ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ АЭРОКОСМИЧЕСКИХ ТЕХНОЛОГИЙ

Лабораторная работа 3.2.1 **Сдвиг фаз в цепи переменного тока**

Цель работы: Изучить влияние активного сопротивления, индуктивности и ёмкости на сдвиг фаз между током и напряжением в цепи переменного тока.

Оборудование: генератор звуковой частоты (3Γ) , двухканальный осциллограф (9O), магазин ёмкостей, магазин сопротивлений, катушка индуктивности, резисторы, универсальный измеритель импеданса (LCR-метр).

Теоретические сведения: Удобным, хотя и не очень точным, прибором для измерения фазовых соотношений служит электронный осциллограф. Можно предложить два способа измерения разности фаз.

В первом способе два сигнала U_1 и U_2 подаются на горизонтальную (канал X) и вертикальную (канал Y) развёртки осциллографа. Смещение луча по горизонтали и вертикали определяется выражениями

$$x = x_0 cos(\omega t), \quad y = y_0 cos(\omega t + \psi)$$

где ψ – сдвиг по фазе между напряжениями U_1 и U_2 . После некоторых преобразований найдём, ОТР

$$\frac{x^2}{x_0^2} + \frac{y^2}{y_0^2} + 2\frac{xy}{x_0y_0} \cdot \cos\psi = \sin^2\psi$$

Полученное выражение определяет эллипс, описываемый электронным лучом на экране осциллографа. Для расчёта сдвига фаз можно измерить отрезки $2y_{x=0}$, $2y_0$ и, подставляя эти значения в уравнение эллипса, найти

$$\psi = \pm \frac{y_{x=0}}{y_0}$$

Второй способ заключается в непосредственном измерении сдвига фаз между сигналами на экране двухканального осциллографа. Напряжения U_1 и U_2 одновременно подаются на входные каналы ЭО при включённой внутренней горизонтальной развёртке. При этом сигналы одновременно отображаются на экране. Измерение разности фаз в таком случае удобно проводить следу-

при которой на экране укладывается чуть больше половины периода синусоиды; 2) отцентрировать горизонтальную ось; 3) измерить расстояние x_0 между нулевыми значениями одного из сигналов, что соответствует разности фаз π ; 4) измерить расстояние x между нулевыми значениями двух синусоид и пересчитать в сдвиг по фазе: $\psi = \pi \frac{x}{x_0}$.

В данной работе используется только второй способ измерения фазы.

Экспериментальная установка:

Схема установки для исследования сдвига фаз между током и напряжением в цепи переменного тока представлена рис. 2. Эталонная катушка L, магазин ёмкостей C и магазин сопротивлений R соединены последовательно и через дополнительное сопротивление r подключены к источнику синусоидального напряжения — звуковому генератору. Сигнал, пропорциональный току, снимается с сопротивления r, пропорциональный напряжению, — с генератора.

Рис. 1: Эллипс на экране осциллографа

Рис. 2: Схема установки для исследования сдвига фаз между током и напряжением

Рис. 3: Схема установки для исследования фазовращателя

Обработка данных: Параметры элементов цепи: r=12,4 Ом, L=50 мГн, $R_L=32,5$ Ом, C=0,5 мкФ. Сначала рассчитаем реактивное сопротивление конденсатора $X_1=1/\omega C\approx 318$ Ом, и катушки $X_2=\omega L\approx 314$ Ом при частоте генератора $\nu=1000$ Гц. Изменяя значение сопротивления в цепи с помощью магазина сопротивлений в диапазоне от 0 до $10\cdot X_1$ и от 0 до $10\cdot X_2$ для RC и RL цепей соответственно, построим графики зависимости $\cot(\psi)=f(\omega R_\Sigma C)$ и $\cot(\psi)=f(R_\Sigma/\omega L)$, где R_Σ — суммарное активное сопротивление в цепи. Данные, снятые с осциллографа при различных сопротивлениях представлены ниже:

Таблица 1: Значения сдвига фаз для RC и RL цепей

<i>RC</i> -цепь		RL-цепь	
R, Om	φ/π	R, Om	φ/π
0	-15 / 32	0	7 / 16
397	-7 / 32	392	3 / 16
794	-1 / 8	784	1 / 8
1191	-3 / 32	1176	1 / 16
1588	-1 / 16	1568	1 / 16
1985	-1 / 16	1960	1 / 32
2382	-1 / 16	2352	1 / 32
2779	-1 / 16	2744	1 / 32
3176	-1 / 16	3136	1 / 32

Проведём теоретическую оценку вышеупомянутой зависимости, 1) RC-цепь: в цепи есть только активное сопротивление резисторов и реактивное сопротивление катушки, следовательно, разность фаз определяется выражением $\cot(\psi) = -\omega CR_{\Sigma}$, значит на графике должна получиться прямая линия y(x) = -x; 2) RL – цепь: разность фаз будет равна $\cot(\psi) = R_{\Sigma}/\omega L$.

Видно, что значения в трёх точках не соотвестствуют теоретическому предсказанию, что

можно объяснить сложностью снятия точного значения при больших значениях сопротивления $(\psi \to 0)$, если аппроксимировать прямую не беря во внимание эти точки, то

$$k = (-1.015 \pm 0.024), \quad \varepsilon = 2.36\%$$

Полученное значение в пределах погрешности равняется теоретически предсказанному. Теперь построим аналогичный график для RL-цепи:

Как и в предыдущем случае есть несколько точек, значения в которых отличаются от теоретических, исключая эти точки получим коэффициент наклона прямой

$$k = (0.998 \pm 0.015), \quad \varepsilon = 1.5\%$$

Получаем отличное соответствие с теорией в пределах погрешности.

