Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Basin Outlook Reports

and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

Local Soil Conservation Service Field Office or

William Weller Water Supply Specialist Soil Conservation Service W. 316 Boone Ave; Suite 450 Spokane, WA 99201 (509) 353-2341

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high In the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Soil Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthy or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthy and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

All programs and services of the USDA Soil Conservation Service are offered on a nondiscriminatory basis, without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

U. S. DEPT. OF ACRICULTURE WATIONAL AGRICUL. LIBRARY CURRENT SERIAL RECORDS PELTSVILLE ND POZOS

1.1

Spokane, WA 99201-1080 N 920 Riverside

Pepartment of Agriculture Soll Conservation Service

Basin Outlook Reports

In addition to basin outlook reports, a Water Supply Forecast for the Western United States is published by the Soil Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Soil Conservation Service, West National Technical Center, 511 Northwest Broadway, Room 248, Portland, OR 97209-3489.

Issued by

Here

Postage

William (Bill) Richards
Chief
Soil Conservation Service
U.S. Department of Agriculture

Released by

Lynn A. Brown
State Conservationist
Soil Conservation Service
Spokane, Washington

TURN OVER FOR MAILING ADDRESS

TEWEN TO

1351 NOD

Using the forecasts—an example

Using the Most Probable Forecast. Using the example forecasts shown below, users can reasonably expect 36,000 acre-feet to flow past the gaging station on the Mary's River near Deeth between March 1 and July 31.

Using the Higher Exceedance Forecasts. If users anticipate a somewhat drier trend in the future (monthly and seasonal weather outlooks are available from the National Weather Service every two weeks), or if they are operating at a level where an unexpected shortage of water could cause problems, they might want to plan on receiving only 20,000 acre-feet (from the 70 percent chance of exceeding forecast). In seven out of ten years with similar conditions, streamflow volumes will exceed the 20,000 acre-foot forecast.

If users anticipate extremely dry conditions for the remainder of the season, or if they determine the risk of using the 70 percent chance of exceeding forecast is too great, then they might plan on receiving only 5000 acre-feet (from the 90 percent chance of exceeding forecast). Nine out of ten years with similar conditions, streamflow volumes will exceed the 5000 acre-foot forecast.

Using the Lower Exceedance Forecasts. If users expect wetter future conditions, or if the chance that five out of every ten years with similar conditions would produce streamflow volumes greater than 36,000 acre-feet was more than they would like to risk, they might plan on receiving 52,000 acre-feet (from the 30 percent chance of exceeding forecast) to minimize potential flooding problems. Three out of ten years with similar conditions, streamflows will exceed the 52,000 acre-foot forecast.

In years when users expect extremely wet conditions for the remainder of the season and the threat of severe flooding and downstream damage exists, they might choose to use the 76,000 acre-foot (10 percent chance of exceeding) forecast for their water management operations. Streamflow volumes will exceed this level only one year out of ten.

	UPPER	RHUM	BOLDT	RIVER BA	SIN				
				STRE	EAMFLOW	FORECAS	TS		
		<- 	DRI	ER 1	FUTURE CO	NDITIONS -	WETT	ER> I	
FORECAST POINT	FORECAST PERIOD	1	90%	70% I	50% (Most	Exceeding - Probable) I % AVG.)I (30%		
MARY'S RIVER nr Deeth	MAR-JUL		5.0	20.0	36	77 I	52	76	47
	APR-JUL		8.0	17.0 l	31	74 I	45	67	42
LAMOILLE CREEK nr Lamoille	MAR-JUL		6.0	16.0 I	24	7 9 I	32	43	31
	APR-JUL		4.0	15.0 I	22	75 I	30	41	30
NF HUMBOLDT RIVER at Devils Gate	MAR-JUL		6.0	12.0 I	43	73 I	74	121	59

For more information concerning streamflow forecasting ask your local SCS field office for a copy of "A Field Office Guide for Interpreting Steamflow Forecasts".

Interpreting Streamflow Forecasts

Introduction

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflow forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

Most Probable (50 Percent Chance of Exceeding) Forecast. This forecast is the best estimate of streamflow volume that can be produced given current conditions and based on the outcome of similar past situations. There is a 50 percent chance that the streamflow volume will exceed this forecast value. There is a 50 percent chance that the streamflow volume will be less than this forecast value.

The most probable forecast will rarely be exactly right, due to errors resulting from future weather conditions and the forecast equation itself. This does not mean that users should not use the most probable forecast; it means that they need to evaluate existing circumstances and determine the amount of risk they are willing to take by accepting this forecast value.

To Decrease the Chance of Having Too Little Water

If users want to make sure there is enough water available for their operations, they might determine that a 50 percent chance of the streamflow volume being lower than the most probable forecast is too much risk to take. To reduce the risk of not having enough water available during the forecast period, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded (or possibly some point in-between). These include:

70 Percent Chance of Exceeding Forecast. There is a 70 percent chance that the streamflow volume will exceed this forecast value. There is a 30 percent chance the streamflow volume will be less than this forecast value.

90 Percent Chance of Exceeding Forecast. There is a 90 percent chance that the streamflow volume will exceed this forecast value. There is a 10 percent chance the streamflow volume will be less than this forecast value.

To Decrease the Chance of Having Too Much Water

If users want to make sure they don't have too much water, they might determine that a 50 percent chance of the streamflow being higher than the most probable forecast is too much of a risk to take. To reduce the risk of having too much water available during the forecast period, users can base their operational decisions on one of the forecasts with a smaller chance of being exceeded. These include:

30 Percent Chance of Exceeding Forecast. There is a 30 percent chance that the streamflow volume will exceed this forecast value. There is a 70 percent chance the streamflow volume will be less than this forecast value.

10 Percent Chance of Exceeding Forecast. There is a 10 percent chance that the streamflow volume will exceed this forecast value. There is a 90 percent chance the streamflow volume will be less than this forecast value.

