6.033 Spring 2017Lecture #11

- In-network resource management
 - Queue management schemes
 - Traffic differentiation

Internet of Problems

How do we **route** (and address) scalably, while dealing with issues of policy and economy?

How do we **transport** data scalably, while dealing with varying application demands?

How do we **adapt** new applications and technologies to an inflexible architecture?

problem: TCP reacts to drops, and packets aren't dropped until queues are full

Queue Management

given a queue, when do we drop packets?

1. droptail

drop packets only when the queue is full. simple, but leads to high delays and synchronizes flows.

2. RED

drop packets before the queue is full

Queue Management

given a queue, when do we drop (or mark) packets?

1. droptail

drop packets only when the queue is full. simple, but leads to high delays and synchronizes flows.

2. RED (drops) / ECN (marks)

drop (or mark) packets before the queue is full: with increasing probability as the queue grows. prevents queue lengths from oscillating, decreases delay, flows don't synchronize, but complex and hard to pick parameters

what if we want to give latency guarantees to certain types of traffic?

(or at least try to prioritize latency-sensitive traffic)

Delay-based Scheduling

how could we give latency guarantees for some traffic?

1. priority queueing

put latency-sensitive traffic in its own queue and serve that queue first. does not prevent the latency-sensitive traffic from "starving out" the other traffic (in other queues).

what if we want to allocate different amounts of bandwidth to different types of traffic?

Bandwidth-based Scheduling

how can we allocate a specific amount of network bandwidth to some traffic?

1. round-robin

can't handle variable packet sizes (and in its most basic form doesn't allow us to weight traffic differently)

2. weighted round-robin

can set weights and deal with variable packet sizes

Weighted Round Robin

in each round:

```
for each queue q:
  q.norm = q.weight / q.mean_packet_size
min = min of q.norm's over all flows
for each queue q:
  q.n packets = q.norm / min
  send q.n packets from queue q
```

Bandwidth-based Scheduling

how can we allocate a specific amount of network bandwidth to some traffic?

1. round-robin

can't handle variable packet sizes (and in its most basic form doesn't allow us to weight traffic differently)

2. weighted round-robin

can set weights and deal with variable packet sizes, but needs to know mean packet sizes

3. deficit round-robin

Deficit Round Robin

```
in each round:
   for each queue q:
        q.credit += q.quantum
        while q.credit >= size of next packet p:
        q.credit -= size of p
        send p
```

Bandwidth-based Scheduling

how can we allocate a specific amount of network bandwidth to some traffic?

1. round-robin

can't handle variable packet sizes (and in its most basic form doesn't allow us to weight traffic differently)

2. weighted round-robin

can set weights and deal with variable packet sizes, but needs to know mean packet sizes

3. deficit round-robin

doesn't need mean packet sizes. near-perfect fairness and low packet processing overhead

Delay-based Scheduling

how could we give latency guarantees for some traffic?

1. priority queueing

put latency-sensitive traffic in its own queue and serve that queue first. does not prevent the latency-sensitive traffic from "starving out" the other traffic (in other queues).

can solve this problem by doing something similar to bandwidth-based scheduling across the two queues

In-network Resource Management

Queue Management switches can signal congestion before queues are full

DropTail RED ECN

Delay-based Scheduling

switches can prioritize latency-sensitive traffic

Priority Queueing

Bandwidth-based Scheduling

switches can enforce (weighted) fairness among different types of traffic

Round-robin Weighted Round-robin Deficit Round-robin

in-network resource management: a good idea?

Queue management schemes

Active queue management schemes, such as **RED** or **ECN**, drop or mark packets before a queue is full, in hopes of getting TCP senders to react earlier to congestion. They are difficult to get to work on the Internet-at-large, but the ideas can be useful in other types of networks.

Traffic differentiation

Traffic differentiation requires a scheduling discipline, such as **weighted round robin** or **deficit round robin**. The goal of these schemes is to give weighted fairness in the face of variable packet sizes while having low processing overhead

 Both of these are examples of in-network resource management