A note on weakly connected domination number in graphs

Xue-gang Chen^{1,*} Wai Chee Shiu²

¹Department of Mathematics, North China Electric

Power University, Beijing 102206, China

²Department of Mathematics, Hong Kong Baptist University,

224 Waterloo Road, Kowloon Tong, Hong Kong, China

Abstract: Let G be a connected graph. A weakly connected dominating set of G is a dominating set D such that the edges not incident to any vertex in D do not separate the graph G. In this paper, we first consider the relationship between weakly connected domination number $\gamma_w(G)$ and the irredundance number ir(G). We prove that $\gamma_w(G) \leq \frac{5}{2}ir(G)-2$ and this bound is sharp. Furthermore, for a tree T, we give a sufficient and necessary condition for $\gamma_c(T) = \gamma_w(T) + k$, where $\gamma_c(G)$ is the connected domination number and $0 \leq k \leq \gamma_w(T) - 1$.

Keywords: domination number; weakly connected domination

^{*} Corresponding author, E-mail address: gxc_xdm@163.com
This work is partially supported by GRF, Research Grant Council of Hong
Kong; FRG, Hong Kong Baptist University; and Doctoral Research Grant
of North China Electric Power University (200722026).

number; connected domination number; irredundance number.

§1 Introduction

Throughout this paper G = (V, E) will be an undirected connected graph. We begin by recalling some standard definitions from domination theory. For any vertex $v \in V$, the open neighborhood of v, denoted by $N_G(v)$, is $\{u \in V | uv \in E\}$. The closed neighborhood of v, denoted by $N_G[v]$, is the set $N_G(v) \cup \{v\}$. For $S \subseteq V$, the open neighborhood of S, denoted by $N_G(S)$, is $\bigcup_{v \in S} N_G(v)$, while the closed neighborhood of S, denoted by $N_G[S]$, is $\bigcup_{v \in S} N_G[v]$. The private neighbor set of v with respect to S is given by $PN_G[v, S] = N_G[v] - N_G[S - \{v\}]$. The vertex v is a leaf if $|N_G(v)| = 1$. The vertex v is a support vertex if it is adjacent to a leaf. Let L(G) denote the set of leaves of G. The subscripts G will be omitted when the context is clear. Let $\langle S \rangle$ denote the subgraph of G induced by S.

A set $D \subseteq V$ is a dominating set of G if N[D] = V. The domination number of G, denoted by $\gamma(G)$, is the size of its smallest dominating set. D is a connected dominating set if D is a dominating set and $\langle D \rangle$ is connected. The connected domination number of G is the size of its smallest connected dominating set, and is denoted by $\gamma_c(G)$. Results related to the connected domination number may be found in [1, 2].

A set $D \subseteq V$ is an *irredundant set* if for every $x \in D$, $N[x] \not\subseteq \bigcup_{y \in D - \{x\}} N[y]$. The *irredundance number*, denoted by ir(G), is the minimum size of a maximal irredundant set of vertices. A set $D \subseteq V$ is an independent set if no two vertices of D are adjacent. The *independence number* of G, denoted by $\beta(G)$, is the maximum size of an independent set.

For a set $D \subseteq V$, |D| denotes the cardinality of D. We denote a set D as an ir-set if D is a maximal irredundant set with |D| = ir(G).

In [3], Dunbar et al. introduced the concept of a weakly connected dominating set. A weakly connected dominating set for a connected graph is a dominating set D of vertices of the graph such that the edges not incident to any vertex in D do not separate the graph. For a set $D \subseteq V$, the subgraph weakly induced by D is the graph $\langle D \rangle_w = (N[D], E \cap (D \times N[D]))$. Notice that a set D is a weakly connected dominating set of G if D is dominating set and $\langle D \rangle_w$ is connected. Clearly a connected dominating set must be weakly connected, but the converse is not true. The weakly connected domination number of G, denoted by $\gamma_w(G)$, is the size of a smallest weakly connected dominating set for G. We then have $\gamma(G) \leq \gamma_w(G) \leq \gamma_c(G)$.

The inequality $\gamma(G) \leq 2ir(G) - 1$ was obtained independently in [4, 5]. Bo and Liu in [1] proved that $\gamma_c(G) \leq 3ir(G) - 2$ for a connected graph G and this result is best possible.

In this paper, we first consider the relationship between weakly connected domination number $\gamma_w(G)$ and the irredundance number ir(G). We prove that $\gamma_w(G) \leq \frac{5}{2}ir(G)-2$ and this bound is sharp. Furthermore, for a tree T, we give a sufficient and necessary condition for $\gamma_c(T) = \gamma_w(T) + k$, where $\gamma_c(G)$ is the connected domination number and $0 \leq k \leq \gamma_w(T) - 1$.

