EKSPLORASI DAN EKSPERIMEN CLASSIFICATION TASK DENGAN GAUSSIAN NB DAN RANDOM FOREST

Muhammad Shiba Kabul 1301183457 IF-42-12 R. Ardityo Cahyo Putro Hutomo 1301183507 IF-42-12

Pendahuluan

Diberikannya suatu data-set berformat *.csv yakni Training-set dan Testing-set mengenai pendataan curah hujan. Dalam file tersebut dijelaskan tiap tanggal yang tertulis terdapat banyak kolom data seperti Kode Lokasi, Suhu Min, Suhu Max, Hujan, Penguapan, Sinar Matahari, Arah Angin Terkencang, Kecepatan Angin Terkencang, Arah Angin 9am, Arah Angin 3pm, Kecepatan Angin 9am, Kecepatan 3pm, Kelembaban Angin Kelembaban 3pm, Tekanan 9am, Tekanan 3pm, Awan 9am, Awan 3pm, Suhu 9am, Suhu 3pm, Bersalju Hari Ini, dan Bersalju Besok. Dari Semua data tersebut kami diminta untuk mengelola data tersebut agar dapat mengetahui prediksi Besok akan turun salju atau tidak. Dalam kesempatan kali ini, Kami menggunakan bahasa **Python** dan menggunakan beberapa library pembantu agar data mudah untuk diolah.

Eksperimen

Dalam eksplorasi yang dilakukan oleh kami, sebelum melakukan Classification, diharuskannya terlebih dahulu untuk melakukan Preprocessing. Didalam Preprocessing sebenarnya terdapat beberapa metode yang dilakukan (sesuai kondisi). Beberapa diantaranya yakni,

- a) Mengidentifikasi dan mengatasi Missing Values,
- b) Data Formatting,

- c) Data Normalization,
- d) Data Binning,
- e) Mengubah Categorical ke Numerical.

Namun dalam pengerjaan program ini tidak semua metode diatas dilakukan dikarenakan didalam data-set yang diberikan beberapa metode telah diterapkan. Untuk model program dapat dilihat pada Gambar 1.

Gambar 1: Model Progam

Analisis Hasil Eksperimen 1. Preprocessing

Dalam penerapan model diatas, preprocessing dilakukan dengan Korelasi, Data Formatting, dan Mengubah Categorical ke Numerical sesuai pada Gambar 2.

Gambar 2: Model Preprocessing

1.a. Korelasi

Tahap ini dilakukan oleh kami untuk menentukan pengambilan atribut. Berikut korelasi beserta visualisasinya.

1.b. Data Formatting

Dalam Data Formatting dilakukannya pengubahan data yang berpotensi dapat merusak hasil akhir, pada file training dan testing yang diberikan ditemukannya data yang tidak konsisten, pada training tertulis "Ya" "Tidak" (dalam dan Bahasa Indonesia) sedangkan untuk testing tertulis "Yes" dan "No" (dalam Bahasa Inggris). Maka kami ganti dengan 0 dan 1.

Gambar 3: Sebelum Data Formatting

Gambar 4: Sesudah Data Formatting

1.c. Mengubah *Categorical* ke *Numerical* Pada kolom ArahAngin9am, ArahAngin3pm, ArahAnginTerkencang, dan Kode lokasi dilakukan encode, ini dilakukan untuk mengubah kata menjadi angka, disinggung pada Gambar 5 dan Gambar 6.

	ArahAnginTerkencang	ArahAngin9am	ArahAngin3pm	KodeLokasi
0	WSW	W	W	C39
1	WNW	W	NW	C35
2	SSW	NE	N	C18
3	SW	E	SSE	C31
4	NW	W	WNW	C14
127272	ESE	SE	ESE	C38
127273	SSE	SSE	E	C16
127274	NW	N	NW	C17
127275	E	ESE	SE	C11
127276	WNW	NNE	NE	C16
127277 rd	ows × 4 columns			

