

Spin field effect transistor

2018.12.21

主讲人:张仕雄

组员:杨洁、朱鹏飞、赵嘉佶、梁栋、丁石磊

Background

• Moore's law: The number of transistors in a dense integrated circuit doubles about every two years

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic

Licensed under CC-BY-SA by the author Max Roser.

MOSFET

- Challenge for MOSFET
- ➤ Heat dissipation problems
- ➤ Quantum tunneling

• One of solutions :spin field effect transistor

Rashba SOC in 2DEG

• Rashba spin orbit coupling(structure inversion asymetry):

$$H_R = \eta(\sigma_z k_x - \sigma_x k_z)$$

• Spin split energy band:

$$E(z \text{ pol.}) = \hbar^2 k_{x1}^2 / 2m^* - \eta k_{x1},$$

 $E(-z \text{ pol.}) = \hbar^2 k_{x2}^2 / 2m^* + \eta k_{x2}$

Electro-optic modulator

• Different spin polarized electrons have different wave vector

$$k_{x1} - k_{x2} = 2m^* \eta / \hbar^2$$

• A differential phase shift

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

$$(+x \text{ pol.}) \quad (+z \text{ pol.}) \quad (-z \text{ pol.})$$

$$\Delta\theta = (k_{x1} - k_{x2})L = 2m*\eta L/\hbar^2$$

Analyzer

Why choose spin FET?

Property ____ low power consumption
 high speed
 low power consumption
 high level integration

III-V semiconductor

- ➤ Curie temperature above RT
- ➤ Long spin relaxation time
- > Strong spin orbit coupling

Graphene

- ➤ Long spin diffusion length
- ➤ Weak spin orbit coupling

How to work?

- Spin injection
- Spin modulation
- Spin detection

Spin injection

- Spin dynamic pumping
- Electrical injection
- ➤ Schottky barrier
- ➤ Oxide tunneling barrier
- ➤ Spin Esaki diode
- ➤ Hot electron spin injection

Spin dynamic pumping

• Processing magnetization in FM layer pumps spin current into NM layer.

$$\frac{d\mathbf{M}}{dt} = -|\gamma|\mathbf{M} \times \mathbf{H}_{\mathrm{eff}} + \frac{\alpha_{\mathrm{G}}}{\mathbf{M}_{\mathrm{s}}} \mathbf{M} \times \frac{d\mathbf{M}}{dt}$$

$$\mathbf{I}_{s, \text{ net}}^{pump} = \frac{\hbar}{4\pi} \left(\Re(\tilde{g}^{\uparrow\downarrow}) \mathbf{e}_{M} \times \frac{d\mathbf{e}_{M}}{dt} - \Im(\tilde{g}^{\uparrow\downarrow}) \frac{d\mathbf{e}_{M}}{dt} \right)$$

Electrical spin injection theory

- Spin polarized current is injected from FM to semiconductor
- Current spin polarizability $P_I = \frac{I_{\uparrow} I_{\downarrow}}{I_{\uparrow} + I_{\downarrow}}$
- Main problem :conductance mismatch
- Spin injection efficiency

$$P_j = \frac{R_F P_{\sigma F} + R_c P_{\Sigma}}{R_F + R_c + R_N}$$

Different contact

Spin injection efficiency: $P_j = \frac{R_F P_{\sigma F} + R_c P_{\Sigma}}{R_F + R_c + R_N}$

$$P_j = \frac{R_F P_{\sigma F} + R_c P_{\Sigma}}{R_F + R_c + R_N}$$

• Transparent contact: $R_c \ll R_N, R_F$

$$P_j = \frac{R_F}{R_N + R_F} P_{\sigma F}$$

• Tunneling contact: $R_c \gg R_F, R_N$

$$P_j = P_{\Sigma}$$

Schottky barrier

• ferromagnetic Heusler alloy Co₂FeSi/n-type GaAs

Spin Esaki diode

- ➤ Under a small reverse bias electrons from VB of (Ga, Mn)As tunnel to CB of GaAs.
- The conversion of spin-polarized electrons via Esaki tunneling leaves its mark in a bias dependence of the spin-injection efficiency, which at maximum reaches the value of 50%.

Improvement for depletion region

• The use of a thin, heavily doped surface region reduces the depletion width as well as the effective barrier height, significantly enhancing the probability for tunneling.

$$P = \exp\left(-\frac{4\pi\sqrt{2m\varphi}}{h}d\right)$$

Oxide barrier

• Spin dependent conductance:

$$G = e^2 \rho(E_{\rm F}) \tilde{D}$$

• Spin efficiency: $P_j = P_{\Sigma}$

$$P_j = P_{\Sigma}$$

Hot electron spin injection

- This method to achieve spin injection is by spin-dependent ballistic hot-electron filtering through ferromagnetic thin films.
- The exponential spin selective mean free path dependence in the ferromagnetic films create very large spin polarizations. In principle, this can approach 100%, allowing effective injection and detection at cryogenic and room temperature.

