Algorithms and Analysis

Lesson 30: Understand Numerics

Representing reals, rounding error, convergence, stability, conditioning

Outline

- 1. Numerical Approximations
- 2. Iterating to a Solution
- 3. Linear Algebra

- Numerical algorithms are usually taught separately from the "discrete algorithms" we have predominantly looked at
- The main difference stems from the fact that numerical algorithms model continuous variables
- Computers can only approximate continuous variables
- Numerical algorithms have to take into account this approximation

- Numerical algorithms are usually taught separately from the "discrete algorithms" we have predominantly looked at
- The main difference stems from the fact that numerical algorithms model continuous variables
- Computers can only approximate continuous variables
- Numerical algorithms have to take into account this approximation

- Numerical algorithms are usually taught separately from the "discrete algorithms" we have predominantly looked at
- The main difference stems from the fact that numerical algorithms model continuous variables
- Computers can only approximate continuous variables
- Numerical algorithms have to take into account this approximation

- Numerical algorithms are usually taught separately from the "discrete algorithms" we have predominantly looked at
- The main difference stems from the fact that numerical algorithms model continuous variables
- Computers can only approximate continuous variables
- Numerical algorithms have to take into account this approximation

- $x = m \times 2^{e-t}$
- t is precision so that if e=t, then $0.5 \le x < 1$
- For IEEE double t=1023, $expon_{\min}=-1021$, $expon_{\max}=1024$
- Typical rounding error is $u = 1 \times 10^{-16}$

- $x = m \times 2^{e-t}$
- t is precision so that if e=t, then $0.5 \le x < 1$
- For IEEE double t=1023, $expon_{\min}=-1021$, $expon_{\max}=1024$
- Typical rounding error is $u = 1 \times 10^{-16}$

- $x = m \times 2^{e-t}$
- t is precision so that if e=t, then $0.5 \le x < 1$
- For IEEE double t=1023, $expon_{\min}=-1021$, $expon_{\max}=1024$
- Typical rounding error is $u = 1 \times 10^{-16}$

- $x = m \times 2^{e-t}$
- t is precision so that if e=t, then $0.5 \le x < 1$
- For IEEE double t=1023, $expon_{\min}=-1021$, $expon_{\max}=1024$
- Typical rounding error is $u = 1 \times 10^{-16}$

- $x = m \times 2^{e-t}$
- t is precision so that if e=t, then $0.5 \le x < 1$
- For IEEE double t=1023, $expon_{\min}=-1021$, $expon_{\max}=1024$
- Typical rounding error is $u = 1 \times 10^{-16}$

- We approximate the continuous number line by a set of discrete values
- Imagine using a mantissa of 3 bits and an exponent of 2 bits (and a sign)

- We approximate the continuous number line by a set of discrete values
- Imagine using a mantissa of 3 bits and an exponent of 2 bits (and a sign)

- We approximate the continuous number line by a set of discrete values
- Imagine using a mantissa of 3 bits and an exponent of 2 bits (and a sign)

- We approximate the continuous number line by a set of discrete values
- Imagine using a mantissa of 3 bits and an exponent of 2 bits (and a sign)

- We approximate the continuous number line by a set of discrete values
- Imagine using a mantissa of 3 bits and an exponent of 2 bits (and a sign)

- An overflow will cause a program to fall over at run time
- An underflow is ignored
- This is usually innocuous, but can lead to trouble
- If you call log(x) or 1.0/x but x has underflowed then your program will crash

- An overflow will cause a program to fall over at run time
- An underflow is ignored
- This is usually innocuous, but can lead to trouble
- If you call log(x) or 1.0/x but x has underflowed then your program will crash

- An overflow will cause a program to fall over at run time
- An underflow is ignored
- This is usually innocuous, but can lead to trouble
- If you call log(x) or 1.0/x but x has underflowed then your program will crash

- An overflow will cause a program to fall over at run time
- An underflow is ignored
- This is usually innocuous, but can lead to trouble
- If you call log(x) or 1.0/x but x has underflowed then your program will crash

- The distance between two real numbers Δx grows with the number such that $\Delta x/x \leq u$ where $u \approx 10^{-16}$ for doubles
- Measure relative error

Relative error =
$$\left| \frac{Approx - Exact}{Exact} \right|$$

- Thus almost every operation is only accurate up to this small (relative) rounding error
- Most operations are carefully designed that these rounding errors are unbiased so that the sum of random errors grows sub-linearly

- The distance between two real numbers Δx grows with the number such that $\Delta x/x \leq u$ where $u \approx 10^{-16}$ for doubles
- Measure relative error

Relative error =
$$\frac{Approx - Exact}{Exact}$$

- Thus almost every operation is only accurate up to this small (relative) rounding error
- Most operations are carefully designed that these rounding errors are unbiased so that the sum of random errors grows sub-linearly

- The distance between two real numbers Δx grows with the number such that $\Delta x/x \leq u$ where $u \approx 10^{-16}$ for doubles
- Measure relative error

Relative error =
$$\left| \frac{Approx - Exact}{Exact} \right|$$

- Thus almost every operation is only accurate up to this small (relative) rounding error
- Most operations are carefully designed that these rounding errors are unbiased so that the sum of random errors grows sub-linearly

- The distance between two real numbers Δx grows with the number such that $\Delta x/x \leq u$ where $u \approx 10^{-16}$ for doubles
- Measure relative error

Relative error =
$$\left| \frac{Approx - Exact}{Exact} \right|$$

- Thus almost every operation is only accurate up to this small (relative) rounding error
- Most operations are carefully designed that these rounding errors are unbiased so that the sum of random errors grows sub-linearly

