Algoritmos y Estructuras de Datos **Tema 5: Sorting (Ordenación)**

Grado Imat. Escuela ICAI

January 2024

Algoritmos de Ordenación

Métodos directos simples

- Basados en inserción ⇒ Inserción directa, binaria
- Basados en selección ⇒ Selección directa
- Basados en intercambio ⇒ Intercambio directo (burbuja y sacudida)
- Basados en inserción ⇒ Algoritmo de Shell

Sistemas Sofisticados

- Basados en partición recursiva: Quicksort
- Basados en algoritmos no comparativos: BucketSort
- Algoritmos de ordenación múltiple: Radix Sort
- Basados en selección⇒ Montículo (Heapsort) (Basados en árboles)

Ordenando Secuencias de Objectos o Estructuras

La ordenación ser realiza en base a una clave (o jerarquía de claves, para resolver los empates)

Python hint

- Añade el método __gt__(object) a la clase, que retorna True is self es mayor que object
- alternativamente, da la función de comparación a la función de ordenación

Ejemplo: sorted(student_objects, key=attrgetter('age'))

Part I

Algoritmos Simples de Ordenación

Section 1

Algoritmos de Inserción y Selección

Direct Insertion Sort I

IDEA: toma un elemento de la conjunto desordenado e insértalo en la posición correcta de la zona ordenada

Sorting In-place Utilizando un vector de registros y ordenando sobre el mismo utilizando espacio auxiliar para un registro

Insertion Sort II

Insertion Sort Avanza la seccion ordenada, cogiendo el primero de la no ordenada y haciendo una búsqueda secuencial de la ubicación donde insertar el elemento seleccionado.

				I = 2					-
		Sorted		Unsorted					
		2	5	1	9	6	8	С	
		2	5	1	9	6	8	1	C=A[i]
			J=2-1						
J=1	1<5 ?	2	5	5	9	6	8	1	
J=0	1<2 ?	2	2	5	9	6	8	1	
J=-1		1 <		5	9	-6		- 1	
		_				_		_	
					I=3				
			Sorted		Unsorted				
		1	2	5	9	6		9	C=A[i]
				3	9	ь	ŏ	9	C-A[i]

Insertion Sort II: algoritmo

```
function DirectInsertionSort(aList)
 2:
         for i=1 to len(aList)-1 do
 3:
             carta \leftarrow aList[i]
                                                                              ▷ selecciona siguiente carta
 4:
             i \leftarrow i - 1
                                                                              ▷ busca punto de inserción
 5:
             while i > 0 and carta < aList[j] do
                                                                                        ▷ comparando v ...
 6:
                 aList[i+1] \leftarrow aList[i]

⊳ shifting data

 7:
                 i \leftarrow i - 1
 8:
             end while
 9:
             aList[j+1] \leftarrow carta
                                                                               ▷ Inserta carta en el punto
10:
         end for
11:
         return
```

Complejidad ??

12: end function

- For en línea 2 es de O(N)
- While en línea 5 es de O(N)
- Insertion Sort is de $\mathbf{O}(N) \times \mathbf{O}(N) = \mathbf{O}(N^2)$

Insertion Sort Mejorado: Usando búsqueda binaria

La inserción directa puede ser mejorada utilizando la búsqueda binaria, para encontrar la posición de la inserción más rápidamente.

Cuál es la complejidad ahora ?

- Iteración en línea 2 es O(N)
- búsqueda binaria del punto de inserción Líneas 5 a 12 es $O(\log N)$
- Data shift en líneas 13 a 15 es O(N)

Total

$$= \mathbf{O}(N) \times (\mathbf{O}(\log N) + \mathbf{O}(N))$$

= $\mathbf{O}(N^2)$

```
function BINARYINSERTIONSORT(aList)
2:
         for i=1 to len(aList)-1 do
 3:
             carta ← aList[i]
 4:
             iz \leftarrow 0; de \leftarrow i - 1
 5:
             while iz < de do \triangleright bisection Search
6:
                  m \leftarrow \lfloor (iz + de)/2 \rfloor
 7:
                  if carta < aList[m] then
8:
                      de \leftarrow m-1
9:
                  else
10:
                       iz \leftarrow m+1
11:
                  end if
12:
              end while
13:
              for j=i-1 to iz by -1 do
14:
                   aList[j+1] \leftarrow aList[j]
15:
              end for
16:
              aList[iz] \leftarrow carta
```

17:

18:

end for

return 19: end function

Selection Sort I

IDEA: Busca el elemento **menor** del conjunto no ordenado e insértalo **al final** del subconjunto Ordenado

Sorting In-place Utilizando un vector de registros y ordenando sobre el mismo utilizando espacio auxiliar para un registro

Selection Sort II: algoritmo

```
    function SelectionSort(aList)

2:
        for i=0 to N-2 do
                                                                  ▷ separación secuencia origen/destino
3:
            k \leftarrow i, x \leftarrow A[i]
                                                                 ▷ inicializa búsqueda mínimo en origen
4:
            for j=i+1 to N-1 do
5:
                if (A[j] < x then
6:
                    k \leftarrow j ; x \leftarrow A[j]
                                                                               busca mínimo en origen
7:
                end if
8:
            end for
9:
            A[k] \leftarrow A[i] ; A[i] \leftarrow x
                                                                                              ▶ Intercambio
10:
         end for
11:
        return
12: end function
```

Complejidad ??

- For en línea 2 es de O(N)
- Búsqueda secuencial **For** en líneas 3 a 8 es de O(N)
- Intercambio (línea 9) es **O**(1)
 - \Rightarrow Selection Sort es de $\mathbf{O}(N) \times (\mathbf{O}(N) + \mathbf{O}(1)) = \mathbf{O}(N^2)$

Selection Sort and Insertion Sort: Similaridades

El trabajo duro por cada elemento es encontrar la posición de inserción que mantiene el orden del **sorted**, o buscar el mínimo valor en la secuencia **unsorted** (ambas tareas de orden O(N))

Insertion Sort

- 1 toma uno del un-sorted
- busca la posición de inserción que garantiza el mantenimiento del orden en el sorted e inserta desplazando los elementos

Selection Sort

- Busca el mínimo entre los unsorted
- Intercambia con el ppio del unsorted, expandiendo el sorted una posición

Section 2

Merge Sort: Usando Divide and Conquer

Ordenación por Mezcla directa: Merge Sort

Utiliza divide y vencerás:

- Divide el array en dos partes más pequeñas
- Se ordenan recursivamente. Si son suficientemente pequeñas se resuelve directamente
- Se combinan esas soluciones para ordenar finalmente el array

Mezcla Directa, Merge Sort: Algoritmo

La ordenación por Mezcla Directa, o "Merge Sort" es un ejemplo de Divide y Vencerás. La mayoría del trabajo se realiza en la composición de dos sublistas ya preordenadas para obtener una lista única ordenada.

Algorithm 1 Merge Sort D & C

```
function MERGESORT(seq)

if len(seq) = 2 then

BASICSORT(seg)
return
else

left ← LEFTHALF(seq)
right ← RIGHTHALF(seq)
MERGESORT(left)
MERGESORT(right)
seq ← MERGE(left,half)
end if
return seq
end function
```

Algorithm 2 Merge subfunction

```
function Merge(left, right)
   merged ← empty sequence
   while left is not empty and right is not empty do
       if left is not empty then
           I<sub>0</sub> ← PEEK(left)
           if right is not empty then
               r_0 \leftarrow \text{PEEK(right)}
               if l_0 < r_0 then
                   In ← POP(left)
                   APPEND(merged./o)
               else
                   r_0 \leftarrow POP(right)
                   Append(merged.r_0)
               end if
               APPEND(merged,left)
           end if
           APPEND(merged, right)
       end if
   end while
   return merged
end function
```

Complejidad Lineal-Logarítmica: Ejemplo MergeSort

MergeSort

Divide la secuencia en dos, sobre los que invoca el Merge_sort de forma recursiva, para luego realizar un merge de la secuencias previamente ordenadas

Cuál es la complejidad ?

- Fase de división
 - $\rightarrow log_2(N) \times \mathbf{O}(1)$
 - Cuántos niveles hay el el arbol durante el merge ?
 - $\rightarrow log_2(N)$
 - Cuál es el coste de cada uno de ellos
 - \rightarrow **O**(N)
 - Cuál es la complejidad resultante ?
 - $\rightarrow \log_2(N) * (\mathbf{O}(1) + \mathbf{O}(N))$
 - \rightarrow **O**($N * \log N$)

Section 3

Algoritmos de Intercambio

- Bubble short (Intercambiando elementos adjacentes)
- Shaker Sort (Bidireccional Bubble)
- Shell Sort (Ordena subconjuntos de distancia decreciente)

Algoritmos de Intercambio

Característica dominante Intercambio entre pares de elementos. Mezcla de inserción y selección directa

Idea: Hacer repetidas pasadas sobre el array ordenando parejas de elementos contiguos

Ejemplos

- bubble Sort (Burbuja)
- Shake Sort (Sacudida)
- Shell Sort

Bubble short: Algoritmo

Bubble Sort realizada sucesivas pasadas intercambiando elementos anexos si no están relativamente ordenados, hasta que la ordenación es completa.

En cada pasada, el siguiente máximo elemento es empujado a su posición, y algunos otros elementos son reajustados.

```
pass: 0: [4, 2, 6, 7, 0, 3, 5]
pass: 1: [2, 4, 6, 0, 3, 5, 7] swaps=True
pass: 2: [2, 4, 6, 3, 5, 6, 7] swaps=True
pass: 3: [2, 0, 3, 4, 5, 6, 7] swaps=True
pass: 4: [0, 2, 3, 4, 5, 6, 7] swaps=True
pass: 5: [0, 2, 3, 4, 5, 6, 7] swaps=False
```


Bubble Sort: versión mejorada. Complejidad

El algoritmo puede ser optimizado al reconocer que la zona ordenada se incrementa en cada pasada. Por ejemplo:

```
1: function BubbleSort2(vec)
2:
       n \leftarrow len(vec)
3:
       for i=1 to n by 1 do
                                                                      ▷ Separar Origen v Destino
4:
           for j=n-1 to i step -1 do
                                                               ▶ Backward scan unsorted region
5:
              if vec[j-1] > vec[j] then
6:
                  exchange vec[j-1] and vec[j]
                                                                              ▷ perform exchange
7:
              end if
8:
           end for
9.
       end for
10:
       return
11: end function
```

Complexity

En el peor de los casos, el Algoritmo es de $O(N^2)$ ya sea por el anidamiento de dos loops de Orden N o por la N pasadas de orden N. El coste depende grandemente del grado de ordenación previa de los datos.

Shaker Sort

La ordenación, por Sacudida, (Shaker Sort) es una optimización de la ordenación por intercambio, realizando simultáneamente el proceso por ambos extremos (hacia adelante y hacia atrás) hasta que las zonas ordenadas convergen en una.

Shaker Sort: Algoritmo

```
function ShakerSort(vec)
2:
4:
5:
6:
7:
8:
10:
11:
          de \leftarrow k \leftarrow len(vec)
          iz \leftarrow 1
          repeat
               for i = de to iz step -1 do
                                                                                                                         ▶ Backward scan
                   if vec[j-1] > vec[j] then
                      exchange vec[j-1] and vec[j]
                                                                                                                       ▷ perform exchange
                       k \leftarrow i
                                                                                                                end if
               end for
               iz \leftarrow (k+1)
                                                                                                            ▷ Fija inicio del forward Scan
12:
13:
               for i = iz to de do
                                                                                                                           ▶ Forward scan
                   if vec[i-1] > vec[i] then
14:
                      exchange vec[j-1] and vec[j]
                                                                                                                       ▷ perform exchange
15:
                       k \leftarrow i

    ► Mark exchange position

16:
17:
18:
                   end if
               end for
               de \leftarrow (k-1)
                                                                                                                   > resets right boundary
          until iz > de
           return
```

Complejidad

end function

Las mejoras del algoritmo son parciales, \rightarrow no cambia la escalabilidad del algoritmo. Al ser la sección Repeat de O(N) y $iz \sim de \sim O(N) \Rightarrow$ Shaker Sort es de $O(N^2)$ El coste efectivo real es muy dependiente de la ordenación previo o parcial de los datos

