Листок 9^+

Дополнительные задачи для самостоятельной подготовки к экзамену

Этот листок создан для самостоятельной подготовки к экзаменационной работе. Перечисленные в ниже темы соответствуют темам заданий на экзамене. Задачи на экзамене будут отличаться от представленных в листочке!

Производные старшего порядка

Задача 9⁺.1. Найдите $y^{(n)}(x)$ для функции

a)
$$y = (x^2 + 1) \ln(x + 1);$$

a)
$$y = (x^2 + 1) \ln(x + 1);$$
 6) $y = \frac{\sqrt[4]{3x + 2}}{\sqrt[3]{3x + 2}}, \ x > -\frac{2}{3}.$

Производная обратной, заданной неявно или параметрически функции

Задача 9⁺.2. Докажите существование функции x=x(y), обратной функции y=y(x) и найдите $x''_{yy}(a)$ при **a)** $y = x^3 + e^{2x}$ в точке a = 1; **б)** $y^3 = x^3 + \arcsin(x)$ в точке a = 0.

Задача 9⁺.3. Для функции, заданной параметрически уравнениями $x=x(t),\ y=y(t)$ найдите $\frac{d^2y}{dx^2}$ в точке (x_0, y_0) , если

а)
$$x = e^{-t/2} \cos t^2$$
, $y = e^{-t/2}$, точка $(x_0, y_0) = (1, 1)$;
б) $x = (1 - t)e^{t^2}$, $y = e^{t^2}$, точка $(x_0, y_0) = (0, e)$.

б)
$$x = (1-t)e^{t^2}, y = e^{t^2},$$
 точка $(x_0, y_0) = (0, e)$

Задача 9⁺.4. Для функции y=y(x), заданной неявно, найдите $y_{xx}^{\prime\prime}$:

a)
$$\cos x \cdot \sin y + \cos y \cdot \sin x = e^x + x;$$
 6) $e^{x+y} + y + 1 = \sin x + x.$

6)
$$e^{x+y} + y + 1 = \sin x + x$$
.

Правила Лопиталя

Задача 9⁺.5. Найдите предел с помощью правила Лопиталя:

a)
$$\lim_{x \to \frac{\pi}{2}} (tg(x) + \frac{2}{2x-\pi});$$

a)
$$\lim_{x \to \frac{\pi}{2}} \left(\operatorname{tg}(x) + \frac{2}{2x - \pi} \right);$$
 6) $\lim_{x \to +\infty} (\pi - 2 \operatorname{arctg}(x)) \ln(x).$

Формула Тейлора

Задача 9⁺.6. Найдите предел, используя асимптотические формулы:
a) $\lim_{x\to 0} (\cos 3x)^{\frac{1}{\sin x^2}};$ 6) $\lim_{x\to 0} \frac{\sin x^3 + 3\ln(1+x^3) + \operatorname{arctg}(x^6)}{e^{x^3} - \cos x^2};$ B) $\lim_{x\to 0} \frac{\sin x - \operatorname{arctg} x}{\operatorname{tg}\left(\frac{x^3 + 2\operatorname{tg} x^5}{3 + x^3 + x^6}\right)};$ Г) $\lim_{x\to 0} \frac{\sqrt{1+e^x} - \sqrt{2} - \frac{x}{2\sqrt{2}}}{x^2}.$

a)
$$\lim_{x\to 0} (\cos 3x)^{\frac{1}{\sin x^2}}$$

6)
$$\lim_{x\to 0} \frac{\sin x^3 + 3\ln(1+x^3) + \arctan(x^6)}{e^{x^3} - \cos x^2}$$

B)
$$\lim_{x \to 0} \frac{\sin x - \arctan x}{\operatorname{tg}\left(\frac{x^3 + 2\operatorname{tg} x^5}{3 + x^3 + x^6}\right)};$$

$$\Gamma$$
) $\lim_{x\to 0} \frac{\sqrt{1+e^x}-\sqrt{2}-\frac{x}{2\sqrt{2}}}{x^2}$.

Задача 9⁺.7. Представьте локальной формулой Тейлора с остаточным членом $o(x^4)$ функцию

a)
$$f(x) = \sin(\sin(x));$$
 6) $f(x) = e^{e^{x^2}}.$

6)
$$f(x) = e^{e^{x^2}}$$