	TP1 Niveau - Charpin Chevillard	Pt		A B C D	Note	
- 1	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	Α		0,5	
4	Quelle est la grandeur réglante ?	1	Α		0,5	
5	Donner une grandeur perturbatrice.	1	Α		0,5	
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs,	1	Α		1	
	alimentations, générateurs nécessaires. Faire apparaître les polarités.	_			-	
II.	Etude du procédé			_		
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1	Α		1	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α		1	
1	En déduire le sens d'action à régler sur le régulateur.	1	Α		1	
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	Δ		3	
111	Etude du régulateur	,			3	
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	Α		1,5	
2	·	2				ec ce kr, une régulation P suffit
11/	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.				0,323 AV	ec ce ki, une regulation r sumt
10.	Performances et optimisation	1	С		0.25 10	ne comprends pas d'où proviennent ces valeurs
-	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	C		0,33 Je	ne comprehas pas a oa proviennent ces valears
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	Α		1,5	
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	Α		1	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	Α		1,5	
			Not	te sur : 20	18,4	

TP n°5 Niveau

I. Préparation du travail

1)

- 2)
 La grandeur réglée est le niveaux du bac du haut.
- Il mesure le niveau en utilisant la différence de pression entre les deux réservoirs.
- 4)
 La grandeur réglante est donc le débit en sortie de pompe.

5) La grandeur réglée est le débit en sortie du réservoir du haut.

II. Étude du procédé

1) Entrés

TagName	01M01_06		LIN Name	01M01_06	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			SiteNo	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mΑ
HiHi	100.0	%	AI	0.00	mΑ
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	
			LeadRes	0.000	Ohms
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	Secs
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	
Alm0nTim	0.000	Secs	Options	>0000	
Alm0fTim	0.000	Secs	Status	>0000	

PID:

TagName	PID		LIN Name	PID	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	9
PV	0.0	%	LAA	0.0	9
SP	0.0	%	HDA	100.0	9
OP	0.0	%	LDA	100.0	9
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	9
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00000000	
HR_OP	100.0	%	ModeAct	00000000	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	9
LL_OP	0.0	%	FB_OP	0.0	9

Sortie:

TagName	02P01_06		LIN Name	02P01_06	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	m.A
			LR_out	4.00	m. ^a
Out	0.0	%	AO	0.00	m.4
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

OP(%)	PV (%)
0	0
20	1
40	21,9
60	52,8
80	77
100	78,4

3)

Je choisie de faire mes calculs entre le point 20% et 80%. DeltaY/DeltaX=(77-1)/(60)=1,266

4)

Quand la niveaux augmeente il faut donc diminuer le débit de la pompe, donc diminuer la sortie du régulateur. Le régulateur est donc en inverse.

delta
$$X = 20$$
 t0 t1
delta $Y = 10$
t0 = 23:46:10 = 0s
t1 = 23:47:00 = 70s
t2 = 23:47:30 = 100s

le gain statique K = delta X/delta Y

K = 20/10

K = 2

le retard T = 2.8(t1-t0) - 1.8(t2-t0)

T = 2.8(70-0) - 1.8(100-0)

T = 16s

la constante temps t = 5,5(t2-t1)t = 5,5(100-70)

t = 165s

kr = 0.096

III. Étude du régulateur :

1,2) La structure du régulateur est mixte

=6,163s

IV. Performances et optimisation

1)

TimeBase	Secs	
XP	28.0	%
TI	99.99	
TD	0.00	

Valeur calculé appliqué sur le régulateur.

2)

t0 = 00:56:50 = 0st1 = 01:00:05 = 195s

temps de réponse est: t1- t0 = 195s

Il n'y a pas de dépassement et pas d'erreur statique. Nous allons donc améliorer le temps de réponse...

$$t0 = 01:09:50 = 0$$

 $t1 = 01:11:08 = 78s$

$$t1 - t0 = 78s$$

TimeBase	Secs	
XP	18.0	%
TI	40.00	
TD	0.00	

On à donc stabiliser la courbe avec un Ti=40s, on à diminué Xp de 18%.

On à donc gagner 117 seconde sur le temps de réponse par rapport à l'ancien réglages tout en gardant un dépassement et une erreur statique nul. On voit donc une réelle amélioration sur la régulation