Don Kurian Dennis Chirag Pabbaraju

Harsha Vardhan Simhadri Prateek Jain

Recurrent Neural Networks (RNN)

- RNNs are state-of-the-art for time series modelling
- Data is divided into overlapping windows and an RNN is run over each.
- Each RNN run is a sequence of updates to its internal state.
- The state update rule, complicated, non-linear and expensive.

$$h_t = \sigma(\mathbf{w}x_t + \mathbf{u}h_{t-1} + b)$$

- Key-word spotting: Feature computation + prediction every 30ms for real-time response! Vanilla LSTM takes

Typical class signature length k << T

- Example: Keyword spotting --- keyword 'Up' usually just lasts a 100-200ms while the RNN window T is proportional to 1 second.
- Learning on these signatures can help learn a k << T step RNN.
- In the class signature, common prefixes are small making it po oredict early, without consuming complete data.

Contributions

- EMI-RNN: exploits temporal structure and above observations
- USP: a) higher accuracy than baseline RNN architectures b) reduce inference time by as much as 72x c) Allows deployment on tiny devices like Raspberry Pi0, M4 MCU
- Techniques: multi-instance learning (MIL) + early prediction
- Analysis: recovers provably optimal solution in non-homogeneous MIL settings --- first such result for non-homogeneous MIL

MI-RNN: Multiple-Instance RNN

- Divide into bag of overlapping k length windows (instances).
- Isolate the instances with signature. Relabel these instances and train.
- d in general!

Exploit temporal locality and approximate signature length with MIL/Robust learning techniques in the optimization problem.

Formulation learns model f as well as starting index s_i of the class signature in each data point

$$\min_{f, si, 1 \leq i \leq n} \frac{1}{n} \sum_{i, \tau} \delta_{i\tau} \cdot \ell \left(f(Z_{i\tau}), yi \right), \qquad s.t., \delta_{i\tau} = \begin{cases} 1, & \tau \in [s_i, s_i + K] \\ 0, & \tau \notin [s_i, s_i + K] \end{cases}$$

$$s.t., \delta_{i\tau} = \begin{cases} 1, & \tau \in [s_i, s_i + K] \\ 0, & \tau \notin [s_i, s_i + K] \end{cases}$$

Step 1: Assign labels $(Z_{i\tau}, y_{i\tau})$, s. $t. y_{i\tau} = y_i, \forall \tau$

tep 2: Train classifier on this miss-labelled data f_i

Step 3: Score $(s_i) = \sum_{j=s_i}^{s_i+K} f_t(Z_{ij})$ and pick Type equation here.

Step 4: Update labels. Repeat with new labels

Theorem: In $O(\log n)$ iterations, the true positive set will be recovered exactly, with high prob.

Setting:

- Two classes: $Z_{i,\tau}^N$ --- negative class instances sampled from a Gaussian with mean μ^-
- $Z_{i,\tau}^P$ --- positive class instances, lie in a small ball around μ^+
- $||\mu^+ \mu^-|| \ge C \log T$
- Let $n \ge \frac{dT||\mu^+ \mu^-||^2|}{2}$

EMI-RNN: Early Multi-Instance RNN

Naïve early prediction t due to common prefixes

Incentivize early prediction during training EMI-RNN: Jointly train MI-RNN

with early loss

MI-RNN removes common prefixes making early prediction effective

 $L_e(X,y) = \sum (W^{\top} h_t - y)^2$

Results

Compute savings due to early prediction at a fixed hidden dim.

	Dim.	(ms)	(ms)	(ms)
RPi0 (22.5 ms)	16	28.14	14.06	5.62
	32	74.46	37.41	14.96
	64	226.1	112.6	45.03
RPi3 (26.4 ms)	16	12.76	6.48	2.59
	32	33.10	16.47	6.58
	64	92.09	46.28	18.51

Device Hidden LSTM MI-RNN EMI-RNN

Prediction time on Raspberry Pi-3 and Pi-0