

Rechnernetze Kapitel 4: Network Layer – Forwarding, IPv4

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2021/22

Slides are based on:

J. Kurose, K. Ross: Computer Networks - A Top-Down Approach
A. Tanenbaum, D. Wetherall: Computer Networks

Inhalt

- Forwarding, Longest Prefix Matching
- Internet Protocol IPv4
- Hilfsprotokolle: ARP, ICMP, DHCP
- Routing
 IPv6

Network Layer

 Ende-zu-Ende Verbindung zwischen Sender und Empfänger

Sender

 Verpacken eines Transport Layer Segments in Datagramm

Empfänger

 Ausliefern des Datagramms an Transport Layer

Router

- interessieren sich *nicht* für Schicht 4/5
- kümmern sich nur um Weiterleitung zu Zielhost.

Zusammenarbeit von heterogenen Netzen

- IP ist das Bindeglied.
- Die Link-Layer kann unterschiedlich sein.

Aufgaben der Network Layer

Adressierung

- IP Adressen
- Identifikation von Sender und Empfänger.

Forwarding

- Weiterleitung von Eingangs- zu Ausgangsinterface?
- Oft in HW implementiert.

Routing (dt. Wegewahl)

- Berechnung der Wege mit Routingprotokollen
- Eintragung von Weiterleitungsregeln in Tabellen.
- Meist in SW implementiert.

IP ist verbindungslos.

Analogie

Routing

 Navigationssystem berechnet die Reiseroute.

Forwarding

 Navigation teilt Fahrer an einer Kreuzung mit, ob er links oder rechts abbiegen muss.

Network Layer: Forwarding und Routing

Forwarding / "Data Plane"

Lokale Funktion jedes Routers

Routing / "Control Plane"

- Automatische
 Wegeberechnung:
 Netzwerkweite Funktion
- Routingprotokoll == Nachrichten zwischen Routern

IP: Verbindungsloses Forwarding

- Weiterleitung des Pakets nur anhand der Ziel IP-Adresse.
- Jeder Router bestimmt anhand von Ziel-IP den Next-Hop.

Forwarding Table

Weiterleitung nach Zieladresse

- Router leitet nach Bereichen weiter, siehe Tabelle.
- Vorteil: Skalierbarkeit, da nicht jede einzelne Adresse Tabellenplatz belegt.

Zieladresse ("IP Adresse")				Ausgangs- port
11001000 bis	00010111	00010000	0000000	
	00010111	00010111	11111111	0
	00010111	00011000	00000000	
bis 11001000	00010111	00011000	11111111	1
11001000	00010111	00011001	0000000	
bis 11001000	00010111	00011111	11111111	2
sonst				3

Longest Prefix Matching

- Adressbereiche definiert durch *Prefix* (dt. "Präfix)
- Longest Prefix Matching:
 - Nachschlagen einer Ziel-IP (32 bit) in Forwardingtabelle.
 - Suche längsten Adresspräfix, der mit Zieladresse übereinstimmt.
- Beispiele: Welcher Ausgangsport?
 - Ziel-IP: 11001000 00010111 00010110 10100001
 - Port 0
 - Ziel-IP: 11001000 00010111 00011000 10101010
 - Port 1 (nicht Port 2, denn dieser Prefix ist kürzer)

Ziel-IP	Ausgangsport
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** *****	2
sonst	3

Publikums-Joker: Longest Prefix Matching (Single Choice)

Gegeben ist die Forwarding-Tabelle eines IP Routers. An welchen Port leitet er das Paket mit der folgenden Ziel-IP weiter?

- 10010100 10010001 01000010 01100001
- A. Port 0
- B. Port 1
- c. Port 2
- D. Port 3

Ziel-IP	Ausgangsport
1001001* ****** ***** *****	0
1001**** ****** ******	1
10010*** ****** ****** ****	2
****** ***** *****	3

Inhalt

- Forwarding, Longest Prefix Matching
- Internet Protocol IPv4
- Hilfsprotokolle: ARP, ICMP, DHCP
- RoutingSiehe Kapitel 5IPv6

Network Layer Protokolle

- Eigentlich besteht Network Layer aus mehreren Protokollen.
- Wichtig ist aber vor allem das Internet Protocol (IP)
 - Versionen IPv4 und IPv6

Format eines IPv4 Datagramms

IP Fragmentierung

Maximum Transfer Unit (MTU)

 Die meisten Link Layer
 Technologien erlauben nur eine maximale Framegröße.

