# Exploratory Data Analysis and Data Cleaning Presentation

- Data Analyst Team

21 October 2024

### Hello!

Warm greetings as I share my findings from the specified House Dataset that was assigned for analysis and will be forwarded to the modeling team.





### **Dataset Overview**

This dataset contains information about houses. It includes various features of the properties sold, such as price, location, size, and amenities. The data is intended for use in exploratory data analysis, data cleaning, and potentially for building predictive models for house prices.

Original dimensions: 5000 rows and 16 columns Data types:

- Numeric: MLS, sold\_price, zipcode, longitude, latitude, lot\_acres, taxes, year\_built, bedrooms, bathrooms, sqrt\_ft, garage, fireplaces, HOA
- Categorical: kitchen\_features, floor\_covering



### Column Description

- MLS: Multiple Listing Service number (unique identifier for the property)
- sold\_price: The price at which the property was sold (in USD)
- zipcode: The ZIP code of the property's location
- longitude: Longitude coordinate of the property
- latitude: Latitude coordinate of the property
- lot\_acres: Size of the lot in acres
- taxes: Annual property taxes (in USD)
- year\_built: Year the house was built
- bedrooms: Number of bedrooms
- bathrooms: Number of bathrooms
- sqrt\_ft: Square footage of the house
- garage: Number of garage spaces (0 if no garage)
- kitchen\_features: List of features in the kitchen
- fireplaces: Number of fireplaces
- floor\_covering: Types of floor coverings in the house
- HOA: Homeowners Association fees (0 if no HOA)

### Statistical Analysis

Performed initial data exploration, including examining the first few rows and basic statistics of the dataset

- Original dimensions: 5000 rows and 16 columns
- Numeric: MLS, sold\_price, zipcode, longitude, latitude, lot\_acres, taxes, year\_built, bedrooms, bathrooms, sqrt\_ft, garage, fireplaces, HOA
- Categorical: kitchen\_features, floor\_covering



### Missing Value Analysis

Identifying missing values is essential for data integrity. We need to understand the extent of missing data to decide on appropriate imputation strategies.

- HOA: 11.24% (562 entries)
- sqrt\_ft: 1.12% (56 entries)
- kitchen\_features: 0.66% (33 entries)
- lot\_acres: 0.20% (10 entries)
- garage: 0.14% (7 entries)
- bathrooms: 0.12% (6 entries)
- floor\_covering: 0.02% (1 entry)
- All other features: 0% (no missing values)



### EDA - Insights and Actions

| OBSERVATIONS                 | VALUES                                                    | SUMMARY                                                                                                               |
|------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| HOA (Homeowners Association) | 11.24% (562 entries) – Large percentage of Missing values | <ul> <li>Some properties not being part of HOA</li> <li>Incomplete data</li> <li>Information not available</li> </ul> |
| sqrt_ft (Square Footage)     | 1.12% (56 entries) – Not a large percentage               | Important feature in real estate analysis                                                                             |
| Kitchen_features             | 0.66% (33 entries) – Incomplete Listings                  | Properties without notable kitchen features                                                                           |
| Low-level missing data       | < 0.2%                                                    | <ul><li>Data entry errors</li><li>Truly missing information</li></ul>                                                 |
| Complete data                | MLS,year_built,taxes,sold_price,bedrooms,etc,             | Which is excellent for the analysis                                                                                   |

| OUTCOMES                     | Analysis          | SUMMARY                                                                                                                                                  |  |  |  |  |
|------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| HOA (Homeowners Association) | Filling up with 0 | Using fillna method                                                                                                                                      |  |  |  |  |
| sqrt_ft (Square Footage)     | Mean imputation   | <ul> <li>Group by [bedrooms + bathrooms] from that calculating the mean values</li> <li>It might help in the KNN or Regression Model</li> </ul>          |  |  |  |  |
| Low percentage               | Median or Mode    | <ul> <li>Mean: average of the dataframe</li> <li>Median: middle value of the highest/lowest</li> <li>Mode: most repeat value in the dataframe</li> </ul> |  |  |  |  |
| Missing values               | • MCAR, MAR, MNAR | <ul><li>Missing completely at random</li><li>Missing at random</li><li>Missing not at random</li></ul>                                                   |  |  |  |  |

### **Outliers Detections**

#### Implemented outlier detection using box plots and Q-Q plots for numeric features







### Corr - Insights and Actions

#### **Significant Outliers:**

- lot\_acres:Max: 2154 acres, Median: 0.99 acres
- taxes: Range: 0 to 12,215,080 (Upper outliers)
- sold\_price: Max: 5,300,000, Median: 675,000
- sqrt\_ft: Max: 22,408, Median: ~3,719
- HOA: Max: 925 (Upper outliers)

#### **Patterns**

- Right-skewed disributions, most outliers are upper-end
- Extreme outliers in lot\_acres and taxes suggest unique properties
- Notable outliers in solid\_price,sqrt\_ft and HOA

#### **Strategies for Handling Outliers**

- Investigate extreme outliers for data accuracy.
- Use robust statistical methods for modeling.
- Consider separate models for luxury vs. standard properties.
- Assess the impact of removing outliers on dataset integrity.



