na-position الحزمة version1.1

الكالرسم جداول الوضعية النسبية بين منحني و مستقيم

😭 تعديل : لعويجي وليد

2018/06/14

والمستالين المحتوات

2	\posab a	التعلي	1
3	حالة التقاطع بين المنحني و المستقيم في نقطة	1.1	
5	حالة عدم التقاطع بين المنحني و المستقيم	1.2	
6	\posad 3.	التعليد	2
7	D_f من الشكل $[a,b[\cup]b,c]$ من الشكل D_f	2.1	
8	0 من الشكل $[oldsymbol{D}, +\infty[oldsymbol{D}]$ من الشكل $[oldsymbol{D}, +\infty[oldsymbol{D}]$	2.2	
9	D_f من الشكل $[a,b[\cup]b,c]$ من الشكل من الشكل الشكل من الشكل	2.3	
10	0.00 حالة 0.00 من الشكل 0.000 0.000 0.0000 0.0000 0.0000 0.0000 من الشكل المحالة 0.000	2.4	
	$0, \dots, \infty; a[\cup]b; +\infty$ من الشكل $[0,a[\cup]b;d]=[c,a[\cup]b,d]$ حيث لاتوجد نقطة تقاطع $[0,a[\cup]b;d]$		
13	0.00 حالة 0.000 من الشكل 0.0000 0.00000 اأو $0.00000000000000000000000000000000000$	2.6	

14 \posba 4	التعليم	3
من الشكل $[a,b]$ أو $[a,b] - \infty; +\infty$ $[a,b]$ من الشكل $[a,b]$	3.1	
$a;+\infty$ من الشكل $[a,b]$ أو $[a,b]$ من الشكل $[a,b]$ من الشكل أو $[a,b]$	3.2	
[a,b] من الشكل $[a,b]$ أو $[a,b]$ من الشكل $[a,b]$ من الشكل أير الشكل أير أو	3.3	
رجود نقطتي تقاطع بين المنحني و المستقيم التعليمة posat بين المنحني و المستقيم	حالة ,	4
التعليمة posat التعليمة التعليمة على التعليم على التعليمة على التعليم على ا	4.1	
[a,b] من الشكل $[a,b]$ أو $[a,b]$ من الشكل $[a,b]$ أو $[a,b]$	4.2	
19 \posaw \(\frac{1}{4} \)	التعليم	5
D_f من الشكل $[a,c[\cup]c,b]$ من الشكل من الشكل المنال ال	5.1	
حالة التقاطع في ثلاث نقط بين المنحني والمستقيم	5.2	
تغيير اسم المنحني واسم المستقيم		
تغيير اسم الدالة		

مقدمة

نيُمُاللُّهُ اللَّهُ اللَّا اللَّا اللَّهُ اللَّهُ اللَّا اللَّهُ اللَّا اللَّهُ اللَّهُ الللَّهُ اللَّهُ اللَّهُ اللّل

لقد وفقنا الله تعالى لإنشاء حزمة سمّيت na-position ، تهتم برسم مختلف جداول الوضعيّة النّسبيّة بين منحنى و مستقيمه المقارب ، أو بين منحنى و مماسّه.

إن رسم جداول الوضعيّة النّسبيّة يتطلب برمجيات مختلفة مثل GeoGebra و غيّرها وذلك قد يستغرق وقتا و جهدا معتبرا ، لكن هذه الحزمة ستختصر لك الوقت بقدر كبير في رسم تلك الجداول و يتم ذلك بمجرّد كتابة تعليمات بسيطة ، سنفصّل فيها فيما بعد . الحزمة أنشأها الأستاذين : ناعم محمّد و سليم بو .

