Topología, curso 2019-20

Ноја 2

- **1.** Sea X un conjunto y A, B dos subconjuntos propios y no vacíos de X tales que $A \neq B$. Si la colección $\mathcal{T} = \{\emptyset, A, B, X\}$ es una topología de X, ¿qué condición deben cumplir A y B?
- **2.** Sean X un conjunto y $a \in X$. Se considera la familia \mathcal{T}_a de los subconjuntos U de X tales que o bien U es vacío, o bien $a \in U$. Decide razonadamente si \mathcal{T}_a es una topología en X.
- **3.** Sean X un conjunto infinito y \mathcal{T} una topología sobre X en la que todos los subconjuntos infinitos son abiertos. Demuestra que \mathcal{T} es la topología discreta de X.
- **4.** En el plano \mathbb{R}^2 se considera la familia \mathcal{T} de todos los subconjuntos U tales que para cada (a,b) de U existe un $\varepsilon > 0$ tal que

$$((a-\varepsilon, a+\varepsilon) \times \{b\}) \cup (\{a\} \times (b-\varepsilon, b+\varepsilon)) \subset U.$$

Estudia si \mathcal{T} es una topología en \mathbb{R}^2 .

- 5. (a) Si $\{\mathcal{T}_{\alpha}\}$ es una colección de topologías en X, demuestra que $\bigcap_{\alpha} \mathcal{T}_{\alpha}$ es una topología en X. ¿Es $\bigcup_{\alpha} \mathcal{T}_{\alpha}$ una topología?
- (b) Sea $\{\mathcal{T}_{\alpha}\}$ una colección de topologías en X. Demuestra que existe una única topología en X que es la más pequeña que contiene a todas las \mathcal{T}_{α} y que también existe una única topología en X que es la más grande contenida en todas las \mathcal{T}_{α} .
- (c) Si $X = \{a, b, c\}$, consideramos las topologías $\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{a, b\}\}\$ y $\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}\$. Encuentra la topología más pequeña que contiene a \mathcal{T}_1 y a \mathcal{T}_2 , y la topología más grande contenida en \mathcal{T}_1 y \mathcal{T}_2 .
- **6.** Se consideran las siguientes colecciones de subconjuntos de \mathbb{R} :

$$\begin{array}{lll} \mathcal{B}_{1} & = & \{ \, \big] \, a, b \, \big[\, : \, a < b \, \big\} \\ \mathcal{B}_{2} & = & \{ \, \big[\, a, b \, \big[\, : \, a < b \, \big] \\ \mathcal{B}_{3} & = & \{ \, \big] \, a, b \, \big] \, : \, a < b \, \big\} \\ \mathcal{B}_{4} & = & \mathcal{B}_{1} \cup \{ B \smallsetminus K \mid B \in \mathcal{B}_{1} \, \big\}, \, \, \text{donde} \, \, K = \{ 1/n : n \in \mathbb{N} \} \\ \mathcal{B}_{5} & = & \{ \, \big] \, a, + \infty \, \big[\, : \, a \in \mathbb{R} \, \big\} \\ \mathcal{B}_{6} & = & \{ \, \big] \, - \infty, a \, \big[\, : \, a \in \mathbb{R} \, \big\} \\ \mathcal{B}_{7} & = & \{ B \mid \mathbb{R} \smallsetminus B \, \text{es finito} \, \big\} \end{array}$$

- (a) Demuestra que cada \mathcal{B}_i es una base de alguna topología de \mathbb{R} .
- (b) Compara entre sí estas siete topologías.
- (c) Demuestra que $\mathcal{B}_5 \cup \mathcal{B}_6$ es una subbase de la topología engendrada por \mathcal{B}_1 .
- 7. Para cada punto (x,y) de \mathbb{R}^2 y cada $r \in \mathbb{R}$ con r > 0 se considera el siguiente conjunto $Q_r(x,y)$:

«cuadrado con lados paralelos a los ejes, centrado en (x, y) y de lado 2r, del que se ha excluido los lados y los puntos de las diagonales que no sean el punto (x, y)».

Haz un dibujo que ayude a demostrar que $\mathcal{B} = \{Q_r(x,y) : (x,y) \in \mathbb{R}^2, r > 0\}$ es base para una topología en \mathbb{R}^2 .

8. Sean \mathcal{B}_1 y \mathcal{B}_2 bases de sendas topologías \mathcal{T}_1 y \mathcal{T}_2 de un mismo conjunto X, demuéstrese que

$$\mathcal{B} = \{ B_1 \cap B_2 \mid B_1 \in \mathcal{B}_1, \, B_2 \in \mathcal{B}_2 \}$$

es base de una topología más fina que \mathcal{T}_1 y que \mathcal{T}_2 .

- 9. Encuentra una subbase para la topología discreta en el conjunto $X = \{1, 2, 3, 4, 5\}$ tal que todos sus miembros tengan más de un elemento.
- 10. (a) Demuestra que la colección numerable

$$\mathcal{B}'_1 = \{ \,] \, a, b \, [: a < b, a, b \in \mathbb{Q} \}$$

es una base para la topología usual de \mathbb{R} .

(b) Demuestra que la colección

$$\mathcal{B}'_2 = \{ [a, b] : a < b, a, b \in \mathbb{Q} \}$$

es una base que engendra en \mathbb{R} una topología diferente a la topología del límite inferior (que es la engendrada por la colección \mathcal{B}_2 del ejercicio anterior).

- 11. Si \mathcal{T} , \mathcal{T}' son topologías en X y \mathcal{T}' es estrictamente más fina, ¿qué se puede decir acerca de las correspondientes topologías heredadas por un subconjunto $Y \subset X$?
- **12.** Sea Y es espacio topológico obtenido restringiendo a [-1,1] la topología usual de \mathbb{R} . ¿Cuál de los siguientes subconjuntos son abiertos de Y? ¿Cuáles son abiertos de \mathbb{R} ?

$$\begin{array}{rcl} A & = & \{x: 1/2 < |x| < 1\} \\ B & = & \{x: 1/2 < |x| \le 1\} \\ C & = & \{x: 1/2 \le |x| < 1\} \\ D & = & \{x: 1/2 \le |x| \le 1\} \\ E & = & \{x: 0 < |x| < 1 \ y \ 1/x \not \in \mathbb{N}\} \end{array}$$

- **13.** Sean X e Y espacios topológicos, $A \subset X \times Y$ y $A_x = \{y \in Y : (x,y) \in A\}$, $A_y = \{x \in X : (x,y) \in A\}$.
- (a) Demuestra que si A es abierto en $X \times Y$, entonces, para cada $x \in X$ y cada $y \in Y$, A_x y A_y son abiertos en Y y en X respectivamente.
 - (b) Si A_x y A_y son abiertos para cada $x \in X$ y cada $y \in Y$, ¿es A abierto en $X \times Y$?
- **14.** Sean X e Y dos conjuntos no vacíos. Sea \mathcal{T} la topología producto en $X \times Y$ construida a partir de las topologías \mathcal{T}_1 de X y \mathcal{T}_2 de Y. Prueba que, si \mathcal{B} es una base de \mathcal{T} (no necesariamente la «base producto»), entonces $\pi_1(\mathcal{B}) = \{\pi_1(B) : B \in \mathcal{B}\}$ es base de \mathcal{T}_1 y $\pi_2(\mathcal{B}) = \{\pi_2(B) : B \in \mathcal{B}\}$ es base de \mathcal{T}_2 . ¿Se puede usar este hecho para resolver el ejercicio anterior?
- **15.** Se considera la topología $\mathcal{T}_{\mathcal{B}}$ en \mathbb{R}^2 generada por la base \mathcal{B} del ejercicio 7. ¿Existen en \mathbb{R} sendas topologías de modo que su producto coincida con la topología $\mathcal{T}_{\mathcal{B}}$?

Indicación: De existir, ambas topologías deberían ser menos finas que la usual.

