Álgebra Relacional: Outras Operações

- Álgebra Relacional [Outras Operações] -
- Operações sobre bancos de dados relacionais
 - Não pertencentes ao conjunto de operações da álgebra relacional convencional
- Operação de Atribuição (assignment)
 - →Às vezes, é importante escrever uma expressão da álgebra relacional em diferentes partes
 - Atribuir resultados das partes a relações temporárias

→Notação

```
← (notação alternativa `:=')
```

⇒Exemplo

$$ightharpoonup \text{rel1} \leftarrow \Pi_{\text{R-S}}((\Pi_{\text{R-S}}(r) \times s) - \Pi_{\text{R-S,S}}(r))$$

$$\Rightarrow$$
 rel2 $\leftarrow\Pi_{R-S}(r)$

resultado ← rel1 – rel2

OBS: Nomes de esquemas de relação (como R) indicam todos os atributos de tal relação. R – S denota todos os atributos de R que não existem / estão em S.

- Álgebra Relacional [Renomeação] -

- Operação Renomeação (Rename)
 - Pode renomear:
 - nome da relação;
 - nomes dos atributos da relação;
 - nome da relação e nomes dos atributos.

- Álgebra Relacional [Renomeação] -

Exemplos:

- → ρ_{comprador} (cliente)
- → ρ_(código, nome, rua, saldo, vendedor) (cliente)
- → P_{comprador(código, nome, rua, saldo, vendedor)} (cliente)

□ Observação:

 Indicada para ser utilizada quando uma mesma relação (ou um atributo) é usada(o) mais do que uma vez para responder à uma consulta.

- Álgebra Relacional [Renomeação] -

- Exemplo de uso:
 - Dado o esquema

Empregado(matr, nome, ender, cpf, lotação, mat_sup)

Onde matr é a PK e mat_sup é uma FK indicando a matrícula do Empregado supervisor, ou seja, um auto-relacionamento, escrever uma consulta que mostre o nome de cada empregado junto com o seu supervisor:

⇒Sup ← ρ_{supe}rvisor(mat_supervisor, nome_sup, ender_sup, cpf_sup, lotação_sup, mat_ssup)
(Empregado)

→ σ_{E.mat sup=Sup.mat supervisor}(Empregado x Sup)

- Álgebra Relacional [Outras Operações] -

- Projeção Generalizada
 - Estende a operação de projeção, permitindo que funções dos atributos sejam incluídas na lista de projeção. A forma generalizada pode ser expressa como:
 - →Notação:

$$\Rightarrow \Pi_{\text{F1, F2}},...,\text{Fn}(R)$$

- ⇒onde F1, F2 ,..., Fn são funções sobre os atributos na relação R e podem envolver operações aritméticas e valores constantes

Por exemplo, considere a relação: FUNCIONARIO(CPF, Salario, Deducao, Anos_em_servico)

Um relatório pode ser exigido para mostrar:

Salario liquido = Salario – Dedução, Bonus = 2.000 * Anos_em_servico e Imposto = 0,25*Salario

➡Uma projeção generalizada, combinada com a renomeação, pode ser usada da forma:

 $\begin{array}{l} \text{RELATORIO} \leftarrow \rho_{\text{(CPF, Salario_liquido, Bonus, Imposto)}} (^{\prod_{\text{CPF, Salario}_Deducao, 2000*Anos_em_servico, 0,25*Salario}(\text{FUNCIONARIO})) \end{array}$

- Álgebra Relacional [Outras Operações] -
- Funções de Agregação e Agrupamento
 - ►Funções de agregação aplicadas sobre uma coleção de valores do BD, como:
 - ⇒sum
 - Retorna o somatório dos valores de uma coleção
 - ⇒avg
 - Retorna a média dos valores de uma coleção
 - **→**max
 - Retorna o maior valor de uma coleção de valores
 - **⇒**min
 - Retorna o menor valor de uma coleção
 - **⇒**count
 - Retorna o número de elementos de uma coleção
 - **⇒**distinct
 - Algumas vezes, torna-se necessário eliminar repetições para o cálculo das funções agregadas
 - Para isso, concatena-se a palavra distinct após o nome da função

