MIPI Alliance Specification for D-PHY v0.90.00

* Cautions and Notes to Implementers and Reviewers *

Adopted MIPI Specification:

This document is a MIPI Specification adopted by the MIPI Board of Directors. MIPI member companies' rights and obligations apply to this MIPI Specification as defined in the MIPI Membership Agreement and MIPI Bylaws.

Recommended for Implementation:

It is the good faith expectation of the MIPI PHY Working Group that D-PHY v0.90.00 is stable and robust. The MIPI Alliance currently recommends that any member companies considering implementation of D-PHY base their work on v0.90.00.

Past Revisions:

For avoidance of doubt, MIPI Alliance strongly recommends that member companies NOT implement the previously adopted D-PHY v0.65, which is superseded by v0.90.00.

Future Revisions and Pending Changes:

It is the good faith expectation of the MIPI PHY WG that there will be no significant functional changes to the fundamental technology described in this specification. Currently known areas of discussion (as of November 2007) which may conceivably result in incremental changes are described below. If any such changes are pursued, every reasonable effort will be made to ensure backward compatibility of future versions and forward compatibility of this version.

- The PHY Working Group expects to gain important insight into D-PHY as silicon implementations are completed by member companies and interoperability and/or conformance testing begins on that silicon. If such post-silicon insight indicates that further revision to v0.90.00 could substantially improve interoperability, ease implementation, or aid testing, the working group MAY make further changes to the specification.
- The MIPI Alliance is initiating a program to aid in conformance and interoperability testing
 for several MIPI Specifications, including D-PHY. This program is likely to involve direct
 interaction between contracted, external test organization(s) and the MIPI PHY WG and
 may eventually result in test definitions and/or procedures being added to the D-PHY
 Specification.
- The MIPI PHY Working Group is investigating the possibility to relax some S-parameter specifications from section 7 of D-PHY v0.90.00, particularly those related to section 7.7 "Driver and Receiver Characteristics". If this investigation results in a specification modification, the changes will be backward compatible, such that they will not impact interoperability between devices.
- The D-PHY Specification requires that powered-up Lanes be initialized simultaneously, but some corresponding protocol specifications may not mention this. The D-PHY specification will continue to describe this requirement until all corresponding protocol specifications are updated.
- Throughout the document, the upper-case/lower-case distinction between the terms 'events'/ 'Events' is inconsistent, particularly in the context of Lane type descriptors but also in the remaining specification text. A future specification revision is likely to include changes which define this term and ensure it is used consistently in the specification.

- The parameters related to T_{LPX} are specified such that they are not measurable. A future release may make a change to the T_{LPX} parameters such that they are measurable. Any such change will be backward compatible.
- In the current specification version, T_{LPX} in the drawing of Fig 15 can not be measured from the D_n V_{IL(max)} till the next D_p V_{IL(max)}. The PHY working group recognizes that a split of T_{LPX} into external and internal would have been beneficial. The specification currently has an intended maximum LP signal rate, which theoretically can be exceeded.
- The PPI in Annex A will remain informative.

MIPI Alliance Specification for D-PHY

Version 0.90.00 - 8 October 2007

MIPI Board Approved 13-Nov-2007

1 NOTICE OF DISCLAIMER

- 2 The material contained herein is not a license, either expressly or impliedly, to any IPR owned or
- 3 controlled by any of the authors or developers of this material or MIPI. The material contained herein is
- 4 provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this material is
- 5 provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and MIPI
- 6 hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not
- 7 limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a
- 8 particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of
- 9 viruses, and of lack of negligence.
- 10 ALSO, THERE IS NO WARRANTY OF CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
- 11 POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH
- 12 REGARD TO THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT. IN NO EVENT WILL
- 13 ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT
- OR MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE
- 15 GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL,
- 16 CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER
- 17 CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR
- 18 ANY OTHER AGREEMENT, SPECIFICATION OR DOCUMENT RELATING TO THIS MATERIAL.
- 19 WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
- 20 DAMAGES.
- 21 Without limiting the generality of this Disclaimer stated above, the user of the contents of this Document is
- 22 further notified that MIPI: (a) does not evaluate, test or verify the accuracy, soundness or credibility of the
- contents of this Document; (b) does not monitor or enforce compliance with the contents of this Document;
- and (c) does not certify, test, or in any manner investigate products or services or any claims of compliance
- 25 with the contents of this Document. The use or implementation of the contents of this Document may
- 26 involve or require the use of intellectual property rights ("IPR") including (but not limited to) patents,
- patent applications, or copyrights owned by one or more parties, whether or not Members of MIPI. MIPI
- does not make any search or investigation for IPR, nor does MIPI require or request the disclosure of any
- 29 IPR or claims of IPR as respects the contents of this Document or otherwise.
- 30 Questions pertaining to this document, or the terms or conditions of its provision, should be addressed to:
- 31 MIPI Alliance, Inc.
- 32 c/o IEEE-ISTO
- 33 445 Hoes Lane
- Piscataway, NJ 08854
- 35 Attn: Board Secretary

Contents

38	Version	0.90.00 – 8 October 2007	i
39	1 Ov	erview	14
40	1.1	Scope	14
41	1.2	Purpose	15
42	2 Tei	rminology	16
43	2.1	Definitions	16
44	2.2	Abbreviations	17
45	2.3	Acronyms	17
46	3 D-1	PHY Introduction	20
47	3.1	Summary of PHY Functionality	20
48	3.2	Mandatory Functionality	20
49	4 Arc	chitecture	21
50	4.1	Lane Modules	21
51	4.2	Master and Slave	22
52	4.3	High Frequency Clock Generation	22
53	4.4	Clock Lane, Data Lanes and the PHY-Protocol Interface	22
54	4.5	Selectable Lane Options	23
55	4.6	Lane Module Types	25
56	4.6	.1 Unidirectional Data Lane	26
57	4.6	.2 Bi-directional Data Lanes	26
58	4.6	.3 Clock Lane	27
59	4.7	Configurations	27
60	4.7	.1 Unidirectional Configurations	29
61	4.7	.2 Bi-Directional Half-Duplex Configurations	31
62	4.7	.3 Mixed Data Lane Configurations	32
63	5 Glo	obal Operation	33

64	5.1 Transmission	Data Structure	33
65	5.1.1 Data Un	its	33
66	5.1.2 Bit order	r, Serialization, and De-Serialization	33
67	5.1.3 Encodin	g and Decoding	33
68	5.1.4 Data Bu	ffering	33
69	5.2 Lane States a	nd Line Levels	33
70	5.3 Operating Mo	odes: Control, High-Speed, and Escape	35
71	5.4 High-Speed I	Oata Transmission	35
72	5.4.1 Burst Pa	yload Data	35
73	5.4.2 Start-of-	Transmission	35
74	5.4.3 End-of-7	Transmission	36
75	5.4.4 HS Data	Transmission Burst	36
76	5.5 Bi-directiona	l Data Lane Turnaround	39
77	5.6 Escape Mode		42
78	5.6.1 Remote	Triggers	43
79	5.6.2 Low-Pov	wer Data Transmission	44
80	5.6.3 Ultra-Lo	w Power State	44
81	5.6.4 Escape N	Mode State Machine	45
82	5.7 High-Speed C	Clock Transmission	47
83	5.8 Clock Lane U	Ultra-Low Power State	51
84	5.9 Global Opera	tion Timing Parameters	53
85	5.10 System Powe	r States	56
86	5.11 Initialization.		56
87	5.12 Calibration		56
88	5.13 Global Opera	tion Flow Diagram	57
89	5.14 Data Rate De	pendent Parameters (informative)	58
90	5.14.1 Paramete	ers Containing Only UI Values	59
91	5.14.2 Paramete	ers Containing Time and UI values	59

92	5.14.3	Parameters Containing Only Time Values	59
93	5.14.4	Parameters Containing Only Time Values That Are Not Data Rate Dependent	60
94	6 Fault De	etection	61
95	6.1 Co	ntention Detection	61
96	6.2 Sec	quence Error Detection	61
97	6.2.1	SoT Error	62
98	6.2.2	SoT Sync Error	62
99	6.2.3	EoT Sync Error	62
100	6.2.4	Escape Mode Entry Command Error	62
101	6.2.5	LP Transmission Sync Error.	62
102	6.2.6	False Control Error	62
103	6.3 Pro	otocol Watchdog Timers (informative)	62
104	6.3.1	HS RX Timeout	62
105	6.3.2	HS TX Timeout	62
106	6.3.3	Escape Mode Timeout	63
107	6.3.4	Escape Mode Silence Timeout	63
108	6.3.5	Turnaround Errors	63
109	7 Intercor	nnect and Lane Configuration	64
110	7.1 La	ne Configuration	64
111	7.2 Bo	undary Conditions	64
112	7.3 De	finitions	64
113	7.4 S-p	parameter Specifications	65
114	7.5 Ch	aracterization Conditions	65
115	7.6 Int	erconnect Specifications	66
116	7.6.1	Differential Characteristics	66
117	7.6.2	Common-mode Characteristics.	67
118	7.6.3	Intra-Lane Cross-Coupling	67
119	7.6.4	Mode-Conversion Limits	67

Version 0.90.00 8-Oct-2007

120	7.6.5	Inter-Lane Cross-Coupling	67
121	7.6.6	Inter-Lane Static Skew	68
122	7.7 Dr	river and Receiver Characteristics	68
123	7.7.1	Differential Characteristics	68
124	7.7.2	Common-Mode Characteristics	69
125	7.7.3	Mode-Conversion Limits	69
126	7.7.4	Inter-Lane Matching	69
127	8 Electric	cal Characteristics	70
128	8.1 Dr	river Characteristics	71
129	8.1.1	High-Speed Transmitter	71
130	8.1.2	Low-Power Transmitter	76
131	8.2 Re	eceiver Characteristics	80
132	8.2.1	High-Speed Receiver	80
133	8.2.2	Low-Power Receiver	82
134	8.3 Lin	ne Contention Detection	83
135	8.4 Inj	put Characteristics	84
136	9 High-S	peed Data-Clock Timing	86
137	9.1 Hi	gh-Speed Clock Timing	86
138	9.2 Fo	orward High-Speed Data Transmission Timing	87
139	9.2.1	Data-Clock Timing Specifications	88
140	9.3 Re	everse High-Speed Data Transmission Timing	89
141	10 Regu	ılatory Requirements	91
142	Annex A Lo	egical PHY-Protocol Interface Description (informative)	92
143	A.1 Sig	gnal Description	92
144	A.2 Hi	gh-Speed Transmit from the Master Side	102
145	A.3 Hi	igh-Speed Receive at the Slave Side	102
146	A.4 Hi	igh-Speed Transmit from the Slave Side	103
147	A.5 Hi	igh-Speed Receive at the Master Side	103

Version 0.90.00 8-Oct-2007

148	A.6 Lov	w-Power Data Transmission	104
149	A.7 Lov	w-Power Data Reception	105
150	A.8 Tui	rn-around	105
151	Annex B Inte	erconnect Design Guidelines (informative)	107
152	B.1 Pra	actical Distances	107
153	B.2 RF	Frequency Bands: Interference	107
154	B.3 Tra	ansmission Line Design	107
155	B.4 Ret	ference Layer	108
156	B.5 Pri	nted-Circuit Board	108
157	B.6 Fle	ex-foils	108
158	B.7 Ser	ries Resistance	108
159	B.8 Con	nnectors	108
160	Annex C 8b9	Ob Line Coding for D-PHY (normative)	109
161	C.1 Lin	ne Coding Features	110
162	C.1.1	Enabled Features for the Protocol	110
163	C.1.2	Enabled Features for the PHY	110
164	C.2 Co	ding Scheme	110
165	C.2.1	8b9b Coding Properties	110
166	C.2.2	Data Codes: Basic Code Set	111
167	C.2.3	Comma Codes: Unique Exception Codes	112
168	C.2.4	Control Codes: Regular Exception Codes	113
169	C.2.5	Complete Coding Scheme	113
170	C.3 Op	peration with the D-PHY	113
171	C.3.1	Payload: Data and Control	113
172	C.3.2	Details for HS Transmission	114
173	C.3.3	Details for LP Transmission	114
174	C.4 Err	ror Signaling	115
175	C.5 Ext	tended PPI	115

Version 0.90.00 8-Oct-2007 MIPI Alliance Speci	ification for D-PHY
C.6 Complete Code Set	117

Figures

179	Figure 1 Universal Lane Module Functions	21
180	Figure 2 Two Data Lane PHY Configuration	23
181	Figure 3 Option Selection Flow Graph	24
182	Figure 4 Universal Lane Module Architecture	25
183	Figure 5 Lane Symbol Macros and Symbols Legend	28
184	Figure 6 All Possible Data Lane Types and a Basic Unidirectional Clock Lane	29
185	Figure 7 Unidirectional Single Data Lane Configuration	30
186	Figure 8 Unidirectional Multiple Data Lane Configuration without LPDT	30
187	Figure 9 Two Directions Using Two Independent Unidirectional PHYs without LPDT	31
188	Figure 10 Bidirectional Single Data Lane Configuration	31
189	Figure 11 Bi-directional Multiple Data Lane Configuration	32
190	Figure 12 Mixed Type Multiple Data Lane Configuration	32
191	Figure 13 Line Levels	34
192	Figure 14 High-Speed Data Transmission in Bursts	37
193	Figure 15 TX and RX State Machines for High-Speed Data Transmission	37
194	Figure 16 Turnaround Procedure	40
195	Figure 17 Turnaround State Machine	41
196	Figure 18 Trigger-Reset Command in Escape Mode	43
197	Figure 19 Two Data Byte Low-Power Data Transmission Example	44
198	Figure 20 Escape Mode State Machine	45
199	Figure 21 Switching the Clock Lane between Clock Transmission and Low-Power Mode	48
200	Figure 22 High-Speed Clock Transmission State Machine	50
201	Figure 23 Clock Lane Ultra-Low Power State State Machine	52
202	Figure 24 Data Lane Module State Diagram	57
203	Figure 25 Clock Lane Module State Diagram	58
204	Figure 26 Point-to-point Interconnect	64

205	Figure 27 Set-up for S-parameter Characterization of RX, TX and TLIS	65
206	Figure 28 Template for Differential Insertion Losses	66
207	Figure 29 Template for Differential Reflection at Both Ports	66
208	Figure 30 Inter-Lane Common-mode Cross-Coupling Template	67
209	Figure 31 Inter-Lane Differential Cross-Coupling Template	68
210	Figure 32 Differential Reflection Template for Lane Modules	68
211	Figure 33 Template for RX Common-Mode Return Loss.	69
212	Figure 34 Electrical Functions of a Fully Featured D-PHY Transceiver	70
213	Figure 35 D-PHY Signaling Levels	71
214	Figure 36 Example HS Transmitter	72
215	Figure 37 Ideal Single-ended and Resulting Differential HS Signals	73
216	Figure 38 Possible ΔV_{CMTX} and ΔV_{OD} Distortions of the Single-ended HS Signals	74
217	Figure 39 Example Circuit for V _{CMTX} and V _{OD} Measurements	74
218	Figure 40 Example LP Transmitter	76
219	Figure 41 V-I Characteristic for LP Transmitter Driving Logic High	77
220	Figure 42 V-I Characteristic for LP Transmitter Driving Logic Low	77
221	Figure 43 LP Transmitter V-I Characteristic Measurement Setup	77
222	Figure 44 Slew Rate vs. C _{LOAD}	80
223	Figure 45 HS Receiver Implementation Example	80
224	Figure 46 Input Glitch Rejection of Low-Power Receivers	82
225	Figure 47 Signaling and Contention Voltage Levels	84
226	Figure 48 Pin Leakage Measurement Example Circuit	85
227	Figure 49 Conceptual D-PHY Data and Clock Timing Compliance Measurement Planes	86
228	Figure 50 DDR Clock Definition	87
229	Figure 51 Data to Clock Timing Definitions	88
230	Figure 52 Conceptual View of HS Data Transmission in Reverse Direction	89
231	Figure 53 Reverse High-Speed Data Transmission Timing at Slave Side	90
232	Figure 54 Example High-Speed Transmission from the Master Side	102

	Version 0.90.00 8-Oct-2007	MIPI Alliance Specification for D-PHY
233	Figure 55 Example High-Speed Receive at the Slave Side	
234	Figure 56 Example High-Speed Transmit from the Slave Side	
235	Figure 57 Example High-Speed Receive at the Master Side	
236	Figure 58 Low-Power Data Transmission	
237	Figure 59 Example Low-Power Data Reception	
238	Figure 60 Example Turn-around Actions Transmit-to-Receive and	Back to Transmit
239	Figure 61 Line Coding Layer	
240		
241		

Tables

243	Table 1 Lane Type Descriptors	26
244	Table 2 Lane State Descriptions	34
245	Table 3 Start-of-Transmission Sequence	35
246	Table 4 End-of-Transmission Sequence	36
247	Table 5 High-Speed Data Transmission State Machine Description	37
248	Table 6 Link Turnaround Sequence	39
249	Table 7 Turnaround State Machine Description	41
250	Table 8 Escape Entry Codes	43
251	Table 9 Escape Mode State Machine Description	45
252	Table 10 Procedure to Switch Clock Lane to Low-Power Mode	49
253	Table 11 Procedure to Initiate High-Speed Clock Transmission	49
254	Table 12 Description of High-Speed Clock Transmission State Machine	50
255	Table 13 Clock Lane Ultra-Low Power State State Machine Description	52
256	Table 14 Global Operation Timing Parameters	53
257	Table 15 Initialization States	56
258	Table 16 HS Transmitter DC Specifications	75
259	Table 17 HS Transmitter AC Specifications	76
260	Table 18 LP Transmitter DC Specifications.	78
261	Table 19 LP Transmitter AC Specifications.	79
262	Table 20 HS Receiver DC Specifications	81
263	Table 21 HS Receiver AC Specifications	81
264	Table 22 LP Receiver DC specifications	83
265	Table 23 LP Receiver AC Specifications	83
266	Table 24 Contention Detector (LP-CD) DC Specifications	84
267	Table 25 Pin Characteristic Specifications	85
268	Table 26 Clock Signal Specification	87

	Version 0.90.00 8-Oct-2007	MIPI Alliance Specification for D-PHY
269	Table 27 Data-Clock Timing Specifications	89
270	Table 28 PPI Signals	93
271	Table 29 Encoding Table for 8b9b Line Coding of Data Words	111
272	Table 30 Comma Codes	
273	Table 31 Regular Exception Code Structure	
274	Table 32 Additional Signals for (Functional) PPI	115
275	Table 33 Code Set (8b9b Line Coding)	117
276		
277		

MIPI Alliance Specification for D-PHY

1 Overview

278

279

285

295

296

297

298

299300

301

302

303

304

305

306

307

308

319

320

- 280 This specification provides a flexible, low-cost, High-Speed serial interface solution for communication
- 281 interconnection between components inside a mobile device. Traditionally, these interfaces are CMOS
- 282 parallel busses at low bit rates with slow edges for EMI reasons. The D-PHY solution enables significant
- 283 extension of the interface bandwidth for more advanced applications. The D-PHY solution can be realized
- with very low power consumption.

1.1 Scope

- The scope of this document is to specify the lowest layers of High-Speed source-synchronous interfaces to
- 287 be applied by MIPI Alliance application or protocol level specifications. This includes the physical
- interface, electrical interface, low-level timing and the PHY-level protocol. These functional areas taken
- together are known as D-PHY.
- The D-PHY specification shall always be used in combination with a higher layer MIPI specification that
- 291 references this specification. Initially, this specification will be used for the connection of a host processor
- 292 to display and camera modules as used in mobile devices. However, this specification can also be
- referenced by other upcoming MIPI Alliance specifications.
- The following topics are outside the scope of this document:
 - Explicit specification of signals of the clock generator unit. Of course, the D-PHY specification does implicitly require some minimum performance from the clock signals. Intentionally, only the behavior on the interface pins is constrained. Therefore, the clock generation unit is excluded from this specification, and will be a separate functional unit that provides the required clock signals to the D-PHY in order to meet the specification. This allows all kinds of implementation trade-offs as long as these do not violate this specification. More information can be found in section 4.
 - **Test modes, patterns, and configurations.** Obviously testability is very important, but because the items to test are mostly application specific or implementation related, the specification of tests is deferred to either the higher layer specifications or the product specification. Furthermore MIPI D-PHY compliance testing is not included in this specification.
 - **Procedure to resolve contention situations.** The D-PHY contains several mechanisms to detect Link contention. However, certain contention situations can only be detected at higher levels and are therefore not included in this specification.
- 309 Ensure proper operation of a connection between different Lane Module types. There are 310 several different Lane Module types to optimally support the different functional requirements of several applications. This means that next to some base-functionality there are optional features 311 312 which can be included or excluded. This specification only ensures correct operation for a connection between matched Lane Modules types, which means: Modules that support the same 313 314 features and have complementary functionality. In case the two sides of the Lane are not the same type, and these are supposed to work correctly, it shall be ensured by the manufacturer(s) of the 315 316 Lane Module(s) that the provided additional functionality does not corrupt operation. This can be easiest accomplished if the additional functionality can be disabled by other means independent of 317 the MIPI D-PHY interface, such that the Lane Modules behave as if they were the same type. 318
 - **ESD protection level of the IO.** The required level will depend on a particular application environment and product type.

- **Exact Bit-Error-Rate (BER) value.** The actual value of the achieved BER depends on the total system integration and the hostility of the environment. Therefore, it is impossible to specify a BER for individual parts of the Link. This specification allows for implementations with a BER<10⁻¹².
 - Specification of the PHY-Protocol Interface. The D-PHY specification includes a PHY-Protocol Interface (PPI) annex that provides one possible solution for this interface. This annex is limited to the essential signals for normal operation in order to clarify the kind of signals needed at this interface. For power reasons this interface will be internal for most applications. Practical implementations may be different without being inconsistent with the D-PHY specification.
 - Implementations. This specification is intended to restrict the implementation as little as possible. Various sections of this specification use block diagrams or example circuits to illustrate the concept and are not in any way claimed to be the preferred or required implementation. Only the behavior on the D-PHY interface pins is normative.
- Regulatory compliance methods are not within the scope of this document. It is the responsibility of product manufacturers to ensure that their designs comply with all applicable regulatory requirements.

1.2 Purpose

- The D-PHY specification is used by manufacturers to design products that adhere to MIPI Alliance
- interface specifications for mobile device such as, but not limited to, camera, display and unified protocol
- interfaces.

325

326

327

328

329

330

331

332

333

336

- 340 Implementing this specification reduces the time-to-market and design cost of mobile devices by
- 341 standardizing the interface between products from different manufacturers. In addition, richer feature sets
- requiring high bit rates can be realized by implementing this specification. Finally, adding new features to
- mobile devices is simplified due to the extensible nature of the MIPI Alliance Specifications.

2 Terminology

345

- The MIPI Alliance has adopted Section 13.1 of the *IEEE Standards Style Manual*, which dictates use of the words "shall", "should", "may", and "can" in the development of documentation, as follows:
- The word *shall* is used to indicate mandatory requirements strictly to be followed in order to conform to the standard and from which no deviation is permitted (*shall* equals is required to)
- is required to).
- The use of the word *must* is deprecated and shall not be used when stating mandatory requirements; must is used only to describe unavoidable situations.
- The use of the word *will* is deprecated and shall not be used when stating mandatory requirements; *will* is only used in statements of fact.
- The word *should* is used to indicate that among several possibilities one is recommended as particularly suitable, without mentioning or excluding others; or that a certain course of action is preferred but not necessarily required; or that (in the negative form) a certain course of action is deprecated but not prohibited (*should* equals *is recommended that*).
- The word *may* is used to indicate a course of action permissible within the limits of the standard (*may* equals *is permitted*).
- The word *can* is used for statements of possibility and capability, whether material, physical, or causal (*can* equals *is able to*).
- Throughout this document, the chronology for binary sequences and timing diagrams is from left (first in
- time) to right (later in time), unless otherwise specified.
- This document uses the C/Verilog representation for operators where bitwise AND is represented by '&',
- bitwise OR is represented by '|', bitwise exclusive-OR is represented by '^' and 1's complement (negation)
- is represented by \sim .
- All sections are normative, unless they are explicitly indicated to be informative.

369 **2.1 Definitions**

- 370 **Bi-directional:** A single Data Lane that supports communication in both the Forward and Reverse
- 371 directions.
- **DDR Clock:** Half rate clock used for dual-edged data transmission.
- **D-PHY:** The source synchronous PHY defined in this document. D-PHYs communicate on the order of
- 374 500 Mbit/s hence the Roman numeral for 500 or "D."
- 375 **Escape Mode:** An optional mode of operation for Data Lanes that allows low bit-rate commands and data
- to be transferred at very low power.
- Forward Direction: The signal direction is defined relative to the direction of the High-Speed DDR clock.
- 378 Transmission from the side sending the clock to the side receiving the clock is the Forward direction.

