Introduction to program analysis

Material covered in chapter 2 of Introduction to Static Analysis: an Abstract Interpretation Perspective

Purpose of this lecture

We aim at describing the core concepts of static analysis by abstract interpretation, in an intuitive manner:

- concrete semantics
- abstraction
- abstract interpretation of basic program commands
- abstract iteration and widening (to analyze loops)

This presentation is done using a small language where programs describe sequences of transformations

No background required!

Outline

- A basic language
- 2 Abstraction
- Abstract interpretation
- 4 Abstract interpretation of a compositional semantics
- 5 Abstract interpretation of a transitional semantics
- Conclusion

Syntax

Intuition:

- imperative programs, with a graphical interpretation
- a state is a point in the two-dimensional plane (think of a pair of variables x, y)
- starting point in a given region
- basic operations are translations and rotations
- choices (conditions and loop iteration numbers) are non deterministic

Syntax

```
\begin{array}{lll} \mathtt{p} & ::= & \mathtt{init}(\mathfrak{R}) & \mathtt{initialization, with a state in } \mathfrak{R} \\ & | & \mathtt{translation}(u,v) & \mathtt{translation by vector } (u,v) \\ & | & \mathtt{rotation}(u,v,\theta) & \mathtt{rotation with center } (u,v) \ \mathtt{and angle } \theta \\ & | & \mathtt{p} \ \mathtt{p} & \mathtt{sequence of operations} \\ & | & \mathtt{p} \ \mathtt{or} \{\mathtt{p}\} & \mathtt{choice} \\ & | & \mathtt{iter} \{\mathtt{p}\} & \mathtt{iteration} \end{array}
```

States and executions

- A program state (or state) is a point in the 2D field
- A program execution is defined by a sequence of states

A basic program:

```
\begin{split} & \operatorname{init}([0,1] \times [0,1]); \\ & \operatorname{translation}(1,0); \\ & \operatorname{iter}\{ \\ & \{ \\ & \operatorname{translation}(1,0) \\ & \} \operatorname{or}\{ \\ & \operatorname{rotation}(0,0,90^\circ) \\ & \} \\ \} \end{split}
```

States and executions

- A program state (or state) is a point in the 2D field
- A program execution is defined by a sequence of states

Example executions:

Note: left execution is terminating; right execution is non-terminating

A verification problem

In this lecture, we fix a very simple target semantic property:

Property to verify

States in a given zone $\mathfrak D$ should not be reached by any execution

Example:
$$\mathfrak{D} = \{(x, y) \mid x < 0\}$$

Correct executions and incorrect execution

Some correct executions:

An incorrect execution:

Our goal

Set up a static analysis (no execution of the program required) to detect and report all possible incorrect executions

Outline

- A basic language
- 2 Abstraction
- Abstract interpretation
- 4 Abstract interpretation of a compositional semantics
- 5 Abstract interpretation of a transitional semantics
- Conclusion

Notion of abstraction: example of signs

Observation:

- sets of points contain far more information than necessary
- as a first step, we may retain only the signs of variables

Abstraction principle

Use **predicates** a which describe sets of points noted $\gamma(a)$

Example, using only sign predicates:

Abstraction with signs

Abstract domain definition

- Predicates: one sign predicate per variable nonpositive, zero, or nonnegative
- Representation: enum type with three values

Example abstract states:

Abstraction with boxes

Limitation of signs: cannot deal with simple translations precisely

Abstract domain definition

- Predicates: a range for each variable i.e., a pair of bounds
- Representation: two values per variable

Example abstract states:

Abstraction with polygons

Limitation of boxes: cannot express any relational constraint

Abstract domain definition

- Predicates: a conjunction of linear inequality constraints
- Representation: either inequalities or geometric view (edges + vertices)

Example abstract states:

Outline

- A basic language
- 2 Abstraction
- 3 Abstract interpretation
- 4 Abstract interpretation of a compositional semantics
- 5 Abstract interpretation of a transitional semantics
- Conclusion

Goal of the analysis

Given a program P, compute an abstract element a such that the set of all reachable states of P is included in $\gamma(a)$. Such an a is a sound abstraction.

A basic program:

```
\begin{split} & \text{init}([0,1] \times [0,1]); \\ & \text{iter} \{ \\ & \{ \\ & \text{translation}(1,0); \\ & \} \text{or} \{ \\ & \text{translation}(0.5,0.5); \\ & \} \end{split}
```

Goal of the analysis

Given a program P, compute an abstract element a such that the set of all reachable states of P is included in $\gamma(a)$. Such an a is a sound abstraction.

Reachable states (exact set) and a sound abstraction:

Principle of the analysis

Very similar to an interpreter, but based on abstract states:

- start with an over-approximation of initial states
- 2 consider the program operations in sequence for each operation, compute an over-approximate effect all on abstract states

We now consider the main program operations...

Analysis of initialization

Program start with a random initialization command $init(\mathfrak{R})$. How to analyze its effect?

• produce any abstract state a such that $\mathfrak{R} \subseteq \gamma(a)$

Example for $init([0,1] \times [0,1])$;

- note that the choice of a is not unique...
- ... but smaller is better: more precise abstraction = tighter fit

Analysis of a translation

Command translation(u, v) transforms a state into another.

