START OF QUIZ Student ID: 18643544,Zhang,Cindy

Topic: Lecture 5 Source: Lecture 5

Why can we be confident that a low-rank approximation of a matrix contains the most important information in a document? (1)

Topic: Lecture 8 Source: Lecture 8

What is the intuition behind MAP? (1)

Topic: Lecture 7 Source: Lecture 7

Why do we generally care more about precision than recall in IR? (1)

Topic: Lecture 7 Source: Lecture 7

What is the purpose of an inverted index? (1)

Topic: Lecture 6 Source: Lecture 6

In class, we talked about bookstores and streaming algorithms classifying books / movies. How can we tell that they don't use a topic modeling algorithm (or, if you think they do, what would be some clues)? (1)

Topic: Lecture 6 Source: Lecture 6

In some ways, we could consider Beta / Theta distributions themselves to be an embedding of a topic / document. Explain, and explain how we might be able to leverage that. (2)

Topic: Lecture 8 Source: Lecture 8

In class (and in the lab) you saw some examples of using a language model for IR. How do you think we could incorporate an LLM into the IR pipeline? In what ways do you think an n-gram lm might be more appropriate? (2)

Topic: Lecture 5 Source: Lecture 5

We often weight our matrices using something like PMI or TF-IDF. Do you think it would make sense to do this after applying SVD? Why or why not? (2)

Topic: Long

Source: Lecture 7

Imagine that we have 2 information retrieval systems, and we are evaluating on the same test set, which has 10 relevant documents. The first system returns them in positions [1, 5, 7, 15, 25, 50, 60, 70, 71, 90]. The second returns the documents at positions [2, 3, 6, 8, 10, 62, 80, 83, 91, 95]. Make an argument for each system being better, and provide support for both. Explain which system you would rather use, and why. If there are any other considerations, list them. (3)

END OF QUIZ