Licensed copy: PONTYPRIDD COLLEGE, 26/10/2006, Uncontrolled Copy,

BS 3643-1: 1981

(Reprinted, incorporating Amendments No. 1 and No. 2)

Specification for

ISO metric screw threads —

Part 1: Principles and basic data

UDC 621.882.082.1

Cooperating organizations

The Mechanical Engineering Standards Committee, under whose direction this British Standard was prepared, consists of representatives from the following:

Association of Consulting Engineers
Association of Hydraulic Equipment
Manufacturers
Association of Mining Electrical and
Mechanical Engineers
British Compressed Air Society
British Electrical and Allied Manufacturers'
Association (BEAMA)*
British Gas Corporation
British Gear Manufacturers' Association
British Internal Combustion Engine
Manufacturers' Association*

Associated Offices Technical Committee

British Pump Manufacturers' Association British Steel Corporation

British Steel Industry

British Valve Manufacturers' Association Ltd. Chmpe

Chartered Institution of Building Services Crown Agents for Oversea Governments and Administrations

Department of the Environment (PSA) Department of Industry (Mechanical

Department of Industry (National Engineering Laboratory)*

Department of Trade (Marine Division)

Department of Transport

Electricity Supply Industry in England and

Engineering Equipment Users' Association Federation of Manufacturers of Construction

Equipment and Cranes Health and Safety Executive Institution of Gas Engineers

Institution of Mechanical Engineers

Institution of Plant Engineers Institution of Production Engineers

LLoyd's Register of Shipping London Transport Executive

Machine Tool Industry Research Association

Ministry of Defence* National Coal Board*

Oil Companies Materials Association

Process Plant Association

Railway Industry Association of Great Britain* Society of Motor Manufacturers and Traders Limited

Telecommunication Engineering and Manufacturing Association (TEMA)*

The organizations marked with an asterisk in the above list, together with the following, were directly represented on the Technical Committee entrusted with the preparation of this British Standard:

Agricultural Engineers' Association Bicycle Association of Great Britain British Industrial Fasteners Federation British Railways Board Business Equipment Trade Association Fasteners and Turned Parts Institute Gauge and Tool Makers' Association
Screw Thread Tool Manufacturers'
Association
Society of British Aerospace Companies
Limited
Individual manufacturer

This British Standard, having been prepared under the direction of the Mechanical Engineering Standards Committee, was published under the authority of the Executive Board and comes into effect on 31 March 1981

© BSI 02-1999

First published June 1963 First revision March 1981

The following BSI references relate to the work on this standard: Committee reference MEE/1 Draft for comment 78/80250 DC

ISBN 0 580 11626 3

Amendments issued since publication

Amd. No.	Date of issue	Comments
3910	May 1982	
4701	December 1984	Indicated by a sideline in the margin

Contents

	Page
Cooperating organizations	Inside front cover
Foreword	ii
1 Scope	1
2 References	1
3 Basic profile	1
4 General plan	2
5 Basic dimensions	6
6 Tolerances: principles and basic data	14
7 Tolerances: deviations for constructional threads	29
Appendix A Notes for guidance	47
Appendix B Outline guide and examples for calculating limits	
of size of untabulated metric screw threads	49
Figure 1 — Basic profile of ISO metric thread	1
Figure 2 — Basic dimensions	6
Figure 3 — Tolerance positions with respect to zero line	
(basic size)	15
Figure 4 — Nut threads with tolerance position G	17
Figure 5 — Nut threads with tolerance position H	17
Figure 6 — Bolt threads with tolerance positions e, f and g	18
Figure 7 — Bolt threads with tolerance position h	18
Figure 8 — Bolt root profile	26
Figure 9 — Maximum material profiles for internal and	
external threads	47
Table 1 — Basic profile dimensions	2
Table 2 — Maximum diameters	3
Table 3 — Diameter/pitch combinations	4
Table 4 — Basic dimensions	7
Table 5 — Fundamental deviations for nut threads and	10
bolt threads	19
Table 6 — Lengths of thread engagement	20
Table 7 — Minor diameter tolerances of nut thread (T_{D_1})	21
Table 8 — Major diameter tolerance of bolt thread (T_d)	22
Table 9 — Pitch diameter tolerance of nut thread (T_{D_2})	23
Table 10 — Pitch diameter tolerance of bolt thread (T_{d_2})	24
Table 11 — Minimum root radii	25
Table 12 — Tolerance classes for nuts	26
Table 13 — Tolerance classes for bolts	28
Table 14 — Deviations	30
Publications referred to	Inside back cover

 $^{\circ}$ BSI 02-1999

Foreword

This revised British Standard has been prepared under the direction of the Mechanical Engineering Standards Committee. It is based on the following ISO standards relating to ISO metric screw threads prepared by Technical Committee ISO/TC 1, Screw threads, of the International Organization for Standardization (ISO). The clauses in this standard have been so arranged that each relates directly to the relevant ISO standard as indicated:

Clause **3**: ISO 68-1963 Clause **4**: ISO 261-1973 Clause **5**: ISO 724-1968 Clause **6**: ISO 965/1-1980 Clause **7**: ISO 965/3-1980

ISO 965/2-1973 "ISO general purpose metric screw threads — Tolerances — Part II Limits of sizes for commercial bolt and nut threads — Medium quality", has not been included as a separate clause in this standard as the limits of sizes listed are specified in BS 3643-2.

ISO 965 has been revised by ISO/TC 1 to include the tolerance position "f" and the modified bolt root profile. This information has been included in this standard.

Screw thread terms and definitions can be found in BS 6528 (identical with ISO 5408-1983) and these will be adopted in future standards and revised existing standards.

Some terms used in this standard, based on the established ISO standards, may be at variance with, or do not appear in, BS 6528; e.g. "crest diameter" is used in clause 6 but is not defined in BS 6528. However it has been decided to leave this descriptive term which is used to embrace the terms "major diameter of bolt thread" and "minor diameter of nut thread". Moreover the term "nominal size or "nominal diameter" is often confused with basic size, whereas it is now defined in BS 6528 as "The size which is used for the purpose of general identification. It is generally the basic major diameter of the thread".

ISO 262 "ISO general purpose metric screw threads — Selected sizes for screws, bolts and nuts", has not been included as a separate clause in this standard as those sizes will be specified in the various product standards. However, its contents form part of Table 3 in clause 4.

In order to establish a recognized fine series, a selection of diameter/pitch combinations has been taken from ISO 261. For nominal diameters up to and including M7, one pitch only for each nominal diameter is included in ISO 261 (other than the coarse pitch) and therefore these pitches have been included in this standard. The pitches for nominal diameters larger than M7 have been extracted from ISO 262.

The information given in Appendix A has been given in this form rather than in the appropriate clauses in the standard, so that each clause maintains as far as possible the ISO format, to enable direct cross reference with the ISO standards and the standards of other countries that are also based on the ISO standards.

The information given in Appendix B for the calculation of limits of size for screw threads recognizes that the limitations of the ISO standards on nominal sizes, i.e. 1.0 mm (minimum) to 300 mm (maximum) diameters and also the diameter/pitch combinations may at times need to be exceeded.

When screw threads for aerospace purposes are specified to comply with the requirements of BS 3643, it is permissible for them to be manufactured to the MJ profile in BS 6293 and for their limits of size to be modified accordingly to suit the root radius of that profile. Attention is drawn to the fact that the MJ threads specified in BS 6293 is the preferred series for aerospace use.

ii © BSI 02-1999

Terminology and conventions. For ease of production it has been found convenient to reproduce the tables of the international standards with amendments, where necessary. Some terminology and certain conventions are not identical with those used in British Standards; attention is especially drawn to the following.

The comma has been used throughout as a decimal marker. In British Standards it is current practice to use a full point on the baseline as the decimal marker.

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, pages i to iv, pages 1 to 52, an inside back cover and a back cover.

This standard has been updated (see copyright date) and may have had amendments incorporated. This will be indicated in the amendment table on the inside front cover.

iv blank

1 Scope

This Part of this British Standard specifies the principles and basic data for single-start, parallel screw threads having the ISO basic profile for triangular screw threads. Data for 1,0 mm to 300 mm diameter threads is tabulated and Appendix B is included giving the information necessary to calculate the limits of size for exception to the tabulated data.

NOTE Attention is drawn to the fact that, with the different screw thread forms available, there is the possibility of mismatch. It is the responsibility of the designer of the end product to ensure that this possibility is reduced to a minimum. For further information see PD 6494.

2 References

The titles of the standards publications referred to in this standard are listed on the inside back cover. BS 3643-2 specifies the fundamental deviations, tolerances and limits of size for the tolerances classes 4H, 5H, 6H and 7H for internal threads and 4h, 6g and 8g for external threads where appropriate for:

course pitch series within the range 1 mm to 68 mm diameter;

fine pitch series with the range 1 mm to 33 mm diameter;

constant pitch series with the range 8 mm to 300 mm diameter.

The following British Standards will be found useful for reference:

BS 3382, Electroplated coatings on threaded components.

BS 4827, ISO miniature screw threads.

 ${\rm BS}\ 5346, ISO\ metric\ trapezoidal\ screw\ threads.$

3 Basic profile

3.1 General. This clause specifies the basic profile for ISO general purpose metric screw threads as shown in Figure 1. The dimensions for the various standard pitches are given in Table 1.

Table 1 — Basic profile dimensions

Dimensions in millimetres

Pitch P	Н	$\frac{5}{8}H$	$\frac{3}{8}H$	$\frac{H}{4}$	$\frac{H}{8}$
0,2	0,173 205	0,108 253	0,064 952	0,043 301	0,021 651
0,25	0,216 506	0,135 316	0,081 190	0,054 127	0,027 063
0,3	0,259 808	0,162 380	0,097 428	0,064 952	0,032 476
0,35	0,303 109	0,189 443	0,113 666	0,075 777	0,037 889
0,4	0,346 410	0,216 506	0,129 904	0,086 603	0,043 301
0,45	0,389 711	0,243 570	0,146 142	0,097 428	0,048 714
0,5	0,433 013	0,270 633	0,162 380	0,108 253	0,054 127
0,6	0,519 615	0,324 760	0,194 856	0,129 904	0,064 952
0,7	0,606 218	0,378 886	0,227 332	0,151 554	0,075 777
0,75	0,649 519	0,405 949	0,243 570	0,162 380	0,081 190
0,8	0,692 820	0,433 013	0,259 808	0,173 205	0,086 603
1	0,866 025	0,541 266	0,324 760	0,216 506	0,108 253
1,25	1,082 532	0,676 582	0,405 949	0,270 633	0,135 316
1,5	1,299 038	0,811 899	0,487 139	0,324 760	0,162 380
1,75	1,515 544	0,947 215	0,568 329	0,378 886	0,189 443
2	1,732 051	1,082 532	0,649 519	0,433 013	0,216 506
2,5	2,165 063	1,353 165	0,811 899	0,541 266	0,270 633
3	2,598 076	1,623 798	0,974 279	0,649 519	0,324 760
3,5	3,031 089	1,894 431	1,136 658	0,757 772	0,378 886
4	3,464 102	2,165 063	1,299 038	0,866 025	0,433 013
4,5	3,897 114	2,435 696	1,461 418	0,974 279	0,487 139
5	4,330 127	2,706 329	1,623 798	1,082 532	0,541 266
5,5	4,763 140	2,976 962	1,786 177	1,190 785	0,595 392
6	5,196 152	3,247 595	1,948 557	1,299 038	0,649 519
8	6,928 203	4,330 127	2,598 076	1,732 051	0,866 025

3.2 Definition

basic profile

the theoretical profile, associated with the basic sizes of the major, pitch, and minor diameters of the thread the deviations are applied to these basic sizes

3.3 Dimensions

$$H = \frac{\sqrt{3}}{2}P = 0.866\ 025\ 404\ P$$

$$\frac{5}{8}H = 0.541\ 265\ 877\ P$$

$$\frac{3}{8}H = 0.324759526P$$

$$\frac{H}{4}$$
 = 0,216 506 351 P

$$\frac{H}{8} = 0{,}108\;253\;175\,P$$

4 General plan

4.1 General. This clause specifies ISO general purpose metric screw threads having the basic profile as defined in clause **3**.

4.2 Choice of diameter and pitch

- **4.2.1** Choose, for preference, diameters in column 1 of Table 3 and, if necessary, in column 2 and then in column 3.
- **4.2.2** The words "coarse" and "fine" are given in order to conform to usage. No concept of quality shall, however, be associated with these words.

Coarse pitches are the largest metric pitches used in current practice.

- **4.2.3** For the diameter (or the diameter range) selected, choose one of the pitches shown on the corresponding line (or lines), avoiding pitches in parentheses.
- **4.2.4** If screw threads finer than those given in Table 3 are found to be necessary, only the following pitches shall be used:

$$3 - 2 - 1,5 - 1 - 0,75 - 0,5 - 0,35 - 0,25 - 0,2$$

When selecting such pitches, take into account the fact that there is increasing difficulty in complying with tolerances as the diameter is increased for a given pitch.

NOTE It is suggested, for the time being, that diameters larger than those shown in Table 2 should generally not be used with the pitches indicated.

Table 2 — Maximum diameters

Dimensions in millimetres

Pitch	Maximum diameter
$0.5 \\ 0.75 \\ 1 \\ 1.5 \\ 2 \\ 3$	22 33 80 150 200 300

In cases where it is necessary to use a thread with a pitch larger than 6 mm, in the diameter range 150 to 300 mm, the pitch 8 mm should be used for preference.

4.3 Designation. For complete designation see **6.4**.

A screw thread complying with the requirements of this British Standard shall be designated by the letter M followed by the values of the nominal diameter and of the pitch, expressed in millimetres and separated by the sign ×.

Example: $M6 \times 0.75$

The absence of the indication of pitch means that a coarse pitch is specified.

Example: M6

 ${\bf Table~3-Diameter/pitch~combinations}$

Dimensions in millimetres

Nominal diameters				Pitches						
Col. 1	Col. 2 2nd	Col. 3 3rd	coarse	fine			consta	nt series		
1st choice	choice	choice	series	series	3	2	1,5	1,25	1	0,75
1			0,25	0,2						
	1,1		$0,25 \\ 0,25$	0,2 0,2						
1,2	1,4		0,3	0,2						
1,6	1.0		0,35 0,35	0,2 0,2						
2	1,8		0,33	0,25						
2,5	2,2		$0,45 \\ 0,45$	0,25 0,35						
3			0,45	0.35 0.35						
	3,5		0,6 0,7	0,35 0,5						
4	4,5		0,75	0,5						
5		1	0,8	0,5						
6		5,5	1	(0,5) 0,75						
0	7		1	0,75						
8		9	1,25 1,25	1					1	$\begin{array}{c} 0.75 \\ 0.75 \end{array}$
10		11	1,5	1,25					1 1	$0,75 \\ 0,75$
12		11	1,5 1,75	1,25			1,5		1	0,75
	14	1.2	2	1,5				1,25 ^a	1	
16		15	2	1,5			1,5		$\frac{1}{1}$	
		17					1,5		1	
20	18		$^{2,5}_{2,5}$	1,5 1,5		$\frac{2}{2}$			1 1	
	22		2,5	1,5		2			1 1	
24		25	3	2		2	1,5 1,5		$\begin{array}{ c c c c }\hline 1 & & & \\\hline 1 & & & \\\hline \end{array}$	
		26					1.5			
	27	28	3	2		2	1,5 1,5		1	
30			3,5	2	(3)		1.5		1	
	33	32	3,5	2	(3)	2	1,5 1,5			
	1	35 ^b	3,0	1			1.5			
36		38	4		3	2	1,5 1,5			
	39	90	4		3	2	1,5			
a Only for s	park plugs for	engines.								

