Г												
	Фамилия, и	імя, но	омер г	рупп	ы:							
]	Внесите сюд	а отве	ты на	тест:								
	Вопрос	1	2	3	4	5	6	7	8	9	10	
	Ответ											
,	Табличка дл	я прон	веряю	щих ј	работу	' :						
	Тест	1	2		3	4	5		Итог	0.		
<u> </u>		l		l								¬n
дис	грос 1. Для г персией сре Дисперсии V	ди лин	нейны	іх нес	смещё	нных			гно, ч	то оце	енка [$\hat{eta} = rac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n X_i}$ обладает наименьшей
A	$1/X_i^2$					<u>C</u> 1/.	X_i					$oxed{E} X_i^2$
E	X_i					$D \sqrt{2}$	$\overline{X_i}$					\boxed{F} Нет верного ответа.
Воп	рос 2 . Стью	денти	зиров	анны	іе оста	тки р	егресс	сии ис	поль	вуются	Я	
A	на перво Годфельда			три	прове	дении	тес	та	D в	тесте	Сарга	ана
E	7			поне	нт				Ед	ля вы	явлен	ия выбросов
C	На первом	шаге	двухі	шагов	вого М	НК			F	Іет вер	оного	ответа.
Воп		льзова	ание с	скорр	ектиро	ванн	ых ста	андар	тных	ошиб	ок Уа	йта при гомоскедастичности при
A	понижени эффициен	-	фекти	вност	ги МН	К оце	енок н	ко-		есосто ов	оятелі	ьности МНК оценок коэффициен
E	В смещённо	ости М	НК ог	ценок	коэфф	рицие	нтов			-		состоятельной оценки дисперсии
C	овышени эффициен	_	фекти	вност	ги МН	К оце	енок в	ко-		·		шибки ответа.
	г рос 4 . При в являться	выполн	неннь	іх усл	овиях	регул	ярнос	сти оп	енки	метод	(а мак	симального правдоподобия могут
A	несмещён	НЫМИ				Син	вариа	нтны	ми			E асимптотически нормаль ными
E	В состоятел	ьными	ſ				импто ими	тичес	ски э	ффект	гив-	F Нет верного ответа.

Вопрос 5 . Тест Саргана для проверки если число инструментов	и валидности инструментов можно	использовать только в том случае,
$oxedsymbol{A}$ больше числа эндогенных переменных	C совпадает с числом эндогенных переменных	E совпадает с числом экзогенных переменных
В меньше числа эндогенных переменных	\boxed{D} меньше числа экзогенных переменных	\overline{F} Нет верного ответа.
Вопрос 6. Уоррен Баффет проверяет помощью теста множителей Лагран		
А регрессии на константу	C только модели без ограничений	E регрессии на все факторы кроме константы
В модели с ограничениями, и модели без ограничений	\boxed{D} только модели с ограничениями	$ \overline{F} $ Heт верного ответа.
Вопрос 7. В линейной модели $Y_i =$ лированы. Состоятельные оценки ко		
А обобщённого МНК	C взвешенного МНК	E метода инструментальных
		переменных
В метода наименьших квадра- тов	\boxed{D} метода главных компонент	\overline{F} Нет верного ответа.
	тю регрессию с пятью регрессорами	F Нет верного ответа. помимо константы, оцениваемую
тов Вопрос 8. Рассмотрим логистическу методом максимального правдоподо	тю регрессию с пятью регрессорами обия по n наблюдениям. Статистика	F Нет верного ответа. помимо константы, оцениваемую
тов Вопрос 8. Рассмотрим логистическу методом максимального правдоподо сти коэффициента β_3 имеет	тю регрессию с пятью регрессорами обия по n наблюдениям. Статистика аспределение $\boxed{D} \ t$ -распределе	F Нет верного ответа. помимо константы, оцениваемую а $\hat{eta}_3/se(\hat{eta}_3)$ для проверки значимо-

Вопрос 9. Рассмотрим модель $Y_i=\beta_0+\beta_z Z_i+\beta_w W_i+\varepsilon$ при гетероскедастичности. Стандартная ошибка МНК-оценки, рассчитываемая по формуле $se(\hat{\beta}_w)=\sqrt{RSS\cdot(X'X)_{33}^{-1}/(n-3)}$, является

А несмещённой

С смещённой

E состоятельной

- В смещённой вверх
- \overline{D} смещённой вниз
- F Нет верного ответа.

Вопрос 10. Переменная Y_i принимает значения 0 или 1. Логарифмическая функция правдоподобия, используемая для оценивания логит и пробит моделей, имеет вид

- $A \ln L = \sum_{i=1}^{n} Y_i \ln(1 F(X_i \beta)) + (1 Y_i) \ln F(X_i \beta)$
- $\boxed{B} \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) \cdot (1 Y_i) \ln(1 F(X_i \beta))$
- $C \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) + (1 Y_i) \ln(1 F(X_i \beta))$
- $\boxed{D} \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) (1 Y_i) \ln F(X_i \beta)$
- $E \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) (1 Y_i) \ln (1 F(X_i \beta))$
- F Нет верного ответа.

