第一章 随机事件与概率

Instructor: 郝壮

haozhuang@buaa.edu.cn School of Economics and Management Beihang University

September 19, 2021

第一章 随机事件与概率

- §1.1 随机事件及其运算
- §1.2 概率的定义及其确定方法
- §1.3 概率的性质
- §1.4 条件概率
- §1.5 独立性

§1.1.1 随机现象

自然界中的有两类现象

- 1. 确定性现象
 - 每天早晨太阳从东方升起:
 - 水在标准大气压下加温到100°C沸腾;
- 2. 随机现象
 - 掷一枚硬币, 正面朝上?反面朝上?
 - 一天内进入某超市的顾客数;
 - 某种型号电视机的寿命;

概率论是研究随机现象的理论

经济学中的随机现象

- 经济增长率
- 失业率
- 人的寿命
- 股票价格

1.1.1 随机现象

- 随机现象: 在一定的条件下,并不总出现相同结果的现象称为随机现象.
- 特点: 1. 结果不止一个; 2. 事先不知道哪一个会出现.
- 随机现象的统计规律性: 随机现象的各种结果会表现出一定的规律性, 这种规律性称之为统计规律性.

随机试验 (Random Trail) —— 对相同条件下可以重复的随机现象进行的实验与观察.

它具有两个特点: 随机性, 重复性.

1.1.2 样本空间

- 1. **样本空间**(Ω) —— 随机现象的**一切**可能的基本结果.
- 2. **样本点**(ω) —— **每一个**可能的基本结果.
- 3. 两类样本空间:
 - 离散样本空间: 样本点的个数为有限个或可列个.
 - eg. 掷一枚骰子的样本空间:

$$\Omega_1 = \{\omega_1, \omega_2, ..., \omega_6\} = \{1, 2, ..., 6\}$$
 (有限个)

- eg. 一天某商场顾客数的样本空间: $\Omega_2 = \{0, 1, 2, ...\}$ (可列个)
- 连续样本空间: 样本点的个数为无限不可列个. eg. 电视机寿命的样本空间: $\Omega_3 = \{t : t \geq 0\}$

1.1.3 随机事件

1. **随机事件** —— 某些样本点组成的集合, Ω 的子集, 常用A,B,C,...表示.

eg. 掷一枚骰子的样本空间: $\Omega_1 = \{1, 2, ..., 6\}$ 事件A="出现4点", 事件B="出现奇数点"

- 在试验中, A中某个样本点出现了, 就说 A 出现了, 发生了, 记为A.
- 事件的三种表示: 用语言, 用集合, 用随机变量.

1.1.3 随机事件

维恩图 (Venn): 表示样本空间和事件关系的几何图形

分别表示样本空间中的事件A和B的某种关系.

1.1.3 随机事件

仍以掷一枚骰子的样本空间: $\Omega_1 = \{1, 2, ..., 6\}$ 为例

- 2. 基本事件 —— Ω 的单点集.
 - eg. 事件B="出现4点" 是一个基本事件
- 3. 必然事件 (Ω)
 - eg. 事件C="出现点数小于7" 是一个必然事件
- 4. 不可能事件 (∅) ── 空集.
 - eg. 事件D="出现点数大于6" 是一个不可能事件

1.1.4 随机变量

随机变量表示随机现象结果的变量. 常用大写字母 X, Y, Z, ...表示.

- eg. 设随机变量X="掷一次骰子出现的点数",
 - 事件A="出现4点"可用 "X = 4"表示,
 - 事件D="出现点数大于6" 可用"X > 6"表示
 - 思考: 不可能事件如何用随机变量表示?

1.1.4 随机变量

随机变量表示随机现象结果的变量. 常用大写字母 X, Y, Z, ...表示.

- eg. 设随机变量X="掷一次骰子出现的点数",
 - 事件A="出现4点"可用 "X = 4"表示,
 - 事件D="出现点数大于6" 可用"X > 6"表示
 - 思考: 不可能事件如何用随机变量表示?
- eg. 再设随机变量Y="掷一次骰子出现6点的次数",
 - "Y = 0"表示什么事件?
 - "Y = 1"表示什么事件?
 - "Y > 1"表示什么事件?

1.1.4 随机变量

随机变量表示随机现象结果的变量. 常用大写字母 X, Y, Z, ...表示.

- eq. 设随机变量X="掷一次骰子出现的点数",
 - 事件A="出现4点"可用 "X = 4"表示.
 - 事件D="出现点数大于6" 可用"X > 6"表示
 - 思考: 不可能事件如何用随机变量表示?
- eg. 再设随机变量Y="掷一次骰子出现6点的次数",
 - "Y = 0"表示什么事件?
 - "Y = 1"表示什么事件?
 - "Y > 1"表示什么事件?

1.1.5 事件间的关系

- 包含关系: A ⊂ B, A 发生必然导致 B 发生.
 - eg. 设随机变量X="掷一次骰子出现的点数", 事件A="出现4点"; 事件B="出现点数为偶数点" $\Rightarrow A \subset B$

1.1.5 事件间的关系

- 包含关系: A ⊂ B, A 发生必然导致 B 发生.
 - eg. 设随机变量X="掷一次骰子出现的点数", 事件A="出现4点"; 事件B="出现点数为偶数点" $\Rightarrow A \subset B$
- 相等关系: $A = B \Leftrightarrow A \subset B$ 而且 $B \subset A$.

1.1.5 事件间的关系

- 包含关系: A ⊂ B, A 发生必然导致 B 发生.
 - eg. 设随机变量X="掷一次骰子出现的点数", 事件A="出现4点"; 事件B="出现点数为偶数点" $\Rightarrow A \subset B$
- 相等关系: $A = B \Leftrightarrow A \subset B$ 而且 $B \subset A$.
- **互不相容**: $A \cap B$ 不可能同时发生 ($A \subseteq B$ 没有相同的样本点, 记为 $A \cap B = \emptyset$). (若 $A \subseteq B$ 有相同的样本点, 则可称为相容.)

例1.1.1: 口袋中有a 个白球, b 个黑球, 从中一个一个不返回地取球. A = "取到最后一个是白球", B = "取到最后一段是白球". 问随机事件A 与 B 的关系?

解:

例1.1.1: 口袋中有a 个白球, b 个黑球, 从中一个一个不返回地取球. A = "取到最后一个是白球", B = "取到最后一段是白球". 问随机事件A 与 B 的关系?

解:

1) B 发生必然导致A发生, 所以 B ⊂ A;

例1.1.1: 口袋中有a 个白球, b 个黑球, 从中一个一个不返回地取球. A = "取到最后一个是白球", B = "取到最后一段是白球". 问随机事件A 与 B 的关系?

解:

- 1) B 发生必然导致A发生, 所以 B ⊂ A;
- 2) 又因为A发生必然导致B发生, 所以 A ⊂ B,

例1.1.1: 口袋中有a 个白球, b 个黑球, 从中一个一个不返回地取球. A = "取到最后一个是白球", B = "取到最后一段是白球". 问随机事件A 与 B 的关系?

解:

- 1) B 发生必然导致A发生, 所以 B ⊂ A;
- 2) 又因为A发生必然导致B发生, 所以 A ⊂ B,
- 由此得 A = B.

1.1.6 事件的运算

 $\mathbf{H}: A \cup B$ $A \subseteq B$ 至少有一发生

交: $A \cap B = AB$ $A \subseteq B$ 同时发生

差: A - B A发生但 B不发生

对立: \overline{A} A 不发生

事件运算的图示

- \bullet $A \cup B$
- \bullet $A \cap B = AB$
- \bullet A-B

1.1.6 事件的运算(续)

 $\mathbf{H}: A \cup B$ $A \subseteq B$ 至少有一发生

• $\bigcup_{i=1}^{n} A_i$ 有限并; $\bigcup_{i=1}^{\infty} A_i$ 可列并.

1.1.6 事件的运算(续)

 $\mathbf{H}: A \cup B$ $A \subseteq B$ 至少有一发生

• $\bigcup_{i=1}^{n} A_i$ 有限并; $\bigcup_{i=1}^{\infty} A_i$ 可列并.

交: $A \cap B = AB$ $A \subseteq B$ 同时发生

• $\bigcap_{i=1}^{n} A_i$ 有限交; $\bigcap_{i=1}^{\infty} A_i$ 可列交.

