SMAI-M20-L08:SVD; MLE and MSE

C. V. Jawahar

IIIT Hyderabad

August 26, 2020

Announcements:

- Class Review Questions (wish to do in the lecture session:5-10 mins):
 - Five objective questions;; An average of 1 to 1.5 min per questions;
 - Submission (QA) will be now on Shiksha.
 - Enough buffer for missing lecture sessions/connectivity (only 80%)
 - Quick clarifications in the class; detailed doubts/queries in an OH.
- Home works:
 - Regular (we are lagging behind), handwritten or some programming.
 - Only 80% is required. Buffer for connectivity/personal schedules.
 - Assume by now: Comfortable with python and jypyter notebooks.
- MS Teams/Communication/Connectivity:
 - use smai.m2020@gmail.com for direct communication
 - use channels to post queries
 - avoid submission closest to the deadlines.
- Office Hours/Queries on:
 - ① Chapter 2, 3 and 5 of the book
 - Class Review Questions: L01-L08
 - Micro-Lecture Videos: L01-L08

Review Questions: Let us submit in the first 10 mins

- **1** Numerically computing rank of a 3×3 matrix
- ② The system of linear equations Ax = b has?
- Suppose a disease is prevalent in 1% of the population. Its medical diagnosis is 90% accurate in both directions. Given that a person tested positive, what is the chance, he actually has the disease (rounded to nearest integer)?
- We know that the optimal classifier for two equally probable (equal Prior probability) classes (days of months) $N(23, \sigma^2)$ and $N(33, \sigma^2)$ is 28.
 - If the variance of the second class becomes double, then the the optimial classification threshold will increase or decrease?
- A man is known to speak truth 2 out of 3 times. He throws a die and reports that number obtained is a four. Find the probability that the number obtained is actually a four.

Recap:

- Problem Space:
 - Learn a function $y = f(\mathbf{W}, \mathbf{x})$ from the data.
 - for classification
 - for regression
 - Learn useful features
 - feature transformations
 - dimensionality reduction
 - feature selection, feature extraction
- Supervised Learning:
 - Notion of Training and Testing
 - Notion of Loss Function and Optimization
 - Need of generalization and Worry of Overfitting
- Classification Algorithms:
 - Nearest Neighbour Algorithm
 - Linear Classification; Linear Regression
 - Decide as ω_1 if $P(\omega_1|\mathbf{x}) \geq P(\omega_2|\mathbf{x})$ else ω_2
 - Performance Metrics
- Mathematical Foundations: Linear Algebra, Probability, Optimization

This Lecture:

- Connect to Eigen Decomposition
- Connect to Data Matrix
- Follow ups to come.
- MSE as MLE
 - Appreciate MLE as a general step.
 - Probabilistic interpretation of an intuitive expression.
- Geometry of Gaussians
 - Eigen Decomposition
 - Will lead to PCA.

Jdi

ξ_ε5_ι-ω⁷χ,

Questions? Comments?

Discussions Point -I

Consider a situation when we continue to get one sample at a time. We have mean (μ_N) and variance (σ_N^2) computed and available at sample N.

Now we get the N+1 sample. How do we compute the new mean? Ans:

Ans:
$$\mu_{N+1} = \underbrace{\mu_N \times N + x_{N+1}}_{N+1}$$

How do we compute σ_{N+1}^2 ?

Where do we need such "online" computations?

Discussion Point - II

We know that:

Eigen Decomposition of Symmetric Matrix S

$$\mathbf{S} = \mathbf{Q} \wedge \mathbf{Q}^T = \sum_{i=1}^n \lambda_i \mathbf{q}_i \mathbf{q}_i^T$$

E1= 6, (8 V 82)

- SVD of A n → 1
- How do we compute S^{-1} and A^{-1} If $A = pq^T$ is a 3×3 matrix, what is the SVD of A?

Discussion Point - III

We are worried about outliers in the regression. Let us give a score γ_i as the "importance" or "confidence" of a sample that this is an inlier. We can now modify the loss/objective as:

$$\sum_{i=1}^{N} (\gamma_i \times) (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

$$(Y - \mathbf{w}^T \mathbf{x}_i)^2$$

- Write down the objective in matrix form. (Hint: use $\Gamma = Diag(\gamma_i)$)
 What is the final closed form expression for the **w**?
 - (Advanced) Consider a two step Itertive algorithm:
 - Assign γ_i as inversely proportional to the distance from the line.
 - (distance $=0 \rightarrow \gamma$ as 1 and high distance $\rightarrow \gamma$ as 0)
 - Compute **w** using the closed form expression (Q1).

If we iterate the above two steps? (i) will it converge? (ii) will it take care of outliers? (Later: Try it out on a toy data of yours ¹)

¹A similar treatment in a different area: read "Sample weighted Clustering Methods", CMA, 2011

What Next:? (next three)

- Application of SVD and Eigen Decomposition
- More Insights into Supervised Learning
- Bayesian View and Optimal Classification
- Practical Issues in Optimization