1...theory approach

음향 측정 III

by 강성훈 / 음향공학박사, 대전보건대학 방송제작기술과 교수, 음향기술산업연구소장 www.sti.or.kr, ksound@hit.ac.kr

목차

1. 스펙트럼 2. 1채널 스펙트럼 측정 3. 2채널 스펙트럼 측정 4. 전달함수 측정 / 2채널 FFT에 의한 전달함수 측정 / MLS 신호를 이용한 전달함수 측정 / 두 신호의 일치 조정 5. FFT 파라메터 6. 각종 신호처리 기법

난호에서는 전달함수 측정방법 에 대해서 설명하였다. 대부분 전달함수는 FFT(fast Fourier Transformation) 기법을 이용하므로 FFT 파라메터를 정확하게 이해하고 설정해야 정 확한 측정이 가능하다.

FFT 처리 방식으로 전달함수를 구할 때에 는 FFT 파라메터를 정확하게 이해하고 있는 것이 중요하다. FFT 파라메터는 샘플링 주파 수와 사이즈가 있고, 파라메터 세팅이 적절하 지 않으면 측정 결과가 전혀 다르게 나타난 다. 그리고 여러가지 측정 목적에 맞게 윈도 우를 설정해야 한다. 여기에서는 FFT(Fast Fourier Transform, 고속 푸리어 변환)를 기 본으로 하는 음향 측정시에 FFT 파라메터에 대해서 설명한다.

샘플링

측정하고자 하는 음향 또는 전기 신호는 연속적인 아날로그 데이터이다. 이러한 연속 신호를 컴퓨터로 측정 분석하는데는 신호를 샘플링하여 특정 시간에서 측정된 신호를 수 치로 변환해야 한다. 이 과정을 샘플링 (sampling)이라고 한다. 시간적으로 연속된 신호를 시간적으로 불연속적인 신호로 변환 하는 것이 A/D 컨버터이다.

샘플링 과정은 [그림 1]과 같이 시간을 일 정 간격으로 잘라서 디지털 신호로 만든다. 1 초당 샘플링 수를 샘플링 주파수(sampling frequency; SF)라고 하고, 단위는 Hz를 사 용한다. 샘플링 주파수는 해석하고자 하는 신호의 상한 최고 주파수를 결정한다. 측정

할 수 있는 최고 주파수(fmax)는 샘플링 주 파수의 1/2이 된다. 음향 시스템을 측정하는 경우에는 20kHz까지 필요하므로 샘플링 주 파수는 44.1kHz 또는 48kHz로 설정하면

샘플링 주파수에 반비례하는 파라메터는 샘플링 주기(T)이고, 샘플링 간의 시간 길이 (초)를 나타내는 것이다. 따라서 시간 분해능 은 T와 같아지므로 T 미만의 신호는 정확하 게 분석할 수 없다. 예를 들면 임펄스 응답의 피크를 찾아내어 신호의 지연 시간을 측정할 때, T 미만의 지연시간을 측정할 수 없다는 의미이다. [그림 2]는 샘플링 주파수와 양자 화수를 나타내고 있다.

[그림 1] 샘플링 과정

[그림 2] 샘플링 주파수와 양자화 수

양자화

샘플링은 아날로그 신호를 일정 시간 간격 으로 추출하는 과정이고, 양자화(quantization) 는 샘플링된 신호의 크기를 잘게 나누어 수치 화 하는 것을 말한다. 16비트란 레벨을 나타 내는 0과 1의 숫자가 16개라는 것이며(예를 들면, 0010 1110 1100 0101), 0~65,535 (=216-1) 범위가 된다. 이 포맷으로 표현할 수 있는 가장 큰 소리와 가장 작은 소리의 차(다이 내믹 레인지)는 0~65.535 범위이므로 약 96dB(=20log65,535)가 된다. 1비트당 다이내 믹 레인지는 6dB이므로 8비트인 경우는 48dB, 16비트는 96dB이고, 24비트는 144dB(=6×24)가 된다.

- Sampling frequency; 변환 과정에서 1 초당의 샘플 수로서, 분석하고자 하는 최고 주 파수는 샘플링 주파수의 1/2이다. 일반적으로 44kHz 또는 48kHz를 사용한다.
- 샘플링 주기(T) ; 샘플 간의 시간 간격(T)이 고 샘플링 주파수의 역수이다. T(초) 미만의 길이의 신호는 무시된다.
- <mark>양자화</mark> ; 사운드 카드의 A/D, D/A 변환에 사용되는 비트 수. 일반적으로 16비트와 24비 트를 사용한다.

