

Body Fat: Compare Models

Va	ariat	les	in M	odel	\hat{eta}_1		,	\hat{eta}_2		s {β̂	}	s	$\hat{\beta}_2$ }	1	MSE	
M	odel	1: 2	Χ 1		0.85	72		-		0.12	88		-		7.95	
	odel		_		-		-	3565		-		-	100		6.3	
M	odel	3: 2	X_1, X	2	0.22	24	0.6	5594	.	0.30	34	0.2	2912		6.47	
М	odel	4: 2	X_1, X	$_{2},X_{3}$	4.33	34	-2	.857		3.01	6	2.	582		6.15	

- The regression coefficient for X₁ (X₂)
 depending on which other X variables are included in the model.
- The standard errors of the fitted regression coefficients are becoming when more X variables are included into the model.
- MSE tends to as additional X variables are added into the model.

Body Fat: Compare Models

Va	ariab	les	in M	odel	$\hat{\beta}_1$,	\hat{eta}_2		s{ \hat{eta}	}	s	\hat{eta}_2 }	1	ИSE	
M	odel	1: 2	Χ 1		0.85	72		-		0.12	88		-		7.95	
	odel		_		-		-	3565		-		-	100		6.3	
M	odel	3: 2	X_1, X	2	0.22	24	0.6	5594	.	0.30	34	0.2	2912		6.47	
М	odel	4: 2	X_1, X	$_{2}$, X_{2}	4.33	34	-2	.857		3.01	6	2.	582		6.15	

- The regression coefficient for X_1 (X_2) varies drastically depending on which other X variables are included in the model.
- The standard errors of the fitted regression coefficients are becoming inflated when more X variables are included into the model.
- MSE tends to decrease as additional X variables are added into the model.

- $SSR(X_1) = 352.27, SSR(X_1|X_2) = 3.47.$
- The reason why $SSR(X_1|X_2)$ is so small compared to $SSR(X_1)$ is that X_1 and X_2 are with each other and with the response variable Y.
 - When X_2 is already in the model, the marginal contribution from X_1 in explaining Y is since X_2 contains much of the information as X_1 in terms of explaining Y.

What would happen if X_1 and X_2 were not correlated with Y, but were highly correlated among themselves?

- $SSR(X_1) = 352.27, SSR(X_1|X_2) = 3.47.$
- The reason why $SSR(X_1|X_2)$ is so small compared to $SSR(X_1)$ is that X_1 and X_2 are highly correlated with each other **and with the** response variable Y.
 - When X_2 is already in the model, the marginal contribution from X_1 in explaining Y is small since X_2 contains much of the same information as X_1 in terms of explaining Y.

highly correlated among themselves?

What would happen if X_1 and X_2 were not correlated with Y, but were

In Model 4, none of the three *X* variables is statistically significant by the T-tests. However, the F-test for regression relation is highly significant. Is there a paradox?

- From the general linear test perspective, each T-test is a test, testing whether the of an X variable is significant given
 - X variables being included in the model.
- The three tests of the marginal effects of X_1 , X_2 , X_3 together are to testing whether there is a regression relation between Y and (X_1, X_2, X_3) .
- The reduced model for each individual test contains
 X variables and thus may lead to non-significant results due
 to
- On the other hand, the reduced model for testing regression relation contains
 X variable.

In Model 4, none of the three X variables is statistically significant by the T-tests. However, the F-test for regression relation is highly significant. Is there a paradox?

- From the general linear test perspective, each T-test is a marginal test, testing whether the marginal effect of an X variable is significant given all other X variables being included in the model.
- The three tests of the marginal effects of X_1 , X_2 , X_3 together are not equivalent to testing whether there is a regression relation between Y and (X_1, X_2, X_3) .
- The reduced model for each individual test contains all other X variables and thus may lead to non-significant results due to multicollinearity.
- On the other hand, the reduced model for testing regression relation contains no X variable.

Effects of Multicollinearity: Summary

- With multicollinearity, the estimated regression coefficients tend to have sampling variability (i.e., standard errors). This leads to:
 - confidence intervals.
 - It's possible that of the regression coefficients is statistically significant, but at the same time there is a regression relation between the response variable and the entire set of X variables.
- Multicollinearity does not prevent us from getting a of the data.

