Rekurentní neuronové sítě pro modelování časových řad

Vypracoval: Martin Vejvar

Vedoucí: Prof. Ing. Jan Náhlík CSc.

Ústav počítačové a řídicí techniky Vysoká škola chemicko-technologická v Praze

28.5.2018

Úvod

Úvod

Teorie

Rekurentní buňka
Dopředný neuron
Buňka 1 neuron
Buňka n neuronů
Rozvinutí buňky
Vrstvení buněk
LSTM architektura
Zapomínání

Realizace sítě
Datové sady
Návrh struktury
Vyhodnocení
přesnosti

Výsledky predikc Průtok Saugeen Průtok Labe

Závěr

Přílohy LSTM podrobně

Cíle:

- zpracování sekvenčních dat
- porozumění problematice
- návrh a realizace rekurentní sítě
- Využitý software:

github.com/vejvarm/RNNs

Neuron dopředné sítě

Úvod

Teorie

Rekurentní buňka Dopředný neuron Buňka 1 neuron Buňka n neuronú Rozvinutí buňky

LSTM architekt

Vstupní část Výstupní část

Realizace s

Návrh struktury Vyhodnocení

Výsledky predik

Průtok Sauge Průtok Labe

Závě

Přílohy LSTM podrobněi

výstup neuronu

$$y = f(W \cdot x + b)$$

Buňka rekurentní sítě s 1 neuronem

Buňka 1 neuron

$$y_t = h_t = \tanh(W_{h,1} \cdot h_{t-1} + W_{x,1} \cdot x_t + b_1)$$

Buňka rekurentní sítě s n neurony

Úvod

Teorie

ekurentní buňka Dopředný neuron

Buňka n neuronů

Rozvinutí buňky Vrstvení buněk

Zapomínání Vstupní část

Realizace s

Datové sady Návrh struktury

Výsledky prediko Průtok Saugeer

Závěi

$$y_{t,i} = h_{t,i} = \tanh(W_{h,i} \cdot h_{t-1} + W_{x,i} \cdot x_t + b_i) \quad i = (1, 2, ..., n)$$

Buňka rekurentní sítě s n neurony

Úvod

Teorie

ekurentní buňka Dopředný neuron Buňka 1 neuron

Buňka n neuronů

Rozvinutí buňky Vrstvení buněk

Zapomínání Vstupní část

Realizace sí

Datové sady Návrh struktury

přesnosti Výsledky predik

Průtok Saugeei

Závěi

$$y_{t,i} = h_{t,i} = \tanh(W_{h,i} \cdot h_{t-1} + W_{x,i} \cdot x_t + b_i) \quad i = (1, 2, ..., n)$$

Rozvinutí buňky od počátku sekvence

Rozvinutí buňky

$$y_{t} = f(x_{t}, h_{t-1})$$

$$h_{t-1} = f(x_{t-1}, h_{t-2})$$

$$\vdots$$

$$h_{1} = f(x_{1}, h_{0})$$

$$h_{0} = f(x_{0})$$

Vertikální vrstvení buněk sítě

Úvod

Teorie

Rekurentní buňka Dopředný neuron Buňka 1 neuron Buňka n neuronů

Vrstvení buněk

LSTM architektur Zapomínání Vstupní část Výstupní část

Realizace sítě Datové sady Návrh struktury

Vyhodnocení přesnosti Výsledky predikce

Výsledky predikce Průtok Saugeen

Závěr

$$y_t^1 = f(y_t^0, h_{t-1}^1)$$
$$y_t^0 = f(x_t, h_{t-1}^0)$$

LSTM architektura buňky

Úvod

Teorie

Rekurentní buňka Dopředný neuror Buňka 1 neuron Buňka n neuronů Rozvinutí buňky Vrstvení buněk

LSTM architektura

Vstupní část Výstupní část

Realizace si

Datové sady Návrh struktury Vyhodnocení

Výsledky predik

Prutok E

Brána zapomínání

Úvod

Teorie

Rekurentní buňka Dopředný neuror Buňka 1 neuron Buňka n neuronů Rozvinutí buňky Vrstvení buněk

Zapomínání

Vstupní část Výstupní část

Realizace si

Datové sady Návrh struktury Vyhodnocení

Výsledky predik

Průtok Saugee Průtok Labe

Závěi

Vstupní část

Úvod

Teorie

Rekurentní buňka Dopředný neuron Buňka 1 neuron Buňka n neuronů Rozvinutí buňky Vrstvení buněk LSTM architektura

Vstupní část

Výstupní část

Realizace sí

Datové sady Návrh struktury Vyhodnocení přesnosti Výsledky predik

Průtok Saugee

74....

Výstupní část

Úvod

Teorie

Rekurentní buňka
Dopředný neuron
Buňka 1 neuron
Buňka 1 neuronů
Rozvinutí buňky
Vrstvení buněk
LSTM architektura
Zapomínání
Vstupní část

Výstupní část Realizace s

Datové sady Návrh struktury Vyhodnocení přesnosti

Průtok Saugee

Závěi

Přílohy J STM podrobněj

LSTM podrobněji

Predikce časových řad

Úvod

Teorie

Dopředný neuron Buňka 1 neuron Buňka n neuronů Rozvinutí buňky Vrstvení buněk LSTM architektura Zapomínání

Realizace sítě

Datové sady Návrh struktury

Výsledky predikce Průtok Saugeen

Závěr

Přílohy

cíl

- jednokroková predikce
- týdenní průtoky Labe (313 vzorků)
- denní průtoky Saugeen (23741 vzorků)

Síť v čase t

Úvod

Teorie

Rekurentní buňka Dopředný neuron Buňka 1 neuron Buňka n neuronů Rozvinutí buňky Vrstvení buněk LSTM architektura Zapomínání

Realizace s

Návrh struktury

Vyhodnocení

Výsledky predik Průtok Saugee

7ávěr

Síť rozvinutá do minulosti

Úvod

Teorie

Rekurentní buňka Dopředný neuro Buňka 1 neuron

Buňka n neuroní Bozvinutí buňky

Vrstvení buně

Zapomínání Vstupní část

Vstupní část Výstupní část

Realizace s

Návrh struktury

Vyhodnocení

Výsledky predik Průtok Saugee

Závěr

Vyhodnocení přesnosti

Úvod

Teorie

Dopředný neuro Buňka 1 neuror Buňka n neuror Rozvinutí buňky Vrstvení buněk LSTM architektu Zapomínání Vstupní část Výstupní část

Realizace sítě

Datové sady

Návrh struktury

Návrh struktury Vyhodnocení

přesnosti Výsledky predi Průtok Sauge

Závěi

Přílohy LSTM podrobně relativní chyba predikce:

$$MAPE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{t_i - y_i}{t_i} \right|$$

• symetrická relativní chyba predikce:

$$SMAPE = \frac{2}{N} \sum_{i=1}^{N} \frac{|t_i - y_i|}{|t_i| + |y_i|}$$

- t_i ... skutečné hodnoty
- y_i ... predikované hodnoty

Jednokroková predikce průtoku Saugeen

Úvod

Teorie

Rekurentní buňka Dopředný neuron Buňka 1 neuron Buňka n neuronů Rozvinutí buňky Vrstvení buněk LSTM architektura

Realizace sítě
Datové sady
Návrh struktury
Vyhodnocení
přesnosti

Průtok Saugeen
Průtok Labe

Závěr

Přílohy LSTM podrobněj

základní:

paměť: 16rozvinutí: 16dávka: 4

nejlepší:

paměť: 16rozvinutí: 16

VALIDATION

time (days)

dávka: 16

% • SMAPE = 7,85 %

300

250 200 150

100

50

učení: 4 min 42 s

100 200 300 400 500 600 700

- SMAPE = 9,08 %
- učení: 23 min 43 s

predictions

targets

Jednokroková predikce průtoku Labe

Úvod

Teorie

Rekurentní buňka Dopředný neuron Buňka 1 neuron Buňka n neuronů Rozvinutí buňky Vrstvení buněk LSTM architektura

