CPSC 477: Project Proposal

Ali Aldous

Department of Statistics Yale University ali.aldous@yale.edu

Eugene Han

Department of Statistics Yale University e.han@yale.edu

Elder Veliz

Department of Statistics Yale University elder.veliz@yale.edu

1 Problem Statement

1.1 Motivation

The arXiv is a free repository for pre-prints of academic papers spanning a variety of subjects such as mathematics, quantitative biology, and economics. As of today, it hosts around 2.4 million papers and counting. Authors must be "endorsed" for the subject categories to be able to publish under them, which has drawn some criticism; moreover, human moderators must then check if the submitted content is relevant to those categories and reassign labels if necessary. As such, NLP-based approaches hold the potential to automate this process for the moderation team without the need for an endorsement system and serve as a tool for authors to select the most relevant labels before submission.

1.2 Related Work

Prior work in automatic paper classification has been focused on assigning broad labels to papers based on title and abstract. Adhikari et al. (2019), Liu et al. (2019), and Farhangi et al. (2022) all use a coarse-label dataset for classification, with classes such as "stat", "cond-math", "math", and "physics". Previous approaches employed methods such as BERT, RoBERTa, and transformers to classify these papers with increasing accuracy.

1.3 Our Focus

There is a gap in research focusing on fine-grained classification within specific disciplines like statistics, where topics such as applied statistics (stat.AP) and computational statistics (stat.CO) can have considerable overlap. We aim to use paper titles and abstracts to predict primary sub-categories (since papers can be listed under multiple), which will be one of Applications (stat.AP), Computation (stat.CO), Machine Learning (stat.ML), Methodology (stat.ME), and Statistics Theory (stat.TH).

2 Approach

Our baseline model will employ tf-idf for feature extraction and a linear Support Vector Classifier (SVC) for classification. We aim to improve upon this baseline by experimenting with various preprocessing steps, classifiers, text embedding methods, and custom-engineered features and ultimately fine-tuning a pre-trained transformer-based model, like BERT or RoBERTa.

3 Experimental Plan

3.1 Dataset

We will utilize the arXiv database to collect papers within the Statistics category, accessing paper abstracts, titles, and primary categories through the arXiv API. A Python wrapper can be found here.

As of writing, we've acquired metadata for over 10,000 papers in the statistics discipline and are actively working to grow this number.

3.2 Baselines

Due to the unexplored nature of fine-grained classification tasks, we will use tf-idf embeddings with a linear Support Vector Classifier model as a simple baseline. We will then iterate over this baseline as new frameworks/pipelines are tested to improve performance as mentioned in 2.

3.3 Evaluation

We will evaluate the performance of our classification systems on a held-out set of papers and report the overall accuracy as well as per-category and macro-averaged precision, recall, and F1 scores.

References

- [1] Adhikari A. & Ram A. & Tang R. & Lin J. (2019) DocBERT: BERT for Document Classification. *CoRR abs/1904.08398*, arXiv.
- [2] Farhangi, A. et al. (2022) Protoformer: Embedding Prototypes for Transformers. *Advances in Knowledge Discovery and Data Mining*, pp. 447—458. Springer International Publishing.
- [3] Liu Y. et al. (2019) RoBERTa: A Robustly Optimized BERT Pretraining Approach. *CoRR abs/1907.11692*, arXiv.