CSE 258 – Lecture 2

Web Mining and Recommender Systems

Supervised learning – Regression

Supervised versus unsupervised learning

Learning approaches attempt to model data in order to solve a problem

Unsupervised learning approaches find patterns/relationships/structure in data, but **are not** optimized to solve a particular predictive task

Supervised learning aims to directly model the relationship between input and output variables, so that the output variables can be predicted accurately given the input

Regression

Regression is one of the simplest supervised learning approaches to learn relationships between input variables (features) and output variables (predictions)

Linear regression

Linear regression assumes a predictor of the form $U_{i} = \chi_{i} - O$

(or Ax = b if you prefer)

Linear regression

Linear regression assumes a predictor of the form

$$X\theta = y$$

Q: Solve for theta

A:
$$\theta = (X^T X)^{-1} X^T y$$

Beeradvocate

Beers:

Displayed for educational use only; do not reuse.

Ratings/reviews:

4.35/5 rDev -5.2%

look: 4 | smell: 4.25 | taste: 4.5 | feel: 4.25 | overall: 4.25

Serving: 355 mL bottle poured into a 9 oz Libbey Embassy snifter ("bottled on: 08AUG14 1109").

Appearance: Deep, dark near-black brown. Hazy, light brown fringe of foam and limited lacing; no head.

Smell: Roasted malt, vanilla, and some warming alcohol.

Taste: Roasted malts, cocoa, burnt caramel, molasses, vanilla and dark fruit. Bourbon barrel is hinted at but never takes over.

Mouthfeel: Medium to full body and light carbonation with a very lush, silky smooth feel.

Overall: Not as complex or intense as some newer barrel-aged stouts, but so smooth and balanced with all the elements tightly integrated.

HipCzech, Yesterday at 05:38 AM

User profiles:

50,000 reviews are available on http://jmcauley.ucsd.edu/cse258/data/beer/beer 50000.json (see course webpage)

Real-valued features

How do preferences toward certain beers vary with age?

How about ABV?

(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

Example 1.5: Polynomial functions

What about something like ABV^2?

rating =
$$\theta_0 + \theta_1 \times ABV + \theta_2 \times ABV^2 + \theta_3 \times ABV^3$$

 Note that this is perfectly straightforward: the model still takes the form

weight
$$= \theta \cdot x$$

We just need to use the feature vector

$$x = [1, ABV, ABV^2, ABV^3]$$

Fitting complex functions

Note that we can use the same approach to fit arbitrary functions of the features! E.g.:

Rating =
$$\theta_0 + \theta_1 \times ABV + \theta_2 \times ABV^2 + \theta_3 \exp(ABV) + \theta_4 \sin(ABV)$$

 We can perform arbitrary combinations of the features and the model will still be linear in the parameters (theta):

Rating =
$$\theta \cdot x$$

Fitting complex functions

The same approach would **not** work if we wanted to transform the parameters:

Rating =
$$\theta_0 + \theta_1 \times ABV + \theta_2^2 \times ABV + \sigma(\theta_3) \times ABV$$

- The linear models we've seen so far do not support these types of transformations (i.e., they need to be linear in their parameters)
- There are alternative models that support non-linear transformations of parameters, e.g. neural networks

Categorical features

How do beer preferences vary as a function of **gender**?

(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

- $heta_0$ is the (predicted/average) rating for males
- θ_1 is the **how much higher** females rate than males (in this case a negative number)

We're really still fitting a line though!

(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

What if we had more than two values? (e.g {"male", "female", "other", "not specified"})

Could we apply the same approach?

