تمرینهای تو پولوژی

نشان دهید $[a]_d=\{a+nd:n\in\mathbb{Z}\}$ مجموعهٔ اعداد صحیح باشد. برای هر دو عضو a و b از a قرار میدهیم $B=\{[a]_d\cap\mathbb{Z}:\,(a,d)=1\}$

پایهٔ یک توپولوژی بر \mathbb{Z} است. آیا این توپولوژی هوسدرف است؟

T فضای توپولوژیک (X,T) را آلیکساندرُف گوییم هرگاه T نسبت به اشتراک بسته باشد؛ به عبارت دیگر، برای هر زیرمجموعهٔ A از داشته باشیم $A \in \mathcal{T}$.

(آ) نشان دهید هر فضای توپولوژیک متناهی الیکساندرف است.

T (ب) ثابت کنید فضای توپولوژیک (X,T) اَلیکساندرُف است اگر و تنها اگر T دارای پایهٔ کمین باشد، یعنی پایهای چون B که هر پایهٔ T شامل آن است.

(پ) نشان دهید تعداد توپولوژیها بر مجموعهٔ nعضوی کمتر یا مساوی $au^{(n-1)}$ ۲ است.

A و نیم $\beta: \mathcal{P}(X) \to \mathcal{P}(X) \to \mathcal{P}(X) \to \mathcal{P}(X)$ و $\alpha: \mathcal{P}(X) \to \mathcal{P}(X)$ و ابرای هر زیرمجموعهٔ $\alpha: \mathcal{P}(X) \to \mathcal{P}(X) \to \mathcal{P}(X)$ و ابرای هر زیرمجموعهٔ $\alpha: \mathcal{P}(X) \to \mathcal{P}(X) \to \mathcal{P}(X)$ تعریف می کنیم.

 $\beta^{\mathsf{T}} = \beta_{\mathsf{P}} \, \alpha^{\mathsf{T}} = \alpha_{\mathsf{P}} \, \alpha^{\mathsf{T}}$ (آ) ثابت کنید

(ب) نشان دهید اگر U و U اعضایی جدا از هم از T باشند، $\alpha(V)$ و $\alpha(V)$ نیز چنین اند.

X اشد. نشان دهید اگر به طور متوالی از A بستار، یا متمم نسبت به X با توپولوژی اقلیدسی، زیرمجموعه کا زنید که از آن دقیقاً ۱۴ زیرمجموعه بگیریم حداکثر ۱۴ زیرمجموعه از X به دست می آید. برای \mathbb{R} با توپولوژی اقلیدسی، زیرمجموعه ای مثال بزنید که از آن دقیقاً ۱۴ زیرمجموعه از \mathbb{R} به دست آید.

د دهید اگر در فضای توپولوژیک دلخواه (X,T) فقط مرز زیرمجموعههای X را بشناسیم، توپولوژی T معلوم می شود.