2022-2023 MP2I

$m \grave{A}$ chercher pour lundi 21/11/2022, corrigé

TD 9:

Exercice 6.

1) On a $i\mathbb{R} = \{i\theta, \ \theta \in \mathbb{R}\}$. On a alors :

$$f(i\mathbb{R}) = \{ f(i\theta), \ \theta \in \mathbb{R} \}.$$

Or, pour tout $\theta \in \mathbb{R}$,

$$\begin{array}{rcl} f(i\theta) & = & e^{i\theta} + e^{-i\theta} \\ & = & 2\cos(\theta). \end{array}$$

Puisque cos est surjective de \mathbb{R} dans [-1,1], on en déduit que $\{2\cos(\theta), \ \theta \in \mathbb{R}\} = [-2,2]$. On a donc :

$$f(i\mathbb{R}) = [-2, 2].$$

Pour le représenter, il faudrait tracer le plan complexe (donc \mathbb{C}) et tracer uniquement le segment [-2,2] (sur l'axe des réels donc). Attention à ne pas tracer le graphe de la fonction cosinus!

2) On a $\mathbb{R} = \{z \in \mathbb{C} / \operatorname{Im}(z) = 0\}$. On a donc :

$$\begin{array}{lll} f^{-1}(\mathbb{R}) & = & \{z \in \mathbb{C} \ / \ \mathrm{Im}(f(z)) = 0\} \\ & = & \{z \in \mathbb{C} \ / \ \mathrm{Im}(e^z + e^{-z}) = 0\} \\ & = & \{x + iy \in \mathbb{C} \ / \ \mathrm{Im}(e^x e^{iy} + e^{-x} e^{-iy}) = 0\} \\ & = & \{x + iy \in \mathbb{C} \ / \ \sin(y)(e^x - e^{-x}) = 0\}. \end{array}$$

On a $\sin(y) = 0 \Leftrightarrow y \equiv 0$ [π] et $e^x - e^{-x} = 0 \Leftrightarrow x = 0$. On en déduit que $f^{-1}(\mathbb{R})$ est la réunion des droites d'équation $y = k\pi$ avec $k \in \mathbb{Z}$ et de la droite d'équation x = 0.

Exercice 13. m

1) La réflexivité est vraie car si on prend n = 1, on a bien x = x.

Pour la transitivité, soient $x, y, z \in \mathbb{R}_+^*$ tels que $x\mathcal{R}y$ et $y\mathcal{R}z$. Il existe alors $n, m \in \mathbb{N}^*$ tels que $y = x^n$ et $z = y^m$. On a donc $z = (x^n)^m = x^{nm}$. On a $nm \in \mathbb{N}^*$ par produit d'entiers donc on a bien $x\mathcal{R}z$.

Enfin, pour l'antisymétrie, soient $x, y \in \mathbb{R}_+^*$ tels que $x\mathcal{R}y$ et $y\mathcal{R}x$. Il existe donc $n, m \in \mathbb{N}^*$ tels que $y = x^n$ et $x = y^m$. On a donc $y = y^{nm}$. En prenant le logarithme (on est sur \mathbb{R}_+^*), on a donc $\ln(y) = nm \ln(y)$. On a donc deux possibilités :

- Si $y \neq 1$, alors $\ln(y) \neq 0$. On a donc nm = 1 et puisque n et m sont des entiers positifs, on a donc n = m = 1. On en déduit donc que y = x.
- Si y=1, alors puisque $x=y^m$, on a x=1. On a donc bien y=x.

Dans tous les cas, on a x = y donc \mathcal{R} est bien antisymétrique.

On a donc bien \mathcal{R} qui est une relation d'ordre.

2) Cette relation d'ordre n'est pas totale. Prenons par exemple x=1 et y=2. Il n'existe alors aucun $n \in \mathbb{N}^*$ tel que $1=2^n$ (car n>0) ni tel que $2=1^n=1$. On a donc ni $x\mathcal{R}y$, ni $y\mathcal{R}x$. La relation d'ordre est donc partielle.

