Introduction to Statistical Machine Learning Homework 3

Yota Toyama

November 17, 2016

- 1. A decision tree can classify linearly separable data. A boundary made by such a tree looks like stairs approximating $\mathbf{w}^T\mathbf{x} + w_0 = 0$. And, in the worst case, its depth is $\lceil \log \lceil \frac{N}{2} \rceil \rceil + 1$ because we can separate a space of \mathbf{x} into $\lceil \frac{N}{2} \rceil$ thin regions and balance the tree along \mathbf{x}_1 .
- 2. A decision tree can classify data points which are not linearly separable by separating a space of \mathbf{x} into N thin regions along \mathbf{x}_1 . And, in the worst case, its depth is $\lceil \log N \rceil$ when the tree is balanced in the same way as in the problem 1.

3.

$$\sum_{i \text{ s.t. } y_i \neq h_{T+1}(\mathbf{x}_i)} W_i^{\mathsf{T}}(T+1) = \sum_{i \text{ s.t. } y_i \neq h_{T+1}(\mathbf{x}_i)} \frac{1}{Z} W_i^{\mathsf{T}}(T) e^{-\alpha_{T+1} y_i h_{T+1}(\mathbf{x}_i)}$$

$$= \frac{1}{Z} \sum_{i \text{ s.t. } y_i \neq h_{T+1}(\mathbf{x}_i)} W_i^{\mathsf{T}}(T) e^{\frac{1}{2} \log \frac{1 - \epsilon_{T+1}}{\epsilon_{T+1}}}$$

$$= \frac{1}{Z} \sum_{i \text{ s.t. } y_i \neq h_{T+1}(\mathbf{x}_i)} W_i^{\mathsf{T}}(T) \sqrt{\frac{1 - \epsilon_{T+1}}{\epsilon_{T+1}}}$$

$$= \frac{1}{Z} \sqrt{\frac{1 - \epsilon_{T+1}}{\epsilon_{T+1}}} \sum_{i \text{ s.t. } y_i \neq h_{T+1}(\mathbf{x}_i)} W_i^{\mathsf{T}}(T)$$

$$= \frac{\sqrt{\epsilon_{T+1}(1 - \epsilon_{T+1})}}{Z}$$

$$Z = e^{-\alpha_{T+1}} (1 - \epsilon_{T+1}) e^{\alpha_T} \epsilon_{T+1}$$

$$= \sqrt{\frac{\epsilon_{T+1}}{1 - \epsilon_{T+1}}} (1 - \epsilon_{T+1}) + \sqrt{\frac{1 - \epsilon_{T+1}}{\epsilon_{T+1}}} \epsilon_{T+1}$$

$$= 2\sqrt{\epsilon_{T+1} (1 - \epsilon_{T+1})}$$

$$\therefore \sum_{i \text{ s.t. } y_i \neq h_{T+1}(\mathbf{x}_i)} W_i^{(T+1)} = \frac{1}{2}$$

4.

$$\frac{\partial}{\partial \alpha_t} L(H_t, X) = 0$$

$$\frac{\partial}{\partial \alpha_t} \left(e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t \right) = 0$$

$$-e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t = 0$$

$$e^{2\alpha_t} = \frac{1 - \epsilon_t}{\epsilon_t}$$

$$\alpha_t = \frac{1}{2} \log \frac{1 - \epsilon_t}{\epsilon_t}$$

5.

6. Please, see a Jupyter notebook file submitted together.