Konrad Staniszewski DNN lab3

### 1 The Loss

#### 1.1 In general

Mean square error (mean across the batch):

$$MSE = \frac{1}{n} \sum_{i} (o_i - ground\_truth_i)^2$$

Negative log likelihood loss, negative log of probability of the data (when reduction = sum) according to the model  $\phi$ :

$$NLLLoss = -\log(P_{\phi}(ground\_truth))$$

whe reduction = mean:

$$NLLLoss = -\frac{1}{n} \log(P_{\phi}(ground\_truth))$$

Softmax can turn vector of real numbers into probability distributuion:

$$SOFTMAX(x_1, \dots, x_m) = \left(\frac{e^{x_1}}{\sum_i e^{x_i}}, \dots, \frac{e^{x_m}}{\sum_i e^{x_i}}\right)$$

but the default implementation may be numerically unstable. To alleviate this consider

$$\begin{aligned} z &= \max_{i} x_{i} \\ &\mathrm{SOFTMAX}(\mathbf{x}_{1} - \mathbf{z}, \dots, \mathbf{x}_{\mathbf{m}} - \mathbf{z}) = \\ &\left(\frac{e^{x_{1} - z}}{\sum_{i} e^{x_{i} - z}}, \dots, \frac{e^{x_{m} - z}}{\sum_{i} e^{x_{i} - z}}\right) = \\ &\left(\frac{e^{-z}}{e^{-z}} \frac{e^{x_{1}}}{\sum_{i} e^{x_{i}}}, \dots, \frac{e^{-z}}{e^{-z}} \frac{e^{x_{m}}}{\sum_{i} e^{x_{i}}}\right) = \\ &\mathrm{SOFTMAX}(\mathbf{x}_{1}, \dots, \mathbf{x}_{\mathbf{m}}) \end{aligned}$$

## 1.2 In our case

Simplified setup with MSE and batch size = 1. Old setup:



New setup with softmax:



Where  $y_i \in \{0, 1\}$  one-hot encodes the desired output.

Konrad Staniszewski DNN lab3

#### 1.3 Gradient of NLLLoss with softmax

$$NLLLoss = -\sum_{i} y_{i} \log(h_{i}) = \sum_{i} y_{i} \log\left(\frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}}\right)$$

$$\frac{\partial NLLLoss}{\partial f_{k}} = -\sum_{i} y_{i} \frac{\partial\left(\log\left(\frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}}\right)\right)}{\partial f_{k}}$$

$$\frac{\partial\left(\log\left(\frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}}\right)\right)}{\partial f_{k}} = \frac{1}{\frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}}} \frac{\partial\left(\frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}}\right)}{\partial f_{k}}$$

$$\frac{\partial\left(\frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}}\right)}{\partial f_{k}} = \begin{cases} \frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}} - \left(\frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}}\right)^{2} & \text{if } i = k \\ 0 - \frac{e^{f_{i}}e^{f_{k}}}{\left(\sum_{j} e^{f_{j}}\right)^{2}} & \text{otherwise} \end{cases}$$

$$\frac{1}{\frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}}} \frac{\partial\left(\frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}}\right)}{\partial f_{k}} = \begin{cases} 1 - \left(\frac{e^{f_{i}}}{\sum_{j} e^{f_{j}}}\right) & \text{if } i = k \\ 0 - \frac{e^{f_{k}}}{\left(\sum_{j} e^{f_{j}}\right)} & \text{otherwise} \end{cases}$$

As y is a vector that one-hot encodes the answer so we can write:

$$h - y$$

## 2 Adam vs AdamW

Adam optimizer in Pytorch implements:

• Weight decay

We want to penalize large weights. During the lecture we have observed that large values can be used to almost exactly compute functions from  $\{0,1\}^n$  to  $\{0,1\}$ . The resulting intuition was that we want to penalize large weights so that it would be harder to overfit.

Parameter:  $\lambda$ .

If you are dealing with SGD just add  $\frac{1}{2}\lambda\phi^2$  to the loss, or multiply the weights by  $(1-\lambda)$ .

- Momentum
   We want to speed up model on hills.
- Uses second moment to deal with noisy gradients

Now we will discuss the implementation in Adam/AdamW (Pytorch 2.1).: Let  $M_{\phi}$  - our model with parameters  $\phi$ .

$$\operatorname{grads} = \nabla_{\phi}(\operatorname{LOSS}(M_{\phi}, x, y))$$
  
 $\operatorname{grads} = \operatorname{grads} + \lambda \phi$ 

momentum = 
$$\beta_1$$
momentum +  $(1 - \beta_1)$ grads  
var =  $\beta_2$ var +  $(1 - \beta_2)$ grads<sup>2</sup>

$$m = \frac{\text{momentum}}{1 - \beta_1^{\text{step}}}$$
$$v = \frac{\text{var}}{1 - \beta_2^{\text{step}}}$$

$$\phi = \phi - \ln \left( \frac{m}{\sqrt{v} + \epsilon} + \underline{\lambda \phi} \right)$$

We usually do not decay biases!

# 3 Dropout

Briefly speaking drop parts of the activations randomly with probability p. Note that we need to correct for this during the training (multiply by  $(\frac{1}{1-p})$ ).

Example:

$$\begin{bmatrix} \sigma(f_1) \\ \sigma(f_2) \\ \sigma(f_3) \end{bmatrix} \to \begin{bmatrix} \frac{1}{1-p}\sigma(f_1) \\ 0 \\ \frac{1}{1-p}\sigma(f_3) \end{bmatrix}$$