Markov Decision Process

I-Chen Wu

- Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998. (Bible for RL)
 - http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
 - Chapters 3-4
- David Silver, Online Course for Deep Reinforcement Learning.
 - http://www.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
 - Chapters 2-3

Outline

- Introduction
- Markov Property
- Markov Process
- Markov Reward Process (MRP)
- Markov Decision Process (MDP)
- Partially Observable Markov Decision Process (POMDP)

The purpose of this chapter:

Introduce all kinds of Markov processes

Introduction

- Markov decision processes formally describe an environment for reinforcement learning
 - where the environment is fully observable.
 - i.e. The current state completely characterizes the process
 - E.g., 2048.
- Almost all RL problems can be formalized as MDPs, e.g.
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state

Markov Property

• Markov Property:

- "The future is independent of the past given the present"
- Definition: A state S_t is Markov if and only if $\mathbb{P}[S_{t+1} | S_t] = \mathbb{P}[S_{t+1} | S_1, ..., S_t]$

Comments:

- The state captures all relevant information from the history
- Once the state is known, the history may be thrown away
- i.e. The state is a sufficient statistic of the future
- But, what if the history does matter?
 - Simply let S_t carry all information of history, $H_t = (S_1, ..., S_{t-1})$.
 - ▶ E.g., the castling rule for chess.
 - Then, it satisfies Markov Property.

Markov Process

- A Markov process is a memoryless random process,
 - i.e. a sequence of random states S_1 , S_2 , ... with the Markov property.

Definition:

- A Markov Process (or Markov Chain) is a tuple $\langle S, P \rangle$
 - S is a (finite) set of states
 - \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$

State Transition Matrix

• For a Markov state *s* and successor state *s'*, the state transition probability is defined by

$$\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

• State transition matrix \mathcal{P} : (assume n states)

$$\mathcal{P} = egin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \dots & & \dots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix}$$

- Each row of matrix sums to 1.

Example: Student Markov Chain

Example: Episodes

- Sample episodes for starting from $S_1 = C1$.
 - $S_1, S_2, ..., S_T$
- Examples:
 - C1 C2 C3 Pass Sleep
 - C1 FB FB C1 C2 Sleep
 - C1 C2 C3 Pub C2 C3 Pass Sleep
 - C1 FB FB C1 C2 C3 Pub C1 FB FB
 - FB C1 C2 C3 Pub C2 Sleep

Pub

1.0

Pass

Example: Transition Matrix

Markov Reward Process (MRP)

A Markov reward process is a Markov chain with values.

Definition:

- A Markov Reward Process is a tuple $\langle S, P, R, \gamma \rangle$
 - S is a finite set of states
 - \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$
 - \mathcal{R} is a reward function, $\mathcal{R}_S = \mathbb{E}[R_{t+1}|S_t = s]$
 - γ is a discount factor $\gamma \in [0, 1]$.

Example: Student MRP

Return

Definition

• The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Notes:

- The discount $\gamma \in [0, 1]$ is the present value of future rewards
- The value of receiving reward R is diminishing
 - $-\gamma^k R$, after k+1 time-steps.
- This values immediate reward above delayed reward.
- Discount:
 - γ close to 0 leads to "myopic" evaluation
 - $-\gamma$ close to 1 leads to "far-sighted" evaluation

Value Function

- The value function v(s) gives the long-term value of s
- Definition
 - The state value function v(s) of an MRP is the expected return starting from state s
 - $-v(s) = \mathbb{E}[G_t \mid S_t = s]$

Example: Student MRP Returns

- Sample returns for Student MRP:
 - Starting from $S_1 = C1$ with $\gamma = \frac{1}{2}$ $G_1 = R_2 + \gamma R_3 + \dots + \gamma^{T-2} R_T$

