Universidade Federal do Rio de Janeiro
Centro de Ciências Matemáticas e da Natureza
Observatório do Valongo
Curso de Pós-graduação em Astronomia

Altair Ramos Gomes Júnior

Aplicações Astrométricas e Fotométricas para o Estudo do Sistema Solar Exterior

Altair Ramos Gomes Júnior

Aplicações Astrométricas e Fotométricas para o Estudo do Sistema Solar Exterior

Tese apresentada ao Curso de Astronomia da UFRJ, como requisito parcial para a obtenção do grau de DOUTOR em Astronomia.

Orientador: Marcelo Assafin

Professor Doutor

Gomes Júnior, Altair Ramos

Aplicações Astrométricas e Fotométricas para o Estudo do Sistema Solar Exterior / Altair Ramos Gomes Júnior - 2015 $160.\mathrm{p}$

Astrometria. I.Título.

CDU 521.9

Altair Ramos Gomes Júnior

Aplicações Astrométricas e Fotométricas para o Estudo do Sistema Solar Exterior

Tese apresentada ao Curso de Astronomia da UFRJ, como requisito parcial para a obtenção do grau de DOUTOR em Astronomia.

Aprovado em Junho de 2015

BANCA EXAMINADORA

Marcelo Assafin Professor Doutor
Primeira Pessoa Doutor
Segunda Pessoa Doutor
Terceira Pessoa bacharel
Quarta Pessoa licenciado

Resumo

 ${\bf Palavras\text{-}chave:}\ {\bf Astrometria},\ {\bf Ocultaç\~oes}$

Sumário

1	Intr	odução														3
2	Ocu	ıltações l	Estelare	\mathbf{s}												4
	2.1	Ceres							 ٠	 			 ٠	 	•	 4
		2.1.1)cultação	de 20	10				 ٠	 •			 •	 		 5
		2.1.2)cultação	de 20	13					 						 9
		2.1.3 E)iscussão							 				 		 12
	2.2	Satélites	Irregular	res										 		 13
	2.3	TNOs .								 				 		 13
3	Ast	rometria	. de Net	uno e	Tr	itã	o									14

1 Introdução

O estudo de objetos como TNOs, Centauros e Satélites Irregulares (remanescentes relativamente inalterados da formação do sistema solar) nos ajudam a compreender a formação e evolução do Sistema Solar. Atualmente, é aceito que TNOs e Centauros tenham sido formados nas partes mais internas do sistema solar. Eles teriam então sido colocados em suas posições atuais devido a troca de momento angular entre os planetas e planetésimos quando da migração dos planetas gigantes. A evolução se deu de tal forma que a passagem dos planetesimais e planetas por zonas de ressonância de movimento médio redefiniu as órbitas desses corpos (Tsiganis et al., 2005).

Sabe-se que poucas sondas espaciais foram enviados para estudar o Sistema Solar Externo e que a quantidade de objetos estudados é muito pequena. Por isso, ainda hoje, as observações de solo tem se mostrado de grande importância.

Os sistemas de Júpiter e Saturno já foram pelas Voyager I e II, Galileu (Júpiter) e Cassini (Saturno), porém apenas Saturno continua sendo investigado por uma sonda. Porém as sondas observaram apenas os planetas, os anéis e satélites mais internos. Os satélites externos, que acredita-se ser oriundo de capturas ou foram pouco observados (como Phoebe) ou simplesmente não foram observados.

Já no caso de Urano e Netuno, nenhuma sonda exclusiva foi enviada, apenas as Voyagers I e II os visitaram, mas não permaneceram nos sistemas. A sonda New Horizons visitará Plutão em 2015 e obterá parâmetros físicos para Plutão e seus satélites (primeira visita por sonda a um satélite do cinturão de Kuiper), porém será uma passagem rápida e o acompanhamento da evolução do sistema, incluindo a evolução da atmosfera de Plutão se dará por observações de solo.

A quantidade de objetos descobertos além da órbita de Saturno tem aumentado muito desde o fim do século passado. Como são raras as oportunidades em que uma sonda se aproxima desses objetos, a obtenção de suas características físicas ficam a cargo de observações de solo ou de telescópios espaciais.