FFT 파라메터

FFT 분석의 속도와 해상도는 두 가지 파 라메터, 즉 FFT 사이즈와 샘플링 주파수에 의해서 결정된다(그림 3). 이 두 값으로 FFT 를 분석하는 2가지 중요한 팩터, 즉 주파수 해상도(frequency resolution)와 FFT 시정 수(FFT time constant)를 계산할 수 있다.

FFT 시정수는 전 샘플 데이터를 모으는 데 걸리는 시간이다. 예를 들면, 4096 포인트 를 샘플링 주파수 44.100으로 나누면 시정수 는 0.093s가 된다. 시정수는 측정하고자 하 는 시스템의 decay time보다 길어야 한다. 일반적으로 FFT 파라메터는 44.1kHz 샘플 링 주파수와 4,096 FFT 사이즈를 사용한다.

주파수 분해능은(그림 3에서 spectral line resolution. 그림 4에서 FR에 해당함) 44.1kHz 샘플링에 1024 포인트이면, 주파수 영역의 데이터 포인트는 43Hz (=44,100/1024) 간격이 된다. 또, 24kHz 샘플링 주파수를 1.024 포인트로 FFT하면, 주파수 해상도는 23.4Hz(=24,000/1,024)가 된다. 주파수 분해 능을 높이기 위해서는 FFT 포인트 수를 늘리 면 되지만, FFT 포인트가 많을수록 처리 시 간이 많이 걸린다. 시간 분해능과 주파수 분 해능과의 관계는 다음과 같다.

시간 분해능 = FFT 사이즈 / 샘플링 주파수 주파수 분해능 = 1/시간 분해능 = 샘플링 율 / FFT 사이즈

이 관계식에서 보면, 시간 분해능을 좋게 하면 주파수 분해능이 나빠지고, 주파수 분해 능을 좋게 하면 시간 분해능이 나빠진다. 비 디오 녹화에서 속도를 느리게 하면 기록 시간 은 길어지지만 영상 품질이 떨어지고. 속도를 빠르게 하면 기록 시간은 짧아지지만 영상 품 질이 좋아지는 것과 유사하다.

FFT 사이즈는 2의 제곱승으로서 다음과 같다.

n	8	9	10	11
size	256	512	1,024	2,048
n	12	13	14	15
size	2,096	8,192	16,384	32,768

FFT 파라메터 설정

FFT 파라메터를 세팅할 경우에는 다음과 같이 3가지 목표를 가지고 설정한다.

- ① 주파수 해상도(resolution)
- ② 측정 시간(responsiveness)
- ③청각 특성과 대응(correlation to human hearing)

1) FFT Size

- 주파수 분해능을 높이기 위해서 사이즈를 크게
- •사이즈를 적게 하면 계산 시간이 적게 걸리고 측정 시간이 빨라진다.
- 해상도와 측정 속도를 고려한다. 16k부터 시작 하는 것이 일반적이다.

2) Sampling Frequency(SF)

- 측정하고자 하는 최고 주파수 결정 → 1/2 SF
- 시간 해상도 결정 → 1 sample = 0.02 ms at 48k
- 3) Fractional-Octave Banding (1/1, 1/3, 1/6, 1/12, 1/24 옥타브)
- 1/3 옥타브 분석이 청각 특성과 대응이 좋음.

[그림 3] FFT 파라메터

[그림 4] FFT 파라메터

샘플링 주파수 선택

샘플링 주파수의 1/2이 분석하고자 하는 주파수의 상한이 된다. 예를 들면, 샘플링 주 파수가 44.1kHz 이면 상한 주파수는 22kHz 이고, 샘플링 주파수가 20kHz이면 상한 주 파수는 10kHz가 된다. 또, 3,000Hz까지의 신호만 분석하고자 하면 샘플링 주파수는 6,000Hz로 하면 된다. 그러나 신호에 3,000Hz 이상의 신호가 있으면, aliasing이 생긴다. [그림 4]에서 frequency limit가 여 기에 해당한다.

Aliasing이란 신호 파형이 T 간격으로 샘 플링 되는 경우에 신호의 주파수가 1/2T 보 다 크면, 실제로 존재하지 않은 주파수 신호 가 있는 것과 같은 결과가 나오고, 이것을 aliasing이라고 한다. 따라서 일반적으로 FFT 분석하기 전에, 샘플링 주파수의 1/2 이 상의 신호를 저역 통과 필터를 사용하여 aliasing 현상을 방지한다.

