Data Driven Decision Making & Optimization

Converting Zip Code Data into Distances: A Case Study for Teaching Business Analytics

BA638 Team 2 Khanh Dang Hien Do Ravi Bandi

Agenda

- Business problem
- Objective
- Analysis scope and Decisions
- Model
- Results
- Recommendations

BUSINESS PROBLEM

- Business analysis of cases (10-12 requests) with limitations in technology, budget, and time on zip code data of students
 - Case 1: Identifying Local, regional, and far away students from Atlanta Campus
 - Case2: Identifying students living near the Macon campus

STAKEHOLDERS

Fulfilling the business request

Enhancing productivity and cost efficiency

Understanding students' demographic

- ANALYSIS SCOPE AND DECISIONS

Control: student information

Non-controls: Quality of information, budget and time

Future business development: in-person/online program, marketing events

- Great - circle distance formula

DASHBOARD

Distance (miles)	Macon	Atlanta
10	636	1051
25	432	2548
50	406	1609
100	5162	1551
250	1525	1320
500	274	360
>=500	389	385

DASHBOARD

RECOMMENDATIONS

- ✓ Using different free to use features in excel
 - Using functions like Geography or using VLOOKUP
 - Visualizations like Maps and 3D maps
- ✓ Nearly more than 50% of students are regional or far away students.
 - We can offer better housing packages/facilities
 - Also increasing the housing capacity would help to cope with demand

✓ Planning admission drives at local high schools for in-state students and offer scholarships for out of state students with the focus being in top 5 states NC, SC, TN, AL and FL.

✓ We should onboard more International students

3D MAPPING

- Distance in Miles=
 ACOS[(sin(Lat_place_1*PI()/180)*sin(Lat_place_2*PI()/180)+cos (Lat_place_1*PI()/180)*cos(Lat_place_2*PI()/180)*cos(Lon_place_2*PI()/180-Lon_place_1*PI()/180))] *3963.1695
- https://blog.batchgeo.com/manipulating-coordinates-inexcel/
- Vlookup function

In-State	Out-State	
7836	968	
88.3%	10.9%	
	Unknown	
International	Unknown	
International 20	Unknown 48	

Field name	Description	Data Type
System Student ID	Student Identification number	Number
State	State code	Char
Student Zip Code	Postal code of the student location	Varchar
Zip Code Standard	Cleaned postal codes of student location	Varchar
Latitude	Geocode of location	Number
Longitude	Geocode of location	Number
Distance from Macon	Distance from student's location to Macon	Number
Distance from Atlanta	Distance from student's location to Atlanta	Number
Country	Country of student's location	Char
City	City of student's location	Char