Linear Regression	
Simple linear Regress	så Model
yi= Bo+BIXi+Ei,	1=1,,n
Notation:	(Raybom)
Yi = ith observed value	of the response variable
yj= jth n	of the prectify variable [FXED]
N = Cample 9132	TEXED
B.= UNKNOWN intercept	parameter FIXED
B,= unknown Stope F	parameter (FIXED)
Ej z Nandon evror ter	ms [PANDIM]
	7=BotBix
	X

Oservations: D'Einplu": one predicte (x) veraiste 2) Mineans 7: is a linear fin of Bo & BI D 1= Bot B1 X17 + 21 Y= 30+B121+21 2 Yi= Bot Blog Xi + E; 3 /1 = Be + E

Model Assumptions · Xi's are fixed) (If not fixed, need random effects model.) E-1's must satisfy: ii. $Var(z_i) = \sigma^2$ (constant in x) i. t(Ei)=0 iii. Corlei, Ej) = 0 for itj L> error are uncorrelated $(\sqrt{2})$ $(0, 0^2)$ Lo weful or inference 3. Regressin Function The regression Protro g(x) = E(Y | X=x) = Bot B1X

The simple & line assumptions

we node The gral of estimating g(x) can be reduced to

estimating Bo & BI. Yi-Bot BIXI tai How to estimate so & B,? (2-2 11-70-BX The least Squares Principle is one way to do the $= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \times \frac{1}{2} \right)^{2}$ How can I minimize Q(B, B) = Z (yi-B-B) Xi)

Interpretatio : 9 = 34.5+0-44xi andieran Slope: Internet 0.44 in the none of "For every additional point a contrague a movre, we expect the audience restry to incresse by 0.44 points, on average. Intercept: 34,5 we expect on average a movie rated as a D by a critic to have an andieren rating of 34.5.

