

ZXMP10A16K 100V DPAK P-channel enhancement mode MOSFET

Summary

V _{(BR)DSS}	$R_{DS(on)}\left(\Omega\right)$	I _D (A)		
-100	0.235 @ V _{GS} = -10V	4.6		
	0.285 @ V _{GS} = -6V	4.2		

Description

This new generation trench MOSFET from Zetex features a unique structure combining the benefits of low on-resistance and fast switching, making it ideal for high efficiency power management applications.

Features

- · Low on-resistance
- · Fast switching speed
- · Low threshold
- · Low gate drive
- · DPAK package

Applications

- · DC-DC converters
- Power management functions
- Disconnect switches
- Motor control

D Pinout - top view

Ordering information

Device	Reel size (inches)	Tape width (mm)	Quantity per reel	
ZXMP10A16KTC	13	16	2500	

Device marking

ZXMP 10A16

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Drain-source voltage	V _{DSS}	-100	V
Gate-source voltage	V _{GS}	±20	V
Continuous drain current @ V _{GS} = 10V; T _{amb} =25°C ^(b)	I _D	4.6	А
@ V _{GS} = 10V; T _{amb} =70°C ^(b)		3.7	
@ V _{GS} = 10V; T _{amb} =25°C ^(a)		3	
Pulsed drain current ^(c)	I _{DM}	15.4	Α
Continuous source current (body diode)(b)	I _S	10.6	Α
Pulsed source current (body diode)(c)	I _{SM}	15.4	Α
Power dissipation at T _{amb} =25°C ^(a)	P _D	4.24	W
Linear derating factor		34	mW/°C
Power dissipation at T _{amb} =25°C ^(b)	P _D	9.76	W
Linear derating factor		78	mW/°C
Power dissipation at T _{amb} =25°C ^(d)	P _D	2.15	W
Linear derating factor		16.8	mW/°C
Operating and storage temperature range	T _j , T _{stg}	-55 to +150	°C

Thermal resistance

Parameter	Symbol	Limit	Unit
Junction to ambient ^(a)	$R_{\Theta JA}$	29.45	°C/W
Junction to ambient ^(b)	$R_{\Theta JA}$	12.8	°C/W
Junction to ambient ^(d)	$R_{\Theta JA}$	58.1	°C/W

NOTES:

⁽a) For a device surface mounted on 50mm x 50mm x 1.6mm FR4 PCB with high coverage of single sided 2oz copper, in still air conditions.

⁽b) For a device surface mounted on FR4 PCB measured at t \leq 10 sec.

⁽c) Repetitive rating 50mm x 50mm x 1.6mm FR4 PCB, D=0.02 pulse width=300 μ s - pulse width limited by maximum junction temperature.

⁽d) For a device surface mounted on 25mm x 25mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.

Typical characteristics

Electrical characteristics (at T_{amb} = 25°C unless otherwise stated)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Static							
Drain-source breakdown voltage	V _{(BR)DSS}	-100			V	I _D = 250μA, V _{GS} =0V	
Zero gate voltage drain current	I _{DSS}			-1	μΑ	V _{DS} = -100V, V _{GS} =0V	
Gate-body leakage	I _{GSS}			100	nA	V _{GS} =±20V, V _{DS} =0V	
Gate-source threshold voltage	V _{GS(th)}	-2.0		-4.0	V	I_{D} = -250 μ A, V_{DS} = V_{GS}	
Static drain-source on-state	R _{DS(on)}			0.235	W	V _{GS} = -10V, I _D = -2.1A	
resistance (*)				0.285		V _{GS} = -6V, I _D = -1.9A	
Forward transconductance(*) (‡)	9 _{fs}		4.7		S	V _{DS} = -15V, I _D = -2.1A	
Dynamic ^(‡)							
Input capacitance	C _{iss}		717		pF	V _{DS} = -50V, V _{GS} =0V	
Output capacitance	C _{oss}		55.3		pF	f=1MHz	
Reverse transfer capacitance	C _{rss}		46.4		pF		
Switching (†) (‡)							
Turn-on-delay time	t _{d(on)}		4.3		ns	V _{DD} = -50V, I _D = -1A	
Rise time	t _r		5.2		ns	$R_G=6.0\Omega$, $V_{GS}=-10V$	
Turn-off delay time	t _{d(off)}		20		ns		
Fall time	t _f		12.1		ns		
Total gate charge	Q_g		16.5		nC	V _{DS} = -50V, V _{GS} = -10V	
Gate-source charge	Q _{gs}		2.47		nC	I _D = -2.1A	
Gate drain charge	Q_{gd}		5.36		nC		
Source-drain diode							
Diode forward voltage ^(*)	V_{SD}		-0.85	-0.95	V	T _j =25°C, I _S = -3.35A, V _{GS} =0V	
Reverse recovery time ^(‡)	t _{rr}		43.3		ns	T _j =25°C, I _S = -2.4A,	
Reverse recovery charge ^(‡)	O _{rr}		76.5		nC	di/dt=100A/μs	

