Intelligent Systems

T. Mihoc

Machine Learning

and Application
Design

Automatic learning

Unsupervised learning

Active learning; Reinforcement learning

Intelligent Systems Automatic learning systems (ALS)

T. Mihoc¹

¹Department of Computer Science Babeş Bolyai University

Outline

Machine Learning

Problem Definition and Applications

Design

Automatic learning

Supervised learning

Unsupervised learning

Active learning; Reinforcement learning

Intelligent Systems

T. Mihoc

Machine Learning

and Application
Design

Supervised learning

earning Active learning Reinforcement

Machine Learning

Problem Definition and Applications

Automatic learning

Unsupervised learning

Reinforcement learning

Machine Learning

Problem Definition and Applications

Design

Automatic learning

Supervised learning

Unsupervised learning

Active learning; Reinforcement learning

Problem:

"How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes? "

Applications:

- Image and voice recognition
 - Handwritten recognition
 - Face detection
- Computer vision
 - Obstacle detection
 - Footprint recognition
- Bio-surveillance
- Robot control
- Predictions
- Medical diagnostic
- Fraud detection

T Mihoc

Problem Definition

and Applications

► Definition:

- Arthur Samuel (1959): field of study that gives computers the ability to learn without being explicitly programmed
- ▶ Herbert Simon (1970): learning is any process by which a system improves performance from experience
- Ethem Alpaydin (2010): programming computers to optimize a performance criterion using example data or past experience

► Necessity:

- ▶ Better computational systems
 - ► To difficult or to expensive to be constructed manually
 - Systems that automatically adapt (spam filters, Systems that discovers information in large databases → data mining, financial analysis, text/image analysis)
- ► Understanding the biological systems

T Mihoc

Machine Learning

and Applications Design

Supervised learning Unsupervised learning

Active learning; Reinforcement earning

T. Mihoc

Machine Learning

and Application

Design

Supervised learning

Active learning Reinforcement

Machine Learning

Problem Definition and Applications

Design

Automatic learning

Supervised learning

Unsupervised learning

Active learning; Reinforcement learning

Design

Respect a performance metric P

Evaluation of the algorithms performances

establish the goal (what has to be learn) objective function and

select a learning algorithms to perform the inference of the goal

Based on experience E

its representation

based on experience

Select an experience database

Examples

T: Playing checkers

Improve task T

- P: percent of winning games
- E:playing the game
- T: handwritten recognition
 - P: percent of correct recognized words
 - E: database of images with different words
- T: separate the spams
 - P: percent of correct classified emails
 - E: databases with annotated emails

Automatic learnin

Unsupervised learning learning

Active learning Reinforcement

- identify the function that must be learn
 Example for checkers game: a function that selects the next move/evaluates a move
- Representation of objective function
 - Different representations
 - Table
 - Symbolic rules
 - Numeric functions
 - Probabilistic functions
 - There is a trade-off between:
 - Expressiveness of representation
 - Facile learning
 - Computation of the objective function:
 - polynomial time
 - non-polynomial time

Design

Selecting an algorithm

- By using the training data
- ▶ Induce the hypothesis definition that:
 - Match the data
 - Generalize unseen data
- Main principle error minimization (cost function loss function)

Evaluation of a learning system

- Experimental
 - comparing different methods on different data (cross-validation)
 - collect data based on performances (accuracy, training time, testing time)
 - statistical analyze of the differences
- Theoretic mathematical analyzes of algorithms and theorems proving
 - Computational complexity
 - Ability to match the training data
 - ► Complexity of the most relevant sample for learning

T. Mihoc

Problem Definition and Applications
Design

Automatic learning

- Supervised learning Unsupervised learning
- Reinforcement learning

- ► Comparing the performances of 2 algorithms for solving a given problem
 - Performance measures
 - Parameters of a statistic series
 - Proportion (percent) computed for a statistical series (ex. Accuracy)
- Comparing based on confidence intervals
 - one problem, two solving algorithms p_1 , p_2
 - confidence intervals $l_1 = [p_1 \Delta_1, p_1 + \Delta_1]$ and $l_2 = [p_2 \Delta_2, p_2 + \Delta_2]$
 - ▶ if $I_1 \cap I_2 = \emptyset$ algorithm 1 works better than algorithm 2 (for the given problem)
 - if $I_1 \cap I_2 \neq \emptyset$ can't be decided

T. Mihoc

Problem Definition and Applications

Design

Supervised learnin Unsupervised learning

Active learning; Reinforcement earning

Design: choose the training database

Based on:

direct experience: pairs (in, out) that are useful for the objective function

Ex.: board annotated with correct or incorrect move

▶ indirect experience: useful feedback (unlike i/o pairs) for the objective function

Ex.: sequences of moves and the final score of the game

Data sources:

