Course Recap: Introduction to Probabilistic Models for Inference and Estimation

Gaurav Sharma

University of Rochester

Course Objective

- Provide an introduction to probabilistic models through a sampling of applications. An "engineering" introduction that builds toward abstraction through concrete examples
- Constructionist rather than abstract approach
 - Detailed toy example construction
 - Complete "soup-to-nuts" description
 - Abstraction to general case
 - Research application examples
 - Realistic application scenarios
- ► Aim was to have cohesive and self-contained coverage
 - Illustrate clear progression of ideas and inter-linkages between topics

Course Summary/Recap I

- Review Probability Basics
 - ▶ Probability spaces: Events, outcomes, probability measure
 - Random variables and processes
- Key ideas
 - Marginalization (Marginal from joint pdf/pmf)
 - Independence (Meaning?)
 - Bayes rule and conditional probability
 - Conditional independence (Meaning?)

Course Summary/Recap II

- Elementary probabilistic models
 - ► IID (Independent identically distributed) model
 - No dependence
 - Characterized by pmf
 - Markov model
 - Sequential dependence: future is conditionally independent of past given present
 - Consequence: factorization of joint pmf into initial and transition probabilities
 - Characterized by state transition probabilities and initial state pmf
 - Classification of Markov chains
 - Focus: Irreducible and ergodic Markov chains

Course Summary/Recap III

- Probabilistic Inference
 - Optimal Decision Rule
 - Minimum probability of error
 - ► ≡ maximum a posteriori probability (MAP) rule

$$\hat{i} = \arg \max_{i} p(i \mid x)$$

- Intuitive: choose most likely decision given the data
- A posteriori probability factors into likelihood and prior

$$p(i \mid x) \equiv p(x \mid i) p(i)$$

 MAP reduces to maximum likelihood (ML) for equiprobable prior

Course Summary/Recap IV

- Probabilistic Parameter Estimation
 - Formulated in analogous manner to inference
 - MAP parameter estimation

$$\hat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta}} p\left(\boldsymbol{\theta} \mid \mathbf{x}\right) \equiv \arg\max_{\boldsymbol{\theta}} p\left(\mathbf{x} \mid \boldsymbol{\theta}\right) p\left(\boldsymbol{\theta}\right)$$

- Intuitive: choose most likely value of parameters given the data
- ► A posteriori probability factors into likelihood and prior

$$p(\theta \mid \mathsf{x}) \equiv p(\mathsf{x} \mid \theta) p(\theta)$$

 MAP reduces to maximum likelihood (ML) for equiprobable prior

Course Summary/Recap V

- Parameter estimation for IID and Markov models
 - Estimators were simple and intuitive
 - ► Probabilities estimated as corresponding empirically observed fractions of occurrences
 - of events for IID models
 - of transitions for Markov models

Course Summary/Recap VI

- Expectation Maximization (EM)
 - Modeling using unobserved latent variables
 - More general and useful models
 - for realistic situations where there may be incomplete/missing data
 - EM for IID latent variables
 - Two coin toy example
 - Application example: WAMI vehicle detection to road map alignment
 - Gaussian mixture models (GMMs)
 - ► Soft clustering, EM for parameter estimation
 - Application example: Flow cytometry data analysis, rare sub-population detection
 - Convergence behavior

Course Summary/Recap VII

- ► Hidden Markov Models (HMMs)
 - Alternative conceptual bases:
 - Hide part of Markov chain
 - Add memory to IID latent variable models
 - Alternative representations
 - ► Formulation as observed process (HMM) ≡ stochastic function of unobserved Markov state process
 - Characterization: state transition probabilities, symbol emission probabilities, initial state probabilities
 - "Four coin" toy example

Course Summary/Recap VIII

- Inference and estimation for Hidden Markov Models (HMMs)
 - ► Three basic problems: likelihood computation, most likely state sequence, parameter estimation
 - Forward recursion (likelihood), Viterbi algorithm (optimal state sequence), Forward-Backward recursion (Baum-Welch parameter re-estimation)
 - Development for toy model
 - Trellis diagram for visualization, formal algebraic derivation/justification
 - Marginalization and Bayes rule + Markov property
- HMM Applications
 - Viterbi and Symbol MAPP decoding for convolutional codes over binary symmetric channel
 - String edit distance and (RNA) sequence alignment

