随机样本

- 一、总体与个体
- 二、随机样本的定义

一、总体与个体

1. 总体

试验的全部可能的观察值称为总体.

2. 个体 总体中的每个可能观察值称为个体.

实例1 在研究2000名学生的年龄时,这些学生的年龄的全体就构成一个总体,每个学生的年龄就是个体.

3. 有限总体和无限总体

实例2 某工厂10月份生产的灯泡寿命所组成的总体中,个体的总数就是10月份生产的灯泡数,这是一个有限总体;而该工厂生产的所有灯泡寿命所组成的总体是一个无限总体,它包括以往生产和今后生产的灯泡寿命.

有限总体包含的个体的总数很大时,可近似地将它看成是无限总体.

4. 总体分布

实例3 在2000名大学一年级学生的年龄中,年龄指标值为"15","16","17","18", "19","20"的依次有9,21,132,1207,588, 43 名,它们在总体中所占比率依次为

$$\frac{9}{2000}$$
, $\frac{21}{2000}$, $\frac{132}{2000}$, $\frac{1207}{2000}$, $\frac{588}{2000}$, $\frac{43}{2000}$,

即学生年龄的取值有一定的分布.

一般地,我们所研究的总体,即研究对象的某项数量指标 X,其取值在客观上有一定的分布,X是一个随机变量.

总体分布的定义

我们把数量指标取不同数值的比率叫做总体分布.

如实例3中, 总体就是数集 {15, 16, 17, 18, 19, 20}. 总体分布为

年龄	15	16	17	18	19	20
比率	9	21	132	1207	588	43
	$\overline{2000}$	$\overline{2000}$	$\overline{2000}$	$\overline{2000}$	$\overline{2000}$	2000

二、随机样本的定义

1. 样本的定义

设 X 是具有分布函数 F 的随机变量,若 X_1, X_2 , ..., X_n 是具有同一分布函数 F、相互独立的随机变量,则称 $X_1, X_2, ..., X_n$ 为从分布函数 F (或总体 F、或总体 X) 得到的容量为 n 的简单随机样本,简称样本.

它们的观察值 x_1, x_2, \dots, x_n 称为样本值,又称为 X 的 n 个独立的观察值.

2. 简单随机抽样的定义

获得简单随机样本的抽样方法称为简单随机抽样.

则 X_1, X_2, \dots, X_n 的分布函数为

$$F * (x_1, x_2, \dots, x_n) = \prod_{i=1}^n F(x_i).$$

又若 X 具有概率密度 f,

则 X_1, X_2, \dots, X_n 的概率密度为

$$f * (x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i).$$

例4 设总体 X 服从参数为 $\lambda(\lambda > 0)$ 的指数分布, (X_1, X_2, \dots, X_n) 是来自总体的样本,求样本 (X_1, X_2, \dots, X_n) 的概率密度.

解 总体X的概率密度为 $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0, \end{cases}$

因为 X_1, X_2, \dots, X_n 相互独立,且与X有相同的分布,所以 (X_1, X_2, \dots, X_n) 的概率密度为

$$f_n(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i) = \begin{cases} \lambda^n e^{-\lambda \sum_{i=1}^n x_i}, & x_i > 0, \\ 0, & \text{ #.} \end{cases}$$

例5 设总体 X 服从两点分布 B(1,p), 其中 $0 , <math>(X_1, X_2, \dots, X_n)$ 是来自总体的样本,求样本 (X_1, X_2, \dots, X_n) 的分布律.

解 总体 X 的分布律为

$$P{X = i} = p^{i} (1-p)^{1-i}$$
 $(i = 0, 1)$

因为 X_1, X_2, \dots, X_n 相互独立,

且与X有相同的分布,

所以 (X_1, X_2, \dots, X_n) 的分布律为

$$P\{X_{1} = x_{1}, X_{2} = x_{2}, \dots, X_{n} = x_{n}\}$$

$$= P\{X_{1} = x_{1}\}P\{X_{2} = x_{2}\} \dots P\{X_{n} = x_{n}\}$$

$$= p^{\sum_{i=1}^{n} x_{i}} (1-p)^{n-\sum_{i=1}^{n} x_{i}}$$

其中 x_1, x_2, \dots, x_n 在集合 $\{0,1\}$ 中取值.

统计量

1. 统计量的定义

设 X_1, X_2, \dots, X_n 是来自总体 X 的一个样本, $g(X_1, X_2, \dots, X_n)$ 是 X_1, X_2, \dots, X_n 的函数,若g中不含未知参数,则称 $g(X_1, X_2, \dots, X_n)$ 是一个统计量.

