Impulsando una transición energética sostenible: los electrolizadores de baja temperatura y sus materiales constructivos

O1 Introducción

04 Vida útil

O2 Generalidades

05 Desafíos

03 Materiales constructivos

06 Agradecimientos

Introduction

Energias renovables
Tecnologías Power to "X"

Energías Renovables

consequences-of-intermittent-electricity-production/

https://unsplash.com/es/s/fotos/renewable-energy

Tecnologías Power to X

storage

industry

buildings

Schematic representation of "power to X" conversión pathways

Recent development in Power-to-X: Part I - A review on techno-economic analysis Ahmed Rufai Dahiru, Ari Vuokila, Mika Huuhtanen (2022) Journal of Energy Storage 56.

http://power-to-x-energy-of-the-future/

Electrólisis

Tecnologías de electrólisis de baja temperatura

Electrólisis de agua: A) Alcalina; B) Membrana de electrolito polimérico y C) Membrana de intercambio de aniones.

Generalidades

Hemireacciones
Potenciales
Sobrepotenciales

 H_2O (líquida) $\rightarrow H_2$ (gas) + ½ O_2 (gas)

Potenciales termodinámicos de la reacción de evolución de hidrógeno (HER) y de oxígeno (OER) en electrolitos acuosos con diferentes valores de pH bajo condiciones estándar

Condiciones estándar: 298.15 K, 1 atm

Electrolitos ácidos

HER: $4H^{1+} + 4e^{1-} \rightarrow 2H_2$, $E_c^0 = 0.000$ [V]

pH = 0OER: $2H_2O \rightarrow O_2 + 4H^{1+} + 4e^{1-}$, $E_a^0 = 1.229$ [V]

Electrolitos neutros

HER: $4H_2O + 4e^{1-} \rightarrow 2H_2 + 4OH^{-1}$, $E_c^0 = -0.414$ [V]

pH = 7

OER: $2H_2O \rightarrow O_2 + 4H^{1+} + 4e^{1-}$, $E_a^0 = 0.815$ [V]

Electrolitos alcalinos

HER: $4H_2O + 4e^{1-} \rightarrow 2H_2 + 4OH^{-1}$, $E_c^0 = -0.828$ [V]

OER: $40H^{1-} \rightarrow O_2 + 2H_2O + 4e^{1-}$, $E_a^o = 0.401$ [V]

pH = 14

Descomposición del agua

$$H_2O$$
 (líquida) \rightarrow H_2 (gas) + $\frac{1}{2}$ O_2 (gas)

(298,15 K, 1 atm)

 H_2O (líq) + 237.1 [kJ/mol] electricidad + 48.7 [kJ/mol] calor $\rightarrow H_2$ (g) + ½ O_2 (g)

Potencial: termodinámico reversible, termoneutral

E_{RE}

$$E_{RE} = -\frac{\Delta G^0}{nF} = 1.23 \text{ [V]}$$

E_{TN}

$$E_{TN} = -\frac{\Delta H^0}{nF} = 1.48 \text{ [V]}$$

 H_2O (líquida) \rightarrow H_2 (gas) + $\frac{1}{2}O_2$ (gas)

Termodinámica de la separación del agua en función de la temperatura a 0,1 MPa.

$$H_2O$$
 (líquida) \rightarrow H_2 (gas) + $\frac{1}{2}O_2$ (gas)

$$\Delta G^0 = -nFE_{RE}$$

$$n = 2$$

F = 96 485 [C/mol]

$$E_{RE} = E_{OER}^0 - E_{HER}^0$$

$$E_{cel} > E_{eq}$$

$$\eta_{OER} = E_{OER} - E_{eq,OER}$$

$$\eta_{HER} = E_{HER} - E_{eq,HER}$$

$$\eta_{OER} > \eta_{HER}$$

HER: $4H^{1+} + 4e^{1-} \rightarrow 2H_2$, $E_c^0 = 0.000$ [V]

OER: $2H_2O \rightarrow O_2 + 4H^{1+} + 4e^{1-}$, $E_a^o = 1.229 \text{ [V]}$

$$pH = 0$$

$$\eta_{OER}$$
 , η_{HER}

HER: $4H_2O + 4e^{1-} \rightarrow 2H_2 + 4OH^{-1}$, $E_c^0 = -0.414$ [V]

OER: $2H_2O \rightarrow O_2 + 4H^{1+} + 4e^{1-}$, $E_a^o = 0.815$ [V]

$$pH = 7$$

$$\eta_{HER} > \eta_{OER}$$

HER: $4H_2O + 4e^{1-} \rightarrow 2H_2 + 4OH^{-1}$, $E_c^0 = -0.828$ [V]

OER: $4OH^{1-} \rightarrow O_2 + 2H_2O + 4e^{1-}$, $E_a^o = 0.401 \text{ [V]}$

pH = 14

Anode: $40H^- \to O_2 + 2H_2O + 4e^-$

Cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

O₂

O₂

AEM

H₂

OH

H₃

H₄

H₄

H₄

H₂

H₂O

Anode: $2H_2O \to 4H^+ + O_2 + 4e^-$ Cathode: $2H^+ + 2e^- \to H_2$ Anode: $40H^- \rightarrow 0_2 + 2H_2O + 4e^-$

Cathode: $4H_2O + 4e^- \rightarrow 2H_2 + 4OH^-$

Diagramas esquemáticos de celdas de electrólisis: a) AWE, b) AEM y c) PEM

Materiales para su construcción

Materiales Críticos

Comparación de las tecnologías de electrólisis de agua de baja temperatura en cuanto a materiales