- 379 Lane: Consists of two complementary Lane Modules communicating via two-line, point-to-point Lane
- 380 Interconnects. Sometimes Lane is also used to denote interconnect only. A Lane can be used for either Data
- or Clock signal transmission.
- 382 Lane Interconnect: Two-line, point-to-point interconnect used for both differential High-Speed signaling
- and Low-Power, single-ended signaling.
- 384 **Lane Module:** Module at each side of the Lane for driving and/or receiving signals on the Lane.
- 385 **Line:** An interconnect wire used to connect a driver to a receiver. Two Lines are required to create a Lane
- 386 Interconnect.
- 387 **Link:** A connection between two devices containing one Clock Lane and at least one Data Lane. A Link
- consists of at least two PHYs and two Lane Interconnects.
- 389 Master: The Master side of a Link is defined as the side that transmits the High-Speed Clock. The Master
- 390 side transmits data in the Forward direction.
- 391 PHY: A functional block that implements the features necessary to communicate over the Lane
- 392 Interconnect. A PHY consists of one Lane Module configured as a Clock Lane, one or more Lane Modules
- 393 configured as Data Lanes and a PHY Adapter Layer.
- 394 **PHY Adapter:** A protocol layer that converts symbols from an APPI to the signals used by a specific PHY
- 395 PPI.
- 396 PHY Configuration: A set of Lanes that represent a possible Link. A PHY configuration consists of a
- 397 minimum of two Lanes, one Clock Lane and one or more Data Lanes.
- 398 **Reverse Direction:** Reverse direction is the opposite of the forward direction. See the description for
- 399 Forward Direction.
- 400 Slave: The Slave side of a Link is defined as the side that does not transmit the High-Speed Clock. The
- 401 Slave side may transmit data in the Reverse direction.
- 402 **Turnaround:** Reversing the direction of communication on a Data Lane.
- 403 **Unidirectional:** A single Lane that supports communication in the Forward direction only.
- 404 **2.2 Abbreviations**
- 405 e.g. For example (Latin: exempli gratia)
- 406 i.e. That is (Latin: id est)
- 407 **2.3 Acronyms**
- 408 APPI Abstracted PHY-Protocol Interface
- 409 BER Bit Error Rate
- 410 CIL Control and Interface Logic
- 411 DDR Double Data Rate

412	EMI	Electro Magnetic Interference
413	ЕоТ	End of Transmission
414	HS	High-Speed; identifier for operation mode
415	HS-RX	High-Speed Receiver (Low-Swing Differential)
416	HS-TX	High-Speed Transmitter (Low-Swing Differential)
417	IO	Input-Output
418	ISTO	Industry Standards and Technology Organization
419	LP	Low-Power: identifier for operation mode
420	LP-CD	Low-Power Contention Detector
421	LPDT	Low-Power Data Transmission
422	LP-RX	Low-Power Receiver (Large-Swing Single-Ended)
423	LP-TX	Low-Power Transmitter (Large-Swing Single-Ended)
424	LPS	Low-Power State(s)
425	LSB	Least Significant Bit
426	Mbps	Megabits per second
427	MIPI	Mobile Industry Processor Interface
428	MSB	Most Significant Bit
429	PHY	Physical Layer
430	PLL	Phase-Locked Loop
431	PPI	PHY-Protocol Interface
432	RF	Radio Frequency
433	RX	Receiver
434	SE	Single-Ended
435	SoT	Start of Transmission
436	SRC	Slew-Rate Controlled
437 438	TLIS	Transmission-Line Interconnect Structure: physical interconnect realization between Master and Slave
439	TX	Transmitter

- 440 Unit Interval, equal to the duration of any HS state on the Clock Lane UI
- 441 ULPS Ultra-Low Power State

443 **3 D-PHY Introduction**

- D-PHY describes a source synchronous, high speed, low power, low cost PHY, especially suited for
- 445 mobile applications. This D-PHY specification has been written primarily for the connection of camera and
- display applications to a host processor. Nevertheless, it can be applied to many other applications. It is
- envisioned that the same type of PHY will also be used in a dual-simplex configuration for
- 448 interconnections in a more generic communication network. Operation and available data-rates for a Link
- are asymmetrical due to a master-slave relationship between the two sides of the Link. The asymmetrical
- design significantly reduces the complexity of the Link. Some features like bi-directional, half-duplex
- operation are optional. Exploiting this feature is attractive for applications that have asymmetrical data
- 452 traffic requirements and when the cost of separate interconnects for a return channel is too high. While this
- feature is optional, it avoids mandatory overhead costs for applications that do not have return traffic
- requirements or want to apply physically distinct return communication channels.

3.1 Summary of PHY Functionality

- 456 The D-PHY provides a synchronous connection between Master and Slave. A practical PHY Configuration
- 457 consists of a clock signal and one or more data signals. The clock signal is unidirectional, originating at the
- 458 Master and terminating at the Slave. The data signals can either be unidirectional or bi-directional
- depending on the selected options. For half-duplex operation, the reverse direction bandwidth is one-fourth
- 460 of the forward direction bandwidth. Token passing is used to control the communication direction of the
- 461 Link.

455

- 462 The Link includes a High-Speed signaling mode for fast-data traffic and a Low-Power signaling mode for
- 463 control purposes. Optionally, a Low-Power Escape mode can be used for low speed asynchronous data
- 464 communication. High speed data communication appears in bursts with an arbitrary number of payload
- data bytes.
- 466 The PHY uses two wires per Data Lane plus two wires for the Clock Lane. This gives four wires for the
- 467 minimum PHY configuration. In High-Speed mode each Lane is terminated on both sides and driven by a
- 468 low-swing, differential signal. In Low-Power mode all wires are operated single-ended and non-
- 469 terminated. For EMI reasons, the drivers for this mode shall be slew-rate controlled and current limited.
- The actual maximum achievable bit rate in High-Speed mode is determined by the performance of
- transmitter, receiver and interconnect implementations. Therefore, the maximum bit rate is not specified in
- 472 this document. However, this specification is primarily intended to define a solution for a bit rate range of
- 473 80 to 1000 Mbps per Lane. Although PHY Configurations are not limited to this range, practical
- 474 constraints make it the most suitable range for the intended applications. It is anticipated a typical
- implementation will have a bit rate of approximately 500 Mbps per Lane. For a fixed clock frequency, the
- available data capacity of a PHY Configuration can be increased by using more Data Lanes. Effective data
- 477 throughput can be reduced by employing burst mode communication. The maximum data rate in Low-
- 478 Power mode is 10Mbps.

3.2 Mandatory Functionality

- 480 All functionality that is specified in this document and which is not explicitly stated in section 4.5 shall be
- implemented for all D-PHY configurations.

482

4 Architecture

- 484 This section describes the internal structure of the PHY including its functions at the behavioral level.
- Furthermore, several possible PHY configurations are given. Each configuration can be considered as a
- suitable combination from a set of basic modules.

4.1 Lane Modules

A PHY configuration contains a Clock Lane Module and one or more Data Lane Modules. Each of these PHY Lane Modules communicates via two Lines to a complementary part at the other side of the Lane

490 Interconnect.

483

487

491 492

493

494

495

496 497

498

499

500

501

Figure 1 Universal Lane Module Functions

Each Lane Module consists of one or more differential High-Speed functions utilizing both interconnect wires simultaneously, one or more single-ended Low-Power functions operating on each of the interconnect wires individually, and control & interface logic. An overview of all functions is shown in Figure 1. High-Speed signals have a low voltage swing, e.g. 200 mV, while Low-Power signals have a large swing, e.g. 1.2V. High-Speed functions are used for High-Speed Data transmission. The Low-Power functions are mainly used for Control, but have other, optional, use cases. The I/O functions are controlled by a Lane Control and Interface Logic block. This block interfaces with the Protocol and determines the global operation of the Lane Module.

High-Speed functions include a differential transmitter (HS-TX) and a differential receiver (HS-RX).

- A Lane Module may contain a HS-TX, a HS-RX, or both. A HS-TX and a HS-RX within a single Lane
- Module are never enabled simultaneously during normal operation. An enabled High-Speed function shall
- terminate the Lane on its side of the Lane Interconnect as defined in sections 8.1.1 and 8.2.1. If a High-
- Speed function in the Lane Module is not enabled then the function shall be put into a high impedance
- 506 state.
- 507 Low-Power functions include single-ended transmitters (LP-TX), receivers (LP-RX) and Low-Power
- 508 Contention-Detectors (LP-CD). Low-Power functions are always present in pairs as these are single-ended
- functions operating on each of the two interconnect wires individually.
- 510 Presence of High-Speed and Low-Power functions is correlated. That is, if a Lane Module contains a HS-
- TX it shall also contain a LP-TX. A similar constraint holds for HS-RX and LP-RX.
- 512 If a Lane Module containing a LP-RX is powered, that LP-RX shall always be active and continuously
- 513 monitor line levels. A LP-TX shall only be enabled when driving Low-Power states. The LP-CD function
- is only required for bi-directional operation. If present, the LP-CD function is enabled to detect contention
- situations while the LP-TX is driving Low-Power states. The LP-CD shall check for contention at least
- once before driving a new state on the line.
- 517 The activities of LP-TX, HS-TX, and HS-RX in a single Lane Module are mutually exclusive, except for
- some short crossover periods. For detailed specification of the Line side Clock and Data signals, and the
- HS-TX, HS-RX, LP-TX, LP-RX and LP-CD functions, see sections 8 and 9.
- 520 For proper operation, the set of functions in the Lane Modules on both sides of the Lane Interconnect has
- 521 to be matched. This means for each HS and LP transmit or receive function on one side of the Lane
- Interconnect, a complementary HS or LP receive or transmit function must be present on the other side. In
- addition, a Contention Detector is needed in any Lane Module that combines TX and RX functions.

524 **4.2 Master and Slave**

- Each Link has a Master and a Slave side. The Master provides the High-Speed DDR Clock signal to the
- 526 Clock Lane and is the main data source. The Slave receives the clock signal at the Clock Lane and is the
- main data sink. The main direction of data communication, from source to sink, is denoted as the Forward
- direction. Data communication in the opposite direction is called Reverse transmission. Only bi-directional
- 529 Data Lanes can transmit in the Reverse direction. In all cases, the Clock Lane remains in the Forward
- direction, but bi-directional Data Lane(s) can be turned around, sourcing data from the Slave side.

4.3 High Frequency Clock Generation

- 532 In many cases a PLL Clock Multiplier is needed for the high frequency clock generation at the Master
- Side. The D-PHY specification uses an architectural model where a separate Clock Multiplier Unit outside
- the PHY generates the required high frequency clock signals for the PHY. Whether this Clock Multiplier
- Unit in practice is integrated inside the PHY is left to the implementer.

536 4.4 Clock Lane, Data Lanes and the PHY-Protocol Interface

- 537 A complete Link contains, beside Lane Modules, a PHY Adapter Layer that ties all Lanes, the Clock
- Multiplier Unit, and the PHY Protocol Interface together. Figure 2 shows a PHY configuration example for
- a Link with two Data Lanes plus a separate Clock Multiplier Unit. The PHY Adapter Layer, though a
- component of a PHY, is not within the scope of this specification.
- The logical PHY-Protocol interface (PPI) for each individual Lane includes a set of signals to cover the
- 542 functionality of that Lane. As shown in Figure 2, Clock signals may be shared for all Lanes. The reference
- clock and control signals for the Clock Multiplier Unit are not within the scope of this specification.

546

550

560

561

Figure 2 Two Data Lane PHY Configuration

4.5 Selectable Lane Options

- A PHY configuration consists of one Clock Lane and one or more Data Lanes. All Data Lanes shall support High-Speed transmission and Escape mode in the Forward direction.
- There are two main types of Data Lanes:
 - Bi-directional (featuring Turnaround and some Reverse communication functionality)
- Unidirectional (without Turnaround or any kind of Reverse communication functionality)
- 552 Bi-directional Data Lanes shall include one or both of the following Reverse communication options:
- High-Speed Reverse data communication
- Low-Power Reverse Escape mode (including or excluding LPDT)
- 555 All Lanes shall include Escape mode support for ULPS and Triggers in the Forward direction. Other
- Escape mode functionality is optional; all possible Escape mode features are described in section 5.6.
- Applications shall define what additional Escape mode functionality is required and, for bi-directional
- Lanes, shall select Escape mode functionality for each direction individually.
- This results in many options for complete PHY Configurations. The degrees of freedom are:
 - Single or Multiple Data Lanes
 - Bi-directional and/or Unidirectional Data Lane (per Lane)
- Supported types of Reverse communication (per Lane)
- Functionality supported by Escape mode (for each direction per Lane)
- Data transmission can be with 8-bit raw data (default) or using 8b9b encoded symbol (see Annex C)
- Figure 3 is a flow graph of the option selection process. Practical configuration examples can be found in section 4.7.

Figure 3 Option Selection Flow Graph

4.6 Lane Module Types

The required functions in a Lane Module depend on the Lane type and which side of the Lane Interconnect the Lane Module is located. There are three main Lane types: Clock Lane, Unidirectional Data Lane and Bi-directional Data Lane. Several PHY configurations can be constructed with these Lane types. See

Figure 3 for more information on selecting Lane options.

Figure 4 shows a Universal Lane Module Diagram with a global overview of internal functionality of the CIL function. This Universal Module can be used for all Lane Types. The requirements for the 'Control and Interface Logic' (CIL) function depend on the Lane type and Lane side. Section 5 and Annex A implicitly specify the contents of the CIL function. The actual realization is left to the implementer.

Figure 4 Universal Lane Module Architecture

Of course, stripped-down versions of the Universal Lane Module that just support the required functionality for a particular Lane type are possible. These stripped-down versions are identified by the acronyms in Table 1. For simplification reasons, any of the four identification characters can be replaced by an X, which means that this can be any of the available options. For example, a CIL-MFEN is therefore a stripped-down CIL function for the Master Side of a Unidirectional Lane with Escape mode functionality only in the Forward direction. A CIL-SRXX is a CIL function for the Slave Side of a Lane with support for Bi-directional High-Speed communication and any allowed subset of Escape mode.

Note that a CIL-XFXN implies a unidirectional Link, while either a CIL-XRXX or CIL-XXXY block implies a bidirectional Link. Note that Forward 'Escape' (ULPS) entry for Clock Lanes is different than Escape mode entry for Data Lanes.

Table 1 Lane Type Descriptors

Prefix	Lane Interconnect Side	High-Speed Capabilities	Forward Direction Escape Mode Features Supported	Reverse Direction Escape Mode Features Supported ¹
CIL-	M – Master S – Slave X – Don't Care	F – Forward Only R – Reverse and Forward X – Don't Care ²	A – All E – events – Triggers and ULPS Only X – Don't Care N – Not Applicable	A – All (including LPDT) E – events – Triggers and ULPS Only N – None Y – Any X – Don't Care N – Not Applicable

592 Notes:

608

- 1. "Any" is any combination of one or more functions.
- 594 2. Only valid for Data Lanes, means "F" or "R".

The recommend PHY Protocol Interface contains Data-in and Data-out in byte format, Input and/or output Clock signals and Control signals. Control signals include requests, handshakes, test settings, and initialization. A proposal for a logical internal interface is described in Annex A. Although not a requirement it may be very useful to use the proposed PPI. For external use on IC's an implementation may multiplex many signals on the same pins. However, for power efficiency reasons, the PPI is normally within an IC.

601 4.6.1 Unidirectional Data Lane

- For a Unidirectional Data Lane the Master Module shall contain at least a HS-TX, a LP-TX, and a CIL-MFXN function. The Slave side shall contain at least a HS-RX, a LP-RX and a CIL-SFXN.
- 604 4.6.2 Bi-directional Data Lanes
- A bi-directional Data Lane Module includes some form of reverse communication; either High-Speed Reverse Communication, Reverse Escape mode, or both. The functions required depend on what methods of Reverse communication are included in the Lane Module.

4.6.2.1 Bi-directional Data Lane without High-Speed Reverse Communication

- A bi-directional Data Lane Module without High-Speed Reverse Communication shall include a Reverse Escape mode. The Master-side Lane Module includes a HS-TX, LP-TX, LP-RX, LP-CD, and CIL-MFXY.
- The Slave-side consists of a HS-RX, LP-RX, LP-TX, LP-CD and a CIL-SFXY.

4.6.2.2 Bi-directional Data Lane with High-Speed Reverse Communication

- A bi-directional Data Lane Module with High-Speed Reverse Communication shall include a Reverse
- Escape mode. The Master-side Lane Module includes a HS-TX, HS-RX, LP-TX, LP-RX, LP-CD, and
- 615 CIL-MRXX. The Slave-side consists of a HS-RX, HS-TX, LP-RX, LP-TX, LP-CD and a CIL-SRXX.
- This type of Lane Module may seem suitable for both Master and Slave side but because of the asymmetry
- of the Link one side shall be configured as Master and the other side as Slave.

618 **4.6.3** Clock Lane

- For the Clock Lane, only a limited set of line states is used. However, for Clock Transmission and Low-
- 620 Power mode the same TX and RX functions are required as for Unidirectional Data Lanes. A Clock Lane
- Module for the Master Side therefore contains a HS-TX, LP-TX, and a CIL-MCNN function, while the
- Slave Side Module includes a HS-RX, a LP-RX and a CIL-SCNN function.
- Note that the required functionality for a Clock Lane is similar, but not identical, to a Unidirectional Data
- Lane. The High-Speed DDR clock is transmitted in quadrature phase with Data signals instead of in-phase.
- 625 In addition, the Clock Lane Escape mode entry is different than that used for Data Lanes. Furthermore,
- since a Clock Lane only supports ULPS, an Escape mode entry code is not required.
- The internal clock signals with the appropriate phases are generated outside the PHY and delivered to the
- 628 individual Lanes. The realization of the Clock generation unit is outside the scope of this specification. The
- quality of the internal clock signals shall be sufficient to meet the timing requirement for the signals as
- specified in section 9.

631 4.7 Configurations

- This section outlines several common PHY configurations but should not be considered an exhaustive list
- of all possible arrangements. Any other configuration that does not violate the requirements of this
- document is also allowed.
- 635 In order to create an abstraction level, the Lane Modules are represented in this section by Lane Module
- 636 Symbols. Figure 5 shows the syntax and meaning of symbols.

Legend:

This	Other Options	Meaning		
		Supported Directions for High-Speed Data Transmission (Bi-directional or Unidirectional)		
		Clock Lane		
\longleftrightarrow	$\longrightarrow \longleftarrow$	Supported Directions for Escape mode excluding LP (Bi-directional or Forward Only)		
« »		Supported Directions for Escape mode including LPDT (Bi-directional, Forward Only or Reverse Only)		
→	←	Clock Direction (by definition from Master to Slave, must point in the same direction as the "Clock Only Lane" arrow)		
PPI		PPI: PHY-Protocol Interface		

637638

Figure 5 Lane Symbol Macros and Symbols Legend

For multiple Data Lanes a large variety of configurations is possible. Figure 6 shows an overview of symbolic representations for different Lane types. The acronyms mentioned for each Lane type represent the functionality of each module in a short way. This also sets the requirements for the CIL function inside each Module.

Figure 6 All Possible Data Lane Types and a Basic Unidirectional Clock Lane

4.7.1 Unidirectional Configurations

643

645

646

647 648

649

650

All unidirectional configurations are constructed with a Clock Lane and one or more Unidirectional Data Lanes. Two basic configurations can be distinguished: Single Data Lane and Multiple Data Lanes. For completeness a Dual-Simplex configuration is also shown. At the PHY level there is no difference between a Dual-Simplex configuration and two independent unidirectional configurations.

4.7.1.1 PHY Configuration with a Single Data Lane

This configuration includes one Clock Lane and one Unidirectional Data Lane from Master to Slave.
Communication is therefore only possible in the Forward direction. Figure 7 shows an example configuration without LPDT. This configuration requires four interconnect signal wires.

Figure 7 Unidirectional Single Data Lane Configuration

4.7.1.2 PHY Configuration with Multiple Data Lanes

This configuration includes one Clock Lane and multiple Unidirectional Data Lanes from Master to Slave. Bandwidth is extended, but communication is only possible in the Forward direction. The PHY specification does not require all Data Lanes to be active simultaneously. In fact, the Protocol layer controls all Data Lanes individually. Figure 8 shows an example of this configuration for three Data Lanes. If N is the number of Data Lanes, this configuration requires 2*(N+1) interconnect wires.

Figure 8 Unidirectional Multiple Data Lane Configuration without LPDT

4.7.1.3 Dual-Simplex (Two Directions with Unidirectional Lanes)

This case is the same as two independent (dual), unidirectional (simplex) Links: one for each direction. Each direction has its own Clock Lane and may contain either a single, or multiple, Data Lanes. Please note that the Master and Slave side for the two different directions are opposite. The PHY configuration for each direction shall comply with the D-PHY specifications. As both directions are conceptually independent, the bit rates for each direction do not have to match. However, for practical implementations, it is attractive to match rates and share some internal signals as long as both Links fulfill all specifications externally. Figure 9 shows an example of this dual PHY configuration.

Figure 9 Two Directions Using Two Independent Unidirectional PHYs without LPDT

4.7.2 Bi-Directional Half-Duplex Configurations

Bi-directional configurations consist of a Clock Lane and one or more bi-directional Data Lanes. Half-duplex operation enables bi-directional traffic across shared interconnect wires. This configuration saves wires compared to the Dual-Simplex configuration. However, time on the Link is shared between Forward and Reverse traffic and Link Turnaround. The High-Speed bit rate in the Reverse direction is, by definition, one-fourth of the bit rate in the Forward direction. LPDT can have similar rates in the Forward and Reverse directions. This configuration is especially useful for cases with asymmetrical data traffic.

4.7.2.1 PHY Configurations with a Single Data Lane

This configuration includes one Clock Lane and one of any kind of bi-directional Data Lane. This allows time-multiplexed data traffic in both Forward and Reverse directions. Figure 10 shows this configuration with a Data Lane that supports both High-Speed and Escape (without LPDT) communication in both directions. Other possibilities are that only one type of reverse communication is supported or LPDT is also included in one or both directions. All these configurations require four interconnect wires.

Figure 10 Bidirectional Single Data Lane Configuration

4.7.2.2 PHY Configurations with Multiple Data Lanes

This configuration includes one Clock Lane and multiple bi-directional Data Lanes. Communication is possible in both the Forward and Reverse direction for each individual Lane. The maximum available bandwidth scales with the number of Lanes for each direction. The PHY specification does not require all

Data Lanes to be active simultaneously or even to be operating in the same direction. In fact, the Protocol layer controls all Data Lanes individually. Figure 11 shows an example configuration with two Data Lanes.

696 If N is the number of Data Lanes, this configuration requires 2*(N+1) interconnect wires.

Figure 11 Bi-directional Multiple Data Lane Configuration

4.7.3 Mixed Data Lane Configurations

Instead of using only one Data Lane type, PHY configurations may combine different unidirectional and bi-directional Data Lane types. Figure 12 shows an example configuration with one bi-directional and one unidirectional Data Lane, both without LPDT.

Figure 12 Mixed Type Multiple Data Lane Configuration

704705

703

697 698

699

700

701

5 Global Operation

- 707 This section specifies operation of the D-PHY including signaling types, communication mechanisms,
- operating modes and coding schemes. Detailed specifications of the required electrical functions can be
- found in section 8.

710 5.1 Transmission Data Structure

- 711 During High-Speed, or Low-Power, transmission, the Link transports payload data provided by the
- 712 protocol layer to the other side of the Link. This section specifies the restrictions for the transmitted and
- 713 received payload data.

714 **5.1.1 Data Units**

- The minimum payload data unit shall be one byte. Data provided to a TX and taken from a RX on any
- 716 Lane shall be an integer number of bytes. This restriction holds for both High-Speed and Low-Power data
- 717 transmission in any direction.

718 5.1.2 Bit order, Serialization, and De-Serialization

- 719 For serial transmission, the data shall be serialized in the transmitting PHY and de-serialized in the
- 720 receiving PHY. The PHY assumes no particular meaning, value or order of incoming and outgoing data.

721 **5.1.3** Encoding and Decoding

- 722 Line coding is not required by this specification. However, if line coding is used, it shall be implemented
- according to Annex C.

724 5.1.4 Data Buffering

- 725 Data transmission takes place on protocol request. As soon as communication starts, the protocol layer at
- the transmit side shall provide valid data as long as it does not stop its transmission request. For Lanes that
- visual reason use line coding, control symbols can also be inserted into the transmission. The protocol on the receive side
- shall take the data as soon as delivered by the receiving PHY. The signaling concept, and therefore the
- PHY protocol handshake, does not allow data throttling. Any data buffering for this purpose shall be inside
- 730 the protocol layer.

731 5.2 Lane States and Line Levels

- 732 Transmitter functions determine the Lane state by driving certain Line levels. During normal operation
- either a HS-TX or a LP-TX is driving a Lane. A HS-TX always drives the Lane differentially. The two LP-
- 734 TX's drive the two Lines of a Lane independently and single-ended. This results in two possible High-
- 735 Speed Lane states and four possible Low-Power Lane states. The High-Speed Lane states are Differential-0
- 736 and Differential-1. The interpretation of Low-Power Lane states depends on the mode of operation. The
- T37 LP-Receivers shall always interpret both High-Speed differential states as LP-00.

740

741

742

743744

745

746

747

739 Figure 13 Line Levels

The Stop state has a very exclusive and central function. If the Line levels show a Stop state for the minimum required time, the PHY state machine shall return to the Stop state regardless of the previous state. This can be in RX or TX mode depending on the most recent operating direction. Table 2 lists all the states that can appear on a Lane during normal operation. Detailed specifications of electrical levels can be found in section 8.

All LP state periods shall be at least T_{LPX} in duration. State transitions shall be smooth and exclude glitch effects. A clock signal can be reconstructed by exclusive-ORing the Dp and Dn Lines. Ideally, the reconstructed clock has a duration of at least $2*T_{LPX}$, but may have a duty cycle other than 50% due to signal slope and trip levels effects.

748749

Table 2 Lane State Descriptions

State Code	Line Voltage Levels		High-Speed Low-Power		Power
	Dp-Line	Dn-Line	Burst Mode	Control Mode	Escape Mode
HS-0	HS Low	HS High	Differential-0	N/A, Note 1	N/A, Note 1
HS-1	HS High	HS Low	Differential-1	N/A, Note 1	N/A, Note 1
LP-00	LP Low	LP Low	N/A	Bridge	Space
LP-01	LP Low	LP High	N/A	HS-Rgst	Mark-0
LP-10	LP High	LP Low	N/A	LP-Rqst	Mark-1
LP-11	LP High	LP High	N/A	Stop	N/A, Note 2

750 Notes:

751 1. During High-Speed transmission the Low-Power Receivers observe LP-00 on the Lines.

752 2. If LP-11 occurs during Escape mode the Lane returns to Stop state (Control Mode LP-11)

753 Operating Modes: Control, High-Speed, and Escape

- 754 During normal operation a Data Lane will be either in Control or High-Speed mode. High-Speed Data
- 755 transmission happens in bursts and starts from and ends at a Stop state (LP-11), which is by definition in
- Control mode. The Lane is only in High-Speed mode during Data bursts. The sequence to enter High-756
- 757 Speed mode is: LP-11, LP-01, LP-00 at which point the Data Lane remains in High-Speed mode until a
- 758 LP-11 is received. The Escape mode can only be entered via a request within Control mode. The Data Lane
- 759 shall always exit Escape mode and return to Control mode after detection of a Stop state. If not in High-
- 760 Speed or Escape mode the Data Lane shall stay in Control mode. For Data Lanes and for Clock Lanes the
- Stop state serves as general standby state and may last for any period of time $> T_{LPX}$. Possible events 761
- starting from the Stop state are High-Speed Data Transmission request (LP-11, LP-01, LP-00), Escape
- 762
- 763 mode request (LP-11, LP-10, LP-00, LP-01, LP-00) or Turnaround request (LP-11, LP-10, LP-00, LP-10,
- 764 LP-00).

