Analisi della neutralità degli spazi di ricerca booleani in Programmazione Genetica

Yuri Pirola

Anno Accademico 2004/05

Presentazione tesi Yuri Pirola

La Programmazione Genetica

Introduzione

Obiettivo
Paesaggio di
fitness
Analisi del
paesaggio
Even-k parity
Misurare la
neutralità
Campionamento

Risultati

Considerazioni finali

Funzionamento:

inizializza popolazione
while non finito do
 selezione
 variazione
end while

Obiettivo e motivazioni

Introduzione

Obiettivo

Paesaggio di fitness
Analisi del paesaggio
Even-k parity
Misurare la neutralità
Campionamento

Risultati

Considerazioni finali

Neutralità:

Soluzioni differenti poste allo stesso livello di qualità.

Obiettivo:

Studio del paesaggio per ricercare un collegamento fra *Neutralità* e *Difficoltà* del problema.

Paesaggio di fitness

Introduzione

Obiettivo

Paesaggio di fitness

Analisi del paesaggio

Even-k parity

Misurare la neutralità

Campionamento

Risultati

Considerazioni finali

Paesaggio di fitness:

È un grafo $\mathcal{P} = (\mathcal{S}, \mathcal{V}, f)$ che modella il comportamento della PG

Rete di neutralità:

Analisi del paesaggio

Introduzione

Obiettivo Paesaggio di fitness

Analisi del paesaggio

Even-k parity

Misurare la

neutralità

Campionamento

Risultati

Considerazioni finali

Domanda:

Le caratteristiche di *neutralità* del paesaggio possono spiegare il diverso grado di *difficoltà* dei problemi?

Si deve analizzare *quantitativamente* la neutralità in diversi paesaggi.

Problemi:

- Quali paesaggi?
- Come *misurare* la neutralità?
- Come analizzare uno spazio di ricerca molto grande?

Il problema dell'even-parity

Introduzione

Obiettivo Paesaggio di fitness Analisi del paesaggio

Even-k parity

Misurare la neutralità
Campionamento

Risultati

Considerazioni finali

Even-k parity problem:

Determinare un'espressione di k variabili booleane che vale Vero se e solo se sono vere un numero *pari* di esse.

- La fitness di una soluzione è pari al numero di errori di approssimazione.
- Il 'grado di difficoltà' dipende
 - 1. dall'ordine k del problema
 - 2. dagli operatori booleani ammessi
 - con {XOR; NOT} il problema è 'facile'
 - con {NAND} il problema è 'difficile'

Misurare la neutralità

Introduzione

Obiettivo
Paesaggio di
fitness
Analisi del
paesaggio
Even-k parity

Misurare la neutralità

Campionamento

Risultati

Considerazioni finali

Misure 'di rete':

- a) Misure 'tradizionali'
 - Taglia e fitness di rete...
- b) Misure relative alla neutralità
 - Tasso medio di neutralità:
 percentuale di mutazioni neutre
 - $-\Delta$ -fitness media: guadagno medio di fitness a seguito di una mutazione
 - Tasso di subottimi e di subpessimi:
 percentuale di individui, rispettivamente,
 non-migliorabili o non-peggiorabili

Metodo di campionamento

Introduzione

Obiettivo
Paesaggio di
fitness
Analisi del
paesaggio
Even-k parity
Misurare la
neutralità

Campionamento

Risultati

Considerazioni finali

I metodi tradizionali sono insufficienti.

Nuovo metodo di campionamento:

ModMetropolis genera un campione di individui C con valori di fitness 'ben distribuiti'

VerticalExpansion arricchisce C con vicini possibilmente non-neutri

HorizontalExpansion aggiunge individui alle reti di neutralità *incomplete* troppo 'piccole'

Caratterizzazione di $\mathcal{P}^{\{XOR; NOT\}}$

Introduzione

Risultati

 $\mathcal{P}^{\{ ext{XOR}\,;\; ext{NOT}\}}$

Analisi sperim.

 $\frac{\overline{T_N}}{\Delta f}$

 t_{so}

Considerazioni finali

Obiettivo:

Date f e V, determinare per via teorica alcune caratteristiche del paesaggio $\mathcal{P}^{\{\text{XOR}\,;\,\text{NOT}\}}$

- Solo tre livelli di fitness: 0, 0.5 e 1
- Un'unica 'grande' rete di neutralità a fitness 0.5
 (\rightarrow rete centrale)
- Tutte le altre reti hanno taglia pari a 1
 (→ reti periferiche)
- Tutte le reti periferiche sono collegate 'direttamente' a quella centrale

Analisi sperimentale

Introduzione

Risultati

 $\mathcal{P}^{\{XOR; NOT\}}$

Analisi sperim.

