Ex 1 Résoudre les équations suivantes :

a)
$$(\sqrt{x})^x = x^{\sqrt{x}}$$

b)
$$2^{x^3} = 3^{x^2}$$

c)
$$3^{2x} - 2^{x+1/2} = 2^{x+7/2} - 3^{2x-1}$$

d)
$$7^{x+4/3} - 5^{3x} = 2(7^{x+1/3} + 5^{3x-1})$$

e)
$$3^{x-1} - 2 + 3^{-x-1} = 0$$

Ex 2 Simplifier l'expression $x^{\frac{\ln(\ln x)}{\ln x}}$ en précisant pour quels réels x elles est définie.

Ex 3 Soit
$$x \in \mathbb{R}^*$$
, $a = e^{x^2}$ et $b = \frac{\ln\left(x^{1/x}\right)}{r}$. Simplifier a^b

Ex 4 Tracer dans un même repère orthonormé les courbes de $x\mapsto x^\pi,\ x\mapsto x^{-\pi}$ et $x\mapsto x^{1/\pi}$

Ex 5 On donne a > 0 et p, q deux réels non nuls.

Résoudre l'équation $\left(\frac{1+x}{1-x}\right)^q=a^p$ en précisant sur que domaine elle est définie.

Ex 6 Montrer que : $\forall x \in]0; 1[, x^x(1-x)^{1-x} \geqslant \frac{1}{2}$ (on pourra commencer par prendre le logarithme)

Ex 7 Etudier la fonction $f: x \mapsto x^x$

Ex 8 Soit
$$f: x \mapsto (\operatorname{ch} x)^{1/x}$$

- a) Quel est l'ensemble de définition de la fonction f
- b) Montrer que $\forall x > 0, \ 0 < \ln(\operatorname{ch} x) < x$, et en déduire un encadrement de f sur \mathbb{R}_+^* .
- c) Calculer la dérivée de f sur \mathbb{R}^* , puis son sens de variation.
- d) Calculer les limites de f en 0, $+\infty$ et $-\infty$.

Ex 9 Soit a > 0. Montrer que le point de contact de la tangente issue de O à la courbe de $f: x \mapsto a^x$ a une ordonnée indépendante de a.

Ex 10 Soient a un réel strictement positif **fixé** et l'équation (E) $a^x = x^a$

- a) Etudier sur $]0; +\infty[$ la fonction $f: x \mapsto \frac{\ln x}{x}$ et en déduire, suivant les valeurs du réel m, le nombre de solutions de l'équation f(x) = m.
- b) Montrer que l'équation (E) est équivalente à f(x) = f(a).
- c) En déduire l'ensemble des solutions de (E) lorsque $a \in]0,1[$ et lorsque a=e.
- d) On suppose que $a \in]1; e[\cup]e; +\infty[$. Combien (E) admet-elle de solutions ? Comparer ces solutions à a.

PCSI 1 Thiers 2019/2020