Grau d'Estadística UB-UPC

Programació Lineal Laboratori 3 PROC OPTLP i anàlisi del símplex

F.-Javier Heredia
http://gnom.upc.edu/heredia

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

PROC OPTL i anàlisi del símplex primal(1)

- Descripció PROC OPTLP.
- Anàlisi de l'algorisme del símplex primal amb PROC OPTLP:
 - Exemple 1: iteracions del símplex primal amb Fase I i II.
 - Exemple 2: opcions de taxació i eficiència computacional.
- Exercicis:

- (1) SAS/OR® 9.3 User's Guide Mathematical Programming, cap. 8
 - HTML:
 http://support.sas.com/documentation/cdl/en/ormpug/65554/HTML/default/viewer.htm#ormpug_optlp-toc.htm
 - PDF: http://support.sas.com/documentation/cdl/en/ormpug/65554/PDF/default/ormpug.pdf

PROC OPTLP

• PROC OPTLP

- Permet resoldre problemes de programació lineal mitjançant tres algorismes:
 - * Símplex primal (PLE, GE):

```
solve with LP/solver = primal;
```

❖ Símplex dual (PLE, GE):

```
solve with LP/solver = dual;
```

* Punt interior (OGE, MEIO)):

```
solve with LP/solver = iterative;
```

 Es pot cridar tant des de dins de OPTMODEL com de forma independent.

Sintaxi PROC OPTLP

• La crida a OPTLP des de dins del PROC OPTMODEL és:

solve with LP </ options>;

 On </ options> permeten controlar la forma com s'apliquen els algorismes. Destaquem:

options	Significat
SOLVER=	Selecció de l'algorisme d'optimització.
PRESOLVER= Reducció automàtica de la dimensió del problema.	
MAXITER= Nre. màxim d'iteracions.	
MAXTIME=	Nre. màxim de temps de CPU.
PRINTFREQ=	Freqüencia d'emissió d'informació sobre les iteracions.
BASIS=	Base inicial
PRICETYPE=	Procediment de taxació.

(veure detail a http://support.sas.com/documentation/cdl/en/ormpug/59679/HTML/default/viewer.htm#lpsolver_sect4.htm)

Exemple 1: Transport_rand_1.sas

Considereu la següent modificació del problema de transport de l'exercici 4:

```
proc optmodel;
call streaminit(1123581321); /* Llavor del generador de nombres aleatòris */
/* Parametres */
number nREF = 5;
                         /* Nre. de refineries */
number nMER = 10;
                             /* Nre. de mercats */
set<number> REFINERIES = 1..nREF; /* Cjt. de refineries */
set<number> MERCATS = 1..nMER; /* Cjt. de mercats */
number demanda { j in MERCATS } = 100*rand('uniform'); /* demanda generada
                                                    aleatoriament */
number produccio{ i in REFINERIES } = dem tot/nREF;  /* Es distribueix la
                                                    demanda entre
                                                    les refineries */
number cost { i in REFINERIES, j in MERCATS } = 10*rand('uniform');
                                                /* Costos generats
                                                    aleatòriament */
```

Exemple 1: Transport_rand_1.sas

Considereu la següent modificació del problema de transport de l'exercici 4:

```
/* Optimization model */
var Trans { REFINERIES, MERCATS } >= 0;
min Total_cost = sum {i in REFINERIES, j in MERCATS} cost[i,j] * Trans[i,j];
con Produccio_cons {i in REFINERIES}:
        sum {j in MERCATS} Trans[i,j] <= produccio[i];</pre>
con Demanda_cons { j in MERCATS}:
        sum {i in REFINERIES} Trans[i,j] >= demanda[j];
/* Optimització i resultats */
solve with LP / solver = primal /* Simplex primal */
                 printfreq = 1; /* informació de cada iteració */
print Trans.lb Trans.sol Trans.ub cost Trans.rc Trans.status;
print Produccio cons.lb Produccio cons.body Produccio cons.ub
Produccio cons.dual Produccio cons.status;
print Demanda cons.lb Demanda cons.body Demanda cons.ub Demanda cons.dual
Demanda cons.status;
```

Exemple 1: Transport_rand_1: Log

NOTE: The PRIMAL SIMPLEX solv	<i>r</i> er is	called.
-------------------------------	----------------	---------

