- 1. Un muntacàrregues puja una massa de $1800\,kg$ a $20\,m$ d'altura en 1 minut. Calculeu el treball que desenvolupa i la potència del motor, en CV, en els casos següents:
 - (a) Considerant nul el fregament.
 - (b) Si la força de fregament que ha de vèncer és de $1500\,N$.
- 2. Des de dalt de tot d'un edifici de 30 m deixem caure un cos de massa 50 g que arriba a terra amb una velocitat de 20 m/s. Quina és l'energia que s'ha dissipat al llarg de la caiguda? (podem suposar que per fregament amb l'aire).
- 3. Llancem des de terra verticalment cap amunt, amb una velocitat de $15\,m/s$, una pedra de massa $1\,kg$. Si negligim la força de fregament amb l'aire, calculeu a quina alçada arribarà i quina energia potencial adquirirà.
- 4. Calculeu la potència que subministra una central hidroelèctrica que aprofita l'energia d'un salt d'aigua de $50 \, m$ d'alçada amb un cabal d'aigua $q = 5m^3/s$, si el rendiment del turboalternador és $\eta = 0,76$.
- 5. Calculeu la potència, en CV, proporcionada per la línia elèctrica a un motor de rendiment 0,9 que ens dona una potència a l'eix de $3312\,W$.
- 6. Un motor que subministra 2 CV té un rendiment del 55 %. Quina és l'energia en joules que consumirà en dues hores de funcionament?
- 7. Quin és el treball útil W_u realitzat per una grua que aixeca una càrrega de massa $m = 1000 \, kg$ a una alçada de $h = 20 \, m$?
- 8. Si la grua de l'exercici anterior tarda un minut en aixecar la càrrega, quina potència útil desenvolupa?
- 9. Una màquina que té un rendiment $\eta=75\,\%$ consumeix una energia $W_c=50000\,J$. Quin és el treball perdut W_p en la transformació?
- 10. Una estufa de potència útil $P_u = 2000 W$, si funciona durant un temps t = 2 h, quina energia útil proporciona?
- 11. Un camió amb capacitat per transportar fins a 10 tones ha de transportar 50 cotxes de $1200 \, kg$ cadascun. Quants viatges haurà de fer?

- 12. Un coet de massa $0,5\,kg$ es mou a una velocitat de $40\,m/s$, explota i es parteix en dos fragments, un de massa $0,35\,kg$, que surt llançat a $70\,m/s$, i l'altre que surt a $120\,m/s$. Quina energia ha adquirit a causa de l'explosió?
- 13. Calculeu el temps que una motobomba de $10 \, CV$, treballant a plena càrrega, tardarà a omplir d'aigua un dipòsit de $200 \, m^3$ situat a $25 \, m$ d'alçada. Suposeu que hi ha pèrdues d'energia corresponents a un $20 \, \%$.
- 14. Expliqueu les transformacions energètiques que es produeixen en els casos següents i calculeu les energies que hi intervenen.
 - (a) Una roca de $500 \, kg$ cau des de $50 \, m$ d'alçada, xoca amb el terra i queda immòbil.
 - (b) Una pilota de 300 g es deixa caure des de 2 m d'alçada, rebota a terra i arriba a una alçada d'1, 2 m.
- 15. Una central elèctrica té un grup turboalternador de $10\,MW$, amb un rendiment del $80\,\%$, situat a $120\,m$ per sota del nivell mitjà de l'envasament. Quina ha de ser la capacitat en hm^3 per cobrir la demanda d'energia durant 1 mes?
- 16. Un cotxe passa de 0 a $120 \, km/h$ en un temps de $8 \, s$. Si la massa del cotxe és de $2200 \, kg$, quina potència, en CV, és capaç de desenvolupar el seu motor?
- 17. Una màquina tèrmica aixeca a velocitat constant una caixa de $180 \, kg$ a una alçada de $35 \, m$. Si l'eficiència de la màquina és del $20 \, \%$, quina quantitat de calor consumeix aquesta màquina?