C1 C2 C3 Pass Sleep
$$v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 10 * \frac{1}{8} = -2.25$$
C1 FB FB C1 C2 Sleep $v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} = -3.125$
C1 C2 C3 Pub C2 C3 Pass Sleep $v_1 = -2 - 2 * \frac{1}{2} - 2 * \frac{1}{4} + 1 * \frac{1}{8} - 2 * \frac{1}{16} \dots = -3.41$
C1 FB FB C1 C2 C3 Pub C1 ... $v_1 = -2 - 1 * \frac{1}{2} - 1 * \frac{1}{4} - 2 * \frac{1}{8} - 2 * \frac{1}{16} \dots = -3.20$

Deep Learning and Practice Example: State-Value Function for Student **MRP**

Deep Learning and Practice Example: State-Value Function for Student **MRP**

Deep Learning and Practice Example: State-Value Function for Student **MRP**

Bellman Equation for MRPs

- The value function can be decomposed into two parts:
 - immediate reward R_{t+1}
 - discounted value of successor state $\gamma v(S_{t+1})$

•
$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$

= $\mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \mid S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) \mid S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$
= $\mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$

• For a transition (s, r, s'), we have

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in S} \mathcal{P}_{ss'} v(s')$$

Bellman Equation in Matrix Form

 The Bellman equation can be expressed concisely using matrices, (closed form)

$$v = \mathcal{R} + \gamma \mathcal{P} v$$

- where v is a column vector with one entry per state.

$$\begin{bmatrix} v(1) \\ \dots \\ v(n) \end{bmatrix} = \begin{bmatrix} R_1 \\ \dots \\ R_n \end{bmatrix} + \gamma \begin{bmatrix} \mathcal{P}_{11} & \dots & \mathcal{P}_{1n} \\ \dots & \dots \\ \mathcal{P}_{n1} & \dots & \mathcal{P}_{nn} \end{bmatrix} \begin{bmatrix} v(1) \\ \dots \\ v(n) \end{bmatrix}$$

Solving the Bellman Equation

- The Bellman equation is a linear equation
- It can be solved directly:

$$v = \mathcal{R} + \gamma \mathcal{P} v$$
$$v = (1 - \gamma \mathcal{P})^{-1} \mathcal{R}$$

- Computational complexity is $O(n^3)$ for n states
- Direct solution only possible for small MRPs
- There are many iterative methods for large MRPs, e.g.
 - Dynamic programming
 - Monte-Carlo evaluation
 - Temporal-Difference learning

Markov Decision Processes (MDP)

A Markov Decision Process is a tuple

$$\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$$

- S is a finite set of states
- $-\mathcal{A}$ is a finite set of actions
- \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - ▶ Let \mathcal{P}^a denote the matrix \mathcal{P}^a .
- \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- γ is a discount factor γ ∈ [0, 1].

Example: Student MDP

Example: Student MDP

Example: Recycling Robot

Figure 3.3: Transition graph for the recycling robot example.

Example: Recycling Robot

Figure 3.3: Transition graph for the recycling robot example.

Example: Recycling Robot

• Transition and Rewards:

s	s'	a	p(s' s,a)	r(s, a, s')
high	high	search	α	$r_{\mathtt{search}}$
high	low	search	$1-\alpha$	$r_{\mathtt{search}}$
low	high	search	$1-\beta$	-3
low	low	search	β	$r_{\mathtt{search}}$
high	high	wait	1	$r_{\mathtt{wait}}$
high	low	wait	0	$r_{\mathtt{wait}}$
low	high	wait	0	$r_{\mathtt{wait}}$
low	low	wait	1	$r_{\mathtt{wait}}$
low	high	recharge	1	0
low	low	recharge	0	0.

Policies

- A policy is the agent's behavior
 - It is a map from state to action
 - A policy fully defines the behavior of an agent
 - MDP policies depend on the current state (not the history)
 - i.e. Policies are stationary (time-independent), $A_t \sim \pi(\cdot | S_t), \forall t > 0$
- Policy types:
 - Deterministic policy: $a = \pi(s_i)$
 - Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a | S_t = s]$
 - ▶ Sometimes, written in $\pi(s, a)$.
 - ▶ Note: for deterministic policy,
 - if $a = \pi(s_i)$, $\pi(a|s) = 1$. otherwise, $\pi(a|s) = 0$.
- Examples:
 - In 2048: Up/down/left/right
 - In robotics: angle/force/...

