SHENDUO ZHANG

December 2, 2020 (GMT+8)

zhangshenduo@gmail.com

Problem 1

P87 2.2.1

Denote f_1, f_2, \ldots, f_n is a set of linear bounded functional on a Hilbert Space H.,

$$M \triangleq \bigcap_{k=1}^{n} N(f_k), \quad N(f_k) \triangleq \{x \in H | f_k(x) = 0\}$$

$$\tag{1}$$

k = 1, 2, ..., n. Denote y_0 as the orthogonal projection of x_0 on M. Prove that $\exists y_1, y_2, ..., y_n \in H$ and $a_1, a_2, ..., a_n \in \mathbb{K}$ such that

$$y_0 = x_0 - \sum_{k=1}^n a_k y_k. (2)$$

Solution 1.a It only suffices to prove $M = span\{y_1, y_2, \dots, y_k\}^{\perp}$ and M is a closed subspace. Denote the later space as S^{\perp} .

Both two spaces M, S are close because M is finite intersection of closed sets and S is union of finite closed sets.

Now we need to prove M, S together make up the whole space. Let y_k be chosen to as the Riesz's representation of linear functional f_k . If $x \in M$, then $f_k(x) = 0$. By Riesz's representation theorm $\langle x, y_k \rangle = 0, \forall k > 0$, i.e. $x \perp y_k, \forall k$. Then $x \in S^{\perp}$. For the other side of the equality, if $x \in S^{\perp}$, then $x \perp y_k, \forall k$, which means $\langle x, y_k \rangle = 0, \forall y_k \in S$. By Riesz's representation theorem, $f_k(x) = 0, \forall k$. In another word, $x \in N_k, \forall k$. Hence $x \in M$.

Problem 2

P103 2.3.1

Let \mathcal{X} be a Banach Space, \mathcal{X}_0 is a closed subspace of \mathcal{X} . The map $\phi: \mathcal{X} \mapsto \mathcal{X}/\mathcal{X}_0$ is defined to be

$$\phi: x \mapsto [x](\forall x \in \mathcal{X}) \tag{3}$$

where [x] is the quatient class containing x. Prove that ϕ is an open mapping.

Solution 2.a Since \mathcal{X} is a Banach space and \mathcal{X}_0 is a closed subspace, the quotient space is also a Banach space. Hence, the map ϕ maps from a Banach space to another Banach space. To prove it's an open mapping, it only suffices to prove $R(\phi) = \mathcal{X}/\mathcal{X}_0$. This is automatic because once you choose a specific quotient class, it must have a representative element inside, which after affected by ϕ will be the quotient class.

Problem 3

P103 2.3.2

Let \mathcal{X}, \mathcal{Y} be Banach Space. Let the equation Ux = y has a solution $x \in \mathcal{X}$ for all $y \in \mathbf{Y}$, where $U \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Suppose $\exists m > 0$ such that

$$||Ux|| \ge m||x|| (\forall x \in \mathcal{X}). \tag{4}$$

Prove that U has a continuous inverse U^{-1} , and $||U^{-1}|| \leq 1/m$.

Solution 3.a Since $U: \mathcal{X} \to \mathcal{Y}$, it suffices to prove U is a bijection to claim the existence of inverse. The surjection automatically follows since the equation has a solution for any $y \in \mathcal{Y}$. And this solution is unique. Suppose $Ux_1 = Ux_2$, then we have the following,

$$0 = ||U(x_1 - x_2)|| \ge m||x_1 - x_2|| \ge 0$$
(5)

Hence $x_1 = x_2$. By a corollary of open mapping theorem, U^{-1} exists b For all y such that ||y|| = 1, we have

$$||U^{-1}y|| \le ||y||/m = \frac{1}{m}$$
 (6)

Hence $||U^{-1}|| \leq \frac{1}{m}$ b

Problem 4

P103 2.3.3

Let H be a Hilbert space, and $A \in \mathcal{L}(H)$. Suppose $\exists m > 0$ such that

$$|\langle Ax, x \rangle| \ge m ||x||^2 \quad (\forall x \in H)$$
 (7)

Prove that $\exists A^{-1} \in \mathcal{L}(H)$.

Solution 4.a If H is a Hilbert space, then H is also a banach space. It only suffices to prove A is a bijection. The proof for injection is identical to above. The proof of surjection is also trivial since R(A) is either H or a first catagory set. If it's first catagory, then let $||x|| \to \infty$ to obtain a contradiction.

