ЛР №4 «Астатизмы»

Отчет

Студент Кирилл Лалаянц R33352 336700 Вариант - 6

Преподаватель Пашенко А.В.

Факультет Систем Управления и Робототехники

ИТМО

Содержание

1	Вводные данные			1
	1.1	Цель	работы	1
	1.2	Воспр	ооизведение результатов	1
2	Вып	юлнени	ие работы	2
	2.1	Задание 1. Задача стабилизации с идеальным дифференцирующим		
		звено	M	2
		2.1.1	Теория	2
		2.1.2	Результаты	2
	2.2	Задан	ие 2. Задача стабилизации с реальным дифференцирующим	
		звеног	M	3
		2.2.1	Теория	3
		2.2.2	Результаты	3
	2.3	Задан	ие 3. Исследование влияния шума	5
		2.3.1	Теория	5
		2.3.2	Результаты	5
	2.4	Задан	ние 4. Задача слежения для системы с астатизмом нулевого	
		поряд	(ка	6
		2.4.1	Теория	6
		2.4.2	Результаты	6
	2.5	2.5 Задание 5. Задача слежения для системы с астатизмом перв		
		поряд	(Ka	8
		2.5.1	Теория	8
		2.5.2	Результаты	8
	2.6	Задан	ие 6. Исследование линейной системы замкнутой регулятором	
		общег	о вида	10
		2.6.1	Теория	10
		2.6.2	Результаты	12

3	Заключение		
	3.1 Выводы	13	

1 Вводные данные

1.1 Цель работы

В этой работе будет проведенно исследование следующих вопросов:

- Астатизмы.
- Принцип внутренней модели.
- Идеальное и реальное дифференцирующие звенья

1.2 Воспроизведение результатов

Все результаты можно воспроизвести с помощью репозитория.

- 2 Выполнение работы
- 2.1 Задание 1. Задача стабилизации с идеальным дифференцирующим звеном.

2.1.1 Теория

В этом задании будет проведена симуляция системы с ПД регулятором, используя дифференциальное звено, для open- и closed-loop систем.

Хотим получить ДУ системы вида:

$$\ddot{y} + a_1 \dot{y} + a_0 y = u$$

Сначала получим характеристическое уравнение для частного решения вида:

$$\ddot{y} + a_1 \dot{y} + a_0 y = 0$$

Имеем два корня – λ_1 и λ_2 . Тогда:

$$(p - \lambda_1)(p - \lambda_2) = p^2 - (\lambda_1 + \lambda_2)p + \lambda_1\lambda_2 = 0,$$

умножив которое на у получаем:

$$\ddot{y} - (\lambda_1 + \lambda_2)\dot{y} + \lambda_1\lambda_2 y = 0.$$

Для полюсов -1 и 2 получаем:

$$\ddot{y} - \dot{y} - 2y = 0.$$

Возьмем

$$u = k_0 e + k_1 \dot{e} = k_0 (0 - y) + k_1 (0 - y) = -k_0 y - k_1 \dot{y},$$

тогда наша система примет вид:

$$\ddot{y} - \dot{y} - 2y = -k_0 y - k_1(y)$$

$$\ddot{y} + (-1 + k_1)\dot{y} + (-2 + k_0)y = 0$$

Откуда по следствию из критерий Гурвица видно, что:

$$\begin{cases} k_1 > 1 \\ k_0 > 2 \end{cases} \tag{1}$$

Пусть $k_1 = 4; k_0 = 1000.$

2.1.2 Результаты

Ожидаемо, замкнутая система успешно свела ошибку к 0, а открытая – нет.

Задание 1. Задача стабилизации с идеальным дифференцирующим звеном

Рис. 1: Результат выполнения первого задания.

2.2 Задание 2. Задача стабилизации с реальным дифференцирующим звеном.

2.2.1 Теория

В этом задании будет проведена симуляция системы с ПД регулятором, используя реальное дифференциальное звено.

$$W_{rd} = \frac{s}{Ts+1}$$

Так же исследован параметр Т на предмет устойчивости.

Для этого сначала получим передаточную closed-loop системы:

$$W_{ol} = (k_0 + k_1 W_{rd}) W_{sys}$$
$$W_{cl} = \frac{W_{ol}}{1 + W_{ol}}$$

Взяв систему и коэффициенты из матричного критерия Гурвица получаем, что система устойчива при 0 < T < 0.533

2.2.2 Результаты

Заметно, что параметр $=10^{-3}$ уже достаточно мал, и отличий с $=10^{-5}$ нет. Значение границы устойчивости экспериментально подтвердилось — система

устойчива по Ляпунову при этом значении, а при значении больше – неустойчива. Так же видно, что чем меньше T – тем быстрее переходный процесс.

При Т стремящемся к 0, поведение системы близко к поведению с идеальным дифференцирующим звеном.

Рис. 2: Результат выполнения второго задания.

2.3 Задание 3. Исследование влияния шума.

2.3.1 Теория

В этом задании будет проведено исследование влияния шума на конечный результат.

2.3.2 Результаты

Четко видно (рис. 3), что ошибка при использовании идеального звена прямопропорциональна шуму. Однако, более важно тут то, что на грубую сходимость системы это никак не влияет и в начале графики выглядят идентично. Разница становится заметна только при значениях ошибки уже близким к 0 – система с большой погрешностью в заметно более широкой окрестности цели.

Рис. 3: Результат выполнения третьего задания для идеальной системы.

