Package 'agricolae'

October 22, 2023

Type Package

Title Statistical Procedures for Agricultural Research

Version 1.3-7
Date 2023-10-22
Author Felipe de Mendiburu
Maintainer Felipe de Mendiburu <fmendiburu@lamolina.edu.pe></fmendiburu@lamolina.edu.pe>
Imports MASS, nlme, cluster, AlgDesign, graphics
Description Original idea was presented in the thesis ``A statistical analysis tool for agricultural research" to obtain the degree of Master on science, National Engineering University (UNI), Lima-Peru. Some experimental data for the examples come from the CIP and others research. Agrico-lae offers extensive functionality on experimental design especially for agricultural and plant breeding experiments, which can also be useful for other purposes. It supports planning of lattice, Alpha, Cyclic, Complete Block, Latin Square, Graeco-Latin Squares, augmented block, factorial, split and strip plot designs. There are also various analysis facilities for experimental data, e.g. treatment comparison procedures and several non-parametric tests comparison, biodiversity indexes and consensus cluster.
License GPL
NeedsCompilation no
Depends R (>= 2.10)
Repository CRAN
Date/Publication 2023-10-22 21:00:02 UTC
R topics documented: agricolae-package 4 AMMI 5 AMMI. 5 AMMI.contour 7 audpc 8 audps 10
bar.err

carolina	6
Chz2006	7
CIC	8
clay	9
ComasOxapampa	0
consensus	1
corn	2
correl	
correlation	
cotton	
cv.model	
cv.similarity	
DAU.test	
DC	
delete.na	
design.ab	
design.alpha	
\mathcal{E}	
design.crd	
design.cyclic	
design.dau	
design.graeco	
design.lattice	
design.lsd	
design.mat	
design.rcbd	
design.split	
design.strip	
design.youden	
diffograph	
disease	
duncan.test	4
durbin.test	5
friedman	7
frijol	8
genxenv	9
Glycoalkaloids	0
graph.freq	0
grass	2
greenhouse	3
growth	4
haynes	5
Hco2006	6
hcut	7
heterosis	
hgroups	
HSD.test	
huasahuasi 7	

. 1	70
index.AMMI	
index.bio	. 74
index.smith	. 75
inter.freq	
•	
join.freq	
kendall	. 78
kruskal	. 79
kurtosis	
lastC	
lateblight	. 82
lineXtester	. 84
LSD.test	. 86
LxT	
markers	
Median.test	. 89
melon	. 91
montecarlo	
natives	
nonadditivity	. 94
normal.freq	. 95
ogive.freq	
order.group	
orderPvalue	
pamCIP	. 99
paracsho	. 100
path.analysis	
•	
PBIB.test	
plot.AMMI	. 104
plot.graph.freq	. 105
plot.group	
plots	
plrv	
polygon.freq	. 110
potato	. 111
ralstonia	
reg.homog	
REGW.test	. 114
resampling.cv	. 115
resampling.model	
rice	
RioChillon	
scheffe.test	. 121
similarity	. 122
simulation.model	
sinRepAmmi	
skewness	. 125
SNK.test	. 126
eail	127

4 agricolae-package

	sp.plot					129
						130
	stability.nonpar					131
						133
						134
	_					135
	* *					136
						137
						138
	-					139
	_					140
						141
						142
						143
						145
						147
						148
						149
	•					151
	218248					
Index						152
agrio	colae-package	Statistice	al Procedu	res for Agric	ultural Research	

Description

This package contains functionality for the Statistical Analysis of experimental designs applied specially for field experiments in agriculture and plant breeding.

Details

Package: agricolae
Type: Package
Version: 1.3-7
Date: 2023-10-22
License: GPL

Planning of field experiments: lattice, factorial, RCBD, CRD, Latin Square, Youden, Graeco, BIB, Alpha design, Cyclic, augmented block, split and strip plot Designs. Comparison of multi-location trials: AMMI, Index AMMI Stability (biplot, triplot), comparison between treatments: LSD, Bonferroni and other p-adjust, HSD, Waller, Student Newman Keuls SNK, Duncan, REGW, Scheffe; Non parametric tests: Kruskal, Friedman, Durbin, Van Der Waerden, Median. Analysis of genetic experiments: North Carolina designs, LinexTester, Balanced Incomplete Block, Strip plot, Split-Plot, Partially Balanced Incomplete Block, analysis Mother and baby trials (see data RioChillon). Resampling and simulation: resampling.model, simulation.model, montecarlo, lateblight Simulator

AMMI 5

for potato. Ecology: Biodiversity Index, Path Analysis. Soil Uniformity: Smith's Index. Cluster Analysis: Consensus Cluster. Descriptive statistics utilities: *.freq

Author(s)

Felipe de Mendiburu Statistical Engineer Master in Systems Engineering Professor of Applied Statistics

Maintainer: Felipe de Mendiburu <fmendiburu@lamolina.edu.pe>

References

De Mendiburu, Felipe (2009). Una herramienta de analisis estadistico para la investigación agricola. Tesis. Universidad Nacional de Ingenieria (UNI-PERU).

Universidad Nacional Agraria La Molina, Lima-PERU. Facultad de Economia y Planificacion Departamento Academico de Estadistica e Informatica

AMMI AMMI Analysis

Description

Additive Main Effects and Multiplicative Interaction Models (AMMI) are widely used to analyze main effects and genotype by environment (GEN, ENV) interactions in multilocation variety trials. Furthermore, this function generates data to biplot, triplot graphs and analysis.

Usage

```
AMMI(ENV, GEN, REP, Y, MSE = 0, console=FALSE, PC=FALSE)
```

Arguments

ENV	Environment
GEN	Genotype
REP	Replication
Υ	Response
MSE	Mean Square Error
console	ouput TRUE or FALSE
PC	Principal components ouput TRUE or FALSE

Details

additional graphics see help(plot.AMMI).

6 AMMI

Value

ANOVA analysis of variance general
genXenv class by, genopyte and environment
analysis analysis of variance principal components
means average genotype and environment
biplot data to produce graphics

PC class princomp

Author(s)

F. de Mendiburu

References

Crossa, J. 1990. Statistical analysis of multilocation trials. Advances in Agronomy 44:55-85

See Also

```
lineXtester,plot.AMMI
```

```
# Full replications
library(agricolae)
# Example 1
data(plrv)
model<- with(plrv,AMMI(Locality, Genotype, Rep, Yield, console=FALSE))</pre>
model$ANOVA
# see help(plot.AMMI)
# biplot
plot(model)
# biplot PC1 vs Yield
plot(model, first=0, second=1, number=TRUE)
# Example 2
data(CIC)
data1<-CIC$comas[,c(1,6,7,17,18)]</pre>
data2<-CIC$oxapampa[,c(1,6,7,19,20)]
cic <- rbind(data1,data2)</pre>
model<-with(cic,AMMI(Locality, Genotype, Rep, relative))</pre>
model$ANOVA
plot(model,0,1,angle=20,ecol="brown")
# Example 3
# Only means. Mean square error is well-known.
data(sinRepAmmi)
REP <- 3
MSerror <- 93.24224
#startgraph
model<-with(sinRepAmmi,AMMI(ENV, GEN, REP, YLD, MSerror,PC=TRUE))</pre>
# print anova
print(model$ANOVA,na.print = "")
```

AMMI.contour 7

```
# Biplot with the one restored observed.
plot(model,0,1)
# with principal components model$PC is class "princomp"
pc<- model$PC
pc$loadings
summary(pc)
biplot(pc)
# Principal components by means of the covariance similar AMMI
# It is to compare results with AMMI
cova<-cov(model$genXenv)
values<-eigen(cova)
total<-sum(values$values)
round(values$values*100/total,2)
# AMMI: 64.81 18.58 13.50 3.11 0.00</pre>
```

AMMI.contour

AMMI contour

Description

Draws a polygon or a circumference around the center of the Biplot with a proportional radio at the longest distance of the genotype.

Usage

```
AMMI.contour(model, distance, shape, ...)
```

Arguments

model Object

distance Circumference radius >0 and <=1

shape Numerical, relating to the shape of the polygon outline.

... Parameters corresponding to the R lines function

Details

First, it is necessary to execute the AMMI function. It is only valid for the BIPLOT function but not for the TRIPLOT one.

Value

Genotypes within and outside the area.

distance Distance from genotype to origin (0,0)

Note

Complement graphics AMMI

8 audpc

Author(s)

Felipe de Mendiburu

See Also

AMMI

Examples

```
library(agricolae)
# see AMMI.
data(sinRepAmmi)
Environment <- sinRepAmmi$ENV
Genotype <- sinRepAmmi$GEN
Yield <- sinRepAmmi$YLD
REP <- 3
MSerror <- 93.24224
model<-AMMI(Environment, Genotype, REP, Yield, MSerror)
plot(model)
AMMI.contour(model,distance=0.7,shape=8,col="red",lwd=2,lty=5)</pre>
```

audpc

Calculating the absolute or relative value of the AUDPC

Description

Area Under Disease Progress Curve. The AUDPC measures the disease throughout a period. The AUDPC is the area that is determined by the sum of trapezes under the curve.

Usage

```
audpc(evaluation, dates, type = "absolute")
```

Arguments

evaluation Table of data of the evaluations: Data frame
dates Vector of dates corresponding to each evaluation

type relative, absolute

Details

AUDPC. For the illustration one considers three evaluations (14, 21 and 28 days) and percentage of damage in the plant 40, 80 and 90 (interval between dates of evaluation 7 days). AUDPC = 1045. The evaluations can be at different interval.

Value

Vector with relative or absolute audpc.

audpc 9

Author(s)

Felipe de Mendiburu

References

Campbell, C. L., L. V. Madden. (1990): Introduction to Plant Disease Epidemiology. John Wiley & Sons, New York City.

```
library(agricolae)
dates < -c(14, 21, 28) \# days
# example 1: evaluation - vector
evaluation<-c(40,80,90)
audpc(evaluation,dates)
# example 2: evaluation: dataframe nrow=1
evaluation<-data.frame(E1=40,E2=80,E3=90) # percentages
plot(dates, evaluation, type="h", ylim=c(0,100), col="red", axes=FALSE)
title(cex.main=0.8,main="Absolute or Relative AUDPC\nTotal area = 100*(28-14)=1400")
lines(dates, evaluation, col="red")
text(dates,evaluation+5,evaluation)
text(18,20,"A = (21-14)*(80+40)/2")
text(25,60,"B = (28-21)*(90+80)/2")
text(25,40,"audpc = A+B = 1015")
text(24.5,33,"relative = audpc/area = 0.725")
abline(h=0)
axis(1,dates)
axis(2, seg(0, 100, 5), las=2)
lines(rbind(c(14,40),c(14,100)),lty=8,col="green")
lines(rbind(c(14,100),c(28,100)),lty=8,col="green")
lines(rbind(c(28,90),c(28,100)),lty=8,col="green")
# It calculates audpc absolute
absolute <- audpc (evaluation, dates, type="absolute")
print(absolute)
rm(evaluation, dates, absolute)
# example 3: evaluation dataframe nrow>1
data(disease)
dates<-c(1,2,3) # week
evaluation<-disease[,c(4,5,6)]
# It calculates audpc relative
index <-audpc(evaluation, dates, type = "relative")</pre>
# Correlation between the yield and audpc
correlation(disease$yield, index, method="kendall")
# example 4: days infile
data(CIC)
comas <- CIC$comas</pre>
oxapampa <- CIC$oxapampa
dcomas <- names(comas)[9:16]</pre>
days<- as.numeric(substr(dcomas,2,3))</pre>
AUDPC<- audpc(comas[,9:16],days)
relative<-audpc(comas[,9:16],days,type = "relative")</pre>
h1<-graph.freq(AUDPC,border="red",density=4,col="blue")</pre>
```

10 audps

```
table.freq(h1)
h2<-graph.freq(relative,border="red",density=4,col="blue",
frequency=2, ylab="relative frequency")</pre>
```

audps

The Area Under the Disease Progress Stairs

Description

A better estimate of disease progress is the area under the disease progress stairs (AUDPS). The AUDPS approach improves the estimation of disease progress by giving a weight closer to optimal to the first and last observations.

Usage

```
audps(evaluation, dates, type = "absolute")
```

Arguments

evaluation Table of data of the evaluations: Data frame

dates Vector of dates corresponding to each evaluation

type relative, absolute

Details

AUDPS. For the illustration one considers three evaluations (14, 21 and 28 days) and percentage of damage in the plant 40, 80 and 90 (interval between dates of evaluation 7 days). AUDPS = 1470. The evaluations can be at different interval. AUDPS= sum(rectangle area by interval in times evaluation) see example.

Value

Vector with relative or absolute audps.

Author(s)

Felipe de Mendiburu

References

Ivan Simko, and Hans-Peter Piepho, (2012). The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology 102:381-389.

bar.err 11

Examples

```
library(agricolae)
dates < -c(14,21,28) # days
# example 1: evaluation - vector
evaluation <-c(40.80.90)
audps(evaluation,dates)
audps(evaluation,dates,"relative")
x < -seq(10.5, 31.5, 7)
y < -c(40, 80, 90, 90)
plot(x,y,"s",ylim=c(0,100),xlim=c(10,32),axes=FALSE,col="red",ylab="",xlab="")
title(cex.main=0.8,main="Absolute or Relative AUDPS\nTotal area=(31.5-10.5)*100=2100",
ylab="evaluation",xlab="dates" )
points(x,y,type="h")
z < -c(14, 21, 28)
points(z,y[-3],col="blue",lty=2,pch=19)
points(z,y[-3],col="blue",lty=2,pch=19)
axis(1,x,pos=0)
axis(2,c(0,40,80,90,100),las=2)
text(dates, evaluation+5, dates, col="blue")
text(14,20,"A = (17.5-10.5)*40",cex=0.8)
text(21,40,"B = (24.5-17.5)*80",cex=0.8)
text(28,60,"C = (31.5-24.5)*90",cex=0.8)
text(14,95,"audps = A+B+C = 1470")
text(14,90, "relative = audps/area = 0.7")
# It calculates audpc absolute
absolute<-audps(evaluation,dates,type="absolute")</pre>
print(absolute)
rm(evaluation, dates, absolute)
```

bar.err

Plotting the standard error or standard deviance of a multiple comparison of means

Description

It plots bars of the averages of treatments and standard error or standard deviance. It uses the objects generated by a procedure of comparison like LSD, HSD, Kruskal and Waller-Duncan.

Usage

```
bar.err(x,variation=c("SE","SD","range","IQR"),horiz=FALSE, bar=TRUE,...)
```

Arguments

x object means of the comparisons the LSD.test, HSD.test,...,etc variation SE=standard error, range=Max-Min or IQR=interquartil range horiz Horizontal or vertical bars paint bar

Parameters of the function barplot()

12 bar.err

Details

x: data frame formed by 5 columns: name of the bars, height, level out: LSD.test, HSD, waller.test, scheffe.test, duncan.test, SNK.test, friedman, kruskal, waerden.test and Median.test.

Value

A list with numeric vectors giving the coordinates of all the bar midpoints drawn.

```
x eje-1 coordinate
height eje-2 coordinate by group
```

Author(s)

Felipe de Mendiburu

See Also

```
LSD. test, HSD. test, waller. test, kruskal, bar.group
```

```
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)</pre>
out <- waller.test(model, "virus", console=TRUE,</pre>
main="Yield of sweetpotato\ndealt with different virus")
oldpar<-par(mfrow=c(2,2),cex=1)
bar.err(out\$means, variation="range", horiz=TRUE, xlim=c(0,45), angle=125, density=6,
main="range")
bar.err(out$means, variation="SD", ylim=c(0, 45), col=colors()[30],
main="Standard deviation",density=8)
bar.err(out$means,variation="SE",horiz=TRUE,xlim=c(0,45),density=8,
 col="brown",main="Standard error")
bar.err(out$means, variation="range", ylim=c(0,45), bar=FALSE, col="green",
main="range")
par(oldpar)
oldpar<-par(mfrow=c(1,2),cex=1)</pre>
bar.err(out$means,variation="range",ylim=c(0,45),bar=FALSE,col=0)
abline(h=0)
# horiz = TRUE
bar.err(out$means,variation="SE",horiz=TRUE,xlim=c(0,45),bar=FALSE,col=0)
#startgraph
par(oldpar)
#endgraph
```

bar.group 13

bar	n	r	٦ı	ın
vai	ዾ.	ı۷	ソ	ıυ

Plotting the multiple comparison of means

Description

It plots bars of the averages of treatments to compare. It uses the objects generated by a procedure of comparison like LSD, HSD, Kruskall, Waller-Duncan, Friedman or Durbin. It can also display the 'average' value over each bar in a bar chart.

Usage

```
bar.group(x,horiz=FALSE, decreasing=TRUE, ...)
```

Arguments

x Object created by a test of comparison

horiz Horizontal or vertical bars

decreasing Logical, decreasing order of the mean
... Parameters of the function barplot()

Details

x: data frame formed by 5 columns: name of the bars, height and level of the bar.

Value

A list with numeric vectors giving the coordinates of all the bar midpoints drawn.

x eje-1 coordinate

height eje-2 coordinate by group

Author(s)

Felipe de Meniburu

See Also

```
LSD.test, HSD.test, kruskal, friedman, durbin.test, waller.test, plot.group
```

```
# Example 1
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
comparison<- LSD.test(model,"virus",alpha=0.01,group=TRUE)
print(comparison$groups)
oldpar<-par(cex=1.5)</pre>
```

14 BIB.test

```
bar.group(comparison$groups,horiz=TRUE,density=8,col="blue",border="red", xlim=c(0,50),las=1)
title(cex.main=0.8,main="Comparison between\ntreatment means",xlab="Yield",ylab="Virus")
# Example 2
library(agricolae)
x <- 1:4
y <- c(0.29, 0.44, 0.09, 0.49)
xy <- data.frame(x,y,y)
par(oldpar)
oldpar<-par(cex=1.5)
bar.group(xy,density=30,angle=90,col="brown",border=FALSE,ylim=c(0,0.6),lwd=2,las=1)
par(oldpar)</pre>
```

BIB.test

Finding the Variance Analysis of the Balanced Incomplete Block Design

Description

Analysis of variance BIB and comparison mean adjusted.

Usage

```
BIB.test(block, trt, y, test = c("lsd","tukey","duncan","waller","snk"), alpha = 0.05, group = TRUE,console=FALSE)
```

Arguments

block	blocks
trt	Treatment
У	Response
test	Comparison treatments
alpha	Significant test

group logical

console logical, print output

Details

Test of comparison treatment. lsd: Least significant difference. tukey: Honestly significant differente. duncan: Duncan's new multiple range test waller: Waller-Duncan test. snk: Student-Newman-Keuls (SNK)

BIB.test 15

Value

parameters Design parameters statistics Statistics of the model

comparison Comparison between treatments

means Adjusted mean and statistics summary

groups Grouping of treatments

Author(s)

F. de Mendiburu

References

Design of Experiments. Robert O. Kuehl. 2nd ed., Duxbury, 2000 Linear Estimation and Design of Experiments. D.D. Joshi. WILEY EASTERN LIMITED 1987, New Delhi, India. Introduction to experimental statistics. Ching Chun Li McGraw - Hill Book Company, Inc. New York. 1964

See Also

```
DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

```
library(agricolae)
# Example Design of Experiments. Robert O. Kuehl. 2da. Edicion. 2001
run < -gl(10,3)
psi<-c(250,325,475,250,475,550,325,400,550,400,475,550,325,475,550,
250,400,475,250,325,400,250,400,550,250,325,550,325,400,475)
monovinyl<-c(16,18,32,19,46,45,26,39,61,21,35,55,19,47,48,20,33,31,13,13,34,21,
 30,52,24,10,50,24,31,37)
out<-BIB.test(run,psi,monovinyl,test="waller",group=FALSE)
print(out)
bar.err(out$means,variation="range",ylim=c(0,60),bar=FALSE,col=0)
out<-BIB.test(run,psi,monovinyl,test="waller",group=TRUE)</pre>
out<-BIB.test(run,psi,monovinyl,test="tukey",group=TRUE,console=TRUE)</pre>
out<-BIB.test(run,psi,monovinyl,test="tukey",group=FALSE,console=TRUE)</pre>
rm(run,psi,monovinyl,out)
# Example linear estimation and design of experiments. D.D. Joshi. 1987
# Professor of Statistics, Institute of Social Sciences Agra, India
# 6 varieties of wheat crop in a BIB whit 10 blocks of 3 plots each.
y < -c(69,77,72,63,70,54,65,65,57,59,50,45,68,75,59,38,60,60,62,
 55,54,65,62,65,61,39,54,67,63,56)
varieties<-gl(6,5)
block <- c(1,2,3,4,5,1,2,6,7,8,1,3,6,9,10,2,4,7,9,10,3,5,7,8,9,4,5,6,8,10)
BIB.test(block, varieties, y)
# Example Introduction to experimental statistics. Ching Chun Li. 1964
# pag. 395 table. 27.2
# 7 trt, k=3 and b=7.
y < -c(10,15,11,4,12,15,5,14,10,14,19,19,8,10,17,6,11,12,5,14,21)
```

16 carolina

```
block<-gl(7,3)
trt <- c(1,2,4,2,3,5,3,4,6,4,5,7,1,5,6,2,6,7,1,3,7)
out<-BIB.test(block, trt, y, test="duncan")
bar.group(out$groups,col="blue",density=4,ylim=c(0,max(y)))
rm(y,block,trt,out)</pre>
```

carolina

North Carolina Designs I, II and III

Description

Statistic analysis of the Carolina I, II and III genetic designs.

Usage

```
carolina(model,data)
```

Arguments

model Constant
data Data frame

Details

```
model = 1,2 and 3 is I, II and III see carolina 1,2 and 3.
```

Value

```
model model analysis (I, II or III) of caroline design and variance and additive variance of male, female and male.female interaction.
```

Author(s)

Felipe de Mendiburu

References

Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979

See Also

DC

Chz2006

Examples

```
library(agricolae)
data(DC)
carolina1 <- DC$carolina1
# str(carolina1)
output<-carolina(model=1,carolina1)</pre>
output[][-1]
carolina2 <- DC$carolina2
# str(carolina2)
majes<-subset(carolina2, carolina2[,1]==1)</pre>
majes<-majes[,c(2,5,4,3,6:8)]
output<-carolina(model=2,majes[,c(1:4,6)])</pre>
output[][-1]
carolina3 <- DC$carolina3
# str(carolina3)
output<-carolina(model=3,carolina3)</pre>
output[][-1]
```

Chz2006

Data amendment Carhuaz 2006

Description

Incidents and performance of healthy tubers and rotten potato field infested with naturally Ralstonia solanacearum Race 3/Bv 2A, after application of inorganic amendments and a rotation crop in Carhuaz Peru, 2006.

Usage

```
data(Chz2006)
```

Format

```
The format is: List of 2

amendment a factor

crop a factor

block a numeric vector, replications

plant a numeric vector, number plant

wilt_percent a numeric vector, wilt percentage at 60 days

health a numeric vector, kg/8m2

rot a numeric vector, kg/8m2
```

18 CIC

Details

Application of inorganic amendment and crop rotation to control bacterial wilt of the potato (MBP).

Source

Experimental field, 2006. Data Kindly provided by Pedro Aley.

References

International Potato Center. CIP - Lima Peru.

Examples

```
library(agricolae)
data(Chz2006)
str(Chz2006)
wilt<-Chz2006$wilt
yield<-Chz2006$wilt
means <- tapply.stat(wilt[,5],wilt[,1:3],function(x) mean(x,na.rm=TRUE))
names(means)[4]<-"wilt_percent"
model <- aov(wilt_percent ~ block + crop, means)
anova(model)
cv.model(model)
yield<-yield[order(paste(yield[,1],yield[,2],yield[,3])),]
correlation(means[,4],yield[,4],method="spearman")</pre>
```

CIC

Data for late blight of potatoes

Description

A study of Phytophthora infestans in the potato plant in the localities of Comas and Oxapampa in Peru, 2005.

Usage

```
data(CIC)
```

Format

```
The format is: List of 2 (comas, oxapampa)

Locality a factor with levels Comas Oxapampa

Genotype a factor

Rep a numeric vector, replications

E9 a numeric vector, infestans percentaje to 9 days

AUDPC a numeric vector: the area under the disease-progress curve

Relative a numeric vector, relative area
```

clay 19

Details

comas: temperature=59.9 Fahrenheit, relative humidity=83.3 oxapampa: temperature=64.8 Fahrenheit, relative humidity=86.2 AUDPC and relative see function audpc(). help(audpc) Exx: Evaluation in percentaje, xx is days. ORD1, ORD2, SBLK and row are references location of the plot in the field.

Source

Experimental field, 2004-2005. Data Kindly provided by Matilde Orrillo.

References

International Potato Center. CIP - Lima Peru.

Examples

library(agricolae)
data(CIC)
CIC\$comas
CIC\$oxapampa

clay

Data of Ralstonia population in clay soil

Description

An evaluation over a time period.

Usage

data(clay)

Format

A data frame with 69 observations on the following 3 variables.