BASIN SUMMAR" OF SNON COURSE OATA

JANUARY 199:

					YEAR	1961-85					CONTENT	YEAR	1961-85
PENO OREILLE RIVEP							YAKIHA RIVER						
BENTON HEADOH BENTON SPRING BUNCHCRASS HEADOHS BUNCHCRASS HOUPILLOH NEART LAKE TRAIL NOODOO BASIN NOODOO CREEK LODKOUT SCHWEITZER RIOGE	2370 4920 5000 5000 4800 6050 5900 5140 6200	12/27/90 12/27/90 1/01/91 1/01/91 1/01/91 1/01/91 1/01/91 12/27/90 1/01/91	8 24 57	1.3 5.5 14.5E 14.7 12.9E 31.9E 26.9E 12.8 20.7E	.3 2.3 8.0 8.5 7.3	3.0 8.6 14.6 15.2 9.2 21.5 19.1 14.5 21.3	ANTANUK R.S. BIG BOULOER CREEK ELEHETT PASS&2PILLO BUHPING LAKE BUHPING RIDGE PILLO CORRAL PASS PILLO FISN LAKE FISN LAKE FISN LAKE PILLO GREEN LAKE PILLO	H 4270 3450 3400 H 4600 H 6000 3370 H 3370	1/02/91 12/28/90 1/01/91 12/28/90 12/28/90 1/01/91 12/28/90 1/01/91 1/01/91	7 40 12 15 54	1.3 8.0 6.45 3.0 3.6 8.65 16.25 12.0 13.45 7.55	.0 2.4 .8 .0 .0 .3 4.7 2.5 4.5	3.6 7.2 11.5 6.5 8.0 11.0 15.5 12.4 15.1
KETTLE RIVER							GROUSE CAMP PILLO LAKE CLE ELUK	H 5380 2200	1/01/91 12/27/90	12	5.05 3.1	3.1	9.0 4.2
BARNES CREEK CAN. BIG HNITE HTN CAN. FARRON CAN. HONASNEE PASS CAN.	4000	1/04/91 12/31/90 12/31/90 1/04/91	54 45 24 38	14.3 10.9 5.3 9.4	6.6	8.7 7.2 9.9 6.2	HORSE LAKE PILLO OLALLIE E.S. PILLO SASSE RIOGE PILLO STAMPEDE PASS PILLO IUNNEL AVENUE	H 3960 H 4200 H 3860 2450	1/01/91 1/01/91 1/01/91 1/01/91 12/27/90	25	17.35 20.15 10.35 18.55 6.3	7.1 4.2 6.1 7.8 1.0	22.0 28.7 15.4 18.3 8.7
COLVILLE RIVER							HNITE PASS ES PILLO ANTANUM CREEK	H 4500	1/01/91		9.15	.0	10.4
DHAK LAKE, THIN LAKES							ANTANUM R.S. Green Lake Pillo	3100 H 6000	1/02/91	7	1.3 7.55	.o .s	3.6 8.7
SPOKANE RIVER							HILL CREEK						
ABOVE EURKE FOURTH OF JULY SUK		1/01/91 12/27/90	18	10.0E 3.0	3.0	8.4 3.7	NIGN RIOGE PILLO	H 4980	1/01/91		6.95		12.2
LOOKOUT LOST LAKE MOSOUITO RIOGE	5140 6110 5200	12/27/90 1/01/91 1/01/91	57	12.8 33.7E 17.2E	7.3 13.3 10.6	14.5 25.2 17.1	LEHIS - COHLITZ RIVERS						
MOSOUITO PILLOH SHERWIN SUNSET SUNSET PILLOH		1/01/91 1/03/91 1/03/91 1/01/91 1/01/91	22	16.4 3.4 16.4E 20.9	9.4 1.9 5.5 8.4	17.1 17.0 5.6 14.7 16.1	JUNE LAKE PILLO LONE PINE PILLO PARAOISE PARK PILLO PICTAIL PEAK PILLO POTATO MILL PILLO SNEEP CANYON PILLO	H 3800 H 5500 H 5900 H 4500	1/01/91 1/01/91 1/01/91 1/01/91 1/01/91 1/01/91		20.15 10.95 33.15 28.65 9.55 19.05	1.8 .1 10.4 5.7 3.0	11.6 16.9 30.0 21.2 12.6 18.1
GUARTZ PEAK PILLOH	4700	1/01/91		7.1	4.0		SPENCER MON PILLO SPIRIT LAKE PILLO	H 3400 H 3100	1/01/91		9.45 3.95	1.7	11.7 5.9
KANDGAM RIVER							SURPRISE LKS PILLO WNITE PASS ES PILLO		1/01/91		18.65 9.15	5.8	21.8 10.4
ERENDA MINE CAN. ENDERBY CAN. GREYBACK RES CAN. HAHILTON HILL CAN. MARTS PASS PILON ISINTOK LAKE CAN. MCCULLOCM CAN. MISSION CREEK CAM.	4890 6500	1/02/91 1/02/91 12/31/90 12/31/90 1/01/91 12/28/90 1/02/91 1/03/91	35 90 31 59 26 25 50	6.6 29.0 7.0 12.3 32.55 5.0 4.6 13.4	2.3 18.3 2.2 2.2 14.8 .9 2.0	6.5 18.6 3.1 8.4 27.2 3.5 3.2 8.9	HNITE RIVER CORRAL PASS CORRAL PASS PILLON MORSE LAKE PILLON CREEN RIVER	₹ 5400	1/02/91 1/01/91 1/01/91	58 	18.7 16.25 17.35	4.7 7.1	15.5 22.0
HOMASNEE PASS CAM. MT. KOBAU CAM. SALHON HONS PILLOH SILVER STAR HTH CAN. SUKKERLAND RES CAN. HMITE ROCKS HTH CAN.	4500 5900 4500 6000	1/04/91 12/30/90 1/01/91 1/01/91 12/28/90 1/02/91	38 21 62 27 41	9.4 3.8 3.35 18.1 5.5 9.6	2.2 1.9 10.6 1.8 4.8	6.2 6.3 7.0 13,4 4.5	COUGAR MTN. PILLON GRASS MOUNTAIN #2 LESTER CREEK LYNN LAKE SAWNILL RIOGE STAMPEOE PASS PILLON THIN CAKP	2900 3100 4000 4700	1/01/91 1/02/91 1/02/91 1/02/91 1/02/91 1/01/91 1/02/91	12 30 42 43 	10.4S 4.0 7.8 10.8 13.0 18.5S 9.8	2.8 .0 .5 3.9 7.8 1.7	9.6 5.4 8.6 7.8 14.1 18.3 10.3
ETNOW RIVER							CEOAR RIVER						
MARTS PASS PILLOH SALHOH HOHS PILLOH	6500 4500	1/01/91		32.55 3.35	14.8	27.2 7.0	SHOQUALHIE RIVER						
MELAM LAKE BASIN LYMAN LAKE PILLOW	5900	1/01/91		52.15		28.3	21856 IS MOT ON FILE OLALLIE E.S. PILLOM		1/01/91		20.15	4.2	28.7
MINERS RIDGE PILLON PARK CK RIDGE PILLON	6200 4600	1/01/91		43.95 28.45	18.4 15.7 8.3	20.6	SKYKOHISH RIVER		• • • • • • • • • • • • • • • • • • • •				
RAINY PASS PILLON	4780	1/01/91		28.95	9.8	23.2	STAMPEGE PASS PILLOM STEVENS PASS PILLOM		1/01/91		18.55 20.75	7.8 6.9	18.3 18.9
HTIAT RIVER POPE RIDGE PILLOH	3540	1/01/91		7.59	2.9	7.4	STEVENS PASS SANO SO		2/28/90	56	12.6	6.7	19.3
EMATCHEE RIVER							SKAGIT RIVER						
BLEHETT PASS#2PILLOW CNIHAUKUM G.S. FISN LAKE PILLOW	2500 : 3370	1/01/91 12/28/90 1/01/91	22	6.45 2.8 13.45	.8 1.2 4.5	11.5 5.0 15.1	HARTS PASS PILLOH RAIHY PASS PILLOH BAKER RIVER	5900	1/01/91 1/01/91 1/01/91	===	32.55 52.15 28.95	14.8 18.4 9.8	27.2 28.3 23.2
LYMAM LAKE PILLOH HERRITT STEVENS PASS PILLOH	5900 2140 4070	1/01/91 12/28/90 1/01/91	25	52.15 4.8 20.95	18.4 1.5 6.0	28.3 5 18.9	OOCK BUTTE AH	3800	1/02/91	100	35.0		26.8
STEVENS PASS SANO SO TROUGH #2 PILLOH UPPER WHEELER PILLOH		1/01/91 12/28.90 1/01/91 1/01/91	56	12.6 1.75 4.45	6.7	19.3 5.1 8.0	EASY PASS AN JASPER PASS AN HARTEN LAKE AM HT. BLUN AN ROCKY CREEK AN	5200 5400 3600 5800 2100	1/02/91 1/02/91 1/02/91 1/02/91 1/02/91	146 168 162 128 78	49.0 56.0 52.0 43.0 23.0		28.4 37.6 31.6 25.6 12.2
OUILCNUCK CREEK							SCHREIBERS HOH AM SF THUHOER CK AK	3400 2200	1/02/91 1/02/ 9 1	87 30	28.0 10.0		22.8 4.8
TEHILT CREEK							HATSON LAKES AN	4500	1/02/91	102	33.0		25.1
UPPER WHEELER PILLOW	4400	1/01/91		4.45	٠0	8.0	OUILCENE RIVER	4050	1 /01 /01		,		
DLOCKUK CREEK TROUCH #2 PILLON	5310	1/01/91		1.75	. 0	5.1	MOUNT CRAG PILLON NYNOOCNEE RIVER	4050	1/01/91		6.25	1.0	
	3310	1701771		1./5	. 0	J. 1	CARROL PASS	3450	1/01/91	36	7.6	.0	11.0

