

# Facultad de Ingeniería y Ciencias Agropecuarias Ingeniería en Biotecnología IBT622, Físico Química

Período 2016-1

#### 1. Identificación

Número de sesiones: 48.

Número total de horas de aprendizaje: 120.

Créditos – malla actual: 4.5 Profesor: MSc Alexey Llopiz

Correo electrónico del docente (Udlanet): a.llopiz@udlanet.ec

Coordinador: Dra. Vivian Morera

Campus: Queri

Pre-requisito: IBT221/IBT311 Co-requisito: Ninguno

Paralelo: -

Tipo de asignatura:

| Optativa    |   |
|-------------|---|
| Obligatoria | X |
| Práctica    |   |

#### Organización curricular:

| Unidad 1: Formación Básica      | X |
|---------------------------------|---|
| Unidad 2: Formación Profesional |   |
| Unidad 3: Titulación            |   |

### Campo de formación:

| Campo de formación                                                                                                                                         |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Fundamentos Praxis Epistemología y Integración de Comunicación teóricos profesional metodología de la saberes, contextos lenguajes investigación y cultura |  |  |  |  |  |  |
| X                                                                                                                                                          |  |  |  |  |  |  |

### 2. Descripción del curso

En este curso se abordan los fundamentos físicos y químicos de los fenómenos naturales necesarios para comprender los temas de Ingeniería, Biotecnología y Técnicas Analíticas. Estos elementos serán abordados mediante la combinación de los conceptos de la termodinámica, el equilibrio material y de fases, y su relación con las propiedades de las disoluciones.

## 3. Objetivo del curso

Explicar los fenómenos que ocurren en los sistemas naturales mediante las principales leyes que determinan los fenómenos físicos-químicos involucrados en los aspectos de ingeniería y técnicas biotecnológicas.

# 4. Resultados de aprendizaje deseados al finalizar el curso



| Resultados de aprendizaje (RdA)                                                                                                                                        | RdA perfil de egreso de carrera                                                                            | Nivel de desarrollo<br>(carrera)      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 1. Aplica las herramientas relacionadas con los análisis energéticos en los cambios experimentales en la materia para aprender la evolución de los sistemas biológicos | procedimientos enfocados en su<br>aplicación, con pensamiento crítico,<br>a través del uso de herramientas | Inicial ( )<br>Medio (X)<br>Final ( ) |

#### 5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

| Reporte de progreso 1    | 35%  |
|--------------------------|------|
| Exposición de aplicación | 5 %  |
| Control de lectura       | 10 % |
| Resolución de problemas  | 5 %  |
| Examen progreso          | 15 % |
| Reporte de progreso 2    | 35%  |
| Exposición de aplicación | 5 %  |
| Control de lectura       | 10 % |
| Resolución de problemas  | 5 %  |
| Examen progreso          | 15 % |
|                          |      |
| Evaluación final         | 30%  |
| Exposición de aplicación | 5 %  |
| Control de lectura       | 10 % |
| Examen Final             | 15 % |

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.



# 6. Metodología del curso y de mecanismos de evaluación

Las metodologías y mecanismos de evaluación deben explicarse en los siguientes escenarios de aprendizaje:

### 6.1. Escenario de aprendizaje presencial

Los controles de lectura de cada uno de los temas se realizarán al finalizar cada uno de los subtemas impartidos en la materia. Anterior a estos, los estudiantes habrán recibido una conferencia teórica y una clase de resolución de ejercicios y problemas. También habrá un espacio de intercambio en relación a los conceptos y teorías propios de la materia.

#### 6.2. Escenario de aprendizaje virtual

Se realizará un informe que implicará un trabajo colaborativo para explicar un fenómenos que ocurra a nivel biológico auxiliándose en base a los conocimientos adquiridos en la materia.

## 6.3. Escenario de aprendizaje autónomo

Se basa en la resolución de problemas que serán presentados en el aula virtual. En estos, los estudiantes deberán darles solución y enviarla a la plataforma virtual.

El aprendizaje será impulsado mediante conferencias teóricas abiertas al debate. Como complemento se emplearán técnicas didácticas tales como lecturas complementarias de artículos científicos y exposiciones. Cada técnica tendrá su respectiva retroalimentación. En el examen final se evaluarán al azar los temas pertinentes a la materia. También se realizarán trabajos en grupo de argumentación de ideas en clase, lecturas de artículos científicos y uso de videos apropiados a la temática.