Um método que tem se mostrado eficiente para a obtenção desses parâmetros é o métodode ocultações estelares, que proporciona medidas tão precisas que são apenas superadas por medidas oriundas de sondas.

2 Ocultações Estelares

2.1 Ceres

Apesar de Ceres não ser um objeto do sistema solar exterior, ele é o único planeta-anão no sistema solar interno e, por isso, é um objeto de grande importância e seu estudo pode ter grande impacto na formação e evolução do sistema solar. Na verdade, foi proposto que a origem de Ceres pode ser como um objeto transnetuniano (McKinnon, 2012), espalhado posteriormente para o cinturão principal de asteroides devido à migração dos planetas gigantes predito pelo Modelo de Nice (Gomes et al., 2005). Mesmo que ele tenha sido formado próximo à sua localização atual, a história dinâmica do sistema solar deve ter deixado sua assinatura em Ceres.

Contendo aproximadamente um quinto de toda a massa do cinturão de asteroides, espera-se que Ceres esteja em equilíbrio gravitacional e seja, portanto, um elipsóide Maclaurin ou Jacobi. De fato, observações diretas de Ceres com a utilização de ótica adaptativa indica que ele é um esferóide achatado nos pólos (Drummond et al., 2014). O conhecimento preciso de seu tamanho e forma é extrema importância para modelos de densidade, estrutura interna e diferenciação.

A primeira ocultação estelar por Ceres foi observada em 1984 (Millis et al., 1987) e determinou seu tamanho com precisão de alguns quilômetros em uma época que as incertezas eram, normalmente, dez vezes maiores. Devido ao brilho aparente de Ceres ser alto, comparado à maioria dos asteroides, estrelas capazes de causar uma queda de magnitude detectável quando ocultadas são limitadas às mais brilhantes. Por exemplo, depois do evento de 1984, apenas 4 ocultações estelares por Ceres foram observadas (D.W. et al., 2014). Duas delas tiveram apenas duas cordas cada que não foram suficientes para prover resultados acurados¹. Os dois restantes, que ocorreram em 17 de Agosto de 2010 e 25 de Outubro de 2013, foram trabalhos por mim em colaboração com o grupo do Rio (Gomes-Júnior et al., 2015, aceito).

 $^{^{1}\}mathrm{Esses}$ eventos ocorreram em 22 de Agosto de 1994 e 30 de Outubro de 2010.

Os dois eventos foram preditos por Steve Preston² para a IOTA (International Occultation Timing Association), durante predições de rotina de ocultações de asteroides de estrelas brilhantes. Os caminhos das sombras podem ser visualizados na Fig. 2.1.

Figura 2.1: Reconstrução pós-ocultação do caminho da sombra de Ceres na Terra para os eventos de 17 de Agosto de 2010 (a) e 25 de Outubro de 2013 (b). Os pontos em azul são os sítios que observaram os eventos. a) O ponto grande vermelho é a máxima aproximação geocêntrica às 22:40:25 UT. Os pequenos representam o centro da sombra separados por um minuto. b) Visão superior da ocultação sobre os sítios que observaram o evento de 25 de Outubro de 2013. Os pontos vermelhos são os centros da sombra separados por 15 segundos. Nos dois eventos a sombra se move da esquerda para a direita.

2.1.1 Ocultação de 2010

Em 17 de Agosto de 2010 Ceres ocultou a estrela TYC 6833-163-1 (UCAC4 313-111823), cuja magnitude é V=11.55 e tem posição no ICRS para a data do evento baseada no catálogo UCAC4 (Zacharias et al., 2013):

$$\begin{cases} \alpha = 17^{h}18^{m}29^{s}0085 \\ \delta = -27^{\circ}26'38''.867 \end{cases}$$
 (2.1)

O evento foi observado no Brasil a partir de cinco diferentes sítios (ver Fig. 2.1(a)). Destes, 4 obtiveram cordas positivas enquanto UFSC teve uma corda negativa.

²Predições publicadas em http://asteroidoccultation.com.

