Korrelation und Kausalität

Lehrvortrag FU Berlin

Lena Janys

Rheinische Wilhelm-Friedrichs Universität Bonn, IZA and HCM

24. Juni 2021

Statistik für Wirtschaftswissenschaftler II (Schließende Statistik)

Befinden uns am Ende der Vorlesung Statistik II (Schließende Statistik) für Wirtschaftswissenschaftler.

Demnach setze ich einiges an Vorwissen voraus:

- Zufallsvariablen
- (Bedingte) Erwartungswerte
- Gesetz(e) der großen Zahlen
- Methoden um Zusammenhänge in empirischen Daten zu beschreiben (bsp. das lineare Regressionsmodel)

In dieser Vorlesung: Konzeptionelle Definition von Kausalität, sowie Annahmen die uns erlauben aus Korrelation Rückschlüsse über Kausalität zu ziehen.

Notation und Definitionen

Zufallsvariablen: X, Y, Ausprägungen x und y.

Der bedingte Erwartungswert von zwei Zufallsvariablen X, Y ist $\mathbb{E}(Y \mid X = x)$

 $\mathbb{E}(Y \mid X = x)$ könnten wir schätzen, beispielsweise mithilfe eines linearen Regressionsmodels.

Aber: zunächst mal ist $\mathbb{E}(Y \mid X = x)$ eine Funktion die mit x variiert.

Wir sagen dass Zufallsvariablen X,Y mit Cov(X,Y)=0 unkorreliert sind. Dies ist der Fall wenn X,Y unabhängig sind. In diesem Fall gilt auch $\mathbb{E}(Y|X)=\mathbb{E}(Y)$.

Korrelation \rightarrow Kausalität?

The New Hork Times

PERSONAL HEALTH

The Health Benefits of Coffee

Drinking coffee has been linked to a reduced risk of all kinds of ailments, including Parkinson's disease, melanoma, prostate cancer, even suicide.

Their [coffee and its main ingredient caffeine] consumption has been linked to a reduced risk of all kinds of ailments, including Parkinson's disease, heart disease, Type 2 diabetes, gallstones, depression, suicide [emphasis mine], cirrhosis, liver cancer, melanoma and prostate cancer. [NYT, 14.6.2021]

Basiert (hauptsächlich) auf zwei wissenschaftlichen (Review)
Artikeln:

Coffee, Caffeine, and Health, 2020, van Dam, et al., New England Journal of Medicine (NEJM), 383(4)

Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes., 2017, Poole, Robin, et al. British Medical Journal (BMJ) 359

$Korrelation \rightarrow Kausalität?$

The New Hork Times

PERSONAL HEALTH

The Health Benefits of Coffee

Drinking coffee has been linked to a reduced risk of all kinds of ailments, including Parkinson's disease, melanoma, prostate cancer, even suicide.

Was ist Kausalität?

"Schützen" im obigen Tweet: impliziert Kausalität.

Kausale Fragen sind "was wäre wenn" - Frage:

Wie wäre der Gesundheitszustand eines Nicht-Kaffeetrinkers, wenn er jeden Tag fünf Tassen Kaffee getrunken hätte?

Beispiel

Wie würde sich der Bruttostundenlohn einer Realschülerin verändern, wenn sie Abitur gemacht hätte?

Was ist der Effekt einer Zufallsvariablen X, beispielsweise Schulabschluss mit $X \in \{0,1\}$, wobei X = 1: Abitur, auf eine Zufallsvariable Y, beispielsweise "Bruttoarbeitslohn".

Befragen (simulieren) 50 Personen nach ihrer Bildung und ihrem Bruttostundenlohn. Simulation basiert auf Daten des Sozio-oekonomischen Panels (SOEP).^a

Zunächst: Daten grafisch darstellen und die bedingten Erwartungswerte ausrechnen.

^aSterl, S., 2018. Determinanten zur Einkommensentwicklung in Deutschland: Ein Vergleich von Personen mit und ohne Migrationshintergrund auf Basis des Sozio-oekonomischen Panels (SOEP) (No. 992). SOEPpapers on Multidisciplinary Panel Data Research.

Beispiel

 Klare Assoziation zwischen dem Schulabschluss und dem Bruttostundenlohn.

-
$$\mathbb{E}[Y|X=0] = 13.06$$
 vs.
 $\mathbb{E}[Y|X=1] = 20.7$

im Durchschnitt verdienen Menschen mit
 Abitur ca. 7.5 € mehr pro Stunde.

Beispiel: Welche Frage können wir jetzt beantworten?

- Sie sagen mir X: ich sage Ihnen das zu erwartende Y.
- Aber: ist dieser Effekt kausal?

Beispiel: Welche Frage können wir jetzt beantworten?

 Mit anderen Worten: Was passiert mit dem Stundenlohn von • wenn sie Abitur gemacht hätte? •.

