Pmath 651: Measure Theory

Roger Gu

October 8, 2025

Contents

1		oductions			
	1.1	Lebesgue Measure			
2	Measure 3				
	2.1	Algebra of Sets			
	2.2	Measures			
	2.3	Measurable Function			
	2.4	Simple Functions			
3	Inte	egration			
	3.1	Integration of non-negative functions			
	3.2	Integration of complex functions			
	3.3	Lebesgue Dominated Convergence Theorem			
	3.4	Almost Everywhere			
	3.5	Complete Measure			
4	Construction of Measure				
	4.1	Caratheodoy Theorem			
	4.2	Premeasures			
	4.3	Lebesgue-Stieltjes Measures			
	4.4	Littlewood's Three Principles			
5	Bor	el Measures on Topological Spaces			
•	5.1	Topological Spaces			
	5.2	Compactly Supported Functions			
	5.3	Partition of Unity			
	5.4	Linear Functional			
	5.5	Radon Meaure			
	5.6	Extremely Disconnected Spaces			
	5.7	Riesz-Markov-Kakutani			
6	Lebesgue Spaces 34				
	6.1	The First Lebesgue Space			
	6.2	Convex functions			
	6.3	Lp Spaces			
	0.0	Lip opaces			
7		nplex measures 49			
	7.1	Signed measures			
	7.2	Complex measures			
	7.3	Radon-Nikodym-Lebegue Decomposition			

8	Dual of Function Spaces			
	8.1 Dual of Lp Spaces			
9	Product Measures 9.1 Lebesgue Measure on \mathbb{R}^n	63		
10	10 Convolutions and Fourier Transforms			
11	11 Bochner Spaces			

1 Introductions

1.1 Lebesgue Measure

Definition 1.1. Lebesgue outer measure of $A \in \mathbb{R}$ is $\lambda^*(A) := \inf \{ \sum_{i=1}^{\infty} l(I_i) : A \subseteq \bigcup_{i=1}^{\infty} I_i \}$, where each $I_i \subseteq \mathbb{R}$ is an open interval.

Definition 1.2. If $\forall E \in \mathbb{R}, \lambda^*(E) = \lambda^*(E \cap A) + \lambda^*(E \setminus A)$, then A is Lebesgue measurable, and its Lebesgue measure is defined to be $\lambda(A) := \lambda^*(A)$

Proposition 1.1. $\forall a < b \in \mathbb{R}, \lambda((a,b)) = b - a$

Proposition 1.2. $\forall x \in \mathbb{R}, \lambda(x+A) = \lambda(A)$

Proposition 1.3. If A_m are \mathcal{L} -measurable and pairwise disjoint $(A_m \cap A_n = \emptyset, \forall n \neq m)$, then $m(\sqcup_{i\geq 1} A_i) = \sum_{i=1}^{\infty} m(A_i)$

Proposition 1.4. Every Riemann integrable function is Lebesgue integrable.

2 Measure

2.1 Algebra of Sets

Definition 2.1. Let X be a set and $\mathcal{P}(X) := \{A | A \subseteq X\}$, then an algebra of subsets of X is $\mathcal{A} \subseteq \mathcal{P}(X)$, such that

- 1. $\emptyset \in \mathcal{A}$
- 2. If $E \in \mathcal{A}$, then $E^c := X \setminus E \in \mathcal{A}$
- 3. If $E_1, \ldots, E_n \in \mathcal{A}$, then $\bigcup_{i=1}^n E_i \in \mathcal{A}$

Definition 2.2. Let X be a set and $\mathcal{P}(X) := \{A | A \subseteq X\}$, then a σ -algebra of subsets of X is $\mathcal{M} \subseteq \mathcal{P}(X)$, such that

- 1. $\emptyset \in \mathcal{M}$
- 2. If $E \in \mathcal{M}$, then $E^c := X \setminus E \in \mathcal{M}$
- 3. If $E_1, E_2, \dots \in \mathcal{M}$, then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{M}$

Definition 2.3. If \mathcal{M} is σ -algebra, we call (X, \mathcal{M}) a measurable space, and a set $E \in \mathcal{M}$ is called \mathcal{M} -measurable.

Remark. Every σ -algebra is an algebra.

Proposition 2.1. If A is an algebra, and $E_1, E_2 \in A$, then $E_1 \cap E_2 \in A$

Proof.
$$(E_1 \cap E_2)^c = E_1^c \cup E_2^c$$
 is in \mathcal{A} by 2,3.

Proposition 2.2. If A is an algebra, and $E, F \in A$, then $E \setminus F = E \cap F^c \in A$.

Proposition 2.3. If A is an algebra, and $E, F \in A$, then $E\Delta F = (E \setminus F) \cup (F \setminus E) \in A$.

Proposition 2.4. If \mathcal{M} is σ -algebra, $E_i \in \mathcal{M}$, then we can define $F_i := E_i \setminus \bigcup_{i=1}^{i-1} E_i$, and $\bigcup_{i=1}^{\infty} E_i = \bigsqcup_{i=1}^{\infty} F_i$

Proposition 2.5. If \mathcal{M} is $(\sigma-)$ algebra, and $E \in \mathcal{M}$, then $A|_E := \{E \cap A | A \in \mathcal{M}\}$ is an $(\sigma-)$ algebra.

Example 2.1.1. P(X) is $\sigma - algebra$, and $\{\emptyset, X\}$ is $\sigma - algebra$.

Example 2.1.2. $\mathcal{A} = \{E \subseteq X : |E| < \infty \lor |E^c| < \infty\}$ is an algebra. However, if X is infinite, then it is not a $\sigma - algebra$

Example 2.1.3. $\mathcal{M} = \{E \subseteq X : |E| \leq \mathcal{N}_0 \lor |E^c| \leq \mathcal{N}_0\}$ is a σ -algebra.

Example 2.1.4. Let $X = \mathbb{R}$, the collection of all finite union of sets in $\{\mathbb{R}, (-\infty, b], (a, b), (a, \infty) | a, b \in \mathbb{R}\}$ is an algebra but not σ -algebra.

Proposition 2.6. Let $\{\mathcal{M}_{\alpha}\}_{\alpha\in I}$ is a collection of $(\sigma-)$ algebras of X, then $\bigcap_{\alpha\in I}\mathcal{M}_{\alpha}$ is an $(\sigma-)$ algebra

Definition 2.4. Let \mathcal{C} be a collection of subsets of X, then $\sigma(\mathcal{C}) := \bigcap \{ \mathcal{M} : \sigma - alg, \mathcal{C} \subseteq \mathcal{M} \}$ is a $\sigma - algebra$ containing \mathcal{C} , and is called the σ -algebra generated by \mathcal{C} .

Definition 2.5. Let X be a topological space, and let \mathcal{G} be the collection of all open sets of X, then the Borel algebra is $Bol_X := \sigma(\mathcal{G})$

2.2 Measures

Definition 2.6. A function $\mu: \mathcal{M} \to [0, \infty]$ is called a **positive measure** if:

- 1. $\mu(\emptyset) = 0$
- 2. If E_1, E_2, \ldots are pairwise disjoint sets in \mathcal{M} , then $\mu(\bigsqcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$

We call (X, \mathcal{M}, μ) a measure space.

Definition 2.7. μ is finite if $\mu(X) < \infty$. μ is σ -finite if $X = \bigcup_{i=1}^{\infty} A_i$, where each $\mu(A_i) < \infty$. μ is semi-finite if $\forall E \in \mathcal{M}$, such that $\mu(E) \neq 0$, there is always $F \in \mathcal{M}$, $F \subseteq E$, $0 < \mu(F) < \infty$

Definition 2.8. A **complex measure** is a function $\mu : \mathcal{M} \to \mathbb{C}$ that is countably additive, as above. Similarly, we can define a **real measure** $\mu : \mathcal{M} \to \mathbb{R}$

Remark. We will only work with positive measures where it satisfies $\exists A \in \mathcal{M}, \mu(A) < \infty$.

Example 2.2.1. For any X, we can define $\mu: \mathcal{P}(X) \to [0,\infty]$ by $\mu(A) := \begin{cases} |A|, & |A| < \infty \\ \infty, & \text{otherwise} \end{cases}$ is the **counting measure** on X

Example 2.2.2. For any set X and $x \in X$, we can define $\delta_x : \mathcal{P}(X) \to [0, \infty]$ by $\delta_x(A) := \begin{cases} 1, & x \in A \\ 0, & \text{otherwise} \end{cases}$ is the **point measure** or **Dirac measure** of x.

Example 2.2.3. Let $X = \mathbb{R}$, $\mathcal{M} = \mathcal{P}(X)$, let $x_1, x_2, \dots \in \mathbb{R}$, $a_1, a_2, \dots \geq 0$, then $\mu(E) := \sum_{i|x_i \in E} a_i$ is a measure.

Definition 2.9. A positive measure μ is a **probability measure** if $\mu(X) = 1$. In this case (X, \mathcal{M}, μ) is called a probability space.

Proposition 2.7. $\mu(\emptyset) = 0$

Proof. Choose
$$A \in \mathcal{M}$$
 with finite measure, take $A_1 = A$, and $A_2 = A_3 = \cdots = \emptyset$.
Then $\mu(A) + \sum_{i=2}^{\infty} \mu(\emptyset) = \mu(A) < \infty$, thus we must have $\mu(\emptyset) = 0$

Remark. This holds for complex measures as well.

Proposition 2.8. Finite Additivity: If $E_1, E_2, \ldots, E_n \in \mathcal{M}$, then $\mu(\bigsqcup_{i=1}^n E_i) = \sum_{i=1}^n \mu(E_i)$

Proof. Take
$$E_{n+1} = E_{n+2} = \cdots = \emptyset$$
, then $\mu(\bigsqcup_{i=1}^n E_i) = \mu(\bigsqcup_{i=1}^\infty E_i) = \sum_{i=1}^n \mu(E_i) + \sum_{i=n+1}^\infty \mu(E_i) = \sum_{i=1}^n \mu(E_i)$

Remark. This holds for complex measures as well.

Proposition 2.9. Monotonicity: If $E, F \in \mathcal{M}, E \subseteq F$, then $\mu(E) \leq \mu(F)$

Proof. We have
$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$$

Remark. This does not hold for complex measures.

Proposition 2.10. Subadditivity: If $E_1, E_2, \dots \in \mathcal{M}$, then $\mu(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu(E_i)$

Proposition 2.11. Continuity:

If $E_1, E_2, \dots \in \mathcal{M}, E_n \subseteq E_{n+1}$, we have that $\mu(\bigcup_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \mu(E_n)$. If $E_1, E_2, \dots \in \mathcal{M}, E_{n+1} \subseteq E_n, \mu(E_1) < \infty$ we have that $\mu(\bigcap_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \mu(E_n)$.

Proof. Let $E_0 = \emptyset$, then we can write $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} (E_i \setminus E_{i-1})$, and we have $E_n = \bigcup_{i=1}^n (E_i \setminus E_{i-1})$.

$$\mu\left(\bigcup_{i=1}^{\infty} E_i\right) = \mu\left(\bigcup_{i=1}^{\infty} (E_i \setminus E_{i-1})\right)$$

$$= \sum_{i=1}^{\infty} \mu(E_i \setminus E_{i-1})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \mu(E_i \setminus E_{i-1})$$

$$= \lim_{n \to \infty} \mu(\bigcup_{i=1}^{n} (E_i \setminus E_{i-1}))$$

$$= \lim_{n \to \infty} \mu(E_n)$$

For the second part, let $A = \bigcap_{i=1}^{\infty} E_i$.

$$\mu(E_1 \setminus A) = \mu(E_1 \cap A^c)$$

$$= \mu \left(E_1 \cap \left(\bigcap_{i=1}^{\infty} E_i \right)^c \right)$$

$$= \mu \left(E_1 \cap \bigcup_{i=1}^{\infty} E_i^c \right)$$

$$= \mu \left(\bigcup_{i=1}^{\infty} E_1 \cap E_i^c \right)$$

$$= \lim_{n \to \infty} \mu(E_1 \cap E_n^c)$$

$$= \lim_{n \to \infty} \mu(E_1 \setminus E_n)$$

By finite additivity, we have that

$$\mu(E_1 \setminus A) + \mu(A) = \mu(E_1 \setminus A \sqcup A)$$

$$= \mu(E_1)$$

$$= \lim_{n \to \infty} \mu(E_1)$$

$$= \lim_{n \to \infty} \mu(E_1 \setminus E_n \sqcup E_n)$$

$$= \lim_{n \to \infty} (\mu(E_1 \setminus E_n) + \mu(E_n))$$

$$= \lim_{n \to \infty} \mu(E_1 \setminus E_n) + \lim_{n \to \infty} \mu(E_n)$$

$$= \mu(E_1 \setminus A) + \lim_{n \to \infty} \mu(E_n)$$

Since $\mu(E_1 \setminus A) \leq \mu(E_1) < \infty$, we have $\mu(A) = \lim_{n \to \infty} \mu(E_n)$

Remark. This holds for complex measures as well. However, for the second property, it is essential for $\mu(E_1) < \infty$. Indeed, consider the following example:

Example 2.2.4. Let $X = \mathbb{N}$, $\mathcal{M} = \mathcal{P}(X)$, μ be the counting measure. Let $A_n := \{i : i \geq n\}$. Notice that $A_1 \supseteq A_2 \supseteq A_3 \ldots$ and $\lim_{n \to \infty} \mu(A_n) = \infty \neq 0 = \mu(\emptyset)$. However, $\bigcap_{n=1}^{\infty} A_n = \emptyset$

2.3 Measurable Function

Definition 2.10. If $(X, \mathcal{M}_1), (Y, \mathcal{M}_2)$ are measure spaces, then $f: X \to Y$ is a **measurable function** if $\forall B \in \mathcal{M}_2, f^{-1}(B) \in \mathcal{M}_1$.

Definition 2.11. If (Y, \mathcal{T}) is a topological space, we say a function $f: X \to Y$ is **Borel measurable** if it is measurable with respect to $\mathcal{M}_2 = Bol_{(Y,\mathcal{T})}$, the Borel σ -algebra.

Proposition 2.12. For $(B_i) \subseteq Y$, we have

1.
$$f^{-1}(B^c) = (f^{-1}(B))^c$$

2.
$$f^{-1}(\bigcup_{i} B_{i})) = \bigcup_{i} f^{-1}(B)$$

3.
$$f^{-1}(\bigcap_i B_i)) = \bigcap_i f^{-1}(B)$$
.

Proposition 2.13. If (Y, \mathcal{T}) is a topological space, a function $f: X \to Y$ is Borel measurable if and only if $\forall B \in \mathcal{T}$ open, $f^{-1}(B) \in \mathcal{M}_1$.

Proposition 2.14. For $f: X \to \mathbb{R}$, the following are equal:

- 1. f is (Borel) measurable
- 2. $\forall a, f^{-1}((-\infty, a))$ is measurable
- 3. $\forall a, f^{-1}((-\infty, a])$ is measurable
- 4. $\forall a, f^{-1}((a, \infty))$ is measurable
- 5. $\forall a, f^{-1}([a, \infty))$ is measurable
- 6. $\forall a < b, f^{-1}((a,b))$ is measurable

Proposition 2.15. If $f: X \to Y, g: Y \to Z$ are both measurable, then $f \circ g$ is also measurable.

Corollary 2.16. If $f: X \to \mathbb{C}$ is measurable, we have u = Re(f), v = Im(f), z = |f| are all measurable.

Theorem 2.17. Let (X, \mathcal{M}) is a measurable space, and $u, v : X \to \mathbb{R}$ be measurable, and (Y, τ) is a topological space. If $\Phi : \mathbb{R}^2 \to Y$ is continuous, then $h : X \to Y; x \mapsto \Phi(u(x), v(x))$ is measurable.

Proof. Let $f: X \to \mathbb{R}^2$; $x \mapsto (u(x), v(x))$, it suffices to check that f is measurable.

Notice that $Bol_{\mathbb{R}^2}$ is generated by open rectangles $R = (a, b) \times (c, d)$.

Yet
$$f^{-1}(R) = u^{-1}(a, b) \cap v^{-1}(c, d)$$
 is measurable.

Corollary 2.18. If $u, v : X \to \mathbb{R}$ are both measurable, we have $f := u + iv : X \to \mathbb{C}$ is also measurable.

Proof. Choose
$$\Phi: \mathbb{R}^2 \to \mathbb{C}$$
; $(s,t) \mapsto s+it$.

Corollary 2.19. If $f, g: X \to \mathbb{R}$ are measurable, then we have fg, f+g are both measurable.

Proof. choose
$$\Phi:(s,t)\mapsto st$$
 or $\Phi:(s,t)\mapsto s+t$.

Corollary 2.20. If $f,g:X\to\mathbb{C}$ are measurable, then for any $\alpha\in\mathbb{C}$, we have $fg,f+g,\alpha f$ are all measurable.

Proof. We write f = u + iv, g = w + iz. We have that u, v, z, z are all real-valued and measurable, so are u + w, v + z, and so are (u + w) + i(v + z) = f + g and (uw - vz) + i(vw + uz) = fg. For αf , it is obvious since $B \in Bol(\mathbb{C}) \iff \alpha B \in Bol(\mathbb{C})$ for $\alpha \neq 0$, and 0f = 0 is measurable.

Definition 2.12. For extended real functions $f: X \to [-\infty, \infty]$, it is measurable if $\forall \alpha \in \mathbb{R}, f^{-1}((\alpha, \infty]) \in \mathcal{M}$, or equivalently, $\forall \alpha \in \mathbb{R}, f^{-1}([-\infty, \alpha]) \in \mathcal{M}$.

Proposition 2.21. If $(f_n)_{n=1}^{\infty}$ is a sequence of measurable functions $X \to [-\infty, \infty]$, we have

$$g(x) := \sup_{n} f_n(x), \ h(x) := \limsup_{n \to \infty} f_n(x) = \inf_{k} \left(\sup_{n \ge k} f_n(x) \right)$$

are also measurable. Similarly for inf and liminf.

Proof. Notice that

$$x \in g^{-1}((\alpha, \infty]) \iff g(x) > \alpha$$

 $\iff \exists f_n(x) > \alpha$
 $\iff x \in \bigcup_{n=1}^{\infty} f_n^{-1}((\alpha, \infty]),$

which is a union of measurable sets. Thus g is measurable.

Corollary 2.22. If $f_n: X \to [-\infty, \infty]$ or $f_n: X \to \mathbb{C}$ are measurable functions, and $\forall x \in X, f(x) = \lim_{n \to \infty} f_n(x)$ exists, then f is measurable.

Corollary 2.23. If $f, g: X \to [-\infty, \infty]$ are both measurable, then $\max(f, g), \min(f, g)$ are measurable.

Corollary 2.24. If $f: X \to [-\infty, \infty]$ is measurable, then $f^+ := \max(f, 0), f^- := \max(-f, 0)$ are both measurable, with $f = f^+ - f^-$.

Proposition 2.25. If $f : \mathbb{R} \to \mathbb{R}$ is monotone, then f is Borel measurable.

Proof. Let $\alpha \in \mathbb{R}$, we need to show that $\{x \in \mathbb{R} | f(x) > \alpha\}$ is a Borel set.

We may assume that f is non-decreasing, if not we take $f \to -f$. If $\{x \in \mathbb{R} | f(x) > \alpha\} \in \{\emptyset, \mathbb{R}\}$, we have nothing to prove.

Now if $\{x \in \mathbb{R} | f(x) > \alpha\} \notin \{\emptyset, \mathbb{R}\}$, we have that $\{x \in \mathbb{R} | f(x) \leq \alpha\}$ is not empty and bounded above since f is increasing. Let $x_0 := \sup\{x \in \mathbb{R} | f(x) \leq \alpha\}$. If $f(x_0) \leq \alpha, \{x \in \mathbb{R} | f(x) > \alpha\} = (x_0, \infty)$, otherwise $\{x \in \mathbb{R} | f(x) > \alpha\} = [x_0, \infty)$, both Borel.

2.4 Simple Functions

Definition 2.13. Let (X, \mathcal{M}) be a measurable space, a characteristic function for a subset $E \subseteq X$ is

$$\chi_E(x) := \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}.$$

Definition 2.14. Let (X, \mathcal{M}) be a measurable space, a function $\phi : X \to [-\infty, \infty]$ is **simple** if $\phi(X)$ is finite.

Proposition 2.26. Let (X, \mathcal{M}) be a measurable space, for any simple function ϕ with $\phi(X) = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$, we have

$$\phi = \sum_{i=1}^{n} \alpha_i \chi_{E_i},$$

where $E_i = \phi^{-1}(\{\alpha_i\})$ are pairwise disjoint. In this case, ϕ is measurable if and only if $\forall i, E_i \in \mathcal{M}$.

Lemma 2.27. For any $\alpha \in \mathbb{R}$, $n \geq 1$, we have that

$$\alpha - \frac{1}{2^n} < \frac{\lfloor 2^n \alpha \rfloor}{2^n} \le \alpha$$

Proof.

$$\lfloor 2^n \alpha \rfloor \le 2^n \alpha < \lfloor 2^n \alpha \rfloor + 1$$

$$2^n \alpha - 1 < \lfloor 2^n \alpha \rfloor$$

$$\alpha - \frac{1}{2^n} < \frac{\lfloor 2^n \alpha \rfloor}{2^n}$$

$$\frac{\lfloor 2^n \alpha \rfloor}{2^n} \le \alpha$$

Lemma 2.28. Consider $id: [0, \infty) \to [0, \infty), x \mapsto x$, then there are simple functions $s_n: [0, \infty] \to [0, \infty)$ such that each s_n is measurable and $\begin{cases} 0 \le s_1 \le s_2 \le \cdots \le id, \\ \forall x \in X, \lim_{n \to \infty} s_n(x) = id(x), \\ \forall R > 0, s_n \to id \ uniformly \ on \ [0, R] \end{cases}$

Proof. For
$$n \ge 1, t \in [0, \infty)$$
, let $s_n(t) := \begin{cases} \frac{\lfloor 2^n t \rfloor}{2^n}, & t \in [0, n] \\ n, & t > n \end{cases}$

Notice that s_n is simple. It is also measurable since it is monotone.

We also have that $0 \le s_1 \le s_2 \le \cdots \le f$, and by squeeze theorem, we have that

$$\lim_{n \to \infty} s_n(x) = x = id(x).$$

In addition, we can check that this convergence is uniform on any [0, R].

Theorem 2.29. Let $f: X \to [0, \infty]$ be measurable, then there are simple functions $s_n: X \to [0, \infty)$ such that each s_n is measurable and $\begin{cases} 0 \le s_1 \le s_2 \le \cdots \le f \\ \forall x \in X, \lim_{n \to \infty} s_n(x) = f(x) \\ \forall R > 0, s_n \to f \text{ uniformly on } E_R := \{x \in X : f(x) \le R\}. \end{cases}$

Proof. Notice that for any simple function s and any arbitrary measurable function f, we have that $s \circ f$ is simple. Thus it suffices to find s'_n that approximates $id: x \mapsto x$, which is done by the above lemma. Let $s_n := s'_n \circ f$, they are measurable by result on compositions, and

$$0 \le s_1 \le \dots \le f$$
, $\lim_{n \to \infty} (s_n \circ f)(x) = f(x)$.

Corollary 2.30 (Simple function approximation). Let $f: X \to \mathbb{C}$ be measurable, then there are simple functions $s_n: X \to [0, \infty)$ such that each s_n is measurable and

$$\begin{cases} 0 \le |s_1| \le |s_2| \le \dots \le |f| \\ \forall x \in X, \lim_{n \to \infty} s_n(x) = f(x) \\ \forall R > 0, s_n \to f \text{ uniformly on } E_R := \{x \in X : |f(x)| \le R\} . \end{cases}$$

Corollary 2.31. For $f, g: X \to [0,\infty]$ being measurable, we have that $f \cdot g$ is also measurable.

Proof. One can check that for monotone non-decreasing $(a_n),(b_n)\subseteq [0,\infty)$ with $a_n\to a,b_n\to b$ for $a,b\in [0,\infty]$, then $a_nb_n\to ab$.

Approximate f with simple functions s_n , and g with simple functions t_n , then each of them is measurable, hence so is $s_n \cdot t_n$, hence so is $\lim_{n\to\infty} s_n t_n = fg$

3 Integration

3.1 Integration of non-negative functions

Definition 3.1. Let (X, \mathcal{M}, μ) be a measure space, $s: X \to [0, \infty)$ be a simple measurable function, with $s(X) = \{a_1, \ldots, a_n\}$, such that $s = \sum_{i=1}^n a_i \mathcal{X}_{A_i}$, where $A_i := s^{-1}(\{a_i\})$. For $A \in \mathcal{M}$, define the **integral** of s over A to be

$$\int_A s d\mu := \sum_{i=1}^n a_i \mu(A_i \cap A).$$

Definition 3.2. For $f: X \to [0, \infty]$ measurable, the **integral** of f over $A \in \mathcal{M}$ is

$$\int_A f d\mu := \sup \int_A s d\mu,$$

where the sup is taken over all measurable simple $s: X \to [0, \infty)$ such that $0 \le s \le f$.

Proposition 3.1. Let $f, g: X \to [0, \infty]$ be measurable, then

- 1. $f \leq g \implies \forall A \in \mathcal{M}, \int_A f d\mu \leq \int_A g d\mu$
- 2. For any $A \subseteq B \in \mathcal{M}$, we have that $\int_A f d\mu \leq \int_B f d\mu$
- 3. $\forall c \in [0, \infty), A \in \mathcal{M}, \text{ we have that } \int_A cf d\mu = c \int_A f d\mu$
- 4. If $\forall x \in X, f(x) = 0$, we have that $\forall A \in \mathcal{M}, \int_A f d\mu = 0$
- 5. If $\forall x \in A \in \mathcal{M}$, f(x) = 0, we have that $\int_A f d\mu = 0$
- 6. If $\mu(A) = 0$ for $A \in \mathcal{M}$, we have that $\int_A f d\mu = 0$
- 7. $\int_A f d\mu = \int_X \mathcal{X}_A f d\mu$

Proposition 3.2. Let (X, \mathcal{M}, μ) be a measure space, and $s: X \to [0, \infty)$ a measurable simple function. Then $\lambda: \mathcal{M} \to [0, \infty]$ defined by

$$\lambda(A) := \int_A s d\mu$$

is a measure on (X, M)

Proof. Write $s = \sum_{i=1}^n a_i \mathcal{X}_{A_i}$, and let $C := \bigsqcup_{k=1}^{\infty} C_k$, then

$$\lambda(C) = \sum_{i=1}^{n} a_i \mu(Ai \cap C)$$

$$= \sum_{i=1}^{n} a_i \mu(\bigsqcup_{k=1}^{\infty} (Ai \cap C_k))$$

$$= \sum_{i=1}^{n} a_i \sum_{k=1}^{\infty} \mu(A_i \cap C_k)$$

$$= \sum_{k=1}^{\infty} \sum_{i=1}^{n} a_i \mu(A_i \cap C_k)$$

$$= \sum_{k=1}^{\infty} \lambda(C_k)$$

Thus λ satisfies countable additivity, and in addition $\lambda(\emptyset) = \sum_{i=1}^{n} a_i \mu(A_i \cap \emptyset) = 0$.

Corollary 3.3. Let (X, \mathcal{M}, μ) be a measure space, and $s: X \to [0, \infty)$ a measurable simple function, with $C := \bigsqcup_{k=1}^{\infty} C_k$. Then we have

$$\int_C s d\mu = \sum_{k=1}^\infty \int_{C_k} s d\mu.$$

Proof.

$$\int_{C} s d\mu = \lambda_{s}(C)$$

$$= \lambda_{s} \left(\bigsqcup_{k=1}^{\infty} C_{k} \right)$$

$$= \sum_{k=1}^{\infty} \lambda_{s}(C_{k})$$

$$= \sum_{k=1}^{\infty} \int_{C_{k}} s d\mu$$

Proposition 3.4. Let (X, \mathcal{M}, μ) be a measure space, and $s, t : X \to [0, \infty)$ both be measurable simple functions, then

$$\int_X (s+t) d\mu = \int_X s d\mu + \int_X t d\mu$$

Proof. Write $s = \sum_{i=1}^n a_i \mathcal{X}_{A_i}$, $t = \sum_{j=1}^m b_j \mathcal{X}_{B_j}$, and let $C_{ij} = A_i \cap B_j$, then C_{ij} are disjoint, and $\bigsqcup_{ij} C_{ij} = X$

$$\int_{C_{ij}} (s+t)d\mu = (a_i + b_j)\mu(C_{ij})$$

$$= a_i\mu(C_{ij}) + b_j\mu(C_{ij})$$

$$= \int_{C_{ij}} sd\mu + \int_{C_{ij}} td\mu$$

$$\int_X (s+t)d\mu = \int_{\bigsqcup_{ij} C_{ij}} (s+t)d\mu$$

$$= \sum_{ij} \int_{C_{ij}} (s+t)d\mu$$

$$= \sum_{ij} \int_{C_{ij}} sd\mu + \sum_{ij} \int_{C_{ij}} td\mu$$

$$= \int_X sd\mu + \int_X td\mu$$

Theorem 3.5 (Lebesgue's Monotone Convergence). Let (X, \mathcal{M}, μ) be a measure space. Let $f_n : X \to [0, \infty]$ be measurable functions with $0 \le f_1 \le f_2 \le \cdots \le \infty$. Let $f(x) := \lim_{n \to \infty} f_n(x)$, then $f : X \to [0, \infty]$ is measurable, and

$$\lim_{n \to \infty} \int_{Y} f_n d\mu = \int_{Y} f d\mu.$$

Proof. Since $f_n \leq f_{n+1}$, we have that $\int_X f_n d\mu \leq \int_X f_{n+1} d\mu$, so by monotone convergence theorem,

$$\alpha := \lim_{n \to \infty} \int_X f_n d\mu \in [0, \infty]$$

exists.

As a limit of measurable functions, f is measurable. Also, $\forall n, \int_X f_n d\mu \leq \int_X f d\mu$, and thus $\alpha \leq \int_X f d\mu$. Consider any $s: X \to [0, \infty)$ be simple and measurable with $0 \leq s \leq f$, and consider any 0 < c < 1.

For $n \ge 1$, let $A_n := \{x \in X : f_n(x) \ge cs(x)\}.$

Then $X = \bigcup_{n=1}^{\infty} A_n$ since f_n converges point-wise.

In addition, $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$

Also each A_n is measurable, since $A_n = \{x \in X : (f_n - cs)(x) \ge 0\} = (f_n - cs)^{-1}([0, \infty])$, and $f_n - cs$ is measurable.

Since $\lambda_s: A \mapsto \int_A s d\mu$ is a measure, so by property of measures,

$$\int_X sd\mu = \lambda_s(X) = \lim_{n \to \infty} \lambda_s(A_n) = \lim_{n \to \infty} \int_{A_n} sd\mu.$$

In addition, we have

$$\int_{X} f_{n} d\mu \geq \int_{A_{n}} f_{n} d\mu$$

$$\geq \int_{A_{n}} cs d\mu$$

$$= c \int_{A_{n}} s\mu$$

$$\alpha = \lim_{n \to \infty} \int_{X} f_{n} d\mu$$

$$\geq \lim_{n \to \infty} c \int_{A_{n}} s\mu$$

$$= c \int_{X} s d\mu.$$

Now take $c \to 1$, we have that $\alpha \ge \int_X s d\mu$.

Then take sup of all simple $s \leq f$, we have that $\alpha \geq \int_X f d\mu$.

