Unblinded Sample-Size Modification for Fisher's Exact Test

Georg Gutjahr¹, Werner Brannath¹, and Peter Bauer²

¹University of Bremen ²Medical University of Vienna

October 4, 2010

Research supported by FWF grant P21763

Topic of this talk

Fully flexible sample-size modification in Fisher's exact test

- during an unblinded interim analysis,
- without a prespecified sample-size modification rule.

Construction of a test based on the conditional error principle

- in the presence of a nuisance parameter,
- discrete test statistics.

Literature overview

Proschan and Hunsberger (1995)
Introduce conditional error principle

Müller and Schäfer (2001, 2004)
Introduce natural conditional error function

Timmesfeld et al. (2007)

Construct a test after sample-size increase in t-test based on the natural conditional error function

Review of the conditional error principle

Sample-size modification for the z-test

Extend conditional error principle to nuisance parameters

Sample-size modification for Fisher's exact test (randomized)

Optimally apply conditional error principle with discrete data

Sample-size modification for Fisher's exact test (non-randomized)

Normally distributed observations with mean μ and variance 1

Point hypothesis $\mu = 0$ against alternative $\mu > 0$

Data-dependent selection of sample size during an interim analysis by an unknown adaptation rule

⊢ → Sample size
Interim analysis

Normally distributed observations with mean μ and variance 1

Point hypothesis $\mu = 0$ against alternative $\mu > 0$

Normally distributed observations with mean μ and variance 1

Point hypothesis $\mu=0$ against alternative $\mu>0$

Normally distributed observations with mean μ and variance 1

Point hypothesis $\mu=0$ against alternative $\mu>0$

In treatment: Observations with success probability θ_t In control: Observations with success probability θ_c

Point hypothesis $\theta_t = \theta_c$ against alternative $\theta_t > \theta_c$

Data-dependent selection of sample size during an interim analysis by an unknown adaptation rule

⊢ → Sample size
Interim analysis

In treatment: Observations with success probability θ_t In control: Observations with success probability θ_c

Point hypothesis $\theta_t = \theta_c$ against alternative $\theta_t > \theta_c$

In treatment: Observations with success probability θ_t In control: Observations with success probability θ_c

Point hypothesis $\theta_t = \theta_c$ against alternative $\theta_t > \theta_c$

In treatment: Observations with success probability θ_t In control: Observations with success probability θ_c

Point hypothesis $\theta_t = \theta_c$ against alternative $\theta_t > \theta_c$

Review of the conditional error principle

Sample-size modification for the z-test

Extend conditional error principle to nuisance parameters
Sample-size modification for Fisher's exact test (randomized)

Optimally apply conditional error principle with discrete data Sample-size modification for Fisher's exact test (non-randomized)

Setup for sample-size modification with the *z*-test

Observations normally distributed with mean μ

Test
$$\mu = 0$$
 against $\mu > 0$

Setup for sample-size modification with the *z*-test

Observations normally distributed with mean μ

Test $\mu = 0$ against $\mu > 0$

Setup for sample-size modification with the *z*-test

Observations normally distributed with mean μ

Test $\mu = 0$ against $\mu > 0$

First stage Fixed sample size m

First-stage z-statistic X

Second stage

Data-dependent size n = N(X)

Second-stage z-statistic Y_n

Interim analysis

Naive approach

Standard z-test of level α for predefined sample size m + n

Reject if $Z > \Phi^{-1}(1 - \alpha)$ with overall *z*-statistic

$$Z = \sqrt{\frac{m}{m+n}} X + \sqrt{\frac{n}{m+n}} Y_n.$$

With data-dependent sample size n = N(X), serious error inflation possible:

- If X is small, choose n large.
- If X is large, choose n small.

Worst case (Proschan and Hunsberger, 1995): Nominal level $\alpha = 5$ %, but actual error 11.5 %

Approach that ensures error control

- We want a test $\varphi(X, N, Y_N)$ so that $E_0[\varphi] = \alpha$.
- We do not know the adaptation rule N(X).

