Time Response of Dynamic Systems

Robert Stengel
Robotics and Intelligent Systems MAE
345, Princeton University, 2015

Multi-dimensional trajectories
Numerical integration
Linear and nonlinear systems
Linearization of nonlinear models
LTI System Response
Phase-plane plots

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Multi-Dimensional Trajectories

Position, velocity, and acceleration are vectors

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}; \quad \mathbf{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}; \quad \mathbf{a} = \begin{bmatrix} a_x \\ a_y \end{bmatrix}; \quad \mathbf{j} = \begin{bmatrix} j_x \\ j_y \end{bmatrix}; \quad \mathbf{s} = \begin{bmatrix} s_x \\ s_y \end{bmatrix}$$

Two-Dimensional Trajectory

Solve for Cartesian components separately

$$\begin{bmatrix} j_{x}(0) \\ s_{x}(0) \\ c_{x}(0) \end{bmatrix} = \begin{bmatrix} -60/t^{3} & 60/t^{3} & -36/t^{2} & -24/t^{2} & -9/t & 3/t \\ 360/t^{4} & -360/t^{4} & 192/t^{3} & 168/t^{3} & 36/t^{2} & -24/t^{2} \\ -720/t^{5} & 720/t^{5} & -360/t^{4} & -360/t^{4} & -60/t^{3} & 60/t^{3} \end{bmatrix} \begin{bmatrix} x(0) \\ x(t) \\ v_{x}(0) \\ v_{x}(t) \\ a_{x}(0) \\ a_{x}(t) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{j}_{y}(0) \\ \mathbf{s}_{y}(0) \\ \mathbf{c}_{y}(0) \end{bmatrix} = \begin{bmatrix} -60/t^{3} & 60/t^{3} & -36/t^{2} & -24/t^{2} & -9/t & 3/t \\ 360/t^{4} & -360/t^{4} & 192/t^{3} & 168/t^{3} & 36/t^{2} & -24/t^{2} \\ -720/t^{5} & 720/t^{5} & -360/t^{4} & -360/t^{4} & -60/t^{3} & 60/t^{3} \end{bmatrix} \begin{bmatrix} \mathbf{y}(0) \\ \mathbf{y}(t) \\ \mathbf{v}_{y}(0) \\ \mathbf{v}_{y}(t) \\ \mathbf{a}_{y}(0) \\ \mathbf{a}_{y}(t) \end{bmatrix}$$

Two-Dimensional Example

Required acceleration vector is specified by

$$\mathbf{a}(t) = \mathbf{a}(0) + \mathbf{j}(0)t + \mathbf{s}(0)t^2/2 + \mathbf{c}t^3/6$$

Six-Degree-of-Freedom (Rigid Body) **Equations of Motion**

$$\dot{\mathbf{r}}_{I} = \mathbf{H}_{B}^{I} \mathbf{v}_{B}$$

$$\dot{\mathbf{v}}_{B} = \frac{1}{m} \mathbf{f}_{B} - \tilde{\mathbf{\omega}}_{B} \mathbf{v}_{B}$$

$$\mathbf{r}_{I} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}; \quad \mathbf{v}_{B} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$\dot{\boldsymbol{\Theta}} = \mathbf{L}_{B}^{I} \boldsymbol{\omega}_{B}$$
 and velocity $\dot{\boldsymbol{\omega}}_{B} = \boldsymbol{I}_{B}^{-1} \left(\mathbf{m}_{B} - \tilde{\boldsymbol{\omega}}_{B} \boldsymbol{I}_{B} \boldsymbol{\omega}_{B} \right)$ $\boldsymbol{\Theta} = \begin{bmatrix} \boldsymbol{\varphi} \\ \boldsymbol{\theta} \\ \boldsymbol{\psi} \end{bmatrix}; \quad \boldsymbol{\omega}_{B} = \begin{bmatrix} \boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{r} \end{bmatrix}$

Translational position

$$\mathbf{r}_{I} = \left[\begin{array}{c} x \\ y \\ z \end{array} \right]; \quad \mathbf{v}_{B} = \left[\begin{array}{c} u \\ v \\ w \end{array} \right]$$

Rotational position and velocity

$$\mathbf{\Theta} = \begin{bmatrix} \varphi \\ \theta \\ \psi \end{bmatrix}; \quad \mathbf{\omega}_{B} = \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

