Analisi 1

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	\mathbf{Intr}	oduzione	2
	1.1	Numeri reali	2
	1.2	Maggiorante	2
	1.3	Minorante	2
	1.4	Estremo superiore	3
	1.5		3
	1.6		3
	1.7		4
	1.8		4
			4
2	Lim	iti	5
	2.1		7
	2.2		9
	2.3	Risultati utili per il calcolo dei limiti	-
	2.4	Forme indeterminate	
	2.5	Esempi di calcolo di limiti	
	2.6	Limiti razionali	
	2.7	Limiti delle funzioni monotone	
	2.8	Teorema dei carabinieri	
		2.8.1 Variante	_
	2.9	Limiti per $x \to -\infty$	_
		Limiti per $x \to x_0$	
		Limiti unilateri	
		Limiti di funzioni continue	
3	Not	azione o piccolo di Landau 2	1
	3.1	Proprietà	
	3.2	Sviluppi di alcune funzioni elementari per $x \to 0$	
	3.3	Funzioni continue	-
	3.4	Teorema di Weiestrass	
	5.4	3.4.1 Osservazioni	
		3.4.2 Esempi	~
	3.5	Teorema degli zeri	-
	3.9	3.5.1 Esempi	
4	Der	ivate 3	3
•	Der	4.0.1 Osservazioni	

1 Introduzione

1.1 Numeri reali

I numeri reali sono descritti tramite rappresentazioni decimali limitate o illimitate, periodiche o non periodiche, e sono tutti i numeri razionali e irrazioneli; questo insieme viene indicato con il simbolo $\mathbb R$

Proprietà necessarie dei numeri reali:

• 1^a proprietà (Eudosso-Archimede): due grandezze sono confrontabili quando esiste un multiplo della minore che supera la maggiore. Ciò significa che non possiamo confrontare linee con superfici, o superfici con volumi, ecc.

Questa proprietà veniva assunta come definizione di grandezze omogenee.

Assioma: dati due numeri reali positivi a, b con 0 < a < b esiste un intero n tale che na > b.

• 2^a proprietà (Intervalli inscatolati): date due serie di grandezze: a_1, a_2, \ldots, a_n e b_1, b_2, \ldots, b_n : la prima crescente (numeri della famiglia a) e la seconda decrescente (numeri della famiglia b), in cui ogni a_k è minore di b_k e tali che per ogni altra grandezza d si ha $b_k - a_k < c$ per qualche k, allora esiste una grandezza c tale che per ogni k $a_k \le c \le b_k$.

1.2 Maggiorante

Definizione 1.1

Sia $S \subseteq \mathbb{R}$ un sottoinsieme di numeri reali. Un numero $y \in \mathbb{R}$ ' è un maggiorante dell'insieme S se per ogni $x \in S$ si ha che $y \geq x$.

Se sommassimo un qualsiasi numero positivo a questo maggiorante si otterrebbe un altro maggiorante.

Se l'interballo tendesse verso $+\infty$ non si sarebbe alcun maggiorante poichè $+\infty$ non è un numero reale. Esempi:

- I = (1, 10]: tutti i maggioranti sono quelli per $y \ge 10$
- I = [0,3): tutti i maggioranti sono quelli per $y \ge 3$
- $\mathbb{R} = (-\infty, +\infty)$: non ha maggiorante

1.3 Minorante

Definizione 1.2

Sia $S \subseteq \mathbb{R}$ un sottoinsieme di numeri reali. Un numero $y \in \mathbb{R}$ è un minorante dell'insieme S se per ogni $x \in S$ si ha che $y \leq x$.

Se sottraessimo un qualsiasi numero negativo a questo minorante si otterrebbe un altro minorante.

Se l'intervallo tendesse verso $-\infty$ non ci sarebbe alcun minorante poichè $-\infty$ non è un numero reale. Esempi:

• I = (1, 10]: tutti i minoranti sono quelli per $y \leq 1$

- I = [9, 3): tutti i minoranti sono quelli per $y \le 9$
- $\mathbb{R} = (-\infty, +\infty)$: non ha minorante

1.4 Estremo superiore

Dato un insieme $S\subseteq\mathbb{R},\ S$ è un insieme limitato superiormente con $y\in\mathbb{R}$ estremo superiore di S se:

- \bullet y è un maggiorante di S
- $\bullet \;\; y$ è il più piccolo maggiorante di S

Se S è un insieme illimitato superiormente allora l'estremo superiore di S è $sup(S)=+\infty.$ Esempi:

- I = (1, 10]: sup(I) = 10
- $I = (-\infty, 0)$: sup(I) = 0
- $\mathbb{R} = (-\infty, +\infty)$: $sup(\mathbb{R}) = +\infty$

