

#### 통계적추론

### 구간추정

한국방송통신대학교 통계·데이터과학과 이 긍희 교수

### 학습내용

- 구간추정의 기본 개념을 이해한다 .
- 🕖 신뢰구간의 추정 방법을 이해한다.
- **⑤** 모평균에 대한 신뢰구간을 추정한다.
- 모분산에 대한 신뢰구간을 추정한다.

### 구간추정의 개요

#### 구간추정의 개요

- 구간추정의 정의
  - 구간추정 : 모수를 포함할 것으로 기대되는 구간으로 모수를 추정

【예】여론조사, 경제예측

- $X = (X_1, \dots, X_n) \sim N(\theta, \sigma^2)$  확률표본
  - $-\theta$ 의 점추정 : T(X)
  - $\theta$ 의 구간추정 : (L(X), U(X))



#### | 구간추정의 개요

#### ● 모평균의 구간추정

• 
$$\hat{\theta} \sim N(\theta, \sigma^2), \ \sigma \ \mathbf{7} |\mathbf{X}|$$

$$P(\theta - z_{\alpha/2}\sigma \le \hat{\theta} \le \theta + z_{\alpha/2}\sigma)$$

$$= P\left(-z_{\alpha/2} \le \frac{\widehat{\theta} - \theta}{\sigma} \le z_{\alpha/2}\right)$$

$$= P(\hat{\theta} - z_{\alpha/2}\sigma \le \theta \le \hat{\theta} + z_{\alpha/2}\sigma)$$

### 1 구간추정의 개요

#### ● 모평균의 구간추정



#### 구간추정의 개요

- 구간추정의 구분
  - 신뢰구간(Confidence Interval)
  - 신용구간(Credible Interval)

#### 신뢰구간

- 신뢰구간의 의미
  - 100(1 − α)% 신뢰구간
    - $100(1-\alpha)\%$ : 신뢰구간을 구하는 과정을 여러 번 반복할 때 그 중에서 모수를 포함하는 신뢰구간의 비율의 극한
  - $\theta$ 의  $100(1-\alpha)$ % 신뢰구간 :  $\left[c(\widehat{\theta}),d(\widehat{\theta})\right]$   $P\left[c(\widehat{\theta}) \leq \theta \leq d(\widehat{\theta})\right] = 1-\alpha$

#### 신뢰구간

#### ● 95% 신뢰구간의 의미



# 신뢰구간의 추정 방법

#### 신뢰구간의 추정 방법의 구분

- 신뢰구간의 추정 방법
  - 가설검정의 채택역을 이용하는 방법
  - 피봇(Pivot)을 이용하는 방법
  - 누적분포함수를 이용하는 방법

#### 검정 이용법

#### ● 모평균의 가설검정

- $X_1, \dots, X_n \sim N(\mu, \sigma^2)$  확률표본,  $\sigma^2$ 기지
- $H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0$
- 기각역 :  $R(\mu_0) = \{\bar{X} : |\bar{X} \mu_0| > z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\}$
- 채택역 :  $A(\mu_0) = \{\bar{X} : |\bar{X} \mu_0| \le z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\}$

#### 검정 이용법

- 모평균의 가설검정과 신뢰구간 추정
  - 유의수준  $\alpha$ 에서  $H_0: \mu = \mu_0$ 를 기각 못하는  $\mu_0$ 의 값의 범위

$$-\sigma$$
<sup>7</sup>| $X$ | :  $\left[ \bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$ 

$$-\sigma \, \Box |X| : \left[ \overline{X} - t_{\alpha/2}(n-1) \frac{\sigma}{\sqrt{n}}, \ \overline{X} + t_{\alpha/2}(n-1) \frac{\sigma}{\sqrt{n}} \right]$$

 $\rightarrow$  모평균에 대한  $100(1-\alpha)$ %신뢰구간

#### 검정 이용법

- θ의 신뢰구간
  - $A(\theta_0)$  : 유의수준  $\alpha$ 에서  $H_0: \theta = \theta_0$ 에 대한 채택역
  - C(X) :  $\theta$ 의  $100(1-\alpha)$ % 신뢰구간  $C(X) = \{\theta : x \in A(\theta)\}\$

#### 피봇 이용법

- 피봇(Pivotal Quantities)
  - $Q(X, \theta): Q$ 의 분포가 모든 모수와 독립
  - $X \sim F(x|\theta) \rightarrow Q(X,\theta)$ 의  $\theta$ 의 모든 값에 대해 같은 분포
    - $-P_{\theta}(Q(X,\theta) \in A)$ 는  $\theta$ 에 의존하지 않음

#### |피봇 이용법

예  $X_1, \cdots, X_n \sim N(\mu, \sigma^2)$  확률표본,  $\sigma^2$  미지. 피봇을 이용하여  $\mu$ 의  $100(1-\alpha)$ % 신뢰구간을 구하시오.

