```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, accuracy_score, confusion
from sklearn.model_selection import GridSearchCV

# Disable scientific notation for large numbers
pd.options.display.float_format = '{:.0f}'.format

# Setting display options for Pandas to show three decimal places for floati
pd.set_option('display.float_format', lambda x: '%.2f' % x)
```

Data Loading

```
In [3]: # import data
mobile_df = pd.read_csv('/content/drive/MyDrive/dataset.csv')
```

Data Exploration

```
In [4]: mobile_df.info() # Display information about the DataFrame, including data
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 21 columns):

Data	columns (total	ZI COLUMNS):	
#	Column	Non-Null Count	Dtype
0	battery_power	2000 non-null	int64
1	blue	2000 non-null	int64
2	clock_speed	2000 non-null	float64
3	dual_sim	2000 non-null	int64
4	fc	2000 non-null	int64
5	four_g	2000 non-null	int64
6	int_memory	2000 non-null	int64
7	m_dep	2000 non-null	float64
8	mobile_wt	2000 non-null	int64
9	n_cores	2000 non-null	int64
10	рс	2000 non-null	int64
11	px_height	2000 non-null	int64
12	px_width	2000 non-null	int64
13	ram	2000 non-null	int64
14	sc_h	2000 non-null	int64
15	SC_W	2000 non-null	int64
16	talk_time	2000 non-null	int64
17	three_g	2000 non-null	int64
18	touch_screen	2000 non-null	int64
19	wifi	2000 non-null	int64
20	price_range	2000 non-null	int64
dtyne	es: float64(2)	int64(19)	

dtypes: float64(2), int64(19)

memory usage: 328.3 KB

In [5]: mobile_df.head() # Display the first 5 rows of the DataFrame

Out[5]:		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_de
	0	842	0	2.20	0	1	0	7	0.6
	1	1021	1	0.50	1	0	1	53	0.7
	2	563	1	0.50	1	2	1	41	0.9
	3	615	1	2.50	0	0	0	10	0.8
	4	1821	1	1.20	0	13	1	44	0.6

 $5 \text{ rows} \times 21 \text{ columns}$

In [6]: mobile_df.describe() # Display statistical information about Dataframe

Out[6]:		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_m
	count	2000.00	2000.00	2000.00	2000.00	2000.00	2000.00	2
	mean	1238.52	0.49	1.52	0.51	4.31	0.52	
	std	439.42	0.50	0.82	0.50	4.34	0.50	
	min	501.00	0.00	0.50	0.00	0.00	0.00	
	25%	851.75	0.00	0.70	0.00	1.00	0.00	
	50%	1226.00	0.00	1.50	1.00	3.00	1.00	
	75 %	1615.25	1.00	2.20	1.00	7.00	1.00	
	max	1998.00	1.00	3.00	1.00	19.00	1.00	

 $8 \text{ rows} \times 21 \text{ columns}$

```
In [7]: # Visualize feature distributions
    plt.figure(figsize=(12,8))
    sb.heatmap(mobile_df.corr(), annot=True, fmt=".2f", cmap="coolwarm", square=
    plt.title("Feature Correlation Heatmap")
    plt.show()
```

Feature Correlation Heatmap

Data Cleaning

In [8]: mobile df.isna().sum() # Find sum of missing values

```
Out[8]:
                      0
        battery_power 0
                 blue 0
          clock_speed 0
             dual_sim
                      0
                   fc
               four_g 0
          int_memory 0
               m_dep 0
            mobile_wt 0
              n_cores 0
                   pc 0
            px_height 0
             px_width 0
                 ram 0
                 sc_h 0
                 sc_w 0
            talk_time 0
              three_g 0
         touch_screen 0
                  wifi 0
          price_range 0
```

dtype: int64

Since missing data is 0, so handling missing data is not required

```
In [9]: print(mobile_df.duplicated().sum()) # Find sum of duplicate rows
```

Since, sum of duplicated values is zero, so there is no need to drop duplicates.

Model Training and Evaluation

```
In [15]: # Feature Engineering
X = mobile_df.drop('price_range', axis=1)
y = mobile_df['price_range']
```

```
# Split data (training data 80% test data 20%)
X train, X test, y train, y test = train test split(X, y, test size=0.2, rar
# Scale features
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
# Model Training
model = RandomForestClassifier(random state=42)
# Hyperparameter tuning
param grid = {
    'n estimators': [100, 200],
    'max depth': [None, 10, 20],
    'min samples split': [2, 5]
}
grid search = GridSearchCV(model, param grid, cv=3)
grid search.fit(X train, y train)
best model = grid search.best estimator
# Model Evaluation
y pred = best model.predict(X test)
accuracy = accuracy score(y test, y pred)
print(f"Accuracy: {accuracy:.2f}\n")
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
```

Accuracy: 0.89

Classification Report:

support	fl-score	recall	precision	
105	0.95	0.96	0.94	0
91	0.87	0.86	0.88	1
92	0.83	0.85	0.81	2
112	0.91	0.89	0.93	3
400	0.89			accuracy
400	0.89	0.89	0.89	macro avg
400	0.89	0.89	0.89	weighted avg

Confusion Matrix:

Feature Importance Analysis

Key insights from the analysis:

- 1. Feature Importance: RAM shows the highest correlation with price range, followed by battery power and pixel resolution
- 2. Class Distribution: The dataset contains balanced classes (500 samples each)
- 3. Model Performance: Random Forest achieves 89% accuracy with proper tuning
- 4. Critical Features: o RAM (most significant predictor) o Battery capacity o Pixel resolution dimensions o Internal memory

Predicting if the mobile can be priced low/med/high/very high.

```
In [14]: # Map 0 -> "Low", 1 -> "Medium", 2 -> "High", 3 ->"Very High"
price_map = {0: "Low", 1: "Medium", 2: "High", 3: "Very High"}
```

```
# Prediction function
def predict mobile price(features dict):
 feature order = X.columns.tolist()
 input data = np.array([[features dict[feat] for feat in feature order]])
 prediction = grid search.predict(input data)[0]
  return price map[prediction]
# Example prediction
features = {
    "battery_power": 850, "blue": 1, "clock_speed": 2.0, "dual_sim": 1,
    "fc": 3, "four_g": 1, "int_memory": 64, "m_dep": 0.6,
    "mobile_wt": 140, "n_cores": 4, "pc": 16, "px_height": 1000,
    "px_width": 1300, "ram": 3000, "sc_h": 14, "sc_w": 8,
    "talk_time": 15, "three_g": 1, "touch_screen": 1, "wifi": 1
}
result = predict mobile price(features)
print("Predicted Price Range:", result)
```

Predicted Price Range: Very High

This notebook was converted with convert.ploomber.io