Theorem (2.3.68). Let f be a function $f: A \implies B$, where A and B are finite sets, and |A| = |B|. f is injective if and only if f is surjective.

Proof. Direct form by the contrapositive. Suppose the negation of the statement given by the definition for surjective functions, $\exists y \forall x (f(x) \neq y)$. This statement can only be true if either |A| < |B| (contradicting the hypothesis,) or $\exists x \exists y ((f(x) = f(y)) \land (x \neq y))$. Since contradiction is \bot by the law for logical negation, by the identity law for logical disjunction, f is defined as not injective. Thus, if f is injective, then f is surjective.

Converse form by the contrapositive. Suppose the negation of the statement given by the definition for injective functions, $\exists x \exists y ((f(x) = f(y)) \land (x \neq y))$. This statement can only be true if either |A| > |B| (contradicting the hypothesis,) or $\exists y \forall x (f(x) \neq y)$. Since contradiction is \bot by the law for logical negation, by the identity law for logical disjunction, f is defined as not surjective. Thus, if f is surjective, then f is injective.

 $\therefore \forall x \forall y ((f(x) = f(y)) \implies (x = y)) \iff \forall y \exists x (f(x) = y), \text{ whenever } f \text{ is a function } f: A \implies B, \text{ where } A \text{ and } B \text{ are finite sets, and } |A| = |B|.$