UCS1402 Operating Systems Operating Systems Overview

Unit-l

Operating System

Computer System Organizatior

Operating System

Operating-System

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Lecture -1

Session Objectives

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operatin Svstem

Computer
System

Organization
Operating

- To describe the basic organization of computer systems
- To provide an overview of the major components of operating systems

Session Outcomes

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operatin

Computer System

Organization

Operating System Structure

Operating System At the end of this session, participants will be able to

Discuss structure and functions of OS

Agenda

UCS1402 Operating Systems Operating Systems Overview

Unit-l

Operatin System

Computer System Organization

Operating System Structure

Operating-System 1 Operating System

2 Computer System Organization

3 Operating System Structure

4 Operating-System Operations

Presentation Outline

UCS1402 Operating Systems Operating Systems Overview

Hnit-I

1 Operating System

Operating System

Computer System Organizatior

Operating System Structure

- 2 Computer System Organization
- **3** Operating System Structure
- 4 Operating-System Operations

Operating System

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

- A program that acts as an intermediary between a user of a computer and the computer hardware
- Operating system helps to:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

Goals of an Operating System

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

Operating-System Operations

- Simplify the execution of user programs and make solving user problems easier.
- Use computer hardware efficiently.
- Allow sharing of hardware and software resources.
- Make application software portable and versatile.
- Provide isolation, security and protection among user programs.
- Improve overall system reliability error confinement, fault tolerance, reconfiguration.

Computer System Structure

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

Operating
System
Operation

Computer system can be divided into four components

- **Hardware** provides basic computing resources CPU, memory, I/O devices
- Operating system
 Controls and coordinates use of hardware among various applications and users
- Application programs define the ways in which the system resources are used to solve the computing problems of the users Word processors, compilers, web browsers, database systems, video games
- UsersPeople, machines, other computers

Four Components of a Computer System

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System

Operating System Definition

UCS1402 Operating Systems Operating Systems Overview

Unit

Operating System Computer

Computer System Organization

Operating System Structure

Operating-System

OS is a resource allocator

- Manages all resources
- Decides between conflicting requests for efficient and fair resource use
- OS is a control program Controls execution of programs to prevent errors and improper use of the computer
- **Definition**: "The one program running at all times on the computer is the **kernel**.

 Everything else is either
 - a system program (ships with the operating system), or
 - an application program

Computer Startup

UCS1402 Operating Systems Operating Systems Overview

Unit

Operating System

Computer System Organization

Operating System Structure

Operating-System Bootstrap program is loaded at power-up or reboot

- Typically stored in ROM or EPROM, generally known as firmware
- Initializes all aspects of system
- Loads operating system kernel and starts execution

Presentation Outline

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System

Organization
Operating

System Structure

Operating-System Operations 1 Operating System

2 Computer System Organization

3 Operating System Structure

4 Operating-System Operations

Computer System Organization

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

Operating-System

Computer-system operation

- One or more CPUs, device controllers connect through common bus providing access to shared memory
- Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

Operating-System Operations

- I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
- CPU moves data from/to main memory to/from local buffers
- I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operation by causing an interrupt

Common Functions of Interrupts

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines
- Interrupt architecture must save the address of the interrupted instruction
- A **trap or exception** is a software-generated interrupt caused either by an error or a user request
- An operating system is interrupt driven

I/O Structure

UCS1402 Operating Systems Operating Systems Overview

Unit-

System

Computer System Organization

Operating System Structure

Operating-System Operations

- **Synchronous I/O**: After I/O starts, control returns to user program only upon I/O completion
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access)
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing
- **Asynchronous I/O**: After I/O starts, control returns to user program without waiting for I/O completion
 - **System call** request to the OS to allow user to wait for I/O completion
 - **Device-status table** contains entry for each I/O device indicating its type, address, and state
 - OS indexes into I/O device table to determine device status and to modify table entry to include interrupt

Two I/O Methods

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating

Structure

Device-Status Table

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System

Organization

System Structure

Direct Memory Access Structure

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

- Used for high-speed I/O devices able to transmit information at close to memory speeds.
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention.
- Only one interrupt is generated per block, rather than one interrupt per byte

