Задания

10 марта 2021 г.

- При каких условиях в категории (пред)порядка существует булевский объект?
- 2. Приведите пример нетривиальной категории порядка, являющейся декартово замкнутой.
 - Пусть объекты логические формулы (в какой-нибудь логике). Определим $x \leq y$ как выполнение x влечет выполнение y, а произведение как конъюнкцию. Тогда $\forall X,Y: X^Y = XYtoX$, где " \rightarrow " есть импликация. $ev = X^Y \times Y \leq X$. Если $X^Y \times Y$ выполнимо, то X выполнимо по Modus ponens. Кроме того, если $\Gamma \wedge A \to B$, то $\Gamma \to (A \to B)$. Он единственный по построению, а значит экспонента определена верно.
- 3. Давайте докажем, что категории моноидов, групп и абелевых групп не являются декартово замкнутыми.
 - (а) Докажите, что если в декартово замкнутой категории есть начальный объект, то он строгий.
 - (b) Объект называется *нулевым*, если он одновременно начальный и терминальный. Докажите, что если в категории есть нулевой объект и начальный объект строгий, то эта категория тривиальна (то есть в ней между любой парой объектов существует уникальная стрелка).
 - (c) Докажите, что в категориях, упомянутых в задании, есть нулевой объект и сделайте вывод, что они не декартово замкнуты.

Решение

(c) Во всех этих категориях есть объект, состоящий из одного нейтрального элемента. Он и будет нулевым. Так как нейтральный должен переходить в нейтральный, то отображение из него в другие объекты единственно. Обратное тоже верно — все отображается в 0. Очевидно, что 0 не строгий, так как ядро у композиции отображений между 0 и некоторым объектом будет совпадать с тем объектом. Значит эти категории не декартово замкнуты.

4. Пусть в категории С есть все конечные произведения и булевский объект. Сконструируйте в \mathbf{C} морфизмы and, or : Bool \times Bool \to Bool, такие что следующие диаграммы коммутируют

- 5. Мы видели, что объекты 2 и 1 могут быть изоморфны. Если 2 является булевским объектом, то это все равно может произойти, но эту ситуацию легко отследить.
 - Пусть С категория с конечными произведениями. Докажите, что следующие утверждения эквивалентны:
 - (а) С категория предпорядка.
 - (b) В C терминальный объект является булевским.
 - (c) В **С** существует булевский объект, такой что true = false.

Решение

- $a \Rightarrow b$) Так как в категории предпорядка морфизм между двумя объектами единственный, то можно взять Bool = 1, true = false = id. Тогда $\forall f, g: A \to B \ \exists h = f \circ \pi_2$
- $b\Rightarrow c)$ В терминальный объект существует только одна стрелка
- $c\Rightarrow a)$ В определении Bool $\langle true \circ !, id \rangle = \langle false \circ !, id \rangle$. Значит для любых
- 6. Докажите, что в любой декартово замкнутой категории С выполнены следующие утверждения:

- (а) Для любого объекта A существует изоморфизм $A^1 \simeq A$. Пусть есть стрелка $f: A \times 1 \to B$. Тогда всегда существует уникальная стрелка $A \times 1 \to B \times 1 \langle f, id \rangle$ такая, что $\pi_1 \circ \langle f, id \rangle = f$. Значит пара (B, π_1) является эеспонентой B^1 (по определению экспоненты). То есть $B^1 \simeq B$
- (b) Для любых объектов A, B и C существует изоморфизм $A^{B \times C} \simeq (A^B)^C.$

$$ev_1: A^{B \times C} \times (B \times C) \to A$$

$$(A^{B \times C} \times C) \times B \to A$$

$$A^{B \times C} \times C \to A^B$$

$$A^{B \times C} \to (A^B)^C$$

$$ev_2: (A^B)^C \times C \to A^B$$
$$((A^B)^C \times C) \times B \to A$$
$$(A^B)^C \times (B \times C) \to A$$
$$(A^B)^C \to A^{B \times C}$$

(c) Умножение дистрибутивно над сложением, то есть для любых объектов $A,\,B$ и C морфизм

$$[\langle \pi_1, \operatorname{inj}_1 \circ \pi_2 \rangle, \langle \pi_1, \operatorname{inj}_2 \circ \pi_2 \rangle] : (A \times B) \coprod (A \times C) \to A \times (B \coprod C)$$

является изоморфизмом, где $\operatorname{inj}_1: B \to B \amalg C$ и $\operatorname{inj}_2: C \to B \amalg C$ – канонические морфизмы копроизведения, и если $f: B \to X$, $g: C \to X$, то $[f,g]: B \amalg C \to X$ – уникальный морфизм, удовлетворяющий $[f,g] \circ \operatorname{inj}_1 = f$ и $[f,g] \circ \operatorname{inj}_2$.

