Page 1

All-Union Scientific Research Institute Of Scientific and Technological Problems Information in Construction (VNII Information of Gosstroy of USSR)

Achievements of Leading Teams in Construction

Information Bulletin

No. 6 1989

Moscow

UDK 69.001.8

The results of the tests of several thousand reinforced concrete and prestressed commercial structural members and laboratory samples were studied at the Central Research Institute TSNIIpromzdaniy. The strength safety of the reinforced concrete and prestressed structural members and factors determining this safety were analyzed. A proposal was made of an estimation of the strength safety enabling to use the data on the strength test results of structural members and materials (reinforcement and concrete). A considerable, and in some cases, decisive effect of the character of distribution of applied forces along the structural members on their strength safety were studied.

The proposals have been developed on specifying the strength safety of the reinforced and prestressed concrete structural members and on the design of bending members with a predetermined strength safety level (taking into account the probability of failure along both normal and inclined cross section). The realization of these proposals as applied to the mass-production structural members (floor and roof slabs) makes it possible to reduce the consumption of steel for the tension reinforcement by 8-10%.

Author:

Dr. N. Ya. Sapozhnikov

Scientific editor: A.A. Kovalev

USSR State Committee of Construction

Appendix 1
Page 3

STRENGTH SAFETY OF PRECAST AND PRESTRESSED REINFORCED CONCRETE STRUCTURAL MEMBERS

Table 12

Statistical characteristics of test results of commercial structural prestressed flexural members with high strength bars as prestressed reinforcement designed according to Russian building code, produced and tested at the Russian plants by specialized organizations.

Name of structural members	Type of loading	th	lure mod ne volum samplin	e of	Sta of	atistical charac ratios M ^{test} ratios M ^{test} fail/V _c	Mdos:	P(M	pability est fail > es) Or ail > V _{des})	Minimum value of ratio Mest fail/Mdes Or Vtest fail/Vdes for sampling
	<u> </u>	F_	С	S	Mean value	Standard deviation	Coefficient of variation	Safety factor β	Ptheor	io. camping
1. Core slabs with bar			т——							
prestressed reinforcement										
a. Grade AIV	1	379		† -	1.7742	0.3142	0.177	2.46	0.0000	
b. Grade AtV	1	514			1.800	0.3542	0.177	2.45	0.9930	·
c. Total sampling	1		27		1.587	0.192	0.1209	3.06	0.9877	
				21	1.518	0.2418	0.1592	2.14	0.9988	1.14
	2		26	1	1.0.0	2.22	0.1392	2.14	0.9838	1.1
II. Flat slabs	1	146		 	1.9535	0.4317	0.2209	2.21	0.9864	1.52
				4	11333		0.2205	2.21	0.9554	
	2			22	2.16					1.6
III. Ribbed slabs with prestressed reinforcement										1.44
a. Grade Allib	1	125			1.528	0.2027	0.1326	2.6	0.9953	
b. Grade AIV	1	156			1.82	0.3878	0.213	2.11		
c. Grade AtV .:	1	58			1.68	0.22	0.1309	3.09	0.9825	
Total sampling			19		1.72		5.125	3.09	0.5559	4.00
				40	1.7575	0.608	0.345	1,25	0.8944	1.39
IV. Rafter beams	1	32			1.626	0.35	0.2152	1.79	0.9633	1.44
			80		1.69	0.2406	0.1423	2.87	0.9979	1.22
				24	1.6125	0.2195	0.1361	2.79	0.9973	1.07

Remarks to Table 12

- I. Types of loading
 - 1. Equally distributed loads
 - 2. Equally distributed loads plus two concentrated forces at the quarters of span from supports.
- II. Failure modes 1. F flexural failure
 - 2. C compressive failure
 - 3. S shear failure.
- III. Mtest fail values of experimental failure bending moments and shear forces.
- IV. Mdes, Vdes estimations of factored bending moments and shear forces, i.e. required flexural and shear strength according to the Russian building code.
- V. β strength safety factor derived from the assumption of normal distribution of the density of probability of ratios
- W^{test} fail / M_{des} , V^{test} fail / V_{des} .