5

6

... nonlinear, and complex

Rate of change of Translational Position

```
\dot{x}_{1} = (\cos\theta\cos\psi)u + (-\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi)v + (\sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi)w
\dot{y}_t = (\cos\theta\sin\psi)u + (\cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi)v + (-\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi)w
\dot{z}_{I} = (-\sin\theta)u + (\sin\phi\cos\theta)v + (\cos\phi\cos\theta)w
```

Rate of change of Translational Velocity

$$\dot{u} = X / m - g \sin \theta + rv - qw$$

$$\dot{v} = Y / m + g \sin \phi \cos \theta - ru + pw$$

$$\dot{w} = Z / m + g \cos \phi \cos \theta + qu - pv$$

Rate of change of Angular Position

$$\dot{\phi} = p + (q\sin\phi + r\cos\phi)\tan\theta$$
$$\dot{\theta} = q\cos\phi - r\sin\phi$$
$$\dot{\psi} = (q\sin\phi + r\cos\phi)\sec\theta$$

Rate of change of Angular Velocity

$$\begin{split} \dot{p} &= \left(I_{zz}L + I_{xz}N - \left\{I_{xz}\left(I_{yy} - I_{xx} - I_{zz}\right)p + \left[I_{xz}^{2} + I_{zz}\left(I_{zz} - I_{yy}\right)\right]r\right\}q\right) / \left(I_{xx}I_{zz} - I_{xz}^{2}\right) \\ \dot{q} &= \left[M - \left(I_{xx} - I_{zz}\right)pr - I_{xz}\left(p^{2} - r^{2}\right)\right] / I_{yy} \\ \dot{r} &= \left(I_{xz}L + I_{xx}N - \left\{I_{xz}\left(I_{yy} - I_{xx} - I_{zz}\right)r + \left[I_{xz}^{2} + I_{xx}\left(I_{xx} - I_{yy}\right)\right]p\right\}q\right) / \left(I_{xx}I_{zz} - I_{zz}^{2}\right) \end{split}$$

Multiple Rigid Links Lead to Multiple Constraints

- Each link is subject to the same 6-DOF rigidbody dynamic equations
- ... but each link is constrained to have a single degree of freedom w.r.t. proximal link

7

WAIST 1820" (JOINT 1) SHOULDER 250" (JOINT 3) WHEST MEAN 270" **COUNT 3) *

Newton-Euler Link Dynamics

- Link dynamics are coupled
 - Proximal-link loads are affected by distal-link positions and velocities
 - Distal-link accelerations are affected by proximal-link motions
 - Joints produce constraints on motions of links
- Net forces and torques at each joint related to velocities and accelerations of the centroids of the links
- Equations of motion derived directly for each link, with constraints

$$\dot{\mathbf{v}}_{B} = \frac{1}{m} \mathbf{f}_{B} - \tilde{\boldsymbol{\omega}}_{B} \mathbf{v}_{B}$$

$$\dot{\boldsymbol{\omega}}_{B} = \mathbf{I}_{B}^{-1} \left(\mathbf{m}_{B} - \tilde{\boldsymbol{\omega}}_{B} \mathbf{I}_{B} \boldsymbol{\omega}_{B} \right)$$

$$\dot{\mathbf{x}}(t) = \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t \right]$$

Lagrangian Link Dynamics

- Lagrange's equation derived from Newton's Laws
- Dynamic behavior <u>described by work done and</u> energy stored in the system
- Equations of motion derived from Lagrangian function and Lagrange's equation
 - $-q_n$ = generalized coordinate
 - $-\mathbf{F}_n$ = generalized force

$$\frac{L(q_n, \dot{q}_n) = KE - PE}{\frac{d}{dt} \left(\frac{dL(q_n, \dot{q}_n)}{d\dot{q}_n} \right) - \frac{\partial L(q_n, \dot{q}_n)}{\partial q_n} = \mathbf{F}_n}$$

$$\dot{\mathbf{x}}(t) = \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t \right]$$

