Scilab Textbook Companion for Numerical Methods by E. Balaguruswamy¹

Created by
Arralli Prashanth
Numerical methods in Chemical Engineering
Chemical Engineering
IIT Guwahati
College Teacher
Dr. Prakash Kotecha
Cross-Checked by

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Numerical Methods

Author: E. Balaguruswamy

Publisher: Tata McGraw - Hill Education, New Delhi

Edition: 1

Year: 1999

ISBN: 9780074633113

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	Intorduction to Numerical Computing	8	
3	Computer Codes and Arithmetic	9	
4	Approximations and Errors in Computing	30	
6	Roots of Nonlinear Equations	45	
7	Direct Solutions of Linear Equations	59	
8	Iterative Solution of Linear Equations	66	
9	Curve Fitting Interpolation	71	
10	Curve Fitting Regression	83	
11	Numerical Differentiation	87	
12	Numerical Integration	93	
13	Numerical Solution of Ordinary Differential Equations	101	
14	Boundary Value and Eigenvalue Problems	113	
15	Solution of Partial Differential Equations	118	

List of Scilab Codes

Exa 1.01	Theoritical Problem	8
Exa 3.1	binary to decimal	9
Exa 3.2	Hexadecimal to Decimal	10
Exa 3.3	Decimal to Binary	10
Exa 3.4	Decimal to Octal	11
Exa 3.5	Decimal to Binary	12
Exa 3.6	Octal to Hexadecimal	13
Exa 3.7	Hexadecimal to Octal	14
Exa 3.8	Binary form of negative integers	15
Exa 3.9	16 bit word representation	16
Exa 3.10	Floating Point Notation	17
Exa 3.11	Integer Arithmetic	18
Exa 3.12	Integer Arithmetic	18
Exa 3.13	Floating Point Arithmetic Addition	19
Exa 3.14	Floating Point Arithmetic Addition	19
Exa 3.15	Floating Point Arithmetic Subtraction	20
Exa 3.16	Floating Point Arithmetic Multiplication	21
Exa 3.17	Floating Point Arithmetic division	22
Exa 3.18	Errors in Arithmetic	22
Exa 3.19	Errors in Arithmetic	23
Exa 3.20	Errors in Arithmetic	24
Exa 3.21	Errors in Arithmetic	25
Exa 3.22	Associative law of Addition	25
Exa 3.23	Associative law of Multiplication	27
Exa 3.24	Distributive law of Arithmetic	28
Exa 4.1	Greatest Precision	30
Exa 4.2	Accuracy of Numbers	31
Exa 4.3	Addition in Binary form	32

Exa 4.4	Rounding off
Exa 4.5	Truncation Error
Exa 4.6	Truncation Error
Exa 4.7	Absolute and Relative Error
Exa 4.8	Machine Epsilon
Exa 4.9	Propagation of Error
Exa 4.10	Errors in Sequence of Computations
Exa 4.11	Addition of Chain of Numbers
Exa 4.12	Addition of Chain of Numbers
Exa 4.13	Theoritical Problem
Exa 4.14	Absolute and Relative Errors
Exa 4.15	Error Evaluation
Exa 4.16	Condition and Stability 41
Exa 4.17	Theoritical Problem
Exa 4.18	Difference of Square roots
Exa 4.19	Theoritical Problem
Exa 4.20	Theoritical Problem
Exa 4.21	Induced Instability
Exa 6.1	Possible initial guess values for roots 45
Exa 6.02	Theoritical Problem
Exa 6.3	Evaluating Polynomial using Horners rule 46
Exa 6.4	Bisection Method
Exa 6.5	False Position Method
Exa 6.06	Theoritical Problem
Exa 6.7	Newton Raphson Method
Exa 6.8	Newton Raphson Method
Exa 6.9	Secant Method
Exa 6.10	Theoritical Problem
Exa 6.11	Fixed Point Method 51
Exa 6.12	Fixed Point Method
Exa 6.13	Fixed Point Method for non linear equations 53
Exa 6.14	Newton Raphson Method for Non linear equations 54
Exa 6.15	Synthetic Division
Exa 6.16	Bairstow Method for Factor of polynomial
Exa 6.17	Mullers Method for Leonards equation
Exa 7.1	Elimination Process
Exa 7.2	Basic Gauss Elimination 60
Exa 7.3	Gauss Elimination using Partial Pivoting 60

Exa 7.4	Gauss Jordan Elimination 61
Exa 7.5	DoLittle LU Decomposition 62
Exa 7.6	Choleskys Factorisation
Exa 7.7	Ill Conditioned Systems
Exa 8.1	Gauss Jacobi Iteration Method
Exa 8.2	Gauss Seidel Iterative Method 67
Exa 8.3	Gauss Seidel Iterative Method
Exa 8.4	Gauss Seidel Iterative Method 69
Exa 9.1	Polynomial Forms
Exa 9.2	Shifted Power form
Exa 9.3	Linear Interpolation
Exa 9.4	Lagrange Interpolation
Exa 9.5	Lagrange Interpolation
Exa 9.6	Newton Interpolation
Exa 9.7	Newton Divided Difference Interpolation
Exa 9.8	Newton Gregory Forward Difference Formula 77
Exa 9.9	Newton Backward Difference Formula
Exa 9.10	Splines
Exa 9.11	Cubic Spline Interpolation 80
Exa 9.12	Cubic Spline Interpolation 81
Exa 10.1	Fitting a Straight line
Exa 10.2	Fitting a Power Function Model to given data 83
Exa 10.3	Fitting a Straight line using Regression 84
Exa 10.4	Curve Fitting
Exa 10.5	Plane Fitting
Exa 11.1	First order Forward Difference
Exa 11.2	Three Point Formula
Exa 11.3	Error Analysis
Exa 11.4	Approximate Second Derivative 89
Exa 11.5	Differentiation of Tabulated Data
Exa 11.6	Three Point Central Difference Formula 90
Exa 11.7	Second order Derivative
Exa 11.8	Richardsons Extrapolation Technique 92
Exa 12.1	Trapezoidal Rule
Exa 12.2	Trapezoidal Rule
Exa 12.3	Simpons 1 by 3 rule
Exa 12.4	Simpons 1 by 3 rule
Exa 12.5	Simpsons 3 by 8 rule
	6

Exa 12.6	Booles Five Point Formula	97
Exa 12.7	Romberg Integration Formula	98
Exa 12.8	Two Point Gauss Legefre Formula	99
Exa 12.9	Gaussian Two Point Formula	99
Exa 12.10		100
Exa 13.1		101
Exa 13.2	Recursive Taylor Method	101
Exa 13.3		102
Exa 13.4	Eulers Method	103
Exa 13.5		104
Exa 13.6	Heuns Method	105
Exa 13.7		106
Exa 13.8		106
Exa 13.9		107
Exa 13.10		108
Exa 13.11	Adams Bashforth Moulton Method	109
Exa 13.12	Milne Simpson Method Using Modifier	110
Exa 13.13	System of Differential Equations	110
Exa 13.14	Higher Order Differential Equations	111
Exa 14.1	Shooting Method	113
Exa 14.2		114
Exa 14.3	Eigen Vectors	115
Exa 14.4	Fadeev Leverrier Method	116
Exa 14.5	Eigen Vectors	116
Exa 14.6		117
Exa 15.1	Elliptic Equations	118
Exa 15.2		119
Exa 15.3	Poissons Equation	120
Exa 15.4	Gauss Siedel Iteration	121
Exa 15.5	Initial Value Problems	121
Exa 15.6		122
Exa 15.7	Hyperbolic Equations	123

Chapter 1

Intorduction to Numerical Computing

Scilab code Exa 1.01 Theoritical Problem

```
1 //Example No. 1_01
2 //Pg No. 6
3 disp('Theoritical Problem')
4 disp('For Details go to page no. 6')
```

Chapter 3

Computer Codes and Arithmetic

Scilab code Exa 3.1 binary to decimal

```
1 / Example No. 3_01
2 //Binary to decimal
3 //Pg No. 45
4 clear ; close ; clc ;
6 b = '1101.1101'
7 v = strsplit(b, '.') //splitting integral part and
       fraction part
8 integral = str2code(v(1))//converting strings to
      numbers
9 fractionp = str2code(v(2))
10 li = length(integralp) //lenght of integral part
11 lf = length(fractionp) // and fractional part
12 di = 0; // Initializing integral part and decimal
      part
13 \text{ df} = 0 ;
14 \text{ for } i = 1:1i
15
       di = 2*di+integralp(i)
16 \text{ end}
```

```
17 for i = lf:-1:1
18     df = df/2 + fractionp(i)
19 end
20 df = df/2;
21 d = di + df; //Integral and fractional parts
22 disp(d,'Decimal value = ')
```

Scilab code Exa 3.2 Hexadecimal to Decimal

```
1 / Example No. 3_02
2 //hexadecimal to decimal
3 //Pg No. 46
4 clear; close; clc;
6 h = '12AF';
7 u = str2code(h)
8 u = abs(u)
9 n = length(u)
10 \, d = 0
11 \text{ for } i = 1:n
12
       d = d*16 + u(i)
13 end
14 disp(d, 'Decimal value = ')
15 //Using Scilab Function
16 d = hex2dec(h)
17 disp(d, 'Using scilab function Decimal value = ')
```

Scilab code Exa 3.3 Decimal to Binary

```
1 //Example No. 3_03
2 //Decimal to Binary
3 //Pg No. 47
4 clear; close; clc;
```

```
5
6 d = 43.375;
7 // Separating integral part and fractional parts
8 dint = floor(d)
9 	ext{ dfrac} = d - dint
10
11 //Integral Part
12 i = 1 ;
13 intp = dec2bin(dint)
14
15 // Fractional part
16 	 j = 1 	 ;
17 while dfrac ~= 0
       fracp(j) = floor(dfrac*2)
18
       dfrac = dfrac*2 - floor(dfrac*2)
19
20
       j = j+1 ;
21 end
22 fracp = strcat(string(fracp))
23
24 b = strcat([intp,fracp],'.') //combining integral
      part and fractional part
25 disp(b, 'Binary equivalent = ')
```

Scilab code Exa 3.4 Decimal to Octal

```
1  //Example No. 3_04
2  //Decimal to Octal
3  //Pg No. 48
4  clear ; close ; clc ;
5
6  d = 163 ;
7  oct = dec2oct(d)
8  disp(oct, 'Octal number = ')
```

Scilab code Exa 3.5 Decimal to Binary

```
1 // Example No. 3_05
2 //Decimal to binary
3 // Pg No. 48
4 clear; close; clc;
6 d = 0.65
7 j = 1 ;
9 while d ~= 0
       fracp(j) = floor(d*2) //integral part of d*2
10
       d = d*2 - floor(d*2) //Fractional part of d*2
11
12
       j = j+1 ;
13
       decp(j-1) = d
14
       p = 1
15
16
       for i = 1:j-2
17
           if abs(d - decp(i)) < 0.001 then //Condition
               for terminating the recurring binary
              equivalent by
               p = 0
                                               //finding
18
                   out if the new fractional part is
                   equal to any of the previous
                   fractonal parts
19
                break
20
           end
21
       end
22
23
       if p == 0 then
           break
24
25
       end
26
27 end
```

Scilab code Exa 3.6 Octal to Hexadecimal

```
1 / Example No. 3_06
2 //Octal to Hexadecimal
3 / Pg No. 49
4 clear; close; clc;
6 \text{ oct} = '243';
7 u = str2code(oct)
8 n = length(u)
9 \text{ for } i = 1:n
       b(i) = dec2bin(u(i)) //Converting each digit to
10
          binary equivalent
11
       if length(b(i)) == 2 then
                                          //making the
          binary equivalents into a groups of triplets
           b(i) = strcat(['0',b(i)])
12
       elseif length(b(i)) == 1
13
           b(i) = strcat(['0', '0', b(i)])
14
15
       end
16 \, \text{end}
17 bin = strcat(b) //combining all the triplets
18 i = 1 ;
19 while length(bin) > 4
       OtoH = strsplit(bin, length(bin)-4) //splitting
20
          the binary equivalent into groups of binary
          quadruplets
21
       bin = OtoH(1)
22
       h(i) = OtoH(2)
```

Scilab code Exa 3.7 Hexadecimal to Octal

```
1 //Example No. 3_{-}07
2 //Hexadecimal to Octal
3 // Pg No. 49
4 clear; close; clc;
6 h = '39.B8';
7 h = strsplit(h, '.') //separating integral part and
      fractional part
8 \text{ cint} = abs(str2code(h(1)))
9 cfrac = abs(str2code(h(2)))
10 bint = dec2bin(cint)
11 bfrac = dec2bin(cfrac)
12 bint = strcat(bint)
13 bfrac = strcat(bfrac)
14
15 //Integral Part
16 i = 1 ;
17 while length(bint) > 3
18
       HtoO = strsplit(bint,length(bint)-3)
       bint = HtoO(1)
19
20
       oint(i) = HtoO(2)
21
       i = i+1;
```

```
22 end
23 \text{ oint(i)} = \text{bint}
24 oint =oint($:-1:1)
25 oint = bin2dec(oint)
26
27 // Fraction Part
28 i = 1 ;
29 while length(bfrac)> 3
       HtoO = strsplit(bfrac,3)
30
       bfrac = HtoO(2)
31
32
       ofrac(i) = HtoO(1)
33
       i = i+1
34 end
35 \text{ ofrac(i)} = bfrac
36 ofrac = bin2dec(ofrac)
37
38 //Combining integral part and fraction part
39 oct = strcat([strcat(string(oint)), strcat(string(
      ofrac))],'.')
40 disp(oct, 'Octal number equivalent of Hexadecimal
      number 39.B8 is ')
```

Scilab code Exa 3.8 Binary form of negative integers

```
1 //Example No. 3_08
2 //-ve Integer to binary
3 //Pg No. 50
4 clear ; close ; clc ;
5
6 negint = -13
7 posbin = dec2bin(abs(negint))
8 posbin = strcat(['0', posbin])
9 compl_1 = strsubst(posbin, '0', 'd')
10 compl_1 = strsubst(compl_1, '1', '0')
11 compl_1 = strsubst(compl_1, 'd', '1')
```

```
12 compl_2 = dec2bin(bin2dec(compl_1) + 1)
13
14 disp(compl_2, 'Binary equivalent of -13 is ')
```

Scilab code Exa 3.9 16 bit word representation

```
1 // Example No. 3_09
2 //Binary representation
3 //Pg No. 51
4 clear ; close ; clc ;
6 n = -32768
7 \text{ compl}_32767 = \text{dec2bin}(\text{bitcmp}(abs(n)-1,16) + 1)
8 disp(compl_32767, 'binary equivalent of -32767 is ')
10 \quad n_1 = -1
11 \text{ dcomp} = \text{bitcmp}(1,16)
12 \quad compl_1 = dec2bin(dcomp+1)
13 disp(compl_1, 'binary equivalent of -1 is ')
14 \quad compl_32767\_code = str2code(compl_32767)
15 compl_1_code = str2code(compl_1)
16 summ(1) = 1 //since -32768 is a negative number
17 c = 0
18 \text{ for } i = 16:-1:2
       summ(i) = compl_32767\_code(i) + compl_1\_code(i) +
19
       if summ(i) == 2 then
20
21
            summ(i) = 0
22
            c = 1
23
       else
            c = 0
24
25
       end
26 end
27 binfinal = strcat(string(summ))
28 disp(binfinal, Binary equivalent of -32768 in a 16
```

Scilab code Exa 3.10 Floating Point Notation

```
1 // Example No. 3_10
2 // Floating Point Notation
3 //Pg No. 52
4 clear; close; clc;
6 function [m,e] =float_notation(n)
7 m = n ;
8 \text{ for } i = 1:16
       if abs(m) >= 1 then
10
            m = n/10^i
            e = i
11
12
       elseif abs(m) < 0.1
            m = n*10^i
13
            e = -i
14
15
       else
            if i == 1 then
16
17
                e = 0
18
            end
19
            break ;
20
       end
21 end
22 endfunction
23
[m,e] = float_notation(0.00596)
  mprintf('\n 0.00596 is expressed as
                                             \%f*10^{\%}i \ n', m,
      e)
26 \text{ [m,e]} = float_notation(65.7452)
27 mprintf('\n 65.7452 is expressed as
                                             \%f*10^{\%}i \ n', m,
      e)
28 \text{ [m,e]} = float_notation(-486.8)
29 mprintf('\n -486.8 is expressed as
                                           \%f*10^{\%}i \ n',m,e
```

)

Scilab code Exa 3.11 Integer Arithmetic

```
1 //Example No. 3_11
2 //Interger Arithmetic
3 //Pg No. 53
4 clear ; close ; clc ;
5
6 disp(int(25 + 12))
7 disp(int(25 - 12))
8 disp(int(12 - 25))
9 disp(int(25*12))
10 disp(int(25/12))
11 disp(int(12/25))
```

Scilab code Exa 3.12 Integer Arithmetic

```
1 / Example No. 3_12
2 //Integer Arithmetic
3 / Pg No. 53
4 clear ; close ; clc ;
5 a = 5 ;
6 b = 7 ;
7 c = 3 :
8 \text{ Lhs} = int((a + b)/c)
9 Rhs = int(a/c) + int(b/c)
10 disp(Rhs, a/c + b/c = ', Lhs, (a+b)/c = ')
11 if Lhs ~= Rhs then
12
       disp('The results are not identical. This is
          because the remainder of an integer division
          is always truncated')
13 end
```

