A Book of Abstract Algebra | (2nd Edition)

	Chapter 24, Problem 1EC	Bookmark	Show all steps: ON
Problem			
	Prove: If A is not an integral domain, neither is $A[x]$.		
Step-by-step solution			
	Step 1 of 1		

Definition: A commutative ring with unity is said to be an integral domain if it has no zero divisors.

Consider a ring A which is not an integral domain.

Then by using above definition, A is not an integral domain implies there exists two numbers $a \neq 0, b \neq 0 \in A$ such that ab = 0 (That is there exist zero divisors).

Now consider a polynomial ring A[x].

Now show that A[x] is not integral domain.

For this find two non zero polynomials in A[x] which are zero divisors.

Let
$$p(x) = ax$$
 and $q(x) = bx^2 + bx$.

Then,

$$p(x)q(x) = (ax)(bx^2 + bx)$$
$$= abx^3 + abx^2$$

Since ab = 0 implies,

$$p(x)q(x) = 0x^3 + 0x^2$$
$$= 0$$

That implies there is zero divisors. It implies A[x] is not an integral domain.

Comment