n-i},$ quando $N\to\infty$ $(n \in p \text{ fixos})$ Distribuição multinomial $M(n; p_1, p_2, \dots, p_{r-1})$, sendo $p_i > 0$ e $p_1 + p_2 + \dots + p_{r-1} < 1$; fmp conjunta: $P(X_1 = n_1, \dots, X_{r-1} = n_{r-1}) = \frac{n!}{n_1! \dots n_{r-1}! n_r!} p_1^{n_1} p_2^{n_2} \dots p_{r-1}^{n_{r-1}} q^{n_r}, \text{ com } \begin{cases} 0 \le n_i \le n, \ 0 \le n_1 + \dots + n_{r-1} \le n \\ n_r = n - (n_1 + \dots + n_{r-1}) \\ q = 1 - (p_1 + \dots + p_{r-1}) \end{cases}$ $X_i \frown bi(n_i, p_i), i = 1, 2, \dots, r - 1; \quad cov(X_i, X_j) = -np_i p_j, \text{ para } i \neq j$ dmultinom; rmultinom; $X: \begin{array}{ll} \Omega \longrightarrow \mathbb{R} \\ \omega \longmapsto X(\omega) \end{array} \left\{ \begin{array}{ll} \text{fmp} & p_i = P(X = x_i) \\ \text{fdp} & f: \mathbb{R} \to \mathbb{R}, \text{ tal que } F(x) = \int_{-\infty}^x f(t) dt \end{array} \right. \\ \left. \begin{array}{ll} p_i \geq 0 \; , \; \sum p_i = 1 \\ f(x) \geq 0 \; , \; \int_{-\infty}^{+\infty} f(t) dt = 1 \end{array} \right.$ Função de distribuição (fd): $F(x) = P(X \le x), x \in \mathbb{R}$; $P(a < X \le b) = F(b) - F(a)$; caso discreto: $F(x) = \sum_{i:x_i \le x} p_i$; caso contínuo: $F(x) = \int_{-\infty}^x f(t) dt$ $E(h(X)) = \sum h(x_i)p_i$, se $\sum |h(x_i)|p_i < +\infty$; $E(h(X)) = \int_{-\infty}^{+\infty} h(x)f(x)dx$, se $\int_{-\infty}^{+\infty} |h(x)|f(x)dx < +\infty$ $\mu = E(X) \; ; \; \; \sigma^2 = var(X) = E\left((X - \mu)^2 \right) = E(X^2) - \mu^2 \; ; \; \; \mu_r' = E(X^r) \; ; \; \; \mu_r = E\left((X - \mu)^r \right)$ $\beta_1 = E\left(\left(\frac{X-\mu}{\sigma}\right)^3\right); \beta_2 = E\left(\left(\frac{X-\mu}{\sigma}\right)^4\right); \chi_p = \inf\{x: F(x) \ge p\}; F \text{ contínua estrita/ cresc: } \Longrightarrow \chi_p = F^{-1}(p)$ $(X,Y): \qquad \underset{\omega}{\Omega} \xrightarrow{\mathbb{R}^2} \underset{(X(\omega),Y(\omega))}{\mathbb{R}^2} \qquad \begin{cases} p_{ij} \geq 0 & \text{e} \quad \sum\limits_{i} \sum\limits_{j} p_{ij} = 1 \\ \text{fdp conjunta} \qquad f: \mathbb{R}^2 \to \mathbb{R}, \text{ tal que } F(x,y) = \int_{-\infty}^x \left(\int_{-\infty}^y f(u,v) dv \right) du. \end{cases}$ $f(x,y) \ge 0$ e $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u,v) du dv = 1$ marginais (c. discreto): $p_{i\bullet} = P(X = x_i) = \sum_j p_{ij}$; $p_{\bullet j} = P(Y = y_j) = \sum_i p_{ij}$ marginais (c. contínuo): $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$; $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$ $E(h(X,Y)) = \sum h(x_i, y_j) p_{ij}$, se ...; $E(h(X,Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x,y) f(x,y) dx dy$, se ... $cov(X,Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - \mu_X \mu_Y \; \; ; \; \; \rho = \frac{cov(X,Y)}{\sigma_X \sigma_Y} \; \; ; \; \; |\rho| \leq 1 \; \; ; \; \; \rho = \pm 1 \; \text{sse} \; P(Y = aX + b) = 1 \; \text{such that} \; |\rho| \leq 1 \; \; ; \; \; \rho = \pm 1 \; \text{sse} \; P(Y = aX + b) = 1 \; \text{such that} \; |\rho| \leq 1 \; \; ; \; |\rho| > 1 \; \;$ Propriedades: E(a + bX) = a + bE(X); $var(a + bX) = b^2 var(X)$; $E(X_1 + ... + X_n) = E(X_1) + ... + E(X_n)$; X_1, \ldots, X_n (mutuamente) independentes $\Longrightarrow h_1(X_1), \ldots, h_n(X_n)$ independentes; $X_1,...,X_n$ independentes $\implies var(X_1+...+X_n)=var(X_1)+...+var(X_n)$, $cov(X_i,X_j)=0$ e $\rho=0$; $\begin{aligned} var(X_1+\ldots+X_n) &= \sum_i var(X_i) + 2\sum_{i < j} cov(X_i,X_j) \;. \qquad \qquad X_i \text{ i.i.d.} \implies E(\overline{X}) = \mu \text{ e } var(\overline{X}) = \frac{\sigma^2}{n}. \\ X_i &\frown N\left(\mu_i,\sigma_i\right) \text{ independentes } \implies a_1X_1+\ldots+a_nX_n \frown N\left(\mu,\sigma\right), \text{ com } \mu = \sum a_i\mu_i \text{ e } \sigma^2 = \sum a_i^2\sigma_i^2. \end{aligned}$ Se $\epsilon > 0$ e h função não negativa, então $P(h(X) \ge \epsilon) \le E(h(X))/\epsilon$; desig. Markov: $P(|X| \ge a) \le E(|X|^r)/a^r, \ a > 0, r > 0;$ desig. Chebyshev: $P(|X - \mu| \ge t\sigma) \le \frac{1}{t^2}, \ t > 0$ TEOREMA LIMITE CENTRAL: $\frac{S_n - n\mu}{\sigma\sqrt{n}} \left(\text{ou} \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \right) \right) \xrightarrow{d} Z \cap N(0,1) \left[\text{DE MOIVRE-LAPLACE: } \frac{S_n - np}{\sqrt{np(1-p)}} \right]$