Policy and MRP

- Given an MDP $\langle S, A, P, R, \gamma \rangle$ and a policy π
- The state sequence S_1, S_2, \dots is a Markov process $\langle S, \mathcal{P}^{\pi} \rangle$
- The state and reward sequence S_1 , R_2 , S_2 , R_3 , ... becomes a Markov reward process (MRP) $\langle S, \mathcal{P}^{\pi}, \mathcal{R}^{\pi}, \gamma \rangle$
 - $-\mathcal{P}^{\pi}$ is a state transition probability matrix (part of the environment),

$$\mathcal{P}^{\pi}_{ss'} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{P}^{a}_{ss'}$$

 $-\mathcal{R}^{\pi}$ is a reward function,

$$\mathcal{R}_{s}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}_{s}^{a}$$

• So, the property of MRP can be applied.

Value Function

- A value function is a prediction of future reward
 - Used to evaluate the goodness/badness of states
 - ▶ therefore to select between actions.
 - Return $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$
- Types of value functions under policy π :
 - State value function: the expected return from s.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

= $\mathbb{E}_{\pi}[G_t \mid S_t = s]$

- Q-Value function: the expected return from s taking action a. $q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$

- Examples:
 - In 2048, the expected score from a board S_t .

Bellman Expectation Equation for π

State value function:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

Bellman Expectation Equation for π

Q value

$$q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s',a')$$

Bellman Expectation Equation in Matrix

- The Bellman expectation equation can be expressed concisely using the induced MRP.
- So, it can be solved directly:

$$v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v_{\pi}$$
$$v_{\pi} = (1 - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$$

Optimal Value Function

• The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

• The optimal action-value function $q_*(s, a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- Notes:
 - The optimal value function specifies the best possible performance in the MDP.
 - An MDP is "solved" when we know the optimal value function.

Example: Optimal Value Function for Student MDP

Example: Optimal Action-Value Function for Student MDP

Optimal Policy

Define a partial ordering over policies

$$\pi \geq \pi' \text{ if } v_{\pi}(s) \geq v_{\pi'}(s), \forall s$$

- Theorem: For any Markov Decision Process,
 - There exists an optimal policy π_* that is better than or equal to all other policies, $\pi_* \geq \pi$, $\forall \pi$.
 - All optimal policies achieve the optimal value function,

$$v_{\pi_*}(s) = v_*(s)$$

- All optimal policies achieve the optimal action-value function,

$$q_{\pi_*}(s,a) = q_*(s,a)$$

Finding an Optimal Policy

- An optimal policy can be found by maximizing over $q_*(s, a)$,
 - $\pi(a|s) = 1, \text{ if } a = \underset{a \in \mathcal{A}}{\operatorname{argmax}} q_*(s, a)$
 - $-\pi(a|s)=0$, otherwise.
- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we immediately have the optimal policy
- What about state value function $v_*(s)$?
 - Similar, but we need to know model, $\mathcal{P}_{ss'}^a$. \rightarrow not model free.

Bellman Optimality Equation for V*

$$v_*(s) = \max_{a} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \ v_*(s') \right)$$

Bellman Optimality Equation for Q*

$$q_{\pi}(s, a) = \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \max_{a' \in \mathcal{A}} q_{\pi}(s, a')$$

Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Many iterative solution methods
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - Sarsa

Extensions to MDPs

- Infinite and continuous MDPs
 - Countably infinite state and/or action spaces
 - Straightforward
 - Continuous state and/or action spaces
 - ► Closed form for linear quadratic model (LQR)
 - Continuous time
 - ▶ Requires partial differential equations
 - ► Hamilton-Jacobi-Bellman (HJB) equation
 - ▶ Limiting case of Bellman equation as time-step
- Partially observable MDPs
 - E.g., Mahjong (as we mentioned)
- Undiscounted, average reward MDPs (ignored)

