1. Slope (i) The slope of a tangent to the curve y = f(x) at the point (x_1, y_1) is given by

$$\left(\frac{dy}{dx}\right)_{(x_1,y_1)}$$
 or $f'(x_1)$.

(ii) The slope of a normal to the curve y = f(x) at the point (x_1, y_1) is given by

$$\frac{-1}{\left(\frac{dy}{dx}\right)_{(x_1,y_1)}}.$$

NOTE If a tangent line to the curve y = f(x) makes an angle θ with X-axis in the positive direction, then $\frac{dy}{dx} = \text{Slope}$ of the tangent = $\tan \theta$.

- 2. Equations of Tangent and Normal
 - (i) The equation of tangent to the curve y = f(x) at the point $P(x_1, y_1)$ is given by $y y_1 = m(x x_1)$, where $m = \frac{dy}{dx}$ at point (x_1, y_1) .
 - (ii) The equation of normal to the curve y = f(x) at the point $Q(x_1, y_1)$ is given by $y y_1 = \frac{-1}{m}(x x_1)$, where $m = \frac{dy}{dx}$ at point (x_1, y_1) .

- 3. If slope of the tangent line is zero, then $\tan \theta = 0$, so $\theta = 0$, which means that tangent line is parallel to the X-axis and then equation of tangent at the point (x_1, y_1) is $y = y_1$.
 - 4. If $\theta \to \frac{\pi}{2}$, then $\tan \theta \to \infty$, which means that tangent line is perpendicular to the X-axis, i.e. parallel to the Y-axis and then equation of the tangent at the point (x_1, y_1) is $x = x_0$.