Automatically Assessing Wikipedia Article Quality by Exploiting Article–Editor Networks

Xinyi Li, Jintao Tang, Ting Wang, Zhunchen Luo and Maarten de Rijke University of Amsterdam, National University of Defense Technology, China Defense Science and Technology Information Center

Introduction

► What?

We study the quality assessment of Wikipedia articles.

► Why?

Wikipedia articles vary in quality and only a minority of them are manually evaluated high quality articles. Since manually labeling articles is inefficient, it is essential to automatically assess article quality.

470 million articles in English

0.1% are featured(best quality ones)

30,000 active editors per month...and dropping

► How?

We view this task as a ranking problem by exploiting the article-editor network. We combine existing manual evaluations on Wikipedia as features for automatic ranking.

Models

We have developed several models for estimating Wikipedia article quality based on the article-editor network:

▶ Pagerank

-Treat both articles and editors as nodes connected by edges that represent editing relations.

- ► Simple Weighted (SW) model
- ► Complex Weighted (CW) model.
- -Consider weights between edges.
- ► Simple Weighted Probabilistic (SWP) model
- ► Complex Weighted Probabilistic (CWP) model
 - -Incorporate manual evaluation results and assign an article's initial value as its probability of being high quality.

Evaluation

► Assessing article quality by ranking

Using **featured articles** (the best quality articles on Wikipedia) as the gold standard to measure ranking performance.

► Metric

- 1. Recall scores at the first N items in the result set.
- 2.Precision-recall curves.

Dataset

Table: Statistics of datasets.										
Category	#articles	#editors	#featured	articles						
Chemistry	7,796	392,055		36						
Meteorology	4,218	187,637		138						
Geography	38,543	1,360,508		180						

Experiment 1

Aim: examine the impact of the number of featured articles on ranking performance

Recall (N) of SWP and CWP in different categories

f	r@100		r@200		r@300		r@400			
featured%	SWP	CWP	SWP	CWP	SWP	CWP	SWP	CWP		
chemistry										
25%	.556	.363	.767	.667	.867	.793	.440	.874		
50%	.644	.378	.778	.694	.861	.833	.972	.883		
75%	.756	.400	.911	.744	.956	.911	1.000	.944		
meteorology										
25%	.111	.092	.246	.175	.365	.317	.498	.421		
50%	.101	.103	.274	.165	.438	.346	.607	.486		
75%	.140	.114	.346	.200	.517	.357	.703	.514		
geography										
25%	.173	.086	.342	.168	.426	.283	.496	.369		
50%	.163	.069	.357	.182	.497	.317	.562	.422		
75%	.149	.051	.376	.162	.518	.327	.596	.407		

Experiment 2

Aim: compare model performance when using all featured articles for initialization

Precision-recall curves for the baseline (Basic), simple weighted (SW), complex weighted (CW), simple weighted probabilistic (SWP), complex weighted probabilistic (CWP) model.

Conclusion

- ► Link structure is valuable for ranking in this setting.
- ► Weighted models perform better than basic models.
- ► Combination of existing manual evaluations with the article-editor network yields a state-of-the-art solution for assessing article quality.