- Álgebra Relacional [Outras Operações] -
- Funções Agregadas (cont.)
 - **⇒**Exemplos
 - - Empregado(matr, nome, ender, salário, cpf, lotação)
 - matr é a chave primária de Empregado
 - Encontre o número de empregados lotados no departamento 001
 - \Rightarrow count($\Pi_{\text{matr}}(\sigma_{\text{lotação}=001} \text{ (Empregado))})$
 - Encontre o maior salário da empresa
 - \Rightarrow max($\Pi_{\text{salário}}$ (Empregado))
 - Encontre o salário médio da empresa
 - \Rightarrow avg-distinct($\Pi_{\text{salário}}$ (Empregado))
 - Encontre a quantidade de salários distintos no departamento 001
 - \Rightarrow count-distinct($\Pi_{\text{salário}}(\sigma_{\text{lotação}=001} \text{ (Empregado))})$
 - Encontre o primeiro e segundo maiores salários da empresa

- Álgebra Relacional [Operações Derivadas] -
- Operação de junção theta (theta-join)
 - Sejam r e s relações com esquemas R(A₁, A₂, ..., Aₙ) e S(B₁, B₂, ..., Bₙ), respectivamente;
 - →O resultado da operação junção theta entre r e s é uma relação T(r.A₁, r.A₂, ..., r.Aₙ, s.B₁, s.B₂, ..., s.B๓) definida por:
 → r ⋈ s = σ_{condição} (r x s)
 - condição de junção é da forma
 - $r.A_{g}\theta s.B_{i} \wedge r.A_{h}\theta s.B_{k} \wedge ... \wedge r.A_{m}\theta s.B_{L}$
 - Para cada $r.A_i θ s.B_j$, dom $(r.A_i)$ = dom $(s.B_J)$ e $θ∈{=, ≠, >, ≥, <, ≤}$
 - cada tupla de T é uma combinação entre uma tupla de r e uma tupla de s, sempre que a combinação satisfaça a condição de junção.

3. Modelo Relacional - Álgebra Relacional [Operações Derivadas] -

Operação de junção theta (cont.)

⇒Exemplo

Sejam r e s mostradas abaixo. Calcule T= r s

 $r.B \neq s.B$

Α	В
a1	b1
a1	b2
a2	b1

A	В	C
a1	b1	c1
a2	b3	сЗ
a2	b1	c4

	-			
r.A	r.B	s.A	s.B	s.C
a1	b1	a2	b3	с3
a1	b2	a1	b1	c1
a1	b2	a2	b3	c3
a1	b2	a2	b1	c4
a2	b1	a2	b3	c 3

- Álgebra Relacional [Operações Derivadas] -
- Operação de Junção de Igualdade (Equijoin)
 - →Operação de junção theta, cujo operador de comparação é a igualdade (=);
 - Sejam r e s relações com esquemas R(A₁, A₂, ..., Aₙ) e S(B₁, B₂, ..., B๓), respectivamente;
 - →O resultado da operação junção de igualdade entre r e s é uma relação T(r.A₁, r.A₂, ..., r.Aₙ, s.B₁, s.B₂, ..., s.B๓) definida por:

$$r \sim r \sim condição s = \sigma_{condição} (r x s)$$

$$r.A_g = s.B_i \land r.A_h = s.B_k \land ... \land r.A_m = s.B_L$$

Para cada r.A_i=s.B_J, dom(r.A_i) = dom(s.B_J)

- Álgebra Relacional [Operações Derivadas] -
- Operação de Junção de Igualdade (cont.)
 - **⇒**Exemplo
 - Considere as relações Departamento (d) e Empregado (e) mostradas abaixo. Calcule a seguinte junção de igualdade

Departamento

cod-dep	nome		ender	gerente
1	Informátic	а	R. X,10	21
2	R. Human	os	R. Y,5	11
3	Financeiro)	R. Z. 2	40

Empregado

Matr	Nome	cpf	salário	lotação
11	Bárbara	231	8000	2
21	André	451	9000	1
33	Sofia	472	3000	2
35	Lucas	549	500	2
37	Rebeca	465	400	3
40	Caio	555	800	1
57	Yasmin	800	400	1

- Álgebra Relacional [Operações Derivadas] -

Operação de Junção de Igualdade (cont.)

