Math 327 Homework 6

1. Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series of positive numbers such that

$$\lim_{n \to \infty} \left(\frac{a_n}{b_n} \right) = l$$

Prove that

- (a) If l > 0, the $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.
- (b) If l = 0 and $\sum_{n=1}^{\infty} b_n$ converges then $\sum_{n=1}^{\infty} a_n$ converges. Show by an example that in this case $\sum_{n=1}^{\infty} a_n$ may converge when $\sum_{n=1}^{\infty} b_n$ does not.
- 2. Determine if the following are true or false. Justify you answer.
 - (a) If $f + g : \mathbf{R} \to \mathbf{R}$ is continuous, then the functions $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ are continuous.
 - (b) If $f^2: \mathbf{R} \to \mathbf{R}$ is continuous, then $f: \mathbf{R} \to \mathbf{R}$ is continuous.
 - (c) Let S be a finite subset of **R**. Any function $f: S \to \mathbf{R}$ is continuous.
- 3. A function $f: R \to \mathbf{R}$ is a Lipschitz function if there exists $C \geq 0$ such that

$$|f(x) - f(y)| \le C|x - y|$$
, for all $x.y$ in R.

Prove that a Lipschitz function is continuous.

- 4. Let $f: \mathbf{R} \to \mathbf{R}$ be a function with the property that f(x+y) = f(x) + f(y) for all $x, y \in \mathbf{R}$.
 - (a) Show that there is an m such that f(x) = mx for all $x \in \mathbf{Q}$. First, you have to find the m which would work.
 - (b) Prove that if f is continuous, then f(x) = mx for all $x \in \mathbf{R}$.
- 5. Suppose that S is a subset of **R** which is not sequentially compact. Show that there is a continuous function $f: S \to \mathbf{R}$ which is unbounded.

1