Corollary 3.6. For a measure space (X, \mathcal{M}, μ) , $A \in \mathcal{M}$, let $f_n : X \to [0, \infty]$ be measurable functions with $0 \le f_1 \le f_2 \le \cdots \le \infty$. Let $f(x) := \lim_{n \to \infty} f_n(x)$. We can consider the restriction $(A, \mathcal{M}' := \{B \cap A : B \in \mathcal{M}\}, \mu|_{\mathcal{M}'})$, and we will have

$$\lim_{n\to\infty} \int_{A} f_n d\mu = \int_{A} f d\mu$$

Corollary 3.7. Let (X, \mathcal{M}, μ) be a measure space. Let $f: X \to [0, \infty]$ be measurable. Let $s_n: X \to [0, \infty]$ be any measurable simple functions with $0 \le s_1 \le s_2 \le \cdots \le \infty$ with $f(x) = \lim_{n \to \infty} s_n(x)$. We have

$$\lim_{n \to \infty} \int_X s_n d\mu = \int_X f d\mu.$$

Proposition 3.8 (finite additivity for positive functions). Let (X, \mathcal{M}, μ) be a measure space. Let $f, g: X \to [0, \infty]$ be measurable functions, then

$$\int_X (f+g)d\mu = \int_X f d\mu + \int_X g d\mu.$$

Proof. Approximate f, g by simple functions s_n, t_n , such that $\lim_{n\to\infty} s_n(x) = f(x), \lim_{n\to\infty} t_n(x) = g(x)$ and $0 \le s_1 \le \cdots \le f, 0 \le t_1 \le \cdots \le g$.

Notice that $0 \le s_1 + t_1 \le \cdots \le f + g$, and $\lim_{n\to\infty} (s_n + t_n)(x) = (f+g)(x)$. Thus

$$\begin{split} \int_X (f+g) d\mu &= \lim_{n \to \infty} \int_X (s_n + t_n) d\mu \\ &= \lim_{n \to \infty} \left(\int_X s_n d\mu + \int_X s t_n d\mu \right) \\ &= \lim_{n \to \infty} \int_X s_n d\mu + \lim_{n \to \infty} \int_X t_n d\mu \\ &= \int_X f d\mu + \int_X g d\mu. \end{split}$$

Corollary 3.9 (countable additivity for positive functions). Let (X, \mathcal{M}, μ) be a measure space. Let $f_n : X \to [0, \infty]$ be measurable functions. Then

$$f(x) := \sum_{n=1}^{\infty} f_n(x)$$

is measurable and

$$\int_X f d\mu = \sum_{n=1}^{\infty} \int_X f_n(x) d\mu.$$

Proof. Define $g_n(x) := \sum_{i=1}^n f_i(x)$, then $0 \le g_1 \le \cdots \le f$ and $\lim_{n \to \infty} g_n = f$. By previous proposition and induction,

$$\int_X g_n d\mu = \sum_{i=1}^n \int_X f_n d\mu.$$

By LMCT, we have

$$\int_{X} f d\mu = \int_{X} \lim_{n \to \infty} g_n d\mu$$

$$= \lim_{n \to \infty} \int_{X} g_n d\mu$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \int_{X} f_i d\mu$$

$$= \sum_{n=1}^{\infty} \int_{X} f_n d\mu$$

Theorem 3.10. Let (X, \mathcal{M}, μ) be a measure space, and $f: X \to [0, \infty]$ a measurable function. Then $\lambda: \mathcal{M} \to [0, \infty]$ defined by

$$\lambda(A) := \int_A f d\mu$$

is a measure on (X,M). Moreover, for some $g:X\to [0,\infty]$ such that fg is measurable, then

$$\int_X g d\lambda = \int_X g f d\mu.$$

Proof. Let $A = \bigsqcup_{n=1}^{\infty} A_n$ with A_n disjoint measurable subsets of X. We have that $\chi_A = \sum_{n=1}^{\infty} \chi_{A_n}$, and thus

$$\lambda(A) = \int_X \chi_A f d\mu$$

$$= \int_X \sum_{n=1}^\infty \chi_{A_n} f d\mu$$

$$= \sum_{n=1}^\infty \int_X \chi_{A_n} f d\mu$$

$$= \sum_{n=1}^\infty \lambda(A_n)$$

Thus λ is a measure.

In addition, when $g = \chi_A$ for $A \in \mathcal{M}$, we have that $\int_X g d\lambda = 1 * \lambda(A) = \int_X \chi_A f d\mu = \int_X g f d\mu$. And thus simple functions, and thus all non-negative measurable functions by LMCT.

3.2 Integration of complex functions

Definition 3.3. Let (X, \mathcal{M}, μ) be a measure space, and $|f|: X \to [0, \infty)$ a measurable function. Let

$$\mathcal{L}^1(X,\mu) := \left\{ f: X \to \mathbb{C} \left| \int_X |f| d\mu < \infty \right. \right\}$$

be the set of Lebesgue integrable functions. For $f \in \mathcal{L}^1(X,\mu)$, we define $||f||_1 := \int_X |f| d\mu$.

Definition 3.4. For $f = u + iv \in \mathcal{L}^1(X, \mu)$, where $u, v : X \to \mathbb{R}$, then the integral of f is defined as

$$\int_{X} f d\mu := \int_{X} u^{+} d\mu - \int_{X} u^{-} d\mu + i \int_{X} v^{+} d\mu - i \int_{X} v^{-} d\mu,$$

where $u^+(x) := \max(u(x), 0), u^-(x) := \max(-u(x), 0),$ and thus $u = u^+ - u^-$. Similar definition for v^+, v^0 .

Proposition 3.11. The above integral is well-defined.

Proof. u^+, u^-, v^+, v^- are measurable, and $0 \le u^+, u^- \le |u| \le |f|$, thus the integral is finite.

Proposition 3.12. For $f = u + iv \in \mathcal{L}^1(X, \mu)$, where $u, v : X \to \mathbb{R}$, we have

$$\int_X f d\mu = \int_X u d\mu + i \int_X v d\mu.$$

Proof. By definition.

Theorem 3.13. $\forall f, g \in \mathcal{L}^1(X, \mu), \alpha \in \mathbb{C}$, we have that $\alpha f + g \in L^1$ and

$$\int_X \alpha f + g d\mu = \alpha \int_X f d\mu + \int_X g d\mu$$

Proof. Clearly $\alpha f + g$ is measurable. In addition,

$$\begin{split} \int_X |\alpha f + g| d\mu & \leq \int_X |\alpha f| + |g| d\mu \\ & = \int_X |\alpha| |f| d\mu + \int_X |g| d\mu \\ & = |\alpha| \int_X |f| d\mu + \int_X |g| d\mu \\ & < \infty \end{split}$$

Now we check the addition: Consider ant $f = a + ib, g = c + id : X \to \mathbb{C}$, such that $a, b, c, d : X \to \mathbb{R}$.

$$(a+c)^{+} - (a+c)^{-} = a+c$$

$$= (a^{+} - a^{-}) + (c^{+} - c^{-})$$

$$= (a^{+} + c^{+}) - (a^{-} + c^{-}).$$

$$(a+c)^{+} + (a^{-} + c^{-}) = (a+c)^{-} + (a^{+} + c^{+}),$$

where both sides of the equality are sums of two non-negative functions. Thus we have

$$\begin{split} \int_X (a+c)^+ + (a^- + c^-) d\mu &= \int_X (a+c)^- + (a^+ + c^+) d\mu \\ \int_X (a+c)^+ d\mu + \int_X (a^- + c^-) d\mu &= \int_X (a+c)^- d\mu + \int_X (a^+ + c^+) d\mu \\ \int_X (a+c)^+ d\mu - \int_X (a+c)^- d\mu &= \int_X (a^+ + c^+) d\mu - \int_X (a^- + c^-) d\mu \\ \int_X (a+c) d\mu &= \int_X (a^+ + c^+) d\mu - \int_X (a^- + c^-) d\mu \\ &= \int_X a^+ d\mu + \int_X c^+ d\mu - \int_X a^- d\mu - \int_X c^- d\mu \\ &= \left(\int_X a^+ d\mu - \int_X a^- d\mu\right) + \left(\int_X c^+ d\mu - \int_X c^- d\mu\right) \\ &= \int_X a d\mu + \int_X c d\mu \\ \int_X (f+g) d\mu &= \int_X (a+c)\mu + i \int_X (b+d) d\mu \\ &= \int_X a d\mu + \int_X c d\mu + i \int_X b d\mu + i \int_X dd\mu \\ &= \left(\int_X a d\mu + i \int_X b d\mu\right) + \left(\int_X c d\mu + i \int_X dd\mu\right) \\ &= \int_X f d\mu + \int_X g d\mu. \end{split}$$

Now we check the scalar multiplication: $\forall \alpha \geq 0$, we have $\int_X \alpha f d\mu = \alpha \int_X f d\mu$ by definition. We can also check for $\alpha = -1$ and $\alpha = i$, and conclude this holds for all $\alpha \in \mathbb{C}$.

Theorem 3.14. Let (X, \mathcal{M}, μ) be a measure space, and $f \in \mathcal{L}^1(X, \mu)$, then

$$\left| \int_X f d\mu \right| \le \int_X |f| d\mu$$

Proof. Let $\alpha:=\int_X f d\mu\in\mathbb{C}$, and let $\beta\in\mathbb{C}$, $|\beta|=1$, such that $\alpha\beta=|\alpha|$. Take $u=Re(\beta f):X\to\mathbb{R}$, note

 $u \leq |\beta f| = |f|$. Now

$$\begin{split} \left| \int_X f d\mu \right| &= |\alpha| \\ &= \beta \alpha \\ &= \beta \int_X f d\mu \\ &= \int_X \beta f d\mu \\ &= \int_X u d\mu \\ &\leq \int_X |f| d\mu \end{split}$$

Lebesgue Dominated Convergence Theorem

Lemma 3.15 (Fatou's). Let (X, \mathcal{M}, μ) be a measure space. Let $f_n : X \to [0, \infty]$ be measurable functions. Then

$$\int_{X} (\liminf_{n} f_{n}) d\mu \le \liminf_{n} \int_{X} f_{n} d\mu$$

Proof. Let $g_n(x) := \inf_{i \ge n} f_i(x)$, then $\liminf_n f_n(x) = \lim_{n \to \infty} g_n(x)$.

Also, $g_n \leq f_n$, so $\int_X g_n d\mu \leq \int_X f_n d\mu$, $\forall n \geq 1$. Note g_n is measurable, and $0 \leq g_1 \leq g_2 \leq \cdots$.

By LMCT,

$$\lim_{n \to \infty} \int_{Y} g_n d\mu = \int_{Y} (\lim_{n \to \infty} g_n) d\mu = \int_{Y} (\liminf_{n} f_n) d\mu.$$

Since the left hand side converges,

$$\int_{Y} (\liminf_{n} f_n) d\mu = \lim_{n \to \infty} \int_{Y} g_n d\mu = \liminf_{n} \int_{Y} g_n d\mu \le \liminf_{n} \int_{Y} f_n d\mu.$$

Theorem 3.16. (Lebesgue Dominated Convergence)

Let (X, \mathcal{M}, μ) be a measure space. Let $f_n : X \to \mathbb{C}$ be measurable functions such that $f(x) := \lim_{n \to \infty} f_n(x)$ exists $\forall x \in X$. If there is $0 \le g(x) \in \mathcal{L}^1(X,\mu)$, such that $\forall x \in X, \forall n \in \mathbb{N}, |f_n(x)| \le g(x)$, then $f \in \mathcal{L}^1(X,\mu)$,

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu, \lim_{n \to \infty} \int_X |f - f_n| d\mu = 0.$$

Proof. Firstly, $\forall n \in \mathbb{N}, x \in X$, $|f_n(x)| \leq g(x)$ implies that $\forall x \in X$, $|f(x)| \leq g(x)$, and thus $\int_X |f| d\mu \leq \int_X g d\mu$. This hows that $f \in \mathcal{L}^1(X, \mu)$.

Notice that $|f_n - f| \le |f_n| + |f| \le 2g$. Thus $2g - |f_n - f| \ge 0$. By Fatou's Lemma, we have that

 $\int_X (\liminf (2g - |f_n - f|)) d\mu \le \liminf \int_X 2g - |f_n - f| d\mu$. Thus

$$\int_{X} 2gd\mu = \int_{X} (2g - \liminf(|f_{n} - f|))d\mu$$

$$= \int_{X} (\liminf(2g - |f_{n} - f|))d\mu$$

$$\leq \liminf \int_{X} 2g - |f_{n} - f|d\mu$$

$$= \int_{X} 2gd\mu + \liminf(-\int_{X} |f_{n} - f|d\mu)$$

$$= \int_{X} 2gd\mu - \limsup \int_{X} |f_{n} - f|d\mu$$

$$0 \leq -\limsup \int_{X} |f_{n} - f|d\mu$$

Thus $0 \le \liminf \int_X |f_n - f| d\mu \le \limsup \int_X |f_n - f| d\mu \le 0$, and thus $\lim_{n \to \infty} \int_X |f_n - f| d\mu = 0$. Finally,

$$\left| \lim_{n \to \infty} \int_X f_n d\mu - \int_X f d\mu \right| = \left| \lim_{n \to \infty} \int_X (f_n - f) d\mu \right|$$

$$\leq \lim_{n \to \infty} \int_X |f_n - f| d\mu$$

$$= 0$$

3.4 Almost Everywhere

Definition 3.5. Let (X, \mathcal{M}, μ) be a measure space, $A \in \mathcal{M}$, and $P = \{p(x)\}_{x \in A}$ be a family of logical statements, then we say the property P holds or is true μ -everywhere on A, if $\exists N \in \mathcal{M}$, such that $\mu(N) = 0$ and $\forall x \in A \setminus N$, p(x) = True.

Definition 3.6. For measurable functions $f, g: X \to Y$, we say that f = g μ -almost everywhere if

$$\mu(\{x \in X | f(x) \neq g(x)\}) = 0.$$

Remark. For some $A \in \mathcal{M}$, we have that $\mu(A \cap N) \leq \mu(N) = 0$, and thus $\int_{A \cap N} (f - g) d\mu = 0$. Thus $\int_{A} (f - g) d\mu = \int_{A \cap N} (f - g) d\mu + \int_{A \setminus N} (f - g) d\mu = 0$.

Definition 3.7. Let $(f_n)_{n=1}^{\infty}$, we say $f_n \to f$ a.e. if $f_n(x) \to f(x)$ for $\mu - \text{a.e.} x \in X$.

Proposition 3.17. Let (X, \mathcal{M}, μ) be a measure space.

- 1. If $f: X \to [0, \infty]$ is measurable, we have f = 0 μ -a.e. $\iff \int_E f d\mu = 0 \ \forall E \in \mathcal{M}$.
- 2. If $f \in \mathcal{L}^1(X, \mu)$ we have f = 0 μ -a.e. $\iff \int_E f d\mu = 0 \ \forall E \in \mathcal{M}$.
- 3. If $f \in \mathcal{L}^1(X,\mu)$, and $\left| \int_X f d\mu \right| = \int_X |f| d\mu$, there exist must a constant α such that $\alpha f = |f|$ almost everywhere.

Proof. 1. Let $N = \{x \in X : f(x) > 0\}$. Suppose f = 0 μ -a.e., then $\mu(N) = 0$.

We have

$$\int_X f d\mu = \int_{X \backslash N} f d\mu + \int_N f d\mu = \int_{X \backslash N} 0 d\mu + 0 = 0.$$

Thus $\int_E f d\mu = 0 \ \forall E \in \mathcal{M}$. Now suppose $\int_E f d\mu = 0 \ \forall E \in \mathcal{M}$.

Let $A_n := \{x \in X : f(x) > \frac{1}{n}\}$, then we have

$$\frac{1}{n}\mu(A_n) = \int_{A_n} \frac{1}{n} d\mu \le \int_{A_n} f d\mu = 0.$$

Thus $\mu(A_n) = 0$.

Notice that $N = \bigcup_{n=1}^{\infty} A_n, A_1 \subseteq A_2 \subseteq \cdots$, thus $\mu(N) = \lim_{n \to \infty} \mu(A_n) = 0$.

2. Suppose f=0 μ -a.e., we have that |f|=0 μ -a.e., thus $\left|\int_E f d\mu\right| \leq \int_E |f| d\mu = 0$. Now suppose $\int_E f d\mu = 0 \ \forall E \in \mathcal{M}$.

Let f = u + iv, then we have $\int_E u d\mu = \int_E v d\mu = 0 \ \forall E \in \mathcal{M}$. Let $u = u^+ - u^-$, and $E = \{x \in X : u(x) \ge 0\}$.

$$\int_X u^+ d\mu = \int_{X \setminus E} u^+ d\mu + \int_E u^+ d\mu$$
$$= \int_{X \setminus E} 0 d\mu + \int_E u d\mu$$
$$= 0 + 0$$
$$= 0.$$

Thus $u^+ = 0$ μ a.e..

Similarly for u^- , and thus $u = 0 \mu$ – a.e..

Similarly for v, and thus $f = 0 \mu$ – a.e..

Theorem 3.18 (Lebesgue Dominated Convergence - almost everywhere). Let (X, \mathcal{M}, μ) be a measure space. Let $f_n: X \to \mathbb{C}$ be measurable functions, defined μ -almost everywhere on X, such that $f(x) := \lim_{n \to \infty} f_n(x)$ is defined μ -almost everywhere for $x \in X$. If there is $0 \leq g(x) \in \mathcal{L}^1(X,\mu)$, such that for μ -almost everywhere $x \in X, \forall n \in \mathbb{N}, |f_n(x)| \leq g(x), \text{ then } f \in \mathcal{L}^1(X, \mu), \text{ and}$

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu, \lim_{n \to \infty} \int_X |f - f_n| d\mu = 0.$$

Proof. Let N_n denote the zero measure set where f_n is not defined. Let N' denote the zero measure set where f is not defined. Then

$$N := N' \cup \{x \in X : \exists n \in \mathbb{N}, \text{ such that } |f_n(x) > g(x)|\} \cup \bigcup_{n=1}^{\infty} N_n$$

is measurable and has zero measure.

Define

$$h_n(x) := \begin{cases} f_n(x) & x \in X \setminus N, \\ 0 & x \in N \end{cases}, \ h(x) := \begin{cases} f(x) & x \in X \setminus N, \\ 0 & x \in N \end{cases}, \ g'(x) := \begin{cases} g(x) & x \in X \setminus N, \\ 0 & x \in N. \end{cases}$$

It is clear $\forall x \in X, h_n(x) \to h(x)$ point-wise, and dominated by g'(x). Since $g = g'\mu$ -a.e. and thus $g' \in \mathcal{L}^1(X, \mu)$, by LDCT, we have

$$\lim_{n \to \infty} \int_X |f - f_n| d\mu = \lim_{n \to \infty} \int_X |g - g_n| d\mu = 0.$$

Theorem 3.19 (countable additivity). Let (X, \mathcal{M}, μ) be a measure space. Let $f_n : X \to \mathbb{C}$ be measurable functions, defined μ -almost everywhere on X, such that $\sum_{n=1}^{\infty} \int_{X} |f_n| d\mu < \infty$. We have that $f(x) := \sum_{n=1}^{\infty} \int_{X} |f_n| d\mu$ $\sum_{n=1}^{\infty} f_n(x)$ exists μ -almost everywhere for $x \in X$, and that $f \in \mathcal{L}^1(X,\mu)$, and that

$$\int_{X} f d\mu = \sum_{n=1}^{\infty} \int_{X} f_n d\mu$$

Proof. For each n, let $D_n \subseteq X$ be the domain of f_n , then by assumption $\mu(X \setminus D_n) = 0$. Let $D := \bigcap_{n=1}^{\infty} D_n, g(x) := \sum_{n=1}^{\infty} |f_n(x)|$. Note that $\mu(D^c) = \mu((\bigcap_{n=1}^{\infty} D_n)^c) = \mu(\bigcup_{n=1}^{\infty} D_n^c) = 0$. Thus $g: X \to [0, \infty]$ is defined almost everywhere by Monotone Convergence Theorem. By countable additivity of positive functions and assumption,

$$\int_{X} g d\mu = \sum_{n=1}^{\infty} \int_{X} |f_{n}| d\mu < \infty,$$

so $g \in \mathcal{L}^1$.

Let $A := \{x \in D : g(x) < \infty\}$, then we have $\mu(A^c) = 0$. By definition, $f(x) = \sum_{n=1}^{\infty} f_n(x)$ absolutely on A. Thus $f \in \mathcal{L}^1(A, \mathcal{M}|_A, \mu|_{\mathcal{M}|_A})$.

Let $h_n = \sum_{i=1}^n f_i$ on A, then $|h_n| \leq \sum_{i=1}^n |f_n| \leq g$. Also, we have that $h_n(x) \to f(x)$ for any $x \in A$, then by LDCT and linearity, we have

$$\int_A f d\mu = \lim_{n \to \infty} \int_A h_n d\mu = \lim_{n \to \infty} \sum_{i=1}^n \int_A f_i d\mu = \sum_{n=1}^\infty \int_A f_n d\mu.$$

Since $\mu(A^c) = 0$, we have that $\int_X f d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu$.

Complete Measure

Theorem 3.20. Let (X, \mathcal{M}, μ) be a measure space, let

$$\mathcal{M}^* := \{ A \subseteq X : \exists B, C \in \mathcal{M}, \text{ such that } B \subseteq A \subseteq C, \mu(C \setminus B) = 0 \}.$$

Define $\mu^*(A) = \mu(B) = \mu(C)$, then \mathcal{M}^* is a σ -algebra, μ^* is a measure, and $(X, \mathcal{M}^*, \mu^*)$ is a measure space.

Proof. $X \in \mathcal{M}$, and $X \subseteq X \subseteq X$ and $\mu(X \setminus X) = 0$, thus $X \in \mathcal{M}^*$.

Let $A \in \mathcal{M}^*$, then there are $B, C \in \mathcal{M}$ such that $B \subseteq A \subseteq C, \mu(C \setminus B) = 0$. Thus $B^c \supseteq A^c \supseteq C^c$, and $B^c, C^c \in \mathcal{M}$. In addition, $\mu(B^c \setminus C^c) = \mu(B^c \cap C) = \mu(C \setminus B) = 0$. Thus $A^c \in \mathcal{M}^*$.

Let $A_n \in \mathcal{M}^*$ and $A = \bigcup_n A_n$, and $B_n, C_n \in \mathcal{M}$ such that $B_n \subseteq A_n \subseteq C_n, \mu(C_n \setminus B_n) = 0$. Let $B = \bigcup_n B_n, C = \bigcup_n C_n \in \mathcal{M}$, thus $B \subseteq A \subseteq C$. Now $\mu(C \setminus B) = \mu(\bigcup_n C_n \setminus B) \leq \mu(\bigcup_n C_n \setminus B_n) \leq \mu(\bigcup_n C_n \cup B_n) \leq \mu($ $\sum_{n} \mu(C_n \setminus b_n) = 0.$

Thus \mathcal{M}^* is a σ -algebra.

Now suppose $B, B', C, C' \in \mathcal{M}$, and $A, \in \mathcal{M}^*$, with $B \subseteq A \subseteq C$, $\mu(C \setminus B) = 0$, and $B' \subseteq A \subseteq C'$, $\mu(C' \setminus B') = 0$

Thus $B \setminus B' \subseteq A \setminus B' \subseteq C' \setminus B'$, and thus $\mu(B \subset B') \leq \mu(C' \setminus B') = 0$. Thus $\mu(B) = \mu(B \cap B') + \mu(B \subset B') = 0$. $B' = \mu(B \cap B')$. Similarly, we can show that $\mu(B') = \mu(B \cap B')$. Thus $\mu^* : \mathcal{M}^* \to [0, \infty]$ is well-defined. Consider A_n a sequence of disjoint sets in \mathcal{M}^* , and $B_n, C_n \in \mathcal{M}$ as above. We have $\mu^*(A) = \mu(B) = 0$ $\mu(\bigsqcup_n b_n) = \sum_n \mu(B_n) = \sum_n \mu(A_n).$

Corollary 3.21. $(X, \mathcal{M}^*, \mu^*)$ has the property that if $N \in \mathcal{M}^*$ has $\mu(N) = 0$, we always have

$$\forall A \subseteq N, \ A \in \mathcal{M}^*, \mu^*(A) = 0.$$

Proof. Notice that $\forall A \subseteq N$, we have $\mu(N) = \mu(\emptyset) = 0$, with $\emptyset \subseteq A \subseteq N$, so $A \in \mathcal{M}^*, \mu^*(A) = 0$. П

Definition 3.8. $(X, \mathcal{M}^*, \mu^*)$ defined above is called the **completion** of (X, \mathcal{M}, μ) . In addition, we say (X, \mathcal{M}, μ) is **complete** if $(X, \mathcal{M}, \mu) = (X, \mathcal{M}^*, \mu^*)$

Remark. If there is some $A \in \mathcal{M}$ such that $\mu(A^c) = 0$, then for any measurable $f: A \to Y$, we can extend it to X by $\forall x \in A^c$, f(x) := 0. Furthermore, if (X, \mathcal{M}, μ) is complete, we can extend f to whatever value we want. One can check that $f: X \to Y$ is measurable, and the integral $\int_X f d\mu$ does not depend on the extension.

Proposition 3.22. If (X, \mathcal{M}, μ) is a complete measure, we always have that property P holds μ -a.e. iff

$$\mu(\{x \in A : p(x) = False\}) = 0.$$

Proof. If P holds μ -a.e., there is $\exists N \in \mathcal{M}$, such that $\mu(N) = 0$ and $\forall x \in A \setminus N$, p(x) = True. Since $\{x \in A : p(x) = False\} \subseteq A \setminus (A \setminus N) = N$, we have $\mu(\{x \in A : p(x) = False\}) = 0$.

On the other hand, if $\mu(\{x \in A : p(x) = False\}) = 0$, we can just let $N := \mu(\{x \in A : p(x) = False\})$. Notice $\mu(N) = 0$, and $\forall x \in A \setminus N$, p(x) = True.

Proposition 3.23. Let μ be a complete measure on (X, \mathcal{M}) , suppose that f is measurable, and g = f, a.e., then g is also measurable. Moreover, if (f_n) is a sequence of measurable functions, and $f_n \to f$, μ -a.e., we always have that f is also measurable.

Proof. Suppose f is measurable, and we consider $D := \{x : X | f(x) \neq g(x)\}, \mu(D) = 0.$

Now let $B \subseteq \mathbb{R}$ be a Borel set, we need to show that $\{x \in X | g(x) \in B\} \in \mathcal{M}$.

Write $\{x \in X | g(x) \in B\} = (\{x \in X | g(x) \in B\} \cap D) \sqcup (\{x \in X | g(x) \in B\} \setminus D).$

Since μ is complete, we have that $\{x \in X | g(x) \in B\} \cap D \in \mathcal{M}$ and has measure zero. Since f is measurable, we have that $f^{-1}(B) = \{x \in X | f(x) \in B\} \supseteq \{x \in X | f(x) = g(x) \in B\} = \{x \in X | g(x) \in B\} \setminus D$ is measurable. Since μ is complete, we have that $\{x \in X | g(x) \in B\} \setminus D$ is measurable.

Thus $\{x \in X | g(x) \in B\} \in \mathcal{M}$ is measurable.

For the second part, consider $g = \limsup_{n \to \infty} f_n$.

Construction of Measure 4

Caratheodoy Theorem

Definition 4.1. Let X be a non-empty set, an **outer measure** on X is a function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ such that

- 1. $\mu^*(\emptyset) = 0$
- 2. Monotone: $A \subseteq B \implies \mu^*(A) \le \mu^*(B)$
- 3. Countable subadditive: For any $(A_n)_{n=1}^{\infty} \subseteq \mathcal{P}(X)$, we have that $\mu^*(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu^*(A_n)$

Proposition 4.1. Let $C \subseteq \mathcal{P}(x)$ with $\emptyset, X \in C$. Let $\tilde{\mu}: C \to [0, \infty]$ be a function such that $\tilde{\mu}(\emptyset) = 0$. Define $\mu^*: X \to [0, \infty]$ by $\mu^*(A) := \inf \{ \sum_{i=1}^{\infty} \tilde{\mu}(C_i) : C_i \in C, A \subseteq \bigcup_{i=1}^{\infty} C_i \}$. Then μ^* is an outer measure.

In addition, $A \subseteq B \subseteq \bigcup_{i=1}^{\infty} C_i$ for any cover for B, and thus $A \subseteq B \Longrightarrow \mu^*(A) \le \mu^*(B)$. Given any $(A_n)_{n=1}^{\infty} \subseteq \mathcal{P}(X)$. If $\sum_{n=1}^{\infty} \mu^*(A_n) = \infty$, then $\mu^*(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu^*(A_n)$ trivially. Now assume that $\sum_{n=1}^{\infty} \mu^*(A_n) < \infty$. Consider any $\epsilon > 0$

For each $n \geq 0$, choose $(C_{n,i})_{i=1}^{\infty} \subset \mathcal{C}$, such that $A_n \subseteq \bigcup_{i=1}^{\infty} C_{n,i}$ and $\mu^*(A_n) \leq \sum_{i=1}^{\infty} \tilde{\mu}(C_{n,i}) < \mu^*(A_n) + \frac{\epsilon}{2^n}$. Thus $\bigcup_{n=1}^{\infty} A_n \subseteq \bigcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} C_{n,i}$, so by construction of the outer measure,

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \tilde{\mu}(C_{n,i})$$

$$\le \sum_{n=1}^{\infty} \left(\mu^*(A_n) + \frac{\epsilon}{2^n} \right)$$

$$\le \sum_{n=1}^{\infty} \mu^*(A_n) + \epsilon.$$

Taking $\epsilon \to 0$, we have $\mu^*(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu^*(A_n)$

Remark. Notice that if $X = \mathbb{R}$, and we take $\mathcal{C} := \{(a,b] : a < b \in \mathbb{R}\}$ to be the collection of finite half open intervals, and $\mu((a,b])$ to be the length of the interval b-a, then the outer measure is the Lebesgue outer measure.

Definition 4.2. For an outer measure μ^* , we say $A \subseteq X$ is μ^* -measurable, or satisfies the Caratheodoy condition if

$$\forall E \subseteq X, \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Lemma 4.2. Let μ^* be an outer measure on X, and M be the μ^* -measurable subsets of X, then M is an algebra, and $\mu := \mu^*|_{\mathcal{M}}$ has finite additivity.

Proof. To check $A \in \mathcal{M}$, it suffices to check for $\mu^*(E) \ge \mu^*(A \cap E) + \mu^*(E \cap A^c)$, since $\mu^*(E) \le \mu^*(A \cap E) + \mu^*(E \cap A^c)$ holds by subadditivity of μ^* .

When $\mu^*(E) = \infty$, this holds trivially, and thus it suffices to only check for $\mu^*(E) < \infty$.

- Clearly $\emptyset \in \mathcal{M}$.
- $A \in \mathcal{M} \implies A^c \in \mathcal{M}$ since the condition is symmetric.
- Now consider $A, B \in \mathcal{M}$. For any $E \subseteq X$, we have

$$\begin{split} \mu^*(E) &= \mu^*(E \cap A) + \mu^*(E \cap A^c) \\ &= \mu^*(E \cap A) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c) \\ &\geq \mu^*((E \cap A) \cup (E \cap A^c \cap B)) + \mu^*(E \cap A^c \cap B^c) \\ &= \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^c). \end{split}$$

Thus $A \cup B \in \mathcal{M}$.

Thus \mathcal{M} is an algebra.

To show finite additivity: Let $(A_i)_{i=1}^n$ be disjoint in \mathcal{M} , we will use induction on n.

Clearly it is true for n = 1.

