GraFF: A Multi-FPGA System with Memory Semantic Fabric for Scalable Graph Processing

Xu Zhang , Yisong Chang, Tianyue Lu, Ke Liu, Ke Zhang, Mingyu Chen

Institute of Computing Technology, Chinese Academy of Science

中斜院计算的

Background and Motivation

- 1. Huge number of edges across FPGA boundaries leads to Inter-FPGA synchronization.
- 2. Long inter-FPGA fabric latency introduces severe overhead.

Q: Is it possible to fully overlap processing and synchronization?

Solution #1

- Splitting synchronization data into fine-grained highconcurrent memory semantic transactions.
 - atomic update
- Remote nodes receive transactions and update memory simultaneously.

Solution #2

GAS module splits superstep into Gather, Apply, Scatter phases.

 Overlap synchronization (Apply, Scatter) in the superstep N-1 and processing (Gather) in the superstep N!

GraFF Design Overview

DoCE converts
ARM AMBA AXI protocol to
memory semantic protocol

Preliminary Results

Custom FPGA Board with a Xilinx Zynq UltraScale+ MPSoC (ZynqMP) Chip

System	FPGA chip	# Nodes	Throughput (GTEPS)	
			BFS	PageRank
GraFF	XCZU19EG	4	6.23	8.40
GraVF-M *	XCKU060	4	5.49	4.62

Workload	BFS GTEPS (speedup)			
	1x FPGA	2x FPGA	3x FPGA	
Soc-LiveJournal	0.65 (1.00)	1.30 (2.00)	2.65 (4.00)	
RMAT-24	1.60 (1.00)	3.11 (1.94)	6.23 (3.89)	

 GraFF indicates 1.13x-4.52x performance improvement

GraFF runs in 200MHz

^{*}Nina Engelhardt and Hayden K.-H. So. 2019. GraVF-M: Graph Processing System Generation for Multi-FPGA Platforms. ACM Trans. Reconfigurable Technol. Syst. 12, 4, Article 21 (December 2019), 28 pages. https://doi.org/10.1145/3357596

GraFF: A Multi-FPGA System with Memory Semantic Fabric for Scalable Graph Processing

Thanks for listening!

Xu Zhang 👲, Yisong Chang, Tianyue Lu, Ke Liu, Ke Zhang, Mingyu Chen

Institute of Computing Technology, Chinese Academy of Science

System	FPGA chip	# Nodes	Throughput (GTEPS)	
			BFS	PageRank
GraFF	XCZU19EG	4	6.23	8.40
GraVF-M	XCKU060	4	5.49	4.62
ForeGraph	XCVU190	4	1.46	1.86
FDGLib	XCU250	32	2.50	2.36