

[SEQUENCE LISTING]

<110>	Genomine, Inc. POSTECH FOUNDATION	
<120>	Novel phytochrome-interacting protein and a use thereof	
<130>	OP05-1002	
<150>	KR 10-2004-0013663	
<151>	2004-02-27	
<160>	15	
<170>	Kopatentin 1.71	
<210>	1	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	1	
ggatccaa	aat gtcaggctct aggccgact	2
<210>	2	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	PCR primer	
<400>	2	
ctcgagcta	tac ttgtttgctg cagcgagttc	30
<210>	3	
<211>	1455	
<212>	DNA	
<213>	Arabidopsis thaliana	

<400> 3 atggagacca agaatgagaa ttctgatgtt tcacgggcag aggagtttaa aagtcaggcc 60 120 aacgaagctt ttaaaggtca caaatactcc agtgctattg atctatatac aaaagctatt gaactcaaca gcaacaacgc tgtgtattgg gcaaatcgtg catttgctca cacaaaactg 180 gaggaatatg gcagtgcaat acaggatgca tcgaaggcca ttgaagttga ttcaagatac 240 tctaagggct attacaggcg tggtgctgcg tatcttgcca tgggaaaatt taaggatgcc 300 ttgaaggact tccaacaggt aaaaaggett tctcctaatg accetgatge cacaagaaag 360 ctaaaggaat gtgagaaagc agtgatgaaa ctcaaatttg aagaagcaat ctctgtgcca 420 gtatctgaaa ggcgttcagt agctgagtcc attgacttcc atacaataga ggttgagcca 480 caatattctg gtgctagaat tgagggagag gaagttacct tagattttgt gaaaacgatg 540 atggaggatt ttaagaacca aaaaacattg cataaacggt atgcctatca aatcgtctta 600 cagactagge aaatettget ageaetgeet tetettgttg atataagtgt teeacatgge 660 aaacatatca ctgtttgcgg tgacgttcat ggtcagttct acgatcttct caatatcttt 720 gagcttaatg gcctcccttc ggaggagaac ccatacctat ttaatggcga ctttgtggac 780 agaggeteat teteegttga gateateete aetttgtttg ettteaagtg eatgtgeeea 840 tcatccatat atctagccag aggaaaccat gaaagcaaga gcatgaacaa aatttatggt 900 tttgagggtg aggttcggtc caagttgagt gaaaaattcg tggatctctt tgctgaagtt 960 ttctgttacc tcccgttggc tcatgttata aatgggaagg tcttcgtggt acatggaggt 1020 cttttcagtg ttgacggcgt gaaactctca gacatcagag ccattgacag attctgtgag 1080 ccaccagagg aaggactaat gtgtgaacta ttgtggagtg atcctcaacc tctccctgga 1140 agaggcccaa gcaagcgagg agttggtcta tcatttggtg gagatgtgac aaagaggttt 1200 ttgcaagata acaatttaga tttgttggtc cggtcacatg aagtaaaaga tgaaggttat 1260 gaggttgaac atgacggtaa actcataact gtcttctctg cgccaaatta ctgtgatcag 1320 atgggtaata agggagcctt cattcgtttt gaagctcctg atatgaagcc aaacattgtt 1380

1

1440 acatteteag cagtgeetea teeggatgtg aageetatgg catatgeaaa caaetttete aggatgttca actaa 1455 <210> 4 <211> 484 <212> **PRT** <213> Arabidopsis thaliana <400> Met Glu Thr Lys Asn Glu Asn Ser Asp Val Ser Arg Ala Glu Glu Phe 10 15 Lys Ser Gln Ala Asn Glu Ala Phe Lys Gly His Lys Tyr Ser Ser Ala 30 Ile Asp Leu Tyr Thr Lys Ala Ile Glu Leu Asn Ser Asn Asn Ala Val 35 45 Tyr Trp Ala Asn Arg Ala Phe Ala His Thr Lys Leu Glu Glu Tyr Gly 50 55 Ser Ala Ile Gin Asp Ala Ser Lys Ala Ile Glu Val Asp Ser Arg Tyr 65 70 ' 80 Ser Lys Gly Tyr Tyr Arg Arg Gly Ala Ala Tyr Leu Ala Met Gly Lys 85 90 95 Phe Lys Asp Ala Leu Lys Asp Phe Gln Gln Val Lys Arg Leu Ser Pro 105 Asn Asp Pro Asp Ala Thr Arg Lys Leu Lys Glu Cys Glu Lys Ala Val

