

Álgebra y Geometría Analítica I

Relaciones - Resolución de ejercicios selectos

1. Si $U = \mathbb{N}$, $A = \{1, 2, 3, 4\}$, $B = \{2, 5\}$ y $C = \{3, 4, 7\}$, determinar y graficar los siguientes conjuntos como subconjuntos del plano:

(a)
$$A \times B$$

(d)
$$(A \cap B) \times C$$

(b)
$$B \times A$$

(e)
$$(A \times C) \cup (B \times C)$$

(c)
$$(A \times C) \cap (B \times C)$$

(f)
$$(A \cup B) \times C$$

Solución:

(c) $(A \times C) \cap (B \times C)$

Tenemos que:

$$A \times C = \{(1,3), (1,4), (1,7), (2,3), (2,4), (2,7), (3,3), (3,4), (3,7), (4,3), (4,4), (4,7)\}$$

 $B \times C = \{(2,3), (2,4), (2,7), (5,3), (5,4), (5,7)\}$

Hallamos la intersección, determinando los pares que forman parte de ambos conjuntos anteriores:

$$(A \times C) \cap (B \times C) = \{(2,3), (2,4), (2,7)\}$$

(f) $(A \cup B) \times C$ Tenemos que:

$$A \cup B = \{1, 2, 3, 4, 5\}$$

Ahora calculamos el producto cartesiano con C:

$$(A \cup B) \times C = \{(1,3), (1,4), (1,7), (2,3), (2,4), (2,7), (3,3), (3,4), (3,7), (4,3), (4,4), (4,7), (5,3), (5,4), (5,7)\}$$

Av. Pellegrini 250, S2000BTP, Rosario, Argentina

- 5. Si $A = \{1, 2, 3\}$ y $B = \{2, 4, 5\}$, dar ejemplos de:
 - (a) Tres relaciones binarias no vacías de A en B. Graficar $A \times B$ y las tres relaciones como subconjuntos del plano.
 - (b) Tres relaciones binarias no vacías de A en A. Graficar $A^2 = A \times A$ y las tres relaciones como subconjuntos del plano.

Solución:

(a) $A \times B = \{(1,2), (1,4), (1,5), (2,2), (2,4), (2,5), (3,2), (3,4), (3,5), \}$

$$\mathcal{R}_1 = \{(x, y) : y = 3.5 + 0.5x\}$$

6. Sean $A=\{0,1,2,3,4\},\,B=\{3,4,5,6\}.$ Expresar por extensión los subconjuntos $\mathcal R$ de $A\times B$ definidos por:

4

3

2

 R_3

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250, S2000BTP, Rosario, Argentina

- (a) $(x,y) \in \mathcal{R}$ si y solo si x + y es múltiplo de 3.
- (b) $(x,y) \in \mathcal{R}$ si y solo si y-x es un número natural primo.
- 7. Sea $A = \{1, 2, 3, 4, 5\}$. Expresar por extensión los subconjuntos \mathcal{R} de $A \times A$ definidos por las relaciones siguientes:
 - (a) $(x, y) \in \mathcal{R}$ si y solo si $x + y \le 6$.
 - (b) $(x, y) \in \mathcal{R}$ si y solo si x = y 1.
- 8. Para cada una de las relaciones de los ejercicios 6 y 7 determinar:
 - (a) $\mathcal{R}(1)$, $\mathcal{R}(3)$.

(b) $\mathcal{R}^{-1}(4)$, $\mathcal{R}^{-1}(5)$.

Solución:

- (a) Debemos hallar $\mathcal{R}(1)$, y $\mathcal{R}(3)$, es decir la imagen para x=1 y x=3 a través de cada una de las relaciones.
 - R del ej. 6a)

Para obtener $\mathcal{R}(1)$ debemos hallar $y \in B: 1+y$ es múltiplo de 3.

Podemos ver que: $\mathcal{R}(1) = \{5\}.$

Para obtener $\mathcal{R}(3)$ debemos hallar $y \in B : 3 + y$ es múltiplo de 3. Podemos ver que: $\mathcal{R}(3) = \{3, 6\}$.

■ R del ej. 7b)

Para obtener $\mathcal{R}(1)$ debemos hallar $y \in B : y = x + 1$.

Podemos ver que: $\mathcal{R}(1) = \{2\}.$

Para obtener $\mathcal{R}(3)$ debemos hallar $y \in B : y = x + 1$.

