■ Types of PDEs: hyperbolic, parabolic, elliptic; initial value (Cauchy) or boundary value problems.

- Types of PDEs: hyperbolic, parabolic, elliptic; initial value (Cauchy) or boundary value problems.
- Hyperbolic: wave equation $\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = \frac{\partial^2 \psi}{\partial x^2}$; advection equation $\frac{\partial \phi}{\partial t} + v \frac{\partial \phi}{\partial x} = 0$; EM, GR field equations.

- Types of PDEs: hyperbolic, parabolic, elliptic; initial value (Cauchy) or boundary value problems.
- Hyperbolic: wave equation $\frac{1}{c^2}\frac{\partial^2 \psi}{\partial t^2} = \frac{\partial^2 \psi}{\partial x^2}$; advection equation $\frac{\partial \phi}{\partial t} + v \frac{\partial \phi}{\partial x} = 0$; EM, GR field equations.
- Parabolic: diffusion equation $\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial \psi}{\partial x} \right)$.

- Types of PDEs: hyperbolic, parabolic, elliptic; initial value (Cauchy) or boundary value problems.
- Hyperbolic: wave equation $\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = \frac{\partial^2 \psi}{\partial x^2}$; advection equation $\frac{\partial \phi}{\partial t} + v \frac{\partial \phi}{\partial x} = 0$; EM, GR field equations.
- Parabolic: diffusion equation $\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial \psi}{\partial x} \right)$.
- Elliptic: Poisson equation $\nabla^2 \psi = \rho$.

- Types of PDEs: hyperbolic, parabolic, elliptic; initial value (Cauchy) or boundary value problems.
- Hyperbolic: wave equation $\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = \frac{\partial^2 \psi}{\partial x^2}$; advection equation $\frac{\partial \phi}{\partial t} + v \frac{\partial \phi}{\partial x} = 0$; EM, GR field equations.
- Parabolic: diffusion equation $\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial \psi}{\partial x} \right)$.
- Elliptic: Poisson equation $\nabla^2 \psi = \rho$.
- Of course these are supplemented by appropriate initial/boundary conditions.

Initial & Boundary value problems

■ Model problem: 2-D Poisson equation $\nabla^2 u = \rho$

- Model problem: 2-D Poisson equation $\nabla^2 u = \rho$
- finite difference approx.

$$u_{j+1,l} + u_{j-1,l} + u_{j,l+1} + u_{j,l-1} - 4u_{j,l} = \Delta^2 \rho_{j,l}$$

- Model problem: 2-D Poisson equation $\nabla^2 u = \rho$
- finite difference approx.

$$u_{j+1,l} + u_{j-1,l} + u_{j,l+1} + u_{j,l-1} - 4u_{j,l} = \Delta^2 \rho_{j,l}$$

 \blacksquare can translate it into a matrix equation $\mathbf{A} \cdot \mathbf{u} = \mathbf{b};$ boundary terms taken to RHS

■ Matrix structure

Matrix structure

■ tridiagonal with fringes; can solve directly $(\mathcal{O}[N^{3d}])$ for d dimensions) or iteratively (as fast as $\mathcal{O}[N^d \ln N]$)

Matrix structure

- tridiagonal with fringes; can solve directly $(\mathcal{O}[N^{3d}])$ for d dimensions) or iteratively (as fast as $\mathcal{O}[N^d \ln N]$)
- latter preferred as matrix is sparse

■ Matrix structure

- tridiagonal with fringes; can solve directly $(\mathcal{O}[N^{3d}])$ for d dimensions) or iteratively (as fast as $\mathcal{O}[N^d \ln N]$)
- latter preferred as matrix is sparse
- Fourier methods for periodic boundary conditions $\mathcal{O}[N^d \ln N]$)

The power of optimal algorithms

- Advances in algorithmic efficiency can rival advances in hardware architecture
- Consider Poisson's equation on a cube of size $N=n^3$