Hamiltonian Link Dynamics

- Hamilton's Principle: Lagrange's equation is a necessary condition for an extremum
- Hamiltonian function and Hamilton's equations
 - p_n = generalized momentum

$$extremum \ I = \int_{t_1}^{t_2} L(q_n, \dot{q}_n) dt$$

$$H(p,q) = \sum_{t_1} \dot{q}_n p_n - L(q_n, \dot{q}_n)$$

$$\dot{q}_n = \frac{\partial H(p,q)}{\partial p_n}; \quad \dot{p}_n = -\frac{\partial H(p,q)}{\partial q_n}$$

$$\dot{\mathbf{x}}(t) = \mathbf{f} \Big[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t \Big]$$

Example: Two-Link Robot Equations of Motion

State vector

McKerrow, 1991

	x_1		Angle of 1^{st} link, θ_1 , rad
	x_2	_	Angular rate of 1^{st} link, $\dot{\theta}_1$, rad / sec
	x_3	_	Angle of 2^{nd} link, θ_2 , rad
L	\mathcal{X}_4		Angular rate of 2^{nd} link, $\dot{\theta}_2$, rad / sec

Control vector

$$\begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix} = \begin{bmatrix} \tau_1, \text{ torque at } 1^{\text{st}} \text{ joint} \\ \tau_2, \text{ torque at } 2^{\text{nd}} \text{ joint} \end{bmatrix}$$

11

When Possible, Simplify the Equations

Two-link robot equations of motion

- Mass, m, located at end of Link 2
- Inertias of Links 1 and 2 neglected

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \frac{1}{\cos^2 x_3} \left(x_2 x_4 \sin 2x_3 + \frac{u_1}{m l_2^2} \right)$$

$$\dot{x}_3 = x_4$$

$$\dot{x}_4 = -\frac{g}{l_2} \cos x_3 - \frac{x_2}{2} \sin 2x_3 + \frac{u_2}{m l_2^2}$$

Differential Equations Integrated to Produce Time Response

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t], \quad \mathbf{x}(0) \text{ given}$$

$$\mathbf{x}(t) = \mathbf{x}(0) + \int_{0}^{t} \mathbf{f} \left[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t \right] dt$$

Numerical integration is an approximation

13

Rectangular and Trapezoidal Integration of Differential Equations

Rectangular (Euler) Integration

$$\mathbf{x}(t_k) = \mathbf{x}(t_{k-1}) + \Delta \mathbf{x}(t_{k-1}, t_k)$$

$$\approx \mathbf{x}(t_{k-1}) + \mathbf{f}\left[\mathbf{x}(t_{k-1}), \mathbf{u}(t_{k-1}), \mathbf{w}(t_{k-1})\right] \Delta t , \quad \Delta t = t_k - t_{k-1}$$

Trapezoidal (modified Euler) Integration (ode23)

$$\mathbf{x}(t_k) \approx \mathbf{x}(t_{k-1}) + \frac{1}{2} \left[\Delta \mathbf{x}_1 + \Delta \mathbf{x}_2 \right]$$

$$where$$

$$\Delta \mathbf{x}_1 = \mathbf{f} \left[\mathbf{x}(t_{k-1}), \mathbf{u}(t_{k-1}), \mathbf{w}(t_{k-1}) \right] \Delta t$$

$$\Delta \mathbf{x}_2 = \mathbf{f} \left\{ \left[\mathbf{x}(t_{k-1}) + \Delta \mathbf{x}_1 \right], \mathbf{u}(t_k), \mathbf{w}(t_k) \right\} \Delta t$$

Numerical Integration Examples

How can approximation accuracy be improved?

15

More Complicated Algorithms (e.g., MATLAB)

Solver	Problem Type	Order of Accuracy	When to Use
ode45	Nonstiff	Medium	Most of the time. This should be the first solver you try.
ode23	Nonstiff	Low	For problems with crude error tolerances or for solving moderately stiff problems.
ode113	Nonstiff	Low to high	For problems with stringent error tolerances or for solving computationally intensive problems.
ode15s	Stiff	Low to medium	If ode45 is slow because the problem is stiff.
ode23s	Stiff	Low	If using crude error tolerances to solve stiff systems and the mass matrix is constant.
ode23t	Moderately Stiff	Low	For moderately stiff problems if you need a solution without numerical damping.
ode23tb	Stiff	Low	If using crude error tolerances to solve stiff systems.

