

MIC-TJU at MediaEval Violent Scenes Detection (VSD) 2014

Bowen Zhang, Yun Yi and Hanli Wang Tongji University

- 1. Introduction
- 2. System Description
- 3. Shot Boundary Detection
- 4. Video and Audio Features
- 5. Results

1.	Introduction
2.	System Description
3.	Shot Boundary Detection
4.	Video and Audio Features
5.	Results

Introduction

► Violent Scene Detection (VSD) contains two subtask: Main Task and Generalization Task.

- ► Train set: 24 movies from Hollywood
- ► Test set:
 - ► Main Task: 5 movies from Hollywood
 - ► Generalization Task: 86 web videos

Introduction

▶ Challenges:

- ▶ Difficulties in feature detection since no shot boundary given
- ► Camera jitters make it hard to track trajectories

Shot from Main Task

Shot from Generalization Task

Introduction

▶ Motivation

- ▶ Use shot boundary detection algorithm to detect shot boundary.
- ▶ Use camera motion elimination technique to remove camera jitters.

1.	Introduction	
2.	System Description	
3.	Shot Boundary Detection	
4.	Video and Audio Features	
5.	Results	

System Description

▶ Our approach:

- ► Shot boundary detection
- ► Trajectory based video features
- ► Appearance video feature
- ► Audio feature

System Description

1.	Introduction
2.	System Description
3.	Shot Boundary Detection
4.	Video and Audio Features
5.	Results

Shot boundary detection

- Based on difference of histograms
- Adaptive threshold

1.	Motivation
2.	System Description
3.	Shot Boundary Detection
4.	Video and Audio Features
5.	Results

Video and audio features

▶ Video and audio features

- **▶** Trajectory based features
- **▶** Camera motion elimination
- **▶** Appearance feature
- ► Audio feature

Trajectory based features

- ✓ Saliant Trajectory
- ✓ Camera motion elimitation
- ✓ Classification

Trajectory based features

- ► Why?
 - **▶** Choose good points for tracking.
- **▶** Saliant trajectory appraoch:
 - **▶** SIFT keypoints detection
 - **▶** Dense optical flow
 - **▶** Multiple spacial scale tracking
 - **▶** Trajectory descriptions
 - ightharpoonup HOG (96=2×2×8×3)
 - $\blacktriangleright \text{ HOF } (108=2\times2\times9\times3)$
 - $MBH (192=2\times2\times8\times3\times2)$

Trajectory based features

In Munsell system, orientation is indicated by color and magnitude by saturation.

Camera motion elimitation

- ► Why?
 - ► Action may be fused by camera motion.
- ► How?
 - **▶** Background detection (Pixel-Based Adaptive Segmenter method)[2]
 - **▶** Keypoints match
 - ► Homography estimation (Random Sample Consensus)
 - **▶** Frame rectification

Camera motion elimitation

(a) Frame k

(b) Background

Camera motion elimitation

(a) Frame k

(c) Warped optical flow

(b) Optical flow

(d) Trajectory

Appearance feature

Dense SIFT

- ▶ Dense Grid: 21×21 patches with 4 pixel steps and 5 scales
- **▶** SIFT: Calculate SIFT on dense grid.

Audio feature

► MFCC

- ▶ The time window for each MFCC is 32 ms.
- ► There is 50% overlap between two adjacent windows.
- ▶ We integrate delta and double-delta of 20 dimensions MFCC vector into the original MFCC vector to generate a 60-dimension MFCC vector.

5.	Results
4.	Video and Audio Features
3.	Shot Boundary Detection
2.	System Description
1.	Motivation

Conclusion

▶ Configuration of submitted runs

Run	Trajectory based Features	Appearance Feature	Audio Feature	Fusion	Weights
Run 1	HOG, HOF, MBH	-	MFCC	Late Fusion	4:1
Run 2	HOG, HOF, MBH	Dense SIFT	MFCC	Double Fusion	4:1
Run 3	HOG, HOF, MBH	Dense SIFT	MFCC	Double Fusion	1:1
Run 4	HOG, HOF, MBH	Dense SIFT	MFCC	Late Fusion	4:1:1
Run 5	HOG, HOF, MBH	Dense SIFT	MFCC	Late Fusion	4:1:1

Conclusion

- **▶** Configuration of submitted runs
 - ► In the late fusion, an arithmetic sum of scores outputted from SVM for video features (trajectory based features and appearance feature) and audio feature is calculated.
 - ► In double fusion, we firstly early fuse video features and then late fuse video features and audio feature.
 - ► The weight setting segmented by colon in Table stands for the weights applied to different kinds of features during late fusion.

Conclusion

Results

Run	Main Task	Generalization Task
Run 1	44.17%	56.01%
Run 2	43.07%	56.52%
Run 3	44.60%	55.56%
Run 4	39.23%	56.62%
Run 5	38.50%	56.00%

- ► Metrics of result is MAP2014.
- **▶** Dense SIFT improves score.
- Generalization Task outperform Main Task, because shots in
 Generalization Task do not change as frequent as that in Main Task.

@ 同济大学计算机科学与技术系

多媒体与智能计算实验室

Thank you!