Conditional error principle (Proschan and Hunsberger, 1995)

- 1. Predefine a [0, 1]-valued statistic A of X so that $E_0[A(X)] = \alpha$
- 2. For each n, set $\varphi(X, n, Y_n) = \mathbb{1}\{Y_n > \Phi^{-1}(1 A(X))\}$ so that

$$E_0[\phi | X = x] = A(x)$$
 for a.e. x

Conditional error principle

Two examples of conditional error functions

Circular conditional error function

$$A(x) = \begin{cases} 1 - \Phi(c) & \text{for } x \leqslant 0 \\ 1 - \Phi\left(\sqrt{c^2 - x^2}\right) & \text{for } 0 < x \leqslant c \\ 1 & \text{for } c < x \end{cases}$$

Linear conditional error function (Parameter b > 0)

$$A(x) = 1 - \Phi(c - bx)$$
 for $x \in \mathbb{R}$

Choose the constant c so that $\int Ad\Phi = \alpha$.

Conditional error principle with preplanned test

- Preplanned second-stage sample size n_{*}
- Standard z-test φ_* for preplanned sample size $\mathfrak{m} + \mathfrak{n}_*$
- Use error rates of φ_* as conditional error function
- If no modification necessary $(N = n_*)$, we can use ϕ_* , since $E_0[\phi_* | X = x] = A(x)$ for a.e. x
- Attractive: Small change ⇒ Test similar to preplanned test!

Natural conditional error function (Müller and Schäfer, 2001)

$$A(x) = 1 - \Phi\left(\sqrt{1 + (m/n_*)}\Phi^{-1}(1 - \alpha) - \sqrt{(m/n_*)}x\right)$$

Review of the conditional error principle Sample-size modification for the z-test

Extend conditional error principle to nuisance parameters

Sample-size modification for Fisher's exact test (randomized)

Optimally apply conditional error principle with discrete data Sample-size modification for Fisher's exact test (non-randomized)

Success probabilities θ_t in treatment and θ_c in control

Test for $\theta_t = \theta_c$ against $\theta_t > \theta_c$

Problem of comparing two binomial distributions!

First stage

Fixed sample size m

 $X_t =$ successes in treatment

 $X_{+} = successes$ in both groups

Second stage

Data-dependent size n = N(X)

 $Y_{t,n}$ = successes in treatment

 $Y_{+,n}$ = successes in both groups

Interim analysis

Notation

- Main parameter $\psi = (\theta_t/(1-\theta_t))/(\theta_c/(1-\theta_c))$
- Nuisance parameter $\lambda = (\theta_t + \theta_c)/2$
- Point hypothesis $\psi = 1$ against one-sided alternative $\psi > 1$
- Versions P_{λ}^{x} of the conditional distribution given X=x for parameter value λ under hypothesis $\psi=1$
- Versions E^x_λ of the conditional expectation generated by P^x_λ

Conditional error principle

Bad idea

Choose a conditional error function A of X.

Try to construct a test ϕ with

$$E_{\lambda}^{x}[\phi] \leqslant A(x)$$
 for all λ and all x

Problem: Usually, the only test that remains is the test $\phi \equiv 0$.

Good idea (Müller and Schäfer, 2004)

Prespecify a family A_{λ} , indexed by λ , of conditional error functions and select the test ϕ so that

$$E_{\lambda}^{x}[\phi] \leqslant A_{\lambda}(x)$$
 for all λ and all x

Which family of conditional error functions?

Natural conditional error functions

Preplan a Fisher's exact test of level α test ϕ_* with fixed design Define

$$A_\lambda(x)=E^x_\lambda[\phi_*]$$

- Use Fisher's exact test as preplanned test φ*
- If no sample-size modification necessary, we can use ϕ_*
- Attractive: Test similar to preplanned test!

Which test decision function?

Simultaneous exhaustion of conditional error:

$$E_{\lambda}^{x}[\varphi] = A_{\lambda}(x)$$
 for all λ and all x . (1)

Possible for sample-size increase in t-test (Timmesfeld et al., 2007)

In general impossible \Rightarrow conservative test:

$$E_{\lambda}^{x}[\varphi] \leqslant A_{\lambda}(x)$$
 for all λ and all x . (2)

For (2), many tests possible. Most of them unattractive (like $\phi \equiv 0$)

Efficient conditional error exhaustion

Select a weight function π over nuisance parameter space.

