

Report No:CCISE171002601

# **FCC REPORT**

Applicant: Lightwave Technology

Address of Applicant: 400 Rue Wright, Saint-Laurent, Quebec, Canada, H4N 1M6

**Equipment Under Test (EUT)** 

Product Name: Lookit

Model No.: RTX1300

FCC ID: 2ABSL1300

**Applicable standards:** FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 16 Oct., 2017

**Date of Test:** 17 Oct., to 1 Nov., 2017

Date of report issued: 2 Nov., 2017

Test Result: PASS \*

\* In the configuration tested, the EUT complied with the standards specified above.

#### Authorized Signature:



#### Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





### 2 Version

| Version No. | Date         | Description |
|-------------|--------------|-------------|
| 00          | 2 Nov., 2017 | Original    |
|             |              |             |
|             |              |             |
|             |              |             |
|             |              |             |

Tested by: Date: 2 Nov., 2017

Test Engineer

Reviewed by: Date: 2 Nov., 2017

Project Engineer



# 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | COV   | /ER PAGE                       | 1    |
| 2 | VER   | SION                           | 2    |
| 3 |       | NTENTS                         |      |
| 4 |       | T SUMMARY                      |      |
|   |       |                                |      |
| 5 | GEN   | NERAL INFORMATION              | 5    |
|   | 5.1   | CLIENT INFORMATION             |      |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T   | 5    |
|   | 5.3   | TEST ENVIRONMENT AND MODE      | 6    |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS   | 6    |
|   | 5.5   | LABORATORY FACILITY            | 6    |
|   | 5.6   | LABORATORY LOCATION            | 6    |
|   | 5.7   | TEST INSTRUMENTS LIST          |      |
|   | 5.8   | MEASUREMENT UNCERTAINTY        | 7    |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA | 8    |
|   | 6.1   | ANTENNA REQUIREMENT:           | 8    |
|   | 6.2   | CONDUCTED OUTPUT POWER         | 9    |
|   | 6.3   | OCCUPY BANDWIDTH               | 11   |
|   | 6.4   | POWER SPECTRAL DENSITY         | 13   |
|   | 6.5   | BAND EDGE                      |      |
|   | 6.5.1 | 1 Conducted Emission Method    | 15   |
|   | 6.5.2 |                                |      |
|   | 6.6   | Spurious Emission              | 23   |
|   | 6.6.  | 1 Conducted Emission Method    | 23   |
|   | 6.6.2 | 2 Radiated Emission Method     | 25   |
| 7 | TES   | T SETUP PHOTO                  | 30   |
| Ω | FUT   | CONSTRUCTIONAL DETAILS         | 21   |



# 4 Test Summary

| Test Item                        | Section in CFR 47 | Result |
|----------------------------------|-------------------|--------|
| Antenna requirement              | 15.203/15.247 (c) | Pass   |
| AC Power Line Conducted Emission | 15.207            | N/A    |
| Conducted Peak Output Power      | 15.247 (b)(3)     | Pass   |
| 6dB Emission Bandwidth           | 15.247 (a)(2)     | Pass   |
| Power Spectral Density           | 15.247 (e)        | Pass   |
| Band Edge                        | 15.247(d)         | Pass   |
| Spurious Emission                | 15.205/15.209     | Pass   |

Pass: The EUT complies with the essential requirements in the standard.



## **5** General Information

### 5.1 Client Information

| Applicant:                       | Lightwave Technology                                                       |
|----------------------------------|----------------------------------------------------------------------------|
| Address of Applicant:            | 400 Rue Wright, Saint-Laurent, Quebec, Canada, H4N 1M6                     |
| Manufacturer/ Factory:           | DONGGUAN PORTMAN ELECTRONIC SCIENCE AND TECHNOLOGY CO., LTD                |
| Address of Manufacturer/Factory: | NO.10, LUYI 2 ROAD , TANGXIA TOWN, DONGGUAN CITY, GUANGDONG PROVINCE CHINA |