1-D Example

a(0) = 0, j(0) = 0.6, s(0) = -0.36, c = 0.072 a(0) = 0, j(0) = 0.6, s(0) = -0.36, c = 0.072 a(0) = 0, j(0) = 0.6, s(0) = -0.36, c = 0.072 a(0) = 0, j(0) = 0.6, s(0) = -0.36, c = 0.072 a(0) = 0, j(0) = 0.6, s(0) = -0.36, c = 0.072 a(0) = 0, j(0) = 0.6, s(0) = -0.36, c = 0.072 a(0) = 0, j(0) = 0.6, s(0) = -0.36, c = 0.072

17

Comparison of Exact and Numerically Integrated Trajectories

Calculate trajectory, given constants for $t_f = 10$

$$\begin{bmatrix} x(t) \\ v(t) \\ a(t) \end{bmatrix} = \begin{bmatrix} 1 & t & t^2/2 & t^3/6 & t^4/24 & t^5/120 \\ 0 & 1 & t & t^2/2 & t^3/6 & t^4/24 \\ 0 & 0 & 1 & t & t^2/2 & t^3/6 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0.6 \\ -0.36 \\ 0.072 \end{bmatrix}$$

Calculate trajectory by numerical integration

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = 0.6t - 0.36t^2/2 + 0.072t^3/6$$

Comparison of Exact and Numerically Integrated Trajectories

19

Comparison of Exact and Numerically Integrated Trajectories (Zoom)

Polynomial, ode23, and ode45

Generic Dynamic System

Dynamic Process: Current state may depend on prior state

x : state $dim = (n \times 1)$ u : input $dim = (m \times 1)$ w : disturbance $dim = (s \times 1)$ p : parameter $dim = (\ell \times 1)$

t: time (independent variable, 1 x 1)

Observation Process: Measurement may contain error or be incomplete

y : output (error-free) dim = (r x 1)

n : measurement error

 $dim = (r \times 1)$

z : measurement

 $dim = (r \times 1)$

21

Equations of the System

Dynamic Equation

$$\dot{\mathbf{x}}(t) = \frac{d\mathbf{x}(t)}{dt} = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t]$$

Output Equation

$$\mathbf{v}(t) = \mathbf{h}[\mathbf{x}(t), \mathbf{u}(t)]$$

Measurement Equation

$$\mathbf{z}(t) = \mathbf{y}(t) + \mathbf{n}(t)$$

Dynamic System Example:

Automotive Vehicle

Dynamic Process

- x: dynamic state
 - Position, velocity, angle, angular rate
- •u: input
 - Steering, throttle, brakes
- w: disturbance
 - Road surface, wind
- p: parameter
 - Weight, moments of inertia, drag coefficient, spring constants
- t: time (independent variable)

Observation Process

- y : error-free output
 - Speed, front-wheel angle, engine rpm, acceleration, yaw rate, throttle, brakes, GPS location
- •n: measurement error
 - Perturbations to v
- z : measurement
 - Sum of y and n

23

Nonlinearity and Time Variation in Dynamic Systems

Nonlinear, time-varying dynamics

$$\dot{\mathbf{x}}(t) = \mathbf{f} [\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), \mathbf{p}(t), t]$$

Nonlinear, time-invariant dynamics

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t)]$$

Linear, time-varying dynamics

$$\dot{\mathbf{x}}(t) = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{G}(t)\mathbf{u}(t) + \mathbf{L}(t)\mathbf{w}(t)$$

Linear, time-invariant dynamics

$$\dot{\mathbf{x}}(t) = \mathbf{F}\mathbf{x}(t) + \mathbf{G}\mathbf{u}(t) + \mathbf{L}\mathbf{w}(t)$$

Nonlinearity and Time Variation in Dynamic Systems

Nonlinear, time-varying dynamics

Linear, time-varying dynamics

Nonlinear, time-invariant dynamics

Linear, time-invariant dynamics

25

Solutions of Ordinary Differential Dynamic Equations

Time-Domain Model (ODE)

- . Nonlinear, time-varying . Nonlinear,
- time-invariant
 . Linear, timevarying
- . Linear, timeinvariant

- Solution by Numerical Integration
- Yes
- Yes
- Yes
- Yes

- Principle of Superposition
- No
- No
- Yes
- Yes

Frequency-Domain Model

- No
- Yes (amplitudedependent, harmonics)
- **Approximate**
- Yes

Comparison of Damped Linear and Nonlinear Systems

Linear Spring

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -10x_1(t) - x_2(t)$$
Spring Damper

