

DRINKING WATER SURVEILLANCE PROGRAM

METRO TORONTO (R.L. CLARK) WATER TREATMENT PLANT

ANNUAL REPORT 1990

TD 380 .M483 1992 MOE

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact Service Ontario Publications at copyright@ontario.ca

TD 380 .M483 1992 Metro Toronto (R.L. Clark) water treatment plant : annual report 1990.

19376

METRO TORONTO (R.L. CLARK) WATER TREATMENT PLANT

DRINKING WATER SURVEILLANCE PROGRAM

ANNUAL REPORT 1990

HAZARDOUS CONTAMINANTS

COORDINATION BRANCH
COORDINATION BRANCH
COORDINATION BRANCH
TORONTO, ONTARIO MAY 1P5
TORONTO, ONTARIO MAY 1P5

SEPTEMBER 1992

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1992

This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 1980 Log 92-2302-277

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

METRO TORONTO (R.L. CLARK) WATER TREATMENT PLANT 1990 ANNUAL REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1990, 76 systems were being monitored.

The Metro Toronto (R.L. Clark) water treatment plant is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, sedimentation, filtration, fluoridation and disinfection. Ammonia is used in the disinfection process to convert free chlorine to a combined (chloramine) residual and sulphur dioxide is used to remove the excess chlorine. This plant has a rated capacity of 659.0 x 1000 m³/day. The Metro Toronto (R.L. Clark) water treatment plant together with the other Metro Toronto water plants, serves a population of approximately 2,333,300.

Water at the plant and at two locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), and organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons, specific pesticides and volatiles). Samples were analyzed for specific pesticides and chlorophenols twice a year in the spring and fall.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Metro Toronto (R.L. Clark) water treatment plant, for the sample year 1990, produced good quality water and this was maintained in the distribution system.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE A '.' INDICATES THAT NO SAMPLE WAS TAKEN

SITE RAW TREATED SITE 1 SITE 2 TESTS POSITIVE %POSITIVE TESTS POSITIVE %POSITIVE TESTS POSITIVE %POSITIVE %POSITIVE SCAN BACTERIOLOGICAL CHEMISTRY (FLD) CHEMISTRY (LAB) METALS CHLOROAROMATICS CHLOROPHENOLS PAH PESTICIDES & PCB PHENOLICS SPECIFIC PESTICIDES VOLATILES TOTAL

DRINKING WATER SURVEILLANCE PROGRAM

METRO TORONTO (R.L. CLARK) WATER TREATMENT PLANT 1990 ANNUAL REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1990, 76 systems were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Metro Toronto (R.L. Clark) water treatment plant in the spring of 1986. Previous annual reports have been published for 1986, 1987, 1988 and 1989.

PLANT DESCRIPTION

The Metro Toronto (R.L. Clark) water treatment plant is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, sedimentation, filtration, fluoridation and disinfection. Ammonia is used in the disinfection process to convert free chlorine to a combined (chloramine) residual and sulphur dioxide is used to remove the excess chlorine. This plant has a rated capacity of 659.0 x 1000 m³/day. The Metro Toronto (R.L. Clark) water treatment plant together with the other Metro plants serves a population of approximately 2,333,300.

The sample day flows ranged from 350.0 x 1000 m^3/day to 482.9 x 1000 m^3/day .

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

At all distribution system locations two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service

connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals, due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples therefore, were General Chemistry and Metals. The free flow sample represented fresh water from the distribution main, since the sample tap was flushed for five minutes prior to sampling.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

Stringent DWSP sampling protocols were followed to ensure that all samples were taken in a uniform manner (see Appendix B).

Plant operating personnel routinely analyze parameters for process control (Table 2).

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), and organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons, specific pesticides and volatiles). Samples were analyzed for specific pesticides and chlorophenols twice a year in the spring and fall. Laboratory analyses were conducted at the Ministry of the Environment facilities in Rexdale, Ontario.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary break-down of the number of water samples analyzed by parameter and by water type. The number of times that a positive or trace result was detected is also reported.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment laboratory staff and is quantifiable. Trace (<T) denotes that the

level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 presents the results for parameters detected on at least one occasion.

Table 6 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 5 and 6. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- THE TREATED AND DISTRIBUTED WATER;
- ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND
- POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples.

Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were reported above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance

organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of the delivered water may increase in the distribution system due to the warming effect of the soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Maximum Desirable Concentration of 15°C in 1 of 6 treated water samples. The exceedance occurred in August with a temperature of 18.5°C.

CHEMISTRY (LAB)

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and would possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Aesthetic or Recommended Operational Guideline of 80-100 mg/L in 8 of 8 treated and distributed water samples with a maximum reported value of 139.0 mg/L.

Total ammonium exceeded the European Economic Community Aesthetic Guideline Level of 0.05 mg/L in 7 of 8 treated and distributed water samples with a maximum reported value of 0.10 mg/L. Ammonia is used in the disinfection process to convert free chlorine to a chloramine. It is therefore to be expected to find slightly elevated ammonia levels in the treated and distributed water.

METALS.

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to indicate the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant, to avoid problems in the distribution system.

Aluminum exceeded the ODWO Aesthetic or Recommended Operational Guideline of 100 ug/L in 3 of 8 treated and distributed water samples with a maximum reported value of 290.0 ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

POLYAROMATIC HYDROCARBONS (PAH)

The results of the PAH scan showed that none were detected in the treated or distributed water.

PESTICIDES & PCB

The results of the PCB scan showed that none were detected.

The results of the regular pesticide scan showed that none were detected above trace levels.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs recommend, as an operational guideline, that phenolic substances in drinking water not exceed 2.0 ug/L. This limit has been set primarily to prevent undesirable taste and odours, particularly in chlorinated water. No results exceeded the guideline.

SPECIFIC PESTICIDES

The results of the specific pesticides scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane; bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THMs results are discussed.

Total THMs were found at positive levels in the 8 treated and distributed water samples analyzed with a maximum level of 20.8 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

CONCLUSIONS

The Metro Toronto (R.L. Clark) water treatment plant, for the sample year 1990, produced good quality water and this was maintained in the distribution system.

No known health related guidelines were exceeded.

R.L.CLARK WTP

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

WORKS #:

220002253

PLANT NAME:

METRO TORONTO (R.L. CLARK WTP)

DISTRICT:

TORONTO WEST

REGION:

CENTRAL

DISTRICT OFFICER:

J. RICHARDSON

UTM #:

176205404826460

PLANT SUPERINTENDENT: A. VUKOSAVLJEVIC

ADDRESS:

45 23RD ST.,

TORONTO, ONTARIO

M8V 3M6

(416) 392-2905

MUNICIPALITY:

METRO TORONTO

AUTHORITY:

MUNICIPAL

PLANT INFORMATION

PLANT VOLUME:

154.880 (X 1000 M3)

DESIGN CAPACITY: RATED CAPACITY: 455.000 (X 1000 M3/DAY) 659.000 (X 1000 M3/DAY)

MUNICIPALITY POPULATION BOROUGH OF EAST YORK 97,679 CITY OF TORONTO 615,000 CITY OF YORK 133,856 CITY OF ETOBICOKE 298,490 CITY OF NORTH YORK 556,308 REGION OF YORK (SOUTH) 170,000 CITY OF SCARBOROUGH 461,957

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

	60.0	t e		
PARAMETER		LOCATION	FREQUENCY	
	\$-	7.7		
			A	
ALUMINUM		TREATED WATER IN LAB	DAILY	
- W		RAW WATER IN LAB	WEEKLY	
			COMPANIONS	
FREE CHLORINE RESIDUAL		AFTER DISINFECTION	CONTINUOUS	
		AFTER FILTERS	CONTINUOUS	
COLOUR		AFTER SETTLING TANKS	DAILY	
COLOGR		AFIER SEITLING TANKS	DAIBI	
TOTAL CHLORINE RESIDUAL		TREATED WATER	CONTINUOUS	
TOTAL OLDONING TEOTOGE		***************************************		
FLUORIDE		TREATED WATER	EVERY 4 HOURS	
11.59		TREATED WATER	DAILY COMPOSITE	
AMMONIA TEST		TREATED WATER IN LAB	EVERY 2 HOURS	
		SETTLED WATER IN LAB	EVERY 2 HOURS	
	:#0 ^{#0}	FILTERED WATER IN LAB	Manager Committee Committe	
11 G a c		RAW WATER IN LAB	EVERY 2 HOURS	
		DAM MARRIE	CONTINUOUS	
PH		RAW WATER	CONTINUOUS	
TASTE & ODOUR		TREATED WATER IN LAB	HOURLY	
TASTE & ODOUR		FILTERED WATER IN LAB	HOURLY	
		TIDIDIOD WITH IN THE		3
TEMPERATURE		RAW WATER	CONTINUOUS	
			147	
TURBIDITY		AFTER FILTERS	CONTINUOUS	
		RAW WATER	CONTINUOUS	
		AFTER SETTLING TANKS	CONTINUOUS	
		TREATED WATER	CONTINUOUS	

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) SAMPLE DAY CONDITION 1990

		**	TREATMENT CHEMICAL PRE CHLORINATION	COAGULATION	POST CHLORINATION	FLUORIDATION	DECHLORINATION	CHLORAMINATION
DATE	DELAY * TIME(HRS)	FLOW (1000M3)	CHLORINE	ALUM LIQUID	CHLORINE	HYDROFLUOSILICIC ACID	SULPHUR DIOXIDE	ANHYDROUS AMMONIA
FEB 19	9.90	374.000	.80	3.00	3.40	.96	1.00	.20
APR 17	10.62	350.000	.80	3.00	2.00	.90	1.20	.20
JUN 18	7.59	482.900	.80	7.00	1.50	.93	.80	.20
AUG 20	8.08	408.700	.80	7.00	1.60	1.06	.80	.20
OCT 15	9.91	368.000	.80	5.00	1.30	1.06	.40	.20
DEC 18	8.50	421.000	.80	3.00	1.70	1.05	.90	.20

^{*} THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)
SUMMARY TABLE OF RESULTS (1990)

