Multi-level Logic Synthesis

Virendra Singh Indian Institute of Science Bangalore, India

Courtesy: Giovanni De Micheli

Multi-level Logic Synthesis

- Objectives
 - ▲ What is multi-level logic synthesis
 - ▲ What are the specific goals
 - **▲** Stepwise transformations

Motivation

- Multiple-level logic networks
 - ▲ Semi-custom libraries
 - ▲ Logic gates versus macro-cells
 - **▼** More flexibility
 - **▼** Privilege specific paths on others
 - **▼** Better performance
- Applicable to a large variety of designs
- ◆ The importance of logic synthesis grew in parallel with the growth of foundries for the semi custom market

Circuit model

- Logic network
 - ▲ An interconnection of blocks
 - **▼** Each block modeled by a Boolean function
 - ▲ Usual restrictions:
 - **▼** Acyclic and memoryless
 - **▼** Single-output functions
- ◆ The model has a structural/behavioral semantics
 - ▲ The structure is induced by the interconnection
- Mapped network
 - ▲ Special case when the blocks correspond to library elements

Example of mapped network

Example of general network

Example of general network graph

Network represented by assignments

$$p = ce + de$$

$$q = a + b$$

$$r = p + a'$$

$$s = r + b'$$

$$t = ac + ad + bc + bd + e$$

$$u = q'c + qc' + qc$$

$$v = a'd + bd + c'd + ae'$$

$$w = v$$

$$x = s$$

$$y = t$$

$$z = u$$

Example of terminal behavior

- ◆I/O functional behavior
 - ▲ Vector with as many entries as primary outputs
 - ▲ Each entry is a logic function

Network optimization

- ◆ Minimize maximum delay
 - ▲ (Subject to area, power, or testability constraints)
- ◆ Minimize area
 - **▲** Subject to delay constraints
- **◆ Minimize power consumption**
 - **▲** Subject to timing constraints

Estimation

- ◆ Area:
 - ▲ Number of literals
 - **▼** Easy, widely accepted, good estimator
- Delay:
 - ▲ Number of stages
 - ▲ Gate delay models with wireloads
 - **▲** Sensitizable paths
- Power
 - **▲** Switching activity at each node
 - **▲** Capacitive loads

Problem analysis

- Even the simplest problems are computationally hard
 - ▲ E.g., multi-input single-output network
- Few exact methods proposed
 - ▲ High complexity
 - ▲ Impractical
- Approximate optimization methods
 - **▲** Heuristic algorithms
 - ▲ Rule-based methods

Strategies for optimization

- Improve network step by step
 - **▲ Circuit transformations**
- Preserve network I/O behavior
 - ▲ Exploit environment don't cares if desired
- Methods differ in:
 - ▲ Types of transformations applied
 - ▲ Selection and order of the transformations

Elimination

- **◆** Eliminate one function from the network
 - ▲ Similar to Gaussian elimination
- Perform variable substitution
- **◆** Example:

$$\triangle$$
s = r + b'; r = p + a';

$$\triangle$$
s = p + a' + b';

Example

Decomposition

- Break a function into smaller ones
 - **▲** Opposite to elimination
- ◆ Introduce new variables/blocks into the network
- **◆** Example:

Example

Extraction

- Find a common sub-expression of two (or more) expressions
 - ▲ Extract new sub-expression as new function
 - ▲ Introduce new block into the circuit
- **◆** Example

Example

Simplification

- Simplify local function
 - **▲** Use heuristic minimizer like Espresso
 - ▲ Modify fanin of target node
- **◆** Example:

```
\Delta u = q' + qc' + qc;
```

$$\Delta u = q + c;$$

Example

Substitution

- Simplify a local function by using and additional input that was not previously in its support set
- **◆ Example:**

```
▲t = ka + kb + e;
▲t = kq + e;
```

▲ Because q = a + b is already part of the network

Example

Example – Sequence of transformations

Optimization approaches

- Algorithmic approach
 - **▲** Define an algorithm for each transformation type
 - ▲ Algorithm is an *operator* on the network
 - ▲ Algorithms are sequenced by *scripts*
- Rule-based approach
 - ▲ Rule data base
 - **▼** Set of pattern pairs
 - ▲ Pattern replacement is driven by rules
- Most modern tools use the algorithmic approach to synthesis, even though rules are used to address specific issues

Boolean and algebraic methods

- Boolean methods for multilevel synthesis
 - **▲** Exploit properties of Boolean functions
 - ▲ Use don't care conditions
 - **▲** Computationally intensive
- Algebraic methods
 - ▲ Use polynomial abstraction of logic function
 - ▲ Simpler, faster, weaker
 - ▲ Widely used

Example

◆ Boolean substitution:

```
▲ h = a + bcd + c; q = a + cd;
▲ h = a + bq + e;
▲ Because a + bq +e = a + b(a+cd) + e = a + bcd + e;
```