1.5 Estremo inferiore

Dato un insieme $S\subseteq\mathbb{R},\,S$ è un insieme limitato inferiormente con $y\in\mathbb{R}$ estremo inferiore di S se:

- $\bullet \;\; y$ è un minorante di S
- $\bullet \;\; y$ è il più grande minorante di S

Se S è un insieme illimitato inferiormente allora l'estremo inferiore di S è $inf(S)=-\infty.$ Esempi:

- I = [1, 8): inf(I) = 1
- I = (-13, 0): inf(I) = -13
- $\mathbb{R} = (-\infty, +\infty)$: $in f(\mathbb{R}) = -\infty$

1.6 Massimo

Definizione 1.3

Sia $S\subseteq\mathbb{R}$ un sottoinsieme reale, dove $y\in\mathbb{R}$ è il massimo di S se y è l'estremo superiore di S e se $y\in S$.

Quindi se l'estremo superiore di un insieme appartiene all'insieme stesso, esso si chiamerà massimo indicato con Max(S) = y.

1.7 Minimo

Definizione 1.4

Sia $S \subseteq \mathbb{R}$ un sottoinsieme reale, dove $y \in \mathbb{R}$ è il minimo di S se y è l'estremo inferiore di S e se $y \in S$.

Quindi se l'estremo inferiore di un insieme appartiene all'insieme stesso, esso si chiamerà minimo indicato con Min(S) = y.

Teorema 1 Ogni insieme di numeri reali che sia limitato superiormente ha estremo superiore.

1.8 Funzioni

Definizione 1.5

Una **funzione** è una corrispondenza che collega gli elementi di due insiemi dove tutti gli elementi del primo insieme hanno associati un solo elemento del secondo insieme:

$$f:A\to B$$

Questa è una funzione se e solo se a ogni elemento di A è associato uno e uno solo elemento di B.

Tradotto in simboli diventa:

$$\forall a \in A \exists ! b \in B \ tale \ che \ f : A \to B$$

Esempio di funzione corretta:

Figura 1: Esempio di funzione corretta

1.8.1 Dominio di una funzione

Definizione 1.6

Dato un insieme di partenza A gli elementi ai quali è applicata la funzione f sono il dominio stesso della funzione

Esempio:

$$x \to x^2 \text{ con } D = \mathbb{R}$$

 $x \to \sqrt{x} \text{ con } D = [0, +\infty)$

Si può dare un nome simbolico alla funzione scrivendo in questo modo:

$$f(x) = x^2 con D = \mathbb{R}$$

$$f(x) = \sqrt{x} con D = [0, +\infty)$$

2 Limiti

I limiti sono il calcolo infinitesimale, ovvero il calcolo che si occupa di studiare il comportamento di una funzione in un intorno di un punto.

Nelle definizioni che seguono, è data una funzione $f:A\to\mathbb{R}$ il cui dominio $A\subseteq\mathbb{R}$ è un insieme **non** limitato superiormente. (Questa ipotesi serve per definire i limiti per $x\to+\infty$)

Definizione 2.1

 $Sia\ L \in \mathbb{R}$. $Si\ dice\ che$

$$\lim_{x \to +\infty} f(x) = L$$

Se e solo se

$$\forall \epsilon > 0 \quad \exists k > 0 \ t.c. \ \forall x \subset A^a,$$

$$x \ge k \to L - \epsilon \le f(x) \le L + \epsilon$$

(Notazione alternativa: $f(x) \to L \ per \ x \to +\infty$)

La condizione deve essere soddisfatta per ogni ϵ .

Figura 2: Definizione di limite

Per la definizione di limite, la funzione deve entrare in un intorno di L e non uscirne più. Questo vale per ogni ϵ , quindi anche per ϵ^1 .

^aIl dominio della funzione

Definizione 2.2

Si dice che

$$\lim_{x \to +\infty} f(x) = +\infty$$

Se e solo se

$$\forall M > 0 \ \exists k > 0 \ t.c. \ \forall x \in A,$$

$$x \ge k \to f(x) \ge M$$

(Notazione alternativa: $f(x) \to +\infty$ per $x \to +\infty$)

Figura 3: Definizione di limite a $+\infty$

2.1 Esempi

Esempio 2.1

$$\lim_{x\to +\infty}\frac{1}{x}=0 \quad Dominio=\mathbb{R}/\{0\}$$

Figura 4: Definizione di limite a $-\infty$

Figura 5: Esempio di limite

Sia dato $\epsilon>0$ arbitrario. Definisco $k:=\frac{1}{\epsilon}.$ Sia dato x>0 arbitrario, supponiamo $x\geq k.$ Allora

$$0-\epsilon \leq 0 \leq \frac{1}{x} \leq \frac{1}{k} = \frac{1}{\frac{1}{\epsilon}} = \epsilon$$

Quindi, ho dimostrato che la definizione di limite è soddisfatta (con L=0).

