Het schatten van populatieparameters

Sandra Van Aert

3 november 2011

III. Steekproefvariantie S^2

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$E(S^2) = \sigma^2$$

 \Rightarrow S^2 zuivere schatter

Bewijs $E(S^2) = \sigma^2$

$$E(S^{2}) = E\left\{\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right\}$$

$$= \frac{1}{n-1}E\left\{\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right\}$$

$$= \frac{1}{n-1}E\left\{\sum_{i=1}^{n}(X_{i}-\mu+\mu-\overline{X})^{2}\right\}$$

$$= \frac{1}{n-1}E\left\{\sum_{i=1}^{n}[(X_{i}-\mu)^{2}+2(X_{i}-\mu)(\mu-\overline{X})+(\mu-\overline{X})^{2}]\right\}$$

$$= \frac{1}{n-1}E\left\{\sum_{i=1}^{n}(X_{i}-\mu)^{2}+2(\mu-\overline{X})\sum_{i=1}^{n}(X_{i}-\mu)+n(\mu-\overline{X})^{2}\right\}$$

Vervolg bewijs

$$E(S^{2}) = \frac{1}{n-1} E\left\{ \sum_{i=1}^{n} (X_{i} - \mu)^{2} + 2(\mu - \overline{X})(n\overline{X} - n\mu) + n(\mu - \overline{X})^{2} \right\}$$

$$= \frac{1}{n-1} E\left\{ \sum_{i=1}^{n} (X_{i} - \mu)^{2} - 2n(\mu - \overline{X})^{2} + n(\mu - \overline{X})^{2} \right\}$$

$$= \frac{1}{n-1} E\left\{ \sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\mu - \overline{X})^{2} \right\}$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} E\{(X_{i} - \mu)^{2}\} - nE\{(\mu - \overline{X})^{2}\} \right]$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} \sigma^{2} - n\frac{\sigma^{2}}{n} \right) = \frac{1}{n-1} (n\sigma^{2} - \sigma^{2}) = \sigma^{2}$$

III. Steekproefvariantie S^2

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

- $E(S^2) = \sigma^2$
 - \Rightarrow S^2 zuivere schatter
- \rightarrow var(S^2)?
- \blacktriangleright kansdichtheid S^2 ?

χ^2 -verdeling

- spreek uit: chi-kwadraat verdeling
- familie van kansdichtheden met één parameter k

```
k = # vrijheidsgraden= degrees of freedom (d.f.)
```

- verwachte waarde = k
- variantie = 2k

χ^2 -verdeling: grafisch

Oorsprong χ^2 -verdeling

► $X_1, X_2, X_3, ..., X_k \sim N(0, 1)$ (onafh.) kwadrateren: $X_1^2, X_2^2, X_3^2, ..., X_k^2$ optellen

$$Y = \sum_{i=1}^{k} X_i^2 = X_1^2 + X_2^2 + \dots + X_k^2$$

 $\rightarrow \chi^2$ -verdeeld met *k* vrijheidsgraden

Kansdichtheid S²

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$(n-1)S^{2} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{(n-1)S^{2}}{\sigma^{2}} = \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{\sigma^{2}}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{(n-1)S^{2}}{\sigma^{2}} \approx \sum_{i=1}^{n} \frac{(X_{i} - \mu)^{2}}{\sigma^{2}}$$

Kansdichtheid S² (vervolg)

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2$$

$$N(0,1) \text{ indien } X_i \sim N(\mu, \sigma^2)$$

d.i. som van gekwadrateerde standaardnormaal verdeelde kansvariabelen

dus
$$\frac{(n-1)S^2}{\sigma^2}$$
 is χ^2 -verdeelde kansvariabele

met n-1 vrijheidsgraden of nog: χ^2_{n-1} -verdeeld

Variantie van S²

►
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

► bijgevolg $\operatorname{var}\left\{\frac{(n-1)S^2}{\sigma^2}\right\} = 2(n-1)$

en dus $\frac{(n-1)^2}{\sigma^4}\operatorname{var}(S^2) = 2(n-1)$

zodat $\operatorname{var}(S^2) = \frac{2(n-1)\sigma^4}{(n-1)^2} = \frac{2\sigma^4}{n-1}$

