Sentiment Analysis of Federal Reserve Announcements and its Impact on the Sector ETFs

•••

Sz-Je Wang Sz-An Wang

Overview

1. Research Question and Hypothesis

2. Necessary Data

3. How we load and analyze data

Research Question

How do Federal Reserve announcements influence the stock market according to Natural language processing, particularly the ETFs across various sectors?

Specific Research Question

- What is the overall sentiment in the each announcements?
- How do these sentiment scores correlate with subsequent stock market movements for the sector ETFs?
- Can we predict stock market reactions based on the sentiment derived from announcements?

Hypothesis

- Positive sentiment score in announcements leads to a positive stock market reaction.
- Negative sentiment score in announcements leads to a negative stock market reaction.

Predictions

According to the hypotheses above, we believe that every time when the Federal Reserve announcements related to a piece of good news are released, the stock of companies will show a good trend and vice versa. Whether it has a piece of good news is determined by the sentiment score that we measure.

Necessary Data

- Observation Federal Reserve announcements and sector ETFs.
- Sample Period Recent 10 most significant Federal Reserve announcements.
- Necessary Variables Sentiment scores, stock prices, and returns.

Sentiment list

Positive word

benefited
continue
outperformance
increased
excellent
growth
increase
driving
helping
drove
grew
performance

Negative word

underperformance
goodwill
decreased
trying
resolve
term
believe
experienced
slipped
slowed
longer
affecting
declines

1/10/2023	Panel on "Central Bank Independence and the Mandate—Evolving Views" ■ Watch Live •
	-
	Chair Jerome H. Powell
	At the Symposium on Central Bank Independence, Sveriges Riksbank, Stockholm,
	Sweden
11/30/2022	Inflation and the Labor Market
	■ Watch Live 🖪
	Chair Jerome H. Powell
	At the Hutchins Center on Fiscal and Monetary Policy, Brookings Institution,
	Washington, D.C.

Yahoo Finance

Financials: Financial Select Sector SPDR Fund (XLF)

Technology: Technology Select Sector SPDR Fund (XLK)

Healthcare: Health Care Select Sector SPDR Fund (XLV)

Consumer Discretionary: Consumer Discretionary Select Sector SPDR Fund (XLY)

Consumer Staples: Consumer Staples Select Sector SPDR Fund (XLP)

Industrials: Industrial Select Sector SPDR Fund (XLI)

Energy: Energy Select Sector SPDR Fund (XLE)

Materials: Materials Select Sector SPDR Fund (XLB)

Utilities: Utilities Select Sector SPDR Fund (XLU)

Real Estate: Real Estate Select Sector SPDR Fund (XLRE)

Communication Services: Communication Services Select Sector SPDR Fund (XLC)

How we Load and Analyze data

1. Visualization

2. Sentiment Score

3. Analysis

Visualization.ipynb

Merge Overall Data

	Ticker	Date	Open	High	Low	Close	Adj Close	Volume	Return
0	XLB	2021/9/7	85.070000	85.129997	84.690002	84.809998	81.769379	6932300	NaN
1	XLB	2021/9/8	84.559998	84.639999	83.709999	84.000000	80.988419	6210000	-0.0100
2	XLB	2021/9/9	83.760002	84.599998	83.760002	84.029999	81.017342	4935700	0.0000
3	XLB	2021/9/10	84.419998	85.050003	83.959999	84.010002	80.998062	8890100	0.0000
4	XLB	2021/9/13	84.750000	85.000000	83.459999	83.989998	80.978775	7610000	0.0000
	•••							•••	
3834	XLC	2023/1/19	50.970001	51.755001	50.799999	51.490002	51.349598	7387400	0.0051
3835	XLC	2023/1/20	51.910000	53.155998	51.770000	53.099998	52.955204	4874200	0.0313
3836	XLC	2023/1/23	53.150002	54.154999	53.020000	54.029999	53.882671	6279000	0.0175
3837	XLC	2023/1/24	53.580002	54.650002	53.412998	53.880001	53.733082	8867000	-0.0028
3838	XLC	2023/1/25	53.500000	54.189999	53.310001	54.070000	53.922562	4976800	0.0035
3839 rc	3839 rows × 9 columns								

```
# Define the events
event dates = {'Event 1': ['2021/09/14', '2021/10/04'],
               'Event 2': ['2021/10/30', '2021/11/19'],
               'Event 3': ['2021/11/19', '2021/12/09'],
               'Event 4': ['2022/03/11', '2022/03/31'],
               'Event 5': ['2022/05/14', '2022/06/03'],
               'Event 6': ['2022/06/07', '2022/06/27'],
               'Event 7': ['2022/08/16', '2022/09/05'],
               'Event 8': ['2022/09/18', '2022/10/08'],
               'Event 9': ['2022/11/20', '2022/12/10'],
               'Event 10': ['2023/01/01', '2023/01/21']}
# Convert date strings to datetime objects
for event, dates in event dates.items():
    event dates[event] = [pd.to datetime(date) for date in dates]
# Add Event column to returns DataFrame
returns['Event'] = ''
for event, dates in event dates.items():
    start date, end date = dates
    mask = (returns['Date'] >= start date - pd.Timedelta(days=10)) & \
           (returns['Date'] <= end date + pd.Timedelta(days=10))</pre>
    returns.loc[mask, 'Event'] = event
returns
returns.to csv('analysis csv file/returns.csv', index=False)
```

