Report

1. Introduction

1.1 Problem Statement

This problem aims to differentiate original and counterfeit QR codes using:

- Traditional Computer Vision & Machine Learning
- Deep Learning (CNN-based approach)

1.2 Objectives

- Extract meaningful features from QR code images.
- Train machine learning models (Random Forest, SVM).
- Develop a deep learning model using CNNs.
- Evaluate models using accuracy, precision, recall, and F1-score.

2. Data Exploration and Analysis

Upon analysing the images by looking at the dataset, here are some noticeable differences:

- Blur and Distortion:
 - The second (counterfeit) QR code appears slightly more distorted or blurry compared to the first (original).
 - The edges in the second image seem less sharp and have some irregularities.
- Texture and Print Quality:
 - The first image looks cleaner and more refined, while the second image has a slightly rougher texture.
 - There might be some pixelation or artifacts in the second image, especially in finer details.
- Circular Region in the Center:
 - The circular section in the middle seems less clear in the counterfeit, possibly due to printing or scanning issues.
- QR Code Patterns:

 The arrangement of the black and white pixels looks nearly identical at a glance, but finer differences in clarity and alignment could exist.

3. Feature Extraction

We extracted the following handcrafted features:

Global :-

- Histogram & Intensity Distribution: Measures the spread of pixel values to understand brightness and contrast differences.
- Fourier Transform Analysis: Converts the image to the frequency domain to capture repetitive patterns and anomalies.

Local :-

- Local Binary Patterns (LBP): Extracts texture features by analyzing neighboring pixel variations.
- Haralick Texture Features (GLCM): Computes contrast, correlation, energy, and homogeneity to capture structural differences in textures.

Artifacts & Resolution Differences :-

- Noise Estimation: Calculates the standard deviation of image noise by subtracting a Gaussian-blurred version from the original image. This helps identify print artifacts that may differ between original and counterfeit prints.
- Sharpness & Edge Density: Uses edge detection (Canny) to quantify the number of edges, capturing resolution differences and blur levels between prints.

Copy Detection Pattern (CDP) Degradation :-

- Microstructure Variations: Examines small-scale texture inconsistencies introduced during multiple print-copy cycles.
- Random Noise Comparison: Measures pixel-level noise patterns, as reprinted QR codes often introduce subtle noise artifacts.

4. Traditional computer vision and machine learning approach.

We trained **Random Forest (RF)** and **Support Vector Machine (SVM)** on the extracted features.

We used accuracy, precision, recall, and F1-score to evaluate performance.

1. Evaluation report and confusion matrix for Random Forest -

Evaluation for Random Forest							
р	recision	recall	f1-score	support			
0	1.00	0.90	0.95	21			
1	0.90	1.00	0.95	19			
accuracy			0.95	40			
macro avg	0.95	0.95	0.95	40			
weighted avg	0.95	0.95	0.95	40			

2. Evaluation report and confusion matrix for SVM -

Evaluation fo	or SVM precision	recall	f1-score	support
0 1	0.70 0.65	0.67 0.68	0.68 0.67	21 19
accuracy macro avg weighted avg	0.68 0.68	0.68 0.68	0.68 0.67 0.68	40 40 40

4. Deep learning-based approach (CNN)

- A Convolutional Neural Network (CNN) was designed with:
 - o Conv Layers: Extracts spatial features
 - o Batch Normalization: Stabilizes training
 - o Max Pooling: Reduces dimensionality
 - o Fully Connected Layer: Final classification
- Training & Optimization
 - Loss Function: Cross-Entropy Loss
 - Optimizer: AdamBatch Size: 16Epochs: 50

Evaluation report and confusion matrix for SVM -

Test Accuracy: Classification				
	precision	recall	f1-score	support
0	1.00	0.91	0.95	23
1	0.89	1.00	0.94	17
accuracy			0.95	40
macro avg	0.95	0.96	0.95	40
weighted avg	0.96	0.95	0.95	40

5. Deployment Considerations

1. Computational Efficiency

- Optimize CNN models using quantization & pruning for faster inference.
- Use lightweight architectures like MobileNetV2 for real-time processing.
- Implement caching for repeated QR scans to avoid redundant computations.

2. Robustness to Scanning Conditions

- Train models with data augmentation (blur, rotation, low-light).
- Apply adaptive thresholding for better contrast in poor lighting.

3. Security Implications

- Protect scanned QR codes by preventing unauthorized access.
- Continuously update models to counter evolving counterfeit techniques.

4. Deployment Strategy

• On-device (mobile apps, embedded devices) for real-time detection.