- There seems to be plenty of precision, so what's the problem?
- One issue is that its easy to lose precision
- Consider estimating derivatives by finite differencing

$$f'(x) \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

- The problem is $f(x+\epsilon)$ and $f(x-\epsilon)$ are very close so in taking their difference we lose precision
- $f(x) = \sin(x)$, $f'(x) = \cos(x)$ at x = 1.0

ϵ	10^{-6}	10^{-8}	10^{-10}	10^{-12}	10^{-14}
relative error	5×10^{-11}	5×10^{-9}	1×10^{-7}	2×10^{-5}	6×10^{-3}

- There seems to be plenty of precision, so what's the problem?
- One issue is that its easy to lose precision
- Consider estimating derivatives by finite differencing

$$f'(x) \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

- The problem is $f(x+\epsilon)$ and $f(x-\epsilon)$ are very close so in taking their difference we lose precision
- $f(x) = \sin(x)$, $f'(x) = \cos(x)$ at x = 1.0

ϵ	10^{-6}	10^{-8}	10^{-10}	10^{-12}	10^{-14}
relative error	5×10^{-11}	5×10^{-9}	1×10^{-7}	2×10^{-5}	6×10^{-3}

- There seems to be plenty of precision, so what's the problem?
- One issue is that its easy to lose precision
- Consider estimating derivatives by finite differencing

$$f'(x) \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

- The problem is $f(x+\epsilon)$ and $f(x-\epsilon)$ are very close so in taking their difference we lose precision
- $f(x) = \sin(x)$, $f'(x) = \cos(x)$ at x = 1.0

ϵ	10^{-6}	10^{-8}	10^{-10}	10^{-12}	10^{-14}
relative error	5×10^{-11}	5×10^{-9}	1×10^{-7}	2×10^{-5}	6×10^{-3}

- There seems to be plenty of precision, so what's the problem?
- One issue is that its easy to lose precision
- Consider estimating derivatives by finite differencing

$$f'(x) \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon} = \frac{0.841470984861927 - 0.841470984753866}{2.0 \times 10^{-10}}$$

- The problem is $f(x+\epsilon)$ and $f(x-\epsilon)$ are very close so in taking their difference we lose precision
- $f(x) = \sin(x)$, $f'(x) = \cos(x)$ at x = 1.0

ϵ	10^{-6}	10^{-8}	10^{-10}	10^{-12}	10^{-14}
relative error	5×10^{-11}	5×10^{-9}	1×10^{-7}	2×10^{-5}	6×10^{-3}

- There seems to be plenty of precision, so what's the problem?
- One issue is that its easy to lose precision
- Consider estimating derivatives by finite differencing

$$f'(x) \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon} = \frac{0.841470984861927 - 0.841470984753866}{2.0 \times 10^{-10}}$$

- The problem is $f(x+\epsilon)$ and $f(x-\epsilon)$ are very close so in taking their difference we lose precision
- $f(x) = \sin(x)$, $f'(x) = \cos(x)$ at x = 1.0

ϵ	10^{-6}	10^{-8}	10^{-10}	10^{-12}	10^{-14}
relative error	5×10^{-11}	5×10^{-9}	1×10^{-7}	2×10^{-5}	6×10^{-3}

- There seems to be plenty of precision, so what's the problem?
- One issue is that its easy to lose precision
- Consider estimating derivatives by finite differencing

$$f'(x) \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon} = \frac{0.841470984861927 - 0.841470984753866}{2.0 \times 10^{-10}}$$

- The problem is $f(x+\epsilon)$ and $f(x-\epsilon)$ are very close so in taking their difference we lose precision
- $f(x) = \sin(x)$, $f'(x) = \cos(x)$ at x = 1.0

ϵ	10^{-6}	10^{-8}	10^{-10}	10^{-12}	10^{-14}
relative error	5×10^{-11}	5×10^{-9}	1×10^{-7}	2×10^{-5}	6×10^{-3}

• A classic example where you can lose precision is in solving a quadratic equation $a x^2 + b x + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If $b^2 \gg |4\,a\,x|$ then for one solution we end up subtracting numbers very close
- We rather use this equation to compute one solution

$$x_1 = \frac{-b - \operatorname{sgn}(b)\sqrt{b^2 - 4ac}}{2a}$$

• A classic example where you can lose precision is in solving a quadratic equation $a x^2 + b x + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If $b^2 \gg |4\,a\,x|$ then for one solution we end up subtracting numbers very close
- We rather use this equation to compute one solution

$$x_1 = \frac{-b - \operatorname{sgn}(b)\sqrt{b^2 - 4ac}}{2a}$$

• A classic example where you can lose precision is in solving a quadratic equation $a x^2 + b x + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If $b^2 \gg |4\,a\,x|$ then for one solution we end up subtracting numbers very close
- We rather use this equation to compute one solution

$$x_1 = \frac{-b - \text{sgn}(b)\sqrt{b^2 - 4 a c}}{2 a}$$

• A classic example where you can lose precision is in solving a quadratic equation $a\,x^2 + b\,x + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If $b^2 \gg |4\,a\,x|$ then for one solution we end up subtracting numbers very close
- We rather use this equation to compute one solution

$$x_1 = \frac{-b - \operatorname{sgn}(b)\sqrt{b^2 - 4ac}}{2a}$$

• A classic example where you can lose precision is in solving a quadratic equation $a x^2 + b x + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If $b^2 \gg |4\,a\,x|$ then for one solution we end up subtracting numbers very close
- We rather use this equation to compute one solution

$$x_1 = \frac{-b - \text{sgn}(b)\sqrt{b^2 - 4 a c}}{2 a}$$

• Use the identity $x_1 x_2 = c/a$ to find x_2 (i.e. $x_2 = c/(a x_1)$)

