COMS W4701: Artificial Intelligence

Lecture 5: Sequential Decision Problems

Tony Dear, Ph.D.

Department of Computer Science School of Engineering and Applied Sciences

Today

- Multi-armed bandit problems
- Exploration vs exploitation
- UCB action selection

- Markov decision processes
- Utilities, discounting, values, and policies
- Bellman equations

Multi-Armed Bandits

- Thought experiment: Suppose we have several slot machines
- Each machine has different rewards and different odds
- We can only find out by trying different machines
- Tradeoff between exploration and exploitation
 - Gather more information or maximize best rewards so far?
 - How to determine when current knowledge is good enough?

Action Values

- Choosing a slot machine is choosing an action a
- A_t is the action chosen and R_t is the resultant reward at time t
- Action value is the expected reward of an action: $Q^*(a) = E[R_t | A_t = a]$
- If we know all Q^* , optimal strategy would be to pick a with highest Q^*
- Idea: Build estimates of Q^* by trying different actions and recording results
- First initialize all $Q_0(a)$, e.g. by trying each action once and recording reward
- Sample-averaging: $Q_t(a) = \frac{\text{sum of rewards from taking } a \text{ prior to } t}{\text{number of times taking } a \text{ prior to } t}$

Action Selection

- How to select actions to try while building up Q estimates?
- Greedy action selection always exploits: $A_t = \operatorname{argmax}_a Q_t(a)$
- Problem: We would never explore new actions
- What if there are better options out there?
- ε -greedy: Select greedy action *most* of the time, but with small probability ε , pick a random action to *explore* instead
- In the limit, estimates Q_t will converge to true Q^*

Controlling Exploration

- While exploration is necessary to learn action values, it is usually not optimal
- Too much exploration will lower total rewards received
- Example: Bandits with deterministic rewards only require one round of exploration
- Even for stochastic problems, we probably don't need to explore forever
- Better idea: Explore more beginning (higher ε), then gradually taper off (lower ε)
- Another problem: When exploring, ε -greedy picks actions completely randomly
- Can we do targeted exploration, e.g. pick actions that are more promising?

Upper Confidence Bound

- Idea: Target actions that have high potential for being optimal
- The confidence interval of a value estimate specifies range of true values
- Interval (estimate uncertainty) shrinks as we try an action more often
- Upper confidence bound action selection: $A_t = \operatorname{argmax}_a[Q_t(a) + c\sqrt{\ln t}/N_t(a)]$

 $UCB_t(a)$

- $N_t(a)$ = number of times a has been taken prior to t
- $\sqrt{1/N_t(a)}$ proportional to standard deviation
- lacktriangledown c is a parameter that controls the amount of exploration
- As $N_t(a)$ increases, $UCB_t(a)$ approaches 0 due to increased confidence

Sequential Decision Problems

Suppose we require a sequence of decisions in a stochastic environment

- Like stochastic games, we will have a stochastic transition model
- Unlike in games, rewards can be received at any time (not just the end)

■ The problems will be single-agent, sequential, stochastic, fully observable

- A step-by-step plan no longer works due to stochasticity
- Instead, we form a policy: a mapping from states to actions

Markov Decision Processes

- Bandit problems are decision problems without states
- In Markov decision processes, agents take actions, move from state to state according to a transition function, and receive rewards along the way
- Set of states S and set of actions A
 - S may include initial and/or terminal states
- Transition function $T: S \times A \times S \rightarrow [0,1]$, where $T(s,a,s') = \Pr(s'|s,a)$
 - Also called the *model* or *dynamics* of the problem
- Reward function $R: S \times A \times S \rightarrow \mathbb{R}$, written as R(s, a, s')
- MDPs are Markovian in that we only need to track current, not past, states

Example: Gridworld

- States: Grid locations (11 in total)
 - First two states in column 4 are terminal states
- Actions: North, south, east, west (4 for each state)
 - May stay in original state if moving into wall
- Transition function: *Intended* direction with prob 0.8;
 otherwise, slip left or right with prob 0.1, respectively
- Rewards: +1 or -1 for moving into terminal states;
 small negative reward otherwise (living reward)

Example: Race Car MDP

MDPs in Practice

- Agriculture
 - S: Soil condition and precipitation forecast. A: Whether or not to plant a given area.
- Water resources and energy generation
 - S: Water levels and inflow. A: How much water to use to generate power.
- Inspection and maintenance
 - S: System age and probability failure. A: Whether to test / restore / repair a system.
- Inventory
 - S: Inventory levels and commodity prices. A: How much to purchase.
- Finance and investment
 - S: Holding or capital levels. A: How much to invest.
- Many, many more (D. J. White 1993)

Utilities

- A sequence of states and actions can be quantified by its utility
- Rational agent seeks to maximize its utility over time

- Finite-horizon MDPs: Process ends after some finite time T
 - Equivalent to entering a *terminal state* S_T
 - One way to define utility of a state-action sequence: sum up individual rewards

$$V_h([s_0, a_0, s_1, a_1, \dots, a_{T-1}, s_T]) = \sum_{t=0}^{T-1} R(s_t, a_t, s_{t+1})$$

This won't work for infinite-horizon MDPs!