Year	Method	Reference	Storage	Flops	
1947	GE (banded)	Von Neumann & Goldstine	n ⁵	n^7	64 64
1950	Optimal SOR	Young	n^3	$n^4 \log n$	$\nabla^2 u = f$
1971	CG	Reid Conjugate Gradients w/ Gustaffson's modified ILU preconditioner	n^3	$n^{3.5}\log n$	
1984	Full MG	Brandt Multigrid	n^3	n^3	

• If n=64, this implies an overall reduction in flops of ~16 million * more recensiv. FMM Fast Multipole Method

^{*}Six-months is reduced to 1 s

Algorithms and Moore's Law

- This advance took place over a span of about 36 years, or 24 doubling times for Moore's Law
- $2^{24} \approx 16$ million \Rightarrow the same as the factor from algorithms alone!

PPPL Colloquium, 25 Jan 2006

David Keyes, Columbia Univ.

 $lackbox{ } \mathbf{A} \cdot \mathbf{u} = \mathbf{b}$; split $\mathbf{A} = \mathbf{E} - \mathbf{F}$ where \mathbf{E} is easily invertible

- $\mathbf{A} \cdot \mathbf{u} = \mathbf{b}$; split $\mathbf{A} = \mathbf{E} \mathbf{F}$ where \mathbf{E} is easily invertible
- $\mathbf{E} \cdot \mathbf{u} = \mathbf{F} \cdot \mathbf{u} + \mathbf{b}$ suggests an iterative scheme $\mathbf{E} \cdot \mathbf{u}^n = \mathbf{F} \cdot \mathbf{u}^{n-1} + \mathbf{b}$

- $\mathbf{A} \cdot \mathbf{u} = \mathbf{b}$; split $\mathbf{A} = \mathbf{E} \mathbf{F}$ where \mathbf{E} is easily invertible
- $\mathbf{E} \cdot \mathbf{u} = \mathbf{F} \cdot \mathbf{u} + \mathbf{b}$ suggests an iterative scheme $\mathbf{E} \cdot \mathbf{u}^n = \mathbf{F} \cdot \mathbf{u}^{n-1} + \mathbf{b}$
- relaxation x = f(x); $x^{n+1} = f(x^n)$; needn't converge

- $\mathbf{A} \cdot \mathbf{u} = \mathbf{b}$; split $\mathbf{A} = \mathbf{E} \mathbf{F}$ where \mathbf{E} is easily invertible
- $\mathbf{E} \cdot \mathbf{u} = \mathbf{F} \cdot \mathbf{u} + \mathbf{b}$ suggests an iterative scheme $\mathbf{E} \cdot \mathbf{u}^n = \mathbf{F} \cdot \mathbf{u}^{n-1} + \mathbf{b}$
- relaxation x = f(x); $x^{n+1} = f(x^n)$; needn't converge
- lack A = L + D + U sum of lower, diagonal, upper matrices

- $\mathbf{A} \cdot \mathbf{u} = \mathbf{b}$; split $\mathbf{A} = \mathbf{E} \mathbf{F}$ where \mathbf{E} is easily invertible
- $\mathbf{E} \cdot \mathbf{u} = \mathbf{F} \cdot \mathbf{u} + \mathbf{b}$ suggests an iterative scheme $\mathbf{E} \cdot \mathbf{u}^n = \mathbf{F} \cdot \mathbf{u}^{n-1} + \mathbf{b}$
- relaxation x = f(x); $x^{n+1} = f(x^n)$; needn't converge
- lack A = L + D + U sum of lower, diagonal, upper matrices
- Jacobi: $\mathbf{D} \cdot \mathbf{x}^n = -(\mathbf{L} + \mathbf{U}) \cdot \mathbf{x}^{n-1} + \mathbf{b}$
- Gauss-Seidel: $(\mathbf{L} + \mathbf{D}) \cdot \mathbf{x}^n = -\mathbf{U} \cdot \mathbf{x}^{n-1} + \mathbf{b}$