PRECIPITATION:

State wide, December precipitation from National Weather Service stations was 68% of average. December precipitation varied from 106% of average in the Olympic Basin, to 60% in the Okanogan Basin. The year-to-date precipitation varied from 166% of normal in the North Puget Basin to 71% in the Colville-Pend Oreille Basin. SNOTEL sites in Washington showed the high elevation year-to-date precipitation values to be 131% of average. Maximum year-to-date precipitation was at the Olallie Meadows SNOTEL site near Snoqualmie Pass with 84.4 inches since October 1,1990, normal for this site would be 46.9 inches.

RESERVOIRS:

Above normal precipitation for the year-to-date has many of the states reservoirs spilling water for flood control. Reservoir storage is good and varies with reservoirs in the Cascade Mountains above average for January 1, and those on the east side of the state below average. Reservoir storage in the Yakima Basin was 764,900 acre feet, 129% of normal. Storage at other reservoirs include Roosevelt at 94% of average and the Okanogan reservoirs contain 133% of January 1 normal. The power reservoirs contain the following: Coeur d'Alene Lake, 167,200 acre feet, or 81 % of normal, and spilling; Chelan Lake, 591,200 acre feet at 156% of average and 87% of capacity, and Ross Lake at 161% of average, and spilling for the past two months.

STREAMFLOW:

December streamflows were generally above average in Washington. Streamflows were the following percent of normal, the Cowlitz River, 84%, the Walla River, 72%; the Spokane River, 130%; the Columbia at the Canadian border, 131%. The Okanogan River with 231% and the Methow with 206% had the largest percent of normal. Streamflow forecasts varie from 159% of average for the Smilkameen River to 71% of normal on Mill Creek in the Walla Walla River basin. January forecasts for some west side streams include: Cedar River, 103%; Skagit River, 122%; and the Dungeness River, 102%. Some east side streams include the Yakima River at Parker 116%; the Wenatchee River at Peshastin 138% and the Okanogan River, 152%.

