

Communications Impairments

- Many impairments affecting a signal as it travels over the medium
 - Delay (covered)
 - Attenuation
 - Noise
 - Others factors interference, dissipation, ...

dB Scale

- It is a logarithmic scale "decibel" (dB)
 - Used extensively in Telecom
 - Represent large values and small values with short number
- P₁ is power in watts at transmitter A, P₂ is power level in watts at receiver B,
 - The ratio P_1/P_2 can be represented in dB by calculating:

Ratio in dB = 10 $log_{10}(P_1/P_2)$

dB is a relative measure

• It is a "relative measure" – dimensionless arguments to the log

- Measures ratios (unit dB)
- Measures power (unit dBW or dBm)

Example dB Calculations

- $P_1 = P_2$ - $10 \log_{10}(P_1/P_2) = 10 \log_{10}(1) = 10 \times 0 = 0 \text{ dB}$
- $P_1 = 10 P2$
 - $-10 \log_{10}(P_1/P_2) = 10 \log_{10}(10 P_2/P_2)$ = $10 \log_{10}(10) = 10 \times 1 = 10 \text{dB}$
- $P_1 = 0.1 P2$
 - $-10 \log_{10}(P_1/P_2) = 10 \log_{10}(0.1 P_2/P_2)$ =10 \log_{10}(0.1) = 10 x - 1= -10dB
- $P_1 = 2P2$
 - $-10 \log_{10} (P_1/P_2) = 10 \log_{10} (2 P_2/P_2)$ =10 \log_{10} (2) = 10 x 0.3 = 3dB
- $P_1 = 0.5 P2$
 - $10 \log_{10}(P_1/P_2) = 10 \log_{10}(0.5 P_2/P_2)$ = 10 \log_{10}(0.5) = 10 x (- 0.3) = -3dB

Example dB Calculations

- If P1 =1 microwatt, P2 = 10 watt
 - $-10 \log_{10}(P_1/P_2) = 10 \log_{10}(10^{-6}/10) = 10 \text{ x} 7 = -70 \text{ dB}$

- If $P_1 = 100$ Kilowatt, $P_2 = 10$ watt
 - $-10 \log_{10}(P_1/P_2) = 10 \log_{10}(100 \times 10^3/10) = 10 \times 4 = 40 \text{ dB}$

Review of Logarithms

- Simplifies math: Multiplication becomes addition, exponentiation becomes multiplication
- General Properties
 - $-\log(a*b) = \log(a) + \log(b)$
 - $-\log (a/b) = \log (a) \log (b)$
 - $-\log_n(n) = 1$
 - $Log_n(x) = log_{10}(x) / log_{10}(n)$

dB Calculations

 If x is positive, then log_n(x) is exponent of the base (n) that gives x

$$\log_n(x) = y \rightarrow then x = n^y$$

Get magnitude value from the dB value:

10
$$\log_{10} (P_1/P_2) = 15dB$$

 $\log_{10} (P_1/P_2) = 15/10 = 1.5$
 $P_1/P_2 = 10^{1.5} = 31.625$

Magnitude Values in dB

- If we have a transmitter sending a signal with transmit power X watt, how can we represent this in dB?
 - Use some known quantities as a reference,
 - Then get: 10 x log₁₀ (X value /reference)
 - Typically, we use 1 mW or 1 W as the reference
 - If the reference is 1 mW, then unit is dBm
 - If the reference is 1 W, then unit is dBW

dBm and dBW

 Example: If the transmit power is 100 mW, then we can represent it in dBm or dBW as follows:

dBm and dBW

- Example: If the transmit power is 100 mW, then we can represent it in dBm or dBW as follows:
 - In dBm (<u>reference 1mW</u>) $10 \log(100 \text{ mW}/\underline{1mW}) = 10 \log(100) = 20 \text{ dBm}$

- In dBW (<u>reference 1W</u>) $10 \log(100 \text{ mW/} \frac{1W}{1W}) = 10 \log(0.1) = -10 \text{ dBW}$

Tophat

Power in dB scale

P=10milliwatts, then in dBm it is equal to

A 1dBm

B 10dBm

C -10dBm

D None of the above

Power Loss

- In"Tele"communications
 - Destinations are far away ⇒ Loss of signal power as it travels from transmitter to receiver
- Why power received is less than the power transmitted?
 - energy gets scattered in many directions

energy is absorbed (can be converted to heat)

Attenuation

 In magnitude: received power (Rx power) is Transmitted power (Tx power) divided by attenuation

Rx power (in watts) = Tx power (in watts) / attenuation

- Similarly:
 attenuation (magnitude value)= Tx power (in watts) / Rx power (in watts)
- With dB units, we subtract

