Detección de Objetos

Dr. Iván Sipirán Mendoza

Objetivo

Determinar la ubicación de los objetos en la imagen

Datos y Evaluación

Datos

Es necesario contar con datasets para esta tarea

- Suficientemente grandes
- Etiquetados

Pascal VOC

COCO dataset

Evaluación de detección

Dado un groundtruth y las detecciones de un algoritmo

• Se considera una detección exitosa si hay alto overlap entre los bounding boxes

IoU >= 0.5

Evaluación de detección

- Medida más común es el Average Precision (AP), que se calcula por cada clase de objeto.
- Colectamos todas las predicciones en donde el algoritmo nos diga que hay un objeto de una clase y se ordenan por valor de confidencia.
- Ejemplo con clase "persona"

Si dibujamos la curva de precisión: AP es el área bajo la curva

En la práctica se toman valores interpolados de recall y se suman los valores monotónicamente decrecientes de precisión

Algoritmo de tres etapas

- Usar un algoritmo para generar regiones candidatas en imágenes (Selective Search)
- Extraer feature de región candidata con CNN pre-entrenada
- Clasificación (objeto) + Regresión (bounding box): SVM + regresor mínimos cuadrados

Algoritmo de tres etapas

- Usar un algoritmo para generar regiones candidatas en imágenes (Selective Search)
- Extraer feature de región candidata con CNN pre-entrenada
- Clasificación (objeto) + Regresión (bounding box): SVM + regresor mínimos cuadrados

Regresión de bounding boxes

- Dada la predicción de un bounding box $oldsymbol{p} = \left(p_x, p_y, p_w, p_h\right)$
- Dado el groundtruth $\boldsymbol{g} = \left(g_{x}, g_{y}, g_{w}, g_{h}\right)$

$$egin{aligned} \hat{g}_x &= p_w d_x(\mathbf{p}) + p_x \ \hat{g}_y &= p_h d_y(\mathbf{p}) + p_y \ \hat{g}_w &= p_w \exp(d_w(\mathbf{p})) \ \hat{g}_h &= p_h \exp(d_h(\mathbf{p})) \end{aligned}$$

$$d_{\star}(P) = \mathbf{w}_{\star}^{\mathrm{T}} \boldsymbol{\phi}_{5}(P).$$

Regresión de bounding boxes

Optimización

$$\mathbf{w}_{\star} = \operatorname*{argmin}_{\hat{\mathbf{w}}_{\star}} \sum_{i}^{N} (t_{\star}^{i} - \hat{\mathbf{w}}_{\star}^{\mathsf{T}} \boldsymbol{\phi}_{5}(P^{i}))^{2} + \lambda \left\| \hat{\mathbf{w}}_{\star} \right\|^{2}.$$

$$egin{aligned} t_x &= (g_x - p_x)/p_w \ t_y &= (g_y - p_y)/p_h \ t_w &= \log(g_w/p_w) \ t_h &= \log(g_h/p_h) \end{aligned}$$

Post-procesamiento

• Supresión de no máximos: podrían generarse muchos bounding boxes asociados al mismo objeto.

• Estrategia:

- Ordenar bounding boxes por valor de confidencia. Escoger el de valor más alto.
- Remover todos los bounding boxes con IOU >= 0.5 y misma clase que el escogido.
- Repetir hasta no poder eliminar más bounding boxes.

Before non-max suppression

After non-max suppression

Fast RCNN

Fast R-CNN

- Principal problema de RCNN es la caracterización de cada región propuesta con una CNN preentrenada
- · Solución: dejar que la caracterización se haga en una sola pasada por la red

Fast R-CNN

- Toda la imagen entra a una CNN, en donde cada región propuesta se proyecta en el feature map de salida.
- Se usa ROI Pooling para generar volúmenes del mismo tamaño por cada región

Faster RCNN

Faster R-CNN

• En este modelo, se busca integrar el algoritmo de propuesta de regiones en un solo modelo.

Yolo: You Only Look Once

- Modelo de una sóla pasada. La red realiza la predicción directamente desde la imagen de entrada. No propuestas de regiones.
- Estrategia:
 - Pre-entrenar una CNN para clasificación
 - Partir imagen en S x S celdas. Si el centro del un objeto cae en una celda, esa celda es responsable de detectar a ese objeto. Cada celda predice: ubicación de B bounding boxes, un score de confidencia, distribución de probabilidades para clasificación.