Asn Asp Pro Asp Ala Thr Arg Lys Leu Lys Glu Cys Glu Lys Ala Val 115 120 125

Met Lys Leu Lys Phe Glu Glu Ala Ile Ser Val Pro Val Ser Glu Arg 130 135 140

Arg Ser Val Ala Glu Ser Ile Asp Phe His Thr Ile Glu Val Glu Pro
145 150 155 160

Gln Tyr Ser Gly Ala Arg Ile Glu Glu Glu Glu Val Thr Leu Asp Phe
165 170 175

Val Lys Thr Met Met Glu Asp Phe Lys Asn Gln Lys Thr Leu His Lys 180 185 190

Arg Tyr Ala	Tyr Gin Ile Val I	Leu Gln Thr	Arg Gln Ile Le	u Leu Ala	
195	i	200		205	
Leu Pro Ser L	eu Val Asp Ile S	Ser Val Pro H	lis Gly Lys Hi	s Ile Thr	
210		215	22		
Val Cvs Glv	Asp Val His Gly	Cin Dhe Tur	Amlanlan	Aon Ila Dha	
225		Gill Tile Tyl		Asii lie Phe	
223	230		235		240
Glu Leu Asn	Gly Leu Pro Ser	Glu Glu Asn	Pro Tyr Leu I	Phe Asn Gly	
	245		250		255
Asp Phe Val A	Asp Arg Gly Ser	Phe Ser Val	Glu Ile Ile Lei	Thr Leu	
•	260	265			
	200	20.	,	270	
Dha Ala Dha Y	G . N O	D 0 0			
	ys Cys Met Cys		lle Tyr Leu Al	a Arg Gly	
275		280		285	
Asn His Glu S	er Lys Ser Met	Asn Lys Ile 7	or Gly Phe Gl	u Glv Glu	
290		295	300	•	
	-		30	•	
Val Ara Sar I	ua I au Can Clu I	Db - 37-1	A 7		
	ys Leu Ser Glu I	Jys Phe Vai	-	la Glu Val	
305	310		315		320
Phe Cys Tyr L	eu Pro Leu Ala	His Val Ile A	sn Gly Lys Va	l Phe Val	
	325		330		335
Val His Gly G	ly Leu Phe Ser \	/al Asn Gly '	Val I ve I en Sa	er Acn Ile	
	340	345		-	
	340	343		350	
	p Arg Phe Cys (Glu Pro Pro C	ilu Glu Gly Le	u Met Cys	
355		360		365	
Glu Leu Leu T	rp Ser Asp Pro (Gln Pro Leu l	Pro Gly Arg G	lv Pro Ser	
370		75	380		
	_		300	•	
I ve Ara Gly V	al Gly Leu Ser I	ho Chi Chi	A on Mal Thurt	A Dl	
		The Gly Gly A	-	ys Arg Pne	
385	390		395		400
Leu Gin Asp A	sn Asn Leu Asp	Leu Leu Va	l Arg Ser His (Glu Val Lys	
	405		410		115
Asp Glu Glv T	yr Glu Val Glu I	Tis Asn Glv I	lys Len He Th	r Val Phe	
	420	425	Ja Lou III III		
•	720	423		430	
C A1- 75	.				
	n Tyr Cys Asp C		Asn Lys Gly A	la Phe Ile	
435		440		445	

Arg Phe Glu Ala Pro Asp Met Lys Pro Asn Ile Val Thr Phe Ser Ala 450 455 460

Val Pro His Pro Asp Val Lys Pro Met Ala Tyr Ala Asn Asn Phe Leu

465

470

475

480

Arg Met Phe Asn

<210> 5

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 5

ggatccatgg agaccaagaa tgag

24

<210> 6

<211> 24

<212> DNA

<213> **Artificial Sequence**

<220>

<223> PCR primer

<400> 6

ctcgagttag ttgaacatcc tgag

24

<210> 7

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

7 <400>

)

1

28 ggatccgatg tcaggctcta ggccgact <210> 8 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 8 gctgatcagc atggtttccg gagtcggggg tagt 34 <210> 9 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 9 cccggccgga ctaatatggc atcatcagca tcat 34 <210> 10 <211> 27 <212> DNA <213> **Artificial Sequence** <220> <223> PCR primer <400> 10 ctcgagtcaa gagattgctt cttcaaa 27

<210>

<211>

<212>

<213>

11

27

DNA

Artificial Sequence

<220>			
	PCR primer		
	•		
<400>	11		
ggatccat	gc cagtatetga aaggegt		. 27
<210>	12		
<211>	24		
	DNA		
<213>	Artificial Sequence		
<220>			
<223>	PCR primer		
<400>	12		
atggagac	ca agaatgagaa ttct		24
~10	12		
<210>			*
<211> <212>			
<213>			
~213.5	Artificial Sequence		
<220>			
<223>	PCR primer		
	-		
<400>	13		
ttagttgaad	c atcctgagaa agtt		24
<210>	14		
<211>	347		
<212>	PRT		
<213>	Arabidopsis thaliana		
<400>	14		
		er Val Ala Glu Ser Ile Asp Phe	
1	5	10	15
		•	
Hiṡ Thr II	le Glu Val Glu Pro Gln Ty	r Ser Gly Ala Arg Ile Glu Gly	
	20	25 30	

