# **EDA**

## Patrick Seebold

Warning: package 'tidymodels' was built under R version 4.3.3

-- Attaching packages ------ tidymodels 1.2.0 --

```
1.0.5 v recipes
1.3.0 v rsample
v broom
                                    1.1.0
v dials
                                    1.2.1
            1.1.4 v tibble
3.5.1 v tidyr
                                    3.2.1
v dplyr
            3.5.1
v ggplot2
                                   1.3.1
             1.0.7 v tune
                                    1.2.1
v infer
            1.4.0 v workflows 1.1.4
v modeldata
          1.2.1 v workflowsets 1.1.0
v parsnip
v purrr
            1.0.2 v yardstick 1.3.1
```

Warning: package 'dials' was built under R version 4.3.3

Warning: package 'scales' was built under R version 4.3.3

Warning: package 'dplyr' was built under R version 4.3.3

Warning: package 'ggplot2' was built under R version 4.3.3

Warning: package 'infer' was built under R version 4.3.3

Warning: package 'modeldata' was built under R version 4.3.3

Warning: package 'parsnip' was built under R version 4.3.3

Warning: package 'purrr' was built under R version 4.3.3

In this project, we will construct a predictive model based on diabetes status. This means we will create a model that, given some information about a new patient, we will be able to predict whether they will have diabetes or not. We'll use a publicly available data set for this (diabetes\_binary\_health\_indicators\_BRFSS2015.csv), and will then deploy the model in a docker file to allow for easy sharing/calling of the program. This document will handle the EDA, and the second file will handle the training/testing of the model. First, let's grab the data:

```
head(data)
sum(is.na(data))

data = read.csv("diabetes_binary_health_indicators_BRFSS2015.csv")
```

Next, let's take a look at the head of the file to confirm everything loaded in. Then we'll check for missing data, and finally adjust the type of our variables of interest. Rather than use the standard predictive variables like blood pressure, I've decided to see whether a person's self-perceived health may be indicative of a health issue, so our predicting variables will be Education, Sex, GenHlth, MentHlth, PhysHlth.

Note that GenHlth is a 5 point scale of participant's self-reported health, 1 being excellent, 5 being poor. MenHlth and PhysHlth are how many days of past 30 days an individual has struggled with Mental or Physical health respectively. We'll treat GenHlth as a factor and MenHlth/PhysHlth as numeric.

### head(data) # looks good

```
Diabetes_binary HighBP HighChol CholCheck BMI Smoker Stroke
1
                           1
                                     1
                                                     40
                                                              1
                                                                      0
2
                  0
                          0
                                                     25
                                                              1
                                                                      0
                                     0
                                                 0
3
                  0
                           1
                                     1
                                                     28
                                                              0
                                                                      0
                                                 1
4
                  0
                                     0
                                                     27
                                                              0
                                                                      0
                           1
                                                 1
5
                  0
                           1
                                     1
                                                 1
                                                     24
                                                              0
                                                                      0
6
                  0
                          1
                                     1
                                                 1
                                                     25
                                                              1
                                                                      0
  HeartDiseaseorAttack PhysActivity Fruits Veggies HvyAlcoholConsump
                        0
                                        0
                                                0
                                                         1
1
2
                        0
                                        1
                                                0
                                                         0
                                                                               0
3
                        0
                                        0
                                                                               0
                                                1
                                                         0
4
                        0
                                        1
                                                1
                                                          1
                                                                               0
                        0
                                                1
                                                                               0
5
                                        1
                                                          1
6
                        0
                                                1
                                        1
                                                          1
  AnyHealthcare NoDocbcCost GenHlth MentHlth PhysHlth DiffWalk Sex Age
                              0
                                        5
                                                 18
                                                            15
1
                1
2
                0
                              1
                                        3
                                                  0
                                                             0
                                                                        0
                                                                            0
                                                                                 7
3
                              1
                                        5
                                                 30
                                                            30
                                                                                 9
                1
                                                                        1
                                                                            0
                                        2
                1
                              0
                                                  0
                                                             0
                                                                        0
                                                                            0
                                                                                11
5
                1
                              0
                                        2
                                                  3
                                                             0
                                                                        0
                                                                            0
                                                                                11
6
                1
                              0
                                        2
                                                  0
                                                             2
                                                                        0
                                                                            1
                                                                                10
  Education Income
1
           4
                    3
2
           6
                    1
3
           4
                   8
4
           3
                    6
5
           5
                    4
           6
6
                   8
```

sum(is.na(data)) # no missing data, sweet!

