Contents

0.	Preliminaries	1
	0.0. Riemann Integral	1
	0.0.0. Definition. Partition	
	0.0.1. Definition. Lower/Upper Darboux Sum	1
	0.0.2. Definition. Lower/Upper Darboux Integral	
	0.0.3. Definition. Riemann Integral	
	$0.0.4. \ f \text{ continuous} \Rightarrow f \text{ Riemann integrable}$	
1.	Measures	
	1.0. Outer Measure on \mathbb{R}	2
	1.0.0. Definition. Length	2
	1.0.1. Definition. Outer Measure	
	1.0.2. A countable \Rightarrow A outer measure 0	2

0. Preliminaries

0.0. Riemann Integral

0.0.0. Definition. Partition

A partition of [a, b] is a finite list of the form $x_0, x_1, ..., x_n$, s.t.

$$a = x_0 < x_1 < \dots < x_n = b$$

0.0.1. Definition. Lower/Upper Darboux Sum

Recall

$$\inf_A f \coloneqq \inf\{f(x) \mid x \in A\}$$

$$\sup_{A} f \coloneqq \sup\{f(x) \mid x \in A\}$$

Suppose $f:[a,b]\to\mathbb{R}$ bounded and P a partition of [a,b]. The lower Darbox sum L(f,P,[a,b]) and the upper Darboux sum U(f,P,[a,b]) are defined by

$$L(f,P,[a,b]) \coloneqq \sum_{j=1}^n \bigl(x_j - x_{j-1}\bigr) \inf_{[x_{j-1},x_j]} f$$

$$U(f,P,[a,b]) \coloneqq \sum_{j=1}^n \bigl(x_j - x_{j-1}\bigr) \sup_{[x_{j-1},x_j]} f$$

0.0.2. Definition. Lower/Upper Darboux Integral

Suppose $f:[a,b]\to\mathbb{R}$ bounded. The lower Darboux integral L(f,[a,b]) and the upper Darboux integral U(f,[a,b]) are defined by

$$L(f,[a,b])\coloneqq \sup_{\mathbf{p}}(P\mapsto L(f,P,[a,b]))$$

$$U(f,[a,b]) \coloneqq \inf_{\mathbf{P}}(P \mapsto U(f,P,[a,b]))$$

where $P = \{P \mid P \text{ partition of } [a, b]\}.$

0.0.3. Definition. Riemann Integral

Suppose $f:[a,b]\to\mathbb{R}$ bounded. f Riemann integrable iff the lower and upper Darboux integrals equate. If f is Riemann integrable, the Riemann integral $\int_a^b f$ is defined by

$$\int_a^b f \coloneqq L(f,[a,b]) = U(f,[a,b])$$

0.0.4. f continuous $\Rightarrow f$ Riemann integrable

Proof. Let $\varepsilon > 0$. Suppose $f : [a, b] \to \mathbb{R}$ bounded and continuous. Then it is uniformly continuous, i.e.

$$\forall x, x' \in [a, b]. \quad \exists \delta > 0. \quad |x - x'| < \delta \Rightarrow |f(x) - f(x')| < \varepsilon$$

Let $n \in \mathbb{N}^{\geq 1}$ s.t. $n > \frac{b-a}{\delta} \Leftrightarrow \frac{b-a}{n} < \delta$. Let P be the equally spaced partition $x_0, x_1, ..., x_n$ of [a, b] s.t.

$$\forall j \in \mathbb{N}^{\geq 1}. \quad x_j - x_{j-1} = \frac{b-a}{n}$$

Then

$$\begin{split} U(f,[a,b]) - L(f,[a,b]) &\leq U(f,P,[a,b]) - L(f,P,[a,b]) \\ &= \frac{b-a}{n} \sum_{j=1}^n \left(\sup_{[x_{j-1},x_j]} f - \inf_{[x_{j-1},x_j]} f \right) \\ &\leq (b-a)\varepsilon \end{split}$$

1. Measures

1.0. Outer Measure on \mathbb{R}

1.0.0. Definition. Length

The *length* ℓ of an open interval i is defined by

$$\ell \coloneqq \begin{cases} b-a & \text{if } I = (a,b) \text{ for some } a,b \in \mathbb{R} \text{ s.t. } a < b \\ \infty & \text{if } I \in \{(-\infty,a),(a,\infty),(-\infty,\infty)\} \text{ for some } a \in \mathbb{R} \\ 0 & \text{if } I = \emptyset \end{cases}$$

1.0.1. Definition. Outer Measure

The outer measure |A| of a set $A \subset \mathbb{R}$ is defined by

$$|A| \coloneqq \inf \left\{ \sum_{k=0}^{\infty} \ell(I_k) \, \middle| \, I_0, I_1, \dots \text{ open intervals s.t. } A \subset \bigcup_{k=0}^{\infty} I_k \right\}$$

Note that $r+\infty=\infty+\infty=\infty$ for $r\in\mathbb{R}$. Also recall

$$\sum_{k=0}^{\infty} x_k \coloneqq \lim_{n \to \infty} \sum_{k=1}^{n} x_k$$

1.0.2. A countable \Rightarrow A outer measure 0

Proof. Suppose $A=\{a_0,a_1,\ldots\}\subset\mathbb{R}$ countable. For $k\in\mathbb{N}$ and arbitrary $\varepsilon>0$, let

$$I_k = \left(a_k - \frac{\varepsilon}{2^k}, a_k + \frac{\varepsilon}{2^k}\right)$$

Then I_0, I_1, \dots are open intervals whose union contains A, and

$$\sum_{k\in\mathbb{N}}\ell(I_k)=2\varepsilon\Rightarrow |A|=0$$