Prediction vs. Control

- For prediction: evaluate values
 - Input: MDP $<\mathcal{S}$, \mathcal{A} , \mathcal{P} , \mathcal{R} , $\gamma>$ and policy π or: MRP $<\mathcal{S}$, \mathcal{P}^{π} , \mathcal{R}^{π} , $\gamma>$
 - Output: value function v_{π} or q_{π}
- For control: find the optimal policy.
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$
 - Output: optimal value function v_* or q_* and: optimal policy, π_*

	state values	action values
prediction	v_{π}	q_{π}
control	v_*	q_*

Dynamic Programming (Chapter 3)

- (Sutton) The term dynamic programming (DP) refers to a collection of algorithms that
 - compute optimal policies given a perfect model of the environment as a Markov decision process (MDP).
- (Silver) A method for solving complex problems by breaking them down into subproblems
 - Solve the subproblems,
 - Combine solutions to subproblems
- (Algorithm textbook by Cormen et al.) says
 - DP, like the divide-and-conquer method, solves problems by combining the solutions to subproblems.
 - DP is typically applied to optimization problems.
 - Applications:
 - String algorithms (e.g. sequence alignment)
 - Graph algorithms (e.g. shortest path algorithms)
 - ▶ Bioinformatics (e.g. lattice models)

Why is DP related?

- Sequential or temporal component to the problem optimizing
 - a "program", i.e. a policy,
 - values, i.e., state values and state action values
- Like solving LCS (longest common sequence) problem.
 - The optimal actions.
 - The optimal values.
 - \mathcal{P} and π are deterministic.
 - Exercise: shortest path problem.

Requirements for Dynamic Programming

- Dynamic Programming is a very general solution method for problems which have two properties:
 - Optimal substructure
 - ▶ Principle of optimality applies
 - ▶ Optimal solution can be decomposed into subproblems
 - Overlapping subproblems
 - ► Subproblems recur many times
 - ▶ Solutions can be cached and reused
- Markov decision processes satisfy both properties
 - Bellman equation gives recursive decomposition
 - Value function stores and reuses solutions

Planning by Dynamic Programming

- Dynamic programming assumes full knowledge of the MDP
 - It is used for planning in an MDP
- For prediction: evaluate values
 - Input: MDP $<\mathcal{S}$, \mathcal{A} , \mathcal{P} , \mathcal{R} , $\gamma>$ and policy π or: MRP $<\mathcal{S}$, \mathcal{P}^{π} , \mathcal{R}^{π} , $\gamma>$
 - Output: value function v_{π}
- For control: find the optimal policy.
 - Input: MDP $<\mathcal{S}$, \mathcal{A} , \mathcal{P} , \mathcal{R} , $\gamma>$
 - Output: optimal value function v_* and: optimal policy, π_*

Three Approaches

- Policy Evaluation
 - Directly solve Bellman Equation in matrix form (see above)
 - Given an MDP $\langle S, A, P, R, \gamma \rangle$ and a policy π , it becomes a MRP problem $\langle S, P^{\pi}, R^{\pi}, \gamma \rangle$.
 - Use Iterative Policy Evaluation
- Policy Iteration
- Value Iteration

Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup

$$v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_*$$

- Using synchronous backups,
 - At each iteration k + 1,
 - ▶ for all states $s \in S$, update $v_{k+1}(s)$ from $v_k(s')$ where s' is a successor state of s
- Notes:
 - We will discuss asynchronous backups later
 - Convergence to v_{π} will be proven at the end of the lecture
 - Review the Bellman-Ford algorithm for the shortest path problem.

The Shortest Path Problem

- A very simple MDP problem with
 - deterministic state transition \mathcal{P} .
- A good example to get a quick idea about why it works.
 (see Cormen's Algorithm textbook)

Algorithms for the Shortest Path Problem

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

- Bellman-Ford Algorithm:
 - Simple, but it works.
 - ▶ All are based on Relexation

- BELLMAN-FORD(G, w, s)
- 1 INITIALIZE-SINGLE-SOURCE (G, s)
- 2 **for** i = 1 **to** |G.V| 1
 - for each edge $(u, v) \in G.E$
- 4 RELAX(u, v, w)
- 5 **for** each edge $(u, v) \in G.E$
- 6 **if** v.d > u.d + w(u, v)
- 7 **return** FALSE
- return TRUE

- Dijkstra Algorithm:
 - Complex, but faster.
- Note:
 - The concept of Iterative Policy Evaluation is based on Bellman Ford.

