

10/521319

DT15 R PCT/PTO 14 JAN 2005

~6330854
SEQUENCE LISTING

<110> Glaxo Group Limited

<120> Animal Models

<130> PG4871

<140> PCT/EP03/07939

<141> 2003-07-17

<160> 20

<170> PatentIn version 3.1

<210> 1

<211> 2984

<212> DNA

<213> Homo sapiens

<400> 1	
gcgccccagt cgacgctgag ctcctctgct actcagagtt gcaacctcag cctcgctatg	60
gctcccgagca gccccggcc cgcgctgccc gcactcctgg tcctgctcgg ggctctgttc	120
ccaggacctg gcaatgcca gacatctgtg tccccctcaa aagtcatcct gccccgggaa	180
ggctccgtgc tggtgacatg cagcacctcc tgtgaccagc ccaagttgtt gggcatagag	240
accccgttgc ctaaaaagga gttgctcctg cctggaaaca accggaaggt gtatgaactg	300
agcaatgtgc aagaagatag ccaaccaatg tgctattcaa actgccctga tgggcagtca	360
acagctaaaa ctttcctcac cgtgtactgg actccagaac gggtggaaact ggcacccctc	420
ccctcttggc agccagtggg caagaacctt accctacgct gccaggtgg a ggtggggca	480
ccccgggcca acctcaccgt ggtgctgctc cgtggggaga aggagctgaa acgggagcca	540
gctgtggggg agcccgctga ggtcacgacc acggtgctgg tgaggagaga tcaccatgga	600
gccaatttct cgtccgcac tgaactggac ctgcggcccc aagggctgga gctgtttgag	660

~6330854

aacacctcg	ccccctacca	gctccagacc	tttgtcctgc	cagcgactcc	cccacaactt	720
gtcagccccc	gggtcctaga	ggtggacacg	caggggaccg	tggtctgttc	cctggacggg	780
ctgttcccag	tctcgaggc	ccaggtccac	ctggcactgg	gggaccagag	gttgaacccc	840
acagtcacct	atggcaacga	ctccttctcg	gccaaaggcct	cagtcagtgt	gaccgcagag	900
gacgagggca	cccagcggt	gacgtgtgca	gtaatactgg	ggaaccagag	ccaggagaca	960
ctgcagacag	tgaccatcta	cagcttccg	gcgcrrcaacg	tgattctgac	gaagccagag	1020
gtctcagaag	ggaccgaggt	gacagtgaag	tgtgaggccc	accctagagc	caaggtgacg	1080
ctgaatgggg	ttccagccca	gccactggc	ccgagggccc	agtcctgct	gaaggccacc	1140
ccagaggaca	acgggcgcag	cttctcctgc	tctgcaaccc	tggaggtggc	cggccagctt	1200
atacacaaga	accagacccg	ggagcttcgt	gtcctgtatg	gcccccgact	ggacgagagg	1260
gattgtccgg	gaaactggac	gtggccagaa	aattcccagc	agactccaat	gtgccaggct	1320
tgggggaacc	cattgcccga	gctcaagtgt	ctaaaggatg	gcactttccc	actgcccatc	1380
ggggaatcag	tgactgtcac	tcgagatctt	gagggcacct	acctctgtcg	ggccaggagc	1440
actcaagggg	aggtcacccg	caaggtgacc	gtaatgtgc	tctccccccg	gtatgagatt	1500
gtcatcatca	ctgtggtagc	agccgcagtc	ataatggca	ctgcaggcct	cagcacgtac	1560
ctctataacc	gccagcggaa	gatcaagaaa	tacagactac	aacaggccc	aaaagggacc	1620
cccatgaaac	cgaacacaca	agccacgcct	ccctgaacct	atcccgggac	agggccttctt	1680
cctcggcctt	cccatattgg	tggcagtgg	gccacactga	acagagtgg	agacatatgc	1740
catcagcta	cacctaccgg	ccctggacg	ccggaggaca	ggcattgtc	ctcagtcaga	1800
tacaacagca	tttggggcca	tgg tacctgc	acacctaaaa	cactaggcca	cgcacatgtat	1860
ctgtagtcac	atgactaagc	caagaggaag	gagcaagact	caagacatga	ttgatggatg	1920
ttaaagtcta	gcctgatgag	agggaaagtg	gtgggggaga	catagcccc	ccatgaggac	1980
atacaactgg	gaaatactga	aacttgcgc	ctattggta	tgctgaggcc	ccacagactt	2040
acagaagaag	tggccctcca	tagacatgtg	tagcataaa	acacaaaggc	ccacacttcc	2100
tgacggatgc	cagcttggc	actgctgtct	actgacccc	acccttgatg	atatgtat	2160
attcatttgc	tattttacca	gctatttatt	gagtgtctt	tatgtaggct	aaatgaacat	2220
aggtctctgg	cctcacggag	ctcccagtcc	taatcacatt	caaggtcacc	aggtacagtt	2280
gtacaggttg	tacactgcag	gagagtgcct	ggcaaaaaga	tcaa atgggg	ctgggacttc	2340
tcattggcca	acctgcctt	ccccagaagg	agtgat	ttt ctatcgac	aaaagcacta	2400
tatggactgg	taatggttac	aggttcagag	attacccagt	gaggccttat	tcctcccttc	2460
cccccaaaac	tgacaccttt	gttagccacc	tccccaccca	catacat	ttc tgccagtgtt	2520
cacaatgaca	ctcagcggtc	atgtctggac	atgagtgc	ccc agat	atg cccaa	2580

