## BÀI 37: HỆ THỐNG HOÁ VỀ HIĐROCACBON

# I. MUC TIÊU:

1. Kiến thức: Mối quan hệ giữa các loại hiđrocacbon quan trọng

#### 2.Kī năng:

- Lập được sơ đồ quan hệ giữa các loại hiđrocacbon.
- Viết được các phương trình hoá học biểu diễn mối quan hệ giữa các chất.
- Tách chất ra khỏi hỗn hợp khí, hỗn hợp lỏng.
- Xác định công thức phân tử, viết công thức cấu tạo và gọi tên.
- 3. Thái độ: Phát huy khả năng tư duy của học sinh

### 4. Phát triển năng lực

- Phát triển năng lực phát hiện và giải quyết vấn đề
- Phát triển năng lực sáng tạo và làm việc nhóm

#### II. PHƯƠNG PHÁP:

- Dạy học phát hiện và giải quyết vấn đề
- PPDH đàm thoại tái hiện

### III. CHUẨN BỊ GIÁO CỤ:

- 1. Giáo viên: Máy chiếu
- 2. Học sinh: Học bài cũ

#### IV. TIẾN TRÌNH BÀI DẠY:

- 1. <u>Ôn định lớp</u>: Kiểm tra sĩ số, đồng phục...
- 2. Kiểm tra bài cũ: Kết hợp trong bài
- 3. Nội dung:

# Hoạt động 1: Hệ thống hoá về hiđrocacbon

Nắm được CTTQ, cấu tạo, tính chất, ứng dụng của các hiđrocacbon, viết PTHH

- GV Chia bảng làm 5 cột như bảng 7.2 SGK trang 171.
- GV yêu cầu một HS lên bảng viết các thông tin gv yêu cầu về ankan, anken, ankin, và ankylbenzen .

### HS lên bảng viết

- Yêu cầu đạt được như sau:

|                            | ANKAN                      | ANKEN                                                     | ANKIN                           | ANKYLBENZEN                                        |  |  |  |
|----------------------------|----------------------------|-----------------------------------------------------------|---------------------------------|----------------------------------------------------|--|--|--|
| Công<br>thức<br>phân<br>tử | $C_nH_{2n+2} \ (n \geq 1)$ | $\mathbf{C_{n}H_{2n}}$ (n $\stackrel{\sim}{\triangle}$ 2) | $C_nH_{2n-2}$ (n $\triangle$    | $C_nH_{2n-6}$ $(n \stackrel{\wedge}{\triangle} 6)$ |  |  |  |
| Đặc                        | - Chỉ có liên kết          | - Có một liên                                             | <ul> <li>Có một liên</li> </ul> | <ul> <li>Có vòng benzen.</li> </ul>                |  |  |  |
| điểm                       | đơn C- C và C-             | kết đơn C= C.                                             | kết đơn C ▲ C.                  | - Có đồng phân                                     |  |  |  |
| cấu                        | H.                         | - Có đồng phân                                            | - Có đồng phân                  | mạch cacbon của                                    |  |  |  |
| tạo                        | - Chỉ có đồng              | mach cacbon.                                              | mạch cacbon.                    | nhóm ankyl.                                        |  |  |  |
|                            | phân mạch                  | - Có đồng phân                                            | - Có đồng phân                  | - Có đồng phân vị trí                              |  |  |  |
|                            | cacbon.                    | vị trí liên kết                                           | vị trí liên kết                 | tương đối của các                                  |  |  |  |

