ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

29 Σεπτεμβρίου 2015

ΔΥΝΑΜΕΙΣ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΔΥΝΑΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ

Δύναμη ενός φυσικού αριθμού a ονομάζεται το γινόμενο ν ίσων παραγόντων του αριθμού αυτού. Συμβολίζεται με a^{ν} όπου $\nu \in \mathbb{N}$ είναι το πλήθος των ίσων παραγόντων.

$$\underline{a \cdot a \cdot \dots a} = a^{\nu}$$
ν παράγοντες

- Ο αριθμός α ονομάζεται βάση και ο αριθμός ν εκθέτης της δύναμης.
- Η δύναμη a^2 ονομάζεται και a στο τετράγωνο.
- Η δύναμη a^3 ονομάζεται και a στον κύβο.
- Σε μία αριθμητική παράσταση, η σειρά με την οποία γίνονται οι πράξεις είναι
 - 1. Δυνάμεις
 - 2. Πολλαπλασιασμοί Διαιρέσεις
 - 3. Προσθέσεις Αφαιρέσεις
- Οι πράξεις εκτελούνται μ΄ αυτή τη σειρά πρώτα μέσα στις παρενθέσεις αν υπάρχουν και ύστερα έξω απ΄ αυτές.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΙΔΙΟΤΗΤΕΣ ΔΥΝΑΜΕΩΝ

Για κάθε δυναμη με βάση έναν πραγματικό αριθμό a ισχύει :

$$a^1 = a$$
 , $a^0 = 1$, όπου $a \neq 0$, $a^{-\nu} = \frac{1}{a^{\nu}}$, όπου $a \neq 0$

Επίσης για κάθε δυναμη με βάση οποιουσδήποτε πραγματικούς αριθμούς a, β και φυσικούς εκθέτες v, μ ισχύουν οι παρακάτω ιδιότητες :

	Ιδιότητα	Συνθήκη
1	Γινόμενο δυνάμεων με κοινή βάση	$a^{\nu} \cdot a^{\mu} = a^{\nu + \mu}$
2	Πηλίκο δυνάμεων με κοινή βάση	$a^{\nu}:a^{\mu}=a^{\nu-\mu}$
3	Γινόμενο δυνάμεων με κοινό εκθέτη	$(a \cdot \beta)^{\nu} = a^{\nu} \cdot \beta^{\nu}$
4	Πηλίκο δυνάμεων με κοινό εκθέτη	$\left(\frac{a}{\beta}\right)^{\nu} = \frac{a^{\nu}}{\beta^{\nu}} \ , \ \beta \neq 0$

$$\bf 6$$
 Κλάσμα με αρνητικό εκθέτη $\left(\frac{a}{\beta}\right)^{-\nu} = \left(\frac{\beta}{a}\right)^{\nu}$, $a, \beta \neq 0$

Οι ιδιότητες 1 και 3 ισχύουν και για γινόμενο περισσότερων των δύο παραγόντων.

$$a^{\nu_1} \cdot a^{\nu_2} \cdot \ldots \cdot a^{\nu_{\kappa}} = a^{\nu_1 + \nu_2 + \ldots + \nu_{\kappa}}$$

$$(a_1 \cdot a_2 \cdot \ldots \cdot a_{\kappa})^{\nu} = a_1^{\nu} \cdot a_2^{\nu} \cdot \ldots \cdot a_{\kappa}^{\nu}$$