

CENTRO UNIVERSITÁRIO UNIRUY - WYDEN PROGRAMAÇÃO DE MICROCONTROLADORES

José Vinicius Garcia Rodrigues - 2024.0357.3032

Guilherme de Souza Aguzzoli - 2023.0833.7858

Gabriel Chagas - 2022.0276.4671

Yan Sá Schaun Martins - 2023.0451.4844

PROJETO - CARRO ROBÔ COM ARDUINO

SALVADOR

2025

PROJETO - CARRO ROBÔ COM ARDUINO

Projeto implementado para avaliação final da matéria de programação de microcontroladores ministrada e orientada pelo professor Heleno Cardoso. Definição de uma aplicação prática e inovadora para o uso de microcontroladores, com foco na criação de um circuito físico ou simulado.

SALVADOR 2025

1. Introdução

Com o avanço das tecnologias digitais e a crescente demanda por soluções automatizadas, o uso de microcontroladores tornou-se uma alternativa viável e acessível para o desenvolvimento de sistemas inteligentes. O Arduino, uma plataforma open source baseada em hardware e software simples e intuitivo, se destacou por permitir que profissionais, estudantes e entusiastas criem projetos que simulam, em pequena escala, aplicações presentes no mundo real, como sistemas automotivos, robótica, automação residencial e industrial.

Este relatório apresenta o desenvolvimento de um carrinho de controle remoto utilizando o microcontrolador Arduino Uno R3, controlado via comunicação Bluetooth a partir de um dispositivo móvel. Apesar de sua estrutura simples, o projeto serve como uma base sólida para compreender os fundamentos da automação e da eletrônica embarcada, explorando tópicos como controle de motores, comunicação sem fio, lógica de programação e integração de módulos periféricos.

Mais do que um simples protótipo, o carrinho automatizado pode ser interpretado como uma simulação didática de veículos reais utilizados em ambientes industriais, como empilhadeiras automatizadas, robôs de transporte logístico (AGVs – Automated Guided Vehicles) ou até mesmo sistemas de navegação de robôs móveis autônomos. O comportamento do carrinho ao receber comandos de direção, parada e rotação imita, de forma simplificada, as rotinas de navegação de veículos autônomos e semiautônomos presentes em fábricas inteligentes, onde a precisão, o controle de movimento e a resposta em tempo real são fundamentais.

Dessa forma, o projeto oferece uma oportunidade prática de aplicar os conceitos teóricos aprendidos em sala de aula ou estudados de maneira autodidata, promovendo o desenvolvimento de competências em eletrônica, programação e controle de sistemas físicos. Além disso, permite compreender como tecnologias modulares — como o Arduino, o módulo Bluetooth HC-05 e a ponte H para controle de motores — podem ser integradas para construir soluções de engenharia escaláveis e adaptáveis aos mais diversos contextos da Indústria 4.0.

2. Objetivo

O presente projeto tem como objetivo principal o desenvolvimento de um sistema de automação embarcada utilizando um microcontrolador Arduino Uno R3, com o intuito de controlar remotamente um veículo de pequeno porte por meio de comunicação Bluetooth. Trata-se de um carrinho motorizado, que pode ser comandado por um dispositivo móvel, simulando, de forma simplificada, os princípios de operação e controle presentes em veículos industriais autônomos ou semiautônomos.

A proposta central é demonstrar, por meio de uma aplicação prática e acessível, a versatilidade do Arduino como plataforma de desenvolvimento para sistemas embarcados. Ao integrar diferentes módulos eletrônicos, como o controlador de motor (ponte H) e o módulo de comunicação sem fio (HC-05), o projeto permite explorar conceitos fundamentais da engenharia eletrônica e da ciência da computação, especialmente nas áreas de automação, mecatrônica e Internet das Coisas (IoT).

Além disso, o carrinho serve como ferramenta didática para compreender na prática como comandos digitais podem ser traduzidos em ações físicas, como movimentação, rotação e parada, por meio da interação entre software e hardware. Essa abordagem estimula o pensamento sistêmico e o raciocínio lógico, competências essenciais para profissionais da área tecnológica.

2.1 Objetivos Específicos

- Projetar e montar a estrutura de um carrinho motorizado controlado remotamente;
- Implementar o controle de movimentação (frente, ré, esquerda, direita e parada) por meio de sinais enviados via Bluetooth;
- Configurar e integrar módulos essenciais ao funcionamento do sistema, como a
 ponte H (para controle de motores) e o módulo Bluetooth HC-05 (para comunicação
 com o smartphone);

- **Desenvolver o código-fonte em Arduino C/C++**, interpretando comandos recebidos e acionando os motores de forma responsiva;
- **Demonstrar o funcionamento do protótipo**, validando seu comportamento em testes práticos;
- Relacionar o projeto a aplicações reais, discutindo seu potencial como base para veículos automatizados em ambientes industriais ou logísticos.

