NACA RM SE58E

CONFIDENTIA

Restriction/Classification Cancelled

RM SE58E26

RESEARCH MEMORANDUM

for the

Air Research and Development Command, U. S. Air Force

INVESTIGATION OF A PROTOTYPE IROQUOIS TURBOJET ENGINE IN

AN ALTITUDE TEST CHAMBER

COORD, NO. AF-P-6

By John E. McAulay and Donald E. Groesbeck

Lewis Flight Propulsion Laboratory Cleveland, Ohio

Restriction/Classification Cancelled DOCUMENT

National Defense of the United States within the meaning of the sepionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to unsuthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

WASHINGTON

JUL 2-8 1958

FILE COPY
To be returned to

the first of the Periodal

Auvisor (gr Aerunasias) Mashington, v. C.

161

CONFIDENTIAL

INVESTIGATION OF A PROTOTYPE IROQUOIS TURBOJET ENGINE IN

AN ALTITUDE TEST CHAMBER

COORD. NO. AF-P-6

By John E. McAulay and Donald E. Groesbeck

ABSTRACT

Operation of the original engine configuration disclosed a severe compressor stall problem at high altitude, which was largely attributed to a radial flow distortion entering the high-pressure compressor. Engine modifications for eliminating or alleviating the stall problem were investigated. These included use of variable high-pressure compressor inlet guide vanes, increased turbine-stator areas, and minor alterations in both the low- and high-pressure compressor rotors.

INDEX HEADINGS

Engines, Turbojet	3.1.3
Combustion - Turbine Engines	3.5.2.2
Compressors - Axial Flow	3.6.1.1
Turbines - Axial Flow	3.7.1.1

(Title, confidential) W_n

CONFIDENCIAL

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

for the

Air Research Development Command, U. S. Air Force

INVESTIGATION OF A PROTOTYPE IROQUOIS TURBOJET ENGINE IN

AN ALTITUDE TEST CHAMBER*

COORD. NO. AF-P-6

By John E. McAulay and Donald E. Groesbeck

SUMMARY

An altitude investigation was conducted to determine the performance and operating characteristics of a prototype Iroquois turbojet engine. Steady-state engine data were obtained over a range of Reynolds number indices from 1.00 to 0.17, inlet-air temperatures from -40° to 340° F, and simulated Mach numbers from 0.9 to 2.3. In addition, engine-operating limits, including transient and steady-state compressor stall, were obtained.

Operation of the original engine configuration disclosed a severe compressor-stall problem at high altitude, which markedly reduced the engine-operating range and raised serious doubts as to the practical ability of the engine to operate at Reynolds number indices below 0.45 at moderate-to-high corrected engine speeds. Examination of the component data disclosed that the reduced engine-operating range was a result of a decrease in the high-pressure compressor stall margin, which was largely due to a severe radial-flow distortion entering the compressor. Engine modifications for eliminating or alleviating the stall problem were investigated. These included use of variable high-pressure compressorinlet guide vanes, increased turbine-stator areas, and minor alterations in both the low- and high-pressure compressor rotors. To the degree that they were used, these engine modifications did not produce an engine configuration that was completely stall-free over the desired range of flight conditions. The use of the modifications, however, did establish that an increased turbine-stator area greatly alleviates the stall problem and that compressor modifications short of complete redesign are, at best, hopeful solutions to the problem.

INTRODUCTION

An investigation was conducted in an altitude test chamber of the NACA Lewis laboratory at the request of the Air Research Development Command, U. S. Air Force in order to evaluate the performance and operating characteristics of a prototype twin-spool Iroquois turbojet engine. The

evaluation of the original engine configuration revealed a severe compressor stall problem at high altitude, which resulted in reduced engine-operating limits at high altitudes and low inlet-air temperatures. In an effort to increase the compressor stall margin and thereby extend the operating range of the engine, the engine manufacturer developed two engine modifications. The first modified engine (A) included a set of variable guide vanes at the inlet of the high-pressure compressor and also included turbine-stators of increased area. A second modified engine (B) was also investigated that incorporated the same changes as the first engine modification, and also included minor alterations in the compressor.

Performance and operating limits of the engines were investigated over a range of Reynolds number indices from 1.00 to 0.17, inlet-air temperatures from -40° to 340° F, and simulated flight Mach numbers from 0.9 to 2.3. Data are presented herein that give the operating limits of the original engine configuration and that show how seriously these reduced limits affect the engine performance and operating characteristics. The data are then examined in order to determine the reason for the reduced engine operating limits. Finally, the effects of the modifications on the engine operating limits and performance are evaluated.

All the steady-state engine data obtained are presented in tabular form. Symbols and methods of performance calculation used in this report are given in appendixes A and B, respectively.

APPARATUS

Engine and Installation

The fully developed Iroquois turbojet engine is a two-spool engine designed to produce 20,000 pounds of thrust, without afterburning, at static sea-level conditions. A prototype version of the engine, shown installed in the altitude test chamber in figure 1, was investigated at the Lewis Laboratory. The prototype engine was expected to deliver about 90 percent of the rated thrust of the fully developed engine. Maximum allowable high- and low-pressure rotor speeds were 7800 and 5740 rpm, respectively. The limiting exhaust-gas temperature was 1735° R as measured by 25 thermocouples located immediately downstream of the turbine. The relation between this temperature measurement and what is considered a more accurate measurement of exhaust-gas temperature, which was measured by 20 thermocouples located in a more favorable place further downstream in the afterburner, is shown in figure 2.

The basic engine consists of a three-stage axial-flow low-pressure compressor of transonic design driven by a single-stage turbine, a seven-stage axial-flow high-pressure compressor driven by a two-stage turbine, an annular vaporizing combustion chamber, an afterburner with a fully

modulated convergent exhaust nozzle, and an ejector, which was rendered ineffective for this investigation. The dry weight of the complete engine was approximately 4500 pounds.

Original engine configuration. - Two engines were investigated (AX 102/1B and AX 103/1) that were basically the same and are classified as engines of the original configuration. One, the AX 102/1B, had shroud cutouts in the first- and third-stage compressor-rotor blade tips in which a plastic shroud ring was fitted. In addition, the fourth-stage rotor blades (high-pressure compressor-inlet stage) had a 0.4-inch piece cut from the blade tips to increase the natural frequency of the blades above the excitation frequency in the high engine speed range. The AX 103/1 engine did not have the shroud cut-outs and employed full-length fourth-stage rotor blades.

Modified engine configuration A. - The modified engine configuration A was represented by engine \overline{AX} 103/2 and differed from the original engine configuration (AX 103/1) in the following respects:

- (1) Increased turbine stator areas in order to reduce the engineoperating pressure ratio
 - (a) First- and second-stage areas increased $3\frac{1}{2}$ percent
 - (b) Third-stage area increased 5 percent
- (2) Friable plastic coating on the first- and second-stator tip seals to reduce clearance
- (3) Addition of variable guide vanes at the high-pressure compressor inlet to increase the mass-flow capacity, to reduce velocity profile entering the high-pressure compressor, and to give another degree of freedom in operation of the engine (additional details of guide vanes given in fig. 3).

(The guide vanes used were originally designed for purposes other than what has been mentioned and were employed as a possible "quick fix.")

Modified engine configuration B. - The modified configuration B was represented by engine AX 102/3C and differed from the modified engine configuration A as follows:

(1) The first-stage rotor blades were restaggered -3° and given an increase in twist varying linearly from 0° at a station approximately 20 percent of the blade height to 5° at the blade tip. This modification was intended to: (a) increase the blade root pressure ratio and (b) decrease the blade tip pressure ratio while maintaining the same weight flow.

- (2) The third-stage rotor blades were completely redesigned with a thickened root, thinned tip, tapered chord, and changed profile. The purpose of the rotor blade redesign was to strengthen the blades.
- (3) The high-pressure compressor blade tip clearances were reduced by means of plastic on the stator spacers.

The altitude test chamber in which the engine was installed permitted the simulation of a wide range of flight conditions by proper control of valves, which allowed the engine-inlet and exhaust pressures to be set at the desired values. Modulation of gas-fired heaters or use of an expansion turbine produced the required inlet-air temperature at the engine inlet.

Instrumentation

A summary of the steady-state instrumentation installed in the engine is given in figure 4. The pressures were recorded by a digital automatic multiple-pressure recorder. The temperatures were recorded by self-balancing automatic digital potentiometers. Engine thrust was measured by the facility balance system.

Engine vibration was monitored by pickups mounted on the low pressure, high pressure, and turbine bearing housings and on the rear frame. Compressor blade stresses were measured by strain gages on the rotor blades of the first and third stages using a slipring arrangement. The stresses were permanently recorded and were also visually monitored.

Pressure transducers were also used to record the transient variation of pressures in the first, fourth, and ninth stages of the high-pressure compressor.

PROCEDURE

The following table gives the conditions at which steady-state engine performance data were obtained. Generally, each constant exhaust-nozzle area operating line was established by obtaining four to six data points. Except in one instance in which limited data were obtained at an inlet temperature of 240° F and over (in table IV), the measured exhaust-nozzle areas presented in this report are applicable to a tailpipe configuration, which consisted of instrumentation rakes at the turbine outlet and nozzle inlet and no flameholder.

Configu-	Nominal	High-	Simulated	Simulated	Nominal	Number of
	Reynolds				inlet air	constant
	number	compressor-	ft	number	tempera-	nozzle-area
	index	inlet guide			ture,	operating
	lincon	vane angle,			OFF	lines
		deg				
		ucg				
Original	1.09		Sea level	0	85 to 105	1 .
	. 45	*	35,000	.9	15	4
	Ī		38,500	.9	-40	2
			58,000	2.0	240	2
	.37		50,000	1.5	106	1
	.17		55,000	.9	15	2 plus
'	• 1		33,000	"	10	additional
		÷			,	single
-						points
						POLITOR
Modified	-		120			
engine A	0.37	- 5	42,000	0.9	-40	3
		0				3
		5				l plus
	1	*				additional
				1		single
	1					points
	.17	- 5	58,000			3
		0				3
		5			↓	3
↓		5	55,000	\	15	individual
•	,					points
Modified			7.4.000		45 to 60	3
engine B	1.00	0	14,000	0.9		4
	. 65	0	24,000	.9	40	1 -
	.37	0	66,000	2.3	340	l data
		· · · · · · · · · · · · · · · · · · ·				point
		• 5	42,000	.9	-40	$\frac{4}{}$
		0				4
		- 5	1	•	\	4
		0	58,000	2.0	240	1
	.27	0	47,500	• 9	-40	4
+	.17	0	58,000	.9	-40	1 data
						point

The pertinent engine performance is given in tables I to IV.

In addition to the steady-state data taken, engine-stall data were obtained. Engine quasi steady-state stall points were obtained, in general, wherever stall occurred within the engine operating envelope.

These data were obtained by slowly changing the engine speed or nozzle area until stall occurred, at which time pertinent data were obtained. Fuel-flow stall was obtained on each of the three engine configurations at the following conditions:

Configuration	Reynolds number index	Simulated altitude, ft	Simulated flight Mach number	Nominal inlet air temperature, OF	Guide vane angle, deg
Original Modified A Modified B	0.45 .37 .37	38,500 42,000 42,000	0.9	15 -40 -40	 -5 0

At the flight conditions given in the preceding table, the high-pressure rotor speed was set at several initial engine speeds between 6200 and 7800 rpm. At these speeds, step increases in engine fuel flow were made. The size of these steps was increased in small increments until compressor stall was encountered.

RESULTS AND DISCUSSION

Original Engine Configuration

Steady-state operating limits. - The steady-state operating limits of the original engine configuration are shown in figure 5 on coordinates of exhaust-nozzle area and high-pressure rotor speed. The operating limits for two engines shown on this figure (see APPARATUS), were obtained at engine-inlet conditions corresponding to Reynolds number indices of 0.45 (fig. 5(a)) and 0.17 (fig. 5(b)) at a simulated flight Mach number of 0.9.

The engine-operating limit curves presented in figure 5(a) for a Reynolds number index of 0.45 indicate that rated engine conditions were not always attained. Rated engine conditions are defined as an engine operating point at which limiting values of high-pressure rotor speed and exhaust-gas temperature are reached. The AX 103/1 engine either stalled at low inlet-air temperatures (-40° F) or reached limiting exhaust-gas temperature and vibration at moderate inlet-air temperatures (15° F) before rated engine conditions were obtained. At an inlet temperature of 15° F, the AX 102/1B engine did reach rated conditions on several occasions but on one occasion it was unable to do so because compressor stall occurred. The occurrence of stall on this occasion, although it was only encountered during one run, is an indication that the compressor stall margin is quite small. A description of the operational limits of the original engine configuration would not be complete without pointing out that in the same Reynolds number index range as that shown in

figure 5(a) but at conditions simulating Mach numbers from 1.5 to 2.0 the compressor stall margin was large and the engine handling characteristics were satisfactory.

Operation of the original engine configuration (AX 103/1) was also restricted by excessive low-pressure compressor blade stresses and engine vibration (fig. 5). These blade stress and engine vibration limits, which were set at absolute maximums of 20,000 pounds per square inch and 8 mils, respectively, for steady-state operation, are associated with the proximity of compressor stall, particularly of the low-pressure compressor.

The data of figure 5(b), which correspond to an altitude of about 56,000 feet at a Mach number of 0.9 at standard inlet-air temperatures, show that there was a large reduction in the operable range of the engine at low engine-inlet Reynolds numbers as compared with the higher Reynolds numbers (fig. 5(a)). Inasmuch as the limits shown in figure 5(b) were obtained at an inlet-air temperature of 15°F, it can readily be seen that rated engine conditions at a Reynolds number index of 0.17 are unattainable except at high inlet-air temperatures (well above 15°F) because compressor stall is a function, among other things, of corrected speed.

Effect of engine-operating limits on maximum attainable thrust. - The manner in which reduced engine-operating limits affect thrust is shown in figure 6. For rated exhaust-nozzle area, the ratio of the maximum attainable net thrust to the maximum thrust that would have been possible if stall-free engine operation existed is shown as a function of the inlet-air temperature for Reynolds number indices of 0.45 and 0.17 at a Mach number of 0.9 for the AX 102/1B engine. At a Reynolds number index of 0.45, the thrust penalty is small and only occurs at inlet-air temperatures below -20° F. (This assumes that the stall line of the AX 102/1B engine was the same as that for the AX 103/1 engine corrected for inlet temperature.) However, at a Reynolds number index of 0.17, the thrust loss becomes quite severe; for example, at the standard inlet-air temperature for Mach 0.9, the thrust loss is about 26 percent.

Engine transient operating margin. - Restriction of the steady-state operating limits and the resultant thrust penalties (figs. 5 and 6) do not in themselves complete the description of the consequences incurred by compressor stall. While the engine may operate in the ranges described in figure 5, a small variation in the method of engine operation or variation in flow entering the engine would drastically curtail engine operation over and above that shown in figures 5 and 6. Consequently, the engine fuel-flow stall margin was determined in order to provide a means of quantitatively measuring the compressor stall margin and, therefore, to measure the ability of the engine to operate satisfactorily even in the presence of variations such as those previously described.

The data given in figure 7 (AX 103/1 engine) show the relation between the steady-state operating line and the engine stall line in terms of fuel flow and high-pressure rotor speed for a Reynolds number index of 0.45 at a Mach number of 0.9 and an inlet air temperature of 15° F. The extrapolation of the stall line was possible because of later steady-state data at an inlet-air temperature of -40° F that disclosed the location of the intersection of the operating line and the stall line (fig. 5(a)). At a high-pressure rotor speed of 96 percent of rated (7490 rpm), a fuel step increase to rated fuel flow would result in compressor stall; therefore, there is very little stall margin available for engine acceleration. Consequently, although the engine is operable at this flight condition, extreme care would have to be taken in setting the acceleration schedule. In addition, nonuniform flow conditions at the engine inlet might markedly reduce the small margin available with uniform inlet flow conditions.

Fuel-step stall data were not taken at a Reynolds number index of 0.17 because a number of random compressor stalls did occur within the steady-state operating envelope shown in figure 5(b). This, along with the small stall margin shown by the data of figure 7, signified that little could be learned by the fuel-step method at low Reynolds number indices. The operating experiences encountered up to this point in the program demonstrated that the original engine configuration was inoperable from a practical viewpoint at Reynolds number indices appreciably below 0.45 and at inlet-air temperatures in the vicinity of those encountered in the tropopause at Mach numbers near 0.9.

One additional piece of information that exemplifies the seriousness of the compressor stall problem was the difficulty in unstalling the compressor once stall had been encountered. This was particularly true at high altitudes where careful throttle manipulation was necessary in order for the compressor to recover from stall without combustor blowout occurring.