Accumulation of Rounding Error

- With many significant figures surely we can afford to lose some accuracy?
- This is sometimes true, but we often use "for loops" where we might be losing accuracy all the time

```
x = 1.6;
for (i=0; i<50; i++)
x = sqrt(x);
for (i=0; i<50; i++)
x = x*x;</pre>
```

• Gave the answer 1.2840 (if I run the for loop 60 times it gives the answer 1 for almost any input)

Accumulation of Rounding Error

- With many significant figures surely we can afford to lose some accuracy?
- This is sometimes true, but we often use "for loops" where we might be losing accuracy all the time

```
x = 1.6;
for (i=0; i<50; i++)
x = sqrt(x);
for (i=0; i<50; i++)
x = x*x;</pre>
```

 Gave the answer 1.2840 (if I run the for loop 60 times it gives the answer 1 for almost any input)

Accumulation of Rounding Error

- With many significant figures surely we can afford to lose some accuracy?
- This is sometimes true, but we often use "for loops" where we might be losing accuracy all the time

```
x = 1.6;
for (i=0; i<50; i++)
    x = sqrt(x);
for (i=0; i<50; i++)
    x = x*x;</pre>
```

 Gave the answer 1.2840 (if I run the for loop 60 times it gives the answer 1 for almost any input)

Accumulation of Rounding Error

- With many significant figures surely we can afford to lose some accuracy?
- This is sometimes true, but we often use "for loops" where we might be losing accuracy all the time

```
x = 1.6;
for (i=0; i<50; i++)
    x = sqrt(x);
for (i=0; i<50; i++)
    x = x*x;</pre>
```

```
\begin{array}{c} 1.600000000000000001\\ 1.2649110640673518\\ 1.1246826503806981\\ 1.0605105611830079\\ 1.0298109346783069\\ 1.0147960064359274\\ 1.0073708385872242\\ 1.0036786530494828\\ 1.001837638067907\\ 1.0009183973071467\\ \vdots\\ 1.000000000000000000000002\end{array}
```

 Gave the answer 1.2840 (if I run the for loop 60 times it gives the answer 1 for almost any input)

```
\texttt{Math.abs(x-y)} < \texttt{1.0e-10} \quad / / \quad a \quad small \quad constant
```

- Sometimes sums that add up to 1 don't quite so we have not to rely on anything being exact
- Avoid operations that are likely to lose accuracy (e.g. by taking the difference of similar numbers) where possible
- Sometimes it pays to do some operations using higher precision
 long double
- Make sure that errors are unbiased

```
Math.abs(x-y) < 1.0e-10 // a small constant
```

- Sometimes sums that add up to 1 don't quite so we have not to rely on anything being exact
- Avoid operations that are likely to lose accuracy (e.g. by taking the difference of similar numbers) where possible
- Sometimes it pays to do some operations using higher precision
 long double
- Make sure that errors are unbiased

```
Math.abs(x-y) < 1.0e-10 // a small constant
```

- Sometimes sums that add up to 1 don't quite so we have not to rely on anything being exact
- Avoid operations that are likely to lose accuracy (e.g. by taking the difference of similar numbers) where possible
- Sometimes it pays to do some operations using higher precision
 long double
- Make sure that errors are unbiased

```
Math.abs(x-y) < 1.0e-10 // a small constant
```

- Sometimes sums that add up to 1 don't quite so we have not to rely on anything being exact
- Avoid operations that are likely to lose accuracy (e.g. by taking the difference of similar numbers) where possible
- Sometimes it pays to do some operations using higher precision long double
- Make sure that errors are unbiased

```
Math.abs(x-y) < 1.0e-10 // a small constant
```

- Sometimes sums that add up to 1 don't quite so we have not to rely on anything being exact
- Avoid operations that are likely to lose accuracy (e.g. by taking the difference of similar numbers) where possible
- Sometimes it pays to do some operations using higher precision
 long double
- Make sure that errors are unbiased

Outline

- 1. Numerical Approximations
- 2. Iterating to a Solution
- 3. Linear Algebra

$$x^{(0)}, x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, \dots$$

- We often stop when the change in solution is below some threshold, e.g. $|x^{(i+1)}-x^{(i)}| \leq \epsilon \approx u$
- The time complexity depends on the speed of convergence
- This can range from very fast to miserably slow

$$x^{(0)}, x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, \dots$$

- We often stop when the change in solution is below some threshold, e.g. $|x^{(i+1)} x^{(i)}| \le \epsilon \approx u$
- The time complexity depends on the speed of convergence
- This can range from very fast to miserably slow

$$x^{(0)}, x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, \dots$$

- We often stop when the change in solution is below some threshold, e.g. $|x^{(i+1)}-x^{(i)}| \leq \epsilon \approx u$
- The time complexity depends on the speed of convergence
- This can range from very fast to miserably slow

$$x^{(0)}, x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, \dots$$

- We often stop when the change in solution is below some threshold, e.g. $|x^{(i+1)} x^{(i)}| \le \epsilon \approx u$
- The time complexity depends on the speed of convergence
- This can range from very fast to miserably slow

