0.1 可测函数列的收敛

0.1.1 几乎处处收敛与一致收敛

定义 0.1 (几乎处处收敛)

设 $f(x), f_1(x), f_2(x), \cdots, f_k(x), \cdots$ 是定义在点集 $E \subset \mathbb{R}^n$ 上的广义实值函数. 若存在 E 中的点集 Z, 有 m(Z)=0 及

$$\lim_{k \to \infty} f_k(x) = f(x), \quad x \in E \setminus Z,$$

则称 $\{f_k(x)\}$ 在 E 上**几乎处处收敛**于 f(x), 并记为

$$f_k(x) \to f(x)$$
, a. e. $x \in E$.

或

$$\lim_{k \to \infty} f_k(x) = f(x), \text{ a.e. } x \in E.$$

再不引起歧义下, 也可简记为

$$f_k \xrightarrow{\text{a.e.}} f$$
.

定理 0.1

若 $\{f_k(x)\}\$ 是 E 上的可测函数列, 并且 $f_k(x) \to f(x)$, a. $e.x \in E$. 则 f(x) 也是 E 上的可测函数.

证明 由条件可知 $\{f_k(x)\}$ 是 E 上的可测函数列, 并且 Z 为零测集也可测, 从而 $E\setminus Z$ 是可测集. 于是由定理??(2) 可知 $\{f_k(x)\}$ 是 $E\setminus Z$ 上的可测函数列, 并且由条件可知 $\lim_{k\to\infty} f_k(x) = f(x)$ ($x\in E\setminus Z$), 因此由推论??可得 f(x) 也是 $E\setminus Z$ 上的可测函数. 又注意到对 $\forall t\in \mathbb{R}$, 都有

$$\{x \in Z : f(x) > t\} \subset Z.$$

而 Z 是零测集, 由零测集的子集也是零测集可知, $\{x \in Z : f(x) > t\}$ 也是零测集, 从而 $\{x \in Z : f(x) > t\}$ 也可测. 于 是 f(x) 在 Z 上可测. 故由定理**??**(1) 可知 f(x) 在 $E = (E \setminus Z) \cup Z$ 上可测.

定义 0.2 ((接) 近一致收敛)

设 $\{f_n(x)\}$ 为 E 上的可测函数列, 对 $\forall \delta > 0$, 存在 $E_\delta \subset E, m(E_\delta) < \delta$, 使得 $\{f_n(x)\}$ 在 $E \setminus E_\delta$ 上一致收敛于 f(x), 则称 $\{f_n(x)\}$ 在 E 上 (接) 近一致收敛于 f(x).

引理 0.1

设 f(x), $f_1(x)$, $f_2(x)$, \cdots , $f_k(x)$, \cdots 是 E 上几乎处处有限的可测函数, 且 $m(E) < +\infty$. 若 $f_k(x) \to f(x)$, a. e. $x \in E$, 则对任给 $\varepsilon > 0$, 令

$$E_k(\varepsilon) = \{x \in E : |f_k(x) - f(x)| \ge \varepsilon\},\$$

则 $E_k(\varepsilon)(k=1,2,\cdots)$ 可测, 并且

$$\lim_{j \to \infty} m \left(\bigcup_{k=j}^{\infty} E_k(\varepsilon) \right) = 0. \tag{1}$$

证明 注意到对 $\forall k \in \mathbb{N}$, 都有

$$E_k(\varepsilon) = \{ x \in E : |f_k(x) - f(x)| \ge \varepsilon \} = \{ x \in E : -\varepsilon \le f_k(x) - f(x) \le \varepsilon \}$$
$$= \{ x \in E : f_k(x) - f(x) \ge -\varepsilon \} \cup \{ x \in E : f_k(x) - f(x) \le \varepsilon \}.$$

因为 $f_k(x)$ 和 f(x) 都在 E 上可测, 所以由可测函数的运算性质 (1) 可知 $f_k(x) - f(x)$ 也在 E 上可测. 从而再由定

理??及可测集的性质可得

$$E_k(\varepsilon) = \{x \in E : f_k(x) - f(x) \ge -\varepsilon\} \cup \{x \in E : f_k(x) - f(x) \le \varepsilon\} \in \mathcal{M}.$$

由函数列收敛的否命题可知, 上限集 $\bigcap_{i=1}^{\infty} \bigcup_{k=i}^{\infty} E_k(\varepsilon)$ 中的点一定不是收敛点, 从而依题设可知

$$m\left(\lim_{j\to\infty}\bigcup_{k=j}^\infty E_k(\varepsilon)\right)=m\left(\bigcap_{j=1}^\infty\bigcup_{k=j}^\infty E_k(\varepsilon)\right)=0.$$

根据递减可测集列的测度运算,可知(1)式成立.

定理 0.2 (Egorov(叶戈洛夫) 定理)

设 f(x), $f_1(x)$, $f_2(x)$, \cdots , $f_k(x)$, \cdots 是 E 上几乎处处有限的可测函数, 且 $m(E) < +\infty$, 则 $f_k(x) \to f(x)$, a.e. $x \in E$ 的充要条件是对任给的 $\delta > 0$, 存在 E 的可测子集 E_{δ} : $m(E_{\delta}) \leq \delta$, 使得 $\{f_k(x)\}$ 在 $E \setminus E_{\delta}$ 上一致收敛于 f(x).

这也等价于对 $\forall \delta > 0$, 存在 E 的可测子集 F_{δ} : $m(E \setminus F_{\delta}) < \delta$, 使得 $\{f_k(x)\}$ 在 F_{δ} 上一致收敛于 f(x). 也即 $\{f_n(x)\}$ 接近一致收敛于 f(x).