Esempio 2.2

$$\lim_{x\to +\infty} x = +\infty$$

Figura 6: Esempio di limite a $+\infty$

 $\label{eq:sigma} \begin{array}{l} \textit{Sia dato } M > 0 \ \textit{arbitrario. Definisco } k := M. \\ \textit{Sia dato } x \geq k. \ \textit{Allora } x \geq M. \\ \textit{Quindi è verificata la definizione di limite.} \end{array}$

2.2 Osservazioni

Non è detto che un limite esista.

$$\lim_{x \to +\infty} \sin(x)$$
$$\lim_{x \to +\infty} \cos(x)$$

Figura 7: Esempio di limite non esistente

La funzione non entra in un intevallo limitato senza poi uscirne, quindi non esiste il limite.

Figura 8: Esempio di limite non esistente

Tuttavia, se una funzione ammette limite, allora esso è unico. Questa funzione dovrebbe entrare in entrambe le strisce e non uscirne più, ma questo non è possibile.

2.3 Risultati utili per il calcolo dei limiti

Teorema 2 (Algebra dei limiti) Sia $A \subseteq \mathbb{R}$ un insieme non limitato superiormente, f e g due funzioni. $A \to \mathbb{R}$. Supponiamo che i limiti

$$F := \lim_{x \to +\infty} f(x)$$
$$G := \lim_{x \to +\infty} g(x)$$

esistano e siano finiti. Allora

$$\lim_{x \to +\infty} (f(x) + g(x)) = F + G$$

$$\lim_{x \to +\infty} (f(x) - g(x)) = F - G$$

$$\lim_{x \to +\infty} (f(x) \cdot g(x)) = F \cdot G$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{F}{G} \quad \text{se } G \neq 0$$

Il teorema si estende $\it parzialmente$ nel caso $\it F$ o $\it G$ siano infiniti, secondo le regole seguenti:

- $\bullet \ F+\infty=+\infty, \ F-\infty=-\infty \ \forall F\in\mathbb{R}$
- $+\infty + \infty = +\infty$, $+\infty \infty = -\infty$
- $F \cdot \infty = \infty$, $\forall F \in \mathbb{R}, F \neq 0$
- $\bullet \ \infty \cdot \infty = \infty$
- $\frac{F}{\infty} = 0 \ \forall F \in \mathbb{R}$
- $\frac{F}{0} = \infty \ \forall F \in \mathbb{R}, \ F \neq 0$
- $\bullet \ \ \frac{0}{\infty} = 0$
- $\frac{\infty}{0} = \infty$

Il segno di ∞ è da determinare secondo la regola usuale.

2.4 Forme indeterminate

Sono dei casi in cui il teorema **non** si applica e tutto può succdere:

- $+\infty \infty$
- $0 \cdot \infty$
- \bullet $\frac{0}{0}$
- \bullet $\frac{\infty}{\infty}$
- 1[∞]
- 0⁰
- $\bullet \infty^0$

N.B.: in questo contesto, 0, ∞ e 1 sono da intendersi come abbreviazioni.

2.5 Esempi di calcolo di limiti

Esempio 2.3

$$\lim_{x \to +\infty} (x^2 + \frac{1}{x})$$

$$\underbrace{x^2}_{+\infty} + \underbrace{\frac{1}{x}}_{0} \to +\infty$$

 $Per x \rightarrow +\infty$ (per il teorema dell'algebra dei limiti)

Esempio 2.4

$$\lim_{x \to +\infty} x^2 - x^3 = +\infty - \infty$$

$$\underbrace{x^3}_{+\infty}(\underbrace{\frac{1}{x}}_{0}-1) \to -\infty$$

 $Per \; x \to +\infty$

Esempio 2.5

$$\lim_{x \to +\infty} (5x^6 - 4x) = +\infty - \infty$$

$$\underbrace{x}_{+\infty}(\underbrace{5x^5}_{+\infty}-4) \to +\infty$$

2.6 Limiti razionali

Se P è un polinomio di grado p e Q è un polinomio di grado q, allora

$$\lim_{x \to +\infty} \frac{P(x)}{Q(x)} = \begin{cases} \pm \infty & se \ p > q \\ 0 & se \ p < q \\ coefficiente \ denominante \ di \ P & se \ p = q \\ coefficiente \ denominante \ di \ Q & se \ p = q \end{cases}$$