Effects of Multicollinearity: Summary

- With multicollinearity, the estimated regression coefficients tend to have large sampling variability (i.e., large standard errors). This leads to:
 - Wide confidence intervals.
 - It's possible that none of the regression coefficients is statistically significant, but at the same time there is a significant regression relation between the response variable and the entire set of X variables.
- Multicollinearity does not prevent us from getting a good fit of the data.

Interpretation of Regression Coefficients and ESS

In the presence of multicollinearity:

- The regression coefficient of an X variable which other X variables are also in the model.
- Therefore, a regression coefficient reflect any inherent effect of the corresponding X variable on the response variable, but only a given whatever other X variables are also in the model.
- Similarly, there is sum of squares that can be ascribed to any one X variable.
 - The reduction in the total variation in Y ascribed to an X variable must be interpreted as a given other X variables also included in the model.

Interpretation of Regression Coefficients and ESS

In the presence of multicollinearity:

- The regression coefficient of an X variable depends on which other X variables are also in the model.
- Therefore, a regression coefficient does **not** reflect any inherent effect of the corresponding X variable on the response variable, but only a marginal effect given whatever other X variables are also in the model.
- Similarly, there is **no** unique sum of squares that can be ascribed to any one X variable.
 - The reduction in the total variation in Y ascribed to an X variable must be interpreted as a margin reduction given other X variables also included in the model.

Quantify Multicollinearity: Variance Inflation Factor

Under the standardized model:

$$\sigma^{2}(\hat{oldsymbol{eta}}^{*})=$$

- The kth diagonal element of the inverse correlation matrix \mathbf{r}_{XX}^{-1} is called the **variance inflation factor (VIF)** for $\hat{\beta}_k^*$, denoted by VIF_k .
- The variance of the estimated regression coefficient $\hat{\beta}_k^*$:

$$\sigma^2(\hat{\beta}_k^*) =$$

 $\sigma^2(\hat{\beta}_k) =$

• The variance of the estimated regression coefficient $\hat{\beta}_k$ in the original model:

Quantify Multicollinearity: Variance Inflation Factor

Under the standardized model:

$$\sigma^{2}(\hat{\boldsymbol{\beta}}^{*}) = \sigma^{2}\begin{bmatrix} \frac{1}{n} & \mathbf{0}^{T} \\ \mathbf{0} & \mathbf{r}_{XX}^{-1} \end{bmatrix}$$

- The kth diagonal element of the inverse correlation matrix \mathbf{r}_{xx}^{-1} is called the variance inflation factor (VIF) for $\hat{\beta}_{k}^{*}$, denoted by VIF_k .
- The variance of the estimated regression coefficient $\hat{\beta}_{i}^{*}$:

$$\sigma^2(\hat{\beta}_k^*) = VIF_k\sigma^2, \quad k = 1, \cdots, p-1.$$

The variance of the estimated regression coefficient $\hat{\beta}_k$ in the original model:

$$\sigma^{2}(\hat{\beta}_{k}) = VIF_{k} \times \frac{\sigma^{2}}{\sum_{i=1}^{n} (X_{ik} - \bar{X}_{k})^{2}}, \quad k = 1, \dots, p-1.$$

It can be shown that

$$VIF_k = \frac{1}{1 - R^2} (\geq 1), \quad k = 1, \dots, p - 1,$$

where R_k^2 is the coefficient of multiple determination when X_k is regressed on the rest of X variables $\{X_j: 1 \le j \ne k \le p-1\}$.

- If X_k is uncorrelated with the rest of the X variables, then $R_k^2 =$ and $VIF_k =$
- If $R_k^2 > 0$, then VIF_k , indicating an variance for $\hat{\beta}_k^*$ (eqv. $\hat{\beta}_k$) due to the between X_k and the other X variables.
- If X_k has a perfect linear association with the rest of the X variables, then $R_k^2 = , VIF_k =$ and so the variance of $\hat{\beta}_k^*$ (eqv. $\hat{\beta}_k$) is
- In practice, $\max_k VIF_k > 10$ is often taken as an indication that multicollinearity is high.

It can be shown that

$$VIF_k = \frac{1}{1 - R^2} (\geq 1), \quad k = 1, \dots, p - 1,$$

where R_k^2 is the coefficient of multiple determination when X_k is regressed on the rest of X variables $\{X_j: 1 \le j \ne k \le p-1\}$.