注 Egorov 定理中的条件 m(E) < +∞ 不能去掉. 例如考虑可测函数列

$$f_n(x) = \chi_{(0,n)}(x), \quad n = 1, 2, \dots, \quad x \in (0, +\infty).$$

它在 $(0,+\infty)$ 上处处收敛于 $f(x) \equiv 1$, 但在 $(0,+\infty)$ 中的任一个有限测度集外均不一致收敛于 $f(x) \equiv 1$.

但对 $m(E) = +\infty$ 的情形, 结论可陈述如下: 对任给 M > 0, 存在 $E_M:E_M \subset E, m(E_M) > M$, 使得 $f_n(x)$ 在 E_M 上一致收敛于 f(x).(见推论 0.1)

注 等价条件的证明:⇒: 对 $\forall \delta > 0$, 只需令 $F_{\delta} = E \setminus E_{\delta}$, 则显然 F_{δ} 为 E 的可测子集, 且 $E_{\delta} = E \setminus F_{\delta}$. 从而 $m(E \setminus F_{\delta}) = m(E_{\delta}) < \delta$ 且 { $f_k(x)$ } 也在 $E \setminus E_{\delta} = F_{\delta}$ 上一致收敛于 f(x). ←: 对 $\forall \delta > 0$, 取 $E_{\delta} = E \setminus F_{\delta}$, 同理可证.

证明 必要性: 由引理 0.1可知, 对任给的 $\varepsilon > 0$, 有

$$\lim_{j\to\infty} m\left(\bigcup_{k=j}^{\infty} E_k(\varepsilon)\right) = 0.$$

其中 $E_k(\varepsilon) = \{x \in E : |f_k(x) - f(x)| \ge \varepsilon\}$ 可测. 现在取正数列 1/i $(i = 1, 2, \cdots)$, 则对任给的 $\delta > 0$ 以及每一个 i, 存在 j_i , 使得 $m\left(\bigcup_{k=j_i}^{\infty} E_k\left(\frac{1}{i}\right)\right) < \frac{\delta}{2^i}$. 令 $E_{\delta} = \bigcup_{i=1}^{\infty} \bigcup_{k=j_i}^{\infty} E_k\left(\frac{1}{i}\right)$, 显然 E_{δ} 可测. 我们有

$$m(E_{\delta}) \leqslant \sum_{i=1}^{\infty} m\left(\bigcup_{k=j_i}^{\infty} E_k\left(\frac{1}{i}\right)\right) \leqslant \sum_{i=1}^{\infty} \frac{\delta}{2^i} = \delta.$$

现在来证明在点集

$$E \setminus E_{\delta} = \bigcap_{i=1}^{\infty} \bigcap_{k=i_{i}}^{\infty} \left\{ x \in E : |f_{k}(x) - f(x)| < \frac{1}{i} \right\}$$

上, $\{f_k(x)\}$ 是一致收敛于 f(x) 的.

事实上, 对于任给 $\varepsilon > 0$, 存在 i, 使得 $1/i < \varepsilon$, 从而对一切 $x \in E \setminus E_{\delta}$, 当 $k \geqslant j_i$ 时, 有

$$|f_k(x) - f(x)| < \frac{1}{i} < \varepsilon.$$

这说明 $f_k(x)$ 在 $E \setminus E_{\delta}$ 上一致收敛于 f(x).

充分性: 分别取 $\delta_k = 1/k, k = 1, 2, \cdots$,则存在 $F_k \subset E, m(F_k) < 1/k$,使得 $f_n(x)$ 在每个 $E \setminus F_k$ 上均一致收敛于 f(x). 记 $F = \bigcap_{k \in K} F_k$,则

$$m(F) \le m(F_k) < \frac{1}{k}, \quad k = 1, 2, \cdots$$

令 $k \to \infty$ 得 m(F) = 0. 下面证明 $f_k(x)$ 在 $E \setminus F$ 上处处收敛于 f(x). 由于

$$E \backslash F = E \backslash \bigcap_{k=1}^{\infty} F_k = E \cap \left(\bigcup_{k=1}^{\infty} F_k^c\right) = \bigcup_{k=1}^{\infty} (E \cap F_k^c) = \bigcup_{k=1}^{\infty} (E \backslash F_k).$$

故对 $\forall x_0 \in E \setminus F$, 存在 $k_0 \in \mathbb{N}$, 使得 $x_0 \in E \setminus F_{k_0}$. 又 f_k 在 $E \setminus F_{k_0}$ 上一致收敛于 f, 从而 $\lim_{k \to \infty} f_k(x) = f(x)$, $\forall x \in E \setminus F_{k_0}$, 于是 $\lim_{k \to \infty} f_k(x_0) = f(x_0)$. 故由 x_0 的任意性可得 $f_k(x)$ 在 $E \setminus F$ 上处处收敛于 f(x). 因此 $f_k(x) \to f(x)$, a.e. $x \in E$. \square

推论 0.1

设 f(x), $f_1(x)$, $f_2(x)$, \cdots , $f_k(x)$, \cdots 是 E 上几乎处处有限的可测函数, 且 $m(E) = +\infty$. 若 $f_k(x) \to f(x)$, a.e. $x \in E$, 则对任给 M > 0, 存在 $E_M : E_M \subset E$, $m(E_M) > M$, 使得 $f_k(x)$ 在 E_M 上一致收敛于 f(x).