Component performance and its relationship to compressor stall problem. - Up to this point in the discussion, the results of altitude operation of the engine have been considered. In order to understand the reasons for the engine behavior it is necessary to study the individual engine components. Since high-pressure compressor stall posed the most serious restriction on engine operation, high-pressure compressor performance is presented in figure 8. The curves shown on this figure represent data obtained from the original engine configuration at Reynolds number indices of 0.45 and 0.17 and also represent data from the manufacturer's rig at an equivalent Reynolds number index of about 0.2. The rig-compressor efficiency data were chosen to be comparable with the engine data at a Reynolds number index of 0.17 as far as the rotor speed - pressure ratio relationship is concerned.

It is immediately obvious that there is a wide disagreement between the engine-compressor and the rig-compressor data. In order to simplify this discussion the effect of changing Reynolds number on the stall line is considered negligible as would be indicated by an extrapolation of the two engine compressor stall lines. This is also borne out by past experience, which has disclosed little or no shift of the stall line with Reynolds number on compressor map coordinates (ref. 1).

The engine-compressor data exhibit a sizable reduction of the pressure ratio of the stall line and airflow of the constant-rotor-speed lines over that of the rig compressor. In searching for an explanation for these differences, the flow conditions entering the high-pressure compressor were examined. The flow entering the rig compressor was essentially uniform. However, the flow entering the engine compressor had a severe radial total-pressure distortion. A typical example of this distortion is shown in figure 9 in which the variation of the ratio of local total pressure to over-all average total pressure across the highpressure compressor inlet annulus is presented. The four radial rakes used in obtaining the data of figure 9 exhibited very little circumferential variation. Past studies of the effect of compressor-inlet distortion on performance demonstrate that the disagreement between the rigand engine-compressor data in figure 8 might well be attributed to the type and magnitude of distortion depicted in figure 9.

Other effects of the flow distortion entering the engine highpressure compressor besides those already mentioned are the positive
slope of the constant rotor speed lines and the lower efficiency of the
compressor. The positive slope of the constant speed lines is in agreement with an observed trend toward reduced distortion as the highpressure compressor pressure ratio is increased at a constant corrected
speed. The reduced efficiency of the high-pressure engine compressor as
compared to that of the rig compressor can be attributed largely to the
wide range of angles of attack over which the radial distortion forces
the first stage of the high-pressure compressor to operate.

Although, as previously stated, there is no discernible effect of Reynolds number on the high-pressure compressor stall line, variation in the Reynolds number does result in a shift of the constant speed line to lower airflow and of the constant nozzle-area operating line to a higher pressure ratio so that at a Reynolds number index of 0.17, the high-pressure compressor stall margin is practically zero. Data obtained by the engine manufacturer indicated that the Reynolds number effect on the compressor was aggravated by the flow distortion.

To continue the study of the component performance, data for the low-pressure compressor are presented in figure 10. The agreement between the rig- and engine-compressor data is in general quite good. Furthermore, the effect of Reynolds number on the stall line and constant speed

lines is, for practical purposes, nonexistent. The shift in the operating line can be traced directly to the Reynolds number effect on the high-pressure compressor. In turn, this movement of the operating line on the low-pressure compressor map is the reasons for the change in low-pressure compressor efficiency with Reynolds number. The rig-compressor efficiency data were chosen to be comparable with the engine data at a Reynolds number index of 0.45, as far as a speed-airflow relation is concerned.

To complete the study of the component performance, the over-all compressor, combustor, and turbine efficiencies are plotted as functions of corrected high-pressure rotor speed in figure 11 for Reynolds number indices of 0.9, 0.45, and 0.17 for the rated exhaust-nozzle area operating lines. These data show that the combustor and turbine efficiencies are relatively high. However, the over-all compressor efficiency reflects the low efficiency of the high-pressure compressor shown in figure 8.

A summary of the study of the component performance of the original engine configuration leads to the following conclusions:

- (1) The effect of nonuniform flow entering the high-pressure compressor markedly reduces the stall margin and efficiency. In addition, the flow distortion results in a more severe Reynolds number effect than would otherwise be present.
 - (2) The turbine and combustor perform at a high level of efficiency.
- (3) As a result of the small stall margin of the high-pressure compressor, particularly above rated corrected high-pressure rotor speed, the engine operates dangerously near stall even at low altitudes.

Consequently, when the steady-state operating line is shifted toward the stall line as the Reynolds number is decreased, the limited high-speed stall margin becomes increasingly small and stall is encountered at low rotor speeds until high-speed engine operation becomes impossible.

At this point in the investigation it was decided that two basic approaches could be taken to improve the stall margin and consequently increase the engine-operating range and improve handling characteristics:

- (a) Raise the stall line by modifying or redesigning the highpressure compressor or improving the flow distribution out of the low-pressure compressor
- (b) Lower the operating line by increasing the turbine stator areas or improving the component efficiencies.

These approaches were attempted in varying degrees by the engine manufacturer and are exemplified by the modified A and B engine configurations. It is noteworthy to mention that the modifications reported herein were necessarily of the quick fix variety.

Modified Engine Configurations A and B and Comparison with

the Original Engine Configuration

In order to simplify the discussion on the modified engine configurations, both of which used the variable high-pressure compressor inlet guide vanes, the effect of the guide vanes on engine performance and operating limits is discussed using the data from the modified B configuration. The effect of the guide vanes was very similar for both modified engine configurations. The three engine configurations are then compared.

Effect of high-pressure compressor inlet guide vanes. - The effect of changing the guide vane angle on the operating limits of the engine is presented in figure 12 for a Reynolds number index of 0.37, inlet-air temperature of -40° F, and a flight Mach number of 0.9. The same coordinates used previously for this purpose are employed, namely exhaust-nozzle area and high-pressure rotor speed. As the guide vane angle is changed from -5° to 5°, the high-pressure rotor speed at which low-pressure rotor speed limit, limiting exhaust-gas temperature, or high-pressure-compressor stall was reached generally increased. This is primarily due to a change in the speed ratio between the low-pressure and high-pressure rotors as can be observed from noting the position of the limiting (constant) low-pressure rotor speed lines.

The effect of guide vane angle on the engine performance is shown in figure 13 in which net thrust and specific fuel consumption are plotted as functions of high-pressure rotor speed for altitudes of 40,000 and 50,000 feet at Mach numbers of 0.9 and 1.5, respectively. The engine performance was calculated from engine pumping characteristics obtained at a Reynolds number index of 0.37 with a choked exhaust nozzle. The curves of figure 13 are plotted for the exhaust-nozzle area that corresponds to the rated area for the particular flight condition under consideration. The data indicate that for a given high-pressure rotor speed there is little to choose from guide vane angles between -5° and 5°, insofar as performance is concerned. This would not be the case if the guide vane angle range was extended beyond these limits. Sea-level tests by the manufacturer showed that guide vane angles greater than 5° resulted in a significant loss in engine performance.

Comparison of engine steady-state limits for the three engine configurations. - In comparing the performance and operating limits of the three engine configurations, high-pressure compressor inlet guide vane

angles of -5° and 0° were chosen for the modified A and B engine configurations, respectively. These angles were selected because it appeared they would give near-optimum engine performance over a wide range of flight conditions and also their operating limits were quite comparable at a Reynolds number index of 0.37. The operating limits of the three configurations are compared in figure 14 on a nozzle area - high-pressure rotor speed basis for Reynolds number indices between 0.45 and 0.17. the case of the original engine configuration (AX 103/1), the lowest operating limits were used. At Reynolds number indices of 0.45 to 0.37 (fig. 14(a)) the operating limits of all configurations were about the same if the engine vibration limits of the original engine configuration were neglected. However, at a lower index (fig. 14(b)) there was a marked difference. In this case, the operating limit curves for the original and modified engine A configurations are given for an index of 0.17. The modified engine B configuration was essentially inoperable at a Reynolds number index of 0.17 and so the operating limits for an index of 0.27 are presented. Thus, the modified engine A configuration was clearly superior in terms of engine operating limits in the lower Reynolds number index range.

Comparison of fuel-flow stall margin for the three engine configurations. - The fuel-flow stall margins of the three engine configurations are presented in figure 15 on coordinates of corrected engine fuel flow and corrected high-pressure rotor speed. The data used to establish the curves were obtained at a Reynolds number index of 0.45, Mach number of 0.9, and rated exhaust-nozzle area. Below a corrected high-pressure rotor speed of about 8100 rpm, the stall margin of the modified engine A configuration was best. Above this speed the modified engine B had the largest stall margin. The improved stall margin of the modified engine configurations over that of the original engine configuration was largely due to the lowering of the steady-state operating lines, which came about as a result of the increased turbine-stator areas.

Comparison of the performance of the three engine configurations. - The net thrust and specific fuel consumption are shown as functions of high-pressure rotor speed in figure 16 for altitudes of 40,000 and 50,000 feet at Mach numbers of 0.9 and 1.5, respectively. The data used to obtain these curves were calculated as previously described regarding the data of figure 13. Within the accuracy of the data there was no appreciable difference in the performance of the three engines with the exception of the slightly higher specific fuel consumption of the modified engine B configuration at part engine speed. Calculation of the performance of the modified engine B configuration for standard sea-level static conditions resulted in a thrust of 17,600 pounds and a specific fuel consumption of 0.98 with the variable high-pressure guide vanes set at an angle of 0°.

Effect of engine configuration change on component performance. - The over-all compressor and turbine efficiencies of the three engine configurations are presented in figure 17 as a function of corrected high-pressure rotor speed for rated exhaust-nozzle areas and Reynolds number indices of 0.17 and 0.45 to 0.37. These data show no appreciable change in the compressor and turbine efficiencies as a result of any of the engine modifications.

It will be recalled that examination of the high-pressure compressor characteristics for the original engine configuration showed that flow distortion entering the compressor was the prime reason for the reduced stall margin and, consequently, for the narrow engine operating limits as compared with the stall margin predicted on the basis of rig-compressor Inasmuch as an effort was made to reduce the magnitude of this distortion, the curves of figure 18 are presented to disclose what success was achieved. This figure gives the percent of total-pressure distortion entering the high-pressure compressor as a function of corrected high-pressure rotor speed for the three engine configurations for rated nozzle areas at Reynolds number indices of 0.45 to 0.37 and a Mach number of 0.9. At high corrected speeds, the flow distortion entering the compressor was lowest for the modified engine B configuration and highest for the original engine configuration. At low and intermediate corrected rotor speeds the original and modified engine A configurations had about the same distortion with the modified engine B configuration having a slightly lower distortion. These changes in distortion can be attributed to a shift in the engine operating line on the low-pressure compressor map and to modifications in the low-pressure compressor.

In order to determine whether any noticeable effect of the change in distortion can be observed on the high-pressure compressor stall line, a comparison of the high-pressure compressor stall lines for the three engine configurations on compressor map coordinates is presented in figure 19. As has been pointed out previously, there was no discernible effect of Reynolds number on the stall line. It is somewhat difficult to perceive any effect of the change in distortion on the stall line except possibly at the high speed portion of the curves where the stall line of the modified engine B configuration showed improvement over the other configurations. (This is particularly true when considering the stall line on a fuel-flow basis (fig. 15).) It is important to point out that drawing conclusions from the comparison of stall lines obtained from different physical compressors, even those of the same model, can lead to erroneous decisions, as has been borne out by past experience. Consequently, stall lines of several engines that are alike may differ in magnitude by as much as the variations shown in figure 19.

Now that the high-pressure compressor stall lines of the three engine configurations have been presented and compared, the remaining

consideration is the relation of the steady-state operating line to the stall lines, that is, the stall margin. This is accomplished in figure 20, which presents the stall region and rated nozzle operating lines for the three engine configurations. Stall for all three configurations is represented by a shaded area. The curves of figure 20(a) present the stall margin at Reynolds number indices of 0.45 to 0.37. Figure 20(b) is a similar representation for an index of 0.17. The shift in the steady-state operating lines toward the region of stall as Reynolds number index is decreased is quite apparent.

There does remain a question as to why the operating lines of the modified A and B configurations were not more in agreement. Since the component efficiencies (fig. 17) were essentially the same, the only apparent reason would be that the turbine flow areas were not the same even though they were intended to be.

Summing up the discussion in connection with figures 19 and 20, it becomes apparent that of the changes investigated the only positive method of improving the stall margin, barring complete redesign of the compressor, is by opening the turbine-stator areas and thereby lowering the operating line.

CONCLUDING REMARKS

An investigation of the prototype Iroquois turbojet engine in an altitude test chamber disclosed a severe stall problem in the high-pressure compressor at low Reynolds numbers and low inlet-air temperatures. Consequently, the operating range of the original engine configuration was severely restricted below Reynolds number indices of 0.45 at moderate and high corrected rotor speeds. The reduced operating range resulted in high thrust penalties. For example, at standard conditions at an altitude of 56,000 feet and Mach number of 0.9 the maximum possible net thrust was 26 percent below that available without compressor stall. In contrast, the engine exhibited a large operating margin at simulated Mach numbers of 1.5 and 2.0 at altitudes of 50,000 to 60,000 feet (inletair temperatures between 100° and 250° F and Reynolds number indices of approximately 0.4).

Examination of the component data of the original engine configuration revealed that the small stall margin of the high-pressure compressor, when it was operating as an integral part of the engine, was basically due to the radial flow distortion at its inlet. This and an accompanying Reynolds number effect on the high-pressure compressor resulted in the curtailed engine operation at altitude.

As a consequence, the manufacturer produced engine modifications that included variable high-pressure compressor inlet guide vanes, increased turbine-stator areas, and other modifications of a lesser nature. The effect of these modifications was, in general, beneficial but inadequate as far as engine operating limits were concerned. These modifications were incorporated without penalizing the engine performance.

The analysis of the component performance of the three engine configurations disclosed that of the modifications employed, opening the turbine-stator areas was the most effective modification and the one requiring the least amount of development. In addition, a practical reduction of the flow distortion entering the high-pressure compressor still appears to offer profitable stall margin improvement.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, June 13, 1958

APPENDIX A

SYMBOLS

A	area, sq ft
В	thrust scale force, lb
$\mathtt{c}_{\mathtt{d}}$	flow coefficient, ratio of actual to ideal
c_{V}	velocity coefficient, ratio of scale jet thrust to ideal jet thrust
F j	jet thrust, 1b
$\mathbf{F_n}$	net thrust, 1b
g	acceleration due to gravity, 32.17 ft/sec ²
h	enthalpy, Btu/lb
K	thermocouple constant, 106
M .	Mach number
N	engine speed, rpm
P	total pressure, lb/sq ft abs
р	static pressure, lb/sq ft abs
R	gas constant, 53.4 ft-lb/(lb)(OR)
T	total temperature, ^O R
t	static temperature, ^O R
V	velocity, ft/sec
wa	airflow, lb/sec
$w_{ extsf{f}}$	fuel flow, lb/sec
w _g	gas flow, lb/sec

ratio of specific heats

~

- δ ratio of total pressure to static pressure of NACA standard atmosphere at sea level
- η efficiency
- heta ratio of total temperature to static temperature of NACA standard atmosphere at sea level
- φ ratio of viscosity to the viscosity of NACA standard atmosphere at sea level
- $\frac{\delta}{\phi\sqrt{\theta}}$ Reynolds number index, P(T+216)/5.7738 T²

Subscripts:

a air

ac actual

av average

C compressor

e engine

eff effective

g gas

HP high pressure

he heat exchanger

i indicated

id ideal

LP low pressure

leakage

max maximum

min minimum

N nozzle throat

CONFIDENTIAL

NACA RMSE58E26

18

APPENDIX B

METHODS OF CALCULATION

Flight Mach number. - The flight Mach number, assuming complete rampressure recovery, was calculated from the expression

$$M_{O} = \sqrt{\frac{2}{\Upsilon_{1} - 1} \left(\frac{P_{1}}{P_{0}}\right)^{-1} - 1}$$

$$(1)$$

<u>Flight speed.</u> - The following equation was used to calculate flight speed:

$$V_{O} = M_{O} \sqrt{\gamma_{1} gRT_{1} \left(\frac{P_{O}}{P_{1}}\right)}$$
 (2)

Exhaust-gas temperature. - Total temperatures at the exhaust-nozzle inlet were determined from indicated temperatures by correcting the indicated temperatures for recovery (ref. 2) and radiation (ref. 3) as follows:

$$T = T_i + \Delta T_{radiation} + \Delta T_{recovery}$$
 (3)

 $\underline{\text{Airflow}}$. - The airflow was calculated at the Venturi station as follows

$$w_{a,1} = C_{d}p_{x}A_{x} \sqrt{\frac{2\gamma_{1}g}{(\gamma_{1}-1)RT_{1}} \left(\frac{P_{x}}{p_{x}}\right)^{1} \left[\left(\frac{P_{x}}{p_{x}}\right)^{-1}\right]}$$
(4)

where

$$C_d = 0.994$$

The airflows and gas flows at the various stations throughout the engine were calculated as follows:

$$w_{a,2} = w_{a,1} \tag{5}$$

$$w_{a,2-1} = w_{a,2} + 0.32 w_{a,he}$$
 (6)

where wa, he was calculated in the same manner as wa, l

$$w_{a,3} = w_{a,1} - 0.68 w_{a,he}$$
 (7)

$$w_{a,4} = w_{a,1} - 0.68 w_{a,he} - w_{a,1} - w_{a,tp}$$
 (8)

where $w_{a,l}$ and $w_{a,tp}$ were originally measured and then each was assumed to equal 0.0138 $w_{a,l}$

$$w_{a,6} = w_{a,4}$$
 (9)

$$w_{a,9} = w_{a,1} - w_{a,tp}$$
 (10)

$$w_{g,4} = w_{a,4} + w_{f}$$
 (11)

$$w_{g,6} = w_{g,4}$$
 (12)

$$w_{g,9} = w_{a,9} + w_{f}$$
 (13)

Scale thrust. - Engine scale thrusts were calculated as follows:

$$F_{j,s} = B + A_{seal} (P_x - P_{tank})$$
 (14)

$$\mathbf{F}_{\mathbf{n},s} = \mathbf{F}_{\mathbf{j},s} - \frac{\mathbf{v}_{\mathbf{a},\mathbf{l}}}{\mathbf{g}} \mathbf{v}_{\mathbf{0}} \tag{15}$$

Ideal thrust. - Ideal engine thrusts were calculated as follows:

$$F_{j,id} = \frac{w_{g,9}}{g} V_N + A_N (p_N - p_0)$$
 (16)

$$= \frac{\mathbf{w}_{g,9}}{g} \, \mathbf{V}_{\text{eff}} \tag{17}$$

where

$$V_{eff} = V_N + \frac{A_N(p_N - p_0)}{\frac{W_{g,9}}{g}}$$
 (18)

and where $V_{eff}/\sqrt{gRT_9}$ is defined in reference 4.

