Módulo 2

Procesado de Imagen y Visión por Computador

Grado en Ingeniería en Stmas. Telecomunicación

Introducción al reconocimiento de patrones

- ¿En qué consiste? En clasificar objetos en categorías o clases.
- Objetos se describen mediante vectores de atributos.
- Ejemplo con 3 clases y vectores de dos dimensiones.

Procesado de Imagen y Visión por Computa dor

- Los objetos (patrones) pueden ser de naturaleza variada:
 - Imágenes (visión artificial)
 - Audio (reconocimiento de voz)
 - Señales de sensores (ejemplo: ECG)
 - Variables económicas

Procesado de Imagen y Visión por Computa dor

Esquema completo de visión artificial

- Objetivo:
 - Dado un vector de características (patrón) y un número de clases determinado.
 - Determinar la clase a la que pertenece.
 - Ejemplo: clasificar forma de la figura

- Estrategia:
 - Extraer características del vector (patrón) que mejor diferencian los vectores de una clase del resto.
 - Objetivo: ¿cuáles y cuántas? Características útiles e incorreladas.
 - En imágenes: características robustas a transformaciones (traslación, tamaño, orientación, ruido, etc.)

- Vector de características n-dimensional:
 - Ejemplo: clasificación hombres-mujeres a partir de peso y estatura.

- Representación en dos dimensiones:
 - Las características muestran cierta correlación

Frontera de decisión:

$$f(A, P) = k_1 A + k_2 P + k_3 = 0$$

 $g(x) = w^T x + w_0 = 0$

Vector de características :
$$\mathbf{x} = [A, P]^T = [x_1, x_2]^T$$

Vector de pesos : $\mathbf{w} = [k_1, k_2]^T = [w_1, w_2]^T$
Umbral : w_0

- Posibilidad de añadir más características:
 - Añadir edad (vector de 3 dimensiones)
 - Añadir más características: (vector de n-dimensiones)

- Frontera de decisión depende de la dimensionalidad del problema:
 - Punto: vector de 1 característica
 - Recta (curva): vector de 2 características
 - Plano (superficie): vector de 3 características
 - Hiperplano (hipersuperficie): vector de 4 o más características

Fuente: Pattern Recognition, S. Theodoridis, K. Koutroumbas. Elsevier.

- Etapas:
 - Entrenamiento: búsqueda de la frontera de decisión entre clases
 - Se necesitan vectores (muestras) preclasificadas manualmente (aprendizaje supervisado).
 - **Test:** decidir clase de nuevas muestras diferentes a las de entrenamiento. Comprueba la fiabilidad del sistema.
 - Funcionamiento normal: una vez diseñado el clasificador.

Fuente: Pattern Recognition, S. Theodoridis.

 Imágenes pueden verse como puntos de alta dimensionalidad.

• Imagen puede ser codificada como un vector x_i concatenando sus píxeles.

Fuente: http://www.mathematica-journal.com/2011/07/fisher-discrimination-with-kernels/

Fuente: https://en.wikipedia.org/wiki/Support_vector_machine

• Muestras separables:

• Muestras no separables:

• Muestras no separables (posible solución):

Muestras no separables (otra posible solución):

- Clasificación automática: ¿Qué clasificador es mejor?
 - Generalización
 - Capacidad de obtener buenos resultados con muestras diferentes (no vistas) a las del entrenamiento.
 - Sobre-entrenamiento.
 - Falta de generalización: solo es capaz de clasificar datos similares a los vistos en el entrenamiento.

Estadísticos:

- Intentan minimizar la probabilidad de error a nivel estadístico de acuerdo a la regla de Bayes (clasificador óptimo)
- Inconveniente: requieren estimación de densidad de probabilidad (¿cómo se distribuyen las características en cada clase?)
- Tipos:
 - Clasificador gaussiano
 - K-vecino más próximo (k-nearest Neighbour)
 - • •

- Ejemplo: k-vecino más próximo
 - Busca los k patrones con menor distancia.
 - Selección por votación mayoritaria

- Inteligencia artificial:
 - No es necesario considerar suposiciones
 - Método de aprendizaje iterativo
 - Minimiza el error sobre conjunto de datos de entrenamiento.
 - Tipos:
 - Redes neuronales (NN: neuronal networks)
 - Perceptrón multicapa
 - Redes RBF
 - Máquinas de vectores soporte (SVM: *support vector machines*).
 - •

- Redes neuronales:
 - Intentan emular el funcionamiento del cerebro humano.
 Su unidad básica es la neurona.

- Redes neuronales:
 - Las neuronas se agrupan en capas para obtener funciones de clasificación complejas.

 Busca la frontera de decisión con más margen de distancia a las muestras.

 Busca la frontera de decisión con más margen de distancia a las muestras.

Procesado de Imagen y Visión por Computa dor

Clases separables linealmente

Clases no separables linealmente

• C=inf, margen 'duro'

Procesado de Imagen y Visión por Computa dor

• C=10, margen 'blando'

Procesado de Imagen y Visión por Computa dor

• Clasificación no lineal ('truco' del kernel):

Clasificación no lineal ('truco' del kernel):

$$f(\mathbf{x}) = \text{signo}\left(\sum_{i=1}^{N_{SV}} \alpha_i y_i k(\mathbf{x_i}, \mathbf{x}) + b\right)$$

- k es el kernel que permite separar los datos.
- Ejemplos de kernel:
 - Gaussiano o RBF: $k(\mathbf{x}, \mathbf{y}) = \exp(-\gamma ||\mathbf{x} \mathbf{y}||^2)$
 - Polinómico: $k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + c)^d$

SVM lineal:

- Frontera es una línea recta.
 - Pequeña complejidad computacional
 - Baja precisión de clasificación

- SVM con kernel gaussiano(1):
 - Frontera es una curva:
 - Mayor complejidad computacional
 - Alta precisión de clasificación

- SVM con kernel gaussiano(2):
 - Frontera es una curva más compleja:
 - ¿Posible sobre-entrenamiento?

Referencias

Referencias:

- Pattern Recognition and Machine Learning. Cristhoper M. Bishop. Ed: Springer.
- Pattern Recognition. S. Theodoridis. Ed: Elsevier.
- http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_ml/py_svm/py_svm_basics/py_svm_basics.html#svm-understanding
- https://www.learnopencv.com/support-vector-machines-s vm/