2.7 Limiti delle funzioni monotone

Teorema 3 (di monotonia) Sia $A \subseteq \mathbb{R}$ un insieme non limitato superiormente e sia $f: A \to \mathbb{R}$ una funzione monotona¹. Allora

$$\lim_{x \to +\infty} f(x)$$
 esiste e

$$\lim_{x\to +\infty} f(x) = \begin{cases} \sup\{f(x): \ x\in A\} & se \ f \ cresce \ (nondecrescecnte) \\ \inf\{f(x): \ x\in A\} & se \ f \ decresce \ (noncrescente) \end{cases}$$

 $f:(0,+\infty)\to\mathbb{R}$

f è strettamente crescente e limitata (l'immagine di f è un insieme limitato).

Figura 9: Esempio di funzione monotona

$$\lim_{x \to +\infty} f(x) = 5$$

 $g:(0,+\infty)\to\mathbb{R}$ è strettamente crescente e non limitata

¹Le funzioni **monotone** sono funzioni che sono sempre crescenti o sempre decrescenti

Figura 10: Esempio di funzione monotona non limitata

$$\lim_{x \to +\infty} g(x) = +\infty$$

Figura 11: Esempio di funzione ristrettamente monotona

Questa funzione non è monotona, ma se guardiamo ciò che succede eprx>5 si ottiene una funzione monotona. Quindi la funzione globalmente non è monotona, ma è decrescente ristrettamente a partire da x=5.

Per il teorema di monotonia,

$$\lim_{x \to +\infty} f(x) = L$$

Esempio 2.6
$$\lim_{x \to +\infty} log(x) = +\infty$$

Figura 12: Esempio di funzione monotona non limitata

Per il teorema di monotonia:

$$\begin{split} &\lim_{x\to +\infty} log(x) = \sup\{log(x): x>0\} \\ &\geq \sup\{log(e^n): n\in \mathbb{Z}, n>0\} \ \ scelto \ arbitrariamente \\ &= \sup\{n\cdot log(e): n\in \mathbb{Z}, n>0\} = +\infty \end{split}$$

Abbiamo dimostrato (per il postulato di Eudosso - Archimede) che il limite di questa funzione è uguale $a + \infty$.

Esercizio 2.1

Dimostrare che:

$$\lim_{x \to +\infty} e^x = +\infty$$

Figura 13: Esempio di funzione monotona non limitata

 $E\ similmente\ che:$

$$\lim_{x \to +\infty} a^x = +\infty \quad \forall a \in (0, +\infty)$$

2.8 Teorema dei carabinieri

Teorema 4 (del confronto tra i limiti, o dei carabinieri) Sia $A \subseteq \mathbb{R}$ un insieme non limitato superiormente e siano $f,g,h:A \to \mathbb{R}$. Supponiamo che

$$f(x) \le g(x) \le h(x) \quad \forall x \in A$$

 $Supponiamo\ in oltre\ che\ i\ limiti$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = L$$

esistano (e che siano uguali tra di loro). Allora

$$\lim_{x \to +\infty} g(x) = L$$

Figura 14: Teorema del confronto tra i limiti

Dobbiamo dimostrare che

$$\forall \epsilon > 0 \ \exists k > 0 \ t.c. \ \forall x \in A,$$

$$x \ge k \to L - \epsilon \le g(x) \le L + \epsilon$$

Prendiamo dunque $\epsilon > 0$ arbitrario. Poichè $\lim_{x \to +\infty} f(x) = L$, sappiamo che esiste $k_f > 0$ t.c.

$$\forall x \in A, \quad x \ge k_f \to L - \epsilon \le f(x) \le L + \epsilon$$

Allo stesso modo, poichè $\lim_{x\to+\infty} h(x) = L$, sappiamo che esiste $k_h > 0$ t.c.

$$\forall x \in A, \quad x \ge k_h \to L - \epsilon \le h(x) \le L + \epsilon$$

Definiamo $k := max\{k_f, k_h\}$. Comunque preso $x \in A$, se $x \ge k$ allora vale che

$$L - \epsilon \le f(x) \le g(x) \le h(x) \le L + \epsilon$$

2.8.1 Variante

Sia $A \subseteq \mathbb{R}$ non limitato superiormente e siano $f, g: A \to \mathbb{R}$ t.c. $f(x) \leq g(x) \ \forall x \in A$.

Se $\lim_{x\to +\infty} f(x) = +\infty$ allora $\lim_{x\to +\infty} g(x) = +\infty$.

Figura 15: Teorema del confronto tra i limiti con 2 funzioni positive

Se $\lim_{x\to+\infty} f(x) = -\infty$ allora $\lim_{x\to+\infty} g(x) = -\infty$.

