Отчёт по лабораторной работе №2

Математическое моделирование

Ищенко Ирина НПИбд-02-22

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	14
Список литературы		15

Список иллюстраций

3.1	Номер варианта	7
3.2	Траектория движения катера и лодки для первого случая	11
3.3	Траектория движения катера и лодки для второго случая	12

Список таблиц

1 Цель работы

Построить математическую модель для решения примера задачи о погоне [1].

2 Задание

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 16,9 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 4,7 раза больше скорости браконьерской лодки. 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени). 2. Постройте траекторию движения катера и лодки для двух случаев. 3. Найдите точку пересечения траектории катера и лодки

3 Выполнение лабораторной работы

Формула для выбора варианта: (1132226532 % 70) + 1 = 50 Вариант (рис. fig. 3.1).

```
C:\Users\iishc>julia

Documentation: https://docs.julialang.org

Type "?" for help, "]?" for Pkg help.

Version 1.11.3 (2025-01-21)
Official https://julialang.org/ release

julia> mod(1132226529, 70)+1
```

Рис. 3.1: Номер варианта

Запишем уравнение описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).

Принимем за $t_0 = 0$, $x_0 = 0$ – место нахождения лодки браконьеров в момент обнаружения, $x_{k0} = k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров x_{k0} ($\theta=x_{k0}=0$), а полярная ось r проходит через точку нахождения катера береговой охраны.

Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой

охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстояниих от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{v}$ или $\frac{k-x}{4.7v}$ (во втором случае $\frac{k+x}{4.7v}$). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояниех можно найти из следующего уравнения:

$$\frac{x}{v} = \frac{k-x}{4.7v}$$
 – в первом случае $\frac{x}{v} = \frac{k+x}{4.7v}$ – во втором

Отсюда находим два значения $x_1 = \frac{16,9}{5,7}$ и $x_2 = \frac{16,9}{3,7}$, задачу будем решать для двух случаев.

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и - v_τ тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt} = v$.

Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус $r, r \frac{d\theta}{dt}$. Получаем:

$$v_{\tau} = \sqrt{22.09v^2 - v^2} = \sqrt{21.09}v$$

Из чего можно вывести:

$$r\frac{d\theta}{dt} = \sqrt{21.09}v$$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений:

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = \sqrt{21.09}v \end{cases}$$

С начальными условиями для первого случая:

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{16.9}{5.7} \end{cases} \tag{1}$$

Или для второго:

$$\begin{cases}
\theta_0 = -\pi \\
r_0 = \frac{16.9}{3.7}
\end{cases} \tag{2}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$\frac{dr}{d\theta} = \frac{r}{\sqrt{21.09}}$$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

Построим математическую модель на языке Julia. Воспользуемся библиотеками "Plots, OrdinaryDiffEq", которые заранее установим.

Введем известные данные:

k=16.9 //расстояние от лодки до катера

```
//данные для лодки браконьеров
fi=3*pi/4
t=0:0.01:15
fl(t) = tan(fi) *t //функция, описывающая движение лодки браконьеров
f(u, p, t) = u/sqrt(21.09) //функция, описывающая движение катера береговой охраны
//начальные условия для двух случаев
x1 = k/5.7
x2 = k/3.7
tetha1 = (0.0, 2*pi)
tetha2 = (-pi, pi)
 Обозначим и решим задачу для первого случая:
s1=ODEProblem(f, x1, tetha1)
sol1=solve(s1, Tsit5(), saveat=0.01)
 Построим график с траектороией движения катера и лодки (рис. fig. 3.2).
plot(sol1.t, sol1.u, proj=:polar, lims=(0,15), label="Движение катера")
plot!(fill(fi, length(t)), fl.(t), label="Движение лодки")
```


Рис. 3.2: Траектория движения катера и лодки для первого случая

Обозначим и решим задачу для второго случая:

```
s2=ODEProblem(f, x2, tetha2)
sol2=solve(s2, Tsit5(), saveat=0.01)
```

Построим график с траектороией движения катера и лодки (рис. fig. 3.2).

```
plot(sol2.t, sol2.u, proj=:polar, lims=(0,15), label="Движение катера") julia> plot!(fill(fi, length(t)), fl.(t), label="Движение лодки")
```


Рис. 3.3: Траектория движения катера и лодки для второго случая

Найдем точку пересечения траектории катера и лодки. Для этого найдем аналитическое решение дифференциального уравнения, задающего траекторию движения катера. Решив задачу Коши получим:

$$r=rac{169\,e^{rac{10\, heta}{\sqrt{2109}}}}{57}$$
 — для случая (1)

$$r=rac{169\,e^{rac{10\, heta}{\sqrt{2109}}+rac{10\,\pi}{\sqrt{2109}}}}{37}$$
 — для случая (2)

Найдем точку пересечения для первого случая: (3рі/4; 4.9526014649650145).

```
julia> y1(x)=(169*exp(10x/sqrt(2109)))/57
y1 (generic function with 1 method)
julia> y1(fi)
4.9526014649650145
```

Найдем точку пересечения для первого случая: (-рі/4; 7.629683337919077).

```
julia> y2(x)=(169*exp((10*x/sqrt(2109))+(10*pi/sqrt(2109))))/37
y2 (generic function with 1 method)
```

julia> y2(fi-pi)
7.629683337919077

4 Выводы

В ходе выполнения лабораторной работы я построила математическую модель для решения примера задачи о погоне.

Список литературы

1. Королькова А. В. К.Д.С. Лабораторный практикум : учебное пособие. Москва: РУДН, 2021. 137 с.