DecissionTreeClassifier como algoritmo de árboles de decision

```
from sklearn.tree import DecisionTreeClassifier
```

Cargamos dataset

iris = load_iris()

#Dividimos entre entrenamiento y test

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, stratify=iris.target, random_state=42)

#Creamos el modelo

tree = DecisionTreeClassifier(random_state=0)

#Entrenamos los datos

tree.fit(X train, y train)

#Obtenemos rendimiento sobre datos de entrenamiento y sobre datos de test

print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))

Podemos visualizar la importancia de cada característica de una manera que sea similar a la manera que visualizamos los coeficientes en el modelo linear

Importancia de características

Podemos valorar la importancia de cada característica para la decisión que toma un árbol.

Visualización del árbol de decision

```
dot_data = StringIO.StringIO()
tree.export_graphviz(clf, out_file=dot_data,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
Image(graph.create_png())
```

