-2-

PC9985B

Amendments to the Claims:

PATENT PFIZER ANN ARBOR MI

Claims 1-12 (Canceled)

Claims 13-25 (Canceled)

26. (Canceled)

27. (Canceled)

28. (Currently Amended New) A method for the treatment of a disorder or condition mediated by an EP4 receptor in a mammalian subject including a human, wherein the disorder or condition is selected from pain, inflammation, an inflammation associated disorder, osteoarthritis, and rheumatoid arthritis, said method comprising administering to a mammal in need of such treatment an effective amount of a compound of the following formula:

or the pharmaceutically acceptable salts thereof, wherein

one of Y^1 , Y^2 , Y^3 and Y^4 is N and the others are independently selected from CH and C(L):

 R^1 is H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-7} cycloalkyl, C_{1-8} alkoxy, halosubstituted C₁₋₈ alkoxy, C₁₋₈ alkyl-S(O)m-, Q¹-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C1-8 alkyl)amino, C1-4alkyl- $C(\sim O)-N(R^3)-$ or C_{1-4} alkyl-S(O)m- $N(R^3)-$, wherein said C_{1-8} alkyl, C_{2-8} alkenyl

-3-

PC9985B

and C_{2-8} alkynyl are optionally substituted with halo, C_{1-3} alkyl, hydroxy, oxo, C_{1-4} alkoxy-, C_{1-4} alkyl-S(O)m-, C_{3-7} cycloalkyl-, cyano, indanyl, 1,2,3,4-tetrahydronaphtyl, 1,2-dihydronaphtyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q^1 -, Q^1 -C(=O)-, Q^1 -O-, Q^1 -S(O)m-, Q^1 -C₁₋₄alkyl-O-, Q^1 -C₁₋₄alkyl-S(O)m-, Q^1 -C₁₋₄alkyl-C(O)-N(R^3)-, Q^1 -C₁₋₄alkyl-N(R^3)- or C₁₋₄alkyl-C(O)-N(R^3)-;

- Q¹ is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C₁-4 alkyl, halo-substituted C₁-4 alkyl, hydroxy, C₁-4 alkoxy, halo-substituted C₁-4 alkoxy, C₁-4 alkylthio, nitro, amino, mono- or di-(C₁-4alkyl)amino, cyano, HO-C₁-4 alkyl, C₁-4 alkoxy-C₁-4alkyl, C₁-4 alkylsulfonyl, aminosulfonyl, C₁-4alkylC(=O)-, HO(O=)C-, C₁-4alkyl-O(O=)C-, R³N(R⁴)C(=O)-, C₁-4 alkylsulfonylamino, C₃-7 cycloalkyl, R³C(=O)N(R⁴)- or NH₂(HN=)C-;
- A is a 5-6 membered monocyclic aromatic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-6 membered monocyclic aromatic ring is optionally substituted with up to 3 substituents selected from halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, acetyl, R³N(R⁴)C(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)- and NH₂(HN=)C-;
- B is halo-substituted C₁₋₆ alkylene, C₃₋₇ cycloalkylene, C₂₋₆ alkenylene, C₂₋₆ alkynylene, -O-C₁₋₅ alkylene, C₁₋₂ alkylene-O-C₁₋₂ alkylene or C₁₋₆ alkylene optionally substituted with an oxo group or C₁₋₃ alkyl;

W is NH, N-C₁₋₄ alkyl, O, S, N-OR⁵ or a covalent bond; R^2 is H, C₁₋₄ alkyl, OH or C₁₋₄ alkoxy;

-4-

PC9985B

- 2 is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, G₁C₂-4 alkenyl, G₁C₂-4 alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, R³C(=O)N(R⁴)-, HO(O=)C-, C₁₋₄alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, NH₂(HN=)C-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or Q²-;
- L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)-, NH₂(HN=)C-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-, Q²-C₁₋₄ alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0, 1 or 2;

 $\ensuremath{R^3}$ and $\ensuremath{R^4}$ are independently selected from H and $C_{1\text{--}4}$ alkyl ;