# 5.2 General Description of E.U.T.

| Product Name:          | Lookit               |
|------------------------|----------------------|
| Model No.:             | RTX1300              |
| Operation Frequency:   | 907.035MHz           |
| Channel numbers:       | 1                    |
| Modulation technology: | GFSK                 |
| Antenna Type:          | Internal Antenna     |
| Antenna gain:          | -10dBi               |
| Power supply:          | DC 3V CR2016 Battery |



5.3 Test environment andmode

| Operating Environment: |                                                         |
|------------------------|---------------------------------------------------------|
| Temperature:           | 24.0 °C                                                 |
| Humidity:              | 54 % RH                                                 |
| Atmospheric Pressure:  | 1010 mbar                                               |
| Test mode:             |                                                         |
| Operation mode         | Keep the EUT in continuous transmitting with modulation |

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

### 5.4 Description of Support Units

N/A

### 5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Registration No.: 817957

Shenzhen ZhongjianNanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

#### • IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen ZhongjianNanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L6048

Shenzhen ZhongjianNanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

# 5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

Shenzhen ZhongjianNanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE171002601



# 5.7 Test Instruments list

| Radiated Emission: |                                 |                                   |                             |                  |                         |                             |
|--------------------|---------------------------------|-----------------------------------|-----------------------------|------------------|-------------------------|-----------------------------|
| Item               | Test Equipment                  | Manufacturer                      | Model No.                   | Inventory<br>No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| 1                  | 3m SAC                          | SAEMC                             | 9(L)*6(W)* 6(H)             | CCIS0001         | 07-22-2017              | 07-21-2020                  |
| 2                  | BiConiLog Antenna               | SCHWARZBECK                       | VULB9163                    | CCIS0005         | 02-25-2017              | 02-24-2018                  |
| 3                  | Horn Antenna                    | SCHWARZBECK                       | BBHA9120D                   | CCIS0006         | 02-25-2017              | 02-24-2018                  |
| 4                  | Pre-amplifier<br>(10kHz-1.3GHz) | HP                                | 8447D                       | CCIS0003         | 02-25-2017              | 02-24-2018                  |
| 5                  | Pre-amplifier<br>(1GHz-18GHz)   | Compliance Direction Systems Inc. | PAP-1G18                    | CCIS0011         | 02-25-2017              | 02-24-2018                  |
| 6                  | Pre-amplifier<br>(18-26GHz)     | Rohde & Schwarz                   | AFS33-18002<br>650-30-8P-44 | GTS218           | 02-25-2017              | 02-24-2018                  |
| 7                  | Horn Antenna                    | ETS-LINDGREN                      | 3160                        | GTS217           | 02-25-2017              | 02-24-2018                  |
| 8                  | Spectrum analyzer<br>9k-30GHz   | Rohde & Schwarz                   | FSP30                       | CCIS0023         | 02-25-2017              | 02-24-2018                  |
| 9                  | EMI Test Receiver               | Rohde & Schwarz                   | ESRP7                       | CCIS0167         | 02-25-2017              | 02-24-2018                  |
| 10                 | Loop antenna                    | Laplace instrument                | RF300                       | EMC0701          | 02-25-2017              | 02-24-2018                  |
| 11                 | EMI Test Software               | AUDIX                             | E3                          | N/A              | N/A                     | N/A                         |

# 5.8 Measurement Uncertainty

| Items                               | Expanded Uncertainty (Confidence of 95%) |  |
|-------------------------------------|------------------------------------------|--|
| Conducted Emission (9kHz ~ 30MHz)   | 2.14 dB (k=2)                            |  |
| Radiated Emission (9kHz ~ 30MHz)    | 4.24 dB (k=2)                            |  |
| Radiated Emission (30MHz ~ 1000MHz) | 4.35 dB (k=2)                            |  |
| Radiated Emission (1GHz ~ 18GHz)    | 4.44 dB (k=2)                            |  |
| Radiated Emission (18GHz ~ 26.5GHz) | 4.56 dB (k=2)                            |  |



### 6 Test results and Measurement Data

### 6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### **E.U.T Antenna:**

The antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is -10dBi.





