A few-electron quadruple quantum dot in a closed loop

R. THALINEAU, S. HERMELIN, A. WIECK, C. BAUERLE, L. SAMINADAYAR, T. MEUNIER APL **101**, 103102 (2012)

NEEL Institute
Quantum Coherence Group
Grenoble (France)

Context and motivations

Control the path of a single electron in semiconducting nanostructure

Scale up the number of spin qubits interacted together

Entanglement of distant qubits

Hermelin & al, Nature (2011) McNeil & al, Nature (2011) <u>Coupled to SO interaction :</u> <u>interesting way to manipulate</u> <u>coherently a single electron spin</u>

 $L_{SO} \sim 5 \mu m$ $L_{dot-d} QOn 1600 nm$

Nowack & al, Science (2007) San Jose & al, PRB (2008) Golovach & al, PRB (2010)

State of the art

<u>Triple quantum dots in series</u> V, (V) Few electron regime -1.15 Gaudreau & al, APL (2009) -300 dRF_R/dV_R (arb) No transport allowed along a closed path -120 V_R (mV) -100 -80 Laird & al

Triple quantum dots in a star-like configuration

Few electron regime

Rogge & al, PRB (2008)

Geometry

- Red gates: tunnel barriers between dots
- <u>Yellow gates</u>: tunnel barriers between dots and reservoirs and to control the electrochemical potential of each dot
- Green gates: QPC (electrometer)

Stability diagram

Stability diagram

Vg2 and Vg4 are fixed Vg1 and Vg3 are swept

Control of each quantum dot

Single electron transport

Conclusion and perspectives

A quadruple quantum dot in the few electron regime

Single electron transport along a closed path

I_{QPC2} (nA)

2.7

2.5

2.1

1.9

I_{QPC4} (nA)

3.8

3.6

2.0

1.8

0 Time(s) 3 6 6

Increase the tunability of the device by adding a set of gates in order to reach the GHz tunneling regime

Thank you for your attention

Any questions?

Few electron regime

