Simulated Lunar Environment For The Study Of Regolith Strength: An Improved Vacuum Bevameter Design

Heather A. Oravec, Ph.D.

The University of Akron, Akron, OH

Phillip B. Abel, Ph.D.

NASA Glenn Research Center, Cleveland, OH

37th Dayton Cincinnati Aerospace Sciences Symposium Miamisburg, OH March 6th, 2012

Presentation Outline

- Introduction
- Objective, Scope, Assumptions
- Experimental Setup
- Initial Results
- Improved Design
- Summary and Conclusions
- Continued Work

Terrestrial Soil Vs. Lunar Soil

Multi-Phase Soil Model

- Atmosphere
- •760 torr pressure
- •Flowing water
- •-89 to 58°C temperatures

Non-Terrestrial Soil Model

- Sparse atmosphere
- •10⁻¹² to 10⁻⁸ torr pressure
- Lack of flowing water
- •-171 to 111°C temperatures
- •Space weathering
 - Meteoroid bombardments
 - Ionizing radiation

Motivation

Meet the growing need for a more comprehensive understanding of the strength properties of the lunar regolith.

- •Previous missions do not provide sufficient information for unexplored regions.
- •Simulants match composition in specific regions, not necessarily terrain strength.

Objectives, Scope, Assumptions

Objective:

 Develop a lunar environmental simulation chamber for the evaluation of soil deformation under surface loading.

Scope:

- Vacuum and temperature ranges to represent the Moon's surface.
- Chamber chosen to be relatively small to minimize vacuum pump down time.
- Prepare lunar soil simulants to known density, under vacuum conditions, and in a repeatable fashion.
- Capable of implementing bevameter type plate load-sinkage, annular shear, and cone penetration tests
- Gravity effects to be accounted for by applying similitude scaling laws (Langhaar, 1964).

Assumptions:

• Lunar simulant under lunar density, vacuum, and temperature conditions will deform similarly to lunar soil when loaded according to similarly to simil

Experimental Test System

Vacuum System:

- Roughing pump
- •Turbomolecular pump
- •Thermocouple pressure sensors
- •Cold cathode ion pressure sensor

Bevameter System:

- Soil hopper
- Copper Soil bin
- •Sample manipulator
- Quartz heat lamp
- Copper cooling plate
- •Thermocouple temperature sensor
- Combined torque/thrust cell
- •External drive mechanism

Experimental Apparatus

 $Surface \ area = 5000 \ cm^2$ 37th Dayton Cincinnati Aerospace Science Symposium

March 2012

Vacuum chamber:

Total volume = 23 liters

Vacuum Pumping System

Strength Testing – System Overview

Strength Testing Soil Preparation

Soil Preparation:

- 1. Simulant placed in hopper
- 2. 5 micron mesh placed over hopper
- 3. Hopper mounted in vacuum chamber
- 4. Vacuum pulled to desired test pressure
- 5. Sliding mechanism moved to open position
- 6. Soil "rains" down into copper sample bin
- 7. Soil leveled
- 8. End effector lowered to soil surface
- 9. Soil strength test performed

Strength Testing

Experimental Testing

Preliminary Tests:

- Plate load-sinkage experiments
- 32 mm diameter plate (190 mm plate on Moon)
- Air-dried JSC-1A lunar simulant
- Earth-ambient conditions
- High vacuum conditions (8.5 to 4.9x10⁻⁴ torr)
- Room temperature (24°C, 36% humidity)

Preliminary Plate-Sinkage Results

Lessons Learned and Limitations

Smart servo motor for automated shaft rotation

Hermetically sealed magnetically coupled linear rotary motion feedthrough

Hermetically sealed magnetically coupled linear/rotary/angular motion feedthrough

Improvements in Vacuum Performance

Future Improvements

Temperature Control:

- Refrigerated temperatures
 - Continuous flow of LN₂ through copper contact plate
 - Placed directly below OFHC copper soil bin
- Elevated temperatures:
 - 110 VAC halogen quartz substrate heat lamp
 - Temperatures measured using type T thermocouples

Quartz heat lamp

Future Testing

Diata Sin	kage Test	c							
Plate Sill				1 a a .:	21 4 6'			. 0:	
	Small Plate Size:			Medium Plate Size:			Large Plate Size:		
	LN ₂ Cooled	Ambient Temp	Heat Lamp	LN ₂ Cooled	Ambient Temp	Heat Lamp	LN ₂ Cooled	Ambient Temp	Heat Lamp
Loose			1 / /						
Medium			17/17						
Dense									
Cone Pe	netration 1	Tests			•				
	Small Cone Size:			Medium Cone Size:			Large Cone Size:		
	LN ₂ Cooled	Ambient Temp	Heat Lamp	LN ₂ Cooled	Ambient Temp	Heat Lamp	LN ₂ Cooled	Ambient Temp	Heat Lamp
Loose									
Medium		11							
Dense									
Shear Be	evameter T	ests							
	Small Annulus Size:			Medium Annulus Size:			Large Annulus Size:		
	LN ₂ Cooled	Ambient Temp	Heat Lamp	LN ₂ Cooled	Ambient Temp	Heat Lamp	LN ₂ Cooled	Ambient Temp	Heat Lamp
Loose					1/1/11				
Medium									
Dense									,

Summary and Conclusions

- There is need for a device capable of simulating the lunar environment for the evaluation of soil deformation under surface loading.
- The effect of vacuum, temperature, density, and gravity on the strength of mare and highlands lunar soil simulants is being investigated.

Acknowledgements

- NASA Postdoctoral Program and Oak Ridge Associated Universities for funding the initial portion of this research.
- Continued support by the National Aeronautics and Space Administration under contract NNC08CA35C
- Vivake Asnani, Steve Bauman, Colin Creager, Efrain Patino, Richard Manco (GRC)