Inside the Spring Container

Understanding the Spring Bean Lifecycle

1.18.5

Objectives

After completing this lesson, you should be able to do the following

- Explain the Spring Bean Lifecycle
- Use a BeanFactoryPostProcessor
 and a BeanPostProcessor
- Explain how Spring proxies add behavior at runtime
- Describe how Spring determines bean creation order
- Avoid issues when Injecting beans by type

Agenda

- The Spring Bean Lifecycle
 - Phase 1: Initialization
 - Phase 2: Usage
 - Phase 3: Destruction
- More on Bean Creation

Container Lifecycle

- Spring Bean container runs through three distinct phases
 - Initialization
 - Spring Beans are created
 - Dependency Injection occurs
 - Usage
 - Beans are available for use in the application
 - Destruction
 - Beans are released for Garbage Collection

Let's go deeper

Agenda

- The Spring Bean Lifecycle
 - Phase 1: Initialization
 - Phase 2: Usage
 - Phase 3: Destruction
- More on Bean Creation

Lifecycle of a Spring Application Context

(1) The Initialization Phase

When a context is created, the initialization phase completes

// Create application context from the configuration
ApplicationContext context = SpringApplication.run(AppConfig.class);

- But what exactly happens in this phase?
 - Two separate steps
 - Step A: Load & Process Bean Definitions
 - Step B: Perform Bean Creation

Bean Initialization Steps

mware

7

Step A: Load & Process Bean Definitions

- The @Configuration classes are processed and @Component annotated classes are scanned for
- Bean definitions added to a BeanFactory (Application Context)
 - Each indexed under its id and type
- Special BeanFactoryPostProcessor beans invoked
 - Can modify the definition of any bean

Load Bean Definitions

AppConfig.java

@Bean
public TransferService transferService() { ... }
@Bean
public AccountRepository accountRepository() { ... }

TestInfrastructureConfig.java

@Bean
public DataSource dataSource () { ... }

Can modify the *definition* of any bean in the factory **before** any objects are created ApplicationContext is a BeanFactory

transferService accountRepository dataSource

postProcessBeanFactory()

BeanFactoryPostProcessor

BeanFactoryPostProcessor Internal Extension Point

- Applies transformations to bean definitions
 - Before objects are actually created
- Several useful implementations provided in Spring
 - Reading properties, registering a custom scope ...
- You can write your own (not common)
 - Implement BeanFactoryPostProcessor interface

BeanFactoryPostProcessor Most Common Example

Recall @Value and \${..} variables

```
@Configuration
@PropertySource ( "classpath:/config/app.properties" )
public class ApplicationConfig {

@Value("${max.retries}")
int maxRetries;
...
}

# Maximum retry count
max.retries=3

app.properties
}
```

- Use a PropertySourcesPlaceholderConfigurer to evaluate them
 - This is a BeanFactoryPostProcessor

BeanFactoryPostProcessor Declaration

- Simply create as a bean in the usual way
 - Define using @Bean method

```
@Bean
public static BeanFactoryPostProcessor myConfigurer() {
    return new MyConfigurationCustomizer();
}
```

```
public class MyConfigurationCustomizer implements BeanFactoryPostProcessor {
    // Perform customization of the configuration such as the placeholder syntax
}
```

BeanFactoryPostProcessor Considerations

- BeanFactoryPostProcessor is an internal bean invoked by Spring (not by your code)
- It needs to run before any beans are created
 - Use of static @Bean method is recommended

```
@Bean

public static DeprecatedBeanWarner deprecatedBeanChecker() {

return new DeprecatedBeanWarner();
}
```

Another example: used to check if any Spring Bean is being created from a deprecated class.

PropertySourcesPlaceholderConfigurer Considerations

- Typically you do not need to setup this bean yourself
 - Spring Boot sets it up for you automatically
 - Spring from 4.3 sets up a basic value-resolver for you
 - If no PropertySourcesPlaceholderConfigurer bean exists
- When to create one manually?
 - Still using Spring 4.2 or earlier
 - You wish to custom-configure how it works

Step B: Perform Bean Creation

Bean Creation Sequence of Events - Singleton

- Bean creation
 - Created with dependencies injected
 - Each singleton bean eagerly instantiated
 - Unless marked as lazy
- Next each bean goes through a post-processing phase
 - BeanPostProcessors
- Now bean is fully initialized & ready to use
 - Tracked by id until the context is destroyed

The Initializer Extension Point

- Special case of a bean post-processing
 - Causes initialization methods to be called
 - Such as @PostConstruct, init-method
- Internally Spring uses several initializer BPPs
 - Example: CommonAnnotationBeanPostProcessor enables
 @PostConstruct, ...

BeanPostProcessor Extension Point

- Important extension point in Spring
 - Can modify bean *instances* in any way
 - Powerful enabling feature
 - Will run against every bean
 - Can modify a bean before and/or after Initialization
 - BeforeInit runs before the initializer
 - AfterInit runs after the initializer

BeanPostProcessor Interface

- Bean Post Processors implement a known interface
 - Spring provides several implementations
 - You can write your own (not common)
 - Typically implement the after initialization method

Example: CustomBeanPostProcessor

```
Can be found by component-scanner, like any other bean
@Component *
public class CustomBeanPostProcessor implements BeanPostProcessor {
  public Object postProcessBeforeInitialization(Object bean, String beanName) {
    // Some code
    return bean; // Remember to return your bean or you'll lose it!
  public Object postProcessAfterInitialization(Object bean,String beanName) {
    // Some code
    return bean; // Remember to return your bean or you'll lose it!
```

Configuration Lifecycle

BeanFactoryPP → BeanFactoryPostProcessor BeanPP → BeanPostProcessor

Bean Initialization Steps

Agenda

- The Spring Bean Lifecycle
 - Phase 1: Initialization
 - Phase 2: Usage
 - Phase 3: Destruction
- More on Bean Creation

Lifecycle of a Spring Application Context (2) The Use Phase

When you invoke a bean obtained from the context

```
ApplicationContext context = // get it from somewhere

// Retrieve a bean through application context. (Typically you will use @Autowired
// in order to get a reference to a bean.)

TransferService service = context.getBean("transferService", TransferService.class);

// Use it!
service.transfer(new MonetaryAmount("50.00"), "1", "2");
```

But exactly what happens in this phase?