◆ Algebraic substitution:

```
▲ t = ka + kb + e;
▲ t = kq + e;
▲ Because q = a + b;
```

Algebraic Method

- Objective
 - ▲ Algebraic model
 - ▲ Algebraic division
 - ▲ Kernel theory and applications

Algebraic model

- Boolean algebra
 - **▲** Complement
 - **▲** Symmetric distribution laws
 - ▲ Don't care sets
- Algebraic models
 - ▲ Look at Boolean expressions as polynomials
 - **▲** Use sum of product forms
 - **▼** Minimal w.r.to 1-cube containment
 - ▲ Use polynomial algebra

Algebraic division

- Given two algebraic expressions
 - ▲ An expression divides algebraically the other
 - $\triangle f_{quotient} = f_{dividend} / f_{divisor}$ when:
 - Arr $f_{dividend} = f_{divisor} f_{quotient} + f_{remainder}$
 - $f_{divisor} f_{quotient} \neq 0$
 - ▲ The support of f_{divisor} and f_{quotient} is disjoint
- ◆ Note that the f_{quotient} and f_{divisor} are interchangeable

Example

Algebraic division

- $\triangle f_{dividend} = ac + ad + bc + bd + e$
- $\triangle f_{divisor} = a + b$
- ▲ Then $f_{quotient} = c + d$ and $f_{remainder} = e$ because (a+b) (c+d) + e = $f_{dividend}$ and $\{a,b\} \cap \{c,d\} = \emptyset$

◆ Non-algebraic division:

- $\triangle f_i = a + bc$ and $f_i = a+b$
- ▲ Then (a+b) (a+c) = f_i but {a,b} \cap {a,c} \neq Ø

An algorithm for division

- Division can be performed in different way
 - ▲ Straightforward algorithm by literal sorting
 - **▼** Simple, quadratic complexity
 - ▲ Advanced algorithm using sorting
 - **▼ N-logN complexity**
 - ▲ Typically algebraic division runs fast small-sized problems
- Definitions
 - $\triangle A$ = set of cubes C_j^A of the dividend. There are I
 - \triangle B = set of cubes C_i^B of the divisor. There are n
 - ▲ Q = quotient; R = remainder

An algorithm for division

```
ALGEBRAIC_DIVISION(A,B)
   for (i = 1 \text{ to } n)
            D = \{C_i^A \text{ such that } C_i^A \supseteq C_i^B \};
            if (D == \emptyset) return(\emptyset,A);
            D_i = D with variables in sup(C^B_i) dropped;
            if i = 1
                         Q = D_i;
            else
                         Q = Q \cap D_i;
    R = A - Q \times B;
    return(Q,R);
```

Example $f_{dividend} = ac+ad+bc+bd+e; f_{divisor} = a+b$

- ◆ A = {ac,ad,bc,bd,e} and B = {a,b}
- ♦ i = 1:
 - \triangle C^B₁ = a, D = {ac,ad} and D₁ = {c,d}
 - **▲** Then Q = {c,d}
- \bullet i = 2 = n:
 - \triangle C^B₂ = b, D = {bc,bd} and D₂ = {c,d}
 - ▲ Then Q = $\{c,d\}$ $\cap \{c,d\}$ = $\{c,d\}$
- Result:
 - ▲ Q = {c,d} and R = {e}
 - \blacktriangle f_{quotient} = c + d and f_{remainder} = e

Theorem

- ◆ Given algebraic expression f_i and f_j then f_i / f_i is empty when either:
 - ▲ f_j contains a variable not in f_i
 - ▲ f_j contains a cube whose support is not contained in that of any cube of f_i
 - ▲ f_j contains more terms than f_i
 - ▲ The count of any variable in f_j is higher than in f_i

Algebraic substitution

- Consider expression pairs
- Apply division (in any order)
- ◆ If quotient is not void:
 - ▲ Evaluate area and delay gain
 - ▲ Substitute f_{dividend} by j f_{quotient} + f_{remainder}
 where j is the variable corresponding to f_{divisor}
- ◆ Use filters based on previous theorem to reduce computation

Substitution algorithm

```
SUBSTITUTE(Gn(V,E)){
   for (i = 1, 2, ..., |V|){
           for (j = 1, 2, ..., |V|; j \neq i){
                      A = set of cubes of f_i;
                      B = set of cubes of f_i;
                      if (A,B pass the filter test){
                                  (Q,R) = ALGEBRAIC\_DIVISION(A,B);
                                  if (Q \neq \emptyset){
                                             f_{quotient} = sum of cubes of Q;
                                             f_{remainder} = sum of cubes of R;
                                             if (substitution is favorable)
                                                         f_i = j f_{quotient} + f_{remainder};
         E0285@IISc
```