Rating =
$$\theta_0 + \theta_1 \times \text{gender}$$

gender = 0 if "male", 1 if "female", 2 if "other", 3 if "not specified"

Rating =
$$\theta_0$$
 if male

Rating =
$$\theta_0 + \theta_1$$
 if female

Rating =
$$\theta_0 + 2\theta_1$$
 if other

Rating =
$$\theta_0 + 3\theta_1$$
 if not specified

Gender

Instead we need something like:

Rating =
$$\theta_0$$
 if male

Rating =
$$\theta_0 + \theta_1$$
 if female

Rating =
$$\theta_0 + \theta_2$$
 if other

$$Rating = \theta_0 + \theta_3$$
 if not specified

This is equivalent to:

$$(\theta_0, \theta_1, \theta_2, \theta_3) \cdot (1; \text{feature})$$

```
where feature = [1, 0, 0] for "female"
feature = [0, 1, 0] for "other"
feature = [0, 0, 1] for "not specified"
```

Concept: One-hot encodings

```
feature = [1, 0, 0] for "female"
feature = [0, 1, 0] for "other"
feature = [0, 0, 1] for "not specified"
```

- This type of encoding is called a **one-hot encoding** (because we have a feature vector with only a single "1" entry
- Note that to capture 4 possible categories, we only need three dimensions (a dimension for "male" would be redundant)
- This approach can be used to capture a variety of categorical feature types, as well as objects that belong to multiple categories

Linearly dependent features

Linearly dependent features

How would you build a feature to represent the **month**, and the impact it has on people's rating behavior?

ralsy = Oot Ol xroth

E.g. How do ratings vary with time?

- In principle this picture looks okay (compared our previous example on categorical features) – we're predicting a **real valued** quantity from **real** valued data (assuming we convert the date string to a number)
- So, what would happen if (e.g. we tried to train a predictor based on the month of the year)?

E.g. How do ratings vary with time?

Let's start with a simple feature representation,
 e.g. map the month name to a month number:

$$ext{Tating} = heta_0 + heta_1 imes ext{month} ext{where} ext{ Feb = [1]}$$

$$ext{Mar = [2]}$$

$$ext{etc.}$$

The model we'd learn might look something like:

Modeling temporal data

This seems fine, but what happens if we look at multiple years?

- This representation implies that the model would "wrap around" on December 31 to its January 1st value.
- This type of "sawtooth" pattern probably isn't very realistic

Modeling temporal data

What might be a more realistic shape?

Modeling temporal data

Fitting some periodic function like a sin wave would be a valid solution, but is difficult to get right, and fairly inflexible

- Also, it's not a linear model
- **Q:** What's a class of functions that we can use to capture a more flexible variety of shapes?
- A: Piecewise functions!

Concept: Fitting piecewise functions

Fitting piecewise functions

In fact this is very easy, even for a linear model! This function looks like:

rating =
$$\theta_0 + \theta_1 \times \delta(\text{is Feb}) + \theta_2 \times \delta(\text{is Mar}) + \theta_3 \times \delta(\text{is Apr}) \cdots$$
1 if it's Feb, 0 otherwise

- Note that we don't need a feature for January
- i.e., theta_0 captures the January value, theta_0 captures the difference between February and January, etc.

Fitting piecewise functions

Or equivalently we'd have features as follows:

```
rating = \theta \cdot x \quad \text{where}
```

```
x = [1,1,0,0,0,0,0,0,0,0,0,0] if February
[1,0,1,0,0,0,0,0,0,0,0] if March
[1,0,0,1,0,0,0,0,0,0,0] if April
...
[1,0,0,0,0,0,0,0,0,0,1] if December
```

Fitting piecewise functions

Note that this is still a form of **one-hot** encoding, just like we saw in the "categorical features" example

- This type of feature is very flexible, as it can handle complex shapes, periodicity, etc.
- We could easily increase (or decrease) the resolution to a week, or an entire season, rather than a month, depending on how fine-grained our data was

Concept: Combining one-hot encodings

We can also extend this by combining several one-hot encodings together:

rating =
$$\theta \cdot x = \theta \cdot [x_1; x_2]$$
 where

```
x1 = [1,1,0,0,0,0,0,0,0,0,0,0] if February
[1,0,1,0,0,0,0,0,0,0,0] if March
[1,0,0,1,0,0,0,0,0,0,0] if April
...
[1,0,0,0,0,0,0,0,0,0,1] if December
```

```
x2 = [1,0,0,0,0,0] if Tuesday

[0,1,0,0,0,0] if Wednesday

[0,0,1,0,0,0] if Thursday
```

What does the data actually look like?