IP Datagramm > MTU

- Router/Host zerlegt in kleinere "Fragmente"
- Zusammenbau am End-Host, nicht im Netz!
- IP Header Bits um Fragmente zu identifizieren und wieder zusammenzufügen

IP Fragmentierung: Wiederzusammenfügen

- 16 Bit Identifier: Identisch für alle Fragmente eines Pakets
- Fragmentation Flag: 0 markiert das letzte Fragment eines Pakets
- Offset: Byteposition innerhalb des Pakets, an die das Fragment gehört

Beispiel:

- 4000 Byte Datagramm
- MTU = 1500 bytes

offset =
8*185 = 1480
(Hinweis: Um Platz zu sparen,
wird Offset als Vielfaches von 8 Byte
angegeben)

Publikums-Joker: Fragmentation (Single Choice)

Welche der folgenden Aussagen ist falsch?

- A. Achtet ein HTTP Client darauf, dass die GET-Requests sehr klein sind, dann wird nie Fragmentierung auftreten.
- B. Kommt es zur Fragmentierung an einem Router, so wird das Paket am Next-Hop Router wieder zusammengesetzt.
- C. Fragmentierung verursacht immer ein wenig Overhead für den Betriebssystem-Kernel des Empfängers.

IP Adressierung

IP Adresse

- 32 Bit
- Identifiziert Host im Internet
- Gehört aber logisch gesehen zu Interface.

Interface

- Verbindung zwischen Host/Router und Link
- Router haben mehrere Interfaces.
- Jedes Interface benötigt 1 IP Adresse.

223.1.1.1 = 11011111 00000001 00000001 00000001 223 . 1 . 1 . 1

Schreibweise IP Adresse: Dezimalzahlen getrennt durch Punkte

Subnetze

- Was ist ein IP-Subnetz?
 - Hosts teilen sich gleichen IP Adresspräfix.
 - Hosts können sich ohne Router erreichen, gleicher Link!
 - Bsp: Ethernet, WLAN, etc.
- Subnetz ist über gemeinsamen Präfix adressierbar!
 - Subnetzmaske (rot): Länge des gemeinsamen Präfixes (z.B. /24)
 - Hostanteil: Bits der IP Adresse, die sich für jeden Host unterscheiden.
- Notation, Beispiel:
 - 223.1.3.0/24
 - Die ersten 24 Bits sind für alle Hosts des Subnetzes gleich.

Vorteil: Man muss nur Subnetzadressen in den Routingtabellen halten.

Subnetze

- Wie viele Subnetze sind vorhanden?
- Wie sieht Forwarding-Tabelle des obersten Routers aus?

Zielnetz	Next-Hop Interface
223.1.1.0/24	223.1.1.3 (eth1)
223.1.2.0/24	223.1.9.2 (eth3)
223.1.3.0/24	223.1.7.1 (eth2)
223.1.7.0/24	223.1.7.1 (eth2)
223.1.8.0/24	223.1.7.1 (eth2)
223.1.9.0/24	223.1.9.2 (eth3)

Classful Addressing

- Adressbereiche werden an Firmen, Universitäten, etc. übergeben.
- □ Früher: Nur Präfixe der Länge /8, /16 oder /24!
- Wieviel Hosts kann eine Class /24 bzw. ein Class /16 Netz haben?