Now suppose it holds for n, let $B = \bigsqcup_{i=1}^n A_i$. Since \mathcal{M} is an algebra, we have $B \in \mathcal{M}$. For any $E \subseteq X$,

$$\mu^{*}(E) = \mu^{*}(E \cap B) + \mu^{*}(E \cap B^{c})$$

$$= \mu^{*}\left(\bigsqcup_{i=1}^{n}(E \cap A_{i})\right) + \mu^{*}(E \cap B^{c})$$

$$= \sum_{i=1}^{n}\mu^{*}(E \cap A_{i}) + \mu^{*}(E \cap B^{c}).$$

Taking $E = \bigsqcup_{i=1}^{n+1} A_i$, we have

$$\mu^* \left(\bigsqcup_{i=1}^{n+1} A_i \right) = \sum_{i=1}^n \mu^* \left(\left(\bigsqcup_{i=1}^{n+1} A_i \right) \cap A_i \right) + \mu^* \left(\bigsqcup_{i=1}^{n+1} A_i \cap B^c \right)$$
$$= \sum_{i=1}^n \mu^* (A_i) + \mu^* (A_{n+1})$$
$$= \sum_{i=1}^{n+1} \mu^* (A_i).$$

By induction, we have finite additivity for any $n \geq 1$.

Theorem 4.3. (Caratheodoy) Let μ^* be an outer measure on X, and \mathcal{M} be the μ^* -measurable subsets of X, then \mathcal{M} is a σ -algebra, and $\mu := \mu^*|_{\mathcal{M}}$ is a complete measure.

Proof. Consider any $\{A_i\} \subset \mathcal{M}, B := \bigcup_{i=1}^{\infty} A_i$. By taking $\tilde{A}_n := A_n \setminus \left(\bigcup_{i=1}^{n-1} A_i\right)$ we can WLOG assume A_n are pair-wise disjoint, and $B = \bigsqcup_{i=1}^{\infty} A_i$. For any $E \in X$, we have $\forall n \geq 1, \bigsqcup_{i=1}^{n} A_i \in \mathcal{M}$, and thus

$$\mu^*(E) = \mu^* \left(E \cap \left(\bigsqcup_{i=1}^n A_i \right) \right) + \mu^* \left(E \cap \left(\bigsqcup_{i=1}^n A_i \right)^c \right)$$

$$= \mu^* \left(\bigsqcup_{i=1}^n (E \cap A_i) \right) + \mu^* \left(E \cap \left(\bigsqcup_{i=1}^n A_i \right)^c \right)$$

$$= \sum_{i=1}^n \mu^* (E \cap A_i) + \mu^* \left(E \cap \left(\bigsqcup_{i=1}^n A_i \right)^c \right)$$

$$\geq \sum_{i=1}^n \mu^* (E \cap A_i) + \mu^* \left(E \cap \left(\bigsqcup_{i=1}^\infty A_i \right)^c \right)$$

$$= \sum_{i=1}^n \mu^* (E \cap A_i) + \mu^* (E \cap B^c).$$

Taking $n \to \infty$, we have

$$\mu^*(E) \ge \sum_{i=1}^{\infty} \mu^*(E \cap A_i) + \mu^*(E \cap B^c)$$

$$\ge \mu^* \left(\bigsqcup_{i=1}^{\infty} (E \cap A_i) \right) + \mu^*(E \cap B^c)$$

$$\ge \mu^* \left(E \cap \bigsqcup_{i=1}^{\infty} A_i \right) + \mu^*(E \cap B^c)$$

$$= \mu^*(E \cap B) + \mu^*(E \cap B^c)$$

$$\ge \mu^*((E \cap B) \cup (E \cap B^c))$$

$$= \mu^*(E).$$

Thus $B \in \mathcal{M}$, and thus \mathcal{M} is a σ -algebra. In addition, taking E = B, we have

$$\mu^*(B) = \sum_{i=1}^{\infty} \mu^*(B \cap A_i) + \mu^*(B \cap B^c) = \sum_{i=1}^{\infty} \mu^*(A_i) + \mu^*(\emptyset) = \sum_{i=1}^{\infty} \mu^*(A_i),$$

which shows countable additivity, and thus $\mu^*|_{\mathcal{M}}$ is a measure.

To show completeness, suppose $A \subseteq X$ such that $\mu^*(A) = 0$, then for any $E \subseteq X$, we have

$$\mu^*(E) \le \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

 $\le \mu^*(A) + \mu^*(E)$
 $= \mu^*(E).$

Thus we have $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$, and thus $A \in \mathcal{M}$.

4.2 Premeasures

Definition 4.3. Recall an algebra of subsets of a set X is a family of subsets that is closed under complements, finite unions, and finite intersections, and contains the empty set.

Definition 4.4. A premeasure on an algebra of sets $\mathcal{A} \subseteq \mathcal{P}(X)$ is a function $\tilde{\mu}: \mathcal{A} \to [0, \infty]$, such that $\tilde{\mu}$ is countably additive. Namely, if $(A_i)_{i=1}^{\infty} \subseteq \mathcal{A}$ are disjoint, and $\bigsqcup_{i=1}^{\infty} A_i \subseteq \mathcal{A}$, then we have

$$\tilde{\mu}\left(\bigsqcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \tilde{\mu}(A_i).$$

Remark. If \mathcal{A} is a σ -algebra, a premeasure on \mathcal{A} is always a measure.

Theorem 4.4. Let \mathcal{A} be an algebra of subsets of X, and $\tilde{\mu}: \mathcal{A} \to [0, \infty]$ be a premeasure. Apply Caratheodoy to the outer measure μ^* gives a complete measure space (X, \mathcal{M}, μ) , such that $A \subseteq \mathcal{M}$, and $\mu|_{\mathcal{A}} = \tilde{\mu}$.

Proof. Choose any $A \in \mathcal{A}$ and $(A_i)_{i=1}^{\infty} \subseteq \mathcal{A}$, such that $A \subseteq \bigcup_{i=1}^{\infty} A_i$.

Let $B_i = (A \cap A_i) \setminus \bigcup_{j=1}^{i-1} A_j$.

Notice that $B_i \in \mathcal{A}$, and are pairwise disjoint, and $A = \bigsqcup_{i=1}^{\infty} B_i$, Since $\tilde{\mu}$ is a premeasure, $\tilde{\mu}(A) = \sum_{i=1}^{\infty} \tilde{\mu}(B_i) \leq \sum_{i=1}^{\infty} \tilde{\mu}(A_i)$. Now $\mu^*(A) := \inf \{ \sum_{i=1}^{\infty} \tilde{\mu}(A_i) : A_i \in \mathcal{A}, A \subseteq \bigcup_{i=1}^{\infty} A_i \} \leq \tilde{\mu}(A)$. Since above holds for any $\bigcup_{i=1}^{\infty} A_i \supseteq A$, we can see that $\mu^*(A) \ge \tilde{\mu}(A)$, which forces $\mu^*(A) = \tilde{\mu}(A)$.

Now it remains to show $A \in \mathcal{M}$, which is the same as A is μ^* -measurable.

Choose $E \subseteq X$ with $\mu^*(E) < \infty$ and $\epsilon > 0$.

There are $(E_i)_{i=1}^{\infty} \subseteq A$, such that $E \subseteq \bigcup_{i=1}^{\infty} E_i$, and $\sum_{i=1}^{\infty} \tilde{\mu}(E_i) < \mu^*(E) + \epsilon$. Then $E \cap A \subseteq \bigcup_{i=1}^{\infty} E_i \cap A$, and $E \cap A^c \subseteq \bigcup_{i=1}^{\infty} E_i \cap A^c$. Thus

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) \le \sum_{i=1}^{\infty} \mu^*(E_i \cap A) + \sum_{i=1}^{\infty} \mu^*(E_i \cap A^c)$$
$$= \sum_{i=1}^{\infty} \tilde{\mu}(E_i \cap A) + \sum_{i=1}^{\infty} \tilde{\mu}(E_i \cap A^c)$$
$$= \sum_{i=1}^{\infty} \tilde{\mu}(E_i)$$
$$\le \mu^*(E) + \epsilon$$

Now take $\epsilon \to 0$, we have that $\mu^*(E \cap A) + \mu^*(E \cap A^c) \le \mu^*(E)$.

However, by subadditivity of μ^* , we have that $\mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap A^c)$, and thus $\mu^*(E) =$ $\mu^*(E \cap A) + \mu^*(E \cap A^c)$

We have shown that $\tilde{\mu} = \mu^*|_A$, but we also know that $\mu = \mu^*|_{\mathcal{M}}$, and $\mathcal{A} \subseteq \mathcal{M}$, so $\mu|_{\mathcal{A}} = \tilde{\mu}$.

Definition 4.5. A premeasure $\tilde{\mu}: \mathcal{A} \to [0, \infty]$ on an algebra \mathcal{A} for X is σ -finite if there are $(A_i)_{i=1}^{\infty} \subseteq \mathcal{A}$, such that $\tilde{\mu}(A_i) < \infty$ and $\bigcup_{i=1}^{\infty} A_i = X$.

Proposition 4.5. Let \mathcal{A} be an algebra of sets on X. Let $\tilde{\mu}: \mathcal{A} \to [0, \infty]$ be a premeasure, with the corresponding complete measure space (X, \mathcal{M}, μ) as in the above theorem. Suppose (X, \mathcal{N}, ν) is a measure space with $A \subseteq \mathcal{N} \subseteq \mathcal{M}$ and $\nu|_{A} = \tilde{\mu}$. Then if $\tilde{\mu}$ is σ -finite, we have that

$$\nu = \mu|_{\mathcal{N}}$$

so $\mu|_{\mathcal{N}}$ is the unique extension of $\tilde{\mu}$ to a measure on \mathcal{N} .

Lebesgue-Stieltjes Measures

Definition 4.6. Let μ be a Borel measure on \mathbb{R} , such that $\mu(\mathcal{K}) < \infty$ for any compact $\mathcal{K} \subseteq \mathbb{R}$. Define $F: \mathbb{R} \to \mathbb{R} \text{ by } F(x) = \begin{cases} \mu((0, x]) & \text{if } x \ge 0\\ -\mu((x, 0]) & \text{if } x < 0 \end{cases}$

Proposition 4.6. F is monotone non-decreasing. i.e. If $b \ge a$, then $F(b) - F(a) \ge 0$.

Proof. For 0 < a < b, we have that $\mu((a,b]) = \mu((0,b] \setminus (0,a]) = \mu((0,b]) - \mu((0,a]) = F(b) - F(a)$. For $0 \ge b > a$, we have that $\mu((a,b]) = \mu((a,0] \setminus (b,0]) = \mu((a,0]) - \mu((b,0]) = -F(a) - (-F(b)) = F(b) - F(a)$. Similarly, we can check for a < 0 < b.

Proposition 4.7. F is right continuous.

Proof. Fix $x \ge 0 \in \mathbb{R}$, and choose any sequence $(x_n) \subseteq \mathbb{R}$ such that $x_n \ge x_{n+1}$ and $x_n \to x$. Since μ is a measure and $\mu((0, x_1]) \le \mu([0, x_1]) < \infty$, we have

$$F(x) = \mu((0, x])$$

$$= \lim_{n \to \infty} \mu((0, x_n])$$

$$= \lim_{n \to \infty} F(x_n).$$

Similar proof for $x < 0 \in \mathbb{R}$.

Example 4.3.1. If $\mu = \delta_c, \delta_c(A) = \begin{cases} 0 & \text{if } c \in A \\ 1 & \text{if } c \notin A \end{cases}$, then F is the (translated) Heaviside function.

Example 4.3.2. If μ is the Lebesgue measure, then F is the identity function F(x) = x.

Now given a right-continuous increasing function F, we want to construct a measure.

Proposition 4.8. Let A be the collection of sets consisting of all the finite disjoint unions of half-open intervals $(a, b], -\infty \leq a \leq b \leq \infty$. Then A is an algebra of sets.

Proof. Firstly notice that for any interval $(a,b] \in \mathcal{A}$, we have that $(a,b]^c = [-\infty,a] \cup (b,\infty] \in \mathcal{A}$. Also, any finite union of such disjoint unions can be written as a disjoint union. $(a,b] \cup (c,d] = (a,c] \cup (c,b] \cup (b,d]$ for c < b. We can show any finite union by induction.

Definition 4.7. Let \mathcal{A} be the algebra of sets consisting of all the finite disjoint unions of half-open intervals $(a,b], -\infty \leq a \leq b \leq \infty$. Let $F: \mathbb{R} \to \mathbb{R}$ be a right-continuous monotone non-decreasing function, we can extend F to $[-\infty,\infty]$ by $F(\pm\infty) := \lim_{x\to\pm\infty} F(x)$, which exists by MCT. Now define $\tilde{\mu}_F: \mathcal{A} \to [0,\infty]$ to be

$$\tilde{\mu}_F \left(\bigsqcup_{i=1}^n (a_i, b_i] \right) := \sum_{i=1}^n F(b_i) - F(a_i)$$

Lemma 4.9. $\tilde{\mu}_F$ is a pre-measure

Proof. We firstly show that $\tilde{\mu}_F$ is well defined.

Consider $I_i = (a_i, b_i]$ and $I = (a, b] = \bigsqcup_{1}^{n} I_i$

By reordering, we can WLOG assume that $a = a_1 < b_1 = a_2 < b_2 = \cdots < b_{n-1} = a_n < b_n = b$. Let $a_{n+1} := b_n = b$, we have that

$$\tilde{\mu}_F \left(\bigsqcup_{i=1}^n (a_i, b_i) \right) = \sum_{i=1}^n F(b_i) - F(a_i)$$

$$= \sum_{i=1}^\infty F(a_{i+1}) - F(a_i)$$

$$= F(a_{n+1}) - F(a_1)$$

$$= F(b) - F(a)$$

$$= \tilde{\mu}_F(I).$$

Thus $\tilde{\mu}_F(I)$ does not depend on the decomposition of I. This extends to finite disjoint unions of half-open intervals. Hence $\tilde{\mu}_F$ is well-defined.

Monotone follows from the fact that F is increasing.

Consider pair-wise disjoint $(A_i)_{i=1}^{\infty} \in \mathcal{A}$, and $\bigsqcup_{i=1}^{\infty} A_i \in \mathcal{A}$, we want to show $\tilde{\mu}_F(\bigsqcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \tilde{\mu}_F(A_i)$.

We first assume that each $A_i = (a_i, b_i]$ and $\bigsqcup_{1}^{\infty} A_i = (a, b]$ Notice that $\forall n \in \mathbb{N}$, we have that $\bigsqcup_{i=1}^{n} (a_i, b_i] \in \mathcal{A}$, and thus $(a, b] \setminus \bigsqcup_{i=1}^{n} (a_i, b_i] \in \mathcal{A}$.

$$\tilde{\mu}_{F}((a,b]) = \tilde{\mu}_{F}(\bigsqcup_{i=1}^{n} (a_{i},b_{i}]) + \tilde{\mu}_{F}((a,b] \setminus \bigsqcup_{i=1}^{n} (a_{i},b_{i}])$$

$$= \sum_{i=1}^{n} \tilde{\mu}_{F}((a_{i},b_{i}]) + \tilde{\mu}_{F}((a,b] \setminus \bigsqcup_{i=1}^{n} (a_{i},b_{i}])$$

$$\geq \sum_{i=1}^{n} \tilde{\mu}_{F}((a_{i},b_{i}])$$

Thus $\tilde{\mu}_F((a,b]) \ge \sum_{1}^{\infty} \tilde{\mu}_F((a_i,b_i])$.

For the other direction, fix $\epsilon > 0$, by right continuity, $\exists \delta > 0$, such that $F(a + \delta) < F(a) + \epsilon, a + \delta < b$. Now suppose $b \neq \infty$, then $\exists \delta_i > 0, F(b_i + \delta_i) < F(b_i) + 2^{-i} \epsilon$.

Thus $[a_i + \delta, b_i] \subseteq (a_i, b_i + \delta_i)$, and thus $\{(a_i, b_i + \delta_i)\}$ is an open cover for $[a + \delta, b] = \bigcup_{i=1}^{\infty} [a_i + \delta, b_i]$. Since the closed interval is compact, there is a finite sub-cover $\{(a_{i_j}, b_{i_j} + \delta_{i_j})\}_{j=1}^n$. Then

$$\sum_{j=1}^{n} (F(b_{i_j} + \delta_{i_j}) - F(a_{i_j})) = \sum_{j=1}^{n} \tilde{\mu}_F((a_{i_j}, b_{i_j} + \delta_{i_j}))$$

$$\geq \tilde{\mu}_F((a + \delta, b])$$

$$\geq F(b) - F(a + \delta)$$

since $\tilde{\mu}_F$ is monotone. Hence

$$\sum_{i=1}^{\infty} \tilde{\mu}_{F}((a_{i}, b_{i}]) = \sum_{i=1}^{\infty} (F(b_{i}) - F(a_{i}))$$

$$\geq \sum_{j=1}^{n} (F(b_{i_{j}}) - F(a_{i_{j}}))$$

$$\geq \sum_{j=1}^{n} (F(b_{i_{j}} + \delta_{i_{j}}) - 2^{-i_{j}} \epsilon - F(a_{i_{j}}))$$

$$\geq F(b) - F(a + \delta) - \epsilon$$

$$\geq F(b) - F(a) - 2\epsilon$$

$$= \tilde{\mu}_{F}((a, b]) - 2\epsilon.$$

Take $\epsilon \to 0$, we have $\sum_{i=1}^{\infty} \tilde{\mu}_F((a_i, b_i]) \ge \tilde{\mu}_F((a, b])$ When $b = \infty$, we have that $\forall N \ge a, \sum_{i=1}^{\infty} \tilde{\mu}_F((a_i, b_i]) \ge \tilde{\mu}_F((a, N]) = F(N) - F(a)$.

Hence $\sum_{i=1}^{\infty} \tilde{\mu}_F((a_i,b_i]) \geq F(b) - F(a) = \lim_{N \to b} F(N) - F(a)$ Thus we have shown that $\sum_{i=1}^{\infty} \tilde{\mu}_F((a_i,b_i]) = \tilde{\mu}_F((a,b))$

If $A = \bigsqcup_{i=1}^{m} (c_i, d_i]$, we can use finite additivity and the previous case.

Theorem 4.10. If $F: \mathbb{R} \to \mathbb{R}$ is monotone non-decreasing and right-continuous, then there is a complete measure space $(\mathbb{R}, \mathcal{M}, \mu_F)$, which extends $\tilde{\mu}_F$ as $\mu_F|_{\mathcal{A}} = \tilde{\mu}_F$, the σ -algebra \mathcal{M} contains $Bor(\mathbb{R})$ and $\mu_F|_{Bor(\mathbb{R})}$ is the unique extension of $\tilde{\mu}_F$, i.e. $\mu_F((a,b]) = F(b) - F(a)$.

Conversely, given a Borel measure μ on \mathbb{R} , such that $\forall K$ compact, $\mu(K) < \infty$, there is a (up to constant) unique non-decreasing right-continuous F with $\mu = \mu_F|_{B_{\mathbb{R}}}$.

Proof. By the previous lemma, $\tilde{\mu}_F$ is a premeasure, so applying Caratheodory gives a complete measure space $(\mathbb{R}, \mathcal{M}, \mu_F)$. We have seen that the σ -algebra generated by \mathcal{A} is $Bor(\mathbb{R})$, so $Bor(\mathbb{R}) \subseteq \mathcal{M}$. The uniqueness follows from the fact that $\mathbb{R} = \bigcup_{n \in \mathbb{Z}} (n, n+2], \tilde{\mu}_F((n, n+2]) = F(n+2) - F(n) < \infty$ and thus $\tilde{\mu}_F$ is σ -finite.

Conversely, let F be the function defined at the beginning fo this section. Then we know that $\mu = \mu_F|_{B_{\mathbb{P}}}$

since μ is σ -finite and agree with the premeasure $\tilde{\mu}_F$ on the algebra \mathcal{M} of all finite disjoint unions of half open interval.

If $G : \mathbb{R} \to \mathbb{R}$ is another monotone non-decreasing right-continuous function, then $\mu_F = \bar{\mu_G} \implies \tilde{\mu}_F((a, b]) = \mu_G((a, b]) \implies F(b) - F(a) = G(b) - G(a)$ for any a < b. Thus $\forall a \in \mathbb{R}, F(x) - G(x) = c := F(0) - G(0)$, which is a constant.

Example 4.3.3. The Lebesgue measure is got by taking F(x) = x.

Example 4.3.4. The Dirac measure

$$\delta_c(A) := \begin{cases} 1 & c \in A \\ 0 & c \notin A \end{cases}$$

is got by taking

$$F(x) = H_c(x) = \begin{cases} 1 & x \ge c \\ 0 & x < c \end{cases},$$

the Heaviside function.

Definition 4.8. A μ be a Borel measure on \mathbb{R} , such that $\mu(\mathcal{K}) < \infty$ for any compact $\mathcal{K} \subseteq \mathbb{R}$, is called a **Lebesgue-Stieltjes measure**. For any $F : \mathbb{R} \to \mathbb{R}$ that is monotone non-decreasing and right-continuous, and any Borel measure μ such that $\mu = \mu_F|_{\mathrm{Bol}_{\mathbb{R}}}$, we call μ the **Lebesgue-Stieltjes measure corresponding to** F.

Proposition 4.11. Let μ be a Lebesgue-Stieltjes measure corresponding to some $F: \mathbb{R} \to \mathbb{R}$, then $\forall a \in \mathbb{R}$,

$$\mu(\{a\}) = \mu\left(\bigcap_{n=1}^{\infty} (a - \frac{1}{n}, a]\right) = \lim_{n \to \infty} \mu((a - \frac{1}{n}), a]) = F(a) - \lim_{n \to \infty} F(a - \frac{1}{n}) = F(a) - F(a^{-}).$$

Thus $\mu(\{a\}) > 0$ if and only if F has a jump discontinuity at a, since every discontinuity of a monotone non-decreasing function is a jump discontinuity.

Corollary 4.12. If F(x) = x is the identity function, every countable set has measure 0, by subadditivity and that $\forall a \in \mathbb{R}, \mu(\{a\}) = 0$

Proposition 4.13. A monotone non-decreasing function F can have at most countably many discontinuities.

Proof. Choose countably many disjoint points $\{c_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$. Define a measure $\mu:=\sum_{n\geq 1}\frac{1}{2^n}\delta_{c_n}$. This is a Borel measure with $\mu(\mathcal{K})<\infty$ for any compact $\mathcal{K}\subseteq\mathbb{R}$. Thus μ is a Lebesgue-Stieltjes measure. Note $\mu(\{c_n\})=\frac{1}{2^n}>0$, thus each c_n is a jump discontinuity for the corresponding F. Thus F has countably many discontinuities.

In fact, no such F can have uncountably many discontinuities.

Theorem 4.14. Lebesque measure $(\mathbb{R}, \mathcal{L}, \lambda)$ is translation-invariant, meaning

$$\forall A \in \mathcal{L}, s \in \mathbb{R}, \ \lambda(A+s) = \lambda(A).$$

Also,

$$\forall s > 0, A \in \mathcal{L}, \ \lambda(sA) = s\lambda(A).$$

Proof. If $A \subseteq \mathbb{R}$ is open, then so is A + s. Similarly for closed sets. Hence for $A \in B_{\mathbb{R}}$, $A + s \in B_{\mathbb{R}}$. Define a new measure λ_s on $B_{\mathbb{R}}$ by $\lambda_s(A) = \lambda(A + s)$. Note that λ and λ_s correspond to the functions

$$F(x) = \begin{cases} \lambda((0,x]) & \text{if } x \ge 0\\ -\lambda((x,0]) & \text{if } x < 0 \end{cases},$$

$$G(x) = \begin{cases} \lambda_s((0, x]) & \text{if } x \ge 0\\ -\lambda_s((x, 0]) & \text{if } x < 0 \end{cases}.$$

Yet $\lambda((0,x]) = \lambda((s,x+s]) = \lambda_s((0,x+s])$, and thus F = G. Thus $\lambda_s|_{B_{\mathbb{R}}} = \lambda|_{B_{\mathbb{R}}}$. By uniqueness for σ -finite Caratheodoy Theorem, we have that they extends to $\lambda = \lambda_s$.

Definition 4.9. A point $c \in \mathbb{R}$ with $\mu(\lbrace x \rbrace) \neq 0$ is called an **atom** of μ .

Corollary 4.15. Lebesgue-Stieltjes measures can have at most countably many atoms.

Definition 4.10. Let X be a topological space, then a \mathcal{G}_{δ} set is a countable intersection of open subsets of X, and a \mathcal{F}_{σ} set is a countable union of closed subsets.

Remark. \mathcal{G}_{δ} sets and \mathcal{F}_{σ} sets are Borel sets.

Theorem 4.16 (regularity). Let μ be a Lebesgue-Stieltjes measure with outer measure μ_F^* , and $E \subseteq \mathbb{R}$, the following are equal:

- (1) E is μ -measurable
- (2) $\forall \epsilon > 0$, there is some open $O \supseteq E, \mu_E^*(O \setminus E) < \epsilon$ (Outer regularity)
- (3) $\forall \epsilon > 0$, there is some closed $C \subseteq E, \mu_F^*(E \setminus C) < \epsilon$ (Inner regularity)
- (4) There is a \mathcal{G}_{δ} set $G \supseteq E, \mu_{E}^{*}(G \setminus E) = 0$
- (5) There is a \mathcal{F}_{σ} set $F \subseteq E, \mu_F^*(E \setminus F) = 0$

Proof. Notice that E is μ -measurable means that

$$\forall A \subseteq \mathbb{R}, \mu_F^*(A) = \mu_F^*(E \cup A) + \mu_F^*(E^c \cup A).$$

1. (1) implies (2): If E is μ -measurable,

$$\mu(E) = \mu_F^*(E)$$
$$= \inf_{B \supset E} \mu_F(B),$$

where $B = \bigcup_{i=1}^{\infty} (a_i, b_i] \supseteq E$.

Firstly, assume that E is bounded, we have $\mu_F^*(B) < \mu(E) + \frac{\epsilon}{2}$ for some $B = \bigsqcup_{i=1}^{\infty} (a_i, b_i] \supseteq E$.

Since F is right-continuous, we have that $\forall i, \exists c_i > b_i$, such that $F(c_i) < F(b_i) + \frac{\epsilon}{2^{i+1}}$.

Let
$$O := \bigcup_i (a_i, c_i) \supseteq B \supseteq E$$
.

Since E is measurable, we have that $\mu_F^*(B) = \mu_F^*(B \cap E) + \mu_F^*(B \setminus E) = \mu(E) + \mu_F^*(B \setminus E)$, thus $\mu_F^*(B \setminus E) < \frac{\epsilon}{2}$

$$\mu_F^*(O \setminus B) = \mu_F^*(\bigcup_i (a_i, c_i) \cap B^c)$$

$$\leq \sum_i \mu_F^*((a_i, c_i) \cap B^c)$$

$$\leq \sum_i \mu_F^*((b_i, c_i))$$

$$\leq \sum_i \mu_F^*((b_i, c_i])$$

$$= \sum_i F(c_i) - F(b_i)$$

$$< \sum_i \frac{\epsilon}{2^{i+1}}$$

$$= \frac{\epsilon}{2}.$$

$$\mu_F^*(O \setminus E) \leq \mu_F^*(O \cap E^c \cap B) + \mu_F^*(O \cap E^c \setminus B)$$

$$= \mu_F^*(B \setminus E) + \mu_F^*(O \setminus B)$$

$$< \epsilon.$$

This proves the bounded case.

If E is not bounded, we let $E_n = E \cap (n-1,n], n \in \mathbb{Z}$, each is bounded, and we can have open $O_n \supseteq E_n, \mu_F(O_n \setminus E_n) < \frac{\epsilon}{2^{2|n|+1}}$, and take $O = \bigcup_{n \in \mathbb{Z}} O_n \supseteq A$.

2. (2) implies (4):

For each $n \geq 1$, take open $O_n \supseteq E, \mu_F(O_n \setminus E) < \frac{1}{n}$, and WLOG, take $O_n = O_n \cap O_{n-1}$ so that $O_n \supseteq O_{n-1}$. Take $G := \bigcap_{n=1}^{\infty} O_n$, which is a \mathcal{G}_{δ} set.

We have that $\forall n \geq 1, \mu_F^*(G \setminus E) \leq \mu_F^*(U_n \setminus E) < \frac{1}{n}$.

Thus $\mu_E^*(G \setminus E) = 0$.

3. (4) implies (1):

 $G \setminus E$ is measurable since it is a null set, and μ is complete. G is also measurable, thus $E = G \setminus (G \setminus E)$

4. (1) implies (3):

E is μ -measurable, so is E^c .

By (2), there is some open $O \supseteq E^c$, such that $\mu_F^*(O \setminus E^c) < \epsilon$.

Notice that $C := O^c$ is closed, and $C \subseteq E$, and

$$\mu_F^*(E \setminus C) = \mu_F^*(E \cap C^c)$$

$$= \mu_F^*((E^c)^c \cap O)$$

$$= \mu_F^*(O \setminus E^c)$$

$$< \epsilon.$$

5. (3) implies (5)

For each $n \geq 1$, take closed $C_n \subseteq E$, $\mu_F(E \setminus C_n) < \frac{1}{n}$, and WLOG, take $C_n = C_n \cap C_{n-1}$ so that

Take $F := \bigcup_{n=1}^{\infty} C_n$, which is a \mathcal{F}_{σ} set.

We have that $\forall n \geq 1, \mu_F^*(E \setminus F) \leq \mu_F^*(E \setminus C_n) < \frac{1}{n}$.

Thus $\mu_F^*(E \setminus F) = 0$.

6. (5) implies (1)

 $E \setminus F$ is a measurable set. F is also a measurable set, and thus so is $E = (E \setminus F) \cup F$.

Corollary 4.17. Let μ be a Lebesque-Stieltjes measure, and A be μ -measurable, we have

$$\mu(A) = \inf \{ \mu(O) : O \supseteq E \text{ is open} \} = \sup \{ \mu(C) : C \subseteq A \text{ is compact} \}$$

Proof. The first equality is (2).

For second equality, if A is bounded, and $C \subseteq A$ is closed, then it is compact. We can use (3) to prove it. If A is not bounded, let $A_n := A \cap [-n, n]$ for each $N \ge 1$. Thus

$$\mu(A) = \sup_{n \ge 1} \mu(A_n) = \sup_{n \ge 1} \sup_{C \subseteq A_n} \sup_{\text{is compact}} \mu(C).$$

Littlewood's Three Principles

Recall Littlewood's Three Principles for Lebesgue Measure:

Theorem 4.18. Littlewood's first Principle (regularity)

Every measurable set is almost a finite union of intervals.

Theorem 4.19. Littlewood's second Principle (Lusin's) Every measurable function is almost continuous.

Theorem 4.20. Littlewood's third Principle (Egorov's)

A point-wise convergent sequence of measurable functions is almost uniformly convergent.

Theorem 4.21 (Egorov's). Let (X, \mathcal{M}, μ) be a finite measure space. Suppose $f_n : X \to \mathbb{C}$ is a sequence of measurable functions such that $f_n(x) \to f(x)$ μ -almost everywhere. Then $\forall \epsilon > 0, \exists A \in \mathcal{M}, \text{ such that } f_n(x) \to f(x)$ $\mu(X \setminus A) < \epsilon$, and $f_n \to f$ uniformly on A.