Problem 5

P103 2.3.5

Using equavalent norm to prove that $(C[0,1], \|\cdot\|_1)$ is not a B space, where

$$\|\cdot\|_1 = \int_0^1 |f(t)| dt \quad (\forall f \in C[0, 1])$$
 (8)

Solution 5.a First we have $(C[0,1], \|\cdot\|_2)$ where $\|\cdot\|_2 := \sup_{t \in [0,1]} |f(t)|$. Then $\|\cdot\|_1$ is equavalent to $\|\cdot_2\|$, because

$$||f||_1 = \int_0^1 |f(t)| dt \le \int_0^1 \sup_{t \in [0,1]} |f(t)| dx = ||f||_2.$$
 (9)

And there exists a Cauchy sequence under $\|\cdot\|_2$, such that it does not converge in C[0,1]. And by equavalence of norm, this Cauchy sequence is still a Cauchy sequence under $\|\cdot\|_1$. Hence we obtain a Cauchy sequence that does not converge.

Problem 6

P103 2.3.7

Let \mathcal{X} and \mathcal{Y} be Banach space, $A_n \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, and $\forall x \in \mathcal{X}$, $\{A_n x\}$ is convergent in \mathcal{Y} . Prove that, $\exists A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ such that

$$A_n x \to A x \quad (\forall x \in \mathcal{X}),$$
 (10)

and $||A|| \le \liminf_{n \to \infty} ||A_n||$.

Solution 6.a From uniform boundedness principle (Banach-Steinhaus theorem), $||A_n||$ is uniformly bounded. Let $Ax = \lim_{n\to\infty} A_n x$. We need to prove that ||A|| is bounded. For any $x \in \mathcal{X}$, we have

$$||Ax|| = \lim_{n \to \infty} ||A_n x|| \le \liminf_{n \to \infty} ||A_n|| ||x|| \le M||x||$$
(11)

Hence ||A|| is bounded. The inequality is also proved.

Problem 7

P103 2.3.8

Suppose 1 and <math>1/p + 1/q = 1. If $\{a_k\}$ is a sequence such that $\forall \{\xi_k\} \in l^p$, $\sum_{k=1}^{\infty} a_k \xi_k$ is convergent. Prove that $\{a_k\} \in l^p$.

Then if $f: x \mapsto \sum_{k=1}^{\infty} a_k x_k$, prove that f as a linear functional on l^p , we have

$$||f|| = \left(\sum_{k=1}^{\infty} |a_k|^q\right)^{\frac{1}{q}}.$$
 (12)

Solution 7.a $f(x) = \langle a, x \rangle$. We need to prove $a \in l^q$, where a denotes the vector (a_1, a_2, \dots) . Here it suffice to prove $(l^p)^* = l^q$. Let

$$x_k^{(m)} = \begin{cases} |a_k|^{q-1} \operatorname{sign} a_k & 1 \le k \le m \\ 0 & k > m \end{cases}$$
 (13)

Then

$$f(x^{(m)}) = \sum_{k=1}^{m} x_k^{(m)} a_k = \sum_{k=1}^{m} |a_k|^q$$
(14)

Then

$$||f|| = \sup_{x \in l^p} \left| \frac{f(x)}{||x||_p} \right| \ge \frac{f(x^m)}{||x^m||_p} = \frac{\sum_{k=1}^m |a_k|^q}{\left(\sum_{k=1}^m |a_k|^{(q-1)p}\right)^{1/p}} = \frac{\sum_{k=1}^m |a_k|^q}{\left(\sum_{k=1}^m |a_k|^q\right)^{1-1/q}} = ||a||_q$$
(15)

Solution 7.b We have proved one direction of the equality, for the other direction of the equality,

$$||f|| = \sup_{\|x\|=1} |\langle a, x \rangle| \le \sup_{\|x\|=1} ||a|| ||x|| = ||a||$$
(16)

Problem 8

P103 2.3.9

If there is a sequence $\{a_k\}$ such that $\forall x = \{\xi_k\} \in l^1$, $\sum_{k=1}^{\infty} a_k \xi_k$ is convergent. Prove that $\{a_k\} \in l^{\infty}$.

And if $f : \mapsto \sum_{k=1}^{\infty} a_k \xi_k$ is a linear functional on l^1 . Prove that

$$||f|| = \sup_{k>1} |a_k| \tag{17}$$

Solution 8.a First, we will prove $||a||_{\infty} \leq ||f||_{1}$. Denote $e_{k} = (0, \ldots, 1, 0, \ldots)$, where the i element is 1.

$$\max_{k} |a_{k}| = \max_{k} |f(e_{k})| \le ||f|| \tag{18}$$

Solution 8.b The other side follows from Holder inequality. \Box

Problem 9

P103 2.3.10

Prove the uniform bounded principle using Gelfrand lemma.