Исследуем зависимость вида $\cot(\psi)=f(\nu/\nu_0)$ для двух RCL-контуров с сопротивлениями R=0 Ом и R=100 Ом, где ν_0 — резонансная частота: $\nu_0=1007$ Гц при R=0 Ом, и $\nu_0=1010$ Гц при R=0 Ом.

Таблица 2: Данные с *RCL*-контура

R = 0 Ом		R = 100 Om	
ν, Гц	φ/π	ν, Гц	φ/π
890	-1 / 3	650	-1 / 3
910	-5 / 18	710	-7 / 22
930	-2 / 9	770	-11 / 41
950	-1 / 6	830	-4 / 19
970	-5 / 33	890	-6 / 35
990	-1 / 16	950	-1 / 11
1020	2 / 31	1040	1 / 30
1040	2 / 15	1100	3 / 28
1060	1 / 5	1160	5 / 27
1080	7 / 29	1220	3 / 13
1100	2 / 7	1280	1 / 4
1120	9 / 28	1340	6 / 23
1140	1 / 3	1400	7 / 23

Сдвиг фазы связан с частотой формулой

$$\cot(\psi) = \frac{R}{\omega L - \frac{1}{\omega C}}$$

поэтому при увеличении сопротивления, для одного и того же значения ω сдвиг фазы при меньшем сопротивлении будет всегда больше по модулю, что и отражено на графике.

Рассчитаем добротность контура по формуле, затем рассчитаем с помощью графика и сравним результаты.

$$Q_{R=0} pprox rac{1}{R_{\Sigma}} \sqrt{rac{L}{C}} = 7{,}043 \; \mathrm{eg}.$$

$$Q_{R=100} pprox rac{1}{R_{\Sigma}} \sqrt{rac{L}{C}} = 2{,}182$$
 ед.

Из графика примерно определим значения частот, при которых сдвиг фазы равен $\psi = \pm \frac{\pi}{4}$:

- 1) R = 0: $\nu_{-} = 916.4 \ \Gamma \text{H}$, $\nu_{+} = 1082.5 \ \Gamma \text{H}$; $\Delta \nu = 166.1, \ \Gamma \text{H}$;
- 2) R = 100: $\nu_- = 787.8~\Gamma \text{H}, \quad \nu_+ = 1280.0~\Gamma \text{H}; \quad \Delta \nu = 492.2,~\Gamma \text{H};$

Формула для нахождения добротности

$$Q = \frac{\nu_0}{\Delta \nu}$$

отсюда получаем

$$Q_{R=0, \text{ граф}} \approx 6{,}063 \text{ ед.}$$

$$Q_{R=100, \text{ граф}} \approx 2{,}052 \text{ ед.}$$

При сопротивлении R=0 Ом значения добротности, полученные различными способами, практически одинаковые, но при R=100 Ом различие составляет порядка $\varepsilon\approx 15\%$.

Последним пунктом с помощью фазовращателя посмотрим сдвиг фаз в цепи предвставленной на рис. 3, в зависимости от сопротивления в соединённом последовательно с конденсатором резисторе. Данные представлены в таблице ниже. Также, найдём значение сопротивления R, при котором сдвиг фаз составляет $\pi/2$. $R_{\frac{\pi}{2}}\approx 295,0$ Ом. Теоретически значение можно посчитать используя формулу, связывающую оба напряжения, подаваемые на осциллограф

$$U_{\text{вых}} = \frac{U_{\text{вх}}}{2} \frac{R + \frac{i}{\omega C}}{R - \frac{i}{\omega C}}$$

$$\psi = 2 \arctan \frac{1}{\omega CR}$$

Таблица 3: Значения сдвига фазы на фазовращателе при разных сопротивлениях

R , Ом	φ/π	
500	11 / 30	
1000	1 / 5	
2000	1 / 10	
3000	1 / 15	
4000	1 / 30	
5000	1 / 30	
6000	1 / 30	
7000	1 / 30	
8000	1 / 30	
9000	0	
10000	0	

Из таблицы видно, что при увеличении сопротивления сдвиг фазы уменьшается, как и предсказывает теория. Теперь рассчитаем $R_{\frac{\pi}{2}, \text{reop}}$ по формуле выше:

$$R_{\frac{\pi}{2}} = \frac{1}{\omega C} \approx 318,3 \text{ Om}$$

Как можно заметить, с неплохой точностью значение, измеренное экспериментально, совпадает с теоретически полученным. Погрешность составляет $\approx 7.3\%$.

Вывод: В данной работе сдвиг фаз в цепи переменного тока, при различных конфигурациях электрической цепи. Были проверены теоретические зависимости сдвига фаз от активного сопротивления, многие точки с отличной точностью совпали с теоретическим предсказанием, однако, из-за сложности в снятии точных значений угла при больших сопротивлениях, некоторые значения сильно отличаются от теоретической зависимости. В RCL—цепи исследовали зависимость сдвига фазы от частоты генератора вблизи резонансной частоты при двух различных значениях сопротивления, вид зависимости совпал с теорией, а также измерили добротность двумя способами (теоретически и с помощью посторенного по экспериментальным точкам графика) для каждого из сопротивлений. При R=0 Ом значения добротностей совпали с хорошей точностью, при R=100 Ом значения отличаются на $\approx 15\%$. С помощью фазовращателя исследовали сдвиг фаз в цепи, представленной на рис. 3, и нашли сопротивление, при котором сдвиг фаз равнялся $\frac{\pi}{2}$, сравнили его с теоретически рассчитанным, получили совпадение с точностью $\approx 7,3\%$