 R^5 is H, C_{1-4} alkyl, C_{1-4} alkyl-(O=)C- or C_{1-4} alkyl-O-(O=)C-; and

Q² is a 5-12 membered monocyclic or bicyclic aromatic ring, or a 5-12 membered tricyclic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C+₁₋₄ alkoxy, C₁₋₄ alkylthio, nitro, amino, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄

-5-

PATENT PFIZER ANN ARBOR MI

PC9985B

F-740

P.007/022

4alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄alkyl- (O=)C-, R³(R⁴)C(=O)N-, HO(O=)C-, C_{1-4} alkyl-O(O=)C-, C_{1-4} alkylsulfonylamino, C_{3-7} cycloalkyl, C_{1-4} alkyl-C(=O)NH- or NH2(HN=)C-.

- 29. (Currently Amended) A method according to Claim 28, wherein one of Y^1 , Y^2 , Y^3 , and Y^4 is N and the others are independently selected from CH and C(L);
 - R^1 is H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{3-7} cycloalkyl, C_{1-8} alkoxy, halosubstituted C₁₋₈ alkoxy, C₁₋₈ alkyl-S(O)m-, Q¹-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C1-8 alkyl)amino, C1-4alkyl-C(=O)-N(R³)- or C₁₋₄alkyl-S(O)m-N(R³)-, wherein said C₁₋₈ alkyl, C₂₋₈ alkenyl and C_{2-8} alkynyl are optionally substituted with halo, C_{1-3} alkyl, hydroxy, oxo, C_{1-3} 4 alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, 1,2,3,4tetrahydronaphtyl, 1,2-dihydronaphtyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(=O)-, Q¹-O-, Q¹-S(O)m-, Q¹-C₁₋₄ alkyl-O-, Q¹-C₁₋₄ alkyl-S(O)m-, Ql-C₁₋₄alkyl-C(=O)-N(R³)-, or C₁₋₄alkyl-C(=O)-N(R³)-;
 - Q1 is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 4 heteroatoms selected from O, N and S, and is optionally substituted with halo, C1-4 alkyl, halo-substituted C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy, halo-substituted C_{1-4} alkoxy, C1-4 alkylthio, nitro, amino, mono- or di-(C1-4 alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkoxy-C₁₋₄alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, HO(O=)C-, C_{1-4} alkyl-O(O)C-, $R^3N(R^4)C(=O)$ -, C_{1-4} alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=0)N(R⁴)- or NH₂(HN=)C-;
 - A is a 5-6 membered monocyclic aromatic ring optionally containing up to 2 heteroatoms selected from O, N, and S, wherein said 5-6 membered monocyclic aromatic ring is optionally substituted with up to 2 substituents selected from halo,

-6-

PC9985B

 C_{1-4} alkyl, halo-substituted C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy and halo-substituted C_{1-4} alkoxy;

B is C_{3-7} cycloalkylene or C_{1-6} alkylene optionally substituted with an oxo group or C_{1-3} alkyl;

W is NH, N-C₁₋₄ alkyl, O or N-OH;

R² is H or C₁₋₄ alkyl;

- Z is a 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₁₋₄ alkenyl, C₂₋₄ alkenyl, hydroxy, C₁₋₄ alkoxy, nitro, amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, R³C(=O)N(R⁴)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₁₋₄ alkyl-C(=O)NH-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or O²-:
- L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, mono- or di-(C₁₋₄ alkyl)amino, halo-substituted C₁₋₄ alkoxy, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkyl, C₁₋₄ alkyl-C₁₋₄ alkyl-C₁₋₄ alkyl-C₁₋₄ alkyl-C₁₋₄ alkyl-C₁₋₄ alkyl-C₁₋₄ alkyl-C₁₋₄ alkyl-C₁₋₄ alkyl-O₁₋₄ alkyl-O₁₋₄ alkyl-O₁₋₄ alkyl-O₁₋₄ alkyl-O₁₋₄ alkyl-O₁₋₄ alkyl-O₁₋₄ alkyl-O₁₋₅ C₁₋₄ alkyl-O₁₋₆ C₁₋₄ alkyl-O₁₋₆ C₁₋₄ alkyl-O₁₋₆ C₁₋₆ C₁₋₆

m is 0 or 2;