 \odot BSI 02-1999

^b Only for locking nuts for bearings. Pitches shown in parentheses are to be avoided, as far as possible.

Table 3 — Diameter/pitch combinations

N.	ominal diame	ters	1		P	Pitches	Dimension	ns in millimetres
Col. 1	Col. 2	Col. 3				constant se	ries	
1st choice	2nd choice	3rd choice	coarse	6	4	3	2	1,5
42		40				3	2	1,5 1,5
	45		$4,5 \\ 4,5$		$\begin{bmatrix} 4 \\ 4 \end{bmatrix}$	3 3 3	$\begin{bmatrix} 2\\2\\2 \end{bmatrix}$	1,5
48			5		4	3	2 2	1,5
	52	50	5		4	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	1,5 1,5
F.0		55			4	3 3	2 2	1,5 1,5
56		58	5,5		4 4	3	$\frac{2}{2}$	1,5
	60	62	5,5		4 4	3 3	2 2 2	1,5 1,5
64			6		4	3		1,5
	68	65	6		4 4	3 3	$\begin{bmatrix} 2\\2\\2 \end{bmatrix}$	1,5 1,5
		70		6	4	3		1,5
72		75		6	$\frac{4}{4}$	3 3	$\begin{bmatrix} 2\\2\\2 \end{bmatrix}$	1,5 1,5
	76	5 0		6	4	3		1,5
80		78		6	4	3	2 2 2	1,5
	85	82	+	6	4	3		
90	95			$\begin{bmatrix} \ddot{6} \\ 6 \end{bmatrix}$	4 4	3 3 3	2 2 2	
100				6	4			
110	105			6	4 4	3 3 3	$\begin{bmatrix} 2\\2\\2 \end{bmatrix}$	
	115 120			6 6	4	3 3	2 2	
125				6	4 4	3	2	
	130	135		6	4 4	3 3	2 2	
140				6	4	3	2	
	150	145		6	$\frac{4}{4}$	3 3 3	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	
100		155		6	4			
160	150	165		6	4 4	3		
	170	175		6	4	3		
180				6 6	4	3 3 3		
	190	185		_	4			
200		195		6 6 6	4	3 3 3		
	1	205		6	4	3 3		
	210	215		6	4 4	3 3		
220			1	6	4			
		225 230		6 6	4 4	3 3 3		
	240	235		6 6	4 4	3 3		
	210	245		6	4	3		
250		255		6 6	4 4	3		
	260	265		6	4			
		265 270 275		6 6	4 4			
280	1	210		6	4			
		285 290		6 6	4 4			
	200	295		6 6	4			
	300			6	4			

5 Basic dimensions

5.1 General. This clause specifies the basic dimensions, in millimetres, of ISO metric screw threads according to clause 4.

The values refer to the basic profile according to clause 3.

5.2 Basic dimensions

D = basic major diameter of internal thread (nominal diameter)

d = basic major diameter of external thread (nominal diameter)

 D_2 = basic pitch diameter of internal thread

 d_2 = basic pitch diameter of external thread

 D_1 = basic minor diameter of internal thread

 d_1 = basic minor diameter of external thread

H = height of fundamental triangle

P = pitch

The values of D_2 , d_2 , D_1 and d_1 have been calculated from the following formulae and rounded, in the tables, to the third decimal place:

$$D_2 = D - 2 \times \frac{3}{8}H = D - 0.6495 P$$

$$d_2 \,=\, d-2\times\frac{3}{8}H = d-0.649\,\,5\,\,P$$

$$D_1 = D - 2 \times \frac{5}{8}H = D - 1,082 \ 5 \ P$$

$$d_1 = d - 2 \times \frac{5}{8}H = d - 1,082 \ 5 \ P$$

 ${\bf Table~4-Basic~dimensions}$

Pitch	Pitch diameter	Minor diameter
P	D_2 , d_2	D_1, d_1
0,25	0,838	0,729
0,2	0,870	0,783
0,25	0,938	0,829
0,2	0,970	0,883
0,25	1,038	0,929
0,2	1,070	0,983
0,3	1,205	1,075
0,2	1,270	1,183
0,35	1,373	1,221
0,2	1,470	1,383
0,35	1,573	1,421
0,2	1,670	1,583
0,4	1,740	1,567
0,25	1,838	1,729
0,45	1,908	1,713
0,25	2,038	1,929
0,45	2,208	2,013
0,35	2,273	2,121
0,5	2,675	2,459
0,35	2,773	2,621
0,6	3,110	2,850
0,35	3,273	3,121
0,7	3,545	3,242
0,5	3,675	3,459
0,75	4,013	3,688
0,5	4,175	3,959
0,8	4,480	4,134
0,5	4,675	4,459
0,5	5,175	4,959
1	5,350	4,917
0,75	5,513	5,188
1	6,350	5,917
0,75	6,513	6,188
1,25	7,188	6,647
1	7,350	6,917
0,75	7,513	7,188
1,25	8,188	7,647
1	8,350	7,917
0,75	8,513	8,188
1,5 1,25 1	9,026 9,188 9,350	8,376 8,647 8,917 9,188
	$\begin{array}{c} P \\ 0.25 \\ 0.2 \\ 0.25 \\ 0.2 \\ 0.25 \\ 0.2 \\ 0.35 \\ 0.2 \\ 0.35 \\ 0.2 \\ 0.35 \\ 0.2 \\ 0.44 \\ 0.25 \\ 0.45 \\ 0.25 \\ 0.45 \\ 0.25 \\ 0.45 \\ 0.35 \\ 0.70 \\ 0.5 \\ 0.35 \\ 0.70 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 4 — Basic dimensions

	Table 4 — Basic	ı	
Nominal diameter = Major diameter	Pitch	Pitch diameter	Minor diameter
D, d	P	D_2, d_2	D_1, d_1
	1,5	10,026	9,376
11	1	10,350	9,917
	0,75	10,513	10,188
	1,75	10,863	10,106
12	1,5	11,026	10,376
12	1,25	11,188	10,647
	1	11,350	10,917
	2	12,701	11,835
14	1,5	13,026	12,376
	1,25	13,188	12,647
	1	13,350	12,917
15	1,5	14,026	13,376
10	1	14,350	13,917
	2	14,701	13,835
16	1,5	15,026	14,376
	1	15,350	14,917
18	1,5	16,026	15,376
17	1	16,350	15,917
	2,5	16,376	15,294
10	$\begin{bmatrix} 2, 6 \\ 2 \end{bmatrix}$	16,701	15,835
18	1,5	17,026	16,376
	1	17,350	16,917
	2,5	18,376	17,294
20	2	18,701	17,835
20	1,5	19,026	18,376
	1	19,350	18,917
	2,5	20,376	19,294
22	2	20,701	19,835
22	1,5	21,026	20,376
	1	21,350	20,917
	3	22,051	20,752
24	2	22,701	21,835
	1,5	23,026	22,376
	1	23,350	22,917
	2	23,701	22,835
25	1,5	24,026	23,376
	1	24,350	23,917
26	1,5	25,026	24,376
	3	25,051	23,752
27	2	25,701	24,835
	1,5	26,026	25,376
	1	26,350	25,917
	2	26,701	25,835
28	1,5	27,026	26,376
	1	27,350	26,917
	I	l .	

Table 4 — Basic dimensions

N 11 27 27 27		1	Table 4 — Basic dimensions						
Nominal diameter = Major diameter	Pitch	Pitch diameter	Minor diameter						
D, d	P	D_2, d_2	D_1, d_1						
	3,5	27,727	26,211						
20	3	28,051	26,752						
30	2	28,701	27,835						
	1,5	29,026	28,376						
	1	29,350	28,917						
32	2	30,701	29,835						
	1,5	31,026	30,376						
	3,5	30,727	29,211						
33	3	31,051	29,752						
	2	31,701	30,835						
	1,5	32,026	31,376						
35	1,5	34,026	33,376						
	4	33,402	31,670						
36	3	34,051	32,752						
00	2	34,701	33,835						
	1,5	35,026	34,376						
38	1,5	37,026	36,376						
	4	36,402	34,670						
39	3	37,051	35,752						
อย	2	37,701	36,835						
	1,5	38,026	37,376						
	3	38,051	36,752						
40	2	38,701	37,835						
	1,5	39,026	38,376						
	4,5	39,077	37,129						
	4	39,402	37,670						
42	3	40,051	38,752						
	2	40,701	39,835						
	1,5	41,026	40,376						
	4,5	42,077	40,129						
	4	42,402	40,670						
45	3	43,051	41,752						
	2	43,701	42,835						
	1,5	44,026	43,376						
	5	44,752	42,587						
	4	45,402	43,670						
48	3 2	46,051	44,752						
		46,701	45,835						
	1,5	47,026	46,376						
	3	48,051	46,752						
50	2	48,701	47,835						
	1,5	49,026	48,376						
	5	48,752	46,587						
	4	49,402	47,670						
52	3	50,051	48,752						
	2	50,701	49,835						
	1,5	51,026	50,376						

 ${\bf Table}~4-{\bf Basic}~{\bf dimensions}$

Nominal diameter = Major diameter	Pitch	Pitch diameter	Minor diameter
D, d	P	D_2,d_2	D_1,d_1
<i>D</i> , w	4		50,670
	$\begin{bmatrix} 4 \\ 3 \end{bmatrix}$	52,402 53,051	51,752
55	$\frac{3}{2}$	53,701	52,835
	1,5	54,026	53,376
	5,5	52,428	50,046
	4	53,402	51,670
56	3	54,051	52,752
	$\frac{3}{2}$	54,701	53,835
	1,5	55,026	54,376
	4	55,402	53,670
	3	56,051	54,752
58	$\frac{1}{2}$	56,701	55,835
	1,5	57,026	56,376
	5,5	56,428	54,046
	4	57,402	55,670
60	3	58,051	56,752
	2	58,701	57,835
	1,5	59,026	58,376
	4	59,402	57,670
co	3	60,051	58,752
62	2	60,701	59,835
	1,5	61,026	60,376
	6	60,103	57,505
	4	61,402	59,670
64	3	62,051	60,752
	2	62,701	61,835
	1,5	63,026	62,376
	4	62,402	60,670
65	3	63,051	61,752
	2	63,701	62,835
	1,5	64,026	63,376
	6	64,103	61,505
0.0	4	65,402	63,670
68	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	66,051 66,701	64,752
	1,5	67,026	65,835 66,376
	6	66,103	63,505
70	$\begin{bmatrix} 4 \\ 3 \end{bmatrix}$	67,402 68,051	65,670 66,752
10	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	68,701	67,835
	1,5	69,026	68,376
	6	68,103	65,505
	4	69,402	67,670
72	3	70,051	68,752
•-	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$	70,701	69,835
	$\begin{bmatrix} 2 \\ 1,5 \end{bmatrix}$	71,026	70,376
	· *	,	,

 ${\bf Table}~4-{\bf Basic}~{\bf dimensions}$

Nominal diameter = Major diameter	Pitch	Pitch diameter	Minor diameter
D, d	P	D_2, d_2	D_1 , d_1
	4	72,402	70,670
75	3	73,501	71,752
79	2	73,701	72,835
	1,5	74,026	73,376
	6	72,103	69,505
	4	73,402	71,670
76	3	74,051	72,752
	2	74,701	73,835
	1,5	75,026	74,376
78	2	76,701	75,835
	6	76,103	73,505
	4	77,402	75,670
80	3	78,051	76,752
	$\frac{\circ}{2}$	78,701	77,835
	1,5	79,026	78,376
82	2	80,701	79,835
	6	81,103	78,505
	$\frac{6}{4}$	82,402	80,670
85	3	83,051	81,752
	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	83,701	82,835
	6	86,103	83,505
	4	87,402	85,670
90	3	88,051	86,752
	$\frac{3}{2}$	88,701	87,835
	6	91,103	88,505
	$\frac{6}{4}$	92,402	90,670
95	3	93,051	91,752
	$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$	93,701	92,835
	6	96,103	93,505 95,670
.00	$\begin{bmatrix} 4 \\ 3 \end{bmatrix}$	97,402 98,051	96,752
	$\frac{3}{2}$	98,701	97,835
	6	101,103	98,505
	$\frac{3}{4}$	102,402	100,670
05	3	103,051	101,752
	$\frac{\circ}{2}$	103,701	102,835
	6	106,103	103,505
	$\frac{3}{4}$	107,402	105,670
.10	3	108,051	106,752
	2	108,701	107,835
	6	111,103	108,505
	$\frac{3}{4}$	112,402	110,670
15	3	113,051	111,752
	$\frac{3}{2}$	113,701	112,835
	6	116,103	113,505
	$\frac{3}{4}$	117,402	115,670
20	3	118,051	116,752
	$\frac{3}{2}$	118,701	117,835

 ${\bf Table~4-Basic~dimensions}$

Nominal diameter = Major diameter	Pitch	Pitch diameter	Minor diameter
D, d	P	D_2, d_2	D_1, d_1
125	6	121,103 122,402	118,505 120,670
	3 2 6	123,051 123,701	121,752 122,835
130	6	126,103	123,505
	4	127,402	125,670
	3	128,051	126,752
	2	128,701	127,835
135	6	131,103	128,505
	4	132,402	130,670
	3	133,051	131,752
	2	133,701	132,835
140	6	136,103	133,505
	4	137,402	135,670
	3	138,051	136,752
	2	138,701	137,835
145	6	141,103	138,505
	4	142,402	140,670
	3	143,051	141,752
	2	143,701	142,835
150	6	146,103	143,505
	4	147,402	145,670
	3	148,051	146,752
	2	148,701	147,835
155	6	151,103	148,505
	4	152,402	150,670
	3	153,051	151,752
160	6	156,103	153,505
	4	157,402	155,670
	3	158,051	156,752
165	6	161,103	158,505
	4	162,402	160,670
	3	163,051	161,752
170	6	166,103	163,505
	4	167,402	165,670
	3	168,051	166,752
175	6	171,103	168,505
	4	172,402	170,670
	3	173,051	171,752
180	6	176,103	173,505
	4	177,402	175,670
	3	178,051	176,752
185	6	181,103	178,505
	4	182,402	180,670
	3	183,051	181,752

Table 4 — Basic dimensions

Nominal diameter = Major diameter	Table 4 — Basic	Pitch diameter	Minor diameter
D, d	P	D_2, d_2	D_1, d_1
<i>D</i> , <i>u</i>	6	186,103	183,505
190	4	187,402	185,670
100	3	188,051	186,752
	6	191,103	188,505
195	4	192,402	190,670
	3	193,051	191,752
	6	196,103	193,505
200	4	197,402	195,670
	3	198,051	196,752
	6	201,103	198,505
205	4	202,402	200,670
	3	203,051	201,752
	6	206,103	203,505
210	4	207,402	205,670
	3	208,051	206,752
	6	211,103	208,505
215	4	212,402	210,670
	3	213,051	211,752
222	6	216,103	213,505
220	4 3	217,402	215,670
		218,051	216,752
995	6	221,103	218,505
225	4 3	222,402 223,051	220,670 221,752
		·	Ť
230	6 4	226,103 227,402	223,505 225,670
200	3	228,051	226,752
	6	231,103	228,505
235	4	232,402	230,670
	3	233,051	231,752
	6	236,103	233,505
240	$\frac{3}{4}$	237,402	235,670
	3	238,051	236,752
	6	241,103	238,505
245	4	242,402	240,670
	3	243,051	241,752
	6	246,103	243,505
250	4	247,402	245,670
	3	248,051	246,752
255	6	251,103	248,505
200	4	252,402	250,670
260	6	256,103	253,505
400	4	257,402	255,670
265	6	261,103	258,505
400	4	262,402	260,670

Nominal diameter = Major diameter	Pitch	Pitch diameter	Minor diameter
D, d	P	D_2, d_2	D_1, d_1
270	6 4	266,103 267,402	263,505 265,670
275	6 4	271,103 272,402	268,505 270,670
280	6 4	276,103 277,402	273,505 275,670
285	6 4	281,103 282,402	278,505 280,670
290	6 4	286,103 287,402	283,505 285,670
295	6 4	291,103 292,402	288,505 290,670
200	6	296,103	293,505

Table 4 — Basic dimensions

6 Tolerances: principles and basic data

- **6.1 General.** This clause specifies a tolerance system for screw threads complying with clause 4.
- The tolerance system refers to the basic profile according to clause 3.