证明 令 $E_k = E \cap B(0, k)$, 显然 $\{E_k\}$ 为递增可测集列, 并且

$$m(E_k) \leqslant m(B(0,k)) = \pi k^2 < +\infty.$$

又 $m(E) = +\infty$, 故

$$\lim_{k \to \infty} m(E_k) \xrightarrow{\text{iidentify}} m(\lim_{k \to \infty} E_k) = m\left(\bigcup_{k=1}^{\infty} E_k\right) = m(E) = +\infty. \tag{2}$$

因为 $f_k(x)(k=1,2,\cdots)$ 和 f(x) 在 E 上可测, 所以由定理??(2) 可知 $f_k(x)(k=1,2,\cdots)$ 和 f(x) 在 $E_k(k=1,2,\cdots)$ 上也可测. 于是在 E_k 上应用 Egorov 定理可得, 对 $\forall k \in \mathbb{N}$, 存在可测子集 $F_k \subset E_k$, 且 $m(E_k \backslash F_k) < \frac{1}{k}$, 使得 $\{f_k(x)\}$ 在每个 F_k 上均一致收敛于 f(x). 从而由 $m(E_k \backslash F_k) < \frac{1}{k}$ 可得

$$m(F_k) > m(E_k) - \frac{1}{k}.$$

令 $k \to +\infty$, 再结合 (2) 式可得 $\lim_{k \to \infty} m(F_k) = +\infty$. 因此, 对 $\forall M > 0$, 存在 $k \in \mathbb{N}$, 使得 $m(F_k) > M$. 故取 $E_M = F_k$ 即得结论.

推论 0.2

设 $\{f_n(x)\}$ 以及 f(x) 均是 E 上几乎处处有限的可测函数, 且有 $f_n(x) \to f(x)$, a.e. $x \in E$, 则存在可测集列 $\{E_i\}: E_i \subset E \ (i \in \mathbb{N})$, 且

$$m\left(E\setminus\bigcup_{i=1}^{\infty}E_{i}\right)=0,$$

使得 $f_n(x)$ 在每个 E_i 上均一致收敛于 f(x).

证明 (1) 当 $m(E) < +\infty$ 时, 对 $\forall i \in \mathbb{N}$, 根据Egorov 定理, 取 $\delta_i = \frac{1}{i} > 0$, 则存在可测子集 $E_i \subset E$, 使得 $m(E \setminus E_i) < \frac{1}{i}$, 并且 $\{f_n(x)\}$ 在 E_i 上一致收敛于 f(x). 注意到对 $\forall i \in \mathbb{N}$, 都有

$$E\setminus\bigcup_{i=1}^{\infty}E_i\subset E\setminus E_i,$$

因此

$$m\left(E\backslash\bigcup_{i=1}^{\infty}E_{i}\right)\leqslant m\left(E\backslash E_{i}\right)<\frac{1}{i},\quad\forall i\in\mathbb{N}.$$

再今 $i \rightarrow +\infty$ 得

$$m\left(E\backslash\bigcup_{i=1}^{\infty}E_{i}\right)=0.$$

(2) 当 $m(E) = +\infty$ 时, 令

$$A_1 = E \cap B(0, 1), A_k = E \cap (B(0, k) \setminus B(0, k - 1))(k = 2, 3, \dots),$$

显然 $\{A_k\}$ 是一列互不相交的可测集, 满足 $A_k \subset E, m(A_k) < +\infty$ 且 $\bigcup_{i=1}^{\infty} A_k = E$.

对 $\forall k \in \mathbb{N}$, 考虑 A_k , 则由 (1) 可知, 存在可测集列 $\{E_{k,i}\}: E_{k,i} \subset E(i \in \mathbb{N})$ 且

$$m\left(A_k \setminus \bigcup_{i=1}^{\infty} E_{k,i}\right) = 0,\tag{3}$$

使得 $\{f_n(x)\}$ 在每个 $E_{k,i}(\forall i \in \mathbb{N})$ 上均一致收敛于 f(x). 进而再由 k 的任意性可得, $\{f_n(x)\}$ 在每个 $E_{k,i}(\forall k, i \in \mathbb{N})$ 上均一致收敛于 f(x). 考虑集族 $\mathcal{F} = \{E_{k,i}|k,i \in \mathbb{N}\}$. 由于 $\mathbb{N} \times \mathbb{N}$ 可数, 故 \mathcal{F} 也可数. 因此可将 \mathcal{F} 枚举为序列 $\{E_i\}_{i=1}^{\infty}$. 故 $\{f_n(x)\}$ 在每个 $E_i(\forall i \in \mathbb{N})$ 上均一致收敛于 f(x). 由定理??可知

$$\bigcup_{k=1}^{\infty} A_k \setminus \bigcup_{k=1}^{\infty} \bigcup_{i=1}^{\infty} E_{k,i} \subset \bigcup_{k=1}^{\infty} \left(A_k \setminus \bigcup_{i=1}^{\infty} E_{k,i} \right). \tag{4}$$

又由 $\{A_k\}$ 互不相交可得

$$\left(A_k \setminus \bigcup_{i=1}^{\infty} E_{k,i}\right) \cap \left(A_l \setminus \bigcup_{i=1}^{\infty} E_{l,i}\right) = \varnothing, k \neq l.$$
(5)

故利用 (3)(4)(5) 式可得

$$m\left(E\setminus\bigcup_{i=1}^{\infty}E_{i}\right)=m\left(\bigcup_{k=1}^{\infty}A_{k}\setminus\bigcup_{k=1}^{\infty}\bigcup_{i=1}^{\infty}E_{k,i}\right)\leqslant m\left(\bigcup_{k=1}^{\infty}\left(A_{k}\setminus\bigcup_{i=1}^{\infty}E_{k,i}\right)\right)=\sum_{k=1}^{\infty}m\left(A_{k}\setminus\bigcup_{i=1}^{\infty}E_{k,i}\right)=0.$$

例题 0.1 考查 $f_n(x) = x^n (0 \le x \le 1)$, $f(x) = 0 (0 \le x < 1)$ 以及 f(1) = 1, 则在 [0,1] 上 $f_n(x)$ 点收敛于 f(x) 而非一致收敛于 f(x). 但在舍去一个测度可任意小的正测集 (如 $(1 - \delta, 1]$) 后, $f_n(x)$ 在余下点集上一致收敛于 f(x). 证明