The analysis should also describe a transformation, but over abstract states.

• the analysis returns an abstract state containing the translation of the input abstract state, by the same vector u, v

Over intervals and over convex polyhedra:

- soundness: forget no real behaviors
- completeness: no "noise" added, tight abstract post-condition

Analysis of a rotation

Command rotation(u, v, θ) also transforms a state into another, hence so does its analysis.

 the analysis returns an abstract state containing the rotation of the input abstract state, with the same angle, origin parameters

Over intervals and over convex polyhedra:

- soundness: forget no real behaviors
- unavoidable imprecision with intervals, but not with polyhedra

Outline

- A basic language
- 2 Abstraction
- 3 Abstract interpretation
- 4 Abstract interpretation of a compositional semantics
- 5 Abstract interpretation of a transitional semantics
- 6 Conclusion

Principle and analysis of a basic program

Status so far:

- for initialization: produce a state that over-approximates the initial states
- for basic command p: a function f_p that maps an abstract state (set
 of input states) to an over-approximate abstract state (super-set of
 output states)

Can we generalize this for composite commands?

Easy for sequence commands:

$$\mathit{f}_{p_0;p_1} = \mathit{f}_{p_1} \circ \mathit{f}_{p_0}$$

Analysis of a choice

Command $\{p_0\}$ or $\{p_1\}$ boils down to non-deterministic choice + standard execution.

- $oldsymbol{0}$ analyze both p_0 and p_1
- 2 compute an over-approximation of the results of these analyses typically, by a abstract union/convex closure algorithm

Over intervals and over convex polyhedra:

convex closure typically loses a lot of precision

Analysis of a loop: a few iterates

A first attempt: rewriting a loop using choice and sequence

$$\label{eq:posterior} \text{iter}\{p\} \qquad \text{is equivalent to} \qquad \begin{cases} \{\} \\ \text{or}\{p;\} \\ \text{or}\{p;p;\} \\ \text{or} \dots \end{cases}$$

Example

 $init(\{(x,y) \mid 0 \le y \le 2x \text{ and } x \le 0.5\}); iter\{translation(1,0.5) \text{ using convex polyhedra, and covering just a few iterations:}$

Issue: algorithm unclear to compute this sequence!

Analysis of a loop: use of widening

Another approach:

- \bullet we note p0 for {}, p1 for {}or{b}, p2 for {}or{b}or{b} and so on;
- we remark that p_{k+1} is equivalent to $p_k \text{ or } \{p_k; b\}$
- thus, we can do an iterative analysis
 analysis(p_{k+1}, a) =
 union(analysis(p_k, a), analysis(b, analysis(p_k, a)))

Same example, with an algorithm to compute the iterations:

Issue: termination not guaranteed!

Analysis of a loop: use of widening

Let us speed up convergence:

- termination follows from replacing union with a coarser widening operation such that all such sequence terminates
- typical widening technique: let widen (a_0, a_1) return a conjunction of constraints that retains only constraints in a_0 that still hold in a_0 ; starting from finitely many constraints, termination is guaranteed

Same example:

Issue: precision is not all that great...

Analysis of a loop: use of widening and unrolling

Solution: combine regular union and widening

- first iteration with union
- next iterations using widen

Same example:

Outline

- A basic language
- 2 Abstraction
- Abstract interpretation
- 4 Abstract interpretation of a compositional semantics
- 5 Abstract interpretation of a transitional semantics
- Conclusion

Semantic style: compotional versus transitional

- compositional semantics function:
 - semantics of p is defined by the semantics of the sub-parts of p.

$$\llbracket AB \rrbracket = \cdots \llbracket A \rrbracket \cdots \llbracket B \rrbracket \cdots$$

- proving its soundness is thus by structural induction on p.
- for some realistic programming languages, defining their compositional ("denotational") semantics is a hurdle.
 - function calls, exceptions, gotos, functions and jump labels as values

Transitional-style ("operational") semantics avoids the hurdle

$$\llbracket AB \rrbracket = \{s_0 \hookrightarrow s_1 \hookrightarrow \cdots, \cdots\}$$

Semantics as state transitions

Definition (Transitional semantics)

An execution of a program is a sequence of transitions between states.

- a state is a pair (I, p) of statement label I and an (x,y) point p.
- a single transition

$$(I,p)\hookrightarrow (I',p')$$

whenever the program statement at I moves the point p to p'.

$$s_{1} \hookrightarrow s_{2} \hookrightarrow s_{5} \hookrightarrow s_{3} \hookrightarrow s_{8} \hookrightarrow \cdots$$

$$s_{6} \hookrightarrow s_{7} \hookrightarrow s_{8} \hookrightarrow s_{3} \hookrightarrow s_{4}$$

$$s_{9} \hookrightarrow s_{10} \hookrightarrow s_{8} \hookrightarrow s_{11} \hookrightarrow s_{8} \hookrightarrow s_{11} \hookrightarrow s_{13}$$

$$s_{12} \hookrightarrow s_{7} \hookrightarrow s_{2} \hookrightarrow s_{3} \hookrightarrow s_{4} \hookrightarrow s_{14}$$

States s_1, s_6, s_9 , and s_{12} are initial states.

