DWM CODES

Decision Tree (Classification)

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

import math

```
# Tennis data (Outlook, Temp, Humidity, Wind, PlayTennis)
data = [
   ['Sunny', 'Hot', 'High', 'Weak', 'No'],
   ['Sunny', 'Hot', 'High', 'Strong', 'No'],
   ['Overcast', 'Hot', 'High', 'Weak', 'Yes'],
   ['Rain', 'Mild', 'High', 'Weak', 'Yes'],
   ['Rain', 'Cool', 'Normal', 'Weak', 'Yes'],
   ['Rain', 'Cool', 'Normal', 'Strong', 'No'],
   ['Overcast', 'Cool', 'Normal', 'Strong', 'Yes'],
   ['Sunny', 'Mild', 'High', 'Weak', 'No'],
   ['Sunny', 'Cool', 'Normal', 'Weak', 'Yes'],
   ['Rain', 'Mild', 'Normal', 'Weak', 'Yes'],
   ['Sunny', 'Mild', 'Normal', 'Strong', 'Yes'],
   ['Overcast', 'Mild', 'High', 'Strong', 'Yes'],
   ['Overcast', 'Hot', 'Normal', 'Weak', 'Yes'],
   ['Rain', 'Mild', 'High', 'Strong', 'No']
features = ['Outlook', 'Temp', 'Humidity', 'Wind']
def entropy(values):
   counts = \{\}
   for v in values:
      counts[v] = counts.get(v, 0) + 1
```

```
return -sum((count/len(values)) * math.log2(count/len(values))
        for count in counts.values())
def best feature(data, features):
   base_entropy = entropy([row[-1] for row in data])
   best qain = 0
   best feat = None
  for i in range(len(features)):
     feat_values = {row[i] for row in data}
     feat_entropy = 0
     for value in feat values:
        subset = [row[-1] for row in data if row[i] == value]
        feat_entropy += (len(subset)/len(data)) * entropy(subset)
     gain = base entropy - feat entropy
     if gain > best_gain:
        best_gain = gain
        best feat = i
  return best feat
def build_tree(data, features):
   outcomes = [row[-1] for row in data]
   if len(set(outcomes)) == 1:
     return outcomes[0]
   best_idx = best_feature(data, features)
  if best idx is None:
     return max(set(outcomes), key=outcomes.count)
  tree = {features[best_idx]: {}}
  for value in {row[best_idx] for row in data}:
     subset = [row for row in data if row[best_idx] == value]
     tree[features[best_idx]][value] = build_tree(subset, features)
  return tree
tree = build_tree(data, features)
print(tree)
output
{'Outlook': {'Sunny': {'Humidity': {'High': 'No', 'Normal': 'Yes'}}, 'Rain': {'Wind':
{'Weak': 'Yes', 'Strong': 'No'}}, 'Overcast': 'Yes'}}
```