#### |피봇 이용법

예  $X_1, \cdots, X_n \sim N(\mu, \sigma^2)$  확률표본,  $\sigma^2$  미지. 피봇을 이용하여  $\mu$ 의  $100(1-\alpha)$ % 신뢰구간을 구하시오.

# 모평균에 대한 신뢰구간

#### 고명균의 신뢰구간

- $\bullet$  표본평균의 분포 :  $\sigma^2$ 기지
  - $X_1, \dots, X_n \sim N(\mu, \sigma^2)$  확률표본,  $\sigma^2$ 기지
  - $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
  - $P\left[-z_{\alpha/2} \le \frac{\bar{X} \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right] = 1 \alpha$

#### 모평균의 신뢰구간

- $\bullet$  모평균의 신뢰구간 :  $\sigma^2$ 기지
  - $X_1, \dots, X_n \sim N(\mu, \sigma^2)$  확률표본,  $\sigma^2$ 기지
  - $\mu$ 에 대한  $100(1-\alpha)$ % 신뢰구간 :

$$\left[ \bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

#### · 모평균의 신뢰구간

- $\bullet$  표본평균의 분포 :  $\sigma^2$ 미지
  - $X_1, ..., X_n \sim N(\mu, \sigma^2)$  확률표본,  $\sigma^2$ 미지
  - $T = \frac{\bar{X} \mu}{S / \sqrt{n}} \sim t(n 1)$
  - $P\left[-t_{\alpha/2}(n-1) \le \frac{\bar{X}-\mu}{S/\sqrt{n}} \le t_{\alpha/2}(n-1)\right] = 1 \alpha$

#### 모평균의 신뢰구간

- $\bullet$  모평균의 신뢰구간 :  $\sigma^2$ 미지
  - $X_1, \dots, X_n \sim N(\mu, \sigma^2)$  확률표본,  $\sigma^2$ 미지
  - μ에 대한 100(1 α)% 신뢰구간:

$$\left[\bar{X} - t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}, \bar{X} + t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}\right]$$

#### 모평균의 신뢰구간

- ullet 일반 모집단 모평균의 신뢰구간: n 이  $\Rightarrow$  때
  - $X_1, \dots, X_n \sim (\mu, \sigma^2)$  확률표본
  - $\mu$ 에 대한  $100(1-\alpha)$ % 신뢰구간 :  $\sigma^2$ 미지  $P\{\mu \in \left[ \bar{X} z_{\alpha/2} S/\sqrt{n}, \bar{X} + z_{\alpha/2} S/\sqrt{n} \right] \} = 1-\alpha$

#### 2 모비율의 신뢰구간

- 모비율의 신뢰구간
  - $X_1, \dots, X_n \sim Ber(p)$  확률표본,  $\hat{p} = \sum_{i=1}^n X_i/n$

$$P\left\{ p \in \left[ \hat{p} - z_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n} \,, \hat{p} + z_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n} \right] \right\} = 1 - \alpha$$

#### 2 모비율의 신뢰구간

- 모비율의 신뢰구간
  - $X_1, \dots, X_n \sim Ber(p)$  확률표본,  $\hat{p} = \sum_{i=1}^n X_i/n$

$$P\left\{ p \in \left[ \hat{p} - z_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n} \,, \hat{p} + z_{\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n} \right] \right\} = 1 - \alpha$$

#### 3 모평균 차의 신뢰구간

● 모평균 차의 신뢰구간 : 독립표본

• 
$$X_1, \dots, X_m \sim N(\mu_1, \sigma^2), Y_1, \dots, Y_n \sim N(\mu_2, \sigma^2)$$
 확률표본, 독립 
$$P\left\{\mu_1 - \mu_2 \in \left(\bar{X} - \bar{Y} \pm t_{\alpha/2}(m+n-2)S_p\sqrt{\frac{1}{m} + \frac{1}{n}}\right)\right\} = 1 - \alpha$$
 단,  $S_p^2 = \left\{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{j=1}^m (Y_j - \bar{Y})^2\right\}/(m+n-2)$ 

#### 3 모평균 차의 신뢰구간

- 모평균 차의 신뢰구간 : 쌍체표본
  - $(X_1, Y_1), \dots, (X_n, Y_n)$  확률표본,  $D_i = X_i Y_i \sim N(\mu_1 \mu_2, \sigma_D^2)$  독립  $P\{\mu_1 - \mu_2 \in (\overline{D} \pm t_{\alpha/2,(n-1)} S_D / \sqrt{n})\} = 1 - \alpha$ 단,  $S_D^2 = \sum_{i=1}^n (D_i - \overline{D})^2 / (n-1)$