<u>Velocity coefficient</u>. - Velocity coefficient is defined as the ratio of scale jet thrust to ideal jet thrust

$$C_{V} = \frac{F_{j,S}}{F_{j,id}} \tag{19}$$

Specific fuel consumption. - The net specific fuel consumption is defined and calculated as follows:

$$\frac{\mathbf{w_f}}{\mathbf{F_{n,s}}} = \frac{\mathbf{w_f}}{\mathbf{c_V F_{j,id}} - \frac{\mathbf{w_{a,1}}}{\mathbf{g}} \mathbf{v_0}}$$
(20)

<u>Compressor efficiency</u>. - The compressor efficiencies are calculated as follows:

$$\eta_{C}(\text{over-all}) = \frac{h_{a} \int_{1}^{3'} + \frac{w_{a,he}}{w_{a,3}} h_{a} \int_{1}^{he'} - 0.32 \frac{w_{a,he}}{w_{a,3}} h_{a} \int_{1}^{2'}}{h_{a} \int_{1}^{3} + \frac{w_{a,he}}{w_{a,3}} h_{a} \int_{1}^{he} - 0.32 \frac{w_{a,he}}{w_{a,3}} h_{a} \int_{1}^{2}}$$
(21)

where primed values are isentropic

$$\eta_{C,LP} = \frac{h_a \int_{1}^{2'}}{h_a \int_{1}^{2}}$$
 (22)

$$\eta_{C,HP} = \frac{h_{\mathbf{a}} \int_{2}^{3'} + \frac{w_{\mathbf{a},he}}{w_{\mathbf{a},3}} h_{\mathbf{a}} \Big|_{2}^{he'}}{h_{\mathbf{a}} \int_{2}^{3} + \frac{w_{\mathbf{a},he}}{w_{\mathbf{a},3}} h_{\mathbf{a}} \Big|_{2}^{he}}$$
(23)

Engine combustion efficiency. - The engine combustion efficiency is calculated as follows:

$$\eta_{e} = \frac{(w_{f}/w_{a})_{9,id}}{(w_{f}/w_{a})_{9,ac}}$$
(24)

where

$$\left(\frac{\mathbf{w}_{\mathbf{f}}}{\mathbf{w}_{\mathbf{a}}}\right)_{9,\,\mathbf{ac}} = \frac{\mathbf{w}_{\mathbf{f}}}{\mathbf{w}_{\mathbf{a},\,9}} \tag{25}$$

and

$$\left(\frac{w_f}{w_a}\right)_{9,id} = \frac{h_a}{h_C - \frac{Am + B}{m + 1}}_{540^{\circ} R}^{9}$$
 (26)

Equation (26) is defined in reference 5, and tables of equation (26) are given in reference 6.

Turbine-inlet temperature. - The turbine-inlet temperature (or combustor-outlet temperature) is calculated as follows:

$$T_4 = T_3 + T \bigg]_3^4 \tag{27}$$

where

$$T \Big]_{3}^{4} = f \left[\left(\frac{w_{f}}{w_{a}} \right)_{id} \text{ and } T_{3} \right]$$
 (28)

Turbine efficiency. - Turbine efficiency is calculated as follows:

$$\eta_{\rm T} = \frac{h_{\rm g} \int_{6}^{4}}{h_{\rm g} \int_{6}^{4}} \tag{29}$$

The low and high pressure turbine efficiencies are not presented because of the inability to accurately measure P_5 .

REFERENCES

- 1. Sievers, Gilbert K., Geye, Richard P., and Lucas, James G.: Investigation of Reynolds Number Effect on Performance of an Eight-Stage Axial-Flow Research Compressor with Long- and Medium-Chord Lengths in the Two Transonic Inlet Stages. NACA RM E57J30, 1958.
- 2. Glawe, George E., Simmons, Frederick S., and Stickney, Truman M.:
 Radiation and Recovery Corrections and Time Constants of Several
 Chromel-Alumel Thermocouple Probes in High-Temperature, HighVelocity Gas Streams. NACA TN 3766, 1956.
- 3. Scadron, Marvin D., and Warshawsky, Isidore: Experimental Determination of Time Constants and Nusselt Numbers for Bare-Wire Thermocouples in High-Velocity Air Streams and Analytic Approximation of Conduction and Radiation Errors. NACA TN 2599, 1952.
- 4. Turner, L. Richard, Addie, Albert N., and Zimmerman, Richard H.: Charts for the Analysis of One-Dimensional Steady Compressible Flow. NACA TN 1419, 1948.
- 5. Turner, L. Richard, and Bogart, Donald: Constant-Pressure Combustion Charts Including Effects of Diluent Addition. Rep. 937, 1949. (Supersedes NACA TN's 1086 and 1655.)
- 6. Huntley, S. C.: Ideal Temperature Rise Due to Constant-Pressure Combustion of a JP-4 Fuel. NACA RM E55G27a, 1955.

TABLE I. - PERFORMANCE DATA OF ORIGINAL ENGINE CONFIGURATION

[(a) AX 102/1B engine.]

Run	Alt	titude, ft	number,	Reynolds number index, δ1/Φ1 /θ1	Exhaust- nozzle area, A _N , sq in.	High- pressure rotor speed, NHP, rpm	Low- pressure rotor speed, NLP, rpm	Engine- inlet temper- ature, Tl, or	Low-pressure compressor- outlet temperature, T2, OR	High-pressure compressor- outlet temperature, T3, oR	inlet temper-	Exhaust- gas temper- ature, Tg, oR	Engine- inlet total pressure, Pl, lb sq ft abs	Low- pressure compressor- outlet total pressure, P2, 1b sq ft abs	High- pressure compressor- outlet total pressure, P3, lb abs	P ₄ ,	Turbine- outlet total pressure, P6, lb sq ft abs	Exhaust- nozzle inlet total pressure, Pg, lb sq ft abs
1 2 3 4 5	Sea	a level	o 	0.857 .870 .840 .911 .906	680 681 679 681 682	7032 7216 7401 7604 7796	4373 4597 4707 4982 5230	568 564 579 544 546	640 650 670 648 656	953 983 1019 1015 1039	1777 1878 1926 2042 2145	1423 1484 1523 1609 1685	2036 2054 2047 2048 2045	3085 3232 3285 3554 3657	9,905 10,781 11,215 13,168 13,992	9,070 9,889 10,339 12,242 13,088	3292 3511 3643 4190 4451	3170 3369 3499 4016 4265
6 7 8 9	35	5,000	0.9	.432 .432 .432 .430	674 679 681 681	7004 7010 7198 7403	4641 4747 4892 5046	485 486 485 484	577 579 583 588	894 896 918 944	1740 1747 1835 1943	1359 1356 1436 1531	838 840 838 831	1452 1447 1499 1538	5,123 5,126 5,548 6,001	4,695 4,698 5,101 5,536	1569 1565 1707 1858	1498 1494 1629 1772
10 11 12 13		 		.431 .434 .445	681 682 754 826	7599 7755 6264 7173	5240 5384 4495 5689	483 482 470 473	593 597 554 615	971 999 791 933	2067 2143 1332 1716	1629 1703 1038 1287	831 835 827 844	1583 1613 1335 1667	6,437 6,772 3,577 5,436	5,967 6,287 3,235 4,994	2000 2127 977 1398	1909 2037 915 1269
14 15 16 17 18	55	5,000	.9	.165 .169 .165 .169	649 649 680 679 682	6249 6944 6251 6289 6509	4043 4585 4247 4254 4473	483 478 479 477 478	549 563 552 552 560	807 887 806 812 835	1476 1845 1426 1446 1544	1170 1462 1116 1128 1208	319 322 314 320 315	474 538 487 496 510	1,378 1,904 1,402 1,439 1,579	1,256 1,776 1,261 1,311 1,432	438 623 415 434 468	420 598 394 413 445
19 20 21 22 23		-		.169 .166 .166 .169	678 682 680 681 698	6687 6708 6905 7203 6271	4612 4637 4787 5035 4311	477 477 476 477 477	565 566 572 579 555	857 859 883 927 811	1626 1645 1751 1921 1437	1272 1290 1373 1512 1116	321 314 313 320 319	533 529 548 583 496	1,717 1,723 1,850 2,141 1,414	1,585 1,573 1,699 1,998 1,284	519 512 557 664 417	494 487 529 632 396
24 25 26 27 28 29		•	ļ	.171 .168 .172 .170 .171	699 727 774 778 793 815	7265 7568 7076 7309 7180 7176	5144 5706 5507 5750 5692 5762	474 470 471 473 471 473	583 604 600 613 610 616	930 986 918 959 941 942	1921 2084 1727 1874 1799 1781	1503 1616 1314 1427 1360 1348	321 313 322 319 318 322	604 647 627 626 633 655	2,188 2,496 2,050 2,248 2,116 2,147	2,044 2,334 1,894 2,084 1,957 1,984	661 729 552 606 561 561	627 688 513 562 516 509

CONFIDENTIAL

TABLE 1. - Continued. PERFORMANCE DATA OF ORIGINAL ENGINE CONFIGURATION [(a) Concluded. AX 102/1B engine.]

Run	or free- stream static	Engine fuel flow, w _f , lb/sec	Engine- inlet air- flow, wa,1, lb/sec	Corrected engine-inlet high-pressure rotor speed, NHP/-/01, rpm	Corrected high- pressure rotor speed, N _{HP} /√θ ₂ , rpm	Corrected low- pressure rotor speed, N _{LP} /\sqrt{\theta_1}, rpm	Corrected engine- inlet airflow, wa,1\sqrt{\theta_1}/\text{\theta_1}/\text{\theta_1}, lb/sec	Corrected high- pressure compressor airflow, wa,2-1\frac{1}{2}\frac{5}{2}\tau, lb/sec	Scale jet thrust, Fj,s'	Scale net thrust, Fn,s, 1b	Net specific fuel consumption, wf/Fn,s, lh (hr)(lb of thrust)	Veloc- ity coeffi- cient, C _V	Exhaust- nozzle flow coeffi- cient, Cd,N	Over- all com- pres- sor effi- ciency, \$\eta_{\mathbb{C}}\$	Low- pressure compres- sor effi- ciency, \$\eta_{C, LP}\$	High- pressure compres- sor effi- ciency, $n_{\rm C,HP}$	Engine combustion efficiency, $\eta_{\rm e}$	Over- all turbine effi- ciency, $\eta_{\rm T}$
1 2 3 4 5	2041 2040 2052	2.208 2.502 2.740 3.469 3.897	184.93 196.90 200.36 232.08 241.70	6723 6918 7009 7426 7598	6335 6449 6515 6801 6936	4181 4407 4453 4865 5097	201.06 211.61 218.76 245.53 256.63	141.12 144.69 146.94 154.92 157.63	7,955 9,124 9,984 3,064 14,537	7,875 8,463 9,479 10,364 14,307	1.009 1.064 1.041 .956 .981	0.969 .964 .987 .983	0.902 .906 .897 .919	0.831 .803 .809 .796 .796	0.914 .927 .892 .899	0.789 .787 .788 .783 .779	0.972 .984 .996 .988	0.888 .918 .918 .936 .929
6 7 8 9	500	1.162 1.166 1.349 1.571	96.86 96.40 102.10 106.94	7245 7244 7446 7666	6639 6638 6791 6958	4801 4905 5061 5225	236.57 235.22 249.37 263.18	149.27 149.30 153.10 156.92	6,173 6,172 6,891 7,708	3,467 3,491 4,056 4,746	1.207 1.203 1.197 1.192	.976 .984 .978 .982	.970 .961 .980 .956	.793 .790 .790 .787	.901 .882 .902 .893	.778 .783 .777 .774	.989 .972 .980 .977	.907 .920 .907 .892
10 11 12 13	492 489 503 502	1.801 2.005 .602 1.158	112.24 115.78 80.40 103.82	7877 8047 6583 7513	7109 7234 6064 6587	5432 5587 4724 5959	275.94 282.90 195.72 248.48	160.88 163.22 131.91 143.87	8,572 9,229 3,134 5,874	5,437 5,968 971 3,020	1.193 1.209 2.232 1.380	.983 .973 .900 .960	.986 .964 .984 .970	.775 .763 .730 .714	.884 .863 .823 .715	.759 .752 	.992 .985 .983 .982	.901 .892 .809 .906
14 15 16 17 18	184 195 177 188 182	.263 .488 .252 .265 .318	27.71 35.29 28.69 29.50 31.36	6478 7236 6507 6560 6782	6073 6664 6057 6094 6265	4191 4778 4421 4437 4661	177.62 222.96 185.73 187.05 202.40	127.71 144.93 129.02 130.18 135.66	1,380 2,290 1,375 1,428 1,642	592 1,328 542 603 752	1.601 1.324 1.675 1.580 1.521	.964 .951 .939 .945 .939	.917 .954 .965 .959 .969	.769 .767 .778 .762 .777	.885 .893 .883 .871 .867	.751 .745 .761 .749 .759	.965 .971 .947 .956 .948	.862 .900 .857 .874 .866
19 20 21 22 23	186 180 185 184 188	.369 .375 .437 .568 .252	33.67 33.22 34.92 38.92 29.00	6975 6997 7210 7513 6541	6405 6419 6576 6821 6065	4811 4837 4998 5252 4497	212.78 214.46 225.97 246.45 184.37	139.93 139.31 144.55 149.58 128.66	1,896 1,890 2,135 2,671 1,354	943 942 1,166 1,564 545	1.407 1.433 1.347 1.308 1.663	.941 .950 .965 .954	.978 .967 .970 .965 .950	.766 .777 .767 .756 .753	.850 .861 .860 .871	.760 .766 .754 .738 .749	.970 .954 .958 .973	.877 .860 .877 .890 .872
24 25 26 27 28 29	184 180 189 185 186 187	.574 .712 .460 .550 .491	39.86 43.78 38.92 41.17 39.53 40.45	7602 7953 7428 7656 7538 7516	6854 7014 6582 6724 6624 6590	5382 5996 5781 6023 5975 6035	251.45 281.68 244.72 260.64 250.21 253.73	148.44 154.83 141.66 145.46 143.52 142.64	2,706 3,216 2,274 2,622 2,370 2,316	1,572 1,977 1,191 1,463 1,267 1,181	1.314 1.297 1.390 1.352 1.394 1.485	.948 .955 .950 .950 .949	.968 .971 .972 .975 .975	.751 .727 .727 .717 .711 .717	.846 .804 .759 .764 .731	.734 .728 .747 .736 .744 .750	.982 .975 .961 .975 .973	.889 .904 .894 .902 .907 .892

TABLE I. - Continued. PERFORMANCE DATA OF ORIGINAL ENGINE CONFIGURATION [(b) AX 103/1 engine.]

