Advanced Quantum Mechanics Fall 2023

Bernat Frangi Mahiques
Physics Engineering and Industrial
Technologies Engineering

Contents

1	Mat	thematical Tools of Quantum Mechanics	3
	1.1	Hilbert Spaces	3
	1.2	The dual space	3
	1.3	Dirac Notation	4
		1.3.1 Inner product and bra-ket notation	4
		1.3.2 Properties of bras and kets	5
	1.4	Linear operators	5
		1.4.1 Expected value of an operator	6
	1.5	Closure relation	7
	1.6	Wave function space \mathcal{F}	7
	1.7	Basis of the wave function space	7
	1.8	Representations in state space	8
		1.8.1 General representation	8
		1.8.2 Discrete orthonormal bases	9
			10
	1.9		11
	1.0		11
	1 10		$\frac{11}{12}$
		•	12
			13
			14
	1.10		14
			$14 \\ 15$
	1 11		$15 \\ 15$
		1	16
			16
			17
	1.11	rensor product of operators	11
2	Post	tulates of Quantum Mechanics	19
	2.1	·	19
	2.2		20
		1	$\frac{1}{21}$
	2.3	* *	$\frac{-}{21}$
	2.0		$\frac{1}{22}$
			$\frac{-2}{22}$
	2.4		23
	2.1	Superposition and interference	20
3	Ang	gular Momentum	24
	3.1	Orbital angular momentum	24
		3.1.1 Classical orbital angular momentum	24
		3.1.2 Orbital angular momentum in quantum mechanics	24
		3.1.3 Commutation relations	25
	3.2		25
		9	28
		•	29
	3.3	•	$\frac{1}{30}$
	3.4	•	31
		• •	$\frac{32}{32}$
		• •	33
		<u>.</u> /	34
		5.25 Spin 525th 65uping	JI
4	App	oendix	37

4.1	Linear vector space	37
4.2	Linear functionals	37
4.3	Matrix element of an operator	38
4.4	Proof of the Closure relation	38
4.5	Uncertainty relation between two operators	39
4.6	Expected value of a Hermitian operator	40
4.7	Expected value of an anti-Hermitian operator	40
4.8	Eigenvalues of a Hermitian operator are real and eigenvectors are orthogonal	40
4.9	Common eigenvector basis of two commuting operators	41

1 Mathematical Tools of Quantum Mechanics

1.1 Hilbert Spaces

Hilbert spaces, also known as complex vector spaces, are defined in **Definition 1**.

Definition 1. A Hilbert space \mathcal{H} consists of a set of vectors ψ , ψ , χ , ... and a set of scalars a, b, c, ... which satisfy the following four properties:

- 1. \mathcal{H} is a linear space^a.
- 2. \mathcal{H} has a defined scalar product that is strictly positive. The scalar product of an element ψ with another element ϕ is in general a complex number, denoted by (ψ, ϕ) . The scalar product satisfies the following properties^b:

$$(\psi, \phi) = (\phi, \psi)^* \tag{1}$$

$$(\phi, a\psi_1 + b\psi_2) = a(\phi, \psi_1) + b(\phi, \psi_2)$$
 (2)

$$(a\phi_1 + b\phi_2, \ \psi) = a^*(\phi_1, \ \psi) + b^*(\phi_2, \ \psi) \tag{3}$$

$$(\psi, \ \psi) = ||\psi||^2 \ge 0 \text{ (the equality holds only for } \psi = 0)$$
 (4)

- 3. \mathcal{H} is separable.
- 4. \mathcal{H} is complete.

We should note that in a scalar product (ϕ, ψ) , the second factor, ψ , belongs to the Hilbert space \mathcal{H} , while the first factor, ϕ , belongs to its dual Hilbert space \mathcal{H}^{*1} . The distinction between \mathcal{H} and \mathcal{H}^{*} is due to the fact that, as mentioned above, the scalar product is not commutative: $(\psi, \phi) \neq (\phi, \psi)$; the order matters!

1.2 The dual space

Given any Hilbert space \mathcal{H} , one can construct another complex vector space \mathcal{H}^* , called the **dual vector** space. It contains all the linear functionals in \mathcal{H} , which are a special kind of operator that maps all elements of \mathcal{H} onto complex numbers². In general, for an abstract vector space \mathcal{H} :

Definition 2. Given a Hilbert space \mathcal{H} , the dual space \mathcal{H}^* is the vector space of all linear functionals in \mathcal{H} .

Therefore, all linear functionals $L: \mathcal{H} \to \mathbb{C}$ live in \mathcal{H}^* $(L \in V^*)$.

The reason that the dual space is so interesting for quantum mechanics is that our goal as quantum physicists is to build a mathematical model for the real world, and in the end we want to be able to extract useful values and predictions from this model. For example, we may want to know the probability of getting a certain energy; or the average position we expect in a certain state. All these are scalar values, that we need to extract from a quantum state $|\psi\rangle$, so we know we will need a linear functional someplace or other!

^aSee **Definition 21** for the definition of linear vector space.

Note: Watch out for the order! Since the scalar product is a complex number, the quantity $(\psi, \phi) = \psi^* \phi$ is generall not equal to $(\phi, \psi) = \phi^* \psi$.

¹More on the dual space in the next section.

²See Appendix **Section 4.2** for more on linear functionals.

This may all sound really abstract at first glance, but hopefully it will become a lot clearer in the next section when we look at the **Dirac notation**.

1.3 Dirac Notation

In quantum mechanics, we use the Dirac notation to represent wave functions:

- We call the elements of \mathcal{H} "ket" vectors, and we represent them as $|\psi\rangle \in \mathcal{H}$.
- We call the elements of \mathcal{H}^* "bra" vectors, and we represent them as $\langle \phi | \in \mathcal{H}^*$.

Bra vectors are operators that linearly map elements of \mathcal{H} into complex numbers:

$$\langle \phi | : \mathcal{H} \rightarrow \mathbb{C}$$

 $\langle \phi | : | \psi \rangle \rightarrow \langle \phi \rangle \psi$ (5)

1.3.1 Inner product and bra-ket notation

Notice that, when we put a bra and a ket together $(\langle \phi | | \psi \rangle)$, they look suspiciously like an inner product in this notation: $\langle \phi \rangle \psi$. If we go back at how our L_x operator in \mathbb{R}^2 acts on a column vector:

$$L_x \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = 1 \cdot a + 0 \cdot b = a \tag{6}$$

Notice that its action is the same as if we were taking the dot product with the x unit vector:

$$x \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = 1 \cdot a + 0 \cdot b = a \tag{7}$$

In fact, when a linear functional in \mathbb{R}^n acts on any vector, it can be written equivalently as a dot product with the corresponding column vector:

$$L_x \vec{v} = L_x^T \cdot \vec{v} \tag{8}$$

This is actually a very general mathematical fact, rooted within something called the **Riesz Representation Theorem**:

Theorem 1. (Riesz Representation Theorem) For any linear functional L_{ϕ} , the action of L_{ϕ} is equivalent to taking the inner product with some unique vector $\vec{\phi}$.

In our example of L_x , we have that $\vec{\phi} = \vec{x} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$:

$$L_x \vec{v} = \begin{bmatrix} 1\\0 \end{bmatrix} \cdot \vec{v} \tag{9}$$

This is the reason for the suggestive notation for bra vectors: they are operators whose action on a ket is mathematically equivalent to taking the inner product with said ket:

$$\langle \phi | | \psi \rangle = \langle \phi \rangle \, \psi \tag{10}$$

That is the power of bra-ket notation: it has the Riesz Representation Theorem baked right into it. Whatever you do, breaking apart inner products and putting together bras and kets, you will always have

something that makes mathematical sense. Although bra and the inner product are two entities that are completely different mathematically, the bra-ket notation makes their connection completely seamless, thanks to the Riesz Representation Theorem.

1.3.2 Properties of bras and kets

Some properties that arise naturally from the Dirac notation:

$$\langle \psi \rangle \lambda_1 \phi_1 + \lambda_2 \phi_2 = \lambda_1 \langle \psi \rangle \phi_1 + \lambda_2 \langle \psi \rangle \phi_2 \tag{11}$$

$$\langle \lambda_1 \psi + \lambda_2 \psi_2 \rangle \phi = \lambda_1^* \langle \psi_1 \rangle \phi + \lambda_2^* \langle \psi_2 \rangle \phi \tag{12}$$

$$\langle \psi \rangle \phi = \langle \phi \rangle \psi^* \tag{13}$$

$$\langle \psi \rangle \psi$$
 is real, positive and only zero if $|\psi\rangle = 0$ (14)

1.4 Linear operators

A linear map is defined as:

Definition 3. A linear map (or linear operator) is a mathematical entity A that associates a function with another function such that:

$$A(\lambda_1\psi_1 + \lambda_2\psi_2) = \lambda_1 A\psi_1 + \lambda_2 A\psi_2 \tag{15}$$

In the quantum mechanical context, we can see them as entities that transform a ket into another ket. Some example linear operators are:

• Commutator: The commutator of two operators A and B is defined as:

$$[A, B] \equiv AB - BA \tag{16}$$

Two operators are said to commute if their commutator is equal to zero, and hence AB = BA. See **Section 4.5** to see an interesting application of commutator algebra for finding the uncertainty products of two operators.

• Anti-commutator: The anti-commutator of two operators A and B is defined as:

$$\{A, B\} \equiv AB + BA \tag{17}$$

- **Projector:** $P_{\phi} = |\phi\rangle \langle \phi|$. The projector operator P_{ϕ} acting on a ket $|\psi\rangle$ gives a new ket that is proportional to $|\phi\rangle$. The coefficient of proportionality is the scalar product $\langle \phi \rangle \psi$.
- **Inverse:** assuming it exists, the inverse operator A^{-1} of the operator A, when applied to A, gives the identity operator. Also, A is the inverse of A^{-1} , so that $AA^{-1} = A^{-1}A = \mathbb{1}$.
- Hermitian conjugation: the hermitian conjugate (or adjoint) A^{\dagger} of an operator A is obtained by interchanging the columns of the operator by its rows, and taking the complex conjugate of all elements. For example:

$$A = \begin{bmatrix} i & 1 \\ 3 - i & -i \end{bmatrix} \to A^{\dagger} = \begin{bmatrix} -i & 3 + i \\ 1 & i \end{bmatrix}$$
 (18)

Some properties of the adjoint are:

³Proof: $P_{\phi} | \psi \rangle = | \phi \rangle \langle \phi | | \psi \rangle = | \phi \rangle \langle \phi \rangle \psi = \langle \phi \rangle \psi | \phi \rangle$.

- a) $(A^{\dagger})^{\dagger} = A$.
- b) $(\lambda A)^{\dagger} = \lambda^* A^{\dagger}$.
- c) $(A + B)^{\dagger} = A^{\dagger} + B^{\dagger}$.
- d) $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.
- e) $(|u\rangle\langle v|)^{\dagger} = |v\rangle\langle u|.^4$

The adjoint of a bra is its ket, and the adjoint of a ket is its bra. To obtain the hermitian conjugate of an expression:

- a) Replace constants with their complex conjugate: $\lambda \to \lambda^*$.
- b) Replace operators with their Hermitian conjugates: $A \to A^{\dagger}$.
- c) Replace kets with bras: $|\phi\rangle \rightarrow \langle\phi|$.
- d) Replace bras with kets: $\langle \phi | \rightarrow | \phi \rangle$.
- e) Reverse the order of factors: $A | \phi \rangle \rightarrow \langle \phi | A^{\dagger}$.

A special case of linear operators are **unitary operators**:

Definition 4. A linear operator U is said to be unitary if its inverse U^{-1} is equal to its adjoint U^{\dagger} , so that $U^{-1} = U^{\dagger}$ and $U^{\dagger}U = UU^{\dagger} = 1$.

Another special case are **Hermitian operators**:

Definition 5. An operator A is said to be Hermitian if $A^{\dagger} = A$.

and anti-Hermitian operators:

Definition 6. An operator A is said to be anti-Hermitian if $A^{\dagger} = -A$.

An example of a Hermitian operator is the projector operator, as $P_{\phi}^{\dagger} = (|\phi\rangle \langle \phi|)^{\dagger} = |\phi\rangle \langle \phi| = P_{\phi}$.

1.4.1 Expected value of an operator

In order to define the expected value of an operator, we first need to define the **matrix element**:

Definition 7. Let $|\psi\rangle$, $|\phi\rangle$ be two kets, we call the matrix element of an operator A between $|\psi\rangle$ and $|\phi\rangle$ the quantity $\langle\psi|(A|\phi\rangle)$.

Note that the matrix element of an operator A between $|\psi\rangle$ and $|\phi\rangle$ is a complex number, and it is equal to the scalar product of $|\psi\rangle$ with the ket $A|\phi\rangle$. If we now define the expected value of an operator:

Definition 8. The expected value $\langle A \rangle_{\psi}$ of A in the state $|\psi\rangle$ is defined as the matrix element of A between $|\psi\rangle$ and itself:

$$\langle A \rangle_{\psi} = \langle \psi | A | \psi \rangle \tag{19}$$

 $^{^{4} \}textit{Proof: } \langle \phi | \left(\left| u \right\rangle \langle v \right| \right)^{\dagger} | \psi \rangle = \left[\langle \psi | \left(\left| u \right\rangle \langle v \right| \right) | \phi \rangle \right]^{*} = \langle \psi \rangle \, u^{*} \, \langle v \rangle \, \phi^{*} = \langle u \rangle \, \psi \, \langle \phi \rangle \, v = \langle \phi \rangle \, v \, \langle u \rangle \, \psi = \langle \phi | \left(\left| v \right\rangle \langle u \right| \right) | \psi \rangle$

It is easy to see that, if ψ is chosen to be an eigenvector of A, then the expected value of A in the state $|\psi\rangle$ is equal to the eigenvalue λ of A corresponding to the eigenvector $|\psi\rangle$:

$$\langle \psi | A | \psi \rangle = \langle \psi | (A | \psi \rangle) = \langle \psi | (\lambda | \psi \rangle) = \lambda \langle \psi | \psi \rangle = \lambda \tag{20}$$

This means that, for an arbitrary vector ϕ expressed as a linear combination of eigenvectors ψ_i of A:

$$|\phi\rangle = \sum_{i} c_i |\psi_i\rangle \tag{21}$$

we have:

$$\langle \phi | A | \phi \rangle = \sum_{i} \sum_{j} c_{i}^{*} c_{j} \langle \psi_{i} | A | \psi_{j} \rangle = \sum_{i} \sum_{j} c_{i}^{*} c_{j} \langle \psi_{i} | \lambda_{j} | \psi_{j} \rangle = \sum_{i} \sum_{j} c_{i}^{*} c_{j} \lambda_{j} \langle \psi_{i} | \psi_{j} \rangle =$$

$$= \sum_{i} \sum_{j} c_{i}^{*} c_{j} \lambda_{j} \delta_{ij} = \sum_{i} c_{i}^{*} c_{i} \lambda_{i} = \sum_{j} |c_{i}|^{2} \lambda_{i}$$

$$(22)$$

1.5 Closure relation

For a set of vectors to form a basis of a Hilbert space \mathcal{H} , they must fulfil the **closure relation** (also known as the completeness relation). In simple terms, if the set of vectors fulfills the closure relation, it means that with those vectors you can reach all possible directions in \mathcal{H} , and any $|\psi\rangle \in \mathcal{H}$ is a linear combination of those basis vectors. In our general Hilbert space:

Definition 9. A set of vectors $\{|A_1\rangle, |A_2\rangle, ...\}$ in a Hilbert space \mathcal{H} form a basis for \mathcal{H} if and only if they fulfil the closure relation:

$$1 = \sum_{i} |A_{i}\rangle \langle A_{i}|. \tag{23}$$

Proof of this relation is given in **Section 4.4**.

1.6 Wave function space \mathcal{F}

The wave function in quantum mechanics is an object whose modulus squared is a probability density function. If we look back at **Definition 1**, we can see that, from a physical point of view, the set \mathcal{H} is clearly too wide in scope for our purposes. We need to restrict it to a subset of \mathcal{H} that is physically meaningful. This subset is called the **wave function space** \mathcal{F} , and it retains only the functions ψ of \mathcal{H} which are everywhere defined, continuous, and infinitely differentiable. In addition, the functions of \mathcal{F} must be normalizable by an arbitrary multiplicative constant in such a way that the area under the curve $|\psi|^2$ is exactly equal to 1.

1.7 Basis of the wave function space

If $\{|\psi_i\rangle\}$ is a basis for a Hilbert space \mathcal{H} (in particular, the subset \mathcal{F}), we can expand every arbitrary vector $|\Psi\rangle$ according to this basis:

$$|\Psi\rangle = \sum_{i} c_i |\psi_i\rangle \tag{24}$$

so that we have 5 :

$$\langle \psi_i \rangle \Psi = \sum_j c_i \langle \psi_i \rangle \Psi = \sum_j c_i \delta_{ij} = c_i$$
 (25)

 $^{^{5}\}delta_{ij}$ is known as Kronecker's delta, and is equal to 1 if i=j and 0 otherwise.