#### 모비율 차의 신뢰구간

- 모비율 차의 신뢰구간
  - $X_1, \dots, X_m \sim Ber(p_1), Y_1, \dots, Y_n \sim Ber(p_2)$  확률표본, 독립
  - $\hat{p}_1 = \sum_{i=1}^n X_i/m$  ,  $\hat{p}_2 = \sum_{i=1}^m Y_i/n$
  - $P\left\{p_1 p_2 \in \left(\hat{p}_1 \hat{p}_2 \pm z_{\alpha/2} \sqrt{\hat{p}_1 (1 \hat{p}_1)/m + \hat{p}_2 (1 \hat{p}_2)/n}\right)\right\} = 1 \alpha$

#### 모비율 차의 신뢰구간

● 모비율의 신뢰구간

$$P\{p_1 - p_2 \in (\hat{p}_1 - \hat{p}_2 \pm z_{\alpha/2} \sqrt{\hat{p}_1(1 - \hat{p}_1)/m + \hat{p}_2(1 - \hat{p}_2)/n})\} = 1 - \alpha$$



# 모분산에 대한 신뢰구간

#### 1 모분산의 신뢰구간

#### ● 모분산의 신뢰구간

$$X_1, \dots, X_n \sim N(\mu, \sigma^2)$$
 확률표본

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

$$P\left\{\sigma^2 \in \left(\frac{n-1}{\chi^2_{\alpha/2}(n-1)}S^2, \frac{n-1}{\chi^2_{1-\alpha/2}(n-1)}S^2\right)\right\} = 1 - \alpha$$

#### 모분산의 신뢰구간

#### ● 모분산의 신뢰구간



#### 2 모분산 비의 신뢰구간

- 모분산 비의 신뢰구간
  - $X_1, \dots, X_m \sim N(\mu_1, \sigma_1^2), Y_1, \dots, Y_n \sim N(\mu_2, \sigma_2^2),$  확률표본, 독립
  - 두 표본분산의 비 : F분포

$$\frac{S_2^2/\sigma_2^2}{S_1^2/\sigma_1^2} \sim F(n-1, m-1)$$

#### 2 모분산 비의 신뢰구간

- 모분산 비의 신뢰구간
  - $\frac{\sigma_2^2}{\sigma_1^2}$ 에 대한  $100(1-\alpha)$ % 신뢰구간 :

$$\left[\frac{S_2^2/S_1^2}{F_{\alpha/2}(n-1,m-1)}, S_2^2/S_1^2 \cdot F_{\alpha/2}(m-1,n-1)\right]$$

### 정리하기

- □ 구간추정은 모수를 포함할 것으로 기대되는 구간을 제시하여 모수를 추정하는 방법이다.
- $\square X_1,...,X_n$ 이  $N(\mu,\sigma^2)$ 의 확률표본,  $\sigma^2$ 를 모를 때,  $\mu$ 에 대한  $100(1-\alpha)$ % 신뢰구간은 다음과 같다.

$$[\bar{X} - t_{\alpha/2}(n-1)S/\sqrt{n}, \quad \bar{X} + t_{\alpha/2}(n-1)S/\sqrt{n}]$$

### 정리하기

 $\square$   $X_1,...,X_m \sim N(\mu_1,\sigma^2)$ 의 확률표본,  $Y_1,...,Y_n \sim N(\mu_2,\sigma^2)$ 의 확률표본, 두 표본 서로 독립.  $\sigma^2$  모를 때  $\mu_1 - \mu_2$ 에 대한  $100(1-\alpha)$ % 신뢰구간은 다음과 같다.

$$\left(\overline{X} - \overline{Y} \pm t_{\alpha/2}(m+n-2)S_p\sqrt{\frac{1}{m} + \frac{1}{n}}\right)$$

### 절리하기

□ 표본 크기가 클 때 모비율 p의  $100(1-\alpha)$ % 신뢰구간은 다음과 같다.

$$\left[\hat{p}-z_{lpha/2}\sqrt{\hat{p}(1-\hat{p})/n}\,$$
,  $\hat{p}+z_{lpha/2}\sqrt{\hat{p}(1-\hat{p})/n}
ight]$ 

 $\square X_1,...,X_n \sim N(\mu,\sigma^2)$ 의 확률표본,  $\sigma^2$ 에 대한  $100(1-\alpha)$ % 신뢰 구간은 다음과 같다.

$$\left[\frac{(n-1)S^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-\alpha/2}^2(n-1)}\right]$$



### 통계적 추론 강의 정리

#### ● 강의 내용

| • | 통계적 추론의 개념 | ■ 점추정    |
|---|------------|----------|
| - | 확률         | ■ 추정의 원리 |
| - | 모집단의 분포    | ■ 가설검정   |
| • | 표본분포       | ■ 구간추정   |

### 수고하셨습니다.