Shaker Sort: Ejemplo

- First Back Scan ends with j = 1 setting iz=2 for the Fow Scan
- Forward scan last exchange is at j =4, setting de=3
- Try again since iz =2 y de=3
- BackScan makes one change y fija iz =4
- ForwScan no hace cambios
- con iz=4 y de = 3, while breaks, hemos acabado

```
Initial
                  [4, 2, 6, 3, 8, 1]
Range [iz=1,de=5]
BackScan.[1<->8] [4, 2, 6, 3, 1, 8]
BackScan, [1<->3] [4, 2, 6, 1, 3, 8]
BackScan, [1<->6] [4, 2, 1, 6, 3, 8]
BackScan, [1<->2] [4, 1, 2, 6, 3, 8]
BackScan, [1<->4] [1, 4, 2, 6, 3, 8]
BackScan Done: k=1 Range [iz=2,de=5]
ForwScan, [2<->4] [1, 2, 4, 6, 3, 8]
ForwScan,[3<->6] [1, 2, 4, <mark>3, 6</mark>, 8]
ForwScan, k=4 Range [iz=2,de=3]
BackScan.[3<->4] [1, 2, 3, 4, 6, 8]
```

=> Done

BackScan Done: k=3

ForwScan Done: k=3

Range [iz=4.de=3]

Range [iz=4.de=2]

Shell Sort

- Combina la inserción directa con el concepto de Divide y Vencerás
- Aplica la inserción directa ordenando subsets de datos con un step dado. Lo que aumenta la velocidad de los datos a través de la secuencia a velocidad de step.
- ullet Se aplica en secuencia de Steps decrecientes, terminando necesariamente con step=1

- La secuencia de Steps óptima es clave en el proceso. Una Opciones válidas son comenzar en $\log_2(N)$ o N/2 y dividir por dos en cada iteración hasta que Step =1
- Ejempo, para n = 10,000 una secuencia sería 25,13,7,3,1

Shell Sort: Idea y Paralelizabilidad

Idea básica:

Al tratar con subsets disjuntos de datos, el algoritmo es altamente PARALELIZABLE, esto es un conjunto de CPUs puede trabajar de formas simultánea sobre los subsets [i, i + step, i + 2 * step, i + 3 * step, ...] de forma simultánea y sin contención

Shell Sort: Ejemplo

Shell Sort: Algorithm

end function

líneas 8 a 12 implementan una ordenación por inserción con elementos separadas por distancia = step.

Itera en el step, con valores decrecientes, hasta step = 1

```
function SHELLSORT(vec, steps)
 2:

    ▷ steps: Decreasing sequence step < len(vec) ending in 1
</p>
 3:
           n \leftarrow len(vec)
 4:
           for step in steps do

    iterate along decreasing steps

 5:
6:
7:
8:
9:
               for i=step to n-1 by 1 do
                                                                                                                 > Start at step, till the end
                   aux \leftarrow vec[i]
                   i \leftarrow i - step
                                                                                                           > search backward, stride = step
                   while j >= 0 \& (aux < vec[j]) do
                       vec[i + step] \leftarrow vec[i]
                                                                                                                          > shifting if required
10:
                       decrement i by step

    Stride = step, backwards

                   end while
                   if i \neq (i + step) then
                                                                                                                 ▷ Insertion at selected point
13:
                       vec[i + step] \leftarrow aux
14:
15:
16:
                   end if
               end for
           end for
           return
```

Shell Sort: Complejidad

- Siendo una mezcla de Insertion sort y de Divide y Vencerás, su análisis es complejo
- Depende de la preordenación de los datos, y de los steps seleccionados
- Es polinómica, i.e. $\sim n^a a \in [1,2]$ esto es:
 - En el peor de los casos es como un algoritmo ingenuo de inserción $\sim n^2$
 - En el mejor de los casos se comportará algo peor que el algoritmo de mezcla recursiva $\sim n*\log n$
- Experimentalmente, se puede ver que el algoritmo de la página anterior es $\sim n^{1.21}$ y ciertamente no escala como $n*\log n$ según se indican en las figuras siguientes:

Part II

Algoritmos Avanzados de Ordenación

Quicksort: Algoritmo de particionado

Counting Sort: Algoritmo basado en frecuencia para claves de universo

finito

BinSort: algoritmo de agrupación para claves continuas o

categorizables

RadixSort: Algoritmo multiclave con ordenación jerárquica

QuickSort

- QuickSort es un método de Ordenación recursivo que funciona por partición recursiva en segmentos cuyos elementos son siempre superiores o inferiores a cualquier elemento de otro segmento
- El proceso de partición es análogo al método de intercambio, pero aquí las distancias son tan grandes como posible.
- En base a las propiedades del proceso de partición $(\forall x, y ; x \in p_l ; y \in p_r \Rightarrow x > y)$ no es necesario realizar funciones de merge, como el algoritmo de mecla directa.
- Recursividad finaliza cuando la partición es de tamaño 1 o 2, que es ordenada de forma trivial.

QuickSort: particionado

Cada sub-array A[iz ... de] se particiona en dos más pequeñas A[iz ... d] y A[d+1...de], a partir del índice d, tal que:

$$i \in [iz,..,d-1]$$
; $j \in [d,...,de-1] \rightarrow A[i] < A[j]$

QuickSort Algorithm

```
1: function QUICKSORT(vec,start,stop)
      2:
                                                            if len(vec)_i = 2 then
      3:
                                                                                         Manually sort vec
      4:
                                                                                         return vec
      5:
                                                          else
     6:
                                                                                         d \leftarrow QS\_DIVIDE(vec)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ▷ perform quick Sort Divide
      7:
                                                                                         QUICKSORT(vec, start, start+d-1)

    Recurse on Left
    Recurse on Left

     8:
                                                                                         QUICKSORT(vec,start+d, stop)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ▷ Recurse on right
     9.
                                                          end if
10: end function
```

La profundidad del algoritmo depende del equilibrio del proceso de divide

qs_divide Ejemplo

El algoritmo de qs_divide compara los elementos del vector con el pivote, desde l=1 (fw) y desde r=n-1 (bw) haciendo los intercambios necesarios hasta barrer el vector completo.

		Vec[r] <= Th				
		True	False			
> Th	True	Exch L + R -	L = R -			
Vec[I] > Th	False	L + R =	L + R -			

Aplicación concreta

partition divide Algorithm

```
function OS_DIVIDE(vec.pivot)
   > partitions vec, vec[pivot] as the threshold
    threshold \leftarrow vec[pivot]
    vec[0] \leftrightarrow vec[pivot]
                                                                                          > place pivot first
    / ← 1
    r \leftarrow len(vec) - 1
   while l < r do
                                                                                      > work on both sides
       L_r \leftarrow (vec[I] > threshold)
                                                                                    ▷ Right and left tests...
       R_r \leftarrow (vec[r] = < threshold)
       if L_r \wedge R_r then
           vec[I] \leftrightarrow vec[r]
                                                                                           > swap elements
        end if
       increment I: decrement r
                                                                           ▷ in all cases advance pointers
       if L_r \wedge \neg R_r then
           decrement I
                                                                                    ▷ undo left ptr advance
       else if \neg L_r \wedge R_r then
           increment r

▷ undo right ptr advance

       end if
    end while
   if vec[I] > threshold then
                                                                                          return /
    else
       return l+1
   end if
end function
```

Este algoritmo es claramente O(N)

Quick Sort: Pivot Choice

Hay varias opciones, algunas simples, otras costosas.

- Random Choice. Tomar un elemento al azar. No garantiza que la división sea equilibrada
- Primero o último elemento. Equivalente a lo anterior, pero puede caer en el peligro de ordenaciones previas aproximadas de los datos, lo que perjudica la performance
- Mediana Es la solución óptima, pero costosa

Finding the Median

Respuesta obvia: tomar el elemento central de la serie una vez ordenada [con un coste de $\mathbf{O}(n\log n)$] **Pero si lo que queremos es ordenarla !** \Rightarrow Afortunadamente, el algoritmo quickSelect^a es capaz de producir la mediana en $\mathbf{O}(N)$