Naive Bayesian (Classification)

```
data = [
  ['Yes', 'No', 'Yes'],
  ['No', 'Yes', 'Yes'],
  ['Yes', 'Yes', 'Yes'],
  ['No', 'No', 'No'],
  ['Yes', 'No', 'Yes'],
  ['No', 'No', 'Yes'],
  ['Yes', 'No', 'Yes'],
  ['Yes', 'No', 'No'],
  ['No', 'Yes', 'Yes'],
  ['No', 'Yes', 'No'],
1
from collections import defaultdict
# Count classes
yes = sum(1 for row in data if row[2] == 'Yes')
no = len(data) - yes
total = yes + no
# Feature counts
counts = {
  'Covid': {'Yes': defaultdict(int), 'No': defaultdict(int)},
  'Flu': {'Yes': defaultdict(int), 'No': defaultdict(int)}
}
for row in data:
  covid, flu, fever = row
  counts['Covid'][fever][covid] += 1
  counts['Flu'][fever][flu] += 1
def predict(covid, flu):
  # Prior probabilities
  p_yes = yes / total
  p no = no / total
  # Likelihoods without smoothing
  try:
    covid_yes = counts['Covid']['Yes'][covid] / yes
```

```
flu yes = counts['Flu']['Yes'][flu] / yes
    p_yes *= covid_yes * flu_yes
  except ZeroDivisionError:
    p yes = 0
  try:
    covid_no = counts['Covid']['No'][covid] / no
    flu_no = counts['Flu']['No'][flu] / no
    p no *= covid no * flu no
  except ZeroDivisionError:
    p no = 0
  print(f"\nInput: Covid={covid}, Flu={flu}")
  print(f"P(Fever=Yes): {p yes:.5f}")
  print(f"P(Fever=No): {p no:.5f}")
  return 'Yes' if p_yes > p_no else 'No'
# Tests
print("Predicted Fever:", predict('Yes', 'Yes')) # Expected: Yes
                             K-means - 1D
data = [2, 4, 10, 12, 3, 20, 30, 11, 25]
# Initial centroids
m1 = 2
m2 = 4
for _ in range(10): # max 10 iterations
   g1 = []
   g2 = []
   # Assign to nearest cluster
  for x in data:
      if abs(x - m1) < abs(x - m2):
        g1.append(x)
      else:
         g2.append(x)
   # Recalculate means
  new_m1 = sum(g1) / len(g1)
```

```
new_m2 = sum(g2) / len(g2)
  # Stop if centroids don't change
  if new m1 == m1 and new m2 == m2:
     break
  m1 = new m1
  m2 = new m2
# Final output
print("Cluster 1:", g1)
print("Cluster 2:", q2)
print("Final Centroids:", round(m1, 2), "and", round(m2, 2))
                    2D K-means (Clustering)
# Sample data: (Age, Amount)
data = [
  (20, 500), # c1
  (40, 1000), # c2
  (30, 800), # c3
  (18, 300), # c4
  (28, 1200), # c5
  (35, 1400), # c6
  (45, 1800) # c7
1
# Initial centroids (first two points)
centroids = [data[0], data[1]] # (20, 500) and (40, 1000)
def euclidean_distance(p1, p2):
  return ((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) ** 0.5
def k_means_single_iteration(data, centroids):
  # Step 1: Create empty clusters
  clusters = [[] for _ in range(len(centroids))]
  # Step 2: Assign each point to the nearest centroid
  for point in data:
     distances = [euclidean_distance(point, centroid) for centroid in
centroids]
     closest = distances.index(min(distances)) # Find the closest centroid
     clusters[closest].append(point) # Assign point to that cluster
```

```
return centroids, clusters
# Run K-Means for just one iteration
centroids, clusters = k_means_single_iteration(data, centroids)
# Output the results
print("Centroids:", centroids)
for i, cluster in enumerate(clusters):
   print(f"Cluster {i + 1}: {cluster}")
                      Agglomerative – Single
import math
# Data: (X, Y)
data = [
  (4, 3), #s1
  (1, 4), # s2
  (2, 1), # s3
  (3, 8), #s4
  (6, 9), # s5
  (5, 1), #s6
# Names for the points
names = ['s1', 's2', 's3', 's4', 's5', 's6']
# Function to calculate Euclidean distance
def euclidean_distance(p1, p2):
  return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
# Agglomerative clustering (single linkage)
def agglomerative_clustering(data, names):
   clusters = [[i] for i in range(len(data))] # Each point starts as its own
cluster
  # Print initial clusters
  print("Initial Clusters:")
  for i, cluster in enumerate(clusters):
     cluster_names = [names[idx] for idx in cluster]
     print(f"Cluster {i + 1}: {cluster_names}")
   print()
```

while len(clusters) > 1:

```
min_dist = float('inf')
     closest_pair = None
     # Find the closest pair of clusters
     for i in range(len(clusters)):
        for j in range(i + 1, len(clusters)):
           # Find minimum distance between any two points in the
clusters (single linkage)
           dist = min([euclidean_distance(data[p1], data[p2]) for p1 in
clusters[i] for p2 in clusters[i]])
           if dist < min_dist:
              min dist = dist
              closest_pair = (i, j)
     # Merge the closest clusters
     c1, c2 = closest pair
     clusters[c1] += clusters[c2]
     clusters.pop(c2)
      # Print the current clusters after merging
     print(f"After merging clusters \{c1 + 1\} and \{c2 + 1\}:")
     for i, cluster in enumerate(clusters):
         cluster_names = [names[idx] for idx in cluster]
        print(f"Cluster {i + 1}: {cluster_names}")
     print()
   # Return the final clusters with names
  final_cluster = clusters[0]
   return [names[i] for i in final_cluster]
# Run the agglomerative clustering
final clusters = agglomerative clustering(data, names)
```

