Practice for Quiz 5 Math 2580 Spring 2016

Sean Fitzpatrick

January 26th, 2016

If you can answer the following problems, you should be well-prepared for Quiz 5:

- 1. Let f(x,y) = xy and suppose x = g(t) and y = h(t). Show that applying the chain rule to the derivative $\frac{d}{dt}f(g(t),h(t)) = \frac{d}{dt}(g(t)h(t))$ produces the product rule for derivatives in one variable.
- 2. Suppose an insect is flying through a room along the path

$$r(t) = (e^t, t^2, \sin t),$$

and that the temperature in the room is given by $T(x,y,z) = \sin(x)\cos(y)\sqrt{z}$. Find the rate $\frac{dT}{dt}$ at which the temperature experienced by the insect changes as it flies through the room.

3. Consider the function $F:D\subseteq\mathbb{R}^2\to\mathbb{R}^2$, where $D=\{(u,v)|v\geq 1\}$, given by

$$F(u,v) = \left(\sqrt[3]{uv}, \sqrt[3]{\frac{u}{v^2}}\right).$$

Calculate the derivative matrix $D_{(u,v)}f$ at a general point $(u,v) \in D$.

Suggestion: When computing partial derivatives, you could go ahead and work with the functions as given, using the chain rule and product/quotient rules, or you could write, for example, $\sqrt[3]{uv} = u^{1/3}v^{1/3}$. (Always choose the most convenient possible form for your functions before differentiating!)

4. Let $g(x,y) = xy^2 \cos(xy)$, where $x = \sqrt[3]{uv}$ and $y = \sqrt[3]{\frac{u}{v^2}}$. Compute $\frac{\partial g}{\partial u}$ and $\frac{\partial g}{\partial v}$ using the Chain Rule.

(Note that (x, y) = F(u, v), where F is the function from the previous problem.)

- 5. What is the **gradient** of a continuously differentiable function $f: \mathbb{R}^3 \to \mathbb{R}$? How is the gradient of f related to the derivative $D_{(x,y,z)}f$?
- 6. Calculate the gradient of the function $f(x,y) = 3x^2 4xy$ at the point (1,2).