- First, is the problem convex? No. $\nabla_x f = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix} \rightarrow \nabla_x^2 f = \begin{bmatrix} 0 & 1 \end{bmatrix}$ which has eigens = -1, 1 which aren't both $\geq 0 \Rightarrow \nabla_x^2 f$ not PSD $\Rightarrow f$ not convex \Rightarrow this is not a convex program.
- Let's build some additional intuition before jumping in to the math. In general, we'll minimize X, X_2 if one of $\{X_1, X_2\} > 0$ and the other of $\{X_1, X_2\} < 0$, with $\{X_1\}$ or $\{X_2\}$ a very large value, e.g. a positive times a regative is a regative, and the larger in magnitude the values X_1 d X_2 the larger in (absolute) magnitude their product, which will be regative. We know $X_2 \ge X_1 \implies X_2$ will be the positive and X_1 will be the regative. Then we just need $X_1 + X_2 \ge 2 \implies |X_2| \ge |X_1| + 2$.
 - For example: let $X_2=12$ and $X_1=-10$. This satisfies the constraints and gives f(X)=(-10)(12)=-120, a prefly low (minimal) objective!
 - · But what if $X_2 = 102$ and $X_1 = -100$. This also satisfies the constraints but gives f(x) = (-100)(102) = -10,200 an even lower (more min.) objective.
- We can see this trend can continue interminably. Therefore we know a min of $f(x) = X_1 x_2$ DNE (it continually approaches $-\infty$ as X_1 and X_2 grow in magnitude.)
- Now let's use more formal math to substantiate our intuition and line of reasoning that min $f(x)=X_1X_2$ DNE.
- $L(x) = \lambda_0 \times_1 \times_2 + \lambda_1 (-x_1 x_2 + 2) + \lambda_2 (x_1 x_2)$ $\partial L/\partial x_1 = \lambda_0 \times_2 - \lambda_1 + \lambda_2 \stackrel{\text{set}}{=} 0 \leftarrow eq 1$ $\partial L/\partial x_2 = \lambda_0 \times_1 - \lambda_1 - \lambda_2 \stackrel{\text{set}}{=} 0 \leftarrow eq 2$

- · Complimentanty: $\lambda_1(-x_1-x_2+2)=0$ (comp1), [comp2] $\rightarrow \lambda_2(x_1-x_2)=0$
- · Case 1: \ \(\) = 0
- Eq1 becomes: $-\lambda_1 + \lambda_2 = 0 \implies \lambda_1 = \lambda_2$, Eq2 is now: $-\lambda_1 = \lambda_2$. For both to hold, we must have $\lambda_1 = \lambda_2 = 0$, But $\lambda_0 = 0$ and $\lambda^T = [\lambda_1 = 0, \lambda_2 = 0]$ violates the non-trivality condition. Thus, λ_0 must = 1 for any potential solutions.
- Case 2: $\lambda_0 = 1$, $\lambda_1 = 0$, $\lambda_2 = 0$
 - * Eq1 becomes: $x_2 = 0$, Eq2 becomes $x_1 = 0$. Is (0,0) feasible? No, it's not. Consider $x_1 + x_2 \ge 2 \rightarrow 0 + 0 = 0 \not\equiv 2 \Rightarrow this case is n'4 feasible.$
- Case 3: $\lambda_0 = 1$, $\lambda_1 = 0$, $(x_1 x_2 = 0)$
 - If $\chi_1 \chi_2 = 0 \Rightarrow \chi_1 = \chi_2$. Eq. becomes: $\chi_2 + \lambda_2 = 0$, Eq.2 becomes: $\chi_1 \lambda_2 = 0$.
 - Now we have $\chi_2 = -\lambda_2$ and $\chi_2 = \lambda_2$ which only works if $\lambda_2 = 0$ which then makes $\chi_2 = 0 \Rightarrow \chi_1 = 0$ and we just showed (0,0) to be infeasible in Case 2. Thus this case, case 3, is also infeasible.
- · Case 4: $\lambda_0 = 1$, $\lambda_2 = 0$, $(-x_1 x_2 + 2 = 0)$
 - Eq1 becomes: $\chi_2 \lambda_1 = 0$, Eq2 becomes: $\chi_1 \lambda_1 = 0 \implies \chi_1 = \chi_2 = \lambda_1$
 - · Rewriting $(x_1+x_2=2) \rightarrow x_1+x_1=2 \rightarrow x_1=1 \Rightarrow x_2=1 \Rightarrow \lambda_1=1$.
 - The candidate $X = [X_1 = 1, X_2 = 1]$ is feasible and satisfies optimality conditions with $\lambda_0 = 1$, $\lambda_1 = [\lambda_1 = 1, \lambda_2 = 0]$. But we've already shown the pt (-100, 102) has a much more minimal objective value, thus (1,1) is not a minimizer.
- Case 5: $\lambda_0 = 1$, $(x_1 x_2 = 0)$, $(-x_1 x_2 + 2 = 0)$
- $X_1-X_2=0 \Rightarrow X_1=X_2 \rightarrow \text{into other equ: } -X_1-X_1=-2 \Rightarrow X_1=1$, $X_2=1$, same as case 4.