# How important are commodity prices shocks? A small open economy analysis

Sergio Serván Lozano

Perspectives on Computational Research in Economics
Proposal

April 10th, 2019

#### Motivation

- Commodity exporting economies are exposed to several external shocks:
  - 1 foreign interest rate (Neumeyer and Perri, 2005; Uribe and Yue, 2006)
  - 2 global GDP (Canova, 2005; Cesa-Bianchi et. al., 2012)
  - commodity prices.
- However, the quantitative importance of commodity prices for these economies is still an open question.
- Mendoza (1995) and Kose (2002) find that commodity prices are important (explaining 30 perfect of GDP), while Schmitt-Grohe and Uribe (2018) find that they do not account for much (10 percent of GDP).

#### Literature Review

- Cespedes and Velasco (2012): Impact on output and investment.
   Output response depend on the degree of exchange flexibility.
- Fornero *et. al.* (2016): Impact on investment (mining sector) highly depends on the temporal nature of the price shock.
- Fernandez et. al. (2015): Country's risk premium amplifies commodity prices shocks for emerging economies.
- Shousha (2016): Introduce working capital constraints as an amplification mechanism.
- Garcia-Cicco et. al. (2017): Financial intermediation as another amplification mechanism.

#### Research Question

- How important are commodity prices for business fluctuations in commodity-exporting economies?
- Has the impact changed along time?
- Objective: Study the dynamic impact of commodity prices on a set of macroeconomic variables (specially GDP).

#### Contribution

- The studies previously cited rely on the estimation of individual VAR's models. However, the shock that I want to study is common to all the countries. In that sense, a simultaneous estimation seems more appropriate.
- The standard VAR model does not take into account the interaction among countries and the time-varying effect of the shock.
- Shousha (2016) uses a Panel VAR but it imposes homogeneity of the parameters.
- The model that I proposed (Multi-Country VAR estimated with Bayesian Methods) takes into account dynamic inter-dependencies and time-varying parameters.
- Also, it allows to explore the transmission at different dates of external shocks.

## Empirical Model: The Multi-Country Panel VAR model

The statistical model employed in this paper has the form:

$$y_{it} = D_{it}(L) Y_{t-1} + F_{it}(L) Z_t + c_{it} + e_{it}$$
 (1)

where

- i = 1, ..., N refers to countries and t = 1, ..., T refers to time periods.
- $y_{it}$  is a  $M \times 1$  vector of endogenous variables for each country i and  $Y_t = (y'_{1t}, y'_{2t}, \dots, y'_{Nt})'$ .

$$D_{it}(L) = D_{it,1} + D_{it,2}L + \dots + D_{it,p}L^{p-1}$$
$$F_{it}(L) = F_{it,0} + F_{it,1}L + \dots + F_{it,q}L^{q}$$

## The Multi-Country Panel VAR model

Equation (1) can be rewritten in a compact form as

$$Y_t = W_t \delta_t + E_t, \quad E_t \sim N(0, \Omega)$$
 (2)

where

- $W_t = I_{NM} \otimes X'_t$
- $X'_t = (Y'_{t-1}, Y'_{t-2}, \dots, Y'_{t-p}, Z'_t, Z'_{t-1}, \dots, Z'_{t-q}, 1)$
- $\delta_t = \left(\delta'_{1,t}, \delta'_{2,t}, \dots, \delta'_{N,t}\right)'$
- $\delta_{it}$  are  $Mk \times 1$  vectors containing, stacked, the M rows of matrix  $D_{it}$  and  $F_{it}$
- $Y_t$  and  $E_t$  are  $NM \times 1$  vectors.



## The Multi-Country Panel VAR model

Canova and Ciccarelli (2009) suggest to reduce the dimensionality of this model as follows:

$$\delta_t = \Xi_1 \theta_{1t} + \Xi_2 \theta_{2t} + \Xi_3 \theta_{3t} + \Xi_4 \theta_{4t} + u_t \tag{3}$$

#### where

- $\Xi_1$ ,  $\Xi_2$ ,  $\Xi_3$ ,  $\Xi_4$  are matrices of dimensions  $NMk \times 1$ ,  $NMk \times N$ ,  $NMk \times M$ ,  $NMk \times 1$  respectively.
- $\theta_{1t}$ : movements in coefficients that are common across countries and variables.
- $\theta_{2t}$ : movements in coefficients which are common across countries.
- $\theta_{3t}$ : movements in coefficients which are common across variables
- $\theta_{4t}$ : movements in coefficients which are common across exogenous variables.
- u<sub>t</sub>: all the un-modeled features of the coefficient vector.

## The Multi-Country Panel VAR model

- The factorization (3) significantly reduces the number of parameters to be estimated.
- In other words, it transforms an over-parametrized panel VAR into a parsimonious SUR model.
- In fact, substituting (3) in (2) we have

$$Y_t = \sum_{i=1}^4 \mathcal{W}_{it} \theta_{it} + \upsilon_t$$

where  $W_{it} = W_t \Xi_i$  capture respectively, common, country specific, variable specific and exogenous specific information present in the data, and  $v_t = E_t + W_t u_t$ .

### **Data Description**

- Countries: Australia, Brazil, Canada, Chile, Colombia, Mexico, New Zealand, Norway, Peru and South Africa.
- For each country we use year-to-year growth rates of GDP, investment, CPI, trade balance, bank credit, interest rate, exchange rates and EMBI spreads.
- As exogenous variables, we include the annual growth rate of US and a commodity price index.
- The sample of analysis covers the period 1997Q1-2017Q4.
- Data comes from the International Financial Statistics from the IMF and the databases of FRED, IDB, OECD and domestic Central Banks.