

4M17: Practical Optimisation

Coursework Assignment 1

Cyrus Mostajeran

Technicalities:

• Assignments due by 4pm on Friday the 7th of December

2018

- Submission is via Moodle
- DPO Sessions: 4pm 6pm Friday of week 6 & 7 (16th &

23rd November)

• Direct questions to me (csm54)

1. The simplest norm approximation problem is an unconstrained problem of the form

$$minimise ||Ax - b||, (1)$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are given as problem data, $x \in \mathbb{R}^n$ is the variable, and $\|\cdot\|$ is a norm on \mathbb{R}^m .

(a) Define the l_1 , l_2 , and l_{∞} -norms on \mathbb{R}^m and write down the norm approximation problems corresponding to each of these norms. In the case of the l_2 -norm, show that the problem can be expressed as an optimisation problem with a convex quadratic function with an analytic solution, which amounts to solving a linear system of equations.

(b) Show that the norm approximation problems corresponding to the l_1 and l_{∞} -norms on \mathbb{R}^m can be cast as linear programming (LP) problems of the form

$$\min_{\tilde{x}} \quad \tilde{c}^T \tilde{x}$$
$$\tilde{A} \tilde{x} \leq \tilde{b}.$$

Specify the dimensions and provide expressions for \tilde{A} , \tilde{b} , \tilde{c} in terms of A and b for each of the two norms.

(c) In the folder Q1Data, 5 pairs of problem data (A, b) are provided for m = 2n and n = 16, 64, 256, 512, 1024. Utilise the dual-simplex algorithm in Matlab's linprog functionality to solve the LP problems corresponding to l_1 and l_{∞} -norms, and use linsolve to minimise the l_2 -norm. Produce a table showing the values of the minimised l_1 , l_2 , and l_{∞} norms ||Ax - b|| corresponding to each of the 5 pairs in Q1Data, as well as the running times of your algorithms in each case.

(c) In the folder Q1Data, 5 pairs of problem data (A, b) are provided for m = 2n and n = 16, 64, 256, 512, 1024. Utilise the dual-simplex algorithm in Matlab's linprog functionality to solve the LP problems corresponding to l_1 and l_{∞} -norms, and use linsolve to minimise the l_2 -norm. Produce a table showing the values of the minimised l_1 , l_2 , and l_{∞} norms ||Ax - b|| corresponding to each of the 5 pairs in Q1Data, as well as the running times of your algorithms in each case.

	min llAx-bll_1	min IIAx-bll_2	min IIAx-bll_inf	I_1 runtime	I_2 runtime	I_3 runtime
(A1,b1)	This	is	sort	of	what	1
(A2,b2)	have	in	mind			
(A3,b3)						
(A4,b4)			•	•	•	•
(A5,b5)						

(d) Plot the histogram of the residuals of the norm approximation problem for the 5th pair of data (A5,b5) in Q1Data (n = 1024) for the $l_1, l_2,$ and l_{∞} -norms. Briefly comment on the shape of the distribution of the residuals in each case.

2. In this problem, we replace the non-smooth l_1 -norm cost function

$$f(x) = ||Ax - b||_1$$

of the previous problem with

$$f_{\epsilon}(x) = \sum_{i=1}^{m} \sqrt{(Ax - b)_i^2 + \epsilon^2},$$

where $\epsilon > 0$ is a small parameter.

(a) Write down expressions for the gradient $\nabla f_{\epsilon}(x)$ and Hessian $H = \nabla^2 f_{\epsilon}(x)$.

(b) Apply a gradient descent algorithm with backtracking linesearch to the cost function f_{ϵ} in (4) with $\epsilon = 0.01$ for the first two data pairs (A, b) (n = 16, 64) from the previous problem, clearly stating your choice of parameters for the backtracking step. You may use $\|\nabla f_{\epsilon}(x)\|_2 < 1.0 \times 10^{-3}$ as the stopping criterion for your algorithm. Produce a table showing the value of the minimised cost function f_{ϵ} , the number of iterations taken for your algorithm to terminate, and the corresponding results obtained for the exact l_1 -norm from the previous problem in each case.

