DCP3122 Introduction to Formal Languages, Spring 2015

5-May-2015

Homework 5 - Solution

Instructor: Prof. Wen-Guey Tzeng

Due: 18-May-2015

1. Given $\Sigma = \{a, b, c\}$, find an NPDA that accepts $L = \{a^n b^{n+m} c^m : n \geq 0, m \geq 1\}$. **Ans.** An NPDA that accepts L is $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$, where $Q = \{q_0, q_1, \ldots, q_5\}$, $\Sigma = \{a, b, c\}$, $\Gamma = \{0, 1, z\}$, $F = \{q_5\}$, and the transition function δ is represented as the following graph

2. Given $\Sigma = \{a, b, c\}$, find an NPDA that accepts $L = \{w_1 c w_2 : w_1, w_2 \in \{a, b\}^*, w_1 \neq w_2^R\}$. **Ans.** An NPDA that accepts L is $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$, where $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{a, b, c\}$, $\Gamma = \{0, 1, z\}$, $F = \{q_2\}$, and the transition function δ is represented as the following graph

3. What language is accepted by the PDA

$$M = (\{q_0, q_1, \dots, q_5\}, \{a, b\}, \{0, 1, a, z\}, \delta, z, q_0, \{q_5\}),$$

with

$$\delta(q_0, b, z) = \{(q_1, 1z)\},\$$

$$\delta(q_1, b, 1) = \{(q_1, 11)\},\$$

$$\delta(q_2, a, 1) = \{(q_3, \lambda)\},\$$

$$\delta(q_3, a, 1) = \{(q_4, \lambda)\},\$$

$$\delta(q_4, a, z) = \{(q_4, z), (q_5, z)\}?$$

Ans. $L = \emptyset$, because the transition function would never reach the final state.

4. Construct an NPDA that accepts the language generated by the grammar $S \to aSbb|aab$. **Ans.** The Greibach normal form of the grammar is $S \to aSBB|aAB$, $B \to b$, $A \to a$. An NPDA that accepts L is $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$, where $Q = \{q_0, q_1, q_2\}$, $\Sigma = \{a, b\}$, $\Gamma = \{S, A, B, z\}$, $F = \{q_2\}$, and the transition function δ is represented as the following graph

5. Find a context-free grammar that generates the language accepted by the NPDA $M = (\{q_0, q_1\}, \{a, b\}, \{A, z\}, \delta, q_0, z, \{q_1\})$, with transitions

$$\delta(q_0, a, z) = \{(q_0, Az)\},\$$

$$\delta(q_0, b, A) = \{(q_0, AA)\},\$$

$$\delta(q_0, a, A) = \{(q_1, \lambda)\}.$$

Ans. We first transform the NPDA into a new one that satisfies the following two requirements:

- (1) It has a single final state q_f that is entered if and only if the stack is empty;
- (2) While $a \in \Sigma \cup \{\lambda\}$, all transitions must have the form $\delta(q_i, a, A) = \{c_1, c_2, \dots, c_n\}$, where $c_i = (q_j, \lambda)$ or $c_i = (q_j, BC)$.

The NPDA satisfies requirement (2), but not (1). To satisfy the latter, we introduce a new final state q_2 so that $Q_{new} = \{q_0, q_1, q_2\}$, $F_{new} = \{q_2\}$, and δ_{new} is