~6330854

gccttgcctt	cttgtcctgt	ttgcatttca	ctgggagctt	gcactatgca	gctccagttt	2640
cctgcagtga	tcagggtcct	gcaagcagtg	ggaaaggggg	ccaaggtatt	ggaggactcc	2700
ctcccagctt	tggaagcctc	atccgcgtgt	gtgtgtgtgt	gtatgtgtag	acaagctctc	2760
gctctgtcac	ccaggctgga	gtgcagtgg	gcaatcatgg	ttcactgcag	tcttgacctt	2820
ttgggctcaa	gtgatcctcc	cacccatggcc	tcctgagtag	ctgggaccat	aggctcacaa	2880
caccacacct	ggcaaattt	atttttttt	ttttccaga	gacggggtct	cgcaacattt	2940
cccagacttc	ctttgtgtta	gttaataaag	ctttctcaac	tgcc		2984

<210> 2

<211> 189

<212> DNA

<213> Homo sapiens

<400> 2						
ggaggctccg	tgctggtgac	atgcagcacc	tcctgtgacc	agcccaagtt	gttgggcata	60
gagacccgt	tgcctaaaaa	ggagttgctc	ctgcctggga	acaaccggaa	ggtgtatgaa	120
ctgagcaatg	tgcaagaaga	tagccaaacca	atgtgctatt	caaactgccc	tgatggcag	180
tcaacagct						189

<210> 3

<211> 198

<212> DNA

<213> Homo sapiens

<400> 3						
ggcaagaacc	ttaccctacg	ctgccagggt	gagggtgggg	caccccgggc	caacctcacc	60
gtggtgctgc	tccgtgggga	gaaggagctg	aaacgggagc	cagctgtggg	ggagcccgct	120
gaggtcacga	ccacggtgct	ggtgaggaga	gatcaccatg	gagccaattt	ctcgtgccgc	180
actgaactgg	acctgcgg					198