## 7. Temas y subtemas del curso

| RdA                         | Temas                  | Subtemas                                  |
|-----------------------------|------------------------|-------------------------------------------|
| Aplica las herramientas     | 1. Termodinámica       | 1.1. Introducción, energía y              |
| relacionadas con los        |                        | magnitudes termodinámicas.                |
| análisis energéticos en los |                        | 1.2. Primera ley de la termodinámica.     |
| cambios experimentales      |                        | 1.3. Segunda ley de la termodinámica.     |
| en la materia para          |                        |                                           |
| aprender la evolución de    |                        |                                           |
| los sistemas biológicos     |                        |                                           |
| Aplica las herramientas     | 2. Equilibrio material | 2.1 Entropía y equilibrio, significado de |
| relacionadas con los        | y equilibrio de fases  | la entropía, probabilidad, relación       |
| análisis energéticos en los | en sistemas de un      | entre la entropía y el equilibrio.        |
| cambios experimentales      | componente             | 2.2 Equilibrio material y químico,        |
| en la materia para          |                        | funciones de Gibbs y de Helmhotz,         |
| aprender la evolución de    |                        | potencial químico.                        |
| los sistemas biológicos     |                        | 2.3 Equilibrio en sistemas de un          |
|                             |                        | componente, diagramas de fases punto      |
|                             |                        | triple, crítico y regla de las fases.     |



# Sílabo 2016-1 (Pre-grado)

| Aplica las herramientas     | 3.Disoluciones    | 3.1 Disoluciones ideales: Ley de Raoult |
|-----------------------------|-------------------|-----------------------------------------|
| relacionadas con los        | ideales, reales y | y ley de Henry                          |
| análisis energéticos en los | electrolíticas    | 3.2 Propiedades coligativas de las      |
| cambios experimentales      |                   | disoluciones. Presión de vapor,         |
| en la materia para          |                   | temperatura de ebullición,              |
| aprender la evolución de    |                   | temperatura de congelación, presión     |
| los sistemas biológicos     |                   | osmótica.                               |
|                             |                   | 3.3 Equilibrio de fases en sistemas     |
|                             |                   | multi-componentes.                      |
|                             |                   | 3.3 Disoluciones reales, determinación  |
|                             |                   | del coeficiente de actividad            |



# 8. Planificación secuencial del curso

| Semanas 1 - 5<br># RdA | Toma             | Cub tomo                                | A ativida d /                            | Towas /                                               | MIE/D 1 /                                                                                |
|------------------------|------------------|-----------------------------------------|------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------|
| # KUA                  | Tema             | Sub tema                                | Actividad/<br>metodología/clase          | Tarea/<br>trabajo autónomo                            | MdE/Producto/                                                                            |
|                        |                  |                                         | <u> </u>                                 | <u> </u>                                              | fecha de entrega                                                                         |
| 1                      | 1. Termodinámica | 1.1. Introducción, energía y magnitudes | (1) Conferencias teóricas con            | Lectura del capítulo:<br>Primera ley de la            | Control de lectura<br>primera ley de la                                                  |
|                        |                  | termodinámicas                          | participación de los                     | termodinámica (Atkins,                                | termodinámica                                                                            |
|                        |                  | 1.2. Primera ley de la                  | estudiantes.                             | 2008, pp. 28 – 49 y 57 - 65)                          | 25/09/2015                                                                               |
|                        |                  | termodinámica                           | (1) Propuesta de ejercicios y problemas  | Lectura del capítulo:                                 | Control de lectura<br>segunda ley de la                                                  |
|                        |                  | 1.3. Segunda ley de la                  |                                          | Segunda ley de la                                     | termodinámica                                                                            |
|                        |                  | termodinámica                           | (1) Discusión de ejercicios y problemas. | termodinámica (Atkins, 2008, pp. 76 – 105)            | 05/10/2015                                                                               |
|                        |                  |                                         |                                          |                                                       | Trabajo escrito de                                                                       |
|                        |                  |                                         | (1) Exposición oral                      | (2) Resolución de ejercicios y problemas propuestos   | resolución de ejercicios<br>propuestos<br>09/10/2015                                     |
|                        |                  |                                         |                                          | Elaboración de una<br>presentación para<br>exposición | Exposición oral de<br>temática relacionada<br>(Rúbrica Exposición<br>oral)<br>12/10/2015 |
|                        |                  |                                         |                                          |                                                       | Examen progreso 16/10/2015                                                               |
| Semanas 6 - 9          |                  | •                                       | •                                        | •                                                     | •                                                                                        |
| # RdA                  | Tema             | Sub tema                                | Actividad/<br>metodología/clase          | Tarea/<br>trabajo autónomo                            | MdE/Producto/<br>fecha de entrega                                                        |



