

Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

DeepLearning.AI

Linear Regression with Multiple Variables

Multiple Features

Multiple features (variables)

one ->	Size in feet $^2(x)$	Price (\$) in 1000's (y)		
feature	2104	400		
	1416	232		
	1534	315		
	852	178		

$$f_{w,b}(x) = wx + b$$

Multiple features (variables)

	Size in feet²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's	j=14
	X1	X2	Хз	Хų		n=4
	2104	5	1	45	460	-
i=2	1416	3	2	40	232	
	1534	3	2	30	315	
	852	2	1	36	178	

$$x_i = j^{th}$$
 feature

n = number of features $\vec{x}^{(i)} = \text{features of } i^{th} \text{ training example}$

 $\mathbf{x}_{i}^{(i)}$ = value of feature j in i^{th} training example

$$\frac{1}{2}$$
 = [1416 3 2 40]

$$X_3^{(2)} = 2$$

Model:

Previously:
$$f_{w,b}(x) = wx + b$$

$$f_{w,b}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + b$$
example
$$f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + -2 x_4 + 80$$

$$f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + -2 x_4 + 80$$
size #bedrooms #floors years price

$$f_{w,b}(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$$

$$\overrightarrow{w} = [w_1 \ w_2 \ w_3 \dots w_n] \quad \text{parameters} \quad \text{of the model}$$

$$b \text{ is a Number}$$

$$vector \overrightarrow{\chi} = [\chi_1 \ \chi_2 \ \chi_3 \dots \chi_n]$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1\chi_1 + w_2\chi_2 + w_3\chi_3 + \cdots + w_n\chi_n + b$$

$$dot \text{ product} \quad \text{multiple linear regression}$$

$$(not \text{ multivariate regression})$$

DeepLearning.AI

Linear Regression with Multiple Variables

Vectorization
Part 1

Parameters and features

$$\overrightarrow{\mathbf{w}} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \qquad \mathbf{n} = \mathbf{3}$$

b is a number

$$\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}$$

linear algebra: count from 1

$$w = np.array([1.0,2.5,-3.3])$$

$$b = 4 \qquad \qquad \chi[\circ] \ \chi[1] \ \chi[2]$$

$$x = np.array([10,20,30])$$

code: count from 0

Without vectorization $\Lambda = 100,000$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$f = w[0] * x[0] + w[1] * x[1] + w[2] * x[2] + b$$

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \left(\sum_{j=1}^{n} w_j x_j\right) + b \quad \stackrel{\bigwedge}{\underset{j=1}{\sum}} \rightarrow j = 1...$$

range(
$$o, n$$
) $\rightarrow j = 0 \dots n-1$

Vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$f = np.dot(w,x) + b$$

DeepLearning.AI

Linear Regression with Multiple Variables

Vectorization
Part 2

Without vectorization

```
for j in range (0,16):
     f = f + w[j] * x[j]
    f + w[0] * x[0]
    f + w[1] * x[1]
t_{15}
    f + w[15] * x[15]
```

Vectorization

x[0]

w[0] *x[0]

$$t_0 \\ \hline w[0] \quad w[1] \quad ... \quad w[15] \\ \\ in paralle/* \quad * \quad ... \quad *$$

x[1]

+ w[1] *x[1]

cc. : L > = la talagge dataset

efficient -> scale to large datasets

x[15]

+...+ w[15]*x[15]

Gradient descent
$$\overrightarrow{w} = (w_1 \ w_2 \ \cdots \ w_{16})$$
 parameters derivatives $\overrightarrow{d} = (d_1 \ d_2 \ \cdots \ d_{16})$

$$w = \text{np.array}([0.5, \ 1.3, \ \dots \ 3.4])$$

$$d = \text{np.array}([0.3, \ 0.2, \ \dots \ 0.4])$$

$$\text{compute } w_j = w_j - 0.1d_j \text{ for } j = 1 \dots 16$$

Without vectorization

$$w_1 = w_1 - 0.1d_1$$

 $w_2 = w_2 - 0.1d_2$
 \vdots
 $w_{16} = w_{16} - 0.1d_{16}$

DeepLearning.AI

Linear Regression with Multiple Variables

Gradient Descent for Multiple Regression

repeat { $w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\underline{w_1, \cdots, w_n, b})$ $b = b - \alpha \frac{\partial}{\partial b} J(\underline{w_1, \cdots, w_n, b})$

repeat {
$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(w, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b)$$
 }

