Logistic Regression(Binary Output) - From Scratch

SETTING UP DATA AND DEPENDENCIES

```
In [4]: # Importing dependencies and dataset
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt

from sklearn.datasets import load_breast_cancer
   from sklearn.model_selection import train_test_split
   from sklearn import preprocessing
```

```
In [5]: #Creating the dataframe
    cancer = load_breast_cancer()
    df = pd.DataFrame(data = cancer['data'], columns = cancer['feature_name
    s'])
    df['class'] = cancer['target']
    df.head()
```

Out[5]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809

5 rows × 31 columns

```
In [6]: #Data statistics
    df.describe()
```

Out[6]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800

8 rows × 31 columns

PREPROCESSING DATA AND SPLITTING DATA INTO TRAINING AND TESTING SETS

```
In [8]: #Splitting Data Set into Training and Testing Data Sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .8
0, random_state = 1)
```

CREATING SIGMOID, COST, AND GRADIENT DESCENT FUNCTIONS

```
In [9]: #creating the sigmoid function for the prediction hypothesis

def sigmoid(z):
    sigmoid = 1/(1+np.exp(-z))
    return sigmoid
```

```
In [10]: #Calculating the cost function

def cost_function(x_train, y_train, thetas_array, n):
    prediction = sigmoid(np.dot(X_train,np.transpose(thetas_array)))
    cost = np.sum((y_train * np.log(prediction)) + ((1 - y_train) * np.l
    og(1-prediction)))/-n
        """error = (-y_train * np.log(prediction)) - ((1-y_train)*np.log(1-p
    rediction))
    cost = 1/n * sum(error)"""
    return cost
```

```
In [12]: thetas_array = np.zeros(31)
    sig = sigmoid(np.dot(X_train,np.transpose(thetas_array))) - y_train
    print(sig.shape)
    print(np.transpose(X_train).shape)

(113,)
    (31, 113)
```

TRAINING THE DATA SET

```
In [13]: | def training(X_train, y_train, alpha, iters):
             n = len(X train)
             thetas array = np.zeros(31)
             #thetas array = np.random.rand(len(cancer['feature names']) + 1)
             cost = []
             for i in range(iters):
                 thetas array = gradient descent(X train, y train, alpha, thetas
         array, n)
                 cost.append(cost function(X train, y train, thetas array, n))
             #Plot cost function error per iteration
             x = np.arange(0, len(cost), step=1)
             plt.plot(x, cost, "-b", label="Cost Function Curve")
             plt.title("Learning Curve")
             plt.xlabel("Number Of Iterations")
             plt.ylabel("Cost Function Value")
             plt.legend()
             plt.show()
             return thetas array, cost[-1]
```

```
In [14]: training(np.array(X_train), np.array(y_train), 1, 1000)
```


CALCULATING TRAINING ACCURACY

```
In [15]: def training accuracy(X, y, thetas array):
              y = np.array(y train)
              z = np.dot(X_train, thetas_array)
              prediction = sigmoid(z)
              total_number_pred = len(prediction)
              TP = 0
              FP = 0
              FN = 0
              TN = 0
              for i in range(len(y train)):
                  if prediction[i] >= 0.5 and y[i] == 1:
                      TP += 1
                  elif prediction[i] < 0.5 and y[i] == 1:</pre>
                      FP += 1
                  elif prediction[i] >= 0.5 and y[i] == 0:
                      FN += 1
                  else:
                      TN += 1
              accuracy = round((TP + TN)/(TP + TN + FN + FP) * 100, 2)
              print(f'Training Accuracy: {accuracy}%')
```

Training Accuracy: 100.0%

MAKING PREDICTIONS ON NEW DATA POINT

```
In [17]: #Function to predict probability of developing breast cancer. Enter a n
  ew data point from testing set.
  def predict(X_test, thetas_array):
        z = np.dot(X_test, thetas_array)
        prediction = round(sigmoid(z) *100,2)
        return f"You have a {prediction}% change of breast cancer."
```

Out[25]: 'You have a 0.0% change of breast cancer.'

```
In [ ]:
```