Analisi Matematica 2 - Ing. Informatica Telecomunicazioni		Esame del 20 giugno 2022
Cognome:	Nome:	Matricola:

Esercizio 1 (6 punti) Si consideri l'equazione differenziale dipendente dal parametro reale $\alpha \geq 0$:

$$y'(t) + \frac{y(t)}{1+\alpha t} = \frac{2}{1+\alpha t}.$$

- 1.1 (1.5 punti) Fissato $\alpha \geq 0$, si consideri una qualunque soluzione dell'equazione. Determinare il più ampio intervallo contenente t=0 su cui essa risulta definita, senza calcolarla (si consiglia di distinguere i casi $\alpha > 0$ e $\alpha = 0$).
- 1.2 Nel resto dell'esercizio si consideri $\alpha = 1$ e t appartenente all'intervallo determinato al punto 1.1.
 - a. (2.5 punti) Determinare esplicitamente l'integrale generale dell'equazione differenziale su tale intervallo.
 - b. (1 punto) Stabilire se esistono soluzioni limitate su tutto l'intervallo.
 - c. (1 punto) Risolvere il problema di Cauchy relativo alla condizione y(0) = 1.

Risposte

1.1) Si tratta di una EDO lineare del primo ordine del tipo y'(t) + a(t)y(t) = b(t), con

$$a(t) = \frac{1}{1 + \alpha t}$$
 e $b(t) = \frac{2}{1 + \alpha t}$.

Alla luce del Teorema di Cauchy per EDO del primo ordine lineari, le soluzioni sono definite su tutto l'intervallo sul quale a e b risultano continue.

Se $\alpha = 0$ allora a e b sono costanti e tale intervallo è tutto \mathbb{R} .

Se $\alpha > 0$ allora a e b sono definite e continue in $(-\infty, -\frac{1}{\alpha}) \cup (-\frac{1}{\alpha}, +\infty)$; dunque il più ampio intervallo contenente t = 0 sulm quale le soluzioni risultano definite è

$$I_{\alpha} = (-\frac{1}{\alpha}, +\infty).$$

1.2) Nel caso $\alpha = 1$ la EDO e l'intervallo diventano:

$$y'(t) + \frac{y(t)}{1+t} = \frac{2}{1+t}, \quad t \in I_1 = (-1, +\infty).$$

a) Applicando la formula risolutiva per EDO del primo ordine lineari, si ottiene

$$A(t) = \int \frac{1}{1+t} dt = \ln|1+t| = \ln(1+t)$$
 $(t \in I_1)$

$$\mathcal{B}(t) = \int e^{\mathcal{A}(t)} b(t) \, dt = 2t$$

da cui l'integrale generale

$$y(t) = e^{-\ln(1+t)}(C+2t) = \frac{C+2t}{1+t}, \qquad C \in \mathbb{R}, \ t \in I_1.$$

- b) Per C=2 si ottiene y(t)=2 che è limitata nell'intervallo.
- c) Imponendo y(0) = 1 si ottiene C = 1. Perciò la soluzione del problema di Cauchy richiesto è

1

$$y(t) = \frac{1+2t}{1+t}.$$

Esercizio 2 (6 punti) Si consideri la seguente serie di funzioni definita per ogni $x \in \mathbb{R}$

$$f(x) = \sum_{k=1}^{\infty} \left(\frac{\cos(kx)}{k} \right)^{2}.$$

2.1 (2 punti) Discutere la convergenza puntuale, assoluta e totale della serie.

2.2 (2 punti) Determinare la serie di Fourier di f, ricordando che $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$ (può risultare conveniente l'utilizzo delle formule di duplicazione).

2.3 (2 punti) Calcolare
$$\int_{-\pi}^{\pi} f(x)^2 dx$$
, ricordando che $\sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90}$.

Risposte

2.1) Si ha

$$\left| \frac{\cos^2(kx)}{k^2} \right| \le \frac{1}{k^2}.$$

Essendo il lato destro una serie numerica convergente, la serie di funzioni proposta converge totalmente su \mathbb{R} . Di conseguenza, la convergenza è anche puntuale e assoluta su \mathbb{R} .

2.2) Facendo uso della formula di duplicazione

$$\cos^2(kx) = \frac{1 + \cos(2kx)}{2},$$

si ottiene

$$f(x) = \sum_{k=1}^{\infty} \frac{1 + \cos(2kx)}{2k^2} = \sum_{k=1}^{\infty} \frac{1}{2k^2} + \sum_{k=1}^{\infty} \frac{\cos(2kx)}{2k^2}.$$

Infine, facendo uso del suggerimento, si conclude

$$f(x) = \frac{\pi^2}{12} + \sum_{k=1}^{\infty} \frac{\cos(2kx)}{2k^2}.$$

I coefficienti di Fourier potevano anche essere calcolati con le usuali formule, osservando che $b_n = 0$ per ogni n per parità.

