Teoria da Computação – Ex 6

- 1. Construa uma Máquina de Turing com múltiplas fitas e um só estado não-final que, dados dois inteiros não-negativos n₁e n₂, codificados em binário e separados por uma vírgula, computa a soma dos dois números. Exiba a computação e a saída de sua Máquina para as instâncias (0,0), (5,2) e (7,1).
- 2. Construa uma Máquina de Turing com múltiplas fitas que, dadas duas palavras binárias não-vazias x₁ e x₂ separadas por uma vírgula, decide se x₁ é subpalavra de x₂. Exiba a computação, a saída de sua Máquina para as instâncias 1,1 101,1001101010 e 0,111.
- 3. Construa uma Máquina de Turing Não-determinística de uma só fita que, dada uma palavra x=b_{1a}b_{1b}b_{2a}b_{2b}···b_{na}b_{nb} de comprimento 2n, sendo n um inteiro positivo, decide se existe uma subpalavra y=b₁b₂···b_n de x tal que b_j∈ {b_{ja},b_{jb}} para todo j∈ {1,...,n} e tal que o número de *bits* iguais a 00 em y é igual ao número de *bits* iguais a 11 em y.
- 4. Construa uma Máquina de Turing Não-determinística de uma só fita que nunca move o cabeçote para a esquerda e que decide se uma string binária x possui uma substring y de 4 bits tal que y é um palíndromo. Mostre que sua máquina aceita 11001, mas rejeita 10001.
- 5. Construa uma MTN com duas fitas que recebe como entrada duas strings binárias x e y, nesta ordem, separadas por uma vírgula, e decide se y é uma substring de x.
- 6. Sendo U a Máquina de Turing Universal, mostre que L(U) é recursivamente enumerável, mas não recursiva.