0.1.2 几乎处处收敛与依测度收敛

定义 0.3

设 f(x), $f_1(x)$, $f_2(x)$, \cdots , $f_k(x)$, \cdots 是 E 上几乎处处有限的可测函数. 若对任给的 $\varepsilon > 0$, 有

$$\lim_{k \to \infty} m(\{x \in E : |f_k(x) - f(x)| > \varepsilon\}) = 0,$$
(6)

或等价地, 若对 $\forall \varepsilon > 0$ 及 $\delta > 0$, 存在 $N_{\varepsilon,\delta} \in \mathbb{N}$, 使得当 $n \geq N_{\varepsilon,\delta}$ 时, 有 $m(E_n(\varepsilon)) < \delta$, 则称 $\{f_k(x)\}$ 在 E 上 **依测度收敛于** f(x), 简记为 $f_n \stackrel{\mu}{\longrightarrow} f$.

注 注意, 由 $f_k(x)$ 在 E 上几乎处处有限可知 $m(\{x \in E : |f_k(x)| = +\infty\}) = 0$ $(k = 1, 2, \cdots)$.

定理 0.3

若 $\{f_k(x)\}$ 在 E 上同时依测度收敛于 f(x) 与 g(x), 则 f(x) 与 g(x) 是对等的.

~ 笔记 这个定理告诉我们: 在函数对等的意义下, 依测度收敛的极限函数是唯一的. 证明 因为对 ∀x ∈ E, 有

$$|f(x) - g(x)| \le |f(x) - f_k(x)| + |g(x) - f_k(x)|,$$

所以对任给 $\varepsilon > 0$, 有

$$\begin{aligned} &\{x \in E: |f(x) - g(x)| > \varepsilon\} \subset \{x \in E: |f(x) - f_k(x)| + |g(x) - f_k(x)| > \varepsilon\} \\ &= \left\{x \in E: |f(x) - f_k(x)| > \frac{\varepsilon}{2}\right\} \cup \left\{x \in E: |g(x) - f_k(x)| > \frac{\varepsilon}{2}\right\}. \end{aligned}$$

但当 $k \to \infty$ 时,上式右端点集的测度趋于零,从而得

$$m(\{x\in E: |f(x)-g(x)|>\varepsilon\})=0.$$

4

由 ε 的任意性可知 f(x) = g(x), a.e. $x \in E$.

定理 0.4

设 $\{f_k(x)\}$ 在 E 上几乎处处有限, 若 $\{f_k(x)\}$ 在 E 上依测度收敛于 f(x), 则 f(x) 几乎处处有限.

证明 设 $A = \{x \in E : |f(x)| = +\infty\}$, 则只需证 m(A) = 0. 由于每个 $f_k(x)$ 在 E 上几乎处处有限, 因此对 $\forall k \in \mathbb{N}$, 令 $B_k = \{x \in E : |f_k(x)| = +\infty\}$, 则 $m(B_k) = 0$. 再令 $B = \bigcup_{k=1}^{\infty} B_k$, 则 B 是可数个零测集的并, 而零测集必可测, 故 B 也可测. 并且

$$m(B) \leqslant \sum_{k=1}^{\infty} m(B_k) = 0.$$

因此 m(B) = 0. 对 $\forall x_0 \in A \setminus B$, 都有

$$|f(x_0)| = +\infty$$
, $|f_k(x_0)| < +\infty$.

于是对 $\forall \varepsilon > 0, k \in \mathbb{N}$, 都有

$$|f_k(x_0) - f(x_0)| > \varepsilon$$
.

这表明对 $\forall \varepsilon > 0, k \in \mathbb{N}$, 都有 $x_0 \in \{x \in E : |f_k(x) - f(x)| > \varepsilon\}$. 再由 x_0 的任意性可得

$$A \setminus B \subset \{x \in E : |f_k(x) - f(x)| > \varepsilon\}, \quad \forall \varepsilon > 0, k \in \mathbb{N}.$$

从而再结合 m(B) = 0 可得

$$m(A) = m(A \setminus B) \le m(\{x \in E : |f_k(x) - f(x)| > \varepsilon\}), \quad \forall \varepsilon > 0, \ k \in \mathbb{N}.$$

♦ k → ∞ 可得

$$m(A) \leqslant \lim_{k \to \infty} m(\{x \in E : |f_k(x) - f(x)| > \varepsilon\}).$$

又因为 $\{f_k(x)\}$ 在 E 上依测度收敛于 f(x), 所以

$$\lim_{k \to \infty} m(\{x \in E : |f_k(x) - f(x)| > \varepsilon\}) = 0.$$

故 m(A) = 0, 结论得证.

例题 0.2 收敛但不一致收敛的函数

$$f_n(x) = x^n, n = 1, 2, \cdots$$

证明 显然 $\{f_n(x)\}$ 在 [0,1] 上处处收敛于

$$f(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$

但不一致收敛于 f(x),因为连续函数列的一致收敛极限必连续,而 f(x) 不连续. 然而, 去掉任意小的一段之后一致收敛,即: 对 $\forall \delta > 0, f_n(x)$ 在 $[0, 1-\delta]$ 上一致收敛于 0.