في هذا الإصدار الجديد لحزمة na-position قمنا باختصار بعص الأوامر في أمر واحد و أضفنا الحالات التي يكون التقاطع بين المنحنى والمستقيم في نقطتين و ثلاث نقط .

na-position الحزمة

نبذة عن الحزمة

الحزمة na-position تعتمد أساسا على الحزمتين tkz-tab و listofitems ، بمعنى آخر لكي تعمل هذه الحزمة عليك polyglossia بثثبيت الحزمتين na-position على TeX Live على listofitems ، الحزمة na-position تعمل مع الحزمة XeLaTeX عند المعالجة بـ XeLaTeX

posab [الطرف ثاني α , الطرف أول $(1, \pm, 2, \pm, 3)$ | الطرف أول α , الطرف أول $(1, \pm, 2, \pm, 3)$)

- ح الطرف الأوّل يعني الطرف الأيسر في تجموعة التّعريف
- ح الطرف الثاني يعنيُّ الطرف الأيمن في تجموعة التَّعريف
 - التّقاطع هاصلة نقطة التّقاطع lpha
- (C_f) الموجودة بين قوسين هي إشارة الوضعيّة حسب تواجد (C_f)
 - + بالنَّسبة إلى (Δ) بمعنى إذا كان (C_{f}) فوق (Δ) نكتب
 - و إذا (C_f) تحت (C_f) نكتب
- ح الحاضنتين الأخيرتين في التّعليمة نكتب إسم نقطة التّقاطع و إحداثياتها

χ	الطرف الأول		α		الطرف الثاني
f(x) - y	1	(\pm)	2	(\pm)	3
الوضعية					

- $-\infty$ عندما يكون الطرف الأول من الجال مفتوحا عند عدد حقيقي a نضع الرمز : b ، وعندما يكون ∞ أو مغلقا نترك مكان الرقم b فراغا.
 - ، lpha إذا كانت lpha نقطة التقاطع نضع الرمز lpha ، بينما إذا كانت lpha قيمة ممنوعة نضع الرمز lpha
- $+\infty$ عندما يكون الطرف الثاني من الججال مفتوحاً عند عدد حقيقي $\frac{1}{0}$ نضع الرمز : $\frac{1}{0}$ ، وعندما يكون $\frac{1}{0}$ أو مغلقا نترك مكان الرقم $\frac{1}{0}$ فراغا.

حالة التقاطع بين المنحنى و المستقيم في نقطة

حالة التقاطع بين المنحني و المستقيم في نقطة

$\alpha=1$ مثال أول : [a,b] ، حيث

χ	a 1 b
f(x) - y	- • • +
الوضعية	(Δ) يقطع (C_f) يقطع (C_f) فوق (Δ) فوق (Δ) فوق (C_f) (Δ) فوق (C_f)

$\alpha=2$ مثال ثاني : [a,b] ، حيث

 $\label{lem:condition} $$ \operatorname{[a,2,b](d,-,z,+,)} B\left(2 ; f(2) \right) $$$

х	(a 2	b
f(x) - y		—	
الوضعية		(Δ) يقطع (C_f) يقطع (C_f) فوق (Δ) يقطع (C_f) فوق (C_f) فوق (C_f)	

$\alpha=2$ مثال ثالث: $[-\infty,b]$ عیث

 $\label{left} $$ \operatorname{[-\inf ty,2,b](,+,z,-,)\{B \setminus (2 ; f(2) \setminus) \} } $$$

χ	$-\infty$ 2	b
f(x) - y	+ Ö –	
الوضعية	(Δ) يقطع (C_f) يقطع (C_f) يقطع (Δ) يقطع (Δ) يقطع (Δ) يقطع (C_f) يقطع (C_f) يو النقطة (C_f)	

lpha=2 مثال رابع : $]-\infty, b[:$

 $\label{left(2;f(2) right)} $$ \operatorname{[-\inf ty,2,b](,-,z,+,d)}(B \cdot 2;f(2) \cdot p) $$$