Storage Structure

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

Operating-System Operations

- Main memory only large storage media that the CPU can access directly Typically volatile
- Secondary storage extension of main memory that provides large non-volatile storage capacity
- Hard disks rigid metal or glass platters covered with magnetic recording material Disk surface is logically divided into tracks, which are subdivided into sectors The disk controller determines the logical interaction
 - between the device and the computer
- Solid-state disks faster than hard disks, non-volatile Various technologies
 Becoming more popular

Storage Hierarchy

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

Operating-System Storage systems organized in hierarchy

- Speed
- Cost
- Volatility
- Caching copying information into faster storage system; main memory can be viewed as a cache for secondary storage

Storage-Device Hierarchy

UCS1402 Operating Systems Operating Systems Overview

Hele I

Operating System

Computer System

System Organization

System Structure

Caching

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

Operating-System Operations Important principle, performed at many levels in a computer (in hardware, operating system, software)

- Information in use copied from slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy

Evolution of OS

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operatinį System

Computer System Organization

Operating System Structure

- Mainframe Systems
 - Batch Systems
 - Multiprogrammed Systems
 - Time sharing Systems
- Desktop Systems
- Multiprocessor Systems
- Distributed Systems
 - Client Server systems
 - Peer-to-Peer systems
- Clustered Systems
- Real-Time Systems
- Hand Held Systems

Evolution of OS

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

Operating System Operation

Mainframe Systems Simple Batch Systems:

- User prepare a job and submit it to a computer operator, get output some time later
- No interaction between the user and the computer system
- Operator batches together jobs with similar needs to speedup processing

Task of OS: automatically transfers control from one job to another.

OS always resident in memory

Disadvantages of one job at a time:

- CPU idle during I/O
- I/O devices idle when CPU busy
- OS is a resident monitor
 - initial control in monitor
 - control transfers to job
 - when job completes control transfers back to monitor

Memory Layout for a Simple Batch System

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating

Computer System

Organization

System Structure

Operating-System

operating system user program area

Multiprogrammed Batch Systems

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

- Several jobs are kept in main memory at the same time, and the
- CPU is multiplexed among them

OS Features in a Multiprogrammed System

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

Operating-System OS made decisions for users.

Job Scheduling

 Choose the jobs from the job pool to be loaded into Memory

CPU Scheduling

Choosing the job to be run from a list of jobs ready to run at the same time.

Time-Sharing SystemsInteractive Computing

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

- Logical extension of Multiprogramming
- CPU executes multiple jobs by switching but the switching occurs so fast, that the user can interact with the program.
- Supports multiple users little CPU time for every
- User- illusion that the system is dedicated to a single user.
- Process: program in execution

Time-Sharing Systems

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operatin System

Computer System Organization

Operating System Structure

- Interactive (action/response)
 - when OS finishes execution of one command, it seeks the next control statement from user.
 - Eg: Switches jobs, when the current job needs input from the user who is slow.
- File systems
 - Resides on a collection of disks disk mgmt is necessary.
 - Virtual memory
 - Job is swapped in and out of memory to disk.

Desktop Systems

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

Operating-System Operations

- Personal computers computer system dedicated to a single user.
- I/O devices keyboards, mouse, display screens, small printers.
- Single user systems may not need advanced CPU and peripheral utilization.
- So concentrates on user convenience and responsiveness.
- Due to the growth of intranets and internets, file protection feature was adopted.
- May run several different types of operating systems (Windows, MacOS, UNIX, Linux)

Multiprocessor Systems

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

Operating System Operation

- Also known as parallel systems or tightly coupled systems
- More than one processor in close communication, sharing computer bus, clock, memory, and usually peripheral devices
- Communication usually takes place through the shared memory.

Advantages

- Increased throughput
- Economy of scale: cheaper than multiple single-processor systems
- Increased reliability: graceful degradation, fault tolerant

Multiprocessor Systems

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

Operating
System
Operation

Symmetric multiprocessing (SMP)

- Each processor runs an identical copy of the operating system.
- All processors are peers: any processor can work on any task
- OS can distribute load evenly over the processors.
- Most modern operating systems support SMP

Asymmetric multiprocessing

- Master-slave relationship: a master processor controls the system, assigns works to other processors
- Each processor is assigned a specific task. Don't have the flexibility to assign processes to the least loaded CPU
- More common in extremely large systems

Symmetric Multiprocessing Architecture

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating

Computer System

Organization

System Structure

Distributed Systems

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

Operating System Operation

- Based on the concept of networking
- Distribute the computation among several physical processors.
- Loosely coupled system each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or telephone lines.

