

/// Why do we need SWIFT TLC?

- Long term data storage requirements continue to grow rapidly
- OpenStack is quickly becoming the standard open-source cloud computing solution
- SWIFT is OpenStack's highly scalable object storage system to store large amounts of unstructured data
- Tape Libraries provide the best value for long-term data storage
- SWIFT TLC makes tape look like a standard disk storage node

SWIFT TLC enables simple, seamless, transparent tape library integration into an OpenStack SWIFT environment

/// Overview – SWIFT Tape Library Connector (TLC)

SWIFT Object Storage TLC:

- Connects a Tape Library as a standard Storage Node into an OpenStack SWIFT Object Storage environment
- Integrates the library seamlessly into a standard SWIFT environment with no modification to core SWIFT code
- Supports standard SWIFT Object
 Storage functionality and operations
 (Upload, Download, Delete, Replication, Auditing, Recovery, Versioning, Multi Nodes, Zoning)
- Powerful Tape-specific Auditing Handler to support SWIFT auditing for Tape
- Uses LTFS to store objects on tape

TLC: Storage Node with connected Tape Library

/// Overview – TLC Architecture

/// Overview – TLC Virtual File System (VFS)

TLC VFS:

- Based on FUSE to span the storage capacity of tapes to one large connected file system
- The VFS root folder becomes the mount point for a standard SWIFT Storage Node (exactly like a disk based Storage Node)
- Uses LTFS to store Object data (files) directly on tape in a open format
- Has a transparent, disk based, fast and scalable Data Cache to buffer files before they are written to tape and supporting fast read access
- Stores all VFS file metadata on a disk based Metadata Cache
- Keeps all SWIFT hashes, accounts and containers on disk

/// Cofigure SWIFT to use TLC

Modification	File	Comment(Purpose)
increase time out for proxy server [app:proxy-server] node_timeout = 300	/etc/swift/proxy-server.conf	Allow longer read response times for the SWIFT nodes
Add line "vs_cache_dir = /srv/vs_cache"	TLC node: object-server.conf	Set the data cache folder for TLC customized SWIFT auditor handler.
Update entry in [app:object-server] from use = egg:swift#object to use = egg:vs_auditor#vs_object	TLC node: object-server.conf	Register the TLC Auditor to be used for SWIFT, Python egg vs_auditor will be installed by TLC auditor installer
Patch standard SWIFT object	/usr/lib64/python2.6/site- packages/swift/obj/auditor.py	Patch this SWIFT auditor source file to use TLC Tape Auditor for TLC nodes. Done by TLC Auditor installer script
Add TLC node to SWIFT ring e.g. "swift-ring-builder object.builder add r1z3-172.16.56.5:6000/vsnode 7000"	Proxy Server: /etc/swift/object.builder /etc/swift/container.builder /etc/swift/account.builder	Connect the TLC VFS (TLC:/srv/node/vsnode) to SWIFT

/// SWIFT TLC Value

- Extremely simple integration of Tape Libraries into SWIFT environments
 - Simple installer
 - Very lean architecture
 - no knowledge about SCSI and Tape libraries necessary
 - No modification on OpenStack SWIFT necessary
 - No proprietary functionality, uses all default functionality from SWIFT (auditing, replication, load balancing, recovery, zoning, ...)
- Good vertical scale out support just expand tape library to extend capacity or add tape drives to tape library to increase performance
- Good horizontal scale out support just add more TLC storage nodes to SWIFT environment
- Fits well into existing mixed environments based on disk based Storage Nodes
- Support for all types of tape libraries, vendor independent, no limitation in supported capacity or drive quantity, support for SAS and FC as well

/// SWIFT TLC Evaluation Package

- BDT SWIFT TLC Installer Package
 - Installs TLC software on existing SWIFT Storage node
 - Configures SWIFT to use TLC
- BDT Test Scripts
 - Scripts which could be used for intensive testing
- Tool to demonstrate tape specific SWIFT file auditing and recovery
- SWIFT TLC Installation Guide
- SWIFT TLC Overview Presentation

/// SWIFT TLC Evaluation Setup

- Setup default OpenStack SWIFT environment with 1 Proxy Server and 3 Storage Nodes, configure SWIFT and verify functionality, use CentOS 7 as Server OS
- Add SAS HBA (e.g. LSI 6Gb SAS 9205-8e) with LSI chip and Tape Support (no RAID disk controller) to Storage Node 3 and attach Tape Library, verify that Tape Library and Tape Drives will be detected from OS (Isscsi –g)
- Possible Hardware Configuration for TLC server:
 - Data Cache: RAID0 1-2TB (SSD recommended)
 - Metadata: RAID5 50-100GB (SSD recommended)
 - Memory: 16GB
 - CPU: Quad-Core (e.g. XEON X5)
 - Tape library: tape library from HP, IBM, DELL, Fujitsu, Overland, Spectra Logic, actidata, BDT
 - Tape drives: 1-2
- Create Storage Volumes for Data Cache and Metadata Cache and mount to this folder
 - Data Cache: /opt/VS/vsCache/diskCache
 - Metadata: /opt/VS/vsCache/meta
- Install BDT TLC software and SWIFT service using installer (refer SWIFT_TLC_Quickstart document)
 - Installer will install everything automatically and configures the SWIFT Storage Node configuration accordingly
- Add TLC VFS root folder (/srv/node/vsnode) to SWIFT ring configuration on Proxy Server and distribute modified SWIFT Ring configuration files to all Storage Nodes

Detailed
Information
available in BDT
SWIFT_TLC
_QuickStart.pdf

/// SWIFT TLC Evaluation Setup Overview

- Default OpenStack SWIFT environment (ideally based on CentOS 7)
 - 1 OS Controller Node with Keystone and SWIFT Proxy Server running (VM possible)
 - 2 default SWIFT Storage Nodes (disk based) (VM possible)
- Default SWIFT Storage Node + BDT SWIFT Tape Library Connector (TLC) with attached Tape Library (MultiStak or FlexStor) (needs to be a physical server), OS: CentOS7