1 Basic equations

Basic equations to start from: MHD with non-adiabatic effects added:

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v})$$

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla p - \rho \mathbf{v} \cdot \nabla \mathbf{v} + (\nabla \times \mathbf{B}) \times \mathbf{B} + \rho \mathbf{g}$$

$$\rho \frac{\partial T}{\partial t} = -\rho \mathbf{v} \cdot \nabla T - (\gamma - 1)p \nabla \cdot \mathbf{v} - (\gamma - 1)\rho \mathcal{L} + (\gamma - 1)\nabla \cdot (\boldsymbol{\kappa} \cdot \nabla T)$$

$$\frac{\partial B}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$
(1)

Linearize them with flow, so $v_0 \neq 0$. Also use a vector potential $B_1 = \nabla \times A_1$ for the perturbed magnetic field and replace p_1 by $T_0 \rho_1 + \rho_0 T_1$ (from the linearized ideal gas law):

$$\frac{\partial \rho_{1}}{\partial t} = -\nabla \cdot (\rho_{0} \boldsymbol{v}_{1}) - \nabla \cdot (\rho_{1} \boldsymbol{v}_{0})$$

$$\rho_{0} \frac{\partial \boldsymbol{v}_{1}}{\partial t} = -\rho_{0} \boldsymbol{v}_{0} \cdot \nabla \boldsymbol{v}_{1} - \rho_{0} \boldsymbol{v}_{1} \cdot \nabla \boldsymbol{v}_{0} - \rho_{1} \boldsymbol{v}_{0} \cdot \nabla \boldsymbol{v}_{0} - \nabla (T_{0} \rho_{1} + \rho_{0} T_{1}) + (\nabla \times \boldsymbol{B}_{0}) \times (\nabla \times \boldsymbol{A}_{1})$$

$$+ [\nabla \times (\nabla \times \boldsymbol{A}_{1})] \times \boldsymbol{B}_{0} + \rho_{1} \boldsymbol{g}$$

$$\rho_{0} \frac{\partial T_{1}}{\partial t} = -\rho_{0} \boldsymbol{v}_{1} \cdot \nabla T_{0} - \rho_{0} \boldsymbol{v}_{0} \cdot \nabla T_{1} - (\gamma - 1)\rho_{0} T_{0} \nabla \cdot \boldsymbol{v}_{1} - (\gamma - 1)\rho_{1} \mathcal{L}_{0} - (\gamma - 1)\rho_{0} (\mathcal{L}_{T} T_{1} + \mathcal{L}_{\rho} \rho_{1})$$

$$+ (\gamma - 1)\nabla \cdot (\boldsymbol{\kappa}_{0} \cdot \nabla T_{1}) + (\gamma - 1)\nabla \cdot (\boldsymbol{\kappa}_{1} \cdot \nabla T_{0})$$

$$\frac{\partial \boldsymbol{A}_{1}}{\partial t} = \boldsymbol{v}_{1} \times \boldsymbol{B}_{0} + \boldsymbol{v}_{0} \times (\nabla \times \boldsymbol{A}_{1})$$

$$\frac{\rho_{1}}{\rho_{0}} = \frac{T_{1}}{T_{0}} + \frac{\rho_{1}}{\rho_{0}}$$
(2)

Denote coordinate system by (u_1, u_2, u_3) , which is (x, y, z) in Cartesian and (r, θ, z) in cylindrical coordinates. Equilibrium profiles are only dependent on u_1 , taken to be

$$\rho_0 = \rho_0(u_1)
p_0 = p_0(u_1)
T_0 = T_0(u_1)
\mathbf{v}_0 = v_{02}(u_1)\hat{\mathbf{e}}_2 + v_{03}(u_1)\hat{\mathbf{e}}_3
\mathbf{B}_0 = B_{02}(u_1)\hat{\mathbf{e}}_2 + B_{03}(u_1)\hat{\mathbf{e}}_3$$
(3)

so $\nabla \cdot \boldsymbol{v}_0 = 0$ and obviously $\nabla \cdot \boldsymbol{B}_0 = 0$ and $\nabla \cdot \boldsymbol{B}_1 = 0$, take gravity as $\boldsymbol{g} = -g\hat{\boldsymbol{e}}_1$. Vectors $\hat{\boldsymbol{e}}_1$, $\hat{\boldsymbol{e}}_2$ and $\hat{\boldsymbol{e}}_3$ are orthonormal basis vectors representing directions along (u_1, u_2, u_3) . Apply Fourier transformation using

$$f_1(u_1, u_2, u_3, t) = \widetilde{f}_1(u_1) e^{-i\omega t + ik_2 u_2 + ik_3 u_3}$$

$$\tag{4}$$

1.1 Slab geometry

Below all tildes are dropped for convenience.

