

PREPARED BY:

DEVELOPERS:

Yaroslav Morozevych • Yana Muliarska • Andriy Turko

MENTORS:

Viktoriia Blavatska • Yaroslav Ilnytskyi

Doctors of Sciences in Physical and Mathematical Sciences, Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine

TYPES OF MODELS OF EPIDEMIC EXPANSION

- Scale-Free Network
- Close World Network
- Random Network

• KINDS OF MODEL IMPLEMENTATION

CONNECTION DISTRIBUTION

People Number: 4096

Probability Connect: 100 / 4096 = 0.025

• WHAT IS SEIRVDM?

SEIRVDM RESULTS

On Random Network

WHEN TO VACCINATE

WHOM TO VACCINATE

IMPACT OF LOCKDOWN AND VACCINATION

FUTURE PLANS

- Try out other networks.
- Build and examine more graphs.
- Make some conclusions and write the notes for our Scientific Article.
- Accelerate even more the CUDA program.

WHY CUDA?

GOING PARALLEL

1 Block (32 x 32 Threads)

Instruction Executing Cycle on SM:

Step 1: 0-7 Threads execute instruction 1

Step 2: 8-15 Threads execute instruction 1

Step 3: 16-23 Threads execute instruction 1

Step 4: 24-31 Threads execute instruction 1

1 Wrap = 32 Threads

Using Advantages of NVIDIA:

4 Wraps x 2 Instructions x 32 Threads = 256 Thread Instructions at 1 Cycle

5 SMs x 256 Thread Instructions = 1280 Instructions per Cycle

MEMORY USAGE OPTIMIZATION

MAKE IT GO PARALLEL

FINAL STATE MACHINE APPROACH

next_state = ceil(log,(next_state_enc + 1))

CUDA BENCHMARKS

Thank You for Your Attention!

