## Question 1

Let A be a nonsingular  $n \times n$  matrix with real entries and  $\overrightarrow{\mathbf{b}} \in \mathbb{R}^n$ .

Given a real-valued, nonsingular  $n \times n$  matrix and their singular value decomposition (SVD)  $A = P\Sigma Q^{\top}$ , the system  $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$  can be written as:

$$A\vec{\mathbf{x}} = \vec{\mathbf{b}} \iff (P\Sigma Q^{\top})\vec{\mathbf{x}} = \vec{\mathbf{b}}$$

$$\iff \vec{\mathbf{x}} = (P\Sigma Q^{\top})^{-1}\vec{\mathbf{b}}$$

$$\vec{\mathbf{x}} = (Q^{\top})^{-1}\Sigma^{-1}P^{-1}\vec{\mathbf{b}}$$

Note that since A is a real nonsingular matrix, the matrices  $P = \begin{pmatrix} | & | & | \\ \vec{\mathbf{p}}_1 & \cdots & \vec{\mathbf{p}}_n \\ | & | \end{pmatrix}$  and

$$Q = \begin{pmatrix} | & | & | \\ | & | & | \\ | & | & | \end{pmatrix}$$
 are orthogonal. Thus,  $Q^{T}Q = QQ^{T} = I \iff Q^{T} = Q^{-1}$  and  $P^{T}P = PP^{T} = I \iff P^{T} = P^{-1}$ . As such, the system can be represented as

$$\vec{\mathbf{x}} = Q \Sigma^{-1} P^{\top} \vec{\mathbf{b}}.$$

Here, we're basically solving for  $\vec{\mathbf{x}}$  by computing the inverse of A with its SVD. Thus, it is crucial that A is nonsigular. Otherwise, A would be invertible. Additionally, note that the solution requires us to compute the inverse of  $\Sigma$ , which we note  $\Sigma^{-1} = \operatorname{diag}(1/\sigma_1, \ldots, 1/\sigma_n)$ . This means that all singular values of A,  $\sigma_1, \ldots, \sigma_n$  must be all positive. If A is singular, then its determinant is zero, which means zero is a singular value of A, and thus  $\Sigma$  would also be invertible.

## Question 2

From Question 1, we solved the system  $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$  by substituting the SVD of A and computing its inverse. Where  $A = P\Sigma Q^{\top}$  is the SVD of A, the resulting expression is  $\vec{\mathbf{x}} = Q\Sigma^{-1}P^{\top}\vec{\mathbf{b}}$ . Thus,  $A^{-1} = Q\Sigma^{-1}P^{\top}$  and as demonstrated in the previous question, the singular value of  $A^{-1}$  is simply the reciprocal of the singular values of A.

## Question 5

Refer to Section %% Question 5 in the math425hw7.m file for the relevant code.