Figura 16: Teorema del confronto tra i limiti con 2 funzioni negative

2.9 Limiti per $x \to -\infty$

Sia $A\subseteq\mathbb{R}$ un insieme non limitato inferiormente, $f:A\to\mathbb{R}$, $L\in\mathbb{R}\cup\{+\infty,-\infty\}$. Diremo che:

$$\lim_{x \to -\infty} f(x) = L$$

se e solo se

$$\lim_{x \to +\infty} f(-t) = L$$

$$x = -t$$
se $x \to -\infty$
allora $t \to +\infty$

2.10 Limiti per $x \to x_0$

Sia $f:A\subseteq\mathbb{R},\ x_0\in\mathbb{R}$. Per definire il limite di f quando $x\to 0$, serve che f sia definita "vicino a x_0 ", in un senso opportuno. Noi supporremo, ad esempio, che il dominio A contenga almeno un intervallo del tipo $(x_0-\delta,x_0)$ oppure $(x_0,x_0-\delta)$, con $\delta>0$. **Non** è richiesto, invece, che f sia definita in x_0 .

$$A = (-\infty, 1) \cup (1, 2)$$
 $f: A \to \mathbb{R}$

Figura 17: Limiti su una funzione non continua

Posso definire

$$\lim_{x \to -\infty} f(x), \ \lim_{x \to 2} f(x), \ \lim_{x \to 0} f(x), \ \lim_{x \to 0} f(x), \ \lim_{x \to 1} f(x)$$

Non è detto però che tali limiti esistano

Sotto le ipotesi precedenti su $f:A\subseteq\mathbb{R}\to\mathbb{R}$ e su $x_0\in\mathbb{R}$, dato $L\in\mathbb{R}$ diremo che

$$\lim_{x \to x_0} f(x) = L$$

se e solo se

$$\forall \epsilon > 0 \quad \exists \delta > 0 \ t.c. \ \forall x \in A,$$

$$x_0 - \delta \le x \le x_0 + \delta \ e \ x \ne x_0$$

$$\rightarrow L - \epsilon \le f(x) \le L + \epsilon$$

Figura 18: Limite a x_0

Sotto le ipotesi precedenti su $f:A\subseteq\mathbb{R}\to\mathbb{R}$ e su $x_0\in\mathbb{R},$ dato $L\in\mathbb{R}$ diremo che

$$\lim_{x \to x_0} f(x) = +\infty$$

se e solo se

$$\forall M>0 \quad \exists \delta>0 \ t.c. \ \forall x\in A,$$

$$x_0 - \delta \le x \le x_0 + \delta \ e \ x \ne x_0$$

 $f(x) \ge M$

Figura 19: Limite a x_0

Sotto le ipotesi precedenti su $f:A\subseteq\mathbb{R}\to\mathbb{R}$ e su $x_0\in\mathbb{R},$ dato $L\in\mathbb{R}$ diremo che

$$\lim_{x \to x_0} f(x) = -\infty$$

se e solo se

$$\forall M > 0 \quad \exists \delta > 0 \ t.c. \ \forall x \in A,$$
$$x_0 - \delta \le x \le x_0 + \delta \ e \ x \ne x_0$$
$$f(x) \le M$$

2.11 Limiti unilateri

Si possono anche dare le definizioni di limiti unilateri, da destra o da sinistra:

$$\lim_{x \to x_0^+} f(x) = \lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$$
$$\lim_{x \to x_0^-} f(x) = \lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$$

Esempio 2.8

$$\begin{split} f: \mathbb{R}/\{0\} &\to \mathbb{R} \\ f(x) &= \frac{1}{x} \ \forall x \in \mathbb{R}/\{0\} \\ \lim_{x \to 0^+} (\frac{1}{x}) &= +\infty \\ \lim_{x \to 0^-} (\frac{1}{x}) &= -\infty \\ \lim_{x \to 0} (\frac{1}{x}) & non \ esiste \end{split}$$

2.12 Limiti di funzioni continue

Sia $A\subseteq\mathbb{R}$ un intervallo oppure un'unione finita di intervalli.

Definizione 2.4

Sia $f: A \to \mathbb{R}$, $x_0 \in A$. Diremo che f è continua in x_0 se e solo se

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Diremo che f è continua se e solo se f è continua in ogni punto del suo dominio $x_0 \in A$.