```
per.clay a numeric vector
days a numeric vector
ralstonia a numeric vector
```

Source

Experimental field.

References

International Potato Center. CIP - Lima Peru.

20 ComasOxapampa

Examples

library(agricolae)
data(clay)
str(clay)

ComasOxapampa

Data AUDPC Comas - Oxapampa

Description

Fifty-three potato varieties developed by the breeding program of the International Potato Center and released in different countries around the world were evaluated for their resistance to late blight in two locations in Peru.

Usage

data(ComasOxapampa)

Format

A data frame with 168 observations on the following 4 variables.

cultivar a factor with 56 levels replication a factor with 3 levels comas a numeric vector oxapampa a numeric vector

Details

The experimental design was a randomized complete block design with 3 replications of 15 apical stem cuttings in Oxapampa and 10 tubers in Mariscal Castilla. Plots were 11.9 x 18.5 m in size with 30 cm in-row and 0.9 m between-row spacings. Spreader rows around plots were used at each site. Mancozeb was applied weekly until 30 days after transplanting or planting, after which the plants were left to natural infection. Due to climatic conditions not conductive to the disease in Oxapampa, inoculum was enhanced with local isolate (POX 067, with virulence R1, 2, 3, 4, 5, 6, 7, 10, 11) at a concentration of 5000-sporangia/ ml at 49 days after planting. Percentage of foliar infection was estimated visually every 3 days for 8 times in Oxapampa and every 7 days for 12 times in Comas, then values were converted to the relative area under the diseases progress curve (rAUPDC). rAUDPC rankings were analyzed for phenotypic stability with nonparametric measures.

Source

Experimental field, 2002. Data Kindly provided by Wilmer Perez.

References

International Potato Center. CIP - Lima Peru.

consensus 21

Examples

```
library(agricolae)
data(ComasOxapampa)
# Oxapampa (10 35 31 S latitude, 75 23 0 E longitude, 1813 m.a.s.l )
# Comas, Mariscal Castilla (11 42 54 S latitude, 75 04 45 E longitude, 2800 m.a.s.l,)
# cultivars LBr-40 (resistant), Cruza 148 (moderately resistant) and Pimpernell (susceptible)
str(ComasOxapampa)
means <- tapply.stat(ComasOxapampa[,3:4],ComasOxapampa$cultivar,mean)
correlation(means$comas,means$oxapampa, method="kendall")</pre>
```

consensus

consensus of clusters

Description

The criterion of the consensus is to produce many trees by means of boostrap and to such calculate the relative frequency with members of the clusters.

Usage

```
consensus(data,distance=c("binary","euclidean","maximum","manhattan",
  "canberra", "minkowski", "gower","chisq"),method=c("complete","ward","single","average",
  "mcquitty","median", "centroid"),nboot=500,duplicate=TRUE,cex.text=1,
  col.text="red", ...)
```

Arguments

data	data frame
distance	method distance, see dist()
method	method cluster, see hclust()
nboot	The number of bootstrap samples desired.
duplicate	control is TRUE other case is FALSE
cex.text	size text on percentage consensus
col.text	color text on percentage consensus
	parameters of the plot dendrogram

Details

```
distance: "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski", "gower", "chisq". Method: "ward", "single", "complete", "average", "mcquitty", "median", "centroid". see functions: dist(), hclust() and daisy() of cluster.
```

Value

table.dend The groups and consensus percentage dendrogram The class object is helust, dendrogram plot

duplicate Homonymous elements

22 corn

Author(s)

F. de Mendiburu

References

An Introduction to the Boostrap. Bradley Efron and Robert J. Tibshirani. 1993. Chapman and Hall/CRC

See Also

hclust, hgroups, hcut

```
library(agricolae)
data(pamCIP)
# only code
rownames(pamCIP)<-substr(rownames(pamCIP),1,6)</pre>
output<-consensus( pamCIP,distance="binary", method="complete",nboot=5)</pre>
# Order consensus
Groups<-output$table.dend[,c(6,5)]</pre>
Groups<-Groups[order(Groups[,2],decreasing=TRUE),]</pre>
print(Groups)
## Identification of the codes with the numbers.
cbind(output$dendrogram$labels)
## To reproduce dendrogram
dend<-output$dendrogram
data<-output$table.dend
plot(dend)
text(data[,3],data[,4],data[,5])
# Other examples
# classical dendrogram
dend<-as.dendrogram(output$dendrogram)</pre>
plot(dend,type="r",edgePar = list(lty=1:2, col=2:1))
text(data[,3],data[,4],data[,5],col="blue",cex=1)
plot(dend,type="t",edgePar = list(lty=1:2, col=2:1))
text(data[,3],data[,4],data[,5],col="blue",cex=1)
## Without the control of duplicates
output<-consensus( pamCIP, duplicate=FALSE, nboot=5)</pre>
## using distance gower, require cluster package.
# output<-consensus( pamCIP, distance="gower", method="complete", nboot=5)</pre>
```

correl 23

Description

Data from a completely randomized design where four different methods of growing corn resulted in various yields per acre on various plots of ground where the four methods were tried. Ordinarily, only one statistical analysis is used, but here we will use the kuskal-wallis test so that a rough comparison may be made with the mediasn test.

Usage

```
data(corn)
```

Format

A data frame with 34 observations on the following 3 variables.

```
method a numeric vector
observation a numeric vector
rx a numeric vector
```

Details

The observations are ranked from the smallest, 77, of rank 1 to the largest 101, of rank N=34. Ties values receive the average rank.

Source

Book: Practical Nonparametric Statistics.

References

Practical Nonparametrics Statistics. W.J. Conover. Third Edition, 1999.

Examples

```
data(corn)
str(corn)
```

correl

Correlation Coefficient

Description

An exact correlation for ties or without ties. Methods of Kendall, Spearman and Pearson.

Usage

```
correl(x, y, method = "pearson",alternative="two.sided")
```

24 correlation

Arguments

X	Vector
у	Vector
method	"pearson", "kendall", "spearman"
alternative	"two sided" "less" "greater"

Value

The correlation of x,y vector with the statistical value and its probability

Author(s)

Felipe de Mendiburu

References

Numerical Recipes in C. Second Edition.

See Also

```
correlation
```

Examples

```
library(agricolae)
data(soil)
with(soil,correl(pH,clay,method="kendall"))
with(soil,correl(pH,clay,method="spearman"))
with(soil,correl(pH,clay,method="pearson"))
```

correlation

Correlation analysis. Methods of Pearson, Spearman, Kendall and Lin

Description

It obtains the coefficients of correlation and p-value between all the variables of a data table. The methods to apply are Pearson, Spearman, Kendall and lin's concordance index. In case of not specifying the method, the Pearson method will be used. The results are similar to SAS.

Usage

```
correlation(x,y=NULL, method = c("pearson", "kendall", "spearman", "lin")
,alternative="two.sided")
```

correlation 25

Arguments

```
x table, matrix or vector
y table, matrix or vector
method "pearson", "kendall", "spearman", "lin"
alternative "two.sided", "less", "greater"
```

Details

Parameters equal to function cor()

Value

The correlation matrix with its probability

Author(s)

Felipe de Mendiburu

References

Lin LI. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 45, 255-268.

See Also

correl

```
library(agricolae)
data(soil)
# example 1
analysis<-correlation(soil[,2:8],method="pearson")
analysis
# Example 2: correlation between pH, variable 2 and other elements from soil.
analysis<-with(soil,correlation(pH,soil[,3:8],method="pearson",alternative="less"))
analysis
# Example 3: correlation between pH and clay method kendall.
with(soil,correlation(pH,clay,method="kendall", alternative="two.sided"))</pre>
```

26 cotton

cotton

Data of cotton

Description

Data of cotton collected in experiments of two localities in Lima and Pisco, Peru.

Usage

```
data(cotton)
```

Format

A data frame with 96 observations on the following 5 variables.

```
site a factor with levels Lima Pisco
block a factor with levels I II III IV V VI
lineage a numeric vector
epoca a numeric vector
yield a numeric vector
```

Source

Book spanish: Metodos estadisticos para la investigacion. Autor: Calzada Benza Universidad Nacional Agraria - La Molina - Peru..

References

Book spanish: Metodos estadisticos para la investigacion. Autor: Calzada Benza Universidad Nacional Agraria - La Molina - Peru.

```
library(agricolae)
data(cotton)
str(cotton)
```

cv.model 27

cv.model

Coefficient of the experiment variation

Description

It obtains the coefficient of variation of the experiment obtained by models lm() or aov()

Usage

```
cv.model(x)
```

Arguments

Х

object of model lm() or AOV()

Details

```
sqrt(MSerror)*100/mean(x)
```

Value

Returns the coefficient of variation of the experiment according to the applied statistical model

Author(s)

Felipe de Mendiburu

See Also

```
LSD.test, HSD.test, waller.test
```

```
# see examples from LSD , Waller-Duncan or HSD and complete with it:
library(agricolae)
# not run
# cv<-cv.model(model)</pre>
```

28 cv.similarity

cv.similarity

Coefficient of the similarity matrix variation

Description

This process consists of finding the coefficient of the distances of similarity of binary tables (1 and 0) as used for scoring molecular marker data for presence and absence of PCR amplification products.

Usage

```
cv.similarity(A)
```

Arguments

Α

matrix of binary data

Value

Returns the coefficient of variation of the similarity model

Author(s)

Felipe de Mendiburu

See Also

```
similarity, resampling.cv
```

```
# molecular markers.
library(agricolae)
data(markers)
cv<-cv.similarity(markers)</pre>
```

DAU.test 29

DAU. test Finding the Variance Analysis of the Augmented block Design	DAU.test	Finding the Variance Analysis of the Augmented block Design
---	----------	---

Description

Analysis of variance Augmented block and comparison mean adjusted.

Usage

```
DAU.test(block, trt, y, method = c("lsd","tukey"),alpha=0.05,group=TRUE,console=FALSE)
```

Arguments

block blocks
trt Treatment
y Response

method Comparison treatments

alpha Significant test
group TRUE or FALSE
console logical, print output

Details

Method of comparison treatment. lsd: Least significant difference. tukey: Honestly significant differente. The controls can have different repetitions, at least two, do not use missing data.

Value

means Statistical summary of the study variable

parameters Design parameters statistics Statistics of the model

comparison Comparison between treatments groups Formation of treatment groups

SE.difference Standard error of:

Two Control Treatments
Two Augmented Treatments

Two Augmented Treatments(Different Blocks)
A Augmented Treatment and A Control Treatment

vartau Variance-covariance matrix of the difference in treatments

Author(s)

F. de Mendiburu

30 DC

References

Federer, W. T. (1956). Augmented (or hoonuiaku) designs. Hawaiian Planters, Record LV(2):191-208

See Also

```
BIB.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

Examples

```
library(agricolae)
block<-c(rep("I",7),rep("II",6),rep("III",7))
trt<-c("A","B","C","D","g","k","l","A","B","C","D","e","i","A","B","C","D","f","h","j")
yield<-c(83,77,78,78,78,70,75,74,79,81,81,91,79,78,92,79,87,81,89,96,82)
out<- DAU.test(block,trt,yield,method="lsd", group=TRUE)
print(out$groups)
plot(out)</pre>
```

DC

Data for the analysis of carolina genetic design

Description

Data for the analysis of carolina I, II and III genetic design

Usage

data(DC)

Details

DC is list, 3 data.frame: carolina1(72 obs, 6 var), carolina2(300 obs, 9 var) and carolina3(64 obs, 5 var).

Carolina1: Data for the analysis of Carolina I Genetic design. In this design F2 or any advanced generation maintained by random mating, produced from cross between two pure-lines, is taken as base population. From the population an individual is randomly selected and used as a male. A set of 4 randomly selected plans are used as females and are mated to the above male. Thus a set of 4 full-sib families are produced. This is denoted as a male group. Similarly, a large number of male groups are produced. No female is used for any second mating. four male groups (16 female groups) from a set.

Carolina2: Data for the analysis of Carolina II Genetic design. Both paternal and maternal half-sibs are produced in this design. From an F2 population, n1 males and n2 females are randomly selected and each male is crossed to each of the females. Thus n1 x n2 progenies are produced whitch are analysed in a suitably laid experiment.

Carolina3: Data for the analysis of Carolina III genetic design. The F2 population is produced by crossing two inbreds, say L1 and L2. The material for estimation of genetic parameters is produced

delete.na 31

by back crossing randomly selected F2 individuals (using as males) to each of the inbreds (used as females).

Source

Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979.

References

Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979.

Examples

```
data(DC)
names(DC)
str(DC$carolina1)
str(DC$carolina2)
str(DC$carolina3)
```

delete.na

Omitting the rows or columns with missing observations of a matrix (NA)

Description

In many situations it is required to omit the rows or columns less or greater with NA of the matrix.

Usage

```
delete.na(x, alternative=c("less", "greater") )
```

Arguments

```
x matrix with NA alternative "less" or "greater"
```

Value

x matrix

Author(s)

Felipe de Mendiburu

32 design.ab

Examples

```
library(agricolae)
x<-c(2,5,3,7,5,NA,8,0,4,3,NA,NA)
dim(x) < -c(4,3)
     [,1] [,2] [,3]
#[1,] 2 5 4
#[2,]
     5 NA
              3
     3
          8 NA
#[3,]
          0
#[4,]
delete.na(x,"less")
# [,1]
#[1,] 2
#[2,] 5
#[3,]
       3
#[4,]
delete.na(x, "greater")
# [,1] [,2] [,3]
#[1,] 2 5 4
```

design.ab

Design of experiments for a factorial

Description

It generates a design of blocks, randomize and latin square for combined n. factors uses the methods of number generation in R. The seed is by set.seed(seed, kinds).

Usage

```
design.ab(trt, r, serie = 2, design=c("rcbd","crd","lsd"),
seed = 0, kinds = "Super-Duper",first=TRUE,randomization=TRUE)
```

Arguments

trt	n levels factors
r	Replications or Blocks
serie	number plot, 1: 11,12; 2: 101,102; 3: 1001,1002
design	type
seed	Seed
kinds	Method for to randomize
first	TRUE or FALSE - randomize rep 1
randomization	TRUE or FALSE - randomize

design.ab 33

Details

```
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default")
```

Value

parameters Design parameters

book Fieldbook

Author(s)

Felipe de Mendiburu

References

Introduction to Experimental Statistics. Ching Chun Li. McGraw-Hill Book Company, INC, New. York, 1964

See Also

```
design.split, design.alpha,design.bib, design.crd, design.cyclic, design.dau, design.graeco, design.lattice, design.lsd, design.rcbd, design.strip
```

```
# factorial 3 x 2 with 3 blocks
library(agricolae)
trt<-c(3,2) # factorial 3x2
outdesign <-design.ab(trt, r=3, serie=2)</pre>
book<-outdesign$book
head(book,10) # print of the field book
# factorial 2 x 2 x 2 with 5 replications in completely randomized design.
trt<-c(2,2,2)
outdesign<-design.ab(trt, r=5, serie=2,design="crd")</pre>
book<-outdesign$book
print(book)
\# factorial 3 x 3 in latin square design.
trt <-c(3,3)
outdesign<-design.ab(trt, serie=2, design="lsd")</pre>
book<-outdesign$book
print(book)
```

34 design.alpha

design.alpha	Alpha design type (0,1)	
--------------	-------------------------	--

Description

Generates an alpha designs starting from the alpha design fixing under the series formulated by Patterson and Williams. These designs are generated by the alpha arrangements. They are similar to the lattice designs, but the tables are rectangular s by k (with s blocks and k<s columns. The number of treatments should be equal to s*k and all the experimental units r*s*k (r replications).

Usage

```
design.alpha(trt, k, r, serie = 2, seed = 0, kinds = "Super-Duper", randomization=TRUE)
```

Arguments

trt	Treatments
k	size block
r	Replications
serie	number plot, 1: 11,12; 2: 101,102; 3: 1001,1002
seed	seed
kinds	method for to randomize

randomization TRUE or FALSE - randomize

Details

Parameters for the alpha design: I. r=2, $k \le s$; II. r=3, s odd, $k \le s$; III. r=3, s even, $k \le s-1$; IV. r=4, s odd but not a multiple of 3, $k \le s$

r= replications s=number of blocks k=size of block Number of treatment is equal to k*s

Value

parameters Design parameters
statistics Design statistics
sketch Design sketch
book Fieldbook

Author(s)

Felipe de Mendiburu

References

H.D. Patterson and E.R. Williams. Biometrika (1976) A new class of resolvable incomplete block designs. printed in Great Britain. Online: http://biomet.oxfordjournals.org/cgi/content/abstract/63/1/83

design.bib 35

See Also

```
design.ab, design.split,design.bib, design.crd,design.cyclic,design.dau,design.graeco,design.lattice,design.lsd,design.rcbd,design.strip
```

Examples

```
library(agricolae)
#Example one
trt<-1:30
t <- length(trt)
# size block k
k<-3
# Blocks s
s<-t/k
# replications r
r < -2
outdesign<- design.alpha(trt,k,r,serie=2)</pre>
book<-outdesign$book
plots<-book[,1]
dim(plots) < -c(k, s, r)
for (i in 1:r) print(t(plots[,,i]))
outdesign$sketch
# Example two
trt<-letters[1:12]
t <- length(trt)
k<-3
r<-3
s<-t/k
outdesign<- design.alpha(trt,k,r,serie=2)</pre>
book<-outdesign$book
plots<-book[,1]
dim(plots) < -c(k,s,r)
for (i in 1:r) print(t(plots[,,i]))
outdesign$sketch
```

design.bib

Randomized Balanced Incomplete Block Designs. BIB

Description

Creates Randomized Balanced Incomplete Block Design. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).

Usage

```
design.bib(trt, k, r=NULL, serie = 2, seed = 0, kinds = "Super-Duper",
maxRep=20,randomization=TRUE)
```

36 design.bib

Arguments

trt Treatments
k size block
r Replications

serie number plot, 1: 11,12; 2: 101,102; 3: 1001,1002

seed seed

kinds method for to randomize
maxRep repetition maximum

randomization TRUE or FALSE - randomize

Details

The package AlgDesign is necessary.

if r = NULL, then it calculates the value of r smaller for k defined. In the case of r = value, then the possible values for "r" is calculated

K is the smallest integer number of treatments and both values are consistent in design.

kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default")

Value

parameters Design parameters
statistics Design statistics
sketch Design sketch
book Fieldbook

Author(s)

Felipe de Mendiburu

References

- 1. Experimental design. Cochran and Cox. Second edition. Wiley Classics Library Edition published 1992
- 2. Optimal Experimental Design with R. Dieter Rasch, Jurgen Pilz, Rob Verdooren and Albrecht Gebhardt. 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor and Francis Group, an Informa business.
- 3. Design of Experiments. Robert O. Kuehl. 2nd ed., Duxbury, 2000.

See Also

design.ab, design.alpha,design.split,design.crd,design.cyclic,design.dau,design.graeco,design.lattice,design.lsd,design.rcbd,design.strip

design.crd 37

Examples

```
library(agricolae)
# 4 treatments and k=3 size block
trt<-c("A","B","C","D")
k<-3
outdesign<-design.bib(trt,k,serie=2,seed =41,kinds ="Super-Duper") # seed = 41
print(outdesign$parameters)
book<-outdesign$book
plots <-as.numeric(book[,1])
matrix(plots,byrow=TRUE,ncol=k)
print(outdesign$sketch)
# write in hard disk
# write.csv(book,"book.csv", row.names=FALSE)
# file.show("book.csv")</pre>
```

design.crd

Completely Randomized Design

Description

It generates completely a randomized design with equal or different repetition. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).

Usage

```
design.crd(trt, r, serie = 2, seed = 0, kinds = "Super-Duper", randomization=TRUE)
```

Arguments

trt Treatments
r Replications
serie number plot,

serie number plot, 1: 11,12; 2: 101,102; 3: 1001,1002

seed seed

kinds method for to randomize randomization TRUE or FALSE - randomize

Details

kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default")

Value

parameters Design parameters

book Fieldbook

38 design.cyclic

Author(s)

Felipe de Mendiburu

References

Introduction to Experimental Statistics. Ching Chun Li. McGraw-Hill Book Company, INC, New. York, 1964

See Also

```
design.ab, design.alpha,design.bib, design.split,design.cyclic,design.dau,design.graeco,design.lattice,design.lsd,design.rcbd,design.strip
```

Examples

```
library(agricolae)
trt <-c("CIP-101","CIP-201","CIP-301","CIP-401","CIP-501")
r <-c(4,3,5,4,3)
# seed = 12543
outdesign1 <-design.crd(trt,r,serie=2,2543,"Mersenne-Twister")
book1<-outdesign1
# no seed
outdesign2 <-design.crd(trt,r,serie=3)
print(outdesign2$parameters)
book2<-outdesign2
# write to hard disk
# write.table(book1,"crd.txt", row.names=FALSE, sep="\t")
# file.show("crd.txt")</pre>
```

design.cyclic

Cyclic designs

Description

The cyclic design is a incomplete blocks designs, it is generated from a incomplete block initial of the size k, the plan is generated and randomized. The efficient and robust cyclic designs for 6 to 30 treatments, replications ≤ 10 .

Usage

```
design.cyclic(trt, k, r, serie = 2, rowcol = FALSE, seed = 0, kinds = "Super-Duper"
,randomization=TRUE)
```

design.cyclic 39

Arguments

trt vector treatments
k block size
r Replications

serie number plot, 1: 11,12; 2: 101,102; 3: 1001,1002

rowcol TRUE: row-column design

seed init seed random kinds random method

randomization TRUE or FALSE - randomize

Details

Number o treatment 6 to 30. (r) Replication 2 to 10. (k) size of block 2 to 10. replication = i*k, "i" is value integer.

