UOM Exam Second half 2021_Question paper_R2019/CSC 301 - Engineering Mathematics III /Sem-III / COMPUTER ENGINEERING / ARTIFICIAL INTELLIGENCE AND DATA SCIENCE / ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING / COMPUTER SCIENCE AND ENGINEERING (Artificial Intelligence and Machine Learning / COMPUTER SCIENCE AND ENGINEERING (Data Science) / COMPUTER SCIENCE AND ENGINEERING (Internet of Things and Cyber Security Including Block Chain Technology) / CYBER SECURITY / DATA ENGINEERING / INTERNET OF THINGS (IoT)

Dear Student,

Please note before you attempt this section of examination:

- 1. Q1, Q2, Q3 and Q4 carry 20 marks each.
- 2. This paper contains 20 Marks MCQ and 60 marks subjective section for 150 minutes duration.
- 3. It is mandatory for all the students to upload their answer papers in a single PDF format only.
- 4. You have to write Date of Examination, Seat number, Program, Scheme and semester, Subject name, Signature on EVERY PAGE.
- 5. Remain in the meet with your camera on and you in clear view throughout the duration of the exam.

*	Required
1.	Email *
2.	Student Name (As per exam form filled) *

3. Seat No *

Refer Hall ticket

Solve Questions as per the instructions given separately.

- Please upload a single PDF for Q1 to Q4
- For MCQs Question write Question number & correct option with complete text in option.
- Q2 to Q4 are subjective questions Solve Questions as per the instructions and marks allotted.

Page 1/6

01	Choose the correct option for following questions. All the Questions are
Q1.	compulsory and carry equal marks
1.	The Laplace transform of $\int_0^t \frac{1-e^{\frac{du}{u}}}{u} du$ is
Option A:	$\frac{1}{s}\log\left(\frac{s-a}{s}\right)$
Option B:	$\frac{1}{s}\log\left(\frac{s-a}{s}\right)$
Option C:	$\frac{1}{s}\log\left(\frac{s-a}{s}\right)$
Option D:	$\frac{1}{s}\log\left(\frac{s-a}{s}\right)$
2	If $f(x) = \sqrt{(1-\cos x)}$, $0 < x < 2\pi$ then find a_0 .
Option A:	$\frac{2\sqrt{2}}{\pi}$
Option B:	$\frac{\sqrt{2}}{\pi}$
Option C:	$\frac{\sqrt{2}}{3\pi}$
Option D:	$\frac{1}{\pi}$

Page 2/6

1	1
3.	If $f(z) = u + iv$ is analytic then
Option A:	u is harmonic but v may or may not be harmonic.
Option B:	u is harmonic but u may or may not be harmonic.
Option C:	u and v both need not be harmonic.
Option D:	u and v both harmonic.
4.	If $Var(X) = 4$ then $Var(3x+5)$ is
Option A:	12
Option B:	20
Option C:	26
Option D:	36
5.	If $f(x)$ is an even function in the interval $(-l, l)$ then in the Fourier series
	expansion of $f(x)$
Option A:	$a_n = 0, b_n = 0.$
Option B:	$a_n = 0, a_0 = 0.$
Option C:	$b_n = 0.$
Option D:	$a_0 = 0, b_n = 0.$
6	If $b_{yx} = 0.7764$, $b_{xy} = 1.2321$ then coefficient of correlation
Option A:	0.9781
Option B:	0.6291
Option C:	1.2307
Option D:	0.0023
l	

