想玩儿转算法面试 liuyubobobo

面试中的时间复杂度分析

课课网《玉式·美军·法国·试》 时间复杂度,版权所有

到底什么是太的

n表示数据规模

n表示数据规模 O(f(n)) 表示运行算法所需要执行的指令数,和f(n)成正比。

到底什么是BigO

二分查找法 O(logn)

寻找数组中的最大/最小值 O(n)

归并排序算法 O(nlogn)

选择排序法 O(n^2)

所需执行指令数: a*logn

所需执行指令数: b*n

所需指令数: c*nlogn

所需指令数: d*n^2

到底什么是BigO

所需执行指令数: 10000*n

算法A: O(n) 算法B: O(n^2)

所需执行指令数: 10*n^2

n	A指令数 10000n	B指令数 10n^2	倍数
10	10^5	10^3	100
100	10^6	10^5	10
1000	10^7	10^7	1
10000	10^8	10^9	0.1
10^5	10^9	10^11	0.01
10^6	10^10	10^13	0.001

of inputs

到底什么是太白

在学术界,严格地讲, O(f(n))表示算法执行的上界

归并排序算法的时间复杂度是O(nlogn)的,同时也是O(n^2)

在业界,我们就使用O来表示算法执行的最低上界

我们一般不会说归并排序是O(n^2)的

到底什么是大的

$$O(nlogn + n) = O(nlogn)$$

$$O(nlogn + n^2) = O(n^2)$$

到底什么是太的

O(AlogA + B)
O(AlogA + B^2)

对邻接表实现的图进行遍历:

时间复杂度: O(V+E)

一个时间复杂度的问题

有一个字符串数组,将数组中的每一个字符串按照字母序排序;之后

再将整个字符串数组按照字典序排序。整个操作的时间复杂度?

O(n*nlogn + nlogn) = O(n*2logn)

一个时间复杂度的问题

有一个字符串数组,将数组中的每一个字符串按照字母序排序;之后

再将整个字符串数组按照字典序排序。整个操作的时间复杂度?

假设最长的字符串长度为s;数组中有n个字符串

对每个字符串排序: O(slogs)

将数组中的每一个字符串按照字母序排序: O(n*slog(s))

将整个字符串数组按照字典序排序: O(s*nlog(n))

一个时间复杂度的问题

有一个字符串数组,将数组中的每一个字符串按照字母序排序;之后

再将整个字符串数组按照字典序排序。整个操作的时间复杂度?

O(n*slog(s)) + O(s*nlog(n)) = O(n*s*logs + s*n*logn)= O(n*s*(logs+logn))

算法复杂度在有些情况是用例相关的

插入排序算法 O(n^2)

最差情况: O(n^2) 最好情况: O(n)

平均情况: O(n^2)

快速排序算法 O(nlogn)

最差情况: O(n^2)

最好情况: O(nlogn)

平均情况: O(nlogn)

对数据规模有一个概念

数据规模的概念

对 10^5 的数据进行选择排序,结果计算机假死?

数据规模的概念

如果要想在1s之内解决问题:

O(n^2)的算法可以处理大约10^4级别的数据;

O(n)的算法可以处理大约10²⁸级别的数据;

O(nlogn)的算法可以处理大约10个7级别的数据

空间复杂度

多开一个辅助的数组: O(n)

多开一个辅助的二维数组: O(n^2)

多开常数空间: 0(1)

空间复杂度

递归调用是有空间代价的

```
空间复杂度0(
                                     空间复杂度O(n)
                                     int sum2( int n ){
int sum1( int n
   assert( n >= 0
                                        assert( n >= 0);
    int ret = 0;
                                        if(n == 0)
    for( int i
                                            return 0;
   return ret;
                                         return n + sum2(n-1);
```

常见的复杂度分析

```
void swapTwoInts( int &a , int &b ){
  int temp = a;
  a = b;
  b = temp;
```

```
int sum( int n ){
       int ret = 0;
for( int \i = 0 ; i <= n ; i ++ )
    ret += i;
return ret;</pre>
```

```
void reverse( string &s ){
    int n = s.size();
    for(int i = 0; i < n/2; i ++ )
        swap( s[i] , s[n-1-i] );
}</pre>
```

