CC1

Documents, calculatrices et portables interdits. Chaque réponse doit être justifiée.

Durée : 1h

Exercice 1. On définit une loi de composition interne \otimes sur $\mathbb{R}^* \times \mathbb{R}$ en posant

$$(a,b)\otimes(a',b')=(aa',ab'+b)$$

Montrer que $(\mathbb{R}^* \times \mathbb{R}, \otimes)$ est un groupe. Ce groupe est-il commutatif?

Exercice 2. Soit (G, *) un groupe. Pour $g \in G$, on pose

$$Z_g = \{ x \in G \, | \, g * x = x * g \}$$

- 1. Montrer que Z_q est un sous-groupe de (G,*) contenant g.
- 2. On suppose dans cette question que $(G, *) = (GL(2, \mathbb{R}), \times)$. Déterminer Z_g dans les cas suivants.

$$i) \ g = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad ii) \ g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Exercice 3. Soit (G, *) un groupe. Un élément a de G est appelé carré s'il existe $x \in G$ tel que $a = x^2 = x * x$. On note K l'ensemble des carrés de G:

$$K = \left\{ x * x \; ; \; x \in G \right\}, \qquad K \subset G \, .$$

- 1. Déterminer K dans chacun des cas suivants.
- $i) (G, *) = (\mathbb{R}^*, \times) \quad ii) (G, *) = (\mathbb{C}^*, \times) \quad iii) (G, *) = (\mathbb{Z}/3\mathbb{Z}, +) \quad iv) (G, *) = (\mathbb{Z}/6\mathbb{Z}, +)$
- 2. On suppose dans cette question que (G,*) est un groupe d'ordre fini *impair*. Montrer que K=G. Indication : pour $a\in G$, chercher une solution de l'équation $x^2=a$ sous la forme d'une puissance de a.

Exercice 4. 1. Quel peut être l'ordre d'un sous-groupe de $(\mathbb{Z}/15\mathbb{Z}, +)$?

2. Déterminer tous les sous-groupes de $(\mathbb{Z}/15\mathbb{Z}, +)$.