- random generated examples (positive and negative) examples);
- positive examples collected by a learner;
- real examples

T Mihoc

Design

and Applications Design

- Supervised learning
- Active learning Reinforcement

test dataCharacteristics

training data

Content:

- Independent data (otherwise → collective learning)
- ► Training and testing data must respect the same distribution law (otherwise → transfer learning/inductive transfer)
 - vehicle recognition, truck recognition, text analyses, spam filters

Design

- Supervised learning Unsupervised
- Active learning Reinforcement learning

- Characteristics extracted (attributes) from raw data
 - \blacktriangleright Quantitative characteristics: \rightarrow nominal or rational scale
 - ▶ Continuous values → weight
 - ▶ Discrete values \rightarrow no. of computers
 - ▶ Range values → event times
 - Qualitative characteristics
 - ▶ Nominal → colour
 - ▶ Ordinal → sound intensity (low, medium, high)
 - Structured → Trees root is a generalization of children (vehicle → car, bus, tractor, truck)

Machine Learning

Design

- Supervised learning Unsupervised
- Active learning; Reinforcement

Data transformation

- ▶ Standardization → numerical attributes
 - Remove the scale effect (different scale and units)
 - Raw values are transformed in z scores $z_{ij} = \frac{x_{ij} \mu_j}{\sigma_j}$ where x_{ij} is the value of the j^{th} attribute of i^{th} instance, μ_j (σ_j) is the mean (respectively the standard deviation) of the j^{th} attribute of all instances
- Selection of some attributes

Machine Learning — Typology

Based on their aim (goal)

- ISs for prediction
 - Aim: predict the output for a new input based on a previously learned model
 - Eg. predicting sales of a product for a time in the future based on price, calendar month, region, average income
- ISs for regression
 - Aim: estimation of the (uni or multi variable) function shape based on a previously learned model
 - Eg.: estimate the function that models the edge of a surface
- ISs for classification
 - Aim: classify an object into one or more known or unknown categories based on their characteristics
 - Eg.: diagnostic systems for cancer: malign or benign or normal
- ISs for planning
 - Aim: generate a sequence of optimal actions for performing a task
 - Eg.: planning the moves of a robot from a position to a source of energy

T Mihoc

Design

Machine Learning — Typology

Based on the experience learned during training process

- ► ISs with supervised learning
- ► ISs with unsupervised learning
- ► ISs with active learning
- ▶ ISs with reinforcement learning

Intelligent Systems

T. Mihoc

Machine Learning

and Applications
Design

Automatic learning

Unsupervised learning

Active learning Reinforcement learning

Outline

Intelligent Systems

T. Mihoc

Machine Learning

Problem Definitions
and Applications
Design

Automatic learning

Unsupervised learning

Reinforcemen learning

Machine Learning

Problem Definition and Applications Design

Automatic learning

Supervised learning Unsupervised learning

Active learning; Reinforcement learning

Aim

To provide a correct output for a new entry.

Definition

Consider a training data set of N elements, organized in pairs (entrydata;, output;) where i = 1, N and a testing data set of *n* similar pairs.

- entrydata_i = $(atr_{i_1}, atr_{i_2}, ..., atr_{i_m})$, m the number of attributes for one data entry.
- output; can be:
 - a category from k classes (an element from a predefined set of k elements) \rightarrow classification problem
 - ▶ a real number → regression problem

We denote by Supervised learning the process of finding a function (unknown) that maps the given entries to the outputs.

T Mihoc

Supervised learning

Supervised learning

Unsupervised learning

Active learning Reinforcement learning

Other names

classification (regression), inductive learning

$\mathsf{Process} \to 2 \; \mathsf{steps}$

- ► Training learning, using a certain algorithm, the model from the training data
- Testing testing the detected model using the test data (unseen data)

Characteristics

Features an experimental ad-notated Data Base for learning.

Unsupervised learning

Active learning Reinforcement learning

Problems' types

- regression
 - Aim: prediction of an output for a new input
 - Continuous output (a real number)
 - Ex. prediction of prices
- classification
 - Aim: classifying a new input
 - Discreet output (a label from a predefined set)
 - Ex. detection of maligned tumors

Example of problems

- recognizing hand writing
- image recognition
- predicting the weather
- spam detection

The *quality of learning* is a measure of the algorithm's performance. This measure is determined during the training faze and the testing faze.

Example: Accuracy = the number of correct classified entries / the total number of entries.