Esempio 2.9

$$g: \mathbb{R} \to \mathbb{R}, \quad g(x) := x \ \forall x \in \mathbb{R}$$

 $\grave{e}\ continua,\ perch\grave{e}$

$$\lim_{x \to x_0} x = x_0 \ \forall x_0 \in \mathbb{R}$$

Figura 21: Eempio di funzione continua

Esempio 2.10

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) := \begin{cases} x & \text{se } x \neq 2 \\ 31 & \text{se } x = 2 \end{cases}$$

Non è continua perchè

$$\lim_{x \to 2} f(x) = 2 \neq f(2)$$

Però f è continua in tutti gli $x_0 \in \mathbb{R}$, $x_0 \neq 2$:

$$\lim_{x \to x_0} f(x) = f(x_0) = x_0$$

Figura 22: Eempio di funzione non continua

Esempio 2.11

$$h: \mathbb{R}/\{0\} \to \mathbb{R}$$

$$h(x) := \frac{1}{x} \quad \forall x \in \mathbb{R}/\{0\}$$

Il dominio è un unione di 2 intervalli:

$$(\mathbb{R}/0 = (-\infty, 0) \cup (0, +\infty))$$

 $\grave{E}\ una\ funzione\ continua$

Figura 23: Esmpio di funzione continua

Esempio 2.12

$$l: \mathbb{R} \to \mathbb{R}$$

$$l(x) := \begin{cases} \frac{1}{x} & se \ x \neq 0 \\ 5 & se \ x = 0 \end{cases}$$

Questa funzione non è continua perchè il limite a 0 non esiste:

$$\lim_{x\to 0} l(x) = \nexists$$

ma:

$$\lim_{x \to 0} |l(x)| = +\infty$$

Figura 24: Esmpio di funzione non continua

Esempio 2.13

$$m: \mathbb{R} \to \mathbb{R}$$

$$m(x) := \begin{cases} x^2 & \text{se } x \neq 0 \\ -2 & \text{se } x = 0 \end{cases}$$

Non è continua perchè:

$$\lim_{x \to 0} m(x) = \lim_{x \to 0} x^2 = 0 \neq m(0)$$

Figura 25: Esmpio di funzione non continua

3 Notazione o piccolo di Landau

Si dimostra che:

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad (F.I. \frac{0}{0})$$

Considero x > 0

Figura 26: Grafico

Area del triangolo OHP:

- $\bullet \ \leq$ area del settore OUP
- $\bullet \ \leq$ area del triangoloOUQ

Area di $OHP = \frac{1}{2} sin(x) cos(x)$

Area di $OUQ = \frac{1}{2}tan(x) = \frac{1}{2}\frac{sin(x)}{cos(x)}$

Area di OUP: area del disco unitario = ampiezza dell'angolo $P\hat{O}U$: ampiezza dell'angolo giro

da cui:

$$Area\ di\ OUP = \frac{\pi x}{2\pi} = \frac{1}{2}x$$

Pertanto:

$$\frac{1}{2}sin(x)cos(x) \leq \frac{1}{2}x \leq \frac{1}{2}\frac{sin(x)}{cos(x)}$$

Moltiplico per $\frac{2}{\sin(x)}$ (assumendo che $0 < x < \frac{\pi}{2},$ così che $\sin(x) > 0)$:

$$cos(x) \le \frac{x}{sin(x)} \le \frac{1}{cos(x)}$$

da cui:

$$\underbrace{cos(x)}_{1} \le \frac{sin(x)}{x} \le \underbrace{\frac{1}{cos(x)}}_{1}$$

$$per \ x \to 0^+$$

Per il teorema del confronto, segue che

$$\lim_{x \to 0^+} \frac{\sin(x)}{x} = 1.$$

Il caso $x \to 0^-$ è analogo. \square

Se definiamo:

$$q(x) := \frac{\sin(x)}{x} - 1$$

posso concludere che:

$$\frac{\sin(x)}{x} = 1 + q(x) \Leftrightarrow \sin(x) = x + xq(x)$$

$$\lim_{x \to 0} q(x) = 0$$

Definizione 3.1

Notazione o piccolo di Landau.

Diremo che:

$$f(x) = o(g(x))$$
 per $x \to x_0$

se e solo se esiste una funzione q tale che:

$$f(x) = g(x)q(x) \qquad (\forall x)$$

$$\lim_{x \to x_0} q(x) = 0$$

Ad esempio, possiamo dire che:

$$sin(x) = x + \underbrace{o(x)}_{g(x)q(x)} per \ x \to 0$$

3.1 Proprietà

1.
$$f(x) = o(1)$$
 per $x \to x_0 \Leftrightarrow \lim_{x \to x_0} f(x) = 0$

2.
$$o(g(x)) = g(x)o(1) \text{ per } x \to x_0$$

3.
$$o(g(x)) + o(g(x)) = o(g(x))$$
 per $x \to x_0$ Infatti,

$$o(g(x)) + o(g(x)) = g(x)q_1(x) + g(x)q_2(x)$$

dove

$$\lim_{x \to x_0} q_1(x) = \lim_{x \to x_0} q_2(x) = 0$$

e quindi

$$o(g(x)) + o(g(x)) = g(x) \underbrace{(q_1(x) + q_2(x))}_{0 \ per \ x \to x_0} = o(g(x))$$

