

Instituto Federal de Educação, Ciência e Tecnologia de Brasília – Câmpus Taguatinga Ciência da Computação – Análise de Algoritmos
Lista de Exercícios – Complexidade Computacional e \mathcal{NP} -completude
Prof. Daniel Saad Nogueira Nunes

Aluno:	
Matrícula:	

Exercício 1

Defina as classes \mathcal{P} e \mathcal{NP} .

Exercício 2

Discorra sobre a questão \mathcal{P} vs \mathcal{NP} .

Exercício 3

Demonstrar que existe um algoritmo que leva tempo $O(2^n)$ para SAT é suficiente para provar que $\mathcal{P} \neq \mathcal{NP}$?

Exercício 4

O que significa um problema ser \mathcal{NP} -completo? Por que demonstrar que um problema é \mathcal{NP} -completo é atestar a sua dificuldade?

Exercício 5

Quais os caminhos para demonstrar que $\mathcal{P} = \mathcal{NP}$? E sobre $\mathcal{P} \neq \mathcal{NP}$?

Exercício 6

Tome o problema LONGEST-PATH:

- Entrada: um grafo G = (V, E), uma função $c : E \to \mathbb{R}$ de custo sobre as arestas e um inteiro k.
- Saída: Verdadeiro se existe um caminho em G que possui custo $\geq k$, Falso, caso contrário.

Demonstre que LONGEST-PATH $\in \mathcal{NPC}$.

Dica: Demonstre que LONGEST-PATH está em \mathcal{NP} e encontre uma redução de HAMILTONIAN-PATH para LONGEST-PATH em tempo polinomial. O problema HAMILTON-PATH é um problema \mathcal{NPC} e consiste em determinar se um grafo possui um caminho hamiltoniano, isto é, um caminho que passe por todos os vértices (sem repetições):

- Entrada: um grafo G = (V, E).
- Saída: Verdadeiro se existe um caminho hamiltoniano em G, Falso, caso contrário.

Exercício 7

Tome o problema TSP:

- Entrada: um grafo G = (V, E), uma função $c : E \to \mathbb{R}$ de custo sobre as arestas e um inteiro k.
- Saída: Verdadeiro se existe um ciclo hamiltoniano de custo $\leq k$ em G, Falso caso contrário.

Demonstre que TSP $\in \mathcal{NPC}$.

Dica: Demonstre que TSP está em \mathcal{NP} e encontre uma redução de HAMILTONIAN-CYCLE para TSP em tempo polinomial. O problema HAMILTON-CYCLE é um problema \mathcal{NPC} e consiste em determinar se um grafo possui um ciclo hamiltoniano, isto é, um ciclo que passe por todos os vértices (sem repetições) e retorna ao primeiro:

- Entrada: um grafo G = (V, E).
- Saída: Verdadeiro se existe um ciclo hamiltoniano em G, Falso, caso contrário.

Exercício 8

Um conjunto independente de um grafo G=(V,E) é um subconjunto $V'\subseteq V$ tal que cada aresta de E incide em no máximo um elemento de V', isto é, em outra palavras, não existem arestas ligando dois vértices de V'. Tome o problema do Conjunto Independente, IS:

- Entrada: um grafo G = (V, E) um inteiro k.
- Saída: Verdadeiro se existe um conjunto independente de tamanho $\geq k$ em G, Falso caso contrário.

Demonstre que $IS \in \mathcal{NPC}$.

Dica: Demonstre que IS está em \mathcal{NP} e encontre uma redução de CLIQUE para IS em tempo polinomial.

Exercício 9

Tome o problema (PARTITION):

- Entrada: Um conjunto $S = \{s_0, \dots, s_{n-1}\}$ de inteiros positivos.
- Saída: Verdadeiro, se existem S' e S'' tal que:

$$\sum_{x \in S'} x = \sum_{y \in S''} y$$

com $S' \cup S'' = S$ e $S' \cap S'' = \emptyset$, Falso, caso contrário.

Demonstre que Partition $\in \mathcal{NP}$.

Dica: Demonstre que PARTITION está em \mathcal{NP} e encontre uma redução de SUBSET-SUM para PARTITION em tempo polinomial. O problema SUBSET-SUM é um problema \mathcal{NP} e consiste em determinar se, dado um conjunto de inteiros R e um inteiro k, verificar se existe $R' \subseteq R$ cujos elementos somem k, isto é:

- Entrada: um conjunto de inteiros R.
- Saída: Verdadeiro se existe $R' \subseteq R$, tal que $\sum_{x \in R'} x = k$, Falso, caso contrário.

Exercício 10

Tome o problema BIN-PACKING:

- Entrada: Um conjunto de S de n objetos, cada qual com peso $0 < s_i \le 1$, e um inteiro k.
- Saída: Verdadeiro, se é possível empacotar os elementos de S com até k sacos que suportam 1 de peso, Falso caso contrário.

Desmontre que BIN-PACKING $\in \mathcal{NPC}$.

Dica: Demonstre que BIN-PACKING está em \mathcal{NP} e encontre uma redução de PARTITION para BIN-PACKING em tempo polinomial.

Exercício 11

Demonstre a existência de um 2-algoritmo de aproximação para o problema VC.

Exercício 12

Demonstre a existência de um 2-algoritmo de aproximação para o problema TSP sobre um espaço euclidiano.