Das positivas, a observação proveniente do INPE iniciciou-se após o início do evento devido a dificuldades técnicas e, portanto, apenas a emersão da curva de luz foi detectada.

Uma das características mais importantes desse evento foi a velocidade com que ocorreu (apenas 3.9 km s⁻¹) acarretando que mesmo exposições de poucos segundos representariam resoluções espaciais significantes.

Todas as observações foram feitas com a utilização de CCDs. As curvas de luz de cada observação foram obtidas das imagens FITS com a utilização do pacote PRAIA (Plataforma de Redução Astrométrica de Imagens Astronômicas, Assafin et al., 2011). As curvas foram normalizadas para o fluxo da estrela mais Ceres, uma vez que eles estavam indistinguíveis logo antes e depois da ocultação. Por fim, elas foram normalizadas pelo ajuste de uma curva polinomial (de primeira ou segunda ordem) fora da queda de fluxo assim fixando em 1 a razão de fluxo fora da ocultação.

Os instantes de ingresso e egresso foram obtidas de cada curva de luz ajustandose um modelo de poço quadrado levando em consideração a difração de Fresnel, a banda do CCD, o diâmetro aparente da estrela e o tempo de exposição utilizado (ver Widemann et al., 2009, Braga-Ribas et al., 2013).

O menor tempo de integração usado nas observações positivas foi de 1.0s, que corresponde a aproximadamente 3.9km no plano do céu. Portanto, o erro na determinação dos instantes de ingresso e egresso é dominado principalmente pelo tempo de integração, não pela difração de Fresnel ou diâmetro da estrela, ambos da ordem de algumas centenas de metros para esse evento.

O ajuste dos dados da ocultação consiste em minimizar uma função de χ^2 clássica para cada curva de luz, como descrito em Sicardy et al. (2011) e Braga-Ribas et al. (2013). Os parâmetros livres para ajustar são os instantes de ingresso e egresso que fornece o valor mínimo de χ^2 (χ^2_{min}). O melhor ajuste das curvas de luz para a ocultação de 2010 está mostrado na Fig. 2.2(a).

A metodologia usada para analizar o perfil de Ceres a partir das observações é o mesmo descrito em Sicardy et al. (2011) e Braga-Ribas et al. (2013). Cada combinação de posição do sítio, instantes de ingresso e egresso, junto com as coordenadas da estrela e as efemérides de Ceres, correspondem a um ponto no plano do céu. A coleção de todos esses pontos determina o limbo aparente de Ceres.

Figura 2.2: Curvas de luz normalizadas das cordas positivas dos eventos. As curvas estão desviadas por um fator de 0.2 (a) e 1.0 (b) para melhor visualização. As linhas pretas são os melhores ajustes com o modelo de poço quadrado. As linhas vermelhas são os melhores ajustes com o modelo de poço quadrado, porém levando em conta a difração de Fresnel, o diâmetro da estrela e o tempo de exposição. Os instantes médios de cada curva não coincidem devido às diferentes longitudes dos sítios. A curva de luz de Brookline (b) está desviada por um fator de -64 s como explicado no texto.

Adotamos um modelo elíptico para o perfil do limbo, resultante da projeção de um esferóide com achatamento nos pólos no plano do céu. Essa escolha é suportada pelo trabalho de Drummond et al. (2014), por meio de imagem direta de Ceres. Dessa forma, nós temos N=7 extremidades das cordas para ajustar M=5 parâmetros que definem uma elipse: semi-eixo maior e semi-eixo menor aparentes (a' and b', respectivamente), ângulo de posição P do seu semi-eixo maior e as posição (f_c, g_c) do seu centro com respeito à estrela ocultada. O semi-eixo maior a' é equivalente ao raio equatorial R_{equa} do elipsoide.

As coordenadas f_c e g_c , em quilômetros, foram calculadas usando a efeméride de Ceres JPL#33 (Giorgini et al., 1996) e a posição da estrela ocultada. Elas são positivas na direção Leste e Norte celestes, respectivamente. O ângulo de posição P é contado positivamente a partir do norte celeste local em direção ao leste celeste. O achatamento

aparente pode ser definido por $\epsilon' = 1 - (b'/a')$. O melhor ajuste é obtido minimizando uma função de χ_r^2 reduzido, onde definimos o número de graus de liberdade do problema como $\mathcal{N} \equiv N - M$. Todos os procedimentos que permitem a determinação das barras de erro dos paramêtros físicos podem ser encontradas em Braga-Ribas et al. (2013).

