

WATER MASS TRANSFORMATION DIAGNOSTICS IN MOM5 (Chapter 36 in MOM5 manual)

Stephanie Downes

Subduction versus Water Mass Transformation

Water mass transformation in MOM5

Balancing mass in a density layer

$$\int_{\gamma}^{\gamma_b} \left(\mathcal{V}^{\dagger} + \frac{\partial \mathcal{M}}{\partial t} \right)$$

$$= \mathcal{G}(\gamma) - \mathcal{G}(\gamma_{\mathsf{b}}) + \int_{\gamma}^{\gamma_{\mathsf{b}}} \mathcal{E}.$$

 $\phi = \phi_{\text{north}}$

Outputted tendency terms (T and S)

G	E	V
(diapycnal)	(surface)	(transport)
 Eulerian time tendency (all processes impacting T and S) Submesoscale transport Advection Mesoscale transport Geothermal heat Calving Diffusion (vertical and lateral): from static background diffusivity, internal tide mixing, coastal tidal mixing, leewave mixing, isopycnal & diapycnal mixing, KPP, neutral diffusion (cabelling & thermobaricity) 	 Precipitation Evaporation River runoff Melt & sea ice formation Shortwave heating 	Volume transport terms (TX_TRANS_RHO & TY_TRANS_RHO with mesoscale and submesoscale components

Examples of usage

South Atlantic

Equatorial Pacific

.downes@utas.edu.au

@OceanStephD

How is it done? (*can be time consuming)

ONLINE

SALT tendency terms: kg m⁻² s⁻¹

TEMP tendency terms: $W m^{-2}$

OFFLINE

Use the specific heat capacity, local salinity, grid area, surface fluxes to convert to the same units before binning into required density classes.