Intelligent Systems

T. Mihoc

Machine Learning

and Application
Design

Supervised learning

Unsupervised learning Active learning;

ctive learning; einforcement arning

Supervised learning

The quality of learning

Evaluation methods

- disjoints sets of training and testing
 - the training set is divided in two parts, one for learning one for testing
 - adequate for large data sets
- cross-validation with many (h) equal sub-sets
 - dividing the data set in h parts (h-1) for training 1 for testing)
 - the performance is the average on the h runs
 - adequate for small data sets
- leave-one-out cross-validation
 - \triangleright similar with cross-validation but h = the number of elements from the data set

T Mihoc

Supervised learning

Performance measures

- statistical measures
- efficiency (building and testing the model)
- scaling (efficiency for large data sets)
- compactness
- robustness (coping with noises and missing data)

Intelligent Systems

T. Mihoc

Machine Learning
Problem Definition

and Applications
Design

Supervised learning

Unsupervised learning

Active learning; Reinforcement earning

Supervised learning

Statistical measures

- Accuracy
 - no. of correct classified / total no. of examples
 - the opposite of error
 - determined on the training set and on the testing set
- Precision (P)
 - no. of correct positive classified / total no. of examples classified as positive
 - the probability that a positive classified example is relevant
 - ► *TP*/(*TP* + *FP*)
- Rappel (R)
 - no. of correct positive classified / total no. of positive examples
 - the probability that a positive example is correct classified
 - ► TP/(TP + FN)
 - confusion matrix real results versus computed results
- Score
 - combines P and R
 - \triangleright 2PR/(P+R)

T. Mihoc

Machine Learning
Problem Definition

Design

Supervised learning

Unsupervised learning

leinforcement earning

Unsupervised learning

Aims:

- finding a model or a structure in a data set
- dividing a set of unlabeled examples in disjoint sets (clustering) such as:
 - the elements of a cluster are very similar
 - the elements of different clusters are very different

Definition

Consider a data set consisting of N elements. We define by unsupervised learning the process of determining a function (unknown) that groups the elements from the data set in several classes. The number of classes can be predefined k or unknown. The elements from one class are similar according to some criteria.

T. Mihoc

Machine Learning Problem Definition

Automatic learning Supervised learning

Unsupervised learning

Active learning; Reinforcement learning

Distance versus Similarity

- ▶ distance → min
- ▶ similarity → max

Examples of distances

- Euclidean: $d(p,q) = sqrt(\sum_{i=1}^{m} (p_i q_i)^2)$
- Manhattan: $d(p,q) = \sum_{i=1}^{m} |p_i q_i|$
- Mahalanobis: $d(p,q) = sqrt((p-q)^T S^{-1}(p-q))$, where S is the co-variance matrix
- ▶ Internal product: $d(p,q) = \sum_{i=1}^{m} p_i q_i$
- Cosine: $d(p,q) = \sum_{i=1}^{m} p_i q_i / (\operatorname{sqrt}(\sum_{i=1}^{m} p_i^2) * \operatorname{sqrt}(\sum_{i=1}^{m} q_i^2))$
- ▶ Hamming: the number of differences between p and q
- Levenshtein: the minimum no. of operations in order to transform p in q

T Mihoc

Unsupervised learning

Automatic learning Supervised learning

Unsupervised learning

Active learning; Reinforcement learning

Other names clustering

$\mathsf{Process} \to \mathsf{2} \mathsf{\ steps}$

- ▶ Training learning, using a certain algorithm, the clusters
- ▶ Testing testing the detected model by placing a new element in a cluster

Characteristics

Features non ad-notated Data Base for learning.

- Internal criteria high similarity inside the clusters and reduced similarity between elements from different clusters
 - distances inside the clusters
 - distances between the clusters
 - David-Bouldin index
 - Dunn index
- External criteria using benchmark data sets that are previous grouped for testing
 - comparing with known data almost impossible in real applications
 - precision
 - rappel
 - F-measure

T. Mihoc

Machine Learning Problem Definition and Applications Design

Supervised learning

Unsupervised learning

Active learning; Reinforcement learning

Internal criteria

- \blacktriangleright distances inside the cluster c_j that has n_j instances
 - average distance between points $D_a(c_j) = \sum_{x_{i_1}, x_{i_2} \in c_j} ||x_{i_1}x_{i_2}||/(n_j*(n_j-1))$
 - ▶ average of distances between the closest two points $D_{nn}(c_j) = \sum_{x_{i_1} \in c_j} \min_{x_{i_2} \in c_j} ||x_{i_1} x_{i_2}|| / n_j$
 - ▶ distance between centroids $D_c(c_j) = \sum_{x_i \in c_j} ||x_i \mu_j|| / n_j$, where $\mu_j = 1/n_j \sum_{x_i \in c_i} x_i$
- ightharpoonup distances between two clusters c_{j_1} and c_{j_2}
 - ▶ simple link: $d_s(c_{j_1}, c_{j_2}) = min_{x_{i_1} \in c_{j_1}, x_{i_2} \in c_{j_2}} \{||x_{i_1}x_{i_2}||\}$
 - ▶ complete link: $d_{co}(c_{j_1}, c_{j_2}) = \max_{x_{i_1} \in c_{j_1}, x_{i_2} \in c_{j_2}} \{||x_{i_1}x_{i_2}||\}$
 - average link:

$$d_a(c_{j_1}, c_{j_2}) = \sum_{x_{i_1} \in c_{j_1}, x_{i_2} \in c_{j_2}} \{||x_{i_1}x_{i_2}||\}/(n_{j_1} * n_{j_2})$$