Proof. $f_n \to f$ uniformly on A means $\forall m \in \mathbb{N}^+, \exists N_m \geq 1$, such that

$$\forall x \in A, \forall n \ge N_m, |f_n(x) - f(x)| < \frac{1}{m}.$$

Let $A_{mN}:=\left\{x\in X:\forall n\geq N, |f_n(x)-f(x)|<\frac{1}{m}\right\}=\bigcap_{n\geq N}\left\{x\in X:|f_n(x)-f(x)|<\frac{1}{m}\right\}$, which is intersection of preimages of $\left(-\frac{2}{m},\frac{1}{m}\right)$ of measurable functions f_n-f , thus measurable. Note $A_{m1}\subseteq A_{m2}\subseteq\cdots$, and $\bigcup_{n\geq 1}A_{m,n}=X\setminus N$ for some $N\in\mathcal{M},\mu(N)=0$ since $f_n\to f$ μ -a.e..

$$\mu(X) = \mu(X \setminus N)$$

$$= \mu(\bigcup_{n \ge 1} A_{mn})$$

$$= \lim_{n \to \infty} \mu(A_{mn}).$$

Since $\mu(X) < \infty$, there is $N_m \ge 1$ such that $\mu(A_{m,N_m}) > \mu(X) - \frac{\epsilon}{2m}$ for any $\epsilon > 0$. Thus $\mu(X \setminus A_{m,N_m}) < \frac{\epsilon}{2^m}$.

Letting $E := \bigcap_{m \geq 1} A_{m,N_m}$, we have that

$$\mu(X \setminus E) = \mu(\bigcup_{m \ge 1} (X \setminus A_{m,N_m}))$$

$$\le \sum_{m \ge 1} \mu(X \setminus A_{m,N_m})$$

$$< \epsilon.$$

In addition,

$$\begin{split} E &= \bigcap_{m \geq 1} A_{m,N_m} \\ &= \left\{ x \in X : \forall m \geq 1, \forall n \geq N_m, |f_n(x) - f(x)| < \frac{1}{m} \right\}. \end{split}$$

Thus $f_n \to f$ uniformly on E.

Theorem 4.22 (Lusin's). Let $f:[a,b]\to\mathbb{C}$ be a Lebesgue-Stieltjes measurable function. For any $\epsilon>0$, there is a continuous function $q:[a,b]\to\mathbb{C}$ such that

$$\mu(\{x \in [a,b]: f(x) \neq g(x)\}) < \epsilon.$$

Proof. Consider a simple function $s := \sum_{i=1}^m \alpha_i \chi_{E_i}$, where $\alpha_i \in \mathbb{C}$, and E_i are disjoint and Lebesgue

Notice that by the regularity theorem, for any $\delta > 0$, there are closed sets $A_i \subseteq E_i$, such that $\mu(E_i \setminus A_i) < \frac{\delta}{m}$ for each *i*. Thus, $\mu(\bigsqcup_{i=1}^m E_i \setminus A_i) = \mu((\bigsqcup_{i=1}^m E_i) \setminus (\bigsqcup_{i=1}^m A_i)) = \mu([a,b] \setminus \mathcal{K}) < \delta$, for $\mathcal{K} := \bigsqcup_{i=1}^m A_i$. Notice that \mathcal{K} is closed (thus compact since [a,b] is bounded), and $s|_{\mathcal{K}}$ is continuous since s is locally constant.

Indeed, $\forall x \in \mathcal{K}$, there is unique A_i such that $x \in A_i$.

Suppose for contradiction that $\forall \delta_0 > 0$, there is some $y \in (x - \delta_0, x + \delta_0) \cap A_j$ for some $j \neq i$. Let $\mathcal{K}' := \bigsqcup_{j=1, j \neq i}^m A_j$, which is closed. Now we have a sequence $y_n \in (x - \frac{1}{n}, x + \frac{1}{n}) \cap \mathcal{K}'$. Notice that $y_n \to x$, and since \mathcal{K}' is closed, $x \in \mathcal{K}'$, which is a contradiction.

Thus $\exists \delta_0 > 0$, such that $(x - \delta_0, x + \delta_0) \cap \mathcal{K} \subseteq A_i$; namely, s in constant on $(x - \delta_0, x + \delta_0) \cap \mathcal{K}$. Thus, $\forall \epsilon_0 > 0, y \in \mathcal{K}$, such that $|y - x| < \delta_0, |s(x) - s(y)| = 0 < \epsilon_0$, which shows s is continuous around x.

Now given any measurable f, we can choose simple functions $s_n:[a,b]\to\mathbb{C}$ converging point-wise to f. For each n, construct \mathcal{K}_n as above such that $s_n|_{\mathcal{K}_n}$ is continuous and $\mu([a,b]\setminus\mathcal{K}_n)<\frac{\epsilon}{2^{n+1}}$.

Let $\mathcal{K}_0 = \bigcap_{n>1} \mathcal{K}_n$, which is compact. For all n, we have that $s_n|_{\mathcal{K}_n}$ is continuous.

In addition, $\mu([a,b] \setminus \mathcal{K}_0) \leq \sum_{n=1}^{\infty} \mu([a,b] \setminus \mathcal{K}_n) < \epsilon/2$.

By Egorov's Theorem, there is a measurable $E \subseteq \mathcal{K}_0$, such that $\mu(\mathcal{K}_0 \setminus E) < \epsilon/4$ and $s_n \to f$ uniformly on E.

Applying the regularity theorem again, there is a compact $\mathcal{K} \subseteq E$ such that $\mu(E \setminus \mathcal{K}) < \epsilon/4$. Notice that $s_n \to f$ uniformly on \mathcal{K} . Thus $f|_{\mathcal{K}}$ is continuous.

Also, $\mu([a,b] \setminus \mathcal{K}) \leq \mu([a,b] \setminus \mathcal{K}_0) + \mu(\mathcal{K}_0 \setminus E) + \mu(E \setminus \mathcal{K}) = \epsilon$.

By Tietze's Theorem, we can extend $f|_{\mathcal{K}}$ to some continuous $g:[a,b]\to\mathbb{C}$. We thus have

$$\mu(\{x \in [a,b] : f(x) \neq g(x)\}) \le \mu([a,b] \setminus \mathcal{K}) < \epsilon$$

•

5 Borel Measures on Topological Spaces

5.1 Topological Spaces

Definition 5.1. Let $X \neq \emptyset$ be a set. A **topology** on X is a collection $\mathcal{T} \subseteq \mathcal{P}(X) := 2^X = \text{power set of } X$ satisfying

- 1. $\emptyset, X \in \mathcal{T}$,
- 2. \mathcal{T} is closed under arbitrary union; namely, $\forall \{A_{\alpha}\}_{{\alpha}\in K}\subseteq \mathcal{T},\ \bigcup_{{\alpha}\in K}A_{\alpha}\in \mathcal{T},$ and
- 3. \mathcal{T} is closed under finite intersection; namely, $\forall \{A_i\}_{i=1}^n \subseteq \mathcal{T}, \bigcup_{i=1}^n A_i \in \mathcal{T}$.

Also, (X, \mathcal{T}) is a **topological space** if \mathcal{T} is a topology on X.

Definition 5.2. Let (X, \mathcal{T}) be a topological space, then we say $U \subseteq X$ is **open** if $U \in \mathcal{T}$. We say $E \subseteq X$ is **closed** if $E^c \in \mathcal{T}$ is open.

Definition 5.3. For $E \in X$, the closure of E is

$$\bar{E} = \bigcap_{F \supseteq E: F \text{ is closed}} F.$$

Definition 5.4. A set $K \subseteq X$ is **compact** if every open cover of K has a finite subcover. Namely,

$$\forall (U_{\alpha})_{\alpha \in A} \text{ be open}, K \subseteq \bigcup_{\alpha \in A} U_{\alpha} \implies \exists n \in \mathbb{N}, \ \alpha_1, \dots, \alpha_n, \text{ such that } K \subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

Definition 5.5. An (open) neighborhood of $x \in X$ is some

$$U_x \in \mathcal{T}$$
, such that $x \in U_x$.

Definition 5.6. X is **Hausdorff** if

$$\forall x \neq y \in X, \ \exists U_x, U_y \text{ open neighborhoods for } x, y, \text{ such that } U_x \cap U_y = \emptyset.$$

Example 5.1.1. Every metric space is Hausdorff.

Definition 5.7. X is locally compact if $\forall x \in X$, there is a neighborhood U_x such that $\overline{U_x}$ is compact.

Example 5.1.2. \mathbb{R}^n are locally compact by Heinz-Borel theorem.

Proposition 5.1. A Banach space $(X, ||\cdot||)$ is locally compact iff $\dim(X) < \infty$.

Theorem 5.2. Let (X, \mathcal{T}) be a topological space,

1. Suppose K is compact, then $\forall F \subseteq K$ that is closed, F is also compact.

2. If X is Hausdorff, for any compact $K \subseteq X, x \in X \setminus K$, \exists open neighborhood U of x, and open $W \supset K$, such that $W \cap U = \emptyset$.

Proof. 1. Let $(U_{\alpha})_{{\alpha}\in A}$ be an open cover for F.

Since F is closed, then F^c is open. Thus $\{F^c\} \cup \{U_\alpha\}_{\alpha \in A}$ is an open cover for K. Thus there are $U_{\alpha_1}, \ldots, U_{\alpha_n}$, such that $K \subseteq F^c \cup \bigcup_{i=1}^n U_{\alpha_i}$. Thus $F \subseteq \bigcup_{i=1}^n U_{\alpha_i}$ has a finite subcover.

2. Consider any $y \in K$, there is some open neighborhoods $U_y \ni x, W_y \ni y$, such that $U_y \cap W_y = \emptyset$. Since $K \subseteq \bigcup_{y \in K} W_y$ is compact, we have $K \subseteq \bigcup_{i=1}^n W_{y_i} =: W$ for some y_1, \ldots, y_n . Let $U = \bigcap_{i=1}^n U_{y_i}$, we have $x \in U, K \subseteq W, U \cap W = \emptyset$ as required.

Corollary 5.3. Let (X,\mathcal{T}) be a Hausdorff topological space, then any compact set K is closed. In addition, for any closed $F \subseteq X$, we have $F \cap K$ is compact.

Proof. Suppose for contradiction that K is not closed, then there is some $y \in \overline{K} \setminus K$. Thus we can find open neighborhood U of x, and open $W \supset K$, such that $W \cap U = \emptyset$. Now $K \subset \overline{K} \setminus U \subset \overline{K}$ is closed, which is a contradiction.

Since K is closed, so is $F \cap K \subseteq K$, and thus it is compact.

Lemma 5.4. Let (X,\mathcal{T}) be a Hausdorff topological space, and $(K_{\alpha})_{\alpha\in A}$ be a collections of compact sets such that

$$\bigcap_{\alpha \in A} K_{\alpha} = \emptyset.$$

We must have $\alpha_1, \ldots, \alpha_n \in A$, such that

$$\bigcap_{i=1}^{n} K_{\alpha_i} = \emptyset.$$

Proof. Fix $\alpha_1 \in A$, then $K_{\alpha_0} \subseteq \left(\bigcap_{\alpha \neq \alpha_1} K_{\alpha}\right)^c = \bigcup_{\alpha \neq \alpha_1} K_{\alpha}^c$ is compact and has an open cover. Thus there must be $\alpha_2, \ldots, \alpha_n \in A$, such that $K_{\alpha_1} \subseteq \bigcup_{i=2}^n K_{\alpha_i}^c = \left(\bigcap_{i=2}^n K_{\alpha_i}\right)^c$.

Thus $\bigcap_{i=1}^n K_{\alpha_i} = \emptyset$.

Theorem 5.5. Let X be a Locally Compact Hausdorff space, and let $K \subseteq U \subseteq X$ be such that K is compact, and U is open. Then there exists some open set V such that \bar{V} is compact, and

$$K \subseteq V \subseteq \bar{V} \subseteq U$$
.

Proof. Since X is a Locally Compact Hausdorff space, there are V_1, \ldots, V_n , each with \bar{V}_i be compact, such that $K \subseteq \bigcup_{i=1}^n V_i =: G$. Note that G is compact, and G is open.

If U = X, then $G \subseteq U$, and we are done.

Otherwise, let $C := X \setminus U$ be non-empty and closed.

Consider any $y \in C$, we know that $y \notin K$. Since X is Hausdorff, we can find open $W_y \supset K$, and $U_y \ni y$,

such that $W_y \cap U_y = \emptyset$. Then $W_y \subseteq U_y^c$, and thus $\bar{W}_y \subseteq U_y^c$, since U_y^c is closed. Yet $y \notin U_y^c$, thus $y \notin \bar{W}_y$. Now consider the family $\{C \cap \bar{W}_y \cap \bar{G}\}_{y \in C}$. Notice that each $C \cap \bar{W}_y \cap \bar{G}$ is compact, since C, \bar{W}_y are closed, and \bar{G} is compact.

Yet $\bigcap_{y \in C} (C \cap \bar{W}_y \cap \bar{G}) = \emptyset$.

Thus $\exists y_1, \ldots, y_n \in C$, such that $\bigcap_{i=1}^n \left(C \cap \bar{W}_y \cap \bar{G} \right) = \emptyset$. Now let $V := G \cap \bigcap_{i=1}^n W_{y_i}$.

Clearly V is open, and $K \subseteq V$.

In addition, $\vec{V} \subseteq \bar{G} \cap \bigcap_{i=1}^n W_{y_i}$, yet the intersection of righthand side and C is empty, thus contained in $C^c = U$.

5.2 Compactly Supported Functions

Definition 5.8. Let C(X) be the collection of functions $f: X \to \mathbb{C}$ that are continuous.

Proposition 5.6. C(X) is a \mathbb{C} vector space, and also an Algebra over \mathbb{C} . It also admits a partial order by $f \geq g \iff \forall x \in X, f(x) \geq g(x)$.

Definition 5.9. For $f \in C(X)$, the support of it is

$$\operatorname{Supp}(f) := \overline{f^{-1}(\mathbb{C} \setminus \{0\})} \subseteq X.$$

Definition 5.10. The set of compactly supported functions are

$$C_c(X) := \{ f \in C(X) : \operatorname{Supp}(f) \text{ is compact} \}.$$

Proposition 5.7. Suppose every compact set K is Borel-measurable, then $C_c(X)$ is a sub-algebra of C(X).

Proposition 5.8. Suppose every compact set K is Borel-measurable, let $\mu : Bol(X) \to [0, \infty]$ be a Borel measure on X, such that $\forall K$ be compact, $\mu(K) < \infty$, then

$$C_c(X) \subseteq L^1(\mu).$$

Proof. Given any $f \in C_c(X)$. Let K = Supp(f), then

$$\int_X |f| d\mu = \int_K |f| d\mu \leq \int_K ||f||_\infty d\mu = \mu(K) ||f||_\infty < \infty.$$

5.3 Partition of Unity

Definition 5.11. Let K be a compact set, and V be an open set of X. Let $f \in C_c(X)$. We say f < V if $0 \le f \le 1$, and $\operatorname{Supp}(f) \subseteq V$. We say K < f if $0 \le f \le 1$, and $f|_K = 1$. We say K < f < V if $K \subset V, K < f, f < V$.

Remark. f is a "bump" function that approximates χ_K when V shrinks towards K.

Lemma 5.9 (Urysohn's). Let X be a Locally Compact Hausdorff space, $K \subseteq V \subseteq X$ be such that K is compact, and V is open. Then there exists $f \in C_c(V)$, such that K < f < V.

Proof. we want to construct a family of open sets $\{V_r\}_{r\in\mathbb{Q}\cap[0,1]}$, such that \bar{V}_r is compact, and

$$K \subset V_1 \subset \bar{V_1} \subset V_s \subset \bar{V_s} \subset V_r \subset \bar{V_r} \subset \cdots \subset V_0 \subset \bar{V_0} \subset V$$

for r < s.

By 5.5, we can find $K \subset V_0 \subset \bar{V_0} \subset V$.

Pick an enumeration of $r \in \mathbb{Q} \cap (0,1]$, i.e. $(r_n)_{n=1}^{\infty}$. WLOG, we can let $r_1 = 1$.

By 5.5, we can find $K \subset V_1 \subset \bar{V_1} \subset V_0$.

Suppose we have constructed the V_{r_i} for $1 \leq i \leq n$, such that \bar{V}_r is compact, and

$$K \subset V_1 \subset \bar{V_1} \subset V_s \subset \bar{V_s} \subset V_r \subset \bar{V_r} \subset \cdots \subset V_0 \subset \bar{V_0} \subset V$$

for $r < s \in \{r_i\}_{i=1}^n$.

Let $s = \max r_i : r_i < r_{n+1}, i \le n, s = \min r_i : r_i > r_{n+1}, i \le n.$

Now by 5.5, we can find $\bar{V}_t \subset V_{n+1} \subset \bar{V}_{n+1} \subset V_s$.

For any $r < r_{n+1}$, we have $r \le s$, and thus $V_{n+1} \subset V_{n+1} \subset V_s \subset \bar{V}_s \subseteq V_r$ by induction hypothesis, and similarly for any $r > r_{n+1}$.

Inductively, we can prove there is such a family.

Define $f_r := r\chi_{V_r}$, and $g_r := r\chi_{\bar{V_r}^c} + \chi_{\bar{V_r}}$, and $f := \sup_r f_r$, $g := \inf_r g_r$.

We can show that f, g are upper and lower continuous, respectively.

In addition, f, g are both 0 outside of V_1 , and 1 on K.

Suppose there is some $x \in X, r, s \in \mathbb{Q} \cap [0,1]$, such that $f_r(x) > g_s(x)$. Then we must have $f_r(x) > 0$, and thus $x \in V_r$ and $1 \le r = f_r(x)$.

Thus $1 > g_s(x)$, and thus $x \in V_s^c$ and $f_s = s$.

Since r > s, we must have $V_r \subset \bar{V}_r \subset V_s \subset \bar{V}_s$, which is a contradiction to $x \in V_r, x \notin \bar{V}_s$.

Thus for any $x \in X$, $r, s \in \mathbb{Q} \cap [0, 1]$, we must have $f_r(x) \leq g_s(x)$.

Thus we must have $f(x) \leq g(x)$ for any $x \in V$.

Now suppose there is some $x \in X$, such that f(x) < g(x).

There must be some rationals, such that f(x) < r < s < g(x), since \mathbb{Q} is dense.

Thus $\sup_r f_r(x) < r$, and thus $x \notin V_r$.

Also, $\inf_s g_s(x) > s$, and thus $x \in \bar{V}_s$.

Yet r < s, we must have $V_s \subset \bar{V_s} \subset V_r \subset \bar{V_r}$, which is a contradiction.

Thus we must have f = g, and it forces f to be continuous.

Definition 5.12. Let X be a Locally Compact Hausdorff space, $K \subseteq X$ be compact, and some finite open cover $\bigcup_{i=1}^n V_i \supseteq K$.

A collection $(h_i)_{i=1}^n \subset C_c(X)$ is called a **partition of unity** on K subordinate to $(V_i)_{i=1}^n$ if

$$\begin{cases} \forall 1 \le i \le n, & h_i < V_i, \\ \forall x \in K, & \sum_{i=1}^n h(x) = 1. \end{cases}$$

Theorem 5.10. Let X be a Locally Compact Hausdorff space, $K \subseteq X$ be compact, and some finite open cover $\bigcup_{i=1}^n V_i \supseteq K$, there always exists a partition of unity on K subordinated to $(V_i)_{i=1}^n$.

Proof. Since K is compact, we can find some open cover W_1, \ldots, W_m , such that for all j, we have $W_j \subset$ $W_j \subset V_{i(j)}$ for some $1 \leq i(j) \leq n$.

Let $K_i := \bigcup_{1 \leq j \leq m \text{ such that } W_j \subset V_i} \bar{W}_j \subset V_i$, which is compact. By Urysohn's lemma, we can find $K_i < g_i < V_i$.

Now let $h_1 := g_1$, and in general, $h_i := g_i \prod_{i < i} (1 - g_i)$.

It is easy to check that $0 \le h_i \le 1$, and $h_i \in C_c(X)$.

In addition, $\operatorname{Supp}(h_i) \subseteq \operatorname{Supp}(g_i) \subset V_i$.

Thus $h_i < V_i$. Lastly, we can check

$$h_1 + h_2 = g_1 + (1 - g_1)g_2$$

= 1 - (1 - g_1) + (1 - g_1)g_2
= 1 - (1 - g_1)(1 - g_2).

Inductively, we have $\sum_{i=1}^{n} h_i = 1 - \prod_{i=1}^{n} (1 - g_n)$. For any $x \in K$, there must be some $i \in [n]$ such that $x \in K_i$, and thus $g_i(x) = 1$, and thus

$$\sum_{i=1}^{n} h_i(x) = 1 - \prod_{i=1}^{n} (1 - g_n(x)) = 1 - 0 = 1.$$

Linear Functional

Definition 5.13. Let X be a compact Hausdorff space.

A linear functional on C(X) is a linear map $\Lambda: C(X) \to \mathbb{C}$.

A linear functional Λ is **positive** if $\Lambda(f) \geq 0$ for all $f \in C(X)$ such that $f \geq 0$.

Proposition 5.11. Let X be a compact Hausdorff space, then for a Borel measure μ on X,

- 1. If μ is finite, $\Lambda_{\mu}(f) := \int_{X} f d\mu$ is a positive linear functional.
- 2. If μ is finite, Λ_{μ} is bounded and hence continuous. Indeed, $\forall f \in C(X), |\Lambda_{\mu}(f)| \leq \mu(X)||f||_{\infty}$.

3. Λ_{μ} is a finite-value linear functional iff $\mu(X) < \infty$.

Proof. 1. By properties fo integral and 5.8.

2. For $f \in C(X)$.

$$\begin{split} |\Lambda_{\mu}(f)| &= \left| \int_{X} f d\mu \right| \\ &\leq \int_{X} |f| d\mu \\ &\leq \int_{X} ||f||_{\infty} d\mu \\ &= \mu(X) ||f||_{\infty}. \end{split}$$

5.5 Radon Meaure

Definition 5.14. Let X be a topological space, $\mu : \operatorname{Bol}(X) \to [0, \infty]$ be a Borel measure on X. For $A \in \operatorname{Bol}(X)$, μ is **outer regular** if $\mu(A) = \inf \{\mu(U) : \operatorname{open} U \supseteq A\}$. μ is **inner regular** if $\mu(A) = \sup \{\mu(K) : \operatorname{compact} K \subseteq A\}$. μ is **regular** is it is inner and outer regular for any $A \in \operatorname{Bol}(X)$.

Definition 5.15. Let X be a topological space, $\mu : \operatorname{Bol}(X) \to [0, \infty]$ be a Borel measure on X. μ is a **Radon** measure if

- 1. \forall compact $K \subseteq X$, $\mu(K) < \infty$,
- 2. μ is outer regular on Borel sets,
- 3. μ is inner regular on open sets.

Remark. We have seen that Lebesgue-Stieltjes Measures are regular and Radon.

Proposition 5.12. A finite Borel measure on a compact metric space is always regular (hence Radon).

Proof. Let μ be a finite Borel measure on a compact metric space X. Let $S \subseteq Bol(X)$ on which μ is regular. If $C \subseteq X$ is closed, it is compact. Thus μ is inner regular for C. Since X is a metric space, $C = \bigcap_{n \ge 1} \left\{ x \in X : d(x,C) < \frac{1}{n} \right\}$ is G_{δ} . By continuity from above of μ , it follows that μ is also outer-regular. Thus all the closed sets belong to S.

Since Borel sets are generated by closed sets, it suffices to show S is a σ -algebra.

For $A \in S$, $\epsilon > 0$, there is compact K and open U such that $K \subseteq A \subseteq U$, $\mu(U \setminus K) < \epsilon$. Then $U^c \subseteq A^c \subseteq K^c$, where U^c is compact, K^c is open. In addition,

$$\mu(K^c \setminus U^c) = \mu(K^c \cap U) = \mu(U \setminus K) < \epsilon.$$

Thus $A^c \in S$.

Consider $(A_i)_{i=1}^{\infty} \subseteq S$, $\epsilon > 0$. Choose compact $K_i \subseteq A_i$ and open $U_i \supseteq A_i$, such that $\mu(U_i \setminus K_i) < \epsilon/2^i$. Let $A = \bigcup_{i=1}^{\infty} A_i, C_n = \bigcup_{i=1}^n K_i, C = \bigcup_{i=1}^{\infty} K_i, U = \bigcup_{i=1}^{\infty} U_i$.

Thus C_n are closed, U is open, and $C_n \subseteq A \subseteq U$. By continuity and finiteness of μ , we have

$$\lim_{n \to \infty} \mu(U \setminus C_n) = \mu(U \setminus C)$$

$$\leq \sum_{i=1}^{\infty} \mu(U_i \setminus K_i)$$

$$\leq \epsilon.$$

Thus μ is regular on A, and thus $A \in S$, and thus S is closed under countable unions. Thus S = Bol(X).

5.6 Extremely Disconnected Spaces

Definition 5.16. A compact space X is **extremely disconnected** if the closure of every open set is open.

Proposition 5.13. If X is extremely disconnected, then there is a basis of clopen sets.

Proposition 5.14. *If* $A \subseteq X$ *is clopen, then* $\chi_A \in C(X)$.

Proposition 5.15. (Stone-Čech compactification) Let D be a discrete space (thus every subset is open). The **Stone-Čech compactification** is the unique compact (Hausdorff) space βD with the following universal properties:

- 1. $D \subseteq \beta D$ as topology inclusion.
- 2. For any compact K, and every continuous map $f: D \to K$, there is a unique continuous extension $\beta f: \beta D \to K$.

Proposition 5.16. $\ell^{\infty}(D) \simeq C(\beta D)$

Proposition 5.17. βD is the set of ultrafilters on D.

Proposition 5.18. βD is extremely disconnected.

5.7 Riesz-Markov-Kakutani

Theorem 5.19 (Riesz-Markov-Kakutani). Let X be a Locally Compact Hausdorff space, $\Lambda: C(X) \to \mathbb{C}$ a positive linear functional. Then there is a unique Radon measure μ on X, such that $\Lambda = \Lambda_{\mu} = \int_{X} f d\mu$. In addition,

- 1. $\forall U \subseteq X \text{ be open, we have } \mu(U) = \sup \{\Lambda(f) : f < U\}.$
- 2. $\forall K \subseteq X \text{ be compact, we have } \mu(K) = \inf \{ \Lambda(f) : K < f \}.$

Proof. Define $\mu^*: \mathcal{T} \to [0, \infty]$ by: for any open $U \subseteq X, \mu^*(U) := \sup \{\Lambda(f): f < U\}$.

Clearly for any $V \supseteq U$, we have $\mu^*(U) \leq \mu^*(f)$.

Thus we have $\mu^*(U) := \inf \{ \mu^*(f) : \text{open } C \subseteq U \}.$

Now we extend $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by $\mu^*(E) := \inf \{ \mu^*(U) : \text{open } U \supseteq E \}.$

One can check this is an outer measure, and the measure induced by Caratheodory is a Radon measure.

Now let us check the uniqueness.

Suppose there is some Radon measure μ , such that $\Lambda = \Lambda_{\mu} = \int_{X} f d\mu$.

Given any open U.

Consider any compact K such that $K \subset U$. By Urysohn's lemma, we can find a function f, such that K < f < U.

Then $\chi_K \leq f \leq \chi_U \implies \mu(K) \leq \Lambda(f) \leq \mu(U)$.

Thus by inner regularity, $\mu(U) = \sup \{\mu(K) : \text{compact } K \subseteq U\} = \sup \{\Lambda(f) : f < U\}$, which is uniquely determined.

For any Borel set E, we have that by outer regularity, $\mu(E) = \inf \{ \mu(U) : \text{open } U \supseteq E \}$, which is uniquely determined.

6 Lebesgue Spaces

6.1 The First Lebesgue Space

Definition 6.1. Given some measure space (X, \mathcal{M}, μ) , define

$$\mathcal{L}^1(\mu) := \mathcal{L}^1(X,\mathcal{M},\mu) := \left\{ f: X \to \mathbb{C} \left| f \text{ is measurable}, \int_X |f| d\mu < \infty \right. \right\}.$$

Proposition 6.1. $\mathcal{L}^1(X, \mathcal{M}, \mu)$ is a vector space.

Proof. Clearly $\int_X |0| d\mu = 0$, so the zero function $0 \in \mathcal{L}^1(X, \mathcal{M}, \mu)$. Also, for any $c \in \mathbb{C}$, and $f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$, we have

$$\int_{X} |c \cdot f| d\mu = \int_{X} |c| |f| d\mu$$
$$= |c| \int_{X} |f| d\mu$$
$$< \infty.$$

Thus $c \cdot f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$.

Now for any $f, g \in \mathcal{L}^1(X, \mathcal{M}, \mu)$, we have

$$\int_{X} |f + g| d\mu \le \int_{X} |f| + |g| d\mu$$

$$= \int_{X} |f| d\mu + \int_{X} |g| d\mu$$

$$< \infty$$

Thus $f + g \in \mathcal{L}^1(X, \mathcal{M}, \mu)$.

Since the set of all functions $\{f: X \to \mathbb{C}\}$ is a vector space with the pointwise multiplication and addition, by the subspace criterion, we have $\mathcal{L}^1(X, \mathcal{M}, \mu)$ is a subspace of it.

Definition 6.2. Let

$$N = \left\{ f \in \mathcal{L}^1(X, \mathcal{M}, \mu) : \int_X |f| d\mu = 0 \right\} = \left\{ f \in \mathcal{L}^1(X, \mathcal{M}, \mu) : f = 0 \ \mu - a.e. \right\}.$$

Define

$$L^1(X, \mathcal{M}, \mu) := \mathcal{L}^1(X, \mathcal{M}, \mu)/N,$$

which is the quotient vector space of $\mathcal{L}^1(X,\mathcal{M},\mu) \mod N$.

Remark.
$$[f] = \{g \in \mathcal{L}^1(X, \mathcal{M}, \mu) : f - g = 0 \ \mu - \text{a.e.} \} \in L^1(X, \mathcal{M}, \mu)$$

Definition 6.3. $||[f]||_{L^1(X,\mathcal{M},\mu)} := \int_X |f| d\mu$ for any choice of representative $f \in [f]$.

When the context is clear, we might write $L^1(X, \mathcal{M}, \mu)$ as $L^1(\mu)$ or $L^1(X)$. We might also write $||\cdot||_{L^1(X,\mathcal{M},\mu)}$ as $||\cdot||_{L^1(\mu)}$, $||\cdot|$

Lemma 6.2. The above definition is well defined.

Proof. Take any $g, f \in [f]$. Let $K = \{x \in X : f(x) \neq g(x)\}$, we have $\mu(K) = 0$.

$$\begin{split} \int_X |f| d\mu &= \int_{X\backslash K} |f| d\mu + \int_K |f| d\mu \\ &= \int_{X\backslash K} |f| d\mu \\ &= \int_{X\backslash K} |g| d\mu \\ &= \int_{X\backslash K} |g| d\mu + \int_K |g| d\mu \\ &= \int_Y |g| d\mu \end{split}$$

Proposition 6.3. $||\cdot||_1$ is a norm on $L^1(X, \mathcal{M}, \mu)$.

Proof. Consider any $[f], [g] \in L^1(X, \mathcal{M}, \mu)$.

$$\begin{split} ||[f] + [g]||_1 &= ||[f + g]||_1 \\ &= \int_X |f + g| d\mu \\ &\leq \int_X |f| d\mu + \int_X |g| d\mu \\ &= ||[f]||_1 + ||[g]||_1 \end{split}$$

For any $\alpha \in \mathbb{C}$, we have

$$\begin{split} ||\alpha[f]||_1 &= ||[\alpha f]||_1 \\ &= \int_X |\alpha f| d\mu \\ &= |\alpha| \int_X |f| d\mu \\ &= |\alpha|||[f]||_1 \end{split}$$

If $||[f]||_1 = 0$, we must have f = 0 $\mu - a.e.$. Thus $f \in N$, thus [f] = [0] = 0.