^ade T. Hoare, el inventor del quicksort

QuickSort. QuickSelect Algorithm

QuickSelect Median algorithm encuentra la mediana aplicando recursivamente el algoritmo de qs.divide hasta que el pivote se encuentre a la mitad de la longitud, asegurando que el pivote es la mediana

```
function FINDMEDIAN(vec,start,stop)
   if len(vec) is odd then
       val ← FINDORDEREDVAL(vec. 0. len(vec)/2)
   else
       val1 \leftarrow FINDORDEREDVAL(vec, 0, (len(vec) - 1)/2)
      val2 \leftarrow FINDORDEREDVAL(vec, 0, (len(vec) + 1)/2)
       val \leftarrow (val1 + val2)/2
   end if
   return val
end function
procedure FINDORDEREDVAL(vec, offset, targetPos)
   if len(vec) = 1 then

▷ Terminal Case

       Return vec[0]
   else
       d \leftarrow QS_DIVIDE(vec)
                                                                           > applies qs_divide with random pivot
       if offset + d > targetPos then
          val ← FINDORDEREDVAL(vec[:d], offset, target)
                                                                                                  ▷ Busca en iza
       else
          val ← FINDORDEREDVAL(vec[d:], offset+d, target)

⊳ Busca en derecha
       end if
       return val
   end if
end procedure
```

qs: Example

Quick Sort aplica recursivamente el algoritmo qs_divide con pivots aleatorios u, opcionalmente cerca de la mediana, hasta longitudes finales de < 2. El ejemplo utiliza el último elemento como pivote.

Quick Sort: Complejidad

Complejidad Temporal

- Caso Óptimo: $\Omega(Nlog(N))$. Este mejor caso para quicksort ocurre cuando el pivo es elegido tal que divide el vector de aproximadamente el mismo tamaño. Esto balancea la división y hace el algoritmo muy eficaz.
- Caso típico Θ(Nlog(N)) En término medio, la peformance de Quicksort's es muy buena y lo hace uno de los algoritmos más eficaces
- Caso Peor: O(N2) El caso peor par Quicksort ocurre cuando la elección del pivote resulta en divisiones consiste y altamente desequilibradas.
- Espacio Auxiliar O(1), Sin considerar el coste de recursión. Con él sería de O(N).

QuickSort: Pros y cons

Ventajas del Quick Sort:

- Es una algoritmo divide-and-conquer que hace muy fácil la resolución de los problemas
- Es muy eficiente sobre conjuntos grandes de datos
- Tiene poca complejidad espacial, requiere poco espacio adicional para trabajar.

Desventajas of Quick Sort

- En su Worst-Case la complejidad puede ser de $O(N^2)$ que puede ocurrir cuando el pivot es malamente elejido
- No es una buena opción para conjuntos pequeños de datos
- No es un algortimo estable.

ICAL

Section 4

Counting Sort

Counting Sort

- Counting Sort is un algoritmo de ordenación que no está basado en la comparación de los valores y que se base en la categorización ordenada del rango de valores del vector.
- Funciona bien cuando el rango de los valores a ordenar es muy inferior al tamaño del vector
- El algoritmo se beneficia de la reducida complejidad de los datos. La idea básica es contar la frecuencia de aparición de cada uno de los distintos elementos del vector a ordenar, usando esta información para reposicionar ésto en su correcta posición en el vector ordenado.

Counting Sort How it Works

- allocar CountVec de tamaño K+1, contar frecuencias y acumular ⇒ O(N)
- 2 Tomando los elementos del vector a ordenar, en orden inverso:
 - Utilizar el valor como clave en vector de frecuencias acumuladas
 - Utilizar la frec accumulada como índice (restar 1) en el vector de destino
 - decrementar la la posicion usada en el vector de frecuencia

Counting Sort: Algorithm

```
1: function COUNTSORT(vec)
Require: vec contiene claves positivas óptimamente de tamaño << len(vec)
2:
        k \leftarrow max(vec)
 3:
        > allocate counting buffer and output vector
 4:
        countVec \leftarrow Array() of length k+1, initialized to 0s
 5:
        sortecVec \leftarrow Array() of length = len(vec)
6:
        \triangleright \mathbf{O}(N) \triangleleft
 7:
        for item in Vec do
8:
           increment countVec[item]
9:
        end for
10:

    ▷ accumate frequencies

11:
        for k in 1 to len(countVec) do
12:
            countVec(k) \leftarrow countVec(k) + countVec(k-1)
13:
        end for
14:
        > place the items in proper order as per frequencies
15:
        for item in reversed(vec) do
                                                                         > O(N)
16:
            newPos \leftarrow (countVec[item]-1)
17:
            sortecVec[newPos] \leftarrow item
18:
            decrement countVec[item]
19:
        end for
20:
        return sortedVec
21: end function
```

