International TOR Rectifier

3-PHASE BRIDGE DRIVER

Features

- Floating channel designed for bootstrap operation
 Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 12 to 20V
- Undervoltage lockout for all channels
- Over-current shutdown turns off all six drivers
- Independent 3 half-bridge drivers
- Matched propagation delay for all channels
- Cross-conduction prevention logic
- Lowside outputs out of phase with inputs. High side outputs out of phase
- 3.3V logic compatible
- Lower di/dt gate driver for better noise immunity
- Externally programmable delay for automatic fault clear

28-Lead SOIC 28-Lead PDIP 44-Lead PLCC w/o 12 leads

Description

The IR21363(J&S) are high votage, high speed power MOSFET and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 volts.

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
Vs	High side offset voltage		V _{B1,2,3} - 25	V _{B1,2,3} + 0.3	
V _{BS}	High side floating supply voltage		-0.3	625	
V _{HO}	High side floating output voltage		V _{S1,2,3} - 0.3	V _{B1,2,3} + 0.3	
Vcc	Low side and logic fixed supply voltage		-0.3	25	
V _{SS}	Logic ground		V _{CC} - 25	V _{CC} + 0.3	.,
VLO1,2,3	Low side output voltage		-0.3	V _{CC} + 0.3	V
V _{IN}	Input voltage LIN,HIN,ITRIP, EN, RCIN		V _{SS} - 0.3	lower of	
				(V _{SS} + 15) or	
				V _{CC} + 0.3)	
V _{FLT}	FAULT output voltage		V _{SS} - 0.3	V _{CC} + 0.3	
dV/dt	Allowable offset voltage slew rate		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(28 lead PDIP)	_	1.5	
		(28 lead SOIC)	_	1.6	W
	(44	lead PLCC)	T -	2.0	
Rth _{JA}	Thermal resistance, junction to ambient	(28 lead PDIP)	_	83	
		(28 lead SOIC)	_	78	°C/W
		(44 lead PLCC)	_	63	
TJ	Junction temperature		T -	150	
T _S	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)			300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The Vs offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
V _{B1,2,3}	High side floating supply voltage	V _{S1,2,3} +12	V _{S1,2,3} +20	
V _{S1,2,3}	High side floating supply offset voltage	Note 1	600	
V _{HO1,2,3}	High side output voltage	V _{S1,2,3}	V _{B1,2,3}	·
V _{LO1,2,3}	Low side output voltage	0	V _{CC}	
V _{CC}	Low side and logic fixed supply voltage	12	20	V
V _{SS}	Logic ground	-5	5	•
V _{FLT}	FAULT output voltage	V _{SS}	V _{CC}	
V _{RCIN}	RCIN input voltage	V _{SS}	V _{CC}	
V _{ITRIP}	ITRIP input voltage	V _{SS}	V _{SS} +5	•
V _{IN}	Logic input voltage LIN, HIN	V _{SS}	V _{SS} +5	
TA	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of COM -5V to COM +600V. Logic state held for V_S of COM -5V to COM -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.

 $\begin{tabular}{ll} \textbf{Static Electrical Characteristics} \\ V_{BIAS} (V_{CC}, V_{BS}1,2,3) = 15 V \ unless otherwise specified. The V_{IN}, V_{TH} \ and I_{IN} \ parameters are referenced to V_{SS} \ and are applicable to all six channels (H_S1,2,3 and L_S1,2,3). The V_O and I_O \ parameters are referenced to COM and V_S1,2,3 and are applicable to the respective output leads: H_O1,2,3 and L_O1,2,3. \\ \end{tabular}$