1.1.6 事件的运算(续)

 $\mathbf{H}: A \cup B$ $A \subseteq B$ 至少有一发生

• $\bigcup_{i=1}^{n} A_i$ 有限并; $\bigcup_{i=1}^{\infty} A_i$ 可列并.

交: $A \cap B = AB$ $A \subseteq B$ 同时发生

• $\bigcap_{i=1}^{n} A_i$ 有限交; $\bigcap_{i=1}^{\infty} A_i$ 可列交.

差: A – B A发生但 B不发生

对立: \overline{A} A 不发生

- $\bullet \ \overline{A} \cap A = \emptyset$
- $A B = A\overline{B}$
- \bullet A B = A AB
- 思考上式的特殊情况: 如果A和B互不相容, A B = ?

事件运算的性质

- 1. 交换律
 - \bullet $A \cup B = B \cup A, AB = BA$
- 2. 结合律
 - $\bullet \ (A \cup B) \cup C = A \cup (B \cup C), (AB)C = A(BC)$
- 3. 分配律
 - $(A \cup B) \cap C = AC \cup BC$
 - $\bullet \ (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
- 4. 对偶律 (德摩根公式)
 - $\bullet \ \overline{A \cup B} = \overline{A} \cap \overline{B}$
 - $\bullet \ \overline{A \cap B} = \overline{A} \cup \overline{B}$

事件运算的性质

用集合论的语言证明: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

证明:

设样本点 $\omega \in \overline{A \cup B}$,这表明 ω 既不属于A也不属于B, 即 $\omega \notin A$ 和 $\omega \notin B$ 同时成立, 所以 $\omega \in \overline{A} \cap \overline{B}$, 所以

 $\overline{A \cup B} \subset \overline{A} \cap \overline{B}$

反之,设样本点 $\omega\in\overline{A}\cap\overline{B}$, 所以 $\omega\notin A$ 和 $\omega\notin B$ 同时成立,即 ω 既不属于A也不属于B,所以 $\omega\notin A\cup B$,即 $\omega\in\overline{A\cup B}$.所以

 $\overline{A} \cap \overline{B} \subset \overline{A \cup B}$

综上, $\overline{A \cup B} = \overline{A} \cap \overline{B}$

德莫根公式(Demorgan's laws)

德莫根公式可推广到多个(有限个)事件及可列个事件场合

$$\bullet \ \overline{\bigcup_{i=1}^n A_i} = \bigcap_{i=1}^n \overline{A_i}$$

$$\bullet \ \overline{\bigcup_{i=1}^{\infty} A_i} = \bigcap_{i=1}^{\infty} \overline{A_i}$$

$$\bullet \ \bigcap_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} \overline{A_{i}}$$

$$\bullet \ \overline{\bigcap_{i=1}^{\infty}} A_i = \bigcup_{i=1}^{\infty} \overline{A_i}$$

概率论与集合论术语对应

记号

- Ω
- Øω
- \bullet $A \subset B$
- \bullet $AB = \emptyset$
- \bullet $A \cup B$
- **●** *AB*
- \bullet A-B
- \bullet \overline{A}

概率论

- 样本空间,必然事件
- 不可能事件
- 样本点
- A发生必然导致B发生
- A与B互不相容
- A与B至少有一发生
- *A与B*同时发生
- A发生且B不发生
- A不发生, 对立事件

集合论

- 空间
- 空集
- 元素
- A是B的子集
- A与B无相同元素
- A与B的并集
- A与B的交集
- A与B的差集
- A的余集

注意点(1)

- 基本事件互不相容,基本事件之并=Ω
- \bullet $A \cap \overline{A} = \emptyset$
- \bullet $A \cup \overline{A} = \Omega$
- \bullet $A \cap \varnothing = \varnothing$
- \bullet $A \cup \varnothing = A$
- \bullet $A \cap \Omega = A$
- ullet $A\cup\Omega=\Omega$
- $\varnothing \subset AB \subset A$ or $B \subset A \cup B \subset \Omega$

注意点(2)

$$\bullet$$
 $A \subset B \Rightarrow A \cup B = B, AB = A$

$$\bullet$$
 $A - B = A - AB$

$$\bullet \ A \cup B = A \cup (B - A) = A \cup (B - AB)$$

$$\bullet \ A = AB \cup A\overline{B}$$

样本空间的分割

若 $A_1, A_2, ..., A_n$ 有

- 1. A_i互不相容;
- **2**. $A_1 \cup A_2 \cup ... \cup A_n = \Omega$

则称 $\mathcal{D} = \{A_1, A_2, ..., A_n\}$ 为样本空间 Ω 的一组分割.

1. 若 $A \in B$ 的子事件,则 $A \cup B = ()$, AB = ()

1. 若 $A \in B$ 的子事件,则 $A \cup B = ()$, AB = ()

解: $A \cup B = (B)$, AB = (A)

- 2. 设 A 与 B 同时出现时 C 也出现,则()
 - ① $A \cup B$ 是 C 的子事件;
 - ② C 是 $A \cup B$ 的子事件;
 - ③ AB 是 C 的子事件;
 - ④ C 是 AB的子事件.

- 2. 设 A 与 B 同时出现时 C 也出现,则()
 - ① $A \cup B$ 是 C 的子事件;
 - ② C 是 $A \cup B$ 的子事件;
 - ③ *AB* 是 *C* 的子事件;
 - ④ C 是 AB的子事件.

解: ③

- 3. 设事件 A = "甲种产品畅销,乙种产品滞销",则A的对立事件为()
 - ①甲种产品滞销,乙种产品畅销;
 - ②甲, 乙两种产品均畅销;
 - ③甲种产品滞销;
 - ④甲种产品滞销或者乙种产品畅销.

- 3. 设事件 A = "甲种产品畅销,乙种产品滞销",则A的对立事件为()
 - ①甲种产品滞销,乙种产品畅销;
 - ②甲, 乙两种产品均畅销;
 - ③甲种产品滞销;
 - ④甲种产品滞销或者乙种产品畅销.

解: ④

4. 设 x 表示一个沿数轴做随机运动的质点位置,试说明下列各对事件间的关系

①
$$A = |x - a| < \tau, B = x - a < \tau$$

②
$$A = x > 20$$
, $B = x \le 22$

$$3$$
 $A = x > 22, B = x < 19$

4. 设 x 表示一个沿数轴做随机运动的质点位置,试说明下列各对事件间的关系

①
$$A = |x - a| < \tau, B = x - a < \tau$$

②
$$A = x > 20, B = x \le 22$$

$$3$$
 $A = x > 22, B = x < 19$

解:

- \bigcirc $A \subset B$
- ②相容
- ③不相容

5. A, B, C 是定义在样本空间 Ω 上的三个事件. 试用A, B, C表示下列事件:

① A出现;

- ① A出现; A
- ②仅A出现;

- ① A出现; A
- ②仅A出现; $A\overline{B}$ \overline{C}
- ③恰有一个出现;

- ① A出现; A
- ②仅A出现; $A\overline{B}$ \overline{C}
- ③恰有一个出现; $A\overline{B} \ \overline{C} \cup \overline{A}B\overline{C} \cup \overline{A} \ \overline{B}C$
- ④至少有一个出现;

- 5. A, B, C 是定义在样本空间 Ω 上的三个事件. 试用A, B, C表示下列事件:
 - ① A出现; A
 - ②仅A出现; $A\overline{B}$ \overline{C}
 - ③恰有一个出现; $A\overline{B} \ \overline{C} \cup \overline{A}B\overline{C} \cup \overline{A} \ \overline{B}C$
 - ④至少有一个出现; $A \cup B \cup C$
 - ⑤至多有一个出现;

- 5. A, B, C 是定义在样本空间 Ω 上的三个事件. 试用A, B, C表示下列事件:
 - ① A出现; A
 - ②仅A出现; $A\overline{B}$ \overline{C}
 - ③恰有一个出现; $A\overline{B} \ \overline{C} \cup \overline{A}B\overline{C} \cup \overline{A} \ \overline{B}C$
 - ④至少有一个出现; $A \cup B \cup C$
 - ⑤至多有一个出现; \overline{A} \overline{B} $\overline{C} \cup A\overline{B}$ $\overline{C} \cup \overline{A}B\overline{C} \cup \overline{A}$ $\overline{B}C$
 - ⑥都不出现;