 $\frac{\overline{T_{\mathcal{N}}}}{\Delta f}$

 t_{so}

Considerazioni finali

Due insiemi degli operatori:

- $\{XOR; NOT\}$
- $\{NAND\}$

Due tipologie di analisi:

- esaustiva di paesaggi 'limitati'
 even-2 parity
- campionaria di paesaggi 'realistici' even-4 parity

Tasso medio di neutralità

Introduzione

Risultati

 $\mathcal{P}^{\{XOR; NOT\}}$

Analisi sperim.

 t_{so}

Considerazioni finali

Even-2 parity

∆-fitness media

Introduzione

Risultati

 $\mathcal{P}^{\{XOR; NOT\}}$

Analisi sperim.

 $\frac{T_{\mathcal{N}}}{\Delta f}$

 t_{so}

Considerazioni finali

Even-2 parity

Tasso di subottimi

Introduzione

Risultati

 $\mathcal{P}^{\{XOR; NOT\}}$

Analisi sperim.

 $\frac{\overline{T_{\mathcal{N}}}}{\Delta f}$

 $\mathsf{t}_{\mathsf{s}\,\mathsf{c}}$

Considerazioni finali

Even-2 parity

Conclusioni

<u>Introduzione</u>

Risultati

Considerazioni finali

Conclusioni

Contributi Sviluppi futuri

- Risultati delle analisi:
 - in $\mathcal{P}^{\{NAND\}}$, reti di fitness buona resistono al miglioramento
 - in $\mathcal{P}^{\{\text{XOR}\,;\,\text{NOT}\}}$, grande rete centrale facile da attraversare
 - La diversa difficoltà dei problemi è parzialmente spiegata.
- Validità del metodo di campionamento:
 - genera campioni con caratteristiche simili allo spazio completo
 - riproduce la struttura teorica di $\mathcal{P}^{\{\text{XOR}\,;\,\text{NOT}\}}$

Contributi originali

Introduzione

Risultati

Considerazioni finali

Conclusioni

Contributi

Sviluppi futuri

- Si distingue da lavori esistenti perché:
 - a) studia la PG 'standard'
 - b) studia la neutralità senza alterare artificialmente i paesaggi
- Contributi originali:
 - a) caratterizzazione teorica di $\mathcal{P}^{\{ ext{XOR}\,;\, ext{NOT}\}}$
 - o) misure della neutralità e relativa analisi dei paesaggi
 - c) metodo di campionamento del paesaggio

Sviluppi futuri

Introduzione

Risultati

Considerazioni finali

Conclusioni Contributi

Sviluppi futuri

- Validità del metodo di campionamento
 - verifica sperimentale su nuovi paesaggi
 - indagine formale con strumenti statistico-matematici

- Studio della neutralità
 - analisi di altri tipi di paesaggio
 - misure della difficoltà del problema

<u>Introduzione</u>

Risultati

Considerazioni finali

Extra

Paesaggio di fitness Vicinato e mutazioni Rappres. di $\mathcal{P}^{\{\text{XOR}\,;\,\,\text{NOT}\}}$

Misure

Campionamento

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw}

Riferimenti

Extra

Paesaggio di fitness

Introduzione

Risultati

Considerazioni finali

Extra

Paesaggio di fitness

Vicinato e mutazioni Rappres. di $\mathcal{P}^{\{XOR\,;\;NOT\}}$

Misure

Campionamento

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw}

Riferimenti

Paesaggio di fitness [Sta02]:

$$\mathcal{P} = (\mathcal{S}, \mathcal{V}, \mathsf{f})$$

dove

- $-\mathcal{S}$, è l'insieme delle soluzioni ammissibili
- $-\mathcal{V}:\mathcal{S}\to 2^{\mathcal{S}}$, è la funzione di vicinato
- $-f: \mathcal{S} \to \mathbb{R}^+$, è la funzione di fitness

Vicinato neutro: $\mathcal{N}(s) = \{s' \in \mathcal{V}(s) | f(s) = f(s')\}$

Rete di neutralità: componente connessa del grafo (S, E) dove $E = \{(s_1, s_2) \in S^2 | s_2 \in \mathcal{N}(s_1)\}$

Vicinato e mutazioni

Introduzione

Risultati

Considerazioni finali

Extra

Paesaggio di fitness

Vicinato e mutazioni

Rappres. di \mathcal{D} {XOR; NOT}

Misure

Campionamento

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw}

Riferimenti

 ${\cal V}$ è definita in base agli operatori di mutazione

 $\mathcal{V}(s) = \{s' \in \mathcal{S} | s' \text{ può essere ottenuta variando } s\}$