서브 우퍼 시스템과 같이 대역이 좁은 기 기를 측정할 때나 3초 이상의 잔향 시간이 긴 실내에서 음향 시스템의 특성을 측정할 때에 는 샘플링 주파수를 낮추는 것이 바람직하다.

FFT 사이즈의 선택

FFT 사이즈는 측정 시간의 길이를 결정한 다. FFT 측정에서 하나의 중요한 법칙은 얻 어진 데이터를 측정하고자 하는 데이터의 전 체 시간을 나타내야 한다. 예를 들면, 실내의 잔향 시간이 2초이면, FFT 사이즈는 전체 데 이터 길이가 최소한 2초 이상이 되도록 설정 해야 한다. FFT 사이즈를 길게 하려면 샘플 링 주파수를 낮추면 된다. 그러나 샘플링 주 파수를 낮추면 측정하고자 하는 측정 주파수 의 상한 대역이 줄어드므로 두 파라메터를 적 절하게 조정하여야 한다.

FFT 분석에서 주파수 영역 데이터 포인트 는 선형적으로 분포된다. 시간 영역에서 N개 의 FFT 사이즈는 주파수 영역에서 N/2 포인

[그림 5] 스펙트럼을 선형 스케일과 로그 스케일에 나타낸 경우의 외관상의 차이점

[그림 6] FFT 파라메터에 따른 FFT 분석 결과

[그림 7] FFT 파라메터에서 포인트 수를 많게 할수록 주파수 해상도가 좋아진다

트가 된다. 이 N/2 포인트는 나이퀴스트 주 파수(Nyquist frequency; 샘플링 주파수의 절반의 주파수)를 선형적으로 균등하게 배분 한 것이다. 예를 들면, FFT 사이즈가 1,024 이면, 주파수 영역에서 spectral line은 512개 가 선형적으로 배치된다.

44,100Hz 샘플링 주파수로 4,096 포인트 로 FFT 하면, 2,048 주파수 포인트가 얻어지 고, 2,048 포인트는 10.8Hz 간격으로 배치된 다. 따라서. 31.5~63Hz의 옥타브 대역에는 3 포인트가 배치되고, 4,000~8,000Hz 대역에 서는 400 포인트가 배치된다. 결과적으로 저 주파수에서는 주파수 분해능이 나쁘고. 고주 파수에서는 주파수 분해능이 높아진다(그림 5). [그림 6]에는 22kHz 샘플링과 1024 포인 트로 FFT한 결과와 44.1kHz 샘플링과 4,096 포인트로 FFT 분석한 결과를 비교하 여 나타낸다.

[그림 7]에는 샘플링 주파수는 같지만, FFT 포인트 수를 다르게 분석한 결과의 주파 수 해상도를 비교하여 나타낸다. FFT 포인트 수가 많아질수록 주파수 해상도가 향상되는 것을 알 수 있다.

주파수 분해능의 향상

FFT 분석한 주파수 영역 데이터는 주파수 축 상에서 선형이고 등간격으로 나열된다. FFT 데이터를 그래프 상에서 균등하게 늘 어 세운 경우에 주파수축의 눈금은 일정한 주파수 간격, 즉 Hz당 등간격이 된다. 따라 서 시간 분해능과 주파수 분해능은 반비례 하게 된다.

FFT 사이즈를 길게 하면 스펙트럼 데이터 의 분해능은 높아지지만, 반대로 시간 영역의 데이터는 완만한 특성이 된다. FFT 사이즈를 적게 하면 스펙트럼 분해능은 떨어지고 계산 시간도 적게 걸린다. 그림 6은 주파수 영역에 서 분해능의 파라메터를 변경한 경우의 특성 들을 나타낸다. FFT 데이터가 대수 축을 따 라서 등간격으로 늘어서면, FFT 사이즈가 적 으면 저역의 분해능이 나쁘고, FFT 사이즈가 커지면 고역의 분해능이 극단적으로 좁아지 게 된다.

즉. 등간격으로 늘어선 FFT 데이터를 로 그축에서 보면 균등하지 않게 보인다(그림 5 참조). 낮은 주파수에서는 분해능이 낮고, 높 은 주파수에서는 분해능이 필요 이상으로 높 게 보인다. FFT 사이즈를 크게 하면 저역의 분해능을 올릴수 있지만, 반대로 시정수가 길 어지므로 측정 속도가 느려진다.

예를 들면 44.1kHz 샘플링. 4kHz 사이즈 로 설정하면 최고 주파수는 22kHz, 주파수 분해능은 10Hz가 된다. 이 경우 중고음의 해 상도는 문제가 없지만, 저음의 분해능은 부 족하다. 특히 저음 부분의 분석을 하고자 하 는 경우(예를 들면 저역의 공진 주파수 관측) 에는 8kHz 샘플링, 4kHz 사이즈로 하면 분 해능은 2Hz가 되므로 저역의 분해능이 충분 하다.

따라서 다른 샘플링 율을 갖는 FFT 분석 을 하여, 옥타브 대역마다 데이터 폭이 같도 록 하는 방법을 사용한다. 이 방법은 높은 주 파수에서는 시정수를 짧게 하고, 낮은 주파수 에서는 시정수를 길게 하는 방법을 사용한다 (fixed point per octave; FPPO). 일반적으 로 옥타브당 24 또는 26 포인트로 나타낸다. [그림 8]에는 FPPO 방식을 적용하여 전체 대 역에서 주파수 분해능을 고르게 한 사례를 나 타내고 있다. 또한, smoothing 기능을 이용 하면 데이터를 부드럽게 나타낼 수 있다. 포 인트 수가 많아질수록 데이터는 부드러워진 다. 이것은 저역 통과 필터를 통과시키는 것 과 유사하다.

위도우

음향 신호를 FFT 분석할 경우에 FFT 연 산에 필요한 데이터 수는 유한개이므로, [그 림 91와 같이 시간축 신호를 어느 구간 T만 잘라내어 그 부분만을 연산하는 방식을 취한 다. 이것을 윈도우(window, 시간창)라고 한 다. 따라서 사이드 로브(side lobe)가 생긴다. [그림 10]에는 사인파에 거는 윈도우에 따른 스펙트럼 변화를 나타낸다. 예를 들어, 만약 사인파 신호의 시작과 끝 부분이 제로이면. FFT 분석한 결과는 정확한 진폭과 주파수로

[그림 8] FFT 처리에서 FPPO 방식을 적용하여 전체 대역에서 주파수 분해능을 고르게 한 사례

[그림 9] 신호에 윈도우를 건 파형

[그림 10] 윈도우에 따른 스펙트럼의 사이드 로브 차이

[그림 11] 윈도우 창에 따른 FFT 분석 결과 사이드 로브 차이

구성된 단일 스펙트럼(single line)이 될 것이 다. 그러나, 신호의 시작 부분과 끝 부분이 제 로가 아니면, 파형을 어느 구간만 절단하여 FFT 분석을 해야 하므로 샘플된 신호에 불연 속이 생기게 된다.

이 불연속성이 FFT 분석에서 문제가 된 다. 예를 들면, 순음을 FFT 분석하면 단일 스 펙트럼만 나타나야 하는데. 이웃하는 주파수 도 나타나게 되고, 이것을 사이드 로브(side lobe 또는 leakage)라고 한다(그림 11). 사이 드 로브는 시간 파형이 zero crossing 이면 생기지 않지만, 실제로는 불가능하다. 사이드 로브의 스펙트럼 형상은 신호 절단 방법에 따 라서 달라지고. 실제 신호에 대해서는 예측할 수 없다. 이러한 사이드 로브 효과를 줄이기 위해서 신호의 시작 부분과 끝부분을 강제로 제로로 만든다. 이것은 데이터 샘플에 윈도우 를 곱하는 것이다. 윈도우에는 여러 종류가 있다. [그림 12]에는 여러가지 윈도우의 함수 를 나타낸다. 윈도우 함수를 사용하지 않은 것을 구형 윈도우(Rectangular window, Flat window, Uniform window)라고 한다.

[그림 13]에는 구형 윈도우와 해밍 윈도우 를 실제 임펄스 레스폰스에 적용한 예를 나타 낸다. 구형 윈도우는 윈도우 간격 T 속에서 주기화 신호, 또는 윈도우 내에서 완전하게 감쇠되므로 과도 신호에 대해서 최적이다. 그 러나 일반의 신호는 랜덤 잡음을 포함하므로 완전한 주기 신호는 아니다. 따라서 적당한 윈도우를 이용하여 처리해야 한다. 일반적으 로 이용되고 있는 것이 해닝 윈도우(Hanning window)로서 cos2의 함수이다. 해닝 윈도우 는 구형 윈도우와 비교하면, 시간축 파형은 찌그러진 형태이지만 사이드 로브가 적다.

