NCEA Level 3 Calculus (Differentiation)

13. Inverse Functions

A function is one-to-one (or injective) if f(x) = f(y) implies that x = y (i.e. two different inputs can never give the same output/the function passes the horizontal-line test).

Definition. Let f be a function that is one-to-one. Then the **inverse** of f is the (unique) function f^{-1} such that

$$f(x) = y \iff f^{-1}(y) = x.$$

In other words, $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$.

Example. Here are some functions with their inverses:

Function	Inverse	Notes	
e^x	$\ln x$	Note that $\ln x$ is defined only when $x > 0$ since $e^x > 0$ for all real x .	
$\sin x$	$\sin^{-1} x$	Note that $\sin^{-1} x$ is only defined when $-\pi < x \le \pi$ since otherwise $\sin x$ is not one-to-one.	
$\cos x$	$\cos^{-1} x$	Note that $\cos^{-1} x$ is only defined when $-\pi < x \le \pi$ since otherwise $\cos x$ is not one-to-one.	
$\tan x$	$\tan^{-1} x$	Note that $\tan^{-1} x$ is defined for all x (why?), and so $\tan^{-1} x \neq \frac{\sin^{-1} x}{\cos^{-1} x}$.	
x^2	\sqrt{x}	When x is positive.	

The graph of the inverse of a function is the reflection of the graph of the original function around the line x = y (essentially, we swap the x and y axes).

In order to illustrate the general process of finding the derivatives of inverse functions, let us now find the derivative of $y = \sin^{-1} x$.

$$y = \sin^{-1} x$$

$$\sin y = x$$

$$\frac{dy}{dx} \cos y = 1$$

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\cos \sin^{-1} x} = \frac{1}{\sqrt{1 - x^2}}.$$

The identity $\cos \sin^{-1} x = \sqrt{1 - x^2}$ comes from the following triangle:

It is possible to write down an expression relating the derivative of f^{-1} to the derivative of f. However, in the immortal words of Michael Artin, "even mathematicians occasionally feel that isn't worthwhile making a precise formulation — that it is easier to consider each case as it comes along. This is one of those occasions."* (The general theorem is given in the exercises below for you to prove.)

^{*} Artin, Algebra (1st ed), p.457.

By the same kind of calculation, we obtain the following table which gives the derivatives of inverses of the three primary trigonometric functions and their reciprocals.

Function	Derivative	Function	Derivative
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$	$\csc^{-1} x$	$-\frac{1}{x\sqrt{x^2-1}}$
$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$	$\sec^{-1} x$	$\frac{1}{x\sqrt{x^2-1}}$
$\tan^{-1} x$	$\frac{1}{1+x^2}$	$\cot^{-1} x$	$-\frac{1}{x^2+1}$

Questions

- 1. M Prove or disprove the following statements:
 - (a) The function $f: x \mapsto x^2 + x + 1$ is one-to-one (where x is real).
 - (b) The function $g: x \mapsto 2^x$ is one-to-one (where x is a positive real).
- 2. M Determine whether the following functions have inverses on the given interval:
 - (a) $x \mapsto x^3$ (on \mathbb{R})
 - (b) $y \mapsto y^4$ (on \mathbb{R})
 - (c) $y \mapsto y^4$ (for $y \ge 0$)
 - (d) $y \mapsto y^4$ (for y > 0)
 - (e) $\theta \mapsto \cos^{-1} \theta$ (on \mathbb{R})
 - (f) $\theta \mapsto \cos^{-1} \theta$ (for $-1 \le \theta \le 1$)
- 3. A True or false:
 - (a) $\cos^{-1} x = \frac{1}{\cos x}$
 - (b) If x > 0 then $(\ln x)^6 = 6 \ln x$
 - (c) $\tan^{-1}(-1) = \frac{3\pi}{4}$ (think about which arm of $\tan x$ we're talking about)
 - (d) The inverse of $f(x) = e^{3x}$ is $f^{-1}(x) = \frac{1}{3} \ln x$.
- 4. A Find the derivative of $f(x) = \ln(e^x)$ in two different ways.
- 5. $\boxed{\mathbf{A}}$ Find y' if:
 - (a) $y = \sin^{-1} 2x$
 - (b) $x = \sin^2 y$
 - (c) $y = x + \tan^{-1} y$
 - (d) $y = \ln \sin x \frac{1}{2} \sin^2 x$
 - (e) $y = 24 \arctan x + \arcsin \sqrt{x}$
 - (f) $y = \sqrt{\sec^{-1} 2x}$

- 6. E Find the local extrema, areas of concavity, and inflection points of the following functions; hence sketch their graphs.
 - (a) $y = e^x \sin x$ for $-\pi < x < \pi$
 - (b) $y = x + \ln(x^2 + 1)$
 - (c) $y = \sin^{-1}(1/x)$
- 7. E Justify intuitively, without invoking the happy coincidence that our notation for derivatives looks like a fraction, the statement that $\frac{dy}{dx} = \left(\frac{dx}{dy}\right)^{-1}$.
- 8. E If $f'(x) = \tan^{-1} x$, find $(f^{-1})'(x)$.
- 9. E Suppose f is a function, and f^{-1} is the inverse of f. Prove that $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$.
- 10. S Prove the formulae for the derivatives of \cos^{-1} and \tan^{-1} , using a similar method to that for $\sin^{-1} x$.
- 11. Scholarship 2012: Consider the equation $x^n = \tan(ny)$, where n is a constant. Find an expression for $\frac{dy}{dx}$ in terms of x.