Iterative Policy Evaluation

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \ v_k(s') \right)$$

$$\boldsymbol{v}^{k+1} = \boldsymbol{\mathcal{R}}^{\pi} + \gamma \boldsymbol{\mathcal{P}}^{\pi} \boldsymbol{v}^{k}$$

Example: Evaluating a Random Policy in the Small Gridworld

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

r = -1 on all transitions

- States:
 - Nonterminal states 1, ..., 14
 - One terminal state (shown twice as shaded squares)
- Actions
 - Four directional moves
 - leading out of the grid leave state unchanged
- Reward
 - -1 until the terminal state is reached
- Undiscounted: episodic MDP ($\gamma = 1$)
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation in Small Gridworld (I)

 $v_{m{k}}$ for the Random Policy

Greedy Policy w.r.t. v_k

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

k = 1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

optimal

policy

Iterative Policy Evaluation in Small Gridworld (2)

k = 3

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

k = 10

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

 $k = \infty$

×	0.0	-14.	-20.	-22.
	-14.	-18.	-20.	-20.
	-20.	-20.	-18.	-14.
	-22.	-20.	-14.	0.0

How to Improve a Policy

- Definition of policy improvement
 - Let π and π' be any pair of deterministic policies
 - ► For all $s \in S$, " $\pi(s)$ performs better than $\pi'(s)$ ". (We will see example)
- Given a policy π
 - Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

- Improve the policy by acting greedily with respect to v_{π} $\pi' = \text{greedy}(v_{\pi})$

Notes:

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to π^*

Policy Iteration

- Policy evaluation \rightarrow Estimate v_{π}
 - Iterative policy evaluation
- Policy improvement \rightarrow Generate $\pi' \geq \pi$
 - Greedy policy improvement

Proof of Policy Improvement

- Consider a deterministic policy, $a = \pi(s)$
- We can improve the policy by acting greedily

$$\pi'(s) = \underset{a \in A}{\operatorname{argmax}} q_{\pi}(s, a)$$

This improves the value from any state s over one step, $q_{\pi}(s, \pi'(s)) = \max_{\alpha \in A} q_{\pi}(s, \alpha) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$

• It therefore improves the value function, $v_{\pi'}(s) \ge v_{\pi}(s)$.

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s]
\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_{t} = s]
\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi}(S_{t+2}, \pi'(S_{t+2})) | S_{t} = s]
\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \cdots | S_{t} = s] = v_{\pi'}(s)$$

Converge of Policy Improvement

- If improvements stop,
 - That is, for $q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$ • "\geq" becomes "=" when stopping.
- Then the Bellman optimality equation has been satisfied $v_{\pi}(s) = \max_{a \in A} q_{\pi}(s, a)$
- This implies $v_{\pi}(s) = v_{*}(s)$ for all $s \in S$
- The above proves that π will converge to an optimal policy.

Variations of Policy Iteration

• Questions:

- Does policy evaluation need to converge to v_{π} ?
- Should we introduce a stopping condition, e.g. ∈-convergence of value function?
- Simply stop after k iterations of iterative policy evaluation?
 - For example, in the small gridworld k = 3 was sucient to achieve optimal policy
 - Why not update policy every iteration? i.e. stop after k = 1
- This is equivalent to value iteration (next section)

Generalized Policy Iteration

- Policy evaluation \rightarrow Estimate v_{π}
 - Any policy evaluation algorithm
- Policy improvement \rightarrow Generate $\pi' \geq \pi$
 - Any policy improvement algorithm

Principle of Optimality

- Theorem (Principle of Optimality)
 - A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if
 - For any state s' reachable from s, π achieves the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

Deterministic Value Iteration

- If we know the (optimal) solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in A} \left(R_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \ v_*(s') \right)$$

- Intuition:
 - Start with final rewards and work backwards
 - apply these updates iteratively
- Notes:
 - Still works with loopy, stochastic MDPs
 - Like most DP problems. (e.g., shortest path problem)

