

AFAL-TR-79-1164

ADA 0 78793

APPLICATION OF THE RCA PRICE-S SOFTWARE COST ESTIMATION MODEL TO AIR FORCE AVIONICS LABORATORY PROGRAMS

AVIONICS SYSTEMS ENGINEERING BRANCH SYSTEMS AVIONICS DIVISION

OCTOBER 1979

DC FILE COPY

TECHNICAL REPORT AFAL-TR-79-1164
Final Report for period January 1978 — July 1979

Approved for public release; distribution unlimited.

AIR FORCE AVIONICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

Enque & Jones

This technical report has been reviewed and is approved for publication.

DANIEL V. FERENS

Project Engineer

System Evaluation Group

Avionic Systems Engineering Branch

FOR THE COMMANDER

RAYMOND E. SIFERD, COL, USAF

Chief

System Avionics Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify __AFAL/AAA __,W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/12 December 1979 - 100

UNCLASSIFIED

ECURITY CLASSIFICATION OF THIS DAGE (When Date 2		DEAD INCOMPLICATIONS
REPORT DOCUMENTATION P		READ INSTRUCTIONS BEFORE COMPLETING FORM
	2. GOVT ACCESSION NO.	3. PECT FIT'S CATALOG NUMBER
AFAL-TR-79-1164		(9)
TITLE (and Subtitle)	ware Cost	Final Technical Report.
Application of the RCA PRICE-S Soft Estimation Model to Air Force Avion		Jan 78—Jul 79
Laboratory Programs, Revision	1	6. PERFORMING ONG. REPORT NUMBER
ADTHOR(s)		B. CONTRACT OR GRANT NUMBER(s)
Thomas G. James, Jr. USAF		
Mr Daniel V./Ferens,		(16/2003, 6095
PERFORMING ORGANIZATION NAME AND ADDRESS		16 GOOGDAN ELEMENT BROLLEGY TAGE
System Evaluation Group	/ .	PROGRAM ELEMENT, PROJECT, TASK
Avionic Systems Engineering Branch	(AFAL/AAA)	(40)
Wright-Patterson AFB, OH 45433		62204F/2003/09/02
1. CONTROLLING OFFICE NAME AND ADDRESS System Evaluation Group		12. REPORT DATE
Avionic Systems Engineering Branch	(AFAL/AAA)	Oct 79
Wright-Patterson AFB, OH 45433		48
14. MONITORING AGENCY NAME & ADDRESS(II different	trom Controlling Office)	15. SECURITY CLASS. (of this report)
17/09,13		Unclassified
Mary constitution of the second		15a. DECLASSIFICATION/DOWNGRADING
		36,125022
6. DISTRIBUTION STATEMENT (of this Report)		
		204 F
Approved for a till		62204F
Approved for public release	ase; distribution unl	imited.
7. DISTRIBUTION STATEMENT (of the abstract entered in	Block 20, if different from	m Report)
8. SUPPLEMENTARY NOTES		
9. KEY WORDS (Continue on reverse side if necessary and	identify by block number)	
Software		
cost model		
avionics		
aviolites		
ABSTRACT (Continue on reverse side if necessary and		
This report covers work conducted in		
Avionic Systems Engineering Branch, Patterson AFB, Ohio 45433. This wor		
proprietary RCA Corporation PRICE-S		
AFAL software programs. The results	of the study a	re that PRICE-S appears to
work well for Air Force Avionics Lat		
calibration studies should be done.		
	1	
D . FORM 1473 EDITION OF 1 NOV 65 IS OBSOLE	TE	UNCLASSIFIED
LIAN 72 19/3 EDITION OF INOV 63 IS UBSOLE		

011 670

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

FOREWORD

This report is a revision of AFAL-TM-78-25, which covers work conducted in-house by the System Evaluation Group (AAA-3), Avionic Systems Engineering Branch, and the Reference Systems Branch, Air Force Avionics Laboratory, Wright-Patterson AFB, Ohio, 45433.

Portions of this work were accomplished under Task 200309, "Avionics System Cost-Effectiveness," Work Unit 20030902, "Avionics Life Cycle Cost," and Work Unit 60951502, "Cost Estimating Methodology." The time period of work was November 1977 through August 1978.

Great appreciation is extended to Mr Earl J. Jones, Mr William Mikulski, Mr William E. Shephard, and Mr R. Vanderburgh for their assistance and contributions to this report.

TABLE OF CONTENTS

SECTION		PAGE
I	Introduction	1-6
II	What PRICE-S Is	7-10
III	Projects Analyzed	11-13
IV	Discussion of Outputs	14-17
v	Recommendations	18
	Appendix A: PRICE-S Inputs	19-32
	Appendix B: PRICE-S Outputs	33-45
	References	46

I. INTRODUCTION

BACKGROUND

In a recent USAF study of information processing requirements it was shown that in almost all applications, computer software was the major source of difficult problems, a major contributor to operational performance penalties, and potentially the largest source of life cycle cost. The Deputy Assistant Secretary of Defense (Material Acquisition) estimated in 1976 that the DOD annually expends three billion dollars for computer software. 2 Although avionics software is only ten percent of the estimated distribution of USAF software costs, this amounts to still a sizable annual expenditure for computer software associated with avionics programs. In addition to the constantly rising cost for software development, software reliability, unresponsiveness, and indirect costs associated with slippages in software developments are of major concern to the USAF. As a result, the Air Force is taking a closer look at software development procedures and a greater portion of its R&D resources are being allocated to the software verification and validation (V&V) and to software development tools. However, in order to reduce the costs of software, the Air Force requires a defined method which will allow the analyst, software engineer, or project manager to estimate software development and support costs when the basic requirements of the new system being developed can be determined. Operations analysts and software professionals have developed methods and procedures for understanding software systems and how to develop these systems. Examples of this type of work is evident in a report

ASD-TR-76-11, Management Guide to Avionics Software Acquisition, and AFAL-TR-77-66, Software Cost Estimating Methodology. Although these kind of studies do exist and tools and techniques required to develop software systems have been developed, the system software manager responsible for the development of the software project has not possessed the ability to accurately estimate the costs associated with such a development. The consequences to the software developers and customers are dramatic as a result of the failure to develop accurate cost estimating techniques. Several key decisions depend on timely, accurate cost estimates such as: source selection decisions, system design tradeoff analysis, project scheduling and capital budgeting decisions. 2 The Avionics Laboratory has investigated the use of "software cost estimating models" such as the Wolverton model, Modified Wolverton model, ESD model, the Tecolote model, the IBM model, Naval Air Development Center model, Aerospace model, General Research Corporation model, and the System Development Corporation model. The majority of the models were either of the "rule of thumb" type or of parametric estimating relationships based on very limited amounts of data. Each model was designed for a particular application, but the Avionics Laboratory study concluded that there was no generalized model that could be applied to a variety of software development efforts.

During the middle 1970's, the Air Force Avionics Laboratory started to utilize the RCA Corporation's Programmed Review of Information for Costing and Evaluation (PRICE) family of cost predicting models. The Avionics Laboratory first utilized the basic PRICE model (referred to now as PRICE-H), which predicts development and production costs for proposed electromechanical devices or systems while they are still in

the conceptual stage. The PRICE model has been in development at RCA for the last fifteen years. Although the detailed workings of the PRICE model are proprietary, the model has been available for general use outside RCA via time sharing services since August 1975. In May 1977 the Air Force Avionics Laboratory was introduced to the RCA PRICE Software Model, referred to now as PRICE-S. This introduction consisted of a two-day training course held at Moorestown, New Jersey, by RCA Corporation. PRICE-S applies the PRICE parametric modeling methods to the problems of computer software development costing and is designed to cover the complete range of systems and applications programming. This report describes an AFAL effort to validate and calibrate the RCA PRICE-S model for avionics software development programs within the Air Force Avionics Laboratory. As is apparent to any one familiar with the PRICE models, quantitative inputs, (e.g., for hardware, physical parameters like weight, volume, etc., or for the software, total number of instructions, hardware configuration, and mixture of categories of instructions) together with selected subjective inputs are utilized to derive the final cost estimate. These subjective inputs are so sensitive that for the PRICE-H and PRICE-S models the user can derive any cost he wishes. The problem faced by the user and/or cost analyst is to calibrate required subjective inputs which reflect the situation for which the estimate is being developed; that is, he must get a feel for the required subjective inputs which will obtain an accurate estimate of the project. This study was conducted to help the analyst obtain such a feeling, and to provide future guidance for calibrating the subjective inputs required for the PRICE-S model.

