第八章 排序

1.排序的基本概念

排序:重新排列表中的元素,使表中的元素满足按关键字有序的过程

算法的稳定性:

- 1. **稳定的**:假设某个排序表中,有两个相同的关键字A和B(A在B的前面),使用某一排序算法后,A仍然在B的前面
- 2. **不稳定的:**假设某个排序表中,有两个相同的关键字A和B(A在B的前面),使用某一排序算法后,B在A的前面例如:在一组数据 1 2 5 3 1 4中在经过某个排序算法排序后,前面的1的仍然是在后面的1前面则说明这个算法是稳定的,反之

排序算法的分类(看数据元素是否完全在内存中):

- 1. 内部排序:排序期间元素全部存放在内存中的排序
- 2. 外部排序:排序期间元素无法全部同时存放在内存中,必须在排序的过程中要求不断地在内外存之间移动的排序

注:内部排序算法一般有两个操作:比较和移动,大部分内部排序算法只适用于顺序存储的线性表

2.插入排序

2.1直接插入排序

将一个待排序的记录按关键字大小插入前面已排好序的子序列

[初始关键字]:		(49)	38	65	97	76	13	27	49
<i>i</i> =2:	(38)	(38	49)	65 ¥	97	76	13	27	49
<i>i</i> =3:	(65)	(38	49	65)	97 ¥	76	13	27	49
<i>i</i> =4:	(97)	(38	49	65	97)	76	13	27	49
<i>i</i> =5:	(76)	(38	49	65	7 6	97)	13	27	49
<i>i</i> =6:	(13)	(13	38	, 49	65	76	97)	27	49
<i>i</i> =7:	(27)	(13	27	38	49	65	76	97)	49
<i>i</i> =8:	(49)	(13	27	38	49	49	65	76	97)
	▲监	视哨L.R	[0]						

```
void InsertSort(ElemType A[],int n){
    int i,j;
    for(i=2;i<=n;i++){//依次查找关键字,从2下标开始
        if(A[i]<A[i-1]){//若关键字小于前驱时
        A[0]=A[i];//记录下关键字
        for(j=i-1;A[0]<A[j];j--){//将关键字插入的位置到原关键字的位置向后移动一个
              A[j+1]=A[j];//移动
        }
        A[j+1]=A[0];//将空出的位置的关键字补上
    }
}
```

空间复杂度O(1)

时间复杂度

 $O(n^2)$

最好的情况,表中元素已经有序,不需要移动元素,只需要比较n次,O(n)

最坏的情况,表中元素正好逆序

适用性:顺序存储和链式存储的线性表

2.2折半插入排序

将一个待排序的记录按关键字大小插入前面已排好序的子序列,但查找插入的位置利用折半查找(因为前面的子序列有序所以可以使用折半查找)

```
void InsertSort(ElemType A[],int n){
    int i,j,low,high,mid;
    for(i=2;i<=n;i++){
        A[0]=A[i];
        low=1;
        high=i-1;
        while(low<=high){
            mid=(low+high)/2;
            if(A[mid]>A[0]) high=mid-1;
            else low=mid+1;
        }
        for(j=i-1;j>=high+1;j--){
            A[j+1]=A[j];
        }
        A[j+1]=A[0];
    }
}
```

时间复杂度仍然为

 $O(n^2)$

但减少了比较次数(折半查找的时间复杂度),对于数据量不是很大的排序表,折半插入排序会表现出更好的性能

2.3希尔排序

又上述可知插入排序当表基本有序时,时间效率会有显著提高,因此我们可以基于这样的思想完善插入排序得到希尔排序

希尔排序的思想:将排列表分割成若干个子表,然后对各个子表进行直接插入排序

空间效率为:O(1)