# **6.2 Conducted Output Power**

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                     |  |
|-------------------|------------------------------------------------------------------------|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.1.1 |  |
| Limit:            | 30dBm                                                                  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane  |  |
| Test Instruments: | Refer to section 5.7 for details                                       |  |
| Test mode:        | Refer to section 5.3 for details                                       |  |
| Test results:     | Passed                                                                 |  |

#### Measurement Data

| Test Frequency | Maximum Conducted Output Power (dBm) | Limit(dBm) | Result |
|----------------|--------------------------------------|------------|--------|
| 907.035 MHz    | 15.48                                | 30.00      | Pass   |



#### Test plot as follows:



Date: 1.NOV.2017 09:00:48



# 6.3 Occupy Bandwidth

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                    |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1  |  |  |
| Limit:            | >500kHz                                                               |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Test Instruments: | Refer to section 5.7 for details                                      |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |
| Test results:     | Passed                                                                |  |  |

#### **Measurement Data:**

| Test Frequency | 6dB Emission Bandwidth (MHz) | Limit(kHz) | Result |
|----------------|------------------------------|------------|--------|
| 907.035 MHz    | 0.604                        | >500       | Pass   |
| Test Frequency | 99% Occupy Bandwidth (MHz)   | Limit(kHz) | Result |
| 907.035 MHz    | 0.996                        | N/A        | N/A    |



#### Test plot as follows:



Date: 1.NOV.2017 09:04:42



Date: 1.NOV.2017 09:03:23



# 6.4 Power Spectral Density

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                       |
|-------------------|-----------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.3 |
| Limit:            | 8dBm                                                                  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |
| Test Instruments: | Refer to section 5.7 for details                                      |
| Test mode:        | Refer to section 5.3 for details                                      |
| Test results:     | Passed                                                                |

#### **Measurement Data:**

| Test Frequency | Power Spectral Density (dBm) | Limit(dBm) | Result |
|----------------|------------------------------|------------|--------|
| 907.035 MHz    | -2.2                         | 8.00       | Pass   |



#### Test plots as follow:



Date: 1.NOV.2017 09:06:55



# 6.5 Band Edge

### 6.5.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |



#### Test plots as follow:



Date: 30.OCT.2017 13:16:28



### 6.5.2 Radiated Emission Method

| Test Requirement:   | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                          |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Test Method:        | ANSI C63.10: 201<br>12.1                                                                                                                                                                                                                                                                           | 3and KDB5                                                                                                                                                                                          | 58074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 D01 DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S Meas G                                                                                                                                                                    | uidance v04 section                                                                      |  |  |  |
| TestFrequencyRange: | 960MHz to 1.2400                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                          |  |  |  |
| Test site:          | Measurement Dist                                                                                                                                                                                                                                                                                   | ance: 3m                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                          |  |  |  |
| Receiver setup:     | Frequency                                                                                                                                                                                                                                                                                          | Detector                                                                                                                                                                                           | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBW                                                                                                                                                                         | Remark                                                                                   |  |  |  |
| Receiver setup.     | 960MHz-1GHz Quasi-peak 120kHz 300kH                                                                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             | Quasi-peak Value                                                                         |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                    | Peak                                                                                                                                                                                               | ar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                        | Peak Value                                                                               |  |  |  |
|                     | Above 1GHz                                                                                                                                                                                                                                                                                         | RMS                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3MHz                                                                                                                                                                        | Average Value                                                                            |  |  |  |
| Limit:              | Frequenc                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                  | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t (dBuV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                             | Remark                                                                                   |  |  |  |
|                     | 960MHz-10                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i></i>                                                                                                                                                                     | Quasi-peak Value                                                                         |  |  |  |
|                     | Al 4 OI                                                                                                                                                                                                                                                                                            | 1-                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             | Average Value                                                                            |  |  |  |
|                     | Above 1GI                                                                                                                                                                                                                                                                                          | HZ -                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                             | Peak Value                                                                               |  |  |  |
| Test setup.         | was rotated 3 radiation.  2. The EUT was antenna, whice tower.  3. The antenna ground to detended horizontal and measurement and thenthe at the rotatables maximum reasonation.  5. The test-recenspecifiedBander.  6. If the emission limitspecified, EUT wouldbe margin would average methodown. | 60 degrees a set 3 mete chwas mour height is va ermine the d vertical pot t. bected emis antenna was vas turned f ding. iver system dwidth with n level of th then testing reported. C bere-tested | ers awanted on ried from one was some EUT g could be the | termine the ray from the top of t | e position le interfere of a variable meter to for e of the fiel le antenna was arrang its from 1 to 360 deg lk Detect F Mode. mode was ped and the missions the sing peak, | s 10dB lower than the<br>ne peak values of the<br>hat did not have 10dB<br>quasi-peak or |  |  |  |
| Test setup:         | Below 1GHz  EUT  Turr Table  Ground                                                                                                                                                                                                                                                                | e O.S.M                                                                                                                                                                                            | lm A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                                                                                                                                                                         | Search Antenna  RF Test deceiver                                                         |  |  |  |