Výstupní část
Realizace sítě
Datové sady
Návrh struktury
Vyhodnocení

Výsledky predikce Průtok Saugeen Průtok Labe

Závěr

Přílohy LSTM podrobně

základní:

paměť: 16rozvinutí: 16

dávka: 4

nejlepší:

paměť: 4rozvinutí: 4

dávka: 2

- SMAPE = 64,9 %
- učení: 36 s

SMAPE = 62,3 %

• učení: 58 s

Závěr

Úvod

Teorie

Rekurentní buňka
Dopředný neuron
Buňka 1 neuron
Buňka n neuronů
Rozvinutí buňky
Vrstvení buněk
LSTM architektura

Realizace sítě
Datové sady
Návrh struktury

Průtok Saugeen
Průtok Labe

Závěr

- o co bylo provedeno
 - rekurentní síť s LSTM architekturou
 - otestována na predikci průtoků Labe a Saugeen
- dosažené výsledky
 - Saugeen: 7,85 % (paměť 16, rozvinutí 16, dávka 16)
 - Labe: 64,9 % (paměť 4, rozvinutí 4, dávka 2)
- co bude dál
 - vícekroková predikce
 - dropout
 - grid search
 - naučení na jedné sadě a testování na druhé
 - jiná data

Brány

Úvod

Teorie

Rekurentní buňka
Dopředný neuron
Buňka 1 neuron
Buňka n neuronů
Rozvinutí buňky
Vrstvení buněk
LSTM architektura
Zapomínání

Realizace sítě Datové sady

Datové sady Návrh struktury Vyhodnocení přesnosti

Výsledky predik Průtok Saugee

Závěi

Přílohy

LSTM podrobněji

vnitřní struktura brány zapomínání

Brána zapomínání

Úvod

Teorie

Bekurentní buňka Dopředný neuror Buňka 1 neuron Buňka n neuroní Rozvinutí buňky Vrstvení buněk LSTM architektura Zapomínání Vstupní část

Realizace sítě Datové sady

Datové sady Návrh struktury Vyhodnocení přesnosti

Průtok Saugeei

Závěr

Přílohy LSTM podrobněji • zapomínání části vnitřního stavu

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

Vstupní část

Úvod

Teorie

eOrie
Rekurentní buňka
Dopředný neuron
Buňka 1 neuron
Buňka n neuronů
Rozvinutí buňky
Vrstvení buněk
LSTM architektura
Zapomínání

Realizace sítě Datové sady Návrh struktury

Výsledky prediko Průtok Saugee

Závěr

Přílohy

LSTM podrobněji

ukládání nových hodnot do vnitřního stavu

$$\begin{split} i_t = &\sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \\ g_t = &\tanh\left(W_g \cdot [h_{t-1}, x_t] + b_g\right) \end{split}$$

Výstupní část

Úvod

Teorie

Rekurentní buňka
Dopředný neuror
Buňka 1 neuron
Buňka n neuronů
Rozvinutí buňky
Vrstvení buněk
LSTM architektura
Zapomínání
Vstupní část

Realizace sít Datové sady

Návrh struktury Vyhodnocení přesnosti Výsledky predikce Průtok Saugeen

Závěr

Přílohy LSTM podrobněji průchod vnitřního stavu tanh funkcí na výstup:

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

Aktualizace výstupů

Úvod

Teorie

Rekurentní buňka
Dopředný neuron
Buňka 1 neuron
Buňka n neuronů
Rozvinutí buňky
Vrstvení buněk
LSTM architektura
Zapomínání

Realizace s

Datové sady Návrh struktury Vyhodnocení

Výsledky predik Průtok Saugee

7ávěi

Přílohy LSTM podrobněji

Přílohy

výstupy vrstev

$$\begin{split} f_t = &\sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \\ i_t = &\sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \\ g_t = &\tanh(W_g \cdot [h_{t-1}, x_t] + b_g) \\ o_t = &\sigma(W_o \cdot [h_{t-1}, x_t] + b_o) \end{split}$$

výstupy buňky

$$C_t = f_t \odot C_{t-1} + i_t \odot g_t$$
$$y_t = o_t \odot \tanh(C_t)$$
$$h_t = o_t \odot \tanh(C_t)$$