例题 0.3 依测度收敛但不几乎处处收敛的函数

对每个 $n \in \mathbb{N}$, 都存在唯一的 $k, i \in \mathbb{N}$, 使得

$$n = 2^k + i$$
, $0 \le i < 2^k$

定义 [0,1] 上的函数

$$f_n(x) = \chi_{[\frac{i}{2k}, \frac{i+1}{2k})}(x), \quad n = 1, 2, \cdots$$

证明 任取 $x_0 \in [0,1]$, 对每个 $k \in \mathbb{N}, \exists 0 \leq i_k < 2^k$ 使得

$$x_0 \in \left[\frac{i_k}{2^k}, \frac{i_k+1}{2^k}\right)$$

记 $n_k = 2^k + i_k$, 则

$$f_{n_k}(x_0) = 1, \quad k = 1, 2, \cdots$$

可见, $\{f_n(x_0)\}$ 有无穷多项为 1, 无穷多项为 0. 故 $f_n(x)$ 在 [0,1] 上每个点都不收敛 (从而不是几乎处处收敛). 但对 $\forall \varepsilon \in (0,1)$, 有

$$m\{x\in [0,1]: |f_n(x)-0|\geqslant \varepsilon\}=\frac{1}{2^k}\to 0, \quad n\to\infty$$

其中, $n = 2^k + i, 0 \le i < 2^k$. 故 $f_n \xrightarrow{\mu} 0$. (这表明 n 越大, 出现 "1" 的频率越趋于 0.)

从几乎处处收敛与依测度收敛的定义可以看出,前者强调的是在点上函数值的收敛(尽管除一个零测集外), 后者并非指在哪个点上的收敛,其要点在于点集

$$\{x \in E : |f_k(x) - f(x)| \ge \varepsilon\}$$

的测度应随 k 趋于无穷而趋于零,而不论此点集的位置状态如何. 这是两者的区别.下面我们讨论它们之间的联系.

定理 0.5

设 $\{f_k(x)\}$ 是 E 上几乎处处有限的可测函数列, 且 $m(E) < +\infty$. 若 $\{f_k(x)\}$ 几乎处处收敛于几乎处处有限的函数 f(x), 则 $f_k(x)$ 在 E 上依测度收敛于 f(x)(反之不然).

注

1. 上述定理中的条件 $m(E) < +\infty$ 不能去掉. 例如, 取 $E = (0, +\infty)$, 令 $f_n(x) = \chi_{(0,n]}(x)$, 则

$$f_n(x) \to f(x) \equiv 1, \quad x \in E$$

但当取 $\delta = 1/2 > 0$ 时,有

$$m(\lbrace x \in E : |f_n(x) - f(x)| \geqslant \delta \rbrace) = m((n, +\infty)) = +\infty$$

故 f_n 不依测度收敛到 f.

2. 上述定理中的条件 f(x) 几乎处处有限也不能去掉.

例如, 考虑 E = [0,1], 定义函数列 $f_k(x) = k$, 则 $m(E) = 1 < +\infty$, 且每个 $f_k(x)$ 在 E 上处处有限.

$$\diamondsuit$$
 $f(x) = +\infty$, 则 $\lim_{h \to \infty} f_k(x) = +\infty = f(x)$, a.e. $x \in E$. 但对 $\forall \varepsilon > 0$, 都有

$$|f_k(x) - f(x)| = +\infty \ge \varepsilon, \quad \forall x \in E.$$

于是

$${x \in E : |f_k(x) - f(x)| \ge \varepsilon} = E.$$

从而

$$\lim_{k \to \infty} m(\{x \in E : |f_k(x) - f(x)| \geqslant \varepsilon\}) = m(E) = 1 \neq 0.$$

故 $\{f_k(x)\}$ 在 E 上不依测度收敛于 f(x).

证明 因为题设满足引理 0.1的条件, 故对任给的 $\varepsilon > 0$, 可知

$$\lim_{k\to\infty} m\left(\bigcup_{j=k}^{\infty} \{x\in E: |f_j(x)-f(x)|\geqslant \varepsilon\}\right)=0.$$

于是

$$m(\{x \in E : |f_k(x) - f(x)| \ge \varepsilon\}) \le m \left(\bigcup_{j=k}^{\infty} \{x \in E : |f_j(x) - f(x)| \ge \varepsilon\} \right).$$

♦ k → ∞ 即得

$$\lim_{k \to \infty} m(\{x \in E : |f_k(x) - f(x)| \ge \varepsilon\}) = 0.$$

这说明 $f_k(x)$ 在 E 上依测度收敛于 f(x).

定理 0.6

设 f(x), $f_1(x)$, $f_2(x)$, \cdots , $f_k(x)$ \cdots 是 E 上几乎处处有限的可测函数. 若对任给的 $\delta > 0$, 存在 $E_\delta \subset E$ 且 $m(E_\delta) < \delta$, 使得 $\{f_k(x)\}$ 在 $E \setminus E_\delta$ 上一致收敛于 f(x)(即 $\{f_k(x)\}$ 接近一致收敛于 f(x)), 则 $\{f_k(x)\}$ 在 E 上 依测度收敛于 f(x).

证明 对任给的 $\varepsilon, \delta > 0$, 依假设存在 $E_{\delta} \subset E$ 且 $m(E_{\delta}) < \delta$, 以及自然数 k_0 , 使得当 $k \geqslant k_0$ 时, 有

$$|f_k(x) - f(x)| < \varepsilon, \quad \forall x \in E \setminus E_{\delta}.$$

由此可知, 当 $k \ge k_0$ 时, 有

$${x \in E : |f_k(x) - f(x)| \ge \varepsilon} \subset E_{\delta}.$$

这说明, 当 $k \ge k_0$ 时, 有

$$m(\{x \in E : |f_k(x) - f(x)| \ge \varepsilon\}) \le m(E_\delta) < \delta.$$

故 $\{f_k(x)\}$ 在 E 上依测度收敛于 f(x).

定义 0.4 (依测度 Cauchy(基本) 列)

设 $\{f_k(x)\}$ 是 E 上几乎处处有限的可测函数列. 若对任给的 $\varepsilon > 0$, 有

$$\lim_{\substack{k \to \infty \\ j \to \infty}} m(\{x \in E : |f_k(x) - f_j(x)| > \varepsilon\}) = 0,$$

则称 $\{f_k(x)\}\$ 为 E 上的**依测度 Cauchy**(基本) 列.