OBJECTIVE

This report describes the efforts to validate and calibrate the PRICE-S model by comparing the costs computed by the model to the actual costs of four software development programs within the Air Force Avionics Laboratory. The approach used was first to identify software development programs on which there was historical cost information for the software developed. Once the programs were identified, the cost analyst and the software engineer gathered the required inputs to the PRICE-S model. The cost analyst then utilized those inputs. plus the subjective inputs derived from experience and the RCA PRICE-S reference manual's guidance to obtain an estimate of total development cost. The outputs from the PRICE-S model were then compared to the historical costs gathered under step one of this procedure. It is worth noting at this point that except for the first project analyzed (GEANS), the historical costs were not furnished to the cost analyst in advance of the utilization of the model so that the results could not be biased in any manner.

SUMMARY OF RESULTS

As mentioned above, four software development efforts within the Air Force Avionics Laboratory were chosen for this analysis. The first project was the in-house conversion of the Gimballed Electrostatic Gyro Navigation System (GEANS) software from a Honeywell HDC-601 computer to the Singer-Kearfott SKC-2000. The second project was another in-house effort referred to as the in-house simulator program named LINEAR. LINEAR represents the behavior of a linearized error model of a 3-axis inertial navigation system through the simultaneous solution of a set

of seven first order differential equations by rectangular integration. The last two efforts are contractual efforts which include a radar project and an antenna project. In the cost of these two projects actual historical costs are as of this date yet unknown, and the cost used in the analysis to compare with the outputed RCA PRICE-S estimate was the planned program funding.

The data base selected for this analysis included a representative sample of software development projects from the standpoint of two being in-house and two being contracted efforts. There is also a range in program size from 2600 to 73750 machine language instructions. This adds to the confidence that the model is versatile in these respects. The results are summarized below in Table 1.

PROJECT NAME	PRICE-S ESTIMATE	ACTUAL COST	% DIFFERENCE		
GEANS	\$406,035	\$425,000	5% (-)		
IN-HOUSE SIMULATOR	12,039	12,000	0.3% (+)		
ANTENNA	143,746	128,000	13% (+)		
RADAR	1,890,922	2,000,000	5% (-)		

TABLE 1. PRICE-S Estimated vs. Actual Costs.

I I SE BASSING

Except for the GEANS project, the PRICE-S value or estimate is the figure derived by the cost analyst working without prior knowledge of the actual cost. The subjective inputs, which will be discussed in Appendix A of this report, were not derived in a vacuum for this analysis. The RCA PRICE-S manual was used as a reference and

these subjective inputs were then calibrated downward in most cases due to previous experience on other applications of PRICE-S. Two of the fundamental findings of this report are: first, the PRICE-S model seems to work quite well for avionics software developments efforts; and second, the average subjective inputs are much lower than stated in the RCA PRICE-S reference manual. These two findings will be discussed further in the Analysis Section of this report.

II. WHAT PRICE-S IS

BACKGROUND

PRICE-S is a software development cost and schedule estimation model developed by RCA Corporation. It is based on parametric modeling methods that were used to develop their highly successful PRICE Hardware model for hardware cost and schedule estimations. The model is versatile; it allows the user to tailor the methods and regressions to fit the varying skills, experience, and costs of specific projects and organizations. There are three modes of operation available, the normal operation, ECIRP, and the design-to-cost mode. Costs are calculated directly from user inputs for the normal operation mode. The ECIRP mode (ECIRP is PRICE spelled backwards) enables PRICE-S to be utilized to calculate PRICE-S empirical factors from known project costs. In the design-to-cost mode the model utilizes specified costs to compute typical program sizes and project schedules to scope work goals for design-to-cost efforts.

According to RCA the principle PRICE-S inputs may be grouped into seven categories. 3 The seven categories are listed below.

- 1. Project Magnitude the size or the amount of work to be done.
- Program Application the type of project, such as Management Information System, Command and Control, Telemetry, Communications, etc.
- Level of New Design the amount of the effort that can be taken from existing inventory.
- Resources the experience, skill, know-how, and cost of the assigned individuals or team as applicable to the specified task.

- 5. Project Difficulty the schedule time, in calendar months, required to complete the job with respect to the organizational resources, program application, and project size.
- 6. Project Specifications and Reliability the requirements relating to testing, transportability, efficiency, and end use of the project (airborne, space, etc.).
- 7. Utilization the effect of load conditions on the processor relative to its speed (operations per second) and memory (for example, is overlaying necessary?). Compiler inefficiencies may be a problem.

Rather than using the seven categories of inputs described by RCA, this report will group the inputs into three distinct categories for further discussion, those categories being: environmental parameters, hard system parameters, and soft system parameters. Detailed descriptions of these parameters, as well as the parameter values selected for each project, are described in Appendix A.

a. Environmental Parameters

The environmental parameters describe the environment within which the system will be developed. These factors include such parameters as price inflation or escalation (ESC), programming technological improvement (TECIMP), and the schedule data. The schedule data is further broken down into: start of design (DSTART), end of design (DEND), implementation start date (ISTART), implementation end (IEND), test start date (TSTART), test end date (TEND), and the base year of the analysis (YEAR). These parameters permit users to vary the economic, technological and work schedules assumptions.

b. Hard Input Parameters

The hard input parameters represent system characteristics which can be physically measured. These parameters include such things as total number of executable machine instructions (INST), device types, quantity of devices, and the proportion of the total instructions that represent each of the seven different application categories. Although they may or may not be well defined at the time a cost estimate is made, historical data can be used to generate firm measures of these quantities for any system.

c. Soft Input Parameters

The soft input parameters are more subjective in nature and may require the using organizations to calibrate them to derive typical values. PRICE-S utilizes three soft parameters requiring calibration. These parameters were referred to earlier in this report as subjective inputs. Resources (RESO) is a measure of the inherent difficulty of the system development task. Theoretically, it relates the scope of the work to the shop doing the work. Included in RESO are the effects of such things as skill levels, experience, productivity, and efficiency rates. Engineering Complexity (CPLX) is a measure of how long a project should take (i.e., relates the difficulty of the task to the normal time required for its accomplishment). The parameter platform (PLTFM) is a measure of the reliability (sometimes thought of as an operational environment) required of the system. The outputs of the PRICE-S model include cost and schedule estimates. The cost estimates are broken out in matrix form. Columns of this matrix are the three phases of the software development process as defined by RCA as: (1) design; (2) implementation; and (3) test and integration. The rows are the five productive activities described by RCA as: (1) systems engineering; (2) programming; (3) configuration management; (4) documentation; and (5) program management. The output schedule estimates include beginning and end dates for each of the three phases mentioned above. Detailed outputs for the four projects analyzed are included in Appendix B.

A more detailed description of the PRICE-S model is beyond the scope of this report. More indepth information about the model can be obtained from references (3) and (4), or by contacting knowledgeable personnel in the Avionics Laboratory. PRICE-S has been implemented by a commercial time sharing organization. The Air Force Avionics Laboratory has contracted with RCA PRICE Systems, Inc., for the use of the program. The contract entitles the Avionics Laboratory to access the program by using a standard teletype terminal.

III. PROJECTS ANALYZED

PROJECT DESCRIPTIONS

The four avionics software development projects selected for this study are described in this section.

a. Project A: GEANS Software Conversion

The PRICE-S model was used to estimate development costs of the conversion of precision inertial navigation system software from the Honeywell HDC-601 Computer to the Singer-Kearfott SKC-2000. The inertial navigation system was the Gimballed Electrostatic Gyro Navigation System (GEANS) developed under AFAL contract by Honeywell, Inc. The GEANS hardware consists of an Inertial Measurement Unit (IMU), an electronics unit, a digital computer, and an associated control-and-display unit.

The purpose of the GEANS Software Conversion Project was to evaluate the machine dependency and flexibility of application of the GEANS software. This was accomplished by implementing the alignment and navigation algorithms developed originally for the Honeywell HDC-601 digital computer on the Singer-Kearfott SKC-2000. The software converted was that used for Optimized GEANS and is not identical to the more recently developed SPN/GEANS software, although differences are minor.

