Logic Gates

Question 1

4 (a) Write the Boolean algebraic expressions for the following logic circuit.

X =	••••	••••		•••	 	 	 	 		 •••					 	 •••	•••	•••	•••	•••	•••	 	•••		 	 ••••		 	
	 		••••		 	 •••	 ••••	 •••	•••	 		•••		•••	 	 						 	•••		 	 		 	
Y =				•••	 	 	 ••••	 		 •••					 	 	•••				•••	 	•••		 	 		 	•••
	 •••		•••		 	 •••	 •••	 	•••	 	•••		•••		 	 				•••		 		•••	 	 	••••	 	 [5]

- (b) The logic circuit given in part (a) is a full adder.
 - (i) Give the purpose of outputs X and Y in this circuit.

X	X	 	
	1-2400		

Y[2]

- (ii) Give the use of the input R in this circuit.
 - ______[1

4 The following truth table represents a logic circuit with three inputs and two outputs.

	INPUT		ОИТ	PUT
Α	В	С	X	Y
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

a)	Write the	Boolean	expressions	for the	truth	table a	s sum-of-	products.
----	-----------	---------	-------------	---------	-------	---------	-----------	-----------

X	=	 																																					 																
	• • • • •	 • • • • •	• • • •	•••	••••	•••	•••	•••	•••	•••	•••	•••	• • •	•••	• • •	•	•	•••	•	•••	•••	•••	•••	•	• • •	• • •	••	•••	• • •	•	•	•••	•	•••	•••	•••	• • •	•••	 •••	• • •	•••	• • •	•	••	•••	•	•	•	•••	•••	•••	•••	• • •	•	•••
Υ	=	 																																					 																
		 												•••							٠.											٠.							 				٠.											٠	

(b) Complete the Karnaugh Maps (K-maps) for the truth table.

			B	
	00	01	11	10
0				
1				

			PUT Y .B	
	00	01	11	10
0				
1				

[2]

[4]

- (c) The K-maps can be used to simplify one of the expressions in part (a).
 - (i) Draw loop(s) around appropriate group(s) of 1s to produce an optimal sum-of-products for the single output table that can be simplified in **part (b)**. [3]
 - (ii) Write the simplified sum-of-products expressions for this output from part (c)(i).

	-
aring and are the companies and a recommendation and a recommendation and a recommendation and a recommendation are the companies and a recommendation and a recommendation are the companies are the companies and a recommendation are the companies are the	- 3

(d)	Identify the common logic circuit given by the truth table in part (a). Give the use of each output.
	Logic circuit
	Use of X
	Use of Y
	[3]

4 The following truth table represents a logic circuit with three inputs and two outputs.

	INPUT		OUT	PUT
Α	В	С	X	Y
0	0	0	1	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

(a)	Write the	Boolean e	expressions	for the	truth	table a	as sum-	of-products.
-----	-----------	-----------	-------------	---------	-------	---------	---------	--------------

[3]

(b) Complete the Karnaugh Maps (K-maps) for the truth table.

		OUTF	Y TU					OUT	PUT Y	
		A	В					A	В	
	00	01	11	10			00	01	11	10
0						0				
1					С	1				

- (c) The K-maps can be used to simplify one of the expressions in part (a).
 - (i) Draw loop(s) around appropriate group(s) of 1s to produce an optimal sum-of-products for the single output table that can be simplified in **part** (b). [2]
 - (ii) Write the simplified sum-of-products expressions for this output from part (c)(i).

......[2]

Question 4

5 Complete these statements about flip-flops.

A flip-flop is a

It has stable states.

A flip-flop is used for

There are different types of flip-flop, for example and

[5]

.....

Question 5

3 (a) The following logic circuit can be simplified to use only one gate.

Give the name of this single gate.

______[1]

(b) (i) Complete the truth table for the logic circuit.

Α	В	Working space	X	Y
0	0			
0	1			
1	0			
1	1			

										[2]
	(ii)	Give	the name o	f the logic	c circuit th	at has thi	s truth table.			
										[1]
	(iii)	Give	the uses fo	r outputs	X and Y.					
		X								
		Υ								
										[2]
(c)	Cons	ider th	ne following	Boolean	algebraio	c express	ion:			
		Ā. B	$\overline{C} \cdot \overline{D} + \overline{A}$. B . C . I	D + A.B	. C . D +	- Ā. B. C.	D + A.B.	\overline{C} . \overline{D}	
	Use E	Boolea	an algebra t	o simplify	the expr	ression. S	Show your w	orking.		
	Work	ing								
	Simp	lified 6	expression							[5]

3 (a) A Boolean algebraic expression produces the following truth table.