Advantages of distributed systems

- Resource Sharing
- Computation speed up load sharing
- Reliability

Distributed Systems

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

Operating-System Operations Requires networking infrastructure.

■ Local area networks (LAN) or Wide area networks (WAN)

Two types:

client-server

Compute severs

■ File-servers

peer-to-peer systems.

General Structure of Client-Server

UCS1402 Operating Systems Operating Systems Overview

Heit I

Operating

Computer System

System Organization

System
Structure

Operating-System

Clustered Systems

UCS1402 Operating Systems Operating Systems Overview

Unit-

Operating System

Computer System Organization

Operating System Structure

- Multiple CPUs to accomplish work but two or more systems are coupled together.
- Provides high reliability.
- Asymmetric clustering: one server runs the application while the other server is in hot standby mode monitoring.
- Symmetric clustering: all N hosts are running the application and monitoring each other.

Clustered Systems

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

- Like multiprocessor systems, but multiple systems working together
- Usually sharing storage via a storage-area network (SAN)
- Provides a high-availability service which survives failures
 - Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, monitoring each other
- Some clusters are for high-performance computing (HPC)
 Applications must be written to use parallelization
- Some have distributed lock manager (DLM) to avoid conflicting operations

Clustered Systems

UCS1402 Operating Systems Operating Systems Overview

Computer System

Organization

Presentation Outline

UCS1402 Operating Systems Operating Systems Overview

Hnit-I

Operating

Computer System

Operating System Structure

Operating-System 1 Operating System

2 Computer System Organization

3 Operating System Structure

Operating System Structure

Operating
Systems
Operating
Systems
Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

- Multiprogramming (Batch system) needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - \blacksquare When it has to wait (for I/O), OS switches to another job
- Timesharing (multitasking) is logical extension where CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Response time should be < 1 second</p>
 - Each user has at least one program executing in memory
 - If several jobs ready to run at the same time: CPU scheduling
 - If processes don't fit in memory, swapping moves them in and out to run

Presentation Outline

UCS1402 Operating Systems Operating Systems Overview

Hnit-I

Operatinį System

Computer System

Operating System Structure

Operating-System Operations 1 Operating System

2 Computer System Organization

3 Operating System Structure

Operating-System Operations

UCS1402 Operating Systems Operating Systems Overview

Unit-l

System

Computer System Organization

Operating System Structure

- Interrupt driven (hardware and software)
- Hardware interrupt by one of the devices
 - Software interrupt (exception or trap):
 - Software error (e.g., division by zero)
 - Request for operating system service
 - Other process problems include infinite loop, processes modifying each other or the operating system

Operating-System Operations

UCS1402 Operating Systems Operating Systems Overview

Unit-

System Computer

Computer System Organization

Operating System Structure

- Dual-mode operation allows OS to protect itself and other system components
- User mode and kernel mode
- Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user
- Increasingly CPUs support multi-mode operations
- i.e. virtual machine manager (VMM) mode for guest VMs

Transition from User to Kernel Mode

UCS1402 Operating Systems Operating Systems Overview

Unit-I

System

Computer System Organization

Operating System Structure

- Timer to prevent infinite loop / process hogging resources
- Timer is set to interrupt the computer after some time period
- Keep a counter that is decremented by the physical clock.
- Operating system set the counter (privileged instruction)
- When counter zero generate an interrupt
- Set up before scheduling process to regain control or terminate program that exceeds allotted time

Summary

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

- What is an Operating Systems
- Computer-System Organization components
- Computer-System Architecture Evolution of OS
- Operating-System Structure Two modes

Check your understanding

UCS1402 Operating Systems Operating Systems Overview

Unit-I

Operating System

Computer System Organization

Operating System Structure

Operating-System Operations ■ What are the three main purposes of an operating system?

Which of the following instructions should be privileged?

Set value of timer.

Read the clock.

■ Clear memory.

Issue a trap instruction.

Turn off interrupts.

Modify entries in device-status table.

Switch from user to kernel mode.

Access I/O device.

Some CPUs provide for more than two modes of operation. What are two possible uses of these multiple modes?