[1] 0

```
# before we continue, let's subset our data to just the variables we plan to explore:
data_sub = data[, c("Diabetes_binary", "Education", "Sex", "GenHlth", "MentHlth", "PhysHlth"
summary(data_sub)
```

```
Diabetes_binary
                   Education
                                     Sex
                                                    GenHlth
       :0.0000
                                                 Min.
Min.
                 Min.
                        :1.00
                                       :0.0000
                                                       :1.000
                                \mathtt{Min}.
1st Qu.:0.0000
                 1st Qu.:4.00 1st Qu.:0.0000
                                                 1st Qu.:2.000
Median :0.0000
                 Median :5.00 Median :0.0000
                                                 Median :2.000
      :0.1393
                        :5.05
Mean
                 Mean
                                Mean
                                      :0.4403
                                                 Mean
                                                        :2.511
3rd Qu.:0.0000
                 3rd Qu.:6.00
                                3rd Qu.:1.0000
                                                 3rd Qu.:3.000
Max.
      :1.0000
                 Max.
                        :6.00
                                Max.
                                       :1.0000
                                                 Max.
                                                        :5.000
                    PhysHlth
   MentHlth
Min.
      : 0.000
               {	t Min.}
                        : 0.000
1st Qu.: 0.000
                1st Qu.: 0.000
Median : 0.000
                Median : 0.000
Mean : 3.185
                 Mean : 4.242
3rd Qu.: 2.000
                 3rd Qu.: 3.000
Max.
      :30.000
                 Max. :30.000
```

### typeof(data\_sub\$MentHlth)

#### [1] "double"

```
typeof(data_sub$PhysHlth)
```

### [1] "double"

[1] "Diabetes" "No Diabetes"

```
levels(data_sub$Sex)
```

[1] "Female" "Male"

#### levels(data\_sub\$Education)

- [1] "Never attended school or only kindergarten"
- [2] "Grades 1 through 8 (Elementary)"
- [3] "Grades 9 through 11 (Some high school)"
- [4] "Grade 12 or GED (High school graduate)"
- [5] "College 1 year to 3 years (Some college or technical school)"
- [6] "College 4 years or more (College graduate)"

#### levels(data\_sub\$GenHlth)

[1] "Excellent" "Very Good" "Good" "Fair" "Poor"

Great, now we have our factors set and we've confirmed that our numeric variables are the proper type. We can now do some numeric summaries to get a look at how our variables relate to each other:

```
data_sub |> # let's see how Mental and Physical health vary across Male and Female
  group_by(Sex) |>
  summarize(Mmean = mean(MentHlth), Msd = sd(MentHlth), Pmean = mean(PhysHlth), Psd = sd(PhysHlth)
```

```
# A tibble: 2 x 5
Sex Mmean Msd Pmean Psd
<fct> <dbl> <dbl> <dbl> <dbl> <dbl> 1 Female 3.72 7.87 4.58 8.90
2 Male 2.51 6.72 3.82 8.46
```

```
data_sub |> # Same summary but across education groups
 group_by(Education) |>
 summarize (Mmean = mean (MentHlth), Msd = sd (MentHlth), Pmean = mean (PhysHlth), Psd = sd (Phys
# A tibble: 6 x 5
 Education
                                                     Mmean
                                                            Msd Pmean
                                                                        Psd
 <fct>
                                                     <dbl> <dbl> <dbl> <dbl> <dbl>
1 Never attended school or only kindergarten
                                                      6.58 10.8
                                                                 8.85 12.4
2 Grades 1 through 8 (Elementary)
                                                      5.16 9.72 8.35 11.6
3 Grades 9 through 11 (Some high school)
                                                      5.32 9.79
                                                                 7.92 11.3
4 Grade 12 or GED (High school graduate)
                                                      3.67
                                                           8.10
                                                                 5.30 9.72
5 College 1 year to 3 years (Some college or technical ~
                                                      3.65 7.93
                                                                 4.68 9.13
6 College 4 years or more (College graduate)
                                                      2.33 6.07 2.85 6.99
data_sub |> # Finally, summarizing these health variables grouping by diabetes
 group_by(Diabetes_binary) |>
 # A tibble: 2 x 5
 Diabetes_binary Mmean
                        Msd Pmean
                                   Psd
 <fct>
                <dbl> <dbl> <dbl> <dbl> <
                       8.95 7.95 11.3
1 Diabetes
                 4.46
2 No Diabetes
                 2.98
                      7.11 3.64 8.06
# There is some correlation between physical and mental health variables
cor(data_sub$MentHlth, data_sub$PhysHlth)
```

#### [1] 0.3536189

Our summaries suggest some interesting trends! First, it looks like females may be more likely to have Mental and Physical health days than Males, although these are relatively small differences. More education is similarly associated with fewer mental and physical health days, although it is entirely possible that health problems may account for why some participants did not attain higher education. We also see that the diabetes group reports poorer health outcomes for both mental and physical health, with physical health showing an average of more  $\sim 4.5$  days of physical health problems in the past 30 days vs the no diabetes group. We also see a fair correlation between the mental and physical health variables.