5.4 **High-Speed Data Transmission** 765

- 766 High-Speed Data Transmission occurs in bursts. To aid receiver synchronization, data bursts shall be
- 767 extended on the transmitter side with a leader and trailer sequence and shall be eliminated on the receiver
- 768 side. These leader and trailer sequences can therefore only be observed on the transmission lines.
- 769 Transmission starts from, and ends with, a Stop state. During the intermediate time between bursts a Data
- 770 Lane shall remain in the Stop state, unless a Turnaround or Escape request is presented on the Lane.
- 771 During a HS Data Burst the Clock Lane shall be in High-Speed mode, providing a DDR Clock to the Slave
- 772

773

780

783

5.4.1 **Burst Payload Data**

- 774 The payload data of a burst shall always represent an integer number of payload data bytes with a
- 775 minimum length of one byte. Note that for short bursts the Start and End overhead consumes much more
- 776 time than the actual transfer of the payload data. There is no maximum number of bytes implied by the
- 777 PHY. However, in the PHY there is no autonomous way of error recovery during a HS data burst and the
- 778 practical BER will not be zero. Therefore, it is important to consider for every individual protocol what the
- 779 best choice is for maximum burst length.

5.4.2 Start-of-Transmission

781 After a Transmit request, a Data Lane leaves the Stop state and prepares for High-Speed mode by means of 782 a Start-of-Transmission (SoT) procedure. Table 3 describes the sequence of events on TX and RX side.

Table 3 Start-of-Transmission Sequence

TX Side	RX Side		
Drives Stop state (LP-11)	Observes Stop state		
Drives HS-Rqst state (LP-01) for time T_{LPX}	Observes transition from LP-11 to LP-01 on the Lines		
Drives Bridge state (LP-00) for time T _{HS-PREPARE}	Observes transition form LP-01 to LP-00 on the Lines, enables Line Termination after time T _{D-TERM-EN}		
Enables High-Speed driver and disables Low-Power drivers simultaneously.			

TX Side	RX Side
Drives HS-0 for a time T _{HS-ZERO}	Enables HS-RX and waits for Time-out T _{HS-SETTLE} in order to neglect transition effects
	Starts looking for Leader-Sequence
Inserts the HS Sync-Sequence '00011101' beginning on a rising Clock edge	
	Synchronizes upon recognition of Leader Sequence '011101'
Continues to Transmit High-Speed payload data	
	Receives payload data

784 **5.4.3** End-of-Transmission

785

786 787

788

789

791

792

793

At the end of a Data Burst, a Data Lane leaves High-Speed Transmission mode and enters the Stop state by means of an End-of-Transmission (EoT) procedure. Table 4 shows a possible sequence of events during the EoT procedure. Note, EoT processing may be handled by the protocol or by the D-PHY.

Table 4 End-of-Transmission Sequence

TX Side	RX Side
Completes Transmission of payload data	Receives payload data
Toggles differential state immediately after last payload data bit and keeps that state for a time T_{HS} .	
Disables the HS-TX, enables the LP-TX, and drives Stop state (LP-11) for a time T _{HS-EXIT}	Detects the Lines leaving LP-00 state and entering Stop state (LP-11) and disables Termination
	Neglect bits of last period $T_{\text{HS-SKIP}}$ to hide transition effects
	Detect last transition in valid Data, determine last valid Data byte and skip trailer sequence

5.4.4 HS Data Transmission Burst

Figure 14 shows the sequence of events during the transmission of a Data Burst. Transmission can be started and ended independently for any Lane by the protocol. However, for most applications the Lanes will start synchronously but may end at different times due to an unequal amount of transmitted bytes per Lane. The handshake with the protocol-layer is described in Annex A.

Figure 14 High-Speed Data Transmission in Bursts

797 Figure 15 shows the state machine for High-Speed data transmission that is described in Table 5.

798 799

800

Figure 15 TX and RX State Machines for High-Speed Data Transmission

occur simultaneously.

Table 5 High-Speed Data Transmission State Machine Description

State	Line Condition/Stat e	Exit State	Exit Conditions
TX-Stop	Transmit LP-11	TX-HS-Rqst	On request of Protocol for High-Speed Transmission
TX-HS-Rqst	Transmit LP-01	TX-Bridge	End of timed interval T _{LPX}

State	Line Condition/Stat e	Exit State	Exit Conditions	
TX-HS-Prpr	Transmit LP-00	TX-HS-Go	End of timed interval T _{HS-PREPARE}	
TX-HS-Go	Transmit HS-0	TX-HS-Sync	End of timed interval T _{HS-ZERO}	
TX-HS-Sync	Transmit sequence	TX-HS-0	After Sync sequence if first payload data bit is 0	
	HS-00011101			
		TX-HS-1	After Sync sequence if first payload data bit is 1	
TX-HS-0	Transmit HS-0	TX-HS-0	Send another HS-0 bit after a HS-0 bit	
		TX-HS-1	Send a HS-1 bit after a HS-0 bit	
		Trail-HS-1	Last payload bit is HS-0, trailer sequence is HS-1	
TX-HS-1	Transmit HS-1	TX-HS-0	Send a HS-1 bit after a HS-0 bit	
		TX-HS-1	Send another HS-1 bit after a HS-1	
		Trail-HS-0	Last payload bit is HS-1, trailer sequence is HS-0	
Trail-HS-0	Transmit HS-0	TX-Stop	End of timed interval T _{HS-TRAIL}	
Trail-HS-1	Transmit HS-1	TX-Stop	End of timed interval T _{HS-TRAIL}	
RX-Stop	Receive LP-11	RX-HS-Rqst	Line transition to LP-01	
RX- HS-Rqst	Receive LP-01	RX-HS-Prpr	Line transition to LP-00	
RX-HS- Prpr	Receive LP-00	RX-HS-Term	End of timed interval T _{D-TERM-EN}	
RX-HS-Term	Receive LP-00	RX-HS-Sync	End of timed interval T _{HS-SETTLE}	
RX-HS-Sync	Receive HS sequence00000011101	RX-HS-0	Proper match found (any single bit error allowed) for Sync sequence in HS stream, the following bits are payload data.	
		RX-HS-1		
RX-HS-0	Receive HS-0	RX-HS-0	Receive payload data bit or trailer bit	
		RX-HS-1		
		RX-Stop	Line transition to LP-11	
RX-HS-1	Receive HS-1	RX-HS-0	Receive payload data bit or trailer bit	

State	Line Condition/Stat e	Exit State	Exit Conditions
		RX-HS-1	
		RX-Stop	Line transition to LP-11

801 Notes:

803

804

805

806

807

808

809

Stop states (TX-Stop, RX-Stop) have multiple valid exit states.

5.5 Bi-directional Data Lane Turnaround

The transmission direction of a bi-directional Data Lane can be swapped by means of a Link Turnaround procedure. This procedure enables information transfer in the opposite direction of the current direction. The procedure is the same for either a change from Forward-to-Reverse direction or Reverse-to-Forward direction. Notice that Master and Slave side shall not be changed by Turnaround. Link Turnaround shall be handled completely in Control mode. Table 6 lists the sequence of events during Turnaround.

Table 6 Link Turnaround Sequence

Initial TX Side = Final RX Side	Initial RX Side = Final TX Side
Drives Stop state (LP-11)	Observes Stop state
Drives LP-Rqst state (LP-10) for a time T _{LPX}	Observes transition from LP-11 to LP-10 states
Drives Bridge state (LP-00) for a time T _{LPX}	Observes transition from LP-10 to LP-00 states
Drives LP-10 for a time T_{LPX}	Observes transition from LP-00 to LP-10 states
Drives Bridge state (LP-00) for a time T_{TA-GO}	Observes the transition from LP-10 to Bridge state and waits for a time $T_{\text{TA-SURE}}$. After correct completion of this time-out this side knows it is in control.
	Drives Bridge state (LP-00) for a period T _{TA-GET}
Stops driving the Lines and observes the Line states with its LP-RX in order to see an acknowledgement.	
	Drives LP-10 for a period T_{LPX}
Observes LP-10 on the Lines, interprets this as acknowledge that the other side has indeed taken control. Waits for Stop state to complete Turnaround procedure.	
	Drives Stop state (LP-11) for a period T _{LPX}

Initial TX Side = Final RX Side	Initial RX Side = Final TX Side
Observes transition to Stop state (LP-11) on the Lines, interprets this as Turnaround completion acknowledgement, switches to normal LP receive mode and waits for further actions from the other side	

Figure 16 shows the Turnaround procedure graphically.

Figure 16 Turnaround Procedure

The Low-Power clock timing for both sides of the Link does not have to be the same, but may differ. However, the ratio between the Low-Power State Periods, T_{LPX} , is constrained to ensure proper Turnaround behavior. See Table 14 for the ratio of $T_{LPX(MASTER)}$ to $T_{LPX(SLAVE)}$.

The Turnaround procedure can be interrupted if the Lane is not yet driven into TX-LP-Yield by means of driving a Stop state. Driving the Stop state shall abort the Turnaround procedure and return the Lane to the Stop state. The PHY shall ensure against interruption of the procedure after the end of TX-TA-Rqst, RX-TA-Rqst, or TX-TA-GO. Once the PHY drives TX-LP-Yield, it shall not abort the Turnaround procedure. The Protocol may take appropriate action if it determines an error has occurred because the Turnaround procedure did not complete within a certain time. See section 6.3.5 for more details. Figure 17 shows the Turnaround state machine that is described in Table 7.

Note: Horizontally aligned states occur simultaneously.

823

824

825 Table 7

Table 7 Turnaround State Machine Description

Figure 17 Turnaround State Machine

State	Line Condition/State	Exit State	Exit Conditions
Any RX state	Any Received	RX-Stop	Observe LP-11 at Lines
TX-Stop	Transmit LP-11	TX-LP-Rqst	On request of Protocol for Turnaround
TX-LP-Rqst	Transmit LP-10	TX-LP-Yield	End of timed interval T _{LPX}
TX-LP-Yield	Transmit LP-00	TX-TA-Rqst	End of timed interval T _{LPX}
TX-TA-Rqst	Transmit LP-10	TX-TA-Go	End of timed interval T _{LPX}
TX-TA-Go	Transmit LP-00	RX-TA-Look	End of timed interval T _{TA-GO}
RX-TA-Look	Receive LP-00	RX-TA-Ack	Line transition to LP-10
RX-TA-Ack	Receive LP-10	RX-Stop	Line transition to LP-11

State	Line Condition/State	Exit State	Exit Conditions
RX-Stop	Receive LP-11	RX-LP-Rqst	Line transition to LP-10
RX-LP-Rqst	Receive LP-10	RX-LP-Yield	Line transition to LP-00
RX-LP-Yield	Receive LP-00	RX-TA-Rqst	Line transition to LP-10
RX-TA-Rqst	Receive LP-10	RX-TA-Wait	Line transition to LP-00
RX-TA-Wait	Receive LP-00	TX-TA-Get	End of timed interval T _{TA-SURE}
TX-TA-Get	Transmit LP-00	TX-TA-Ack	End of timed interval T _{TA-GET}
TX-TA-Ack	Transitt LP-10	TX-Stop	End of timed interval T _{LPX}

826 Notes:

829

- During RX-TA-Look, the protocol may cause the PHY to transition to TX-Stop.
- During High-Speed data transmission, Stop states (TX-Stop, RX-Stop) have multiple valid exit states.

5.6 Escape Mode

- 830 Escape mode is a special mode of operation for Data Lanes using Low-Power states. With this mode some
- 831 additional functionality becomes available. Escape mode operation shall be supported in the Forward
- 832 direction and is optional in the Reverse direction. If supported, Escape mode does not have to include all
- 833 available features.
- A Data Lane shall enter Escape mode via an Escape mode Entry procedure (LP-11, LP-10, LP-00, LP-01,
- LP-00). As soon as the final Bridge state (LP-00) is observed on the Lines the Lane shall enter Escape
- mode in Space state (LP-00). If an LP-11 is detected at any time before the final Bridge state (LP-00), the
- 837 Escape mode Entry procedure shall be aborted and the receive side shall wait for, or return to, the Stop
- 838 state.
- For Data Lanes, once Escape mode is entered, the transmitter shall send an 8-bit entry command to indicate
- 840 the requested action. Table 8 lists all currently available Escape mode commands and actions. All
- unassigned commands are reserved for future expansion.
- The Stop state shall be used to exit Escape mode and cannot occur during Escape mode operation because
- of the Spaced-One-Hot encoding. Stop state immediately returns the Lane to Control mode. If the entry
- command doesn't match a supported command, that particular Escape mode action shall be ignored and the
- receive side waits until the transmit side returns to the Stop state.
- The PHY in Escape mode shall apply Spaced-One-Hot bit encoding for asynchronous communication.
- Therefore, operation of a Data Lane in this mode does not depend on the Clock Lane. The complete Escape
- mode action for a Trigger-Reset command is shown in Figure 18.

Figure 18 Trigger-Reset Command in Escape Mode

851

Spaced-One-Hot coding means that each Mark state is interleaved with a Space state. Each symbol consists therefore of two parts: a One-Hot phase (Mark-0 or Mark-1) and a Space phase. The TX shall send Mark-0 followed by a Space to transmit a 'zero-bit' and it shall send a Mark-1 followed by a Space to transmit a 'one-bit'. A Mark that is not followed by a Space does not represent a bit. The last phase before exiting Escape mode with a Stop state shall be a Mark-1 state that is not part of the communicated bits, as it is not followed by a Space state. The Clock can be derived from the two Line signals, Dp and Dn, by means of an exclusive-OR function. The length of each individual LP state period shall be at least T_{LPX,MIN}.

857858

859

860

861

Table 8 Escape Entry Codes

Escape Mode Action	Command Type	Entry Command Pattern (first bit transmitted to last bit transmitted)
Low-Power Data Transmission	mode	11100001
Ultra-Low Power State	mode	00011110
Undefined-1	mode	10011111
Undefined-2	mode	11011110
Reset-Trigger [Remote Application]	Trigger	01100010
Unknown-3	Trigger	01011101
Unknown-4	Trigger	00100001
Unknown-5	Trigger	10100000

5.6.1 Remote Triggers

Trigger signaling is the mechanism to send a flag to the protocol at the receiving side, on request of the protocol on the transmitting side. This can be either in the Forward or Reverse direction depending on the

- direction of operation and available Escape mode functionality. Trigger signaling requires Escape mode capability and at least one matching Trigger Escape Entry Command on both sides of the interface.
- Figure 18 shows an example of an Escape mode Reset-Trigger action. The Lane enters Escape mode via
- the Escape mode Entry procedure. If the Entry Command Pattern matches the Reset-Trigger Command a
- Trigger is flagged to the protocol at the receive side via the logical PPI. Any bit received after a Trigger
- 867 Command but before the Lines go to Stop state shall be ignored. Therefore, dummy bytes can be
- concatenated in order to provide Clock information to the receive side.
- Note that Trigger signaling including Reset-Trigger is a generic messaging system. The Trigger commands
- do not impact the behavior of the PHY itself. Therefore, Triggers can be used for any purpose by the
- Protocol layer.

882

883

884

885

886

887

890

5.6.2 Low-Power Data Transmission

- 873 If the Escape mode Entry procedure is followed-up by the Entry Command for Low-Power Data
- Transmission (LPDT), Data can be communicated by the protocol at low speed, while the Lane remains in
- 875 Low-Power mode.
- Data shall be encoded on the lines with the same Spaced-One-Hot code as used for the Entry Commands.
- The data is self-clocked by the applied bit encoding and does not rely on the Clock Lane. The Lane can
- pause while using LPDT by maintaining a Space state on the Lines. A Stop state on the Lines stops LPDT,
- exits Escape mode, and switches the Lane to Control mode. The last phase before Stop state shall be a
- Mark-1 state, which does not represent a data-bit. Figure 19 shows a two-byte transmission with a pause
- period between the two bytes.

Figure 19 Two Data Byte Low-Power Data Transmission Example

Using LPDT, a Low-Power (Bit) Clock signal ($f_{MOMENTARY}$ <20MHz) provided to the transmit side is used to transmit data. Data reception is self-timed by the bit encoding. Therefore, a variable clock rate can be allowed. At the end of LPDT the Lane shall return to the Stop state.

5.6.3 Ultra-Low Power State

If the Ultra-Low Power State Entry Command is sent after an Escape mode Entry command, the Lane shall enter the Ultra-Low Power State (ULPS). This command shall be flagged to the receive side Protocol.

During this state, the Lines are in the Space state (LP-00). Ultra-Low Power State is exited by means of a

892

893

895896

897

Mark-1 state with a length T_{WAKEUP} followed by a Stop state. Annex A describes an example of an exit procedure and a procedure to control the length of time spent in the Mark-1 state.

5.6.4 Escape Mode State Machine

The state machine for Escape mode operation is shown in Figure 20 and described in Table 9.

Note: Horizontally aligned states occur simultaneously.

Figure 20 Escape Mode State Machine

Table 9 Escape Mode State Machine Description

State	Line Condition/State	Exit State	Exit Conditions
Any RX state	Any Received	RX-Stop	Observe LP-11 at Lines
TX-Stop	Transmit LP-11	TX-LP-Rqst	On request of Protocol for Esc mode (PPI)
TX-LP-Rqst	Transmit LP-10	TX-LP-Yield	After time T _{LPX}

State	Line Condition/State	Exit State	Exit Conditions
TX-LP-Yield	Transmit LP-00	TX-Esc-Rqst	After time T _{LPX}
TX-Esc-Rqst	Transmit LP-01	TX-Esc-Go	After time T _{LPX}
TX-Esc-Go	Transmit LP-00	TX-Esc-Cmd	After time T _{LPX}
TX-Esc-Cmd	Transmit sequence of 8-bit (16-line-states) One-	TX-Mark	Next driven state after time T_{LPX}
	Spaced-Hot encoded Entry Command	TX-ULPS	After Ultra-Low Power Command
		TX-LPDT	After Low-Power Data Transmission Command
TX-ULPS	Transmit LP-00	TX-Mark	End of ULP State on request of Protocol (PPI)
TX-LPDT	Transmit serialized, Spaced-One-Hot encoded payload data		After last transmitted data bit
TX-Mark	Mark-1	TX-Stop	Next driven state after time T _{LPX} , or T _{WAKEUP} if leaving ULP State
RX-Stop	Receive LP-11	RX-LP-Rqst	Line transition to LP-10
RX-LP-Rqst	Receive LP-10	RX-LP-Yield	Line transition to LP-00
RX-LP-Yield	Receive LP-00	RX-Esc-Rqst	Line transition to LP-01
RX-Esc-Rqst	Receive LP-01	RX-Esc-Go	Line transition to LP-00
RX-Esc-Go	Receive LP-00	RX-Esc-Cmd	Line transition out of LP-00
RX-Esc-Cmd	Receive sequence of 8- bit (16-line-states) One- Spaced-Hot encoded	RX-Wait	After Trigger and Unrecognized Commands
	Entry Command	RX-ULPS	After Ultra-Low Power Command
		RX-LPDT	After Low-Power Data Transmission Command
RX-ULPS	Receive LP-00	RX-Wait	Line transition to LP-10

State	Line Condition/State	Exit State	Exit Conditions
RX-LPDT	Receive serial, Spaced- One-Hot encoded payload data	RX-Stop	Line transition to LP-11 (Last state should be a Mark-1)
RX-Wait	Any, except LP-11	RX-Stop	Line transition to LP-11

898 Notes:

900

During High-Speed data transmission, Stop states (TX-Stop, RX-Stop) have multiple valid exit states.

5.7 High-Speed Clock Transmission

- 901 In High-Speed mode the Clock Lane provides a low-swing, differential DDR (half-rate) clock signal from Master to Slave for High-Speed Data Transmission. The Clock signal shall have quadrature-phase with
- 903 respect to a toggling bit sequence on a Data Lane in the Forward direction and a rising edge in the center of
- the first transmitted bit of a burst. Details of the Data-Clock relationship and timing specifications can be
- 905 found in section 9.
- A Clock Lane is similar to a Unidirectional Data Lane. However, there are some timing differences and a
- 907 Clock Lane transmits a High-Speed DDR clock signal instead of data bits. Furthermore, the Low-Power
- 908 mode functionality is defined differently for a Clock Lane than a Data Lane. A Clock Lane shall be
- 909 unidirectional and shall not include regular Escape mode functionality. Only ULPS shall be supported via a
- 910 special entry sequence using the LP-Rqst state. High-Speed Clock Transmission shall start from, and exit
- 911 to, a Stop state.
- The Clock Lane module is controlled by the Protocol via the Clock Lane PPI. The Protocol shall only stop
- the Clock Lane when there are no High-Speed transmissions active in any Data Lane.
- The High-Speed Data Transmission start-up time of a Data Lane is extended if the Clock Lane is in Low-
- Power mode. In that case the Clock Lane shall first return to High-Speed operation before the Transmit
- 916 Request can be handled.
- 917 The High-Speed Clock signal shall continue running for a period T_{CLK-POST} after the last Data Lane
- 918 switches to Low-Power mode and ends with a HS-0 state. The procedure for switching the Clock Lane to
- 919 Low-Power mode is given in Table 10. Note the Clock Burst always contains an even number of
- 920 transitions as it starts and ends with an HS-0 state. This implies that the clock provides transitions to
- sample an even number of bits on any associated Data Lanes. Clock periods shall be reliable and according
- to the HS timing specifications. The procedure to return the Clock Lane to High-Speed Clock Transmission
- 923 is given in Table 11. Both Clock Start and Stop procedures are shown in Figure 21.

Figure 21 Switching the Clock Lane between Clock Transmission and Low-Power Mode

Table 10 Procedure to Switch Clock Lane to Low-Power Mode

Master Side	Slave Side
Drives High-Speed Clock signal (Toggling HS-0/HS-1)	Receives High-Speed Clock signal (Toggling HS-0/HS-1)
Last Data Lane goes into Low-Power mode	
Continues to drives High-Speed Clock signal for a period T _{CLK-POST} and ends with HS-0 state	
Drives HS-0 for a time T _{CLK-TRAIL}	Detects absence of Clock transitions within a time $T_{\text{CLK-MISS}}$, disables HS-RX then waits for a transition to the Stop state
Disables the HS-TX, enables LP-TX, and drives Stop state (LP-11) for a time T _{HS-EXIT}	
	Detects the Lines transitions to LP-11, disables HS termination, and enters Stop state

928

Table 11 Procedure to Initiate High-Speed Clock Transmission

TX Side	RX Side
Drives Stop state (LP-11)	Observes Stop state
Drives HS-Req state (LP-01) for time T_{LPX}	Observes transition from LP-11 to LP-01 on the Lines
Drives Bridge state (LP-00) for time T _{CLK-PREPARE}	Observes transition from LP-01 to LP-00 on the Lines. Enables Line Termination after time $T_{\text{CLK-}}$ TERM-EN
Enables High-Speed driver and disables Low-Power drivers simultaneously. Drives HS-0 for a time $T_{\text{CLK-ZERO}}$.	Enables HS-RX and waits for Time-out $T_{\text{CLK-SETTLE}}$ in order to neglect transition effects
	Receives HS-signal
Drives the High-Speed Clock signal for time period T _{CLK-PRE} before any Data Lane starts up	Receives High-Speed Clock signal

The Clock Lane state machine is shown in Figure 22 and is described in Table 12.

Note: Horizontally aligned states occur simultaneously.

930931

Figure 22 High-Speed Clock Transmission State Machine

Table 12 Description of High-Speed Clock Transmission State Machine

State	Line Condition/State	Exit State	Exit Conditions
TX-Stop	Transmit LP-11	TX-HS-Rqst	On request of Protocol for High-Speed Transmission
TX-HS-Rqst	Transmit LP-01	TX-HS-Prpr	End of timed interval T _{LPX}
TX-HS-Prpr	Transmit LP-00	TX-HS-Go	End of timed interval T _{CLK-PREPARE}
TX-HS-Go	Transmit HS-0	TX-HS-1	End of timed interval T _{CLK-ZERO}
TX-HS-0	Transmit HS-0	TX-HS-1	Send a HS-1 phase after a HS-0 phase: DDR Clock

State	Line Condition/State	Exit State	Exit Conditions
TX-HS-1	Transmit HS-1	TX-HS-0	Send a HS-0 phase after a HS-1 phase: DDR Clock
		Trail-HS-0	On request to put Clock Lane in Low-Power
Trail-HS-0	Transmit HS-0	TX-Stop	End of timed interval T _{CLK-TRAIL}
RX-Stop	Receive LP-11	RX-HS-Rqst	Line transition to LP-01
RX-HS-Rqst	Receive LP-01	RX-HS-Prpr	Line transition to LP-00
RX-HS-Prpr	Receive LP-00	RX-HS-Term	End of timed interval T _{CLK-TERM-EN}
RX-HS-Term	Receive LP-00	RX-HS-Clk	End of timed interval T _{CLK-SETTLE}
RX-HS-Clk	Receive DDR-Q Clock signal	RX-Clk-End	Time-out T _{CLK-MISS} on the period on the Clock Lane without Clock signal transitions
RX-HS-End	Receive HS-0	RX-HS-Stop	Line transition to LP-11

933 Notes:

935

During High-Speed data transmission, Stop states (TX-Stop, RX-Stop) have multiple valid exit states.

5.8 Clock Lane Ultra-Low Power State

- Although a Clock Lane does not include regular Escape mode, the Clock Lane shall support the Ultra-Low
- 937 Power State.
- 938 A Clock Lane shall enter Ultra-Low Power State via a Clock Lane Ultra-Low Power State Entry
- procedure. In this procedure, starting from Stop state, the transmit side shall drive TX-ULPS-Rqst State
- 940 (LP-10) and then drive TX-ULPS State (LP-00). After this, the Clock Lane shall enter Ultra-Low Power
- 941 State. If an error occurs, and an LP-01 or LP-11 is detected immediately after the TX-ULPS-Rqst state, the
- 942 Ultra-Low Power State Entry procedure shall be aborted, and the receive side shall wait for, or return to,
- 943 the Stop state, respectively.
- The receiving PHY shall flag the appearance of ULP State to the receive side Protocol. During this state
- the Lines are in the ULP State (LP-00). Ultra-Low Power State is exited by means of a Mark-1 TX-ULPS-
- 946 Exit State with a length T_{WAKEUP} followed by a Stop State. Annex A describes an example of an exit
- 947 procedure that allows control of the length of time spent in the Mark-1 TX-ULPS-Exit State.

948 occur simultaneously.

