# Équations différentielles : Existence et unicité des solutions

Olivier Fercoq

Télécom Paris - MACS205

## Problème de Cauchy

Équation sur la fonction  $y: I \to \mathbb{R}^m$ :

$$y(t_0) = y_0$$
  
 
$$y'(t) = f(t, y(t)), \forall t \in I.$$

#### Données du problème :

- ▶ l'intervalle de définition  $I \subset \mathbb{R}$
- ▶ la fonction  $f: \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^m$  continue en y et intégrable en t
- ▶ la condition initiale  $(t_0, y_0)$  où  $t_0 \in \mathring{I}$

### Exemple : les équations du mouvement

q est la position, V est l'énergie potentielle

$$mq'' = -\nabla V(q) \Leftrightarrow \begin{cases} mq' = p \\ p' = -\nabla V(q) \end{cases}$$
 $y = \begin{bmatrix} q \\ p \end{bmatrix} \in \mathbb{R}^6 \text{ et } f(t, y) = f\left(t, \begin{bmatrix} q \\ p \end{bmatrix}\right) = \begin{bmatrix} p/m \\ -\nabla V(q) \end{bmatrix}.$ 



#### Existence et unicité locale

### Theorem (Cauchy-Lipschitz)

Si  $f: I \times \mathbb{R}^m \to \mathbb{R}^m$  est localement lipschitzienne en y alors  $\exists T > 0$  et  $\exists ! y : [t_0 - T; t_0 + T] \to \mathbb{R}^m$  solution du problème de Cauchy.

- $f C^1 \Rightarrow f$  localement lipschitzienne
- Preuve : point fixe de Banach

### Unicité globale

#### Theorem (Unicité globale)

Soient  $y_1$  et  $y_2$  deux solutions de l'équation différentielle sur I (leur condition initiale peut être différente), avec f localement lipschitzienne en y. Si  $\exists t_1$  tel que  $y_1(t_1) = y_2(t_1)$ , alors  $y_1(t) = y_2(t)$ ,  $\forall t \in I$ .

 Les courbes sur le diagramme de phase ne se coupent pas

