2017 Fall - Math 355 - Homework 5

Due: Friday, October 6 in class.1

Unless specified otherwise, you must always show your work and justify your answer.

(1) Consider the map $f: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ x+z \end{pmatrix}.$$

- (a) Show that f is linear.
- (b) Is f injective?
- (c) Is f surjective?
- (d) Describe $K := \ker f$.
- (e) What is $\dim K$? If it is greater than zero, find a basis for K.
- (2) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}$ be a two-by-two matrix. We define a linear map $f_A \colon \mathbb{R}^2 \to \mathbb{R}^2$ as follows:

$$f_A \begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} := \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

- (a) Find an $A \in M_{2\times 2}$ such that f_A is injective.
- (b) Find a $B \in M_{2\times 2}$ such that f_B is not injective.
- (c) Find a $C \in M_{2\times 2}$ such that f_C is surjective.
- (d) Find a $D \in M_{2\times 2}$ such that f_D is not surjective.
- (e) Find an $E \in M_{2\times 2}$ such that f_E is an isomorphism.
- (f) Find an $F \in M_{2\times 2}$ such that f_F is not an isomorphism.
- (3) Let $f \in \text{Hom}(V, W)$. Suppose $\vec{u}, \vec{v} \in V$ are linearly independent. Do $f(\vec{u}), f(\vec{v}) \in W$ also have to be linearly independent?
- (4) Let $f \in \text{Hom}(V, W)$. Suppose $\vec{u}, \vec{v} \in V$ are linearly dependent. Do $f(\vec{u}), f(\vec{v}) \in W$ also have to be linearly dependent?
- (5) Let $B = (\vec{v}, \vec{w}) \in V$ be a basis. Show that the map $\operatorname{Rep}_B \colon V \to \mathbb{R}^2$ is linear.
- (6) Let $\vec{v}_1, \ldots, \vec{v}_k \in V$. Consider the map

$$\psi \colon \mathbb{R}^k \to V$$

$$\psi\begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix} \mapsto \sum_{i=1}^k x_i \vec{v}_i$$

which is linear.

- (a) Show that ψ is injective if and only if $\vec{v}_1, \ldots, \vec{v}_k$ are linearly independent.
- (b) Show that ψ is surjective if and only if $\operatorname{Span}\{\vec{v}_1,\ldots,\vec{v}_k\}=V$.
- (c) Show that ψ is an isomorphism if and only if $\vec{v}_1, \ldots, \vec{v}_k$ is a basis of V.
- (d) Assume ψ is an isomorphism. Call $B = (\vec{v}_1, \dots, \vec{v}_k)$ the given basis of V. Show that $\psi^{-1} = \text{Rep}_B$.

¹This file was last updated at 21:47 on Friday 29th September, 2017.