Figure 23 Clock Lane Ultra-Low Power State State Machine

Table 13 Clock Lane Ultra-Low Power State State Machine Description

State	Line Condition/State	Exit State	Exit Conditions
TX-Stop	Transmit LP-11	TX-ULPS-Rqst	On request of Protocol for Ultra-Low Power State
TX-ULPS-Rqst	Transmit LP-10	TX-ULPS	End of timed interval T_{LPX}
TX-ULPS	Transmit LP-00	TX-ULPS-Exit	On request of Protocol to leave Ultra-Low Power State
TX-ULPS-Exit	Transmit LP-10	TX-Stop	End of timed interval T_{WAKEUP}
RX-Stop	Receive LP-11	RX-ULPS-Rqst	Line transition to LP-10
RX-ULPS-Rqst	Receive LP-10	RX-ULPS	Line transition to LP-00
RX-ULPS	Receive LP-00	RX-ULPS-Exit	Line transition to LP-10
RX-ULPS-Exit	Receive LP-10	RX-Stop	Line transition to LP-11

951 Notes:

949

950

952 During High-Speed data transmission, Stop states (TX-Stop, RX-Stop) have multiple valid exit states.

954

955

5.9 Global Operation Timing Parameters

Table 14 lists the ranges for all timing parameters used in this section. The values in the table assume a clock tolerance no worse than $\pm 10\%$ for implementation.

Table 14 Global Operation Timing Parameters

Parameter	Description	Min	Тур	Max	Unit	Notes
T _{CLK-MISS}	Detection time that the clock has stopped toggling			60	ns	1
T _{CLK-POST}	Time that the transmitter shall continue sending HS clock after the last associated Data Lane has transitioned to LP mode	60 ns + 52*UI			ns	
T _{CLK-PRE}	Time that the HS clock shall be driven prior to any associated Data Lane beginning the transition from LP to HS mode	8			UI	
T _{CLK-PREPARE}	Time to drive LP-00 to prepare for HS clock transmission	38		95	ns	
T _{CLK-TERM-EN}	Time to enable Clock Lane receiver line termination measured from when Dn crosses $V_{\rm IL,MAX}$	Time for Dn to reach V _{TERM-EN}		38	ns	
T _{CLK-TRAIL}	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60			ns	
$T_{\text{CLK-PREPARE}} + T_{\text{CLK-ZERO}}$	T _{CLK-PREPARE} + time for lead HS-0 drive period before starting Clock	300			ns	
T _{D-TERM-EN}	Time to enable Data Lane receiver line termination measured from when Dn crosses $V_{\rm IL,MAX}$.	Time for Dn to reach V _{TERM-EN}		35 ns + 4*UI		
$T_{\rm EOT}$	Time from start of $T_{\text{HS-TRAIL}}$ or $T_{\text{CLK-TRAIL}}$ period to start of LP-11 state			105 ns + n*12*UI		3
T _{HS-EXIT}	Time to drive LP-11 after HS burst	100			ns	

Parameter	Description	Min	Тур	Max	Unit	Notes
T _{HS-PREPARE}	Time to drive LP-00 to prepare for HS transmission	40 ns + 4*UI		85 ns + 6*UI	ns	
$T_{\text{HS-PREPARE}} + T_{\text{HS-ZERO}}$	$T_{\text{HS-PREPARE}}$ + Time to drive HS-0 before the Sync sequence	145 ns + 10*UI			ns	
T _{HS-SKIP}	Time-out at RX to ignore transition period of EoT	40		55 ns + 4*UI	ns	
T _{HS-TRAIL}	Time to drive flipped differential state after last payload data bit of a HS transmission burst	max(n*8*UI, 60 ns + n*4*UI)			ns	2, 3
T _{INIT}	Initialization period (PHY might calibrate)	100			μs	
T_{LPX}	Length of any Low-Power state period	50			ns	4
Ratio T _{LPX}	Ratio of $T_{LPX(MASTER)}/T_{LPX(SLAVE)}$ between Master and Slave side			3/2		
T _{TA-GET}	Time to drive LP-00 by new TX		5*T _{LPX}		ns	
T_{TA-GO}	Time to drive LP-00 after Turnaround Request	4	4*T _{LPX}	_	ns	
T _{TA-SURE}	Time-out before new TX side starts driving	T_{LPX}		2*T _{LPX}	ns	
T_{WAKEUP}	Recovery time from Ultra-Low Power State	1			ms	

956 Notes

- 1. The minimum value depends on the bit rate. Implementations should ensure proper operation for all the supported bit rates.
- 958 2. If a > b then max(a, b) = a otherwise max(a, b) = b
- Where n = 1 for Forward-direction HS mode and n = 4 for Reverse-direction HS mode
- 4. T_{LPX} is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.

5.10 System Power States

- Each Lane within a PHY configuration, that is powered and enabled, has potentially three different power
- 964 consumption levels: High-Speed Transmission mode, Low-Power mode and Ultra-Low Power State. For
- details on Ultra-Low Power State see sections 5.6.3 and 5.8. The transition between these modes shall be
- handled by the PHY.

962

967

981

982

983

984 985

5.11 Initialization

- After power-up, the Slave side PHY shall be initialized when the Master PHY drives a Stop State (LP-11)
- 969 for a period longer then T_{INIT} . The first Stop state longer than the specified T_{INIT} is called the Initialization
- 970 period. The Master PHY itself shall be initialized by a system or Protocol input signal (PPI). The Master
- side shall ensure that a Stop State longer than T_{INIT} does not occur on the Lines before the Master is
- 972 initialized. The Slave side shall ignore all Line states during an interval of unspecified length prior to the
- 1072 Initialized. The Stave side shall ignore all Line states during an interval of unspective length prior to
- 973 Initialization period. In multi-Lane configurations, all Lanes shall be initialized simultaneously.
- The D-PHY defines only the initialization mechanism and a minimum value for the received T_{INIT,SLAVE}.
- 975 Note that the actual values for this parameter and the transmitted Initialization Stop state length,
- 976 T_{INIT,MASTER}, are under Protocol control and can be specified at higher values in the protocol specification.
- Therefore, the transmitted and received initialization Stop state length shall be specified in the protocol
- 978 specification. However, the protocol specification shall not specify values for T_{INIT} that are outside the
- range specified in Table 14. For example, a protocol using D-PHY can specify a $T_{INIT,MASTER} >= 1$ ms and
- 980 $T_{INIT,SLAVE} = 500 \text{ to } 800 \text{ }\mu\text{s}.$

Table 15 Initialization States

State	Entry Conditions	Exit State	Exit Conditions	Line Levels
Master Off	Power-down	Master Initialization	Power-up	Any LP level except Stop States for periods >100us
Master Init	Power-up or Protocol request	TX-Stop	A First Stop state for a period longer than T _{INIT,MASTER} as specified by the Protocol	Any LP signaling sequence that ends with a long Initialization Stop state
Slave Off	Power-down	Any LP state	Power-up	Any
Slave Init	Power-up or Protocol request	RX-Stop	Observe Stop state at the inputs for a period T _{INIT,SLAVE} as specified by the Protocol	Any LP signaling sequence which ends with the first long Initialization Stop period

5.12 Calibration

There is no explicit calibration required by the D-PHY specification. If an implementation requires calibration, the calibration can take place off-line during the initialization period T_{INIT} while the lines are in Stop state. The calibration process should not be visible on the Lines. Any further detail on calibration is

outside the scope of this specification.

5.13 Global Operation Flow Diagram

All previously described aspects of operation, either including or excluding optional parts, are contained in Lane Modules. Figure 24 shows the operational flow diagram for a Data Lane Module. Within both TX and RX four main processes can be distinguished: High-Speed Transmission, Escape mode, Turnaround, and Initialization.

Figure 24 Data Lane Module State Diagram

992 993

987

988

989

990

995

996

997

998

999

1000

1001

1002

Figure 25 shows the state diagram for a Clock Lane Module. The Clock Lane Module has four major operational states: Init (of unspecified duration), Low-Power Stop state, Ultra-Low Power state, and High-Speed clock transmission. The figure also shows the transition states as described previously.

Figure 25 Clock Lane Module State Diagram

5.14 Data Rate Dependent Parameters (informative)

The high speed data transfer rate of the D-PHY may be programmable to values determined by a particular implementation. Any individual data transfer between SoT and EoT sequences must take place at a given, fixed rate. However, reprogramming the data rate of the D-PHY high speed transfer is allowed at

- initialization, before starting the exit from ULP state or in Stop state whenever the HS clock is not running.
- The method of data rate reprogramming is out of the scope of this document.
- Many time parameter values in this document are specified as the sum of a fixed time and a particular
- 1006 number of High-Speed UIs. The parameters may need to be recomputed if the data rate, and therefore the
- 1007 UI value, is changed. These parameters, with their allowed values, are listed in Table 14. For clarity, the
- parameter names and purposes are repeated here.

5.14.1 Parameters Containing Only UI Values

- 1010 T_{CLK-PRE} is the minimum number of High-Speed clock cycles the Master must send over the Clock Lane
- after it is restarted in HS mode and before any data transmission may begin. If a particular protocol at the
- 1012 Slave side requires more clock cycles then T_{CLK-PRE}, the Master side protocol should ensure that these are
- transmitted.

1009

1014

5.14.2 Parameters Containing Time and UI values

- 1015 Several parameters are specified as the sum of an explicit time and a number of UI intervals. The explicit
- 1016 time values, in general, are derived from the time needed to charge and discharge the interconnect to its
- 1017 specified values given the specified drive voltages and line termination values. As such, the explicit time
- 1018 values are not data rate dependent. It is conceivable to use the sum of an analog timer and a HS clock
- 1019 counter to ensure the implementation satisfies these parameters. If these explicit time values are
- implemented by counting HS clock cycles only, the count value is a function of the data rate and, therefore,
- must be changed when the data rate is changed.
- 1022 T_{D-TERM-EN} is the time to enable Data Lane receiver line termination measured from when Dn crosses
- $V_{IL,MAX}$
- 1024 T_{HS-PREPARE}, is the time to drive LP-00 before starting the HS transmission on a Data Lane.
- 1025 T_{HS-PREPARE} + T_{HS-ZERO,MIN} is the sum of the time to drive LP-00 in preparation for the start of HS
- transmission plus the time to send HS-0, i.e. turn on the line termination and drive the interconnect with the
- HS driver, prior to sending the SoT Sync sequence.
- 1028 T_{HS-TRAIL} is the time the transmitter must drive the flipped last data bit after sending the last payload data
- bit of a HS transmission burst. This time is required by the receiver to determine EoT.
- $T_{HS-SKIP}$ is the time the receiver must "back up" and skip data to ignore the transition period of the EoT
- sequence.

1036

- 1032 T_{CLK-POST,MIN} is the minimum time that the transmitter continues sending HS clocks after the last Data Lane
- has transitioned to LP mode following a HS transmission burst. If a particular receiver implementation
- requires more clock cycles than T_{CLK-POST,MIN} to finish reception, the transmitter must supply sufficient
- clocks to accomplish the reception.

5.14.3 Parameters Containing Only Time Values

- Several parameters are specified only as explicit time values. As in section 5.14.2, these explicit time
- values are typically derived from the time needed to charge and discharge the interconnect and are,
- therefore, not data rate dependent. It is conceivable to use an analog timer or a HS clock counter to ensure
- the implementation satisfies these parameters. However, if these time values are implemented by counting
- HS clock cycles only, the count value is a function of the data rate and, therefore, must be changed when
- the data rate is changed.

1043	The following parameters are based on time values alone:
1044	\bullet $T_{HS-SKIP,MIN}$
1045	• T _{CLK-MISS,MAX}
1046	• T _{CLK-TRAIL,MIN}
1047	• T _{CLK-TERM-EN}
1048	• T _{CLK-PREPARE}
1049	5.14.4 Parameters Containing Only Time Values That Are Not Data Rate Dependent
1050	The remaining parameters in Table 14 shall be complied with even when the High-Speed clock is off.
1051	These parameters include Low-Power and initialization state durations and LP signaling intervals. Though
1052	these parameters are not HS data rate dependent, some implementations of D-PHY may need to adjust
1053	these values when the data rate is changed.

Copyright @ 2007 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential. 60

6 Fault Detection

1055

1060

- There are three different mechanisms to detect malfunctioning of the Link. Bus contention and error
- detection functions are contained within the D-PHY. These functions should detect many typical faults.
- However, some faults cannot be detected within the D-PHY and require a protocol-level solution.
- Therefore, the third detection mechanism is a set of application specific watchdog timers.

6.1 Contention Detection

- 1061 If a bi-directional Lane Module and a Unidirectional Module are combined in one Lane, only
- unidirectional functionality is available. Because in this case the additional functionality of one bi-
- directional PHY Module cannot be reliably controlled from the limited functionality PHY side, the bi-
- directional features of the bi-directional Module shall be safely disabled. Otherwise in some cases deadlock
- may occur which can only be resolved with a system power-down and re-initialization procedure.
- During normal operation one and only one side of a Link shall drive a Lane at any given time except for
- 1067 certain transition periods. Due to errors or system malfunction a Lane may end up in an undesirable state,
- where the Lane is driven from two sides or not driven at all. This condition eventually results in a state
- 1069 conflict and is called Contention.
- All Lane Modules with LP bi-directionality shall include contention detection functions to detect the following contention conditions:
- Modules on both sides of the same line drive opposite LP levels against each other. In this case, the line voltage will settle to some value between V_{OL,MIN} and V_{OH,MAX}. Because V_{IL} is greater than V_{IHCD}, the settled value will always be either higher than V_{IHCD}, lower than V_{IL}, or both. Refer to section 8. This ensures that at least one side of the link, possibly both, will detect the fault condition.
- 1077 The Module at one side drives LP-high while the other side drives HS-low on the same Line. In this case, the line voltage will settle to a value lower than V_{IH} . The contention shall be detected at the side that is transmitting the LP-high.
- 1080 The first condition can be detected by the combination of LP-CD and LP-RX functions. The result is
- 1081 checked at the end of every Low-Power bit period when the signals are optimally settled. The LP-RX
- 1082 function should be able to detect the second contention condition. Details on the LP-CD and LP-RX
- electrical specifications can be found in section 8.
- After contention has been detected, the Protocol shall take proper measures to resolve the situation.

6.2 Sequence Error Detection

- 1086 If for any reason the Lane signal is corrupted the receiving PHY may detect signal sequence errors. Errors
- detected inside the PHY may be communicated to the Protocol via the PPI. This kind of error detection is
- 1088 optional, but strongly recommended as it enhances reliability. The following sequence errors can be
- 1089 distinguished:

- 1090 SoT Error
- SoT Sync Error
- 1092 EoT Sync Error
- Escape Entry Command Error

- LP Transmission Sync Error
- 1095 False Control Error

1096 **6.2.1 SoT Error**

- 1097 The Leader sequence for Start of High-Speed Transmission is fault tolerant for any single-bit error and
- some multi-bit errors. Therefore, the synchronization may be usable, but confidence in the payload data is
- lower. If this situation occurs an SoT Error is indicated.

1100 **6.2.2 SoT Sync Error**

- 1101 If the SoT Leader sequence is corrupted in a way that proper synchronization cannot be expected, a SoT
- 1102 Sync Error is indicated.

1103 **6.2.3 EoT Sync Error**

- The EoT Sync Error is indicated when the last bit of a transmission does not match a byte boundary. This
- error can only be indicated in case of EoT processing on detection of LP-11.

1106 **6.2.4 Escape Mode Entry Command Error**

- 1107 If the receiving Lane Module does not recognize the received Entry Command for Escape mode an Escape
- 1108 mode Entry Command Error is indicated.

1109 **6.2.5 LP Transmission Sync Error**

- 1110 At the end of a Low-Power Data transmission procedure, if data is not synchronized to a Byte boundary an
- 1111 Escape Sync Error signal is indicated.

1112 **6.2.6 False Control Error**

- 1113 If a LP-Rost (LP-10) is not followed by the remainder of a valid Escape or Turnaround sequence, a False
- 1114 Control Error is indicated. This error is also indicated if a HS-Rqst (LP-01) is not correctly followed by a
- 1115 Bridge State (LP-00).

1116 **6.3 Protocol Watchdog Timers (informative)**

- 1117 It is not possible for the PHY to detect all fault cases. Therefore, additional protocol-level time-out
- 1118 mechanisms are necessary in order to limit the maximum duration of certain modes and states.

1119 **6.3.1 HS RX Timeout**

- In HS RX mode if no EoT is received within a certain period the protocol should time-out. The timeout
- period can be protocol specific.

1122 **6.3.2 HS TX Timeout**

The maximum transmission length in HS TX is bounded. The timeout period is protocol specific.

1124 **6.3.3 Escape Mode Timeout**

- 1125 A device may timeout during Escape mode. The timeout should be greater than the Escape mode Silence
- Limit of the other device. The timeout period is protocol specific.

1127 **6.3.4 Escape Mode Silence Timeout**

- A device may have a bounded length for LP TX-00 during Escape mode, after which the other device may
- 1129 timeout. The timeout period is protocol specific. For example, a display module should have an Escape
- mode Silence Limit, after which the host processor can timeout.

1131 **6.3.5 Turnaround Errors**

- 1132 A Turnaround procedure always starts from a Stop State. The procedure begins with a sequence of Low-
- Power States ending with a Bridge State (LP-00) during which drive sides are swapped. The procedure is
- finalized by the response including a Turn State followed by a Stop State driven from the other side. If the
- actual sequence of events violates the normal Turnaround procedure a "False Control Error" may be
- flagged to the Protocol. See section 6.2.6. The Turn State response serves as an acknowledgement for the
- 1137 correctly completed Turnaround procedure. If no acknowledgement is observed within a certain time
- period the Protocol should time-out and take appropriate action. This period should be larger than the
- 1139 maximum possible Turnaround time for a particular system. There is no time-out for this condition in the
- 1140 PHY.

Interconnect and Lane Configuration

1143 The interconnect between transmitter and receiver carries all signals used in D-PHY communication. This 1144 includes both high speed, low voltage signaling I/O technology and low speed, low power signaling for 1145 control functions. For this reason, the physical connection shall be implemented by means of balanced,

1146

differential, point-to-point transmission lines referenced to ground. The total interconnect may consist of 1147 several cascaded transmission line segments, such as, printed circuit boards, flex-foils, and cable

1148 connections.

1149 1150

1151

1161

1171

1142

Figure 26 Point-to-point Interconnect

7.1 Lane Configuration

- 1152 The complete physical connection of a Lane consists of a transmitter (TX), and/or receiver (RX) at each
- 1153 side, with some Transmission-Line-Interconnect-Structure (TLIS) in between. The overall Lane
- 1154 performance is therefore determined by the combination of these three elements. The split between these
- elements is defined to be on the module (IC) pins. This section defines both the required performance of 1155
- 1156 the Transmission-Line-Interconnect-Structure for the signal routing as well as the I/O-cell Reflection
- 1157 properties of TX and RX. This way the correct overall operation of the Lane can be ensured.
- With respect to physical dimensions, the Transmission-Line-Interconnect-Structure will typically be the 1158
- 1159 largest part. Besides printed circuit board and flex-foil traces, this may also includes elements such as vias
- 1160 and connectors.

7.2 **Boundary Conditions**

- 1162 The reference characteristic impedance level is 100 Ohm differential, 50 Ohm single-ended per Line, and
- 1163 25 Ohm common-mode for both Lines together. The 50 Ohm impedance level for single-ended operation is
- 1164 also convenient for test and characterization purposes.
- 1165 This typical impedance level is required for all three parts of the Lane: TX, TLIS, and RX. The tolerances
- 1166 for characteristic impedances of the interconnect and the tolerance on line termination impedances for TX
- 1167 and RX are specified by means of S-parameter templates over the whole operating frequency range.
- 1168 The differential channel is also used for LP single-ended signaling. Therefore, it is strongly recommended
- 1169 to apply only very loosely coupled differential transmission lines.
- 1170 The flight time for signals across the interconnect shall not exceed two nanoseconds.

7.3 **Definitions**

- The frequency 'fh' is the highest fundamental frequency for data transmission and is equal to 1172
- 1/(2*UI_{INST MIN}). Implementers shall specify a value UI_{INST MIN} that represents the minimum instantaneous 1173
- 1174 UI possible within a high speed data transfer for a given implementation.
- The frequency 'fh_{MAX}' is a device specification and indicates the maximum supported fh for a particular 1175
- 1176 device.

- 1177 The frequency 'f_{LP,MAX}' is the maximum toggle frequency for Low-Power mode.
- RF interference frequencies are denoted by 'f_{INT}', where f_{INT,MIN} defines the lower bound for the band of
- relevant RF interferers.

1198

1199 1200

- The frequency f_{MAX} is defined by the maximum of $(1/5t_{F,MIN}, 1/5t_{R,MIN})$, where t_R and t_F are the rise and fall
- times of the High-Speed signaling. These parameters are specified in section 8. For the fastest allowed D-
- 1182 PHY signals f_{MAX} is 1.33GHz.

7.4 S-parameter Specifications

- The required performance of the physical connection is specified by means of S-parameter requirements
- for TX, TLIS, and RX, for TLIS by mixed-mode, 4-port parameters, and for RX and TX by mixed-mode,
- reflection (return loss) parameters. The S-parameter limits are defined over the whole operating frequency
- range by means of templates.
- The differential transmission properties are most relevant and therefore this specification uses mixed-mode
- parameters. As the performance needs depend on the targeted bit rates, most S-parameter requirements are
- specified on a normalized frequency axis with respect to bit rate. Only the parameters that are important for
- the suppression of external (RF) interference are specified on an absolute frequency scale. This scale
- extends up to f_{MAX} . Beyond this frequency the circuitry itself shall suppress the high-frequency interference
- signals sufficiently.
- Only the overall performance of the TLIS and the maximum reflection of RX and TX are specified. This
- fully specifies the signal behavior at the RX/TX-module pins. The subdivision of losses, reflections and
- mode-conversion budget to individual physical fractions of the TLIS is left to the system designer. Annex
- B includes some rules of thumb for system design and signal routing guidelines.

7.5 Characterization Conditions

All S-parameter definitions are based on a 50 Ω impedance reference level. The characterization can be done with a measurement system, as shown in Figure 27.

Figure 27 Set-up for S-parameter Characterization of RX, TX and TLIS

1210

12131214

1215

1216

The syntax of S-parameters is S[measured-mode][driven-mode][measured-port][driven-port]. Examples: Sdd21of TLIS is the differential signal at port 2 due to a differential signal driven at port 1; Sdc22 is the measured differential reflected signal at port 2 due to a common signal driven at port 2.

7.6 Interconnect Specifications

The Transmission-Line Signal-Routing (TLSR) is specified by means of mixed-mode 4-port S-parameter behavior templates over the frequency range. This includes the differential and common-mode, insertion and return losses, and mode-conversion limitations.

7.6.1 Differential Characteristics

The differential transfer behavior (insertion loss) of the TLIS is specified by the Sdd21 and Sdd12 template shown in Figure 28, where $i \neq j$.

Figure 28 Template for Differential Insertion Losses

The differential reflection for both ports of the TLIS is specified by Sdd11 and Sdd22, and should match the template shown in Figure 29.

Figure 29 Template for Differential Reflection at Both Ports

7.6.2 Common-mode Characteristics

- 1220 The common-mode insertion loss is implicitly specified by means of the differential insertion loss and the
- 1221 Intra-Lane cross coupling. The requirements for common-mode insertion loss are therefore equal to the
- differential requirements.
- 1223 The common-mode reflection coefficients Scc11 and Scc22 should both be below -20 dB at frequencies up
- 1224 to $f_{LP,MAX}$, below -15dB at fh and -9 dB at f_{MAX} , similar to the differential requirements shown in Figure
- 1225 29.

1226

1232

1239

1219

7.6.3 Intra-Lane Cross-Coupling

- 1227 The two lines applied as a differential pair during HS transmission are also used individually for single-
- 1228 ended signaling during Low-Power mode. Therefore, the coupling between the two wires shall be
- restricted in order to limit single-ended cross coupling. The coupling between the two wires is defined as
- the difference of the S-parameters Scc21 and Sdd21 or Scc12 and Sdd12. In either case, the difference
- shall not exceed –20 dB for frequencies up to 10*f_{LP,MAX}.

7.6.4 Mode-Conversion Limits

- All mixed-mode, 4-port S-parameters for differential to common-mode conversion, and vice-versa, shall
- not exceed –26 dB for frequencies below f_{MAX}. This includes Sdc12, Scd12, Scd12, Sdc21, Scd11, Sdc11,
- 1235 Scd22, and Sdc22.

1236 7.6.5 Inter-Lane Cross-Coupling

The common-mode and differential inter-Lane cross coupling between Lanes (clock and data) shall meet

the requirements as shown in Figure 30 and Figure 31, respectively.

1240 Figure 30 Inter-Lane Common-mode Cross-Coupling Template

1243

1244 1245

1247

1248 1249

1250

1251

1252

1253

1254

Figure 31 Inter-Lane Differential Cross-Coupling Template

7.6.6 Inter-Lane Static Skew

The difference in signal delay between any Data Lane and the Clock Lane shall be less than UI/50 for all frequencies up to, and including, fh.

$$\frac{\left|Sdd12\text{data}(\phi) - Sdd12\text{clock}(\phi)\right|}{\omega} < \frac{UI}{50}$$

7.7 Driver and Receiver Characteristics

Besides the TLIS the Lane consists of two RX-TX modules, one at each side. This paragraph specifies the reflection behavior (return loss) of these RX-TX modules in HS-mode. The signaling characteristics of all possible functional blocks inside the RX-TX modules can be found in section 8. The low-frequency impedance range for line terminations at Transmitter and Receiver is 80-125Ohm.

7.7.1 Differential Characteristics

The differential reflection of a Lane Module in High-Speed TX or RX mode is specified by the template shown in Figure 32.

Figure 32 Differential Reflection Template for Lane Modules

7.7.2 Common-Mode Characteristics

The common-mode return loss specification is different for a High-Speed TX and RX mode, because the RX is not DC terminated to ground. For an active TX the common-mode reflection shall be less than -6dB over the whole frequency range up to f_{MAX} . For an RX reflection shall be less than -6dB for the frequency range $f_{INT,MIN} - f_{MAX}$. Assuming a high DC common-mode impedance this implies a sufficiently large capacitor at the termination center tap. The minimum value allows integration. While the common-mode termination is especially important for reduced influence of RF interferers the RX requirement limits reflection for the most relevant frequency band.

Figure 33 Template for RX Common-Mode Return Loss

7.7.3 Mode-Conversion Limits

The differential to common-mode conversion limits of TX and RX shall be -26dB up to f_{MAX} .

7.7.4 Inter-Lane Matching

The return loss difference between multiple Lanes shall be less than -26dB for all frequencies up to f_{MAX} .