2.3) L'integrale richiesto si ottiene applicando l'identità di Parseval:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 dx = 2\left(\frac{\pi^2}{12}\right)^2 + \sum_{k=1}^{\infty} \frac{1}{(2k^2)^2} = \frac{\pi^4}{72} + \frac{1}{4} \cdot \frac{\pi^4}{90},$$

(nel secondo passaggio si è usato il suggerimento) da cui

$$\int_{-\pi}^{\pi} f(x)^2 dx = \frac{\pi^5}{72} + \frac{\pi^5}{360}.$$

2

$$f(x,y) = -x^2 + \log(xy - 1).$$

- **3.1** (1.5 punti) Determinare e disegnare il dominio D di f e poi specificare se D è aperto/chiuso e se è limitato/illimitato.
- **3.2** (2 punti) Determinare l'equazione del piano tangente al grafico di f nel punto (2, 1, f(2, 1)).
- **3.3** (1.5 punti) Scrivere la formula di Taylor al secondo ordine relativa al punto (2,1) per la funzione f.
- **3.4** (1 punto) Stabilire se localmente in un intorno del punto (2,1) il grafico di f si trovi tutto al di sopra o al di sotto del piano tangente calcolato precedentemente.

Risposte

3.1) $D = \{(x, y) \in \mathbb{R}^2 : xy > 1\}$ aperto e illimitato.

3.2)

$$f(2,1) = -4$$
 $\nabla f(x,y) = \begin{pmatrix} -2x + \frac{y}{xy-1} \\ \frac{x}{xy-1} \end{pmatrix}$ $\nabla f(2,1) = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$

da cui l'equazione del piano tangente al grafico di f nel punto (2,1,f(2,1)) è

$$z = -4 - 3(x - 2) + 2(y - 1) = -3x + 2y$$
.

3.3) La matrice Hessiana di fè

$$H_f(x,y) = \begin{pmatrix} -2 - \frac{y^2}{(xy-1)^2} & -\frac{1}{(xy-1)^2} \\ -\frac{1}{(xy-1)^2} & -\frac{x^2}{(xy-1)^2} \end{pmatrix} \qquad H_f(2,1) = \begin{pmatrix} -3 & -1 \\ -1 & -4 \end{pmatrix}.$$

La formula di Taylor al secondo ordine relativa al punto (2,1) per la funzione f è quindi

$$f(x,y) = -3x + 2y - \frac{3}{2}(x-2)^2 - (x-2)(y-1) - 2(y-1)^2 + o((x-2)^2 + (y-1)^2).$$

3.3) La forma quadratica indotta da $H_f(2,1)$ è definita negativa in quanto

$$\det H_f(2,1) = 11 > 0, \qquad \frac{\partial^2 f}{\partial x^2}(2,1) = -3 < 0.$$

Questo implica che localmente il grafico di f si trova tutto al di sotto del piano tangente.

- **4.1** (2 punti) Sia $D = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le x\}$. Calcolare l'integrale doppio $\iint_D xy^2 dxdy$.
- 4.2 Si consideri la curva regolare a tratti avente parametrizzazione

$$\mathbf{r}: [0, 1+\pi] \to \mathbb{R}^2 \qquad \qquad \mathbf{r}(t) = \begin{cases} (-t+1, -2t) & \text{se } 0 \le t \le 1, \\ (2\sin{(t-1)}, -2\cos{(t-1)}) & \text{se } 1 \le t \le 1+\pi. \end{cases}$$

Si indichi con γ il sostegno di tale curva.

- a. (1.5 punti) Determinare il versore tangente a γ nei punti dove è ben definito.
- b. (2.5 punti) Calcolare l'integrale curvilineo $\int_{\gamma} xy^2 ds$.