 ${\rm R}^3$ and ${\rm R}^4$ are independently selected from H and ${\rm C}_{1\text{--}4}$ alkyl; and

Q² is a 5-12 membered monocyclic or bicyclic aromatic ring, or a 8-12 membered tricyclic ring optionally containing up to 3 heteroatoms selected from O, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄

T-130

P.009/022 F-740

10/771,696

-7-

alkynyl, hydroxy, C_{1-4} alkoxy, halo-substituted C_{1-4} alkoxy, C_{1-4} alkylthio, monoor di-(C_{1-4} alkyl)amino, cyano, HO- C_{1-4} alkyl, C_{1-4} alkoxy- C_{1-4} alkyl, C_{1-4} alkylsulfonyl, aminosulfonyl, C₁₋₄ alkyl-(O=)C-, R³(R⁴)C(=O)N-, HO(O=)C-, C₁₋ 4 alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl or C₁₋₄ alkyl-C(=0)NH-.

30. (Previously Presented) A method according to Claim 29, wherein one of Y^1 , Y^2 , Y^3 , and Y^4 is N and the others are independently selected from CH and

C(L);

- R1 is H, C1-8 alkyl, C2-8 alkenyl, C2-8 alkynyl, C3-7 cycloalkyl, Q1-, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, amino, mono- or di-(C1-8 alkyl)amino, wherein said C₁₋₈ alkyl is optionally substituted with halo, C₁₋₃ alkyl, hydroxy, oxo, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q1-, Q1-C(O)-, Q1-O-, Q1-S-, Q^1 - C_{1-4} alkyl-O-, or C_{1-4} alkyl-C(O)- $N(R^3)$ -;
- Q1 is a 5-12 membered monocyclic aromatic ring optionally containing up to 4 heteroatoms selected from N and S, and is optionally substituted with halo, C_{1-4} alkyl, C_{1-4} alkylsulfonyl and C_{1-4} alkylC(=0)-;
- A is 5-6 membered monocyclic aromatic ring optionally substituted with halo, C₁₋₄ alkyl or C₁₋₄ alkoxy;
- B is C₃₋₇ cycloalkylene or C₁₋₆ alkylene optionally substituted with an oxo group or C₁₋₃ alkyl;

W is NH, N-C₁₋₄ alkyl, O or N-OH:

R² is H or C₁₋₄ alkyl;

Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from, N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C1-4 alkyl, halo-

PC9985B

substituted C_{1-4} alkyl, C_{2-4} alkenyl, C_{1-4} alkoxy, nitro, amino, cyano, $R^3C(=O)N(R^4)-, C_{1-4} \text{ alkyl-O}(O=)C-, Q^2-S(O)m-, Q^2-O-, Q^2-N(R^3)-\text{ or } Q^2-;$

-8-

L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, mono- or di-(C₁₋₄ alkyl)amino, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O)-, HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)N(R⁴)-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-, Q²-C₁₋₄alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0 or 2;

- \mathbb{R}^3 and \mathbb{R}^4 are independently selected from H and \mathbb{C}_{1-4} alkyl; and
- Q² is a 5 or 6 membered monocyclic aromatic ring, or a 8-12 membered tricyclic ring containing up to 3 heteroatoms selected from N and S, wherein said 5 or 6 membered monocyclic aromatic ring is optionally substituted with halo.
- 31. (Previously Presented) A method according to Claim 30, wherein

one of Y^1 , Y^2 , Y^3 and Y^4 is N and the others are independently selected from CH and C(L);

- R¹ is H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl or C₃₋₇ cycloalkyl, wherein said C₁₋₈ alkyl is optionally substituted with halo, C₁₋₃ alkyl, hydroxy, oxo, C₁₋₄ alkoxy-, C₁₋₄ alkyl-S(O)m-, C₃₋₇ cycloalkyl-, cyano, indanyl, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, Q¹-C(=O)-, Q¹-O-, Q¹-S-, Q¹-C₁₋₄ alkyl-O-, or C₁₋₄alkyl-C(O)-N(R³)-;
- Q¹ is a 5 or 6 membered monocyclic aromatic ring optionally containing up to 4 heteroatoms selected from N and S:

- A is 5-6 membered monocyclic aromatic ring system optionally substituted with halo or C₁₋₄ alkyl;
- B is C_{3-7} cycloalkylene or C_{1-6} alkylene optionally substituted with an oxo group or C_{1-3} alkyl;

W is NH, N-C_{I-4} alkyl, O or N-OH;

 R^2 is H or C_{1-4} alkyl;

- Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from N and S, wherein said 5-12 membered monocyclic or bicyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, halosubstituted C₁₋₄ alkyl, C₂₋₄ alkenyl, C₁₋₄ alkoxy, nitro, amino, cyano, R³C(=O)N(R⁴)-, C₁₋₄ alkyl-O(O=)C-, Q²-S(O)m-, Q²-O-, Q²-N(R³)- or Q²-;
- L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, cyano, HO-C₁₋₄ alkyl, C₁₋₄ alkylsulfonyl, aminosulfonyl, C₁₋₄ alkylC(=O), HO(O=)C-, C₁₋₄ alkyl-O(O=)C-, C₁₋₄ alkylsulfonylamino, C₃₋₇ cycloalkyl, R³C(=O)NR⁴-, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, Q²-O-, Q²-C₁₋₄alkyl-O-, or two adjacent L groups are optionally joined together to form an alkylene chain having 3 or 4 members in which one or two (non-adjacent) carbon atoms are optionally replaced by oxygen atoms;

m is 0 or 2;

- R^3 and R^4 are independently selected from H and $C_{1\text{--}4}$ alkyl; and
- Q² is 5 or 6 membered monocyclic aromatic ring or a 8-12 membered tricyclic ring optionally containing 1 sulfur atom wherein said 5 or 6 membered monocyclic aromatic ring is optionally substituted with halo.
- 32. (Previously Presented) A method according to Claim 31, wherein one of Y¹, Y², Y³ and Y⁴ is N and the others are independently selected from CH and C(L);

-10-

PC9985B

- R¹ is C₁₋₅ alkyl or C₃₋₇ cycloalkyl, wherein said C₁₋₅ alkyl is optionally substituted with C₁₋₃ alkyl, hydroxy, oxo, pyrrolidinyl, piperidyl, oxopyrrolidinyl, oxopyrrolidinyl, oxopiperidyl, Q¹-, or C₁₋₄alkyl-C(O)-N(H)-;
- Q¹ is 5-12 membered monocyclic aromatic ring system optionally containing up to 2 heteroatoms selected from N and S.

A is 5-6 membered monocyclic aromatic ring system;

B is C_{1-3} alkylene optionally substituted with C_{1-3} alkyl;

W is NH, N-C₁₋₂ alkyl or O;

 R^2 is H:

- Z is 5-12 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from N and S, wherein said 5-12 membered monocyclic aromatic ring is optionally substituted with halo, C₁₋₄ alkyl, nitro, R³C(=O)N(R⁴)- or Q²-;
- L is halo, C₁₋₄ alkyl, halo-substituted C₁₋₄ alkyl, hydroxy, C₁₋₄ alkoxy, halo-substituted C₁₋₄ alkoxy, cyano, HO-C₁₋₄ alkyl, acetyl, R³N(R⁴)C(=O)-, R³N(R⁴)S(O)m-, Q²-, Q²-C(=O)-, or two adjacent L groups are joined together to form a methylenedioxy group;
- ${
 m R}^3$ and ${
 m R}^4$ are independently selected from H and ${
 m C}_{1-4}$ alkyl; and ${
 m Q}^2$ is 5 or 6 membered monocyclic aromatic ring system.
- 33. (Currently Amended) A method according to Claim 32, wherein one of Y¹, Y², Y³ and Y⁴ is N and the others are independently selected from CH and C(L);
 - R¹ is C₁₋₅ alkyl optionally substituted with C₁₋₃ alkyl, hydroxy, oxo, 5 or 6 membered monocyclic aromatic ring, wherein said 5 or 6 membered monocyclic aromatic ring is containing 1 or 2 heteroatoms selected from N and S, or C₁₋₄alkyl-C(O)-N(R³)-; A is phenyl;