1. Сидоров Вова оценивает два неизвестных параметра: a — где стоят ракеты, b — где продают конфеты. Вова оценил параметры методом максимального правдоподобия и получил оценки $\hat{a}=1.5,\,\hat{b}=2.5.$ Затем Вова решил проверить гипотезу H_0 : a=1 и b=2.

Значения функции правдоподобия, градиента и оценённой информации Фишера в двух точках частично приведены в таблице:

Точка	$\ell(a,b)$	(ℓ_a',ℓ_b')	\hat{I}_F
a = 1.5, b = 2.5	-200	?	$ \begin{pmatrix} 16 & -1 \\ -1 & 20 \end{pmatrix} $
a = 1, b = 2	-250	(2, -1)	$ \begin{pmatrix} 16 & -1 \\ -1 & 20 \end{pmatrix} $ $ \begin{pmatrix} 10 & -1 \\ -1 & 15 \end{pmatrix} $

Помогите Сидорову Вове!

- а) Заполните пропуск в таблице;
- б) Проверьте гипотезу H_0 тремя способами: с помощью LR, LM и W статистик.
- 2. По 200 наблюдениям исследователь Иннокентий оценил модель логистической регрессии для вероятности сдать экзамен по метрике:

$$\hat{\mathbb{P}}(Y_i = 1) = \Lambda(1.5 + 0.3X_i - 0.4D_i),$$

где Y_i — бинарная переменная равная 1, если студент сдал экзамен; X_i — количество часов подготовки студента; D_i — бинарная переменная равная 1, если студент пробовал пиццу «четыре сыра» в новой столовой.

$$\begin{pmatrix}
0.04 & -0.01 & 0 \\
-0.01 & 0.01 & 0 \\
0 & 0 & 0.09
\end{pmatrix}$$

- а) Проверьте гипотезу о том, что количество часов подготовки не влияет на вероятность сдать экзамен.
- б) Посчитайте предельный эффект увеличения каждого регрессора на вероятность сдать экзамен для студента не пробовавшего пиццу и готовившегося 24 часа. Кратко, одной-двумя фразами, прокомментируйте смысл полученных цифр.
- в) При каком значении D_i предельный эффект увеличения X_i на вероятность сдать экзамен максимален, если $X_i=20$?

$$X'X = \begin{pmatrix} 29 & 0 & 0 \\ 0 & 50 & 10 \\ 0 & 10 & 80 \end{pmatrix}$$

- а) Сколько наблюдений было у Билла Гейтса?
- б) Найдите выборочное среднее переменных X, W и Y.
- в) Постройте 95%-й доверительный интервал для значения зависимой (индивидуальный прогноз) переменной при X=1 и W=3.
- 4. Величины $X_1,...,X_{100}$ распределены независимо и равномерно на отрезке [-3a;5a]. Оказалось, что $\sum_{i=1}^{100}X_i=200$ и $\sum_{i=1}^{100}|X_i|=500$.
 - а) Оцените параметр a методом моментов, используя момент $E(X_i)$.
 - б) Оцените параметр a обобщённым методом моментов, используя моменты $\mathrm{E}(X_i)$ и $\mathrm{E}(|X_i|)$, и взвешивающую матрицу $W=\begin{pmatrix} 3 & 0 \\ 0 & 64 \end{pmatrix}$.
- 5. Контора «Рога и Копыта» определяет необходимый запас рогов, Y, в зависимости от ожидаемых годовых продаж рогов, X^e , по формуле $Y_i = \beta_0 + \beta_1 X_i^e$. Коэффициенты β_0 и β_1 держатся в строжайшей тайне!

В распоряжении холдинга «Рог изобилия» оказались данные по запасам рогов, Y, и фактическим годовым продажам рогов, X, конторы «Рога и Копыта». Фактические продажи рогов связаны с ожидаемыми уравнением $X_i = X_i^e + u_i$.

Исследователи холдинга хотят оценить секретные коэффициенты β_0 и β_1 с помощью простой регрессии $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ методом наименьших квадратов.

- а) Найдите предел по вероятности для \hat{eta}_1 и \hat{eta}_0 . Являются ли оценки состоятельными?
- б) Если оценки не являются состоятельными, то по шагам опишите алгоритм получения состоятельных оценок. Если алгоритм требует получения дополнительных переменных, то укажите, какими свойствами они должны обладать.

