Paths in graphs

Distance in graphs

- The *distance* between two nodes is the length of the shortest path between them.
- How do we find the shortest paths from *s* to all other vertices?

Breadth-first search

```
procedure bfs(G,s)
Input: Graph G = (V, E), directed or undirected; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
dist(s) = 0
Q = [s] (queue containing just s)
while Q is not empty:
   u = eject(Q)
   for all edges (u,v) \in E:
      if dist(v) = \infty:
          inject(Q, v)
          dist(v) = dist(u) + 1
```


Order	Queue contents
of visitation	after processing node
	[S]
S	$[A \ C \ D \ E]$
A	[C D E B]
C	[D E B]
D	$[E \ B]$
E	[B]
B	[]

Correctness

- Use induction
- For each d = 0, 1, 2, ..., there is a moment at which
 - (1) all nodes at distance $\leq d$ from s have their distances correctly set
 - (2) all other nodes have their distances set to ∞
 - (3) the queue contains exactly the nodes at distance d.

Analysis

- Each vertex is put on the queue exactly once $\rightarrow 2|V|$ queue operations
- **for** loop looks at each edge once (in directed graphs) or twice (in undirected graphs) \rightarrow O(|E|) time
- O(|V| + |E|)

Weighted graphs

- Breadth-first search finds shortest paths in any graph whose edges have unit length.
- Can we adapt it to a more general graph G = (V, E) whose edge lengths are *positive integers?*

- Set an alarm estimated times of arrival
 - ex) initially, A: T=100, B: T=200
- At T=100, reset the alarm for B as T=150

<u>Algorithm</u>

- Set an alarm clock for node s at time 0.
- Repeat until there are no more alarms:

Say the next alarm goes off at time T, for node u. Then:

- 1) The distance from s to u is T.
- 2) For each neighbor *v* of *u* in *G*:
 - If there is no alarm yet for v, set one for time T + l(u, v).
 - If v's alarm is set for later than T + l(u, v), then reset it to this earlier time.

Priority queue

Data structure supporting the following operations:

- *Insert*. Add a new element to the set.
- *Decrease-key*. Accommodate the decrease in key value of a particular element
- *Delete-min*. Return the element with the smallest key, and remove it from the set.
- *Make-queue*. Build a priority queue out of the given elements, with the given key values. (In many implementations, this is faster than inserting the elements one by one.)

Binary heap

- Complete Binary Tree All levels are completely filled except possibly the lowest, which is filled from the left up to a point.
- The value of each node \leq value of its children. (min-heap)

Heap data structure

Complete binary tree implemented by an array

- The root is stored in A[1]
- The parent of A[i] is $A[\lfloor \frac{i}{2} \rfloor]$.
- The left child of A[i] is $A[2 \cdot i]$.
- The right child of A[i] is $A[2 \cdot i + 1]$.
- The node in the far right of the bottom level is stored in A[n].
- If 2i + 1 > n, then the node does not have a right child.

Insert

Delete-min

Dijkstra's algorithm

```
procedure dijkstra(G, l, s)
          Graph G = (V, E), directed or undirected;
Input:
           positive edge lengths \{l_e : e \in E\}; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
H = makequeue(V) (using dist-values as keys)
while H is not empty:
   u = deletemin(H)
   for all edges (u,v) \in E:
      if dist(v) > dist(u) + l(u, v):
          dist(v) = dist(u) + l(u, v)
          prev(v) = u
          decreasekey(H, v)
```


A: 0 D: ∞ B: 4 E: ∞ C: 2

A: 0 D: 6 B: 3 E: 7 C: 2

A: 0 D: 5 B: 3 E: 6 C: 2

A: 0 D: 5 B: 3 E: 6 C: 2

A : 0	D: 5
B: 3	E: 6
C: 2	

- Starting from s, we expand the region R of the graph where shortest paths are known.
- What is the next vertex v to add to R?
 - the node outside R that is *closest* to s
- Consider the shortest path from s to v. Let u be the node before v on this path.

- Since all edge lengths are positive, *u* must be closer to *s* than *v* is.
- Thus, u is in R. (Since v is the closest node to s outside R.)
- So, the shortest path from *s* to *v* is a *known shortest path extended by a single edge*.
- v is the node outside R for which the smallest value of distance(s,u)+l(u,v) is attained, as u ranges over R.


```
Initialize \operatorname{dist}(s) to 0, other \operatorname{dist}(\cdot) values to \infty R=\{\ \} (the ''known region'') while R\neq V:

Pick the node v\not\in R with smallest \operatorname{dist}(\cdot) Add v to R for all edges (v,z)\in E:

if \operatorname{dist}(z)>\operatorname{dist}(v)+l(v,z):

\operatorname{dist}(z)=\operatorname{dist}(v)+l(v,z)
```

Correctness

- Use induction.
- At the end of each iteration of the while loop, the following conditions hold:
 - (1) there is a value d such that all nodes in R are at distance $\leq d$ from s and all nodes outside R are at distance $\geq d$ from s
 - (2) for every node u, the value $\operatorname{dist}(u)$ is the length of the shortest path from s to u whose intermediate nodes are constrained to be in R (if no such path exists, the value is ∞).

```
Initialize \operatorname{dist}(s) to 0, other \operatorname{dist}(\cdot) values to \infty R = \{ \} (the ''known region'') while R \neq V:

Pick the node v \notin R with smallest \operatorname{dist}(\cdot) Add v to R for all edges (v,z) \in E:

if \operatorname{dist}(z) > \operatorname{dist}(v) + l(v,z):

\operatorname{dist}(z) = \operatorname{dist}(v) + l(v,z)
```