Cumulative excess return for that asset during that event's time window (from t-10 up to t+10)

Output

		Ticker	Date	Return	Event
	0	XLB	2021-09-14	-0.0110	Event 1
	1	XLE	2021-09-14	-0.0140	Event 1
	2	XLF	2021-09-14	-0.0134	Event 1
	3	XLI	2021-09-14	-0.0120	Event 1
	4	XLK	2021-09-14	-0.0010	Event 1
	•••				
37	746	XLRE	2023-01-20	0.0116	Event 10
37	747	XLU	2023-01-20	0.0060	Event 10
37	748	XLV	2023-01-20	0.0050	Event 10
37	749	XLY	2023-01-20	0.0242	Event 10
37	750	XLC	2023-01-20	0.0313	Event 10

Time Series for all Ticker from 2021.9 to 2023.1 (10 announcement period) (most beautiful one)

Fed Announcement Event 9 (2022.11.30) About Lowering Interest Rate

Time series for XLB (Materials)

Sentiment Analysis.ipynb

```
fed_20210924 = PyPDF2.PdfReader('Fed/20210924.pdf')
fed_20211109 = PyPDF2.PdfReader('Fed/20211109.pdf')
fed_20211129 = PyPDF2.PdfReader('Fed/20211129.pdf')
fed_20220321 = PyPDF2.PdfReader('Fed/20220321.pdf')
fed_20220524 = PyPDF2.PdfReader('Fed/20220524.pdf')
fed_20220617 = PyPDF2.PdfReader('Fed/20220617.pdf')
fed_20220826 = PyPDF2.PdfReader('Fed/20220826.pdf')
fed_20220928 = PyPDF2.PdfReader('Fed/20220928.pdf')
fed_20221130 = PyPDF2.PdfReader('Fed/20221130.pdf')
fed_20230110 = PyPDF2.PdfReader('Fed/20230110.pdf')
```

```
Date SentimentScore
0 2021-09-24
1 2021-11-09
                           26
2 2021-11-29
                           21
3 2022-03-21
4 2022-05-24
                           28
5 2022-06-17
6 2022-08-26
                           18
7 2022-09-28
                           12
8 2022-11-30
                           28
9 2023-01-10
```

```
positive_words = load_sentiment_words('Sentiment/ML_positive_unigram.txt')
negative_words = load_sentiment_words('Sentiment/ML_negative_unigram.txt')

# Calculate sentiment score using custom sentiment word lists

def custom_sentiment_score(text):
    tokenized_text = word_tokenize(text)
    positive_count = sum([1 for word in tokenized_text if word.lower() in positive_words])
    negative_count = sum([1 for word in tokenized_text if word.lower() in negative_words])
    return positive_count - negative_count
```

Analysis.ipynb

Returns

22	Ticker	Date	Return	Event	
0	XLB	2021-09-14	-0.0110	Event 1	
1	XLE	2021-09-14	-0.0140	Event 1	
2	XLF	2021-09-14	-0.0134	Event 1	
3	XLI	2021-09-14	-0.0120	Event 1	
4	XLK	2021-09-14	-0.0010	Event 1	

