Assignment -2

Assignment Date	19 September 2022
Student Name	Rubanchinnarathinam
Student Roll Number	210519205042
Maximum Marks	2 Marks

Question 1:

Importing Libraries

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

Queastion 2:

Loading Data Set

```
ds=pd.read_csv(r'C:\Users\veera\Desktop\Assignment 2/Churn_Modelling.csv')
ds.shape
(10000, 14)
ds.head()
```

Row Num ber	Cust omer Id	Sur na me		Geo grap hy	Ge nd er	Ag e			NumOf Produc ts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Exit ed
0	1	156 346 02	Hargr ave	619	Fra nce	Fe ma le	42	2	0.00	1	1	1	101 348. 88
1	2	156 473 11	Hill	608	Spa in	Fe ma le	41	1	83807.8 6	1	0	1	112 542. 58
2	3	156 193 04	Onio	502	Fra nce	Fe ma le	42	8	159660. 80	3	1	0	113 931. 57
3	4	157 013 54	Boni	699	Fra nce	Fe ma le	39	1	0.00	2	0	0	938 26.6 3

Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	Ag e	Te nu re	Bal anc e	NumOf Produc ts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Exit ed
4	5	157 378 88	Mitch ell	850	Spa in	Fe ma le	43	2	125510. 82	1	1	1	790 84.1 0

Question 3:

Visualizations

Univariate

sns.distplot(ds['EstimatedSalary'],hist=True)

C:\Users\veera\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='EstimatedSalary', ylabel='Density'>

Bivariate

```
sns.relplot(x='Age',y='Balance',data=ds)
<seaborn.axisgrid.FacetGrid at 0x25cfcd45b20>
```


#categorical data
sns.catplot(x='Geography',y='CreditScore',data=ds)
<seaborn.axisgrid.FacetGrid at 0x25cfcbe7490>

Multivariate

```
sns.relplot(x='Age',y='Balance',hue='Geography',data=ds)
<seaborn.axisgrid.FacetGrid at 0x25cfdd4f310>
```


#categorical data
sns.boxplot(x='Exited',y='CreditScore',hue='Gender',data=ds)
<AxesSubplot:xlabel='Exited', ylabel='CreditScore'>

Question 4:

Descriptive Statistics

	RowN umber	Custo merId	CreditS core	Age	Tenure	Balance	NumOf Product s	HasCr Card	IsActive Membe r	Estimat edSalar y	Exited
co un t	10000 .0000 0		10000. 000000	10000. 000000	10000. 000000	10000.0 00000	10000.0 00000	10000 .0000 0	10000.0 00000	10000.0 00000	10000. 000000
m ea n	5000. 50000	1.5690 94e+07	650.52 8800	38.921 800	5.0128 00	76485.8 89288	1.53020 0	0.705 50	0.51510 0	100090. 239881	0.2037 00
st d	2886. 89568	7.1936 19e+04	96.653 299	10.487 806	2.8921 74	62397.4 05202	0.58165 4	0.455 84	0.49979 7	57510.4 92818	0.4027 69
mi n	1.000 00	1.5565 70e+07	350.00 0000	18.000 000	0.0000	0.00000	1.00000 0	0.000	0.00000	11.5800 00	0.0000
25 %	2500. 75000	1.5628 53e+07	584.00 0000	32.000 000	3.0000	0.00000 0	1.00000	0.000	0.00000	51002.1 10000	0.0000
50 %	5000. 50000	1.5690 74e+07	652.00 0000	37.000 000	5.0000 00	97198.5 40000	1.00000 0	1.000 00	1.00000 0	100193. 915000	0.0000
75 %	7500. 25000	1.5753 23e+07	718.00 0000	44.000 000	7.0000 00	127644. 240000	2.00000	1.000 00	1.00000	149388. 247500	0.0000

	RowN umber	Custo merid	CreditS core	Age	Tenure	Balance	NumOf Product s	HasCr Card	IsActive Membe r	Estimat edSalar y	Exited
m ax	10000 .0000 0	1.5815 69e+07		92.000 000	10.000 000	250898. 090000	4.00000 0	1.000 00	1.00000	199992. 480000	1.0000 00