-11-

PC9985B

B is C₁₋₂ alkylene optionally substituted with methyl;

W is NH, N-CH₃ or O;

 \mathbb{R}^2 is H:

- Z is 5-10 membered monocyclic or bicyclic aromatic ring optionally containing up to 3 heteroatoms selected from N and S, wherein said 5-10 membered monocyclic aromatic ring is optionally substituted with chloro, bromo, methyl, nitro, CH3C(=O)NH-, tBuC(=O)NH- or phenyl; and
- L is chloro, methyl, trifluoromethyl trifluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH2, trifuluorotrifluoromethyloxy, methanesulfonyl, or 1-hydroxy-1methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.
- 34. (Currently Amended) A method according to Claim 33, wherein

one of Y^1 , Y^2 , Y^3 and Y^4 is N and the others are independently selected from CH and C(L);

R1 is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, thiazolylethyl methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1-acetylamino-1-methylethyl;

A is phenyl;

B is ethylene or propylene;

W is NH, N-CH3 or O;

 R^2 is H:

- Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thienyl being optionally substituted with one to three substituents independently selected from chloro, bromo, methyl, acetylamino, pivaloylamino, nitro and phenyl; and
- L is chloro, methyl, trifluoromethyl trifluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH2, trifuluorotrifluoromethyloxy, methanesulfonyl, or 1-hydroxy-1methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group,

35. (Currently Amended) A method according to Claim 34, wherein Y¹, Y², Y³ and Y⁴ are selected from the group consisting of

PATENT PFIZER ANN ARBOR MI

- a) Y¹ and Y³ are C(L), Y² is CH and Y⁴ is N;
- b) Y¹ is CH, Y² and Y³ are C(L) and Y⁴ is N:
- c) Y^1 , Y^2 and Y^3 are C(L) and Y^4 is N;
- d) Y^1 and Y^3 are C(L), Y^2 is N and Y^4 is CH;
- e) Y^1 and Y^2 are CH, Y^3 is C(L) and Y^4 is N;
- f) Y^1 and Y^3 are CH, Y^2 is C(L) and Y^4 is N;
- g) Y^1 and Y^2 are C(L), Y^3 is CH and Y^4 is N;
- h) Y^1 and Y^2 are C(L), Y^3 is N and Y^4 is CH;
- i) Y1 is C(L), Y2 and Y3 are CH, and Y4 is N; and
- j) Y^2 is C(L), Y^1 and Y^3 are CH, and Y^4 is N;
- R1 is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, thiazolylethyl methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1-acetylamino-1-methylethyl;

A is phenyl;

B is ethylene or propylene;

W is NH, N-CH3 or Q;

 \mathbb{R}^2 is H:

- Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thienyl being optionally substituted with one to three substituents independently selected from chloro, bromo, methyl, acetylamino, pivaloylamino, nitro and phenyl; and
- L is chloro, methyl, trifuluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH2, trifuluoromethyloxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.
- 36. (Currently Amended) A method according to Claim 35, wherein
 - Y¹, Y², Y³ and Y⁴ are selected from the group consisting of

- a) Y¹ and Y³ are C(L), Y² is CH and Y⁴ is N;
- b) Y^1 is CH, Y^2 and Y^3 are C(L) and Y^4 is N;
- c) Y^1 , Y^2 and Y^3 are C(L) and Y^4 is N; and
- d) Y1 and Y3 are C(L), Y2 is N and Y4 is CH;
- R¹ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, neopentyl, thiazolylethyl methylamino, dimethylamino, pyrrolidinyl, pyridyl, or 1-acetylamino-1-methylethyl;

A is phenyl;

B is ethylene or propylene;

W is NH, N-CH₃ or O;

R² is H:

- Z is phenyl, pyrazolyl, thiazolyl, thiadiazolyl, thienyl, naphthyl or benzothienyl, said phenyl, pyrazolyl, thiazolyl, thiadiazolyl and thienyl being optionally substituted with one to three substituents independently selected from chloro, bromo, methyl, acetylamino, pivaloylamino, nitro and phenyl; and
- L is chloro, methyl, trifuluoromethyl, hydroxy, methoxy, cyano, acetyl, -C(=O)NH₂, trifuluoromethyloxy, methanesulfonyl, or 1-hydroxy-1-methyl-ethyl, or two adjacent L groups are joined together to form a methylenedioxy group.
- 37. (Previously presented) A method according to Claim 28 wherein the compound is selected from
 - 3-(4-{2-[({[(5-chloro-1,3-dimethyl-1h-pyrazol-4-yl)sulfonyl]amino}carbonyl)amino]ethyl} phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
 - 3-(4-{2-[({[(2,4-dimethyl-1,3-thiazol-5-yl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
 - $\label{eq:N-[5-({[({2-[4-(2-ethyl-5,7-dimethyl-3}\emph{H}-imidazo[4,5-\emph{b}]pyridin-3-yl)phenyl]ethyl}amino) carbonyl] amino} sulfonyl)-1,3,4-thiadiazol-2-yl] acetamide;$
 - 2-ethyl-5,7-dimethyl-3-(4-{2-[methyl({[(4-methylphenyl)sulfonyl]amino} carbonyl)amino]ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;

PATENT PFIZER ANN ARBOR MI

PC9985B

```
2-ethyl-5,7-dimethyl-3-(4-{2-[({[(4-
   methylphenyl)sulfonyl]amino}carbonyl)amino]propyl}phenyl)-3H-imidazo[4,5-
   b]pyridine;
```

- methylphenyl)sulfonylcarbamate;
- 5,7-dimethyl-3-(4-{2-[({[(4 $methylphenyl) sulfonyl] amino \} carbonyl) amino] ethyl \} phenyl) - 2-propyl - 3 \textit{H-}$ imidazo[4,5-b]pyridine;
- 2-isopropyl-5,7-dimethyl-3-(4-{2-[({[(4methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5b]pyridine;
- 2-butyl-5,7-dimethyl-3-(4-{2-[({[(4methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5b]pyridine;
- 2-isobutyl-5,7-dimethyl-3-(4-{2-[({[(4methylphenyl) sulfonyl] amino] carbonyl) amino] ethyl) phenyl) -3 H-imidazo[4,5-methylphenyl) -3 H-imidazo[4,5-methylphenyl) -3 H-imidazo[4,5-methylphenyl] -3 H-imidazo[4,5-methylphenyb]pyridine;
- 5,7-dimethyl-3-(4-{2-[({[(4 $methylphenyl) sulfonyl] amino \} carbonyl) amino] ethyl \} phenyl) - 2-neopentyl - 3H-1000 phenyl - 3H-1000 phenyl$ imidazo[4,5-b]pyridine;
- 5,7-dimethyl-3-(4-{2-[({[(4methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-[2-(1,3-thiazol-2yl)ethyl]-3H-imidazo[4,5-b]pyridine;
- 3-{4-[2-({[(4-biphenylsulfonyl)amino]carbonyl}amino)ethyl]phenyl}-2-ethyl-5,7dimethyl-3H-imidazo[4,5-b]pyridine;
- 2-ethyl-5,7-dimethyl-3-{4-[2-({[(1naphthylsulfonyl)amino]carbonyl}amino)ethyl]phenyl}-3H-imidazo[4,5-b]pyridine; 2-ethyl-5,7-dimethyl-3-{4-[2-({[(2-
- $naphthylsulfonyl) amino] carbonyl \} amino) ethyl] phenyl \} -3 \textit{H-}imidazo [4,5-b] pyridine;$ 2-ethyl-5,7-dimethyl-3-(4-{2-[({[(2
 - thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;