The choice of basis is arbitrary, and depending on the choice we make, we obtain different representations of state space. There are many different representations, which often have to do with physical properties of the system.

If you are familiar with basic quantum mechanics, you will probably have seen the position representation of the wave function, $\Psi(\vec{r})$. This representation of state space is particularly useful for working with position in a quantum system. However, it is not the *only* representation of state space that can have. What does this mean? Well, here, there is an important concept to understand, which is the difference between a vector and its representation: a vector is a mathematical entity that, once defined, is the same all the time, no matter where we look at it from or which basis we express it in. Its representation, however, may differ, depending on which basis we choose to represent it in. If the basis changes, the coordinates will also change, even though the vector is still the same.

For example, a vector $\vec{v}_B = (a, b)$ expressed in the basis $B = \{(1, 0), (0, 1)\}$ will change to $\vec{v}_{B'} = (b/2, a)$ $B' = \{(0, 2), (1, 0)\}$. The coordinates of the vector have changed, but we can see that both representations refer to the same vector:

$$\vec{v}_B = a \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{b}{2} \cdot \begin{pmatrix} 0 \\ 2 \end{pmatrix} + a \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \vec{v}_{B'}$$
 (26)

Just as in this example, the position representation of the wave function vector space is only one of its many possible representations. The functions $\psi_i(\vec{r})$ form the basis for the position representation of state space. Other representations, like the momentum representation, can be useful in certain situations, as we will see later on.

1.8 Representations in state space

When studying quantum mechanical systems, we need a way to represent quantum states. We do that by choosing an orthonormal basis, either discrete or continuous, in the state space \mathcal{F} . Vectors and operators are then represented in this basis by numbers: components for the vectors and matrix elements for the operators.

As we mentioned before, the choice of a representation is, in principle, arbitrary. In fact, it depends on the particular problem being studied: in each case, one chooses the representation that leads to the simplest calculations.

Most useful bases come as eigenstates of some pertinent operator⁶. So far, we have mentioned the position and the momentum representation. These bases deal with the position and momentum operators, but you can think of many others. For example, the eigenstates of the Hamiltonian for some physical system are often used, especially when solving the Schrödinger equation. These might also be infinite dimensional but can be discrete, as opposed to the continuous bases of position and momentum.

1.8.1 General representation

For a general representation of state space (wave function space, \mathcal{F}), the elements of \mathcal{F} are functions $\psi(\vec{\xi})$, $\phi(\vec{\xi})$, and the inner product in \mathcal{F} is defined as:

$$\left(\phi(\vec{\xi}), \ \psi(\vec{\xi})\right) \equiv \int \phi^*(\vec{\xi})\psi(\vec{\xi})d\vec{\xi} \tag{27}$$

The length (norm) of a vector is given by:

⁶More on this lateradd link, but the idea is that, if we represent the state space in the basis of eigenstates (analogous to eigenvectors) of an operator, then that operator will be expressed in that basis as a diagonal matrix, where the elements of the diagonals are the eigenvalues of the operator. This makes calculations very easy.

length
$$\left(\psi(\vec{\xi})\right) = \sqrt{\left(\psi(\vec{\xi}), \ \psi(\vec{\xi})\right)} = \sqrt{\int \psi^*(\vec{\xi})\psi(\vec{\xi})d\vec{\xi}} = \sqrt{\int \left|\psi(\vec{\xi})\right|^2 d\vec{\xi}}$$
 (28)

As the vectors of the basis $\{\phi_i\}$ of \mathcal{F} are orthonormal, we have that:

$$\left(\phi_i(\vec{\xi}), \ \phi_j(\vec{\xi})\right) = \delta_{ij} \tag{29}$$

1.8.2 Discrete orthonormal bases

A discrete orthonormal basis is defined as:

Definition 10. A countable set of functions $\{u_i\}$ is called orthonormal if:

$$\left(u_i(\vec{\xi}), \ u_j(\vec{\xi})\right) = \delta_{ij} \tag{30}$$

And it constitutes a basis for \mathcal{F} if every function in \mathcal{F} can be written as a linear combination of the functions of the basis in exactly one way:

$$\psi(\vec{\xi}) = \sum_{i} c_i u_i(\vec{\xi}) \tag{31}$$

with the coefficients being:

$$c_i = \left(u_i(\vec{\xi}), \ \psi(\vec{\xi})\right) = \int u_i^*(\vec{\xi})\psi(\vec{\xi})d\vec{\xi}$$
(32)

Note that, in a discrete orthonormal basis, all basis vectors u_i are elements belonging to \mathcal{F} . In other words, every basis vector u_i is a valid physical state for the system in the space \mathcal{F} . As we will see, this will *not* be the case for continuous orthonormal "bases".

For a discrete orthonormal basis, we can express the scalar product in terms of the components as:

$$\left(\phi(\vec{\xi}), \ \psi(\vec{\xi})\right) = \left(\sum_{i} b_i u_i(\vec{\xi}), \ \sum_{j} c_j u_j(\vec{\xi})\right) = \sum_{i, j} b_i^* c_j \left(u_i(\vec{\xi}), \ u_j(\vec{\xi})\right) = \sum_{i, j} b_i^* c_i \delta_{ij} = \sum_{i} b_i^* c_i$$
(33)

With a similar proof as in **Section 4.4**, we can find the closure relation for a discrete orthonormal basis:

$$\psi(\vec{\xi}) = \sum_{i} c_{i} u_{i}(\vec{\xi}) = \sum_{i} \left(u_{i}(\vec{\xi}), \ \psi(\vec{\xi}) \right) u_{i}(\vec{\xi}) = \sum_{i} \left(\int u_{i}^{*}(\vec{\xi'}) \psi(\vec{\xi'}) d\vec{\xi'} \right) u_{i}(\vec{\xi}) =$$

$$= \int \left(\sum_{i} u_{i}^{*}(\vec{\xi'}) u_{i}(\vec{\xi}) \right) \psi(\vec{\xi'}) d\vec{\xi'}$$
(34)

Therefore, the term in the parenthesis must be equal to 1 for $\vec{\xi} = \vec{\xi'}$ and zero for every other case, so we obtain the closure relation for a discrete orthonormal basis⁷:

$$\sum_{i} u^*(\vec{\xi}') u_i(\vec{\xi}) = \delta(\vec{\xi} - \vec{\xi}') \tag{35}$$

1.8.3 Continuous orthonormal bases

A continuous orthonormal basis is defined as:

Definition 11. A continuous set of functions $\{\omega_{\alpha}\}$, labelled by a continuous index α , is called orthonormal if:

$$\left(\omega_{\alpha}(\vec{\xi}), \ \omega_{\alpha'}(\vec{\xi})\right) = \delta(\alpha - \alpha') \tag{36}$$

And it constitutes a basis for \mathcal{F} if every function in \mathcal{F} can be written as a linear combination of the functions of the basis in exactly one way:

$$\psi(\vec{\xi}) = \int c(\alpha)\omega_{\alpha}(\vec{\xi})d\alpha \tag{37}$$

with the continuous coefficient being:

$$c(\alpha) = \left(\omega_{\alpha}(\vec{\xi}), \ \psi(\vec{\xi})\right) = \int \omega_{\alpha}^{*}(\vec{\xi})\psi(\vec{\xi})d\vec{\xi}$$
(38)

Note that, $\langle \omega_{\alpha}(\vec{\xi})|\omega_{\alpha'}(\vec{\xi})\rangle = \delta(\alpha - \alpha')$ implies that the functions ω_{α} are not normaliseable^a, so these functions are *not* vectors in \mathcal{F} . Therefore, strictly speaking, they cannot be a basis for \mathcal{F} . In other words, basis vectors ω_{α} are *not* valid physical states for the system in the space \mathcal{F} . Rather, they are a mathematical tool that can help us to perform calculations in certain scenarios, and are formalised in what is known as a rigged Hilbert space^b. However, we will still refer to them as "basis vectors" for simplicity.

For a continuous orthonormal basis, we can express the scalar product in terms of the continuous coefficients as:

$$\left(\phi(\vec{\xi}), \ \psi(\vec{\xi})\right) = \left(\int b(\alpha)\omega_{\alpha}(\vec{\xi})d\alpha, \ \int c(\alpha')\omega_{\alpha'}(\vec{\xi})d\alpha'\right) = \sum_{i,\ j} b_{i}^{*}c_{j} \left(u_{i}(\vec{\xi}), \ u_{j}(\vec{\xi})\right) =$$

$$= \int \left(\int b^{*}(\alpha)c(\alpha')(\omega_{\alpha}(\vec{\xi}), \omega_{\alpha'}(\vec{\xi}))d\alpha\right)d\alpha' = \int \left(\int b^{*}(\alpha)c(\alpha')\delta(\alpha - \alpha')d\alpha\right)d\alpha'$$

$$= \int b^{*}(\alpha)c(\alpha)d\alpha \tag{39}$$

With a similar proof as in **Section 4.4**, we can find the closure relation for a continuous orthonormal basis:

$$\psi(\vec{\xi}) = \int c(\alpha)\omega_{\alpha}(\vec{\xi})d\alpha = \int \left(\omega_{\alpha}(\vec{\xi}), \ \psi(\vec{\xi})\right)\omega_{\alpha}(\vec{\xi})d\alpha = \int \left(\int \omega_{\alpha}^{*}(\vec{\xi}')\psi(\vec{\xi}')d\vec{\xi}'\right)\omega_{\alpha}(\vec{\xi})d\alpha =$$

$$= \int \left(\int \omega_{\alpha}^{*}(\vec{\xi}')\omega_{\alpha}(\vec{\xi})d\alpha\right)\psi(\vec{\xi}')d\vec{\xi}'$$
(40)

Therefore, the term in the parenthesis must be equal to 1 for $\vec{\xi} = \vec{\xi}'$ and zero for every other case, so we obtain the closure relation for a continuous orthonormal basis:

$$\int \omega_{\alpha}^{*}(\vec{\xi'})\omega_{\alpha}(\vec{\xi})d\alpha = \left(\omega_{\alpha}(\vec{\xi'}), \ \omega_{\alpha}(\vec{\xi})\right) = \delta(\vec{\xi} - \vec{\xi'}) \tag{41}$$

^aAs $\langle \omega_{\alpha}(\vec{\xi})|\omega_{\alpha'}(\vec{\xi})\rangle = \delta(\alpha - \alpha')$ would imply that $\|\omega_{\alpha}\|^2 = \langle \omega_{\alpha}(\vec{\xi})|\omega_{\alpha}(\vec{\xi})\rangle = \delta(\alpha - \alpha) = \infty \neq 1$. So, it turns out that any basis in \mathcal{F} has to be a discrete basis with an orthogonality condition expressed in terms of a Kronecker delta instead of a Dirac delta.

^bSee this and this post for more information.

Fourier transform

Take the inverse fourier transform of the position wave function, for example:

$$\psi(\vec{r}) = \frac{1}{\sqrt{2\pi\hbar}} \int \overline{\psi}(\vec{p}) e^{i\vec{p}\cdot\vec{r}/\hbar} d\vec{p} = \int \overline{\psi}(\vec{p}) v_{\vec{p}}(\vec{r}) d\vec{p}, \qquad v_{\vec{p}}(\vec{r}) = \frac{1}{\sqrt{2\pi\hbar}} e^{i\vec{p}\cdot\vec{r}/\hbar} \text{ (plane wave)}$$
(42)

Notice that this is the same as:

$$\psi(\vec{\xi}) = \int c(\alpha)\omega_{\alpha}(\vec{\xi})d\alpha \tag{43}$$

where:

$$\alpha \to \vec{p}$$
 (continuous index), $c(\alpha) \to \overline{\psi}(\vec{p})$, $\omega_{\alpha}(\vec{\xi}) \to v_{\vec{p}}(\vec{r})$ (basis functions) (44)

And the "continuous coefficient" function $\overline{\psi}$ can be found as:

$$\overline{\psi}(\vec{p}) = (v_{\vec{p}}, \psi) = \int v_{\vec{p}}^*(\vec{r})\psi(\vec{r})d\vec{r}$$
(45)

It would seem that the set of uncountable $v_{\vec{p}}$ functions is a basis for \mathcal{F} , however, the integral of $|v_{\vec{p}}(\vec{r})|^2 = \frac{1}{2\pi\hbar}$ diverges, so $v_{\vec{p}}(\vec{r}) \notin \mathcal{F}$.

Delta function

In the same way, we can introduce the set of functions $\{\xi_{\vec{r_0}}(\vec{r})\}\$ of \vec{r} , labelled by the continuous index $\vec{r_0}$ and defined as:

$$\xi_{\vec{r}_0}(\vec{r}) = \delta(\vec{r} - \vec{r}_0) \tag{46}$$

 $\{\xi_{\vec{r_0}}(\vec{r})\}\$ represents the set of delta functions centered at each of the points $\vec{r_0}$ of space. Clearly, $\xi_{\vec{r_0}}(\vec{r})$ is not square integrable, so $\xi_{\vec{r_0}}(\vec{r}) \notin \mathcal{F}$. Then, consider the relations:

$$\psi(\vec{r}) = \int \psi(\vec{r}_0)\delta(\vec{r} - \vec{r}_0) \ d^3r_0 = \int \psi(\vec{r}_0)\xi_{\vec{r}_0}(\vec{r}) \ d^3r_0 \tag{47}$$

$$\psi(\vec{r}_0) = (\xi_{\vec{r}_0}, \psi) = \int \delta(\vec{r}_0 - \vec{r}) \psi(\vec{r}) \ d^3r = \int \xi_{\vec{r}_0}^*(\vec{r}) \psi(\vec{r}) \ d^3r$$
 (48)

Equation 47 expresses the fact that every function $\psi(\vec{r}) \in \mathcal{F}$ can be expanded in terms of the $\xi_{\vec{r_0}}(\vec{r})$ functions in exactly one way. Equation 48 shows that the value of the "continuous coefficient" corresponding to $\xi_{\vec{r_0}}(\vec{r})$ is preciesly $\psi(\vec{r_0})$.

The usefulness of the continuous bases that we have just introduced is revealed more clearly in what follows. However, we must not lose sight of the following point: a physical state must always correspond to a square-integrable wave function. In no case can $v_{\vec{p}}(\vec{r})$ or $\xi_{\vec{r}_0}(\vec{r})$ represent the state of a particle. These functions are nothing more than intermediaries, very useful in calculations involving operations on the wave functions $\psi(\vec{r})$ which are used to describe a physical state.⁸

1.9 Matrix formulation of quantum mechanics

1.9.1 Matrix representation in discrete bases

Recall that, for a basis $\{|\phi_n\rangle\}$ of \mathcal{F} , we can write any $\psi \in \mathcal{F}$ as a linear combination of the basis vectors:

$$|\psi\rangle = \sum_{n} c_n |\phi_n\rangle \tag{49}$$

⁸aclarar

where $c_n = \langle \phi_n | \psi \rangle$ represents the projection of $|\psi\rangle$ onto $|\phi_n\rangle$. So, within the basis $\{|\phi_n\rangle\}$, the ket $|\psi\rangle$ is represented by the set of its components, $c_1, c_2, ...$, along $|\phi_1\rangle, |\phi_2\rangle, ...$, respectively. Hence, we can write the ket $|\psi\rangle$ as a column vector:

$$|\psi\rangle \to \begin{pmatrix} \langle \phi_1 | \psi \rangle \\ \langle \phi_2 | \psi \rangle \\ \vdots \\ \langle \phi_n | \psi \rangle \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
 (50)

The bra $\langle \psi |$ is represented by the row vector:

$$\langle \psi | \to (\langle \psi | \phi_1 \rangle \quad \langle \psi | \phi_2 \rangle \quad \dots \quad \langle \psi | \phi_n \rangle) = (\langle \phi_1 | \psi \rangle^* \quad \langle \phi_2 | \psi \rangle^* \quad \dots \quad \langle \phi_n | \psi \rangle^*) = (c_1^* \quad c_2^* \quad \dots \quad c_n^*) \tag{51}$$

Just as kets and bras are respresented by column and row vectors, respectively, operators are represented by square matrices.

1.10 Eigenvalues and eigenvectors of an operator

We can define the **eigenvectors of an operator** as:

Definition 12. A state vector $|\psi\rangle$ is said to be an eigenvector (also called eigenket or eigenvector) of an operator A if it is a solution of the eigenvalue equation:

$$A|\psi\rangle = a|\psi\rangle \tag{52}$$

where a is a complex number, called an eigenvalue of A.