- $\mathbf{A} \cdot \mathbf{u} = \mathbf{b}$; split $\mathbf{A} = \mathbf{E} \mathbf{F}$ where \mathbf{E} is easily invertible
- $\mathbf{E} \cdot \mathbf{u} = \mathbf{F} \cdot \mathbf{u} + \mathbf{b}$ suggests an iterative scheme $\mathbf{E} \cdot \mathbf{u}^n = \mathbf{F} \cdot \mathbf{u}^{n-1} + \mathbf{b}$
- relaxation x = f(x); $x^{n+1} = f(x^n)$; needn't converge
- lack A = L + D + U sum of lower, diagonal, upper matrices
- Jacobi: $\mathbf{D} \cdot \mathbf{x}^n = -(\mathbf{L} + \mathbf{U}) \cdot \mathbf{x}^{n-1} + \mathbf{b}$
- $u_{j,l}^n = \frac{1}{4}(u_{j+1,l}^{n-1} + u_{j-1,l}^{n-1} + u_{j,l+1}^{n-1} + u_{j,l-1}^{n-1}) + \frac{\Delta^2}{4}\rho_{j,l}$
- Gauss-Seidel: $(\mathbf{L} + \mathbf{D}) \cdot \mathbf{x}^n = -\mathbf{U} \cdot \mathbf{x}^{n-1} + \mathbf{b}$
- $u_{j,l}^n = \frac{1}{4} (u_{j+1,l}^{n-1} + u_{j-1,l}^n + u_{j,l+1}^{n-1} + u_{j,l-1}^n) + \frac{\Delta^2}{4} \rho_{j,l}$

- $\mathbf{A} \cdot \mathbf{u} = \mathbf{b}$; split $\mathbf{A} = \mathbf{E} \mathbf{F}$ where \mathbf{E} is easily invertible
- $\mathbf{E} \cdot \mathbf{u} = \mathbf{F} \cdot \mathbf{u} + \mathbf{b}$ suggests an iterative scheme $\mathbf{E} \cdot \mathbf{u}^n = \mathbf{F} \cdot \mathbf{u}^{n-1} + \mathbf{b}$
- relaxation x = f(x); $x^{n+1} = f(x^n)$; needn't converge
- lack A = L + D + U sum of lower, diagonal, upper matrices
- Jacobi: $\mathbf{D} \cdot \mathbf{x}^n = -(\mathbf{L} + \mathbf{U}) \cdot \mathbf{x}^{n-1} + \mathbf{b}$
- $u_{j,l}^n = \frac{1}{4}(u_{j+1,l}^{n-1} + u_{j-1,l}^{n-1} + u_{j,l+1}^{n-1} + u_{j,l-1}^{n-1}) + \frac{\Delta^2}{4}\rho_{j,l}$
- Gauss-Seidel: $(L + D) \cdot x^n = -U \cdot x^{n-1} + b$
- $u_{j,l}^n = \frac{1}{4} (u_{j+1,l}^{n-1} + u_{j-1,l}^n + u_{j,l+1}^{n-1} + u_{j,l-1}^n) + \frac{\Delta^2}{4} \rho_{j,l}$
- no variables from previous iteration; just use current value

• error $e^n = x - x^n$; residual $r^n = b - A \cdot x^n$; $A \cdot e^n = r^n$

- lacksquare error $\mathbf{e}^n = \mathbf{x} \mathbf{x}^n$; residual $\mathbf{r}^n = \mathbf{b} \mathbf{A} \cdot \mathbf{x}^n$; $\mathbf{A} \cdot \mathbf{e}^n = \mathbf{r}^n$
- lacksquare error satisfies the residual equation: $\mathbf{A} \cdot \mathbf{e}^n = \mathbf{r}^n$
- residual vanishes if error vanishes

