ハードウェア

#01 浮動小数点

H27 秋 本試験_	2	選4	ハードウェア	数值表現	浮動小数点演算
H27_S_FE_IS1	2	選4	ハードウェア	数值表現	浮動小数点
H27_S_FE_ITEC	2	選4	ハードウェア	数值表現	浮動小数点数

2015H27秋本試験 問2

次の問2から問7までの6間については、この中から4間を選択し、選択した問題については、答案用紙の選択欄の(選)をマークして解答してください。

なお、5間以上マークした場合には、はじめの4間について採点します。

問2 浮動小数点数に関する次の記述を読んで、設問1~4に答えよ。

 $\alpha=0$,又は $1\leq |\alpha|<2$ を満たす α ,及び $-126\leq \beta\leq 127$ を満たす β を用いて $\alpha\times 2^{\beta}$ の形で表記される浮動小数点数を,図 1 に示す 32 ビット単精度浮動小数点形式の表現(以下、単精度表現という)で近似する。

	31	30	29	28	27	26	25	24	23	22	21	0	(ビット番号)
	符口	6			指数	数部						仮数部	
	符号部				(8ビ	ット)					(23ビット)	
-	_									_			-

図1 32 ビット単精度浮動小数点形式

- (1) 符号部(ビット番号31)αの値が正のとき0,負のとき1が入る。
- (2) 指数部(ビット番号30~23)βの値に127を加えた値が2進数で入る。
- (3) 仮数部 (ビット番号22~0)

 $|\alpha|$ の整数部分 1 を省略し,残りの小数部分が,ビット番号 22 に小数第 1 位が来るような 2 進数で入る。このとき,仮数部に格納できない部分については切り捨てる。

(4) α の値が0の場合、符号部、指数部、仮数部ともに0とする。

なお,値の記述として,単に α と記述した場合は, α は 10 進数表記であり, $(\alpha)_n$ と記述した場合は α が n 進数表記であることを示す。例えば, $(0.101)_2$ は 0.625 と同じ値を表す。また, $00\cdots0$ という表記は,0が連続していることを表す。

設問1	0.625	を単精度表現したときに指数部に入る値として正しい答えを,	解答群の
d	からほ	₽ ⋌	

解答群

$$7 (00)_{16}$$

イ $(7E)_{16}$ ウ $(7F)_{16}$ エ $(FE)_{16}$

才 (FF)16

設問2 次の単精度表現された数値として正しい答えを、解答群の中から選べ。

解答群

オ 0.75 カ 1.5

設問3 次の記述中の に入れる正しい答えを、解答群の中から選べ。

二つの浮動小数点数AとBの加算を行う。

Aの単精度表現

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	•••	0
0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	NAME:	0

Bの単精度表現

AとBの加算を、次の①、②の手順で行う。

- ① 指数部の値を大きい方に合わせる。Aが(1.1)2×25であることから, B $\varepsilon(-(\boxed{a})_2) \times 2^5 \varepsilon \delta$.
- ② 加算を行う。

$$((1.1)_2 + (-(\underline{a})_2)) \times 2^5 = (1.1)_2 \times 2^{\underline{b}}$$

aに関する解答群

ア 0.001

イ 0.01

ウ 0.011 エ 0.1

オ 0.11

カ 1.1

bに関する解答群

ア 3

1 4

ウ 5

工 6

オ 130 カ 131

+ 132

設問4 次の記述中の に入れる正しい答えを、解答群の中から選べ。

設問3のAについて $A \times 10$ の値は、次の①~③の手順で求めることができる。

① A×8の値を求める。

 $A \times 8 = (1.1)_2 \times 2^5 \times 8 = (1.1)_2 \times 2^5 \times 2^3 = (1.1)_2 \times 2^8$