YOLO (You only look once)

Yolo: You Only Look Once

- Arquitectura de red
 - Modelo inicial: GoogleNet, módulo Inception modificado (Conv1x1 y Conv3x3)
 - Predicción final: 2 fully connected después del último feature map

YOLO - Ejemplo

y tiene tamaño 3 x 3 x 2 x 8

Clases

1. Persona

y =

- 2. Carro
- 3. Moto

Cada celda tiene B anchors ->

YOLO - Ejemplo

YOLO - Postprocesamiento

 Para cada celda, obtener B bounding boxes

Supresión de no máximos

Single Shot Detection

Single Shot MultiBox Detector (SSD)

- Uno de los principales problemas de métodos de detección es lidiar con objetos de múltiples tamaños (problemas de escala).
- · SSD es el primer algoritmo en buscar solución a este problema

Single Shot MultiBox Detector (SSD)

- Cada feature map se hace cargo de detectar objetos de un tamaño respectivo
- · Objetos pequeños en primeras capas y objetos grandes en capas profundas

RetinaNet (Feature Pyramid Network + Focal Loss)

RetinaNet

- Dos propuestas originales
 - Feature Pyramid Net (FPN)
 - Focal Loss para imbalance de clases

RetinaNet

- En detectores de una sola pasada, se generan muchas anchors candidatos. Si quieres una detección densa, tienes que generar muchos anchors: la mayoría de ellos con contenido que no son objetos.
- Existe un desbalance de ejemplares negativos con respecto a positivos.
 - 100000 easy: 100 hard examples
 - 40x bigger loss from easy examples

- Si son 100,000 ejemplos fáciles: loss = 10,000
- Si son 100 ejemplos difíciles: loss = 230
- El loss es dominado por los ejemplos fáciles, perjudicando el aprendizaje de ejemplos difíciles

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log(p_t).$$

Comparación

Model	PASCAL VOC 2007	PASCAL VOC 2010	PASCAL VOC 2012	COCO 2015 (IoU=0.5)	COCO 2015 (IoU=0.75)	COCO 2015 (Official Metric)	COCO 2016 (IoU=0.5)	COCO 2016 (IoU=0.75)	COCO 2016 (Official Metric)	Real Time Speed
R-CNN	x	62.4%	x	x	x	x	x	x	x	No
Fast R- CNN	70.0%	68.8%	68.4%	x	x	x	x	x	x	No
Faster R-CNN	78.8%	x	75.9%	x	x	x	x	x	x	No
R-FCN	82.0%	x	x	53.2%	x	31.5%	x	x	x	No
YOLO	63.7%	x	57.9%	x	x	x	x	x	x	Yes
SSD	83.2%	×	82.2%	48.5%	30.3%	31.5%	x	x	x	No
YOLOv2	78.6%	x	x	44.0%	19.2%	21.6%	x	x	x	Yes

Instance Segmentation

Objetivo

- Etiquetar cada píxel con su correspondiente objeto detectado
- Combinación de Detección + Segmentación

Instance Segmentation

COCO Dataset

- Clases: 91
- +300,000 imágenes
- +2.5M de instancias etiquetadas

COCO dataset

Mask-RCNN

- Es una extensión simple a Faster RCNN.
- Se infiere máscaras para cada objeto.

Ejemplos

Figure 5. More results of Mask R-CNN on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).

Aplicaciones

Detección de pose humana

• Facebook liberó su sistema de detección

https://github.com/facebookresearch/detectron

• Instance Segmentation en tiempo real: YOLACT

https://github.com/dbolya/yolact

• Detección de poses en humanos: HRNet

https://github.com/leoxiaobin/deep-high-resolution-net.pytorch

• Detección de poses en humanos: DensePose

https://github.com/facebookresearch/DensePose

• Reconstrucción 3D de poses humanas: VIBE

https://github.com/mkocabas/VIBE

• Reconstrucción 3D de poses humanas: PiFU

https://shunsukesaito.github.io/PIFu/