

Prof. Gábor Elek Assist. Filip Morić

Exercise sheet 4: Solutions

Caveat emptor: These are merely extended hints, rather than complete solutions.

1. Prove that $\kappa(G) \leq \kappa'(G) \leq \delta(G)$ for any graph G.

Solution. The second inequality is trivial, since removal of the $\delta(G)$ edges incident to a vertex of degree $\delta(G)$ disconnects the graph.

The first inequality is less obvious. Suppose $\kappa'(G) = k$ and that we can disconnect G by deleting some k edges e_1, \ldots, e_k . After the deletion G splits into two subgraphs G_1 and G_2 that cannot reach each other. If there is a vertex in one of the parts G_1 or G_2 that is not incident to any of the deleted edges, we are done, since then we can remove from G all the vertices from that part that are incident to one of the edges e_1, \ldots, e_k : we will have at most k deleted vertices and G will be disconnected.

Otherwise, we have that all vertices in G are covered by e_1, \ldots, e_k . If all vertices are incident to at least two of the k edges, then $n \leq k$ and consequently $\kappa(G) < k$. So we may suppose that a vertex v is incident to just one edge e_i . Let H be the component of $G - \{e_1, \ldots, e_k\}$ where v lies. Note that H contains at most k vertices (since all the vertices are covered by the k edges and none of them runs within H). Therefore, d(v) < k, which implies that $\kappa(G) < k$.

2. Prove that a 3-regular 3-edge-connected graph is 3-connected.

Solution. Suppose that $\{u,v\} \subset V(G)$ separates the graph into two parts G_1 and G_2 such that there is no path from G_1 to G_2 except via $\{u,v\}$. Since d(u)=d(v)=3 we have only a few cases to consider concerning how the edges from u and v to G_1 and G_2 are distributed (uv can also be an edge). All the cases lead to a contradiction, e.g. if there are two edges between u and G_1 , two edges between v and G_2 , one edge between u and G_2 , and one edge between v and G_1 , then by deleting the edge between u and G_2 and the edge between v and G_1 we disconnect the graph (contradicting 3-edge-connectedness).

3. Construct a 100-edge-connected graph, which is 2-connected but not 3-connected.

Prof. Gábor Elek Assist. Filip Morić

Solution. Consider the graph $G = K_2 + (K_{10^{10}} \cup K_{10^{10}})$.

4. Prove that a critically 2-connected graph has a vertex of degree 2.

Solution. We know that any 2-connected graph is obtained from a cycle by adding repeatedly new paths between two already existing vertices. If our graph is a cycle, we are done. Otherwise, it's obtained from a cycle in a path-adding process. If the last added path is of length at least 2, we have a vertex of degree 2 and we are done. If not, then the last path is an edge whose removal leaves a 2-connected graph. The latter can't happen as we deal with a critical 2-connected graph.

5. Prove that if G is a critically k-connected graph and H is a k-connected subgraph of G then H is also critically k-connected.

Solution. Suppose the contrary, i.e. that H is not critical. Thus H-uv is still k-connected for some edge $uv \in E(H)$. However, G-uv is not k-connected, so $G-uv-\{v_1,\ldots,v_{k-1}\}$ is disconnected for some vertices v_1,\ldots,v_{k-1} . By assumption $H-uv-\{v_1,\ldots,v_{k-1}\}$ is still connected, hence for some connected component C of $G-uv-\{v_1,\ldots,v_{k-1}\}$, we have that H lies in $G[V(C)\cup\{v_1,\ldots,v_{k-1}\}]$. That means in particular that u and v lie in $V(C)\cup\{v_1,\ldots,v_{k-1}\}$, which implies that $G-\{v_1,\ldots,v_{k-1}\}$ is disconnected. Contradiction.

6. In a 2-connected graph call two edges *equivalent* if they are the same OR by removing them we can disconnect the graph. Show that this relation is in fact an equivalence relation.

Solution. Since G is 2-connected, for every edge e we have that G-e is connected, i.e. e lies on a cycle. For every edge e denote by C(e) the set of cycles that contain e. Then we have that $e_1 \sim e_2$ iff $C(e_1) = C(e_2)$. Now it is clear that we have an equivalence relation.