Predicción horaria de energía renovable en una micro-red

Proyecto Final Integrador — Diplomatura en Ciencia de Datos y Análisis Avanzado

Equipo: Grupo F — Tomas López Turconi, Hernán Nuñez

Fecha: 6 de octubre de 2025

Resumen Ejecutivo

Se desarrolló un modelo para **predecir la energía renovable total por hora** (total_renewable_energy) en una micro-red, con el fin de **mejorar la planificación operativa** (despacho de baterías y compras a la red). Se comparó un **baseline naïve** con **Regresión Lineal** y **Random Forest**.

Resultado principal: Regresión Lineal obtuvo el menor error en test (RMSE 41.19 kWh, MAE 33.90 kWh, R² 0.038, MASE 0.708), superando al baseline (RMSE 59.03 kWh) con una reducción del 30.21%. Un backtesting temporal (k=5) confirmó la robustez del modelo con RMSE 40.69 ± 1.08 kWh (CV≈2.7%).

Impacto esperado: reducción de compras en horas caras, mejor uso del almacenamiento y mayor estabilidad operativa.

1. Definición del problema y relevancia

- Problema: la generación renovable (solar/eólica) es volátil; pronosticar la potencia generada por hora permite optimizar baterías y compras a la red.
- Objetivo medible (KPI): reducir el RMSE ≥ 15% respecto del baseline naïve.
- Criterios de éxito: RMSE (principal), MAE, R² y MASE ((<1) indica mejora vs. naïve).
- **Valor de negocio:** con menor incertidumbre, se decide cuándo cargar/descargar baterías y cuánta energía comprar externamente.

2. Datos y Metodología (CRISP-DM)

2.1 Datos

- Fuente: dataset público de micro-red renovable (formato horario).
- Tamaño: ~3.5k filas horarias (~5 meses).
- Variables principales: timestamp, solar_pv_output, wind_power_output, total_renewable_energy (target), clima (solar_irradiance, wind_speed, temperature, humidity, atmospheric_pressure) y battery_state_of_charge.
- **Calidad:** sin nulos críticos en columnas clave; valores extremos esperables (irradiancia=0 de noche, picos de viento).

2.2 Preparación y EDA (resumen)

- Conversión de fechas y orden temporal; remoción de columnas predicted_* para evitar fuga.
- Ingeniería temporal: armónicos hour_sin/cos, dow_sin/cos.
- Lags sin fuga: total_renewable_energy_lag1, lag24, roll_mean_24; y
 * lag1 para exógenas (cuando existen).
- Hallazgos clave:
 - Correlaciones contemporáneas altas de solar_pv_output y wind_power_output con el target (componentes del total). No se usaron en t para evitar fuga; se utilizaron rezagos.
 - Autocorrelación del target mínima (lag1≈-0.01, lag24≈0);
 exógenas en t-1 con correlaciones muy bajas (≤0.05).
 - El patrón horario/semanal es leve; los armónicos aportan mejora vs. naïve.

"Serie temporal de total_renewable_energy (hora a hora). Se observa alta variabilidad intra-día y leve tendencia estacional; motiva el uso de armónicos temporales y validación temporal."

"Matriz de correlación entre variables numéricas. Las correlaciones altas de solar_pv_output/wind_power_output con el total son contemporáneas (componentes del target). Para evitar fuga de información, estas variables en t no se usan como features; se utilizan sus rezagos."

"Patrón horario y semanal promedio (arriba); matriz triangular y top de correlaciones (abajo). La estacionalidad diaria es leve pero presente; se codifica con armónicos hour_sin/cos y dow_sin/cos. Las correlaciones fuertes con solar_pv_output/wind_power_output son contemporáneas y no se emplean en el modelado para evitar fuga."

2.3 Esquema de validación

- Split 80/20 cronológico.
- Métricas calculadas exclusivamente en test.
- Backtesting (k=5) adicional para robustez: 40.69 ± 1.08 kWh.

3. Modelado y evaluación

3.1 Modelos

- Baseline naïve: (\hat{y}t = y{t-1}).
- Regresión Lineal (LR): con StandardScaler.
- Random Forest (RF): 500 árboles, random_state=42.

Features utilizadas: lags y rolling del target (lag1, lag24, roll_mean_24), lags de exógenas (*_lag1 cuando existen) y armónicos hour_sin/cos, dow_sin/cos. No se incluyeron variables **en t** para evitar fuga.

3.2 Resultados en test (holdout 20%)

Modelo	RMSE (kWh)	MAE (kWh)	R ²	MASE
Naive (t-1)	59.03	48.08	-0.975	1.004
LinearRegression	41.19	33.90	0.038	0.708
RandomForest	41.95	34.59	0.002	0.722

Selección: LinearRegression por RMSE mínimo y MASE<1 (mejora clara vs.

naïve).

ΔRMSE vs. baseline: 30.21%.

3.3 Backtesting (k=5)

LinearRegression: 40.69 ± 1.08 kWh (CV≈2.7%).
 Confirma estabilidad del desempeño y generalización temporal.

3.4 Interpretabilidad

- Importancias de RF (y XGB si se ejecuta) muestran predominio de lags del target y armónicos.
- Exógenas en t-1 aportan marginalmente, consistente con su baja correlación.
- Con autocorrelación casi nula, un modelo parco (lineal) resulta competitivo.

"Importancias de variables (RF). Destacan total_renewable_energy_roll_mean_24, wind_speed_lag1, atmospheric_pressure_lag1, temperature_lag1 y los armónicos

temporales; consistente con el aporte moderado de exógenas con rezago y la utilidad de patrones temporales."

4. Impacto en el negocio

- Optimización de baterías: decidir cuándo cargar/descargar reduce ciclos innecesarios y prolonga la vida útil.
- Menor compra de energía externa: evitar picos en horas caras gracias a pronósticos más precisos.
- **Estabilidad operativa:** planificación proactiva ante horas de baja generación esperada.

5. Riesgos, limitaciones y consideraciones

- Dataset sintético/público: puede no reflejar una micro-red local; riesgo de overfitting contextual.
- Horizonte acotado (~5 meses): no captura estacionalidad anual.
- R² bajo: esperable por alta variabilidad intra-día y señal débil de exógenas en t−1; el KPI principal (RMSE) mejora sustancialmente.
- Ética/transparencia: el modelo es apoyo a la decisión; requiere monitoreo y recalibración.

6. Conclusiones y recomendaciones

- Conclusión: LinearRegression cumple el KPI (-30.21% RMSE vs. naïve) y muestra robustez en backtesting (40.69 ± 1.08 kWh). Es interpretable, parsimonioso y estable para el horizonte horario.
- Recomendaciones técnicas (opcionales para futuras iteraciones):
 - 1. **Backtesting** sistemático y monitoreo post-despliegue.
 - 2. Regularización (Ridge/Lasso) y tuning ligero de RF/HGB.
 - 3. Integrar **pronósticos meteorológicos de t+1** (irradiancia/viento previstos) para un forecasting operativo real.
 - Análisis de residuales por hora/nivel de generación para detectar sesgos.

7. Anexos

• Resultados y visualizaciones:

- o outputs/metrics.csv tabla de métricas por modelo.
- outputs/timeseries_target.png serie temporal del target.
- o outputs/corr_heatmap.png matriz de correlación.
- outputs/rf_top15.png importancias de RF.
- o outputs/summary.json metadatos de ejecución.