VECTOR CALCULUS

Jonathan Gai

24th March 2022

Contents

1 Curves

1.1	Differentiating the Curve	 3

21 Jan. 10:00

2

Problem. Why do we do Vector Calculus?

- 1. Calculus is important, and we want to apply it to a wider range of functions.
- 2. It is a tool that is needed throughout quantitative sciences.

Lecture notes are online.

Lecture 1: Introduction

We will learn to differentiate and integrate function (or maps) of the form

$$f: \mathbb{R}^m \to \mathbb{R}^n$$
.

An element of \mathbb{R}^m or \mathbb{R}^n is a vector, so the subject is called vector calculus.

We present some examples of multivariable functions. In general, for a physicist, there are two types of functions, ones where the domain represents a physical space and the ones where the codomain represents a physical space.

1. A function $f : \mathbb{R} \to \mathbb{R}^n$ defines a *curve* in \mathbb{R}^n .

In physics, we might think of \mathbb{R} as time and \mathbb{R}^n as space and write this as

$$f: t \mapsto \mathbf{x}(t)$$
 with $\mathbf{x} \in \mathbb{R}^n$.

(Obviously we should take n = 3).

Generalizing, a map

$$f: \mathbb{R}^2 \to \mathbb{R}^n$$

defines a *surface* in \mathbb{R}^n , and so on.

2. In other applications, the domain \mathbb{R}^m might be viewed as physical space. For example, in physics a *scalar fielid* is a map

$$f: \mathbb{R}^3 \to \mathbb{R}$$
.

Example. The temperature T(x) is a scalar field, as is the Higgs Field

A vector field is a map

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

where the domain is physical space and the codomain is something more abstract.

Example. The electric field E(x) and magnetic field B(x) are vector fields.

1 Curves

We consider maps of the form

$$f: \mathbb{R} \to \mathbb{R}^n$$
.

We assign a coordinate t to \mathbb{R} and the Cartesian coordinates on \mathbb{R}^n

$$\mathbf{x} = (x^1, \dots, x^n) = x^i \mathbf{e}_i$$

where \mathbf{e}_i is orthonormal basis such that $\mathbf{e}_i \mathbf{e}_j = \delta_{ij}$. (For \mathbb{R}^3) we also use notation $\{\mathbf{e}_i\} = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$.

The image of the function f is a *parameterised curve* $\mathbf{x}(t)$, with t the parameter. We will call the curve C.

Example. Here we give some familiar examples of parameterised curves.

1. Consider the map $\mathbb{R} \to \mathbb{R}^3$ given by

$$\mathbf{x}(t) = (at, bt^2, 0).$$

The curve *C* is the parabola $ay = bx^2$ in the plane z = 0.

Note. When plotting the curve, we lose information about the parameter t.

2. Consider $\mathbf{x}(t) = (\cos t, \sin t, t)$.

The curve *C* is a helix. The choice of parameterisation is not unique. For example, the map $\mathbf{x}(t) = (\cos \lambda t, \sin \lambda t, \lambda t)$ gives exactly the same helix.

Sometimes the choice of parameterisation matters.

Example. If *t* is time and $\mathbf{x}(t)$ is position, the velocity is proportional to λ .

But we will see that some questions are independent of the choice of parameterisation.

1.1 Differentiating the Curve

A vector function $\mathbf{x}(t)$ is *differentiable* at t if as $\delta t \to 0$, we have

$$\mathbf{x}(t+\delta t) - \mathbf{x}(t) = \dot{\mathbf{x}}(t)\delta t + O(\delta t^2).$$

Note. "Big-O" notation $O(\delta t^2)$ means terms are proportional to δt^2 or smaller.

In physics, the dot is usually used for time derivatives, and the prime is used for spacial derivatives. In math, these are used interchangeably.

We write

$$\delta \mathbf{x}(t) = \mathbf{x}(t + \delta t) - \mathbf{x}(t),$$

and the derivative is then

$$\dot{\mathbf{x}} = \frac{d\mathbf{x}}{dt} := \lim_{\delta t \to 0} \frac{\delta \mathbf{x}}{dt}.$$

Lecture 2 24 Jan. 10:00

If we're in Cartesian, then we just differentiate vector components

$$\mathbf{x}(t) = x^i(t)\mathbf{e}_i \implies \dot{\mathbf{x}}(t) = \dot{\mathbf{x}}^i\mathbf{e}_i.$$

We also have the identities

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{f}\mathbf{g}) = \dot{\mathbf{f}}g + f\dot{\mathbf{g}},$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{f}\mathbf{g}) = \dot{\mathbf{f}}g + f\dot{\mathbf{g}},$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{f}\mathbf{g}) = \dot{\mathbf{f}}g + f\dot{\mathbf{g}},$$

which can be proved by applying the product rule to the component.

Lecture 3 26 Jan. 10:00