Appln. No.: National Stage of PCT/JP2004/015186

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1. (original): A producing method for aminopyrrolidine derivatives or salts thereof comprising

reaction steps 1 and 2 represented by the following reaction formula (I) with the proviso that

reaction step 2 is unnecessary if both R¹ and R² are hydrogen:

2

Appln. No.: National Stage of PCT/JP2004/015186

wherein R^1 and R^2 represent independently hydrogen or a protecting group for amino group (wherein R^1 and R^2 may, taken together, form a cyclic structure);

R³ represents hydrogen or C₁-C₆ alkyl;

 R^{11} represents hydrogen, C_1 – C_6 alkyl or C_2 – C_7 alkanoyl;

 R^{12} , R^{14} , R^{15} , R^{16} and R^{17} represent independently hydrogen, halogen, optionally halogenated C_1 – C_6 alkyl, optionally halogenated C_1 – C_6 alkoxy, hydroxyl or C_2 – C_7 alkoxycarbonyl; and R^{23} ,

Appln. No.: National Stage of PCT/JP2004/015186

 R^{24} , R^{25} and R^{26} represent independently hydrogen, halogen, optionally halogenated C_1 – C_6 alkyl, optionally halogenated C_1 – C_6 alkoxy or hydroxyl.

- 2. (original): The production method according to claim 1, wherein the protecting group for amino group as R^1 or R^2 is methoxycarbonyl, t-butoxycarbonyl, benzyloxycarbonyl, allyloxycarbonyl, formyl, acetyl, benzoyl, methyl, ethyl, allyl, benzenesulfonyl or phthaloyl, wherein, when said protecting group for amino group contains an aromatic ring, the aromatic ring may be optionally substituted with one or more of nitro, amino, C_1 – C_6 alkyl, C_1 – C_6 alkoxy or halogen.
- 3. (original): The production method according to claim 1, wherein either of R^1 and R^2 is hydrogen and the other is *t*-butoxycarbonyl.
- 4. (currently amended): The production method according to <u>claim 1</u> any one of claims 1 to 3, wherein reaction step 1 is reaction of an indole derivative having no substituent at the 3-position in the presence of a synthon of formaldehyde.
- 5. (original): The production method according to claim 4, wherein the synthon of formaldehyde is one or more of a compound selected from formalin, paraformaldehyde and trioxane.

Appln. No.: National Stage of PCT/JP2004/015186

6. (currently amended): The production method according to <u>claim 1 any one of claims 1 to 3</u>, wherein reaction step 1 is reaction of an indole derivative having a dialkylaminomethyl group at

the 3-position.

7. (currently amended): The production method according to <u>claim 1 any one of claims 1 to 6</u>, wherein reaction step 2 is removal of the protection group for the amino group by acid hydrolysis.

8. (currently amended): The production method according to <u>claim 1 any one of claims 1 to 6</u>,

wherein reaction step 2 involves treatment with hydrogen chloride in organic solvent.

9. (original): A method for producing aminopyrrolidine derivatives or salts thereof comprising a

condensation step represented by the following reaction formula (II), wherein the condensation

step is performed by treatment with an anthranilic acid derivative in an aprotic solvent in the

presence of a condensing agent:

5

Appln. No.: National Stage of PCT/JP2004/015186

$$R^{16}$$
 R^{15}
 R^{17}
 R^{14}
 R^{11}
 R^{12}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{16}
 R^{15}
 R^{15}
 R^{17}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{14}
 R^{15}
 R^{15}
 R^{15}
 R^{16}
 R^{16}
 R^{17}
 R^{14}
 R^{14}
 R^{14}
 R^{15}
 R^{15}
 R^{16}
 R^{16}
 R^{16}
 R^{16}
 R^{17}
 R^{14}
 R^{14}
 R^{15}
 R^{16}
 R^{15}
 R^{16}
 R^{15}
 R^{16}
 R^{16}
 R^{15}
 R^{16}
 R^{16}
 R^{16}
 R^{15}
 R^{16}
 R^{15}
 R^{16}
 R^{15}
 R^{16}
 R^{15}
 R^{16}
 R^{15}
 R^{16}
 R^{15}
 R^{16}
 R^{16}
 R^{15}
 R^{16}
 R^{16}
 R^{15}
 R^{16}
 R^{16}
 R^{15}
 R^{16}
 R

wherein R³ represents hydrogen or C₁-C₆ alkyl;

 R^{11} represents hydrogen, C_1 – C_6 alkyl or C_2 – C_7 alkanoyl;

 R^{12} , R^{14} , R^{15} , R^{16} and R^{17} represent independently hydrogen, halogen, optionally halogenated C_1 – C_6 alkyl, optionally halogenated C_1 – C_6 alkoxy, hydroxyl or C_2 – C_7 alkoxycarbonyl; and R^{23} , R^{24} , R^{25} and R^{26} represent independently hydrogen, halogen, optionally halogenated C_1 – C_6 alkyl, optionally halogenated C_1 – C_6 alkoxy or hydroxyl.