Value

parameters Design parameters sketch Design sketch book Fieldbook

Author(s)

Felipe de Mendiburu

References

Kuehl, Robert(2000), Design of Experiments. 2nd ed., Duxbury. John, J.A. (1981) Efficient Cyclic Design. J. R. Statist. Soc. B, 43, No. 1, pp, 76-80.

See Also

```
design.ab, design.alpha,design.bib, design.crd, design.split, design.dau, design.graeco, design.lattice, design.lsd, design.rcbd, design.strip
```

```
library(agricolae)
trt<-letters[1:8]
# block size = 2, replication = 6
outdesign1 <- design.cyclic(trt,k=2, r=6,serie=2)
names(outdesign1)
# groups 1,2,3
outdesign1$sketch[[1]]
outdesign1$sketch[[2]]
outdesign1$sketch[[3]]
outdesign1$sketch[[3]]</pre>
```

40 design.dau

```
# row-column design
outdesign2<- design.cyclic(trt,k=2, r=6, serie=2, rowcol=TRUE)
outdesign2$sketch</pre>
```

design.dau

Augmented block design

Description

These are designs for two types of treatments: the control treatments (common) and the increased treatments. The common treatments are applied in complete randomized blocks, and the increased treatments, at random. Each treatment should be applied in any block once only. It is understood that the common treatments are of a greater interest; the standard error of the difference is much smaller than when between two increased ones in different blocks.

Usage

```
design.dau(trt1, trt2, r, serie = 2, seed = 0, kinds = "Super-Duper", name="trt"
,randomization=TRUE)
```

Arguments

trt1 checks trt2 new

r Replications or blocks

serie number plot, 1: 11,12; 2: 101,102; 3: 1001,1002

seed seed

kinds method for to randomize

name of treatments

randomization TRUE or FALSE - randomize

Details

```
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default" )
```

Value

parameters Design parameters

book Fieldbook

Author(s)

Felipe de Mendiburu

design.graeco 41

References

1. Augmented (or Hoonuiaku) Design. Federer, W.T. (1956), Hawaii Plr. rec., 55: 191-208. 2. In Augmented Designs. Federer, W.T and Raghavarao, D. (1975). Bometrics, vol. 31, No. 1 (mar.., 1975), pp. 29-35

See Also

```
design.ab, design.alpha,design.bib, design.crd,design.cyclic,design.split,design.graeco,design.lattice,design.lsd,design.rcbd,design.strip
```

Examples

```
library(agricolae)
# 4 treatments and 5 blocks
T1<-c("A","B","C","D")
T2<-letters[20:26]
outdesign <-design.dau(T1,T2, r=5,serie=2)
# field book
book<-outdesign$book</pre>
by(book,book[2],function(x) paste(x[,1],"-",as.character(x[,3])))
# write in hard disk
# write.table(book, "dau.txt", row.names=FALSE, sep="\t")
# file.show("dau.txt")
# Augmented designs in Completely Randomized Design
trt<-c(T1,T2)
r < -c(4,4,4,4,1,1,1,1,1,1,1)
outdesign <- design.crd(trt,r)</pre>
outdesign$book
```

design.graeco

Graeco - latin square design

Description

A graeco - latin square is a KxK pattern that permits the study of k treatments simultaneously with three different blocking variables, each at k levels.

The function is only for squares of the odd numbers and even numbers (4, 8, 10 and 12)

Usage

```
design.graeco(trt1, trt2, serie = 2, seed = 0, kinds = "Super-Duper",randomization=TRUE)
```

Arguments

trt1	Treatments
trt2	Treatments
serie	number plot, 1: 11,12; 2: 101,102; 3: 1001,1002

design.graeco

seed seed

kinds method for to randomize randomization TRUE or FALSE - randomize

Details

```
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default")
```

Value

parameters Design parameters

book Fieldbook

Author(s)

Felipe de Mendiburu

References

- 1. Statistics for Experimenters Design, Innovation, and Discovery Second Edition. George E. P. Box. Wiley-Interscience. 2005.
- 2. Experimental design. Cochran and Cox. Second edition. Wiley Classics Library Edition published 1992.

See Also

```
design.ab, design.alpha,design.bib, design.crd, design.cyclic, design.dau, design.split, design.lattice, design.lsd, design.rcbd, design.strip
```

```
library(agricolae)
T1<-c("a","b","c","d")
T2<-c("v","w","x","y")
outdesign <- design.graeco(T1,T2,serie=1)
graeco<-outdesign$book
plots <-as.numeric(graeco[,1])
print(outdesign$sketch)
print(matrix(plots,byrow=TRUE,ncol=4))
# 10 x 10
T1 <- letters[1:10]
T2 <- 1:10
outdesign <- design.graeco(T1,T2,serie=2)
print(outdesign$sketch)</pre>
```

design.lattice 43

design.lattice Lattice designs

Description

SIMPLE and TRIPLE lattice designs. It randomizes treatments in k x k lattice.

Usage

```
design.lattice(trt, r=3, serie = 2, seed = 0, kinds = "Super-Duper",randomization=TRUE)
```

Arguments

trt treatments

r r=2(simple) or r=3(triple) lattice

serie number plot, 1: 11,12; 2: 101,102; 3: 1001,1002

seed seed

kinds method for to randomize randomization TRUE or FALSE - randomize

Details

kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default")

Value

parameters Design parameters statistics Design statistics sketch Design sketch book Fieldbook

Author(s)

Felipe de Mendiburu

References

FIELD PLOT TECHNIQUE. Erwin L. LeCLERG. 2nd ed., 1962, Burgess Publishing Company, Minnesota

See Also

```
design.ab, design.alpha,design.bib, design.crd,design.cyclic,design.dau,design.graeco,design.split,design.lsd,design.rcbd,design.strip
```

design.lsd

Examples

```
library(agricolae)
# triple lattice
trt<-LETTERS[1:9]
outdesign<-design.lattice(trt,r=3,serie=2) # triple lattice design ( 9 trt)
# simple lattice
trt<-1:100
outdesign<-design.lattice(trt,r=2,serie=3) # simple lattice design, 10x10</pre>
```

design.lsd

Latin Square Design

Description

It generates Latin Square Design. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).

Usage

```
design.lsd(trt, serie = 2, seed = 0, kinds = "Super-Duper", first=TRUE, randomization=TRUE)
```

Arguments

trt Treatments

serie number plot, 1: 11,12; 2: 101,102; 3: 1001,1002

seed seed

kinds method for to randomize

first TRUE or FALSE - randomize rep 1

randomization TRUE or FALSE - randomize

Details

```
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default")
```

Value

parameters Design parameters

book Fieldbook

Author(s)

Felipe de Mendiburu

design.mat 45

References

Introduction to Experimental Statistics. Ching Chun Li. McGraw-Hill Book Company, INC, New. York, 1969

See Also

```
design.ab, design.alpha,design.bib, design.crd,design.cyclic,design.dau,design.graeco,design.lattice,design.split,design.rcbd,design.strip
```

Examples

```
library(agricolae)
varieties<-c("perricholi","yungay","maria bonita","tomasa")
outdesign <-design.lsd(varieties,serie=2,seed=23)
lsd <- outdesign$book
print(outdesign$sketch)
print(lsd) # field book.
plots <-as.numeric(lsd[,1])
print(matrix(plots,byrow = TRUE, ncol = 4))
# Write on hard disk.
# write.table(lsd,"lsd.txt", row.names=FALSE, sep="\t")
# file.show("lsd.txt")</pre>
```

design.mat

Experimental design matrix

Description

Generate the design matrix from the fieldbook generated by an experimental plan or a dataframe for analysis.

Usage

```
design.mat(book, locations)
```

Arguments

book data frame or matrix, field book

locations numeric, column position of the field book

Value

X is matrix design.

Author(s)

Felipe de Mendiburu

design.rcbd

See Also

design.ab, design.alpha,design.bib, design.crd,design.cyclic,design.split,design.graeco,design.lattice,design.lsd,design.rcbd,design.strip,design.dau

Examples

```
# dataframe: data analysis
library(agricolae)
data(sweetpotato)
X<-design.mat(sweetpotato,1)
print(X)
# fieldbook: RCBD design
trt <- LETTERS[1:4]
r<-3
plan<-design.rcbd(trt,r,seed=11)
X<-design.mat(plan$book,2:3)
print(X)</pre>
```

design.rcbd

Randomized Complete Block Design

Description

It generates Randomized Complete Block Design. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).

Usage

```
design.rcbd(trt, r, serie = 2, seed = 0, kinds = "Super-Duper", first=TRUE,
continue=FALSE,randomization=TRUE)
```

Arguments

trt	Treatments
r	Replications or blocks
serie	number plot, 1: 11,12; 2: 101,102; 3: 1001,1002
seed	seed
kinds	method for to randomize
first	TRUE or FALSE - randomize rep 1
continue	TRUE or FALSE, continuous numbering of plot
randomization	TRUE or FALSE - randomize

Details

```
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default")
```

design.split 47

Value

parameters Design parameters sketch Design sketch book Fieldbook

Author(s)

Felipe de Mendiburu

References

Introduction to Experimental Statistics. Ching Chun Li. McGraw-Hill Book Company, INC, New. York, 1964

See Also

```
design.ab, design.alpha,design.bib, design.crd,design.cyclic,design.dau,design.graeco,design.lattice,design.lsd,design.split,design.strip
```

Examples

```
library(agricolae)
# 5 treatments and 6 blocks
trt<-c("A","B","C","D","E")
outdesign <-design.rcbd(trt,6,serie=2,986,"Wichmann-Hill") # seed = 986
book <-outdesign$book # field book
# write in hard disk
# write.table(book,"rcbd.txt", row.names=FALSE, sep="\t")
# file.show("rcbd.txt")
# Plots in field model ZIGZAG
fieldbook <- zigzag(outdesign)
print(outdesign$sketch)
print(matrix(fieldbook[,1],byrow=TRUE,ncol=5))
# continuous numbering of plot
outdesign <-design.rcbd(trt,6,serie=0,continue=TRUE)
head(outdesign$book)</pre>
```

design.split

Split Plot Design

Description

It generates split plot design. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).

Usage

```
design.split(trt1, trt2,r=NULL, design=c("rcbd","crd","lsd"),serie = 2,
seed = 0, kinds = "Super-Duper", first=TRUE,randomization=TRUE)
```

48 design.split

Arguments

Treatments in Plots trt1 trt2 Treatments in Subplots Replications or blocks Experimental design design number plot, 1: 11,12; 2: 101,102; 3: 1001,1002 serie seed kinds method for to randomize first TRUE or FALSE - randomize rep 1 randomization TRUE or FALSE - randomize

Details

kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default")

Value

parameters Design parameters

book Fieldbook

Author(s)

Felipe de Mendiburu

References

Statistical Procedures for Agricultural Research. Kwanchai A. Gomez, Arturo A. Gomez. John Wiley & Sons, new York, 1984

See Also

```
design.ab, design.alpha,design.bib, design.crd,design.cyclic,design.dau,design.graeco,design.lattice,design.lsd,design.rcbd,design.strip
```

```
library(agricolae)
# 4 treatments and 5 blocks in split-plot
t1<-c("A","B","C","D")
t2<-c(1,2,3)
outdesign <-design.split(t1,t2,r=3,serie=2,seed=45,kinds ="Super-Duper")#seed=45
book<-outdesign$book# field book
# write in hard disk
# write.table(book,"book.txt", row.names=FALSE, sep="\t")
# file.show("book.txt")</pre>
```

design.strip 49

Description

It generates strip plot design. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).

Usage

```
design.strip(trt1, trt2,r, serie = 2, seed = 0, kinds = "Super-Duper",randomization=TRUE)
```

Arguments

trt1	Row treatments
trt2	column treatments
r	Replications
serie	number plot, 1: 11,12; 2: 101,102; 3: 1001,1002
seed	seed
kinds	method for to randomize
randomization	TRUE or FALSE - randomize

Details

```
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default")
```

Value

parameters Design parameters book Fieldbook

Author(s)

Felipe de Mendiburu

References

Statistical Procedures for Agricultural Research. Kwanchai A. Gomez, Arturo A. Gomez. John Wiley & Sons, new York, 1984

See Also

```
design.ab, design.alpha,design.bib, design.crd,design.cyclic,design.dau,design.graeco,design.lattice,design.lsd,design.rcbd,design.split
```

50 design.youden

Examples

```
library(agricolae)
# 4 and 3 treatments and 3 blocks in strip-plot
t1<-c("A","B","C","D")
t2<-c(1,2,3)
r<-3
outdesign <-design.strip(t1,t2,r, serie=2,seed=45,kinds ="Super-Duper") # seed = 45
book <-outdesign$book # field book
# write in hard disk
# write.table(book,"book.txt", row.names=FALSE, sep="\t")
# file.show("book.txt")</pre>
```

design.youden

Incomplete Latin Square Design

Description

Such designs are referred to as Youden squares since they were introduced by Youden (1937) after Yates (1936) considered the special case of column equal to number treatment minus 1. "Random" uses the methods of number generation in R. The seed is by set.seed(seed, kinds).

Usage

```
design.youden(trt, r, serie = 2, seed = 0, kinds = "Super-Duper",first=TRUE
,randomization=TRUE)
```

Arguments

trt	Treatments
r	Replications or number of columns
serie	number plot, 1: 11,12; 2: 101,102; 3: 1001,1002
seed	seed
kinds	method for to randomize
first	TRUE or FALSE - randomize rep 1
randomization	TRUE or FALSE - randomize

Details

```
kinds <- c("Wichmann-Hill", "Marsaglia-Multicarry", "Super-Duper", "Mersenne-Twister", "Knuth-TAOCP", "user-supplied", "Knuth-TAOCP-2002", "default")
```

Value

```
parameters Design parameters
sketch Design sketch
book Fieldbook
```

diffograph 51

Author(s)

Felipe de Mendiburu

References

Design and Analysis of experiment. Hinkelmann, Klaus and Kempthorne, Oscar. Wiley-Interscience. Copyright (2008) by John Wiley and Sons. Inc., Hoboken, new Yersy

See Also

```
design.ab, design.alpha,design.bib, design.crd, design.cyclic, design.dau, design.graeco, design.lattice, design.split, design.rcbd, design.strip, design.lsd
```

Examples

```
library(agricolae)
varieties<-c("perricholi","yungay","maria bonita","tomasa")
r<-3
outdesign <-design.youden(varieties,r,serie=2,seed=23)
youden <- outdesign$book
print(outdesign$sketch)
plots <-as.numeric(youden[,1])
print(matrix(plots,byrow=TRUE,ncol=r))
print(youden) # field book.
# Write on hard disk.
# write.table(youden,"youden.txt", row.names=FALSE, sep="\t")
# file.show("youden.txt")</pre>
```

diffograph

Plotting the multiple comparison of means

Description

It plots bars of the averages of treatments to compare. It uses the objects generated by a procedure of comparison like LSD (Fisher), duncan, Tukey (HSD), Student Newman Keul (SNK), Scheffe, Ryan, Einot and Gabriel and Welsch (REGW), Kruskal Wallis, Friedman and Waerden.

Usage

```
diffograph(x, main=NULL,color1="red",color2="blue",color3="black",
cex.axis=0.8,las=1,pch=20,bty="l",cex=0.8,lwd=1,xlab="",ylab="",...)
```

Arguments

x Object created by a test of comparison, group=FALSE

main The main title (on top)
color1 non significant color

52 diffograph

color2	significant color
color3	center line color
cex.axis	parameters of the plot()
las	parameters of the plot()
pch	parameters of the plot()
bty	parameters of the plot()
cex	parameters of the plot()
lwd	parameters of the plot()
xlab	parameters of the plot()
ylab	parameters of the plot()
	Other parameters of the function plot()

Details

The graph.diff function should be used for functions: LSD, duncan, SNK, scheffe, REGW, HSD, kruskal, friedman and waerden test.

Value

x list, object comparison test

Author(s)

Felipe de Mendiburu

References

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC

See Also

```
{\tt LSD.test,\,HSD.test,\,duncan.test,\,SNK.test,\,scheffe.test,\,REGW.test,\,kruskal,friedman,\,waerden.test}
```

```
# Example 1
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
x<- LSD.test(model,"virus",alpha=0.01,group=FALSE)
diffograph(x,cex.axis=0.8,xlab="Yield",ylab="")
# Example 2
x<- REGW.test(model,"virus",alpha=0.01,group=FALSE)
diffograph(x,cex.axis=0.6,xlab="Yield",ylab="",color1="brown",color2="green")</pre>
```

disease 53

disease

Data evaluation of the disease overtime

Description

Three evaluations over time and the potato yield when applying several treatments.

Usage

```
data(disease)
```

Format

A data frame with 21 observations on the following 7 variables.

```
plots a numeric vector

rep a numeric vector

trt a factor with levels T0 T1 T2 T3 T4 T5 T6

E2 a numeric vector

E5 a numeric vector

E7 a numeric vector

yield a numeric vector
```

Source

Experimental data.

References

International Potato Center. CIP - Lima Peru.

```
library(agricolae)
data(disease)
str(disease)
```

54 duncan.test

|--|

Description

This test is adapted from the Newman-Keuls method. Duncan's test does not control family wise error rate at the specified alpha level. It has more power than the other post tests, but only because it doesn't control the error rate properly. The Experimentwise Error Rate at: 1-(1-alpha)^(a-1); where "a" is the number of means and is the Per-Comparison Error Rate. Duncan's procedure is only very slightly more conservative than LSD. The level by alpha default is 0.05.

Usage

```
duncan.test(y, trt, DFerror, MSerror, alpha = 0.05, group=TRUE, main = NULL,console=FALSE)
```

Arguments

y model(aov or lm) or answer of the experimental unit

trt Constant(only y=model) or vector treatment applied to each experimental unit

DFerror Degree free

MSerror Mean Square Error alpha Significant level group TRUE or FALSE

main Title

console logical, print output

Details

It is necessary first makes a analysis of variance.

```
if y = model, then to apply the instruction:
duncan.test(model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
where the model class is aov or lm.
```

Value

statistics Statistics of the model
parameters Design parameters
duncan Critical Range Table

means Statistical summary of the study variable

comparison Comparison between treatments groups Formation of treatment groups

durbin.test 55

Author(s)

Felipe de Mendiburu

References

1. Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997

2. Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

See Also

```
BIB.test, DAU.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

Examples

```
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
out <- duncan.test(model,"virus",
main="Yield of sweetpotato. Dealt with different virus")
plot(out,variation="IQR")
duncan.test(model,"virus",alpha=0.01,console=TRUE)
# version old duncan.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
out <- with(sweetpotato,duncan.test(yield,virus,df,MSerror, group=TRUE))
plot(out,horiz=TRUE,las=1)
print(out$groups)</pre>
```

durbin.test

Durbin test and multiple comparison of treatments

Description

A multiple comparison of the Durbin test for the balanced incomplete blocks for sensorial or categorical evaluation. It forms groups according to the demanded ones for level of significance (alpha); by default, 0.05.

Usage

```
durbin.test(judge, trt, evaluation, alpha = 0.05, group =TRUE,
main = NULL, console=FALSE)
```

56 durbin.test

Arguments

judge Identification of the judge in the evaluation

trt Treatments evaluation variable

alpha level of significant group TRUE or FALSE

main Title

console logical, print output

Details

The post hoc test is using the criterium Fisher's least significant difference.

Value

statistics Statistics of the model parameters Design parameters

means Statistical summary of the study variable

rank rank table of the study variable comparison

Comparison between treatments groups

Formation of treatment groups

Author(s)

Felipe de Mendiburu

References

Practical Nonparametrics Statistics. W.J. Conover, 1999 Nonparametric Statistical Methods. Myles Hollander and Douglas A. Wofe, 1999

See Also

```
BIB.test, DAU.test, duncan.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

```
library(agricolae)
# Example 1. Conover, pag 391
person<-gl(7,3)
variety<-c(1,2,4,2,3,5,3,4,6,4,5,7,1,5,6,2,6,7,1,3,7)
preference<-c(2,3,1,3,1,2,2,1,3,1,2,3,3,1,2,3,1,2,3,1,2)
out<-durbin.test(person,variety,preference,group=TRUE,console=TRUE,main="Seven varieties of ice cream manufacturer")
#startgraph
bar.group(out$groups,horiz=TRUE,xlim=c(0,10),density=4,las=1)</pre>
```

friedman 57

friedman

Friedman test and multiple comparison of treatments

Description

The data consist of b-blocks mutually independent k-variate random variables Xij, i=1,...,b; j=1,...k. The random variable X is in block i and is associated with treatment j. It makes the multiple comparison of the Friedman test with or without ties. A first result is obtained by friedman.test of R.

Usage

friedman(judge,trt,evaluation,alpha=0.05,group=TRUE,main=NULL,console=FALSE)

Arguments

judge Identification of the judge in the evaluation

trt Treatment evaluation Variable

alpha Significant test group TRUE or FALSE

main Title

console logical, print output

Details

The post hoc friedman test is using the criterium Fisher's least significant difference (LSD)

Value

statistics Statistics of the model parameters Design parameters

means Statistical summary of the study variable

comparison Comparison between treatments groups Formation of treatment groups

58 frijol

Author(s)

Felipe de Mendiburu

References

Practical Nonparametrics Statistics. W.J. Conover, 1999

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

Examples

```
library(agricolae)
data(grass)
out<-with(grass,friedman(judge,trt, evaluation,alpha=0.05, group=TRUE,console=TRUE,
main="Data of the book of Conover"))
#startgraph
plot(out,variation="IQR")
#endgraph</pre>
```

frijol

Data of frijol

Description

Data of frijol under 4 technologies for the homogeneity of regression study. Yield of Frijol in kg/ha in clean and dry grain.

Tecnnologies: 20-40-20 kg/ha. N. P2O5 and K2O + 2 t/ha of gallinaza. 40-80-40 kg/ha. N. P2O5 and K2O + 2 t/ha of gallinaza. 60-120-60 kg/ha. N. P2O5 and K2O + 2 t/ha of gallinaza. 40-80-40 kg/ha. N. P2O5 and K2O + 4 t/ha of gallinaza.

Usage

```
data(frijol)
```

Format

A data frame with 84 observations on the following 3 variables.

```
technology a factor with levels a b c d
production a numeric vector
index a numeric vector
```

References

Oriente antioqueno (1972) (ICA.- Orlando Martinez W.) Colombia.

genxenv 59

Examples

```
library(agricolae)
data(frijol)
str(frijol)
```

genxenv

Data of potato yield in a different environment

Description

50 genotypes and 5 environments.

Usage

```
data(genxenv)
```

Format

A data frame with 250 observations on the following 3 variables.

ENV a numeric vector

GEN a numeric vector

YLD a numeric vector

Source

International Potato Center. CIP - Lima Peru.

References

International Potato Center. CIP - Lima Peru.

```
library(agricolae)
data(genxenv)
str(genxenv)
```

graph.freq

Glycoalkaloids

Data Glycoalkaloids

Description

A measurement of the Glycoalkaloids by two methods: HPLC and spectrophotometer.

Usage

```
data(Glycoalkaloids)
```

Format

A data frame with 25 observations on the following 2 variables.

```
HPLC a numeric vector spectrophotometer a numeric vector
```

Source

International Potato Center. CIP - Lima Peru.

References

International Potato Center. CIP - Lima Peru.

Examples

```
library(agricolae)
data(Glycoalkaloids)
str(Glycoalkaloids)
```

graph.freq

Histogram

Description

In many situations it has intervals of class defined with its respective frequencies. By means of this function, the graphic of frequency is obtained and it is possible to superpose the normal distribution, polygon of frequency, Ojiva and to construct the table of complete frequency.

