Module 1: Digital Health Data Analytics and Visualization

HEALTH DATA MANIPULATION

Ekarat Rattagan, Ph.D

Module 1: Digital Health Data Analytics and Visualization

1. Understanding health data analytics 🗸

2. Health data collection and storage

3. Database design and query language in healthcare

4. Health data manipulation 🗸

- 5. Data visualizations and actionable dashboard
- 6. Biostatistical analysis

Ekarat Rattagan, Ph.D

Data analysis workflow

- Real-world data is often disorganized and imperfect
- Preparation is necessary to avoid
 - ➤ Mistakes
 - Ensure accurate resultsPrevent algorithms from being biased

Data preparation

Data wrangling refers to the process of cleaning, transforming, and organizing raw data into a format that is suitable for analysis. It typically involves the following steps:

- **1.Data Collection:** Gathering raw data from various sources.
- 2.Data Cleaning: Removing errors, inconsistencies, and missing values.
- **3.Data Structuring:** Converting the data into a structured format, such as tables or spreadsheets or your requirement.
- **4.Data Enrichment:** Adding new data or combining datasets to enhance the value of the original data.
- **5.Data Transformation:** Manipulating the data by changing its format, reshaping it, or aggregating values.
- **6.Validation:** Ensuring the data is accurate and ready for use in analysis.

1. Data Collection

Data Collection: Gathering raw data from various sources.

- **1.1 Primary Data:** Collected firsthand through surveys, interviews, experiments, or observations.
- **1.2 Secondary Data:** Sourced from existing materials like reports, databases, or academic literature.
- **1.3 Quantitative Data:** Numerical data gathered via surveys, experiments, or sensors for statistical analysis.
- **1.4 Qualitative Data:** Non-numerical data from interviews, open-ended surveys, or observations to understand deeper insights.
- **1.5 Automated Data:** Automatically collected via web scraping, APIs, or machine logs.
- **1.6 Manual Data:** Manually recorded or entered by individuals.

2. Data Cleaning

- **2. Data Cleaning:** Removing errors, inconsistencies, and missing values.
- **2.1 Removing Duplicates**: Eliminating repeated entries.
- **2.2 Handling Missing Data**: Filling in, ignoring, or removing incomplete data.
- **2.3 Standardizing Formats**: Ensuring consistent formats for dates, times, names, etc.
- 2.4 Outlier Detection: Identifying and addressing extreme or unusual data points.
- **2.5 Correcting Inaccuracies**: Fixing errors in values (e.g., typos, wrong categories).

3. Data Structuring

- **3. Data Structuring:** Converting the data into a structured format, such as tables or spreadsheets or your requirement.
- 3.1 **Data Parsing:** Breaking down unstructured data (like text) into structured components (e.g., splitting full names into first and last names).
- 3.2 **Normalization***: Organizing data into tables by eliminating redundancy and dependencies (e.g., separating customer data into separate tables for names and addresses).
- 3.3 **Indexing:** Creating indexes or keys to efficiently organize and retrieve data from databases.

4. Data Enrichment

4. Data Enrichment: Adding new data or combining datasets to enhance the value of the original data.

+			-+
Customer ID	I	Purchase Amount	- 1
+	+		-+
1	I	500	1
2	I	300	1
+	+		-+

5. Data Transformation

Dataset: Input (Before Transformation)

ID	Name	Age	City	Salary	Join_Date
1	Alice	25	New York	60000	2020-05-12
2	Bob	30	Los Angeles	NaN	2021-07-20
3	Charlie	NaN	Chicago	72000	2019-09-15
4	David	40	NaN	85000	2018-03-22
5	Eve	35	New York	NaN	2021-11-30

Output: After Transformation 1 (Handling Missing Data)

ID	Name	Age	City	Salary	Join_Date
1	Alice	25	New York	60000	2020-05-12
2	Bob	30	Los Angeles	72000	2021-07-20
3	Charlie	32.5	Chicago	72000	2019-09-15
4	David	40	New York	85000	2018-03-22
5	Eve	35	New York	72000	2021-11-30

5. Data Transformation

Dataset: Input (Before Transformation)

ID	Name	Age	City	Salary	Join_Date
1	Alice	25	New York	60000	2020-05-12
2	Bob	30	Los Angeles	NaN	2021-07-20
3	Charlie	NaN	Chicago	72000	2019-09-15
4	David	40	NaN	85000	2018-03-22
5	Eve	35	New York	NaN	2021-11-30

Output: After Transformation 2 (One-Hot Encoding)

ID	Name	Age	Salary	Join_Date	City_Chicago	City_Los Angeles	City_New York
1	Alice	25	60000	2020-05-12	0	0	1
2	Bob	30	72000	2021-07-20	0	1	0
3	Charlie	32.5	72000	2019-09-15	1	0	0
4	David	40	85000	2018-03-22	0	0	1
5	Eve	35	72000	2021-11-30	0	0	1

5. Data Transformation

Dataset: Input (Before Transformation)

ID	Name	Age	City	Salary	Join_Date
1	Alice	25	New York	60000	2020-05-12
2	Bob	30	Los Angeles	NaN	2021-07-20
3	Charlie	NaN	Chicago	72000	2019-09-15
4	David	40	NaN	85000	2018-03-22
5	Eve	35	New York	NaN	2021-11-30

Output: After Transformation 3 (Normalization)

ID	Name	Age	Salary_Normalized	Join_Date	City_Chicago	City_Los Angeles	City_New York
1	Alice	25	0.00	2020-05- 12	0	0	1
2	Bob	30	0.40	2021-07- 20	0	1	0
3	Charlie	32.5	0.40	2019-09- 15	1	0	0
4	David	40	1.00	2018-03- 22	0	0	1
5	Eve	35	0.40	2021-11- 30	0	0	1

6. Validation

- **1. Type Validation**: Ensures correct data types.
- 2. Range Validation: Checks numeric data within ranges.
- **3. Format Validation**: Ensures data follows a format (dates, emails).
- **4. Uniqueness Validation**: Ensures uniqueness of key fields.
- **5. Consistency Validation**: Verifies logical consistency across fields.
- 6. Null/Not Null Validation: Ensures mandatory fields are not empty.
- 7. Cross-Field Validation: Ensures compatibility between fields.
- **8. Domain Validation**: Checks data against predefined sets.
- **9. Length Validation**: Ensures string/numeric length matches requirements.
- **10. Reference Validation**: Ensures valid references between tables.
- 11. Statistical Validation: Verifies data against statistical norms.
- **12. Business Rule Validation**: Validates data against custom business logic.

Data preparation: Python

- High level programming language
 - Web applications
 - Graphics
 - Games
 - Data Analytics
 - Data Visualization
 - Artificial Intelligence

Modules and Packages

Modules

def...

def...

def...

Modules and Packages

Modules and Packages: how to use

- 1 "
- 2 Importing methods for using Pandas, NumPy, Matplotlib, Seaborn, and
- 3 TensorFlow in Python.
- 4 "
- 5
- 6 import pandas as pd
- 7 import numpy as np
- 8 import matplotlib.pyplot as plt
- 9 import tensorflow as tf
- 10
- 11

NumPy

This package is fundamental for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays.

- 1 #import numpy
- 2 import numpy as np

- 1 #create list
- 2 alist = [1, 2, 3, 4, 5]
- 3 twoDlist = [[1, 2, 3],[4, 5, 6],[7, 8, 9]]
- 5 #get the first element
- 6 print(alist[0])
- 7 print(twoDlist [1])
- 8 print(twoDlist [2][2])
- 9

4

- 10
- 1


```
#create dictionary
   twoDdict = {
     'rx1': {'A': 1, 'B': 2, 'C': 3},
     'rx2': {'A': 4, 'B': 5, 'C': 6},
     'rx3': {'A': 7, 'B': 8, 'C': 9}
6
   #get the first element
   print(twoDdict [rx1])
10 print(twoDdict [rx2][B])
```


1
$$a = [-1, 2, 4]$$

2
$$b = [3, 1, -5]$$

3

$$4 \# c = a + b$$

7 c

8

C

10

11

$$\begin{bmatrix} -1 \\ 2 \end{bmatrix} \qquad \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$

- 1 import numpy as np
- a = [-1, 2, 4]
- 3 b = [3, 1, -5]

4

5

- 6 a_array = np.array(a)
- 7 b_array = np.array(b)
- 8 c = a_array + b_array
- 9 c

10

11

12 d array.dtype

NumPy: shape, size, and type

```
import numpy as np
  d = [
                                                                     63
   ["SU", 19, 87, 63],
   ["CU", 20, 71, 54]
6
  d_{array} = np.array(d)
  print(d_array)
10 d_array.shape
11 d array.size
```


NumPy: shape, size, and type

```
import numpy as np
  d = [
  ["SU", 19, 87, 63],
5 ["CU", 20, 71, 54]
  d_{array} = np.array(d)
  element = d_array[1, 1]
10 element
```



```
import numpy as np
  d = [
   [19, 87, 63],
   [20, 71, 54]
6
  d_{array} = np.array(d)
  add_scalar = d_array + 5
  add_scalar = d_array + d_array
10
```


import numpy as np d = [[19, 87, 63], [20, 71, 54] 6 d = np.array(d)added_array = np.add(d_array, 10) sqrt array = np.sqrt(d array) 10 total_sum = np.sum(d_array) 11 mean value = np.mean(d array)

12 transpose d = d array.T

import numpy as np h = np.array([[4, 2], [3, 5]])matrix_mult = h @ h determinant = np.linalg.det(h) inverse = np.linalg.inv(h) eigenvalues, eigenvectors = np.linalg.eig(h) 9

import numpy as np

data = np.genfromtxt('mse.csv', delimiter=',', skip_header=1)

- y label = data[:, 0]
- y_prediction = data[:, 1]

8 mse = np.mean((y label - y prediction) **	า) ** 2	orediction)	l - V	labe	1((V	mse = np.mean(8
---	---------	-------------	-------	------	------	----------------	---

MSE	=	mean squared error
n	=	number of data points
Y_i	=	observed values

1	Α	В
1	y_label	y_prediction
2	1.1	0.7
3	2.5	2.9
4	9.8	8.8
5	1.2	1.6
5		

 $ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$

$$MSE$$
 = mean squared error n = number of data points Y_i = observed values \hat{Y}_i = predicted values

NumPy: shape and size

```
import numpy as np
  d = [
  ["SU", 19, 87, 63],
5 ["CU", 20, 71, 54]
  d_{array} = np.array(d)
  reshaped_array = np.reshape(d_array, (4, 2))
10 flat_array = d_array.flatten()
```


12

NumPy: shape and size

```
import numpy as np
 d = [[1, 2, 3, 4], [5, 6, 7, 8]]
  g = [[10, 20, 30, 40], [50, 60, 70, 80]]
5
  d = np.array(d)
  g = np.array(g)
  concatenated v = np.vstack((d array, g array))
  concatenated h = np.hstack((d array, g))
10 split h = np.hsplit(d array, 2)
11 split v = np.vsplit(d array, 2)
```


Pandas

A package that provides data structures and data analysis tools. It's particularly well-suited for working with structured data, like tables, and is commonly used for data manipulation, cleaning, and analysis.

- 1 #import pandas
- 2 import pandas as pd

Pandas: dataframe

```
import pandas as pd
  #DataFrame with 4 Series (columns) and 4 indices (rows)
  data = {
   'A': [1, 2],
   'B': [6, 7],
   'C': [9, 11],
   'D': [13,20]
10 df = pd.DataFrame(data, index=['alpha', 'beta'])
11 df
12
```

 A
 B
 C
 D

 alpha
 1
 6
 9
 13

 beta
 2
 7
 11
 20

Pandas: dataframe

```
import pandas as pd
  #DataFrame with 4 Series (columns) and 4 indices (rows)
  data = {
   'A': pd.Series([1,2], index=['alpha', 'beta']),
    'B': pd.Series([6,7], index=['gamma', 'beta']),
   'C': pd.Series([9], index=['alpha']),
    'D': pd.Series([13,20,22], index=['alpha', 'delta', 'beta'])
10 df = pd.DataFrame(data)
11 df
```

	Α	В	C	D
alpha	1.0	NaN	9.0	13.0
beta	2.0	7.0	NaN	22.0
delta	NaN	NaN	NaN	20.0
gamma	NaN	6.0	NaN	NaN

Pandas: csv importing

```
import pandas as pd
df = pd.read csv('pokemon.csv')
df
df.head()
df.tail()
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 801 entries, 0 to 800
Data columns (total 41 columns):
                    Non-Null Count Dtype
   Column
   abilities
                 801 non-null object
   against bug
                    801 non-null
                                   float64
   against dark
                    801 non-null
                                   float64
   against dragon
                     801 non-null
                                    float64
   against electric 801 non-null
                                   float64
   against fairy
                    801 non-null
                                  float64
```


Pandas: shape and null value

```
import pandas as pd
df = pd.read_csv('pokemon.csv')
df.shape
df.isnull().any()
```

abilities	False
against_bug	False
against_dark	False
against_dragon	False
against_electric	False
against_fairy	False
against_fight	False
against_fire	False
against_flying	False
against_ghost	False
against_grass	False
against_ground	False
against_ice	False

Pandas: dataframe operations

```
import pandas as pd
                                                                         alpha
  data = {
                                                                         beta
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8],
                                                                        gamma
    'C': [9, 10, 11, 12],
                                                                         delta
    'D': [13, 14, 15, 16]
  df = pd.DataFrame(data, index=['alpha', 'beta', 'gamma', 'delta'])
9
10 df
```

A B

3

5

12

Pandas: dataframe operations

```
import pandas as pd
                                                                              alpha
  data = {
                                                                               beta
    'A': [1, 2, 3, 4],
                                                                             gamma
    'B': [5, 6, 7, 8],
                                                                              delta
    'C': [9, 10, 11, 12],
     'D': [13, 14, 15, 16]
  df = pd.DataFrame(data, index=['alpha', 'beta', 'gamma', 'delta'])
9
10 df[['D', 'A']]
```


1 import pandas as pd

2

3 df = pd.read_csv('pokemon.csv')

Δ

5 df = df[df['percentage_male'].notna()]

6 df

7

5

9

1(

779	['Berserk', 'Sap Sipper', 'Cloud Nine']	1.0	1.0	2.0	0.5
781	['Bulletproof', 'Soundproof', 'Overcoat']	1.0	1.0	2.0	0.5
782	['Bulletproof', 'Soundproof', 'Overcoat']	0.5	0.5	2.0	0.5
783	['Bulletproof', 'Soundproof', 'Overcoat']	0.5	0.5	2.0	0.5
703 ro	ws × 41 columns				
4					

12 df

Pandas: dataframe operations

```
A B C D
   import pandas as pd
                                                      alpha
                                                                      9 13
  data = {
   'A': [1, 2, 3, 4],
                                                       beta
                                                                  6 10 14
4 'B': [5, 6, 7, 8],
                                                                  7 11 15
                                                     gamma
 'C': [9, 10, 11, 12],
                                                      delta
                                                                     12
                                                                        16
   'D': [13, 14, 15, 16]
  df = pd.DataFrame(data, index=['alpha', 'beta', 'gamma', 'delta'])
  df['p'] = df['A'] + df['B'] + df['C'] + df['D']
10 df['q'] = df['p'] /4
11 df['r'] = df['q'] >= 8.5
```

28

32

36

40

7.0 False

False

True

True

8.0

9.0

10.0

13 df

Pandas: dataframe operations

```
import pandas as pd
   data = {
                                                                       alpha
    'A': [1, 2, 3, 4],
                                                                        beta
   'B': [5, 6, 7, 8],
   'C': [9, 10, 11, 12],
                                                                       delta
    'D': [13, 14, 15, 16]
   df = pd.DataFrame(data, index=['alpha', 'beta', 'gamma', 'delta'])
  df['p'] = df['A'] + df['B'] + df['C'] + df['D']
10 df['q'] = df['p']/4
11 df['r'] = df['q'] >= 8.5
12 df = df.drop('r', axis=1)
```