$$\delta(q_0, a, z) = \{(q_0, Az)\},\$$

$$\delta(q_0, b, A) = \{(q_0, AA)\},\$$

$$\delta(q_0, a, A) = \{(q_1, \lambda)\},\$$

$$\delta(q_1, \lambda, A) = \{(q_1, \lambda)\},\$$

$$\delta(q_1, \lambda, z) = \{(q_2, \lambda)\}.$$

The last three transitions yield the corresponding productions

$$(q_0Aq_1) \to a,$$

 $(q_1Aq_1) \to \lambda,$
 $(q_1zq_2) \to \lambda.$

From the first two transitions we get the set of productions

$$\begin{aligned} &(q_0zq_0) \to a(q_0Aq_0)(q_0zq_0)|a(q_0Aq_1)(q_1zq_0)|a(q_0Aq_2)(q_2zq_0), \\ &(q_0zq_1) \to a(q_0Aq_0)(q_0zq_1)|a(q_0Aq_1)(q_1zq_1)|a(q_0Aq_2)(q_2zq_1), \\ &(q_0zq_2) \to a(q_0Aq_0)(q_0zq_2)|a(q_0Aq_1)(q_1zq_2)|a(q_0Aq_2)(q_2zq_2), \\ &(q_0Aq_0) \to a(q_0Aq_0)(q_0Aq_0)|a(q_0Aq_1)(q_1Aq_0)|a(q_0Aq_2)(q_2Aq_0), \\ &(q_0Aq_1) \to a(q_0Aq_0)(q_0Aq_1)|a(q_0Aq_1)(q_1Aq_1)|a(q_0Aq_2)(q_2Aq_1), \\ &(q_0Aq_2) \to a(q_0Aq_0)(q_0Aq_2)|a(q_0Aq_1)(q_1Aq_2)|a(q_0Aq_2)(q_2Aq_2). \end{aligned}$$

To simplify the transitions, we remove the useless variables:

- A variable that does not occur on the left side of any production: (q_1zq_0) , (q_1zq_1) , (q_1zq_2) , (q_2zq_0) , (q_2zq_1) , (q_2zq_2) , (q_1Aq_0) , (q_1Aq_1) , (q_1Aq_2) , (q_2Aq_0) , (q_2Aq_1) , and (q_2Aq_2) .
- Non-reachable path: None.

The result grammar is

$$\begin{split} &(q_0Aq_1) \to a, \\ &(q_1Aq_1) \to \lambda, \\ &(q_1zq_2) \to \lambda, \\ &(q_0zq_0) \to a(q_0Aq_0)(q_0zq_0), \\ &(q_0zq_1) \to a(q_0Aq_0)(q_0zq_1), \\ &(q_0zq_2) \to a(q_0Aq_0)(q_0zq_2), \\ &(q_0Aq_0) \to a(q_0Aq_0)(q_0Aq_0), \\ &(q_0Aq_1) \to a(q_0Aq_0)(q_0Aq_1), \\ &(q_0Aq_2) \to a(q_0Aq_0)(q_0Aq_2), \end{split}$$

with the start variable is (q_0zq_2) .

- 6. Show that the language $L = \{w \in \{a, b, c\}^* : n_a(w) = n_b(w) \le n_c(w)\}$ is not context-free. **Ans.** We pick a string $w = a^m b^m c^m \in L$, $m \in \mathbb{N}$. There are many ways to decompose w as w = uvxyz with $|vxy| \le m$ and $|vy| \ge 1$. However, for all of them have a winning countermove such that $uv^i xy^i z \notin L$:
 - $v = a^k, y = a^k$: $uv^0 x y^0 z = a^{m-2k} b^m c^m \notin L$.
 - $v = a^k, y = a^k b^k$: $uv^0 x y^0 z = a^{m-2k} b^{m-k} c^m \notin L$.
 - $v = a^k, y = b^{\ell}$: $uv^0 x y^0 z = a^{m-k} b^{m-\ell} c^m \notin L$.
 - $\bullet \ v=a^kb^k, y=b^k \colon uv^0xy^0z=a^{m-k}b^{m-2k}c^m \not\in L.$
 - $v = b^k, y = b^k$: $uv^0 x y^0 z = a^m b^{m-2k} c^m \notin L$.
 - $\bullet \ v=b^k, y=b^kc^k \colon uv^0xy^0z=a^mb^{m-2k}c^{m-k}\notin L.$

- $v = b^k, y = c^k uv^0xy^0z = a^mb^{m-k}c^{m-k} \notin L$.
- $v = b^k c^k, y = c^k$: $uv^0 x y^0 z = a^m b^{m-2k} c^{m-k} \notin L$.
- $v = c^k, y = c^k$: $uv^0 x y^0 z = a^m b^m c^{m-2k} \notin L$.