Scilab code Exa 3.13 Floating Point Arithmetic Addition

```
1 / Example No. 3_13
2 //Floating Point Arithmetic
3 / Pg No. 54
4 clear ; close ; clc ;
6 	 fx = 0.586351 ;
7 \text{ Ex} = 5;
8 \text{ fy} = 0.964572 ;
9 \text{ Ey} = 2;
10 [Ez,n] = max(Ex,Ey)
11 if n == 1 then
12
        fy = fy*10^(Ey-Ex)
13
        fz = fx + fy
14
       if fz > 1 then
15
            fz = fz*10^{-}(-1)
16
            Ez = Ez + 1
17
        end
       disp(fz, 'fz = ',fy, 'fy = ',Ez, 'Ez = ')
18
19
  else
20
       fx = fx*10^(Ex - Ey)
21
        fz = fx + fy
        if fz > 1 then
22
23
            fz = fz*10^{-}(-1)
            Ez = Ez + 1
24
25
        disp(fz, 'fz = ',fx, 'fx = ',Ez, 'Ez = ')
26
27 end
28 mprintf('\n z = %f E%i \n',fz,Ez)
```

Scilab code Exa 3.14 Floating Point Arithmetic Addition

```
1 / Example No. 3_14
2 //Floating Point Arithmetic
3 / Pg No. 54
4 clear ; close ; clc ;
6 \text{ fx} = 0.735816 ;
7 \text{ Ex} = 4;
8 \text{ fy} = 0.635742 ;
9 \text{ Ey} = 4;
10 [Ez,n] = \max(Ex,Ey)
11 if n == 1 then
12
        fy = fy*10^(Ey-Ex)
13
        fz = fx + fy
14
       if fz > 1 then
            fz = fz*10^(-1)
15
            Ez = Ez + 1
16
17
        end
        disp(fz, 'fz = ',fy, 'fy = ',Ez, 'Ez = ')
18
19 else
20
        fx = fx*10^(Ex - Ey)
21
        fz = fx + fy
22
        if fz > 1 then
23
            fz = fz*10^{-1}
            Ez = Ez + 1
24
25
        disp(fz, 'fz = ',fx, 'fx = ',Ez, 'Ez = ')
26
27 end
28 mprintf('\n z = \%f E\%i \n',fz,Ez)
```

Scilab code Exa 3.15 Floating Point Arithmetic Subtraction

```
1 //Example No. 3_15
2 //Floating Point Arithmetic
3 //Pg No. 54
4 clear ; close ; clc ;
```

```
5
6 \text{ fx} = 0.999658 ;
7 \text{ Ex} = -3;
8 \text{ fy} = 0.994576;
9 \text{ Ey} = -3;
10 Ez = \max(Ex, Ey)
11 fy = fy*10^(Ey-Ex)
12 fz = fx - fy
13 \operatorname{disp}(fz, fz = , Ez, Ez = )
14 mprintf('\n z = %f E%i \n',fz,Ez)
15 if fz < 0.1 then
         fz = fz*10^6
                               //Since we are using 6
16
             significant digits
17
         n = length(string(fz))
         fz = fz/10^n
18
         Ez = Ez + n - 6
19
         mprintf(' \mid z = \%f E\%i (normalised) \mid n',fz,Ez)
20
21 end
```

Scilab code Exa 3.16 Floating Point Arithmetic Multiplication

```
1 //Example No. 3-16
2 //Floating Point Arithmetic
3 //Pg No. 55
4 clear ; close ; clc ;
5
6 fx = 0.200000 ;
7 Ex = 4 ;
8 fy = 0.400000 ;
9 Ey = -2 ;
10 fz = fx*fy
11 Ez = Ex + Ey
12 mprintf('\n fz = %f \n Ez = %i \n z = %f E%i \n',fz, Ez,fz,Ez)
13 if fz < 0.1 then</pre>
```

```
14 fz = fz*10

15 Ez = Ez - 1

16 mprintf('\n z = %f E%i (normalised) \n',fz,Ez)

17 end
```

Scilab code Exa 3.17 Floating Point Arithmetic division

```
1 / Example No. 3_17
2 //Floating Point Arithmetic
3 / \text{Pg No. } 55
4 clear ; close ; clc ;
6 \text{ fx} = 0.876543 ;
7 \text{ Ex} = -5;
8 \text{ fy} = 0.200000 ;
9 \text{ Ey} = -3;
10 \text{ fz} = \text{fx/fy}
11 Ez = Ex - Ey
12 mprintf('\n fz = \%f \n Ez = \%i \n z = \%f E\%i \n',fz,
       Ez,fz,Ez)
13
14 if fz > 1 then
15
        fz = fz/10
16
        Ez = Ez + 1
        mprintf(' \mid z = \%f \mid E\%i \mid (normalised) \mid n', fz, Ez)
17
18 end
```

Scilab code Exa 3.18 Errors in Arithmetic

```
1 //Example No. 3_18
2 //Floating Point Arithmetic
3 //Pg No. 56
4 clear ; close ; clc ;
```

```
5
6 \text{ fx} = 0.500000 ;
7 \text{ Ex} = 1;
8 	 fy = 0.100000 	 ;
9 \text{ Ey} = -7 ;
10 [Ez,n] = \max(Ex,Ey)
11 if n == 1 then
12
        fy = fy*10^(Ey-Ex)
13
       fz = fx + fy
        if fz > 1 then
14
15
            fz = fz*10^{-1}
16
            Ez = Ez + 1
17
        end
        disp(fy, 'fy = ', Ez, 'Ez = ')
18
19 else
20
        fx = fx*10^(Ex - Ey)
        fz = fx + fy
21
22
        if fz > 1 then
            fz = fz*10^{-1}
23
24
            Ez = Ez + 1
25
        end
26
        disp(fx, 'fx = ', Ez, 'Ez = ')
27 end
28 mprintf('\n fz = \%f \n z = \%f E\%i \n',fz,fz,Ez)
```

Scilab code Exa 3.19 Errors in Arithmetic

```
1  //Example No. 3_19
2  //Floating Point Arithmetic
3  //Pg No. 56
4  clear ; close ; clc ;
5
6  fx = 0.350000 ;
7  Ex = 40 ;
8  fy = 0.500000 ;
```

Scilab code Exa 3.20 Errors in Arithmetic

```
1 //Example No. 3_20
2 // Floating Point Arithmetic
3 // Pg No. 56
4 clear ; close ; clc ;
6 	ext{ fx} = 0.875000 	ext{ ;}
7 \text{ Ex} = -18;
8 	 fy = 0.200000 	 ;
9 \text{ Ey} = 95;
10 \text{ fz} = \text{fx/fy}
11 Ez = Ex - Ey
12 mprintf('\n fz = \%f \n Ez = \%i \n z = \%f E\%i \n',fz,
      Ez,fz,Ez)
13
14 if fz > 1 then
        fz = fz/10
15
        Ez = Ez + 1
16
        mprintf(' \mid z = \%f \ E\%i \ (normalised) \mid n',fz,Ez)
17
18 end
```

Scilab code Exa 3.21 Errors in Arithmetic

```
1 / Example No. 3_21
2 //Floating Point Arithmetic
3 // Pg No. 57
4 clear ; close ; clc ;
6 	ext{ fx} = 0.500000 	ext{;}
7 \text{ Ex} = 0;
8 \text{ fy} = 0.499998 ;
9 \text{ Ey} = 0;
10 \text{ Ez} = 0;
11 \text{ fz} = \text{fx} - \text{fy}
12 \operatorname{disp}(fz, fz = , Ez, Ez = )
13 mprintf('\n z = \%f E\%i \n',fz,Ez)
14 if fz < 0.1 then
          fz = fz*10^6
15
          n = length(string(fz))
16
          fz = fz/10^n
17
          Ez = Ez + n - 6
18
19
          mprintf(' \mid z = \%f E\%i (normalised) \mid n',fz,Ez)
20 end
```

Scilab code Exa 3.22 Associative law of Addition

```
10
            fy = fy*10^(Ey-Ex)
11
            fz = fx + fy
12
            if fz > 1 then
                fz = fz*10^(-1)
13
14
                Ez = Ez + 1
15
            end
16
       else
17
            fx = fx*10^(Ex - Ey)
            fz = fx + fy
18
19
            if fz > 1 then
                fz = fz*10^(-1)
20
21
                Ez = Ez + 1
22
            end
23
       end
24
25 else
26
       //Subtraction
27
       [Ez,n] = \max(Ex,Ey)
28
       if n == 1 then
29
            fy = fy*10^(Ey-Ex)
30
            fz = fx + fy
            if abs(fz) < 0.1 then
31
               fz = fz*10^6
32
33
               fz = floor(fz)
34
               nfz = length(string(abs(fz)))
35
               fz = fz/10^nfz
36
               Ez = nfz - 6
37
            end
38
       else
39
            fx = fx*10^(Ex - Ey)
40
            fz = fx + fy
            if fz < 0.1 then
41
               fz = fz*10^6
42
               fz = int(fz)
43
               nfz = length(string(abs(fz)))
44
45
               fz = fz/10^nfz
               Ez = nfz - 6
46
47
            end
```

```
48
         end
49 end
50 endfunction
51
52 \text{ fx} = 0.456732
53 \text{ Ex} = -2
54 \text{ fy} = 0.243451
55 \text{ Ey} = 0
56 \text{ fz} = -0.24800
57 \text{ Ez} = 0
58
59 [fxy, Exy] = add_sub(fx, Ex, fy, Ey)
60 [fxy_z,Exy_z] = add_sub(fxy,Exy,fz,Ez)
61 [fyz,Eyz] = add_sub(fy,Ey,fz,Ez)
62 \quad [fx_yz, Ex_yz] = add_sub(fx, Ex, fyz, Eyz)
63 mprintf('fxy = \%f\n Exy = \%i\n fxy_z = \%f\n Exy_z =
        \%i \setminus n \text{ fyz} = \%f \setminus n \text{ Eyz} = \%i \setminus n \text{ fx_yz} = \%f \setminus n
       Ex_yz = \%i \ \ n', fxy, Exy, fxy_z, Exy_z, fyz, Eyz, fx_yz,
       Ex_yz)
64
         fxy_z ~= fx_yz | Exy_z ~= Ex_yz then
65
         disp('(x+y) + z = x + (y+z)')
66
67 end
```

Scilab code Exa 3.23 Associative law of Multiplication

```
1 //Example No. 3_23
2 //Associative law
3 //Pg No. 58
4 clear; close; clc;
5 x = 0.400000*10^40
6 y = 0.500000*10^70
7 z = 0.300000*10^(-30)
8 disp('In book they have considered the maximum exponent can be only 99, since 110 is greater
```

```
than 99 the result is erroneous')
9 disp((x*y)*z,'xy_z = ','but in scilab the this value
   is much larger than 110 so we get a correct
   result ')
10 disp(x*(y*z),'x_yz = ')
```

Scilab code Exa 3.24 Distributive law of Arithmetic

```
1 / Example No. 3_24
2 // Distributive law
3 / Pg No. 58
4 clear ; close ; clc ;
6 x = 0.400000*10^1;
7 \text{ fx} = 0.400000
8 \, \text{Ex} = 1
9 y = 0.200001*10^0;
10 z = 0.200000*10^0;
11 \quad x_yz = x*(y-z)
12 \quad x_yz = x_yz*10^6
13 x_yz = floor(x_yz) // considering only six
       significant digits
14 n = length(string(x_yz))
15 \text{ fx_yz} = \text{x_yz/}10^n
16 \quad Ex_yz = n - 6
17 x_yz = fx_yz *10^Ex_yz
18 \operatorname{disp}(x_yz, x_yz = ')
19
20 \text{ fxy} = \text{fx*y}
21 fxy = fxy*10^6
22 fxy = floor(fxy) //considering only six significant
       digits
23 n = length(string(fxy))
24 \text{ fxy} = \text{fxy/}10^n
25 \text{ Exy} = n - 6
```

Chapter 4

Approximations and Errors in Computing

Scilab code Exa 4.1 Greatest Precision

```
1 // Example No. 4_01
2 // Greatest precision
3 / Pg No. 63
4 clear; close; clc;
6 \ a = 4.3201
7 b = 4.32
8 c = 4.320106
9 na = length(a)-strindex(a,'.')
10 mprintf('\n %s has a precision of 10^-\%i\n',a,na)
11 nb = length(b)-strindex(b,'.')
12 mprintf('\n %s has a precision of 10^-\%i\n',b,nb)
13 nc = length(c)-strindex(c,'.')
14 mprintf('\n %s has a precision of 10^-\%i\n',c,nc)
15 [n,e] = \max(na,nb,nc)
16 if e ==1 then
       mprintf('\n The number with highest precision is
17
          %s\n',a)
18 elseif e == 2
```

Scilab code Exa 4.2 Accuracy of Numbers

```
1 / Example No. 4_02
2 //Accuracy of numbers
3 / Pg No. 63
4 clear ; close ; clc ;
5
  function n = sd(x)
       nd = strindex(x,'.') //position of point
7
8
       num = str2code(x)
       if isempty(nd) & num(length(x)) == 0 then
9
           mprintf('Accuracy is not specified\n')
10
           n = 0;
11
12
       else
13
           if num(1)>= 1 & isempty(nd) then
14
                n = length(x)
            elseif num(1) >= 1 & ~isempty(nd) then
15
                    n = length(x) - 1
16
17
            else
18
                for i = 1:length(x)
                    if num(i) >= 1 & num(i) <= 9 then</pre>
19
20
                         break
21
                    end
22
                end
23
                n = length(x) - i + 1
24
           end
25
       end
26 endfunction
```

```
27 a = '95.763'
28 na = sd(a)
29 mprintf('%s has %i significant digits\n',a,na)
30 b = 0.008472
31 \text{ nb} = sd(b)
32 mprintf('%s has %i significant digits. The leading or
       higher order zeros are only place holders\n',b,
      nb)
33 c = 0.0456000
34 \text{ nc} = \text{sd(c)}
35 mprintf('%s has %i significant digits\n',c,nc)
36 \, d = 36
37 \text{ nd} = \text{sd}(d)
38 mprintf('%s has %i significant digits\n',d,nd)
39 e = '3600'
40 sd(e)
41 	 f = '3600.00'
42 \text{ nf} = sd(f)
43 mprintf('%s has %i significant digits\n',f,nf)
```

Scilab code Exa 4.3 Addition in Binary form

```
1 //Example No. 4_03
2 //Pg No. 64
3 clear ; close ; clc ;
4
5 a = 0.1
6 b = 0.4
7 for i = 1:8
8     afrac(i) = floor(a*2)
9     a = a*2 - floor(a*2)
10     bfrac(i) = floor(b*2)
11     b = b*2 - floor(b*2)
12 end
13 afrac_s = '0' + '.' + strcat(string(afrac)) //string
```

```
form binary equivalent of a i.e 0.1
14 bfrac_s = '0' + '.' + strcat(string(bfrac))
15 mprintf('\n 0.1_10 = %s \n 0.4_10 = %s \n ', afrac_s
       , bfrac_s)
16 \text{ for } j = 8:-1:1
17
       summ(j) = afrac(j) + bfrac(j)
       if summ(j) > 1 then
18
            summ(j) = summ(j)-2
19
            afrac(j-1) = afrac(j-1) + 1
20
21
       end
22 \quad end
23 \text{ summ\_dec} = 0
24 \text{ for } k = 8:-1:1
25
       summ_dec = summ_dec + summ(k)
26
       summ_dec = summ_dec*1/2
27 end
28 disp(summ_dec, 'sum =')
29 disp('Note: The answer should be 0.5, but it is not
       so. This is due to the error in conversion from
      decimal to binary form.')
```

Scilab code Exa 4.4 Rounding off

```
1 //Example No. 4_04
2 //Rounding-Off
3 //Pg No. 66
4 clear ; close ; clc ;
5
6 fx = 0.7526
7 E =3
8 gx = 0.835
9 d = E - (-1)
10 //Chopping Method
11 Approx_x = fx*10^E
12 Err = gx*10^(E-d)
```

```
13 \mbox{mprintf('}\nspace{2mm} \nspace{2mm} \nspace{2m
                                        f*10^{\%}i \ \text{Error} = \%.4 f \ \text{n} \ \text{,fx,E,Err}
 14 //Symmetric Method
 15 if gx >= 0.5 then
16
                                                Err = (gx -1)*10^{(-1)}
17
                                                 Approx_x = (fx + 10^{-1})*10^{E}
 18 else
19
                                                 Approx_x = fx*10^E
                                                Err = gx * 10^{(E-d)}
20
 21 end
 22 mprintf('\n Symmetric Rounding :\n Approximate x = \%
                                        .4 f*10^{\%}i \ \text{Error} = \%.4 f \ \text{n} \ \text{,fx} + 10^{(-d),E,Err}
                                       )
```

