- 1. # -*- coding: utf-8 -*-
- 2. """
- 3. Created on Sat Mar 28 23:27:04 2020
- 4. @author: Admin
- 5. """
- 6. #Importing the libraries
- 7. import matplotlib.pyplot as plt
- 8. import numpy as np
- 9. import pandas as pd
- 10. #Importing the dataset
- 11. dataset=pd.read_csv('CLC_train.csv')
- 12. X_COgt=dataset.iloc[:,2].values
- 13. X_Pt08s1=dataset.iloc[:,3].values
- 14. X_Nmhcgt=dataset.iloc[:,4].values
- 15. X_C6H6=dataset.iloc[:,5].values
- 16. X_Pt08s2=dataset.iloc[:,6].values
- 17. X_Nox=dataset.iloc[:,7].values
- 18. X_Pt08s3=dataset.iloc[:,8].values
- 19. X_No2=dataset.iloc[:,9].values
- 20. X_Pt08s4=dataset.iloc[:,10].values
- 21. X_Pt08s5=dataset.iloc[:,11].values
- 22. X_T=dataset.iloc[:,12].values
- 23. X_RH=dataset.iloc[:,13].values
- 24. X_AH=dataset.iloc[:,14].values
- 25. Y=dataset.iloc[:,15].values
- 26. "from sklearn.preprocessing import LabelEncoder,OneHotEncoder
- 27. labelencoder_Y=LabelEncoder()
- 28. one=OneHotEncoder(categorical_features=[0])
- 29. Y=one.fit_transform(Y).toarray()'''

- 30. #Removing -200 from columns and accordingly change the CO_level column
- 31. X Cogt =X COgt[X COgt!=-200]
- 32. X_Pt08s1_=X_Pt08s1[X_Pt08s1!=-200]
- 33. X_Nmhcgt_=X_Nmhcgt[X_Nmhcgt!=-200]
- 34. X_C6H6_=X_C6H6[X_C6H6!=-200]
- 35. X_Pt08s2_=X_Pt08s2[X_Pt08s2!=-200]
- 36. X_Nox_=X_Nox[X_Nox!=-200]
- 37. X_Pt08s3_=X_Pt08s3[X_Pt08s3!=-200]
- 38. X_No2_=X_No2[X_No2!=-200]
- 39. X_Pt08s4_=X_Pt08s4[X_Pt08s4!=-200]
- 40. X_Pt08s5_=X_Pt08s5[X_Pt08s5!=-200]
- 41. X_T_=X_T[X_T!=-200]
- 42. X_RH_=X_RH[X_RH!=-200]
- 43. X_AH_=X_AH[X_AH!=-200]
- 44. a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13=[],[],[],[],[],[],[],[],[],[],[],[]
- 45. for i in range(0,7485):
- 46. if X_COgt[i]==-200:a1.append(i)
- 47. if X_Pt08s1[i]==-200:a2.append(i)
- 48. if X_Nmhcgt[i]==-200:a3.append(i)
- 49. if X_C6H6[i]==-200:a4.append(i)
- 50. if X_Pt08s2[i]==-200:a5.append(i)
- 51. if X_Nox[i]==-200:a6.append(i)
- 52. if X Pt08s3[i]==-200:a7.append(i)
- 53. if X_No2[i]==-200:a8.append(i)
- 54. if X_Pt08s4[i]==-200:a9.append(i)
- 55. if X_Pt08s5[i]==-200:a10.append(i)
- 56. if X T[i]==-200:a11.append(i)
- 57. if X_RH[i]==-200:a12.append(i)
- 58. if X_AH[i]==-200:a13.append(i)
- 59. Y Cogt=np.delete(Y,a1)
- 60. Y_Pt08s1=np.delete(Y,a2)
- 61. Y_Nmhcgt=np.delete(Y,a3)
- 62. Y_C6H6=np.delete(Y,a4)
- 63. Y_Pt08s2=np.delete(Y,a5)
- 64. Y Nox=np.delete(Y,a6)
- 65. Y_Pt08s3=np.delete(Y,a7)
- 66. Y No2=np.delete(Y,a8)
- 67. Y_Pt08s4=np.delete(Y,a9)
- 68. Y_Pt08s5=np.delete(Y,a10)
- 69. Y_T=np.delete(Y,a11)
- 70. Y_RH=np.delete(Y,a12)
- 71. Y_AH=np.delete(Y,a13)

72. colors={'Very low':'red','Low':'green','Moderate':'cyan','High':'blue','Very High':'magenta'}

73. #Plotting CO_GT vs CO_level

- 74. #plt.xlim(1250,1500)
- 75. for i in range(len(X_Cogt_)):
- 76. plt.scatter(X_Cogt_[i],Y_Cogt[i],color=colors[Y_Cogt[i]])
- 77. plt.title('CO_GT vs CO_Level')
- 78. plt.xlabel('CO_GT')
- 79. plt.ylabel('CO_Level')
- 80. plt.show()

- 81. #Plotting PT08_S1 vs CO_level
- 82. #plt.xlim(1250,1500)
- 83. for i in range(len(X_Pt08s1_)):
- 84. plt.scatter(X_Pt08s1_[i],Y_Pt08s1[i],color=colors[Y_Pt08s1[i]])
- 85. plt.title('PT08_s1 vs CO_Level')
- 86. plt.xlabel('PT08_s1')
- 87. plt.ylabel('CO_Level')
- 88. plt.show()

