

# FISH & RICHARDSON P.C.

4225 Executive Square Suite 1400 La Jolla, California 92037

Telephone 858 678-507

Facsimile 858 678-509

Web Site 7

W.K. Richardson 1859-1951

Attorney Docket No.: 09743/019001/F99-027

## **Box Patent Application**

December 20, 1999

Assistant Commissioner for Patents Washington, DC 20231

Presented for filing is a new original patent application of:

Applicant: TAKESHI FUJITA

BOSTON

DELAWARE

NEW YORK

SILICON VALLEY

SOUTHERN CALIFORNIA

TWIN CITIES

WASHINGTON, DC

zź

Title:

LOUDSPEAKER SYSTEM HAVING WIDE-DIRECTIONAL

**CHARACTERISTICS** 

Enclosed are the following papers, including those required to receive a filing date under 37 CFR 1.53(b):

|               | Pages |
|---------------|-------|
| Specification | 14    |
| Claims        | 2     |
| Abstract      | 1     |
| Declaration   | 3     |
| Drawing(s)    | 7     |

**Enclosures:** 

— Postcard.

CERTIFICATE OF MAILING BY EXPRESS MAIL

Express Mail Label No. EL528179682US

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Date of Deposity / / Date of Deposity / /

Signatur

Typed or Printed Name of Person Signing Certificate

## FISH & RICHARDSON P.C.

Assistant Commissioner for Patents December 20, 1999 Page 2

There are 6 claims, 2 independent.

| Basic filing fee                             | \$760 |
|----------------------------------------------|-------|
| Total claims in excess of 20 times \$18      | \$0   |
| Independent claims in excess of 3 times \$78 | \$0   |
| Fee for multiple dependent claims            | \$0   |
| Total filing fee:                            | \$760 |

A check for the filing fee is enclosed. Please apply any other required fees or any credits to deposit account 06-1050, referencing the attorney docket number shown above.

If this application is found to be incomplete, or if a telephone conference would otherwise be helpful, please call the undersigned at (858) 678-5070.

Kindly acknowledge receipt of this application by returning the enclosed postcard.

Please send all correspondence to:

SCOTT C. HARRIS Fish & Richardson P.C. 4225 Executive Square, Suite 1400 La Jolla, CA 92037

Respectfully submitted,

Scott C. Harris Reg. No. 32,030

Enclosures SCH/jzc

10011633.doc

# **APPLICATION**

## FOR

# UNITED STATES LETTERS PATENT

TITLE:

LOUDSPEAKER SYSTEM HAVING WIDE-DIRECTIONAL

**CHARACTERISTICS** 

APPLICANT:

TAKESHI FUJITA

#### CERTIFICATE OF MAILING BY EXPRESS MAIL

| Express Mail Label No. EL528179682US |  |
|--------------------------------------|--|
|--------------------------------------|--|

I hereby certify that this correspondence is being deposited with the United States Postal Service as Express Mail Post Office to Addressee with sufficient postage on the date indicated below and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Worden

Date of Deposi

Signature

Typed or Printed Name of Person Signing Certificate

# LOUDSPEAKER SYSTEM HAVING WIDE-DIRECTIONAL CHARACTERISTICS

## BACKGROUND OF THE INVENTION

## Field of The Invention

The present invention relates to a loudspeaker system having a wide-directional characteristics utilized for speakers of, for example, HiFi-audio systems, acoustic measuring equipments and the like, particularly, in which a plurality of speakers are arranged at a peripheral surface portions of a polyhedron or spherical body thereby to be capable of listening sounds in good quality from various directions.

### Relevant Art of The Invention

One example of a loudspeaker of the type mentioned above is disclosed in Japanese Utility Model Laid-open (KOKAI) Publication No. SHO 59-31105.

This discloses a loudspeaker having a body of a regular dodecahedron shape, as a polyhedron shape, having respective surfaces to which uni-molf oscillators and diaphragms (oscillating plates) are arranged, respectively, thereby to listen sounds from the various directions around the polyhedron body.