Intervalschatters

Sandra Van Aert

3 november 2011

Puntschatters

- voorbeeld: steekproefgemiddelde, steekproefproportie, steekproefvariantie
- probleem leveren slechts één enkele waarde op geven geen indicatie over betrouwbaarheid
- oplossingfintervalschattersbetrouwbaarheidsinterval
- ▶ doel: rekening houden met ∫ aantal waarnemingen) variantie

Betrouwbaarheidsinterval

- \blacktriangleright [L, U] $\rightarrow \theta$
- ▶ 95% betrouwbaarheidsinterval voor θ ?

$$P(L \le \theta \le U) = 95\%$$

algemeen:

 $(1-\alpha) \times 100\%$ betrouwbaarheidsinterval

$$P(L \le \theta \le U) = 1 - \alpha$$

betrouwbaarheidscoëfficiënt

$$1 - \alpha = 0.90$$
; 0.95 of 0.99 $\alpha = 10\%$; 5% of 1%

▶ bepaal *L* en *U* op basis van steekproefgegevens

Betrouwbaarheidsinterval voor μ

steekproefgemiddelde \overline{X}

$$X_{1}, X_{2}, ..., X_{n} \sim N(\mu, \sigma^{2}) \Rightarrow \overline{X} \sim N(\mu, \frac{\sigma^{2}}{n})$$

$$X_{1}, X_{2}, ..., X_{n} \sim \mathcal{N}(\mu, \sigma^{2})$$

$$\Rightarrow \overline{X} \stackrel{\text{BEN.}}{\sim} N(\mu, \frac{\sigma^{2}}{n}) \text{ voor } n \geq 30$$

Betrouwbaarheidsinterval voor μ

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Percentielen uit de N(0,1)-dichtheid

• $z_{\alpha/2}$ is getal waarvoor geldt: $P(Z \ge z_{\alpha/2}) = \alpha/2$

- ► symmetrie $N(0,1) \Rightarrow z_{1-\alpha/2} = -z_{\alpha/2}$ en $P(Z \le -z_{\alpha/2}) = \alpha/2$
- ► $-z_{\alpha/2}$ is $\alpha/2 \times 100$ ste en $z_{\alpha/2}$ is $(1 \alpha/2) \times 100$ ste percentiel \rightarrow kritieke waarden

Betrouwbaarheidsinterval voor μ

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

betrouwbaarheidsinterval (B.I.)

$$[\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

► breedte B.I.: $2z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

breedte neemt toe als $\begin{cases} \alpha \setminus \text{ afneemt} \\ \sigma \nearrow \text{ toeneemt} \\ n \setminus \text{ afneemt} \end{cases}$

Voorbeeld

- 5 melkstalen
- gemiddelde vriestemperatuur van de 5 stalen

$$\overline{x} = -0.535$$
 °C

- standaarddeviatie $\sigma = 0.008$ °C
- ▶ 99% betrouwbaarheidsinterval voor μ ($\Rightarrow \alpha = 0.01$)

$$[\overline{x} - z_{0.005} \frac{\sigma}{\sqrt{n}}; \overline{x} + z_{0.005} \frac{\sigma}{\sqrt{n}}]$$

$$[-0.535 - 2.5758 \frac{0.008}{\sqrt{5}}; -0.535 + 2.5758 \frac{0.008}{\sqrt{5}}]$$

$$[-0.5442; -0.5258]$$

Bepalen steekproefgrootte n

- ▶ kies betrouwbaarheid 1α
- ▶ kies maximale breedte van B.I. : 2*b*

► breedte =
$$2z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le 2b$$

$$\Rightarrow z_{\alpha/2} \frac{\sigma}{b} \le \sqrt{n}$$

$$\Rightarrow z_{\alpha/2}^2 \frac{\sigma^2}{h^2} \le n$$

Betekenis betrouwbaarheidsinterval

- ▶ 95% betrouwbaarheidsinterval
- veronderstel normaal verdeelde populatie
 - $\rightarrow \mu = 100$
 - $\rightarrow \sigma = 15$
- ▶ 1000 onderzoekers
 - → steekproef van 5 waarnemingen
 - \rightarrow betrouwbaarheidsinterval voor μ
 - $\rightarrow \sigma = 15$ gekend
- (ongeveer) 95% van de onderzoekers vinden een interval dat μ omvat
- zie http://www.kuleuven.ac.be/ucs/java/ (onder Tests / Confidence interval for mean)

Wat als σ onbekend?

