

JU-A-5-82122

Abstract

[Object] To obtain a cheap antenna capable for two frequency ranges
[Structure] A circular patch antenna 2 for a higher range is constructed on the same substrate 7 as a ring patch antenna 1 for a lower range within a ring.

[Effect] It is possible to construct an antenna capable for two frequency ranges by a single layer of a dielectric substrate, thereby it is possible to obtain a cheap antenna capable for two frequency ranges.

Fig. 1

- 1: ring patch antenna for lower range
- 2: circular patch antenna for higher range
- 3: ground conductor
- 4: feed pin for lower range
- 5: feed pin for higher range
- 6: ground conductor
- 7: dielectric substrate

Fig. 2

- 1: ring patch antenna for lower range
- 2: circular patch antenna for higher range
- 3: ground conductor
- 4: feed pin for lower range
- 5: feed pin for higher range
- 6: ground conductor
- 7: dielectric substrate
- 8: ring patch antenna for middle range
- 9: feed pin for middle range

Fig. 3

- 1: ring patch antenna for lower range
- 2: circular patch antenna for higher range
- 3: ground conductor

4: feed pin for lower range
5: feed pin for higher range
6: dielectric substrate

(19)日本国特許庁 (JP)

(12) 公開実用新案公報 (U)

(11)実用新案出願公開番号

実開平5-82122

(43)公開日 平成5年(1993)11月5日

(51)Int.Cl. ⁶	識別記号	府内整理番号	F I	技術表示箇所
H 01 Q 21/30		7015-5 J		
5/01		7037-5 J		
13/08		8940-5 J		
13/16		8940-5 J		

審査請求 未請求 請求項の数2(全3頁)

(21)出願番号	実願平4-22085	(71)出願人	000006013 三菱電機株式会社 東京都千代田区丸の内二丁目2番3号
(22)出願日	平成4年(1992)4月9日	(72)考案者	茶谷 嘉之 鎌倉市上町屋325番地 三菱電機株式会社 鎌倉製作所内
		(74)代理人	弁理士 高田 守

(54)【考案の名称】周波数共用アンテナ

(57)【要約】 (修正有)

【目的】 安価な周波数共用アンテナを得る。

【構成】 高域用円形パッチアンテナ2を、低域用円環パッチアンテナ1と同一基板7上の円環内部に構成する。

【効果】 2周波共用アンテナが誘電体基板一層で構成でき、安価な周波数共用アンテナが得られる。

- 1: 低域用円環パッチアンテナ
- 2: 高域用円形パッチアンテナ
- 3: 接地導体
- 4: 低域用給電ピン
- 5: 高域用給電ピン
- 6: 地導体
- 7: 誘電体基板

1

【実用新案登録請求の範囲】

【請求項1】 2つの周波数を共用するアンテナにおいて、低域の周波数帯に対するアンテナを円環バッチアンテナ、高域の周波数帯に対するアンテナを円形バッチアンテナとともに、高域のアンテナを低域と同一面の円環の内側に配置して構成したことを特徴とする周波数共用アンテナ。

【請求項2】 3つの周波数を共用するアンテナにおいて、低域および中域の周波数帯に対するアンテナを円環バッチアンテナ、高域の周波数帯に対するアンテナを円形バッチアンテナとし、高域のアンテナを中域と同一面の円環の内側に配置して構成し、これを低域のアンテナ上部に積層して構成したことを特徴とする周波数共用アンテナ。

【図面の簡単な説明】

2

* 【図1】この考案の実施例1を示す概略構成図である。
【図2】この考案の実施例2を示す概略構成図である。
【図3】従来の周波数共用アンテナを示す概略構成図である。

【符号の説明】

- 1 低域用円環バッチアンテナ
- 2 高域用円形バッチアンテナ
- 3 接地導体
- 4 低域用給電ピン
- 5 高域用給電ピン
- 6 地導体
- 7 誘電体基板
- 8 中域用円環バッチアンテナ
- 9 中域用給電ピン

【図1】

- 1: 低域用円環バッチアンテナ
- 2: 高域用円形バッチアンテナ
- 3: 接地導体
- 4: 低域用給電ピン
- 5: 高域用給電ピン
- 6: 地導体
- 7: 誘電体基板

【図2】

- 1: 低域用円環バッチアンテナ
- 2: 高域用円形バッチアンテナ
- 3: 接地導体
- 4: 低域用給電ピン
- 5: 高域用給電ピン
- 6: 地導体
- 7: 誘電体基板
- 8: 中域用円環バッチアンテナ
- 9: 中域用給電ピン

【図3】

- 1: 低頻用円筒パッチアンテナ
- 2: 高頻用円筒パッチアンテナ
- 3: 接地導体
- 4: 低頻用給電ピン
- 5: 高頻用給電ピン
- 6: 動電体基板

【考案の詳細な説明】**【0001】****【産業上の利用分野】**

この考案は、例えばGPS (Global Positioning System), RACS (Road Automobile Communication System), AMTICS (Advanced Mobile traffic information & communication system) 等のナビゲーションシステムに用いられる周波数共用アンテナに関するものである。

【0002】**【従来の技術】**

従来、この種のアンテナとしては、図3に示すものがあった。この図は例えば栗林他、「2周波共用マイクロストリップアンテナ」、昭和57年電子通信学会総合全国大会、643に示されるもので、図において1は低域用円環パッチアンテナ、2は高域用円形パッチアンテナ、3は接地導体、4は低域用給電ピン、5は高域用給電ピン、6は地導体、7は誘電体基板を示す。

