Introdução aos Sistemas Dinâmicos

Sistemas Dinâmicos Discretos

1. Em cada alínea estude a dinâmica do sistema dinâmico $f:\mathbb{R}\longrightarrow\mathbb{R}$ definido por:

$$(a) f(x) = x^3$$

$$(b) f(x) = -x^3$$

 $x_0 = 1.1$

$$x_0 = 1$$

(c) $f(x) = x^3 + x$

 $(d) f(x) = x^3 - x$

1.5 dag(x) dag(x

|f|

(e) $f(x) = x^2 + 1/4$

$$(f) f(x) = |x - 1|$$

f

$$(g) f(x) = nx$$

 $(h) f(x) = \cos x$

Utilize o Maxima para prever a evolução da dinâmica de cada um dos sistemas.

- 2. Dê exemplo de, ou justifique por que não existe:
 - (a) Um sistema dinâmico $f:[0,1] \longrightarrow [0,1]$ que não tenha pontos fixos.
 - (b) Um sistema dinâmico contínuo $f:]0,3[\longrightarrow]0,3[$ que não tenha pontos fixos.
 - (c) Um homeomorfismo $f: \mathbb{R} \longrightarrow \mathbb{R}$ que não tenha pontos fixos.
- 3. Em cada alínea, apresente um exemplo de um sistema dinâmico contínuo $f:\mathbb{R}\to\mathbb{R}$ tal que:
 - (a) $W^s(0) =]-1,1[.$
 - (b) $\omega(x) = \{1\}$ para todo o $x \in \mathbb{R}$.
 - (c) $\omega(x) = \emptyset$ para todo o $x \in \mathbb{R}$.
 - (d) $\omega(2) = \{-2, 2\}$ para todo o $x \in \mathbb{R}$.
 - (e) O conjunto [-1,1] não contém pontos periódicos.
 - (f) $\sqrt{3}$ é um ponto periódico de período 2.
 - (g) f tem um único ponto fixo x e $W^s(x) = \mathbb{R}$.
 - (h) Todo o ponto da recta é periódico.
 - (i) Todo o ponto da recta é recorrente.
 - (j) Todo o ponto da recta é não-errante.
 - (k) Nenhum ponto da recta é periódico.
 - (1) Nenhum ponto da recta é recorrente.
 - (m) O conjunto dos pontos recorrentes é [0, 2].
- 4. Apresente um exemplo de um sistema dinâmico $f:[0,1[\longrightarrow [0,1[$ que seja uma contracção sem pontos fixos.
- 5. Considere o sistema dinâmico $f(x) = 2x \pmod{1}, x \in [0, 1[$.

- (a) Mostre que $f(x) = (.s_2s_3\cdots)_2$, para todo $x = (.s_1s_2s_3\cdots)_2$.
- (b) Encontre os pontos fixos (caso existam) e os pontos periódicos de período p=2 e p=3 (caso existam) de f.
- (c) Apresente um exemplo de um ponto cuja órbita por f não seja periódica.

4

6. Considere o sistema dinâmico $f: \mathbb{R} \to \mathbb{R}$, definido por $f(x) = \begin{cases} 3x & \text{se } x < 2/3 \\ 3x - 2 & \text{se } x \ge 2/3 \end{cases}$

ainda a esse intervalo.

 f^3

- f^2
- (b) Caracterize o conjunto dos pontos do intervalo unitário cuja iterada n, para qualquer $n \in \mathbb{N}$, pertence ainda a esse intervalo.

(a) Caracterize o conjunto dos pontos do intervalo unitário cuja primeira iterada pertence

- (c) Caracterize o conjunto invariante maximal de f.
- 7. Para cada uma dos seguintes sistemas dinâmicos $f: \mathbb{R} \to \mathbb{R}$ determine os pontos fixos e indique quais são atractivos e quais são repulsivos:

(a)
$$f(x) = x^2 - x/2$$

(b)
$$f(x) = 4x - x^2$$

(c)
$$f(x) = x^2 - 1$$

$$(d) f(x) = \operatorname{sen} x$$

(e)
$$f(x) = x + x^3$$

$$(f) f(x) = x - x^3$$

$$(g) f(x) = x + x^2$$

$$(h) f(x) = x - x^2$$

(i)
$$f(x) = \begin{cases} 2x & \text{se } x \le 1/2 \\ 2 - 2x & \text{se } x > 1/2 \end{cases}$$
 (j) $f(x) = e^x - 1$

$$(j) f(x) = e^x - 1$$

- 8. Considere o sistema dinâmico $f: \mathbb{R}^+ \to \mathbb{R}^+$. Mostre que $W^s(1) = \mathbb{R}^+$. $x \mapsto \sqrt{x}$
- 9. Em cada alínea, apresente um exemplo de um sistema dinâmico contínuo $f: \mathbb{R} \to \mathbb{R}$ tal que:

5

- (a) $\sqrt{2}$ é um ponto fixo repulsivo.
- (b) $\sqrt{3}$ é um ponto fixo atractivo.
- (c) π e $-\pi$ são pontos fixos repulsivos.