

Les Automates Finis

D[i] Département Informatique

Jean-Paul ARCANGELI
Jean-Baptiste RACLET
Jean-Paul.Arcangeli@irit.fr
Jean-Baptiste.Raclet@irit.fr

LANGAGES ET AUTOMATES
UPS – Licence 3 Informatique – S5
2020-2021

Plan du chapitre

- 1. Introduction aux automates finis (AF)
- 2. Définition
- 3. Langage reconnu par un automate fini
- 4. Automates finis complets (AFC)
- 5. Automates finis déterministes (AFD)
- 6. Langages reconnaissables par les AF
- 7. Grammaires linéaires à droite et AF
- 8. Systèmes d'équations de langages Opérations

- Modélisation/formalisation de systèmes (automatiques) à transition d'état
 - État
 - Évènement (action sur le système)
- xemple (M0)
- Le système est décrit par une machine abstraite
 - Un ensemble fini d'états
 - Un ensemble d'évènements
 - Identifiés comme pouvant influer sur l'état du système
 - Un ensemble de règles de transition qui décrivent l'effet d'un évènement sur l'état du système
 - L'effet d'un évènement ne dépend que de l'état courant

3

1- Introduction

- Remarques
 - Modélisation => abstraction

Exemple (M0')

- AF pour la conception d'applications et de systèmes
 - Diagrammes « état-transition » en UML
 - Modélisation de systèmes réels
- AF pour supporter l'analyse lexicale (cf. chapitre 4)
- Il existe d'autres formes plus complexes d'automates et de systèmes de transition
 - p. ex. les automates « à pile » ...

1- Introduction

- Un automate est une « machine abstraite »
 - Qui traite une suite ou séquence d'évènements en entrée (ordre !)
 - À partir d'un état « initial »
 - Qui peuvent le conduire dans un état privilégié (état « final »)
- Différents types d'état
 - Initial

Final

• Autre (ni initial, ni final)

- Remarque
 - Nous considèrerons ici des automates avec un seul état initial (sans perte d'expressivité)

5

1- Introduction

- Et les « langages » et la théorie des langages dans tout ça ?
 - Ensemble des évènements possibles = alphabet
 - Une <u>séquence</u> d'évènements = un mot
 - Ensemble des mots dont le « traitement » conduit à <u>un</u> état final = langage reconnu par l'automate
 - D'où le lien avec l'analyse lexicale

2- Définition formelle

- Un automate fini (AF) est un quintuplet <X,Q,q0,F,t> avec :
 - X : alphabet = ensemble fini de symboles ou lettres (qui représentent les différents évènements possibles)
 - Q : ensemble fini d'états
 - $F \subseteq Q$: ensemble des états finals (ou « finaux »)
 - $q0 \in Q$: état initial (unique)
 - $t: Q \times X \to \mathcal{I}(Q)$: fonction de transition

Exemple (M0'

Remarque

• Un AF peut être représenté sous forme de graphe orienté

7

2- Définition formelle (suite)

Remarque

- Pour q ∈ Q et x ∈ X, t(q,x) décrit le ou les effets possibles de l'évènement « x » sur le système quand celui-ci est dans l'état q
 - |t(q,x)| = 0 : l'effet de « x » n'est pas défini (transition non autorisée)
 - |t(q,x)| = 1: l'effet de « x » est défini de manière unique
 - |t(q,x)| > 1: « x » a plusieurs effets possibles sur l'état du système

- Langage reconnu par un automate fini

- Langage reconnu = ensemble des mots de X* dont « l'effet » (l'effet cumulé des lettres -évènements- prises de gauche à droite) est de faire passer le système de l'état initial à un état final
- Un mot reconnu décrit un « chemin » (ou plusieurs) dans le graphe entre l'état initial et un état final
- Un AF peut être vu comme une procédure de décision qui prend en entrée un mot de X* et qui détermine son « acceptation » (sa « reconnaissance »)
 - Le mot est-il reconnu par l'AF : oui ou non ?

3- Langage reconnu par un automate fini

- Soit T l'extension de t à X* (DEF
 - T: $Q \times X^* \rightarrow \mathcal{P}(Q)$
 - $\forall q \in Q, T(q,\lambda) = \{q\}$
 - $\bullet \quad \forall \ q \in \ Q, \ \forall \ x \in \ X, \ \forall \ w \in \ X^*, \ T(q, \ x.w) = \cup_{q_v \in t(q,x)} T(q_x,w)$
- Langage reconnu à partir d'un état $q \in Q$ (noté L_q)
 - $L_q = \{ w \in X^* / T(q, w) \cap F \neq \emptyset \}$ DEF

- Langage reconnu par un AF M=<X,Q,q0,F,t> (noté L(M))
 - $L(M) = L_{00} = \{w \in X^* / T(q0,w) \cap F \neq \emptyset\}$

3- Langage reconnu par un automate fini

- Remarque (d'après la définition de L(M))
 - $\lambda \in L(M) \Leftrightarrow q0 \in F$

11

3- Langage reconnu par un automate fini

Deux automates M et M' sont dits <u>équivalents</u> si L(M) = L(M')