Linear plus Stiffening Cubic Spring

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -10x_1(t) - 10x_1^3(t) - x_2(t)$$

Linear plus Weakening Cubic Spring

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -10x_1(t) + 0.8x_1^3(t) - x_2(t)$$

27

28

MATLAB Simulation of Linear and Nonlinear Dynamic Systems

MATLAB Main Program

```
% Nonlinear and Linear Examples
  clear
  tspan = [0 \ 10];
  xo = [0, 10];
  [t1,x1 = ode23('NonLin',tspan,xo);
  xo = [0, 1];
  [t2,x2] = ode23('NonLin',tspan,xo);
  xo = [0, 10];
  [t3,x3] = ode23('Lin',tspan,xo);
  xo = [0, 1];
  [t4,x4] = ode23('Lin',tspan,xo);
  subplot(2,1,1)
  plot(t1,x1(:,1),'k',t2,x2(:,1),'b',t3,x3(:,1),'r',t4,x4(:,1),'g') \\
  ylabel('Position'), grid
  subplot(2,1,2)
  plot(t1,x1(:,2),'k',t2,x2(:,2),'b',t3,x3(:,2),'r',t4,x4(:,2),'g')
  xlabel('Time'), ylabel('Rate'), grid
```

Linear Spring

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = -10x_1(t) - x_2(t)$$

function xdot = Lin(t,x)
% Linear Ordinary Differential Equation
% x(1) = Position
% x(2) = Rate
xdot = [x(2)
-10*x(1) - x(2)];

Weakening Spring

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -10x_1(t) + 0.8x_1^3(t) - x_2(t)$$

```
function xdot = NonLin(t,x)
% Nonlinear Ordinary Differential Equation
% x(1) = Position
% x(2) = Rate
xdot = [x(2)
-10*x(1) + 0.8*x(1)^3 - x(2)];
```


Linearization of Nonlinear Equations

 $\dim(\mathbf{x}) = n \times 1$

 $\dim(\mathbf{u}) = m \times 1$ $\dim(\mathbf{w}) = s \times 1$

 Nominal (or reference) robot trajectory, control, and disturbance histories

$$\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t)$$
 for t in $[t_{o}, t_{f}]$

- Actual path, perturbed by
 - Initial condition variation
 - Control variation
 - Disturbance variation

$$\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t)$$
 for t in $[t_o, t_f]$

31

Linearization of Nonlinear Equations

Difference between nominal and actual paths:

$$\Delta \mathbf{x}(t_o) = \mathbf{x}(t_o) - \mathbf{x}_N(t_o)$$
$$\Delta \mathbf{x}(t) = \mathbf{x}(t) - \mathbf{x}_N(t)$$

Difference between nominal and actual inputs:

$$\Delta \mathbf{u}(t) = \mathbf{u}(t) - \mathbf{u}_{N}(t) \quad \text{[Control perturbation]}$$

$$\Delta \mathbf{w}(t) = \mathbf{w}(t) - \mathbf{w}_{N}(t) \quad \text{[Disturbance perturbation]}$$

Expansion of All Terms to First Degree

Both paths satisfy the nonlinear dynamic equations

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t]$$
$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), t]$$

Actual dynamics can be approximated by the sum of the nominal dynamics plus perturbation effects

$$\dot{\mathbf{x}}_N(t) = \mathbf{f}[\mathbf{x}_N(t), \mathbf{u}_N(t), \mathbf{w}_N(t), t]$$

$$\dot{\mathbf{x}}(t) = \dot{\mathbf{x}}_{N}(t) + \Delta \dot{\mathbf{x}}(t)$$

$$= \mathbf{f} \left\{ [\mathbf{x}_{N}(t) + \Delta \mathbf{x}(t)], [\mathbf{u}_{N}(t) + \Delta \mathbf{u}(t)], [\mathbf{w}_{N}(t) + \Delta \mathbf{w}(t), t] \right\}$$

$$\approx \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}_{N}(t), \mathbf{w}_{N}(t), t] + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(t) \Delta \mathbf{x}(t) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(t) \Delta \mathbf{u}(t) + \frac{\partial \mathbf{f}}{\partial \mathbf{w}}(t) \Delta \mathbf{w}(t)$$

The partial-derivative (*Jacobian*) matrices are evaluated <u>along the nominal path</u>