JANUARY 1991 GENERAL OUTLOOK

SUMMARY:

DECEMBER TEMPERATURES WERE BELOW NORMAL AND VARIED FROM 12 DEGREES BELOW IN THE OKANOGAN BASIN TO 4 DEGREE BELOW AVERAGE IN THE WALLA WALLA BASIN. THE SNOWPACK IS NEAR NORMAL STATE WIDE BUT VARIES FROM 63% IN THE WALLA WALLA BASIN TO 152% IN THE CHELAN BASIN. DECEMBER PRECIPITATION WAS 68% OF NORMAL STATE WIDE. AND VARIED FROM 60% OF AVERAGE IN THE OKANOGAN BASIN TO 106% IN THE OLYMPIC BASIN. YEAR TO DATE PRECIPITATION VARIES FROM 71% IN THE COLVILLE TO 166% IN THE NORTH PUGET. WASHINGTON'S SNOTEL SITES ARE AVERAGING 99% OF NORMAL SNOWPACK ON JANUARY 1 (BY JANUARY 8. THE STATEWIDE AVERAGE WAS 96%). JANUARY 1 RESERVOIR STORAGE IS GENERALLY GOOD THROUGHOUT THE STATE, WITH RESERVOIRS IN THE YAKIMA BASIN AT 131% OF AVERAGE AND 72% OF CAPACITY. DECEMBER STREAMFLOWS VARIED FROM 231% OF NORMAL ON THE OKANOGAN RIVER TO 71% ON THE YAKIMA RIVER AT MARTIN. FORECASTS FOR 1991 RUNOFF VARY FROM 159% OF AVERAGE FOR SMILKAMEEN RIVER TO 71% ON MILL CREEK IN THE WALLA WALLA BASIN.

SNOWPACK:

SNOTEL sites in Washington are showing snowpack that is 99% of average for January 1, state wide. Snowpack varies over the state from 152% of normal in the Chelan Basin to 63% in the Walla Walla River Basin. The Yakima Basin is now at 79%. Snowpack in other basins along the west slopes of the Cascade Mountains are the Green with 97% and the Cowlitz Basin with 101%. The eastern slopes of the Cascade Mountains show the Wenatchee Basin at 108% of normal, and the Spokane at 102%. Maximum snow cover is at the Lyman Lake SNOTEL, in the Chelan Basin, with 52.1 inches of water content. This site would normally have 28.3 inches of water content on January 1.

SPOKANE RIVER BASIN

				ST	REAMFLOW	FORECASTS					
FORECAST POINT	FORECAST FERIOD		76%	СН 1 5	IANCE OF I	EXCEEDING +	+ 	WETTER 30% (1000AF)	10%	1 1 1	25 YR. (1000AF)
SPOKANE nr Post Falls (1,2)		166Ø 161Ø	254Ø 246Ø	1	312Ø 3Ø2Ø	111 111	;	37 0 0 3580	457Ø 441Ø		282Ø 2723
SPOKANE at Long Lake (2)	AFR-JUL	152Ø	2440		338Ø	111	:	4320	527Ø		3045
RESER	/OIR STORAGE	(1	000AF)		 	WA	TERS	HED SNOWPAC	K ANALYSI	:S	
RESERVOIR	USEABLE CAPACITY 		LE STORAG LAST YEAR	E ** AVG.	I WATER	RSHED		NO. COUR AVG'	SES		R AS % OF
COEUR D'ALENE	291.2	167.2	161.9	 2Ø7 . 7	¦ ¦ Spoka ¦	ine River		14	219)	102

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

SPOKANE

WATER SUPPLY OUTLOOK:

Precipitation for December was 73% of average. Streamflow on the Spokane River was 130% of normal for December. January 1 storage in Coeur d'Alene Lake was 167,200 acre feet; average storage in Coeur d'Alene for January 1 is 207,700 acre feet. Forecasted summer runoff for the Spokane River Basin is 111% of normal. This forecast is based on a snowpack 102% of average and a water year-to-date precipitation value 145% of normal. Flooding during November occurred along the Upper Spokane River. Water has been spilled from Coeur d' Alene Lake for flood control. Temperatures averaged eight degrees below normal during December.

				S	TREAMFLOW	FORECASTS				
		\ <	DRIER		FUTURE CO	NDITIONS	WETTER	>	1	
FORECAST POINT	FORECAST PERIOD	96%			50% (MOST	XCEEDING * PROBABLE) : (% AVG.) :	30% (1000af)	16%		25 YR. 1000AF
			·							
PEND OREILLE bl Box Canyon (1,2)	APR-SEP	12100	15100		17100	113	19100	22300		1517Ø
	AFR-JUL	11100	13900		157ØØ	113	17509	20400		13900
	APR-JUN	835Ø	11900	1	13500	113	15100	17700		11960
CHAMOKANE CK nr Long Lake	MAY-AUG	3.2	7.3	!	10.1	91	12.9	17.0		11.1
COLVILLE at Kettle Falls	APR-SEP	75	114	i	140	100	166	205		140
	APR-JUL	68	194	1	128	100 ;	153	139		128
	APR-JUN	63	96	;	118	100	149	173		118
ŒTTLE nr Laurier	APR-SEP	1289	1769		2100	110	2440	2920		1907
	APR-JUL	1210	1660	1	1990	110 :	2320	276Ø		18Ø7
	APR-JUN	1090	1490	1	178Ø	110	2070	248Ø		1622
OLUMBIA at Birchbank (1,2)	APR-SEP	45300	51400		55500	125	59600	65700		44390
	APR-JUL	36100	41000	1	44300	125	47600	52500		35449
	APR-JUN	26200	29700	1	32100	125	34500	38000		25659
OLUMBIA at Grand Coulee Dam (1,2)	APR-SEP	61800	72300	1	79800	120	873ØØ	977ØØ		66469
	APR-JUL	51800	60600	1	66900	120 :	73200	81900		55730
	APR-JUN	40400	47200	!	52100	12Ø :	57000	63800		4342Ø
				; ;						
RESERVOIR	STORAGE	ļ	(1000AF)		! !	WATERS	HED SNOWPACK	ANALYSIS		
	USEABLE :	** USE/	 ABLE STORA	 IGE **	 	·	NŪ.	THIS	YEAR .	 AS % OF
RESERVOIR	CAPACITY:	THIS YEAR	LAST YEAR			GHED	COURS AVG 'D			AVERAGE
00SEVELT	5232 . ø				•	le River				Ø
AAR/C	715 6	//0 E	/// 6	/10.0			,	464		89
anks	715.0	667.5	664.2	010.3	i Penal	reille River	6	194		07