- 89. #Plotting NMHC_GT vs CO_level
- 90. #plt.xlim(1250,1500)
- 91. for i in range(len(X_Nmhcgt_)):
- 92. plt.scatter(X_Nmhcgt_[i],Y_Nmhcgt[i],color=colors[Y_Nmhcgt[i]])
- 93. plt.title('NMHC_GT vs CO_Level')
- 94. plt.xlabel('NMHC_GT')
- 95. plt.ylabel('CO_Level')
- 96. plt.show()

- 97. #Plotting C6H6_GT vs CO_level
- 98. #plt.xlim(1250,1500)
- 99. for i in range(len(X_C6H6_)):
- 100. plt.scatter(X_C6H6_[i],Y_C6H6[i],color=colors[Y_C6H6[i]])

- 101. plt.title('C6H6_GT vs CO_Level')
- 102. plt.xlabel('C6H6_GT')
- 103. plt.ylabel('CO_Level')
- 104. plt.show()

O/P:

- 105. #Plotting PT08_s2 vs CO_level
- 106. #plt.xlim(1250,1500)
- 107. for i in range(len(X_Pt08s2_)):
- 108. plt.scatter(X_Pt08s2[i],Y_Pt08s2[i],color=colors[Y_Pt08s2[i]])
- 109. plt.title('PT08_s2 vs CO_Level')
- 110. plt.xlabel('PT08_s2')
- 111. plt.ylabel('CO_Level')
- 112. plt.show()

113. #Plotting NOX_GT vs CO_level

- 114. #plt.xlim(1250,1500)
- 115. for i in range(len(X_Nox_)):
- 116. plt.scatter(X_Nox_[i],Y_Nox[i],color=colors[Y_Nox[i]])
- 117. plt.title('NOX_GT vs CO_Level')
- 118. plt.xlabel('NOX_GT')
- 119. plt.ylabel('CO_Level')
- 120. plt.show()

O/P:

- 121. #Plotting PT08_s3 vs CO_level
- *#plt.xlim(1250,1500)*
- 123. for i in range(len(X_Pt08s3_)):
- 124. plt.scatter(X_Pt08s3_[i],Y_Pt08s3[i],color=colors[Y_Pt08s3[i]])
- 125. plt.title('PT08_s3 vs CO_Level')
- 126. plt.xlabel('PT08_s3')
- 127. plt.ylabel('CO_Level')
- 128. plt.show()


```
129.
           #Plotting NO2_GT vs CO_level
130.
           #plt.xlim(1250,1500)
131.
           for i in range(len(X_No2_)):
132.
           plt.scatter(X_No2_[i],Y_No2[i],color=colors[Y_No2[i]])
133.
           plt.title('NO2_GT vs CO_Level')
           plt.xlabel('NO2_GT')
134.
           plt.ylabel('CO_Level')
135.
136.
           plt.show()
```

O/P:

137. #Plotting PT08_s4 vs CO_level

138. #plt.xlim(1250,1500) 139 for i in range(len(X) Pt

for i in range(len(X_Pt08s4_)):

140. plt.scatter(X_Pt08s4_[i],Y_Pt08s4[i],color=colors[Y_Pt08s4[i]])

141. plt.title('PT08_s4 vs CO_Level')

142. plt.xlabel('CO_GT')

143. plt.ylabel('CO_Level')

144. plt.show()


```
145.
            #Plotting PT08_s5 vs CO_level
146.
            #plt.xlim(1250,1500)
            for i in range(len(X_Pt08s5_)):
147.
            plt.scatter(X_Pt08s5_[i],Y_Pt08s5[i],color=colors[Y_Pt08s5[i]])
148.
149.
            plt.title('PT08_s5 vs CO_Level')
            plt.xlabel('PT08_s5')
150.
            plt.ylabel('CO_Level')
151.
152.
            plt.show()
    O/P:
                            PT08_s5 vs CO_Level
```


153. #Plotting T vs CO_level

154. #plt.xlim(1250,1500)
155. for i in range(len(X_T_)):
156. plt.scatter(X_T_[i],Y_T[i],color=colors[Y_T[i]])
157. plt.title('T vs CO_Level')
158. plt.xlabel('T')
159. plt.ylabel('CO_Level')
160. plt.show()
 O/P:


```
161.
            #Plotting RH vs CO_level
162.
            #plt.xlim(1250,1500)
163.
            for i in range(len(X_RH_)):
            plt.scatter(X_RH_[i],Y_RH[i],color=colors[Y_RH[i]])
164.
165.
            plt.title('RH vs CO_Level')
            plt.xlabel('RH')
166.
167.
            plt.ylabel('CO_Level')
168.
            plt.show()
    O/P:
```


169. #Plotting AH vs CO_level

#plt.xlim(1250,1500)
 for i in range(len(X_AH_)):
 plt.scatter(X_AH_[i],Y_AH[i],color=colors[Y_AH[i]])
 plt.title('AH vs CO_Level')
 plt.xlabel('AH')
 plt.ylabel('CO_Level')
 plt.show()

177. #Plotting NOX_GT vs NO2_GT

- 178. for i in range(len(X_Nox)):
- 179. plt.scatter(X_Nox[i],X_No2[i])
- 180. plt.title('NOX_GT vs NO2_GT')
- 181. plt.xlabel('NOX_GT')
- 182. plt.ylabel('NO2_GT')
- 183. plt.grid(True)
- 184. plt.show()