Optimal test

- The test φ satisfies $E_{\lambda}^{x}[\varphi] \leqslant A_{\lambda}(x)$ for all λ and all x
- For every test ϕ that satisfies $E_{\lambda}^{x}[\phi] \leqslant A_{\lambda}(x)$ for all λ and x

$$\int \mathsf{E}_{\lambda}^{x}[\varphi] d\pi(\lambda) \leqslant \int \mathsf{E}_{\lambda}^{x}[\varphi] d\pi(\lambda) \quad \text{for all } x$$

Note 1: Posterior distribution after first stage sensible choice of π . Note 2: If simultaneous exhaustion possible, this will be solution.

Optimization problem in terms of conditional levels

Fix observed first-stage data x and chosen sample size n.

$$\mathsf{E}_{\lambda}^{x}[\,\phi] = \mathsf{E}_{\lambda}^{x}\big[\,\underbrace{\mathsf{E}^{x}[\,\phi\,|\,Y_{+,\,n} = k\,]}_{\xi(k)}\big]$$

Pointwise (for each x and n), find ξ as solution of:

$$\label{eq:maximize} \begin{array}{ll} \text{maximize} & \int E_{\lambda}^{x}[\xi] \ d\pi(\lambda) \\ \\ \text{subject to} & E_{\lambda}^{x}[\xi] \leqslant A_{\lambda}(x) \quad \text{for all λ} \\ \\ \text{with respect to} & \xi \text{ a } [0,1] \text{-valued statistic of $Y_{+,n}$} \end{array}$$

Simplify notation

Define

- $p_{k\lambda} = P_{\lambda}^{x}[Y_{+,n} = k]$ for all λ and k = 0, ..., 2n.
- $q_k = \int P_{\lambda}^x [Y_{+,n} = k] d\pi(\lambda)$ for $k = 0, \dots, 2n$.
- $r_{\lambda} = A_{\lambda}(x)$ for all λ

Linear semi-infinite program

$$\begin{array}{ll} \text{maximize} & \displaystyle \sum_{k=0}^{2n} q_k \xi_k \\ \\ \text{subject to} & \displaystyle \sum_{k=0}^{2n} p_{k\lambda} \xi_k \leqslant r_\lambda \quad \text{for all } \lambda \\ \\ \text{with respect to} & \displaystyle \xi_k \in [0,1] \quad \text{for } k=0,\dots,2n \end{array}$$

Solving optimization problem

ξ solution of linear semi-infinite program:

- Finite number of unknowns
- Linear objective function
- Infinite number of linear constraints

Accelerated central-cutting plane algorithm Betrò (2004):

- Iteratively constructs a sequence of solutions
- At each step, current solution is conservative
- Solutions come arbitrary close to optimal solution

Review of the conditional error principle Sample-size modification for the z-test

Extend conditional error principle to nuisance parameters Sample-size modification for Fisher's exact test (randomized)

Optimally apply conditional error principle with discrete data Sample-size modification for Fisher's exact test (non-randomized)

From conditional levels to corresponding test

In the last section: After obtaining ξ , choose randomized test

$$\varphi = \mathbb{1}\{Y_{t,n} > C(Y_{+,n})\} + R(Y_{+,n})$$

with critical values C and randomization values R.

If we want a nonrandomized conditional test of the form

$$\varphi = \mathbb{1}\{Y_{t,n} > C(Y_{+,n})\}$$

we must assign levels that can be exhausted without randomization.

This leads to the additional constraints

$$\xi_k \in \Xi_k = \{ P^x[Y_{t,n} > c \,|\, Y_{+,n} = k] : c \in \mathbb{N} \}$$

Nonrandomized test for discrete second-stage data

Nonrandomized test \Rightarrow Constraints $\xi_k \in \Xi_k$

Combinatorial optimization problem

$$\begin{array}{ll} \text{maximize} & \displaystyle \sum_{k=0}^{2n} q_k \xi_k \\ \\ \text{subject to} & \displaystyle \sum_{k=0}^{2n} p_{k\lambda} \xi_k \leqslant r_\lambda \quad \text{for all λ} \\ \\ \text{with respect to} & \displaystyle \xi_k \in \Xi_k \quad \text{for $k=0,\dots,2n$} \end{array}$$

Solve by branch-and-bound with relaxations to randomized tests

Power of resulting test

Summary

Conditional error principle with Fisher's exact test

- Consider only tests that ensure error control
- Exhaust conditional error as efficiently as possible
- Numerically solve the resulting optimization problem