定理 0.7

若 $\{f_k(x)\}$ 在 E 上依测度收敛于 f(x), 则 $\{f_k(x)\}$ 必是 E 上依测度 Cauchy 列.

证明 由条件可知

$$\lim_{k \to \infty} m\left(\left\{x \in E : |f_k(x) - f(x)| > \varepsilon\right\}\right) = 0.$$

即对 $\forall \varepsilon > 0$, 存在 $k_0 \in \mathbb{N}$, 使得对 $\forall k \geq k_0$, 都有

$$m\left(\left\{x \in E : |f_k(x) - f(x)| > \varepsilon\right\}\right) < \frac{\varepsilon}{2}.$$

注意到对 $\forall x \in E$, 都有

$$|f_i(x) - f_j(x)| \le |f_i(x) - f(x)| + |f_j(x) - f(x)|, \quad \forall i, j \in \mathbb{N}.$$

从而对 $\forall i, j \in \mathbb{N}$, 都有

$$\left\{x \in E : \left|f_i(x) - f_j(x)\right| > \varepsilon\right\} \subset \left\{x \in E : \left|f_i(x) - f(x)\right| + \left|f_j(x) - f(x)\right| > \varepsilon\right\}$$

$$= \left\{x \in E : \left|f_i(x) - f(x)\right| > \frac{\varepsilon}{2}\right\} \cup \left\{x \in E : \left|f_j(x) - f(x)\right| > \frac{\varepsilon}{2}\right\}.$$

于是对 $\forall i, j \geq k_0$, 就有

$$\begin{split} & m\left(\left\{x\in E:\left|f_{i}(x)-f_{j}(x)\right|>\varepsilon\right\}\right)\\ &\leqslant m\left(\left\{x\in E:\left|f_{i}(x)-f(x)\right|>\frac{\varepsilon}{2}\right\}\right)+m\left(\left\{x\in E:\left|f_{j}(x)-f(x)\right|>\frac{\varepsilon}{2}\right\}\right)\\ &<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon. \end{split}$$

故

$$\lim_{\substack{i \to \infty \\ j \to \infty}} m\left(\left\{x \in E : \left| f_i(x) - f_j(x) \right| > \varepsilon\right\}\right) = 0.$$

即 $\{f_k(x)\}$ 是 E 上依测度 Cauchy 列.

定理 0.8

若 $\{f_k(x)\}$ 是 E 上的依测度 Cauchy 列, 则在 E 上存在几乎处处有限的可测函数 f(x), 使得 $\{f_k(x)\}$ 在 E 上 依测度收敛于 f(x).

证明 对每个自然数 i, 可取 k_i , 使得当 $l,j \ge k_i$ 时, 有

$$m\left(\left\{x\in E: |f_l(x)-f_j(x)|\geqslant \frac{1}{2^i}\right\}\right)<\frac{1}{2^i}.$$

从而我们可以假定 $k_i < k_{i+1}$ $(i = 1, 2, \cdots)$, 令

$$E_i = \left\{ x \in E : |f_{k_i}(x) - f_{k_{i+1}}(x)| \geqslant \frac{1}{2^i} \right\}, \quad i = 1, 2, \dots,$$

则 $m(E_i) < 2^{-i}$. 现在研究 $\{E_i\}$ 的上限集 $S = \bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} E_i$, 注意到 $\sum_{i=1}^{\infty} m(E_i) = 1 < +\infty$, 故由定理**??**(1) 可知 m(S) = 0. 注意到

$$x_{0} \in E \backslash S = E \cap \left(\bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} E_{i}\right)^{c} = E \cap \left(\bigcup_{j=1}^{\infty} \bigcap_{i=j}^{\infty} E_{i}^{c}\right) = \bigcup_{j=1}^{\infty} \bigcap_{i=j}^{\infty} \left(E \cap E_{i}^{c}\right)$$
$$= \bigcup_{j=1}^{\infty} \bigcap_{i=j}^{\infty} \left\{x \in E : \left|f_{k_{i}}\left(x\right) - f_{k_{i+1}}\left(x\right)\right| < \frac{1}{2^{i}}\right\}.$$

于是对 $\forall x_0 \in E \setminus S$, 都存在 $j_0 \in \mathbb{N}$, 当 $i \geq j_0$ 时, 有 $|f_{k_{i+1}}(x_0) - f_{k_i}(x_0)| < 2^{-i}$. 由此可知当 $l \geq j_0$ 时, 有

$$\sum_{i=l}^{\infty} |f_{k_{i+1}}(x_0) - f_{k_i}(x_0)| \leqslant \sum_{i=l}^{\infty} 2^{-i} = \frac{1}{2^{l-1}}.$$

令 $l \to +\infty$, 则由 Cauchy 收敛准则可知, 级数 $f_{k_1}(x_0) + \sum_{i=1}^{\infty} [f_{k_{i+1}}(x_0) - f_{k_i}(x_0)]$ 绝对收敛, 再由 x_0 的任意性可知级数

 $f_{k_1}(x) + \sum_{i=1}^{\infty} [f_{k_{i+1}}(x) - f_{k_i}(x)]$ 在 $E \setminus S$ 上是绝对收敛的, 即 $\{f_{k_i}(x)\}$ 在 $E \setminus S$ 上处处收敛。因此 $\{f_{k_i}(x)\}$ 在 E 上是几乎处处收敛的,设其极限函数为 f(x), f(x) 是 E 上几乎处处有限的可测函数.