1271

1269

1270

1257

1258

1259

1260

1261

1262

1263

1264

12651266

1273

1274

1275

1276

1277

1278

1279

1282

1283

1284

8 Electrical Characteristics

A PHY may contain the following electrical functions: a High-Speed Transmitter (HS-TX), a High-Speed Receiver (HS-RX), a Low-Power Transmitter (LP-TX), a Low-Power Receiver (LP-RX), and a Low-Power Contention Detector (LP-CD). A PHY does not need to contain all electrical functions, only the functions that are required for a particular PHY configuration. The required functions for each configuration are specified in section 4. All electrical functions included in any PHY shall meet the specifications in this section. Figure 34 shows the complete set of electrical functions required for a fully featured PHY transceiver.

1280 Figure 34 Electrical Functions of a Fully Fea

Figure 34 Electrical Functions of a Fully Featured D-PHY Transceiver

The HS transmitter and HS receiver are used for the transmission of the HS data and clock signals. The HS transmitter and receiver utilize low-voltage differential signaling for signal transmission. The HS receiver contains a switchable parallel termination.

- The LP transmitter and LP receiver serve as a low power signaling mechanism. The LP transmitter is a push-pull driver and the LP receiver is an un-terminated, single-ended receiver.
- The signal levels are different for differential HS mode and single-ended LP mode. Figure 35 shows both the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below the LP low-level input threshold such that LP receiver always detects low on HS signals.
- All absolute voltage levels are relative to the ground voltage at the transmit side.

Figure 35 D-PHY Signaling Levels

A Lane switches between Low-Power and High-Speed mode during normal operation. Bidirectional Lanes can also switch communication direction. The change of operating mode or direction requires enabling and disabling of certain electrical functions. These enable and disable events shall not cause glitches on the Lines that would result in a detection of an incorrect signal level. Therefore, all mode and direction changes shall be smooth to always ensure a proper detection of the Line signals.

8.1 Driver Characteristics

8.1.1 High-Speed Transmitter

A HS differential signal driven on the Dp and Dn pins is generated by a differential output driver. For reference, Dp is considered as the positive side and Dn as the negative side. The Lane state is called Differential-1 (HS-1) when the potential on Dp is higher than the potential of Dn. The Lane state is called Differential-0 (HS-0), when the potential on Dp is lower than the potential of Dn. Figure 36 shows an example implementation of a HS transmitter.

Note, this section uses Dp and Dn to reference the pins of a Lane Module regardless of whether the pins belong to a Clock Lane Module or a Data Lane Module.

Figure 36 Example HS Transmitter

The differential output voltage V_{OD} is defined as the difference of the voltages V_{DP} and V_{DN} at the Dp and Dn pins, respectively.

$$V_{OD} = V_{DP} - V_{DN}$$

- 1313 The output voltages V_{DP} and V_{DN} at the Dp and Dn pins shall not exceed the High-Speed output high
- voltage V_{OHHS} . V_{OLHS} is the High-Speed output, low voltage on Dp and Dn and is determined by V_{OD} and
- V_{CMTX} . The High-Speed V_{OUT} is bounded by the minimum value of V_{OLHS} and the maximum value of
- V_{OHHS} .
- The common-mode voltage V_{CMTX} is defined as the arithmetic mean value of the voltages at the Dp and Dn
- 1318 pins:

$$V_{CMTX} = \frac{V_{DP} + V_{DN}}{2}$$

- $V_{\rm OD}$ and $V_{\rm CMTX}$ are graphically shown in Figure 37 for ideal HS signals. Figure 37 shows single-ended HS
- signals with the possible kinds of distortion of the differential output and common-mode voltages. V_{OD} and
- 1322 V_{CMTX} may be slightly different for driving a Differential-1 or a Differential-0 on the pins. The output
- differential voltage mismatch ΔV_{OD} is defined as the difference of the absolute values of the differential
- output voltage in the Differential-1 state $V_{OD(1)}$ and the differential output voltage in the Differential-0 state
- $V_{OD(0)}$. This is expressed by:

1326
$$\Delta V_{OD} = |V_{OD(1)}| - |V_{OD(0)}|$$

- 1327 If $V_{CMTX(1)}$ and $V_{CMTX(0)}$ are the common-mode voltages for static Differential-1 and Differential-0 states
- respectively, then the common-mode reference voltage is defined by:

$$V_{CMTX,REF} = \frac{V_{CMTX(1)} + V_{CMTX(0)}}{2}$$

1330 The transient common-mode voltage variation is defined by:

1331
$$\Delta V_{CMTX}(t) = V_{CMTX}(t) - V_{CMTX,REF}$$

The static common-mode voltage mismatch between the Differential-1 and Differential-0 state is given by:

1333
$$\Delta V_{CMTX(1,0)} = \frac{V_{CMTX(1)} - V_{CMTX(0)}}{2}$$

The transmitter shall send data such that the high frequency and low frequency common-mode voltage variations do not exceed $\Delta V_{CMTX(HF)}$ and $\Delta V_{CMTX(LF)}$, respectively. An example test circuit for the measurement of V_{OD} and V_{CMTX} is shown in Figure 39.

Ideal Single-Ended High Speed Signals

1337

1334

1338

Figure 37 Ideal Single-ended and Resulting Differential HS Signals

Static △V_{CMTX} (SE HS Signals)

Dynamic ∆V_{CMTX} (SE HS Signals)

Figure 38 Possible $V_{\text{\tiny CMTX}}$ and $V_{\text{\tiny OD}}$ Distortions of the Single-ended HS Signals

Figure 39 Example Circuit for V_{CMTX} and V_{OD} Measurements

The single-ended output impedance of the transmitter at both the Dp and Dn pins is denoted by Z_{OS} . ΔZ_{OS} is the mismatch of the single ended output impedances at the Dp and Dn pins, denoted by Z_{OSDP} and Z_{OSDP} and Z_{OSDP} and the average of those impedances:

$$\Delta Z_{OS} = 2 \frac{\left| Z_{OSDP} - Z_{OSDN} \right|}{Z_{OSDP} + Z_{OSDN}}$$

1347

13411342

1343 1344

1345

1346

1339

- The output impedance Z_{OS} and the output impedance mismatch ΔZ_{OS} shall be compliant with Table 16 for both the Differential-0 and Differential-1 states for all allowed loading conditions. It is recommended that implementations keep the output impedance during state transitions as close as possible to the steady state value. The output impedance Z_{OS} can be determined by injecting an AC current into the Dp and Dn pins and measuring the peak-to-peak voltage amplitude.
- The rise and fall times, t_R and t_F , are defined as the transition time between 20% and 80% of the full HS signal swing. The driver shall meet the t_R and t_F specifications for all allowable Z_{ID} . The specifications for 1355 TX common-mode return loss and the TX differential mode return loss can be found in section 7.
- 1356 It is recommended that a High-Speed transmitter that is directly terminated at its pins should not generate any overshoot in order to minimize EMI.

Table 16 HS Transmitter DC Specifications

Parameter	Description	Min	Nom	Max	Units	Notes
V _{CMTX}	HS transmit static common- mode voltage	150	200	250	mV	1
$ \Delta V_{CMTX(1,0)} $	V _{CMTX} mismatch when output is Differential-1 or Differential-0			5	mV	2
V _{OD}	HS transmit differential voltage	140	200	270	mV	1
$ \Delta V_{OD} $	V _{OD} mismatch when output is Differential-1 or Differential-0			10	mV	2
V _{OHHS}	HS output high voltage			360	mV	1
Z _{OS}	Single ended output impedance	40	50	62.5	Ω	
ΔZ_{OS}	Single ended output impedance mismatch			10	%	

1359 Notes:

- 1360 1. Value when driving into load impedance anywhere in the Z_{ID} range.
- 1361 2. It is recommended the implementer minimize ΔV_{OD} and $\Delta V_{CMTX(1,0)}$ in order to minimize radiation and optimize signal integrity.

Table 17 HS Transmitter AC Specifications

Parameter	Description	Min	Nom	Max	Units	Notes
$\Delta V_{\text{CMTX(HF)}}$	Common-level variations above 450MHz			15	mV_{RMS}	
$\Delta V_{CMTX(LF)}$	Common-level variation between 50-450MHz			25	mV_{PEAK}	
t_R and t_F	20%-80% rise time and fall time			0.3	UI	1
		150			ps	

1364 Notes:

1366

1367

1368 1369

1370

1365 1. UI is equal to 1/(2*fh). See section 7.3 for the definition of fh.

8.1.2 Low-Power Transmitter

The Low-Power transmitter shall be a slew-rate controlled push-pull driver. It is used for driving the Lines in all Low-Power operating modes It is therefore important that the static power consumption of a LP transmitter be as low as possible. The slew-rate of signal transitions is bounded in order to keep EMI low. An example of a LP transmitter is shown in Figure 40.

13711372

1373

1374 1375

1376

1377 1378

Figure 40 Example LP Transmitter

 V_{OL} is the Thevenin output, low-level voltage in the LP transmit mode. This is the voltage at an unloaded pad pin in the low-level state. V_{OH} is the Thevenin output, high-level voltage in the high-level state, when the pad pin is not loaded. The LP transmitter shall not drive the pad pin potential statically beyond the maximum value of V_{OH} . The pull-up and pull-down output impedances of LP transmitters shall be as described in Figure 41 and Figure 42, respectively. The circuit for measuring V_{OL} and V_{OH} is shown in Figure 43.

Figure 41 V-I Characteristic for LP Transmitter Driving Logic High

1381 1382

Figure 42 V-I Characteristic for LP Transmitter Driving Logic Low

Figure 43 LP Transmitter V-I Characteristic Measurement Setup

The impedance Z_{OLP} is defined by:

$$Z_{OLP} = \left| \frac{V_{THEVENIN} - V_{PIN}}{I_{OUT}} \right|$$

The times T_{RLP} and T_{FLP} are the 15%-85% rise and fall times, respectively, of the output signal voltage, when the LP transmitter is driving a capacitive load C_{LOAD} . The 15%-85% levels are relative to the fully settled V_{OH} and V_{OL} voltages. The slew rate $\delta V/\delta t_{SR}$ is the derivative of the LP transmitter output signal voltage over time. The slew rate specification shall be met for the 15%-85% range while driving a capacitive load, C_{LOAD} . See Table 19 and Figure 44 for slew rate specifications. The intention of specifying a maximum slew rate value is to limit EMI. Rather than specifying a minimum slew rate value, maximum rise and fall times are specified, which guarantees that timing requirements are met.

Table 18 LP Transmitter DC Specifications

Parameter	Description	Min	Nom	Max	Units	Notes
$ m V_{OH}$	Thevenin output high level	1.1	1.2	1.3	V	
V_{OL}	Thevenin output low level	-50		50	mV	
Z _{OLP}	Output impedance of LP transmitter	110			Ω	1, 2

1395 Notes:

1397

1398

1387

1388

1389

1390

1391

1392

1393

1394

1. See Figure 41 and Figure 42.

 Though no maximum value for Z_{OLP} is specified, the LP transmitter output impedance shall ensure the T_{RLP}/T_{FLP} specification is met.

Table 19 LP Transmitter AC Specifications

Parameter	Descr	ription	Min	Nom	Max	Units	Notes
T _{RLP} /T _{FLP}	15%-85% rise ti	15%-85% rise time and fall time			25	ns	1
T_{REOT}	30%-85% rise ti	me and fall time			35	ns	1, 5, 6
T _{LP-PULSE-TX}	Pulse width of the LP exclusive-OR clock	First LP exclusive-OR clock pulse after Stop state or last pulse before Stop state	40			ns	4
		All other pulses	20			ns	4
T _{LP-PER-TX}	Period of the LP exclusive-OR clock		90			ns	
	Slew rate @ C _{LC}	$_{\rm DAD} = 0 \rm pF$	30		500	mV/ns	1, 2, 3, 7
	Slew rate @ C _{LC}	$p_{AD} = 5pF$	30		200	mV/ns	1, 2, 3, 7
$\delta V/\delta t_{SR}$	Slew rate @ C _{LC}	$p_{AD} = 20 pF$	30		150	mV/ns	1, 2, 3, 7
	Slew rate @ C _{LC}	$p_{AD} = 70 pF$	30		100	mV/ns	1, 2, 3, 7
C_{LOAD}	Load capacitane	e	0		70	pF	1

1400 Notes:

1404

1405

1406

1407

1408

1401 1. C_{LOAD} includes the low-frequency equivalent transmission line capacitance. The capacitance of TX and RX 1402 are assumed to always be <10pF. The distributed line capacitance can be up to 50pF for a transmission line with 2ns delay.

2. When the output voltage is between 15% and below 85% of the fully settled LP signal levels.

3. Measured as average across any 50 mV segment of the output signal transition.

- 4. This parameter value can be lower then T_{LPX} due to differences in rise vs. fall signal slopes and trip levels and mismatches between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11) is glitch behavior as described in section 8.2.2.
- The rise-time of T_{REOT} starts from the HS common-level at the moment the differential amplitude drops below 70mV, due to stopping the differential drive.
- 1411 6. With an additional load capacitance CCM between 0-60pF on the termination center tap at RX side of the Lane

14201421

1423

This value represents a corner point in a piecewise linear curve. See Figure 44.

There are minimum requirements on the duration of each LP state. To determine the duration of the LP state, the Dp and Dn signal lines are each compared to a common trip-level. The result of these comparisons is then exclusive-ORed to produce a single pulse train. The output of this "exclusive-OR clock" can then be used to find the minimum pulse width output of an LP transmitter.

Using a common trip-level in the range $[V_{IL,MAX} + V_{OL,MIN}, V_{IH,MIN} + V_{OL,MAX}]$, the exclusive-OR clock shall not contain pulses shorter than T_{MIN-TX} .

Figure 44 Slew Rate vs. C_{LOAD}

1422 **8.2 Receiver Characteristics**

8.2.1 High-Speed Receiver

The HS receiver is a differential line receiver. It contains a switchable parallel input termination, Z_{ID}, between the positive input pin Dp and the negative input pin Dn. A simplified diagram of an example implementation using a PMOS input stage is shown in Figure 45.

Figure 45 HS Receiver Implementation Example

14271428

Copyright © 2007 MIPI Alliance, Inc. All rights reserved. MIPI Alliance Member Confidential.

- The differential input high and low threshold voltages of the HS receiver are denoted by V_{IDTH} and V_{IDTL} ,
- respectively. V_{ILHS} and V_{IHHS} are the single-ended, input low and input high voltages, respectively.
- 1431 V_{CMRX(DC)} is the differential input common-mode voltage. The HS receiver shall be able to detect
- differential signals at its Dp and Dn input signal pins when both signal voltages, V_{DP} and V_{DN}, are within
- the common-mode voltage range and if the voltage difference of V_{DP} and V_{DN} exceeds either V_{IDTH} or
- 1434 V_{IDTL}. The High-Speed receiver shall receive High-Speed data correctly while rejecting common-mode
- interference $\Delta V_{CMRX(HF)}$ and $\Delta V_{CMRX(LF)}$.
- During operation of the HS receiver, termination impedance Z_{ID} is required between the Dp and Dn pins of
- the HS receiver. Z_{ID} shall be disabled when the module is not in the HS receive mode. When transitioning
- from Low-Power Mode to HS receive mode the termination impedance shall not be enabled until the
- single-ended input voltages on both Dp and Dn fall below V_{TERM-EN}. To meet this requirement, a receiver
- does not need to sense the Dp and Dn lines to determine when to enable the line termination, rather the LP
- to HS transition timing can allow the line voltages to fall to the appropriate level before the line
- termination is enabled.

- The RX common-mode return loss and the RX differential mode return loss are specified in section 7. C_{CM}
- 1444 is the common-mode AC termination, which ensures a proper termination of the receiver at higher
- 1445 frequencies. For higher data rates, C_{CM} is needed at the termination centre tap in order to meet the
- 1446 common-mode reflection requirements.

Table 20 HS Receiver DC Specifications

Parameter	Description	Min	Nom	Max	Units	Note
V _{CMRX(DC)}	Common-mode voltage HS receive mode	70		330	mV	1,2
V_{IDTH}	Differential input high threshold			70	mV	
$ m V_{IDTL}$	Differential input low threshold	-70			mV	
$ m V_{IHHS}$	Single-ended input high voltage			460	mV	1
V_{ILHS}	Single-ended input low voltage	-40			mV	1
V _{TERM-EN}	Single-ended threshold for HS termination enable			450	mV	
Z_{ID}	Differential input impedance	80	100	125	Ω	

1448 Notes:

1450

1451

1452

- 1. Excluding possible additional RF interference of 100mV peak sine wave beyond 450MHz.
 - 2. This table value includes a ground difference of 50mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450MHz

Table 21 HS Receiver AC Specifications

Parameter	Description	Min	Nom	Max	Units	Notes
$\Delta V_{\text{CMRX(HF)}}$	Common-mode interference beyond 450 MHz			100	mV	2

$\Delta V_{CMRX(LF)}$	Common-mode interference 50MHz – 450MHz	-50	50	mV	1, 4
C_{CM}	Common-mode termination		60	pF	3

1453 Notes:

1458

- 1. Excluding 'static' ground shift of 50mV
- 1455 2. $\Delta V_{\text{CMRX(HF)}}$ is the peak amplitude of a sine wave superimposed on the receiver inputs.
- 1456 3. For higher bit rates a 14pF capacitor will be needed to meet the common-mode return loss specification.
- 1457 4. Voltage difference compared to the DC average common-mode potential.

8.2.2 Low-Power Receiver

- 1459 The Low-Power receiver is an un-terminated, single-ended receiver circuit. The LP receiver is used to
- detect the Low-Power state on each pin. For high robustness, the LP receiver shall filter out noise pulses
- and RF interference. It is recommended the implementer optimize the LP receiver design for low power.
- The input low-level voltage, V_{IL} , is the voltage at which the receiver is required to detect a low state in the
- input signal. A lower input voltage, V_{IL-ULPS}, may be used when the receiver is in the Ultra-Low Power
- State. V_{IL} is larger than the maximum single-ended Line voltage during HS transmission. Therefore, a LP
- receiver shall detect low during HS signaling.
- The input high-level voltage, V_{IH}, is the voltage at which the receiver is required to detect a high state in
- the input signal. In order to reduce noise sensitivity on the received signal, an LP receiver shall incorporate
- a hysteresis, The hysteresis voltage is defined as V_{HYST}.
- The LP receiver shall reject any input signal smaller than e_{SPIKE} . Signal pulses wider than T_{MIN-RX} shall
- propagate through the LP receiver.
- Furthermore, the LP receivers shall be tolerant of super-positioned RF interference on top of the wanted
- 1472 Line signals. This implies an input signal filter. The LP receiver shall meet all specifications for
- interference with peak amplitude V_{INT} and frequency f_{INT} . The interference shall not cause glitches or
- incorrect operation during signal transitions.

Figure 46 Input Glitch Rejection of Low-Power Receivers

Table 22 LP Receiver DC specifications

Parameter	Description	Min	Nom	Max	Units	Notes
$ m V_{IH}$	Logic 1 input voltage	880			mV	
V_{IL}	Logic 0 input voltage, not in ULP State			550	mV	
V _{IL-ULPS}	Logic 0 input voltage, ULP State			300	mV	
$V_{ m HYST}$	Input hysteresis	25			mV	

1478

Table 23 LP Receiver AC Specifications

Parameter	Description	Min	Nom	Max	Units	Notes
e _{SPIKE}	Input pulse rejection			300	V∙ps	1, 2, 3
T _{MIN-RX}	Minimum pulse width response	20			ns	4
$V_{ m INT}$	Peak interference amplitude			200	mV	
$f_{ m INT}$	Interference frequency	450			MHz	

1479 Notes:

1485

- 1480 1. Time-voltage integration of a spike above V_{IL} when being in LP-0 state or below V_{IH} when being in LP-1 state
- 1482 2. An impulse less than this will not change the receiver state.
- 1483 3. In addition to the required glitch rejection, implementers shall ensure rejection of known RF-interferers.
- 4. An input pulse greater than this shall toggle the output.

8.3 Line Contention Detection

- The Low-Power receiver and a separate Contention Detector (LP-CD) shall be used in a bi-directional Data
- Lane to monitor the line voltage on each Low-Power signal. This is required to detect line contention as
- described in section 6.1. The Low-Power receiver shall be used to detect an LP high fault when the LP
- transmitter is driving high and the pin voltage is less than V_{IL}. Refer to Table 22. The LP-CD shall be used
- to detect an LP low fault when the LP transmitter is driving low and the pin voltage is greater than $V_{\rm IHCD}$.
- Refer to Table 24. An LP low fault shall not be detected when the pin voltage is less than $V_{\rm ILCD}$.
- The general operation of a contention detector shall be similar to that of an LP receiver with lower
- threshold voltages. Although the DC specifications differ, the AC specifications of the LP-CD are defined
- to match those of the LP receiver and the LP-CD shall meet the specifications listed in Table 23. The LP-
- 1495 CD shall sufficiently filter the input signal to avoid false triggering on short events.
- The LP-CD threshold voltages (V_{ILCD} , V_{IHCD}) are shown along with the normal signaling voltages in Figure 47.

Figure 47 Signaling and Contention Voltage Levels

Table 24 Contention Detector (LP-CD) DC Specifications

Parameter	Description	Min	Nom	Max	Units	Notes
V_{IHCD}	Logic 1 contention threshold	450			mV	
V _{ILCD}	Logic 0 contention threshold			200	mV	

8.4 Input Characteristics

No structure within the PHY may be damaged when a DC signal that is within the signal voltage range V_{PIN} is applied to a pad pin for an indefinite period of time. $V_{PIN(absmax)}$ is the maximum transient output voltage at the transmitter pin. The voltage on the transmitter's output pin shall not exceed $V_{PIN,MAX}$ for a period greater than $T_{VPIN(absmax)}$. When the PHY is in the Low-Power receive mode the pad pin leakage current shall be I_{LEAK} when the pad signal voltage is within the signal voltage range of V_{PIN} . The specification of I_{LEAK} assures interoperability of any PHY in the LP mode by restricting the maximum load current of an LP transmitter. An example test circuit for leakage current measurement is shown in Figure 48.

The ground supply voltages shifts between a Master and a Slave shall be less than V_{GNDSH} .

Figure 48 Pin Leakage Measurement Example Circuit

1514

Table 25 Pin Characteristic Specifications

Parameter	Description	Min	Nom	Max	Units	Note
V_{PIN}	Pin signal voltage range	-50		1350	mV	
I_{LEAK}	Pin leakage current	-10		10	μΑ	1
$V_{ m GNDSH}$	Ground shift	-50		50	mV	
V _{PIN(absmax)}	Transient pin voltage level	-0.15		1.45	V	3
$T_{VPIN(absmax)}$	Maximum transient time above $V_{PIN(max)}$ or below $V_{PIN(min)}$			20	ns	2

1515 Note:

1516 When the pad voltage is in the signal voltage range from $V_{GNDSH,MIN}$ to $V_{OH} + V_{GNDSH,MAX}$ and the Lane Module is in LP receive mode.

> The voltage overshoot and undershoot beyond the V_{PIN} is only allowed during a single 20ns window after any LP-0 to LP-1 transition or vice versa. For all other situations it must stay within the V_{PIN} range.

3. This value includes ground shift.

1520 1521

1517

1518

1523

1524

1528

1529

1530

1531

1532

1533

1534

High-Speed Data-Clock Timing

This section specifies the required timings on the High-Speed signaling interface independent of the

electrical characteristics of the signal. The PHY is a source synchronous interface in the Forward direction.

In either the Forward or Reverse signaling modes there shall be only one clock source. In the Reverse 1525 1526

direction, Clock is sent in the Forward direction and one of four possible edges is used to launch the data.

1527 Data transmission may occur at any rate greater than the minimum specified data bit rate.

Figure 49 shows an example PHY configuration including the compliance measurement planes for the specified timings. Note that the effect of signal degradation inside each package due to parasitic effects is included in the timing budget for the transmitter and receiver and is not included in the interconnect degradation budget. See section 7 for details.

Figure 49 Conceptual D-PHY Data and Clock Timing Compliance Measurement Planes

High-Speed Clock Timing 9.1

- 1535 The Master side of the Link shall send a differential clock signal to the Slave side to be used for data
- sampling. This signal shall be a DDR (half-rate) clock and shall have one transition per data bit time. All 1536
- 1537 timing relationships required for correct data sampling are defined relative to the clock transitions.
- 1538 Therefore, implementations may use frequency spreading modulation on the clock to reduce EMI.
- 1539 The DDR clock signal shall maintain a quadrature phase relationship to the data signal. Data shall be
- 1540 sampled on both the rising and falling edges of the Clock signal. The term "rising edge" means "rising
- 1541 edge of the differential signal, i.e. CLKp – CLKn, and similarly for "falling edge". Therefore, the period of
- 1542 the Clock signal shall be the sum of two successive instantaneous data bit times. This relationship is shown
- 1543 in Figure 50.
- 1544 Note that the UI indicated in Figure 50 is the instantaneous UI and shall have a value less than 12.5 ns. A
- 1545 minimum value is not specified. However, implementers shall specify a maximum data rate and
- 1546 corresponding maximum clock frequency, fh_{MAX}, for a given implementation. For a description of fh_{MAX},
- 1547 see section 7.3.

1549

Figure 50 DDR Clock Definition

1550 As can be seen in Figure 49, the same clock source is used to generate the DDR Clock and launch the serial data. Since the Clock and Data signals propagate together over a channel of specified skew, the Clock may 1551 be used directly to sample the Data lines in the receiver. Such a system can accommodate large 1552 instantaneous variations in UI. 1553

The allowed instantaneous UI variation can cause large, instantaneous data rate variations. Therefore, devices shall either accommodate these instantaneous variations with appropriate FIFO logic outside of the PHY or provide an accurate clock source to the Lane Module to eliminate these instantaneous variations.

The UI_{INST} specifications for the Clock signal are summarized in Table 26.

1558

1562

1554

1555

1556

1557

Table 26 Clock Signal Specification

Clock Parameter	Symbol	Min	Тур	Max	Units	Notes
UI instantaneous	UI _{INST}			12.5	ns	1,2

- 1559 Notes:
- 1560 This value corresponds to a minimum 80 Mbps data rate.
- 1561 2. The minimum UI shall not be violated for any single bit period, i.e., any DDR half cycle within a data burst.

9.2 Forward High-Speed Data Transmission Timing

- The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in 1563 1564 Figure 51. Data is launched in a quadrature relationship to the clock such that the Clock signal edge may be used directly by the receiver to sample the received data.
- 1565
- 1566 The transmitter shall ensure that a rising edge of the DDR clock is sent during the first payload bit of a
- 1567 transmission burst such that the first payload bit can be sampled by the receiver on the rising clock edge,
- the second bit can be sampled on the falling edge, and all following bits can be sampled on alternating 1568
- 1569 rising and falling edges.
- 1570 All timing values are measured with respect to the actual observed crossing of the Clock differential signal.
- 1571 The effects due to variations in this level are included in the clock to data timing budget.
- 1572 Receiver input offset and threshold effects shall be accounted as part of the receiver setup and hold
- 1573 parameters.

Figure 51 Data to Clock Timing Definitions

9.2.1 Data-Clock Timing Specifications

The Data-Clock timing specifications are shown in Table 27. Implementers shall specify a value $UI_{INST,MIN}$ that represents the minimum instantaneous UI possible within a High-Speed data transfer for a given implementation. Parameters in Table 27 are specified as a part of this value. The skew specification, $T_{SKEW[TX]}$, is the allowed deviation of the data launch time to the ideal $\frac{1}{2}UI_{INST}$ displaced quadrature clock edge. The setup and hold times, $T_{SETUP[RX]}$ and $T_{HOLD[RX]}$, respectively, describe the timing relationships between the data and clock signals. $T_{SETUP[RX]}$ is the minimum time that data shall be present before a rising or falling clock edge and $T_{HOLD[RX]}$ is the minimum time that data shall remain in its current state after a rising or falling clock edge. The timing budget specifications for a receiver shall represent the minimum variations observable at the receiver for which the receiver will operate at the maximum specified acceptable bit error rate.

The intent in the timing budget is to leave $0.4*UI_{INST}$, i.e. $\pm 0.2*UI_{INST}$ for degradation contributed by the interconnect.

Table 27 Data-Clock Timing Specifications

Parameter	Symbol	Min	Тур	Max	Units	Notes
Data to Clock Skew [measured at transmitter]	$T_{SKEW[TX]}$	-0.15		0.15	UI _{INST}	1
Data to Clock Setup Time [receiver]	T _{SETUP[RX]}	0.15			UI _{INST}	2
Clock to Data Hold Time [receiver]	T _{HOLD[RX]}	0.15			UI _{INST}	2

1590 Notes:

1592

1593

1596

1597 1598

1599

1600 1601

16051606

1. Total silicon and package delay budget of 0.3*UI_{INST}

2. Total setup and hold window for receiver of 0.3*UI_{INST}

9.3 Reverse High-Speed Data Transmission Timing

This section only applies to Half-Duplex Lane Modules that include Reverse High-Speed Data Transmission functionality.

A Lane enters the Reverse High-Speed Data Transmission mode by means of a Link Turnaround procedure as specified in section 5.5. Reverse Data Transmission is not source-synchronous; the Clock signal is driven by the Master side while the Data Lane is driven by the Slave Side. The Slave Side transmitter shall send one data bit every two periods of the received Clock signal. Therefore, for a given Clock frequency, the Reverse direction data rate is one-fourth the Forward direction data rate. The bit period in this case is defined to be $4*UI_{INST}$. UI_{INST} is the value specified for the full-rate forward transmission.

Note that the clock source frequency may change between transmission bursts. However, all Data Lanes shall be in a Low-Power state before changing the clock source frequency.

The conceptual overview of Reverse HS Data Transmission is shown in Figure 52.

Figure 52 Conceptual View of HS Data Transmission in Reverse Direction

There are four possible phase relationships between clock and data signals in the Reverse direction. The Clock phase used to send data is at the discretion of the Slave side, but once chosen it shall remain fixed throughout that data transmission burst. Signal delays in the interconnect, together with internal signal delays in the Master and Slave Modules, cause a fixed, but unknown, phase relationship in the Master Module between received (Reverse) Data and its own (Forward) Clock. Therefore, the Reverse traffic arriving at the Master side may not be phase aligned with the Forward direction clock.

Synchronization between Clock and Data signals is achieved with the Sync sequence sent by the Slave during the Start of Transmission (SoT). The Master shall include sufficient functionality to correctly sample the received data given the instantaneous UI variations of the Clock sent to the Slave.

Reverse transmission by the Slave side is one-fourth of the Forward direction speed, based on the Forward direction Clock as transmitted via the Clock Lane. This ratio makes it easy to find a suitable phase at the Master Side for Data recovery of Reverse direction traffic.

The known transitions of the received Sync sequence shall be used to select an appropriate phase of the clock signal for data sampling. Thus, there is no need to specify the round trip delay between the source of the clock and the receiver of the data.

The timing of the Reverse transmission as seen at the Slave side is shown in Figure 53.

Figure 53 Reverse High-Speed Data Transmission Timing at Slave Side

1623 1624 1625

1613

1614

1615

1616 1617

1618

1619

1620

1621

10 Regulatory Requirements

1628 All MIPI D-PHY based devices should be designed to meet the applicable regulatory requirements.

Annex A Logical PHY-Protocol Interface Description (informative)

- 1632 The PHY Protocol Interface (PPI) is used to make a connection between the PHY Lane Modules and the
- higher protocol layers of a communication stack. The interface described here is intended to be generic and
- application independent.

1643

- 1635 This appendix is informative only. Conformance to the D-PHY specification does not depend on any
- portion of the PPI defined herein. Because of that, this section avoids normative language and does not use
- words like "shall" and "should." Instead, present tense language has been used to describe the PPI,
- utilizing words like "is" and "does." The reader may find it helpful to consider this appendix to be a
- description of an example implementation, rather than a specification.
- 1640 This PPI is optimized for controlling a D-PHY and transmitting and receiving parallel data. The interface
- described here is defined as an on-chip connection, and does not attempt to minimize signal count or define
- timing parameters or voltage levels for the PPI signals.

A.1 Signal Description

- Table 28 defines the signals used in the PPI. For a PHY with multiple Data Lanes, a set of PPI signals is
- used for each Lane. Each signal has been assigned into one of six categories: High-Speed transmit signals,
- High-Speed receive signals, Escape mode transmit signals, Escape mode receive signals, control signals,
- and error signals. Bi-directional High-Speed Data Lanes with support for bi-directional Escape mode
- include nearly all of the signals listed in the table. Unidirectional Lanes or Clock Lanes include only a
- subset of the signals. The direction of each signal is listed as "I" or "O". Signals with the direction "I" are
- PHY inputs, driven from the Protocol. Signals with the direction "O" are PHY outputs, driven to the
- Protocol. For this logical interface, most clocks are described as being generated outside the PHY, although
- any specific PHY may implement the clock circuit differently.
- 1653 The "Categories" column in Table 28 indicates for which Lane Module types each signal applies. The
- 1654 category names are described in Table 1 and are summarized here for convenience. Each category is
- described using a four-letter acronym, defined as <Side, HS-capabilities, Escape-Forward, Escape-
- Reverse. The first letter, Side, can be M (Master) or S (Slave). The second letter, High-Speed capabilities,
- can be F (Forward data), R (Reverse and Forward data), or C (Clock). The third and fourth letters indicate
- 1658 Escape mode capability in the Forward and Reverse directions, respectively. For Data Lanes, the third
- letter can be A (All) or E (Events Triggers and ULPS only), while the fourth letter can be A (All,
- including LPDT), E (Events, triggers and ULPS only), Y (Any but not None: so A or E) or N (None). For
- a Data Lane, any of the four identification letters can be replaced by an X, to indicate that each of the
- available options is appropriate. For a Clock Lane, only the first letter can be X, while the other three
- letters are always CNN.

Table 28 PPI Signals

	1		
Symbol	Dir	Categories	Description
High-Speed Trans	mit Signa	ıls	
TxDDRClkHS-I	I	MXXX	Data Lane High-Speed Transmit DDR Clock.
		MCNN	This signal is used to transmit High-Speed data bits over the Lane Interconnect. All Data Lanes use the same TxDDRClkHS-I (in-phase) clock signal.
TxDDRClkHS-Q	I	MCNN	Clock Lane High-Speed Transmit DDR Clock.
			This signal is used to generate the High-Speed clock signal for the Lane Interconnect. The TxDDRClkHS-Q (quadrature) clock signal is phase shifted from the TxDDRClkHS-I clock signal.
TxByteClkHS	О	MXXX	High-Speed Transmit Byte Clock.
		SRXX	This is used to synchronize PPI signals in the High-Speed transmit clock domain. It is recommended that all transmitting Data Lane Modules share one TxByteClkHS signal. The frequency of TxByteClkHS is exactly 1/8 the High-Speed bit rate.
TxDataHS[7:0]	I	MXXX	High-Speed Transmit Data.
		SRXX	Eight bit High-Speed data to be transmitted. The signal connected to TxDataHS[0] is transmitted first. Data is captured on rising edges of TxByteClkHS.

Symbol	Dir	Categories	Description
TxRequestHS	I	MXXX	High-Speed Transmit Request and Data Valid.
		SRXX MCNN	A low-to-high transition on TxRequestHS causes the Lane Module to initiate a Start-of-Transmission sequence. A high-to-low transition on TxRequest causes the Lane Module to initiate an End-of-Transmission sequence.
			For Clock Lanes, this active high signal causes the Lane Module to begin transmitting a High-Speed clock.
			For Data Lanes, this active high signal also indicates that the protocol is driving valid data on TxDataHS to be transmitted. The Lane Module accepts the data when both TxRequestHS and TxReadyHS are active on the same rising TxByteClkHS clock edge. The protocol always provides valid transmit data when TxRequestHS is active. Once asserted, TxRequestHS remains high until the data has been accepted, as indicated by TxReadyHS.
			TxRequestHS is only asserted while TxRequestEsc is low.
TxReadyHS	О	MXXX	High-Speed Transmit Ready.
		SRXX	This active high signal indicates that TxDataHS is accepted by the Lane Module to be serially transmitted. TxReadyHS is valid on rising edges of TxByteClkHS.
High-Speed Receiv	e Signals	3	
RxByteClkHS	О	MRXX	High-Speed Receive Byte Clock.
		SXXX	This is used to synchronize signals in the High-Speed receive clock domain. The RxByteClkHS is generated by dividing the received High-Speed DDR clock.
RxDataHS[7:0]	О	MRXX	High-Speed Receive Data.
		SXXX	Eight bit High-Speed data received by the Lane Module. The signal connected to RxDataHS[0] was received first. Data is transferred on rising edges of RxByteClkHS.

Symbol	Dir	Categories	Description
RxValidHS	О	MRXX	High-Speed Receive Data Valid.
		SXXX	This active high signal indicates that the Lane Module is driving data to the protocol on the RxDataHS output. There is no "RxReadyHS" signal, and the protocol is expected to capture RxDataHS on every rising edge of RxByteClkHS where RxValidHS is asserted. There is no provision for the protocol to slow down ("throttle") the receive data.
RxActiveHS	О	MRXX	High-Speed Reception Active.
		SXXX	This active high signal indicates that the Lane Module is actively receiving a High-Speed transmission from the Lane interconnect.
RxSyncHS	О	MRXX	Receiver Synchronization Observed.
		SXXX	This active high signal indicates that the Lane Module has seen an appropriate synchronization event. In a typical High-Speed transmission, RxSyncHS is high for one cycle of RxByteClkHS at the beginning of a High-Speed transmission when RxActiveHS is first asserted.
RxClkActiveHS	О	SCNN	Receiver Clock Active.
			This asynchronous, active high signal indicates that a Clock Lane is receiving a DDR clock signal.
RxDDRClkHS	О	SCNN	Receiver DDR Clock.
			This is the received DDR clock – it may be used by the protocol if required. This signal is low whenever RxClkActiveHS is low.
Escape Mode Tran	smit Sig	nals	
TxClkEsc	I	MXXX	Escape mode Transmit Clock.
		SXXY	This clock is directly used to generate escape sequences. The period of this clock determines the phase times for Low-Power signals as defined in section 5.6.2. It is therefore constrained by the normative part of the D-PHY specification. See section 8. Note that this clock is used to synchronize TurnRequest and is included for any module that supports bi-directional High-Speed operation, even if that module does not support transmit or bi-directional escape mode.

Symbol	Dir	Categories	Description
TxRequestEsc	I	MXXX	Escape mode Transmit Request.
		SXXY	This active high signal, asserted together with exactly one of TxLpdtEsc, TxUlpsEsc, or one bit of TxTriggerEsc, is used to request entry into escape mode. Once in escape mode, the Lane stays in escape mode until TxRequestEsc is de-asserted.
			TxRequestEsc is only asserted by the protocol while TxRequestHS is low.
TxLpdtEsc	I	MXAX	Escape mode Transmit Low-Power Data.
		SXXA	This active high signal is asserted with TxRequestEsc to cause the Lane Module to enter Low-Power data transmission mode. The Lane Module remains in this mode until TxRequestEsc is de-asserted.
			TxUlpsEsc and all bits of TxTriggerEsc are low when TxLpdtEsc is asserted.
TxUlpsExit	I	MXXX	Transmit ULP Exit Sequence.
		SXXY MCNN	This active high signal is asserted when ULP state is active and the protocol is ready to leave ULP state. The PHY leaves ULP state and begins driving Mark-1 after TxUlpsExit is asserted. The PHY later drives the Stop state (LP-11) when TxRequestEsc is deasserted. TxUlpsExit is synchronous to TxClkEsc.
			This signal is ignored when the Lane is not in the ULP State.
TxUlpsEsc	I	MXXX	Escape mode Transmit Ultra-Low Power State.
		SXXY	This active high signal is asserted with TxRequestEsc to cause the Lane Module to enter the Ultra-Low Power State. The Lane Module remains in this mode until TxRequestEsc is de-asserted.
			TxLpdtEsc and all bits of TxTriggerEsc are low when TxUlpsEsc is asserted.

Symbol	Dir	Categories	Description
TxTriggerEsc[3:0]	I	MXXX	Escape mode Transmit Trigger 0-3.
		SXXY	One of these active high signals is asserted with TxRequestEsc to cause the associated Trigger to be sent across the Lane interconnect. In the receiving Lane Module, the same bit of RxTriggerEsc is then asserted and remains asserted until the Lane interconnect returns to Stop state, which happens when TxRequestEsc is de-asserted at the transmitter. Only one bit of TxTriggerEsc is asserted at any given time, and only when TxLpdtEsc and TxUlpsEsc are both low.
TxDataEsc[7:0]	I	MXAX	Escape mode Transmit Data.
		SXXA	This is the eight bit escape mode data to be transmitted in Low-Power data transmission mode. The signal connected to TxDataEsc[0] is transmitted first. Data is captured on rising edges of TxClkEsc.
TxValidEsc	I	MXAX	Escape mode Transmit Data Valid.
		SXXA	This active high signal indicates that the protocol is driving valid data on TxDataEsc to be transmitted. The Lane Module accepts the data when TxRequestEsc, TxValidEsc and TxReadyEsc are all active on the same rising TxClkEsc clock edge.
TxReadyEsc	О	MXAX	Escape mode Transmit Ready.
		SXXA	This active high signal indicates that TxDataEsc is accepted by the Lane Module to be serially transmitted. TxReadyEsc is valid on rising edges of TxClkEsc.
Escape Mode Recei	ve Signa	ls	
RxClkEsc	О	MXXY	Escape mode Receive Clock.
		SXXX	This signal is used to transfer received data to the protocol during escape mode. This "clock" is generated from the two Low-Power signals in the Lane interconnect. Because of the asynchronous nature of Escape mode data transmission, this "clock" may not be periodic.

Symbol	Dir	Categories	Description
RxLpdtEsc	О	MXXA	Escape Low-Power Data Receive mode.
		SXAX	This active high signal is asserted to indicate that the Lane Module is in Low-Power data receive mode. While in this mode, received data bytes are driven onto the RxDataEsc output when RxValidEsc is active. The Lane Module remains in this mode with RxLpdtEsc asserted until a Stop state is detected on the Lane interconnect.
RxUlpsEsc	О	MXXY	Escape Ultra-Low Power (Receive) mode.
		SXXX	This active high signal is asserted to indicate that the Lane Module has entered the Ultra-Low Power State. The Lane Module remains in this mode with RxUlpsEsc asserted until a Stop state is detected on the Lane interconnect.
RxTriggerEsc[3:0]	О	MXXY	Escape mode Receive Trigger 0-3.
		SXXX	These active high signals indicate that a trigger event has been received. The asserted RxTriggerEsc signal remains active until a Stop state is detected on the Lane interconnect.
RxDataEsc[7:0]	О	MXXA	Escape mode Receive Data.
		SXAX	This is the eight-bit escape mode Low-Power data received by the Lane Module. The signal connected to RxDataEsc[0] was received first. Data is transferred on rising edges of RxClkEsc.
RxValidEsc	О	MXXA	Escape mode Receive Data Valid.
		SXAX	This active high signal indicates that the Lane Module is driving valid data to the protocol on the RxDataEsc output. There is no "RxReadyEsc" signal, and the protocol is expected to capture RxDataEsc on every rising edge of RxClkEsc where RxValidEsc is asserted. There is no provision for the protocol to slow down ("throttle") the receive data.
Control Signals	1	T	
TurnRequest	I	XRXX	Turn Around Request.
		XFXY	This active high signal is used to indicate that the protocol desires to turn the Lane around, allowing the other side to begin transmission. TurnRequest is valid on rising edges of TxClkEsc. TurnRequest is only meaningful for a Lane Module that is currently the transmitter (Direction=0). If the Lane Module is in receive mode (Direction=1), this signal is ignored.

Symbol	Dir	Categories	Description
Direction	О	XRXX	Transmit/Receive Direction.
		XFXY	This signal is used to indicate the current direction of the Lane interconnect. When Direction=0, the Lane is in transmit mode (0=Output). When Direction=1, the Lane is in receive mode (1=Input).
TurnDisable	I	XRXX	Disable Turn-around.
		XFXY	This signal is used to prevent a (bi-directional) Lane from going into transmit mode – even if it observes a turn-around request on the Lane interconnect. This is useful to prevent a potential "lock-up" situation when a unidirectional Lane Module is connected to a bi-directional Lane Module.
ForceRxmode	I	MRXX	Force Lane Module Into Receive mode / Wait for Stop state.
		MXXY SXXX	This signal allows the protocol to initialize a Lane Module, or force a bi-directional Lane Module, into receive mode. This signal is used during initialization or to resolve a contention situation. When this signal is high, the Lane Module immediately transitions into receive control mode and waits for a Stop state to appear on the Lane interconnect. When used for initialization, this signal should be released, i.e. driven low, only when the Dp & Dn inputs are in Stop state for a time $T_{\rm INIT}$, or longer.
ForceTxStopmode	I	MXXX SRXX SXXY	Force Lane Module Into Transmit mode / Generate Stop state. This signal allows the protocol to force a Lane Module into transmit mode and Stop state during
		S.II.	initialization or following an error situation, e.g. expired time out. When this signal is high, the Lane Module immediately transitions into transmit mode and the module state machine is forced into the Stop state.
Stopstate	О	XXXX	Lane is in Stop state.
		XCNN	This active high signal indicates that the Lane Module, regardless of whether the Lane Module is a transmitter or a receiver, is currently in Stop state. Note that this signal is asynchronous to any clock in the PPI interface. Also, the protocol may use this signal to indirectly determine if the PHY line levels are in the LP-11 state.

Symbol	Dir	Categories	Description
Enable	I	XXXX	Enable Lane Module.
		XCNN	This active high signal forces the Lane Module out of "shutdown". All line drivers, receivers, terminators, and contention detectors are turned off when Enable is low. Furthermore, while Enable is low, all other PPI inputs are ignored and all PPI outputs are driven to the default inactive state. Enable is a level sensitive signal and does not depend on any clock.
TxUlpsClk	I	MCNN	Transmit Ultra-Low Power State on Clock Lane.
			This active high signal is asserted to cause a Clock Lane Module to enter the Ultra-Low Power State. The Lane Module remains in this mode until TxUlpsClk is de-asserted.
RxUlpsClkNot	О	SCNN	Receive Ultra-Low Power State on Clock Lane.
			This active low signal is asserted to indicate that the Clock Lane Module has entered the Ultra-Low Power State. The Lane Module remains in this mode with RxUlpsClkNot asserted until a Stop state is detected on the Lane Interconnect.
UlpsActiveNot	О	XXXX	ULP State (not) Active.
		XCNN	This active low signal is asserted to indicate that the Lane is in ULP state.
			For a transmitter, this signal is asserted some time after TxUlpsEsc and TxRequestEsc (TxUlpsClk for a Clock Lane) are asserted. The transmitting PHY continues to supply TxClkEsc until UlpsActiveNot is asserted. In order to leave ULP state, the transmitter first drives TxUlpsExit high, then waits for UlpsActiveNot to become high (inactive). At that point, the transmitting PHY is active and has started transmitting a Mark-1 on the Lines. The protocol waits for a time Twakeup and then drives TxRequestEsc (TxUlpsClk) inactive to return the Lane to Stop state.
			For a receiver, this signal indicates that the Lane is in ULP state. At the beginning of ULP state, UlpsActiveNot is asserted together with RxUlpsEsc, or RxClkUlpsNot for a Clock Lane. At the end of the ULP state, this signal becomes inactive to indicate that the Mark-1 state has been observed. Later, after a period of time Twakeup, the RxUlpsEsc (or RxClkUlpsNot) signal is deasserted.

Symbol	Dir	Categories	Description
Error Signals	T		
ErrSotHS	О	MRXX	Start-of-Transmission (SoT) Error.
		SXXX	If the High-Speed SoT leader sequence is corrupted, but in such a way that proper synchronization can still be achieved, this active high signal is asserted for one cycle of RxByteClkHS. This is considered to be a "soft error" in the leader sequence and confidence in the payload data is reduced.
ErrSotSyncHS	О	MRXX	Start-of-Transmission Synchronization Error.
		SXXX	If the High-Speed SoT leader sequence is corrupted in a way that proper synchronization cannot be expected, this active high signal is asserted for one cycle of RxByteClkHS.
ErrEsc	О	MXXY	Escape Entry Error.
		SXXX	If an unrecognized escape entry command is received, this active high signal is asserted and remains asserted until the next change in line state.
ErrSyncEsc	О	MXXA	Low-Power Data Transmission Synchronization Error.
		SXAX	If the number of bits received during a Low-Power data transmission is not a multiple of eight when the transmission ends, this active high signal is asserted and remains asserted until the next change in line state.
ErrControl	О	MXXY	Control Error.
		SXXX	This active high signal is asserted when an incorrect line state sequence is detected. For example, if a turnaround request or escape mode request is immediately followed by a Stop state instead of the required Bridge state, this signal is asserted and remains asserted until the next change in line state.
ErrContentionLP0	О	MXXX	LP0 Contention Error.
		SXXY	This active high signal is asserted when the Lane Module detects a contention situation on a line while trying to drive the line low.

Symbol	Dir	Categories	Description
ErrContentionLP1	О	MXXX	LP1 Contention Error.
		SXXY	This active high signal is asserted when the Lane
		57771	Module detects a contention situation on a line while
			trying to drive the line high.

A.2 High-Speed Transmit from the Master Side

Figure 54 shows an example of a High-Speed transmission on the Master side. While TxRequestHS is low, the Lane Module ignores the value of TxDataHS. To begin transmission, the protocol drives TxDataHS with the first byte of data and asserts TxRequestHS. This data byte is accepted by the PHY on the first rising edge of TxByteClkHS with TxReadyHS also asserted. At this point, the protocol logic drives the next data byte onto TxDataHS. After every rising clock cycle with TxReadyHS active, the protocol supplies a new valid data byte or ends the transmission. After the last data byte has been transferred to the Lane Module, TxRequestHS is driven low to cause the Lane Module to stop the transmission and enter Stop state. The minimum number of bytes transmitted could be as small as one.

Figure 54 Example High-Speed Transmission from the Master Side

A.3 High-Speed Receive at the Slave Side

Figure 55 shows an example of a High-Speed reception at the Slave side. The RxActiveHS signal indicates that a receive operation is occurring. A normal reception starts with a pulse on RxSyncHS followed by valid receive data on subsequent cycles of RxByteClkHS. Note that the protocol is prepared to receive all of the data. There is no method for the receiving protocol to pause or slow data reception.

If EoT Processing is performed inside the PHY, the RxActiveHS and RxValidHS signals transition low following the last valid data byte, Bn. See Figure 55.

If EoT processing is not performed in the PHY, one or more additional bytes are presented after the last valid data byte. The first of these additional bytes, shown as byte "C" in Figure 55, is all ones or all zeros. Subsequent bytes may or may not be present, and can have any value. For a PHY that does not perform EoT processing, the RxActiveHS and RxValidHS signals transition low simultaneously some time after byte "C" is received. Once these signals have transitioned low, they remain low until the next High-Speed data reception begins.

1691

1692

1693 1694

1695

Figure 55 Example High-Speed Receive at the Slave Side

A.4 High-Speed Transmit from the Slave Side

A Slave can only transmit at one-fourth the bandwidth of a Master. Because of this, the TxReadyHS signal is not constant high for a transmitting slave. Otherwise, the transmission is very much like that seen at the PPI interface of a transmitting Master-side Lane Module. Figure 56 shows an example of transmitting from the Slave side.

1696 1697

1698

1699

1700 1701

1702

Figure 56 Example High-Speed Transmit from the Slave Side

A.5 High-Speed Receive at the Master Side

Because a Slave is restricted to transmitting at one-fourth the bandwidth of a Master, the RxValidHS signal is only asserted one out of every four cycles of RxByteClkHS during a High-Speed receive operation at the Master side. An example of this is shown in Figure 57. Note that, depending on the bit rate, there may be one or more extra pulses on RxValidHS after the last valid byte, Bn, is received.

Figure 57 Example High-Speed Receive at the Master Side

A.6 Low-Power Data Transmission

For Low-Power data transmission the TxClkEsc is used instead of TxDDRClkHS-I/Q and TxByteClkHS. Furthermore, while the High-Speed interface signal TxRequestHS serves as both a transmit request and a data valid signal, on the Low-Power interface two separate signals are used. The Protocol directs the Data Lane to enter Low-Power data transmission Escape mode by asserting TxRequestEsc with TxLpdtEsc high. The Low-Power transmit data is transferred on the TxDataEsc lines when TxValidEsc and TxReadyEsc are both active at a rising edge of TxClkEsc. The byte is transmitted in the time after the TxDataEsc is accepted by the Lane Module (TxValidEsc = TxReadyEsc = high) and therefore the TxClkEsc continues running for some minimum time after the last byte is transmitted. The Protocol knows the byte transmission is finished when TxReadyEsc is asserted. After the last byte has been transmitted, the protocol de-asserts TxRequestEsc to end the Low-Power data transmission. This causes TxReadyEsc to return low, after which the TxClkEsc clock is no longer needed. Whenever TxRequestEsc transitions from high-to-low, it always remains in the low state for a minimum of two TxClkEsc clock cycles. Figure 58 shows an example Low-Power data transmission operation.