Some theorems regarding eigenvectors and eigenvalues are:

Theorem 2. The eigenvalues of the inverse A^{-1} of an operator A are the inverse (with respect to the multiplication, 1/a) of the eigenvalues a of A. *Proof:*

$$A|\psi\rangle = a|\psi\rangle \to A^{-1}A|\psi\rangle = aA^{-1}|\psi\rangle \to |\psi\rangle = aA^{-1}|\psi\rangle \to A^{-1}|\psi\rangle = \frac{1}{a}|\psi\rangle \tag{53}$$

Theorem 3. For a Hermitian operator A, all of its eigenvalues are real and the eigenvectors corresponding to different eigenvalues are orthogonal^a.

^aProof in **Section 4.8**.

Theorem 4. If two Hermitian operators, A and B, commute and if A has no degenerate eigenvalue, then each eigenvector of A is also an eigenvector of B. In addition, we can construct a common orthonormal basis that is made of the joint eigenvectors of A and B^a .

^aProof in **Section 4.9**.

1.11 Position representation of state space

In the position representation, the basis consists of an infinite set of vectors $\{|\vec{r}\rangle\}$, which are eigenkets of the position operator \vec{R} :

$$\vec{R} | \vec{r} \rangle = \vec{r} | \vec{r} \rangle \tag{54}$$

where \vec{r} , the position vector, is the eigenvalue of the position operator \vec{R} . The orthonormality and completeness relations are given by⁹:

$$\langle \vec{r} | \vec{r}' \rangle = \delta(\vec{r} - \vec{r}') \tag{55}$$

$$\int |\vec{r}\rangle \, \langle \vec{r}| \, d^3r = \mathbb{1} \tag{56}$$

And every state vector $|\psi\rangle$ can be expanded in terms of the position eigenkets $|\vec{r}\rangle$ as:

$$|\psi\rangle = \int \langle \vec{r} | \psi \rangle | \vec{r} \rangle d^3 r = \int \psi(\vec{r}) | \vec{r} \rangle d^3 r \tag{57}$$

where the **wave function** $\psi(\vec{r}) = \langle \vec{r} | \psi \rangle$ denotes the components of ψ in the $\{ | \vec{r} \rangle \}$ basis. The quantity $| \langle \vec{r} | \psi \rangle |^2 d^3 r = |\psi(\vec{r})|^2 d^3 r$ represents the probability of finding the system inside the volume element $d^3 r$.

The scalar product between two state vectors $|\psi\rangle$ and $|\phi\rangle$ can be written as:

$$\langle \phi | \psi \rangle = \langle \phi | \left(\int |\vec{r}\rangle \langle \vec{r}| \, d^3 r \right) | \psi \rangle = \int \langle \vec{r}| \phi \rangle^* \langle \vec{r}| \psi \rangle \, d^3 r = \int \phi^*(\vec{r}) \psi(\vec{r}) d^3 r \tag{58}$$

Since $\vec{R} | \vec{r} \rangle = \vec{r} | \vec{r} \rangle$, we can write:

$$\vec{R}^{n} | \vec{r} \rangle = \vec{r}^{n} | \vec{r} \rangle \rightarrow \langle \vec{r}' | \vec{R}^{n} | \vec{r} \rangle = \langle \vec{r}' | \vec{r}^{n} | \vec{r} \rangle \rightarrow \langle \vec{r}' | \vec{R}^{n} | \vec{r} \rangle = \vec{r}^{n} \delta(\vec{r} - \vec{r}')$$

$$(59)$$

Note that the operator \vec{R} is Hermitian, since:

$$\langle \phi | \vec{R} | \psi \rangle = \int \langle \vec{r} | \phi \rangle^* \vec{r} \langle \vec{r} | \phi \rangle = \left[\int \langle \vec{r} | \phi \rangle \vec{r} \langle \vec{r} | \phi \rangle^* \right]^* = \langle \psi | \vec{R} | \phi \rangle^* \tag{60}$$

1.12 Momentum representation of state space

The basis $\{\vec{p}\}$ of the momentum representation is made of the eigenkets of the momentum operator \vec{P} :

$$\vec{P} | \vec{p} \rangle = \vec{p} | \vec{p} \rangle \tag{61}$$

where \vec{p} , the momentum vector, is the eigenvalue of the momentum operator \vec{P} . The orthonormality and completeness relations are given by 10 :

$$\langle \vec{p} | \vec{p}' \rangle = \delta(\vec{p} - \vec{p}') \tag{62}$$

$$\int |\vec{p}\rangle \langle \vec{p}| \, d^3p = \mathbb{1} \tag{63}$$

And every state vector $|\psi\rangle$ can be expanded in terms of the momentum eigenkets $|\vec{p}\rangle$ as:

$$|\psi\rangle = \int \langle \vec{p}|\psi\rangle |\vec{p}\rangle d^3p = \int \Psi(\vec{p}) |\vec{p}\rangle d^3p \tag{64}$$

where the expansion coefficient $\Psi(\vec{p}) = \langle \vec{p} | \psi \rangle$ is the **momentum space wave function**. The quantity $|\langle \vec{p} | \psi \rangle|^2 d^3 p = |\Psi(\vec{p})|^2 d^3 p$ represents the probability of finding the system's momentum inside the volume element $d^3 p$ located between \vec{p} and $\vec{p} + d\vec{p}$.

The scalar product between two state vectors $|\psi\rangle$ and $|\phi\rangle$ can be written as:

$$\langle \phi | \psi \rangle = \langle \phi | \left(\int |\vec{p}\rangle \langle \vec{p}| \, d^3 p \right) | \psi \rangle = \int \langle \vec{p}| \phi \rangle^* \langle \vec{p}| \psi \rangle \, d^3 p = \int \Phi^*(\vec{p}) \Psi(\vec{p}) d^3 p \tag{65}$$

Since $\vec{P} | \vec{p} \rangle = \vec{p} | \vec{p} \rangle$, we can write:

$$\vec{P}^{n} | \vec{p} \rangle = \vec{p}^{n} | \vec{p} \rangle \rightarrow \langle \vec{p}' | \vec{P}^{n} | \vec{p} \rangle = \langle \vec{p}' | \vec{p}^{n} | \vec{p} \rangle \rightarrow \langle \vec{p}' | \vec{P}^{n} | \vec{p} \rangle = \vec{p}^{n} \delta(\vec{p} - \vec{p}')$$

$$(66)$$

 $^{^9}$ Remember that elements of an uncountable set of functions such as this *cannot* be elements of \mathcal{F} .

 $^{^{10}}$ Remember that, as in the position representation, elements of an uncountable set of functions such as this *cannot* be elements of \mathcal{F} .

1.13 Connecting position and momentum representations

When changing from the $\{\vec{r}\}\$ basis to the $\{\vec{p}\}\$ basis, we encounter a transformation function $\langle \vec{r}|\vec{p}\rangle$. To find the expression for this transformation, let us establish the following relations:

$$\langle \vec{r} | \psi \rangle = \langle \vec{r} | \left(\int |\vec{p}\rangle \langle \vec{p}| \, d^3 p \right) | \psi \rangle = \int \langle \vec{r} | \vec{p}\rangle \langle \vec{p} | \psi \rangle \, d^3 p = \int \langle \vec{r} | \vec{p}\rangle \Psi(\vec{p}) \, d^3 p \tag{67}$$

which, as $\psi(\vec{r}) = \langle \vec{r} | \psi \rangle$, means:

$$\psi(\vec{r}) = \int \langle \vec{r} | \vec{p} \rangle \, \Psi(\vec{p}) \, d^3p \tag{68}$$

Similarly, we find:

$$\Psi(\vec{p}) = \langle \vec{p} | \psi \rangle = \langle \vec{p} | \left(\int |\vec{r}\rangle \langle \vec{r} | d^3 r \right) | \psi \rangle = \int \langle \vec{p} | \vec{r}\rangle \langle \vec{r} | \psi \rangle d^3 r = \int \langle \vec{p} | \vec{r}\rangle \psi(\vec{r}) d^3 r$$
 (69)

$$\Psi(\vec{p}) = \int \langle \vec{p} | \vec{r} \rangle \, \psi(\vec{r}) \, d^3r \tag{70}$$

Equation 68 and **Equation 70** imply that $\phi(\vec{r})$ and $\Phi(\vec{p})$ are Fourier transforms of each other. In quantum mechanics, the Fourier transform of a function $f(\vec{r})$ is given as:

$$f(\vec{r}) = \frac{1}{(2\pi\hbar)^{3/2}} \int e^{i\vec{p}\cdot\vec{r}/\hbar} g(\vec{p}) \ d^3p \tag{71}$$

Hence, the function $\langle \vec{r} | \vec{p} \rangle$ is given by:

$$\langle \vec{r} | \vec{p} \rangle = \frac{1}{(2\pi\hbar)^{3/2}} e^{i\vec{p}\cdot\vec{r}/\hbar} \tag{72}$$

This function transforms from the momentum to the position representation. The function corresponding to the inverse transformation, $\langle \vec{p} | \vec{r} \rangle$, is given by:

$$\langle \vec{p} | \vec{r} \rangle = \langle \vec{r} | \vec{p} \rangle^* = \frac{1}{(2\pi\hbar)^{3/2}} e^{-i\vec{p}\cdot\vec{r}/\hbar}$$
(73)

The quantity $|\langle \vec{r}|\vec{p}\rangle|^2 = \frac{1}{(2\pi\hbar)^3}$ represents the probability of finding the system at the point \vec{r} when its momentum is \vec{p} .

1.13.1 Momentum operator in the position representation

To determine the expression for the momentum operator \vec{P} in the position representation, let us calculate:

$$\langle \vec{r} | \vec{P} | \psi \rangle = \int \langle \vec{r} | \vec{P} | \psi \rangle \, d^3 p \stackrel{11}{=} \int \langle \vec{r} | \vec{P} | \vec{p} \rangle \, \langle \vec{p} | \psi \rangle \, d^3 p \stackrel{12}{=} \int \vec{p} \, \langle \vec{r} | \vec{p} \rangle \, \langle \vec{p} | \psi \rangle \, d^3 p \stackrel{13}{=} \frac{1}{(2\pi\hbar)^{3/2}} \int \vec{p} e^{i\vec{p}\cdot\vec{r}/\hbar} \Psi(\vec{p}) d^3 p \quad (74)$$

Now, since $\vec{p}e^{i\vec{p}\cdot\vec{r}/\hbar} = -i\hbar\vec{\nabla}e^{i\vec{p}\cdot\vec{r}/\hbar}$, and using **Equation 72**, we can write:

$$\langle \vec{r} | \vec{P} | \psi \rangle = -i\hbar \vec{\nabla} \left(\frac{1}{(2\pi\hbar)^{3/2}} \int e^{i\vec{p}\cdot\vec{r}/\hbar} \Psi(\vec{p}) d^3 p \right) = -i\hbar \vec{\nabla} \left(\int \langle \vec{r} | \vec{p} \rangle \langle \vec{p} | \psi \rangle d^3 p \right) = -i\hbar \vec{\nabla} \langle \vec{r} | \psi \rangle$$
(75)

So, the momentum operator acting on the state $|\psi\rangle$ is expressed in the position representation as the differential operator:

$$\vec{P} = -i\hbar\vec{\nabla} \tag{76}$$

acting on the wave function $\psi(\vec{r}) = \langle \vec{r} | \psi \rangle$. Thus, the momentum operator is represented by the differential operator $-i\hbar \vec{\nabla}$ in the position representation.

¹¹Here, we apply the closure relation.

¹²Here, we have used that $\vec{P} |\psi\rangle = \vec{p} |\vec{p}\rangle$.

¹³Here, we have used the definition of the transformation function from the momentum to the position representation, defined in **Equation 72**.

1.13.2 Canonical commutation relations

Calculating the separate terms of the x-component commutator of the operators \vec{R} and \vec{P} in the position representation, we find:

$$XP_x\psi(\vec{r}) = -i\hbar x \frac{\partial \psi(\vec{r})}{\partial x} \tag{77}$$

$$P_x X \psi(\vec{r}) = -i\hbar \frac{\partial}{\partial x} (x \psi(\vec{r})) = -i\hbar \psi(\vec{r}) - i\hbar x \frac{\partial \psi(\vec{r})}{\partial x}$$
(78)

so that:

$$[X, P_x]\psi(\vec{r}) = XP_x\psi(\vec{r}) - P_xX\psi(\vec{r}) = -i\hbar x \frac{\partial \psi(\vec{r})}{\partial x} + i\hbar \psi(\vec{r}) + i\hbar x \frac{\partial \psi(\vec{r})}{\partial x} = i\hbar \psi(\vec{r})$$
(79)

Therefore:

$$[X, P_x] = i\hbar \tag{80}$$

Likewise, it can be shown for the y and z components:

$$[Y, P_y] = i\hbar, \qquad [Z, P_z] = i\hbar \tag{81}$$

We can also check that, crossing different components:

$$[X, P_y] = [X, P_z] = [Y, P_x] = [Y, P_z] = [Z, P_x] = [Z, P_y] = 0$$
 (82)

With this, and the fact that the three degrees of freedom are independent¹⁴, we arrive at the **canonical** commutation relations¹⁵:

$$[X_j, P_k] = i\hbar \delta_{jk}, \quad [X_j, X_k] = [P_j, P_k] = 0, \quad j, k = x, y, z$$
 (83)

It is important to note that, even though the particular expression of an operator in different representations may vary, the commutation relations for operators are representation independent ¹⁶.

1.14 Tensor product of two vector spaces

Up to this point, we have always talked about the wave functions of a single particle. However, even in that case, one can consider a one-dimensional, two-dimensional or even three-dimensional wave function. It is clear that the particularisation of the general state space \mathcal{F} is not the same for functions of one variables (we will call the 1D state space ε_x) as for functions of three variables (we will call the 3D state space, $\varepsilon_{\vec{r}}$). $\varepsilon_{\vec{r}}$ and ε_x are therefore different spaces. Nevertheless, $\varepsilon_{\vec{r}}$ appears to be essentially a generalization of ε_x . Does there exist a more precise relation between these two spaces?

In this section, we are going to define and study the operation of taking the tensor product of vector spaces, and apply it to state spaces. This will answer, in particular, the question we have just asked: $\varepsilon_{\vec{r}}$ can be constructed from ε_x and another two spaces, ε_y and ε_z , which are isomorphic to it¹⁷.

We give the following definition of the tensor product of two vector spaces:

Definition 13. Let ε_1 and ε_2 be two^a vector spaces, of (finite or infinite) dimension N_1 and N_2 , respectively. Let vectors and operators belonging to ε_1 and ε_2 be denoted by an index (1) or (2), respectively. The vector space $\varepsilon = \varepsilon_1 \otimes \varepsilon_2$ is called the *tensor product of* ε_1 and ε_2 if there is associated with each pair of vectors, $|\psi(1)\rangle$ belonging to ε_1 and $|\psi(2)\rangle$ belonging to ε_2 , a vector belonging to ε , denoted by^b:

$$|\psi(1)\rangle \otimes |\psi(2)\rangle = |\psi(1)\psi(2)\rangle$$
 (84)

¹⁴See the Comment on the three-dimensional state space in Section 1.17.

¹⁵For simplicity of notation, we use $X_x = X$, $X_y = Y$ and $X_z = Z$.

¹⁶Add proof

¹⁷clarify what this means

which is called the tensor product of $|\psi(1)\rangle$ and $|\psi(2)\rangle$, and which satisfies the following conditions:

• It is *linear* with respect to multiplication by complex numbers:

$$\alpha \left[|\psi(1)\rangle \otimes |\psi(2)\rangle \right] = \left[\alpha |\psi(1)\rangle \right] \otimes |\psi(2)\rangle = |\psi(1)\rangle \otimes (\alpha |\psi(2)\rangle) \tag{85}$$

• It is *distributive* with respect to vector addition:

$$|\psi(1)\rangle \otimes [|\chi_1(2)\rangle + |\chi_2(2)\rangle] = |\psi(1)\rangle \otimes |\chi_1(2)\rangle + |\psi(1)\rangle \otimes |\chi_2(2)\rangle [|\psi_1(1)\rangle + |\psi_2(1)\rangle] \otimes |\chi(2)\rangle = |\psi_1(1)\rangle \otimes |\chi(2)\rangle + |\psi_2(1)\rangle \otimes |\chi(2)\rangle$$
(86)

• When a basis has been chosen for ε_1 , $\{u_i(1)\}$, and for ε_2 , $\{u_j(2)\}$, the set of vectors $|u_i(1)\rangle \otimes |v_l(2)\rangle$ constitutes a basis in ε . If N_1 and N_2 are finite, the dimensions of ε is N_1N_2 .