此外, 对 $\forall i \in \mathbb{N}$, 注意到

$$E \setminus \bigcup_{i=j}^{\infty} E_i = E \cap \left(\bigcup_{i=j}^{\infty} E_i\right)^c = E \cap \left(\bigcap_{i=j}^{\infty} E_i^c\right) = \bigcap_{i=j}^{\infty} \left(E \cap E_i^c\right)$$
$$= \bigcap_{i=j}^{\infty} \left\{x \in E : |f_{k_i}(x) - f_{k_{i+1}}(x)| < \frac{1}{2^i}\right\}.$$

因此当 $i \ge j$ 时,有

$$|f_{k_i}(x) - f_{k_{i+1}}(x)| < \frac{1}{2^i}, \quad \forall x \in E \setminus \bigcup_{i=j}^{\infty} E_i.$$

又由 $\lim_{n\to\infty}\frac{1}{2^n}=0$ 可知, 对 $\forall \varepsilon>0$, 存在 N>j, 使得当 $n\geqslant N$ 时, 有 $\frac{1}{2^n}<\varepsilon$. 于是对 $\forall n\geqslant N,p\in\mathbb{N}$, 都有

$$|f_{k_n}(x) - f_{k_{n+p}}(x)| < \sum_{i=n}^{n+p} |f_{k_i}(x) - f_{k_{i+1}}(x)| < \sum_{i=n}^{n+p} \frac{1}{2^i}$$

$$= \frac{1}{2^n} - \frac{1}{2^{n+p}} < \frac{1}{2^n} < \varepsilon, \forall x \in E \setminus \bigcup_{i=1}^{\infty} E_i.$$

故由一致收敛的 Cauchy 收敛准则可知, 对 $\forall j \in \mathbb{N}$, 有 $\{f_{k_i}(x)\}$ 在 $E \setminus \bigcup_{i=1}^{\infty} E_i$ 上是一致收敛于 f(x) 的. 又由于

$$m\left(\bigcup_{i=j}^{\infty} E_i\right) < \frac{1}{2^{j-1}},$$

故 f(x) 及 $\{f_{k_i}(x)\}$ 在 E 上满足定理 0.6的条件, 于是 $\{f_{k_i}(x)\}$ 在 E 上依测度收敛于 f(x). 最后, 注意到

$$\left\{ x \in E : \left| f_n(x) - f(x) \right| \geqslant \varepsilon \right\} \subset \left\{ x \in E : \left| f_n(x) - f_{k_n}(x) \right| + \left| f_{k_n}(x) - f(x) \right| \geqslant \frac{\varepsilon}{2} \right\}$$

$$= \left\{ x \in E : \left| f_n(x) - f_{k_n}(x) \right| \geqslant \frac{\varepsilon}{2} \right\} \cup \left\{ x \in E : \left| f_n(x) - f(x) \right| \geqslant \frac{\varepsilon}{2} \right\}.$$

从而

 $m(\{x \in E : |f_n(x) - f(x)| \ge \varepsilon\}) \le m\left(\left\{x \in E : |f_n(x) - f_{k_n}(x)| \ge \frac{\varepsilon}{2}\right\}\right) + m\left(\left\{x \in E : |f_{k_n}(x) - f(x)| \ge \frac{\varepsilon}{2}\right\}\right).$ 于是当 $n \to \infty$ 时, 也有 $k_n \to \infty$. 故

$$\lim_{n \to \infty} m(\{x \in E : |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$$

定理 0.9 (Riesz(里斯) 定理)

若 $\{f_k(x)\}$ 在 E 上依测度收敛于 f(x), 则存在子列 $\{f_{k_i}(x)\}$, 使得

$$\lim_{i \to \infty} f_{k_i}(x) = f(x), \text{ a.e. } x \in E.$$

证明 因为 $\{f_k(x)\}$ 依测度收敛于 f(x), 所以 $\{f_k(x)\}$ 是依测度 Cauchy 列. 从而由定理 0.8的证明可知, 存在子列 $\{f_{k_t}(x)\}$ 以及可测函数 g(x), 使得

$$\lim_{i \to \infty} f_{k_i}(x) = g(x), \text{ a.e. } x \in E,$$

而且 $\{f_{k_i}(x)\}$ 也是依测度收敛于 g(x) 的. 但按假设, $\{f_{k_i}(x)\}$ 应依测度收敛于 f(x),从而由定理 0.3知 f(x) 与 g(x) 对等.

例题 **0.4** 设 f(x), $f_k(x)(k \in \mathbb{N})$ 是 $E \subset \mathbb{R}$ 上的实值可测函数, $m(E) < +\infty$.

- (i) 若在任一子列 $\{f_{k_i}(x)\}$ 中均有子列 $\{f_{k_{i_j}}(x)\}$ 在 E 上收敛于 f(x),则 $f_k(x)$ 在 E 上依测度收敛于 f(x).
- (ii) 若 $f_k(x) > 0$ ($k \in \mathbb{N}$), 且 $f_k(x)$ 在 E 上依测度收敛于 f(x), 则对 p > 0, $f_k^p(x)$ 在 E 上依测度收敛于 $f^p(x)$.

证明 (i) 反证法. 假定结论不真, 则存在 $\varepsilon_0 > 0$, $\sigma_0 > 0$ 以及 $\{k_i\}$, 使得

$$m(\lbrace x \in E : |f_{k_i}(x) - f(x)| > \varepsilon_0 \rbrace) \geqslant \sigma_0. \tag{7}$$

但依题设知, 存在 $\{k_{i_j}\}$, 使得 $f_{k_{i_j}}(x) \to f(x)(j \to \infty)$. 由此又知 $f_{k_{i_j}}(x)$ 在 E 上依测度收敛于 f(x), 这与式 (7) 矛盾. (ii) 由题设知, 任何子列 $\{f_{k_i}(x)\}$ 中必有子列 $\{f_{k_{i_j}}(x)\}$ 在 E 上收敛于 f(x). 即 $\{f_{k_i}^p(x)\}$ 必有子列 $\{f_{k_{i_j}}^p(x)\}$ 在 E 上收敛于 f(x). 因此, 根据 (i) 即得所证.

