MAS205 Complex Variables 2004-2005

Exercises 1

Exercise 1: Let $z_1 = 2 + i$ and $z_2 = 3 - 2i$. Compute (in standard x + iy form):

$$(a)$$
 z_1z_2

$$(b) \quad \frac{1}{z_1}$$

$$(c) \quad \frac{z_2}{z_1}$$

(a)
$$z_1 z_2$$
 (b) $\frac{1}{z_1}$ (c) $\frac{z_2}{z_1}$ (d) $\frac{1}{z_1} + \frac{1}{z_2}$

Compute the moduli:

$$(a)$$
 $|z_1|$

$$(b) \quad \left| \frac{z_1}{z_2} \right|$$

(a)
$$|z_1|$$
 (b) $\left|\frac{z_1}{z_2}\right|$ (c) $|z_1z_2|$

Exercise 2: Express the following complex numbers in polar exponential form:

$$(b) - 2i$$

$$(c) 1 - i$$

$$(d)$$
 $\sqrt{3}-d$

(a) 1 (b)
$$-2i$$
 (c) $1-i$ (d) $\sqrt{3}-i$ (e) $(1+i)^2$

Exercise 3: Solve for the roots of the following equations:

(a)
$$z^3 + 8 = 0$$

(c)
$$(z+1)^4 - 1 = 0$$

Express all the roots in standard and polar form, and draw diagrams showing their location in the complex plane.

Exercise 4: Describe graphically the sets of points in the complex plane defined by the following equations and inequalities:

(a)
$$|z - 3 - 2i| < 3$$

(b)
$$\Im(z^3) = 0$$

(c)
$$1 \le \Re(z+i) < 2$$

(d)
$$z^2 = -4$$

Notation: $\Re(z)$ and $\Im(z)$ denote the real and imaginary parts of z, respectively.