⇒Exemplo

Departamento d.cod-dep=e.lotação Empregado

d.cod-dep	d.nome	d. endei	d. gerente	e.matr	e.nome	e.cpf	e.salário	e.lotação
1	Informát ica	R. X,10	21	21	André	451	9000	1
1	Informática	R. X,10	21	40	Caio	555	800	1
1	Informática	R. X,10	21	57	Yasmin	800	400	1
2	R. Humanos	R. Y,5	11	11	Bárbara	231	8000	2
2	R. Humanos	R. Y,5	11	33	Sofia	472	3000	2
2	R. Humanos	R. Y,5	11	35	Lucas	549	500	2
3	Financeiro	R. Z, 2	40	37	Rebeca	465	400	3

Para cada empregado, listar seu nome e o nome do departamento onde está lotado.

- Álgebra Relacional [Operações Derivadas] -
- Operação de Junção Natural (Natural Join)
 - → Operação de junção de igualdade
 - Todos os atributos com o mesmo nome nas duas relações
 - Participam obrigatoriamente da condição de junção
 - ▶ Envolvidos no operador de comparação (=)
 ⇒ Aparecem só uma vez na relação resultado
 - Sejam r e s relações com esquemas

$$ightharpoonup R(A_1, A_2, ..., A_n, B_1, B_2, ..., B_i)$$
 e $S(B_1, B_2, ..., B_i, C_1, C_2, ..., C_m)$, respectivamente

→O resultado da operação junção natural entre r e s é uma relação T(r.A₁, r.A₂, ..., r.Aₙ,B₁, B₂, ..., Bᵢ,s.C₁, s.C₂, ...,s.Cォ) definida por:

Notação
$$\stackrel{\triangleright}{\sim}$$
 r.B₁ = s.B₁ ∧ r.B₂ = s.B₂ ∧ ... ∧ r.B_i = s.B_i

- Álgebra Relacional [Operações Derivadas] -
- Operação de Junção Natural (cont.)
 - **⇒**Exemplo
 - Considere as relações Departamento (d) e Empregado (e) mostradas abaixo. Calcule a seguinte junção natural:

Departamento M Empregado

Departamento

cod-dep	nome-dep		ender	gerente
1	Informátic	а	R. X,10	21
2	R. Human	os	R. Y,5	11
3	Financeiro)	R. Z. 2	40

Empregado

Matr	Nome	cpf	salário	cod-dep
11	Bárbara	231	8000	2
21	André	451	9000	1
33	Sofia	472	3000	2
35	Lucas	549	500	2
37	Rebeca	465	400	3
40	Caio	555	800	1
57	Yasmin	800	400	1

- Álgebra Relacional [Operações Derivadas] -

Operação de Junção Natural (cont.)

⇒Exemplo

d.cod-dep		d. ender	d.		e.nome	e.cpf	e.salário
	dep		gerente	e.matr			
1	<mark>Infor</mark> mática	R. X,10	21	21	André	451	9000
1	Inform ática	R. X,10	21	40	Caio	555	800
1	Informática	R. X,10	21	57	Yasmin	800	400
2	R. Humanos	R. Y,5	11	11	Bárbara	231	8000
2	R. Humanos	R. Y,5	11	33	Sofia	472	3000
2	R. Humanos	R. Y,5	11	35	Lucas	549	500
3	Financeiro	R. Z, 2	40	37	Rebeca	465	400