# Decidability of Termination Problems for Sequential P Systems with Active Membranes

Michal Kováč

FMFI UK, Slovakia

15.5.2015



- P systems
  - Overview
  - Computational power

- 2 Termination problems
  - Halting problem
  - Termination problems in active membranes





Multisets





- Multisets
- Rewriting rules



- Multisets
- Rewriting rules
- Passive vs. Active

### P system with active membranes

$$\bullet \ \Pi = (\Sigma, C_0, R_1, \dots R_m)$$

### P system with active membranes

• 
$$\Pi = (\Sigma, C_0, R_1, \dots R_m)$$
  
•  $C = (T, I, c)$   
•  $I : V(T) \to \{1, \dots, m\}$   
•  $c : V(T) \to \mathbb{N}^{\Sigma}$ 

### P system with active membranes

- $\bullet \ \Pi = (\Sigma, C_0, R_1, \dots R_m)$
- C = (T, I, c)
  - $I: V(T) \to \{1, \ldots, m\}$
  - $c: V(T) \to \mathbb{N}^{\Sigma}$
- Rewriting rules
  - $u \rightarrow v$
  - $u \rightarrow v\delta$
  - $u \to [jv]_j$ , where  $u \in \mathbb{N}^{\Sigma}, |u| \ge 1$  and  $v \in \mathbb{N}^{\Sigma \times \{\cdot,\uparrow,\downarrow_j\}}$

### Computation

Maximal parallel vs. sequential

### Computation

- Maximal parallel vs. sequential
- Language
  - generating mode
  - accepting mode













### Vector addition systems

• 
$$G = (x, W), x \in \mathbb{N}^n, W \subseteq \mathbb{Z}^n$$

### Vector addition systems

- $G = (x, W), x \in \mathbb{N}^n, W \subseteq \mathbb{Z}^n$
- Reachability set  $R(G) = \{z | \exists v_1 \dots v_j \in W : z = x + v_1 + \dots v_j \text{ and } \forall 1 \leq i \leq j : x + v_1 + \dots + v_i \geq 0\}$

### Vector addition systems

- $G = (x, W), x \in \mathbb{N}^n, W \subseteq \mathbb{Z}^n$
- Reachability set  $R(G) = \{z | \exists v_1 \dots v_j \in W : z = x + v_1 + \dots v_j \text{ and } \forall 1 \leq i \leq j : x + v_1 + \dots + v_i \geq 0\}$
- Same reachability set as Petri nets

Halting problem

- Halting problem
- Existence of (in)finite computation

- Halting problem
- Existence of (in)finite computation
- Reachability graph

- Halting problem
- Existence of (in)finite computation
- Reachability graph
- Two conditions:
  - $C_1 \leq C_2 \Rightarrow$  each transition in  $C_1$  can be fired in  $C_2$

- Halting problem
- Existence of (in)finite computation
- Reachability graph
- Two conditions:
  - $C_1 \leq C_2 \Rightarrow$  each transition in  $C_1$  can be fired in  $C_2$
  - for each infinite computation there is  $C_1$ ,  $C_2$ , such that  $C_1 \to^* C_2$  and  $C_1 \le C_2$

- Halting problem
- Existence of (in)finite computation
- Reachability graph
- Two conditions:
  - $C_1 \leq C_2 \Rightarrow$  each transition in  $C_1$  can be fired in  $C_2$
  - for each infinite computation there is  $C_1, C_2$ , such that  $C_1 \to^* C_2$  and  $C_1 \le C_2$
- Dickson's lemma: For every infinite sequence of tuples over  $\mathbb{N}$   $\{a_i\}_{i=0}^{\infty}$  there are i < j such that  $a_i \leq a_j$

- How to use Dickson's lemma for active membranes?
- Idea: encode configuration to k-tuple maintaining two conditions

- How to use Dickson's lemma for active membranes?
- Idea: encode configuration to k-tuple maintaining two conditions

#### Definition

$$C_1 = (T_1, I_1, c_1) \le C_2 = (T_2, I_2, c_2) \Leftrightarrow \exists \text{ isomorphism } f: T_1 \to T_2 \text{ such that } \forall d \in V(T_1):$$

• 
$$l_1(d) = l_2(f(d))$$

• 
$$c_1(d) \subseteq c_2(f(d))$$

- How to use Dickson's lemma for active membranes?
- Idea: encode configuration to k-tuple maintaining two conditions

#### Definition

$$C_1 = (T_1, I_1, c_1) \le C_2 = (T_2, I_2, c_2) \Leftrightarrow \exists \text{ isomorphism } f: T_1 \to T_2 \text{ such that } \forall d \in V(T_1):$$

- $l_1(d) = l_2(f(d))$
- $c_1(d) \subseteq c_2(f(d))$

#### Lemma

 $C_1 = (T_1, l_1, c_1) \le C_2 = (T_2, l_2, c_2) \Rightarrow \exists$  isomorphism  $f : T_1 \to T_2$  such that rule r is applicable in  $d \in T_1 \Rightarrow r$  is applicable in f(d).

#### Definition

Define end(C) as k-tuple satisfying  $enc(C_1) \le enc(C_2) \Rightarrow C_1 \le C_2$ .

#### Definition

Define end(C) as k-tuple satisfying  $enc(C_1) \le enc(C_2) \Rightarrow C_1 \le C_2$ .

#### Lemma

For every infinite computation there is i < j such that  $C_i \le C_j$ .

#### Definition

Define end(C) as k-tuple satisfying  $enc(C_1) \le enc(C_2) \Rightarrow C_1 \le C_2$ .

#### Lemma

For every infinite computation there is i < j such that  $C_i \le C_j$ .

#### Proof.

Assume infinite sequence  $\{enc(C_i)\}_{i=0}^{\infty}$ . From Dickson's lemma there is i < j such that  $enc(C_1) \le enc(C_2)$ . Our property of enc implies  $C_i \le C_i$ .

#### Theorem

Existence of infinite computation in sequential P systems with active membranes is decidable.

#### Theorem

Existence of infinite computation in sequential P systems with active membranes is decidable.

#### Theorem

Existence of finite computation in sequential P systems with active membranes is decidable.

#### **Theorem**

Existence of infinite computation in sequential P systems with active membranes is decidable.

#### **Theorem**

Existence of finite computation in sequential P systems with active membranes is decidable.

#### Proof.

Reduction to reachability of register machines.





Ibarra (2005).

On sequential and 1-deterministic p systems.

In Wang, L., editor, *Computing and Combinatorics*, volume 3595 of *Lecture Notes in Computer Science*, pages 905–914. Springer Berlin Heidelberg.

Thanks for your attention!