4

6.2 Structure of the tolerance system. The system gives tolerances defined by tolerance grades and tolerance positions and a selection of grades and positions.

297,402

295,670

The system provides for:

300

a) A series of tolerance grades for each of the four screw thread diameters, as follows:

	Tolerance grades
Minor diameter of nut threads (D_1)	4, 5, 6, 7, 8,
Major diameter of bolt threads (d)	4, 6, 8,
Pitch diameter of nut threads (D_2)	4, 5, 6, 7, 8,
Pitch diameter of bolt threads (d_2)	3, 4, 5, 6, 7, 8, 9

Details of tolerance grades and combinations of tolerance grades for pitch and crest diameters according to tolerance quality and length of engagement group required, with an order of preference, are given in **6.11**.

- b) Series of *tolerance positions*, G and H for nut threads and e, f, g and h for bolt threads. The established tolerance positions comply with the requirements of current coating thicknesses and with the demands of easy assembly. Tolerance positions with respect to zero line (basic size) are shown in Figure 3.
- c) Selection of recommended combinations of grades and positions (tolerance classes) giving the commonly used tolerance qualities Fine, Medium and Coarse for the three groups of length of thread engagement Short, Normal and Long. Moreover a further selection of tolerance classes is given for commercial bolt and nut threads. Tolerance classes other than those shown in **6.11** are not recommended and shall be used only for special cases.

6.3 Terminology and symbols

6.3.1 Terminology. The term "bolt threads" is used for external screw threads, the term "nut threads" for internal screw threads.

6.3.2 *Symbols.* The following symbols shall be used:

Symbol	Explanation
D	basic major diameter of nut thread
D_1	basic minor diameter of nut thread
D_2	basic pitch diameter of nut thread
d	basic major diameter of bolt thread
d_1	basic minor diameter of bolt thread
d_2	basic pitch diameter of bolt thread
P	pitch
H	height of fundamental triangle
R	bolt root radius
S	designation for thread engagement group Short
N	designation for thread engagement group Normal
L	designation for thread engagement group Long
T	tolerance
$T_{D_1}\!,T_{D_2}$	tolerances for D_1 , D_2 , d , d_2
T_d , T_{d_2}	
ei, EI	lower deviations
es, ES	upper deviations

Figure 3 — Tolerance positions with respect to zero line (basic size)

6.4 Designation. The complete designation for a screw thread comprises a designation for the thread system and size, and a designation for the thread tolerance class.

The thread designations are given in clause 4.

The tolerance class designation comprises a class designation for the pitch diameter tolerance followed by a class designation for the crest diameter tolerance.

Each class designation consists of

- a figure indicating the tolerance grade;
- a letter indicating the tolerance position, capital for nuts, small for bolts.

If the two class designations for a thread are the same, it is not necessary to repeat the symbols.

A fit between parts is indicated by the nut thread tolerance class followed by the bolt thread tolerance class separated by an oblique stroke.

Examples:

M6 - 6H/6g

 $M20 \times 2 - 6H/5g6g$

For coated threads, the tolerances apply to the parts *before* coating, unless otherwise stated. After coating, the actual thread profile shall not in any point transgress the maximum material limits for either position H or h.

6.5 Tolerance grades. For each of the two main elements, pitch diameter and crest diameter, a number of tolerance grades have been established. In each case, grade 6 shall be used for tolerance quality Medium and Normal length of thread engagement. The grades below 6 are intended for tolerance quality Fine and/or Short lengths of thread engagement. The grades above 6 are intended for tolerance quality Coarse and/or Long lengths of thread engagement. In some grades, certain tolerance values for small pitches are not shown because of insufficient thread overlap or the requirement that the pitch diameter tolerance shall not exceed the crest diameter tolerance.

6.6 Tolerance positions. The following tolerance positions are standardized:

— for nuts: G with positive fundamental deviation

H with zero fundamental deviation

See Figure 4 and Figure 5

— for bolts: e, f and g with negative fundamental deviation

h with zero fundamental deviation

See Figure 6 and Figure 7

Tolerance position e is, however, limited to pitches 0,5 and coarser.

The values of the fundamental deviations are given in Table 5.

Basic profile

d

d

Max.minor dia.

Figure 7 — Bolt threads with tolerance position h

 $^{(1)}$ Applicable only in connection with minimum material flanks (d_2 min). See **6.10** and Figure 8.

Table 5 — Fundamental deviations for nut threads and bolt threads

	Fundamental deviation									
Pitch		t thread D ₂ , D ₁		$\begin{array}{c} \textbf{Bolt thread} \\ d, d_2 \end{array}$						
	G EI	H EI	e es	f es	g es	h es				
mm	μm	μm	μm	μm	μm	μm				
0,2	+ 17	0			- 17	0				
0,25	+ 18	0			- 18	0				
0,3	+ 18	0			- 18	0				
0,35	+ 19	0		- 34	- 19	0				
0,4	+ 19	0		- 34	- 19	0				
0,45	+ 20	0		-35	-20	0				
0,5	+ 20	0	- 50	- 36	- 20	0				
0,6	+ 21	0	-53	-36	-21	0				
0,7	+ 22	0	- 56	-38	-22	0				
0,75	+ 22	0	- 56	- 38	- 22	0				
0,8	+ 24	0	- 60	- 38	-24	0				
1	+ 26	0	- 60	-40	-26	0				
1,25	+ 28	0	- 63	-42	- 28	0				
1,5	+ 32	0	-67	-45	-32	0				
1,75	+ 34	0	-71	-48	-34	0				
2	+ 38	0	-71	-52	- 38	0				
2,5	+ 42	0	- 80	-58	-42	0				
3	+ 48	0	-85	- 63	-48	0				
3,5	+ 53	0	- 90	- 70	- 53	0				
4	+ 60	0	-95	-75	- 60	0				
4,5	+ 63	0	- 100	- 80	- 63	0				
5	+ 71	0	- 106	- 85	- 71	0				
5,5	+ 75	0	-112	-90	-75	0				
6	+ 80	0	- 118	-95	- 80	0				

6.7 Lengths of thread engagement. The length of thread engagement is classified into one of three groups, short, normal or long in accordance with Table 6.

 ${\bf Table~6-Lengths~of~thread~engagement}$

Dimensions in millimetres

Basic major diameter d				Length of thread engagement					
		$\Pr_P^{\mathbf{litch}}$	Short	No	ormal	Long			
over	up to and incl.	1	up to and incl.	over	up to and incl.	over			
0,99	1,4	0,2	0,5	0,5	1,4	1,4			
		0,25	0,6	0,6	1,7	1,7			
		0,3	0,7	0,7	2	2			
1,4	2,8	0,2	0,5	0,5	1,5	1,5			
		0,25	0,6	0,6	1,9	1,9			
		0,35	0,8	0,8	2,6	2,6			
		0,4	1	1	3	3			
		0,45	1,3	1,3	3,8	3,8			
2,8	5,6	0,35	1	1	3	3			
		0,5	1,5	1,5	4,5	4,5			
		0,6	1,7	1,7	5	5			
		0,7	2	2	6	6			
		0,75	2,2	2,2	6,7	6,7			
		0,8	2,5	2,5	7,5	7,5			
5,6	11,2	0,75	2,4	2,4	7,1	7,1			
		1	3	3	9	9			
		1,25	4	4	12	12			
		1,5	5	5	15	15			
11,2	22,4	1	3,8	3,8	11	11			
•		1,25	4,5	4,5	13	13			
		1,5	5,6	5,6	16	16			
		1,75	6	6	18	18			
		2	8	8	24	24			
		2,5	10	10	30	30			
22,4	45	1	4	4	12	12			
		1,5	6,3	6,3	19	19			
		2	8,5	8,5	25	25			
		3	12	12	36	36			
		3,5	15	15	45	45			
		4	18	18	53	53			
		4,5	21	21	63	63			
45	90	1,5	7,5 9,5	7,5	22	22			
		2	9,5	9,5	28	28			
		2 3 4	15	15	45	45			
		4	19	19	56	56			
		5 5,5	24	24	71	71			
		5,5 6	28 32	28 32	85 95	85 95			
0.0	100								
90	180	2	12	12	36	36			
		3	18	18	53	53			
		$\begin{vmatrix} 4 \\ 6 \end{vmatrix}$	24 36	24 36	71 106	71 106			
180	300	3	20	20	60	60			
		4	26	26	80	80			
		6	$\frac{1}{40}$	40	118	118			

 ${\color{red} @ \text{BSI } 02\text{-}1999}$

6.8 Crest diameter tolerances

6.8.1 Minor diameter tolerance of nut thread (T_{D_1}) . For the minor diameter tolerance of nut thread, T_{D_1} , there are five tolerance grades, 4, 5, 6, 7, and 8, in accordance with Table 7.

Table 7 — Minor diameter tolerances of nut thread (T_{D_1})

Pitch P	Tolerance grade							
P	4	5	6	7	8			
mm	μm	μm	μm	μm	μm			
0,2	38	_	_	_	_			
0,25	45	56	_	_	_			
0,3	53	67	85	_	_			
0,35	63	80	100	_				
0,4	71	90	112	_	_			
0,45	80	100	125	_	_			
0,5	90	112	140	180	_			
0,6	100	125	160	200	_			
0,7	112	140	180	224				
0,75	118	150	190	236	_			
0,8	125	160	200	250	315			
1	150	190	236	300	375			
1,25	170	212	265	335	425			
1,5	190	236	300	375	475			
1,75	212	265	335	425	530			
2	236	300	375	475	600			
2,5	280	355	450	560	710			
3	315	400	500	630	800			
3,5	355	450	560	710	900			
4	375	475	600	750	950			
4,5	425	530	670	850	1 060			
5	450	560	710	900	1 120			
5,5	475	600	750	950	1 180			
6	500	630	800	1 000	1 250			

6.8.2 Major diameter tolerance of bolt thread (T_d) . For the major diameter tolerance of bolt thread, T_d , there are three tolerance grades, 4, 6 and 8, in accordance with Table 8.

The tolerance grades 5 and 7 do not exist for the major diameter of bolt threads.

Table 8 — Major diameter tolerance of bolt thread (T_d)

Pitch P	Tolerance grade						
P	4	6	8				
mm	μm	μm	μm				
0,2	36	56	_				
0,25	42	67					
0,3	48	75					
0,35	53	85	_				
0,4	60	95	_				
0,45	63	100	_				
0,5	67	106	_				
0,6	80	125					
0,7	90	140					
0,75	90	140	_				
0,8	95	150	236				
1	112	180	280				
1,25	132	212	335				
1,5	150	236	375				
1,75	170	265	425				
2	180	280	450				
2,5	212	335	530				
3	236	375	600				
3,5	265	425	670				
4	300	475	750				
4,5	315	500	800				
5	335	530	850				
5,5	355	560	900				
6	375	600	950				

6.9 Pitch diameter tolerances. For the pitch diameter tolerance of nut thread, T_{D_2} , there are five tolerance grades, 4, 5, 6, 7 and 8, in accordance with Table 9.

Table 9 — Pitch diameter tolerance of nut thread (T_{D_2})

Basic ma	ajor diameter	Ditah		Tolerance grade					
over	up to and incl.	Pitch P	4	5	6	7	8		
mm	mm	mm	μm	μm	μm	μm	μm		
0,99	1,4	0,2	40	_		_	_		
		0,25	45	56		_	_		
		0,3	48	60	75				
1,4	2,8	0,2	42	_		_	_		
ŕ		0,25	48	60		_	_		
		0,35	53	67	85	_	_		
		0,4	56	71	90	_	_		
		0,45	60	75	95	_	_		
2,8	5,6	0,35	56	71	90		<u> </u>		
,	,	0,5	63	80	100	125	_		
		0,6	71	90	112	140	_		
		0,7	75	95	118	150	_		
		0,75	75	95	118	150	_		
		0,8	80	100	125	160	200		
5,6	11,2	0,75	85	106	132	170	_		
		1	95	118	150	190	236		
		1,25	100	125	160	200	250		
		1,5	112	140	180	224	280		
11,2	22,4	1	100	125	160	200	250		
ŕ	ŕ	1,25	112	140	180	224	280		
		1,5	118	150	190	236	300		
		1,75	125	160	200	250	315		
		2	132	170	212	265	335		
		2,5	140	180	224	280	355		
22,4	45	1	106	132	170	212			
,		1,5	125	160	200	250	315		
		2	140	180	224	280	355		
		3	170	212	265	335	425		
		3,5	180	224	280	355	450		
		4	190	236	300	375	475		
		4,5	200	250	315	400	500		
45	90	1,5	132	170	212	265	335		
		2	150	190	236	300	375		
		$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	180	224	280	355	450		
		4	200	250	315	400	500		
		5	212	265	335	425	530		
		5,5	224	280	355	450	560		
		6	236	300	375	475	600		
90	180	2	160	200	250	315	400		
		$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	190	236	300	375	475		
		4	212	265	335	425	530		
		6	250	315	400	500	630		
180	300	3	212	265	335	425	530		
		4	236	300	375	475	600		
		6	265	335	425	530	670		

24

For the pitch diameter tolerance of bolt thread, T_{D_2} , there are seven tolerance grades, 3, 4, 5, 6, 7, 8 and 9, in accordance with Table 10.