^{* 96%, 76%, 36%,} and 16% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

COLVILLE - PEND OREILLE

WATER SUPPLY

OUTLOOK:

Precipitation during December was 64% of average, bringing the water year-to-date to 71% of normal. January 1 snow cover is 115% of average on the Pend Oreille and no snow courses were read on the Kettle or Colville River. December streamflow was 102% of normal on the Pend Oreille River, 131% on the Columbia at the International Boundary and 150% on the Kettle River. The forecast for the Kettle River streamflow is 110% of normal, the Pend Oreille 113% and the Colville River 100% of normal for the summer runoff period. Snowpack at Bunchgrass Meadow SNOTEL site was 14.7 inches of water, the average January 1 reading is 15.2. Temperatures averaged four degrees below normal for December.

STREAMFLOW FORECASTS

275Ø

FORECAST POINT	FORECAST		DRIER			ONDITIONS EXCEEDING *				:	
	PERIOD	: 90% : (1000AF)	70% (1000AF)	!	50% (MOST (1000AF)	PROBABLE) (% AVG.)	¦ ¦	30% (1000AF)	19% (1000AF)	 	25 YR. (1000AF)
				;							
SIMILKAMEEN or Nighthawk	APR-SEP	183Ø	2090	1	2270	159	1	245Ø	2710		1432
	APR-JUL	1730	1970	1	2130	160	1	2290	253Ø		1333
	APR-JUN	151∅	1690	1	1810	160	1	193Ø	2110		1129

98Ø

	RESERVOIR STORAGE		(1000AF)		HATERSHED (SNOWPACK AN	ALYSIS	
RESERVOIR	USEABLE : CAPACITY: ;	** USE THIS YEAR	ABLE STOR/ LAST YEAR	AGE **	WATERSHED	NO. COURSES AVG'D	THIS YEAR	R AS % OF
CONCONULLY LAKE (SALMON)	10.5	9.7	8.5	7.5	Okanogan River	13	292	123
CONCONULLY RESERVOIR	13.0	8.1	6.7	5.9	Methow River	2	214	105

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1985 base period.

OKANOGAN RIVER or Tonasket

METHOW RIVER or Pateros

APR-SEP

APR-JUL

APR-JUN

APR-SEP

APR-JUL

APR-JUN

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

OKANOGAN AND METHOW

WATER SUPPLY OUTLOOK:

December precipitation in the Okanogan-Methow was 60% of normal, with water year-to-date 116% of average. December streamflow on the Methow River was 206% of normal, 231% on the Okanogan River, and 188% on the Similkameen. Summer runoff for the area's small streams is expected to be below normal, with Salmon Meadows SNOTEL HAVING 3.3 inches of water against a normal of 7.0. June-September runoff forecast for the Okanogan River is 152% of normal; the Similkameen River, 159%, the highest in the state; and the Methow River, 145% of normal. January 1 snow cover was 125% of average on the Okanogan, and 105% for the Methow Basin. Temperatures were 12 degrees below normal for the month. Snow water content at the Harts Pass SNOTEL, elevation 6500 feet, was 32.5 inches of water content in the pack. Storage in the Conconully Reservoirs is 17,800 acre feet, which is 76% of capacity and 133% of January 1 average.

CTDCAMELON ECCECACIO

			S	TREAMFLOW	FORECASTS					
	\	DRIER -		FUTURE C	ONDITIONS	WETTER	}	> ;		
EUBECAST	: '		rı	HANCE OF I	EXCEEDING *			; !		
PERIOD	90%	70%	1.5	50% (MOST	PROBABLE) :	30%				25 YR. (1000AF)
APR-SEP	1240	1.47ø	i	1590	135	1700	19	40		1182
										1040
APR-JUN	855	1020	į	1090	134	1170				815
APR-SEP	790	915	1	1000	118	1080	12	10		844
APR-JUL	670		1	845	118 ;	915				714
APR-JUN	505	585	1	640	118 :	695	7	75		541
APR-SEP	235	275	i	3Ø5	131	335				233
APR-JUL			1	290	131	315				221
APR-JUN	174	2Ø5	1	225	132	245	2	75		171
APR-SEP	1720	2030	i	2320	138	2560	29	20		1678
APR-JUL	1580	1900	1	2120	140	2340	26	6Ø		1516
APR-JUN	1270	1520	1	1700	140	1880	Ž1	30		1216
MAY-SEP	75	104		124	90	144	1	73		138
APR-SEP	350	425	i	48Ø	130	535	6	10		370
APR-JUL	320	390	- {	440	129	490				340
APR-JUN	255	310	1	35ø	130	390	4	45		270
APR-SEP	69000	81000	i	89100	123	97200	1090	00		72250
APR-JUL	58100	68200	1	75100	123 :	82000	921	ØØ		61050
APR-JUN	45400	53300	:	58700	123	64100	720	00		47730
					· · · · · · · · · · · · · · · · · · ·					
STORAGE	(1000AF)		:	WATERS	SHED SNOWPAC	ik ana	LYSIS		
USEABLE :	** USEA	BLE STORA	 GE **			NO.		THIS	YEAF	RAS % OF
CAPACITY	THIS	LAST		: WATE	RSHED	COUF	SES			
	YEAR	YEAR	AVG.	 		AVG'	D	LAST	YR.	AVERAGE
676.1	591.2	453.2	378.7	Chela	an Lake Basin	3		300		152
				Enti	at River	1		259		1Ø1
				: Wenat	tchee River	8		287		1Ø4
				: Squit	Ichuck Creek	Ø		Ø		Ø
				Stemi	ilt Creek	1		Ø		55
				Color	ckum Creek	1		Ø		3 3
	FORECAST PERIOD APR-SEP APR-JUL APR-JUN APR-SEP APR-JUL APR-JUN APR-SEP APR-JUL APR-JUN MAY-SEP APR-JUL APR-JUN APR-SEP APR-JUL APR-JUN STORAGE USEABLE: CAPACITY:	FORECAST :	FORECAST: PERIOD: 90% 70% : (1000AF) (1000AF) APR-SEP 1240 1470 APR-JUL 1090 1300 APR-JUN 855 1020 APR-SEP 790 915 APR-JUL 670 775 APR-JUL 670 775 APR-JUL 225 265 APR-JUL 225 265 APR-JUL 1530 1900 APR-JUN 174 205 APR-SEP 1720 2080 APR-JUL 1530 1900 APR-JUN 1270 1520 MAY-SEP 75 104 APR-SEP 350 425 APR-JUL 320 390 APR-JUL 320 390 APR-JUN 255 310 APR-SEP 69000 81000 APR-JUN 255 310 APR-SEP 69000 81000 APR-JUN 45400 53300 STORAGE (1000AF) USEABLE: ** USEABLE STORACAPACITY: THIS LAST : YEAR YEAR	FORECAST :		FORECAST :	FORECAST	FORECAST : CHANCE OF EXCEEDING * PERIOD 90% 70% 56% (MOST PROBABLE) 36% 1600AF) (1600AF) (16	C DRIER FUTURE CONDITIONS METTER>	C DRIER FUTURE CONDITIONS WETTER