 VI. $P(M^{test}_{fail} > M_{des})$; $P(V^{test}_{fail} > V_{des})$ strength safety estimations derived from the assumption of normal distribution of the density of probability of ratios M^{test}_{fail}/M_{des} , V^{test} fail / V_{des} . AIIIb, AIV, AtV Russian Grades high strength bar reinforcement with the minimum conventional yield strength point (0.2% offset) 5500 kgf/cm² (78600 psi), 6000 kgf/cm² (85700 psi) and

The statistical characteristics of the ratio $P_{fail}^{test}/P_{des}^{SNiP}$ derived from the test results of the laboratory-made and commercial reinforced concrete columns. P_{des}^{SNiP} – estimation of the capacity of compressed

members according to the Russian building code.

Sampling	Volume	Statistic	cal c	T	Probability				
	of			test/Pdes S			$P(P_{fail}^{test} > P_{des}^{SNiP})$		
	sampling			1 363	Coefficie	nt -	「Ffail >	P _{des})	
		Avera	ge	Standar	d of variati		P _{theor}	P _{emp}	
1	2	3		4	5.	6	7	emp 8	
		Labora	ator	v made	samples				
A. Axially loaded members with					I				
Dimensions greater than 20x20cm	250	1.420	o l	0.2710	0.1908	1.540	0 0000	0.070	
B. Eccentrically loaded members	В	11.12		0.27 10	0.1300	1.540	0.9382	0.9760	
Total set	119	1.482	2	0.4810	0.3238	1.000	0.8413	0.0004	
Members with the $\zeta \leq \zeta_R$ (flexural mode			_		3.0200	1.000	0.0413	0.8821	
of failure)	303	1.293	3	0.4720	0.3650	0.620	0.7324	0.7660	
Members with the $\zeta > \zeta_R$ (compressive					0.000	0.020	0.7324	0.7662	
Mode of failure)	308	1.654	1	0.4430	0.2680	1.475	0.9300	0.9885	
		Influen	ce o	of the so	cale facto		1 5.5555	1 0.0000	
Members less than 30x30, 25x35cm	441	1.508		.5390	0.3574	0.942	0.8270	0.8620	
Members greater than 30x30, 25x35cm	170	1.429	+	.3800	0.2659	1.130		0.9346	
		Influenc	ce c	of relativ		700	1 0.07 00	0.3340	
		eccentr							
e₀/h ≤ 0.166	170	1.445		3433	0.2375	1.300	0.9032	0.8760	
$0.166 < e_0/h \le 0.5$	248	1.442		4134	0.2866	1.070	0.8577		
e ₀ /h > 0.5	193	1.586		6690	0.4218	0.875	0.8092	0.9222	
		nfluenc			endernes	s effect	1 0.0092	0.0340	
/h ≤ 10	434	1.510			0.2938	1.150	0.8749	0.0000	
0 < l/h ≤ 20	69	1.492			0.3451	0.955	 	0.9300	
/h > 20	108	1.383			0.4699	0.590	0.8302	0.9248	
	' 				0.4000	0.030	0.3224	0.6800	
ommercial axially loaded columns									
roduced by the Moscow plants	111	1.716	0.0	3413	0.1988	2.1	0.9821	0.9729	

Remarks to Table 24

- 1. β strength safety factor derived from the assumption about normal distributions of the density of probability of the ratio $P_{fail}^{test}/P_{des}^{SNiP}$.
- 2. P_{theor} theoretical estimation of the probability derived from the assumption about normal distributions of the density of probability of the ratio P_{fail} test/ P_{des} SNiP.
- 3. P_{emp} empirical estimation of probability.

ВСЕСОЮЗНЫЙ На основании изучения результатов испытаний несколь жинческого ких тысяч железобетонных натурных конструкций заводско- югресса го изготовления и лабораторных образиов в ЦНИИпромзда- 🦪

ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РОБЛЕМ ний Госстроя СССР проведен анализ надежности железобе- *этеоя оссе*

8 выпусков в год иередовых

Издается с 1989 г.

Информационный сборник

коллективов в строительстве

железобетонных конструкций и по расчету изгибаемых коноткрывает возможность снижения расхода стали на продоль Разработаны предложения по нормированию надежности (с учетом вероятности отказа и по нормальным и по наклонным сечениям) наиболее массовым конструкциям - плитам покрытий и перекрытий Реализация этих предложений применительно к струкций с заданным уровнем надежности ное армирование на 8-10 %. мента на его надежность.

