Previsão de Falha em Turbofan Jet Engine

Allan Mattos, Leandro Simões, Lucas Paiva e Renato Maximiano

NASA Turbofan Jet Engine Data Set

Data set com dados de operação de um motor turbofan, gerados com um modelo termodinâmico da NASA (C-MAPSS).

- 100 motores simulados (ID)
- Ciclo do motor (até a falha, quando RUL=0)
- 3 parâmetros para condição de operação
- 21 sensores

Utilizado apenas o primeiro data set:

- Uma condição de operação (nível do mar)
- Um modo de falha (degradação do HPC)

https://www.kaggle.com/datasets/behrad3d/nasa-cmaps

NASA Turbofan Jet Engine Data Set

- Sensores representam diversos tipos de variáveis
 - o Temperaturas, pressões, rotações, vazões etc
- Maioria dos sensores são variáveis contínuas
 - Exceto sensores 17 e 18, que são discretas
- RUL: Remaining Useful Life

	id	cycle	op1	op2	op3	sensor1	sensor2	sensor3	sensor4	sensor5	sensor6	sensor7	sensor8	sensor9	sensor10
0	1	1	-0.0007	-0.0004	100.0	518.67	641.82	1589.70	1400.60	14.62	21.61	554.36	2388.06	9046.19	1.3
1	1	2	0.0019	-0.0003	100.0	518.67	642.15	1591.82	1403.14	14.62	21.61	553.75	2388.04	9044.07	1.3
2	1	3	-0.0043	0.0003	100.0	518.67	642.35	1587.99	1404.20	14.62	21.61	554.26	2388.08	9052.94	1.3
3	1	4	0.0007	0.0000	100.0	518.67	642.35	1582.79	1401.87	14.62	21.61	554.45	2388.11	9049.48	1.3

	sensor11	sensor12	sensor13	sensor14	sensor15	sensor16	sensor17	sensor18	sensor19	sensor20	sensor21	RUL
0	47.47	521.66	2388.02	8138.62	8.4195	0.03	392	2388	100.0	39.06	23,4190	191
1	47.49	522.28	2388.07	8131.49	8,4318	0.03	392	2388	100.0	39.00	23.4236	190
2	47.27	522.42	2388.03	8133.23	8.4178	0.03	390	2388	100.0	38.95	23.3442	189
3	47.13	522.86	2388.08	8133.83	8,3682	0.03	392	2388	100.0	38.88	23.3739	188

Comportamento sensores

Valor, Distribuição e Densidade

Correlação dos Dados

id -	1	0.014	0.013	0.026	0.026	-0.032	0.04	-0.052	0.025	-0.032	0.044	-0.059	0.022	0.014	-0.021	-0.016	0.079
sensor2 -	0.014	1	0.6	0.71	0.13	-0.7	0.66	0.27	0.74	-0.72	0.66	0.18	0.68	0.63	-0.66	-0.67	-0.61
sensor3 -	0.013	0.6	1	0.68	0.12	-0.66		0.32	0.7	-0.68		0.24	0.64		-0.63	-0.63	-0.58
sensor4 -	0.026	0.71	0.68	1	0.15	-0.79	0.75	0.3	0.83	-0.82	0.75	0.19	0.76	0.7	-0.75	-0.75	-0.68
sensor6 -	0.026	0.13	0.12	0.15	1	-0.16	0.15	0.019	0.16	-0.16	0.16	-0.0021	0.15	0.13	-0.14	-0.14	-0.13
sensor7 -	-0.032	-0.7	-0.66	-0.79	-0.16	1	-0.77	-0.22	-0.82	0.81	-0.76	-0.11	-0.75	-0.69	0.74	0.74	0.66
sensor8 -	0.04	0.66		0.75	0.15	-0.77	1	-0.032	0.78	-0.79	0.83	-0.14	0.7	0.63	-0.69	-0.69	-0.56
sensor9 -	-0.052	0.27	0.32	0.3	0.019	-0.22	-0.032	1	0.27	-0.21	-0.035	0.96	0.29	0.34	-0.29	-0.29	-0.39
sensor11 -	0.025	0.74	0.7	0.83	0.16	-0.82	0.78	0.27	1	-0.85	0.78	0.16	0.78	0.72	-0.77	-0.77	-0.7
sensor12 -	-0.032	-0.72	-0.68	-0.82	-0.16	0.81	-0.79	-0.21	-0.85	1	-0.79	-0.098	-0.77	-0.7	0.75	0.76	0.67
sensor13 -	0.044	0.66		0.75	0.16	-0.76	0.83	-0.035	0.78	-0.79	1	-0.15	0.7	0.63	-0.69	-0.69	-0.56
sensor14 -	-0.059	0.18	0.24	0.19	-0.0021	-0.11	-0.14	0.96	0.16	-0.098	-0.15	1	0.19	0.25	-0.19	-0.19	-0.31
sensor15 -	0.022	0.68	0.64	0.76	0.15	-0.75	0.7	0.29	0.78	-0.77	0.7	0.19	1	0.67	-0.71	-0.7	-0.64
sensor17 -	0.014	0.63		0.7	0.13	-0.69	0.63	0.34	0.72	-0.7	0.63	0.25	0.67	1	-0.65	-0.66	-0.61
sensor20 -	-0.021	-0.66	-0.63	-0.75	-0.14	0.74	-0.69	-0.29	-0.77	0.75	-0.69	-0.19	-0.71	-0.65	1	0.69	
sensor21 -	-0.016	-0.67	-0.63	-0.75	-0.14	0.74	-0.69	-0.29	-0.77	0.76	-0.69	-0.19	-0.7	-0.66	0.69	1	0.64
RUL -	0.079	-0.61	-0.58	-0.68	-0.13	0.66	-0.56	-0.39	-0.7	0.67		-0.31	-0.64	-0.61	0.63	0.64	1
	id	sensor2	sensor3	sensor4	sensor6	sensor7	sensor8	sensor9	sensor11	sensor12	sensor13	sensor14	sensor15	sensor17	sensor20	sensor21	RUL

