Neural dynamics of the compositional process in Chinese compound processing: Analyses on a mega-scale database

Tianqi Wang¹, Xu Xu²

¹ The University of Hong Kong ² Shanghai Jiao Tong University

Know more about him at https://tianqi93.github.io/

Introduction

- Most Chinese words are formed by the combination of characters (e.g., 冰箱 refrigerator = 冰 ice + 箱 box)
- Characters are highly salient perceptual units, making morphological segmentation executed without effort
- Previous studies have shown that in Chinese compound recognition, a meaning-composition process is routinely implemented over the constituent characters
- It is unclear how this compositional process unfolds over time [Research Question]

RELATED WORK

SCAN TO READ OUR

Method

Computational model

A transformer-based deep neural network is trained to optimally predict the actual compound embedding so as to acquire the *compounding rules*

x simple linear combination of the constituent embeddings

Computed metrics

Based on the compositional embeddings (i.e., the vectors generated by the computational model) and the actual embeddings of the compound words, two computed metrics are defined to characterize the end product of the compositional process

- SimCL: the cosine between the compositional and lexicalized (actual) compound embeddings
- **DistC:** the SD of the cosine distances of the 50 lexicalized neighbors that are closest to the compositional embedding

CE = compositional embedding

LE = lexicalized embedding

LN= lexicalized neighbor

Results

Analyses on the ERP megastudy of Chinese word recognition (Tsang & Zou, 2022)

- Higher distinctness was associated with smaller negativity at the intermediate stage of compound processing, attributable to the fewer number of lexicalized distractors and thus relative ease of semantic access
- Both higher *distinctness* and higher *compositionality* were associated with attenuated positivity at the later stage of compound processing, thanks to the ease of generating a holistic representation of the compound

	TW1	TW2	TW3	TW4	TW5	TW6	TW7	TW8	TW9	TW10
	0-100	100-200	200-300	300-400	400-500	500-600	600-700	700-800	800-900	900-1000
Intercept	-1.19	0.84	1.83	-1.27	3.15	5.71	4.43	2.57	1.74	1.03
Hemisphere:Right	-0.13	0.01	0.10	0.38	0.38	0.31	0.16	-0.01	-0.05	-0.01
Anteriority:Central	0.01	0.01	-0.01	-0.06	0.00	0.03	0.07	0.07	0.05	0.03
Anteriority:Posterior	-0.66	-1.65	-1.43	-0.26	-0.27	-0.39	-0.80	-1.19	-1.01	-0.70
NumStroke	0.00	-0.01	0.02	0.00	-0.01	-0.01	0.00	0.00	0.01	0.01
LogCD	-0.06	0.00	-0.02	0.29	0.39	0.13	-0.26	-0.26	-0.20	-0.08
C1.LogCD	0.13	0.09	0.14	0.13	-0.25	-0.40	-0.25	-0.06	-0.06	-0.01
C2.LogCD	0.07	0.06	0.22	0.21	-0.20	-0.28	-0.15	-0.09	-0.05	-0.03
C1.NoH	-0.06	-0.06	-0.03	-0.01	0.00	-0.10	-0.22	-0.08	0.04	-0.06
C2.NoH	0.01	0.07	0.01	0.02	0.00	-0.10	-0.13	-0.02	-0.02	0.08
C1.ST	-0.13	-0.07	-0.02	0.00	0.07	-0.06	-0.16	-0.15	-0.07	-0.01
C2.ST	0.03	0.17	0.14	0.19	0.13	-0.07	-0.16	0.00	-0.09	0.04
SimCL	0.90	0.87	0.11	-0.46	-1.35	-1.29	-0.19	0.72	0.39	0.19
DistC	-6.32	-6.51	5.84	7.75	16.00	3.52	-9.68	-11.59	-1.61	2.85

Notes. The numbers refer to the fixed effects estimates. Shaded cells = corrected p < 0.050. TW = time window, NumStroke = number of strokes, CD = contextual diversity, NoH = number of homophones, ST = semantic transparency, C1 = first character, C2 = second character. The six regions were dummy-coded.