- lacksquare error $\mathbf{e}^n = \mathbf{x} \mathbf{x}^n$; residual $\mathbf{r}^n = \mathbf{b} \mathbf{A} \cdot \mathbf{x}^n$; $\mathbf{A} \cdot \mathbf{e}^n = \mathbf{r}^n$
- lacktriangle error satisfies the residual equation: $\mathbf{A} \cdot \mathbf{e}^n = \mathbf{r}^n$
- residual vanishes if error vanishes
- $\mathbf{x}^n = \mathbf{P} \cdot \mathbf{x}^{n-1} + \mathbf{g}$ implies $\mathbf{e}^n = \mathbf{P} \cdot \mathbf{e}^{n-1}$
- error amplification factor determined by eigenvalues of P
- spectral radius $\rho_P = \max |\lambda_i(P)| < 1$ for convergence
- smallest factor by which error reduces in an iteration

- lacksquare error $\mathbf{e}^n = \mathbf{x} \mathbf{x}^n$; residual $\mathbf{r}^n = \mathbf{b} \mathbf{A} \cdot \mathbf{x}^n$; $\mathbf{A} \cdot \mathbf{e}^n = \mathbf{r}^n$
- lacktriangle error satisfies the residual equation: $\mathbf{A} \cdot \mathbf{e}^n = \mathbf{r}^n$
- residual vanishes if error vanishes
- $\mathbf{x}^n = \mathbf{P} \cdot \mathbf{x}^{n-1} + \mathbf{g}$ implies $\mathbf{e}^n = \mathbf{P} \cdot \mathbf{e}^{n-1}$
- error amplification factor determined by eigenvalues of P
- spectral radius $\rho_P = \max |\lambda_i(P)| < 1$ for convergence
- smallest factor by which error reduces in an iteration
- Jacobi: $\mathbf{P} = -\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})$

- lacksquare error $\mathbf{e}^n = \mathbf{x} \mathbf{x}^n$; residual $\mathbf{r}^n = \mathbf{b} \mathbf{A} \cdot \mathbf{x}^n$; $\mathbf{A} \cdot \mathbf{e}^n = \mathbf{r}^n$
- lacktriangle error satisfies the residual equation: $\mathbf{A} \cdot \mathbf{e}^n = \mathbf{r}^n$
- residual vanishes if error vanishes
- $\mathbf{x}^n = \mathbf{P} \cdot \mathbf{x}^{n-1} + \mathbf{g}$ implies $\mathbf{e}^n = \mathbf{P} \cdot \mathbf{e}^{n-1}$
- error amplification factor determined by eigenvalues of P
- spectral radius $\rho_P = \max |\lambda_i(P)| < 1$ for convergence
- smallest factor by which error reduces in an iteration
- Jacobi: $P = -D^{-1}(L + U)$
- Gauss-Seidel: $\mathbf{P} = -(\mathbf{L} + \mathbf{D})^{-1}\mathbf{U}$

- Jacobi: $\phi_i^{n+1} = (\phi_{i-1}^n + \phi_{i+1}^n)/2 \Delta^2 \rho_i/2$
- matrix form: $P = I \frac{1}{2}A$ with

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \cdot & \cdot & \cdot \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

- \blacksquare eigenvalues of A: $\lambda_k(A) = 4\sin^2(\frac{k\pi}{2N})$, $1 \le k \le N-1$
- \blacksquare eigenvalues of P: $\lambda_k(P) = 1 2\sin^2(\frac{k\pi}{2N})$, $1 \le k \le N-1$

- Jacobi: $\phi_i^{n+1} = (\phi_{i-1}^n + \phi_{i+1}^n)/2 \Delta^2 \rho_i/2$
- matrix form: $P = I \frac{1}{2}A$ with

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \cdot & \cdot & \cdot \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

- \blacksquare eigenvalues of A: $\lambda_k(A) = 4\sin^2(\frac{k\pi}{2N})$, $1 \le k \le N-1$
- lacksquare eigenvalues of P: $\lambda_k(P) = 1 2\sin^2(\frac{k\pi}{2N})$, $1 \le k \le N-1$
- Gauss-Seidel: $\phi_i^{n+1} = (\phi_{i-1}^{n+1} + \phi_{i+1}^n)/2 \Delta^2 \rho_i/2$
- lacksquare eigenvalues of P: $\lambda_k(P) = \cos^2(\frac{k\pi}{N})$, $1 \le k \le N-1$

