The lattice of super-Belnap logics

Adam Přenosil*

We study the lattice $\operatorname{Ext} \mathcal{B}$ of extensions of the four-valued Belnap-Dunn logic \mathcal{B} , called super-Belnap logics following [4]. In particular, we settle the question of how many finitary super-Belnap logics there are, and describe a connection between the worlds of super-Belnap logics and finite graphs.

The logic which we call \mathcal{B} here was introduced by Belnap [1] following related work by Dunn [2] as a logic for dealing with potentially inconsistent and incomplete information. Although the Belnap-Dunn logic has attracted much attention from researchers in logic and computer science, there has been little systematic research into its extensions other than classical logic \mathcal{CL} . The most prominent among those which have been studied so far are Priest's Logic of Paradox \mathcal{LP} and Kleene's strong three-valued logic \mathcal{K} , which have been used by philosophers in gappy and glutty accounts of truth. More recently, Exactly True Logic \mathcal{ETL} was introduced by Pietz and Rivieccio [3].

The explicit study of Ext \mathcal{B} was only initiated by Rivieccio [4], who showed that there are infinitely many finitary super-Belnap logics. (The sublattice of finitary super-Belnap logics will be denoted $\operatorname{Ext}_{\omega} \mathcal{B}$.) We improve on this result and also shed some light on the lattice structure of Ext \mathcal{B} .

Theorem 1. Ext_{ω} \mathcal{B} is a non-modular lattice. It contains a distributive sublattice which has the cardinality of the continuum.

Proposition 2. Ext \mathcal{B} has a unique atom. \mathcal{K} has a largest proper sublogic among extensions of \mathcal{ETL} .

Theorem 3. The only non-trivial protoalgebraic super-Belnap logic is \mathcal{CL} . The only non-trivial Fregean super-Belnap logic is \mathcal{CL} . The only non-trivial self-extensional super-Belnap logics are \mathcal{B} , $\mathcal{LP} \cap \mathcal{K}$, \mathcal{CL} .

^{*}Institute of Computer Science, Academy of Sciences of the Czech Republic

It turns out that the lattice of super-Belnap logics with the finite model property may be described in terms of finite graphs (possibly with loops). In the following theorem, by a homomorphic (epimorphic) class of graphs we mean a class of graphs closed under (surjective) homomorphisms.

Theorem 4. The lattice of homomorphic classes of finite graphs dually embeds into $\operatorname{Ext}_{\omega} \mathcal{B}$. The lattice of epimorphic classes of finite graphs closed under finite disjoint unions is dually isomorphic to the lattice of logics with the finite model property in the interval $[\mathcal{ETL}, \mathcal{ETL}_{\omega}]$.

Corollary 5. There is a continuum of finitary explosive extensions of \mathcal{B} . There is a continuum of antivarieties of de Morgan algebras.

The above results are not sensitive to the presence or absence of the constants \top and \bot in the logic. By contrast, adopting a multiple-conclusion perspective changes the picture dramatically: the only non-trivial multiple-conclusion super-Belnap logics are the multiple-conclusion versions of the logics \mathcal{B} , $\mathcal{LP} \cap \mathcal{K}$, \mathcal{LP} , \mathcal{K} , and \mathcal{CL} .

Acknowledgements. The author acknowledges the support of the grant P202/12/G061 of the Czech Science Foundation.

References

- [1] Nuel D. Belnap. A useful four-valued logic. In J. Michael Dunn and George Epstein, editors, *Modern uses of multiple-valued logic*, volume 2 of *Episteme*, pages 5–37. Springer Netherlands, 1977.
- [2] J. Michael Dunn. *The algebra of intensional logics*. PhD thesis, University of Pittsburgh, 1966.
- [3] Andreas Pietz and Umberto Rivieccio. Nothing but the truth. *Journal of Philosophical Logic*, 42(1):125–135, 2013.
- [4] Umberto Rivieccio. An infinity of super-Belnap logics. *Journal of Applied Non-Classical Logics*, 22(4):319–335, 2012.