Table 10 — Pitch diameter tolerance of bolt thread (T_{D_2})

	${f c}$ major neter d	Pitch							
over	up to and incl.	P	3	4	5	6	7	8	9
mm	mm	mm	μm	μm	μm	μm	μm	μm	μm
0,99	1,4	0,2	24	30	38	48	_	_	_
		0,25	26	34	42	53			
		0,3	28	36	45	56	_	 	<u> </u>
1,4	2,8	0,2	25	32	40	50	_	_	_
		$0,\!25$	28	36	45	56		_	
		0,35	32	40	50	63	80		
		0,4	34	42	53	67	85		
		0,45	36	45	56	71	90	 	
2,8	5,6	0,35	34	42	53	67	85		_
ŕ		0,5	38	48	60	75	95	_	
		0,6	42	53	67	85	106		_
		0,7	45	56	71	90	112	_	
		0,75	45	56	71	90	112	150	190
		0,8	48	60	75	95	118		
5,6	11,2	0,75	50	63	80	100	125	_	
,		1	56	71	90	112	140	180	224
		1,25	60	75	95	118	150	190	236
		1,5	67	85	106	132	170	212	265
11,2	22,4	1	60	75	95	118	150	190	236
,_	,_	1,25	67	85	106	132	170	212	265
		1,5	71	90	112	140	180	224	280
		1,75	75	95	118	150	190	236	300
		2	80	100	125	160	200	250	315
		2,5	85	106	132	170	212	265	335
22,4	45	1	63	80	100	125	160	200	250
,		1,5	75	95	118	150	190	236	300
		2	85	106	132	170	212	265	335
		3	100	125	160	200	250	315	400
		3,5	106	132	170	212	265	335	425
		4	112	140	180	224	280	355	450
		4,5	118	150	190	236	300	375	475
45	90	1,5	80	100	125	160	200	250	315
		2	90	112	140	180	224	280	355
		3	106	132	170	212	265	335	425
		4	118	150	190	236	300	375	475
		5	125	160	200	250	315	400	500
		5,5	132	170	212	265	335	425	530
		6	140	180	224	280	355	450	560
90	180	2	95	118	150	190	236	300	375
		3	112	140	180	224	280	355	450
		4	125	160	200	250	315	400	500
		6	150	190	236	300	375	475	600
180	300	3	125	160	200	250	315	400	500
		4	140	180	224	280	355	450	560
		6	160	200	250	315	400	500	630

6.10 Root contours. For nut threads as well as bolt threads, the actual root contours shall not at any point transgress the basic profile.

For bolt threads on fasteners with strength grades 8.8 and higher (see BS 6104-1¹⁾), the root profile shall have a non-reversing curvature, no portion of which shall have a radius of less than $0.125 \times P$ (see Table 11).

In the maximum minor diameter position the two radii of $R_{\rm min}$ = 0,125 × P will go through the points of intersection between the maximum material flanks and the minor diameter cylinder of the Go gauges according to BS 919-3 and blend tangentially into the minimum material flanks.

The maximum truncation is:

$$\frac{H}{4} - R_{\min} \left\{ 1 - \cos \left[\frac{\pi}{3} - \arccos \left(1 - \frac{T_{d_2}}{4 \times R_{\min}} \right) \right] \right\} + \frac{T_{d_2}}{2}$$

and the minimum truncation is:

$$0.125 \times P \approx \frac{H}{7}$$

Furthermore a truncation of H/6 ($R = 0.14434 \times P$) is the basis for stress calculations (see clause 7).

NOTE Bolt threads on fasteners with strength grades below 8.8 should preferably comply with the requirements stated above. This is particularly important for fasteners or other screwed connections that are subjected to fatigue or impact. There are, in principle no restrictions other than that the maximum minor diameter of the thread is less than the minimum minor diameter of the Go gauges according to BS 919-3.

Table 11 — Minimum root radii

Pitch P	R min
mm	mm
0,2	0,025
0,25	0,031
0,3	0,038
0,35	0,044
0,4	0,050
0,45	0,056
0,5	0,063
0,6	0,075
0,7	0,088
0,75	0,094
0,8	0,100
1	0,125
1,25	0,156
1,5	0,188
1,75	0,219
2	0,250
2,5	0,313
3	0,375
3,5	0,438
4	0,500
4,5	0,563
5	0,625
5,5	0,688
6	0,750

¹⁾ In course of preparation based on ISO 898/1.

© BSI 02-1999 25

6.11 Tolerance classes. In order to reduce the number of gauges and tools, the tolerance classes shall be chosen from Table 12 and Table 13.

The following general rules apply for the choice of tolerance quality:

- Fine: for precision threads, when little variation of fit character is needed.
- Medium: for general use.
- Coarse: for cases where manufacturing difficulties can arise, for example when threading hot-rolled bars and long blind holes.

If the actual length of thread engagement is unknown (as in the manufacturing of standard bolts), normal is recommended.

Table 12 — Tolerance classes for nuts

Tolerance quality	T	olerance position	G	Tolerance position H			
Tolerance quanty	Short	Normal	Long	Short	Normal	Long	
Fine				4H	5H	6H	
Medium	5G	6G	7G	5H	6H	7H	
Coarse		7 <i>G</i>	8G		7H	8H	

Tolerance classes within frames are selected for commercial bolt and nut threads.

Tolerance classes in bold type are first choice.

Tolerance classes in ordinary type are second choice.

Tolerance classes in sloping type are third choice; they are to be avoided.

NOTE Any of the recommended tolerance classes for nuts can be combined with any of the recommended tolerance classes for bolts with the exception of thread sizes M1,4 and smaller, where the combination 5H/6h or finer shall be chosen. However, in order to guarantee a sufficient overlap, the finished components should preferably be made to form the fits Hg, Hh, or G/h.

6.12 Formulae

6.12.1 *General.* The values given in this clause are based on experience. In order to obtain a consistent system, mathematical formulae have been developed.

The values for pitch and crest diameter tolerances and for fundamental deviations have been calculated from the formulae and then rounded off to the nearest value in the R 40 series of preferred numbers. However, when decimal fractions occur, the value has been further rounded off to the nearest whole number.

In order to reproduce a smooth progression, these rules of rounding off have not always been used. The root radii specified in Table 11 are equal to 0.125 P.

6.12.2 *Fundamental deviations*. The fundamental deviations for nut and bolt threads have been calculated according to the following formulae:

$$EI_{\rm G}$$
 = + (15 + 11 P) $es_{\rm e}$ = - (50 + 11 P)^a $es_{\rm f}$ = - (30 + 11 P) $es_{\rm g}$ = - (15 + 11 P) $es_{\rm h}$ = 0

where

EI and es are expressed in micrometres;

P is expressed in millimetres.

6.12.3 Length of thread engagement. For the calculation of the limits of the normal length of thread engagement I_N in Table 6, the following rule has been applied.

For each pitch within a certain diameter range, d has been set equal to the smallest diameter (within the range) which appears in clause 4.

 $I_{
m N}$ min. approximate = 2,24 $P\,d^{0,2}$

 $I_{
m N}$ max. approximate = 6,7 P $d^{0,2}$

where I_N , P and d are expressed in millimetres.

6.12.4 Crest diameter tolerances

6.12.4.1 Tolerances for major diameter of bolt thread (T_d) grade 6.

These tolerances have been calculated according to the following formula.

$$T_d(6) = 180 \sqrt[3]{P^2} - \frac{3,15}{\sqrt{P}}$$

where

 T_d is expressed in micrometres;

P is expressed in millimetres.

 T_d tolerances for the other grades are obtained from the T_d (6) values (see Table 8) according to the table below.

Tolerance grade									
4 6 8									
$0,63 \ T_d \ (6)$	T_d (6)	$1,6 \ T_d \ (6)$							

6.12.4.2 Tolerances for minor diameter of nut thread (T_{D_1}) The T_{D_1} tolerances for grade 6 are calculated according to the following formulae:

a) Pitches 0,2 to 0,8 mm

$$T_{D_1}(6) = 433 \ P - 190 \ P^{1,22}$$

© BSI 02-1999 27

^a Exceptions are values for threads with $P \leq 0.45$ mm

b) Pitch 1 mm and coarser

$$T_{D_1}$$
 (6) = 230 $P^{0,7}$

where

 T_{D_1} is expressed in micrometres;

P is expressed in millimetres.

The values for the other grades are obtained from the T_{D_1} (6)-values (in Table 7) according to the table below.

Tolerance grade									
4 5 6 7 8									
$0,63 \ T_{D_1}(6)$	$0.8 \ T_{D_1}(6)$	$T_{D_1}(6)$	$1,25 \ T_{D_1}(6)$	$1,6 \ T_{D_1}(6)$					

6.12.5 Pitch diameter tolerances

6.12.5.1 Tolerances for pitch diameter of bolt thread (T_{d_2}) T_{d_2} (6)—values in Table 10 are calculated according to the following formula (d equal to the geometrical mean value of the diameter range limits):

$$T_{d_2}(6) = 90 \ P^{0,4} \ d^{0,1}$$

where

 T_{d_2} is expressed in micrometres;

P and d are expressed in millimetres.

Table 13 — Tolerance classes for bolts

Tolerance quality	Tolerance position e		Tolerance position f		Tolerance position g			Tolerance position h				
quanty	Short	Normal	Long	Short	Normal	Long	Short	Normal	Long	Short	Normal	Long
Fine										3h4h	4h	5h4h
Medium		6e	7e6e		6f		5g6g	6g	7g6g	5h6h	6h	7h6h
Coarse								8g	9g8g			

The values for the other grades are obtained from the T_{d_2} (6)-values (see Table 10) according to the table

Tolerance grade								
3 4 5 6								
$0.5 \ T_{d_2}(6)$	$0,63 \ T_{d_2}(6)$	$0.8 \ T_{d_2}(6)$	$T_{d_2}(6)$					

7	8	9		
$1,25 \ T_{d_2}(6)$	$1,6 \ T_{d_2}(6)$	$2 T_{d_2}(6)$		

No T_{d_2} –Values are given in the table when values calculated according to the given formula exceed the T_d –values in the tolerance grades which are combined in the tables for recommended tolerance classes.

6.12.5.2 Tolerances for pitch diameter of nut thread (T_{D_2})

 T_{D_2} -Values are obtained from the T_{D_2} (6)-values (see Table 10) according to the table below.

Tolerance grade									
4 5 6 7 8									
$0.85 \ T_{d1} \ (6)$	$1,06 \ T_{d2} \ (6)$	$1,32 \ T_{d_2}$ (6)	1,7 T_{d_2} (6)	2,12 T_{d_2} (6)					

No T_{D2} -values are given in the table when values calculated according to the given formula exceed 0,25 P.

7 Tolerances: deviations for constructional threads

7.1 General. This clause specifies deviations for pitch and crest diameters for ISO general purpose metric screw threads complying with the requirements of clause **4**.

The deviations specified are derived from the fundamental deviations and tolerances specified in clause **6**. The values for the deviations are given in Table 14.

7.2 Designation. Tolerances are designated by the relevant tolerance class as found under the heading "Tolerance class" in the tables.

Examples:

M6 - 6H

M6 - 5g6g

A fit between threaded parts as indicated by the nut thread tolerance designation followed by the bolt thread tolerance designation separated by an oblique.

Example:

M6 - 6H/5g6g

7.3 Remarks. For nut threads as well as bolt threads, the actual root contour shall not in any point transgress the basic profile.

The tabulated deviation values for the minor diameter of the bolt thread are calculated on the basis of an H/6 truncation and may be used for stress calculations.

For coated threads, the tolerances apply to the parts before coating, unless otherwise stated. After coating, the actual thread profile shall not in any point transgress the maximum material limits for either position H or h.

Table 14 — Deviations

ES, es = upper deviation EI, ei = lower deviation

	c major meter			Nut	threa	d				Bolt	thread		wer deviation
over	up to and	Pitch	Tolerance	Pit dian		Min diam		Tolerance class	Pitch diameter		Major diameter		Minor diameter ^a (for stress
	incl.		class	ES	EI	ES	EI		es	ei	es	ei	calculations)
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
0,99	1,4	0,2						3h4h	0	-24	0	- 36	
			4H	+ 40	0	+ 38	0	4h	0	- 30	0	- 36	-29
			5G	_		_		5g6g	- 17	-55	- 17	− 7 3	-46
			5H	_		_		5h4h	0	- 38	0	- 36	-29
			_	_		_		5h6h	0	- 38	0	-56	-29
			_	_		_		6e	_		_	_	
			_			—		6f	_		_	_	
			6G	—		—		6g	- 17	-65	- 17	- 73	- 46
			6H	_		_		6h	0	-48	0	-56	- 29
			_	_		_		7e6e	_			_	
			7G					7g6g	_	_			
			7H		_	_	_	7h6h	_		_	_	
			8G					8g	_		_		
			8H	_		_		9g8g		_	_	_	
		0,25	_	_		_		3h4h	0	- 26	0	- 42	- 36
			4H	+ 45	0	+ 45	0	4h	0	- 34	0	- 42	- 36
			5G	+ 74	+ 18	+ 74	+ 18	5g6g	- 18	- 60	- 18	- 85	- 54
			5H	+ 56	0	+ 56	0	5h4h	0	- 42	0	- 42	- 36
			_			_		5h6h	0	-42	0	- 67	- 36
			_	_		_		6e	_		_		
				_		_		6f	_			_	
			6G	_		_		6g	- 18	- 7 1	- 18	- 85	- 54
			6H	_		_		6h	0		0		- 36
				_		_		7e6e	_			_	_
			7G	_		_		7g6g		_		_	
			7H	_		_		7h6h	_	_		_	_
			8G	_		_		8g	_	_		_	_
			8H	_		_		9g8g	_			_	
		0,3	-			<u> </u>		3h4h	0	- 28	0	- 48	- 43
		-, -	4H	+ 48	0	+ 53	0	4h	0	- 36	0	- 48	
			5G	+ 78			+ 18	5g6g	- 18		- 18	- 93	
			5H	+ 60	0	+ 67		5h4h	0	-45	0	- 48	
				_				5h6h	0		0		
						_		6e					
				_		_		6f					
			6G	+ 93	+ 18	+ 103	+ 18	6g	- 18	-74	- 18	_ 93	- 61
			6H	+ 75	0	+ 85		6h	0		0		
					_	. 55	_	7e6e	_	_			
			7G		 	<u> </u>	 	7g6g					
9 D :	ation = es		10					1808				_	_

