CS 4650/7650 Context Free Grammars and Parsing

Jacob Eisenstein

September 30, 2014

Complexity of CKY parsing

Syntactic ambiguity is endemic to natural language:¹

► Attachment ambiguity: we eat sushi with chopsticks, I shot an elephant in my pajamas.

¹Examples borrowed from Dan Klein

- ▶ Attachment ambiguity: we eat sushi with chopsticks, I shot an elephant in my pajamas.
- ► Modifier scope: southern food store

¹Examples borrowed from Dan Klein

- ► Attachment ambiguity: we eat sushi with chopsticks, I shot an elephant in my pajamas.
- ► Modifier scope: southern food store
- ▶ Particle versus preposition: The puppy tore up the staircase.

¹Examples borrowed from Dan Klein

- ► Attachment ambiguity: we eat sushi with chopsticks, I shot an elephant in my pajamas.
- ► Modifier scope: southern food store
- ▶ Particle versus preposition: The puppy tore up the staircase.
- ► Complement structure: The tourists objected to the guide that they couldn't hear.

¹Examples borrowed from Dan Klein

- ► Attachment ambiguity: we eat sushi with chopsticks, I shot an elephant in my pajamas.
- ► Modifier scope: southern food store
- ▶ Particle versus preposition: The puppy tore up the staircase.
- ► Complement structure: The tourists objected to the guide that they couldn't hear.
- ► Coordination scope: "I see," said the blind man, as he picked up the hammer and saw.

- ► Attachment ambiguity: we eat sushi with chopsticks, I shot an elephant in my pajamas.
- ► Modifier scope: southern food store
- ▶ Particle versus preposition: The puppy tore up the staircase.
- ► Complement structure: The tourists objected to the guide that they couldn't hear.
- ► Coordination scope: "I see," said the blind man, as he picked up the hammer and saw.
- ► Multiple gap constructions: The chicken is ready to eat

Another example

- A minimal grammar permits 36 parses!
- Broad-coverage grammars permit millions of parses of moderate-size sentences.

Attachment ambiguity

Probability of attachment sites

- ▶ [imposed [a ban [on asbestos]]]
- ► [imposed [a ban][on asbestos]]

Attachment ambiguity

Probability of attachment sites

- ▶ [imposed [a ban [on asbestos]]]
- ▶ [imposed [a ban][on asbestos]]

Include head of embedded NP

- ► ...[it [would end [its venture [with Maserati]]]]
- ▶ ...[it [would end [its venture][with Maserati]]]

Attachment ambiguity

Probability of attachment sites

- ▶ [imposed [a ban [on asbestos]]]
- ▶ [imposed [a ban][on asbestos]]

Include head of embedded NP

- ► ...[it [would end [its venture [with Maserati]]]]
- ► ...[it [would end [its venture][with Maserati]]]

Resolve multiple ambiguities simultaneously

► Cats scratch people with claws with knives

PCFGs

\mathbf{S}	$\rightarrow \mathrm{NP}\ \mathrm{VP}$	0.9
\mathbf{S}	\rightarrow S CC S	0.1
NP	\rightarrow N	0.2
NP	$\rightarrow \mathrm{DT}\ \mathrm{N}$	0.3
NP	\rightarrow N NP	0.2
NP	\rightarrow JJ NP	0.2
NP	\rightarrow NP PP	0.1
VP	$\rightarrow V$	0.4
VP	\rightarrow V NP	0.3
VP	$\rightarrow V \ NP \ NP$	0.1
VP	$\rightarrow \mathrm{VP}\ \mathrm{PP}$	0.2
PP	\rightarrow P NP	1.0

HMMs and PCFGs

	Sequences	Trees
model	HMM	PCFG
decoding	Viterbi algorithm	CKY
decoding complexity	$\mathcal{O}(M^2 K)$	$\mathcal{O}(M^3 R)$
likelihood	forward algorithm	inside algorithm
marginals	forward-backward	inside-outside

Problems with PCFGs

Subsumption

Parent annotation

Lexicalization

Non-terminal	Direction	Priority
S	right	VP SBAR ADJP UCP NP
VP	left	VBD VBN MD VBZ TO VB VP VBG
NP	right	N* EX \$ CD QP PRP
PP	left	IN TO FW

Lexicalization

Lexicalization

