Egil Fische

Introduction

Material a

Results

Conclusion and discussion

NDVtrailPresentation

Egil Fischer

9-3-2020

Egil Fische

Introduction

Material and methods

Results

Conclusion and discussion

Introduction

Trial set-up

NDVtrailPresen

Egil Fische

Introduction

Material

Results

Conclusion and discussio

NDV trial:

- Transmission in vaccinated and unvaccinated groups
- Four separate groups (i.e. 2 replicates per treatment)
- Challenge in 10 out of 20 birds
- ON- and CLO-swab at each day post challenge (DPI) for 14 days
- ELISA at the end of the trial

Transmission parameteres

NDVtrailPresen

Egil Fische

Introduction

Material a

Results

Conclusion

$R = \beta \cdot T_{inf}$

- Infectious period T_{inf} = number of days a bird is infectious
- \blacksquare Transmission coefficient $\beta=$ number of new infections by one infectious bird per day
- lacktriangleright Reproduction ratio R= number of new infectious birds per infectious bird during its entire infectious period

If R < 1 an infection will go extinct.

Research questions

NDVtrailPresen

Egil Fische

Introduction

Material an

Recult

Conclusion

- What are the values of the transmission parameters?
- Do the transmission parameters differ between vaccinated and unvaccinated groups?
- Is the *R* in vaccinated groups below 1?

Egil Fische

madaction

Material and methods

Result

Conclusion and discussion

Material and methods

Visualization of descriptive data

NDVtrailPresent

Egil Fische

Introductio

Material and methods

Results

Conclusion and discussio

- Survival plot
- Epidemic curves (number of infectious animals divided by the total) were produced.
- Histogram of infectious period

Statistical analyses

NDVtrailPresent

Egil Fische

Introduction

Material and

methods

Results

Conclusion and discussion

The infectious period T_{inf} : Parametric survival analyses assuming Normal distribution

The transmission parameter β : Generalized linear model with a complementary loglog-link function:

glm(cbind(C, S-C) ~ 1,offset = log(I/N), family =
binomial(link = "cloglog"), data = data.set,
na.action = na.omit)

The basic reproduction number $R_0 = \beta \cdot T_{inf}$ The confidence interval is calculated by

$$\log(R) = \log(\beta) + \log(T_{inf}) \pm Z_{0.05} \cdot (\log(SE(\beta)) + \log(SE(T_{inf}))$$

Assumes independence between the transmission parameter and the infectious period.

Transmission model and further assumptions

NDVtrailPresen

Egil Fische

Introduction

Material and

Result

Conclusion

Transmission model

 \blacksquare SIR: Susceptible \to Infectious \to Recovered and immune

The determination of a single sample to be positive depends on two assumptions

- Detection threshold (default set to Ct < 36)
- Sample is positive if at least one consecutive sample is positive: Pos, Neg, Pos, Pos = first positive is assumed to be negative, 3rd and 4th positive (same for negative but the opposite)

Egil Fische

Introduction

Material ar

Results

Conclusion and discussion

Results

Survival curve

NDVtrailPresen

Egil Fische

Introduction

.

Results

Conclusion and discussion

survivalplot

T_{inf} at least one (CLO or ON) positive sample

NDVtrailPresen

Egil Fische

Introduction

meroduction

methods

Results

Conclusion and discussion

T_{inf} at least one (CLO or ON) positive sample

NDVtrailPresen

Egil Fische

Introduction

Matarial and

Results

Conclusion and discussion

Statistical analyses \sim using parameteric survival analyses NDVtrailPresent Survival analyses assuming a Gaussian distributed T_{Inf} and only using the contact birds.

summary(surv.fit.one.SIR.gaussian) ## Results ## Call: survival::survreg(formula = survival::Surv(infper, data = out.indiv.one.SIR[out.indiv.one.SIR\$Cha ## ##], na.action = na.omit, dist = "gaussian") ## Value Std. Error ## (Intercept) 4.789 0.323 14.81 <2e-16 ## VaccinatedYes -1.622 $0.547 - 2.96 \ 0.0030$ ## Log(scale) 0.343 0.132 2.60 0.0093 ##

Scale= 1.41

##

Transmission parameter β

NDVtrailPresen

summary(fit.one.SIR.fixed)

```
##
         ## Call:
         ## glm(formula = cbind(C, S - C) ~ Vaccinated, family
Results
         ##
               data = out.nona.one.SIR, na.action = na.omit,
         ##
         ## Deviance Residuals:
         ##
                Min
                           1Q
                               Median
                                              3Q
                                                       Max
         ## -2.66807 -1.18662 0.06918 1.31868 2.82900
         ##
         ## Coefficients:
         ##
                         Estimate Std. Error z value Pr(>|z|)
         ## (Intercept) 0.1069 0.1730 0.618 0.537
         ## VaccinatedYes -0.3525 0.2231 -1.580 0.114
         ##
         ## (Dispossion parameter for binomial family taken to
```

β estimates

NDVtrailPresen

Egil Fische

Introduction

Material and

Results

Conclusion and discussio

beta.table

```
## Treatment beta 2.5% 97.5
## 1 Unvac 1.113 0.777 1.537
## 2 Vac 0.782 0.507 1.221
```

Vaccination does not lower the infection parameter β .

Summarize ~ infectious period

NDVtrailPresen

Egil Fische

Introduction

Material and

Results

Conclusion and discussion

```
mean.beta.inf.R[, c(1,5,6,7)]
```

```
## Vaccinated infper llinfper ulinfper
## 1 No 4.789474 4.155548 5.423399
## 2 Yes 3.167164 1.460171 4.874158
```

Vaccine reduces length of infectious period (p = 0.004)

Summarize $\sim \beta$

NDVtrailPresen

Egil Fische

Introduction

Material and

Results

Conclusion and discussion

```
mean.beta.inf.R[, c(1,2,3,4)]
```

```
## Vaccinated beta llbeta ulbeta
## 1 No 1.1128227 0.7766340 1.536829
## 2 Yes 0.7822649 0.3540352 1.686715
```

No difference is transmission rate

Summarize $\sim R$

NDVtrailPresen

Egil Fische

Introduction

Material and

Results

Conclusion and discussion

mean.beta.inf.R[, c(1,11,12,13)]

```
## Vaccinated R 11R ulR
## 1 No 5.329835 3.5914571 9.275196
## 2 Yes 2.477561 0.4043934 6.431245
```

No difference in reproduction number

Egil Fische

Introduction

Material and methods

Results

Conclusion and discussion

Conclusion and discussion

Conclusion

NDVtrailPresen

Egil Fische

Introductio

Material an

Results

Conclusion

Based on the assumption of one of both samples required to be positive, we find that the transmission parameter β is not lower, but the mean infectious period T_{inf} in the contact birds is lower, which results in a reproduction number R which is smaller (although not statistically significant), but is not lower than the threshold $R \leq 1$.

Optional additional analyses

NDVtrailPresen

Egil Fischer

Introduction

Results

Conclusion and discussion

Preliminary results (models not checked)

- Different Ct as cut-off: e.g if Ct = 30, β lower values for vaccinated, T_{inf} cannot be estimated
- lacktriangle One positive sample means that animal is positive and first negative is negative: eta lower values for vaccinated, and T_{inf} lower for vaccinated

Following no preliminary results

- Only base results on ON swabs
- SI model
- Use ELISA to determine infection yes/no.