			Objective	Entering	Leaving		
	Phase	Iteration	Value	Variable	Variable		
	1	1	521.113734	Trans[1,1]	Produccio_cons[1]](S)	
	1	2	464.006826	Trans[5,10]	Produccio_cons[5]](S)	Fase I
	1	3	425.003119	Trans[5,5]	Demanda_cons[10]	(S)	. 400 .
	1	4	400.146933	Trans[1,2]	Demanda_cons[1]	(S)	
	1	5	375.471567	Trans[4,6]	Produccio_cons[4]](S)	
	1	6	329.948917	Trans[4,2]	<pre>Demanda_cons[6]</pre>	(S)	
	1	7	252.862617	Trans[3,8]	Produccio_cons[3]](S)	
	1	8	205.884530	Trans[3,4]	Demanda_cons[8]	(S)	
	1	9	128.597900	Trans[2,3]	Produccio_cons[2]](S)	
	1	10	109.977908	Trans[2,7]	Demanda_cons[3]	(S)	
	1	11	82.024136	Trans[5,9]	<pre>Demanda_cons[5]</pre>	(S)	
	1	12	69.882844	Trans[2,4]	<pre>Demanda_cons[7]</pre>	(S)	
	1	13	45.026658	Trans[1,10]	Trans[1,2]	(S)	
	1	14	29.010185	Trans[3,10]	Demanda_cons[4]	(S)	
	1	15	12.775937	Trans[4,10]	Trans[5,10]	(S)	
Ì	2	17	2483.944156	Trans[4,9]	Demanda_cons[2]	(S)	
-	2	18	2230.511343	Trans[4,3]	Trans[4,10]	(S)	Fase II
-	2	19	1944.332084	Trans[1,5]	Trans[4,9]	(S)	i asc ii
-	2	20	1918.461720	Trans[1,7]	Trans[3,4]	(S)	
-	2	21	1800.936188	Trans[2,8]	Trans[1,10]	(S)	
-	2	22	1744.153642	Trans[2,1]	Trans[2,7]	(S)	
-	2	23	1579.340930	Trans[1,6]	Trans[4,6]	(S)	
-	2	24	1443.554395	Trans[3,2]	Trans[2,3]	(S)	
-	2	25	1293.992599	Trans[5,8]	Trans[5,5]	(S)	
-	2	26	1261.701180	Trans[1,8]	Trans[2,8]	(S)	
	2	27	1012.200055	Trans[4,1]	Trans[1,1]	(S)	
	2	28	1012.200055	Produccio_cons[2](S)	Demanda_cons[9]	(S)	
	2	29	981.478981	Trans[4,6]	Trans[3,8]	(S)	
	2	30	975.810995	Trans[2,10]	Trans[4,2]	(S)	
_ •	0-L-1	_					

NOTE: Optimal.

NOTE: Objective = 975.810995.

Opció pricetype (Taxació)

pricetype=	Taxació (<i>pricing</i>)	Procediment de taxació
HYBRID (0)	Hybrid Steepest- edge / devex pricing	Heurística que combina steepest-edge i devex (opció per defecte)
PARTIAL(1)	Partial pricing strategy	Es calculen alguns r_j i es selecciona q assoc. al més negatiu.
FULL (2)	Full pricing	Es calculen tots els r_j i es selecciona q assoc. al més negatiu.
DEVEX (3)	Devex pricing (1)	Aproximació de steepest-edge, menys costosa computacionalment
STEEPESTEDGE (4)	Steepest-edge pricing ⁽²⁾	$q: \frac{r_q}{\ d_q\ } = \min_{j \in \mathcal{N} r_j < 0} \left\{ \frac{r_j}{\ d_j\ } \right\}, d_j = \begin{bmatrix} -B^{-1}A_j \\ d_{\mathcal{N}_j} \end{bmatrix}$

⁽¹⁾ Paula M. J. Harris . **Pivot selection methods of the Devex LP code.** Mathematical Programming, 1975, Volume 4, 30-57, DOI: 10.1007/BFb0120710

⁽²⁾ John J. Forrest and Donald Goldfarb, **Steepest-edge simplex algorithms for linear programming** Mathematical Programming 1992. Volume 57, Numbers 1-3, 341-374, DOI: 10.1007/BF01581089

pricetype: estudi Transport_rand_2.sas

```
number nREF = 100; /* Nre. de refineries */
number nMER = 1000; /* Nre. de mercats */

/* Optimització i resultats */
solve with LP / presolver = 0 solver = primal printfreq = 0 pricetype = HYBRID;
solve with LP / presolver = 0 solver = primal printfreq = 0 pricetype = PARTIAL;
solve with LP / presolver = 0 solver = primal printfreq = 0 pricetype = FULLL;
solve with LP / presolver = 0 solver = primal printfreq = 0 pricetype = DEVEX;
solve with LP / presolver = 0 solver = primal printfreq = 0 pricetype = DEVEX;
solve with LP / presolver = 0 solver = primal printfreq = 0 pricetype = STEEPESTEDGE;
```

71,2	Pricetype	iter	sec/iter	sec	Resultat	
	STEEPESTEDGE	4403	0.001454	6.4	Poques iteracions molt costoses	
e d	PARTIAL	8840	0.000870	7.69	 Moltes iteracions molt ràpides 	
	FULL	8840	0.000870	7.69	ivioltes iteracions moit rapides	
):	DEVEX	7978	0.001156	9.22	- Force iteracions, relativament sectores	
off	HYBRID	7978	0.001158	9.24	 Força iteracions, relativament costose 	

Exercicis

- SBF inicial del problema de transport *.
- Planificació de la producció: estudi taxació-eficiència computacional*
- Coalco: estudi taxació-eficiència computacional**.