Podemos ver que: $\mathcal{R}(3) = \{4\}.$

- (b) Debemos hallar $\mathcal{R}^{-1}(4)$, y $\mathcal{R}^{-1}(5)$, es decir la pre-imagen para y=4 y y=5 a través de cada una de las relaciones.
 - \blacksquare \mathcal{R} del ej. 6b)

Para obtener $\mathcal{R}^{-1}(4)$ debemos hallar $x \in A: 4-x$ es un número natural primo.

Podemos ver que: $\mathcal{R}^{-1}(4) = \{1, 2\}.$

Para obtener $\mathcal{R}^{-1}(5)$ debemos hallar $x \in A : 5-x$ es un número natural primo.

Podemos ver que: $\mathcal{R}^{-1}(5) = \{0, 2, 3\}.$

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250, S2000BTP, Rosario, Argentina

■ R del ej. 7a)

Para obtener $\mathcal{R}^{-1}(4)$ debemos hallar $y \in B : x + 4 \le 6$.

Podemos ver que: $\mathcal{R}^{-1}(4) = \{1, 2\}.$

Para obtener $\mathcal{R}^{-1}(5)$ debemos hallar $y \in B : x + 5 \le 6$.

Podemos ver que: $\mathcal{R}^{-1}(5) = \{1\}.$

- 10. Sea $\mathcal R$ la relación de $\mathbb R$ en $\mathbb R$ definida por: $(x,y)\in \mathcal R$ si y sólo si $x,y\geq 0$ y $x\leq y$. Graficar $\mathcal R$ y hallar:
 - (a) $\mathcal{R}(\{2\})$

(e) $\mathcal{R}^{-1}(\{0\})$

(b) $\mathcal{R}(\{-1\})$

(f) $\mathcal{R}^{-1}(\{-1\})$

(c) $\mathcal{R}((0,1])$

(g) $\mathcal{R}^{-1}((2,3))$

(d) $\mathcal{R}(\mathbb{R})$

(h) $\mathcal{R}^{-1}(\mathbb{R})$

Solución:

 \mathcal{R} está formada por todos los puntos que se encuentran en la región comprendida entre el semieje positivo de y y la recta a 45° , estando ambas semirectas contenidas en \mathcal{R} . La podemos graficar de la siguiente manera:

- (a) $\mathcal{R}(\{2\}) = [2, +\infty)$
- (b) $\mathcal{R}(\{-1\}) = \emptyset$
- (d) $\mathcal{R}(\mathbb{R}) = \mathbb{R}_0^+$

 \mathbb{R}^+ es la notación usual para el conjunto de los números reales positivos, es decir, $\{x \in \mathbb{R} : x > 0\}$.

 $\mathbb{R}_0^+ = \mathbb{R}^+ \cup \{0\}$ Es el conjunto de los números reales positivos y el cero.

11. Hallar $\mathcal{R} \circ \mathcal{S}$ y $\mathcal{S} \circ \mathcal{R}$ en el Ejemplo 4.

Solución:

En el ejemplo 4, tenemos los conjuntos:

$$A = \{1, 2, 3, 4\}$$
 $B = \{w, x, y, z\}$ $C = \{1, 2, 4, 8\}$

y las relaciones:

$$\mathcal{R} = \{(1, x), (1, z), (2, w), (3, x)\}$$
 $\mathcal{S} = \{(w, 1), (x, 8), (y, 4), (z, 2)\}$

■ Calculo $\mathcal{R} \circ \mathcal{S}$

$$(\mathcal{R} \circ \mathcal{S})(w) = \mathcal{R}(\mathcal{S}(w)) = \mathcal{R}(1) = \{x, z\}$$

$$\Rightarrow$$
 $(w, x) \in \mathcal{R} \circ \mathcal{S} \text{ y } (w, z) \in \mathcal{R} \circ \mathcal{S}$

$$(\mathcal{R} \circ \mathcal{S})(x) = \mathcal{R}(\mathcal{S}(x)) = \mathcal{R}(8) = \emptyset$$

$$(\mathcal{R} \circ \mathcal{S})(y) = \mathcal{R}(\mathcal{S}(y)) = \mathcal{R}(4) = \emptyset$$

$$(\mathcal{R} \circ \mathcal{S})(z) = \mathcal{R}(\mathcal{S}(z)) = \mathcal{R}(2) = \{w\}$$

$$\Rightarrow (z, w) \in \mathcal{R} \circ \mathcal{S}$$

Entonces obtenemos que: $\mathcal{R} \circ \mathcal{S} = \{(w, x), (w, z), (z, w)\}$

Gráficamente podemos representar la composición de la siguiente manera:

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250, S2000BTP, Rosario, Argentina