- ② A×2の値を同様に求める。
- ③ ①と②の結果を加算する。

加算結果を単精度表現すると, c になる。

cに関する解答群

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	***	0
7	0	0	0	0	0	1	0	0	0	1	1	1	0	0	0		0
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	in.	0
1	0	0	0	0	0	1	0	0	0	1	1	1	1	0	0	132	0
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17		0
ウ	0	1	0	0	0	0	1	1	1	1	1	1	0	0	0		0
	31	30	29	28	27	26	25	24	23			20	19	18	17	***	0
I	0	1	0	0	0	0	1	1	1	1	1	1	1	0	0	1888	0
	31	30	29	28	27	26	25	24	23	22			19	18	17	744	0
オ	0	1	0	0	0	1	0	0	0	1	1	1	0	0	0	•••	0
	31	30	29		_	_	25	24	23	22	21	20	19	18	17	***	0
カ	0	1	0	0	0	1	0	0	0	1	1	1	1	0	0	***	0

H27 S FE IS1

次の問2から問7までの6問については、この中から4問を選択し、解答してください。 なお、5問以上選択した場合には、はじめの4問について採点します。

- 問2 浮動小数点数に関する次の記述を読んで、設問1~3に答えよ。
 - (1) " $\alpha \times 2^{\beta}$ " の形で表される浮動小数点数を,図 1 に示す32 ビット単精度浮動小数点形式で表現する。これを単精度表現という。ここで, α と β は次の条件を満たすものとする。

 $\alpha = 0$ 又は $1 \le |\alpha| < 2$ $-126 \le \beta \le 127$

図1 32ビット単精度浮動小数点形式

- ① 符号部(ビット番号31)αの値が正のとき0,負のとき1が入る。
- ② 指数部(ビット番号30~23)βの値に127を加えた値が、2進数で入る。
- ③ 仮数部(ビット番号22~0) $|\alpha|$ の整数部分1を省略した小数部分が、2進数で入る。ビット番号22に小数第1位がくるように入れて、残った仮数部には0が入る。

ただし、 α の値が0の場合、符号部、指数部、仮数部ともに0とする。

(2) 例えば、10進数2.75は2進数で $(10.11)_2$ となる。これは、" $(1.011)_2 \times 2^{1}$ "の形で表され、単精度表現では、図2のとおり、符号部は正を表す $(0)_2$ 、指数部は1に 127を加えた128を8ビットの2進数で表した $(10000000)_2$ 、仮数部は $(1.011)_2$ の小数部分に0を補足した $(01100000000000000000000)_2$ となる。

図2 10進数2.75の単精度表現

(3) 単精度表現を 8 桁の16進数で表したものを、単精度表現の16進表記という。例 えば、図 2 の単精度表現の16進表記は、(40300000)₁₆となる。

設問	1	次の記述中の		[に入れる	る正し	い答	えを,解答群の	中か	ら選べ。	
	進	単精度表現の1 数0.3125の単料					10進数で a b) ₁₆ とな	-	なる。また,	10
a	に関	する解答群								
	ア	-6.5	1	-2.5		ウ	-0.40625	エ	-0.15625	
	オ	0.15625	力(0.40625		丰	2.5	ク	6.5	
b	に関	する解答群								
	ア	3C500000	1:	3CA00000		ウ	3D400000	I	3D500000	
	オ	3E400000	力:	3EA00000		丰	3F500000	ク	3FA00000	
設問	c1			_			答えを,解答群 の中から正しい		19-40-19-20-20-20-20-20-20-20-20-20-20-20-20-20-	
		単精度表現の地	易合,	表すことだ	ができ	8る1	0進数の正の最	大値り	t cl c	あり,
	正	の最小値は		である。						
			0進数2	2150を単精	度表現	見でえ	長そうとすると,	(d が発生す	~る
	Ž	とになる。								
С	に関	する解答群								
		c1			c2					
	7	$2^{127}-2$	104	2-	-127 + 2	2-104				
	イ	2127			2-12	6				
	ウ				2-12	6				
	I	. 2128		2-	+127 + 2	2-104				

dに関する解答群

ア アンダフロー

イ オーバフロー

ウ 桁落ち

エ 情報落ち

H27 S FE ITEC

次の問2から問7までの6間については、この中から4間を選択し、選択した問題については、答案用紙の問題番号の下の(選)をマークして解答してください。

なお、5問以上マークした場合には、はじめの4問について採点します。

問2 浮動小数点数に関する次の記述を読んで、設問1~3に答えよ。

(811869)