Проведем исследование влияния шума на системы с реальными дифференцирующими звеньями. Заметно (рис. 4), что при большем Т сходимость дольше и колебания сильнее. Это в целом следует из предыдущего пунтка, но еще услививается шумами.

Рис. 4: Результат выполнения третьего задания для идеальной системы.

2.4 Задание 4. Задача слежения для системы с астатизмом нулевого порядка.

2.4.1 Теория

В этом задании будет проведено исследование слежения системы с астатизмом нулевого порядка при различных входных воздействиях.

2.4.2 Результаты

На графике представлены поведение системы при различных коэффициентах k. Заметно, что при константном воздействии (рис. 5) он уменьшает ошибку. Ее предельное значение было посчитано через предельную теорему и представлено в легенде.

На графике (рис. 6) представлено поведение системы при линейном воздействии. Графики расходятся – ошибка стремится к бесконечности.

На графике (рис. 7) представлено поведение системы при переодическом воздействии. Ошибка стремится к 0.

Задание 4. Задача слежения для системы с астатизмом нулевого порядка.

Рис. 5: Система с астатизмом 0. Константное воздействие.

Задание 4. Задача слежения для системы с астатизмом нулевого порядка.

Рис. 6: Система с астатизмом 0. Линейное воздействие.

Задание 4. Задача слежения для системы с астатизмом нулевого порядка.

Рис. 7: Система с астатизмом 0. Переодическое воздействие.

2.5 Задание 5. Задача слежения для системы с астатизмом первого порядка.

2.5.1 Теория

Задание аналогично предыдущему, только на этот раз ПИ регулятор, который повышает порядок астатизма.

2.5.2 Результаты

Сначала было проведенно влияние П коэффициента. Заметно, что при константном воздействии (рис. 8) его влияние уже не столь очевидно. Так же заметен вклад И части – ошибка всех графиков сходится к 0. При линейном воздействии (рис. 9) ошибка никак не зависит от П коэффициента.

При переодическом воздействии (рис. 10) влияние коэффициента Π определить крайне тяжело.

При константном воздействии (рис. 11) влияние И очень заметно. Он ускорят время переходного процесса, но при этом вызывает перерегулирование. При линейном воздействии (рис. 12) ошибка обратно пропорциональна И.

При переодическом воздействии (рис. 13) влияние коэффициента И определить крайне тяжело.

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Вличние k_0 : $k_1 = 10$

Рис. 8: Система с астатизмом 0. Константное воздействие.

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Влияние k_0 : $k_1 = 10$

Рис. 9: Система с астатизмом 0. Линейное воздействие.

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Рис. 10: Система с астатизмом 0. Переодическое воздействие.

Задание 5. Задача слежения для системы с астатизмом первого порядка.

В пивние $k_1 \cdot k_2 = 10$

Рис. 11: Система с астатизмом 0. Константное воздействие.

2.6 Задание 6. Исследование линейной системы замкнутой регулятором общего вида.

2.6.1 Теория

В этом задании был протестирован принцип внутренней модели и получена управляемая система.

$$u = sin(3t)cos(2t)$$

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Рис. 12: Система с астатизмом 0. Линейное воздействие.

Задание 5. Задача слежения для системы с астатизмом первого порядка.

Рис. 13: Система с астатизмом 0. Переодическое воздействие.

$$U = \frac{N_g}{D_g} = \frac{3(s^2 + 5)}{(s^2 + 1)(s^2 + 25)}$$

$$W = \frac{N}{D} = \frac{1}{s^2}$$

$$W_r = \frac{N_r}{D_r}$$

$$E = \frac{D_r D}{D_r D + NrN} \frac{N_g}{D_g} = \frac{D_r s^2}{D_r s^2 + Nr} \frac{3(s^2 + 5)}{(s^2 + 1)(s^2 + 25)}$$

Чтобы сократить положительные полюса D_g ,пусть $D_r = D_g(s+r)$

$$D_r = (s^2 + 1)(s^2 + 25)(s+r)$$

Тогда получаем:

$$E = \frac{(s+r)s^2}{(s^2+1)(s^2+25)(s+r)s^2+Nr} \frac{3(s^2+5)}{1}$$

Пусть $N_r = s^2(a_3s^3 + a_2s^2 + a_1s^1 + a_0)$, тогда:

$$E = \frac{(s+r)}{(s^2+1)(s^2+25)(s+r) + (a_3s^3 + a_2s^2 + a_1s^1 + a_0)} \frac{3(s^2+5)}{1}$$

Остается лишь принять любые устраивающие нас корни (на графике используется набор от -1 до -5), раскрыть скобки, привеси подобные при степенях s, откуда получим:

$$\begin{cases}
 a_0 > -255 \\
 a_1 > 249 \\
 a_2 = -165 \\
 a_3 = 59 \\
 r = 15
\end{cases}$$
(2)

2.6.2 Результаты

Благодаря принципу замкнутой модели был синтезирован регулятор для управления системой. Ошибка сходится к 0.

Задание 6. Исследование линейной системы замкнутой регулятором общего вида.

Рис. 14: Результат синтеза регулятора.

3 Заключение

В этой работе было проведенно исследование следующих вопросов:

- Астатизмы.
- Принцип внутренней модели.
- Идеальное и реальное дифференцирующие звенья

3.1 Выводы

- 1. На практике изучено реальное и идеальное ДЗ.
- 2. Проверена работа систем с разными степенями астатизмов.
- 3. Проверено влияние коэффициентов регулятора на поведение системы.
- 4. Синтезирован регулятор методом замкнутой модели.