# Numeri complessi

Nel corso dello studio della matematica si assiste ad una progressiva estensione del concetto di numero. Dall'insieme degli interi naturali  $\mathbb N$  si passa a quello degli interi relativi  $\mathbb Z$  per poi giungere ai razionali  $\mathbb Q$  e ancora ai reali  $\mathbb R$ . Spesso questi ampliamenti vengono giustificati con l'incapacità di risolvere in un certo insieme un determinato problema. Ad esempio l'equazione

$$x^2 = 2$$

non ha soluzione nell'insieme dei razionali, mentre ne ha ben due nell'estensione  $\mathbb{R}$ , ossia  $\sqrt{2}$  e  $-\sqrt{2}$ . La necessità di ampliare ulteriormente i numeri reali si presenta invece quando si prova a risolvere un'altra equazione di secondo grado:

$$x^2 = -1$$
.

Il problema in questo caso è comune a tutte le risoluzioni di equazioni di secondo grado con discriminante negativo e consiste nel fatto che la funzione reale radice quadrata non è definita per numeri negativi. Come vedremo l'insieme dei numeri complessi, che denoteremo con il simbolo  $\mathbb{C}$ , permetterà di dare una risposta a questo problema.

#### 1. La definizione di numero complesso e le sue rappresentazioni

L'estensione consiste nel passaggio dalla dimensione uno della retta (reale) alla dimensione due del piano (complesso). Un numero complesso z si identifica dunque come un punto nel piano e comunemente viene rappresentato in due modi: nella forma cartesiana e nella forma esponenziale.

Nella forma cartesiana il numero complesso z viene individuato dalle sue coordinate (reali) x e y e si può scrivere

$$z = (x, y) = x(1, 0) + y(0, 1) = x + iy$$

dove i particolari numeri complessi (1,0) e (0,1) sono stati identificati rispettivamente con l'unità reale 1 e l'unità immaginaria i.



La coordinata x è la parte reale di z mentre y è la parte immaginaria di z:

$$x = \operatorname{Re}(z)$$
,  $y = \operatorname{Im}(z)$ .

Nella forma esponenziale il numero complesso z viene invece individuato dal modulo |z|, ossia la distanza del punto z dall'origine, e dall'argomento, ossia l'angolo  $\theta$  compreso tra la direzione positiva dell'asse delle x e la semiretta uscente dall'origine e passante per z. Tale angolo viene espresso in radianti e non è definito quando z=0, mentre per  $z\neq 0$  è determinato a meno di multipli di  $2\pi$  (che corrisponde ad un angolo giro). In questo modo possiamo scrivere

$$z = |z| e^{i\theta}$$

dove il simbolo  $e^{i\theta}$  è definito come il numero complesso di modulo unitario  $\cos\theta+i\sin\theta.$ 



Esempio 1.1 Rappresentiamo nel piano il numero complesso  $z_1 = \sqrt{3} + i$ , scritto in forma cartesiana, e il numero complesso  $z_2 = 2 e^{i\frac{3\pi}{4}}$ , scritto in forma esponenziale.



Si osservi che la forma esponenziale di  $z_2$  non è unica:

$$z_2 = 2e^{i\frac{3\pi}{4}} = 2e^{i(\frac{3\pi}{4} + 2\pi)} = 2e^{i\frac{11\pi}{4}} = e^{i(\frac{3\pi}{4} - 2\pi)} = 2e^{-i\frac{5\pi}{4}}.$$

La seguente figura ci aiuta a capire come passare da una forma all'altra

3 Numeri complessi



Il passaggio dalla forma cartesiana a quella esponenziale è complicato dall'indeterminazione dell'argomento:

Dalla forma cartesiana alla forma esponenziale

Se 
$$z = x + iy \neq 0$$
 allora
$$|z| = \sqrt{x^2 + y^2} \quad \text{e} \quad \theta = \begin{cases} \arccos(\frac{x}{|z|}) & \text{se } y \geq 0 \\ -\arccos(\frac{x}{|z|}) & \text{se } y < 0 \end{cases}$$

In questo modo viene calcolato solo uno degli infiniti argomenti associati a z e precisamente quello compreso nell'intervallo  $(-\pi,\pi]$ . L'insieme completo dei possibili argomenti è dato da:  $\theta + 2k\pi$  con  $k \in \mathbb{Z}$ .

Il passaggio inverso è più semplice:

Dalla form  $\text{Se } z = |z| \, e^{i\theta} \text{ allora}$   $x = \text{Re}(z) = |z| \cos \theta \quad \text{e} \quad y = \text{Im}(z) = |z| \sin \theta.$   $\longrightarrow \longrightarrow$ Dalla forma esponenziale alla forma cartesiana

$$x = \text{Re}(z) = |z| \cos \theta$$
 e  $y = \text{Im}(z) = |z| \sin \theta$ .

Esempio 1.2 Proviamo a convertire i numeri complessi dell'esempio precedente.

(1) Per 
$$z_1 = \sqrt{3} + i$$

$$|z_1| = \sqrt{(\sqrt{3})^2 + (1)^2} = \sqrt{4} = 2$$
 e  $\theta_1 = \arccos\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$ 

quindi  $z_1 = 2e^{i\frac{\pi}{6}}$ .

