SISTEMAS COMBINACIONALES (CONTINUACIÓN)

Técnicas Digitales I

Luis Eduardo Toledo

SUMADOR PARALELO BINARIO (4 BITS)

Tabla de verdad del sumador completo

x	Entradas Y	z	Salid C	as S
()	: }	<u> </u>	0	()
0	0	1	0	}
ŏ	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	i	1	ì	1

YZ

00

X

X
eq 1

Υ

11

01

1

10

COMPLEMENTO A LA BASE Y A LA BASE-1

Existen dos tipos de complementos para cada sistema de base β . El complemento a la base y el complemento a la base-1.

Cuando el valor de la base se sustituye en el nombre, los dos tipos se conocen como complemento a 2 y complemento a 1 en el sistema binario y como complemento a 10 y complemento a 9 en el sistema decimal.

Dado un número N en base β que tiene n dígitos, el complemento a $(\beta-1)$ de N se define como: (β^n-1) -N Y el complemento a β de N se define como: β^n -N

 β^n representa un número que consta de un 1 seguido de n ceros.

En el caso de números binarios $\beta=2$ y (2^n-1) es un número binario representado por \boldsymbol{n} unos.

COMPLEMENTO A 2

$$(10101100)_{2} \rightarrow \text{complemento a 2}$$

$$\begin{array}{c} 111112\\ 000000\\ - 10101100 \\ \hline \end{array}$$

$$001010100$$

Forma práctica: invierto unos por ceros y ceros por unos y al resultado le sumo uno: 1010100 01011

SUMADOR - RESTADOR (4 BITS)

ALU (8 BITS)

Los cuatro bits de estado, C (acarreo - carry), V (desbordamiento - overflow), Z (cero - zero) y S (signo - sign).

MULTIPLICADOR (2x2 BITS)

$$\begin{array}{c|cccc} A_1B_1 & A_1B_0 \\ \hline C_3 & C_2 & C_1 & C_0 \end{array}$$

Tabla de verdad del semisumador

Entradas		Salidas	
X	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = \overline{X}Y + X\overline{Y} = X \oplus Y$$
$$C = XY$$

 B_1

 B_0