Rx power (in dBm or dBW) = Tx power (in dBm or dBW) - |total attenuation (in dB)|

Attenuation Example

- Let the signal power at the input of an optical link (fiber optic cable) be $P_t = 0.1$ Watt
- Let the signal power at the output of the optical link be $P_r = 0.05$ Watt
 - Note the power is reduced by half
- What is the attenuation of the link in dB?

$$10 \log_{10} (P_t/P_r) = 10 \log_{10} (0.1/0.05) \approx 3dB$$

- If the power in a signal gets reduced by half every 1 km, we say
 - The attenuation is 3 dB per km

On a copper wire link, signals lose half their power every 1km. If a signal is transmitted over 11 km link. What is the total attenuation at the end of the link

Α	33dB
В	11dB
С	3dB
D	None of the above

Attenuation - Question

 On a copper wire link, signals lose half their power every 1km. If the transmit power is 0.02Watt, compute the received power (in dBm) at the end of an 11 km link.

Attenuation - Solution

- On a copper wire link, signals lose half their power every 1km. If the transmit power is 20mW, compute the received power at the end of an 11 km line.
- $P_t = 20 \text{mW}$ - $P_t \text{ (dB)} = 10 \log_{10} (P_t / 1 \text{mW}) = 10 \log_{10} (20) = 13 \text{ dBm}$
- Total attenuation = total distance in km x attenuation per km
 - A(dB) = 11x 10 log(2) = 11 x (3)dB = 33 dB
- Received power = P_t (dBm) |A(dB)| = 13 33 = -20 dBm
 - In mWatts: $10 \log_{10} (P_r/1)_{=} 20 => P_r = 0.01 \text{mW}$

Q_Attenuation2 - Question

 Consider a optical fiber link of 10 km. The attenuation is 2 dB per Km. If the transmit power is 1mW (0dBm), What is the received power at the end of the fiber in dBm.

Wireless Channels

- Large scale fading: due to path loss and shadowing
- Multipath fading

Source: Fundamentals of Wireless Communications

Wireless Links Path Loss

- Attenuation and dissipation
- Path loss models how the signal power is reduced as it propagates along a wireless medium
- Path loss is function of the distance and frequency
 - Logarithmic loss with distance

Wireless Links Path Loss

Free space loss, ideal isotropic antenna

$$\frac{P_t}{P_t} = \frac{\left(4\rho d\right)^2}{2} = \frac{\left(4\rho f d\right)^2}{c^2}$$

Isotropic antenna radiates power uniformly in all directions

- P_{t} = signal power at transmitting antenna
- P_r = signal power at receiving antenna
- λ = carrier wavelength
- d = propagation distance between antennas
- $c = \text{speed of light } (3 \times 10^8 \text{ m/s})$
- where d and λ are in the same units (e.g., meters)

Attenuation is called path loss

In dB scale

$$L_{dB} = 10\log\frac{P_t}{P_r} = 20\log\left(\frac{4\rho d}{I}\right)$$

$$= -20\log(\lambda) + 20\log(d) + 21.98 \,dB$$

$$= 20\log\left(\frac{4\pi f d}{c}\right) = 20\log(f) + 20\log(d) - 147.56 \,dB$$

Path loss exponent depends on the frequency and distance

Wireless Links Path Loss: Path Exponent

- Path loss exponent varies depending on the environment
 - Path loss (dB)= $20 \log (f) + 10 n \log (d) + Constant$

f: Frequency of the signal

d: the distance between transmitter and receiver

n: path loss exponent (n=2 in free space, higher in indoor environment)

Constant = -147.56 dB

Received power (dBm) = transmitted power (dBm) - path loss (dB)

Derived from empirical measurements

Table 5.1 Path Loss Exponents for Different Environments [RAPP02]

Environment	Path Loss Exponent, n
Free space	2
Urban area cellular radio	2.7 to 3.5
Shadowed cellular radio	3 to 5
In building line-of-sight	1.6 to 1.8
Obstructed in building	4 to 6
Obstructed in factories	2 to 3

Beard and Stallings, Chapter 5, Wireless Comm Networks and Systems

Wireless Links Path Loss: Path Exponent

- Antennas may have antenna gains
 - Antenna gain at transmitter At
 - Antenna gain at receiver Ar

In this case:

Received power (dBm) = transmitted power (dBm) - path loss (dB) + $10\log_{10}(Ar At)$

Notes and Takeaways

Medium (the channel) introduces losses to the signal

- The received power is attenuated
 - Rx power (dBm) = Tx power (dBm) total losses +Total gains
- Receiver needs to detect the attenuated signal in the presence of noise
 - Noise will be covered next