Page 3/6

7	Find the constants a, b, c, $\operatorname{dif} f(z) = x^2 + 2axy + 2by^2 + i(2cx^2 + dxy + y^2)$
Option A:	$a = 1, b = -\frac{1}{2}, c = -\frac{1}{2}, d = 2.$
Option B:	$a = 0, b = -\frac{1}{2}, c = -\frac{1}{2}, d = 2.$
Option C:	$a = 1, b = -2, c = -\frac{1}{2}, d = 1.$
Option D:	$a = 3, b = -\frac{1}{2}, c = -\frac{1}{2}, d = 2.$
8	If X_1 has mean 4 and variance 9 and If X_2 has mean -2 and variance 4 and they are independent then $Var(2X_1 + X_2 - 3)$ is
Option A:	41
Option B:	40
Option C:	36
Option D:	37
9	Suppose two fair dice are thrown and sum of the numbers on dice is noted, what
	is the probability that the sum can be equal to 6, 7, 8 or 9.
Option A:	2/9
Option B:	5/9
Option C:	4/9
Option D:	7/9
10.	Let X denotes the demand in quintals and Y denotes the price in rupees per kg.
	Also if $\overline{X} = 68$, $\overline{Y} = 69$, $\sum (X - \overline{X})^2 = 36$, $\sum (Y - \overline{Y})^2 = 44$,
	$\sum (X - \overline{X})(Y - \overline{Y}) = 24$ then the Karl Pearson's coefficient (r) of correlation is
Option A:	0.4030
Option B:	0.5030
Option C:	0.7030
Option D:	0.6030

Page 4/6

Q2	Solve any Four out of Six 5 marks each
\	
A	If $L\{\sin\sqrt{t}\} = \frac{\sqrt{\pi}}{2s\sqrt{s}} e^{-1/(+s)}$, find $L\{\sin 2\sqrt{t}\}$
В	Find the inverse Laplace transform of $\frac{s+29}{(s+4)(s^2+9)}$
С	Find the Fourier series for $f(x)$ in $(0,2\pi)$ where $f(x) = \begin{cases} x, & 0 < x \le \pi \\ 2\pi - x, & \pi \le x < 2\pi \end{cases}$
D	If $v = 3x^2y + 6xy - y^3$, show that v is harmonic function and find the corresponding analytic function.
E	Calculate the value of rank correlation coefficient from the following data regarding marks of 6 students in Statistics and Mathematics in a test: Marks: Statistics : 40, 42, 45, 35, 36, 39 Marks: Mathematics : 46, 43, 44, 39, 40, 43
F	Three factories A , B , C produces 30%, 50% and 20% of the total production of an item. Out of their production 80%, 50% and 10% are defective. An item is chosen at random and found to be defective. Find the probability that it was produced by the factory A .

Page 5/6

Q3	Solve any Four out of Six 5 marks each
А	By using Laplace transform, prove that $\int_{0}^{\infty} e^{-t} \cdot \frac{\sin^{2} t}{t} dt = \frac{1}{4} \log 5$
В	Using convolution theorem, find the inverse Laplace transform of $\frac{1}{(s-2)^4(s+3)}$
С	Obtain Fourier series for $f(x) = x + x^2$; $-1 < x < 1$
D	Find an analytic function $f(z) = u + iv$, where $u + v = e^*(\cos y + \sin y)$
E	State true or false with justification. "If two lines of regression are $x + 3y - 5 = 0$ and $4x + 3y - 8 = 0$, then the correlation coefficient is $+0.5$ ".
F	If the mean of the following distribution is 16. Find m, n and variance. $X : 8, 12, 16, 20, 24$ $P(X) : 1/8 m n 1/4 1/12$

Page 6/6

Q4	Solve any Four out of Six 5 marks each
A	Find the Laplace transform of $e^{-4\epsilon} \int_0^t u \cdot \sin 3u du$
В	Find the inverse Laplace transform of $\tan^{-1}\left(\frac{a}{s}\right)$
С	Obtain half-range sine series for $f(x)$ where $f(x) = \begin{cases} x, & 0 < x < (\pi/2) \\ \pi - x, & (\pi/2) < x < \pi \end{cases}$
D	Find the orthogonal trajectory of the family of curves given by $2x - x^3 + 3xy^2 = \alpha$
E	Fit a straight line to the following data. $(x,y) = (-1,-5),(1,1),(2,4),(3,7),(4,10)$ Estimate y when $x = 7$
F	A random variable X has the following probability density function $f(x) = \begin{cases} ke^{-kx}, & x > 0, k > 0 \\ 0, & elsewhere \end{cases}$ Find the moment generating function and hence, the mean and variance.

4. Please Upload complete scanned answer copy in a single PDF file. *

Files submitted: