Introduction to Bootstrap

Preetham Reddy Armoor

Department of Mathematics University of Applied Sciences, Mittweida

28 November 2016

Outline

- Introduction
- 2 Preliminaries
 - The Plug-in Principle
 - Standard Error
 - Bias
- Non-Parametric Bootstrap
- Parametric Bootstrap
- Conclusion

Introduction

- Bootstrap is a computer based method for assigning measure of accuracy to statistical estimates.
- Bootstrap was introduced by B.Efron in 1979.

Bootstrap

Bootstrap Sample

A bootstrap sample $x^* = (x_1^*, x_2^*, x_3^*..., x_n^*)$ is obtained by random sampling n times, with replacement, from the original data points $x = (x_1, x_2, x_3, ..., x_n)$.

Bootstrap

Bootstrap Sample

A bootstrap sample $x^* = (x_1^*, x_2^*, x_3^*..., x_n^*)$ is obtained by random sampling n times, with replacement, from the original data points $x = (x_1, x_2, x_3, ..., x_n)$.

Example

Consider a sample $x = (x_1, x_2, x_3, x_4, x_5)$ some bootstrap samples can be:

$$x_1^* = (x_2, x_3, x_2, x_4, x_1)$$

$$x_2^* = (x_2, x_1, x_3, x_3, x_1)$$

$$x_3^* = (x_4, x_1, x_2, x_3, x_4)$$

The Plug-in Principle

Definition

The Plug-in estimate of a parameter $\theta = t(F)$ is defined to be:

$$\hat{\theta} = t(\hat{F})$$

the function $\theta=t(F)$ of the probability distribution function F is estimated by the same function t(.) of the empirical density \hat{F} .

The Plug-in Principle

Definition

The Plug-in estimate of a parameter $\theta = t(F)$ is defined to be:

$$\hat{\theta} = t(\hat{F})$$

the function $\theta=t(F)$ of the probability distribution function F is estimated by the same function t(.) of the empirical density \hat{F} .

Bootstrap Replication

with each bootstrap sample $x^{*(1)}$ to $x^{(B)}$, we can compute a bootstrap replication $\hat{\theta}^*(b) = s(x^{*(b)})$ using the plug-in principle.

Accuracy of sample estimate

how accurate is $\hat{\theta}$ compared to the real value θ ?

- Standard error.
- Bias.
- Confidence interval.
- etc.

Standard Error

The standard error is the standard deviation of sampling distribution of statistic $\hat{\theta}$. As such, it measures the precision of an estimate of the statistic of a population distribution.

$$se(\hat{\theta}) = \sqrt{var_F(\hat{F})}$$

Standard Error

The standard error is the standard deviation of sampling distribution of statistic $\hat{\theta}$. As such, it measures the precision of an estimate of the statistic of a population distribution.

$$se(\hat{ heta}) = \sqrt{var_F(\hat{F})}$$

Standard Error of \overline{X}

$$se(\overline{X}) = \sqrt{var_F(\overline{X})} = \frac{\sigma_F}{\sqrt{n}}$$

Standard Error

The standard error is the standard deviation of sampling distribution of statistic $\hat{\theta}$. As such, it measures the precision of an estimate of the statistic of a population distribution.

$$se(\hat{ heta}) = \sqrt{var_F(\hat{F})}$$

Standard Error of \overline{X}

$$se(\overline{X}) = \sqrt{var_F(\overline{X})} = \frac{\sigma_F}{\sqrt{n}}$$

Estimated Standard Error of \overline{X}

$$\hat{s}e(\overline{X}) = \frac{\hat{\sigma}}{\sqrt{n}}$$

Bootstrap Estimated Standard Error

Estimate the standard error $se_F(\hat{\theta})$ by the standard deviation of the B replication:

$$s\hat{e}_B = \left[\frac{\sum_{b=1}^{B} [\hat{\theta}^*(b) - \hat{\theta}^*(.)]^2}{B - 1}\right]$$

where
$$\hat{\theta}^*(.) = \frac{\sum_{b=1}^B [\hat{\theta}^*(b)]}{B}$$

Bias

The Bias is the difference between the expectation of an estimator $\hat{\theta}$ and the quantity θ being estimated:

$$Bias_F(\hat{\theta}, \theta) = E_F(\hat{\theta}) - \theta$$

Bias

The Bias is the difference between the expectation of an estimator $\hat{\theta}$ and the quantity θ being estimated:

$$Bias_F(\hat{\theta}, \theta) = E_F(\hat{\theta}) - \theta$$

Bootstrap Estimate of Bias

the bootstrap estimate of bias is defined to be the estimate:

$$Bias_{\hat{F}}(\hat{\theta}) = E_{\hat{F}}[S(\mathbf{x}^*)] - t(\hat{F}) = \theta^*(.) - \hat{\theta}$$

Non-Parametric Bootstrap

Algorithm

- **1** Assume a data set $x = (x_1, x_2, ..., x_n)$ is available.
- ② Fix the number of bootstrap re-samples B.
- Sample a new data set x^* set of size n from x with replacement.
- **6** Estimate θ from x^* call the estimate $\hat{\theta}_i^*$, for $i = 1 \dots N$.
- Repeat step 3 and 4 B times.
- **Output** Consider the emperical distribution of $(\hat{\theta}_1^*,, \hat{\theta}_N^*)$ as an approximation of the true distribution of $\hat{\theta}$.

Parametric Bootstrap

Algorithm

- **1** we assume data set $x=(x_1,x_2,...,x_n)$ has a known distribution F_{ψ}
- ② The data comes from a known distribution family F_{ψ} has a set of parameters.
- **3** Estimate parameters of ψ .
- \bullet Fix the number of bootstrap re-samples B.
- **5** Sample a new data set x^* set of size n from x with replacement.
- **6** Estimate θ from x^* call the estimate $\hat{\theta}_i^*$, for $i = 1 \dots N$.
- Repeat step 5 and 6 B times.
- **3** Consider the emperical distribution of $(\hat{\theta}_1^*,, \hat{\theta}_N^*)$ as an approximation of the true distribution of $\hat{\theta}$.

Conclusion

- In Parametric bootstrap, \hat{F}_{par} is not anymore the emperical density function.
- If the prior information on F is accurate, then \hat{F}_{par} estimates better F than the empirical p.d.f .In this case the parametric bootstrap gives better estimation for the standard errors.
- If the parametric model is mis-specified then it rapidly converges to the wrong distribution.

Conclusion

when might bootstrap fail?

- Incomplete data.
- Dependent data.
- Noisy data.

Reference I

B.Efron,R.J.Tibshirani.
An Introduction to Bootstrap.
Chapman and hall, 1998.

Tim Hesterberg, Shaun Monaghan, David S. Moore. Bootstrap Methods And Permutation Test. W.H. Freeman and company, New York, 2003.