Scilab code Exa 4.5 Truncation Error

```
1 / Example No. 4_05
2 //Truncation Error
3 / Pg No. 68
4 clear; close; clc;
6 x = 1/5
7 //When first three terms are used
8 Trunc_err = x^3/factorial(3) + x^4/factorial(4) + x
      ^5/factorial(5) + x^6/factorial(6)
9 mprintf('\n a) When first three terms are used \n
      Truncation error = \%.6E \ n ', Trunc_err)
10
11 //When four terms are used
12 Trunc_err = x^4/factorial(4) + x^5/factorial(5) + x
      ^6/factorial(6)
13 mprintf('\n b) When first four terms are used \n
     Truncation error = \%.6E \setminus n, Trunc_err)
14
15 //When Five terms are used
```

```
16 Trunc_err = x^5/factorial(5) + x^6/factorial(6)
17 mprintf('\n c) When first five terms are used \n
Truncation error = \%.6E \setminus n', Trunc_err)
```

Scilab code Exa 4.6 Truncation Error

```
1 / Example No. 4_06
2 //Truncation Error
3 / Pg No. 68
4 clear; close; clc;
6 x = -1/5
7 //When first three terms are used
8 Trunc_err = x^3/factorial(3) + x^4/factorial(4) + x
      ^5/factorial(5) + x^6/factorial(6)
9 mprintf('\n a) When first three terms are used \n
      Truncation error = \%.6E \setminus n, Trunc_err)
10
11 //When four terms are used
12 Trunc_err = x^4/factorial(4) + x^5/factorial(5) + x
      ^6/factorial(6)
13 mprintf('\n b) When first four terms are used \n
      Truncation error = \%.6E \setminus n, Trunc_err)
14
15 //When Five terms are used
16 Trunc_err = x^5/factorial(5) + x^6/factorial(6)
17 mprintf('\n c) When first five terms are used \n
      Truncation error = \%.6E \setminus n ', Trunc_err)
```

Scilab code Exa 4.7 Absolute and Relative Error

```
1 //Example No. 4_072 //Absolute and Relative Errors
```

```
3 // Pg No. 71
4 clear; close; clc;
6 h_bu_t = 2945;
7 h_bu_a = 2950;
8 h_be_t = 30;
9 h_be_a = 35;
10 e1 = abs(h_bu_t - h_bu_a)
11 	ext{ e1_r} = 	ext{e1/h_bu_t}
12 e2 = abs(h_be_t - h_be_a)
13 \text{ e2\_r} = \text{e2/h\_be\_t}
14 mprintf('\n For Building: \n Absolute error, e1 =
     \%i \n Relative error , e1_r = \%.2 f percent \n ',
     e1,e1_r*100)
15 mprintf('\n For Beam : \n Absolute error, e2 = \%i \
     n Relative error, e2_r = \%.2G percent n, e2,
     e2_r*100)
```

Scilab code Exa 4.8 Machine Epsilon

```
1  //Example No. 4_08
2  //Machine Epsilon
3  //Pg No. 72
4  clear ; close ; clc ;
5
6  deff('q = Q(p)', 'q = 1 + (p-1)*log10(2)')
7  p = 24
8  q = Q(p)
9  mprintf('q = %.1 f \n We can say that the computer can store numbers with %i significant decimal digits \n ',q,q)
```

Scilab code Exa 4.9 Propagation of Error

```
1 / Example No. 4_09
 2 //Propagation of Error
 3 / Pg No. 75
4 clear; close; clc;
 6 x = 0.1234*10^4
 7 y = 0.1232*10^4
8 d = 4
9 \text{ er_x} = 10^{-4} + 1)/2
10 \text{ er_y} = 10^{-4} + 1)/2
11 \text{ ex} = x * \text{er}_x
12 \text{ ey} = y * er_y
13 \text{ ez} = abs(ex) + abs(ey)
14 \text{ er_z} = \frac{abs(ez)}{abs(x-y)}
15
16 mprintf('\n | er_x | \leq \%.2 \text{ fo/o} \setminus \text{n} | er_y | \leq \%.2 \text{ fo/o} \setminus
       n ex = \%.3 f \ n ey = \%.3 f \ n \ | ez | = \%.3 f \ n \ | er_z |
         = \%.2 \text{ fo/o } \text{ n',er_x *100,er_y*100,ex,ey,ez,er_z}
        *100)
```

Scilab code Exa 4.10 Errors in Sequence of Computations

```
1 //Example No. 4_10
2 //Errors in Sequence of Computations
3 //Pg No. 77
4 clear; close; clc;
5
6 x_a = 2.35;
7 y_a = 6.74;
8 z_a = 3.45;
9 ex = abs(x_a)*10^(-3+1)/2
10 ey = abs(y_a)*10^(-3+1)/2
11 ez = abs(z_a)*10^(-3+1)/2
12 exy = abs(x_a)*ey + abs(y_a)*ex
13 ew = abs(exy) + abs(ez)
```

```
14 mprintf ('\n ex = \%.5 f \n ey = \%.5 f \n ez = \%.5 f \n exy = \%.5 f \n ew = \%.5 f \n', ex, ey, ez, exy, ew)
```

Scilab code Exa 4.11 Addition of Chain of Numbers

```
1 / Example No. 4_11
2 // Addition of Chain of Numbers
3 //Pg No. 77
4 clear; close; clc;
6 x = 9678 ;
7 y = 678;
8 z = 78 ;
9 d = 4; //length of mantissa
10 fx = x/10^4
11 \text{ fy = y/10^4}
12 \text{ fu} = \text{fx} + \text{fy}
13 \text{ Eu} = 4
14 if fu >= 1 then
        fu = fu/10
15
16
        Eu = Eu + 1
17 \text{ end}
18 //since length of mantissa is only four we need to
      maintain only four places in decimal, so
19 fu = floor(fu*10^4)/10^4
20 \ u = fu * 10^E u
21 w = u + z
22 n = length(string(w))
23 w = floor(w/10^(n-4))*10^(n-4) //To maintain length
      of mantissa = 4
24 \text{ disp(w,'w = ')}
25 \text{ True\_w} = 10444
26 \text{ ew} = \text{True\_w} - \text{w}
27 \text{ er}_w = (\text{True}_w - w)/\text{True}_w
28 disp(er_w, er_w = ', ew, ew = ', True_w, True_w = ')
```

Scilab code Exa 4.12 Addition of Chain of Numbers

```
1 / Example No. 4_12
2 // Addition of chain Numbers
3 //Pg No. 77
4 clear; close; clc;
6 x = 9678;
7 y = 678;
8 z = 78 ;
9 d = 4; //length of mantissa
10 n = max(length( string(y) ), length(string(z)))
11 \text{ fy = y/10^n}
12 \text{ fz} = z/10^n
13 \text{ fu} = \text{fy} + \text{fz}
14 Eu = n
15 if fu >= 1 then
16
        fu = fu/10
17
        Eu = Eu + 1
18 end
19 u = fu * 10^E u
20 n = max(length( string(x) ), length(string(u)))
21 \text{ fu = u/10^4}
22 \text{ fx} = x/10^4
23 \text{ fw} = \text{fu} + \text{fx}
24 \text{ Ew} = 4
25 if fw >= 1 then
        fw = fw/10
26
        Ew = Ew + 1
27
28 end
29 //since length of mantissa is only four we need to
       maintain only four places in decimal, so
30 \text{ fw} = \frac{\text{floor}(\text{fw}*10^4)}{10^4}
31 \quad w = fw*10^Ew
```

```
32 disp(w,'w = ')
33 True_w = 10444
34 ew = True_w - w
35 er_w = (True_w - w)/True_w
36 disp(er_w,'er,w = ',ew,'ew = ',True_w,'True w = ')
```

Scilab code Exa 4.13 Theoritical Problem

```
//Example No. 4_13
//Pg No. 78
disp('Theoritical Problem')
disp('For Details go to page no. 78')
```

Scilab code Exa 4.14 Absolute and Relative Errors

```
//Example No. 4_14
//Absolute & Relative Errors
//Pg No. 79
clear ; close ; clc ;

xa = 4.000
deff('f = f(x)','f = sqrt(x) + x')
//Assuming x is correct to 4 significant digits
ex = 0.5 * 10^(-4 + 1)
df_xa = derivative(f,4)
ef = ex * df_xa
er_f = ef/f(xa)
mprintf('\n ex = %.0E \n df(xa) = %.2f \n ef = %.2E \n er, f = %.2E \n', ex,df_xa,ef,er_f)
```

Scilab code Exa 4.15 Error Evaluation

```
//Example No. 4_15
//Error Evaluation
//Pg No. 80
clear; close; clc;

x = 3.00;
y = 4.00;
deff('f = f(x,y)', 'f = x^2 + y^2')
deff('df_x = df_x(x)', 'df_x = 2*x')
deff('df_y = df_y(y)', 'df_y = 2*y')
ex = 0.005
ey = 0.005
def = df_x(x)*ex + df_y(y)*ey
disp(ef, 'ef = ')
```

Scilab code Exa 4.16 Condition and Stability

```
1 / Example No. 4_16
2 //Condition and Stability
3 / Pg No. 82
4 clear; close; clc;
5
6 C1 = 7.00;
7 C2 = 3.00;
8 \text{ m1} = 2.00 ;
9 m2 = 2.01;
10 x = (C1 - C2)/(m2 - m1)
11 y = m1*((C1 - C2)/(m2 - m1)) + C1
12 disp(y, 'y = ', x, 'x = ')
13 disp('Changing m2 from 2.01 to 2.005')
14 \text{ m2} = 2.005
15 x = (C1 - C2)/(m2 - m1)
16 y = m1*((C1 - C2)/(m2 - m1)) + C1
```

17 mprintf('\n x = %i \n y = %i \n From the above results we can see that for small change in m2 results in almost 100 percent change in the values of x and y. Therefore, the problem is absolutely ill-conditioned \n', x, y)

Scilab code Exa 4.17 Theoritical Problem

```
1 //Example No. 4_17
2 //Pg No. 83
3 disp('Theoritical Problem')
4 disp('For Details go to page no. 83')
```

Scilab code Exa 4.18 Difference of Square roots

```
1 / Example No. 4_18
2 // Difference of Square roots
3 / Pg No. 84
4 clear; close; clc;
6 x = 497.0 ;
7 y = 496.0;
8 \text{ sqrt_x} = \text{sqrt}(497)
9 \text{ sqrt_y} = \text{sqrt}(496)
10 nx = length( string( floor( sqrt_x ) ) )
11 ny = length( string( floor( sqrt_y ) ) )
12 sqrt_x = floor(sqrt_x*10^(4-nx))/10^(4-nx)
13 sqrt_y = floor(sqrt_y*10^(4-ny))/10^(4-ny)
14 	 z1 = sqrt_x - sqrt_y
15 \operatorname{disp}(z1, z = \operatorname{sqrt}(x) - \operatorname{sqrt}(y))
16 z2 = (x -y)/(sqrt_x + sqrt_y)
17 \text{ if } z2 < 0.1 \text{ then}
18
        z2 = z2*10^4
```

Scilab code Exa 4.19 Theoritical Problem

```
//Example No. 4_19
//Pg No. 84
disp('Theoritical Problem')
disp('For Details go to page no. 84')
```

Scilab code Exa 4.20 Theoritical Problem

```
//Example No. 4_20
//Pg No. 85
disp('Theoritical Problem')
disp('For Details go to page no. 85')
```

Scilab code Exa 4.21 Induced Instability

```
1 //Example 4_21
2 //Pg No. 85
3 clear ; close ; clc ;
4
5 x = -10
6 T_act(1) = 1
7 T_trc(1) = 1
8 e_x_cal = 1
9 for i = 1:100
```

```
10
       T_act(i+1) = T_act(i)*x/i
       T_{trc}(i+1) = floor(T_{act}(i+1)*10^5)/10^5
11
       TE(i) = abs(T_act(i+1)-T_trc(i+1))
12
       e_x_{cal} = e_x_{cal} + T_{trc}(i+1)
13
14 end
15 \text{ e_x_act = } \exp(-10)
16 disp(e_x_act, 'actual e^x = ',e_x_cal, 'calculated e^x
       using roundoff = ', sum(TE), 'Truncation Error = '
17 disp('Here we can see the difference between
      calculated e'x and actual e'x this is due to
      trucation error (which is greater than final
      value of e^x), so the roundoff error totally
      dominates the solution')
```

Chapter 6

Roots of Nonlinear Equations

Scilab code Exa 6.1 Possible initial guess values for roots

```
1 / Example No. 6_01
2 // Possible Initial guess values for roots
3 / Pg No. 126
5 clear; close; clc;
7 A = [2; -8; 2; 12]; // Coefficients of x terms
     in the decreasing order of power
8 n = size(A);
9 \times 1 = -A(2)/A(1);
10 disp(x1, 'The largest possible root is x1 = ')
11 disp(x1, 'No root can be larger than the value')
12
13 x = sqrt((A(2)/A(1))^2 - 2*(A(3)/A(1))^2);
14
15 printf('\n all real roots lie in the interval (-\%f,
     %f) \ n', x, x)
16 disp ('We can use these two points as initial guesses
       for the bracketing methods and one of them for
     open end methods')
```

Scilab code Exa 6.02 Theoritical Problem

```
1 //Example No. 6_02
2 //Pg No. 128
3 disp('Theoritical Problem')
4 disp('For Details go to page no. 128')
```

Scilab code Exa 6.3 Evaluating Polynomial using Horners rule

```
1 / Example No. 6_03
2 //Evaluating Polynomial using Horner's rule
3 // Pg No.
4 clear; close; clc;
6 // Coefficients of x terms in the increasing order of
      power
7 A = [6; 1; -4; 1];
8 x = 2
9 [n,c] = size(A);
10 p(n) = A(n)
11 disp(p(n), 'p(4) = ')
12 \text{ for } i = 1:n-1
       p(n-i) = p(n-i+1)*x + A(n-i)
13
       printf('\n p(%i)= %i\n',n-i,p(n-i))
14
15 end
16 mprintf('\n f(%i) = p(1) = %i',x,p(1))
```

Scilab code Exa 6.4 Bisection Method

```
1 / Example No. 6_04
2 //Root of a Equation Using Bisection Method
3 // Pg No. 132
5 clear; close; clc;
7 // Coefficients in increasing order of power of x
      starting from 0
8 A = [-10 -4 1];
9 disp('First finding the interval that contains a
      root, this can be done by using Eq 6.10')
10 xmax = sqrt((A(2)/A(3))^2 - 2*(A(1)/A(3)))
11 printf('\n Both the roots lie in the interval (-\%i),
      \%i) n, xmax, xmax)
12 x = -6:6
13 p = poly(A, 'x', 'c')
14 fx = horner(p,x);
15 \text{ for } i = 1:12
16
        if fx(1,i)*fx(1,i+1) < 0 then
17
            break ;
18
        end
19 end
20 printf('\n The root lies in the interval (\%i,\%i)\n',
      x(1,i),x(1,i+1))
21 \times 1 = x(1,i);
22 \times 2 = \times (1, i+1);
23 	 f1 = fx(1,i);
24 	 f2 = fx(1,i+1);
25 \text{ err} = \frac{abs}{(x2-x1)/x2};
26 \text{ while err} > 0.0001
27 \times 0 = (x1 + x2)/2;
28 	ext{ f0 = horner(p,x0);}
29 \text{ if } f0*f1 < 0 \text{ then}
30
        x2 = x0
31
        f2 = f0
32 elseif f0*f2 < 0
33
        x1 = x0
34
       f1 = f0
```

Scilab code Exa 6.5 False Position Method

```
1 / Example No. 6_05
2 //False Position Method
3 / Pg No. 139
4 clear; close; clc;
6 //Coefficients of polynomial in increasing order of
      power of x
7 A = [-2 -1 1];
8 \times 1 = 1 ;
9 x2 = 3;
10 fx = poly(A, 'x', 'c');
11 \text{ for } i = 1:15
12
       printf('Iteration No. \%i \n',i);
       fx1 = horner(fx, x1);
13
14
       fx2 = horner(fx, x2);
       x0 = x1 - fx1*(x2-x1)/(fx2-fx1)
15
16
       printf('x0 = \%f \n',x0);
17
       fx0 = horner(fx, x0);
       if fx1*fx0 < 0 then
18
19
           x2 = x0;
20
       else
21
           x1 = x0;
22
       end
23 end
```

Scilab code Exa 6.06 Theoritical Problem

```
1 //Example No. 6_06
2 //Pg No. 146
3 disp('Theoritical Problem')
4 disp('For Details go to page no. 146')
```

Scilab code Exa 6.7 Newton Raphson Method

```
1 / Example No. 6_07
2 //Root of the Equation using Newton Raphson Method
3 //Pg No. 147
4 clear; close; clc;
6 // Coefficients of polynomial in increasing order of
      power of x
7 A = [2 -3 1];
8 fx = poly(A, 'x', 'c');
9 dfx = derivat(fx);
10
11 \times (1) = 0;
12 \text{ for } i = 1:10
       f(i) = horner(fx,x(i));
13
       if f(i) = 0 then
14
           df(i) = horner(dfx,x(i));
15
           x(i+1) = x(i) - f(i)/df(i) ;
16
           printf('x\%i = \%f\n', i+1, x(i+1));
17
       else
18
           printf('Since f(\%f) = 0, the root closer to
19
               the point x = 0 is \%f \setminus n', x(i), x(i);
20
           break
```

```
\begin{array}{cc} 21 & \quad \text{end} \\ 22 & \text{end} \end{array}
```