χ	$-\infty$ 2	b
f(x) - y	- 🐧 +	
الوضعية	(Δ) يقطع (C_f) يقطع (C_f) فوق (Δ) فوق (Δ) يقطع (C_f) (Δ) فوق (C_f)	

lpha=2 مثال خامس $lpha=0,+\infty$ حيث

 $\posab[-\infty,-3,+\infty](,+,z,+,){C\eft(-3;f(-3)\right)}$

χ	$-\infty$ -3 $+\circ$
f(x) - y	+ 0 +
الوضعية	(Δ) يقطع (C_f) يقطع (C_f) فوق (Δ) يقطع (C_f) فوق (C_f) (Δ) فوق (C_f)

1-2 حالة عدم التقاطع بين المنحني و المستقيم

حالة عدم التقاطع بين المنحني و المستقيم

مثال أول : $]-\infty,c[\cup]c,+\infty[$ ، حيث أنه لاتوجد نقطة تقاطع

\posab[-\infty,c,+\infty](,-,d,+,){}

χ	$-\infty$	<u>c</u> +∞
f(x) - y	_	+
الوضعية	(Δ) تحت (C _f)	(Δ) فوق (C_f)

مثال ثاني : $[a,c[\cup]c,b]$ ، حيث أنه لاتوجد نقطة تقاطع

\posab[a,c,b](,-,d,-,){}

χ	a c			
f(x) - y		_		
الوضعية	(Δ) تحت (C_f)	(Δ) تحت (C _f)		

الشكل العام للتعليمة هو:

- $-\infty$ الطرف الأوَّل يعني الطرف الأيسر في تجموعة التَّعريف و هو a في حالة $D_f = [a,b[\cup]b,c]$ و هو $D_f = [a,b[\cup]b,+\infty[$ في حالة $D_f = [a,b[\cup]b,+\infty[$
 - $D_f =]-\infty; b[\cup]b, +\infty[$ أو $D_f = [a,b[\cup]b,c]$ في حالة b في حالة $D_f = [a,b[\cup]b,c]$
 - $D_f =]-\infty; b[\cup]b, +\infty$ الطرف الثاني هو c في حالة $D_f = [a,b[\cup]b,c]$ و هو c في حالة c
- lacktriangledown الإشارات \pm هي الإشارتين + أو حسب وضع المستقيم (Δ) بالنّسبة للمنحنى (C_f) ، حيث + عندما يكون (C_f) فوق (Δ) و عندما يكون (C_f) تحت (Δ)

x	الطرف الأول		α	β		الطرف الثاني	
f(x) - y	1	(\pm)	2	(\pm)	3	(\pm)	4
الوضعية							

- $-\infty$ عندما يكون الطرف الأول من المجال مفتوحا عند عدد حقيقي a نضع الرمن : b ، وعندما يكون ∞ أو مغلقا نترك مكان الرقم b فراغا.
 - ، d فاصلة نقطة التقاطع نضع الرمز z ، بينما إذا كانت lpha القيمة المحذوفة نضع الرمز 2
 - d نضع الرمن α القيمة الحذوفة نضع الرمن الرمن α النت α القيمة المحذوفة نضع الرمن β
- $+\infty$ عندما يكون الطرف الثاني من المجال مفتوحاً عند عدد حقيقي $\frac{1}{2}$ نضع الرمن $\frac{1}{2}$ وعندما يكون $\frac{1}{2}$ أو مغلقا نترك مكان الرقم $\frac{1}{2}$ فراغا.

$[a,b[\cup]b,c]$ من الشكل D_f

 $[a,b[\cup]b,c]$ من الشكل D_f تاله D_f

، [a,b[من المجال α فاصلة نقطة التقاطع

 $\posad[a,\alpha ,b,c](,-,z,+,d,-,){A(\alpha;f(\alpha))}$

χ	а	α	b	С
f(x) - y	_	0 1	-	
الوضعية	(C _f) (Δ) تحت	ر يقطع (C_f) يقطع (Δ) (Δ) يقطع (Δ) (Δ) ي النقطة (Δ) (Δ) (Δ)		