$$\begin{array}{l} \operatorname{Hom}((A \times C) \amalg (B \times C), D) \simeq \operatorname{Hom}(A \times C, D) \amalg \operatorname{Hom}(B \times C, D) \simeq \\ \simeq \operatorname{Hom}(A, D^C) \amalg \operatorname{Hom}(B, D^C) \simeq \operatorname{Hom}(A \amalg B, D^C) \simeq \\ \simeq \operatorname{Hom}((A \amalg B) \times C, D) \end{array}$$

То есть, если есть стрелки $A \times C \to D, B \times C \to D$, то есть уникальная стрелка $(A \times C) \amalg (B \times C) \to D$. Но тогда есть стрелок из $A \times C$ и $B \times C$ в $(A \amalg B) \times C$ (объявленных через композицию пары истекок из определения копроизведения + стелки из условия). Кроме того, существует стрелка из $Hom((A \amalg B) \times C, D)$ такая, что диаграмма для копроизведения коммутирует. Значит по универсальному свойству, $(A \times B) \amalg (A \times C) \simeq A \times (B \amalg C)$

- (d) Если в **C** существует начальный объект 0, то для любого объекта A существует изоморфизм $A^0 \simeq 1$. $\forall X: Hom(X,A^0) \simeq Hom(X\times 0,A) \simeq Hom(0,A) \Rightarrow \forall X|Hom(X,A^0)|=1 \Rightarrow A^0=1$
- (e) Если в ${\bf C}$ существует копроизведение $B \amalg C$, то для любого объекта A существует изоморфизм $A^{B \amalg C} \simeq A^B \times A^C$. $A^{B \amalg C} \times (B \amalg C) \to A$

$$\begin{array}{l} (B\times A^{B\amalg C})\amalg (A^{B\amalg C}\times C)\to A \\ (A^{B\amalg C}\times B)\to A, (A^{B\amalg C}\times C)\to A \\ A^{B\amalg C}\to A^B, A^{B\amalg C}\to A^C \\ A^{B\amalg C}\to A^B\times A^C \end{array}$$

$$A^B \times A^C \to A^{B \coprod C}$$

7. Докажите, что в декартово замкнутой категории объект 2 всегда является булевским.

$$2 \times A = (1 \coprod 1) \times A \simeq (1 \times A) \coprod (1 \times A) \simeq A \coprod A$$

Тогда в определении для Bool можно взять стрелку из определения копроизведения f, g. Она будет уникальной по универсальному свойству копроизведения.

8. Определите в произвольной декартово замкнутой категории комбинаторы K и S, то есть следующие морфизмы:

$$K: A \to A^B$$
$$S: (C^B)^A \to (C^A)^{(B^A)}$$

- $\exists \pi_1 : A \times B \to A \Rightarrow \exists ! K : A \to A^B$
- Есть стрелка $ev_1: B^A \times A \to B$ Есть стрелка $ev_2: (C^B)^A \times A \to C^B$ Есть стрелка $ev_3: C^B \times B \to C$ Значит есть стрелка $(C^B)^A \times B^A \times A \to C$

Ее можно построить так: $(C^B)^A \times B^A \times A \to (C^B)^A \times B^A \times A \times A \to (C^B)^A \times A) \times (B^A \times A) \to C^B \times B \to C$

(так как категория декартова, все переходу существуют)

Тогда существует уникальная стрелка $(C^B)^A \times B^A \to C^A$

Тогда существует уникальная стрелка $(C^B)^A \to (C^A)^{(B^A)}$

- 9. Одна из аксиом арифметики Пеано говорит, что функция suc должна быть инъективной. Докажите, что в любой декартово замкнутой категории с объектом натуральных чисел морфизм suc является расщепленным мономорфизмом.
- 10. Одна из аксиом арифметики Пеано говорит, что ни для какого x не верно, что zero = suc(x). В произвольной декартово замкнутой категории это может быть верно, но только если она является категорией предпорядка. Докажите, что следующие утверждения эквивалентны.
 - (а) С категория предпорядка.
 - (b) В С терминальный объект является объектом натуральных чисел.

- (c) В ${\bf C}$ существует объект натуральных чисел, такой что для любого $x:1 \to \mathbb{N}$ верно, что zero = $\mathrm{suc} \circ x$.
- (d) В **С** существует объект натуральных чисел, такой что для некоторого $x:1\to\mathbb{N}$ верно, что zero = $\mathrm{suc}\circ x$.
- 11. Докажите, что если в декартово замкнутой категории существует все малые копроизведения, то в ней существует объект натуральных чисел.
- 12. Определите в произвольной декартово замкнутой категории с объектом натуральных чисел морфизм сложения $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, удовлетворяющий следующим условиям:

Докажите, что сложение коммутативно и ассоциативно, то есть, что коммутируют следующие диаграммы:

