```
In [14]: import pandas as pd import matplotlib.pyplot as plt
```

- Linear Regression: classification
- math background: Logic function and Sigmoid function

$$y = m * x + b$$

$$y = \frac{1}{1 + e^{-(m*x+b)}}$$

```
In [97]: # split train, test
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(df[['age']],df.bought_insu
```

```
In [98]: y_test
```

Out[98]: 22 1 19 0 21 0

Name: bought_insurance, dtype: int64

In [99]: from sklearn.linear_model import LogisticRegression

In [100]: Lin_reg = LogisticRegression()

In [101]: Lin_reg.fit(X_train,y_train)

Out[101]: LogisticRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

```
In [102]: Lin_reg.predict(X_test)
Out[102]: array([1, 0, 0])
```

```
In [103]: # look at score
          lin_reg.score(X_test,y_test)
Out[103]: 0.6065872792412028
In [104]: Lin_reg.predict_proba(X_test)
Out[104]: array([[0.48296773, 0.51703227],
                  [0.9413583 , 0.0586417 ],
                  [0.85090082, 0.14909918]])
 In [65]: y_test
 Out[65]: 11
                 0
                 0
           9
                 1
           21
                 0
           12
                 0
           0
                 0
           15
                 1
           4
                 1
           19
          Name: bought_insurance, dtype: int64
```

In [59]:

X_train

```
Out[59]:
                age
                 45
            23
            10
                 18
            22
                 40
                 49
            14
                 25
            16
             2
                 47
                 23
            26
            18
                 19
             6
                 55
                 58
            17
             5
                 56
             1
                 25
            24
                 50
            20
                 21
                 54
            25
             8
                 62
             7
                 60
            13
                 29

    Exercise

In [138]: df1 = pd.read_csv('https://raw.githubusercontent.com/codebasics/py/master/M
In [139]: df1.head(2)
Out[139]:
               satisfaction_level last_evaluation number_project average_montly_hours time_spend_company
                                                       2
            0
                         0.38
                                       0.53
                                                                        157
                                                                                             3
                         0.80
                                       0.86
                                                       5
                                                                        262
                                                                                             6
            1
In [140]: # should replace with salary
           import pandas as pd
In [141]: df merge = pd.concat([df1,pd.get dummies(df1.salary)],axis='columns').drop(
In [176]: df merge = pd.concat([df merge,pd.get dummies(df1.Department)],axis = 'colu
```

In [177]: df_merge

~ .			
()11 ±		/ /	
Out	ι т.	/ /	

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_compan
0	0.38	0.53	2	157	
1	0.80	0.86	5	262	
2	0.11	0.88	7	272	
3	0.72	0.87	5	223	
4	0.37	0.52	2	159	
14994	0.40	0.57	2	151	
14995	0.37	0.48	2	160	
14996	0.37	0.53	2	143	
14997	0.11	0.96	6	280	
14998	0.37	0.52	2	158	

14999 rows × 31 columns

· what variable has direct or indirect influence on leave or continue to work

```
In [142]: corr = df1.corr()
    corr.style.background_gradient(cmap='coolwarm')
```

Out[142]:

		satisfaction_level	last_evaluation	number_project	average_montly_hours	time
,	satisfaction_level	1.000000	0.105021	-0.142970	-0.020048	
	last_evaluation	0.105021	1.000000	0.349333	0.339742	
	number_project	-0.142970	0.349333	1.000000	0.417211	
	average_montly_hours	-0.020048	0.339742	0.417211	1.000000	
	time_spend_company	-0.100866	0.131591	0.196786	0.127755	
	Work_accident	0.058697	-0.007104	-0.004741	-0.010143	
	left	-0.388375	0.006567	0.023787	0.071287	
	promotion_last_5years	0.025605	-0.008684	-0.006064	-0.003544	

In [143]: import seaborn as sns

```
In [144]: fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(corr, cmap="Greens",annot=True)
```

Out[144]: <AxesSubplot:>

Above, satisfaction_level is direct influence

In [127]: # show corr between salaries on rention

• pd.crosstab Compute a simple cross tabulation of two (or more) factors.

```
In [156]:
    pd.crosstab(df1.salary,df1.left).plot(kind='bar')
```

Out[156]: <AxesSubplot:xlabel='salary'>


```
In [154]: df1.groupby('salary')['left'].value_counts().plot(kind='bar',color = 'green
```

Out[154]: <AxesSubplot:xlabel='salary,left'>

In [157]: pd.crosstab(df1.Department,df1.left).plot(kind='bar')

Out[157]: <AxesSubplot:xlabel='Department'>


```
In [167]:
    plt_1 = pd.crosstab(df1.satisfaction_level,df1.left).plot(kind='bar',figsiz
```



```
In [168]: # build model
In [217]: features = df_final.loc[:,df_final.columns!='left']
    target = df_final.left
In [215]: df_final['left'] = df1.left
```

In [216]: df_final

	high	low	medium	satisfaction_level	time_spend_company	Work_accident	IT	RandD	accı
0	0	1	0	0.38	3	0	0	0	
1	0	0	1	0.80	6	0	0	0	
2	0	0	1	0.11	4	0	0	0	
3	0	1	0	0.72	5	0	0	0	
4	0	1	0	0.37	3	0	0	0	
14994	0	1	0	0.40	3	0	0	0	
14995	0	1	0	0.37	3	0	0	0	
14996	0	1	0	0.37	3	0	0	0	
14997	0	1	0	0.11	4	0	0	0	
14998	0	1	0	0.37	3	0	0	0	

14999 rows × 17 columns

In [211]: features

:		high	low	medium	satisfaction_level	time_spend_company	Work_accident	IT	RandD	acc
	0	0	1	0	0.38	3	0	0	0	
	1	0	0	1	0.80	6	0	0	0	
	2	0	0	1	0.11	4	0	0	0	
	3	0	1	0	0.72	5	0	0	0	
	4	0	1	0	0.37	3	0	0	0	
	14994	0	1	0	0.40	3	0	0	0	
	14995	0	1	0	0.37	3	0	0	0	
	14996	0	1	0	0.37	3	0	0	0	
	14997	0	1	0	0.11	4	0	0	0	
	14998	0	1	0	0.37	3	0	0	0	

14999 rows × 17 columns

```
In [203]: df2 = pd.concat([pd.get_dummies(features['salary']),features],axis=1).drop(
          df_final = pd.concat(
```

[df2,pd.get_dummies(features['Department'])],axis=1).drop('Department',

Out[

In [204]: df_final

[204]:		high	low	medium	satisfaction_level	time_spend_company	Work_accident	IT	RandD	accı
	0	0	1	0	0.38	3	0	0	0	
	1	0	0	1	0.80	6	0	0	0	
	2	0	0	1	0.11	4	0	0	0	
	3	0	1	0	0.72	5	0	0	0	
	4	0	1	0	0.37	3	0	0	0	
	14994	0	1	0	0.40	3	0	0	0	
	14995	0	1	0	0.37	3	0	0	0	
	14996	0	1	0	0.37	3	0	0	0	
	14997	0	1	0	0.11	4	0	0	0	
	14998	0	1	0	0.37	3	0	0	0	

14999 rows × 16 columns

```
In [218]: from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=
In [219]: model = LinearRegression()
```

```
In [220]: model.fit(X_train,y_train)
```

Out[220]: LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.