AD-A010 816

ON THE DEFLECTION OF PROJECTILES DUE TO ROTATION OF THE EARTH

G. Preston Burns

Naval Surface Weapons Center Dahlgren Laboratory, Virginia

June 1975

DISTRIBUTED BY:

SECURITY CLASSIFICATION OF THIS PAGE (When Date I	Entered)						
REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM						
1 REPORT NUMBER	2. GOVT ACCESSION NO.						
TR-3218		A)-ADID 816					
4 TITLE (and Subtitle) ON THE DEFLECTION OF PROJECTILES DU ROTATION OF THE EARTH	5. TYPE OF REPORT & PERIOD COVERED						
		6. PERFORMING ORG. REPORT NUMBER					
7. AUTHOR(s)		S. CONTRACT OR GRANT NUMBER(s)					
G. Preston Burns							
9 PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS					
Naval Surface Weapons Center		AREA & WORK DIEL HOMBERS					
Dahlgren Laboratory							
Dahlgren, Va. 22448							
11 CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE					
	June 1975						
		13. NUMBER OF PAGES					
14 MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report)					
		UNCLASSIFIED					
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE					
16 DISTRIBUTION STATEMENT (of this Report)	•						
Approved for public release; distri	bution unlimited	i.					

17. DISTRIBUTION STATEMENT (of the ebstrect entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

PRICES SUBJECT TO CHANGE

19 KEY WORDS (Continue on reverse side if necessary and identify by block number)

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE U.S. Department of Commerce Springfield, VA. 22151

20. ABSTRACT (Continue on reverse elde if necessary and identify by block number)

An analysis of the effect of the Coriolis acceleration on the flight of projectiles fired from the surface of the Earth has been extended to include bodies fired or released from any altitude above the surface of the Earth. An equation for Coriolis deflection perpendicular to the line of fire and the general condition for zero deflection are derived. Directions of Coriolis deflections are tabulated for bodies released horizontally at altitude yo.

NSWC/DL Technical Report TR-3218 June 1975

ON THE DEFLECTION OF PROJECTILES

DUE TO ROTATION OF THE EARTH

by

G. Preston Burns Warfare Analysis Department

Approved for public release; distribution unlimited.

FOREWORD

This report, referred to as Reference 7 in NWL Technical Report TR-3061 published in April, 1974, is one of several written on the effect of Coriolis acceleration on the flight of a projectile. It contains a derivation of the expression for DOMEGA, the Coriolis deflection perpendicular to the line of fire.

This work was performed in the Aeroballistics Division of the Warfare Analysis Department under ORDTASK 551028090.

Released by:

RALPH A. NIEMANN

Head, Warfare Analysis Department

ABSTRACT

An analysis of the effect of the Coriolis acceleration on the flight of projectiles fired from the surface of the Earth has been extended to include bodies fired or released from any altitude above the surface of the Earth. An equation for Coriolis deflection perpendicular to the line of fire and the general condition for zero deflection are derived. Directions of Coriolis deflections are tabulated for bodies released horizontally at altitude y_0 .

CONTENTS

																I	age
FOREW	ORD .						•	•									i
ABS TR	ACT .																ii
I.	INTR	odi	JC:	ric	N												1
II.	ANAL	YS I	S	AN	ID	R.	ESI	JL	TS								2
III.	CONC	LUS	310	ONS	3												4
	ences																

I. INTRODUCTION

An analysis was made 1 of the effect of the Coriolis acceleration on the flight of projectiles fired from the surface of the Earth and the condition for zero deflection was derived. It was assumed that the acceleration of gravity is constant; velocities due to Coriolis accelerations may be neglected in computation of Coriolis accelerations; air resistance is negligible; and the impact position is in the plane tangent to the Earth at the gun. The analysis has been extended, using the same assumptions, to include bodies fired or released from any altitude (y_0) above the surface of the Earth.

II. ANALYSIS AND RESULTS

Consider a projectile fired from altitude y_0 above a point on the Earth at latitude θ in the northern hemisphere with initial velocity V_0 having azimuth \emptyset (measured clockwise from north) and elevation

angle & . The time of flight is given by

$$T = (V_0 \sin^2 + (V_0^2 \sin^2 + 2g'y_0)^{\frac{1}{2}})/g'$$
 (1)

where $g' = g - 2V_0 \omega \cos \varepsilon$ sin $\emptyset \cos \theta$. The second term in the expression for g' is the vertical component $(2V_E\omega \cos \theta)$ of the Coriolis acceleration. V_E is the magnitude of the horizontal east component of projectile velocity and ω is the angular rate of rotation of the Earth.

The horizontal Coriolis displacements are, in the east (x) direction 1

$$x = V_{OW} T^2 \sin \theta \cos \varepsilon \cos \theta$$

resulting from the horizontal north component (\vec{v}_N) of projectile velocity; and, in the south (z) direction1,

$$z = V_0 \omega T^2 \sin \theta \cos \epsilon \sin \theta$$

resulting from the horizontal east component (\vec{v}_E) . In the west (-x) direction

$$d^2x/dt^2 = -2V_V^{\omega} \sin (90 - \theta)$$

from which, using $V_V = V_0$ sin ϵ - g't and integrating from t = 0 to t = T,

$$x = -V_0 \omega_{T^2} \sin \varepsilon \cos \theta + \omega g' T^3 (\cos \theta)/3.$$

V_V is the magnitude of the vertical component of projectile velocity.

