Equations du second degré à une inconnue.

M.Hamraoui http://www.mathovore.fr

<u>Résolution des équations</u> du type $ax^2+bx+c=0$ (E)

avec a,b,c $\in R$ tel que $a \neq 0$.

1. Forme canonique:

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \left(\frac{b^{2} - 4ac}{4a^{2}} \right) \right]$$

2. Ensemble solution de (E):

Soit Δ le discriminant de cette équation.

1^{er} cas : si $\Delta > 0$.

L'équation (E) admet deux solutions distinctes.

$$S = \{x_1 = \frac{-b + \sqrt{\Delta}}{2a}; x_2 = \frac{-b - \sqrt{\Delta}}{2a}\}$$

$2^{\text{ème}}$ cas : si Δ = 0.

L'équation (E) admet une solution double dans $\,R\,$.

$$S = \{x_1 = \frac{-b}{2a}\}$$

$3^{\text{ème}}$ cas : si Δ < 0.

(E) n'admet pas de solution dans $\,R\,$

Mais elle admet deux solutions conjuguées dans $\, C \,$

$$S = \{z_1 = \frac{-b + i\sqrt{-\Delta}}{2a}; z_2 = \frac{-b - i\sqrt{-\Delta}}{2a}\}$$