Run	Altitude, ft	Mach number, ^M O	Reynolds number index, $51/\varphi_1\sqrt{\theta_1}$	Exhaust- nozzle area, A _N , sq in.	High- pressure rotor speed, NHP, rpm	Low- pressure rotor speed, NLP, rpm	Engine- inlet temper- ature, T1, OR	Low-pressure compressor- outlet temperature, T2, OR	High-pressure compressor-outlet temperature,	Turbine- inlet temper- ature, T4, OR	Exhaust- gas temper- ature, T9, oR	Engine- inlet total pressure, Pl, lb sq ft abs	Low- pressure compressor- outlet total pressure, F2, lb sq ft abs	High- pressure compressor- outlet total pressure, P3, lb sq ft abs	Turbine- inlet total pressure, P4, lb sq ft abs	Turbine- outlet total pressure, P6, lb sq ft	Exhaust- nozzle inlet total pressure, Pg, lb sq ft abs
30 31 32 33 34	35,000	0.9	0.446 .449 .439 .447	649 648 649 648 649	6252 6608 6631 6915 7204	3977 4261 4279 4476 4695	474 473 474 474 474	540 548 549 556 561	791 836 835 872 907	1415 1605 1601 1770 1924	1109 1261 1260 1401 1539	839 841 825 840 840	1266 1348 1328 1403 1462	3875 4576 4539 5207 5892	3503 4185 4159 4797 5452	1231 1472 1463 1702 1940	1184 1420 1412 1642 1873
35 36 37 38 39			.448 .449 .446 .446 .447	649 654 677 678 671	7559 7587 6260 6584 6988	5019 5129 4159 4434 4745	473 471 474 475 473	572 575 547 557 565	953 963 794 833 882	2137 2140 1376 1512 1741	1708 1712 1061 1182 1358	839 837 838 841 839	1530 1550 1299 1376 1477	6673 6838 3843 4440 5358	6209 6388 3455 4046 4919	2216 2258 1147 1337 1650	2147 2184 1099 1279 1581
40 41 42 43 44			.448 .449 .445 .447	675 684 711 707 705	7350 7620 6251 6705 6993	5076 5413 4316 4700 4932	473 471 474 473 473	576 588 554 567 575	932 970 796 850 887	1957 2090 1335 1549 1695	1535 1650 1023 1186 1306	840 838 837 838 837	1568 1631 1317 1431 1514	6336 6910 3773 4646 5284	5851 6401 3372 4229 4829	1960 2158 1073 1342 1548	1881 2073 1020 1275 1473
45 46 47 48 49	· ·		.447 .445 .447 .448 .446	713 745 747 751 754	7319 6244 6507 6723 6939	5279 4484 4772 4974 5169	473 473 473 473 473	587 561 572 581 589	930 799 831 859 887	1866 1313 1420 1507 1619	1445 996 1079 1148 1226	838 835 839 839 836	1626 1337 1415 1479 1541	6198 1317 4210 4606 5077	5704 3305 3783 4163 4623	1823 1008 1135 1250 1381	1731 951 1068 1175 1298
50 51 52 53 54	38,500		.444 .445 .445 .448	650 650 650 650 679	6592 6805 7004 7117 6640	4285 4452 4614 4703 4524	420 419 420 419 421	494 497 503 504 504	781 805 833 847 792	1598 1719 1821 1893 1567	1256 1357 1438 1500 1214	710 710 712 715 720	1216 1241 1286 1289 1283	4636 5073 5521 5633 4731	4280 4689 5110 5225 4337	1492 1649 1803 1863 1432	1441 1593 1742 1804 1373
55 56 57 58	-	· . \	.446 .446 .443 .444	676 684 683 679	6897 7099 7288 7403	4729 4973 5185 5259	422. 421 422 421	512 519 527 527	82 <u>4</u> 854 882 894	1697 1818 1929 1994	1320 1418 1509 1565	719 717 714 713	1321 1363 1379 1389	5223 5659 5959 6154	4822 5231 5518 5735	1605 1746 1842 1930	1541 1678 1774 1860
59 60 61 62 63	50,000	1.8	.448 .445 .451 .444	650 650 650 649 673	6992 7184 7411 7580 7003	4422 4583 4730 4887 4629	706 704 701 704 703	791 795 798 806 798	1093 1117 1144 1180 1096	1760 1877 2015 2172 1720	1392 1488 1604 1736 1344	1400 1385 1395 1382 1395	1975 2010 2074 2113 2015	5140 5608 6167 6732 5116	4579 5021 5569 6155 4543	1609 1764 1976 2188 1510	1551 1700 1905 2108 1446
64 65 66 67			.442 .448 .442 .448	674 682 680 683	7214 7404 7615 7760	4786 4944 5087 5217	707 703 707 705	808 809 818 825	1124 1149 1175 1202	1822 1942 2049 2145	1428 1526 1616 1689	1383 1391 1383 1396	2043 2117 2154 2227	5479 6093 6481 6968	4880 5480 5855 6317	1625 1828 1966 2122	1556 1751 1880 2032
68 69 70 71	50,000	1.5	.373 .373 .373 .369	677 681 676 677	6511 6512 6772 7108	4312 4304 4522 4772	572 572 571 572	653 650 657 667	915 912 944 987	1479 1479 1614 1792	1146 1149 1257 1403	895 895 892 884	1313 1313 1366 1420	3386 3458 3933 4503	3067 3068 3526 4087	1013 1015 1169 1367	970 974 1120 1311
72 73 74 75		+	.373 .367 .371 .370	680 689 684 682	7383 7601 7616 7700	4967 5150 5164 5255	567 579 571 567	670 693 682 680	1019 1066 1052 1066	1940 2041 2057 2149	1522 1595 1618 1697	885 892 888 877	1490 1545 1546 1560	5095 5463 5530 5879	4660 5023 5084 5442	1568 1669 1698 1828	1505 1600 1627 1755
76 77 78 79 80	55,000	.9	.166 .168 .168 .168	650 649 649 649	6295 6397 6540 6702 6779	4081 4168 4285 4413 4459	482 481 481 480 480	549 552 555 559 560	807 818 836 857 864	1477 1533 1610 1710 1745	1166 1213 1275 1351 1382	319 322 322 322 323	479 492 505 519 526	1423 1506 1609 1738 1789	1291 1371 1470 1596 1646	449 476 512 556 575	431 457 493 534 554
81 82 83 84 85 86		***	.169 .170 .170 .170 .169 .170	679 679 680 682 683 685	6283 6457 6619 6907 7124 7230	4231 4402 4563 4789 4942 5013	477 477 477 477 476 476	552 558 564 572 577 580	805 826 849 884 911 927	1446 1521 1606 1755 1861 1923	1132 1186 1254 1370 1460 1510	319 322 323 322 320 322	490 510 529 556 575 591	1427 1556 1694 1909 2081 2193	1288 1414 1547 1756 1920 2024	426 464 507 579 634 669	408 445 484 553 607 640

CONFIDENTIAL

NACA RMSE58E26

TABLE I. - Concluded. PERFORMANCE DATA OF ORIGINAL ENGINE CONFIGURATION [(b) Concluded. AX 103/1 engine.]

Run	Exhaust or free- stream static pressure, Po, lb sq ft abs	Engine fuel flow, wf, lb/sec	Engine- inlet air- flow, wa,1, lb/sec	Corrected engine inlet high- pressure rotor speed, NHP/√01, rpm	Corrected high- pressure rotor speed, NHP/-/02, rpm	Corrected low- pressure rotor speed, NLP/\sqrt{\theta}_1, rpm	Corrected engine- inlet airflow, wa,1\frac{\theta_1}{\theta_1}/\theta_1, lb/sec	Corrected high- pressure compressor airflow, Wa,2-1\sqrt{0}2/52, lb/sec	Scale jet thrust, Fj,s, lb	Scale net thrust, Fn,s, lb	Net specific fuel consumption, wf/Fn,s, lb (hr)(lb of thrust)	Veloc- ity coeff1- cient, Cy	Exhaust- nozzle flow coeffi- cient, Cd,N	Over- all com- pres- sor effi- ciency, $\eta_{\rm C}$	Low- pressure compres- sor effi- ciency, $\eta_{\text{C,LP}}$	High- pressure compres- sor effi- ciency, $\eta_{\rm C, HP}$	Engine combus-tion eff1-ciency, $\eta_{\rm e}$	Overall turbine efficiency, η_{T}
30 31 32 33 34	505 498 500 509 502	0.692 .965 .964 1.248 1.569	80.86 90.84 89.89 99.04 107.25	6542 6922 6938 7235 7538	6129 6431 6447 6681 6929	4161 4463 4478 4683 4912	194.87 218.20 220.32 238.37 258.19	138.12 146.93 147.63 154.95 161.83	4112 5400 5313 6513 7730	1910 2892 2878 3829 4787	1.305 1.201 1.206 1.173 1.180	0.970 .972 .969 .972	0.949 .953 .946 .952	0.812 .802 .815 .805 .804	0.896 .909 .921 .912 .934	0.802 .785 .798 .790 .778	0.978 .989 .977 .994 .996	0.897 .910 .905 .905 .877
35 36 37 38 39	498 501 498 511 500	2,000 2,065 .636 .851 1,232	116.17 117.77 80.66 89.39 102.44	7918 7964 6550 6882 7320	7199 7208 6098 6355 6697	5257 5384 4352 4635 4971	279.58 283.65 194.75 215.26 246.77	169.12 169.62 135.17 142.79 153.47	9239 9384 3891 4912 6568	6034 6168 1670 2494 3753	1.193 1.205 1.371 1.228 1.182	.978 .976 .972 .981 .970	.950 .940 .955 .961 .971	.784 .774 .801 .799 .798	.893 .872 .867 .875 .902	.771 .767 .796 .793 .782	.997 .983 .978 .984 .990	.913 .903 .899 .865 .913
40 41 42 43 44	500 506 497 503 502	1.669 1.988 .586 .896 1.154	114.27 120.72 80.18 93.35 102.19	7699 7999 6541 7024 7325	6973 7159 6050 6415 6644	5317 5682 4516 4923 5166	274.96 290.50 193.67 225.03 246.61	162.89 167.17 133.45 144.66 150.67	8293 9256 3650 5096 6265	5152 5986 1436 2545 3473	1.166 1.196 1.470 1.267 1.196	.977 .973 .975 .967	.966 .949 .954 .968 .969	.793 .768 .784 .784 .782	.896 .843 .818 .830 .855	.780 .768 .796 .792 .779	.994 .990 .984 .985 .989	.908 .908 .888 .905 .914
45 46 47 48 49	497 503 498 506 502	1.526 .556 .711 .854 1.028	113.28 78.91 86.87 93.16 99.40	7666 6540 6816 7042 7268	6882 6006 6198 6354 6513	5529 4697 4998 5210 5414	273.07 190.91 209.28 224.28 240.19	157.14 130.25 136.70 141.41 145.80	7763 3381 4162 4817 5597	4640 1232 1767 2284 2883	1.184 1.624 1.448 1.346 1.284	.974 .983 .973 .973	.954 .948 .966 .969 .966	.787 .765 .766 .759 .761	.865 .773 .770 .769 .774	.783 .795 .798 .792 .798	.979 .972 .974 .974	.908 .888 .883 .881 .910
50 51 52 53 54	416 421 414 417 416	1.069 1.272 1.459 1.551 1.024	91.50 97.14 102.85 103.01 94.97	7328 7574 7786 7921 7372	6757 695 4 7114 7222 6738	4763 4955 5129 5234 5023	245.25 259.99 274.93 274.04 251.40	155.81 162.51 167.03 167.06 154.72	5861 6646 7464 7694 5849	3454 4119 4742 4980 3319	1.116 1.118 1.113 1.126 1.116	.971 .972 .974 .974	.952 .953 .952 .942 .972	.819 .811 .802 .780 .803	.943 .930 .932 .906 .912	.795 .792 .779 .761 .783	.966 .970 .979 .985 .982	.900 .907 .913 .915 .910
55 56 57 58	413 412 419 420	1.246 1.457 1.632 1.761	101.09 106.12 108.69 110.94	7649 7882 8082 8219	6944 7099 7232 7346	5244 5522 5750 5839	268.42 282.14 290.28 296.49	161.21 165.11 168.54 170.76	6746 7592 8077 8532	4038 4757 5216 5629	1.116 1.108 1.131 1.130	.967 .979 .972 .977	.969 .960 .963 .963	.794 .775 .757 .750	.892 .867 .831 .834	.783 .769 .761 .750	.983 .988 .993 .994	.913 .912 .911 .909
59 60 61 62 63	245 248 238 242 255	.899 1.107 1.358 1.659 .834	94.75 99.91 107.88 112.90 95.06	5995 6168 6377 6506 6017	5664 5804 5977 6083 5648	3791 3935 4070 4195 3977	167.08 177.74 190.24 201.32 167.81	125.66 130.58 136.90 141.29 124.15	7095 7871 8883 9555 6902	1920 2443 2988 3397 1756	1.685 1.636 1.636 1.758 1.709	.963 .967 .953 .931 .967	.954 .952 .955 .943 .972	.794 .808 .807 .813 .778	.848 .857 .856 .878 .809	.793 .811 .810 .811 .789	.987 .972 .998 .989 .994	.890 .894 .905 .901 .890
64 65 66 67	250 250 240 242	.995 1.221 1.433 1.640	99.05 106.24 111.19 117.43	6181 6362 6525 6658	5782 5930 6066 6155	4101 4248 4359 4476	176.85 188.10 198.58 207.44	128.42 132.93 137.56 141.11	7520 8538 9180 9902	2135 2774 3095 3483	1.678 1.585 1.667 1.695	.965 .971 .954 .944	.971 .949 .957 .954	.789 .798 .806 .794	.813 .834 .847 .826	.805 .806 .815 .807	.984 .989 .984 .989	.897 .898 .896 .908
68 69 70 71	241 240 244 243	.531 .527 .710 .965	69.75 69.63 76.16 83.28	6201 6203 6456 6771	5804 5819 6019 6270	4107 4100 4311 4546	173.10 172.86 189.53 209.39	126.44 126.16 133.13 141.06	4324 4364 5118 6161	1194 1235 1717 2443	1.601 1.554 1.490 1.422	.961 .968 .963 .970	.971 .962 .967 .957	.758 .779 .793 .799	.813 .841 .856 .870	.762 .779 .791 .797	1.001 1.001 .985 .972	.892 .887 .889 .901
72 73 74 75	242 245 237 240	1.237 1.382 1.404 1.594	91.38 95.54 96.76 100.00	7063 7197 7261 7367	6498 6578 6644 6727	4752 4876 4923 5028	228.34 239.30 241.90 252.16	147.85 151.59 152.27 155.71	7268 7904 8012 8582	3200 3608 3660 4132	1.392 1.379 1.381 1.389	.975 .982 .969 .972	.953 .948 .959 .947	.795 .785 .795 .799	.879 .858 .878 .893	.785 .784 .787 .788	.967 .970 .999 .988	.909 .920 .901 .918
76 77 78 79 80	190 190 192 190 190	.272 .300 .344 .397 .420	28.88 30.02 31.89 33.33 34.09	6532 6645 6793 6969 7049	6120 6203 6324 6458 6526	4234 4330 4451 4589 4637	184.69 190.02 201.64 210.80 214.97	131.51 133.42 138.45 141.31 142.71	1428 1587 1765 1996 2095	628 750 882 1066 1142	1.559 1.442 1.403 1.341 1.326	.937 .951 .940 .950	.953 .955 .967 .961 .962	.782 .782 .781 .778 .780	.887 .874 .890 .890 .899	.771 .774 .768 .765 .761	.960 .971 .984 .982 .987	.872 .874 .880 .897 .894
81 82 83 84 85 86	191 192 192 190 192 192	.258 .302 .351 .443 .521	29.45 31.51 33.12 36.28 38.30 40.11	6553 6736 6904 7205 7439 7549	6092 6228 6349 6579 6756 6839	4414 4592 4759 4996 5160 5235	187.03 198.83 208.31 228.87 242.75 252.75	131.35 135.89 138.43 145.28 148.93 152.09	1391 1603 1824 2217 2499 2695	582 733 908 1206 1449 1593	1.598 1.481 1.392 1.324 1.293 1.287	.938 .942 .949 .948 .951	.969 .974 .969 .972 .965 .974	.769 .770 .769 .768 .763 .760	.828 .829 .832 .849 .860	.782 .776 .774 .765 .755	.986 .982 .978 .984 .983	.861 .863 .882 .903 .891 .893

TABLE II. - PERFORMANCE DATA OF ENGINE CONFIGURATION A

[AX 103/2 engine.]

