IAL-003 – Algoritmos e Programação de Computadores

Prof. Me. Anderson Vanin

INTRODUÇÃO

Um algoritmo pode ser representado em diferentes formas:

- Linguagem natural;
- Fluxograma;
- Pseudocódigo;

ALGORITMOS

Um exemplo de algoritmos são receitas culinárias

PARTES DE UM ALGORITMO

- Normalmente, um algoritmo é constituído por:
 - Entrada de dados;
 - Processamento de dados;
 - Saída de dados.
- Por exemplo: Um algoritmo que, a partir de um número fornecido, calcule o dobro e apresente o resultado.

PARTES DE UM ALGORITMO

- O processamento é parte mais importante de um algoritmo
 - É ele quem define quais operações serão realizadas com os dados de entrada, e também como será apresentada a saída
- Em programas de computador, é comum...
 - ... os dados entrada serem valores digitados pelo usuário
 - ... e os dados de saída serem valores apresentados na tela (ou impressos na tela)

FLUXOGRAMA

- Famosa frase:
 - ENTENDEU?? OU QUER QUE EU DESENHE??
- Conceito: é um diagrama que representa o passo a passo de nosso algoritmo.
- Por se tratar de uma representação gráfica, possui um conjunto de símbolos padronizados.
- É representado pelo diagrama de blocos.

DIAGRAMA DE BLOCOS

- É uma das formas de representação gráfica de algoritmos utilizando fluxograma.
- É uma forma padronizada e eficaz de representar os passos lógicos de um determinado processamento.
- Facilita o entendimento das ideias de uma pessoa ou equipe. Por esse motivo é muito popular.
- Os algoritmos são representados por um conjunto de figuras geométricas, com significado definido.

DIAGRAMA DE BLOCOS

SIGNIFICADO DAS FIGURAS

Símbolo	Função
	Indica o início e o fim de um processamento
	Indica entrada de dados
	Indica processamento
	Indica uma decisão a ser tomada (desvios)
	Indica saída de dados

- De forma semelhante a representação utilizando Linguagem Natural, também é necessário identificar os elementos do algoritmo na representação por fluxograma.
- 1. Quais os dados de entrada?
- 2. Quais os processamentos?
- 3. Quais as saídas ??

Utilizando o exemplo da média de um aluno.

1. Quais os dados de entrada?

Nota 1 e Nota 2.

2. Quais os processamentos ?

Soma as duas notas e divide por 2.

• 3. Quais as saídas ??

A média das notas.

Já conhecendo os elementos do algoritmo, a representação deste utilizando linguagem natural seria:

- 1. Informar Nota 1;
- 2. Informar Nota 2;
- 3. A média final é a soma da Nota 1 e Nota 2 dividido por 2;
- 4. Mostrar a média final.

- Conhecemos todos os passos do algoritmo.
- Podemos iniciar o processo de construção do fluxograma.
- É necessário traduzir o algoritmo da linguagem natural para forma de fluxograma.

- Todas estas instâncias são conectadas por linhas direcionadas (com setas)
- Estas linhas, juntamente com as marcações de inicio e fim, indicam por onde ocorrerá o fluxo
- Observe ao lado o fluxograma de um algoritmo simples de soma, que mostra o resultado ao final

- Neste fluxograma estamos atribuindo "estaticamente" os valores 10 e 20 a x e y
- Podemos utilizar a instância de leitura de dados para deixar o algoritmo um pouco mais dinâmico, sendo dependente da entrada do usuário

 Repare também que a impressão de sequências de caracteres é dada por aspas duplas (")...

• ... e a impressão de variáveis, sem as aspas

"Resultado:"

 Para facilitar um pouco mais a notação de escrita, podemos separar as impressões por vírgula (,), da seguinte forma:

 Programa para impressão de nome completo:

EXERCÍCIO

- 1. Crie um fluxograma que calcule o dobro de um número digitado pelo usuário
- 2. Crie um fluxograma que receba 3 números digitados pelo usuário, e imprima na tela o produto deles
- 3. Crie um fluxograma que produza a saída:

Digite o seu peso (em kg): 91

Digite sua altura (em metros): 1.86

Seu imc é 26.3

- O texto negritado significa a entrada do usuário
- A fórmula do IMC é peso divido pelo quadrado da altura
 - peso/(altura*altura)

VARIÁVEIS E CONSTANTES

- As variáveis irão representar valores que serão utilizados durante o algoritmo.
- Uma variável precisa de um nome para ser acessada/modificada ao longo do tempo.