10. (original): The production method according to claim 9, wherein the condensing agent is one or more of a compound selected from 1,3-dicyclohexylcarbodiimide, isobutyl chloroformate, pivaloyl chloride, isovaleryl chloride, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, 1-cyclohexyl-3-morpholinoethylcarbodiimide,

1-cyclohexyl-3-(4-diethylaminocyclohexyl)carboximide, N,N-carbonyldiimidazole and

Appln. No.: National Stage of PCT/JP2004/015186

2-chloro-1,3-dimethylimidazolinium chloride.

11. (original): The production method according to claim 9, wherein the condensing agent is 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride.

12. (currently amended): The production method according to <u>claim 9any one of claims 9 to 11</u>, wherein, in said condensation step, are additionally used one or more of an additive selected from *p*-nitrophenol, hydroxysuccinimide, hydroxyphthalimide, 1-hydroxy-1,2,3-benzotriazole, 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine, *N*-hydroxy-5-norbornene-2,3-dicarboximide and ethyl 2-hydroxyimino-2-cyanoacetate.

13. (currently amended): The production method according to <u>claim 9</u> any one of claims 9 to 11, wherein, in said condensation step, 1-hydroxy-1,2,3-benzotriazole is additionally used as an additive.

14. (currently amended): The production method according to <u>claim 9any one of claims 9 to 13</u>, wherein, in said condensation step, triethylamine is additionally used.

15. (currently amended): The production method according to <u>claim 9any one of claims 9 to 14</u>, which further comprises a deprotection step represented by the following reaction step 4:

Appln. No.: National Stage of PCT/JP2004/015186

wherein R^3 , R^{11} , R^{12} , R^{14} , R^{15} , R^{16} , R^{17} , R^{23} , R^{24} , R^{25} and R^{26} are as defined in reaction formula (II);

R⁵ and R⁶ represent independently hydrogen or a protecting group for amino group (wherein R⁵ and R⁶ may, taken together, form a cyclic structure) except for the case where R⁵ and R⁶ are simultaneously hydrogen.

16. (original): The production method according to claim 15, wherein said reaction step 4 involves treatment with hydrogen chloride in organic solvent.

Appln. No.: National Stage of PCT/JP2004/015186

17. (currently amended): The production method according to-either claim 15 or 16, which further comprises an introduction step of an indole derivative represented by the following reaction step 3:

reaction step 3

$$\begin{array}{c}
R_{17}^{16} \\
R_{17}^{17} \\
R_{11}^{17}
\end{array}$$
reaction step 4

$$\begin{array}{c}
R_{16}^{16} \\
R_{17}^{17}
\end{array}$$
reaction step 4

$$\begin{array}{c}
R_{17}^{16} \\
R_{17}^{17}
\end{array}$$
reaction step 5 + HO
$$\begin{array}{c}
R_{26}^{26} \\
R_{17}^{25}
\end{array}$$

$$\begin{array}{c}
R_{16}^{26} \\
R_{17}^{17}
\end{array}$$

$$\begin{array}{c}
R_{16}^{16} \\
R_{17}^{17}
\end{array}$$

$$\begin{array}{c}
R_{16}^{16} \\
R_{17}^{17}
\end{array}$$

$$\begin{array}{c}
R_{14}^{26} \\
R_{17}^{27}
\end{array}$$

9

Appln. No.: National Stage of PCT/JP2004/015186

wherein R^3 , R^5 , R^6 , R^{11} , R^{12} , R^{14} , R^{15} , R^{16} , R^{17} , R^{23} , R^{24} , R^{25} and R^{26} are as defined above.

18. (original): The production method according to claim 17, wherein said reaction step 3 is reaction of an indole derivative having no substituent at the 3-position in the presence of a synthon of formaldehyde.

19. (original): The production method according to claim 18, wherein the synthon of formaldehyde is formalin.

20. (original): The production method according to claim 17, wherein said reaction step 3 is reaction of an indole derivative substituted with a dialkylaminomethyl group at the 3-position.

21. (currently amended): The production method according to claim 17 any one of claims 17 to 20, which further comprises a removal step of a benzyl group represented by the following reaction step 2:

Appln. No.: National Stage of PCT/JP2004/015186

reaction step 2

$$R_{10}^{16}$$
 R_{10}^{16}
 R_{11}^{16}
 R_{12}^{16}
 R_{12}^{16}
 R_{13}^{16}
 R_{14}^{16}
 R_{15}^{16}
 $R_$

wherein R^3 , R^5 , R^6 , R^{11} , R^{12} , R^{14} , R^{15} , R^{16} , R^{17} , R^{23} , R^{24} , R^{25} and R^{26} are as defined above.