Symbol	Definition		Тур.	Max.	Units	Test Conditions
VIH	Logic "0" input voltage LIN1,2,3, HIN1,2,3	3.0	_	_		
V _{IL}	Logic "1" input voltage LIN1,2,3, HIN1,2,3	_	_	0.8		
V _{EN,TH+}	EN positive going threshold	_	_	3		
V _{EN,TH} -	EN negative going threshold	0.8	_	_		
V _{IT,TH+}	ITRIP positive going threshold	0.37	0.46	0.55		
V _{IT,HYS}	ITRIP input hysteresis	_	0.07	_		
V _{RCIN,TH+}	RCIN positive going threshold	_	8	_		
V _{RCIN,HYS}	RCIN input hysteresis	_	3	_		
V _{OH}	High level output voltage, V _{BIAS} - V _O	_	0.9	1.4	V	I _O = 20 mA
V _{OL}	Low level output voltage, VO	_	0.4	0.6		I _O = 20 mA
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage	10.6	11.1	11.6		
V _{BSUV+}	positive going threshold					
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage	10.4	10.9	11.4		
V _{BSUV} -	negative going threshold					
V _{CCUVH}	V _{CC} and V _{BS} supply undervoltage	_	0.2	-		
V _{BSUVH}	lockout hysteresis					
I _{LK}	Offset supply leakage current		_	50	μΑ	V _{B1,2,3} =V _{S1,2,3} =600V
I _{QBS}	Quiescent V _{BS} supply current	_	70	120	•	V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} supply current	_	3.3	-	mA	V - 0 V OI 3 V
V _{IN} , CLAMP	Input clamp voltage (HIN, LIN, ITRIP and EN)	4.9	5.2	5.5	V I _{IN} =100μA	
I _{LIN+}	Input bias current (LOUT = HI)	_	200	300		V _{LIN} = 5V
I _{LIN-}	Input bias current (LOUT = LO)		100	220		V _{LIN} = 0V
I _{HIN+}	Input bias current (HOUT = HI)	_	200	300		V _{HIN} = 5V
I _{HIN-}	Input bias current (HOUT = LO)	_	100	220	μΑ	VHIN = 0V
I _{ITRIP+}	"high" ITRIP input bias current	_	30	100		V _{ITRIP} = 5V
I _{ITRIP-}	"low" ITRIP input bias current	_	0	1		V _{ITRIP} =0V
I _{EN+}	"high" ENABLE input bias current	_	30	100		V _{ENABLE} =5V
I _{EN-}	"low" ENABLE input bias current	_	0	1		V _{ENABLE} = 0V
IRCIN	RCIN input bias current		0	1		V _{RCIN} = 0V or 15V
I _{O+}	Output high short circuit pulsed current		200	_	_	V _O =0V, PW ≤ 10 μs
I _{O-}	Output low short circuit pulsed current			V _O =15V, PW ≤10 μs		
R _{ON,RCIN}	RCIN low on resistance — 50		100		J , , , ,	
R _{ON,FLT}	FAULT low on resistance	-	50	100	Ω	

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	370	525	680		V _{IN} = 0 & 5V
toff	Turn-off propagation delay	310	500	690		VIN - 0 & 3V
tr	Turn-on rise time	_	125	190		
tf	Turn-off fall time	_	50	75		
tEN	ENABLE low to output	300	450	600		V_{IN} , V_{EN} = 0V or 5V
	shutdown propagation delay					
tITRIP	ITRIP to output shutdown propagation delay	500	750	1000	nS	V _{ITRIP} = 5V
t _{bl}	ITRIP blanking time	100	150	_	113	V _{IN} = 0V or 5V
						V _{ITRIP} = 5V
tFLT	ITRIP to FAULT propagation delay		600	800		V _{IN} = 0V or 5V
						V _{ITRIP} = 5V
tFILIN	Input filter time (HIN, LIN)	_	310	_		V _{IN} = 0 & 5V
	(EN)	100	200	_		
tFLTCLR	FAULT clear time RCIN: R=2meg, C=1nF	1.3	1.65	2	mS	V _{IN} = 0V or 5V
						V _{ITRIP} = 0V
DT	Deadtime	220	290	360		V _{IN} = 0 & 5V
MT	Matching delay ON and OFF	_	40	75		External dead
MDT	Matching delay, max (ton,toff) - min (ton,toff),	_	25	70 nS time		time
	(ton,toff are applicable to all 3 channels)					>400nsec
PM	Output pulse width matching, PWin -PWout (fig.2)	_	40	75		