Handling the missing(null) values

ds.isnull().any() RowNumber False
CustomerId False
Surname False Surname False
CreditScore False
Geography False
Gender False
Age False
Tenure False
Balance False
NumOfProducts False
HasCrCard False
IsActiveMember False
EstimatedSalary False
Exited False Exited False dtype: bool ds.isnull().sum() RowNumber 0 CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts 0 HasCrCard IsActiveMember 0
EstimatedSalary 0 Exited dtype: int64

Question 5:

Split the data into dependent and independent variables

```
x=ds.iloc[:,3:13].values
print(x.shape)
y=ds.iloc[:,13:14].values
print(y.shape)
```

```
(10000, 10)
(10000, 1)
```

Question 6:

Finding and Replacing Outliers

```
ds.skew()

C:\Users\veera\AppData\Local\Temp\ipykernel_5256\4252094064.py:1:
FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise
TypeError. Select only valid columns before calling the reduction.
   ds.skew()
```

```
κοwNumber0.000000CustomerId0.001149CreditScore-0.071607Age
                    1.011320
Age
Tenure
                    0.010991
Balance
                  -0.141109
NumOfProducts 0.745568
HasCrCard -0.901812
IsActiveMember -0.060437
EstimatedSalary 0.002085
Exited
                    1.471611
dtype: float64
sns.boxplot(ds["Age"])
C:\Users\veera\anaconda3\lib\site-packages\seaborn\ decorators.py:36:
FutureWarning: Pass the following variable as a keyword arg: x. From
version 0.12, the only valid positional argument will be `data`, and
passing other arguments without an explicit keyword will result in an error
or misinterpretation.
 warnings.warn(
<AxesSubplot:xlabel='Age'>
```


ds["Age"].describe()["25%"]
q1 = ds["Age"].describe()["75%"]
iqr=q1-q0
lb = q0 -(1.5*iqr)
ub = q1 + (1.5*iqr)

ds[ds["Age"]<lb]

RowN Custo Sur nam tScor raph nde g nu anc r e re e re e re e s NumOf HasC IsActive Estimat Ex tscor and t

ds[ds["Age"]>ub]

	Row Num ber	Cust omer Id	Surna me	Cred itSco re		Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard		Estima tedSala ry	
5 8	59	1562 3944	T'ien	511	Spai n	Fe ma le	6	4	0.00	1	1	0	1643.1 1	1
8 5	86	1580 5254	Nduk aku	652	Spai n	Fe ma le	7 5	10	0.00	2	1	1	114675 .75	0
1 0 4	105	1580 4919	Dunb abin	670	Spai n	Fe ma le	6 5	1	0.00	1	1	1	177655 .68	1
1 5 8	159	1558 9975	Macle an	646	Fran ce	Fe ma le	7	6	972 59.2 5	1	0	1	104719 .66	0
1 8 1	182	1578 9669	Hsia	510	Fran ce	Ma le	6 5	2	0.00	2	1	1	48071. 61	0
•••						•••								

	Row Num ber	Cust omer Id	Surna me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bal anc e	NumO fProdu cts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	
9 7 5 3	9754	1570 5174	Chied ozie	656	Ger man y	Ma le	6 8	7	153 545. 11	1	1	1	186574 .68	0
9 7 6 5	9766	1577 7067	Thom as	445	Fran ce	Ma le	6 4	2	136 770. 67	1	0	1	43678. 06	0
9 8 3 2	9833	1581 4690	Chuk wujek wu	595	Ger man y	Fe ma le	6 4	2	105 736. 32	1	1	1	89935. 73	1
9 8 9 4	9895	1570 4795	Vagin	521	Fran ce	Fe ma le	7	6	0.00	2	1	1	49054. 10	0
9 9 3 6	9937	1565 3037	Parks	609	Fran ce	Ma le	7	1	0.00	1	0	1	18708. 76	0