Duas possíveis soluções foram consideradas para o ajuste do limbo. O primeiro, que chamamos de solução nominal, consiste em determinar os cinco parâmetros que caracterizam uma elipse a partir dos sete contatos observados. A segunda solução consiste em calcular o ângulo de posição P a partir das coordenadas do pólo de Ceres obtidas por Drummond et al. (2014) ($\alpha_p = (287 \pm 3)^{\circ}$, $\delta_p = (+64 \pm 3)^{\circ}$ no ICRS) e da efeméride de Ceres no instante da ocultação. Chamamos de solução de pólo fixo.

Para o evento de 2010, a solução nominal teve como melhor ajuste $\chi^2_{r,min} = 0.24$, que podem ser interpretadas como as barras de erro estarem superestimadas com respeito à boa qualidade do ajuste. Porém, como o problema tem somente dois graus de liberdade, $\chi^2_{r,min}$ relativamente pequenos são aceitáveis. Os resultados obtidos para o diâmetro equatorial, achatamento, ângulo de posição e coordenadas do centro esao apresentadas na segunda coluna da tabela 2.1.

Tabela 2.1: Resultados do ajuste de limbo de Ceres com os dados dos eventos de 2010 e 2013.

Solution	2010/Nominal	2010/Pólo fixo	2013/Nominal	2013/Pólo fixo
Diam. equat. (km)	982 ± 14	972 ± 6	971 ± 7	971 ± 7
Achatamento	0.08 ± 0.03	0.08 ± 0.03	0.08 ± 0.04	0.08 ± 0.04
Âng. de pos. (deg)	5 ± 10	${\bf 12}\pm{\bf 3}(^*)$	22 ± 5	$25 \pm 3 \ (*)$
f_c (km)	97 ± 9	102 ± 5	77 ± 6	78 ± 6
$g_c \text{ (km)}$	16 ± 15	21 ± 11	13 ± 16	13 ± 16
$\chi^2_{r,min}$	0.24	0.42	1.27	1.27

Notas: Em negrito destaca-se a melhor solução obtida. As barras de erro estão no nível de 1σ . O diâmetro polar (D_{pol}) pode ser facilmente calculado a partir de $D_{pol} = D_{equa}(1 - \epsilon)$. (*) Ângulos de posição derivados a partir das coordenadas do pólo de Ceres determinapas por Drummond et al. (2014).

Como pode ser visto, o parâmetro com a maior incerteza é o ângulo de posição cobrindo um intervalo de 20°. Claramente, fixar as coordenadas do pólo pode melhorar a solução. Por fim, a correção do achatamento devido ao ângulo do aspecto polar está

dentro da barra de erro 1σ e não tem relevância estatística, dessa forma $\epsilon = 0.08 \pm 0.03$.

No momento da ocultação, as coordenadas do pólo de Ceres correspondiam a um ângulo de posição $P=(12\pm3)^\circ$. Explorar o espaço de parâmetros restringindo a elipses com ângulo de posição dentro deste intervalo resulta na solução de pólo fixo. O parâmetros físicos do melhor ajuste estão mostrados na Tab. 2.1 enquanto a solução está esquematizada na Fig. 2.3(a).

Essa solução corresponde ao limite superior da barra de erro 1σ da solução nominal para P. Por outro lado, ela obtem os menores valores para o diâmetro equatorial, melhorando sua determinação por um fator de 2.

Figura 2.3: Melhores ajustes elípticos para as cordas das ocultações de 2010 e 2013. As setas indicam a direção de movimento, as linhas azuis são as cordas observadas, os segmentos vermelhos são as barras de erro dos ingressos, egressos e centro da ocultação em 1σ . A linha verde em (a) é uma corda negativa. Os instantes marcados em verde em (b) não foram utilizados para o ajuste, como descrito no texto.