Discounted Utilities

- Which reward sequence is better? $R_1 = (1,1,1)$ vs $R_2 = (0,0,3)$
- Sums are equal, but R_1 is preferable if rewards now are better than rewards later
- Supported by psychology, economics; also due to uncertainty in obtaining rewards
- Idea: Apply a **discount factor** $0 < \gamma < 1$ to diminish future rewards
- Utility is computed using additive discounted rewards

$$V_h([s_0, a_0, s_1, a_1, \dots, a_{T-1}, s_T]) = \sum_{t=0}^{T-1} \gamma^t R(s_t, a_t, s_{t+1})$$

Discounting for Infinite-Horizon MDPs

- Additive utilities for finite-horizon MDPs use $\gamma = 1$
- For infinite-horizon MDPs, $\gamma < 1$ allows utility sequences to converge
 - The closer γ is to 0, the less we value the future
 - Rewards far in the future are effectively zero

$$V_h([s_0, a_0, s_1, \dots]) = \sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1}) \le \frac{R_{\text{max}}}{1 - \gamma}$$

• Ex: Utility of infinite sequence of +1 rewards with $\gamma = 0.8$:

$$V_h = 1 + (0.8)1 + (0.8)^2 1 + \dots = \frac{1}{1 - 0.8} = 5$$

Policies and Value Functions

- Solving MDP means finding a policy—mapping from states to actions
- $\pi: S \to A$ tells agent what to do in any state

- Policies can be quantified by value functions
- $V^{\pi}: S \to \mathbb{R}$ is *expected* utility of following π starting from given state

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right], s_{0} = s$$

Optimal policy and value function:

$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$$
 $V^* = \operatorname{max}_{\pi} V^{\pi}$

Gridworld Policy and Value Function

R(s) = -0.04 for nonterminal states $\gamma = 1$ (no discounting)

Rewards and Policies

$$-0.7311 < r < -0.4526$$

Recursive Relationship

$$V^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t}), s_{t+1})\right]$$

- This is a function on every state in the state space
- For a given state s, we can alternatively write $V^{\pi}(s)$ as a recursive function of successor state values

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

• $V^{\pi}(s)$ is a weighted average of (immediate reward plus discounted successor state values)

Solving for Values

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

• Suppose we know the model (T, R), discount γ , and a fixed policy π

• Then the above is a system of |S| linear equations in the |S| unknowns $V^{\pi}(s)$

• Linear solvers: ${}^{\sim}O(|S|^3)$ time, can find $V^{\pi}(s)$

Example: Mini-Gridworld

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

- States: A, B, C; actions: left, right; $\gamma = 0.5$
- Policy: $\pi(s) = \text{left } \forall s$
- Rewards: R(s, a, A) = +3, R(s, a, B) = -2, R(s, a, C) = +1

- Transitions: Pr(intended direction) = 0.8, Pr(opposite direction) = 0.2
- V^{π} can be found by solving 3 linear equations:

$$V^{\pi}(A) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(-2 + 0.5V^{\pi}(B))$$

$$V^{\pi}(B) = 0.8(3 + 0.5V^{\pi}(A)) + 0.2(1 + 0.5V^{\pi}(C))$$

$$V^{\pi}(C) = 0.8(-2 + 0.5V^{\pi}(B)) + 0.2(1 + 0.5V^{\pi}(C))$$

Bellman Optimality Equations

Our goal is to find an optimal policy or optimal value function

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Bellman optimality equations are nonlinear!

$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}$$

$$V^* = \operatorname{max}_{\pi} V^{\pi}$$

Value Function to Policy

- We don't know (yet) how to solve for V^* from scratch
- We do know how to find V^* given π^* (solve linear system)
- Bellman equation tells us how to find π^* given V^*

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- Everything on the RHS is known!
- Solving for complete policy takes $O(|S|^2|A|)$ time

Example: Mini-Gridworld

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- States: A, B, C; actions: left, right
- Transitions and rewards same as before

• Given
$$V^*(A) = 4.06, V^*(B) = 4.36, V^*(C) = 1.39$$

• Find $\pi^*(B)$:

$$\gamma = 0.5$$
 $\pi^*(B) = \operatorname{argmax} \begin{cases} 0.8(3 + 0.5V^*(A)) + 0.2(1 + 0.5V^*(C)) & \text{Left} \\ 0.8(1 + 0.5V^*(C)) + 0.2(3 + 0.5V^*(A)) & \text{Right} \end{cases}$

Summary

- In sequential decision problems, an agent must take actions over and over
- Multi-armed bandits: No states, multiple actions; agent must often contend with exploration vs exploitation

- More general decision problems: Markov decision processes
 - States, actions, transitions, rewards, (discount factor)

- Goals -> rewards -> utilities -> value functions and policies
- Bellman optimality equations: Recursive and nonlinear