Multiplicación de matrices de Strassen

Multiplicación de matrices de Strassen

Entrada: Dos matrices X y Y, ambas NxN

Salida: X*Y

¿Qué problema hay con el viejo y conocido método?

 Z_{ij} = producto de la fila *i* de *X* por la columna *j* de *Y*

En otras palabras $Z_{ij} = \sum_{k=1}^{N} X_{ik} \cdot Y_{kj}$

 \rightarrow O(N^3) ¿Se puede hacer mejor?

Podemos definir
$$X$$
 como $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ y Y como $\begin{bmatrix} E & F \\ G & H \end{bmatrix}$

Donde las submatrices A-H son de orden $N/2 \times N/2$

Así
$$Z = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$

Esta descomposición es obvia cuando *N*=2, pero se puede demostrar que funciona igualmente para valores mayores

Ahora se pueden resolver recursivamente los 8 subproblemas hasta alcanzar los casos base (*N*=1)

¿Cuál es la eficiencia de este algoritmo según el método maestro?

$$a = 8, b = 2, d = 1$$

Caso 3: $a > b^d$, por tanto $n^{log_b a} = n^{log_2 8} = N^3$

Es decir, pese a usar la aproximación Divide & Vencerás, la eficiencia sigue siendo la misma que con el método tradicional.

¿Se podrá hacer algo al respecto?

Algoritmo de Strassen*:

Igual definimos
$$X$$
 como $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ y Y como $\begin{bmatrix} E & F \\ G & H \end{bmatrix}$

Pero en vez de los 8 productos, utilizamos los siguientes 7:

•
$$P1 = A(F-H)$$

•
$$P2 = (A+B)H$$

•
$$P3 = (C+D)E$$

•
$$P4 = D(G-E)$$

•
$$P5 = (A+D)(E+H)$$

•
$$P6 = (B-D)(G+H)$$

•
$$P7 = (A-C)(E+F)$$

•
$$P2 = (A+B)H$$
 Así $Z = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$ pasa a ser:

¿Cómo se ve afectada la eficiencia?

$$O(N^{log_2(7)}) = O(N^{2.81}) < O(N^3)$$

¿De dónde sacó Strassen esa solución?

Nota: Aunque existen algoritmos con mejor eficiencia al de Strassen, raramente son utilizados en la práctica. En 2010 por ejemplo, Andrew Stothers logró optimizar el algoritmo de Strassen a $O(N^{2.374})$. Luego en 2011 Virginia Williams optimizó a su vez el algoritmo de Stothers a $O(N^{2.3728642})$. En 2014 François Le Gall optimizó el algoritmo de Williams hasta $O(N^{2.3728639})$