• oplossing: σ schatten m.b.v. S

• maar:
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \times N(0, 1)$$

wel:
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

► t_{n-1} verdeling van Gosset of Student met n-1 vrijheidsgraden

t-verdeling: grafisch

kansdichtheid van twee *t*-verdelingen en van de standaardnormale verdeling

t-verdeling

$$Z \sim N(0,1) \qquad X \sim \chi_k^2$$

$$\downarrow \qquad \qquad \downarrow$$

$$t_k = \frac{Z}{\sqrt{\frac{X}{k}}}$$

Geval σ onbekend

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} = \frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\frac{S}{\sigma}}$$

$$= \frac{\overline{X} - \mu}{\sqrt{\frac{S^2}{\sigma^2}}}$$
teller is standaardnormaal
$$= \frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{(n-1)\sigma^2}}}$$

$$\Rightarrow \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$

Wat als σ onbekend?

• oplossing: σ schatten m.b.v. S

• maar:
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \times N(0, 1)$$

wel:
$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

- ► t_{n-1} verdeling van Gosset of Student met n-1 vrijheidsgraden
- betrouwbaarheidsinterval

$$[\overline{X} - t_{\alpha/2;n-1} \frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2;n-1} \frac{S}{\sqrt{n}}]$$

Voorbeeld

- ▶ 95% B.I. voor *µ*

$$\rightarrow 1 - \alpha = 0.95$$

$$\rightarrow \alpha = 0.05$$

$$\rightarrow \alpha/2 = 0.025$$

- $t_{\alpha/2;n-1} = t_{0.025;59} = 2.000995$
- ► R:"=qt(1- α /2; n-1)" voor $t_{\alpha/2,n-1}$ Matlab:"=tinv(1- α /2; n-1)" voor $t_{\alpha/2,n-1}$
- ► ondergrens: $53.77 2.000995 \frac{63.39}{\sqrt{60}} = 37.39$
- ▶ bovengrens:53.77 + 2.000995 $\frac{63.39}{\sqrt{60}}$ = 70.14

Betrouwbaarheidsinterval voor σ^2

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$P(\chi_{1-\alpha/2;n-1}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{\alpha/2;n-1}^2) = 1 - \alpha$$

$$\downarrow$$

$$P(\frac{(n-1)S^2}{\chi_{\alpha/2;n-1}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{1-\alpha/2;n-1}^2}) = 1 - \alpha$$

Betrouwbaarheidsinterval voor π

$$\hat{P} \sim N(\pi, \frac{\pi(1-\pi)}{n})$$

$$\hat{P} \sim N(\pi, \frac{\pi(1-\pi)}{n})$$

$$\hat{P} - \frac{\hat{P} - \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} \sim N(0, 1)$$

$$P(-z_{\alpha/2} \le \frac{\hat{P} - \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} \le z_{\alpha/2}) = 1 - \alpha$$

$$\Downarrow$$

$$P(\hat{P} - z_{\alpha/2} \sqrt{\frac{\pi(1-\pi)}{n}} \le \pi \le \hat{P} + z_{\alpha/2} \sqrt{\frac{\pi(1-\pi)}{n}}) = 1 - \alpha$$

Het toetsen van hypothesen

Sandra Van Aert

3 november 2011

Inleiding

- hypothese = uitspraak, bewering
- waarover?
 - → populatieparameter(s)
 - → kansverdeling
 - → kansdichtheid

Voorbeelden

▶ het gemiddelde vriespunt van geleverde melk is −0.545 °C

$$H_0: \mu = -0.545 \, ^{\circ}\text{C}$$
 $H_a: \mu > -0.545 \, ^{\circ}\text{C}$

