Relational Data Model

Christopher Simpkins

Relational Data Model

A relation schema $R(A_a, ..., A_n)$ is a relation name R and a list of attributes $A_1, ..., A_n$.

Each attribute A_i is the name of a role played by some domain D.

- Example: AUTHOR(author_id, first_name, last_name)
 - ▶ dom(A₁) (or dom(author_id)) is integer

A database schema is a collection of relation schemas.

 Example: PUBS database has relation schemas BOOK, AUTHOR, and PUB (for publication, not public house)

Relations and Databases

A relation, or relation state, r(R) is a set of tuples that conform to a relation schema R.

• Example: r(AUTHOR) =

author_id	first_name	last_name		
1	John	McCarthy		
4	Claude	Shannon		
5	Alan	Turing		
6	Alonzo	Church		

A database is a set of relations.

An Example Relation

Figure 5.1

The attributes and tuples of a relation STUDENT.

Tuples

A tuple is an ordered list of values that is part of a relation

• Example: $t_1 = '<1$, 'John', 'McCarthy'>'

Each value in the tuple is that tuple's value for the corresponding attribute of the relation schema. Example: (these are equivalent notations):

- ▶ $t_1[first \ name] = \text{`'John''} \text{ (bracket notation)}$
- ▶ t₁.first_name = ''John'' (object notation)
- ▶ $t_1[2] =$ ''John'' (positional notation)

The degree or arity of a relation schema is the number of attributes it has.

► Example: AUTHOR has degree 3.

Attributes and Domains

Each attribute has a name and a domain

- ▶ The name describes the role played by the attribute
 - ► Example: the *first_name* attribute of the *AUTHOR* schema plays the role of the first name of an author represented by a tuple in a *r*(*AUTHOR*) relation.
- ► The domain is a set of atomic values that a tuple may have for that attribute.
- ► A logical definition of a domain specifies a simple type such as integer or string, and a data type or format
 - ► Example: 'USA_{phonenumber}' as (ddd)ddd dddd, where d is a digit

Mathematical Definition of Relation

Given $R(A_1,...,A_n)$,

▶
$$r(R) \subseteq (dom(A_1) \times dom(A_2) \times ... \times dom(A_n)$$

The total number of values, or cardinality, of a domain D is |D|.

So the maximum number of tuples that could possibly be in r(R) is

▶ $|dom(A_1)| \times |dom(A_2)| \times ... \times |dom(A_n)|$

Properties of Relations

- Atomicity of values, i.e., the First Normal Form assumption
 - Attribute values in tuples are indivisible, e.g., no compound or multivalued attributes as in EER models
- Nulls
 - Unknown, not applicable, not existing
- Closed world assumption
 - Facts not asserted explicitly are assumed to be false

Constraints

- Inherent model-based (or implicit) constraints
 - domain constraints, atomic attribute values
- Schema-based (or explicit) contstraints
 - keys, referential integrity
- Application-based (or semantic constraints), a.k.a., business rules

Superkeys

A superkey SK is a set of attributes of a relation schema R such that

$$t_i[SK] \neq t_j[SK]$$

for any $i \neq j$.

In other words, the values of the superkey attributes of a tuple uniquely identify the tuple within the relation.

By the definition of the relational model, the full attribute set of a relation schema is a default superkey.

Keys

A minimal superkey is a superkey removing an attribute would make it no longer unique, and thus no longer a superkey. We call a minimal superkey a key.

A relation schema may have several keys. We call these candidate keys and choose one arbitrarily to be the primary key.

We underline the primary key in a relation schema.

Example: AUTHOR(<u>author_id</u>, first_name, last_name)

Database Integrity Constraints

- Domain constraints Attribute values in tuples must be in domain for that attribute
- Key constraints No two tuples can have the same values for the primary key
- Entity Integrity Constraints No tuple can have a NULL value for its primary key attribute
- ► Referential Integrity Constraints Tuples in one relation referencing tuples in another relation
- Semantic Integrity Constraints Constraints on values of attributes that cannot be specified in the databases DDL

Referential Integrity Constraints

A foreign key value from a tuple in one relation must refer to nothing, or to the primary key for an existing tuple in another relation. Formally:

Given relation schemas R_1 and R_2 , a set of attributes FK in R_1 is a foreign key referencing R_2 if

- the attributes in FK in R_1 have same domains as PK in R_2
- ▶ Given some t_1 in $r_1(R_1)$ and t_2 in $r_2(R_2)$, either $t_1[FK] = t_2[PK]$ or $t_1[FK]$ is NULL.

 R_1 is the referencing relation, R_2 is the referenced relation.

Diagramming FK Relationships

Semantic Integrity Constraints

- Can't be specified in DDL
- Can be checked with triggers and assertions
- Usually checked in application code

Example: salary of an employee cannot exceed the salary of the employee's supervisor.

Constraint Violations on Insert

- Domain constraints
 - Insert a tuple with an attribute value not in attribute's domain
- Key constraints
 - Insert a tuple with a key that's already in the relation state
- Entity integrity constraints
 - Insert a tuple with a NULL value for any part of the primary key
- Referential integrity constraints
 - Insert a tuple in a refferring relation whose FK does not appear as a PK value in any tuple of the referenced relation

Constraint Violations on Update

- Domain constraints
 - Update a tuple with an attribute value not in attribute's domain
- Key constraints
 - Update a tuple with a key value that already appears in another tuple in the relation
- Entity integrity constraints
 - Update a tuple with a NULL value for any part of the primary key
- Referential integrity constraints
 - Update a tuple in a refferring relation with a FK does not appear as a PK value in any tuple of the referenced relation

Constraint Violations on Delete

► Referential integrity

Employee - Department Example

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	Dnumber	Mgr_ssn	Mgr_start_date	
Research	5	333445555	1988-05-22	
Administration	4	987654321	1995-01-01	
Headquarters	1	888665555	1981-06-19	

DEPT_LOCATIONS

Dnumber	Diocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston