Amendments to the Claims:

This listing of claims replaces any and all prior claim lists.

Listing of Claims:

Claim 1 (original). A carbon nanotube composition that contains a conducting polymer (a), a solvent (b) and carbon nanotubes (c).

Claim 2 (original). A carbon nanotube composition that contains a heterocyclic compound trimer (i), a solvent (b) and carbon nanotubes (c).

Claim 3 (currently amended). A carbon nanotube composition according to claim 1 or elaim 2, wherein the carbon nanotube composition additionally contains a high molecular weight compound (d).

Claim 4 (currently amended). A carbon nanotube composition according to any one of elaims 1 to 3 claim 1, wherein the carbon nanotube composition additionally contains a basic compound (e).

Claim 5 (currently amended). A carbon nanotube composition according to any one of elaims 1 to 4 claim 1, wherein the carbon nanotube composition additionally contains a surfactant (f).

Claim 6 (currently ameded). A carbon nanotube composition according to any one of claims 1 to 5 claim 1, wherein the carbon nanotube composition additionally contains a silane coupling agent (g) represented by the following formula (1):

(in the formula (1), wherein in the formula (1) R²⁴², R²⁴³ and R²⁴⁴ respectively and independently represent a group selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, linear or branched alkoxy group having 1 to 6 carbon atoms, amino group, acetyl group, phenyl group and halogen group, X represents the following:

$$\leftarrow$$
 CH₂ \rightarrow or \leftarrow CH₂ \rightarrow O \leftarrow CH₂ \rightarrow m

I and m represent values from 0 to 6, and Y represents a group selected from the group consisting of a hydroxyl group, thiol group, amino group, epoxy group and epoxycyclohexyl group[[)]].

Claim 7 (currently amended). A carbon nanotube composition according to any one of elaims 1 to 6 claim 1, wherein the carbon nanotube composition additionally contains a colloidal silica (h).

Claim 8 (currently amended). A carbon nanotube composition according to any one of elaims 1, and 3 to 7 claim 1, wherein the conducting polymer (a) is a water soluble conducting polymer.

Claim 9 (original). A carbon nanotube composition according to claim 8, wherein the water soluble conducting polymer has at least one of a sulfonic acid group and a carboxyl group.

New 371 Application

Claim 10 (currently amended). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer that contains 20 to 100% of at least one type of the repeating units selected from the following formulas (2) to (10) relative to the total number of repeating units throughout the entire polymer:

$$\mathbb{R}^1$$
 \mathbb{R}^2 (2)

(in the formula (2), wherein in the formula (2) R¹ and R² are respectively and independently selected from the group consisting of H, -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O⁻, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R¹ and R² is a group selected from the group consisting of -SO₃ $, -SO_3H, -R^{35}SO_3^{-}, -R^{35}SO_3H, -COOH \text{ and } -R^{35}COOH[[]]];$

(in the formula (3), wherein in the formula (3) R³ and R⁴ are respectively and independently selected from the group consisting of H, -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O⁻, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24

carbon atoms, and at least one of R^3 and R^4 is a group selected from the group consisting of $-SO_3^-$, $-SO_3H$, $-R^{35}SO_3^-$, $-R^{35}SO_3H$, -COOH and $-R^{35}COOH[[]]$;

(in the formula (4), wherein in the formula (4) R⁵ to R⁸ are respectively and independently selected from the group consisting of H, -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O⁻, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R⁵ to R⁸ is a group selected from the group consisting of -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -COOH and -R³⁵COOH[[)]];

$$\begin{array}{c|cccc}
R^9 & R^{10} \\
\hline
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$$

(in the formula (5), wherein in the formula (5) R⁹ to R¹³ are respectively and independently selected from the group consisting of H, -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O⁻, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R⁹ to R¹³ is a group selected from the group consisting of -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -COOH and -R³⁵COOH[[]]];

(in the formula (6), wherein in the formula (6) R¹⁴ is selected from the group consisting of -SO₃, -SO₃H, -R⁴²SO₃, -R⁴²SO₃H, -COOH and -R⁴²COOH, where R⁴² represents an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms[[)]];

$$R^{55}$$
 R^{54}
 R^{56} R^{53}
 R^{57} R^{52}
 R^{57} R^{52} R^{52} R^{52} R^{53} R^{54} R^{55} R

(in the formula (7), wherein in the formula (7) R⁵² to R⁵⁷ are respectively and independently selected from the group consisting of H, -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R⁵² to R⁵⁷ is a group selected from the group consisting of -SO₃, -SO₃H, -R³⁵SO₃H, -COOH and -R³⁵COOH, Ht represents a heteroatom group selected from the group consisting of NR⁸², S, O, Se and Te, where R⁸² represents hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, or a substituted or non-substituted aryl group having 1 to 24 carbon atoms, the hydrocarbon chains of R⁵² to R⁵⁷ mutually bond at arbitrary locations and may form a bivalent chain that forms at least one cyclic structure of saturated or unsaturated hydrocarbons of a 3 to 7-member ring together with the carbon atoms substituted by

the groups, the cyclic bonded chain formed in this manner may contain a carbonyl ether, ester, amide, sulfide, sulfinyl, sulfonyl or imino bond at arbitrary locations, and n represents the number of condensed rings sandwiched between a hetero ring and a benzene ring having substituents R⁵³ to R⁵⁶, and is 0 or an integer of 1 to 3[[)]];

(in the formula (8), wherein in the formula (8) R⁵⁸ to R⁶⁶ are respectively and independently selected from the group consisting of H, -SO₃-, -SO₃H, -R³⁵SO₃-, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O-, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R⁵⁸ to R⁶⁶ is a group selected from the group consisting of -SO₃-, -SO₃H, -R³⁵SO₃-, -R³⁵SO₃H, -COOH and -R³⁵COOH, and n represents the number of condensed rings sandwiched between a benzene ring having substituents R⁵⁸ and R⁵⁹ and a benzene ring having substituents R⁶¹ to R⁶⁴, and is 0 or an integer of 1 to 3[[)]];

(in the formula (9), wherein in the formula (9) R⁶⁷ to R⁷⁶ are respectively and independently selected from the group consisting of H, -SO₃-, -SO₃H, -R³⁵SO₃-, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O-, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, at least one of R⁶⁷ to R⁷⁶ is a group selected from the group consisting of -SO₃-, -SO₃H, -R³⁵SO₃-, -R³⁵SO₃H, -COOH and -R³⁵COOH, and n represents the number of condensed rings sandwiched between a benzene ring having substituents R⁶⁷ to R⁶⁹ and a benzoquinone ring, and is 0 or an integer of 1 to 3[[)]]; and,

(in the formula (10), wherein in the formula (10) R⁷⁷ to R⁸¹ are respectively and independently selected from the group consisting of H, -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O⁻, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -

R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group or alkylene, arylene having 1 to 24 carbon atoms or an aralkylene group having 1 to 24 carbon atoms, at least one of R⁷⁷ to R⁸¹ is a group selected from the group consisting of -SO₃, -SO₃H, -R³⁵SO₃, -R³⁵SO₃H, -COOH and -R³⁵COOH, Xa is at least one type of anion selected from the group of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogensulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion, a represents the ion valence of X and is an integer of 1 to 3, and p represents the doping ratio and has a value of 0.001 to 1[[]].

Claim 11 (currently amended). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer that contains 20 to 100% of the repeating unit represented by the following formula (11) relative to the total number of repeating units throughout the entire polymer:

$$\begin{bmatrix}
R^{31} & R^{15} & R^{16} & R^{19} & R^{20} \\
R^{31} & R^{15} & R^{16} & R^{21} & R^{20}
\end{bmatrix}$$

$$\begin{bmatrix}
R^{31} & R^{15} & R^{16} & R^{21} & R^{20} \\
R^{17} & R^{18} & R^{21} & R^{22}
\end{bmatrix}$$

$$\begin{bmatrix}
R^{23} & R^{24} & R^{27} & R^{28} \\
R^{25} & R^{26} & R^{29} & R^{30}
\end{bmatrix}$$
y

(11)

(in the formula (11), wherein in the formula (11) y represents an arbitrary number such that 0 < y < 1, R^{15} to R^{32} are respectively and independently selected from the group consisting of H, -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O⁻,

-SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R¹⁵ to R³² is a group selected from the group consisting of -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -COOH and -R³⁵COOH[[)]].

Claim 12 (original). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is represented by the following formula (12):

(in the formula (12), wherein in the formula (12) R^{33} represents one group selected from the group consisting of a sulfonic acid group, carboxyl group, their alkaline metal salts, ammonium salts and substituted ammonium salts, R^{34} represents one group selected from the group consisting of a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, dodecyl group, tetracosyl group, methoxy group, ethoxy group, n-propoxy group, iso-butoxy group, sec-butoxy group, tert-butoxy group, heptoxy group, hexoxy group, octoxy group, dodecoxy group, tetracoxy group, fluoro group, chloro group and bromo group, X represents an arbitrary number such that 0 < X < 1, and n represents the degree of polymerization and has a value of 3 or more[[)]].

Claim 13 (currently amended). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer obtained by polymerizing at least one of type of acidic group-substituted aniline represented by the following formula (13), its alkaline metal salt, ammonium salt and substituted ammonium salt, with an oxidizing agent in a solution containing a basic compound:

$$R^{36}$$
 R^{37} $N H$ R^{38} R^{39} R^{41} (13)

(in the formula (13), wherein in the formula (13) R³⁶ to R⁴¹ are respectively and independently selected from the group consisting of H, -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -OCH₃, -CH₃, -C₂H₅, -F, -Cl, -Br, -I, -N(R³⁵)₂, -NHCOR³⁵, -OH, -O⁻, -SR³⁵, -OR³⁵, -OCOR³⁵, -NO₂, -COOH, -R³⁵COOH, -COOR³⁵, -COR³⁵, -CHO and -CN, where R³⁵ represents an alkyl, aryl or aralkyl group having 1 to 24 carbon atoms or an alkylene, arylene or aralkylene group having 1 to 24 carbon atoms, and at least one of R³⁶ to R⁴¹ is a group selected from the group consisting of -SO₃⁻, -SO₃H, -R³⁵SO₃⁻, -R³⁵SO₃H, -COOH and -R³⁵COOH[[]]].

Claim 14 (original). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is a water soluble conducting polymer obtained by polymerizing at least one type of alkoxy group-substituted aminobenzene sulfonic acid, its alkaline metal salt, ammonium salt and substituted ammonium salt, with an oxidizing agent in a solution containing a basic compound.

Claim 15 (original). A carbon nanotube composition according to claim 9, wherein the water soluble conducting polymer having at least one of a sulfonic acid group and a carboxyl group is polyethylene dioxythiophene polystyrene sulfate.

Claim 16 (currently amended). A carbon nanotube composition according to any one of elaims 2 to 7 claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following formula (16):

$$R^{111}$$
 R^{110} R^{109} R^{106} R^{107} R^{101} R^{101} R^{102} R^{103} R^{104} R^{108} R^{108} R^{108} R^{108} R^{108} R^{109} R^{1

(in the formula (16), wherein in the formula (16) R¹⁰¹ to R¹¹² are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, a linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms) oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group;

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms;

X^{a-} represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogensulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0[[)]].

Claim 17 (currently amended). A carbon nanotube composition according to any one of elaims 2 to 7 claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following general formula (17):

(in the formula (17), wherein in the formula (17) R¹¹³ to R¹²⁴ represent substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear

or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms) oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group; at least one of R¹¹³ to R¹²⁴ is a cyano group, nitro group, amide group, halogen group, sulfonic acid group, and carboxyl group;

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms;

X^a represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogen sulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0[[)]].

Claim 18 (currently amended). A carbon nanotube composition according to any one of elaims 2 to 7 claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following general formula (18):

$$R^{135}$$
 R^{134}
 R^{139}
 R^{130}
 R^{131}
 R^{129}
 R^{131}
 R^{132}
 R^{125}
 R^{126}
 R^{128}
 R^{128}
 R^{128}
 R^{131}
 R^{132}
 R^{132}
 R^{132}
 R^{132}
 R^{132}
 R^{132}
 R^{132}
 R^{132}
 R^{132}
 R^{132}

(in the formula (18), wherein in the formula (18) R¹²⁵ to R¹³⁶ are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxylic acid group and its alkaline metal salt, ammonium salt and substituted ammonium salt, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group and its alkaline metal salt, ammonium salt and substituted ammonium salt, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms)oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group;

X^{a-} represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogen sulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0[[)]].

Claim 19 (currently amended). A carbon nanotube composition according to any one of elaims 2 to 7 claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer represented by the following general formula (19):

(in the formula (19), wherein in the formula (19) R¹³⁷ to R¹⁴⁸ are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group having 1 to 8 carbon atoms)oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group;

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms;

X^{a-} represents at least one type of anion selected from the group consisting of anions having a valence of 1 to 3 consisting of a chlorine ion, bromine ion, iodine ion, fluorine ion, nitrate ion, sulfate ion, hydrogen sulfate ion, phosphate ion, borofluoride ion, perchlorate ion, thiocyanate ion, acetate ion, propionate ion, methane sulfonate ion, p-toluene sulfonate ion, trifluoroacetate ion and trifluoromethane sulfonate ion; a represents the ion valence of X and is an integer of 1 to 3; and, m represents the doping ratio and has a value of 0 to 3.0[[)]].

Claim 20 (currently amended). A carbon nanotube composition according to any one of elaims 2 to 7 claim 2, wherein the composition contains a heterocyclic compound trimer (i) that is a heterocyclic compound trimer obtained by reacting at least one type of heterocyclic compound represented by the following general formula (20) in a reaction mixture containing at least one type of oxidizing agent and at least one type of solvent:

(in the formula (20), wherein in the formula (20) R¹⁵⁰ to R¹⁵³ are substituents respectively and independently selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 24 carbon atoms, linear or branched alkoxy group having 1 to 24 carbon atoms, linear or branched acyl group having 2 to 24 carbon atoms, aldehyde group, carboxyl group, linear or branched carboxylic ester group having 2 to 24 carbon atoms, sulfonic acid group, linear or branched sulfonic ester group having 1 to 24 carbon atoms, cyano group, hydroxyl group, nitro group, amino group, amido group, dicyanovinyl group, alkyl (linear or branched alkyl group

having 1 to 8 carbon atoms)oxycarbonylcyanovinyl group, nitrophenylcyanovinyl group and halogen group; and,

Ht represents a heteroatom group selected from the group consisting of NR¹⁵⁴, S, O, Se and Te, and R¹⁵⁴ represents a substituent selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 24 carbon atoms[[)]].

Claim 21 (currently amended). A carbon nanotube composition according to any one of elaims 2 to 7 claim 2, wherein said carbon nanotube composition includes a the heterocyclic compound trimer (i) has having a layered structure.

Claim 22 (currently amended). A production method of a carbon nanotube composition comprising: irradiating a carbon nanotube composition according to any one of claims 1 to 21 claim 1 with ultrasonic waves and mixing.

Claim 23 (currently amended). A composite comprising a base material, and a coated film composed of the carbon nanotube composition according to any one of claims 1 to 21 claim 1 on at least one surface of the base material.

Claim 24 (currently amended). A production method of producing a composite comprising: coating the carbon nanotube composition according to any of claims 1 to 21 claim 1 onto at least one surface of a base material, and forming a coated film by allowing the coated carbon nanotube to stand at room temperature or subjecting it to heat treatment.

Claim 25 (original). A production method of a composite according to claim 24, wherein the heat treatment is carried out within a temperature range of normal temperature to 250°C.