Run	Altitude, ft	Mach number, ^M O	Reynolds number index, $\delta_1/{}^{\phi_1}\sqrt{\theta_1}$	Inlet guide vane angle, deg	Exhaust- nozzle area, A _N , sq in.	High- pressure rotor speed, NHP, rpm	Low- pressure rotor speed, NLP, rpm	Engine- inlet temper- ature, T1, oR	Low- pressure compressor- outlet tempera- ture, T2, OR	High- pressure compressor- outlet tempera- ture, T ₃ , o _R	Turbine inlet temper- ature, T4, oR	Exhaust- gas tempera- ture, T9, oR	Engine- inlet total pressure, Pl, lb sq ft abs	Low- pressure compressor- outlet total pressure, P2, 1b sq ft abs	High- pressure compressor- outlet total pressure, P3, lb sq ft abs	Turbine- inlet total pressure, P4, lb sq ft abs	Turbine- outlet total pressure, P6, lb sq ft abs	Exhaust- nozzle inlet total pressure, Pg, lb sq ft abs
1 2 3 4 5			0.364 .367 .371 .369 .370	- 5	649 681 681 680 682	6244 6484 6760 6994 7307	3935 4269 4505 4688 4999	428 426 420 425 423	487 498 498 511 517	747 776 800 836 875	1450 1512 1647 1772 1949	1146 1181 1292 1394 1542	598 600 594 600 598	940 1012 962 1101 1126	3152 3542 4103 4459 4873	2857 3221 3752 4101 4530	1024 1093 1277 1404 1555	989 1050 1227 1350 1498
6 7 8 9			.376 .367 .362 .369 .367		708 717 718 720 716	7720 6504 6838 7110 7410	5505 4469 4753 5054 5324	420 428 427 425 423	533 509 517 524 530	931 783 821 857 896	2145 1470 1625 1776 1960	1694 1132 1257 1379 1534	603 603 592 600 594	1190 1045 1102 1167 1163	5371 3526 4095 4687 5007	5015 3193 3746 4307 4643	1681 1025 1208 1394 1520	1614 977 1152 1330 1456
11 12 13 14 15			.368 .369 .375 .361 .364		719 717 732 754 754	7736 7745 7660 6610 6875	5629 5617 5691 4759 4977	423 423 421 430 428	541 540 540 524 529	940 939 930 800 833	2132 2146 2071 1482 1610	1674 1690 1619 1130 1231	596 596 602 596 598	1183 1190 1212 1078 1147	5318 5319 5351 3577 4097	4940 4950 4969 3223 3727	1624 1636 1601 987 1145	1556 1567 1528 931 1080
16 17 18			.365 .367 .370		752 754 778	7180 7439 7310	5348 5699 5733	426 426 423	537 548 550	875 913 898	1781 1927 1842	1368 1488 1408	595 598 598	1204 1226 1262	4730 5102 5028	4329 4702 4595	1344 1450 1373	1271 1373 1287
19 20 21 22 23			.367 .368 .367 .369 .373	0	681 685 679 683 687	6613 6932 7210 7497 7754	4311 4537 4741 5022 5269	423 422 422 422 421	496 503 509 517 525	780 814 846 882 914	1542 1690 1838 1993 2115	1206 1327 1452 1581 1678	593 593 591 595 599	1010 1063 1090 1137 1179	3621 4130 4506 4901 5217	3292 3788 4163 4555 4867	1122 1292 1438 1580 1671	1077 1243 1383 1523 1611
24 25 26 27 28			.369 .368 .368 .369 .368		718 717 717 718 728	6610 6890 7195 7490 7789	4515 4725 5009 5273 5640	423 422 423 422 421	505 512 521 529 541	782 815 854 891 929	1484 1620 1781 1941 2066	1144 1251 1385 1519 1613	596 593 595 594 592	1054 1100 1152 1179 1211	3665 4103 4602 4960 5245	3319 3746 4224 4588 4876	1068 1212 1378 1506 1581	1017 1156 1317 1440 1507
29 30 31 32 33 34 35		 	.366 .373 .373 .374 .373 .375		724 757 758 757 759 762 795	7797 6550 6766 7010 7255 7566 7300	5571 4691 4873 5101 5405 5705 5761	423 422 420 420 420 420 420	540 514 517 525 534 544 548	934 781 805 836 870 908 881	2100 1424 1523 1649 1774 1917	1648 1080 1158 1261 1360 1476 1346	592 602 597 599 597 600 594	1206 1083 1132 1186 1231 1251 1278	5239 3564 3938 4390 4804 5138 4940	4861 3209 3568 4001 4400 4706 4527	1594 976 1089 1231 1353 1454 1331	1525 919 1027 1161 1278 1374 1242
36 37 38 39 40		 	.369 .368 .372 .368 .369	5	668 668 688 756 757	7777 7796 7816 6628 6892	4948 4976 5061 4687 4900	422 421 421 422 422	518 519 524 514 521	901 903 908 784 814	2106 2115 2086 1440 1555	1682 1689 1654 1094 1186	594 591 598 593 595	1147 1144 1176 1071 1132	4882 4909 4929 3563 3959	4552 4583 4593 3212 3600	1601 1617 1580 981 1104	154E 1560 1521 924 1041
41 42 43 44			.369 .370 .368 .370		758 759 763 797	7230 7500 7797 7618	5210 5412 5716 5761	421 421 421 421	532 539 552 557	854 885 926 910	1703 1827 1975 1872	1302 1404 1521 1427	594 594 591 595	1193 1233 1276 1296	4474 4781 5107 4966	4086 4399 4702 4549	1248 1351 1446 1340	1178 1276 1366 1248
45 46 47 48 49	55,000	0.9	.172 .173 .170 .168 .170		649 687 761 797 795	6279 7792 7832 5870 6170	3863 5105 5745 4028 4387	471 469 470 480 477	532 574 606 550 561	782 961 986 762 796	1438 2108 2025 1181 1302	1140 1670 1560 902 991	321 320 317 321 322	472 605 655 469 500	1399 2420 2493 1134 1313	1259 2246 2300 986 1152	450 765 701 308 349	435 735 661 290 326
50 51 52 53 54 55			.169 .171 .168 .170 .168		797 798 801 833 915 1040	6540 6759 7246 7499 5160 6777	4783 4987 5407 5720 3257 5196	478 478 476 472 480 478	575 584 601 610 524 596	925 959 677	1429 1523 1766 1876 920.9 1530	1083 1155 1350 1431 722 1151	321 326 318 318 321 320	536 567 610 654 415 574	1547 1707 2064 2291 826 1724	1376 1535 1872 2092 707 1546	404 452 551 606 240 434	372 415 508 546 229 331

CONFIDENTIAL

Ru	or free- stream static pressure, Po, lb	Engine fuel flow, wf, lb/sec	Engine- inlet air- flow, wa,1, lb/sec	Corrected engine inlet high- pressure rotor speed, NHP/V01, rpm	Corrected high- pressure rotor speed, NHP/-/02, rpm	Corrected low- pressure rotor speed, NLP/-/01, rpm	Corrected engine- inlet airflow, $w_{a,1}\sqrt{\theta_1/\delta_1}$, lb/sec	Corrected high- pressure compressor airflow, wa,2-1\textit{\text	Scale jet thrust, Fj,s,	Scale net thrust, Fn,s, lb	Net specific fuel consumption, wf/Fn,s, lb (hr)(lb of thrust)	Veloc- ity coeffi- cient, C _V	Exhaust- nozzle flow coeffi- cient, Cd,N	Over- all com- pres- sor effi- ciency, $\eta_{\rm C}$	Low- pressure compres- sor effi- ciency, \$n_C,LP\$	High- pressure compres- sor effi- ciency, $n_{\rm C,HP}$	Engine combus- tion effi- ciency, $\eta_{\rm e}$	Over- all turbine effi- ciency, η_{T}
	1 285 2 308 3 289 4 304 5 293	0.655 .7580 .985 1.155 1.408	66.87 73.99 81.72 86.19 90.88	6875 7157 7514 7729 8094	6446 6620 6901 7048 7307	4333 4712 5007 5181 5537	214.71 236.56 261.80 274.88 290.47	145.83 151.61 159.59 164.43 170.47	4068 4519 5604 6158 7004	2007 2352 3145 3613 4273	1.175 1.160 1.128 1.151 1.186	0.976 .970 .980 .971 .965	0.957 .968 .959 .960 .960	0.811 .800 .808 .793 .761	1.00 .955 .973 .937 .895	0.785 .767 .769 .764 .741	0.967 .975 .966 .975 .987	0.887 .895 .897 .898 .895
	6 257 7 305 8 302 9 296 0 280	1.70 .711 .945 1.189 1.427	95.73 74.25 82.45 90.20 92.74	8582 7162 7539 7857 8208	7618 6568 6851 7076 7333	6120 4921 5240 5585 5897	302.35 236.81 267.54 287.91 298.39	172.57 148.90 158.12 164.41 170.51	8127 4382 5392 6455 7222	5022 2183 2964 3749 4369	1,219 1,173 1,148 1,142 1,176	.979 .978 .974 .976 .975	.950 .967 .963 .957	.706 .786 .793 .779 .743	.798 .903 .923 .899 .838	.708 .766 .767 .757 .738	.994 .969 .964 .974 .987	.907 .892 .900 .904 .899
]	1 277 2 256 3 275 4 299 5 289	1.664 1.68 1.62 .713	94.58 94.74 96.23 74.44 82.81	8569 8579 8504 7262 7571	7577 7593 7510 6578 6810	6235 6222 6318 5228 5480	303.34 303.45 304.48 240.39 266.10	172.77 171.98 171.37 146.94 154.21	7813 8043 7835 4369 5359	4880 4969 4824 2143 2831	1.228 1.219 1.207 1.198 1.158	.974 .982 .978 .982 .980	.955 .958 .955 .967	.703 .704 .709 .770 .769	.777 .789 .788 .842 .868	.713 .710 .719 .768 .755	.984 .988 .981 .964 .971	.913 .908 .907 .891 .922
1	6 281 7 279 8 273	1.18 1.39 1.29	91.42 95.19 95.29	7925 8211 8097	7059 7239 7101	5903 6290 6351	294.54 304.99 304.67	163.50 168.76 164.63	6540 7243 6986	3719 4281 4000	1.146 1.167 1.160	.979 .979 .980	.965 .971 .975	.760 .731 .738	.856 .770 .795	.751 .744 .755	.979 .991 .984	.909 .898 .901
2 2	9 310 0 303 1 303 2 306 3 293	.800 1.014 1.231 1.463 1.679	74.69 82.02 86.18 90.38 93.24	7325 7688 7996 8314 8608	6765 7041 7281 7511 7709	4776 5031 5257 5569 5851	240.44 263.78 278.38 290.07 296.61	152.91 160.72 165.65 167.87 168.47	4696 5633 6353 7108 7746	2541 3235 3840 4475 4945	1.134 1.129 1.154 1.177 1.222	.981 .976 .975 .976	.962 .959 .957 .951 .953	.797 .792 .777 .752 .723	.950 .945 .930 .905 .865	.762 .759 .746 .698 .704	.969 .981 .978 .982 .966	.898 .896 .898 .899
2 2	4 311 5 307 6 307 7 298 8 298	.754 .944 1.179 1.403 1.594	76.92 83.17 89.00 92.55 94.48	7322 7641 7970 8307 8648	6701 6937 7181 7419 7629	5001 5240 5549 5847 6262	246,62 267,44 285,80 297,22 304,34	152.35 159.04 163.76 167.74 168.63	4582 5416 6339 7073	2362 3007 3749 4337 4481	1.149 1.130 1.132 1.165 1.281	.974 .975 .979 .977	.967 .967 .959 .956	.798 .785 .773 .743 .709	.913 .906 .897 .852 .788	.773 .765 .751 .733	.971 .973 .979 .987 .973	.886 .904 .904 .899 .937
2 2 2 2 2	9 280 0 313 1 302 2 293 3 291 4 292 5 290	1.614 .679 .825 1.012 1.200 1.402 1.238	93.52 75.68 81.32 88.00 93.36 95.80 95.19	8636 7264 7521 7792 8065 8410 8115	7644 6582 6779 6970 7153 7390 7104	6170 5203 5417 5670 6009 6342 6404	301.64 240.04 259.45 279.69 297.78 304.04 305.29	167.45 147.29 151.79 157.96 162.90 165.97 162.06	7668 4208 4994 5857	4794 2021 2608 3216 3500 4017 3516	1.212 1.209 1.139 1.133 1.234 1.256	.979 .973 .986 .979	.950 .969 .966 .969 .968 .961	.707 .773 .774 .768 .753 .721	.813 .838 .870 .864 .848 .793	.702 .816 .761 .758 .747 .733	.980 .963 .962 .975 .983 .980	.910 .895 .905 .907 .907 .908
3 3	6 310 7 315 8 313 9 316 0 316	1.542 1.559 1.525 .690 .846	87.85 87.65 88.82 75.45 82.18	8625 8655 8668 7351 7643	7785 7796 7777 6660 6826	5487 5525 5620 5198 5434	281.99 282.49 283.21 242.67 263.48	161.97 162.09 160.61 148.29 153.89	7092 7132 7080 4221 4990	4562 4647 4528 2080 2651	1.217 1.208 1.212 1.194 1.149	.971 .977 .972 .974 .973	.961 .951 .949 .968 .976	.720 .718 .708 .775 .768	.911 .891 .871 .845 .859	.677 .687 .680 .774 .758	.994 .988 .993 .966 .983	.905 .907 .907 .895 .899
	2 313 3 311	1.065 1.241 1.433 1.292	88.18 91.20 94.13 93.85	8027 8327 8657 8458	7141 7360 7560 7353	5784 6009 6347 6397	283.15 292.41 303.37 300.50	158.33 159.46 161.02 158.72	5864 6449 7046 6614	3361 3841 4349 3916	1.141 1.163 1.186 1.188	.977 .976 .975 .968	.972 .966 .966 .976	.753 .732 .702 .710	.841 .829 .790 .772	.749 .727 .705 .728	.976 .975 .986 .989	.906 .902 .905 .906
	8 195	.268 .726 .694 .147	29.72 43.04 45.06 25.87 28.56	6591 8197 8230 6104 6436	6201 7409 7248 5702 5934	4055 5370 6037 4188 4576	186.92 270.22 286.41 163.95 180.05	134.93 158.35 157.57 120.31 125.67	1453 3212 3158 805 1058	640 2040 1948 100 277	1.508 1.280 1.283 5.291 2.501	.934 .954 .959 .935 .936	.964 .962 .973 .950	.786 .735 .720 .732 .734	.901 .889 .797 .784 .763	.768 .706 .726 .740 .751	.979 .988 .971 .966 .998	.874 .905 .901 .872 .869
5 5 5 5	0 192 1 195 2 191 3 191 4 192 5 190	.264 .322 .467 .558 .082	32.35 35.05 39.70 43.16 20.58 34.87	6815 7043 7566 7864 5365 7062	6213 6372 6734 6917 5135 6324	4984 5196 5646 5998 3387 5414	204.85 218.51 252.72 273.59 130.54 221.23	134.72 138.99 148.20 151.57 105.52 137.82	1388 1655 2293 2665 370.7 1392	498 690 1206 1490 -196 426	1.907 1.678 1.392 1.349	.926 .927 .936 .942 .897	.971 .976 .978 .982 .935	.747 .741 .738 .724 .750	.777 .773 .777 .781 .828 .736	.767 .763 .759 .740 .741 .775	.978 .978 1.002 1.005 .784 .977	.873 .881 .886 .893 .826

CONFIDENTIAL

NACA RMSE58E26

TABLE II. - Continued. PERFORMANCE DATA OF ENGINE CONFIGURATION A

[AX 103/2 engine.]