(b) Apply a gradient descent algorithm with backtracking linesearch to the cost function f_{ϵ} in (4) with $\epsilon = 0.01$ for the first two data pairs (A, b) (n = 16, 64) from the previous problem, clearly stating your choice of parameters for the backtracking step. You may use $\|\nabla f_{\epsilon}(x)\|_2 < 1.0 \times 10^{-3}$ as the stopping criterion for your algorithm. Produce a table showing the value of the minimised cost function f_{ϵ} , the number of iterations taken for your algorithm to terminate, and the corresponding results obtained for the exact l_1 -norm from the previous problem in each case.

	min f_epsilon(x)	no. of iterations (steepest descent)	min IIAx-bll_I1	no. of iterations (I1 LP algorithm)
(A1,b1)	Something	like	this,	say.
(A2,b2)				·

Descent methods

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (i.e., Δx is a descent direction)

General descent method.

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. Determine a descent direction Δx .
- 2. Line search. Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

• starting at t = 1, repeat $t := \beta t$ until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$

• graphical interpretation: backtrack until $t \le t_0$

Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. $\Delta x := -\nabla f(x)$.
- 2. Line search. Choose step size t via exact or backtracking line search.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

• stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$

(c) Analyse the dependence of the convergence rate and the value of the minimised cost function f_{ϵ} on ϵ by applying gradient descent to the first pair (A1,b1) and varying ϵ from 1.0×10^{-1} to 1.0×10^{-3} . Plot the running time of your algorithm against ϵ . What is the effect of the size of $\epsilon > 0$ on the convergence rate? Indicate the value of the minimised function f_{ϵ} for each choice of ϵ that you have used. What do these values suggest about the choice of $\epsilon = 0.01$ used to approximate f?

(d) Apply the Newton method to f_{ϵ} for each of the data pairs (A, b) (n = 16, 64, 256, 512, 1024), using Cholesky decomposition to invert the Hessian. Compare your findings with the results from part (b). Perform a more detailed convergence analysis in the case of the data pair (A2,b2) by comparing gradient descent with the Newton method and produce a semi-log plot of the error in the optimised function against the number of iterations in each case.

	min f_epsilon(x)	no. of iterations (Newton)	no. of iterations (grad descent)	runtime (Newton)	runtime (grad descent)
(A1,b1)		•		•	•
(A2,b2)					
(A3,b3)				•	•
(A4,b4)			•	•	-
(A5,b5)					

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

$$\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$$

- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{nt}$.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y)=f(Ty)$ with starting point $y^{(0)}=T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$H\Delta x = -g$$

where $H = \nabla^2 f(x)$, $g = \nabla f(x)$

via Cholesky factorization

$$H = LL^{T}, \qquad \Delta x_{\rm nt} = -L^{-T}L^{-1}g, \qquad \lambda(x) = ||L^{-1}g||_{2}$$

- \bullet cost $(1/3)n^3$ flops for unstructured system
- cost $\ll (1/3)n^3$ if H sparse, banded

3. Consider the optimisation problem

minimise
$$||Ax - b||_2$$

subject to $\mathbf{card}(x) \le k$,

where $\mathbf{card}(x)$ denotes the number of nonzero components of $x \in \mathbb{R}^n$. Regularisation with an l_1 -norm can be used as a good heuristic approach to solving this problem, whereby we solve the problem

minimise
$$||Ax - b||_2 + \gamma ||x||_1$$

for different values of γ , finding the smallest value of γ that results in a solution with $\mathbf{card}(x) = k$. We then fix this sparsity pattern and find the value of x that minimises $||Ax - b||_2$.

(a) Replace the cost function

$$f(x) = ||Ax - b||_2 + \gamma ||x||_1$$

with a smooth version $f_{\epsilon}(x)$ by introducing a smoothened approximation to the non-smooth l_1 -norm in place of $||x||_1$, as in Problem 2 with $\epsilon = 0.001$ this time. Write down an expression for the gradient $\nabla f_{\epsilon}(x)$.

(b) Apply your gradient descent algorithm from the previous problem to this new smooth cost function f_{ϵ} where (A, b) are given by (A5,b5) from Q1Data (n = 1024). You may use $\|\nabla f_{\epsilon}(x)\|_2 < 1.0 \times 10^{-5}$ as the stopping criterion for your algorithm. Experiment on how to tune γ to achieve a cardinality $k = \operatorname{card}(x) = 8$. For this problem you may consider an entry x_i of the vector $x \in \mathbb{R}^{1024}$ to be zero if $|x_i| < \epsilon$. State your choice of γ and specify the sparsity pattern by identifying the indices of the 8 non-zero elements in $x \in \mathbb{R}^{1024}$.

(c) Fix the sparsity pattern identified in part (b) and minimise $||Ax - b||_2$. State the value and index of each of the non-zero elements of your optimal solution x^* and evaluate $||Ax^* - b||_2$.