DVB = divinilbenceno EPDM = etileno-propileno-dienometileno

ETFE = etileno tetrafluoroetileno

PFSA = ácido perfluorosulfónico

PPS = polifenileno

PSU = polisulfona

PTFE = politetrafluoroetileno

Tipo de electrolizador	Alcalino (AWE)	Membrana de electrolito polimérico (PEM)	Membrana de intercambio de aniones (AEM)
Electrolito	КОН	Membranas de PFSA	Polímero de DVB soportado con KOH o NaHCO ₃
Separador	ZrO ₂ estabilizado con PPS	Membranas de PFSA	Polímero de DVB soportado con KOH o NaHCO ₃
Ánodo/electro- catalizadores	Acero inoxidable perforado niquelado	IrO ₂	Ni o aleaciones de NiFeCo
Cátodo/electro- catalizadores	Acero inoxidable perforado niquelado	Nanopartículas de platino sobre negro de humo	Espuma de Ni
Marcos y sellos	PSU, PTFE, EPDM	PTFE, PSU, ETFE	PTFE, silicio

Electrolizadores alcalinos

Compartimento Catódico

Compartimento Anódico

Ánodo: $40H^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{-}$

Cátodo: $4H_2O + 4e^ 2H_2 + 4OH^-$

Electrolizador	Alcalino (AWE)
Separador	Dióxido de zirconio estabilizado con sulfuro de polifenileno (PPS)
Electrolito	Hidróxido de potasio
Electrodo/ catalizador (ánodo)	Acero inoxidable perforado niquelado
Electrodo/ catalizador (cátodo)	Acero inoxidable perforado niquelado

Catódico

Electrolizador	Membrana de electrolito polimérico (PEM)
Separador	Electrolito sólido: membranas del ácido perfluorosulfónico (PFSA)
Electrolito	Membranas del ácido perfluorosulfónico (PFSA)
Electrodo/ catalizador (ánodo)	Dióxido de iridio
Electrodo/ catalizador (cátodo)	Nanopartículas de platino sobre negro de humo

$-\left\{CF_{2}-CF_{2}\right\}_{x}\left\{CF_{2}-CF_{2}\right\}_{y}$ $\left\{O-CF_{2}-CF\right\}_{z}O-CF_{2}-CF_{2}$ CF_{3} $O+CF_{2}-CF_{2}$ $O+CF_{2}-CF_{2}$ $O+CF_{3}$

Membranas conductora de protones

Fumapem® Flemion® Aciplex®

Estructura química del Nafion®

Placas bipolares

Capa difusora de gases

Grafito

Cátodo

Platino (Pt)

Promover la cinética de transferencia de carga

> Disminuir la energía de activación

Electrocatalizadores

Ánodo

Rutenio (Ru)

Iridio (Ir)

Electrolizadores membrana de intercambio de aniones

Electroliza dor	Membrana de intercambio de aniones (AEM)
Separador	Electrolito sólido: polímero de divinilbenceno soportado con hidróxido de potasio o bicarbonato de sodio
Electrolito	Polímero de divinilbenceno soportado con hidróxido de potasio o bicarbonato de sodio
Electrodo/ catalizador (ánodo)	Aleaciones de níquel o NiFeCo de gran área superficial
Electrodo/ catalizador (cátodo)	Espuma de níquel

Materiales críticos utilizados en electrolizadores

Potencial de calentamiento global y demanda acumulada de energía para materiales críticos utilizados en electrolizadores.

Suministro de materiales críticos

Top producers of critical materials in electrolysers.

Suministro de materias primas críticas por países

Estrategias

Prevención de uso

Extensión del uso de los equipos o aumento de su eficiencia

Reciclaje

Combinación

Aspectos de la vida útil

vinculada a los materiales constructivos

Electrolizadores alcalinos

Anode: $40H^- \rightarrow O_2 + 2H_2O + 4e^-$ Cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$ Factores que influyen en su duración:

- Permeación de gas
- Electrodos
- Diafragmas
- Impurezas en el agua

Factores que influyen en su duración:

- Condiciones de operación
- Carga variable
- Permeación de gas
- Disolución del ánodo
- Impurezas en el agua

Anode: $2H_2O \to 4H^+ + O_2 + 4e^-$ Cathode: $2H^+ + 2e^- \to H_2$

Electrolizadores de membrana de intercambio de aniones

Anode: $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ Cathode: $4H_2O + 4e^- \rightarrow 2H_2 + 4OH^-$ Factores que influyen en su duración:

Degradación de la membrana

Corta vida útil

Información limitada sobre: Operación a largo plazo Confiabilidad Robustez

Desafíos

de las tecnologías de electrólisis de baja temperatura

Electrolizadores alcalinos

Aumentar las densidades de corriente

Reducir el espesor del diafragma

Rediseñar las composiciones de los catalizadores

Rediseñar las arquitecturas de los electrodos

Nuevos conceptos de capas de transporte poroso

Reducir el espesor de la membrana

Eliminar recubrimientos costosos

Rediseñar las capas porosas de transporte

Rediseñar las placas bipolares

Rediseñar las membranas recubiertas con catalizador

Electrolizadores de membrana de intercambio de aniones

Mejorar la durabilidad

Mejorar la conductividad

Encontrar membranas con propiedades deseables

Rediseñar las arquitecturas de los electrodos

Nuevos conceptos de capas porosas de transporte

Implementación dependerá:

- Avances logrados en investigación y desarrollo
- Mejora de la eficiencia de los sistemas
- Reducción de los costos de producción
- Escalabilidad

Agradecimientos

Red Cyted H₂Transel
II Workshop INCT CAPE 2024
Instituto de Investigaciones Científicas y
Técnicas para la Defensa

Thanks

Do you have any questions? María José Lavorante

mlavorante@citedef.gob.ar +54 911 7098100 citedef.gob.ar