• Suppose we want to compute $\sqrt{2}$ (without using sqrt (2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt (2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt (2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt (2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt (2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt (2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt (2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt (2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt (2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt(2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt(2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt(2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt(2))

$$f(x) = x^2 - 2 = 0$$

• Suppose we want to compute $\sqrt{2}$ (without using sqrt(2))

$$f(x) = x^2 - 2 = 0$$

 \bullet A second classic method to solve f(x)=0 is Newton-Raphson's method

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}$$

 \bullet A second classic method to solve f(x)=0 is Newton-Raphson's method

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}$$

 \bullet A second classic method to solve f(x)=0 is Newton-Raphson's method

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}$$

 \bullet A second classic method to solve f(x)=0 is Newton-Raphson's method

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}$$

 \bullet A second classic method to solve f(x)=0 is Newton-Raphson's method

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}$$

 \bullet A second classic method to solve f(x)=0 is Newton-Raphson's method

$$x^{(i+1)} = x^{(i)} - \frac{f(x^{(i)})}{f'(x^{(i)})}$$

Convergence

Convergence

Convergence

Bisection shows linear convergence (exponential increase in accuracy)

- Bisection shows linear convergence (exponential increase in accuracy)
- Newton Raphson shows quadratic convergence

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

- Newton Raphson only converges quadratically if you start close enough to the solution
- Consider solving $x^6 1 = 0$ starting with $x^{(0)} = 0.5$

Evaluating Functions

We can evaluate many functions using a series expansion

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• For large i this converges since $i! \gg x^i$

Evaluating Functions

We can evaluate many functions using a series expansion

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• For large i this converges since $i! \gg x^i$

Evaluating Functions

We can evaluate many functions using a series expansion

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

• For large i this converges since $i! \gg x^i$

Slow convergence

Some expansions converge rather slowly (or even diverge)

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

• Converges for $-1 < x \le 1$, but converges slowly for x = 1

Slow convergence

Some expansions converge rather slowly (or even diverge)

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

ullet Converges for $-1 < x \le 1$, but converges slowly for x = 1

- Many functions can be approximated by a sum
- We get a truncation error by taking only a finite number of elements
- We want the truncation error to be around machine accuracy
- For quick evaluation we need a strongly convergent series
- This often depend on the value of the argument we give to the function
- Most special functions are approximated by different series depending on the input argument

- Many functions can be approximated by a sum
- We get a truncation error by taking only a finite number of elements
- We want the truncation error to be around machine accuracy
- For quick evaluation we need a strongly convergent series
- This often depend on the value of the argument we give to the function
- Most special functions are approximated by different series depending on the input argument

- Many functions can be approximated by a sum
- We get a truncation error by taking only a finite number of elements
- We want the truncation error to be around machine accuracy
- For quick evaluation we need a strongly convergent series
- This often depend on the value of the argument we give to the function
- Most special functions are approximated by different series depending on the input argument

- Many functions can be approximated by a sum
- We get a truncation error by taking only a finite number of elements
- We want the truncation error to be around machine accuracy
- For quick evaluation we need a strongly convergent series
- This often depend on the value of the argument we give to the function
- Most special functions are approximated by different series depending on the input argument

- Many functions can be approximated by a sum
- We get a truncation error by taking only a finite number of elements
- We want the truncation error to be around machine accuracy
- For quick evaluation we need a strongly convergent series
- This often depend on the value of the argument we give to the function
- Most special functions are approximated by different series depending on the input argument

- Many functions can be approximated by a sum
- We get a truncation error by taking only a finite number of elements
- We want the truncation error to be around machine accuracy
- For quick evaluation we need a strongly convergent series
- This often depend on the value of the argument we give to the function
- Most special functions are approximated by different series depending on the input argument

Differential Equations

- Differential equations are used in many applications, for example in modelling the motion of object
- A typical equation of motion might be

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = 2\frac{\mathrm{d}x(t)}{\mathrm{d}t} + 3x(t)$$

- Which has a general solution $x(t) = c_1 e^{-t} + c_2 e^{3t}$
- The constants are determined by initial conditions, for example, if x(0)=1 and $\dot{x}(0)=-1$ then $x(t)=\mathrm{e}^{-t}$

Differential Equations

- Differential equations are used in many applications, for example in modelling the motion of object
- A typical equation of motion might be

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = 2\frac{\mathrm{d}x(t)}{\mathrm{d}t} + 3x(t)$$

- Which has a general solution $x(t) = c_1 e^{-t} + c_2 e^{3t}$
- The constants are determined by initial conditions, for example, if x(0)=1 and $\dot{x}(0)=-1$ then $x(t)=\mathrm{e}^{-t}$

Differential Equations

- Differential equations are used in many applications, for example in modelling the motion of object
- A typical equation of motion might be

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = 2\frac{\mathrm{d}x(t)}{\mathrm{d}t} + 3x(t)$$

- Which has a general solution $x(t) = c_1 e^{-t} + c_2 e^{3t}$
- The constants are determined by initial conditions, for example, if x(0) = 1 and $\dot{x}(0) = -1$ then $x(t) = \mathrm{e}^{-t}$