- 5. A, B, C 是定义在样本空间 Ω 上的三个事件. 试用A, B, C表示下列事件:
 - ① A出现; A
 - ②仅A出现; $A\overline{B}$ \overline{C}
 - ③恰有一个出现; $A\overline{B} \ \overline{C} \cup \overline{A}B\overline{C} \cup \overline{A} \ \overline{B}C$
 - ④至少有一个出现; $A \cup B \cup C$
 - ⑤至多有一个出现; \overline{A} \overline{B} $\overline{C} \cup A\overline{B}$ $\overline{C} \cup \overline{A}B\overline{C} \cup \overline{A}$ $\overline{B}C$
 - ⑥都不出现; $\overline{A} \overline{B} \overline{C}$
 - ⑦不都出现;

- ① A出现; A
- ②仅A出现; $A\overline{B}$ \overline{C}
- ③恰有一个出现; $A\overline{B} \ \overline{C} \cup \overline{A}B\overline{C} \cup \overline{A} \ \overline{B}C$
- ④至少有一个出现; $A \cup B \cup C$
- ⑤至多有一个出现; \overline{A} \overline{B} $\overline{C} \cup A\overline{B}$ $\overline{C} \cup \overline{A}B\overline{C} \cup \overline{A}$ $\overline{B}C$
- ⑥都不出现; $\overline{A} \overline{B} \overline{C}$
- ⑦不都出现; $\overline{ABC} = \overline{A} \cup \overline{B} \cup \overline{C}$
- ⑧至少有两个出现:

- 5. A, B, C 是定义在样本空间 Ω 上的三个事件. 试用A, B, C表示下列事件:
 - ① A出现; A
 - ②仅A出现; $A\overline{B}$ \overline{C}
 - ③恰有一个出现; $A\overline{B} \ \overline{C} \cup \overline{A}B\overline{C} \cup \overline{A} \ \overline{B}C$
 - ④至少有一个出现; $A \cup B \cup C$
 - ⑤至多有一个出现; \overline{A} \overline{B} $\overline{C} \cup A\overline{B}$ $\overline{C} \cup \overline{A}B\overline{C} \cup \overline{A}$ $\overline{B}C$
 - ⑥都不出现; $\overline{A} \overline{B} \overline{C}$
 - ⑦不都出现; $\overline{ABC} = \overline{A} \cup \overline{B} \cup \overline{C}$
 - ⑧至少有两个出现; $AB \cup BC \cup AC$

1.1.7 事件域

引入事件域的概念为定义事件的概率做准备:

设 Ω 为样本空间, \mathcal{F} 是由 Ω 的子集组成的集合类, 若 \mathcal{F} 满足 以下三点, 则称 F 为事件域

- 1. $\Omega \in \mathcal{F}$:
- 2. 若 $A \in \mathcal{F}$.则 $\overline{A} \in \mathcal{F}$:
- 3. 若 $A_n \in \mathcal{F}$,n = 1, 2, ..., 则 $\bigcup A_n \in \mathcal{F}$.

事件域又称 σ 域或 σ 代数.

称 (Ω, \mathcal{F}) 为可测空间. 可测是指 \mathcal{F} 是有概率可言的(可以 在F上定义概率).

第1次作业

习题1.1中题目1, 3, 4, 5, 7, 8, 9

§1.2 概率的定义及其确定方法

什么是概率?

- 直观定义——事件A出现的可能性大小.
- 统计定义——事件A在大量重复试验下出现的频率的 稳定值称为该事件的概率.
- 古典定义; 几何定义.

如何给出概率的一般定义?

1.2.1 概率的公理化定义

定义1.2.1 设 Ω 为一个样本空间, \mathcal{F} 为 Ω 的某些子集组成的一个事件域. 如果对任一事件 $A \in \mathcal{F}$, 定义在 \mathcal{F} 上的一个实值函数 P(A)满足:

- 非负性公理: $P(A) \ge 0$;
- 正则性公理: $P(\Omega) = 1$;
- 可列可加性公理: 若 $A_1, A_2, ..., A_n, ...$ 互不相容,则 $P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$

则称P(A) 为事件A的概率, 称三元素 (Ω, \mathcal{F}, P) 为概率空间.

- 概率公理化定义没有说明概率应该如何确定
- 频率方式, 古典概率, 几何概率等确定概率的方法满足公理,均可看作是恰当的概率确定方式

试运用概率公理化定义证明:

- 性质1.3.1 $P(\emptyset) = 0$.
- 性质1.3.2 (有限可加性) 若 $AB = \emptyset$ (互不相容), 则 $P(A \cup B) = P(A) + P(B)$.
- 性质1.3.3 (对立事件公式) $P(\overline{A}) = 1 P(A)$.

1.2.2 排列(permutation)与组合公 式(combination)

下面介绍古典概率确定方法中常用到的排列和组合概念. 从 n 个元素中任取 r 个. 求取法数.

排列讲次序,组合不讲次序.

排列和组合公式推导均基于如下基数原理:

- 加法原则: 完成某件事情有 n 类途径, 在第一类途径中 有 m_1 种方法, 在第二类途径中有 m_2 种方法, 依次类推, 在第 n 类途径中有 m_n 种方法,则完成这件事共有 $m_1 + m_2 + ... + m_n$ 种不同的方法.
- 乘法原则: 完成某件事情需先后分成 n 个步骤, 做第一 步有 m_1 种方法, 第二步有 m_2 种方法, 依次类推, 第 n 步 有 m_n 种方法,则完成这件事共有 $m_1 \times m_2 \times ... \times m_n$ 种不 同的方法.

排列

- 排列: $P_n^r = \frac{n!}{(n-r)!} = n(n-1)...(n-r+1)$
- 全排列(r=n): $P_n=n!$ (阶乘 factorial of n)
- 规定: 0! = 1
- 重复排列(有放回的取r次, permutation with replacement): n^r

组合

• 组合:

$$C_n^r \equiv \binom{n}{r} = rac{P_n^r}{r!} = rac{n}{r} + rac{n}{r} + rac{n}{r} + rac{n!}{r}$$

- 规定: $\binom{n}{0} = 1$
- 重复组合(combination with replacement):

$$C_{n+r-1}^r = \binom{n+r-1}{r}$$
 (放回了 $r-1$ 次)

1.2.3 确定概率的频率方法

确定概率的频率方法

- 随机试验可大量重复进行.
- 进行n次重复试验, 记 n(A) 为事件A的**频数**, $n(A) = \frac{n(A)}{n}$ 为事件A的**频率**.
- 频率f_n(A)会稳定于某一常数(稳定值).
- 用频率的稳定值作为该事件的概率.

eg. 预测Covid-19在人群中的患病率(prevalence), 可用随机选取的血清样本阳性频率逼近.

1.2.3 确定概率的频率方法

证明用频率方法确定的概率满足公理化定义:

- 非负性: $f_n(A) \ge 0$;
- 正则性: $P(\Omega) = 1$;
- 可列可加性: 若事件 $A_1,A_2,...,A_n,...$ 互不相容, 则事件 $\overset{\infty}{\underset{i=1}{\bigcup}}$ A_i的频数等于分别计算各事件的频数再相 $nn(\overset{\infty}{\underset{i=1}{\bigcup}}A_i)=\overset{\infty}{\underset{i=1}{\sum}}n(A_i).$

故
$$f_n\left(igcup_{i=1}^{\infty}A_i\right)=rac{n(igcup_{i=1}^{\infty}A_i)}{n}=rac{\sum\limits_{i=1}^{\infty}n(A_i)}{n}=\sum\limits_{i=1}^{\infty}f_n(A_i)$$

1.2.4 确定概率的古典方法: 古典概型

若一个随机试验 (Ω, \mathcal{F}, P) 具有以下两个特征:

- (1) **有限性.** 样本空间的元素(基本事件)只有为有限 个,即 $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$;
- (2) **等可能性.** 每个基本事件发生的可能性是相等的, 即 $P(\omega_1) = P(\omega_2) = ... = P(\omega_n)$.

则称这类随机试验的数学模型为古典概型.

其中事件A的概率为: P(A) = A中样本点的个数 / 样本点总数.

注意

- 抛一枚硬币三次 ⇔ 抛三枚硬币一次
- Ω₁ = { (正正正), (反正正), (正反正), (正正反),(正反反), (反反反)}
 此样本空间中的样本点等可能.
- $\Omega_2 = \{(\Xi E), (\Xi E E), (\Xi E E), (\Xi E)\}$ 此样本空间中的样本点不等可能.

计算古典概率时要确保样本空间中每个样本点等可能性.

例1.2.1

 $n (n \ge 3)$ 个人围一圆桌坐, 求甲, 乙两人相邻而坐的概率.