Scilab code Exa 6.8 Newton Raphson Method

```
1 / Example No. 6_08
2 //Root of the Equation using Newton Raphson Method
3 //Pg No. 151
4 clear; close; clc;
5 // Coefficients of polynomial in increasing order of
      power of x
6 A = [6 1 -4]
                    1 ];
7 \text{ fx = poly(A,'x','c')};
8 dfx = derivat(fx);
10 \times (1) = 5.0;
11 \quad for \quad i = 1:6
12
       f(i) = horner(fx, x(i));
       if f(i)^= 0 then
13
14
           df(i) = horner(dfx,x(i));
           x(i+1) = x(i) - f(i)/df(i) ;
15
           printf ('x\%i = \%f\n', i+1, x(i+1));
16
17
       end
18 end
19 disp ('From the results we can see that number of
      correct digits approximately doubles with each
      iteration')
```

Scilab code Exa 6.9 Secant Method

```
1 //Example No. 6_09
2 //Root of the equation using SECANT Method
3 //Pg No. 153
```

```
4 clear; close; clc;
6 // Coefficients of polynomial in increasing order of
      power of x
7 A = [-10 -4]
                    1];
8 \times 1 = 4 ;
9 x2 = 2;
10 fx = poly(A, 'x', 'c')
11 \text{ for } i = 1:6
12
       printf('\n For Iteration No. %i\n',i)
13
       fx1 = horner(fx, x1);
       fx2 = horner(fx, x2);
14
15
       x3 = x2 - fx2*(x2-x1)/(fx2-fx1);
       printf ('\n x1 = \%f\n x2 = \%f\n fx1 = \%f\n fx2
16
          = \%f \setminus n \times 3 = \%f \setminus n', x1, x2, fx1, fx2, x3);
17
       x1 = x2;
       x2 = x3;
18
19 end
20 disp('This can be still continued further for
      accuracy')
```

Scilab code Exa 6.10 Theoritical Problem

```
1 //Example No. 6_10
2 //Pg No. 155
3 disp('Theoritical Problem')
4 disp('For Details go to page no. 155')
```

Scilab code Exa 6.11 Fixed Point Method

```
1 //Example No. 6_11
2 //Fixed point method
3 //Pg No. 161
```

```
4 clear; close; clc;
6 // Coefficients of polynomial in increasing order of
     power of x
7 A = [ -2 1 1 ];
8 B = [20 -1];
9 \text{ gx} = poly(B, 'x', 'c');
10 x(1) = 0; //initial guess x0 = 0
11 \quad for \quad i = 2:10
       x(i) = horner(gx, x(i-1));
       printf('\n x\%i = \%f\n',i-1,x(i))
13
       if (x(i)-x(i-1)) == 0 then
14
15
           printf('\n\%f is root of the equation, since
              16
           break
17
       end
18 end
19 //Changing initial guess x0 = -1
20 \times (1) = -1;
21 \text{ for } i = 2:10
22
       x(i) = horner(gx, x(i-1));
       printf('\nx\%i = \%f\n',i-1,x(i))
23
24
       if (x(i)-x(i-1)) == 0 then
           printf('\n \%f is root of the equation, since
25
              x\%i - x\%i = 0', x(i), i-1, i-2)
26
           break
27
       end
28 end
```

Scilab code Exa 6.12 Fixed Point Method

```
1 //Example No. 6_12
2 //Fixed point method
3 //Pg No. 162
4 clear; close; clc;
```

```
5
 6 A = [ -5 0 1 ];
 7 funcprot(0);
8 deff('x = g(x)', 'x = 5/x');
 9 x(1) = 1;
10 printf('\n x0 = \%f \n',x(1));
11 \text{ for } i = 2:5
12
        x(i) = feval(x(i-1),g);
        printf(' x\%i = \%f \setminus n', i-1, x(i))
13
14 end
15 // Defining g(x) in different way
16 deff('x = g(x)', 'x = x^2 + x - 5');
17 \times (1) = 0;
18 printf('\n x0 = \%f \n',x(1));
19 \text{ for } i = 2:5
        x(i) = feval(x(i-1),g);
20
        printf(' x\%i = \%f \setminus n', i-1, x(i))
21
22 \text{ end}
\frac{23}{\sqrt{\text{Third form of g(x)}}}
24 deff('x = g(x)', 'x = (x + 5/x)/2');
25 \times (1) = 1;
26 printf('\n x0 = \%f \n',x(1));
27 \text{ for } i = 2:7
        x(i) = feval(x(i-1),g);
28
        printf(' x\%i = \%f \setminus n', i-1, x(i))
29
30 end
```

Scilab code Exa 6.13 Fixed Point Method for non linear equations

Scilab code Exa 6.14 Newton Raphson Method for Non linear equations

```
1 / Example No. 6_14
2 //Solving System of Non-linear equations using
      Newton Raphson Method
3 //Pg No. 172
4 clear; close; clc;
6 printf('x^2 + x*y = 6 \ n \ x^2 - y^2 = 3 \ n');
7 deff('f = F(x,y)','f = x^2 + x*y - 6');
8 deff('g = G(x,y)', 'g = x^2 - y^2 - 3');
9 deff('f1 = dFx(x,y)', 'f1 = 2*x + y');
10 deff('f2 = dFy(x,y)', 'f2 = y');
11 deff('g1 = dGx(x,y)', 'g1 = 2*x');
12 deff('g2 = dGy(x,y)', 'g2 = -2*y');
13 \times (1) = 1;
14 \text{ y}(1) = 1;
15
16 \text{ for } i = 2:3
       Fval = feval(x(i-1),y(i-1),F);
17
18
       Gval = feval(x(i-1),y(i-1),G);
19
       f1 = feval(x(i-1), y(i-1), dFx);
```

```
20
       f2 = feval(x(i-1),y(i-1),dFy);
21
       g1 = feval(x(i-1), y(i-1), dGx);
22
       g2 = feval(x(i-1),y(i-1),dGy);
23
       D = f1*g2 - f2*g1;
24
       x(i) = x(i-1) - (Fval*g2 - Gval*f2)/D;
25
26
       y(i) = y(i-1) - (Gval*f1 - Fval*g1)/D;
       printf('\n x\%i = \%f \n y\%i = \%f \n',i-1,x(i),i
27
          -1,y(i)
28
29 end
```

Scilab code Exa 6.15 Synthetic Division

```
1 //Example No. 6_15
2 //Synthetic Division
3 //Pg No. 176
4 clear ; close ; clc ;
5
6 a = [-9 15 -7 1];
7 b(4) = 0;
8 for i = 3:-1:1
9    b(i) = a(i+1) + b(i+1)*3
10    printf('b%i = %f\n',i,b(i))
11 end
12    disp(poly(b,'x','c'),'Thus the polynomial is')
```

Scilab code Exa 6.16 Bairstow Method for Factor of polynomial

```
4 clear; close; clc;
6 = [10101];
7 n = length(a);
8 u = 1.8 ;
9 v = -1 ;
10
11 b(n) = a(n);
12 b(n-1) = a(n-1) + u*b(n);
13 c(n) = 0;
14 c(n-1) = b(n);
15
16 \text{ for } i = n-2:-1:1
       b(i) = a(i) + u*b(i+1) + v*b(i+2);
17
       c(i) = b(i+1) + u*c(i+1) + v*c(i+2);
18
19 end
20 \text{ for } i = n:-1:1
21
       printf('b\%i = \%f \n',i-1,b(i))
22 \quad end
23 \text{ for } i = n:-1:1
24
       printf('c\%i = \%f \setminus n', i-1, b(i))
25 end
26
27 D = c(2)*c(2) - c(1)*c(3);
28 du = -1*(b(2)*c(2) - c(1)*c(3))/D ;
29 	 dv = -1*(b(1)*c(2) - b(2)*c(1))/D ;
30 \, u = u + du ;
31 v = v + du;
32 printf('\n D = \%f \n du = \%f \n dv = \%f \n u = \%f\n
      v = \%f \setminus n', D, du, dv, u, v)
```

Scilab code Exa 6.17 Mullers Method for Leonards equation

```
1 //Example No. 6_17
2 //Solving Leonard's equation using MULLER'S Method
```

```
3 / Pg No. 197
4 clear; close; clc;
6 deff('y = f(x)', 'y = x^3 + 2*x^2 + 10*x - 20');
7 x1 = 0;
8 x2 = 1;
9 x3 = 2;
10 \text{ for } i = 1:10
       f1 = feval(x1,f);
11
12
       f2 = feval(x2,f);
13
       f3 = feval(x3,f);
14
       h1 = x1-x3 ;
15
       h2 = x2-x3;
       d1 = f1 - f3;
16
17
       d2 = f2 - f3;
18
       D = h1*h2*(h1-h2);
19
       a0 = f3;
20
       a1 = (d2*h1^2 - d1*h2^2)/D;
21
       a2 = (d1*h2 - d2*h1)/D;
22
       if abs(-2*a0/(a1 + sqrt(a1^2 - 4*a0*a2))) <
          abs( -2*a0/( a1 - sqrt( a1^2 - 4*a0*a2 ) ))
          then
23
           h4 = -2*a0/(a1 + sqrt(a1^2 - 4*a0*a2));
24
       else
           h4 = -2*a0/(a1 - sqrt(a1^2 - 4*a0*a2))
25
26
       end
27
       x4 = x3 + h4 ;
       printf ('\n x1 = \%f\n x2 = \%f\n x3 = \%f\n f1 = \%f
28
          n f2 = \%f n f3 = \%f n h1 = \%f n h2 = \%f n d1
          = \%f \setminus n d2 = \%f \setminus n a0 = \%f \setminus n a1 = \%f \setminus n a2 = \%f
          , h2, d1, d2, a0, a1, a2, h4, x4);
29
       relerr = abs((x4-x3)/x4);
30
       if relerr <= 0.00001 then
           printf('root of the polynomial is x4 = \%f',
31
              x4);
32
           break
33
       end
```

Chapter 7

Direct Solutions of Linear Equations

Scilab code Exa 7.1 Elimination Process

```
1 / Example No. 7_01
2 //Elimination Process
3 / Pg No. 211
5 clear; close; clc;
7 A = [3 2 1 10; 2 3 2 14; 1 2 3 14];
8 A(2,:) = A(2,:) - A(1,:)*A(2,1)/A(1,1)
9 A(3,:) = A(3,:) - A(1,:)*A(3,1)/A(1,1)
10 disp(A)
11
12 A(3,:) = A(3,:) - A(2,:)*A(3,2)/A(2,2)
13 disp(A)
14
15 z = A(3,4)/A(3,3)
16 y = (A(2,4) - A(2,3)*z)/A(2,2)
17 x = (A(1,4) - A(1,2)*y - A(1,3)*z)/A(1,1)
18 disp(x, 'x = ',y, 'y = ',z, 'z = ')
```

Scilab code Exa 7.2 Basic Gauss Elimination

```
1 / Example No. 7_02
2 //Basic Gauss Elimination
3 / Pg No. 214
4 clear; close; clc;
6 A = [ 3 6 1 ; 2 4 3 ; 1 3 2 ];
7 B = [16 13 9];
8 [ar1,ac1] = size(A);
9 Aug = [3 6 1 16 ; 2 4 3 13 ; 1 3 2 9]
10 \text{ for } i = 2 : ar1
       Aug(i,:) = Aug(i,:) - (Aug(i,1)/Aug(1,1))*Aug
         (1,:);
12 end
13 disp(Aug)
14 disp('since Aug(2,2) = 0 elimination is not possible
     , so reordering the matrix')
15 Aug = Aug( [ 1 3 2],:);
16 disp(Aug)
17 disp('Elimination is complete and by back
     substitution the solution is \n')
18 disp('x3 = 1, x2 = 2, x1 = 1')
```

Scilab code Exa 7.3 Gauss Elimination using Partial Pivoting

```
1 //Example No. 7_03
2 // Gauss Elimination using partial pivoting
3 // Pg No. 220
4 clear; close; clc;
5
6 A = [ 2 2 1 ; 4 2 3 ; 1 -1 1];
```

```
7 B = [ 6 ; 4 ; 0 ];
8 [ar, ac] = size(A);
9 \text{ Aug} = [ 2 2 1 6 ]
                          4 2 3 4 ; 1 -1 1
                       ;
     0];
10
11 for i = 1 : ar-1
12
      [p, m] = \max(abs(Aug(i:ar,i)))
      Aug(i:ar,:) = Aug([i+m-1 i+1:i+m-2 i i+m:ar])
13
         ],:);
      disp(Aug)
14
      for k = i+1 : ar
15
          Aug(k,i:ar+1) = Aug(k,i:ar+1) - (Aug(k,i)/
16
             Aug(i,i)) * Aug(i,i:ar+1);
17
      end
      disp(Aug)
18
19 end
20
21 //Back Substitution
22 X(ar,1) = Aug(ar,ar+1)/Aug(ar,ar)
23 \text{ for i = ar-1 : -1 : 1}
24
      X(i,1) = Aug(i,ar+1);
      for j = ar : -1 : i+1
25
26
          X(i,1) = X(i,1) - X(j,1)*Aug(i,j);
27
      end
28
      X(i,1) = X(i,1)/Aug(i,i);
29 \text{ end}
30
31 printf('\n The solution can be obtained by back
     X(1,1),X(2,1),X(3,1)
```

Scilab code Exa 7.4 Gauss Jordan Elimination

```
1 //Example No. 7_042 //Gauss Jordan Elimination
```

```
3 / Pg No. 228
4 clear; close; clc;
6 A = [ 2 4 -6 ; 1 3 1 ; 2 -4 -2 ];
7 B = [ -8 ; 10 ; -12 ];
8 [ar,ac] = size(A);
9 \text{ Aug} = [ 2 \ 4 \ -6 \ -8 \ ; \ 1 \ 3 \ 1 \ 10 \ ; \ 2 \ -4 \ -2 ]
       -12 ];
10 disp(Aug)
11
12 \text{ for } i = 1 : ar
13
       Aug(i,i:ar+1) = Aug(i,i:ar+1)/Aug(i,i) ;
14
       disp(Aug)
       for k = 1 : ar
15
16
           if k ~= i then
                Aug(k,i:ar+1) = Aug(k,i:ar+1) - Aug(k,i)
17
                   *Aug(i,i:ar+1);
18
           end
19
       end
20
       disp(Aug)
21 end
```

Scilab code Exa 7.5 DoLittle LU Decomposition

```
1 //Example No. 7_05
2 //DoLittle LU Decomposition
3 //Pg No. 234
4
5 clear ; close ; clc ;
6
7 A = [ 3  2  1  ;  2  3  2  ;  1  2  3  ];
8 B = [ 10  ;  14  ;  14  ];
9 [n , n] = size(A);
10
11 for i = 2:n
```

```
12
        U(1,:) = A(1,:);
13
        L(i,i) = 1;
        if i \sim= 1 then
14
              L(i,1) = A(i,1)/U(1,1);
15
16
        end
17 end
18
19 \text{ for } j = 2:n
        for i = 2:n
20
21
             if i <= j then
22
                  U(i,j) = A(i,j);
23
24
                  for k = 1:i-1
25
                      U(i,j) = U(i,j) - L(i,k)*U(k,j);
26
                  printf('\setminus nU(\%i,\%i) = \%f \setminus n',i,j,U(i,j))
27
28
29
             else
                  L(i,j) = A(i,j)
30
31
                  for k = 1:j-1
32
                      L(i,j) = L(i,j) - L(i,k)*U(k,j);
33
                  end
34
                  L(i,j) = L(i,j)/U(j,j)
                  printf('\n\ L(\%i,\%i) = \%f \n',i,j,L(i,j))
35
36
             end
37
        end
38 end
39 \text{ disp}(U, 'U = ')
40 disp(L, 'L = ')
41
42 //Forward Substitution
43 \text{ for } i = 1:n
        z(i,1) = B(i,1);
44
45
        for j = 1:i-1
             z(i,1) = z(i,1) - L(i,j)*z(j,1);
46
47
        end
        printf(' \mid x(\%i)) = \%f \mid n', i, z(i, 1))
48
49 end
```

```
50
51 //Back Substitution
52 for i = n : -1 : 1
53
        x(i,1) = z(i,1);
54
        for j = n : -1 : i+1
             x(i,1) = x(i,1) - U(i,j)*x(j,1);
55
56
        end
        x(i,1) = x(i,1)/U(i,i);
57
        printf(' \setminus n \times (\%i) = \%f \setminus n', i, x(i, 1))
58
59 end
```

Scilab code Exa 7.6 Choleskys Factorisation

```
1 //Example No. 7_{-}06
2 //Cholesky's Factorisation
3 //Pg No. 242
5 clear; close; clc;
7 A = [1 2 3; 2 8 22; 3 22 82];
  [n,n] = size(A);
9
10 \text{ for } i = 1:n
11
       for j = 1:n
12
           if i == j then
                U(i,i) = A(i,i)
13
                for k = 1:i-1
14
15
                    U(i,i) = U(i,i)-U(k,i)^2;
16
                end
                U(i,i) = sqrt(U(i,i));
17
18
             elseif i < j
19
                 U(i,j) = A(i,j)
                 for k = 1:i-1
20
21
                     U(i,j) = U(i,j) - U(k,i)*U(k,j);
22
                 end
```