Season vs. rating (overall)

Example 3

Random features

What happens as we add more and more **random** features?

CSE 258 – Lecture 2

Web Mining and Recommender Systems

Regression Diagnostics

Today: Regression diagnostics

Mean-squared error (MSE)

$$\frac{1}{N}\|y-X\theta\|_2^2 = \sqrt{\frac{8}{50}}$$

$$=\frac{1}{N}\sum_{i=1}^{N}(y_{i}-X_{i}\cdot\theta)^{2}$$

Q: Why MSE (and not mean-absolute-error or something else)

$$P_{0}(y|X) = \prod_{i} \frac{1}{\sqrt{x}} e^{-\frac{y_{i} - x_{i} \cdot \theta}{2\sigma^{2}}}$$

$$Max \left(\frac{y_{0}}{\sigma} \right) = ndx \prod_{i} e^{-\frac{y_{i} - x_{i} \cdot \theta}{2\sigma^{2}}}$$

$$= ndx \left(\frac{y_{i} - x_{i} \cdot \theta}{\sigma} \right)^{2}$$

$$= ndx \left(\frac{y_{i} - x_{i} \cdot \theta}{\sigma} \right)^{2}$$

Coefficient of determination

Q: How low does the MSE have to be before it's "low enough"?

A: It depends! The MSE is proportional to the **variance** of the data

Coefficient of determination (R^2 statistic)

Mean:
$$y = \lambda \lesssim y$$
;
Variance: $var(y) = \lambda \lesssim (y; -y)^2$
MSE: $y = \lambda \lesssim (y; -x; -x)^2$

Coefficient of determination

(R^2 statistic)

$$FVU(f) = \frac{MSE(f)}{Var(y)}$$

(FVU = fraction of variance unexplained)

$$FVU(f) = 1$$
 — Trivial predictor $FVU(f) = 0$ — Perfect predictor

Coefficient of determination (R^2 statistic)

$$R^{2} = 1 - FVU(f) = 1 - \frac{MSE(f)}{Var(y)}$$

$$R^2 = 0$$
 — Trivial predictor $R^2 = 1$ — Perfect predictor

Overfitting

Q: But can't we get an R^2 of 1 (MSE of 0) just by throwing in enough random features?

A: Yes! This is why MSE and R^2 should always be evaluated on data that **wasn't** used to train the model

A good model is one that generalizes to new data

Overfitting

When a model performs well on **training** data but doesn't generalize, we are said to be **overfitting**

Overfitting

When a model performs well on **training** data but doesn't generalize, we are said to be **overfitting**

Q: What can be done to avoid overfitting?

Occam's razor

"Among competing hypotheses, the one with the fewest assumptions should be selected"

Occam's razor

Q: What is a "complex" versus a "simple" hypothesis?

catrig= 00+0,ADV+02ABV2+03ABV3

D(1)

Q())

11 worp be

"s, uple"

" s, h,p/c"

Occam's razor

A1: A "simple" model is one where theta has few non-zero parameters (only a few features are relevant)

A2: A "simple" model is one where theta is almost uniform

(few features are significantly more relevant than others)

Occam's razor

A1: A "simple" model is one where theta has few non-zero parameters

$$\frac{\xi \mid o_i \mid}{\|\theta\|_1} \text{ is small }$$

A2: A "simple" model is one where theta is almost uniform

$$\rightarrow \|\theta\|_2 \text{ is small}$$

"Proof"

Regularization

Regularization is the process of penalizing model complexity during training

$$\arg\min_{\theta} = \frac{1}{N}\|y - X\theta\|_2^2 + \lambda\|\theta\|_2^2$$

MSE (I2) model complexity

Regularization

Regularization is the process of penalizing model complexity during training

$$\arg\min_{\theta} = \frac{1}{N} ||y - X\theta||_2^2 + \lambda ||\theta||_2^2$$

How much should we trade-off accuracy versus complexity?