3. Desenvolvimento

3.1 Visão Geral do Projeto

Este projeto visa implementar um sistema de controle remoto para um veículo de pequeno porte utilizando um microcontrolador Arduino Uno R3, dois motores DC e uma ponte H L298N. A interface de controle se dá por meio de um módulo Bluetooth (HC-05), que permite o envio de comandos a partir de um smartphone. O sistema é alimentado por duas pilhas A1 (Simuladas por uma bateria 9V), que fornece energia suficiente para o acionamento dos motores, sem sobrecarregar o Arduino.

A proposta é modular, de modo que seus componentes podem ser substituídos por equivalentes, dependendo da disponibilidade e da finalidade do projeto. A ponte H utilizada (L298N) também atua como regulador de tensão, fornecendo 5V estáveis para o sistema, o que facilita a integração com o Arduino e os motores.

3.2 Componentes Utilizados

- Arduino Uno R3 Microcontrolador principal, responsável por interpretar os comandos recebidos e acionar os motores.
- Módulo Bluetooth HC-05 Responsável pela comunicação serial entre o Arduino e o dispositivo móvel.

- Módulo Ponte H L298N Circuito de controle que permite o acionamento bidirecional dos motores DC.
- 2 Motores de corrente contínua (DC 3-6V) Responsáveis pela locomoção do carrinho.
- **Protoboard e jumpers** Para conexões elétricas entre os módulos.
- Base para o carrinho (opcional) Pode ser feita em MDF, plástico, metal ou impressa em 3D.
- Rodas para os motores
- **Bateria de 9V** Fonte de alimentação externa.

3.3 Esquema de Montagem

A figura abaixo mostra o diagrama esquemático do projeto, representando as conexões entre o Arduino, a ponte H L298N, os motores e o módulo Bluetooth:

As conexões entre o Arduino e o módulo L298N seguem a seguinte correspondência:

Porta Arduino	Função	Porta L298N
3	Controle de velocidade B	ENB
4	Direção motor B	IN4
5	Direção motor B	IN3
6	Direção motor A	IN2
7	Direção motor A	IN1
9	Controle de velocidade A	ENA

Além disso, o módulo Bluetooth está conectado às portas digitais 2 (RX) e 3 (TX) do Arduino, utilizando a biblioteca **SoftwareSerial** para comunicação. A alimentação de 5V para o HC-05 é retirada do pino regulado do Arduino, enquanto o GND é comum a todo o circuito.

3.4 Lógica de Funcionamento

O funcionamento do carrinho é baseado no recebimento de caracteres enviados via Bluetooth a partir de um aplicativo móvel. Cada caractere representa um comando (como andar para frente, para trás, virar ou parar). O Arduino interpreta esses comandos por meio de uma estrutura condicional switch, ativando os pinos de controle da ponte H conforme necessário.

Exemplo de comandos mapeados:

Comando	Ação Correspondente
'F'	Movimento para frente
'B'	Movimento para trás
'L'	Curva para a esquerda
'R'	Curva para a direita
'P'	Parar
'A'	Iniciar movimento (frente)
'X', 'T'	Comportamentos especiais*

* O código prevê funções adicionais associadas a símbolos (triângulo, xis, etc.), que podem ser utilizados para testes de rotação, manobras ou até integração com LEDs e sensores.

3.5 Observações Técnicas Importantes

- Remoção dos Jumpers ENA/ENB: A ponte H L298N vem por padrão com os conectores ENA e ENB fechados com jumpers para definir a velocidade máxima dos motores. Para controlar a velocidade via PWM, é necessário remover esses jumpers e conectar as portas ENA (pino 9) e ENB (pino 3) do Arduino diretamente.
- Alimentação Externa: A ponte H permite a alimentação separada dos motores e da lógica. Isso evita sobrecarga da placa Arduino, garantindo melhor desempenho e proteção ao circuito.
- **Fixação dos motores**: Recomenda-se o uso de uma base firme para acoplar os motores e rodas, o que contribui para a estabilidade do protótipo durante testes.

4. Conclusão

O desenvolvimento do carrinho de controle remoto utilizando a plataforma Arduino R3 demonstrou-se uma experiência satisfatória e enriquecedora no campo da automação e da eletrônica embarcada. Por meio da integração entre componentes como a ponte H L298N, o módulo Bluetooth HC-05 e os motores de corrente contínua, foi possível construir um sistema funcional e responsivo, capaz de interpretar comandos enviados remotamente e transformá-los em movimentos coordenados.

Além de atingir os objetivos propostos, o projeto evidenciou a versatilidade do Arduino na aplicação de conceitos de controle de sistemas físicos em tempo real. Essa prática serviu como uma simulação simplificada de tecnologias utilizadas em veículos industriais e autônomos, como empilhadeiras robotizadas, robôs de linha de produção e plataformas logísticas automatizadas.

O aprendizado prático proporcionado por este trabalho também reforça a importância da prototipagem eletrônica como ferramenta de ensino, experimentação e inovação. Concluímos, portanto, que o projeto não apenas atendeu às expectativas técnicas, como também abriu caminho para futuras implementações mais robustas e complexas, incentivando o aprofundamento no universo da robótica móvel e da Internet das Coisas (IoT).