Extraction

- Search for common sub-expressions
 - ▲ Single-cube extraction
 - ▲ Multiple-cube extraction (kernel extraction)
- Search for appropriate divisors
- Extraction is still done using the original kernel theory of Brayton and others [IBM]

Definitions

- Cube-free expression
 - ▲ Expression that cannot be factored by a cube
 - **▲** Example:
 - ▼ a + bc is cube free
 - ▼ abc and ab + ac are not
- Kernel of an expression
 - ▲ Cube-free quotient of the expression divided by a cube, called co-kernel
 - ▲ Note that since divisors and quotients are interchangeable, kernels are just a subset of divisors
- Kernel set of an expression f is denoted by K(f)

- ♦ f = ace + bce + de + g
- Trivial kernel search:
 - ▲ Divide f by a. Get ce. Not cube free
 - ▲ Divide f by b. Get ce. Not cube free
 - ▲ Divide f by c. Get ae + be. Not cube free
 - ▲ Divide f by ce. Get a + b. Cube free. KERNEL!
 - ▲ Divide f by d. Get e. Not cube free
 - ▲ Divide f by e. Get ac + bc + d. Cube free. KERNEL!
 - ▲ Divide f by g. Get 1. Not cube free
 - ▲ Divide f by 1. Get f. Cube free. KERNEL!
- ★ K(f) ={ (a+b); (ac+bc+d); (ace+bce+de+g) }
- ◆ CoK(f) = { ce, e, 1}

Theorem Brayton and McMullen

- ◆ Two expressions f_a and f_b have a common multiple-cube divisor f_d if and only if
 - ▲ There exist kernels k_a in $K(f_a)$ and k_b in $K(f_b)$ such that f_d is the sum of two (or more) cubes in $k_a \cap k_b$
- Consequences
 - ▲ If kernel intersection is void, then the search for common sub-expression can be dropped
 - ▲ If an expression has no kernels, it can be dropped from consideration
 - ▲ The kernel intersection is the basis for constructing the expression to extract

- $\bullet f_x = ace + bce + de + g$
- $\bullet f_y = ad + bd + cde + ge$
- \bullet f_z = abc
- ★ K(f_x) = { (a+b); (ac+bc+d); (ace+bce+de+g) }
- ★ K(f_y) = { (a+b+ce); (cd+g); (ad+bd+cde+ge) }
- ◆ The kernel set of f_z is empty
- ◆ Select intersection (a+b)

$$\triangle f_w = a + b$$

$$\Delta f_x = wce + de + g$$

$$\triangle f_y = wd + cde + ge$$

$$\Delta f_z = abc$$

Kernel set computation

- Naïve method
 - ▲ Divide function by the elements of the power set of its support set
 - **▲** Weed out non cube-free quotients
- Smart way
 - **▲** Use recursion
 - **▼** Kernels of kernels are kernels
 - ▲ Exploit commutativity of multiplication

Recursive algorithm

- The recursive algorithm is the first one proposed for kernel computation and still outperforms others
- It will be explained in two steps
 - ▲R_KERNELS (with no pointer) to understand the concept
 - **▲KERNELS** (Complete algorithm)
- ◆The algorithms use a subroutine
 - **▲CUBES(f,C)** which returns the cubes of f whose literals include those of cube C
 - \triangle Example: f = ace +bce + de + g -- CUBES(f, ce) = ace + bce

Simple recursive algorithm

```
R_KERNELS(f){
   K = \emptyset;
   foreach variable x \in sup(f){
          if (|CUBES(f,x)| \ge 2) {
                    C = maximal cube containing x, s.t. CUBES(f,C) = CUBES(f,x);
                    K = K \cup R_{KERNELS}(f / C);
   K = K \cup f;
   return(K);
```

Analysis

- ◆ The recursive algorithm does some redundant computation in the recursion
 - **▲** Example
 - ▼ Divide by a and then by b
 - ▼ Divide by b and then by a
 - **▲** Obtain duplicate kernels
- Improvement
 - ▲ Exploit commutativity of multiplication
 - ▲ Keep a pointer to the literals used so far

Recursive kernel computation

```
KERNELS(f,j){
        K = \emptyset;
        for i = j to n {
                 if (|CUBES(f,x_i)| \ge 2) {
                         C = maximal cube containing x_i
                         s.t. CUBES(f,C) = CUBES(f,x_i);
                         if (C has no variable x_k, k < i)
                                  K = K \cup KERNELS(f/C,i+1);
        K = K \cup f;
        return(K);
```