#### Test channel:Lowest

Horizontal:



Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL

EUT : Lookit
Model : RTX1300
Test mode : TX mode
Power Rating : DC 3.0V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT

Remark

ReadAntenna Cable Preamp Limit Over
Freq Level Factor Loss Factor Level Line Limit Remark

MHz dBuV dB/m dB dB dBuV/m dBuV/m dB

987.909 12.01 21.65 4.41 0.00 38.07 54.00 -15.93 QP





#### Test channel:Lowest

Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL Condition

EUT : Lookit : RTX1300 Model Test mode: TX mode
Power Rating: DC 3.0V
Environment: Temp:25.5°C Huni:55%
Test Engineer: YT

Remark

1

| Freq     |       | Antenna<br>Factor |      |            |        |        |        |    |
|----------|-------|-------------------|------|------------|--------|--------|--------|----|
| MHz      | —dBu₹ | dB/m              | āā   | <u>d</u> B | dBuV/m | dBuV/m |        |    |
| 989, 564 | 11.26 | 21.67             | 4.41 | 0.00       | 37.34  | 54.00  | -16.66 | QP |





#### Test channel:Highest

Horizontal:



: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Lookit : RTX1300 Model Test mode : TX mode Power Rating : DC 3.0V

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: YT Remark :

|   | Rest.                |       | Antenna<br>Factor |      |        |        |           |  |
|---|----------------------|-------|-------------------|------|--------|--------|-----------|--|
| 1 | MHz                  | —dBu∇ | <u>dB</u> /m      | <br> | dBuV/m | dBuV/m | <u>ab</u> |  |
|   | 1160.507<br>1160.507 |       |                   |      |        |        |           |  |





#### Test channel:Highest

Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Lookit Test mode: TX mode
Power Rating: DC 3.0V
Environment: Temp: 25.5°C Huni: 55%
Test Engineer: YT
Remark Model : RTX1300

Remark

|   | Freq                 |      | Antenna<br>Factor |            |           |                     |        |           |       |
|---|----------------------|------|-------------------|------------|-----------|---------------------|--------|-----------|-------|
| 2 | MHz                  | dBu₹ |                   | <u>d</u> B | <u>ab</u> | $\overline{dBuV/m}$ | dBuV/m | <u>dB</u> | <br>- |
|   | 1170.032<br>1170.032 |      |                   |            |           |                     |        |           |       |



# 6.6 Spurious Emission

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 11                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|                   | Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Test Instruments: | Refer to section 5.7 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |



#### Test plot as follows:



Date: 30.OCT.2017 12:45:11

30MHz~10GHz



### 6.6.2 Radiated Emission Method

| Test Requirement:   | FCC Part15 C S                                                                                                                                                          | Section 15.20 | 9 and 15.205  |        |                  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--------|------------------|--|
| Test Method:        | ANSI C63.10:20                                                                                                                                                          | )13           |               |        |                  |  |
| TestFrequencyRange: | 9KHz to 25GHz                                                                                                                                                           |               |               |        |                  |  |
| Test site:          | Measurement D                                                                                                                                                           | istance: 3m   |               |        |                  |  |
| Receiver setup:     | Frequency                                                                                                                                                               | Detector      | RBW           | VBW    | Remark           |  |
| ·                   | 30MHz-1GHz                                                                                                                                                              | Quasi-peak    | 120KHz        | 300KHz | Quasi-peak Value |  |
|                     | Al 4011-                                                                                                                                                                | Peak          | 1MHz          | 3MHz   | Peak Value       |  |
|                     | Above 1GHz                                                                                                                                                              | RMS           | 1MHz          | 3MHz   | Average Value    |  |
| Limit:              | Frequency                                                                                                                                                               |               | Limit (dBuV/m | @3m)   | Remark           |  |
|                     | 30MHz-88MHz                                                                                                                                                             |               | 40.0          |        | Quasi-peak Value |  |
|                     | 88MHz-216MHz                                                                                                                                                            | -             | 43.5          |        | Quasi-peak Value |  |
|                     | 216MHz-960MH                                                                                                                                                            | lz            | 46.0          |        | Quasi-peak Value |  |
|                     | 960MHz-1GHz                                                                                                                                                             |               | 54.0          |        | Quasi-peak Value |  |
|                     | Above 1GHz                                                                                                                                                              |               |               |        | Average Value    |  |
|                     |                                                                                                                                                                         |               |               |        | Peak Value       |  |
| Test Procedure:     | 216MHz-960MHz         46.0         Quasi-peak Value           960MHz-1GHz         54.0         Quasi-peak Value           Above 1GHz         54.0         Average Value |               |               |        |                  |  |











#### **Below 1GHz**

Horizontal:



: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL Condition

EUT : Lookit : RTX1300 Model Test mode : TX mode Power Rating : DC 3.0V

Environment : Temp:25.5°C Huni:55% Test Engineer: YT Remark :

| CHILLR |         |       |                   |      |           |                     |               |               |        |
|--------|---------|-------|-------------------|------|-----------|---------------------|---------------|---------------|--------|
|        | Freq    |       | Antenna<br>Factor |      |           |                     | Limit<br>Line | Over<br>Limit | Remark |
| _      | MHz     | dBu∜  | dB/π              |      | <u>ab</u> | $\overline{dBuV/m}$ | dBuV/m        | <u>dB</u>     |        |
| 1      | 43.202  | 18.63 | 14.07             | 1.26 | 0.00      | 33.96               | 40.00         | -6.04         | QP     |
| 2      | 90.537  | 13.26 | 10.87             | 2.03 | 0.00      | 26.16               | 43.50         | -17.34        | QP     |
| 3      | 120.699 | 17.82 | 10.30             | 2.18 | 0.00      | 30.30               | 43.50         | -13.20        | QP     |
| 4      | 216.783 | 15.85 | 11.30             | 2.85 | 0.00      | 30.00               | 46.00         | -16.00        | QP     |
| 5      | 413.271 | 17.46 | 15.23             | 3.11 | 0.00      | 35.80               | 46.00         | -10.20        | QP     |
| 6      | 714.173 | 18.40 | 19.33             | 4.23 | 0.00      | 41.96               | 46.00         | -4.04         | QP     |





#### Vertical:



: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL : Lookit Condition

: Lookit

Model : RTX1300
Test mode : TX mode
Power Rating : DC 3.0V
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
Remark :

| MALK                       |         |       |                   |      |           |        |               |        |        |
|----------------------------|---------|-------|-------------------|------|-----------|--------|---------------|--------|--------|
|                            | Freq    |       | Antenna<br>Factor |      |           |        | Limit<br>Line |        | Remark |
| _                          | MHz     | —dBu∇ | <u>dB</u> /m      | dB   | <u>dB</u> | dBuV/m | dBuV/m        | dB     |        |
| 1                          | 42.154  | 19.69 | 13.73             | 1.25 | 0.00      | 34.67  | 40.00         | -5.33  | QP     |
| 1<br>2<br>3<br>4<br>5<br>6 | 120.699 | 18.46 | 10.30             | 2.18 | 0.00      | 30.94  | 43.50         | -12.56 | QP     |
| 3                          | 214.514 | 15.91 | 11.30             | 2.85 | 0.00      | 30.06  | 43.50         | -13.44 | QP     |
| 4                          | 438.655 | 18.28 | 15.60             | 3.17 | 0.00      | 37.05  | 46.00         | -8.95  | QP     |
| 5                          | 570.610 | 17.80 | 17.79             | 3.91 | 0.00      | 39.50  | 46.00         | -6.50  | QP     |
| 6                          | 719.200 | 18.80 | 19.52             | 4.25 | 0.00      | 42.57  | 46.00         | -3.43  | QP     |