4. Se $k \in \mathbb{R}$ è una costante,

$$ko(g(x)) = o(g(x))$$
 per $x \to x_0$

- 5. f(x)o(g(x)) = o(f(x)g(x)) per $x \to x_0$
- 6. In generale, **non** vale

$$o(g(x)) - o(g(x)) = 0$$
 per $x \to x_0$

Infatti,

$$o(g(x)) - o(g(x)) = g(x)q_1(x) - g(x)q_2(x)$$

dove

$$\lim_{x \to x_0} q_1(x) = \lim_{x \to x_0} q_2(x) = 0$$

ma **non** è detto che $q_1(x) = q_2(x)$.

(Però è vero che
$$o(g(x)) - o(g(x)) = o(g(x))$$
 $per x \to x_0$)

7. Allo stesso modo, **non** è detto che

$$\frac{o(g(x))}{o(g(x))} = 1 \quad per \ x \to x_0$$

(forma indeterminata)

È molto importante specificare $x \to x_0$.

Ad esempio:

Esempio 3.1

$$x^2 = o(x)$$
 $per x \to 0$
 $x = o(x^2)$ $per x \to +\infty$

- 3.2 Sviluppi di alcune funzioni elementari per $x \to 0$
 - $e^x = 1 + x + o(x)$
 - log(1+x) = x + o(x)
 - $(1+x)^{\alpha} = 1 + \alpha x + o(x)$ $(con \ \alpha \in \mathbb{R} \ costante)$
 - sin(x) = x + o(x)
 - $cos(x) = 1 \frac{x^2}{2} + o(x^2)$

3.3 Funzioni continue

Proprietà:

1. Se $f, g: A \subseteq \mathbb{R} \to \mathbb{R}$ sono funzioni continue, allora sono continue anche

$$f+g, f-g, fg, \frac{f}{g}$$

(quest'ultima definita su $\{x\in A:g(x)\neq 0\}$)

2. Se $f:A\to\mathbb{R},\ g:B\to\mathbb{R}$ con $A\subseteq\mathbb{R},\ B\subseteq\mathbb{R}$ sono funzioni continue tali che $f(A)\subseteq B$, allora è continua anche la funzione composta

$$g \circ f : A \to \mathbb{R}$$

$$(g \circ f)(x) := g(f(x)) \quad \forall x \in A$$

Esempio 3.2

Sono funzioni continue:

- ullet tutti i polinomi
- tutte le funzioni razionali (quozienti di polinomi)
- $x \to x^{\alpha}$, con $\alpha \in \mathbb{R}$ costante, laddove ben definito
- \bullet exp, log, sin, cos, tan, ...
- valore assoluto, $x \in \mathbb{R} \to |x| := \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$
- funzioni composte, ad esempio:

$$h_1: \mathbb{R} \to \mathbb{R}, \quad h_1(x) := \sin(x^3 + 5x^4) \quad \forall x \in \mathbb{R}$$

$$h_2: (2, +\infty) \to \mathbb{R}, \quad h_2(x) := \log(x^2 - 4) \quad \forall x \in (2, +\infty)$$

3.4 Teorema di Weiestrass

Definizione 3.2

Teorema di Weierstrass

Sia [a,b] un intervallo chiuso e limitato, $f:[a,b]\to\mathbb{R}$ continua. Allora esistono

$$x_{max}, x_{min} \in [a, b]$$
 t.c. $f(x_{min}) \le f(x) \le f(x_{max}) \forall x \in [a, b]$

Figura 27: Teorema di Weiestrass

 $Ogni\ funzione\ continua,\ avr\`{a}\ quindi\ un\ punto\ di\ minimo\ e\ un\ punto\ di\ massimo$

3.4.1 Osservazioni

- $\bullet\,$ In particolare, f è limitata
- $\bullet\,$ I punti x_{min},x_{max} si dicono punti di minimo e di massimo **globali** di f
- $\bullet\,$ I punti di minimo e massimo globali possono essere non unici e coincidere con gli estremia,b dell'intervallo

Se vengono meno le ipotesi del teorema, può venir meno la conclusione.

3.4.2 Esempi

Esempio 3.4

$$f_1:(0,1)\to \mathbb{R}, \quad f_1(x):=x \ \forall x\in (0,1)$$

Figura 29: Esempio di funzione continua

Questa funzione è continua, ma per come è definita **non** ammette nè massimo nè minimo perchè il **dominio non è chiuso**.