Glu Glu Val Thr Leu Asp Phe Val Lys Thr Met Met Glu Asp Phe Lys

40

35

Asn Gln Lys 50	Thr Leu His L	ys Arg Tyr Ala T 55	`yr Gln Ile Va 60		
Thr Arg Gin 1	Ile Leu Leu Al 70	a Leu Pro Ser Le 0	บ Val Asp Ile 75	Ser Val	80
Pro His Gly I	ys His Ile Thr 85	Val Cys Gly Asp	→ Val His Gly 90	Gln Phe	95
Tyr Asp Leu	Leu Asn Ile Ph 100	ne Glu Leu Asn C 105	ly Leu Pro Se	er Glu Glu 110	
Asn Pro Tyr I 115		ly Asp Phe Val A	⊾ sp Arg Gly S	Ser Phe Ser 125	
Val Glu Ile Ile 130	e Leu Thr Leu	Phe Ala Phe Lys	Cys Met Cys		
Ser Ile Tyr Le 145	eu Ala Arg Gly 150	Asn His Glu Sei)	Lys Ser Met	Asn Lys	160
Ile Tyr Gly Pl	ne Glu Gly Glu 165	ı Val Arg Ser Lys	s Leu Ser Glu 1170	Lys Phe	175
Val Asp Leu I	Phe Ala Glu V 180	al Phe Cys Tyr L 185	eu Pro Leu A	la His Val 190	
Ile Asn Gly L 195		l Val His Gly Gly 200	✓ Leu Phe Ser	Val Asp 205	
Gly Val Lys L 210	eu Ser Asp Ile	Arg Ala Ile Asp 215	Arg Phe Cys 220	Glu Pro	
Pro Glu Glu C 225	Gly Leu Met Cy 230	ys Glu Leu Leu T	Trp Ser Asp Pi 235	o Gln Pro	240
Leu Pro Gly A	arg Gly Pro Se 245	r Lys Arg Gly Va	al Gly Leu Se ≥50	r Phe Gly	255
Gly Asp Val 7	Thr Lys Arg Ph 260	ne Leu Gln Asp A 265	sn Asn Leu A	Asp Leu Le 270	u
Val Arg Ser H 275	is Glu Val Lys	s Asp Glu Gly Ty 280	ィ Glu Val Glu	ı His Asp 285	
Gly Lys Leu I	le Thr Val Phe	Ser Ala Pro Asn	Tyr Cys Asp	Gln Met	

290 295 300

Gly Asn Lys Gly Ala Phe Ile Arg Phe Glu Ala Pro Asp Met Lys Pro 305 310 320

Asn Ile Val Thr Phe Ser Ala Val Pro His Pro Asp Val Lys Pro Met 325 335

Ala Tyr Ala Asn Asn Phe Leu Arg Met Phe Asn 340

<210>

15 <211> 1041 <212> DNA <213> Arabidopsis thaliana <400> 15 gtgccagtat ctgaaaggcg ttcagtagct gagtccattg acttccatac aatagaggtt 60 gagccacaat attctggtgc tagaattgag ggagaggaag ttaccttaga ttttgtgaaa 120 acgatgatgg aggattttaa gaaccaaaaa acattgcata aacggtatgc ctatcaaatc 180 gtcttacaga ctaggcaaat cttgctagca ctgccttctc ttgttgatat aagtgttcca 240 catggcaaac atatcactgt ttgcggtgac gttcatggtc agttctacga tcttctcaat 300 atctttgagc itaatggcct cccttcggag gagaacccat acctatttaa tggcgacttt 360 gtggacagag getcattete egttgagate atceteaett tgtttgettt eaagtgeatg 420 tgcccatcat ccatatatct agccagagga aaccatgaaa gcaagagcat gaacaaaatt 480 tatggttttg agggtgaggt tcggtccaag ttgagtgaaa aattcgtgga tctctttgct 540 gaagttttct gttacctccc gttggctcat gttataaatg ggaaggtctt cgtggtacat 600 ggaggtcttt tcagtgttga cggcgtgaaa ctctcagaca tcagagccat tgacagattc 660 tgtgagccac cagaggaagg actaatgtgt gaactattgt ggagtgatcc tcaacctctc 720 cctggaagag gcccaagcaa gcgaggagtt ggtctatcat ttggtggaga tgtgacaaag 780 aggtttttgc aagataacaa tttagatttg ttggtccggt cacatgaagt aaaagatgaa 840 ggttatgagg ttgaacatga cggtaaactc ataactgtct tctctgcgcc aaattactgt 900

gatcagatgg gtaataaggg agccttcatt cgttttgaag ctcctgatat gaagccaaac 960
attgttacat tctcagcagt gcctcatccg gatgtgaagc ctatggcata tgcaaacaac 1020
tttctcagga tgttcaacta a 1041