1.15 Vectors in the tensor product space

Let us consider a tensor product $\varepsilon = \varepsilon_1 \otimes \varepsilon_2$. Let us also consider a vector $|\psi(1)\rangle \otimes |\chi(2)\rangle$ in ε . Whatever $|\psi(1)\rangle$ and $|\chi(2)\rangle$ may be, they can be expressed in the basis of their respective spaces, $\{|u_i(1)\rangle\}$ and $\{|v_i(2)\rangle\}$, as:

$$|\psi(1)\rangle = \sum_{i} a_i |u_i(1)\rangle, \qquad |\chi(2)\rangle = \sum_{l} b_l |v_l(2)\rangle$$
 (87)

The expansion of the vector $|\psi(1)\rangle \otimes |\chi(2)\rangle$ in the basis $\{|u_i(1)\rangle \otimes |v_l(2)\rangle\}$ of ε is then given by:

$$|\psi(1)\rangle \otimes |\chi(2)\rangle = \sum_{i,l} a_i b_l |u_i(1)\rangle \otimes |v_l(2)\rangle$$
 (88)

Therefore, we obtain the following result:

Definition 14. The components of a tensor product vector $|\psi(1)\rangle \otimes |\chi(2)\rangle$ are the products of the components of the two vectors of the product $|\psi(1)\rangle$ and $|\chi(2)\rangle$.

Note that a general vector in the tensor product space ε can be written as:

$$|\psi\rangle = \sum_{i,l} c_{i,l} |u_i(1)\rangle \otimes |v_l(2)\rangle \tag{89}$$

Thus, by comparing this expression with **Equation 88**, we can see that there exist vectors in ε that cannot be written as a tensor product of two vectors belonging to ε_1 and ε_2 . This is because, in general, there are many cases where $c_{i,j}$ cannot be written as a product of two numbers a_i and b_j . However, any arbitrary vector of ε can always be decomposed into a *linear combination* of tensor product vectors belonging to ε_1 and ε_2 .

1.16 Scalar product in the tensor product space

The existence of the scalar product in ε_1 and ε_2 allows us to define one in ε too.

^aThis definition can easily be extended to a finite number of vector spaces.

^bThis vector can be written as $|\psi(1)\rangle \otimes |\psi(2)\rangle$ or $|\psi(2)\rangle \otimes |\psi(1)\rangle$; the order is of no importance.

Definition 15. The scalar product of $|\psi(1)\chi(2)\rangle = |\psi(1)\rangle \otimes |\chi(2)\rangle$ and $|\psi'(1)\chi'(2)\rangle = |\psi'(1)\rangle \otimes |\chi'(2)\rangle$ is defined as:

$$\langle \psi'(1)\chi'(2)|\psi(1)\chi(2)\rangle = \langle \psi'(1)|\psi(1)\rangle \langle \chi'(2)|\chi(2)\rangle \tag{90}$$

Notice, in particular, that the basis $\{|u_i(1)v_l(2)\rangle = |u_i(1)\rangle \otimes |v_l(2)\rangle\}$ of ε is orthonormal if each of the bases of ε_1 and ε_2 is orthonormal:

$$\langle u_{i'}(1)v_{l'}(2)|u_i(1)v_l(2)\rangle = \langle u_{i'}(1)|u_i(1)\rangle \langle v_{l'}(2)|v_l(2)\rangle = \delta_{ii'}\delta_{ll'}$$
(91)

1.17 Tensor product of operators

We define operators inside the tensor product space in the following way:

Definition 16. Consider a linear operator A(1) defined in ε_1 . We associate it with a linear operator $\tilde{A}(1)$ defined in ε , which we call the extension of A(1) in ε , and which is characterized in the following way: when $\tilde{A}(1)$ acts on a vector $|\psi(1)\rangle \otimes |\chi(2)\rangle$ of ε , one obtains, by definition:

$$\tilde{A}(1)\left[|\psi(1)\rangle \otimes |\chi(2)\rangle\right] = \left[A(1)|\psi(1)\rangle\right] \otimes |\chi(2)\rangle \tag{92}$$

We obtain an analogous definition for an operator $\tilde{B}(2)$ initially defined in ε_2 :

$$\tilde{B}(2)\left[|\psi(1)\rangle \otimes |\chi(2)\rangle\right] = |\psi(1)\rangle \otimes \left[B(2)|\chi(2)\rangle\right] \tag{93}$$

Then, the action of $\tilde{A}(1)$ on an arbitrary vector of ε is given by:

$$\tilde{A}(1) |\psi\rangle = \tilde{A}(1) \left(\sum_{i,l} c_{i,l} |u_i(1)\rangle \otimes |v_l(2)\rangle \right) = \sum_{i,l} c_{i,l} \left[A(1) |u_i(1)\rangle \right] \otimes |v_l(2)\rangle \tag{94}$$

and the action of $\tilde{B}(2)$ is given by:

$$\tilde{B}(2) |\psi\rangle = \tilde{B}(2) \left(\sum_{i,l} c_{i,l} |u_i(1)\rangle \otimes |v_l(2)\rangle \right) = \sum_{i,l} c_{i,l} |u_i(1)\rangle \otimes [B(2) |v_l(2)\rangle]$$

$$(95)$$

Therefore, we obtain:

Definition 17. Let A(1) and B(2) be two linear operators acting, respectively, in ε_1 and ε_2 . Their tensor product $A(1) \otimes B(2)$ is the linear operator acting in ε , defined by the following relation which describes its action on the tensor product vectors:

$$[A(1) \otimes B(2)][|\psi(1)\rangle \otimes |\chi(2)\rangle] = [A(1)|\psi(1)\rangle] \otimes [B(2)|\chi(2)\rangle]$$

$$(96)$$

Comment on extension of operators

The extensions of operators are special cases of tensor products. If $\mathbb{1}(1)$ and $\mathbb{1}(2)$ are the identity operators in ε_1 and ε_2 , respectively, then:

$$\tilde{A}(1) = A(1) \otimes \mathbb{1}(2)$$

$$\tilde{B}(2) = \mathbb{1}(1) \otimes B(2)$$
(97)

By combining these expressions with **Definition 17**, it is now very easy to deduce the expressions in **Definition 16**.

It is also easy to show that any pair of such operators commute in ε , by looking at the action of $\tilde{A}(1)\tilde{B}(2)$ and $\tilde{B}(2)\tilde{A}(1)$ on an arbitrary vector of the basis of ε :

$$\tilde{A}(1)\tilde{B}(2)|u_{i}(1)\rangle \otimes |v_{l}(2)\rangle = \tilde{A}(1)\left[|u_{i}(1)\rangle \otimes \left[B(2)|v_{l}(2)\rangle\right]\right] = \\
= \left[A(1)|u_{i}(1)\rangle\right] \otimes \left[B(2)|v_{l}(2)\rangle\right] \\
\tilde{B}(2)\tilde{A}(1)|u_{i}(1)\rangle \otimes |v_{l}(2)\rangle = \tilde{B}(2)\left[\left[A(1)|u_{i}(1)\rangle\right] \otimes |v_{l}(2)\rangle\right] = \\
= \left[A(1)|u_{i}(1)\rangle\right] \otimes \left[B(2)|v_{l}(2)\rangle\right] \qquad \to \tilde{A}(1)\tilde{B}(2) = \tilde{B}(2)\tilde{A}(1) \qquad (98)$$

As the result of the action of both operator products on the basis vectors is the same, the operators commute:

$$[\tilde{A}(1), \tilde{B}(2)] = 0$$
 (99)

Comment on the three-dimensional state space

Going back to what we said earlier about the state space $\varepsilon_{\vec{r}}$ being a generalization of ε_x , we can now see that this is true. In fact, we can write:

$$\varepsilon_{\vec{r}} = \varepsilon_x \otimes \varepsilon_y \otimes \varepsilon_z \tag{100}$$

which means that every vector in $\varepsilon_{\vec{r}}$ is the tensor product of three vectors: one in each of those three spaces. We can simplify the notation by writing:

$$|x, y, z\rangle = |x\rangle \otimes |y\rangle \otimes |z\rangle$$
 (101)

Then, we can also see that the operators X, Y and Z can actually be extended in $\varepsilon_{\vec{r}}$ as:

$$\tilde{X} = X \otimes \mathbb{1} \otimes \mathbb{1}, \qquad \tilde{Y} = \mathbb{1} \otimes Y \otimes \mathbb{1}, \qquad \tilde{Z} = \mathbb{1} \otimes \mathbb{1} \otimes Z$$
 (102)

We usually forget the tilde when we are working in $\varepsilon_{\vec{r}}$, and write directly X, Y and Z, for simplicity, but in order to understand fully what we are doing, we must remember the expressions in **Equation 102**. These give us new insight into the nature of these operators. X, Y and Z commute because, as we can clearly see from these results, they actually act independently on different state spaces.

In fact, as we proved in the previous comment on extension of operators, any pair of operators $\tilde{A}(1)$ and $\tilde{B}(2)$ in ε , that originally come from their respective operators A(1) and B(2) acting on different spaces ε_1 and ε_2 , commute in $\varepsilon = \varepsilon_1 \otimes \varepsilon_2$. If we look back at **Theorem 4**, we can provide further proof of this commutation relation between $\tilde{A}(1)$ and $\tilde{B}(2)$ by showing that they always have common eigenvectors: let $|\psi_n(1)\rangle$ be an eigenvector of A(1) in ε_1 and $|\chi_n(2)\rangle$ an eigenvector of B(2) in ε_2 , with eigenvalues $\lambda_n(1)$ and $\lambda_n(2)$ respectively. Then:

$$\tilde{A}(1) [|\psi_n(1)\rangle \otimes |\chi_n(2)\rangle] = [A(1) |\psi_n(1)\rangle] \otimes |\chi_n(2)\rangle =$$

$$= [\lambda_n(1) |\psi_n(1)\rangle] \otimes |\chi_n(2)\rangle =$$

$$= \lambda_n(1) [|\psi_n(1)\rangle \otimes |\chi_n(2)\rangle]$$
(103)

so that $|\psi_n(1)\rangle \otimes |\chi_n(2)\rangle$ is an eigenvector of $\tilde{A}(1)$ with eigenvalue $\lambda_n(1)$. But we can also find the same relation for $\tilde{B}(2)$:

$$\tilde{B}(2) [|\psi_n(1)\rangle \otimes |\chi_n(2)\rangle] = |\psi_n(1)\rangle \otimes [B(2)|\chi_n(2)\rangle] =$$

$$= |\psi_n(1)\rangle \otimes [\lambda_n(2)|\chi_n(2)\rangle] =$$

$$= \lambda_n(2) [|\psi_n(1)\rangle \otimes |\chi_n(2)\rangle]$$
(104)

so that $|\psi_n(1)\rangle \otimes |\chi_n(2)\rangle$ is also an eigenvector of $\tilde{B}(2)$ with eigenvalue $\lambda_n(2)$. Thus, $\tilde{A}(1)$ and $\tilde{B}(2)$ have common eigenvectors, and therefore commute.

Note: this does not mean that any pair of commuting operators, which have common eigenvectors, can be extended in a tensor product space. For example, as we will see in coming sections, the operators \vec{L}^2 and L_z commute, and have common eigenvectors, but they cannot be extended in a separate tensor product space, because they both act on the same space $\varepsilon_{\vec{r}}$.

2 Postulates of Quantum Mechanics

2.1 Introduction

Quantum mechanics is based on a number of postulates, which themselves are based on a range of experimental observations. These postulates cannot be derived, and they result exclusively from experiment. They are the minimal set of assumptions that one needs in order to build the theory of quantum mechanics. The validity of the postulates of quantum mechanics can only be determined inferentially: the theory works extremely well, so the postulates must also be valid. This represents its experimental justification.

The first four postulates concern the state of a system at a give time, whereas the last postulate concerns the time evolution of the system.

Postulate 1. State of a System: The state of any physical system is specified, at each time t, by a state vector $|\psi(t)\rangle$ in a Hilbert space \mathcal{H} ; $|\psi(t)\rangle$ contains (and serves as the basis to extract) all the needed information about the system. Any superposition of state vectors is also a state vector.

Postulate 2. Observables and Operators: To every physical quantity a, called an observable or dynamical variable, there corresponds a linear Hermitian operator A whose eigenvectors form a complete basis.

Postulate 3. Measurements and Eigenvalues of Operators: The measurement of an observable a may be represented formally by the action of its operator A on a state vector $|\psi(t)\rangle$. The only possible result of such a measurement is one of the eigenvalues a_n (which are real) of the operator A. If the result of a measurement of A on a state $|\psi(t)\rangle$ is a_n , the state of the system *immediately after* the measurement changes to $|\psi_n\rangle$.

Postulate 4. Probabilistic Outcome of Measurements:

• **Discrete Spectra:** When measuring an observable a of a system in a state $|\psi\rangle$, the probability of obtaining one of the non-degenerate eigenvalues a_n of the corresponding operator A is given by:

$$P_n(a_n) = \frac{|\langle \psi_n | \psi \rangle|^2}{\langle \psi | \psi \rangle} = |a_n|^2$$
(105)

where $|\psi_n\rangle$ is the eigenstate of A with the eigenvalue a_n and we have assumed that the state is normalised. If the eigenvalue a_n is m-degenerate, P_n becomes:

$$P_n(a_n) = \frac{\sum_{j=1}^m |\langle \psi_n^j | \psi \rangle|^2}{\langle \psi | \psi \rangle} = \sum_{j=1}^m |a_n^{(j)}|^2$$
(106)

where, again, we assume normalised states.

The act of measurement changes the state of the system from $|\psi\rangle$ to $|\psi_n\rangle$. If the system is already in an eigenstate $|\psi_n\rangle$ of A, a measurement of a yields with certainty the corresponding eigenvalue a_n : $A|\psi_n\rangle = a_n|\psi_n\rangle$.

The mean value of an observable for a state $|\psi\rangle$ can be then calculated as:

$$\langle a \rangle_{\psi} = \sum_{n} a_{n} P_{n}(a_{n}) = \sum_{n} a_{n} \sum_{j=1}^{m} |a_{n}^{j}|^{2} = \sum_{n} a_{n} \sum_{j=1}^{m} \langle \psi | \psi_{n}^{j} \rangle \langle \psi_{n}^{j} | \psi \rangle =$$

$$= \sum_{n} \sum_{j=1}^{m} \langle \psi | a_{n} | \psi_{n}^{j} \rangle \langle \psi_{n}^{j} | \psi \rangle = \sum_{n} \sum_{j=1}^{m} \langle \psi | A | \psi_{n}^{j} \rangle \langle \psi_{n}^{j} | \psi \rangle = \langle \psi | A \left[\sum_{n} \sum_{j=1}^{m} |\psi_{n}^{j} \rangle \langle \psi_{n}^{j} | \right] |\psi \rangle =$$

$$= \langle \psi | A | \psi \rangle$$

$$(107)$$

• Continuous Spectra: we can extend the previous relations to continuous spectra to determine the probability density that a measurement of A yields a value between a and a+da on a system which is initially in a state $|\psi\rangle$:

$$\frac{dP(a)}{da} = \frac{|\langle \psi_a | \psi \rangle|^2}{\langle \psi | \psi \rangle} = |\psi(a)|^2 \tag{108}$$

where, again, we assume that the state $|\psi\rangle$ is normalised.

The mean value of an observable for a state $|\psi\rangle$ can be then calculated as:

$$\langle a \rangle_{\psi} = \int a \, dP(a) = \int a |\psi(a)|^2 \, da = \int a \, |\langle \psi_a | \psi \rangle|^2 \, da = \int a \, \langle \psi | \psi_a \rangle \, \langle \psi_a | \psi \rangle \, da =$$

$$= \int \langle \psi | \, a \, |\psi_a \rangle \, \langle \psi_a | \psi \rangle \, da = \int \langle \psi | \, A \, |\psi_a \rangle \, \langle \psi_a | \psi \rangle \, da = \langle \psi | \, A \, \left(\int |\psi_a \rangle \, \langle \psi_a | \, da \right) |\psi \rangle$$

$$= \langle \psi | A | \psi \rangle$$

$$= \langle \psi | A | \psi \rangle$$

$$(109)$$

Postulate 5. Time Evolution of State Vectors: The state vector $|\psi(t)\rangle$ of a system evolves in time according to the Schrödinger equation:

$$i\hbar \frac{\partial |\psi(t)\rangle}{\partial t} = H |\psi(t)\rangle$$
 (110)

where H is the Hamiltonian operator corresponding to the total energy of the system.

2.2 Observables and operators

An observable is a dynamic variable that can be measured. According to **Postulate 2**, a Hermitian operator is associated with every physical observable. In previous sections, we have seen that the position representation of the linear momentum operator is given by:

$$\vec{P} = -i\hbar\vec{\nabla} \tag{111}$$

In general, any function $f(\vec{r}, \vec{p})$ can be "quantized" (made into a function of operators) by replacing \vec{r} and \vec{p} with the position and momentum operators \vec{R} and \vec{P} , respectively:

$$f(\vec{r}, \vec{p}) \to F(\vec{R}, \vec{P})$$
 (112)

Some examples of operators are shown in **Table 2.2**.

