时序电路的自启动性分析

例1 画出下所示的电路的状态图。

解:激励方程

$$J_1 = K_1 = Q_3$$

$$J_2 = Q_1 \quad K_2 = \overline{Q}_1$$

$$J_3 = Q_2 \quad K_3 = \overline{Q}_2$$

状态方程

$$Q_{1}^{n+1} = Q_{3}^{n} \overline{Q}_{1}^{n} + \overline{Q}_{3}^{n} Q_{1}^{n} = Q_{1}^{n} \oplus Q_{3}^{n}$$

$$Q_{2}^{n+1} = Q_{1}^{n} \overline{Q}_{2}^{n} + Q_{1}^{n} Q_{2}^{n} = Q_{1}^{n}$$

$$Q_{3}^{n+1} = Q_{2}^{n} \overline{Q}_{3}^{n} + Q_{2}^{n} Q_{3}^{n} = Q_{2}^{n}$$

状态表

Q_1^n	\mathbb{Q}_2^n	\mathbb{Q}_3^n	Q_1^{n+1}	Q_2^{n+1}	Q_3^{n+1}
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	0	0	1
0	1	1	1	0	1
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	0	1	1

状态图

可以看出:若电路的出现 状态为000时,则电路则一 直停留在000状态,不能动 作,这称之为不能自启动 例2

解: 状态方程

$$Q_1^{n+1} = Q_1^n Q_2^n Q_3^n$$

$$Q_2^{n+1} = Q_1^n$$

$$Q_3^{n+1} = Q_2^n$$

$$Q_4^{n+1} = Q_3^n$$

状态表

ξ	Q_1^n	Q_2^n	Q_3^n	Q_4^n	Q_1^{n+1}	Q_2^{n+1}	Q_3^{n+1}	Q_4^{n+1}
				0	4	0	0	
	U	0	0	U		U	•	U
	0	0	0	1	1	0	0	0
	0	0	1	0	0	0	0	1
	0	0	. 1	1	0	0	0	1
	0	1	0	0	0	0	1	0
	0	1	0	1	0	0	1	0
	. 0	1	1	0	0	0	1	1
	0	1	1	1	0	0	1	1
	1	0	0	0	0	1	0	0
	1	0	0	1	0	1	0	0
	1	0	1	0	0	· 1	0	1
	1	0	1	1	0	1	0	1
	1	1	0	0	0	1	1	0
	1	1	0	1	0	1	1	0
	1	1	1	0	0	1	1	1
	1	1	1	1	0	1	1	1

状态图

所谓<mark>自启动</mark>是 指该电路一旦离开 有效序列,在CP 作用下仍可自行回 到有效序列。

无论初始出现在什么状态,经过有限的周期后,电路总会进入正常的循环状态。电路有自启动性

波形图

有效序列

 $1000 \rightarrow 0100 \rightarrow 0010 \rightarrow 0001 \rightarrow 1000 \rightarrow \dots$

四路脉冲分配器或节拍脉冲发生器

模4计数器

4位移位寄存器

解决方法的方法(仍以例1为例)

(1) 通过修改原电路设计

把000状态"插入"正常循环状态,即令000的次态为001,修改后的电路

如图所示。

(2) 选用具有置位 / 复位端的触发器

在电路状态进入000时,通过直接置位端将Q3的状态立即变成1。

(3) 设置开机复位、置位电路,使电路一开始工作就进入有效循环状态。

开机复位电路

开机置位电路

异步输入信号的处理

前例

为什么这 里外输入 A、B正巧 与CP时钟 一致?

实际外输入 也许

或者

例 异步输入 信号同步化电 路

波形图

集成计数器及其应用

什么是计数器?

一般来说,当时序电路的状态图中出现循环状态时,此时序电路就可称为**计数器**,而将循环中状态的个数称之为计数器的"模",一个有m个循环状态的计数器就称为模m计数器,有时也称为m分频计数器。

计数器是通过电路的状态来反映输入脉冲数目的电路

模5加法计数器

模2计数器

模16加法计数器

模16减法计数器

常用集成计数器

型号	计数方式	模及码制	计数规律	预 置	复位	触发方式
7490	异步	2×5	加法	异步	异步	下降沿
7492	异步	2×6	加法		异步	下降沿
74160	同步	模 10,8421 码	加法	同步	异步	上升沿
74161	同步	模 16,二进制	加法	同步	异步	上升沿
74162	同步	模 10,8421 码	加法	同步	同步	上升沿
74163	同步	模 16,二进制	加法	同步	同步	上升沿
74190	同步	模 10,8421 码	单时钟,加/减	异步		上升沿
74191	同步	模 16,二进制	单时钟,加/减	异步		上升沿
74192	同步	模 10,8421 码	双时钟,加/减	异步	异步	上升沿
74193	同步	模 16,二进制	双时钟,加/减	异步	异步	上升沿
CD4020	异步	模 214,二进制	加法		异步	下降沿