时间效率:平均下来

$$\mathcal{O}(n^{1.3})$$

最差

 $O(n^2)$

稳定性:不稳定

适用性:仅适用于线性表为顺序存储的情况

3.交换排序

交换:将两个元素关键字的比较结果来对换这两个记录在序列中的位置

3.1冒泡排序

思想:从后往前(或从前往后)两两比较相邻元素的值,若为逆序则交换它们

49	13	13	13	13	13	13
38	49	27	27	27	27	27
65	38	49	38	38	38	38
97	65	38	49	49	49	49
76	97	65	49	49	49	49
13	76	97	65	65	65	65
27	27	76	97	76	76	76
49	49	49	76	97	97	97
初	第	第	第	第	第	最
始	_	=	Ξ	四	五	终
状	趙	趙	趙	趙	趙	状
态	后	后	后	后	后	态

$$O(n^2)$$

最好的情况是O(n),表中已经有序只需要比较,不需要交换

3.2快速排序

基本思想:分治法

在排序表中任取一个元素pivot作为枢轴,将排序表分为两部分,使前面的一部分全部小于pivot,后面的一部分全部大于pivot,这样不断划分

例如,取第一个元素49作为pivot

指针 j 从 high 往前搜索找到第一个小于枢轴的元素 27,将 27 交换到 i 所指位置。

指针 i 从 low 往后搜索找到第一个大于枢轴的元素 65, 将 65 交换到 j 所指位置。

指针 j 继续往前搜索找到小于枢轴的元素 13,将 13 交换到 i 所指位置。

指针 1 继续往后搜索找到大于枢轴的元素 97, 将 97 交换到 1 所指位置。

指针 j 继续往前搜索小于枢轴的元素, 直至 i== j。

27 38 13 76 97 65
$$\overline{49}$$

此时,指针 i (==j) 之前的元素均小于 49,指针 i 之后的元素均大于或等于 49,将 49 放在 i 所指位置即其最终位置,经过一趟划分,将原序列分割成了前后两个子序列。

按照同样的方法对各子序列进行快速排序,若待排序列中只有一个元素,显然已有序。

```
void QuickSort(ElemType A[],int low,int high){
    if(low<high){
        int pivotpos=Partition(A,low,high);//划分
            QuickSort(A,low,pivotpos-1);//依次对两个子表进行划分
            QuickSort(A,pivotpos+1,high);
    }
}
int Partition(ElemType A[],int low,int high){</pre>
```

```
ElemType pivot=A[low];//取第一个元素作为枢轴
while(low<high) {//跳出循环条件
    while(low<high&&A[high]>=pivot) --high;//找到比枢轴小的元素,并将指针指向它
    A[low]=A[high];//将枢轴小的元素移动到左端
    while(low<high&&A[low]<=pivot) ++low;//找到比枢轴大的元素,并将指针指向它
    A[high]=A[low];//将枢轴大的元素移动到右端
}
A[low]=pivot;//枢轴元素存放到最终的位置
return low;//返回最终位置
}
```

空间效率:需要借助一个递归工作栈,其容量与递归调用的最大深度一致

最好的情况下为

 $O(log_2n)$

最坏的情况下要调用n-1次

平均情况下是

 $O(log_2n)$

时间效率:快速排序是所有内部排序算法中平均性能最优的排序算法,其时间复杂度为

 $O(nlog_2n)$

最坏的情况下,初始排序表基本有序或逆序时,时间复杂度为

 $O(n^2)$

稳定性:不稳定

4.选择排序

选择:在每一趟待排序的元素中选取关键字最小的元素,作为有序子序列的第1个元素,直到结束

4.1简单选择排序

```
void SelectSort(ElemType A[],int n){
    for(int i=0;i<n-1;i++){//遍历
        int min=i;//记录最小元素位置
        for(int j=i+1;j<n;j++){//在i到n-1中选择最小的元素
              if(A[j]<A[min]) min=j;//更新最小的元素
        }
        if(min!=i) swap(A[i],A[min]);//两个元素交换
    }
}</pre>
```

空间效率:O(1)

时间复杂度为

最好的情况,已经有序,只需要比较,不需要交换,时间复杂度仍然不变 稳定性:不稳定

4.2堆排序

堆:满足以下条件的n个关键字序列L[1...n]:

- 1. L(i)>=L(2i)且L(i)>=L(2i+1)或
- 2. L(i)<=L(2i)且L(i)<=L(2i+1)

满足条件1的堆叫大根堆,满足条件2的堆叫小根堆

大根堆的示意图:

堆排序的思路:输出堆顶元素(最大或最小),将栈底元素送入堆顶,调整堆,使之满足大根堆或小根堆,依次重复

构造初始堆:

堆排序的关键是构造初始堆。n 个结点的完全二叉树,最后一个结点是第 $\lfloor n/2 \rfloor$ 个结点的孩子。对第 $\lfloor n/2 \rfloor$ 个结点为根的子树筛选(对于大根堆,若根结点的关键字小于左右孩子中关键字较大者,则交换),使该子树成为堆。之后向前依次对各结点($\lfloor n/2 \rfloor - 1 \sim 1$)为根的子树进行筛选,看该结点值是否大于其左右子结点的值,若不大于,则将左右子结点中的较大值与之交换,交换后可能会破坏下一级的堆,于是继续采用上述方法构造下一级的堆,直到以该结点为根的子树构成堆为止。反复利用上述调整堆的方法建堆,直到根结点。

自下往上调整大根堆:

输出堆顶元素后调整大根堆:

将上面的大根堆的堆顶元素输出,然后将堆中的最后一个元素09与堆顶元素交换,选取左右孩子较大者交换,然 后同样的调整

建立大根堆的算法:

```
void BuildMaxHeap(ElemType A[],int len){
    for(int i=len/2;i?0;i--) HeadAdjust(A,i,len);
}

void HeadAdjust(ElemType A[],int k,int len){
    A[0]=A[k];//A[0] 暂存子树根结点
    for(int i=2*k;i<=len;i*=2){
        if(i<len&A[i]<A[i+1]) i++;//取key较大的子结点下标
        if(A[0]>=A[i]) break;//筛选结束
        else{
            A[k]=A[i];//将A[i]调整到双亲结点上
            k=i;//修改k值,以便继续向下筛选
        }
    }
    A[k]=A[0];//被筛选结点的值放入最终位置
}
```

```
void HeapSort(ElemType A[],int len){
    BuildMaxHeap(A,len);//构建堆
    for(int i=len;i>1;i--){//n-1趟交换和建堆的过程
        Swap(A[i],A[1]);//输出堆顶元素
        HeadAdjust(A,1,i-1);//调整
    }
}
```

堆同时也能进行插入操作,将新结点放在堆的末端,然后一样的进行调整操作

空间效率:O(1)

时间效率:

 $O(nlog_2n)$

稳定性:不稳定

5.归并排序和基数排序

5.1归并排序

思想:将两个或两个以上的有序表合并成一个新的有序表,当两两归并时又称二路归并排序


```
ElemType *B=(ElemType *)malloc((n+1)*sizeof(ElemType));//辅助数组B
void Merge(ElemType A[],int low,int mid,int high){
    int i,j,k;
    for(k=low;k<=high;k++) B[k]=A[k];//将A中元素全部复制到B中
    for(i=low;j=mid+1,k=i;i<=mid&&j<=high;k++){
        if(B[i]<=B[j]) A[k]=B[i++];//将较小值复制到A中去
        else A[k]=B[j++];
    }
    while(i<=mid) A[k++]=B[i++];//若第一个表未检测完,复制
    while(j<=high) A[k++]=B[j++];//若第二个表未检测完,复制
}

void MergeSort(ElemType A[],int low,int high){
    if(low<high){
        int mid=(low+high)/2;
```

```
MergeSort(A,low,mid);//左侧子序列递归排序
MergeSort(A,mid+1,high);//右侧子序列递归排序
Merge(A,low,mid,high);//归并
}
```

空间效率:O(n)

时间效率:

 $O(nlog_2n)$

稳定性:稳定

5.2基数排序

不基于移动和比较

思想:基于关键字各位的大小

例如:一个三位的数字,先比较个位数进行排序,再比较十位数排序,再比较百位数排序,每个 位数相等的记录分配到同一个队列,然后收集

通常采用链式基数排序,假设对如下10个记录进行排序:

图 8.9 第一趟链式基数排序操作

第二趟分配用次低位子关键字 K^2 进行,将所有次低位子关键字(十位)相等的记录分配到同一个队列,如图 8.10(a)所示,第二趟收集后的结果如图 8.10(b)所示。

图 8.10 第二趟链式基数排序操作

第三趟分配用最高位子关键字 K^1 进行,将所有最高位子关键字(百位)相等的记录分配到同一个队列,如图 8.11(a)所示,第三趟收集后的结果如图 8.11(b)所示,至此整个排序结束。

图 8.11 第三趟链式基数排序操作

空间效率:一趟排序需要辅助空间为r(r个队列,r个队头指针,r个队尾指针),空间复杂度为O(r)时间效率:需要进行d趟分配和收集,每次分配需要O(n),一趟收集需要O(r),时间复杂度为O(d(n+r))稳定性:稳定