解:

例1.2.1

 $n (n \ge 3)$ 个人围一圆桌坐, 求甲, 乙两人相邻而坐的概率.

解: 考虑甲先坐好,则乙有n-1个位置可坐,而"甲乙相邻"只有两种情况,所以

$$P(A) = 2/(n-1)$$
.

例1.2.2

 $n(n \ge 3)$ 个人坐成一排, 求甲, 乙两人相邻而坐的概率. (注意: 请与上一题作比较)

解:

- 1) 先考虑样本空间的样本点数: 甲先坐, 乙后坐, 则共有n(n-1)种可能.
- 2) 甲在两端,则乙与甲相邻共有2种可能.
- 3) 甲在中间(n-2)个位置上,则乙左右都可坐,所以共有2(n-2)种可能.由此得所求概率为:

$$\frac{2 + 2(n-2)}{n(n-1)} = \frac{2}{n}$$

常见模型(1) —— 不返回抽样 (sampling without replacement)

N件产品, 其中M件不合格品, N-M件合格品. (口袋中 有M个白球, N-M个黑球). 从中不返回任取n件产品, 则此 "n 件中有 m 件不合格品" (定义为事件 A_m) 的概率为:

$$P(A_m) = \frac{\binom{M}{m} \binom{N-M}{n-m}}{\binom{N}{n}}$$

其中, n < N, m < M, n - m < N - M.

● 此模型又称超几何模型(hypergeometric model).

思考题

口袋中有5个白球,7个黑球,4个红球.从中不返回任取3个. 求取出的3个球为不同颜色的球的概率.

解:

思考题

口袋中有5个白球,7个黑球,4个红球.从中不返回任取3个. 求取出的3个球为不同颜色的球的概率.

解:

$$\frac{\binom{5}{1}\binom{7}{1}\binom{4}{1}}{\binom{16}{3}} = \frac{1}{4}$$

彩票问题——幸运35选7

购买: 从01,...,35 中选7个号码. 开奖: 7个基本号码,1个特殊号码. 中奖规则如下:

中奖级别	中奖规则
1等奖	7个基本号码
2等奖	6个基本号码 + 1个特殊号码
3等奖	6个基本号码
4等奖	5个基本号码 + 1个特殊号码
5等奖	5个基本号码
6等奖	4个基本号码 + 1个特殊号码
7等奖	4个基本号码,或3个基本号码+1个特殊号码

求中奖概率.

中奖概率

- Ω中所含样本点个数: C₃₅⁷
- 将35个号分成三类: 7个基本号码, 1个特殊号码, 27个 无用号码
- 记 p_i 为中i等奖的概率. 利用抽样模型得:

$$p_1 = \frac{C_7^7 C_1^0 C_{27}^0}{C_{35}^7}, p_2 = \frac{C_7^6 C_1^1 C_{27}^0}{C_{35}^7}, \dots$$

中奖概率

中奖概率如下:

$$p_1 = \frac{1}{6724520}, p_2 = \frac{7}{6724520}$$

$$p_3 = \frac{189}{6724520}, p_4 = \frac{567}{6724520}$$

$$p_5 = \frac{7371}{6724520}, p_6 = \frac{12285}{6724520}$$

$$p_7 = \frac{204750}{6724520}$$

不中奖的概率为:

$$p_0 = 1 - p_1 - p_2 - p_3 - p_4 - p_5 - p_6 - p_7 = 0.9665$$

常见模型(2) —— 返回抽样 (sampling with replacement)

N 件产品, 其中M件不合格品, N-M件合格品. 从中有返回地任取n件.

求事件 B_m ="n件中有m 件不合格品"的概率(记做 $P(B_m)$). 其中, $m \le n, m = 0, 1, 2, ..., n$.

常见模型(2) —— 返回抽样 (sampling with replacement)

N 件产品, 其中M件不合格品, N-M件合格品. 从中有返回地任取n件.

样本空间Ω中样本点的总数:

常见模型(2) —— 返回抽样 (sampling with replacement)

N 件产品, 其中M件不合格品, N-M件合格品. 从中有返回地任取n件.

样本空间 Ω 中样本点的总数: N^n

常见模型(2) —— 返回抽样 (sampling with replacement)

N 件产品, 其中M件不合格品, N-M件合格品. 从中有返回地任取n件.

样本空间 Ω 中样本点的总数: N^n

事件 B_0 ="n件中有0 件不合格品"的概率:

常见模型(2) —— 返回抽样 (sampling with replacement)

N 件产品, 其中M件不合格品, N-M件合格品. 从中有返回地任取n件.

样本空间 Ω 中样本点的总数: N^n

事件 B_0 ="n件中有0 件不合格品"的概率:

$$P(B_0) = \left(\frac{N-M}{N}\right)^n$$

事件 B_1 ="n件中有1 件不合格品"的概率:

常见模型(2) —— 返回抽样 (sampling with replacement)

N 件产品, 其中M件不合格品, N-M件合格品. 从中有返回 地任取n件.

样本空间 Ω 中样本点的总数: N^n

事件 $B_0=$ "n件中有0 件不合格品"的概率:

$$P(B_0) = \left(\frac{N-M}{N}\right)^n$$

事件 $B_1=$ "n件中有1 件不合格品"的概率:

$$P(B_m) = \binom{n}{1} \frac{M^1 (N-M)^{n-1}}{N^n}$$

为第i次抽取到不合格品的可能总数.

常见模型(2) —— 返回抽样 (sampling with replacement)

N 件产品. 其中M件不合格品. N-M件合格品. 从中有返回 地任取n件. 则此n件中有m 件不合格品的概率(记 做 $P(B_m)$)为:

$$P(B_m) = \binom{n}{m} \frac{M^m (N-M)^{n-m}}{N^n} = \binom{n}{m} \left(\frac{M}{N}\right)^m \left(\frac{N-M}{N}\right)^{n-m}$$

其中. m < n, m = 0, 1, 2, ..., n.

常见模型(3) —— 盒子模型

n 个不同球放入 N个不同的盒子中. 每个盒子中所放球数不限. 求恰有n个盒子中各有一球的概率 $(n \le N)$

$$p = \frac{\binom{N}{n} \cdot n!}{N^n} = \frac{P_N^n}{N^n} = \frac{N!}{N^n(N-n)!}$$

课堂练习. 生日问题

求n个人中至少有两人生日相同的概率.

解:

课堂练习. 生日问题

求n个人中至少有两人生日相同的概率.

解: 看成 n个球放入N = 365个盒子中.

P(至少两人生日相同)=1 - P(生日全不相同).

用盒子模型得: $p_n = P(至少两人生日相同)=$

$$1 - \frac{365!}{365^n(365 - n)!}$$

 $p_{20} = 0.4058, p_{30} = 0.6963, p_{50} = 0.9651, p_{60} = 0.9922$

1.2.5 确定概率的几何方法(几何概型)

若

- 1) **(可度量性)** 样本空间 Ω 充满某个区域, 其度量(长度, 面积, 体积)为 S_{Ω} ;
- 2) **(等可能性)** 落在 Ω 中的任一子区域A的概率, 只与子区域的度量 S_A 有关, 而与子区域的位置无关

则事件A的概率为: $P(A) = \frac{S_A}{S_{\Omega}}$

图 1.2.2 落在度量相同的 子区域内的等可能性

图 1.2.3 几何概率

几何概型的例子:

例1.2.3 蒲丰投针问题(Buffon's needle problem) 平面上画有间隔为d的等距平行线,向平面任意投掷一枚长为 ℓ 的针($\ell < d$),求针与平行线相交的概率.

蒲丰投针问题

解: 以x表示针的中点与最近一条平行线的距离, 又以 ϕ 表示 针与此直线间的交角. 样本空间 Ω 满足:

$$0 \le x \le d/2; 0 \le \varphi \le \pi$$

 Ω 形成 $x-\varphi$ 平面上的一个矩形, 其面积为: $S_{\Omega}=d\pi/2$

A = "针与平行线相交" 的充要条件是:

$$x \leq \frac{\ell}{2} sin(\varphi)$$
. (垂直边长)

图 1.2.5 蒲丰投针问题

图 1.2.6 蒲丰投针问题中的 Ω 和 A

蒲丰投针问题

针是任意投掷的, 所以这个问题可用几何方法求解得

$$P(A) = rac{S_A}{S_\Omega} = rac{\int_0^\pi rac{\ell}{2} \sin(\varphi) d\varphi}{d\pi/2} = rac{2\ell}{d\pi}$$
 (三角函数积分)

蒲丰投针问题

藩 = 24 计问题中的 Ω 和 A

(三角函数积分:

$$\int_0^\pi \sin(\varphi) d\varphi = -\cos(\varphi) \Big|_0^\pi = -(-1-1) = 2$$

π 的随机模拟

- 由蒲丰投针问题知: 长为L的针与平行线相交的概率为: $\frac{2\ell}{d\pi}$.
- 而实际去做 N 次试验, 得 n 次针与平行线相交, 则频率为: n/N.
- 用频率代替概率得: $\pi \approx 2\ell N/(dn)$.
- 这种方法称为随机模拟法,也称模特卡罗方法(Monte-Carlo Simulation).