Vorlesung: Welche Frage können wir jetzt beantworten?

- Mit anderen Worten: Was passiert mit dem Stundenlohn von * wenn sie Abitur gemacht hätte? *.
- Wenn Korrelation gleich Kausalität: Der Lohn würde sich entsprechend erhöhen.
- Aber: es ist nicht möglich sowohl * als auch (das counterfactual) zu beobachten!

Kausalität: Grafische Darstellung des Kausalmodells

Kausalzusammenhang X und Y (X verursacht Y):

Umgekehrte Kausalität (Y verursacht X):

Eine dritte (möglicherweise unbekannte) Zufallsvariable U verursacht sowohl X als auch Y:

Drei unterschiedliche Kausalmodelle: (möglicherweise) die gleiche beobachtbare gemeinsame Verteilung von X und Y, d.h. die gleiche geschätzte Korrelation in Form von $\mathbb{E}(\widehat{Y|X}=1) - \mathbb{E}(\widehat{Y|X}=0)$.

Um von Korrelation auf Kausalität zu schließen müssen wir also zusätzlich sagen: was verursacht die Variation in X?

Kausalität Bilderrätsel: Ordnen Sie den dargestellten Verteilungen das unterliegende Kausalmodell zu. Für alle drei Bilder gilt dass $\mathbb{E}(\widehat{Y|X}=1)-\mathbb{E}(\widehat{Y|X}=0)\approx 7.5$. Lösung ist im R Code für die Simulationen auf:

https://github.com/LJanys/Lehrvortrag-Materialien

Potential Outcome Framework

Potential Outcomes Framework (Rubin-Neyman): Für jedes Individuum i aus der Population der Größe n bezeichnet $Y_i(X_i = x)$ die Zielgröße (Outcome) unter dem Treatment X_i , e.g

- $Y_i(X_i = 1)$: Bruttostundenlohn von Individuum i mit Abitur. Kurz: $Y_i(1)$
- $Y_i(X_i = 0)$: Bruttostundenlohn von Individuum i mit Realschulabschluss. Kurz: $Y_i(0)$
- $-\tau_i: Y_i(1)-Y_i(0)$ Kausaler Effekt von X auf Y für Individuum i

Welche Fragen können wir jetzt beantworten?

i	$Y_i(1)$	$Y_i(0)$	Xi	Yi	$\tau_i = Y_i(1) - Y_i(0)$
1	28.11	11.89	1	28.11	16.22
2	19.37	13.07	1	19.37	6.3
3	11.98	12.92	1	11.98	-0.94
4	19.89	15.89	0	15.89	4
5	18.49	9.00	0	9.00	9.49
6	20.69	11.86	0	11.86	8.83
$\frac{1}{n}\sum$	19.76	12.44	_	16.04	$\hat{ au}=$ 7.32

- Könnten jetzt, z.B. den durchschnittlichen Treatment Effekt (ATE): $\tau=\mathbb{E}\left[Y_i(1)-Y_i(0)\right]$) ausrechnen, den Treatment Effekt für bestimmte Quantile etc...
- Aber: In der Realität können wir nie das gleiche Individuum unter unterschiedlichen Treatments beobachten!

Welche Fragen können wir jetzt beantworten?

i	$Y_i(1)$	$Y_i(0)$	Xi	Y_i	$\tau_i = Y_i(1) - Y_i(0)$
1	28.11	-	1	36.11	?
2	19.37	-	1	19.37	?
3	11.98	-	1	11.98	?
4	-	15.58	0	9.58	?
5	-	9.00	0	9.00	?
6	-	11.86	0	11.86	?

- Können nicht τ so wie oben definiert ausrechnen.
- Unter bestimmten Annahmen können wir trotzdem einige Größen berechnen die uns interessieren. Unter bestimmten Annahmen können wir den ATE: $\tau = \mathbb{E}[Y_i(1) Y_i(0)]$ schätzen mit $\widehat{\tau} = \mathbb{E}(\widehat{Y|X} = 1) \mathbb{E}(\widehat{Y|X} = 0)$

Welche Fragen können wir jetzt beantworten?

i	$Y_i(1)$	$Y_i(0)$	X_i	Y_i	$\tau_i = Y_i(1) - Y_i(0)$
1	28.11	-	1	28.11	?
2	19.37	-	1	19.37	?
3	11.98	-	1	11.98	?
4	-	15.58	0	15.58	?
5	-	9.00	0	9.00	?
6	-	11.86	0	11.86	?