TD 8:

Exercice 15.

1) On trouve $S = \{x \mapsto \lambda e^{-x^2}, \ \lambda \in \mathbb{R}\}$. On veut y(0) = 1 donc on a $\lambda = 1$.

2) On trouve
$$S = \{x \mapsto \lambda \cos(x) - \cos^2(x), \ \lambda \in \mathbb{R}\}$$
. En effet, pour l'équation homogène, on a $\int_0^x \tan(t) dt = [-\ln(|\cos(t)|)]^x = -\ln(\cos(x))$ ce qui donne $y_{EH}(x) = \lambda e^{\ln(\cos(x))} = \lambda \cos(x), \ \lambda \in \mathbb{R}$. On a bien $\cos(x) > 0$ sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

Pour une solution particulière, on la cherche sous la forme $y_p(x) = \lambda(x)\cos(x)$ avec λ dérivable sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$. En injectant dans l'équation, on trouve :

$$\lambda'(x)\cos(x) + 0 = \sin(x)\cos(x) \Leftrightarrow \lambda'(x) = \sin(x).$$

On a donc $\lambda(x) = -\cos(x)$ qui convient, d'où $y_p(x) = -\cos^2(x)$.

Avec la condition initiale, on trouve donc $\lambda = \frac{\sqrt{2}}{2}$. On en déduit le graphe :

Exercice 17. On utilise les méthodes du cours :

6) L'équation caractéristique associée est $X^2 + X + 2 = 0$. Les racines sont de la forme $\frac{-1 \pm i\sqrt{7}}{2}$. Les solutions de l'équation homogène sont donc de la forme $S_{EH} = \{\lambda \cos\left(\frac{\sqrt{7}}{2}x\right) + \mu e^{-x/2}\sin\left(\frac{\sqrt{7}}{2}x\right), \ \lambda, \mu \in \mathbb{R}^{2}\}$

 \mathbb{R} }. Pour la solution particulière, on cherche une solution sous la forme $y_p(x) = \lambda e^{2ix}$ et on prendra la partie imaginaire à la fin. On trouve alors que $-4\lambda + 2i\lambda + 2\lambda = 8$, ce qui entraine $\lambda = -2(1+i)$. On trouve donc comme solution particulière :

$$y_p(x) = \operatorname{Im}\left(-2(1+i) \times e^{2ix}\right) = -2\cos(2x) + -2\sin(2x).$$

L'ensemble des solutions est donc $S = \{\lambda \cos\left(\frac{\sqrt{7}}{2}x\right) + \mu e^{-x/2} \sin\left(\frac{\sqrt{7}}{2}x\right) + -2\cos(2x) - 2\sin(2x), \ \lambda, \mu \in \mathbb{R}\}.$

Exercice 19. On raisonne par analyse/synthèse. Si f est solution, alors on a $\forall x \in \mathbb{R}$, $f'(x) = \int_0^1 f(t)dt - f(x)$.

Ceci entraine que f' est dérivable (somme d'une constante et d'une fonction dérivable) donc f est deux fois dérivable. On a donc pour $x \in \mathbb{R}$, $f''(x) = -f'(x) \Leftrightarrow f''(x) + f'(x) = 0$. L'équation caractéristique associée à cette EDL d'ordre 2 est $X^2 + X = 0$. On en déduit qu'il existe des constantes $\lambda, \mu \in \mathbb{R}$ telles que $f: x \mapsto \lambda + \mu e^{-x}$.

On procède maintenant à la synthèse. Si f est de la forme $f: x \mapsto \lambda + \mu e^{-x}$ avec $\lambda, \mu \in \mathbb{R}$, alors f est bien dérivable (somme de fonctions dérivables) et on a pour $x \in \mathbb{R}$, $f'(x) + f(x) = \lambda$ et :

$$\int_0^1 f(t)dt = \lambda - \mu(e^{-1} - 1).$$

On a donc f solution ssi $\mu = 0$. Les seules solutions de l'équation sont donc les fonctions constantes.