	INPUT					
Α	В	С	X			
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	1			
1	0	1	1			
1	1	0	0			
1	1	1	0			

(i) Complete the Karnaugh Map (K-map) for the truth table.

AB

		00	01	11	10
С	0				
	1				

The K-map can be used to simplify the expression that produced the truth table in part (a).

[1]

- (ii) Draw loops around appropriate groups of 1s in the K-map to produce an optimal sum-of-products. [2]
- (iii) Write the simplified sum-of-products Boolean expression for the truth table.

	-
1	$\Gamma \gamma$
_	-

(b) A logic circuit with four inputs produces the following truth table.

	INPUT							
Α	В	С	D	X				
0	0	0	0	0				
0	0	0	1	0				
0	0	1	0	1				
0	0	1	1	1				
0	1	0	0	0				
0	1	0	1	0				
0	1	1	0	1				
0	1	1	1	1				
1	0	0	0	1				
1	0	0	1	1				
1	0	1	0	0				
1	0	1	1	0				
1	1	0	0	1				
1	1	0	1	1				
1	1	1	0	0				
1	1	1	1	0				

(i) Complete the K-map for the truth table.

[4]

(ii) Draw loops around appropriate groups of 1s in the K-map to produce an optimal sum-of-products. [2]

(iii) Write the simplified sum-of-products Boolean algebraic expression for the truth table.

4 A Boolean expression produces the following truth table.

	INPUT		OUTPUT
Α	В	С	Х
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(a)	Write the	Boolean	expression	for the	truth	table	as	a sum-of	-products
-----	-----------	---------	------------	---------	-------	-------	----	----------	-----------

X =[2]

(b) Complete the Karnaugh Map (K-map) for the truth table above.

AB

		00	01	11	10
С	0				
	1				

[1]

The K-map can be used to simplify the expression in part (a).

- (c) Draw loops around appropriate groups in the K-map in **part (b)** to produce an optimal sum-of-products. [2]
- (d) Write, using your answer to part (c), a simplified sum-of-products expression for the truth table.

X =[2]

2 (a) A Boolean expression produces the following truth table.

	INPUT	INPUT				
A	В	С	X			
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	1			
1	0	1	1			
1	1	0	0			
1	1	1	0			

(i) \	Write the Bo	oolean	expression	for the	truth	table b	y applying	the s	um-of-p	roducts.
-------	--------------	--------	------------	---------	-------	---------	------------	-------	---------	----------

X =	•••
	31

(ii) Complete the Karnaugh Map (K-map) for the truth table in part (a).

AB

		00	01	11	10
C	0				
	1				

[1]

The K-map can be used to simplify the function in part (a)(i).

- (iii) Draw loop(s) around appropriate groups in the table in **part (a)(ii)**, to produce an optimal sum-of-products. [2]
- (iv) Write, using your answer to **part** (a)(iii), a simplified Boolean expression for your Karnaugh map.

			$(\overline{\overline{W}} + X)$			s. Show yo		
								[3]
uestio	n 9							
	Boolean express	ion produc	es the fo	llowing	truth ta	hle		
(4)		- Produc	INPU			OUTPUT	7	
		Α	В	<u> </u>	С	X	-	
		0	0		0	0	-	
		0	0		1	0		
		0	1		0	1	-	
		0	1		1	1		
		1	0		0	1		
		1	0		1	1		
		1	1		0	0		
		1	1		1	0		
(i) Write the Book	ean expres	ssion for	the truth	table a	as a sum-of	-products.	
	X =							F:
(ii)								[
(ii)	Complete the k	karriaugii i	viap (K-ii			ın table in F	Jart (a)(i).	
				Α	В			
			00	01	11	10		
		0						
	С	1						
- .								
ın	ne K-map can be u	usea to sin	nplity the	tunctio	n ın pa	rt (a)(ı).		
(iii)	Draw loop(s) a for the table in			group(s) of 1s	to produce	an optimal sum-of-p	rodu
	ioi trio table iri	(/(/						
(iv)				cts expr	ession	for your an	swer to part (a)(iii) .	