|             |                                                                                                    | đôi.                                                                  | ba.                                                                   | nhóm ankyl.                                    |  |  |
|-------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|--|--|
|             |                                                                                                    | - Có đồng phân hình học.                                              |                                                                       |                                                |  |  |
| Tính        | -Ở điều kiên thườn                                                                                 |                                                                       | <br>Cı – C₄ là chất kh                                                | í: Å5 là chất lỏng                             |  |  |
| chất        | -Ở điều kiện thường, các hợp chất từ $C_1 - C_4$ là chất khí; $\triangle 5$ là chất lỏng hoặc rắn. |                                                                       |                                                                       |                                                |  |  |
| vật lí      | -Không màu.                                                                                        |                                                                       |                                                                       |                                                |  |  |
|             | -Không tan trong nước.                                                                             |                                                                       |                                                                       |                                                |  |  |
| Tính        |                                                                                                    |                                                                       | - Phản ứng                                                            |                                                |  |  |
| chất        | - Phản ứng thế<br>(halogen).<br>Thí du:                                                            | - Phản ứng cộng<br>(H <sub>2</sub> , Br <sub>2</sub> , HX)<br>Thí du: | cộng ) H <sub>2</sub> , Br <sub>2</sub> ,<br>HX)<br>Thí dụ:           | - Phản ứng thế<br>(halogen, nitro).<br>Thí dụ: |  |  |
| hoá         | i iii dụ:                                                                                          | i mi dụ:                                                              | - Phản ứng thế                                                        | Thi dụ:                                        |  |  |
| học.        | - Phản ứng tách.<br>Thí dụ:                                                                        | - Phản ứng trùng<br>hợp.<br>Thí du:                                   | H liên kết trực<br>tiếp với nguyên<br>tử cacbon liên                  | - Phản ứng cộng<br>Thí dụ:                     |  |  |
|             | - Phản ứng oxi<br>hoá.<br>Thí dụ:                                                                  | - Phản ứng oxi<br>hoá.<br>Thí dụ:                                     | kết ba ở đầu<br>mạch.<br>Thí dụ:<br>- Phản ứng oxi<br>hoá.<br>Thí dụ: | - Phản ứng oxi hoá<br>ở mạch nhánh.<br>Thí dụ: |  |  |
| Úng<br>dụng | - Làm nguyên<br>liệu, nhiên liệu,<br>dung môi.                                                     | - Làm nguyên<br>liệu                                                  | - Làm nguyên<br>liệu                                                  | - Làm nguyên liệu,<br>dung môi                 |  |  |

Hoạt động 2: Sự chuyển hoá giữa các loại hiđrocacbon

- GV yêu cầu HS tìm hiều sơ đỗ mối quan hệ chuyển hoá giữa các loại hiđrocacbon trong SGK trang 172 trả lời các câu hỏi vấn đáp; vận dụng viết các PTHH minh hoạ



Hoạt động 3: Bài tập

Bài tập 1: Có một hỗn hợp khí gồm: CO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>. Hãy trình bày phương pháp tách CH<sub>4</sub> ra khỏi hỗn hợp trên. Viết các PTHH?

Giải: - Cho hỗn họp qua dung dịch nước vôi trong dư, CO<sub>2</sub> bị giữ lại

- Cho hỗn hợp còn lại qua dd brom dư,  $C_2H_2$  và  $C_2H_4$  bị giữ lại, thu được  $CH_4$  tinh khiết

<u>Bài tập 2</u>: Viết phương trình hoá học của các phản ứng hoàn thành dãy chuyển hoá sau:

a) Etan  $\stackrel{(1)}{\longrightarrow}$  etilen  $\stackrel{(2)}{\longrightarrow}$  polietilen

b)Metan  $\stackrel{(1)}{\longrightarrow}$  axetilen  $\stackrel{(2)}{\longrightarrow}$  vinylaxetilen  $\stackrel{(3)}{\longrightarrow}$ 

butađien  $\xrightarrow{(4)}$  polibutađien.

c) Benzen → brombenzen.