However, it is generally known, in a speaker of the conventional structure, that a high-frequency

attenuation is caused except transverse (frontal) characteristics on an axial line of the speaker, and in the described prior art, in which the uni-molf oscillators and diaphragms are arranged on the respective surfaces of the polyhedron body, the respective uni-molf oscillators are necessarily not arranged on the same one plane and arranged at positions inclined with each other. Accordingly, because of the fact that the high frequency attenuation is caused except the frontal surface on the axial line of each of the uni-molf oscillators, it is difficult to listen the sounds, in good quality, in the range of low to high frequencies at all the positions at the entire peripheral surface of the speaker system.

In the HiFi audio speaker, the flatness of the frequency for maintaining constant the sound pressure even if the frequency varies was required. Further, it was also required for the speaker for specially measuring acoustic sounds to be provided with the flatness of the frequency and non-directional property thereof, but no countermeasure was substantially taken, in the conventional art, against the high frequency attenuation due to the inclined arrangement of the respective speakers.

#### SUMMARY OF THE INVENTION

An object of the present invention is to substantially eliminate defects or drawbacks encountered in

the prior art mentioned above and to provide a loudspeaker system having wide-directional characteristics capable of obtaining substantially uniform sound pressure in the range of low to high frequencies.

This and other objects can be achieved according to the present invention by providing a loudspeaker system having a wide-directional characteristic comprising:

- a loudspeaker body having a polyhedron shape;
- a plurality of speakers disposed on an outer peripheral surface of the loudspeaker body in a manner that axial lines of adjacent two speakers intersect each other at a predetermined angle; and

a correction filter operatively connected to the speakers, the correction filter providing correction value set so as to obtain a flatness of sound pressures at various portions around the loudspeaker body.

In a preferred embodiment, the loudspeaker body has a regular polyhedron shape having a plurality of outer surfaces on which the speakers are arranged respectively.

The regular polyhedron shape is a regular dodecahedron shape having twelve outer surfaces on which twelve speakers are arranged, respectively, the twelve speakers including three sets of speaker groups connected in parallel to each other, one of three sets of speaker groups including four speakers connected in series. In a modified embodiment, the twelve speakers may includes four

sets of speaker groups connected in series, one of four sets of speaker groups including three speakers connected in parallel to each other.

The correction filter includes at least two resistors and capacitors which are operatively connected.

In a further preferred embodiment, the loudspeaker body having a spherical shape may be utilized.

According to the structures and characters of the invention, mentioned above, by arranging the present correction filter, the flatness of the sound pressure level can be maintained in the inclination characteristic even if the frequency varies, so that the sound around the entire periphery of the wide-directional loudspeaker system can approach to actual sound. the Therefore, this widedirectional loudspeaker system is utilized as a loudspeaker for a HiFi audio system, a sound measuring system or the like, and there can be provided an excellent sound reproducing effect for market users of industrial speakers or the like and also provided an accurate sound (acoustic) stage therefor.

Furthermore, the wide-directional loudspeaker system of the present invention can provide a correct omnidirectional echo field in space as well as in spectrum in a room and can realize a good listening feeling with minimum generation of an incidental sound of the room itself without causing acoustic degradation based on a

degradation of back characteristic in a conventional directional frontal projection type speaker, thus providing practical advantageous effects.

In a preferred embodiment, since the loudspeaker body has a regular polyhedron shape such as dodecahedron shape, the flatness of the sound pressures at various positions around the loudspeaker body can be maintained by setting the correction value of the correction filter to one predetermined value.

Furthermore, in the embodiment in which the twelve speakers arranged on the twelve surfaces of the dodecahedron-shaped loudspeaker body may includes four sets of speaker groups connected in series, one of four sets of speaker groups including three speakers connected in parallel to each other, the sound quality can be further improved.

