

Machine Learning Course - CS-433

Gaussian Mixture Models

Nov 28, 2023

Martin Jaggi Last updated on: November 28, 2023

credits to Mohammad Emtiyaz Khan & Rüdiger Urbanke

Motivation

Clustering with Gaussians

The first issue is resolved by using full covariance matrices Σ_k instead of *isotropic* covariances.

Soft-clustering

The second issue is resolved by defining z_n to be a random variable. Specifically, define $z_n \in \{1, 2, \ldots, K\}$ that follows a multinomial distribution.

ollows a multi- $\mathbf{r} = \pi_k > 0, \forall k \text{ and } \sum_{k=1}^{K} \pi_k = 1$

$$p(z_n = k) = \pi_k$$
 where $\pi_k > 0, \forall k$ and $\sum_{k=1}^K \pi_k = 1$

This leads to soft-clustering as opposed to having "hard" assignments.

Gaussian mixture model

Together, the <u>likelihood</u> and the prior define the joint distribution of Gaussian mixture model (GMM):

Gaussian mixture model (GMM):
$$p(\mathbf{X}, \mathbf{z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})$$

$$= \prod_{n=1}^{N} p(\mathbf{x}_{n} | z_{n}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(z_{n} | \boldsymbol{\pi})$$

$$= \prod_{n=1}^{N} \prod_{k=1}^{K} [\mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})]^{z_{nk}} \prod_{k=1}^{K} [\pi_{k}]^{z_{nk}}$$
Here, \mathbf{x}_{n} are observed data vectors, z_{n} are latent unobserved variables, and the unknown pa -rameters are given by $\boldsymbol{\theta}$:=
$$\{\boldsymbol{\mu}_{1}, \dots, \boldsymbol{\mu}_{K}, \boldsymbol{\Sigma}_{1}, \dots, \boldsymbol{\Sigma}_{K}, \boldsymbol{\pi}\}.$$

Marginal likelihood

GMM is a latent variable model with z_n being the unobserved (latent) variables. An advantage of treating z_n as latent variables instead of *parameters* is that we can marginalize them out to get a cost function that does not depend on z_n , i.e. as if z_n never existed.

Specifically, we get the following marginal likelihood by marginalizing z_n out from the likelihood:

$$p(\mathbf{x}_n | \boldsymbol{\theta}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Deriving cost functions this way is good for statistical efficiency. Without a latent variable model, the number of parameters grows at rate $\mathcal{O}(N)$. After marginalization, the growth is reduced to $\mathcal{O}(D^2K)$ (assuming $D, K \ll N$).

marginal
$$p(x_n) = \underset{k=0}{\overset{K}{\leq}} p(x_n, \underline{z}_n = k)$$

$$= \underset{k=0}{\overset{K}{\leq}} p(x_n | \underline{z}_n) p(\underline{z}_n)$$

2 € (0,13 N·K

Maximum likelihood

To get a maximum (marginal) likelihood estimate of θ , we maximize the following: $\log \rho(X,\theta)$

Is this cost convex? Identifiable? Bounded?

$$E_{k} = G_{k} \mathbf{1}$$

Scalar