Remark 1.8. If we consider the translation semigroup $(T(t))_{t\geq 0}$ on $C_0(\mathbb{R}_+)$, then $\|T(t)\|=1$, hence s(A)=1, but $(T(t))_{t\geq 0}$ is uniformly stable. The same holds for the translation semigroup on $L^1(\mathbb{R}_+)$. Thus Theorem 1.7 is not true for semigroups on C*-algebras with unit or on preduals of W*-algebras. For the discussion of the commutative situation we refer to B-IV, Section 1.

2. STABILITY OF IMPLEMENTED SEMIGROUPS

Let H be a Hilbert space, $U=(U(t))_{t\geq 0}$ a strongly continuous semigroup on H with generator B and M \subseteq B(H) be a W*-algebra, where B(H) is the W*-algebra of all bounded linear operators on H. Suppose $U(t)MU(t)*\subseteq M$. Then one can define a weak*-continuous semigroup $T=(T(t))_{t\geq 0}$ on M by $T(t)x:=U(t)xU(t)*(t\in\mathbb{R}_+,x\in M)$. We call T an implemented semigroup. Every map T(t) of an implemented semigroup is weak*-continuous and n-positive for every $n\in \mathbb{N}$.

Remarks 2.1. (a) Because of

$$||T(t)|| = ||T(t)1|| = ||U(t)U(t)*|| = ||U(t)||^2$$

it follows that $\omega(T) = 2\omega(U)$.

- (b) If $(T(t))_{t\geq 0}$ is an implemented semigroup, then the preadjoint semigroup is strongly continuous on M_{\star} . Therefore $s(A) = \omega$ for $(T(t))_{t\geq 0}$ by Theorem 1.3.
- (c) Since $(U(t))_{t\geq 0}$ is a (strongly continuous) semigroup the same is true for the adjoint semigroup $(U(t)^*)_{t\geq 0}$ and its generator is given by B* . In analogy to [Bratteli-Robinson (1979), 3.2.55] the following assertions for $x\in M$ are equivalent:
- (i) $x \in D(A)$.
- (ii) For $\xi \in D(B)$ it follows $x\xi \in D(B^*)$ and the linear mapping

(*)
$$(\xi \rightarrow x(B\xi) + B^*(x\xi)) : D(B) \rightarrow H$$

has a continuous extension to H .