	Фамилия,	имя, н	омер і	групп	іы:							
	Внесите сюда ответы на тест:											
	Вопрос	1	2	3	4	5	6	7	8	9	10	-
	Ответ		<u> </u>								<u> </u>	
		ля про	веряю	щих	работу	y:						-
	Тест	1	2		3	4	5		Ито	го		
Вог	трос 1 . Сты	оденти	ізирон	ваннь	іе оста	атки р	егресс	сии и	споль	зуютс	Я	
A	$oldsymbol{A}$ в тесте Саргана $oldsymbol{D}$ в методе главных компонент											
I	В на первог	м шаге	двухі	шагоі	вого М	ІНК			E	цля вы	іявлен	ия выбросов
(на перв			при	прове	едени	и тес	та		т		
	Годфельд	а-кван	ідта						F	1 ет ве	рного	ответа.
	_	_		прон	верки 1	валид	ности	инст	румен	нтов м	онжог	использовать только в том случае,
	если число инструментов $egin{array}{cccccccccccccccccccccccccccccccccccc$											
1	В больше ч переменн		эндог	сеннь	ıx [впада ых пер			м экзо	оген-	\boxed{F} Нет верного ответа.
мет		мальн	ого пр	оавдо								помимо константы, оцениваемую $\hat{eta}_3/se(\hat{eta}_3)$ для проверки значимо-
A	Λ χ^2 -распре	еделен	ие с о,	дной	степе	нью с	вободн	ы	D t	-распј	ределе	ение с $n-5$ степенями свободы
I	$B \mid t$ -распред	елени	e c <i>n</i> c	тепен	нями с	вобод	цы		E	симп	тотиче	ески нормальное распределение
($ \subset t$ -распред	елени	e c <i>n</i> –	- 6 ст	епеня	ми св	ободы					ответа.
												$Y_i=eta_0+eta_1X_{i1}+\ldots+eta_kX_{ik}+arepsilon_i$ свнать оценки параметров
P	А] модели с модели б	_			и [олько м ий	10де л	іи без	огран	иче-	[E] только модели с ограничениями
I	В регрессии кроме ког		_	актор	ы	D pe	егресси	и на	конст	ганту		$oxedsymbol{F}$ Нет верного ответа.

Вопрос 5 . В линейной модели $Y_i=eta_0+eta_1X_i+arepsilon_i$ стохастический регрессор и случайный член $arepsilon_i$ ко	ppe-
лированы. Состоятельные оценки коэффициентов можно получить с помощью	

 \overline{A} метода инструментальных переменных

 \overline{D} метода главных компонент

|B| метода наименьших квадратов

|E| обобщённого МНК

 \overline{C} взвешенного МНК

 \overline{F} Her верного ответа.

Вопрос 6. Использование скорректированных стандартных ошибок Уайта при гомоскедастичности приведет к

- А понижению эффективности МНК оценок коэффициентов
- [D] получению состоятельной оценки дисперсии случайной ошибки
- В смещённости МНК оценок коэффициентов
- [E] повышению эффективности МНК оценок коэффициентов
- С несостоятельности МНК оценок коэффициентов
- \overline{F} Нет верного ответа.

Вопрос 7. Для модели $Y_i = \beta X_i + \varepsilon_i$ с $\mathrm{E}(\varepsilon_i) = 0$ известно, что оценка $\hat{\beta} = \frac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n X_i}$ обладает наименьшей дисперсией среди линейных несмещённых оценок.

Дисперсии $Var(\varepsilon_i)$ пропорциональны

 $A \sqrt{X_i}$

 $C X_i^2$

 $|E| X_i$

 $B 1/X_i$

 $D 1/X_i^2$

 \overline{F} Нет верного ответа.

Вопрос 8. При выполненных условиях регулярности оценки метода максимального правдоподобия могут **НЕ** являться

 A
 состоятельными

С асимптотически ными

нормаль-

Е несмещёнными

В асимптотически эффективными

D инвариантными

 \overline{F} Нет верного ответа.

Вопрос 9. Рассмотрим модель $Y_i=\beta_0+\beta_z Z_i+\beta_w W_i+\varepsilon$ при гетероскедастичности. Стандартная ошибка МНК-оценки, рассчитываемая по формуле $se(\hat{\beta}_w)=\sqrt{RSS\cdot(X'X)_{33}^{-1}/(n-3)}$, является

А смещённой

- С смещённой вниз
- *Е* несмещённой

В состоятельной

- \overline{D} смещённой вверх
- F Heт верного ответа.

Вопрос 10. Переменная Y_i принимает значения 0 или 1. Логарифмическая функция правдоподобия, используемая для оценивания логит и пробит моделей, имеет вид

- A $\ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) (1 Y_i) \ln(1 F(X_i \beta))$
- $B \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) + (1 Y_i) \ln(1 F(X_i \beta))$
- $\boxed{C} \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) \cdot (1 Y_i) \ln(1 F(X_i \beta))$
- $D \ln L = \sum_{i=1}^{n} Y_i \ln(1 F(X_i \beta)) + (1 Y_i) \ln F(X_i \beta)$
- $\boxed{E} \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) (1 Y_i) \ln F(X_i \beta)$
- |F| Нет верного ответа.

