Dynamic Structural Models

4. Unobserved Heterogeneity

Aaron Barkley Department of Economics July 2025

Latent types in the data generating process

- We observe data $\{Y_i\}_{i=1}^N$.
- Data comes from two different distributions:
 - With probability π_1 , $Y_i \sim F_1$
 - With probability π_2 , $Y_i \sim F_2$.
- We assume we know F_1, F_2 up to a finite set of parameters θ_1, θ_2 .
- We do not assume that we know the mixing parameters π_k .
- Problem is to estimate $\Xi \equiv \{\theta_1, \theta_2, \pi_1, \pi_2\}$ using $\{Y_n\}$.

Introduction

- We could, in principle, estimate Ξ using maximum likelihood.
 - Problematic in practice. Slow with unreliable convergence.
- Instead, we use the Expectation-Maximization algorithm. This sequentially updates π and θ .
- We define Z_{ik} as the random variable over the *latent type* of observation i.
 - $\circ Z_{i1} = 1$ if observation i is drawn from F_1 , and $Z_{i2} = 1$ if it is drawn from F_2 .
 - \circ Note that $\pi_k = \mathbb{E}[Z_{ik}]$.

EM algorithm: Initialization and Expectation

- 0. Fix initial guesses for Ξ and set convergence tolerance. Then, at each iteration m, perform the following steps:
- 1. Update π the Expectation step. Given current parameters π , θ , calculate the expected value of Z_{ik} for all i, k.

$$E[Z_{ij}|Y,\theta^{(m)},\pi^{(m)}] = \frac{\pi_j^{(m)}f(Y_i|\theta_j^{(m)})}{\pi_1^{(m)}f(Y_i|\theta_1^{(m)}) + \pi_2^{(m)}f(Y_i|\theta_2^{(m)})}$$

We can also update the mixing parameters at this stage:

$$\pi_k^{(m+1)} = \frac{1}{N} \sum_{i=1}^N E[Z_{ik}|Y, \theta^{(m)}, \pi^{(m)}]$$

EM algorithm: Maximization

2. We maximize the likelihood with respect to θ only. The log-likelihood is:

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \sum_{k=1}^{2} \underbrace{E[Z_{ik}|Y, \theta^{(m)}, \pi^{(m)}]}_{\mathsf{Pr}(Z_{ik}=1)} \log(f(Y_i|\theta_j) + \sum_{i=1}^{N} \sum_{k=1}^{2} \underbrace{E[Z_{ik}|Y, \theta^{(m)}, \pi^{(m)}]}_{\mathsf{Pr}(Z_{ik}=1)} \log(\pi_j)$$

Note that this is just a weighted likelihood.

- Each observation has weights on the likelihood of being a "type one" observation or a "type two" observation.
- The weights were determined in Step 1.
- Update distribution parameters: $\theta^{(m+1)} = \arg \max_{\theta} \mathcal{L}(\theta)$.
- Repeat Steps 1-2 until overall likelihood converges.

Application to dynamic discrete choice models

- Now we return to bus engine replacement. We assume that the permanent type of bus n, s_n , is unobserved to the econometrician and can take two values $s_n \in \{1, 2\}$.
- We have already seen how to construct the likelihood if s_n was observable.
- To account for unobserved heterogeneity, we repeat this calculation twice:
 - \circ Calculate likelihood of observing choice d_{nt} assuming the bus type is $s_n=1$
 - Calculate the likelihood of observing choice d_{nt} assuming the bus type is $s_n=2$.
- With these calculations and initial guesses for θ (utility parameters) and π (proportion of bus types), we can estimate the model with the EM algorithm.

EM steps for bus engine replacement problem

• Define $\Delta v(x_{nt},s) \equiv v_2(x_{nt},s) - v_1(x_{nt},s)$. The likelihood given bus type s is

$$\ell_{nt}(d_{nt}|x_{nt}, s, p_1, \theta) = \frac{d_{1nt} + d_{2nt} \exp(\Delta v(x_{nt}, s))}{1 + \exp(\Delta v(x_{nt}, s))}$$

where

$$\Delta v(x_{nt}, s) = \theta_0 + \theta_1 x_{nt} + \theta_2 s + \beta [\log(p_1(0, s)) - \sum_{x' \in \mathcal{X}} \log(p_1(x', s)) f_2(x'|x_{nt})]$$

• We calculate the likelihood for each observation-bus type pair and then perform the Expectation step

$$q_{ns}^{(m+1)} = \frac{\pi_s^{(m)} \prod_{t=1}^T \ell_{nt}(d_{nt}|x_{nt}, s, p_1^{(m)}, \theta^{(m)})}{\sum_{s'=1}^S \pi_{s'}^{(m)} \prod_{t=1}^T \ell_{nt}(d_{nt}|x_{nt}, s', p_1^{(m)}, \theta^{(m)})}$$

where q_{ns} is the probability that bus n is type s.

EM steps for bus engine replacement problem

• Next we update the CCPs:

$$p_1^{(m+1)}(x,s) = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T} d_{1nt} q_{ns}^{(m+1)} 1\{x_{nt} = x\}}{\sum_{n=1}^{N} \sum_{t=1}^{T} q_{ns}^{(m+1)} 1\{x_{nt} = x\}}$$

• Finally, we maximize the likelihood with respect to θ :

$$\theta^{(m+1)} = \arg\max_{\theta} \sum_{n=1}^{N} \sum_{s=1}^{S} \sum_{t=1}^{T} q_{ns}^{(m+1)} \log \left(\ell_{nt}(d_{nt}|x_{nt}, s_n, p_1^{(m+1)}, \theta) \right)$$

and update π for the next iteration:

$$\pi_s^{(m+1)} = \frac{1}{N} \sum_{n=1}^{N} q_{ns}^{(m+1)}$$