Classless Addressing

- Classless Interdomain Routing (CIDR)
 - Subnetzteil einer IP-Adresse kann beliebige Länge haben.
- Notationen
 - Präfixnotation: z.B. 200.23.16.0/24
 - Mit Netzmaske: Adresse 200.23.16.0 + Netzmaske 255.255.255.0
 - Netzmaske gibt an, welche Bits zum Subnetz gehören!
- □ Adresszuweisung unter Linux 2 Alternativen → siehe Übung!
 - o ifconfig eth0 200.23.16.4 netmask 255.255.255.0
 - o ip addr add 200.23.16.4/24 dev eth0

11001000 00010111 00010000 00000000

200.23.16.0/24

Spezielle IPv4 Adressen

- Localhost, eigener PC
 - 0 127.0.0.1
- Private IPv4 Adressen
 - global nicht sichtbar, nur lokal im eigenen administrativen Netz zu verwenden.
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16
- Spezielle Adressen, die es in jedem Subnetz gibt.
 - Beispiel: 192.168.0.0/16 (Netzmaske: 255.255.0.0)
 - Broadcast-Adresse: 192.168.255.255
 - Für Nachrichten an alle Hosts des Subnetzes
 - Alle Bits des Hostanteils werden auf 1 gesetzt
 - Netzadresse kennzeichnet das Subnetz: 192.168.0.0
 - Alle Bits des Hostanteils werden auf 0 gesetzt
 - Sollte nicht auf Interface konfiguriert werden.

Wie bekommt man eine IP Adresse?

- Provider (ISP) weist Adressbereich aus seinem Adresspool zu
 - Hier: /20 wird in mehrere /23 Netze unterteilt
 - Publikumsjoker: Wie viele /23 Subnetze gibt es in /20?

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	11001000	00010111	00010000	00000000	200.23.16.0/23
Organization 1					200.23.18.0/23
Organization 2	11001000	00010111	<u>0001010</u> 0	00000000	200.23.20.0/23
•••				• • • • •	••••
Organization 7	11001000	00010111	00011110	00000000	200.23.30.0/23

Publikums-Joker: Subnetze (Single Choice)

Wie viele /23 Subnetze hat ein /20 Subnetz?

B. 4

D. 16

Hierarchische Adressierung

- Hierarchische Adressierung erlaubt kurze Forwardingtabellen!
- □ Im Beispiel genügt es, wenn man "im Internet" nur die Route 200.23.16.0/20 weiß.

Wie bekommt ein ISP seine IP-Adressen?

- Registry ICANN
 - Internet Corporation for Assigned Names and Numbers
 - http://www.icann.org
 - Zuständig für
 - Vergabe der IP Adressen
 - Domain Name System (DNS), Root Domains

- Regionale Registries bekommen große Adressblöcke von der ICANN und verteilen diese regional
 - Europa: Réseaux IP Européens Network Coordination Centre (RIPE)

Inhalt

- Forwarding, Longest Prefix Matching
- Internet Protocol IPv4
- Hilfsprotokolle: ARP, ICMP, DHCP
- RoutingSiehe Kapitel 9IPv6

Wie weist man Hosts eine IP Adresse zu?

Manuell

- Windows
 - Systemsteuerung / Netzwerk- und Freigabe Center / Adaptereinstellungen
- Linux
 - Manuell: ifconfig oder ip addr add
 - Persistent: /etc/network/interfaces

Automatisch per DHCP

- Dynamic Host Configuration Protocol
- Plug-and-Play
- IP Adresse wird automatisch durch Server zugewiesen

DHCP: Client-Server Szenario

DHCP: Client-Server Szenario

Dynamic Host Configuration Protocol (DHCP)

- Automatische Zuweisung über DHCP
 - DHCP Server leiht IP Adresse an Host aus Pool von Adressen aus.
 - Host kann zugewiesene IP Adresse ggfs. verlängern.
 - Eigentlich Schicht 4!