مثال

 $\posad[-5,-2,1,5](,+,z,-,d,-,){A(-2;f(-2))}$

χ	- 5	-2	1	1	5
f(x) - y	+	0	_	_	
الوضعية	$(C_{ m f})$ فوق (Δ)	يقطع (C_f) يقطع (Δ) (Δ) (Δ) (Δ)	(C _f) (ک تحت	(C_f) (Δ) تحت	

.] $-\infty, b$ [من المجال k فاصلة نقطة التّقاطع

 $\label{local_posad} $$ \operatorname{local}(-,z,+,d,-,)_{A(k;f(k))} $$$

χ		$-\infty$	k	ŀ)	$+\infty$
f(x) -	– y	_	Ø	+	_	
۪ۻعية	الو	(C _f) (Δ) تحت	ر (C _f) يقطع (Δ) في النقطة (Δ) $A(k;f(k))$	(C_{f}) فوق (Δ)	(C _f) (Δ) تحت	

مثال

 $\label{local_posad} $$ \left[-\inf ty, -1, 2, +\inf ty \right] (, +, z, -, d, -,) \{B(-1; f(-1))\} $$$

χ	$-\infty$	—1	2	2	$+\infty$
f(x) - y	+	0		_	
الوضعية	$(C_{ m f})$ فوق (Δ)	يقطع (C_f) يقطع (Δ) في النقطة (Δ) (Δ)	(C _f) تحت (Δ)	(C _f) تحت (Δ)	

 $[a,b[\cup]b,c]$ من الشكل D_f تاله D_f

[b,c] فاصلة نقطة التّقاطع [w] من المجال

\posad[a,b ,w,c](,+,d,+,z,-,){C(w;f(w))}

χ	a ł	o w	c
f(x) - y	+	+ &	
الوضعية	(C_f) فوق (Δ)	$(C_{ m f})$ يقطع $(C_{ m f})$ $(C_{ m f})$ $(C_{ m f})$ $(C_{ m f})$ (Δ) (Δ) (Δ) (Δ) (Δ) (Δ) (Δ) (Δ)	

مثال

 $\posad[-4,-1,3,4](,+,z,-,d,-,){B(3;f(3))}$

χ	<u>-4</u>	<u>-1</u>	3	3	4
f(x) - y	+	Ø	_	_	
الوضعية	(C_f) فوق (Δ)	يقطع (C _f) يقطع (Δ) في النقطة (Δ) B(3; f(3))	(C _f) قحت (Δ)	(C_{f}) (Δ) تحت	

$]-\infty;b[\cup]b,+\infty[$ من الشكل D_{f} من الشكل

2.4

 $]-\infty;$ الشكل] من الشكل D_f تالم

$]b;+\infty[$ فاصلة نقطة التقاطع m من المجال

\posad[-\infty,b ,m,+\infty](,-,d,-,z,+,){C(m;f(m))}

	х	-∞ 1	0	m		$+\infty$
f($(\mathbf{x}) - \mathbf{y}$	_	_	Ö	+	
	الوضعية	(C_{f}) (Δ) تحت	(C _f) تحت (Δ)	يقطع (C_f) يقطع (Δ) في النقطة $C(m; f(m))$	(C_{f}) فوق (Δ)	

مثال

 $\posad[-\infty,-1,3,+\infty](,+,d,-,z,-,)\{B(3;f(3))\}$

χ	$-\infty$ –	-1 3	$+\infty$
f(x) - y	+	_	
الوضعية	$(C_{ m f})$ فوق (Δ)	(C_f) يقطع (C_f) (C_f) (C_f) يقطع (Δ) (Δ) (Δ) تحت (Δ) (Δ) (Δ) تحت (Δ)	