NOTE: For high side PWM, HIN pulse width must be $\geq 1 \mu \text{sec}$

VCC	VBS	ITRIP	ENABLE	FAULT	LO1,2,3	HO1,2,3
<uvcc< td=""><td>Х</td><td>X</td><td>Х</td><td>0 (note 1)</td><td>0</td><td>0</td></uvcc<>	Х	X	Х	0 (note 1)	0	0
15V	<uvbs< td=""><td>0V</td><td>5V</td><td>high imp</td><td>LIN1,2,3</td><td>0</td></uvbs<>	0V	5V	high imp	LIN1,2,3	0
15V	15V	0V	5V	high imp	LIN1,2,3	HIN1,2,3
15V	15V	>VITRIP	5V	0 (note 2)	0	0
15V	15V	0V	0V	high imp	0	0

Note: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously. Note 1: UVCC is not latched, when VCC>UVCC, FAULT returns to high impedance.

Note 2: When ITRIP <V_{ITRIP}, FAULT returns to high-impedance after RCIN pin becomes greater than 8V (@ VCC = 15V)

Functional Block Diagram

Lead Definitions

Description
Low side and logic fixed supply
Logic Ground
Logic inputs for high side gate driver outputs (HO1,2,3), out of phase
Logic inputs for low side gate driver outputs (LO1,2,3), out of phase
Indicates over-current (ITRIP) or low-side undervoltage lockout has occured. Negative logic, open-drain output
Logic input to enable I/O functionality. Positive logic, i.e. I/O logic functions when ENABLE is
high. No effect on FAULT and not latched
Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally set time T _{FLTCLR} , then automatically becomes inactive (open-drain high impedance).
External RC network input used to define FAULT CLEAR delay, T _{FLTCLR} , approximately equal to R*C. When RCIN>8V, the FAULT pin goes back into open-drain high-impedance
Low side gate driver return
High side floating supply
High side gate driver outputs
High voltage floating supply returns
Low side gate driver output

Note: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveforms

Figure 3. Output Enable Timing Waveform

International

TOR Rectifier

Figure 4. Internal Deadtime Timing Waveforms

Figure 5. ITRIP/RCIN Timing Waveforms

Figure 5.5 Input Filter Function

Figure 6A. Turn-on Rise Time vs. Temperature

Figure 6B. Turn-on Rise Time vs. Supply Voltage

Figure 7A. Turn-off Fall Time vs. Temperature

Figure 7B. Turn-off Fall Time vs. Supply Voltage

1000 Max.

Typ.

400

Min.

10 12 14 16 18 20 Supply Voltage (V)