<210> 4

<211> 532

<212> PRT

<213> Homo sapiens

~6330854

<400> 4

Met Ala Pro Ser Ser Pro Arg Pro Ala Leu Pro Ala Leu Leu Val Leu
1 5 10 15

Leu Gly Ala Leu Phe Pro Gly Pro Gly Asn Ala Gln Thr Ser Val Ser
20 25 30

Pro Ser Lys Val Ile Leu Pro Arg Gly Gly Ser Val Leu Val Thr Cys
35 40 45

Ser Thr Ser Cys Asp Gln Pro Lys Leu Leu Gly Ile Glu Thr Pro Leu
50 55 60

Pro Lys Lys Glu Leu Leu Leu Pro Gly Asn Asn Arg Lys Val Tyr Glu
65 70 75 80

Leu Ser Asn Val Gln Glu Asp Ser Gln Pro Met Cys Tyr Ser Asn Cys
85 90 95

Pro Asp Gly Gln Ser Thr Ala Lys Thr Phe Leu Thr Val Tyr Trp Thr
100 105 110

Pro Glu Arg Val Glu Leu Ala Pro Leu Pro Ser Trp Gln Pro Val Gly
115 120 125

Lys Asn Leu Thr Leu Arg Cys Gln Val Glu Gly Gly Ala Pro Arg Ala
130 135 140

Asn Leu Thr Val Val Leu Leu Arg Gly Glu Lys Glu Leu Lys Arg Glu
145 150 155 160

Pro Ala Val Gly Glu Pro Ala Glu Val Thr Thr Thr Val Leu Val Arg
165 170 175

Arg Asp His His Gly Ala Asn Phe Ser Cys Arg Thr Glu Leu Asp Leu
180 185 190

Arg Pro Gln Gly Leu Glu Leu Phe Glu Asn Thr Ser Ala Pro Tyr Gln
195 200 205

Leu Gln Thr Phe Val Leu Pro Ala Thr Pro Pro Gln Leu Val Ser Pro
210 215 220

Arg Val Leu Glu Val Asp Thr Gln Gly Thr Val Val Cys Ser Leu Asp
225 230 235 240

~6330854

Gly Leu Phe Pro Val Ser Glu Ala Gln Val His Leu Ala Leu Gly Asp
245 250 255

Gln Arg Leu Asn Pro Thr Val Thr Tyr Gly Asn Asp Ser Phe Ser Ala
260 265 270

Lys Ala Ser Val Ser Val Thr Ala Glu Asp Glu Gly Thr Gln Arg Leu
275 280 285

Thr Cys Ala Val Ile Leu Gly Asn Gln Ser Gln Glu Thr Leu Gln Thr
290 295 300

Val Thr Ile Tyr Ser Phe Pro Ala Pro Asn Val Ile Leu Thr Lys Pro
305 310 315 320

Glu Val Ser Glu Gly Thr Glu Val Thr Val Lys Cys Glu Ala His Pro
325 330 335

Arg Ala Lys Val Thr Leu Asn Gly Val Pro Ala Gln Pro Leu Gly Pro
340 345 350

Arg Ala Gln Leu Leu Leu Lys Ala Thr Pro Glu Asp Asn Gly Arg Ser
355 360 365

Phe Ser Cys Ser Ala Thr Leu Glu Val Ala Gly Gln Leu Ile His Lys
370 375 380

Asn Gln Thr Arg Glu Leu Arg Val Leu Tyr Gly Pro Arg Leu Asp Glu
385 390 395 400

Arg Asp Cys Pro Gly Asn Trp Thr Trp Pro Glu Asn Ser Gln Gln Thr
405 410 415

Pro Met Cys Gln Ala Trp Gly Asn Pro Leu Pro Glu Leu Lys Cys Leu
420 425 430

Lys Asp Gly Thr Phe Pro Leu Pro Ile Gly Glu Ser Val Thr Val Thr
435 440 445

Arg Asp Leu Glu Gly Thr Tyr Leu Cys Arg Ala Arg Ser Thr Gln Gly
450 455 460

Glu Val Thr Arg Glu Val Thr Val Asn Val Leu Ser Pro Arg Tyr Glu
465 470 475 480

Ile Val Ile Ile Thr Val Val Ala Ala Val Ile Met Gly Thr Ala
Page 5

~6330854

485 490 495

Gly Leu Ser Thr Tyr Leu Tyr Asn Arg Gln Arg Lys Ile Lys Lys Tyr
500 505 510

Arg Leu Gln Gln Ala Gln Lys Gly Thr Pro Met Lys Pro Asn Thr Gln
515 520 525

Ala Thr Pro Pro
530

<210> 5

<211> 63

<212> PRT