SCAN			RAW		18	EATED		e ·	SITE 1			SITE	٤
PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIV	E TRAC	CE
BACTERIOLOGICAL					\$				= 4				
FECAL COLIFORM MF	6	. 5	0						*			•	•
STANDRD PLATE CNT MF		n voe	1.0	. 6	1	0	1	0	0	1		1	0
TOTAL COLIFORM MF	6	4	. 0	e. 3 € 6		≥ •	•			:•		*	
T COLIFORM BCKGRD MF	6	6	0	s 16 8		*	1865					•	
*TOTAL GROUP BACTERIO	18		. 0	6	1	0	1	. 0	0	1	3. S] n ²	0
CHEMISTRY (FLD)													
FLD CHLORINE (COMB)	e		0.2	6	6	0	2	* 1	0	2		1	0
FLD CHLORINE FREE	- 2	1030	178 2	6	6	0	2	2	0	2		0	0
FLD CHLORINE (TOTAL)	* -		2 2	6	6	0	2	2	0	2		1.	0
FLD PH	6	6	Ō	6	6	0	2	2	0	2		2	0
FLD TEMPERATURE	6	6	ŏ	6	6	ŏ	2	2	Ŏ	2		2 .	0
FLD TURBIDITY	6	6	Ŏ	6	, 6	Ō	2	2	0.	2		2	0
*TOTAL SCAN CHEMISTRY	(FLD)					8 .	987			*		E 1	(a)
	18	18	0	36	36	0	12	11	0	12		8	0
												19	
***					w ^e .								
			327	-1									
CHEMISTRY (LAB)			1,5)	XII-			25.0				 sa		
CHEMISTRY (LAB) ALKALINITY	6	6	0	6	6	o	2	2	0	2		2	0
S 0	6 6	6 6	0	6 6	6	0	2 2	2 2	0	2 2		2	0
ALKALINITY										2		2	0
ALKALINITY CALCIUM	6	6	0	6	6	0	2 . 2			2 2			
ALKALINITY CALCIUM CYANIDE	6	6 0	0	6	6	0	2 . 2	2	0	2 2 2		2 2 0	0
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR	6 6	6 0 6	0	6	6 0 6	0 0 0	2 2 2	2 2 0 2	0	2 2 2		2 2 0	0
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY	6 6 6	6 0 6 0	0 0 0 6	6 6 6	6 0 6	0 0 0 . 6	2 2 2 2	2 2 0 2	0 0 2	2 2 2 2	© 11	2 2 0 2	0 . 0 2
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON	6 6 6	6 0 6 0 6	0 0 6 0	6 6 6	6 0 6	0 0 0 6 0	2 2 2 2 2	2 2 0 2 2	0 2 0	2 2 2 2 2 2 2 2	© 11	2 2 0 2 2	0 2 0
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE	6 6 6 6	6 0 6 0 6 6	0 0 6 0	6 6 6	6 0 6 0 6	. 6 0	2 2 2 2 2 2	2 2 0 2 2 2	0 2 0 0	2 2 2 2 2 2 2 2	© 11	2 2 0 2 2 2	0 .0200
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS	6 6 6 6 6	6 0 6 6 6 6	0 0 6 0 0	6 6 6 6 6 6	6 0 6 0 6 6 6	0 0 0 6 0 0 0 0	2 2 2 2 2 2 2 2	2 0 2 2 2 2 2 2	0 0 2 0 0	2 2 2 2 2 2 2 2 2 2	© 11	2 0 2 2 2 2 2 2	0.02000
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL	6 6 6 6 6 6 6	6 0 6 0 6 6 6 6	0 0 6 0 0 0	6 6 6 6 6 6 6	6 0 6 6 6 6 6	0 0 0 6 0 0 0	2 2 2 2 2 2 2 2 2 2	2 0 2 2 2 2 2 2 2	0 2 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	80 80 80 81 81 81 81 81 81 81 81 81 81 81 81 81	2 2 2 2 2 2 2 2 2	0.02000
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDÉX	666666666666666666666666666666666666666	6 0 6 0 6 6 6 6	0 0 6 0 0 0 0	6 6 6 6 6 6 6 6 6	6 0 6 6 6 6 6 6 5	0 0 0 6 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	0 0 2 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0200000
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM	666666666666666666666666666666666666666	6 0 6 0 6 6 6 6 6 6	0 0 0 6 0 0 0 0	6 6 6 6 6 5 6	6 0 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 6 0 0 0 0	2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2	0 0 2 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	0.02000000
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM	666666666666	6 0 6 0 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	6 6 6 6 6 6 6 6 6	6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 2 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	0.0200000
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM AMMONIUM TOTAL	666666666666666666666666666666666666666	6 0 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 6 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6	6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	2 . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 2 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	0.02000000
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE	666666666666666666666666666666666666666	6 0 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 6 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6	6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	2 . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 1	0 2 0 0 0 0 0 0 0 0 0 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	0.020000000010
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM ANMONIUM TOTAL NITRITE TOTAL NITRATES	666666666666666666666666666666666666666	6 0 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 0 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	2 . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 2 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	0.0200000000000000000000000000000000000
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM ANMONIUM TOTAL NITRITE TOTAL NITRATES NITROGEN TOT KJELD	666666666666666666666666666666666666666	6 0 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	2 . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0200000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 .20 22 22 22 22 21 22 21 22 2	0.0200000000100
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE TOTAL NITRATES NITROGEN TOT KJELD PH	666666666666666666666666666666666666666	6 0 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 0 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	2 . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 2 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	0.020000000010
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE TOTAL NITRATES NITROGEN TOT KJELD PH PHOSPHORUS FIL REACT	666666666666666666666666666666666666666	6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000600000000000000000000000000000000000	666666666666666666666666666666666666666	6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000600000000000000000000000000000000000	2 . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0200000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 .20 22 22 22 22 21 22 21 22 2	0.0200000000100
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE TOTAL NITRATES NITROGEN TOT KJELD PH PHOSPHORUS FIL REACT PHOSPHORUS TOTAL	666666666666666666666666666666666666666	6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000600000000000000000000000000000000000	666666666666666666666666666666666666666	606066666600666000	000600000000000000000000000000000000000	2 .222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0200000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 .200222222221222	0.02000000001000
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM ANMONIUM TOTAL NITRITE TOTAL NITRATES NITROGEN TOT KJELD PH PHOSPHORUS FIL REACT PHOSPHORUS TOTAL SULPHATE	666666666666666666666666666666666666666	6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0006000000012000400	666666666666666666666666666666666666666	6060666666660666006	000600000000000000000000000000000000000	2 .222222222222222	2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0200000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 .20 2 2 2 2 2 2 2 2 1 2 2 2	0.020000000010000
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM AMMONIUM TOTAL NITRITE TOTAL NITRATES NITROGEN TOT KJELD PH PHOSPHORUS FIL REACT PHOSPHORUS TOTAL	666666666666666666666666666666666666666	6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000600000000000000000000000000000000000	666666666666666666666666666666666666666	606066666600666000	000600000000000000000000000000000000000	2 .222222222222222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0200000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 .200222222221222	0.02000000001000
ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SODIUM ANMONIUM TOTAL NITRITE TOTAL NITRATES NITROGEN TOT KJELD PH PHOSPHORUS FIL REACT PHOSPHORUS TOTAL SULPHATE	666666666666666666666666666666666666666	6 0 6 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0006000000012000400	666666666666666666666666666666666666666	6060666666660666006	000600000000000000000000000000000000000	2 . 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.0200000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 .20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 .020000000010000

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)
SUMMARY TABLE OF RESULTS (1990)

CAN	7074		TD / CF			****	T074	0001711-	***	7071	0001711	TD 4 C*
ARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
ETALS												
ILVER	6	0	0	6	0		2			2	0	9
LUMINUM	6	- 6	0	6	6	0	2			2	2	9
RSENIC	- 6	0	6	6	0	6	2	0	2	2	0	
ARIUM	6	6	0	6	6	0	2			2	2	
ORON	6	6	0	6	6	0	2	2	0	2	2 0	
ERYLLIUM	6	0	1	. 6	0	0	2	0	0	2	1	
ADMIUM OBALT	6	. 0	2	6	0	1	. 2	0	1	2	ò	
HROMIUM	6	0	6	6	0	6 5	2	1	1	2	0	
OPPER	6	- 5	5 1	6	0	6	2	1	2	2	2	
RON	6	2	. 4	6	0	. 0	2	0	2	2	٥	
IERCURY .	6	0	0	6	0	1	2	U	2		U	
IANGANESE	6	6	0	6		2	2	ż	Ö	2	2	
IOLYBDENUM	- 6	. 6	Ö	. 6	6	. 0	2	2	0	2	2	
ICKEL	6	1	5	6	0	6	2	1	1	2	1	
EAD	. 6	2	4	. 6	0	5	2	. 2	ò	2	. 2	
INTIMONY	6	6	0	6	5	1	2	2	Ö	2	2	
ELENIUM	6	ő	1	6	ó		2	ō	ő	2	ō	i
TRONTIUM	- 6	6	ò	6	6	ó	2	2	ŏ	2	2	
ITANIUM	6	2	4	6	1	5	2	ō	200	. 2	ō	- 2
HALLIUM	6	ō	ŏ	6	ò	Ō.	2	ō	ō	. 2	Ö	(
RANIUM	6	Ŏ	6	6	ŏ	6	2	ŏ	ž	2	Ŏ	
ANADIUM	6	Ŏ	6	6	ŏ	6	2	Ŏ	2	2	Ö	
INC	6	5	Ĭ	6	3	3	2	2	ō	2	2	Ċ
TOTAL SCAN METALS											2)	- 22.
	144	59	52	144	43	61	46	21	16	46	22	14
TOTAL GROUP INORGANI	C & PHY	SICAL										
	294	189	65	311	179	82	96	67	19	96	65	17
	******		*****									
HLOROAROMATICS	S * 3											
EXACHLOROBUTAD I ENE	6	0	0	6	0	0	1	0	0	1	0	(
23 TRICHLOROBENZENE	6	. 0	0	- 6	0	0	1	0	0	1	0	. (
234 T-CHLOROBENZENE	6	0	0	6	0	0	1	0	0	1	0	(
235 T-CHLOROBENZENE	6	. 0	0	6	0	0	1	0	0	1	0	
24 TRICHLOROBENZENE	6	0	0	6	0	0	- 1	0	0	1	0	(
245 T-CHLOROBENZENE	6	. 0	. 0	6	0	0	. 1	0	0	1	0	(
35 TRICHLOROBENZENE	6	0	0	6	0	0	1	0	0	1	0	9
C8	6	. 0	0	6	0	0	1	. 0	0	1	0	. (
EXACHLOROETHANE	6	0	0	6	0	0	1	0	. 0	1	0	(
CTACHLOROSTYRENE	6	0	0	6	0	0	1	0	0 -	1	0	9
ENTACHLOROBENZENE	6	0	0	6	0	. 0	1	0	0	1	0	9
36 TRICHLOROTOLUENE	6	0	0	6	0	0	1	0	. 0	1	0	9
LS TUTCHI DOOTOI IEUE	6	0	. 0	6	0	0	1	0	0	1	0	
		0	0	6	0	0	1	0	0	1	. 0	- 0
45 TRICHLOROTOLUENE 6A TRICHLOROTOLUENE	6	3702										
	(E)		0	84	0		14		0	14	0	(

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)

SUMMARY TABLE OF RESULTS (1990)

SCAN		T ₀ = 14	RAW		ŢI	REATED			SITE 1			SITE	2
PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRA	CE
CHLOROPHENOLS													-7
234 TRICHLOROPHENOL	2	0	0	2	0	. 0			1		=		: e:
2345 T-CHLOROPHENOL	2	0	. 0	2	0	0	2						
2356 T-CHLOROPHENOL	2	0	0	2		0				E 20 20 10 €	14	[_ K	120
245-TRICHLOROPHENOL	2		0	2		0			N				1.00
246-TRICHLOROPHENOL	2	0	0	2		0							7.00
PENTACHLOROPHENOL	2		0	. 2		0		•					(*)
TOTAL SCAN CHLOROPHE	NOLS	€0 = 1											
	12	0	0	12	0	0	0	0	0	0	0		0
												••••	
PAH													
PHENANTHRENE	5	0	. 0	6	0	0							
NTHRACENE	4	Ö	1	5	0	ő	× :*	(*)	A 4		•		3.00
LUORANTHENE	5	. 0	ò	6	0	Ö	•		***	•	(30)		(*)
YRENE	5	0	0	- 3	0	0	•	(6)		•	•		
	5	- 3	. 0	6	0	-74		•		•	**		•
ENZO(A)ANTHRACENE		0	870	6	- T	0		•	•	10 ×	•		•
HRYSENE	5	0	0	6	0	0							
IMETH. BENZ(A)ANTHR	4	0	0	5	0	0	9.€		3.0				
ENZO(E) PYRENE	5		0	6	0	0) • :	30.1		¹⁷ 17 3.€0			
ENZO(B) FLUORANTHEN	5	0	0	6	. 0	0			•	// e :			
ERYLENE	- 5	0	0	6	0	0				(F ±)	6 g *		
ENZO(K) FLUORANTHEN	5	0	1	6	. 0	0	n 16		· ·	2 3	•		•
ENZO(A) PYRENE	4	0	. 0	. 5	0	0		2	¥1	1			•
ENZO(G,H,I) PERYLEN	5	. 0	0	6	0	0		8		W (#			•
IBENZO(A,H) ANTHRAC	5	. 0	0	6	. 0	0		-	M 17				(4)
NDENO(1,2,3-C,D) PY	5	0	0	6	0	0							
ENZO(B) CHRYSENE	5	0	0	6	0	0			. # .	1,000			
ORONENE	5	. 0	0	6	. 0	0							•
TOTAL SCAN PAH							(a)						
* **	82	0	2	99	0	0	0	0	0	. 0	0		0
ESTICIDES & PCB					81 _K								
LDRIN	6	0	0	6	0	0	, 1	0	0	1	0		0
LPHA BHC	6	0	5	6	0	- 5	1	. 0	1	1	0		1
ETA BHC	6	0	0	6	. 0	0	1	0	0	- 1	0	10	0
INDANE	6	. 0	0	6	0	0	1	0	0	1	. 0		0
PHA CHLORDANE	6	0	. 0	6	0	0	1	0	0	1	0		0
MMA CHLORDANE	6	0	0	. 6	0	0	1	0	0	1	0		0
ELDRIN	6	, 0	0	6	0	0	1	0	0	1	0		0
THOXYCHLOR	6	0	0	6	Ō	0	1	Ö	0	1	0		0
DOSULFAN 1	6	Ö	0	6	Ō	ō	1	. 0	0	1	ō		0
IDOSULFAN II	6	ŏ	o	6	ő	ŏ	i	ő	ŏ	1	ŏ		ŏ
IDRIN	6	ŏ	ŏ	6	Ö	ő	,	Ö	ő	i	ő		ŏ
IDOSULFAN SULPHATE	6	. 0	. 0	6	. 0	. 0	1	. 0	ő	i i	ő		Ö
PTACHLOR EPOXIDE		0	0			25	1	0	WE!	(259)	. 0		0
	6			6	0	0		100	0	1	141		
PTACHLOR	6	0	0	6	. 0	0	1	0	- 0	1	0		0
REX	6	0	0	6	0	0	1	0	. 0	1	0		0
		0			•	0	1	0	0	1	. 0		0
	6		0	6	0	3.5				52			
PDDT	6	0	0	6	0	0	i	0	0	i	Ō		0
PDDT					9.53	3.5				52	0		0
XYCHLORDANE PDDT CB DD	6	0	0	6	0	0	í	0	0	1	Ō		-

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)

SUMMARY TABLE OF RESULTS (1990)