$$\omega \rho_{1} = -iv_{1}\rho'_{0} - i\rho_{0}(v'_{1} + ik_{2}v_{2} + ik_{3}v_{3}) + (v_{02}k_{2} + v_{03}k_{3})\rho_{1}$$

$$\omega \rho_{0}v_{1} = \rho_{0}(k_{2}v_{02} + k_{3}v_{03})v_{1} - i(\rho_{0}T_{1} + \rho_{1}T_{0})' + iB'_{02}(a'_{3} - ik_{3}a_{1}) - iB'_{03}(a'_{2} - ik_{2}a_{1})$$

$$+ iB_{03}\left[k_{3}^{2}a_{2} - k_{2}k_{3}a_{3} - (a'_{2} - ik_{2}a_{1})'\right] - iB_{02}\left[k_{2}^{2}a_{3} - k_{2}k_{3}a_{2} + (ik_{3}a_{1} - a'_{3})'\right]$$

$$\omega \rho_{0}v_{2} = k_{2}(T_{0}\rho_{1} + \rho_{0}T_{1}) + \rho_{0}(k_{2}v_{02} + k_{3}v_{03})v_{2} - i\rho_{0}v'_{02}v_{1} - B'_{02}(k_{2}a_{3} - k_{3}a_{2})$$

$$- iB_{03}\left[(k_{2}^{2} + k_{3}^{3})a_{1} + i(k_{2}a_{2} + k_{3}a_{3})'\right]$$

$$\omega \rho_{0}v_{3} = k_{3}(T_{0}\rho_{1} + \rho_{0}T_{1}) + \rho_{0}(k_{2}v_{02} + k_{3}v_{03})v_{3} - i\rho_{0}v'_{03}v_{1} - B'_{03}(k_{2}a_{3} - k_{3}a_{2})$$

$$+ iB_{02}\left[(k_{2}^{2} + k_{3}^{2})a_{1} + i(k_{2}a_{2} + k_{3}a_{3})'\right]$$

$$\omega \rho_{0}T = -i\rho_{0}v_{1}T'_{0} + \rho_{0}(k_{2}v_{02} - k_{3}v_{03})T_{1} - i(\gamma - 1)\rho_{0}T_{0}(v'_{1} + ik_{2}v_{2} + ik_{3}v_{3}) - i(\gamma - 1)\mathcal{L}_{0}\rho_{1}$$

$$- i(\gamma - 1)\rho_{0}\mathcal{L}_{T}T_{1} - i(\gamma - 1)\rho_{0}\mathcal{L}_{\rho}\rho_{1} - i(\gamma - 1)(\kappa_{\parallel} - \kappa_{\perp})\frac{1}{B^{2}}(k_{2}B_{02} + k_{3}B_{03})^{2}T_{1}$$

$$+ i(\gamma - 1)(\kappa_{\perp}T'_{1})' - i\kappa_{\perp}(\gamma - 1)(k_{2}^{2} + k_{3}^{2})T_{1} + i(\gamma - 1)(\kappa_{1,\perp}T'_{0})'$$

$$+ i(\gamma - 1)(\kappa_{\parallel} - \kappa_{\perp})\frac{1}{B^{2}}\left[(k_{2}k_{3}B_{02} + k_{3}^{2}B_{03})a_{2} - (k_{2}k_{3}B_{03} + k_{2}^{2}B_{02})a_{3}\right]T'_{0}$$

$$\omega a_{1} = iB_{03}v_{2} - iB_{02}v_{3} + iv_{02}a'_{2} + iv_{03}a'_{3} + (k_{2}v_{02} + k_{3}v_{03})a_{1}$$

$$\omega a_{2} = -iB_{03}v_{1} - v_{03}(k_{2}a_{3} - k_{3}a_{2})$$

$$\omega a_{3} = iB_{02}v_{1} - v_{02}(k_{3}a_{2} - k_{2}a_{3})$$

where the prime denotes ∂_{u_1} .

1.2 Cylindrical geometry