характера распределения действующих усилий по длине эле

но значительное, а в ряде случаев определяющее влияние

тельную информацию об изменчивости прочностных свойств конструкций и материалов - арматуры и бетона. Установле-

жена оценка надежности, позволяющая использовать значи-

тонных конструкций и определяющих ее факторов. Предло-

Н.Я.Сапожников Автор: канд,техн,наук

А.А.Ковалев Научный редактор: Ответственный за выпуск: В.Н.Козырева

© ВНИИНТПИ Госстроя СССР, 198

MOCKBA 1989

СОДЕРЖАНИЕ

3ведение	က	
Тадежность оценок прочностных и деформативных войств арматуры железобетонных конструкций	9	
адежность изгибаемых элементов	27	ო
Оценка надежности изгибаемых элементов по прочности нормальных сечений по результатам испытаний натурных конструкций и лабораторных образцов	<u>ი</u>	ਬੱਧਨਸ
Анализ надежности прочности нормальных сечений	53	ΣĖι
Превышение требуемой площади сечения ар- матуры на стадии проектирования	54	. Z a
Повышение проектной площади сечения арматуры при заменах диаметров в производственных условиях	56	o = Z
Влияние эпюры моментов на надежность из- гибаемых элементов по нормальным сечениям.	64	e H
Надежность изгибаемых элементов по прочности наклонных сечений	71	2 0 1
Надежность центрально и внецентренно сжатых железобетонных элементов	87	4 5 =
Нормирование надежности железобетонных конструкций	103	H X X
Расчет изгибаемых элементов с заданным уровнем надежности	112	Ø
Заключение	122	<u>α</u> 4
Использованная литература	125	→ ×

НАДЕЖНОСТЬ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИИ ПО ПРОЧНОСТИ

ВВЕДЕНИЕ

на прочность полне обоснованно считается удовлетворительной. При ость конструкции не нормируется. На основании мноолетней практики проектирования, изготовления и прии ряде - dost начительной степени определяется требуемым уровнем Надежатуры и бетона различные конструкции равнонадежны. тих конструкций нормируется только надежность рас-Материалоемкость железобетонных конструкций ругих стран полувероятностными методами расчета енения железобетонных конструкций их надежность о одним и тем же прочностным характеристикам х надежности. Однако действующими в СССР етных оценок прочностных свойств материалов ативных сопротивлений арматуры и бетона. гом предполагается, что рассчитанные

Однако надежность железобетонных конструкций вависит не только от надежности расчетных сопротивлений материалов, но и от ряда других факторов, в том нисле от распределения усилий по длине элемента, в результате чего получается широкий спектр оценок нацежности. Наличие этого спектра оценок, удовлетвори—гельность которых подтверждается практикой, позволяет поставить вопрос о резервах материалоемкости, связаных с неравнонадежностью конструкций. Такая постановка задачи возможна на основе нормирования надежности сонструкций, а не только расчетных оценок прочности прочности

1 4

Нормирование надежности железобетонных конструкций может быть реализовано на базе анализа оценок фактических уровней надежности для различных групп конструкций и анализа факторов, определяющих надеж-

က

႘ၟ

Результаты испытаний изгибаемых преднапряжений конструкций заводского изготовления со стержневой рабочей арматурой

Наименование конструкций	Характер нагружения	Вид разрушения (объ м выборки, шт.)				Стан- царт	Коэф- фици-	Вероятность Р(С > I)		-вич Рин Рин
		из-за теку- чес- ти		-110 HA- KJOH- HOMY CEYE- HUEO	i 1	ಠ(c)	вариа- ции С _v (С)	t	P _{reop.}	
I	2	3	4	5	6	7	8	9_	10	
А _т -У по всей выбор- ке	p.p.*)	379	27	21	I,7742 I,8000 I,587 I,518 2,22	0,3142 0,3542 0,192 0,2418	0,1968	2,I5 3,06	0,9877 0,9988	C _{min} = I, I4 C _{min} = I, I C _{min} = I, 52
		I46	<u> </u>		I,953	0,4317	0,2209	2,21	0,9864	
Плоские плиты	p.p.	===	1	4				L		Cmin=I,6
	p.p.+2P			22	2,16					C _{min} = I, 44