2.1.2 Ocultação de 2013

Em 25 de Outubro de 2010, Ceres ocultou a estrela TYC 865-911-1 (UCAC4 496-058191), de magnitude V=10.05. Baseada no UCAC4 (Zacharias et al., 2013), sua posição ICRS para a data da ocultação é:

$$\begin{cases} \alpha = 11^{h}57^{m}52.7641 \\ \delta = +09^{\circ}07'49.835 \end{cases}$$
 (2.2)

Esse evento foi observado na costa Leste dos Estados Unidos logo antes do amanhecer, como mostrado na Fig. 2.1(b).

Nove cordas positivas foram obtidas em vários sítios (ver Fig. 2.1(b)). Cada estação foi equipada com uma câmera de vídeo com tempo de leitura desprezível. Isso é particularmente importante, já que a velocidade da sombra de Ceres para esse evento foi de 42.6 km s^{-1} , muito mais rápido que o evento de 2010.

Durante o evento Ceres estava muito baixo no céu com alturas entre 15° (Winchester) e 20° (Hampton). Forte cintilação era esperada e, combinada com o curto tempo de integração e baixa diminuição de brilho, resultou em curvas de luz ruidosas e assim grandes incertezas nos instantes de imersão e emersão.

Todos os vídeos foram convertidos para imagens FITS e a fotometria foi obtidia via PRAIA Assafin et al. (2011). As curvas de luz foram normalizadas por uma estrela de referência quando havia uma estrela no campo.

Para reduzir o ruído, os dados foram binados por grupos de cinco imagens – com exceção de Greenbelt, onde gupos de dez imagens foram utilizadas. Esse procedimento o tempo de integração efetivo por um fator de 5 (ou 10). Da mesma forma que para o evento de 2010, uma normalização adicional por um polinômio foi aplicada.

Os instantes de ingresso e egresso da ocultação foram obtidos pelo mesmo procedimento descrito na seção 2.1.1. Uma vez que o tempo de integração efetivo usado (0.17 s) representa aproximadamente 7 km no plano do céu, e a escala de Fresnel e o diâmetro da estrela estão novamente na ordem de centenas de metros, o erro da determinação dos instantes de imersão e emersão são dominados principalmente pelo tempo de integração, da mesma forma que para o evento de 2010. Os melhores ajustes para as curvas de luz da ocultação estão mostrados na Fig. 2.2(b).

Uma comparação entre os tempos obtidos pela estação de Brookline e o restante mostrou que esses têm um atraso de aproximadamente 64 s. Dessa forma, não utilizamos os tempos de Brookline na análise.

Perfis elípticos foram ajustados para todas as cordas restantes. pelo mesmo procedimento descrito na seção 2.1.1. O resultado foi $\chi^2_{r,min}=13$, sugerindo que um

modelo elíptico não é satisfatório para os dados. De fato, ao olharmos para a Fig. 2.3(b) vemos que a corda de Varina adiantada com respeito às outras. Como nessa estação o tempo não foi inserido diretamente nos frames do vídeo é possível que essa diferença seja oriunda de um eventual problema da correspondência entre os tempos do camcorder e do GPS.

A imersão gravada em Owings também parece atrasada com respeito às cordas próximas (ver Fig. 2.3(b)). Essa corda tem aproximadamente o mesmo tamanho da corda de Mechanicsville, apesar de estarem separadas por cerca de 100 km. Diferentemente de Varina, essa estação teve os tempos inseridos em cada frame do vídeo o que torna mais difícil justificar um problema de tempo. Outras possibilidades seriam uma má determinação dos instantes de ingresso e egresso dessa curva ou uma característica do relevo de Ceres.

Em um segundo ajuste, não consideramos as cordas de Brookline, Varina e Owings. O ajuste dos cinco parâmetros que definem uma elipse para os doze contatos resultou em $\chi^2_{r,min} = 1.27$, indicando que está em bom acordo com os dados observados dentro das barras de erro. Essa é a solução mostrada na Fig. 2.3(b), onde podemos ver que o tamanho da corda de Brookline é compatível com o modelo.