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_2^2 + \lambda \|\theta\|_2^2$$

$$f(\theta)$$

- Could look for a closed form \(\bigcirc\)
 solution as we did before
- Or, we can try to solve using gradient descent

Gradient descent:

- 1. Initialize θ at random
- 2. While (not converged) do

$$\theta := \theta - \alpha f'(\theta)$$

All sorts of annoying issues:

- How to initialize theta?
- How to determine when the process has converged?
- How to set the step size alpha

These aren't really the point of this class though

$$f(\theta) = \frac{1}{N} \|y - X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

$$\frac{\partial f}{\partial \theta_{k}}?$$

$$f(\theta) = \frac{1}{N} \underbrace{\sum_{i} (y_{i} - x_{i})^{2} + \sum_{k} (y_{i} - x_{i})^{2}}_{k} + \underbrace{\sum_{i} (y_{i} - x_{i})^{2}}_{k} + \underbrace{\sum_{i}$$

Gradient descent in scipy:

(code for all examples is on http://jmcauley.ucsd.edu/cse258/code/week1.py)

(see "ridge regression" in the "sklearn" module)

$$\arg\min_{\theta} = \frac{1}{N} \|y - X\theta\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

How much should we trade-off accuracy versus complexity?

Each value of lambda generates a different model. **Q:** How do we select which one is the best?

How to select which model is best?

A1: The one with the lowest training error?

A2: The one with the lowest test error?

We need a **third** sample of the data that is not used for training or testing

A **validation set** is constructed to "tune" the model's parameters

- Training set: used to optimize the model's parameters
- Test set: used to report how well we expect the model to perform on unseen data
- Validation set: used to **tune** any model parameters that are not directly optimized

A few "theorems" about training, validation, and test sets

- The training error increases as lambda increases
- The validation and test error are at least as large as the training error (assuming infinitely large random partitions)
- The validation/test error will usually have a "sweet spot" between under- and over-fitting

Summary of Week 1: Regression

- Linear regression and least-squares
 - (a little bit of) feature design
 - Overfitting and regularization
 - Gradient descent
 - Training, validation, and testing
 - Model selection

Coming up!

An exciting case study (i.e., my own research)!

This photo recently one the Andrews award for the 'most perfect timing of a Nature photograph', I can see why.

submitted 29 days ago by SICK OF to /r/pics

In 1 points

1 comment

NOM! (Photo by: Bohemian Waxwing) submitted 2 months ago by favoritehello [deleted] to /r/PerfectTiming

1117 points

11 comments

Perfect moment bird (ex-post from r/pics)

submitted 25 days ago by 123imAwesome to /r/photoshopbattles

36 points

111 comments

A bohemian waxwing eating a berry

submitted 4 months ago by HazeySynth to /r/pics

39 points

1 comment

Bird shot at the perfect moment

submitted 25 days ago by arbili to /r/pics

2712 points

166 comments

Perfect timing.

submitted 4 months ago by animalpath to /r/pics

2555 points

71 comments

Perfect timing.

submitted 2 months ago by presaging to /r/aww

12 points

1 comment

Timing is Everything

submitted 5 months ago by Xnicko378X to /r/pics

10 points

1 comment

Homework

Homework is **available** on the course webpage

http://cseweb.ucsd.edu/classes/fa18/cse258a/files/homework1.pdf

Please submit it by the beginning of the week 3 lecture (Oct 16)

All submissions should be made as **pdf files on gradescope**

Questions?