Part I (3 points each)

1.	Which	irreducible	polynomial	over	GF_5 is	primitive'
----	-------	-------------	------------	------	-----------	------------

A. $x^2 + 2$

B. $x^2 + x + 1$ C. $x^2 + 2x + 3$ D. $x^2 + 4x + 1$ E. None of the above

A. **Z**₃₇*

B. **Z**₆₃*

C. Z_{108} *

D. **Z**₁₂₆*

E. None of the above

3.
$$\alpha \in GF_8$$
 is a root of $x^3 + x^2 + 1$. Whose minimal polynomial is $x^3 + x + 1$?

B. α^4

C. $\alpha^4 + \alpha^2$ D. $\alpha^4 + \alpha^3$

E. None of the above

A. Mars

B. Rijndael C. Twofish

D. IDEA

E. None of the above

5. For a group homomorphism
$$f: (\mathbf{Z}_{16}, + \text{ mod } 16) \to (\mathbf{Z}_{17}^*, \times \text{ mod } 17)$$
, which assignment of the value of $f(1)$ makes f an $isomorphism$?

A. 2

B. 4

C. 6

D. 8

E. None of the above

Which ideal is NOT a *principal* ideal in the specified ring?

A. $\langle x, y \rangle$ in $\mathbb{Z}[x, y]$ B. $\langle x^2 - 1 \rangle$ in $\mathbb{Q}[x, y]$

C. < 6, 15, 33 > in Z D. $< x + 1, x^2 > \text{ in } O[x]$

E. None of the above

Which quotient ring is isomorphic to GF_{64} ?

A. $GF_2[x]/< x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 >$ B. $GF_2[x]/< x^6 + x^4 + x^3 + x^2 + 1 >$ C. $GF_2[x]/< x^6 + x^2 + 1 >$ D. $GF_2[x]/< x^6 + x^4 + x^3 + 1 >$ E. None of the above

In the "Mix Columns" operation of AES, each column is treated as a polynomial over GF_{256} and is multiplied modulo r(x) with fixed $3x^3 + x^2 + x + 2$. What is r(x)? C. $x^4 + x + 1$ D. $x^4 + x^2 + 1$ E. None of the above

 $A x^4$

B $x^4 + 1$

Which statement about the *one-time pad* (OTP) is FALSE?

A. XOR operation is often used to combine the plaintext and the key elements

B. It is information-theoretically secure with the so-called perfect secrecy

C. To be unbreakable, its key has to be truly random and never reused

D. Such system with the *perfect secrecy* property is widely used in practice

E. None of the above

- 10. Which mode of operation for decryption does the diagram below show?
 - A. OFB
- B. CFB
- C. ECB.
- D.CBC
- E. None of the above

Part II (3 points each)

- $x \equiv \boxed{11} \pmod{\boxed{12}}$) is the solution to the system of congruences $2x \equiv 1 \pmod{3}$ $x \equiv 3 \pmod{10}$ $5x \equiv 4 \pmod{67}$
- To prove that x is a generator of the multiplicative group Z_{63}^* , it is sufficient to show $x^m \ne 1$ and $x^n \ne 1$ where 0 < m < n. We have (m, n) = (13, 14).
- GL₃(Z_7) is the group of invertible 3 × 3 matrices with entries in Z_7 , and SL₃(Z_7) is its subgroup consisting of the matrices with determinant 1. Their group orders are $|GL_3(Z_7)| = \boxed{15}$ and $|SL_3(Z_7)| = \boxed{16}$.
- In the multiplicative group (\mathbb{Z}_{65}^* , ×):
 - 17^{-1} (the multiplicative inverse of 17) = $\boxed{17}$
 - o(3) (the order of 3) = 18
- Since $P(x) = x^5 + 2x + 2$ is irreducible over GF_3 , the quotient ring $K = GF_3[x]/(P(x))$ is a finite field. Let $Q(x) = x^2 + 2x + 1$.
 - The number of elements in *K* is $|K| = \boxed{19}$
 - \bullet $Q(x)^{1213} = 2x^3 + \boxed{20}$ in K.
 - \bullet $Q(x)^{-1} = x^4 + \boxed{21}$ in K.
- Complete the table:

Block cipher	Block size (bits)	Key size (bits)			
Triple-DES	64	112 or 22			
IDEA	64	128			
AES	128	128, 192, or 23			
SMS4	24	128			

- Applying the secret permutation $\binom{123456}{346215} \in S_6$ on the plaintext CRYPTO, we obtain the ciphertext TPCROY. Suppose the permutation $\sigma \in S_6$ is applied on CRYPTO to obtain POCTYR, then $\sigma^2 = 25$ and $\sigma^{-1} = 26$
- Consider the affine cipher $c = mp + s \mod 50$, where c and p denote the ciphertext and the plaintext respectively:
 - The size of its key space (possibilities of (m, s)) is $\begin{vmatrix} 27 \end{vmatrix}$
 - Given the encryption formula $c = 7p + 11 \mod 50$, the corresponding decryption formula is $p = 28 \mod 50$.
- The S-box of AES is constructed as follows.

 - $a_{i,j} \to a_{i,j}^{-1} \to b_{i,j}$ $a_{i,j} \times a_{i,j}^{-1} = 1 \pmod{x^8 + x^4 + x^3 + x + 1}$ but $0^{-1} = 0$
 - Affine transformation: $a_{i,j}^{-1} \rightarrow b_{i,j}$
 - Complete the last mapping:
 - $00000000 \rightarrow 00000000 \rightarrow 01100011$
 - $00000001 \rightarrow 00000001 \rightarrow 01111100$
 - $00000011 \rightarrow 29$

Part III (Write down all details of your work)

- (4 points) Find integers a and b such that 31a + 53b = 1.
- 32 (6 points) Explain why a block cipher of Feistel structure has the same algorithm for both encryption and decryption.

Cryptography

Midterm Exam 2010/04/27

Name: _____ Student ID number: _____

1	2	3	4	5	6	7	8	9	10	
11		1	12		13		14		15	
1	16		7	18		19		20		
21		22		23		24		25		
26		2	7	28		29		30		

31

32

Solution

1	2	3	4	5	6	7	8	9	10
C	E	C	D	C	A	Е	В	D	A
11		12		13		14		15	
44	443		10	12		18		$(7^3-1)(7^3-7)(7^3-7^2)$	
16		1	7	18		19		20	
$7^2(7^3-1)(7^3-7)$		23		12		243		x^2+x+1	
21		22		23		24		25	
$2x^3 + 2x^2 + 2$		168		256		128		(15)(34)	
2	6	2	7	2	28 29		9	30	
(1453	3)(26)	10	00	43(c	-11)	1111 0110		0111 1011	

$$\boxed{31}$$
 $a = 12, b = -7$