

دانشکده مهندسی کامپیوتر نظریه و الگوریتم های گراف پاییز ۱۴۰۲

تمرین سری چهارم

درس فرزانه غيور باغباني	م
ریخ انتشار	تا
ر بخ تحویل	تا

۱ سوال اول (۱۵ نمره)

به سوالات زير پاسخ دهيد.

الف) یک گراف ساده G با شرط $\lfloor rac{v^2}{4}
floor$ بیابید که هیچ مثلثی نداشته باشد.

ب) یک گراف ساده ساده دو بخشی G با شرط G با شرط $e = \lfloor \frac{(v-1)^2}{e} \rfloor + 1$ که شامل مثلت نباشد. (e تعداد یال و e تعداد راس را نشان می دهد.)

۲ سوال دوم (۱۵ نمره)

فرض كنيد كه يك گراف جهتدار داريم كه شامل n گره است. مى خواهيم مركزيت گره ها را با استفاده از الگوريتم Eigenvector Centrality محاسبه كنيم. چه مراحلى براى اجراى اين الگوريتم بايد طى كنيم؟

۳ سوال سوم (۱۵ نمره)

فرض کنید یک گراف جهتدار وزن دار داریم که شامل ۶ گره F ،E ،D ،C ،B ، A است. وزن هر یال نیز در جدول زیر نشان داده شده است. با استفاده از الگوریتم Dijkstra ، کوتاه ترین مسیر بین گره A و گره F را محاسبه کنید .

گره مبدا	گرہ مقصد	وزن
А	В	3
А	С	2
В	D	4
В	E	2
С	D	1
С	Е	6
D	F	5
Е	F	4

ر نظر بگیرید گرافی با استفاده از ماتریس مجاورت
$$A$$
 زیر توصیف شده است:
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} A & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

 $eigenvalue^{\tau}$

eigenvector1