 To solve a differential equation we use an approximate update equation

$$x(t+\epsilon) \approx x(t) + \epsilon \dot{x}(t)$$

$$\dot{x}(t+\epsilon) \approx \dot{x}(t) + \epsilon \ddot{x}(t)$$

 To solve a differential equation we use an approximate update equation

$$x(t+\epsilon) \approx x(t) + \epsilon \dot{x}(t)$$

$$\dot{x}(t+\epsilon) \approx \dot{x}(t) + \epsilon \ddot{x}(t)$$

 To solve a differential equation we use an approximate update equation

$$x(t+\epsilon) \approx x(t) + \epsilon \dot{x}(t)$$

$$\dot{x}(t+\epsilon) \approx \dot{x}(t) + \epsilon \ddot{x}(t)$$

 To solve a differential equation we use an approximate update equation

$$x(t+\epsilon) \approx x(t) + \epsilon \dot{x}(t)$$

$$\dot{x}(t+\epsilon) \approx \dot{x}(t) + \epsilon \ddot{x}(t)$$

 To solve a differential equation we use an approximate update equation

$$x(t+\epsilon) \approx x(t) + \epsilon \dot{x}(t)$$

$$\dot{x}(t+\epsilon) \approx \dot{x}(t) + \epsilon \ddot{x}(t)$$

 To solve a differential equation we use an approximate update equation

$$x(t+\epsilon) \approx x(t) + \epsilon \dot{x}(t)$$

$$\dot{x}(t+\epsilon) \approx \dot{x}(t) + \epsilon \ddot{x}(t)$$

 To solve a differential equation we use an approximate update equation

$$x(t+\epsilon) \approx x(t) + \epsilon \dot{x}(t)$$

$$\dot{x}(t+\epsilon) \approx \dot{x}(t) + \epsilon \ddot{x}(t)$$

 To solve a differential equation we use an approximate update equation

$$x(t+\epsilon) \approx x(t) + \epsilon \dot{x}(t)$$

$$\dot{x}(t+\epsilon) \approx \dot{x}(t) + \epsilon \ddot{x}(t)$$

- Some iterative equations are unstable
- Round off errors can push a system of equations towards an unstable solution
- This can sometimes be overcome by cunning (e.g. running the equations backwards)
- Finding stable algorithms and avoiding unstable algorithms can be key to getting accurate predictions

- Some iterative equations are unstable
- Round off errors can push a system of equations towards an unstable solution
- This can sometimes be overcome by cunning (e.g. running the equations backwards)
- Finding stable algorithms and avoiding unstable algorithms can be key to getting accurate predictions

- Some iterative equations are unstable
- Round off errors can push a system of equations towards an unstable solution
- This can sometimes be overcome by cunning (e.g. running the equations backwards)
- Finding stable algorithms and avoiding unstable algorithms can be key to getting accurate predictions

- Some iterative equations are unstable
- Round off errors can push a system of equations towards an unstable solution
- This can sometimes be overcome by cunning (e.g. running the equations backwards)
- Finding stable algorithms and avoiding unstable algorithms can be key to getting accurate predictions

Outline

- 1. Numerical Approximations
- 2. Iterating to a Solution
- 3. Linear Algebra

$$3x + 2y = 5$$

$$7x - 8y = -11$$

$$\begin{pmatrix} 3 & 2 \\ 7 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ -11 \end{pmatrix}$$

- ullet Or $\mathbf{A} oldsymbol{x} = oldsymbol{b}$ with solution $oldsymbol{x} = \mathbf{A}^{-1} \mathbf{b}$
- Linear algebra is an abstraction allowing mathematicians,
 scientists and engineers to write solutions at a higher level
- The job of the numerical analyst is to write the code that does this

$$3x + 2y = 5$$

$$7x - 8y = -11$$

$$\begin{pmatrix} 3 & 2 \\ 7 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ -11 \end{pmatrix}$$

- ullet Or $\mathbf{A} x = oldsymbol{b}$ with solution $oldsymbol{x} = \mathbf{A}^{-1} \mathbf{b}$
- Linear algebra is an abstraction allowing mathematicians,
 scientists and engineers to write solutions at a higher level
- The job of the numerical analyst is to write the code that does this

$$3x + 2y = 5$$

$$7x - 8y = -11$$

$$\begin{pmatrix} 3 & 2 \\ 7 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ -11 \end{pmatrix}$$

- ullet Or $\mathbf{A} oldsymbol{x} = oldsymbol{b}$ with solution $oldsymbol{x} = \mathbf{A}^{-1} \mathbf{b}$
- Linear algebra is an abstraction allowing mathematicians, scientists and engineers to write solutions at a higher level
- The job of the numerical analyst is to write the code that does this

$$3x + 2y = 5$$

$$7x - 8y = -11$$

$$\begin{pmatrix} 3 & 2 \\ 7 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ -11 \end{pmatrix}$$

- ullet Or $\mathbf{A} x = oldsymbol{b}$ with solution $oldsymbol{x} = \mathbf{A}^{-1} \mathbf{b}$
- Linear algebra is an abstraction allowing mathematicians,
 scientists and engineers to write solutions at a higher level
- The job of the numerical analyst is to write the code that does this

$$3x + 2y = 5$$

$$7x - 8y = -11$$

$$\begin{pmatrix} 3 & 2 \\ 7 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ -11 \end{pmatrix}$$

- ullet Or $\mathbf{A} oldsymbol{x} = oldsymbol{b}$ with solution $oldsymbol{x} = \mathbf{A}^{-1} \mathbf{b}$
- Linear algebra is an abstraction allowing mathematicians,
 scientists and engineers to write solutions at a higher level
- The job of the numerical analyst is to write the code that does this

$$3x + 2y = 5$$

$$7x - 8y = -11$$

$$\begin{pmatrix} 3 & 2 \\ 7 & -8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ -11 \end{pmatrix}$$

- ullet Or $\mathbf{A} oldsymbol{x} = oldsymbol{b}$ with solution $oldsymbol{x} = \mathbf{A}^{-1} \mathbf{b}$
- Linear algebra is an abstraction allowing mathematicians,
 scientists and engineers to write solutions at a higher level
- The job of the numerical analyst is to write the code that does this

- There are a large number of problems with matrices that people care about
- The solution often depends on the problem
- These include
 - Multiply matrices together
 - \star Solving linear equations $\mathbf{A}x=b$
 - * Finding eigenvalues of symmetric and non-symmetric matrices
 - ★ Performing singular valued decomposition
- These are important tasks that need to be done efficiently and reliably