1.2.5 确定概率的主观方法(略)

一件事件的概率是人们根据经验对该事件发生可能性所给出的个人(主观)信念(贝叶斯学派Bayesian school). 这样给出的概率成为主观概率.

在计量经济学贝叶斯估计中有应用.

第2次作业

习题1.2中题目1, 4, 6, 7, 9, 10, 15, 23, 27, 28

习题1.3中题目1, 4, 5, 7, 9, 11, 14, 18, 20, 22

§1.3 概率的性质

可由概率的公理化定义推导出概率的一系列性质:

- 性质1.3.1 $P(\emptyset) = 0$.
- 注意: 逆不一定成立.

1.3.1 概率的可加性

• 性质1.3.2 (有限可加性) 若 $AB = \emptyset$ (互不相容), 则 $P(A \cup B) = P(A) + P(B)$.

可推广到
$$n$$
 个互不相容事件: $P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$

• 性质1.3.3 (对立事件公式) $P(\overline{A}) = 1 - P(A)$.

1.3.2 概率的单调性

性质1.3.4

- 若A包含B, $A \supset B$, 则 P(A B) = P(A) P(B); 证明: 若 $A \supset B$,则 $A = (A - B) \cup B \Rightarrow P(A) = P(A - B) + P(B)$;
- 若 $A \supset B$, 则 $P(A) \ge P(B)$.

性质1.3.5 对任意两个事件A和B, P(A - B) = P(A) - P(AB).

证明: 因为
$$A - B = A - AB$$
, 且 $AB \subset A$, 所以 $P(A - B) = P(A - AB) = P(A) - P(AB)$;

1. 若事件A与事件B互不相容, 即 $A \cap B = \emptyset$, 则 P(A - B) = P(A) - P(B)

1. 若事件A与事件B互不相容, 即 $A \cap B = \emptyset$, 则

$$P(A - B) = P(A) - P(B)$$

错!

1. 若事件A与事件B互不相容, 即 $A \cap B = \emptyset$, 则

$$P(A - B) = P(A) - P(B)$$

错!

若事件A与事件B互不相容, 即 $A \cap B = \emptyset$, 则 P(A - B) = P(A), 因为由性质1.3.5,

1. 若事件A与事件B互不相容, 即 $A \cap B = \emptyset$, 则

$$P(A - B) = P(A) - P(B)$$

错!

若事件
$$A$$
与事件 B 互不相容,即 $A \cap B = \emptyset$,则 $P(A - B) = P(A)$,因为由性质1.3.5, $P(A - B) = P(A) - P(AB)$,且 $P(AB) = 0$

2. 若事件A与事件B互不相容, 即 $A \cap B = \emptyset$, 则 P(A+B) = P(A) + P(B)

1. 若事件A与事件B互不相容, 即 $A \cap B = \emptyset$, 则

$$P(A - B) = P(A) - P(B)$$

错!

若事件A与事件B互不相容, 即 $A \cap B = \emptyset$, 则 P(A - B) = P(A), 因为由性质1.3.5,

2. 若事件A与事件B互不相容, 即 $A \cap B = \emptyset$, 则 P(A+B) = P(A) + P(B)

错! 事件运算没有定义加法(并, 交, 差, 对立).

1.3.3 概率的加法公式

性质1.3.6 (证明见后)

● 对任意两个事件A, B, 有

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

● 对任意三个事件, 有

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(AB) - P(AC) - P(BC) + P(ABC)$$

对任意n个事件,有

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i}A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i}A_{j}A_{k}) + \dots + (-1)^{n-1} P(A_{1}A_{2} \dots A_{n})$$

1.3.3 概率的加法公式

证明:
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

证明: 因为 1) $A \cup B = A \cup (B - AB)$, 2) A = B - AB 互不相 容, 3) $B \supset AB$, 所以

$$P(A \cup B) = P(A) + P(B - AB) = P(A) + P(B) - P(AB)$$

证明:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{1 \leq i < j \leq n} P(A_{i}A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i}A_{j}A_{k}) + \dots + (-1)^{n-1} P(A_{1}A_{2} \dots A_{n})$$

证明: 归纳法: n=2成立. 设n-1成立.

$$P\left(\bigcup_{i=1}^{n-1} A_i\right) = \sum_{i=1}^{n-1} P(A_i) - \sum_{1 \le i < j \le n-1} P(A_i A_j) + \sum_{1 \le i < j < k \le n-1} P(A_i A_j A_k) + \dots + (-1)^{n-2} P(A_1 A_2 \dots A_{n-1})$$

证明: 对n, 有

$$\begin{split} P\left(\bigcup_{i=1}^{n-1} A_i \cup A_n\right) &= P\left(\bigcup_{i=1}^{n-1} A_i\right) + P\left(A_n\right) - P\left(\bigcup_{i=1}^{n-1} A_i \cap A_n\right) \\ &= P\left(\bigcup_{i=1}^{n-1} A_i\right) + P\left(A_n\right) - P\left((A_1 A_n) \cup (A_2 A_n) \cup \dots (A_{n-1} A_n)\right) \\ &= \sum_{i=1}^{n-1} P(A_i) - \sum_{1 \leq i < j \leq n-1} P(A_i A_j) + \sum_{1 \leq i < j < k \leq n-1} P(A_i A_j A_k) \\ &+ \dots + (-1)^{n-2} P(A_1 A_2 \dots A_{n-1}) \\ &+ P\left(A_n\right) - P\underbrace{\left((A_1 A_n) \cup (A_2 A_n) \cup \dots (A_{n-1} A_n)\right)}_{\text{n-1项, 运用n-1成立时的展开公式}} \end{split}$$

=...

$$= \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) + \sum_{1 \le i < j < k \le n} P(A_i A_j A_k) + \dots + (-1)^{n-1} P(A_1 A_2 \dots A_n)$$

1.3.4 概率的连续性(不做重点掌握)

- 本节给出概率连续性的定义.
- 本节给出概率可列可加性的充要条件.
- 因为概率是事件(集合)的函数,所以先讨论事件(集合)的"极限",给出事件序列极限的定义.

事件序列的极限

定义1.3.1 \mathcal{F} 为 Ω 的某些子集组成的一个事件域.

若事件域 \mathcal{F} 中任一事件序列 $\{F_n\}$ 满足:

$$F_1 \subset F_2 \subset ... \subset F_n \subset ...$$

则称 $\{F_n\}$ 为**单调不减**事件序列, 其极限事件为

$$\lim_{n\to+\infty} F_n = \bigcup_{i=1}^{+\infty} F_n$$

若事件域 \mathcal{F} 中任一事件序列 $\{F_n\}$ 满足:

$$F_1 \supset F_2 \supset ... \supset F_n \supset ...$$

则称 $\{F_n\}$ 为**单调不增**事件序列,其极限事件为

$$\lim_{n\to+\infty} F_n = \bigcap_{i=1}^{+\infty} F_n$$

概率的连续性

定义1.3.2

对 \mathcal{F} 上的概率 $P(\cdot)$ (概率是集合函数),

(1) 若对 \mathcal{F} 中任一单调不减的事件序列 $\{F_n\}$, 有

$$P(\lim_{n\to+\infty}F_n)=\lim_{n\to+\infty}P(F_n)$$

则称 $P(\cdot)$ 是**下连续**的(continuous from below).(极限事件的 概率=事件概率的极限)

(2) 若对 \mathcal{F} 中任一单调不增的事件序列 $\{F_n\}$, 有

$$P(\lim_{n\to+\infty}F_n)=\lim_{n\to+\infty}P(F_n)$$

则称 $P(\cdot)$ 是**上连续**的(continuous from above). (极限事件的概率=事件概率的极限)

概率的连续性

性质1.3.7 (概率的连续性)

证明: 见教材

性质1.3.8 (可列可加性的充要条件)

• 若 $P(\cdot)$ 是事件域 \mathcal{F} 上满足: 非负, 正则的概率(集合函数), 则 $P(\cdot)$ 有可列可加性的充要条件是它具有有限可加性和下连续性.