Appln. No.: National Stage of PCT/JP2004/015186

22. (original): The production method according to claim 21, wherein, in said reaction step 2, a

hydrogen source is used in the presence of palladium catalyst.

23. (original): The production method according to claim 22, wherein the hydrogen source is

gaseous hydrogen.

24. (currently amended): The production method according to claim 21 any one of claims 21 to

23, which further comprises a condensation step with an amino acid derivative represented by

the following reaction step 1:

Appln. No.: National Stage of PCT/JP2004/015186

reaction step 1

$$R^{16}$$
 R^{15}
 R^{17}
 R^{11}
 R^{16}
 R^{15}
 R^{15}
 R^{17}
 R^{14}
 R^{17}
 R^{15}
 R^{16}
 R^{15}
 R^{17}
 R^{16}
 R^{15}
 R^{17}
 R^{11}
 R^{12}
 R^{14}
 R^{15}
 R^{15}
 R^{17}
 R^{14}
 R^{17}
 R^{19}
 R^{19}

Appln. No.: National Stage of PCT/JP2004/015186

wherein R^3 , R^5 , R^6 , R^{11} , R^{12} , R^{14} , R^{15} , R^{16} , R^{17} , R^{23} , R^{24} , R^{25} and R^{26} are as defined above.

25. (original): The production method according to claim 24, wherein, in said reaction step 1, are used one or more of a condensing agent selected from 1,3-dicyclohexylcarbodiimide, isobutyl chloroformate, pivaloyl chloride, isovaleryl chloride,

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, 1-cyclohexyl-3-morpholinoethylcarbodiimide, 1-cyclohexyl-3-(4-diethylaminocyclohexyl)carboximide, *N*,*N*'-carbonyldiimidazole and 2-chloro-1,3-dimethylimidazolinium chloride.

26. (original): The production method according to claim 24, wherein, in said reaction step 1, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide is used as a condensing agent.

27. (currently amended): The production method according to <u>claim 24any one of claims 24 to</u> 26, wherein, in said reaction step 1, are additionally used one or more of an additive selected from *p*-nitrophenol, hydroxysuccinimide, hydroxyphthalimide, 1-hydroxy-1,2,3-benzotriazole, 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine, *N*-hydroxy-5-norbornene-2,3-dicarboximide and ethyl 2-hydroxyimino-2-cyanoacetate.

28. (currently amended): The production method according to <u>claim 24any one of claims 24 to 26</u>, wherein, in said reaction step 1, 1-hydroxy-1,2,3-benzotriazole is additionally used as an additive.

- 29. (currently amended): The production method according to <u>claim 24 any one of claims 24 to 28</u>, wherein, in said reaction step 1, triethylamine is additionally used.
- 30. (currently amended): The production method according to <u>claim 15</u> any one of claims 15 to 29, wherein the protecting group for amino group as R^5 and R^6 is methoxycarbonyl, *t*-butoxycarbonyl, benzyloxycarbonyl, allyloxycarbonyl, formyl, acetyl, benzoyl, methyl, ethyl, allyl, benzenesulfonyl or phthaloyl, wherein, when said protecting group for the amino group contains an aromatic ring, the aromatic ring may be optionally substituted with one or more of nitro, amino, $C_1 C_6$ alkyl, $C_1 C_6$ alkoxy or halogen.
- 31. (currently amended): The production method according to <u>claim 15</u> any one of claims 15 to $\frac{29}{15}$, wherein either of R⁵ and R⁶ is hydrogen and the other is *t*-butoxycarbonyl.
- 32. (currently amended): The production method according to <u>claim 1 any one of claims 1 to 31</u>, wherein R³ is hydrogen.
- 33. (currently amended): The production method according to <u>claim 1 any one of claims 1 to 32</u>, wherein R^{11} , R^{12} , R^{14} , R^{15} and R^{17} are all hydrogen.
- 34. (currently amended): The production method according to claim 1 any one of claims 1 to 33, wherein R¹⁶ is methyl.

Appln. No.: National Stage of PCT/JP2004/015186

35. (currently amended): The production method according to claim 1 any one of claims 1 to 34, wherein R^{23} , R^{24} and R^{26} are all hydrogen.

36. (currently amended): The production method according to claim 1 any one of claims 1 to 35, wherein R²⁵ is trifluoromethoxy.