Vector notation

Previous notation

Gradient descent

One feature

repeat {
$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\frac{\partial}{\partial w} J(w,b)$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

simultaneously update w, b

}

repeat {
$$j = 1$$

$$w_1 = w_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\vdots$$

$$w_n = w_n - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_n^{(i)}$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$
simultaneously update
$$w_j \text{ (for } j = 1, \dots, n) \text{ and } b$$
}

An alternative to gradient descent

- Normal equation
 - Only for linear regression
 - Solve for w, b without iterations

Disadvantages

- Doesn't generalize to other learning algorithms.
- Slow when number of features is large (> 10,000)

What you need to know

- Normal equation method may be used in machine learning libraries that implement linear regression.
- Gradient descent is the recommended method for finding parameters w,b

DeepLearning.AI

Practical Tips for Linear Regression

Feature Scaling
Part 1

Feature and parameter values

$$\widehat{price} = w_1 x_1 + w_2 x_2 + b$$
size # bedrooms

 x_1 : size (feet²) x_2 : # bedrooms

range: 300 - 2,000 range: 0 - 5large

Small

House:
$$x_1 = 2000$$
, $x_2 = 5$, $price = $500k$ one training example

size of the parameters w_1, w_2 ?

$$w_1 = 50$$
, $w_2 = 0.1$, $b = 50$

$$price = 50 * 2000 + 0.1 * 5 + 50$$

$$price = $100,050.5 \text{ k} = $100.5 \text$$

$$w_1 = 0.1$$
, $w_2 = 50$, $b = 50$
small large
 $price = 0.1 * 2000k + 50 * 5 + 50$
 $200K$ $250K$ $50K$
 $price = $500k$ more reasonable

Feature size and parameter size

	size of feature x_j	size of parameter w_j
size in feet ²	←	←→
#bedrooms	\leftrightarrow	←

Feature size and gradient descent

DeepLearning.AI

Practical Tips for Linear Regression

Feature Scaling
Part 2

Feature scaling

 x_1 size in feet² rescaled

Mean normalization

Z-score normalization

Feature scaling

aim for about
$$-1 \le x_j \le 1$$
 for each feature x_j
$$-3 \le x_j \le 3$$
 acceptable ranges
$$-0.3 \le x_j \le 0.3$$

$$0 \le x_1 \le 3$$
 Okay, no rescaling $-2 \le x_2 \le 0.5$ Okay, no rescaling $-100 \le x_3 \le 100$ too large \rightarrow rescale $-0.001 \le x_4 \le 0.001$ too small \rightarrow rescale $98.6 \le x_5 \le 105$ too large \rightarrow rescale

DeepLearning.AI

Practical Tips for Linear Regression

Checking Gradient Descent for Convergence

Gradient descent

$$\begin{cases} w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\vec{w}, b) \\ b = b - \alpha \frac{\partial}{\partial b} J(\vec{w}, b) \end{cases}$$

Make sure gradient descent is working correctly

Automatic convergence test Let ε "epsilon" be 10^{-3} .

o.oo1

If $J(\vec{w}, b)$ decreases by $\leq \varepsilon$ in one iteration, declare convergence.

(found parameters \vec{w}, b to get close to global minimum)

DeepLearning.AI

Practical Tips for Linear Regression

Choosing the Learning Rate

or learning rate is too large

$$w_1 = w_1 + \alpha d_1$$
 use a minus sign $w_1 = w_1 - \alpha d_1$

Adjust learning rate

With a small enough α , $J(\overrightarrow{w}, b)$ should decrease on every iteration

If α is too small, gradient descent takes a lot more iterations to converge

Values of α to try:

DeepLearning.Al

Practical Tips for Linear Regression

Feature Engineering

Feature engineering

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1 x_1 + w_2 x_2 + b$$

frontage depth

$$area = frontage \times depth$$

$$x_3 = x_1 x_2$$
new feature

$$f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Feature engineering:
Using intuition to design
new features, by
transforming or combining
original features.

DeepLearning.Al

Practical Tips for Linear Regression

Polynomial Regression

Polynomial regression

Choice of features

