Aula 04 – Matrizes em C

Leandra de Carvalho Nogueira Universidade Federal de Alfenas

Declaração

Sintaxe:

```
tipo var[tam1][tam2],..., varN[tamN][tamM];
```

onde:

- tipo pode ser inteiro, real ou caracter;
- tam1, tam2, ..., tamN, tamM: é a quantidade de campos das variáveis (linhas e colunas).

Exemplo 1

 Dada uma matriz 4X4, desenvolver um algoritmo para ler esta matriz e escrevê-la após ter multiplicado os valores da diagonal principal por uma constante K.

Exemplo 2

 Dada uma tabela de 4X5 elementos, calcular a soma de cada linha e a soma de todos os elementos da tabela.

	0	1	2	3	4		
0	1	0	-1	3	5		8
1	2	4	5	-2	1		10
2	1	2	5	7	0		15
3	0	0	1	2	3	+	6
,						1	

Exercício 1

- Fazer um algoritmo que leia duas variáveis compostas bidimensionais de dimensão mXn (m<=20,n<=30).
- Os valores de m e n são fornecidos inicialmente.
- Calcule e imprima a soma destas duas variáveis compostas.

Exercício 2

- Fazer um algoritmo que leia uma matriz quadrada A, de dimensão nXn (n<=20).
- O valor de n é fornecido inicialmente.

Verifique se a matriz é simétrica, ou seja, A[I,J] = A[J,I], para todo I,J <= n. O algoritmo deve imprimir "simétrica", se a matriz A for simétrica, e "não simétrica", caso contrário.