MTH 375 Fall 2020 Hw 5 – due 2/22/2020

Key Concepts: MOM and MLE estimators. Read Sec 5.1. Do the following problems.

Some of these problems refer to distributions we studied in class and/or on previous assignments. You are encouraged to make use of anything we learned then.

#1. (5.1.2 modified) Let X_1, \ldots, X_n be a sample of iid Negative Binomial $(4,\theta)$ random variables with $\theta \in [0,1]$. Determine the MLE and the MOM estimators of θ .

#2. (5.1.4 modified) Let X_1, \ldots, X_n be a sample of iid $N(0,\theta)$ random variables with $\theta > 0$. (θ should be the variance of X_k .) Determine

- a) the MLE $\hat{\theta}$ of θ .
- b) $E(\hat{\theta})$ and $V(\hat{\theta})$.
- c) the MLE of $SD(X_i) = \sqrt{\theta}$. (Hint: There is almost no work to do.)
- #3. Recall the family of distributions with pmf $p_X(x;p) = \begin{cases} p & \text{if } x = -1 \\ 2p & \text{if } x = 0 \\ 1 3p & \text{if } x = 1 \end{cases}$.

Here p is an unknown parameter, and $0 \le p \le 1/3$.

Let X_1, X_2, \ldots, X_n be iid with common pmf a member of this family.

- (i) Find the MOM estimator of p.
- (ii) Find the MLE estimator of p. (Hint: The statistics A, B, C from assignment #3 will be useful.)
- (iii) A random sample of size 100 from this distribution produced the values $\{0, -1, -1, 0, 0, -1, 1, 0, 0, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, 1, -1, 0, 1, 0, 0, -1, 0, 0, 1, -1, 0, 1, 0, 0, 0, 1, 0, 1, -1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, -1, -1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 0, 1, 1, 0, 1, -1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,$

Evaluate the MOM and MLE estimates of p for this data set.

#4. (5.1.8 modified) Let X_1, \ldots, X_n be a sample of iid $Gamma(\alpha, \theta)$ random variables with α known and $\theta > 0$. Determine

- a) the MLE $\hat{\theta}$ of θ .
- b) $E(\hat{\theta})$.
- e) whether or not $\hat{\theta}$ is a UMVUE of θ .
- #5. (5.1.30 modified) Let X_1, \ldots, X_n be a sample of iid random variables with pdf

$$f(x; \theta_1, \theta_2) = \frac{1}{\theta_1} e^{-(x-\theta_2)/\theta_1}, \text{ for } x > \theta_2.$$

Here $\theta_1 > 0$, and θ_2 can be any real number.

Find the MOM and MLE estimators of (θ_1, θ_2) .