Observable	Corresponding Operator
$ec{r}$	$ec{R}$
$ec{p}$	$ec{P} = -\hbar ec{ abla}$
$T = \frac{p^2}{2m}$	$T = -\frac{\hbar^2}{2m} \nabla^2$
$E = \frac{p^2}{2m} + V(\vec{r}, t)$	$H = -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{R}, t)$
$\vec{L} = \vec{r} \times \vec{p}$	$\vec{L} = -i\hbar \vec{R} \times \vec{\nabla}$

Table 1: Some observables and their corresponding operators.

2.2.1 Compatibility of observables

Two observables a and b are said to be **compatible** if their corresponding operators A and B commute. This means that there exists a common set of eigenvectors for both operators. In other words, if $|\psi_n\rangle$ is an eigenvector of A with eigenvalue a_n , then it is also an eigenvector of B with eigenvalue b_n . It is said that such pair A and B of observables form a **complete set of commuting observables** (CSCO).

Two observables can only be measured simultaneously if they are compatible, and this is a fact that is tightly connected to **Postulate 3**: when we measure an observable (we can think of this as applying its operator to the state), we obtain one of the eigenvalues of the operator, and immediately the system changes to the eigenstate corresponding to that eigenvalue. In order to be able to measure two different observables at the same time, the system must be able to change to an eigenstate that is common to both operators. This is only possible if the operators commute, because for two operators to share the basis of eigenvectors they must commute.

Furthermore, for commuting operators, it does not matter in what order we measure their corresponding observables. Measurement of one does not affect the measurement of the other. On the other hand, for non-commuting (incompatible) operators, measurement of one produces loss of information obtained from the measurement of the other.

2.3 Conservative systems

When the Hamiltonian of a system does not depend explicitly on time, the system is said to be **conservative**. In classical mechanics, the most important consequence of such a situation is the conservation of energy over time¹⁸. In other words, **the energy of the system is a constant of motion**. This also means that the eigenvalues and eigenvectors of the Hamiltonian operator are constant over time. Then, any state can be expanded in terms of the eigenvectors of the Hamiltonian operator:

$$|\psi(t)\rangle = \sum_{n} c_n(t) |\psi_n\rangle, \qquad c_n(t) = \langle \psi_n | \psi(t) \rangle$$
 (113)

In this case, the time evolution of the state vector $|\psi(t)\rangle$ is given by the time-dependent Schrödinger equation:

$$i\hbar \frac{\partial \langle \psi_n | \psi(t) \rangle}{\partial t} = \langle \psi_n | H | \psi(t) \rangle \stackrel{19}{\Longrightarrow} i\hbar \frac{\partial c_n(t)}{\partial t} = E_n c_n(t)$$
 (114)

which has the solution:

$$c_n(t) = c_n(t_0)e^{-iE_n(t-t_0)/\hbar}$$
 (115)

Therefore:

$$|\psi(t)\rangle = \sum_{n} c_n(t_0) e^{-iE_n(t-t_0)/\hbar} |\psi_n\rangle, \qquad c_n(t_0) = \langle \psi_n | \psi(t_0) \rangle$$
 (116)

 $^{^{18}\}mathrm{Actually},$ eigenvectors can change over time, but only by a phase.

¹⁹Here, we use the eigenvalue equation: $\langle \psi_n | H = E_n \langle \psi_n | \text{ so that } \langle \psi_n | H | \psi(t) \rangle = E_n \langle \psi_n | \psi(t) \rangle = E_n c_n(t)$.

and, for a continuous spectrum:

$$|\psi(t)\rangle = \int c(E, t_0)e^{-iE(t-t_0)/\hbar} |\psi_E\rangle \ dE, \qquad c(E, t_0) = \langle \psi_E | \psi(t_0) \rangle \tag{117}$$

2.3.1 Stationary states

A stationary state $|\psi(t)\rangle$ is a state that does not present any observable²⁰ change over time. They exist only in conservative systems, although not all states in a conservative system are stationary. For a stationary state, it is verified that the probability density function does not change over time²¹, so:

$$\| |\psi(t)\rangle \|^2 = \| |\psi(t_0)\rangle \|^2 \Longrightarrow |\psi(t)\rangle = |\psi(t_0)\rangle e^{i\alpha(t)}$$
(118)

for a certain real function $\alpha(t)$. Using the time-dependent Schrödinger equation:

$$i\hbar \frac{\partial |\psi(t)\rangle}{\partial t} = H |\psi(t)\rangle$$
 (119)

we obtain 22 :

$$i\hbar \frac{\partial |\psi(t)\rangle}{\partial t} = i\hbar \frac{\partial (|\psi(t_0)\rangle e^{i\alpha(t)})}{\partial t} = i\hbar |\psi(t_0)\rangle \frac{\partial (e^{i\alpha(t)})}{\partial t} = i\hbar |\psi(t_0)\rangle i\alpha'(t)e^{i\alpha(t)} =$$

$$= -\hbar \alpha'(t) |\psi(t)\rangle = H |\psi(t)\rangle$$
(120)

Which means that $|\psi(t)\rangle$ is an eigenstate of the Hamiltonian operator with eigenvalue $-\hbar\alpha'(t)$. As the system is conservative, the eigenvectors evolve only by a phase and the eigenvalues of H are constant, we have $|\psi(t)\rangle \to |\psi_n\rangle e^{i\alpha(t)}$ and $\alpha'(t) \to \alpha'$:

$$-\hbar\alpha' |\psi_n\rangle e^{i\alpha(t)} = H |\psi_n\rangle e^{i\alpha(t)}$$
(121)

It is now easy to see, looking at Equation 116, that:

$$|\psi(t)\rangle = |\psi_n\rangle e^{-iE_n(t-t_0)/\hbar}$$
(122)

Therefore, we can define:

Definition 18. Stationary states are eigenstates of the Hamiltonian of a conservative system. They evolve in time only by a phase, which is to say that they do not present any observable change over time.

2.3.2 Constants of motion

A constant of motion a is an observable that does not depend explicitly on time, and whose operator A commutes with H:

$$\frac{dA}{dt} = 0, \qquad [H, A] = 0 \tag{123}$$

Then, by **Theorem 4**, there is always a system of common eigenvectors for H and A. These eigenvectors are stationary states, and their eigenvalues are called **good quantum numbers**.

²⁰Meaning that any measurement of any observable always yields the same value.

²¹Remember that, in general, the shape of the probability density function can change, but the state *must* remain normalised. It is in the particular case of stationary states that the shape is maintained also.

²²Note that $|\psi(t_0)\rangle$ is a constant, and can be taken out of the derivative.

2.4 Superposition and interference

Superposition in quantum mechanics does not work in the way we would expect from classical mechanics. Take the double slit experiment as an example. According to the classical superposition principle, the light intensity distribution on the screen is given by the sum of the intensities of the two waves coming from the two slits. In quantum mechanics, however, the light intensity distribution on the screen is proportional to the *square* of the sum of the amplitudes of the two waves coming from the two slits:

$$I(\vec{r},t) \propto |\psi_1(\vec{r},t) + \psi_2(\vec{r},t)|^2 = |\psi_1(\vec{r},t)|^2 + |\psi_2(\vec{r},t)|^2 + |\psi_1(\vec{r},t)\psi_2(\vec{r},t) + \psi_1(\vec{r},t)\psi_2^*(\vec{r},t)|$$
(124)

This extra term that appears as a result of the interference of the partial amplitudes is the origin of the **interference** phenomena in quantum mechanics.

3 Angular Momentum

3.1 Orbital angular momentum

3.1.1 Classical orbital angular momentum

In classical mechanics, the angular momentum of a particle relative to some axis is defined as:

$$\vec{L} = \vec{r} \times \vec{p} \tag{125}$$

where \vec{r} is the position vector of the particle with respect to a point on the axis of rotation and \vec{p} is its momentum.

The total angular momentum of a system of particles is the sum of angular momenta of the individual particles:

$$\vec{L}_{\text{total}} = \sum_{i} \vec{r}_{i} \times \vec{p}_{i} \tag{126}$$

The total angular momentum varies in time according to the net external torque, which we can obtain

Figure 1: Classical orbital angular momentum

by differentiating the total angular momentum with respect to time:

$$\vec{\tau}_{\text{total}} = \sum_{i} \vec{\tau}_{\text{ext},i} = \frac{d\vec{L}_{\text{total}}}{dt}$$
(127)

It follows that the total angular momentum of a system is conserved if the resultant external torque acting on the system is zero.

3.1.2 Orbital angular momentum in quantum mechanics

As discussed in **Section 2.2**, to obtain the quantum mechanical operator for orbital angular momentum from its classical definition, we can apply quantization to the classical expression provided in the previous section:

$$\vec{L} = \vec{R} \times \vec{P} = -i\hbar \vec{R} \times \vec{\nabla} \tag{128}$$

For a system of (spin-less) particles, the total angular momentum is defined as:

$$\vec{L}_{\text{total}} = \sum_{i} \vec{R}_{i} \times \vec{P}_{i} \tag{129}$$

The different cartesian components of the angular momentum operator are:

$$L_{x} = YP_{z} - ZP_{y} = -i\hbar \left(Y \frac{\partial}{\partial z} - Z \frac{\partial}{\partial y} \right)$$

$$L_{y} = ZP_{x} - XP_{z} = -i\hbar \left(Z \frac{\partial}{\partial x} - X \frac{\partial}{\partial z} \right)$$

$$L_{z} = XP_{y} - YP_{x} = -i\hbar \left(X \frac{\partial}{\partial y} - Y \frac{\partial}{\partial x} \right)$$
(130)

We can also define the square of the angular momentum operator:

$$L^2 = L_x^2 + L_y^2 + L_z^2 (131)$$

As expected from operators corresponding to observables, all angular momentum operators are Hermitian.

3.1.3 Commutation relations

The commutation relations for the orbital angular momentum operators are:

$$[L_{x}, L_{y}] = L_{x}L_{y} - L_{y}L_{x} = i\hbar L_{z}$$

$$[L_{y}, L_{z}] = L_{y}L_{z} - L_{z}L_{y} = i\hbar L_{x}$$

$$[L_{z}, L_{x}] = L_{z}L_{x} - L_{x}L_{z} = i\hbar L_{y}$$
(132)

3.2 General formalism of angular momentum

We have just defined the orbital angular momentum. However there exists a more general formalism of angular momentum, which is the *total* angular momentum. Its corresponding operator is \vec{J} . In the case that the only contribution to the *total* angular momentum is the *orbital* angular momentum, then $\vec{J} = \vec{L}$. Thus, all we will see in this section can be identically applied to orbital angular momentum²³.

 \vec{J}^2 is defined by its three components that satisfy:

$$[J_x, J_y] = i\hbar J_z$$

$$[J_y, J_z] = i\hbar J_x \qquad \vec{J}^2 = J_x^2 + J_y^2 + J_z^2 \qquad [\vec{J}^2, J_k] = 0 \quad (k = x, y, z)$$

$$[J_z, J_x] = i\hbar J_y \qquad (133)$$

Thanks to these commutation relations, we know that we cannot measure the three components of the total angular momentum simultaneously. However, we can simultaneously measure the total angular momentum squared J^2 and one of its components. There is possibility to find simultaneous eigenstates of J^2 and any component of J. However, we can only choose one component of J to be measured simultaneously with J^2 . By convention, we choose J_z , so that we work with a basis of eigenvectors that is common to J^2 and J_z in all our calculations²⁴.

Eigenstates of the total angular momentum operators

Let us now look for the joint eigenstates of J^2 and J_z and their corresponding eigenvalues. Denoting the joint eigenstates by $|\alpha, \beta\rangle$, and the corresponding eigenvalues of J^2 and J_z by $\hbar^2\alpha$ and $\hbar\beta$, respectively, we have:

$$J^{2} |\alpha, \beta\rangle = \hbar^{2} \alpha |\alpha, \beta\rangle$$

$$J_{z} |\alpha, \beta\rangle = \hbar \beta |\alpha, \beta\rangle$$
(134)

The factor \hbar is introduced so that α and β are dimensionless. We also assume that the eigenstates are orthonormal.

Now we need to introduce raising and lowering operators J_+ and J_- , respectively, which are defined as:

$$J_{\pm} = J_x \pm iJ_y \tag{135}$$

This leads to:

$$J_x = \frac{1}{2}(J_+ + J_-) \qquad J_y = \frac{1}{2i}(J_+ - J_-)$$
(136)

hence:

$$J_x^2 = \frac{1}{4}(J_+^2 + J_+J_- + J_-J_+ + J_-^2) \qquad J_y^2 = -\frac{1}{4}(J_+^2 - J_+J_- - J_-J_+ + J_-^2)$$
(137)

Using the commutation relations from Equation 133, we can easily obtain:

$$[\vec{J}^2, J_{\pm}] = 0$$
 $[J_+, J_-] = 2\hbar J_z$ $[J_z, J_{\pm}] = \pm \hbar J_{\pm}$ (138)

²³In general, the total angular momentum is the sum of the *orbital* angular momentum and the *spin* angular momentum. The spin angular momentum is a purely quantum mechanical phenomenon, which we will discuss in **Section 3.4**.

²⁴Note that this is just a convention. There is nothing special about the z direction compared to x and y.

And also:

$$J_{+}J_{-} = J_{x}^{2} + J_{y}^{2} + \hbar J_{z} = \vec{J}^{2} - J_{z}^{2} + \hbar J_{z}$$

$$J_{-}J_{+} = J_{x}^{2} + J_{y}^{2} - \hbar J_{z} = \vec{J}^{2} - J_{z}^{2} - \hbar J_{z}$$
(139)

These relations lead to:

$$\vec{J}^2 = J_{\pm}J_{\mp} + J_z^2 \mp \hbar J_z = \frac{1}{2}(J_+J_- + J_-J_+) + J_z^2$$
(140)

Since J_{\pm} do not commute with J_z , the kets $|\alpha, \beta\rangle$ are not eigenstates of J_{\pm} . Using the expressions in **Equation 138**, we can obtain:

$$J_{z}(J_{\pm}|\alpha,\beta\rangle) = (J_{\pm}J_{z} \pm \hbar J_{\pm})|\alpha,\beta\rangle = J_{\pm}J_{z}|\alpha,\beta\rangle \pm \hbar J_{\pm}|\alpha,\beta\rangle =$$

$$= \hbar\beta J_{+}|\alpha,\beta\rangle \pm \hbar J_{+}|\alpha,\beta\rangle = \hbar(\beta \pm 1)(J_{+}|\alpha,\beta\rangle)$$
(141)

hence the ket $J_{\pm} | \alpha, \beta \rangle$ is an eigenstate of J_z with eigenvalue $\hbar(\beta \pm 1)$. Since \vec{J}^2 commutes with J_z , $J_{\pm} | \alpha, \beta \rangle$ is also an eigenstate of \vec{J}^2 . Using **Equation 138** again, which tells us that \vec{J}^2 commutes with J_{\pm} , we can determine the eigenvalue, which is $\hbar^2 \alpha$:

$$\vec{J}^{2}(J_{\pm}|\alpha,\beta\rangle) = J_{\pm}\vec{J}^{2}|\alpha,\beta\rangle = J_{\pm}\hbar^{2}\alpha|\alpha,\beta\rangle = \hbar^{2}\alpha(J_{\pm}|\alpha,\beta\rangle)$$
(142)

If we rewrite **Equation 141** and **Equation 142** in terms of $|\alpha', \beta'\rangle = J_{\pm} |\alpha, \beta\rangle$:

$$J_z |\alpha', \beta'\rangle = \hbar(\beta \pm 1) |\alpha', \beta'\rangle$$

$$\vec{J}^2 |\alpha', \beta'\rangle = \hbar^2 \alpha |\alpha', \beta'\rangle$$
(143)

and if we compare with **Equation 134**, we can infer that $\alpha' = \alpha$ and $\beta' = \beta \pm 1$. In other words, the ket $J_{\pm} | \alpha, \beta \rangle$ is proportional to $| \alpha, \beta \pm 1 \rangle$ (any eigenket multiplied by a constant is also an eigenket, although it may not be normalised), and we can write:

$$J_{\pm} |\alpha, \beta\rangle = C_{\alpha\beta}^{\pm} |\alpha, \beta \pm 1\rangle \tag{144}$$

So, when the operators J_{\pm} act on a ket $|\alpha, \beta\rangle$, they do not change the first quantum number α , but they increase (or decrease) the second quantum number β by one unit. Hence the names raising and lowering operators.