Since we have only a few numeric variables, we can't meaningfully takes means and standard deviations for all our variables of interest. For our factor variables we will use contingency tables to get a better idea of how these things are working:

# Mental and Physical health tend to score higher when General Health is reported as better table(data\_sub\$GenHlth,data\_sub\$PhysHlth)

|           | 0     | 1    | 2    | 3    | 4    | 5    | 6   | 7    | 8    | 9    | 10   |
|-----------|-------|------|------|------|------|------|-----|------|------|------|------|
| Excellent | 38274 | 1872 | 1690 | 850  | 387  | 545  | 77  | 381  | 50   | 15   | 252  |
| Very Good | 65983 | 5177 | 5714 | 2743 | 1312 | 2041 | 293 | 1303 | 189  | 33   | 978  |
| Good      | 45984 | 3554 | 5595 | 3425 | 1835 | 3121 | 519 | 1707 | 292  | 75   | 2092 |
| Fair      | 9130  | 741  | 1638 | 1301 | 881  | 1700 | 369 | 981  | 231  | 43   | 1923 |
| Poor      | 681   | 44   | 127  | 176  | 127  | 215  | 72  | 166  | 47   | 13   | 350  |
|           |       |      |      |      |      |      |     |      |      |      |      |
|           | 11    | 12   | 13   | 14   | 15   | 16   | 17  | 18   | 19   | 20   | 21   |
| Excellent | 7     | 22   | 3    | 179  | 98   | 4    | 2   | 7    | 1    | 61   | 49   |
| Very Good | 14    | 95   | 20   | 643  | 507  | 16   | 15  | 14   | 2    | 295  | 135  |
| Good      | 11    | 183  | 14   | 956  | 1481 | 23   | 17  | 37   | 6    | 751  | 222  |
| Fair      | 19    | 217  | 27   | 656  | 2144 | 47   | 37  | 72   | 10   | 1453 | 196  |
| Poor      | 9     | 61   | 4    | 153  | 686  | 22   | 25  | 22   | 3    | 713  | 61   |
|           |       |      |      |      |      |      |     |      |      |      |      |
|           | 22    | 23   | 24   | 25   | 26   | 27   | 28  | 29   | 30   |      |      |
| Excellent | 3     | 2    | 2    | 23   | 1    | 6    | 15  | 5    | 416  |      |      |
| Very Good | 7     | 6    | 11   | 97   | 9    | 6    | 40  | 19   | 1367 |      |      |
| Good      | 13    | 12   | 14   | 244  | 12   | 19   | 82  | 32   | 3318 |      |      |
| Fair      | 26    | 25   | 26   | 567  | 22   | 34   | 194 | 68   | 6792 |      |      |
| Poor      | 21    | 11   | 19   | 405  | 25   | 34   | 191 | 91   | 7507 |      |      |

## table(data\_sub\$GenHlth,data\_sub\$MentHlth)

|           | 0     | 1    | 2    | 3    | 4    | 5    | 6   | 7    | 8   | 9    | 10   |
|-----------|-------|------|------|------|------|------|-----|------|-----|------|------|
| Excellent | 36738 | 1529 | 1996 | 1003 | 487  | 1087 | 98  | 359  | 61  | 7    | 533  |
| Very Good | 65610 | 3679 | 5101 | 2732 | 1371 | 2957 | 317 | 977  | 202 | 21   | 1692 |
| Good      | 51776 | 2480 | 4073 | 2392 | 1212 | 2986 | 328 | 1068 | 183 | 29   | 2087 |
| Fair      | 16897 | 702  | 1496 | 982  | 541  | 1527 | 172 | 524  | 151 | 26   | 1469 |
| Poor      | 4659  | 148  | 388  | 272  | 178  | 473  | 73  | 172  | 42  | 8    | 592  |
|           |       |      |      |      |      |      |     |      |     |      |      |
|           | 11    | 12   | 13   | 14   | 15   | 16   | 17  | 18   | 19  | 20   | 21   |
| Excellent | 1     | 34   | 1    | 97   | 346  | 9    | 4   | 5    | 2   | 172  | 22   |
| Very Good | 11    | 98   | 11   | 309  | 1225 | 15   | 7   | 17   | 3   | 628  | 37   |
| Good      | 17    | 141  | 20   | 397  | 1639 | 28   | 19  | 28   | 4   | 1037 | 68   |
| Fair      | 11    | 93   | 5    | 270  | 1510 | 25   | 17  | 35   | 5   | 992  | 70   |
| Poor      | 1     | 32   | 4    | 94   | 785  | 11   | 7   | 12   | 2   | 535  | 30   |