(2) Per 
$$z_2 = 2e^{i\frac{3\pi}{4}}$$

$$x_2 = 2\cos\left(\frac{3\pi}{4}\right) = -\sqrt{2}$$
 e  $y_2 = 2\sin\left(\frac{3\pi}{4}\right) = \sqrt{2}$ .

quindi 
$$z_2 = -\sqrt{2} + i\sqrt{2}$$
.

## 2. La somma

L'operazione di somma di due numeri complessi è piuttosto semplice: si tratta di scrivere gli addendi in forma cartesiana e di sommare separatamente le parti reali e le parti immaginarie.

SOMMA
Se 
$$z_1 = x_1 + iy_1$$
 e  $z_2 = x_2 + iy_2$  allora
$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2).$$

**Esempio 2.1**. Se  $z_1 = -2 + \frac{3}{2}i$  e  $z_2 = 3 + i$  allora

$$z_1 + z_2 = \left(-2 + \frac{3}{2}i\right) + (3+i) = (-2+3) + i\left(\frac{3}{2} + 1\right) = 1 + \frac{5}{2}i$$

Nel piano la somma si può individuare costruendo un parallelogramma di lati  $z_1$  e  $z_2$ .



#### 3. Il prodotto

La definizione dell'operazione di prodotto tra due numeri complessi è un po' più delicata: per moltiplicare  $z_1 = x_1 + iy_1$  per  $z_2 = x_2 + iy_2$  ci comportiamo come il prodotto di due binomi:

$$(x_1 + iy_1) \cdot (x_2 + iy_2) = x_1(x_2 + iy_2) + iy_1(x_2 + iy_2) = x_1x_2 + ix_1y_2 + ix_2y_1 + i^2y_1y_2.$$

In questo modo la definizione di prodotto dipende dal risultato di  $i \cdot i = i^2$ . Dato che l'introduzione dei numeri complessi è motivata proprio dal desiderio di risolvere l'equazione  $z^2 = -1$ , "decidiamo" che il numero complesso i sia una delle soluzione cercate, ossia che  $i^2 = -1$ . Con questa scelta la definizione completa di prodotto diventa:

PRODOTTO IN FORMA CARTESIANA Se 
$$z_1=x_1+iy_1$$
 e  $z_2=x_2+iy_2$  allora 
$$z_1\cdot z_2=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1).$$

Numeri complessi 5

Proviamo a riprendere i numeri dell'esempio precedente e a farne il prodotto.

**Esempio 3.1** Se  $z_1 = -2 + \frac{3}{2}i$  e  $z_2 = 3 + i$  allora

$$z_1 \cdot z_2 = \left(-2 \cdot 3 - 1 \cdot \frac{3}{2}\right) + i\left(-2 \cdot 1 + 3 \cdot \frac{3}{2}\right) = -\frac{15}{2} + \frac{5}{2}i$$

L'interpretazione geometrica del prodotto diventa più evidente se i fattori sono scritti in forma esponenziale:

PRODOTTO IN FORMA ESPONENZIALE Se 
$$z_1=|z_1|e^{i\theta_1}$$
 e  $z_2=|z_2|e^{i\theta_2}$  allora 
$$z_1\cdot z_2=|z_1||z_2|e^{i(\theta_1+\theta_2)}.$$

Dunque nel prodotto di due numeri complessi i moduli si moltiplicano mentre gli argomenti si sommano (e questo giustifica la scelta del simbolo esponenziale). Verifichiamo questa proprietà ricordando ancora una volta che  $i^2 = -1$ :

$$z_{1} \cdot z_{2} = |z_{1}|(\cos \theta_{1} + i \sin \theta_{1}) \cdot |z_{2}|(\cos \theta_{2} + i \sin \theta_{2})$$

$$= |z_{1}||z_{2}|((\cos \theta_{1} \cos \theta_{2} - \sin \theta_{1} \sin \theta_{2}) + i(\sin \theta_{1} \cos \theta_{2} + \cos \theta_{1} \sin \theta_{2}))$$

$$= |z_{1}||z_{2}|(\cos(\theta_{1} + \theta_{2}) + i \sin(\theta_{1} + \theta_{2}))$$

$$= |z_{1}||z_{2}|e^{i(\theta_{1} + \theta_{2})}.$$

Un caso particolare molto interessante è il prodotto di un numero complesso z per i. Per quanto detto, la moltiplicazione per  $i=e^{i\frac{\pi}{2}}$  corrisponde a una rotazione di 90 gradi in senso antiorario.



Proviamo a calcolare un altro prodotto descrivendo i passi dell'operazione nel piano complesso.

