Types of Morphisms in Categories

December 24, 2023

00UT

Contents

1 Monomorphisms

1.1 Foundation 80UV

Let C be a category.

Definition 1.1.1.1. A morphism m: A - GODD of C is a **monomorphism** if for every commutative diagram of the form

$$C \xrightarrow{f} A \xrightarrow{m} B,$$

we have f = g.

Example 1.1.1.2. Let $f: A \to B$ be a **COLL***tion. The following conditions are equivalent:

- 1. The function f is injective.
- 2. The function f is a monomorphism in Sets.

Proof. Suppose that f is a monomorphism and consider the following diagram:

$$\{*\} \xrightarrow{[y]} A \xrightarrow{f} B,$$

¹That is, with $m \circ f = m \circ g$.

where [x] and [y] are the morphisms picking the elements x and y of A. Then f(x) = f(y) iff $f \circ [x] = f \circ [y]$, implying [x] = [y], and hence x = y. Therefore f is injective.

Conversely, suppose that f is injective. Proceeding by contrapositive, we claim that given a pair of maps $g, h \colon C \rightrightarrows A$ such that $g \neq h$, then $f \circ g \neq f \circ h$. Indeed, as g and h are different maps, there exists must exist at least one element $x \in C$ such that $g(x) \neq h(x)$. But then we have $f(g(x)) \neq f(h(x))$, as f is injective. Thus $f \circ g \neq f \circ h$, and we are done.

Proposition 1.1.1.3. Let C be a category \emptyset with pullbacks and $f: A \to B$ be a morphism of C.

- 1. Characterisations. The following conditions are equivalent:
 - (a) The morphism f is a monomorphism.
 - (b) For each $X \in \text{Obj}(\mathcal{C})$, the map of sets

$$f_* : \operatorname{Hom}_{\mathsf{Sets}}(X, A) \to \operatorname{Hom}_{\mathsf{Sets}}(X, B)$$

is injective.

(c) The kernel pair of f is trivial, i.e. we have

00V2

00V0

$$A \times_B A \cong A, \qquad A \xrightarrow{\operatorname{id}_A} A \\ \downarrow f \\ A \xrightarrow{f} B.$$

- 2. Monomorphisms vs. Injective Maps. Let
- 00V3

- C be a concrete category;
- $\overline{aborange}$: $C \to \mathsf{Sets}$ be the forgetful functor from C to Sets ;
- $f: A \to B$ be a morphism of C.

If 忘 preserves pullbacks, then the following conditions are equivalent:

- (a) The morphism f is a monomorphism.
- (b) The morphism f is injective.
- 3. Stability Properties. The class of all monophisms of C is stable under the following operations:

(a) Composition. If f and g are monomorphisms, then so is $g \circ f$.

(b) Pullbacks. Let

$$\begin{array}{ccc}
A \times_C B \longrightarrow B \\
\downarrow^{m'} & \downarrow^{m} \\
A \longrightarrow C
\end{array}$$

be a diagram in C. If m is a monomorphism in C, then so is m'.

4. Morphisms From the Terminal Object Are Monomorphisms. If C has a terminal object \mathbb{K}_C , then every morphism of C from \mathbb{K}_C is a monomorphism.

Proof. ??, Characterisations: The equivalence between ???? is clear. We claim that ???? are equivalent:

1. $?? \implies ??$: Suppose that f is a monomorphism. Then A satisfies the universal property of the pullback:

2. ?? \Longrightarrow ??: Suppose that $A \cong A \times_B A$ and let $g, h \colon C \rightrightarrows A$ be a pair of morphisms. Consider the diagram

²Conversely, if $g \circ f$ is a monomorphism, then so is f.

00V5

The universal property of the pullback says that there exists a unique morphism $C \to A$ making the diagram

commute, which implies g = h. Therefore, f is a monomorphism.

??, Monomorphisms vs. Injective Maps: Assume that f is injective. As the forgetful functor from C to Sets is faithful, we see that ?? together with ?? imply that f is a monomorphism.

Conversely, assume that f is a monomorphism. As F preserves pullbacks, it also preserves kernel pairs. By $\ref{eq:fig:prop}$, we see that F preserves monomorphisms. Thus F_f is a monomorphism, and hence is injective by $\ref{eq:fig:prop}$?

??, Stability Properties: Let $f,g\colon X\rightrightarrows A\times_C B$ be two morphisms such that the diagram

$$X \xrightarrow{f} A \times_C B \xrightarrow{m'} A$$

commutes. It follows that the diagram

also commutes. From the universal property of the pullback, it follows that there must be precisely one morphism from X to $A \times_C B$ making the above diagram commute. Thus f = g and m' is a monomorphism.

