1

Assignment 16

Vimal K B - AI20MTECH12001

Download the latex-tikz codes from

https://github.com/vimalkb007/EE5609/tree/master/Assignment_16

1 PROBLEM

(UGC-june2015,77):

Consider non-zero vector spaces V_1, V_2, V_3, V_4 and linear transformations $\phi_1 : V_1 \to V_2, \phi_2 : V_2 \to V_3, \phi_3 : V_3 \to V_4$ such that $Ker(\phi) = \{0\}$, $Range(\phi_1) = Ker\{\phi_2\}$, $Range(\phi_2) = Ker\{\phi_3\}$, $Range(\phi_3) = V_4$. Then

- 1) $\sum_{i=1}^{4} (-1)^{i} dim \mathbf{V_{i}} = 0$
- 2) $\sum_{i=2}^{4} (-1)^{i} dim \mathbf{V_{i}} > 0$
- 3) $\sum_{i=1}^{4} (-1)^{i} dim \mathbf{V_i} < 0$
- 4) $\sum_{i=1}^{4} (-1)^{i} dim \mathbf{V_{i}} \neq 0$

2 DEFINITION AND RESULT USED

Kernel and Nullity	Given a linear transformation $L: \mathbf{V} \to \mathbf{W}$ between we vector spaces \mathbf{V} and \mathbf{W} , the kernel of L is the set of all vectors \mathbf{v} of \mathbf{V} for which $L(\mathbf{v}) = 0$, where 0 denotes the zero vector in \mathbf{W} . i.e.
	$Ker(L) = {\mathbf{v} \in \mathbf{V} \mid L(\mathbf{v}) = 0}$
	Nullity of the linear transformation is the dimension of the kernel of the linear transformation i.e.
	nullity(L) = dim(Ker(L))
Range and Rank	Given a linear transformation $L: \mathbf{V} \to \mathbf{W}$ between we vector spaces \mathbf{V} and \mathbf{W} , the range of L is the set of all vectors \mathbf{w} in \mathbf{W} given as
	$Range(L) = \{ \mathbf{w} \in \mathbf{W} \mid \mathbf{w} = L(\mathbf{v}), \mathbf{v} \in \mathbf{V} \}$
	The rank of a linear transformation L is the dimension of it's range, i.e.
	rank(L) = dim(Range(L))

Rank-Nullity Theorem

Let V, W be vector spaces, where V is finite dimensional. Let $L: V \to W$ be a linear transformation. Then

$$rank(L) + nullity(L) = dim(V)$$

3 Solution

Inference from the Given Data

$$Ker(\phi_1) = \{0\}$$

$$\implies$$
 nullity(ϕ_1) = 0

$$Range(\phi_1) = Ker(\phi_2)$$

$$\implies rank(\phi_1) = nullity(\phi_2)$$

$$Range(\phi_2) = Ker(\phi_3)$$

$$\implies rank(\phi_2) = nullity(\phi_3)$$

$$Range(\phi_3) = \mathbf{V_4}$$

$$\implies rank(\phi_3) = dim(\mathbf{V_4})$$

Now talking about the linear transformations we can use rank-nullity theorem to determine the corresponding dimensions of the vector space.

$$\phi_1: \mathbf{V_1} \to \mathbf{V_2}$$

$$\implies rank(\phi_1) + nullity(\phi_1) = dim(\mathbf{V_1})$$

$$\implies rank(\phi_1) = dim(\mathbf{V_1}) \qquad (\because nullity(\phi_1) = 0)$$

$$\phi_2: \mathbf{V_2} \to \mathbf{V_3}$$

$$\Rightarrow rank(\phi_2) + nullity(\phi_2) = dim(\mathbf{V_2})$$

$$\Rightarrow rank(\phi_2) + rank(\phi_1) = dim(\mathbf{V_2}) \qquad (\because rank(\phi_1) = nullity(\phi_2))$$

$$\Rightarrow rank(\phi_2) + dim(\mathbf{V_1}) = dim(\mathbf{V_2}) \qquad (\because rank(\phi_1) = dim(\mathbf{V_1}))$$

$$\phi_3: \mathbf{V_3} \to \mathbf{V_4}$$

$$\implies rank(\phi_3) + nullity(\phi_3) = dim(\mathbf{V_3})$$

	∴ this statement is False .
Option 4	It is given that
	$\sum_{i=1}^4 (-1)^i \ dim \ \mathbf{V_i} \neq 0$
	$\implies -dim(\mathbf{V_1}) + dim(\mathbf{V_2}) - dim(\mathbf{V_3}) + dim(\mathbf{V_4}) \neq 0$
	This is contrary to our original derived equation i.e.
	$dim(\mathbf{V_4}) + dim(\mathbf{V_2}) - dim(\mathbf{V_1}) - dim(\mathbf{V_3}) = 0$
	: this statement is False .
Conclusion	From our observation we see that
	Options 1) and 2) are True.

4 Example

Linear Tranform	Let L be a linear transformation $L: \mathbf{R}^3 \to \mathbf{R}^2$ be defined by
	$L \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ -2x_1 + x_2 - x_3 \end{pmatrix}$
Kernel and Nullity	The above transformation can be written as $L \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ -2 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$
	We will tkae the matrix $\begin{pmatrix} 1 & 1 & 0 \\ -2 & 1 & -1 \end{pmatrix}$ do the row reduction as $\begin{pmatrix} 1 & 1 & 0 \\ -2 & 1 & -1 \end{pmatrix}$
	$\stackrel{R_2 \leftarrow R_2 + 2R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 3 & -1 \end{pmatrix}$
	$\stackrel{R_2 \leftarrow \frac{1}{3}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & \frac{-1}{3} \end{pmatrix}$

	$ \frac{R_2 \leftarrow R_1 - R_2}{\Rightarrow} \begin{pmatrix} 1 & 0 & \frac{1}{3} \\ 0 & 1 & \frac{-1}{3} \end{pmatrix} $ We get $ x_1 + \frac{1}{3}x_3 = 0 \implies x_1 = \frac{-1}{3}x_3 $ $ x_2 - \frac{1}{3}x_3 = 0 \implies x_2 = \frac{1}{3}x_3 $
	$\therefore Ker(L) = \left\{ \begin{pmatrix} \frac{-1}{3} \\ \frac{1}{3} \\ 1 \end{pmatrix} \right\}$ $\implies nullity(L) = 1$
Range and Rank	Range is defined as the span of columns. For the Range, we take span of original pivot columns in our row reduced echelon form. $\therefore Range(L) = \left\{ \begin{pmatrix} 1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$
Rank-Nullity	$\implies rank(L) = 2$ We know that $dim(\mathbf{R}^3) = 3$
Theorem	According to Rank-Nullity Theorem for the above defined transformation we should get
	$nullity(L) + rank(L) = dim(\mathbf{R}^3)$ And from the above values, we can see that the theorem is getting satisfied.