Therefore, by the pumping lemma for context-free languages, L is not context-free.

- 7. Show that the language $L = \{a^n b^m : n \text{ and } m \text{ are both prime}\}$ is not context-free.
- **Ans.** We pick a string $w = a^m b^m \in L$, m is an odd prime. There are many ways to decompose w as w = uvxyz with $|vxy| \le m$ and $|vy| \ge 1$. However, for all of them have a winning countermove such that $uv^i xy^i z \notin L$:
 - $v = a^k, y = a^\ell$ with $k + \ell$ is odd: $uv^0xy^0z = a^{m-k-\ell}b^m \notin L$ since $m k \ell$ is even.
 - $v = a^{k_1}, y = a^{k_2}b^{\ell}$ with one of k_1 and k_2 is odd, or ℓ is odd: $uv^0xy^0z = a^{m-k_1-k_2}b^{m-\ell} \notin L$ since $m k_1 k_2$ is even or $m \ell$ is even.
 - $v = a^k, y = b^\ell$ with one of k and ℓ is odd: $uv^0xy^0z = a^{m-k}b^{m-\ell} \notin L$ since m-k is even or $m-\ell$ is even.
 - $v = a^{\ell}b^{k_1}$, $y = b^{k_2}$ with one of k_1 and k_2 is odd, or ℓ is odd: $uv^0xy^0z = a^{m-\ell}b^{m-k_1-k_2} \notin L$ since $m \ell$ is even or $m k_1 k_2$ is even.
 - $v = b^k, y = b^\ell$ with $k + \ell$ is odd: $uv^0xy^0z = a^mb^{m-k-\ell} \notin L$ since $m k \ell$ is even.

Therefore, by the pumping lemma for context-free languages, L is not context-free.

8. Determine whether or not $L = \{a^n b^j a^k b^l : n \leq k, j \leq l\}$ is context-free. You have to prove your answer.

Ans. We pick a string $w = a^m b^m a^m b^m \in L$, $m \in \mathbb{N}$. There are many ways to decompose w as w = uvxyz with $|vxy| \le m$ and $|vy| \ge 1$. However, for all of them have a winning countermove such that $uv^i xy^i z \notin L$:

- [1st a] $v = a^k, y = a^k$ with $k \in \mathbb{N}$: $uv^i x y^i z = a^{m+2(i-1)k} b^m a^m b^m \notin L$ for $i = 2, 3, \ldots$
- $\bullet \ [1\text{st }a,1\text{st }b]\ v=a^k,y=a^kb^k\colon uv^ixy^iz=a^{m+2(i-1)k}b^{m+(i-1)k}a^mb^m\notin L \ \text{for } i=2,3,\ldots.$
- [1st a, 1st b] $v = a^k$, $y = b^k$: $uv^i x y^i z = a^{m+(i-1)k} b^{m+(i-1)k} a^m b^m \notin L$ for i = 2, 3, ...
- [1st a, 1st b] $v = a^k b^k$, $y = b^k$: $uv^i x y^i z = a^{m+(i-1)k} b^{m+2(i-1)k} a^m b^m \notin L$ for i = 2, 3, ...
- [1st b] $v = b^k$, $y = b^k$: $uv^i x y^i z = a^m b^{m+2(i-1)k} a^m b^m \notin L$ for i = 2, 3, ...
- [1st b, 2nd a] $v = b^k, y = b^k a^k$: $uv^i x y^i z = a^m b^{m+2(i-1)k} a^{m+(i-1)k} b^m \notin L$ for i = 2, 3, ...
- [1st b, 2nd a] $v = b^k$, $y = a^k$: $uv^i x y^i z = a^m b^{m+(i-1)k} a^{m+(i-1)k} b^m \notin L$ for i = 2, 3, ...
- [1st b, 2nd a] $v = b^k a^k$, $y = a^k$: $uv^i x y^i z = a^m b^{m+(i-1)k} a^{m+2(i-1)k} b^m \notin L$ for i = 2, 3, ...
- [2nd a] $v = a^k, y = a^k$: $uv^0xy^0z = a^mb^ma^{m-2k}b^m \notin L$
- [2nd a, 2nd b] $v = a^k, y = a^k b^k$: $uv^0 x y^0 z = a^m b^m a^{m-2k} b^{m-k} \notin L$.
- [2nd a, 2nd b] $v = a^k, y = b^k$: $uv^0xy^0z = a^mb^ma^{m-k}b^{m-k} \notin L$.
- [2nd a, 2nd b] $v = a^k b^k, y = b^k$: $uv^0 x y^0 z = a^m b^m a^{m-k} b^{m-2k} \notin L$.
- [2nd b] $v = b^k, y = b^k$: $uv^0 x y^0 z = a^m b^m a^m b^{m-2k} \notin L$.