Note that, for a given eigenvalue α of \vec{J}^2 , there exists an upper limit for the absolute value²⁵ of the quantum number β . This is due to the fact that the operator $\vec{J}^2 - J_z^2$ is positive definite, as the matrix elements of $\vec{J}^2 - J_z^2 = J_x^2 + J_y^2 \ge 0$ are non-negative, so we can write:

$$\langle \alpha, \beta | \vec{J}^{2} - J_{z}^{2} | \alpha, \beta \rangle = \hbar^{2} (\alpha - \beta^{2}) \ge 0 \implies \alpha \ge \beta^{2}$$
 (145)

Since β has an upper limit, β_{max} , there must exist a state $|\alpha, \beta_{\text{max}}\rangle$ which cannot be raised further:

$$J_{+}\left|\alpha,\beta_{\max}\right\rangle = 0\tag{146}$$

Using this, along with **Equation 139**, we can obtain:

$$J_{-}J_{+}|\alpha,\beta_{\max}\rangle = (\vec{J}^{2} - J_{z}^{2} - \hbar J_{z})|\alpha,\beta_{\max}\rangle = \hbar^{2}(\alpha - \beta_{\max}^{2} - \beta_{\max})|\alpha,\beta_{\max}\rangle = 0$$
 (147)

hence:

$$\alpha = \beta_{\text{max}}(\beta_{\text{max}} + 1) \tag{148}$$

 $^{^{25}\}text{That}$ is to say, β is bounded from above and below.

Since β has a lower limit, β_{\min} , there must exist a state $|\alpha, \beta_{\min}\rangle$ which cannot be lowered further, which we reach after n successive applications of J_{-} on $|\alpha, \beta_{\max}\rangle$:

$$J_{-}\left|\alpha,\beta_{\min}\right\rangle = 0\tag{149}$$

Using this, along with **Equation 139**, we can obtain:

$$J_{+}J_{-}|\alpha,\beta_{\min}\rangle = (\vec{J}^{2} - J_{z}^{2} + \hbar J_{z})|\alpha,\beta_{\min}\rangle = \hbar^{2}(\alpha - \beta_{\min}^{2} + \beta_{\min})|\alpha,\beta_{\min}\rangle = 0$$
 (150)

hence:

$$\alpha = \beta_{\min}(\beta_{\min} - 1) \tag{151}$$

Comparing Equation 149 and Equation 151, we can infer that:

$$\beta_{\text{max}} = -\beta_{\text{min}} \tag{152}$$

Since β_{\min} was reached after n successive applications of J_{-} on $|\alpha, \beta_{\max}\rangle$, it follows that:

$$\beta_{\text{max}} = \beta_{\text{min}} + n, \qquad n \in \mathbb{N} \tag{153}$$

Combining the last two equations, we obtain:

$$\beta_{\min} = -\frac{n}{2} \qquad \beta_{\max} = \frac{n}{2} \tag{154}$$

Which means that β_{max} is either an integer or a half-odd-integer. We can now introduce the notation:

$$j = \beta_{\text{max}} = \frac{n}{2} \qquad m = \beta \tag{155}$$

hence, we can express α as:

$$\alpha = j(j+1) \tag{156}$$

 $m = -j, -j+1, \ldots, j-1, j$ And we can infer that the values of m lie between -j and j:

$$-j \le m \le j \tag{157}$$

We can now summarize the results we have obtained so far:

Definition 19. The eigenvalues of \vec{J}^2 and J_z corresponding to the joint eigenvectors $|j,m\rangle$ are given, respectively, by $\hbar^2 j(j+1)$ and $\hbar m$:

$$\vec{J}^{2}|j,m\rangle = \hbar^{2}j(j+1)|j,m\rangle \qquad J_{z}|j,m\rangle = \hbar m|j,m\rangle$$
(158)

where $j=0,\,1/2,\,1,\,3/2,\,...$ and $m=-j,-(j-1),\,...,j-1,j.$ We see that the spectra of the angular momentum operators $\vec{J}^{\,2}$ and J_z are discrete. Since the eigenstates corresponding to different angular momenta are orthogonal, and since the angular momentum spectra are discrete, the orthonormality condition is:

$$\langle j', m'|j, m\rangle = \delta_{j',j}\delta_{m',m} \tag{159}$$

Let us now determine the normalization constant $C_{\alpha\beta}^{\pm}$ in **Equation 144**, which we can rewrite in terms of j and m as:

$$J_{\pm} |j,m\rangle = C_{jm}^{\pm} |j,m\pm 1\rangle \tag{160}$$

Since $|j, m+1\rangle$ is normalized:

$$(J_{+}|j,m\rangle)^{\dagger}(J_{+}|j,m\rangle) = |C_{jm}^{+}|^{2}\langle j,m+1|j,m+1\rangle = |C_{jm}^{+}|^{2}$$
(161)

Since $J_{+} = J_{x} + iJ_{y}$ and the operators J_{x} and J_{y} are Hermitian, we have:

$$J_{+}^{\dagger} = (J_x + iJ_y)^{\dagger} = J_x^{\dagger} - iJ_y^{\dagger} = J_x - iJ_y = J_{-}$$
(162)

So we can also write:

$$\langle j, m | J_{-}J_{+} | j, m \rangle = \langle j, m | J_{+}^{\dagger}J_{+} | j, m \rangle = (J_{+} | j, m \rangle)^{\dagger} (J_{+} | j, m \rangle) = |C_{jm}^{+}|^{2}$$
 (163)

But since $J_-J_+=\vec{J}^{\,2}-J_z^2-\hbar J_z$ and $|j,m\rangle$ is orthonormal, we can also write:

$$|C_{jm}^{+}|^{2} = \langle j, m|J_{-}J_{+}|j, m\rangle = \langle j, m|J^{2} - J_{z}^{2} - \hbar J_{z}|j, m\rangle =$$

$$= \langle j, m|J^{2}|j, m\rangle - \langle j, m|J_{z}^{2}|j, m\rangle - \hbar \langle j, m|J_{z}|j, m\rangle =$$

$$= \langle j, m|\hbar^{2}j(j+1)|j, m\rangle - \langle j, m|\hbar^{2}m^{2}|j, m\rangle - \hbar \langle j, m|\hbar m|j, m\rangle =$$

$$= \hbar^{2}j(j+1)\langle j, m|j, m\rangle - \hbar^{2}m^{2}\langle j, m|j, m\rangle - \hbar^{2}m\langle j, m|j, m\rangle =$$

$$= \hbar^{2}j(j+1) - \hbar^{2}m^{2} - \hbar^{2}m =$$

$$= \hbar^{2}(j(j+1) - m(m+1))$$
(164)

So we conclude that 26 :

$$C_{jm}^{+} = \hbar \sqrt{j(j+1) - m(m+1)}$$
(165)

Similarly, we can obtain:

$$C_{jm}^{-} = \hbar \sqrt{j(j+1) - m(m-1)}$$
(166)

So, we now have the raising and lowering operators completely defined:

Definition 20. The raising and lowering operators J_+ and J_- are given by:

$$J_{\pm} = J_x \pm iJ_y \tag{167}$$

Their action on a ket $|j,m\rangle$ raises or lowers the second quantum number m by one unit, respectively:

$$J_{\pm}|j,m\rangle = \hbar\sqrt{j(j+1) - m(m\pm 1)}|j,m\pm 1\rangle$$
(168)

3.2.1 Matrix representation of angular momentum

The formalism we discussed in the previous section is completely general and independent on the choice of representation. There are many ways to represent the angular momentum operators and their eigenstates, and in this section we will discuss the matrix representation of angular momentum, where eigenkets and operators are represented by column and square matrices, respectively.

Since \vec{J}^2 and J_z commute, the set of their common eigenstates $\{|j,m\rangle\}$ can be chosen as a basis. This basis is discrete, orthonormal and complete. The orthonormality condition and the completeness relation can be expressed, respectively, as:

$$\langle j', m'|j, m \rangle = \delta_{j',j} \delta_{m',m} \qquad \sum_{j} \sum_{m=-j}^{j} |j, m\rangle \langle j, m| = 1$$
 (169)

 $[\]overline{C_{jm}^+}$ Note that here we would actually have to add a phase factor $e^{i\theta}$ so that $C_{jm}^+ = \hbar \sqrt{j(j+1) - m(m+1)}e^{i\theta}$. This is beacuse C_{jm}^+ is, in general terms, a complex number. As we have the freedom of choice, we take C_{jm}^+ to be real and positive. The same argument applies to C_{jm}^- .

The matrix elements of the $\vec{J}^{\,2}$ and J_z operators in this basis are:

$$\langle j', m' | \vec{J}^2 | j, m \rangle = \hbar^2 j(j+1) \delta_{j',j} \delta_{m',m}$$

$$\langle j', m' | J_z | j, m \rangle = \hbar m \delta_{j',j} \delta_{m',m}$$
(170)

Clearly, \vec{J}^2 and J_z are diagonal in this basis, their diagonal elements being $\hbar^2 j(j+1)$ and $\hbar m$, respectively. However, as J_{\pm} do not commute with \vec{J}^2 and J_z , they are not diagonal in this basis. Their matrix elements are:

$$\langle j', m' | J_{\pm} | j, m \rangle = \hbar \sqrt{j(j+1) - m(m\pm 1)} \delta_{j',j} \delta_{m',m\pm 1}$$
 (171)

The matrices of J_x and J_y are obtained by adding and subtracting the matrices of J_+ and J_- , respectively, as seen in **Equation 136**:

$$J_x = \frac{1}{2}(J_+ + J_-) \qquad J_y = \frac{1}{2i}(J_+ - J_-) \tag{172}$$

3.2.2 Geometrical representation of angular momentum

The expected value of the angular momentum operator for a state $|j,m\rangle$, denoted as $\langle \vec{J} \rangle$, is given by:

$$\langle \vec{J} \rangle = \sqrt{\langle \vec{J}^2 \rangle} = \sqrt{\langle j, m | \vec{J}^2 | j, m \rangle} = \hbar \sqrt{j(j+1)}$$
 (173)

with z-component given by:

$$\langle J_z \rangle = \langle j, m | J_z | j, m \rangle = \hbar m$$
 (174)

Recalling that $J_x^2 + J_y^2 = \vec{J}^2 - J_z^2$, we can also give the component of the angular momentum that lies in the xy-plane as:

$$\langle J_{xy} \rangle = \sqrt{\langle J_x^2 + J_y^2 \rangle} = \sqrt{\langle \vec{J}^2 - J_z^2 \rangle} = \hbar \sqrt{j(j+1) - m^2}$$
(175)

As expected, it is verified that:

$$\langle J_{xy} \rangle^2 + \langle J_z \rangle^2 = \left(\hbar \sqrt{j(j+1) - m^2}\right)^2 + (\hbar m)^2 = \hbar^2 j(j+1) = \langle \vec{J} \rangle^2$$
 (176)

Graphically, we can show this with a diagram like the one on **Figure 2**, which shows the graphical representation of the angular momentum j=2 for the state $|j,m\rangle = |2,m\rangle$ with m=-2,-1,0,1,2.

In the classical sense, we can think of \vec{J}^2 as a vector whose endpoint lies on a sphere of radius $\hbar \sqrt{j(j+1)}$, rotating about the z-axis along the surface of a cone, and whose projection on the z-axis has length $\hbar m$. The angle θ between the z-axis and the vector \vec{J}^2 is given by:

$$\cos \theta = \frac{\langle J_z \rangle}{\langle \vec{J} \rangle} = \frac{\hbar m}{\hbar \sqrt{j(j+1)}} = \frac{m}{\sqrt{j(j+1)}}$$
(177)

Notice that, as the values of the quantum number m are limited to -j, -(j-1), ..., j-1, j, the angle θ is also limited to a discrete set of 2j+1 values.

Since all the orientations of \vec{J}^2 on the surface of the cone are equally likely, the projection of \vec{J}^2 on both the x-axes and y-axes averages out to zero. This can also be demostrated mathematically by calculating the expected values of J_x and J_y using **Equation 136**:

$$\langle J_{x} \rangle = \langle j, m | J_{x} | j, m \rangle = \frac{1}{2} \langle j, m | (J_{+} + J_{-}) | j, m \rangle = \frac{1}{2} \langle j, m | J_{+} | j, m \rangle + \frac{1}{2} \langle j, m | J_{-} | j, m \rangle = \frac{\hbar}{2} \sqrt{j(j+1) - m(m+1)} \langle j, m | j, m+1 \rangle + \frac{\hbar}{2} \sqrt{j(j+1) - m(m-1)} \langle j, m | j, m-1 \rangle = 0$$
(178)

$$\langle J_y \rangle = \langle j, m | J_y | j, m \rangle = \frac{1}{2i} \langle j, m | (J_+ - J_-) | j, m \rangle = \frac{1}{2i} \langle j, m | J_+ | j, m \rangle - \frac{1}{2i} \langle j, m | J_- | j, m \rangle =$$

$$= \frac{\hbar}{2i} \sqrt{j(j+1) - m(m+1)} \langle j, m | j, m+1 \rangle - \frac{\hbar}{2i} \sqrt{j(j+1) - m(m-1)} \langle j, m | j, m-1 \rangle = 0$$
(179)

Figure 2: Graphical representation of the angular momentum j=2 for the state $|j,m\rangle=|2,m\rangle$ with m=-2,-1,0,1,2. The radius of the circle is $\hbar\sqrt{j(j+1)}=\hbar\sqrt{6}$.

3.3 Position representation of orbital angular momentum

As we already saw in a previous section, in the position representation, the orbital angular momentum operators are given in cartesian coordinates by **Equation 130**. However, it is more convenient to work in spherical (or polar) coordinates, since, as we shall see, the various angular momentum operators act only on the angular variables and and not on the r variable. We can rewrite the angular momentum operators in spherical coordinates as:

$$L_{x} = i\hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \frac{\cos \phi}{\tan \theta} \frac{\partial}{\partial \phi} \right)$$

$$L_{y} = i\hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \frac{\sin \phi}{\tan \theta} \frac{\partial}{\partial \phi} \right)$$

$$L_{z} = -i\hbar \frac{\partial}{\partial \phi}$$
(180)

We can also rewrite the L_{\pm} and L^2 operators in spherical coordinates:

$$L_{\pm} = \pm \hbar e^{\pm i\phi} \left(\frac{\partial}{\partial \theta} \pm i \cot \theta \frac{\partial}{\partial \phi} \right)$$

$$\vec{L}^{2} = -\hbar^{2} \left[\frac{\partial^{2}}{\partial \theta^{2}} + \frac{1}{\tan \theta} \frac{\partial}{\partial \theta} + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]$$
(181)

Then, the original eigenproblem for a spinless particle can be written as:

$$\vec{L}^{2} |l, m\rangle = \hbar^{2} l(l+1) |l, m\rangle$$

$$L_{z} |l, m\rangle = \hbar m |l, m\rangle$$
(182)

can be written in the r-representation as:

$$\vec{L}^{2}\psi_{l,m}(r,\theta,\phi) = \hbar^{2}l(l+1)\psi_{l,m}(r,\theta,\phi)$$

$$L_{z}\psi_{l,m}(r,\theta,\phi) = \hbar m\psi_{l,m}(r,\theta,\phi)$$
(183)

where, as the operators act only on the angular variables, the eigenfunctions are separable:

$$\psi_{l,m}(r,\theta,\phi) = R_l(r)Y_l^m(\theta,\phi) \tag{184}$$

The solution to the angular part of this eigenproblem are spherical harmonics:

$$Y_l^m(\theta,\phi) = \varepsilon \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_l^m(\cos\theta) e^{im\phi}$$

$$\varepsilon = \begin{cases} (-1)^m & \text{if } m \ge 0\\ 1 & \text{if } m < 0 \end{cases}$$
(185)

where $P_l^m(\cos\theta)$ are the **associated Legendre polynomials**, which are given by:

$$P_l^m(x) = (1 - x^2)^{|m|/2} \frac{d^{|m|}}{dx^{|m|}} P_l(x), \qquad P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$
(186)

Spherical harmonics are joint eigenfunctions of the operators \vec{L}^2 and L_z , as both these operators commute. They are also functions with a well-defined parity, as they are eigenfunctions of the parity operator P:

$$PY_{l}^{m}(\theta,\phi) = Y_{l}^{m}(\pi - \theta, \pi + \phi) = (-1)^{l}Y_{l}^{m}(\theta,\phi)$$
(187)

Also, the complex conjugate of a spherical harmonic is given by:

$$[Y_l^m(\theta,\phi)]^* = (-1)^m Y_l^{-m}(\theta,\phi)$$
(188)

3.4 Spin angular momentum

Spin angular momentum is one of the most fundamental properties of an electron and other elementary particles, despite the fact that it has no classical analogue, in contrast to orbital angular momentum. Its existence was discovered in 1922 by Stern and Gerlach, who observed that a beam of ground-state silver atoms, which have no orbital angular momentum, split in two when passing through a non-uniform magnetic field. This unexpected result, caused by the spin angular momentum of the 5s valence electron, led them to postulate the existence of a new angular momentum phenomenon different from orbital angular momentum, and they called it **spin**. The theory of spin is identical to the general theory of angular momentum and, by analogy with the vector \vec{J} , the spin is also represented by a vector operator \vec{S} .

