A BASIC REVIEW OF CHENICALS IN WATER

Ca "Combining power"
and electrical change on ion

CALCIUM

ATOMIC WEIGHT = 40 amm

= 40 grams/mole
mg/millimole

(ONE MOLE = 6.02×10^{23} molecules for ALL elements)

EQUIVALENT WEIGHT = 20 g/mol

CO3

CARBONATE MOLECULAR

WEIGHT

ATOMIC WEIGHT = C=12

MOLECULAR

60.0 g/mol

EQUIVALENT WEIGHT = ?

CONCENTRATION UNITS:

mass of chemical

Volume of water

For most water/waitewater constituents use

milligroms = mg liter L

Because one Liter ≈ 1000 g and 1000 mg in a gram

 $1 \frac{m_9}{L} \approx 1$ part per million

Likewise:

1 mg (microsrom) = 1 part per billion (PPb)

Blden Days: grains = fugeddaboutit ...

WATER/LIN ANALYSES ALMST ALVIAYS IN MJ/L. (metric)

However design is still often

IN U.S. units so DOSACES

(added chemicals) convenient in

pounds/GALLON

1 gal = 8.34 16

1 million gal = 1 ppm = 1 mg/L

= 8.34 16 = 1 mg/6

That is 8.34 15 in a million gallons yields a final conc. of 1 mg/L.

E.g. want 0.5 mg/L FLUORIDE in D/W Add (0.5)(8.34) = 4.17 15 per MG MORE ON "EQUIVALENTS"

1 EQ = 1 molyVALENCE

CO₃²⁻ + 2H⁺ -> H₂CO₃

VALENCE VALENCE
21+

BUT If WE NORMALIZE to Valence

them: 1 eq CO3 COMBINES WITH 1 eq Ht

2 1 mole CO3 + 1 Mole H+ 3 1 mole H2CO3

→ ½ nol + 1 mol → ½ mol

→ 1 eq + 1 eq → 1 eq

HOW DO"EQUIVALENT WEIGHTS"
WORKS

CO3 + 2H + -> H2CO3

CARBONATE HYDROGEN CARBONIC

TONE ACID

("PROTONS")

And we get protons from ACIDS

HCL -> H+ + CRHYDROCHLORIC CHLORIDE
ACID

Suppose we want to turn 100g of Caca, into Ca²⁺ + H₂Ca₂?

HCE + Caccy - Ca2+ + H2003

100 g CaCO3 = 2 "equivalents" of CaCO3

2 equivalents HCl $\Rightarrow \frac{(36.5 + 1.0) \text{g/mol}}{1 \text{ VALENCE}} = (37.5 \frac{9}{\text{eq}}) \times 2 \text{ eq}$ = 75 a HCl (ANS)

EQUIVALENTS ALSO "AUTOMATICALLY!"
SORT OUT ELECTRICAL CHARGE
BAGANCES

All water solutions are (overall) electrically neutral.

of the (-) ions

: Equivalents of Cations (plus ions)
= E Equivalents of anions (minus ions)

		na ni sina kalendara, kasasa k	
Ca ²⁺	40 mg/i	ZO.0 mag	2.8
Mg 2+	10 mg/L	12.2	0.82
Nat	11.7 mg/c	23.0	0.51 (2-3.51 meg/L
K+	7.0 mg/L	39,1	0.18).
HCG.	110 mg/L	61.0	1.90
Sou	67.2 mg/L	48.0	1.40 \ \ \ = 3.51
CL.	11.0 mg/L	35.5	0.31
	Na+ K+	Mg ²⁺ 10 mg/L Na ⁺ 11.7 mg/L K ⁺ 7.0 mg/L HCG: 110 mg/L Soa: 67.2 mg/L	Ca 40 mg/L 20.0 mg/s Mg ²⁺ 10 mg/L 12.2 Na ⁺ 11.7 mg/L 23.0 K ⁺ 7.0 mg/L 39.1 HCG: 110 mg/L 61.0 Son ²⁻ 67.2 mg/L 48.0

LAB ANALYSIS

meg/L BAR GRAPH

HELPS US SEE WHAT IS BALAIKING

WHAT

(Esp. useful for designing)
water softening)