			RAW			REATED			SITE 1			SITE 2
SCAN PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
PPDDT	6	0	0	6		0	1	0		1	0	0
AMETRINE	6	ő	ő	6	ŏ		V/m		. un•			1/20
ATRAZINE	6	ŏ	ĭ	6	ŏ					(1988) Waste		8.50 980
ATRATONE	6	Ŏ	ó	6	Ŏ		1.5	, a 💒			:	190 200
CYANAZINE (BLADEX)	6	ō	ŏ	6	ŏ	4 1554	11.55	-		_	570	* 12
DESETHYLATRAZINE	. 6	0	Ō	6	Ŏ	4 - 1200	1100			10±0	10 san	970 980
D-ETHYL SIMAZINE	6	- 0	Ō	6	- 0	Ō		_		2.0	301	
PROMETONE	6	0	0	6	0			-				(* 0)
PROPAZINE	6	Ō	0	6	0	Ō		a 🚡	-,70		: = **V	
PROMETRYNE	6	0	0	- 6	0	0					±	
METRIBUZIN (SENCOR)	6	0	0	6	0	0	1,00				19.3	•
SIMAZINE	6	0	. 0	6	0	0						9.0
ALACHLOR (LASSO)	6	0	0	6	0	0	100				18 0	500
METOLACHLOR	6	0	0	6	0	0			7 o 🙀		•	
HEXACLCYCLOPENTADIEN	2	0	0	2	0	0	1	0	0	1	0	0
*TOTAL SCAN PESTICIDE	S & PCI 206	3 0	6	206	0	7	22	0	1	22	0	1
PHENOLICS		11										
PHENOLICS	6	0	5	6	3	3	•	7.		•	≥ €	(a)
*TOTAL SCAN PHENOLICS	6	0	5	6	3	3	0	0	0	0	0	0
SPECIFIC PESTICIDES	•••••											
TOXAPHENE	6	0	0	6	. 0	0	1	0	0	1	0	0.
2,4,5-T	. 2	ŏ	Ö	2	ő	Ö	72.		N 19	(%)	•	•
2,4-D	. 2	ŏ	ŏ	2	. 0	ŏ	(= 0)		-	(a) (a)		•
2,4-DB	2	Õ	ō	- 2	ō	ō			1122	E) (400	n., .	121
2,4 D PROPIONIC ACID	. 2	Ŏ	Ō	2	. ŏ	· ŏ	(20)	15	- T	1907 (#1) - 10 (#2)	- 1	2
DICAMBA	2	Ŏ	Ŏ	2	Ö	ō	/## (Sc.	150	- 13	(5) (2)	5 . 3	61 20
PICHLORAM	ō	Ö	Ō	ō	Ō	. 0		1.5	(2.5 <u>m</u>	- ×	8 25	87. E.,
SILVEX	. 2	0	0	2	0	. 0	180		100			
DIAZINON	2	Ŏ	ŏ	2	Ö	O		10				***
DICHLOROVOS	2	0	0	2	0	0	·		- 1 · ·			. E
CHLORPYRIFOS	2	0	0	2	0	0		7.				(# V
ETHION	2	0	0	2	. 0	- 0			•		¥	
AZINPHOS-METHYL	0	0	0	0	0	0	(*)	V 1.00				
MALATHION	2	0	0	2	0	0						
MEVINPHOS	2	0	0	2	0	0			7/₩	2000		
METHYL PARATHION	2	0	0	2	0	0		i di		•	•	• "
METHYLTRITHION	2	0	0	2	0	0	*					⊕ .
PARATHION	2	0	0	2	0	0			•	20	•	
PHORATE	1	0	0	1	0	0				•	7	
RELDAN	2	0	0	2	0	0		· ·	9796	(.	•	
RONNEL	2	0	0	2	0	0		(●)	**:		•	
AMINOCARB	0	0	0	0	0	0		760			*	*
BENONYL	0	0	0	0	0	0				•	721	*
BUX CARBOFURAN	0	0	0	. 0	0	0	₩				*	
CICP	2 2		0	2	0	0	•	•	•		Ĭ.	
DIALLATE	2	. 0	0	2	0	0	*	1.00			•	· *
DIALLAIE	. 2	U	U	2	U	U	•	1000	1	•		* .,

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP)

SUMMARY TABLE OF RESULTS (1990)

			RAW		. T	REATED			SITE 1		R	SITE 2
SCAN PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
EPTAM	2	0	0	2		0						
IPC	2	0	0	. 2	0	0		*				Y \$87
PROPOXUR	2	0	0	2	0	0	2		1 2			4
CARBARYL	2	0	Ō	2	Ò	Ō			2	12	2 = 5 3 74 5	
BUTYLATE	2	Ō	Ŏ	2	Ö	0 N.S.						
*TOTAL SCAN SPECIFIC	PESTIC	IDES									2041	
8 THE STREET	57	- 0	0	57	0	0	. 1	- 0	0	1		. 0
580												
9 140							7.60					
VOLATILES				*)	32(4))	9 .						
BENZENE	6	0	0	6	- 0	-	1	0		1	5 v. 15	N 1970
TOLUENE -	6	0	1	6	0		1	0		_ 1	5 0.7	77. STA
ETHYLBENZENE	6	0	1	6	0	3	1	0	•	1	1 7	···
P-XYLENE	6	0	0	6	0	0	1	0	0	1		0
M-XYLENE	6	0	0	6	. 0	1	1	0	0	1	- 0	0
O-XYLENE	6	0	0	6	0	1	1	. 0	0	1		0
STYRENE	6	0	2	6	0	4	1	0	1	1		0
1.1 DICHLOROETHYLENE	6	. 0	0	6	. 0	0	. 1	0	0	1	C	0
METHYLENE CHLORIDE	- 6	0	0	6	0	0	1	.0	0	1		0
T1, 20 ICHLOROETHYLENE	6	Ô	0	. 6	Ō	0	1	0	0	1		0
1,1 DICHLOROETHANE	6	. 0	0	6	. 0	0	1	0	0	1		0
CHLOROFORM	6	Ď	1	. 6	6	-	1	9.4	0	1	1	- 0
111. TRICHLOROETHANE	6	Ö	Ó	6	ō		1	n	0	. 1		0
1,2 DICHLOROETHANE	6	ŏ	ŏ	6	ŏ	30.00	1	ŏ	ō	1	Č	⊕ 5
CARBON TETRACHLORIDE	6	ő	ő	6	Ŏ	1	•	Ō	Ö		ò	
1.2 DICHLOROPROPANE	6	Õ	ő	6	0		,	. 0	200		Č	
TRICHLOROETHYLENE	6	0	Ö	6	0	0	4	0		1	ř	0
DICHLOROBROMOMETHANE	6	Õ	Ö	6	6	0	4	1	ő		, ,	Ö
112 TRICHLOROETHANE	6	0	0	6	0	ő	- 1	0	-		Ċ	
				- T		0		1				0
CHLOROD I BROMOMETHANE	6	. 0	. 0	6	6	0		0	3.5	1	C	
T-CHLOROETHYLENE	6		0	. 6	0	12.68	- 1	0	U.23	4	Č	
BROMOFORM	6	0	0	6		577	- 1	170 188	- 50	į	ď	
1122 T-CHLOROETHANE	6	0	. 0	. 6	. 0	0	1	0	2.5		E - 22	. 51 2350.
CHLOROBENZENE	6	0	0	6	0	0	177	0	307	1	0	1 N
1,4 DICHLOROBENZENE	. 6	0	0	6	0	0	1	0	0]	Q	A 050
1,3 DICHLOROBENZENE	6	. 0	0	6	0	0	- 1	. 0		1	0	
1,2 DICHLOROBENZENE	6	.0	0	6	0	0	1	0	100	1	Q	
ETHLYENE DIBROMIDE	6	0	0	6	0	187	1	0	111 32	1	0	- 70
TOTL TRIHALOMETHANES	6	. 0	0	6	6	0	1	1	0	1	1	0
*TOTAL SCAN VOLATILES		y v							a = _	12. 1000-000		2
*TOTAL GROUP ORGANIC	174	0	5	174	24	21	29	4	4	29	4	2
TOTAL GROUP ORGANIC	621	0	18	638	27	31	66	. 4	- 5	66	- 4	3

KEY TO TABLE 5 and 6

- ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 1+. MAC for Total Trihalomethanes

 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)

 - 3*. AO for Total Xylenes 4. Recommended Operational Guideline
- HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC

 - 3. Interim MAC
 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 2. Tentative GV
 3. Aesthetic GV
- US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - 2. Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory

 - 4. EPA Ambient Water Quality Criteria
 47. EPA Ambient Water Quality Criteria for Total PAH
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE G
- NEW YORK STATE AMBIENT WATER GUIDELINE
- NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

•	No Sample Taken
BOL	Below Minimum Measurement Amount
≺T	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
!CS	No Data: Contamination Suspected
!IL	No Data: Sample Incorrectly Labelled
!IS	No Data: Insufficient Sample
IIV .	No Data: Inverted Septum
ILA	No Data: Laboratory Accident
!LD	No Data: Test Queued After Sample Discarded
!NA	No Data: No Authorization To Perform Reanalysis
INP -	No Data: No Procedure
INR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!QU	No Data: Quality Control Unacceptable
!PE	No Data: Procedural Error - Sample Discarded
!PH	No Data: Sample pH Outside Valid Range
IRE	No Data: Received Empty
!RO	No Data: See Attached Report (no numeric results)
!·SM	No Data: Sample Missing
!SS	No Data: Send Separate Sample Properly Preserved
IUI	No Data: Indeterminant Interference
!TX	No Data: Time Expired
A3C	Approximate, Total Count Exceeded 300 Colonies
APL	Additional Peak, Large, Not Priority Pollutant
APS	Additional Peak, Less Than, Not Priority Pollutant
CIC	Possible Contamination, Improper Cap
CRO	Calculated Result Only
PPS	Test Performed On Preserved Sample
RMP	P and M-Xylene Not Separated
RRV	Rerun Verification
RVU	Reported Value Unusual

Several Peaks; Small, Not Priority Pollutant

UCR	Unreliab	ole: Could Not Confirm By Reanalysis
UCS	Unreliat	ole: Contamination Suspected
UIN	Unreliab	ole: Indeterminate Interference
XP	Positive	After X Number Of Hours
T#	(T06)	Result Taken After # Hours

WATER TREATMENT PLANT

		RAW		TREAT	TED .	SITE	1		= 100	SITE	2	70
					STANDII	NG .	FREE	FLOW	STANDING		FREE F	LOW
		BACTERIOLOGICAL									1 30	
FECAL CO	LIFORM MF	(CT/100ML)			DET'N LIM	T = 0		GUIDELINE :	= U (A1)			
FEB		3			or an in							2
APR		1	15 .						5.0	M S		
JUN		ò	(1.e.)									200
AUG	19	24			# # F	 (1		•	4	K.		j. x
OCT		1				•		•	34			
DEC	50.19	1	•			* , *				•8 •0		•
DEC		4	•							. .		
TANDRD	PLATE CNT	MF (COUNT/ML)			DET'N LIM	T = 0		GUIDELINE =	= 500/ML (A3)			F1 4
FEB			0	<=>								7 (2)
APR		•		<=> ;	*			* " =	5 30 3			(5)
JUN		•	227.00			1 5%		•	18	e e		1.0
AUG		• a		<=>		•3	•	•		9) 		(1.54
OCT		•		<=>					, 🔻 🕶		eve Vi	,•
DEC				<=>				2 <=>	1	· 3an -		40
DEC			·	·						. .		
OTAL CO	LIFORM MF	(CT/100ML)			DET'N LIM	T = 0		GUIDELINE =	5/100ML(A1)			
	40	.								190		
FEB		20	() * ()			• .				18 =		3.8
APR		SO <=>						•	(·	12		
JUN		6	•			***		F ()		•0		9€0
AUG	54					9 1 ≈ × 1				13		150 0
OCT	26		•		Xi.	•				87 - 79		8.00
DEC		57 <=>	•			<u>-</u> ∰,						*
COLIFO	RM BCKGRD	MF (CT/100ML)			DET'N LIMI	T = 0		GUIDELINE =	: N/A			
					5				8			
FEB	650	00	5					((((C) ≥ 1 − 1)	n 1 5			
APR	22	20	- A			· · · · · · · · · · · · · · · · · · ·		: (a)				SI#8
JUN	960	0 >	188		Si giv	±0.		W##				7.■
AUG	3200					3 2	į.	- V-				350
OCT	660					## @		- 100 100				
DEC	35				1.64 (54)			(S)				
100000000000000000000000000000000000000	**	N-9						17 4 0				

WATER TREATMENT PLANT

		RAW T	REATED SI	TE 1	SI	TE 2
			STANDING	FREE FLOW	STANDING	FREE FLOW
	CHEMIS	TRY (FLD)				
LD CHLORINE	(COMB) (MG/	'L)	DET'N LIMIT = 0	GUIDELINE	= N/A	
FEB	19 ¹ 1	.670		, , , , , , , , , , , , , , , , , , ,	i i	
APR	(;••);	.300				
JUN	(●)	.700		:●1 •0		V 8
AUG	II **	.600	•	::		
OCT	•	.700		- 1 · 1		The same of
DEC		.650	.000	.400	.000	.250
LD CHLORINE	FREE (MG/L)	DET'N LIMIT = 0	GUIDELINE	= N/A	
FEB	•	.080	c =	5. 2 # 9	o	
APR	•	.100				
JUN	(4)	.100	## ## ## ## ## ## ## ## ## ## ## ## ##		2	
AUG	161	.300	<u> </u>		크 3 즐	
OCT		.100		•	**************************************	
DEC	(75) (4) (1 0)	.100	.200	.200	.000	.000
LD CHLORINE	(TOTAL) (MG	/L)	DET'N LIMIT = 0	GUIDELINE	= N/A	
FEB		.750		*	·	- 19
APR		.400				1
JUN		.800	10 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	150 35	N R	6
AUG	40 <u>2</u> 0	.900		3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2.5
OCT		.800	<u> </u>		_	
DEC		.750	.200	.600	.000	.250
LD PH (DMNS	LESS)		DET'N LIMIT = N/A	GUIDELINE	= 6.5-8.5(A4)	· · · · · · · · · · · · · · · · · · ·
FEB	8.200	7.200			(C)	
APR	8.400	7.450			a ្រ្	7
JUN	8.300	7.400		-		3
AUG	8.700	7.500				
OCT	8.300	7.400		19		100
DEC	8.100	7.400	7.400	7.400	7.300	7.200
LD TEMPERAT	URE (DEG.C)	DET'N LIMIT = N/A	GUIDELINE	= 15 (A3)	7
FEB	3.000	4.000			F (C	E 1 N
APR	4.500	6.300	3.4		S 52 5	
JUN	6.300	8.800	3.€			
AUG	19.200	18.500	•			()•
OCT	13.700	12.900	()		<u></u>	5
DEC	3.400	4.800	12.000	8.000	22.500	7.000
LD TURBIDIT	Y (FTU)	DET'N LIMIT = N/A	GUIDELINE	= 1 (A1)	
FEB	4.200	.280		, 10 m ²	1€ 0	. *
APR	1.000	.180		ž ×		•
JUN	.900	.110	· • • • • • • • • • • • • • • • • • • •	11 ₀	* ×	
AUG	6.500	.250	:•0		1.00	
OCT	.700	-140	12			
DEC	1.200	.300	.570	.350	.380	.270