12

13

Pandas: dataframe operations

```
import pandas as pd
                                                      Fushigidaneフシギダネ
                                                  0
                                                       Fushigisouフシギソウ
                                                      Fushiqibanaフシギバナ
                                                        Hitokageヒトカゲ
  df = pd.read csv('pokemon.csv')
                                                         Lizardoリザード
                                                  4
4
                                                  796
                                                        Tekkaguyaテッカグヤ
  df.columns
                                                       Kamituruqiカミツルギ
                                                  797
  df.japanese_name
                                                       Akuzikingアクジキング
                                                  798
                                                         Necrozmaネクロズマ
                                                  799
  df['japanese_name']
                                                         Magearnaマギアナ
                                                  800
  print(df['japanese_name'])
10
```

Dataset

import pandas as pd df = pd.read_csv('pokemon.csv') 4 p1=df.iloc[0] р1

abilities against_bug against_dark against_dragon against_electric against_fairy against_fight against_fire against_flying	'Chlorophyll'] 1.0 1.0 1.0 0.5 0.5 2.0 2.0
against_ghost	1.0
against_grass	0.25
against_ground	1.0
against_ice	2.0
against_normal	1.0
against_poison	1.0
against_psychic	2.0
against_rock	1.0

1 import pandas as pd

df = pd.read_csv('pokemon.csv')

4

5 p1=df.iloc[0]

6 p2=df.iloc[701]

- 1

8

C

1 (

11

12

	abilities	against_bug	against_dark	against_dragon	against_electric	against_fairy	against_fight
(['Overgrow', 'Chlorophyll']	1.0	1.0	1.0	0.5	0.5	0.5
70	['Cheek Pouch', 'Pickup', 'Plus']	0.5	0.5	0.0	0.5	1.0	0.5

1	import	pandas	as po

2

df = pd.read_csv('pokemon.csv')

Δ

5 df[df.hp>=125]

6

(

1(

11

10

abilities	against_bug	against_dark	against_dragon	against_electric
['Cute Charm', 'Competitive', 'Frisk']	0.50	0.5	0.0	1.0
['Natural Cure', 'Serene Grace', 'Healer']	1.00	1.0	1.0	1.0
['Water Absorb', 'Shell Armor', 'Hydration']	1.00	1.0	1.0	2.0
['Water Absorb', 'Hydration']	1.00	1.0	1.0	2.0
	['Cute Charm', 'Competitive', 'Frisk'] ['Natural Cure', 'Serene Grace', 'Healer'] ['Water Absorb', 'Shell Armor', 'Hydration'] ['Water Absorb',	['Cute Charm', 'Competitive', 'Frisk'] ['Natural Cure', 'Serene Grace', 'Healer'] ['Water Absorb', 'Shell Armor', 'Hydration'] ['Water Absorb', 1.00	['Cute Charm', 'Competitive', 'Frisk'] ['Natural Cure', 'Serene Grace', 'Healer'] ['Water Absorb', 'Shell Armor', 'Hydration'] ['Water Absorb', 1.00 1.0	Charm', 'Competitive', 'Frisk'] ['Natural Cure', 'Serene Grace', 'Healer'] ['Water Absorb', 'Shell Armor', 'Hydration'] ['Water Absorb', 1.00 1.0 1.0 1.0

13

Pandas: dataframe exporting

import pandas as pd df = pd.read_csv('pokemon.csv') 4 df hp=df[df.hp>=125]df_hp.to_csv('pokemon_hp.csv', index=False) 10 12

Pandas: basic statistics

1 import pandas as pd

2

df = pd.read_csv('pokemon.csv')

4

5 df.describe()

6

1(

12

	against_bug	against_dark	against_dragon	against_electric
count	801.000000	801.000000	801.000000	801.000000
mean	0.996255	1.057116	0.968789	1.073970
std	0.597248	0.438142	0.353058	0.654962
min	0.250000	0.250000	0.000000	0.000000
25%	0.500000	1.000000	1.000000	0.500000
50%	1.000000	1.000000	1.000000	1.000000
75 %	1.000000	1.000000	1.000000	1.000000
max	4.000000	4.000000	2.000000	4.000000
KOLLIG V	24 columns			

against dark against dragon against plactric

 $8 \text{ rows} \times 34 \text{ columns}$

Pandas: basic statistics

import pandas as pd df = pd.read_csv('pokemon.csv') 4 df_class= df[['classfication']] df_class.mode()

classfication

O Dragon Pokémon

Pandas: basic statistics

1 import pandas as pd

2

3 df = pd.read_csv('pokemon.csv')