Scilab code Exa 7.7 Ill Conditioned Systems

```
1 / Example No. 7_07
2 //Ill-Conditioned Systems
3 / Pg No. 245
5 clear; close; clc;
6
7 A = [2 1; 2.001]
                         1];
8 B = [25; 25.01];
9 \times (1) = (25 - 25.01)/(2 - 2.001);
10 x(2) = (25.01*2 - 25*2.001)/(2*1 - 2.001*1);
11 printf('\n x(1) = \%f \n x(2) = \%f \n', x(1), x(2))
12 \times (1) = (25 - 25.01)/(2 - 2.0005);
13 \times (2) = (25.01*2 - 25*2.0005)/(2*1 - 2.0005*1);
14 printf('\n x(1) = \%f \n x(2) = \%f \n', x(1), x(2))
15 r = A*x-B
16 \text{ disp}(x)
17 \text{ disp(r)}
```

Chapter 8

Iterative Solution of Linear Equations

Scilab code Exa 8.1 Gauss Jacobi Iteration Method

```
1 / Example No. 8_01
2 //Gauss Jacobi
3 // Page No. 254
4 clear; close; clc;
6 A = [2 1 1; 3 5 2; 2 1 4];
7 B = [5 ; 15 ; 8];
8 x1old = 0 , x2old = 0 , x3old = 0 //intial assumption
      of x1, x2 & x3
9
10 disp('x1 = (5 - x2 - x3)/2')
11 disp('x2 = (15 - 3x1 - 2x3)/5')
12 disp('x3 = (8 - 2x1 - x2)/4')
13
14 \text{ for } i = 1:4
      printf('\n Iteration Number : %d\n',i)
15
16
17
      x1 = (5 - x2old - x3old)/2;
      x2 = (15 - 3*x1old - 2*x3old)/5;
```

Scilab code Exa 8.2 Gauss Seidel Iterative Method

```
1 / Example No. 8_02
2 //Gauss Seidel
3 // Page No. 261
4 clear; close; clc;
6 A = [2 1 1; 3 5 2; 2 1 4];
7 B = [5 ; 15 ; 8];
8 x1old = 0, x2old = 0, x3old = 0 //intial assumption
10 disp('(x1 = 5 - x2 - x3)/2')
11 disp('(x2 = 15 - 3x1 - 2x3)/5
12 disp('(x3 = 8 - 2x1 - x2)/4')
13
14 \text{ for } i = 1:2
15
       printf('\n Iteration Number : %d',i)
16
17
18
       x1 = (5 - x2old - x3old)/2;
19
       x1old = x1;
       x2 = (15 - 3*x1old - 2*x3old)/5;
20
21
       x2old = x2;
22
       x3 = (8 - 2*x1old - x2old)/4;
```

Scilab code Exa 8.3 Gauss Seidel Iterative Method

```
1 / Example No. 8_03
2 //Gauss Seidel
3 //page no. 269
4 clear; close; clc;
6 A = [3 1; 1 -3]
7 B = [5; 5]
9 disp('Using a matrix to display the results after
     each iteration, first row represents initial
     assumption')
10 X(1,1) = 0 , X(1,2) = 0 ; //initial assumption
11
12 maxit = 1000; //Maximum number of iterations
13 \text{ err} = 0.0003;
14
15 disp('x1 = (5-x2)/3');
16 disp('x2 = (x1 - 5)/3');
17
18 for i = 2:maxit
19
20
       X(i,1) = (5 - X(i-1,2))/3;
21
       X(i,2) = (X(i,1) - 5)/3;
22
23
       //Error Calculations
24
       err1 = abs((X(i,1) - X(i-1,1))/X(i,1))
```

```
25
       err2 = abs((X(i,2) - X(i-1,2))/X(i,2))
26
27
       //Terminating Condition
       if err >= err1 & err >= err2
28
                                      then
29
           printf('The system converges to the solution
               ( \%f , \%f ) in \%d iterations \n', X(i,1), X
              (i,2),i-1)
30
           break
31
       end
32
33 end
34 //calcution of true error i.e. difference between
      final result and results from each iteration
35 trueerr1 = abs(X(:,1) - X(i,1)*ones(i,1));
36 \text{ trueerr2} = abs(X(:,2) - X(i,2)*ones(i,1));
37
38 //displaying final results
39 D = [X trueerr1]
                         trueerr2];
40 disp(D)
```

Scilab code Exa 8.4 Gauss Seidel Iterative Method

```
1 //Example No. 8_04
2 //Gauss Seidel
3 //Page No.261
4 clear ; close ; clc ;
5
6 A = [ 1 -3 ; 3 1 ];
7 B = [ 5 ; 5 ];
8 x1old = 0 ,x2old = 0 //intial assumption
9
10 disp('x1 = 5 + 3*x2 ')
11 disp('x2 = 5 - 3*x1 ')
12
13 for i = 1:3
```

```
14
15
         x1 = 5 + 3*x2old;
16
         x1old = x1;
         x2 = 5 - 3*x1old;
17
         x2old = x2;
18
19
          \label{eq:printf} \textbf{printf('} \ \ \ \ Iteration : \% i \quad x1 = \% i \ \ and \ \ x2 = \% i \setminus
20
              n',i,x1,x2)
21
22 \text{ end}
23 disp('It is clear that the process do not converge
       towards the solution, rather it diverges.')
```

Chapter 9

Curve Fitting Interpolation

Scilab code Exa 9.1 Polynomial Forms

```
//Example No. 9_01
//Pg No.277
clear ; close ; clc ;

printf('solving linear equations \n a0 + 100a1 = 3/7 \n a0 + 101a1 = -4/7 \n we get,\n');

C = [ 1 100 ; 1 101]
p = [ 3/7 ; -4/7]
a = C\p
printf('\n a0 = %f \n a1 = %f \n',a(1),a(2));
x = poly(0, 'x');
px = a(1) + a(2)*x
p100 = horner(px,100)
p101 = horner(px,101)
printf('\n p(100) = %f \n p(101) = %f\n',p100,p101)
```

Scilab code Exa 9.2 Shifted Power form

```
//Example No. 9_02
//Page No. 278
clear; close; clc;

C = [ 1 100-100 ; 1 101-100]
p = [ 3/7 ; -4/7]
a = C\p
printf('\n a0 = %f \n a1 = %f \n', a(1), a(2));
x = poly(0, 'x');
px = a(1) + a(2)*(x - 100)
p100 = horner(px, 100)
p101 = horner(px, 101)
printf('\n p(100) = %f \n p(101) = %f\n', p100, p101)
```

Scilab code Exa 9.3 Linear Interpolation

```
1 / Example No. 9_03
2 //Page No. 280
3 clear; close; clc;
5 x = 1:5
6 f = [1 1.4142 1.7321 2 2.2361]
7 n = 2.5
8 \text{ for } i = 1:5
       if n \le x(i) then
10
           break;
11
       end
13 printf('%f lies between points %i and %i',n,x(i-1),x
      (i))
14 	ext{ } f2_5 = f(i-1) + (n - x(i-1))*(f(i) - f(i-1))/(x
      (i) - x(i-1)
15 \text{ err1} = 1.5811 - f2_5
16 disp(f2_5, 'f(2.5) = ')
17 disp(err1, 'error1 = ')
```

```
disp('The correct answer is 1.5811.The difference
    between results is due to use of a linear model
    to a nonlinear use')

disp('repeating the procedure using x1 = 2 and x2 =
      4')

x1 = 2

x2 = 4

22 f2_5 = f(x1) + (2.5 - x1)*(f(x2) - f(x1))/(x2 -
      x1)

arr2 = 1.5811 - f2_5

disp(err2, 'error2 = ')

disp(f2_5, 'f(2.5) = ')

disp('NOTE- The increase in error due to the
    increase in the interval between the
    interpolating data')
```

Scilab code Exa 9.4 Lagrange Interpolation

```
1 / Example No. 9_04
2 //Lagrange Interpolation - Second order
3 //Pg No. 282
4 clear; close; clc;
6 X = [12345]
7 \text{ Fx} = [1 \ 1.4142 \ 1.7321 \ 2.2361];
8 X = X(2:4)
9 \text{ Fx} = \text{Fx}(2:4)
10 \times 0 = 2.5
11 x = poly(0, 'x')
12 p = 0
13 \text{ for } i = 1:3
14
       L(i) = 1
15
       for j = 1:3
16
            if j == i then
17
                 continue;
```

```
18
             else
                 L(i) = L(i)*(x - X(j))/(X(i) - X(j))
19
20
             end
21
        end
22
        p = p + Fx(i)*L(i)
23 \text{ end}
24 L0 = horner(L(1), 2.5);
25 L1 = horner(L(2), 2.5);
26 L2 = horner(L(3), 2.5);
27 p2_5 = horner(p, 2.5);
28 printf ('For x = 2.5 we have, \ln L0(2.5) = \%f \ln L1
      (2.5) = \%f \setminus n L2(2.5) = \%f \setminus n p(2.5) = \%f \setminus n', L0,
      L1,L2,p2_5)
29
30 \text{ err} = \text{sqrt}(2.5) - p2_5;
31 printf('The error is %f', err);
```

Scilab code Exa 9.5 Lagrange Interpolation

```
1 / Example No. 9_05
2 //Lagrange Interpolation
3 //Pg No. 283
4 clear; close; clc;
6 i = [0123]
7 X = [0 1 2 3]
8 \text{ Fx} = [0 \ 1.7183 \ 6.3891 \ 19.0855]
9 x = poly(0, 'x');
10 n = 3 //order of lagrange polynomial
11 p = 0
12 \text{ for } i = 1:n+1
       L(i) = 1
13
14
       for j = 1:n+1
15
           if j == i then
```

```
16
                 continue ;
17
            else
                 L(i) = L(i)*(x - X(j))/(X(i) - X(j))
18
19
            end
20
        end
21
        p = p + Fx(i)*L(i)
22 \quad end
23 disp("The Lagrange basis polynomials are")
24 \text{ for } i = 1:4
25
            disp(string(L(i)))
26 \, \text{end}
27 disp("The interpolation polynomial is")
28 disp(string(p))
29 disp('The interpolation value at x = 1.5 is ')
30 p1_5 = horner(p, 1.5);
31 \text{ e1}\_5 = \text{p1}\_5 + 1;
32 disp(e1_5, e^1.5 = p, p1_5);
```

Scilab code Exa 9.6 Newton Interpolation

```
1 //Example No. 9_06
2 //Newton Interpolation - Second order
3 //Pg No. 288
4 clear; close; clc;
5
6 i = [ 0 1 2 3]
7 X = 1:4
8 Fx = [ 0 0.3010 0.4771 0.6021]
9 X = 1:3
10 Fx = Fx(1:3)
11 x = poly(0, 'x');
12 A = Fx'
13 for i = 2:3
14 for j = 1:4-i
```

```
15
            A(j,i) = (A(j+1,i-1)-A(j,i-1))/(X(j+i-1)-X
                (j));
16
        end
17 \text{ end}
18 printf ('The coefficients of the polynomial are,\n a0
       = \%.4G \ n \ a1 = \%.4G \ n \ a2 = \%.4G \ n' , A(1,1), A
      (1,2),A(1,3)
19 p = A(1,1);
20 \text{ for } i = 2:3
        p = p + A(1,i) * prod(x*ones(1,i-1) - X(1:i-1));
22 end
23 disp(string(p))
24 p2_5 = horner(p, 2.5)
25 printf('p(2.5) = \%.4G \setminus n', p2_5)
```

Scilab code Exa 9.7 Newton Divided Difference Interpolation

```
1 / Example No. 9_07
2 // Newton Divided Difference Interpolation
3 //Pg No. 291
4 clear; close; clc;
6 i = 0:4
7 X = 1:5
8 \text{ Fx} = [0 7 26 63 124];
9 x = poly(0, 'x');
10 A = [i, X, Fx]
11 \quad for \quad i = 4:7
        for j = 1:8-i
12
           A(j,i) = (A(j+1,i-1)-A(j,i-1))/(X(j+i-3)-X
13
              (i));
14
       end
15 end
16 disp(A)
17 p = A(1,3);
```

```
18 p1_5(1) = p;
19 for i = 4:7
20     p = p +A(1,i)* prod(x*ones(1,i-3) - X(1:i-3));
21     p1_5(i-2) = horner(p,1.5);
22 end
23 printf('p0(1.5) = %f \n p1(1.5) = %f \n p2(1.5) = %f \n p3(1.5) = %f \n p4(1.5) = %f \n',p1_5(1),p1_5(2),p1_5(3),p1_5(4),p1_5(5));
24 disp(p1_5(5),'The function value at x = 1.5 is')
```

Scilab code Exa 9.8 Newton Gregory Forward Difference Formula

```
1 / Example No. 9_08
2 //Newton-Gregory forward difference formula
3 / Pg No. 297
4 clear; close; clc;
6 X = [10 20 30 40 50]
7 \text{ Fx} = [0.1736 \ 0.3420 \ 0.5000 \ 0.6428 \ 0.7660]
8 x = poly(0, 'x');
9 A = [X', Fx'];
10 \text{ for } i = 3:6
11
         A(1:7-i,i) = diff(A(1:8-i,i-1))
12 end
13 disp(A)
14 \times 0 = X(1);
15 h = X(2) - X(1) ;
16 \times 1 = 25
17 s = (x1 - x0)/h;
18 p(1) = Fx(1);
19 for j = 1:4
20
       p(j+1) = p(j) + prod(s*ones(1,j)-[0:j-1])*A(1,j)
           +2)/factorial(j)
21 end
22 printf ('p1(s) = \%.4G \setminus n p2(s) = \%.4G \setminus n p3(s) = \%.4G
```

```
\label{eq:p4} $$ \ n \ p4(s) = \%.4G \ n',p(2),p(3),p(4),p(5)) $$ 23 \ printf(' Thus \ sin(\%d) = \%.4G \ n',x1,p(5)) $$
```

Scilab code Exa 9.9 Newton Backward Difference Formula

```
1 / Example No. 9_09
2 //Newton Backward difference formula
3 / Pg No. 299
4 clear ; close ; clc ;
6 X = [10 20 30 40 50]
7 \text{ Fx} = [0.1736 \ 0.3420 \ 0.5000 \ 0.6428 \ 0.7660]
8 x = poly(0, 'x');
9 A = [X, Fx];
10 \text{ for } i = 3:6
11
         A(i-1:5,i) = diff(A(i-2:5,i-1))
12 end
13 disp(A);
14 \text{ xn} = X(5);
15 h = 10 ;
16 \text{ xuk} = 25;
17 s = (xuk - xn)/h ;
18 disp(s, 's = ');
19 p(1) = Fx(5)
20 \text{ for } j = 1:4
        p(j+1) = p(j) + prod(s*ones(1,j)-[0:j-1])*A(5,j)
21
           +2)/factorial(j)
22 end
23 printf('\n\n p1(s) = \%.4G\n p2(s) = \%.4G\n p3(s) =
       \%.4G \setminus p4(s) = \%.4G \setminus n', p(2), p(3), p(4), p(5))
24 printf(' Thus \sin (\%d) = \%.4G \setminus n', xuk, p(5))
```

Scilab code Exa 9.10 Splines

```
1 / Example No. 9_10
2 //Splines
3 / Pg No. 301
4 clear; close; clc;
6 x = poly(0, 'x');
  function isitspline(f1,f2,f3,x0,x1,x2,x3)
       n1 = degree(f1), n2 = degree(f2), n3 = degree(f3)
       n = \max(n1, n2, n3)
9
       f1_x1 = horner(f1, x1)
10
       f2_x1 = horner(f2, x1)
11
       f2_x2 = horner(f2, x2)
12
13
       f3_x2 = horner(f3, x2)
       if n ==1 & f1_x1 == f2_x1 & f2_x2 == f3_x2 then
14
15
           printf ('The piecewise polynomials are
              continuous and f(x) is a linear spline')
       elseif f1_x1 == f2_x1 & f2_x2 == f3_x2
16
           for i = 1:n-1
17
               df1 = derivat(f1)
18
19
                df2 = derivat(f2)
20
                df3 = derivat(f3)
21
                df1_x1 = horner(df1, x1)
22
                df2_x1 = horner(df2, x1)
23
                df2_x2 = horner(df2, x2)
24
                df3_x2 = horner(df3, x2)
25
                f1 = df1, f2 = df2, f3 = df3
26
                if df1_x1 ~= df2_x1 | df2_x2 ~= df3_x2
                  then
                    printf('The %ith derivative of
27
                       polynomial is not continuours',i)
28
                    break
29
                end
30
           end
31
           if i == n-1 & df1_x1 == df2_x1 & df2_x2 ==
              df3_x2 then
32
                printf ('The polynomial is continuous and
                    its derivatives from 1 to %i are
                   continuous, f(x) is a %ith degree
```

```
polynomial',i,i+1)
33
             end
34
        else
                  printf('The polynomial is not continuous
35
                      ')
36
        end
37
38 endfunction
39 \text{ n} = 4 , x0 = -1 , x1 = 0 , x2 = 1 , x3 = 2
40 	 f1 = x+1 	 ;
41 	ext{ f2} = 2*x + 1 	ext{ ;}
42 f3 = 4 - x;
43 disp('case 1')
44 isitspline(f1,f2,f3,x0,x1,x2,x3)
45 \text{ n} = 4, x0 = 0, x1 = 1, x2 = 2, x3 = 3
46 	 f1 = x^2 + 1 	 ;
47 	 f2 = 2*x^2;
48 	ext{ f3} = 5*x - 2 	ext{ ;}
49 disp('case 2')
50 isitspline(f1,f2,f3,x0,x1,x2,x3)
51 \text{ n} = 4, \text{ x0} = 0, \text{ x1} = 1, \text{ x2} = 2, \text{ x3} = 3
52 \text{ f1} = x,
53 	 f2 = x^2 - x + 1,
54 f3 = 3*x - 3
55 disp('case 3')
56 isitspline(f1,f2,f3,x0,x1,x2,x3)
```