Solution 9.a The Gelfrand lemma is as follow,

Lemma 1. Let \mathcal{X} be a Banach space, $p: \mathcal{X} \to \mathbb{R}^1$ is a semi-linear functional satisfying,

- 1. $p(x) \ge 0 \quad \forall x \in \mathcal{X}$.
- 2. $p(\lambda x) = \lambda p(x) \quad (\forall \lambda > 0, \forall x \in \mathcal{X}).$
- 3. $p(x_1 + x_2) \le p(x_1) + p(x_2) \quad (\forall x_1, x_2 \in \mathcal{X}).$
- 4. $x_n \to x \Rightarrow \liminf_{n \to \infty} p(x_n) \ge p(x)$.

Then $\exists M > 0$ such that $p(x) \leq M ||x|| \forall x \in \mathcal{X}$.

Let $W \subset \mathcal{L}(\mathcal{X}, \mathcal{Y})$, where \mathcal{Y} is a normed linear space. Define $p(\cdot) = \sup_{A \in W} ||A \cdot ||$. Then it's easy to verity p satisfy the first three property. It only suffice to prove the last property.

$$||Ax|| \le ||A(x - x_n)|| + ||Ax_n|| \le ||A(x - x_n)|| + \sup_{A \in W} ||Ax_n||$$
(19)

Then take the lower limit, since the limit of the second term in the last inequality might not exists. We prove the property 4. Then Gelfrand lemma implies that $||A|| = \sup_{\|x\|=1} ||Ax|| \le \sup_{\|x\|=1} \sup_{A \in W} ||Ax|| \le M$, which is the statement of uniform boundedness principle.

Problem 10

P103 2.3.11

If \mathcal{X}, \mathcal{Y} are Banach spaces, $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is surjection. Prove that, if $y_n \to y_0$ in \mathcal{Y} . Then $\exists C > 0$ and $x_n \to x_0$, such that $Ax_n = y_n$, and $||x_n|| \le C||y_n||$.

Solution 10.a The result of this problem would imply that once

Consider its quotient space $\mathcal{X}/\ker A$, which is a Banach space. Define $A': \mathcal{X}/\ker A \to \mathcal{Y}$; $[x] \mapsto Ax$. We want to prove first A' is invertible and we can choose a convergent representitives in \mathcal{X} such that the final inequality holds.

For the part of invertibility, it suffices to prove A' is a bijection. Since $\mathcal{X}/\ker A$, \mathcal{Y} are all Banach spaces, the existence of $A'^{-1} \in \mathcal{L}(\mathcal{Y}, \mathcal{X}/\ker A)$ is guaranteed. Since A is a surjection, then A' is automatically a surjection. Since we have ruled out the kernel of A in the quotient space, A' is also an injection. Then the existence of $[x_n] = A'^{-1}y_n$ is guaranteed and we also prove the following inequality on the fly,

$$||[x_n]|| \le C||y_n|| \tag{20}$$

where $C = ||A'^{-1}||$. $||[x_n] - [x_0]|| \le ||A'^{-1}|| ||y_n - y_0||$ would implie the convergence of $\{[x_n]\}$.

Now the remaining question is if we can choose the right representitives x_n in \mathcal{X} such that it converges and 20 holds without the bracket. The answer is yes because we can choose x_n in \mathcal{X} such that

$$||x_n|| \le 2||[x_n]||. \tag{21}$$

Problem 11

P103 2.3.12

Let \mathcal{X}, \mathcal{Y} be Banach Space, T be a closed linear operator, $D(T) \subset \mathcal{X}$, $R(T) \subset \mathcal{Y}$, $N(T) \triangleq \{x \in \mathcal{X} | Tx = \theta\}$.

- 1. Prove that N(T) is a closed linear subspace of \mathcal{X} .
- 2. If $N(T) = \{\theta\}$, prove that R(T) being closed in \mathcal{Y} is equivalent to $\exists a > 0$ such that

$$||x|| \le a||Tx|| \quad (\forall x \in D(T)); \tag{22}$$

3. Denote the distance from $x \in \mathcal{X}$ to the set N(T) as $d(x, N(T)) = \inf_{z \in N(T)} ||z - x||$. Prove that R(T) being close in \mathcal{Y} is equivalent to $\exists a > 0$ such that

$$d(x, N(T)) \le a||Tx|| \quad (\forall x \in D(T)). \tag{23}$$

Solution 11.a The linear subspace is trivial. To prove it's closed, let $N(T) \ni x_n \to x_0$, it

suffices to prove $Tx_0 = 0$.

$$||Tx_0|| = \left\| \lim_{n \to \infty} Tx_n \right\| = \lim_{n \to \infty} ||Tx_n|| = 0$$
 (24)

Solution 11.b \Rightarrow : R(T) is closed and $N(T) = \{\theta\}$ implies that $T: D(T) \to R(T)$ is a bijection from a Banach space to another Banach space. Hence T has an inverse T^{-1} . Then

$$||T^{-1}y|| \le ||T^{-1}|| ||y|| \quad (\forall y \in R(T))$$
 (25)

Hence let $a = \frac{1}{\|T^{-1}\|}$, the claim follows because T is a bijection.