设 x_1, x_2, \dots, x_n 是相应于样本 X_1, X_2, \dots, X_n 的样本值,则称 $g(x_1, x_2, \dots, x_n)$ 是 $g(X_1, X_2, \dots, X_n)$ 的观察值.

实例1 设 X_1, X_2, X_3 是来自总体 $N(\mu, \sigma^2)$ 的一个样本, 其中 μ 为已知, σ^2 为未知,判断下列各式哪些是统计 量,哪些不是?

$$T_1 = X_1,$$
 $T_2 = X_1 + X_2 e^{X_3},$ $T_3 = \frac{1}{3}(X_1 + X_2 + X_3),$ $T_4 = \max(X_1, X_2, X_3),$ $T_5 = X_1 + X_2 - 2\mu,$ $T_6 = \frac{1}{2}(X_1^2 + X_2^2 + X_3^2).$ 不是

 $T_6 = \frac{1}{\sigma^2} (X_1^2 + X_2^2 + X_3^2)$. 不是

2. 几个常用统计量的定义

设 $X_1, X_2, ..., X_n$ 是来自总体的一个样本, $x_1, x_2, ..., x_n$ 是这一样本的观察值.

其观察值
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
.

(2)样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2} \right).$$

其观察值

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2} \right).$$

(3)样本标准差

$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2};$$

其观察值
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
.

(4) 样本
$$k$$
 阶(原点)矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$, $k = 1, 2, \dots$;

其观察值
$$\alpha_k = \frac{1}{n} \sum_{i=1}^n x_i^k, k = 1, 2, \dots$$

(5)样本k阶中心矩

$$B_k = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k, k = 2, 3, \dots;$$

其观察值
$$b_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k, k = 2, 3, \dots$$

由以上定义得下述结论:

若总体 X 的 k 阶矩 $E(X^k)$ 记成 μ_k 存在,则当 $n \to \infty$ 时, $A_k \xrightarrow{P} \mu_k$, $k = 1, 2, \cdots$.

证明 因为 X_1, X_2, \dots, X_n 独立且与X同分布,

所以 $X_1^k, X_2^k, \dots, X_n^k$ 独立且与 X^k 同分布,

故有
$$E(X_1^k) = E(X_2^k) = \cdots = E(X_n^k) = \mu_k$$
.

再根据辛钦定理知

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\xrightarrow{P}\mu_{k}, \quad k=1,2,\cdots;$$

由第五章关于依概率收敛的序列的性质知

$$g(A_1,A_2,\cdots,A_k) \xrightarrow{P} g(\mu_1,\mu_2,\cdots,\mu_k),$$

其中g是连续函数.

3. 经验分布函数

总体分布函数 F(x) 相应的统计量称为经验分布函数.

经验分布函数的做法如下:

设 X_1, X_2, \dots, X_n 是总体F的一个样本,

用S(x)($-\infty < x < +\infty$)表示 X_1, X_2, \dots, X_n 中不大于x的随机变量的个数,

定义经验分布函数 $F_n(x)$ 为

$$F_n(x) = \frac{1}{n}S(x), \quad (-\infty < x < +\infty)$$

对于一个样本值, $F_n(x)$ 的观察值容易求得. $(F_n(x))$ 的观察值仍以 $F_n(x)$ 表示.)

实例2 设总体F具有一个样本值 1,2,3,

则经验分布函数 $F_3(x)$ 的观察值为

$$F_3(x) = \begin{cases} 0, & x < 1, \\ \frac{1}{3}, & 1 \le x < 2, \\ \frac{2}{3}, & 2 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$

实例3 设总体 F 具有一个样本值 1,1,2,

则经验分布函数 $F_3(x)$ 的观察值为

$$F_3(x) = \begin{cases} 0, & x < 1, \\ \frac{2}{3}, & 1 \le x < 2, \\ 1, & x \ge 2. \end{cases}$$

并重新编号, $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$,

则经验分布函数 $F_n(x)$ 的观察值为

$$F_n(x) = \begin{cases} 0, & x < x_{(1)}, \\ \frac{k}{n}, & x_{(k)} \le x < x_{(k+1)}, \\ 1, & x \ge x_{(n)}. \end{cases}$$

格里汶科定理

对于任一实数 x, 当 $n \to \infty$ 时, $F_n(x)$ 以概率 1 一 致收敛于分布函数 F(x), 即

$$P\left\{\lim_{n\to\infty}\sup_{-\infty< x<+\infty}\left|F_n(x)-F(x)\right|=0\right\}=1.$$

对于任一实数 x当n 充分大时,经验分布函数的任一个观察值 $F_n(x)$ 与总体分布函数 F(x) 只有微小的差别,从而在实际上可当作 F(x)来使用.