Agglomerative – OVERALL (Hierarchical Clustering) import math

```
# Data: (X, Y)
data = [
(4, 3), # s1
(1, 4), # s2
(2, 1), # s3
```

```
(3, 8), # s4
  (6, 9), # s5
  (5, 1), #s6
# Names for points
names = ['s1', 's2', 's3', 's4', 's5', 's6']
# Euclidean distance function
def euclidean(p1, p2):
   return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
# Linkage distance calculation
def cluster_distance(c1, c2, method):
   distances = [euclidean(data[i], data[i]) for i in c1 for j in c2]
   if method == 'single':
      return min(distances)
   elif method == 'complete':
      return max(distances)
   elif method == 'average':
      return sum(distances) / len(distances)
# Agglomerative clustering
def agglomerative clustering(data, names, linkage='single'):
   clusters = [[i] for i in range(len(data))]
   print(f"Initial Clusters ({linkage} linkage):")
  for i, cluster in enumerate(clusters):
      print(f"Cluster {i+1}: {[names[idx] for idx in cluster]}")
   print()
   while len(clusters) > 1:
      min dist = float('inf')
      pair = (0, 1)
      # Find closest pair
      for i in range(len(clusters)):
         for j in range(i+1, len(clusters)):
            dist = cluster distance(clusters[i], clusters[j], linkage)
            if dist < min dist:
               min_dist = dist
               pair = (i, j)
```

```
# Merge clusters
     i, j = pair
     clusters[i] += clusters[j]
     clusters.pop(j)
     # Print current clusters
     print(f"After merging clusters {i+1} and {j+1}:")
     for k, cluster in enumerate(clusters):
        print(f"Cluster {k+1}: {[names[idx] for idx in cluster]}")
     print()
  return [names[i] for i in clusters[O]]
# Run for all linkage methods
print("\n=== SINGLE LINKAGE ===\n")
agglomerative_clustering(data, names, linkage='single')
print("\n=== COMPLETE LINKAGE ===\n")
agglomerative_clustering(data, names, linkage='complete')
print("\n=== AVERAGE LINKAGE ===\n")
agglomerative_clustering(data, names, linkage='average')
              Apriori (Association Rule Mining)
# Transactions
data = [
  ['Bread', 'Butter', 'Jam', 'Milk'],
  ['Bread', 'Butter', 'Milk'],
  ['Bread', 'Juice', 'Cereal'],
  ['Bread', 'Milk', 'Juice'],
  ['Butter', 'Milk', 'Juice']
1
support_percent = 50
confidence_percent = 75
total = len(data)
# Get unique items
items = []
for t in data:
  for item in t:
     if item not in items:
        items.append(item)
```

```
# Count support
def count(items_list):
  c = 0
  for t in data:
      if all(i in t for i in items_list):
         c += 1
  return c
# Check 2-item combinations
for i in range(len(items)):
  for j in range(i + 1, len(items)):
      A = items[i]
      B = items[i]
      ab = count([A, B])
      support = (ab / total) * 100
      if support >= support_percent:
         a = count([A])
         b = count([B])
        conf_ab = (ab / a) * 100
         conf_ba = (ab / b) * 100
         if conf_ab >= confidence_percent:
            print(f''conf({A} \rightarrow {B}) = {ab}/{a} = {round(conf\_ab)}\%'')
         if conf_ba >= confidence_percent:
            print(f''conf({B} \rightarrow {A}) = {ab}/{b} = {round(conf\_ba)}\%'')
```

Linear Regression (Prediction Algorithm)

```
# Data
experience = [3, 8, 9, 13, 3, 6, 11, 21, 1, 16]
salary = [30, 57, 64, 72, 36, 43, 59, 90, 20, 83]

# Step 1: Calculate means
n = len(experience)
mean_x = sum(experience) / n
mean_y = sum(salary) / n

# Step 2: Calculate slope (m) and intercept (c)
```

```
numerator = sum((experience[i] - mean_x) * (salary[i] - mean_y) for i in
range(n))
denominator = sum((experience[i] - mean_x) ** 2 for i in range(n))

m = numerator / denominator
c = mean_y - m * mean_x

# Step 3: Predict salary for 10 years of experience
x_new = 10
y_pred = m * x_new + c

# Output
print("Slope (m):", m)
print("Intercept (c):", c)
print("Predicted Salary for 10 years experience:", y_pred)
```