From the classical theory of electromagnetism, an orbital magnetic dipole moment is generated with the orbital motion of a particle of charge q:

$$\vec{\mu}_L = \frac{q}{2mc}\vec{L} \tag{189}$$

where \vec{L} is the orbital angular momentum of the particle, m its mass, and c the speed of light. Similarly, if we follow a classical analysis, we can define the **spin magnetic dipole moment** of a particle as:

$$\vec{\mu}_S = \frac{q}{2mc}\vec{S} \tag{190}$$

Although this expression cannot be derived classically, as there is no classical equivalent of spin, it can still be postulated by analogy to the orbital magnetic dipole moment. However, there is one correction that we need to make to **Equation 190**: it turns out that, for the electron, the orbital magnetic dipole moment is actually twice its classical expression. For other particles, this ratio, which we call gyromagnetic ratio (or Landé factor) g_s , can vary. Taking this effect into account, we obtain²⁷:

$$\vec{\mu}_S = g_s \frac{q}{2mc} \vec{S} \tag{191}$$

²⁷The ratio g_s can be obtained using Dirac's relativistic quantum theory.

When the electron is placed in a magnetic field \vec{B} and if the field is inhomogeneous, a force will be exerted on the electron's intrinsic dipole moment; the direction and magnitude of the force depend on the relative orientation of the field and the dipole. This force tends to align $\vec{\mu}_S$ along \vec{b} , producing a precessional motion of $\vec{\mu}_S$ around \vec{b} .

3.4.1 Quantum description of spin

Until now, we have studied the quantization of orbital variables. With the position \vec{r} and the momentum \vec{p} of a particle such as the electron, we associated the observables \vec{R} and \vec{P} acting in the state space $\varepsilon_{\vec{r}}$, which is isomorphic to the space \mathcal{F} of wave functions. All physical quantities are functions of the fundamental variables \vec{r} and \vec{p} , and the quantization rules enable us to associate with them observables acting in \vec{r} . We shall call $\varepsilon_{\vec{r}}$ the orbital state space.

To these *orbital variables* we have studied up until now, we will add the *spin variables*, which satisfy the following postulates:

Postulate 6. The spin operator: The spin operator \vec{S} is an angular momentum vector operator whose components S_x , S_y and S_z satisfy the commutation relations of angular momentum operators:

$$[S_x, S_y] = i\hbar S_z, \qquad [S_y, S_z] = i\hbar S_x, \qquad [S_z, S_x] = i\hbar S_y \tag{192}$$

Postulate 7. Spin state space: The spin operators act in a new space, the "spin state space" ε_s , where \vec{S}^2 and S_z constitute a CSCO. The space ε_s is thus spanned by the set of eigenstates $|s, m_s\rangle$ common to \vec{S}^2 and S_z :

$$\vec{S}^{2}|s, m_{s}\rangle = \hbar^{2}s(s+1)|s, m_{s}\rangle, \qquad S_{z}|s, m_{s}\rangle = \hbar m_{s}|s, m_{s}\rangle$$
(193)

where s = 0, 1/2, 1, 3/2, ... and $m_s = -s, -(s-1), ..., s-1, s$. A given particle is characterized by a unique, specific and immutable value^a of s: this particle is said to have a spin s. The spin state space ε_s is therefore always of finite dimension (2s+1), and all spin states are eigenvectors of \vec{S}^2 with the same eigenvalue $s(s+1)\hbar^2$.

Similarly, we have:

$$S_{\pm} |s, m_s\rangle = \hbar \sqrt{s(s+1) - m_s(m_s \pm 1)} |s, m_s \pm 1\rangle$$
 (194)

where $S_{\pm} = S_x \pm i S_y$, and:

$$\langle S_x^2 \rangle = \langle S_y^2 \rangle = \frac{\hbar^2}{2} \left[s(s+1) - m_s^2 \right] \tag{195}$$

The spin states form an orthonormal and complete basis:

$$\langle s', m'_s | s, m_s \rangle = \delta_{s',s} \delta_{m'_s, m_s} \qquad \sum_{s} \sum_{m_s = -s}^{s} |s, m_s\rangle \langle s, m_s| = 1$$

$$(196)$$

Postulate 8. The state space: The state space ε of a particle is the tensor product of the orbital

^aFor example, the electron has s = 1/2, the photon has s = 1, the proton has s = 1/2, the neutron has s = 1/2, etc. The value of s is called the **spin quantum number**.

state space $\varepsilon_{\vec{r}}$ and the spin state space ε_s :

$$\varepsilon = \varepsilon_{\vec{r}} \otimes \varepsilon_s \tag{197}$$

Note that the spin angular momentum is an **intrinsic property of the particle**. It has nothing to do with motion of the particle in space. All angular momentum related to the spatial dependence of the wave function is included in \vec{L} . Therefore, spin angular momentum cannot be described by any function of the position variables. An important consequence of **Postulate 8** related to this is that all *orbital observables* commute with all *spin observables*, as they act on different state spaces. Spin operators act on the spin part and leave the spatial part unchanged, and vice versa. In other words, the spin of a particle and its orbital motion do not affect each other.

3.4.2 Spin 1/2

In the case of a particle of spin s=1/2, the spin state ε_s is two-dimensional, as we have two possible values of $m_s=\pm 1/2$. In this space, we will consider the orthonormal basis of eigenstates common to \vec{S}^2 and S_z :

- For s=1/2 and $m_s=1/2$, we have $|1/2,1/2\rangle=|\uparrow\rangle=|+\rangle$
- For s=1/2 and $m_s=-1/2$, we have $|1/2,-1/2\rangle=|\downarrow\rangle=|-\rangle$

With this basis, we can write the eigenvaue equations from **Equation ??** as:

$$\vec{S}^{2} |\pm\rangle = \frac{3}{4}\hbar^{2} |\pm\rangle, \qquad S_{z} |\pm\rangle = \pm \frac{1}{2}\hbar |\pm\rangle$$
 (198)

Matrix representation

Note from **Equation 198** that *all* kets of the basis of ε_s are eigenvectors of \vec{S}^2 with the same eigenvalue $3\hbar^2/4$. This causes \vec{S}^2 to be proportional to the unity operator $\mathbb{1}$ of ε_s :

$$\vec{S}^{\,2} = \frac{3}{4}\hbar^2 \mathbb{1} \tag{199}$$

We can also see this by taking the matrix elements of $\vec{S}^{\,2}$ explicitly:

$$\vec{S}^{2} = \begin{pmatrix} \langle +|\vec{S}^{2}|+\rangle & \langle +|\vec{S}^{2}|-\rangle \\ \langle -|\vec{S}^{2}|+\rangle & \langle -|\vec{S}^{2}|-\rangle \end{pmatrix} = \begin{pmatrix} \frac{3}{4}\hbar^{2}\langle +|+\rangle & \frac{3}{4}\hbar^{2}\langle +|-\rangle \\ \frac{3}{4}\hbar^{2}\langle -|+\rangle & \frac{3}{4}\hbar^{2}\langle -|-\rangle \end{pmatrix} = \frac{3}{4}\hbar^{2}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{3}{4}\hbar^{2}\mathbb{1}$$
(200)

The matrix of S_z can also be obtained easily from the eigenvalue equation:

$$S_z = \begin{pmatrix} \langle +|S_z|+\rangle & \langle +|S_z|-\rangle \\ \langle -|S_z|+\rangle & \langle -|S_z|-\rangle \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\hbar\langle +|+\rangle & -\frac{1}{2}\hbar\langle +|-\rangle \\ \frac{1}{2}\hbar\langle -|+\rangle & -\frac{1}{2}\hbar\langle -|-\rangle \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(201)

From **Equation 194**, we can obtain:

$$S_{+} |+\rangle = 0$$

$$S_{+} |-\rangle = \hbar \sqrt{\frac{1}{2} \left(\frac{1}{2} + 1\right) - \left(-\frac{1}{2}\right) \left(\left(-\frac{1}{2}\right) + 1\right)} |+\rangle = \hbar |+\rangle$$

$$S_{-} |+\rangle = \hbar \sqrt{\frac{1}{2} \left(\frac{1}{2} + 1\right) - \frac{1}{2} \left(\frac{1}{2} - 1\right)} |-\rangle = \hbar |-\rangle$$

$$S_{-} |-\rangle = 0$$

$$(202)$$

Therefore, the matrices of S_{+} and S_{-} are:

$$S_{+} = \begin{pmatrix} \langle +|S_{+}|+\rangle & \langle +|S_{+}|-\rangle \\ \langle -|S_{+}|+\rangle & \langle -|S_{+}|-\rangle \end{pmatrix} = \begin{pmatrix} 0 & \hbar \langle +|+\rangle \\ 0 & \hbar \langle -|+\rangle \end{pmatrix} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
(203)

$$S_{-} = \begin{pmatrix} \langle +|S_{-}|+\rangle & \langle +|S_{-}|-\rangle \\ \langle -|S_{-}|+\rangle & \langle -|S_{-}|-\rangle \end{pmatrix} = \begin{pmatrix} \hbar \langle +|-\rangle & 0 \\ \hbar \langle -|-\rangle & 0 \end{pmatrix} = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
(204)

And since $S_x = \frac{1}{2}(S_+ + S_-)$ and $S_y = \frac{1}{2i}(S_+ - S_-)$, we can obtain the matrices of S_x and S_y :

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \qquad S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}$$
 (205)

We can express the joint eigenvectors of $\vec{S}^{\,2}$ and S_z in terms of two-element column matrices known as spinnors:

$$|+\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, \qquad |-\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$
 (206)

Any vector in the state space ε_s can be written as a linear combination of the basis vectors $|\pm\rangle$:

$$|\psi\rangle = c_{+} |+\rangle + c_{-} |-\rangle \tag{207}$$

where c_{\pm} are complex numbers. We can also write $|\psi\rangle$ in the form:

$$|\psi\rangle = \begin{pmatrix} c_+ \\ c_- \end{pmatrix} \tag{208}$$

Pauli matrices

When s = 1/2, it is convenient to introduce the **Pauli matrices**, σ_x , σ_y and σ_z , which are defined as:

$$\vec{S} = \frac{\hbar}{2}\vec{\sigma} \tag{209}$$

So that:

$$\frac{\hbar}{2}\sqrt{S_x^2 + S_y^2 + S_z^2} = \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2} \longrightarrow \sqrt{\left(\frac{\hbar}{2}S_x\right)^2 + \left(\frac{\hbar}{2}S_y\right)^2 + \left(\frac{\hbar}{2}S_z\right)^2} = \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2} \longrightarrow (210)$$

Finally:

$$\sigma_x = \frac{\hbar}{2} S_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_y = \frac{\hbar}{2} S_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_z = \frac{\hbar}{2} S_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(211)

3.4.3 Spin-orbit coupling

Spin-orbit coupling in hydrogen is an effect that arises from the interaction between the electron's spin magnetic moment, $\vec{\mu}_S = -e\vec{S}/(m_e c)$, and the proton's orbital magnetic field \vec{B} .

The origin of the magnetic field experienced by the electron moving at \vec{v} in a circular orbit around the proton can be explained classically as follows. The electron, within its rest frame, sees the proton moving at $-\vec{v}$ in a circular orbit around it (**Figure 3**). From classical electrodynamics, the magnetic field experienced by the electron is:

$$\vec{B} = -\frac{1}{c}\vec{v} \times \vec{E} = -\frac{1}{m_e c}\vec{p} \times \vec{E} = \frac{1}{m_e c}\vec{E} \times \vec{p}$$
(212)

Figure 3: An electron moving in a circular orbit as seen by the nucleus (left) and the same motion as seen by the electron within its rest frame; the electron sees the nucleus moving in a circular orbit around it (right).

where $\vec{p} = m_e \vec{v}$ is the linear momentum of the electron and \vec{E} is the electric field generated by the proton, which is given by:

$$\vec{E}(\vec{r}) = \frac{e}{r^2} \frac{\vec{r}}{r} = \frac{e\vec{r}}{r^3} \tag{213}$$

For a more general problem of hydrogen-like atoms (those with one valence electron outside a closed shell) were an electron moves in the (central) Coulomb potential of a nucleus $V(r) = -e\phi(r)$, the electric field is given by:

$$\vec{E}(\vec{r}) = -\nabla\phi(r) = \frac{1}{e}\vec{\nabla}V(r) = \frac{1}{e}\frac{\vec{r}}{r}\frac{dV}{dr}$$
(214)

So the magnetic field of the nucleus calculated in the rest frame of the electron is obtained by inserting Equation 214 into Equation 212:

$$\vec{B} = \frac{1}{m_e c} \vec{E} \times \vec{p} = \frac{1}{e m_e c} \frac{1}{r} \frac{dV}{dr} \vec{r} \times \vec{p} = \frac{1}{e m_e c} \frac{1}{r} \frac{dV}{dr} \vec{L}$$
(215)

where $\vec{L} = \vec{r} \times \vec{p}$ is the orbital angular momentum of the electron. The interaction of the electron's spin dipole moment $\vec{\mu}_S$ with the orbital magnetic field \vec{B} of the nucleus gives rise to the following interaction energy:

$$W_{SO} = -\vec{\mu}_S \cdot \vec{B} = \frac{e}{m_e c} \vec{S} \cdot \vec{B} = \frac{1}{m_e^2 c^2} \frac{1}{r} \frac{dV}{dr} \vec{S} \cdot \vec{L}$$
 (216)

This energy turns out to be twice the observed spin-orbit interaction energy. This is due to the fact that W_{SO} was calculated within the rest frame of the electron. This frame is not inertial, for the electron accelerates while moving in a circular orbit around the nucleus. For a correct treatment, we must transform to the rest frame of the nucleus (i.e., the lab frame). This transformation, which involves a relativistic transformation of velocities, gives rise to an additional motion resulting from the precession of $\vec{\mu}_S$; this is known as the *Thomas precession*. The precession of the electron's spin moment is a relativistic effect which occurs even in the absence of an external magnetic field. The transformation back to the rest frame of the nucleus leads to a reduction of the interaction energy computed before by a factor of 2:

$$W_{SO} = \frac{1}{2m_e^2 c^2} \frac{1}{r} \frac{dV}{dr} \vec{S} \cdot \vec{L}$$
 (217)

In order to obtain the quantum mechanical expression from this classically obtained result, one need only replace the classical quantities \vec{S} and \vec{L} by their quantum mechanical operators.

For a hydrogen's electron, $V(r) = -e^2/r$ and $dV/dr = e^2/r^2$, so that:

$$W_{SO} = \frac{e^2}{2m_e^2 c^2} \frac{1}{r^3} \vec{S} \cdot \vec{L}$$
 (218)

If we consider only this energy, we can find the energy eigenvalues by taking $\vec{S} \cdot \vec{L} = \frac{1}{2}(\vec{J}^2 - \vec{L}^2 - \vec{S}^2)$, which comes from expanding $\vec{J}^2 = (\vec{L} + \vec{S})^2$:

$$W_{SO} = \frac{e^2}{4m_e^2c^2} \frac{1}{r^3} (\vec{J}^2 - \vec{L}^2 - \vec{S}^2) \longrightarrow E_{SO} = \frac{\hbar^2}{4m_e^2c^2} \frac{e^2}{r^3} (j(j+1) - l(l+1) - s(s+1))$$
 (219)

The scales of energies associated with the spin-orbit coupling are about two order of magnitude smaller than the energies associated with the discrete atomic levels, so we can consider this energy W_{SO} as a perturbation to the Hamiltonian of the hydrogen atom and use stationary perturbation theory to calculate corrections due to the spin-orbit coupling:

$$H = H_0 + H_{SO} = \frac{\vec{p}^2}{2m_e} - \frac{e^2}{r} + \frac{e^2}{2m_e^2c^2} \frac{1}{r^3} \vec{S} \cdot \vec{L}$$
 (220)

where H_0 is the unperturbed Hamiltonian and H_{SO} is the spin-orbit coupling perturbation.