The net horizontal displacement perpendicular to the line of fire is

$$D_{\Gamma} = V_{0}^{\omega}T^{2} \quad (\sin \theta \cos \varepsilon \cos \theta + \sin \theta \cos \varepsilon \sin \theta - \sin \varepsilon \cos \theta \cos \theta) + \frac{g!T}{3V_{0}} \cos \theta \cos \theta)$$

=
$$V_0 \omega T^2 (\sin \theta \cos \epsilon - \sin \epsilon \cos \theta \cos \theta + g^T \cos \theta \cos \theta)$$
. (2)

and
$$\tan \theta = (\tan \epsilon - \frac{g'T}{3V_0 \cos \epsilon}) \cos \theta.$$
 (3)

 $D_T = 0$

This is the general condition for zero deflection.

If
$$y_0 = 0$$
, $T = 2V_0(\sin \epsilon)/g^4$, and Eq. (3) reduces to tan $\epsilon = 3(\tan \theta)/\cos \theta$. (4)

Conclusions for this case are given in the previous analysis. 1

If
$$\mathbf{c} = \mathbf{0}$$
, $T = (2y_0/g^1)^{\frac{1}{2}}$, and we have from Eq. (3)

$$V_0 = -(2g^1y_0)^{\frac{1}{2}} (\cos \emptyset)/(3 \tan \theta). \tag{5}$$

therefore, neglecting air resistance, the initial velocity for zero deflection of a body projected horizontally at azimuth \emptyset from altitude y_o above the surface of the Earth at latitude θ varies directly as the square root of the altitude.

III. CONCLUSIONS

The following conclusions are drawn from a study of Eqs. (3) and (5) and Figure 1 for a body projected horizontally or dropped vertically downward from a point above the surface of the Earth:

(1) If the body is released horizontally in a northward direction $(270^{\circ} < \emptyset < 90^{\circ})$ in the northern hemisphere (Figure 1), the deflection is to the right for all velocities. If it is released horizontally in a southward direction $(90^{\circ} < \emptyset < 270^{\circ})$ in the northern hemisphere, the deflection is to the right or left depending on whether the horizontal velocity is greater or less, respectively, than that given by Eq. (5) for zero deflection.

Horizontal velocities required for zero deflection are given in Table I for different latitudes for azimuth 180 degrees. These were calculated using g=32 ft/sec², the approximate average value for altitudes between zero and 100,000 feet. To obtain values for other azimuth angles, multiply the table values by the absolute value of cos \emptyset .

- (2) If the body is released horizontally in a southward direction in the southern hemisphere (Figure 1), the deflection is to the left for all velocities. If it is released horizontally in a northward direction in the southern hemisphere, the deflection is to the left or right depending on whether the horizontal velocity is greater or less than that given by Eq. (5) for zero deflection.
- (3) A body projected or released directly east ($\emptyset = 90^{\circ}$) or west ($\emptyset = 270^{\circ}$) from a point above the surface of the Earth will deflect to the right in the northern hemisphere and to the left in the southern hemisphere; if released directly east or west horizontally from a point directly above the equator, the deflection is zero.
- (4) A body projected horizontally from a point directly above the north pole will deflect to the right; a body projected horizontally from a point directly above the south pole will deflect to the left.
- (5) A body dropped vertically down from a point above the surface of the Earth, except at the poles, will deflect toward east; if dropped vertically down from a point above either pole, the deflection is zero.

A summary of Coriolis deflections of bodies released horizontally or vertically downward at altitude $y_{\bm o}$ above the surface of the Earth is given in Table II.

FIGURE 1

EARTH AND BODY VELOCITY COMPONENTS FOR HORIZONTAL, BODY PROJECTION

TABLE I Horizontal Velocities (ft/sec) Required for $\frac{\text{Zero Coriolis Deflection}}{(\emptyset = 180^{\circ})*}$

Altitude (<u>ft</u>)	<u>15</u>	<u>30</u>	Latitude ((deg) 60	<u>75</u>
0	0	0	0	0	O
500	223	103	60	34	16
1000	315	146	84	49	23
1500	385	179	103	60	28
2000	445	207	119	69	32
2500	498	231	133	77	36
3000	545	253	146	84	39
4000	629	292	169	97	45
5000	704	327	189	109	51
6000	771	358	207	119	55
7000	833	386	223	129	60
8000	890	413	239	138	64
9000	944	438	253	146	68
10000	995	462	267	154	71
20000	1408	653	377	216	101
30000	1724	800	462	267	124
40000	1991	924	533	308	143
50000	2226	1033	596	344	160
60000	2438	1131	653	377	17 5
70000	2633	1222	706	407	189

^{*}To obtain values for other azimuth angles, multiply the table values by the absolute value of $\cos \theta$.

Summary of Coriolis Deflections

Direction of Deflection

At the Poles	\$ 1 1 4 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Left at South Pole	Right at North Pole	No Deflection		
At the Equator	No Deflection	No Deflection	Right	Left	East		;
In Southern Hemisphere	Left	Left	L if Vo'V _c R if Vo V _c	Left	East	L if V ₀ V _c R if V ₀ V _c	Left
In Northern Hemisphere	Right	Right	Right	R if VoVc L if VoV	East	Right	R if V>V C L if Vo Vc
Direction of Projection	East	West	North	South	Vertically Down	North from Latitude θ , Azimuth θ , Altitude yo	South from Latitude θ , Azimuth \emptyset , Altitude χ_0

a Deflection is zero if $V_{\rm O}$ = -(2g'y_O) $^{\frac{1}{2}}$ (cos \emptyset)/(3 tan Θ) = $V_{\rm C}$ Note: L, Left; R, Right

REFERENCES

1. Burns, G. Preston, "Deflection of Projectiles due to Rotation of the Earth," American Journal of Physics, November 1971, p. 1329.