(a)=(b): Suppose CEAUB, and
->: Assume an arbitrary a that al(CIA). Since about, abo and
adA. Since CGAUB, acAUB. Because adA, acB. So CGAUB implies
(CIA) SIZ. [] avoid the symbols, use "implies" instead.
←: Coiven that (CIA) = B, any random a that ac(CIA) also in B. So we can have ac(CIA) -> acB, which would be rewritten as
can have accord) -> acis, which would be rewritten as
7 (acchafA) vacB, and it could be simplified as afcvacAvacB,
so adc v cacA vacis), then acc -> cacAvacs), which is equal to
acc-> ac(AUB). Since a is random, (CIA) SB implies CEAUB
from the proof above, we can have ca) = cb) 1]
(a) = (c) is similar to the proof of ca)= (b) <= Most include every proof!
Thus, we can have (b)=(a)=(c), so they are equivalent !
* To show a=b=c, we have so proof that a->b, b->c, c->a.
G_2
Statement I is true.
Proof: Existence: let x=3, the left-hand side of the equation is
(3)2-6×3=-9, which is equal to the right-hand
side. So == 3 can be one solution.
Uniqueness: Assume 22-62=-9. Hen it could be rewritten
as 22-67-920, which is (2-5)20. The only
solution in this equation is == 3, so == x.
Thus, x=3 is the only solution. []

Statement 2 is False. Proof: Existence: Assume there exist no that 20-6x0+120, this could be rewritten as (x0-1)2+8×0, it would be Since (xo-3)2 20, (xo-3)2+87,8, so it cannot better if a specific be negative and to does not exist result is picked. Thus, statement 2 is Julse. 1) i.e. x=1 Still need to show the uniqueness part. i.e. pick two Specific value and says the result is not unique.

Then, we have \(\frac{1}{2} = \frac{7}{2} = 1 \) Theorem 1: Existence: let y=x+1. The left-hand side would be incorrect opening sentence = 1. Right-hand side would be x+1-x=1. Start hith "Let XER be orbi-so y=xt1 is one solution of the equation] Unqueners: Assume $\frac{7}{2} = 7 - x$, this equation is valid since "Proof of theorem 1". x = 0. Multiply each side by x, we will get: Z-1= Z-x-x2, and it could be rewritten as: $\frac{1}{2}(1-x)=1-x^2$, and it is $\frac{1}{2}(1-x)=(1+x)(1-x)$. Since xx1, so divide each side by (1-x) and "Proof of theorem 2" Let x be arbitrary real number. For any real number to].

Theorem 2: Existence: Assume y=3 , The left-hand side would be (x+3)(x-3)=x29 and it is equal to the right-hand side. So y=3 can be one solution. [] Uniqueness: Assume 7 that (2+x) (x-3) = x2-9. For all x62. If x=3, then the equation would be 0=0. In this thre & world be any value. II xxx3, the equation would be (t+x)(x-3)= bxx3)(x-3) and 7+x= x+3. so == s. which is the only nossible