<213> Homo sapiens

<400> 5

Gly Gly Ser Val Leu Val Thr Cys Ser Thr Ser Cys Asp Gln Pro Lys
1 5 10 15

Leu Leu Gly Ile Glu Thr Pro Leu Pro Lys Lys Glu Leu Leu Leu Pro
20 25 30

Gly Asn Asn Arg Lys Val Tyr Glu Leu Ser Asn Val Gln Glu Asp Ser
35 40 45

Gln Pro Met Cys Tyr Ser Asn Cys Pro Asp Gly Gln Ser Thr Ala
50 55 60

<210> 6

<211> 66

<212> PRT

<213> Homo sapiens

<400> 6

Gly Lys Asn Leu Thr Leu Arg Cys Gln Val Glu Gly Gly Ala Pro Arg
1 5 10 15

Ala Asn Leu Thr Val Val Leu Leu Arg Gly Glu Lys Glu Leu Lys Arg
20 25 30

~6330854

Glu Pro Ala Val Gly Glu Pro Ala Glu Val Thr Thr Thr Val Leu Val
35 40 45

Arg Arg Asp His His Gly Ala Asn Phe Ser Cys Arg Thr Glu Leu Asp
50 55 60

Leu Arg
65

<210> 7

<211> 1614

<212> DNA

<213> Mus sp.

<400>	7					
atggcttcaa	ccccgtgccaa	gcccacgcta	cctctgctcc	tggccctgggt	caccgttgtg	60
atccctgggc	ctgggttatgc	tcaggttatcc	atccatccca	gagaagcctt	cctgccccag	120
ggtgtggtccg	tgcaggtgaa	ctgttcttcc	tcatgcaagg	aggacctcag	cctgggcttg	180
gagactcagt	ggctgaaaaga	ttagctcgag	agtggaccca	actggaagct	gtttgagctg	240
agcgagatcg	gggaggacag	cagtccgctg	tgctttgaga	actgtggcac	cgtcagtcg	300
tccgcttccg	ctaccatcac	cgtgtattcg	tttccggaga	gtgtggagct	gagacctctg	360
ccagcctggc	agcaagttagg	caaggacctc	accctgcgct	gccacgtgga	tggtgagca	420
ccgcggacccc	agctctcagc	agtgctgctc	cgtggggagg	agataactgag	ccgcccagcca	480
gtgggtgggc	accccaagga	ccccaaaggag	atcacattca	cggtgctggc	tagcagaggg	540
gaccacggag	ccaatttctc	atgcccaca	gaactggatc	tcaggccgca	agggtggca	600
ttgttctcta	atgtctccga	ggccaggagc	ctccggactt	tcgatcttcc	agctaccatc	660
ccaaagctcg	acacccctga	cctcctggag	gtgggcaccc	agcagaagtt	gttttgcctc	720
ctggaaaggcc	tgtttcctgc	ctctgaagct	cggatataacc	tggagctggg	aggccagatg	780
ccgacccagg	agagcacaaa	cagcagtgac	tctgtgtcag	ccactgcctt	ggttagaggtg	840
actgaggagt	tcgacagaac	cctgcccgtg	cgctgcgttt	tggagctagc	ggaccagatc	900
ctggagacgc	agaggacctt	aacagtctac	aactttcag	ctccggtcct	gaccctgagc	960
cagctggagg	tctcggagg	gagccaagta	actgtgaagt	gtgaagccca	cagtgggtcg	1020
aaggtggttc	ttctgagcgg	cgtcgagcct	aggccaccca	ccccgcaggt	ccaattcaca	1080
ctgaatgcca	gctcggagga	tcacaaacga	agcttctttt	gctctgcccgc	tctggaggtg	1140
gcgggaaagt	tcctgtttaa	aaaccagacc	ctggaactgc	acgtgctgta	tggccctcg	1200

~6330854
ctggacgaga cggaactgctt gggaaactgg acctggcaag aggggtctca gcagactctg 1260
aatgccagg cctggggaa cccatctcct aagatgacct gcagacggaa ggcagatgg 1320
gccctgctgc ccatcggtt ggtgaagtct gtcaaacagg agatgaatgg tacatacgt 1380
tgccatgcct ttagctccc tggaaatgtc accaggaatg tgtacctgac agtactgtac 1440
cactctcaaa ataactggac tataatcatt ctgggccag tactgctggt cattgtggc 1500
ctcgatgg cagcctctta tgttataac cgccagagaa agatcaggat atacaagtta 1560
cagaaggctc aggaggaggc cataaaactc aaggacaag ccccacctcc ctga 1614

<210> 8

<211> 204

<212> DNA

<213> Mus sp.