33

Jacobian Matrices Express the Solution Sensitivity to Small Perturbations

$$\mathbf{F}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}} ; \quad \mathbf{G}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}} ; \quad \mathbf{L}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}}$$

Sensitivity to state perturbations: stability matrix

$$\mathbf{F}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \Big|_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix}_{\substack{\mathbf{x} = \mathbf{x}_{N}(t) \\ \mathbf{u} = \mathbf{u}_{N}(t) \\ \mathbf{w} = \mathbf{w}_{N}(t)}}$$

Sensitivity to Small **Control and Disturbance Perturbations**

$$\mathbf{F}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \bigg|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}}$$

$$\mathbf{G}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \bigg|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}}$$

$$\mathbf{L}(t) = \frac{\partial \mathbf{f}}{\partial \mathbf{w}} \bigg|_{\substack{\mathbf{x} = \mathbf{x}_N(t) \\ \mathbf{u} = \mathbf{u}_N(t) \\ \mathbf{w} = \mathbf{w}_N(t)}}$$

Control-effect matrix

Disturbance-effect matrix

Linearized Equation Approximates Perturbation Dynamics

Solve the nominal and perturbation parts *separately* Nominal (nonlinear) equation

$$\dot{\mathbf{x}}_N(t) = \mathbf{f}[\mathbf{x}_N(t), \mathbf{u}_N(t), \mathbf{w}_N(t), t], \quad \mathbf{x}_N(0) \ given$$

Perturbation (linear) equation

$$\Delta \dot{\mathbf{x}}(t) \approx \mathbf{F}(t)\Delta \mathbf{x}(t) + \mathbf{G}(t)\Delta \mathbf{u}(t) + \mathbf{L}(t)\Delta \mathbf{w}(t), \quad \Delta \mathbf{x}(0) \ given$$

Approximate total solution

$$\mathbf{x}(t) \approx \mathbf{x}_N(t) + \Delta \mathbf{x}(t)$$

Stiffening Cubic Spring Example

Nonlinear equation

$$\dot{x}_1(t) = f_1 = x_2(t)$$

$$\dot{x}_2(t) = f_2 = -10x_1(t) - 10x_1^3(t) - x_2(t)$$

Integrate nonlinear equation to produce nominal path

$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} \rightarrow \int_0^{t_f} \begin{bmatrix} f_{1_N} \\ f_{2_N} \end{bmatrix} dt \rightarrow \begin{bmatrix} x_{1_N}(t) \\ x_{2_N}(t) \end{bmatrix} \quad in \quad [0, t_f]$$

37

Stiffening Cubic Spring Example

Evaluate partial derivatives along the path

$$\mathbf{F}(t) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} = 0 & \frac{\partial f_1}{\partial x_2} = 1 \\ \frac{\partial f_2}{\partial x_1} = -10 - 30 \frac{x_{1_N}^2(t)}{\partial x_2} & \frac{\partial f_2}{\partial x_2} = -1 \end{bmatrix}$$

$$\mathbf{G}(t) = \begin{bmatrix} \frac{\partial f_1}{\partial u} = 0 \\ \frac{\partial f_2}{\partial u} = 0 \end{bmatrix} \mathbf{L}(t) = \begin{bmatrix} \frac{\partial f_1}{\partial w} = 0 \\ \frac{\partial f_2}{\partial w} = 0 \end{bmatrix}$$

Nominal and Perturbation Dynamic Equations

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t)], \quad \mathbf{x}_{N}(0) \ given$$

$$\dot{x}_{1_{N}}(t) = x_{2_{N}}(t)$$

$$\dot{x}_{2_{N}}(t) = -10x_{1_{N}}(t) - 10x_{1_{N}}^{3}(t) - x_{2_{N}}(t)$$

$$\begin{bmatrix} x_{1_N}(0) \\ x_{2_N}(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 9 \end{bmatrix}$$

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F}(t)\Delta \mathbf{x}(t), \quad \Delta \mathbf{x}(0) \ given$$

$$\begin{bmatrix} \Delta \dot{x}_1(t) \\ \Delta \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\left(10 + 30 x_{1_N}^2(t)\right) & -1 \end{bmatrix} \begin{bmatrix} \Delta x_1(t) \\ \Delta x_2(t) \end{bmatrix}$$

$$\left[\begin{array}{c} \Delta x_1(0) \\ \Delta x_2(0) \end{array}\right] = \left[\begin{array}{c} 0 \\ 1 \end{array}\right]$$