Usage

```
graph.freq(x, breaks=NULL,counts=NULL,frequency=1, plot=TRUE, nclass=NULL,
xlab="",ylab="",axes = "",las=1,...)
```

graph.freq 61

Arguments

x a vector of values, a object hist(), graph.freq()

counts frequency and x is class intervals

breaks a vector giving the breakpoints between histogram cells

frequency 1=counts, 2=relative, 3=density

plot logic

nclass number of classes

xlab x labels ylab y labels

values 0,1,2 and 3 are the axis styles. see plot()

axes TRUE or FALSE

... other parameters of plot

Value

breaks a vector giving the breakpoints between histogram cells

counts frequency and x is class intervals

mids center point in class
relative Relative frequency, height
density Density frequency, height

Author(s)

Felipe de Mendiburu

See Also

```
polygon.freq, table.freq, stat.freq,inter.freq,sturges.freq, join.freq,ogive.freq, normal.freq
```

```
library(agricolae)
data(genxenv)
yield <- subset(genxenv$YLD,genxenv$ENV==2)
yield <- round(yield,1)
h<- graph.freq(yield,axes=FALSE, frequency=1, ylab="frequency",col="yellow")
axis(1,h$breaks)
axis(2,seq(0,20,0.1))
# To reproduce histogram.
h1 <- graph.freq(h, col="blue", frequency=2,border="red", density=8,axes=FALSE, xlab="YIELD",ylab="relative")
axis(1,h$breaks)
axis(2,seq(0,.4,0.1))
# summary, only frecuency
limits <-seq(10,40,5)</pre>
```

62 grass

```
frequencies <-c(2,6,8,7,3,4)
#startgraph
h<-graph.freq(limits,counts=frequencies,col="bisque",xlab="Classes")</pre>
polygon.freq(h,col="red")
title( main="Histogram and polygon of frequency",
ylab="frequency")
#endgraph
# Statistics
measures<-stat.freq(h)
print(measures)
# frequency table full
round(table.freq(h),2)
#startgraph
# ogive
ogive.freq(h,col="red",type="b",ylab="Accumulated relative frequency",
xlab="Variable")
# only .frequency polygon
h<-graph.freq(limits,counts=frequencies,border=FALSE,col=NULL,xlab=" ",ylab="")
title( main="Polygon of frequency",
xlab="Variable", ylab="Frecuency")
polygon.freq(h,col="blue")
grid(col="brown")
#endgraph
# Draw curve for Histogram
h<- graph.freq(yield,axes=FALSE, frequency=3, ylab="f(yield)",col="yellow")</pre>
axis(1,h$breaks)
axis(2, seq(0, 0.18, 0.03), las=2)
lines(density(yield), col = "red", lwd = 2)
title("Draw curve for Histogram")
```

grass

Data for Friedman test

Description

Twelve homeowners are selected randomly to participate in an experiment with a plant nursery. Each homeowner is asked to select four fairly identical areas in his yard and to plant four different types of grasses, one in each area.

Usage

```
data(grass)
```

Format

A data frame with 48 observations on the following 3 variables.

```
judge a numeric vector
trt a factor with levels t1 t2 t3 t4
evaluation a numeric vector
```

greenhouse 63

Details

Each of the 12 blocks consists of four fairly identical plots of land, each receiving care of approximately the same degree of skill because the four plots are presumably cared for by the same homeowern.

Source

Book: Practical Nonparametrics Statistics, pag 372.

References

Practical Nonparametrics Statistics. W.J. Conover, 1999

Examples

```
data(grass)
str(grass)
```

greenhouse

Data in greenhouse

Description

Potato minituber production in greenhouse, three sets of data in potato varieties with different methods: hydroponics, Aeroponic, Pots and Plant beds, the unit is in grams and the number of tubers in units,

Usage

```
data(greenhouse)
```

Details

greenhouse is list, three tables: greenhouse1(480 obs, 5 var), yield for plant, unit is grams. greenhouse2(48 obs, 5 var), Yields of 10 plants by experimental unit(grams). planting date(April 24, 2004) and harvest date(July 16, 2004) and greenhouse3(480 obs, 5 var), Tubers by plants.

Source

International Potato Center(CIP). Lima-Peru. Data Kindly provided by Carlos Chuquillanqui.

References

- Produccion de semila de papa por hidroponia tecnica de flujo continuo de una pelicula de solucion nutritiva (nft) Carlos Chuquillanqui(CIP), Jorge Tenorio(CIP) and L. F. Salazar(Agdia Inc). AGROENFOQUE Lima-Peru (2004) - Potato Minituber Production Using Aeroponics: Effect of Plant Density and Harvesting Intervals American Journal of Potato Research, Jan/Feb 2006 by Farran, Imma, Mingo-Castel, Angel M

growth growth

Examples

```
library(agricolae)
data(greenhouse)
greenhouse1 <- greenhouse$greenhouse1
greenhouse2 <- greenhouse$greenhouse2
greenhouse3 <- greenhouse$greenhouse3</pre>
```

growth

Data growth of trees

Description

Data growth of pijuayo trees in several localities.

Usage

```
data(growth)
```

Format

A data frame with 30 observations on the following 3 variables.

```
place a factor with levels L1 L2
slime a numeric vector
height a numeric vector
```

Source

Experimental data (Pucallpa - Peru)

References

ICRAF lima Peru.

```
library(agricolae)
data(growth)
str(growth)
```

haynes 65

haynes

Data of AUDPC for nonparametrical stability analysis

Description

Published data. Haynes. Mean area under the disease progress curve (AUDPC) for each of 16 potato clones evaluated at eight sites across the United States in 1996

Usage

```
data(haynes)
```

Format

A data frame with 16 observations on the following 9 variables.

clone a factor with levels A84118-3 A080432-1 A084275-3 AWN86514-2 B0692-4 B0718-3 B0749-2F B0767-2 Bertita Bzura C0083008-1 Elba Greta Krantz Libertas Stobrawa

FL a numeric vector

MI a numeric vector

ME a numeric vector

MN a numeric vector

ND a numeric vector

NY a numeric vector

PA a numeric vector

WI a numeric vector

References

Haynes K G, Lambert D H, Christ B J, Weingartner D P, Douches D S, Backlund J E, Fry W and Stevenson W. 1998. Phenotypic stability of resistance to late blight in potato clones evaluated at eight sites in the United States American Journal Potato Research 75, pag 211-217.

```
library(agricolae)
data(haynes)
str(haynes)
```

66 Hco2006

Hco2006

Data amendment Huanuco 2006

Description

Incidents and performance of healthy tubers and rotten potato field infested with naturally Ralstonia solanacearum Race 3/Bv 2A, after application of inorganic amendments and a rotation crop in Huanuco Peru, 2006.

Usage

```
data(Hco2006)
```

Format

```
The format is: List of 2
amendment a factor
crop a factor
block a numeric vector, replications
plant a numeric vector, number plant
wilt_percent a numeric vector, wilt percentage at 60 days
health a numeric vector, kg/8m2, 20 plants
rot a numeric vector, kg/8m2, 20 plants
```

Details

Application of inorganic amendment and crop rotation to control bacterial wilt of the potato (MBP).

Source

Experimental field, 2006. Data Kindly provided by Pedro Aley.

References

International Potato Center. CIP - Lima Peru.

```
library(agricolae)
data(Hco2006)
str(Hco2006)
wilt<-Hco2006$wilt
yield<-Hco2006$yield
means <- tapply.stat(wilt[,5],wilt[,1:3],function(x) mean(x,na.rm=TRUE))
names(means)[4]<-"wilt_percent"
model <- aov(wilt_percent ~ block + crop, means)</pre>
```

hcut 67

```
anova(model)
cv.model(model)
yield<-yield[order(paste(yield[,1],yield[,2],yield[,3])),]
correlation(means[,4],yield[,4],method="spearman")</pre>
```

hcut

Cut tree of consensus

Description

It shows dendrogram of a consensus of a tree generated by hclust.

Usage

```
hcut(consensus,h,group,col.text="blue",cex.text=1,...)
```

Arguments

consensus	object consensus
h	numeric scalar or vector with heights where the tree should be cut.
group	an integer scalar with the desired number of group
col.text	color of number consensus
cex.text	size of number consensus
	Other parameters of the function plot() in cut()

Value

hcut Returns a data frame with group memberships and consensus tree.

Author(s)

F. de Mendiburu

See Also

```
hclust, consensus, hgroups
```

```
library(agricolae)
data(pamCIP)
# only code
rownames(pamCIP)<-substr(rownames(pamCIP),1,6)
# groups of clusters
# output<-consensus(pamCIP,nboot=100)
# hcut(output,h=0.4,group=5,main="Group 5")
#
# hcut(output,h=0.4,group=8,type="t",edgePar=list(lty=1:2,col=2:1),main="group 8"
# ,col.text="blue",cex.text=1)</pre>
```

68 heterosis

heterosis

Data of potato, Heterosis

Description

Determination of heterosis, general combining ability (GCA) and specific combining ability in tuber dry matter, reducing sugars and agronomic characteristics in TPS families.

Usage

data(heterosis)

Format

A data frame with 216 observations on the following 11 variables.

Place 1: La Molina, 2=Huancayo

Replication a numeric vector

Treatment a numeric vector

Factor a factor with levels Control progenie progenitor testigo

Female a factor with levels Achirana LT-8 MF-II Serrana TPS-2 TPS-25 TPS-7

Male a factor with levels TPS-13 TPS-67 TS-15

- v1 Yield (Kg/plant)
- v2 Reducing sugars (scale):1 low and 5=High
- v3 Tuber dry matter (percentage)
- v4 Tuber number/plant
- v5 Average tuber weight (g)

Details

The study was conducted in 3 environments, La Molina-PERU to 240 masl. during autumn-winter and spring, and in Huancayo-PERU 3180 masl., during summer. The experimental material consisted of 24 families half brother in the form of tubers derived from TPS, obtained crossing between 8 female and 3 male parents. Design used was randomized complete block with three repetitions. The experimental unit was 30 plants in two rows at a distance of 30cm between plants and 90 cm between rows. Variables evaluated were Yield, Tubers number, Dry matter and content and reducing sugars. The analysis was conducted line x tester. The control variety was Desiree.

Source

International Potato Center(CIP). Lima-Peru. Data Kindly provided by of Rolando Cabello.

hgroups 69

References

Tesis "Heterosis, habilidad combinatoria general y especifica para materia seca, azucares reductores y caracteres agronomicos en familias de tuberculos provenientes de semilla sexual de papa. Magister Scientiae Rodolfo Valdivia Lorente. Universidad Nacional Agraria La molina-Lima Peru, Escuela de Post Grado, Mejoramiento genetico de plantas, 2004". Poster: Congreso de la Sociedad Peruana de Genetica - Peru, 2008.

Examples

```
library(agricolae)
data(heterosis)
str(heterosis)
site1<-subset(heterosis,heterosis[,1]==1)
site2<-subset(heterosis,heterosis[,1]==2)
site3<-subset(heterosis,heterosis[,1]==3)
model1<-with(site1,lineXtester(Replication, Female, Male, v1))
DFe <- df.residual(model1)
CMe <- deviance(model1)/DFe
test1 <- with(site1,HSD.test(v1, Factor,DFe,CMe))
test2 <- with(site1,HSD.test(v1, Treatment,DFe,CMe))
model22<-with(site2,lineXtester(Replication, Female, Male, v3))
model3<-with(site3,lineXtester(Replication, Female, Male, v4))</pre>
```

hgroups

groups of hclust

Description

Returns a vector with group memberships. This function is used by the function consensus of clusters.

Usage

```
hgroups(hmerge)
```

Arguments

hmerge

The object is components of the hclust

Value

The merge clusters is printed.

Author(s)

F. de Mendiburu

70 HSD.test

See Also

```
hclust, hcut, consensus
```

Examples

```
library(agricolae)
data(pamCIP)
# only code
rownames(pamCIP)<-substr(rownames(pamCIP),1,6)
distance <- dist(pamCIP,method="binary")
clusters<- hclust( distance, method="complete")
# groups of clusters
hgroups(clusters$merge)</pre>
```

HSD.test

Multiple comparisons: Tukey

Description

It makes multiple comparisons of treatments by means of Tukey. The level by alpha default is 0.05.

Usage

```
HSD.test(y, trt, DFerror, MSerror, alpha = 0.05, group=TRUE, main = NULL,
unbalanced=FALSE,console=FALSE)
```

Arguments

y model(aov or lm) or answer of the experimental unit

trt Constant(only y=model) or vector treatment applied to each experimental unit

DFerror Degree free

MSerror Mean Square Error alpha Significant level group TRUE or FALSE

main Title

unbalanced TRUE or FALSE. not equal replication

console logical, print output

Details

It is necessary first makes a analysis of variance.

```
if y = model, then to apply the instruction:
HSD.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, unbalanced=FALSE, console=FALSE) where the model class is aov or lm.
```

HSD.test 71

Value

statistics Statistics of the model parameters Design parameters

means Statistical summary of the study variable

comparison Comparison between treatments

groups Formation of treatment groups

Author(s)

Felipe de Mendiburu

References

- 1. Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997
- 2. Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

```
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)</pre>
out <- HSD.test(model, "virus", group=TRUE, console=TRUE,</pre>
main="Yield of sweetpotato\nDealt with different virus")
#stargraph
# Variation range: max and min
plot(out)
#endgraph
out<-HSD.test(model,"virus", group=FALSE)</pre>
print(out$comparison)
# Old version HSD.test()
df<-df.residual(model)</pre>
MSerror<-deviance(model)/df
with(sweetpotato, HSD.test(yield, virus, df, MSerror, group=TRUE, console=TRUE,
main="Yield of sweetpotato. Dealt with different virus"))
```

72 huasahuasi

huasahuasi	Data: Rainfall thresholds as support for timing fungicide applications in the control of potato late blight in Peru

Description

Timing fungicide sprays based on accumulated rainfall thresholds can be a successful component of integrated management packages that include cultivars with moderate or high levels of resistance to late blight. The simplicity of measuring accumulated rainfall means that the technology can potentially be used by resource-poor farmers in developing countries.

Usage

```
data(huasahuasi)
```

Format

```
The format is: List of 2 (AUDPC, YIELD)

block a factor with levels I II III

trt a factor with levels 40mm 7-days Non-application

clon a factor with levels C386209.10 C387164.4 Cruza148 Musuq Yungay

y1da a numeric vector, Kgr./plot

y2da a numeric vector, Kgr./plot

y3ra a numeric vector, Kgr./plot

d44 a numeric vector, 44 days

d51 a numeric vector, 51 days

d100 a numeric vector, 100 days
```

Details

The experimental unit was formed by 4 furrows of 1.8 m of length, with distance between furrows from 0.90 m and between plants of 0.30 m. In each furrow was installed 5 plants. The experiment had 3 repetitions. From the beginning of the experiment were fulfilled the following treatments Thresholds 40 mm: Apply the fungicide when 40 precipitation mm accumulates. The minimum interval between applications will be of 7 days. Schedule 7 days: The applications should be carried out every 7 days calendar. Without application: No fungicide application will be made. The evaluation of the severity of the late blight in each treatment started to emergency 80 percentage and then evaluations were made every 7 days until being observed a physiological maturation of the crop.

Source

Experimental field, 2003. Data Kindly provided by Wilmer Perez.

index.AMMI 73

References

International Potato Center. CIP - Lima Peru.

Examples

```
library(agricolae)
data(huasahuasi)
names(huasahuasi)
str(huasahuasi$AUDPC)
str(huasahuasi$YIELD)
```

index.AMMI

AMMI index and yield stability

Description

calculate AMMI stability value (ASV) and Yield stability index (YSI).

Usage

```
index.AMMI(model)
```

Arguments

model

object AMMI

Details

AMMI stability value (ASV) was calculated using the following formula, as suggested by Purchase (1997)

```
ASV = sqrt((SSpc1/SSpc2 * PC1i)^2 + (PC2i)^2)
```

YSI = RASV + RY

RASV = rank(ASV) and RY = rank(Y across by environment)

Value

ASV	AMMI stability value		
YSI	Yield stability index		
	D 1 0 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

rASV Rank of AMMI stability value
rYSI Rank of yield stability index
means average genotype by environment

Author(s)

F. de Mendiburu

74 index.bio

References

The use of an AMMI model and its parameters to analyse yield stability in multienvironment trials. N. SABAGHNIA, S.H. SABAGHPOUR AND H. DEHGHANI. Journal of Agricultural Science (2008), 146, 571-581. f 2008 Cambridge University Press 571 doi:10.1017/S0021859608007831 Printed in the United Kingdom

Parametric analysis to describe genotype x environment interaction and yield stability in winter wheat. PURCHASE, J. L. (1997). Ph.D. Thesis, Department of Agronomy, Faculty of Agriculture of the University of the Free State, Bloemfontein, South Africa.

See Also

```
AMMI,plot.AMMI
```

Examples

```
library(agricolae)
# Index AMMI
data(plrv)
model<- with(plrv,AMMI(Locality, Genotype, Rep, Yield, console=FALSE))
Idx<-index.AMMI(model)
names(Idx)
# Crops with improved stability according AMMI.
print(Idx[order(Idx[,3]),])
# Crops with better response and improved stability according AMMI.
print(Idx[order(Idx[,4]),])</pre>
```

index.bio

Biodiversity Index

Description

Scientists use a formula called the biodiversity index to describe the amount of species diversity in a given area.

Usage

```
index.bio(data, method = c("Margalef", "Simpson.Dom", "Simpson.Div",
"Berger.Parker", "McIntosh", "Shannon"), level=95, nboot=100, console=TRUE)
```

Arguments

data	number of specimens
method	Describe method bio-diversity

level Significant level nboot size bootstrap

console output console TRUE

index.smith 75

Details

method bio-diversity. "Margalef" "Simpson.Dom" "Simpson.Div" "Berger.Parker" "McIntosh" "Shannon"

Value

Index and confidence intervals.

Author(s)

Felipe de Mendiburu

References

Magurran, A.E. (1988) Ecological diversity and its measurement. Princeton University Press Efron, B., Tibshirani, R. (1993) An Introduction to the Boostrap. Chapman and Hall/CRC

Examples

```
library(agricolae)
data(paracsho)
# date 22-06-05 and treatment CON = application with insecticide
specimens <- paracsho[1:10,6]
output1 <- index.bio(specimens,method="Simpson.Div",level=95,nboot=100)
output2 <- index.bio(specimens,method="Shannon",level=95,nboot=100)
rbind(output1, output2)</pre>
```

index.smith

Uniformity soil. Smith's Index of Soil Heterogeneity

Description

Smith's index of soil heterogeneity is used primarily to derive optimum plot size. The index gives a single value as a quantitative measure of soil heterogeneity in an area. Graph CV for plot size and shape.

Usage

```
index.smith(data, PLOT=TRUE,...)
```

Arguments

```
data dataframe or matrix

PLOT graphics, TRUE or FALSE

... Parameters of the plot()
```

76 inter.freq

Details

```
Vx=V(x)/x b
```

V(x) is the between-plot variance, Vx is the variance per unit area for plot size of x basic unit, and b is the Smith' index of soil heterogeneity.

Value

model function pattern of uniformity
uniformity Table of the soil uniformity

Author(s)

Felipe de Mendiburu

References

Statistical Procedures for Agriculture Research. Second Edition. Kwanchai A. Gomez and Arturo A. Gomez. 1976. USA

Examples

```
library(agricolae)
data(rice)
#startgraph
table<-index.smith(rice,
main="Relationship between CV per unit area and plot size",col="red")
#endgraph
uniformity <- data.frame(table$uniformity)</pre>
uniformity
# regression variance per unit area an plot size.
model <- lm(Vx ~ I(log(Size)),uniformity)</pre>
coeff <- coef(model)</pre>
x<-1:max(uniformity$Size)
Vx<- coeff[1]+coeff[2]*log(x)</pre>
#startgraph
plot(x,Vx, type="l", col="blue",
 main="Relationship between variance per unit area and plot size")
points(uniformity$Size,uniformity$Vx)
#endgraph
```

inter.freq

Class intervals

Description

List class intervals.

join.freq 77

Usage

```
inter.freq(x)
```

Arguments

Χ

class graph.freq, histogram or numeric

Value

It show interval classes.

Author(s)

Felipe de Mendiburu

See Also

```
polygon.freq, table.freq, stat.freq, graph.freq, sturges.freq, join.freq, ogive.freq,
normal.freq
```

Examples

```
library(agricolae)
# example 1
data(growth)
h<-hist(growth$height,plot=FALSE)
inter.freq(h)
# example 2
x<-seq(10,40,5)
y<-c(2,6,8,7,3,4)
inter.freq(x)
histogram <- graph.freq(x,counts=y)</pre>
```

join.freq

Join class for histogram

Description

In many situations it is required to join classes because of the low .frequency in the intervals. In this process, it is required to join the intervals and ad the .frequencies of them.

Usage

```
join.freq(histogram, join)
```

Arguments

histogram Class graph.freq join vector 78 kendall

Value

New histogram with union of classes.

Author(s)

Felipe de Mendiburu

See Also

```
polygon.freq, table.freq, stat.freq, inter.freq, sturges.freq, graph.freq, ogive.freq,
normal.freq
```

Examples

```
library(agricolae)
data(natives)
# histogram
h1<-graph.freq(natives$size,plot=FALSE)
round(table.freq(h1),4)
# Join classes 9, 10,11 and 12 with little frequency.
h2<-join.freq(h1,9:12)
# new table
plot(h2,col="bisque",xlab="Size")
round(summary(h2),4)</pre>
```

kendall

Correlation of Kendall

Description

Correlation of Kendall two set. Compute exact p-value with ties.

Usage

```
kendall(data1, data2)
```

Arguments

```
data1 vector
data2 vector
```

Value

The correlation of data1, data2 vector with the statistical value and its probability

Author(s)

Felipe de Mendiburu

kruskal 79

References

Numerical Recipes in C. Second Edition. Pag 634

See Also

```
correlation
```

Examples

```
library(agricolae) x \leftarrow c(1,1,1,4,2,2,3,1,3,2,1,1,2,3,2,1,1,2,1,2) y \leftarrow c(1,1,2,3,4,4,2,1,2,3,1,1,3,4,2,1,1,3,1,2) kendall(x,y)
```

kruskal

Kruskal Wallis test and multiple comparison of treatments.

Description

It makes the multiple comparison with Kruskal-Wallis. The alpha parameter by default is 0.05. Post hoc test is using the criterium Fisher's least significant difference. The adjustment methods include the Bonferroni correction and others.

Usage

```
kruskal(y, trt, alpha = 0.05, p.adj=c("none","holm","hommel",
"hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)
```

Arguments

```
y response

trt treatment

alpha level signification

p.adj Method for adjusting p values (see p.adjust)

group TRUE or FALSE

main Title

console logical, print output
```

Details

```
For equal or different repetition.
For the adjustment methods, see the function p.adjusted.
p-adj = "none" is t-student.
```

80 kurtosis

Value

statistics Statistics of the model
parameters Design parameters

means Statistical summary of the study variable

comparison Comparison between treatments groups Formation of treatment groups

Author(s)

Felipe de Mendiburu

References

Practical Nonparametrics Statistics. W.J. Conover, 1999

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

Examples

```
library(agricolae)
data(corn)
str(corn)
comparison<-with(corn,kruskal(observation,method,group=TRUE, main="corn"))
comparison<-with(corn,kruskal(observation,method,p.adj="bon",group=FALSE, main="corn"))</pre>
```

kurtosis

Finding the Kurtosis coefficient

Description

It obtains the value of the kurtosis for a normally distributed variable. The result is similar to SAS.

