

BVRIT HYDERABADCollege of Engineering for Women

AIR POLLUTION

Team No: 10

20WH1A12A9-S.Niharika 20WH1A12B0-G.Krishna Prathibha 20WH1A12B3-CH.Dharani 20WH1A12B4-B.Sowmya 20WH1A12B5-G.Sneha

Problem Statement

- We are predicting the values of air pollution measurements over time, based on basic weather information like temperature, humidity and the input values of 5 sensors.
- The target values we are predicting are: Carbon Monoxide, Benzene, Nitrogen Oxide.

Python Packages Used

- Numpy:- Used for working with arrays, matrices, and numerical computations in general.
- Pandas:- It is open-source data Analysis and data manipulation for python.
- Scikit learn:- Used for to implement machine learning models and statistical modelling
- Matplotlib:- Used for data plotting.

Types of Algorithms used

- Randomforest Regression Algorithm
- Linear Regression Algorithm
- XGBoost

Random Forest Regression

- Random Forest Regression Algorithm:-
 - Random forest regression is a machine learning algorithm that uses a group of decision trees to predict a numerical value. It takes the average to improve the predictive accuracy of the dataset.

Linear Regression

- Linear Regression Algorithm:-
 - It is a popular algorithm used in statistics to model the relationship between a dependent variable and one or more independent variables. The goal of linear regression is to find the minimized sum of the squared errors between the predicted values and the actual values.

XGBoost

- XGBoost(Extreme Gradient Boosting):-
 - The XGBoost algorithm is an ensemble learning method that uses a combination of weak models (typically decision trees) to create a strong model that can make accurate predictions. Efficient for large datasets. XGBoost can also handle missing values.

Output

submission.csv ×

date time	target carbon monoxide	target benzene	target nitrogen oxides
2011-01-01 00:00:00	1.408000000000021	4.425000000000006	206.0890000000003
2011-01-01 01:00:00	2.03999999999999	7.18699999999999	308.6210000000001
2011-01-01 02:00:00	1.89099999999999	7.64	326.1490000000002
2011-01-01 03:00:00	2.046	8.64399999999998	341.30500000000006
2011-01-01 04:00:00	1.41799999999999	7.221000000000001	276.529
2011-01-01 05:00:00	1.153000000000005	4.839000000000002	209.0909999999995
2011-01-01 06:00:00	1.359000000000004	4.796	249.65800000000002
2011-01-01 07:00:00	1.294000000000007	4.78999999999999	240.8669999999985
2011-01-01 08:00:00	0.8080000000000002	3.4350000000000002	165.512999999998
2011-01-01 09:00:00	0.890000000000001	3.204999999999983	152.409

Show 10 v per page 1 2 10 100 200

Gradio

deg_C	CarbonMonoxide
13.1	2.719
relative_humidity	Benzene
46	12.852
absolute_humidity	NitrogenOxide
0.7578	279.321000000002
sensor_1	Flag
1387.2	
sensor_2	
1087.8	
sensor_3	
1056	

GUI

Graph

Comparision Table

Random Forest

RMSLE: - 0.187

XGBoosting

RMSLE: - 0.336

Linear Regression

RMSLE: - 0.398

THANK YOU