

MM54HC165/MM74HC165 Parallel-in/Serial-out 8-Bit Shift Register

General Description

The MM54HC165/MM74HC165 high speed PARALLEL-IN/SERIAL-OUT SHIFT REGISTER utilizes advanced silicongate CMOS technology. It has the low power consumption and high noise immunity of standard CMOS integrated circuits, along with the ability to drive 10 LS-TTL loads.

This 8-bit serial shift register shifts data from Q_A to Q_H when clocked. Parallel inputs to each stage are enabled by a low level at the SHIFT/LOAD input. Also included is a gated CLOCK input and a complementary output from the eighth bit.

Clocking is accomplished through a 2-input NOR gate permitting one input to be used as a CLOCK INHIBIT function. Holding either of the CLOCK inputs high inhibits clocking, and holding either CLOCK input low with the SHIFT/LOAD input high enables the other CLOCK input. Data transfer occurs on the positive going edge of the clock. Parallel load-

ing is inhibited as long as the SHIFT/LOAD input is high. When taken low, data at the parallel inputs is loaded directly into the register independent of the state of the clock.

The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 20 ns (clock to Q)
- Wide operating supply voltage range: 2-6V
- Low input current: 1 µA maximum
- Low quiescent supply current: 80 μ A maximum (74HC Series)
- Fanout of 10 LS-TTL loads

Connection Diagram

Dual-In-Line Package

Top View

Order Number MM54HC165 or MM74HC165

Function Table

Inputs						rnal	Output	
Shift/		Clock	Serial	Parallel	Outputs		Q _H	
Load	Inhibit	CIOUN	Cornar	АН	Q_A	Q_{B}		
L	Х	Х	Χ	ah	а	b	h	
Н	L	L	Х	Х	Q _{A0}	Q_{B0}	Q _{H0}	
Н	L	↑	Н	Х	Н	Q_{AN}	Q _{GN}	
Н	L	↑	L	Х	L	Q_{AN}	Q _{GN}	
Н	Н	X	X	Х	Q _{A0}	Q_{B0}	Q _{H0}	

 $H = High \ Level \ (steady \ state), \ L = Low \ Level \ (steady \ state)$

X = Irrelevant (any input, including transitions)

↑ = Transition from low to high level

 $Q_{A0},\ Q_{B0},\ Q_{H0}=$ The level of $Q_A,\ Q_B,\ or\ Q_H,$ respectively, before the indicated steady-state input conditions were established.

 $\rm Q_{AN}, \rm Q_{GN}=The\ level\ of\ Q_{A}\ or\ Q_{G}\ before\ the\ most\ recent\ \uparrow\ transition\ of\ the\ clock;\ indicates\ a\ one-bit\ shift.$

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{\rm CC}$ $+$ 1.5 $V_{\rm CC}$
DC Output Voltage (V _{OUT})	-0.5 to $V_{\rm CC}$ + 0.5 V
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to $+150$ °C

Power Dissipation (P_D)

(Note 3) 600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

(Soldering 10 seconds) 260°C

Operating Conditions

Supply Voltage (V _{CC})	Min 2	Max 6	Units V
DC Input or Output Voltage (V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A) MM74HC MM54HC	-40 -55	+85 +125	°C
$ \begin{array}{ll} \text{Input Rise or Fall Times} \\ (t_{r},t_{f}) & V_{CC}\!=\!2.0V \\ & V_{CC}\!=\!4.5V \\ & V_{CC}\!=\!6.0V \end{array} $		1000 500 400	ns ns ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level Input Voltage		2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}	Maximum Low Level Input Voltage**		2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
V _{OH}	Minimum High Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	4.2 5.7	3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL}	Maximum Low Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	0.2 0.2	0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND $V_{CC} = 2-6V$	6.0V		±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$ $V_{CC} = 2-6V$	6.0V		8.0	80	160	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay H to Q_H or \overline{Q}_H		15	25	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Serial Shift/Parallel Load to Q _H		13	25	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clock to Output		15	25	ns
t _S	Minimum Setup Time Serial Input to Clock, Parallel or Data to Shift/Load		10	20	ns
t _S	Minimum Setup Time Shift/Load to Clock		11	20	ns
t _S	Minimum Setup Time Clock Inhibit to Clock		10	20	ns
t _H	Minimum Hold Time Serial Input to Clock or Parallel Data to Shift/Load			0	ns
tw	Minimum Pulse Width Clock			16	ns

AC Electrical Characteristics $c_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =	= 25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
f _{MAX}	Maximum Operating Frequency		2.0V 4.5V 6.0V	10 45 50	5 27 32	4 21 25	4 18 21	MHz MHz MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay H to Q_H or \overline{Q}_H		2.0V 4.5V 6.0V	70 21 18	150 30 26	189 38 33	225 45 39	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Serial Shift/ Parallel Load to Q _H		2.0V 4.5V 6.0V	70 21 18	175 35 30	220 44 37	260 52 44	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clock to Output		2.0V 4.5V 6.0V	70 21 18	150 30 26	189 38 33	225 45 39	ns ns ns
t _S	Minimum Setup Time Serial Input to Clock, or Parallel Data to Shift/Load		2.0V 4.5V 6.0V	35 11 9	100 20 17	125 25 21	150 30 25	ns ns ns
t _S	Minimum Setup Time Shift/Load to Clock		2.0V 4.5V 6.0V	38 12 9	100 20 17	125 25 21	150 30 25	ns ns ns
ts	Minimum Setup Time Clock Inhibit to Clock		2.0V 4.5V 6.0V	35 11 9	100 20 17	125 25 21	150 30 25	ns ns ns
t _H	Minimum Hold Time Serial Input to Clock or Parallel Data to Shift/Load		2.0V 4.5V 6.0V		0 0 0	0 0 0	0 0 0	ns ns ns
t _W	Minimum Pulse Width, Clock		2.0V 4.5V 6.0V	30 9 8	80 16 14	100 20 18	120 24 20	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 9 8	75 15 13	95 19 16	110 22 19	ns ns ns
t _r , t _f	Maximum Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package)		100				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$.

Logic Diagrams CLOCK INHIBIT SHIFT/ O TL/F/5316-2 PARALLEL INPUTS TL/F/5316-3

Dual-In-Line Package Order Number MM54HC165J or MM74HC165J NS Package J16A

Physical Dimensions inches (millimeters) (Continued)

Dual-In-Line Package Order Number MM74HC165N NS Package N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: onlyeg@tevnz.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408