- Due criteri:
 - adeguata capacità esplorativa
 - semplicità del paesaggio risultante
- Mutazioni strutturali strette:
 - versione semplificata degli operatori di mutazione strutturale
 - mutazioni *deflate* e *inflate*: trasforma- a no sotto-alberi di altezza 1 in foglie (e viceversa)
 - mutazione di terminale

Rappresentazione di $\mathcal{P}^{\{XOR; NOT\}}$

Introduzione

Risultati

Considerazioni finali

Extra

Paesaggio di fitness Vicinato e mutazioni

Rappres. di $\mathcal{P}^{\{ ext{XOR}\,;\; ext{NOT}\}}$

Misure

Campionamento

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw}

Riferimenti

Misure di neutralità

Introduzione

Risultati

Considerazioni finali

Extra

Paesaggio di fitness
Vicinato e mutazioni
Rappres. di $\mathcal{D}^{\{XOR; NOT\}}$

Misure

Campionamento Dim. paesaggi t_{sw} t_{so} vs t_{sw} Riferimenti

- Tasso medio di neutralità:
 percentuale di mutazioni neutre
- Δ-fitness media:
 guadagno medio di fitness a seguito di una mutazione
- Tasso di subottimi e di subpessimi:
 percentuale di individui, rispettivamente,
 non-migliorabili o non-peggiorabili

Metodo di campionamento

<u>Introduzione</u>

Risultati

Considerazioni finali

Extra

Paesaggio di fitness
Vicinato e mutazioni
Rappres. di $\mathcal{P}^{\{XOR\,;\;NOT\}}$

Misure

Campionamento

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw}

Riferimenti

Obiettivo:

Generare campioni di individui di molti livelli di fitness che formano reti di neutralità sufficientemente 'grandi' e interconnesse tra loro.

Ovvero i campioni devono contenere:

- 1. individui di molti livelli di fitness
- 2. reti di neutralità abbastanza grandi
- 3. reti di neutralità collegate tra loro

Dimensione paesaggi

Introduzione

Risultati

Considerazioni finali

Extra

Paesaggio di fitness
Vicinato e mutazioni
Rappres. di $\mathcal{P}^{\{XOR\,;\;NOT\}}$

Misure

Campionamento

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw} Riferimenti Dimensione dei paesaggi considerati:

ordine k	2		4
prof. max	3	6	8
{XOR; NOT}	10^{3}	10 ²⁹	10 ¹⁷⁸
{NAND}	10^{3}	10 ²⁵	10 ¹⁶⁶

Tasso di subpessimi

Introduzione

Risultati

Considerazioni finali

Extra

Paesaggio di fitness Vicinato e mutazioni Rappres. di $\mathcal{P}^{\{XOR\,;\;NOT\}}$

Misure

Campionamento

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw} Riferimenti Even-2 parity

t_{so} vs. t_{sw} - $\mathcal{P}^{\{XOR; NOT\}}$

Introduzione

Risultati

Considerazioni finali

Extra

Paesaggio di fitness
Vicinato e mutazioni
Rappres. di $\mathcal{P}^{\{XOR\,;\;NOT\}}$

Misure

Campionamento

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw}

Riferimenti

 $\{XOR; NOT\}$

Even-2 parity

t_{so} vs. t_{sw} - $\mathcal{P}^{\{NAND\}}$ - ordine 2

Introduzione

Risultati

Considerazioni finali

Extra

Paesaggio di fitness
Vicinato e mutazioni
Rappres. di $\mathcal{P}^{\{\text{XOR}\,;\,\,\text{NOT}\}}$

Misure

 ${\sf Campionamento}$

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw}

Riferimenti

t_{so} vs. t_{sw} - $\mathcal{P}^{\{\mathrm{NAND}\}}$ - ordine 4

Introduzione

Risultati

Considerazioni finali

Extra

Paesaggio di fitness
Vicinato e mutazioni
Rappres. di $\mathcal{P}^{\{XOR; NOT\}}$

Misure

Campionamento

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw}

Riferimenti

Even-4 parity,

 $\mathcal{P}^{\{\mathrm{NAND}\}}$

Riferimenti principali

<u>Introduzione</u>

Risultati

Considerazioni finali

Extra

Paesaggio di fitness Vicinato e mutazioni Rappres. di $\mathcal{P}^{\{\text{XOR}\,;\,\,\text{NOT}\}}$

Misure

Campionamento

Dim. paesaggi

 t_{sw}

 t_{so} vs t_{sw}

Riferimenti

[Koz92] John R. Koza. *Genetic Programming: On the Programming of Computers by Means of Natural Selection*. 1992.

[Sta02] P. F. Stadler. Fitness landscapes. In *Biological Evolution and Statistical Physics*, 2002.

[VTCC03] L. Vanneschi *et al.*. Fitness distance correlation in structural mutation genetic programming. In *Genetic Programming, Proceedings of EuroGP'2003*.