 2 vulmachines leveren gemiddeld hetzelfde vulgewicht

$$H_0: \mu_1 = \mu_2$$
 $H_a: \mu_1 \neq \mu_2$

▶ 2 vulmachines hebben dezelfde variantie

$$H_0: \sigma_1^2 = \sigma_2^2 \qquad \qquad H_a: \sigma_1^2 \neq \sigma_2^2$$

Nulhypothese H_0 versus alternatieve hypothese H_a

- alternatieve hypothese
 - = onderzoekshypothese "iets nieuws", "iets controversieels"
- beslissing?
 - \rightarrow aanvaard H_0 , en dus verwerp H_a
 - \rightarrow verwerp H_0 , en dus aanvaard H_a
- kan goede of foute beslissing zijn

Overzichtstabel

beslissing	werkelijke situatie	
o.b.v. steekproef	H_0 is waar	H_a is waar
H_0 aanvaarden	juiste beslissing	type II fout
	kans $1 - \alpha$	kans eta
H_a aanvaarden	type I fout	juiste beslissing
	kans α	kans $1 - \beta$

Samenvatting

 \bullet $\alpha = P(H_a \text{ aanvaarden} \mid H_0 \text{ waar})$ = significantieniveau of onbetrouwbaarheid = kans op type I fout ▶ $1 - \alpha = P(H_0 \text{ aanvaarden} \mid H_0 \text{ waar})$ = betrouwbaarheid $\beta = P(H_0 \text{ aanvaarden} \mid H_a \text{ waar})$ = kans op type II fout ▶ $1 - \beta = P(H_a \text{ aanvaarden} \mid H_a \text{ waar})$ = onderscheidingsvermogen of power

Overzichtstabel voor rechtspraak

beslissing	werkelijke situatie	
o.b.v. steekproef	onschuldig	schuldig
niet veroordeeld	juiste beslissing	type II fout
	kans $1 - \alpha$	kans eta
veroordeeld	type I fout	juiste beslissing
	kans α	kans $1 - \beta$

[&]quot;iemand onterecht beschuldigen is niet wenselijk"

Soorten alternatieve hypothesen

```
▶ voorbeeld: H_0: \mu = -0.545 °C
  \rightarrow H_a: \mu > -0.545 °C
                                    rechts eenzijdig
  \rightarrow H_a: \mu < -0.545 °C
                                    links eenzijdig
  \rightarrow H_a: \mu \neq -0.545 °C
                                    tweezijdig
• algemeen: H_0: \mu = \mu_0
  \rightarrow H_a: \mu > \mu_0 rechts eenzijdig
  \rightarrow H_a: \mu < \mu_0
                         links eenzijdig
```

tweezijdig

 $\rightarrow H_a: \mu \neq \mu_0$

Rechts eenzijdige toets

- $H_0: \mu = -0.545 \, ^{\circ}\text{C}$ $H_a: \mu > -0.545 \, ^{\circ}\text{C}$
- steekproefgemiddelde \overline{x}
- H_0 verwerpen en H_a aanvaarden als
 - $\rightarrow \overline{x}$ groot
 - $\rightarrow \overline{x}$ groter dan kritieke waarde c
- ► kritieke waarde *c* bepalen zodanig dat we niet te veel fouten maken
 - \rightarrow kleine kans op type I fout (α)
 - \rightarrow kleine kans op type II fout (β)

Kans op type I fout

$$\alpha = P(H_0 \text{ verwerpen } | H_0 \text{ is juist})$$

$$= P(\overline{X} > c | H_0 \text{ is juist})$$

$$= P(\overline{X} > c | \mu = \mu_0)$$

$$\downarrow \overline{X} \sim N(\mu, \frac{\sigma^2}{n}); \text{ indien } \begin{cases} n \ge 30 \\ \text{normaal verdeelde } X_1, \dots, X_n \end{cases}$$

$$= P(\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} > \frac{c - \mu_0}{\sigma / \sqrt{n}} | \mu = \mu_0)$$

$$= P(Z > \frac{c - \mu_0}{\sigma / \sqrt{n}}) \text{ met } Z \sim N(0, 1)$$

Kritieke waarde c voor \overline{x}

- ► als $\overline{x} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$, verwerp nulhypothese en aanvaard alternatieve hypothese
- ► als $\overline{x} \le \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$, aanvaard nulhypothese
- dit is eerste versie beslissingsregel

Beslissingsregel op basis van toetsingsgrootheid

- ► als $\frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} > z_\alpha$, verwerp nulhypothese
- ► als $\frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} \le z_\alpha$, aanvaard nulhypothese
- $\Rightarrow \frac{\overline{x} \mu_0}{\sigma / \sqrt{n}} = \text{toetsingsgrootheid } z$
- dit is tweede versie beslissingsregel