Table 14 — Deviations

	c major meter			Nut	thread	d				Bolt	thread		
over	up to	Pitch	Tolerance	Pit diam	eter	Min diam	eter	Tolerance		tch neter		ajor neter	Minor diameter (for stress
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations
mm	mm	mm		μm	μm	μm	μm	=1 01	μm	μm	μm	μm	μm
0,99	1,4	0,3	7H	_				7h6h			_		
			8G				_	8g			_		
			8H		_			9g8g	_		_	_	
1,4	2,8	0,2	_		_			3h4h	0	_	0	- 36	-29
			4H	+ 42	0	+38	0	4h	0		0	- 36	-29
			5G		_			5g6g	-17	-57	- 17	− 73	-46
			5H		_			5h4h	0		0	- 36	-29
			_	_	_			5h6h	0	-40	0	-56	-29
			_		—	_		6e	_			_	_
			_	_	_		_	6f	- 32	-82	- 32	- 88	- 61
			6G		_	_		6g	- 17	-67	- 17	- 73	- 46
			6H		_			6h	0	- 50	0	- 56	- 29
					_		_	7e6e	_		_		
			7G	_	_			7g6g			_		
			7H	_		_		7h6h	_		_	_	_
			8G		_			8g			_		
			8H					9g8g					
		0,25			_			3h4h	0	- 28	0	- 42	- 36
		,,,,,	4H	+ 48	0	+ 45	0	4h	0	- 36	0	- 42	- 36
			5G		+ 18		+ 18	5g6g	- 18	- 63	- 18	- 85	- 54
			5H	+ 60	0	+ 56		5h4h	0		0	- 42	- 36
			011	1 00	0	1 00	0	5h6h	0	-45	0	-42	- 36
								6e	0	- 40	U	- 07	- 50
								6f	 33	<u> </u>	— - 33	100	
			-									- 100	<u>- 69</u>
			6G					6g	- 18	- 74 5 0	- 18	- 85	- 54
			6H					6h	0	-56	0	- 67	- 36
			_		_			7e6e	_		_		
			7G				_	7g6g			_		
			7H		_			7h6h	_		_		
			8G	<u> </u>			—	8g	_		_	_	<u> </u>
			8H		_			9g8g	_		—	—	
		0,35	_		—			3h4h	0	-32	0	-53	-51
			4H	+ 53	0	+ 63		4h	0	- 40	0	- 53	- 51
			5G	+ 86	+ 19	+ 99	+ 19	5g6g	- 19	- 69	- 19	- 104	- 70
			5H	+ 67	0	+ 80	0	5h4h	0	- 50	0	- 53	- 51
					_			5h6h	0	- 50	0	- 85	- 51
				_				6e	_	_	_		
					_	_		6f	- 34	- 97	- 34	- 119	- 85
			6G	+ 104	+ 19	+ 119	+ 19	6g	- 19		- 19	- 104	

Table 14 — Deviations

	c major meter			Nut	threa	d				Bolt	thread		
over	up to and	Pitch	Tolerance	Pit diam		Min diam		Tolerance		tch neter		ajor meter	Minor diameter (for stress
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations)
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
1,4	2,8	03,5	6H	+ 85	0	+ 100	0	6h	0	- 63	0	-85	- 51
			_	_			_	7e6e	_	_	_		
			7G	_			_	7g6g	- 19	- 99	- 19	- 104	- 70
			7H	_			_	7h6h	0	- 80	0	-85	- 51
			8G	_			_	8g	_	_	_		
			8H	_	_	_	_	9g8g	_	_	_		_
		0,4		_			_	3h4h	0	-34	0	- 60	- 58
			4H	+ 56	0	+ 71	0	4h	0	-42	0	- 60	- 58
			5G	+ 90	+ 19	+ 109	+ 19	5g6g	- 19	-72	- 19	-114	-77
			5H	+ 71	0	+ 90	0	5h4h	0	- 53	0	- 60	- 58
			_	_	_	_	_	5h6h	0	- 53	0	-95	- 58
			_					6e	_	_			_
			_	_			_	6f	- 34	- 101	- 34	- 129	- 92
			6G	+ 109	+ 19	+ 131	+ 19	6g	- 19	- 86	- 19	- 114	- 77
			6H	+ 90	0	+ 112	0	6h	0	- 67	0	- 95	- 58
				_			_	7e6e	_	_			
			7G	_			_	7g6g	- 19	- 104	- 19	- 114	- 77
			7H					7h6h	0	-85	0	- 95	- 58
			8G	_			_	8g	_	_	_		_
			8H	_				9g8g	_	_	_		_
		0,45		_			_	3h4h	0	- 36	0	- 63	- 65
			4H	+ 60	0	+ 80	0	4h	0	-45	0	- 63	- 65
			5G	+ 95	+ 20	+ 120	+ 20	5g6g	- 20	-76	- 20	- 120	- 85
			5H	+ 75	0	+ 100	0	5h4h	0	- 56	0	- 63	- 65
				_			_	5h6h	0	- 56	0	- 100	- 65
								6e	_	_			_
			_	_			_	6f	- 35	- 106	- 35	-135	- 100
			6G	+ 115	+ 20	+ 145	+ 20	6g	- 20	- 91	- 20	- 120	- 85
			6H	+ 95	0	+ 125	0	6h	0	-71	0	- 100	- 65
			_	_			_	7e6e	_	_	_		
			7G	_			_	7g6g	- 20	- 110	- 20	- 120	- 85
			7H	_	_		_	7h6h	0	- 90	0	- 100	- 65
			8G	_		_	_	8g	_		_		_
			8H	_		_	_	9g8g	_				_
2,8	5,6	0,35		_		_	_	3h4h	0	- 34	0	- 53	- 51
			4H	+ 56	0	+ 63	0	4h	0	- 42	0	- 53	- 51
			5G	+ 90	+ 19	+ 99	+ 19	5g6g	- 19	-72	- 19	- 104	- 70
			5H	+ 71	0	+ 80	0	5h4h	0	- 53	0	- 53	- 51
			_	_			_	5h6h	0	- 53	0	- 85	- 51

Table 14 — Deviations

	c major meter			Nut	threa	d				Bolt	thread		wer deviation
over	up to	Pitch	Tolerance		neter	Min diam	eter	Tolerance		tch neter		ajor neter	Minor diameter (for stress
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations)
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
2,8	5,6	0,35	_	_				6e		—			_
			_			_		6f	- 34	- 101	- 34	- 119	- 85
			6G	+ 109	+ 19	+ 119		6g		—			
			6H	+ 90	0	+ 100	0	6h					
			_	_		_		7e6e			_		
			7G	_		_		7g6g		-104	- 19	- 104	
			7H		—	_	—	7h6h	0	-85	0	-85	- 51
			8G	_		_		8g					
			8H			_		9g8g					
		0,5	_			_		3h4h	0	- 38	0	- 67	-72
			4H	+ 63	0	+ 90		4h	0	-48	0	- 67	– 72
			5G	+ 100	+ 20	+ 132		5g6g	- 20	- 80	- 20	- 126	- 92
			5H	+ 80	0	+ 112	0	5h4h	0	- 60	0	- 67	– 72
			_	_		_		5h6h	0	-60	0	- 106	-72
			_	_		_		6e	- 50	-125	- 50	-156	- 122
			_	_		_		6f	- 36	- 111	- 36	-142	- 108
			6G	+ 120	+ 20	+ 160	+ 20	6g	- 20	-95	- 20	- 126	- 92
			6H	+ 100	0	+ 140	0	6h	0	-75	0	- 106	-72
			_	_		_		7e6e	- 50	-145	- 50	-156	- 122
			7G	+ 145	+ 20	+ 200	+ 20	7g6g	- 20	-115	- 20	-126	- 92
			7H	+ 125	0	+ 180	0	7h6h	0	-95	0	- 106	-72
			8G	_		_		8g					
			8H	_		_		9g8g					
		0,6	_	_		_		3h4h	0	-42	0	- 80	- 87
			4H	+ 71	0	+ 100	0	4h	0	-53	0	- 80	- 87
			5G	+ 111	+ 21	+ 146	+ 21	5g6g	-21	- 88	- 21	-146	- 108
			5H	+ 90	0	+ 125	0	5h4h	0	-67	0	- 80	- 87
			_	_	_	_	_	5h6h	0	- 67	0	-125	- 87
			_	_	_	_	_	6e	- 53	-138	- 53	- 178	- 140
			_	_	_	_	_	6f	- 36	-121	- 36	- 161	- 123
			6G	+ 133	+ 21	+ 181	+ 21	6g	-21	-106	- 21	- 146	- 108
			6H	+ 112	0	+ 160	0	6h	0	-85	0	- 125	- 87
			_	_		_		7e6e	- 53	- 159	- 53	- 178	- 140
			7G	+ 161	+ 21	+ 121	+ 21	7g6g	-21	-127	- 21	- 146	- 108
			7H	+ 140	0	+ 200	0	7h6h	0	- 106	0	- 125	- 87
			8G	_		_		8g	_	_			_
			8H	_		<u> </u>		9g8g	_	_			_
		0,7	_	_		_		3h4h	0	- 45	0	- 90	- 101
		,	4H	+ 75	0	+ 112	0	4h	0		0		- 101

Table 14 — Deviations

	c major meter			Nut	threa	d				Bolt	thread		
over	up to and	Pitch	Tolerance	Pit diam		Min diam		Tolerance		tch neter		ajor meter	Minor diameter (for stress
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations)
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
2,8	5,6	0,7	5G	+ 117	+ 22	+ 162	+ 22	5g6g	- 22	- 93	- 22	-162	-123
			5H	+ 95	0	+ 140	0	5h4h	0	- 71	0	- 90	- 101
				_			_	5h6h	0	-71	0	- 140	- 101
				_			_	6e	- 56	- 146	- 56	- 196	-157
				_		_	_	6f	- 38	− 128	- 38	-178	− 139
			6G	+ 140	+ 22	+ 202	+ 22	6g	- 22	- 112	- 22	- 162	− 123
			6H	+ 118	0	+ 180	0	6h	0	- 90	0	- 140	- 101
								7e6e	- 56	-168	- 56	- 196	-157
			7G	+ 172	+ 22	+ 246	+ 22	7g6g	- 22	- 134	- 22	- 162	- 123
			7H	+ 150	0	+ 224	0	7h6h	0	- 112	0	-140	- 101
			8G			_	_	8g	_	_	_		_
			8H	_	_	_	_	9g8g	_	_	_		_
		0,75		_	_	_	_	3h4h	0	-45	0	- 90	- 108
			4H	+ 75	0	+ 118	0	4h	0	- 56	0	- 90	- 108
			5G	+ 117	+ 22	+ 172	+ 22	5g6g	- 22	- 93	- 22	- 162	- 130
			5H	+ 95	0	+ 150	0	5h4h	0	- 71	0	- 90	- 108
						_		5h6h	0	- 71	0	-140	- 108
							_	6e	- 56	- 146	- 56	- 196	- 164
						_		6f	- 38	- 128	- 38	-178	-146
			6G	+ 140	+ 22	+ 212	+ 22	6g	- 22	- 112	- 22	- 162	- 130
			6H	+ 118	0	+ 190	0	6h	0	- 90	0	- 140	- 108
							_	7e6e	- 56	- 168	- 56	- 196	- 164
			7G	+ 172	+ 22	+ 258	+ 22	7g6g	- 22	- 134	- 22	- 162	- 130
			7H	+ 150	0	+ 236	0	7h6h	0	- 112	0	- 140	- 108
			8G				_	8g	_	_	_		
			8H			_	_	9g8g	_	_	_		_
		0,8	_	_		_		3h4h	0	- 48	0	- 95	- 115
			4H	+ 80	0	+ 125	0	4h	0	- 60	0		- 115
			5G	+ 124	+ 24	+ 184	+ 24	5g6g	- 24	- 99	- 24	-174	- 140
			5H	+ 100	0	+ 160	0	5h4h	0	- 75	0	- 95	- 115
			_	_		_		5h6h	0	- 75	0	- 150	- 115
						_		6e	- 60	- 155	- 60	- 210	- 176
				_			_	6f	- 38	- 133	- 38	- 188	
			6G	+ 149	+ 24	+ 224	+ 24	6g	- 24	- 119	- 24	-174	
			6H	+ 125	0	+ 200	0	6h	0	- 95	0	- 150	- 115
				_			_	7e6e	- 60	- 178	- 60	-210	
			7G	+ 184	+ 24	+ 274	+ 24	7g6g		- 142	- 24	-174	- 140
			7H	+ 160	0	+ 250		7h6h		- 118	0		

Table 14 — Deviations

	c major meter			Nut	threa	d				Bolt	thread		
over	up to and	Pitch	Tolerance	Pit dian	neter	Min diam	eter	Tolerance		tch neter		njor neter	Minor diameter (for stress
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
2,8	5,6	0,8	8G	+ 224	+ 24	+ 339		8g	-24	-174	-24	-260	
			8H	+ 200	0	+ 315	0	9g8g	-24	-214	-24	-260	
5,6	11,2	0,75						3h4h	0	- 50	0	- 90	
			4H	+ 85	0	+ 118		4h	0		0	- 90	
			5G		+ 22	+ 172		5g6g	-22	-102	-22	- 162	
			5H	+ 106	0	+ 150	0	5h4h	0		0	- 90	
				_				5h6h	0		0	- 140	
			_	_				6e	-56	-156	- 56	– 196	
				_				6f	- 38	-138	- 38	-178	
			6G	+ 154	+ 22	+ 212		6g	-22	-122	- 22	-162	
			6H	+ 132	0	+ 190	0	6h	0		0	-140	
			_	_				7e6e	- 56	-181	- 56	- 196	- 164
			7G	+ 192	+ 22	+ 258	+ 22	7g6g	- 22	-147	- 22	-162	- 130
			7H	+ 170	0	+ 236	0	7h6h	0	-125	0	-140	- 108
			8G	_				8g	_	_	[_
			8H	_				9g8g					
		1 -	_	_				3h4h	0	- 56	0	- 112	-144
			4H	+ 95	0	+ 150	0	4h	0	-71	0	- 112	-144
			5G	+ 144	+ 26	+ 216	+ 26	5g6g	- 26	-116	- 26	-206	-170
			5H	+ 118	0	+ 190	0	5h4h	0	- 90	0	- 112	- 144
			_	_				5h6h	0	- 90	0	- 180	- 144
			_	_				6e	- 60	-172	- 60	-240	-204
			_	_				6f	- 40	-152	- 40	-220	- 184
			6G	+ 176	+ 26	+ 262	+ 26	6g	- 26	- 138	- 26	- 206	- 170
			6H	+ 150	0	+ 236	0	6h	0	-112	0	- 180	- 144
				_				7e6e	- 60	-200	- 60	-240	-204
			7G	+ 216	+ 26	+ 326	+ 26	7g6g	- 26	-166	- 26	- 206	- 170
			7H	+ 190	0	+ 300	0	7h6h	0	-140	0	- 180	- 144
			8G	+ 262	+ 26	+ 401	+ 26	8g	- 26	-206	- 26	- 306	- 170
			8H	+ 236	0	+ 375	0	9g8g	- 26	-250	- 26	- 306	- 170
		1,25	_	_		_		3h4h	0	- 60	0	- 132	- 180
			4H	+ 100	0	+ 170	0	4h	0	-75	0	- 132	- 180
			5G	+ 153	+ 28	+ 240		5g6g	- 28	- 123	- 28	- 240	
			5H	+ 125	0	+ 212	0	5h4h	0		0	- 132	- 180
				_				5h6h	0	- 95	0	- 212	
			_	_				6e		- 181	- 63	-275	
								6f		- 160	- 42	-254	
			6G	+ 188	+ 28	+ 293	+ 28	6g		-146	- 28		- 208
			6H	+ 160	0	+ 265		6h		- 118	0		- 180

 ${\bf Table~14-Deviations}$

AH	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Minor diameter
5,6 11,2 1,25 — — — — 766e — 63 - 213 — 63 - 275 7G + 228 + 228 + 363 + 28 76g — 28 - 178 — 28 - 240 7H + 200 0 + 335 0 7h6h 0 - 150 0 - 212 8G + 278 + 28 + 453 + 28 8g - 28 - 218 - 28 - 363 8H + 250 0 + 425 0 9g8g - 28 - 28 - 218 - 28 - 363 1,5 — — — — — 314h 0 - 67 0 - 150 4H + 112 0 + 190 0 4h 0 - 85 0 - 150 5G + 172 + 32 + 268 + 32 5g6g - 32 - 138 - 32 - 268 5H + 140 0 + 236 0 5h4h 0 - 106 0 - 150 - 236 - 240 - 240 - 240 - 240 - 240 - 240 - 240 - 240 -	(for stress calculations)
TG	μm
TH	
RG	
SH	
1,5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
SG	-217
SH	-217
	-217
The second color of the	
Company	
Control Cont	
	3 - 249
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 217
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 284
SG	
SH	3 - 217
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 - 249
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 - 249
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 - 144
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 - 144
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 - 170
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 - 144
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 144
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-204
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	184
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-170
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 144
7H	-204
8G + 276 + 26 + 401 + 26 8g - 26 - 216 - 26 - 306 8H + 250 0 + 375 0 9g8g - 26 - 262 - 26 - 306 1,25 — — — — 3h4h 0 - 67 0 - 132	3 - 170
8H + 250 0 + 375 0 9g8g - 26 - 262 - 26 - 306 1,25 — — — — 3h4h 0 - 67 0 - 132	- 144
1,25 — — — — 3h4h 0 -67 0 -132	-170
	-170
4H + 112 0 + 170 0 4h 0 - 85 0 - 132	2 - 180
	2 - 180
5G + 168 + 28 + 240 + 28 5g6g -28 - 134 -28 -240	0 – 208
	2 - 180
5h6h	2 – 180
	6 - 243

Table 14 — Deviations

	c major meter			Nut	threa	d				Bolt	thread	$EI, ei = 10^{\circ}$	wer deviation
over	up to	Pitch	Tolerance	Pit diam		Min diam		Tolerance		tch neter		ajor neter	Minor diameter (for stress
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations)
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
11,2	22,4	1,25				_		6f	-42	-174	- 42	-254	
			6G		+ 28	+ 293		6g	-28	-160	-28		-208
			6H	+ 180	0	+ 265	0	6h	0		0		- 180
				_		_	_	7e6e	- 63	-233	- 63		-243
			7G	+ 252	+ 28	+ 363		7g6g	-28		-28		-208
			7H	+ 224	0	+ 335	0	7h6h	0		0		- 180
			8G		+ 28	+ 453		8g	-28	-240	-28		-208
			8H	+ 280	0	+ 425	0	9g8g	-28		-28		-208
		1,5				—		3h4h	0	, –	0		-217
			4H	+ 118	0	+ 190		4h	0		0		-217
			5G	+ 182	+ 32	+ 268	+ 32	5g6g	- 32	-144	- 32		-249
			5H	+ 150	0	+ 236	0	5h4h	0		0		-217
						—		5h6h	0		0		-217
								6e	- 67	-207	- 67		-284
						_	_	6f	-45	-185	-45	-281	-262
			6G	+ 222	+ 32	+ 332	+ 32	6g	- 32	-172	- 32	-268	-249
			6H	+ 190	0	+ 300	0	6h	0	-140	0	-236	-217
				_		_		7e6e	- 67	-247	- 67	- 303	-284
			7G	+ 268	+ 32	+ 407	+ 32	7g6g	- 32	-212	- 32	-268	-249
			7H	+ 236	0	+ 375	0	7h6h	0	-180	0	-236	-217
			8G	+ 332	+ 32	+ 507	+ 32	8g	- 32	-256	-32	-407	-249
			8H	+ 300	0	+ 475	0	9g8g	- 32	-312	- 32	-407	-249
		1,75				_		3h4h	0	-75	0	-170	-253
			4H	+ 125	0	+ 212	0	4h	0	-95	0	-170	-253
			5G	+ 194	+ 34	+ 299	+ 34	5g6g	- 34	-152	- 34	-299	-287
			5H	+ 160	0	+ 265	0	5h4h	0	-118	0	-170	-253
						_	_	5h6h	0	- 118	0	-265	-253
						_	_	6e	-71	-221	-71	- 336	-324
						_		6f	- 48	-198	- 48	- 313	- 301
			6G	+ 234	+ 34	+ 369	+ 34	6g	- 34	-184	- 34	-299	-287
			6H	+ 200	0	+ 335	0	6h	0	-150	0	-265	-253
			_	_		_		7e6e	-71	- 261	-71	- 336	- 324
			7G	+ 284	+ 34	+ 459	+ 34	7g6g	- 34	-224	- 34	- 299	-287
			7H	+ 250	0	+ 425	0	7h6h	0	- 190	0	-265	- 253
			8G	+ 349	+ 34	+ 564	+ 34	8g	- 34	-270	- 34	-459	- 287
			8H	+ 315	0	+ 530	0	9g8g	- 34	- 334	- 34	- 459	-287
		2	_	_		_	_	3h4h	0	- 80	0	- 180	- 289
			4H	+ 132	0	+ 236	0	4h	0	- 100	0	- 180	- 289
			5G	+ 208	+ 38	+ 338	+ 38	5g6g	- 38	- 163	- 38	- 318	- 327

Table 14 — Deviations

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	deviation
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Minor ameter or stress
11,2 22,4 2	ulations)
	μm
	39
	39
GG	30
GH	41
	27
7G	39
TH	30
SG	27
SH	39
2,5	27
## # # # # # # # # # # # # # # # # # #	27
SG	31
5H + 180 0 + 355 0 5h4h 0 - 132 0 - 212 - 36 - - - - - - 5h6h 0 - 132 0 - 335 - 36 - - - - - 6e - 80 - 250 - 80 - 415 - 44 - - - - - 6f - 58 - 228 - 58 - 393 - 41 6G + 266 + 42 + 492 + 42 6g - 42 - 212 - 42 - 377 - 40 6H + 224 0 + 450 0 6h 0 - 170 0 - 335 - 36 - - - - - - - - 766e - 80 - 292 - 80 - 415 - 44 7G + 322 + 42 + 602 + 42 7g6g - 42 - 254 - 42 - 377 - 40 7H + 280 0 + 560 0 7h6h 0 -	31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31
Correction Cor	41
6H	19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	03
8H + 355 0 + 710 0 9g8g - 42 - 377 - 42 - 572 - 40 22,4 45 1 3h4h 0 - 63 0 - 112 - 14 4H + 106 0 + 150 0 4h 0 - 80 0 - 112 - 14 5G + 158 + 26 + 216 + 26 5g6g - 26 - 126 - 26 - 206 - 17 5H + 132 0 + 190 0 5h4h 0 - 100 0 - 112 - 14 5h6h 0 - 100 0 - 180 - 14 6e - 60 - 185 - 60 - 240 - 20	31
22,4 45 1 — — — — 3h4h 0 — 0 — 112—14 4H + 106 0 + 150 0 4h 0 — 0 — 112—14 5G + 158 + 26 + 216 + 26 5g6g — 26 — 26 — 206—17 5H + 132 0 + 190 0 5h4h 0 — 0 — 112—14 — — — — — 5h6h 0 — 100 0 — 180—14 — — — — — 6e — 60 — 240—20	03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44
5h6h 0-100 0 -180-14 6e -60-185 -60 -240-20	70
	14
	44
Gf 40 165 40 990 19	04
	34
6G + 196 + 26 + 262 + 26 6g - 26 - 151 - 26 - 206 - 17	70
6H + 170 0 + 236 0 6h 0 - 125 0 - 180 - 14	14
	04
7G + 238 + 26 + 326 + 26 7g6g -26 - 186 -26 -206 - 17	70
7H + 212 0 + 300 0 7h6h 0 - 160 0 - 180 - 14	14
8G — — 8g — 26 — 26 — 306 — 17	70
8H — — 9g8g — 26 — 276 — 26 — 306 — 17	70

Table 14 — Deviations

	c major meter			Nut	threa	d				Bolt	thread		wer deviation
over	up to	Pitch	Tolerance	Pit diam	eter	Min diam	eter	Tolerance		tch neter		ajor neter	Minor diameter (for stress
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
22,4	45	1,5	_	_		_		3h4h	0		0		-217
			4H	+ 125	0	+ 190		4h	0	0	0	-150	
			5G		+ 32	+ 268		5g6g	- 32	-150	- 32		-249
			5H	+ 160	0	+ 236	0	5h4h	0		0		-217
						—		5h6h	0		0	-236	
			_			_		6e	- 67	-217	- 67		-284
			_	_		_		6f	-45	-195	-45	-281	-262
			6G	+ 232	+ 32	+ 332	+ 32	6g	- 32	-182	- 32	-268	-249
			6H	+ 200	0	+ 300	0	6h	0	-150	0	-236	-217
			_			_		7e6e	- 67	-257	-67	- 303	-284
			7G	+ 282	+ 32	+ 407	+ 32	7g6g	- 32	-222	- 32	-268	-249
			7H	+ 250	0	+ 375	0	7h6h	0	-190	0	-236	-217
			8G	+ 347	+ 32	+ 507	+ 32	8g	- 32	-268	- 32	-407	-249
			8H	+ 315	0	+ 475	0	9g8g	- 32	-332	- 32	-407	-249
		2	_			_		3h4h	0	-85	0	- 180	-289
			4H	+ 140	0	+ 236	0	4h	0	-106	0	- 180	-289
			5G	+ 218	+ 38	+ 338	+ 38	5g6g	- 38	-170	- 38	- 318	-327
			5H	+ 180	0	+ 300	0	5h4h	0	-132	0	- 180	- 289
				_		_		5h6h	0	-132	0	-280	- 289
			_		_	_		6e	-71	-241	- 71	-351	- 360
			_	_		_		6f	- 52	-222	- 52	- 332	- 341
			6G	+ 262	+ 38	+ 413	+ 38	6g	- 38	-208	- 38	- 318	- 327
			6H	+ 224	0	+ 375	0	6h	0	-170	0	-280	-289
			_	_		_		7e6e	- 71	-283	- 71	- 351	- 360
			7G	+ 318	+ 38	+ 513	+ 38	7g6g	- 38	-250	- 38	- 318	- 327
			7H	+ 280	0	+ 475	0	7h6h	0	-212	0	- 280	-289
			8G	+ 393	+ 38	+ 638	+ 38	8g	- 38	- 303	- 38	- 488	- 327
			8H	+ 355	0	+ 600		9g8g		- 373	- 38		- 327
		3	_					3h4h	0	- 100	0		- 433
			4H	+ 170	0	+ 315	0	4h		- 12 5	0		- 433
			5G	+ 260	+ 48	+ 448		5g6g	- 48		- 48		- 481
			5H	+ 212	0	+ 400		5h4h		- 160	0		- 433
			_		_	_	_	5h6h	0		0		- 433
				_		_	_	6e	- 85	-285	- 8 5		-518
				_		_	_	6f	- 63		- 63		- 496
			6G	+ 313	+ 48	+ 548	+ 48	6g	- 48		- 48		- 481
			6H	+ 265	0	+ 500		6h	0		0		- 433
				_	_		_	7e6e	-85		-85		-518
			7G	+ 383	+ 18	+ 678	+ 18	7g6g	-33		- 48	-400 -423	

Table 14 — Deviations

	c major meter			Nu	t threa	d				Bolt	thread		
over	up to	Pitch	Tolerance		tch neter	Min diame		Tolerance		tch neter		ajor neter	Minor diameter (for stress
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations)
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
22,4	45	3	7H	+ 335	0	+ 630	0	7h6h	0	-250	0	-375	-433
			8G	+ 473	+ 48	+ 848	+ 48	8g	- 48	− 363	- 48	-648	-481
			8H	+ 425	0	+ 800	0	9g8g	- 48	-448	- 48	-648	
		3,5	_					3h4h		- 106	0	-265	
			4H	+ 180	0	+ 355	0	4h		− 132	0	-265	
			5G	+ 277	+ 53	+ 503	+ 53	5g6g	- 5 3		– 53	-478	
			5H	+ 224	0	+ 450	0	5h4h		-170	0	-265	-505
							_	5h6h	0	-170	0	-425	
			_				_	6e	- 90	-302	- 90	-515	-595
			_		_			6f	- 70	-282	- 70	-495	-575
			6G	+ 333	+ 53	+ 613	+ 53	6g	- 53	-265	– 53	-478	-558
			6H	+ 280	0	+ 560	0	6h	0	-212	0	-425	-505
						_		7e6e	- 90	-355	- 90	-515	-595
			7G	+ 408	+ 53	+ 763	+ 53	7g6g	- 5 3	-318	- 53	-478	-558
			7H	+ 355	0	+ 710	0	7h6h	0	-265	0	-425	-505
			8G	+ 503	+ 53	+ 953	+ 53	8g	- 5 3	-388	- 53	-723	-558
			8H	+ 450	0	+ 900	0	9g8g	- 5 3	-478	- 53	-723	-558
		4		_	_		_	3h4h	0	- 112	0	- 300	-577
			4H	+ 190	0	+ 375	0	4h	0	- 140	0	- 300	- 577
			5G	+ 296	+ 60	+ 535	+ 60	5g6g	- 60	-240	- 60	-535	-637
			5H	+ 236	0	+ 475	0	5h4h	0	-180	0	- 300	-577
								5h6h	0	-180	0	-475	-577
				_	_			6e	-95	- 319	-95	-570	-672
				_	_		_	6f	-75	-299	- 75	-550	-652
			6G	+ 360	+ 60	+ 660	+ 60	6g	- 60	-284	- 60	-535	− 637
			6H	+ 300	0	+ 600	0	6h	0	-224	0	-475	- 577
							_	7e6e	- 95	-375	- 95	-570	-672
			7G	+ 435	+ 60	+ 810	+ 60	7g6g	- 60	- 340	- 60	-535	- 637
			7H	+ 375	0	+ 750	0	7h6h	0	-280	0	-475	- 577
			8G	+ 535	+ 60	+ 1 010	+ 60	8g	- 60	-415	- 60	- 810	− 637
			8H	+475	0	+ 950	0	9g8g	- 60	-510	- 60	- 810	− 637
		4,5	_	_	_	_		3h4h	0	- 118	0	-315	-650
			4H	+ 200	0	+ 425	0	4h	0	-150	0	- 315	-650
			5G	+ 313	+ 63	+ 593	+ 63	5g6g	- 63	-253	- 63	- 563	- 7 13
			5H	+ 250	0	+ 530	0	5h4h	0	- 190	0	-315	- 650
			_	_	_	_	_	5h6h	0	- 190	0	- 500	- 650
			_	_	_	_	_	6e	- 100	- 336	- 100	- 600	- 750
			_	_	_	_	_	6f	- 80	- 316	- 80	-580	- 730
			6G	+ 378	+ 63	+ 733	+ 63	6g	- 63	-299	- 63	- 563	- 7 13

