Introduction to Generalized Linear Models

Part 4: Poisson Regression Revisited

Recall: Modeling doctor visits.

1 doctor_visits.head()

	visits	gender	age	income	illness	reduced	health
0	1	female	72.0	0.25	4	7	3
1	0	male	72.0	0.35	0	0	(
2	0	female	47.0	0.75	1	0	(
3	0	female	62.0	0.25	0	0	(
4	4	female	72.0	0.35	4	0	(

poisreg_age.summary()

Dep	. Variable	e:	visits		No. Observations:		100
	Mode	el:	C	GLM	Df Re	esiduals:	98
Model Family:			Poisson			1	
Link	Function	n:	log			1.0000	
Method: Date: Ti			IRLS Thu, 16 Sep 2021		Log-Lik	-88.646 120.45	
					D		
	Time	e:	11:26	6:18	Pears	on chi2:	221.
No.	Iteration	s:		5			
Covaria	ance Type	e:	nonrol	bust			
	coef	std err	z	P> z	[0.025	0.975]	
const	-1.8280	0.441	-4.143	0.00	0 -2.693	-0.963	
age	0.0187	0.008	2.396	0.01	7 0.003	0.034	

For a person whose age is *t*, the estimated value of the mean is

$$exp(-1.8280 + 0.0187t)$$

= $e^{(-1.8280 + 0.0187t)}$

Poisson Regression

 $Y|\vec{x}$ follows a Poisson

distribution with mean

$$\mu = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n)$$

$$= e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}$$

Example: MLB Data

1 mlb.head()

runs	games	OBP
582	139	0.310
671	137	0.320
566	137	0.304
716	141	0.328
602	140	0.306
	582 671 566 716	671 137 566 137 716 141

Goal: Estimate the number of runs scored (*runs*) based on the on-base percentage (*OBP*).

Example: MLB Data

1 mlb.head()

	runs	games	OBP
0	582	139	0.310
1	671	137	0.320
2	566	137	0.304
3	716	141	0.328
4	602	140	0.306

Goal: Estimate the number of runs scored (*runs*) based on the on-base percentage (*OBP*).

Problem: Teams have played a different numbers of games, so the comparison is not really fair.

Example: MLB Data

1 mlb.head()

	runs	games	OBP
0	582	139	0.310
1	671	137	0.320
2	566	137	0.304
3	716	141	0.328
4	602	140	0.306

Goal: Estimate the number of runs scored (*runs*) based on the on-base percentage (*OBP*).

Problem: Teams have played a different numbers of games, so the comparison is not really fair.

Potential Fix: Estimate the number of runs scored *per game*.

$\frac{runs}{games} = e^{\beta_0 + \beta_1(OBP)}$

 $\frac{runs}{} = e^{\beta_0 + \beta_1(OBP)}$

 $\implies \log\left(\frac{runs}{qames}\right) = \beta_0 + \beta_1(OBP)$

games

$$\frac{runs}{games} = e^{\beta_0 + \beta_1(OBP)}$$

$$\implies \log\left(\frac{runs}{games}\right) = \beta_0 + \beta_1(OBP)$$

$$\implies \log(runs) - \log(games) = \beta_0 + \beta_1(OBP)$$

$$\frac{runs}{games} = e^{\beta_0 + \beta_1(OBP)}$$

$$\Rightarrow \log\left(\frac{runs}{games}\right) = \beta_0 + \beta_1(OBP)$$

$$\Rightarrow \log(runs) - \log(games) = \beta_0 + \beta_1(OBP)$$

$$\Rightarrow \log(runs) = \beta_0 + \beta_1(OBP) + \log(games)$$

$$\frac{runs}{games} = e^{\beta_0 + \beta_1(OBP)}$$

$$\implies \log\left(\frac{runs}{aames}\right) = \beta_0 + \beta_1(OBP)$$

$$\implies \log(runs) - \log(games) = \beta_0 + \beta_1(OBP)$$

$$\implies \log(runs) = \beta_0 + \beta_1(OBP) + \log(games)$$

This is called an offset term.

We'll be using the *statsmodels* library and the *numpy* library for the logarithm.

Specify the offset column.

mlb_poisson.summary()

Dep	o. Variable	e:	r	uns N	lo. Obser	vations:	30
	Mode	l:	G	LM	Df Re	siduals:	28
Mo	del Family	y:	Pois	son	D	f Model:	
Link	Function	1:		log		Scale:	1.0000
	Method	d:	IF	RLS	Log-Like	elihood:	-159.09
	Date	e: Thu,	16 Sep 20	021	De	eviance:	69.99
	Time	e :	12:07	:38	Pears	on chi2:	69.8
No.	Iterations	s:		3			
Covari	ance Type	e:	nonrob	oust			
	coef	std err	z	P> z	[0.025	0.975]	
const	-0.5456	0.205	-2.663	0.008	3 -0.947	-0.144	
OBP	6.4849	0.646	10.046	0.000	5.220	7.750	

mlb poisson.summary()

Dep	o. Variable	e:	r	uns	No. Observations:		30
Model: Model Family:			G	LM	Df Re	28	
			Poisson		D	1	
Link	Function	1:	log			Scale:	
Method: Date: Th			IRLS Thu, 16 Sep 2021 12:07:38		Log-Lik	-159.09	
					D	69.995	
					Pears	69.8	
No.	Iterations	s:		3			
Covaria	ance Type	e:	nonrob	oust			
	coef	std err	z	P> z	[0.025	0.975]	
const	-0.5456	0.205	-2.663	0.00	8 -0.947	-0.144	
OBP	6.4849	0.646	10.046	0.00	0 5.220	7.750	

Given the OBP of a team, the model estimates the mean runs per game as

 $=e^{(-0.5456+6.4849(OBP))}$

