Rješenja Druge domaće zadaće iz Matematike 3E i 3R

1.
$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{\sin \lambda(x-1) - \sin \lambda(x-3)}{\lambda} d\lambda$$

2.
$$f(x) = \frac{1}{\pi} \int_0^\infty \frac{\cos \lambda(\pi - x) + \cos \lambda x}{1 - \lambda^2} d\lambda$$

3.
$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{\sin \lambda - \lambda \cos \lambda}{\lambda^2} \sin \lambda x \, d\lambda$$

4.
$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{1-\cos\lambda}{\lambda^2} \cos\lambda x \, d\lambda$$

5.
$$A(\lambda) = \frac{A}{\pi T} (\frac{T}{\lambda} \sin \lambda T + \frac{1}{\lambda^2} (\cos \lambda T - 1)), \ B(\lambda) = \frac{A}{\pi T} (-\frac{T}{\lambda} \cos \lambda T + \frac{1}{\lambda^2} \sin \lambda T)$$

6.
$$f(x) = \frac{2a}{\pi} \int_0^\infty \frac{\cos \frac{\lambda \pi}{2a}}{a^2 - \lambda^2} \cos \lambda x \, d\lambda$$
, $\int_0^\infty \frac{\cos \frac{\lambda \pi}{2a}}{a^2 - \lambda^2} \, d\lambda = \frac{\pi}{2a}$

7. A.
$$F(s) = \frac{2}{s^2} + \frac{1}{s}$$
, $s > 0$ B. $F(s) = \frac{1}{(s+1)^2}$, $s > -1$ C. $F(s) = \frac{1}{s^2 - 2s + 2}$, $s > 1$

8. A.
$$F(s) = \frac{1}{s}e^{-sT}$$
 B. $F(s) = \frac{1}{s}(1 - e^{-sT})$,

9. A.
$$F(s) = \frac{1}{s^2}(1 - e^{-s})$$
, B. $F(s) = \frac{1}{s}(e^{-s} - e^{-2s})$

10. A. DA,
$$a_0 = 3$$
, B. DA, $a_0 = 0$, C. DA, $a_0 = -2$, D. NE

11. A.
$$f(t) = (2ch(\sqrt{6}t) - \frac{3}{\sqrt{6}}\sin(\sqrt{6}t))u(t)$$

B.
$$f(t) = (4\cos(\sqrt{5}t) + \frac{1}{\sqrt{5}}\sin(\sqrt{5}t)u(t))$$
 C. $f(t) = (e^t - 2e^{-2t})u(t)$

12. A.
$$f(t) = (2e^{2t} + 4t)u(t)$$
, B. $f(t) = (\frac{1}{2}t^2 - 2t)u(t)$
C. $f(t) = (\frac{1}{3}t^3 + \frac{1}{24}t^4 - t)u(t)$

C.
$$f(t) = (\frac{1}{3}t^3 + \frac{1}{24}t^4 - t)u(t)$$

13. A.
$$F(s) = (\frac{2}{s^3} + \frac{4}{s^2} + \frac{4}{s})e^{-2s}$$
 B. $F(s) = \frac{3}{2}(\frac{1}{s^2 - 36} - \frac{1}{s^2 - 4})$ C. $F(s) = \frac{2}{(s^2 + 1)^2}$ D. $F(s) = \frac{1}{s}(1 + e^{-3s})$

C.
$$F(s) = \frac{2}{(s^2+1)^2}$$
 D. $F(s) = \frac{1}{s}(1+e^{-3s})$

14. A.
$$F(s) = \frac{5}{s}e^{-2s} - \frac{2}{s}e^{-3s}$$

B. $F(s) = \frac{6}{(s+2)^4} + \frac{2}{s^3}$
C. $F(s) = \frac{1}{s}(1 + e^{-s} - e^{-2s})$
D. $F(s) = \frac{2}{s(s-1)^3}$

B.
$$F(s) = \frac{6}{(s+2)^4} + \frac{2}{s^3}$$

C.
$$F(s) = \frac{1}{s}(1 + e^{-s} - e^{-2s})$$

D.
$$F(s) = \frac{s}{s(s-1)^3}$$

15. A.
$$F(s) = \frac{1}{s} + (\frac{2}{(s+2)^3} + \frac{6}{(s+2)^2} + \frac{9}{s+2})e^{-3(s+2)}$$
 B. $F(s) = \frac{1}{2} \ln \frac{s+1}{s-1}$ C. $F(s) = \frac{1}{s}(\frac{6}{(s+1)^4} + \frac{1}{s+1})$ D. $F(s) = \frac{1}{s^2}e^{-2s} + \frac{1}{s}e^{-2s}$

C.
$$F(s) = \frac{1}{s} \left(\frac{6}{(s+1)^4} + \frac{1}{s+1} \right)$$
 D. $F(s) = \frac{1}{s^2} e^{-2s} + \frac{1}{s} e^{-2s}$

16.
$$F(s) = \frac{-3}{s^2(1-e^{-4s})}(2se^{-4s} + e^{-2s} - 1)$$

17. A.
$$\frac{\pi}{2} - arctga$$
, B. $\frac{3}{25}$, C. $\ln 2$

18. A.
$$f(t) = \sinh e^{-2t} u(t)$$

B.
$$(\delta(t-2) + \frac{1}{5}e^{t-2} + \frac{4}{5}\cos 2(t-2) - \frac{8}{5}\sin 2(t-2))u(t-2)$$

C. $e^{-(t-4)}(\cos 2(t-4) + \frac{1}{2}\sin 2(t-4))u(t-4)$

C.
$$e^{-(t-4)}(\cos 2(t-4) + \frac{1}{2}\sin 2(t-4))u(t-4)$$

19. A.
$$f(t) = (-\frac{3}{4} - \frac{1}{2}t + \frac{2}{3}e^t + \frac{1}{12}e^{-2t})u(t)$$
 B. $f(t) = (2e^t + te^t - 2e^{2t} + te^{2t})u(t)$

20. A.
$$f(t) = -\frac{1}{3}(e^{-3t} - 1)u(t)$$

B.
$$f(t) = \frac{1}{5}(1 - e^{2t}\cos t + 2e^{2t}\sin t)u(t)$$

20. A.
$$f(t) = -\frac{1}{3}(e^{-3t} - 1)u(t)$$

B. $f(t) = \frac{1}{5}(1 - e^{2t}\cos t + 2e^{2t}\sin t)u(t)$
C. $f(t) = (t - 3 + \frac{1}{2}e^{-t}(t^2 + 4t + 6))u(t)$