Course Summary/Recap IX

- Stochastic Context Free Grammars (SCFGs)
 - Generalize dependency structure of Markov chains
 - ► Enable efficient modeling of some long range dependencies
 - Comprehends nesting dependencies of arbitrary depth
 - Origins in language modeling/representation
 - ► Three basic problems: likelihood computation, most likely parse tree, parameter estimation
 - Inside (outward) computation (likelihood), CYK algorithm (optimal parse tree), Inside-Outside recursion (parameter re-estimation)
 - Application to biological sequences (RNA secondary structure)
 - Toy Nussinov recursion dynamic program motivated inside-outside structure
 - Corresponding SFCG illustrated probabilistic inference
- Strong analogy with HMMs but greater conceptual & computational complexity

Course Summary/Recap X

- Markov random fields (MRFs)
 - Neighborhood based conditional independence generalization of Markov chains
 - "Sequential" decomposition is not feasible
 - Only iterative numerical/computational methods for approximate inference/estimation
 - Key computational enabler: Hammersly-Clifford theorem
 - ► Characterization in terms of clique potentials
 - Connection between energy and probabilitistic models
 - Application to image segmentation

Course Summary/Recap XI

- Key algorithmic ideas/concepts
 - Dynamic Programming
 - ▶ Reuse solutions for smaller problems in solving larger problem
 - Breaks tyranny of exponential increase in complexity
 - Problem needs right structure for "search space" and "cost function"
 - Belief Propagation
 - Iterative updates of probabilities of interdependent variables
 - Yields exact marginal probabilities for variables of interest for directed acyclic graphs (DAGs)
 - Forward-Backward and Inside-Out algorithms for HMMs and SCFGs can be cast as instances of belief propagation
 - Dynamic programming and Belief Propagation as generalized abstractions for algorithms invented before/independently of formalization of these concepts
- Implementation issues: scaling and computational scheduling options

Continuing Beyond This Course I

- We discussed generative models
 - ▶ Joint distribution p(x, z) of observations x and "states" z
 - Intuitive with recursion terms defined as appropriate probabilities
 - ▶ Model allows for generation of pairs x, z according to p(x, z)
- Discriminative models offer an alternative
 - ▶ Conditional random fields (CRFs): model condl. PMF $p(z \mid x)$
 - adequate for most inference tasks
 - require potentially fewer assumptions on dependencies with x and between elements of x and z
 - Linear chain/tree-structured CRFs are the discriminative analogs of HMMs/SCFGs
 - Algorithmic approaches generalize straightforwardly
 - Less intuitive with recursion terms corresponding to factor graph representation for conditional PMF

Continuing Beyond This Course II

- Applications
 - Natural language processing and biomolecular sequence and structure modeling using HMMs and SCFGs
- Approximation algorithms
 - Many problems of current research interest are computationally intractable
 - Good practical algorithms exist, however, for many of these computationally intractable problems
 - Often explainable as approximations to exact optimal inference/parameter estimation
 - Examples: Decoding of Turbo/LDPC Codes as an instance of Belief Propagation
 - Can also motivate applications in new domains: Turbo-Decoding of RNA Structural Alignments
- Lot of excellent resources available online
 - ► Tutorials from Machine Learning/Signal Processing conferences
- ➤ You will learn the material best by implementing/using the models in an application of your own
- ► Think creatively to incorporate models where appropriate in your work

Reminders

- Course evaluations
 - Please complete the course evaluations
 - Written feedback and suggestions, particularly welcome
 - ► Will help shape future editions of the course
 - ► Also, feel free to email me your thoughts/suggestions

Acknowledgments

- ▶ Thanks to several of my students and collaborators
 - ► Research examples
 - Slides
- Thank you for attending and participating