39

Comparison of Approximate and Exact Solutions

Nominal and Perturbation Dynamic Solutions for Cubic Spring Example with $x_N(0) = 0$

Nominal solution remains at equilibrium

Nonlinear

$$\dot{\mathbf{x}}_N(t) = \mathbf{f}[\mathbf{x}_N(t)], \quad \mathbf{x}_N(0) = 0, \quad \mathbf{x}_N(t) = 0 \text{ in } [0, \infty]$$

Linear

$$\begin{bmatrix} \Delta \dot{x}_1(t) \\ \Delta \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -10 & -1 \end{bmatrix} \begin{bmatrix} \Delta x_1(t) \\ \Delta x_2(t) \end{bmatrix}$$
= Linear, Time-Invariant (LTI) System

41

Initial-Condition Response of a Linear, Time-Invariant (LTI) Model

```
% Linear Model - Initial Condition
         = [-0.5572 -0.7814; 0.7814 0];
         = [1 - 1; 0 2];
  Hx = [1 \ 0;0 \ 1];
  sys = ss(F, G, Hx, 0);
             = [1;0];
  [y1,t1,x1] = initial(sys, xo);
             = [2;0];
  [y2,t2,x2] = initial(sys, xo);
  plot(t1,y1,t2,y2)
                                           -0.5572 -0.7814
  figure
                                           0.7814
   xo = [0;1];
  initial(sys, xo)
                                           0 2
                                      \mathbf{H}_{x} = \mathbf{I}_{2}; \quad \mathbf{H}_{u} = \mathbf{0}
```

- Doubling the initial condition doubles the output
- Stability, speed of response, and damping are independent of the initial condition

Step Response of a Linear, Time-Invariant Model

```
% Linear Model - Step
F = [-0.5572 -0.7814;0.7814 0];
G = [1 -1;0 2];
Hx = [1 0;0 1];
sys = ss(F, G, Hx,0);
sys2 = ss(F, 2*G, Hx,0);

% Step response
step(sys, sys2)
```

- Doubling the step input doubles the output
- Stability, speed of response, and damping are independent of the input

43

Response to Combined Initial Condition and Step Input

```
% Linear Model - Superposition
F = [-0.5572 -0.7814;0.7814 0];
G = [1;0];
Hx = [1 0;0 1];
sys = ss(F, G, Hx,0);

xo = [1; 0];
t = [0:0.2:20];
u = ones(1,length(t));

[y1,t1,x1] = lsim(sys,u,t,xo);
[y2,t2,x2] = lsim(sys,u,t);

u = zeros(1,length(t));
[y3,t3,x3] = lsim(sys,u,t,xo);
plot(t1,y1,t2,y2,t3,y3)
```


Linear system responses are additive

Initial-Condition Responses of 1st-Order LTI Systems are Exponentials

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t), \quad \Delta \mathbf{x}(0) \ given$$

State vector is a scalar

$$\mathbf{F} = [a]$$

$$\Delta \dot{x}(t) = a\Delta x(t)$$
$$\Delta x(0) \text{ given}$$

$$\Delta x(t) = \int_{0}^{t} \Delta \dot{x}(t) dt = \int_{0}^{t} a \Delta x(t) dt$$

 $= e^{at} \Delta x(0)$

LTI system integral is a closedform expression

45

Initial-Condition Responses of 2nd-Order LTI Systems

Exponentials and Sinusoids

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t)$$

 $\Delta \mathbf{x}(0)$ given

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}$$

$$\Delta \dot{x}_{1} = f_{11} \Delta x_{1} + f_{12} \Delta x_{2} + g_{1} \Delta u$$

$$\Delta \dot{x}_{2} = f_{21} \Delta x_{1} + f_{22} \Delta x_{2} + g_{2} \Delta u$$

Sinusoid with exponential envelope

$$\Delta x_1(t) = A_1 e^{-\zeta \omega_n t} \cos \left[\omega_n \sqrt{1 - \zeta^2} t + \varphi_1 \right]$$

$$\Delta x_2(t) = A_2 e^{-\zeta \omega_n t} \cos \left[\omega_n \sqrt{1 - \zeta^2} t + \varphi_2 \right]$$