§2 Main results

First, we have the following two lemmas.

Lemma 1(Hedetniemi [7]) If S is an ir-set of graph G,

and S is independent, then $ir = \gamma$.

Lemma 2(Dunbar et al. [3]) If G is a connected graph, then $\gamma(G) \leq \gamma_w(G) \leq 2\gamma(G) - 1$.

Theorem 1 If a graph G is connected, then $\gamma_w(G) \leq \frac{5}{2}ir(G) - 2$.

Proof Let G be a connected graph and let $S = \{v_1, v_2, \dots, v_l\}$ be an ir-set of G. All components of $\langle S \rangle$ are denoted by S_1, S_2, \dots , S_n for $1 \leq n \leq l = ir$. Suppose that there are t isolated vertices v_1, v_2, \dots, v_t in $\langle S \rangle$, where v_1, v_2, \dots, v_t belong to the components S_1, S_2, \dots, S_t , respectively. Then each of the other n - t components contain at least two vertices. Hence,

$$2(n-t) + t \le ir \text{ i.e., } 2n-t \le ir. \tag{1}$$

First we prove that $\gamma_w(G) \leq \frac{5}{2}ir(G) - 1$.

If t=n, then S is independent set. By Lemmas 1 and 2, it follows that $\gamma_w(G) \leq 2\gamma(G) - 1 = 2ir(G) - 1 \leq \frac{5}{2}ir(G) - 1$. Without loss of generality, we can assume that t < n. Since S is an irredundant set, $N[v_i] \not\subseteq \bigcup_{j \neq i} N[v_j]$ for any $v_i \in S$. Assume that $N_i = N[v_i] - \bigcup_{j \neq i} N[v_j]$ for $i = 1, 2, \dots, l$. Since $N_i \neq \emptyset$, we may choose one vertex $u_i \in N_i$ for $i = t + 1, t + 2, \dots, l$. Let $S'_1 = S \cup \{u_{t+1}, \dots, u_l\}$. It is clear that

$$|S_1'| = ir + ir - t = 2ir - t.$$
 (2)

Since S is an ir-set of G, it follows that S'_1 is a dominating set of G.

If $G_1 = \langle S_1' \rangle_w$ is connected, then $\gamma_w(G) \leq |S_1'| = 2ir - t \leq \frac{5}{2}ir - 1$. Suppose that G_1 has $q \geq 2$ components. Note that $q \leq 2$

n. Let w_1 be an arbitrary vertex of S_1' , let W_1 be the vertex set of the component of G_1 that contains w_1 , and let $T_1 = V(G) - W_1$. Let $t_1 \in T_1$ be chosen so that $d(w_1, t_1) = min\{d(w_1, x) | x \in T_1\}$, and let $P = y_{11}, y_{12}, \dots, y_{1k}$ be the shortest t_1w_1 -path, where $y_{11} = t_1$ and $y_{1k} = w_1$. Then $y_{1i} \in W_1$ for $2 \le i \le k$. Furthermore, $y_{12} \notin S_1'$ and $t_1 \in T_1 - S_1'$. Let $S_2' = S_1' \cup \{y_{12}\}$. Then $G_2 = \langle S_2' \rangle_w$ has at most q - 1 components.

If G_2 is connected, then $\gamma_w(G) \leq |S_2'| = 2ir - t + 1 \leq \frac{5}{2}ir - 1$. Suppose that G_2 has at most q-1 components. Let w_2 be an arbitrary vertex of S_2' and W_2 be the vertex set of the component of G_2 that contains w_2 . Let $T_2 = V(G) - W_2$. Let $t_2 \in T_2$ be chosen so that $d(w_2, t_2) = min\{d(w_2, x)|x \in T_2\}$, and let $P = y_{21}, y_{22}, \cdots, y_{2l}$ be the shortest t_2w_2 -path, where $y_{21} = t_2$ and $y_{2l} = w_2$. Then $y_{2i} \in W_2$ for $2 \leq i \leq l$. Furthermore $y_{22} \notin S_2'$ and $t_2 \in T_2 - S_2'$. Thus if we let $S_3' = S_2' \cup \{y_{22}\}$, then $G_3 = \langle S_3' \rangle_w$ has at most q-2 components, and so on. We will make a set $Y = \{y_{12}, y_{22}, \cdots, y_{(s-1)2}\}$, where $s \leq q \leq n$. It is clear that $S_1' \cup Y$ is a weakly connected dominating set of G. By (1), it follows that $n - \frac{t}{2} \leq \frac{ir}{2}$. Hence,

$$\gamma_w(G) \leq |S_1' \cup Y| \leq 2ir - t + s - 1
\leq 2ir - t + n - 1 \leq 2ir - 1 + (n - \frac{t}{2}) - \frac{t}{2}
\leq \frac{5}{2}ir - 1 - \frac{t}{2}
\leq \frac{5}{2}ir - 1$$
(3)