The conversion project was accomplished at the Air Force Avionics

Laboratory (AFAL/RWA-3) by AFAL personnel using the facilities of the

Reconnaissance and Weapon Delivery Division Software Evaluation

Laboratory.

b. Project B: In-House Simulator Program

The simulation program is named LINEAR and represents the behavior of a linearized error model of a 3-axis Inertial Navigation System.

The program was written in FORTRAN Higher-Order Language for use on the CDC computer complex at WPAFB. It uses the SCOPE operating system and is run interactively via INTERCOM.

The mathematical approach used in this simulation program is the simultaneous solution of a set of seven first order differential equations by rectangular integration. The program contains units conversion and matrix initialization instructions and provides for plotting of the solution by Calcomp plotter.

c. Project C: Contracted Antenna System

This project consists of a phased array beam pointing antenna. It is to be used in a hostile (i.e., jamming) electronic environment to receive navigation information from an Air Force system. It is possible to steer the null point of the beam at a jamming signal, thereby minimizing the effect of the jammer while maximizing the signal from the system.

The software for this system consists of a simulation program and an adaptive algorithm. The simulation program consists of the antenna model, antenna polarization, and power levels. Output data consists of adaptive weighted values, which give amplitude and phase shift. This simulation program will be used to investigate the system anti-jam (AJ) performance and vulnerability assessments. The adaptive algorithm is the implementation of the antenna system with the software used to control it in real-time. The software will be hosted on a microprocessor.

d. Project D: Contracted Radar Program

This project consists of software for an electronic radar system. Some of the software characteristics are as follows: Control is via a table-driven, dynamically modified executive which sequences processing under either foreground or background conditions. Processing includes navigation update, antenna pointing, and data processing for mapping and terrain modes and the control of associated input/output transfers. Both interleaved and dedicated time tests assure data and hardware integrity, and help to meet fail-safe requirements. Off-line fault detection/isolation software-controlled tests identify line-replaceable modules/units to be replaced between missions. PRICE-S DATA PROJECTS ANALYZED

AFAL/RWA personnel assisted AFAL/AAA-3 in gathering necessary
PRICE-S input data for all four projects analyzed. Values for the
empirical parameters and the hard parameters were taken directly from
RWA data, except for the number of instructions for the contracted antenna
that had to be computed. Values for the soft parameters were estimated
by the AAA-3 analyst, then approved by RWA-3 personnel. Except
for project A, the AAA-3 analyst had no prior knowledge of the actual
costs when he computed the soft parameters, he did not "adjust" those
inputs to get the "right" costs. A detailed discussion of all input
values selected for each project is given in Appendix A.

Using the input data in Appendix A, the analyst ran the PRICE-S model for each project. The outputs for each run, which are detailed in Appendix B, included the following:

- a. Total costs of software development.
- b. A sensitivity matrix, which shows how small changes in two soft parameters, RESO and CPLX, affect the total project cost.
- c. A schedule output, which compares the input schedule with a "typical" schedule generated by the model for the same type project and outputs possible cost savings that can be realized by schedule readjustment.

IV. DISCUSSION OF OUTPUTS

PROJECT OUTPUTS

a. GEANS Software

The total cost of the GEANS Software Conversion was furnished by AFAL/RWA-3. The effort required eight and one-half man-years. Conversion to estimated industry cost was accomplished by converting at the rate of \$50,000 per man-year. Thus, the total actual cost of the project was \$425,000. The PRICE-S Model estimated cost, with RESO equal to 2.7 and CPLX equal to 1.00, was \$406,035.

Comparing the sensitivity analysis of RESO and CPLX, the model gave a range from \$378,315 to \$441, 212. By the results of sensitivity data, Appendix B, values of RESO=2.8 rather than 2.7 and CPLX the same, 1.0, would result in a cost of \$427,777; this indicates that values of 1.0 for CPLX and 2.8 for RESO would probably be the best for estimating the cost of similar programming tasks. Had the actual cost not been known, the analyst would have estimated a price of \$406, 035 which is \$19,000 too low. The percentage error would thus have been 4.5 percent. The SCHED output of the model indicates that this project could have been done in 17 months instead of 31 months at a cost savings of \$71,391. This indicates possible inefficiency in use of resources and indicates that future projects of this type may be done in less time.

b. In-House Simulator

The total cost of the In-House Simulator Program was furnished by AFAL/RWA-3. The total actual cost of the project was \$12,000. The PRICE-S Model estimated cost, with RESO equal to 3.15 and CPLX equal to .9, was \$12,039.

Comparing the sensitivity analysis of RESO and CPLX, the model gave a range from \$11,741 to \$12,473. By the results of sensitivity data, Appendix B, the chosen values of RESO and CPLX appear to be reasonable. Hence, values of .9 for CPLX and 3.15 for RESO should probably be used for estimating the cost of similar programming tasks. The error would thus have been \$39. The SCHED output indicates that \$741 could have been saved by doing the project in 2.1 months instead of 3 months. This indicates that projects of this type may be done in shorter times.

c. Contracted Antenna

-

The actual total cost of the Contracted Antenna was \$128,000, which was also the total contract funding of this effort. The PRICE-S model estimated the cost of the adaptive algorithm, RESO value equal to 2.7, CPLX equal to 1.0, of \$65,249, as detailed in Appendix B.

The PRICE-S model estimated \$69,366 for the simulator program, RESO equal to 2.7, CPLX equal to 1.0. The cost to integrate and test the adaptive algorithm and simulator programs together was estimated by PRICE-S at \$9,130, which results in a total cost of \$143,746. The results of the sensitivity data indicate a cost range between \$132,996 and \$152,968 with expected cost of \$143,746. The percent error would have been approximately thirteen percent using the expected value. Sensitivity data indicates that using a lower RESO and/or CPLX value would have resulted in a more accurate prediction.

A point of particular interest here is that the cost analyst does not know beforehand a particular company's mark-up value. To explain further, the value MULT in the PRICE-S model is used to adjust the

estimate to include mark-up G&A, IR&D, currency conversion and fee or profit. In this case MULT was 1060, which indicates a six percent mark-up was assumed. Assuming no mark-up, expected engineering costs for the adaptive algorithm would have totaled \$135,609. Schedule data indicates that the actual schedule was not much different from the PRICE-S "typical" schedule. Only a \$5,000 savings could be realized by adjusting the schedule.

Applications of the RCA PRICE-S model estimate for this type of project may be difficult. The PRICE-S model can be used to evaluate different proposals to do a certain software job, but the inputs must be accurately estimated for the proposals and the mark-up of a particular company must be known. However, the PRICE-S model does seem to be able to scope this type of effort within reasonable bounds.

d. Contracted Radar

The total cost of the Contracted Radar computer program is not known at this time, but is expected to be \$2.0 million. This cost accounts for G&A, fee and profit, in-house IR&D, totalling between 11 and 12%. The PRICE-S model estimated cost with RESO equal to 2.5, CPLX equal to .9 and MULT equal to 1120 (12% mark-up), was \$1,890,922, as detailed in Appendix B. If the PRICE user was confident in the choice of RESO=2.5, CPLX=.9, the cost estimator would have quoted \$1,890,922. As compared to \$2.0 million expected this would have been a 5% error. However, from the sensitivity analysis, RESO=2.6 would have resulted in a more accurate estimate.

A few words should be said referencing the Schedule Effect Summary.

The schedule which was supplied by the Program Office required 60 months of development time. RCA PRICE model calculated a "typical schedule"

of 20.8 months, which results in a cost penalty of \$700,657 for stretching the schedule. The Program Office stated that 60 months were required because consecutive hardware development precluded a faster software development schedule. The actual validity of the "typical schedules" calculated by the PRICE-S model were not addressed in this study; however, it is recommended that the effects and validity of PRICE-S schedule calculations be studied in future analysis.

The table below summarizes the analysis. The actual reported costs are shown together with the PRICE-S estimate and the RESO and CPLX value used in the analysis. Where indicated, different RESO and CPLX values would have given closer estimates, but were not known before the cost analyst was given the actual reported costs.

