Міністерство освіти і науки України Національний університет «Львівська політехніка» Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

3BIT

Про виконання лабораторної роботи № 8 «НАБЛИЖЕННЯ ДИСКРЕТНИХ (ТАБЛИЧНО ЗАДАНИХ) ФУНКЦІЙ» з дисципліни «Чисельні методи»

доцент кафедри ПЗ

Мельник Н.Б.

Виконав:

студ. групи ПЗ-15

Бабіля О.О.

Прийняв:

асистент кафедри ПЗ

Гарматій Г.Ю.

«___» ____ 2022 p.

Σ = _____

Мета: ознайомитися з методом інтерполяції таблично заданих функцій.

Теоретичні відомості:

Найпростіша задача інтерполяції полягає в тому, що на відрізку [a,b] задано (n+1) точок $x_0, x_1, ..., x_n$, які називають вузлами інтерполяції, і значення деякої функції у цих точках

$$f(x_0) = y_0, \quad f(x_1) = y_1, \quad ..., \quad f(x_n) = y_n.$$

Необхідно побудувати інтерполяційну функцію F(x), яка приймає у вузлах інтерполяції ті самі значення, що й функція f(x). Тобто треба знайти таку функцію F(x), щоб

$$F(x_0) = y_0, F(x_1) = y_1, ..., F(x_n) = y_n.$$

Геометрично це означає, що треба знайти криву y = F(x) певного типу, яка проходить через задану систему точок.

Зауважимо, що через задану множину точок можна провести безліч гладких кривих. Тому задача інтерполяції є неоднозначною. Вона стає однозначною тоді, коли за інтерполяційну функцію вибрати поліном $P_n(x)$ по степеня, де степінь полінома на одиницю менший від к-ті вузлів інтерполяції, і такий, що виконуються умови

$$P_n(x_0) = y_0, P_n(x_1) = y_1, \dots, P_n(x_n) = y_n.$$

Інтерполяційний поліном Лагранжа

Один з методів знаходження інтерполяційного полінома запропонував Лагранж. Основна ідея цього методу полягає в пошуку полінома, який в одному довільному вузлі інтерполяції приймає значення один, а в усіх інших вузлах — нуль.

Наближену функцію у = F(x) розглянемо у вигляді

$$F(x) = L_n(x) = \sum_{i=0}^n P_i(x) f(x_i),$$

де $P_i(x)$ - такий многочлен, що

$$P_{i}(x_{j}) = \begin{cases} 0, & i \neq j, \\ 1, & i = j, \end{cases} \qquad i, j = \overline{0, n}.$$

Оскільки точки $x_0, x_1, ..., x_n$ є коренями полінома, то його можна записати у такому вигляді

$$P_i(x) = \frac{(x - x_0)(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)},$$

а наближена функція F(x), яку називають інтерполяційним многочленом Лагранжа, матиме вигляд

$$F(x) = L_n(x) = \sum_{i=0}^n \frac{(x - x_0)(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)} f(x_i)$$

Для запису інтерполяційного полінома Лагранжа зручно використовувати таблицю:

		D_i	<i>y</i> ₁			
$x-x_0$	$x_0 - x_1$	$x_0 - x_2$	***	$x_0 - x_n$	D_0	<i>y</i> ₀
$x_1 - x_0$	$x-x_1$	$x_1 - x_2$		$x_1 - x_n$	D_1	y_1
$x_2 - x_0$	$x_2 - x_1$	$x-x_2$		$x_2 - x_n$	D_2	<i>y</i> ₂
***	•••					
$x_n - x_0$	$x_n - x_1$	$x_n - x_2$	•••	$x-x_n$	D_n	y_n

Тут D_i – добуток елементів і –го рядка, $\Pi_{n+1}(x)$ – добуток елементів головної діагоналі.

Тоді поліном Лагранжа можна записати у вигляді

$$L_n(x) = \Pi_{n+1}(x) \sum_{i=0}^n \frac{y_i}{D_i}$$
.

У випадку рівновіддалених вузлів вираз набуде форми

$$L_n(x) = \frac{1}{n!} \Pi_{n+1}(t) \sum_{i=0}^{n} (-1)^{n-i} \frac{C_n^i}{t-i} y_i,$$

де t – крок інтерполяції.

Інтерполяційний поліном Ньютона

Інший спосіб розв'язування задачі інтерполяції запропонував Ньютон. Цей спосіб полягає в тому, що поліном $P_n(x)$ для загального випадку нерівновіддалених вузлів записують у вигляді

$$P_n(x) = f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1) + \dots + f(x_0, x_1, \dots, x_n)(x - x_0)(x - x_1) \dots (x - x_{n-1}),$$

$$f(x_0,x_1)=rac{f(x_1)-f(x_0)}{x_1-x_0}$$
 — розділена різниця 1-го порядку,
$$f(x_0,x_1,x_2)=rac{f(x_1,x_2)-f(x_0,x_1)}{x_2-x_0}$$
 — розділена різниця 2-го порядку,
$$f(x_0,x_1,\dots,x_n)=rac{f(x_1,\dots,x_n)-f(x_0,\dots,x_{n-1})}{x_n-x_0}$$
 — розділена різниця n-го порядку.