- If X_k is uncorrelated with the rest of the X variables, then $R_k^2 = 0$ and $VIF_k = 1$ (no inflation).
- If $R_k^2 > 0$, then $VIF_k > 1$, indicating an inflated variance for $\hat{\beta}_k^*$ (eqv. $\hat{\beta}_k$) due to the intercorrelation between X_k and the other X variables.
- If X_k has a perfect linear association with the rest of the X variables, then $R_k^2 = 1$, $VIF_k = \infty$ and so the variance of $\hat{\beta}_k^*$ (eqv. $\hat{\beta}_k$) is infinity (ill-defined).
- In practice, $\max_k VIF_k > 10$ is often taken as an indication that multicollinearity is high.

$$\mathbf{r}_{XX} = \begin{bmatrix} 1.00 & 0.92 & 0.46 \\ 0.92 & 1.00 & 0.08 \\ 0.46 & 0.08 & 1.00 \end{bmatrix}, \quad \mathbf{r}_{XY} = \begin{bmatrix} 0.84 \\ 0.88 \\ 0.14 \end{bmatrix}.$$

 X_1 and X_2 are highly correlated, X_1 and X_3 are moderately correlated, X_2 and X_3 are not much correlated. Moreover,

$$\mathbf{r}_{XX}^{-1} = \begin{bmatrix} 708.84 & -631.92 & -270.99 \\ -631.92 & 564.34 & 241.49 \\ -270.99 & 241.49 & 104.61 \end{bmatrix}$$

So,
$$R_1^2 = 0.9986$$
, $R_2^2 = 0.9982$, $R_3^2 = 0.9904$.

Each predictor is highly intercorrelated with the rest of the predictors.

Coefficient of Partial Determination

It measures the marginal contribution in proportional reduction in SSE by adding one X variable into a model.

Definition.

$$\begin{array}{c} R_{Y,j|1,\cdots,j-1,j+1,\cdots,p-1}^2 \\ SSE(X_1,\cdots,X_{j-1},X_{j+1},\cdots,X_{p-1}) - SSE(X_1,\cdots,X_{p-1}) \\ \vdots \\ SSE(X_1,\cdots,X_{j-1},X_{j+1},\cdots,X_{p-1}) \\ \end{array} \\ = \begin{array}{c} SSR(X_j|X_1,\cdots,X_{j-1},X_{j+1},\cdots,X_{p-1}) \\ SSE(X_1,\cdots,X_{j-1},X_{j+1},\cdots,X_{p-1}) \end{array}$$

- Coefficients of partial determination are in between
- For example, $R_{V_{1|2}}^2 =$

is

Coefficient of Partial Determination

It measures the marginal contribution in proportional reduction in SSE by adding one X variable into a model.

Definition.

$$\begin{array}{c} R_{Y,j|1,\cdots,j-1,j+1,\cdots,p-1}^{2} \\ SSE(X_{1},\cdots,X_{j-1},X_{j+1},\cdots,X_{p-1}) - SSE(X_{1},\cdots,X_{p-1}) \\ \vdots = & SSE(X_{1},\cdots,X_{j-1},X_{j+1},\cdots,X_{p-1}) \\ = & SSR(X_{j}|X_{1},\cdots,X_{j-1},X_{j+1},\cdots,X_{p-1}) \\ SSE(X_{1},\cdots,X_{j-1},X_{j+1},\cdots,X_{p-1}) \end{array}$$

- Coefficients of partial determination are in between 0 and 1.
- For example, $R_{Y,1|2}^2 = \frac{SSR(X_1|X_2)}{SSE(X_2)}$ is the proportional reduction in SSE by including X_1 into the model with X_2 .

From R outputs, we can obtain a number of coefficients of partial determination. E.g.:

$$R_{Y,1|2}^2 = \frac{SSE(X_2) - SSE(X_1, X_2)}{SSE(X_2)} = \frac{113.42 - 109.95}{113.43} = 3.1\%.$$

$$R_{Y,3|12}^2 =$$

 $R_{Y,2|1}^2 =$

• When X_2 is added to the model containing X_1 , SSE is reduced by ; When X_1 is added to the model containing X_2 , SSE is reduced by ; When X_3 is added to the model containing X_1 , X_2 , SSE is reduced by

From R outputs, we can obtain a number of coefficients of partial determination. E.g.:

$$R_{Y,2|1}^2 = \frac{SSE(X_1) - SSE(X_1, X_2)}{SSE(X_1)} = \frac{143.12 - 109.95}{143.12} = 23.2\%.$$

$$R_{Y,1|2}^{2} = \frac{SSE(X_{2}) - SSE(X_{1}, X_{2})}{SSE(X_{2})} = \frac{113.42 - 109.95}{113.43} = 3.1\%.$$

$$R_{Y,3|12}^{2} = \frac{SSR(X_{3}|X_{1}, X_{2})}{SSE(X_{1}, X_{2})} = \frac{11.55}{109.95} = 10.5\%.$$

 When X₂ is added to the model containing X₁, SSE is reduced by 23.2%; When X_1 is added to the model containing X_2 , SSE is reduced by 3.1%; When X_3 is added to the model containing X_1, X_2 , SSE is reduced by 10.5%.