同步(加法)计数器74163

74163的标准逻辑符号

74163的惯用逻辑符号

>C5: 时钟编号为 5, 且是上升沿触发; 2, 3, 4+: 当 M2=1, G3=1, G4=1 时进行加法运算。 ⑱ Q₀、Qı、Q₂和 Q₃: 计数器状态输出端。 [1]、[2]、[4]和[8]: 表示输出端 $arrho_0$ 、 $arrho_1$ 、 $arrho_2$ 和 $arrho_3$ 的权依次为 1、2、4 和 <math>8。 ② D_0 、 D_1 、 D_2 和 D_3 : 并行数据输入端。 1,5D:M1=1,C5上升沿触发,置数操作。 CTRDIVI6 ⑧ *CO*: 进位输出端。 CR5CT=0 3CT=15: G3(即 CT_{T})=1,且计数器状态为 15, M1即 $Q_2Q_1Q_0=1111$ 时产生进位 CO=1。 LDM23CT=15 CT_{T} -G3 $CT_{\rm P}$ **G**4 >C5/2,3,4+ CP1,5D [1] D_0 Q_0 [2] D_{1} Q_1 D_2 [4] $\cdot Q_2$ [8] D_3 Q_3

⑤ CP: 计数脉冲输入端。

74163的功能表

输入									输 出			
CP	\overline{CR}	\overline{LD}	CP_{T}	$CT_{\mathbb{T}}$	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0
	0	×	×	×	×	×	×	×	0	0	0	0
	1	0	×	×	D_3	D_2	D_1	D_0	D_3	D_2	D_1	D_0
×	1	1	0	×	×	×	×	×	保持			
×	1	1	×	0	×	×	×	×	保持			
	1	1	1	1	×	×	×	×	计 数			
								进位输	出: CO=	$Q_3Q_2Q_1Q$	$_{0}CT_{T}$	

74163的波形图

计数器74163应用:

(1)构成任意模的计数器 将74163与少量的逻辑门电路结合,可构成任意模(模数小 于16)计数器。

方法一: 复位法

模7加法计数器

方法二:置数法

模7加法计数器

(2) 计数器的扩展(模数大于16)

①异步方式:

实质上就是各集成计数器 的级联。前级计数器的输出作 为后级计数器的时钟。

思考:为 什么要加 非门? 因为 $CO=CT_TQ_3Q_2Q_1Q_0$,在当 $Q_3Q_2Q_1Q_0=1111$ 时, $CO=D_1$ 1,如果这时就触发后一级电路计数,哪就相当于(P=015)P=015),就产生进位计数了,所以需要加入一个非门,在 P=01111之后,再来一个P=01111之后,再来一个P=01111之后,后一级CP则由P=01111之后,后一级计数器这才开始计数一次。

电路特点:连接简单,运行速度较慢。

②同步方式:

电路一

$$CT_{T}' = 1$$

$$CT_{T}'' = CO' = Q_{3}Q_{2}Q_{1}Q_{0}CT_{T}' = Q_{3}Q_{2}Q_{1}Q_{0}$$

$$CT_{T}''' = CO'' = Q_{7}Q_{6}Q_{5}Q_{4}CT_{T}''' = Q_{7}Q_{6}Q_{5}Q_{4}Q_{3}Q_{2}Q_{1}Q_{0} = \prod_{i=0}^{7}Q_{i}$$

(芯片 I 是每来一个计数脉冲就加1计数。对高位的74163而言,仅当它左侧所有的Q端均为1时,在下一个CP脉冲作用下,它才能加1计数,同时它左侧各74163因受该CP脉冲的作用均由状态1111变为状态0000。)

因为欲使CP脉冲到来时74163能计数,其控制端 $CT_T=1$,而当 $Q_{11}Q_{10}\sim Q_3Q_2Q_1Q_0=1111$ 1111 1110时, $CO'=0 \rightarrow CO''=0$ 。 再来一个CP脉冲, $Q_{11}Q_{10}\sim Q_3Q_2Q_1Q_0=1111$ 1111 1111 1111, $CO'=1 \rightarrow CO''=1 \rightarrow CO''=1$ 才产生进位脉冲。

结论:由于各芯片间的进位信号CO是逐级传递的。因此,计数的最高频率将 受到片数的限制,片数越多,计数频率越低。

注意: CT_T=1仅仅是74163可以计数的必要条件。

此电路的工作速度较高,因为只要芯片 II 状态全为1,则

$$CO'' = Q_7 Q_6 Q_5 Q_4 CT_T'' = Q_7 Q_6 Q_5 Q_4 = CT_T''' = 1$$

思考: 四级电路如何接?工作原理一样吗?

一旦芯片 I 状态全为1,则

$$CO' = Q_3Q_2Q_1Q_0CT_T' = Q_3Q_2Q_1Q_0 = CT_P'' = 1$$

该信号直接作用于芯片III的 CT_p 端,不需要经过芯片II的传输,从而提高了电路的工作速度。