(b) A logic circuit with four inputs produces the following truth table.

	INPUT						
Α	В	С	D	х			
0	0	0	0	0			
0	0	0	1	0			
0	0	1	0	0			
0	0	1	1	0			
0	1	0	0	1			
0	1	0	1	1			
0	1	1	0	1			
0	1	1	1	1			
1	0	0	0	0			
1	0	0	1	0			
1	0	1	0	0			
1	0	1	1	0			
1	1	0	0	1			
1	1	0	1	1			
1	1	1	0	0			
1	1	1	1	0			

(i) Complete the K-map that corresponds to the truth table.

CD AB

(ii) Draw loop(s) around appropriate group(s) of 1s to produce an optimal sum-of-products for the table in **part** (b)(i). [2]

(iii) Write the simplified sum-of-products expression for your answer to part (b)(ii).

X =[2]

[4]

4 (a) A Boolean expression corresponds to the following truth table.

	INPUT					
Α	В	С	X			
0	0	0	0			
0	0	1	0			
0	1	0	0			
0	1	1	1			
1	0	0	0			
1	0	1	1			
1	1	0	1			
1	1	1	1			

(i)	Write the Boolean	expression for	the truth	table by	applying t	the sum-of-	products
-----	-------------------	----------------	-----------	----------	------------	-------------	----------

(ii) Complete the Karnaugh Map (K-map) for the truth table.

AE

		00	01	11	10
С	0				
	1				

[1]

(iii) The K-map can be used to simplify the expression in part (a)(i).

Draw loop(s) around appropriate groups of 1s in the table in **part (a)(ii)** to produce an optimal sum-of-products. [3]

(iv) Write the simplified sum-of-products expression for your answer to part (a)(iii).

X =[3]

(b) A logic circuit with four inputs produces the following truth table.

	INF	TUT		OUTPUT
A	В	С	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

(i) Complete the K-map that corresponds to the truth table.

AB

CD

[4]

- (ii) Draw loop(s) around appropriate groups of 1s in the table in part (b)(i) to produce an optimal sum-of-products. [2]
- (iii) Write the simplified sum-of-products expression for your answer to part (b)(ii).

X =[2]

3 (a) Consider the following Boolean expression.

$$A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

Use Boolean algebra to simplify the expression.

[4]

(b) (i) Complete the truth table for the following logic circuit.

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(ii) Complete the Karnaugh Map (K-map) for the truth table in part (b)(i).

AB

		00	01	11	10
С	0				
	1				

[1]

- (iii) Draw loops around appropriate groups of 1s in the table in **part (b)(ii)** to produce an optimal sum-of-products. [2]
- (iv) Using your answer to part (b)(iii), write a simplified sum-of-products Boolean expression.

V	,		١٦
-		12	-
$\boldsymbol{\Lambda}$	_	 	_ 1

(c) The truth table for a logic circuit with four inputs is shown.

	ОИТРИТ			
Α	В	С	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

(i) Complete the K-map for the truth table in part (c).

[4]

- (ii) Draw loops around appropriate groups of 1s in the table in **part** (c)(i) to produce an optimal sum-of-products. [2]
- (iii) Using your answer to part (c)(ii), write a simplified sum-of-products Boolean expression.

Question 12

3 Consider the following logic circuit, which contains a redundant logic gate.

(a) Write the Boolean algebraic expression corresponding to this logic circuit.

V	_		Q	1
^	. –	· · · · · · · · · · · · · · · · · · ·	U	J

(b) Complete the truth table for this logic circuit.

Α	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(c) (i) Complete the Karnaugh Map (K-map) for the truth table in part (b).

		AB					
		00	01	11	10		
С	0						
C	1						

The K-map can b	e used to sim	polify the expre	ession in	part (a)
THE IT HIMD CALL D	c docd to on	IDIII V LITO CADIC		Duit lui

(ii) Draw loop(s) around appropriate groups to produce an optimal sum-of-products. [2]

(iii) Write a simplified sum-of-products expression, using your answer to part (ii).

[1]

(d) One Boolean identity is:

$$A + \overline{A}.B = A + B$$

Simplify the expression for X in part (a) to the expression for X in part (c)(iii). You should use the given identity.