抽样分布

统计量的分布称为抽样分布.

1. χ² 分布

设 X_1, X_2, \dots, X_n 是来自总体 N(0,1) 的样本,则称统计量 $\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$ 服从自由度为n的 χ^2 分布,记为 $\chi^2 \sim \chi^2(n)$.

自由度:

指 $\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2$ 中右端包含独立变量的个数.

 $\chi^2(n)$ 分布的概率密度为

$$f(y) = \begin{cases} \frac{1}{2^{\frac{n}{2}}} \int_{0}^{\frac{n}{2}-1} e^{-\frac{y}{2}}, & y > 0 \\ \frac{2^{\frac{n}{2}}}{1} \int_{0}^{\frac{n}{2}-1} e^{-\frac{y}{2}}, & \pm \text{ i.} \end{cases}$$

证明 因为 $\chi^2(1)$ 分布即为 $\Gamma\left(\frac{1}{2},2\right)$ 分布,

又因为 $X_i \sim N(0,1)$, 由定义 $X_i^2 \sim \chi^2(1)$,

$$\mathbb{RP} X_i^2 \sim \Gamma\left(\frac{1}{2}, 2\right), \quad i = 1, 2, \dots, n.$$

因为 X_1, X_2, \dots, X_n 相互独立,

所以 $X_1^2, X_2^2, \dots, X_n^2$ 也相互独立,

根据 Γ 分布的可加性知 $\chi^2 = \sum_{i=1}^n X_i^2 \sim \Gamma\left(\frac{n}{2}, 2\right)$.

 $\chi^2(n)$ 分布的概率密度曲线如图.

χ^2 分布的性质

性质 $1(\chi^2)$ 分布的可加性)

设 $\chi_1^2 \sim \chi^2(n_1)$, $\chi_2^2 \sim \chi^2(n_2)$, 并且 χ_1^2 , χ_2^2 独立, 则 $\chi_1^2 + \chi_2^2 \sim \chi^2(n_1 + n_2)$.

(此性质可以推广到多个随机变量的情形.)

设 $\chi_i^2 \sim \chi^2(n_i)$, 并且 χ_i^2 ($i = 1, 2, \dots, m$) 相互独立, 则 $\sum_{i=1}^m \chi_i^2 \sim \chi^2(n_1 + n_2 + \dots + n_m)$.

性质2 (χ²分布的数学期望和方差)

若
$$\chi^2 \sim \chi^2(n)$$
, 则 $E(\chi^2) = n$, $D(\chi^2) = 2n$.

证明 因为
$$X_i \sim N(0,1)$$
, 所以 $E(X_i^2) = D(X_i) = 1$,

$$D(X_i^2) = E(X_i^4) - [E(X_i^2)]^2$$

$$= 3 - 2 = 1, i = 1, 2, \dots, n.$$

故
$$E(\chi^2) = E\left(\sum_{i=1}^n X_i^2\right) = \sum_{i=1}^n E(X_i^2) = n,$$

$$D(\chi^2) = D\left(\sum_{i=1}^n X_i^2\right) = \sum_{i=1}^n D(X_i^2) = 2n.$$

χ^2 分布的分位点

对于给定的正数 α , $0 < \alpha < 1$, 称满足条件

$$P\{\chi^2 > \chi_\alpha^2(n)\} = \int_{\chi_\alpha^2(n)}^\infty f(y) dy = \alpha$$

的点 $\chi_{\alpha}^{2}(n)$ 为 $\chi^{2}(n)$ 分布的上 α 分位点.

对于不同的 α ,n,可以通过查表求得上 α 分位点的值.

例1 设 X 服从标准正态分布 N(0,1), N(0,1) 的上

$$\alpha$$
 分位点 z_{α} 满足 $P\{X>z_{\alpha}\}=\frac{1}{\sqrt{2\pi}}\int_{z_{\alpha}}^{+\infty}e^{-\frac{x^{2}}{2}}dx=\alpha$,

求 z_{α} 的值,可通过查表完成.

$$z_{0.05} = 1.645$$
,

附表2-1

$$z_{0.025} = 1.96,$$

附表2-2

根据正态分布的对称性知 $z_{1-\alpha} = -z_{\alpha}$.