Фамилия, имя, ном	ер группы:		

1. Сидоров Вова оценивает два неизвестных параметра: a — где стоят ракеты, b — где продают конфеты. Вова оценил параметры методом максимального правдоподобия и получил оценки $\hat{a}=1.5,\,\hat{b}=2.5.$ Затем Вова решил проверить гипотезу H_0 : a=1 и b=2.

Значения функции правдоподобия, градиента и оценённой информации Фишера в двух точках частично приведены в таблице:

Точка	$\ell(a,b)$	(ℓ_a',ℓ_b')	\hat{I}_F
a = 1.5, b = 2.5	-200	?	$ \begin{pmatrix} 16 & -1 \\ -1 & 20 \\ 10 & -1 \\ -1 & 15 \end{pmatrix} $
a = 1, b = 2	-250	(2, -1)	$\begin{pmatrix} 10 & -1 \\ -1 & 15 \end{pmatrix}$

Помогите Сидорову Вове!

- а) Заполните пропуск в таблице;
- б) Проверьте гипотезу H_0 тремя способами: с помощью LR, LM и W статистик.
- 2. По 200 наблюдениям исследователь Иннокентий оценил модель логистической регрессии для вероятности сдать экзамен по метрике:

$$\hat{\mathbb{P}}(Y_i = 1) = \Lambda(1.5 + 0.3X_i - 0.4D_i),$$

где Y_i — бинарная переменная равная 1, если студент сдал экзамен; X_i — количество часов подготовки студента; D_i — бинарная переменная равная 1, если студент пробовал пиццу «четыре сыра» в новой столовой.

$$\begin{pmatrix}
0.04 & -0.01 & 0 \\
-0.01 & 0.01 & 0 \\
0 & 0 & 0.09
\end{pmatrix}$$

- а) Проверьте гипотезу о том, что количество часов подготовки не влияет на вероятность сдать экзамен.
- б) Посчитайте предельный эффект увеличения каждого регрессора на вероятность сдать экзамен для студента не пробовавшего пиццу и готовившегося 24 часа. Кратко, одной-двумя фразами, прокомментируйте смысл полученных цифр.
- в) При каком значении D_i предельный эффект увеличения X_i на вероятность сдать экзамен максимален, если $X_i=20$?

$$X'X = \begin{pmatrix} 29 & 0 & 0 \\ 0 & 50 & 10 \\ 0 & 10 & 80 \end{pmatrix}$$

- а) Сколько наблюдений было у Билла Гейтса?
- б) Найдите выборочное среднее переменных X, W и Y.
- в) Постройте 95%-й доверительный интервал для значения зависимой (индивидуальный прогноз) переменной при X=1 и W=3.
- 4. Величины $X_1,...,X_{100}$ распределены независимо и равномерно на отрезке [-3a;5a]. Оказалось, что $\sum_{i=1}^{100}X_i=200$ и $\sum_{i=1}^{100}|X_i|=500$.
 - а) Оцените параметр a методом моментов, используя момент $E(X_i)$.
 - б) Оцените параметр a обобщённым методом моментов, используя моменты $\mathrm{E}(X_i)$ и $\mathrm{E}(|X_i|)$, и взвешивающую матрицу $W=\begin{pmatrix} 3 & 0 \\ 0 & 64 \end{pmatrix}$.
- 5. Контора «Рога и Копыта» определяет необходимый запас рогов, Y, в зависимости от ожидаемых годовых продаж рогов, X^e , по формуле $Y_i = \beta_0 + \beta_1 X_i^e$. Коэффициенты β_0 и β_1 держатся в строжайшей тайне!

В распоряжении холдинга «Рог изобилия» оказались данные по запасам рогов, Y, и фактическим годовым продажам рогов, X, конторы «Рога и Копыта». Фактические продажи рогов связаны с ожидаемыми уравнением $X_i = X_i^e + u_i$.

Исследователи холдинга хотят оценить секретные коэффициенты β_0 и β_1 с помощью простой регрессии $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ методом наименьших квадратов.

- а) Найдите предел по вероятности для \hat{eta}_1 и \hat{eta}_0 . Являются ли оценки состоятельными?
- б) Если оценки не являются состоятельными, то по шагам опишите алгоритм получения состоятельных оценок. Если алгоритм требует получения дополнительных переменных, то укажите, какими свойствами они должны обладать.