The nature and further characteristic features of the present invention will be made more clear from the following descriptions made with reference to the accompanying drawings.

## BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:

Fig. 1 is a circuit diagram showing a loudspeaker system having a wide-directional characteristics according to a first embodiment of the present invention;

Fig. 2 is a front view of the loudspeaker system of Fig. 1;

Fig. 3 is a sectional view taken along the line III-III in Fig. 2;

Fig. 4 is a graph showing a relationship between a sound pressure and a frequency in a case where the loud-speaker of Fig. 1 is provided with a correction filter;

Fig. 5 is a graph corresponding to that of Fig. 4 in a case where the loudspeaker of Fig. 1 is not provided with the correction filter;

Fig. 6 is a graph showing a relationship between a sound pressure and a frequency of the correction filter;

Fig. 7 is a view showing an arrangement that a measuring position of the loud speaker system of the first embodiment of Fig.1 lies on an axial line of coil speakers;

Fig. 8 is a view showing a wave-shape (form) at the measuring position of Fig. 7; and

Fig. 9 is a circuit diagram showing a loudspeaker system having a wide-directional characteristics according to a second embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS
[First Embodiment]

Figs. 1 to 8 represents the first embodiment of the present invention.

With reference to these figures, reference

numeral 1 in Fig. 2 denotes a loudspeaker system having a wide-directional characteristics (which mav be called "wide-directional loudspeaker system" or merely "loudspeaker system" hereinlater). The wide-directional loudspeaker comprises a loudspeaker body 2 having a regular dodecahedron shape as polyhedron body having a plurality (twelve) of surface portions on which a plurality (twelve) of coil speakers 3 as speakers are arranged respectively. These speakers 3 have axial lines P passing the center of the loudspeaker body 2 as shown in Fig. 3, and in this embodiment, adjacent tow axial lines P intersect each other at an angle  $\theta$ , which is set in this embodiment to 63°.

These twelve speakers 3 are arranged as a circuit diagram such as shown in Fig. 1 in three sets of speaker groups (rows) which are connected in parallel to each other, each set including four speakers 3 connected in series. A correction filter 4 including resistors R1 and R2 and capacitors C1 and C2 is c onnected between these speakers 3 and an amplifier.

The correction filter 4 sets values (correction values) of the resistors R1 and R2 and the capacitors C1 and C2 so as to obtain the flatness of the sound pressure at the respective positions on the periphery of the loudspeaker body 2. That is, as shown in Fig. 3, a measuring position S1 separated by about 50 cm from the apex between the adjacent two coil speakers 3 is a

position having the maximum inclination characteristic. In the case of no correction filter 4, a characteristic curve P1, as shown in Fig. 5, between the frequency and the sound pressure shows the characteristic such that as the frequency is made higher than about 500 Hz, the sound pressure is attenuated. Accordingly, as shown in Fig. 6, by using the correction filter 4 so as to make high the sound pressure as the frequency is made high, the correction filter is set so that a characteristic curve P2 in the inclination characteristic can maintain the flatness as shown in Fig. 4.

Because an attenuation factor in the arrangement mentioned above, is determined by the angle  $\theta$  constituted by the axial lines P of the adjacent coil speakers 3 and the characteristic feature of the coil speakers 3, the correction value of the correction filter 4 is properly set in accordance with the attenuation factor. Further, it is to be noted that in cases of polyhedron shapes other than that shown in Figs. 2 and 3, the angle  $\theta$  varies and an interference distance (zone) moves, and the correction filter 4 is also properly set in accordance with such variation and movement.

According to the manner mentioned above, even in the arrangement that the coil speakers 3 are arranged in the inclined positions, the flat characteristic curve P2 can be obtained and, hence, the sound in good quality can

be obtained at all the positions around the loudspeaker system 1.