Run	Altitude, ft	Mach number, M _O	Reynolds number index, $\delta_1/\phi_1\sqrt{\theta_1}$	Inlet guide vane angle, deg	Exhaust- nozzle area, A _N , sq in.	High- pressure rotor speed, N _{HP} , rpm	Low- pressure rotor speed, NLP, rpm	Engine- inlet temper- ature, T1, oR	Low- pressure compressor- outlet tempera- ture, T2, OR	High- pressure compressor- outlet tempera- ture, T3, oR	Turbine inlet temper- ature, T4, oR	Exhaust- gas tempera- ture, Tg, °R	Engine- inlet total pressure, Pl, lb sq ft abs	Low- pressure compressor- outlet total pressure, P2, lb sq ft abs	High- pressure compressor- outlet total pressure, P3, lb sq ft abs	Turbine- inlet total pressure, P4, lb sq ft	Turbine- outlet total pressure, P6, lb sq ft abs	Exhaust- nozzle inlet total pressure, Pg, lb sq ft abs
56 57 58 59 60	58,000	0.9	0.169 .170 .172 .170 .172	-5	649 679 678 678 679	6647 6308 6436 6606 6614	4275 4179 4277 4351 4420	422 422 421 425 420	492 490 492 500 495	794 754 768 786 789	1706 1459 1521 1586 1609	1360 1142 1192 1246 1264	273 274 277 277 276	463 449 464 474 479	1765 1490 1595 1697 1750	1624 1351 1456 1553 1602	584 456 493 527 542	564 437 472 505 520
61 62 63 64 65			.173 .173 .171 .172 .169		681 680 701 699 704	6745 6876 6246 6377 7037	4529 4669 4234 4295 5045	420 419 426 425 422	498 500 497 499 516	804 825 753 761 849	1676 1777 1410 1436 1787	1319 1404 1096 1113 1394	278 276 280 280 273	496 510 558 466 533	1877 2012 1454 1532 2157	1724 1855 1315 1389 1987	585 633 430 454 651	561 608 410 433 622
66 67 68 69 70			.172 .173 .172 .172 .173		718 721 722 719 718	6724 6784 6920 7045 7090	4633 4779 4904 4973 5135	421 420 420 421 418	506 511 514 517 518	802 816 834 843 858	1601 1642 1719 1754 1827	1242 1272 1336 1364 1423	277, 277 275 276 276	498 515 525 531 543	1777 1879 1986 2068 2179	1624 1717 1823 1899 2007	527 550 588 614 650	502 524 559 586 621
71 72 73 74 75			.172 .172 .173 .173		717 758 757 758 751	7330 6437 6618 6760 6833	5256 4672 4813 4949 5017	422 421 420 420 423	527 511 511 521 523	883 776 798 818 828	1913 1449 1532 1599 1636	1497 1109 1173 1224 1257	277 276 278 277 274	553 487 506 523 531	2265 1574 1708 1817 1904	2093 1420 1548 1659 1744	682 431 473 507 534	651 406 444 476 503
76 77 78 79			.172 .172 .173 .172		758 759 763 752	6914 7130 7323 7496	5105 5362 5725 5728	420 419 419 422	525 534 545 546	837 869 905 916	1675 1794 1924 1972	1287 1382 1483 1527	275 275 276 276	541 565 583 581	1955 2177 2378 2409	1792 2000 2189 2223	551 613 673 692	518 577 635 654
80 81 82 83 84		· .	.173 .174 .173 .172 .172	0	680 680 680 681	6424 6600 6814 7024 7140	4234 4358 4528 4720 4831	422 421 420 420 420	493 496 500 506 509	763 782 806 833 848	1499 1567 1675 1797 1846	1175 1227 1317 1417 1455	278 280 277 275 275	462 480 494 509 519	1562 1710 1867 2019 2114	1425 1567 1717 1866 1957	483 531 585 638 664	463 509 561 613 638
85 86 87 88 89			.173 .173 .173 .173 .177		718 720 718 722 759	6792 7218 7010 7414 6618	4707 5180 4902 5372 4825	420 419 419 419 420	508 520 513 527 514	808 865 835 892 791	1631 1848 1731 1952 1500	1267 1440 1348 1527 1148	277 276 277 276 279	510 548 529 555 507	1854 2213 2030 2314 1702	1700 2040 1865 2142 1549	551 658 607 695 468	525 628 579 663 439
90 91 92 93			.174 .173 .174 .173		755 757 762 759	6813 7046 7270 7453	4982 5206 5511 5727	419 418 417 418	518 526 536 543	818 849 881 906	1601 1719 1833 1935	1226 1320 1409 1494	277 276 276 276	531 553 575 583	1869 2049 2248 2374	1707 1880 2065 2189	523 577 633 674	491 543 596 637
94 95 96 97 98			.170 .173 .172 .171	5	650 676 681 680 682	6440 6350 6500 6693 6887	4045 4086 4234 4371 4485	426 421 422 423 422	489 489 494 498 501	756 748 765 784 806	1503 1453 1500 1577 1667	1189 1140 1174 1238 1309	277 277 277 276 276 276	444 442 461 474 488	1516 1428 1555 1683 1809	1383 1296 1417 1542 1664	489 440 478 522 566	471 423 458 501 543
99 100 101 102 103			.172 .171 .172 .171 .174		681 718 721 726 719	7116 6804 7344 7593 7794	4641 4634 5078 5288 5418	422 422 421 421 421	507 508 523 531 536	831 800 867 897 921	1776 1589 1844 1961 2063	1400 1233 1438 1532 1618	277 276 276 275 280	504 497 540 557 570	1952 1750 2107 2245 2348	1802 1602 1945 2075 2179	615 520 629 671 710	591 495 600 641 679
104 105 106 107 108			.169 .172 .172 .172 .171		727 758 755 757 758	7840 6889 7089 7301 7480	5541 4916 5133 5311 5502	423 422 420 420 421	542 517 527 535 541	929 820 845 870 895	2061 1607 1691 1787 1879	1612 1235 1296 1373 1448	273 277 276 276 276 275	572 522 545 563 577	2366 1822 1987 2118 2241	2189 1664 1823 1947 2065	707 511 558 597 633	674 481 524 563 596
109 110 111			.172 .173 .174		762 754 777	7780 7790 7666	5756 5673 5743	420 421 420	553 548 553	929 929 919	2011 2030 1949	1555 1575 1500	275 278 278	596 592 605	2378 2384 2361	2201 2204 2174	677 689 653	638 652 613

TABLE II. - Concluded. PERFORMANCE DATA OF ENGINE CONFIGURATION A [AX 103/2 engine.]

																		$\overline{}$	
	Run	Exhaust or free- stream static pressure, po, lb sq ft abs	Engine fuel flow, Wf, lb/sec	Engine- inlet air- flow, wa,1, lb/sec	Corrected engine inlet high- pressure rotor speed, NHP/√01, rpm	Corrected high- pressure rotor speed, NHP/-/02, rpm	Corrected low- pressure rotor speed, NLP/√01, rpm	Corrected engine- inlet airflow, Wa,170/01/01, lb/sec	Corrected high- pressure compressor airflow, wa,2-1\sqrt{92}/82, lb/sec	Scale jet thrust, Fj,s, 1b	Scale net thrust, Fn,s, lb	Net specific fuel consumption, wf/Fn,s' lb (hr)(lb of thrust)	Veloc- ity coeffi- cient, C _V	Exhaust- nozzle flow coeffi- cient, Cd,N	Over- all com- pres- sor effi- ciency, $\eta_{\rm C}$	Low- pressure compres- sor effi- ciency, $\eta_{\rm C, LP}$	High- pressure compres- sor effi- ciency, n _C ,HP	Engine combus- tion effi- ciency, $\eta_{\rm e}$	Overall turbine efficiency, η_{T}
	56 57 58 59 60	161 166 165 169 163	0.457 .314 .354 .393 .415	34.36 30.90 32.70 34.37 35.04	7372 6996 7146 7300 7352	6827 6492 6610 6731 6772	4741 4634 4749 4809 4913	240.56 214.95 225.33 237.86 242.12	152.96 141.57 145.36 150.88 151.15	2309 1697 1889 2080 2138	1411 905 1042 1206 1227	1.166 1.248 1.222 1.172 1.218	0.983 .974 .969 .976 .955	0.947 .956 .959 .964 .963	0.793 .785 .782 .793 .787	0.988 .941 .944 .945 .960	0.753 .754 .750 .763 .748	0.947 .935 .944 .956 .949	0.890 .884 .885 .887 .886
	61 62 63 64 65	162 164 166 166 163	.468 .532 .290 .311	37.01 38.98 30.71 32.58 40.79	7498 7675 6894 7047 7804	6886 7026 6383 6503 7057	5035 5197 4673 4746 5595	253.57 268.15 210.46 223.13 285.22	154.83 158.86 138.89 145.10 161.56	2407 2648 1640 1742 2862	1431 1638 836.4 890 1808	1.177 1.169 1.249 1.258 1.150	.970 .961 .997 .965	.960 .967 .957 .975	.787 .782 .779 .785	.969 .992 .907 .906 .947	.734 .732 .755 .767 .753	.951 .974 .932 .949	.888 .889 .869 .881 .899
	66 67 68 69 70	164 172 168 162 170	.410 .445 .498 .529	36.12 37.38 39.00 40.21 41.52	7465 7541 7692 7822 7901	6810 6837 6953 7058 7097	5144 5312 5451 5522 5721	248.87 257.26 269.53 277.63 286.19	151.76 152.33 156.55 160.02 161.94	2207 2275 2506 2716 2837	1267 1345 1519 1659 1798	1.162 1.191 1.181 1.149 1.174	.979 .964 .964 .977	.962 .963 .963 .965	.769 .766 .763 .769	.907 .897 .903 .903 .896	.743 .742 .735 .744 .734	.963 .955 .961 .963	.893 .893 .894 .896 .899
2	71 72 73 74 75	163 167 166 165 169	.636 .313 .364 .409	42.35 32.73 34.98 36.69 37.57	8129 7147 7357 7514 7569	7274 6487 6669 6747 6807	5829 5187 5350 5501 5557	292,26 225,69 239,94 252,05 261,53	163.44 141.38 145.34 148.76 150.51	3076 1691 1943 2149 2292	1964 852 1041 1201 1343	1.166 1.323 1.258 1.227 1.190	.973 .965 .965 .967	.964 .962 .968 .967	.747 .757 .750 .744 .764	.879 .821 .864 .821 .879	.725 .762 .733 .743 .748	.974 .947 .959 .958	.893 .875 .888 .892 .889
Carried	76 77 78 79	166 166 166 169	.468 .558 .659	38.59 41.72 44.20 44.08	7686 7935 8150 8313	6874 7029 7146 7308	5674 5968 6372 6352	267.22 288.34 304.04 304.30	152.01 158.38 164.82 164.75	2391 2767 3122 3213	1404 1699 1989 2094	1.201 1.184 1.193 1.182	.967 .963 .963 .974	.963 .969 .965 .963	.750 .744 .724 .723	.854 .870 .788 .805	.739 .740 .738 .729	.954 .969 .970 .968	.892 .892 .900 .896
T A T ITMA	80 81 82 83 84	165 165 167 166 167	.340 .395 .467 .546	32.79 34.82 36.95 38.79 40.04	7124 7328 7574 7808 7937	6591 6751 6942 7114 7210	4696 4839 5033 5246 5370	224.85 237.00 254.30 268.09 277.17	146.51 150.13 155.38 159.46 161.87	1841 2078 2354 2640 2800	986 1168 1409 1647 1780	1.240 1.217 1.192 1.195 1.181	.956 .960 .958 .959	.970 .959 .962 .959 .964	.783 .784 .785 .773 .769	.929 .936 .950 .937 .940	.755 .753 .749 .739 .735	.962 .943 .952 .956 .962	.883 .893 .892 .896 .897
	85 86 87 88 89	167 167 168 166 165	.438 .600 .516 .666	37.39 41.88 39.72 42.83 35.47	7551 8033 7802 8252 7357	6865 7212 7051 7362 6650	5233 5765 5456 5979 5364	256.85 288.61 272.84 295.34 238.81	153.66 162.06 158.09 164.51 147.32	2274 2871 2589 3112 1920	1316 1803 1580 2018 984	1.198 1.198 1.175 1.189 1.315	.956 .953 .962 .964 .953	.962 .964 .958 .961 .976	.774 .756 .766 .734 .763	.907 .899 .909 .859	.748 .730 .739 .717 .759	.964 .965 .961 .972 .949	.892 .895 .894 .892 .878
	90 91 92 93	167 167 165 168	.423 .503 .592 .667	37.62 40.19 42.75 44.16	7582 7852 8110 8305	6820 6999 7154 7287	5545 5801 6149 6381	258.11 276.83 294.01 304.16	149.99 154.88 160.07 163.98	2211 2555 2907 3134	1251 1534 1809 2019	1.218 1.180 1.178 1.189	.962 .966 .967 .966	.967 .970 .968 .970	.755 .744 .731 .720	.950 .853 .819 .796	.740 .730 .730 .723	.954 .967 .967 .969	.891 .896 .899 .896
	94 95 96 97 98	166 168 169 166	.337 .292 .334 .389	31.13 30.47 32.43 34.13 35.93	7108 7050 7209 7414 7638	6634 6542 6663 6833 7038	4465 4537 4696 4842 4974	215.74 209.40 223.60 236.17 248.51	144.07 141.62 145.43 149.43 154.00	1813 1602 1794 2037 2254	1005 823 969 1159 1339	1.206 1.279 1.241 1.208 1.194	.980 .953 .954 .963 .959	.953 .977 .969 .960	.801 .764 .780 .786 .775	.981 .896 .918 .944 .945	.766 .747 .753 .755 .740	.934 .988 .966 .950	.885 .874 .885 .889 .893
	99 100 101 102 103	168 169 167 166 169	.516 .400 .569 .646	37.64 35.56 40.12 41.36 42.23	7892 7546 8154 8430 8653	7200 6878 7316 7507 7670	5146 5139 5638 5872 6016	259.75 245.54 277.42 286.24 287.42	156.23 149.80 157.84 159.03 159.43	2519 2104 2739 2981 3196	1558 1204 1716 1922 2113	1.193 1.196 1.193 1.211 1.227	.962 .966 .962 .963	.957 .957 .964 .957	.765 .771 .738 .718 .696	.935 .906 .876 .855 .825	.732 .765 .714 .700 .682	.961 .958 .972 .971 .966	.894 .894 .892 .896 .903
	104 105 106 107 108	166 166 166 166 167	.727 .408 .475 .540	42.23 36.76 39.28 40.94 41.96	8673 7640 7880 8116 8305	7668 6902 7035 7191 7326	6137 5452 5706 5904 6110	296.03 252.95 271.32 282.65 290.77	159.75 148.79 153.81 156.42 157.18	3221 2170 2436 2659 2883	2147 1220 1431 1608 1813	1.219 1.205 1.195 1.208 1.203	.979 .968 .961 .954	.953 .965 .975 .974 .969	.706 .750 .743 .730	.840 .880 .844 .827 .828	.690 .726 .734 .726 .714	.950 .973 .970 .973	.907 .887 .899 .901 .898
	109 110 111	167 164 158	.696 .706	43.18 43.07 43.52	8648 8649 8522	7537 7581 7427	6399 6298 6384	298.88 295.17 297.98	158.31 158.45 157.22	3153 3209 3116	2051 2083 1944	1.222 1.221 1.215	.970 .973 .966	.963 .958 .973	.695 .695 .702	.781 .797 .785	.701 .692 .708	.963 .966 .975	.895 .907 .890

TABLE III. - PERFORMANCE DATA OF ENGINE CONFIGURATION B

AX 102/30 engine.

