Cancer EDA

Introduction

Research Question: Perform an exploratory analysis to understand how county-level characteristics are related to cancer mortality.

Number of Variables: 30 Number of Observations: 3047

Variables:

This dataset contains variables describing county, region, population, birthrate, race, marital status, insurance coverage, income status, and education.

```
##
    [1] "X"
                                "avgAnnCount"
                                                        "medIncome"
    [4] "popEst2015"
                                "povertyPercent"
                                                        "binnedInc"
                                "MedianAgeMale"
   [7] "MedianAge"
                                                        "MedianAgeFemale"
## [10] "Geography"
                                "AvgHouseholdSize"
                                                        "PercentMarried"
## [13] "PctNoHS18 24"
                                "PctHS18 24"
                                                        "PctSomeCol18 24"
## [16] "PctBachDeg18_24"
                                "PctHS25 Over"
                                                        "PctBachDeg25_Over"
## [19] "PctEmployed16 Over"
                                "PctUnemployed16 Over" "PctPrivateCoverage"
## [22] "PctEmpPrivCoverage"
                                                        "PctWhite"
                                "PctPublicCoverage"
## [25] "PctBlack"
                                "PctAsian"
                                                        "PctOtherRace"
## [28] "PctMarriedHouseholds" "BirthRate"
                                                        "deathRate"
```

Variable clarification and assumption

PctPrivateCoverage: "Percentage of the population with private insurance coverage" avgAnnCount: "2009-2013 mean incidences per county WHAT DOES THIS MEAN????" povertyPercent: "Percent of population below poverty line" popEst2015: "Estimated population by county 2015" PctPublicCoverage: "Percentage of the population with public insurance coverage" deathRate: "Number of deaths attributed to cancer" binnedInc: "Income groups????" medianAge: "We removed all median ages above 100"

Data Quality

- 1) The sample size seems to be large enough to get valuable insight.
- 2) The data seems to be collected in different number formats, even for the same columns. Some have integers, some have floats with one decimal, others many decimals.
- 3) Seems to be a number of observations that are NA of 18-24 with some college, 2285 to be exact.

Univariate Analysis of Key Variables

The key variables that we focused on are in groups related to the variable deathRate:

Death Rate

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 59.7 161.2 178.1 178.7 195.2 362.8

Death Rate Frequency

deathrate of cancer is between 150-200

Population: pop Est
2015, Avg HouseholdSize, Percent
Married, Geography, avg Ann
Count, BirthRate, binnedInc

Death rate and birth rate percent of Pop.

clusion on Population variables: - It doesn't seem that high birth rate or population correlates to higher cancer mortality. - We removed avg household size, percent married, geography, angAnnCount, and binned income from analysis due to perceieved irrelevance.

Median Age And Cancer Death Rate

Median Age Male And Cancer Death Rate

Median Age Female And Cancer Death Rate

clusion of Age Variables: - We removed all median ages above 100 due to some anomalies of median age 300+. - There seems to be a large cancer mortality rate between the 30-50 years of age. - Women seem to group just above 40 and men just under 40 with county deathrates.

 $\label{locome:povertyPercent} Income: \quad medIncome, \quad povertyPercent, \quad binnedInc, \quad PctEmployed16_Over, \quad PctUnemployed16_Over, \quad PctUnemployed16_Ov$

Median Income And Cancer Mortality

Median Income
Employed 16yrs old or older And Cancer Mortality

People In Poverty And Cancer Mortality

Unemployed 16yrs old or older And Cancer Mortality

Conclusion on Income Variables: - The strongest correlation yet - As poverty and unemployment goes up, so does cancer mortality - As median income and employment rise, cancer mortality decreases

Percent Race 'White' And Cancer Mortality

Percent Race 'Black' And Cancer Mortality

Percent Race 'Asian' And Cancer Mortality

Percent Race 'Asian'
Percent Race 'Other' And Cancer Mortality

Conclusion on Race Variables: - It seems that many of the counties surveyed were a moajority race 'White' - The death rate seemed to hover around its avg for every race, no major correlation detected

Percent No HS Education 18–24 And Cancer Mortality

Percent No HS Education 18–24

Percent HS Education 18–24 And Cancer Mortality

Percent HS Education 25+ And Cancer Mortality

Percent Some College 18–24 And Cancer Mortality

Percent College Grad 18–24 And Cancer Mortality

Percent College Grad 18–24

Percent College Grad 25+ And Cancer Mortality

clusion of Education Variables: - As a population is more educated, cancer mortality falls - It seems that college grauates make up less percent of cancer moratility population

Con-

Percent of Private Insurance And Cancer Mortality

Percent of Employer Private Insurance And Cancer Mortality

Percent of Public Insurance And Cancer Mortality

Conclusion on Insurance Variables: - It seems when a population has private insurance cancer mortality is down - When a population has public insurance, cancer mortality is up - Public coverage could be correlated by income/poverty/unemployment