Python Standard

Raccourcis Clavier

(Notebook)

Exécuter la cellule		Ctrl + Enter
Exécuter et passer à la cellule suivante		Shift + Enter
Auto-complétion	(vscode)	Ctrl + Espace
Auto-complétion	(jupyter)	ТАВ

Types Primaires

Chaine de caractères	str	s=' 3.0 ' ou s= "False"
Nombre Entier	int	i=3
Nombre Flottant	float	f=3.0
Boolean	bool	b= True ou b= False
Liste	list	l=['3.0', False, 3]
Liste immuable	tuple	t=('3.0', False, 3)
Dictionnaire	dict	d={'pi': 3.14,'faux': False}
Ensemble	set	e={1, 4, 5, 10}
Objet nul		None
Lire le type d'une variable		type(variable)

Liste

Instancier une liste	l = [1, '2', False]
Ajouter un élément	l.append(value)
Insérer un élément	l.insert(i , value)
Supprimer un élément	l.remove(value)
Trier la liste	l.sort()
Concatener deux listes l1 et l2	l1 + l2

Chaine de caractères

Instancier une chaine	s = "texte"
Concaténer deux chaines	s + 'chaine2'
Test si <i>s</i> commence par <i>'te'</i>	s.startswith('te')
Test si <i>s</i> fini par 'te'	s.endswith('te')
Remplacer 'tex' par 'chan'	s.replace('tex', 'chan')
Formater	"%i / %s / %.2f" % (i, s, f)

Dictionnaire

Instancier une dictionnaire	d = {'key1': v1, "key1': v2}
Modifier un élément	d['key'] = value
Itérer sur un dictionnaire	for key, value in d.items():

Opérations Générique

Déclarer une fonction	<pre>def nom(arg1, arg2 = defaut):</pre>
Boucle: For	for i in range(n):
Boucle: While	while condition:
Condition: Si	if condition:
Condition: Sinon si	elif condition:
Condition: Sinon	else:
Afficher dans la console.	<pre>print("description:", valeur)</pre>
Commentaire	# Commentaire

Opérateurs

Égal / Différent	== / !=
Supérieur / Supérieur ou Égal	> / >=
Inférieur / Inférieur ou Égal	< / <=
Inversion booléenne	not
ET booléen / OU booléen	and / or
Test si nul	is None
a ^b	a ** b

Commun aux list, tuple, str...

Longueur	len(l)
Supprimer le ième élément	del l[i]
Tester si l'objet contient une valeur	<i>value</i> in l
Itérer sur la liste	for element in l:
Appliquer la fonction \mathbf{f} à toute la liste	[f(v) for vinl]
Filtrer la liste des objets nuls	[v for v in l if v is not None]

Indexes

Les indexes commence à 0!

Lecture / Écriture du ième élément	v=l[i] / l[i]=v
Accéder au ième dernier élément	l[-i]
Accéder du 2ème au 4ème éléments	l [1:4]
Accéder aux 3 premiers éléments	l[:3]
Accéder aux 3 derniers éléments	l[-3:]
Accéder à un élément sur deux	l[::2]
Inverser l'ordre des éléments	l[::-1]

Python CHEATSHEET

Manipulation de Signaux

Tableau (Matrices)

import numpy as np

Création de tableaux

Convertir une liste en tableau	arr = np.array([0,1,2])
Créer un tableau N x M de 0	arr = np.zeros((N,M))
Créer un tableau N x M de 1	arr = np.ones((N,M))
Créer une matrice identité N x N	arr = np.eye(N)
Vecteur: [j , j + i ,, k]	arr = np.arange(j, k, i)
Intervalle de \mathbf{j} à \mathbf{k} avec \mathbf{N} points	arr = np.linspace(j, k, N)
Charger depuis un fichier	arr = np.load('path')
Sauvegarder vers un fichier	<pre>np.save('path', arr)</pre>

☑ Propriétés des tableaux

-	
Type des données	arr. dtype
Nombre de dimensions	arr. ndim
Taille sur chaque dimension	arr. shape

Valeur minimale / maximale	arr.min() / arr.max()
Index de la valeur minimale	arr. argmin()
Index de la valeur maximale	arr. argmax()
Valeur moyenne	arr. mean()
Écart-type	arr. std()
Somme de tous les éléments	arr. sum()
Produit de tous les éléments	arr. prod()
Test si tout le tableau est vrai	arr. all()

Modifier le type de données	arr. astype (np.dtype)
Modifier les dimensions	arr. reshape((<i>d1, d2,</i>))
Permuter les axes	arr. transpose(a1, a2,)
Transformer en vecteur	arr. flatten()
Dupliquer le tableau	arr. copy()

ය Graphique

import matplotlib.pyplot as plt

Créer la zone du tracé

Créer un graph	fig, ax = plt.subplots()
Créer plusieurs sous-graphs	fig, axs = plt.subplots(<i>ny</i> , <i>nx</i>)
Afficher le graph	fig.show()
Choisir la taille du graph	fig.set_size_inches(width, height)

☑ Tracé le graphique

Tracer une courbe	ax.plot(x, y,label="nom", color='red',)
Tracer un nuage de point	ax.scatter(x, y,label="nom", color='r',)
Tracer un histogramme	ax.bar(x, height, label="nom", color='r',)
Trace un polygone	ax.fill(x, y, color='r',)
Tracer une ligne horizontal	ax .hlines(y, xmin, xmax)
Tracer une ligne vertical	ax.vlines(x, ymin, ymax)
Afficher une annotation	ax.annotate("texte", (xpos, ypos))
Affiche une image	ax.imshow(array, cmap="gray")

Spécifier un titre au graph	ax.set_title("Titre")
Spécifier un titre global	fig. suptitle("Titre de la figure")
Spécifier un titre à l'axe X	ax.set_xscale("Axe X")
Spécifier un titre à l'axe Y	ax.set_yscale("Axe X")
Désactiver les axes	ax.axis("off")
Afficher une grille	ax.grid(color='r', linewidth=2)
Affiche la légende	ax.legend()

Manipulation d'images

Charger une image	img = plt.imread("fichier.jpg ")
Accès à une région	$img[y_{min}:y_{max},x_{min}:x_{max}]$
Accès à un canal	img[:,:,canal]