1. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 23.133. This means i = 8. We know n = 9. Determine the percentile ℓ .

$$\ell = \frac{8}{9}$$

$$\ell = 0.889$$

So, the percentile rank is 0.889, or 88.9th percentile.

(b) We are given $\ell = 0.667$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n\cdot (\ell)=n\cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (9)(0.667)$$

$$i = 6$$

Determine the x associated with i = 6.

- (c) The mean: $\bar{x} = \frac{143.472}{9} = 15.941$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=9 and so n is odd.

median =
$$x_{(9+1)/2}$$
, = x_5

So, median = 14.162

2. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 33.969. This means i = 24. We know n = 32. Determine the percentile ℓ .

$$\ell = \frac{24}{32}$$

$$\ell = 0.75$$

So, the percentile rank is $\boxed{0.75}$, or 75th percentile.

(b) We are given $\ell = 0.438$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by *n*.

$$n\cdot (\ell)=n\cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (32)(0.438)$$

$$i = 14$$

Determine the x associated with i = 14.

- (c) The mean: $\bar{x} = \frac{956.132}{32} = 29.879$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=32 and so n is even.

median =
$$\frac{x_{16} + x_{17}}{2} = \frac{28.402 + 30.474}{2}$$

So, median = 29.438