【0003】

次に動作について説明する。低域用円環パッチ1は誘電体基板1上に構成され、その内側の円周が接地導体3により地導体7に接続されている。さらに、低域用給電ピン4により、アンテナ背面より給電される。ここで、低域の円環パッチアンテナは、数1に示す周波数においてTM11モードで励振され、効率よく電波を放射する。

【0004】**【数1】**

$$f_r = x_{11} \cdot c / 2\pi a_1 \sqrt{\epsilon_r}$$

f_r : 共振周波数

c : 光速

a_1 : 円環パッチの外半径

ϵ_r : 基板の比誘電率

x_{11} : 次式の根

$$f(x) = J'_1(x) - \frac{J_1(\beta x)}{Y_1(\beta x)} Y'_1(x)$$

$$\beta = b_1 / a_1$$

b_1 : 円環パッチの内半径

$J_1(x)$: 第1種ベッセル関数

$Y_1(x)$: 第2種ベッセル関数

【0005】

一方、高域用円形パッチアンテナ2は、誘電体基板6上に構成され、背面より高域用給電ピン5により給電される。ここで、高域用円形パッチアンテナ2は図2に示す周波数においてTM11モードで励振され、効率よく電波を放射する。

【0006】

【数2】

$$f_r = 1.84118c / 2\pi a_h \sqrt{\epsilon_r}$$

a_h : 円形パッチの半径

【0007】

従って、高域のアンテナの共振半径は、低域のアンテナの共振半径よりも小さくなる。ここで、図3に示すように、高域用給電ピン5は低域用円環パッチアンテナ1の円環内部を通っているから、低域用給電ピン4および低域用円環アンテナ1の特性には影響を与えない。従って、2つの周波数帯のアンテナの特性はそれぞれ独立となり、両者を独立に設計することが可能であるという特徴を有して

いる。

【0008】

【考案が解決しようとする課題】

従来の周波数共用アンテナは以上のように構成されていたので、例えばG P S用としてL帯の円環パッチ、R A C S用としてS帯の円形パッチを重ねて二周波共用アンテナを構成することができるが、この場合誘電体基板2枚を積層する必要があり、アンテナのコストが高くなるという問題点があった。

【0009】

この考案は、上記の課題を解消するためになされたもので、誘電体基板層を減らし、1層で2周波共用アンテナ、あるいは2層で3周波共用アンテナを構成することにより、安価な周波数共用アンテナを得るものである。

【0010】

【課題を解決するための手段】

この考案に係わる周波数共用アンテナは、低域の周波数帯に対するアンテナを円環パッチアンテナ、高域の周波数帯に対するアンテナを円形パッチアンテナとともに、高域のアンテナを低域と同一面の円環の内側に配置して構成したものである。

【0011】

また、低域および中域の周波数帯に対するアンテナを円環パッチアンテナ、高域の周波数帯に対するアンテナを円形パッチアンテナとし、高域のアンテナを中域と同一面の円環の内側に配置して構成し、これを低域のアンテナ上部に積層して構成したものである。

【0012】

【作用】

上記のように構成された周波数共用アンテナは、低域のアンテナと高域のアンテナを同一面上に構成できるため、誘電体基板一層で2周波共用アンテナを構成することができる。

【0013】

また、中域のアンテナと高域のアンテナを同一面上に構成できるから、誘電体基

板2層で3周波共用アンテナを構成できる。

【0014】

【実施例】

実施例1.

図1は、この考案の実施例1を示す構成図である。図において、1は低域用円環パッチアンテナ、2は高域用円形パッチアンテナ、3は接地導体、4は低域用給電ピン、5は高域用給電ピン、6は地導体、7は誘電体基板を示す。

【0015】

図において、低域用円環パッチ1の内円の半径 b_1 を高域用円形パッチ2の半径 a_1 よりも大きくなるように選定し、かつ高域用円形パッチ2を低域用円環パッチ1と同一基板上の円環の内側に形成する。この構成において、高域用給電ピン5は、接地導体3によって低域用給電ピン4と分離されているから、アンテナ相互の影響は少なく、従って2つの周波数帯のアンテナを独立に設計できるという特徴を維持したまま、誘電体基板一層で二周波共用アンテナを構成することができる。この構成により、例えば低域用としてGPS用L帯円環パッチ、高域用としてAMTICS用Ku帯円形パッチを用いた2周波共用アンテナを構成することができる。

【0016】

実施例2.

図2は、この考案の実施例2を示す概略構成図である。図において、1~7は、実施例1と同等であり、8は中域用円環パッチアンテナ、9は中域用給電ピンを示す。

【0017】

図において、高域用円形パッチアンテナ2は、中域用円環パッチアンテナ8と同一面に構成され、さらに低域用円環パッチアンテナ1の上部に積層されて構成される。この構成において、低域用給電ピン4、高域用給電ピン5、中域用給電ピン9は互いに接地導体3により分離されているから、互いに結合することができなく、従って各周波数帯のアンテナを独立に設計できるという特徴を維持したまま、誘電体基板2層で3周波共用アンテナを構成できる。この構成により、例えば

低域用としてG P S用L帯円環パッチアンテナ、中域用としてR A C S用S帯円環パッチアンテナ、高域用としてA M T I C S用K s u帯円形パッチアンテナを用いた3周波共用アンテナを得ることが可能である。

【0018】

【考案の効果】

以上説明したように、この考案によれば各周波数帯のアンテナを独立に設計できるという特徴を維持したまま、2周波共用アンテナを誘電体基板一層で構成でき、安価な周波数共用アンテナが得られるという効果がある。

【0019】

また、3周波共用アンテナを誘電体基板2層で構成でき、安価な周波数共用アンテナが得られるという効果がある。