[2]

Question 13

3 A logic circuit is shown:

(a) Write the Boolean algebraic expression corresponding to this logic circuit:

(b) Complete the truth table for this logic circuit:

P	Q	R	Working space	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[2]

(c) (i) Complete the Karnaugh Map (K-map) for the truth table in part (b).

			P	Q	
		00	01	11	10
_	0	i.			
R	1				

[1]

The K-map can be used to simplify the function in part (a).

- (ii) Draw loop(s) around appropriate groups to produce an optimal sum-of-products. [1]
- (iii) Write a simplified sum-of-products expression, using your answer to part (ii).

(d) One Boolean identity is:

$$(A + B) \cdot C = A \cdot C + B \cdot C$$

Simplify the expression for S in part (a) to the expression for S in part (c)(iii).

You should use the given identity and De Morgan's Laws.

1	
1	
	[3]

5 (a) (i) Complete the truth table for this 2-input NAND gate:

Α	В	X
0	0	
0	1	
1	0	
1	1	

[1]

(ii) Complete the truth table for this 3-input NAND gate:

X	C	В	A
	0	0	0
	1	0	0
	0	1	0
	1	1	0
	0	0	1
	1	0	1
	0	1	1
	1	1	1

[1]

(b) A SR flip-flop is constructed using two NAND gates.

(i) Complete the truth table for the SR flip-flop:

	S	R	Q	Q
Initially	1	0	0	1
R changed to 1	1	1		
S changed to 0	0	1		
S changed to 1	1	1		
S and R changed to 0	0	0	1	1

[3]

(ii) The final row in the table in part b(i) shows that the output for both Q and C) is 1	١.

explain why this is a problem.	
	. [2]

(c) Another type of flip-flop is the JK flip-flop.

A JK flip-flop is constructed as follows:

(i) Complete this truth table for the JK flip-flop.

			Working space	Working space Initial values		Final values		
J	K	Clock			Q	Q	Q	
0	0	1		1	0	1	0	
0	0	1		0	1	0	1	
0	1	1		1	0	0	1	
0	1	1		0	1	0	1	
1	0	1		1	0	;: ::		
1	0	1		0	1			
1	1	1		1	0			
1	1	1		0	1			

	(11)	explain why the JK tilp-flop is an improvement on the SK tilp-flop.	
			[2]
(d)	Exp	ain the role of flip-flops in a computer.	
			[2]

5 (a) Complete the truth table for this NOR gate:

A	В	X
0	0	
0	1	
1	0	
1	1	

[1]

A SR flip-flop is constructed using two NOR gates.

(b) Complete the truth table for the SR flip-flop:

	S	R	Q	Q
Initially	1	0	1	0
S changed to 0	0	0		
R changed to 1	0	1		
R changed to 0	0	0		
S and R changed to 1	1	1		

[4]

Anc	uner	type of hip-hop is the JK hip-hop. The JK hip-hop is an improvement on the SK hip-hop.
(c)	(i)	The JK flip-flop has three inputs. Two of the inputs are the Set (J) and the Reset (K).
		State the third input.
		[1]
	(ii)	There are two problems with the SR flip-flop that the JK flip-flop overcomes.
		State each problem and state why it does not occur for the JK flip-flop.
		Problem 1
		Problem 2
		[4]
		19

5 (a) Complete the truth table for this NAND gate:

Α	В	X
0	0	
0	1	
1	0	
1	1	

[1]

A SR flip-flop is constructed using two NAND gates.

(b) (i) Complete the truth table for the SR flip-flop.

	S	R	Q	Q
Initially	1	0	0	1
R changed to 1	1	1		
S changed to 0	0	1		
S changed to 1	1	1		
S and R changed to 0	0	0		

ı	۷	ļ	ı	
L		•	J	

(ii)	One of the combinations in the truth table should not be allowed to occur.
	State the values of S and R that should not be allowed. Justify your choice.
	S = R =

Another type of flip-flop is the JK flip-flop.

(c) (i	i)	Give one	extra	input	present	in '	the	JK	flip-flop.	
--------	----	----------	-------	-------	---------	------	-----	----	------------	--

F41

(ii) Give one advantage of the JK flip-flo	lop	flip-	JK	the	of	advantage	one	Give	(ii)
--	-----	-------	----	-----	----	-----------	-----	------	------

[4]

(ď	Describe	the	role of	flip-flops	in a	computer
----	----------------------------	-----	---------	------------	------	----------

	[2]

Question 17

4 (a) (i) Complete the truth table for this logic circuit.