Os resultados das soluções nominais e de pólo fixo não são significantemente diferentes. Isso se deve ao fato da barra de erro do ângulo de posição da solução nominal (que é muito menor que o da solução nominal de 2010) ser muito similar à barra de erro do ângulo de posição da solução de pólo fixo $(P = (25 \pm 3)^{\circ})$. Os dois resultados estão apresentados nas colunas 4 e 5 da tabela 2.1.

Sobre a hipótese do atraso observado na imersão da curva de luz de Owings ser associado a uma característica topográfica, o contato gravado corresponderia a uma elevação negativa de 31 ± 4 km com respeito à elipse de melhor ajuste. Porém modelos teóricos prevêem que relevos em Ceres não devem ser maiores que 10–20 km (Johnson and McGetchin, 1973), enquanto dados observacionais limitam o contorno em 18 km (Carry et al., 2008). Imagens mais recentes da sonda Dawn também revelam uma superfície mais suave. Portanto, a associação da imersão em Owings com um relevo é improvável.

2.1.3 Discussão

Os resultados apresentados na tabela 2.1 mostram um acordo entre os parâmetros físicos obtidos nas duas ocultações, especialmente no diâmetro equatorial. As diferenças ocorrem basicamente nos tamanhos das barras de erro e podem ser justificadas pelas particularidades de cada conjunto de dados.

O evento de 2010, por exemplo, teve somente sete contatos, porém bem distribuídos sobre o disco de Ceres. Por outro lado, o evento de 2013 teve cinco contatos a mais, todavia concentrados em certas regiões do corpo. Em particular, a ausência de cordas prómimas ao pólo sul fez seu achatamente ser pior determinado para o evento de 2013 que para o evento de 2010. Mesmo nossa melhor medida de achatamento, $\epsilon = 0.08 \pm 0.03$, tem alta incerteza se comparado com outros valores publicados na literatura, como mostra a tabela 2.2.

Como foi mostrado, usar as coordenadas do pólo de Ceres determinadas por Drummond et al. (2014) para limitar o ângulo de posição não foi um procedimento eficiente para o evento de 2013. Por outro lado, fixar o ângulo de posição para a ocultação de 2010 reduziu as barras de erro dos outros parâmetros (com exceção do achatamento). Por fim, Esse procedimento resultou em um excelente acordo entre os raios equatoriais obtidos para ambos os eventos.

Uma comparação do diâmetro equatorial de Ceres medido por diferentes técnicas está mostrado na tabela 2.2. Vemos um acordo entre os nossos resultados e aqueles obtidos por imageamente direto do Hubble Space Telescope (HST) (Thomas et al., 2005), do Keck Observatory e do ESO VLT (Drummond et al., 2014). O menor valor, reportado por Carry et al. (2008), pode ser justificado pelo fato desse estudo não levar em conta o efeito de escurecimento de bordo.

O evento de 1984 (Millis et al., 1987) é a única outra ocultação que podemos comparar nosssos resultados. As medidas do diâmetro não se acordam dentro de 2σ . É difícil dizer com certeza as razões dessa divergência. Uma forma de clarificar o problema seria redeterminar os instantes de imersão e emersão das curvas de luz originais usando a mesma metodologia aplicada nesse trabalho. Infelizmente, não temos acesso aos dados da curva de luz original do evento de 1984.

A sonda da NASA Dawn poderá responder esses questões que são importantes

não só no conhecimento do próprio Ceres, mas também para todas as técnicas usadas até agora para o estudo das propriedades físicas dos pequenos objetos do Sistema Solar, como as ocultações estelares.

Tabela 2.2: Diâmetro equatorial e achatamento de Ceres

Diâmetro Equatorial (km)	Achatamento	Método	Ref.
972 ± 6	0.08 ± 0.03	Occultação	1
967 ± 10	0.078 ± 0.015	$\mathrm{Keck}{+}\mathrm{VTL}$	2
959 ± 5	0.074 ± 0.007	Keck	3
975 ± 4	0.067 ± 0.005	HST	4
959 ± 5	0.05 ± 0.01	Occultação	5

Referências. 1: Gomes-Júnior et al. (2015). 2: Drummond et al. (2014). 3: Carry et al. (2008). 4: Thomas et al. (2005). 5: Millis et al. (1987).

