

# BMB5113 COMPUTER VISION

MORPHOLOGICAL OPERATIONS

# Binary Morphology

- Treat an object within a binary image as the set of '1's
  - set A
- Instead of a kernel window use a "structuring element"
  - set B
- Define the following operations based on set intersection, union, difference:
- Dilation:  $A \oplus B = \{z \mid (\widehat{B})_z \cap A \neq \emptyset\}$
- Erosion:  $A \ominus B = \{z \mid (B)_z \cap A^c = \emptyset\}$

#### Dilation

- Dilation:  $A \oplus B = \{z \mid (\widehat{B})_z \cap A \neq \emptyset\}$
- Example: 3 x 3 square structuring element





## Dilation

• Example of dilation



#### **Erosion**

- Erosion:  $A \ominus B = \{z \mid (B)_z \cap A^c = \emptyset\}$
- Example: 3 x 3 square structuring element



## **Erosion**

• Example of erosion



## Opening

Erosion followed by dilation

$$A \circ B = (A \ominus B) \oplus B$$



Fit the structuring element inside the object

# Opening

Example of opening



B: (

## Closing

Dilation followed by erosion

$$A \bullet B = (A \oplus B) \ominus B$$



Fit the structuring element in the background

# Closing

• Example of closing







### Python Functions

```
from scipy.ndimage import measurements, morphology
# load image and threshold to make sure it is binary
im = array(Image.open('houses.png').convert('L'))
im = 1*(im<128)
labels, nbr_objects = measurements.label(im)
print "Number of objects:", nbr_objects

# morphology - opening to separate objects better
im_open = morphology.binary_opening(im,ones((9,5)),iterations=2)
labels_open, nbr_objects_open = measurements.label(im_open)
print "Number of objects:", nbr_objects_open</pre>
```

# Other Morphological Operations

- Hit-or-miss transform
- Thinning
- Thickening
- Skeletonization

#### Hit-or-Miss Transform

- Shape detection
- Using two structure elements



Structure element I



Structure element II: complement of X with respect to W

#### Hit-or-Miss Transform

- The match (or fit) of B in A is called hit-or-miss transform,
  - denoted A & B
  - B is composed of X (object) and (W-X) (background)

$$A \otimes B = (A \odot X) \cap [A^c \odot (W-X)]$$

 This set contains all the (origin) points, at which, X found a match (hit) in A and (W-X) found a match in A<sup>c</sup> (miss), simultaneously.





### Hit-or-Miss Transform



## Other Applications

Boundary extraction

Boundary(A) = 
$$A - (A \bigcirc B)$$

- Region filling
  - given a set A which defines a region boundary
  - start with a non-boundary point P within the region
  - let  $X_0 = P$
  - $X_k = (X_{k-1} \oplus B) \cap A^c, k = 1,2,3,...$
  - iterate increasing the value of k by 1 for each step
  - terminate if  $X_k = X_{k-1}$

Note:  $A \cup X_k$  includes the filled set and the boundary

## **Connected Components**

- Connected component extraction
  - similar to the region filling
  - start with a point P which is contained in A
  - let  $X_0 = P$
  - $X_k = (X_{k-1} \oplus B) \cap A, k = 1,2,3,...$
  - iterate increasing the value of k by 1 for each step
  - terminate if  $X_k = X_{k-1}$

### Connected Components: Object Coloring

- Each object is a connected set of pixels
- Object label is "color"
- How is this done?

| 1 | 1 | 0 | 1 | 1  | 1 | 0 | 1 |
|---|---|---|---|----|---|---|---|
| 1 | 1 | 0 | 1 | 0  | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0  | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0  | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0  | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | .0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0  | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0  | 1 | 1 | 1 |

a) binary image

| 1 | 1 | 0 | 1 | 1 | 1 | 0 | 2  |
|---|---|---|---|---|---|---|----|
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 2  |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | .2 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2  |
| 3 | 3 | 3 | 3 | 0 | 4 | 0 | 2  |
| 0 | 0 | 0 | 3 | 0 | 4 | 0 | 2  |
| 5 | 5 | 0 | 3 | 0 | 0 | 0 | 2  |
| 5 | 5 | 0 | 3 | 0 | 2 | 2 | 2  |

b) 5 components

## **Extracting Components**

- Collect foreground pixels into separate objects label pixels with same color
- Can then compute many features from each set of pixels
  - A. collect by "random access" of pixels using "paint" or "fill" algorithm
  - B. collect by "raster" (row-by-row) scanning all pixels

# Paint/Fill Algorithm

- Object region must be bounded by background
- Start at any pixel [r,c] inside object
- Recursively color neighbors