Value Iteration

- Problem:
 - find optimal policy π
- Solution: directly find the optimal v_* without π .
 - iterative application of Bellman optimality backup

$$v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_*$$

- Using synchronous backups (like Bellman-Ford)
 - At each iteration k+1
 - ▶ For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy

Value Iteration

$$v_{n+1}(s) = \max_{a \in A} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \ v_n(s') \right)$$

or:

$$V^{(n+1)}(s) = \max_{a \in \mathcal{A}} \left(\mathbb{E}_{s'|s,a} \left[r + \gamma V^{(n)}(s') \right] \right)$$

Operator View

Value iteration update

$$V^{(n+1)}(s) = \max_{a \in \mathcal{A}} \left(\mathbb{E}_{s'|s,a} \left[r + \gamma V^{(n)}(s') \right] \right)$$

- It can be viewed as:
 - A function $\mathcal{T}: \mathcal{S} \to \mathcal{S}$.
 - Called backup operator.

$$\begin{split} &[\mathcal{T}V](s) = \max_{a \in \mathcal{A}} \bigl(\mathbb{E}_{s'|s,a}[r + \gamma V(s')]\bigr) \\ &V^{(n+1)} = \mathcal{T}V^{(n)} \end{split}$$

(Let V be an array of v(s))

Algorithm Value Iteration

Initialize $V^{(0)}$ arbitrarily.

for n = 0, 1, 2, ... until termination condition do $V^{(n+1)} = TV^{(n)}$

end

Value Function Space

- Consider the vector space *V* over value functions
 - There are |S| dimensions
 - Each point in this space fully species a value function v(s)
- What does a Bellman backup do to points in this space?
 - It brings value functions closer
 - Therefore the backups must converge on a unique solution

Value Function ∞-Norm

- We will measure distance between state-value functions u and v by the ∞ -norm
 - i.e. the largest difference between state values, $||U V||_{\infty} = \max_{s} |u(s) v(s)|$
- Let $\delta = ||(U V)||_{\infty}$ - $u(s) - v(s) \le \delta$ for all s

Contraction for Bellman Optimality Backup

- Bellman optimality backup operator \mathcal{T} is a γ -contraction.
- Proof: Since

$$\max_{a \in \mathcal{A}} (x(a)) - \max_{a \in \mathcal{A}} (y(a)) \le \max_{a \in \mathcal{A}} (x(a) - y(a))$$

• we have $||\mathcal{T}U - \mathcal{T}V||_{\infty}$

$$= ||\max_{a \in \mathcal{A}} (\mathcal{R}^a + \gamma \, \mathcal{P}^a U) - \max_{a \in \mathcal{A}} (\mathcal{R}^a + \gamma \, \mathcal{P}^a V)||_{\infty}$$

$$\leq ||\max_{\alpha \in \mathcal{A}} [(\mathcal{R}^a + \gamma \, \mathcal{P}^a U) - (\mathcal{R}^a + \gamma \, \mathcal{P}^a V)]||_{\infty}$$

$$= ||\max_{a \in \mathcal{A}} [\gamma \mathcal{P}^{a}(U - V)]||_{\infty} = \gamma ||\max_{a \in \mathcal{A}} [\mathcal{P}^{a}(U - V)]||_{\infty}$$

$$\leq \gamma \delta = \gamma ||(U - V)||_{\infty}$$

- Note: $(\mathcal{P}_{S:.}^{a}(U-V)) \leq \delta$ for all s
 - $\rightarrow ||\mathcal{P}^a(U-V)||_{\infty} \leq \delta$
 - ▶ For \mathcal{P}^a , each row of matrix sums to 1.

