Übung zu Peer-to-Peer und Cloud Computing

Übungstermin 06: Besprechung des Übungsblattes 05

Dominik Rauh

12. Dezember 2018

Universität Augsburg Institut für Informatik Lehrstuhl für Organic Computing

Gegebenes CAN

- · leeres CAN
- Zonenteilung
 - · in der Mitte der längeren Seite
 - sind die Seiten gleich lang, in der ersten Dimension (also vertikal)
- · Teilzone neuer Knoten
 - · bei vertikaler Teilung: rechts
 - · bei horizontaler Teilung: oben

In dieses CAN ordnen sich nun nacheinander

neun Knoten ein. Zeichnen Sie die

zweidimensionale Struktur des Netzwerks nach

jedem neu hinzugefügten Knoten!

Sich einordnende Knoten

$$\cdot v_1 = (0,70;0,60)$$

$$\cdot v_2 = (0,20;0,20)$$

$$\cdot v_3 = (0,70;0,20)$$

$$\cdot v_4 = (0,40;0,90)$$

$$V_5 = (0,90;0,90)$$

$$\cdot v_6 = (0.90; 0.40)$$

$$\cdot V_7 = (0,40;0,40)$$

$$\cdot v_8 = (0,40;0,60)$$

$$V_9 = (0,20;0,60)$$

Struktur des CANs i

Struktur des CANs ii

Struktur des CANs iii

1				. 1.			
1	V ₄ (01)	<i>v</i> ₃ (110)	o V ₅ (111)	'	v ₄ (01)	V ₃ (110)	V ₅ (111)
0	v ₁ (00)	V ₂ (10)	0	v ₁ (00)	v ₂ (100)	v ₆ (101)
()			1 0)		1

Struktur des CANs iv

1	V4 ((01)	V ₃ (110)	V ₅ (111)
0	v ₁ (000)	o V ₇ (001)	v ₂ (100)	v ₆ (101)
()			1

1				
	V ₄ (010)	V ₈ (011)	V ₃ (110)	V ₅ (111)
0	V ₁ (000)	<i>v</i> ₇ (001)	v ₂ (100)	V ₆ (101)
ď)			-

Struktur des CANs v

1				
'	V ₉ (0101)	V ₈	V ₃	V ₅
	V ₄	(011)	(110)	(111)
	(010 %)			
	V ₁ (000)	V ₇ (001)	V ₂ (100)	V ₆ (101)
0)			,

Zeichnen Sie den Partitionsbaum des

endgültigen Netzwerks.

Partitionsbaum des CANs

Zeichnen Sie die virtual IDs (VIDs) in alle Zwischenschritte ein.

VIDs des CANs i

VIDs des CANs ii

VIDs des CANs iii

1				. 1.			
ı	V ₄ (01)	<i>v</i> ₃ (110)	o V ₅ (111)	'	V ₄ (01)	V ₃ (110)	V ₅ (111)
0	v ₁ (00)	V ₂ ((10)	0	v ₁ (00)	v ₂ (100)	v ₆ (101)
()		,	1 ()		1

VIDs des CANs iv

1					. 1				
1	V4 ((01)	<i>v</i> ₃ (110)	<i>V</i> ₅ (111)	1	V ₄ (010)	V ₈ (011)	V ₃ (110)	v ₅ (111)
0	v ₁ (000)	o V ₇ (001)	v ₂ (100)	v ₆ (101)	0	v ₁ (000)	v ₇ (001)	v ₂ (100)	v ₆ (101)
()				1 ()			

VIDs des CANs v

1				
1	V ₉ (0101)	V ₈	V ₃	V ₅
	V ₄ (010 °)	(011)	(110)	(111)
	V ₁ (000)	V ₇ (001)	V ₂ (100)	V ₆ (101)
0 ()			,

 v_8 meldet seinen Austritt. Auf welche Weise

sollte sich das Netzwerk verändern?

Takeover-Knoten von V_8

- · Geschwisterteil v von v₈ ist kein Blatt
- somit Tiefensuche im Teilbaum $t_v \setminus \{v_8\}$ (bis Blatt gefunden)
- v₉ wird als Blatt gefunden (oder v₄)
 - ⇒ *v*₉ wird Takeover-Knoten
- \cdot Zusammenführen der Zonen von v_8 und v_9 nicht möglich
 - ⇒ zwei neue Netzwerkstrukturen möglich

Zonenmanagement: Möglichkeit 1

 v_9 managt Zone von v_8 bis neuer Knoten in v_9 beitritt und übergibt diese an ihn

1	V 9			
	(0101)	V9	V ₃	V ₅
	V ₄ (0100)	(011)	(110)	(111)
	V ₁ (000)	V ₇ (001)	v ₂ (100)	V ₆ (101)
0 ()			

Zonenmanagement: Möglichkeit 2

die Zone von v_9 's Geschwisterteil v_4 wird mit der von v_9 zusammengelegt und nun von v_4 verwaltet; v_9 übernimmt Zone von v_8

1				
•	V ₄ (010)	V ₉ (011)	<i>v</i> ₃ (110)	V ₅ (111)
0	V ₁ (000)	v ₇ (001)	V ₂ (100)	v ₆ (101)
()			1

den Partitionsbaum nicht, sondern nur die VIDs ihrer Nachbarn. Beschreiben Sie den

In Echtwelt-Netzwerken kennen die Knoten

benutzt wird!

Ablauf des Austritts von V_8 , wenn für die

Recovery-Nachrichten Greedy Forwarding

Zwei mögliche Antworten!

Fall: V₈ verlässt das Netzwerk *gracefully*

- · kann v₉ (oder v₄) vorher noch direkt ansprechen
- v_9 (oder v_4) übernimmt wie in a) beschrieben die Zone von v_8
- \cdot v_8 kann auch noch seine anderen Nachbarn über seine Wahl des Takeover-Knoten benachrichtigen

Fall: V_8 versagt (Nachbarauswahl: numerisch)

Nachbarn (v_3 , v_4 , v_7 , v_9) erkennen Versagen

- \Rightarrow Recovery-Nachricht an Nachbarn, dessen VID der von v_8 am nächsten ist
- \Rightarrow als Takeover-Knoten werden identifiziert: v_2 und v_4

Alternative Nachbarauswahl

- · längste Präfixübereinstimmung
- · Mehrere gleichgeeignete? Zufällige Auswahl!
- Keiner geeigneter aber jemand genauso geeignet wie aktueller Knoten? Zufällige Auswahl eines Nachbarn!
- Keiner geeigneter oder genauso geeignet wie aktueller Knoten? Aktueller Knoten ist Takeover-Knoten!
- · Recovery-Nachricht nie zurückschicken

Fall: V_8 versagt (Nachbarauswahl: längstes Präfix)

Nachbarn (v_3, v_4, v_7, v_9) erkennen Versagen

 \Rightarrow als Takeover-Knoten wird identifiziert (unabhängig von Zufall): v_9

Welches Problem tritt dabei auf?

Problem mit VID-basiertem Greedy Forwarding

- bei numerischer Nachbarauswahl: sowohl v_2 und v_4 werden als Takeover-Knoten ausgewählt
 - ⇒ Inkonsistenz!
- außerdem: Ausfall mehrerer Knoten
 ⇒ einzelne Recovery-Nachrichten erreichen
 möglicherweise den eigentlichen Takeover-Knoten nicht

Lösung für das Problem? Wie funktioniert sie?

Lösungsidee

- Aufbauen eines Chord-Ringes (aka Linked List) durch alle Knoten
- Benutzen von Chord-Routing statt (oder in Kombination mit) Greedy Forwarding