Furthermore, as shown in Fig. 7, at the measuring position S2 on the axial lines P of the coil speakers 3, the characteristics of the coil speakers 3 are set so as to maintain the flatness of the sound pressure in the state of no correction filter 4, and accordingly, there may cause a fear that the flatness of the sound pressure cannot be maintained at the high frequency level in the case where the correction filter 4 is disposed. However, in such case, the flatness of the sound pressure on the axial line P can be maintained from the following reason.

That is, generally at an ordinary temperature, an equation (Eq. 1) of  $\lambda$ =c/f is established (where " $\lambda$ " is wavelength of sound; "c" is acoustic velocity (about 343.5 m/sec); and "f" is frequency). Therefore, in the described embodiment 1, providing that one wavelength  $\lambda$ =150 mm, the frequency f=about 2.3 kHz would be calculated from the above Eq. 1.

Accordingly, a wave-shape T1 of the sound from the central speaker 3 at the high frequency (here, about 2.3 kHz) at the measuring position S2 on the axial lines P of the coil speakers 3 in Fig. 7 will be shown as (a) in Fig. 8 and a wave-shape T2 of the sound from the speakers 3 on both sides of the central speaker 3 will be shown as (b) in Fig. 8, which has about 75 mm delay. This is because, as

shown in Fig. 7, since there is a difference of about 75 mm between a distance H1 from the measuring position S2 to the center of the central speaker 3 on the axial line P and a distance H2 from the measuring position S2 and the center of the speaker 3 on the axial line P disposed adjacent to the central speaker 3, the sounds generated at the same time from these central and adjacent speakers 3 have shifting in wavelengths therebetween of an corresponding to about the separated distance, i.e. about 75 mm in the described example, and in such case, since the phase is shifted by 180°, a mutual interference is caused. As a result, a high pass increasing due to the arrangement of the correction filter 4 is suppressed, thus substantially maintaining the flatness in the frontal characteristic. It is however noted that the interference frequencies are different due to the individual frequency characteristics of the respective coil speakers 3.

As mentioned above, by arranging the correction filter 4, the flatness of the sound pressure level can be maintained in the inclination characteristic even if the frequency varies, so that the sound around the entire periphery of the wide-directional loudspeaker system can approach to the actual sound.

Accordingly, by using the wide-directional loudspeaker system 1 of the present invention mentioned above as a loudspeaker for a HiFi audio system, a sound

measuring system or the like, there can be provided an excellent sound reproducing effect for market users of industrial speakers or the like and also provided an accurate sound (acoustic) stage therefor.

More in detail, uniform sound reproducing effect can be achieved at every positions in a room sound by the wide-directional loudspeaker reproducing field system 1 of the present invention, and as a result, an increased area of good stereophonic image can be formed, realizing the satisfactory sound reproducing thereby effect, and thus, a listener will be released from the necessity that he must keep his position only at one is because of the uniform 360° This listening point. horizontal and vertical dispersions by the wide-directional invention, and loudspeaker system 1 of the present according to this characteristic feature, substantially perfect effective listenable zone of a listening area with minimum early reflection by a floor or ceiling will be obtained.

Furthermore, the wide-directional loudspeaker system 1 of the present invention can provide a correct omunidirectional echo field in space as well as in spectrum in a room and can realize a good listening feeling with minimum generation of an incidental sound of the room itself without causing acoustic degradation based on a degradation of back characteristic in a conventional

directional frontal projection type speaker.

Still furthermore, in the present invention described above, the correction filter 4 having an extremely simple structure composed of the resistors R1 and R2 and the capacitors C1 and C2 is arranged at one portion. The correction filter 4 is arranged inside the loudspeaker body 2, so that it is not necessary to locate any external specific filter or pre-amplifier, which fascilitates the easy handling thereof.

[Second Embodiment]

Fig. 9 represents the second embodiment of the present invention.

With reference to Fig. 9, a loudspeaker system 11 having wide-directional characteristics has a regular dodecahedron shape as in the first embodiment, but it has a size larger than that of the first embodiment. Although, in the first embodiment, the separated distance is 75 mm as shown in Fig. 7, in this second embodiment, this distance is 120 mm.