??, Morphisms From the Terminal Object Are Monomorphisms: Clear. \Box

1.2 Monomorphism-Reflecting Functors

Definition 1.2.1.1. A functor $F: C \to \mathfrak{DVF}$ flects monomorphisms if, for each morphism f of C, whenever F_f is a monomorphism, so is f.

Proposition 1.2.1.2. Let $F: C \to \mathcal{D}$ be a define tor. If F is faithful, then it reflects monomorphisms.

Proof. Let $f: A \to B$ be a morphism of C and suppose that $F_f: F_A \to F_B$ is a monomorphism. Let $g, h: B \rightrightarrows C$ be two morphisms of C such that $g \circ f = h \circ f$. As F is faithful, we must have

$$F_q \circ F_f = F_{q \circ f} = F_{h \circ f} = F_h \circ F_f,$$

but as F_f is a monomorphism, it must be that $F_g = F_h$. Using the faithfulness of F again, we see that g = h. Therefore f is a monomorphism. \Box

1.3 Split Monomorphisms

Let C be a category.

Definition 1.3.1.1. A morphism $f: A \oplus \mathcal{D} \setminus \mathcal{B}$ of C is a **split monomorphism**³ if there exists a morphism $g: B \to A$ of \mathcal{B} such that⁴

$$g \circ f = \mathrm{id}_A$$
.

Proposition 1.3.1.2. Let C be a category 00 VB

1. Split Monomorphisms are Monomorphisms. If m is a split monomorphism, then m is a monomorphism.

Proof. ??, Split Monomorphisms are Monomorphisms: Let $m: A \to B$ be a split monomorphism of C, let $e: B \to A$ be a morphism of C with

$$e \circ m = \mathrm{id}_A$$

and let $f, g: C \Rightarrow A$ be two morphisms of C such that the diagram

$$C \xrightarrow{g} A \xrightarrow{m} B$$

³Further Terminology: Also called a **section**, or a **split monic** morphism.

Warning: There exist monomorphisms which are not split monomorphisms, e.g. $\mathbb{Z}/2 \hookrightarrow \mathbb{Z}/4$ in Ring.

commutes. Then we have

$$f = id_A \circ f$$

$$= (e \circ m) \circ f$$

$$= e \circ (m \circ f)$$

$$= e \circ (m \circ g)$$

$$= (e \circ m) \circ g$$

$$= id_A \circ g$$

$$= g,$$

showing m to be a monomorphism.

2 Epimorphisms

2.1 Foundation®0VE

Let C be a category.

Definition 2.1.1.1. A morphism $f: A \rightarrow \mathcal{D}$ for C is an **epimorphism** if for every commutative diagram of the form

$$A \xrightarrow{f} B \xrightarrow{g} C,$$

we have g = h.

Example 2.1.1.2. Let $f: A \to B$ be a **Gavic**tion. The following conditions are equivalent:

- 1. The function f is injective.
- 2. The function f is an epimorphism in Sets.

Proof. Suppose that f is surjective and let $g,h \colon B \rightrightarrows C$ be morphisms such that $g \circ f = h \circ f$. Then for each $a \in A$, we have

$$g(f(a)) = h(f(a)),$$

but this implies that

$$g(b) = h(b)$$

⁵That is, with $g \circ f = h \circ f$.

for each $b \in B$, as f is surjective. Thus g = h and f is an epimorphism. To prove the converse, we proceed by contrapositive. So suppose that f is not surjective and consider the diagram

$$A \xrightarrow{f} B \xrightarrow{g} C,$$

where h is the map defined by h(b) = 0 for each $b \in B$ and g is the map defined by

$$g(b) = \begin{cases} 1 & \text{if } b \in \text{Im}(f), \\ 0 & \text{otherwise.} \end{cases}$$

Then $h \circ f = g \circ f$, as h(f(a)) = 1 = g(f(a)) for each $a \in A$. However, for any $b \in B \setminus \text{Im}(f)$, we have

$$q(b) = 0 \neq 1 = h(b).$$

Therefore $g \neq h$ and f is not an epimorphism.

Proposition 2.1.1.3. Let C be a category 00VH

- 1. Characterisations. Let C be a category with pullbacks and $f: A \to B$ be a morphism of C. The following conditions are equivalent:
 - (a) The morphism f is an epimorphism.