### **Correlation Analysis**



| Correlation | n Table | :          |         |           |          |           |       |            |          |           |         |        |                |
|-------------|---------|------------|---------|-----------|----------|-----------|-------|------------|----------|-----------|---------|--------|----------------|
|             | MLS     | sold_price | zipcode | longitude | latitude | lot_acres | taxes | year_built | bedrooms | bathrooms | sqrt_ft | garage | fireplaces HOA |
| MLS         | 1.00    | 0.03       | 0.32    | 0.12      | 0.44     | -0.08     | 0.00  | -0.00      | -0.01    | -0.06     | -0.07   | -0.01  | -0.06 0.01     |
| sold_price  | 0.03    | 1.00       | -0.04   | -0.04     | 0.04     | 0.33      | 0.02  | -0.01      | 0.12     | 0.33      | 0.50    | 0.10   | 0.38 0.30      |
| zipcode     | 0.32    | -0.04      | 1.00    | 0.05      | 0.46     | -0.13     | -0.00 | 0.04       | 0.05     | -0.05     | -0.01   | 0.08   | -0.02 -0.07    |
| longitude   | 0.12    | -0.04      | 0.05    | 1.00      | -0.25    | 0.13      | -0.00 | -0.01      | 0.06     | 0.01      | 0.05    | -0.04  | 0.05 -0.09     |
| latitude    | 0.44    | 0.04       | 0.46    | -0.25     | 1.00     | -0.20     | 0.00  | 0.08       | -0.09    | -0.08     | -0.12   | 0.06   | -0.09 0.19     |
| lot_acres   | -0.08   | 0.33       | -0.13   | 0.13      | -0.20    | 1.00      | -0.00 | -0.04      | 0.07     | 0.06      | 0.10    | -0.05  | 0.09 -0.05     |
| taxes       | 0.00    | 0.02       | -0.00   | -0.00     | 0.00     | -0.00     | 1.00  | 0.00       | 0.01     | 0.01      | 0.04    | 0.01   | 0.02 0.02      |
| year_built  | -0.00   | -0.01      | 0.04    | -0.01     | 0.08     | -0.04     | 0.00  | 1.00       | -0.09    | -0.07     | -0.05   | 0.11   | -0.03 0.04     |
| bedrooms    | -0.01   | 0.12       | 0.05    | 0.06      | -0.09    | 0.07      | 0.01  | -0.09      | 1.00     | 0.69      | 0.61    | 0.05   | 0.14 -0.16     |
| bathrooms   | -0.06   | 0.33       | -0.05   | 0.01      | -0.08    | 0.06      | 0.01  | -0.07      | 0.69     | 1.00      | 0.72    | 0.11   | 0.23 0.03      |
| sqrt_ft     | -0.07   | 0.50       | -0.01   | 0.05      | -0.12    | 0.10      | 0.04  | -0.05      | 0.61     | 0.72      | 1.00    | 0.17   | 0.40 0.03      |
| garage      | -0.01   | 0.10       | 0.08    | -0.04     | 0.06     | -0.05     | 0.01  | 0.11       | 0.05     | 0.11      | 0.17    | 1.00   | 0.06 0.01      |
| fireplaces  | -0.06   | 0.38       | -0.02   | 0.05      | -0.09    | 0.09      | 0.02  | -0.03      | 0.14     | 0.23      | 0.40    | 0.06   | 1.00 0.02      |
| НОА         | 0.01    | 0.30       | -0.07   | -0.09     | 0.19     | -0.05     | 0.02  | 0.04       | -0.16    | 0.03      | 0.03    | 0.01   | 0.02 1.00      |

### **Correlation Analysis**

#### 1. Strong Positive Correlations

- Sold Price & Taxes: Higher prices = higher property taxes.
- Square Footage & Bedrooms: Larger homes typically have more bedrooms.
- Bathrooms & Bedrooms: More bedrooms often mean more bathrooms.

#### 2. Strong Negative Correlation

Latitude & Longitude: Expected due to geographical factors.

#### 3. Unexpected Correlations

- Year Built: Weak correlation with most features, including sold price; age may not strongly predict price.
- Lot Acres: Weak correlation with sold price; larger lots don't necessarily equate to higher prices.

#### 4. Feature Selection & Engineering Strategies

- Combine correlated features (e.g., create a 'rooms' feature from bedrooms and bathrooms).
- Engineer new features from 'year\_built' (e.g., 'age', 'decade\_built').
- Create 'price\_to\_tax\_ratio' from the strong sold price-tax correlation.
- Investigate non-linear relationships or interactions for 'lot\_acres' and sold price.

These observations will guide our feature selection and engineering process in the next steps of our analysis.

### References

- Intro\_to\_Python.ipynb
- The\_NumPy\_Stack.ipynb
- EDA\_ipynb
- python.org <a href="https://www.python.org/">https://www.python.org/</a>
- numpy.org <a href="https://numpy.org/">https://numpy.org/</a>
- pandas.pydata.org <a href="https://pandas.pydata.org/">https://pandas.pydata.org/</a>
- matplotlib.org <a href="https://matplotlib.org/">https://matplotlib.org/</a>
- seaborn.pydata.org <a href="https://seaborn.pydata.org/">https://seaborn.pydata.org/</a>

## Thank You

- Data Analyst Team