In this second embodiment, three coil speakers 3 are connected in parallel to each other vertically in Fig. 9 as one set and four sets of these coil speakers 3 are then connected in series (lines) though the composite impedance is the same.

In such arrangement of the second embodiment, with reference to Fig. 7, since a separated difference

between a distance H1 from the measuring position S2 to the center of the central speaker 3 on the axial line P and a distance H2 from the measuring position S2 and the center of on the axial line P disposed adjacent to the speaker 3 about 120 mm, central speaker 3 is set to the interference occurs from a low frequency area of about 1.4 equation 1 (Eq. 1) at the accordance with the kHz in measuring position S2. For this reason, a correction filter 14 of this second embodiment further includes coils L1 and L2 and a resistor R3 in addition to the resistors R1 and R2 and capacitors C1 and C2 of the correction filter 4 of the first embodiment. According to this arrangement, the flatness of the sound pressure can be ensured.

Furthermore, in the second embodiment, since three coil speakers 3 are connected in parallel as one set and four sets of these coil speakers 3 are then connected in four lines in series, the sound quality at the sound listening time can be further improved in comparison with the arrangement of the first embodiment, and listeners confirmed this fact.

It is to be noted that the present invention is not limited to the described embodiments and many other changes or modifications may be made without departing from the scopes of the appended claims.

For example, in the above embodiments, although the coil speaker 3 is utilized as a loudspeaker, a

capacitor speaker may be instead used, and furthermore, the present invention is not correction filter used for the limited to the filter of the structure or type mentioned filters including capacitors, above, other correction resistors and coils, the numbers or types of which are different from those mentioned in the above embodiments, may be also utilized in accordance with the types or structures of the speakers to which the correction filters the flatness of the frequency are assembled as far as characteristics are maintained.

Still furthermore, in the described embodiments, although the loudspeaker body is formed so as to provide the regular dodecahedron shape, other polyhedron shape having more or less number of surfaces may be utilized, and in a more specific case, a spherical body may be utilized.

Further, it is to be noted that the amount to be corrected by the correction filter will be made small and the flatness of the sound pressure will be further maintained in a case where a polyhedron body having more than twelve surfaces or a spherical body is used because, in such case, an angle constituted by the axial lines of the adjacent two speakers can be made small thereby to make small the inclination characteristic.

#### WHAT IS CLAIMED IS

- 1. A loudspeaker system having a wide-directional characteristics comprising:
  - a loudspeaker body having a polyhedron shape;
- a plurality of speakers disposed on an outer peripheral surface of the loudspeaker body in a manner that axial lines of adjacent two speakers intersect each other at a predetermined angle; and
- a correction filter operatively connected to the speakers, said correction filter providing correction value set so as to obtain a flatness of sound pressures at various portions around the loudspeaker body.
- 2. A loudspeaker system according to claim 1, wherein said loudspeaker body has a regular polyhedron shape having a plurality of outer surfaces on which said speakers are arranged respectively.
- A loudspeaker system according to claim 2, wherein said regular polyhedron shape is a regular dodecahedron shape having twelve outer surfaces on which twelve speakers are arranged, respectively, said twelve speakers including three sets of speaker groups connected in parallel to each other, one of three sets of speaker groups including four speakers connected in series.

- A loudspeaker system according to claim 2, wherein said regular polyhedron shape is a regular dodecahedron shape having twelve outer surfaces on which twelve speakers are arranged, respectively, said twelve speakers including four sets of speaker groups connected in series, one of four sets of speaker groups including three speakers connected in parallel to each other.
- 5. A loudspeaker system according to claim 1, wherein said correction filter includes at least two resistors and capacitors which are operatively connected.
- 6. A loudspeaker system having a wide-directional characteristics comprising:
  - a loudspeaker body having a spherical shape;
- a plurality of speakers disposed on an outer peripheral surface of the loudspeaker body in a manner that axial lines of adjacent two speakers intersect each other at a predetermined angle; and
- a correction filter operatively connected to the speakers, said correction filter providing correction value set so as to obtain a flatness of sound pressures at various portions around the loudspeaker body.