(1) $\alpha \times 2^{\beta}$ の形で表記される浮動小数点数を、図 1 に示す 32 ビット単精度浮動小数 点形式(以下、単精度表現という)で表現する。ここで、 α と β は次の条件を満たすものとする。

 α =0, 又は 1≦ | α | <2 $-126 \le \beta < 127$

ु	31	30	29	28	27	26	25	24	23	22	21	20	***	0.99%	356	0	(ビット番号)
	符号部			(8		数部ット								変部 ビット)			

図 1 32 ビット単精度浮動小数点形式

- ① 符号部(ビット番号 31)αの値が正のとき 0、負のとき 1 が入る。
- ② 指数部 (ビット番号 30~23)βの値に 127 を加えた値が 2 進数で入る。
- ③ 仮数部 (ビット番号 22~0)

 $|\alpha|$ の整数部分 1 を省略し、残りの小数部分が、ビット番号 22 に小数第 1 位が来るような 2 進数で入る。

ただし、 αの値が 0 の場合、符号部、指数部、仮数部ともに 0 とする。

(2) 例えば、10 進数の 0.75 を 2 進数で表すと、 $(0.11)_2$ となる。これは $(1.1)_2 \times 2^{-1}$ と表記でき、単精度表現では、図 2 のとおり、符号部は $(0)_2$ 、指数部は-1 に一定の値 127(バイアス値という)を加えて $(011111110)_2$ となり、仮数部は $(1.1)_2$ の小数部分 が入るので、 $(100 \cdots 0)_2$ となる。ここで、 $00 \cdots 0$ は 0 が連続していることを表す。

21	30 Z9 A	20 21	26 29 2	4 23	7.2	21 20	19	10	17				
0	0 1	1 1	1 1 1	_	1-	0 0	0	0	0		.ese	j	0
				図	2 0	.75 ග)単精	度	表現				
=n.oo =	\\ \ = = 7\	- L. A.		_	7		·	6-6-	S . L	h T1 6-1	• T) 4	v /55 "	
設問 1	次の記述	还中の			に人	れる止	: []	浴	えを,	解答	群の中から	きべ。	
(1)	10 進数			単精	度表現	見で表	した	2場	合,指	自数部	(8ビット) は 16	進数で
l,	a	_] とな	:る。										
(2)	単精度	表現を	16 進数	で表	した	数值((0350	0000	00)16	が格組	内されてい	る。この	単精度
7	表現が表す	す数値	は, [b	7	である。	0						
a にB	貫する解答												
ア	02			イ	48					ウ	5B		
I	82			才	84								
b に B	員する解答												
ア	$5 \times 2^-$	118		1	6	$\times 2^{-12}$	1			ウ	13×2^{-124}	Į.	
工	$13 \times 2^-$	127		オ	28	$\times 2^{-11}$	7						
設問2	次の記述	述中の			に入	れる正	こしい	答	えを,	解答	群の中から	う選べ。	
i	単精度表:	現を 16	6 進数で	表し	た二、	つの数	i值 A	1 E	B の	加算,	減算を行	う。	
	A=(0)	C3600	000)16				B=	(C2	24000	00)16			
A	A+Bの約	音果は.	16 進数	でま	逐現す	·ると		С		であり	, A-B 0)結果は.	16 進
	で表現す		d)値を同じ		
	要がある									× HP ·	ALC LING V		2117
3C13	×10 00 001	,	· / */// LI ,	/\ C	1 //	т⊆ Д 4.	ے ر	< 11	/ 0				

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

c, dに関する解答群

ア 43300000 イ 43840000 ウ 83300000

エ 83840000 オ C3300000 カ C3440000

キ C3580000 ク C3880000

設問3 図1の単精度表現の浮動小数点数の特徴、内容に関する記述として、誤っている ものを解答群の中から選び、解答欄 e 行に記入せよ。

解答群

ア 32 ビットの固定小数点数に比べて大きな値を表現できるが、有効桁数は少ない。

イ 仮数部で整数部分の1を省略するのは、有効桁の精度を高めるためである。

ウ 桁落ちが発生することがある。

エ 情報落ちは発生しない。