Scilab code Exa 9.11 Cubic Spline Interpolation

```
1 //Example No. 9_11
2 //Cubic Spline Interpolation
3 //Pg No. 306
4 clear; close; clc;
5
6 X = [ 4 9 16]
```

```
7 \text{ Fx} = [234]
8 n = length(X)
9 h = diff(X)
10 disp(h)
11 x = poly(0, 'x');
12 A(1) = 0;
13 A(n) = 0;
14
15 //Since we do not know only a1 = A(2) we just have
      one equation which can be solved directly without
       solving tridiagonal matrix
16 A(2) = 6*( Fx(3) - Fx(2) )/h(2) - (Fx(2) - Fx(1)
      )/h(1) )/( 2*( h(1) + h(2) ) );
17 disp(A(2), 'a1 = ');
18 \text{ xuk} = 7;
19 \text{ for } i = 1:n-1
       if xuk <= X(i+1) then
20
21
           break;
22
       end
23 end
24 \ u = x*ones(1,2) - X(i:i+1)
25 s = (A(2)*(u(i)^3 - (h(i)^2)*u(i))/6*h(i)) +
      (Fx(i+1)*u(i)-Fx(i)*u(i+1))/h(i);
26 \text{ disp(s,'s(x) = ');}
27 	 s_7 = horner(s, xuk);
28 \text{ disp}(s_7, s(7))
```

Scilab code Exa 9.12 Cubic Spline Interpolation

```
//Example No. 9_12
//Cubic Spline Interpolation
//Pg No. 313
clear; close; clc;

X = 1:4;
```

```
7 \text{ Fx} = [0.5 \ 0.3333 \ 0.25 \ 0.2]
8 n = length(X)
9 h = diff(X)
10 disp(h)
11 x = poly(0, 'x');
12 A(1) = 0;
13 A(n) = 0;
14 //Forming Tridiagonal Matrix
15 //take make diagonal below main diagonal be 1, main
       diagonal is 2 and diagonal above main diagonal
      is 3
16 \text{ diag1} = h(2:n-2);
17 diag2 = 2*(h(1:n-2)+h(2:n-1));
18 \text{ diag3} = h(2:n-2);
19 TridiagMat = diag(diag1,-1)+diag(diag2)+diag(diag3
20 disp(TridiagMat);
21 D = diff(Fx);
22 D = 6*diff(D./h);
23 disp(D)
24 \quad A(2:n-1) = TridiagMat\D'
25 \text{ disp}(A)
26 \text{ xuk} = 2.5;
27 \text{ for } i = 1:n-1
       if xuk <= X(i+1) then
28
29
            break;
30
       end
31 end
32 u = x*ones(1,2) - X(i:i+1)
33 s = (A(i)*(h(i+1)^2*u(2) - u(2)^2)/(6*h(i+1))
      ) + ( A(i+1)*(u(1)^3 - (h(i)^2)*u(1))/6*h(i)
       ) + (Fx(i+1)*u(1) - Fx(i)*u(2))/h(i);
34 disp(s, 's(x) = ');
35 	ext{ s2\_5} = horner(s, xuk);
36 \text{ disp}(s2\_5, 's(2.5)')
```

Chapter 10

Curve Fitting Regression

Scilab code Exa 10.1 Fitting a Straight line

```
//Example No. 10_01
//Fitting a Straight Line
//Pg No. 326
clear ; close ; clc ;

x = poly(0, 'x')
X = 1:5

y = [ 3 4 5 6 8 ];
n = length(X);
b = (n*sum(X.*Y) - sum(X)*sum(Y))/(n*sum(X.*X) - (sum(X))^2)

a = sum(Y)/n - b*sum(X)/n
disp(b, 'b = ')
disp(a, 'a = ')
y = a + b*x
```

Scilab code Exa 10.2 Fitting a Power Function Model to given data

```
1 //Example No. 10_02
2 // Fitting a Power-Function model to given data
3 //Pg No. 331
4 clear ; close ; clc ;
6 x = poly(0, 'x');
7 X = 1:5
8 Y = [0.5 2 4.5 8 12.5]
9 \text{ Xnew} = \log(X)
10 Ynew = log(Y)
11 n = length(Xnew)
12 b = (n*sum(Xnew.*Ynew) - sum(Xnew)*sum(Ynew))/(n*
      sum(Xnew.*Xnew) - ( sum(Xnew) )^2 )
13 lna = sum(Ynew)/n - b*sum(Xnew)/n
14 a = \exp(\ln a)
15 \text{ disp(b,'b = ')}
16 \text{ disp}(\ln a, \ln a = ')
17 \text{ disp}(a, 'a = ')
18 printf('\n The power function equation obtained is \
      n y = \%.4Gx^{\%}.4G',a,b);
```

Scilab code Exa 10.3 Fitting a Straight line using Regression

```
1 //Example No. 10_03
2 //Pg No. 332
3 clear ; close ; clc ;
4
5 time = 1:4
6 T = [ 70 83 100 124 ]
7 t = 6
8 Fx = exp(time/4)
9 n = length(Fx)
10 Y = T ;
11 b = ( n*sum(Fx.*Y) - sum(Fx)*sum(Y) )/( n*sum(Fx.*Fx) - (sum(Fx))^2 )
```

Scilab code Exa 10.4 Curve Fitting

```
1 / Example No. 10_04
2 //Curve Fitting
3 / Pg NO. 335
4 clear; close; clc;
6 x = 1:4 ;
7 y = [6 11 18 27];
8 n = length(x) //Number of data points
                  //Number of unknowns
9 m = 2+1
10 disp('Using CA = B form , we get')
11 \text{ for } j = 1:m
12
       for k = 1:m
            C(j,k) = sum(x.^(j+k-2))
13
14
       end
       B(j) = sum(y.*(x.^(j-1)))
15
16 \, \text{end}
17 \text{ disp}(B, 'B = ', C, 'C = ')
18 \quad A = inv(C)*B
19 disp(A, 'A = ')
20 printf ('Therefore the least squures polynomial is \n
        y = \%i + \%i*x + \%i*x^2 \setminus n', A(1), A(2), A(3))
```

Scilab code Exa 10.5 Plane Fitting

```
1 //Example No. 10_05
2 //Plane Fitting
3 / Pg No. 342
4 clear; close; clc;
6 x = 1:4
7 z = 0:3
8 y = 12:6:30
9 n = length(x) // Number of data points
                 //Number of unknowns
10 m = 3
11 G = [ones(1,n); x; z]
12 H = G
13 \ C = G*H
14 B = y*H
15 D = C \setminus B
16 disp(C,B)
17 disp(D)
18 mprintf('\n The regression plane is \n y = \%i + \%f*x
      +\%i*z, D(1),D(2),D(3))
```

Chapter 11

Numerical Differentiation

Scilab code Exa 11.1 First order Forward Difference

```
1 //Example No. 11_01
2 // First order forward difference
3 / Pg No. 348
4 clear ; close ; clc ;
6 x = poly(0, "x");
7 deff('F = f(x)', 'F = x^2');
8 deff('DF = df(x,h)', 'DF = (f(x+h)-f(x))/h');
9 dfactual = derivat(f(x));
10 h = [0.2 ; 0.1 ; 0.05 ; 0.01]
11 \quad for \quad i = 1:4
12
       y(i) = df(1,h(i));
       err(i) = y(i) - horner(dfactual,1)
13
14 end
15 table = [h y err];
16 disp(table)
```

Scilab code Exa 11.2 Three Point Formula

```
1 //Example No. 11_02
2 //Three-Point Formula
3 //Pg No. 350
4 clear ; close ; clc ;
6 x = poly(0, "x");
7 deff('F = f(x)', 'F = x^2');
8 deff('DF = df(x,h)', 'DF = (f(x+h)-f(x-h))/(2*h)');
9 dfactual = derivat(f(x));
10 h = [0.2 ; 0.1 ; 0.05 ; 0.01]
11 \text{ for } i = 1:4
       y(i) = df(1,h(i));
13
       err(i) = y(i) - horner(dfactual,1)
14 end
15 table = [h y err];
16 disp(table)
```

Scilab code Exa 11.3 Error Analysis

```
1 / Example No. 11_03
2 //Pg No. 353
3 close ; clear ; clc ;
4
5 x = 0.45;
6 deff('F = f(x)', 'F = \sin(x)');
7 deff('DF = df(x,h)', 'DF = (f(x+h) - f(x))/h');
8 	ext{ dfactual = } cos(x);
9 h = 0.01:0.005:0.04;
10 n = length(h);
11 	ext{ for } i = 1:n
12
       y(i) = df(x,h(i))
13
       err(i) = y(i) - dfactual;
14 end
15 table = [ h' y err];
16 disp(table)
```

Scilab code Exa 11.4 Approximate Second Derivative

```
//Example No. 11_04
//Approximate second derivative
//Pg No. 354
clear ; close ; clc ;

x = 0.75;
h = 0.01;
deff('F = f(x)', 'F = cos(x)');
deff('D2F = d2f(x,h)', 'D2F = ( f(x+h) - 2*f(x) + f(x-h) )/h^2 ');
y = d2f(0.75,0.01);
d2fexact = -cos(0.75)
err = d2fexact - y ;
disp(err, 'err = ',d2fexact, 'd2fexact = ',y, 'y = ')
```

Scilab code Exa 11.5 Differentiation of Tabulated Data

```
1 //Example No. 11_05
2 // Differentiation of tabulated data
3 //Pg No. 358
4 clear ; close ; clc ;
5
6 T = 5:9 ;
7 s = [10 14.5 19.5 25.5 32];
```

```
8 h = T(2) - T(1);
9 n = length(T)
10 function V = v(t)
11
       if find(T == t) == 1 then
12
           V = [ -3*s(find(T == t)) + 4*s(find(T == (t)))]
              +h))) - s(find(T == (t+2*h)))]/(2*h)
              ) //Three point forward difference
              formula
       elseif find(T == t) == n
13
           V = [3*s(find(T == t)) - 4*s(find(T == (t -
14
              h))) + s( find( T == (t-2*h) ))]/(2*h)
               //Backward difference formula
15
       else
           V = [s(find(T == (t+h))) - s(find(T == (t+h)))]
16
              t-h)) ]/(2*h) //Central difference
              formula
17
       end
18 endfunction
19
20 \text{ v}_5 = \text{v}(5)
21 \quad v_7 = v(7)
22 v_9 = v(9)
23
24 disp(v_9, v(9) = ', v_7, v(7) = ', v_5, v(5) = ')
```

Scilab code Exa 11.6 Three Point Central Difference Formula

```
1  //Example No. 11_06
2  //Three Point Central Difference formula
3  //Pg No. 359
4  clear ; close ; clc ;
5
6  T = 5:9 ;
7  s = [10  14.5  19.5  25.5  32 ];
8  h = T(2)-T(1);
```

Scilab code Exa 11.7 Second order Derivative

```
1 / Example No. 11_7
2 //Pg No. 359
3 clear; close; clc;
5 h = 0.25;
6 //y''(x) = e^{(x^2)}
7 //y(0) = 0 , y(1) = 0
8 // y''(x) = y(x+h) - 2*y(x) + y(x-h)/h^2 = e^(x^2)
9 / (y(x + 0.25) - 2*y(x) + y(x-0.25))/0.0625 = e^(x)
      ^2)
10 //y(x+0.25) - 2*y(x) + y(x - 0.25) = 0.0624*e^{(x^2)}
11 //y(0.5) - 2*y(0.25) + y(0) = 0.0665
12 //y(0.75) - 2*y(0.5) + y(0.25) = 0.0803
13 / y(1) - 2*y(0.75) + y(0.5) = 0.1097
14 //given y(0) = y(1) = 0
15 //
16 / 0 + y2 - 2y1 = 0.06665
17 //y3 - 2*y2 + y1 = 0.0803
18 // -2*y3 + y2 + 0 = 0.1097
19 //Therefore
20 A = [0 1 -2 ; 1 -2 1 ; -2 1 0]
21 B = [0.06665; 0.0803; 0.1097]
22 \quad C = A \setminus B
23 mprintf ('solving the above equations we get \n y1
     = y(0.25) = \%f \setminus n y2 = y(0.5) = \%f \setminus n y3 = y
      (0.75) = \%f \setminus n ', C(3), C(2), C(1)
```

Scilab code Exa 11.8 Richardsons Extrapolation Technique

```
1 / Example No. 9_01
2 //Richardson's Extrapolation Technique
3 / Pg No. 362
4 clear ; close ; clc ;
6 x = -0.5:0.25:1.5
7 h = 0.5;
8 r = 1/2 ;
10 deff('F = f(x)', 'F = exp(x)');
11 deff('D = D(x,h)', 'D = [f(x + h) - f(x-h)]/(2*h)
      ');
12 deff('df = df(x,h,r)', 'df = [D(x,r*h) - r^2*D(x,h)]
     ]/(1-r^2);
13
14 	ext{ df}_05 = 	ext{df}(0.5, 0.5, 1/2);
15 disp(df_05, richardsons technique - df(0.5) = ',D
      (0.5,0.25), D(rh) = D(0.25) = D(0.5,0.5), D(0.5,0.5)
      (0.5) = ')
16 dfexact = derivative(f,0.5)
17 disp(dfexact, 'Exact df(0.5) = ')
18 disp('The result by richardsons technique is much
      better than other results')
19
20 / r = 2
21 disp(df(0.5,0.5,2), 'df(x) = ',D(0.5,2*0.5), 'D(rh) =
      ', 'for r = 2')
```

Chapter 12

Numerical Integration

Scilab code Exa 12.1 Trapezoidal Rule

```
1 //Example No. 12_01
2 //Trapezoidal Rule
3 / Pg No. 373
4 clear ; close ; clc ;
6 x = poly(0, "x");
7 deff('F = f(x)', 'F = x^3 + 1');
9 // case(a)
10 \ a = 1;
11 b = 2 ;
12 h = b - a ;
13 It = (b-a)*(f(a)+f(b))/2
14 d2f = derivat(derivat(f(x)))
15 Ett = h^3*horner(d2f,2)/12
16 Iexact = intg(1,2,f)
17 Trueerror = It - Iexact
18 disp(Trueerror, 'True error = ', Iexact, 'Iexact = ',
     Ett, 'Ett = ',It, 'It = ', 'case(a)')
19 disp ('Here Error bound is an overestimate of true
      error')
```

Scilab code Exa 12.2 Trapezoidal Rule

```
1 / Example No. 12_02
2 //Tapezoidal rule
3 / Pg No. 376
4 clear ; close ; clc ;
6 deff('F = f(x)', 'F = exp(x)');
7 \ a = -1 ;
8 b = 1 ;
9
10 // case(a)
11 \quad n = 2
12 h = (b-a)/n
13 I = 0
14 \text{ for } i = 1:n
       I = I + f(a+(i-1)*h)+f(a+i*h);
15
16 end
17 I = h*I/2 ;
18 disp(I, 'intergral for case(a), Ia = ')
19
20 //case(b)
21 n = 4
```

Scilab code Exa 12.3 Simpons 1 by 3 rule

```
1 / Example No. 12_03
2 //Simpon's 1/3 rule
3 // Pg No. 381
4 clear ; close ; clc ;
6 funcprot(0) //To avoid warning message for defining
      function f(x) twice
7 // case(a)
8 deff('F = f(x)', 'F = exp(x)');
9 \ a = -1;
10 b = 1;
11 h = (b-a)/2
12 \times 1 = a+h
13 Is1 = h*(f(a) + f(b) + 4*f(x1))/3
14 disp(Is1, 'Integral for case(a), Is1 = ',h, 'h = ')
15
16 //case(b)
17 deff('F = f(x)', 'F = sqrt(sin(x))');
18 \ a = 0
19 \ b = \%pi/2
20 h = (b-a)/2
21 \times 1 = a+h
```

```
22 Is1 = h*( f(a) + f(b) + 4*f(x1) )/3
23 disp(Is1, 'Integral for case(b), Is1 = ',h, 'h = ')
```

Scilab code Exa 12.4 Simpons 1 by 3 rule

```
1 / Example No. 12_04
2 //Simpon's 1/3 rule
3 / Pg No.382
4 clear ; close ; clc ;
6 deff('F = f(x)', 'F = sqrt(sin(x))');
7 \times 0 = 0;
8 \text{ xa} = \%\text{pi}/2 ;
9
10 / case(a) n = 4
11 n = 4 ;
12 h = (xa-x0)/n
13 I = 0
14 \text{ for } i = 1:n/2
       I = I + f(x0 + (2*i-2)*h) + 4*f(x0 + (2*i-1)*h)
          + f(x0 + 2*i*h);
16 end
17 I = h*I/3
18 disp(I, 'Integral value for n = 4 is ',h, 'h = ')
19
20 / \text{case}(b) n = 6
21 n = 6
22 h = (xa-x0)/n
23 I = 0
24 \text{ for } i = 1:n/2
       I = I + f(x0 + (2*i-2)*h) + 4*f(x0 + (2*i-1)*h)
          + f(x0 + 2*i*h);
26 end
27 I = h*I/3
28 disp(I, 'Integral value for n = 6 is ',h, 'h = ')
```

