Fisica 2 (Teoria dei Circuiti)

Esperienza 3 (tutto il contenuto e' da modificare)

Studenti: Angelo Perotti, Mattia Zagatti, Mattia Dolci

1 Introduzione

In questa esperienza viene analizzato il comportamento del circuito passa banda RLC, osservando il suo andamento prima nel dominio della frequenza attraverso lo sviluppo dei diagrammi di Bode e poi in quello del tempo.

2 Materiale utilizzato

- Componenti elettronici: resistori $(1 k\Omega, 10 k\Omega)$, capacitori (1nF (10nF, 100nF), decade di induttanze, breadboard.
- Strumenti di misura: generatore di forme d'onda, oscilloscopio
- Cavi: cavi bnc, cavi banana-banana, cavi jumper.

3 circuito utilizzato

4 Esperimento 1

In questo esercizio lo scopo è quello di analizzare il circuito nel dominio della frequenza, realizzando i relativi diagramma di Bode del modulo e della fase al variare della resistenza presente nel circuito. Esso è alimentato da un segnale sinusoidale di ampiezza picco-picco pari a 5 V e offset 0 V, ottenuto mediante un generatore di segnali collegato opportunamente alla breadboard mediante gli appositi doppietti. Gli altri componenti sono un resistore di valore $10~\rm k\Omega$ nel primo caso e $1~\rm k\Omega$ nel secondo, un condensatore di $10~\rm nF$ e un induttore di $500~\rm mH$. Questo valore di induttanza è stato introdotto all'interno del circuito non attraverso il classico bipolo ma con una decade di induttanza, regolando la manopola relativa all'ordine di grandezza appropriato.

$$R = 10k\Omega$$

^{*}FOTO DIAGRAMMI DI BODE GUADAGNO E FASE* I diagrammi di Bode sono stati realizzati utilizzando i dati raccolti in laboratorio (vedi tabella), facendo attenzione allo sfasamento tra i due segnali ed effettuando la seguente conversione:

\mathbf{f}	Δ	A_{ing}	A_{usc}
1Hz	84°	5V	4mV
1,15KHz	45,3°	5V	3,34V
2Hz	92°	5V	$6,25 \mathrm{mV}$
4,5V	47°	5V	3,38V
5Hz	91,4°	5V	$15,73 \mathrm{mV}$
10Hz	89,8°	5V	$30,4 \mathrm{mV}$
20Hz	89°	5V	$60,55 \mathrm{mV}$
50Hz	87°	5V	152mv
100Hz	86°	5V	$304,2 \mathrm{mV}$
200Hz	81°	5V	602,5 mV
500Hz	70°	5V	1,5V
1KHz	51°	5V	2,93V
2KHz	9,8°	5V	4,69V
2,25Khz	0°	5V	4,77V
5Khz	-53,4°	5V	3,07V
10Khz	-77°	5V	1,5V
50KHz	-	5V	-

Figure 1

Utilizzando un valore di R pari a 10 k Ω , le misure sono state effettuate variando il valore di frequenza del segnale in ingresso da un minimo di 1 Hz a un massimo di 10 kHz. Oltre a queste 13 misure, vengono considerate altre tre frequenze: i due valori corrispondente ad un guadagno di -3 dB rispetto al suo massimo e la frequenza di risonanza. Le prime sono state ottenute calcolando il guadagno a -3 dB, ottenuto considerando il valore massimo di ampiezza del segnale di uscita misurato ai capi del resistore (4.77 V) diviso la radice di 2:

$$A_{\epsilon dB} = \frac{A_{max}}{\sqrt{2}} = \frac{4,77V}{\sqrt{2}} = 3,37V$$

Successivamente, si regola la frequenza dal generatore di segnali fino a quando non si ottiene un valore di tensione paragonabile, in questo caso f1=1.15 kHz e f2=4.5 kHz. Per quanto riguarda la frequenza di risonanza, essa è stata ricavata considerando prima il valore della pulsazione in questione e poi dividendo per 2π :

$$\omega_0 = \frac{1}{\sqrt{LC}} = 14142 \frac{rad}{s}$$

$$f_0 = \frac{\omega_o}{2\pi} = 2.25kHz$$

Per misurare l'ampiezza e lo sfasamento sull'oscilloscopio sono stati utilizzati gli appositi cursori, variando opportunamente la scala dei tempi e dell'ampiezza.

$$\Delta \emptyset[rad] = \frac{\Delta t}{T} \cdot 2\pi$$

Come è possibile notare, i risultati ottenuti sono coerenti con il comportamento passa-banda del circuito, secondo il quale si ha un guadagno massimo($G = \frac{A_{out}}{A_{in}}$) in corrispondenza della frequenza di risonanza, mentre il segnale di uscita viene particolarmente attenuato a frequenze maggiori rispetto a 10 f_0 e inferiori rispetto a 0.1 f_0 .

r=1k In questo caso vengono ripetute le misure precedenti modificando il valore di R, andando perciò a variare il valore di tensione massima e di conseguenza le frequenze corrispondenti ad un valore di ampiezza inferiore di 3 dB rispetto a quello massimo, mentre la frequenza di risonanza rimane invariata in quanto i valori di capacità e induttanza sono invariati. Le misure a 1 e 2 Hz non sono state effettuate in quando il segnale di uscita in quel punto era molto attenuato e non era quindi osservabile all'oscilloscopio.

$$A_{3dB} = \frac{3.37V}{\sqrt{2}} = 2.38V$$

foto diagrammi bode

Rispetto al caso precedente si nota come i valori di tensione misurati non rispecchiano perfettamente quelli attesi, in particolar modo il valore massimo del segnale in uscita (3.37 V) è decisamente inferiore rispetto a quello misurato con $R=10~\rm k\omega$ (4.77 V), e di conseguenza anche i valori relativi allo sfasamento. Ciò è causato dal fatto che, avendo in questo caso un valore di resistenza più basso, esso è paragonabile al valore della resistenza parassita presente in serie all'induttore a causa del suo comportamento reale

f	Δ	A_{ing}	A_{usc}
1Hz	-	5V	-
2Hz	-	5V	-
5Hz	-	5V	-
10Hz	88°	5V	$3,3 \mathrm{mV}$
20Hz	89°	5V	$6.3 \mathrm{mV}$
50Hz	90°	5V	15,3mv
100Hz	89°	5V	$36,6 \mathrm{mV}$
200Hz	88°	5V	61mV
500Hz	86,7°	5V	161mV
1KHz	83°	5V	$373 \mathrm{mV}$
2KHz	9,8°	5V	4,69V
2,25Khz	0°	5V	4,77V
5Khz	-53,4°	5V	3,07V
10Khz	-77°	5V	1,5V
50KHz	-	5V	-