- Permutations
- States
- Protocols
- Reachable states
- Parameterized formulas, guarded commands, and protocols.
- Problem

Do the nodes, which run P, satisfy some invariant requirement req? Or, equivalently:

Does req hold in every reachable state of the nodes running P?

工作流程

Fig. 1: The workflow of paraVerifier.

Inductive Invariant

A formula *inv* is an *inductive invariant* of protocol $\mathcal{P} = (I,R)$ if

- the initial state satisfies the formula: $\models I \rightarrow inv$, and
- —transitions preserve the formula: for each $r \in R$, we have $\models inv \land guard(r) \rightarrow WP(action(r), inv)$.

LEMMA 3.2. Let $\mathscr{P} = (I,R)$ be a protocol. A formula inv is an inductive invariant of the protocol if and only if for all states s and s' and guarded commands $r \in R$ with $s \xrightarrow{r} s'$, $s \models inv$ implies $s' \models inv$.

Protocol Requirement

PROPOSITION 3.3. Assume given a protocol $\mathscr{P} = (I,R)$ and an (invariant) requirement req. \mathscr{P} satisfies req if there exists an inductive invariant inv of \mathscr{P} such that \models inv \rightarrow req.

concretization strategy

- Concretizing parameter values for a requirement
 - Therefore, we simply insert 1,2,...,m as the node identities. We denote the concretized requirement by req^c.
- Concretizing parameter values for a guarded command
 - we cover every combination of nodes involved in the several roles of the requirement.

Generally, for a k-element list of node identities, we have to choose which ones of them are in $\{1,\ldots,m\}$, and set the remaining parameters to distinct values > m. This leads to $\sum_{j=0}^{\min\{k,m\}} \binom{k}{j} \frac{m!}{(m-j)!}$ possibilities.

Construct Concret Auxiliary Invariants

casual relations

Recall that the invariant property we consider in this paper has the form $\neg \land_n f_n$, where each f_n is an atomic formula or predicate. Thus, WP(action(r^c), req^c) is a simple concrete formula of the same shape. If $\neg guard(r^c)$ also has this shape, the formula $\neg guard(r^c) \lor WP(action(r^c), req^c)$ can again be transformed into it.

We denote the obtained formula by $\neg \bigwedge_{n=1}^k f_n^c$. Candidates for the concrete auxiliary invariant are formulas $\neg f$, where f is a conjunction of a few of the f_1^c, \ldots, f_k^c . Observe that f allows more states than the original formula and thus may not be an inductive invariant. Thus, we apply model checking to find a simple formula $\neg f$.

A semi-algorithm

 a semi-algorithm for finding proof dependencies as well as concretized candidates for strengthening

Genaralizing Concrete Invariants

 We generalize guarded commands in the context of a requirement and therefore have to add parameter constraints to describe the relations between the parameters of the requirement and those of the guarded command.