3746	XLRE	2023-01-20	0.0116	Event 10	
3747	XLU	2023-01-20	0.0060	Event 10	
3748	XLV	2023-01-20	0.0050	Event 10	
3749	XLY	2023-01-20	0.0242	Event 10	
3750	XLC	2023-01-20	0.0313	Event 10	
3751 rows × 4 columns					

Date	SentimentScore
0 2021-09-24	8
1 2021-11-09	26
2 2021-11-29	21
3 2022-03-21	2
4 2022-05-24	28
5 2022-06-17	9
6 2022-08-26	18
7 2022-09-28	12
8 2022-11-30	28
9 2023-01-10	1

Sentiment Score

Code And Output

```
window = 10
event_dates = ['2021-09-24', '2021-11-09', '2021-11-29', '2022-03-21', '2022-05-24', '2022-06-17', '2022-08-26', '2022-09-28', '2022-01-30', '2023-01-11']
event_dates = [pd.Timestamp(date) for date in event_dates]
returns['Date'] = pd.to_datetime(returns['Date'])
for event date in event dates:
   before event = returns[returns['Date'] < event date].tail(window)</pre>
   after event = returns[returns['Date'] > event_date].head(window)
   mean_before = before_event['Return'].mean()
    std before = before_event['Return'].std()
    mean after = after event['Return'].mean()
    std after = after event['Return'].std()
    return_mean = (mean_before-mean_after)/mean_before
    return_std = (std_before-std_after)/std_before
    announce_date.loc[announce_date['Date'] == event_date, 'Return_mean'] = return_mean
    announce date.loc[announce date['Date'] == event date, 'Return Standard Deviation'] = return std
sentiment_score_df['Date'] = pd.to_datetime(sentiment_score_df['Date'])
merged df = pd.merge(announce date, sentiment score df, on='Date')
print(merged df)
corr_matrix = merged_df[['Return_mean', 'Return_Standard_Deviation', 'SentimentScore']].corr()
print(corr matrix)
```

D		D			
Date	Return_mean	Return_Stand	ard_Deviation	SentimentSc	ore
0 2021-09-24	0.936924		-0.298629		8
1 2021-11-09	-3.196928	-0.136439			
2 2021-11-29	0.069060		0.400765		21
3 2022-03-21	-0.106188		0.005310		2
4 2022-05-24	0.520890		-0.200474		28
5 2022-06-17	1.815041		0.313768		9
6 2022-08-26	1.290273		-0.577637		18
7 2022-09-28	-3.113639		-0.364481		12
8 2022-11-30	1.642191		0.699407		28
		Return_mean	Return_Standa	rd_Deviation	
Return_mean		1.000000		0.349404	1
Return_Standa	rd_Deviation	0.349404		1.000000	
SentimentScore		-0.063444		0.227383	
		SentimentSco	re		
Return mean		-0.063444			
Return_Standa	rd_Deviation	0.227383			
SentimentScor	e	1.000000			

Market Return!!!!

We regard 10 days before the announcement as before_event and 10 days after the announcement as after_event. Find out the return on their means and std for each announcement.

It seems like the relationship between them is not strong enough. And we then apply this mean and STD for each ETF.

FINAL RESULT

	Ticker	Metric	Return_mean_corr	Return_std_corr	SentimentScore_corr
0	XLB	Return_mean	1.000000	-0.250130	-0.411511
1	XLB	Return_std	-0.250130	1.000000	-0.160990
2	XLB	SentimentScore	-0.411511	-0.160990	1.000000
3	XLC	Return_mean	1.000000	-0.323311	-0.033343
4	XLC	Return_std	-0.323311	1.000000	-0.168661
5	XLC	SentimentScore	-0.033343	-0.168661	1.000000
6	XLE	Return_mean	1.000000	-0.015576	-0.451910
7	XLE	Return_std	-0.015576	1.000000	-0.392416
8	XLE	SentimentScore	-0.451910	-0.392416	1.000000

Correlation for each ETF According to Mean, STD, and Sentiment Score

Finding 2022-11-30

Utilities

XLU 2022-11-30 5.44444e-01 0.253182

28

Materials

XLB 2022-11-30

-2.333333

0.060507

28

Financials

XLF 2022-11-30

5.734694

-0.235137

28

Healthcare

XLV 2022-11-30 5.691489e-01

-0.405344

28

Consider the duration of maintaining restrictive interest rates to curb inflation.

Possibility of slowing down

the December meeting.

interest rate hikes as early as

THANK YOU