- ♦ f = ace + bce+ de + g
- Literals a and b. No action required
- Literal c. Select cube ce
 - ▲ Recursive call with argument f/ce= a+b. Pointer j = 3+1
 - ▲ Call considers variables {d,e,g}. No kernel.
 - ▲ Adds a + b to the kernel set at the last step.
- Literal d. No action required.
- Literal e. Select cube e
 - ▲ Recursive call with argument f/e = ac + bc + d. Pointer j = 5+1
 - ▲ Call considers variables {g}. No Kernel
 - ▲ Adds ac+bc+d to the kernel set at the last step of recursion
- Literal g. No action required
- ◆ Add f = ace + bce + de + g to kernel set
- ★ K(f) = { (ace+bce+de+g),(ac+bc+d),(a+b) }

Matrix representation of kernels

- **♦**f = ace + bce + de +g
- **◆Incidence matrix**
 - **▲ Cubes vs. variables**
- ◆Rectangle
 - ▲ Subset of rows/columns with all entries equal to 1
- **◆Prime rectangle**
 - ▲ Rectangle not included in another rectangle
- ◆A co-kernel is a prime rectangle with at least two rows
- **◆**Example:
 - ▲ Prime rectangle ({1,2},{3,5})
 - ▲ Co-kernel ce

	var	a	b	c	d	e	g
cube	$R \backslash C$	1	2	3	4	5	6
ace	1	1	0	1	0	1	0
bce	2	0	1	1	0	1	0
de	3	0	0	0	1	1	0
g	4	0	0	0	0	0	1

Application of kernel methods

- Single cube extraction
 - ▲ Extract one cube from two (or more) sub-expressions [Brayton]
- Kernel extraction
 - ▲ Extract a multiple-cube expression [Brayton]
- ◆ Double-cube extraction
 - ▲ Newer fast and efficient routine [Rajski]
- ◆ Kernel-based decomposition

Single-cube extraction

- ◆ Form an auxiliary expression, which is the union (sum) of all local expression
- Find the largest co-kernel
 - ▲ Corresponding kernel must belong to two (or more) different expressions
 - ▲ Use additional variables to tag the expressions
- Extract chosen co-kernel
- ◆ The problem can be well visualized by a matrix representation and the extraction of a prime rectangle

•Expressions:

- $f_x = ace + bce + de + g$
- $f_s = cde + b$

•Auxiliary function:

•
$$f_{aux}$$
 = ace + bce + de + g + cde + b

•Tagging:

- •Co-kernel: ce
- After cube extraction

•
$$f_7 = ce$$

•
$$f_x = z (a+b) + de + g$$

•
$$f_s = ze + b$$

		var	a	b	c	d	e	g
cube	ID	$R \setminus C$	1	2	3	4	5	6
ace	X	1	1	0	1	0	1	0
bce	×	2	0	1	1	0	1	0
de	×	3	0	0	0	1	1	0
g	×	4	0	0	0	0	0	1
cde	S	5	0	0	1	1	1	0
b	S	6	0	1	0	0	0	0

Multiple-cube extraction

- ♦ We need a cube/kernel matrix
 - ▲ Relabel cubes by new variables
 - ▲ Kernels are now cubes in these new variables
- ◆ Find a prime rectangle
- Equivalently, find a co-kernel of the auxiliary expression that is the sum of the relabeled expressions

- ◆ f = ace + bce

 ▲ K(f) = {(a+b)}
- ◆ Relabeling: $x_a=a$; $x_b=b$; $x_{ae}=ae$; $x_{be}=be$; $x_d=d$
 - ▲ Then K(f) ={ $\{x_a, x_b\}$ } and K(g) = { $\{x_a, x_b\}, \{x_{ae}, x_{be}, x_d\}$ }

 - \triangle CoK(f_{aux}) = $x_a x_b$
- Go back to original variables
 - ▲ Extract (a + b) from f and g

Double-cube extraction

- Restrict extraction to:
 - **▲ Double-cube kernels**
 - **▲** Single-cube kernels with two literals
 - **▲** Consider concurrently their complements
- Properties
 - ▲ These small kernels can be computed efficiently
 - **▲** Circuit testability is preserved
 - ▲ Method is very efficient in reducing network

Kernel-based decomposition

- There are many different ways of performing decomposition
 - ▲ Several classic approaches (e.g., Ashenhurst & Curtis)
- Algebraic decomposition
 - ▲ Find good algebraic divisors
 - ▲ Use kernels and decompose recursively

- ◆ Decompose f = ace + bce + de + g
- ◆ Select kernel ac + bc + d
- ◆ Decompose as: f = te + g; t = ac + bc + d
- ◆ Recur on quotient t
- ◆ Select kernel a + b
- ightharpoonup Decompose t = sc + d; s = a + b; f = te + g;

Summary algebraic methods

- Algebraic methods abstract functions as polynomials
 - ▲ Polynomial division
- Methods are fast and widely applicable
- Algebraic methods miss opportunities for optimization
 - ▲ As compared to Boolean methods
- Algebraic transformations are reversible
 - ▲ Ease transformations back and forward to trade off area and speed