

MACHINE LEARNING & DEEP LEARNING

MSC. RENZO CLAURE

1

El desbalance

MSC. RENZO CLAURE

¿Por qué es un problema?

Porque los modelos aprenden **a predecir la clase mayoritaria**, no a entender los patrones de la minoritaria. Esto genera:

- Alta precisión global (accuracy), pero baja capacidad para detectar la clase rara (recall bajo).
- · Riesgo de sobreajuste a la clase dominante.
- Falsas métricas de éxito (confianza en modelos que en realidad no sirven).

Un modelo que predice siempre la clase 0 tiene 95% de accuracy... pero **no detecta ningún caso real** de la clase 1.

Clase	Frecuencia	
0	950	
1	50	

MSC. RENZO CLAURE

3

Opciones para implementar balanceo

- 1. Sobremuestreo (Oversampling)
 - · Random OverSampling: copias aleatorias de datos minoritarios.
 - SMOTE: crea nuevas instancias sintéticas basadas en interpolación de vecinos.
 - · ADASYN: similar a SMOTE pero enfocado en puntos más difíciles.
- 2. Submuestreo (Undersampling)
 - Random UnderSampling: elimina ejemplos al azar.
 - · Tomek Links: elimina ejemplos "conflictivos".
 - Cluster Centroids: agrupa y resume los datos de la clase mayoritaria.
- 3. Cambiar el algoritmo o su penalización
 - Algunos modelos permiten poner pesos a las clases para que aprendan a prestar más atención a las minoritarias.
- 4. Cambiar la métrica de evaluación
 - · Precision, Recall, F1-score
 - · Matriz de confusión
 - AUC-ROC (especialmente útil en desbalance)

MSC. RENZO CLAURE

MÉTODOS DE EVALUACIÓN DE MODELOS

MSC. RENZO CLAURE

5

Métodos de evaluación de modelos

- ¿Es la exactitud todo lo que importa?
- · ¿Qué otros factores deberían considerarse?
- · ¿Qué otras formas de evaluación pueden implementarse?

ACHINE LEARNIN

MSC. RENZO CLAURE

CHINE LEARNING

Métodos de evaluación de modelos

- Otras medidas que pueden implementarse, que pueden depender del negocio:
 - · Satisfacción del usuario
 - Incremento en ventas cruzadas
 - · Monto de ingresos generados
 - Monto de costos ahorrados
 - · Incremento en la permanencia de los usuarios
 - · Diagnósticos exitosos de pacientes con cáncer
- · Se deben elegir las formas de medición más apropiadas al inicio del análisis

MSC. RENZO CLAURE

7

Construcción de predictores tontos

¿qué pasa si nuestro modelos predice solo por suerte?

- ¿Qué es un predictor tonto?
- Para variables discretas:
 - Por la clase más frecuente
 - · Aleatorio, según la distribución de los datos de entrenamiento
 - · Aleatorio uniforme, sin importar los datos de entrenamiento predecir cualquier valor aleatoriamente
 - Clase única, predecir siempre la misma clase
- · En el caso de variables continuas:
 - Media
 - Mediana
 - Quantil
 - Constante

MSC. RENZO CLAURE

Construcción de predictores tontos ¿qué pasa si nuestro modelos predice solo por suerte?

- · Para qué sirven
 - Baseline
 - Comparativo como el peor escenario
- · Por qué un modelo está cerca de la misma efectividad que un predictor tonto?
 - Desbalanceo
 - · Características o variables independientes triviales o inefectivas
 - Mala elección de Kernel, o parámetros gamma, lambda o C

MSC. RENZO CLAURE

9

Matriz de confusión

	Predicho Negativo	Predicho Postivo	
Real Negativo	Verdadero Negativo, VN, TN	Falso Positivo, FP (Tipo I)	
Real Positivo	Falso negativo, FN (Tipo II)	Verdadero Positivo, VP, TP	
	,		

MSC. RENZO CLAURE

Ma	triz de con	fusión		
	200	Predicho Negativo (0)	Predicho Positivo	
	Real Negativo	90	0	
	Real Positivo	10	o	
		100	0	(90+0)/100=0,9

Matriz de confusión Predicho Negativo Predicho Positivo (o) Real Negativo 82 2 Real Positivo 8 8 8 90 10 (82+8)/100=0, 90

	fusión		
	Predicho Negativo (0)	Predicho Positivo	
Real Negativo	89	1	
Real Positivo	1	9	50
	90	10	(89+9)/100=0,98

Ejemplo: predicción de cáncer por que la precisión no los es todo, que pasa con el desbalanceo MSC. RENZO CLAURE

	Matriz de confusión				
	CASOS TOTALES = P + N		PREDICCION Negativo Positivo (PN) (PP)		CARACTERÍSTICAS
5	REAL	Negativo (N)	Verdadero Negativo, VN, TN	` '	Contrasta modelos vs realidadAyuda a identificar las fuentes de
EARNIN		Positivo (P)	Falso negativo, FN (Tipo II)	Verdadero Positivo, VP, TP	desviación
MACHINE LEARNING			$\frac{1}{N} = 1 - FNR$ $- FDR$ $\frac{1}{P} = 1 - FPR$ $\frac{1}{P} = 1 - TPR$	Tipos de error Permite extraer varios indicadores de precisión Sensibilidad: Acierto de positivos Especificidad: Acierto de negativos CLAURE	