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

WENATCHEE AND CHELAN

WATER SUPPLY

OUTLOOK:

Precipitation during December was 88% of normal in the basin and 165% for October 1 to January 1. January 1 snowpack in the Wenatchee Basin is 100% of average and 152% in the Chelan Basin. Reservoir storage in Lake Chelan is 591,200 acre feet or 156% of January 1 average and 87% of capacity. Lyman Lake SNOTEL had the most snow water with 52.1 inches of water, this site would normally have 28.3 inches. Snowpack is only 50% of average along the Squilchuck - Stimilt drainage. Runoff for the Entiat River is forecast to be 130% of normal for the summer. Forecasts for the Chelan River are for 134%, Wenatchee River's runoff 138%, and 90% on the Squilchuck-Stemilt. Streamflow for December on the Chelan River was 153% of average and the Wenatchee River was 194% of normal.

STREAMFLOW FORECASTS

	+	<	- DR1ER	FI	uture c	ONDITIONS	WETTER		:		
CONTRACT FORMIT	FORFCART			CUA	וורב חב ו	EXCEEDING #			. !		
FORECAST POINT								104		20	- VD
	PERIOD !		70% (1000AF)			PROBABLE) :	30% (1000AF)	19% (1999A)			5 YR. 000AF)
AKIMA RIVER at Martin (1)	APR-SEP	133	152	i	161	118	170	189			136
, , , , , , , , , , , , , , , , , , ,	APR-JUL	120	138		146	116		172			126
	APR-JUN	107	123		130	116	137	153			112
				!		145	****	4000			254
AK1MA R1VER at Cle Elum (2)	APR-SEP	900	990	!	1050	119 :	1110	1200			951
	APR-JUL APR-JUN	795 695	875 765	•	93Ø 81Ø	110 :	985 855	1969 925			846 735
			,,,,		***	1	-				
AKIMA RIVER or Parker (2)	APR-SEP	1780	2150	ŀ	2499	116	2650	3020			2075
	APR-JUL	1570	1900	- 1	2129	114	2340	2670			1862
	APR-JUN	1380	1670	-	1879	114	2070	2360			1643
ACHESS RIVER or Easton (1)	APR-SEP	109	131	i	141	186	151	174			133
	APR-JUL	90	109	1	118	164 (127	146	,		114
	APR-JUN	81	98	!	196	164	114	131			102
LE ELUM RIVER nr Roslyn (1)	APR-SEP	430	500	1	539	115	569	638	1		459
CE ELDIA KIYEK III. KOSIYII. 117	APR-JUL	385	445	- ;	475	114		565			417
	APR-JUN	325	375		488	113		475			353
				1		+					
RUMPING RIVER or Nile (1)	APR-SEP	113	150	1	167	129	184	229			139
	APR-JUL	195	139	ł	154	129		205			128
	APR-JUN	86	114	!	127	120	140	168	3		106
MERICAN RIVER or Nile	APR-SEP	95	116	i	131	1Ø8 I	146	167	,		121
	APR-JUL	88	108	1	121	168	135	154	ŀ		112
	APR-JUN	74	91	1	102	199	113	136	;		94
TETON RIVER at Tieton (1)	APR-SEP	171	235	i	265	199 :	295	366			244
201011111111111111111111111111111111111	APR-JUL	145	200	i	225	198	250	305			208
	APR-JUN	116	161	i	181	108		245			168
	100.000		0.10	1			40/0				
IACHES RIVER or Naches (2)	APR-SEP	680	840		950	110		1221			860
	APR-JUL APR-JUN	61Ø 525	755 650		855 735	110 ; 110 ;	955 82ø	11Ø			779 667
	70 11 001	020	333		,,,,		-	, ,	•		00.
HTANUM CREEK nr Tampico (2)	APR-SEP	24		1	45						47
	APR-JUL	22	33	!	41		49				43
	APR-JUN	19.0	28	;	35	95 ;	42	53	_		37
				!							
RESERVE	DIR STORAGE		(1000AF)		! !	NATE	rshed snowpa	CK ANAL'	YSIS		
	USEABLE :		ADI E CTODA	CC ++	•				rute v		AS % OF
RESERVO1R	CAPACITY		LAST	IDC AA		ERSHED		RSES .		/	
	1	YEAR		AVG.			AVG	'D 1			AVERAGE
ŒECHELUS	157.8		67.4		•	ima River	17		371		77
CACHESS	239.0	178.8	110.1	159.1	 Aht:	anum Creek	2	: :	1760		72
LE ELUM	436.9	326.9	159.0	230.2	 						
RUMPING LAKE	33.7	11.1	15.3	6.3	 						
OT NO OCY	100 a	121 1	0/4	142 4	1						
RIMROCK	198.0	121.1	90.4	102.1	i						