Inp	out	Out	put
X	Y	Α	В
0	0		
0	1		
1	0		
1	1		

[2]

(ii) State the name given to this logic circuit.

[1	1
 יו	٠,

ii)	Name the labels usually given to A and B .
	Label A
	Label B
	Explain why your answers are more appropriate for the A and B labels.
	[4]
(b) (i) Write the Boolean expression corresponding to the following logic circuit:
	A —
	B—————————————————————————————————————
	c—
	[2]
(ii) Use Boolean algebra to simplify the expression that you gave in part (b)(i).
	Show your working.
	[3]

5 (a) (i) A half adder is a logic circuit with the following truth table.

Inp	out	Out	put
X	Y	A	В
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

The following logic circuit is constructed.

Complete the following truth table for this logic circuit.

Input		Input Working space			
P	Q	R		J	K
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
11	0	1			
1	1	0			
1	1	1			

(ii)	State the name given to this logic circuit.	
	Ī	

[2]

(iii)	Name the labels usually given to ${f J}$ and ${f K}$.							
	Label J							
	Label K							
	Explain why your answers are appropriate labels for these outputs.							
	[4]							
(b) (i)	Write down the Boolean expression corresponding to the following logic circuit:							
	A B X							
	c							
	[2]							
(ii)								
	Show your working.							
	[4]							

4 (a) (i) Complete the truth table for this logic circuit:

		Working space		
Α	В		X	
0	0			
0	1			
1	0			
11	1			

[1]

(ii) Complete the truth table for this logic circuit:

	Working space			
Α	В		X	
0	0			
0	1			
1	0		1	
1	1			

[1]

(b)	A st	tudent decides to write an equation for ${\bf X}$ to represent the full behaviour of each logic uit.
	(i)	Write the Boolean expression that will complete the required equation for ${\bf X}$ for each circuit:
		Circuit 1: X =
		Circuit 2: X =[2]
	(ii)	Write the De Morgan's Law which is shown by your answers to part (a) and part (b)(i).
(c)	Wri	te the Boolean algebraic expression corresponding to the following logic circuit:
		A B - X
		[3]
(d)	Usi	ng De Morgan's laws and Boolean algebra, simplify your answer to part (c).
		ow all your working.
		rol
		[3]

5 (a) (i) Complete the Boolean function that corresponds to the following truth table.

	OUTPUT		
Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$X = \overline{A} \cdot B \cdot C +$$
 [3]

The part to the right of the equals sign is known as the sum-of-products.

(ii) For the truth table above complete the Karnaugh Map (K-map).

		AB			
		00	01	11	10
С	0				
C	1				

[1]

The K-map can be used to simplify the function in part(a)(i).

- (iii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]
- (iv) Using your answer to part (a)(iii), write the simplified sum-of-products Boolean function.

X =[2]

(b) The truth table for a logic circuit with four inputs is given below:

	OUTPUT			
Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

(i) Complete the K-map corresponding to the truth table above.

[4]

(ii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products.

(iii) Using your answer to part (b)(ii), write the simplified sum-of-products Boolean function.

X =[2]

5 (a) (i) Complete the Boolean function that corresponds to the following truth table.

	OUTPUT		
Р	Q	R	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$Z = P \cdot \overline{Q} \cdot \overline{R} + \dots$$
 [3]

The part to the right of the equals sign is known as the sum-of-products.

(ii) For the truth table above complete the Karnaugh Map (K-map).

		PQ				
		00	01	11	10	
R	0					
n	1					

[1]

The K-map can be used to simplify the function in part(a)(i).

- (iii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]
- (iv) Using your answer to part (a)(iii), write the simplified sum-of-products Boolean function.

(b) The truth table for a logic circuit with four inputs is given below:

	OUTPUT			
Р	Q	R	S	Z
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1

(i) Complete the K-map corresponding to the truth table above.

[4]

(ii) Draw loop(s) around appropriate groups of 1's to produce an optimal sum-of-products. [2]

(iii) Using your answer to part (b)(ii), write the simplified sum-of-products Boolean function.

Z =[2