Simplified Relational Schema for Astronomy Database [ERD REDUCTION]:

The ER diagram is reduced to a relational schema with the following tables:

Strong Entity Tables:

1. USERS

- o Primary Key: user id
- o Attributes: name, email, role, password

2. CELESTIAL_OBJECTS (Superclass)

- o Primary Key: object id
- o Attributes: name, type, discovery_date, distance_ly

3. STARS (Subclass of CELESTIAL OBJECTS)

- o Primary Key: star id
- Foreign Key: object_id referencesCELESTIAL OBJECTS
- o Attributes: name, spectral type, temperature, luminosity

4. **GALAXIES** (Subclass of CELESTIAL_OBJECTS)

- Primary Key: galaxy_id
- Foreign Key: object_id referencesCELESTIAL OBJECTS

Attributes: name, type, redshift, mass, distance_ly

5. ASTEROIDS (Subclass of CELESTIAL OBJECTS)

- o Primary Key: asteroid_id
- Foreign Key: object_id referencesCELESTIAL OBJECTS
- Attributes: name, diameter, composition, orbit_type

Weak Entity / Dependent Tables:

6. EXOPLANETS

- o Primary Key: exo id
- Foreign Key: host star id references STARS
- o Attributes: name, orbital_period, mass, radius, atmosphere

7. SPECTRAL_DATA

- Primary Key: spectra_id
- Foreign Key: object_id referencesCELESTIAL OBJECTS
- Attributes: spectral_type, wavelength_nm

8. OBSERVATION_LOGS

- o Primary Key: log id
- Foreign Keys: user_id references USERS, object_id references CELESTIAL OBJECTS

Key Design Decisions:

- Inheritance implementation: Used foreign key references to implement the is-a relationships between CELESTIAL_OBJECTS and its subclasses (STARS, GALAXIES, ASTEROIDS)
- 2. **Many-to-many resolution**: Created a junction table (USER_OBJECT_STUDIES) to represent the many-to-many relationship between USERS and CELESTIAL_OBJECTS
- 3. **Weak entities**: Implemented using regular tables with foreign keys to their identifying strong entities
- 4. **Total participation**: Enforced through NOT NULL constraints on the foreign keys