4CCS1ELA-ELEMENTARY LOGIC WITH APPLICATIONS

3-IMPORTANT SEMANTICAL NOTIONS

3.1-Complete sets of connectives, truth-functions and substitutions

Dr. Odinaldo Rodrigues

odinaldo.rodrigues@kcl.ac.uk
Room BH(S) TBC, +44 (0)20 7848 2087
Department of Informatics
King's College London

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.1 - Complete sets of connectives, truth-functions and substitutions

3.1.0 (13)

Outline

- 1. Complete Sets of Connectives
- 2. Truth-functions
- 3. Substitution Instances

COMPLETE SETS OF CONNECTIVES

Complete Sets of Connectives

Complete Sets of Connectives

A set of connectives is called *complete* (or *adequate*) if every formula of propositional logic is equivalent to a formula using only connectives from this set.

Since every formula has a disjunctive normal form, the set $\{\neg, \land, \lor\}$ is complete.

From the De Morgan's laws we have

$$P \lor Q \equiv \neg (\neg P \land \neg Q)$$

$$P \wedge Q \equiv \neg (\neg P \vee \neg Q).$$

Therefore **both** sets of connectives $\{\land, \neg\}$ and $\{\lor, \neg\}$ are **complete**.

Complete Sets of Connectives (cont)

To show that a given set of connective is complete all we need to do is to express it in terms of a known complete set of connectives.

Example. The set $\{\neg, \rightarrow\}$ is complete because $P \rightarrow Q \equiv \neg P \lor Q$. Thus, the set $\{\neg, \rightarrow\}$ is expressed in terms of the complete set $\{\neg, \vee\}$.

No singleton set from the *standard set of connectives* $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ is complete.

However, the (non-standard) sets containing the *Sheffer stroke* $\{ \mid \}$ (Tutorial list 2) and Pierce's arrow $\{ \downarrow \}$ (Tutorial list 3) are complete.

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.1 - Complete sets of connectives, truth-functions and substitutions

3.1.4 (13)

TRUTH-FUNCTIONS

Truth-functions

A **truth-function** is a function whose arguments can take only the values *true* (or 1) and *false* (or 0) and return either the value *true* (or 1) or the value *false* (or 0).

Formally, a **truth-function** f is a function $f: \{0, 1\}^n \mapsto \{0, 1\}$.

Any wff defines a truth-function, and vice-versa.

Example. Let *f* be the truth-function defined as follows:

$$f(P,Q,R) = 1$$
 iff either $P = Q = 0$ or $Q = R = 1$

Then *f* is equal to 1 in exactly the following four cases:

$$f(0,0,0), f(0,0,1), f(0,1,1), f(1,1,1)$$

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.1 - Complete sets of connectives, truth-functions and substitutions

3.1.6 (13)

Truth-functions

Truth-functions and Normal Forms

In terms of a truth-table, f can be computed as follows:

interpretation	P	Q	R	f
<i>V</i> ₀	0	0	0	1
<i>V</i> ₁	0	0	1	1
<i>V</i> ₂	0	1	0	0
<i>V</i> ₃	0	1	1	1
<i>V</i> ₄	1	0	0	0
V ₄ V ₅	1	0	1	0
<i>V</i> ₆	1	1	0	0
<i>V</i> ₇	1	1	1	1

And from our conversion of a formula to DNF from its truth-table, *f* can be represented by the formula

$$(\neg P \land \neg Q \land \neg R) \lor (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land R) \lor (P \land Q \land R)$$

SUBSTITUTION INSTANCES

Substitution Instances

Substitution

Uniform substitution of formulae for propositional variables

Let W, H_1, \ldots, H_n be formulae and P_1, \ldots, P_n be propositional variables.

Then the expression $W(P_1/H_1, ..., P_n/H_n)$ denotes the formula obtained by replacing *simultaneously* all occurrences of P_1 in W by the formula H_1 , all occurrences of P_2 in W by the formula H_2 , ..., and all occurrences of P_n by the formula H_n .

Example

Let W be $P \to (Q \to P)$, then $W(P/\neg P \lor R, Q/\neg P)$ is the formula $\neg P \lor R \to (\neg P \to \neg P \lor R)$.

We say that the formula $\neg P \lor R \to (\neg P \to \neg P \lor R)$ is a *substitution* instance of $P \to (Q \to P)$.

Questions.

What type of formula is $P \rightarrow (Q \rightarrow P)$?

What does that make $\neg P \lor R \to (\neg P \to \neg P \lor R)$?

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.1 - Complete sets of connectives, truth-functions and substitutions

3.1.10 (13)

Substitution Instances

Counter-example...

The formula $(\neg P \lor R \rightarrow \neg P) \rightarrow \neg P \lor R$ is **not** a substitution instance of $P \rightarrow (Q \rightarrow P)!$

- The two formulas have different structures!
- If we replace P by $(\neg P \lor R \rightarrow \neg P)$, then we would have to replace Q by $\neg P \lor R$, but we would still miss the consequent of $Q \rightarrow P$...
- Notice that $(\neg P \lor R \rightarrow \neg P) \rightarrow ((\neg P \lor R) \rightarrow (\neg P \lor R \rightarrow \neg P))$ is a substitution instance!

Substitution Properties

From $F \equiv G$ we can conclude

$$F(P_1/H_1,...,P_n/H_n) \equiv G(P_1/H_1,...,P_n/H_n).$$

Example. We can obtain a new equivalence as a substitution instance of the De Morgan law:

From the logical equivalence $\neg(P \lor Q) \equiv \neg P \land \neg Q$, we have

$$\neg(\underline{(P \to R)} \lor \underline{(R \leftrightarrow Q)}) \equiv \neg\underline{(P \to R)} \land \neg\underline{(R \leftrightarrow Q)}.$$

Thus, a new tautology is generated:

$$\neg(\underline{(P \to R)} \lor \underline{(R \leftrightarrow Q)}) \leftrightarrow \neg\underline{(P \to R)} \land \neg\underline{(R \leftrightarrow Q)}.$$

© Dr. Odinaldo Rodrigues

4CCS1ELA 3.1 - Complete sets of connectives, truth-functions and substitutions

3.1.12 (13)

Substitution Instances

To know more...

The material in this part of the lecture is discussed in Section 6.2 of Hein's "Discrete Structures, Logic, and Computability", 4th edition.