Logic Optimization:

Tabular Method

(Quine-McCluskey)

Virendra Singh

Professor

Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

CS-226: Digital Logic Design

Lecture 16-B: 22 February 2021 CADSL

Q-M Tabular Minimization

- Minimizes functions with many variables.
- Begin with minterms:
 - Step 1: Tabulate minterms in groups of increasing number of true variables.
 - Step 2: Conduct linear searches to identify all prime implicants (PI).
 - Step 3: Tabulate PI's vs. minterms to identify EPI's.
 - Step 4: Tabulate non-essential PI's vs. minterms not covered by EPI's. *Select* minimum number of PI's to cover all minterms.
- MSOP contains all EPI's and selected non-EPI's.

Function with Don't Cares

 $F(A,B,C,D) = \sum m(4,6,8,9,10,12,13) + \sum d(2,15)$

 Q-M Step 1: Group "all" minterms with 1 true variable, 2 true variables, etc.

	Minterm	ABCD	Groups
	2	0010	
Gp1	4	0100	1: single 1
	8	1000	
0 -	6	0110	
Gp2	9	1001	2. two 120
	10	1010	2: two 1's
	12	1100	
Gp3 Gp4	13	1101	3: three 1's
Gp4	15	1111	4: four 1's

Step 2: Same As Before on "All" Minterms

	List 1 List 2 List 3								
List 1			List 2 /		List 3				
N	/linterm	ABCD	PI?		ABCD	PI?	Minterms	ABCD	PI?
✓	2	0010	X	2, 6	0-10	Pl2	8,9,12,13	1-0-	PI1
/	4	0100	X	2,10	-010 ~	PI3			
	8	1000	X	4,6	01-0 ~	PI4			
	6	0110	X	4,12	-100 -	PI5			
	9	1001	X	8,9	100-	X			
	10	1010	X	8,10	10-0	Pl6			
	12	1100	X	√ 8,12	1-00	X			
	13	1101	X	9,13	1-01	X			
	15	1111	X	12,13	110-	X			
				13,15	11-1 <i>v</i>	PI7			

Step 3: Identify EPI's Ignoring Don't Cares

Step 4: Cover Remaining Minterms

Remaining minterms →	(4)	6	10
PI_2		X	
PI_3			X
PI_4	X	X	
PI_5	X		
PI_6			X

to select min no. A Plato cove Flato cove SPI the min of the min \$2,6,103

Integer linear program (ILP), available from Matlab and other sources: Define integer $\{0,1\}$ variables, xk = 1, select PI_k; xk = 0, do not select PI_k.

Minimize $\sum_{k} xk$, subject to constraints:

$$x4 + x5 \ge 1$$

 $x2 + x4 \ge 1$

$$x3 + x6 \ge 1 \ \smile$$

ANTI

A solution is x3 = x4 = 1, x2 = x5 = x6 = 0, or select PI_3 PI_4

Step 4: Cover Remaining Minterms

	Remaining minterms →	4	6	10
P2 -	- PI_2		X	
ks -	PI_3			X
P4 -	PI_4	X	X	
Pc -	- PI_5	X		
120 -	PI_6			X

$$Ell: PII \qquad SPI = \begin{cases} PI3, PI_4 \end{cases}$$

$$CS-226@IITB$$

Q-M MSOP Solution and Verification

$$F(A,B,C,D) = PI_1 + PI_3 + PI_4$$

$$= 1-0- + -010 + 01-0$$

$$= A C + B C D + A B D$$

See Karnaugh map.

Non-EPI's not in MSOP

Minimized Circuit

Thank You