Theorem 6.4 (Fischer-Riesz). Let (X, \mathcal{M}, μ) be a measure space, $\left(L^1(X, \mathcal{M}, \mu), ||\cdot||_{L^1(\mu)}\right)$ is a Banach Space.

Proof. Let $([f_n])_1^{\infty}$ be a Cauchy sequence in $L^1(X, \mathcal{M}, \mu)$. Then for each $k \in \mathbb{N}^+$, there is some $N_k \geq 1$, such that $\forall m, n \geq N_k, ||[f_m] - [f_n]||_{L^1(\mu)} < \frac{1}{2^k}.$

WLOG, $\forall k, N_{k+1} \geq N_k$.

Thus $\left| \left| [f_{N_{k+1}}] - [f_{N_k}] \right| \right|_{L^1(\mu)} < \frac{1}{2^k}$.

Let $g_k = |f_{N_1}| + \sum_{j=1}^{k-1} |f_{N_{j+1}} - f_{N_j}|$, where we fix f_n to be a representative of $[f_n]$. Notice that $\forall k \geq 1$,

$$f_{N_k} = f_{N_1} + \sum_{j=1}^{k-1} (f_{N_{j+1}} - f_{N_j})$$

$$|f_{N_k}| = \left| f_{N_1} + \sum_{j=1}^{k-1} (f_{N_{j+1}} - f_{N_j}) \right|$$

$$\leq |f_{N_1}| + \sum_{j=1}^{k-1} |f_{N_{j+1}} - f_{N_j}|$$

$$= q_k$$

We have that $\int_X g_k d\mu = \int_X |f_{N_1}| d\mu + \sum_{j=1}^n \int_X |f_{N_{j+1}} - f_{N_j}| d\mu$. Let $g = \lim_{k \to \infty} g_k = |f_{N_1}| + \sum_{j=1}^\infty |f_{N_{j+1}} - f_{N_j}|$.

By LMCT, we have that

$$\int_{X} g d\mu = \lim_{k \to \infty} \int_{X} g_{k} d\mu$$

$$= \int_{X} |f_{N_{1}}| d\mu + \sum_{j=1}^{\infty} \int_{X} |f_{N_{j+1}} - f_{N_{j}}| d\mu$$

$$= ||[f_{N_{1}}]||_{L^{1}(\mu)} + \sum_{j=1}^{\infty} ||[f_{N_{j+1}} - f_{N_{j}}]||_{L^{1}(\mu)}$$

$$= ||[f_{N_{1}}]||_{L^{1}(\mu)} + \sum_{j=1}^{\infty} ||[f_{N_{j+1}}] - [f_{N_{j}}]||_{L^{1}(\mu)}$$

$$< ||[f_{N_{1}}]||_{L^{1}(\mu)} + \sum_{j=1}^{\infty} \frac{1}{2^{j}}$$

$$< \infty.$$

Thus $g \in \mathcal{L}^1(X, \mathcal{M}, \mu)$. Thus $N := \{x \in X : g(x) = \infty\}$ has measure 0. This implies that $f_{N_1}(x) + \sum_{k=1}^{\infty} (f_{N_{k+1}}(x) - f_{N_k}(x))$ converges absolutely for $x \in X \setminus N$. We can thus define

$$f(x) := f_{N_1}(x) + \sum_{j=1}^{\infty} (f_{N_{k+1}}(x) - f_{N_k}(x))$$

$$= \lim_{k \to \infty} \left(f_{N_1}(x) + \sum_{j=1}^{k} (f_{N_{j+1}}(x) - f_{N_j}(x)) \right)$$

$$= \lim_{k \to \infty} f_{N_{k+1}}(x)$$

$$= \lim_{k \to \infty} f_{N_k}(x)$$

for $x \in X \setminus N$.

We then extend f to X by $f|_N := 0$.

Then $|f| \leq g$, and thus $f \in \mathcal{L}^1(X, \mathcal{M}, \mu)$.

Notice that $|f_{N_k}| \leq g_k \leq g$, thus $|f - f_{N_k}| \leq g + g = 2g$. By LDCT,

$$\lim_{k \to \infty} ||[f_{N_k}] - [f]||_{L^1(\mu)} = \lim_{k \to \infty} ||[f_{N_k} - f]||_{L^1(\mu)}$$

$$= \lim_{k \to \infty} \int_X |f_{N_k} - f| d\mu$$

$$= \int_X \lim_{k \to \infty} |f_{N_k} - f| d\mu$$

$$= 0.$$

Thus $\lim_{k\to\infty} [f_{N_k}]$ converges to [f]. Since this is a subsequence of the Cauchy sequence $([f_n])_1^{\infty}$, we have that $\lim_{n\to\infty} [f_n] = [f]$. This shows that $(L^1(X, \mathcal{M}, \mu), ||\cdot||_{L^1(\mu)})$ is complete.

Remark. When we write $f \in L^1(\mu)$, we will mean $[f] \in L^1(\mu)$, and let $f \in \mathcal{L}^1(\mu)$ be any representative of [f] when the context is clear.

6.2Convex functions

Definition 6.4. A function $\phi: U \to \mathbb{R}$ is **convex** if

$$\forall x, y \in U, \forall \lambda \in [0, 1], \ \phi(\lambda x + (1 - \lambda)y) \le \lambda \phi(x) + (1 - \lambda)\phi(y).$$

Theorem 6.5 (Jensen's Inequality). If ϕ is convex, we have $\forall x_1, \ldots, x_n \in U$, and $\forall 0 \leq \lambda_1, \ldots, \lambda_n \leq 1$ such that $\sum_{i=1}^n \lambda_i = 1$,

$$\phi\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i \phi(x_i).$$

Proof. The base case is when n = 1, which is trivial.

Now suppose this holds for $n-1 \in \mathbb{N}$.

Given any $\forall x_1, \ldots, x_n \in U$, and $0 \le \lambda_1, \ldots, \lambda_n \le 1$ such that $\sum_{i=1}^n \lambda_i = 1$. If $\lambda_n = 0$, we can reduce the sum to a n-1 sum. If $\lambda_n = 1$, then the other λ_i must be all 0, and we can reduce the sum to only x_n .

Now suppose $0 < \lambda_1 < 1$. Notice that $\sum_{i=1}^{n-1} \frac{\lambda_i}{1-\lambda_n} = \frac{\sum_{i=1}^{n-1} \lambda_i}{1-\lambda_n} = \frac{1-\lambda_n}{1-\lambda_n} = 1$. We have that

$$\phi\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) = \phi\left(\lambda_{n} x_{n} + (1 - \lambda_{n}) \sum_{i=1}^{n-1} \frac{\lambda_{i}}{1 - \lambda_{n}} x_{i}\right)$$

$$\leq \lambda_{n} \phi(x_{n}) + (1 - \lambda_{n}) \phi\left(\sum_{i=1}^{n-1} \frac{\lambda_{i}}{1 - \lambda_{n}} x_{i}\right)$$

$$\leq \lambda_{n} \phi(x_{n}) + (1 - \lambda_{n}) \sum_{i=1}^{n-1} \frac{\lambda_{i}}{1 - \lambda_{n}} \phi(x_{i})$$

$$= \lambda_{n} \phi(x_{n}) + \sum_{i=1}^{n-1} \lambda_{i} \phi(x_{i})$$

$$= \sum_{i=1}^{n} \lambda_{i} \phi(x_{i}).$$

By induction, this is true for any $n \ge 1$.

Theorem 6.6 (Arithmetic Mean Inequality). Let $x_1, \ldots, x_n \ge 0$, with $0 \le \lambda_1, \ldots, \lambda_n \le 1$ such that $\sum_{i=1}^n \lambda_i = 1$. We have that

$$\prod_{i=1}^{n} x_i^{\lambda_i} \le \sum_{i=1}^{n} \lambda_i x_i.$$

Proof. If any of $x_i = 0$, then the inequality is trivially true.

Now suppose $\forall i, x_i > 0$.

Notice that exp is convex, and we have

$$\prod_{i=1}^{n} x_i^{\lambda_i} = \exp\left(\sum_{i=1}^{n} \lambda_i \ln(x_i)\right)$$

$$= \exp\left(\sum_{i=1}^{n} \lambda_i \ln(x_i)\right)$$

$$\leq \sum_{i=1}^{n} \lambda_i \exp(\ln(x_i))$$

$$= \sum_{i=1}^{n} \lambda_i x_i.$$

Proposition 6.7. Let $x_1, \ldots, x_n \geq 0$, and $n \in \mathbb{N}^+, p \geq 1$, we have that

$$\sum_{i=1}^{n} x_i^p \le \left(\sum_{i=1}^{n} x_i\right)^p \le n^{p-1} \sum_{i=1}^{n} x_i^p.$$

Proof. For $p \geq 1$, we have $(\cdot)^p$ is convex.

$$\left(\sum_{i=1}^{n} \frac{1}{n} x_{i}\right)^{p} \leq \sum_{i=1}^{n} \frac{1}{n} x_{i}^{p}$$

$$\frac{1}{n^{p}} \left(\sum_{i=1}^{n} x_{i}\right)^{p} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}$$

$$\left(\sum_{i=1}^{n} x_{i}\right)^{p} \leq n^{p-1} \sum_{i=1}^{n} x_{i}^{p}.$$

This proves the second inequality.

Now when n = 1, we have the first inequality trivially.

Suppose the first inequality holds for $n \in \mathbb{N}^+$, we have

$$\left(\sum_{i=1}^{n+1} x_i\right)^p = \left(\sum_{i=1}^n x_i + x_{n+1}\right)^p$$

$$\geq \left(\sum_{i=1}^n x_i\right)^p + x_{n+1}^p$$

$$\geq \left(\sum_{i=1}^n x_i^p\right) + x_{n+1}^p$$

$$= \sum_{i=1}^{n+1} x_i^p.$$

By induction, the first inequality is true for all $n \in \mathbb{N}^+$.

6.3 L^p Spaces

Definition 6.5. Let (X, \mathcal{M}, μ) be a measure space, and $1 \leq p < \infty$ we define

$$\mathcal{L}^p(\mu) := \left\{ f: X \to \mathbb{C} \middle| f^p \in L^1(\mu) \right\} = \left\{ f: X \to \mathbb{C} \middle| f \text{ is measurable, } \int_X |f|^p d\mu < \infty \right\}.$$

In addition, we define

$$||f||_{\mathcal{L}^p} := \left(\int_X |f|^p d\mu\right)^{\frac{1}{p}}.$$

Proposition 6.8. $\mathcal{L}^p(\mu)$ is a vector space.

Proof. Clearly $\int_X |0|^p d\mu = 0$, so the zero function $0 \in \mathcal{L}^p(\mu)$. Also, for any $c \in \mathbb{C}$, and $f \in \mathcal{L}^p(\mu)$, we have

$$\int_{X} |c \cdot f|^{p} d\mu = \int_{X} |c|^{p} |f|^{p} d\mu$$
$$= |c|^{p} \int_{X} |f|^{p} d\mu$$
$$< \infty.$$

Thus $c \cdot f \in \mathcal{L}^p(\mu)$.

Now for any $f, g \in \mathcal{L}^p(\mu)$, we have

$$\int_{X} |f+g|^{p} d\mu \le \int_{X} (|f|+|g|)^{p} d\mu$$

$$\le \int_{X} 2^{p-1} (|f|^{p}+|g|^{p}) d\mu$$

$$= 2^{p-1} \left(\int_{X} |f|^{p} d\mu + \int_{X} |g|^{p} d\mu \right)$$

$$< \infty.$$

Thus $f + g \in \mathcal{L}^p(\mu)$.

Since the set of all functions $\{f: X \to \mathbb{C}\}$ is a vector space with the pointwise multiplication and addition, by the subspace criterion, we have $\mathcal{L}^p(\mu)$ is a subspace of it.

Definition 6.6. Let (X, \mathcal{M}, μ) be a measure space, the **essential supremum** of a function $f: X \to \mathbb{R}$ is

$$\operatorname{ess\,sup} f := \inf \left\{ M \in \mathbb{R} : \mu(\{x: f(x) > M\}) = 0 \right\}.$$

Proposition 6.9. For any $\lambda \geq 0, f: X \to \mathbb{R}$, we have

$$\lambda(\operatorname{ess\,sup} f) = \operatorname{ess\,sup}(\lambda f).$$

Proof. It is easy to see this is true for $\lambda = 0$. Now suppose $\lambda > 0$.

$$\begin{split} \operatorname{ess\,sup}(\lambda f) &= \inf \big\{ M \in \mathbb{R} : \mu(\{x : \lambda f(x) > M\}) = 0 \big\} \\ &= \inf \left\{ M \in \mathbb{R} : \mu\bigg(\bigg\{x : f(x) > \frac{M}{\lambda}\bigg\}\bigg) = 0 \right\} \\ &= \inf \big\{ \lambda \cdot N \in \mathbb{R} : \mu(\{x : f(x) > N\}) = 0 \big\} \\ &= \lambda \inf \big\{ N \in \mathbb{R} : \mu(\{x : f(x) > N\}) = 0 \big\} \\ &= \lambda (\operatorname{ess\,sup} f). \end{split}$$

Definition 6.7. Let (X, \mathcal{M}, μ) be a measure space, we define

$$\mathcal{L}^{\infty}(\mu) := \{ f : X \to \mathbb{C} | f \text{ is measurable, ess sup } | f | < \infty \}.$$

In addition, we define

$$||f||_{\mathcal{L}^{\infty}} := \operatorname{ess\,sup} |f|.$$

Proposition 6.10. $\mathcal{L}^{\infty}(\mu)$ is a vector space.

Proof. Clearly ess sup 0 = 0, so the zero function $0 \in \mathcal{L}^{\infty}(\mu)$. Also, for any $c \in \mathbb{C}$, and $f \in \mathcal{L}^{\infty}(\mu)$, we have

$$\begin{aligned} ||c \cdot f||_{\mathcal{L}^{\infty}} &= \operatorname{ess\,sup} |c \cdot f| \\ &= \operatorname{ess\,sup} (|c| \cdot |f|) \\ &= |c| \operatorname{ess\,sup} |f| \\ &= |c| ||f||_{\mathcal{L}^{\infty}} \\ &< \infty. \end{aligned}$$

Thus $c \cdot f \in \mathcal{L}^{\infty}(\mu)$.

Now for any $f, g \in \mathcal{L}^{\infty}(\mu)$.

Consider any $L, N \in \mathbb{R}$, such that $\mu(\lbrace x : |f(x)| > N \rbrace) = \mu(\lbrace x : |g(x)| > L \rbrace) = 0$.

Thus $\mu(\lbrace x : |f(x)| > N \rbrace \cup \lbrace x : |g(x)| > L \rbrace) = 0.$

Now for any $x \in X$, if |f(x) + g(x)| > L + N, we must have $|f(x)| + |g(x)| \ge |f(x) + g(x)| > L + N$.

Thus |f(x)| > L or |g(x)| > N.

Since this holds for any $x \in X$, we have $\{x : |f(x) + g(x)| > N + L\} \subseteq \{x : |f(x)| > N\} \cup \{x : |g(x)| > L\}$.

Thus $\mu(\lbrace x : |f(x) + g(x)| > N + L \rbrace) = 0.$

By definition, we have

$$||f+g||_{\mathcal{L}^{\infty}} = \operatorname{ess\,sup} |f+g|$$

= $\inf \{ M \in \mathbb{R} : \mu(\{x : |f(x)+g(x)| > M\}) = 0 \}$
 $\leq N + L.$

Since this hold for any such $N, L \in \mathbb{R}$, such that $\mu(\{x: |f(x)| > N\}) = \mu(\{x: |g(x)| > L\}) = 0$, we have

$$\begin{split} ||f+g||_{\mathcal{L}^{\infty}} &= \inf \left\{ N + L : \mu(\{x:|f(x)| > N\}) = \mu(\{x:|g(x)| > L\}) = 0 \right\} \\ &= \inf \left\{ N : \mu(\{x:|f(x)| > N\}) = 0 \right\} + \inf \left\{ L : \mu(\{x:|g(x)| > L\}) = 0 \right\} \\ &= ||f||_{\mathcal{L}^{\infty}} + ||g||_{\mathcal{L}^{\infty}} \\ &< \infty. \end{split}$$

Thus $f + g \in \mathcal{L}^{\infty}(\mu)$.

Since the set of all functions $\{f: X \to \mathbb{C}\}$ is a vector space with the pointwise multiplication and addition, by the subspace criterion, we have $\mathcal{L}^{\infty}(\mu)$ is a subspace of it.

Proposition 6.11. For any $1 \le p \le \infty$, we have $||f - g||_{\mathcal{L}^p} = 0 \iff f = g$ almost everywhere.

Proof. For $1 \le p < \infty$,

$$||f - g||_{\mathcal{L}^p} = 0$$

$$\iff \int_X |f - g|^p d\mu = 0$$

$$\iff |f - g|^p = 0 \text{ a.e.}$$

$$\iff f - g = 0 \text{ a.e.}$$

$$\iff f = g \text{ a.e.}$$

For $p = \infty$,

$$||f - g||_{\mathcal{L}^{\infty}} = 0$$

$$\iff \operatorname{ess\,sup} |f - g| = 0$$

$$\iff f - g = 0 \text{ a.e.}$$

$$\iff f = g \text{ a.e.}.$$

Definition 6.8. For any $1 \le p \le \infty$, if we identify $f, g \in \mathcal{L}^p(\mu)$ by $f \sim g \iff f = g$ almost everywhere, we get the quotient vector space

$$L^{p}(\mu) := \mathcal{L}^{p}(\mu)/_{\sim} = \{ [f] : f \in \mathcal{L}^{p}(\mu) \}$$

to be the collection of all equivalence classes of functions in \mathcal{L}^p .

Definition 6.9. Let (X, \mathcal{M}, μ) be a measure space, and $1 \leq p \leq \infty$ we define the norm

$$||[f]||_{L^p(\mu)} := ||f||_{\mathcal{L}^p}$$

for any representative $f \in [f]$.

Lemma 6.12. The above definition is well-defined.

Remark. As before, when we write $f \in L^p(\mu)$, we will mean $[f] \in L^p(\mu)$, and let $f \in \mathcal{L}^p(\mu)$ be any representative of [f] when the context is clear.

Theorem 6.13 (Holder's Inequality). Let (X, \mathcal{M}, μ) be a measure space, $1 \leq p \leq \infty$. Suppose $\frac{1}{p} + \frac{1}{q} = 1$, then $\forall f \in L^p(\mu), g \in L^q(\mu), fg \in L^1(\mu)$ and

$$||fg||_{L^1(\mu)} \le ||f||_{L^p(\mu)} ||g||_{L^q(\mu)}.$$

Proof. If p=1, then $q=\infty$. Now $|fg|=|f||g|\leq |f|||g||_{L^{\infty}(\mu)}.$ Thus

$$\begin{split} ||fg||_{L^{1}(\mu)} &= \int_{X} |fg| d\mu \\ &\leq \int_{X} |f| ||g||_{L^{\infty}(\mu)} d\mu \\ &= ||g||_{L^{\infty}(\mu)} \int_{X} |f| d\mu \\ &= ||g||_{L^{\infty}(\mu)} ||f||_{L^{1}(\mu)}. \end{split}$$

Now suppose $1 . We have <math>1 < q < \infty$.

If $||f||_{L^p(\mu)} = 0$ or $||g||_{L^q(\mu)} = 0$, then it is trivial, since this implies f = 0a.e. or g = 0a.e., which means fg = 0a.e.

Now let $F := \frac{|f|}{||f||_{L^p(\mu)}}, G := \frac{|g|}{||g||_{L^q(\mu)}}.$

By Arithmetic Mean Inequality, we have that

$$F(x)G(x) = (F(x)^p)^{1/p}(G(x)^q)^{1/q}$$

$$\leq \frac{1}{p}F(x)^p + \frac{1}{q}G(x)^q$$

$$\int_X FGd\mu \leq \frac{1}{p}\int_X F^pd\mu + \frac{1}{q}\int_X G^qd\mu$$

$$\frac{||fg||_{L^1(\mu)}}{||f||_{L^p(\mu)}||g||_{L^q(\mu)}} \leq \frac{1}{p}\int_X \frac{|f|^p}{||f||_{L^p(\mu)}^p}d\mu + \frac{1}{q}\int_X \frac{|g|^p}{||g||_{L^q(\mu)}^q}d\mu$$

$$= \frac{1}{p}\frac{||f||_{L^p(\mu)}^p}{||f||_{L^p(\mu)}^p} + \frac{1}{q}\frac{||g||_{L^q(\mu)}^q}{||g||_{L^q(\mu)}^q}$$

$$= \frac{1}{p} + \frac{1}{q}$$

$$= 1.$$

Thus $||fg||_{L^1(\mu)} \le ||f||_{L^p(\mu)} ||g||_{L^q(\mu)}$.

Theorem 6.14 (Minkowski's Inequality). Let (X, \mathcal{M}, μ) be a measure space, $1 \leq p \leq \infty$. For any $f, g \in L^p(\mu)$, we have

$$||f+g||_{L^p(\mu)} \le ||f||_{L^p(\mu)} + ||g||_{L^p(\mu)}.$$

Proof. We have proven for p=1 and $p=\infty$. Now suppose $p\in(1,\infty)$. Then $q=\frac{p}{p-1}\in(1,\infty)$. Since $f, g \in L^p(\mu)$, we have $f + g \in L^p(\mu)$, so

$$\begin{aligned} \left| \left| \left| f + g \right|^{p-1} \right| \right|_{L^{q}(\mu)}^{q} &= \int_{X} \left(\left| f + g \right|^{p-1} \right)^{q} d\mu \\ &= \int_{X} \left(\left| f + g \right|^{p-1} \right)^{\frac{p}{p-1}} d\mu \\ &= \int_{X} \left| f + g \right|^{p} d\mu \\ &= \left| \left| f + g \right| \right|_{L^{p}(\mu)}^{p} \\ &< \infty. \end{aligned}$$

Thus $|f+g|^{p-1} \in L^q(\mu)$. By Holder's Inequality, we have

$$\begin{split} ||f+g||_{L^{p}(\mu)}^{p} &= \int_{X} |f+g|^{p} d\mu \\ &= \int_{X} |f+g||f+g|^{p-1} d\mu \\ &\leq \int_{X} (|f|+|g|)|f+g|^{p-1} d\mu \\ &\leq \int_{X} |f| \cdot |f+g|^{p-1} d\mu + \int_{X} |g| \cdot |f+g|^{p-1} d\mu \\ &\leq \left| \int_{X} |f| \cdot |f+g|^{p-1} d\mu + \int_{X} |g| \cdot |f+g|^{p-1} d\mu \right| \\ &\leq ||f||_{L^{p}(\mu)} \Big| \Big| |f+g|^{p-1} \Big| \Big|_{L^{q}(\mu)} + ||g||_{L^{p}(\mu)} \Big| \Big| |f+g|^{p-1} \Big| \Big|_{L^{q}(\mu)} \\ &= \Big(||f||_{L^{p}(\mu)} + ||g||_{L^{p}(\mu)} \Big) \Big| \Big| |f+g|^{p/q} \Big|_{L^{p}(\mu)} \\ &= \Big(||f||_{L^{p}(\mu)} + ||g||_{L^{p}(\mu)} \Big) ||f+g||_{L^{p}(\mu)} \\ ||f+g||_{L^{p}(\mu)}^{p-1/q} \leq ||f||_{L^{p}(\mu)} + ||g||_{L^{p}(\mu)} \\ ||f+g||_{L^{p}(\mu)}^{p(1-1/q)} \leq ||f||_{L^{p}(\mu)} + ||g||_{L^{p}(\mu)} \\ ||f+g||_{L^{p}(\mu)} \leq ||f||_{L^{p}(\mu)} + ||g||_{L^{p}(\mu)} . \end{split}$$

Corollary 6.15. Let (X, \mathcal{M}, μ) be a measure space, $1 \leq p \leq \infty$. We have $||\cdot||_{L^p(\mu)}$ is a norm over $L^p(\mu)$.

Proof. The triangle Inequality is done by Minkowski's Inequality. Consider any $\in L^p(\mu)$.

For any $\alpha \in \mathbb{C}$, we have

$$\begin{split} ||\alpha f||_{L^p(\mu)}^p &= \int_X |\alpha f|^p d\mu \\ &= \int_X |\alpha|^p |f|^p d\mu \\ &= |\alpha|^p \int_X |f|^p d\mu \\ &= |\alpha|^p ||f||_{L^p(\mu)}^p \\ &\Longrightarrow \\ ||\alpha f||_{L^p(\mu)} &= |\alpha|||f||_{L^p(\mu)}. \end{split}$$

In addition, $||f||_{L^p(\mu)} = 0$, if and only if f = 0 $\mu - a.e.$.

Theorem 6.16 (Fischer-Riesz). Let (X, \mathcal{M}, μ) be a measure space, $1 \leq p \leq \infty$. $(L^p(\mu), ||\cdot||_{L^p(\mu)})$ is a Banach Space.

Proof. 1. We first consider $1 \le p < \infty$.

> Let $(f_n)_1^{\infty}$ be a Cauchy sequence in $L^p(X, \mathcal{M}, \mu)$. Then for each $k \in \mathbb{N}^+$, there is some $N_k \geq 1$, such that $\forall m, n \geq N_k, ||f_m - f_n||_{L^p(\mu)} < \frac{1}{2^k}$. WLOG, $\forall k, N_{k+1} \geq N_k$.

Thus $||f_{N_{k+1}} - f_{N_k}||_{L^p(\mu)} < \frac{1}{2^k}$.

Let $g_k = |f_{N_1}| + \sum_{j=1}^{k-1} |f_{N_{j+1}} - f_{N_j}|$, where we fix f_n to be a representative of $[f_n]$. Notice that $\forall k \geq 1$,

$$f_{N_k} = f_{N_1} + \sum_{j=1}^{k-1} (f_{N_{j+1}} - f_{N_j})$$

$$|f_{N_k}| = \left| f_{N_1} + \sum_{j=1}^{k-1} (f_{N_{j+1}} - f_{N_j}) \right|$$

$$\leq |f_{N_1}| + \sum_{j=1}^{k-1} |f_{N_{j+1}} - f_{N_j}|$$

$$= g_k$$

$$||g_k||_{L^p(\mu)} = \left| \left| |f_{N_1}| + \sum_{j=1}^{k-1} |f_{N_{j+1}} - f_{N_j}| \right| \right|_{L^p(\mu)}$$

$$\leq ||f_{N_1}||_{L^p(\mu)} + \sum_{j=1}^{k-1} ||f_{N_{j+1}} - f_{N_j}||_{L^p(\mu)}.$$

Let $g = \lim_{k \to \infty} g_k = |f_{N_1}| + \sum_{j=1}^{\infty} |f_{N_{j+1}} - f_{N_j}|$. Notice that g_k are monotone increasing. By LMCT, we have that

$$||g||_{L^{p}(\mu)} = \int_{X} |g|^{p} d\mu$$

$$= \int_{X} \lim_{k \to \infty} g_{k}^{p} d\mu$$

$$= \lim_{k \to \infty} \int_{X} g_{k}^{p} d\mu$$

$$= \lim_{k \to \infty} ||g_{k}||_{L^{p}(\mu)}$$

$$\leq \lim_{k \to \infty} \left(||f_{N_{1}}||_{L^{p}(\mu)} + \sum_{j=1}^{k-1} ||f_{N_{j+1}} - f_{N_{j}}||_{L^{p}(\mu)} \right)$$

$$= ||f_{N_{1}}||_{L^{p}(\mu)} + \sum_{j=1}^{\infty} ||f_{N_{j+1}} - f_{N_{j}}||_{L^{p}(\mu)}$$

$$\leq ||[f_{N_{1}}]||_{L^{p}(\mu)} + \sum_{j=1}^{\infty} \frac{1}{2^{j}}$$

Thus $g \in \mathcal{L}^p(X, \mathcal{M}, \mu)$, which means $g^p \in \mathcal{L}^1(X, \mathcal{M}, \mu)$ and $N := \{x \in X : g(x) = \infty\}$ has measure 0. This implies that $f_{N_1}(x) + \sum_{k=1}^{\infty} (f_{N_{k+1}}(x) - f_{N_k}(x))$ converges absolutely for $x \in X \setminus N$.

We can thus define

$$f(x) := f_{N_1}(x) + \sum_{j=1}^{\infty} (f_{N_{k+1}}(x) - f_{N_k}(x))$$

$$= \lim_{k \to \infty} \left(f_{N_1}(x) + \sum_{j=1}^{k} (f_{N_{j+1}}(x) - f_{N_j}(x)) \right)$$

$$= \lim_{k \to \infty} f_{N_{k+1}}(x)$$

$$= \lim_{k \to \infty} f_{N_k}(x)$$

for $x \in X \setminus N$.

We then extend f to X by $f|_N := 0$.

Then $|f| \leq g \implies |f|^p \leq g^p$, and thus $f \in \mathcal{L}^p(X, \mathcal{M}, \mu)$.

Notice that $|f_{N_k}| \leq g_k \leq g$, thus $|f - f_{N_k}|^p \leq (g + g)^p = 2^p g^p$. By LDCT,

$$\lim_{k \to \infty} ||f_{N_k} - f||_{L^p(\mu)}^p = \lim_{k \to \infty} \int_X |f_{N_k} - f|^p d\mu$$
$$= \int_X \lim_{k \to \infty} |f_{N_k} - f|^p d\mu$$
$$= 0$$

Thus $\lim_{k\to\infty} f_{N_k}$ converges to f.

Since this is a subsequence of the Cauchy sequence $(f_n)_1^{\infty}$, we have that $\lim_{n\to\infty} f_n = f$.

This shows that $(L^p(X, \mathcal{M}, \mu), ||\cdot||_{L^p(\mu)})$ is complete.

2. Now consider $p = \infty$.

Let $(f_n)_1^{\infty}$ be a Cauchy sequence in $L^{\infty}(X, \mathcal{M}, \mu)$. As before, we can take some subsequence $(f_{N_k})_{k=1}^{\infty}$ with $||f_{N_{k+1}} - f_{N_k}||_{L^p(\mu)} < \frac{1}{2^k}$.

Let $g_k = |f_{N_1}| + \sum_{j=1}^{k-1} |f_{N_{j+1}} - f_{N_j}|$, where we fix f_n to be a representative of $[f_n]$. Notice that $\forall k \geq 1$,

$$f_{N_k} = f_{N_1} + \sum_{j=1}^{k-1} (f_{N_{j+1}} - f_{N_j})$$

$$|f_{N_k}| = \left| f_{N_1} + \sum_{j=1}^{k-1} (f_{N_{j+1}} - f_{N_j}) \right|$$

$$\leq |f_{N_1}| + \sum_{j=1}^{k-1} |f_{N_{j+1}} - f_{N_j}|$$

$$= g_k.$$

Theorem 6.17 (Density of simple functions). Let (X, \mathcal{M}, μ) be a measure space, $1 \leq p \leq \infty$. The simple functions

$$S := \{ \phi \in L^p(\mu) \mid \phi \text{ is simple, measurable} \}$$

are dense in $(L^p(X, \mathcal{M}, \mu), ||\cdot||_{L^p(X, \mathcal{M}, \mu)}).$

Proof. 1. First consider $1 \le p < \infty$.

Let $f \in L^p(X, \mathcal{M}, \mu), \exists (\phi_n)_{n=1}^{\infty}$ be simple and measurable functions, such that

$$f(x) = \lim_{n \to \infty} \phi_n(x)$$
, a.e. $x \in X$,

and

$$|\phi_1| < |\phi_1| < \dots < |f|$$
.