Interpretation of Coefficient of Partial Determination

- $SSR(X_i|X_1,\cdots,X_{i-1},X_{i+1},\cdots,X_{p-1})$ is the SSR when regressing the residuals $e(Y|X_{-(i)}) = Y - \hat{Y}(X_{-(i)})$ to the residuals $e(X_i|X_{-(i)}) = X_i - \hat{X}_i(X_{-(i)})$, where $X_{-(j)} = \{X_i : 1 \le i \ne j \le p\}.$
- So $R_{Y,i|1,...|i-1|i+1,...,p-1}^2$ is the

between the two sets of residuals obtained by regressing Y and X_i to the rest of variables $X_{-(i)}$, respectively.

• So $R_{Y,j|1,...,j-1,j+1,...,p-1}^2$ measures the linear association between Y and X_j after have been adjusted for.

Interpretation of Coefficient of Partial Determination

- $SSR(X_j|X_1, \cdots, X_{j-1}, X_{j+1}, \cdots, X_{p-1})$ is the SSR when regressing the residuals $e(Y|X_{-(j)}) = Y \hat{Y}(X_{-(j)})$ to the residuals $e(X_j|X_{-(j)}) = X_j \hat{X}_j(X_{-(j)})$, where $X_{-(j)} = \{X_l : 1 \le l \ne j \le p\}$. (Discussed in the Lab session)
- So $R^2_{Y,j|1,...,j-1,j+1,...,p-1}$ is the coefficient of simple determination (i.e., the squared correlation coefficient) between the two sets of residuals obtained by regressing Y and X_i to the rest of variables $X_{-(i)}$, respectively.
- So $R^2_{Y,j|1,\dots,j-1,j+1,\dots,p-1}$ measures the linear association between Y and X_j after the linear effects of $X_{-(j)}$ have been adjusted for.

Example. $R_{V,1|2}^2$.

- Regress Y on X_2 : $e_i(Y|X_2) = Y_i \widehat{Y}_i(X_2)$, $i = 1, \dots n$.
- Regress X_1 on X_2 : $e_i(X_1|X_2) = X_{i1} \hat{X}_{i1}(X_2)$, $i = 1, \dots, n$.
- $R_{Y1|2}^2$ equals to the coefficient of simple determination between $e_i(Y|X_2)$ and $e_i(X_1|X_2)$.
- It measures the linear association between Y and X₁ after the linear effects of X₂ have been adjusted for.

Partial Correlations

The **signed** square-root of a coefficient of partial determination is called a partial correlation.

- The sign is the same as the sign of the corresponding fitted regression coefficient.
- Partial correlation is the between the
- Partial correlations can be used to find the "best" X variable to be added next for inclusion in the regression model.

Partial Correlations

The **signed** square-root of a coefficient of partial determination is called a partial correlation.

- The sign is the same as the sign of the corresponding fitted regression coefficient.
- Partial correlation is the correlation coefficient between the two respective sets of residuals.
- Partial correlations can be used to find the "best" X variable to be added next for inclusion in the regression model.

		r	/2 1	= = 2 =								•		
	•	r	/1 2	=										
	•	r	/3 1:	$_{2} =$										

4 D P 4 B P 4 B P B 9 Q P

LS Fitted Regression Coefficients as Partial Coefficients

The LS fitted regression coefficients $\hat{\beta}$ are indeed partial coefficients.

- Consider p-1 X variables in the model. Let $\hat{\beta}_i$ be the LS fitted regression coefficient for Xi.
- Then $\hat{\beta}_i$ equals to the LS fitted regression coefficient when regressing the residuals $e(Y|X_{-(i)}) = Y - \hat{Y}(X_{-(i)})$ to the residuals $e(X_i|X_{-(i)}) = X_i - \hat{X}_i(X_{-(i)})$, where $X_{-(i)} = \{X_l : 1 \le l \ne j \le p\}.$

Confirm this numerically with some of homework data sets.