00VK

(b) For each $X \in \text{Obj}(\mathcal{C})$, the map of sets

00VL

$$f^* : \operatorname{Hom}_{\mathsf{Sets}}(B, X) \to \operatorname{Hom}_{\mathsf{Sets}}(A, X)$$

is injective.

(c) The cokernel pair of f is trivial, i.e. we have

00VM

$$B \coprod_A B \cong B \qquad \begin{array}{c} B \longleftarrow B \\ \uparrow \\ B \longleftarrow A. \end{array}$$

2. Epimorphisms vs. Surjective Maps. Let

00VN

- C be a concrete category;
- $\overline{\Sigma}$: $C \to \mathsf{Sets}$ be the forgetful functor from C to Sets ;

• $f: A \to B$ be a morphism of C.

If 忘 preserves pushouts, then the following conditions are equivalent:

- (a) The morphism f is a epimorphism.
- (b) The morphism f is surjective.
- 3. Stability Properties. The class of all epim**OPyR**isms of C is stable under the following operations:
 - (a) Composition. If f and g are epimorphisms, then so is $g \circ f$.
 - (b) Pushouts. Let

be a diagram in C. If m is an epimorphism in C, then so is e'.

4. Morphisms to the Initial Object Are Monomorphisms. If C has an initial object \varnothing_C , then every morphism of C to \varnothing_C is a epimorphism.

00VQ

Proof. This is dual to ??.

2.2 Regular Epinorphisms

Proposition 2.2.1.1. Let C be a category 00VS

1. Stability Under Pullbacks. Consider the diagram

in C. If e is a regular epimorphism, then so is e'.

Proof. Epimorphisms Need Not Be Stable Under Pullback. : Regular Epimorphisms Are Stable Under Pullback. : \Box

⁶Conversely, if $q \circ f$ is a epimorphism, then so is q.

2.3 Effective Ephatorphisms

Let C be a category.

Definition 2.3.1.1. An epimorphism $f: \mathfrak{AVU} B$ of C is **effective** if we have an isomorphism

$$B \cong \operatorname{CoEq}(A \times_B A \rightrightarrows A).$$

2.4 Split Epimorphisms

Let C be a category.

Definition 2.4.1.1. A morphism $f: A - \Theta CB Wof C$ is a **retraction**⁷ if there is an arrow $g: B \to A$ such that $f \circ g = \mathrm{id}_B$.

Proposition 2.4.1.2. Let $f: A \to B$ be a **Many** hism of C.

1. Every split epimorphism is an epimorphism.⁸

Proof. This is dual to ??.

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Relations
- 6. Spans
- 7. Posets

Indexed and Fibred Sets

- 7. Indexed Sets
- 8. Fibred Sets
- 9. Un/Straightening for Indexed and Fibred Sets

Category Theory

- 11. Categories
- 12. Types of Morphisms in Categories

 $^{^7\}mathit{Further\ Terminology:}$ Also called a $\mathbf{split\ epimorphism}.$

⁸ Warning: There are epimorphisms which are not split epimorphisms, however, e.g. $\mathbb{Z} \hookrightarrow \mathbb{Z}/2$.

- 13. Adjunctions and the Yoneda Lemma
- 14. Constructions With Categories
- 15. Kan Extensions

Bicategories

- 17. Bicategories
- 18. Internal Adjunctions

Internal Category Theory

19. Internal Categories

Cyclic Stuff

20. The Cycle Category

Cubical Stuff

21. The Cube Category

Globular Stuff

22. The Globe Category

Cellular Stuff

23. The Cell Category

Monoids

- 24. Monoids
- 25. Constructions With Monoids

Monoids With Zero

- 26. Monoids With Zero
- 27. Constructions With Monoids With Zero

Groups

- 28. Groups
- 29. Constructions With Groups

Hyper Algebra

- 30. Hypermonoids
- 31. Hypergroups
- 32. Hypersemirings and Hyperrings
- 33. Quantales

Near-Rings

- 34. Near-Semirings
- 35. Near-Rings

Real Analysis

- 36. Real Analysis in One Variable
- 37. Real Analysis in Several Variables

Measure Theory

- 38. Measurable Spaces
- 39. Measures and Integration

Probability Theory

39. Probability Theory

Stochastic Analysis

- 40. Stochastic Processes, Martingales, and Brownian Motion
- 41. Itô Calculus
- 42. Stochastic Differential Equations

Differential Geometry

43. Topological and Smooth Manifolds

Schemes

44. Schemes