Forecast Verification: Part III

Probabilistic Forecasts of Discrete Predictands: Brier Skill Score

Brier Score: the mean squared error of the probability forecasts,

BS =
$$\frac{1}{n} \sum_{k=1}^{n} (y_k - o_k)^2$$
,

where the observation O is equal to 1 occurrence and 0 for nonoccurrence.

- How would you formulate the Brier Skill Score?
- Brier Skill Score: note that BS is equal to 0 for perfect forecasts

$$BSS = \frac{BS - BS_{ref}}{0 - BS_{ref}} = 1 - \frac{BS}{BS_{ref}},$$

$$SS_{ref} = \frac{A - A_{ref}}{A_{perf} - A_{ref}} \times 100\%,$$

 Usually the reference forecasts are the relevant climatological relative frequencies that may vary with location and/or season. Positive BSS indicates better skill than the reference forecasts.

Probabilistic Forecasts of Discrete Predictands (cont'd): Reliability Diagram

- The reliability diagram is a graph that shows the full joint distribution of forecasts and observations for probability forecasts of a binary predictand (1-occurrence vs. 0nonoccurrance).
- The reliability diagram has two elements:
 - the calibration distributions: conditional distributions of the observation given the forecast
 - the refinement distribution: the frequency of use of each of the possible forecasts.
- Perfect forecasts: The conditional event relative frequency is essentially equal to the forecast probability, so that the dots fall along the 1:1 line.

Reliability diagrams for week-2 tercile probability forecasts of 850-hPa temperature. (Whitake and Wei 2006, MWR)

(a) Example Calibration Functions

Reliability Diagram

Which one represents a good forecast?
Which one represents over-forecasting?
Which one represents under-forecasting?
Which one represents good resolution?
Which one represents poor resolution?

- Center: good forecasts, the conditional event relative frequency is essentially equal to the forecast probability.
- Top: the forecasts are consistently too large relative to the conditional event relative frequencies (positive biases)
- Bottom: the forecast probabilities are consistently too small relative to the corresponding conditional event relative frequencies (negative biases)
- Right: poor resolution, the conditional outcome relative frequencies depend only weakly on the forecasts
- Left: good resolution, the forecasts are able to identify subsets
 of forecast occasions for which the outcomes are quite
 different from each other.

Unconditional Distributions of Forecasts

Left: low confidence, Forecasts that deviate little from their average value exhibit little confidence. Right: Forecasts that are frequently extreme—that is, specifying probabilities close to the certainty values y = 0 and y = 1 (right panel)—exhibit high confidence.

An Example

FIGURE 7.9 Reliability diagrams for seasonal (3-month) forecasts of (a) average temperature warmer than the climatological upper tercile, and (b) total precipitation wetter than the climatological upper tercile, for global land areas equatorward of 30°, during the period 1997–2000. From Wilks and Godfrey (2002).

How would you characterize the two forecasts based on the reliability diagrams?

- Under-forecasting or cold biases for the temperature forecasts.
- The refinement distributions (insets, with logarithmic vertical scales) show much more confidence (more frequent use of more extreme probabilities) for the temperature forecasts.

Nonprobabilistic Forecasts of Fields

 Mean Squared Error (MSE): the spatial average of the squared difference between the observation and forecast at each of the M grid points. The root-mean squared error (RMSE) is also widely used.

$$MSE = \frac{1}{M} \sum_{m=1}^{M} (y_m - o_m)^2.$$

Anomaly correlation or pattern correlation: measures the similarity between the observed and forecast

spatial patterns.

$$AC_{C} = \frac{\sum_{m=1}^{M} (y'_{m} - \bar{y}')(o'_{m} - \bar{o}')}{\left[\sum_{m=1}^{M} (y'_{m} - \bar{y}')^{2} \sum_{m=1}^{M} (o'_{m} - \bar{o}')^{2}\right]^{1/2}}.$$

Performance-oriented and Physics-oriented Model Evaluation

- Evaluation of model forecasts is an indispensible component of the model development effort.
- Standard performance-oriented metrics, such as ACC and RMSE, focus on forecast performance and are routinely used in operational centers for forecast verification.
- Physics-oriented diagnostics focus on the critical processes or phenomena and, through evaluation of key processes/variables, shed light on the deficiencies of the physical parameterization or other errors in a model.
- In brevity, physics-oriented evaluation not only provides information on how well a model performs but also on why a model may fail in a certain aspect.

Physics-oriented Model Evaluation: an example

- Seasonal cycle of precipitation in the region of North American Monsoon from AMIP, CMIP multi-model ensemble means (MMM) and GPCP (observation).
- The AMIP MMM shows a better agreement with the observation.
- CMIP overpredicts the late season precipitation.

Physics-oriented Model Evaluation: an example (cont'd)

- Both AMIP and CMIP overestimate H850 over North American Continent.
- CMIP has smaller biases in H850 over the East Pacific. This, however, results in strong pressure gradient force along the coast and thus overpredicted in-land moisture transport, which contributes to the overpredicted precipitation.
- A model may get the right result for the wrong reason!

References

- Wilks, 2011, "Statistical Methods in the Atmospheric Sciences", Chapter 7
- Wilks, 2011, "Statistical Methods in the Atmospheric Sciences", Section 3.5
- Whitaker, J. S., Wei, X., & Vitart, F. (2006). Improving Week-2 Forecasts with Multimodel Reforecast Ensembles, *Monthly Weather Review*, 134(8), 2279-2284.