- 0.75 - 0.50 - 0.25 - 0.00 - -0.25 - -0.50 - -0.75

Correlação dos Sensores x RUL (id)

MLP Output Hidden Layers Units:512 Activation:LeakyReLU DROPOUT Units:128 Activation:LeakyReLU Units:256 Activation:LeakyReLU Units:256 Activation:LeakyReLU Units:128 Activation:LeakyReLU Input Sensor2, Sensor3, Sensor4, Sensor7, Sensor9, Sensor15, Sensor17, Sensor20, Sensor21

LSTM

Sensor2, Sensor3, Sensor4, Sensor7, Sensor9, Sensor15, Sensor17, Sensor20, Sensor21

Tempo de processamento

Erro médio absoluto

MLP: 28.65

LSTM: 19.9

Tempo de processamento

MLP: 0.040214 (s)

LSTM: 0.043076 (s)

×

Erro Absoluto Médio

Ho: O erro médio da LSTM é **igual** ao erro médio da MLP

Ha: O erro médio da LSTM é menor que o erro médio da MLP

Normalidade dos Erros

Comparação dos Erros

Amostras não normais Pareadas Teste de Wilcoxon Erro LSTM < Erro MLP (p=0. 0071)

×

Tempo médio de processamento

Ho: O tempo médio da LSTM é **igual** ao tempo médio MLP

Ha: O tempo médio da LSTM é maior que o tempo médio da MLP

Normalidade dos Tempos

Comparação dos Tempos

Normalidade?
Pareadas
Teste de Wilcoxon
Teste t pareado

Tempo LSTM > Tempo MLP (pw=9.26e-7 | pt=2.99-7)

Importância dos Sensores

- Objetivo: Utilizar o teste de Kolmogorov-Smirnov de duas amostras para identificar os sensores que variam significativamente ao longo dos ciclos do motor
 - Comparar uma amostra de referência (10 ciclos iniciais) com a amostra a ser analisada.

Importância dos Sensores - Teste 1

- Amostra 1:
 - 10 primeiros ciclos de todos os motores
- Amostra 2:
 - 10 últimos ciclos de cada motor antes da falha
- Resultado pouco conclusivo

Importância dos Sensores - Teste 2

- Amostra 1 (referência):
 - 10 primeiros ciclos de todos os motores
- Amostra 2 (a testar):
 - Sequência de 10 ciclos consecutivos dos motores
 - Iniciando em RUL=0, e variando com passo de 2 ciclos
- Legenda:
 - Preto: p-valor > 0.05
 - Branco: p-valor <= 0.05

Menor erro com LSTM

×

Menor tempo computacional com MLP

Propomos um método baseado em estatística para selecionar sensores mais importantes

DÚVIDAS?

Ficou com alguma dúvida?

paiva.1996.lucas@gmail.com,
leandro.simoes@embraer.com.br
renatomaximiano@icloud.com,
allan_mattos01@hotmail.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**

Códigos: https://github.com/lucas-fpaiva/estatistica_pes