PROJECT	ACTUAL COST	PRICE-S	RESO	CPLX
GEANS Conversion	\$425,000	\$406,035	2.7	1.0
In-House Simulator	\$12,000	\$12,039	3.15	.9
GPS Null-Steering Antenna	\$128,000	\$143,746	2.7	1.0
EAR	\$2,000,000	\$1,890,922	2.5	.9

V. RECOMMENDATIONS

The analysis of these four software development projects allows the formulating of some general conclusions. First, the PRICE-S model seemed to work quite well in these particular efforts and therefore, should be utilized, along with engineering estimates, to obtain a preliminary cost of future software development projects. The PRICE-S user must realize that for AFAL systems, certain complexity factors such as RESO and CPLX may be lower than the "average values" stated in the PRICE-S users manual. This study is just the beginning of many analyses which must be performed before the USAF can have a 100% confidence in the results of the PRICE-S model. First, many more than four historical programs should be calibrated against the model outputs to establish a comprehensive data base of complexity factors for use during analyses of new programs. The effects of the RCA calibrated schedules should be investigated for their accuracy. The future analyses requires the use of a large and well formed data base of software development efforts, which is non-existent to date. But in the interim PRICE-S seems to be the most appropriate software cost estimation model for obtaining preliminary software cost information, which is available to the cost analysts today.

APPENDIX A

PRICE-S INPUTS

This appendix contains a detailed discussion of all inputs used for the PRICE-S model for the four projects described in this report. A generalized description of the software programs is found in Section III of this report. The last six pages of this appendix are the actual input sheets used for each project.

The reader is asked to refer to the RCA PRICE-S User's Manual for further information. AFAL System Evaluation Group has a copy and will be happy to answer questions the reader may have.

For this appendix the four projects are abbreviated as follows:

Project A: GEANS Software Conversion

Project B: In-House Simulator

Project C: Contracted Antenna

Project D: Contracted Radar

Software Model Input Worksheet

Filename: _____
Page ___ of ____

Application Date	duner () pldr ()	tenda zone		endituenh erg nuol	a arrea for the	Epilean S	3078 j -	Optional
				128	all most		21/5	фиона
Descriptors	(1)	(2)	(3)	FUNCT (4)	STRU	LEVEL	eser a	(5)
Mix	MDAT _(6)	MONL	MREA	MINT	MMAT	MSTR	MOPR	MAPP AP
New Design	DDAT	DONL	DREA	DINT	DMAT	DSTR	DOPR	DAPP
New Code	CDAT (8)	CONL	CREA	CINT	CMAT	CSTR	COPR	CAPP
Device Types	TDAT (9)	TONL	TREA	TINT				
Quantity	QDAT _(10)	QONL	QREA	QINT				
Schedule Data	CPLX(11)_	DSTART (12)	DEND	ISTART	IEND	TSTART	TEND	
Supplementary Information	YEAR (13)	ESC (14)	TECIMP (15)	MULT (16)	PLTFM (17)	UTIL (18)		TARCST (19)
Notes: See F	ollowin	g pages	for det	ailed di	scussio	n of the	se para	meters_
								/

INPUT DESCRIPTIONS

(Refer to the PRICE-S Input Sheet, page A-2, for item number reference)

1. <u>INST</u> - Is the total number of machine-level executable instructions in a program. The number of instructions for Projects A, B and C were obtained directly from RWA personnel. The "\$" for the Integration and Test Section of Project C indicates that portion of the project is for the cost of integration and test only; no additional instructions are involved. For Project D, the number of instructions had to be computed from number of words. It was given that the entire program consisted of 58,000 "resident" words and 60,000 "off-line" words. It was further stated that 40% of all instructions required 1 word and 60% required 2 words; hence, INST was computed as follows:

INST =
$$\frac{58,000 + 60,000}{(.4 \times 1) + (.6 \times 2)} = \frac{118,000}{1.6} = 73,750$$

- 2. APPL This is a single parameter which summarizes the mix of instructions. Either APPL or MIX (See #6) must be specified for all programs since all programs had a variety of applications, MIX was input instead of APPL using the MIX descriptions on Table 1.
- 3. $\overline{\text{RESO}}$ This parameter relates the scope of the work to the shop doing the work, and is a single parameter which includes factors such as skill levels, productivity, labor rates, and efficiency.

The combined effect of these factors, according to RCA, tends to remain constant for a particular organization over time. RCA says, in the PRICE-S User's Manual, that RESO usually varies from 2.0 to 6.0 with an "average" value of 3.5. In RESO, a lower number results in lower cost for the same type project, indicating all other factors being equal, the lower the RESO value the better the company probably is at developing software. This parameter is very sensitive; a small change in value shows a large change in cost. Past experience has indicated that for AFAL projects, the "average" value of RESO is too high, so values lower than 3.5 were chosen for projects. Specifically, for Project A, a RESO of 2.7 was chosen because the two people working on the software conversion had extensive experience in software. For Project B, 3.15 was chosen for RESO because the individual performing the project did not have extensive experience in software coding. For Project C and D, RESO was chosen to be 2.7 and 2.5 respectively, as both contractors had experience in the type project on which they were working. All chosen values were agreed upon by the AAA-3 analyst and appropriate RWA personnel.

4. FUNCT, STRU, LEVEL - These three parameters are used with HIPO charts: FUNCT is the total number of functional modules planned for software development; LEVEL is the average level of work breakdown structure in a HIPO table of contents, and STRU is an empirical value that relates LEVEL to FUNCT. None of these parameters are necessary for PRICE-S inputs, however, they can be useful as cross-check values.

TABLE 1
INSTRUCTION MIX

APPLICATION TYPE	WEIGHT	IDENTIFYING CHARACTERISTICS				
OPERATING SYSTEMS (-OPR)	10.95	Task mangement. Memory management. Heavy hardware interface. Many interactions. High reliability and strict timing requirements.				
INTERACTIVE OPERATIONS	10.95	Real time man/machine interfaces. Human engineering considerations and error protection very important.				
(-INT)		No secretares esta lesses lessons				
REAL TIME COMMAND AND CONTROL	8.46	Machine to machine communications under tight timing constraints. Queuing not practicable. Heavy hard-				
(-REA)		ware interface. Strict protocol require ments.				
ON-LINE COMMUNICATIONS	6.16	Machine to machine communications with queuing allowed. Timing restric-				
(-ONL)		tions not as restrictive as with real time command and control.				
DATA STORAGE AND RETRIEVAL	4.10	Operation of data storage devices. Data base management. Secondary storage handling. Data blocking and				
(-DAT)		de-blocking. Hashing techniques. Hardware oriented.				
STRING	2.31	Routine applications with no over-				
MANIPULATION		riding constraints. Not oriented				
(-STR)		toward mathematics. Typified by language compilers, sorting, for-				
		matting, buffer manipulation, etc.				
MATHEMATICAL	.86	Routine mathematical applications				
OPERATIONS (-MAT)		with no overriding constraints.				

They were not specified for any of the four projects in this study.

- 5. INTEG This parameter integrates the level of integration and test required to combine a program into the overall package. INTEG can vary between 0 and 1, with .5 being "typical." For Projects A, B and D, which were "stand alone" packages, no integration was needed, and INTEG=0 was input for Project C, two packages had to have some interaction. Since the integration was not complex, INTEG=.3 was chosen for both packages.
- 6. $\underline{\text{MIX}}$ (MDAT, etc.) These seven parameters define the software profile in terms of functional applications as outlined in Table 1. For each of the four projects, the mix was given in input data. The optional parameters MAPP and APPL 8 were not used since these parameters represent special categories not needed for these projects.
- 7. $\underline{\text{NEW DESIGN}}$ (DDAT, etc.) This is the fraction of each mix category (see Table 1) that requires new design. A value of "1" indicates 100% new design. All values for this category were obtained directly from RWA data.
- 8. $\underline{\text{NEW CODE}}$ (CDAT, etc.) This is the fraction of each mix category (see Table 1) that requires new code. In some cases, where recording is done to an existing program, NEW CODE may have a greater value than NEW DESIGN. For all projects, values for NEW CODE were taken directly from input data.
- 9. <u>DEVICE TYPES</u> (TDAT, etc.) This is the number of unique hardware devices in each of four categories (see Table 1) for the program. These values have no effect on cost and are used for cross-checking only. For all projects, the device types, when input, were obtained directly from RWA input data.
- 10. <u>DEVICE QUANTITIES</u> (QDAT, etc.) This is the total number of hardware devices in each of four categories (see Table 1) for the program. Like types (see #9), these values have no effect on cost and are used for cross-checking only. For all projects, these values, when input, were obtained directly from RWA input data.
- 11. CPLX This is a measure of the complexity of the program which relates the difficulty of a task to the normal time needed for accomplishment. Table 2 outlines an RCA method for computing CPLX, with CPLX for a "normal new project" with a "normal crew" having a value of 1.0. Using Table 2 and information about each software program, CPLX was input as follows:

For Project A, a CPLX value of 1.0 was chosen, as the project was considered a "normal" new project with an experienced crew. For Project B, a CPLX value of 0.9 was chosen, as the project was considered a redo of previous work, but done with some new hires. For Project C, a value of 1.0 was chosen, as the project appeared "normal" in all respects. For Project D, a value of .9 was chosen because of the experience level of the personnel.

