## Chapter 3.1

**1.** Expanding along the first row: 
$$\begin{vmatrix} 3 & 0 & 4 \\ 2 & 3 & 2 \\ 0 & 5 & -1 \end{vmatrix} = 3 \begin{vmatrix} 3 & 2 \\ 5 & -1 \end{vmatrix} - 0 \begin{vmatrix} 2 & 2 \\ 0 & -1 \end{vmatrix} + 4 \begin{vmatrix} 2 & 3 \\ 0 & 5 \end{vmatrix} = 3(-13) + 4(10) = 1$$

Expanding along the second column:

$$\begin{vmatrix} 3 & 0 & 4 \\ 2 & 3 & 2 \\ 0 & 5 & -1 \end{vmatrix} = (-1)^{1+2} \cdot 0 \begin{vmatrix} 2 & 2 \\ 0 & -1 \end{vmatrix} + (-1)^{2+2} \cdot 3 \begin{vmatrix} 3 & 4 \\ 0 & -1 \end{vmatrix} + (-1)^{3+2} \cdot 5 \begin{vmatrix} 3 & 4 \\ 2 & 2 \end{vmatrix} = 3(-3) - 5(-2) = 1$$

2. Expanding along the first row: 
$$\begin{vmatrix} 0 & 4 & 1 \\ 5 & -3 & 0 \\ 2 & 3 & 1 \end{vmatrix} = 0 \begin{vmatrix} -3 & 0 \\ 3 & 1 \end{vmatrix} - 4 \begin{vmatrix} 5 & 0 \\ 2 & 1 \end{vmatrix} + 1 \begin{vmatrix} 5 & -3 \\ 2 & 3 \end{vmatrix} = -4(5) + 1(15 + 6) = 1$$

Expanding along the second column:

$$\begin{vmatrix} 0 & 4 & 1 \\ 5 & -3 & 0 \\ 2 & 3 & 1 \end{vmatrix} = (-1)^{1+2} \cdot 4 \begin{vmatrix} 5 & 0 \\ 2 & 1 \end{vmatrix} + (-1)^{2+2} \cdot (-3) \begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} + (-1)^{3+2} \cdot 3 \begin{vmatrix} 0 & 1 \\ 5 & 0 \end{vmatrix} = -4(5) - 3(-2) - 3(-5) = 1$$

9. First expand along the third row, then expand along the first row of the remaining matrix:

$$\begin{vmatrix} 4 & 0 & 0 & 5 \\ 1 & 7 & 2 & -5 \\ 3 & 0 & 0 & 0 \\ 8 & 3 & 1 & 7 \end{vmatrix} = (-1)^{3+1} \cdot 3 \begin{vmatrix} 0 & 0 & 5 \\ 7 & 2 & -5 \\ 3 & 1 & 7 \end{vmatrix} = 3 \cdot (-1)^{1+3} \cdot 5 \begin{vmatrix} 7 & 2 \\ 3 & 1 \end{vmatrix} = 15(1) = 15$$

**41**. The area of the parallelogram determined by  $\mathbf{u} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ ,  $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ ,  $\mathbf{u} + \mathbf{v}$ , and  $\mathbf{0}$  is 6, since the base of the parallelogram has length 3 and the height of the parallelogram is 2. By the same reasoning, the area of the parallelogram determined by  $\mathbf{u} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ ,  $\mathbf{x} = \begin{bmatrix} x \\ 2 \end{bmatrix}$ ,  $\mathbf{u} + \mathbf{x}$ , and  $\mathbf{0}$  is also 6.





 $[\mathbf{v}] = \det \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} = 6$ , and  $\det [\mathbf{u} \quad \mathbf{x}] = \det \begin{bmatrix} 3 & x \\ 0 & 2 \end{bmatrix} = 6$ . The determinant of the matrix whose columns are those vectors which define the sides of the parallelogram adjacent to 0 is equal to the area of the parallelogram

**45.** [M] Answers will vary. The conclusion should be that  $\det(A+B) \neq \det A + \det B$ , most of the time.

## Chapter 3.2

- 1. Rows 1 and 2 are interchanged, so the determinant changes sign (Theorem 3b.).
- 2. The row replacement operation does not change the determinant (Theorem 3a.).

5. 
$$\begin{vmatrix} 1 & 5 & -4 \\ -1 & -4 & 5 \\ -2 & -8 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 5 & -4 \\ 0 & 1 & 1 \\ 0 & 2 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 5 & -4 \\ 0 & 1 & 1 \\ 0 & 0 & -3 \end{vmatrix} = -3$$

**15.** 
$$\begin{vmatrix} a & b & c \\ d & e & f \\ 3g & 3h & 3i \end{vmatrix} = 3 \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 3(7) = 21$$

**16.** 
$$\begin{vmatrix} a & b & c \\ 5d & 5e & 5f \\ g & h & i \end{vmatrix} = 5 \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 5(7) = 35$$

17. 
$$\begin{vmatrix} a+d & b+e & c+f \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7$$

18. 
$$\begin{vmatrix} d & e & f \\ a & b & c \\ g & h & i \end{vmatrix} = - \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -7$$

**19.** 
$$\begin{vmatrix} a & b & c \\ 2d+a & 2e+b & 2f+c \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ 2d & 2e & 2f \\ g & h & i \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 2(7) = 14$$

**20.** 
$$\begin{vmatrix} a & b & c \\ d+3g & e+3h & f+3i \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7$$

25. Since 
$$\begin{vmatrix} 7 & -8 & 7 \\ -4 & 5 & 0 \\ -6 & 7 & -5 \end{vmatrix} = -1 \neq 0$$
, the columns of the matrix form a linearly independent set.

- **32**. By Theorem 6 det  $A^3 = (\det A)^3$ . Since det  $A^3 = 0$ , then  $(\det A)^3 = 0$ . Thus det A = 0, and A is not invertible by Theorem 4.
  - **45.** [M] Answers will vary, but will show that  $\det A^T A$  always equals 0 while  $\det AA^T$  should seldom be zero. To see why  $A^T A$  should not be invertible (and thus  $\det A^T A = 0$ ), let A be a matrix with more columns than rows. Then the columns of A must be linearly dependent, so the equation  $A\mathbf{x} = \mathbf{0}$  must have a non-trivial solution  $\mathbf{x}$ . Thus  $(A^T A)\mathbf{x} = A^T (A\mathbf{x}) = A^T \mathbf{0} = \mathbf{0}$ , and the equation  $(A^T A)\mathbf{x} = \mathbf{0}$  has a non-trivial solution. Since  $A^T A$  is a square matrix, the Invertible Matrix Theorem now says that  $A^T A$  is not invertible. Notice that the same argument will not work in general for  $AA^T$ , since  $A^T$  has more rows than columns, so its columns are not automatically linearly dependent.