NOTES:

^(*) Measured under pulsed conditions. Pulse width \leq 300 μ s; duty cycle \leq 2%.

^(†) Switching characteristics are independent of operating junction temperature.

^(‡) For design aid only, not subject to production testing.

Typical characteristics

Typical characteristics

Capacitance v Drain-Source Voltage

Gate-Source Voltage v Gate Charge

Basic gate charge waveform

Gate charge test circuit

Switching time waveforms

Switching time test circuit

Intentionally left blank

Package details - DPAK

DIM	Inc	hes	Millin	Millimeters		Inches		Millin	neters	
	Min	Max	Min	Max		Min	Max	Min	Max	
Α	0.086	0.094	2.18	2.39	е	0.090 BSC		e 0.090 BSC 2.29 BSC		BSC
A1	-	0.005	-	0.127	Н	0.370	0.410	9.40	10.41	
b	0.020	0.035	0.508	0.89	L	0.055	0.070	1.40	1.78	
b2	0.030	0.045	0.762	1.14	L1	0.108 REF		2.74 REF		
b3	0.205	0.215	5.21	5.46	L2	0.020 BSC		0.508 BSC		
С	0.018	0.024	0.457	0.61	L3	0.035	0.065	0.89	1.65	
c2	0.018	0.023	0.457	0.584	L4	0.025	0.040	0.635	1.016	
D	0.213	0.245	5.41	6.22	L5	0.045	0.060	1.14	1.52	
D1	0.205	-	5.21	-	θ1°	0°	10°	0°	10°	
Е	0.250	0.265	6.35	6.73	θ_{o}	0°	15°	0°	15°	
E1	0.170	-	4.32	-	=	-	-	-	-	

Note: Controlling dimensions are in inches. Approximate dimensions are provided in millimeters

Europe Americas **Asia Pacific Corporate Headquarters** Zetex GmbH Zetex Inc Zetex (Asia Ltd) Zetex Semiconductors plc Kustermann-park 700 Veterans Memorial Highway 3701-04 Metroplaza Tower 1 Zetex Technology Park, Chadderton Balanstraße 59 Hauppauge, NY 11788 Hing Fong Road, Kwai Fong Oldham, OL9 9LL D-81541 München Hong Kong United Kingdom Germany Telefon: (49) 89 45 49 49 0 Telephone: (1) 631 360 2222 Telephone: (852) 26100 611 Telephone: (44) 161 622 4444 Fax: (49) 89 45 49 49 49 Fax: (1) 631 360 8222 Fax: (852) 24250 494 Fax: (44) 161 622 4446 europe.sales@zetex.com usa.sales@zetex.com asia.sales@zetex.com hq@zetex.com

For international sales offices visit www.zetex.com/offices

Zetex products are distributed worldwide. For details, see www.zetex.com/salesnetwork

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Diodes Incorporated: ZXMP10A16KTC