<400> 8
ggcacccagc agaagttgtt ttgctccctg gaaggcctgt ttccctgcctc tgaagtcgg 60
atatacctgg agctgggagg ccagatgccg acccaggaga gcacaaaacag cagtgactct 120
gtgtcagcca ctgccttggt agaggtgact gaggagttcg acagaaccct gccgctgcgc 180
tgcgtttgg agctagcgga ccag 204

<210> 9

<211> 162

<212> DNA

<213> Mus sp.

<400> 9
gggagccaag taactgtgaa gtgtgaagcc cacagtgggt cgaagggttgt tcttctgagc 60
ggcgtcgagc ctaggccacc caccccgcaa gtccaaattca cactgaatgc cagctcgag 120
gatcacaaaac gaagcttctt ttgctctgcc gctctggagg tg 162

<210> 10

<211> 159

<212> DNA

<213> Mus sp.

~6330854

<400> 10
gaggggtctc agcagactct gaaatgccag gcctggggga acccatctcc taagatgacc 60
tgcagacgga aggcatgg tgccctgctg cccatcgaaa tggtaagtc tgtcaaacag 120
gagatgaatg gtacatacgt gtgccatgcc ttttagctcc 159

<210> 11

<211> 68

<212> PRT

<213> Mus sp.

<400> 11

Gly Thr Gln Gln Lys Leu Phe Cys Ser Leu Glu Gly Leu Phe Pro Ala
1 5 10 15

Ser Glu Ala Arg Ile Tyr Leu Glu Leu Gly Gly Gln Met Pro Thr Gln
20 25 30

Glu Ser Thr Asn Ser Ser Asp Ser Val Ser Ala Thr Ala Leu Val Glu
35 40 45

Val Thr Glu Glu Phe Asp Arg Thr Leu Pro Leu Arg Cys Val Leu Glu
50 55 60

Leu Ala Asp Gln
65

<210> 12

<211> 54

<212> PRT

<213> Mus sp.

<400> 12

Gly Ser Gln Val Thr Val Lys Cys Glu Ala His Ser Gly Ser Lys Val
1 5 10 15

Val Leu Leu Ser Gly Val Glu Pro Arg Pro Pro Thr Pro Gln Val Gln
20 25 30

Phe Thr Leu Asn Ala Ser Ser Glu Asp His Lys Arg Ser Phe Phe Cys
35 40 45

~6330854

Ser Ala Ala Leu Glu Val
50

<210> 13

<211> 53

<212> PRT

<213> Mus sp.

<400> 13

Glu Gly Ser Gln Gln Thr Leu Lys Cys Gln Ala Trp Gly Asn Pro Ser
1 5 10 15

Pro Lys Met Thr Cys Arg Arg Lys Ala Asp Gly Ala Leu Leu Pro Ile
20 25 30

Gly Val Val Lys Ser Val Lys Gln Glu Met Asn Gly Thr Tyr Val Cys
35 40 45

His Ala Phe Ser Ser
50

<210> 14

<211> 1608

<212> DNA

<213> Artificial sequence

<220>

<223> DNA encoding a human/mouse chimaeric ICAM-1 polypeptide

<400> 14
atggctccca gcagcccccg gcccgcgtg cccgcactcc tggtcctgct cggggctctg 60
ttccccaggac ctggcaatgc ccagacatct gtgtccccct caaaagtcat cctgccccgg 120
ggaggctccg tgctggtgac atgcagcacc tcctgtgacc agcccaagtt gttgggcata 180
gagaccccgta tgcctaaaaa ggagttgctc ctgcctggaa acaaccggaa ggtgtatgaa 240
ctgagcaatg tgcaagaaga tagccaacca atgtgctatt caaactgccc tcatggcag 300
tcaacagcta aaacccctt caccgtgtac tggactccag aacgggtgga actggcaccc 360
ctcccccttt ggcagccagt gggcaagaac cttaccctac gctgccaggt ggagggtggg 420
gcaccccgaa ccaacccac cgtggtgctg ctccgtgggg agaaggagct gaaacgggag 480