Figure 8A. EN to Output Shutdown Time vs. Temperature

Figure 8B. EN to Output Shutdown Time vs. Supply Voltage

Figure 8C. EN to Output Shutdown Time vs. EN Voltage

Figure 9A. ITRIP to Output Shutdown Time vs. Temperature

Figure 9B. ITRIP to Output Shutdown Time vs. Supply Voltage

Figure 10A. ITRIP to FAULT Indication Time vs. Temperature

Figure 10B. ITRIP to FAULT Indication Time vs. Supply Voltage

Figure 11A. FAULT Clear Time vs. Temperature

Figure 11B. FAULT Clear Time vs. Supply Voltage

Figure 12A. Dead Time vs. Temperature

Figure 12B. Dead Time vs. Supply Voltage

Figure 13A. Logic "0" Input Threshold vs. Temperature

Figure 13B. Logic "0" Input Threshold vs. Supply Voltage

Figure 14A. Logic "1" Input Threshold vs. Temperature

Figure 14B. Logic "1" Input Threshold vs. Supply Voltage

Figure 15A. ITRIP Positive Going Threshold vs. Temperature

Figure 15B. ITRIP Positive Going Threshold vs. Supply Voltage

Figure 16A. High Level Output vs. Temperature

Figure 16B. High Level Output vs. Supply Voltage

Figure 17A. Low Level Output vs. Temperature

Figure 17B. Low Level Output vs. Supply Voltage

Figure 18. V_{CC} or V_{BS} Undervoltage (+) vs. Temperature

Figure 19. V_{CC} or V_{BS} Undervoltage (-) vs. Temperature

Figure 20A. Offset Supply Leakage Current vs. Temperature

Figure 20B. Offset Supply Leakage Current vs. V_B Boost Voltage

Figure 21A. V_B Supply Current vs. Temperature

Figure 21B. $V_{\rm BS}$ Supply Current vs. $V_{\rm BS}$ Floating Supply Voltage

Figure 22A. Input Current vs. Temperature

Figure 22B. Logic "1" Input Current vs. Supply Voltage

Figure 23A. Logic "0" Input Current vs. Temperature

Figure 23B. Logic "0" Input Current vs. Supply Voltage

Figure 24A. High ITRIP Current vs. Temperature

Figure 24B. "High" ITRIP Current vs. Supply Voltage

Figure 25A. "Low" ITRIP Current vs. Temperature

Figure 25B. ITRIP Current vs. Supply Voltage

Figure 26A. "High" IEN Current vs. Temperature

4
(Y) 1 1 Max.

Typ.

-50 -25 0 25 50 75 100 125

Temperature (°C)

Figure 26B. "High" IEN Current vs. Supply Voltage

Figure 27A. "Low" IEN Current vs. Temperature

Figure 27B. IEN Current vs. Supply Voltage

Figure 28A. RCIN Input Bias Current vs. Temperature

Figure 28B. RCIN Input Bias Current vs. Supply Voltage

Figure 29A. Output Source Current vs. Temperature

Figure 29B. Output Source Current vs. Supply Voltage

Figure 30A. Output Sink Current vs. Temperature

Figure 30B. Output Sink Current vs. Supply Voltage

Figure 31A. RCIN Low On-resistance vs. Temperature

Figure 31B. RCIN Low On-resistance vs. Supply Voltage

Figure 32A. FAULT Low On-resistance vs. Temperature

International TOR Rectifier

Figure 32B. FAULT Low On-resistance vs. Supply Voltage

Figure 33. Maximum V_S Negative Offset vs. V_{BS} Supply Voltage

Figure 34. IR21363 vs. Frequency (IRG4BC20W), Rgate=33 Ω , Vcc=15V

Figure 35. IR21363 vs. Frequency (IRG4BC30W), Rgate=15 Ω , Vcc=15V

Figure 36. IR21363 vs. Frequency (IRG4BC40W), Rgate=10 Ω , Vcc=15V

Figure 37. IR21363 vs. Frequency (IRG4PC50W), Rgate=5 Ω , Vcc=15V

Figure 38. IR21363 (J) vs. Frequency (IRG4BC20W), Rgate=33Ω, Vcc=15V

Figure 39. IR21363 (J) vs. Frequency (IRG4BC30W), Rgate=15 Ω , Vcc=15V

Figure 40. IR21363 (J) vs. Frequency (IRG4BC40W), Rgate=10 Ω , Vcc=15V

Figure 41. IR21363 (J) vs. Frequency (IRG4PC50W), Rgate=5 Ω , Vcc=15V

Figure 42. IR21363 (S) vs. vs. Frequency (IRG4BC20W), Rgate=33 Ω , Vcc=15V

Figure 43. IR21363 (S) vs. vs. Frequency (IRG4BC30W), Rgate=15Ω, Vcc=15V

Figure 44. IR21363 (S) vs. vs. Frequency (IRG4BC40W), Rgate=10 Ω , Vcc=15V

Figure 45. IR21363 (S) vs. vs. Frequency (IRG4PC50W), Rgate=5 Ω , Vcc=15V

Case outlines

WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105 http://www.irf.com/ Data and specifications subject to change without notice. 11/3/2005