

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

PROBLEMS SUBMIT STATUS STANDINGS CUSTOM TEST

C. Rotation Matching

time limit per test: 1 second
memory limit per test: 256 megabytes
input: standard input
output: standard output

After the mysterious disappearance of Ashish, his two favourite disciples Ishika and Hriday, were each left with one half of a secret message. These messages can each be represented by a permutation of size n. Let's call them a and b.

Note that a permutation of n elements is a sequence of numbers a_1, a_2, \ldots, a_n , in which every number from 1 to n appears exactly once.

The message can be decoded by an arrangement of sequence a and b, such that the number of matching pairs of elements between them is maximum. A pair of elements a_i and b_j is said to match if:

- i = j, that is, they are at the same index.
- $a_i = b_i$

His two disciples are allowed to perform the following operation any number of times:

ullet choose a number k and cyclically shift one of the permutations to the left or right k times.

A single cyclic shift to the left on any permutation c is an operation that sets $c_1:=c_2,c_2:=c_3,\ldots,c_n:=c_1$ simultaneously. Likewise, a single cyclic shift to the right on any permutation c is an operation that sets $c_1:=c_n,c_2:=c_1,\ldots,c_n:=c_{n-1}$ simultaneously.

Codeforces Round 648 (Div. 2)

Finished

Practice

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Clone Contest to Mashup

You can clone this contest to a mashup.

Clone Contest

1 of 3 10/4/23, 10:50

Help Ishika and Hriday find the maximum number of pairs of elements that match after performing the operation any (possibly zero) number of times.

Input

The first line of the input contains a single integer n $(1 \le n \le 2 \cdot 10^5)$ — the size of the arrays.

The second line contains n integers a_1 , a_2 , ..., a_n $(1 \le a_i \le n)$ — the elements of the first permutation.

The third line contains n integers b_1 , b_2 , ..., b_n $(1 \le b_i \le n)$ — the elements of the second permutation.

Output

Print the maximum number of matching pairs of elements after performing the above operations some (possibly zero) times.

Examples


```
input

5
5 4 3 2 1
1 2 3 4 5

output

Copy

Copy
```

```
input
4
1 3 2 4
4 2 3 1
```


2 of 3 10/4/23, 10:50

output	Сору
2	

Note

For the first case: b can be shifted to the right by k=1. The resulting permutations will be $\{1,2,3,4,5\}$ and $\{1,2,3,4,5\}$.

For the second case: The operation is not required. For all possible rotations of a and b, the number of matching pairs won't exceed 1.

For the third case: b can be shifted to the left by k=1. The resulting permutations will be $\{1,3,2,4\}$ and $\{2,3,1,4\}$. Positions 2 and 4 have matching pairs of elements. For all possible rotations of a and b, the number of matching pairs won't exceed 2.

Codeforces (c) Copyright 2010-2023 Mike Mirzayanov The only programming contests Web 2.0 platform Server time: Oct/04/2023 10:50:11^{UTC-3} (k1).

Desktop version, switch to mobile version.

Privacy Policy

Supported by

3 of 3 10/4/23, 10:50