- There are a large number of problems with matrices that people care about
- The solution often depends on the problem
- These include
 - Multiply matrices together
 - \star Solving linear equations $\mathbf{A}x=b$
 - * Finding eigenvalues of symmetric and non-symmetric matrices
 - ★ Performing singular valued decomposition
- These are important tasks that need to be done efficiently and reliably

- There are a large number of problems with matrices that people care about
- The solution often depends on the problem
- These include
 - * Multiply matrices together
 - \star Solving linear equations $\mathbf{A}x=oldsymbol{b}$
 - * Finding eigenvalues of symmetric and non-symmetric matrices
 - * Performing singular valued decomposition
- These are important tasks that need to be done efficiently and reliably

- There are a large number of problems with matrices that people care about
- The solution often depends on the problem
- These include
 - Multiply matrices together
 - \star Solving linear equations $\mathbf{A}x=b$
 - * Finding eigenvalues of symmetric and non-symmetric matrices
 - ★ Performing singular valued decomposition
- These are important tasks that need to be done efficiently and reliably

- ullet We consider the classic problem of solving ${f A}x=b$
- Although we can solve this by computing $\mathbf{A}^{-1}\mathbf{b}$, finding the inverse of a matrix is typically a $\Theta(n^3)$ operation
- It is preferable to decompose **A** into a product of a lower triangular matrix **L** and an upper triangular matrix **U** which takes $\Theta(n^2)$ operations

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 6 \\ 3 & 5 & 9 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0.75 & 1 & 0 \\ 0.25 & 0.428 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 6 \\ 0 & 3.5 & 4.5 \\ 0 & 0 & -4.28 \end{pmatrix} = \mathbf{LU}$$

- ullet We consider the classic problem of solving ${f A}x=b$
- Although we can solve this by computing $\mathbf{A}^{-1}\mathbf{b}$, finding the inverse of a matrix is typically a $\Theta(n^3)$ operation
- It is preferable to decompose **A** into a product of a lower triangular matrix **L** and an upper triangular matrix **U** which takes $\Theta(n^2)$ operations

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 6 \\ 3 & 5 & 9 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0.75 & 1 & 0 \\ 0.25 & 0.428 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 6 \\ 0 & 3.5 & 4.5 \\ 0 & 0 & -4.28 \end{pmatrix} = \mathbf{LU}$$

- ullet We consider the classic problem of solving ${f A}x=b$
- Although we can solve this by computing $\mathbf{A}^{-1}\mathbf{b}$, finding the inverse of a matrix is typically a $\Theta(n^3)$ operation
- It is preferable to decompose **A** into a product of a lower triangular matrix **L** and an upper triangular matrix **U** which takes $\Theta(n^2)$ operations

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 6 \\ 3 & 5 & 9 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0.75 & 1 & 0 \\ 0.25 & 0.428 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 6 \\ 0 & 3.5 & 4.5 \\ 0 & 0 & -4.28 \end{pmatrix} = \mathbf{LU}$$

- ullet We consider the classic problem of solving ${f A}x=b$
- Although we can solve this by computing $\mathbf{A}^{-1}\mathbf{b}$, finding the inverse of a matrix is typically a $\Theta(n^3)$ operation
- It is preferable to decompose **A** into a product of a lower triangular matrix **L** and an upper triangular matrix **U** which takes $\Theta(n^2)$ operations

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 6 \\ 3 & 5 & 9 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0.75 & 1 & 0 \\ 0.25 & 0.428 & 1 \end{pmatrix} \begin{pmatrix} 4 & 2 & 6 \\ 0 & 3.5 & 4.5 \\ 0 & 0 & -4.28 \end{pmatrix} = \mathbf{LU}$$

- LU-decomposition is achieved by Gaussian-elimination
- This is a straightforward procedure, but if done carelessly can lead to large rounding errors
- The standard solution is to permute the rows of the matrix (aka pivoting) to prevent loss of accuracy
- In addition we can "polish" solutions

$$\mathbf{A}(x + \delta x) - b = \epsilon$$

- LU-decomposition is achieved by Gaussian-elimination
- This is a straightforward procedure, but if done carelessly can lead to large rounding errors
- The standard solution is to permute the rows of the matrix (aka pivoting) to prevent loss of accuracy
- In addition we can "polish" solutions

$$\mathbf{A}(x + \delta x) - b = \epsilon$$

- LU-decomposition is achieved by Gaussian-elimination
- This is a straightforward procedure, but if done carelessly can lead to large rounding errors
- The standard solution is to permute the rows of the matrix (aka pivoting) to prevent loss of accuracy
- In addition we can "polish" solutions

$$\mathbf{A}(x + \delta x) - b = \epsilon$$

- LU-decomposition is achieved by Gaussian-elimination
- This is a straightforward procedure, but if done carelessly can lead to large rounding errors
- The standard solution is to permute the rows of the matrix (aka pivoting) to prevent loss of accuracy
- In addition we can "polish" solutions

$$\mathbf{A}(\boldsymbol{x} + \delta \boldsymbol{x}) - \boldsymbol{b} = \boldsymbol{\epsilon}$$

- LU-decomposition is achieved by Gaussian-elimination
- This is a straightforward procedure, but if done carelessly can lead to large rounding errors
- The standard solution is to permute the rows of the matrix (aka pivoting) to prevent loss of accuracy
- In addition we can "polish" solutions

$$\mathbf{A}(x + \delta x) - b = \epsilon$$

Norms

- ullet With some work we can get a good approximation to $oldsymbol{x}$ such that $oldsymbol{A}oldsymbol{x}=oldsymbol{b}$
- But what if we have some error in \boldsymbol{b} , this induces an error $\delta \boldsymbol{x} = \mathbf{A}^{-1} \, \delta \boldsymbol{b}$
- How big is δx ?
- To measure the size of a vector we use a norm $\|\delta x\|$, which is a number encoding the size of δx
- There are a number of different norms, e.g.

