RECURSIVE METHODS


```
Square: x²

int square (int x)
{
   return x*x;
}
   int
   square
   int
```


Power: x^y

Provided y>=0:

$$\mathbf{x}^{\mathsf{y}} = \mathbf{x} * \dots * \mathbf{x}$$

```
Power: xy

int power (int x, int y)
{ // y>=0
  int z=1;
  for (int i=1; i<=y; i++)
      {z=x*z;}
  return z;
}</pre>
```

Table for y equal 3

i	i<=y	z	return
		1	
1	true	x	
2	true	\mathbf{x}^2	
3	true	x ³	
4	false		
			\mathbf{x}^3

Table for y equal 0

i	i<=y	Z	return
		1	
1	false		
			1

Recurrence Equation

```
• Precondition: y>=0
```

Precondition satisfied ← y-1>=0 ← y>=1 ← y>0

Recursive Method

```
int power (int x, int y)
{ // y>=0
  if (y==0)
    return 1;
  else
    return x*power(x,y-1);
}
```