推论 0.3

设 $m(E) < +\infty$, 则 $\{f_n(x)\}$ 在 E 上依测度收敛于 f(x) 当且仅当对 $\{f_n\}$ 的任意子列 $\{f_{n_k}\}$, 都存在子列 $\{f_{n_{k_i}}\}$ 使得 $\lim_{i\to\infty} f_{n_{k_i}}(x) = f(x)$, a.e. $x\in E$.

注 若 $m(E) = +\infty$, 上述推论 0.3的结论不一定成立. 例如, 设 $E = \mathbb{R}$

$$f_n(x) = e^{-(x-n)^2}, \quad n \in \mathbb{N}$$

则易知对 $\forall x \in \mathbb{R}$, 都有 $f_n(x) \to 0, n \to \infty$, 从而 $f_n \xrightarrow{\text{a.e.}} 0$. 但对 $\forall \varepsilon > 0 (\varepsilon < 1)$, 都有

$$\{x \in E : |f_n(x) - f(x)| \ge \varepsilon\} = \{x \in \mathbb{R} : e^{-(x-n)^2} \ge \varepsilon\}$$

$$= \{ x \in \mathbb{R} : n - \left\lceil \ln \left(\frac{1}{\varepsilon} \right) \right\rceil^{1/2} \leqslant x \leqslant n + \left\lceil \ln \left(\frac{1}{\varepsilon} \right) \right\rceil^{1/2} \}$$

于是

$$m(\{x\in E: |f_n(x)-f(x)|\geqslant \varepsilon\})=2\left[\ln\left(\frac{1}{\varepsilon}\right)\right]^{1/2}\nrightarrow 0,\quad n\to\infty$$

因此, $f_n(x)$ 不依测度收敛于 0, 从而 $f_n(x)$ 的任何子列也不依测度收敛于 0.

证明 (⇒): 设 $\{f_n(x)\}$ 在 E 上依测度收敛于 f(x), 则 $\{f_{n_k}(x)\}$ 在 E 上也依测度收敛于 f(x). 由Riesz 定理, 存在子列 $\{f_{n_{k_i}}\}\subset\{f_{n_k}\}$, 使得 $\lim_{t\to\infty}f_{n_{k_i}}(x)=f(x)$, a.e. $x\in E$.

(\Leftarrow): 假设 $f_n(x)$ 在 E 上不依测度收敛于 f(x), 则 $\exists \varepsilon_0 > 0$, 使得

$$\lim_{n\to\infty} m(\{x\in E: |f_n(x)-f(x)|\geqslant \varepsilon_0\})>0.$$

并且存在 $\delta_0 > 0$, 以及子列 $\{f_{n_k}\} \subset \{f_n\}$ 使得

$$m(\lbrace x \in E : |f_{n_k}(x) - f(x)| \ge \varepsilon_0 \rbrace) \ge \delta_0.$$

因此对 $\{f_{n_k}\}$ 的任何子列 $\{f_{n_{k_i}}\}$ 都有

$$m(\lbrace x \in E : |f_{n_{k_i}}(x) - f(x)| \geqslant \varepsilon_0 \rbrace) \geqslant \delta_0. \tag{8}$$

又 $m(E) < +\infty$, 故由 Egorov 定理可知, 存在闭集 $F \subset E: m(F \setminus E) < \delta$, 使得 $f_{n_{k_i}}(x)$ 在 F 上一致收敛于 f(x). 于是存在 $I \in \mathbb{N}$, 当 $i \ge I$ 时, 对 $\forall x \in F$, 都有

$$|f_{n_{k_i}}(x) - f(x)| < \varepsilon_0.$$

从而当 $i \ge I$ 时,就有

$$F \subset \{x \in E : |f_{n_{k_i}}(x) - f(x)| < \varepsilon_0\} \iff \{x \in E : |f_{n_{k_i}}(x) - f(x)| < \varepsilon_0\}^c \subset F^c$$

$$\iff \{x \in E : |f_{n_{k_i}}(x) - f(x)| \ge \varepsilon_0\} \subset E \setminus F.$$

进而当 $i \ge I$ 时,我们有

$$m(\lbrace x \in E : |f_{n_{k_i}}(x) - f(x)| \ge \varepsilon_0 \rbrace) \le m(E \setminus F) < \delta.$$

而由(8)式可知

$$m(\{x \in E : |f_{n_{k_i}}(x) - f(x)| \ge \varepsilon_0\}) \ge \delta$$

矛盾!

定理 0.10

设 f(x), $\{f_n(x)\}$ 是 \mathbb{R} 上的可测函数列.

- (1) 若 $f_n(x)$ 在 [a,b] 上近一致收敛于 $f(x),\varphi\in C(\mathbb{R})$, 则 $\varphi[f_n(x)]$ 在 [a,b] 上近一致收敛于 $\varphi[f(x)]$;
- (2) 若 $f_n(x)$ 在 [a,b] 上依测度收敛于 $f(x), \varphi \in C(\mathbb{R}^1)$, 则 $\varphi[f_n(x)]$ 在 [a,b] 上依测度收敛于 $\varphi[f(x)]$.
- (3) 若 $f_n(x)$ 在 \mathbb{R} 上一致收敛于 f(x)(近一致收敛或依测度收敛于 f(x)), $\varphi(x)$ 在 \mathbb{R} 上一致收敛 (近一致收敛或依测度收敛)于 $\varphi[f(x)]$.

证明