TABLE 2

TYPICAL CPLX VALUES	" Normal" = 1.0

Typical Complexity Adjustments					
Personnel	ACPLX				
Outstanding crew, among best in industry	2				
Extensive experience, some top talent	1				
Normal crew, experienced	0				
Mixed experience, some new hires	+.1				
Relatively inexperienced, many new hires	+.2				
Product Familiarity					
Old hat, redo of previous work	2				
Familiar type of project	1				
Normal new project, normal line of business	0				
New line of business	+.2				
Complicating Factors					
New hardware	+.1				
New language	+.1				
More than one location/organization	+.2				
Hardware developed in parallel	+.3				
Many changing requirements	+.3				
State-of-art advancement	+.4 to +.6				

TABLE 3 TYPICAL PLATFORM VALUES

Operating Environment	PLTFM
Production Center – Internally Developed Software	0.8
Production Center — Contracted Software	1.0
Military Mobile (Van or Shipboard)	1.4
Commercial Avionics	1.7
MIL-Spec Avionics	1.8
Unmanned Space	2.0
Manned Space	2.5

12. SCHEDULE DATA - This consists of the schedule milestones for a project, including Design Phase Start and End dates (DSTART, DEND), Implementation Phase Start and End dates ISTART, IEND), and Test and Integration Start and End dates (TSTART and TEND). For all four projects, the month and year for DSTART and TEND were specified; the intermediate milestones were not specified.

NOTE: For all PRICE-S runs, DSTART must be specified along with either CPLX or TEND. If only DSTART and CPLX are specified, all other schedule milestones will be computed by PRICE-S; if only DSTART and TEND are specified, PRICE-S will compute a CPLX value and all intermediate milestones.

- 13. $\underline{\text{YEAR}}$ This parameter defines the baseline year for technology improvement and for cost escalation. For all projects, the year of the start of the project was selected.
- 14. ESC This parameter defines how cost escalation will be computed. A value of "1" used here for all projects lets the model calculate cost escalation based on an internal rate table containing the following rates:

5.5%	for	1973	7.9%	for	1978
6.7%	for	1974	8.7%	for	1979
9.7%	for	1975	9.6%	for	1980
8.0%	for	1976	9.1%	for	1981
7.6%	for	1977			

- 15. TECIMP This parameter defines the level of software technology improvement from January 1 of YEAR to DSTART. No technological improvement was assumed for any of the projects, so TECIMP=0 was input for all projects.
- 16. MULT This is a linear multiplying factor for all project costs which is used for fee and "G&A." For Projects A and B, done in-house, MULT=1000 was selected, which does not add any overhead, but lists outputs to the nearest dollar. For Projects C and D, contracted efforts, MULT was input to reflect fees.
- 17. PLTFM This parameter relates the cost of software development to the environment in which it must operate; it is a measure of software testing and reliability requirements that must be met. Table 3 lists typical PLTFM values. For Projects A, D and Airborne portion of C, a PLTFM value of 1.7, "Commercial Avionics," was selected. The software for these projects was designed for airborne applications, but no formal testing or military specifications were required during development. For Projects B and the Simulator portion of Project C, a PLTFM value of 1.0 was selected because these projects were designed for fixed ground applications.
- 18. $\underline{\textit{UTIL}}$ This parameter refers to the fraction of available hardware speed and memory capacity utilized by a program, whichever is greater. Values of UTIL below .5 indicate no constraints and do not affect cost,

but values above .5 and especially above .8, have significant cost impact. For Project D and for the Airborne portion of Project C, memory constraints resulted in high UTIL values of .80 and .85, respectively. For other projects, values of .5 or less were selected for UTIL, as no severe constraints were present.

19. TARCST - The actual cost of the project used in the "ECIRP" or "Design to Cost" modes of PRICE-S. This was not specified for any of the projects, as all runs were made in the "normal" mode.

Soltware Model Input Worksheet

Page <u>1</u> of <u>1</u>

Title	PROJECT "A	"				164 1581	039		
Application	IN-HOUSE S	OFTWARE	CONVER	SION	STORAGE A	is Karbar	-21		
Date	7 Feb 78							Optio	nal
Descriptors	INST 18000	APPL 0	RESO 2.7	FUNCT	STRU 0	LEVEL	ton Uta	INTEG	200
Mix	MDAT . 07	MONL 0	MREA .17	MINT . 07	MMAT . 33	MSTR03	MOPR . 33	МАРР	APP
New Design	.001	.001	DREA 1	DINT 1	DMAT	DSTR 001	DOPR 1	DAPP	
New Code	CDAT	.001	CREA 1	CINT	CMAT 1	CSTR 1	COPR 1	CAPP	1000
Device Types	TDAT	TONL	TREA 3	TINT	AME		1000		and styli
Quantity	QDAT 1	QONL 1	QREA 3	QINT 1	7380		1400	40.0	
Schedule Data	CPLX	DSTART 0573_	DEND	ISTART	IEND 0	TSTART	TEND 1275	1940	istof seed
Supplementary Information	YEAR 1973	ESC 1	TECIMP	MULT 1000	PLTFM 1.7	UTIL 5	Andre Editor	TARCST	oquit with
Notes:									nro#
			_	27 -					

Input Worksheet

Page <u>1</u> of <u>1</u>

Title	PROJE	CT "B"				75 16	and the same of	
Application	IN-HO	USE SIMU	LATOR	1637/86	viena en	White	MODE-KI	
Date	13 Fe	<u>b</u> 78						Optional
Descriptors	INST 2600	APPL 0	RESO 3.15	FUNCT 0	STRU	LEVEL	ran NL	INTEG
Mix	MDAT 0	MONL 0	MREA 0	MINT	MMAT	MSTR 0	MOPR	MAPP APPL
New Design	.001	.001	DREA .001	DINT		DSTR .001	DOPR .001	DAPP
New Code	.001	CONL .001	CREA .001	CINT	CMAT	CSTR .001	.001	САРР
Device Types	TDAT	TONL	TREA 0	TINT	#267 -5	Janon	(AST)	enivoli ingel
Quantity	QDAT	QONL	QREA 0	QINT 1	Aano Aano	-965	hAso	ys/reacci
Schedule Data	CPLX	DSTART 1177	DEND	ISTART	IEND 0	TSTART	TEND 0278	diches di Cress
Supplementary Information	YEAR 1977	ESC 1	TECIMP	MULT _1000	PLTFM 1.0	UTIL . 3	50.00 (5)	TARCST
Notes:								Notes
				28 -				

101011115	Software Model			
المرازات المرازات	Input Worksheet			

The same of the sa

Page 1 of 3

Title	PROJE	CT "C"				To 11 9999	Land L		
Application	CONTR	ACTED AN	TENNA:	AIRBORN	E SOFTW.	ARE	460		
20 Mar 78								Optional	
Descriptors	INST 2000	APPL 0	RESO 2.7	FUNCT 0	STRU	LEVEL 0	7898	INTEG 3	ghaid
Mix	MDAT 1	MONL .1	MREA . 8	MINT 0	MMAT 0	MSTR 0	MOPR 0	МАРР	APPL
New Design	DDAT25	DONL .25	DREA . 25	DINT	DMAT 0	DSTR	DOPR	DAPP	sC ses
New Code	CDAT	CONL	CREA	CINT	CMAT	CSTR 0	COPR	САРР	as Paga
Device Types	TDAT 0	TONL	TREA 0	TINT	ASBY	29(07)	3.401		ela su
Quantity	QDAT 0	QONL	QREA 0	QINT	A380	1900	TAGE		Silvaci
Schedule Data	CPLX 	DSTART 0578	DEND	ISTART 0	IEND 0	TSTART	TEND 		luberiu san
Supplementary Information	YEAR 1978	ESC1	TECIMP	MULT 	PLTFM	UTIL8	Bran	TARCST	malugo secula
Notes:								-	1850
				1					

