Trabalho de VHDL

Maquina de Café

Name: Matheus Francisco Batista Machado Matrícula:14202492

Engenharia de Computação Universidade Federal de Santa Catarina

4th December 2017

Contents

1	Des	scrição	3
	2.1	ign do Sistema Máquina de Café	3 4
3	3.1 3.2 3.3 3.4	Requisitos do Sistema Funcionais Não funcionais Fluxograma Código AsM	5 5 5 6 7
4	Sim	ulação	8

1 Descrição

Uma máquina de café para uso comercial cuja mesma oferece três tipos de café , puro , com leite e mochaccino em dois tamanho de copos diferentes ,pequeno e grande.

 Porcessador μPD A máquina contém um processador que contém as instruções a serem executadas para realizar o preparo do café

2 Design do Sistema

2.1 Máquina de Café

Diagrama dos componentes básicos da maquina de café.

Figure 1: Diagrama de blocos máquina de café

2.2 Processador

O Processador μ PD é uma arquitetura baseada em RISC ou seja todas as operações são baseada em registradores R_0 , R_1 , R_2 e R_3 . As instruções do processado tem um endereçamento de 16 bits sendo 5bits para Opcode, 2 registrado de destino R_{DST} , 2bits para R_{s1} , 2bits para R_{s2} e 5 bits para endereço de dado.

Figure 2: Imagem dos componentes básicos do μPD

As instruções de opcodes básicas utilizadas na implementação do código são:

 $LDI = carrega em R_{DST}$ o valor de END/DADO

 $ADD = Faz R_{S1} + R_{S2}$ e guarda em R_{DST} (Overflow com valor correto)

 ${\rm SUB} = {\rm Faz} \; R_{S1}$ - R_{S2} e guarda em R_{DST}

 $OUT = Bota R_{S1} em oDATA_{IO}$

 $IN = Guarda em R_{DST}$ o que entra em $iDATA_{IO}$

 ${
m JI}={
m Pula}$ para instrução cujo endereço é passado em END/DADO

 $\mathrm{LD} = \mathrm{Guarda}$ em R_{DST} o valor que está no endereço $\mathrm{END}/\mathrm{DADO}$

 $\mathrm{STO}=\mathrm{Guarda}$ na posição de memória $\mathrm{END}/\mathrm{DADO}$ o valor do registrador R_{S2}

 ${\rm JZ}={\rm Pula}$ para instrução cujo endereço é passado em END/DADO se valor de $R_{DST}==0$

 ${\rm JE}={\rm Pula}$ para instrução cujo endereço é passado em END/DADO se valor de $R_{S1}==R_{S2}$

AND = AND entre R_{S1} e R_{S2} e guarda em R_{DST}

OR = OR entre R_{S1} e R_{S2} e guarda em R_{DST}

XOR = XOR entre R_{S1} e R_{S2} e guarda em R_{DST}

3 Software

O software irá fazer o controle de uma máquina de café é baseado em na linguagem asm e convertido para linguagem de maquina sendo executado pelo processador.

3.1 Requisitos do Sistema

Para o desenvolvimento do sistema foi levado em consideração os requisitos funcionais e não funcionais listados na secção 3.2 e 3.3

3.2 Funcionais

Os requisitos funcionais do sistema são:

- I Disponibilizar tipos de café
 - Café puro
 - Café com leite
 - Mochaccino
- II Disponibilizar tamanho do copo
 - Grande
 - Pequeno
- III Acender Led de reposição quando faltar os ingredientes necessário.
- IV A maquina contém um botão de preparo

3.3 Não funcionais

- I Inserir açúcar é uma opção do usuário, feito manualmente.
- II Acender o Led indicando que esta sendo preparado.
- III Led indicando o que foi selecionado.