Gambar 5: Sebelum mengubah Categorical menjadi Numerical

	ArahAnginTerkencang	ArahAngin9am	ArahAngin3pm	KodeLokasi
0	15	13	13	32
1	14	13	7	28
2	11	4	3	9
3	12	0	10	24
4	7	13	14	5
127272	2	9	2	31
127273	10	10	0	7
127274	7	3	7	8
127275	0	2	9	2
127276	14	5	4	7
	and the second second			

Gambar 6: Sesudah mengubah Categorical menjadi Numerical

2.Atribut untuk Modelling

Setelah itu dilanjutkan dengan pemilihan atribut untuk modelling, pemilihan ini dilakukan dengan cara memilih 3 (tiga) kolom yang akan diproses selanjutnya. Kami memilih SuhuMax, Suhu3pm, dan BersaljuBesok. Pada tahap ini kami melakukan mengatasi *outlier*.

Gambar 7: Mengatasi Outlier

3. Normalisasi

Pada program ini kami menggunakan MinMaxScalling yang berguna untuk mengubah data dengan rentang 0 sampai 1. Sebelum itu kami telah memindahkan kolom target 'BersaljuBesok' ke variabel lain dimana akan diproses pada saat split data.

	SuhuMax	Suhu3pm			
0	27.5	23.6			
1	19.9	18.9			
2	27.2	26.3			
3	27.0	26.4			
4	7.9	6.0			
127272	23.7	22.1			
127273	25.2	24.4			
127274	20.4	19.8			
127275	29.8	29.2			
127276	27.4	23.3			
127277 rd	127277 rows × 2 columns				

Gambar 8: Sebelum Normalisasi

	SuhuMax	Suhu3pm		
0	0.610586	0.556622		
1	0.466919	0.466411		
2	0.604915	0.608445		
3	0.601134	0.610365		
4	0.240076	0.218810		
127272	0.538752	0.527831		
127273	0.567108	0.571977		
127274	0.476371	0.483685		
127275	0.654064	0.664107		
127276	0.608696	0.550864		
127277 rows × 2 columns				

Gambar 9: Setelah Normalisasi

4. Split Data

Pada Sesi ini dilakukannya Split Data dikarenakan program ini bersifat supervised. Data yang sebelumnya digabungkan dipisah kembali menjadi 2 (dua) bagian, Training set menjadi 2 dan Testing set menjadi 2, membagi data dengan skala 30:70.

x_train dan x_test berisi 2 kolom yang dipilih sebelumnya yakni 'SuhuMax' dan 'Suhu3pm', disinggung pada Gambar 10. Sedangkan y_train dan y_test berisi 1 kolom saja yakni 'BersaljuBesok' dimana sebelumnya telah dipisah pada tahap Normalisasi, disinggung pada nomor 11.

Xtrain		
	SuhuMax	Suhu3pm
89229	0.510397	0.508637
124121	0.474480	0.468330
70125	0.264650	0.259117
38195	0.697543	0.694818
66505	0.689981	0.681382
	0.005501	0.001302
61404	0.455577	0.454894
17730	0.410208	0.416507
28030	0.376181	0.387716
15725	0.534972	0.512476
118270	0.370510	0.341651