证明: 见教材

$$AB=\varnothing, P(A)=0.6, P(A\cup B)=0.8,$$
 求 B 的对立事件的概率.

解:

 $AB = \emptyset, P(A) = 0.6, P(A \cup B) = 0.8, 求 B$ 的对立事件的概 率.

解:由
$$P(A \cup B) = P(A) + P(B) - P(AB) = P(A) + P(B)$$

得 $P(B) = P(A \cup B) - P(A) = 0.8 - 0.6 = 0.2$,
所以 $P(\overline{B}) = 1 - 0.2 = 0.8$.

解:

解: 因为
$$P(A - B) = P(A) - P(AB)$$
, 所以先求 $P(AB)$ 由加法公式得 $P(AB) = P(A) + P(B) - P(A \cup B)$ 所以 $P(A - B) = P(A) - P(AB) = 0.3$

利用对立事件

口袋中有n-1个黑球, 1个白球, 每次从口袋中随机地摸出一球, 并换入一只黑球. 求第k次取到黑球的概率.

解:

利用对立事件

口袋中有n-1个黑球, 1个白球, 每次从口袋中随机地摸出一球, 并换入一只黑球. 求第k次取到黑球的概率.

解: 记A为"第k次取到黑球",则A的对立事件为"第k次取到白球".

而"第k次取到白球"意味着: "第1次…第k-1次取到黑球, 而第k次取到白球"

$$P(A) = 1 - P(\overline{A}) = 1 - \frac{(n-1)^{k-1}}{n^k}$$

思考题

口袋中有n-2个黑球, 2个白球, 每次从口袋中随机地摸出一球, 并换入一只黑球. 求第k次取到黑球的概率.

(hint: 加总多种情况: 第k次摸到白球且只有第k次摸到白球, 第k次摸到白球且第1次摸到白球, 第k次摸到白球且第2次摸到白球, 第k次摸到白球且第3次摸到白球...)

- 一颗骰子掷4次,求至少出现一次6点的概率.
 - 解:

- 一颗骰子掷4次,求至少出现一次6点的概率.
 - 解:用对立事件进行计算,记 A="至少出现一次6点", 则 $\overline{A} = "从未出现6点", 所求概率为$

$$P(A) = 1 - P(\overline{A}) = 1 - \frac{5^4}{6^4} = 0.5177$$

两颗骰子掷 24 次, 求至少出现一次双6点的概率.

● 解:

两颗骰子掷 24 次, 求至少出现一次双6点的概率.

- **解**:记 $B = "至少出现一次双6点",则 <math>\overline{B} = "从未出现$ 双6点".
- 则所求概率为

$$P(B) = 1 - P(\overline{B}) = 1 - \frac{35^{24}}{36^{24}} = 0.4914$$

利用对立事件和加法公式

从 $1, 2, \dots, 9$ 中有返回地取n次, 求取出的n个数的乘积能被10整除的概率.

解:

利用对立事件和加法公式

从 $1, 2, \dots, 9$ 中有返回地取n次, 求取出的n个数的乘积能被10整除的概率.

解: 因为 "乘积能被10整除" 意味着:

- "取到过5"(记为A) 且 "取到过偶数" (记为B).
- 因此所求概率为 P(AB).
- 利用对立事件公式, 德莫根公式和加法公式

$$P(AB) = 1 - P(\overline{AB}) = 1 - P(\overline{A} \cup \overline{B})$$

$$= 1 - P(\overline{A}) - P(\overline{B}) + P(\overline{A} \overline{B})$$

$$= 1 - \frac{8^n}{9^n} - \frac{5^n}{9^n} + \frac{4^n}{9^n}$$

利用对称性

甲掷硬币n + 1次, 乙掷n次. 求甲掷出的正面数比乙掷出的正面数多的概率. (首先猜想答案)

解:

利用对称性

甲掷硬币n+1次, 乙掷n次. 求甲掷出的正面数比乙掷出的 正面数多的概率. (首先猜想答案)

解:记事件 甲亚="甲掷出的正面数",乙亚="乙掷出的正 面数". 甲辰="甲掷出的反面数",乙辰="乙掷出的反面数". (所谓的对称性是指事件"甲掷出反面数大于乙掷出反 面数"的概率与事件"甲掷出正面数大干乙掷出正面 数"的概率是相同的,因为这两个问题是对称的.)

$$\begin{split} P(\mathbb{P}_{\mathbb{E}} > \mathbb{Z}_{\mathbb{E}}) &= P(n+1-\mathbb{P}_{\mathbb{E}} > n-\mathbb{Z}_{\mathbb{E}}) \\ &= P(\mathbb{P}_{\mathbb{E}} - 1 < \mathbb{Z}_{\mathbb{E}}) = P(\mathbb{P}_{\mathbb{E}} \leq \mathbb{Z}_{\mathbb{E}}) \\ &= 1 - P(\overline{\mathbb{P}_{\mathbb{E}}} \leq \mathbb{Z}_{\mathbb{E}}) \\ &= 1 - P(\mathbb{P}_{\mathbb{E}} > \mathbb{Z}_{\mathbb{E}}) \\ &= 1 - P(\mathbb{P}_{\mathbb{E}} > \mathbb{Z}_{\mathbb{E}}) \quad (\text{对称性}) \end{split}$$

所以 $2P(\mathbb{P}_{\mathbb{E}} > \mathbb{Z}_{\mathbb{E}}) = 1$,由此得 $P(\mathbb{P}_{\mathbb{E}} \geq \mathbb{Z}_{\mathbb{E}}) = 1/2$

附: 常见模型(4) —— 配对模型

n个人, n顶帽子, 任意取, 至少一个人拿对自己帽子的概率.

记 A_i = "第i个人拿对自己的帽子", i = 1, ..., n.

求 $P(A_1 \cup A_2 \cup ... \cup A_n)$.

用加法公式:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i=1}^{n} P(A_{i}A_{i}) + \sum_{i=1}^{n} P(A_{i}A_{j}A_{k}) + \dots + (-1)^{n-1} P(A_{1}A_{2}...A_{n})$$

配对模型(续)

由于:

- $P(A_i) = 1/n$,
- $P(A_iA_i) = 1/n(n-1)$,
- $P(A_iA_iA_k) = 1/n(n-1)(n-2),$
- ...
- $P(A_1A_2...A_n) = 1/n!$

所以:

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = n \frac{1}{n} - \binom{n}{2} \frac{1}{n(n-1)} + \dots + (-1)^{n-1} \frac{1}{n!} = 1 - \frac{1}{2!} + \frac{1}{3!} + \dots + (-1)^{n-1} \frac{1}{n!} \to 1 - e^{-1}$$

第2次作业

习题1.2中题目1, 4, 6, 7, 9, 10, 15, 23, 27, 28

习题1.3中题目1, 4, 5, 7, 9, 11, 14, 18, 20, 22

§1.4 条件概率

知道某事件发生的条件下, 另一事件发生的概率.

Motivation 1: 计量经济学中核心概念之一

Motivation 2:

- 1) 10个人摸彩, 有3张中彩.
 - 问: 第1个人中彩的概率为多少? P(A) = 3/10
 - 第2个人中彩的概率为多少? P(B) = 3/10
- 2) 10个人摸彩, 有3张中彩.
 - 问: 已知第1个人摸中, 第2个人中彩的概率为多少? $P(B|A) = 2/9 = \frac{C_3^2/C_{10}^2}{3/10} = P(AB)/P(A)$

1.4.1条件概率的定义

定义1.4.1 设事件A与B是样本空间 Ω 中的两个事件. 若 P(B) > 0, 则称

$$P(A|B) = \frac{P(AB)}{P(B)}$$

为"在B发生的条件下, A的条件概率", 简称条件概率.

条件概率P(A|B)的计算

- 1) 缩减样本空间: 将 Ω 缩减为 $\Omega_B = B$ (如motivation中的例子).
- 2) 用定义: P(A|B) = P(AB)/P(B).

例1.4.1

10个产品中有7个正品, 3个次品, 从中不放回地抽取两个, 已知第一个取到次品, 求第二个取到正品的概率.