 $\mathbb{E}(\widehat{Y|X=1}) = 19.82$ $\mathbb{E}(\widehat{Y|X=0}) = 12.25$ - 16.04 $\hat{\tau} = 7.57$

- Können nicht τ so wie oben definiert ausrechnen.
- Unter bestimmten Annahmen können wir trotzdem einige Größen berechnen die uns interessieren. Unter bestimmten Annahmen können wir den ATE:

$$au = \mathbb{E}[Y_i(1) - Y_i(0)]$$
 schätzen mit

$$\widehat{ au} = \mathbb{E}(\widehat{Y|X} = 1) - \mathbb{E}(\widehat{Y|X} = 0)$$

Annahmen zur kausalen Interpretation

Annahme: Unconfoundedness/strong ignorability

 X_i is stark ignorierbar, wenn $X_i \perp (Y_i(0), Y_i(1))$: Treatment assignment ist so gut wie zufällig.

Notiz: Diese Bedingungen lassen sich auch bedingt auf andere Kovariate formulieren, das ist hier der Einfachheit halber weggelassen worden

Politik Gesellschaft Wirtschaft Kultur v Wissen Gesundheit v Digital Campus v Arbeit Sport ZEITmagazin v mehr v

Corona-Maßnahmen

War die Bundesnotbremse überflüssig?

Die Infektionszahlen sinken seit Wochen – welche Rolle das umstrittene Bundesgesetz dabei spielt.

EXKLUSIV FÜR ABONNENTEN

War die Bundesnotbremse überflüssig?

"Bei den R-Werten wie sie vom Robert-Koch-Institut täglich bestimmt werden, ergibt sich seit September kein unmittelbarer Zusammenhang mit den getroffenen Maßnahmen - weder mit dem Lockdown-Light am 2. November und der Verschärfung am 16. Dezember 2020, noch mit der Bundesnotbremse, die Ende April 2021 beschlossen wurde." ^a

^aBewertung des Epidemie-Geschehens in Deutschland: Zeitliche Trends in der effektiven Reproduktionszahl, Annika Hoyer, Lara Rad, Ralph Brinks (2021)

War die Bundesnotbremse überflüssig?

Bei den R-Werten wie sie vom Robert-Koch-Institut täglich bestimmt werden, ergibt sich seit September kein unmittelbarer Zusammenhang mit den getroffenen Maßnahmen - weder mit dem Lockdown-Light am 2. November und der Verschärfung am 16. Dezember 2020, noch mit der Bundesnotbremse, die Ende April 2021 beschlossen wurde.^a

Die Gegner des Gesetzes interpretierten dies als Beleg für die Unwirksamkeit der neuen Regeln. "Neue Studie beweist - Lockdown und Notbremse waren unnötig" erklärte beispielsweise der bayerische Landesverband der AfD.³

^a Bewertung des Epidemie-Geschehens in Deutschland: Zeitliche Trends in der effektiven Reproduktionszahl, Annika Hoyer, Lara Rad, Ralph Brinks (2021)

^ahttps://www.zeit.de/2021/24/bundesnotbremsecorona-massnahmen-gesetz-infektionszahleneffektivitaet, 9.6.2021

Zusammenfassung

Korrelation → Kausalität und keine Korrelation → keine Kausalität.

Größeres n hilft nicht: Fehlende Daten sind das Problem

Wir brauchen: Methoden bei denen es plausibel ist anzunehmen, dass der Assignment Mechanismus für X so gut wie zufällig ist.

Kausalität: wichtig bei der Evaluation von Effekten/Interventionen.

Im maschinellen Lernen wo eigentlich Vorhersage (prediction) im Vordergrund steht: kausale Inferenz auch hier zunehmend wichtig (Stichwort: Algorithmic Bias, Causal Inference in Data Science).

Weiterführende Referenzen

Kausale Inferenz:

Pearl, J., Glymour, M. and Jewell, N.P., 2016. Causal inference in statistics: A primer. John Wiley & Sons.

Potential Outcomes und Average Treatment Effects:

Angrist, J.D. and Pischke, J.S., 2008. *Mostly harmless econometrics: An empiricist's companion*. Princeton university press.

Kausale Inferenz in KI und Data Science

Peters, J., Janzing, D. and Schölkopf, B., 2017. *Elements of causal inference: foundations and learning algorithms.*The MIT Press.

Obermeyer, Z., Powers, B., Vogeli, C. and Mullainathan, S., 2019. *Dissecting racial bias in an algorithm used to manage the health of populations*. Science, 366(6464), pp.447-45.

Keine Korrelation \rightarrow Keine Kausalität?

- Hier: der wahre kausale Effekt au=7.5
- Aber: der geschätzte Wert $\widehat{\tau} = \mathbb{E} \ \widehat{Y \mid X} = 1) \mathbb{E} (\widehat{Y \mid X} = 0) = 0.73$ (und nicht statistisch signifikant unterschiedlich von Null).
- Warum: eine nicht observierbare Variable
 U ist negativ korreliert mit X und hat
 einen positiven Effekt auf Y.