PC9985B

- -15-
- 3-(4-{2-[({[(5-chloro-2-thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- $3-(4-\{2-[(\{[(4,5-dichloro-2-thienyl)sulfonyl]amino\}carbonyl)amino]ethyl\}phenyl)-2-ethyl-5,7-dimethyl-3<math>H$ -imidazo[4,5-b]pyridine;
- 3-{4-[2-({[(1-benzothien-2-ylsulfonyl)amino]carbonyl}amino)ethyl]phenyl}-2-ethyl-5,7-dimethyl-3H-imidazo[4,5-b]pyridine;
- 3-(4-{2-[({[(2-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 2-ethyl-5,6-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;
- 5,6-dichloro-2-ethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;
- 5-chloro-2-ethyl-7-methyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3*H*-imidazo[4,5-*b*]pyridine;
- 6-cyano-2-ethyl-5,7-dimethyl-3-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3*H*-imidazo[4,5-b]pyridine;
- 2-ethyl-4,6-dimethyl-1-(4-{2-[({[(4-methyl-1-(4-{2-[({[(4-methyl-1-(4-{2-[({[(4-c]pyridine;
- 2-ethyl-3-{4-[2-({[({3-[hydroxy(oxido)amino]phenyl}sulfonyl)amino]carbonyl}amino)ethyl]phenyl}-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- $3-(4-\{2-[(\{[(4-chlorophenyl)sulfonyl]amino\}carbonyl)amino]ethyl\}phenyl)-2-ethyl-5,7-dimethyl-3$ *H*-imidazo[4,5-*b*]pyridine;
- $n-[4-(\{[(\{2-[4-(2-ethyl-5,7-dimethyl-3\textit{H}-imidazo[4,5-b]pyridin-3-yl)phenyl]ethyl\}amino) carbonyl]amino\} sulfonyl) phenyl]-2,2-dimethylpropanamide;$

- 3-(4-{2-[({[(2-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 3-(4-{2-[({[(3-chlorophenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- 3-(4-{2-[({[(5-chloro-2-thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridine;
- $3-(4-\{2-[(\{[(5-bromo-2-thienyl)sulfonyl]amino\}carbonyl)amino]ethyl\}phenyl)-2-ethyl-5,7-dimethyl-3<math>H$ -imidazo[4,5-b]pyridine;
- $3-(4-\{2-[(\{[(2-bromophenyl)sulfonyl]amino\}carbonyl)amino]ethyl\}phenyl)-2-ethyl-5,7-dimethyl-3$ *H*-imidazo[4,5-*b*]pyridine;
- $3-\{4-[2-(\{[(\{4-chloro-3-nitrophenyl\}sulfonyl)amino]carbonyl\}amino)ethyl]phenyl\}-2-ethyl-5,7-dimethyl-3$ *H*-imidazo[4,5-*b*]pyridine;
- 2-[4-(2-ethyl-4,6-dimethyl-1*H*-imidazo[4,5-c]pyridin-I-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[5,7-dimethyl-2-(methylamino)-3*H*-imidazo[4,5-*b*]pyridin-3-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- N-{[(2-{4-[5,7-dimethyl-2-(methylamino)-3*H*-imidazo[4,5-b]pyridin-3-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- N-[({2-[4-(2-ethyl-5,7-dimethyl-3*H*-imidazo[4,5-*b*]pyridin-3-yl)phenyl]ethyl}amino)carbonyl]-2-thiophenesulfonamide;
- 2-[4-(4,6-dimethyl-2-phenyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-[4-(2-butyl-4,6-dimethyl-1*H*-imidazo[4,5-c]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- $2-\{4-[4,6-\mathrm{dimethyl-}2-(3-\mathrm{phenylpropyl})-1\\H-\mathrm{imidazo}[4,5-c]\mathrm{pyridin-}1-\mathrm{yl}]\mathrm{phenyl}\}\mathrm{ethyl}\ (4-\mathrm{methylphenyl})\mathrm{sulfonylcarbamate};$
- N-{[(2-{4-[5,7-dimethyl-2-(1H-pyrazol-3-yl)-3H-imidazo[4,5-b]pyridin-3-yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
- 2-{4-[2-(1,1-dimethylethyl)-4,6-dimethyl-1*H*-imidazo[4,5-c]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate; and salts thereof.