4 Appendix

4.1 Linear vector space

The definition of linear vector space is as follows:

Definition 21. A linear vector space consists of two sets of elements and two algebraic rules:

- A set of vectors ψ , ϕ , χ , ... and a set of scalars a, b, c,
- A rule for adding vectors and a rule for multiplying vectors by scalars.

a) Addition:

- If ψ and ϕ are vectors (elements) of a space, their sum, $\psi + \phi$, is also a vector of the same space.
- Commutativity: $\psi + \phi = \phi + \psi$.
- Associativity: $(\psi + \phi) + \chi = \psi + (\phi + \chi)$.
- Existence of a zero or neutral vector: for each vector ψ , there must exist a zero vector O such that: $\psi + O = O + \psi = \psi$.
- Existence of a symmetric or inverse vector: each vector ψ must have a symmetric vector $(-\psi)$ such that $\psi + (-\psi) = (-\psi) + \psi = O$.
- b) **Multiplication:** The multiplication of vectors by scalars (scalars can be real or complex numbers) has these properties:
 - The product of a scalar with a vector gives another vector. In general, if ψ and ϕ are two vectors of the space, any linear combination $a\psi + b\phi$ is also a vector of the space, a and b being scalars.
 - Distributivity with respect to addition: a $(\psi + \phi) = a\psi + a\phi$, and $(a + b)\psi = a\psi + b\psi$.
 - Associativity with respect to multiplication of scalars: $a(b\psi) = (ab)\psi$
 - For each element ψ there must exist a unitary scalar I and a zero scalar "0" such that $I\psi = \psi I = \psi$ and $\psi 0 = 0 \psi = O$. (2.3)

4.2 Linear functionals

In order to understand the mathematical background of the dual space, it is interesting to know the definitions of **linear maps** and **linear functionals**. We already defined linear operators in **Definition 3**. As for linear functionals:

Definition 22. A linear functional is a linear map L that associates a function with a scalar value, which may be real or complex.

An example of a linear functional could be the linear map $L_x : \mathbb{R}^2 \to \mathbb{R}$ that returns the x-coordinate of the vector it is given. For example:

$$L_x \begin{bmatrix} a \\ b \end{bmatrix} = a \tag{221}$$

In this case, L_x takes us from \mathbb{R}^2 to \mathbb{R}^1 , so its matrix will be 1 by 2 in dimension:

$$L_x = \begin{bmatrix} 1 & 0 \end{bmatrix} \tag{222}$$

so that:

$$L_x \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = a \tag{223}$$

Taking a step back, we know that all linear functionals in \mathbb{R}^2 take us from \mathbb{R}^2 to \mathbb{R}^1 . Therefore, by definition, all linear functionals in \mathbb{R}^2 are represented by 1×2 matrices. In other words, the set of all linear functionals in \mathbb{R}^2 consists of the set of all row matrices. More generally, the set of all linear functionals in \mathbb{R}^n consists of the set of all $1 \times n$ row matrices. In fact, the set of all row matrices, much like column matrices, form their own vector space, which is known as the dual space²⁸.

4.3 Matrix element of an operator

The matrix element of an operator A is:

Definition 23. The matrix element of an operator A expressed in the basis $B = \{u_1, u_2, ...\}$ is defined

$$A_{ij} = \langle u_i | A | u_j \rangle \tag{224}$$

where u_i and u_j are the *i*-th and *j*-th vectors of the basis, respectively.

4.4 Proof of the Closure relation

The closure relation states that, for a set of vectors $\{|A_1\rangle, |A_2\rangle, ...\}$ to form a basis of a Hilbert space \mathcal{H} , they must fulfil the following relation:

If $B = \{\psi_1, \psi_2, ...\}$ is a basis for a Hilbert space \mathcal{H} , we can write any vector $|\psi\rangle \in \mathcal{H}$ as:

$$|\psi\rangle = \sum_{i} c_i |A_i\rangle \tag{225}$$

Where the coefficients are $c_i = \langle A_i \rangle \psi^{29}$. If we substitute this expression:

$$|\psi\rangle = \sum_{i} \langle A_i \rangle \, \psi \, |A_i \rangle \tag{226}$$

As the coefficient is a complex number, we can move it to the end of the expression and separate the inner product:

$$|\psi\rangle = \sum_{i} |A_{i}\rangle \langle A_{i}| |\psi\rangle \tag{227}$$

As $|\psi\rangle$ is the same for every element of the sum, we can pull it out of the sum:

$$|\psi\rangle = \left(\sum_{i} |A_{i}\rangle \langle A_{i}|\right) |\psi\rangle \tag{228}$$

And it is now easy to see that this relation will hold if and only if the closure relation holds:

$$\sum_{i} |A_i\rangle \langle A_i| = 1 \tag{229}$$

The inverse argument is easy to follow.

²⁸See **Section 1.2** for more on the dual space ²⁹ *Proof:* As A_i form an orthonormal basis: $\langle A_i \rangle \psi = \langle A_i | \sum_j c_i | A_j \rangle = \sum_j c_i \langle A_i \rangle A_j = \sum_j c_i \delta_{ij} = c_i$

4.5 Uncertainty relation between two operators

An interesting application of commutator algebra is to derive a general relation giving the uncertainty product of two Hermitian operators, A and B. Let $\langle A \rangle$ and $\langle B \rangle$ be the expected values of the operators A and B, respectively, with respect to the normalized state vector $|\psi\rangle$. Introducing the operators ΔA and ΔB as:

$$\Delta A = A - \langle A \rangle, \qquad \Delta B = B - \langle B \rangle, \tag{230}$$

we have $(\Delta A)^2 = A^2 - 2A \langle A \rangle + \langle A \rangle^2$ and $(\Delta B)^2 = B^2 - 2B \langle B \rangle + \langle B \rangle^2$, and hence:

$$\left\langle \psi \left| (\Delta A)^2 \right| \psi \right\rangle = \left\langle (\Delta A)^2 \right\rangle = \left\langle A^2 - 2A \left\langle A \right\rangle + \left\langle A \right\rangle^2 \right\rangle = \left\langle A^2 \right\rangle - 2 \left\langle A \right\rangle \left\langle A \right\rangle + \left\langle A \right\rangle^2 = \left\langle A^2 \right\rangle - \left\langle A \right\rangle^2 \tag{231}$$

$$\left\langle \psi \left| (\Delta B)^2 \right| \psi \right\rangle = \left\langle (\Delta B)^2 \right\rangle = \left\langle B^2 - 2B \left\langle B \right\rangle + \left\langle B \right\rangle^2 \right\rangle = \left\langle B^2 \right\rangle - 2 \left\langle B \right\rangle \left\langle B \right\rangle + \left\langle B \right\rangle^2 = \left\langle B^2 \right\rangle - \left\langle B \right\rangle^2 \quad (232)$$

Then, we can write the uncertainties as:

$$\Delta A = \sqrt{\langle (\Delta A)^2 \rangle} = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}, \qquad \Delta B = \sqrt{\langle (\Delta B)^2 \rangle} = \sqrt{\langle B^2 \rangle - \langle B \rangle^2}$$
 (233)

Writing the action of the operators in **Equation 230** on the state vector $|\psi\rangle$, we have:

$$|\chi\rangle = \Delta A |\psi\rangle = (A - \langle A \rangle) |\psi\rangle, \qquad |\phi\rangle = \Delta B |\psi\rangle = (B - \langle B \rangle) |\psi\rangle$$
 (234)

The Cauchy-Schwarz inequality³⁰ gives us:

$$|\langle \chi | \phi \rangle|^2 \le \langle \chi | \chi \rangle \langle \phi | \phi \rangle \tag{235}$$

Since A and B are Hermitian, ΔA and ΔB must also be Hermitian, so that: $(\Delta A)^{\dagger} = \Delta A$ and $(\Delta B)^{\dagger} = \Delta B$:

$$\langle \chi | \chi \rangle = \left\langle \psi \, \middle| \, (\Delta A)^{\dagger} (\Delta A) \, \middle| \, \psi \right\rangle = \left\langle \psi \, \middle| \, (\Delta A)^2 \, \middle| \, \psi \right\rangle = \left\langle (\Delta A)^2 \right\rangle \tag{236}$$

$$\langle \phi | \phi \rangle = \left\langle \psi \, \middle| \, (\Delta B)^{\dagger} (\Delta B) \, \middle| \, \psi \right\rangle = \left\langle \psi \, \middle| \, (\Delta B)^2 \, \middle| \, \psi \right\rangle = \left\langle (\Delta B)^2 \right\rangle \tag{237}$$

$$\langle \chi | \phi \rangle = \left\langle \psi \, \middle| \, (\Delta A)^{\dagger} (\Delta B) \, \middle| \, \psi \right\rangle = \left\langle \psi \, \middle| \, \Delta A \Delta B \, \middle| \, \psi \right\rangle = \left\langle \Delta A \Delta B \right\rangle \tag{238}$$

From this, we obtain a new expression for the Cauchy-Schwarz inequality:

$$\left|\left\langle \Delta A \Delta B\right\rangle\right|^2 \le \left\langle (\Delta A)^2 \right\rangle \left\langle (\Delta B)^2 \right\rangle \tag{239}$$

We can write the $\Delta A \Delta B$ terms of this equation as:

$$\Delta A \Delta B = 2 \cdot \frac{1}{2} \Delta A \Delta B + \frac{1}{2} \Delta B \Delta A - \frac{1}{2} \Delta B \Delta A = \frac{1}{2} [\Delta A, \Delta B] + \frac{1}{2} {\{\Delta A, \Delta B\}}$$
 (240)

Since $[\Delta A, \Delta B] = [A, B]^{31}$:

$$\Delta A \Delta B = \frac{1}{2} [A, B] + \frac{1}{2} \{ \Delta A, \Delta B \} \tag{241}$$

Since [A,B] is anti-Hermitian³² and $[\Delta A, \Delta B]$ is Hermitian³³; and since the expectation value of a Hermitian operator is real³⁴ and the expectation value of an anti-Hermitian operator is imaginary³⁵, $\langle \Delta A \Delta B \rangle$ becomes equal to a real part $\frac{1}{2} \langle \{\Delta A, \Delta B\} \rangle$ plus an imaginary part $\frac{1}{2} \langle [A,B] \rangle$. Then:

$$|\langle \Delta A \Delta B \rangle|^2 = \frac{1}{4} |\langle [A, B] \rangle|^2 + \frac{1}{4} |\langle \{\Delta A, \Delta B\} \rangle|^2 \ge \frac{1}{4} |\langle [A, B] \rangle|^2$$
(242)

 $^{^{30}\}mathrm{See}$ for more on this inequality in this article.

³¹Check this

³² Proof: As A and B are Hermitian, then $([A, B])^{\dagger} = (AB - BA)^{\dagger} = (AB)^{\dagger} - (BA)^{\dagger} = B^{\dagger}A^{\dagger} - A^{\dagger}B^{\dagger} = BA - AB = -[A, B]$. Then, [A, B] is anti-Hermitian.

³³ Proof: As A and B are Hermitian, then $([\Delta A, \Delta B])^{\dagger} = ((A - \langle A \rangle)(B - \langle B \rangle) - (B - \langle B \rangle)(A - \langle A \rangle))^{\dagger} = ((A - \langle A \rangle)(B - \langle B \rangle))^{\dagger} - ((B - \langle B \rangle)(A - \langle A \rangle))^{\dagger} = (B - \langle B \rangle)^{\dagger}(A - \langle A \rangle)^{\dagger}(B - \langle A \rangle)^{\dagger}(B - \langle B \rangle)^{\dagger} = (B - \langle B \rangle)(A - \langle A \rangle) - (A - \langle A \rangle)(B - \langle B \rangle) = [\Delta A, \Delta B]$. Then, $[\Delta A, \Delta B]$ is Hermitian.

³⁴See **Section 4.6** for proof.

³⁵See **Section 4.7** for proof.

Plugging this into Equation 239, we obtain:

$$\frac{1}{4} \left| \langle [A, B] \rangle \right|^2 \le \left\langle (\Delta A)^2 \right\rangle \left\langle (\Delta B)^2 \right\rangle \tag{243}$$

Now, taking the square root, we obtain the uncertainty relation:

$$\Delta A \Delta B \ge \frac{1}{2} \left| \langle [A, B] \rangle \right|^2 \tag{244}$$

Definition 24. The uncertainty relation between two Hermitian operators A and B is defined as:

$$\Delta A \Delta B \ge \frac{1}{2} \left| \langle [A, B] \rangle \right|^2 \tag{245}$$

4.6 Expected value of a Hermitian operator

From **Equation 22**, we know that the expected value of an operator A in a state $|\phi\rangle$ is $\langle\phi|A|\phi\rangle = \sum_i |c_i|^2 \lambda_i$, where c_i are the components of the vector $|\phi\rangle$ in the basis of eigenvectors ψ_i of A, and λ_i are the corresponding eigenvalues. If A is Hermitian $(A^{\dagger} = A)$:

$$\langle A\psi_i|\psi_i\rangle = \lambda^*||\psi_i||^2 \tag{246}$$

$$\langle \psi_i | A^{\dagger} \psi_i \rangle = \langle \psi_i | A \psi_i \rangle = \lambda ||\psi_i||^2 \tag{247}$$

As $\langle A\psi_i|\psi_i\rangle = \langle \psi_i|A^{\dagger}\psi_i\rangle$, this means that $\lambda^* = \lambda$, so λ must be pure real (or zero). Therefore, the expected value of A must also be pure real.

4.7 Expected value of an anti-Hermitian operator

From **Equation 22**, we know that the expected value of an operator A in a state $|\phi\rangle$ is $\langle \phi|A|\phi\rangle = \sum_i |c_i|^2 \lambda_i$, where c_i are the components of the vector $|\phi\rangle$ in the basis of eigenvectors ψ_i of A, and λ_i are the corresponding eigenvalues. If A is anti-Hermitian $(A^{\dagger} = -A)$:

$$\langle A\psi_i|\psi_i\rangle = \lambda^*||\psi_i||^2 \tag{248}$$

$$\langle \psi_i | A^{\dagger} \psi_i \rangle = -\langle \psi_i | A \psi_i \rangle = -\lambda ||\psi_i||^2 \tag{249}$$

As $\langle A\psi_i|\psi_i\rangle = \langle \psi_i|A^{\dagger}\psi_i\rangle$, this means that $\lambda^* = -\lambda$, so λ must be pure imaginary (or zero). Therefore, the expected value of A must also be pure imaginary.

4.8 Eigenvalues of a Hermitian operator are real and eigenvectors are orthogonal

For a Hermitian operator, all of its eigenvalues are real and the eigenvectors corresponding to different eigenvalues are orthogonal. *Proof:*

Note that:

$$A|\psi_n\rangle = a_n|\psi_n\rangle \to \langle \psi_m|A|\psi_n\rangle = a_n\langle \psi_m|\psi_n\rangle \tag{250}$$

and:

$$\langle \psi_m | A^{\dagger} = (A | \psi_m \rangle)^{\dagger} = (a_m | \psi_m \rangle)^{\dagger} = a_m^* \langle \psi_m | \rightarrow \langle \psi_m | A^{\dagger} | \psi_n \rangle = a_m^* \langle \psi_m | \psi_n \rangle$$
 (251)

Subtracting **Equation 251** from **Equation 250** and using the fact that A is Hermitian $(A^{\dagger} = A)$:

$$\langle \psi_m | A | \psi_n \rangle - \langle \psi_m | A^{\dagger} | \psi_n \rangle = (a_n - a_m) \langle \psi_m | \psi_n \rangle = (a_n - a_m^*) \langle \psi_m | \psi_n \rangle = 0$$
 (252)

From this:

- When m = n, we obtain $a_n = a_n^*$, so a_n is real.
- Since, in general, $a_n a_m^* \neq 0$ when $n \neq m$, we have that $\langle \psi_m | \psi_n \rangle = 0$, so the eigenvectors are orthogonal.

4.9 Common eigenvector basis of two commuting operators

This section gives the proof of **Theorem 4**:

Since A has no degenerate eigenvalues³⁶, to each eigenvalue of A there corresponds only one eigenvector. We can write the eigenvalue equation as:

$$A \left| \phi_n \right\rangle = a_n \left| \phi_n \right\rangle \tag{253}$$

And since A commutes with B:

$$AB |\phi_n\rangle = BA |\phi_n\rangle = Ba_n |\phi_n\rangle = a_n B |\phi_n\rangle \to A(B |\phi_n\rangle) = a_n (B |\phi_n\rangle)$$
 (254)

This means that $B | \phi_n \rangle$ is an eigenvector of A with eigenvalue a_n . But since A has no degenerate eigenvalues, $B | \phi_n \rangle$ must be proportional to $| \phi_n \rangle$, so that $B | \phi_n \rangle = b_n | \phi_n \rangle$. Therefore, $| \phi_n \rangle$ is also an eigenvector of B, with eigenvalue b_n .

Since each eigenvector of A is also an eigenvector of B (and vice versa), both of these operators must have a common basis. This basis is unique; it is made of the eigenvectors of A, which are the same as the eigenvectors of B (we say they are joint eigenvectors of A and B). This theorem also holds for any number of mutually commuting Hermitian operators.

 $^{^{36}}$ Degenerate eigenvalues are those that correspond to more than one eigenvector.