*Giải*:

a) (1) 
$$C_2H_6 \xrightarrow{xt,t^o} C_2H_4 + H_2$$

(2) 
$$nCH_2=CH_2 \xrightarrow{xt,t^o,p} -(CH_2-CH_2)_n-$$

b) (1) 
$$2CH_4 \xrightarrow{1500^{0}C} C_2H_2 + 3H_2$$

(2)

$$CH \equiv CH + CH \triangleq CH \xrightarrow{xt, t^0} CH \equiv C - CH = CH_2$$
vinyl axetilen

c) 
$$C_6H_6 + Br_2 \xrightarrow{BotFe} C_6H_5Br + HBr$$

<u>Bài tập 3</u>: Cho benzen tác dụng với lượng dư HNO<sub>3</sub> đặc có xúc tác H<sub>2</sub>SO<sub>4</sub> đặc để điều chế nitro benzen với hiệu suất 78%

- a) Tính khối lượng nitrobenzen thu được khi dùng 100kg benzen?
- b) Tính khối lượng benzen cần thiết để điều chế 100kg nitrobenzen? Giải:

$$\overline{C_6H_6} + HNO_3 \xrightarrow{H_2SO_4} C_6H_5NO_2 + H_2O$$

a)Cứ 78 gam benzen phản ứng thu được 123g nitrobenzen

$$100 \text{ kg} \longrightarrow x \text{ kg}$$

$$\rightarrow x = \frac{100.123}{78} \text{ (kg)}$$

H= 78% → Khối lượng nitrobenzen thu được:

$$\frac{x.78}{100} = \frac{100.123.78}{78.100} = 123 \text{ (kg)}$$

b)Cứ 78 gam benzen phản ứng thu được 123g nitrobenzen

$$y \text{ kg}$$
 <------ 100 kg  
 $\rightarrow y = \frac{100.78}{123} \text{ (kg)}$ 

H= 78% → Khối lượng benzen thực tế cần:

$$\frac{y.100}{78} = \frac{100.78.100}{78.123} = 81,3 \text{ (kg)}$$

**Bài tập 4:** Cho 0,2 mol hỗn hợp khí gồm etan, propan, propen sục qua dung dịch brom, thấy khối lượng bình brom tăng 4,2 gam. Lượng khí thoát ra đem đốt cháy hoàn toàn thu được a gam CO<sub>2</sub> và 6,48 gam nước

- a) Tính % khối lượng các chất trong hỗn hợp đầu?
- b) Dẫn a gam CO<sub>2</sub> qua 400ml dung dịch NaOH 2,6 M. Tính khối lượng muối thu được?

Giải:

Chỉ có propen phản ứng với brom→ Khối lượng bình brom tăng chính là khối lượng propen

Số mol propen=
$$\frac{4,2}{42}$$
 = 0,1 $mol$ 

Đốt cháy hỗn hợp còn lại:

$$C_2H_6 + 7/2O_2 \rightarrow 2CO_2 + 3H_2O$$

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

Số mol nước= 
$$3x + 4y = \frac{6,48}{18} = 0,36 mol (1)$$

Lại có tổng số mo<br/>l hỗn hợp đầu = x + y + 0,1 = 0,2

$$\rightarrow$$
 x + y = 0,1 (2)

Từ (1) và (2) ta có hpt: 
$$\begin{cases} 3x + 4y = 0.36 \\ x + y = 0.1 \end{cases} \Rightarrow \begin{cases} x = 0.04 \\ y = 0.06 \end{cases}$$

Khối lượng các chất:

$$C_2H_6 = 28.0,04 = 1,12 (g)$$

$$C_3H_8 = 44.0,06 = 2,64$$
 (g)

$$\rightarrow$$
%  $C_2H_6 = \frac{1,12.100}{1,12+2,64+4,2} = 14,07\%$ 

$$%C_3H_8 = \frac{2,64.100}{7.96} = 33,17\%$$

$$%C_3H_6 = 100 - 14,07 - 33,17 = 52,76\%$$

# 4. Củng cố: Củng cố trong bài

## V. Dặn dò:

- Học bài
- Làm bài tập SGK, SBT chuẩn bị luyện tập