WATER TREATMENT PLANT

	, R	AW TRE	ATED SITE	2 S S	SIT	E 2
*1	<u>0</u>		STANDING	FREE FLOW	STANDING	FREE FLOW
	CHEMISTR	(LAB)				
ALKALINIT	Y (MG/L)		DET'N LIMIT = 0.2	GUIDELINE	= 30-500 (A3)	E 50
FEB	105.700	94.100		2.	© 24.	8
APR	101.300	92.500	₩	C#	100 Sept.	
JUN	102.500	91.300	* <u>*</u>	700	(A)	130 2
AUG	96.500	87.100		1 4 4	2 Table 2	
OCT	98.600	90.300	× *5		1 8	
DEC	103.900	95.200	96.900	95.600	96.800	95.700
CAÉCIUM (4G/L)		DET'N LIMIT = 0.2	GUIDELINE	= 100 (F2)	
FEB	40.300	38.900	× 2		0 ₃ ***	ia a
APR	40.100	39.800	**************************************	- See (¥)		
JUN	40.600	39.800	**************************************	¥ 2 <u>1</u>	_ +: **** ×	, i
AUG	38.800	39.200		### X##	18 <u>2.</u>	
OCT	41.200	41.000		. 	· ·	1. # /
DEC	41.200	41.200	41.000	40,200	40:800	41.000
CHLORIDE	(MG/L)		DET'N LIMIT = 0.2	GUIDELINE	= 250 (A3)	
FEB	37.400	41.500	»	3 0 P	a	
APR	24.200	27.000			**************************************	Na.
JUN	23.800	26.200			*	
AUG	21.800	24.300	2 *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a 🚉 ×	
OCT	22.500	24.300	_			<u> </u>
DEC	26.100	28.800	28.100	27.800	27.400	28.300
COLOUR (HZ	2U)	18	DET'N LIMIT = 0.5	GUIDELINE :	= 5 (A3)	
FEB	1.000 <t< td=""><td>1.000 <t< td=""><td>* * * * * * * * * * * * * * * * * * * *</td><td>6 · *</td><td></td><td></td></t<></td></t<>	1.000 <t< td=""><td>* * * * * * * * * * * * * * * * * * * *</td><td>6 · *</td><td></td><td></td></t<>	* * * * * * * * * * * * * * * * * * * *	6 · *		
APR	1.500 <t< td=""><td>1.000 <t< td=""><td>),1,</td><td></td><td></td><td>454 224</td></t<></td></t<>	1.000 <t< td=""><td>),1,</td><td></td><td></td><td>454 224</td></t<>), 1 ,			454 224
JUN	1.500 <t< td=""><td>.500 <t< td=""><td></td><td>300</td><td></td><td></td></t<></td></t<>	.500 <t< td=""><td></td><td>300</td><td></td><td></td></t<>		30 0		
AUG	.500 <t< td=""><td>.500 <t< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>₩. •</td><td>3.</td><td>b.</td></t<></td></t<>	.500 <t< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>₩. •</td><td>3.</td><td>b.</td></t<>	· · · · · · · · · · · · · · · · · · ·	₩. •	3.	b .
OCT	2.000 <t< td=""><td>.500 <t< td=""><td>(8) (M)</td><td>či -</td><td> n•:</td><td>140 0</td></t<></td></t<>	.500 <t< td=""><td>(8) (M)</td><td>či -</td><td> n•:</td><td>140 0</td></t<>	(8) (M)	či -	n•:	1 4 0 0
DEC	1.500 <t< td=""><td>.500 <t< td=""><td>.500 <t< td=""><td>.500 <t< td=""><td>1.000 <t< td=""><td>1.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.500 <t< td=""><td>.500 <t< td=""><td>.500 <t< td=""><td>1.000 <t< td=""><td>1.000 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.500 <t< td=""><td>.500 <t< td=""><td>1.000 <t< td=""><td>1.000 <t< td=""></t<></td></t<></td></t<></td></t<>	.500 <t< td=""><td>1.000 <t< td=""><td>1.000 <t< td=""></t<></td></t<></td></t<>	1.000 <t< td=""><td>1.000 <t< td=""></t<></td></t<>	1.000 <t< td=""></t<>
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		• • • • • • • • • • • • • • • • • • • •		1.000 \
CONDUCTIVI	TY (UMHO/CM)		DET'N LIMIT = 1.	GUIDELINE :	= 400 (F2)	* 8
FEB	387	395	·	¥		
APR	336	342				v
JUN	329	333	(9)			n en en
AUG	316	322	12 12 12 12 12 12 12 12 12 12 12 12 12 1	8.	100	±5 (●))
OCT	324	326	% 3			() (<u>)</u>
DEC	342	348	347	344	345	347
DISS ORG	ARBON (MG/L)		DET'N LIMIT = .100	GUIDELINE =	5.0 (A3)	
FEB	1.800	1.700		5€1 10€1 925	₹() •	
	2.000	1.800		SS#645*	E 58	
APR						V/. I
APR					182	35
APR JUN	1.900	1.700	•	•		35 §
APR						a

WATER TREATMENT PLANT

		RAW	TREATED	SITE 1		SITE 2
			STANDING	FREE FLOW	STANDING	FREE FLOW
LUORIDE	E (MG/L)		DET'N LIMIT = (0.01 GUIDEL	INE = 2.4 (A1)	1 1/2
FEB	.140	1.180		11	jj (*•€*)	,
APR	.120	.900	N (\$1)			
JUN	.140	1.040				
AUG	.120	1.140		12		_ ``
OCT	. 120	1.160	-	//35 29	a sa S	- D - 2
DEC	.140	1.040	1.120	1.100	1.160	1.040
ARDNESS	S (MG/L)		DET'N LIMIT = (),5 GUIDEL	INE = 80-100 (A4)	
FEB	136.500	133.200	v g	72	E 946	ži.
APR	134.300	134.800	: 5			
JUN	137.000	137.000		2.00	(#) 1 (2)	
AUG	131.000	133.000	÷ *	% <u>€</u>	11 19	1 A 2
OCT	140.000	138.000		:::::::::::::::::::::::::::::::::::::	SMM	
DEC	139.000	139.000	. 138.000	136.000	138.000	139.000
ONCAL ((DMNSLESS)	·	DET'N LIMIT = 1	I/A GUIDEL	INE = N/A	
FEB	3.156	3.581		· •	(9.5	* 2
APR	2.198	.677	-	ver as		a
JUN	.999	.350		A St. de	* **	
AUG	1.051	2.444		427.	•	
OCT	4.871	5.067	* * *			8 !
DEC	1.117	.697	1.910	1.625	.277	.329
NGELIE	RS INDEX (DMNS	LESS)	DET'N LIMIT = N	I/A GUIDEL	INE = N/A	
FEB	.420	027	-	15 I	1 °	
APR	.424	.251	* , <u> </u>	-	T-1	
JUN	.385	.246			11	
AUG	.440	.290	<u>.</u>		20 2 1	0 B
OCT	.425	.285	# (4 	15 X 122	E	
DEC	.376	.098	.123	.149	.121	.118
GNESIU	JM (MG/L)		DET'N LIMIT = (.1 GUIDEL	INE = 30 (F2)	8
FEB	8.750	8.750	0		o g = ± ± •	
APR	8.350	8.600	1 191 E		章 第1	× /*
JUN	8.800	9.000			U = \$\frac{\fin}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fin}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\frac{\frac{\fin}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f	
AUG	8.300	8.400		-	#	2 · · · · · · · · · · · · · · · · · · ·
OCT	8.950	8.650	-, -			•
	8.800	8.800	8.700	8.700	8.900	8.800
DEC				.2 GUIDEL	INE = 200 (A4)	
	MG/L)		DET'N LIMIT = C			
			DEL'N LIMIT = C	Section 1	8 11	
DIUM (20.500	20.700	DEL'N LIMIT = C		P 8	
DOIUM (20.500 12.700	20.700 13.000	DEI'N LIMIT = C		8 H	
DOIUM (FEB APR JUN	20.500 12.700 11.800	20.700 13.000 12.100	DEI'N LIMIT = C	*		
ODIUM (FEB APR	20.500 12.700	20.700 13.000	DEI'N LIMIT = C			

WATER TREATMENT PLANT

		RAW	1R	EATED	SITE	1		SITE 2
	1865		: 2	STANDING	i 	FREE FLOW	STANDING	FREE FLOW
MMONIUM TOTAL	(MG/L)	8	DET'N LIMIT	= 0.002	GUIDELINE	= 0.05 (F2)	
FEB	.168		.100		191			2 4
APR	.024		.096		5=0			44 24
JUN	.046		.066		-	_		200
AUG	.008 <t< td=""><td></td><td>.096</td><td></td><td></td><td>1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>1967</td><td></td></t<>		.096			1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1967	
OCT	.022		.044				590	
DEC	.042		.086	.0	84	.088	.050	.088
IITRITE (MG/L)			DET'N LIMIT	= 0.001	GUIDELINE	= 1 (A1)	
FEB	.014	*	.003 <t< td=""><td></td><td>nen .</td><td></td><td>1¥ 2=2</td><td>2 2</td></t<>		nen .		1¥ 2 = 2	2 2
APR	.003 <t< td=""><td></td><td>BDL</td><td></td><td>E-1</td><td></td><td>•</td><td></td></t<>		BDL		E-1		•	
JUN	.019		.003 <t< td=""><td></td><td>200</td><td></td><td></td><td></td></t<>		200			
AUG	.009	54	.002 <t< td=""><td></td><td>(52) (8)</td><td></td><td>•</td><td></td></t<>		(52) (8)		•	
OCT	.004 <t< td=""><td></td><td>BOL</td><td>16 ×</td><td>(2)</td><td><u> </u></td><td></td><td></td></t<>		BOL	16 ×	(2)	<u> </u>		
DEC	.008		BDL	.0	06	.002 <t< td=""><td>.005</td><td>.001 <</td></t<>	.005	.001 <
TOTAL NITRATES.	(MG/L)		DET'N LIMIT	= 0.005	GUIDELINE	= 10 (A1)	8
FEB	.495	.	.505		•	*****		% Wi - : €
APR	.365		.370		W	₩.,	- ·	s =
JUN	.370		.360		180 180	- ''	28 A	2 •
AUG	.245		.240		1257 1217			
OCT	.265		.245		<u> </u>		W W	82
DEC	.430		.435	.4	00	.420	.450	.435
ITROGEN TOT K.	JELD (MG/L	.)		DET'N LIMIT	= 0.02	GUIDELINE	= N/A	
FEB	.450	19	.320		120	360		n " «
APR	.380		.200		55 (1)			8 ° 8 8
JUN	.330		.250			, a	(¥)	**************************************
AUG	.280		.330			: ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥	2000 1000	140
OCT .	.240		. 190		. 2	- N		
DEC	.280		.250	.2	80	.260	.360	.270
H (DMNSLESS)				DET'N LIMIT	= N/A	GUIDELINE	= 6.5-8.5(A4)	, a
FEB 8	3.240		7.860				#/ 	, * · · · · · · · · · · · · · · · · · ·
	3.260		8.130			a ma	*	* * *
	3.210		8.130		30	36) Fig	7 W	. III-
JUN .	3.310		8.200	W	#19 —		(A)	* .
A 100 100 100 100 100 100 100 100 100 10								
AUG 8			8.160			8.010	7 070	
AUG 8	3.260 3.190		8.160 7.950	7.9	70	8.010	7.970	7.970
AUG 8 OCT 8 DEC 8	3.260 3.190	/L ;	7.950	7.9 DET'N LIMIT		GUIDELINE		7.970
AUG & OCT & DEC & HOSPHORUS FIL	3.260 3.190 REACT (MG	/L ;	7.950)					7.970
AUG E OCT E DEC E PHOSPHORUS FIL	3.260 3.190 REACT (MG	/L)	7.950) .002 <t< td=""><td></td><td></td><td></td><td></td><td>7.970</td></t<>					7.970
AUG 8 OCT 8 DEC 8 PHOSPHORUS FIL FEB APR	3.260 3.190 REACT (MG .005 .000 <t< td=""><td>/L</td><td>7.950) .002 <t .000 <t< td=""><td></td><td></td><td></td><td></td><td>7.970</td></t<></t </td></t<>	/L	7.950) .002 <t .000 <t< td=""><td></td><td></td><td></td><td></td><td>7.970</td></t<></t 					7.970
AUG E OCT E DEC E PHOSPHORUS FIL FEB APR JUN	3.260 3.190 REACT (MG .005 .000 <t .001 <t< td=""><td>Nr :</td><td>7.950) .002 <t .000 <t .000 <t< td=""><td></td><td></td><td></td><td></td><td>7.970</td></t<></t </t </td></t<></t 	Nr :	7.950) .002 <t .000 <t .000 <t< td=""><td></td><td></td><td></td><td></td><td>7.970</td></t<></t </t 					7.970
AUG E OCT E DEC E PHOSPHORUS FIL FEB APR JUN	3.260 3.190 REACT (MG .005 .000 <t< td=""><td>∕r ;</td><td>7.950) .002 <t .000 <t< td=""><td></td><td></td><td></td><td></td><td>7.970</td></t<></t </td></t<>	∕r ;	7.950) .002 <t .000 <t< td=""><td></td><td></td><td></td><td></td><td>7.970</td></t<></t 					7.970

