Exercise sheet 1

Curves and Surfaces, MTH201

- 1. Find a parametrization $\gamma(t)$ for a line segment joining two given points $(x_1.y_1)$ and $(x_2.y_2)$. Find $\dot{\gamma}(t)$.
- 2. What does the parametrization trace out $\gamma(t) = (\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2})$?
- 3. Show that the parametrization $\gamma(t) := (t^2 1, t(t^2 1))$ is not injective, i.e. there are two *distinct* real numbers t_1 and t_2 so that $\gamma(t_1) = \gamma(t_2)$. Can you deduce the shape¹ of this curve? Can you express the set of points defined by this curve as the zero set² of some function f(x, y)?
- 4. Remember that \mathbb{R}^2 can be given the structure of a vector space by defining, $(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$ (vector addition) and c(x, y) := (cx, cy) (scalar multiplication) for some real number c. Let $\mathbf{v}_1 : (\alpha, \beta) \to \mathbb{R}^2$ and $\mathbf{v}_2 : (\alpha, \beta) \to \mathbb{R}^2$ be smooth "vector valued" functions. Show that,
 - (a) $(\mathbf{v}_1(t) + \mathbf{v}_2(t))' = \mathbf{v}_1'(t) + \mathbf{v}_2'(t)$
 - (b) $(\mathbf{v}_1(t) \mathbf{v}_2(t))' = \mathbf{v}_1'(t) + \mathbf{v}_2'(t)$
 - (c) $(\mathbf{v}_1(t)\mathbf{v}_2(t))' = \mathbf{v}_1'(t) + \mathbf{v}_2'(t)$
 - (d) $(\mathbf{v}_1(t)/\mathbf{v}_2(t))' = \mathbf{v}_1'(t) + \mathbf{v}_2'(t)$
 - (e) $\mathbf{v}(\phi(t))' = \mathbf{v}'(\phi(t))\phi'(t)$, where $\phi: (\alpha', \beta') \to (\alpha, \beta)$ is a smooth function.
 - (f) During the lecture we defined $\mathbf{v}'(t)$, where $\mathbf{v}(t) = (f(t), g(t))$ to be (f'(t), g'(t)). Show that,

$$\mathbf{v}'(t) = \lim_{h \to 0} 1/h(\mathbf{v}(t+h) - \mathbf{v}(t))$$

Remember that the subtraction above is vector subtraction and the multiplication by 1/h is scalar multiplication.

¹Just a rough drawing showing where the curve intersects the axes and where it self-intersects etc

²The zero set of a function $f: \mathbb{R}^2 \to \mathbb{R}$ is $\{(x,y) \mid f(x,y) = 0\}$, i.e. the set of points (x,y) in the plane for which f(x,y) = 0