CS499 Homework 7 (First Draft)

Intersteller

Exercise 7.1

- (1) Since e is in the minimum spanning tree, we split the minimum spanning tree into two components by deleting e. Let the vertices in the two components consist S and $V \setminus S$ respectively. Since there is no circle in a tree, obviously e is the only edge which is good and cross this cut, which means no edge from X crosses this cut.
- (2) Suppose e is not the minimum weight edge crossing this cut, assume there is an edge e' which has less weight and crosses this cut. e' can replace e and consists a spanning tree with less weight. This means e is not in the minimum spanning tree, which means e is not good, which contradicts the condition.

Exercies 7.4

Figure 1:

Exercise 7.5 Obviously, if two vertices are connected in T_c , they are connected in G_c , since T_c is in G_c .

Suppose u,v are connected in G_c , but not connected in T_c . Let two connected components in T_c contain u and v respectively be A and B. Let e be an edge in G_c that connect A and B. Using defination, $w(e) \leq c$. Since A and B are not connected in T_c , there must be an edge e' in T that connects A and B, and w(e') > c. So, e'i.e. Obviously T which contains e' is not the minimum spanning tree, since e' can be replaced by e with less weight. This contradicts the condition. So, if two vertices are connected in G_c , they are connected in T_c .

Question:

1. In Exercise 7.11 & 7.12, how can we compute the number of functions with a core of size k? $(1 \le k \le n)$