Computación y Algebra Lineal G. Quintana

Apéndice 02. Householder por Bloques

Transform. de Householder

Apéndice 02. Householder por Bloques

Gregorio Quintana ©

Departamento de Ingeniería y Ciencia de Computadores
Universidad Jaume I

Curso 2023-24

Contenido

Apéndice 02. Householder por Bloques

Transform. de Householder

Transformaciones de Householder

Apéndice 02. Householder por Bloques

Transform. de Householder

Transformaciones de Householder

Transformaciones de Householder Escalares

Apéndice 02. Householder por Bloques

Transform. de Householder • Una transformación de Householder H se define como:

$$H = I - \beta v v^{T} = \begin{pmatrix} \bullet & & \\ & \bullet & \\ & & \bullet \end{pmatrix} - (\bullet) \begin{pmatrix} \bullet & \\ \bullet & \\ \bullet & \end{pmatrix} (\bullet \bullet \bullet \bullet)$$

• Si se elige una transformación de Householder *H* adecuada, se pueden poner varios ceros en un vector, sin modificar la norma total.

$$H v = H \begin{pmatrix} \bullet \\ \bullet \\ \bullet \\ \bullet \end{pmatrix} = H \begin{pmatrix} \bullet \\ \circ \\ \circ \\ \circ \end{pmatrix}$$

• A la hora de aplicar las transformaciones de Householder, éstas no se construyen explícitamente. ¿Por qué?

Transformaciones de Householder Escalares (Cont.)

Apéndice 02. Householder por Bloques

G. Quintana

Transform. de Householder • Las transformaciones de Householder se aplican mediante el empleo de la fórmula anterior:

$$HA = (I - \beta v v^T) A = A - \beta v v^T A$$

 La fórmula anterior se puede desglosar en los siguientes pasos:

$$2 A - \beta v w = \begin{pmatrix} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \end{pmatrix} - (\cdot) \begin{pmatrix} \cdot \\ \cdot \end{pmatrix} (\cdot \cdot \cdot)$$

• ¿Son eficientes estas operaciones?

Reflectores de Householder por Bloques

Apéndice 02. Householder por Bloques

Transform. de Householder Muchas veces se desean aplicar varias transformaciones de Householder.

$$H_1 H_2 \cdots H_b A$$

- Si se aplican una a una, las prestaciones no serán muy altas.
- El producto de varias transformaciones se puede reescribir:

$$H_1 H_2 \cdots H_b = (I - \beta_1 v_1 v_1^T)(I - \beta_2 v_2 v_2^T) \cdots (I - \beta_b v_b v_b^T)$$

$$= I - Y S^T Y^T,$$
donde Y tiene b columnas y S es $b \times b$.

Reflectores de Householder por Bloques (Cont.)

Apéndice 02. Householder por Bloques

Transform. de Household<u>er</u>

- ullet Además, las matrices Y y S tienen una forma especial.
- Por ejemplo, si n=11 y b=4 (se combinan cuatro reflectores), las matrices Y y S tienen la siguiente forma:

Reflectores de Householder por Bloques (Cont.)

Apéndice 02. Householder por Bloques

Transform. de Householder La aplicación de varias transformaciones de Housholder a una matriz A se puede reescribir como:

$$H_1 H_2 \cdots H_b A = (I - Y S^T Y^T) A = A - Y S^T Y^T A$$

- La fórmula anterior se puede desglosar en los siguientes pasos:

 - $W = S^T W$
 - \bullet A YW
- ¿Son eficientes estas operaciones?