$$\|\delta \boldsymbol{x}\|_2 = \sqrt{\delta x_1^2 + \dots + \delta x_n^2}, \quad \|\delta \boldsymbol{x}\|_1 = |\delta x_1| + \dots + |\delta x_n|$$

Norms

- ullet With some work we can get a good approximation to $oldsymbol{x}$ such that $oldsymbol{A}oldsymbol{x}=oldsymbol{b}$
- But what if we have some error in \boldsymbol{b} , this induces an error $\delta \boldsymbol{x} = \mathbf{A}^{-1} \, \delta \boldsymbol{b}$
- How big is δx ?
- To measure the size of a vector we use a norm $\|\delta x\|$, which is a number encoding the size of δx
- There are a number of different norms, e.g.

$$\|\delta \boldsymbol{x}\|_2 = \sqrt{\delta x_1^2 + \dots + \delta x_n^2}, \quad \|\delta \boldsymbol{x}\|_1 = |\delta x_1| + \dots + |\delta x_n|$$

Norms

- ullet With some work we can get a good approximation to $oldsymbol{x}$ such that $oldsymbol{A}oldsymbol{x}=oldsymbol{b}$
- But what if we have some error in \boldsymbol{b} , this induces an error $\delta \boldsymbol{x} = \mathbf{A}^{-1} \, \delta \boldsymbol{b}$
- How big is δx ?
- To measure the size of a vector we use a norm $\|\delta x\|$, which is a number encoding the size of δx
- There are a number of different norms, e.g.

$$\|\delta \boldsymbol{x}\|_2 = \sqrt{\delta x_1^2 + \dots + \delta x_n^2}, \quad \|\delta \boldsymbol{x}\|_1 = |\delta x_1| + \dots + |\delta x_n|$$

Norms

- ullet With some work we can get a good approximation to $oldsymbol{x}$ such that $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$
- But what if we have some error in $m{b}$, this induces an error $\delta m{x} = \mathbf{A}^{-1} \, \delta m{b}$
- How big is δx ?
- ullet To measure the size of a vector we use a norm $\|\delta x\|$, which is a number encoding the size of δx
- There are a number of different norms, e.g.

$$\|\delta \boldsymbol{x}\|_2 = \sqrt{\delta x_1^2 + \dots + \delta x_n^2}, \quad \|\delta \boldsymbol{x}\|_1 = |\delta x_1| + \dots + |\delta x_n|$$

Norms

- ullet With some work we can get a good approximation to $oldsymbol{x}$ such that $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$
- But what if we have some error in $m{b}$, this induces an error $\delta m{x} = \mathbf{A}^{-1} \, \delta m{b}$
- How big is δx ?
- To measure the size of a vector we use a norm $\|\delta x\|$, which is a number encoding the size of δx
- There are a number of different norms, e.g.

$$\|\delta \boldsymbol{x}\|_2 = \sqrt{\delta x_1^2 + \dots + \delta x_n^2}, \quad \|\delta \boldsymbol{x}\|_1 = |\delta x_1| + \dots + |\delta x_n|$$

Norms

- ullet With some work we can get a good approximation to $oldsymbol{x}$ such that $oldsymbol{\mathsf{A}} oldsymbol{x} = oldsymbol{b}$
- But what if we have some error in $m{b}$, this induces an error $\delta m{x} = \mathbf{A}^{-1} \, \delta m{b}$
- How big is δx ?
- To measure the size of a vector we use a norm $\|\delta x\|$, which is a number encoding the size of δx
- There are a number of different norms, e.g.

$$\|\delta \boldsymbol{x}\|_2 = \sqrt{\delta x_1^2 + \dots + \delta x_n^2}, \quad \|\delta \boldsymbol{x}\|_1 = |\delta x_1| + \dots + |\delta x_n|$$

$$\|\delta \boldsymbol{x}\| = \|\mathbf{A}^{-1}\delta \boldsymbol{b}\| \le \|\mathbf{A}^{-1}\| \|\delta \boldsymbol{b}\|$$

- Where $\|\mathbf{A}^{-1}\|$ provides a measure of the size of the error in the worst case
- For large matrices $\|\mathbf{A}^{-1}\|$ can be large meaning that any error in $m{b}$ is potentially magnified significantly
- Such matrices are said to be ill-conditions
- Ill-conditioning is not to due with rounding errors but the structure of the matrix

$$\|\delta \boldsymbol{x}\| = \|\mathbf{A}^{-1}\delta \boldsymbol{b}\| \le \|\mathbf{A}^{-1}\| \|\delta \boldsymbol{b}\|$$

- Where $\|\mathbf{A}^{-1}\|$ provides a measure of the size of the error in the worst case
- For large matrices $\|\mathbf{A}^{-1}\|$ can be large meaning that any error in $m{b}$ is potentially magnified significantly
- Such matrices are said to be ill-conditions
- Ill-conditioning is not to due with rounding errors but the structure of the matrix

$$\|\delta \boldsymbol{x}\| = \|\mathbf{A}^{-1}\delta \boldsymbol{b}\| \le \|\mathbf{A}^{-1}\| \|\delta \boldsymbol{b}\|$$