Voorbeeld

▶ gegeven:
$$n = 5$$

 $\overline{x} = -0.535$ °C
 $\sigma = 0.008$ °C

$$H_0: \mu = -0.545 \, ^{\circ}\text{C}$$

 $H_a: \mu > -0.545 \, ^{\circ}\text{C}$

• significantieniveau $\alpha = 5\%$

kritieke waarde:

$$c = \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$$

$$= -0.545 + z_\alpha \frac{0.008}{\sqrt{5}}$$

$$= -0.545 + 1.645 \frac{0.008}{\sqrt{5}} = -0.5391$$

▶ \overline{x} > c dus verwerp H_0

toetsingsgrootheid:

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{-0.535 - (-0.545)}{0.008 / \sqrt{5}} = 2.795$$

 $z > z_{\alpha} = 1.645$ dus verwerp H_0

De *p*-waarde

- werken met kritieke waarden levert geen informatie over sterkte van bewijs
- ▶ p-waarde bij rechtseenzijdige toets = kans dat \overline{x} overschreden wordt als H_0 waar

$$= P(\overline{X} > \overline{x} \mid \mu = \mu_0)$$

$$= P(\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} > \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \mid \mu = \mu_0)$$

- = P(Z > z) met z de toetsingsgrootheid
- ▶ als $p < \alpha$, verwerp nulhypothese
- ▶ als $p \ge \alpha$, aanvaard nulhypothese

▶ *p*-waarde:

$$p = P(\overline{X} > \overline{x} \mid \mu = \mu_0)$$

$$= P(\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} > \frac{-0.535 - \mu_0}{\sigma / \sqrt{n}} \mid \mu = \mu_0)$$

$$= P(Z > \frac{-0.535 - (-0.545)}{0.008 / \sqrt{5}})$$

$$= P(Z > 2.795) \qquad z = 2.795 = \text{toetsingsgrootheid}$$

$$= 0.0026$$

• $p < \alpha$ dus verwerp nulhypothese

Tweezijdige hypothesetoets

algemeen:

$$H_0: \mu = \mu_0$$
 $H_a: \mu \neq \mu_0$

voorbeeld:

$$H_0: \mu = 34 \text{ cl}$$
 $H_a: \mu \neq 34 \text{ cl}$

- ► H_0 verwerpen bij $\overline{x} \gg 34$ cl of $\overline{x} \ll 34$ cl
- kritieke waarden:

$$c_L = \mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$c_U = \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Beslissingsregels

- benadering 1: H_0 verwerpen als $\overline{x} < c_L$ of $\overline{x} > c_U$ H_0 aanvaarden als $c_L \le \overline{x} \le c_U$
- benadering 2:

toetsingsgrootheid
$$z=\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}$$
 H_0 verwerpen als $z<-z_{\alpha/2}$ of $z>z_{\alpha/2}$
 H_0 aanvaarden als $-z_{\alpha/2}\leq z\leq z_{\alpha/2}$

Voorbeeld

► gegeven:
$$n = 64$$

 $\overline{x} = 33.89 \text{ cl}$
 $\sigma = 0.5 \text{ cl}$

•
$$H_0: \mu = 34 \text{ cl}$$

 $H_a: \mu \neq 34 \text{ cl}$

• significantieniveau $\alpha = 5\%$

p-waarde bij tweezijdige toets

$$\overline{x} < \mu_0 : p = \frac{2P(\overline{X} < \overline{x} \mid \mu = \mu_0)}{\overline{x} > \mu_0 : p = \frac{2P(\overline{X} > \overline{x} \mid \mu = \mu_0)}{\overline{x} > \mu_0 : p = \frac{2P(\overline{X} > \overline{x} \mid \mu = \mu_0)}{\overline{x} > \overline{x} = \mu_0}$$

- ▶ komt op hetzelfde neer als $p = 2P(\overline{Z} > |\overline{z}| \mid \mu = \mu_0)$
- ► beslissingsregel (benadering 3): H_0 verwerpen als $p < \alpha$ H_0 aanvaarden als $p \ge \alpha$