Disciplina: 5170 - Probabilidade e Estatística

Aula 06

Prof. George Lucas M. Pezzott glmpezzott2@uem.br

Departamento de Estatística - UEM Sala: 222 - Bloco: E-90

Segunda-feira - 19:30 \sim 21:10 - D67 - Sala 108 Sexta-feira - 21:20 \sim 23:00 - D67 - Sala 108

Análise bidimensional

- Em muitos problemas práticos, para compreender melhor a população, as variáveis devem ser analisadas conjuntamente. A análise isolada de cada variável pode não ser suficiente.
- Assim, uma análise bivariada (ou bidimensional) é quando analisamos conjuntamente duas variáveis relacionadas ao mesmo problema.
 - Escolaridade versus Intenção de voto em pesquisas eleitorais;
 - Tempo de Experiência versus Salário de uma empresa.
 - Peso versus Altura em indivíduos;
- A análise bivariada é uma extensão da análise de uma única variável e é também um caso particular da análise multivariada.

Vamos considerar os seguintes casos para uma análise bivariada:

- Variável Qualitativa × Variável Qualitativa.
- Variável Qualitativa × Variável Quantitativa.
- Variável Quantitativa × Variável Quantitativa.

• **Exemplo:** variável *X*: tipo de residência (Própria, Alugada, Outra) e variável *Y*: *status* do proprietário com relação a linhas de créditos (bom ou mau pagador).

V '' 1 ''A''	
X: tipo de residência	Y: Status
Própria	Bom
Própria	Bom
Alugada	Bom
Própria	Mau
Alugada	Mau
Alugada	Bom
Outra	Bom
Alugada	Mau
Outra	Bom
:	:
Própria	Bom
	Própria Própria Alugada Própria Alugada Alugada Outra Alugada Outra

Para cada variável, podemos fazer uma tabela de frequências.

Residência	Frequência	Frequência relativa (%)
Própria	429	21,45
Alugada	1171	58,55
Outro	400	20,00
Total	2000	100,00

Para cada variável, podemos fazer uma tabela de frequências.

Status	Frequência	Frequência relativa (%)
Mau	713	35,65
Bom	1287	64,35
Total	2000	100,00

 Contudo, podemos fazer uma tabela de dupla entrada, conhecida como Tabela de Contingência:

Tabela: Distribuição das frequências cruzadas das variáveis 'tipo de residência' e 'status' de pagador.

	Status		
Residência	Mau	Bom	Total
Própria	165	264	429
Alugada	399	772	1171
Outro	149	251	400
Total	713	1287	2000

- A Tabela de Contingência apresenta a distribuição conjunta das variáveis.
- Nas primeiras linha e coluna são colocadas as respostas das duas variáveis. O corpo da tabela exibe as frequências observadas dos pares de respostas entre os indivíduos;
- A Tabela permite encontrar as distribuições da cada variável, também chamadas de distribuições marginais, que são os totais nas linhas e colunas.

 Para melhor visualização da associação entre as variáveis, podemos calcular as frequências relativas de uma variável em cada resposta da outra variável.

Tabela: Distribuição das frequências relativas condicionais das variáveis 'tipo de residência' e '*status*' de pagador.

	Status		
Residência	Mau	Bom	Total
Própria	165/713	264/1287	429/2000
Alugada	399/713	772/1287	1171/2000
Outro	149/713	251/1287	400/2000
Total	713/713	1287/1287	2000/2000

Tabela: Distribuição das frequências relativas condicionais das variáveis 'tipo de residência' e '*status*' de pagador.

	Sta		
Residência	Mau	Bom	Total
Própria	23,13	20,52	21,45
Alugada	55,96	59,98	58,55
Outro	20,89	19,50	20,00
Total	100,00	100,00	100,00

 Interpretação: Aparentemente, não há associação entre o tipo de residência e o status de bom pagador.

 Por exemplo, observando as frequências relativas em cada resposta de tipo de residência.

Tabela: Distribuição das frequências relativas condicionais das variáveis 'tipo de residência' e '*status*' de pagador.

	Status		
Residência	Mau	Bom	Total
Própria	165/429	264/429	429/429
Alugada	399/1171	399/1171	1171/1171
Outro	149/400	251/400	400/400
Total	713/2000	1287/2000	2000/2000

 Por exemplo, observando as frequências relativas em cada resposta de tipo de residência.

Tabela: Distribuição das frequências relativas condicionais das variáveis 'tipo de residência' e '*status*' de pagador.

	Sta		
Residência	Mau	Bom	Total
Própria	38,46	61,54	100,00
Alugada	34,07	65,93	100,00
Outro	37,25	62,75	100,00
Total	35,65	64,35	100,00

 Interpretação: Aparentemente, não há associação entre o tipo de residência e o status de bom pagador.

Exemplo de possível associação entre as variáveis
Tabela: Distribuição das frequências relativas condicionais das variáveis 'tipo de residência' e 'status' de pagador.