 \Leftarrow : To prove R(T) is closed is equivalent to prove for any convergent series $\{y_k\} \in R(T)$, its limit y is still in R(T). If we denote $Tx_n = y_n$, then the condition implies,

$$||x_n - x_m|| \le a||Tx_n - Tx_m||. \tag{26}$$

Hence $\{x_n\}$ is also a Cauchy sequence in D(T). And by compleness of \mathcal{X} , we can find $x \in \mathcal{X}$ which is the limit of $\{x_n\}$. Then by the closeness of operator T, y is in \mathcal{Y} .

Solution 11.c Notice that d(x, N(T)) = ||[x]||, where [x] is an element in the quotient space $X/\ker T$. Define $T': \mathcal{X}/\ker T \to \mathcal{Y}$. It immediately follows that R(T) = R(T'). So it only suffices to prove R(T') is closed. T' is a bijection, therefore to use the result from the previous question, it only suffices to prove $X/\ker T$ is a Banach space and T' is also a closed operator.

The first part is automatic because X is a Banach space.

For the second part, first we notice that T is a closed operator, so if $x_n \to x$ and $Tx_n \to y$ then Tx = y. The difference between T and T' is marginal in the sense that $T'[x_n] = Tx_n$. So if $T[x_n] \to y$, then $Tx_n \to y$. The convergence of $[x_n]$ would imply convergence of a sequence of representitives in X, because there exists representative $x_n - x$ such that $||x_n - x|| \le 2||[x_n - x]||$. Hence if $[x_n] \to [x]$ and $T'[x_n] \to y$ holds, then by choosing representitives, $x_n \to x$ and $Tx_n \to y$ holds. Then by the closeness of T, we conclude Tx = y. Adding any element in the kernel of T will not change its output, therefore T[x] = y.

Problem 12

P103 2.3.13

Suppose a(x,y) is a adjoint bilinear functional on a Hilbert Space H, and it satisfy

- 1. $\exists M > 0 \text{ such that } |a(x,y)| \le M||x|| ||y|| \quad (\forall x, y \in H);$
- 2. $\exists \delta > 0 \text{ such that } |a(x,x)| \ge \delta ||x||^2 \quad (\forall x \in H).$

Prove that, $\forall f \in H^*, \exists ! y_f \in H \text{ such that }$

$$a(x, y_f) = f(x) \quad (\forall x \in H), \tag{27}$$

and y_f depends on f continuously.

Solution 12.a By Lax-Milgram theorem, $\exists ! T \in \mathcal{L}(\mathcal{X})$ such that

$$a(x,y) = \langle x, Ty \rangle. \tag{28}$$

And the operator T has an inverse $T^{-1} \in \mathcal{L}(\mathcal{X})$. By Riesz's representation theorem, we know $\exists ! \tilde{f} \in H$ such that the any linear functional $f \in \mathcal{L}(X)$ has a unique representation $\langle x, \tilde{f} \rangle$. Then $\langle x, \tilde{f} \rangle = \langle x, TT^{-1}\tilde{f} \rangle = a(x, T^{-1}\tilde{f})$. This $y_f = T^{-1}\tilde{f}$ is unique since the Riesz representation is unique and T is a bijection. The continuous dependency follows from the continuity of $\langle x, \cdot \rangle$ and T^{-1} .

Problem 13

Let \mathcal{X} , be a Hilbert Space, T be a linear operator satisfying (Tx, y) = (x, Ty). Prove that $T \in \mathcal{L}(\mathcal{X})$.

Solution 13.a If $x_n \to x$, it suffices to prove $Tx_n \to Tx$.

$$||Tx_n - Tx|| = \langle Tx_n - Tx, Tx_n - Tx \rangle$$

$$= \langle Tx - Tx_n, Tx \rangle + \langle Tx_n, Tx_n - Tx \rangle$$

$$= \langle x - x_n, TTx \rangle + \langle TTx_n, x_n - x \rangle$$

$$\to 0$$