مثال

 $\posad[-\infty, -1,3,6](,+,d,-,z,-,d)\{B(3;f(3))\}\$

χ	$-\infty$ –	-1 3	6
f(x) - y	+	_ o	
الوضعية	$(C_{ m f})$ فوق (Δ)	(C_f) يقطع (C_f) يقطع (C_f) (C_f) يقطع (Δ) (Δ) تحت (Δ) (Δ) يقطع (Δ) تحت (Δ) يقطع (Δ)	

حالة D_f من الشكل $[c,a[\cup]b,d] = [c,a[\cup]b,d]$ عيث لاتوجد نقطة تقاطع D_f

2.5

مالة D_{\dagger} من الشكل $D_{\dagger} = [c,a[\cup]b,d]$ من الشكل $D_{\dagger} = [c,a[\cup]b,d]$ من الشكل D_{\dagger}

posad [الطرف الثاني , a , b , الطرف أول] ((1) , (1) , (1) , (1) , (1) , (1) , (1)

مثال أول

\posad[-\infty,1,2,+\infty](,+,d,h,d,+,){ }

χ	$-\infty$	1	2	+	-∞
f(x) - y	+			+	
الوضعية	(C_{f}) فوق (Δ)			$(C_{ m f})$ فوق (Δ)	

مثال ثاني

χ	$-\infty$	a	b	+∞
f(x) - y	_			_
الوضعية	(C_{f}) (Δ) تحت			(C_f) (Δ) تحت

مثال ثالث

χ	$-\infty$	α	θ	$+\infty$
f(x) - y	_			+
الوضعية	(C _f) (کت قت (ک			$(C_{ m f})$ فوق (Δ)

مثال رابع

χ	$-\infty$	$\frac{1}{2}$	$\sqrt{2}$		$+\infty$
f(x) - y	+			_	
الوضعية	(C_{f}) فوق (Δ)			(C _f) تحت (Δ)	

حيث لا توجد نقطة تقاطع $[c,a]\cup[b,d]$ من الشكل $[b;+\infty[b;+\infty]$ حيث الما تقطة تقاطع من الشكل الماء الماء

مالة $[c,a] \cup [b,d]$ من الشكل $[b,+\infty[b,+\infty] \cup [b,d]$ من الشكل $[b,+\infty[b,+\infty]]$

 $D_f = [c,a] \cup [b,d]$ أو $D_f =]-\infty;a] \cup [b;+\infty[$ أو b إذا كانت b إذا كانت a و القيمة الأولى هي a و القيمة الثانيّة هي a إذا كانت a إذا كانت a أي تصبح التعليمة من الشكل :

\posad [الطرف الثاني , a , b , الطرف أول $(1, \oplus, h, h, , \oplus, 2)$ }

مثال أول

 $posad[-5,1,2,5](,+,,h,,-,){}$

χ	- 5	1	2		5
f(x) - y	+			_	
الوضعية	$(C_{ m f})$ فوق (Δ)			(C _f) تحت (Δ)	

مثال ثاني

 $\label{local_posad} $$ \operatorname{local}(-\infty, -2, 3, +\infty](, -, ,h,,+,)_{ } $$$

χ	$-\infty$	-2	3		$+\infty$
f(x) - y	_			+	
الوضعية	(C _f) (Δ) تحت			(C_f) فوق (Δ)	

مثال ثالث

\posad[1,2,4,+\infty](,-,,h,,-,){ }

χ	1	2	4		$+\infty$
f(x) - y	_			_	
الوضعية	(C _f) (ک تحت			(C _f) (Δ) تحت	

مثال رابع

 $\posad[-\infty,2,3,5](,+,,h,,-,){}$

χ	$-\infty$	2	3		5
f(x) - y	+			_	
الوضعية	$(C_{ m f})$ فوق (Δ)			(C _f) (Δ) تحت	

الشكل العام للتعليمة هو:

