MIGUEL ÁNGEL NAVARRO ARENAS (70588868M)

A)

VARIABLES DECISIÓN:

Xs=Numero TOTAL de trabajadores senior Xa=Numero TOTAL de trabajadores aprendices Xsa, Xsb, Xsc, Xsd->trabajadores senior en cada turno Xaa, Xab, Xac, Xad->trabajadores aprendices en cada turno

FUNCIÓN ÓPTIMA:

F.O. = min(Xs*120 + Xa*70)

RESTRICCIONES:

```
@GIN(Xsa);@GIN(Xsb);@GIN(Xsc);@GIN(Xsd);
@GIN(Xaa);@GIN(Xab);@GIN(Xac);@GIN(Xad);
```

```
[Max_senior](Xsa+Xsb+Xsc+Xsd)<=12;

[Max_aprendiz](Xaa+Xab+Xac+Xad)<=8;

[Incidencias_10_11]Xsa*10+Xaa*6>=60;

[Incidencias_11_12]Xsa*10+Xaa*6+Xsb*10+Xab*6>=90;

[Incidencias_12_13]Xsa*10+Xaa*6+Xsb*10+Xab*6+Xsc*10+Xac*6>=100;

[Incidencias_13_14]Xsa*10+Xaa*6+Xsb*10+Xab*6+Xsc*10+Xac*6+Xsd*10+Xad*6>=60;

[Incidencias_14_15]Xsb*10+Xab*6+Xsc*10+Xac*6+Xsd*10+Xad*6>=50;

[Incidencias_15_16]Xsc*10+Xac*6+Xsd*10+Xad*6>=70;

[Incidencias_16_11]Xsd*10+Xad*6>=30;
```

<mark>B)</mark> RESULTADOS:

Variable XSA XSB XSC XSD XAA XAB XAB XAC	Value 5.000000 0.000000 4.000000 3.000000 8.000000 0.000000 0.000000 0.000000	Reduced Cost 190.0000 190.0000 190.0000 190.0000 0.000000 0.000000 0.000000	Global optimal solution found. Objective value: Objective bound: Infeasibilities: Extended solver steps: Total solver iterations: Elapsed runtime seconds: Model Class:		2280.000 2280.000 0.000000 0 7 0.17
ROW COSTES MAX_SENIOR MAX_APRENDIZ INCIDENCIAS_10_11 INCIDENCIAS_11_12 INCIDENCIAS_12_13 INCIDENCIAS_13_14 INCIDENCIAS_13_14 INCIDENCIAS_14_15 INCIDENCIAS_15_16 INCIDENCIAS_16_11	Slack or Surplus 2280.000 0.000000 0.000000 38.00000 38.00000 108.0000 20.00000 0.000000 0.000000 0.000000	Dual Price -1.000000 0.000000 0.000000 0.000000 0.000000	Total variables: Nonlinear variables: Integer variables: Total constraints: Nonlinear constraints: Total nonzeros: Nonlinear nonzeros:	8 0 8 10 0	

CAPTURA LINGO:

```
1 !Xs=Numero de trabajadores senior = (Xsa+Xsb+Xsc+Xsd);
   !Xa=Numero de trabajadores aprendices;
 3 !Xsa, Xsb, Xsc, Xsd->trabajadores senior en cada turno;
4 !Xaa, Xab, Xac, Xad->trabajadores aprencdices en cada turno;
 5 !Asumimos que las variables son no negativas seleccionando la opcion de variables assumed non-negative;
 7 @GIN(Xsa);@GIN(Xsb);@GIN(Xsc);@GIN(Xsd);
 8 @GIN(Xaa);@GIN(Xab);@GIN(Xac);@GIN(Xad);
10 [Costes]MIN=(Xsa+Xsb+Xsc+Xsd)*120 + (Xsa+Xsb+Xsc+Xsd)*70;
11 [Max_senior](Xsa+Xsb+Xsc+Xsd)<=12;</pre>
12 [Max aprendiz](Xaa+Xab+Xac+Xad)<=8:
13 [Incidencias_10_11]Xsa*10+Xaa*6>=60;
14 [Incidencias_11_12] Xsa*10+Xaa*6+Xsb*10+Xab*6>=90;
15 [Incidencias_12_13]Xsa*10+Xaa*6+Xsb*10+Xab*6+Xsc*10+Xac*6>=100;
16 [Incidencias_13_14]Xsa*10+Xaa*6+Xsb*10+Xab*6+Xsc*10+Xac*6+Xsd*10+Xad*6>=60;
17 [Incidencias_14_15]Xsb*10+Xab*6+Xsc*10+Xac*6+Xsd*10+Xad*6>=50;
18 [Incidencias_15_16]Xsc*10+Xac*6+Xsd*10+Xad*6>=70;
19 [Incidencias_16_11]Xsd*10+Xad*6>=30;
```

C)

CONDICIÓN ADICIONAL:

Primero, cambiaría el nombre de las variables auxiliares: Xsa12 = nº de trabajadores senior que trabajan en el turno A, estando en la franja horaria que empieza a las doce; Xaa12 = nº de trabajadores junior que están en el turno A cuando estamos en la franja horaria que empieza a las doce.

Esto lo repetiría con todas las variables, los cálculos de los totales serían más tediosos, pero así llegaríamos a una solución correcta para este caso.

Entonces, las restricciones para esas franjas horarias quedarían tal que así:

```
[Incidencias_12_13]Xsa12*10+Xaa12*6+Xsb12*10+Xab12*6+Xsc12*10+Xac12*6>= 100;

[Adicional_12](Xsa12+Xsb12+Xsc12)*2/3+(Xaa12+Xab12+Xac12)*1/3>=1

[Incidencias_13_14]Xsa13*10+Xaa13*6+Xsb13*10+Xab13*6+Xsc13*10+Xac13*6+Xsd13*10+Xad13*6>=60;

[Adicional_13](Xsa13+Xsb13+Xsc13+Xsd13)*2/3+(Xaa13+Xab13+Xac13+Xad13)* 1/3>=1

[Incidencias_14_15]Xsb14*10+Xab14*6+Xsc14*10+Xac14*6+Xsd14*10+Xad14*6>=50;

[Adicional_14](Xsb14+Xsc14+Xsd14)*2/3+(Xab14+Xac14+Xad14)*1/3>=1
```