

Série C - session 2014 : exercice partie A - corrigé

Probabilités

1 - Calcul de P_A et de P_B .

On a $P_A + P_B + P_C = 1$

3 nombres a, b, c forment dans cet ordre une progression arithmétique lorsque a+c=2b alors $P_A + P_C = 2 P_B$.

Sachant que $P_C = \frac{1}{6}$, on a à résoudre le système :

$$\begin{cases} P_C = \frac{1}{6} \\ P_A + P_B + P_C = 1 \\ P_A + P_C = 2 P_B \end{cases}$$

Donc
$$P_A = \frac{1}{2}$$
 et $P_B = \frac{1}{3}$

2 - Probabilité d'atteindre au moins une fois la zone C

Soit D l'événement " atteindre au moins une fois la zone C"

L'événement contraire de D est \overline{D} : " atteindre 0 fois la zone C"

On a
$$P_{\overline{D}} = \left(\frac{5}{6}\right)^4$$
, d'où $P_{D} = 1 - P_{\overline{D}} = 1 - \left(\frac{5}{6}\right)^4 = \frac{671}{1296}$

3 - Probabilité de l'événement E = "le jeu s'arrête au 3ème tir"

$$E = (\overline{C}; \overline{C}; C)$$

$$P(E) = P(\overline{C}) \times P(\overline{C}) \times P(C)$$

$$P(E) = \left(\frac{5}{6}\right)^2 \times \frac{1}{6} = \frac{25}{216}$$

4 - Probabilité P_n pour que le jeu s'arrête au $n^{\grave{e}^{me}}$ tir

$$P_n = P(\overline{C}; \overline{C}; \dots, \overline{C}; C) = \left[P(\overline{C})\right]^{n-1} \times P(C) = \left(\frac{5}{6}\right)^{n-1} \times \frac{1}{6}$$

Limite de Pn

$$\text{Comme } -1 < \frac{5}{6} < 1 \text{ donc } \lim_{n \to +\infty} P_n = \lim_{n \to +\infty} \left(\frac{5}{6}\right)^{n-1} \times \frac{1}{6} = 0$$