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1990

WATER TREATMENT PLANT

		RAW	TRE	ATED SITE	1	SI	TE 2
			one walker made a	STANDING	FREE FLOW	STANDING	FREE FLOW
IOSPHORÚS	TOTAL (MG/L)		DET'N LIMIT = 0.002	GUIDELINE	= .40 (F2)	
FEB	.023		.007 <t< td=""><td>· ·</td><td></td><td>.t.</td><td></td></t<>	· ·		.t.	
APR	.012		.003 <t< td=""><td></td><td>•</td><td>© 1889 1946</td><td></td></t<>		•	© 1889 19 4 6	
JUN	.013		.004 <t< td=""><td>- 10 · · · · · · · · · · · · · · · · · ·</td><td>•</td><td></td><td></td></t<>	- 10 · · · · · · · · · · · · · · · · · ·	•		
AUG	.027		.005 <t< td=""><td>± 1</td><td>13</td><td>24€</td><td></td></t<>	± 1	1 3	24€	
OCT	.015	22	.006 <t< td=""><td></td><td>196</td><td>S#3</td><td>a ± 1</td></t<>		196	S # 3	a ± 1
DEC	.017		.007 <t< td=""><td></td><td>9€</td><td>•</td><td></td></t<>		9€	•	
JLPHATE (N	IG/L)			DET'N LIMIT = .200	GUIDELINE	= 500 (A3)	
FEB	26.190		29.240	≅ •••		rent	22
APR	27.800		31.240	•	7.60	71 160	
JUN	26.500		31.500		1	% 16	
AUG	26.650		32.720			**	188 ²
OCT	27.150		30.170	•		* *	
DEC	28.110		30.020	30.670	29.860	30.380	29.730
URBIDITY (FTU:)	2		DET'N LIMIT = 0.05	GUIDELINE	= 1 (A1)	•
FEB	5.400		.360			# W	
APR	1.500		.300		•		
JUN	1.300		.430	•		• 1	8
AUG	5.200		.550	•	8€6		N.
QCT	1.100		.240 <t< td=""><td>•</td><td></td><td>**</td><td></td></t<>	•		**	
DEC	1.800		.270	.620	.570	.800	.300

WATER TREATMENT PLANT

		. *			STAN	DING		FREE	FLOW		STANDING		FREE	FLOW
			••••••	,										
ILVER (UG/L	METALS				DET'N L		0.05		CHIDEL	INE = 50	(41)			
ILVER (OG/L)				DETRE	imii -	0.03		GOIDEL	INC - 30	(41)			
FEB	BOL		.060	<t -<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2 •</td><td></td><td></td><td>· .</td></t>							2 •			· .
APR	BDL		BDL					2	*					(*)
JUN	BDL		BDL								•			
AUG	BOL		BOL			e .	*	*		8,0	7			123
OCT	BOL		BOL								v			
DEC	BOL		BCL			BDL			BOL		BDL			BDL
LUMINUM (UG/	L)				DET'N L	IMIT =	0.10		GUIDELI	NE = 100	(A4)			
FEB (67.000		83.000						v v					
	22.000		120.000		100		68		2V		12			54 (**)
	9.400		77.000			A. 18.		90	11 (E) 12 (E)		1 8			360
	89.000		290.000						# 1 E		12			F 1
	12.000		180.000						4 A /G		21 (5		20	0₹6 2 6 1
	22.000		86.000		18	63.000	ij	3	80.000		86.000	4	3	74.000
RSENIC (UG/L)				DET'N L	IMIT =	0.10		GUIDELI	NE = 25	(A1)	• • • • • • •		
FEB	.740 <t< td=""><td>w.</td><td>.790</td><td>~T</td><td></td><td></td><td></td><td></td><td>_ 18</td><td></td><td>17 10</td><td></td><td></td><td>-</td></t<>	w.	.790	~T					_ 18		17 10			-
APR .	.910 <t< td=""><td>.*)</td><td>.850</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>n 🖺</td><td>8</td><td></td><td>2 22</td></t<>	.*)	.850								n 🖺	8		2 22
JUN	.920 <t< td=""><td></td><td>.570</td><td></td><td></td><td>1.</td><td></td><td></td><td></td><td>2001</td><td></td><td></td><td></td><td>1200</td></t<>		.570			1.				2001				1200
AUG	.660 <t< td=""><td></td><td>.630</td><td></td><td></td><td>3593</td><td></td><td></td><td></td><td>G.</td><td>R 11 1 15 15 15 15 15 15 15 15 15 15 15 1</td><td></td><td></td><td>940</td></t<>		.630			3593				G.	R 11 1 15 15 15 15 15 15 15 15 15 15 15 1			940
OCT	1.000 <t< td=""><td></td><td>.810</td><td></td><td></td><td>5940</td><td></td><td></td><td></td><td></td><td>A.B.</td><td></td><td></td><td></td></t<>		.810			59 4 0					A.B.			
DEC	.860 <t< td=""><td></td><td>.670</td><td></td><td></td><td>.420</td><td><t< td=""><td>- * *</td><td>.620 <</td><td>T :</td><td>.730</td><td><t< td=""><td></td><td>.600</td></t<></td></t<></td></t<>		.670			.420	<t< td=""><td>- * *</td><td>.620 <</td><td>T :</td><td>.730</td><td><t< td=""><td></td><td>.600</td></t<></td></t<>	- * *	.620 <	T :	.730	<t< td=""><td></td><td>.600</td></t<>		.600
ARIUM (UG/L)				DET'N L	IMIT =	0.05		GUIDELII	NE = 1000	(A2)			
	E								7	*			× *	
	25.000		24.000						•					7 563
	24.000		23.000		80 5	a•.					· /•	200		
	23.000	a 2 c	22.000			20		, -			•			
	23.000		22.000						★ (2.0		i.●			
	23.000		22.000								:	9		27 222
DEC 2	22.000		22.000			22.000			23.000		25.000			23.000
ORON (UG/L			· · · · · · · · · · · · · · · · · · ·		DET'N L	IMIT =	2.00		GUIDEL	INE = 500	00 (A1)	2		
FEB 2	26.000		31.000			(*					3 a T			
	28.000		36.000			2300								
	37.000	8	36.000			8.					S. # S			•
	42.000		32.000			(*)					3000	*		8 # 20
	25.000		25.000							(*)				
DEC 3	30.000	* 5	27.000	39.0		27.000			30.000		26.000			25.000
ERYLLIUM (UG/	/L)			:	DET'N L	IMIT =	0.05		GUIDELII	NE = 6800	(04)	an en en element de la companya de		
FEB	BOL		BOL			n (#)					(A) (98)		*** - <u></u>	
APR	BDL	*	BDL			0/40			¥ 5					9
JUN	BDL		BDL						*		(a)			
AUG	.060 <t< td=""><td></td><td>BDL</td><td></td><td></td><td></td><td>12</td><td></td><td></td><td></td><td>188</td><td></td><td>1.01</td><td></td></t<>		BDL				12				188		1.01	
OCT	BOL		BDL											X: **)
0.0001000000	BDL		BDL						BDL		BDL			BDL

WATER TREATMENT PLANT

				RAW		IKE	ATED	SITE		51	TE 2
							STANDING		FREE FLOW	STANDING	FREE FLOW
CADMIUM	(UG/L)					DET'N LIMIT =	0.05	GUIDELINE =	5 (A1)	
FEB		.150	<1		BDL		% .		*	. N €	
APR		BOL			BDL						
JUN		BOL			BDL		11 gr			196	₩
AUG		.100	<t< td=""><td></td><td>.070</td><td><t .<="" td=""><td>**</td><td></td><td>¥ -</td><td>1.6</td><td></td></t></td></t<>		.070	<t .<="" td=""><td>**</td><td></td><td>¥ -</td><td>1.6</td><td></td></t>	**		¥ -	1.6	
OCT		BOL			BOL		•		¥ •	T -	90%
DEC		BDL			BDL		.110	<t< td=""><td>BOL</td><td>.530</td><td>BDL</td></t<>	BOL	.530	BDL
COBALT	(UG/L)					DET'N LIMIT =	0.02	GUIDELINE = N/	A .	
FEB		. 160	<t< td=""><td></td><td>.070</td><td><t< td=""><td></td><td></td><td></td><td>0.●8</td><td>#155 20</td></t<></td></t<>		.070	<t< td=""><td></td><td></td><td></td><td>0.●8</td><td>#155 20</td></t<>				0.●8	#155 20
APR		.260	<t< td=""><td></td><td>.180</td><td><1</td><td></td><td></td><td></td><td>(14)</td><td></td></t<>		.180	<1				(1 4)	
JUN		.150			.140	<1				10	€ 107
AUG		.130			.030	<t< td=""><td></td><td></td><td></td><td>jar</td><td>± 1.</td></t<>				j a r	± 1.
OCT		.170			.140	<t< td=""><td></td><td></td><td>2</td><td></td><td>×</td></t<>			2		×
DEC		.110	<⊺		. 100		3.100		.090 <t< td=""><td>.120 <t< td=""><td>.100 <</td></t<></td></t<>	.120 <t< td=""><td>.100 <</td></t<>	.100 <
CHROMIU	M (UG/L	v.I)			*:	DET'N LIMIT =	0.50	GUIDELINE = 50	(A1)	
FEB		BOL			.910	<t< td=""><td></td><td></td><td>(.</td><td></td><td>(9)</td></t<>			(.		(9)
APR		.550			1.600	<t< td=""><td></td><td></td><td></td><td></td><td>77 8</td></t<>					77 8
JUN		.400		6	3.400					•	* 9
AUG		.600			1.100	<t< td=""><td></td><td></td><td>::■:</td><td>990</td><td></td></t<>			::■:	9 9 0	
OCT		.750			BDL				W		anne (**
DEC		.700	<t< td=""><td></td><td>1.500</td><td><t< td=""><td>1.500</td><td><t< td=""><td>2.100 <t< td=""><td>970 ≺⊺</td><td>BDL</td></t<></td></t<></td></t<></td></t<>		1.500	<t< td=""><td>1.500</td><td><t< td=""><td>2.100 <t< td=""><td>970 ≺⊺</td><td>BDL</td></t<></td></t<></td></t<>	1.500	<t< td=""><td>2.100 <t< td=""><td>970 ≺⊺</td><td>BDL</td></t<></td></t<>	2.100 <t< td=""><td>970 ≺⊺</td><td>BDL</td></t<>	970 ≺⊺	BDL
COPPER	(UG/L)		15			DET'N LIMIT =	0.50	GUIDELINE = 10	00 (A3)	
FEB	17	.000			2.900	<t< td=""><td>30</td><td></td><td></td><td>P (1)</td><td>\$ g</td></t<>	30			P (1)	\$ g
APR		.000			2.100		1 .		1.8/		- ·
JUN		.000			2.800		8	(6)	3.€ 3		r.*
AUG		.000			4.400				id 2: 3.€0	8 € 0	
OCT		.000			2.300		•		7 Id. 300	A E	€ *
DEC		.100	<t< td=""><td></td><td>2.100</td><td></td><td>140.000</td><td></td><td>3.500 <t< td=""><td>190.000</td><td>43.000</td></t<></td></t<>		2.100		140.000		3.500 <t< td=""><td>190.000</td><td>43.000</td></t<>	190.000	43.000
RON (U	G/L)					DET'N LIMIT =	6.00	GUIDELINE = 30	0 (A3)	
FEB		.000			BDL					7 4 €7	
APR	23	.000	<1		BDL				\$	0 Set	
JUN		.800			BDL					780	
AUG		.000			BDL		-		± 1	1 <u>€</u> 11	
OCT		.000	<1	N	BDL				9세5 결정:	250 26	
DEC		.000			BOL		7.000	<₹	15.000 <t< td=""><td>38.000 <t< td=""><td>34.000 <</td></t<></td></t<>	38.000 <t< td=""><td>34.000 <</td></t<>	34.000 <
ERCURY	(UG/L)					DET'N LIMIT =	0.02	GUIDELINE = 1	(A1)	
FEB		BOL			BDL	7				ti gali a °	
APR		BOL			BDL		(•		2 💮	(*)	•
JUN		BOL			.040	<t< td=""><td>v.</td><td></td><td></td><td>w</td><td>·</td></t<>	v.			w	·
AUG	*	BDL			BDL		(***		F 8
OCT		BOL			BDL		N COM		E €		<i>b</i>
DEC		BOL	2		BOL		11		0	100	0.0

