

AMENDMENT TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any retention of creating any estoppel as to equivalents, as follows.

Claims 1-17 (cancelled)

Claims 18-22 (cancelled - not entered)

Claim 23 (new)

23. A multifunctional linker molecule which is selected from the group consisting of 1,4-dimercaptoaceamidobenzene of the formula:

wherein R₁ and R₂ are independently selected from CH₃ and/or Cl, 1,4-dimercaptoacetamidocyclohexane, 1,4-dimercaptoacetamido-9,10-anthraquinone, 1,5-dimercaptoacetamido-9,10-anthraquinone, 1,8-dimercaptoacetamidoctane, or 1,4-dithiocarbamatocyclohexane.

Claim 24 (new)

24. A 1-, 2- or 3-dimensional assembly of nanostructured units comprising a multifunctional linker according to claim 23, wherein the conductivity of the assembly is determined by the structure of the multifunctional linker.

Claim 25 (new)

25. The 1-, 2- or 3-dimensional assembly according to claim 24, wherein the nanostructured units are selected from the group consisting of nanoparticles, semiconductors, core/shell semiconductor nanoparticles, nanowires, nanotubes, nanobelts and electrodes.

Claim 26 (new)

26. The 1-, 2- or 3-dimensional assembly according to claim 25, wherein the assembly is in the form of a thin film of interconnected nanostructured units.

Claim 27 (new)

27. A 1-, 2- or 3-dimensional assembly of nanostructured units comprising a multifunctional linker which is 1,4-dithiocarbamatobenzene.

Claim 28 (new)

28. A method of manufacturing self-assembled electronic circuit elements, electrodes and metal coatings, comprising the step of utilizing the 1-, 2- or 3-dimensional assembly of claim 23.

Claim 29 (new)

29. A method of manufacturing self-assembled electronic circuit elements, electrodes and metal coatings, comprising the step of utilizing the 1-, 2- or 3-dimensional assembly of claim 27.