Figure 58 Low-Power Data Transmission

A.7 Low-Power Data Reception

Figure 59 shows an example Low-Power data reception. In this example, a Low-Power escape "clock" is generated from the Lane Interconnect by the logical exclusive-OR of the Dp and Dn lines. This "clock" is used within the Lane Module to capture the transmitted data. In this example, the "clock" is also used to generate RxClkEsc.

The signal RxLpdtEsc is asserted when the escape entry command is detected and stays high until the Lane returns to Stop state, indicating that the transmission has finished. It is important to note that because of the asynchronous nature of Escape mode transmission, the RxClkEsc signal can stop at anytime in either the high or low state. This is most likely to happen just after a byte has been received, but it could happen at other times as well.

Figure 59 Example Low-Power Data Reception

A.8 Turn-around

If the Master side and Slave side Lane Modules are both bi-directional, it is possible to turn around the Link for High-Speed and/or Escape mode signaling. As explained in section 5.5, which side is allowed to transmit is determined by passing a "token" back and forth. That is, the side currently transmitting passes the token to the receiving side. If the receiving side acknowledges the turn-around request, as indicated by driving the appropriate line state, the direction is switched.

Figure 60 shows an example of two turn-around events. At the beginning, the local side is the transmitter, as shown by Direction=0. When the protocol on this side wishes to turn the Lane around (i.e. give the token to the other side), it asserts TurnRequest for at least one cycle of TxClkEsc. This initiates the turn-around procedure. The remote side acknowledges the turn-around request by driving the appropriate states on the Lines. When this happens, the local Direction signal changes from transmit (0) to receive (1).

Later in the example of Figure 60, the remote side initiates a turn-around request, passing the token back to the local side. When this happens, the local Direction signal changes back to transmit (0). Note that there is no prescribed way for a receiver to request access to the Link. The current transmitter is in control of the Link direction and decides when to turn the Link around, passing control to the receiver.

1749 If the remote side does not acknowledge the turn-around request, the Direction signal does not change.

Figure 60 Example Turn-around Actions Transmit-to-Receive and Back to Transmit

Annex B Interconnect Design Guidelines (informative)

- 1755 This appendix contains design guidelines in order to meet the interconnect requirements as specified in
- 1756 section 7.

1757

1762

B.1 Practical Distances

- 1758 The maximum Lane flight time is defined at two nanoseconds. Assuming less than 100ps wiring delay
- within the RX-TX modules each, the physical distance that can be bridged with external interconnect is
- 1760 around 54cm/√ε. For most practical PCB and flex materials this corresponds to maximum distances around
- 1761 25-30 cm.

B.2 RF Frequency Bands: Interference

- On one side of the Lane there are the RF interference frequencies, which disturb the signals of the Lane.
- Most likely the dominant interferers are the transmit band frequencies of wireless interconnect standards.
- On the other side there are the frequencies for which generated EMI by the Lane should be as low as
- possible because very weak signals in these bands must be received by the radio IC. Some important
- 1767 frequency bands are:
- 1768 Transmit Bands
- GSM 850 (824-849 MHz)
- GSM 900 (880-915 MHz)
- GSM DCS (1710-1785 MHz)
- GSM PCS (1850-1910 MHz)
- WCDMA (1920-1980 MHz)
- FLASH-OFDM, GSM (450 MHz)
- 1775 Receive Bands:

1785

- GSM 850 (869-894 MHz)
- GSM 900 (925-960 MHz)
- 1778 GSM DCS (1805-1880 MHz)
- GSM PCS (1930-1990 MHz)
- WCDMA (2110-2170 MHz)
- GPS (1574-1577 MHz)
- 1782 It is important to identify the lowest interference frequency with significant impact, as this sets 'f_{INTMIN}'.
- For this specification, $f_{INT,MIN}$ is decided to be 450 MHz, because this frequency will most likely be used as
- the new WCDMA band in the USA in the future.

B.3 Transmission Line Design

1786 In most cases the transmission lines will either be designed as striplines and/or micro-striplines. The

1787 coupling between neighboring lines within a pair is small if the distance between them is >2x the di-

1788	electrical thickness. For the separation of multiple pairs it is highly recommended to interleave the pairs
1789	with a ground or supply line in order to reduce coupling.

1790 **B.4** Reference Layer

- 1791 In order to achieve good signal integrity and low EMI it is recommended that either a ground plane or a
- 1792 ground signal is in close proximity of any signal line.

1793 **B.5** Printed-Circuit Board

- 1794 For boards with a large number of conductor layers the dielectric spacing between layers may become so
- small that it would be hard to meet the characteristic impedance requirements. In those cases a micro-1795
- 1796 stripline in the top or bottom layers may be a better solution.

1797 B.6 Flex-foils

- 1798 Either two conductor layers or a reasonable connected cover layer makes it much easier to meet the
- 1799 specifications

1800 B.7 **Series Resistance**

- 1801 The DC series resistance of the interconnect should be less then 5 Ohms in order to meet the specifications.
- It is strongly recommended to keep the resistance in the ground connection below 0.2 Ohm. Furthermore, 1802
- the DC ground shift shall be less then 50mV, which may require an even lower value if a large current is 1803
- 1804 flowing through this ground. The lower this ground series resistance value can be made, the better it is for
- 1805 reliability and robustness.

1806 **B.8** Connectors

- 1807 Connectors usually cause some impedance discontinuity. It is important to carefully minimize these
- discontinuities by design, especially with respect to the through-connection of the reference layer. 1808
- Although connectors are typically rather small in size, the wrong choice can mess-up signals completely. 1809
- Please note that the contact resistance of connectors is part of the total series resistance budget and should 1810
- 1811 therefore be sufficiently low.

1812

1813

1822

1823

1824

1825

1826

1827

1828 1829 1830

1831

1832 1833

Annex C 8b9b Line Coding for D-PHY (normative)

Raw data transmission without constraining the data set does not allow in-band control signaling (control symbols inserted into the data stream) during transmission. Line coding conditions the possible bit sequences on the wires and provides reserved codes to include additional control features. Useful additional features may be, for example, idle symbols, specific-event identifiers, sync patterns, and protocol markers.

1819 Comma codes, bit sequences that do not appear anywhere in the data stream (in the absence of bit errors)
1820 unless these are intentionally transmitted, provide synchronization features and are very useful to increase
1821 robustness.

Furthermore, a line-coding scheme that guarantees a minimum edge density improves the signaling quality and enables skew calibration in the PHY.

Figure 61 shows how the line coding sub-layer fits into the standard hierarchy. The line coding can be considered as a separate sub-layer on top of the basic D-PHY. Optimizations by merging layers are allowed if the resulting solution complies with the PHY specification. These optimization choices are left to implementers.

Figure 61 Line Coding Layer

Note that the line coding sub-layer is optional. Protocols may exploit only the baseline PHY without line coding. This feature is provided for compatibility with existing protocols. However, in case a protocol decides to use line coding, it shall be implemented as described in this annex.

- The PHY-protocol interface above the line coding sub-layer (EPPI) is very similar to the PPI. Some
- additional signals enable a more functional and flexible control of the PHY with Line Coding. For details
- of the EPPI see section C.5.

1837

C.1 Line Coding Features

The 8b9b line coding scheme provides features to both the PHY and protocol layers.

1839 C.1.1 Enabled Features for the Protocol

- Comma code marker for special protocol features
- Word synchronization/resynchronization during transmission bursts
- Automatic idling support; no need for TX to always provide valid data during transmission
- Possibility for future PHY compatible PHY-Protocol Interface (PPI)

1844 C.1.2 Enabled Features for the PHY

- On-the-fly word resynchronization
- Simplification of EoT signaling
- Reduced latency
- Automatic idle symbol insertion and removal in absence of data
- Skew calibration in the RX possible

1850 C.2 Coding Scheme

This section describes the details of the coding scheme.

1852 C.2.1 8b9b Coding Properties

- 1853 The 8b9b coding has the following properties:
- All code words are nine bits long. Data is encoded byte-wise into 9-bit words, which corresponds to a 12.5% coding overhead.
- Sixteen regular exception codes, i.e. code words that do not appear as regular data words, but require word sync for reliable recognition, are available.
- Six unique exception codes, i.e. code words that do not appear within any sliding window except when that code word is transmitted, are available.
- Guaranteed minimum edge density of at least two polarity transitions per word. Therefore, each word contains at least two ones and two zeros.
- Simple logical functions for encoding and decoding
- Run length is limited to a maximum of seven bits. Data codes have a maximum run length of five bits, unique exception codes have run lengths of six or seven bits.

1865

1878

C.2.2 Data Codes: Basic Code Set

- Assume the following notation for the input data word and the coded data word:
- 8-bit data byte: [B₁ B₂ B₃ X₁ X₂ Q₁ Q₂ Q₃]
- 9-bit code word: [B₁ X₁ Y₁ Y₂ B₂ B₃ Y₃ Y₄ X₂]
- The 256 data codes are denoted by Dxxx, where xxx is the value of the corresponding 8-bit data byte.
- 1870 The 8-bit data byte shall be the input for the encoding, and result of the decoding, function. There can be
- 1871 any arbitrary bijective 8b-to-8b logical transformation function between real source data bytes from the
- protocol and the input data bytes for encoding, as long as the inverse function is present at the receiver
- side. If such a function is used, it shall be defined in the protocol specification.
- The bits $\{B_1, B_2, B_3, X_1, X_2\}$ appear directly in the code words as can be seen in the code word structure.
- $\{Q_1, Q_2, Q_3\}$ are the remaining three bits in the data byte, which are encoded into $\{Y_1, Y_2, Y_3, Y_4\}$ using
- 1876 $\{X_1, X_2\}$. The decoding of $\{Y_1, Y_2, Y_3, Y_4\}$ into $\{Q_1, Q_2, Q_3\}$ does not require $\{X_1, X_2\}$.
- The relation between Q_i , X_i and Y_i is shown in Table 29.

Table 29 Encoding Table for 8b9b Line Coding of Data Words

			8-bit Da	ata Byte				9-b	it Code V	Word, Y	bits
\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	\mathbf{X}_{1}	\mathbf{X}_2	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	\mathbf{Y}_{1}	\mathbf{Y}_2	\mathbf{Y}_3	Y ₄
	x		X	1	1	1	0	0	1	0	0
				0						1	1
				x	0	1	0			0	1
					1	0	0			1	0
	X		X	1	1	1	1	1	0	0	0
				0						1	1
				x	0	1	1			0	1
					1	0	1			1	0
	х		0	x	0	0	0	1	1	0	1
			1					0	0		
			0	х	0	0	1	1	1	1	0
			1					0	0		

1879 Notes:

1880 x = don't care

The logical relation for encoding between $\{Q_1, Q_2, Q_3, X_1, X_2\}$ and $\{Y_1, Y_2, Y_3, Y_4\}$ is given by the following equations:

1883
$$Y_1 = (\sim Q_1 \& \sim Q_2 \& \sim X_1) | (Q_1 \& Q_3) | (Q_2 \& Q_3)$$

1884
$$Y_2 = (\sim Q_1 \& \sim Q_2 \& \sim X_1) | (Q_1 \& \sim Q_3) | (Q_2 \& \sim Q_3)$$

1885
$$Y_3 = (Q_1 \& \sim Q_2) | (Q_1 \& Q_2 \& \sim X_2) | (\sim Q_2 \& Q_3)$$

1886
$$Y_4 = (\sim Q_1 \& Q_2) | (Q_1 \& Q_2 \& \sim X_2) | (\sim Q_1 \& \sim Q_3)$$

The logical relation for decoding between $\{Y_1, Y_2, Y_3, Y_4\}$ and $\{Q_1, Q_2, Q_3\}$ is:

1888
$$Q_1 = (Y_1 ^ Y_2) \& \sim (\sim Y_3 \& Y_4)$$

1889
$$Q_2 = (Y_1 ^ Y_2) \& \sim (Y_3 \& \sim Y_4)$$

1894

1895

1896 1897

1898

1899

1900

1901

1902

1903

1890
$$Q_{3} = (Y_{1} \& \sim Y_{2}) | (Y_{1} \& Y_{2} \& Y_{3}) | (\sim Y_{1} \& \sim Y_{2} \& Y_{3})$$

$$= (Y_{1} \& \sim Y_{2}) | (\sim (Y_{1} \land Y_{2}) \& Y_{3})$$

These logical functions show that the encoding and decoding can be implemented with a few dozen logic gates and therefore do not require additional hardware such as a lookup table or storage of history data.

C.2.3 Comma Codes: Unique Exception Codes

Unique means that these codes are uniquely identifiable in the data stream because these sequences do not occur in any encoding or across word boundaries, assuming no bits are corrupted. The data-encoding scheme described in section C.2.2 enables a very simple run-length limit based unique exception code mechanism.

There are four code sequences available, called Type A Comma codes, with a run length of six bits, and two code sequences, called Type B Comma codes, with a run length of seven bits. Currently, four Comma codes are sufficient to cover the required features and therefore only Type A Comma codes are used. Type B Comma codes are reserved for future use.

Table 30 Comma Codes

Туре	Run Length, bits	Code Name	Comma code	Feature
Type A	6	C600	0 1111 1100	Protocol
		C611	1 0000 0011	ЕоТ
		C610	1 0000 0010	Idle/Sync 1
		C601	0 1111 1101	Idle/Sync 2
Type B	7	C701	1 0000 0001	Reserved 1
Турс Б	,	C710	0 1111 1110	Reserved 2

C.2.4 Control Codes: Regular Exception Codes

The normal data set does not use all codes with a maximum run-length of five bits. There are two combinations of the $\{X_i,Y_i\}$ bits that do not appear in any data code word that are available as regular exception codes. Since Comma Codes are defined to have a run-length of six or seven bits, this gives three freely usable bits per code word and results in $2*2^3=16$ different Regular Exception Codes. The syntax of the Regular Exception Code words is given in Table 31, where the bits B1, B2 and B3 can have any binary value.

19101911

1917

1921

1932

1904

1905

1906

1907

1908

1909

Table 31 Regular Exception Code Structure

	X_1	Y ₁	\mathbf{Y}_2			Y ₃	Y ₄	\mathbf{Y}_2	Code Name
B_1	0	1	1	B_2	B_3	0	0	1	C410-C417
B_1	1	0	0	B_2	B_3	1	1	0	C400-C407

These code words are not unique sequences like the Comma codes described in Table 30, but can only be used as exception codes if word sync is already accomplished. These codes are currently reserved and not yet allocated to any function.

1915 C.2.5 Complete Coding Scheme

The complete code table can be found in Table 33.

C.3 Operation with the D-PHY

- The line coding impacts the payload of transmission bursts. Section C.3.1 described the generic issues for both HS and LP transmission. Section C.3.2 and C.3.3 describe specific details for HS and LP transmission, respectively.
 - C.3.1 Payload: Data and Control
- The payload of a HS or LP transmission burst consists of concatenated serialized 9-bit symbols, representing both data and control information.

1924 C.3.1.1 Idle/Sync Comma Symbols

Idle/Sync Comma code words can be present as symbols within the payload of a transmission burst. These symbols are inserted either on specific request of the protocol, or autonomously when there is a transmission request but there is no valid data available either at the beginning, or anywhere, during transmission. The Idle pattern in the latter case is an alternating C601 and C610 sequence, until there is valid data available to transmit, or transmission has ended. Idle periods may begin with either of the two prescribed Idle symbols. The RX-side PHY shall remove Idle/Sync symbols from the stream and flag these events to the protocol.

C.3.1.2 Protocol Marker Comma Symbol

1933 Comma symbol C600 (Protocol Marker) is allocated for use by protocols on top of the D-PHY. This symbol shall be inserted in the stream on request of the TX-side protocol and flagged by the receiving PHY to the RX-side protocol.

1936	C.3.1.3	EoT	Marker

- 1937 Comma symbol C611 is allocated as the EoT Marker symbol.
- 1938 C.3.2 Details for HS Transmission
- 1939 **C.3.2.1 SoT**
- The SoT procedure remains the same as the raw data D-PHY SoT. See section 5.4.2. The SoT sequence
- itself is NOT encoded, but can be easily recognized.
- The first bit of the first transmitted code symbol of a burst shall be aligned with the rising edge of the DDR
- 1943 clock.
- 1944 C.3.2.2 HS Transmission Payload
- The transmitted burst shall consist of concatenated serialized 9-bit symbols as described in section C.3.1.
- The TX-side PHY can idle by sending the Idle sequences as described in section C.3.1.1
- 1947 **C.3.2.3 EoT**
- 1948 The TX-side PHY shall insert an EoT marker symbol at the moment the request for HS transmission is
- 1949 withdrawn. The transmitter can pad additional bits after this EoT-Marker symbol before actually switching
- to LP mode (EoT sequence).
- The RX-side PHY shall remove the EoT-Marker symbol and any additional bits appearing after it. Note
- that with line coding, EoT-processing by backtracking on LP-11 detection to avoid (unreliable) non-
- payload bits on the PPI is no longer required as the EoT marker symbol notifies the RX-side PHY before
- the End-of-Transmission.
- 1955 C.3.3 Details for LP Transmission
- 1956 **C.3.3.1 SoT**
- 1957 The start of LP transmission is identical to basic D-PHY operation.
- 1958 C.3.3.2 LP Transmission Payload
- The transmitted burst shall consist of concatenated serialized 9-bit symbols as described in section C.3.1.
- During LPDT, the TX-side PHY can idle in two ways: either it can send the Idle sequences as described in
- section C.3.1.1 and implicitly provide a clock signal to the RX-side PHY, or it can pause the transmission
- by keeping the Lines at LP-00 (Space) for a certain period of time between bits, which interrupts the clock
- on the RX side, but minimizes power consumption.
- 1964 **C.3.3.3 EoT**
- 1965 The TX-side PHY shall insert an EoT marker symbol at the moment the request for LP transmission is
- 1966 withdrawn. The TX-side PHY can pad additional (spaced-one-hot) bits after the EoT-Marker symbol
- before actually ending the transmission by switching via Mark to Stop state (End of LPDT procedure).

The RX-side PHY shall remove the EoT-marker symbol and any additional bits appearing after it.

C.4 Error Signaling

- 1970 The usage of a line code scheme enables the detection of many signaling errors. These errors include:
- Non-existing code words
- Non-aligned Comma symbols
- EoT detection without detection of EoT-Marker
- 1974 Detection and flagging of errors is not required, but may help the protocol to recover faster from an error situation.

C.5 Extended PPI

- 1977 The interface to the protocol shall be extended with functional handles (TX) and flags (RX) to manage the
- usage of Comma symbols. Whenever necessary, the transmitting PHY can hold the data delivery from the
- 1979 protocol to the TX PHY with the TxReadyHS or TxReadyEsc signal. This is already provided for in the
- 1980 current PPI.

1969

1976

1996

- The PPI shall be extended with a TX Valid signal for HS data transmission, TxValidHS. Encoded
- 1982 operation allows for Idling of the Link when there is no new valid data. If the transmitter is ready and the
- provided data is not valid, an Idle symbol shall be inserted into the stream. Note, contrary to the basic PHY
- 1984 PPI, the Valid signals for a coded PHY can be actively used to manage the data on both TX and RX sides.
- 1985 This arrangement provides more flexibility to the PHY and Protocol layers. For LPDT, this Valid signaling
- already exists in the PPI. Addition of TxValidHS signal eliminates the constraint in the PPI description for
- 1987 TxRequestHS that the "protocol always provides valid data".
- On the RX side, errors may be flagged to the protocol in case unexpected sequences are observed.
- Although many different errors are detectable, it is not required that all these errors flags be implemented.
- The number of error flags implemented depends on the cost/benefit trade-off to be made by the
- implementer. These error features do not impact compliance of the D-PHY. The signals are mentioned here
- 1992 for informative purposes only.
- All control signals shall remain synchronous to the TxByteClk, or RxByteClk. The control signal clock
- frequency shall be equal to or greater than 1/9 of the serial bit rate.
- Table 32 lists the additional signals for the PPI on top of the coding sub-layer (EPPI).

Table 32 Additional Signals for (Functional) PPI

Symbol	Dir	Categories	Description
TxProMarkerEsc	Ι	MXAX (SXXA)	Functional handle to insert a Protocol-marker symbol in the serial stream for LPDT.
			Active HIGH signal
TxProMarkerHS	Ι	MXXX (SRXX)	Functional handle to insert a Protocol-marker symbol in the serial stream for HS transmission.
			Active HIGH signal

Symbol	Dir	Categories	Description
TxValidHS	I	MXXX (SRXX)	Functional handle for the protocol to hold on providing data to the PHY without ending the HS transmission. In the case of a continued transmission request without Valid data, the PHY coding layer inserts Idle symbols.
			Active HIGH signal
RxAlignErrorEsc	О	SXAX (MXXA)	Flag to indicate that a Comma code has been observed in the LPDT stream that was not aligned with the assumed word boundary.
			Active HIGH signal (optional)
RxAlignErrorHS	О	SXXX (MRXX)	Flag to indicate that a Comma code has been observed during HS reception that was not aligned with the assumed word boundary.
			Active HIGH signal (optional)
RxBadSymbolEsc	О	SXAX (MXXA)	Flag to indicate that a non-existing symbol was received using LPDT.
			Active HIGH signal (optional)
RxBadSymbolHS	О	SXXX (MRXX)	Flag to indicate that a non-existing symbol was received in HS mode.
			Active HIGH signal (optional)
RxEoTErrorEsc	О	SXAX (MXXA)	Flag to indicate that at EoT, after LP transmission, a transition to LP-11 has been detected without being preceded by an EoT-marker symbol.
			Active HIGH signal (optional)
RxEoTErrorHS	О	SXXX (MRXX)	Flag to indicate that at EoT, after HS transmission, a transition to LP-11 has been detected without being preceded by an EoT-marker symbol.
			Active HIGH signal (optional)
RxIdleEsc	О	SXAX (MXXA)	Indication flag that Idle patterns are observed at the Lines during LPDT.
			Active HIGH signal (optional)
RxIdleHS	О	SXXX (MRXX)	Indication flag that Idle patterns are observed at the Lines in HS mode.
			Active HIGH signal (optional)

Symbol	Dir	Categories	Description
RxProMarkerEsc	О	SXAX (MXXA)	Functional flag to know that a Protocol-marker symbol occurred in the serial stream using LPDT. This is communicated to the protocol synchronous with the data, exactly at the position where it occurred. Therefore, the interface either shows a flag plus non-valid data or no-flag with valid data. Active HIGH signal
RxProMarkerHS	О	SXXX (MRXX)	Functional flag to know that a Protocol-marker symbol occurred in the serial stream for HS mode. This is communicated to the protocol synchronous with the ByteClk, exactly at the position where it occurred. Therefore, the interface either shows a flag plus non-valid data or no-flag with valid data. Active HIGH signal

C.6 Complete Code Set

1997

1998

1999

Table 33 contains the complete code set.

