ECE 50863 Computer Network Systems

Mid Term Review Sanjay Rao

What to expect

- Around 8-9 questions
- Conceptual questions based on lecture
 - True/False. Make sure to provide justifications unless told otherwise.
- Short conceptual questions [2 -3 lines]
 - E.g. "why is X done"?
- Problem-oriented
 - Variants of homework/practice problems

Advice

- Being well-prepared important
- Important to handle homework variants fast/well.
- Conceptual questions:
 - Based on lecture material, class discussions, tests understanding
- Questions will try to test basic understanding, go beyond straight-forward homework tweaks.

Network Architecture

- Terminology: End Systems, Hosts, etc.
- Multiplexing/Demultiplexing, Pkt Vs. Circuit Switch
- Internet Layered Architecture and Layering
 - Functionality in various layers
- Protocols, Standards
- Network Performance:
 - RTT, Delay-Bandwidth Product, Transfer time

Circuit Switching: E.g. Time Division Multiplexing

- Time divided in frames and frames divided in slots
- Relative slot position inside a frame determines which conversation the data belongs to
 - E.g., slot 0 belongs to red conversation
- Issue:
 - If a conversation does not use its circuit the capacity is lost!

Packet Switching: Statistical Multiplexing

- Data from any conversation can be transmitted at any given time
 - A single conversation can use the entire link capacity if it is alone

Datagram Packet Switching

- Each packet is independently switched
 - Each packet header contains destination address

<u>Layered Protocol Architecture</u>

- The TCP/IP protocol suite is the basis for the networks that we call the Internet.
- The TCP/IP suite has four layers:
- Computers (hosts) implement all four layers. Routers (gateways) only have the bottom two layers.

Encapsulation

 As data is moving down the protocol stack, each protocol is adding layerspecific control information.

Characterizing a Network

- Fundamental characteristics of a network:
 - Bandwidth
 - No of bits per second that can be transmitted on the link.
 - Propagation Delay:
 - Minimum time it would take to transmit a bit across due to speed-oflight considerations.
 - Distance/Speed-of-Light
- Note these are independent of each other.

Message Transfer Time

- Message Transfer Time or Message Latency
 - How long it takes for a message to go across
 - Also called "Delay" (confusing)
- Message Transfer Time(Latency) =
 - Propagation Delay + Transmission Time + Queuing
- Propagation Delay => Distance/Speed-of-Light
- Transmission Time => Size/Bandwidth

MAC Layer - Ethernet

Sharing Transmission Media

- Single shared communication channel
- Only one node can send successfully at a time
- Multiple simultaneous transmissions by nodes: interference

Multiple access protocol:

 distributed algorithm that determines how stations share channel, i.e., determine when station can transmit

CSMA/CD Algorithm (used in Ethernet)

- Sense for carrier.
- If carrier present, wait until carrier ends.
 - Sending would force a collision and waste time
- Send packet and sense for collision.
- If no collision detected, consider packet delivered.
- Otherwise, abort immediately, perform "exponential back off" and send packet again.
 - Start to send at a random time picked from an interval
 - Length of the interval increases with every retransmission

Exponential Backoff Algorithm

 Ethernet uses the exponential backoff algorithms to determine when a station can retransmit after a collision

Algorithm:

- Set "slot time" equal to 512bit time
- After first collision wait 0 or 1 slot times
- After i-th collision, wait a random number between 0 and 2i-1 time slots
- Do not increase random number range, if i=10
- Give up after 16 collisions

Minimum Packet Size

- Why put a minimum packet size?
- Give a host enough time to detect collisions
- In Ethernet, minimum packet size = 64 bytes (two 6byte addresses, 2-byte type, 4-byte CRC, and 46 bytes of data)
- If host has less than 46 bytes to send, the adaptor pads (adds) bytes to make it 46 bytes
- What is the relationship between minimum packet size and the length of the LAN?

LAN Interconnects

- Hubs Vs. Bridges/Switches
 - How are they different
- "Collision Domain" Vs. "Broadcast Domain"
- Learning Algorithm with Bridges
- Spanning tree protocol.

IP Layer/Internetworking

- IP Service Model, packet headers
- Addressing
 - Hierarchical Addressing
 - MAC address vs. IP address
 - CIDR
 - Longest prefix match

Longest Prefix Matching Example

Routing Table

Network	Next Hop	3 rd Octet
128.96.170.0/23	Interface 0	1010 1010
128.96.168.0/23	Interface 1	1010 1000
128.96.166.0/23	R2	1010 0110
128.96.164.0/22	R3	1010 0100
(default)	R4	

Packet to destination 128,96,167,151: 1010 0111

- Matches two entries.
- Forwarded to R2 (Longer Prefix Match)

IP Delivery Model

Best Effort Service

Network will do its best to get packet to destination

Does NOT Guarantee

- Any maximum latency or even ultimate success
- Sender will be informed if packet doesn't make it
- Packets will arrive in same order sent

Implications

- Scales very well
- Higher level protocols must make up for shortcomings
 - Reliably delivering ordered sequence of bytes
- Some services not feasible
 - Latency or bandwidth guarantees

Routing

- Intra-domain routing:
 - Distance Vector
 - Forced updates, Split Horizon, count to infinity
 - Link State (OSPF)
 - Dijkstra's algorithm
 - Flooding of LSPs
- Inter-domain routing:
 - Border Gateway protocol

OTHER TOPICS

- ARP/Interconnects
 - [Last video of Module 4]
 - NOT COVERED and NOT INCLUDED
- TCP Reliability
 - Material like cumulative/selective ACK not included.
 - But, "network performance" related questions fair game (e.g., analyze performance of a protocol where a packet is sent and ACK received before next packet sent).