2.2 Satélites Irregulares

2.3 TNOs

3 Astrometria de Netuno e Tritão

Referências Bibliográficas

- Assafin, M. et al. (2011). In Gaia follow-up network for the solar system objects: Gaia FUN-SSO workshop proceedings. IMCCE-Paris Observatory, Paris.
- Braga-Ribas, F., Sicardy, B., Ortiz, J. L., Lellouch, E., Tancredi, G., Lecacheux, J., Vieira-Martins, R., Camargo, J. I. B., Assafin, M., Behrend, R., and et al. (2013). The size, shape, albedo, density, and atmospheric limit of transneptunian object (50000) quaoar from multi-chord stellar occultations. *ApJ*, 773(1):26.
- Carry, B., Dumas, C., Fulchignoni, M., Merline, W. J., Berthier, J., Hestroffer, D., Fusco, T., and Tamblyn, P. (2008). Near-infrared mapping and physical properties of the dwarf-planet ceres. Astronomy and Astrophysics, 478(1):235–244.
- Drummond, J., Carry, B., Merline, W., Dumas, C., Hammel, H., Erard, S., Conrad, A., Tamblyn, P., and Chapman, C. (2014). Dwarf planet ceres: Ellipsoid dimensions and rotational pole from keck and vlt adaptive optics images. *Icarus*, 236:28–37.
- D.W., D. et al. (2014). Asteroid Occultations V12.0. EAR-A-3-RDR-OCCULTATIONS-V12.0. NASA Planetary Data System.
- Giorgini, J., Yeomans, D., Chamberlin, A., Chodas, P., Jacobson, R., Keesey, M., Lieske, J., Ostro, S., Standish, E., and Wimberly, R. (1996). Jpl's on-line solar system data service. BULLETIN OF THE AMERICAN ASTRONOMICAL SOCIETY (BAAS).
- Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A. (2005). Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. *Nature*, 435(7041):466–469.
- Gomes-Júnior, A. R. et al. (2015). Results of two multi-chord stellar occultations by dwarf planet (1) ceres. *Monthly Notices*.
- Johnson, T. and McGetchin, T. (1973). Topography on satellite surfaces and the shape of asteroids. *Icarus*, 18(4):612–620.
- McKinnon, W. B. (2012). Where did ceres accrete? In LPI Contrib, volume 1667.

- Millis, R., Wasserman, L., Franz, O., Nye, R., Oliver, R., Kreidl, T., Jones, S., Hubbard, W., Lebofsky, L., Goff, R., and et al. (1987). The size, shape, density, and albedo of ceres from its occultation of bd+8°471. *Icarus*, 72(3):507–518.
- Sicardy, B., Ortiz, J. L., Assafin, M., Jehin, E., Maury, A., Lellouch, E., Hutton, R. G., Braga-Ribas, F., Colas, F., Hestroffer, D., and et al. (2011). A pluto-like radius and a high albedo for the dwarf planet eris from an occultation. *Nature*, 478(7370):493–496.
- Thomas, P. C., Parker, J. W., McFadden, L. A., Russell, C. T., Stern, S. A., Sykes, M. V., and Young, E. F. (2005). Differentiation of the asteroid ceres as revealed by its shape.

 Nature, 437(7056):224–226.
- Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H. F. (2005). Origin of the orbital architecture of the giant planets of the solar system. *Nature*, 435(7041):459–461.
- Widemann, T., Sicardy, B., Dusser, R., Martinez, C., Beisker, W., Bredner, E., Dunham, D., Maley, P., Lellouch, E., Arlot, J.-E., and et al. (2009). Titania's radius and an upper limit on its atmosphere from the september 8, 2001 stellar occultation. *Icarus*, 199(2):458–476.
- Zacharias, N., Finch, C. T., Girard, T. M., Henden, A., Bartlett, J. L., Monet, D. G., and Zacharias, M. I. (2013). The fourth us naval observatory ccd astrograph catalog (ucac4). The Astronomical Journal, 145(2):44.