$359 \text{ rows} \times 14 \text{ columns}$

```
#Replacing the outlier
outlier list = list(ds[ds["Age"] > ub]["Age"])
print(outlier list)
[66, 75, 65, \overline{7}3, 65, 72, 67, 67, 79, 80, 68, 75, 66, 66, 70, 63, 72, 64,
64, 70, 67, 82, 63, 69, 65, 69, 64, 65, 74, 67, 66, 67, 63, 70, 71, 72, 67,
74, 76, 66, 63, 66, 68, 67, 63, 71, 66, 69, 73, 65, 66, 64, 69, 64, 77, 74,
65, 70, 67, 69, 67, 74, 69, 74, 74, 64, 63, 63, 70, 74, 65, 72, 77, 66, 65,
74, 88, 63, 71, 63, 64, 67, 70, 68, 72, 71, 66, 75, 67, 73, 69, 76, 63, 85,
67, 74, 76, 66, 69, 66, 72, 63, 71, 63, 74, 67, 72, 72, 66, 84, 71, 66, 63,
74, 69, 84, 67, 64, 68, 66, 77, 70, 67, 79, 67, 76, 73, 66, 67, 64, 73, 76,
72, 64, 71, 63, 70, 65, 66, 65, 80, 66, 63, 63, 63, 63, 66, 74, 69, 63, 64,
76, 75, 68, 69, 77, 64, 66, 74, 71, 67, 68, 64, 68, 70, 64, 75, 66, 64, 78,
65, 74, 64, 64, 71, 77, 79, 70, 81, 64, 68, 68, 63, 79, 66, 64, 70, 69, 71,
72, 66, 68, 63, 71, 72, 72, 64, 78, 75, 65, 65, 67, 63, 68, 71, 73, 64, 66,
71, 69, 71, 66, 76, 69, 73, 64, 64, 75, 73, 71, 72, 63, 67, 68, 73, 67, 64,
63, 92, 65, 75, 67, 71, 64, 66, 64, 66, 67, 77, 92, 67, 63, 66, 66, 68, 65,
72, 71, 76, 63, 67, 67, 66, 67, 63, 65, 70, 72, 77, 74, 72, 73, 77, 67, 71,
64, 72, 81, 76, 69, 68, 74, 64, 64, 71, 68, 63, 67, 63, 64, 76, 63, 63, 68,
67, 72, 70, 81, 67, 73, 66, 68, 71, 66, 63, 75, 69, 64, 69, 70, 71, 71,
70, 63, 64, 65, 63, 67, 71, 67, 65, 66, 63, 73, 66, 64, 72, 71, 69, 67, 64,
81, 73, 63, 67, 74, 83, 69, 71, 78, 63, 70, 69, 72, 70, 63, 74, 80, 69,
67, 76, 71, 67, 71, 78, 63, 63, 68, 64, 70, 78, 69, 68, 64, 64, 77, 77]
outlier_dict = {}.fromkeys(outlier list,ub)
print(outlier dict)
{66: 62.0, 75: 62.0, 65: 62.0, 73: 62.0, 72: 62.0, 67: 62.0, 79: 62.0, 80:
62.0, 68: 62.0, 70: 62.0, 63: 62.0, 64: 62.0, 82: 62.0, 69: 62.0, 74: 62.0,
```

```
71: 62.0, 76: 62.0, 77: 62.0, 88: 62.0, 85: 62.0, 84: 62.0, 78: 62.0, 81: 62.0, 92: 62.0, 83: 62.0}

ds["Age"] = ds["Age"].replace(outlier_dict)

sns.boxplot(ds["Age"])

C:\Users\veera\anaconda3\lib\site-packages\seaborn\_decorators.py:36:

FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='Age'>
```


ds[ds["Age"]>														
RowN	Custo	Sur	Credi	Geog	Ge	A	Te	Bal	NumOf	HasC	IsActive	Estimat	Ex	
umbe	merI	nam	tScor	raph	nde	g	nu	anc	Product	rCar	Membe	edSalar	ite	
r	d	e	e	\mathbf{y}	r	e	re	e	S	d	r	y	d	

Question 7:

Check for Categorical columns and perform encoding

```
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct=ColumnTransformer([('oh',OneHotEncoder(),[1,2])],remainder='passthrough')
x=ct.fit_transform(x)
print(x.shape)

(10000, 13)

# saving the data
import joblib
joblib.dump(ct,"churnct.pkl")
```

['churnct.pkl']

Question 8:

Split the data into training and testing

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test =
train_test_split(x,y,test_size=0.2,random_state=0)
print(x_train.shape)
print(x_test.shape)

(8000, 13)
(2000, 13)

from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train=sc.fit_transform(x_train)
x_test=sc.transform(x_test)

joblib.dump(sc,"churnsc.pkl")

['churnsc.pkl']
```