解: 设 $A = \{$ 第一个取到次品 $\}$, $B = \{$ 第二个取到正品 $\}$,

解法1: 缩减样本空间, 易知概率为7/9

解法2: 用条件概率定义

$$P(B|A) = P(AB)/P(A) = \frac{C_3^1 C_7^1 / A_{10}^2}{3/10}$$

条件概率是概率

性质1.4.1 (条件概率是概率): 条件概率 P(A|B)满足概率的 三条公理. 即若设P(B) > 0, 则

- 1) $P(A|B) \ge 0, A \in \mathcal{F}$ (用定义证明)
- 2) $P(\Omega|B) = 1$ (用定义证明)
- 3) 若 \mathcal{F} 中的 $A_1, A_2, \ldots, A_n, \ldots$ 互不相容,

$$\text{IIP}(\bigcup_{n=1}^{\infty} A_n | B) = \sum_{n=1}^{\infty} P(A_n | B).$$

证明: 若 \mathcal{F} 中的 $A_1, A_2, \ldots, A_n, \ldots$ 互不相容,

$$\text{IIP}(\bigcup_{n=1}^{\infty} A_n | B) = \sum_{n=1}^{\infty} P(A_n | B).$$

因为 $A_1, A_2, \ldots, A_n, \ldots$ 互不相容, 所以 $A_1B, A_2B, \ldots, A_nB, \ldots$ 也互不相容, 故

$$P(\bigcup_{n=1}^{\infty} A_n | B) = \frac{P\left(\left(\bigcup_{n=1}^{\infty} A_n\right) B\right)}{P(B)} = \frac{P\left(\bigcup_{n=1}^{\infty} (A_n B)\right)}{P(B)}$$
$$= \sum_{n=1}^{\infty} \frac{P\left(A_n B\right)}{P(B)}$$
$$= \sum_{n=1}^{\infty} P(A_n | B)$$

因为条件概率是概率. 所以条件概率具有概率的一切性质. 由此得:

- $P(A \cup B|C) = P(A|C) + P(B|C) P(AB|C)$
- 若 A 与 B 互不相容, 则 $P(A \cup B|C) = P(A|C) + P(B|C)$
- $P(\overline{A}|B) = 1 P(A|B)$.

注意点

- $P(\Omega|B) = 1 ;$
- P(B|Ω)─般不等于 1;
- $P(A|\Omega) = P(A);$
- P(A|A) = 1.

(1) 设P(B) > 0, 且 $A \subset B$, 则下列必然成立的是()

①
$$P(A) < P(A|B)$$
 ② $P(A) \le P(A|B)$

③
$$P(A) > P(A|B)$$
 ④ $P(A) \ge P(A|B)$

(1) 设P(B) > 0, 且 $A \subset B$, 则下列必然成立的是()

①
$$P(A) < P(A|B)$$
 ② $P(A) \le P(A|B)$

③
$$P(A) > P(A|B)$$
 ④ $P(A) \ge P(A|B)$

解: ②

(1) 设P(B) > 0, 且 $A \subset B$, 则下列必然成立的是()

①
$$P(A) < P(A|B)$$
 ② $P(A) \le P(A|B)$

③
$$P(A) > P(A|B)$$
 ④ $P(A) \ge P(A|B)$

解: ②

(2)
$$P(A) = 0.6, P(A \cup B) = 0.84, P(\Omega - B|A) = 0.4, \text{ M}$$
 $P(B) = ().$

(1) 设P(B) > 0, 且 $A \subset B$, 则下列必然成立的是()

①
$$P(A) < P(A|B)$$
 ② $P(A) \le P(A|B)$

③
$$P(A) > P(A|B)$$
 ④ $P(A) \ge P(A|B)$

解: ②

(2)
$$P(A)=0.6, P(A\cup B)=0.84, P(\Omega-B|A)=0.4$$
, 则 $P(B)=$ (). 解: 0.6

条件概率的运算

- 乘法公式;
- 全概率公式;
- 贝叶斯公式.

1.4.2 乘法公式

性质1.4.2

(1) 若
$$P(B) > 0$$
, 则 $P(AB) = P(B)P(A|B)$; 若 $P(A) > 0$, 则 $P(AB) = P(A)P(B|A)$.

(2) 若 $P(A_1A_2...A_{n-1}) > 0$, 则

$$P(A_1A_2...A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1A_2...A_{n-1})$$

乘法公式主要用于求几个事件同时发生的概率.

乘法公式的应用

例: 一批零件共有100个, 其中10个不合格品. 从中一个一个不返回取出, 求第三次才取出不合格品的概率.

解: 记 A_i ="第i次取出的是不合格品", B_i ="第i次取出的是合格品", 目的求 $P(B_1B_2A_3)$ 用乘法公式.

$$P(B_1B_2A_3) = P(B_1)P(B_2|B_1)P(A_3|B_1B_2) = \frac{90}{100}\frac{89}{99}\frac{10}{98}$$

1.4.3 全概率公式(Law of total probability)

全概率公式用于求复杂事件的概率.

性质1.4.3 若事件 $B_1, B_2, ..., B_n$ 是样本空间 Ω 的一组分割, 即 $B_1, B_2, ..., B_n$ 互不相容, 且 $\bigcup B_i = \Omega$, 如果 $P(B_i) > 0$, 则对 任一事件A. 有

$$P(A) = P(A\Omega) = \sum_{i=1}^{n} P(AB_i) = \sum_{i=1}^{n} P(B_i) P(A|B_i)$$

- 使用全概率公式关键在于寻找另一组事件来"分割"样 本空间.
- 全概率公式最简单的形式: $P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B})$

证明1.4.3
$$P(A) = \sum_{i=1}^{n} P(AB_i) = \sum_{i=1}^{n} P(B_i) P(A|B_i)$$

证明:因为

$$A = A\Omega = A\left(\bigcup_{i=1}^{n} B_{i}\right) = \bigcup_{i=1}^{n} (AB_{i})$$

且 AB_1, AB_2, \ldots, AB_n 互不相容, 故

$$P(A) = P\left(\bigcup_{i=1}^{n} (AB_i)\right) = \sum_{i=1}^{n} P(AB_i)$$

再由乘法公式: P(AB) = P(B)P(A|B), 上式得证.

例1.4.2

设10 件产品中有 3 件不合格品, 从中不放回地取两次, 每次 一件, 求取出的第二件为不合格品的概率,

解: 设 A = "第一次取得不合格品", B = "第二次取得不合格 品".

由全概率公式得:

$$P(B) = P(A)P(B|A) + P(\overline{A})P(B|\overline{A})$$

= (3/10) × (2/9) + (7/10) × (3/9) = 3/10

摸彩模型

n 张彩票中有一张中奖, 从中不返回地摸取, 记 A_i 为"第i次摸到中奖券", 则

- (1) $P(A_1) = 1/n$.
- (2) 可用全概率公式计算得 $P(A_2) = 1/n$.
- (3) 可用归纳法计算得 $P(A_i) = 1/n$, i = 1, 2, ..., n.

当n 张彩票中有 k张中奖, $P(A_i) = k/n$, i = 1, 2, ..., n.

结论: 不论先后, 中彩机会是一样的.

例1.4.6

例1.4.6 保险公司认为投保人可以分为两类人: 一类为容易 出事故者, 一类为安全者. 统计表明: 一个易出事故者发生 事故的概率为0.4. 安全者发生事故的概率为0.1. 若假定第 一类人占所有投保人比例为20%,现有一个新的投保人投保 此保险, 问该投保人发生事故的概率有多大.

$$P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B})$$

= 0.2 × 0.4 + 0.8 × 0.1 = 0.16

全概率公式的习题

甲口袋有*a*只白球, *b*只黑球; 乙口袋有*n*只白球, *m*只黑球. 从甲口袋任取一球放入乙口袋, 然后从乙口袋中任取一球, 求从乙口袋中取出的是白球的概率.

解:

全概率公式的习题

甲口袋有*a*只白球, *b*只黑球; 乙口袋有*n*只白球, *m*只黑球. 从甲口袋任取一球放入乙口袋, 然后从乙口袋中任取一球, 求从乙口袋中取出的是白球的概率.

解:

概率为:

$$\frac{a}{a+b} \times \frac{n+1}{n+m+1} + \frac{b}{a+b} \times \frac{n}{n+m+1}$$

1.4.4 贝叶斯公式

- 乘法公式是求"几个事件同时发生"的概率;
- 全概率公式是求"最后结果"的概率;
- 贝叶斯公式是求后验概率的公式(已知"结果", 求"原因"的概率).