#### **Above 1GHz**

|                    |                         |                             |                       | Peak value               |                   |                        |                       |              |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1814.00            | 52.90                   | 25.05                       | 4.13                  | 41.25                    | 40.83             | 74.00                  | -33.17                | Vertical     |
| 2721.00            | 51.92                   | 26.35                       | 5.07                  | 41.74                    | 41.60             | 74.00                  | -32.40                | Vertical     |
| 3628.00            | 50.99                   | 27.72                       | 5.92                  | 41.58                    | 43.05             | 74.00                  | -30.95                | Vertical     |
| 4535.00            | 52.53                   | 29.47                       | 6.84                  | 42.08                    | 46.76             | 74.00                  | -27.24                | Vertical     |
| 5442.00            | 52.62                   | 30.54                       | 7.16                  | 41.85                    | 48.47             | 74.00                  | -25.53                | Vertical     |
| 6349.00            | 51.12                   | 32.50                       | 8.20                  | 41.94                    | 49.88             | 74.00                  | -24.12                | Vertical     |
| 1814.00            | 49.93                   | 25.10                       | 4.12                  | 41.21                    | 37.94             | 74.00                  | -36.06                | Horizontal   |
| 2721.00            | 52.32                   | 26.35                       | 5.07                  | 41.74                    | 42.00             | 74.00                  | -32.00                | Horizontal   |
| 3628.00            | 51.64                   | 27.72                       | 5.92                  | 41.58                    | 43.70             | 74.00                  | -30.30                | Horizontal   |
| 4535.00            | 52.81                   | 29.47                       | 6.84                  | 42.08                    | 36.48             | 74.00                  | -37.52                | Horizontal   |
| 5442.00            | 50.78                   | 30.54                       | 7.18                  | 41.85                    | 46.65             | 74.00                  | -27.35                | Horizontal   |
| 6349.00            | 50.48                   | 32.47                       | 8.19                  | 41.94                    | 49.20             | 74.00                  | -24.80                | Horizontal   |
|                    |                         |                             |                       | Averagevalu              | е                 |                        |                       |              |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1814.00            | 43.27                   | 25.05                       | 4.13                  | 41.25                    | 31.20             | 54.00                  | -22.80                | Vertical     |
| 2721.00            | 42.59                   | 26.35                       | 5.07                  | 41.74                    | 32.27             | 54.00                  | -21.73                | Vertical     |
| 3628.00            | 40.78                   | 27.72                       | 5.92                  | 41.58                    | 32.84             | 54.00                  | -21.16                | Vertical     |
| 4535.00            | 42.86                   | 29.47                       | 6.84                  | 42.08                    | 37.09             | 54.00                  | -16.91                | Vertical     |
| 5442.00            | 42.56                   | 30.54                       | 7.16                  | 41.85                    | 38.41             | 54.00                  | -15.59                | Vertical     |
| 6349.00            | 41.58                   | 32.50                       | 8.20                  | 41.94                    | 40.34             | 54.00                  | -13.66                | Vertical     |
| 1814.00            | 40.22                   | 25.10                       | 4.12                  | 41.21                    | 28.23             | 54.00                  | -25.77                | Horizontal   |
| 2721.00            | 43.37                   | 26.35                       | 5.07                  | 41.74                    | 33.05             | 54.00                  | -20.95                | Horizontal   |
| 3628.00            | 41.29                   | 27.72                       | 5.92                  | 41.58                    | 33.35             | 54.00                  | -20.65                | Horizontal   |
| 4535.00            | 42.25                   | 29.47                       | 6.84                  | 42.08                    | 36.48             | 54.00                  | -17.52                | Horizontal   |
| 5442.00            | 41.85                   | 30.54                       | 7.18                  | 41.85                    | 37.72             | 54.00                  | -16.28                | Horizontal   |
| 6349.00            | 40.25                   | 32.47                       | 8.19                  | 41.94                    | 38.97             | 54.00                  | -15.03                | Horizontal   |

#### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.