• centroid link: $d_{ce}(c_{j_1}, c_{j_2}) = ||\mu_{i_1}\mu_{i_2}||$

T. Mihoc

Machine Learning
Problem Definition
and Applications
Design

Supervised learning

Unsupervised learning

Reinforcement learning ▶ David-Bouldin index → min → compact clusters $DB = 1/nc * \sum_{i=1}^{nc} \max_{i=\overline{1,nc}, i \neq i} ((\sigma_i + \sigma_j)/d(\mu_i, \mu_j))$

- nc the no. of clusters.
- μ_i the centroid of cluster i,
- \triangleright σ_i the average distance between the elements from cluster *i* to the centroid of the cluster.
- d the distance between the centroids of two clusters
- Dunn index
 - identifies compact and well separated clusters
 - $D = D_{min}/D_{max}$
 - \triangleright D_{min} minimum distance between two different clusters
 - D_{max} maximum distance between two elements from the same clusters

T Mihoc

Unsupervised learning

Unsupervised learning

Classification criteria: the clustering determination

hierarchic

- a taxonomic tree is built:
 - * cluster creation → recursive
 - * k is unknown (no. of clusters)
- ▶ agglomerating → from small clusters towards big ones
- ▶ divisive → from large clusters to small ones
- non-hierarchic
 - ▶ partitioning → dividing the data set → all clusters simultaneous
 - optimizes an objective function (local or global defined)
 - square error, graph based, probabilistic models, closest neighbour
 - k is predefined (no. of clusters)

T Mihoc

Machine Learning
Problem Definition

Design Automatic learning

Supervised learning Unsupervised

learning Active learning;

Active learning; Reinforcement learning

- the clusters' creation is based on the data density in some region
- the clusters' creation is based on the data connectivity in some region
- one attempt to model the data distribution
- advantage: the clusters can have any shape
- grid based
 - not exactly a new method
 - the space is segmented in regular zones
 - the objects are placed in a multidimensional grid (ex: ACO)

Intelligent Systems

T. Mihoc

Machine Learning

Design Automatic learning

Supervised learning

Unsupervised learning

Reinforcement Parning

Unsupervised learning

Classification criteria: typology

- considering the algorithm behaviour
 - agglomerating
 - 1 every element is considered a cluster
 - 2 compute the distance between each two clusters
 - 3 the closest two clusters merge
 - 4 repeat steps 2 and 3 until a stop condition
 - divisive
 - 1 consider randomly from all elements centers for k clusters
 - 2 divide all the elements to the k clusters
 - 3 recompute the new centers for the clusters
 - 4 repeat steps 2 and 3 until the algorithm converges (no changes in the elements distribution occurred)
- considering the attributes
- considering the type of membership of elements to clusters
 - hard clustering versus fuzzy clustering

T Mihoc

Machine Learning

and Application Design

Supervised learning Unsupervised

learning Active learning;

Active learning; Reinforcement learning

Problem Definitions
Applications
Design

Supervised learning Unsupervised learning

Active learning; Reinforcement learning

Active learning

The algorithm receives supplementary information during learning faze in order to improve its performances.

Reinforcement learning

The main feature is the interaction with the environment (actions lead to rewards)

- Least Squares method
- Descending Gradient methods
- Evolutionary algorithms
- ► kNN
- Decision Trees
- Support vector machines
- Artificial neural networks
- Genetic programming
- ► Hidden Markov Models

Intelligent Systems

T. Mihoc

Machine Learning

and Applicatio

Supervised learning Unsupervised learning

Active learning; Reinforcement learning

Supervised learning
Unsupervised

Active learning; Reinforcement learning

Consider a regression problem:

- ▶ input data $x \in R^d$
- ▶ output data y ∈ R
- determine a model f that maps x in y
- $f(x) = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_d * x_d$

we will define a function:

$$Loss = \sum_{i=\overline{1,d}} (y_i - f(x_i))^2$$

if we minimize it we obtain the optimal values for β

- Supervised learning
 Unsupervised
- Active learning; Reinforcement learning

Modeling the β coefficients

- iteration 0: random values (or zero)
- ▶ iteration t + 1:

$$eta_k(t+1) = eta_k(t) - learning_rate * error(t) * x$$
, where $k = \overline{1, d}$
 $eta_0(t+1) = eta_0(t) - learning_rate * error(t)$,

where error = computed - realOutput