	Sta		
Residência	Mau	Bom	Total
Própria	7,46	92,54	100,00
Alugada	10,07	89,93	100,00
Outro	60,25	39,75	100,00
Total	35,65	64,35	100,00

 Interpretação: Aparentemente, há associação entre o tipo de residência e o status de bom pagador, pois dependendo do tipo de residência do indivíduo, há certa tendência na resposta de seu status.

- Quando as duas variáveis a serem analisadas são de natureza diferente e uma delas é quantitativa e a outra qualitativa.
- Exemplo: X: Escolaridade e Y: Salário na empresa.

Indivíduo	Escolaridade	Salário(R\$)
1	Ens. Médio	1212,34
2	Ens. Médio	1511,45
3	Ens. Fundamental	998,32
4	Ens. Superior	4500,00
5	Pós-graduação	6133,90
6	Ens. Superior	3999,01
•	:	:
:	:	:
100	Ens. Médio	1914,20

- Quando as duas variáveis a serem analisadas são de natureza diferente e uma delas é quantitativa e a outra qualitativa.
- Tabela: Estatísticas descritivas para a variável Y: Salário na empresa separadas por X: Escolaridade.

	Ens. Fund.	Ens. Médio	Ens. Sup.	Pós-grad.
n	10.00	50.00	30.00	20.00
\bar{X}	976.74	2497.46	4538.68	5935.91
Md	970.54	2539.98	4513.38	5970.70
s	78.72	195.28	314.75	528.02
CV(100%)	8.06%	7,82 %	6.93%	8.90%
Min	848.57	1965.32	3783.63	4874.26
Max	1127.29	2905.25	5023.72	6890.46
Amplitude	278.72	939.93	1240.10	2016.20
Q_1	928.07	2335.89	4310.86	5663.84
Q_3	1009.75	2636.01	4830.55	6252.08
d_Q	81.68	300.12	519.69	588.24

Figura: Box-plot dos salários versus Escolaridade.

Figura: Box-plot dos salarios

- Quando as duas variáveis a serem analisadas são de mesma natureza sendo ambas quantitativas, podemos estar interessados em analisar o grau de "correlação" entre elas.
- Numa população de pessoas, podemos dizer que as variáveis peso e altura são correlacionadas positivamente, pois a maioria dos indivíduos altos também é pesada, enquanto a maioria dos indivíduos baixos é leve.
- De forma análoga, o faturamento de uma empresa e o nível de utilização do seu sistema computacional devem ter correlação positiva.
- Já a quantidade de memória RAM e o tempo de Processamento devem ter correlação negativa;

Coeficiente de Correlação

- Dizemos que duas variáveis, X e Y, estão positivamente correlacionadas quando elas caminham num mesmo sentido, ou seja, elementos com valores pequenos de X tendem a ter valores pequenos de Y e elementos com valores grandes de X tendem a ter valores grandes de Y.
- Por outro lado, elas estão negativamente correlacionadas quando elas caminham em sentidos opostos, ou seja, elementos com valores de X pequenos tendem a ter valores grandes de Y e elementos com valores grandes de X tendem a ter valores pequenos de Y.

- Uma forma de visualizarmos se duas variáveis apresentam-se correlacionadas é através de um diagrama de dispersão
- No diagrama de dispersão, os valores das variáveis são representados por pontos, num sistema cartesiano.
- Cada ponto é o par (x, y) de cada observação na amostra referentes às variáveis X e Y.
- Segue um exemplo.

Análise Bivariada

Tabela: Volume de vendas (Y) na última semana *versus* anos de experiência (X) de 10 vendedores da loja A.

Vendedor	Volume de Vendas	Anos de experiência
1	9	6
2	6	5
3	4	3
4	3	1
5	3	4
6	5	3
7	8	6
8	2	2
9	7	4
10	4	2

Figura: Diagrama de dispersão dos anos de experiência *versus* o volume em vendas.

Anos de experiência

5

3

2

Correlação

- Será que quanto mais anos de experiência maior será o volumes em vendas?
- O coeficiente de correlação é uma medida numérica da "força" e "direção" da relação (ou associação) entre duas variáveis quantitativas contínuas.

A **covariância**, Cov(X, Y), entre duas variáveis quantitativas contínuas é uma medida do quanto uma das variáveis se modifica quando a outra se modifica.

• A covariância Cov(X, Y) pode ser estimada a partir dos dados $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$ por:

$$cov_{X,Y} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}.$$

em que \overline{x} e \overline{y} são as respectivas médias dos dados.

- Se a covariância é igual a zero, entendemos que, conforme as observações de uma das variáveis crescem, as observações da outra variável não tendem a crescer ou decrescer, ou seja, não há uma relação linear entre as duas variáveis.
- Se a covariância é maior que zero, entendemos que, conforme as observações de uma das variáveis crescem, as observações da outra variável tendem a crescer também.
- Se a covariância é menor que zero, entendemos que, conforme as observações de uma das variáveis crescem, as observações da outra variável tendem a decrescer.