LEI DOS GRANDES NÚMEROS: $\overline{X} \xrightarrow{P} \mu$ (ou seja, para qualquer $\varepsilon > 0$, $P(|\overline{X} - \mu| < \epsilon) \xrightarrow[n \to \infty]{} 1$). A convergência em probabilidade implica a convergência em lei.

 $F(x;\theta); \theta \ (\theta \in \mathbb{R})$ – localização: $Y = X - \theta$ não depende de θ ; $\theta \ (\theta > 0)$ – escala: $Y = \frac{X}{\theta}$ não depende de θ Em famílias com f.d.p. $f(x,\theta)$: (i) localização $(\theta \in \mathbb{R})$: $f(x;\theta) = g(x-\theta)$;

(ii) escala
$$(\theta > 0)$$
: $f(x;\theta) = \frac{1}{\theta} g(\frac{x}{\theta})$;

(iii)
$$\theta = (\lambda, \delta)$$
, $\lambda \in \mathbb{R}, \delta > 0$ – localização-escala: $f(x; \lambda, \delta) = \frac{1}{\delta} g(\frac{x-\lambda}{\delta})$

Se X tem fd contínua F, então $Y = F(X) \frown U[0,1]$; se $Y \frown U[0,1]$, então a v.a. $X = F^{-1}(Y)$ tem fd F

 $L_X(t) = E(e^{-tX})$, se este valor médio existir numa viz. de t = 0; $L_{a+bX}(t) = e^{-at}L_X(bt)$

 $L_{X_1+...+X_n}(t) = \prod_{i=1}^n L_{X_i}(t)$, se $X_1,...,X_n$ mutuamente indep.; $E(X^r) = (-1)^r L_X^{(r)}(0)$

lei	$U\{1,2,\ldots,N\}$	bi(n,p)	Geom(p)	$Poisson(\lambda)$	U[a,b]	$Exp(\lambda)$	$N(\mu, \sigma)$
L(t)	$\frac{1 - e^{-Nt}}{N(e^{-t} - 1)}$	$(q+p\ e^{-t})^n$	$\frac{pe^{-t}}{1 - qe^{-t}}$	$e^{-\lambda(1-e^{-t})}$	$\frac{e^{-at} - e^{-bt}}{t(b-a)}$	$\frac{\lambda}{\lambda + t}$	$e^{-\mu t + \frac{1}{2}\sigma^2 t^2}$
domínio	$t \in \mathbb{R}$	$t \in \mathbb{R}$	$t > \log(q)$	$t \in \mathbb{R}$	$t \in \mathbb{R}$	$t > -\lambda$	$t \in \mathbb{R}$