Contraction Mapping Theorem

• Backup operator \mathcal{T} is a γ -contraction with modulus γ (< 1) under ∞ -norm

$$||\mathcal{T}U - \mathcal{T}V||_{\infty} \le \gamma ||U - V||_{\infty}$$

- By contraction-mapping principle, it has a fixed point V^*
 - by iterating

$$V, \mathcal{T}V, \mathcal{T}^2V, ... \rightarrow V^*$$

• Proof:

$$||\mathcal{T}V - \mathcal{T}V^*||_{\infty} \leq \gamma ||V - V^*||_{\infty}$$

- Since $\mathcal{T}V^* = V^*$, $||\mathcal{T}V - V^*||_{\infty} \le \gamma ||V - V^*||_{\infty}$
- By recurrence, $||\mathcal{T}^n V V^*||_{\infty} \le \gamma ||\mathcal{T}^{n-1} V V^*||_{\infty} \le \cdots \le \gamma^n ||V V^*||_{\infty}$
- Since $\gamma^n \to 0$, $||\mathcal{T}^n V V^*||_{\infty} \to 0$.
- That is, $\mathcal{T}^n V \to V^*$

Policy Evaluation

• Problem: how to evaluate fixed policy π :

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma V^{\pi}(S_{t+1}) | S_t = s]$$

Backwards recursion involves a backup operation

$$V^{(k+1)} = \mathcal{T}^{\pi}V^{(k)}$$

- \mathcal{T}^{π} is defined as:

$$[\mathcal{T}^{\pi}V](s) = \mathbb{E}_{s'|s,a=\pi(s)}[r + \gamma V(s')]$$

- \mathcal{T}^{π} is also a contraction with modulus γ , sequence $V, \mathcal{T}^{\pi}V, (\mathcal{T}^{\pi})^{2}V, (\mathcal{T}^{\pi})^{3}V, ... \rightarrow V^{\pi}$
- $V = T^{\pi}V$ is a linear equation that we can solve directly.

Contraction for Bellman Expectation Backup

- Bellman Expectation Backup operator \mathcal{T}^{π} is a γ -contraction,
- Proof:

$$\begin{aligned} \left| |\mathcal{T}^{\pi}U - \mathcal{T}^{\pi}V| \right|_{\infty} &= ||(\mathcal{R}^{\pi} + \gamma \, \mathcal{P}^{\pi}U) - (\mathcal{R}^{\pi} + \gamma \, \mathcal{P}^{\pi}V)||_{\infty} \\ &= ||\gamma \, \mathcal{P}^{\pi}(U - V)||_{\infty} \\ &\leq \gamma \delta = \gamma ||(U - V)||_{\infty} \end{aligned}$$

- Note:

- $(\mathcal{P}_{s::}^{\pi}(U-V)) \leq \delta$ for all s• $||\mathcal{P}^{\pi}(U-V)||_{\infty} \leq \delta$
 - For \mathcal{P}^{π} , each row of matrix sums to 1.

Policy Iteration: Overview

- Alternate between
 - Evaluate policy $\pi \Rightarrow V^{\pi}$
 - Set new policy to be greedy policy for V^{π}

$$\pi(s) = \operatorname*{argmax}_{a} \mathbb{E}_{s'|s,a} [R_{t+1} + \gamma V^{\pi}(s')]$$

- Guaranteed to converge to optimal policy and value function in a finite number of iterations, when $\gamma < 1$
- Value function converges faster than in value iteration

```
Algorithm Policy Iteration
```

```
Initialize \pi^{(0)} arbitrarily.
```

for n = 1, 2, ... until termination condition do

$$V^{(n+1)} = \text{Solve}\left[V = \mathcal{T}^{\pi^{(n-1)}}V\right]$$

 $\pi^{(n)} = GV^{(n)}$ G: a greedy mapping function.

end

Modified Policy Iteration

• Update π to be the greedy policy, then value function with k backups (k-step lookahead)

```
Algorithm Modified Policy Iteration
Initialize V^{(0)} arbitrarily.

for n=1, 2, \ldots until termination condition do
\pi^{(n+1)} = \mathcal{G}V^{(n)}
V^{(n+1)} = \left(\mathcal{T}^{\pi^{(n+1)}}\right)^k V^{(n)}, \text{ for integer } k \geq 1.
end
```

- k = 1: value iteration
- $k = \infty$: policy iteration

Exercise

- What if $\gamma = 1$?
 - Hint: Like The Shortest Path Problem
 - ▶ The shortest path to node 0.