Usage

```
kurtosis(x)
```

Arguments

x a numeric vector

Value

x The kurtosis of x

lastC 81

See Also

skewness

Examples

```
library(agricolae)
x<-c(3,4,5,2,3,4,5,6,4,NA,7)
kurtosis(x)
# value is -0.1517996</pre>
```

lastC

Setting the last character of a chain

Description

A special function for the group of treatments in the multiple comparison tests. Use plot.group.

Usage

lastC(x)

Arguments

x letters

Value

x Returns the last character of a string

Author(s)

Felipe de Mendiburu

See Also

```
plot.group
```

```
library(agricolae)
x<-c("a","ab","b","c","cd")
lastC(x)
# "a" "b" "b" "c" "d"</pre>
```

82 lateblight

lateblight

LATEBLIGHT - Simulator for potato late blight Version LB2004

Description

LATEBLIGHT is a mathematical model that simulates the effect of weather, host growth and resistance, and fungicide use on asexual development and growth of Phytophthora infestans on potato foliage.

Usage

```
lateblight(WS, Cultivar, ApplSys,InocDate, LGR, IniSpor, SR, IE, LP, InMicCol,
MatTime=c('EARLYSEASON', 'MIDSEASON', 'LATESEASON'),...)
```

Arguments

WS object weather-severity

Cultivar chr ApplSys chr InocDate days

LGR num, see example

IniSpor num

SR num, see example

IE num, Initialization infection

LP num, latent period

InMicCol num
MatTime chr

... plot graphics parameters

Details

LATEBLIGHT Version LB2004 was created in October 2004 (Andrade-Piedra et al., 2005a, b and c), based on the C-version written by B.E. Ticknor ('BET 21191 modification of cbm8d29.c'), reported by Doster et al. (1990) and described in detail by Fry et al. (1991) (This version is referred as LB1990 by Andrade-Piedra et al. [2005a]). The first version of LATEBLIGHT was developed by Bruhn and Fry (1981) and described in detail by Bruhn et al. (1980).

Value

```
Ofile "Date","nday","MicCol","SimSeverity",...

Gfile "dates","nday","MeanSeverity","StDevSeverity"
```

Note

All format data for date is yyyy-mm,dd, for example "2000-04-22". change with function as.Date()

lateblight 83

Author(s)

Jorge L. Andrade-Piedra (1) (j.andrade@cgar.org), Gregory A. Forbes (1) (g.forbes@cgiar.org), Robert J. Hijmans (2) (rhijmans@ucdavis.edu), William E. Fry (3) (wef1@cornell.edu) Translation from C language into SAS language: G.A. Forbes Modifications: J.L. Andrade-Piedra and R.J. Hijmans Translation from SAS into R: Felipe de Mendiburu (1) (1) International Potato Center, P.O. Box 1558, Lima 12, Peru (2) University of California, One Shields Avenue, Davis, California 95616, USA (3) Cornell University, 351 Plant Science, Ithaca, NY 14853, USA

References

Andrade-Piedra, J. L., Hijmans, R. J., Forbes, G. A., Fry, W. E., and Nelson, R. J. 2005a. Simulation of potato late blight in the Andes. I: Modification and parameterization of the LATEBLIGHT model. Phytopathology 95:1191-1199.

Andrade-Piedra, J. L., Hijmans, R. J., Juarez, H. S., Forbes, G. A., Shtienberg, D., and Fry, W. E. 2005b. Simulation of potato late blight in the Andes. II: Validation of the LATEBLIGHT model. Phytopathology 95:1200-1208.

Andrade-Piedra, J. L., Forbes, G. A., Shtienberg, D., Grunwald, N. J., Chacon, M. G., Taipe, M. V., Hijmans, R. J., and Fry, W. E. 2005c. Qualification of a plant disease simulation model: Performance of the LATEBLIGHT model across a broad range of environments. Phytopathology 95:1412-1422.

Bruhn, J.A., Bruck, R.I., Fry, W.E., Arneson, P.A., and Keokosky, E.V. 1980. User's manual for LATEBLIGHT: a plant disease management game. Cornell University, Department of Plant Pathology, Ithaca, NY, USA. Mimeo 80-1.

Bruhn, J.A., and Fry, W.E. 1981. Analysis of potato late blight epidemiology by simulation modeling. Phytopathology 71:612-616.

Doster, M. A., Milgroom, M. G., and Fry, W. E. 1990. Quantification of factors influencing potato late blight suppression and selection for metalaxyl resistance in Phytophthora infestans - A simulation approach. Phytopathology 80:1190-1198.

Fry, W.E., Milgroom, M.G., Doster, M.A., Bruhn, J.A., and Bruck, R.I. 1991. LATEBLIGHT: a plant disease management game - User Manual. Version 3.1. Microsoft Windows Adaptation by B. E. Ticknor, and P. A. Arneson. Ithaca, Cornell University, Department of Plant Pathology, Ithaca, NY, USA.

See Also

weatherSeverity

```
library(agricolae)
f <- system.file("external/weather.csv", package="agricolae")
weather <- read.csv(f,header=FALSE)
f <- system.file("external/severity.csv", package="agricolae")
severity <- read.csv(f)
weather[,1]<-as.Date(weather[,1],format = "%m/%d/%Y")
# Parameters dates
dates<-c("2000-03-25","2000-04-09","2000-04-12","2000-04-16","2000-04-22")
dates<-as.Date(dates)
EmergDate <- as.Date('2000/01/19')</pre>
```

84 lineXtester

```
EndEpidDate <- as.Date("2000-04-22")</pre>
dates<-as.Date(dates)</pre>
NoReadingsH<- 1
RHthreshold <- 90
WS<-weatherSeverity(weather, severity, dates, EmergDate, EndEpidDate,
NoReadingsH, RHthreshold)
# Parameters Lateblight
InocDate<-"2000-03-18"
LGR <- 0.00410
IniSpor <- 0</pre>
SR <- 292000000
IE <- 1.0
LP <- 2.82
InMicCol <- 9</pre>
Cultivar <- 'NICOLA'
ApplSys <- "NOFUNGICIDE"
main<-"Cultivar: NICOLA"
model<-lateblight(WS, Cultivar,ApplSys, InocDate, LGR,IniSpor,SR,IE, LP,</pre>
MatTime='LATESEASON', InMicCol, main=main, type="1", xlim=c(65, 95), lwd=1.5,
xlab="Time (days after emergence)", ylab="Severity (Percentage)")
# reproduce graph
x<- model$Ofile$nday
y<- model$Ofile$SimSeverity
w<- model$Gfile$nday
z<- model$Gfile$MeanSeverity</pre>
Min<-model$Gfile$MinObs
Max<-model$Gfile$MaxObs
plot(x,y,type="l",xlim=c(65,95),lwd=1.5,xlab="Time (days after emergence)",
ylab="Severity (Percentage)")
points(w,z,col="blue",cex=1,pch=19)
npoints <- length(w)</pre>
for ( i in 1:npoints){
segments(w[i],Min[i],w[i],Max[i],lwd=1.5,col="blue")
legend ("topleft", c ("Disease progress curves", "Weather-Severity"),\\
title="Description",lty=1,pch=c(3,19),col=c("black","blue"))
```

lineXtester

Line x Tester Analysis

Description

It makes the Line x Tester Genetic Analysis. It also estimates the general and specific combinatory ability effects and the line and tester genetic contribution.

Usage

```
lineXtester(replications, lines, testers, y)
```

lineXtester 85

Arguments

replications Replications lines Lines testers Testers

y Variable, response

Details

ANOVA with parents and crosses
ANOVA for line X tester analysis
ANOVA for line X tester analysis including parents
GCA Effects: Lines Effects, Testers Effects and SCA Effects.
Standard Errors for Combining Ability Effects.
Genetic Components.
...

Proportional contribution of lines, testers and their interactions to total variance

Value

```
return anova(formula = Y \sim Replications + Treatments). where the Treatments contains parents, crosses and crosses vs Parents. The crosses contains Lines, Testers and its interaction .
```

Author(s)

Felipe de Mendiburu

References

Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979. Hierarchial and factorial mating designs for quantitative genetic analysis in tetrasomic potato. R. Ortis; A.Golmirzaie. Theor Appl Genet (2002) 104:675-679

See Also

AMMI

```
# see structure line by testers
library(agricolae)
# example 1
data(heterosis)
site1<-subset(heterosis,heterosis[,1]==1)
output1<-with(site1,lineXtester(Replication, Female, Male, v2))
# example 2
data(LxT)
str(LxT)
output2<-with(LxT,lineXtester(replication, line, tester, yield))</pre>
```

86 LSD.test

LSD. test Multiple comparisons, "Least significant difference" and Adjust P-values	LSD.test		"Least significant difference" and Adjust P-
--	----------	--	--

Description

Multiple comparisons of treatments by means of LSD and a grouping of treatments. The level by alpha default is 0.05. Returns p-values adjusted using one of several methods

Usage

```
LSD.test(y, trt, DFerror, MSerror, alpha = 0.05, p.adj=c("none", "holm", "hommel", "hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL, console=FALSE)
```

Arguments

у	model(aov or lm) or answer of the experimental unit
trt	Constant(only y=model) or vector treatment applied to each experimental unit
DFerror	Degrees of freedom of the experimental error
MSerror	Means square error of the experimental
alpha	Level of risk for the test
p.adj	Method for adjusting p values (see p.adjust)
group	TRUE or FALSE
main	title of the study
console	logical, print output

Details

For equal or different repetition.

For the adjustment methods, see the function p.adjusted.

p-adj ="none" is t-student.

It is necessary first makes a analysis of variance.

if model=y, then to apply the instruction:

LSD.test(model, "trt", alpha = 0.05, p.adj=c("none", "holm", "hommel", "hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE) where the model class is aov or lm.

Value

statistics	Statistics of the model
parameters	Design parameters
means	Statistical summary of the study variable
comparison	Comparison between treatments
groups	Formation of treatment groups

LxT 87

Author(s)

Felipe de Mendiburu

References

Steel, R.; Torri,J; Dickey, D.(1997) Principles and Procedures of Statistics A Biometrical Approach. pp178.

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

Examples

```
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)</pre>
out <- LSD.test(model,"virus", p.adj="bonferroni")</pre>
#stargraph
# Variation range: max and min
plot(out)
#endgraph
# Old version LSD.test()
df<-df.residual(model)</pre>
MSerror<-deviance(model)/df
out <- with(sweetpotato,LSD.test(yield,virus,df,MSerror))</pre>
# Variation interquartil range: Q75 and Q25
plot(out, variation="IQR")
#endgraph
out<-LSD.test(model,"virus",p.adj="hommel",console=TRUE)</pre>
plot(out,variation="SD") # variation standard deviation
```

LxT

Data Line by tester

Description

Data frame with yield by line x tester.

Usage

```
data(LxT)
```

88 markers

Format

A data frame with 92 observations on the following 4 variables.

```
replication a numeric vector
line a numeric vector
tester a numeric vector
yield a numeric vector
```

Source

Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979

markers

Data of molecular markers

Description

A partial study on 27 molecular markers.

Usage

```
data(markers)
```

Format

A data frame with 23 observations on the following 27 variables.

```
marker1 a numeric vector
marker3 a numeric vector
marker4 a numeric vector
marker5 a numeric vector
marker6 a numeric vector
marker7 a numeric vector
marker8 a numeric vector
marker9 a numeric vector
marker10 a numeric vector
marker11 a numeric vector
marker12 a numeric vector
marker13 a numeric vector
marker13 a numeric vector
marker14 a numeric vector
```

Median.test 89

```
marker16 a numeric vector
marker17 a numeric vector
marker18 a numeric vector
marker19 a numeric vector
marker20 a numeric vector
marker21 a numeric vector
marker22 a numeric vector
marker23 a numeric vector
marker24 a numeric vector
marker25 a numeric vector
marker26 a numeric vector
```

Source

International Potato Center Lima-Peru.

References

International Potato Center Lima-Peru.

Examples

library(agricolae)
data(markers)
str(markers)

Median.test

Median test. Multiple comparisons

Description

A nonparametric test for several independent samples. The median test is designed to examine whether several samples came from populations having the same median.

Usage

```
Median.test(y,trt,alpha=0.05,correct=TRUE,simulate.p.value = FALSE, group = TRUE,
main = NULL,console=TRUE)
```

90 Median.test

Arguments

y Variable response

trt Treatments alpha error type I

correct a logical indicating whether to apply continuity correction when computing the

test statistic for 2 groups. The correction will not be bigger than the differences

themselves. No correction is done if simulate.p.value = TRUE.

simulate.p.value

a logical indicating whether to compute p-values by Monte Carlo simulation

group TRUE or FALSE

main Title

console logical, print output

Details

The data consist of k samples of possibly unequal sample size.

Greater: is the number of values that exceed the median of all data and LessEqual: is the number less than or equal to the median of all data.

Value

statistics Statistics of the model

parameters Design parameters

medians Statistical summary of the study variable

comparison Comparison between treatments

groups Formation of treatment groups

Author(s)

Felipe de Mendiburu

References

Practical Nonparametrics Statistics. W.J. Conover, 1999

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

melon 91

Examples

melon

Data of yield of melon in a Latin square experiment

Description

An irrigation system evaluation by exudation using four varieties of melon, under modality of sowing, SIMPLE ROW. The goal is to analyze the behavior of three hybrid melon varieties and one standard.

Usage

```
data(melon)
```

Format

A data frame with 16 observations on the following 4 variables.

```
row a numeric vector

col a numeric vector

variety a factor with levels V1 V2 V3 V4

yield a numeric vector
```

Details

Varieties: Hibrido Mission (V1); Hibrido Mark (V2); Hibrido Topfligth (V3); Hibrido Hales Best Jumbo (V4).

Source

Tesis. "Evaluacion del sistema de riego por exudacion utilizando cuatro variedades de melon, bajo modalidad de siembra, SIMPLE HILERA". Alberto Angeles L. Universidad Agraria la Molina - Lima Peru.

References

Universidad Nacional Agraria la molina.

92 montecarlo

Examples

```
library(agricolae)
data(melon)
str(melon)
```

montecarlo

Random generation by Montecarlo

Description

Random generation form data, use function density and parameters

Usage

```
montecarlo(data, k, ...)
```

Arguments

data vector or object(hist, graph.freq)
k number of simulations

.. Other parameters of the function density, only if data is vector

Value

Generate random numbers with empirical distribution.

Author(s)

Felipe de Mendiburu

See Also

density

```
library(agricolae)
r<-rnorm(50, 10,2)
montecarlo(r, k=100, kernel="epanechnikov")
# other example
h<-hist(r,plot=FALSE)
montecarlo(h, k=100)
# other example
breaks<-c(0, 150, 200, 250, 300)
counts<-c(10, 20, 40, 30)
op<-par(mfrow=c(1,2),cex=0.8,mar=c(2,3,0,0))
h1<-graph.freq(x=breaks,counts=counts,plot=FALSE)
r<-montecarlo(h, k=1000)</pre>
```

natives 93

```
plot(h1,frequency = 3,ylim=c(0,0.008))
text(90,0.006,"Population\n100 obs.")
h2<-graph.freq(r,breaks,frequency = 3,ylim=c(0,0.008))
lines(density(r),col="blue")
text(90,0.006,"Montecarlo\n1000 obs.")
par(op)</pre>
```

natives

Data of native potato

Description

An evaluation of the number, weight and size of 24 native potatoes varieties.

Usage

```
data(natives)
```

Format

A data frame with 876 observations on the following 4 variables.

```
variety a numeric vector
number a numeric vector
weight a numeric vector
size a numeric vector
```

Source

International Potato Center. CIP - Lima Peru.

```
library(agricolae)
data(natives)
str(natives)
```

94 nonadditivity

odel test		
-----------	--	--

Description

The resistance for the transformable nonadditivity, due to J. W. Tukey, is based on the detection of a curvilinear relation between y-est(y) and est(y). A freedom degree for the transformable nonadditivity.

Usage

```
nonadditivity(y, factor1, factor2, df, MSerror)
```

Arguments

У	Answer of the experimental unit
factor1	Firts treatment applied to each experimental unit
factor2	Second treatment applied to each experimental unit
df	Degrees of freedom of the experimental error
MSerror	Means square error of the experimental

Details

Only two factor: Block and treatment or factor 1 and factor 2.

Value

P, Q and non-additivity analysis of variance

Author(s)

Felipe de Mendiburu

References

- 1. Steel, R.; Torri,J; Dickey, D.(1997) Principles and Procedures of Statistics A Biometrical Approach
- 2. George E.P. Box; J. Stuart Hunter and William G. Hunter. Statistics for experimenters. Wile Series in probability and statistics

normal.freq 95

Examples

```
library(agricolae)
data(potato )
potato[,1]<-as.factor(potato[,1])
model<-lm(cutting ~ date + variety,potato)
df<-df.residual(model)
MSerror<-deviance(model)/df
analysis<-with(potato,nonadditivity(cutting, date, variety, df, MSerror))</pre>
```

normal.freq

Normal curve on the histogram

Description

A normal distribution graph elaborated from the histogram previously constructed. The average and variance are obtained from the data grouped in the histogram.

Usage

```
normal.freq(histogram, frequency=1, ...)
```

Arguments

histogram object constructed by the function hist frequency 1=counts, 2=relative, 3=density
... Other parameters of the function hist

Author(s)

Felipe de Mendiburu

See Also

```
polygon.freq, table.freq, stat.freq, inter.freq, sturges.freq, join.freq, ogive.freq,
graph.freq
```

```
library(agricolae)
data(growth)
#startgraph
h1<-with(growth,hist(height,col="green",xlim=c(6,14)))
normal.freq(h1,col="blue")
#endgraph
#startgraph
h2<-with(growth,graph.freq(height,col="yellow",xlim=c(6,14),frequency=2))
normal.freq(h2,frequency=2)
#endgraph</pre>
```

96 ogive.freq

	_
ogive	.trea
~6~	• • • • •

Plotting the ogive from a histogram

Description

It plots the cumulative relative .frequencies with the intervals of classes defined in the histogram.

Usage

```
ogive.freq(histogram, type="", xlab="", ylab="", axes="", las=1,...)
```

Arguments

```
histogram object created by the function hist() or graph.freq()
type what type of plot should be drawn. See plot()
xlab x labels
ylab y labels
axes TRUE or FALSE
las values 0,1,2 and 3 are the axis styles. see plot()
... Parameters of the plot()
```

Value

Ogive points.

Author(s)

Felipe de Mendiburu

See Also

```
polygon.freq, table.freq, stat.freq, inter.freq, sturges.freq, join.freq, graph.freq,
normal.freq
```

```
library(agricolae)
data(growth)
h<-graph.freq(growth$height,plot=FALSE)
points<-ogive.freq(h,col="red",frame=FALSE,
xlab="Height", ylab="Accumulated relative frequency", main="ogive")
plot(points,type="b",pch=16,las=1,bty="l")</pre>
```

order.group 97

order.group Ordering the treatments according to the multiple comparison
--

Description

This function allows us to compare the treatments averages or the adding of their ranges with the minimal significant difference which can vary from one comparison to another one.

Usage

```
order.group(trt, means, N, MSerror, Tprob, std.err, parameter=1, snk=0,
DFerror=NULL,alpha=NULL,sdtdif=NULL,vartau=NULL,console)
```

Arguments

trt Treatments

means Means of treatment

N Replications

MSerror Mean square error

Tprob minimum value for the comparison

std.err standard error

parameter Constante 1 (Sd), 0.5 (Sx)

snk Constante = 1 (Student Newman Keuls)

DFerror Degrees of freedom of the experimental error

alpha Level of risk for the test

sdtdif standard deviation of difference in BIB

vartau matrix var-cov in PBIB console logical, print output

Details

This function was changed by orderPvalue function that use agricolae. Now the grouping in agricolae is with the probability of the treatments differences and alpha level.

Value

The output is data frame.

trt Treatment Levels, Factor

means height, Numeric

M groups levels, Factor

N replications, Numeric

std.err Standard error, Numeric

98 orderPvalue

Note

It is considered 81 labels as maximum for the formation of groups, greater number will not have label

Author(s)

Felipe de Mendiburu

See Also

orderPvalue

Examples

```
library(agricolae) treatments <- c("A","B","C","D","E","F") means<-c(20,40,35,72,49,58) std.err<-c(1.2,2,1.5,2.4,1,3.1) replications <- c(4,4,3,4,3,3) MSerror <- 55.8 value.t <- 2.1314 groups<-order.group(treatments,means,replications,MSerror,value.t,std.err,console=FALSE) print(groups)
```

orderPvalue

Grouping the treatments averages in a comparison with a minimum value

Description

When there are treatments and their respective values, these can be compared with a minimal difference of meaning.

Usage

```
orderPvalue(treatment, means, alpha, pvalue, console)
```

Arguments

treatment treatment

means of treatment

alpha Alpha value, significante value to comparison

pvalue Matrix of probabilities to comparison

console logical, print output

Value

The means and groups for treatments.

pamCIP 99

Note

It is considered 81 labels as maximum for the formation of groups, greater number will not have label

Author(s)

Felipe de Mendiburu

Examples

```
library(agricolae)
treatments <- c("A","B","C")
means<-c(2,5,3)
alpha <- 0.05
pvalue<-matrix(1,nrow=3,ncol=3)
pvalue[1,2]<-pvalue[2,1]<-0.03
pvalue[1,3]<-pvalue[3,1]<-0.10
pvalue[2,3]<-pvalue[3,2]<-0.06
out<-orderPvalue(treatments,means,alpha,pvalue,console=TRUE)
barplot(out[,1],names.arg = row.names(out),col=colors()[84:87])
legend("topright",as.character(out$groups),pch=15,col=colors()[84:87],box.col=0)</pre>
```

pamCIP

Data Potato Wild

Description

Potato Wild

Usage

data(pamCIP)

Format

A data frame with 43 observations on the following 107 variables. Rownames: code and genotype's name, column data: molecular markers.

Details

To study the molecular markers in Wild.

Source

Laboratory data.

References

International Potato Center Lima-Peru (CIP)

100 paracsho

Examples

library(agricolae)
data(pamCIP)
str(pamCIP)

paracsho

Data of Paracsho biodiversity

Description

A locality in Peru. A biodiversity.

Usage

data(paracsho)

Format

A data frame with 110 observations on the following 6 variables.

date a factor with levels 15-12-05 17-11-05 18-10-05 20-09-05 22-06-05 23-08-05 28-07-05 plot a factor with levels PARACSHO

Treatment a factor with levels CON SIN

Orden a factor with levels COLEOPTERA DIPTERA HEMIPTERA HYMENOPTERA LEPIDOPTERA NEUROPTERA NEUROPTE

Family a factor with levels AGROMYZIDAE ANTHOCORIDAE ANTHOMYIIDAE ANTHOMYLIDAE BLEPHAROCERIDAE BRACONIDAE BROCONIDAE CALUPHORIDAE CECIDOMYIDAE CHENEUMONIDAE CHNEUMONIDAE CHRYOMELIDAE CICADELLIDAE CULICIDAE ERIOCPAMIDAE HEMEROBIIDAE ICHNEUMONIDAE LOUCHAPIDAE MIRIDAE MUSCIDAE MUSLIDAE MUSLIDAE MYCETOPHILIDAE MYCETOPHILIIDAE NENPHALIDAE NOCLUIDAE NOCTERIDAE NOCTUIDAE PERALIDAE PIPUNCULIDAE PROCTOTRUPIDAE PSYLLIDAE PYRALIDAE SARCOPHAGIDAE SARCOPILAGIDAE SCATOPHAGIDAE SCATOPHOGIDAE SCIARIDAE SERSIDAE SYRPHIDAE TACHINIDAE TIPULIDAE

Number.of.specimens a numeric vector

Details

Country Peru, Deparment Junin, province Tarma, locality Huasahuasi.