### ABSTRACT OF THE DISCLOSURE

A loudspeaker system having a wide-directional characteristics includes a loudspeaker body having a polyhedron shape, preferably of dodecahedron plurality of speakers disposed on outer surfaces, respectively, of the polyhedron-shaped loudspeaker body in a manner that axial lines of adjacent two speakers intersect each other at a predetermined angle. A correction filter is further operatively connected to the speakers, and the correction filter provides a correction value set so as to obtain a flatness of sound pressures at various portions around the loudspeaker body.

FIG.1



FIG.2



FIG.3





FIG.5



FIG.6



FIG.7





FIG.9



# **Declaration and Power of Attorney For Patent Application**

特許出願宣言書及び委任状

## Japanese Language Declaration

日本語宣言書

下記の氏名の発明者として、私は以下の通り宣言します。

私の住所、私書箱、国籍は下記の私の氏名の後に記載され た通りです。

下記の名称の発明に関して請求範囲に記載され、特許出願している発明内容について、私が最初かつ唯一の発明者(下記の氏名が一つの場合)もしくは最初かつ共同発明者であると(下記の名称が複数の場合)信じています。

## 広指向特性拡声装置

Street Hall Breef Bert Street Hall street

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled.

#### LOUDSPEAKER SYSTEM HAVING

#### WIDE- DIRECTIONAL CHARACTERISTICS

上記発明の明細書(下記の欄で×印がついていない場合は、本書に添付)は、

| 月日に担    | 是出され、 | 米国出願番号または | 特許協定条約 |
|---------|-------|-----------|--------|
| 国際出願番号を |       |           | とし、    |
|         |       |           | に訂正され  |
| 生した。    |       |           |        |

私は特許請求範囲を含む上記訂正後の明細書を検討し、 内容を理解していることをここに表明します。

私は、連邦規則法典第37編第1条56項に定義されるとおり、特許資格の有無について重要な情報を開示する義務があることを認めます。

the specification of which is attached hereto unless the following box is checked:

| was filed on                           |
|----------------------------------------|
| as United States Application Number or |
| PCT International Application Number   |
| and was amended on                     |
| (if applicable).                       |

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56. I hereby claim foreign priority under Title 35, United States Code,

Under the Paperwork Reduction Act of 1995, no persons, are required to respond to a collection of information unless it displays a valid OMB control number.

## Japanese Language Declaration

(日本語宣言書)

私は、米国法典第35編119条(a)-(d)項又は365条 (b)項に基き下記の、米国以外の国の少なくとも一カ国を指 定している特許協力条約365(a)項に基ずく国際出願、又 は外国での特許出願もしくは発明者証の出願についての外国 優先権をここに主張するとともに、優先権を主張している、 本出願の前に出願された特許または発明者証の外国出願を以

Section 119 (a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's

> **Priority Not Claimed** 優先権主張なし

(出願日)

#### 下に、枠内をマークすることで、示しています。 certificate, or PCT International application having a filing date before that of the application on which priority is claimed. Prior Foreign Application(s) 外国での先行出願 (Number) (Country) (Day/ Month/ Year Filed) (番号) (国名) (出願年月日) (Number) (Country) (Day/ Month/ Year Filed) (番号) (国名) (出願年月日) (Number) (Country) (Day/ Month/ Year Filed) (番号) (国名) (出願年月日) 私は、第35編米国法典119条 (e) 項に基いて下記の米 I hereby claim the benefit under Title 35, United States Code, 国特許出願に記載された権利をここに主張いたします。 Section 119(e) of any United States provisional application(s) listed below. (Application No.) (Filing Date) (Application No.) (Filing Date) (出願番号) (出願日) (出願番号)