Spin detection

- ISHE
- Silsbee-Johnson spin-charge coupling

AHE, SHE and ISHE

- Charge current: $\mathbf{j_c} = \sigma \mathbf{E} + D \nabla n$ Spin current: $j_{\mathrm{s,ij}} = -\frac{\hbar}{2} \mu E_{\mathrm{i}} s_{\mathrm{j}} \frac{\hbar}{2} D \frac{\partial s_{\mathrm{j}}}{\partial x_{\mathrm{s}}}$
- Including spin-orbit coupling and anomalous current density

$$j_{\text{c,i}} = \sigma E_{\text{i}} + eD\frac{\partial n}{\partial x_{\text{i}}} - \frac{2e}{\hbar}\zeta \epsilon_{\text{ijk}} \left(\frac{\hbar}{2}\mu E_{\text{j}} s_{\text{k}} + \frac{\hbar}{2}D\frac{\partial s_{\text{k}}}{\partial x_{\text{j}}} \right)$$
$$j_{\text{s,ij}} = \frac{\hbar}{2}\mu E_{\text{i}} s_{\text{j}} + \frac{\hbar}{2}D\frac{\partial s_{\text{j}}}{\partial x_{\text{i}}} - \frac{\hbar}{2e}\zeta \epsilon_{\text{ijk}} \left(\sigma E_{\text{k}} + eD\frac{\partial n}{\partial x_{\text{k}}} \right)$$

$$\mathbf{j}_{c} = \frac{2e}{\hbar} \alpha_{SH} \mathbf{j}_{s} \times \mathbf{e}_{s}$$

AHE and ISHE

$$\mathbf{j_{s}} = rac{\hbar}{2e} lpha_{\mathrm{SH}} \mathbf{e_{s}} imes \mathbf{j_{c}}$$

ISHE

• Spin current convert to charge current:

$$\mathbf{j}_{\mathrm{c}} = \frac{2e}{\hbar} \alpha_{\mathrm{SH}} \mathbf{j}_{\mathrm{s}} \times \mathbf{e}_{\mathrm{s}}$$

- Some challenges:
- \succ Voltage detectable is small(is proportional to the resistivity and α_{SH})
- \triangleright The device's dimensions are smaller than $\lambda_{\rm sd}$

Silsbee-Johnson spin-charge coupling

• If a spin accumulation is generated in a nonmagnetic conductor that is in a proximity of a ferromagnet, a current flows in a closed circuit, or an electromotive force appears in an open circuit.

$$\operatorname{emf} = -\frac{R_F P_{\sigma F} + R_c P_{\Sigma}}{R_F + R_c + R_N} \,\mu_{sN}(\infty) = -P_j \,\mu_{sN}(\infty)$$

Spin modulation

- Hanle spin procession frequency
- Spin diffusion length
- Conductivity
- Spin dependent barrier
- Magnetoelectric effect

Spin procession frequency

• Spin orbit coupling in 2DEG

$$H_R = \alpha_R \, \left(\boldsymbol{\sigma} \times \mathbf{k} \right) \, \cdot \hat{\boldsymbol{n}}$$

$$H_R = \alpha_R (\boldsymbol{\sigma} \times \mathbf{k}) \cdot \hat{\boldsymbol{n}}$$
 $B_R(\vec{v}) = \frac{2}{\hbar} \alpha_R(\vec{k} \times \vec{n})$

• Gate modulation of Rashba coefficient

$$\alpha_R = \alpha_0 \langle \mathcal{E}_v(\mathbf{r}) \rangle$$

• At low temperature, transport of electrons in 2DEG is ballistic(coherent).

$$V = A\cos(2m*\alpha L/\hbar^2 + \varphi)$$

Spin diffusion length

• At RT, in semiconductor(GaAs,GaN),electron spin relaxation dominates by DP mechanism

$$\Omega_{\text{Tot}}(\mathbf{k}_{//}) = \Omega_{\text{BIA}}(\mathbf{k}_{//}) + \Omega_{\text{SIA}}(\mathbf{k}_{//}) \qquad \frac{1}{\tau_{\text{s}}} = \langle \Omega_{\text{Tot}}^2 \rangle \tau_{\text{p}}^* \\
= \left(\frac{\beta}{\hbar} + \frac{2r_{41}E}{\hbar}\right)(k_y, -k_x, 0) \qquad \overline{L_{\text{s}} = \sqrt{D_{\text{s}}T_{\text{s}}}}$$

A spin field-effect switch

• Gate voltage modulate the conductivity of MoS2

Spin-dependent barrier

• Using magnetic insulator rather than normal insulator as dielectric layer in FET could induce a spilt according to spin caused by ferromagnetic proximity.

FIG. 4. Ferromagnetic proximity effect splits the barrier according to spin such that $U^{\pm} = U \mp \Delta$.

A proposal for spin FET

If such structure is deposited on the middle of a non-local spin-valve, the signal would be affected by the gate voltage.

Magnetoelectric effect

• A dielectric material moving through an electric field would become magnetized. A material where such a coupling is intrinsically present is called a magnetoelectric.

Scalable energy-efficient magnetoelectric spin-orbit logic

Sasikanth Manipatruni¹*, Dmitri E. Nikonov¹, Chia-Ching Lin¹, Tanay A. Gosavi¹, Huichu Liu², Bhagwati Prasad³, Yen-Lin Huang^{3,4}, Everton Bonturim³, Ramamoorthy Ramesh^{3,4,5} & Ian A. Young¹

Thank you