37. (original): A compound or a salt thereof represented by the following formula (III):

$$R^{26}$$
 R^{25}
 R^{24}
 R^{40}
 R^{3}
 R^{20}
 R^{20}
 R^{23}
 R^{23}
 R^{23}
 R^{23}
 R^{23}
 R^{23}

wherein R^1 and R^2 represent independently hydrogen or a protecting group for amino group (wherein R^1 and R^2 may, taken together, form a cyclic structure);

R³ represents hydrogen or C₁–C₆ alkyl;

R⁴ represents hydrogen or C₁-C₆ alkyl; and

 R^{23} , R^{24} , R^{25} and R^{26} represent independently hydrogen, halogen, optionally halogenated C_1 – C_6 alkyl, optionally halogenated C_1 – C_6 alkoxy or hydroxyl.

38. (original): The compound or a salt thereof according to claim 37, wherein said protecting group of amino group as R^1 and R^2 is methoxycarbonyl, t-butoxycarbonyl, benzyloxycarbonyl, allyloxycarbonyl, formyl, acetyl, benzoyl, methyl, ethyl, allyl, benzenesulfonyl or phthaloyl,

wherein, when said protecting group for the amino group contains an aromatic ring, the aromatic ring may be substituted with one or more of nitro, amino, C_1 – C_6 alkyl, C_1 – C_6 alkoxy or halogen.

- 39. (original): The compound or a salt thereof according to claim 37, wherein either of R^1 and R^2 is hydrogen and the other is hydrogen, *t*-butoxycarbonyl or benzyloxycarbonyl.
- 40. (currently amended): The compound or a salt thereof according to claim 37 any one of claims 37 to 39, wherein R³ is hydrogen.
- 41. (currently amended): The compound or a salt thereof according to claim 37 any one of claims 37 to 40, wherein R⁴ is hydrogen.
- 42. (currently amended): The compound or a salt thereof according to claim 37 any one of claims 37 to 41, wherein R^{23} , R^{24} and R^{26} are all hydrogen.
- 43. (currently amended): The compound or a salt thereof according to claim 37 any one of claims $\frac{37 \text{ to } 42}{1000}$, wherein R²⁵ is C₁-C₆ alkoxy substituted with halogen.
- 44. (currently amended): The compound or a salt thereof according to claim 37 any one of claims 37 to 42, wherein R^{25} is trifluoromethoxy.

45. (original): A production method of an anthranilamide derivative or a salt thereof comprising a reaction step represented by the following formula (IV):

$$R^{25}$$
 R^{24}
 R^{23}
 R^{25}
 R^{23}
 R^{25}
 R^{24}
 R^{25}
 R^{25}
 R^{26}
 R^{25}
 R^{25}
 R^{26}
 R^{25}
 R^{25}
 R^{24}
 R^{25}
 R^{25}
 R^{24}
 R^{25}
 R^{25}

wherein:

R¹ and R² represent independently hydrogen or a protecting group for amino group (wherein R¹ and R² may, taken together, form a cyclic structure);

R³ represents hydrogen or C₁-C₆ alkyl;

R⁴ represents hydrogen or C₁–C₆ alkyl;

 R^{23} , R^{24} , R^{25} and R^{26} represent independently hydrogen, halogen, optionally halogenated C_1 – C_6 alkyl, optionally halogenated C_1 – C_6 alkoxy or hydroxyl.

46. (original): The production method according to claim 45 which further comprises a reaction step represented by the first step in the following reaction formula:

Appln. No.: National Stage of PCT/JP2004/015186

wherein R^1 , R^2 , R^3 , R^4 , R^{23} , R^{24} , R^{25} and R^{26} are as defined above.

47. (currently amended): The production method according to either claim 45-or 46, wherein the protecting group for amino group as R¹ or R² is methoxycarbonyl, *t*-butoxycarbonyl, benzyloxycarbonyl, allyloxycarbonyl, formyl, acetyl, benzoyl, methyl, ethyl, allyl, benzenesulfonyl or phthaloyl, wherein, when said protecting group for the amino group contains

Appln. No.: National Stage of PCT/JP2004/015186

an aromatic ring, the aromatic ring may be substituted with one or more of nitro, amino, C_1 – C_6 alkyl, C_1 – C_6 alkoxy or halogen.

- 48. (currently amended): The production method according to either claim 45-or 46, wherein either of R^1 and R^2 is hydrogen and the other is hydrogen, t-butoxycarbonyl or benzyloxycarbonyl.
- 49. (currently amended): The production method according to <u>claim 45</u>any one of claims 45 to 48, wherein R³ is hydrogen.
- 50. (currently amended): The production method according to claim 45 any one of claims 45 to 49, wherein R^{23} , R^{24} and R^{26} are all hydrogen.
- 51. (currently amended): The production method according to claim 45 any one of claims 45 to 50, wherein R^{25} is C_1 – C_6 alkoxy substituted with halogen.
- 52. (currently amended): The production method according to claim 45 any one of claims 45 to 50, wherein R²⁵ is trifluoromethoxy.