# Paint/Fill Major Functions

- Raster scan until object pixel found
- Assign new color for new object
- Search through all connected neighbors until the entire object is labeled
- Return to the raster scan to search for another object pixel

# **Events of Paint/Fill Algorithm**

- PP denotes "processing point"
  - If PP outside image, return to prior PP
  - If PP already labeled, return to prior PP
  - If PP is background pixel, return to prior PP
  - If PP is unlabeled object pixel, then
    - 1) label PP with current color code
    - 2) recursively label neighbors N1, ..., N8

(or N1, ..., N4)

### **Connected Components Labeling**

#### Recursive algorithm

 For each object pixel {assign label L recursively assign label L to all neighbors stop if there are no more unlabeled 1's }

#### Sequential algorithm

- Scan the image left to right, top to bottom
- For each pixel that is 1 {

if only one of **upper** or **left** has a label, copy it if both have the same label, copy it if different, copy **lower** label and enter labels as equivalent otherwise, assign a new label }

Find the lowest label for each equivalence set; relabel entries

## Merging Connecting Regions

Detect and record merges while raster scanning.

Use equivalence table to recode



# **Example Revisited**

Find the turkeys in the picture







### Convex Hull

- Convex hull extraction
  - set A is convex if any line ab ⊂ A (a ∈ A, b ∈ A)





 H is a convex hull if an arbitrary set S is the smallest convex set which contains A

### **Convex Hull**

Convex hull extraction algorithm:

Given a set A and four structure elements  $B^1$ ,  $B^2$ ,  $B^3$ ,  $B^4$  calculate the convex hull region:  $C(A) = D^1 \cup D^2 \cup D^3 \cup D^4$  where:

D<sup>i</sup> is derived from: 
$$X_{k}^{i} = (X_{k-1}^{i} \oplus B^{i}) \cup A$$
  
(i=1,2,3,4), (k=1,2,...)

$$D^i = X^i_k$$
 when  $X^i_k = X^i_{k-1}$ 

Initial 
$$X_0^i = A$$

# **Thinning**

#### Thinning

 peel from outside into inside, which is defined in terms of the hit-ormiss transform:

$$A \otimes B = A - (A \otimes B)$$

$$B = \{B^1, B^2, ..., B^n\}$$

$$A \otimes \{B\} = (((A \otimes B^1) \otimes B^2)...) \otimes B^n)$$

| 0 | 0 | 0 |
|---|---|---|
|   | 1 |   |
| 1 | 1 | 1 |

|   | 0 | 0 |
|---|---|---|
| 1 | 1 | 0 |
|   | 1 |   |



# Thickening

#### Thickening

- The structure element B is similar to the structure element for thinning, except that regions of 1's and 0's are exchanged.
- morphological dual of thinning

A 
$$\odot$$
 B = A  $\cup$  (A  $\odot$  B)  
B = {B<sup>1</sup>, B<sup>2</sup>,..., B<sup>n</sup>}  
A  $\odot$  {B} = (((A  $\odot$  B<sup>1</sup>)  $\odot$  B<sup>2</sup>)...)  $\odot$  B<sup>n</sup>)

- Alternative algorithm to thicken a set A,
  - apply "thinning" algorithm on A<sup>c</sup>,
  - obtain region R
  - then take R<sup>c</sup> as the thickening result

### Skeletons

#### Skeletons

can be implemented by the operations of erosions and openings

$$S(A) = \bigcup_{k=0}^{K} (S_k(A))$$

$$S_k(A) = (A \ominus kB) - (A \ominus kB) \circ B$$

$$A \ominus kB = (((A \ominus B) \ominus B)...) \ominus B)$$

$$K = \max\{k \mid (A \ominus kB) \neq \emptyset\}$$

# Pruning

- Pruning
  - it is complement to thinning and skeletonizing algorithm
  - removes small spurs on binary image
  - steps: thinning, finding end points, dilating end points, union of thinning and dilated end points
  - example: hand-writing recognition

$$B_{1} = \begin{bmatrix} x & 0 & 0 \\ 1 & 1 & 0 \\ x & 0 & 0 \end{bmatrix} B_{2} = \begin{bmatrix} x & 1 & x \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} B_{3} = \begin{bmatrix} 0 & 0 & x \\ 0 & 1 & 1 \\ 0 & 0 & x \end{bmatrix} B_{4} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ x & 1 & x \end{bmatrix}$$

$$B_{5} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} B_{6} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} B_{7} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} B_{8} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$







# Many Other Morphological Operations

- Gradient
- Top-hat
- Black-hat