Analysis

- |V| deletemin operations
- |V| + |E| insert/decreasekey operations

Implementation	deletemin	insert/ decreasekey	$\begin{array}{c} V \times \text{deletemin} \ + \\ (V + E) \times \text{insert} \end{array}$
Array	O(V)	O(1)	$O(V ^2)$
Binary heap	$O(\log V)$	$O(\log V)$	$O((V + E)\log V)$
d-ary heap	$O(\frac{d \log V }{\log d})$	$O(\frac{\log V }{\log d})$	$O((V \cdot d + E) \frac{\log V }{\log d})$
Fibonacci heap	$O(\log V)$	O(1) (amortized)	$O(V \log V + E)$

<u>Update</u>

• We can consider Dijkstra's algorithm as performing a sequence of the following update procedure.

```
\frac{\texttt{procedure update}}{\texttt{dist}(v) = \min\{\texttt{dist}(v), \texttt{dist}(u) + l(u, v)\}}
```

- This *update operation* uses the fact that the distance to v cannot be more than the distance to u + l(u, v).
- **property 1** It gives the correct distance to *v* in the particular case where *u* is the second-last node in the shortest path to *v*, and dist(*u*) is correctly set.
- **property 2** It will never make dist(v) too small, and in this sense it is *safe*. For instance, extra update's can't hurt.

Property 2: Initializing dist(s) = 0 and $dist(v) = \infty$ for all $v \in V - \{s\}$ establishes $dist(v) \ge distance$ to v for all $v \in V$. This invariant is maintained over any sequence of **update**'s.

Pf) Suppose not.

```
Let v be the first vertex for which dist(v) < distance to <math>v, and let u be the vertex that caused dist(v) to change : dist(v) = dist(u) + l(u, v). Then, dist(v) < distance to <math>v (supposition) \leq distance to u + distance from <math>u to v (triangle inequality) \leq distance to u + l(u, v) (shortest path \leq specific path) \leq dist(u) + l(u, v) (v is first violation)
```

Contradiction.

Property 1: Let u be v's predecessor on a shortest path from s to v. Then, if dist(u) = distance to u, after **update**(u, v), dist(v) = distance to v.

Pf) distance to v = distance to u + l(u, v).

Suppose dist(v) > distance to v before **update**.

(Otherwise, by **property 2**, dist(v) = distance to v.)

Then, dist(v) > dist(u) + l(u, v),

because dist(v) > distance to v = distance to u + l(u, v) = dist(u) + l(u, v).

By **update**(u, v), dist(v) = dist(u) + l(u, v) = distance to v.

Theorem: Dijkstra's algorithm terminates with dist(v) = distance to v for all $v \in V$.

Proof.

- It suffices to show that dist(v) = distance to v for every $v \subseteq V$ when v is added to R.
- Suppose u is the first vertex added to R for which dist(u) > distance to u.
- Let y be the first vertex in V R along a shortest path from s to u, and let x be its predecessor.
- Since u is the first vertex violating the claimed invariant, we have dist(x) = distance to x.
- When x was added to R, we update the edge (x, y), which implies that dist(y)= distance to $y \le distance$ to u < dist(u).
- But, $dist(u) \le dist(y)$ by our choice of u. Contradiction.

Negative edges

- Dijkstra's algorithm works in part because the shortest path from the starting point *s* to any node *v* must pass exclusively through nodes that are closer than *v*.
- This no longer holds when edge lengths can be negative.

Negative edges

- What is a correct sequence of updates with negative edges?
- Consider a shortest path from *s* to *t* :

- This path can have at most |V|-1 edges.
- If the sequence of updates performed includes (s, u_1) , (u_1, u_2) , (u_2, u_3) ... (u_k, t) , in that order (though not necessarily consecutively), then by **property 1** the distance to t will be correctly computed.
- Simply update *all the edges* /V|- 1 times!

Bellman-Ford algorithm

repeat |V|-1 times:

for all $e \in E$:

update(e)

```
procedure shortest-paths (G, l, s)
Input: Directed graph G = (V, E);
           edge lengths \{l_e:e\in E\} with no negative cycles;
           vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
```


	Iteration									
Node	0	1	2	3	4	5	6	7		
S	0	0	0	0	0	0	0	0		
A	∞	10	10	5	5	5	5	5		
В	∞	∞	∞	10	6	5	5	5		
C	∞	∞	∞	∞	11	7	6	6		
D	∞	∞	∞	∞	∞	14	10	9		
E	∞	∞	12	8	7	7	7	7		
F	∞	∞	9	9	9	9	9	9		
G	∞	8	8	8	8	8	8	8		

Negative cycles

- If a graph contains a negative-weight cycle, some shortest paths may not exist.
- Instead of stopping after |V|- 1 iterations, perform one extra round.
- There is a negative cycle if and only if some dist value is reduced during this final round.

Shortest paths in dags

- We need to perform a sequence of updates that includes every shortest path as a subsequence.
- In any path of a dag, the vertices appear in increasing linearized order.

```
procedure dag-shortest-paths (G, l, s)
          Dag G = (V, E);
Input:
           edge lengths \{l_e: e \in E\}; vertex s \in V
Output: For all vertices u reachable from s, dist(u) is set
           to the distance from s to u.
for all u \in V:
   dist(u) = \infty
   prev(u) = nil
dist(s) = 0
Linearize G
for each u \in V, in linearized order:
   for all edges (u,v) \in E:
      update (u, v)
```