 $\overline{Nota: q = 1 - p}$

$distribui$ ç $ ilde{a}o$	parâm.	f(x)	μ	σ^2	moda	$\chi_{\frac{1}{2}}$	eta_1	eta_2	L(t)	
$Cauchy(eta,\delta)$	$\beta \in \mathbb{R}$ $\delta > 0$	$\frac{1}{\delta\pi} \frac{1}{1 + (\frac{x-\beta}{\delta})^2}$	∄	∄	β	β	∄	∄		
$Gama(\alpha,\lambda)$	$\begin{array}{l} \alpha > 0 \\ \lambda > 0 \end{array}$	$\frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)} I_{]0, +\infty[}(x)$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	*		$\frac{2}{\sqrt{\alpha}}$	$3 + \frac{6}{\alpha}$	$\left(\frac{\lambda}{\lambda+t}\right)^{\alpha},t>-\lambda$	
$Laplace(\mu,\delta)$	$\mu \in \mathbb{R}$ $\delta > 0$	$\frac{1}{2\delta} \ e^{-\frac{ x-\mu }{\delta}}$	μ	$2\delta^2$	μ	μ	0	6	$\frac{e^{-\mu t}}{1 - \delta^2 t^2}, \ t < \lambda$	

^{*} $\frac{\alpha-1}{\lambda}$, se $\alpha \geq 1$; c.c. é amodal

$$Gama(1,\lambda) \equiv Exp(\lambda)$$

Função Gama de Euler: $\Gamma(\alpha)=\int_0^{+\infty}x^{\alpha-1}e^{-x}dx, \alpha>0 \; ; \; \Gamma(\alpha+1)=\alpha \; \Gamma(\alpha) \; ; \; \Gamma(n+1)=n! \; ; \; \Gamma(\frac{1}{2})=\sqrt{\pi} \; ; \; \text{gamma}$

Passeio aleatório (simétrico):

 $S_0=0$ (fortuna inicial), S_n (fortuna ao fim do n-ésimo passo) = $X_1+\ldots+X_n,\,X_i$ i.i.d. $U\{-1,1\}$

Processo de Poisson de taxa (ou intensidade) λ :

Processo $\{N(t)\}_{t\geq 0}$ de chegadas ao longo do tempo (t>0), com incrementos independentes e estacionários, tal que N(0)=0 e N(t) representa o nº de chegadas no intervalo $]0,t];\ N(t) \frown Poisson(\lambda t);$ os intervalos de tempo até à 1ª chegada e entre chegadas consecutivas são v.a. i.i.d. $Exp(\lambda)$

$$\sum_{j=1}^{n} j = 1 + 2 + 3 + \ldots + n = n \frac{n+1}{2} \; ; \qquad \sum_{j=0}^{n} x^{j} = 1 + x + x^{2} + \ldots + x^{n} = \frac{1 - x^{n+1}}{1 - x} \; ; \qquad \sum_{j=0}^{+\infty} x^{j} = \frac{1}{1 - x} \; , \text{ se } |x| < 1 \; ;$$

$$e^{x} = \sum_{j=0}^{+\infty} \frac{1}{j!} \; x^{j}, \; x \in \mathbb{R} \; ; \qquad \lim_{n \to +\infty} (1 + \frac{x}{n})^{n} = e^{x}, \; x \in \mathbb{R} \; ; \qquad (a + b)^{n} = \sum_{j=0}^{n} {n \choose j} \; a^{j} \; b^{n-j} \; ; \text{ Stirling: } n! \sim \sqrt{2\pi} \; n^{n+1} \; e^{-n}$$

$$\sum_{j=1}^{n} j^{2} = 1^{2} + 2^{2} + 3^{2} + \ldots + n^{2} = \frac{n(n+1)(2n+1)}{6} \; ; \; f(x) = \sum a_{n} x^{n}, |x| < r \implies f'(x) = \sum n \; a_{n} x^{n-1}, \; |x| < r.$$

$$\int (f'g) = fg - \int (fg'); \qquad \sum_{n \ge 1} \frac{1}{n^{\alpha}} < +\infty \; \text{sse } \alpha > 1; \qquad \int_{1}^{+\infty} \frac{1}{x^{\alpha}} \; dx < +\infty \; \text{sse } \alpha > 1$$