Modelos según importancia de medición recall vs precisión • Modelos que se enfocarían en un mayor Recall 1. Detección de Cancer 2. Retener clientes de alto valor

IINE LEARNI

· Modelos orientados en una mayor Precisión

1. Predictor de culpabilidad

2. "

3. "

MSC. RENZO CLAURE

F1 score

media armónica

· Se basa en la media armónica de los resultados:

• Compara el Recall Vs la Precisión $\bullet \quad F1 = 2 \frac{_{Precisión \ *Recall}}{_{Precisión+Recall}}$

• Es un medida global de precisión mas equilibrada

MSC. RENZO CLAURE

19

Revisión de la matriz de confusión

• NB_10

MSC. RENZO CLAURE

COMO AFECTA LA PROBABILIDAD A LA PRECISIÓN

PROBABILIDAD DE LA CLASIFICACIÓN

- Los modelos, por defecto, típicamente asignan el valor de 1 o positivo si la probabilidad es mayor al 50%
- · Subir o bajar este umbral produce afectaciones en los resultados e indicadores, ¿De qué modo?
- Al subir el umbral, somos más exigentes y no queremos arriesgar la mala clasificación de negativos.
 Es decir, por ejemplo, si subimos el umbral de probabilidad al 70% exigimos que solo aquellos con
 ua probabilidad superior al 70% sean considerados como 1, + o éxito. Ejemplos: Como afecta a la:
 Detección de Cancer, Venta cruzada
- · Los modelos no siempre cuentan con este indicador

MSC. RENZO CLAURE

21

Precisión vs recall (sensibilidad)

HINE LEAR

- El punto óptimo Precisión=1, Recall=1
- Se modulan los umbrales para mejorar al máximo ambos scores

MSC. RENZO CLAURE

Evaluación de multiclasificadores

micro y macro recall

MICRO PRONOSTICO ACIERTO REAL 2 67% D1 P1 P1 P2 75% P2 P2 P2 Рз Рз P2 Рз Рз 3 60% Рз Рз DΔ DΔ 100% P4 P4 P4

- Macro RECALL:
 - Es el promedio de los diferentes niveles
 - Cada nivel o clase tiene el mismo peso
- Micro RECALL:
 - · Cada caso tiene el mismo peso
 - Las clases más frecuentes tienen mas influencia
- Cuando las clases están igualmente distribuidas son similares
- Si la micro RECALL es más baja que la macro, la mala clasificación del nivel dominante puede estar afectando
- Si es lo contrario al anterior es necesario analizar la clasificación de los niveles menos frecuentes

MSC. RENZO CLAURE

25

MACHINE LEARNING

Evaluación de la regresión

- El coeficiente de determinación o r2, r cuadrado, mide el grado de ajuste de una curva con respecto a datos reales
- · Su principal limitación es que no nos dice si sobre estimamos o subestimamos un valor
- · Varia entre 0 y 1
- ¿En que se diferencia del coeficiente de correlación lineal?
- Puede también medirse los errores, para comparar modelos:
 - · Error absoluto promedio
 - Error cuadrático medio
 - · Error absoluto mediano

MSC. RENZO CLAURE

Evaluación de la regresión

• Existen varias opciones para construir los baseline o regresores tontos:

- Promedio
- Media
- Mediana
- Cuantil

MSC. RENZO CLAURE

27

Validación cruzada

MSC RENZO CLAURE ARACENA

Validación cruzada

cross validation

- Es una forma más robusta de medir el rendimiento del modelo
- Se logra a través de la generación de varios grupos (folds), extrayendo de cada uno una muestra de entrenamiento y otra de validación, generando los modelos y obteniendo sus scores
- Se debe asegurar que la proporción de la variable objetivo sea la misma que en la población, sklearn ya soluciona esto

MSC RENZO CLAURE ARACENA

29

Selección de Modelos

MSC. RENZO CLAURE

Grid search, optimización de parámetros

- Grid search: Búsqueda de los parámetros óptimos con base en un indicador de rendimiento, usa por defecto accuracy o acierto global.
- Explora cada posible combinación sobre los hyperparametros propuestos.
- · Devuelve la mejor combinación, según la métrica establecida.
- Es posible combinarlo o usarlo con Cross Validation, pero es necesario tener cuidado por el enorme consumo de recursos que puede ocasionar si se colcan demasiados hiperparámetros.

MSC. RENZO CLAURE

31

Selección de modelos

• NB_13 SELECCION GRID

CHINE LEARN

MSC. RENZO CLAURE

Selección de modelos

conclusiones

- · La exactitud, o acierto no refleja toda la información necesaria para un modelo
- En modelos binarios, por ejemplo es más que necesario utilizar en análisis de la Matriz de confusión, recall y precisión especialmente (Falsos Positivos, Falsos Negativos)
- Curvas de aprendizaje, se puede medir como va mejorando la exactitud en función al tamaño de la muestra de aprendizaje y el costo que implica
- · Análisis de sensibilidad, como varia la exactitud en función de la modificación de los modelos

MSC. RENZO CLAURE