Software Model Input Worksheet

Page 2 of 3

Title	PROJE	CT "C"							
Application	CONTRA	CTED AN	TENNA:	SIMULAT	ON SOFT	WARE			
Date	20 Man	78						Opt	tional
Descriptors	20000	APPL 0	2.7	FUNCT	STRU	LEVEL	10 A	INTEG	nded
Mix	MDAT 0	MONL 0	MREA 0	MINT	MMAT 8	MSTR	MOPR	МАРР	APP
New Design	DDAT	DONL	DREA 0	DINT	DMAT .1	DSTR	DOPR 1	DAPP	
New Code	CDAT	CONL	CREA	CINT	CMAT	CSTR	COPR	САРР	1007 400
Device Types	TDAT 0	TONL	TREA	TINT	ANTI	- Jacob	1007		S N
Quantity	QDAT 0	QONL	QREA 0	QINT0	also	ander .	1840		ntos
Schedule Data	CPLX 1.0	DSTART 0578	DEND	ISTART	IEND	TSTART	TEND		indi ya
Supplementary Information	YEAR 1978	ESC 1	TECIMP	MULT 1060	PLTFM	UTIL2	BARY	TARCST	
Notes:									
			-	30 -					

Software Model Input Worksheet

Page 3 of 3

Title	PROJE	ст "с"							DI F
Application	CONTRACTED ANTENNA: SOFTWARE INTEGRATION AND TEST								
Date	20 Mai	<u>r</u> 78						Optional	
Descriptors	INST \$	APPL	RESO	FUNCT	STRU	LEVEL	115	INTEG	
Mix	MDAT	MONL	MREA	MINT	MMAT	MSTR	MOPR	МАРР	APPI
New Design	DDAT	DONL	DREA	DINT	DMAT	DSTR	DOPR	DAPP	G sus
New Code	CDAT	CONL	CREA	CINT	CMAT	CSTR	COPR	САРР	
Device Types	TDAT	TONL	TREA	TINT	AIRE	_Lior	140		825 Y 17 290 Y
Quantity	QDAT	QONL	QREA	QINT	rane		F4000		mad
Schedule Data	CPLX 1.0	DSTART 1078	DEND	ISTART	IEND 0	TSTART 0	TEND 0179		
Supplementary Information	YEAR 1978	ESC	TECIMP	MULT 1060	PLTFM	UTIL2	NATE:	TARCST	ekagii mobi
Notes:								•	630

Software Model Input Worksheet

Page <u>1</u> of <u>1</u>

Title	PROJEC	CT "D"							
Application	CONTRA	ACTED RA	ADAR						
Date	23 Ju	n 78						Opt	tional
Descriptors	1NST 	APPL 0	RESO 2.5	FUNCT 0	STRU	LEVEL 0	100	INTEG	
Mix	MDAT	MONL 0	MREA	MINT	MMAT	MSTR 0	MOPR 0	MAPP	APPI
New Design	DDAT	DONL 0	DREA 1	DINT	•99	DSTR	DOPR 0	DAPP	AC NO
New Code	CDAT	CONL	CREA	CINT 1	CMAT	CSTR 0	COPR	САРР	3.5
Device Types	TDAT	TONL	TREA 3	TINT1	A357		2Aq1		230.9
Quantity	QDAT	QONL 3	QREA 3	QINT 1	A180	.000	7-00		Tine.
Schedule Data	CPLX	DSTART _0574	DEND	ISTART 0	IEND 0	TSTART	TEND		
Supplementary Information	YEAR 1974	ESC 1	TECIMP	MULT 1120	PLTFM 1.7	UTIL . 85	AAST COOL	TARCST	prideu en odi
Notes:									
			-	32 -					

APPENDIX B

PRICE-S OUTPUTS

This appendix contains the actual PRICE-S run data and outputs for each of the four projects considered, with total costs circled. The outputs also include a sensitivity analysis which shows the effect of changes for RESO and CPLX on cost, and a schedule effect summary which compares the input schedule to a "typical" schedule computed by PRICE-S and demonstrates areas where cost savings may be realized by changing schedules.

DATE 6-MAR-79 TIME 09:02

IN HOUSE SOFTWARE CONVERSION	g eldrenbe dager. Desidentere	* * * * * * * * * * * *	VANNAV	SYSTEM		
INPUT DATA						
			DATED: 7	FEB 78		
DESCRIPTORS INSTRUCTIONS 18000 FUNCTIONS .0	APPLICATION 0 STRUCTURE 0	.000	RESDURCE LEVEL	2.700		
DATA SZR 0.07 DNLINE COMM 0.00 REALTIME C&C 0.17 INTERACTIVE 0.07		DE 1 00 00 00 00 00 00	1	URATION UANTITY 1 1 3 1		
SCHEDULE COMPLEXITY 1.000 DESIGN START MAY 73 DESIGN END 0	IMPL START	.0	T&I START T&I END	0 DEC 75		
SUPPLEMENTAL INFORMATION YEAR 1973 MULTIPLIER 1000.000			TECH IMP UTILIZATION	0.00 0.50		
	PROGRAM COSTS					
COST ELEMENTS SYSTEMS ENGINEERING PROGRAMMING COMFIGURATION CONTROL DOCUMENTATION PROGRAM MANAGEMENT TOTAL	14811. 14295. 11826.	IMPL 4845. 26919. 7408. 2451. 2237. 43860. 8	34699. 53815. 23824. 10936.	TDTAL 182720. 81713. 76033. 40570. 24999.		
DESCRIPTORS INSTRUCTIONS 18000 FUNCTIONS 200	And the second of the second o	.461	RESDURCE LEVEL	2.700		
SCHEDULE COMPLEXITY 1.000 DESIGN START MAY 73 DESIGN END 0	IMPL START IMPL END	0	T&I START T&I END	0 DEC 75		

DATE 6-MAR-79 TIME 09:04

.SENSITIVITY DATA

..... COMPLEXITY

	.900	1.	1.000 1.100		
2.600		15. : COST 11.0 : MONTHS	386101. 31.0		397826. : 31.0 :
U 2.700 :		75. :: .COST	.406035. :: .31.0 ::	CDST	418577. :
2.800 :	: СШST 4187 МШМТНS 3	•	427777. 31.0		

SCHEDULE EFFECT SUMMARY

ACTIVITY LENGTH IN MONTHS

. COMPLEXITY = 1.000	: DESIGN	IMPL	T & I:	TOTAL
.SPECIFIED SCHEDULE (OVERLAP)	: 0.0 : 0.0	0.0	0.0	31.0
TYPICAL SCHEDULE (OVERLAP)	: 7.1	7.7	11.0	17.0

DEVELOPMENT COSTS

: COMPLEXITY = 1.000 ::	DESIGN	IMPL	T .8. I	: TOTAL :
SPECIFIED SCHEDULE	154065.	43860.	208110.	406035. :
TYPICAL SCHEDULE	127715.	36295.	170634.	334644. :
ESTIMATED PENALTY	26350.	7565.~	37477.	:71391.