私は、下記の米国法典第35編120条に基いて下記の米 国特許出願に記載された権利、又は米国を指定している特許 協力条約365条(c)に基ずく権利をここに主張します。ま た、本出願の各請求範囲の内容が米国法典第35編112条 第1項又は特許協力条約で規定された方法で先行する米国特 許出願に開示されていない限り、その先行米国出願書提出日 以降で本出願書の日本国内または特許協力条約国際提出日ま での期間中に入手された、連邦規則法典第37編1条56項 で定義された特許資格の有無に関する重要な情報について開 示義務があることを認識しています。

A. L.

ħ

11

ı.d.

L 1

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application (s), or 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCTInternational filing date of application.

(Application No.) (Filing Date) (出願番号) (出願日)

(Status: Patented, Pending, Abandoned) (現況: 特許許可済み、係属中、放棄済)

私は、私自身の知識に基ずいて本宣言書中で私が行う表 明が真実であり、かつ私の入手した情報と私の信じるところ に基ずく表明が全て真実であると信じていること、さらに故 意になされた虚偽の表明及びそれと同等の行為は米国法典第 18編第1001条に基ずき、罰金または拘禁、もしくはそ の両方により処罰されること、そしてそのような故意による 虚偽の声明を行えば、出願した、又は既に許可された特許 の有効性が失われることを確認し、よってここに上記のごと く宣誓を致します。

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true: and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

## Japanese Language Declaration

(日本語宣言書)

委任状: 私は下記の発明者として、本出願に関する一切の 手続きを米特許商標局に対して遂行する弁理士または弁理人 として、下記の者を指名いたします。(弁理士、または代理 人の氏名及び登録番号を明記のこと) POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/ or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

Scott C. Harris, Reg. No. 32,030

書類送付先:

Send Correspondence to:

Scott C. Harris

\_\_\_\_\_

FISH & RICHARDSON

4225 Executive Square, Ste. 1400

La Jolla, CA 92037

直接電話連絡先:(名前及び電話番号)

Direct Telephone Calls to: (name and telephone number)

Scott C. Harris (619) 678-5070

| 唯一または第一発明者              | Full name of sole or first inventor                            |  |
|-------------------------|----------------------------------------------------------------|--|
| 藤田 猛                    | Takeshi FUJITA                                                 |  |
| 発明者の署名 日付 こっく こ         | Inventor's signature Date                                      |  |
| 藤田 猛 /999年12月6日         | Takeshi Fujita 6 December 15                                   |  |
| 住所                      | Residence                                                      |  |
| 日本国神奈川県戸塚区吉田町1181-10    | Totsuka-ku, Kanagawa-ken, Japan                                |  |
| 国籍                      | Citizenship                                                    |  |
| 日本国                     | Japan                                                          |  |
| 私書箱 〒244-0817 日本国神奈川戸塚区 | Post Office Address                                            |  |
| 吉田町1181-10              | 1181-10, Yoshida-cho, Totsuka-ku, Kanagawa-ken, 244-0817 Japan |  |
| 第二共同発明者                 | Full name of second joint inventor, if any                     |  |
| 第二共同発明者署名    日付         | Second inventor's signature Date                               |  |
| 住所                      | Residence                                                      |  |
| 国籍                      | Citizenship                                                    |  |
| 私書箱                     | Post Office Address c/o ENPLAS CORPORATION                     |  |
| 第三共同発明者                 | Full name of third joint inventor, if any                      |  |
| 第三共同発明者署名 日付            | Third inventor's signature Date                                |  |
| 住所                      | Residence                                                      |  |
| 国籍                      | Citizenship                                                    |  |
|                         | Japan                                                          |  |
| 私書箱                     | Post Office Address                                            |  |

(第三以降の共同発明者についても同様に記載し、署名をすること)

(Supply similar information and signature for third and subsequent joint inventors.)