

CONTENTS

Overview

4 UI Design & Project structure

2 Data collection and augmentation

5 Demo

3 Model

6 Q&A

TEAM STRUCTURE

Johannes Wowra
Supervisor

DATA COLLECTION

DATA AUGMENTATION

Jian Jiang

Haoyue Zhu

MODEL TRAINGING

MODEL EVALUATION

Keren Zhou

Ruize Xia

UI IMPLEMENTATION

PROJECT IMPLEMENTATION

Xiaoyan Xue

PROJECT OVERVIEW

- DOGS: MOST POPULAR PETS
- Dogs are the most popular pet in the U.S. (65.1 million U.S. households own a dog)
- Essential dog expenses cost an average of \$1,533 annually.
- 42% of dog owners got their pets from a store, while 38% of dog owners got their pets from an animal shelter or rescue.

Data source: American Pet Products Association

Source: Forbes Advisor • Get the data • Embed

Forbes ADVISOR

PROJECT OVERVIEW

- DOGS BITING: POTENTIAL RISK AROUND YOU
- Every year, an estimated 4.5 million people are bitten by dogs in the United States.
- 15.55% of dog bites were committed by stray dogs rather than pets.

Two people arrested after woman seriously injured in XL Bully attack

'Pitbull' attacks girl in park as father 'prises dog off her head'

HOME NEWS
Baby seriously
injured in dog attack
by family's own pet

Boy, 5, hospitalised after 'Staffordshire Bull Terrier' attack

CDIME

Man and woman taken to hospital after dog attack

HOME NEWS

Man 'seriously injured' after dog attack in Sunderland

PROJECT OVERVIEW

What?

A system that offers a quick and simple classification tool for breeds of the dogs.

Why?

Get the breed information as soon as possible to prevent from the dog attack accidents.

• Whom?

- Dog owners that not sure the breeds of their dogs.
- Anyone who finds a dog nearby and worries about the potential risk of biting.

DATA COLLECTION

Original Dataset: Stanford Dogs Dataset

Images of 120 breeds of dogs from around the world.

Number of categories: 120

~150 images per class

Total images: 20,580

Annotations: Class labels, Bounding boxes

ı		
n02085620-Chihuahua	2024/01/13 10:29	文件夹
n02085782-Japanese_spaniel	2024/01/13 10:29	文件夹
n02085936-Maltese_dog	2024/01/13 10:29	文件夹
n02086079-Pekinese	2024/01/13 10:29	文件夹
n02086240-Shih-Tzu	2024/01/13 10:29	文件夹
n02086646-Blenheim_spaniel	2024/01/13 10:29	文件夹
n02086910-papillon	2024/01/13 10:29	文件夹
n02087046-toy_terrier	2024/01/13 10:29	文件夹
n02087394-Rhodesian_ridgeback	2024/01/13 10:29	文件夹
n02088094-Afghan_hound	2024/01/13 10:29	文件夹
n02088238-basset	2024/01/13 10:29	文件夹
n02088364-beagle	2024/01/13 10:29	文件夹
-		

- Why?

Data augmentation can improve the generalization and robustness of the deep learning model.

- How?

We can apply various transformations to the existing images.

Rotation, Flip, Contrast Adjustment, Color Jittering, Gaussian Noise, Sharpen...

Problem we have:

The dataset contains more than 20,000 images. Processing the images one by one is impossible.

- How can we solve it?

We choose to use Image Batch Processor in MATLAB, which can use the functions to process thousands of images simultaneously.

Functions decided to use:

- Gray
- Reduce the Contrast
- Flip
- Mirror
- Gaussian Noise
- Sharpen

- Augmented dataset:
- 20K*6 = 120K images for training!

