Jonathan Nicolosi

CS 325-400 Summer 16

Homework Assignment 1

1.

We want to find where $8n^2 = 64n \lg n$. This reduces to $n = 8 \lg n$.

n	8lg(n)
1	0
2	8
4	16
8	24
16	32
32	40
64	48

We can see from this table that insertion sort beats merge sort for all values of n below 32, and for values of n above 64 merge sort beats insertion sort. Evaluating the functions for n in the interval (32, 64), we find that for all values of n < 44 insertion sort beats merge sort.

2.

	1 second	1 minute	1 hour	1 day	1 month	1 year	1 century
lg n	21,000,000	2 ^{60,000,000}	2 ^{360,000,000}	28,640,000,000	2 ^{259,200,000,000}	294,608,000,000,000	29,460,800,000,000,000
\sqrt{n}	1x10 ¹²	3.6x10 ¹⁵	1.30E+17	7.46E+19	6.72E+22	8.95E+27	8.95E+31
n	1,000,000	60,000,000	360,000,000	8,640,000,000	259,200,000,000	94,608,000,000,000	9.46E+15
n lg	62746.1	2.80142×10^6	1.50958×10^7	3.06479×10^8	7.88410×10^9	2.30374×10^12	1.99171×10^14
n							
n ²	1000	7745.966692	18973.66596	92951.60031	509116.8825	9726664.382	97266643.82
n³	100	391.486	711.37	2051.97	6375.95	45566.17	211499.47
2 ⁿ	19.932	25.838	28.423	33.008	37.915	46.427	53.071
n!	9	11	12	14	15	16	17

3.

Base Step:

If
$$n = 2$$
, then $T(2) = 2$ and $2 \lg 2 = 2$

Thus,
$$T(2) = 2lg2$$

Hypothesis Step:

Assuming $T(n) = n \lg n$ is true if $n = 2^k$ for some integer k > 0

Induction step:

If
$$n = 2^{k+1}$$
, then

$$T(2^{k+1})$$

$$= 2T(2^{k+1}/2) + 2^{k+1}$$

$$= 2T(2^k) + 2^{k+1}$$

$$= 2(2^{k} \lg(2^{k})) + 2^{k+1}$$

$$= 2^{k+1}((\lg(2^k))+1)$$

$$= 2^{k+1} \lg(2^{k+1})$$

4.

- a. O(g(n)) because f(n) grows faster
- b. $\Omega(g(n))$ because g(n) grows faster
- c. O(g(n)) and $\Omega(g(n))$ so therefore also $\Theta(g(n))$ because $\log_{10}(n) = (\frac{1}{\lg(10)})\lg(n)$
- d. $\Omega(g(n))$ because f(n) always grows faster
- e. O(g(n)) and O(g(n)) because there exists a k1 and a k2 that will cause f(n) to be tightly bound.
- f. O(g(n)) because f(n) is bound above by g(n)
- g. O(g(n))
- h. $\Omega(g(n))$

6.

First sort the list using an algorithm like Merge Sort that sorts in n time. Then perform a binary search on the sorted list.

```
SortedArray = {12, 3, 4, 15, 11, 7};
int i = 0;
int j = 5;
while(i<j){
         if(SortedArray[i]+SortedArray[j] == 20){
                  return true; //found a pair
         }
         else if(SortedArray[i]+SortedArray[j] > 20){
                  j--;
         }
         Else
                  i++;
}
return false; //pair does not exist
a.
Let f_1(n) = O(g_1(n)) and f_2(n) = O(g_2(n)). This means that there exist constants c_1, c_2 > 0 such that
f_1(n) \le c_1g_1(n) and f_2(n) \le c_2g_2(n) for all n > 0 integers. To prove the claim, we must find some
constant c_3 that causes f_1(n)+f_2(n) \le c_3 [g_1(n)+g_2(n)] for all n>0 integers.
f_1(n) + f_2(n) \le c_1g_1(n) + c_2g_2(n)
\leq \max(c_1, c_2)g_1(n) + \max(c_1, c_2)g_2(n)
\leq \max(c_1, c_2) [g_1(n) + g_2(n)]
= c_3 [g_1(n) + g_2(n)]
```

We've found a $c_3 = max(c_1, c_2)$ that satisfies the definition of big-Oh, proving the claim.

b.

This is true. If there exists a constant such that $f_1(n)$ will always lie below and to the right of $c*g_1(n)$ and there exists a constant such that $f_2(n)$ will always lie below and to the right of $c*g_2(n)$, then there must be a constant that we can multiply with $\frac{g_1(n)}{g_2(n)}$ such that $\frac{f_1(n)}{f_2(n)}$ will always lie below and to the right of it.

c.

This means that there exists positive constants c₁, c₂, and n₀ such that,

```
0 \le c_1(f_1(n) + f_2(n)) \le \max(f_1(n), f_2(n)) \le c_2(f_1(n) + f_2(n)) for all n \ge n_0
```

Selecting c_2 = 1 clearly shows the third inequality since the maximum must be smaller than the sum. C_1 should be selected as $\frac{1}{2}$, since the maximum is always greater than the weighted average of $f_1(n)$ and $f_2(n)$.

7.

```
a.
unsigned long long int fibRecursive(int n){
    if(n==0){
        return 0;
    }
    else if(n==1){
        return 1;
    }
    else{
        return fibRecursive(n-1) + fibRecursive(n-2);
    }
}
unsigned long long int fibIterative(int n){
int fib = 0;
```

```
int a = 1;
int t = 0;
int k;
for(k = 0; k<n; k++){
    t = fib + a;
    a = fib;
    fib = t;
}
return fib;
}</pre>
```

b.

N	Iterative Fibonacci	Recursive Fibonacci	
10	0	0	
20	0	0	
30	0	0	
40	0	.833	
50	0	102.888	
100	0	Indeterminate	
1,000	0	Indeterminate	
10,000	0	Indeterminate	
100,000	0	Indeterminate	
1,000,000	0	Indeterminate	
10,000,000	.053	Indeterminate	
100,000,000	.413	Indeterminate	
1,000,000,000	3.99	Indeterminate	

c.

d.

The recursive Fibonacci is best fit by an exponential function:

$$f(x) = a*exp(b*x)$$
 where
 $a = 3.577e-09$ (3.311e-09, 3.843e-09)
 $b = .4816$ (.4802, .4831)

The iterative Fibonacci is best fit by a polynomial function:

Recursive Fibonacci is much slower because you are adding redundant calls by recalculating the same values over and over again.