- 35 -

DATE 6-MAR-79 TIME 09:08

IN HOUSE SIMULAT	OR		NAV SYSTEM				
		INPUT DAT	A				
FILENAME: PROJE		2.11.01.21.1		DATED: 1	3 FEB 78		
DESCRIPTORS INSTRUCTIONS FUNCTIONS	2600 0	APPLICATION STRUCTURE	0.000 0.000	RESOURCE LEVEL	3.150 .0.000		
APPLICATION CATE DATA S/R ONLINE COMM REALTIME C%C INTERACTIVE MATHEMATICAL STRING MANIP OPR SYSTEMS	GDRIES MIX 0.00 0.00 0.05 0.95 0.00	MEW DEVELOR DESIGN 0.00 0.00 0.00 1.00 0.10 0.00 0.00	MENT CDDE 0.00 0.00 0.00 1.00 1.00 0.00	SYSTEM CONFI	GURATION QUANTITY 1 1 0 1		
SCHEDULE COMPLEXITY DESIGN START DESIGN END	0.900 MDV 77	IMPL START	0.00 0	T&I START T&I END	0 FEB 78		
SUPPLEMENTAL INF YEAR MULTIPLIER 1	ORMATION 1977 000.000	ESCALATION PLATFORM	1.000 1.0	TECH IMP UTILIZATION	0.00 0.30		
		PROGRAM COS	TS				
COST ELEMENTS SYSTEMS ENGINEE PROGRAMMING CONFIGURATION CO DOCUMENTATION PROGRAM MANAGEME TOTAL	ONTROL	DESIGN 2267. 620. 182. 143. 185. 3397.	IMPL 190. 1140. 181. 42. 48. 1601.	T & I 3571. 1460. 1372. 409. 229. 7041.	TDTAL 6028. 3220. 1734. 594. 462.		
DESCRIPTORS INSTRUCTIONS FUNCTIONS	2600 29	ADDITIONAL DO APPLICATION STRUCTURE	1.370 0.000	RESDURCE LEVEL	3.150		
SCHEDULE COMPLEXITY DESIGN START DESIGN END	0.900 NOV 77 0	IMPL START IMPL END	0	T%I START	0.000 0 FEB 78		

--- PRICE SOFTWARE MODEL --DATE 6-MAR-79 TIME 09:10

HOUSE SIMULATOR

MAY SYSTEM

SENSITIVITY DATA

COMPLEXITY

			300		900	1.000	
CHODOROL	3.050	COST MONTHS	11641. 3.0	COST MONTHS	11632. 3.0	СВЗТ МОНТНЗ	11719. 3.0
	3.150	соѕт монтнѕ	3.0	COST MONTHS	3.0::	: MONTHS	12131. 3.0
	3.250	COST MONTHS	12381. 3.0	COST MONTHS	12376. 3.0	СВІТ МОНТНІ	18473. 3.0

SCHEDULE EFFECT SUMMARY

ACTIVITY LENGTH IN MONTHS

COMPLEXITY = 0.900 :				
SPECIFIED SCHEDULE : (OVERLAP)	0.0	0.0	0.0	3.0
TYPICAL SCHEDULE : (OVERLAP) :				

& I TOTAL
41. : 12039.
21. 11797.
20. 241.

DATE 8-MAR-79 TIME 07:38

CONTRACTED, ANTEN	NA			AIRBORNE	SOFTWARE
		INPUT DAT	A		
FILENAME: PROJE		2111 01 2111		DATED: 20 t	MARCH 78
DESCRIPTORS INSTRUCTIONS FUNCTIONS	0008 0	APPLICATION STRUCTURE	0.000 0.000	RESOURCE LEVEL INTEGRATION	2.700 0.000 0.300
APPLICATION CATE	GORIES	NEW DEVELOP	MENT	SYSTEM CONFIC	MENTION
	MIX	DESIGN	CODE		PURNTITY
DATA SZR	0.10	0.25	1.00	. 0	0
DHLINE COMM	0.10	0.25	1.00	0	0
REALTIME C&C	0.80	0.25	1.00	0	.0
INTERACTIVE	0.00	1.00	1.00	.0	. 0
MATHEMATICAL	0.00	1.00	1.00	***	***
STRING MANIP	0.00	1.00	1.00	***	***
OPR SYSTEMS	0.00	1.00	1.00	***	***
SCHEDULE COMPLEXITY DESIGN START DESIGN END	1.000 MAY 78 0	IMPL START IMPL END	0 0	T&I START T&I END	0 JAN 79
SUPPLEMENTAL INF	DEMATION				
YEAR	1978 060.000	ESCALATION PLATFORM	1.000	TECH IMP UTILIZATION	0.00 0.80
		PROGRAM CO	STS		
COST ELEMENTS		DESIGN	IMPL	T & I	TOTAL
SYSTEMS ENGINE	ERING	11424.	882.	18457.	30763.
PROGRAMMING		2468.	4901.	7549.	14917.
CONFIGURATION	CONTROL	1384.	1027.	8912.	11323.
DOCUMENTATION		1299.	324.	3653.	5276.
PROGRAM MANAGE	MENT	1049.	292.	1628.	2969.
TOTAL		17624.	7426.	40199.	(65249)
		ADDITIONAL	DATA		
DESCRIPTORS					
INSTRUCTIONS	2000	APPLICATION	7.795	RESOURCE	2.700
FUNCTIONS	22	STRUCTURE	0.000	LEVEL	0.000
SCHEDULE COMPLEXITY	1.000				
DESIGN START	MAY 78	IMPL START	0	. T&I START	0
DESIGN END	0	IMPL END	0	T&I END	JAN 79

--- PRICE SOFTWAPE MODEL --DATE 8-MAR-79 TIME 07:40

CONTRACTED ANTENNA

AIRBORNE SOFTWARE

SENSITIVITY DATA

COMPLEXITY

		1.000	1.100
2.600 R	COST 59365.	COST 62232. MONTHS 8.0	CDST 66002.
S U 2.700 R C	: COST 62190. : MONTHS 8.0	: COST 65249. : MONTHS 8.0	
2.800	: CDST 64633. : MDNTHS 8.0	COST 67868. MONTHS 8.0	COST 72114. MONTHS 8.0

SCHEDULE EFFECT SUMMARY

ACTIVITY LENGTH IN MONTHS

: COMPLEXITY = 1.000	DESIGN	IMPL	T & I	TOTAL
SPECIFIED SCHEDULE (OVERLAP)	0.0			8.0
TYPICAL SCHEDULE (OVERLAP)	2.4		4.8	7.0

and the second s				
COMPLEXITY = 1.000	DESIGN	IMPL	T & I	TOTAL
SPECIFIED SCHEDULE	17624.	7426.	40199.	65249.
TYPICAL SCHEDULE	17463.	7357.	39816.	64636.
ESTIMATED PENALTY	161.	69.	383.	613.
! :				

DATE 8-MAR-79 TIME 07:42

CONTRACTED ANTENNA				SIMULATION S	OFTWARE
		. INPUT DAT	A		
FILENAME: PROJO				DATED: 20 M	1ARCH 78
DESCRIPTORS INSTRUCTIONS 20 FUNCTIONS	0000	APPLICATION STRUCTURE	0.000 0.000	RESOURCE LEVEL INTEGRATION	2.700 0.000 0.300
APPLICATION CATEGOR	IES	NEW DEVELOP	MENT	SYSTEM CONFIG	URATION
	IIX	DESIGN	CODE	The second of th	WANTITY
DATA SZR 0	.00	1.00	1.00	0	. 0
	.00	1.00	1.00	0	0
	0.00	1.00	1.00	0	0
	.00	1.00	1.00	0	. 0
	.80	0.10	0.10	***	***
	.00	1.00	1.00	***	***
OPR SYSTEMS 0	.20	0.10	0.10	***	***
	.000 MAY 78	IMPL START	0	T&I START T&I END	0 JAN 79
SUPPLEMENTAL INFORM	MITION				
YEAR 1	978	ESCALATION	1.000	TECH IMP	0.00
MULTIPLIER 1060	.000	PLATFORM	1.0	UTILIZATION	0.20
		PROGRAM CO	STS		
COST ELEMENTS		DESIGN	IMPL	T & I	TOTAL
SYSTEMS ENGINEERI	NG	11213.	552.	22238.	34003.
PROGRAMMING	1	2422.	3065.	9095.	14582.
CONFIGURATION CON	TROL	1385.	654.	10943.	12982.
DOCUMENTATION		998.	159.	3457.	4614.
PROGRAM MANAGEMEN	T	1033.	185.	1968.	3185.
TOTAL		17051.	4614.	477.01.	69366
		ADDITIONAL I	DATA		
DESCRIPTORS					
	000	APPLICATION	2.883	RESDURCE	2.700
FUNCTIONS	555	STRUCTURE	0.000	LEVEL	0.000
SCHEDULE COMPLEXITY 1	.000				
DESIGN START M	AY 78	IMPL START	0	T&I START	0
DESIGN END	0	IMPL END	0	T&I EMD	JAN 79

--- PRICE SOFTWARE MODEL --DATE 8-MAR-79 TIME 07:44

CONTRACTED ANTENNA

SIMULATION SOFTWARE

SENSITIVITY DATA

COMPLEXITY

	.900	1.000	1.100
.2.600 R E	COST 65014. MONTHS 8.0	COST 66153.	COST 67801. MONTHS 8.0
S U 2.700 R C	: : MONTHS 8.0	: CDST 69366.: : момтнѕ 8.0:	: MDNTHS 8.0 :
2.800	COST 70840.		COST 73997. MONTHS 8.0

SCHEDULE EFFECT SUMMARY

ACTIVITY LENGTH IN MONTHS

. COMPLEXITY = 1.000	DESIGN	IMFL	T. 8: I	: TOTAL
SPECIFIED SCHEDULE	0.0	0.0	0.0	:. 8.0
	1.8 ← 0.6	6) (0 . 5)		5.3

COMPLEXITY = 1.000 :			T & I	TOTAL
SPECIFIED SCHEDULE	17051.	4614.	47701.	69366.
TYPICAL SCHEDULE	15981.	4321.	.44587.	64889.
ESTIMATED PENALTY	1070.	293.	3114.	4478.