WATER TREATMENT PLANT

u-		RAW	TREATED	SITE 1	52 \$2		SITE 2	
1	(9)		STANDING	FREE F	FLOW	STANDING	FREE	FLOW
MANGANESE (UG/L)	я	DET'N LIMIT =	= 0.05	GUIDÉLINE = 50	(A3)	3	
FEB	8.000	3.100				1.5		V 8.007
APR	3.300	.990			5) NEW 36		· ·	
JUN	3.200	.580	100	16	55.* 580/m			720
AUG	11.000	.480		W			182 (46)	
OCT	1.400	.450				1 0 B		3 5 1
DEC	3.800	1.400	2.500		1.700	2.100		2.200
MOLYBDENUM	(UG/L)		DET'N LIMIT =	= 0.05	GUIDELINE = N/	A		
ren	4 200	4 700				, # (9)		
FEB	1.200	1.300		(w 💆	288	((●))
APR	1.200	1.300	•				w at 700	- 100 E
JUN	1.300	1.200	a			Y .		
AUG	1.000	1.300	e * •		*1 ₄ ;	357 84 🕏		- •
OCT	1.200	1.300	· · · · · · · · · · · · · · · · · · ·			4 200		4 200
DEC	1.100	1.200	1.300	, 	1.200	1.200		1.200
NICKEL (UG/	L .)	A.	DET'N LIMIT =	: 0.20	GUIDELINE = 35	0 (D3)		8 - 0
FEB	1.800 <t< td=""><td>1.100</td><td>ar .</td><td></td><td></td><td></td><td></td><td>;≥7.</td></t<>	1.100	ar .					; ≥ 7.
APR	2.200	1.800		156	570 H	3 2 2		1840
JUN	.370 <t< td=""><td>.370</td><td></td><td></td><td>900</td><td>8</td><td></td><td>151 121</td></t<>	.370			900	8		151 121
AUG	.610 <t< td=""><td>.370</td><td></td><td>90</td><td></td><td>W #</td><td></td><td>525</td></t<>	.370		90		W #		5 2 5
OCT	.740 <t< td=""><td>.610</td><td></td><td>B 35</td><td>(B)</td><td></td><td></td><td></td></t<>	.610		B 35	(B)			
DEC	1.400 <t< td=""><td>1.500</td><td></td><td></td><td>1.300 <t< td=""><td>5.000</td><td></td><td>1.400 <1</td></t<></td></t<>	1.500			1.300 <t< td=""><td>5.000</td><td></td><td>1.400 <1</td></t<>	5.000		1.400 <1
LEAD (UG/L)	· · · · · · · · · · · · · · · · · · ·	DET'N LIMIT =	0.05	GUIDELINE = 10	. (A1)		
FEB	1.500	.080		* * * * * * * * * * * * * * * * * * *				
						*		
APR	.310 <t< td=""><td>.080</td><td></td><td></td><td></td><td></td><td></td><td>•</td></t<>	.080						•
JUN	.400 <t< td=""><td>.060</td><td></td><td></td><td></td><td></td><td>5 2</td><td>- (-)</td></t<>	.060					5 2	- (-)
AUG	1.100	.140 -	a .			1.5		• 0
OCT	.210 <t< td=""><td>BDL</td><td>i as id</td><td></td><td>:</td><td></td><td></td><td>٠</td></t<>	BDL	i as id		:			٠
DEC	.230 <t< td=""><td>.090 <</td><td>T 11.000</td><td></td><td>7.700</td><td>11.000</td><td></td><td>. 680</td></t<>	.090 <	T 11.000		7.700	11.000		. 680
NTIMONY (U	G/L)		DET'N LIMIT =	0.05	GUIDELINE =	146 (D4)		
FEB	.560	.600		•	•	2 16	*	3.63
APR	.560	.500 <	σ.					(*)
JUN	.710	.870	2					#6.2A F é ci
AUG	.560	.580			# 6 [#]	AA-B	g: a	1.570 19 4 0
OCT	.660	.590			en e	Mes S		3. ₹ 7%
DEC	.550	.540	.590	B 8	.640	.700	P(1)	.660
SELENIUM (U	G/L)		DET'N LIMIT =	1.00	GUIDELINE = 10	(A1)		eo _ = =
FEB	BOL	BOL				5		.
	BDL	BDL	7.●			o 0•0		
APR								***
APR JUN	BDL	BDL			7 · ·			: ● })
JUN			π		1 ·		\$ P	(•)) (•))
	BDL 1.300 <t BDL</t 	BDL 2.100 < BDL	Τ	W.	% *	•		:•:) :•:)

WATER TREATMENT PLANT

		RAW	TRE	ATED	SITE	i 1	SIT	E 2
				STANDIN		FREE FLOW	STANDING	FREE FLOW
STRONTIUM	(UG/L)			DET'N LIMI	r = 0.1	GUIDELINE = N/A	U	
FEB	180.000	180	.000		79	a: 448	•	. V
APR	190,000	190	.000			6 S		
JUN	180.000	180	.000			5-c	3	, 2
AUG	180,000		.000			9577 9 4 87	*** (*********************************	•
OCT	180.000		000	(5)			77	· · · · · ·
DEC	180.000		.000	180.	000	180.000	190.000	180.000
TITANIUM	(UG/L)		* I *	DET'N LIMI	= 0.50	GUIDELINE = N	/A	,
FEB	6.000	5.	400			•		3
APR	4.500 <t< td=""><td>3.</td><td>.900 <t< td=""><td></td><td>(**)</td><td>3■2</td><td></td><td>.t. (1€9 ±2</td></t<></td></t<>	3.	.900 <t< td=""><td></td><td>(**)</td><td>3■2</td><td></td><td>.t. (1€9 ±2</td></t<>		(**)	3 ■ 2		.t. (1€9 ±2
JUN	3.800 <t< td=""><td></td><td>.800 <t< td=""><td></td><td>S#1</td><td>₹. ₩</td><td>*</td><td>= 3€</td></t<></td></t<>		.800 <t< td=""><td></td><td>S#1</td><td>₹. ₩</td><td>*</td><td>= 3€</td></t<>		S#1	₹. ₩	*	= 3€
AUG	8.400	3.	.700 <t< td=""><td></td><td>•</td><td><u>.</u></td><td>₩</td><td>9967</td></t<>		•	<u>.</u>	₩	9967
OCT	1.900 <t< td=""><td>2.</td><td>.100 <t< td=""><td></td><td></td><td>-</td><td></td><td>w</td></t<></td></t<>	2.	.100 <t< td=""><td></td><td></td><td>-</td><td></td><td>w</td></t<>			-		w
DEC	3.200 <7	2.	.700 <t< td=""><td>2.9</td><td>700 <t< td=""><td>2.700 <t< td=""><td>3.100 <t< td=""><td>2.900 <</td></t<></td></t<></td></t<></td></t<>	2.9	700 <t< td=""><td>2.700 <t< td=""><td>3.100 <t< td=""><td>2.900 <</td></t<></td></t<></td></t<>	2.700 <t< td=""><td>3.100 <t< td=""><td>2.900 <</td></t<></td></t<>	3.100 <t< td=""><td>2.900 <</td></t<>	2.900 <
JRANIUM (L	JG/L ·)	60 (e) (d)	,	DET'N LIMI	= 0.05	GUIDELINE = 100) (A1)	
FEB	.320 <t< td=""><td></td><td>.380 <t< td=""><td></td><td></td><td>* 2 € 6 €</td><td>*</td><td>>€</td></t<></td></t<>		.380 <t< td=""><td></td><td></td><td>* 2 € 6 €</td><td>*</td><td>>€</td></t<>			* 2 € 6 €	*	>€
APR	.300 <t< td=""><td></td><td>.430 <t< td=""><td></td><td>) .</td><td>8 80</td><td>•</td><td></td></t<></td></t<>		.430 <t< td=""><td></td><td>) .</td><td>8 80</td><td>•</td><td></td></t<>) .	8 80	•	
JUN	.260 <t< td=""><td></td><td>.290 <t< td=""><td></td><td>•</td><td>(a) 3€</td><td>•</td><td>•</td></t<></td></t<>		.290 <t< td=""><td></td><td>•</td><td>(a) 3€</td><td>•</td><td>•</td></t<>		•	(a) 3€	•	•
AUG	.290 <t< td=""><td></td><td>.330 <t< td=""><td>W₂</td><td></td><td>ii e</td><td></td><td></td></t<></td></t<>		.330 <t< td=""><td>W₂</td><td></td><td>ii e</td><td></td><td></td></t<>	W ₂		ii e		
OCT	.290 <t< td=""><td></td><td>.330 <t< td=""><td></td><td>3.</td><td></td><td></td><td></td></t<></td></t<>		.330 <t< td=""><td></td><td>3.</td><td></td><td></td><td></td></t<>		3. 			
DEC	.280 <t< td=""><td></td><td>.330 <t< td=""><td></td><td>280 <t< td=""><td>.350 <7</td><td>.320 <t< td=""><td>.340 <</td></t<></td></t<></td></t<></td></t<>		.330 <t< td=""><td></td><td>280 <t< td=""><td>.350 <7</td><td>.320 <t< td=""><td>.340 <</td></t<></td></t<></td></t<>		280 <t< td=""><td>.350 <7</td><td>.320 <t< td=""><td>.340 <</td></t<></td></t<>	.350 <7	.320 <t< td=""><td>.340 <</td></t<>	.340 <
/ANADIUM (UG/L)	(6		DET'N LIMI	= 0.05	GUIDELINE = N/A		
FEB	.270 <t< td=""><td></td><td>270 <t< td=""><td></td><td></td><td>*</td><td></td><td>= (2)</td></t<></td></t<>		270 <t< td=""><td></td><td></td><td>*</td><td></td><td>= (2)</td></t<>			*		= (2)
APR	.150 <t< td=""><td></td><td>280 <t< td=""><td></td><td></td><td>* *</td><td>•</td><td></td></t<></td></t<>		280 <t< td=""><td></td><td></td><td>* *</td><td>•</td><td></td></t<>			* *	•	
JUN -	.240 <t< td=""><td></td><td>160 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<></td></t<>		160 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
AUG	.420 <t< td=""><td></td><td>270 <t< td=""><td></td><td>:●: =</td><td><u> </u></td><td>•</td><td>•</td></t<></td></t<>		270 <t< td=""><td></td><td>:●: =</td><td><u> </u></td><td>•</td><td>•</td></t<>		: ●: =	<u> </u>	•	•
OCT	.170 <t< td=""><td></td><td>140 <t< td=""><td></td><td>303</td><td></td><td></td><td></td></t<></td></t<>		140 <t< td=""><td></td><td>303</td><td></td><td></td><td></td></t<>		3 0 3			
DEC	.270 <t< td=""><td></td><td>260 <t< td=""><td></td><td>00 <t< td=""><td>.270 <7</td><td>.310 <t< td=""><td>.240 <</td></t<></td></t<></td></t<></td></t<>		260 <t< td=""><td></td><td>00 <t< td=""><td>.270 <7</td><td>.310 <t< td=""><td>.240 <</td></t<></td></t<></td></t<>		00 <t< td=""><td>.270 <7</td><td>.310 <t< td=""><td>.240 <</td></t<></td></t<>	.270 <7	.310 <t< td=""><td>.240 <</td></t<>	.240 <
INC (UG/L)	,		DET'N LIMIT	= 0.20	GUIDELINE = 5000) (A3)	
FEB	7.400		000		i.			
APR	3.200		600		;•(P	5.€	
JUN	3.100		300		300		9. 1.€	i.e.
AUG	4.900		900 <t< td=""><td></td><td>ji</td><td></td><td>t #6</td><td></td></t<>		j i		t #6	
OCT	2.000 <t< td=""><td>1.</td><td>800 <t< td=""><td></td><td></td><td>* -</td><td>, · · · · · · · · · · · · · · · · · · ·</td><td><u> </u></td></t<></td></t<>	1.	800 <t< td=""><td></td><td></td><td>* -</td><td>, · · · · · · · · · · · · · · · · · · ·</td><td><u> </u></td></t<>			* -	, · · · · · · · · · · · · · · · · · · ·	<u> </u>
DEC	2.300	1.	400 <t< td=""><td>360.0</td><td>000</td><td>3.900</td><td>81.000</td><td>3.200</td></t<>	360.0	000	3.900	81.000	3.200

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1990

WATER TREATMENT PLANT

	5	RAW	TREATED	* 1	SITE 1		SITE	2	
				STANDING	FREE FLOW	STANDING	l z	FREE FLOW	
	PAH								
ANTHRACEN	IE (NG/L)	- 10 M	DET	r'n LIMIT = 1.	GUII	DELINE = N/A			
FEB	ILA		DL	**************************************	21 W	-	33		
APR	BDL		DL				:		e.
JUN	! QU		QU	G & N			3		2
AUG	1.000 <t< td=""><td>W 50</td><td>DL</td><td>8 12</td><td></td><td></td><td>5 2 9</td><td></td><td></td></t<>	W 50	DL	8 12			5 2 9		
OCT	BOL		DL	10A		±. ≨1	3 N	2 E	8 00 G
DEC	BOL		DL		20	· · · · · · · · · · · · · · · · · · ·	•		
BENZO(K)	FLUORANTHEN (N	G/L)	DET	'N LIMIT = 1.	GUII	DELINE = N/A		That is a	
FEB	!LA		DL	**					
APR	BDL		DL					-X	
JUN	BDL		DL	X® Vac	3 3 3		3 B	5 3	
AUG	1.000 <t< td=""><td></td><td>DL</td><td></td><td></td><td>• M</td><td></td><td>11 21</td><td></td></t<>		DL			• M		11 21	
OCT	BDL		DL	S		MA	₩ 20 0		
DEC	BDL		DL	•				11 14	i dh