Suppose that $\gamma_w(G) = \frac{5}{2}ir(G)-1$. Then t=0, $s=q=n=\frac{ir}{2}$ and |Y|=n-1. So, $|S_1'|=2ir$ and $|S_i|=2$ for $i=1,\cdots,n$. Without loss of generality, we can assume that $S_i=\{v_{2i-1},v_{2i}\}$ for $i=1,\cdots,n$. Furthermore, $G_1=\langle S_1'\rangle_w$ has n components. Let G_{11},\cdots,G_{1n} denote the components of G_1 . For $u_1\in S_1'$, there exists $v_i\in S$ such that u_1 is adjacent to each vertex of

 $PN[v_i, S]$. If $v_i \in S - \{v_1, v_2\}$, then the components number of G_1 is less than n, which is a contradiction. If $v_i \in \{v_1, v_2\}$, then $S'_1 \cup Y - \{v_i\}$ is a weakly connected dominating set of G with cardinality less than $S'_1 \cup Y$, which is a contradiction. Hence, $\gamma_w(G) \leq \frac{5}{2}ir(G) - 2$.

Theorem 2 Let G be a connected graph. If $\gamma_w(G) = \frac{5}{2}ir(G)-2$, then ir(G) = 2.

Proof Let S, S'_1, Y be defined as above. Since $\gamma_w(G) = \frac{5}{2}ir(G) - 2$, it follows that ir(G) is even. We consider the following two cases.

Case 1 G_1 is connected. If $t \geq 2$, then $\gamma_w(G) \leq |S_1'| \leq 2ir(G) - t < \frac{5}{2}ir(G) - 2$. So, we only consider the case $t \leq 1$. If t = 1 and $ir(G) \geq 4$, then $\gamma_w(G) \leq |S_1'| \leq 2ir(G) - t < \frac{5}{2}ir(G) - 2$. It is obvious that it is impossible for t = 1 and ir(G) = 2. If t = 0 and $ir(G) \geq 6$, then $\gamma_w(G) \leq |S_1'| \leq 2ir(G) - t < \frac{5}{2}ir(G) - 2$. If t = 0 and ir(G) = 4, then for $u_1 \in S_1'$ there exists $v_i \in S$ such that u_1 is adjacent to each vertex of $PN[v_i, S]$. Hence $S_1' - \{v_i\}$ is a weakly connected dominating set of G with cardinality less than 8, which is a contradiction. Hence, t = 0 and ir(G) = 2.

Case 2 G_1 has $q \geq 2$ components. Then q = n. Otherwise, if $q \leq n - 2$, then

$$\begin{array}{rcl} \gamma_w(G) & \leq & |S_1' \cup Y| \leq 2ir - t + s - 1 \\ & \leq & 2ir - t + q - 1 \leq 2ir - t + n - 3 \\ & \leq & 2ir - 3 + (n - \frac{t}{2}) - \frac{t}{2} \\ & \leq & \frac{5}{2}ir - 3 - \frac{t}{2} \\ & \leq & \frac{5}{2}ir - 3 \end{array}$$

If q=n-1, then s=q, t=0 and $n=\frac{ir(G)}{2}$. Let $G_{11}, G_{12}, \cdots, G_{1(n-1)}$ denote the components of G_1 such that $|G_{11} \cap S| = 4$. Without loss of generality, we can assume that $G_{11} \cap S = \{v_1, v_2, v_3, v_4\}$. For $u_5 \in S_1$, there exists $v_i \in \{v_5, v_6\}$ such that u_5 is adjacent to each vertex of $PN[v_i, S]$. Then $(S_1' \cup Y) - \{v_i\}$ is a weakly connected dominating set of G with cardinality less than $\frac{5}{2}ir - 2$, which is a contradiction.

Since q=n, by inequality (3), it follows that $t \leq 2$. Let G_{11}, \dots, G_{1n} denote the components of G_1 , where $S_i \subseteq G_{1i}$ for $i=1,\dots,n$. Suppose that $n-t\geq 2$. For $u_{t+1}\in S_1'\cap G_{1(t+1)}$, there exists $v_i\in S\cap G_{1(t+1)}$ such that u_{t+1} is adjacent to each vertex of $PN[v_i,S]$. For $u_n\in S_1'\cap G_{1n}$, there exists $v_j\in S\cap G_{1n}$ such that u_n is adjacent to each vertex of $PN[v_j,S]$. Then $S_1'\cup Y-\{v_i,v_j\}$ is a weakly connected dominating set of G with cardinality less than $\frac{5}{2}ir(G)-2$, which is a contradiction. Hence $n-t\leq 1$. Since $n\geq 2$, it follows that $t\geq 1$.

If t=2, then s=q=n and $n-1=\frac{ir(G)}{2}$. If n=2, then ir(G)=2. If n=3, suppose that $|S_1|=|S_2|=1$ and $|S_3|\geq 2$. For $u_3\in S_1'$, there exists $v_i\in \{v_3,v_4\}$ such that u_3 is adjacent to each vertex of $PN[v_i,S]$. Then $(S_1'\cup Y)-\{v_i\}$ is a weakly connected dominating set of G with cardinality less than $\frac{5}{2}ir-2$, which is a contradiction.

If t = 1, then s = q = n = 2 and $n = \frac{ir(G)}{2}$. By a similar way as above, then there exists a weakly connected dominating set of G with cardinality less than $\frac{5}{2}ir - 2$, which is a contradiction. So ir(G) = 2.

Graphs with $\gamma_w(G) = 3$ and ir(G) = 2

Lemma 3 (Dunbar et al. [3]) If a graph G is connected, then $\gamma_w(G) \leq \gamma_c(G) \leq 2\gamma_w(G) - 1$.

Lemma 4 (Domke et al.[6]) If T is a tree of order p, then $\gamma_w(T) = p - \beta(T)$.

Theorem 3 Let T denote a tree of order p, then $\gamma_c(T) = \gamma_w(T) + k$ if and only if $\beta(T') = k$, where $0 \le k \le \gamma_w(T) - 1$ and T' = T - N[L].

Proof Let S be an independent set of T such that $|S \cap L|$ is maximum. Then $S \cap L = L$. Otherwise, if there exists a vertex $v \in L$ such that $v \notin S$, then $N(v) \in S$. So $S' = (S - \{N(v)\}) \cup \{v\}$ is an independent set of T. Furthermore, $|S' \cap L|$ is more than $|S \cap L|$, which is a contradiction. So S - L is an independent set of T' and $\beta(T') \geq |S - L| = \beta(T) - |L|$.

Let D be an independent set of T'. Then $D \cup L$ is an independent set of T, Hence, $\beta(T) \geq |D \cup L|$. That is $\beta(T) \geq |\beta(T') + |L|$. Therefore, $\beta(T) = \beta(T') + |L|$.

Suppose $\gamma_c(T) = \gamma_w(T) + k$. Since $\gamma_c(T) = p - |L|$ and

 $\gamma_w(T) = p - \beta(T)$, it follows that $\beta(T) = |L| + k$. Hence, $\beta(T') = k$.

Conversely, if $\beta(T')=k$, then $\beta(T)=|L|+k$. Hence, $\gamma_c(T)=\gamma_w(T)+k$.

Corollary 1 Let T denote a tree of order p, then $\gamma_c(T) = \gamma_w(T)$ if and only if every vertex of T is a leaf or a support vertex.

References:

- C. Bo, B. Liu, Some inequality about connected domination number, *Discrete Math.* 159(1996), 241-245.
- [2] E. Sampathkumar, H. B. Walikar, The connected domination number of a graph, Math. Phys. Sci. 13(1979), 607-613.
- [3] J.E. Dunbar, J.W. Grossman, J.H. Hattingh, S.T. Hedetniemi, A.A. McRac, On weakly connected domination in graphs, *Discrete Math.* 167-168(1997), 261-269.
- [4] R.B. Allan, R. Laskar, On domination and some related topics in graph theory, Proc. 9th S.E. Conf. on Combinatorics, Graph Theory and Computing, Utilitas Math. (Winnipeg, 1978) 43-48.
- [5] B. Bollobas, E.J. Cockayne, Graph-theoretic parameters, concerning domination, independence and irredundance, J. Graph Theory 3(1979), 241-249.
- [6] G.S. Domke, J.H. Hattingh, L.R. Markus, On weakly connected domination in graphs ∐, Discrete Math. 305(2005), 112-122.
- [7] S.T. Hedetniemi, R. Laskar, Connected domination in graphs, in: B. Bollobas, ed., Graph Theory and Combinatorics (Academic Press, London, 1984) 209-218.