Risposte

4.1) Considerando ad esempio D come regione y-semplice, si ha

$$\iint_D xy^2 \, dx \, dy = \int_0^1 \int_0^x xy^2 \, dy \, dx = \int_0^1 x \left[\frac{y^3}{3} \right]_0^x \, dx = \int_0^1 \frac{x^4}{3} \, dx = \frac{1}{15}.$$

- 4.2) La curva è regolare a tratti; non è regolare per t = 1.
 - a) Il versore tangente a γ è ben definito per $t \in (0,1) \cup (1,1+\pi)$. Calcoliamo $\mathbf{r}'(t)$ in tali punti

$$\mathbf{r}'(t) = \begin{cases} (-1, -2) & \text{se } 0 < t < 1, \\ (2\cos(t-1), 2\sin(t-1)) & \text{se } 1 < t < 1 + \pi. \end{cases}$$

Essendo poi

$$\|\mathbf{r}'(t)\| = \begin{cases} \sqrt{5} & \text{se } 0 < t < 1, \\ 2 & \text{se } 1 < t < 1 + \pi, \end{cases}$$

concludiamo che il versore tangente a γ è

$$\mathbf{r}'(t) = \begin{cases} (-\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}) & \text{se } 0 < t < 1, \\ (\cos(t-1), \sin(t-1)) & \text{se } 1 < t < 1 + \pi. \end{cases}$$

b) Per calcolare l'integrale curviline
o $\int_{\gamma}xy^2\,ds,$ spezziamo l'integrale sui due intervalli sui quali la curva è regolare:

$$\int_{\gamma} xy^2 ds = \int_{0}^{1} (-t+1)(-2t)^2 \sqrt{5} dt + \int_{1}^{1+\pi} 2\sin(t-1)(-2\cos(t-1))^2 2 dt$$
$$= 4\sqrt{5} \int_{0}^{1} (t^2 - t^3) dt + 16 \int_{1}^{1+\pi} \sin(t-1)\cos^2(t-1) dt.$$

Si ha

$$4\sqrt{5} \int_0^1 (t^2 - t^3) \, dt = \frac{\sqrt{5}}{3}$$

e, tramite il cambio di variabili cos(t-1) = k,

$$16 \int_{1}^{1+\pi} \sin(t-1)\cos^{2}(t-1) dt = 16 \int_{-1}^{1} k^{2} dk = \frac{32}{3}.$$

4

In conclusione, l'integrale curvilineo richiesto vale $\frac{\sqrt{5}+32}{3}$.

TEORIA: 8 punti.

Risolvere i quesiti **T.1-5** (nota bene: ogni quesito a crocette ammette una e una sola risposta corretta).

T.1 (1 punto) Date le seguenti tre equazioni differenziali:

i)
$$y' = ty^3$$
, ii) $y' + (\log \sqrt{2} - 3)y + 7e^{\sqrt{2}} = 0$, iii) $y' = ty + 3y^2$

si ha che:

- A la prima e la terza sono equazioni di Bernoulli e la seconda non ammette una soluzione definita su tutto \mathbb{R} .
- B tutte le equazioni sono lineari.
- X tutte le equazioni ammettono almeno una soluzione costante.
- D tutte le equazioni sono a variabili separabili.
- T.2 (1 punto) Si consideri la serie di potenze

$$\sum_{n=0}^{+\infty} a_n (x - x_0)^n$$

con centro $x_0 \in \mathbb{R}$ e coefficienti $a_n \in \mathbb{R}$. Si ha che:

- A se $a_n = 1/n!$ e $x_0 = 0$ la serie converge totalmente a e^{x^2} in tutto \mathbb{R} .
- B se il raggio di convergenza della serie è R > 0, la serie è integrabile in $[x_0 R/100, x_0 + R/100]$, ma non converge totalmente in tale intervallo.
- C se il raggio di convergenza della serie è R > 0, la serie converge puntualmente in $[x_0 R, x_0 + R]$.
- X nessuna delle altre opzioni è vera.
- **T.3** (1 punto) Sia $A \subset \mathbb{R}^2$ un insieme aperto, $f: A \to \mathbb{R}$ una funzione di classe $C^1(A)$ e $(x_0, y_0) \in A$. Si ha che:
 - X detto D un qualunque insieme chiuso e limitato contenuto in A, f ammette massimo assoluto in D
 - B se $\nabla f(x_0, y_0) = 0$, allora (x_0, y_0) è un punto estremale di f.
 - C la derivata direzionale di f in (x_0, y_0) è massima nella direzione di $-\nabla f(x_0, y_0)$.
 - D nessuna delle altre opzioni è vera.
- T.4 (2 punti) Dare la definizione di punto di massimo relativo vincolato; enunciare il teorema relativo al metodo dei moltiplicatori di Lagrange.
- **T.5** (3 punti) Dare la definizione di insieme di livello di una funzione di due variabili a valori reali; enunciare e dimostrare l'ortogonalità del gradiente agli insiemi di livello.

5