

Problema 2 - Partiție

prof. Cheşcă Ciprian Liceul Tehnologic "Costin Nenițescu" Buzău

Varianta 1 - soluție de 100 puncte

• Să demonstrăm pentru început că dacă din tabloul de mai jos alegem la întâmplare n numere, astfel încât oricare două să nu fie situate pe aceeași linie sau coloană suma lor este egală întotdeauna cu n*(n²+1)/2.

1	2	3	 n
n+1	n+2	n+3	 n+n
n ² -n+1	n ² -n+2	n ² -n+3	 n ²

Se observă că un element a_{ij} al tabloului este dat de formula a_{ij} = (i-1)*n+j. Fie a_{1j1} , a_{2j2} , ..., a_{njn} unde j_1 , j_2 , ..., j_n este o permutare a numerelor 1,2,..., n.

Avem :
$$\sum_{k=1}^{n} a_{kjk} = \sum_{k=1}^{n} ((k-1) * n + j_k) = n \sum_{k=1}^{n} (k-1) + \sum_{k=1}^{n} j_k$$

Dar
$$\sum_{k=1}^{n} j_k = \frac{n*(n+1)}{2}$$
 și deci $\sum_{k=1}^{n} a_{kjk} = \frac{n*(n^2+1)}{2}$

- Un al doilea element important în prezentarea soluției este că odată ce o fost stabilită o prim[alegere (astfel încât oricare două elemente să nu fie situate pe aceeași linie sau coloană), să zicem p₁, p₂, p₃, p₄, p₅, ... , p_n (acestea reprezentând coloanele de pe care se aleg elementele iar liniile sunt întotdeauna 1,2,3,4,5,...,n), următoarele alegeri se fac utilizând permutări circulare (adică p₂, p₃, p₄, p₅, ... , p_n, p₁, etc) și în felul acesta se generează toate submulțimile partiției.
- Făcând această observație este necesar pentru a respecta condițiile cerute de problemă (diferențe diferite de n+1 și n − 1) să alegem inițial o secvență de pornire de genul p₁, p₂, p₃, ..., pₙ, astfel încât diferențele dintre două elemente consecutive să nu fie 1 sau -1. O astfel de secvență poate fi 1,3,5,..., 2,4,6,..... (în total n elemente). Se generează apoi, toate permutările circulare ale secvenței și în felul acesta toate submulțimile partiției. Se poate demonstra ușor că plecănd de la o astfel de secvență de pornire și efectuând

1

permutări circulare se păstrează proprietatea că diferenţele dintre oricare două elemente consecutive nu sunt 1 sau -1.

Varianta 2 – soluție de 100 puncte

Prof. Nicu Vlad-Laurenţiu Liceul Teoretic "M. Kogălniceanu", Vaslui

Se observă că elementele de pe coloane se încadrează între intervale de forma [1+(i-1)*n, i*n]. Se construiește un vector care verifică proprietățile din enunț din mulțimea {1,2,..n}, care va fi permutat ciclic și modificat cu ajutorul unei formule de calcul v[i]=v[i]+n*(i-1) și afișat de fiecare dată.