Table 33 Code Set (8b9b Line Coding)

								`			-9/								
			r	8-	bit D	ata B	yte	•	•	9-bit Symbol									
Name	Туре	B ₁	\mathbf{B}_2	B ₃	X	X	Q_1	\mathbf{Q}_2	Q_3	B ₁	X	Y ₁	\mathbf{Y}_2	\mathbf{B}_2	\mathbf{B}_3	Y ₃	Y ₄	X	
D000	Data	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0	
D001	Data	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1	0	0	
D002	Data	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	1	0	
D003	Data	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	
D004	Data	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	
D005	Data	0	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	0	
D006	Data	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	1	0	
D007	Data	0	0	0	0	0	1	1	1	0	0	1	0	0	0	1	1	0	
D008	Data	0	0	0	0	1	0	0	0	0	0	1	1	0	0	0	1	1	
D009	Data	0	0	0	0	1	0	0	1	0	0	1	1	0	0	1	0	1	
D010	Data	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	1	1	

				8-1	bit D	ata B	yte			9-bit Symbol									
Name	Туре	B ₁	\mathbf{B}_2	\mathbf{B}_3	X	X	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	B ₁	X	\mathbf{Y}_1	\mathbf{Y}_2	\mathbf{B}_2	B ₃	Y ₃	Y ₄	X 2	
D011	Data	0	0	0	0	1	0	1	1	0	0	1	0	0	0	0	1	1	
D012	Data	0	0	0	0	1	1	0	0	0	0	0	1	0	0	1	0	1	
D013	Data	0	0	0	0	1	1	0	1	0	0	1	0	0	0	1	0	1	
D014	Data	0	0	0	0	1	1	1	0	0	0	0	1	0	0	0	0	1	
D015	Data	0	0	0	0	1	1	1	1	0	0	1	0	0	0	0	0	1	
D016	Data	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	
D017	Data	0	0	0	1	0	0	0	1	0	1	0	0	0	0	1	0	0	
D018	Data	0	0	0	1	0	0	1	0	0	1	0	1	0	0	0	1	0	
D019	Data	0	0	0	1	0	0	1	1	0	1	1	0	0	0	0	1	0	
D020	Data	0	0	0	1	0	1	0	0	0	1	0	1	0	0	1	0	0	
D021	Data	0	0	0	1	0	1	0	1	0	1	1	0	0	0	1	0	0	
D022	Data	0	0	0	1	0	1	1	0	0	1	0	1	0	0	1	1	0	
D023	Data	0	0	0	1	0	1	1	1	0	1	1	0	0	0	1	1	0	
D024	Data	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	1	1	
D025	Data	0	0	0	1	1	0	0	1	0	1	0	0	0	0	1	0	1	
D026	Data	0	0	0	1	1	0	1	0	0	1	0	1	0	0	0	1	1	
D027	Data	0	0	0	1	1	0	1	1	0	1	1	0	0	0	0	1	1	
D028	Data	0	0	0	1	1	1	0	0	0	1	0	1	0	0	1	0	1	
D029	Data	0	0	0	1	1	1	0	1	0	1	1	0	0	0	1	0	1	
D030	Data	0	0	0	1	1	1	1	0	0	1	0	1	0	0	0	0	1	
D031	Data	0	0	0	1	1	1	1	1	0	1	1	0	0	0	0	0	1	
D032	Data	0	0	1	0	0	0	0	0	0	0	1	1	0	1	0	1	0	
D033	Data	0	0	1	0	0	0	0	1	0	0	1	1	0	1	1	0	0	
D034	Data	0	0	1	0	0	0	1	0	0	0	0	1	0	1	0	1	0	

				8-1	bit D	ata B	yte			9-bit Symbol								
Name	Туре	B ₁	\mathbf{B}_2	\mathbf{B}_3	X	X	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	B ₁	X	\mathbf{Y}_1	\mathbf{Y}_2	\mathbf{B}_2	B ₃	Y ₃	Y ₄	X 2
D035	Data	0	0	1	0	0	0	1	1	0	0	1	0	0	1	0	1	0
D036	Data	0	0	1	0	0	1	0	0	0	0	0	1	0	1	1	0	0
D037	Data	0	0	1	0	0	1	0	1	0	0	1	0	0	1	1	0	0
D038	Data	0	0	1	0	0	1	1	0	0	0	0	1	0	1	1	1	0
D039	Data	0	0	1	0	0	1	1	1	0	0	1	0	0	1	1	1	0
D040	Data	0	0	1	0	1	0	0	0	0	0	1	1	0	1	0	1	1
D041	Data	0	0	1	0	1	0	0	1	0	0	1	1	0	1	1	0	1
D042	Data	0	0	1	0	1	0	1	0	0	0	0	1	0	1	0	1	1
D043	Data	0	0	1	0	1	0	1	1	0	0	1	0	0	1	0	1	1
D044	Data	0	0	1	0	1	1	0	0	0	0	0	1	0	1	1	0	1
D045	Data	0	0	1	0	1	1	0	1	0	0	1	0	0	1	1	0	1
D046	Data	0	0	1	0	1	1	1	0	0	0	0	1	0	1	0	0	1
D047	Data	0	0	1	0	1	1	1	1	0	0	1	0	0	1	0	0	1
D048	Data	0	0	1	1	0	0	0	0	0	1	0	0	0	1	0	1	0
D049	Data	0	0	1	1	0	0	0	1	0	1	0	0	0	1	1	0	0
D050	Data	0	0	1	1	0	0	1	0	0	1	0	1	0	1	0	1	0
D051	Data	0	0	1	1	0	0	1	1	0	1	1	0	0	1	0	1	0
D052	Data	0	0	1	1	0	1	0	0	0	1	0	1	0	1	1	0	0
D053	Data	0	0	1	1	0	1	0	1	0	1	1	0	0	1	1	0	0
D054	Data	0	0	1	1	0	1	1	0	0	1	0	1	0	1	1	1	0
D055	Data	0	0	1	1	0	1	1	1	0	1	1	0	0	1	1	1	0
D056	Data	0	0	1	1	1	0	0	0	0	1	0	0	0	1	0	1	1
D057	Data	0	0	1	1	1	0	0	1	0	1	0	0	0	1	1	0	1
D058	Data	0	0	1	1	1	0	1	0	0	1	0	1	0	1	0	1	1

				8-	bit D	ata B	syte			9-bit Symbol								
Name	Туре	B ₁	\mathbf{B}_2	B ₃	X	X	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	B ₁	X	Y ₁	\mathbf{Y}_2	\mathbf{B}_2	B ₃	Y ₃	Y ₄	X
D059	Data	0	0	1	1	1	0	1	1	0	1	1	0	0	1	0	1	1
D060	Data	0	0	1	1	1	1	0	0	0	1	0	1	0	1	1	0	1
D061	Data	0	0	1	1	1	1	0	1	0	1	1	0	0	1	1	0	1
D062	Data	0	0	1	1	1	1	1	0	0	1	0	1	0	1	0	0	1
D063	Data	0	0	1	1	1	1	1	1	0	1	1	0	0	1	0	0	1
D064	Data	0	1	0	0	0	0	0	0	0	0	1	1	1	0	0	1	0
D065	Data	0	1	0	0	0	0	0	1	0	0	1	1	1	0	1	0	0
D066	Data	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	1	0
D067	Data	0	1	0	0	0	0	1	1	0	0	1	0	1	0	0	1	0
D068	Data	0	1	0	0	0	1	0	0	0	0	0	1	1	0	1	0	0
D069	Data	0	1	0	0	0	1	0	1	0	0	1	0	1	0	1	0	0
D070	Data	0	1	0	0	0	1	1	0	0	0	0	1	1	0	1	1	0
D071	Data	0	1	0	0	0	1	1	1	0	0	1	0	1	0	1	1	0
D072	Data	0	1	0	0	1	0	0	0	0	0	1	1	1	0	0	1	1
D073	Data	0	1	0	0	1	0	0	1	0	0	1	1	1	0	1	0	1
D074	Data	0	1	0	0	1	0	1	0	0	0	0	1	1	0	0	1	1
D075	Data	0	1	0	0	1	0	1	1	0	0	1	0	1	0	0	1	1
D076	Data	0	1	0	0	1	1	0	0	0	0	0	1	1	0	1	0	1
D077	Data	0	1	0	0	1	1	0	1	0	0	1	0	1	0	1	0	1
D078	Data	0	1	0	0	1	1	1	0	0	0	0	1	1	0	0	0	1
D079	Data	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0	0	1
D080	Data	0	1	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0
D081	Data	0	1	0	1	0	0	0	1	0	1	0	0	1	0	1	0	0
D082	Data	0	1	0	1	0	0	1	0	0	1	0	1	1	0	0	1	0

				8-1	bit D	ata B	yte						9-bi	t Syn	nbol			
Name	Туре	B ₁	\mathbf{B}_2	\mathbf{B}_3	X	X	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	B ₁	X	Y ₁	Y ₂	\mathbf{B}_2	B ₃	\mathbf{Y}_3	Y ₄	X 2
D083	Data	0	1	0	1	0	0	1	1	0	1	1	0	1	0	0	1	0
D084	Data	0	1	0	1	0	1	0	0	0	1	0	1	1	0	1	0	0
D085	Data	0	1	0	1	0	1	0	1	0	1	1	0	1	0	1	0	0
D086	Data	0	1	0	1	0	1	1	0	0	1	0	1	1	0	1	1	0
D087	Data	0	1	0	1	0	1	1	1	0	1	1	0	1	0	1	1	0
D088	Data	0	1	0	1	1	0	0	0	0	1	0	0	1	0	0	1	1
D089	Data	0	1	0	1	1	0	0	1	0	1	0	0	1	0	1	0	1
D090	Data	0	1	0	1	1	0	1	0	0	1	0	1	1	0	0	1	1
D091	Data	0	1	0	1	1	0	1	1	0	1	1	0	1	0	0	1	1
D092	Data	0	1	0	1	1	1	0	0	0	1	0	1	1	0	1	0	1
D093	Data	0	1	0	1	1	1	0	1	0	1	1	0	1	0	1	0	1
D094	Data	0	1	0	1	1	1	1	0	0	1	0	1	1	0	0	0	1
D095	Data	0	1	0	1	1	1	1	1	0	1	1	0	1	0	0	0	1
D096	Data	0	1	1	0	0	0	0	0	0	0	1	1	1	1	0	1	0
D097	Data	0	1	1	0	0	0	0	1	0	0	1	1	1	1	1	0	0
D098	Data	0	1	1	0	0	0	1	0	0	0	0	1	1	1	0	1	0
D099	Data	0	1	1	0	0	0	1	1	0	0	1	0	1	1	0	1	0
D100	Data	0	1	1	0	0	1	0	0	0	0	0	1	1	1	1	0	0
D101	Data	0	1	1	0	0	1	0	1	0	0	1	0	1	1	1	0	0
D102	Data	0	1	1	0	0	1	1	0	0	0	0	1	1	1	1	1	0
D103	Data	0	1	1	0	0	1	1	1	0	0	1	0	1	1	1	1	0
D104	Data	0	1	1	0	1	0	0	0	0	0	1	1	1	1	0	1	1
D105	Data	0	1	1	0	1	0	0	1	0	0	1	1	1	1	1	0	1
D106	Data	0	1	1	0	1	0	1	0	0	0	0	1	1	1	0	1	1

				8-1	bit D	ata B	yte						9-bi	t Syn	nbol			
Name	Туре	B ₁	\mathbf{B}_2	\mathbf{B}_3	X	X	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	B ₁	X	Y ₁	\mathbf{Y}_2	\mathbf{B}_2	B ₃	Y ₃	Y ₄	X 2
D107	Data	0	1	1	0	1	0	1	1	0	0	1	0	1	1	0	1	1
D108	Data	0	1	1	0	1	1	0	0	0	0	0	1	1	1	1	0	1
D109	Data	0	1	1	0	1	1	0	1	0	0	1	0	1	1	1	0	1
D110	Data	0	1	1	0	1	1	1	0	0	0	0	1	1	1	0	0	1
D111	Data	0	1	1	0	1	1	1	1	0	0	1	0	1	1	0	0	1
D112	Data	0	1	1	1	0	0	0	0	0	1	0	0	1	1	0	1	0
D113	Data	0	1	1	1	0	0	0	1	0	1	0	0	1	1	1	0	0
D114	Data	0	1	1	1	0	0	1	0	0	1	0	1	1	1	0	1	0
D115	Data	0	1	1	1	0	0	1	1	0	1	1	0	1	1	0	1	0
D116	Data	0	1	1	1	0	1	0	0	0	1	0	1	1	1	1	0	0
D117	Data	0	1	1	1	0	1	0	1	0	1	1	0	1	1	1	0	0
D118	Data	0	1	1	1	0	1	1	0	0	1	0	1	1	1	1	1	0
D119	Data	0	1	1	1	0	1	1	1	0	1	1	0	1	1	1	1	0
D120	Data	0	1	1	1	1	0	0	0	0	1	0	0	1	1	0	1	1
D121	Data	0	1	1	1	1	0	0	1	0	1	0	0	1	1	1	0	1
D122	Data	0	1	1	1	1	0	1	0	0	1	0	1	1	1	0	1	1
D123	Data	0	1	1	1	1	0	1	1	0	1	1	0	1	1	0	1	1
D124	Data	0	1	1	1	1	1	0	0	0	1	0	1	1	1	1	0	1
D125	Data	0	1	1	1	1	1	0	1	0	1	1	0	1	1	1	0	1
D126	Data	0	1	1	1	1	1	1	0	0	1	0	1	1	1	0	0	1
D127	Data	0	1	1	1	1	1	1	1	0	1	1	0	1	1	0	0	1
D128	Data	1	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0
D129	Data	1	0	0	0	0	0	0	1	1	0	1	1	0	0	1	0	0
D130	Data	1	0	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0

				8-1	bit D	ata B	yte						9-bi	t Syn	nbol			
Name	Туре	B ₁	\mathbf{B}_2	\mathbf{B}_3	X	X	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	\mathbf{B}_1	X	Y ₁	\mathbf{Y}_2	\mathbf{B}_2	B ₃	\mathbf{Y}_3	Y ₄	X 2
D131	Data	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	1	0
D132	Data	1	0	0	0	0	1	0	0	1	0	0	1	0	0	1	0	0
D133	Data	1	0	0	0	0	1	0	1	1	0	1	0	0	0	1	0	0
D134	Data	1	0	0	0	0	1	1	0	1	0	0	1	0	0	1	1	0
D135	Data	1	0	0	0	0	1	1	1	1	0	1	0	0	0	1	1	0
D136	Data	1	0	0	0	1	0	0	0	1	0	1	1	0	0	0	1	1
D137	Data	1	0	0	0	1	0	0	1	1	0	1	1	0	0	1	0	1
D138	Data	1	0	0	0	1	0	1	0	1	0	0	1	0	0	0	1	1
D139	Data	1	0	0	0	1	0	1	1	1	0	1	0	0	0	0	1	1
D140	Data	1	0	0	0	1	1	0	0	1	0	0	1	0	0	1	0	1
D141	Data	1	0	0	0	1	1	0	1	1	0	1	0	0	0	1	0	1
D142	Data	1	0	0	0	1	1	1	0	1	0	0	1	0	0	0	0	1
D143	Data	1	0	0	0	1	1	1	1	1	0	1	0	0	0	0	0	1
D144	Data	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	1	0
D145	Data	1	0	0	1	0	0	0	1	1	1	0	0	0	0	1	0	0
D146	Data	1	0	0	1	0	0	1	0	1	1	0	1	0	0	0	1	0
D147	Data	1	0	0	1	0	0	1	1	1	1	1	0	0	0	0	1	0
D148	Data	1	0	0	1	0	1	0	0	1	1	0	1	0	0	1	0	0
D149	Data	1	0	0	1	0	1	0	1	1	1	1	0	0	0	1	0	0
D150	Data	1	0	0	1	0	1	1	0	1	1	0	1	0	0	1	1	0
D151	Data	1	0	0	1	0	1	1	1	1	1	1	0	0	0	1	1	0
D152	Data	1	0	0	1	1	0	0	0	1	1	0	0	0	0	0	1	1
D153	Data	1	0	0	1	1	0	0	1	1	1	0	0	0	0	1	0	1
D154	Data	1	0	0	1	1	0	1	0	1	1	0	1	0	0	0	1	1

				8-1	bit D	ata B	yte						9-bi	t Syn	nbol			
Name	Туре	B ₁	\mathbf{B}_2	\mathbf{B}_3	X	X	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	\mathbf{B}_1	X	\mathbf{Y}_1	\mathbf{Y}_2	\mathbf{B}_2	B ₃	Y ₃	Y ₄	X 2
D155	Data	1	0	0	1	1	0	1	1	1	1	1	0	0	0	0	1	1
D156	Data	1	0	0	1	1	1	0	0	1	1	0	1	0	0	1	0	1
D157	Data	1	0	0	1	1	1	0	1	1	1	1	0	0	0	1	0	1
D158	Data	1	0	0	1	1	1	1	0	1	1	0	1	0	0	0	0	1
D159	Data	1	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	1
D160	Data	1	0	1	0	0	0	0	0	1	0	1	1	0	1	0	1	0
D161	Data	1	0	1	0	0	0	0	1	1	0	1	1	0	1	1	0	0
D162	Data	1	0	1	0	0	0	1	0	1	0	0	1	0	1	0	1	0
D163	Data	1	0	1	0	0	0	1	1	1	0	1	0	0	1	0	1	0
D164	Data	1	0	1	0	0	1	0	0	1	0	0	1	0	1	1	0	0
D165	Data	1	0	1	0	0	1	0	1	1	0	1	0	0	1	1	0	0
D166	Data	1	0	1	0	0	1	1	0	1	0	0	1	0	1	1	1	0
D167	Data	1	0	1	0	0	1	1	1	1	0	1	0	0	1	1	1	0
D168	Data	1	0	1	0	1	0	0	0	1	0	1	1	0	1	0	1	1
D169	Data	1	0	1	0	1	0	0	1	1	0	1	1	0	1	1	0	1
D170	Data	1	0	1	0	1	0	1	0	1	0	0	1	0	1	0	1	1
D171	Data	1	0	1	0	1	0	1	1	1	0	1	0	0	1	0	1	1
D172	Data	1	0	1	0	1	1	0	0	1	0	0	1	0	1	1	0	1
D173	Data	1	0	1	0	1	1	0	1	1	0	1	0	0	1	1	0	1
D174	Data	1	0	1	0	1	1	1	0	1	0	0	1	0	1	0	0	1
D175	Data	1	0	1	0	1	1	1	1	1	0	1	0	0	1	0	0	1
D176	Data	1	0	1	1	0	0	0	0	1	1	0	0	0	1	0	1	0
D177	Data	1	0	1	1	0	0	0	1	1	1	0	0	0	1	1	0	0
D178	Data	1	0	1	1	0	0	1	0	1	1	0	1	0	1	0	1	0

				8-1	bit D	ata B	yte						9-bi	t Syn	nbol			
Name	Туре	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	X	X	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	\mathbf{B}_1	X	Y ₁	\mathbf{Y}_2	\mathbf{B}_2	B ₃	\mathbf{Y}_3	Y ₄	X 2
D179	Data	1	0	1	1	0	0	1	1	1	1	1	0	0	1	0	1	0
D180	Data	1	0	1	1	0	1	0	0	1	1	0	1	0	1	1	0	0
D181	Data	1	0	1	1	0	1	0	1	1	1	1	0	0	1	1	0	0
D182	Data	1	0	1	1	0	1	1	0	1	1	0	1	0	1	1	1	0
D183	Data	1	0	1	1	0	1	1	1	1	1	1	0	0	1	1	1	0
D184	Data	1	0	1	1	1	0	0	0	1	1	0	0	0	1	0	1	1
D185	Data	1	0	1	1	1	0	0	1	1	1	0	0	0	1	1	0	1
D186	Data	1	0	1	1	1	0	1	0	1	1	0	1	0	1	0	1	1
D187	Data	1	0	1	1	1	0	1	1	1	1	1	0	0	1	0	1	1
D188	Data	1	0	1	1	1	1	0	0	1	1	0	1	0	1	1	0	1
D189	Data	1	0	1	1	1	1	0	1	1	1	1	0	0	1	1	0	1
D190	Data	1	0	1	1	1	1	1	0	1	1	0	1	0	1	0	0	1
D191	Data	1	0	1	1	1	1	1	1	1	1	1	0	0	1	0	0	1
D192	Data	1	1	0	0	0	0	0	0	1	0	1	1	1	0	0	1	0
D193	Data	1	1	0	0	0	0	0	1	1	0	1	1	1	0	1	0	0
D194	Data	1	1	0	0	0	0	1	0	1	0	0	1	1	0	0	1	0
D195	Data	1	1	0	0	0	0	1	1	1	0	1	0	1	0	0	1	0
D196	Data	1	1	0	0	0	1	0	0	1	0	0	1	1	0	1	0	0
D197	Data	1	1	0	0	0	1	0	1	1	0	1	0	1	0	1	0	0
D198	Data	1	1	0	0	0	1	1	0	1	0	0	1	1	0	1	1	0
D199	Data	1	1	0	0	0	1	1	1	1	0	1	0	1	0	1	1	0
D200	Data	1	1	0	0	1	0	0	0	1	0	1	1	1	0	0	1	1
D201	Data	1	1	0	0	1	0	0	1	1	0	1	1	1	0	1	0	1
D202	Data	1	1	0	0	1	0	1	0	1	0	0	1	1	0	0	1	1

				8-1	bit D	ata B	yte						9-bi	t Syn	nbol			
Name	Туре	B ₁	\mathbf{B}_2	\mathbf{B}_3	X	X	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	\mathbf{B}_1	X	Y ₁	\mathbf{Y}_2	\mathbf{B}_2	B ₃	\mathbf{Y}_3	Y ₄	X 2
D203	Data	1	1	0	0	1	0	1	1	1	0	1	0	1	0	0	1	1
D204	Data	1	1	0	0	1	1	0	0	1	0	0	1	1	0	1	0	1
D205	Data	1	1	0	0	1	1	0	1	1	0	1	0	1	0	1	0	1
D206	Data	1	1	0	0	1	1	1	0	1	0	0	1	1	0	0	0	1
D207	Data	1	1	0	0	1	1	1	1	1	0	1	0	1	0	0	0	1
D208	Data	1	1	0	1	0	0	0	0	1	1	0	0	1	0	0	1	0
D209	Data	1	1	0	1	0	0	0	1	1	1	0	0	1	0	1	0	0
D210	Data	1	1	0	1	0	0	1	0	1	1	0	1	1	0	0	1	0
D211	Data	1	1	0	1	0	0	1	1	1	1	1	0	1	0	0	1	0
D212	Data	1	1	0	1	0	1	0	0	1	1	0	1	1	0	1	0	0
D213	Data	1	1	0	1	0	1	0	1	1	1	1	0	1	0	1	0	0
D214	Data	1	1	0	1	0	1	1	0	1	1	0	1	1	0	1	1	0
D215	Data	1	1	0	1	0	1	1	1	1	1	1	0	1	0	1	1	0
D216	Data	1	1	0	1	1	0	0	0	1	1	0	0	1	0	0	1	1
D217	Data	1	1	0	1	1	0	0	1	1	1	0	0	1	0	1	0	1
D218	Data	1	1	0	1	1	0	1	0	1	1	0	1	1	0	0	1	1
D219	Data	1	1	0	1	1	0	1	1	1	1	1	0	1	0	0	1	1
D220	Data	1	1	0	1	1	1	0	0	1	1	0	1	1	0	1	0	1
D221	Data	1	1	0	1	1	1	0	1	1	1	1	0	1	0	1	0	1
D222	Data	1	1	0	1	1	1	1	0	1	1	0	1	1	0	0	0	1
D223	Data	1	1	0	1	1	1	1	1	1	1	1	0	1	0	0	0	1
D224	Data	1	1	1	0	0	0	0	0	1	0	1	1	1	1	0	1	0
D225	Data	1	1	1	0	0	0	0	1	1	0	1	1	1	1	1	0	0
D226	Data	1	1	1	0	0	0	1	0	1	0	0	1	1	1	0	1	0

				8-	bit D	ata B	yte						9-bi	t Syn	nbol			
Name	Туре	B ₁	\mathbf{B}_2	B ₃	X	X	\mathbf{Q}_1	\mathbf{Q}_2	Q_3	B ₁	X	Y ₁	\mathbf{Y}_2	\mathbf{B}_2	B ₃	Y ₃	Y ₄	X
D227	Data	1	1	1	0	0	0	1	1	1	0	1	0	1	1	0	1	0
D228	Data	1	1	1	0	0	1	0	0	1	0	0	1	1	1	1	0	0
D229	Data	1	1	1	0	0	1	0	1	1	0	1	0	1	1	1	0	0
D230	Data	1	1	1	0	0	1	1	0	1	0	0	1	1	1	1	1	0
D231	Data	1	1	1	0	0	1	1	1	1	0	1	0	1	1	1	1	0
D232	Data	1	1	1	0	1	0	0	0	1	0	1	1	1	1	0	1	1
D233	Data	1	1	1	0	1	0	0	1	1	0	1	1	1	1	1	0	1
D234	Data	1	1	1	0	1	0	1	0	1	0	0	1	1	1	0	1	1
D235	Data	1	1	1	0	1	0	1	1	1	0	1	0	1	1	0	1	1
D236	Data	1	1	1	0	1	1	0	0	1	0	0	1	1	1	1	0	1
D237	Data	1	1	1	0	1	1	0	1	1	0	1	0	1	1	1	0	1
D238	Data	1	1	1	0	1	1	1	0	1	0	0	1	1	1	0	0	1
D239	Data	1	1	1	0	1	1	1	1	1	0	1	0	1	1	0	0	1
D240	Data	1	1	1	1	0	0	0	0	1	1	0	0	1	1	0	1	0
D241	Data	1	1	1	1	0	0	0	1	1	1	0	0	1	1	1	0	0
D242	Data	1	1	1	1	0	0	1	0	1	1	0	1	1	1	0	1	0
D243	Data	1	1	1	1	0	0	1	1	1	1	1	0	1	1	0	1	0
D244	Data	1	1	1	1	0	1	0	0	1	1	0	1	1	1	1	0	0
D245	Data	1	1	1	1	0	1	0	1	1	1	1	0	1	1	1	0	0
D246	Data	1	1	1	1	0	1	1	0	1	1	0	1	1	1	1	1	0
D247	Data	1	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	0
D248	Data	1	1	1	1	1	0	0	0	1	1	0	0	1	1	0	1	1
D249	Data	1	1	1	1	1	0	0	1	1	1	0	0	1	1	1	0	1
D250	Data	1	1	1	1	1	0	1	0	1	1	0	1	1	1	0	1	1

				8-	bit D	ata B	yte						9-bi	t Syn	nbol			
Name	Туре	B ₁	\mathbf{B}_2	B ₃	X	X	Q_1	\mathbf{Q}_2	Q ₃	B ₁	X	Y ₁	Y ₂	\mathbf{B}_2	B ₃	Y ₃	Y ₄	X
D251	Data	1	1	1	1	1	0	1	1	1	1	1	0	1	1	0	1	1
D252	Data	1	1	1	1	1	1	0	0	1	1	0	1	1	1	1	0	1
D253	Data	1	1	1	1	1	1	0	1	1	1	1	0	1	1	1	0	1
D254	Data	1	1	1	1	1	1	1	0	1	1	0	1	1	1	0	0	1
D255	Data	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0	1
C400	Rsvd		I	Does	not re	prese	ent da	ta		0	1	0	0	0	0	1	1	0
C401	Rsvd		I	Does	not re	prese	ent da	ta		0	1	0	0	0	1	1	1	0
C402	Rsvd		I	Does	not re	prese	ent da	ta		0	1	0	0	1	0	1	1	0
C403	Rsvd		I	Does	not re	prese	ent da	ta		0	1	0	0	1	1	1	1	0
C404	Rsvd		I	Does	not re	prese	ent da	ta		1	1	0	0	0	0	1	1	0
C405	Rsvd		I	Does	not re	prese	ent da	ta		1	1	0	0	0	1	1	1	0
C406	Rsvd		Ι	Does	not re	prese	ent da	ta		1	1	0	0	1	0	1	1	0
C407	Rsvd		Ι	Does	not re	prese	ent da	ta		1	1	0	0	1	1	1	1	0
C410	Rsvd		I	Does	not re	prese	ent da	ta		0	0	1	1	0	0	0	0	1
C411	Rsvd		Ι	Does	not re	prese	ent da	ta		0	0	1	1	0	1	0	0	1
C412	Rsvd		Ι	Does	not re	prese	ent da	ta		0	0	1	1	1	0	0	0	1
C413	Rsvd		Ι	Does	not re	prese	ent da	ta		0	0	1	1	1	1	0	0	1
C414	Rsvd		Ι	Does	not re	prese	ent da	ta		1	0	1	1	0	0	0	0	1
C415	Rsvd		Ι	Does	not re	prese	ent da	ta		1	0	1	1	0	1	0	0	1
C416	Rsvd		Ι	Does	not re	prese	ent da	ta		1	0	1	1	1	0	0	0	1
C417	Rsvd		I	Does	not re	prese	ent da	ta		1	0	1	1	1	1	0	0	1
C600	Protocol		Ι	Does	not re	prese	ent da	ta		0	1	1	1	1	1	1	0	0
C611	ЕоТ		I	Does	not re	prese	ent da	ta		1	0	0	0	0	0	0	1	1
C601	Idle/Sync		Ι	Does 1	not re	prese	ent da	ta		0	1	1	1	1	1	1	0	1

				8-	bit D	ata B	yte						9-bi	t Syn	nbol			
Name	Туре	B ₁	\mathbf{B}_2	B ₃	X	X	\mathbf{Q}_1	\mathbf{Q}_2	\mathbf{Q}_3	\mathbf{B}_1	X	Y ₁	\mathbf{Y}_2	\mathbf{B}_2	B ₃	Y ₃	Y ₄	X
C610	Idle/Sync 2		I	Does	not re	prese	ent da	ta		1	0	0	0	0	0	0	1	0
C701	Reserved		I	Does	not re	prese	ent da	ta		1	0	0	0	0	0	0	0	1
C710	Rsvd		Ι	Does 1	not re	prese	nt da	ta		0	1	1	1	1	1	1	1	0

2000 Notes

2001 Rsvd = Reserved