PRINCIPLES OF ANALYSIS SOLUTIONS TO PROBLEM SET A

PAUL L. BAILEY

ABSTRACT. This document contains solutions to Problem Set A. These are not the only correct solutions. In most cases, there is more than one sensible approach to a given proof.

Problem 1. Let A, B, and C sets. Show that $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

Solution. To show that two sets are equal, we show that each is contained in the other. To show that a set is a subset of another set, pick an arbitrary element from the first set and show that it is in the second.

Let $x \in (A \cap B) \cup C$. Then $x \in (A \cap B)$ or $x \in C$. Suppose $x \in (A \cap B)$. Then $x \in A$ and $x \in B$. Then $x \in A \cup C$ and $x \in B \cup C$. Thus $x \in (A \cup C) \cap (B \cup C)$. On the other hand, if $x \in C$, then again $x \in A \cup C$ and $x \in B \cup C$, so $x \in (A \cup C) \cap (B \cup C)$. Thus $(A \cap B) \cup C \subset (A \cup C) \cap (B \cup C)$.

Let $x \in (A \cup C) \cap (B \cup C)$. Then $x \in (A \cup C)$ and $x \in (B \cup C)$. Then $x \in A$ or $x \in C$, and simultaneously $x \in B$ or $x \in C$. If $x \in C$, then $x \in (A \cap B) \cup C$. On the other hand, if $x \notin C$, then $x \in A$ and $x \in B$, so $x \in A \cap B$, in which case we still have $x \in (A \cap B) \cup C$. Therefore $(A \cup C) \cap (B \cup C) \subset (A \cap B) \cup C$. \square

Date: September 11, 2003.

Problem 2. Let $f: X \to Y$ be a function.

- (a) Show that f is surjective if and only if there exists $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y$.
- (b) Show that f is injective if and only if there exists $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$.

Solution.

- (a) (\Rightarrow) Suppose that f is surjective. Then, for every $y \in Y$ there exists $x_y \in X$ such that $f(x_y) = y$. Define $g: Y \to X$ by $g(y) = x_y$. Then for every $y \in Y$ we have $f \circ g(y) = f(g(y)) = f(x_y) = y$, and $f \circ g = \mathrm{id}_Y$.
- (a) (\Leftarrow) Suppose that there exists $g: Y \to X$ such that $f \circ g = \mathrm{id}_Y$. Let $y \in Y$; then f(g(y)) = y, that is, the image of g(y) under f is y, and since y is arbitrary, so f is surjective.
- (b) (\Rightarrow) Suppose that f is injective. For for every y in the image f(X), there exists a unique x_y in X such that $f(x_y) = y$. Select $z \in X$. Define $g: Y \to X$ by

$$g(y) = \begin{cases} x_y & \text{if } y \in f(X); \\ z & \text{otherwise.} \end{cases}$$

Then for every $x \in X$ we have $g \circ f(x) = g(f(x)) = x$, and $g \circ f = \mathrm{id}_X$.

(b) (\Leftarrow) Suppose that there exists $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$. Let $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$. Then $x_1 = g(f(x_1)) = g(f(x_2)) = x_2$, so f is injective.

Problem 3. Let X be a set and let $T = \{0,1\}$. Show that there is a natural bijective correspondence between the sets $\mathcal{P}(X)$ and $\mathcal{F}(X,T)$.

Solution. For each $A \subset X$, define a function

$$\psi_A: X \to T$$
 by $\psi_A(x) = \begin{cases} 0 & \text{if } x \notin A; \\ 1 & \text{if } x \in A. \end{cases}$

Define a function

$$\Psi: \mathcal{P}(X) \to \mathcal{F}(X,T)$$
 by $\Psi(A) = \psi_A$.

Define a function

$$\Phi: \mathfrak{F}(X,T) \to \mathfrak{P}(X)$$
 by $\Phi(f) = f^{-1}(1)$.

Now it is clear that $\Phi \circ \Psi = \mathrm{id}_{\mathcal{P}(X)}$ and $\Psi \circ \Phi = \mathrm{id}_{\mathcal{F}(X,T)}$; that is, $\Phi = \Psi^{-1}$, so Ψ is bijective.

Let $\mathcal{C} \subset \mathcal{P}(X)$. Recall that \mathcal{C} is a partition of X if

- (P0) $\emptyset \notin \mathcal{C}$;
- **(P1)** $\cup \mathcal{C} = X$; (Covering property)
- (**P2**) if $C_1, C_2 \in \mathcal{C}$ and $C_1 \cap C_2 \neq \emptyset$, then $C_1 = C_2$. (Disjointness property)

Problem 4. Let X be a set and let $\mathcal{C} = \{C_1, \dots, C_m\}$ and $\mathcal{D} = \{D_1, \dots, D_n\}$ be partitions of X. Define

$$\mathcal{E} = \{ C_i \cap D_j \mid C_i \in \mathcal{C}, D_j \in \mathcal{D} \} \setminus \{ \varnothing \}.$$

- (a) Show that \mathcal{E} is a partition of X.
- (b) Describe the equivalence relation induced by $\mathcal E$ in terms of the equivalence relations induced by \mathcal{C} and \mathcal{D} .

Solution. For \mathcal{E} to be a partition, it needs to cover X by a collection of disjoint sets.

Covering: We wish to show that $\cup \mathcal{E} \subset X$. Let $x \in X$. Since \mathcal{C} and \mathcal{D} are partitions, each covers X, so there exists i, j such that $x \in C_i$ and $x \in D_j$. Then $x \in C_i \cap D_i$. Thus $x \in \cup \mathcal{E}$.

Disjoint: Let $E_1 = C_{i_1} \cap D_{j_1}$ and $E_2 = C_{i_2} \cap D_{j_2}$ be arbitrary members of \mathcal{E} . Suppose that $x \in E_1 \cap E_2$. Then

$$x \in (C_{i_1} \cap D_{j_1}) \cap (C_{i_2} \cap D_{j_2}) = (C_{i_1} \cap C_{i_2}) \cap (D_{j_1} \cap D_{j_2}).$$

Therefore $C_{i_1} = C_{i_2}$ and $D_{j_1} = D_{j_2}$, which implies that $E_1 = E_2$. Let the equivalence relations given by \mathcal{C} , \mathcal{D} , and \mathcal{E} be denoted by $\cong_{\mathcal{C}}$, $\cong_{\mathcal{D}}$, and $\cong_{\mathcal{E}}$, respectively. Then $a \cong_{\mathcal{E}} b$ if and only if $a \cong_{\mathcal{C}} b$ and $a \cong_{\mathcal{D}} b$.

Problem 5. Show that $1+3+5+\cdots+(2n-1)=n^2$ for all $n\in\mathbb{N}$.

Solution. For n=1, we have $2n-1=1=1^2$, so the formula is true in this case. By induction, assume that $\sum_{i=1}^{n-1} (2i-1) = (n-1)^2$. Then

$$\sum_{i=1}^{n} (2i - 1) = (n - 1)^{2} + 2n - 1$$
$$= n^{2} - 2n + 1 + 2n - 1$$
$$= n^{2}.$$

DEPARTMENT OF MATHEMATICS AND CSCI, SOUTHERN ARKANSAS UNIVERSITY E-mail address: plbailey@saumag.edu