已知"结果", 求"原因"

某人从甲地到乙地, 乘飞机, 火车, 汽车迟到的概率分别为0.1, 0.2, 0.3, 他等可能地选择这三种交通工具. 若已知他最后迟到了, 求他分别是乘飞机, 火车, 汽车的概率.

(1/6, 2/6, 3/6)

贝叶斯(Bayes)公式

性质1.4.4 若事件 $B_1, B_2, ..., B_n$ 是样本空间 Ω 的一组分割,且 $P(A) > 0, P(B_i) > 0,则$

$$P(B_i|A) = \frac{P(AB_i)}{P(A)} = \frac{P(B_i)P(A|B_i)}{P(A)}$$

$$= \frac{P(B_i)P(A|B_i)}{\sum_{i=1}^{n} P(B_i)P(A|B_i)}, i = 1, 2, ..., n$$

注意点

- 1) $B_1, B_2, ..., B_n$ 可以看作是导致A发生的原因;
- 2) $P(B_j|A)$ 是在事件A发生的条件下,某个原因 B_j 发生的概率, 称为 "后验(ex post)概率";
- 3) 贝叶斯(Bayes)公式又称为"**后验概率公式**"或"逆概公式";
- 4) 称 $P(B_i)$ 为"先验(ex anti)概率".
- 4) 通过事件A的发生,人们可以更新对 B_j 的发生概率的信念,这是贝叶斯推断的基本原理.

例1.4.3

例1.4.3 某商品由三个厂家供应, 其供应量为: 甲厂家是乙厂家的2倍; 乙, 丙两厂相等. 各厂产品的次品率为2%, 2%, 4%. 若从市场上随机抽取一件此种商品, 发现是次品, 求它是甲厂生产的概率?

解:

例1.4.3

例1.4.3 某商品由三个厂家供应, 其供应量为: 甲厂家是乙 厂家的2倍; 乙, 丙两厂相等. 各厂产品的次品率为2%, 2%, 4%. 若从市场上随机抽取一件此种商品, 发现是次品, 求它 是甲厂生产的概率?

解: 用1, 2, 3分别记甲, 乙, 丙厂,设 $A_i = "$ 取到第i 个工厂的 产品", B="取到次品".

由题意得: $P(A_1) = 0.5, P(A_2) = P(A_3) = 0.25; P(B|A_1) =$ $P(B|A_2) = 0.02, P(B|A_3) = 0.04.$

由贝叶斯公式得:

$$P(A_1|B) = \frac{P(A_1)P(B|A_1)}{\sum_{i=1}^{3} P(A_i)P(B|A_i)} = 0.4$$

第3次作业

习题1.4中题目2, 4, 8, 9, 11, 14, 17, 18, 20, 26

习题1.5中题目1, 2, 8, 12, 18, 23, 24, 25

§1.5 独立性

事件的独立性

- 直观说法: 对于两个随机事件, 若其中任何一个事件的 发生不影响另一个事件的发生, 则这两事件是独立的.
- $\Leftrightarrow P(A|B) = P(A)$ (事件B发生的概率不影响事件A发生的概率)
- $\bullet \Leftrightarrow P(AB)/P(B) = P(A|B) = P(A)$

1.5.1 两个事件的独立性

定义1.5.1 若事件 A 与 B 满足: P(AB) = P(A)P(B), 则称事件A与事件B相互独立,简称A与B独立.

A, B为两个事件, 若 P(A) > 0, 则A 与B 独立等价于 P(B|A) = P(B).

性质1.5.1 若事件A与B独立, 则 A 与 \overline{B} 独立, \overline{A} 与 B独立, \overline{A} 与 \overline{B} 独立.

证明:

$$P(A\overline{B}) = P(A) - P(AB)$$
 (因为 $A\overline{B} = A - AB$ 且 $A \supset AB$)
= $P(A) - P(A)P(B)$
= $P(A)(1 - P(B))$
= $P(A)P(\overline{B})$

*因为A与B相互独立, 所以A不影响B的发生, 也不影响B的不发生

事件独立性的判断

可根据定义判断事件的独立性.

实际应用中,往往根据经验来判断两个事件的独立性.独立事件举例:返回抽样,甲乙两人分别工作,重复试验等.

1.5.2 多个事件的相互独立性

定义1.5.2 对于A, B, C三个事件, 称满足: P(AB) = P(A)P(B), P(AC) = P(A)P(C), P(BC) = P(B)P(C) 为A, B, C两两独立.

若还有 P(ABC) = P(A)P(B)P(C)则称A, B, C相互独立.

定义1.5.3 若事件 $A_1, A_2, ..., A_n$ 满足: 两两独立, 三三独立, ..., nn 独立, 则称 $A_1, A_2, ..., A_n$ 相互独立.

一些结论

若A, B, C 相互独立, 则

- $A \cup B \supset C$ 独立,
- $A \cap B \subseteq C$ 独立,
- A − B 与 C 独立.

证明: $A \cup B = C$ 独立

$$P((A \cup B) \cap C) = P(AC \cup BC) = P(AC) + P(BC) - P(ABC)$$

$$= P(A)P(C) + P(B)P(C) - P(A)P(B)P(C)$$

$$= (P(A) + P(B) - P(A)P(B))P(C)$$

$$= P((A \cup B))P(C)$$

若只有两两独立,则上述结论不成立. 思考如何证明A - B与 C 独立? $(A - B = A\overline{B})$

例1.5.1 两射手独立地向同一目标射击一次, 其命中率分别 为 0.9 和 0.8, 求目标被击中的概率.

解: 设A = "甲中".B = "乙中".C = "目标被击中".所以

解法i)

$$P(C) = P(A \cup B) = P(A) + P(B) - P(AB)$$

$$= P(A) + P(B) - P(A)P(B)$$

$$= 0.9 + 0.8 - 0.9 \times 0.8$$

$$= 0.98.$$

解法ii) 用对立事件公式

$$P(C) = P(A \cup B) = 1 - P(\overline{A} \cap \overline{B}) = 1 - (1 - 0.9)(1 - 0.8)$$

= 1 - 0.02 = 0.98.

例1.5.2 甲, 乙两人独立地对同一目标射击一次, 其命中率分别为 0.6 和 0.7, 现已知目标被击中, 求它是甲击中的概率.

解:设 A="甲中", B="乙中", C="目标被击中", 所以

$$P(A|C) = P(AC)/P(C)$$

= $P(A)/[P(A) + P(B) - P(A)P(B)]$
= $0.6/0.88$
 ≈ 0.68

例1.5.3 两射手轮流对同一目标进行射击, 甲先射, 谁先击中则得胜. 每次射击中,甲, 乙命中目标的概率分别为 α 和 β , 求甲得胜的概率.

解: 因为P(甲胜 $) = \alpha + (1 - \alpha)(1 - \beta)P($ 甲胜)

所以 P(甲胜 $) = \alpha/[(1-\alpha)(1-\beta)].$

例1.5.4 口袋中有3个白球, 5个黑球, 甲, 乙两人轮流从口袋中有返回地取一球, 甲先取. 谁先取到白球为胜, 求甲胜的概率.

解: P(甲胜) = 3/8 + (5/8)(5/8)P(甲胜)

所以 P(甲胜)=8/13.

1.5.3 试验的独立性 (Independence of Trails)

定义1.5.4 若试验 E_1 的任一结果(事件)与试验 E_2 的任一结果(事件)都是相互独立的事件,则称这**两个试验相互独立**,或称**独立试验**.

类似地, 若试验 $E_1, E_2, ..., E_n$ 的任一结果(事件)都是相互独立的事件, 则称这n个试验相互独立. 如果者n个独立实验还是相同的, 则称为n重独立重复试验.

n 重伯努里试验 (Bernoulli trial)

伯努里试验: 若某种试验只有两个结果 (成功, 失败; 黑球, 白球; 正面, 反面), 则称这个试验为伯努里试验.

在伯努里试验中, 一般记"成功"的概率为p.

n **重伯努里试验:** *n*次独立重复的伯努里试验.

n 重伯努里试验成功的次数

在n重伯努里试验中,记成功的次数为X.

X 的可能取值为: 0,1,...,n.

X 取值为 k的概率为:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

第3次作业

习题1.4中题目2, 4, 8, 9, 11, 14, 17, 18, 20, 26

习题1.5中题目1, 2, 8, 12, 18, 23, 24, 25