--- PRICE SOFTWARE MODEL --SYSTEM INTEGRATION

DATE 8-MAR-79 TIME 07:47

Pini	E O-HHK-13	THE UT . 41		
CONTRACTED ANTENNA			. INTEGRATION A	ND TEST
	INPUT DAT	TA		
FILENAME: PROJE	Zim Ot Div		DATED: 20 MA	ARCH 78
SCHEDULE COMPLEXITY 1.000 DESIGN START DCT 78 DESIGN END 0	IMPL START IMPL END	Q	T&I START T&I END	. 0 JAN 79
Dedicate English			10.2 2(12	31111
SUPPLEMENTAL INFORMATION YEAR 1978 MULTIPLIER 1060.000	ESCALATION PLATFORM	1.000 1.0	TECH IMP UTILIZATION	0.00 0.20
	PROGRAM CO	JSTS .		
COST ELEMENTS SYSTEMS ENGINEERING PROGRAMMING CONFIGURATION CONTROL DOCUMENTATION PROGRAM MANAGEMENT TOTAL	DESIGN 2740. 592. 219. 153. 155. 3859.	IMPL 134. 745. 103. 24. 27. 1034.	T % I 2865. 927. 723. 208. 115. 4238.	TOTAL 5139. 2264. 1046. 384. 297. 9130
SCHEDULE COMPLEXITY 1.000 DESIGN START DCT 78 DESIGN END 0	IMPL START IMPL END	.0 0	T&I START T&I END	0 JAN 79
SUMMARY	OF SOFTWARE DEV	VELOPMENT TOTA	LS HETSHAM AND THE	
	PROGRAM CO	JSTS		
COST ELEMENTS	DESIGN	IMPL	10000	TOTAL
SYSTEMS ENGINEERING PROGRAMMING	25377. 5481.	1568. 8711.	42960	69905. 31763.
CONFIGURATION CONTROL	2988.	1784.	20578.	25350.
DOCUMENTATION	2451.	507.	7317.	10275.
PROGRAM MANAGEMENT	2237.	504.	3711.	6458.
TOTAL	38534.	13074.		437.46

SYSTEM INTEGRATION

DATE 8-MAR-79 TIME 07:49

CONTRACTED ANTENNA

INTEGRATION AND TEST

SENSITIVITY DATA

COMPLEXITY

	.9	00	1.0	00	1.1	00
2.600 R E	COST MONTHS	8617. 3.0	. COST MONTHS	8771. 3.0	саят мантня	9028. 3.0
S U 2.700 R C	COST MONTHS	3.0	COST MONTHS	9130.:	ZHTHOM :	9404. 3.0
2.800	COST MONTHS	9265. 3.0	CDST MONTHS	9439. 3.0	COST MONTHS	9728. 3.0

SCHEDULE EFFECT SUMMARY

ACTIVITY LENGTH IN MONTHS

COMPLEXITY = 1.000			T & I :	TOTAL
SPECIFIED SCHEDULE (OVERLAP)	.0.0	0.0		3.0
TYPICAL SCHEDULE	1.0			2.4

COMPLEXITY = 1.000			T & L	TOTAL
SPECIFIED SCHEDULE	3859.	1034.	4238.	9130.
TYPICAL SCHEDULE	3788.	1015.	4160.	8962.
ESTIMATED PENALTY :	71.	19.	78.	168.

DATE 6-MAR-79 TIME 09:27

CONTRACTED RADAR			RADAR	SOFTWARE
	INPUT DAT	A		
FILENAME: PROJD	2 100-2		DATED: 23	JUNE 78
DESCRIPTORS INSTRUCTIONS 737 FUNCTIONS	50 APPLICATION 0 STRUCTURE	0.000 0.000	RESOURCE LEVEL	2.500 0.000
APPLICATION CATEGORI MI DATA S/R ONLINE COMM REALTIME C&C INTERACTIVE MATHEMATICAL STRING MANIP OPR SYSTEMS COMPLEXITY 0.	X DESIGN 15 1.00 00 0.00 15 1.00 05 1.00 65 0.99	MENT CODE 1.00 0.00 1.00 1.00 0.99 0.00	SYSTEM CONFIC TYPES (4 1 3 1 	5URATION 9UANTITY 4 3 3 1
DESIGN START MA	Y 74 IMPL START O IMPL END	0 0	T&I START T&I END	0 MAY 79
SUPPLEMENTAL INFORMA YEAR 19 MULTIPLIER 1120.	74 ESCALATION	1.000 1.7	TECH IMP UTILIZATION	0.00 0.85
	PROGRAM CO	STS		
COST ELEMENTS SYSTEMS ENGINEERING PROGRAMMING CONFIGURATION CONTI DOCUMENTATION PROGRAM MANAGEMENT TOTAL	111149. ROL 61983. 67209. 70744. 717485.	IMPL 14914. 89289. 26983. 9057. 8280. 148523.	T % I 388455. 158878. 284174. 3 131790. 61617. 1024914.	TDTAL 809769. 359316. 373139 208056. 140641
DESCRIPTORS INSTRUCTIONS 737 FUNCTIONS 8	ADDITIONAL SO APPLICATION STRUCTURE	DATA 2.997 0.000	RESDURCE LEVEL	2.500 0.000
DESTIGH START MA	900 Y 74 IMPL START O IMPL END	0 0	T&I START T&I END	0 MAY 79

--- PRICE SOFTWARE MODEL ---DATE 6-MAR-79 TIME 09:29

INTRACTED RADAR

RADAR SOFTWARE

SENSITIVITY DATA

COMPLEXITY

)		.800	.900	1.000
RE	2.400	CDST 1783797. . MDNTHS 60.0	COST 1780101. MUNTHS 60.0	COST 1794730. MONTHS 60.0
SOURCE	2.500	МОМТНS 60.0	COST 1890922. :	MONTHS 60.0 :
	2.600	COST 2007339. MONTHS 60.0	COST 2003904. MONTHS 60.0	COST 2021260. MONTHS 60.0

SCHEDULE EFFECT SUMMARY

ACTIVITY LENGTH IN MONTHS

CDMPLEXITY = 0.900	DESIGN		T & I :	TOTAL
: SPECIFIED SCHEDULE :		0.0		
TYPICAL SCHEDULE (OVERLAP)	8.6	9.2 9 (5.2)	13.1	20.8

COMPLEXITY = 0.900		IMF'L	T & I	: TOTAL
SPECIFIED SCHEDULE		148523.	1024914.	: 1890922.
TYPICAL SCHEDULE	468313.	93945.	628006.	1190265.
ESTIMATED RENALTY	249172.	54578.	396908.	700657.

REFERENCES

- 1. <u>Information Processing/Data Information Implications of Air Force Command and Control Requirements in the 1980's (CCIP-85)</u>, Space and Missile Systems Organizations, Los Angeles, CA (DDC Number AD-742292), Feb 1972.
- 2. "Software Management in the Department of Defense," Proceedings from the Software Management Conference, American Institute of Aeronautics and Astronautics, Jacques S. Gansler, Los Angeles, CA, 1976.
- 3. PRICE Software Model Overview, Frank Freeman, PRICE Systems, RCA Corporation, Nov 1977, GSD/SCN 010-77.
- 4. Reference Manual, PRICE Software Model, Dec 1977, RCA PRICE Systems.