3.4 Fluxograma

Figure 3: Fluxograma do código assembler

3.5 Código AsM

```
STO R0, 10;
                    ## QUANTIDADE DE CAFE
STO R0, 11;
                    ## QUANTIDADE DE LEITE
STO R0, 13;
                    ## QUANTIDADE DE CHOCOLATE
IN R0, 0;
                    ## PEGA ENTRADA
STO R0, 00;
                    ## CARREGA ENTRADA
LDI R1, 1;
AND R2, R0, R1;
                    ## FAZ UM AND PARA VERIFICAR SE A ENTRADA E VALIDA
JZ R2, 4;
                    ## SE NAO TIVER VOLTA PEDIR UMA ENTRADA
LDI R1, 17;
                    ## COPO GRANDE CASO TENHA COPO GRANDE [10001]
AND R2, R0, R1;
CMP R3, R1, R2;
JE R1, 33;
                    ## PULA PARA ROTINA DO COPO GRANDE
                    ## CAFE COM LEITE [00011]
LDI R1, 3;
AND R2, R0, R1;
CMP R3, R1, R2;
                    ##
JE R1, 27;
                    ## PULA PARA ROTINA CAFE COM LEITE
LDI R1, 5;
                    ## CAFE MOCHACCINO [00101]
AND R2, R0, R1;
                    ##
CMP R3, R1, R2;
JE R1, 36;
                    ## PULA PRA ROTINA MOCHACCINO
LD R0, 10;
                    ## Inicia a Rotina de inserir Cafe
JZ R0, 41;
                    ## FALTA CAFE
LDI R1, 1;
                    ##
SUB R2, R0, R1;
                    ##
STO R2, 10;
JI 49;
                    ##
LD R0, 11;
                    ## Inicia a Rotina de Inserir Leite
JZ R3, 41;
                    ## FALTA LEITE
LDI R1, 1;
                    ##
SUB R2, R0, R1;
ST0 R2, 11;
                    ##
JI 21;
                    ## VOLTA PARA COLOCAR CAFE
LDI R1, 2;
                    ## INICIO ROTINA DO COPO GRANDE
OUT R1, 0;
                    ## ACENDE O LED DO COPO GRANDE
JI 13;
                    ## VOLTA PRA DEPOIS DA ROTINA COPO GRANDE
LD R0, 13;
                    ## Inicia a Rotina de Inserir Chocolate
JZ R0, 41;
                    ## FALTA CHOCOLATE
LDI R1, 1;
SUB R2, R0, R1;
                    ##
JI 27;
                    ## VOLTA PARA INSERIR LEITE
LDI R3, 1;
                    ## Led de reposicao e acesso para informar falta
OUT R3, 0;
                    ##
LDI R1, 8;
                    ## Botao de reposicao
IN R0, 0;
                    ## Pego entrada
AND R2,R1,R0;
                    ## Faz um and com R1 salva em R2
CMP R3,R1,R2;
                    ## Compara
                    ## Se chave e igual vou para ROTINA DE INSERIR INGREDIENTES
JE R1, 52;
JI 43:
                    ## Se nao espero uma entrada de reposicao
LDI R0, 4;
                    ## Acende o Led para informar o Preparo
OUT R0, 0;
                    ##
JI 58;
                    ##
LDI R0, 10;
                    ## Ingredientes
STO R0, 10;
                    ## Quantidade de cafe
STO R0, 11;
                    ## Quantidade de leite
STO R0, 13;
                    ## Coloca quantidade de chocolate
LDI R3, 0;
                    ##
OUT R3, 0;
LDI R1, 0;
                    ##
OUT R1, 0;
                    ##
JI 4;
                    ## Volta no comeco
```

4 Simulação

Para realizar uma validação do código assembler gerado foi feito uma simulação utilizando o ModelSim.

Entrada da chave 00011 referente ao café com leite.

Figure 4: Simulação café com leite

Entrada da chave 10011 referente ao café com leite e opção de copo grande.

Figure 5: Simulação café com leite copo e grande

Entrada da chave 00101 referente ao Mochaccino.

Figure 6: Simulação café com leite copo e grande