A primed lexical decision megastudy for Chinese characters

Tianqi Wang¹², Leqi Zhou¹, Hongyu Wang¹, Weining Liu¹, Yuqing Ding¹, Xu Xu¹

How character recognition is influenced by word-level representations

Stimuli

- ,864 target characters
- Prime-target pairs in the *priming* condition were constructed from the most frequent word formations as collected in a meaning listing study (Chen et al., 2024)
- Primes in the *baseline* condition were not any of the top 5 character associate of the target

Participants

145 participants (101 females, mean age = 22.97 ± 1.94)

The target character is 花

Target character

花

Baseline

Prime character

150 ms 50 ms

max 3,000 ms

Prime character

50 ms

BSL.RT

Information available in the database

Properties at the character level

Character frequency Number of strokes Number of word formations

Number of meanings

Number of pronunciations

REAL PRM.Prime.Freq Target.Freq

PRM.Prime.NumStroke Target.NumStroke PRM.Prime.NWF Target.NWF PRM.Prime.NoM Target.NoM PRM.Prime.NoP Target.NoP

BSL.Prime.Freq BSL.Prime.NumStroke

BSL.Prime.NWF BSL.Prime.NoM BSL.Prime.NoP

Target.Freq Target.NumStroke Target.NWF Target.NoM Target.NoP

Properties at the word level

Prime position

Prime-target associative strength

Frequency of the word formed

Frequency of to the total frequency of responses to the target character

Response measures

Accuracy rate Response time

Standardized response time

Notes. PRM = priming condition, BSL = baseline condition

Item-level analyses

	Priming effect zRT		Priming e	effect ACC
	Beta	t	Beta	t
Step 1				
Target.LogFreq	-0.047	- 2.868 **	-0.010	-3.405 ***
Target.NumStroke	-0.005	-2.584 **	0.000	-1.226
Target.LogNWF	-0.074	- 2.808 **	-0.016	-3.516 ***
Target.LogNoM	0.021	0.490	0.017	2.290 *
Target.LogNoP	-0.054	-0.698	-0.028	- 2.079 *
PRM.Prime.LogFreq	0.001	0.064	-0.001	-0.262
PRM.Prime.NumStroke	0.000	-0.157	0.000	-1.201
PRM.Prime.LogNWF	-0.052	- 2.098 *	-0.003	-0.642
PRM.Prime.LogNoM	-0.008	-0.226	-0.006	-0.964
PRM.Prime.LogNoP	-0.054	-0.694	0.031	2.311 *
BSL.Prime.LogFreq	0.011	0.793	0.003	1.431
BSL.Prime.NumStroke	0.002	0.783	0.001	2.248 *
BSL.Prime.LogNWF	-0.039	-1.715	-0.003	-0.776
BSL.Prime.LogNoM	-0.025	-0.699	0.005	0.842
BSL.Prime.LogNoP	0.023	0.304	0.008	0.596
R ² change	0.107		0.111	
Step 2				
Word.LogFreq	-0.014	-1.325	-0.001	-0.411
R ² change	0.000		0.000	
Step 3				
Prime.Position	-0.082	-5.391 ***	-0.003	-1.239
PrimeTarget.Association	0.137	2.250 *	0.032	3.057 **
R ² change	0.017		0.005	

Trial-level analyses

	Z	RT	ACC		
	Estimate	t	Estimate	t	
Target.LogFreq	-0.171	-15.366 ***	0.315	6.926 ***	
Target.NumStroke	0.017	9.687 ***	-0.016	-2.246 ***	
Target.LogNWF	-0.210	-10.263 ***	0.630	7.445 ***	
Target.LogNoM	0.036	0.990	-0.086	0.567	
Target.LogNoP	0.065	0.981	0.113	0.409	
Prime.LogFreq	0.044	4.617 ***	-0.210	-4. 893 ***	
Prime.NumStroke	0.001	0.897	-0.011	-1.569	
Prime.LogNWF	-0.013	-0.803	0.088	1.218	
Prime.LogNoM	-0.030	-1.118	-0.138	-1.184	
Prime.LogNoP	0.023	0.420	0.075	0.305	
Condition	-0.179	-40.152 ***	0.436	15.946 ***	
Block.Order	-0.021	-32.129 ***	0.017	4.577 ***	

- In Chinese, word formations establish the contexts in which characters cooccur with each other
- Facilitation in the priming condition may come from the automatic spreading activation between associated characters
- Chinese readers are sensitive to the position of characters within words formed