co occurrence

이지현

Intro

graphical representation of how frequently variables appear together

used in ecology and text mining.

ecology -> how frequently two species ar seen together within sampling site textminnig -> how frequently two words are present in a single document.

pair들의 동시 출현을 탐색할 수 있다.

california Graph

Intro

word document matrix

한 문서에 단어의 등장 횟수를 행렬로 나타내는 방법.

전제: 관계가 있는 단어가 같은 문서에서 빈번하게 등장할 것 이다.

1번문서:주식관련

2번문서 : 동물원 관련

co occur package

각 pair의 동시출현을 비교한 후, 확률적으로 의미있는 pair만 남긴다.(p value사용)

co occur package

```
Call:
cooccur(mat = finches, spp_names = TRUE)
```

Of 78 species pair combinations, 14 pairs (17.95 %) were removed from the analysis because expected co-occurrence was < 1 and 6 4 pairs were analyzed

Cooccurrence Table:

co occur package

Field name	Field definition
sp1	Numeric label giving the identity of species 1, assigned based on the
	order in the input matrix
sp2	Numeric label for species 2
sp1_inc	Number of sites (or samples) that have species 1
sp2_inc	Number of sites that have species 2
obs_cooccur	Observed number of sites having both species
prob_cooccur	Probability that both species occur at a site
exp_cooccur	Expected number of sites having both species
p_lt	Probability that the two species would co-occur at a frequency less than the observed number of co-occurrence sites if the two species were dis- tributed randomly (independently) of one another
p_gt	Probability of co-occurrence at a frequency greater than the observed frequency
sp1_name	If species names were specified in the community data matrix this field will contain the supplied name of sp1
sp2_name	The supplied name of sp2

co occur package (정확히 j 번 나타날 확률)

$$P_j = \frac{\binom{N_1}{j} \times \binom{N-N_1}{N_2-j}}{\binom{N}{N_2}}$$

N1 = spc1이 출현한 장소(sample, document)수 N2 = spc2 "' N = 조사된 총 장소

N1 c j = N1의 장소중 J개를 고르는 경우의 수 (N - N1) c (N2-j) = N1이 출현하지 않은 곳에서 N2 - j 개의 장소를 고르는 수. N c N2 = 전체에서 N2개를 고르는 경우의수

예제

연구동향 분석 (정보관리학회지)

〈그림 1〉정보관리학회지 2010년-2013년 (Nodes: 127 Edges: 681 Graph Density: 0.085)

연구동향 분석(JASIST)

(그림 2) JASIST 2010년-2013년 (Nodes: 89 Edges: 439 Graph Density: 0.112)

연구동향 분석(JASIST)

(그림 2) JASIST 2010년-2013년 (Nodes: 89 Edges: 439 Graph Density: 0.112)

스팸 분류

예를 들어, Fig. 8.의 문장 (예: I am a student)가 spam인지 ham인지 판단하려면 6가 지 동시 단어 (예: I-am, I-a, I-student, am-a, am-student, a-student)의 각 조합들의 비율이 spam성향이 강한지 ham성향이 강한지 식 (1)을 바탕으로 계산하게 된다. 즉, 새로 고려하는 한 문장 의 단어 대단어 조합의 경향이 spam경향이 크면 spam으로 ham경향이 크면 ham으로 판별하게 된다.

스팸 분류

예를 들어, Fig. 8.의 문장 (예: I am a student)가 spam인지 ham인지 판단하려면 6가 지 동시 단어 (예: I-am, I-a, I-student, am-a, am-student, a-student)의 각 조합들의 비율이 spam성향이 강한지 ham성향이 강한지 식 (1)을 바탕으로 계산하게 된다. 즉, 새로 고려하는 한 문장 의 단어 대단어 조합의 경향이 spam경향이 크면 spam으로 ham경향이 크면 ham으로 판별하게 된다.

스팸 분류

예를 들어, Fig. 8.의 문장 (예: I am a student)가 spam인지 ham인지 판단하려면 6가 지 동시 단어 (예: I-am, I-a, I-student, am-a, am-student, a-student)의 각 조합들의 비율이 spam성향이 강한지 ham성향이 강한지 식 (1)을 바탕으로 계산하게 된다. 즉, 새로 고려하는 한 문장 의 단어 대단어 조합의 경향이 spam경향이 크면 spam으로 ham경향이 크면 ham으로 판별하게 된다.

활용방법

관광학 분야

Table 2. Co-word occurrence matrix

	KI	K2	K3	K4	K5	K6	K7	K8	K9	K10	KII	K12	K13	K14	K15	- 000
K1	30	2	0	0	0	0	0	1	0	0	0	0	0	0	0	**
K2	0	29	0	0	0	0	0	0	0	0	0	0	0	1	0	99
K3	13	8	23	0	4	6	6	0	4	0	0	0	2	0	2	
K4	1	5	0	12	5	1	3	2	0	0	2	0	1	0	0	
K5	4	4	0	0	12	0	2	2	0	0	0	0	0	0	0	
K6	7	2	0	0	2	9	2	0	1	0	0	0	0	0	0	
K7	4	4	0	0	0	0	10	1	1	0	0	0	0	0	0	
K8	0	2	0	0	0	0	0	5	0	0	0	0	0	0	0	- 17
K9	4	1.	0	0	0	0	0	0	5	0	0	0	0	0	0	
K10	0	4	0	0	0	0	0	0	0	5	0	2	0	0	0	- 44
K11	1	2	0	0	0	0	1	2	0	0	4	0	0	0	0	
K12	1	4	0	0	0	0	0	0	0	0	0	4	0	0	0	300
K13	2	2	0	0	0	0	0	0	0	0	0	0	4	0	0	300
K14	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	344
K15	1	2	0	0	0	0	0	0	0	0	0	0	0	0	3	300
•	- :	- :	-:	-	- ;	- :	:	:	- ;	- :	- :	0.00	- ;	- 1	-	•

활용방법

관광학 분야

Figure 2. Network visualization of virtual reality-related keywords

Figure 3. Network visualization of virtual reality-related keywords (excluded the most frequent keywords)

활용방법

관광학 분야

주요결과를 살펴보면, '가상의(virtual) — 3차원(3D) — 디지털(digital) — 고고학(archaeology)', '문화유산 (cultural-heritage) —방문(visit) —모바일 (mobile) —사 용자(user) —자연스러운(natural)', '증강현실(AR) —가 상박물관(virtual-museum) —박물관(museum)', '문화적 인(cultural) —게임 (game) —경험(experience) —인공지 능(AI)', '마케팅(marketing) —설득 (persuasion) —여행 (travel) —동기부여(motivation) —기술수용모형(TAM)', '이러닝(e-learning) — 세컨드라이프(secondlife) —교 육(education)' 등의 키워드가 서로 매우 높은 연관성을 보인다는 것을 알 수 있다. 또한, 'virtual', '3D', 'digital', 'AR', 'virtual-reality', 'laser' 등의 키워드는 빈도가 상대 적으로 높을 뿐만 아니라 다른 키워드와의 연관성도 높은 것으로 나타났다.