 $\posad [الطرف الثاني, الطرف الأول] (1, \phi, 2)$

- ح الطرف الأوّل يعني الطرف الأيسر في تجموعة التّعريف
- ح الطرف الثاني يعني الطرف الأيمن في تجموعة التّعريف
- \leftarrow إشارة \pm الموجودة بين قوسين هي إشارة الوضعيّة حسب تواجد (C_f) بالنّسبة إلى (Δ) بمعنى إذا كان (C_f) فوق (Δ) نكتب (C_f) تحت (Δ) نكتب (C_f)

[a,b] من الشكل ا[a,b] أو D_f

[a,b] من الشكل [a,b] أو D_f عالة D_f

مثال أول

\posba[-\infty ,+ \infty](,+,)

χ	$-\infty$	$+\infty$
f(x) - y	+	
الوضعية	$(C_{ m f})$ فوق (Δ)	

مثال ثاني

\posba[a ,b](,-,)

х	α		b
f(x) - y		_	
الوضعية		(C _f) (Δ) تحت	

مثال ثالث

 $\gamma = [-3, 2](,+,)$

х	-3		2
f(x) - y		+	
الوضعية		(C_f) فوق (Δ)	

$]a;+\infty[$ من الشكل [a,b] أو D_f

 $[a;+\infty]$ من الشكل [a,b] من الشكل [a,b]

مثال أول

\posba[a,b](d,+,)

χ	a		b
f(x) - y		+	
الوضعية		(C_{f}) فوق (Δ)	

مثال ثاني

 $\posba[a ,+\infty](d,-,)$

x	C	L	$+\infty$
f(x) - y		_	
الوضعية		(C_{f}) (Δ) تحت	

مثال ثالث

 $\posba[2,+\infty](d,+,)$

х	2	. +∞
f(x) - y		+
الوضعية		(C_{f}) فوق (Δ)

$]-\infty;$ اأو [a,b[من الشكل D_{f} أو

 $]-\infty;$ الشكل [a,b[من الشكل D_{f} أو D_{f}

مثال أول

\posba[a,b](,+,d)

х	a		b	
f(x) - y		+		
الوضعية		(C_f) فوق (Δ)		

مثال ثاني

 $\posba[-\infty ,b](,-,d)$

х	$-\infty$	b
f(x) - y	I	
الوضعية	(C _f) (Δ) تحت	

مثال ثالث

 $\verb|\posba[-\infty ,1](,+,d)|$

x	$-\infty$	1
f(x) - y	+	
الوضعية	(C_{f}) فوق (Δ)	

حالة وجود نقطتي تقاطع بين المنحنى و المستقيم

حالة وجود نقطتي تقاطع بين المنحنى و المستقيم

الشكل العام للتعليمة:

 $\posat [نقطة التقاطع الثانية, نقطة التقاطع الاولى] (<math>2$, 2, 3, 4, 4, 4, 5, 8, الطرف أول α , α , β , الطرف أول α , α , β , الطرف أول α

- . هي فاصلة نقطة التقاطع الأولى lpha
- \bullet هي فاصلة نقطة التقاطع الثانية \bullet

مثال أول

 $\posat[a,-4,5,b](,-,z,+,z,-,)[A(-4;f(-4)),B(5;f(5))]$

x	a	-4		5		b
f(x) - y	-	0	+	0	_	
الوضعية	(C_f) (Δ) تحت	يقطع (C_f) يقطع (Δ) في النقطة $A(-4;f(-4))$	(C_f) فوق (Δ)	يقطع (C_f) يقطع (Δ) في النقطة (Δ) (Δ) (Δ)	(C_f) (Δ) تحت	

مثال ثاني

 $[-\inf_{z,-1,2,+\inf_{z,-1,2,-1}} (x,+x,-x,-x,-x)] [A(-1;f(-1)),B(2;f(2))]$

х	$-\infty$	-1		2		$+\infty$
f(x) - y	+	0	_	0	_	
الوضعية	$(C_{ m f})$ فوق (Δ)	يقطع (C_f) يقطع (Δ) في النقطة $A(-1;f(-1))$	(C_f) (Δ) تحت	ر (C _f) يقطع (Δ) في النقطة (Δ) B(2; f(2))	(C_{f}) (Δ) تحت	