Продолжение табл. 12

I	2	3	4	5	6	7	8	9	ΙO	III
Плиты ребристые с рабочей арма- турой класса:										
All-B	p.p.	I25]	I,528	0,2027	0,1326	2,6	0,9953	
A-IY		I56		Ī	I,82	0,3878			0,9826	
А _т -У		58			I,68	0,22			0,9989	
по всей вы- борке			19		I,72					Cmin=I,39
				40	I,7575	0,608	0,345	I.25	0,8944	C _{min} =I, 46
в том числе:					<u> </u>		<u> </u>	<u> </u>	 	-111011
плит покры- тий с =6 м с рабочей арматурой класса: АШ-В.		60			T 56TR	0,1865	0 1104	2 01	0.0000	
А-ІУ		28								
			 	4	1,0070	0,2687	0,1011	2,40	0,9934	~ -
плит C=I2 м с рабочей ар- матурой класса A-Ш B		50			I.4856	0,1620	0.109	3.0	0.9986	Cmin=I,4
				3						Cmin = 1,75
плит перекры- тий		53			I,69	0.2653	0.1569	2.6	0.9960	
алки стропильные	p.p.	32		17	I,503 I,626	0.35	0.2152	T 70	0.9633	Cmin = 1.62
			80		1,69	0.2406	0.1423	2.871	0.99791	Cm: = 1 07
				24	I.6I25		U TOSTI	2 201	0.00001	Cmin =I, I8

Надежность расчета центрально и внецентренно сжатых элементов из тяжелого бетона

Выборка	Оорем	Характер	истика вно	орки	Вероятность P(C > I)			
	виборки, шт.	среднее значение	стандарт	ндиффеол -видва тне иии	t	P _{reop.}	Р _{эмп.}	
		c	ල(c)	c,(c)				
I	2	3	4	5	6	7	88	
	Центр	ально сжат	не элемент	A I				
Элементы сечением менее 20х20 см (полная выборка):							
с учетом масштабного коэффициента 0,9	576	I,66	0,3	0,1807	2,19	0,9857	0,99826	
отоновтшами учета коо кооўфиционта	576	I,49	0,3	0,2013	I,64	0,9495	_	
Элементы сечением менее 20x20 см с арматурой классов: A-Ш - A-I								
с учетом масштабного коэффициента 0,9	439	I,605	0,3	0,1869	2,03	0,9788	0,9977	
бөз учета масштабно- го коэффициента	439	I,445	0,3	0,2076	I,49	0,9319	_	

Продолжение табл. 24

I	2	3	4	5	6	7	8
Элементы сечением более	-250	1,42	0,271	0,1908	I,54	0,9382	0,976
Полная выборка	826	I,59	0,312	0,1962	I,88	0,9699	0,9915
	Внец	 ентренно	 Сжатые элем	енты			
Полная выборка	6II	1,482	0,481	0,3238	I,0	0,8413	0,8821
Элементы с $\xi \leq \xi_{\rm g}$ Элементы с $\xi > \xi_{\rm g}$	303 308	I,293 I,654	0,472 0,443	0,365 0,268	0,62 I,475	0,7324 0,93	0,7662 0,9885
Выборка с 1955 г.	329	1,511	0,536	0,3547	0,953	0,829	0,8815
Влияние масштабного фактора:							
элементы сечением ≤30x30, 25x35 см	44I	I,508	0,539	0,3574	0,942	0,827	0,862
элементы сечением > 30x30, 25x35 см	I70	I,429	0,38	0,2659	1,13	0,8708	0,9346
Влияние эксцентрисите-			9	,			
$\ell_o/h \le 0,166$ $0,166 < \ell_o/h \le 0,5$ $\ell_o/ > 0,5$	170 248 193	I,445 I,442 I,586	0,3433 0,4I34 0,669	0,2375 0,2866 0,4218	I,3 I,07 0,875	0,9032 0,8577 0,8092	0,876 0,9222 0,834

91