~6330854

ccagctgtgg	gggagccgc	tgaggtcacg	accacggcgc	tggtgaggag	agatcaccat	540
ggagccaatt	tctcgcccg	cactgaactg	gacctgcggc	cccaagggct	ggcatttttc	600
tctaattgtct	ccgaggccag	gagcctccgg	actttcgatc	ttccagctac	catccaaag	660
ctcgacaccc	ctgacacct	ggaggtgggc	acccagcaga	agttgttttgc	ctccctggaa	720
ggcctgtttc	ctgcctctga	agctcgata	tacctggagc	tgggaggcca	gatgccgacc	780
caggagagca	caaacagcag	tgactctgtg	tcagccactg	ccttggtaga	ggtgactgag	840
gagttcgaca	gaaccctgcc	gctgcgctgc	gttttggagc	tagcggacca	gatcctggag	900
acgcagagga	ccttaacagt	ctacaacttt	tcagctcctg	tcctgaccct	gagccagctg	960
gaggtctcgg	aagggagcca	agtaactgtg	aagtgtgaag	cccacagtgg	gtcgaagggtg	1020
gttcttctga	gcggcgtcga	gcctaggcca	cccacccgc	aagtccaaatt	cacactgaat	1080
gccagctcgg	aggatcaca	acgaagcttc	tttgctctg	ccgctctgg	ggtggcggga	1140
aagttcctgt	ttaaaaacca	gaccctggaa	ctgcacgtgc	tgtatggtcc	tcggctggac	1200
gagacggact	gcttgggaa	ctggacctgg	caagaggggt	ctcagcagac	tctgaaatgc	1260
caggcctggg	gaaacccatc	tcctaagatg	acctgcagac	ggaaggcaga	tggtccccctg	1320
ctgcccattcg	gggtggtgaa	gtctgtcaaa	caggagatga	atggtacata	cgtgtgccat	1380
gccttagct	cccatggaa	tgtcaccagg	aatgtgtacc	tgacagtact	gtaccactct	1440
caaaataact	ggactataat	cattctggtg	ccagtactgc	tggtcattgt	gggcctcg	1500
atggcagcct	cttatgttta	taaccgccag	agaaagatca	ggatatacaa	gttacagaag	1560
gctcaggagg	aggccataaa	actcaaggga	caagccccac	ctcccttg		1608

<210> 15

<211> 535

<212> PRT

<213> Artificial sequence

<220>

<223> Amino acid sequence of a human/mouse chimaeric ICAM-1 polypeptide

<400> 15

Met	Ala	Pro	Ser	Ser	Pro	Arg	Pro	Ala	Leu	Pro	Ala	Leu	Leu	Val	Leu
1				5					10				15		

Leu	Gly	Ala	Leu	Phe	Pro	Gly	Pro	Gly	Asn	Ala	Gln	Thr	Ser	Val	Ser
								25					30		