Run	Altitude, ft	Mach number, M _O	Reynolds number index, $\delta_1/\phi_1\sqrt{\theta_1}$	Inlet guide vane angle, deg	Exhaust- nozzle area, A _N , sq in.	High- pressure rotor speed, NHP, rpm	Low- pressure rotor speed, NLP, rpm	Engine- inlet temper- ature, T1, OR	Low- pressure compressor- outlet tempera- ture, T2, OR	High- pressure compressor- outlet tempera- ture, T3, oR	Turbine inlet temper- ature, T4, OR	Exhaust- gas tempera- ture, Tg, OR	Engine- inlet total pressure, P1, 1b sq ft abs	Low- pressure compressor- outlet total pressure, P2, lb sq ft abs	High- pressure compressor- outlet total pressure, P3, lb sq ft abs	Turbine- inlet total pressure, P4, lb sq ft abs	Turbine- outlet total pressure, P6, lb sq ft abs	Exhaust- nozzle inlet total pressure, Pg, lb sq ft abs
12345	14,000	0.9	0.989 .983 1.007 .972 .999	0	649 649 649 650 651	5779 6179 6987 6991 7313	3363 3721 4379 4342 4629	510 515 505 518 507	557 571 582 592 592	762 811 898 904 938	1236 1406 1831 1814 1999	986 1111 1449 1436 1590	2047 2060 2056 2051 2051	2731 2906 3287 3224 3426	6,509 7,837 11,602 11,048 12,953	5,828 7,032 10,660 10,126 11,981	2218 2612 3961 3767 4423	2145 2522 3811 3623 4256
6 7 8 9			.993 1.003 1.000 .989 .994		677 676 680 677 679	5819 6273 6586 6993 7398	3502 3970 4231 4551 4860	509 505 508 512 509	560 571 581 596 604	767 818 855 909 956	1209 1404 1535 1754 1966	956 1097 1195 1370 1543	2049 2048 2058 2057 2050	2793 3043 3193 3393 3589	6,633 8,438 9,651 11,483 13,548	5,897 7,593 8,692 10,503 12,292	2134 2633 3028 3624 4334	2053 2508 2889 3462 4141
11 12 13 14 15	•		1.009 .981 .981 .977 .900		678 716 716 719 721	7577 5839 6636 7158 7765	4967 3591 4419 4896 5370	503 514 516 516 549	606 570 598 617 669	974 775 869 941 1048	2077 1191 1519 1798 2112	1634 925 1168 1387 1645	2050 2049 2060 2053 2047	3689 2829 3284 3611 3820	14,645 6,562 9,533 12,171 14,134	13,137 5,791 8,518 11,065 12,979	4650 2013 2832 3653 4288	4451 1926 2678 3454 4059
16 17 18 19 20	24,500		.639 .650 .649 .652 .646		649 649 649 649 681	5786 6373 6895 7424 5810	3388 3907 4285 4668 3525	507 502 501 502 501	555 564 577 589 553	764 826 888 951 761	1254 1520 1799 2108 1217	999 1208 1439 1693 957	1312 1317 1312 1321 1307	1760 1945 2076 2247 1802	4,172 5,810 7,236 9,026 4,362	3,819 5,216 6,607 8,318 3,852	1446 1927 2463 3118 1380	1397 1856 2372 3013 1325
21 22 23 24 25			.653 .656 .659 .657 .656		679 677 681 719 714	6509 7075 7709 5793 6484	4183 4624 5099 3618 4323	501 498 497 500 499	573 586 604 555 577	841 909 985 763 840	1509 1812 2154 1192 1469	1186 1429 1706 927 1135	1320 1316 1318 1325 1320	2049 2244 2445 1849 2091	6,157 7,978 10,072 4,379 6,033	5,518 7,272 9,267 3,854 5,372	1909 2538 3266 1330 1773	1822 2424 3129 1269 1679
26 27 28 29 30 31			.658 .657 .649 .648 .652	- Transfer	718 719 758 756 760 762	7091 7779 6595 6998 7385 7718	4847 5469 4655 4994 5336 5730	497 497 503 503 501 498	596 620 596 608 620 634	916 1007 865 911 964 1010	1756 2135 1487 1651 1856 2065	1365 1675 1134 1262 1430 1590	1317 1314 1318 1317 1318 1313	2338 2585 2158 2332 2548 2726	8,008 10,494 6,170 7,409 8,888 10,442	7,245 9,614 5,498 6,688 8,076 9,537	2404 3194 1718 2075 2529 3000	2269 3030 1586 1936 2362 2803
32 33 34 35 36	42,000		.366 .365 .365 .367 .365	-5	649 649 649 649 649	5846 6126 6426 6725 6949	3621 3850 4081 4300 4472	426 426 426 424 425	479 485 491 498 503	704 736 770 806 835	1311 1436 1595 1763 1908	1040 1140 1269 1408 1527	597 597 596 595 595	885 929 977 1028 822	2,609 3,011 3,498 4,000 4,386	2,358 2,739 3,213 3,691 4,061	861 992 1166 1352 1498	829 954 1121 1304 1446
37 38 39 40 41			.364 .367 .367 .371 .364		678 679 683 680 681	5820 6299 6805 7195 7473	3715 4147 4569 4954 5171	427 426 424 420 427	483 494 507 513 527	704 756 820 867 909	1257 1454 1724 1959 2117	983 1139 1356 1556 1689	596 599 595 595 595	894 994 1085 1131 1145	2,517 3,265 4,192 4,905 5,173	2,266 2,969 3,860 4,531 4,810	791 1018 1324 1581 1683	756 971 1264 1516 1618
42 43 44 45 46			.363 .367 .368 .365 .369		715 717 720 720 721	5798 6414 6910 7377 7596	3844 4404 4870 5432 5610	429 427 423 425 424	490 507 518 536 541	704 777 840 909 937	1209 1475 1736 2026 2139	938 1141 1348 1590 1687	598 602 594 594 599	908 1039 1155 1185 1202	2,433 3,374 4,396 5,170 5,401	2,182 3,066 4,039 4,788 5,028	721 996 1322 1574 1661	683 939 1249 1497 1582
47 48 49 50 51			.365 .368 .368 .372 .371		729 757 760 760 758	7620 6818 7006 7206 7363	5695 4938 5157 5541 5745	426 427 426 422 422	549 527 532 542 547	942 833 858 893 917	2141 1636 1730 1875 1978	1685 1255 1331 1446 1533	595 603 600 600 598	1202 1159 1219 1265 1252	5,381 4,004 4,435 5,076 5,238	4,988 3,665 4,072 4,681 4,837	1629 1140 1262 1457 1512	1548 1064 1177 1361 1419
52 53 54 55 56			.366 .366 .367 .368	0	649 649 649 649 649	5799 5834 6183 6627 6902	3559 3605 3848 4207 4388	426 426 425 425 424	478 479 484 495 500	694 700 737 788 819	1260 1290 1459 1676 1828	996 1022 1160 1334 1464	598 597 595 597 597	875 881 928 1006 1042	2,524 2,585 3,059 3,792 4,227	2,273 2,334 2,786 3,489 3,916	828 848 1018 1268 1442	798 816 979 1221 1392

CONFIDENTIAL

NACA RM 狂58王26

TABLE III. - Continued. PERFORMANCE DATA OF ENGINE CONFIGURATION B

[AX 102/30 engine.]

Ru	exhaust or free- stream static pressure, po, lb sq ft abs	fuel flow, w _f , lb/sec	Engine- inlet air- flow, wa,1, lb/sec	Corrected engine-inlet high-pressure rotor speed, NHP/√01, rpm	Corrected high- pressure rotor speed, NHP/√02,	Corrected low- pressure rotor speed, NLP/\sqrt{\theta}_1, rpm	Corrected engine-inlet airflow, wa,1 \(\frac{\theta_1}{\theta_1} \delta_1, \text{b_1} \) lb/sec	Corrected high- pressure compressor airflow, wa,2-1\sqrt{0}2/52, lb/sec	Scale jet thrust, Fj,s, 1b	Scale net thrust, Fn,s'	Net specific fuel consumption, wf/Fn,s, lb (hr)(lb of thrust)	Veloc- ity coeffi- cient, Cy	Exhaust- nozzle flow coeffi- cient, Cd,N	Over- all com- pres- sor effi- ciency, $\eta_{\rm C}$	Low- pressure compres- sor eff1- ciency, \$\eta_C, \text{LP}\$	compressor effi- ciency, $\eta_{\rm C,HP}$	Engine combus-tion effi-ciency, $\eta_{\rm e}$	Over- all turbine effi- ciency, $\eta_{\rm T}$
	1 1216 2 1209 3 1234 4 1232 5 1241	0.931 1.338 2.880 2.676 3.535	150.42 168.44 223.64 212.57 240.76	5830 6203 7083 6997 7399	5578 5891 6598 6544 6848	3392 3735 4440 4446 4684	154.15 172.38 227.05 219.05 245.51	118.63 128.03 154.05 148.88 160.55	6,024 8,125 14,878 13,852 17,420	1,720 3,233 8,572 7,785 10,666	1.949 1.490 1.210 1.238 1.193	0.974 .979 .979 .981 .980	0.918 .929 .943 .938 .954	0.793 .806 .813 .822 .806	0.930 .950 .940 .963 .940	0.760 .773 .787 .789 .777	1.000 1.000 1.005 .998 1.020	0.882 .914 .952 .950 .940
	6 1227 7 1212 8 1242 9 1237 0 1245	.888 1.416 1.852 2.598 3.543	153.12 180.96 199.04 223.84 250.91	5876 6360 6657 7040 7471	5602 5981 6225 6526 6859	3536 4025 4276 4582 4908	156.57 184.42 202.47 228.74 256.51	121.18 132.99 140.71 150.95 161.17	5,808 8,569 10,616 14,001 17,780	1,463 3,400 5,012 7,655 10,752	2.185 1.499 1.330 1.222 1.186	.980 .972 .980 .984 .984	.928 .957 .953 .966 .964	.784 .800 .807 .811 .800	.922 .930 .936 .929	.752 .778 .782 .776	1.000 1.000 .986 1.002 1.010	.871 .897 .926 .928 .946
3	2 1223 3 1233 4 1224	4.015 .810 1.700 2.750	261.57 151.01 196.73 235.97 253.40	7178	7015 5571 6182 6565 6839	5045 3608 4432 4911 5221	265.81 155.18 201.52 242.55 269.40	163.83 119.54 137.68 152.38 160.91	19,177 5,344 9,926 14,790 18,331	11,862 1,024 4,305 9,123 11,002	1.219 2.848 1.422 1.085	.966 .986 .975 .976	.965 .921 .950 .968 .964	.789 .772 .793 .796 .791	.885 .895 .893 .889	.749 .776 .775 .779	1.025 .995 1.003 1.019	.953 .895 .924 .940 .930
2		.626 1.132 1.765 2.647	95.91 118.29 137.71 160.29 98.39	7018	5595 6113 6539 6969 5629	3428 3973 4362 4747 3588	152.84 186.91 218.21 252.61 156.56	119.58 134.66 148.37 161.93 119.78	3,903 6,347 8,983 12,346 3,703	1,211 3,075 5,219 7,939 995	1.861 1.325 1.217 1.200 2.121	.984 .984 .982 .986	.905 .928 .929 .931 .922	.769 .814 .807 .811 .790	.923 .952 .923 .945 .926	.736 .783 .784 .778 .759	.988 .982 .994 1.003 1.000	.884 .896 .915 .934 .882
	800 815 810	1.159 1.916 2.942 .552 1.054	126.18 151.81 177.29 101.27 125.97	6625 7222 7879 5902 6612	6195 6658 7146 5602 6149	4258 4721 5211 3687 4409	198.76 239.03 278.48 158.76 198.05	137.02 152.61 166.70 120.73 135.32	6,623 9,839 13,813 3,539 6,171	3,109 5,707 8,960 3,638 6,321	1.342 1.209 1.182 2.718 1.430	.979 .974 .983 .973	.955 .958 .950 .933 .960	.807 .809 .795 .771 .795	.930 .930 .895 .907	.780 .781 .773 .740 .766	.990 1.001 1.015 1.020 1.006	.883 .911 .934 .885 .898
	840 66 840 77 802 798 805 60 806 61 802	1.810 3.002 1.066 1.512 2.111 2.804	155.01 185.60 128.28 145.94 167.16	7246 7949 6699 7108	6617 7117 6154 6465 6757 6983	4954 5589 4729 5074 5432 5850	243.72 292.45 202.71 230.77 263.64 296.25	150.73 166.63 135.58 143.97 151.95 162.25	9,426 14,231 6,099 8,169 10,896 13,626	5,337 14,488 6,194 8,315 11,071 13,932	1.221 1.186 1.525 1.318 1.210	.972 .982 .985 .982 .984 .978	.961 .962 .974 .965 .965	.793 .780 .769 .782 .775 .779	.893 .860 .817 .848 .870	.773 .771 .765 .773 .757	1.004 1.012 1.006 .981 1.000 1.007	.915 .913 .901 .911 .911
	361 359 4 357 55 356 66 361	.472 .614 .810 1.045 1.242	57.25 63.40 70.82 77.36 82.26	6761 7093 7441	6084 6337 6607 6866 7058	3996 4250 4505 4757 4942	183.83 203.75 227.75 248.59 264.91	131.76 139.73 149.48 156.27 162.87	2,826 3,495 4,390 5,312 6,043	2,873 3,585 4,518 5,465 6,133	1.258 1.190 1.144 1.138 1.137	.980 .975 .972 .972 .974	.928 .939 .945 .940	.801 .805 .812 .799 .795	.959 .976 .996 .970 .976	.769 .768 .768 .760 .752	.975 .972 .983 .984 .996	.878 .881 .895 .901 .911
	364 365 39 356 356 356 1 352	.424 .662 1.046 1.411 1.614	56.83 68.66 81.87 91.19 92.48	6953 7529 7998	6032 6456 6885 7237 7416	4096 4578 5055 5507 5701	183.08 219.78 263.24 291.84 298.12	130.11 142.68 158.00 169.79 172.44	2,553 3,782 5,414 6,845 7,434	2,624 3,884 5,617 6,962 7,484	1.385 1.176 1.109 1.131 1.162	.973 .974 .982 .971 .979	.940 .955 .955 .959 .950	.783 .802 .795 .772 .751	.941 .977 .959	.750 .758 .756 .744 .732	.972 .975 .980 1.005 1.002	.881 .884 .900 .896 .902
	359 353 4 353 5 358 6 360	.371 .657 1.062 1.504 1.671	55.83 70.68 85.61 93.91 95.77	7068 7656 8152	5967 6491 6917 7259 7440	4228 4853 5396 6002 6205	179.54 225.51 275.23 302.63 305,84	126.53 142.46 156.98 170.75 172.09	2,329 3,909 5,920 7,161 7,584	2,373 4,002 5,849 7,321 7,793	1.524 1.161 1.096 1.142 1.177	.982 .977 .978 .978 .973	.944 .963 .956 .958 .953	.767 .773 .778 .745 .715	.893 .903 .835 .800	.742 .745 .740 .742 .720	.998 1.014 1.002 1.000 1.004	.864 .886 .910 .897
	357 18 366 19 362 50 357 51 358	1.656 .895 1.027 1.311 1.376	95.45 80.50 86.60 95.41 96.76	7513 7735 7991	7409 6766 6920 7052 7172	6286 5442 5693 6145 6371	307.42 256.22 276.63 303.26 308.83	172.91 148.36 152.31 163.32 167.94	7,542 4,847 5,594 6,761 7,106	7,618 4,965 5,727 6,908 7,293	1.177 1.158 1.101 1.103 1.076	.976 .976 .977 .979	.957 .965 .964 .962	.716 .750 .755 .747 .726	.772 .878 .904 .835 .796	.733 .723 .719 .741 .735	1.006 .993 1.024 1.010 1.068	.902 .903 .897 .905
	356 355 357 357 357 366 360	.436 .461 .639 .930	56.76 57.14 64.31 75.06 80.84	6439 6833 7324	6042 6072 6402 6786 7032	3929 3979 4252 4649 4855	182.03 183.54 207.05 240.65 258.93	132.00 131.95 141.84 154.62 161.39	2,699 2,806 3,630 4,914 5,775	2,759 2,850 3,720 5,053 5,913	1.290 1.260 1.170 1.131 1.140	.978 .985 .976 .973	.935 .932 .936 .945 .940	.807 .807 .810 .811	.944 .950 .977 .964	.780 .778 .772 .773 .763	.969 .967 .977 .984 .975	.880 .873 .892 .901 .904

CONFIDENTIAL

TABLE III. - Continued. PERFORMANCE DATA OF ENGINE CONFIGURATION B

AX 102/3C engine.

		·					r _			2/30 engine				r ————				
Run	Altitude, ft	Mach number, M _O	Reynolds number index, δ1/Φ1√θ1	Inlet guide vane angle, deg	Exhaust- nozzle area, A _N , sq in.	High- pressure rotor speed, NHP, rpm	Low- pressure rotor speed, NLP, rpm	Engine- inlet temper- ature, T1, OR	Low- pressure compressor- outlet tempera- ture, T2, oR	High- pressure compressor- outlet tempera- ture, T3, OR	inlet temper- ature, T ₄ , o _R	Exhaust- gas tempera- ture, T9, oR	Engine- inlet total pressure, Pl, lb sq ft abs	Low- pressure compressor- outlet total pressure, P2, 1b sq ft	High- pressure compressor- outlet total pressure, P3, lb sq ft abs	P4,	Turbine- outlet total pressure, P6, 1b abs	sq ft
57 58 59 60 61	42,000	0.9	0.367 .369 .367 .364 .365	0	677 680 681 679 681	5818 6305 6812 7318 7568	3695 4141 4529 4937 5151	426 423 423 426 426	482 491 505 520 526	695 750 813 877 909	1225 1444 1700 1983 2118	959 1126 1337 1577 1689	599 596 594 594 596	898 987 1080 1128 1152	2529 3270 4137 4864 5161	2269 2974 3803 4516 4807	786 1008 1309 1575 1679	752 960 1250 1512 1614
62 63 64 65			.353 .360 .365 .368		718 717 718 721	5830 6403 6913 7393	3844 4386 4834 5346	440 431 426 422	503 509 520 532	716 774 833 897	1203 1446 1702 1976	930 1118 1325 1548	602 597 595 593	907 1025 1143 1185	2411 3295 4309 5065	2154 2985 3959 4686	710 968 1291 1543	672 914 1221 1467
66 67 68 69			.366 .366 .365 .361		719 726 738 753	7704 7723 7731 6406	5553 5660 5733 4557	425 424 426 435	542 545 549 523	937 943 945 784	2143 2153 2132 1424	1690 1694 1671 1089	596 594 596 606	1203 1214 1229 1046	5326 5363 5376 3204	4938 4989 4992 2890	1639 1630 1612 901	1562 1550 1527 840
70 71 72 73			.365 .368 .373 .374		757 763 758 760	6756 7047 7240 7445	4914 5215 5520 5730	430 425 420 419	529 534 538 543	827 858 885 910	1594 1727 1857 1962	1221 1327 1433 1519	603 599 597 597	1148 1228 1257 1254	3918 4584 5054 5264	3574 4207 4653 4854	1104 1295 1442 1510	1029 1210 1352 1416
74 75 76 77 78			.365 .366 .372 .367 .369	5	649 649 649 649	5818 6161 6235 6447 6714	3551 3824 3856 4031 4204	426 426 426 425 423	476 484 485 489 492	691 727 735 760 788	1250 1399 1439 1551 1689	990 1109 1143 1234 1348	595 597 607 598 597	872 927 948 965 1011	2521 2983 3099 3421 3830	2271 2711 2843 3137 3526	822 984 1031 1136 1291	791 946 991 1092 1243
79 80 81 82 83		-	.369 .371 .362 .364 .364		650 652 679 678 680	7005 7197 5843 6508 7188	4398 4537 3711 4235 4698	422 422 429 429 428	499 502 484 501 514	821 840 698 772 847	1842 1932 1209 1504 1829	1476 1552 944 1176 1445	595 598 597 600 598	1043 1078 894 1011 1113	4262 4519 2483 3439 4448	3946 4192 2223 3134 4094	1444 1535 765 1076 1429	1395 1481 731 1025 1369
84 85 86 87 88			.365 .369 .362 .362 .364		682 718 720 720 718	7750 5814 6403 6910 7374	5109 3840 4346 4734 5120	427 423 428 427 425	528 483 505 517 528	914 692 764 821 875	2134 1164 1413 1643 1888	1702 898 1090 1275 1476	598 597 594 593 593	1183 918 1025 1118 1189	5066 2504 3288 4109 4802	4727 2238 2977 3767 4435	1650 731 961 1230 1457	1582 691 907 1162 1382
89 90 91 92 93			.369 .365 .364 .371 .373		721 755 758 757 759	7803 6292 6804 7208 7620	5472 4436 4888 5310 5720	423 428 429 422 421	540 511 527 534 547	931 759 822 868 922	2120 1353 1563 1780 2003	1668 1031 1191 1370 1552	597 600 600 599 599	1243 1020 1149 1249 1285	5313 3070 3905 4774 5275	4937 2761 3562 4380 4873	1636 855 1099 1363 1528	1556 797 1025 1276 1434
94 95 96 97 98	48,000		.276 .273 .269 .276 .277	0	649 649 649 649 677	5803 6141 6440 6673 5783	3577 3843 4052 4241 3701	425 428 434 424 424	476 487 500 495 480	695 736 780 792 693	1286 1440 1621 1716 1226	1019 1144 1290 1363 957	449 449 450 448 450	657 692 727 760 673	1909 2235 2564 2897 1906	1713 2024 2343 2667 1701	625 735 861 970 588	602 706 830 934 562
99 100 101 102 103		***************************************	.277 .282 .277 .275 .276		679 681 680 680 719	6206 6541 7020 7307 7301	4061 4352 4729 4993 5241	424 418 422 425 422	490 496 512 522 530	739 782 841 879 880	1394 1601 1849 2004 1924	1087 1251 1456 1587 1504	449 448 447 447 445	728 785 834 852 888	2364 2831 3403 3674 3713	2130 2585 3136 3396 3423	727 887 1083 1182 1119	893 846 1037 1135 1064
104 105 106 107 108			.278 .278 .281 .276 .280		721 754 758 758 760	7611 6357 6689 7012 7367	5581 4541 4834 5203 5733	421 422 418 423 419	539 509 513 533 545	924 766 803 854 906	2114 1412 1570 1736 1959	1661 1076 1199 1330 1513	446 448 448 447 446	905 772 844 908 940	3995 2421 2924 3375 3910	3698 2167 2646 3079 3613	1222 676 823 954 1115	1163 632 770 893 1047
109	58,000	1	.166		717	7256	5199	430	537	889	1947	1525	275	551	2240	2068	678	643

