Álgebra / Álgebra II Primer Cuatrimestre 2020

Segundo Trabajo Práctico

Ejercicio 5.

- 5. (5 puntos cada item) Sea $\{e_1, e_2, e_3\}$ la base canónica de \mathbb{R}^3 y $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ una transformación lineal tal que $T(e_1) = (1, 1), T(e_2) = (1, 2)$ y $T(e_3) = (1, 3)$.
 - (a) Calcular T(10, -1, 1) y T(-1, 1, 0).
 - (b) Dar la matriz de T con respecto a las bases canónicas de \mathbb{R}^3 y \mathbb{R}^2 .

Solución:

a. Sabiendo cuanto vale $T(e_1)$, $T(e_2)$ y $T(e_3)$, usamos que T es transformación lineal para calcular lo pedido:

$$T(10,-1,1) = T(10e_1 - e_2 + e_3)$$

$$= 10T(e_1) - T(e_2) + T(e_3)$$

$$= 10(1,1) - (1,2) + (1,3)$$

$$= (10-1+1,10-2+3)$$

$$= (10,11)$$

$$T(-1,1,0) = T(-e_1 + e_2)$$

$$= -T(e_1) + T(e_2)$$

$$= -(1,1) + (1,2)$$

$$= (-1+1,-1+2)$$

$$= (0,1).$$

Por lo tanto T(10, -1, 1) = (10, 11) y T(-1, 1, 0) = (0, 1).

b. Ahora nos piden hallar la matriz de la transformación lineal con respecto a las bases canónicas. Primero observamos que $T:\mathbb{R}^3\longrightarrow\mathbb{R}^2$, así ya sabemos que la matriz será de tamaño 2×3 y tendrá la forma:

$$[T] = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}.$$

Para hallar los coeficientes a_{ij} debemos evaluar T en los elementos de la base de \mathbb{R}^3 y al resultado escribirlo como combinación lineal de los elementos de la base canónica de \mathbb{R}^2 . Los escalares que se obtienen de dicha combinación lineal son los coeficientes que estamos buscando. Esto es:

$$T(e_1) = (1,1) = 1(1,0) + 1(0,1)$$

 $T(e_2) = (1,2) = 1(1,0) + 2(0,1)$
 $T(e_3) = (1,3) = 1(1,0) + 3(0,1)$

Por lo tanto

$$[T] = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}.$$

Ejercicio 6.

- 6. (5 puntos cada item) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Existe una transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^4$ tal que los vectores (1, 0, -1, 2), (0, 1, 2, -1,) y (0, 0, 2, 2) pertenecen a la imagen de T.
 - (b) Si $T: \mathbb{R}^{13} \to \mathbb{R}^9$ es una transformación lineal, entonces dim Nu $(T) \ge 4$.
 - (c) Sea $T: \mathbb{R}^6 \longrightarrow \mathbb{R}^2$ un epimorfismo y W un subespacio de \mathbb{R}^6 con dim W=3. Entonces existe $0 \neq w \in W$ tal que T(w)=0.

Solución:

a. Falso. Supongamos que existe T como en el enunciado y llamemos

$$W = \{(1,0,-1,2), (0,1,2,-1,), (0,0,2,2)\}.$$

Como los vectores que generan a W son linealmente independientes, forman una base para W y por lo tanto dim W=3. Ahora, estamos suponiendo que $W\subseteq {\rm Im}\,(T)$, luego dim ${\rm Im}\,(T)\ge 3$. Pero por el teorema de las dimensiones se cumple que

$$\dim \mathbb{R}^2 = \dim \operatorname{Nu}(T) + \dim \operatorname{Im}(T).$$

Por un lado, dim $\mathbb{R}^2 = 2$ y por el otro dim Nu (T) + dim Im $(T) \ge 3$ y esto contradice el teorema.