Thus

$$f^p(x) = \lim_{n \to \infty} \phi_n^p(x)$$
, a.e. $x \in X$,

and

$$|\phi_1|^p \le |\phi_1|^p \le \dots \le |f|^p.$$

Since $|f - \phi_n|^p \le (2|f|)^p = 2^p |f|^p \in L^1(X, \mathcal{M}, \mu)$, by LDCT 3.18, we have that

$$\lim_{n \to \infty} ||f - \phi_n||_{L^p(X, \mathcal{M}, \mu)}^p = \lim_{n \to \infty} \int_X |f - \phi_n|^p d\mu$$

$$= \int_X \lim_{n \to \infty} |f - \phi_n|^p d\mu$$

$$= \int_X \lim_{n \to \infty} 0 d\mu$$

$$= 0.$$

2. Now consider $p = \infty$.

Let $f \in L^p(X, \mathcal{M}, \mu)$, we know $\mu(N) = 0$ for $N := \left\{ x \in X : |f(x)| > ||f||_{L^{\infty}(X, \mathcal{M}, \mu)} \right\}$. Let $f' := f\chi_{N^c}$. We notice that f' is measurable and bounded, with $|f'| \leq ||f||_{L^{\infty}(X,\mathcal{M},\mu)}, \forall x \in X$. Thus we can find $(\phi_n)_{n=1}^{\infty}$ be simple and measurable functions, such that

$$f(x) = \lim_{n \to \infty} \phi_n(x)$$
, a.e. $x \in X$ uniformly, and $|\phi_1| \le |\phi_1| \le \cdots \le |f|$.

Now

$$||f - \phi_n||_{L^{\infty}(X,\mathcal{M},\mu)} = ||f\chi_N + f' - \phi_n||_{L^{\infty}(X,\mathcal{M},\mu)}$$

$$\leq ||f\chi_N||_{L^{\infty}(X,\mathcal{M},\mu)} + ||f' - \phi_n||_{L^{\infty}(X,\mathcal{M},\mu)}$$

$$= ||f' - \phi_n||_{L^{\infty}(X,\mathcal{M},\mu)}$$

$$= \underset{x \in X}{\operatorname{ess sup}} |f'(x) - \phi(x)|$$

$$\to 0.$$

Remark. For $1 \leq p < \infty$,

$$S = \operatorname{Span} \{ \chi_E | \mu(E) < \infty \} = \{ \phi : X \to \mathbb{C} | \phi \text{ is simple, measurable, } \mu(\{x \in X | \phi(x) \neq 0\}) < \infty \}$$

Theorem 6.18 (Density of compactly supported continuous functions). Given some measure space (X, \mathcal{M}, μ) , where μ is a Randon measure, then $C_c(X)$ is dense for $p < \infty$.

Proof. Given any $\epsilon > 0$.

Consider any measurable E, such that $\mu(E) < \infty$.

By regularity, we can find some compact $K \subset E \subset V$ open , such that $\mu(V \setminus E) < \frac{\epsilon^p}{2^p}$. Now we take the bump function K < f < V by Urysohn's Lemma 5.9, where $f \in C_c(V) \subseteq C_c(X)$, and $f|_{K} = 1, f|_{V^c} = 0, 0 \le f \le 1.$

Now

$$||\chi_E - f||_{L^p(\mu)}^p = \int_X |\chi_E - f|^p d\mu$$

$$= \int_{V \setminus K} |\chi_E - f|^p d\mu$$

$$\leq \int_{V \setminus K} 2^p d\mu$$

$$= 2^p \mu(V \setminus K)$$

$$< \epsilon^p.$$

Thus $\chi_E \in \overline{C_c(X)}$.

Since $S = \operatorname{Span} \{ \chi_E | \mu(E) < \infty \}$ is dense in $L^p(\mu)$, so is $C_c(X)$.

Remark. This is not true for $p = \infty$. For instance, consider $X = \mathbb{R}$ with Lebesgue measure, or $X = \mathbb{N}$ with counting measure.

Proposition 6.19 $(L^q(\mu) \subseteq L^p(\mu)^*)$. Let $p \in [1, \infty]$, with $\frac{1}{p} + \frac{1}{q} = 1$. Let $g \in L^q(\mu)$, then $\Lambda_g \in L^p(\mu)^*$, where $\Lambda_g(f) = \int_X fgd\mu$. Moreover, $\forall p \in (1, \infty], ||\Lambda_g||_{L^p(\mu)^*} = ||g||_{L^q(\mu)}$. This also holds for p = 1 if μ is semi-finite.

Proof. clearly Λ_g is linear.

By Holder's Inequality, we have

$$|\Lambda_g(f)| = \left| \int_X fg d\mu \right|$$

$$\leq \int_X |fg| d\mu$$

$$\leq ||g||_{L^q(\mu)} ||f||_{L^p(\mu)}.$$

Thus $||\Lambda_g||_{L^p(\mu)^*} = \sup_{f \in L^p(\mu), f \neq 0} \frac{|\Lambda_g(f)|}{||f||_{L^p(\mu)}} \leq ||g||_{L^q(\mu)} < \infty.$

Thus Λ_g is bounded and $\Lambda_g \in L^p(\mu)^*$.

We now want to show $||\Lambda_g||_{L^p(\mu)^*} \ge ||g||_{L^q(\mu)}$.

If $||g||_{L^q(U)} = 0$, we have that g = 0 a.e., and $||\Lambda_g||_{L^p(\mu)^*} = 0 = ||g||_{L^q(U)}$.

Now consider $||g||_{L^q(U)} \neq 0$. It suffices to find some $||f||_{L^q(U)} = 1$, such that $\Lambda_g(f) \geq ||g||_{L^q(U)}$.

1. 1 .

Notice that
$$p = \frac{1}{1 - \frac{1}{q}} = \frac{1}{\frac{q-1}{q}} = \frac{q}{q-1}$$
.

Let $f = \overline{\operatorname{sgn}(g)} \frac{|g|^{q/p}}{||g||^{q/p}_{L^{q}(u)}}$, we have that

$$||f||_{L^{p}(\mu)}^{p} = \int |f|^{p} d\mu$$

$$= \int \frac{|g|^{q}}{||g||_{L^{q}(\mu)}^{q}} d\mu$$

$$= \frac{1}{||g||_{L^{q}(\mu)}^{q}} \int |g|^{q} d\mu$$

$$= \frac{1}{||g||_{L^{q}(\mu)}^{q}} ||g||_{L^{q}(U)}^{q}$$

$$= 1,$$

which means that $f \in L^p(\mu)$. In addition,

$$\begin{aligned} |\Lambda_g(f)| &= \left| \int_X fg d\mu \right| \\ &= \left| \int_X \overline{\operatorname{sgn}(g)} \frac{|g|^{q/p}}{||g||_{L^q(\mu)}^{q/p}} g d\mu \right| \\ &= \frac{1}{||g||_{L^q(\mu)}^{q/p}} \left| \int_X |g|^{1+q/p} d\mu \right| \\ &= \frac{1}{||g||_{L^q(\mu)}^{q-1}} \left| \int_X |g|^q d\mu \right| \\ &= ||g||_{L^q(U)}. \end{aligned}$$

Thus, $||\Lambda_g||_{L^p(\mu)^*} = \sup_{f \in L^p(\mu), f \neq 0} \frac{|\Lambda_g(f)|}{||f||_{L^p(\mu)}} \ge ||g||_{L^q(\mu)}$.

2. $p=\infty, q=1.$ Let $f=\overline{\mathrm{sgn}(g)}\in L^\infty(\mu).$ We have $||f||_{L^\infty(\mu)}=1.$ In addition,

$$\Lambda_g(f) = \int_X \overline{\mathrm{sgn}(g)} g d\mu = \int_X |g| d\mu = ||g||_{L^1(\mu)}.$$

Thus, $||\Lambda_g||_{L^p(\mu)^*} = \sup_{f \in L^p(\mu), f \neq 0} \frac{|\Lambda_g(f)|}{||f||_{L^p(\mu)}} \ge ||g||_{L^q(\mu)}$

3. $p = 1, q = \infty$, and μ is semi-finite.

Choose $\epsilon \in (0, ||g||_{L^{\infty}(\mu)}).$

Let
$$A = \left\{ x \in X ||g(x)| > ||g||_{L^{\infty}(\mu)} - \epsilon \right\}$$
.
Notice that $\mu(A) > 0$, otherwise $||g||_{L^{\infty}(\mu)} = \epsilon$.

Since μ is semi-finite, we can find $E \in \mathcal{M}$, such that $0 < \mu(E) < \infty, E \subseteq A$. Let $f = \frac{\chi_E}{\mu(E)} \overline{\operatorname{sgn}(g)}$.

Notice that

$$||f||_{L^{1}(\mu)} = \int_{X} |f| d\mu$$

$$= \int_{X} \left| \frac{\chi_{E}}{\mu(E)} \overline{\operatorname{sgn}(g)} \right|$$

$$= \frac{1}{\mu(E)} \int_{X} \chi_{E} d\mu$$

$$= 1.$$

Thus $f \in L^1(\mu)$. In addition,

$$\begin{split} \Lambda_g(f) &= \int_X fg d\mu \\ &= \int_X \frac{\chi_E}{\mu(E)} \overline{\mathrm{sgn}(g)} g d\mu \\ &= \int_E \frac{|g|}{\mu(E)} d\mu \\ &\geq \int_E \frac{||g||_{L^\infty(\mu)} - \epsilon}{\mu(E)} d\mu \\ &\geq ||g||_{L^\infty(\mu)} - \epsilon. \end{split}$$

Since this holds for any $\epsilon > 0$, we have that

$$||\Lambda_g||_{L^p(\mu)^*} = \sup_{f \in L^p(\mu), f \neq 0} \frac{|\Lambda_g(f)|}{||f||_{L^p(\mu)}} \ge \sup_{\epsilon > 0} ||g||_{L^{\infty}(\mu)} - \epsilon = ||g||_{L^q(\mu)}.$$

We thus have $||\Lambda_g||_{L^p(\mu)^*} = ||g||_{L^q(\mu)}$.

Remark. In the above case, the map $g \mapsto \Lambda_g$ is isometric.

Complex measures

Signed measures

Recall that if (X, \mathcal{M}, μ) is a measure space, and $f: X \to [0, \infty)$ is measurable, then we can set a measure $\mu_f(A) := \int_X \chi_A f d\mu$, and we have $\int_X g d\mu_f = \int g f d\mu$.

Example 7.1.1. Consider the regular Lebesgue measure, and $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$, then λ_f gives a probability measure with the standard distribution.

We want to generalize this to functions that are not non-negative.

Definition 7.1. Let (X, \mathcal{M}) be a measurable space. A function $\nu : \mathcal{M} \to [-\infty, \infty]$ is a **signed measure** if

$$\nu(\emptyset) = 0$$

$$\nu\left(\bigsqcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \nu(E_i),$$

and ν only takes at most one of $\pm \infty$.

Proposition 7.1. If $|\nu(\bigsqcup_{i=1}^{\infty} E_i)| < \infty$, then $\sum_{i=1}^{\infty} \nu(E_i)$ must converge absolutely, since we want $\nu(\bigsqcup_{i=1}^{\infty} E_i)$ to be invariant of the order of union.

Proposition 7.2. If $f \in \mathcal{L}^1(X,\mu)$, then $\mu_f := \int_x \chi(A) f d\mu$ is a signed measure.

Proposition 7.3. If $f,g \geq 0$ is measurable, and $g \in \mathcal{L}^1(\mu)$, then $\nu(E) := \int_X \chi_E(f-g) d\mu$ is a signed

Definition 7.2. Suppose ν is a signed measure, then $E \in \mathcal{M}$ is

- 1. **null** for ν if $\forall F \subseteq E, \nu(F) = 0$.
- 2. **positive** for ν if $\forall F \subset E, \nu(F) > 0$.
- 3. **negative** for ν if $\forall F \subseteq E, \nu(F) < 0$.

Lemma 7.4. Let $E \in \mathcal{M}$, if $0 < \nu(E) < \infty$, then $\exists A \subseteq E, A \in \mathcal{M}$ is positive, and $\nu(A) > 0$.

Proof. Choose $B_1 \subseteq E, B_1 \in \mathcal{M}$, such that $\nu(B_1) \le \max\{-1, \frac{1}{2}\inf\{\nu(B)|B \subseteq E, B \in \mathcal{M}\}\}$.

Recursively choose $B_n \subseteq E \setminus \bigsqcup_{i=1}^{n-1} B_i$ with $\nu(B_n) \le \max\left\{-1, \frac{1}{2}\inf\left\{\nu(B)|B \subseteq E \setminus \bigsqcup_{i=1}^{n-1} B_i, B \in \mathcal{M}\right\}\right\}$.

Now either this sequence terminates (then $A = E \setminus \bigsqcup_{i=1}^{n-1} B_i$ is positive), or we get an infinite sequence. Set $A := E \setminus \bigsqcup_{i=1}^{\infty} B_i$.

We have $\nu(E) = \nu(A) + \sum_{i=1}^{\infty} \nu(B_i) < \infty$, thus $\sum_{i=1}^{\infty} \nu(B_i)$ converges absolutely. So $\nu(A) = \nu(E) - \sum_{i=1}^{\infty} \nu(B_i) > \nu(E) > 0$.

Notice that $\nu(B_n) \to 0^-$, so if $B \subseteq A \subseteq E \setminus \bigsqcup_{i=1}^{n-1} B_i$ has $\nu(B) < 0$, we must have $\nu(B) < 2\nu(B_n)$ for some large n. But

$$\inf \left\{ \nu(B) | B \subseteq E \setminus \bigsqcup_{i=1}^{n-1} B_i, B \in \mathcal{M} \right\} > 2\nu(B_n),$$

which is a contradiction.

Thus A is positive.

Lemma 7.5. If $(A_n)_{n=1}^{\infty}$ is a sequence of positive sets, then $A := \bigcup_{n=1}^{\infty} A_n$ is positive.

Proof. If $B \subseteq A, B \in \mathcal{M}$, let $B_n = B \cap (A_n \setminus \bigcup_{i=1}^{n-1} A_i)$. Then $(B_n)_{n=1}^{\infty} \subseteq \mathcal{M}$ are pairwise disjoint, with $B = \bigsqcup_{n=1}^{\infty} B_n.$

For any n, since A_n is positive, we have $\nu(B_n) > 0$.

Thus $\nu(B) = \sum_{n=1}^{\infty} \nu(B_n) > 0$.

Theorem 7.6 (Hahn decomposition). Let ν be a signed measure on (X, \mathcal{M}) , there are $P, N \in \mathcal{M}$ such that $X = P \sqcup N$, and P is positive, N is negative. Moreover, this is unique in the sense that if $X = P' \sqcup N'$ is another such decomposition, then the symmetric difference $P\Delta P'$ is null.

Proof. Existence:

By taking $-\nu$ if necessary, we can WLOG assume ν never takes $+\infty$.

Let $m := \sup \{ \nu(A) : A \text{ is positive} \} < \infty$.

Choose positive sets A_n such that $\nu(A_n) \to m$, and let $P := \bigcup_{n=1}^{\infty} A_n$. Thus P is positive by lemma, and $\forall n, \nu(P) = \nu(A_n) + \nu(P \setminus A_n) \ge A(A_n)$. Thus $\nu(P) = m$.

Let $N := X \setminus P$.

Suppose N is not negative, $\exists E \subseteq N, E \in \mathcal{M}$, such that $\nu(E) > 0$. By lemma, there is positive $A \subseteq E$ with $\nu(A) > 0$. Then $P \sqcup A$ is measurable, positive, and $\nu(P \sqcup A) = \nu(P) + \nu(A) > m$, which is a contradiction. Uniqueness:

Let $A := P \setminus P' = N' \setminus N$ is both positive and negative, thus null. Similarly $B := P' \setminus P = N \setminus N'$ is null. Thus $P\Delta P' = A \cup B$ is null.

Definition 7.3. Let ν be a signed measure on (X, \mathcal{M}) , and $P, N \in \mathcal{M}$ be as from Hahn decomposition, the **Jordan decomposition** of it is $\nu = \nu^+ - \nu^-$, where $\nu^+(E) := \nu(E \cap P), \nu^-(E) := -\nu(E \cap N)$ are positive measures.

Definition 7.4. Let ν be a signed measure on (X, \mathcal{M}) , with Jordan decomposition $\nu = \nu^+ - \nu^-$, the total variation $|\nu| = \nu^+ + \nu^-$.

Corollary 7.7. Let $\nu = \nu_+ - \nu_-$ be a signed measure with its Jordan decomposition, there exists a measurable function $f: X \to \mathbb{R}$ with |f| = 1, and

$$\nu(E) = \int_{E} f d|\nu|,$$

where $|\nu| = \nu_{+} + \nu_{-}$.

Proof. Let $X = P \sqcup N$ be the Hahn decomposition. Define $f(x) = \chi_P - \chi_N$, then clearly |f| = 1. In addition,

$$\int_{E} f d|\nu| = \int_{E} \chi_{P} - \chi_{N} d|\nu|$$

$$= \int_{E \cap P} d|\nu| - \int_{E \cap N} d|\nu|$$

$$= \nu(E)$$

Corollary 7.8. Let $\nu = \nu_+ - \nu_-$ be a signed measure with its Jordan decomposition. If $|\nu|$, μ are σ -finite with $|\nu| << \mu$, then $\exists g = g_+ + g_- : X \to \mathbb{R} \cap \pm \infty$ measurable function, with at most one of g_+, g_- take ∞ , such that $\nu(E) = \int_E g d\mu$.

Proposition 7.9. Let ν be a signed measure on (X,\mathcal{M}) , with Jordan decomposition $\nu = \nu^+ - \nu^-$, then for any other positive λ_1, λ_2 , such that $\nu = \lambda_1 - \lambda_2$, we have $\lambda_1 \geq \nu^+, \lambda_2 \geq \nu^-$.

Proof. Let $X = P \sqcup N$ be the Hahn decomposition. Consider any $E \in \mathcal{M}$, we have

$$\lambda_{1}(E) \geq \lambda_{1}(E \cap P)$$

$$= \nu(E \cap P) + \lambda_{2}(E \cap P)$$

$$\geq \nu(E \cap P)$$

$$= \nu^{+}(E)$$

$$\lambda_{2}(E) \geq \lambda_{2}(E \cap N)$$

$$= -\nu(E \cap N) + \lambda_{1}(E \cap N)$$

$$\geq -\nu(E \cap N)$$

$$= \nu^{-}(E).$$

7.2 Complex measures

Definition 7.5. Let (X, \mathcal{M}) be a measurable space, a **complex measure** is a function $\nu : \mathcal{M} \to \mathbb{C}$, such that

1. $\nu(\emptyset) = 0$

2. $\nu(\bigsqcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \nu(E_i)$ absolutely.

Remark. The absolute convergence is important since we want $\nu(\bigsqcup_{i=1}^{\infty} E_i)$ to be invariant of the order of union.

Example 7.2.1. Let (X, \mathcal{M}, μ) be a measure space, and $f \in \mathcal{L}^{\infty}(\mu)$ with $||f||_{L^{\infty}()} = 1$, then with $\nu(E) := \int_{E} f d\mu$, we have ν is a complex measure, and $\forall E \in \mathcal{M}$,

$$\mu(E) = \int_{E} d\mu$$

$$\geq \int_{E} |f| d\mu$$

$$\geq \left| \int_{E} h d\mu \right|$$

$$\geq \left| \int_{E} d\nu \right|$$

$$= |\nu(E)|.$$

Definition 7.6. Let (X, \mathcal{M}, μ) be a measure space, the **total variation** of a complex measure μ is $|\mu|$: $\mathcal{M} \to [0, \infty]$, defined by

$$\forall E \in \mathcal{M}, |\mu|(E) = \sup \left\{ \sum_{i=1}^{\infty} |\mu(E_i)| : E = \bigsqcup_{i=1}^{\infty} E_i, \ (E_i)_{i=1}^{\infty} \subset \mathcal{M} \right\}.$$

Proposition 7.10. Let (X, \mathcal{M}, μ) be a measure space, μ be a complex measure, then $|\mu|$ is a positive measure.

Proof. 1. $|\mu|(\emptyset) = 0$.

2. $|\mu|(E) > 0, \forall E \in \mathcal{M}$.

3. Fix
$$E = \bigsqcup_{i=1}^{\infty} E_i \in \mathcal{M}$$
, $(E_i)_{i=1}^{\infty} \subset \mathcal{M}$. Consider any $(A_j)_{j=1}^{\infty} \subset \mathcal{M}$ such that $E = \bigsqcup_{j=1}^{\infty} A_j$, then $A_j = A_j \cap E = \bigsqcup_{i=1}^{\infty} A_j \cap E_i$.

$$\sum_{j=1}^{\infty} |\mu(A_j)| = \sum_{j=1}^{\infty} \left| \sum_{i=1}^{\infty} \mu(A_j \cap E_i) \right|$$

$$\leq \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} |\mu(A_j \cap E_i)|$$

$$\leq \sum_{i=1}^{\infty} |\mu| \left(\bigsqcup_{j=1}^{\infty} (A_j \cap E_i) \right)$$

$$= \sum_{i=1}^{\infty} |\mu| (E_i).$$

We have that

$$|\mu|(E) = \sup \left\{ \sum_{i=1}^{\infty} |\mu(A_j)| : E = \bigsqcup_{j=1}^{\infty} A_j, \ (A_j)_{j=1}^{\infty} \subset \mathcal{M} \right\} \le \sum_{i=1}^{\infty} |\mu|(E_i).$$

Now given any $\epsilon > 0$.

 $\forall i$, pick $t_i := |\mu|(E_i) - \frac{\epsilon}{2^i}$ and we can find $E_{ij} \in \mathcal{M}$, such that

$$E_i = \bigsqcup_{j=1}^{\infty} E_{ij}, \ \sum_{j=1}^{\infty} |\mu(E_{ij})| > t_i.$$

We have

$$|\mu|(E) \ge \sum_{i,j=1}^{\infty} |\mu(E_{ij})|$$

$$\ge \sum_{i=1}^{\infty} t_i$$

$$= \sum_{i=1}^{\infty} |\mu|(E_i) - \epsilon.$$

Taking $\epsilon \to 0$, we have $|\mu|(E) \ge \sum_{i=1}^{\infty} |\mu|(E_i)$. Thus $|\mu|(E) = \sum_{i=1}^{\infty} |\mu|(E_i)$.

Lemma 7.11. Let $\{z_1, \ldots, z_N\} \subset \mathbb{C}$, then $\exists S \subseteq [N]$, such that

$$\left| \sum_{k \in S} z_k \right| \ge \frac{1}{\pi} \sum_{k=1}^N |z_k|.$$

Theorem 7.12. Let (X, \mathcal{M}, μ) be a measure space, μ be a complex measure, then $|\mu|$ is a finite measure. Namely, $\forall E \in \mathcal{M}$, such that $|\mu|(E) < \infty$.

Proof. Suppose $\exists E \in \mathcal{M}$, such that $|\mu|(E) = \infty$.

Let $B_0 = E$.

Let $t := \pi(1 + |\mu(E)|) \ge \pi$.

Then we can find a partition $E_i \in \mathcal{M}$, such that

$$E = \bigsqcup_{i=1}^{\infty} E_i, \ \sum_{i=1}^{\infty} |\mu(E_{ij})| > t.$$

Thus there is some $N \in \mathbb{N}$, such that $\sum_{i=1}^{N} |\mu(E_{ij})| > t$. By lemma, $\exists S \subseteq [N]$, such that

$$\left| \mu \left(\bigsqcup_{i \in S} E_i \right) \right| = \left| \sum_{i \in S} \mu(E_i) \right|$$

$$\geq \frac{1}{\pi} \sum_{i=1}^{N} |\mu(E_i)|$$

$$> \frac{t}{\pi}$$

$$\geq 1.$$

Now let $A := \bigsqcup_{i \in S} E_i, B = E \setminus A$. We have

$$|\mu(B)| = |\mu(E) - \mu(A)|$$

$$\geq |\mu(A)| - |\mu(E)|$$

$$> \frac{t}{\pi} - |\mu(E)|$$

$$= 1.$$

Thus $E = A \sqcup B$, where $|\mu(A)| > 1$, $|\mu(B)| > 1$.

Since $|\mu|(A \sqcup B) = |\mu|(A) + |\mu|(B) = \infty$, at least one of $|\mu|(A), |\mu|(B)$ is ∞ .

WLOG, say $|\mu|(B) = \infty$. We let $A_1 = A, B_1 = B$.

Now apply the above argument on $B_1 = A_2 \sqcup B_2$, where $|\mu(A_2)| > 1$, $|\mu(B_2)| > 1$, $|\mu(B_2)| > \infty$.

Repetitively, we construct disjoint $(A_k)_{k=1}^{\infty}$, such that $\forall i \geq 1, |\mu(A_i)| > 1$. Notice that $\bigsqcup_{k=1}^{\infty} A_k \in \mathcal{M}$, and we have $\mu(\bigsqcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$ absolutely. However, $\sum_{k=1}^{\infty} |\mu(A_k)| \geq \sum_{k=1}^{\infty} 1 = \infty$ diverges.

Definition 7.7. Let μ, ν be two complex measures on (X, \mathcal{M}) . A function f is the **Radon–Nikodym derivative**, written as $\frac{d\nu}{d\mu}$, if $\forall E \in \mathcal{M}, \nu(E) = \int_E f d\mu$. We can also abuse the notation and write $d\nu = f d\mu$.

Proposition 7.13. If the Radon–Nikodym derivative exists, it is unique μ -a.e..

Proof. Suppose there are two f,h that satisfies $\forall E \in \mathcal{M}, \nu(E) = \int_E f d\mu = \int_E h d\mu$, then $\int_E (f-h) d\mu = 0$. Thus $f = h \mu$ -a.e..

7.3Radon-Nikodym-Lebegue Decomposition

Definition 7.8. Let μ, ν be two measures on (X, \mathcal{M}) , we say ν is absolutely continuous with respect to μ if $\mu(A) = 0 \implies \nu(A) = 0$, and is written as $\nu \ll \mu$.

Example 7.3.1. Consider the counting measure μ , then for any other (non trivially infinite) measure ν , we always have $\nu \ll \mu$, since $\mu(E) = 0 \implies E = \emptyset$.

Lemma 7.14. Let μ be a σ -finite measure on (X, \mathcal{M}) , then there is some $w \in L^1(\mu)$, such that $\forall x \in X, 0 < \infty$ w(x) < 1.

Proof. Write $X = \bigcup_{n=1}^{\infty} E_n$, where $\forall n \geq 1, \mu(E_n) < \infty$. Let $w_n := \frac{2^{-n} \chi_{E_n}}{1 + \mu(E_n)}, w = \sum_{n=1}^{\infty} w_n.$

Notice that $0 < w_n(x) < 1$, and

$$\int_X w d\mu = \sum_{n=1}^\infty \int_X w_n d\mu$$

$$= \sum_{n=1}^\infty \int_X \frac{2^{-n} \chi_{E_n}}{1 + \mu(E_n)} d\mu$$

$$\leq \sum_{n=1}^\infty \frac{2^{-n} \mu(E_n)}{1 + \mu(E_n)}$$

$$< \sum_{n=1}^\infty 2^{-n}$$

$$< \infty.$$

Lemma 7.15. Let μ be a σ -finite measure on (X, \mathcal{M}) , and $g \in L^1(\mu)$. Suppose $\forall E \in \mathcal{M}$ such that $\mu(E) > 0$, we have that

$$\frac{1}{\nu(E)}\int_E g d\mu \in S$$

for some closed $S \subseteq \mathbb{C}$, then

$$g(x) \in S$$
, a.e. $x \in X$.

Proof. Assume for contradiction that there is $E=:g^{-1}\left(\bar{B}(t,r)\right)$ such that $\mu(E)>0, \bar{B}(t,r)\subseteq S^c$. Then $A_E(g):=\frac{1}{\mu(E)}\int_E gd\mu\in S$, while

$$|A_E(g) - t| = \left| \frac{1}{\mu(E)} \int_E (g - t) d\mu \right|$$

$$\leq \frac{1}{\mu(E)} \int_E |g - t| d\mu$$

$$\leq \frac{1}{\mu(E)} \int_E r d\mu$$

$$= r$$

Thus $A_E(g) \in \bar{B}(t,r) \subseteq S^c$, which is a contradiction.

Theorem 7.16 (Radon–Nikodym for finite measure). Let μ be a σ -finite measure, and ν is a positive finite measure on (X, \mathcal{M}) . Suppose $\nu << \mu$, then $\exists h \in L^1(\mu) \cap \mathcal{L}^+$, such that $\forall E \in \mathcal{M}, \nu(E) = \int_E h d\mu$. Moreover, h is unique μ -a.e.

Proof. (Von Neumann's proof).

Since μ is σ -finite, there is some $w \in L^1(\mu)$, such that $\forall x \in X, 0 < w(x) < 1$.

Define a new measure $d\lambda := d\nu + wd\mu$, namely, $\forall E \in \mathcal{M}, \lambda(E) := \nu(E) + \int_E wd\mu$.

Claim 7.16.1. There is some measurable g such that $\forall x \in X, g(x) \in [0,1]$, and for any measurable $f \in L^2(\lambda)$, we have $\int_E f(1-g)d\nu = \int_E fgwd\mu$.

Proof. Notice that $\int_X f d\lambda = \int_X f d\lambda + \int_X f w d\lambda$ for any measurable f.

Consider any $f \in L^2(\lambda)$,

$$\begin{split} \left| \int_X f d\nu \right| &\leq \int_X |f| d\nu \\ &= \int_X |f| d\lambda - \int_X |f| w d\mu \\ &\leq \int_X |f| d\lambda \\ &\leq \int_X |f| \cdot 1 d\lambda \\ &\leq ||f||_{L^2(\lambda)} \lambda(X). \end{split}$$

Notice that $\lambda(X) = \nu(X) + \int_X w d\mu < \infty$, so $\Lambda: f \mapsto \int_X f d\nu \in L^2(\lambda)^*$. Since $L^2(\lambda)$ is a Hilbert space, there is a unique $g \in L^2(\lambda)$, such that $\int_X f g d\lambda = \Lambda(f) = \int_X f d\nu$, $\forall f \in L^2(\lambda)$. Now we know $\int_X f d\nu = \int_X f g d\lambda = \int_X f g d\nu + \int_X f g w d\mu$.

For any $E \in \mathcal{M}, f \in L^2(\lambda)$, we can take $\tilde{f} := f\chi_E \in L^2(\lambda)$, and we get

$$\begin{split} \int_E f(1-g)d\nu &= \int_X \tilde{f}(1-g)d\nu \\ &= \int_X \tilde{f}d\nu - \int_X \tilde{f}gd\nu \\ &= \int_X \tilde{f}gwd\mu + \int_X \tilde{f}gd\nu - \int_X \tilde{f}gd\nu \\ &= \int_X \tilde{f}gwd\mu \\ &= \int_E fgwd\mu. \end{split}$$

In addition, for any $E \in \mathcal{M}$, taking f = 1, we have that

$$\nu(E) = \int_E d\nu = \int_E g d\lambda.$$

Thus $0 \le \int_E g d\lambda \le \lambda(E)$.

Thus $\forall E \in \mathcal{M}$, such that $\lambda(E) > 0$, we have

$$\frac{\int_E g d\lambda}{\lambda(E)} \in [0,1].$$

By the above lemma, we have that $g(x) \in [0,1], \lambda$ -a.e. $x \in X$. WLOG, we can redefine g(x) = 0 for any $g(x) \notin [0,1]$.