Case I: You Bean is Just a Bean

- The bean is just your raw object
 - Simply invoked directly (nothing special)

```
transfer("$50", "1", "2")
TransferServiceImpl
```

– Nothing new here!

Case II: Your Bean is a Proxy

Your object is wrapped in a proxy

```
transfer("$50", "1", "2")

Spring Proxy

TransferServiceImpl
```

 Proxy created during initialization phase by a BeanPostProcessor

```
public interface BeanPostProcessor {
    public Object postProcessBeforeInitialization(Object bean, String beanName);
    public Object postProcessAfterInitialization(Object bean, String beanName);
}

Your bean
```

Proxy Power Example: Transactions

Kinds of Proxies

Spring supports both JDK or CGLib proxies

JDK Proxy

- Also called *dynamic* proxies
- API is built into the JDK
- Requirements: Java interface(s)
- All interfaces proxied

CGLib Proxy

- NOT built into JDK
- Included in Spring jars
- Used when interface not available
- Cannot be applied to final classes or methods

JDK vs CGLib Proxies

- JDK Proxy
 - Interface based

- CGLib Proxy
 - subclass based

Agenda

- The Spring Bean Lifecycle
 - Phase 1: Initialization
 - Phase 2: Usage
 - Phase 3: Destruction
- More on Bean Creation

Lifecycle of a Spring Application Context

(3) The Destruction Phase

The context is closed (or shutdown hook invoked)

```
ConfigurableApplicationContext context = // get it from somewhere ... // Do something

// Shutdown context.close();
```

But exactly what happens in this phase?

Bean Clean Up

- All beans are cleaned up
 - Any registered @PreDestroy methods are invoked
 - Beans released for the Garbage Collector to destroy
- Also happens when any bean goes out of scope
 - Except Prototype scoped beans
- Note: Only happens if application shuts down gracefully
 - Not if it is killed or fails

Agenda

- The Spring Bean Lifecycle
 - Phase 1: Initialization
 - Phase 2: Usage
 - Phase 3: Destruction
- More on Bean Creation

Bean Initialization – Determining Dependencies

mware

Creating Dependencies

- Beans have to be created in the right order
 - Beans must be created after their dependencies
- Two steps
 - Evaluate dependencies for each bean
 - Get each dependency needed
 - Create any if need be
 - This is recursive

You can force dependency order

```
@Component
@DependsOn("accountService")
class TransferService {
    ...
}
```

```
@Bean
@DependsOn("accountService")
public TransferService transferService() {
    return ...
}
```

Create TransferService after bean called accountService

Determining Bean Name & Type

Definition	Name	Туре
1. Java config	From @Bean name/value attr Or from method name	From method return type
2. Annotation-based Config	From Annotation value attr Or derived from class name	From annotated class

- 1 typically returns an *interface*
- 2 provides actual implementation class

Why Won't This Work?

```
// TransferService does not extend BankService
                                class BankTransferServiceImpl
@Configuration
                                     implements TransferService, BankService {
class Config {
  @Bean
  public BankingClient bankingService(BankService svc) {
     return new BankingClient( svc );
  @Bean
  public TransferService transferService(AccountRepository repo) {
     return new BankTransferServiceImpl( repo );
```

mware

No @Bean method exists returning a BankService

Solution 1: Return Implementation Type - Recommended

```
// BankTransferServiceImpl is a BankService
                           class BankTransferServiceImpl
@Configuration
                                 implements TransferService, BankService {
class Config {
  @Bean
  public BankingClient bankingService(BankService svc) {
    return new BankingClient( svc );
  @Bean
  public | BankTransferServiceImpl | transferService(AccountRepository repo) {
    return new BankTransferServiceImpl( repo );
                      Can determine BankTransferServiceImpl implements
                             both TransferService and BankService
```

mware

39

Solution 2: Return Composite Interface

vmware^s

Confidential ©2022 VMware, Inc

```
// BankTransferServiceImpl is a BankService
                      interface BankTransferService
                            extends TransferService, BankService {
@Configuration
                                class BankTransferServiceImpl
class Config {
                                    implements BankTransferService { ... }
  @Bean
  public BankingClient bankingService(BankService svc) {
    return new BankingClient( svc );
  @Bean
  public BankTransferService transferService(AccountRepository repo) {
    return new BankTransferServiceImpl( repo );
                             Can determine BankTransferService extends
                               both TransferService and BankService
```

Defining Spring Beans – Best Practice

- Aim to be "sufficiently expressive"
 - Return interfaces except
 - Where multiple interfaces exist
 - AND they are needed for dependency injection
 - Writing to interfaces is good practice
- Warning: Even if you return implementation types
 - Still use interfaces when injecting dependencies
 - Injecting implementation types is brittle
 - Dependency injection may fail if the bean is proxied or a different implementation returned

Summary

- Spring Bean Lifecycle
 - Three phases: initialize, use, destroy
 - BeanFactoryPostProcessor
 - Processes bean definitions (no beans yet)
 - Allocate using static @Bean method
 - BeanPostProcessor
 - Processes Beans
 - Performs initialization, creates proxies, ...
- Care with @Bean Definitions
 - When to consider your return types