Scilab code Exa 12.5 Simpsons 3 by 8 rule

```
1 //Example No. 12_05
2 //Simpson's 3/8 rule
3 //Pg No. 386
4 clear ; close ; clc ;
6 funcprot(0)
7 // case(a)
8 deff('F = f(x)', 'F = x^3 + 1');
9 \ a = 1 ;
10 b = 2 ;
11 h = (b-a)/3
12 x1 = a + h
13 \times 2 = a + 2*h
14 \text{ Is2} = 3*h*(f(a) + 3*f(x1) + 3*f(x2) + f(b))/8;
15 \operatorname{disp}(\operatorname{Is2}, '\operatorname{Integral} \ \operatorname{of} \ x^3 + 1 \ \operatorname{from} \ 1 \ \operatorname{to} \ 2 \ \operatorname{is} ')
16 / case(b)
17 deff('F = f(x)', 'F = sqrt(sin(x))');
18 \ a = 0 \ ;
19 b = \%pi/2;
20 h = (b-a)/3
21 \times 1 = a + h
22 \times 2 = a + 2*h
23 \text{ Is2} = 3*h*(f(a) + 3*f(x1) + 3*f(x2) + f(b))/8;
24 disp(Is2, 'Integral of sqrt(\sin(x)) from 0 to \%pi/2
       is')
```

Scilab code Exa 12.6 Booles Five Point Formula

```
1 / Example No. 12_06
```

```
2 //Booles's Five-Point formula
3 //Pg No. 387
4 clear ; close ; clc ;
5
6 deff('F = f(x)', 'F = sqrt(sin(x))')
7 x0 = 0;
8 xb = %pi/2;
9 n = 4;
10 h = (xb - x0)/n
11 Ib = 2*h*(7*f(x0) + 32*f(x0+h) + 12*f(x0 + 2*h) + 32*f(x0+3*h) + 7*f(x0+4*h))/45;
12 disp(Ib, 'Ib = ')
```

Scilab code Exa 12.7 Romberg Integration Formula

```
1 / Example No. 12_07
2 //Romberg Integration formula
3 / Pg No. 391
4 clear ; close ; clc ;
6 deff('F = f(x)', 'F = 1/x');
7 // since we can't have (0,0) element in matrix we
      start with (1,1)
8 \ a = 1 ;
9 b = 2 ;
10 h = b-a;
11 R(1,1) = h*(f(a)+f(b))/2
12 disp(R(1,1), R(0,0) = ')
13 \text{ for } i = 2:3
       h(i) = (b-a)/2^{(i-1)}
14
15
       s = 0
16
       for k = 1:2^(i-2)
17
           s = s + f(a + (2*k - 1)*h(i));
18
19
       R(i,1) = R(i-1,1)/2 + h(i)*s;
```

Scilab code Exa 12.8 Two Point Gauss Legefre Formula

```
1 //Example No. 12_08
2 //Two Point Gauss -Legedre formula
3 //Pg No. 397
4 clear ; close ; clc ;
5
6 deff('F = f(x)', 'F = exp(x)');
7 x1 = -1/sqrt(3)
8 x2 = 1/sqrt(3)
9 I = f(x1) + f(x2)
10 disp(I, 'I = ',x2, 'x2 = ',x1, 'x1 = ')
```

Scilab code Exa 12.9 Gaussian Two Point Formula

```
1 //Example No. 12_09
2 //Gaussian two point formula
3 //Pg No. 398
4 clear ; close ; clc ;
5
6 a = -2 ;
7 b = 2 ;
8 deff('F = f(x)', 'F = exp(-x/2)')
```

```
9 A = (b-a)/2
10 B = (a+b)/2
11 C = (b-a)/2
12 deff('G = g(z)', 'G = exp(-1*(A*z+B)/2)')
13 w1 = 1;
14 w2 = 1;
15 z1 = -1/sqrt(3)
16 z2 = 1/sqrt(3)
17 Ig = C*( w1*g(z1) + w2*g(z2) )
18 printf('g(z) = exp(-(%f*z + %f)/2) \n C = %f \n Ig = %f \n', A, B, C, Ig)
```

Scilab code Exa 12.10 Gauss Legendre Three Point Formula

```
1 // Example No. 9_01
2 //Gauss-Legendre Three-point formula
3 / Pg No. 400
4 clear ; close ; clc ;
6 \ a = 2 ;
7 b = 4 ;
8 A = (b-a)/2
9 B = (b+a)/2
10 \ C = (b-a)/2
11 deff('G = g(z)', 'G = (A*z + B)^4 + 1')
12 \text{ w1} = 0.55556;
13 \text{ w2} = 0.88889;
14 \text{ w3} = 0.55556;
15 	 z1 = -0.77460;
16 	 z2 = 0;
17 	 z3 = 0.77460;
18 Ig = C*(w1*g(z1) + w2*g(z2) + w3*g(z3))
19 printf('g(z) = (\%f*z + \%f)^4 + 1 \setminus C = \%f \setminus Ig =
      %f \ \ n', A, B, C, Ig)
```

Chapter 13

Numerical Solution of Ordinary Differential Equations

Scilab code Exa 13.1 Taylor Method

```
1 //Example No. 13_01
2 //Taylor method
3 //Pg No. 414
4 clear ; close ; clc ;
5 
6 deff('F = f(x,y)', 'F = x^2 + y^2')
7 deff('D2Y = d2y(x,y)', 'D2Y = 2*x + 2*y*f(x,y)');
8 deff('D3Y = d3y(x,y)', 'D3Y = 2 + 2*y*d2y(x,y) + 2*f(x,y)^2');
9 deff('Y = y(x)', 'Y = 1 + f(0,1)*x + d2y(0,1)*x^2/2 + d3y(0,1)*x^3/6');
10 disp(y(0.25), 'y(0.25) = ')
11 disp(y(0.5), 'y(0.5) = ')
```

Scilab code Exa 13.2 Recursive Taylor Method

```
1 //Example No. 13_02
2 //Recursive Taylor Method
3 / Pg No. 415
4 clear; close; clc;
6 deff('F = f(x,y)', 'F = x^2 + y^2')
7 deff('D2Y = d2y(x,y)', 'D2Y = 2*x + 2*y*f(x,y)');
8 deff('D3Y = d3y(x,y)', 'D3Y = 2 + 2*y*d2y(x,y) + 2*f(
      (x, y)^2;
  deff('D4Y = d4y(x,y)', 'D4Y = 6*f(x,y)*d2y(x,y) + 2*y
      *d3y(x,y)');
10 h = 0.2 ;
11 deff('Y = y(x,y)', 'Y = y + f(x,y)*h + d2y(x,y)*h^2/2
       + d3y(x,y)*h^3/6 + d4y(x,y)*h^4/factorial(4)');
12 \times 0 = 0;
13 \text{ y0} = 0;
14 \text{ for } i = 1:2
       y_{i}(i) = y(x0,y0)
15
      printf ('Iteration -\%i \ln dy(0) = \%f \ln d2y(0) =
16
         %f \ d3y(0) = %f \ d4y(0) = %f \ ',i,f(x0,y0),
         d2y(x0,y0),d3y(x0,y0),d4y(x0,y0))
17
       x0 = x0 + i*h
18
       y0 = y_{i}(i)
      printf('y(0) = \%f \setminus n \setminus n', y_{-}(i))
19
20 end
```

Scilab code Exa 13.3 Picards Method

```
1 //Example No. 13_3
2 //Picard's Method
3 //Pg No. 417
4 clear; close; clc;
5 funcprot(0)
6 //y'(x) = x^2 + y^2,y(0) = 0
7 //y(1) = y0 + integral(x^2 + y0^2,x0,x)
```

```
8 //y(1) = x^3/3
9 //y(2) = 0 + integral(xY2 + y1^2, x0, x)
        = integral(x^2 + x^6/9,0,x) = x^3/3 + x^7/63
11 //therefore y(x) = x^3 / 3 + x^7 / 63
12 deff('Y = y(x)', 'Y = x^3/3 + x^7/63')
13 disp(y(1), 'y(1) = ', y(0.2), 'y(0.2) = ', y(0.1), 'y
      (0.1) = ', 'for dy(x) = x^2 + y^2 the results are
      ')
14
15 //y'(x) = x * e^y, y(0) = 0
16 //y0 = 0 , x0 = 0
17 / Y(1) = 0 + integral(x*e^0,0,x) = x^2/2
18 //y(2) = 0 + integral(x*e^(x^2/2), 0, x) = e^(x)
      ^{2}/2)-1
19 //therefore y(x) = e^{(x^2/2)} - 1
20 deff('Y = y(x)', 'Y = \exp(x^2/2) - 1')
21 disp(y(1), 'y(1) = ', y(0.2), 'y(0.2) = ', y(0.1), 'y
      (0.1) = ', 'for dy(x) = x*e^y the results are ')
```

Scilab code Exa 13.4 Eulers Method

```
1 //Example No. 13_04
2 //Euler's Method
3 //Pg No. 417
4 clear; close; clc;
5
6 deff('DY = dy(x)', 'DY = 3*x^2 + 1')
7 x0 = 1
8 y(1) = 2;
9 //h = 0.5
10 h = 0.5
11 mprintf('for h = %f\n',h)
12 for i = 2 : 3
13     y(i) = y(i-1) + h*dy(x0+(i-2)*h)
14 mprintf('y(%f) = %f\n',x0+(i-1)*h,y(i))
```

```
15 end

16 //h = 0.25

17 h = 0.25

18 mprintf('\nfor h = %f\n',h)

19 for i = 2 : 5

20 y(i) = y(i-1) + h*dy(x0+(i-2)*h)

21 mprintf('y(%f) = %f\n',x0+(i-1)*h,y(i))

22 end
```

Scilab code Exa 13.5 Error Estimation in Eulers Method

```
1 //Example No. 13_05
2 //Error estimation in Euler's Method
3 //Pg No. 422
4 clear; close; clc;
6 deff('DY = dy(x)', 'DY = 3*x^2 + 1')
7 deff('D2Y = d2y(x)', 'D2Y = 6*x')
8 \text{ deff}('D3Y = d3y(x)', 'D3Y = 6')
9 deff('exacty = exacty(x)', 'exacty = x^3 + x')
10 \quad x0 = 1
11 y(1) = 2
12 h = 0.5
13 \text{ for } i = 2 : 3
      x(i-1) = x0 + (i-1)*h
14
      y(i) = y(i-1) + h*dy(x0+(i-2)*h)
15
      16
          ',i-1,i-1,x(i-1),x(i-1),y(i))
17
      Et(i-1) = d2y(x0+(i-2)*h)*h^2/2 +
                                        d3y(x0+(i-2)*
         h)*h^3/6
18
       mprintf('\n Et(\%i) = \%f\n',i-1,Et(i-1))
19
      truey(i-1) = exacty(x0+(i-1)*h)
20
       gerr(i-1) = truey(i-1) - y(i)
21
  end
22
```

```
23 table = [x y(2:3) truey Et gerr]
24 disp(table, 'x Est y true y Et
Globalerr')
```

Scilab code Exa 13.6 Heuns Method

```
1 //Example No. 13_06
2 //Heun's Method
3 / Pg No. 427
4 clear; close; clc;
6 deff('F = f(x,y)', 'F = 2*y/x')
7 deff('exacty = exacty(x)', 'exacty = 2*x^2')
8 \times (1) = 1;
9 y(1) = 2 ;
10 h = 0.25;
11 //Euler's Method
12 disp('EULERS METHOD')
13 \text{ for } i = 2:5
       x(i) = x(i-1) + h;
14
       y(i) = y(i-1) + h*f(x(i-1),y(i-1));
15
16
       mprintf('y(\%f) = \%f \setminus n ', x(i), y(i))
17 \text{ end}
18 \text{ eulery} = y
19 //Heun's Method
20 disp ('HEUNS METHOD')
21 \text{ for } i = 2:5
       m1 = f(x(i-1),y(i-1));
22
23
       ye(i) = y(i-1) + h*f(x(i-1),y(i-1));
       m2 = f(x(i), ye(i));
24
25
       y(i) = y(i-1) + h*(m1 + m2)/2
      mprintf('\nIteration %i \n m1 = \%f\n ye(\%f) = \%f
26
         n = 2 = f = y(\%f) = \%f = \%f = 1, m1, x(i), ye(i)
          ,m2,x(i),y(i))
27 end
```

```
28 truey = exacty(x);
29 table = [x eulery y truey];
30 disp(table,' x Eulers Heuns Analytical')
```

Scilab code Exa 13.7 Polygon Method

```
1 / Example No. 13_07
2 //Polygon Method
3 / Pg NO. 433
4 clear; close; clc;
5 deff('F = f(x,y)', 'F = 2*y/x')
6 \times (1) = 1;
7 y(1) = 2;
8 h = 0.25;
9 \text{ for } i = 2:3
10
       x(i) = x(i-1) + h;
       y(i) = y(i-1) + h*f( x(i-1) + h/2 , y(i-1) + h
11
          *f( x(i-1) , y(i-1) )/2 );
12
       mprintf('y(\%f) = \%f \setminus n ', x(i), y(i))
13 end
```

Scilab code Exa 13.8 Classical Runge Kutta Method

```
1 //Example No. 13_08
2 //Classical Runge Kutta Method
3 //Pg No. 439
4 clear; close; clc;
5
6 deff('F = f(x,y)', 'F = x^2 + y^2');
7 h = 0.2
8 x(1) = 0;
9 y(1) = 0;
```

```
10
11
  for i = 1:2
12
        m1 = f(
                   x(i) , y(i)
                                     ) ;
13
                   x(i) + h/2 , y(i) + m1*h/2 );
        m2 = f(
14
        m3 = f(
                   x(i) + h/2 , y(i) + m2*h/2 );
15
        m4 = f(x(i) + h, y(i) + m3*h);
        x(i+1) = x(i) + h ;
16
        y(i+1) = y(i) + (m1 + 2*m2 + 2*m3 + m4)*h/6;
17
18
        mprintf(' \setminus nIteration - \%i \setminus n m1 = \%f \setminus n m2 = \%f \setminus n
19
             m3 = \%f \setminus n \ m4 = \%f \setminus n \ y(\%f) = \%f \setminus n', i, m1, m2
            ,m3,m4,x(i+1),y(i+1))
20 \text{ end}
```

Scilab code Exa 13.9 Optimum Step size

```
1 //Example No. 13_09
2 //Optimum step size
3 //Pg No. 444
4 clear; close; clc;
5
6 x = 0.8;
7 h1 = 0.05;
8 y1 = 5.8410870;
9 h2 = 0.025;
10 \text{ y2} = 5.8479637;
11
12 / d = 4
13 h = ((h1^4 - h2^4)*10^(-4)/(2*(y2 - y1)))^(1/4)
14 disp(h, 'h = ', 'for four decimal places')
15
16 / d = 6
17 h = ((h1^4 - h2^4)*10^(-6)/(2*(y2 - y1)))^(1/4)
18 disp(h, 'h = ', 'for six decimal places')
19 disp('Note-We can use h = 0.01 for four decimal)
```

Scilab code Exa 13.10 Milne Simpson Predictor Corrector Method

```
1 //Example No. 13_10
2 //Milne-Simpson Predictor-Corrector method
3 //Pg NO. 446
4 clear; close; clc;
6 deff('F = f(x,y)', 'F = 2*y/x')
7 \times 0 = 1;
8 y0 = 2;
9 h = 0.25;
10 //Assuming y1 ,y2 and y3(required for milne-simpson
       formula) are estimated using Fourth- order Runge
      kutta method
11 \times 1 = \times 0 + h
12 \text{ y1} = 3.13;
13 \times 2 = \times 1 + h
14 	 y2 = 4.5 	 ;
15 \times 3 = x2 + h
16 \text{ y3} = 6.13;
17 // Milne Predictor formula
18 \text{ yp4} = \text{y0} + 4*h*(2*f(x1,y1) - f(x2,y2) + 2*f(x3,y3))
      /3
19 \times 4 = x3 + h
20 \text{ fp4} = f(x4,yp4);
21 disp(fp4, 'fp4 = ',yp4, 'yp4 = ')
22 //Simpson Corrector formula
23 yc4 = y2 + h*(f(x2,y2) + 4*f(x3,y3) + fp4)/3
24 \text{ f4} = \text{f(x4,yc4)}
25 disp(f4, 'f4 = ',yc4, 'yc4 = ')
26
27 \text{ yc4} = \text{y2} + \text{h*}(\text{f(x2,y2)} + 4*\text{f(x3,y3)} + \text{f4})/3
28 \text{ disp}(yc4, 'yc4 = ')
```