Let $A := g^{-1}([0,1)), B := g^{-1}(\{1\}).$ Let $f = \chi_B$, we have that

$$\int_{X} \chi_{B}(1-g)d\nu = \int_{X} \chi_{B}gwd\mu$$

$$\int_{B} (1-g)d\nu = \int_{B} wd\mu$$

$$0 = \int_{B} wd\mu.$$

Since w > 0, we must have $\mu(B) = 0$. Since $\nu << \mu, \nu(B) = 0$ Thus $\forall E \in \mathcal{M}, \nu(E) = \nu(E \cap A) + \nu(E \cap B) = \nu(E \cap A)$. Now, let $f_n := \sum_{k=0}^n g^k$, we have that $f_n(1-g) = 1 - g^{n+1}$, so

$$\int_{E} (1 - g^{n+1}) d\nu = \int_{E} f_n (1 - g) d\nu = \int_{E} f_n g w d\mu.$$

Notice that $1 - g^{n+1}(x) \to \begin{cases} 1, & x \in A, \\ 0, & x \in B. \end{cases}$ monotonically.

In addition, $(f_n gw)(x)$ is increasing and bounded.

So there is some $h(x) := \lim_{n \to \infty} (f_n gw)(x)$.

Thus, by LMCT, we have

$$\begin{split} \nu(E) &= \nu(A \cap E) \\ &= \int_{E \cap A} d\nu \\ &= \int_{E \cap A} \lim_{n \to \infty} (1 - g^{n+1}) d\nu \\ &= \lim_{n \to \infty} \int_{E \cap A} (1 - g^{n+1}) d\nu \\ &= \lim_{n \to \infty} \int_{E} f_n gw d\mu \\ &= \int_{E} h d\mu. \end{split}$$

Since ν is finite, we have $h \in L^1(\mu)$.

Theorem 7.17 (Radon–Nikodym). Let μ, ν be two σ -finite measures on (X, \mathcal{M}) . Suppose $\nu \ll \mu$, then $\exists f \in \mathcal{L}^+$, such that $\forall E \in \mathcal{M}, \nu(E) = \int_E f d\mu$. Moreover, f is unique μ -a.e.

Proof. Since ν is σ -finite, we have $X = \bigsqcup_{n=1}^{\infty} X_n$, where each $\nu(X_n)$ is finite. We can apply the above theorem on $\nu_n(E) := \nu(E \cap X_n)$, which are finite measures, and let $h = \sum_{n=1}^{\infty} h_n$. h will be positive and measurable, but not in $L^1(\mu)$. Yet it is in $L^1(\mu|_{X_n})$ for all n.

Remark. The σ -finiteness is essential. Indeed, consider the following counterexample.

Example 7.3.2. Consider λ to be the Lebesgue measure on (0,1), and μ to be the counting measure, which is not σ -finite.

Although $\lambda \ll \mu$, it is impossible to find such an $h = \frac{d\lambda}{d\mu}$, because for any $E \in \mathcal{M}$, we will have

$$\lambda_a(E) = \int_E h d\mu$$
$$= \sum_{x \in F} h(x),$$

which is not possible.

Definition 7.9. Two measures μ, ν on (X, \mathcal{M}) are said to be **mutually singular**, written as $\mu \perp \nu$, if $X = A \sqcup B$, where A is μ -null and B is ν -null.

Theorem 7.18 (Lebesgue decomposition). Let μ, ν be two σ -finite measures on (X, \mathcal{M}) . There is a unique decomposition $\nu = \nu_a + \nu_s$ with $\nu_a << \mu, \nu_s \perp \mu$, both positive measures.

Proof. Take $\lambda = \mu + \nu$, which is σ -finite, and $\mu, \nu \ll \lambda$. By Radon-Nikodym, $\exists f, g \in \mathcal{L}^+$, such that

$$\mu(E) = \int_{E} f d\lambda, \nu(E) = \int_{E} g d\lambda.$$

Let $A = f^{-1}((0, \infty]), B = f^{-1}(\{0\}), \nu_a(E) = \nu(E \cap A), \nu_s(E) = \nu(E \cap B)$.

Since $X = A \sqcup B$, clearly $\nu = \nu_a + \nu_s$.

We can see that ν_s is A-null.

On the other hand, $\forall E \subseteq B, \mu(E) = \int_E f d\lambda = 0$, so μ is B-null.

This shows $\nu_s \perp \mu$.

In addition, suppose $\mu(E) = \int_E f d\lambda = 0$, then we must have $\lambda(E \cap A) = 0$, which implies $\nu_a(E) = \nu(E \cap A) = 0$ $\int_{E \cap A} g d\lambda = 0$. Thus $\nu_a \ll \mu$.

Theorem 7.19. (Lebeque-Radon-Nikodym for complex measures)

- 1. Let ν be a complex measure on (X, \mathcal{M}) . There is a unique finite measure $|\nu|$ and a measurable function h, such that $|h| = 1 |\nu|$ -a.e., and $d\nu = hd|\nu|$.
- 2. If μ is a σ -finite measure on (X,\mathcal{M}) , then ν decomposes uniquely as $\nu = \nu_a + \nu_s$, such that $\nu_a << \mu$ is the absolutely continuous part and $\nu_s \perp \mu$ is the singular part. Also, $d\nu_a = fd\mu$ for some $f \in \mathcal{L}^1(\mu)$.

1. Write $\nu = \nu_1 - \nu_2 + i\nu_3 - i\nu_4$ with Jordan decomposition. Define $\mu := \nu_1 + \nu_2 + \nu_3 + \nu_4$, which Proof. is a positive finite measure.

Notice that $\nu_i \ll \mu$ since they have disjoint supports. Applying Randon-Nikodym, we have some $f_i \in \mathcal{L}^+$, where $\forall E \in \mathcal{M}, \nu_i(E) = \int_E f_i d\mu$. Thus

$$\nu(E) = \int_{E} (f_1 - f_2 + if_3 - if_4) d\mu.$$

Now we define $|\nu|$ by

$$|
u|(E) := \int_{E} |f_1 - f_2 + if_3 - if_4| d\mu.$$

Define $h := sgn(f_1 - f_2 + if_3 - if_4)$. Notice that |h| = 1 unless $f_1 - f_2 + if_3 - if_4 = 0$, which is a null set since $\nu(A) = \int_A (f_1 - f_2 + if_3 - if_4) d\mu = 0$ for $A := \{x \in X : (f_1 - f_2 + if_3 - if_4)(x) = 0\}$. Notice that by definition $d|\nu| = \bar{h}(f_1 - f_2 + if_3 - if_4) d\mu = \bar{h}d\nu$. Thus

$$\int_{E} hd|\nu| = \int_{E} h\bar{h}d\nu = \nu(E).$$

In addition, $|\nu|(X) = \int_X |f_1 - f_2 + if_3 - if_4|d\mu \le ||f_1||_1 + ||f_2||_1 + ||f_3||_1 + ||f_4||_1 < \infty$. In addition, it is unique up to a ν -null set.

2. From 1, we have $d\nu = hd|\nu|$, and we can use Lebesgue decomposition to write $|\nu| = |\nu|_a + |\nu|_s$.

Let $f = \frac{d|\nu|}{d\mu}$ be the Randon-Nikodym derivative, we have $d\nu = hfd\mu + hd|\nu|_s$.

Let $d\nu_a := hfd\mu, d\nu_s := hd|\nu|_s$, and we have the result.

Now we want to uniqueness:

Suppose $\nu=\nu_a+\nu_s=\nu_a'+\nu_s'$ are two decompositions as in the theorem. Then $(\nu_a-\nu_a')+(\nu_s-\nu_s')=0$ is the zero measure.

Thus, $\mu' := \nu_a - \nu_a' = \nu_s' - \nu_s$, where $\nu_a - \nu_a' << \mu$, and $\nu_s' - \nu_s \perp \mu$.

Thus, $\mu' = 0$, and $\nu_a = \nu'_a, \nu'_s = \nu_s$.

Corollary 7.20. (Polar decomposition of complex measures)

Let ν be a complex measure on (X, \mathcal{M}) . There is a unique measurable function h, such that $|h| = 1 |\nu|$ -a.e., and $d\nu = hd|\nu|$.

Proof.

$$1 \geq \frac{|\nu(E)|}{|\nu|(E)} = \left|\frac{1}{|\nu|(E)} \int_E h d|\nu|\right|.$$

Thus $|h(x)| \leq 1$.

For any 0 < r < 1, consider $A_r := \{x \in X : |h(x)| < r\} = \bigsqcup_{i=1}^{\infty} E_i$. We have

$$\sum_{i=1}^{\infty} |\nu(E_i)| = \sum_{i=1}^{\infty} \left| \int_{E_i} h d|\nu| \right|$$

$$\leq \sum_{i=1}^{\infty} \left| \int_{E_i} r d|\nu| \right|$$

$$= r \sum_{i=1}^{\infty} |\nu| (E_i)$$

$$= r|\nu| (E_i).$$

Taking sup over all E_i , we have that $|\nu|(E_i) \le r|\nu|(E_i)$. Since r < 1, we have $|\nu|(E_i) = 0$. Thus |h(x)| > 1a.e. $x \in X$ for all 0 < r < 1. Thus |h| = 1a.e..

Corollary 7.21. If $d\lambda = gd\mu$, then we have $h|\lambda| = |g|d\mu$.

8 Dual of Function Spaces

8.1 Dual of L^p Spaces

Theorem 8.1. Let (X, \mathcal{M}, μ) be a measure space, and $\frac{1}{p} + \frac{1}{q} = 1$ for $p \in (1, \infty)$, we have

$$L^q(\mu) \simeq L^p(\mu)^*,$$

where the isometric isomorphism $L^q(\mu) \stackrel{\sim}{\to} L^p(\mu)^*$; $g \mapsto \Lambda_g$ is defined to be

$$\forall f \in L^p(\mu), \Lambda_g(f) := \int_X fg dx.$$

In addition, the same is true for p = 1 if μ is σ -finite.

Proof. Let $1 \le p < \infty$.

- 1. By 6.19, we only need to show the subjectivity: $\forall \Lambda \in L^p(\mu)^*, \exists g \in L^q(\mu), \text{ such that } \Lambda = \Lambda_g.$
- 2. First we assume $\mu(X) < \infty$ is finite.

Given any $\Lambda \in L^p(\mu)^*$.

Consider the mapping $\nu: E \mapsto \Lambda(\chi_E)$ for any measurable $E \in \mathcal{M}$.

This is well-defined since $\chi_E \in L^{\infty}(X) \subseteq L^p(X)$.

Notice that $|\nu(E)| = |\Lambda(\chi_E)| \le ||\Lambda||_{L^p(\mu)^*} ||\chi_E||_{L^p(\mu)} < \infty$, thus ν is finite.

We have $\nu(\emptyset) = \Lambda(0) = 0$ since Λ is linear.

For any $B = \bigsqcup_{i=0}^{\infty} A_i$, with $A_i \subseteq U$ be measurable, we have $\chi_B = \sum_{i=0}^{\infty} \chi_{A_i}$ in $L^p(\mu)$. Indeed,

$$\left\| \chi_B - \sum_{i=0}^N \chi_{A_i} \right\|_{L^p(\mu)}^p = \left\| \sum_{i=N+1}^\infty \chi_{A_i} \right\|_{L^p(\mu)}^p$$

$$= \left\| \chi_{\bigsqcup_{i=N+1}^\infty A_i} \right\|_{L^p(\mu)}^p$$

$$= \mu \left(\bigsqcup_{i=N+1}^\infty A_i \right)^p$$

$$\to 0.$$

Notice that this fails when $p = \infty$!

Thus,

$$\begin{split} \nu(B) &= \Lambda(\chi_B) \\ &= \Lambda\left(\sum_{i=0}^{\infty} \chi_{A_i}\right) \\ &= \Lambda\left(\lim_{n \to \infty} \sum_{i=0}^{n} \chi_{A_i}\right) \\ &= \lim_{n \to \infty} \Lambda\left(\sum_{i=0}^{n} \chi_{A_i}\right) & \text{continuity of } \Lambda \\ &= \lim_{n \to \infty} \sum_{i=0}^{n} \Lambda(\chi_{A_i}) & \text{linearity of } \Lambda \\ &= \lim_{n \to \infty} \sum_{i=0}^{n} \nu(A_i) \\ &= \sum_{i=0}^{\infty} \nu(A_i), \end{split}$$

which shows countable additivity. In addition,

$$\sum_{i=0}^{\infty} |\nu(A_i)| = \lim_{n \to \infty} \sum_{i=0}^{n} |\Lambda(\chi_{A_i})|$$

$$\leq \lim_{n \to \infty} \sum_{i=0}^{n} ||\Lambda||_{L^p(\mu)^*} ||\chi_{A_i}||_{L^p(\mu)}$$

$$= ||\Lambda||_{L^p(\mu)^*} \lim_{n \to \infty} \sum_{i=0}^{n} ||\chi_{A_i}||_{L^p(\mu)}$$

$$= ||\Lambda||_{L^p(\mu)^*} \lim_{n \to \infty} \sum_{i=0}^{n} \mu(A_i)^{1/p}$$

$$\leq ||\Lambda||_{L^p(\mu)^*} \left(\lim_{n \to \infty} \sum_{i=0}^{n} \mu(A_i)\right)^{1/p}$$

$$= ||\Lambda||_{L^p(\mu)^*} \mu\left(\prod_{i=0}^{\infty} A_i\right)^{1/p}$$

$$= ||\Lambda||_{L^p(\mu)^*} \mu(B)^{1/p}$$

$$\leq ||\Lambda||_{L^p(\mu)^*} \mu(X)^{1/p}$$

$$\leq ||\Lambda||_{L^p(\mu)^*} \mu(X)^{1/p}$$

$$\leq \infty,$$

which converges absolutely.

Thus ν is a complex measure.

In addition, if $\mu(E) = 0$, we have $\nu(E) = \Lambda(\chi_E) = \Lambda(0) = 0$.

Thus, $\nu \ll \mu$.

By Radon-Nikodym, $\exists ! g \in L^1(\mu)$, such that $\Lambda(\chi_E) = \nu(E) = \int_E g d\mu$.

By linearity, $\Lambda(f) = \int_X fg d\mu$ for all simple measurable f.

By uniform simple function approximation, we have $\Lambda(f) = \int_X fg d\mu$ for all $f \in L^{\infty}(\mu)$.

Indeed, given any $f \in L^{\infty}(\mu)$, we have a sequence of simple measurable functions $|f_1| \leq |f_2| \leq \cdots \leq |f|$ that converges uniformly with $||f - f_n||_{L^{\infty}(\mu)} \to 0$.

Thus
$$||f - f_n||_{L^p(\mu)} \to 0$$
.
Thus $|\Lambda(f) - \Lambda(f_n)| \le ||\Lambda||_{L^p(\mu)^*} ||f - f_n||_{L^p(\mu)} \to 0$.

$$\Lambda(f) = \lim_{n \to \infty} \Lambda(f_n)$$

$$= \lim_{n \to \infty} \int_X f_n g d\mu$$

$$= \int_X \lim_{n \to \infty} f_n g d\mu$$

$$= \int_Y f g d\mu.$$

(a) $p = 1, q = \infty$. Consider ant $E \in \mathcal{M}$, such that $\mu(E) > 0$. We have

$$\begin{split} \left| \frac{1}{\mu(E)} \int_{E} g d\mu \right| &= \left| \frac{1}{\mu(E)} \Lambda(\chi_{E}) \right| \\ &\leq \frac{1}{\mu(E)} ||\Lambda||_{L^{1}(\mu)^{*}} ||\chi_{E}||_{L^{1}(\mu)} \\ &= \frac{1}{\mu(E)} ||\Lambda||_{L^{1}(\mu)^{*}} \mu(E) \\ &= ||\Lambda||_{L^{1}(\mu)^{*}}. \end{split}$$

Thus $|g(x)| \le ||\Lambda||_{L^1(\mu)^*}$ a.e..

Thus $g \in L^{\infty}(\mu)$. Since simple functions are dense in $L^{p}(\mu)$, we have $L^{\infty}(\mu)$ is dense in $L^{p}(\mu)$. Since Λ, Λ_{q} are both bounded linear functionals, we have $\Lambda(f) = \int_{X} fgd\mu$ for all $f \in L^{p}(\mu)$.

(b) p > 1. Let $E_n := \{x \in X : |g(x)| \le n\}$. By LMCT, we have $||g||_q = \lim_{n \to \infty} ||\chi_{E_n}g||$. Let $f = \chi_{E_n} \overline{\operatorname{sgn}(g)} |g|^{q-1} \in L^{\infty}(\mu)$, we have

$$||f||_{L^{p}(\mu)}^{p} = \int_{E_{n}} |g|^{(q-1)p} d\mu$$

$$= \int_{E_{n}} |g|^{q} d\mu$$

$$= ||\chi_{E_{n}}g||_{L^{q}()}^{q}$$

$$||\chi_{E_{n}}g||_{q}^{q} = \int_{E_{n}} |g|^{q} d\mu$$

$$= \int_{X} fg d\mu$$

$$= |\Lambda(f)|$$

$$\leq ||\Lambda||||f||_{L^{p}(\mu)}$$

$$\Longrightarrow$$

$$||g\chi_{E_{n}}||_{L^{q}(\mu)}^{q-\frac{q}{p}} \leq ||\Lambda||$$

$$\Longrightarrow$$

$$||g||_{L^{q}(\mu)}^{q-\frac{q}{p}} \leq ||\Lambda||$$

$$< \infty.$$

Thus $g \in L^q(U)$.

Since Λ, Λ_q are both bounded linear functionals, we have $\Lambda(f) = \int_X fg d\mu$ for all $f \in L^p(\mu)$.

3. Now we assume that μ is σ -finite.

We have
$$X = \bigcup_{n=1}^{\infty} X_n, \forall n \geq 1, \ X_n \subset X_{n+1}, \mu(X_n) < \infty$$
.

We can get

$$\forall n \geq 1, g_n \in L^q(X_n, \mu), \text{ such that } \Lambda(f) = \int_X f g_n d\mu, \forall f \in L^p(X_n, \mu).$$

Notice that $L^p(X_n, \mu) \subset L^p(X_{n+1}, \mu)$.

We thus have $\forall n > m, g_n|_{X_m} = g_m$.

Let $g: X \to \mathbb{C}$; $x \mapsto g_n(x)$ for $x \in X_n$.

Then $g = \lim_{n \to \infty} g_n = \lim_{n \to \infty} g\chi_n$ in $||\cdot||_{L^q(\mu)}$, and thus $g \in L^q(\mu)$.

In addition, for any $f \in L^p(\mu)$, we have $\lim_{n\to\infty} f\chi_{X_n} = f$ in $\|\cdot\|_{L^q(\mu)}$.

We have

$$\begin{split} \Lambda(f) &= \Lambda(\lim_{n \to \infty} f \chi_{X_n}) \\ &= \lim_{n \to \infty} \Lambda(f \chi_{X_n}) \\ &= \lim_{n \to \infty} \int_X f \chi_{X_n} g d\mu \\ &= \int_Y f g d\mu. \end{split}$$

4. Now suppose μ is not necessarily σ -finite, but $p \in (1, \infty)$.

 $\forall E \subseteq X \text{ be } \sigma\text{-finite, we have}$

$$g_E \in L^q(E,\mu)$$
, such that $\Lambda(f) = \int_X f g_E d\mu, \forall f \in L^p(E,\mu)$

In addition, $||g_E||_{L^q(\mu)} \leq ||\Lambda||$.

Let $M := \sup_{E \text{ is } \sigma\text{-finite}} ||g_E||_{L^q(\mu)} \le ||\Lambda||.$

Choose $(E_n)_{n=1}^{\infty}$ such that $||g_E||_{L^q(\mu)} \to M$.

Then $F := \bigcup_{n=1}^{\infty} E_n$ is σ -finite, and $||g_F||_{L^q(\mu)} = M$.

In addition, for any σ -finite $A \supseteq F$, we have $A \setminus F$ is σ -finite as well. Thus $g_A = g_F + g_{A \setminus F}$.

We have $g_{A \setminus F} = 0$ a.e., which means $g_a = g_F$ a.e..

Let $g := g_F \in L^q(\mu)$.

Given any $f \in L^p()$, let $A := \{x \in X : f(x) \neq 0\}$, which has to be σ -finite.

Thus $\Lambda(f) = \int_X g_A f d\mu = \int_X g_X f d\mu = \int_X g f d\mu$.

Remark. This is in general not true for $p = \infty$.

Remark. If μ is not σ -finite, it might be the case where $L^1(\mu) = \{0\}$, while $L^{\infty}(\mu) \neq \{0\}$.

8.2 Complex Regular Measure Space

Definition 8.1. Let $\mu = \mu_1 - \mu_2 + i\mu_3 - i\mu_4$ be a complex Borel measure on a locally compact Hausdorff space X, with its Jordan decomposition. We say μ is a **complex Radon measure** or **complex regular measure** if all μ_i are finite Radon measures.

Proposition 8.2. μ is a complex Radon measure if and only if $|\mu|$ is a Radon measure.

Proof. It follows
$$\mu_i \leq |\mu| \leq \mu_1 + \mu_2 + \mu_3 + \mu_4$$
.

Definition 8.2. We define $M(X) := \{\mu : \text{complex Radon measure}\}$, and $||\mu||_{M(X)} := |\mu|(X)$

Proposition 8.3. $(M(X), ||\cdot||_{M(X)})$ is a normed vector space over \mathbb{C} .

Definition 8.3. $C_0(X)$ is the closure of $C_c(X)$ in $\|\cdot\|_{\infty}$.

Definition 8.4. Let μ be a complex measure with $d\mu = hd|\mu|$, we define $\int_X f d\mu := \int_X f h d|\mu|$.

Theorem 8.4. (Jordan Decomposition for $C_0(X,\mathbb{R})$)

For any $\phi \in C_0(\mathbb{R})^*$, we have ϕ^+, ϕ^- positive bounded linear functionals, such that $\phi = \phi^+ - \phi^-$ on $C_0(\mathbb{R})$.

Proof. For any $f \geq 0$, let $\phi^+(f) := \sup (\phi(g) : 0 \leq g \leq f)$.

Notice that if $c \ge 0$, we have $\phi^+(cf) = c\phi^+(f)$.

In addition, $\forall f_1, f_2 \ge 0 \in C_0(\mathbb{R})$, and any $0 \le g_1 \le f_1, 0 \le g_2 \le f_2$, we have $0 \le g_1 + g_2 \le f_1 + f_2$.

Thus $\phi(g_1) + \phi(g_2) = \phi(g_1 + g_2) \le \phi^+(f_1 + f_2)$. Since g_1, g_2 are arbitrary, we have $\phi^+(f_1) + \phi^+(f_2) \le \phi^+(f_1 + f_2)$. $\phi^+(f_1+f_2).$

On the other hand, if we take any $g \leq f_1 + f_2$, and $g_1 := \min(g, f_1), g_2 := g - g_2$, we have $g_2 \leq g - f_1 \leq f_2$. Thus $\phi(g) = \phi(g_1) + \phi(g_2) \le \phi^+(f_1) + \phi^+(f_2)$.

Since g is arbitrary, $\phi^{+}(f_1 + f_2) \leq \phi^{+}(f_1) + \phi^{+}(f_2)$.

Thus,

$$\phi^+(f_1) + \phi^+(f_2) = \phi^+(f_1 + f_2).$$

Now extend ϕ^+ to $C_0(X,\mathbb{R})$ by $\phi^+(f) = \phi^+(f^+) - \phi^+(f^-)$. This is well-defined. Indeed, if $f = g - h = f^+ - f^-$ for $g, h \ge 0$, we have $g + f^- = h + f^+$, and thus $\phi^+(g) + \phi^+(f^-) = \phi^+(h) + \phi^+(f^+).$

We can also check that ϕ^+ is linear, and $|\phi^+(f)| \leq ||\phi|| ||f||$.

Thus ϕ^+ is a bounded positive linear functional.

We will then define $\phi^- := \phi^+ - \phi$, and check it is also a bounded positive linear functional.

Theorem 8.5. Let $\Lambda \in C_0(X)^*$, then $\exists !$ complex Radon measure $\mu \in M(X)$, such that

$$\forall f \in C_0(X), \Lambda(f) = \int_X f d\mu.$$

Moreover, $||\Lambda|| = ||\mu||_{M(X)} = |\mu|(X)$.

Proof. We first consider $C_0(X;\mathbb{R})$, which is a real Banach subspace of $C_0(X)$.

Let $\Psi := \Lambda|_{C_0(X;\mathbb{R})}$.

Now let $\Psi_1 := \Re(\Psi), \Psi_2 := \Im(\Psi)$, we have that $\Psi_1, \Psi_2 \in C_0(X, \mathbb{R})^*$ over \mathbb{R} , with $||\Psi_i||_{C_0(X, \mathbb{R})^*} \leq ||\Lambda||$. In addition.

$$\begin{split} \Lambda(f) &= \Lambda(\Re(f) + i\Im(f)) \\ &= \Lambda(\Re(f)) + i\Lambda(\Im(f)) \\ &= \Psi_1(\Re(f)) + i\Psi_2(\Re(f)) + i(\Psi_1(\Im(f)) + i\Psi_2(\Im(f))) \end{split}$$

is uniquely determined by Ψ_1, Ψ_2 .

Yet $\Psi_1 = \Psi_1^+ - \Psi_1^-, \Psi_2 = \Psi_2^+ - \Psi_2^-$, thus by Riesz-Markov-Kakutani, we have μ_i^{\pm} being finite Radon measures, such that $\Psi_i^{\pm} = \int_X \tilde{f} d\mu_i^{\pm}$.

Let $\mu := (\mu_1^+ - \mu_1^-) + i(\mu_2^+ - \mu_2^-)$, we have the result.

Now the uniqueness:

If $\Lambda = \Lambda_{\mu_1} = \Lambda_{\mu_2}$, we have $\forall f \in C_0(X)$,

$$0 = \int_{X} f d(\mu_{1} - \mu_{2})$$
$$= \int_{X} f h d|\mu_{1} - \mu_{2}|.$$

By density of $C_0(X)$, it is also true for all $f \in L^1(X)$, so $|\mu_1 - \mu_2| = 0$.

Corollary 8.6. $(M(X), ||\cdot||_{M(X)}) \simeq C_0(X)^*$ isometrically.

9 Product Measures

Definition 9.1. Let $(X_i)_{i\in I}$ be a collection of non-empty sets, we define the **product** of the sets to be

$$X := \prod_{i \in I} X_i := \{(x_i)_{i \in I} | \forall i \in I, x_i \in X_i\} = \left\{ f : I \to \bigsqcup_{i \in I} X_i | \forall i \in I, f(i) \in X_i \right\}$$

Definition 9.2. We have a canonical coordinate projections $\pi: X \to X_i$ by $(x_i)_{i \in I} \mapsto x_i$.

Definition 9.3. If (X_i, \mathcal{M}_i) are measurable spaces, then the **product measurable** space is

$$\left(\prod_{i\in I}X_i,\bigotimes_{i\in I}\mathcal{M}_i\right),$$

where $\bigotimes_{i\in I} \mathcal{M}_i$ is the σ -algebra generated by the sets $\{\pi_i^{-1}(A)|i\in I, A\in\mathcal{M}_i\}$.

Remark. When I is finite, this is the same as tensor products generated by $A_1 \times A_2 \times \cdots \times A_n$.

Proposition 9.1. Let $(X_i, d_i)_{i=1}^n$ be separable metric spaces, then

$$\bigotimes_{i=1}^{n} Bor(X_i) = Bor\left(\prod_{i=1}^{n} X_i\right).$$

Proof. Given any open $U_i \subseteq X_i$, we must have $\pi_i^{-1}(U_i) \subseteq X$ is open. Thus $\bigotimes_{i=1}^n Bor(X_i) \subseteq Bor(\prod_{i=1}^n X_i)$. On the other hand, each X_i is separable, so X is also separable. Thus X is second countable. If $(x_n)_{n=1}^{\infty}$ is a dense sequence in X, then

$$\{B_r(x_n)|n\in\mathbb{N},r\in\mathbb{Q}^{++}\}$$

is a basis for the topology. Namely, every open set can be written as a countable union of these open balls. Setting $x_n^i := \pi_i(x_n)$, we have that $B_r(x_n) = \prod_{i=1}^n B_r(x_N^i)$, which is a subset of $\bigotimes_{i=1}^n Bor(X_i)$. Since every open set $U \subseteq X$ is a countable union of these sets, so $U \subseteq \bigotimes_{i=1}^n Bor(X_i)$. Thus $\bigotimes_{i=1}^n Bor(X_i) \supseteq Bor(\prod_{i=1}^n X_i)$.

Corollary 9.2.

$$Bor(\mathbb{R}^n) = \bigotimes_{i=1}^n Bor(\mathbb{R})$$

Proposition 9.3. Let $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ be measure spaces. Let R be the collection of all finite unions of disjoint rectangles $A \times B$ with $A \in \mathcal{M}, B \in \mathcal{N}$. Then R is an algebra of subsets of $X \times Y$

Proof.

$$(A \times B)^c = (A^c \times Y) \sqcup (A \times B^c)$$

$$(A_1 \times B_1) \cup (A_2 \times B_2) = (A_1 \times B_1) \sqcup ((A_2 \setminus A_1) \times B_2) \sqcup ((A_2 \setminus A_1) \times (B_1 \setminus B_2))$$

Proposition 9.4. The σ -algebra generated by R is $\mathcal{M} \otimes \mathcal{N}$.

Definition 9.4. We can define a function $\pi: R \to [0, \infty]$ by $\pi(\bigsqcup_{i=1}^n A_i \times B_i) := \sum_{i=1}^n \mu(A_i)\nu(B_i)$

Lemma 9.5. π is a premeasure.

Proof. Firstly, $\pi(\emptyset) = \mu(\emptyset) \times \nu(\emptyset) = 0$.

Secondly, we consider any $A \times B = \bigsqcup_{n \in \mathbb{N}} (A_n \times B_n) \subseteq R$, where $(A_n \times B_n)_{n \in \mathbb{N}} \subseteq R$.

Fix any $y \in Y$, we have that $\chi_A(x)\chi_B(y) = \sum_{n \in \mathbb{N}} \chi_{A_n}(x)\chi_{B_n}(y)$, which is a sum of non-negative measurable functions on X. By LMCT, we have that

$$\mu(A)\chi_B(y) = \int_X \chi_A(x) d\mu \chi_B(y)$$

$$= \int_X \chi_A(x) \chi_B(y) d\mu$$

$$= \int_X \sum_{n \in \mathbb{N}} \chi_{A_n}(x) \chi_{B_n}(y) d\mu$$

$$= \sum_{n \in \mathbb{N}} \int_X \chi_{A_n}(x) \chi_{B_n}(y) d\mu$$

$$= \sum_{n \in \mathbb{N}} \int_X \chi_{A_n}(x) d\mu \chi_{B_n}(y)$$

$$= \sum_{n \in \mathbb{N}} \mu(A_n) \chi_{B_n}(y).$$

In addition, $\sum_{n\in\mathbb{N}}\mu(A_n)\chi_{B_n}(y)$ is a sum of non-negative measurable functions on Y. By LMCT, we again have that

$$\mu(A)\nu(B) = \mu(A) \int_{Y} \chi_{B}(y)d\nu$$

$$= \int_{Y} \mu(A)\chi_{B}(y)d\nu$$

$$= \int_{Y} \sum_{n \in \mathbb{N}} \mu(A_{n})\chi_{B_{n}}(y)d\nu$$

$$= \sum_{n \in \mathbb{N}} \int_{Y} \mu(A_{n})\chi_{B_{n}}(y)d\nu$$

$$= \sum_{n \in \mathbb{N}} \mu(A_{n}) \int_{Y} \chi_{B_{n}}(y)d\nu$$

$$= \sum_{n \in \mathbb{N}} \mu(A_{n}) \nu(B_{n}).$$

This will now extend to any $\bigsqcup_{n\in\mathbb{N}}(A_n\times B_n)\subseteq R$, by finite additivity.