- Jacobi: $\phi_i^{n+1} = (\phi_{i-1}^n + \phi_{i+1}^n)/2 \Delta^2 \rho_i/2$
- matrix form: $P = I \frac{1}{2}A$ with

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \cdot & \cdot & \cdot \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

- lacksquare eigenvalues of A: $\lambda_k(A) = 4\sin^2(\frac{k\pi}{2N})$, $1 \le k \le N-1$
- lacksquare eigenvalues of P: $\lambda_k(P) = 1 2\sin^2(\frac{k\pi}{2N})$, $1 \le k \le N-1$
- Gauss-Seidel: $\phi_i^{n+1} = (\phi_{i-1}^{n+1} + \phi_{i+1}^n)/2 \Delta^2 \rho_i/2$
- lacksquare eigenvalues of P: $\lambda_k(P) = \cos^2(\frac{k\pi}{N})$, $1 \le k \le N-1$
- \blacksquare spectral radius $\simeq 1-\pi^2/2N^2, \ 1-\pi^2/N^2$ in two cases

- Jacobi: $\phi_i^{n+1} = (\phi_{i-1}^n + \phi_{i+1}^n)/2 \Delta^2 \rho_i/2$
- matrix form: $P = I \frac{1}{2}A$ with

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \cdot & \cdot & \cdot \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{bmatrix}$$

- \bullet eigenvalues of A: $\lambda_k(A) = 4\sin^2(\frac{k\pi}{2N}), 1 \le k \le N-1$
- lacksquare eigenvalues of P: $\lambda_k(P) = 1 2\sin^2(\frac{k\pi}{2N})$, $1 \le k \le N-1$
- Gauss-Seidel: $\phi_i^{n+1} = (\phi_{i-1}^{n+1} + \phi_{i+1}^n)/2 \Delta^2 \rho_i/2$
- eigenvalues of P: $\lambda_k(P) = \cos^2(\frac{k\pi}{N})$, $1 \le k \le N-1$
- lacksquare spectral radius $\simeq 1-\pi^2/2N^2, \ 1-\pi^2/N^2$ in two cases
- lowest k converge slowest, worse for large N; key idea of MG methods

1-D Poisson equation: numerical experiments

Gauss-Seidel:

$$\mathbf{x}^n = -(\mathbf{L} + \mathbf{D})^{-1}\mathbf{U} \cdot \mathbf{x}^{n-1} + (\mathbf{L} + \mathbf{D})^{-1} \cdot \mathbf{b}$$

lacktriangledown rearrange, $\mathbf{x}^n = \mathbf{x}^{n-1} - (\mathbf{L} + \mathbf{D})^{-1} (\mathbf{A} {\cdot} \mathbf{x}^{n-1} - \mathbf{b})$

Gauss-Seidel:

$$\mathbf{x}^n = -(\mathbf{L} + \mathbf{D})^{-1}\mathbf{U} \cdot \mathbf{x}^{n-1} + (\mathbf{L} + \mathbf{D})^{-1} \cdot \mathbf{b}$$

- lacktriangledown rearrange, $\mathbf{x}^n = \mathbf{x}^{n-1} (\mathbf{L} + \mathbf{D})^{-1} (\mathbf{A} {\cdot} \mathbf{x}^{n-1} \mathbf{b})$
- lacksquare overcorrect, $\mathbf{x}^n = \mathbf{x}^{n-1} + \omega (\mathbf{L} + \mathbf{D})^{-1} \cdot \mathbf{r}^{n-1}$

Gauss-Seidel:

$$\mathbf{x}^n = -(\mathbf{L} + \mathbf{D})^{-1}\mathbf{U} \cdot \mathbf{x}^{n-1} + (\mathbf{L} + \mathbf{D})^{-1} \cdot \mathbf{b}$$