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1990

WATER TREATMENT PLANT

11/2		. W					
* H		R	AW TRE	ATED S	ITE 1	SI	TE 2
			2	STANDING	FREE FLOW	STANDING	FREE FLOW
	Р	ESTICIDA	ES & PCB				
ALPHA BHC)		DET'N LIMIT = 1.00	00 GUIDELINE	= 700 (G)	
FEB	1.000	<⊺	1.000 <t< td=""><td>¥ 100</td><td>**************************************</td><td>120</td><td>€</td></t<>	¥ 100	**************************************	120	€
APR	BDL		BDL	*_	· ·		· ·
JUN	1.000	<7	2.000 <t< td=""><td></td><td>•</td><td></td><td>•</td></t<>		•		•
AUG	1.000	<1	1.000 <t< td=""><td></td><td>i i</td><td></td><td>- P</td></t<>		i i		- P
OCT	2.000	<t< td=""><td>1.000 <t< td=""><td></td><td></td><td>:•</td><td>*:</td></t<></td></t<>	1.000 <t< td=""><td></td><td></td><td>:•</td><td>*:</td></t<>			:•	*:
DEC	2.000	<t< td=""><td>2.000 <t< td=""><td>181</td><td>. 2.000 <t< td=""><td># (**</td><td>1.000 <t< td=""></t<></td></t<></td></t<></td></t<>	2.000 <t< td=""><td>181</td><td>. 2.000 <t< td=""><td># (**</td><td>1.000 <t< td=""></t<></td></t<></td></t<>	181	. 2.000 <t< td=""><td># (**</td><td>1.000 <t< td=""></t<></td></t<>	# (**	1.000 <t< td=""></t<>
ATRAZINE ((NG/L)		DET'N LIMIT = 50	GUIDELINE	= 60000 (A2)	
FEB	BOL		BDL	*	+ 2.	I) (188	8: 1
APR	BOL		BDL				2
JUN	BDL		, BDL	7940 7940	A 1. H		
AUG	BOL		BOĹ				
OCT -	160.000	<t< td=""><td>100.000 <t< td=""><td></td><td>9</td><td>g</td><td>*</td></t<></td></t<>	100.000 <t< td=""><td></td><td>9</td><td>g</td><td>*</td></t<>		9	g	*
DEC	BDL		70.000 <t< td=""><td>(20)</td><td>5 2</td><td>wer A</td><td>= =</td></t<>	(20)	5 2	wer A	= =

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

		RAW	TREA	TED SIT	E 1		SITE 2	5.
				STANDING	FREE FLOW	STANDING	FREE FLOW	
	Р	HENOLICS				1.00		
PHENOLICS	(UG/L)	*	DET'N LIMIT = .200	GUIDELINE	= 2 (A4)		8
FEB	.800	<t< td=""><td>1.000</td><td></td><td></td><td>J.</td><td>w.</td><td></td></t<>	1.000			J.	w.	
APR	BOL		.800 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
JUN	-400		.400 <t< td=""><td></td><td></td><td></td><td>E1 20</td><td></td></t<>				E1 20	
AUG	.400		.600 <t< td=""><td>•</td><td></td><td>· ·</td><td></td><td></td></t<>	•		· ·		
OCT	.600		1.200	1 a 1				
DEC	.800		1.400	<u>.</u>	n * * * * * * * * * * * * * * * * * * *	7		

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

				RAW			TREA	ILED	SITE	Ţ		SITE 2	
								STANDING		FREE FLOW	STANDING	FREE FLO	NI.
		400	LATIL	.ES						0.1051.105			
BENZENE	(UG/L)						DET'N LIMIT	= 0.05	GUIDELINE :	= 5 (A1)		
FEB		BDL				8DL			a				•
APR		BDL			3	.050	<t< td=""><td></td><td>·</td><td>•</td><td></td><td></td><td></td></t<>		·	•			
JUN		BOL				BDL				⊥ n⊛. ⊊			
AUG		BOL				BDL			:•II	%€<			
OCT		BOL	*		9	.100 -	<t< td=""><td></td><td></td><td>(•€ ⊗</td><td> - 3€8</td><td></td><td></td></t<>			(•€ ⊗	- 3 € 8		
DEC		BDL	nes .		2	BDL			•	BDL			BDL
OLUENE	(UG/L	,					ia Ta	DET'N LIMIT	= 0.05	GUIDELINE :	= 24 (A3)		
FEB		BOL				BOL		章			3 * 1		
APR		BDL				BOL	5900		-		1400		
JUN		BDL				BOL			Ži ky		1		
AUG		.100	<t< td=""><td></td><td>56</td><td>200</td><td><t< td=""><td></td><td></td><td></td><td>40</td><td></td><td>-</td></t<></td></t<>		56	200	<t< td=""><td></td><td></td><td></td><td>40</td><td></td><td>-</td></t<>				40		-
OCT		BOL				050			50 50	55 9	(A)		- 8
DEC		BOL				.050				.050 <t< td=""><td>= ,</td><td></td><td>BOL</td></t<>	= ,		BOL
THYLBEN	ZENE (JG/L	```)					DET'N LIMIT	= 0.05	GUIDELINE :	= 2.4 (A3)		
FEB		BDL				BDL				_ 0 3			
APR		BDL			3	250	<t< td=""><td></td><td>5 12</td><td></td><td>10 10 10 100</td><td></td><td></td></t<>		5 12		10 10 10 100		
JUN		.050	< T			BDL			65 2		1 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
AUG		BDL	2305	6 848		BDL			2	72	7		8
OCT		BDL				100	<t< td=""><td></td><td>-</td><td></td><td>547 E.</td><td></td><td>8</td></t<>		-		547 E.		8
DEC		BOL				100 -		V.	2 200	.100 <t< td=""><td></td><td></td><td>050</td></t<>			050
-XYLENE	(UG/L)						DET'N LIMIT	= 0.10	GUIDELINE =	300 (A3*)		
FEB		BDL				BDL			¥	# ## ## ## ## ## ## ## ## ## ## ## ## #	50 82 0		
APR		BDL				BDL						76	8
JUN		BDL				BDL		a Te		-	8 2 2		8
AUG		BDL				BDL		1.60	-				
OCT		BDL				100 4	<t< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td></t<>		_				
DEC		BOL				BDL				BDL			BDL
-XYLENE	(UG/L)				i i		DET'N LIMIT	= 0.05	GUIDELINE =	300 (A3*)		
FEB		BDL				BDL					* 4	Test	
APR		BDL				BDL				•			
JUN		BDL				BDL				8			
AUG		BDL				BDL			e ·				
OCT		BDL				100 <	۲T		2				
DEC		BDL				BOL			ě	BDL	•	~ ·	BDL
TYRENE	(UG/L)						DET'N LIMIT	= 0.05	GUIDELINE	= 100 (D1)		
FEB		BDL			193	100 <	<t< td=""><td></td><td>2</td><td>± 4<u>40</u>0.</td><td>9</td><td></td><td>1/27</td></t<>		2	± 4 <u>40</u> 0.	9		1/27
APR		BDL				250 <			g ⊢				00 2
JUN		.100				BDL			\$ 2				- 2
AUG		BDL				BDL			55	! ® // =			S .
OCT		BOL				150 <				13) # 3 _ 3	79 💆		. 2
DEC		.050			•	150 <	-T		-	.050 <t< td=""><td></td><td>Y .</td><td>BOL</td></t<>		Y .	BOL

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM METRO TORONTO (R. L. CLARK WTP) 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

		RAW	TREATED		SITE	1		SITE 2	
X ²				STANDING	149	FREE FLOW	STANDING	FF	REE FLOW
HLOROFORM (UG/L)		DET	N LIMIT =	0.10	GUIDELINE = 3	50 (A1+)		
FEB	.100 <t< td=""><td>8.50</td><td></td><td></td><td></td><td></td><td>n 8</td><td></td><td>***</td></t<>	8.50					n 8		***
APR	BDL	5.80			2 2		3		5.07A
JUN	BOL	5.00			- -		e <u>.</u>		
AUG	BOL	8.50			N N	G (1) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	-		
OCT	BOL	7.00			8 a 5	V			
DEC	BOL	5.60				5.100		- 3	4.800
CARBON TETR	ACHLORIDE (UG,	′L)	DET	'N LIMIT	= 0.20	GUIDELINE =	5 (A1)		
FEB	BDL	80	L s		8	G 34 80 8	= 90		
APR	BDL	BC				N 600 B			10
JUN	BDL	BC			5 18	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -			9 see
* AUG	BUL	.40	10 <t< td=""><td></td><td>æ -</td><td>**************************************</td><td></td><td></td><td>*</td></t<>		æ -	**************************************			*
OCT	BDL	BC					8.7		
DEC -	BDL	BC			9) 	BDL			BDL
CHLOROBRO	MOMETHANE (UG/	'L)	DET	'N LIMIT	= 0.05	GUIDELINE =	350 (A1+)		
FEB	BOL	6.05	0	3 3	•	· · · · · · · · · · · · · · · · · · ·	: •		
APR	BOL	5.10	0		·		T 2 7		300
JUN	BDL	4.75	0		•	n			388
AUG	BDL	7.10	0		•				•
OCT	BDL	6.40	0			a: 🗟 ''			
DEC	BDL	5.55	0			5.300			4.950
CHLOROD I BRO	MOMETHANE (UG/	'L)	DET	'N LIMIT	= 0.10	GUIDELINE =	350 (A1+)		
FEB	BOL	2.70	10			·			
APR	BDL	2.70			(2) - 1일 - 1일				.
JUN	BOL	2.40			20 A	200 9 20 5			**
AUG	BDL	4.40				A 11 A	7		- 2
OCT	BOL	4.10							
DEC	BOL	2.80			•	2.900	8.	E 9.77	2.600
ROMOFORM (UG/L)	η	DET	'N LIMIT	= 0.20	GUIDELINE =	350 (A1+)		
FEB	BDL	.40	0 <t< td=""><td></td><td></td><td></td><td>25 E</td><td></td><td></td></t<>				25 E		
APR	BDL		0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
JUN	BOL		0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
AUG	BDL		0 <t< td=""><td></td><td>•:</td><td></td><td>T- 6-0</td><td></td><td></td></t<>		•:		T- 6-0		
OCT	BDL		0 <t< td=""><td></td><td></td><td></td><td>7.00</td><td></td><td>•</td></t<>				7.00		•
DEC	BDL		0 <t< td=""><td></td><td>•</td><td>.600 <t< td=""><td>t ex</td><td></td><td>.400 <</td></t<></td></t<>		•	.600 <t< td=""><td>t ex</td><td></td><td>.400 <</td></t<>	t ex		.400 <
OTL TRIHAL	OMETHANES (UG/	L)	DET	'N LIMIT	= 0.50	GUIDELINE =	350 (A1)		n i
FEB	BDL	17.65	0			· · · · · · · · · · · · · · · · · · ·	II To the state of		= #
APR	BDL	14.15	Ō			· · · · · · · · · · · · · · · · · · ·	18:		
JUN	BDL	12.50	0 .		= 0 20	-	101		
AUG	BDL	20.80	Ō		• ·	· · · · · · · · · · · · · · · · · · ·	_		
OCT	BDL	18.25	Ō		50		100		
DEC	BDL	14.45		3	(A)	13.850			12.850

TRACE LEVELS OF TOLUENE ARE LABORATORY ARTIFACTS DERIVED FROM THE ANALYTICAL METHODOLOGY.

TRACE LEVELS OF STYRENE ARE CONSIDERED TO BE LABORATORY ARTIFACTS RESULTING FROM THE LABORATORY SHIPPING CONTAINERS.

TABLE 6 DRINKING WATER SURVEILLANCE PROGRAM 1990

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT GU	IDELINE -
	****	••••••	
BACTERIOLOGICAL			
BACTERIOLOGICAL		y 92	
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	0 (A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	0	500/ML (A3)
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0	N/A
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0 5	/100ML (A1)
a a a			
CHEMISTRY (FLD)			
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A
FIELD TOTAL CHLORINE RESIDUAL	MG/L	0	N/A
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A
FIELD PH	DMNSLESS	- 12	.5-8.5 (A3)
FIELD TEMPERATURE	DEG.C	N/A	15.0 (A3)
FIELD TURBIDITY	FTU	N/A	1.0 (A1)
CHEMISTRY (LAB)			
			F00
ALKALINITY	MG/L MG/L	0.2 30- 0.002	500 (A3) 0.05 (F2)
AMMONIUM TOTAL CALCIUM	MG/L		100 (F2)
CHLORIDE	MG/L		250 (A3)
COLOUR	TCU	0.5	5.0 (A3)
CONDUCTIVITY	UMHO/CM		400 (F2)
CYANIDE	MG/L	0.001	0.2 (A1)
DISSOLVED ORGANIC CARBON	MG/L	0.1	5.0 (A3)
FLUORIDE	MG/L	0.01	2.4 (A1)
HARDNESS	MG/L	0.5 80-	
LANGELIERS INDEX	DMNSLESS	N/A	N/A
MAGNESIUM	MG/L	0.1	30.0 (F2)
NITRITE	MG/L	0.001 0.02	1.0 (A1) N/A
NITROGEN TOTAL KJELDAHL	MG/L DMNSLESS		5-8.5 (A4)
PHOSPHORUS FIL REACT	MG/L	0.0005	N/A
PHOSPHORUS TOTAL	MG/L	0.002	0.4 (F2)
SODIUM	MG/L		200 (A4)
SULPHATE	MG/L	0.2	500 (A3)
TOTAL NITRATES	MG/L		10.0 (A1)
TURBIDITY	FTU	0.05	1.0 (A1)
CHLOROAROMATICS			
123 TRICHLOROBENZENE	NG/L	5.0	N/A
1234 TETRACHLOROBENZENE	NG/L	1.0	N/A
1235 TETRACHLOROBENZENE	NG/L	1.0	N/A
124 TRICHLOROBENZENE	NG/L	5.0	10000 (1)
1245-TETRACHLOROBENZENE	NG/L	1.0	38000 (D4)
135 TRICHLOROBENZENE	NG/L	5.0	N/A
236 TRICHLOROTOLUENE	NG/L	5.0	N/A
245 TRICHLOROTOLUENE	NG/L	5.0	N/A
26A TRICHLOROTOLUENE	NG/L	5.0	N/A
HEXACHLOROBENZENE	NG/L	1.0	10 (C1)
HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE	NG/L	1.0 5.0	450 (D4) 206000 (D4)
HEXACHLOROETHANE	NG/L NG/L	1.0	1900 (D4)
OCTACHLOROSTYRENE	NG/L	1.0	N/A
PENTACHLOROBENZENE	NG/L	1.0	74000 (D4)
CHLOROPHENOLS	- 7 - 185	3#X	
234 TRICHLOROPHENOL	NG/L	100.0	N/A
2345 TETRACHLOROPHENOL	NG/L	20.0	N/A
2356 TETRACHLOROPHENOL	NG/L	10.0	N/A