|           | 22 | 23 | 24 | 25  | 26 | 27 | 28  | 29 | 30   |
|-----------|----|----|----|-----|----|----|-----|----|------|
| Excellent | 6  | 2  | 1  | 55  | 2  | 5  | 22  | 18 | 597  |
| Very Good | 13 | 9  | 9  | 187 | 10 | 20 | 57  | 41 | 1718 |
| Good      | 13 | 14 | 12 | 322 | 14 | 23 | 104 | 39 | 3093 |
| Fair      | 18 | 11 | 8  | 379 | 12 | 15 | 72  | 35 | 3500 |
| Poor      | 13 | 2  | 3  | 245 | 7  | 16 | 72  | 25 | 3180 |

# Higher proportion of cases of diabetes at poorer levels of general health table(data\_sub\$Diabetes\_binary, data\_sub\$GenHlth)

Excellent Very Good Good Fair Poor Diabetes 1140 6381 13457 9790 4578 No Diabetes 44159 82703 62189 21780 7503

# Difficult to make any firm conclusion from education/sex/diabetes table, we'll do some gray table(data\_sub\$Diabetes\_binary, data\_sub\$Sex, data\_sub\$Education)

, , = Never attended school or only kindergarten

Female Male Diabetes 30 17 No Diabetes 72 55

, , = Grades 1 through 8 (Elementary)

Female Male Diabetes 677 506 No Diabetes 1504 1356

, , = Grades 9 through 11 (Some high school)

Female Male Diabetes 1377 919 No Diabetes 4135 3047

, = Grade 12 or GED (High school graduate)

```
Female
                    Male
              6106
                    4960
Diabetes
No Diabetes 29014 22670
   = College 1 year to 3 years (Some college or technical school)
            Female Male
Diabetes
              5683 4671
No Diabetes 35539 24017
   = College 4 years or more (College graduate)
            Female
                    Male
Diabetes
              4538
                    5862
No Diabetes 53299 43626
```

Overall, it does look like self-reported general health may differ across diabetes vs non-diabetes patients. Mental and Physical health variables also appear to have a relationship with general health rating, which is what we'd expect to see here. It's also interesting to note that the number of poor health days tend to decrease as we move from Day 1 to Day 29, but there is an unexpectedly high number of people reporting 30 Days of issues. This suggests that there is a subset of participants that experience some sort of daily chronic issue.

We'll next do some plots so we can visualize some of these relationships:

```
# scatter plots of Physical*Mental Health across sex
g = ggplot(data_sub, aes(y = MentHlth, x = PhysHlth, color = Sex))
g + geom_point() + geom_smooth() +
labs(title = "Mental Health Days by Physical Health Days", x = "Physical health days in past
```

`geom\_smooth()` using method = 'gam' and formula = 'y ~ s(x, bs = "cs")'



We can visualize the positive correlation between the Mental and Physical Health, as expected. Next, let's visualize education and diabetes since our table was tricky to interpret:

```
# Bar plots of general health and diabetes by education level
g = ggplot(data_sub, aes(y = Diabetes_binary))
g + geom_bar() +
labs(title = "Diabetes Rates by Education Level", x = "Number of Cases", y = "Diabetes Status facet_wrap(~Education)
```

## Diabetes Rates by Education Level



It does look like we might have a lower proportion of diabetes in higher education groups, since the number of diabetes cases appears similar between the highest three education groups while the total sample size of each education group gets progressively larger. Finally, let's see how General Health plots with diabetes:

```
# Bar plots of diabetes rate by general health rating
g = ggplot(data_sub, aes(y = Diabetes_binary))
g + geom_bar() +
labs(title = "Diabetes Rates Across Self-Reported General Health", x = "Number of Cases", y =
facet_wrap(~GenHlth)
```

## Diabetes Rates Across Self-Reported General Health



Here, we see that there is a higher proportion of diabetes in groups that report lower general health. This matches with the intuition that individuals with diabetes may consider themselves to be less healthy on average. Now that we have gotten an idea for how the variables relate, we can move onto training our models in our second document.

Click here for the Modeling Page