VARIÁVEIS E CONSTANTES

Num programa de computador temos 2 estruturas básicas:

- Variáveis e Constantes: espaços reservados na memória do computador para armazenar elementos de um certo conjunto ou tipo de dados.
 - Variáveis: durante a execução do programa, o conteúdo da variável pode mudar;
 - Constantes: o valor de uma constante n\u00e3o muda durante a execu\u00e7\u00e3o do programa.
- **2. Expressões**: durante a execução, combinam os valores armazenados nas variáveis e constantes para calcular novos valores.

TIPOS DE DADOS

Tipos de dados armazenados nas variáveis e constantes

numérico:

- \rightarrow inteiro: ..., -4, -3, -2, -1, 0, 1, 2, 3, 4, ...
- \rightarrow real: . . . , -192.291, . . . , 192.291, . . .

• literal:

- → caractere: definido por um caractere "a", "b", etc.
- → string: junção de caracteres, "bola", "oi", etc.
- logico: informação só pode ser verdadeiro ou falso.

NOMES VÁLIDOS PARA VARIÁVEIS

Características dos nomes válidos para variáveis e constantes

- Podem ser usados números, letras minúsculas e maiúsculas e o caractere underscore (_).
- Deve começar por uma letra, maiúscula ou minúscula, ou pelo caractere underscore (_).
- Não podem ser usados símbolos como \$, #, !, ?, &, +, -.
- Não podem ser usados espaços em branco.
- Não podem ser usadas palavras reservadas da linguagem usada: algoritmo, leia, etc.

Regra de ouro: Use nomes que façam algum sentido!

OPERADORES

Meios pelos quais se realizam operações sobre as variáveis e constantes, tais como atribuição de valores, incremento, decremento, multiplicação, comparação, etc.

- 1. Operadores de atribuição.
- 2. Operadores aritméticos.
- 3. Operadores relacionais.
- 4. Operadores lógicos.

OPERADORES DE ATRIBUIÇÃO

Operadores de atribuição: usados para atribuir valores ou operações às variáveis ou constantes.

Pseudocódigo

$$x \leftarrow 10$$
 $x \leftarrow x + 1$
 $a \leftarrow \text{"aula"}$
 $\text{overlap} \leftarrow \text{falso}$

OPERADORES ARITMÉTICOS

Operadores aritméticos: utilizados para operações com valores numéricos entre variáveis e constantes.

Básicos

Operador	Símbolo	Exemplo
Soma	+	<i>a</i> ← b+c
Subtração	_	<i>a</i> ← b-c
Produto	*	<i>a</i> ← b*c
Divisão	/	a← b/c

Ordem de prioridade

OPERADORES ARITMÉTICOS – PRÉ DEFINIDOS

Operadores aritméticos: utilizados para operações com valores numéricos entre variáveis e constantes..

Operador	Símbolo	Exemplo
inteiro mais próximo do número real x	arredonda(x)	$i \leftarrow arredonda(3.6)$
parte inteira do número real x	parte_inteira(x)	$i \leftarrow parte_inteira(0.8)$
resto da divisão do número x pelo número y	resto(x,y)	$r \leftarrow resto(8,3)$
seno do ângulo x (expresso em radianos)	seno(x)	$ang \leftarrow seno(3.1415)$
cosseno do ângulo x (expresso em radianos)	cosseno(x)	$ang \leftarrow cosseno(3.1415)$
número x elevado ao número y (potência)	potencia(x,y)	$p \leftarrow potencia(5,2)$
raiz quadrada do número x	raiz_quadrada(x)	$r2 \leftarrow raiz_quadrada(25)$
raiz n do número x	raiz_enesima(x)	$r3 \leftarrow raiz_enesima(3,27)$

OPERADORES RELACIONAIS

Operadores relacionais: usados na comparação entre valores ou expressões, retornando como resultado um valor lógico.

Operador	Símbolo	Exemplo
Igual a	=	a = b
Maior que	>	a > b
Menor que	<	<i>a</i> < <i>b</i>
Maior ou igual a	>=	<i>a</i> >= <i>b</i>
Menor ou igual a	<=	$a \le b$
Diferente de	<>	a <> b

OPERADORES LÓGICOS

Operadores lógicos: relacionam entre si valores ou expressões lógicas, resultando em valores lógicos.

Operador	Símbolo	Especificação
Conjunção		Uma expressão E só é verdadeira se
	e	todos os valores das variáveis ou
		expressões forem verdadeiras.
		Uma expressão OU só é falsa se
Disjunção	ou	todos os valores das variáveis ou
		expressões forem falsos.
Negação	nao	O operador NÃO inverte o valor da
		expressão ou variável, se verdadeira
		inverte para falsa e vice-versa.