Внесите сюда ответы на тест:											
Вопрос	1	2	3	4	5	6	7	8	9	10	
Ответ											_
	ля про	веряю	щих р	работу	y:						_
Тест	1	2		3	4	5	i	Ито	го		
трос 1 . Расс	мотри	м мод	ель Y_i	$=\beta_0$	$+\beta_z Z$	$i + \beta_u$	$_{v}W_{i}$ +	- ε при	и гетеј	роске,	дастичности. Стандартная ошибка
ІК-оценки, р	ассчи	тываеі	мая по	о форг	муле s	$e(\hat{\beta}_w)$	=	RSS	$\cdot (X'X)$	$(1)^{-1}_{33}/(1)^{-1}_{33}$	$\overline{(n-3)}$, является
А смещённ	ой вве	px			C cm	ещён	ной				E состоятельной
В несмещё	нной				\overline{D} cm	ещён	ной в	вниз			F Het верного ответа.
				L							
прос 2. При являться	выпол	неннь	ах усл	овиях	к регул	ярно	сти о	ценки	метод	ца маі	ксимального правдоподобия могу
асимптот	ипеск	w ado	herrui	R- [C	тоят	тьнь	тми			<i>E</i> инвариантными
ными	ическ	и эфе	ректи		_						<u>г</u>
В несмещё	ннымі	1				импто ими	тиче	СКИ	норм	аль-	F Het верного ответа.
прос 3 . Сты	оденті	изиров	занны	е оста	атки ре	erpeco	сии и	споль	зуютс	Я	
А в методе	главні	ых ком	поне	НТ				D B	тесте	е Сарг	тана
								<i>E</i> I	іа пер	вом п	иаге двухшагового МНК
	\overline{C} для выявления выбросов \overline{F} Нет верного ответа.								Іет ве	рного	ответа.
Годфельд 	ления	выорс							ITOD M		
Годфельд Для выяв	Сарга	- на для	пров	ерки 1	валидн	ности	инст	румен	IIOB M	онжо	использовать только в том случае
Годфельд	Сарга струме г с чис	на для нтов лом эн		_	<u>С</u> ме:		чис	трумен ла эк			E меньше числа эндогенных переменных

Вопрос 5. Уоррен Баффет проверяет гипотезу H_0 : $g(\beta)=0$ для модели $Y_i=\beta_0+\beta_1X_{i1}+\ldots+\beta_kX_{ik}+\beta_kX_{ik}$	ε_i (
помощью теста множителей Лагранжа. Для теста Уоррену необходимо знать оценки параметров	

- A регрессии на все факторы кроме константы
- модели с ограничениями, и модели без ограничений
- |E| только модели без ограничений

- B только модели с ограничеимкин
- D регрессии на константу
- Нет верного ответа.

Вопрос 6. В линейной модели $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ стохастический регрессор и случайный член ε_i коррелированы. Состоятельные оценки коэффициентов можно получить с помощью

A метода наименьших квадра-TOB

переменных

|E| метода главных компонент

взвешенного МНК

B метода инструментальных

- обобщённого МНК
- F | Нет верного ответа.

Вопрос 7. Рассмотрим логистическую регрессию с пятью регрессорами помимо константы, оцениваемую методом максимального правдоподобия по n наблюдениям. Статистика $\hat{eta}_3/se(\hat{eta}_3)$ для проверки значимости коэффициента β_3 имеет

- $A \mid t$ -распределение с n степенями свободы
- $D \mid \chi^2$ -распределение с одной степенью свободы
- $B \mid t$ -распределение с n-5 степенями свободы
- асимптотически нормальное распределение
- $C \mid t$ -распределение с n-6 степенями свободы
- F \mid Нет верного ответа.

Вопрос 8. Для модели $Y_i=\beta X_i+arepsilon_i$ с $\mathrm{E}(arepsilon_i)=0$ известно, что оценка $\hat{eta}=rac{\sum_{i=1}^nY_i}{\sum_{i=1}^nX_i}$ обладает наименьшей дисперсией среди линейных несмещённых оценок.

Дисперсии $Var(\varepsilon_i)$ пропорциональны

 $A \mid 1/X_i^2$

 $E \mid X_i$

 $B 1/X_i$

F Нет верного ответа.

Вопрос 9. Переменная Y_i принимает значения 0 или 1. Логарифмическая функция правдоподобия, используемая для оценивания логит и пробит моделей, имеет вид

$$A \ln L = \sum_{i=1}^{n} Y_i \ln(1 - F(X_i\beta)) + (1 - Y_i) \ln F(X_i\beta)$$

$$\boxed{B} \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) \cdot (1 - Y_i) \ln(1 - F(X_i \beta))$$

$$\boxed{C} \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) - (1 - Y_i) \ln F(X_i \beta)$$

$$D \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) - (1 - Y_i) \ln(1 - F(X_i \beta))$$

$$E \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) + (1 - Y_i) \ln(1 - F(X_i \beta))$$

|F| Нет верного ответа.