~6330854

Pro Ser Lys Val Ile Leu Pro Arg Gly Gly Ser Val Leu Val Thr Cys
35 40 45

Ser Thr Ser Cys Asp Gln Pro Lys Leu Leu Gly Ile Glu Thr Pro Leu
50 55 60

Pro Lys Lys Glu Leu Leu Pro Gly Asn Asn Arg Lys Val Tyr Glu
65 70 75 80

Leu Ser Asn Val Gln Glu Asp Ser Gln Pro Met Cys Tyr Ser Asn Cys
85 90 95

Pro Asp Gly Gln Ser Thr Ala Lys Thr Phe Leu Thr Val Tyr Trp Thr
100 105 110

Pro Glu Arg Val Glu Leu Ala Pro Leu Pro Ser Trp Gln Pro Val Gly
115 120 125

Lys Asn Leu Thr Leu Arg Cys Gln Val Glu Gly Gly Ala Pro Arg Ala
130 135 140

Asn Leu Thr Val Val Leu Leu Arg Gly Glu Lys Glu Leu Lys Arg Glu
145 150 155 160

Pro Ala Val Gly Glu Pro Ala Glu Val Thr Thr Thr Val Leu Val Arg
165 170 175

Arg Asp His His Gly Ala Asn Phe Ser Cys Arg Thr Glu Leu Asp Leu
180 185 190

Arg Pro Gln Gly Leu Ala Leu Phe Ser Asn Val Ser Glu Ala Arg Ser
195 200 205

Leu Arg Thr Phe Asp Leu Pro Ala Thr Ile Pro Lys Leu Asp Thr Pro
210 215 220

Asp Leu Leu Glu Val Gly Thr Gln Gln Lys Leu Phe Cys Ser Leu Glu
225 230 235 240

Gly Leu Phe Pro Ala Ser Glu Ala Arg Ile Tyr Leu Glu Leu Gly Gly
245 250 255

Gln Met Pro Thr Gln Glu Ser Thr Asn Ser Ser Asp Ser Val Ser Ala
260 265 270

Thr Ala Leu Val Glu Val Thr Glu Glu Phe Asp Arg Thr Leu Pro Leu
275 280 285

~6330854

Arg Cys Val Leu Glu Leu Ala Asp Gln Ile Leu Glu Thr Gln Arg Thr
290 295 300

Leu Thr Val Tyr Asn Phe Ser Ala Pro Val Leu Thr Leu Ser Gln Leu
305 310 315 320

Glu Val Ser Glu Gly Ser Gln Val Thr Val Lys Cys Glu Ala His Ser
325 330 335

Gly Ser Lys Val Val Leu Leu Ser Gly Val Glu Pro Arg Pro Pro Thr
340 345 350

Pro Gln Val Gln Phe Thr Leu Asn Ala Ser Ser Glu Asp His Lys Arg
355 360 365

Ser Phe Phe Cys Ser Ala Ala Leu Glu Val Ala Gly Lys Phe Leu Phe
370 375 380

Lys Asn Gln Thr Leu Glu Leu His Val Leu Tyr Gly Pro Arg Leu Asp
385 390 395 400

Glu Thr Asp Cys Leu Gly Asn Trp Thr Trp Gln Glu Gly Ser Gln Gln
405 410 415

Thr Leu Lys Cys Gln Ala Trp Gly Asn Pro Ser Pro Lys Met Thr Cys
420 425 430

Arg Arg Lys Ala Asp Gly Ala Leu Leu Pro Ile Gly Val Val Lys Ser
435 440 445

Val Lys Gln Glu Met Asn Gly Thr Tyr Val Cys His Ala Phe Ser Ser
450 455 460

His Gly Asn Val Thr Arg Asn Val Tyr Leu Thr Val Leu Tyr His Ser
465 470 475 480

Gln Asn Asn Trp Thr Ile Ile Ile Leu Val Pro Val Leu Leu Val Ile
485 490 495

Val Gly Leu Val Met Ala Ala Ser Tyr Val Tyr Asn Arg Gln Arg Lys
500 505 510

Ile Arg Ile Tyr Lys Leu Gln Lys Ala Gln Glu Glu Ala Ile Lys Leu
515 520 525

Lys Gly Gln Ala Pro Pro Pro

530

535

~6330854

<210> 16
<211> 2602
<212> DNA
<213> *Rattus sp.*

<400> 16
ctgctgcctg cactttgccccc tggtcctcca atggcttcaa cccgtgccag gccccatgctg 60
cctctgctcc tggtcctggc cgccgttgtg atccccgggc ctgtcggtgc tcaggatatcc 120
atccatccca cagaagccctt cctgcctcgg ggtggatccg tgcatggtaaa ctgctttcc 180
tcttgcaag acgagaacctt cggcctgggg ttggagacta actggatgaa agacgaacta 240
tcgagtggac acaactggaa gctcttcaag ctgagcgaca ttggggaga cagcagacca 300
ctgtgcttg agaactgtgg caccacgcag tcctcggtt ctgccaccat cactgtgtat 360
tcgttccag agcgagtggaa gctggatcct ctgcccgcctt ggcagcaggtt gggcaagaac 420
ctcatcctgc gctgcctggc ggaaggcggc gcaccgcggc cacagctctc agtagtgctg 480
ctccgtggaa atgagacact gagccgcagc gcagtggatg gggaccccaa ggagatcaca 540
ttcacggcgc tggccagcag aggccgaccac ggagccaatt tctcatgctt cacagaactg 600
gacccctcggc cacaaggcgt gtcactgttc aagaatgtct ccgaggtcag gcagctccgg 660
actttcgatc ttccgacttag ggtcctgaag ctgcacaccc ctgacccctt ggaggtggc 720
acccagcaga agttcttggc ttccctggaa ggcctgttc ctgcctctga agctcagata 780
tacctggaga tgggaggcca gatgctgacc ctggagagca caaacagcag agattttgtg 840
tcagccactg cctcagtggaa ggtgactgag aagttggaca gaaccctgca gctgcgtgt 900
gtttggagc tggcggacca gaccctggag atggagaaga ccttgagaat ctacaacttt 960
tcagctccca tcctgaccctt gagccagccg gaggtctcag aaggggacca agtaactgtg 1020
aagtgtgaag cccacggcgtt ggcacaggtg gtgcttctga acagtacttc cccacggc 1080
cccacccctc acgggtacttc cccacggc 1140
gccagccgg aggatcacaa acgacgcttc tttgctctg cggccttggaa ggtggatggg 1200
aagtccctgt taaaaacca gacccctggaa ctccatgtgc tatatggtcc tcacccggac 1260
aagaaggact gcttggggaa ctggacctgg caagaggggtt ctcagcagac tcttacatgc 1320
cagccccagg ggaatccagc ccctaattctg acctgcagcc ggaaagcaga tgggtcccg 1380
ctgcctatcg ggatggtaaa gtctgtcaaa cgggagatga atggtaccta caagtgcgt 1440
gccttagct cccgtggag tatcaccagg gacgtgcacc tgacagtgtgt gtaccatgat 1500