Source

Entomology dataset.

References

International Potato Center.

path.analysis 101

Examples

```
library(agricolae)
data(paracsho)
str(paracsho)
```

path.analysis

Path Analysis

Description

If the cause and effect relationship is well defined, it is possible to represent the whole system of variables in a diagram form known as path-analysis. The function calculates the direct and indirect effects and uses the variables correlation or covariance.

Usage

```
path.analysis(corr.x, corr.y)
```

Arguments

corr.x Matrix of correlations of the independent variables

corr.y vector of dependent correlations with each one of the independent ones

Details

It is necessary first to calculate the correlations.

Value

Direct and indirect effects and residual Effect².

Author(s)

Felipe de Mendiburu

References

Biometrical Methods in Quantitative Genetic Analysis, Singh, Chaudhary. 1979

See Also

correlation

102 PBIB.test

Examples

```
# Path analysis. Multivarial Analysis. Anderson. Prentice Hall, pag 616
library(agricolae)
# Example 1
corr.x < -matrix(c(1,0.5,0.5,1),c(2,2))
corr.y<- rbind(0.6,0.7)</pre>
names<-c("X1","X2")
dimnames(corr.x)<-list(names,names)</pre>
dimnames(corr.y)<-list(names,"Y")</pre>
path.analysis(corr.x,corr.y)
# Example 2
# data of the progress of the disease related bacterial wilt to the ground
# for the component CE Ca K2 Cu
data(wilt)
data(soil)
x < -soil[,c(3,12,14,20)]
y<-wilt[,14]
cor.y<-correlation(y,x)$correlation</pre>
cor.x<-correlation(x)$correlation</pre>
path.analysis(cor.x,cor.y)
```

PBIB.test

Analysis of the Partially Balanced Incomplete Block Design

Description

Analysis of variance PBIB and comparison mean adjusted. Applied to resoluble designs: Lattices and alpha design.

Usage

```
PBIB.test(block,trt,replication,y,k, method=c("REML","ML","VC"),
test = c("lsd","tukey"), alpha=0.05, console=FALSE, group=TRUE)
```

Arguments

block	blocks
trt	Treatment
replication	Replication
У	Response
k	Block size

method Estimation method: REML, ML and VC

test Comparison treatments

alpha Significant test
console logical, print output
group logical, groups

PBIB.test 103

Details

Method of comparison treatment. lsd: least significant difference.

tukey: Honestly significant difference.

Estimate: specifies the estimation method for the covariance parameters.

The REML is the default method. The REML specification performs residual (restricted) maximum likelihood, and The ML specification performs maximum likelihood, and the VC specifications apply only to variance component models.

The PBIB.test() function can be called inside a function (improvement by Nelson Nazzicari, Ph.D. Bioinformatician)

Value

ANOVA Analysis of variance

method Estimation method: REML, ML and VC

parameters Design parameters
statistics Statistics of the model
model Object: estimation model
Fstat Criterion AIC and BIC

comparison Comparison between treatments

means Statistical summary of the study variable

groups Formation of treatment groups vartau Variance-Covariance Matrix

Author(s)

F. de Mendiburu

References

- 1. Iterative Analysis of Generalizad Lattice Designs. E.R. Williams (1977) Austral J. Statistics 19(1) 39-42.
- 2. Experimental design. Cochran and Cox. Second edition. Wiley Classics Library Edition published 1992

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

```
require(agricolae)
# alpha design
Genotype<-c(paste("gen0",1:9,sep=""),paste("gen",10:30,sep=""))
ntr<-length(Genotype)
r<-2</pre>
```

104 plot.AMMI

```
k<-3
s<-10
obs<-ntr*r
b <- s*r
book<-design.alpha(Genotype,k,r,seed=5)</pre>
book$book[,3]<- gl(20,3)
dbook<-book$book
# dataset
yield<-c(5,2,7,6,4,9,7,6,7,9,6,2,1,1,3,2,4,6,7,9,8,7,6,4,3,2,2,1,1,2,
     1,1,2,4,5,6,7,8,6,5,4,3,1,1,2,5,4,2,7,6,6,5,6,4,5,7,6,5,5,4)
rm(Genotype)
# not run
# analysis
# require(nlme) # method = REML or LM in PBIB.test and require(MASS) method=VC
model <- with(dbook,PBIB.test(block, Genotype, replication, yield, k=3, method="VC"))</pre>
# model$ANOVA
# plot(model,las=2)
```

plot.AMMI

PLOT AMMI

object AMMI

Description

Biplot AMMI.

Usage

```
## S3 method for class 'AMMI'
plot(x,first=1,second=2,third=3,number=FALSE,gcol=NULL,ecol=NULL,
angle=25,lwd=1.8,length=0.1,xlab=NULL,ylab=NULL,xlim=NULL,ylim=NULL,...)
```

Arguments ×

	3
first	position axis x, 0=Y-dependent, 1=PC1, 2=PC2, 3=PC3
second	position axis y,0=Y-dependent, 1=PC1, 2=PC2, 3=PC3
third	position axis z,0=Y-dependent, 1=PC1, 2=PC2, 3=PC3
number	TRUE or FALSE names or number genotypes
gcol	genotype color
ecol	environment color
angle	angle from the shaft of the arrow to the edge of the arrow head
lwd	parameter line width in function arrow
length	parameter length in function arrow
xlab	x labels
ylab	y labels
xlim	x limites
ylim	y limites
	other parameters of plot

plot.graph.freq 105

Details

Produce graphs biplot.

Author(s)

Felipe de Mendiburu

See Also

AMMI

Examples

```
library(agricolae)
data(plrv)
model<- with(plrv,AMMI(Locality, Genotype, Rep, Yield))
# biplot PC2 vs PC1
plot(model)
## plot PC1 vs Yield
plot(model,0,1,gcol="blue",ecol="green")</pre>
```

plot.graph.freq

Histogram

Description

In many situations it has intervals of class defined with its respective frequencies. By means of this function, the graphic of frequency is obtained and it is possible to superpose the normal distribution, polygon of frequency, Ojiva and to construct the table of complete frequency.

Usage

```
## $3 method for class 'graph.freq'
plot(x, breaks=NULL,counts=NULL,frequency=1,plot=TRUE,
nclass=NULL,xlab="",ylab="",axes = "",las=1,...)
```

Arguments

x a vector of values, a object hist(), graphFreq()

counts frequency and x is class intervals

breaks a vector giving the breakpoints between histogram cells

frequency 1=counts, 2=relative, 3=density

plot logic

nclass number of classes

xlab x labels ylab y labels 106 plot.graph.freq

```
axes TRUE or FALSE
```

las values 0,1,2 and 3 are the axis styles. see plot()

... other parameters of plot

Value

breaks a vector giving the breakpoints between histogram cells

counts frequency and x is class intervals

mids center point in class

relative Relative frequency, height density Density frequency, height

Author(s)

Felipe de Mendiburu

See Also

```
polygon.freq, table.freq, stat.freq,inter.freq,sturges.freq, join.freq,ogive.freq, normal.freq
```

```
library(agricolae)
data(genxenv)
yield <- subset(genxenv$YLD,genxenv$ENV==2)</pre>
yield <- round(yield,1)</pre>
h<- graph.freq(yield,axes=FALSE, frequency=1, ylab="frequency",col="yellow")</pre>
axis(1,h$breaks)
axis(2, seq(0, 20, 0.1))
# To reproduce histogram.
h1 <- plot(h, col="blue", frequency=2,border="red", density=8,axes=FALSE,
xlab="YIELD",ylab="relative")
axis(1,h$breaks)
axis(2, seq(0, .4, 0.1))
# summary, only frecuency
limits <-seq(10,40,5)
frequencies <-c(2,6,8,7,3,4)
#startgraph
h<-graph.freq(limits,counts=frequencies,col="bisque",xlab="Classes")
polygon.freq(h,col="red")
title( main="Histogram and polygon of frequency",
ylab=".frequency")
#endgraph
# Statistics
measures<-stat.freq(h)</pre>
print(measures)
# frequency table full
round(table.freq(h),2)
#startgraph
```

plot.group 107

```
# ogive
ogive.freq(h,col="red",type="b",ylab="Accumulated relative frequency",
xlab="Variable")
# only frequency polygon
h<-graph.freq(limits,counts=frequencies,border=FALSE,col=NULL,xlab=" ",ylab="")
title( main="Polygon of frequency",
xlab="Variable", ylab="Frecuency")
polygon.freq(h,col="blue")
grid(col="brown")
#endgraph
# Draw curve for Histogram
h<- graph.freq(yield,axes=FALSE, frequency=3, ylab="f(yield)",col="yellow")
axis(1,h$breaks)
axis(2,seq(0,0.18,0.03),las=2)
lines(density(yield), col = "red", lwd = 2)
title("Draw curve for Histogram")</pre>
```

plot.group

Plotting the multiple comparison of means

Description

It plots bars of the averages of treatments to compare. It uses the objects generated by a procedure of comparison like LSD, HSD, Kruskall, Waller-Duncan, Friedman or Durbin. It can also display the 'average' value over each bar in a bar chart.

Usage

Arguments

X	Object created by a test of comparison
variation	in lines by range, IQR, standard deviation or error
decreasing	Logical, decreasing order of the mean
horiz	Horizontal or vertical image
col	line colors
xlim	optional, axis x limits
ylim	optional, axis y limits
main	optional, main title
cex	optional, group label size
hy	optional, default =0, sum group label position
	Parameters of the function barplot()

108 plots

Details

The output is a vector that indicates the position of the treatments on the coordinate axes.

Author(s)

Felipe de Mendiburu

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, waller.test
```

Examples

```
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
comparison<- LSD.test(model,"virus",alpha=0.01,group=TRUE)
#startgraph
op<-par(cex=1.5)
plot(comparison,horiz=TRUE,xlim=c(0,50),las=1)
title(cex.main=0.8,main="Comparison between\ntreatment means",xlab="Yield",ylab="Virus")
#endgraph
par(op)</pre>
```

plots

Data for an analysis in split-plot

Description

Experimental data in blocks, factor A in plots and factor B in sub-plots.

Usage

```
data(plots)
```

Format

A data frame with 18 observations on the following 5 variables.

```
block a numeric vector
plot a factor with levels p1 p2 p3 p4 p5 p6
A a factor with levels a1 a2
B a factor with levels b1 b2 b3
yield a numeric vector
```

plrv 109

Source

International Potato Center. CIP

Examples

```
library(agricolae)
data(plots)
str(plots)
plots[,1] <-as.factor(plots[,1])
# split-plot analysis
model <- aov(yield ~ block + A + Error(plot)+ B + A:B, data=plots)</pre>
summary(model)
b<-nlevels(plots$B)
a<-nlevels(plots$A)
r<-nlevels(plots$block)
dfa <- df.residual(model$plot)</pre>
Ea <-deviance(model$plot)/dfa</pre>
dfb <- df.residual(model$Within)</pre>
Eb <-deviance(model$Within)/dfb</pre>
Eab <- (Ea + (b-1)*Eb)/(b*r)
# Satterthwaite
dfab < -(Ea + (b-1) \times Eb)^2/(Ea^2/dfa + ((b-1) \times Eb)^2/dfb)
# Comparison A, A(b1), A(b2), A(b3)
comparison1 <-with(plots,LSD.test(yield,A,dfa,Ea))</pre>
comparison2 <-with(plots,LSD.test(yield[B=="b1"],A[B=="b1"],dfab,Eab))</pre>
comparison3 <-with(plots,LSD.test(yield[B=="b2"],A[B=="b2"],dfab,Eab))</pre>
comparison4 <-with(plots,LSD.test(yield[B=="b3"],A[B=="b3"],dfab,Eab))</pre>
# Comparison B, B(a1), B(a2)
comparison5 <-with(plots,LSD.test(yield,B,dfb,Eb))</pre>
comparison6 <-with(plots,LSD.test(yield[A=="a1"],B[A=="a1"],dfb,Eb))</pre>
comparison7 <-with(plots,LSD.test(yield[A=="a2"],B[A=="a2"],dfb,Eb))</pre>
```

plrv

Data clones from the PLRV population

Description

Six environments: Ayacucho, La Molina 02, San Ramon 02, Huancayo, La Molina 03, San Ramon 03.

Usage

```
data(plrv)
```

Format

A data frame with 504 observations on the following 6 variables.

polygon.freq

```
Genotype a factor with levels 102.18 104.22 121.31 141.28 157.26 163.9 221.19 233.11 235.6 241.2 255.7 314.12 317.6 319.20 320.16 342.15 346.2 351.26 364.21 402.7 405.2 406.12 427.7 450.3 506.2 Canchan Desiree Unica

Locality a factor with levels Ayac Hyo-02 LM-02 LM-03 SR-02 SR-03

Rep a numeric vector

WeightPlant a numeric vector

Yield a numeric vector
```

Source

International Potato Center Lima-Peru

References

International Potato Center Lima-Peru

Examples

```
library(agricolae)
data(plrv)
str(plrv)
```

polygon.freq

The polygon of frequency on the histogram

Description

The polygon is constructed single or on a histogram. It is necessary to execute the function previously hist.

Usage

```
polygon.freq(histogram, frequency=1, ...)
```

Arguments

histogram Object constructed by the function hist frequency numeric, counts(1), relative(2) and density(3)
... Other parameters of the function hist

Author(s)

Felipe de Mendiburu Delgado

potato 111

See Also

```
polygon.freq, table.freq, stat.freq, inter.freq, sturges.freq, join.freq, graph.freq,
normal.freq
```

Examples

```
library(agricolae)
data(growth)
#startgraph
h1<-with(growth,hist(height,border=FALSE,xlim=c(6,14)))
polygon.freq(h1,frequency=1,col="red")
#endgraph
#startgraph
h2<-with(growth,graph.freq(height,frequency=2,col="yellow",xlim=c(6,14)))
polygon.freq(h2,frequency=2,col="red")
#endgraph</pre>
```

potato

Data of cutting

Description

A study on the yield of two potato varieties performed at the CIP experimental station.

Usage

```
data(potato)
```

Format

A data frame with 18 observations on the following 4 variables.

```
date a numeric vector
variety a factor with levels Canchan Unica
harvest a numeric vector
cutting a numeric vector
```

Source

Experimental data.

References

International Potato Center

```
library(agricolae)
data(potato)
str(potato)
```

112 ralstonia

ralstonia

Data of assessment of the population in the soil R.solanacearum

Description

The assessment of the population of R.solanacearum on the floor took place after 48 hours of infestation, during days 15, 29, 43, 58, and 133 days after the infestation soil. More information on soil data(soil).

Usage

```
data(ralstonia)
```

Format

A data frame with 13 observations on the following 8 variables.

place a factor with levels Chmar Chz Cnt1 Cnt2 Cnt3 Hco1 Hco2 Hco3 Hyo1 Hyo2 Namora SR1 SR2

Day2 a numeric vector

Day15 a numeric vector

Day29 a numeric vector

Day43 a numeric vector

Day58 a numeric vector

Day73 a numeric vector

Day133 a numeric vector

Details

Logarithm average counts of colonies on plates containing half of M-SMSA 3 repetitions (3 plates by repetition) incubated at 30 degrees centigrade for 48 hours. log(1+UFC/g soil)

Source

Experimental field, 2004. Data Kindly provided by Dr. Sylvie Priou, Liliam Gutarra and Pedro Aley.

References

International Potato Center. CIP - Lima Peru.

```
library(agricolae)
data(ralstonia)
str(ralstonia)
```

reg.homog

reg	homog	
ICK.	HUIIIUg	

Homologation of regressions

Description

It makes the regressions homogeneity test for a group of treatments where each observation presents a linearly dependent reply from another one. There is a linear function in every treatment. The objective is to find out if the linear models of each treatment come from the same population.

Usage

```
reg.homog(trt, x, y)
```

Arguments

trt treatment

x independent variabley dependent variable

Value

list objects:

Number regressions.

Residual.

Difference of regression.

DF.homgeneity (homogenity degree free).

DF.Residual (degree free error).

F.value. Test statitics.

P.value. P Value (Significant

Criterion, conclusion

Author(s)

Felipe de Mendiburu

References

Book in Spanish: Metodos estadisticos para la investigacion. Calzada Benza 1960

```
library(agricolae)
data(frijol)
evaluation<-with(frijol,reg.homog(technology,index,production))
# Example 2. Applied Regression Analysis a Research tools
# 1988. John O.Rawlings. Wadsworth & brooks/cole Advanced Books
# & Software. Pacific Grove. Califonia.</pre>
```

114 REGW.test

```
# Statistics/probability. Series
LineNumber<-c(rep("39","30"),rep("52","30"))
PlantingDate<-rep(c("16","20","21"),20)
HeadWt <- c(2.5,3.0,2.2,2.2,2.8,1.8,3.1,2.8,1.6,4.3,2.7,2.1,2.5,2.6,3.3,4.3,2.8,3.8,3.8,2.6,3.2,4.3,2.6,3.6,1.7,2.6,4.2,3.1,3.5,1.6,2.0,4.0,1.5,2.4,2.8,1.4,1.9,3.1,1.7,2.8,4.2,1.3,1.7,3.7,1.7,3.2,3.0,1.6,2.0,2.2,1.4,2.2,2.3,1.0,2.2,3.8,1.5,2.2,2.0,1.6)
Ascorbic <-c(51,65,54,55,52,59,45,41,66,42,51,54,53,41,45,50,45,49,50,51,49,52,45,55,56,61,49,49,42,68,58,52,78,55,70,75,67,57,70,61,58,84,67,47,71,68,56,72,58,72,62,63,63,68,56,54,66,72,60,72)
trt<-paste(LineNumber,PlantingDate,sep="-")
output<-reg.homog(trt,HeadWt,Ascorbic)
```

REGW.test

Ryan, Einot and Gabriel and Welsch multiple range test

Description

Multiple range tests for all pairwise comparisons, to obtain a confident inequalities multiple range tests.

Usage

```
REGW.test(y, trt, DFerror, MSerror, alpha = 0.05, group=TRUE, main = NULL,console=FALSE)
```

Arguments

y	model(aov	or lm)	or answer of	f the expe	rimental unit

trt Constant(only y=model) or vector treatment applied to each experimental unit

DFerror Degree free

MSerror Mean Square Error alpha Significant level group TRUE or FALSE

main Title

console logical, print output

Details

It is necessary first makes a analysis of variance.

```
if y = model, then to apply the instruction:
```

REGW.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE) where the model class is aov or lm.

resampling.cv 115

Value

statistics Statistics of the model
parameters Design parameters
regw Critical Range Table

means Statistical summary of the study variable

comparison Comparison between treatments groups Formation of treatment groups

Author(s)

Felipe de Mendiburu

References

Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, scheffe.test, SNK.test, waerden.test, waller.test, plot.group
```

Examples

```
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
out<- REGW.test(model,"virus",
main="Yield of sweetpotato. Dealt with different virus")
print(out)
REGW.test(model,"virus",alpha=0.05,console=TRUE,group=FALSE)</pre>
```

resampling.cv

Resampling to find the optimal number of markers

Description

This process finds the curve of CV for a different number of markers which allows us to determine the number of optimal markers for a given relative variability. A method of the curvature.

Usage

```
resampling.cv(A, size, npoints)
```

116 resampling.cv

Arguments

A data frame or matrix of binary data

size number of re-samplings

npoints Number of points to consider the model

Value

```
lm(formula = CV \sim I(1/marker))
Table with variation coefficient by number of markers
```

Author(s)

Felipe de Mendiburu

References

Efron, B., Tibshirani, R. (1993) An Introduction to the Boostrap. Chapman and Hall/CRC

See Also

```
cv.similarity, similarity
```

```
library(agricolae)
#example table of molecular markers
data(markers)
study<-resampling.cv(markers,size=1,npoints=15)
# Results of the model
summary(study$model)
coef<-coef(study$model)</pre>
py<-predict(study$model)</pre>
Rsq<-summary(study$model)$"r.squared"
table.cv <- data.frame(study$table.cv,estimate=py)</pre>
print(table.cv)
# Plot CV
#startgraph
limy<-max(table.cv[,2])+10</pre>
plot(table.cv[,c(1,2)],col="red",frame=FALSE,xlab="number of markers",
ylim=c(10,limy), ylab="CV",cex.main=0.8,main="Estimation of the number of markers")
ty<-quantile(table.cv[,2],1)</pre>
tx<-median(table.cv[,1])</pre>
tz<-quantile(table.cv[,2],0.95)
text(tx,ty, cex=0.8,as.expression(substitute(CV == a + frac(b,markers),
list(a=round(coef[1],2),b=round(coef[2],2)))) )
text(tx,tz,cex=0.8,as.expression(substitute(R^2==r,list(r=round(Rsq,3)))))
\# Plot CV = a + b/n.markers
fy < -function(x,a,b) a + b/x
```

resampling.model 117

```
x<-seq(2,max(table.cv[,1]),length=50)
y <- coef[1] + coef[2]/x
lines(x,y,col="blue")
#grid(col="brown")
rug(table.cv[,1])
#endgraph</pre>
```

resampling.model

Resampling for linear models

Description

This process consists of finding the values of P-value by means of a re-sampling (permutation) process along with the values obtained by variance analysis.

Usage

```
resampling.model(model,data,k,console=FALSE)
```

Arguments

model in R

data for the study of the model

k number of re-samplings console logical, print output

Value

Model solution with resampling.

Author(s)

Felipe de Mendiburu

References

Efron, B., Tibshirani, R. (1993) An Introduction to the Boostrap. Chapman and Hall/CRC Phillip I. Good, (2001) Resampling Methods. Birkhauser. Boston . Basel . Berlin

See Also

```
simulation.model
```

118 rice

Examples

```
#example 1 Simple linear regression
library(agricolae)
data(clay)
model<-"ralstonia ~ days"</pre>
analysis<-resampling.model(model,clay,k=2,console=TRUE)</pre>
#example 2 Analysis of variance: RCD
data(sweetpotato)
model<-"yield~virus"
analysis<-resampling.model(model,sweetpotato,k=2,console=TRUE)
#example 3 Simple linear regression
data(Glycoalkaloids)
model<-"HPLC ~ spectrophotometer"</pre>
analysis<-resampling.model(model,Glycoalkaloids,k=2,console=TRUE)</pre>
#example 4 Factorial in RCD
data(potato)
potato[,1]<-as.factor(potato[,1])</pre>
potato[,2]<-as.factor(potato[,2])</pre>
model<-"cutting~variety + date + variety:date"</pre>
analysis<-resampling.model(model,potato,k=2,console=TRUE)</pre>
```

rice

Data of Grain yield of rice variety IR8

Description

The data correspond to the yield of rice variety IR8 (g/m2) for land uniformity studies. The growing area is 18x36 meters.

Usage

```
data(rice)
```

Format

A data frame with 36 observations on the following 18 variables.