b. Verdadero. Como $T:\mathbb{R}^{13}\to\mathbb{R}^9$ sabemos que dim Im $(T)\leq 9$ y usando el mismo teorema que antes

$$\dim \mathbb{R}^{13} = \dim \operatorname{Nu}(T) + \dim \operatorname{Im}(T) \leq \dim \operatorname{Nu}(T) + 9$$

$$13 \leq \dim \operatorname{Nu}(T) + 9$$

$$4 \leq \dim \operatorname{Nu}(T),$$

como queríamos probar.

c. **Verdadero.** Vamos a comenzar reescribiendo lo que queremos demostrar. Queremos hallar $w \in W$, $w \neq 0$ tal que T(w) = 0. Notemos que como queremos que T(w) = 0, estamos pidiendo que $w \in \operatorname{Nu}(T)$, y como también pedimos que $w \in W$, lo que estamos buscando es $w \in \operatorname{Nu}(T) \cap W$ y $w \neq 0$.

Ahora que ya sabemos que estamos buscamos escribimos cuales son nuestras hipótesis.

Sabemos que $T: \mathbb{R}^6 \longrightarrow \mathbb{R}^2$ es un epimorfismo, esto nos dice que dim Im (T) = 2. También tenemos que W es un subespacio de \mathbb{R}^6 con dim W = 3. Por el teorema que usamos en los incisos anteriores tenemos que

$$\dim \mathbb{R}^{6} = \dim \operatorname{Nu}(T) + \dim \operatorname{Im}(T)$$

$$6 = \dim \operatorname{Nu}(T) + 2$$

Por lo tanto dim $\operatorname{Nu}(T) = 4$. Tanto W como $\operatorname{Nu}(T)$ son subespacios de \mathbb{R}^6 , entonces por teorema $W + \operatorname{Nu}(T)$ es un subespacio de \mathbb{R}^6 , luego dim $(W + \operatorname{Nu}(T)) \le 6$. Pero también sabemos que

$$\dim W + \dim \operatorname{Nu}(T) - \dim (W \cap \operatorname{Nu}(T)) = \dim (W + \operatorname{Nu}(T))$$

$$3 + 4 - \dim (W \cap \operatorname{Nu}(T)) \leq 6$$

$$7 - \dim (W \cap \operatorname{Nu}(T)) \leq 6$$

$$- \dim (W \cap \operatorname{Nu}(T)) \leq -1$$

$$\dim (W \cap \operatorname{Nu}(T)) \geq 1.$$

Como dim $(W \cap \text{Nu}(T)) \ge 1$, existe $w \in W \cap \text{Nu}(T)$, $w \ne 0$, como deseábamos.

Otra forma: Dado que W es un subespacio de \mathbb{R}^6 con dim W=3, podemos suponer que $\{w_1, w_2, w_3\}$ es una base de W con $w_1, w_2, w_3 \in \mathbb{R}^6$, entonces el conjunto

$$H = \{T(w_1), T(w_2), T(w_3)\} \subset \text{Im}(T) = \mathbb{R}^2.$$

Como dim $\mathbb{R}^2=2$, el conjunto H es linealmente dependiente, lo que implica que existen escalares $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ no todos nulos tales que

$$\lambda_1 T(w_1) + \lambda_2 T(w_2) + \lambda_3 T(w_3) = 0.$$

Usando que T es transformación lineal tenemos que

$$T\left(\lambda_1 w_1 + \lambda_2 w_2 + \lambda_3 w_3\right) = 0.$$

Llamemos $w = \lambda_1 w_1 + \lambda_2 w_2 + \lambda_3 w_3$. Observemos que $w \in W$, pues los w_i son los elementos de la base de W, y también que $w \neq 0$ ya que de lo contrario si $\lambda_1 w_1 + \lambda_2 w_2 + \lambda_3 w_3 = 0$, como $\{w_1, w_2, w_3\}$ es linealmente independiente tendríamos que $\lambda_1 = \lambda_2 = \lambda_3 = 0$, lo que es un absurdo, pues $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ no todos nulos.

De este modo hemos probado que existe $w \in W$, $w \neq 0$ tal que T(w) = 0.