Для випадку рівновіддалених вузлів маємо вираз

$$P_n(x) = f(x_0) + \frac{\Delta f(x_0)}{1!h}(x - x_0) + \frac{\Delta^2 f(x_0)}{2!h^2}(x - x_0)(x - x_1) + \dots + \frac{\Delta^n f(x_0)}{n!h^n}(x - x_0)(x - x_1)\dots(x - x_{n-1}).$$

де $\Delta f(x_0)$ – скінченна різниця першого порядку і обчислюється наступним чином

$$\Delta f(x_i) = f(x_{i+1}) - f(x_i).$$

Для обчислення скінченної різниці другого порядку використовуємо скінченні різниці першого порядку

$$\Delta^2 f(x_i) = \Delta(\Delta f(x_i)) = \Delta f(x_{i+1}) - \Delta f(x_i).$$

Аналогічно запишемо скінченну різницю n -го порядку

$$\Delta^{n} f(x_{i}) = \Delta(\Delta^{n-1} f(x_{i})) = \Delta^{n-1} f(x_{i+1}) - \Delta^{n-1} f(x_{i})$$

Індивідуальне завдання

Використовуючи інтерполяційні поліноми Лагранжа та Ньютона, обчислити значення табличної заданої функції у точці x_0 .

						,	,	,	,	1,460
y 0,88 0,889 0,890 0,891 0,892 0,893 0,894 0,894	<i>y</i> (0,88 0,889	0,890	0,891	0,892	0,893	0,894	0,895	0,896	0,897

$$x_0 = 1,4161$$

Хід роботи:

Поліном Лагранжа

		= = 3m4=		
X 1,415 1,420	1,425 1,430	1,435 1,440	1,445 1,450 1,4	55 1,460
9 0 88 0 883	0830 0831	0.892 0.893	0894 0895 08	196 O897
	raway po	reaging go	zwogrew	a improventus
In (7) = 200	li Olgi,	Olarbou	morale 10,	mo n29
Znatigeno loc				
	1,420) 1 E1,4			-1,435) · X-1,440 :
CX-1,445	. 4-1,450	21 . 66 -	1,455) · 6×	-10160)
	nompi Suo		man oru cieu	
morare, ma	varieu z	li 4/ 9	geellonscerry	wa gi
The roso	gu zuo	Rognew	nonnous	nou nompiono
gogomn work	un rea.	uic coor	0.	,

Поліном Нютона

X HA15 1420 1425 1430 1,435 1,440 1,445 1,450 1,455 1,460
8 088 085 0850 0891 0892 0893 0,894 0,895 0896 089F
Ovinson legar pibroliggorani 6-0,005, mo
Januareno popus inneprocegning soprages Varmono
go plan beganna byjub
Pa(x) = f(x0) + D(x0) = 9 + + D) (x0/9/9-1). (9-0+4)
9= 20 1!6
Buangeno nepun gli convienni pizay
A ((× 1) - 6 (× 5) - 0, 3 5 - 3 6 5 - 2 0 0 9
DE COOL DO COOL DE COO
15° h(xd) - 0,001 - 0,0030,008
Doni vou nomp Suo ocurrente in que consceren pizan
i nigemobinin re y populay.

Код програми:

```
void methodLagrange (double x0, double X[10], double Y[10]) {
    if (x0 == 0) return;
    if (is(X) == false) {
        return;
    }
    printf("\n
                           Lagrangemethod:\n");
    double Q, deltaY[9][9], H = X[1] - X[0];
    for (int i = 0; i < 9; i++)
        for (int k = 0; k < 9; k++)
            if (k != 0)
                deltaY[i][k] = 0;
            else
                deltaY[i][0] = Y[i + 1] - Y[i];
    for (int i = 1; i < 9; i++)
        for (int k = 0; k < 9 - i; k++)
            deltaY[k][i] = deltaY[k + 1][i - 1] - deltaY[k][i - 1];
    for (int i = 0; i < 10; i++)
        double d = 1;
        for (int j = 0; j < 10; j++)
        {
            if (i == j) {
                printf("%+2.31f ", x0 - X[j]);
                d = d * (x0 - X[j]);
            }
            else {
                printf("%+2.31f ", X[i] - X[j]);
                d = d * (X[i] - X[j]);
        cout << d;</pre>
        printf("\t%5.21f \n", Y[i]);
    }
    double QRes = 1, factorial = 1, res = Y[0];
    Q = (x0 - X[0]) / H;
    for (int i = 0; i < 9; i++) {
        factorial *= i + 1;
        QRes *= (Q - i);
        res += (QRes * deltaY[0][i]) / factorial;
    printf("\ny = %f\n", res);
double newtone(const double x, const double h, const double* y, const int n, const double z)
       //метод Ньютона для рівновіддалених значень
{
       double** dy = (double**)malloc(n * sizeof(double*));
       for (int i = 0; i < n; ++i)</pre>
              dy[i] = (double*)malloc(n * sizeof(double));
       for (int i = 0; i < n; ++i)
              dy[0][i] = y[i];
       for (int i = 1; i < n; ++i)
              for (int j = 0; j < n; ++j)
                     if (j > (n - i - 1))
                            dy[i][j] = 0;
                     else
```

```
dy[i][j] = dy[i - 1][j + 1] - dy[i - 1][j];
printf(" x
                   y");
for (int i = 1; i < n; ++i)
       printf("
                    D%dy", i);
puts("\n");
for (int i = 0; i < n; ++i)</pre>
{
       printf("%5.31f", x + i * h);
       for (int j = 0; j < n; ++j)
              if (dy[j][i] == 0)
                     break;
              else
                     printf("%10.6lf", dy[j][i]);
       puts("");
}
double ser = 0;
for (int i = 0; i < n; ++i)</pre>
       ser += (x + i * h);
ser /= n;
long long f = 1;
double q, k, res = 0;
if (z < ser)
       q = (z - x) / h;
       for (int i = 0; i < n; ++i)
       {
              if (i != 0)
                     f *= i;
              if (i == 0)
                     k = 1;
              else if (i == 1)
                     k = q;
              else
                     k *= q - i + 1;
              res += (dy[i][0] * k) / f;
       }
}
else
{
       for (int i = 0; i < n; ++i)</pre>
       {
              q = (z - (x + (n - 1) * h)) / h;
              if (i != 0)
                     f *= i;
              if (i == 0)
                     k = 1;
              else if (i == 1)
                     k = q;
              else
                     k *= q + i - 1;
              res += (dy[i][n - i - 1] * k) / f;
       }
for (int i = 0; i < n; ++i)
       free(dy[i]);
free(dy);
return res;
                                         }
```