~6330854

cagaataacct	gggtcataat	tgttgtgtg	ttggtactga	tcattgcggg	cttcgtgatc	1560
gtggcgtcca	tttacaccta	ttaccgccag	aggaagatca	ggatatacaa	gttacagaag	1620
gctcaggagg	aggccctaaa	actcaaggta	caagccccgc	ctccctgagc	ccactggaca	1680
ggacacctgc	ctgggccccg	ctgctttga	acagatcaat	ggacagcatt	tacccctcac	1740
ccacccctc	tggctgtcac	aggacaggac	agtggcttg	ggatgcatac	tttagcctc	1800
aggcctaaga	ggactcggag	gggcaagact	gtgaactcgt	gacctggaca	cacctacagc	1860
ctggtgggcc	tgcagccaag	aaaggctgac	ttccttctct	attacccctg	ctgaggggcc	1920
ccctaccta	ggaaggtgtg	atatccgta	gacacaagca	agagaagaaa	aggaacacca	1980
tgcttcctct	gacatggaa	agctggaca	ctgtcccaa	ctcttgtga	tgtattttt	2040
aattcagagt	tctgacagtt	atttattgag	taccctgtac	agacactaga	ggagtgagca	2100
ggttaacatg	taagttattg	cctagaccct	ggtgaagggg	cacaacagag	tctggggaaa	2160
gatcatacgg	gtttgggctt	ctccacaggt	cagggtgctt	tcctcaaaag	agctgatttc	2220
tttcacgagt	catataaata	ctatgtggac	gagcagtggc	cctctgctcg	tagacctctc	2280
tgggaccct	gcctcctccc	acagcctgga	gtctcccagc	accagcatgg	gtgaccacct	2340
ccccacctac	atacattcct	acctttgttc	ccaatgtcaa	ccaccatgcc	taaatatgga	2400
cgctcacctt	tagcagctca	acaatggagt	ctcatgccc	tgaatttatg	gtcaatccct	2460
gcatgcctcc	acccggctcc	acctcaaaga	gaatgccttg	gagaaaaatgt	tccaaaccact	2520
tagaagggtc	ctgcaagctg	ttgtggagg	gtaggcaccc	ctcccagcgc	agaaggcttt	2580
ccttgaatc	aataaagttt	ta				2602

<210> 17

<211> 19

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide SB186

<400> 17

Cys	Thr	Pro	Leu	Pro	Lys	Lys	Glu	Leu	Leu	Leu	Pro	Gly	Asn	Asn	Arg
1					5			10				15			

Lys Val Tyr

~6330854

<210> 18
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide SB187
<400> 18

Gln Thr Ser Val Ser Pro Ser Lys Val Ile Leu Pro Arg Gly Cys
1 5 10 15

<210> 19
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Primer NS 25

<400> 19 gggcagtcaa cagctaaaaac ct 22

<210> 20
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Primer NS 26
<400> 20 tccaggggagc aaaacaactt ct 22