Scilab code Exa 13.11 Adams Bashforth Moulton Method

```
1 //Example No. 13_11
2 //Adams-Bashforth-Moulton Method
3 //Pg NO. 446
4 clear; close; clc;
6 deff('F = f(x,y)', 'F = 2*y/x')
7 \times 0 = 1;
8 y0 = 2;
9 h = 0.25;
10 \quad x1 = x0 + h
11 \quad y1 = 3.13;
12 	 x2 = x1 + h
13 	 y2 = 4.5 	 ;
14 \times 3 = x2 + h
15 \text{ y3} = 6.13;
16 //Adams Predictor formula
17 \text{ yp4} = \text{y3} + \text{h}*(55*f(x3,y3) - 59*f(x2,y2) + 37*f(x1,y1)
      ) - 9*f(x0,y0))/24
18 \times 4 = x3 + h
19 fp4 = f(x4, yp4)
20 disp(fp4, 'fp4 = ',yp4, 'yp4 = ', 'Adams Predictor
       formula')
21 //Adams Corrector formula
22 \text{ yc4} = \text{y3} + \text{h*}(\text{f(x1,y1)} - 5*\text{f(x2,y2)} + 19*\text{f(x3,y3)} +
        9*fp4 )/24
23 	 f4 = f(x4,yc4)
24 disp(f4, 'f4 = ',yc4, 'yc4 = ', 'Adams Corrector
       formula')
25
26 \text{ yc4} = \text{y3} + \text{h*}(\text{f(x1,y1)} - 5*\text{f(x2,y2)} + 19*\text{f(x3,y3)} +
        9*f4 )/24
```

```
27 \operatorname{disp}(\operatorname{yc4}, \operatorname{refined} - \operatorname{yc4} = ')
```

Scilab code Exa 13.12 Milne Simpson Method Using Modifier

```
1 //Example No. 13_12
2 //Milne-Simpson Method using modifier
3 / Pg No. 453
4 clear; close; clc;
6 deff('F = f(y)', 'F = -y^2')
7 x = [1; 1.2; 1.4; 1.6];
8 y = [1; 0.8333333; 0.7142857; 0.625];
9 h = 0.2 ;
10
11 \text{ for } i = 1:2
       yp = y(i) + 4*h*( 2*f( y(i+1) ) - f( y(i+2) ) +
12
          2*f(y(i+3))/3
       fp = f(yp);
13
       yc = y(i+2) + h*(f(y(i+2)) + 4*f(y(i+3)) +
14
          fp)/3;
       Etc = -(yc - yp)/29
15
       y(i+4) = yc + Etc
16
       mprintf('\n y\%ip = \%f\n f\%ip = \%f\n y\%ic = \%f\
17
          n Modifier Etc = \%f \n Modified y\%ic = \%f \n'
          ,i+3,yp,i+3,fp,i+3,yc,Etc,i+3,y(i+4))
18 end
19 \text{ exactanswer} = 0.5;
20 \text{ err} = \text{exactanswer} - y(6);
21 disp(err, 'error = ')
```

Scilab code Exa 13.13 System of Differential Equations

```
1 //Example No. 13_13
```

```
2 //System of differential Equations
 3 // Pg No. 455
4 clear; close; clc;
 6 deff('F1 = f1(x,y1,y2)', 'F1 = x + y1 + y2')
7 \text{ deff}( \text{'F2} = f2(x,y1,y2) \text{','F2} = 1 + y1 + y2 \text{'})
 8
9 \times 0 = 0;
10 y 10 = 1;
11 y20 = -1;
12 h = 0.1 ;
13 \text{ m1}(1) = \text{f1}(x0,y10,y20)
14 \text{ m1}(2) = f2(x0,y10,y20)
15 \text{ m2}(1) = f1(x0+h, y10 + h*m1(1), y20 + h*m1(2))
16 \text{ m2}(2) = f2(x0+h, y10 + h*m1(1), y20 + h*m1(2))
17 m(1) = (m1(1) + m2(1))/2
18 m(2) = (m1(2) + m2(2))/2
19
20 y1_0_1 = y10 + h*m(1)
21 \quad y2_0_1 = y20 + h*m(2)
22
23 mprintf ('m1(1) = \%f\n m1(2) = \%f\n m2(1) = \%f\n m2
       (2) = \%f \setminus n \text{ m}(1) = \%f \setminus n \text{ m}(2) = \%f \setminus n \text{ y}(0.1) = \%f \setminus n
        y2(0.1) = %f n', m1(1), m1(2), m2(1), m2(2), m(1), m
       (2),y1_0_1,y2_0_1)
```

Scilab code Exa 13.14 Higher Order Differential Equations

```
1 //Example No. 13_14
2 //Higher Order Differential Equations
3 //Pg No. 457
4 clear; close; clc;
5
6 x0 = 0
7 y10 = 0
```

```
8 y20 = 1
9 h = 0.2
10 \text{ m1(1)} = y20 ;
11 \text{ m1}(2) = 6*x0 + 3*y10 - 2*y20
12 m2(1) = y20 + h*m1(2)
13 \text{ m2}(2) = 6*(x0+h) + 3*(y10 + h*m1(1)) - 2*(y20 + h*m1)
       (2))
14 m(1) = (m1(1) + m2(1))/2
15 m(2) = (m1(2) + m2(2))/2
16
17 y1_0_2 = y10 + h*m(1)
18 y2_0_2 = y20 + h*m(2)
19
20 mprintf ('m1(1) = \%f\n m1(2) = \%f\n m2(1) = \%f\n m2
       (2) = \%f \setminus n \ m(1) = \%f \setminus n \ m(2) = \%f \setminus n \ y1(0.1) = \%f \setminus n
       y2(0.1) = %f n', m1(1), m1(2), m2(1), m2(2), m(1), m
       (2),y1_0_2,y2_0_2)
```

Chapter 14

Boundary Value and Eigenvalue Problems

Scilab code Exa 14.1 Shooting Method

```
1 //Example No. 14_01
2 //Shooting Method
3 // Pg No. 467
4 clear; close; clc;
  function [B,y] = heun(f,x0,y0,z0,h,xf)
       x(1) = x0 ;
8
       y(1) = y0 ;
       z(1) = z0;
9
       n = (xf - x0)/h
10
11
       for i = 1:n
12
           m1(1) = z(i);
           m1(2) = f(x(i),y(i))
13
14
           m2(1) = z(i) + h*m1(2)
15
           m2(2) = f(x(i)+h,y(i)+h*m1(1))
           m(1) = (m1(1) + m2(1))/2
16
17
           m(2) = (m1(2) + m2(2))/2
           x(i+1) = x(i) + h
18
           y(i+1) = y(i) + h*m(1)
```

```
z(i+1) = z(i) + h*m(2)
20
21
       end
       B = y(n+1)
22
23 endfunction
24
25 deff('F = f(x,y)', 'F = 6*x')
26 \times 0 = 1;
27 y0 = 2;
28 h = 0.5;
29 z0 = 2
30 \text{ M1} = \text{z0}
31 \text{ xf} = 2
32 B = 9
33 [B1,y] = heun(f,x0,y0,z0,h,xf)
34 \text{ disp}(B1, 'B1 = ')
35 if B1 ~= B then
        disp('Since B1 is less than B, let z(1) = y(1)
36
          = 4*(M2),
       z0 = 4
37
38
       M2 = z0
        [B2,y] = heun(f,x0,y0,z0,h,xf)
39
       disp(B2, 'B2 = ')
40
       if B2 ~= B then
41
42
            disp('Since B2 is larger than B, let us have
                third estimate of z(1) = M3')
43
            M3 = M2 - (B2 - B)*(M2 - M1)/(B2 - B1)
44
            z0 = M3
            [B3,y] = heun(f,x0,y0,z0,h,xf)
45
            disp(y, 'The solution is ',B3, 'B3 = ')
46
47
       end
48
   end
```

Scilab code Exa 14.2 Finite Difference Method

```
1 / Example No. 14_02
```

```
2 // Finite Difference Method
3 / Pg No. 470
4 clear; close; clc;
6 deff('D2Y = d2y(x)', 'D2Y = exp(x^2)')
7 x_1 = 0;
8 y_0 = 0;
9 y_1 = 0;
10 h = 0.25
11 \text{ xf} = 1
12 n = (xf - x_1)/h
13 \text{ for } i = 1:n-1
14
       A(i,:) = [1 -2 1]
       B(i,1) = \exp((x_1 + i*h)^2)*h^2
15
16 end
17 A(1,1) = 0; //since we know y0 and y4
18 A(3,3) = 0;
19 A(1,1:3) = [A(1,2:3) 0] / rearranging terms
20 \quad A(3,1:3) = [0 \quad A(3,1:2)]
21 C = A \setminus B // Solution of Equations
22 mprintf(' \n The solution is \n y1 = y(0.25) = \%f \n
       y2 = y(0.5) = \%f \setminus n \ y3 = y(0.75) = \%f \setminus n \ ,C(1)
      C(2), C(3)
```

Scilab code Exa 14.3 Eigen Vectors

```
1 //Example No. 14_03
2 //Eigen Vectors
3 //Pg No. 473
4 clear ; close ; clc ;
5
6 A = [8 -4 ; 2 2 ] ;
7 lamd = poly(0, 'lamd')
8 p = det(A - lamd*eye())
9 root = roots(p)
```

Scilab code Exa 14.4 Fadeev Leverrier Method

```
1 //Example No. 14_04
2 //Fadeev - Leverrier method
3 //Pg No. 474
4 clear; close; clc;
6 A = [ -1 0 0 ; 1 -2 3 ; 0 2 -3 ]
7 [r,c] = size(A)
8 \quad A1 = A
9 p(1) = trace(A1)
10 \text{ for } i = 2:r
       A1 = A*(A1 - p(i-1)*eye())
11
12
       p(i) = trace(A1)/i
13
       mprintf(' \setminus nA\%i = ',i)
14
       disp(A1)
       mprintf('\np\%i = \%f\n',i,p(i))
15
16 end
17 x = poly(0, 'x');
18 p = p(\$:-1:1)
19 polynomial = poly([-p; 1], 'x', 'coeff')
20 disp(polynomial, 'Charateristic polynomial is')
```

Scilab code Exa 14.5 Eigen Vectors

```
//Example No. 14_05
//Eigen Vectors
//Pg No. 476

clear ; close ; clc ;

A = [ -1 0 0 ; 1 -2 3 ; 0 2 -3]
[evectors, evalues] = spec(A)
for i = 1:3
mprintf('\n Eigen vector - %i \n for lamda%i = %f \n X%i = ',i,i,evalues(i,i),i)
evectors(:,i) = evectors(:,i)/evectors(2,i)
disp(evectors(:,i))
end
```

Scilab code Exa 14.6 Power Method

```
1 / Example No. 14_06
2 //Power method
3 // Pg No. 478
4 clear; close; clc;
6 A = [120;210;00-1]
7 X(:,1) = [0;1;0]
8 \text{ for } i = 1:7
      Y(:,i) = A*X(:,i)
9
      X(:,i+1) = Y(:,i)/max(Y(:,i))
10
11 end
12 disp(' 0
                  1
                                  3
                 5
                              6
     Iterations')
13 disp(X, 'X = ', [[%nan ; %nan ; %nan] Y ], 'Y = ')
```

Chapter 15

Solution of Partial Differential Equations

Scilab code Exa 15.1 Elliptic Equations

```
1 //Example No. 15_01
2 // Elliptic Equations
3 / Pg No. 488
4 clear; close; clc;
6 1 = 15
7 h = 5
8 n = 1 + 15/5
9 f(1,1:4) = 100 ;
10 f(1:4,1) = 100 ;
11 f(4,1:4) = 0;
12 f(1:4,4) = 0;
13
14 //At point 1 : f2 + f3 - 4f1 + 100 + 100 = 0
15 / At point 2 : f1 + f4 - 4f2 + 100 +
16 //At point 3 : f1 + f4 - 4f3 + 100 +
                                           0 = 0
17 //At point 4 : f2 + f3 - 4f4 + 0 +
18 //
19 //Final Equations are
```

Scilab code Exa 15.2 Liebmanns Iterative Method

```
1 / \text{Example No. } 15_{-0.2}
2 //Liebmann's Iterative method
3 // Pg No. 489
4 clear; close; clc;
6 f(1,1:4) = 100 ;
7 f(1:4,1) = 100;
8 f(4,1:4) = 0;
9 f(1:4,4) = 0;
10 f(3,3) = 0
11 for n = 1:5
       for i = 2:3
12
           for j = 2:3
13
14
                if n == 1 & i == 2 & j == 2 then
15
                    f(i,j) = (f(i+1,j+1) + f(i-1,j-1) +
                        f(i-1,j+1) + f(i+1,j-1) /4
16
                else
                    f(i,j) = (f(i+1,j) + f(i-1,j) + f(i
17
                       ,j+1) + f(i,j-1) )/4
                end
18
19
           end
20
       end
```

Scilab code Exa 15.3 Poissons Equation

```
1 / Example No. 15_03
2 // Poisson's Equation
3 / Pg No. 490
4 clear; close; clc;
6 / D2f = 2*x^2 * y^2
7 // f = 0
8 // h = 1
9 // Point 1 : 0 + 0 + f2 + f3 - 4f1 = 2(1)^2 * 2^2
                f2 + f3 - 4f1 = 8
10 //
11 // Point 2 : 0 + 0 + f1 + f4 - 4f2 = 2*(2)^2*2^2
                 f1 - 4f2 = f4 = 32
12 //
13 // Point 3 : 0 + 0 + f1 + f4 - 4f4 = 2*(1^2)*1^2
14 //
                 f1 - 4f3 + f4 = 2
15 // Point 4 : 0 + 0 + f2 + f3 - 4f4 = 2* 2^2 * 1^2
16 //
                  f2 + f3 - 4f4 = 8
17 // Rearranging the equations
                  -4f1 + f2 + f3 = 8
18 //
                   f1 - 4f2 + f4 = 32
19 //
20 //
                   f1 - 4f3 + f4 = 2
21 //
                   f2 + f3 - 4f4 = 8
22 A = [ -4 1 1 0 ; 1 -4 0 1 ; 1 0 -4 1 ; 0 1 1 -4]
23 B = [8; 32; 2; 8]
24 C = A \setminus B;
25 mprintf ('The solution is n f1 = f n f2 = f n f3
      = \%f \setminus n \quad f4 = \%f \setminus n \quad , \quad C(1), C(2), C(3), C(4))
```

Scilab code Exa 15.4 Gauss Siedel Iteration

```
1 // Example No. 15_04
2 //Gauss-Seidel Iteration
3 // Pg No. 491
4 clear; close; clc;
6 	 f2 = 0
7 f3 = 0
8 \text{ for } i = 1:4
       f1 = (f2 + f3 - 8)/4
10
       f4 = f1
11
       f2 = (f1 + f4 - 32)/4
12
       f3 = (f1 + f4 - 2)/4
       mprintf ('\nIteration %i\n f1 = \%f, f2 = \%f,
13
              f3 = \%f, f4 = \%f \setminus n', i, f1, f2, f3, f4)
14 end
```

Scilab code Exa 15.5 Initial Value Problems

```
1 //Example No. 15_05
2 //Initial Value Problems
3 //Pg No. 494
4 clear ; close ; clc ;
5
6 h = 1 ;
7 k = 2 ;
8 tau = h^2/(2*k)
9 for i = 2:4
10    f(1,i) = 50*( 4 - (i-1) )
11 end
12 f(1:7,1) = 0 ;
```

```
13 f(1:7,5) = 0 ;
14 for j = 1:6
15     for i = 2:4
16         f(j+1,i) = ( f(j,i-1) + f(j,i+1) )/2
17     end
18 end
19 disp(f, 'The final results are ')
```

Scilab code Exa 15.6 Crank Nicholson Implicit Method

```
1 //Example No. 15_06
2 //Crank-Nicholson Implicit Method
3 / Pg No. 497
4 clear; close; clc;
6 h = 1 ;
7 k = 2 ;
8 \text{ tau} = h^2/(2*k)
9 \text{ for } i = 2:4
       f(1,i) = 50*(4 - (i-1))
10
11 end
12 f(1:5,1) = 0;
13 f(1:5,5) = 0;
14 A = [4 -1 0; -1 4 -1; 0 -1]
                                          4]
15 \text{ for } j = 1:4
16
       for i = 2:4
            B(i-1,1) = f(j,i-1) + f(j,i+1)
17
18
       end
19
       C = A \setminus B
       f(j+1,2) = C(1)
20
       f(j+1,3) = C(2)
21
22
       f(j+1,4) = C(3)
23 end
24 disp(f, 'The final solution using crank nicholson
      implicit method is ')
```

Scilab code Exa 15.7 Hyperbolic Equations

```
1 / Example No. 15_07
2 // Hyperbolic Equations
3 / Pg No. 500
4 clear; close; clc;
6 h = 1
7 \text{ Tbyp} = 4
8 \text{ tau} = \text{sqrt}(h^2 / 4)
9 r = 1+(2.5 - 0)/tau
10 c = 1+(5 - 0)/h
11 for i = 2:c-1
       f(1,i) = (i-1)*(5 - (i-1))
12
13 end
14 f(1:r,1) = 0
15 f(1:r,c) = 0
16 \text{ for } i = 2:c-1
17
       g(i) = 0
18
       f(2,i) = (f(1,i+1) + f(1,i-1))/2 + tau*g(i)
19 end
20 \text{ for } j = 2:r-1
       for i = 2:c-1
21
            f(j+1,i) = -f(j-1,i) + f(j,i+1) + f(j,i-1)
22
23
       end
24 end
25 disp(f, 'The values estimated are ')
```