

시스템 과제 내에서 소프트웨어 뿐만 아니라 하드웨어의 기능과 구조 정의, 분석, 설계 뿐만 아니라 검증까지 지원하는 효과적인 방법론과 유용한 툴

과제의 모든 단계 속에서 효과적인 협업을 지원

기능 요건을 충족하는 솔루션에 대해, 적합성 검증과 영향 분석을 쉽게 할 수 있도록 돕습니다

동작 분석 사용자들이 시스템을 통해 얻고자 하는 목표들

기능 및 비기능적 요구들 사용자들의 요구를 만족하기 위해 시스템이 제공해야 할 모든 요소들

논리적 아키텍처 기대치를 만족하기 위해 시스템이 어떤 방식으로 동작하는지

물리적 아키텍처 실환경에서 시스템이 물리적으로 어떻게 구성되고 개발 되었는지

대부분의 개발 프로세스에 호환되는 탑다운, 바텀업, 반복적인, 기업 고유 방식 또는 이 모든 프로세스가 융합된

(해법)

力 50

고객 사용 요건 분석

사용자들이 시스템을 통해 얻고자 하는 목표들

- ✔기능 동작 (특성) 정의
- ✔동작 요건에 다한 분석 수행

시스템/ 소프트웨어 및 하드웨어에 대한 요건 분석 시기능과 비기능 분석

사용자들의 요구를 만족하기 위해 시스템이 제공해야 할 모든 요소들

- ✔상충 기능 간 절충안(최적안) 분석 수행
- 수행
- ✔ 용구사항을 명료화하여

논리적 아키텍처 설계

기대치를 만족하기 위해 시스템이 어떤 방식으로 동작하는지

- ✔ 아키텍처를 보는 관점과 결정 인자
- ✔부품 내 아키텍처 분할 방안 구성
- ✔최적안으로 조율된 아키텍처 선택

물리적 아키텍처 설계

실환경에서 시스템이 물리적으로 어떻게 구성되고 개발 되었는지

- ✔아키텍처 패턴(표준안) 결정
- ✔기존 자산들의 재사용 고려
- ✔참조용 물리 아키텍처 설계
- ✔검증과 확인

개발 계약

개별 설계자/ 부계약자로부터 기대하는 것

- ✔부품 품질 검증 전략 수립
- ✔부품 구성 (Product Breakdown Structure) 과 해당 부품들 간의 연동 방식

- 특정 동작 기능
- 주변 장치, 동작 개체
- 주변 장치 동작
- 주변 장치 및 동작들과의 연동
- 동작 및 연동에 사용되는 정보들
- 기능 동작 절차와 연계 활동들
- 동적 기능 시나리오
- 주변 장치와 시스템, 특정 기능
- 시스템 기능들과 주변 장치들
- 기능들간 데이터 교환
- 데이터 흐름 기반 기능간 연계
- 기능 내, 기능 간 사용되는 정보들과 데이터 모델
- 동적 기능 시나리오
- 모드와 상태

같은 개념, 포함:

- 컴포넌트(내부 요소)
- 내부 포트와 인터페이스
- 내부 요소들간 전달
- 내부 요소들로 기능 배분
- 기능 연동 확인으로 내부 요소간 인터페이스 검증

같은 개념, 포함:

- 논리를 정의하고 그 기반으로 동작하는 요소들
- 동작 실행에 필요한 리소스를 제공하는 구현물들
- 구현물들간의 물리적 연결

- 구성 요소 트리
- 파트 번호와 수량
- 구현 규칙 (기대 동작, 인터페이스, 시나리오, 리소스 소요, 비기능 특성…)

시나리오: 주변 장치, 시스템, 구성 요소 인터페이스와 연결

기능 연동, 동작 절차 기능과 기능 활동을 통해

주변 장치들, 시스템과 구성 요소들의 모드와 상태

Breakdown of functions & components

데이터 모델: 세교에용 데이터 흐름 & 시나리오 내용, 정의 & 인터페이스 정합성

요소들간 배선 모든 종류의 내부 요소들

할당: 주변장치들에 동작 활동을, 내부 요소들에 기능을, 구현 요소들에 기능 요소를, 인터페이스에 데이터 흐름을, 구성 아이템에 모든 요소들을 매핑함

비기능적 구조 배치 기반 솔루션 확인과 검증

방법군 (모음)	성능 특화 데이터 샘플	Safety specific data sample
동작 요건 분석	위협에 대한 최대 반응 시간	불안 요소들
기능/비기능 요건 분석	위협에 대처하는 기능 연 기능 연동에 허용되는 최대 지연값	이벤트 처리에 할당된 필수 기능 연동
논리적 아키텍처 설계	처리와 연동의 복잡성 연동 기능의 할당	기능 연동을 보장하기 위한 중복 경로
물리적 아키텍처 설계	기능 연동 중 소요되는 리소스 결과로 발생된 연산 지연	일반적 실패 모드 연동 기능 안에서 전파되는 오류
개발과 품질 보증을 위한 계약	지연 품질을 만족하기 위해 할당된 리소스	요구 신뢰도

- ✔ 비용 & 일정
- ✔ 인터페이스
- ✔ 성능

- ✔ 유지보수성
- ✔ 안전 / 보안
- ✔ … (등)

- ✔ 품질 검사, 검증
- ✔ 제품 정책