EQUILIBRIUM REACTIONS

EXAMPLE: ADD Carbon dioxide to water:

$$(1)$$
CO₂ + (1) H₂O \Rightarrow (1) CO₃² + 2H⁺

REACTION RATES:

REVERSE RATE =
$$k_r [C]^c [O]^d$$
 statistical probability

AND AT EQUILIBRIUM:

$$: \frac{[C]^{c}[D]^{d}}{[A]^{n}[B]^{b}} = \frac{k_{f}}{k_{r}} = K_{equil}$$

$$\frac{[CO_3^{2^-}][H^+]^2}{[CO_2][H_2O]} = K = 7.2 \times 10^{-19} \text{ M}$$

= $(0^{-18.14})$

ACID-BASE EQUILIBRIA

Why is (newford) at PH = 7.00?

[1++] = 10-7.00

But the concentration of H2O is HUGE & ~ CONSTANT

$$\frac{1000 \text{ g}}{L} \times \frac{\text{mol}}{18 \text{ g}} = 55.4 \frac{\text{mol}}{L} \quad \text{So:} \left[H^{+}\right] \left[0H^{+}\right] = \left(18 \times 10^{-1}\right) \left(55.4\right)$$

$$\therefore \left[H^{+}\right] \left[0H^{-}\right] = 10^{14.0} \text{ M}^{2}$$

$$H_2O \Rightarrow H^+ + OH^-$$

$$[H^+] = [OH^-]$$

NEUTRAL SOLUTION

CITRIC ACID: H: Cit = H++ Cit
ADDS SOME EXTRA PROTONS [H+5]

Kw = [H+][OH-] ~ [NOOX MOVE H+ THAN PURE H20)

$$[OH^{-}] = \frac{K_{w}}{[N+7]} = \frac{10^{-14}}{10^{-4.7}} = \frac{10^{-9.9}}{10^{-9.9}} = \frac{1.3 \times 10^{-10}}{1.3 \times 10^{-10}}$$

HMMONIA STRIFFING & PH

FIGURE 2.3 Dependence of the ammonia fraction on pH (Example 2.8).

[A] [B] = K

AB-solid

Concentration of solid is meaningless
in solution, so define [AB] = 1.000

[A][B] = Ksp

SOLUBILITY PROBUCT

Example $CaF_2 = Ca^2 + 2F - [Ca^2][F]^{\frac{1}{2}} = 10^{-10.5}$

$$[C_a^{2+}] = S$$
 $(\zeta_{sp} = S \times (2s)^2 = 10^{-10.5} = 4s^3$
 $[F] = 2S$ $[C_a^{2+}] = 2 \times 10^4 M$ $[F] = 9 \times 10^4 M$

TABLE 2.3 Selected solubility-product constants at 25°C

Equilibrium equation	K _{sp} at 25°C	Significance in environmental engineering
$CaCO_3 \rightleftharpoons Ca^{2+} + CO_3^{2-}$	5 × 10 ⁻⁹	Hardness removal, scaling
$CaSO_4 \rightleftharpoons Ca^{2+} + SO_4^{2-}$	2×10^{-5}	Flue gas desulfurization
$Cu(OH)_2 \rightleftharpoons Cu^{2+} + 2OH^-$	2×10^{-19}	Heavy metal removal
$Al(OH)_3 \rightleftharpoons Al^{3+} + 3OH^-$	1×10^{-32}	Coagulation
$Ca_3(PO_4)_2 \rightleftharpoons 3Ca^{2+} + 2PO_4^{3-}$	1×10^{-27}	Phosphate removal
$CaF_2 \rightleftharpoons Ca^{2+} + 2F^-$	3×10^{-11}	Fluoridation

Source: Sawyer et. al. (1994).

SOLUBILITY OF GASES IN HO

TABLE 2.4 Henry's Law Coefficients, KH (mol/L. atm)

T (°C)		CO ₂	O ₂
0		0.076425	0.0021812
5	7 (1975) 7 (1974) 1 (1974)	0.063532	0.0019126
10	4-11-11-11-11	0.053270	0.0016963
15		0.045463	0.0015236
20		0.039172	0.0013840
25		0.033363	0.0012630