Master 1 MAS & CHPS – Probabilités, Modèles et Applications

Responsable: Adrien Hardy, email: adrien.hardy@univ-lille.fr

Feuille d'exercices 6 Espérance conditionnelle

Exercice 1. (Conditionnement par rapport à une somme i.i.d). Soit X_1, \ldots, X_n des variables i.i.d de loi exponentielle $\mathcal{E}(\lambda)$. Calculer

$$\mathbb{E}[X_1|X_1+\cdots+X_n].$$

Que pensez-vous du cas général où X_1, \ldots, X_n sont seulement supposées i.i.d L^1 ?

Exercice 2 (Données censurées). Supposons que X suit une loi de Poisson de paramètre λ et posons $Y = \min(X, N)$ où N > 0 est fixé. Calculer $\mathbb{E}[X|Y]$.

Exercice 3 (Linéarité en la seconde variable). Si X, Y, Z sont des variables réelles L^1 , pensez-vous que $\mathbb{E}[X|Y+Z] = \mathbb{E}[X|Y] + \mathbb{E}[X|Z]$?

Exercice 4 (Vecteurs gaussiens). Si ${}^t(Y, X_1, \ldots, X_n)$ est un vecteur gaussien $\mathcal{N}(m, \Sigma)$ de \mathbb{R}^{n+1} , montrer qu'il existe ${}^t(\beta_0, \beta_1, \ldots, \beta_n) \in \mathbb{R}^{n+1}$ tel que :

$$\mathbb{E}[Y|X_1,\ldots,X_n] = \beta_0 + \sum_{j=1}^n \beta_j X_j.$$

Exercice 5 (Variance conditionnelle). Si $X \in L^2$, on définit sa variance conditionnelle par rapport à une variable Y par

$$\operatorname{\mathbb{V}ar}[X|Y] := \mathbb{E}[X^2|Y] - \mathbb{E}[X|Y]^2.$$

- (a) Montrer que $Var[X|Y] \ge 0$ p.s.
- (b) Montrer que Var[X|Y] = 0 p.s. si et seulement si X est $\sigma(Y)$ -mesurable.
- (c) Montrer la formule "de la variance totale",

$$\mathbb{V}\mathrm{ar}[X] = \mathbb{E}\,\mathbb{V}\mathrm{ar}[X|Y] + \mathbb{V}\mathrm{ar}\,\mathbb{E}[X|Y]$$

puis interpréter géométriquement cette formule dans l'espace L^2 .

(d) Si $Y = f(X) + \varepsilon$ avec f une fonction mesurable et ε une variable aléatoire L^1 indépendante de X, calculer \mathbb{V} ar[Y|X]. Même question si $Y = f(X)\varepsilon$.

lacktriangleRappelons que, si le temps entre deux évènements aléatoires indépendants (par exemple, "une ampoule s'éteint") suit une loi exponentielle de paramètre λ , alors le nombre d'évènements arrivés pendant un laps de temps t suit une loi de Poisson de paramètre λt .