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

YAKIMA

WATER SUPPLY OUTLOOK:

The outlook for irrigation water for the summer is excellent with January 1 reservoir storage for the five major reservoirs at 747,100 acre feet, with water being spilled for flood prevention during December. Snowpack is 79% of average on January 1, in the Yakima Basin based upon 12 snow courses and SNOTEL readings. December precipitation was 68% of normal and 141% for the water year-to-date. January 1 streamflow forecasts for the Yakima Basin runoff vary throughout the basin as follows: the Yakima River at Cle Elum, 110%; Naches River, 110%; the Yakima River at Parker, 116%; Ahtanum Creek, 96%, and Tieton River 109%. December streamflow on the Yakima River at Parker was 86% of normal, 71% on the Yakima near Cle Elum, and 81% on the Naches River. Temperatures were seven degrees below average for December. Volume forecasts for the Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available which includes adjustments for reservoir operation and irrigation return flow.

WALLA WALLA RIVER BASIN

				ST	REAMFLOW	FORECASTS				
		\	DRIER	 -	FUTURE C	ONDITIONS	- WETTER	·>	1	
FORECAST POINT	FORECAST PERIOD	: 90% (1000AF)	70%	1 5	% (MOST	PROBABLE) :	30%	10%	:	25 YR. (1000AF)
GRANDE RÜNDE at Troy	MAR-JUL APR-SEP	56Ø 5Ø5	935 85Ø	:	1300 1170	86 ¦ 85 ¦	166Ø 151Ø	2040 1850		1512 1369
SNAKE bl Lower Granite Dam (1,2)	APR-JUL APR-SEP	7 97Ø 895Ø	127ØØ 143ØØ	1	17500 19600	77 : 77 :	22800 25600	282ØØ 317ØØ		2276Ø 25578
MILL CREEK at Walla Walla	APR-SEP APR-JUL APR-JUN	2.9 2.6 2.6	8.7 8.4 8.4	; ; ;	12.7 12.4 12.3	72	16.7 16.4 16.2	23 22 22		17.7 17.6 17.3
SF WALLA WALLA nr Milton Freewater	APR-JUL	36	4 2	 	47	85 ¦	52	58		55
COLUMBIA R. at The Dalles (2)	APR-SEP APR-JUL APR-JUN	89999 68199 55199	97000 83100 67200		109000 93200 75400	107 : 107 : 107 :	121 <i>0</i> 00 103000 83600	138000 118000 95700		102000 87100 70470
RESERVOIR	STORAGE	(1	ØØØAF)		 	WATEF	(SHED SNOWPA)	K ANALYSI	 S	
RESERVOIR	USEABLE CAPACITY 		LE STORAGE LAST YEAR	** **	WATER	RSHED	NŪ. COUF	RSES		AS % OF
					 Mill	Creek	Ø	Ø		Õ

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

WALLA WALLA

WATER SUPPLY OUTLOOK:

Snowpack is at 63% os normal, as the Walla Walla Basin continues to miss the major snow events for the second year. The forecast is for 88% of average streamflow in the Walla Walla River for the coming summer, the Grande Ronde 85%, the Snake 77% and 71% for Mill Creek. December streamflow was 72% of normal on the Walla Walla River, 84% for the Snake River and 74% on the Grande Ronde River near Troy. December precipitation was 67% of average bringing the water year-to-date precipitation to 129% of normal. Temperatures were four degrees below average for December.

				S	TREAMFLOW	FORECASTS						
		\ \ -	- DRIER		FUTURE C	ONDITIONS		- WETTER	t	>	<u> </u>	
FORECAST POINT	FORECAST S			CI	HANCE OF I	EXCEEDING *						
	PERIOD		79%			PROBABLE)			107			25 YR.
		(1000AF)				(% AVG.)					1	(1000AF)
				 ¦			 ¦					
LEWIS RIVER at Ariel (2)	APR-SEP	77Ø	1989	1	1290	104	:	1500	181	Ø		1244
	APR-JUL	68Ø	945	1	1130	104	:	1310	159	3Ø		1084
	APR-JUN	595	835	i	995	104	1	1160	139			958
							1					
COMLITZ R. bl Mayfield Dam (2) APR-SEP	1240	1780	1	2150	106		2520	306	Ø		2036
	APR-JUL	1090	157Ø		1890	106	1	2210	269			1782
	APR-JUN	940	1340	i	1620	106		1900	239			1524
	July Curt	7 12	10.0	i	1020	100	i	1700				1021
COMLITZ R. at Castle Rock (2) APR-SEP	2180	2580	i	2850	106	i	3120	352	rG		2687
DOWNER IN THE PARTY INCH TE	APR-JUL	1900	2240	•	2480	106	•	2720	306			2343
	APR-JUN	1640	1940	i	2140	106	i	2340	264			2015
	ATT CON	1010	2712	1	6.270	100		2012				LDIO
							i					
					 ¦							
RESI	ERVOIR STORAGE	(1	ØØØAF)		1	WA	TERSHED	SNOWPAC	K ANAL	YSIS.		
	USEABLE :	** USEAB	LE STORAGE	**	 			NO.		THIS	YEAR	AS % OF
RESERVOIR	CAPACITY	THIS	LAST		: WATER	(SHEI)		COUR	SES			
		YEAR		AVG.	1			AVG'	D	LAST	YR.	AVERAGE
					! Cowli	tz River		6		501		105

Lewis River

628

95

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

COWLITZ AND LEWIS

WATER SUPPLY OUTLOOK:

January 1 snow cover for the Cowlitz-Lewis Basin is 101% of normal. December streamflow on the Cowlitz River it was 87% of average. Summer runoff forecasts for the Lewis River are 104%, and for the Cowlitz River, 106%. December precipitation was 64% of normal bringing the water year-to-date precipitation to 111% of average. The Paradise Park SNOTEL has the maximum water content for the basin with 33.1 inches of water, normal January 1 water content is 30.0 inches. Temperatures were six degree below normal for December.