Original
Stanford Dogs Dataset
http://vision.stanford.edu/aditya86/ImageNetDogs/

Gray

Reduce the Contrast

Original

Stanford Dogs Dataset http://vision.stanford.edu/aditya86/ImageNetDogs/

Mirror

Flip

TECHNISCHE UNIVERSITÄT DARMSTADT

DATA AUGMENTATION

Original
Stanford Dogs Dataset
http://vision.stanford.edu/aditya86/ImageNetDogs/

Gaussian Noise

Sharpen

Example: Gray function

mgray

n02085620 242 imgray

imgray

n02085620 326 imgray

n02085620 368 n02085620 382 imgray imgray

n02085620 431 imgray

n02085620 473 imgray

n02085620 477 imgray

n02085620 199

imgray

n02085620 500 imgray

n02085620 574 imgray

n02085620 575 _imgray

n02085620 588 _imgray

n02085620 712 imgray

n02085620 730 n02085620 735 _imgray imgray

n02085620 806 imgray

- 20,000 images for more than 1 hour

n02085620 949 imgray

n02085620 952 _imgray

n02085620 107 3_imgray

2_imgray

n02085620 115

n02085620 120 5_imgray

n02085620 155

n02085620 123 5_imgray

n02085620 127 1_imgray

n02085620 129 8_imgray

n02085620 132 1_imgray

n02085620 134 6 imgray

n02085620 145 5_imgray

n02085620 149 2_imgray

2_imgray

n02085620 156 9_imgray

n02085620 161 7_imgray

n02085620 162 0_imgray

n02085620 176 5_imgray

- What is resnet
- Why Resnet50
- 3 Work Flow
- 4 Building a Model
- 5 TRAINING

- 6 Visualizing The Metrics Curves
- **7** Prediction

WHAT IS RESNET

- Short for Residual Networks, is a classical convolutional CNN architecture for deep learning.
- Composed of residual blocks. Each block contains a shortcut connection that skips one or more layers.

WHY RESNET50

- Addressing Gradient Issues
- Deeper Networks
- Alleviating Degradation Issues
- Efficient Model Training
- Transfer Learning
- Widespread Applicability

WORK FLOW

BUILDING A MODEL

- Rescaling Layer
- Pre-trained Model
- Dense Layer
- Adam Optimizer

TRAINING

- We will add 3 Very Important Callbacks for our model
- ModelCheckpoint: This callback saves the model weights after every epoch if the validation loss improves.
- EarlyStopping: This callback stops the training process if the validation loss doesn't improve for a certain number of epochs.
- ReduceLROnPlateu: This callback monitors a quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced.

23

VISUALIZING THE METRICS CURVES

After the cross-validation, we can see......

- Epochs: 30
- Multi-class balanced accuracy: 0.732 (train) / 0.734 (validation)

- Epochs: 30
- Loss function:6.303 (train) / 7.083 (validation)

VISUALIZING THE METRICS CURVES

- Epochs: 30
- Precision: 0.732 (train) / 0.735 (validation)

- Epochs: 30
- AUC(Area under curve):0.888 (train) / 0.887 (validation)

PeadlockTECHNISCHE UNIVERSITÄT DARMSTADT

PREDICTION

Top-5 probabilities index: [97, 73, 72, 2, 1, 44, 99]
Eskimo_dog 0.6243399
groenendael 0.21147579
schipperke 0.114172645
Maltese_dog 0.018629553
Japanese_spaniel 0.012133966
Boston_bull 0.0037243296
Siberian_husky 0.003451676

PeadlockTECHNISCHE UNIVERSITÄT DARMSTADT

PREDICTION

Top-5 probabilities index: [101, 22, 99, 115, 7, 72, 21]
basenji 0.35082543
Ibizan_hound 0.313001
Siberian_husky 0.16691078
standard_poodle 0.14125994
toy_terrier 0.017830562
schipperke 0.0029041918
whippet 0.0026659945

USER INTERFACE & PROJECT IMPLEMENTATION

Xiaoyan Xue

02.02.2024

PROJECT STRUCTURE

TECH STACKS

DATABASE

MYSQL

Breed

Record

Prediction

User

BACK-END

JAVA

Swagger Redis

SpringBoot MyBatis

Python

Tensorflow Numpy

Matplotlib Scikit-learn

FRONT-END

HTML5

CSS3

JavaScript

React

Node

Umi

Ant Design

PeadlockTECHNISCHE UNIVERSITÄT DARMSTADT

PROJECT STRUCTURE

DATA FLOW

PROJECT STRUCTURE DATABASE

Breed Information

Prediction Information

Record Information

record			
Fields			
Field	Туре		
id	int		
name	varchar(30)		
height	varchar(30)		
weight	varchar(30)		
coat	varchar(50)		
colour	varchar(50)		
age	varchar(30)		
image_name	varchar(256)		

PROJECT STRUCTURE

BACKEND

UI DISPLAY FRONTEND

DEMO DISPLAY!

RELATED WORK

Data

- Dataset: More high quality dataset for model training
- Augmentation: Clip object position to have better annotations

Model

- Training: More variety of model such as resnet-152
- Training: More Epochs, different hypermeters research such as MC dropout

Ul

- More user-friendly functionalities: archives, alarms, etc.
- More platforms supported

THANKS FOR WATCHING!

Any questions?

DATA SCIENCE II / TU DARMSTADT

DeadLock

02.02.2024