

SECOND SEMESTER 2017-18 <u>Course Handout (Part – II)</u>

Date: 08/01/2018

In addition, to Part I (General handout for all course appended to timetable), this portion gives further specific details regarding the course.

Course No. : BITS F111

Course Title : Thermodynamics
Instructor-in-Charge : Sachin U.Belgamwar

Instructors: Aakash Chand Rai, Arindam Das, BhanuVadhan Reddy, D. D.

Pant,Indresh Kumar, Keyur Joshi,Kiran Raj, MuraliPalla, Navin Singh, Prashant U Manohar,Priya C Sande, Ramkinkar Roy, Santosh

Saraswat, ShyamSudar Yadav, SimachalKar, Vivek Tiwari

Course Description

Concepts and laws of thermodynamics; thermodynamic properties; applications to closed and open systems; entropy and entropy generation; availability.

1. Scope and Objective

Thermodynamics deals with energy, matter, and the laws governing their interactions. It is essential to learn its usefulness in the design of processes, devices, and systems involving effective utilization of energy and matter. The course emphasizes on the fundamentals and concepts of the laws of thermodynamics as applied to control mass and control volume systems. Irreversibility and availability are powerful tools in the design of thermodynamic systems.

2. Text book (TB):

Sonntag R.E. and Borgnakke C., "Fundamentals of Thermodynamics", John Wiley & Sons, 2009, 7^{th} ed.

Booklet on Thermodynamic Tables, Figures & Charts Notes EDD - 2007

3. Reference books (RB):

Çengel Y.A. and Boles M.A., "Thermodynamics: an engineering approach", Tata Mcgraw-Hill, 2010, 6th ed.

Moran M. J., Shapiro H. N., Boettner D. D and Baily M. B., "Principles of Engineering Thermodynamics", Wiley, 2010, 7th Ed.

4. Course Plan

Lecture	Learning Objectives	Topics to be covered	Text book
No.			Chap/Sec #
1-2	Some concepts &	Introduction, thermodynamic systems, properties &	2
	definitions	state, process & cycle, force, energy, pressure, specific	
		volume, zeroth law.	
3-4	Properties of pure	Phase equilibrium, independent properties, and	3.1-3.3,3.6,

	1 .		0.7
	substances	equations of state, compressibility factor.	3.7
5-6	Properties of pure	Tables of thermodynamic properties & their use.	3.4, 3.5
	substances	Thermodynamic surfaces	
7	Work and heat	Definition of work and its identification, work done at	4.1, 4.2,
		the moving boundary	4.3,4.5
8	Work and heat	Concept of heat, comparison of heat and work,	4.6, 4.8, 4.9
		Engineering Applications	
9-10	First law for control	First law for a cycle as well as for a change of state;	5.1-5.5
	mass	internal energy & enthalpy	
11-12	First law for control	Specific heats; internal energy, enthalpy & specific heat	5.6-5.8, 5.10
	mass	of ideal gases; first law as a rate equation; problem	
		analysis & solution technique, Engineering Applications	
13-15	First law for control	Conservation of mass in control volume; first law for	6.1-6.4
	volume	control volume; SS process; examples of SS processes	
16	First law for control	Transient processes; examples, Engineering	6.4- 6.6
	volume	Applications	
17-21	Second Law of	Limitations of first law & need for the second	7.1 – 7.10
	Thermodynamics	law;Reversible process; heat engine, heat pump,	
	,	refrigerator; Carnot cycle; Two propositions regarding	
		efficiency of Carnot cycle; energy-conversion efficiency	
		and COP, Kelvin-Planck &Clausius statements,	
		Thermodynamic temperature scale, The ideal gas	
		Carnot Cycle, Engineering Applications	
22-24	Entropy	The inequality of Clausius, Concept of entropy; the	8.1-8.3
	1 7	Need of entropy definition of entropy; entropy of a pure	
		substance;	
25-28	Entropy	entropy change of a reversible & irreversible processes;	8.4-8.13
	r <i>y</i>	principle of increase of entropy, thermodynamic	0.12 0.12
		property relation; problem analysis & solution	
		techniques etc.	
29-30	Second law for	Second law for control volume; SS & Transient	9.1-9.4
_, 00	control volume	processes; SSSF process; principle of increase of entropy	7.1 7.1
31-32	Second law for	Understanding efficiency and related problems;	9.5
01 02	control volume	problem analysis & solution technique, Engineering	7.0
	control volume	Applications	
33-37	Irreversibility and	Available energy, reversible work & irreversibility for	10.1 – 10.4
JJ-J1	availability	control mass and control volume processes; second law	10.1 – 10.4
	availability	efficiency, Exergy balance equation, Engg Applications	
38	Thermodynamic	Clapeyron equation, Maxwell relations,	14.1 – 14.5,
30	relations	Thermodynamic relation for enthalpy, internal energy,	14.7-14.9
	TETATIONS	and entropy, expansively and compressibility factor,	14./-14.7
		equation of state, generalized chart for enthalpy and	
		entropy change, developing tables of property from	
		experimental data	

Evaluation Scheme

Evaluation	Duration	Marks	Date and Time	Nature of
Component				Component
Mid Semester	90 min	90	6/3 11:00 - 12:30 PM	OB
Tutorials Test (8)	15 min/each	90	Surprise in nature	
Comprehensive	180 min	120	3/5 AN	СВ
Examination				

Note: Booklet on "Thermodynamic Tables, Figures & Charts", as prescribed, will be allowed in the closed book tests also. However, it should not be defaced by writing any formula, equations, etc.

Chamber consultation hours: To be announced by the respective instructors.

Notices: All notices concerning the course will be displayed on the FD-II notice board and Nalanda.

Make-up: No make-up will be given for tutorial tests and quiz; Make-up request for the midsemesteris to be forwarded through the respective tutorial section instructor only.

> Dr. Sachin U.Belgamwar Instructor-in-Charge BITS F111