Table 14 — Deviations

	c major meter			Nı	ut threa	d				Bolt	thread		wer deviatior
over	up to and	Pitch	Tolerance		tch neter	Minor di	iameter	Tolerance		tch neter		ajor neter	Minor diameter (for stress
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
22,4	45	4,5	6H	+ 315	0	+ 670	0	6h	0	-236	0	-500	-650
			_	_	_		_	7e6e	-100	-400	- 100	- 600	-750
			7G	+ 463	+ 63	+ 913	+ 63	7g6g	- 63	- 363	- 63	- 563	− 713
			7H	+ 400	0	+ 850	0	7h6h	0	-300	0	-500	-650
			8G	+ 563	+ 63	+ 1 123	+ 63	8g	- 63	-438	- 63	- 863	-713
			8H	+ 500	0	+ 1 060	0	9g8g	- 63	-538	- 63	- 863	-713
45	90	1,5		_	_	_		3h4h	0	- 80	0	-150	-217
			4H	+ 132	0	+ 190	0	4h	0	- 100	0	-150	-217
			5G	+ 202	+ 32	+ 268	+ 32	5g6g	- 32	-157	- 32	-268	-249
			5H	+ 170	0	+ 236	0	5h4h	0	-125	0	-150	-217
				_	_	_		5h6h	0	-125	0	-236	-217
				_	_			6e	- 67	-227	- 67	- 303	-284
				_	_			6f	-45	-205	- 45	-281	-262
			6G	+ 244	+ 32	+ 332	+ 32	6g	- 32	-192	- 32	-268	-249
			6H	+ 212	0	+ 300	0	6h	0	-160	0	-236	-217
			_	_	_		_	7e6e	- 67	-267	- 67	- 303	-284
			7G	+ 297	+ 32	+ 407	+ 32	7g6g	- 32	-232	- 32	-268	-249
			7H	+ 265	0	+ 375	0	7h6h	0	-200	0	-236	-217
			8G	+ 367	+ 32	+ 507	+ 32	8g	- 32	-282	- 32	-407	-249
			8H	+ 335	0	+ 475	0	9g8g	- 32	-347	- 32	-407	-249
		2		_	_			3h4h	0	- 90	0	- 180	-289
			4H	+ 150	0	+ 236	0	4h	0	- 112	0	- 180	-289
			5G	+ 228	+ 38	+ 338	+ 38	5g6g	- 38	-178	- 38	- 318	-327
			5H	+ 190	0	+ 300	0	5h4h	0	-140	0	- 180	-289
				_	_			5h6h	0	-140	0	-280	-289
			_	_	_		_	6e	- 71	-251	- 71	- 351	- 360
				_	_			6f	- 52	-232	- 52	- 332	- 341
			6G	+ 274	+ 38	+ 413	+ 38	6g	- 38	-218	- 38	- 318	-327
			6H	+ 236	0	+ 375	0	6h	0	-180	0	-280	-289
				_	_			7e6e	-71	-295	- 71	- 351	- 360
			7G	+ 338	+ 38	+ 513	+ 38	7g6g	- 38	-262	- 38	- 318	-327
			7H	+ 300	0	+ 475	0	7h6h	0	-224	0	-280	-289
			8G	+ 413	+ 38	+ 638	+ 38	8g	- 38	- 318	- 38	- 488	-327
			8H	+ 375	0	+ 600	0	9g8g	- 38	- 393	- 38	- 488	-327
		3	_	_	_	_	_	3h4h	0	- 106	0	- 236	-433
			4H	+ 180	0	+ 315	0	4h	0	- 132	0	- 236	-433
			5G	+ 272	+ 48	+ 448	+ 48	5g6g	- 48	- 218	- 48	- 423	- 481
			5H	+ 224	0	+ 400	0	5h4h	0	- 170	0	- 236	- 433
			_	_	_	_		5h6h	0	-170	0	- 375	- 433

Table 14 — Deviations

	c major meter			Nu	ut threa	d				Bolt	thread		
over	up to and	Pitch	Tolerance	dian	tch neter	Minor di	iameter	Tolerance		tch neter		ajor neter	Minor diameter
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	(for stress calculations)
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
45	90	3	_			_	_	6e	- 85	-297	-85	- 460	-518
			_	_				6f	- 63	-275	- 63	-438	-496
			6G		+ 48	+ 548	+ 48	6g	- 48	-260	- 48	-423	
			6H	+ 280	0	+ 500	0	6h	0	− 212	0		-433
				_		—	_	7e6e	-85	– 350	-85		-518
			7G	+ 403	+ 48	+ 678	+ 48	7g6g	- 48	- 313	- 48	-423	
			7H	+ 355	0	+ 630	0	7h6h	0	-265	0		-433
			8G	+ 498	+ 48	+ 848	+ 48	8g	- 48	− 383	-48	− 6 48	
			8H	+ 450	0	+ 800	0	9g8g	- 48		- 48	− 6 48	
		4	_	—		_		3h4h	0	- 118	0		-577
			4H	+ 200	0	+ 375	0	4h	0	-150	0	- 300	
			5G		+ 60	+ 535		5g6g	- 60	-250	- 60	-535	
			5H	+ 250	0	+ 475	0	5h4h	0	− 190	0		-577
				_		_		5h6h	0	− 190	0		-577
				_		_	_	6e	- 95	- 331	- 95		-672
			_	_		_	_	6f	- 75	- 311	-75		-652
			6G	+ 375		+ 660		6g	- 60	-296	- 60		- 637
			6H	+ 315	0	+ 600	0	6h	0	- 236	0	- 475	
			_		_	_	_	7e6e	- 95	-395	-95		- 672
			7G	+ 460		+ 810		7g6g	- 60	- 360	- 60	- 535	
			7H	+ 400	0	+ 750	0	7h6h	0	- 300	0	- 475	
			8G		+ 60	+ 1 010		8g	- 60	<u>- 435</u>	- 60		- 637
			8H	+ 500	0	+ 950	0	9g8g	- 60	<u>- 535</u>	- 60	- 810	
		5			_	<u> </u>	_	3h4h	0	-125	0		- 7 22
			4H	+ 212	0	+ 450	0	4h	0	$\frac{-160}{271}$	0		- 722 700
			5G	+ 336		+ 631		5g6g	- 71	$\frac{-271}{200}$	- 71	- 601	
			5H	+ 265	0	+ 560	0	5h4h	0				
						_		5h6h		-200 -356	100		
								6e 6f	- 106	- 335	-106 -85	-615	
			- CC										
			6G 6H	+ 406 + 335	+ 71	+ 781 + 710		6g 6h	$-71 \\ 0$	$\frac{-321}{-250}$	$-71 \\ 0$	- 601 520	- 793 - 722
			011	r 999	U	+ /10	U	7e6e	_	$\frac{-250}{-421}$	- 106	- 636	
			— 7G	+ 496	 + 71	+ 971	 + 71	7e6e 7g6g	-106 -71	$\frac{-421}{-386}$	-706		- 828 - 793
			7H	+ 425	0	+ 971	0	7gog 7h6h		$\frac{-300}{-315}$	- 11		- 795 - 722
			7П 8G	+ 601		+ 1 191		7non 8g		$\frac{-315}{-471}$	-71	-921	
			8H	+ 530	0	+ 1 191	7 / 1	9g8g		$\frac{-471}{-571}$	$-71 \\ -71$		- 793 - 793
		5,5	011	1 990	U	1 120	0	3h4h		$\frac{-371}{-132}$	0		- 793 - 794
		0,0	4H	+ 224	0	+ 475	0	4h		$\frac{-132}{-170}$	0		- 794 - 794
			411	T 224	U	T 4/0	U	411	U	- 110	U	– ooo	- 194

Table 14 — Deviations

Basic major diameter			Nut thread					Bolt thread					
over	up to	Pitch	Tolerance	Pitch diameter		Minor di	iameter	Tolerance		tch neter	Major diameter		Minor diameter (for stress
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
45	90	5,5	5G	+ 355	+ 75	+ 675	+ 75	5g6g	-75	-287	-75	-635	-869
			5H	+ 280	0	+ 600	0	5h4h	0	-212	0	-355	-794
				_	_	_		5h6h	0	-212	0	-560	-794
			_		_	_		6e	- 112	-377	-112	-672	− 906
			_		_	_		6f	- 90	-355	- 90	-650	-884
			6G	+ 430	+ 75	+ 825	+ 75	6g	-75	-340	- 75	-635	- 869
			6H	+ 355	0	+ 750	0	6h	0	-265	0	-560	-794
					_	_		7e6e	- 112	-447	- 112	-672	- 906
			7G	+ 525	+ 75	+ 1 025	+ 75	7g6g	- 75	-410	-75	-635	- 869
			7H	+ 450	0	+ 950	0	7h6h	0	-335	0	-560	-794
			8G	+ 635	+ 75	+ 1 255	+ 75	8g	-75	-500	-75	-975	- 869
			8H	+ 560	0	+ 1 180	0	9g8g	- 75	-605	-75	- 975	- 869
		6			_			3h4h	0	-140	0	- 375	- 866
			4H	+ 236	0	+ 500	0	4h	0	- 180	0	- 375	- 866
			5G	+ 380	+ 80	+ 710	+ 80	5g6g	- 80	- 304	- 80	-680	- 946
			5H	+ 300	0	+ 630	0	5h4h	0	-224	0	-375	- 866
					_	_		5h6h	0	-224	0	- 600	- 866
					_			6e	- 118	- 398	- 118	-718	- 984
					_			6f	- 95	-375	- 95	-695	- 961
			6G	+ 455	+ 80	+ 880	+ 80	6g	- 80	- 360	- 80	-680	- 946
			6H	+ 375	0	+ 800	0	6h	0	-280	0	- 600	- 866
					_	_		7e6e	- 118	-473	- 118	-718	- 984
			7G	+ 555	+ 80	+ 1 080	+ 80	7g6g	- 80	-435	- 80	-680	- 946
			7H	+ 475	0	+ 1 000	0	7h6h	0	-355	0	- 600	- 866
			8G	+ 680	+ 80	+ 1 330	+ 80	8g	- 80	- 530	- 80	- 1 030	- 946
			8H	+ 600	0	+ 1 250	0	9g8g	- 80	- 640	- 80	- 1 030	- 946
90	180	2	_		_	_		3h4h	0	-95	0	- 180	-289
			4H	+ 160	0	+ 236	0	4h		- 118	0	- 180	-289
			5G	+ 238	+ 38	+ 338	+ 38	5g6g	- 38	- 188	- 38	- 318	- 327
			5H	+ 200	0	+ 300	0	5h4h	0	-150	0	- 180	-289
					_			5h6h		-150		- 280	-289
					_			6e	- 71	-261	-71	- 351	- 360
					_			6f	- 52	-242	- 52	- 332	- 341
			6G	+ 288	+ 38	+ 413	+ 38	6g		-228		- 318	-327
			6H	+ 250	0	+ 375		6h		- 190		-280	-289
				_	_	_		7e6e	-71	-307		- 351	- 360
			7G	+ 353	+ 38	+ 513	+ 38	7g6g	- 38			- 318	-327
			7H	+ 315	0	+ 475		7h6h		-236		-280	-289
			8G	+ 438		+ 638		8g		− 338	- 38		-327

Table 14 — Deviations

Basic major diameter			Nut thread							Bolt	thread		
over	up to and	Pitc h	Tolerance		tch neter	Minor di	ameter	Tolerance		tch neter		ajor neter	Minor diameter
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	(for stress calculations)
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
90	180	2	8H	+ 400	0	+ 600	0	9g8g	- 38	-413	- 38	-488	-327
		3						3h4h	0	-112	0	-236	-433
			4H	+ 190	0	+ 315	0	4h	0	-140	0	-236	-433
			5G	+ 284	+ 48	+ 448	+ 48	5g6g	- 48	-228	- 48	-423	-481
			5H	+ 236	0	+ 400	0	5h4h	0	-180	0	-236	-433
			_			_		5h6h	0	-180	0	-375	-433
			_			_		6e	- 85	− 309	-85	- 460	-518
			_	_		_	_	6f	- 63	-287	-63	-438	-496
			6G	+ 348	+ 48	+ 548	+ 48	6g	- 48	-272	- 48	-423	-481
			6H	+ 300	0	+ 500	0	6h	0	-224	0	-375	-433
			_		_	_	_	7e6e	- 85	-365	-85	-460	-518
			7G	+ 423	+ 48	+ 678	+ 48	7g6g	- 48	-328	- 48	-423	-481
			7H	+ 375	0	+ 630	0	7h6h	0	-280	0	-375	-433
			8G	+ 523	+ 48	+ 848	+ 48	8g	- 48	- 403	-48	-648	-481
			8H	+ 475	0	+ 800	0	9g8g	- 48	-498	- 48	-648	- 481
		4						3h4h	0	-125	0	- 300	-577
			4H	+ 212	0	+ 375	0	4h	0	-160	0	- 300	-577
			5G	+ 325	+ 60	+ 535	+ 60	5g6g	- 60	-260	- 60	-535	− 637
			5H	+ 265	0	+ 475	0	5h4h	0	-200	0	- 300	-577
			_			_		5h6h	0	-200	0	-475	-577
			_		_	_	_	6e	- 95	-345	-95	-570	-672
			_		_	_	_	6f	– 75	-325	-75	-550	-652
			6G	+ 395	+ 60	+ 660	+ 60	6g	- 60	-310	- 60	-535	-637
			6H	+ 335	0	+ 600	0	6h	0	-250	0	-475	-577
				_	_	_	_	7e6e	- 95	- 410	-95	-570	-672
			7G	+ 485	+ 60	+ 810		7g6g	- 60	-375	- 60	-535	-637
			7H	+ 425	0	+ 750	0	7h6h	0	-315	0	-475	-577
			8G	+ 590	+ 60	+ 1 010	+ 60	8g	- 60	-460	- 60	- 810	-637
			8H	+ 530	0	+ 950	0	9g8g	- 60	-560	- 60	- 810	-637
		6			_			3h4h	0	-150	0	-375	- 866
			4H	+ 250	0	+ 500	0	4h	0	- 190	0	-375	- 866
			5G	+ 395	+ 80	+ 710	+ 80	5g6g	- 80	- 316	- 80	- 680	- 946
			5H	+ 315	0	+ 630	0	5h4h	0	-236	0	-375	- 866
				_	_		_	5h6h	0	-236	0	- 600	- 866
							_	6e	- 118	- 418	- 118	- 718	- 984
				_	_		_	6f	- 95	-395	- 95	-695	- 961
			6G	+ 480	+ 80	+ 880	+ 80	6g	- 80	- 380	- 80	-680	- 946
			6H	+ 400	0	+ 800	0	6h	0	- 300	0	- 600	- 866
				_	_		—	7e6e	- 118	- 49 3	- 118	-718	- 984