Theorem 9.6. There is a complete measure space $(X \times X, \overline{\mathcal{M} \otimes \mathcal{N}}, \mu \times \nu)$, such that $\mu \times \nu(A \times B) = 0$ $\mu(A) \times \nu(B)$.

Proof. Apply Caratheodory on the above lemma.

For the flowing, let $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ be complete measure spaces.

Definition 9.5. Take
$$R$$
 as before, let $R_{\sigma} := \left\{ \bigcup_{n \geq 1} A_n | A_n \in R \right\}, R_{\sigma \delta} := \left\{ \bigcap_{n \geq 1} E_n | E_n \in R_{\sigma} \right\}$

Lemma 9.7. If $E \in \overline{\mathcal{M} \otimes \mathcal{N}}$, with $\mu \times \nu(E) < \infty$, then $\exists G \in R_{\sigma\delta}$, such that $E \subseteq G$, $\mu \times \nu(G \setminus E) = 0$

Proof. We have
$$\mu \times \nu(E) = \inf \left\{ \sum_{i \geq 1} \mu \times \nu(A_i) | A_i \in R, E \subseteq \bigcup_{i \geq 1} A_i \right\}$$
.

Let $E_j := \bigcup_{i \ge 1} A_{ji} \supseteq E$, with $\mu \times \nu(E_j) < \mu \times \nu(E) + \frac{1}{i}$.

Notice that $\bar{E_j} \in R_{\sigma}$ by construction.

Notice that $E_j \in R_{\sigma}$ by construction. Now take $G = \bigcup_{j \geq 1} E_j \in R_{\sigma\delta}$. Then we have that $E \subseteq G$, and $\forall j, \mu \times \nu(G) \leq \mu \times \nu(E_j) < \mu \times \nu(E) + \frac{1}{j}$. Thus $\mu \times \nu(G) = \overline{\mu} \times \nu(E)$.

Lemma 9.8. Let $E \in R_{\sigma\delta}$, with $\mu \times \nu(E) < \infty$. Let $E_x = \{y \in Y | (x,y) \in E\}$, $E^y = \{x \in X | (x,y) \in E\}$. Define $g(x) := \nu(E_x)$, $h(y) := \mu(E^y)$. Then we have g is non-negative and μ -measurable, $g \in \mathcal{L}^1(\mu)$, $\int_X g d\mu = \mu \times \nu(E)$. Similarly, h is non-negative and ν -measurable, $h \in \mathcal{L}^1(\nu)$, $\int_Y g d\nu = \mu \times \nu(E)$

Proof. If $E = A \times B$, with $A \in \mathcal{M}, B \in \mathcal{N}$, then $E_x = \begin{cases} B & \text{if } x \in A \\ \emptyset & \text{if } x \notin A \end{cases}$.

Then $g(x) = \nu(B)\chi_A$ is μ -measurable, and $g \ge 0$. Moreover,

$$\int_X g d\mu = \int_X \nu(B) \chi_A d\mu = \nu(B) \int_X \chi_A d\mu = \mu(A) \nu(B) = \mu \times \nu(A \times B).$$

Now suppose $E = \bigcup_{i \geq 1} A_i \times B_i \in R_{\delta}$, with $A_i \in \mathcal{M}, B_i \in \mathcal{N}$. WLOG, we can take $E = \bigsqcup_{i \geq 1} A_i \times B_i$.

Let
$$g_i(x) = \nu(B_i)\chi_{A_i}(x)$$
, we have $\sum_{i=1}^n g_i(x) = \sum_{i=1}^n \nu(B_i)\chi_{A_i}(x) = \begin{cases} \nu(B_i) = \nu(E_x) & \text{if } x \in A_i \\ 0 & \text{if } x \notin \bigsqcup_{i=1}^n A_i \end{cases}$.

Thus $g(x) = \sum_{i=1}^{\infty} g_i(x)$ is measurable. By LMCT, $g \in \mathcal{L}^1(\mu)$, and

$$\int_{X} g d\mu = \sum_{i=1}^{\infty} \int_{X} g_{i} d\mu$$

$$= \sum_{i=1}^{\infty} \int_{X} \nu(B_{i}) \chi_{A_{i}} d\mu$$

$$= \sum_{i=1}^{\infty} \nu(B_{i}) \mu(A_{i})$$

$$= \sum_{i=1}^{\infty} \mu \times \nu(A_{i} \times B_{i})$$

$$= \mu \times \nu\left(\bigcup_{i=1}^{\infty} A_{i} \times B_{i}\right)$$

$$= \mu \times \nu(E)$$

Now take $E = \bigcap_{i \geq 1} E_i \in R_{\delta\sigma}$ with $E_i \in R_{\delta}$. WLOG, we can take $E_i \supseteq E_{i+1}$. Notice that $(E_i)_x = \{y \in Y | (x,y) \in E_i\} \supseteq \{y \in Y | (x,y) \in E_{i+1}\} = (E_{i+1})_x \supseteq \cdots \supseteq E_x$. Let $g_i(x) = \nu((E_i)_x) = \mu \times \nu(E_i)$, then we have $0 \leq g \leq \cdots \leq g_i \leq \cdots \leq g_1$. In addition, $E_x = \bigcap_{i \geq 1} (E_i)_x$, and thus $g(x) = \lim_{i \to \infty} g_i(x)$ by continuity of ν . Thus g is μ -measurable, and since g_i are all dominated by g_1 , we can used LDCT to get

$$\int_{X} g d\mu = \lim_{i \to \infty} \int_{X} g_{i} d\mu$$
$$= \lim_{i \to \infty} \mu \times \nu(E_{i})$$
$$= \mu \times \nu(E).$$

Lemma 9.9. Let $E \in \overline{\mathcal{M} \otimes \mathcal{N}}$ with $\mu \times \nu(E) = 0$, then for μ -a.e. $x \in X$, we have $\nu(E_x) = 0$; for ν -a.e. $y \in Y$, we have $\mu(E_y) = 0$.

Proof. We have some $G \in R_{\sigma\delta}$, such that $E \subseteq G$, $\mu \times \nu(G \setminus E) = 0$. Let $f(x) := \nu(G_x)$, we have $f \in \mathcal{L}^1(\mathcal{M})$ is nonnegative. Yet $\int_X f d\mu = 0$, and thus f(x) = 0 for μ -a.e. $x \in X$. Since $E_X \subseteq G_X$, and that ν is complete, we have that $g(x) = \nu(E_x) = 0$ for μ -a.e. $x \in X$.

Corollary 9.10. Let $E \in \overline{\mathcal{M} \otimes \mathcal{N}}$ with $\mu \times \nu(E) < \infty$, then E_x is ν -measurable, for μ -a.e. $x \in X$, and $g(x) = \nu(E_x)$ is μ -measurable, with $g \geq 0, g \in \mathcal{L}^1(\mathcal{M})$, and $\int_X g d\mu = \mu \times \nu(E)$.

Theorem 9.11. (Fubini's) Let $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ be complete measure spaces. Take $f \in \mathcal{L}^1(\mu \times \nu)$, then

- 1. For μ -a.e. $x \in X, f_x := f(x, \cdot) \in \mathcal{L}^1(\nu)$.
- 2. For ν -a.e. $y \in Y, f_{\nu} := f(\cdot, y) \in \mathcal{L}^{1}(\mu)$
- 3. $F(x) := \int_{V} f_{x}(y) d\nu \in \mathcal{L}^{1}(\mu)$.
- 4. $G(y) := \int_{Y} f_{y}(x) d\mu \in \mathcal{L}^{1}(\nu)$.
- 5. $\int_{X\times Y} f d(\mu \times \nu) = \int_{X} \left(\int_{Y} f(x,y) d\nu \right) d\mu = \int_{Y} \left(\int_{X} f(x,y) d\mu \right) d\nu$

Proof. Notice that $f^1 \in \mathcal{L}^1$ means that $f = f_1 - f_2 + if_3 - if_4$, where $f_i \geq 0, f_i \in \mathcal{L}^1$. We first show the theorem holds for $f \geq 0, f \in \mathcal{L}^1$. There are simple functions $0 \leq s_1 \leq \cdots \leq s_n \leq \cdots \leq f$, such that $f(x) = \lim_{n \to \infty} s_n(x)$.

Let $F_n(x) = \int_Y s_n(x,y) d\nu \ge 0$ be measurable and \mathcal{L}^1 . We have that

Theorem 9.12. (Tonelli's) Let $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ be complete measure spaces. Take $f \in \mathcal{L}^+(\mu \times \nu)$, and $\mu \times \nu$ is σ -finite, then

- 1. For μ -a.e. $x \in X$, $f_x := f(x, \cdot) \in \mathcal{L}^+(\nu)$.
- 2. For ν -a.e. $y \in Y, f_y := f(\cdot, y) \in \mathcal{L}^+(\mu)$.
- 3. $F(x) := \int_{V} f_{x}(y) d\nu \in \mathcal{L}^{+}(\mu)$.
- 4. $G(y) := \int_{Y} f_{y}(x) d\mu \in \mathcal{L}^{+}(\nu)$.
- 5. $\int_{Y \times Y} f d(\mu \times \nu) = \int_{Y} \left(\int_{Y} f(x, y) d\nu \right) d\mu = \int_{Y} \left(\int_{Y} f(x, y) d\mu \right) d\nu$

Proof. $\mu \times \nu$ is σ -finite, thus $\exists C_1 \subseteq C_2 \subseteq \cdots$, with $C_n \in \overline{\mathcal{M} \otimes \mathcal{N}}, X \times Y = \bigcup_{n=1}^{\infty} C_n$, and $\mu \times \nu(C_n) < \infty$. Let $f_n(x) = \max\{f(x), n\} \chi_{C_n}(x)$, we have $0 \le f_n \le n\chi_{C_n}$, and $f_n \in \mathcal{L}^+ \cap \mathcal{L}^1(\mu \times \nu)$, $\lim_{n \to \infty} f_n(x) = f(x)$.

$$\int f d\mu \times \nu = \lim_{n \to \infty} \int f_n d\mu \times \nu$$

$$= \lim_{n \to \infty} \int_X \int_Y f_n(x, y) d\nu d\mu$$

$$=: \lim_{n \to \infty} \int_X F_n(x) d\mu.$$

Then F_n are measurable, non-negative, and monotone increasing to $F(x) := \int_V f(x,y) d\nu$. By LMCT, we have F is measurable, and

$$\int f d\mu \times \nu = \lim_{n \to \infty} \int_X F_n(x) d\mu$$
$$= \int_X F(x) d\mu$$
$$= \int_X \int_Y f(x, y) d\nu d\mu$$

Remark. If $f \in \mathcal{L}^1$, we get σ -finite by free on $C = \operatorname{Supp}(f)$ if we look at $C_n := \{(x,y) : |f(x,y)| \ge \frac{1}{n}\}$. Notice that $\mu \times \nu(C_n) \leq n \int |f| d\mu \times \nu < \infty$.

П

Consider
$$f(m,n) := \begin{cases} 1 & n = m \\ -1 & n = m+1 \\ 0 & o.w. \end{cases} \sim \begin{pmatrix} 1 & -1 & 0 & 0 & \cdots \\ 0 & 1 & -1 & 0 & \cdots \\ \vdots & 0 & 1 & -1 & \cdots \\ \vdots & \vdots & \ddots & & \end{pmatrix}.$$

However,

$$\int_{X} \int_{Y} f(x,y) dm_{c}(n) dm_{c}(m) = \sum_{m \ge 1} \sum_{n \ge 1} f(m,n)$$

$$= \sum_{m \ge 1} 0$$

$$= 0,$$

$$\int_{Y} \int_{X} f(x,y) dm_{c}(m) dm_{c}(n) = \sum_{n \ge 1} \sum_{m \ge 1} f(m,n)$$

$$= 1 + \sum_{n \ge 2} 0$$

This is because $f \notin \mathcal{L}^1$.

Example 9.0.2. Consider X = Y = [0, 1], and the Lebesgue measure.

Define $g_n: [0,1] \to \mathbb{R}$ by starting at $\frac{2t_n}{3} + \frac{t_{n+1}}{3}$, linear and reach $\frac{t_{n+1}-t_n}{3}$ at mid point, and decrease linearly to 0 at $\frac{t_n}{3} + \frac{2t_{n+1}}{3}$, and 0 outside. We thus have $\int g_n(x)dx = 1$. Define $f(x,y) = \sum_{i=1}^{\infty} (g_n(x) - g_{n+1}(x))g_n(y)$, where only one of these summands will be non-zero in each

interval of x. Actually f(x,y) is continuous $\forall (x,y) \neq (1,1)$.

However, $\int f(x,y)dx = g_n(y)$, and thus $\int \int f(x,y)dxdy = 1$, while $\int \int \int f(x,y)dydx = 0$.

Theorem 9.13. Let $(X, \mathcal{M}, \mu), (Y, \mathcal{N}, \nu)$ be (not necessarily complete) measure spaces. Then Fubini and Tonelli still apply with restriction to $\mathcal{M} \otimes \mathcal{N}$.

Lebesgue Measure on \mathbb{R}^n 9.1

Lemma 9.14. Let $f: \mathbb{R}^n \to \mathbb{C}$ be Lebesgue measurable, then there is a G_δ set $G \subseteq \mathbb{R}^n$, such that $\lambda^n(G) = 0$, and $g = f\chi_{G^c}$ be Borel measurable, and $f = g \lambda^n$ -a.e..

Proof. By writing $f = f_1 - f_2 + if_3 - if_4$ for $f_i \ge 0$, we can assume $f \ge 0$. We first consider n = 1. Choose a dense subset $\{r_i\}_{i\in\mathbb{N}}$ of $[0,\infty)$. Let $A_i=f^{-1}([0,r_n])$. Since f is Lebesgue measurable, $A_n\in\mathcal{L}$. By

regularity for the Lebesgue measure, there is an F_{δ} set $F_i \subseteq A_n$ and a null set $N_i = A_i \setminus F_i$. Let $N = \bigcup_{i \in \mathbb{N}} N_i$, then N is a null set.

Applying regularity again, there is a G_{δ} set $G \supseteq N$ such that $\lambda(G) = 0$.

Let $g = f\chi_{G^c}$. we have $g^{-1}([0, r_i)) = f^{-1}([0, r_i)) \cup G = A_i \cup G = (F_i \cup N_n) \cap G = F_i \cup G$, which is a union of two Borel sets, and thus Borel.

To verify that g is Borel, it surfaces to prove $g^{-1}([0,r))$ is Borel for all r>0. By density of $\{r_i\}$, there is a sequence r_{n_k} such that $r_{n_k} \leq r$ and $r_{n_k} \to r$. Thus $\bigcup_{k>1} [0, r_{n_k}) = [0, r)$, so $g^{-1}([0, r)) = \bigcup_{k>1} ([0, r_{n_k}))$ is a union of Borel sets, and thus Borel.

By construction, G is a null set and $f|_{G^c} = g|_{G^c}$, so $f = g \lambda$ -a.e..

Now suppose $n \ge 1$. For each i, let f_{x_i} be the function obtained by fixing all but the ith variable x_i . From above we can find $G\delta$ set $G_i \subseteq \mathbb{R}$, such that $f_{x_i} = f_{x_i} \chi_{G_i^c} \lambda$ -a.e..

Let $G = (G_1 \times \mathbb{R} \times \cdots \times \mathbb{R}) \cup (\mathbb{R} \times G_2 \times \mathbb{R} \times \cdots \times \mathbb{R}) \cup \cdots (\mathbb{R} \times \cdots \times \mathbb{R} \times G_n)$.

Then $G^c = G_1^c \times G_2^c \times \cdots \times G_n^c$. Let $G_1 = \bigcap_k U_{1k}$, then $G_1 \times \mathbb{R} \times \cdots \times \mathbb{R} = \bigcap_k (U_{1k} \times \mathbb{R} \times \cdots \times \mathbb{R})$, where each is open, since U_{1k} , \mathbb{R} are open. Thus $G_1 \times \mathbb{R} \times \cdots \times \mathbb{R}$ is a G_{δ} set. Thus G is a finite union of G_{δ} sets, which is G_{δ} .

Definition 9.6. For $A \in \mathcal{L}^n$, $X \in \mathbb{R}^n$, write the **translation** of A by x as $A + x = \{a + x : a \in A\}$.

Definition 9.7. Let GLn be the set of invertible $n \times n$ matrices.

Theorem 9.15. Consider the Lebesgue measure λ^n in \mathbb{R}^n .

- 1. (translation) For $A \in \mathcal{L}^n$ and $x \in \mathbb{R}^n$, we have $A + x \in \mathcal{L}^n$, $\lambda^n(A + x) = \lambda^n(A)$.
- 2. (scaling) For $T \in GLn, f : \mathbb{R}^n \to \mathbb{C}$ be Lebesgue measurable, $f \circ T$ is Lebesgue measurable, and

$$\int f d\lambda^n = |\det(T)| \int (f \circ T) d\lambda^n.$$

In particular, for $A \in \mathcal{L}^n$, we have $\lambda^n(T(A)) = |\det(T)|\lambda^n(A)$.

3. (rotation) For a unitary $U \in GLn$, we have

$$\int (f \circ U) d\lambda^n = \int f d\lambda^n,$$

and $\forall A \in \mathcal{L}^n, \lambda^n(U(A)) = \lambda(A).$

Proof. 1.

2. Notice that $x \in T(A) \iff T^{-1}x \in A$, thus $\chi_{T(A)} = \chi_A \circ T^{-1}$. Thus

$$\lambda^{n}(T(A)) = \int \chi_{T(A)} d\lambda^{n}$$

$$= \int \chi_{A} \circ T^{-1} d\lambda^{n}$$

$$= \frac{1}{|\det(T^{-1})|} \int \chi_{A} d\lambda^{n}$$

$$= |\det(T)| \lambda^{n}(A).$$

10 Convolutions and Fourier Transforms

Definition 10.1. For $y \in \mathbb{R}$, $f : \mathbb{R} \to \mathbb{C}$, we define the **translation** of f by y to be $L_y f(x) := f(x - y)$.

Proposition 10.1. We have $L_y: L^1(\mathbb{R}) \to L^1(\mathbb{R})$ is linear, isometric, and $\forall f \in L^1(\mathbb{R})$, we have

$$\lim_{y \to 0} ||L_y f - f||_1 = 0.$$

Proof. If $f \in C_c(\mathbb{R})$, then it is uniformly continuous, so

$$\lim_{y \to 0} \left| \left| L_y f - f \right| \right|_{\infty} = 0.$$

Take compact $K \supseteq \text{Supp}(f)$, we have that

$$||L_y f - f||_1 = \int_{K \cup (K+y)} |f(x - y) - f(x)| dx$$

$$\leq \lambda (K \cup (K+y)) ||Lx f - f||_{\infty},$$

where the first term is bounded by $2\lambda(K) < \infty$, and the second term goes to 0. Now since $C_c(\mathbb{R})$ is dense in $L^1(\mathbb{R})$, we have the result by triangle inequality. **Theorem 10.2** (Young's Convolution Inequality). Consider $X = \mathbb{R}$, with Lebesgue measure λ . Let $f, g \in L^1(\mathbb{R})$, then for a.e. $x \in \mathbb{R}$, the function $y \mapsto f(x-y)g(y)$ is in $L^1(\mathbb{R})$ for a.e. $x \in \mathbb{R}$, and the **convolution**

$$(f * g)(x) := \int_{\mathbb{R}} f(x - y)g(y)dy$$

is also in $L^1(\mathbb{R})$. In addition, $||f * g||_{L^1(\mathbb{R})} \le ||f||_{L^1(\mathbb{R})} ||g||_{L^1(\mathbb{R})}$.

Proof. Consider the function $F:(x,y)\mapsto f(x-y)g(y)$, which is a measurable function on $\mathbb{R}\times\mathbb{R}$ (can show with approximation by $C_c(\mathbb{R})$ functions). By Tonelli's theorem,

$$\int_{\mathbb{R}^2} |F| d\lambda^2 = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |F(x,y)| dx \right) dy$$

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x-y)| |g(y)| dx \right) dy$$

$$= \int_{\mathbb{R}} |g(y)| \left(\int_{\mathbb{R}} |f(x-y)| dx \right) dy$$

$$= \int_{\mathbb{R}} |g(y)| ||f||_{L^1(\mathbb{R})} dy$$

$$= ||f||_{L^1(\mathbb{R})} \int_{\mathbb{R}} |g(y)| dy$$

$$= ||f||_{L^1(\mathbb{R})} ||g||_{L^1(\mathbb{R})}$$

$$< \infty.$$

Thus, $F \in L^1(\mathbb{R}^2)$.

Now we apply Fubini's Theorem to F, and get $F_x(y) = f(x - y)g(y) \in L^1(\mathbb{R})$ for a.e. $x \in \mathbb{R}$. In addition,

$$\begin{split} ||f*g||_{L^1(U)} &= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f(x-y)g(y)dy \right| dx \\ &\leq \int_{\mathbb{R}} \int_{\mathbb{R}} |f(x-y)g(y)|dydx \\ &\leq \int_{\mathbb{R}} \int_{\mathbb{R}} |F(x,y)|dydx \\ &= ||f||_{L^1(\mathbb{R})} ||g||_{L^1(\mathbb{R})}. \end{split}$$

Corollary 10.3. $(L^1(\mathbb{R}), *)$ defines a communicative associative algebra.

Definition 10.2. Given $f \in L^1(\mathbb{R})$, its **Fourier Transform** is $\mathcal{F}(f) := \hat{f} : \mathbb{R} \to \mathbb{C}$, where

$$\hat{f}(\omega) := \int_{\mathbb{R}} f(x)e^{-ix\omega}dx.$$

Lemma 10.4 (Riemann-Lebesgue). $\forall f \in L^1(\mathbb{R}), \text{ we have } \hat{f} \in C_0(\mathbb{R}), \text{ and } \left|\left|\hat{f}\right|\right|_{\infty} \leq ||f||_{L^1(\mathbb{R})}. \text{ Namely, } \mathcal{F} \text{ is a contraction map.}$

Proof. Consider any sequence $(\omega_n)_{n=1}^{\infty} \subset \mathbb{R}$ that converges to $\omega \in \mathbb{R}$. Let $h_n(x) := f(x)(e^{i\omega_n x} - e^{i\omega x})$, we have that $h_n \in L^1(\mathbb{R})$, $h_n(x) \to 0$ pointwise for a.e. $x \in \mathbb{R}$, and $|h_n| \le |f| |e^{i\omega_n x} - e^{i\omega x}| \le 2|f|.$ In addition,

$$\hat{f}(\omega_n) - \hat{f}(\omega) = \int_{\mathbb{R}} f(x)(e^{i\omega_n x} - e^{i\omega x})dx$$
$$= \int_{\mathbb{R}} h(x)dx$$

By LDCT, we have that $\lim_{n\to\infty} \left(\hat{f}(\omega_n) - \hat{f}(\omega)\right) = 0$, so \hat{f} is continuous. In addition,

$$\left| \hat{f}(\omega) \right| \le \int_{\mathbb{R}} |f(x)| \left| e^{ix\omega} \right| dx$$
$$= \int_{\mathbb{R}} |f(x)| dx$$
$$= ||f||_{L^{1}(\mathbb{R})}.$$

Now

$$\hat{f}(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx$$

$$= -\int_{\mathbb{R}} f(x)e^{-ix\omega+\pi i}dx$$

$$= -\int_{\mathbb{R}} f(x)e^{-i\omega(x-\pi/\omega)}dx$$

$$= -\int_{\mathbb{R}} f(z+\pi/\omega)e^{-i\omega z}dz$$

$$= -\int_{\mathbb{R}} L_{-\pi/\omega}f(z)e^{-i\omega z}dz$$

$$2\hat{f}(\omega) = \int_{\mathbb{R}} f(x)e^{-ix\omega}dx - \int_{\mathbb{R}} L_{-\pi/\omega}f(z)e^{-i\omega z}dz$$

$$= \int_{\mathbb{R}} (f - L_{-\pi/\omega}f)(x)e^{-i\omega x}dx$$

$$= \mathcal{F}(f - L_{-\pi/\omega}f)(\omega)$$

$$2\left|\hat{f}(\omega)\right| \le ||f - L_{-\pi/\omega}f||_{L^{1}(\mathbb{R})},$$

which goes to 0 when $\omega \to \infty$. Thus, $\hat{f} \in C_0(\mathbb{R})$.

Theorem 10.5 $(L^1(\mathbb{R}) \text{ Inversion})$. If $f, \hat{f} \in L^1(\mathbb{R})$, we have

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\omega) e^{ix\omega} d\omega$$

for a.e. $x \in \mathbb{R}$.

In particular, such f must be almost everywhere equal to a continuous function.

Proof. Let $\lambda > 0$, and $H_{\lambda}(\omega) := e^{-\lambda |\omega|}$. Let

$$\begin{split} h_{\lambda}(x) &:= \frac{1}{2\pi} \int_{\mathbb{R}} H_{\lambda}(\omega) e^{ix\omega} d\omega \\ &= \frac{1}{2\pi} \int_{\mathbb{R}} e^{ix\omega - \lambda |\omega|} d\omega \\ &= \frac{\lambda}{\pi} \frac{1}{r^2 + \lambda^2}. \end{split}$$

Fix $f \in L^1(\mathbb{R})$, we have

$$(f * h_{\lambda})(x) = \int_{\mathbb{R}} f(x - y) h_{\lambda}(y) dy$$

$$= \int_{\mathbb{R}} f(x - y) \frac{1}{2\pi} \int_{\mathbb{R}} H_{\lambda}(\omega) e^{iy\omega} d\omega dy$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} f(x - y) H_{\lambda}(\omega) e^{iy\omega} d\omega dy$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} f(x - y) H_{\lambda}(\omega) e^{iy\omega} dy d\omega$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \int_{\mathbb{R}} f(z) H_{\lambda}(\omega) e^{i\omega(x - z)} dz d\omega$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} H_{\lambda}(\omega) \hat{f}(\omega) e^{i\omega(x)} dz d\omega.$$

Notice that $H_{\lambda}(\omega) = 1$ as $\lambda \to 0$, and $f * h_{\lambda} \to f$. If $\hat{f} \in L^1(\mathbb{R})$, we can use DCT to get the result.

Corollary 10.6. If $f, g \in L^1(\mathbb{R})$, and $\mathcal{F}(f) = \mathcal{F}(g)$, we must have $\mathcal{F}(f - g) = 0 \in L^1(\mathbb{R})$. Thus, f = g a.e. $x \in \mathbb{R}$.

П

Remark. Not all $\hat{f} \in L^1(\mathbb{R})$.

Example 10.0.1. If $f = \chi_{[-1,1]}$, we have $\hat{f} = \frac{2\sin(\omega)}{\omega} \in C_0(\mathbb{R}) \setminus L^1(\mathbb{R})$.

11 Bochner Spaces

Definition 11.1. Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space, then a function $f: X \to B$ is **weakly measurable** if $\forall \Lambda \in B^*$, $\Lambda \circ f: X \to \mathbb{C}$ is measurable.

Definition 11.2. Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space, then a function $f: X \to B$ is **Bochner measurable** or **strongly measurable** if f(x) = g(x) for μ -a.e. $x \in X$, for some measurable g, with $\text{Im}(g) \subseteq B$ being separable.

Proposition 11.1. Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space, then a function $f: X \to B$ is strongly measurable if $f(x) = \lim_{n \to \infty} f_n(x)$ for μ -a.e. $x \in X$, for some sequence of measurable functions f_n , each with countable range.

Definition 11.3. Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space, and $s: X \to [0, \infty)$ be a simple measurable function, with $s(X) = \{a_1, \ldots, a_n\} \subset B$, such that

$$s = \sum_{i=1}^{n} a_i \mathcal{X}_{A_i},$$

where $A_i := s^{-1}(\{a_i\})$. For $A \in \mathcal{M}$, we say s is integrable over A if $\forall a_i \neq 0, \mu(A_i \cap A) < \infty$, and define the **integral** of s over A to be

$$\int_A s d\mu := \sum_{i=1}^n a_i \mu(A_i \cap A).$$

Definition 11.4. Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space, and $f: X \to [0, \infty)$ be a measurable function. If there is a sequence of simple integrable functions $(s_n)_{n=1}^{\infty}$ such that

$$\lim_{n \to \infty} \int_A ||f - s_n||_B d\mu = 0,$$

then we say f is **Bochner integrable**, and we define the **Bochner integral** to be

$$\int_A f d\mu := \lim_{n \to \infty} \int_A s_n d\mu.$$

Lemma 11.2. The right hand side of the above definition always exists, and is independent of the choice of the sequence of simple integrable functions $(s_n)_{n=1}^{\infty}$. Thus, the above definition is well-defined.

Theorem 11.3 (Bochner). Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space. A strongly measurable function $f: X \to B$ is Bochner integrable if and only if $x \mapsto ||f(x)||_B$ is integrable. In this case, $\forall E \in \mathcal{M}$,

$$\left| \left| \int_{E} f(x) dx \right| \right|_{B} \leq \int_{E} ||f(x)||_{B} dx,$$

$$\forall \Lambda \in B^{*}, \ \Lambda \left(\int_{E} f(x) dx \right) = \int_{E} \Lambda(f(x)) dx.$$

Theorem 11.4 (Dominated Convergence Theorem for Bochner integral). Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space. Let $f_n: X \to \mathbb{C}$ be measurable functions, defined μ -a.e. on X, such that $f(x) := \lim_{n \to \infty} f_n(x)$ is defined μ -almost everywhere for $x \in X$. If there is $0 \le g(x) \in \mathcal{L}^1(X, \mu)$, such that for μ -a.e. $x \in X, \forall n \in \mathbb{N}, ||f_n(x)||_B \le g(x)$, then f is Bochner integrable, and

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu, \lim_{n \to \infty} \int_X ||f - f_n||_B d\mu = 0.$$

Similarly to the Lebesgue Spaces, we can define the Bochner Spaces and Bochner norms:

Definition 11.5. Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space, and $1 \leq p < \infty$, we define

$$\mathcal{L}^p(\mu,B) := \left\{ f: X \to B \middle| f \text{ is measurable}, \int_X ||f||_B^p d\mu < \infty \right\}.$$

In addition, we define

$$||f||_{\mathcal{L}^p(\mu,B)} := \left(\int_X ||f||_B^p d\mu\right)^{\frac{1}{p}}.$$

Definition 11.6. Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space, we define

$$\mathcal{L}^{\infty}(\mu,B) := \left\{ f: X \to B | f \text{ is measurable, ess sup } ||f||_B < \infty \right\}.$$

In addition, we define

$$||f||_{\mathcal{L}^{\infty}(\mu,B)} := \operatorname{ess\,sup} ||f||_{B}.$$

Definition 11.7. Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space. For any $p \in [1, \infty]$, we define

$$L^p(\mu, B) := \mathcal{L}^p(\mu, B)/N,$$

where $N := \{f : X \to B | f \text{ is measurable}, f = 0 \ \mu - \text{a.e.} \}$. Namely, $[f] \in L^p(\mu, B)$ is the equivalence class of all g = f μ -a.e. for $f \in \mathcal{L}^p(\mu, B)$.

In addition, we define

$$||[f]||_{L^p(\mu,B)} := ||f||_{\mathcal{L}^\infty(\mu,B)}$$

for any representative f.

Theorem 11.5 (Fischer-Riesz-Bochner). Let (X, \mathcal{M}, μ) be a measure space, $(B, ||\cdot||)$ be a Banach Space. For all $1 \leq p \leq \infty$, we have that $\left(L^p(\mu, B), ||\cdot||_{L^p(\mu, B)}\right)$ is a Banach Space.