Esempio 3.5

$$f_2:(0,+\infty)\to\mathbb{R},\quad f_2(x):=xsin(x)\quad \forall x\in(0,+\infty)$$

Figura 30: Esempio di funzione continua

Questa funzione è continua, ma non possiede nè punti di massimo, nè punti di minimo perchè la funzione ha ampiezza sempre crescente.

Esempio 3.6

$$f_3: [-1,1] \to \mathbb{R}$$

$$f_3(x) := \begin{cases} 1 - x & se \ 0 < x \le 1 \\ 0 & se \ x = 0 \\ -x - 1 & se \ -1 \le x < 0 \end{cases}$$

Figura 31: Esempio di funzione non continua

Questa funzione non ammette punti di massimo e di minimo perchè non è continua.

3.5 Teorema degli zeri

Definizione 3.3

Teorema degli zeri (o di Bolzano)

Sia [a,b] un intervallo chiuso e limitato, $f:[a,b]\to \mathbb{R}$ una funzione continua. Se

$$f(a)f(b) < 0$$

allora esiste $c \in (a, b)$ tale che f(c) = 0

Figura 32: Teorema degli zeri

Se vengono meno le ipotesi, può venir meno la conclusione.

3.5.1 Esempi

Esempio 3.7

$$g_1: [-1,1] \to \mathbb{R}$$

$$g_1(x) = \begin{cases} -1 & se - 1 \le x < 0 \\ 1 & se \ 0 \le x \le 1 \end{cases}$$

Figura 33: Esempio di funzione non continua

Questa funzione non è continua, quindi non si applica il teorema.

Esempio 3.8

$$g_2: [-1,1]/\{0\} \to \mathbb{R}$$

$$g_2(x):=\frac{1}{x} \ \forall x \in [-1,1]/\{0\}$$

Figura 34: Esempio di funzione continua

Questa funzione è continua, ma non si annulla mai perchè il dominio della funzione **non è un intervallo**, ma un intervallo privato di un valore, quindi non si applica il teorema.

4 Derivate

Sia A un intervallo aperto (del tipo A=(a,b) oppure $A=(a,+\infty), A=(-\infty,a), A=\mathbb{R}$), oppure un'unione di intervalli aperti.

Sia $f: A \to \mathbb{R}$, $x_0 \in A$. **Retta tangente** al grafico di f nel punto $(x_0, f(x_0))$? Preso $h \in \mathbb{R}$, $h \neq 0$, il coefficiente angolare (pendenza) della retta secante il grafico nei punti $(x_0, f(x_0))$, $(x_0 + h, f(x_0 + h))$ è:

$$\frac{f(x_0+h)-f(x_0)}{h}$$

Definizione 4.1

Una funzione $f: A \to \mathbb{R}$ si dice **differenziabile** (o derivabile) in $x_0 \in A$ se e solo se esiste ed è finito il limite:

$$f'(x_0) := \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Tale limite è detto derivata di f in x_0 . f si dice differenziabile (o derivabile) se e solo se è differenziabile in ogni punto del suo dominio.

4.0.1 Osservazioni

1. La retta tangente al grafico di f in $(x_0, f(x_0))$ è definita come l'unica retta di pendenza $f'(x_0)$ passante per $(x_0, f(x_0))$. Essa ha equazione:

$$y = f'(x_0)(x - x_0) + f(x_0)$$

2. f è differenziabile in x_0 se e solo se vale:

$$\frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + o(1) \quad per \ h \to 0$$

che equivale a dire:

$$f(x_0 + h) - f(x_0) = f'(x_0)h + h o(1)$$
 per $h \to 0$

Quindi, f è differenziabile in x_0 se e solo se:

$$f(x_0 + h) = f(x_0) + f'(x_0)h + o(h)$$
 per $h \to 0$

il che equivale (posto $x = x_0 + h$) a:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$
 per $x \to x_0$

Esempio 4.1

$$f = e^x, \quad x_0 = 0$$

$$e^x = 1 + x + o(x) \quad per \ x \to 0$$

dunque

$$e'^0 = 1$$

Che sarebbe il coefficiente di x nell'equazione $e^x = 1 + x + o(x)$

Si scrive anche (Notazione di Leibnitz):

$$f'(x_0) = \frac{df}{dx}(x_0)$$

Esempio 4.2

 $Una\ funzione\ costante\ \grave{e}\ differenziabile\ con\ derivata$

$$(5')(x_0) = \lim_{h \to 0} \frac{5-5}{h} = 0$$