

Departamento de Matemáticas 1º Bachillerato

Parcial 1^a evaluación

Universidad, Cultura y Deporte	raiciai i evaluacion	PEDRO CERRADA	
Nombre:		Fecha:	
Tiempo: 50 m	inutos		Tipo: l
-	e?? ejercicios. La puntuación máxima es será la parte proporcional de la puntuació xima. Run LATEX again to produce the table		
A continuaci	uientes conjuntos A, B y C, represéntalos ón, calcula $A \cup B$, $A \cap B$ y $A \cap B \cap C$ forma de Intervalos. Encuentra, si existe	C , y expresa los	

(a)
$$A = \{x \in \mathbb{R} | 3 \le x \land x < 8\}$$
,
 $B = (-\infty, 1) \cup (3, \infty) y$
 $C = \{x \in \mathbb{R} | |x + 2| \ge 8\}$ (2 puntos)

Solución:
$$A \cup B = (-\infty, 1) \cup [3, \infty)$$

 $A \cap B = (3, 8)$
 $A \cap B \cap C = [6, 8)$

2. Usando la definición y las propiedades de los números combinatorios, resolver las ecuaciones:

ínfimo de cada uno de los conjuntos anteriores

(a)
$$\binom{x}{x-2} = 28$$
 (1 punto)

Solución: $\{8\}$

3. Calcula, sin hacer todo el desarrollo, el coeficiente del término asociado a:

(a)
$$P(x) = \left(3x^2 + \frac{1}{x}\right)^7$$
 y parte literal x^5 (2 puntos)

Solución: 2835

4. Efectúa:

(a)
$$\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}} - \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}$$
(1 punto)
$$\mathbf{Solución:} \quad \frac{-12-2\sqrt{35}+\left(-\sqrt{7}+\sqrt{5}\right)^2}{2} \to -2\sqrt{35}$$

(b)
$$\frac{\sqrt[6]{27}\sqrt{\sqrt[3]{3}}}{\sqrt[5]{9}}$$
 (1 punto)

Solución: $3^{\frac{4}{15}} \rightarrow 3^{\frac{4}{15}}$

5. Calcula el valor de k para que:

(a) El resto de dividir
$$P(x) = x^{27} - kx + 3k - 4$$
 entre $x - 1$ sea 5 (1 punto)

Solución: 4

6. Halla el m.c.d. y el m.c.m. de los polinomios:

(a)
$$A(x) = x^5 - 2x^4 - 5x^3 + 10x^2 + 4x - 8y$$

 $B(x) = x^5 + 2x^4 - 5x^3 - 10x^2 + 4x + 8$ (3 puntos)

Solución: Descomposición:
$$((x-2)^2(x-1)(x+1)(x+2)y(x-2)(x-1)(x+1)(x+2)y(x-2)(x-1)(x+1)(x+2)MCDy$$

 $x^4 - 5x^2 + 4 = (x-2)(x-1)(x+1)(x+2)MCDy$
 $x^6 - 9x^4 + 24x^2 - 16 = (x-2)^2(x-1)(x+1)(x+2)^2MCM$