V1 a numeric vector

V2 a numeric vector

V3 a numeric vector

V4 a numeric vector

V5 a numeric vector

RioChillon 119

```
V6 a numeric vector
```

V7 a numeric vector

V8 a numeric vector

V9 a numeric vector

V10 a numeric vector

V11 a numeric vector

V12 a numeric vector

V13 a numeric vector

V14 a numeric vector

V15 a numeric vector

V16 a numeric vector

V17 a numeric vector

V18 a numeric vector

Details

Table 12.1 Measuring Soil Heterogeneity

Source

Statistical Procedures for Agriculture Research. Second Edition. Kwanchai A. Gomez and Arturo A. Gomez. 1976. USA Pag. 481.

References

Statistical Procedures for Agriculture Research. Second Edition. Kwanchai A. Gomez and Arturo A. Gomez. 1976. USA

Examples

library(agricolae)
data(rice)
str(rice)

RioChillon

Data and analysis Mother and baby trials

Description

Mother/Baby Trials allow farmers and researchers to test best-bet technologies or new cultivars. Evaluation of advanced Clones of potato in the Valley of Rio Chillon - PERU (2004)

Usage

```
data(RioChillon)
```

120 RioChillon

Format

```
The format is list of 2:

1. mother: data.frame: 30 obs. of 3 variables:

- block (3 levels)

- clon (10 levels)

- yield (kg.)

2. babies: data.frame: 90 obs. of 3 variables:

- farmer (9 levels)

- clon (10 levels)

- yield (kg.)
```

Details

- 1. Replicated researcher-managed "mother trials" with typically 10 treatments evaluated in small plots.
- 2. Unreplicated "baby trials" with 10 treatments evaluated in large plots.
- 3. The "baby trials" with a subset of the treatments in the mother trial.

Source

Experimental field.

References

International Potato Center, CIP - Lima Peru.

```
# Analisys the Mother/Baby Trial Design
library(agricolae)
data(RioChillon)
# First analysis the Mother Trial Design.
model<-aov(yield ~ block + clon, RioChillon$mother)
anova(model)
cv.model(model)
comparison<-with(RioChillon$mother,LSD.test(yield,clon, 18, 4.922, group=TRUE))
# Second analysis the babies Trial.
comparison<-with(RioChillon$babies,friedman(farmer,clon, yield, group=TRUE))
# Third
# The researcher makes use of data from both mother and baby trials and thereby obtains
# information on suitability of new technologies or cultivars
# for different agro-ecologies and acceptability to farmers.</pre>
```

scheffe.test 121

est Multiple comparisons, scheffe

Description

Scheffe 1959, method is very general in that all possible contrasts can be tested for significance and confidence intervals can be constructed for the corresponding linear. The test is conservative.

Usage

```
scheffe.test(y, trt, DFerror, MSerror, Fc, alpha = 0.05, group=TRUE, main = NULL,
console=FALSE )
```

Arguments

y model(aov or lm) or answer of the experimental unit

trt Constant(only y=model) or vector treatment applied to each experimental unit

DFerror Degrees of freedom MSerror Mean Square Error

Fc F Value

alpha Significant level group TRUE or FALSE

main Title

console logical, print output

Details

It is necessary first makes a analysis of variance.

```
if y = model, then to apply the instruction: scheffe.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE) where the model class is aov or lm.
```

Value

statistics Statistics of the model parameters Design parameters

means Statistical summary of the study variable

comparison Comparison between treatments groups Formation of treatment groups

Author(s)

122 similarity

References

Robert O. Kuehl. 2nd ed. Design of experiments. Duxbury, copyright 2000. Steel, R.; Torri,J; Dickey, D.(1997) Principles and Procedures of Statistics A Biometrical Approach. pp189

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, SNK.test, waerden.test, waller.test, plot.group
```

Examples

```
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)
comparison <- scheffe.test(model,"virus", group=TRUE,console=TRUE,
main="Yield of sweetpotato\nDealt with different virus")
# Old version scheffe.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
Fc<-anova(model)["virus",4]
out <- with(sweetpotato,scheffe.test(yield, virus, df, MSerror, Fc))
print(out)</pre>
```

similarity

Matrix of similarity in binary data

Description

It finds the similarity matrix of binary tables (1 and 0).

Usage

```
similarity(A)
```

Arguments

Α

Matrix, data binary

Value

Distance matrix. Class = dist.

Author(s)

simulation.model 123

See Also

```
cv.similarity, resampling.cv
```

Examples

```
#example table of molecular markers
library(agricolae)
data(markers)
distance<-similarity(markers)
#startgraph
tree<-hclust(distance,method="mcquitty")
plot(tree,col="blue")
#endgraph</pre>
```

simulation.model

Simulation of the linear model under normality

Description

This process consists of validating the variance analysis results using a simulation process of the experiment. The validation consists of comparing the calculated values of each source of variation of the simulated data with respect to the calculated values of the original data. If in more than 50 percent of the cases they are higher than the real one, then it is considered favorable and the probability reported by the ANOVA is accepted, since the P-Value is the probability of (F > F.value).

Usage

```
simulation.model(model,file, categorical = NULL,k,console=FALSE)
```

Arguments

model Model in R

file Data for the study of the model

categorical position of the columns of the data that correspond to categorical variables

k Number of simulations console logical, print output

Value

model ouput linear model, lm simulation anova simulation

Author(s)

124 sinRepAmmi

See Also

```
resampling.model
```

Examples

```
library(agricolae)
#example 1
data(clay)
model<-"ralstonia ~ days"</pre>
simulation.model(model,clay,k=15,console=TRUE)
#example 2
data(sweetpotato)
model<-"yield~virus"
simulation.model(model,sweetpotato,categorical=1,k=15,console=TRUE)
#example 3
data(Glycoalkaloids)
model<-"HPLC ~ spectrophotometer"</pre>
simulation.model(model,Glycoalkaloids,k=15,console=TRUE)
#example 4
data(potato)
model<-"cutting~date+variety"</pre>
simulation.model(model,potato,categorical=c(1,2,3),k=15,console=TRUE)
```

sinRepAmmi

Data for AMMI without repetition

Description

Data frame for AMMI analysis with 50 genotypes in 5 environments.

Usage

```
data(sinRepAmmi)
```

Format

A data frame with 250 observations on the following 3 variables.

```
ENV a factor with levels A1 A2 A3 A4 A5
GEN a numeric vector
YLD a numeric vector
```

Source

Experimental data.

skewness 125

References

International Potato Center - Lima Peru.

Examples

```
library(agricolae)
data(sinRepAmmi)
str(sinRepAmmi)
```

skewness

Finding the skewness coefficient

Description

It returns the skewness of a distribution. It is similar to SAS.

Usage

```
skewness(x)
```

Arguments

x

a numeric vector

Value

The skewness of x.

See Also

kurtosis

```
library(agricolae) x <-c(3,4,5,2,3,4,NA,5,6,4,7) \\ skewness(x) \\ \# \ value \ is \ 0,3595431, \ is \ slightly \ asimetrica \ (positive) \ to \ the \ right
```

SNK.test

SNK.test Student-Newman-Keuls (SNK)		
	SNK.test	Student-Newman-Keuls (SNK)

Description

SNK is derived from Tukey, but it is less conservative (finds more differences). Tukey controls the error for all comparisons, where SNK only controls for comparisons under consideration. The level by alpha default is 0.05.

Usage

```
SNK.test(y, trt, DFerror, MSerror, alpha = 0.05, group=TRUE, main = NULL,console=FALSE)
```

Arguments

y model(aov or lm) or answer of the experimental unit

trt Constant(only y=model) or vector treatment applied to each experimental unit

DFerror Degree free

MSerror Mean Square Error alpha Significant level group TRUE or FALSE

main Title

console logical, print output

Details

It is necessary first makes a analysis of variance.

```
if y = model, then to apply the instruction:
SNK.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE) where the model class is aov or lm.
```

Value

statistics Statistics of the model
parameters Design parameters
snk Critical Range Table

means Statistical summary of the study variable

comparison Comparison between treatments groups Formation of treatment groups

Author(s)

soil 127

References

- 1. Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997
- 2. Multiple comparisons theory and methods. Departament of statistics the Ohio State University. USA, 1996. Jason C. Hsu. Chapman Hall/CRC.

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, waerden.test, waller.test, plot.group
```

Examples

```
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus,data=sweetpotato)
out <- SNK.test(model,"virus", console=TRUE,
main="Yield of sweetpotato. Dealt with different virus")
print(SNK.test(model,"virus", group=FALSE))
# version old SNK.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
out <- with(sweetpotato,SNK.test(yield,virus,df,MSerror, group=TRUE))
print(out$groups)</pre>
```

soil

Data of soil analysis for 13 localities

Description

We analyzed the physical and chemical properties of different soils, as full characterization of soil and special analysis of micro-elements. These analyses were conducted in the laboratory analysis of soils, plants, water and fertilizers in the La Molina National Agrarian University (UNALM). To which the different soil samples were dried to the environment, screened (mesh 0.5xo, 5 mm) and sterilized by steam 4 to 5 hours with a Lindinger Steam aerator SA150 and SA700, with the possible aim of eliminating bacteria saprophytic or antagonists to prevent the growth of bacteria (R.solanacearum).

Usage

```
data(soil)
```

Format

A data frame with 13 observations on the following 23 variables.

place a factor with levels Chmar Chz Cnt1 Cnt2 Cnt3 Hco1 Hco2 Hco3 Hyo1 Hyo2 Namora SR1 SR2 pH a numeric vector

128 soil

EC a numeric vector, electrical conductivity

CaCO3 a numeric vector

MO a numeric vector

CIC a numeric vector

P a numeric vector

K a numeric vector

sand a numeric vector

slime a numeric vector

clay a numeric vector

Ca a numeric vector

Mg a numeric vector

K2 a numeric vector

Na a numeric vector

Al_H a numeric vector

K_Mg a numeric vector

Ca_Mg a numeric vector

B a numeric vector

Cu a numeric vector

Fe a numeric vector

Mn a numeric vector

Zn a numeric vector

Details

Cnt1= Canete, Cnt2=Valle Dulce(Canete), Cnt3=Valle Grande(Canete), Chz=Obraje-Carhuaz(Ancash), Chmar=Chucmar-Chota(Huanuco, Hco1= Mayobamba-Chinchao(Huanuco), Hco2=Nueva Independencia-Chinchao(Huanuco), Hco3=San Marcos-Umari(Huanuco), Hyo1=La Victoria-Huancayo(Junin), Hyo1=El Tambo-Huancayo(Junin), Namora=Namora(Cajamarca), SR1= El Milagro-San Ramon(Junin), Sr2=La Chinchana-San Ramon(Junin).

Source

Experimental field, 2004. Data Kindly provided by Dr. Sylvie Priou, Liliam Gutarra and Pedro Aley.

References

International Potato Center - Lima, PERU.

```
library(agricolae)
data(soil)
str(soil)
```

sp.plot

sp.plot	Splip-Plot analysis	

Description

The variance analysis of a split plot design is divided into two parts: the plot-factor analysis and the sub-plot factor analysis.

Usage

```
sp.plot(block, pplot, splot, Y)
```

Arguments

block	replications
pplot	main-plot Factor
splot	sub-plot Factor
Υ	Variable, response

Details

The split-plot design is specifically suited for a two-factor experiment on of the factors is assigned to main plot (main-plot factor), the second factor, called the subplot factor, is assigned into subplots. The model is mixed, the blocks are random and the study factors are fixed applied according to the design.

Value

ANOVA: Splip plot analysis

Author(s)

Felipe de Mendiburu

References

Statistical procedures for agricultural research. Kwanchai A. Gomez, Arturo A. Gomez. Second Edition. 1984.

See Also

```
ssp.plot, strip.plot, design.split, design.strip
```

130 ssp.plot

Examples

```
library(agricolae)
data(plots)
model<-with(plots,sp.plot(block,A,B,yield))
# with aov
plots[,1]<-as.factor(plots[,1])
AOV <- aov(yield ~ block + A*B + Error(block/A),data=plots)
summary(AOV)</pre>
```

ssp.plot

Split-split-Plot analysis

Description

The variance analysis of a split-split plot design is divided into three parts: the main-plot, subplot and sub-subplot analysis.

Usage

```
ssp.plot(block, pplot, splot, ssplot, Y)
```

Arguments

block	replications
pplot	Factor main plot
splot	Factor subplot
ssplot	Factor sub-subplot
Υ	Variable, response

Details

The split-split-plot design is an extension of the split-plot design to accommodate a third factor: one factor in main-plot, other in subplot and the third factor in sub-subplot. The model is mixed, the blocks are random and the study factors are fixed applied according to the design.

Value

ANOVA: Splip Split plot analysis

Author(s)

Felipe de Mendiburu

References

Statistical procedures for agricultural research. Kwanchai A. Gomez, Arturo A. Gomez. Second Edition. 1984.

stability.nonpar 131

See Also

```
sp.plot, strip.plot, design.split, design.strip
```

Examples

```
# Statistical procedures for agricultural research, pag 143
# Grain Yields of Three Rice Varieties Grown under
#Three Management practices and Five Nitrogen levels; in a
#split-split-plot design with nitrogen as main-plot,
#management practice as subplot, and variety as sub-subplot
#factores, with three replications.
library(agricolae)
f <- system.file("external/ssp.csv", package="agricolae")</pre>
ssp<-read.csv(f)
model<-with(ssp,ssp.plot(block,nitrogen,management,variety,yield))</pre>
gla<-model$gl.a; glb<-model$gl.b; glc<-model$gl.c</pre>
Ea<-model$Ea; Eb<-model$Eb; Ec<-model$Ec
op<-par(mfrow=c(1,3),cex=0.6)</pre>
out1<-with(ssp,LSD.test(yield,nitrogen,gla,Ea,console=TRUE))</pre>
\verb"out2<-with(ssp,LSD.test(yield,management,glb,Eb,console=TRUE))"
out3<-with(ssp,LSD.test(yield,variety,glc,Ec,console=TRUE))</pre>
plot(out1,xlab="Nitrogen",las=1,variation="IQR")
plot(out2,xlab="Management",variation="IQR")
plot(out3,xlab="Variety",variation="IQR")
# with aov
ssp$block<-factor(ssp$block)</pre>
ssp$nitrogen<-factor(ssp$nitrogen)</pre>
ssp$management<-factor(ssp$management)</pre>
ssp$variety<-factor(ssp$variety)</pre>
AOV<-aov(yield ~ block + nitrogen*management*variety + Error(block/nitrogen/management),data=ssp)
summary(AOV)
par(op)
```

stability.nonpar

Nonparametric stability analysis

Description

A method based on the statistical ranges of the study variable per environment for the stability analysis.

Usage

```
stability.nonpar(data, variable = NULL, ranking = FALSE, console=FALSE)
```

132 stability.nonpar

Arguments

data First column the genotypes following environment

variable Name of variable
ranking logical, print ranking
console logical, print output

Value

ranking data frame

statistics Statistical analysis chi square test

Author(s)

Felipe de Mendiburu

References

Haynes K G, Lambert D H, Christ B J, Weingartner D P, Douches D S, Backlund J E, Fry W and Stevenson W. 1998. Phenotypic stability of resistance to late blight in potato clones evaluated at eight sites in the United States American Journal Potato Research 75, pag 211-217.

See Also

```
stability.par
```

```
library(agricolae)
data(haynes)
stability.nonpar(haynes,"AUDPC",ranking=TRUE,console=TRUE)
# Example 2
data(CIC)
data1<-CIC$comas[,c(1,6,7,17,18)]
data2<-CIC$coxapampa[,c(1,6,7,19,20)]
cic <- rbind(data1,data2)

means <- by(cic[,5], cic[,c(2,1)], function(x) mean(x,na.rm=TRUE))
means <-as.data.frame(means[,])
cic.mean<-data.frame(genotype=row.names(means),means)
cic.mean<-delete.na(cic.mean,"greater")
out<-stability.nonpar(cic.mean)
out$ranking
out$statistics</pre>
```

stability.par 133

stability.par

Stability analysis. SHUKLA'S STABILITY VARIANCE AND KANG'S

Description

This procedure calculates the stability variations as well as the statistics of selection for the yield and the stability. The averages of the genotype through the different environment repetitions are required for the calculations. The mean square error must be calculated from the joint variance analysis.

Usage

```
stability.par(data,rep,MSerror,alpha=0.1,main=NULL,cova = FALSE,name.cov=NULL,
file.cov=0,console=FALSE)
```

Arguments

data matrix of averages, by rows the genotypes and columns the environment

rep Number of repetitions

MSerror Mean Square Error

alpha Label significant

main Title

cova Covariable

name.cov Name covariable
file.cov Data covariable
console logical, print output

Details

Stable (i) determines the contribution of each genotype to GE interaction by calculating var(i); (ii) assigns ranks to genotypes from highest to lowest yield receiving the rank of 1; (iii) calculates protected LSD for mean yield comparisons; (iv) adjusts yield rank according to LSD (the adjusted rank labeled Y); (v) determines significance of var(i) usign an aproximate F-test; (vi) assigns stability rating (S) as follows: -8, -4 and -2 for var(i) significant at the 0.01, 0.05 and 0.10 probability levels, and 0 for nonsignificant var(i) (the higher the var(i), the less stable the genotype); (vii) sums adjusted yield rank, Y, and stability rating, S, for each genotype to determine YS(i) statistic; and (viii) calculates mean YS(i) and identifies genotypes (selection) with YS(i) > mean YS(i).

Value

analysis Analysis of variance statistics Statistics of the model stability summary stability analysis stat.freq

Author(s)

Felipe de Mendiburu

References

Kang, M. S. 1993. Simultaneous selection for yield and stability: Consequences for growers. Agron. J. 85:754-757. Manjit S. Kang and Robert Mangari. 1995. Stable: A basic program for calculating stability and yield-stability statistics. Agron. J. 87:276-277

See Also

```
stability.nonpar
```

Examples

stat.freq

Descriptive measures of grouped data

Description

By this process the variance and central measures ar found: average, medium and mode of grouped data.

Usage

```
stat.freq(histogram)
```

Arguments

histogram

Object create by function hist()

strip.plot 135

Value

Statistics of grouped data.

Author(s)

Felipe de mendiburu

See Also

```
polygon.freq, table.freq, graph.freq, inter.freq, sturges.freq, join.freq, ogive.freq,
normal.freq
```

Examples

```
library(agricolae)
data(growth)
grouped<-with(growth,hist(height,plot=FALSE))
measures<-stat.freq(grouped)
print(measures)</pre>
```

strip.plot

Strip-Plot analysis

Description

The variance analysis of a strip-plot design is divided into three parts: the horizontal-factor analysis, the vertical-factor analysis, and the interaction analysis.

Usage

```
strip.plot(BLOCK, COL, ROW, Y)
```

Arguments

BLOCK	replications
COL	Factor column
ROW	Factor row

Y Variable, response

Details

The strip-plot design is specifically suited for a two-factor experiment in which the desired precision for measuring the interaction effects between the two factors is higher than that for measuring the main efect two factors

136 sturges.freq

Value

Data and analysis of the variance of the strip plot design.

Author(s)

Felipe de Mendiburu

References

Statistical procedures for agricultural research. Kwanchai A. Gomez, Arturo A. Gomez. Second Edition. 1984.

See Also

```
ssp.plot, sp.plot, design.split, design.strip
```

Examples

```
# Yield
library(agricolae)
data(huasahuasi)
YIELD<-huasahuasi$YIELD
market <- YIELD$y1da + YIELD$y2da
non_market <- YIELD$y3da
yield <- market + non_market
model<-with(YIELD,strip.plot(block, clon, trt, yield))
out1<-with(YIELD,LSD.test(yield,clon,model$gl.a,model$Ea))
oldpar<-par(mar=c(3,8,1,1),cex=0.8)
plot(out1,xlim=c(0,80),horiz=TRUE,las=1)
out2<-with(YIELD,LSD.test(yield,trt,model$gl.b,model$Eb))
plot(out2,xlim=c(0,80),horiz=TRUE,las=1)
par(oldpar)</pre>
```

sturges.freq

Class intervals for a histogram, the rule of Sturges

Description

```
if k=0 then classes: k = 1 + \log(n,2). if k > 0, fixed nclass.
```

Usage

```
sturges.freq(x,k=0)
```

Arguments

```
x vector k constant
```

summary.graph.freq 137

Value

Statistics of sturges for a histogram.

Author(s)

Felipe de mendiburu

References

Reza A. Hoshmand. 1988. Statistical Methods for Agricultural Sciences, Timber Press, Incorporated, pag 18-21.

See Also

```
polygon.freq, table.freq, stat.freq, inter.freq, graph.freq, join.freq, ogive.freq, normal.freq
```

Examples

 $\verb|summary.graph.freq|\\$

frequency Table of a Histogram

Description

It finds the absolute, relative and accumulated frequencies with the class intervals defined from a previously calculated histogram by the "hist" of R function.

Usage

```
## S3 method for class 'graph.freq'
summary(object,...)
```

138 sweetpotato

Arguments

object Object by function graph.freq()
... other parameters of graphic

Value

Frequency table.

Lower Lower limit class
Upper Upper limit class
Main class point
Frequency Frequency

Percentage Percentage frequency
CF Cumulative frequency

CPF Cumulative Percentage frequency

Author(s)

Felipe de Mendiburu

See Also

```
polygon.freq, stat.freq, graph.freq, inter.freq, sturges.freq, join.freq, ogive.freq,
normal.freq
```

Examples

```
library(agricolae)
data(growth)
h2<-with(growth,graph.freq(height,plot=FALSE))
print(summary(h2),row.names=FALSE)</pre>
```

sweetpotato

Data of sweetpotato yield

Description

The data correspond to an experiment with costanero sweetpotato made at the locality of the Tacna department, southern Peru. The effect of two viruses (Spfmv and Spcsv) was studied. The treatments were the following: CC (Spcsv) = Sweetpotato chlorotic dwarf, FF (Spfmv) = Feathery mottle, FC (Spfmv y Spcsv) = Viral complex and OO (witness) healthy plants. In each plot, 50 sweetpotato plants were sown and 12 plots were employed. Each treatment was made with 3 repetitions and at the end of the experiment the total weight in kilograms was evaluated. The virus transmission was made in the cuttings and these were sown in the field.

table.freq

Usage

```
data(sweetpotato)
```

Format

A data frame with 12 observations on the following 2 variables.

```
virus a factor with levels cc fc ff oo yield a numeric vector
```

Source

Experimental field.

References

International Potato Center. CIP - Lima Peru

Examples

library(agricolae)
data(sweetpotato)
str(sweetpotato)

table.freq

frequency Table of a Histogram

Description

It finds the absolute, relative and accumulated frequencies with the class intervals defined from a previously calculated histogram by the "hist" of R function.

Usage

```
table.freq(object)
```

Arguments

object

Object by function graph.freq()

140 tapply.stat

Value

Frequency table.

Lower Lower limit class
Upper Upper limit class
Main class point
Frequency Frequency

Percentage Percentage frequency
CF Cumulative frequency

CPF Cumulative Percentage frequency

Author(s)

Felipe de Mendiburu

See Also

```
polygon.freq, stat.freq, graph.freq, inter.freq, sturges.freq, join.freq, ogive.freq,
normal.freq
```

Examples

```
library(agricolae)
data(growth)
h2<-with(growth,graph.freq(height,plot=FALSE))
print(table.freq(h2),row.names=FALSE)</pre>
```

tapply.stat

Statistics of data grouped by factors

Description

This process lies in finding statistics which consist of more than one variable, grouped or crossed by factors. The table must be organized by columns between variables and factors.