ونتضمن دراسة باقي حالات تقاطع المنحنى والمستقيم في نقطتين بالاضافة إلى حالة التقاطع في ثلاث نقط. الشكل العام للتعليمة :

\posaw [الطرف أول], α , β , γ , الطرف أول] ((1), \oplus , (2), (3), (4), (4), (4)

- . $\stackrel{\wedge}{A}$ هي فاصلة نقطة التقاطع الأولى $\stackrel{\wedge}{\alpha}$
- $\stackrel{-}{\bullet}$ هي فاصلة نقطة التقاطع الثانية $\stackrel{-}{\mathsf{B}}$
- \sim هي فاصلة نقطة التقاطع الثالثة γ

[a, c[∪]c, b] من الشكل D_f عاله D_f عاله [a' c[∩]c' p] من الشكل [a' c[∩]c' p]

[a,c[فاصلتى نقطتى التقاطع α و β من المجال

χ	а		α		β		c	ь
f(x) - y		+	Ö	_	0	+	+	
الوضعية		(C _f) (Δ) فوق	يقطع (C_f) يقطع (Δ) في النقطة $A(lpha; f(lpha))$	$\begin{pmatrix} (C_f) \\ (\Delta) \end{pmatrix}$	(C _f) يقطع (Δ) في النقطة (Δ) B(β; f(β))	(Δ) فوق (Δ)	(C _f) فوق (۵)	

مثال

$$\label{eq:posaw} $$ [-3,-2,1,2,3] (,+,z,-,z,+,d,+,) [A(-2;f(-2)),B(1;f(1)) ,] $$$$

x	-3		-2	1	2	2	3
f(x) - y		+	0	ø	+	+	
الوضعية		(C _f) (Δ) فوق (Δ) طة A(-	يقط (C_f) يقط (Δ) في النة (Δ) =2; $f(-2)$	(C _f) يقطع (C _f) في النقطة (Δ B(1; f(1))	(-1)	(C _f) فوق (۵)	

]c,b] فاصلتي نقطتي التقاطع lpha و eta من المجال

χ	a	c	α	β		ь
f(x) - y	+	_	0	+ 0	+	
الوضعية	(C_{f}) فق (Δ)	(C _f) (Δ)	يقطع (C_f) يقطع (Δ) في النقطة Δ $A(\alpha;f(\alpha))$	ر يقطع (C_f) يقطع (C_f) ي النقطة (Δ) (Δ) (Δ) (Δ) (Δ)	$\begin{pmatrix} (C_f) \\ (\Delta) \end{pmatrix}$ فوق	

مثال

posaw[-3,-2,1,2,3](,-,d,-,z,-,z,+,)[, A(1;f(1)),B(2;f(2))]

χ	-3 -	-2 1	2	3
f(x) - y	_	- 0	- 0	+
الوضعية	(C _f) (Δ) نخت) يقطع في النقطة لتحت ^(Δ) A(1; f)	(C_f) يقطع (C_f) يقطع (C_f) يقطع (Δ) (Δ) يقطع (Δ) $($	$ \begin{array}{c} \begin{pmatrix} C_f \\ (\Delta) \end{pmatrix} \\ \begin{pmatrix} \Delta \\ (\Delta) \end{pmatrix} \\ \begin{pmatrix} C_f \\ (\Delta) \end{pmatrix} \\ \begin{pmatrix} \Delta \\ (\Delta) \end{pmatrix} \\ \begin{pmatrix} C_f \\ (\Delta$

]c,b] فاصلة نقطة التقاطع lpha تنتمي إلى الججال [a,c] و eta من المجال

x	a	α	С	β	b
f(x) - y	_		+		
الوضعية	(C _f . (Δ) Ξ	يقطع (C_f) يقطع (Δ) Δ	f) (C _f ن (Δ) تحت	(C_f) يقطع (C_f) يقطع (C_f) يقطع (Δ) (C_f) (C_f) (Δ) (Δ) (Δ) (Δ)) .š.