# Sílabo 2016-1 (Pre-grado)

| 1               | 2. Equilibrio material y de fases                | 2.1 Entropía y equilibrio, significado de la entropía, probabilidad, relación entre la entropía y el equilibrio. 2.2 Equilibrio material y químico, funciones de Gibbs y de Helmhotz, potencial químico. 2.3 Equilibrio en | <ul> <li>(1) Conferencias teóricas con participación de los estudiantes.</li> <li>(1) Propuesta y resolución de ejercicios</li> <li>(1) Talleres de resolución de ejercicios</li> <li>(1) Exposición oral</li> </ul> | Lectura del capítulo: Transformaciones físicas de las sustancias puras (Atkins, 2008, pp. 117 – 131).  (2) Resolución de ejercicios y problemas propuestos Elaboración de una presentación para exposición | Control de lectura de cambio de estado de sustancias simples 29/10/2015  Control de lectura Espontaneidad de los procesos termodinámicos 06/11/2015  Exposición oral de temática relacionada (Rúbrica Exposición oral) |
|-----------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                  | sistemas de un<br>componente,<br>diagramas de fases<br>punto triple, crítico y<br>regla de las fases.                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                                                                                            | 12/11/2015  Trabajo escrito de resolución de ejercicios propuestos 13/11/2015  Examen progreso 13/11/2015                                                                                                              |
| Semanas 10 - 16 |                                                  |                                                                                                                                                                                                                            |                                                                                                                                                                                                                      | T                                                                                                                                                                                                          |                                                                                                                                                                                                                        |
| # RdA           | Tema                                             | Sub tema                                                                                                                                                                                                                   | Actividad/<br>metodología/clase                                                                                                                                                                                      | Tarea/<br>trabajo autónomo                                                                                                                                                                                 | MdE/Producto/<br>fecha de entrega                                                                                                                                                                                      |
| 1               | 3. Disoluciones ideales, reales y electrolíticas | 3.1 Disoluciones ideales: Ley de Raoult y ley de Henry 3.2 Propiedades coligativas de las disoluciones. Presión de vapor, temperatura de                                                                                   | <ul> <li>1) Conferencias teóricas con participación de los estudiantes.</li> <li>(1) Propuesta y resolución de ejercicios</li> <li>(1) Talleres de</li> </ul>                                                        | Lectura capítulo: mezclas simples (Atkins, 2008, pp. 136 – 166)  Lectura capítulo: Electroquímica del equilibrio (Atkins, 2008, pp. 216 – 233)                                                             | Control de lectura de Disoluciones ley de Raoult/Henry 04/01/2016  Exposición oral de temática relacionada (rúbrica Exposición                                                                                         |



# Sílabo 2016-1 (Pre-grado)



#### 9. Normas y procedimientos para el aula

No se aceptará la entrega de trabajos y tareas fuera del plazo acordado. Las rúbricas serán socializadas en clase antes de una evaluación. Los estudiantes que lleguen tarde a las clases deben de entrar a la misma sin afectar la actividad que se esté realizando. Se fomentará un diálogo y construcción del conocimiento ya sea entre los estudiantes o entre estos y el docente. Se utilizará el correo institucional para anuncios y el aula virtual para entrega de trabajos, por lo tanto es responsabilidad del alumno estar pendiente de estos canales electrónicos.

# 10. Referencias bibliográficas

### 10.1. Principales

Atkins, P., Paula, J. (2008). *Química Física*. Buenos Aires, Argentina: Panamericana.

#### 10.2. Referencias complementarias

Levine, I. (2004). *Fisicoquímica* Volúmenes I y II. Madrid, España: Mc Graw – Hill. - Libro Principal.

Cenegel, Y. (2012). *Termodinámica*. España: Mcgraw-Hill Interamericana Editores (Libro Virtual).

#### 11. Perfil del docente

Nombre de docente: Alexey Llopiz

El docente es Máster en Biotecnología, del Centro de Ingeniería Genética y Biotecnología (La Habana, Cuba). Además es licenciado en Bioquímica de la Facultad de Biología de la Universidad de La Habana.

Ha impartido clases de Química Orgánica y Bioquímica en la Universidad de Granma en pregrado y de Bioquímica Clínica en el postgrado de la Facultad de Medicina de Granma. También ha sido docente en la maestría de Biotecnología del Centro de Ingeniería Genética y Biotecnología, en las materias Proteómica, Técnicas analíticas, Química de proteínas, Control de la calidad en las producciones Biotecnológicas y Publicación de Resultados científicos. Ha trabajado en la purificación y caracterización de diferentes especies moleculares para la realización de ensayos preclínicos, toxicológicos y estructurales. Cuenta con varias publicaciones en el campo de investigación en el que ha participado.

Contacto: a.llopiz@udlanet.ec

Horario de atención al estudiante: por determinar.