Table 14 — Deviations

Basic major diameter			Nut thread					Bolt thread					
over		Pitch	Tolerance		tch neter	Minor di	iameter	Tolerance class	Pitch diameter		Major diameter		Minor diameter (for stress
	incl.		class	ES	EI	ES	EI		es	ei	es	ei	calculations
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
90	180	6	7G	+ 580	+ 80	+ 1 080	+ 80	7g6g	- 80	-455	- 80	- 680	-946
			7H	+ 500	0	+ 1 000	0	7h6h	0	-375	0	- 600	-866
			8G	+ 710	+ 80	+ 1 330	+ 80	8g	- 80	-555	- 80	- 1 030	- 946
			8H	+ 630	0	+ 1 250	0	9g8g	- 80	- 680	- 80	- 1 030	- 946
180	300	3	_	_	_	—		3h4h	0	-125	0	-236	-433
ļ			4H	+ 212	0	+ 315	0	4h	0	-160	0	-236	-433
ļ			5G	+ 313	+ 48	+ 448	+ 48	5g6g	- 48	-248	- 48	-423	- 481
			5H	+ 265	0	+ 400	0	5h4h	0	-200	0	-236	-433
			_	_	_	_		5h6h	0	-200	0	-375	-433
ļ			_	_	_			6e	-85	-335	- 85	-460	-518
			_	_	_			6f	- 63	-313	- 63	-438	-496
ļ			6G	+ 383	+ 48	+ 548	+ 48	6g	- 48	-298	- 48	-423	-481
			6H	+ 335	0	+ 500	0	6h	0	-250	0	-375	-433
			_	_	_	_		7e6e	-85	-400	- 85	-460	-518
			7G	+ 473	+ 48	+ 678	+ 48	7g6g	- 48	- 363	- 48	-423	- 481
			7H	+ 425	0	+ 630	0	7h6h	0	-315	0	-375	- 433
			8G	+ 578	+ 48	+ 848	+ 48	8g	- 48	-448	- 48	-648	-481
ļ		L	8H	+ 530	0	+ 800	0	9g8g	- 48	-548	- 48	- 648	- 481
		4	_	_	_	_		3h4h	0	-140	0	- 300	-577
ļ			4H	+ 236	0	+ 375	0	4h	0	-180	0	-300	-577
ļ			5G	+ 360	+ 60	+ 535	+ 60	5g6g	- 60	-284	- 60	-535	- 637
ļ			5H	+ 300	0	+ 475	0	5h4h	0	-224	0	- 300	-577
			_	_	_			5h6h	0	-224	0	-475	-577
ļ			_	_	_			6e	- 95	-375	- 95	-570	-672
			_	_	_			6f	- 75	-355	- 75	-550	-652
			6G	+ 435	+ 60	+ 660	+ 60	6g	- 60	-340	- 60	-535	- 6 37
			6H	+ 375	0	+ 600	0	6h	0	-280	0	-475	-577
			_	_	_			7e6e	- 95	-450	- 95	-570	-672
			7G	+ 535	+ 60	+ 810	+ 60	7g6g	- 60	-415	- 60	-535	- 637
			7H	+ 475	0	+ 750	0	7h6h	0	- 355	0	-475	-577
ļ			8G	+ 660	+ 60	+ 1 010	+ 60	8g	- 60	-510	- 60	- 810	- 637
			8H	+ 600	0	+ 950	0	9g8g	- 60	-620	- 60	-810	- 637
		6	_	_	_	_		3h4h	0	- 160	0	-375	- 866
			4H	+ 265	0	+ 500	0	4h	0	- 200	0	-375	- 866
			5G	+ 415	+ 80	+ 710	+ 80	5g6g	- 80	- 330	- 80	- 680	- 946
			5H	+ 335	0	+ 630	0	5h4h	0	-250	0	-375	- 866
			_	_	_	_	_	5h6h	0	-250	0	- 600	- 866
				_	_		_	6e	- 118	- 433	- 118	-718	- 984
			_					6f			- 95	- 695	- 961

Table 14 — Deviations

Basic major diameter				Bolt thread									
over	up to and	Pitch	Tolerance	Pitch Minor diameter diameter		Tolerance	Pitch diameter		Major diameter		Minor diameter (for stress		
	incl.		class	ES	EI	ES	EI	class	es	ei	es	ei	calculations)
mm	mm	mm		μm	μm	μm	μm		μm	μm	μm	μm	μm
180	300	6	6G	+ 505	+ 80	+ 880	+ 80	6g	- 80	-395	- 80	- 680	- 946
			6H	+ 425	0	+ 800	0	6h	0	- 315	0	- 600	- 866
				_				7e6e	- 118	-518	- 118	- 718	- 984
			7G	+ 610	+ 80	+ 1 080	+ 80	7g6g	- 80	-480	- 80	- 680	- 946
			7H	+ 530	0	+ 1 000	0	7h6h	0	-400	0	- 600	- 866
			8G	+ 750	+ 80	+ 1 330	+ 80	8g	- 80	- 580	- 80	- 1 030	- 946
			8H	+ 670	0	+ 1 250	0	9g8g	- 80	- 7 10	- 80	-1030	- 946

Appendix A Notes for guidance

A.1 Maximum material profile. The maximum material profile of the thread for a nut and for a bolt is shown in Figure 9. These profiles are established from the basic profile given in clause **3**.

A.2 Coating. Clause **6** gives information on tolerance position G, e, f and g, which provide clearance fits which may be used to accommodate coatings.

BS²⁾, which is in course of preparation, will include tables listing pitches and tolerance positions and the maximum thickness of coating that can be accommodated by each.

²⁾ Based on ISO/DIS 4042 "Electroplated coatings on threaded components".

A.3 External threads: stress areas

Stress area $A_{\rm s} = \frac{\pi}{4} \, \left(\frac{d_2 + d_3}{2} \right)^2$

where

 d_2 is the basic pitch diameter

 d_3 is the minor diameter= $d_1 - \frac{H}{6}$ d_1 being the basic minor diameter

 ${\cal H}$ being the height of the fundamental triangle for the thread.

~	
Coarse	series

Nominal thread	Pitch of the	Nominal stress
diameter mm	thread mm	area mm ²
1	0,25	0,46
1,1	0,25	0,59
1,2	0,25	0,73
1,4	0,3	0,98
1,6	0,35	$1,\!27$
1,8	0,35	1,7
2	0,4	2,07
2,2	0,45	2,48
2,5	0,45	3,39
3	0,5	5,03
3,5	0,6	6,78
4	0,7	8,78
5	0,8	14,2
6	1	20,1
7	1	28,9
8	1,25	36,6
10	1,5	58,0
12	1,75	84,3
14	2	115
16	2	157
18	2,5	192
20	2,5	245
22	2,5	303
24	3	353
27	3	459
30	3,5	561
33	3,5	694
36	4	817
39	4	976
42	4,5	1 121
45	4,5	1 306
48	5	1 473
52	5	1 758
56	5,5	2 030
60	5,5	2 362
64	6	2 676
68	6	$3\ 055$

Fine series

Nominal thread diameter	Pitch of the thread	Nominal stress area
mm	mm	mm^2
1	0,2	0,52
1,1	0,2	0,65
1,2	0,2	0,81
1,4	0,2	1,16
1,6	0,2	1,57
1,8	0,2	2,04
2	0,25	2,45
2,2	0,25	3,03
2,5	0,35	3,71
3	0,35	5,61
3,5	0,35	7,90
4	0,5	9,79
4,5	0,5	12,8
5	0,5	16,1
6	0,75	22
7	0,75	31,3
8	1	39,2
10	1,25	61,2
12	1,25	92,1
14	1,5	125
16	1,5	167
18	1,5	216
20	1,5	272
22	1,5	333
24	2	384
27	2	496
30	2	621
33	2	761

A.4 External threads: minor diameters. Minor diameter for external threads can be calculated using the information given in **6.10**.

The minimum minor diameters will normally be tabulated in Part 2. In the case of the maximum minor diameters, these shall be less than the minimum minor diameter of the Go gauges according to BS 919-3.

Appendix B Outline guide and examples for calculating limits of size of untabulated metric screw threads

The examples given below are intended to illustrate the method of calculation to use for untabulated threads. In cases where the data is not included in the referenced table*, the formula shown should be used.

Example 1: External (bolt) thread $M30 \times 1,255g6g$

	Feature	Symbol	Table	Formula	Value
	Basic major diameter	d	_	Nominal size	30,000
	Basic pitch diameter	d_2	4*	d-0.6495 pitch	29,188
	Basic minor diameter	d_1	4*	d-1.0825 pitch	28,647
(1)	Fundamental deviation for tolerance position g	es	5	6.12.2	0,028
	Maximum major diameter	d_{max}		d-es	29,972
(2)	$\begin{array}{c} \text{Major diameter tolerance for } \\ \text{tolerance grade 6} \end{array}$	T_d	8	6.12.4	0,212
	Minimum major diameter	d_{\min}		$d_{\max} - T_d$	29,760
	Maximum pitch diameter	$d_{2_{\rm max}}$		d_2-es	29,160
(3)	Pitch diameter tolerance for tolerance grade 5	T_{d_2}	10*	6.12.5	0,108
	Minimum pitch diameter	$d_{2_{\min}}$		$d_{2_{\max}} - T_{d_2}$	29,052
	Maximum minor diameter	$d_{1_{\rm max}}$		$d_1 - es - 2\mathbf{y}^{(4)}$	28,568
	Minimum root radius	R_{\min}	11	0.125 pitch	0.156
	Minimum minor diameter	$d_{1_{\min}}$		$d_1-es-2_{\mathbf{z}}^{\ (4)}$	28,282

NOTE 1 Table 5 covers tolerance positions e, f, g and h.

$$y = R_{\min} \left\{ 1 - \cos \left[\frac{\pi}{3} - \arccos \left(1 - \frac{Td_2}{4 \times R_{\min}} \right) \right] \right\}$$

$$z = \frac{H}{44} + \frac{Td_2}{22} - \frac{p}{88}$$

NOTE 2 Table 8 covers tolerance grades 4, 6 and 8.

NOTE 3 Table 10 covers tolerance grades 3, 4, 5, 6, 7, 8 and 9.

NOTE 4 Explanation for dimensions y and z.

The maximum root profile shown in Figure 8 (see **6.10**) and used for the calculation of the maximum minor diameter is theoretically possible but unlikely to occur in practice, since it would require the combination of maximum truncation at minor diameter and minimum material position on the thread flanks.

The maximum minor diameter will not normally be specified as part of the thread summary. Summary:

External (bolt) thread M30 \times 1.25 – 5g6g

Major diameter 29,972 - 29,760

Pitch diameter 29,160 - 29,052

Minor diameter 28,568 - 28,282

Example 2: Internal (nut) thread M345 \times 4-8G

	Feature	Symbol	Table	Formula	Value
	Basic major diameter	D		Nominal size	345,000
	Basic pitch diameter	D_2		D-0.6495 pitch	342,402
	Basic minor diameter	D_1		D-1.0825 pitch	340,670
(5)	$\begin{array}{c} Fundamental \ deviation \ for \\ tolerance \ position \ G \end{array} \bigg\}$	EI	5		0,060
	Minimum major diameter	D_{min}		D + EI	345,060
	Maximum major diameter	D_{max}	_	Not required	
	Minimum pitch diameter	$D_{2\mathrm{min}}$		D_2 + EI	342,462
(6)	Pitch diameter tolerance for tolerance grade 8	T_{D_2}	9*	6.12.5 ⁽⁸⁾	0,600
	Maximum pitch diameter	$D_{2_{\rm max}}$		$D_{2_{\min}} + T_{D_2}$	343,062
	Minimum minor diameter	$D_{1_{\min}}$		$D_1 + EI$	0,730
(7)	$\left. \begin{array}{ll} \text{Minor diameter tolerance} \\ \text{for tolerance grade 8} \end{array} \right\}$	T_{D_1}		7	0,950
	Maximum minor diameter	$D_{1_{ m max}}$		$D_{1_{\min}} + T_{D_1}$	341,680

NOTE 5 Table 5 covers tolerance positions G and H.

NOTE 6 Table 9 covers tolerance grades 4, 5, 6, 7 and 8.

NOTE 7 Table 7 covers tolerance grades 4, 5, 6, 7 and 8.

NOTE 8 It is important to note that where pitch diameter tolerances require calculation that it will be necessary firstly to calculate the equivalent T_{d_2} grade 6 for external (bolt) thread.

Summary:

Internal (nut) thread $M345 \times 4 - 8G$

Major diameter 345,060 min.

Pitch diameter 342,462 - 343,062

Minor diameter 340,730 - 341,680

51 \odot BSI 02-1999

52 blank

Publications referred to

BS 919, Screw gauge limits and tolerances.

BS 919-3, Gauges for ISO metric screw threads.

BS 3643, ISO metric screw threads.

BS 3643-2, Specification for selected limits of size.

BS 6104-1, Mechanical properties of fasteners — Part I: Bolts, screws and studs.

BS 6293, MJ threads for aerospace construction.

BS 6293-1, Specification for dimensions of basic profile.

BS 6293-2, Specification for dimensions for bolts and nuts.

BS 6528, Glossary of terms for cylindrical screw threads.

PD 6494, Mismatch of screw thread systems.

ISO 68, ISO general purpose screw threads — Basic profile.

ISO 261, ISO general purpose metric screw threads — General plan.

ISO 262, ISO general purpose metric screw threads — Selected sizes for screws, bolts and nuts.

ISO 724, ISO general purpose metric screw threads — Basic dimensions.

ISO 965/1, ISO general purpose metric screw threads — Tolerances — Part I: Principles and basic data.

ISO 965/2, ISO general purpose metric screw threads — Tolerances — Part 2: Limits of sizes for general purpose bolt and nut threads — Medium quality.

 ${\rm ISO~965/3}, ISO~general~purpose~metric~screw~threads -- Tolerances -- Part~III:~Deviations~for~constructional~threads.$

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: 020 8996 9000. Fax: 020 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: 020 8996 9001. Fax: 020 8996 7001.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: 020 8996 7111. Fax: 020 8996 7048.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: 020 8996 7002. Fax: 020 8996 7001.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

If permission is granted, the terms may include royalty payments or a licensing agreement. Details and advice can be obtained from the Copyright Manager. Tel: 020 8996 7070.

389 Chiswick High Road London W4 4AL