例2 设 $Z \sim \chi^2(n)$, $\chi^2(n)$ 的上 α 分位点满足

$$P\{Z>\chi_{\alpha}^{2}(n)\}=\int_{\chi_{\alpha}^{2}(n)}^{+\infty}\chi^{2}(y;n)\mathrm{d}y=\alpha,$$

求 $\chi^2_{\alpha}(n)$ 的值,可通过查表完成.

$$\chi^2_{0.025}(8) = 17.535$$
, \$\text{\text{\text{\$\psi_{\psi_4-1}\$}}}

$$\chi^2_{0.975}(10) = 3.247$$
, \$\text{M\figstartau} \pm_{\pm 4-2}\$

$$\chi^2_{0.1}(25) = 34.382.$$
 M $\frac{1}{84-3}$

附表4只详列到 n=45 为止.

费舍尔(R.A.Fisher)证明:

当
$$n$$
充分大时, $\chi^2_{\alpha}(n) \approx \frac{1}{2}(z_{\alpha} + \sqrt{2n-1})^2$.

其中 z_{α} 是标准正态分布的上 α 分位点.

利用上面公式,

可以求得 n > 45 时, 上 α 分位点的近似值.

例如
$$\chi_{0.05}^2(50) \approx \frac{1}{2}(1.645 + \sqrt{99})^2 = 67.221.$$

而查详表可得 $\chi^2_{0.05}(50) = 67.505$.

2.t 分布

设 $X \sim N(0,1), Y \sim \chi^2(n)$, 且 X, Y 独立,则称随机变量 $t = \frac{X}{\sqrt{Y/n}}$ 服从自由度为 n 的 t 分布,记为 $t \sim t(n)$.

t分布又称学生氏(Student)分布.

t(n) 分布的概率密度函数为

$$h(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{\pi n}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \quad -\infty < t < +\infty$$

t分布的概率密度曲线如图

显然图形是关于

t = 0对称的.

当 n 充分大时,其图形类似于标准正态变量概率密度的图形.

因为
$$\lim_{n\to\infty}h(t)=\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}},$$

所以当n 足够大时 t 分布近似于 N(0,1) 分布,但对于较小的n, t分布与N(0,1)分布相差很大.

t分布的分位点

对于给定的 α , $0 < \alpha < 1$, 称满足条件

$$P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t) dt = \alpha$$

的点 $t_{\alpha}(n)$ 为t(n)分布的上 α 分位点.

可以通过查表求得 上 α 分位点的值.

由分布的对称性知

$$t_{1-\alpha}(n) = -t_{\alpha}(n).$$

当n > 45时, $t_{\alpha}(n) \approx z_{\alpha}$.

例3 设 $T \sim t(n)$, t(n)的上 α 分位点满足

$$P\{T > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{+\infty} t(y; n) dy = \alpha,$$

求 $t_{\alpha}(n)$ 的值,可通过查表完成.

$$t_{0.05}(10) = 1.8125$$
, 附表3-1

$$t_{0.025}(15) = 2.1315.$$

附表3-2

3.F 分布

设 $U \sim \chi^2(n_1)$, $V \sim \chi^2(n_2)$, 且 U , V 独立,则称随 机变量 $F = \frac{U/n_1}{V/n_2}$ 服从自由度为 (n_1, n_2) 的 F 分布,记为 $F \sim F(n_1, n_2)$.

$F(n_1, n_2)$ 分布的概率密度为

$$\psi(y) = \begin{cases} \Gamma\left(\frac{n_1 + n_2}{2}\right) \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} y^{\frac{n_1}{2}-1} \\ \Gamma\left(\frac{n_1}{2}\right) \Gamma\left(\frac{n_2}{2}\right) \left[1 + \left(\frac{n_1y}{n_2}\right)\right]^{\frac{n_1+n_2}{2}}, & y > 0, \\ 0, & \text{其他.} \end{cases}$$

F分布的概率密度曲线如图

根据定义可知,

若
$$F \sim F(n_1, n_2),$$

则
$$\frac{1}{F} \sim F(n_2, n_1).$$

F 分布的分位点

对于给定的 α , $0 < \alpha < 1$, 称满足条件

$$P\{F > F_{\alpha}(n_1, n_2)\} = \int_{F_{\alpha}(n_1, n_2)}^{+\infty} \psi(y) dy = \alpha$$

的点 $F_{\alpha}(n_1,n_2)$ 为 $F(n_1,n_2)$ 分布的上 α 分位点.