CONFIDENTIAL

TABLE III. - Concluded. PERFORMANCE DATA OF ENGINE CONFIGURATION B

[AX 102/3C engine.]

		Exhaust or free- stream static pressure, po, lb sq ft abs	Engine fuel flow, w _f , lb/sec	Engine- inlet air- flow, wa,1' lb/sec	Corrected engine-inlet high-pressure rotor speed, NHP/√01, rpm	Corrected high- pressure rotor speed, NHP/-/62, rpm	Corrected low- pressure rotor speed, NLP/-/01, rpm	Corrected engine-inlet airflow, wa,1 $\sqrt{\theta_1/\delta_1}$, lb/sec	Corrected high- pressure compressor airflow, wa,2-1\sqrt{9}^62^62, lb/sec	Scale jet thrust, Fj,s' lb	Scale net thrust, Fn,s,	Net specific fuel consumption, wf/Fn,s' lb (hr)(lb of thrust)	Veloc- ity coeffi- cient, C _V	Exhaust- nozzle flow coeffi- cient, Cd,N	Over- all com- pres- sor effi- ciency,	Low- pressure compres- sor effi- ciency, $\eta_{\text{C,LP}}$	High- pressure compres- sor effi- ciency, n _C ,HP	Engine combus-tion effi-ciency, $n_{\rm e}$	Over- all turbine effi- ciency, η_{T}
	57 58 59 60 61	346 358 353 362 356	0.413 .656 1.013 1.415 1.607	58.06 69.02 81.42 89.67 91.89	6421 6984 7545 8077 8353	6036 6481 6906 7311 7516	4078 4587 5016 5449 5685	185.80 221.15 262.03 289.24 295.47	132.12 144.43 157.56 168.53 170.07	2678 3799 5398 6782 7313	2718 3896 5540 6858 7415	1.323 1.171 1.112 1.134 1.176	0.985 .975 .974 .976 .972	0.954 .965 .957 .953 .948	0.805 .808 .800 .772 .746	0.936 .966 .962	0.776 .770 .759 .744 .724	0.977 .976 .986 1.000	0.870 .888 .902 .894 .904
	62 63 64 65	363 356 355 362	.353 .627 1.006 1.411	55.62 69.63 84.89 93.43	6331 7024 7632 8199	5924 6467 6906 7301	4175 4811 5337 5929	180.15 224.80 273.52 300.82	128.01 142.43 157.38 169.11	2251 3767 5547 6969	2309 3839 5699 7122	1.599 1.163 1.086 1.105	.975 .981 .973 .978	.948 .964 .962 .956	.774 .787 .791 .745	.869 .924 .841	.758 .755 .758 .739	1.006 1.005 1.017 1.020	.874 .883 .897 .901
	66 67 68 69	358 365 362 354	1.635 1.620 1.640 .585	94.94 95.32 95.44 68.68	8513 8542 8533 6995	7538 7537 7518 6382	6136 6260 6328 4976	305.21 307.00 306.99 219.57	170.87 170.37 169.16 139.57	7502 7505 7486 3489	7706 7711 7538 3596	1.166 1.145 1.172 1.276	.974 .973 .979 .970	.957 .963 .954 .971	.715 .708 .711 .756	.808 .796 .797 .836	.715 .711 .713 .748	1.019 1.037 1.003 1.010	.905 .901 .906 .888
2	70 71 72 73	358 376 357 362	.837 1.082 1.305 1.416	80.16 89.28 95.37 97.07	7425 7787 8051 8286	6692 6947 7112 7279	5400 5763 6138 6377	256.01 285.34 303.93 309.02	149.28 156.15 163.61 167.69	4733 5844 6691 7089	4864 5970 6851 7262	1.156 1.106 1.111 1.104	.973 .979 .977	.977 .962 .964 .966	.761 .768 .754 .730	.878 .887 .844 .798	.738 .744 .746 .737	1.007 .998 1.003 1.029	.895 .896 .898 .898
	74 75 76 77 78	355 356 360 359 359	.429 .594 .637 .769 .956	56.02 63.76 66.01 69.68 75.57	6421 6800 6882 7125 7437	6074 6380 6449 6642 6895	3919 4221 4256 4455 4657	180.37 204.77 208.57 223.24 241.78	130.23 140.67 142.64 148.43 154.26	2646 3449 3681 4241 5016	2705 3554 3795 4331 5136	1.302 1.196 1.175 1.135 1.123	.978 .970 .970 .979	.928 .939 .942 .941 .940	.818 .823 .816 .816	.954 .954 .976 .996	.782 .785 .777 .781 .765	.961 .965 .979 .974 .982	.869 .883 .880 .890
T A T	79 80 81 82 83	355 360	1.179 1.314 .391 .721 1.187	81.27 84.25 57.05 72.10 84.60	7768 7982 6427 7158 7915	7144 7318 6050 6624 7223	4877 5032 4081 4658 5173	260.48 269.04 183.99 231.34 272.06	161.98 162.83 130.58 148.59 160.28	5801 6284 2486 4102 6003	5975 6465 2567 4262 6074	1.141 1.150 1.422 1.164 1.130	.971 .972 .969 .963	.945 .947 .952 .967 .947	.794 .785 .800 .806 .786	.953 .957 .960 .969	.760 .744 .764 .769	.986 .991 .977 .989	.896 .895 .873 .902
	84 85 86 87 88	362 364 366 367 371	1.589 .366 .619 .942 1.238	90.30 58.44 70.22 81.98 89.85	8545 6442 7050 7615 8148	7683 6024 6493 6924 7311	5633 4255 4785 5217 5658	289.73 186.90 227.11 265.35 290.12	162.97 130.02 143.11 159.90 161.71	7187 2377 3686 5162 6357	7362 2428 3763 5248 6534	1.176 1.485 1.171 1.095 1.082	.976 .979 .980 .984 .973	.938 .951 .963 .952	.725 .794 .800 .796 .767	.911 .924 .938 .945 .908	.694 .765 .765 .759	1.008 .983 .987 .986 1.037	.903 .868 .882 .899 .898
	89 90 91 92 93		1.587 .522 .798 1.165 1.484	94.41 67.10 80.10 82.13 96.75	8646 6927 7484 7994 8458	7650 6342 6752 7107 7423	6063 4884 5377 5889 6349	301.95 214.99 256.65 293.60 302.93	164.23 138.49 148.86 158.39 163.72	7410 3226 4672 6174 7160	7583 3295 4783 6343 7353	1.140 1.268 1.119 1.103 1.142	.977 .979 .977 .973	.949 .968 .966 .963 .964	.716 .766 .768 .761 .718	.843 .846 .892 .882 .815	.698 .758 .740 .737 .712	1.025 1.015 1.015 1.009 1.010	.909 .885 .908 .903
	94 95 96 97 98	269 265 270 275 268	.331 .446 .594 .736 .312	42.27 47.00 51.29 56.65 42.87	6412 6761 7043 7383 6398	6058 6338 6562 6833 6013	3953 4231 4431 4692 4095	180.28 201.08 220.77 241.88 182.38	130.75 139.49 147.04 155.06 130.20	2019 2612 3208 3740 1925	2077 2667 3276 3848 1962	1.293 1.171 1.146 1.149 1.386	.972 .979 .979 .972 .981	.934 .942 .934 .944	.804 .806 .806 .808	.960 .953 .970 .975 .926	.773 .776 .767 .770 .779	.993 .996 .988 .972 .953	.877 .879 .905 .911 .878
	99 100 101 102 103		.460 .644 .919 1.086 1.035	50.24 57.45 64.31 67.40 69.16	6866 7288 7785 8074 8097	6387 6691 7068 7286 7225	4493 4849 5244 5518 5812	214.07 243.29 274.59 288.84 296.35	142.30 152.18 163.07 168.83 166.99	2667 3530 4569 5081 5014	2743 3643 4703 5244 5152	1.219 1.130 1.142 1.163 1.144	.972 .969 .971 .969	.955 .961 .956 .959	.815 .792 .788 .769 .763	.953 .931 .915 .887 .853	.784 .761 .762 .747 .754	.952 .990 .982 .990 .985	.885 .911 .910 .906 .898
	104 105 106 107 108	272 274 258 264 271	1.225 .445 .630 .803 1.060	71.44 51.56 59.41 66.20 72.35	8451 7050 7453 7767 8199	7469 6421 6728 6919 7189	6195 5036 5387 5765 6381	305.33 219.79 251.89 283.10 308.21	170.93 140.71 148.94 157.01 167.48	5517 2582 3535 4285 5189	5730 2647 3614 4430 5380	1.191 1.255 1.161 1.132 1.138	.963 .975 .978 .967	.960 .961 .960 .975	.724 .759 .769 .764 .735	.800 .817 .874 .865 .790	.728 .756 .745 .749	1.000 .995 .977 1.003 1.018	.910 .895 .909 .910 .899
	109	165	.626	41.11	7972	7134	5712	288.36	161.22	2972	3080	1.183	965	.958	.765	.885	.742	.982	.892

TABLE IV. - HIGH INLET AIR TEMPERATURE DATA (AX 102/3C ENGINE)

Exhaust-nozzle areas for tailpipe configuration with turbine-outlet rakes, single total-pressure rake at exhaust-nozzle inlet and flameholder.

	Reynolds number index, $\delta_1/\phi_1\sqrt{\theta_1}$	Exhaust- nozzle area, A _N , sq in.	High- pressure rotor speed, N _H P, rpm		Engine- inlet temper- ature, T1, oR	Low- pressure compressor- outlet tempera- ture, T2, oR	High- pressure compressor- outlet tempera- ture, T3, oR	Exhaust- gas tempera- ture, Tg, OR	Engine- inlet total pressure, P1, lb sq ft abs	Low- pressure compressor- outlet total pressure, P2, lb sq ft abs	High- pressure compressor- outlet total pressure, P3, lb sq ft abs	Turbine- inlet total pressure, P4, lb sq ft abs	Turbine- outlet total pressure, P6, lb sq ft abs	Exhaust- nozzle inlet total pressure, P9, lb sq ft abs
1	0.381	720	7784	5242	699	816	1192	1678	1174	1899	5791	5204	1728	1614
2	.375	742	7000	4685	696	791	1090	1302	1150	1672	4093	3606	1175	1093
3	.379	723	7210	4823	696	794	1114	1405	1163	1747	4538	4026	1312	1218
4	.383	719	7420	4997	696	802	1140	1500	1174	1810	4982	4443	1454	1354
5	.379	727	7604	5148	696	807	1167	1592	1162	1843	5330	4777	1575	1464
6	.382	724	6977	4630	696	787	1079	1282	1171	1698	4139	3641	1190	1108
7	.403	722	7580	5035	758	867	1217	1564	1371	2060	5478	4880	1625	1517
8	.386	722	7600	5054	784	893	1249	1591	1370	2029	5299	4714	1584	1482
9	.375	721	7625	5051	806	907	1252	1582	1375	2030	5243	4663	1561	1460

CONFIDENTIAL

Figure 1. - Prototype Iroquois turbojet engine installed in altitude test chamber.

Figure 2. - Relation between indicated turbine-outlet temperature and exhaust-gas temperature.

Figure 3. - Schematic diagram of variable high-pressure compressor-inlet guide vanes and adjacent stages.

Figure 4. - Schematic diagram of Iroquois turbojet engine showing steady-state instrumentation stations.

(a) Reynolds number index, 0.45.

Figure 5. - Operating limits of original engine configuration at simulated flight Mach number of 0.9.

(b) Reynolds number index, 0.17.

Figure 5. - Concluded. Operating limits of original engine configuration at simulated flight Mach number of 0.9.

Figure 6. - Net thrust loss of original engine configuration due to presence of compressor stall. Simulated Mach number, 0.9.

Figure 7. - Original engine configuration fuel-flow stall margin. Reynolds number index, 0.45; simulated flight Mach number, 0.9; inlet-air temperature, 15° F; rated exhaust-nozzle area.

Figure 8. - Original engine configuration high-pressure compressor performance.

Figure 9. - Typical pressure variation at low-pressure compressor outlet for original engine configuration.

Figure 10. - Original engine configuration low-pressure compressor performance.

CONFIDENTIAL

Figure 11. - Component efficiencies of original engine configuration for rated exhaust-nozzle area.

Figure 12. - Effect of high-pressure compressor-inlet guide vane angle on operating limits of modified B engine configuration. Reynolds number index, 0.37; inlet air temperature, -40° F; simulated flight Mach number, 0.9.

Figure 13. - Effect of high-pressure compressor inlet guide vane angle on performance of modified B engine configuration. Reynolds number index, 0.37; rated exhaust-nozzle area.

(a) Reynolds number index, 0.45 to 0.37.

Figure 14. - Variation of engine operating limits with engine configuration change. Simulated flight Mach number, 0.9; inlet-air temperature, -40° F.

24 Garan 1-1 77 1-11

Figure 14. - Concluded. Variation of engine operating limits with engine configuration change. Simulated flight Mach number, 0.9.

Figure 15. - Variation of engine fuel flow stall margin with engine configuration change. Reynolds number index, 0.45; simulated flight Mach number, 0.9.

Figure 16. - Variation of engine performance with engine configuration change.

Figure 17. - Variation of over-all compressor and turbine efficiencies for three engine configurations.

56

Figure 18. - Variation of high-pressure compressor inlet distortion with high-pressure rotor speed for a rated area operating line. Reynolds number index, 0.37 to 0.45; flight Mach number, 0.9.

Figure 19. - Variation of high-pressure compressor stall line with engine configuration change. Reynolds number index range, 0.45 to 0.17.

CONFIDENTIAL

Figure 20.. - Variation of high-pressure compressor stall margin with engine configuration change.

INVESTIGATION OF A PROTOTYPE IROQUOIS TURBOJET ENGINE IN AN ALTITUDE TEST CHAMBER

John E. McAulay

Donald & Groesberk

Donald E. Groesbeck

Approved:

William A. Benser Chief Exhaust Systems Branch

Bruce T. Lundin

Chief

Propulsion Systems Division

June 13, 1958 aap