CHAPTER 2: QUADRATIC EXPRESSION AND EQUATION

3 basic techniques in solving quadratic equation questions

- 1. Solve the quadratic equations
- 2. Form a quadratic equation
- 3. Determine the conditions for the type of roots
 - 1. Solve the quadratic equations
 - Factorization

Factorization is the decomposition of a number into the product of the other numbers, example 12 could be factored into 3x4,2x6 and 1x12.

Example: Solve $x^2 + 7x + 12$

2. Form a quadratic equation

Example; 5x^2-2x-2=0

Answer:

$$5x^2 - 2x - 2 = 0$$

 $a = 5, b = -2, c = -2$

SOR,
$$\alpha + \beta = -\frac{b}{a}$$
 POR, $\alpha\beta = \frac{c}{a}$

$$= -\frac{-2}{5}$$

$$= \frac{2}{5}$$

Step by step:

- Find out the SOR & POR
 calculate NEW SOR & POR
 using the given roots
- 3) Work out the equation using $x^2 (SOR)x + (POR) = 0$

Given roots are $(\alpha - 5)$ and $(\beta - 5)$

New SOR=
$$\alpha$$
-5+ β -5
= α + β -10
= $\frac{2}{5}$ -10
= $\frac{48}{5}$

New POR=
$$(\alpha - 5)(\beta - 5)$$

= $\alpha\beta - 5\alpha - 5\beta + 25$
= $\alpha\beta - 5(\alpha + \beta) + 25$
= $-\frac{2}{5} - 5\left(\frac{2}{5}\right) + 25$
= $\frac{113}{5}$

Equation
$$\rightarrow x^2 - (SOR)x + (POR) = 0$$

$$x^2 - \left(-\frac{48}{5}\right)x + \left(\frac{113}{5}\right) = 0$$
$$5x^2 + 48x + 113 = 0$$

3. Determine the conditions for the type of roots

Discriminant	Type of roots	Relation
If $b^2 - 4ac > 0$	It has 2 different roots or 2 distinct roots	1
$\mathbf{If}\ b^2 - 4ac = 0$	It has 2 equal roots	tangent
If $b^2 - 4ac < 0$	It has no roots or no real roots.	
If $b^2 - 4ac \ge 0$	It has 2 real roots	