- As variáveis X e Y são expressas em diferentes unidades de medida. A experiência é expressa em anos, e as vendas é em produtos (carros, casas,...).
- No entanto, podemos calcular a covariância e os coeficientes de correlação entre variáveis com unidades de medida diferentes.

Tabela: Valores para o cálculo da covariância.

i	Xi	$(x_i - \bar{x})$	y i	$(y_i - \bar{y})$	$(x_i-\bar{x})(y_i-\bar{y})$
1	6	(6-3,6)=2.40	9	(9-5.1)=3.90	9.36
2	5	(5-3,6)=1.40	6	(6-5.1)=0.90	1.26
3	3	(3-3,6)=-0.60	4	(4-5.1) = -1.10	0.66
4	1	(1-3,6)=-2.60	3	(3-5.1) = -2.10	5.46
5	4	(4-3,6)=0.40	3	(3-5.1) = -2.10	-0.84
6	3	(3-3,6) = -0.60	5	(5-5.1) = -0.10	0.06
7	6	(6-3,6)=2.40	8	(8-5.1) = 2.90	6.96
8	2	(2-3,6)=-1.60	2	(2-5.1) = -3.10	4.96
9	4	(4-3,6)=0.40	7	(7-5.1)=1.90	0.76
10	2	(2-3,6)=-1.60	4	(4-5.1) = -1.10	1.76
-		$\bar{x} = 3,6$		$\bar{y} = 5, 1$	Total = 30,4

A covariância entre X e Y é dada por:

$$Cov(X, Y) = \frac{\sum_{i=1}^{10} (x_i - 3, 6)(y_i - 5, 1)}{10 - 1} = 3,377778$$

- Como a covariância é maior do que zero, entendemos que pessoas com mais anos de experiência tendem a vender mais produtos.
- Como interpretamos a magnitude da covariância? Ou seja, esse valor obtido, 3,377778, pode nos indicar o "tamanho"da associação entre essas variáveis?

 Uma medida de relação linear entre as variáveis quantitativas pode ser calculada com o coeficiente de correlação de Pearson.

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}},$$

- em que Cov(X, Y) representa a covariância entre as variáveis quantitativas X e Y; e os termos Var(X) e Var(Y) são as respectivas variâncias.
- Essa quantidade $\rho_{X,Y}$ sempre assume valores entre -1 e 1, sua interpretação como medida de associação é simples.

29 / 36

- Valores de $\rho_{X,Y}$ iguais a zero evidenciam que não há associação entre as variáveis X e Y.
- Valores próximo de zero (sejam eles negativos ou positivos) indicam uma associação muito fraca entre as variáveis.
- Valores de ρ_{X,Y} próximos a -1 ou 1 indicam uma associação forte entre X e Y.

Tabela: Interpretação do coeficiente de correlação segundo Zou et al. (2003)

$\rho_{X,Y}$	Direção e força da associação						
-1,0	Perfeita e negativa						
-0,8	Forte e negativa						
-0,5	Moderada e negativa						
-0,2	Fraca e negativa						
0	Ausência de associação						
0,2	Fraca e positiva						
0,5	Moderada e positiva						
0,8	Forte e positiva						
1,0	Perfeita e positiva						

- Coeficientes maiores que zero indicam correlação positiva (quanto maior X, maior Y).
- Coeficientes menores que zero indicam correlação negativa (quanto maior X, menor Y).

No exemplo da idade e níveis de triglicérides:

- O desvio padrão das experiência é $s_x = 1,712698$ anos.
- O desvio padrão das vendas é $s_Y = 2,330951$ produtos. O coeficiente de correlação entre essas variáveis é:

$$\rho_{X,Y} = \frac{3,377778}{1,712698 \times 2,33095} = 0,8460915$$

 A partir da medida de correlação de Pearson, os dados evidenciam uma forte e positiva associação entre os anos de experiência e os volumes em vendas dos vendedores.

Análise Bivariada

Cuidado!

Correlação não implica causalidade.

Exemplos: http://www.tylervigen.com/spurious-correlations

Correlação: 0,9471

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

Correlação: 0,66604

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

- Outros análises podem ser realizadas para medir associação entre duas variáveis quantitativas. Por exemplo, uma tabela de contingência pode ser construída considerando a construção de classes.
- Exemplo: Anos de experiência e salário (R\$) de funcionários de um banco.

		Salário (R\$)			
Tempo (anos)	800 -1000	1000 -2000	2000 - 40000	≥ 4000	Total
1 - 5	10	8	2	0	20
5 - 8	0	6	4	1	11
8 –12	0	3	5	8	16
≥ 12	0	3	6	8	17
Total	Total 10		17	17	64