1/2*n次swap操作: O(n)

30n次基本操作: O(n)


```
int binarySearch(int arr[], int n, int target){
    int l = 0, r = n-1;
while( l <= r ){
   int mid = l + (r-l)/2;
   if( arr[mid] == target ) return mid;</pre>
           if ( arr[mid] > target ) r = mid - 1;
           else l = mid + 1;
     return -1;
```

O(logn)

二分查找法的时间复杂度是O(logn)的

在 n/2 个元素中寻找 在 n/2 个元素中寻找 在 n/4 个元素中寻找

n经过几次"除以2"操

作后,等于1?

在 1 个元素中寻找

 $log_2n = O(log_n)$

```
string intToString( int num ){
    string s
         s += '0' + num%10;
num /= 10;
     reverse(s);
return s;
```

n经过几次"除以10"操作

 $log_{10}n = O(log n)$

整形转成字符串

```
string intToString( int num ){
    while(num
         s += '0' + num%10;
num /= 10;
     reverse(s)
return s;
```

```
void hello(int n){
```

O(sgrtan)

```
bool isPrime( int n ){
      for( int x = 2 ; x*x <= n ; x ++ )
   if( n%x == 0 )
    return false;</pre>
      return true;
```

其形形 《托拉斯·法国·法国) 复杂度实验,版权所有

复杂度诚验

我们自以为写出了一个O(nlogn)的算法,但实际是O(n^2)的算法?

数据规模的概念

如果要想在1s之内解决问题:

O(n^2)的算法可以处理大约10^4级别的数据;

O(n)的算法可以处理大约10²⁸级别的数据;

O(nlogn)的算法可以处理大约10个7级别的数据

复杂度诚验

实验,观察趋势

每次将数据规模提高两倍,看时间的变化

实践: 复杂度实验 O(n), O(n^2)

复杂度诚验

log2N / logNo = (log2 + logN)/logN

= 1 + log2/logN

递归算法的复杂度分析

递归算法的复杂度分析

不是有递归的函数就一定是O(nlogn)!

```
int binarySearch(int arr[], int l, int r, int target){
   int mid = l + (r-l)/2;
   if( arr[mid] == target )
        return mid;
   else if( arr[mid] > target )
        return binarySearch(arr, l, mid-1, target);
   else
        return binarySearch(arr, mid+1, r, target);
                时间复杂度: O(logn)
```

如果递归函数中,只进行一次递归调用,

递归深度为depth;

在每个递归函数中,时间复杂度为T;

则总体的时间复杂度为O(T*depth)

```
int sum( int n ){
   assert( n >= 0 );
                              递归深度:n
                            时间复杂度: O(n)
       return 0;
   return n + sum(n-1);
```

```
double pow( double x, int n
   assert( n >= 0
                                          递归深度: logn
   double t = pow(x, n/2);
if( n%2 )
                                          时间复杂度: O(logn)
       return x*t*t;
    return t*t;
```

```
int f(int n){
    assert( n >= 0 );
if( n == 0 )
    return 1;
                                    计算调用的次数
     return f(n-1) + f(n-1);
```


递归函数的时间复杂度 洪师·广生定理以为养

实践:編写动态数组

均摊复杂度分析

假设当前数组容量为n

实践:验证均摊复杂度

实践:删除元素运用resize

均摊复杂度分析

假设当前数组容量为2*n

n+1 每一次删除耗费为O(1) 1 1

2 平均来看: O(1)

防止复杂度的震荡

假设当前数组容量为2*n

添加元素:n

删除元素:n

重复这个过程,无法均摊,复杂度为O(n)

复杂度震荡的解决方案

假设当前数组容量为2*n

当元素个数为数组容量的1/4时,resize

为再添加元素留出余地

实践:修改删除元素的resize

实践:验证均摊复杂度

动态栈动态队列

课玩儿转算法面试 版权所liuyubobobo