Figure: Transition sequences and the set of occurring states

Example language, again

```
\begin{array}{lll} \mathbf{p} & ::= & \mathrm{init}(\mathfrak{R}) & \mathrm{initialization, \ with \ a \ state \ in \ } \mathfrak{R} \\ & | & \mathrm{translation}(u,v) & \mathrm{translation \ by \ vector \ } (u,v) \\ & | & \mathrm{rotation}(u,v,\theta) & \mathrm{rotation \ by \ center \ } (u,v) \ \mathrm{and \ angle} \ \theta \\ & | & \mathrm{p} \ ; \ \mathbf{p} & \mathrm{sequence \ of \ operations} \\ & | & \mathrm{pp} \ \mathrm{or} \{ \mathbf{p} \} & \mathrm{non-deterministic \ choice} \\ & | & \mathrm{iter} \{ \mathbf{p} \} & \mathrm{non-deterministic \ iterations} \end{array}
```

We will consider a more dynamic language when covering chapter 4 later.

Statement labels

(a) Text view, with labels

(b) Graph view, with labels

Figure: Example program with statement labels

States in a transition sequence

State $(1, p_1)$

State $(2, p_1)$

State $(4, p_1)$

State $(1, p_3)$

State $(5, p_3)$

Reachability problem and abstraction of states

Reachability problem:

 we are interested in the set of all states that can occur during all transition sequences of the input program.

An abstract state is:

• a set of pairs of statement labels and abstract pre conditions.

Statement-wise abstraction of reachable states

Collection of all states

Statement-wise collection:

Statement-wise abstraction:

Abstract state transition

 $Step^{\sharp}$: a set of pairs of labels and abstract pre conditions \mapsto a set of pairs of labels and abstract post conditions

is

$$Step^{\sharp}(X) = \{x' \mid x \in X, x \hookrightarrow^{\sharp} x'\}$$

where

$$\begin{array}{ccc} (\texttt{or}_{I}, a_{\texttt{pre}}) & \hookrightarrow^{\sharp} & (\texttt{next}(I), a_{\texttt{pre}}) \\ (\texttt{iter}_{I}, a_{\texttt{pre}}) & \hookrightarrow^{\sharp} & (\texttt{next}(I), a_{\texttt{pre}}) \\ (\texttt{p}_{I}, a_{\texttt{pre}}) & \hookrightarrow^{\sharp} & (\texttt{next}(I), \texttt{analysis}(\texttt{p}_{I}, a_{\texttt{pre}})) \end{array}$$

Analysis by global iterations

The analysis goal is to accumulate from the initial abstract state I:

$$Step^{\sharp^0}(I) \cup Step^{\sharp^1}(I) \cup Step^{\sharp^2}(I) \cup \cdots$$

which is the limit C_{∞} of $C_i = \mathit{Step}^{\sharp 0}(I) \cup \mathit{Step}^{\sharp 1}(I) \cup \cdots \cup \mathit{Step}^{\sharp i}(I)$ where

$$C_{k+1} = C_k \cup Step^{\sharp}(C_k).$$

Thus the analysis algorithm should iterate the operation $C \leftarrow C \cup Step^{\sharp}(C)$ from I until stable:

$$\mathtt{analysis}_{\mathcal{T}}(\mathtt{p},I) = \left\{ \begin{array}{l} \mathtt{C} \leftarrow I \\ \mathtt{repeat} \\ \mathtt{R} \leftarrow \mathtt{C} \\ \mathtt{C} \leftarrow \mathtt{widen}_{\mathcal{T}}(\mathtt{C},\mathit{Step}^{\sharp}(\mathtt{C})) \\ \mathtt{until} \ \mathtt{inclusion}_{\mathcal{T}}(\mathtt{C},\mathtt{R}) \\ \mathtt{return} \ \mathtt{R} \end{array} \right.$$

where widen_T over-approximates unions and enforces finite convergence.

Analysis in action

State $(1, a_1)$

States $(2, a_1)$ and $(5, a_1)$

States $(3, a_1)$ and $(4, a_1)$

States $(1, a_2)$ and $(1, a_3)$

State $(1, union(\{a_2, a_3)\})$

 $\mathsf{State}\;(\mathtt{1},\mathtt{union}(\{a_{\mathbf{1}},a_{\mathbf{2}},a_{\mathbf{3}})\})$

Outline

- A basic language
- 2 Abstraction
- Abstract interpretation
- 4 Abstract interpretation of a compositional semantics
- 5 Abstract interpretation of a transitional semantics
- 6 Conclusion

Important points to remember, and what to learn next

A quick summary of the approach that we followed:

- 1 start from a semantics, describing program behaviors
- e set up an abstraction, that defines a set of logical predicates and a machine representation
- seek for analysis algorithms computation of abstract post-conditions, abstract union and widening...
- set up an iteration algorithm: compositional or transitional

Next lectures:

formalize these steps and provide step-by-step frameworks for designing sound static analyses