DHCP Funktionsweise

- Host sucht einen DHCP Server: DHCP Discover (optional)
 - Ziel IP Adresse: 255.255.255.255 (Broadcast)
- DHCP Server antwortet mit **DHCP Offer** (optional)
 - Ziel IP Adresse: 255.255.255.255 (Broadcast)
- Host fordert explizit IP Adresse an: DHCP Request
- DHCP Server weist Adresse zu: DHCP ACK

Network Layer Protokolle

Internet Control Message Protokoll (ICMP)

- Austausch von Information zwischen Host und Routern
 - Bei Fehler sendet Router einen Fehlerbericht, z.B. "Unreachable Host, Port, Protocol"
 - Echo Request/Reply: Ping
- ICMP Information wird als IP Paket versendet
- ICMP Nachricht enthält
 - Type + Code
 - Die ersten 8 Bytes des IP Pakets, das den Fehler versursacht

<u>Type</u>	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Address Resolution Protocol (ARP)

32-Bit IP Adresse

- Network Layer Adresse für ein Interface
- Forwarding auf Schicht 3

48-Bit MAC Adresse

- Fest verbunden mit Netzwerkadapter
- Verwendung: Lokal, für Zustellung auf einem "Link".

Aufgabe von ARP

- Auf dem Weg zum Ziel wird IP Paket über mehrere Links weitergeleitet.
- Jeder Router/Host schlägt Ausgangsport nach und leitet dann Paket weiter.
- Aber welche Ziel-MAC Adresse gehört zum Next-Hop Router/Host?
- Nötig: Übersetzen von IP in MAC Adressen

ARP Auflösung: IP zu MAC Adresse

IP Knoten

- Hosts und Router
- Nicht: Switches!
- Jeder IP-Knoten verwaltet eine ARP Tabelle
 - Speichert welche IP Adresse zu welcher MAC Adresse gehört
 - <IP Adresse; MAC Adresse; TTL>

- TTL (Time to Live)
 - Zeit nachdem Eintrag ungültig wird.
 - Oft nach 20 Minuten

ARP: Sender und Empfänger im gleichen LAN

- A möchte Datagramm zu B senden
 - B's MAC Adresse nicht in A's ARP-Tabelle
- A schickt ein **Broadcast** ARP Query Paket, das *B*'s IP Adresse enthält
 - Ziel MAC Adresse: FF-FF-FF-FF-FF
 - Alle Hosts im LAN empfangen ARP Query
- B empfängt ARP Query und informiert A in Antwort über B's MAC Adresse
 - Unicast Frame zu MAC A.

- A speichert nun IP/MAC-Adresspaar in seiner ARP-Tabelle bis die Information "veraltet" ist
- ARP ist "Plug-and-Play"
 - Hosts verwalten ihre ARP Tabelle ohne Konfiguration durch den Netzadministrator

Publikums-Joker: ARP (Single Choice)

Welche Aussage ist *falsch*?

- A. Ein ARP Paket wird in einem Ethernet Frame verpackt.
- B. Hin und wieder ist es beim Weiterleiten von IP Paketen erforderlich, dass ein Router/Host zunächst eine ARP-Anfrage stellt.
- Mit ARP werden IP Adressen zu MAC Adressen aufgelöst.
- D. Ein ARP Paket hat einen IP Header.

Sender und Empfänger in unterschiedlichen LANs (1)

- Ziel: Datagramm von A nach B über Router R senden
 - Annahme 1: A kennt IP Adresse von B. Woher?
 - Annahme 2: A kennt IP und MAC Adresse des Interfaces von Router R

Sender und Empfänger in unterschiedlichen LANs (2)

- A erzeugt IP Datagramm mit Source IP A und Dest IP B
- A erzeugt Link-Layer Frame mit R's MAC Adresse

Sender und Empfänger in unterschiedlichen LANs (3)

- Frame wird von A nach B geschickt
- R empfängt Frame, entfernt Ethernet Header, gibt Inhalt hoch zu Network Layer

Sender und Empfänger in unterschiedlichen LANs (4)

- R leitet IP Datagramm mit IP Source A und IP Dest B weiter
- R erzeugt Ethernet Frame mit B's MAC Adresse als Ziel, Frame enthält IP Paket von A zu B

Inhalt

- Forwarding und Routing
 - Unterschiede, Best-Effort Weiterleitung
- Internet Protocol IPv4
 - Adressen, Subnetze
- ARP, ICMP, DHCP
 - Wichtige Hilfsprotokolle