/

5 df.corr()

6

8

(

1(

11

12

	against_bug	against_dark	against_dragon	against_electric
against_bug	1.000000	0.230107	0.165430	-0.246943
against_dark	0.230107	1.000000	0.140830	-0.015830
against_dragon	0.165430	0.140830	1.000000	-0.108928
against_electric	-0.246943	-0.015830	-0.108928	1.000000
against_fairy	0.239566	-0.301354	0.439705	-0.089864
against_fight	0.137902	-0.357981	0.035237	-0.102798
against_fire	0.202778	0.010527	-0.261570	-0.279029
against_flying	0.183343	-0.179697	0.064850	-0.111461
against_ghost	0.129174	0.672337	-0.049941	-0.073031
against_grass	0.079197	-0.006533	-0.037135	0.056209

10

12

13

Pandas: basic statistics

```
import pandas as pd
                                                                                          hp
2
                                                                             type1
   df = pd.read csv('pokemon.csv')
                                                                             bug
                                                                                    56.722222
4
                                                                            dark
                                                                                    72.551724
   df2 = df[[ 'type1', 'hp']]
                                                                           dragon
                                                                                    79.851852
                                                                           electric
   df2.groupby("type1").mean()
                                                                                   60.512821
                                                                            fairy
                                                                                    73.944444
                                                                           fighting
                                                                                    71.428571
```

Modules and Packages: importing

- 1 "
- 2 Importing methods for using Pandas, NumPy, Matplotlib, Seaborn, and
- 3 TensorFlow in Python.
- 4 "
- 5
- 6 import pandas as pd
- 7 import numpy as np
- 8 import matplotlib.pyplot as plt
- 9 import tensorflow as tf
- 10
- 11

Data preparation: techniques

- 1. Data Integration
- 2. Data Manipulation
- 3. Data Cleaning
- 4. Data Transformation
- 5. Feature Engineering
- 6. Data Normalization
- 7. Data Augmentation
- 8. Data Reduction
- 9. Data Imputation
- 10. Data Validation
- 11. Data Enrichment
- 12. Data Partitioning

Tools

- Spreadsheet
- Statistical tools
- RDMS
- BigQuery
- Python

Data integration

- Combine data from various sources into a single, cohesive dataset
- Merge datasets from different databases, files, or APIs.
- Resolve conflicts between data sources (e.g., different formats, naming conventions).
- Ensure that integrated data aligns correctly (e.g., matching IDs or timestamps).

Data integration: case study

Before dataset

reportdate	reportcode	patient_id	medication_id	mederrorcode	mederror_detail	mederror_detailcode	medcode_sub	severitycode
17/4/2021	2102000197	P001	M001	CPM202	Medication error Tran	2005	คัดลอกยาลงใบ MAR ซ	В
15/9/2021	2102000199	P002	M002	CPM204	Medication error Disp	4006	จ่ายยา ผิด จำนวน หรือ	`B
4/3/2021	2102000204	P003	M003	CPM202	Medication error Tran	2013	scan order ไม่ได้ ไม่มี	D

patient_id	age	gender	address	contact_number
P001	67	Male	1234 Elm St	555-1234
P002	45	Female	5678 Maple Ave	555-5678
P003	72	Male	9102 Oak Blvd	555-9102

me	dication_id	medication_name	dosage	manufacturer
M0	01	Aspirin	100 mg	Pharma Inc.
M0	02	Metformin	500 mg	Health Co.
M0	03	Lisinopril	10 mg	Wellness Labs

Data manipulation

- Modify and adjust the data to make it more suitable for analysis
- Filter, sort, and organize data
- Compute new variables or derive new columns from existing data
- Reformat data types and structures (e.g., converting strings to dates)

Data preparation with GenAI

- 1. Data manipulation
- 2. Data cleaning

Code exercise

- 1. Example 1: https://github.com/ekaratnida/Applied-machine-learning/blob/master/Example1_EDA.ipynb
- 2. Example 2: https://github.com/ekaratnida/Applied-machine-learning/blob/master/Example2_EDA.ipynb