Hamming 윈도우와 Hanning 윈도우는 고전적인 윈도우이고, Blackman 윈도우와 Kaiser 윈도우는 최근에 제안된 것으로서 고 전 윈도우와 비교하면 사이드 로브가 적은 편 이다. 현대 윈도우는 고전 윈도우보다 사이드

[그림 12] 윈도우의 종류

[그림 13] 구형 윈도우와 해밍 윈도우

[표 1] FFT 윈도우의 종류와 응용

윈도우	주파수해상도	진폭해상도	사이드로브	특징 및 응용
rectangular or uniform	excellent	poor	poor	 주파수 해상도(피크가 샤프)는 좋지만, 사이드 로브가 많다. 고해상도 주파수 특성이나 임펄스 레스폰스 측정에 활용
Trianlgular	fair	fair	poor	- Rectangular보다 사이드 로브가 적다.
Hamming	fair	fair	fair	- 음향 측정
Hanning	fair	excellent	excellent	- 왜곡 및 잡음 등 음향기기 측정
Kaiser	fair	fair	excellent	
Blackman	fair	good	excellent	사이드 로브가 가장 적다. 왜곡 측정에 활용
Flattop	poor	excellent	moderate	고해상도 진폭 특성 측정sweep sine test

로브가 적고, 주파수 해상도가 좋다(그림 14).

구형 윈도우는 주파수 해상도가 가장 좋 고, 만약에 임펄스 레스폰스가 1차 반사음이 나타나기 전에 거의 0에 가까운 값이 된다면. 스피커의 측정에서 실내의 반사음을 제거하 는데 가장 적절한 시간 창이다. 그러나 직접음 의 레벨이 0이 되지 않는 경우에는 Hamming 윈도우를 선택하는 것이 좋다. 사인파나 음

악, 잡음과 같이 임펄스 레스폰스가 아닌 경 우에는 Blackman 윈도우나 Kaiser 윈도우 가 적절하다. 이것은 고전창보다 사이드 로브 가 적지만, 주파수 해상도가 좋지 않다.

[표 1]에는 각 윈도우의 주파수 해상도와 진 폭 해상도 및 응용 분야를 정리하여 나타낸 다. [그림 14]에는 FFT 시간 창의 종류에 따른 스펙트럼과 사이드 로브의 차이를 나타낸다.

[그림 14] FFT 윈도우 종류에 따른 주파수 해상도, 진폭 해상도, 사이드 로브의 차이

[그림 15] decimation, overlap

[그림 16] decimation의 원리

_____ [그림 17] FFT 분석 결과의 overlap 처리 방법

decimation ratio

decimation ratio는 디지털화 된 신호를 다운 샘플링(down sampling)하는 비율이고, 저주파수의 해상도를 높이는데 사용한다(그 림 15). 예를 들면, 최저 샘플링 주파수가 11.025Hz인 경우에 decimation을 10으로 하 면 샘플링 주파수를 1102.5Hz까지 낮출 수 있고, 그 결과 측정 범위는 0~551,25Hz가 된 다. 값이 1인 경우에는 다운 샘플링을 하지 않는 것과 같다.

Decimation 원리는 [그림 16]과 같이 아 주 간단하다. 예를 들어 8:1로 다운 샘플링 하는 것은 8개 샘플링 중 7개를 버리는 것이 다. 실제로는 8개의 샘플을 평균하여 하나의 샘플로 사용하는 것이다. 이 결과는 신호에 저역 통과 필터를 통과시키는 것과 같은 결 과가 된다.

overlap percentage

overlap percentage는 데이터 포인트의 FFT 사이즈의 블록의 몇 %를 다음 블록에서 다시 사용하는가를 나타낸다. 원리는 [그림 17]과 같다. Overlap 처리는 주파수와 시간 축상에서 해상도를 높이는 데 사용한다. 예 를 들어 2개의 다른 주파수로 구성된 신호를 분석할 때. 만약 두 신호가 같은 FFT 블록에 포함되면 FFT 처리 결과에서 두 신호가 구분 되지 않게 된다. 이러한 경우에 시간 해상도 를 높이는데 사용하는 기법이다.

overlap percentage가 높고 FFT 사이즈 가 작으면 시간 해상도가 높지만, 처리 시간 이 많이 걸린다. FFT 사이즈가 크면 주파수 해상도가 높지만, 시간 해상도는 떨어진 다. 🖳

121