Counting Sort: Complejidad

Complejidad

- Time Complexity:
 O(N+K), donde N y K son
 el tamaño de Vec y
 CountVec respectivamente.
 Los casos Mejor, Peor y
 medio son todos de
 O(N + K).
- Auxiliary Space: O(N + K)
 que son los tamaños de los
 buffers adicionales a alocar.

Debido a las condiciones de las claves a ordenar, podemos hacerlo con compleiidad lineal !!

Counting Sort: Pros, and Cons

Ventajas del Counting Sort

- En general, Counting sort ejecuta más rápidamente que los métodos de ordenación basados en comparación, como merge Sort, o QuickSorticksort, inclusio si el rango de los valores del vector a ordenar es del orden del tamaño del vector $M \sim N$
- Counting sort tiene un código muy sencillo
- Counting sort es un algoritmo Estable (mantiene el orden de los elementos con clave idéntica)

Desventajas del Counting Sort

- Counting sort no funciona si los datos son decimales. Sólo funciona con datos enteros o categorías que se pueden mapear a un rango $[0, \ldots n]$
- Counting sort no es eficiente si el rango de los valores a ordenar es muy grande
- Counting sort no es un algoritmo "in place". Necesita buffer de salida del tamaño de la entrada.

Section 5

BucketSort

BinSort (a.k.a Bucket Sort)

Bucket Sort reagrupa los elementos del vector en varios grupos (buckets), según una partición del rango min/max, para proceder a ordenar cada uno de ellos por separado por otro algoritmo, reagrupando finalmente el vector ordenado como la secuencia de los grupos individuales ordenados.

Tres fases:

- Distribuir los elementos a ordenar en grupos cercanos (bins) segmentando el rango min/max del vector
- Ordenar éstos grupos utilizando cualquier algoritmo (Insertion, merge, etc..)
- Recomponer el vector en uno sólo

en uno o pocos de los grupos (worst case)

Hipótesis clave

La clave de ordenación es una magnitud real **distribuída de forma** aproximadamente uniforme en el rango [min, ... max] del vector. \Rightarrow el número de elementos en cada grupo es similar, no concentrándose

Bucket Sort: Cómo funciona?

Bucket Sort: Algoritmo

```
1: function BINSORT(vec, nbins)
2:
       > Vec: vector a ordenar nhins: número de huckets a usar
3:
       bins \leftarrow (List of lists, or list of linked lints) of size = nbins
4:
       min,max \leftarrow min(vec), max(vec) \triangleright Compute min/max range
5:
       ▷ (1) Distribute elements across bins
6:
       for element in vec do
7:
           binNum ← GETBINNUM(min,max, element) ▷ Compute appropi-
           ate bucket for each element
8:
           append element to bins[binNum]
9.
       end for
10:
       ▷ (2) Sort individually all the bins
11:
        for bin in bins do
12:
           YourSortAlg(bin) 

▷ Use a sorting algorithm of your choice
13:
       end for
14:
       ▷ (3) Reassemble the vec from the sorted bins content
15:
        for bin in bins do
16:
           place bin in vec

    □ at the right place !!

17:
        end for
18:
        return vec
19: end function
```


Bucket Sort: Complejidad. Elección of nbins

- BucketSort depende del número de bins utilizado k y del algoritmo de ordenación de los grupos
- Si usamos un método $\mathbf{O}(n^2)$ como inserción la complejidad del algoritmo resultante es del orden de

$$n + k \times (n/k)^2 \approx n + n^2/k$$

- dos opciones para el número de bins:
 - **1** k fijo, o $k \sim \log n \ll n$ implica $O(n^2)$ o al menos $O(n^c)$ con $c \in [1, 2]$
 - ② $k \sim n/c$ lo que resulta en algortimo O(n) lineal