LTI system integral is a closed-form expression

Equilibrium Response of Linear, Time-Invariant Models

- General equation $\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) + \mathbf{L} \Delta \mathbf{w}(t)$
- At equilibrium,
 - Derivative goes to zero
 - State is unchanging

$$\mathbf{0} = \mathbf{F}\Delta\mathbf{x}(t) + \mathbf{G}\Delta\mathbf{u}(t) + \mathbf{L}\Delta\mathbf{w}(t)$$

· State at equilibrium

$$\Delta \mathbf{x}^* = -\mathbf{F}^{-1} (\mathbf{G} \Delta \mathbf{u}^* + \mathbf{L} \Delta \mathbf{w}^*)$$
$$= -\frac{Adj(\mathbf{F})}{\det(\mathbf{F})} (\mathbf{G} \Delta \mathbf{u}^* + \mathbf{L} \Delta \mathbf{w}^*)$$

47

State ("Phase")-Plane Plots

```
% 2nd-Order Model - Initial Condition Response
 z
         = 0.1; % Damping ratio
         = 6.28; % Natural frequency, rad/s
 wn
 F
         = [0 1;-wn^2 -2*z*wn];
        = [1 -1;0 2];
         = [1 0;0 1];
 Hx
        = ss(F, G, Hx,0);
 sys
        = [0:0.01:10];
         = [1;0];
 [y1,t1,x1] = initial(sys, xo, t);
 plot(t1,y1)
 grid on
 plot(y1(:,1),y1(:,2))
 grid on
```

- Cross-plot of one component against another
- Time or frequency not shown explicitly in phase plane

Effects of Damping Ratio on State-Plane Plots

Next Time: Dynamic Effects of Feedback Control

Supplemental Material

51

Perturbed Initial Conditions Produce Perturbed Path

- Given
 - Initial condition, control, and disturbance histories

$$\mathbf{x}(t_0), \mathbf{u}(t), \mathbf{w}(t)$$
 for t in $[t_o, t_f]$

- Path (or *trajectory*) is approximated by executing a numerical algorithm
- Perturbing the initial condition produces a new path

Both paths satisfy the same equations of motion

$$\dot{\mathbf{x}}_{N}(t) = \mathbf{f}[\mathbf{x}_{N}(t), \mathbf{u}(t), \mathbf{w}(t), t], \quad \mathbf{x}_{N}(t_{0}) \quad given$$

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{w}(t), t], \quad \mathbf{x}(t_{0}) \quad given$$

- x_N : Nominal path
- · x: Perturbed path

Equilibrium Response of Second-Order LTI System

System description

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}; \quad \mathbf{G} = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}; \quad \mathbf{L} = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}$$

State equilibrium depends on constant input values

$$\begin{bmatrix} \Delta x_1 * \\ \Delta x_2 * \end{bmatrix} = -\frac{\begin{bmatrix} f_{22} & -f_{12} \\ -f_{21} & f_{11} \end{bmatrix}}{(f_{11}f_{22} - f_{12}f_{21})} \begin{bmatrix} g_1 \\ g_2 \end{bmatrix} \Delta u * + \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} \Delta w * \end{bmatrix}$$
$$|\mathbf{F}| = (f_{11}f_{22} - f_{12}f_{21}) \neq 0$$

2.5 2 1.5 1 0.5 2 4 6 8 N

Response of Higher-Order LTI Systems is a Superposition of Sub-System Responses

- Third-order system with uncoupled 1st- and 2nd-order sub-systems
- Coupling in first row and first column

$$\mathbf{F} = \begin{bmatrix} f_{11} & 0 & 0 \\ 0 & 0 & 1 \\ 0 & f_{32} & f_{33} \end{bmatrix}$$

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & 0 & 1 \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$$

$$\Delta \mathbf{x} = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \\ \Delta x_3 \end{bmatrix}$$

Examples of Coupled and Uncoupled Third-Order Systems

Third-order system with uncoupled 1st- and 2nd-order sub-systems

Coupling in first row and first column

Pos	Position Coupling, Δx_3					
	<u>-1</u>	0.1	0]			
F =	0.1	0	1			
	0	-1	-1.414			

55

3rd-Order LTI Systems with Coupled Response

With coupling, the two modes appear in all three components