例4 设 $F(n_1,n_2)$ 分布的上 α 分位点满足

$$P\{F > F_{\alpha}(n_1, n_2)\} = \int_{F_{\alpha}(n_1, n_2)}^{+\infty} \psi(y) dy = \alpha,$$

求 $F_{\alpha}(n_1, n_2)$ 的值,可通过查表完成.

$$F_{0.025}(7,8)=4.90,$$

附表5−1

$$F_{0.05}(14,30) = 2.31$$
. 附表5-2

F 分布的上 α 分位点具有如下性质:

$$F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}.$$

证明 因为
$$F \sim F(n_1, n_2)$$
,

所以
$$1-\alpha = P\{F > F_{1-\alpha}(n_1, n_2)\}$$

$$= P\left\{\frac{1}{F} < \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\} = 1 - P\left\{\frac{1}{F} \ge \frac{1}{F_{1-\alpha}(n_1, n_2)}\right\}$$

$$=1-P\bigg\{\frac{1}{F}>\frac{1}{F_{1-\alpha}(n_1,n_2)}\bigg\},\,$$

故
$$P\left\{\frac{1}{F}>\frac{1}{F_{1-\alpha}(n_1,n_2)}\right\}=\alpha,$$

因为
$$\frac{1}{F} \sim F(n_2, n_1)$$
, 所以 $P\left\{\frac{1}{F} > F_{\alpha}(n_2, n_1)\right\} = \alpha$,

比较后得
$$\frac{1}{F_{1-\alpha}(n_1,n_2)} = F_{\alpha}(n_2,n_1),$$

即
$$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$$
.

用来求分布表中未列出的一些上α分位点.

例
$$F_{0.95}(12,9) = \frac{1}{F_{0.05}(9,12)}$$
$$= \frac{1}{0.28} = 0.357.$$

4. 正态总体的样本均值与样本方差的分布

定理一

设 X_1, X_2, \dots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} 是样本均值,则有 $\overline{X} \sim N(\mu, \sigma^2/n)$.

正态总体 $N(\mu, \sigma^2)$ 的样本均值和样本方差有以下两个重要定理.

定理二

设 X_1, X_2, \dots, X_n 是总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} , S^2 分别是样本均值和样本方差,则有

(1)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1);$$

(2) \overline{X} 与 S^2 独立.

定理三 设 $X_1, X_2, ..., X_n$ 是总体 $N(\mu, \sigma^2)$ 的样本, \overline{X}, S^2 分别是样本均值和样本方差,则有

$$\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1).$$

证明 因为
$$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1), \frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1),$$

且两者独立,由 t 分布的定义知

$$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}/\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}\sim t(n-1).$$

定理四 设 $X_1, X_2, ..., X_{n_1}$ 与 $Y_1, Y_2, ..., Y_{n_2}$ 分别是具有相同方差的两正态总体 $N(\mu_1, \sigma^2), N(\mu_2, \sigma^2)$ 的样本,且这两个样本互相独立,

设
$$\overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i, \overline{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i$$
 分别是这两个样本的均

值;
$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \overline{X})^2$$
, $S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2$ 分

别是这两个样本的方差,则有

(1)
$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1, n_2-1);$$

(2)
$$\stackrel{\underline{\square}}{=} \sigma_1^2 = \sigma_2^2 = \sigma^2 \text{ iff},$$

$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

其中
$$S_w^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$$
, $S_w = \sqrt{S_w^2}$.

证明 (1) 由定理二

$$\frac{(n_1-1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1-1), \quad \frac{(n_2-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2-1),$$

由假设 S_1^2, S_2^2 独立,则由 F 分布的定义知

$$\frac{(n_1-1)S_1^2}{(n_1-1)\sigma_1^2} / \frac{(n_2-1)S_2^2}{(n_2-1)\sigma_2^2} \sim F(n_1-1,n_2-1),$$

$$\mathbb{P} \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1, n_2-1).$$

(2) 因为
$$\overline{X} - \overline{Y} \sim N\left(\mu_1 - \mu_2, \frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}\right)$$

所以
$$U = \frac{(X-Y)-(\mu_1-\mu_2)}{\sigma\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} \sim N(0,1),$$

$$\pm \frac{(n_1-1)S_1^2}{\sigma^2} \sim \chi^2(n_1-1), \quad \frac{(n_2-1)S_2^2}{\sigma^2} \sim \chi^2(n_2-1),$$

且它们相互独立,故由 χ^2 分布的可加性知

$$V = \frac{(n_1 - 1)S_1^2}{\sigma^2} + \frac{(n_2 - 1)S_2^2}{\sigma^2} \sim \chi^2(n_1 + n_2 - 2),$$

由于U与V相互独立,按t分布的定义.

$$\frac{U}{\sqrt{V/(n_1+n_2-2)}}$$

$$=\frac{(\overline{X}-\overline{Y})-(\mu_{1}-\mu_{2})}{S_{w}\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\sim t(n_{1}+n_{2}-2).$$