Bucket Sort: Pros and Cons

Pros de Bucket Sort

- Puede alcanzar performance lineal $\mathbf{O}(N)$ con un número alto de bin
- es un algoritmo estable^a
- La ordenación de los buckets (o bins) es paralelizable
- es un algoritmo estable

Cons de Bucket Sort

- Es necesario poder distribuir en buckets contiguos (clave de ordenamiento ha de real, más allá del operador comparador)
- Es óptimo sólo cuando la distribución de las claves es approx uniforme sobre el rango, dando lugar a buckets con número de elementos equilibrado

ICAI

^apreserva el orden original a igualdad de claves

Section 6

Radix Sort

Radix Sort

Creado en los años 30 para ordenar las tarjetas perforadas utilizadas en los ordenadores, ya sólo en museos (programado mecánicamente)

- Util para ordenar información por múltiples campos como Fechas (año/mes/día) Personas (apellidos) etc..
- Ordenar N items en donde la clave es
 - clave a utilizar = digito1, digito2, digito3, ..., digito d
 - LSD (Least Significant Digit) o MSD (Most Significant Digit)
- Típica ordenación por múltiples claves en Excel...
- Formas de hacerlo:
 - Utilizar un algoritmo en donde las comparaciones son jerárquicas
 - Ordernar la información d veces con un algoritmo estable, cada vez en un dígito diferente

Radix Sort: How it works!

Radix Sort: Algorithm!

Radix Sort llama de forma repetida a un algoritmo estable, por cada uno de los dígitos, o campos, significativos.

El uso de CountSort es frecuente para los ordenamientos estables

```
1: function RadixSort(vec)
       digits \leftarrow GetDigitsSeq(vec)
3:
                                           ▷ Must iterate from LSD to MSD
       for digit in digits do
4:
           ESTABLESORT(vec, digit) ▷ Ordena, estable, basado en el dígito
           indicado
5:
       end for
6:
       return vec
7: end function
8: procedure EstableSort(vec, digit)
9:
       > Alg for Stable sorting based on given digit
10:
        return vec
11: end procedure
12: procedure GetDigitsSeq(vec, digit)
13:
       ▶ Return ordered MSD to LSD digits based on data
14:
       \triangleright ej. 0 \dots \log_{10} \max(\text{vec}) in case of whole data sequence
15:
       ▷ ej. max length of word, for a sequence of words
16:
        return digits
17: end procedure
```

Radix Sort: Complejidad

Complejidad Temporal

- Radix Sort tiene una complejidad de $\mathbf{O}(d*(n+b))$, done d es el número de dígitos, n es el tamaño del vector de datos, y b es la base del sistema de representación numérico (10, normalmente, 28 si caracteres)^a
- Radix sort es habitualmente más rápido que algortimos de comparación, como quickSort, or mergeSort, en sets de datos grandes. Es lineal en el número de dígitos y un gran rango de datos (min/max) puede afectarle negativamente.

Complejidad Espacial

Radix sort tiene una complejidad espacial de $\mathbf{O}(n+b)$. Se debe al uso de algoritmos tipos CountSort donde se han de crear b buckets y duplicar el espacio del vector a ordenar

 $^{^{}a}d \sim \log_{10} max(vec)$

Performance Compartiva de los Algoritmos de Ordenación

Algorithm	Worst-case running time	Average-case/expected running time
Insertion sort	$\Theta(n^2)$	$\Theta(n^2)$
Merge sort	$\Theta(n \lg n)$	$\Theta(n \lg n)$
Heapsort	$O(n \lg n)$	_
Quicksort	$\Theta(n^2)$	$\Theta(n \lg n)$ (expected)
Counting sort	$\Theta(k+n)$	$\Theta(k+n)$
Radix sort	$\Theta(d(n+k))$	$\Theta(d(n+k))$
Bucket sort	$\Theta(n^2)$	$\Theta(n)$ (average-case)

Figure: Comparariva Peor/Medio de complejidad de los diferentes Algoritmos de Ordenación . (Source: Cormen et al.)

End: Ver youtube

 $\verb|https://www.youtube.com/watch?v=BeoCbJPuvSE|$