Therefore, by the pumping lemma for context-free languages, L is not context-free.

9. Show that the family of context-free languages is not closed under difference in general, but is closed under regular difference, that is, if L_1 is context-free and L_2 is regular, then $L_1 - L_2$ is context-free.

Ans. The answer contains the following two parts:

- Let L_1 and L_2 be context-free languages. By theorem, we have that the family of context-free languages is not close under intersection and complement. Thus, $L_1 L_2 = L_1 \cap \overline{L}_2$ is not close under difference in general.
- Let L_1 be a context-free language and L_2 a regular language. By the closure property of regular languages, we know that \overline{L}_2 is also regular. By theorem, we know that $L_1 \cap L_2$ is context-free by the closure property under regular intersection. Therefore, $L_1 L_2 = L_1 \cap \overline{L}_2$ is also context-free by the closure property under regular intersection.
- 10. Show that $L = \{w \in \{a, b\}^* : n_a(w) = n_b(w); w \text{ does not contain a substring } aab\}$ is context-free.

Ans. Let $L_1 = \{w \in \{a,b\}^* : n_a(w) = n_b(w)\}$ and $L_2 = \{w \in \{a,b\}^* : w \text{ contains 'aab' as a string}\}$. The following shows that L_1 is context-free and L_2 is regular.

• An NPDA that accepts L_1 is $M_1 = (\{q_0, q_1\}, \{a, b\}, \{a, b, z\}, \delta, q_0, z, \{q_1\})$, where the transition function δ is defined as follows:

$$\delta(q_0, \lambda, z) = (q_1, z),$$

$$\delta(q_0, a, z) = (q_0, az),$$

$$\delta(q_0, a, a) = (q_0, aa),$$

$$\delta(q_0, a, b) = (q_0, \lambda),$$

$$\delta(q_0, b, z) = (q_0, bz),$$

$$\delta(q_0, b, a) = (q_0, \lambda),$$

$$\delta(q_0, b, b) = (q_0, bb).$$

• An NFA that accepts L_2 is $M_2 = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\})$ accepts L'', where the transition function δ is defined as follows:

$$\begin{split} &\delta(q_0,a) = q_1, \\ &\delta(q_0,b) = q_0, \\ &\delta(q_1,a) = q_2, \\ &\delta(q_1,b) = q_0, \\ &\delta(q_2,a) = q_0, \\ &\delta(q_2,b) = q_3, \\ &\delta(q_3,a) = q_3, \\ &\delta(q_3,b) = q_3. \end{split}$$

Therefore, $L = L_1 \cap L_2$ is context-free by the closure property under regular intersection.