TABLE 6 DRINKING WATER SURVEILLANCE PROGRAM 1990

SCAN/PARAMETER	UNIT	DETECTION	GUIDELINE
245 TRICHLOROPHENOL	NG/L	100.0	2600000 (D4)
246 TRICHLOROPHENOL	NG/L	20.0	5000 (A1)
PENTACHLOROPHENOL	NG/L	10.0	60000 (A1)
METALS			
		es rare t	
ALUMINUM	UG/L	0.10	100 (A4)
ANTIMONY	UG/L	0.05	146 (D4)
ARSENIC	UG/L	0.10	25 (A1)
BARIUM	UG/L	0.05	1000 (A2)
BERYLLIUM	UG/L	0.05 2.00	6800 (D4) 5000 (A1)
BORON	UG/L	0.05	5 (A1)
CADMIUM	UG/L UG/L	0.50	50 (A1)
COBALT	UG/L	0.02	N/A
COPPER	UG/L	0.50	1000 (A3)
IRON	UG/L	6.00	300 (A3)
LEAD	UG/L	0.05	10 (A1)
MANGANESE	UG/L	0.05	50 (A3)
MERCURY	UG/L	0.02	1 (A1)
MOLYBDENUM	UG/L	0.05	N/A
NICKEL	UG/L	0.20	350 (D3)
SELENIUM	·UG/L	1.00	10 (A1)
SILVER	UG/L	0.05	50 (A1)
STRONTIUM	UG/L	0.10	· N/A
THALLIUM	UG/L	0.05	13 (D4)
TITANIUM	UG/L	0.50	N/A
URANIUM	UG/L ,	0.05	100 (A1)
VANADIUM ZINC	UG/L	0.05 0.20	N/A 5000 (A3)
ZING 19 19 19 19 19 19 19 19 19 19 19 19 19	UG/L	0.20	3000 (A3)
PAH - 2 stl			
ANTHRACENE	NG/L	1.0	· N/A
BENZO(A) ANTHRACENE	NG/L	20.0	N/A
BENZO(A) PYRENE	NG/L	5.0	10.0 (A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A
BENZO(B) FLUORANTHENE BENZO(E) PYRENE	NG/L NG/L	50.0	N/A N/A
BENZO(G,H,I) PERYLENE	NG/L	20.0	N/A
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A
CHRYSENE	NG/L	50.0	N/A
CORONENE	NG/L	10.0	N/A
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A
FLUORANTHENE	NG/L	20.0	42000.0 (D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A
PERYLENE	NG/L	10.0	N/A
PHENANTHRENE	NG/L	10.0	N/A
PYRENE	NG/L	20.0	N/A
PESTICIDES & PCB	is.	· Re	
ALACHLOR (LASSO)	NG/L	500.0	5000 (A2)
ALDRIN	NG/L	1.0	700 (Á1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700 (G)
ALPHA CHLORDANE	NG/L	2.0	7000 (A1) 300000 (D3)
AMETRINE ATRATONE	NG/L	50.0 50.0	N/A
ATRAZINE	NG/L NG/L	50.0	60000 (A2)
DES ETHYL ATRAZINE	NG/L	200.0	60000 (A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300 (G)
CYANAZINE (BLADEX)	NG/L	100.0	10000 (A2)
O,P-DDD	NG/L	5.0	10 (1)
DIELDRIN	NG/L	2.0	700 (A1)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000 (D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000 (D4)

TABLE 6 DRINKING WATER SURVEILLANCE PROGRAM 1990

WE.		DETECTION	
CCAN (DADAMETED	UNIT	LIMIT	GUIDELINE
SCAN/PARAMETER		LIMIT	COIDELINE
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A
	NG/L	5.0	1600 (D3)
ENDRIN GAMMA CHLORDANE	NG/L	2.0	7000 (A1)
HEPTACHLOR	NG/L	1.0	3000 (A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000 (A1)
LINDANE (GAMMA BHC)	NG/L	1.0	4000 (A1)
METHOXYCHLOR	NG/L	5.0	900000 (A1)
METOLACHLOR	NG/L	500.0	50000 (A1)
METRIBUZIN (SENCOR)	NG/L	100.0	80000 (A1)
MIREX	NG/L	5.0	N/A
P,P-DDD	NG/L	5.0	N/A
O.P-DDT	NG/L	5.0	30000 (A1)
OXYCHLORDANE	NG/L	2.0	N/A
PCB	NG/L	20.0	3000 (A2)
PPODE	NG/L	1.0	30000 (A1)
PPODT	NG/L	5.0	30000 (A1)
PROMETONE	NG/L	50.0	52500 (D3)
PROMETRYNE	NG/L	50.0	1000 (A2)
PROPAZINE	NG/L	50.0	700000 (D3)
SIMAZINE	NG/L	50.0	10000 (A2)
D-ETHYL SIMAZINE	NG/L	200.0	10000 (A2)
TOXAPHENE	NG/L	500.0	5000 (A1)
TOXAPHENE	MG/L	500.0	2000 (A1)
PHENOLICS			
PHENOLICS			78 78
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	2 (A4)
THEROETOS (ON TETERES RENOTIVE)	04,2	10 (0 715)	
SPECIFIC PESTICIDES			4 .
			(a)
2.4 D PROPIONIC ACID	NG/L	100.	N/A
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.	280000 (A1)
2.4-DICHLOROBUTYRIC ACID (2.4-D)	NG/L	100.	100000 (A1)
24-DICHLORORPHENOXYBUTYRIC ACID (24-DB)		200.	18000 (B3)
BUTYLATE (SUTAN)	NG/L	2000.	245000 (D3)
CARBARYL (SEVIN)	NG/L	200.	90000 (A1)
CARBOFURAN	NG/L	2000.	90000 (A1)
CHLORPYRIFOS (DURSBAN)	NG/L	20.	N/A
CICP (CHLORPROPHAM)	NG/L	2000.	350000 (G)
DIALLATE	NG/L	2000.	N/A
DIAZINON	NG/L	20.	20000 (A1)
DICAMBA	NG/L	50.	120000 (A1)
DICHLOROVOS	NG/L	20.	N/A
EPTAM	NG/L	2000.	N/A
ETHION	NG/L	20.	35000 (G)
IPC	NG/L	2000.	N/A
MALATHION	NG/L	20.	190000 (A1)
METHYL PARATHION	NG/L	50.	7000 (B3)
METHYLTRITHION	NG/L	20.	N/A
MEVINPHOS	NG/L	20.	N/A
PARATHION	NG/L	20.	50000 (A1)
PHORATE (THIMET)	NG/L	20.	2000 (A2)
PROPOXUR (BAYGON)	NG/L	2000.	140000 (D3)
RELDAN	NG/L	20.	N/A
RONNEL	NG/L	20.	N/A
SILVEX (2,4,5-TP)	NG/L	20.	10000 (A1)
VOLATILES		*	
	1 8 572 W	- 2 22	
1,1 DICHLOROETHANE	UG/L	0.10	N/A
1,1 DICHLOROETHYLENE	UG/L	0.10	7 (D1)
1,2 DICHLOROBENZENE	UG/L	0.05	200 (A1)
1,2 DICHLOROETHANE	UG/L	0.05	5 (A1)

TABLE 6
DRINKING WATER SURVEILLANCE PROGRAM 1990

SCAN/PARAMETER			UNIT	DETEC	TION.	GUIDELI	NE -
1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					0.05		
1,2 DICHLOROPROPANE			UG/L		0.05	5	(D1)
1,3 DICHLOROBENZENE			UG/L		0.10	3750	(D3)
1,4 DICHLOROBENZENE			UG/L		0.10	5	(A1)
111, TRICHLOROETHANE	651		UG/L		0.02	200	(D1)
112 TRICHLOROETHANE		0.7	UG/L		0.05		6 (D4)
1122 TETRACHLOROETHANE	86		UG/L		0.05		17(D4)
BENZENE	• 100		UG/L		0.05	5	(A1)
BROMOFORM			UG/L		0.20	350	(A1+)
CARBON TETRACHLORIDE	100	194	UG/L		0.20	5	(A1)
CHLOROBENZENE			UG/L		0.10	1510	(D3)
CHLOROD I BROMOMETHANE			UG/L		0.10	350	(A1+)
CHLOROFORM			UG/L		0.10	350	(A1+)
DICHLOROBROMOMETHANE			UG/L		0.05	350	(A1+).
ETHLYENE DIBROMIDE			UG/L		0.05	50	(D1)
ETHYLBENZENE			UG/L		0.05	2.	4 (A3)
M-XYLENE			UG/L		0.10	300	(A3*)
METHYLENE CHLORIDE			UG/L		0.50	50	(A1)
O-XYLENE			UG/L		0.05	300	(A3*)
P-XYLENE			UG/L		0.10	300	(A3*)
STYRENE			UG/L		0.05	100	(D1)
TETRACHLOROETHYLENE			UG/L	30	0.05	5	(D1)
TRANS 1,2 DICHLOROETHYLENE		53	UG/L		0.10	70	(D1)
TOLUENE			UG/L		0.05	24	(A3)
TOTAL TRIHALOMETHANES			UG/L		0.50	350	(A1)
TRICHLOROETHYLENE			UG/L		0.10	50	(A1)

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1990, 76 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment (MOE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

<u>Program Input - Plant and Distribution System Description</u>

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably
 a lab area; and
 - iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake,

discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

FIG.1

MOE - DRINKING WATER ASSESSMENT PROGRAM (DWSP)

PARAMETER REFERENCE INFORMATION

BENZENE (B2001P)				VOLATILES				
CLASS:	HEALTH	METHO	D: POCODO	UNIT: µg/L				
SOURCE	FROM	TO	METHOD	GUIDELINE	UNIT	NOTE		
CAL C	85/01			0.700	μ g/L	AL		
CDWG C	87/01			5.000	μg/L	MAC		
EPA C	87/07			5.000	μ g/L	MCL		
EPAA C	80/11			6.600	μ g/L	AMBIENT **		
FERC C	84/05			1.000	μ g/L	MCL		
WHO C	84/01			10.000	μg/L	GV		

DESCRIPTION: NAME: BENZENE

CAS#: 71-43-2

MOLECULAR FORMULAE: C6H6

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 µg/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27).

CYCLOHEXATRIENE (41).

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NON-POLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN WITH SMOKING FLAME (30).

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41).
THRESHOLD ODOUR: 0.5 - 10 PPM IN WATERTHRESHOLD TASTE:
0.5 mg/L IN WATER (39).

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM SOILS OR ARE DEGRADED RATHER QUICKLY (80).

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES; COMBUSTION OF CAR EXHAUST. ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING AGENT; GASOLINE.

TOXICITY: RATING: 4 (VERY TOXIC).

ACUTE: IRRITATING TO MUCOUS MEMBRANES; SYMPTOMS INCLUDE RESTLESSNESS, CONVULSIONS, EXCITEMENT, DEPRESSION; DEATH MAY FOLLOW RESPIRATORY FAILURE. CHRONIC: MAY CAUSE ANAEMIA AND LEUKAEMIA (45); MUTAGENIC.

MODE OF ACTION: CHROMOABERRATION IN LYMPHOCYTE CULTURES.

CARCINOGENICITY: A KNOWN HUMAN CARCINOGEN.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION, OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12 MELTING POINT: 5.5°C (27). BOILING POINT: 80.1°C (27).

SPECIFIC GRAVITY: 0.8790 AT 20°C (27). VAPOUR PRESSURE: 100 MM AT 26.1°C (27).

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41).
LOG OCT./WATER PARTITION COEFFICIENT: 1.95 TO 2.13

(39).

CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41) SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

NOTES: EPA PRIORITY POLLUTANT.

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times
-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white

seal on cap

-do not rinse bottle, preservative

has been added

-avoid touching bottle neck or

inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃)

(Caution: HNO₃ is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with

sample)

-do <u>not</u> rinse bottle

-fill bottle completely without

bubbles

Organics

(OWOC), (OWTRI), (OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle

-fill to 2 cm from top

-when 'special pesticides' are

requested three extra bottles

must be filled

Cyanide

-500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃) and potassium dichromate (K2Cr2O7) (Caution: HNO3&K2Cr2O7 are corrosive)

Phenols

-250 mL glass bottle

-do not rinse bottle, preservative

has been added

-fill to top of label

Radionuclides

-4 L plastic jug

(as scheduled)

-do not rinse, carrier added

-fill to 5 cm from top

(GC/MS - once per year) as per organic

Organic Characterization -1 L amber glass bottle; instructions

-250 mL glass bottle -do not rinse bottle

-fill completely without bubbles

Steps:

- 1. Let sampling water tap run for an adequate time to clear the sample line.
- 2. Record time of day on submission sheet.
- 3. Record temperature on submission sheet.
- 4. Fill up all bottles as per instructions.
- 5. Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times
-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

1. Record time of day on submission sheet.

2. Place bucket under tap and open cold water.

3. Fill to predetermined volume.

4. After mixing the water, record the temperature on the submission sheet.

5. Fill general chemistry and metals bottles.

Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with

white seal on cap

-do not rinse bottle, preservative

has been added

-avoid touching bottle neck or

inside of cap

-fill to top of red label as marked

Metals

-500 mL plastic bottle (PET 500)
-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate) (OPOPUP)

-45 mL glass vial with septum (teflon side must be in contact

with sample)

-do not rinse bottle, preservative

has been added

-fill bottle completely without bubbles

Organics (OWOC) (OAPAHX)

-1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

Steps:

- Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- Record temperature on submission sheet.
- Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.