Esempio 3.2. Calcoliamo il prodotto di  $z_1 = -\frac{1}{2} + i$  per  $z_2 = 3 + i$ :

$$z_1 \cdot z_2 = \left(-\frac{1}{2} + i\right) \cdot z_2 = -\frac{1}{2}z_2 + iz_2 = \left(-\frac{3}{2} - \frac{1}{2}i\right) + (3i - 1) = -\frac{5}{2} + \frac{5}{2}i$$



# 4. Il coniugato e il quoziente

Il coniugato  $\overline{z}$  di un numero complesso z=x+iy è definito nel modo seguente

$$\overline{z} = x - iy$$

e corrisponde al punto simmetrico di z rispetto all'asse reale. Quindi in forma esponenziale: se  $z=|z|e^{i\theta}$  allora  $\overline{z}=|z|e^{-i\theta}$ 



Esempio 4.1 Determiniamo l'insieme dei numeri complessi z tali che

$$z^2 + \overline{z}^2 = 0.$$

Riscriviamo l'equazione ponendo z = x + iy

$$(x+iy)^2 + (x-iy)^2 = (x^2 + 2ixy - y^2) + (x^2 - 2ixy - y^2) = 2(x^2 - y^2) = 0.$$

Quindi le coordinate dei punti del piano complesso  $\mathbb C$  richiesti sono tali che

$$(x^2 - y^2) = (x + y)(x - y) = 0$$

ossia le rette y = -x e y = x.

**--- ◊ ---**

Notiamo che

$$z \cdot \overline{z} = (x + iy)(x - iy) = x^2 + ixy - ixy - i^2y^2 = x^2 + y^2 = |z|^2$$
.

Questa relazione permette di calcolare il quoziente di due numeri complessi riconducendolo ad un prodotto:

Quoziente 
$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2}.$$
 —  $\diamond$  —

Esempio 4.2 Calcoliamo il quoziente di  $z_1 = -1 + i$  e  $z_2 = 3 + i$ :

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2} = \frac{(-1+i) \cdot (3-i)}{3^2+1^2} = \frac{(-1+i) \cdot (3-i)}{10} = -\frac{1}{5} + i\frac{2}{5}.$$

Nel caso in cui i numeri siano in forma esponenziale, anche per il quoziente si ottiene una formula significativa: se  $z_1 = |z_1| e^{i\theta_1}$  e  $z_2 = |z_2| e^{i\theta_2}$  allora

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2} = \frac{|z_1| e^{i\theta_1} \cdot |z_2| e^{-i\theta_2}}{|z_2|^2} = \frac{|z_1|}{|z_2|} e^{i(\theta_1 - \theta_2)}.$$

Dunque nel quoziente di due numeri complessi i moduli si dividono mentre gli argomenti si sottraggono.

Esempio 4.3. Calcoliamo il quoziente di  $z_1=2\,e^{i\frac{\pi}{3}}$  e  $z_2=3\,e^{i\frac{\pi}{4}}$ :

$$\frac{z_1}{z_2} = \frac{2}{3} e^{i(\frac{\pi}{3} - \frac{\pi}{4})} = \frac{2}{3} e^{i\frac{\pi}{12}}.$$

## 5. Potenza di un numero complesso

Come abbiamo visto, la forma esponenziale risulta particolarmente comoda quando si devono effettuare prodotti o quozienti. Per esempio il calcolo del quadrato di un numero complesso  $z=|z|e^{i\theta}$  si svolge nel seguente modo

$$z^{2} = |z| e^{i\theta} \cdot |z| e^{i\theta} = |z|^{2} e^{i(\theta+\theta)} = |z|^{2} e^{i2\theta}.$$

Più in generale il calcolo della potenza n-esima con n intero positivo diventa

$$z^n = |z|^n e^{in\theta}$$

ossia bisogna elevare il modulo alla n e moltiplicare per n l'argomento (se z=0 allora  $z^n=0$ ).

**Esempio 5.1** Calcoliamo le potenze di  $z = \sqrt{2} e^{i\frac{\pi}{3}}$  per n = 1, 2, 3:

$$z = \sqrt{2} e^{i\frac{\pi}{3}}, z^2 = 2 e^{i\frac{2\pi}{3}}, z^3 = 2\sqrt{2} e^{i\pi} = -2\sqrt{2}.$$

Questi punti sono riportati nella figura seguente evidenziando la loro posizione rispetto alla circonferenza unitaria.



Ora facciamo un altro esempio, questa volta partendo da un numero in forma cartesiana.

**Esempio 5.2** Calcoliamo le potenze di  $z = \frac{1}{2} - \frac{1}{2}i$  per n = 1, 2, 3. Per agevolare il calcolo riscriviamo il numero in forma esponenziale:

$$|z| = \sqrt{x^2 + y^2} = \frac{1}{\sqrt{2}}$$
 e  $\theta = -\arccos\left(\frac{x}{|z|}\right) = -\arccos\left(\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$ .

Quindi determiniamo le potenze richieste

$$z = \frac{1}{\sqrt{2}} e^{-i\frac{\pi}{4}}, z^2 = \frac{1}{2} e^{-i\frac{\pi}{2}} = -\frac{i}{2}, z^3 = \frac{1}{2\sqrt{2}} e^{-3i\frac{\pi}{4}}.$$

Questi punti sono riportati nella figura seguente evidenziando la loro posizione rispetto alla circonferenza unitaria.