Вигляд виконаної програми

				27111 (1717)	Zimonu	nor nporp				
Lagra	nge metho	od:								
					P(x0)				D[i]	Y[i]
1 +0	.001 -0.6	05 -0.010	-0.015	-0.020 -	0.025 -0.	030 -0.035	-0.040	-0.045 -	-7.79625e-19	0.88
2 +0	.005 -0.6	04 -0.005	-0.010	-0.015 -	0.020 -0.	025 -0.030	-0.035	-0.040 -	-3.07125e-19	0.89
3 +0	.010 +0.6	0.009	-0.005	-0.010 -	0.015 -0.	020 -0.025	-0.030	-0.035 1	1.75219e-19	0.89
4 +0	.015 +0.6	10 +0.005	-0.014	-0.005 -	0.010 -0.	015 -0.020	-0.025	-0.030 -	-1.17281e-19	0.89
5 +0	.020 +0.0	15 +0.010	+0.005	-0.019 -	0.005 -0.	010 -0.015	-0.020	-0.025 1	1.06313e-19	0.89
6 +0	.025 +0.0	20 +0.015	+0.010	+0.005 -	0.024 -0.	005 -0.010	-0.015	-0.020 -	-1.34438e-19	0.89
7 +0	.030 +0.0	25 +0.020	+0.015	+0.010 +	0.005 -0.	029 -0.005	-0.010	-0.015 2	2.43844e-19	0.89
8 +0	.035 +0.0	30 +0.025	+0.020	+0.015 +	0.010 +0.	005 -0.034	-0.005	-0.010 -	-6.67406e-19	0.90
9 +0	.040 +0.0	35 +0.030	+0.025	+0.020 +	0.015 +0.	010 +0.005	-0.039	-0.005	3.06338e-18	0.90
10 +0	.045 +0.0	40 +0.035	+0.030	+0.025 +	0.020 +0.	015 +0.010	+0.005	-0.044 -	-3.11141e-17	0.90
y = 0	.884104									
Newton	`s method									
X	У	D1y	D2y	D3y	D4y	D5y	D6y	D7y	D8y	D9y
1.415	0.880000	0.009000	0.00000	0.00000	0 -0.00800	0 000000	0.00000		00 -0.008000	0.008000
1.415	0.889000	0.001000	000800.0-			0.008000		9 6.66866 9	0 0 0	0.008000
1.425	0.890000	0.001000	ő			9 9	(3	0	
1.430	0.891000	0.001000	0		0	0 0	(9		
1.435	0.892000	0.001000	0		0	9 9				
1.440	0.893000	0.001000	9		_	9				
1.445	0.894000	0.001000	0		9					
1.450	0.895000	0.001000	0							
1.455 1.460	0.896000 0.897000	0.001000								
1.400	0.057000									
	y = 0.88	34104								
	_	•				•			•	

Висновки:

На даній лабораторній роботі ознайомився з методом інтерполяції таблично заданих функцій.. Розв'язав завдання, згідно до індивідуального варіанту:

x	1,415	1,420	1,425	1,430	1,435	1,440	1,445	1,450	1,455	1,460
у	0,88	0,889	0,890	0,891	0,892	0,893	0,894	0,895	0,896	0,897

$$x_0 = 1,4161$$

Також за допомогою знайдених поліномів , знайшов значення в точці x_0 , отримав y_0 =0.884104, в обох методах