- lacktriangle rearrange, $\mathbf{x}^n = \mathbf{x}^{n-1} (\mathbf{L} + \mathbf{D})^{-1} (\mathbf{A} \cdot \mathbf{x}^{n-1} \mathbf{b})$
- lacksquare overcorrect, $\mathbf{x}^n = \mathbf{x}^{n-1} + \omega (\mathbf{L} + \mathbf{D})^{-1} \cdot \mathbf{r}^{n-1}$
- lacksquare relaxation parameter ω ; both error and residue should converge to 0
- convergence if $0 < \omega < 2$; $1 < \omega < 2$ faster than GS

Gauss-Seidel:

$$\mathbf{x}^n = -(\mathbf{L} + \mathbf{D})^{-1}\mathbf{U} \cdot \mathbf{x}^{n-1} + (\mathbf{L} + \mathbf{D})^{-1} \cdot \mathbf{b}$$

- lacktriangle rearrange, $\mathbf{x}^n = \mathbf{x}^{n-1} (\mathbf{L} + \mathbf{D})^{-1} (\mathbf{A} \cdot \mathbf{x}^{n-1} \mathbf{b})$
- lacksquare overcorrect, $\mathbf{x}^n = \mathbf{x}^{n-1} + \omega (\mathbf{L} + \mathbf{D})^{-1} \cdot \mathbf{r}^{n-1}$
- $lue{}$ relaxation parameter ω ; both error and residue should converge to 0
- convergence if $0 < \omega < 2$; $1 < \omega < 2$ faster than GS
- \blacksquare optimum $\omega = \frac{2}{1+\sqrt{1-\rho_J^2}}$
- for Poisson eq. $\rho_{\mathrm{SOR}} \simeq 1 2\pi/N$ for large N
- \blacksquare much faster than GS with $\rho_{\rm GS} \simeq 1 \pi^2/N^2$

1-D Poisson equation: numerical experiments

- \blacksquare note faster convergence, especially for low k
- \blacksquare here we used optimum ω for a given k
- \blacksquare worse performance for non-optimum ω
- lue ω determined by trial and error, local approximation

 $\blacksquare \ \mathcal{L} u = \rho$ in steady state, a solution to elliptic equation

- lacksquare $\mathcal{L}u=
 ho$ in steady state, a solution to elliptic equation

■ FTCS
$$u_{j,l}^{n+1} = u_{j,l}^n + \frac{\Delta t}{\Delta^2} (u_{j+1,l}^n + u_{j-1,l}^n + u_{j,l+1}^n + u_{j,l-1}^n - 4u_{j,l}^n) - \rho_{j,l} \Delta t$$

- lacksquare $\mathcal{L}u=
 ho$ in steady state, a solution to elliptic equation
- FTCS $u_{j,l}^{n+1} = u_{j,l}^n + \frac{\Delta t}{\Delta^2} (u_{j+1,l}^n + u_{j-1,l}^n + u_{j,l+l}^n + u_{j,l-1}^n 4u_{j,l}^n) \rho_{j,l} \Delta t$
- FTCS stability condition in 2-D: $\Delta t \leq \Delta^2/4$; choosing largest stable step in above,
- $u_{j,l}^{n+1} = \frac{1}{4}(u_{j+1,l}^n + u_{j-1,l}^n + u_{j,l+l}^n + u_{j,l-1}^n) \frac{\Delta^2}{4}\rho_{j,l} \text{ Jacobi!}$

- $\blacksquare \mathcal{L}u = \rho$ in steady state, a solution to elliptic equation
- FTCS $u_{j,l}^{n+1} = u_{j,l}^n + \frac{\Delta t}{\Delta^2} (u_{j+1,l}^n + u_{j-1,l}^n + u_{j,l+l}^n + u_{j,l-1}^n 4u_{j,l}^n) \rho_{j,l} \Delta t$
- FTCS stability condition in 2-D: $\Delta t \leq \Delta^2/4$; choosing largest stable step in above,
- $u_{j,l}^{n+1} = \frac{1}{4}(u_{j+1,l}^n + u_{j-1,l}^n + u_{j,l+l}^n + u_{j,l-1}^n) \frac{\Delta^2}{4}\rho_{j,l}$ Jacobi!
- Multigrid methods are the most sophisticated schemes for BVPs, go back and forth between coarse and fine grids