- Where $\|\mathbf{A}^{-1}\|$ provides a measure of the size of the error in the worst case
- For large matrices $\|\mathbf{A}^{-1}\|$ can be large meaning that any error in $m{b}$ is potentially magnified significantly
- Such matrices are said to be ill-conditions
- Ill-conditioning is not to due with rounding errors but the structure of the matrix

$$\|\delta \boldsymbol{x}\| = \|\mathbf{A}^{-1}\delta \boldsymbol{b}\| \le \|\mathbf{A}^{-1}\| \|\delta \boldsymbol{b}\|$$

- Where $\|\mathbf{A}^{-1}\|$ provides a measure of the size of the error in the worst case
- For large matrices $\|\mathbf{A}^{-1}\|$ can be large meaning that any error in \boldsymbol{b} is potentially magnified significantly
- Such matrices are said to be ill-conditions
- Ill-conditioning is not to due with rounding errors but the structure of the matrix

$$\|\delta oldsymbol{x}\| = \|\mathbf{A}^{-1}\delta oldsymbol{b}\| \leq \|\mathbf{A}^{-1}\| \|\delta oldsymbol{b}\|$$

- Where $\|\mathbf{A}^{-1}\|$ provides a measure of the size of the error in the worst case
- For large matrices $\|\mathbf{A}^{-1}\|$ can be large meaning that any error in $m{b}$ is potentially magnified significantly
- Such matrices are said to be ill-conditions
- Ill-conditioning is not to due with rounding errors but the structure of the matrix

• The size of the error in ${m x}$: ${m A} \, {m x} = {m b}$ when ${m b}$ has error $\delta {m b}$ is

$$\|\delta \boldsymbol{x}\| = \|\mathbf{A}^{-1}\delta \boldsymbol{b}\| \le \|\mathbf{A}^{-1}\| \|\delta \boldsymbol{b}\|$$

- Where $\|\mathbf{A}^{-1}\|$ provides a measure of the size of the error in the worst case
- For large matrices $\|\mathbf{A}^{-1}\|$ can be large meaning that any error in $m{b}$ is potentially magnified significantly
- Such matrices are said to be ill-conditions
- Ill-conditioning is not to due with rounding errors but the structure of the matrix

- Linear algebra packages provide an important set of tools used for solving linear equations
- Care has to be taken to ensure that needless operations (such as inverting a matrix) are not done
- Algorithms must ensure that as little accuracy as possible is lost (e.g. by permuting rows in LU-decomposition)
- Even when the algorithms are precise, small errors can get amplified in some operations, which requires care in formulating the problem
- The idea of poor conditioning (errors being amplified) is useful in understanding many numerical tasks

- Linear algebra packages provide an important set of tools used for solving linear equations
- Care has to be taken to ensure that needless operations (such as inverting a matrix) are not done
- Algorithms must ensure that as little accuracy as possible is lost (e.g. by permuting rows in LU-decomposition)
- Even when the algorithms are precise, small errors can get amplified in some operations, which requires care in formulating the problem
- The idea of poor conditioning (errors being amplified) is useful in understanding many numerical tasks

- Linear algebra packages provide an important set of tools used for solving linear equations
- Care has to be taken to ensure that needless operations (such as inverting a matrix) are not done
- Algorithms must ensure that as little accuracy as possible is lost (e.g. by permuting rows in LU-decomposition)
- Even when the algorithms are precise, small errors can get amplified in some operations, which requires care in formulating the problem
- The idea of poor conditioning (errors being amplified) is useful in understanding many numerical tasks

- Linear algebra packages provide an important set of tools used for solving linear equations
- Care has to be taken to ensure that needless operations (such as inverting a matrix) are not done
- Algorithms must ensure that as little accuracy as possible is lost (e.g. by permuting rows in LU-decomposition)
- Even when the algorithms are precise, small errors can get amplified in some operations, which requires care in formulating the problem
- The idea of poor conditioning (errors being amplified) is useful in understanding many numerical tasks

- Linear algebra packages provide an important set of tools used for solving linear equations
- Care has to be taken to ensure that needless operations (such as inverting a matrix) are not done
- Algorithms must ensure that as little accuracy as possible is lost (e.g. by permuting rows in LU-decomposition)
- Even when the algorithms are precise, small errors can get amplified in some operations, which requires care in formulating the problem
- The idea of poor conditioning (errors being amplified) is useful in understanding many numerical tasks

- Be wary of numerical algorithms, because computers approximate real numbers you don't always get what you expect
- Don't avoid numerical algorithms, they are hugely important with vast areas of applications
- This is a well studied area with large libraries of reliable algorithms that work most of the time
- There are some good books such as "Numerical Recipes" by Press, $et\ al.$, which describes the issues and provides code

- Be wary of numerical algorithms, because computers approximate real numbers you don't always get what you expect
- Don't avoid numerical algorithms, they are hugely important with vast areas of applications
- This is a well studied area with large libraries of reliable algorithms that work most of the time
- There are some good books such as "Numerical Recipes" by Press, $et\ al.$, which describes the issues and provides code

- Be wary of numerical algorithms, because computers approximate real numbers you don't always get what you expect
- Don't avoid numerical algorithms, they are hugely important with vast areas of applications
- This is a well studied area with large libraries of reliable algorithms that work most of the time
- There are some good books such as "Numerical Recipes" by Press, $et\ al.$, which describes the issues and provides code

- Be wary of numerical algorithms, because computers approximate real numbers you don't always get what you expect
- Don't avoid numerical algorithms, they are hugely important with vast areas of applications
- This is a well studied area with large libraries of reliable algorithms that work most of the time
- There are some good books such as "Numerical Recipes" by Press, $et\ al.$, which describes the issues and provides code