POLAR PLOTS

- (2) The polar plot of a simmoidal transfer functions is a plot of the magnitude of ayiw) versus the phase of ayiw) in polar coordinates as we is varied from a to as.
- A complex number may be expressed as X+iY, in cartesian co-ordinates and as $9e^{iQ}$, in polar co-ordinates where $9e^{iQ}$ and $9e^{iQ}$.

 Im

 Y

 Re
- 1 In measuring the phase, counter clockwise is referred to as possitive and clockwise as negative.
- (2) From a mathematical point of view, polar plat may be regarded as mapping of the pessitive half of the imaginary arms of the s-plane onto the plane of the function G(S).
- From any frequency w=w, the magnitude and phase angle of agiv,) are represented by a phasor that has magnitude [agiv,) and phase angle [agiv,), in the ab-plane

(2) In advantage in using a polar plot is that it depicts the frequency response characteristics of a system over the entire frequency range in a single plot.

(R) A disdduantage is that the plot does not clearly indicate the contributions of each of the individual factors of the OLTF.

1) Polar plat of 1 w

Then $\omega=0$, may = ∞ $\phi=-90^{\circ}$, ∞ [-90] Then $\omega\to\infty$, may = 0 $\phi=-90$, 0 [-90]

- The polar plot of ayw) = 1 is the negative imaginary arms.

2 Polar plot of jw

→ When
$$w=0$$
, mag = $\phi = 90^{\circ}$, $0[90]$
→ When $w\to\infty$, mag = $\phi = 90^{\circ}$, $\infty[90]$

- -> The polar plot of ayw) = jw, is the positive imaginary axis
- 3 Polan plot of 1 1+jwT
 - -> For the sinuroidal transfer function $a(j\omega) = \frac{1}{1+j\omega T}, \quad \text{Mag} = \frac{1}{\sqrt{1+\tilde{\omega}T^2}} \, \varphi = -\tan^2 \omega T$
 - -7 When W=0, 10
 - → When $\omega = \frac{1}{T}$, $\frac{1}{\sqrt{2}}$ $\frac{1-45}{}^{\circ}$
 - → When w→ 00, 0 [-90°
 - as w varies from 0 to as

-> When 60=0, 16°

-> When W=+, \(\frac{1}{2}\) [45°

47 When W → 80, 00 [90°

It is simply the upper half of the straight line paring through (1,0) in the complex plane and of parallel to the imaginary aris, as shown below