Вопрос 10. Использование скорректированных стандартных ошибок Уайта при гомоскедастичности приведет к

- |A| понижению эффективности МНК оценок коэффициентов
- \boxed{D} повышению эффективности МНК оценок коэффициентов
- В несостоятельности МНК оценок коэффициентов
- E получению состоятельной оценки дисперсии случайной ошибки
- C смещённости МНК оценок коэффициентов
- \overline{F} Нет верного ответа.

Фамилия, имя, ном	ер группы:		

1. Сидоров Вова оценивает два неизвестных параметра: a — где стоят ракеты, b — где продают конфеты. Вова оценил параметры методом максимального правдоподобия и получил оценки $\hat{a}=1.5,\,\hat{b}=2.5.$ Затем Вова решил проверить гипотезу H_0 : a=1 и b=2.

Значения функции правдоподобия, градиента и оценённой информации Фишера в двух точках частично приведены в таблице:

Точка	$\ell(a,b)$	(ℓ_a',ℓ_b')	\hat{I}_F
a = 1.5, b = 2.5	-200	?	$ \begin{pmatrix} 16 & -1 \\ -1 & 20 \end{pmatrix} $
a = 1, b = 2	-250	(2, -1)	$ \begin{pmatrix} 16 & -1 \\ -1 & 20 \end{pmatrix} $ $ \begin{pmatrix} 10 & -1 \\ -1 & 15 \end{pmatrix} $

Помогите Сидорову Вове!

- а) Заполните пропуск в таблице;
- б) Проверьте гипотезу H_0 тремя способами: с помощью LR, LM и W статистик.
- 2. По 200 наблюдениям исследователь Иннокентий оценил модель логистической регрессии для вероятности сдать экзамен по метрике:

$$\hat{\mathbb{P}}(Y_i = 1) = \Lambda(1.5 + 0.3X_i - 0.4D_i),$$

где Y_i — бинарная переменная равная 1, если студент сдал экзамен; X_i — количество часов подготовки студента; D_i — бинарная переменная равная 1, если студент пробовал пиццу «четыре сыра» в новой столовой.

$$\begin{pmatrix}
0.04 & -0.01 & 0 \\
-0.01 & 0.01 & 0 \\
0 & 0 & 0.09
\end{pmatrix}$$

- а) Проверьте гипотезу о том, что количество часов подготовки не влияет на вероятность сдать экзамен.
- б) Посчитайте предельный эффект увеличения каждого регрессора на вероятность сдать экзамен для студента не пробовавшего пиццу и готовившегося 24 часа. Кратко, одной-двумя фразами, прокомментируйте смысл полученных цифр.
- в) При каком значении D_i предельный эффект увеличения X_i на вероятность сдать экзамен максимален, если $X_i=20$?

$$X'X = \begin{pmatrix} 29 & 0 & 0 \\ 0 & 50 & 10 \\ 0 & 10 & 80 \end{pmatrix}$$

- а) Сколько наблюдений было у Билла Гейтса?
- б) Найдите выборочное среднее переменных X, W и Y.
- в) Постройте 95%-й доверительный интервал для значения зависимой (индивидуальный прогноз) переменной при X=1 и W=3.
- 4. Величины $X_1,...,X_{100}$ распределены независимо и равномерно на отрезке [-3a;5a]. Оказалось, что $\sum_{i=1}^{100}X_i=200$ и $\sum_{i=1}^{100}|X_i|=500$.
 - а) Оцените параметр a методом моментов, используя момент $E(X_i)$.
 - б) Оцените параметр a обобщённым методом моментов, используя моменты $\mathrm{E}(X_i)$ и $\mathrm{E}(|X_i|)$, и взвешивающую матрицу $W=\begin{pmatrix} 3 & 0 \\ 0 & 64 \end{pmatrix}$.
- 5. Контора «Рога и Копыта» определяет необходимый запас рогов, Y, в зависимости от ожидаемых годовых продаж рогов, X^e , по формуле $Y_i = \beta_0 + \beta_1 X_i^e$. Коэффициенты β_0 и β_1 держатся в строжайшей тайне!

В распоряжении холдинга «Рог изобилия» оказались данные по запасам рогов, Y, и фактическим годовым продажам рогов, X, конторы «Рога и Копыта». Фактические продажи рогов связаны с ожидаемыми уравнением $X_i = X_i^e + u_i$.

Исследователи холдинга хотят оценить секретные коэффициенты β_0 и β_1 с помощью простой регрессии $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ методом наименьших квадратов.

- а) Найдите предел по вероятности для \hat{eta}_1 и \hat{eta}_0 . Являются ли оценки состоятельными?
- б) Если оценки не являются состоятельными, то по шагам опишите алгоритм получения состоятельных оценок. Если алгоритм требует получения дополнительных переменных, то укажите, какими свойствами они должны обладать.