مثال

posaw[-5,-3,0,3,5](,-,z,-,d,+,z,+,)[, A(-3;f(-3)),B(3;f(3))]

χ	- 5		-3		0		3		5
f(x) - y		_	0	_		+	Ö	+	
الوضعية	(2	(C _f) اتحت (ک	يقطع (C_f) يقطع (Δ)	(C_f) (Δ)		(C _f) (Δ) فوق	(C _f) يقطع Δ) في النقطة (B(3; f(3))	$\begin{pmatrix} (C_f) \\ (\Delta) \end{pmatrix}$	

حالة التقاطع في ثلاث نقط بين المنحني والمستقيم

حالة التقاطع في ثلاث نقط بين المنحى والمستقيم

γ و β ، α التقاطع في ثلاثة نقاط

 $\label{lem:continuous} $$ \operatorname{a}_{a,\alpha} \left(\frac{1}{2}, \frac{1}{2$

χ	а	α	β	γ	ь
f(x) - y	_	• 0	+ 🐧	+ 0	_
الوضعية	(C _f (Δ) Ξ	يقطع (C_f) يقطع (Δ) في النقطة $A(\alpha; f(\alpha))$	(C_f) يقطع (C_f) ي يقطع (C_f) يقطع (Δ) (Δ) (Δ) (Δ) (Δ) (Δ) (Δ)	ر يقطع (C_f) يقطع (C_f) في النقطة (Δ) $C(\gamma,f(\gamma))$	(C _f) (ک تحت

مثال

 $\label{eq:posaw} $$ [-5,-3,0,3,5] (,-,z,+,z,-,z,+,) [A(-3;f(-3)),B(0;f(0)),C(3;f(3))] $$$

χ	- 5	-3	0	3	5
f(x) - y		- Ø	+ Ø	- Ø	+
الوضعية	(Δ)	(C_f) يقطع (C_f) يقطع (Δ) (Δ) (Δ) (Δ)	(C_f) يقطع (C_f) يقطع (C_f) يقطع (Δ) (Δ) (Δ) (Δ) (Δ) (Δ)	(C_f) يقطع (C_f) يقطع (Δ) يقطع (Δ) (Δ) (Δ) (Δ)	(C _f) فوق (Δ)

5+3 تغيير اسم المنحنى واسم المستقيم

تغيير اسم المنحى واسم المستقم

نضيف الأمر:

{اسم المنحنى} def \Nplot $\def\Nline{

إسم المستقيم}$

مثال

\def\Nplot{C\sb{\ell}} \def\Nline{T} \posba[1,2](,+,)

x	1		2
f(x) - y		+	
الوضعية		(C_ℓ) فوق (T)	

5-4 تغيير اسم الدالة

تغيير اسم الدالة

نضيف الأمر:

\def\plot{اسم الدالة}

مثال

```
\def \plot{g} \posba[1,2](,-,)
```

χ	1	2
g(x) - y	_	
الوضعية	(C_{f}) (Δ) تحت	

خاتمة

في الأُخير ، أقول أن حزمة na-position تساعد على رسم أغلب حالات جداول الوضعية بين منحنى ومستقيمه المقارب أو مماسه وقمنا في هذا الإصدار باضافة بعض الحالات مثل التقاطع في نقطتين و ثلاث نقط.

أتمنى أن تكون هذه الحزمة بداية لإِنشاء حزمة أشمل تعطي كل الحالات الجداول مهما تغيرت مجموعة التعريف التي يمثلها المنحنى. وما يسعني إلا أن أقدم شكري للأستاذين القديرين ناعم محمد و سليم بو على فكرة إنشاء هذه الحزمة.

تقبلوا تحياتي "الأستاذ : لعويجي وليد"٠