Usage

```
tapply.stat(y, x, stat = "mean")
```

Arguments

y data.frame variables x data.frame factors

stat Method

vark 141

Value

Statistics of quantitative variables by categorical variables.

Author(s)

Felipe de Mendiburu

Examples

```
library(agricolae)
# case of 1 single factor
data(sweetpotato)
tapply.stat(sweetpotato[,2],sweetpotato[,1],mean)
with(sweetpotato,tapply.stat(yield,virus,sd))
with(sweetpotato,tapply.stat(yield,virus,function(x) max(x)-min(x)))
with(sweetpotato,tapply.stat(yield,virus,function(x) quantile(x,0.75,6)-quantile(x,0.25,6)))
# other case
data(cotton)
with(cotton,tapply.stat(yield,cotton[,c(1,3,4)],mean))
with(cotton,tapply.stat(yield,cotton[,c(1,4)],max))
# Height of pijuayo
data(growth)
with(growth,tapply.stat(height, growth[,2:1], function(x) mean(x,na.rm=TRUE)))
```

vark

Variance K, ties, Kendall

Description

The Kendall method in order to find the K variance.

Usage

```
vark(x, y)
```

Arguments

x Vector y vector

Details

Script in C to R.

Value

variance of K for Kendall's tau

142 waerden.test

Author(s)

Felipe de Mendiburu

References

Numerical Recipes in C. Second Edition.

See Also

```
cor.matrix, cor.vector, cor.mv
```

Examples

```
library(agricolae)
x < -c(1,1,1,4,2,2,3,1,3,2,1,1,2,3,2,1,1,2,1,2)
y < -c(1,1,2,3,4,4,2,1,2,3,1,1,3,4,2,1,1,3,1,2)
vark(x,y)
```

waerden.test

Multiple comparisons. The van der Waerden (Normal Scores)

Description

A nonparametric test for several independent samples.

Usage

```
waerden.test(y, trt, alpha=0.05, group=TRUE, main=NULL,console=FALSE)
```

Arguments

У	Variable response
trt	Treatments
alpha	Significant level
group	TRUE or FALSE
main	Title

logical, print output console

Details

The data consist of k samples of possibly unequal sample size. The post hoc test is using the criterium Fisher's least significant difference (LSD).

waller 143

Value

statistics Statistics of the model
parameters Design parameters

means Statistical summary of the study variable

comparison Comparison between treatments groups Formation of treatment groups

Author(s)

Felipe de Mendiburu

References

Practical Nonparametrics Statistics. W.J. Conover, 1999

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waller.test, plot.group
```

Examples

```
library(agricolae)
# example 1
data(corn)
out1<-with(corn,waerden.test(observation,method,group=TRUE))
print(out1$groups)
plot(out1)
out2<-with(corn,waerden.test(observation,method,group=FALSE))
print(out2$comparison)
# example 2
data(sweetpotato)
out<-with(sweetpotato,waerden.test(yield,virus,alpha=0.01,group=TRUE))
print(out)</pre>
```

waller

Computations of Bayesian t-values for multiple comparisons

Description

A Bayes rule for the symmetric multiple comparisons problem.

Usage

```
waller(K, q, f, Fc)
```

144 waller

Arguments

K	Is the loss ratio between type I and type II error
q	Numerator Degrees of freedom
f	Denominator Degrees of freedom
Fc	F ratio from an analysis of variance

Details

K-RATIO (K): value specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test. Reasonable values for KRATIO are 50, 100, and 500, which roughly correspond for the two-level case to ALPHA levels of 0.1, 0.05, and 0.01. By default, the procedure uses the default value of 100.

Value

Waller value for the Waller and Duncan test.

Author(s)

Felipe de Mendiburu

References

Waller, R. A. and Duncan, D. B. (1969). A Bayes Rule for the Symmetric Multiple Comparison Problem, Journal of the American Statistical Association 64, pages 1484-1504.

Waller, R. A. and Kemp, K. E. (1976) Computations of Bayesian t-Values for Multiple Comparisons, Journal of Statistical Computation and Simulation, 75, pages 169-172.

Principles and procedures of statistics a biometrical approach Steel & Torry & Dickey. Third Edition 1997.

See Also

```
waller.test
```

```
# Table Duncan-Waller K=100, F=1.2 pag 649 Steel & Torry
library(agricolae)
K<-100
Fc<-1.2
q<-c(8,10,12,14,16,20,40,100)
f<-c(seq(4,20,2),24,30,40,60,120)
n<-length(q)
m<-length(f)
W.D <-rep(0,n*m)
dim(W.D)<-c(n,m)
for (i in 1:n) {
for (j in 1:m) {
W.D[i,j]<-waller(K, q[i], f[j], Fc)</pre>
```

waller.test 145

```
}}
W.D<-round(W.D,2)
dimnames(W.D)<-list(q,f)
print(W.D)</pre>
```

waller.test

Multiple comparisons, Waller-Duncan

Description

The Waller-Duncan k-ratio t test is performed on all main effect means in the MEANS statement. See the K-RATIO option for information on controlling details of the test.

Usage

```
waller.test(y, trt, DFerror, MSerror, Fc, K = 100, group=TRUE, main = NULL,
console=FALSE)
```

Arguments

y model(aov or lm) or answer of the experimental unit

trt Constant(only y=model) or vector treatment applied to each unit

DFerror Degrees of freedom MSerror Mean Square Error

FC F Value
K K-RATIO

group TRUE or FALSE

main Title

console logical, print output

Details

It is necessary first makes a analysis of variance.

K-RATIO (K): value specifies the Type 1/Type 2 error seriousness ratio for the Waller-Duncan test. Reasonable values for KRATIO are 50, 100, and 500, which roughly correspond for the two-level case to ALPHA levels of 0.1, 0.05, and 0.01. By default, the procedure uses the default value of 100.

```
if y = model, then to apply the instruction: waller.test (model, "trt", alpha = 0.05, group = TRUE, main = NULL, console = FALSE) where the model class is aov or lm.
```

146 waller.test

Value

statistics Statistics of the model parameters Design parameters

means Statistical summary of the study variable

comparison Comparison between treatments groups Formation of treatment groups

Author(s)

Felipe de Mendiburu

References

Waller, R. A. and Duncan, D. B. (1969). A Bayes Rule for the Symmetric Multiple Comparison Problem, Journal of the American Statistical Association 64, pages 1484-1504.

Waller, R. A. and Kemp, K. E. (1976) Computations of Bayesian t-Values for Multiple Comparisons, Journal of Statistical Computation and Simulation, 75, pages 169-172.

Steel & Torry & Dickey. Third Edition 1997 Principles and procedures of statistics a biometrical approach

See Also

```
BIB.test, DAU.test, duncan.test, durbin.test, friedman, HSD.test, kruskal, LSD.test, Median.test, PBIB.test, REGW.test, scheffe.test, SNK.test, waerden.test, plot.group
```

```
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)</pre>
out <- waller.test(model, "virus", group=TRUE)</pre>
#startgraph
oldpar<-par(mfrow=c(2,2))
# variation: SE is error standard
# variation: range is Max - Min
bar.err(out$means, variation="SD", horiz=TRUE, xlim=c(0,45), bar=FALSE,
col=colors()[25],space=2, main="Standard deviation",las=1)
bar.err(out$means, variation="SE", horiz=FALSE, ylim=c(0,45), bar=FALSE,
col=colors()[15], space=2, main="SE", las=1)
bar.err(out$means, variation="range", ylim=c(0,45), bar=FALSE, col="green",
space=3,main="Range = Max - Min",las=1)
bar.group(out$groups,horiz=FALSE,ylim=c(0,45),density=8,col="red",
main="Groups",las=1)
#endgraph
# Old version HSD.test()
df<-df.residual(model)</pre>
MSerror<-deviance(model)/df
```

weatherSeverity 147

```
Fc<-anova(model)["virus",4]
out <- with(sweetpotato,waller.test(yield, virus, df, MSerror, Fc, group=TRUE))
print(out)
par(oldpar)</pre>
```

weatherSeverity

Weather and Severity

Description

Weather and Severity

Usage

we ather Severity (we ather, severity, dates, Emerg Date, End Epid Date, No Readings H, RH threshold)

Arguments

weather object, see example severity object, see example

dates vector dates

EmergDate date
EndEpidDate date
NoReadingsH num, 1

RHthreshold num, percentage

Details

Weather and severity

Value

Wfile "Date", "Rainfall", "Tmp", "HumidHrs", "humidtmp"

Sfile "Cultivar", "ApplSys", "dates", "nday", "MeanSeverity", "StDevSeverity"

EmergDate date
EndEpidDate date

Note

All format data for date is yyyy-mm,dd, for example "2000-04-22". change with function as.Date()

See Also

```
lateblight
```

148 wilt

Examples

```
library(agricolae)
f <- system.file("external/weather.csv", package="agricolae")</pre>
weather <- read.csv(f,header=FALSE)</pre>
f <- system.file("external/severity.csv", package="agricolae")</pre>
severity <- read.csv(f)</pre>
weather[,1]<-as.Date(weather[,1],format = "%m/%d/%Y")</pre>
# Parameters dates and threshold
dates<-c("2000-03-25","2000-04-09","2000-04-12","2000-04-16","2000-04-22")
dates<-as.Date(dates)</pre>
EmergDate <- as.Date('2000/01/19')</pre>
EndEpidDate <- as.Date("2000-04-22")</pre>
dates<-as.Date(dates)</pre>
NoReadingsH<- 1
RHthreshold <- 90
WS<-weatherSeverity(weather, severity, dates, EmergDate, EndEpidDate,
NoReadingsH, RHthreshold)
```

wilt

Data of Bacterial Wilt (AUDPC) and soil

Description

Percentage of bacterial wilt and area under the curve of disease progression (AUDPC) relative tomato plants transplanted in different soil types artificially infested with R.solanacearum 133 days before.

Usage

```
data(wilt)
```

Format

A data frame with 13 observations on the following 15 variables.

place a factor with levels Chmar Chz Cnt1 Cnt2 Cnt3 Hco1 Hco2 Hco3 Hyo1 Hyo2 Namora SR1 SR2

Day7 a numeric vector

Day11 a numeric vector

Day15 a numeric vector

Day19 a numeric vector

Day23 a numeric vector

Day27 a numeric vector

Day31 a numeric vector

Day35 a numeric vector

Day39 a numeric vector

yacon 149

```
Day43 a numeric vector
Day47 a numeric vector
Day51 a numeric vector
AUDPC a numeric vector
relative a numeric vector
```

Details

Percentajes bacterial wilt. Day7 = evaluated to 7 days, Days11 = evaluated to 11 days. see data(soil) and data(ralstonia)

Source

Experimental field, 2004. Data Kindly provided by Dr. Sylvie Priou, Liliam Gutarra and Pedro Aley.

References

International Potato Center, CIP - Lima Peru.

Examples

```
library(agricolae)
data(wilt)
days<-c(7,11,15,19,23,27,31,35,39,43,47,51)
AUDPC<-audpc(wilt[,-1],days)
relative<-audpc(wilt[,-1],days,type="relative")</pre>
```

yacon

Data Yacon

Description

The yacon (Smallanthus sonchifolius) is a plant native to the Andes, considered a traditional crop in Peru and natural source of FOS, which is a type of carbohydrate that can not be digested by the and the human body that have joined several beneficial properties in health, such as improve the absorption of calcium, reducing the level of triglycerides and cholesterol and stimulate better gastrointestinal function.

Usage

```
data(yacon)
```

150 yacon

Format

A data frame with 432 observations on the following 19 variables.

locality a factor with levels, Cajamarca, Lima, Oxapampa in PERU

site a numeric vector

dose a factor with levels F0 F150 F80

entry a factor with levels AKW5075 AMM5136 AMM5150 AMM5163 ARB5125 CLLUNC118 P1385 SAL136

replication a numeric vector, replications

height a numeric vector, plant height, centimeters

stalks a numeric vector, number of stalks

wfr a numeric vector, weight of fresh roots, grams

wff a numeric vector, weight of fresh foliage, grams

wfk a numeric vector, weight fresh kroner, grams

roots a numeric vector, matter of dried roots, grams

FOS a numeric vector, fructo-oligosaccharides, percentaje

glucose a numeric vector, percentaje

fructose a numeric vector, percentaje

sucrose a numeric vector, percentaje

brix a numeric vector, degrees Brix

foliage a numeric vector, matter dry foliage, grams

dry a numeric vector, dry matter kroner, grams

IH a numeric vector, Index harvest, 0 to 1

Details

Proportion or fraction of the plant that is used (seeds, fruit, root) on dry basis. Part usable in a proportion of total mass dissected. Plant of frijol, weight = 100g and frijol = 50g then, IH = 50/100 = 0.5 or 50 percentaje. Degrees Brix is a measurement of the mass ratio of dissolved sugar to water in a liquid.

Source

CIP. Experimental field, 2003, Data Kindly provided by Ivan Manrique and Carolina Tasso.

References

International Potato Center. CIP - Lima Peru.

Examples

library(agricolae)
data(yacon)
str(yacon)

zigzag 151

zigzag

order plot in serpentine

Description

applied to designs: complete block, latin square, graeco, split plot, strip plot, lattice, alpha lattice, Augmented block, cyclic, Balanced Incomplete Block and factorial.

Usage

```
zigzag(outdesign)
```

Arguments

outdesign output design

Value

fieldbook Rem

Remuneration of serpentine plots.

Author(s)

Felipe de Mendiburu

See Also

```
design.ab, design.alpha,design.bib, design.split, design.cyclic, design.dau, design.graeco, design.lattice, design.lsd, design.rcbd, design.strip
```

```
library(agricolae)
trt<-letters[1:5]
r<-4
outdesign <- design.rcbd(trt,r,seed=9)
fieldbook <- zigzag(outdesign)</pre>
```

Index

* aplot	pamCIP, 99
AMMI.contour, 7	paracsho, 100
bar.err, 11	plots, 108
bar.group, 13	plrv, 109
diffograph, 51	potato, 111
graph.freq, 60	ralstonia, 112
normal.freq, 95	rice, 118
ogive.freq,96	RioChillon, 119
plot.AMMI, 104	sinRepAmmi, 124
plot.graph.freq, 105	soil, 127
plot.group, 107	sweetpotato, 138
polygon.freq, 110	wilt, 148
* cluster	yacon, 149
consensus, 21	* design
hcut, 67	design.ab, 32
hgroups, 69	design.alpha, 34
* datasets	design.bib, 35
Chz2006, 17	design.crd, 37
CIC, 18	design.cyclic, 38
clay, 19	design.dau,40
ComasOxapampa, 20	design.graeco,41
corn, 22	design.lattice, 43
cotton, 26	design.lsd,44
DC, 30	design.rcbd,46
disease, 53	design.split,47
frijol, 58	design.strip,49
genxenv, 59	design.youden, 50
Glycoalkaloids, 60	index.smith, 75
grass, 62	* distribution
greenhouse, 63	summary.graph.freq,137
growth, 64	table.freq,139
haynes, 65	waller, 143
Hco2006, 66	* htest
heterosis, 68	duncan.test, 54
huasahuasi, 72	HSD.test, 70
LxT, 87	LSD.test,86
markers, 88	REGW.test, 114
melon, 91	scheffe.test, 121
natives, 93	SNK.test, 126

INDEX 153

waller.test, 145	* regression
* manip	reg.homog, 113
audpc, 8	* univar
audps, 10	cv.model, 27
delete.na, 31	index.bio, 74
design.mat,45	inter.freq,76
lastC, 81	join.freq,77
montecarlo, 92	kurtosis, 80
order.group,97	skewness, 125
orderPvalue, 98	stat.freq, 134
sturges.freq, 136	tapply.stat, 140
zigzag, 151	
* models	agricolae (agricolae-package), 4
AMMI, 5	agricolae-package, 4
BIB. test, 14	AMMI, 5, 8, 74, 85, 105
carolina, 16	AMMI.contour, 7
DAU.test, 29	audpc, 8
index.AMMI, 73	audps, 10
lateblight, 82	bar.err,11
lineXtester, 84	bar.group, <i>12</i> , 13
nonadditivity, 94	BIB. test, 14, 30, 55, 56, 58, 71, 80, 87, 90,
PBIB.test, 102	103, 108, 115, 122, 127, 143, 146
similarity, 122	100,100,110,122,127,170,170
simulation.model, 123	carolina, 16
sp.plot, 129	Chz2006, 17
ssp.plot, 130	CIC, 18
stability.par, 133	clay, 19
strip.plot, 135	ComasOxapampa, 20
weatherSeverity, 147	consensus, 21, <i>67</i> , <i>70</i>
* multivariate	corn, 22
correl, 23	correl, 23, 25
correlation, 24	correlation, <i>24</i> , <i>24</i> , <i>79</i> , <i>101</i>
cv.similarity, 28	cotton, 26
path.analysis, 101	cv.model, 27
resampling.model, 117	cv.similarity, 28, <i>116</i> , <i>123</i>
* nonparametric	DAU. test, 15, 29, 55, 56, 58, 71, 80, 87, 90,
durbin.test, 55	
friedman, 57	103, 108, 115, 122, 127, 143, 146 DC, 16, 30
kendall, 78	delete.na, 31
kruskal, 79	density, 92
Median.test, 89	design.ab, 32, 35, 36, 38, 39, 41–43, 45–49,
stability.nonpar, 131	51, 151
vark, 141	design.alpha, 33, 34, 36, 38, 39, 41–43,
waerden.test, 142	45–49, 51, 151
* optimize	design.bib, 33, 35, 35, 38, 39, 41–43, 45–49
resampling.cv, 115	design. bib, 33, 33, 33, 36, 39, 41–43, 43–49 51, 151
* package	design.crd, 33, 35, 36, 37, 39, 41–43, 45–49
agricolae-package. 4	51

INDEX

design.cyclic, 33, 35, 36, 38, 38, 41-43, 45-49, 51, 151	huasahuasi,72
design.dau, 33, 35, 36, 38, 39, 40, 42, 43,	index.AMMI, 73
45–49, 51, 151	index.bio, 74
design.graeco, 33, 35, 36, 38, 39, 41, 41, 43,	index.smith, 75
45–49, 51, 151	inter.freq, 61, 76, 78, 95, 96, 106, 111, 135,
· ·	137, 138, 140
design.lattice, 33, 35, 36, 38, 39, 41, 42,	,,
43, 45–49, 51, 151	join.freq, 61, 77, 77, 95, 96, 106, 111, 135,
design.lsd, 33, 35, 36, 38, 39, 41–43, 44,	137, 138, 140
46–49, 51, 151	
design.mat, 45	kendall, 78
design.rcbd, 33, 35, 36, 38, 39, 41–43, 45,	kruskal, 12, 13, 15, 30, 52, 55, 56, 58, 71, 79,
46, 46, 48, 49, 51, 151	87, 90, 103, 108, 115, 122, 127, 143,
design.split, 33, 35, 36, 38, 39, 41–43,	146
45–47, 47, 49, 51, 129, 131, 136, 151	kurtosis, 80, <i>125</i>
design.strip, 33, 35, 36, 38, 39, 41–43,	
<i>45–48</i> , 49, <i>51</i> , <i>129</i> , <i>131</i> , <i>136</i> , <i>151</i>	lastC, 81
design.youden, 50	lateblight, 82, <i>147</i>
diffograph, 51	lineXtester, 6, 84
disease, 53	LSD. test, 12, 13, 15, 27, 30, 52, 55, 56, 58,
duncan. test, 15, 30, 52, 54, 56, 58, 71, 80,	71, 80, 86, 90, 103, 108, 115, 122,
87, 90, 103, 108, 115, 122, 127, 143,	127, 143, 146
146	LxT, 87
durbin.test, 13, 15, 30, 55, 55, 58, 71, 80,	
87, 90, 103, 108, 115, 122, 127, 143,	markers, 88
146	Median.test, 15, 30, 55, 56, 58, 71, 80, 87,
170	89, 103, 108, 115, 122, 127, 143, 146
friedman, 13, 15, 30, 52, 55, 56, 57, 71, 80,	melon, 91
87, 90, 103, 108, 115, 122, 127, 143,	montecarlo, 92
146	
frijol, 58	natives, 93
111301,30	nonadditivity, 94
genxenv, 59	normal.freq, 61, 77, 78, 95, 96, 106, 111,
Glycoalkaloids, 60	135, 137, 138, 140
graph.freq, 60, 77, 78, 95, 96, 111, 135, 137,	6 61 77 79 05 06 106 125 127
138, 140	ogive.freq, 61, 77, 78, 95, 96, 106, 135, 137,
grass, 62	138, 140
greenhouse, 63	order.group, 97
growth, 64	orderPvalue, 98, 98
gi owell, 04	pamCIP, 99
haynes, 65	
	paracsho, 100
hclust, 22, 67, 70	path.analysis, 101
Hco2006, 66	PBIB. test, 15, 30, 55, 56, 58, 71, 80, 87, 90,
hcut, 22, 67, 70	102, 108, 115, 122, 127, 143, 146
heterosis, 68	plot. AMMI, 6, 74, 104
hgroups, 22, 67, 69	plot.graph.freq, 105
HSD. test, 12, 13, 15, 27, 30, 52, 55, 56, 58,	plot.group, 13, 15, 30, 55, 56, 58, 71, 80, 81,
70, 80, 87, 90, 103, 108, 115, 122,	87, 90, 103, 107, 115, 122, 127, 143,
127, 143, 146	146

INDEX 155

```
plots, 108
                                                     weatherSeverity, 83, 147
plrv, 109
                                                     wilt, 148
polygon.freq, 61, 77, 78, 95, 96, 106, 110,
                                                     yacon, 149
         111, 135, 137, 138, 140
potato, 111
                                                     zigzag, 151
ralstonia, 112
reg.homog, 113
REGW. test, 15, 30, 52, 55, 56, 58, 71, 80, 87,
         90, 103, 108, 114, 122, 127, 143, 146
resampling.cv, 28, 115, 123
resampling.model, 117, 124
rice, 118
RioChillon, 119
scheffe.test, 15, 30, 52, 55, 56, 58, 71, 80,
         87, 90, 103, 108, 115, 121, 127, 143,
         146
similarity, 28, 116, 122
simulation.model, 117, 123
sinRepAmmi, 124
skewness, 81, 125
SNK.test, 15, 30, 52, 55, 56, 58, 71, 80, 87,
         90, 103, 108, 115, 122, 126, 143, 146
soil, 127
sp.plot, 129, 131, 136
ssp.plot, 129, 130, 136
stability.nonpar, 131, 134
stability.par, 132, 133
stat.freq, 61, 77, 78, 95, 96, 106, 111, 134,
         137, 138, 140
strip.plot, 129, 131, 135
sturges.freq, 61, 77, 78, 95, 96, 106, 111,
         135, 136, 138, 140
summary.graph.freq, 137
sweetpotato, 138
table.freq, 61, 77, 78, 95, 96, 106, 111, 135,
         137, 139
tapply.stat, 140
vark, 141
waerden.test, 15, 30, 52, 55, 56, 58, 71, 80,
         87, 90, 103, 108, 115, 122, 127, 142,
         146
waller, 143
waller.test, 12, 13, 15, 27, 30, 55, 56, 58,
         71, 80, 87, 90, 103, 108, 115, 122,
         127, 143, 144, 145
```