	rows x 2 c	olumns]
Xtest \		
	SuhuMax	Suhu3pm
90023	SuhuMax θ.434783	0.519910
	SuhuMax	
90023	SuhuMax θ.434783	0.519910
90023 116093	SuhuMax 0.434783 0.476371 0.436673	0.519910 0.477927
90023 116093 43582	SuhuMax 0.434783 0.476371 0.436673	0.519910 0.477927 0.416507
90023 116093 43582 110534 26645	SuhuMax 0.434783 0.476371 0.436673 0.587902	0.519910 0.477927 0.416507 0.598848
90023 116093 43582 110534 26645	SuhuMax 0.434783 0.476371 0.436673 0.587902 0.648393	0.519910 0.477927 0.416507 0.598848 0.652591
90023 116093 43582 110534 26645	SuhuMax 0.434783 0.476371 0.436673 0.587902 0.648393 	0.519910 0.477927 0.416507 0.598848 0.652591
90023 116093 43582 110534 26645 92966 650	SuhuMax 0.434783 0.476371 0.436673 0.587902 0.648393 0.538752 0.393195	0.519910 0.477927 0.416507 0.598848 0.652591 0.529750 0.389635
96023 116093 43582 110534 26645 92966 650 91937	SuhuMax 0.434783 0.476371 0.436673 0.587902 0.648393 0.538752 0.393195 0.621928	0.519910 0.477927 0.416507 0.598848 0.652591 0.529750 0.389635 0.591171
90023 116093 43582 110534 26645 92966 650 91937 735	SuhuMax 0.434783 0.476371 0.436673 0.587902 0.648393 0.538752 0.393195 0.621928 0.661626	0.519910 0.477927 0.416507 0.598848 0.652591 0.529750 0.389635 0.591171 0.658349
96023 116093 43582 110534 26645 92966 650 91937	SuhuMax 0.434783 0.476371 0.436673 0.587902 0.648393 0.538752 0.393195 0.621928	0.519910 0.477927 0.416507 0.598848 0.652591 0.529750 0.389635 0.591171
90023 116093 43582 110534 26645 92966 650 91937 735 108691	SuhuMax 0.434783 0.476371 0.436673 0.587902 0.648393 0.538752 0.393195 0.621928 0.661626	0.519910 0.477927 0.416507 0.598848 0.652591 0.529750 0.389635 0.591171 0.658349 0.355086

Gambar 10: x_train & x_test

ytrain	Value					
89229	1					
124121	. 0					
70125	1					
38195	Θ					
66505	Θ					
61404	Θ					
17730	Θ					
28030	Θ					
15725	Θ					
11827€	Θ					
Name:	Bersalj	juBesok,	Length:	89093,	dtype:	int64
ytest	Value					
90023	Θ					
116093	Θ					
43582	Θ					
110534	Θ					
26645	Θ					
92966	1					
650	Θ					
91937	Θ					
735	Θ					
108691	. Θ					
Name:	Bersalj	juBesok,	Length:	38184,	dtype:	int64

Gambar 11: y_train & y_test

5 .Pemodelan

Pada Program ini kami menggunakan 2 (dua) pemodelan yakni Naive Bayes dan Random Forest yang nantinya akan dibandingkan hasilnya.

Untuk Naive Bayes mendapat hasil akurasi:

0.7750366645715483

Berikut Classification Report:

	precision	recall	fl-score	support
6 1		0.98 0.05	0.87 0.09	29781 8403
accuracy macro avo weighted avo	0.60	0.52 0.78	0.78 0.48 0.70	38184 38184 38184

Gambar 12: Classification Report Naive Bayes

Untuk Random Forrest mendapat hasil akurasi:

0.77076786088414

Berikut Classification Report:

support	fl-score	recall	precision	
29781 8403	0.87 0.25	0.94 0.17	0.80 0.45	0 1
38184 38184 38184	0.77 0.56 0.73	0.56 0.77	0.63 0.72	accuracy macro avg weighted avg

Gambar 13: Classification Report Random Forest

Evaluasi

Naive Bayes

ACCURACY:

0.7750366645715483 - 78%

PRECISION:

0.412861136999068 - 41%

Random Forest

ACCURACY:

0.7707154829247852 - 77%

PRECISION:

0.4458128078817734 - 45%

Kesimpulan

Dari eksplorasi dan eksperimen yang dilakukan oleh kami, dapat disimpulkan bahwa hasil dari Naive Bayes lebih unggul dari Random Forest.

Program dapat diakses dan dijalankan di : https://drive.google.com/file/d/1sq_ErIYo e7yA0UOia4tKRcJjCbTMwA6q/view? usp=sharing

Berikut Link Github dari Tugas Kami : http://github.com/Shibakabul/TubesMalin2/

Referensi scikit-learn.org. A random forest classifier.

Diakses pada:

Asisten Dosen Machine Learning. https://scikit-learn.org/stable/modules/

Responsi 3 : Classification. Diakses pada : generated/

https://drive.google.com/drive/folders/1-sklearn.ensemble.RandomForestClassifier.

 $\underline{7x1uWzclRq06r0K6tevTrP8Mn2x6ghW} \qquad \underline{html}$