PATENT PFIZER ANN ARBOR MI

- 38. (Previously presented) A method according to Claim 28 wherein the compound is selected from
 - $2-[4-(2-\text{ethyl-5},7-\text{dimethyl-3}\textit{H}-\text{imidazo}[4,5-b]pyridin-3-yl)phenyl]-1-\text{methylethyl} \ (4-\text{constant}) + (4-\text$ methylphenyl)sulfonylcarbamate;
 - 5,7-dimethyl-3-(4-{2-[({[(4methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-2-[2-(1,3-thiazol-2yl)ethyl]-3H-imidazo[4,5-b]pyridine;
 - 2-ethyl-5,7-dimethyl-3-(4-{2-[({[(2thienyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5-b]pyridine;
 - $3-(4-\{2-[(\{[(2-chlorophenyl)sulfonyl]amino\}carbonyl)amino]ethyl\}phenyl)-2-ethyl-5,7-inches amino]ethyl amino]eth$ dimethyl-3H-imidazo[4,5-b]pyridine;
 - 2-ethyl-5,6-dimethyl-3-(4-{2-[({[(4methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl}phenyl)-3H-imidazo[4,5b]pyridine;
 - 5,6-dichloro-2-ethyl-3-(4-{2-[({[(4methylphenyl)sulfonyl]amino}carbonyl)amino]ethyl} phenyl)-3H-imidazo[4,5b)pyridine;
 - 2-ethyl-4,6-dimethyl-1-(4-{2-[({[(4-methylphenyl)sulfonyl]amino}carbonyl)amino] ethyl}phenyl)-1*H*-imidazo[4,5-c]pyridine;
 - $2-[4-(2-\text{ethyl-4,6-dimethyl-1}H-\text{imidazo}[4,5-c] \text{pyridin-1-yl}) \text{phenyl}] \text{ethyl} (4-c) + (2-\text{ethyl-4,6-dimethyl-1}H-\text{imidazo}[4,5-c]) \text{pyridin-1-yl}) \text{phenyl} \text{ethyl} (4-c) + (2-\text{ethyl-4,6-dimethyl-1}H-\text{imidazo}[4,5-c]) \text{pyridin-1-yl}) \text{p$ methylphenyl)sulfonylcarbamate;
 - $2-\{4-[5,7-\mathrm{dimethyl-2-(methylamino)-3}\textit{H}-\mathrm{imidazo}[4,5-b] pyridin-3-yl] phenyl\} ethyl (4-b) + (4$ methylphenyl)sulfonylcarbamate;
 - N-{[(2-{4-[5,7-dimethyl-2-(methylamino)-3H-imidazo[4,5-b]pyridin-3yl]phenyl}ethyl)amino]carbonyl}-4-methylbenzenesulfonamide;
 - $N-[({2-[4-(2-ethyl-5,7-dimethyl-3}H-imidazo[4,5-b]pyridin-3$ yl)phenyl]ethyl}amino)carbonyl]-2-thiophenesulfonamide;
 - 2-[4-(4,6-dimethyl-2-phenyl-1H-imidazo[4,5-c]pyridin-1-yl)phenyl]ethyl (4methylphenyl)sulfonylcarbamate;

-18-

PC9985B

- 2-[4-(2-butyl-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl)phenyl]ethyl (4-methylphenyl)sulfonylcarbamate;
- 2-{4-[4,6-dimethyl-2-(3-phenylpropyl)-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate;
- $N-\{[(2-\{4-[5,7-dimethyl-2-(1$H-pyrazol-3-yl)-3$H-imida2o[4,5-b]pyridin-3-yl]phenyl\}ethyl)amino]carbonyl\}-4-methylbenzenesulfonamide;$
- 2-{4-[2-(1,1-dimethylethyl)-4,6-dimethyl-1*H*-imidazo[4,5-*c*]pyridin-1-yl]phenyl}ethyl (4-methylphenyl)sulfonylcarbamate; and salts thereof.
- 39. (Currently Amended) A method according to claim 28 wherein the compound is 2-ethylEthyl-4,6-dimethyl-1-(4-{2-[({[(4-methyphenyl)sulfonyl]amino} earboxylcarbonyl)amino]ethyl}phenyl)-1H-imidazo[4,5-Cc]pyridine or a pharmaceutically acceptable salt thereof.