LC10 – Du macroscopique au microscopique dans les synthèses organiques

AGRÉGATION EXTERNE DE PHYSIQUE-CHIMIE, OPTION PHYSIQUE

2. Modification des groupes caractéristiques

Familles chimiques	Groupes caractéristiques		
Alcool	—О—Н	Hydroxyle	
Aldéhyde	-c //	Carbonyle	
Cétone	c—c//	Carbonyle	
Acide carboxylique	—с ^{//} ОН	Carboxyle	

Alcène		Alcène
Ester	-c/o-c-	Ester
Amine	N-	Amine
Amide	-c	Amide

2. Modification des groupes caractéristiques

Benzile (1,2 – *diphényléthanedione*)

Hydrobenzoïne-méso (1,2 – *diphényléthanol*)

2. Modification des groupes caractéristiques

3. Différents types de réaction

<u>Substitution</u>: Une molécule subit une réaction de substitution si l'un de ses atomes ou groupes d'atomes est remplacé par un autre atome ou groupe d'atomes.

<u>Addition</u>: Une molécule possédant une liaison double subit une réaction d'addition si cette liaison double se transforme en liaison simple.

<u>Élimination</u>: Une molécule subit une réaction d'élimination si l'une de ses liaison simples se transforme en liaison double ou si cette molécule subit une cyclisation.

II. Répartition des électrons au sein de la molécule

1. Polarité des liaisons chimiques.

H 2,20							He
Li	Be	В	С	N	0	F	Ne
0,98	1,57	2,04	2,55	3,04	3,44	3,98	
Na	Mg	Al	Si	P	S	CI	Ar
0,93	1,31	1,61	1,90	2,19	2,58	3,16	

II. Répartition des électrons au sein de la molécule

1. Polarité des liaisons chimiques.

Liaison	Différence d'électronégativité Δχ	Polarité de la liaison	Représentation avec les charges partielles
н-н	0	apolaire	
в-н	0,16	apolaire	
C-H	0,35	apolaire	
C-O	0,89	polarisée	δ+C-Oδ-
O-H	1,24	polarisée	δ-O-H ^{δ+}
H-CI	0,96	polarisée	δ+H-CIδ-

2. Formalisme de la flèche double

2. Formalisme de la flèche double

Acide salicylique

Salicylate de méthyle

- n(salicylate de méthyle) = 0,0309 mol
- Masse maximale d'acide salicylique : m = 4,26 g

2. Formalisme de la flèche double

2. Formalisme de la flèche double