	Фамилия, имя, номер группы:											
	Внесите сюда ответы на тест:											
	Вопрос	1	2	3	4	5	6	7	8	9	10	_
	Ответ	<u> </u>							<u> </u>			
	Табличка для проверяющих работу:											
	Тест	Гест 1 2 3		3	4		5 Итого					
	трос 1. При : являться	выпол	іненн	ых ус.	повия	х регу.	лярнс	ости о	ценки	и мето	да мак	ксимального правдоподобия могут
P	$egin{array}{cccccccccccccccccccccccccccccccccccc$											
	$oxedsymbol{B}$ асимптотически нормальными				D состоятельными						$ \boxed{F} $ Нет верного ответа.	
Вопрос 2. Уоррен Баффет проверяет гипотезу H_0 : $g(\beta)=0$ для модели $Y_i=\beta_0+\beta_1X_{i1}+\ldots+\beta_kX_{ik}+\varepsilon_i$ с помощью теста множителей Лагранжа. Для теста Уоррену необходимо знать оценки параметров												
A	$oxedsymbol{A}$ только модели без ограничений						егресс	ии на	конс	танту		E модели с ограничениями, и модели без ограничений
1	В регрессии на все факторы кроме константы				$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						F Heт верного ответа.	
	трос 3. Тест и число инс			я про	верки	валид	ности	и инст	труме	нтов м	онжои	использовать только в том случае,
P	A меньше числа эндогенных C переменных							ает с ч ремен		м эндо	оген-	E больше числа эндогенных переменных
1	B совпадает с числом экзогенных переменных						е чис нных	ла эі	кзоген	ных	$ \overline{F} $ Heт верного ответа.	
дис	прос 4. Для персией сре Дисперсии	еди ли	нейн	ых не	смещ	ённых			стно, ч	что оп	ценка /	$\hat{eta} = rac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n X_i}$ обладает наименьшей
A	$\sqrt{X_i}$					C 1/	X_i					$oxed{E} \ 1/X_i^2$
1	$oxed{B} X_i^2$				D X	$ig] \ X_i$					\overline{F} Нет верного ответа.	

Вопрос 5. Стьюдентизированные остатки регрессии используются

A в методе главных компонент

 \boxed{D} для выявления выбросов

 \boxed{B} на первом шаге двухшагового МНК

[*E*] на первом шаге при проведении теста Годфельда-Квандта

С в тесте Саргана

 \overline{F} Нет верного ответа.

Вопрос 6. В линейной модели $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ стохастический регрессор и случайный член ε_i коррелированы. Состоятельные оценки коэффициентов можно получить с помощью

|A| метода наименьших квадратов

D взвешенного МНК

 \overline{B} метода инструментальных переменных

Е метода главных компонент

С обобщённого МНК

 \overline{F} Нет верного ответа.

Вопрос 7. Использование скорректированных стандартных ошибок Уайта при гомоскедастичности приведет к

 $A \mid$ смещённости МНК оценок коэффициентов

D понижению эффективности МНК оценок коэффициентов

В повышению эффективности МНК оценок коэффициентов

[E] несостоятельности МНК оценок коэффициентов

С получению состоятельной оценки дисперсии случайной ошибки

F Нет верного ответа.

Вопрос 8. Переменная Y_i принимает значения 0 или 1. Логарифмическая функция правдоподобия, используемая для оценивания логит и пробит моделей, имеет вид

$$\boxed{A} \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) - (1 - Y_i) \ln F(X_i \beta)$$

$$B \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) \cdot (1 - Y_i) \ln(1 - F(X_i \beta))$$

$$C \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) + (1 - Y_i) \ln(1 - F(X_i \beta))$$

$$\boxed{D} \ln L = \sum_{i=1}^{n} Y_i \ln F(X_i \beta) - (1 - Y_i) \ln(1 - F(X_i \beta))$$

$$E \ln L = \sum_{i=1}^{n} Y_i \ln(1 - F(X_i \beta)) + (1 - Y_i) \ln F(X_i \beta)$$

 \overline{F} Нет верного ответа.

Вопрос 9. Рассмотрим модель $Y_i=\beta_0+\beta_z Z_i+\beta_w W_i+\varepsilon$ при гетероскедастичности. Стандартная ошибка МНК-оценки, рассчитываемая по формуле $se(\hat{\beta}_w)=\sqrt{RSS\cdot(X'X)_{33}^{-1}/(n-3)}$, является

 A
 смещённой

C состоятельной

Е смещённой вверх

В несмещённой

 \overline{D} смещённой вниз

F Нет верного ответа.