WHITE - GREEN RIVER BASINS

				S	STREAMFLOW	FORECASTS						
FORECAST POINT	FORECAST	;			FUTURE CO	ONDITIONS		WETTER		>		
	PERIOD	: 90% : (1000AF)				PROBABLE) (% AVG.)		30% (1000AF)	10% (1000A	F)		25 YR. (1000AF)
		400	era.	 !			!	229				
GREEN R bl Howard Hanson Dam (2)		189 174 158	25Ø 23Ø 2Ø5	:	290 265 240	100 102 102	:	33Ø 3ØØ 275	39Ø 355 32Ø			291 261 236
CEDAR RIVER or Cedar Falls -	APR-SEF	64	83	1	96	103	:	109	128			93
RESERVOIR	STORAGE	(1	ØØØAF)		 	WA	TERS	HED SNOWPACI	K ANALY	SIS		
RESERVOIR		THIS				(SHED)		NO. COUR	SES -			AS % OF
	 	YEAR	YEAR #	WG.	 -			AVG'1	D L	AST	YR.	AVERAGE
					White	River		2	23	34		89
					: Green	River		7	4-	45		100
					Cedar	River		Ø		Ø		Ø

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

WHITE - GREEN

WATER SUPPLY OUTLOOK:

January 1 snowpack was 97% of normal on the White - Green Basin. Water content on January 1 at the Stampede Pass SNOTEL, at an elevation of 3860 feet, was 18.5 inches, this site has a January 1 average of 18.3 inches. December precipitation was 73% of normal, bringing the water year-to-date to 160% of average. Summer runoff is forecasted to be 100% on the Green River, and 103% of normal on the Cedar River. Temperatures were five degrees below average for December.

NORTH PUGET SOUND RIVER BASINS

					!	STREAMFLOW	FORECASTS						
			< 	DRIER ·		FUTURE C	ONDITIONS		WETTER	:	>	: :	
FORECAST POINT		FORECAST					EXCEEDING *					1	
		PERIOD		70% 1000af			PROBABLE) (% AVG.)		30% (1000AF)			 	25 YR. (1000AF
					;			;					
SKAGIT RIVER at Newhalem	(2)	APR-SEP		252Ø	•		122			33			2264
			185Ø	2140			124		2540	28			1891
		' AFR-JUN	1420	164Ø	i 	1790	124	;	1940	21	6b		1442
	RESERVOIR	STORAGE		(1000AF)			WA	TERSI	HED SNOWPAC	k ana	LYSIS		
RESERVOIR		USEABLE CAPACITY:				; ; ; wate			NO. COUR		THIS	YEAR	AS % OF
RESERVOIR			YEAR	YEAR	AV6		JOHED		AVG'		LAST	YR.	AVERAGE
:OSS		1404.1	1260.9	1237.8	783.9	9 Snoqi	ualmie Rive	r	1		479		7Ø
IABLO RESERVOIR		90.6	82.2	87.5		- Skyk	omish River		3		243		92
ORGE RESERVOIR		9.8	7.5	7.9		- Skag	it River		3		264		144

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

 ^{(1) -} The values listed under the 10% and 96% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural flow - actual flow may be affected by upstream water management.

NORTH PUGET SOUND

WATER SUPPLY OUTLOOK:

December streamflow in the Skagit River was 120% of average. Forecast for the Skagit River is 122% of normal for the spring and summer period. January 1 snow cover in the Skagit Basin is 135% of normal. Rainy Pass SNOTEL at elevation of 4780 feet, has 28.9 inches of water content; normal January 1 water content is 23.2 inches. January 1 reservoir storage is above average, with Ross Lake reservoir at 161% of normal and 90% of capacity. Precipitation values for December were 88% of average with a water year-to-date at 166% of normal. December temperatures were six degrees below normal.

OLYMPIC PENINSULA RIVER BASINS

STREAMFLOW FORECASTS : <----- DRIER ----- FUTURE CONDITIONS ----- WETTER -----> : FORECAST POINT FORECAST ! ----- CHANCE OF EXCEEDING * -----PERIOD : : 50% (MOST PROBABLE) : 30% 10% 25 YR. 90% : (1000AF) (1000AF) : (1000AF) (% AVG.) : (1000AF) (1000AF) : (1000AF) 194 159 DUNGENESS RIVER or Sequim APR-SEP 139 149 162 102 175 121 157 129 AFR-JUL 165 131 102 141 APR-JUN 8Ø 91 99 107 118 97 102 APR-SEP 445 510 555 100 600 665 553 ELWHA RIVER or Port Angeles APR-JUL 430 500 555 375 465 102 454 RESERVOIR STORAGE (1000AF) WATERSHED SNOWPACK ANALYSIS USEABLE : ** USEABLE STORAGE ** : NO. THIS YEAR AS % OF RESERVOIR CAPACITY! THIS LAST WATERSHED COURSES ! YEAR YEAR AVG. : AVG'D LAST YR. AVERAGE Morse Creek Dungeness River Quilcene River Ø Wynoochee River 87

The average is computed for the 1961-1985 base period.

- , . !

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

OLYMPIC

WATER SUPPLY OUTLOOK:

January forecasts of runoff for streamflow in the basin are for 102% of average on the Dungeness River and 100% for the Elwah River. Precipitation for December was 106% of average, with Quillayute receiving 16.76 inches. The basin water year-to- date precipitation accumulation is 141% of normal. There are no snow course readings for January 1 in the Olympic area. The Mount Craig SNOTEL near Quilcene had 6.2 inches on January 1. Temperatures were four degrees below normal for December.