- **16.** Designemos por X, X' a un mismo conjunto con topologías $\mathcal{T}, \mathcal{T}'$ respectivamente. Del mismo modo, designemos por Y, Y' a un mismo conjunto con topologías $\mathcal{U}, \mathcal{U}'$.
- (a) Demuestra que si $\mathcal{T} \subset \mathcal{T}'$ y $\mathcal{U} \subset \mathcal{U}'$, entonces la topología producto en $X' \times Y'$ es más fina que la topología producto de $X \times Y$.
 - (b) ¿Es cierto el recíproco de (a)?
 - (c) ¿Qué se puede decir si $\mathcal{T} \subset \mathcal{T}'$ y $\mathcal{U} \subset \mathcal{U}'$, $\mathcal{U} \neq \mathcal{U}'$?
- 17. (a) Demuestra que la colección de rayos abiertos de un conjunto totalmente ordenado A es una subbase de la topología del orden de A.
- (b) Sea X un conjunto ordenado, con la topología del orden. Sea Y un intervalo o rayo en X, y sean] \leftarrow , a [y] a, \rightarrow [rayos abiertos en X. Demuestra que si $a \in Y$, entonces cada uno de los conjuntos $Y \cap$] \leftarrow , a [y $Y \cap$] a, \rightarrow [es un rayo abierto del conjunto ordenado Y, mientras que si $a \notin Y$, cada uno de estos conjuntos es o bien vacío o bien todo Y.
- (c) Concluye que si Y es un intervalo o un rayo de X, entonces la topología del orden y la topología de subespacio sobre Y son la misma.
- 18. Demuestra que la colección numerable

$$\{ |a,b[\times]c,d[: a < b,c < d,a,b,c,d \in \mathbb{Q} \} \}$$

es una base para la topología usual de \mathbb{R}^2 .

- 19. Demuestra que la topología del orden del diccionario en el conjunto $\mathbb{R} \times \mathbb{R}$ es la misma que la topología producto $\mathbb{R}_d \times \mathbb{R}$, donde \mathbb{R}_d denota el conjunto \mathbb{R} con la topología discreta. Compara esta topología con la usual de \mathbb{R}^2 .
- **20.** Sea \mathbb{R} la recta real con su topología usual, y \mathbb{R}_l el mismo conjunto de los números reales, pero con la topología del límite inferior. Si L es una recta del plano, describe la topología que hereda L como subespacio de $\mathbb{R}_l \times \mathbb{R}_l$. Las topologías en ambos casos son o deberían ser familiares.
- **21.** Denotamos I al subconjunto [0,1] de los reales. Compara la topología producto en $I \times I$, la topología del orden del diccionario en $I \times I$, y la topología $I_d \times I$, donde I_d denota al cojunto I con la topología discreta.
- **22.** Se considera el conjunto \mathbb{R}^I de todas las funciones reales definidas en el intervalo unidad I = [0, 1].
 - (a) Para cada $f \in \mathbb{R}^I$, cada subconjunto finito $F \subset I$ y cada número $\delta > 0$, sea

$$U(f, F, \delta) = \{ g \in \mathbb{R}^I : |g(x - f(x))| < \delta, \forall x \in F \}$$

Demuestra que los conjuntos $U(f, F, \delta)$ forman una base para una cierta topología de \mathbb{R}^I

(b) Para cada $f \in \mathbb{R}^I$ y cada número $\epsilon > 0$, sea

$$V(f, \epsilon) = \{ g \in \mathbb{R}^I : |g(x) - f(x)| < \epsilon, \forall x \in I \}$$

Demuestra que los conjuntos $V(f,\epsilon)$ forman una base para una cierta topología de \mathbb{R}^I

- (c) Compara las dos topologías de los apartados anteriores.
- 23. Demuestra que $\mathbb{R} \times \mathbb{R}$ con la topología del orden del diccionario es metrizable. Sugerencia: usar la distancia

$$d(x,y) = \begin{cases} |x-y|, & \text{si } x_1 = y_1 \\ |x-y| + 1, & \text{si } x_1 \neq y_1 \end{cases}$$

24. Sea \mathcal{B} la colección de todas las progresiones aritméticas, es decir los conjuntos de la forma

$${a + nb : n \in \mathbb{Z}} \subset \mathbb{Z},$$

que se obtienen fijando $a, b \in \mathbb{Z}$.

- (a) Demuestra que \mathcal{B} es base se una topología en \mathbb{Z} .
- (b) Comprueba que todos los conjuntos de \mathcal{B} son tamién cerrados.
- (c) Utiliza esta topología para probar que hay infinitos números primos. Sugerencia: si hubiera sólo un número finito p_1, \ldots, p_N , y llamamos $B_j \in \mathcal{B}$ al conjunto de los múltiplos de p_j , tendríamos

$$\cup_{j=1}^{N} B_j = \mathbb{Z} \setminus \{-1, 1\},\$$

que no es cerrado.