Вопрос 10. Рассмотрим логистическую регрессию с пятью регрессорами помимо константы, оцениваемую методом максимального правдоподобия по n наблюдениям. Статистика $\hat{\beta}_3/se(\hat{\beta}_3)$ для проверки значимости коэффициента β_3 имеет

 $A \mid \chi^2$ -распределение с одной степенью свободы

D t-распределение с n-6 степенями свободы

В асимптотически нормальное распределение

 $\boxed{E} \ t$ -распределение с n-5 степенями свободы

|C| t-распределение с n степенями свободы

 \overline{F} Нет верного ответа.

Фамилия, имя, номер группы:	

1. Сидоров Вова оценивает два неизвестных параметра: a — где стоят ракеты, b — где продают конфеты. Вова оценил параметры методом максимального правдоподобия и получил оценки $\hat{a}=1.5,\,\hat{b}=2.5.$

Значения функции правдоподобия, градиента и оценённой информации Фишера в двух точках частично приведены в таблице:

Точка	$\ell(a,b)$	(ℓ_a',ℓ_b')	\hat{I}_F
a = 1.5, b = 2.5	-200	?	$ \begin{pmatrix} 16 & -1 \\ -1 & 20 \\ 10 & -1 \\ -1 & 15 \end{pmatrix} $
a = 1, b = 2	-250	(2, -1)	$\begin{pmatrix} 10 & -1 \\ -1 & 15 \end{pmatrix}$

Затем Вова решил проверить гипотезу H_0 : a = 1 и b = 2.

Помогите Сидорову Вове!

- а) Заполните пропуск в таблице;
- б) Проверьте гипотезу H_0 тремя способами: с помощью LR, LM и W статистик.
- 2. По 200 наблюдениям исследователь Иннокентий оценил модель логистической регрессии для вероятности сдать экзамен по метрике:

$$\hat{\mathbb{P}}(Y_i = 1) = \Lambda(1.5 + 0.3X_i - 0.4D_i),$$

где Y_i — бинарная переменная равная 1, если студент сдал экзамен; X_i — количество часов подготовки студента; D_i — бинарная переменная равная 1, если студент пробовал пиццу «четыре сыра» в новой столовой.

$$\begin{pmatrix}
0.04 & -0.01 & 0 \\
-0.01 & 0.01 & 0 \\
0 & 0 & 0.09
\end{pmatrix}$$

- а) Проверьте гипотезу о том, что количество часов подготовки не влияет на вероятность сдать экзамен.
- б) Посчитайте предельный эффект увеличения каждого регрессора на вероятность сдать экзамен для студента не пробовавшего пиццу и готовившегося 24 часа. Кратко, одной-двумя фразами, прокомментируйте смысл полученных цифр.
- в) При каком значении D_i предельный эффект увеличения X_i на вероятность сдать экзамен максимален, если $X_i=20$?

$$X'X = \begin{pmatrix} 29 & 0 & 0 \\ 0 & 50 & 10 \\ 0 & 10 & 80 \end{pmatrix}$$

- а) Сколько наблюдений было у Билла Гейтса?
- б) Найдите выборочное среднее переменных X, W и Y.
- в) Постройте 95%-й доверительный интервал для значения зависимой (индивидуальный прогноз) переменной при X=1 и W=3.
- 4. Величины $X_1,...,X_{100}$ распределены независимо и равномерно на отрезке [-3a;5a]. Оказалось, что $\sum_{i=1}^{100}X_i=200$ и $\sum_{i=1}^{100}|X_i|=500$.
 - а) Оцените параметр a методом моментов, используя момент $E(X_i)$.
 - б) Оцените параметр a обобщённым методом моментов, используя моменты $\mathrm{E}(X_i)$ и $\mathrm{E}(|X_i|)$, и взвешивающую матрицу $W=\begin{pmatrix} 3 & 0 \\ 0 & 64 \end{pmatrix}$.
- 5. Контора «Рога и Копыта» определяет необходимый запас рогов, Y, в зависимости от ожидаемых годовых продаж рогов, X^e , по формуле $Y_i = \beta_0 + \beta_1 X_i^e$. Коэффициенты β_0 и β_1 держатся в строжайшей тайне!

В распоряжении холдинга «Рог изобилия» оказались данные по запасам рогов, Y, и фактическим годовым продажам рогов, X, конторы «Рога и Копыта». Фактические продажи рогов связаны с ожидаемыми уравнением $X_i = X_i^e + u_i$.

Исследователи холдинга хотят оценить секретные коэффициенты β_0 и β_1 с помощью простой регрессии $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ методом наименьших квадратов.

- а) Найдите предел по вероятности для \hat{eta}_1 и \hat{eta}_0 . Являются ли оценки состоятельными?
- б) Если оценки не являются состоятельными, то по шагам опишите алгоритм получения состоятельных оценок. Если алгоритм требует получения дополнительных переменных, то укажите, какими свойствами они должны обладать.