ЛЕКЦІЯ 18

ПЕРВІРКА СТАТИСТИЧНИХ ГІПОТЕЗ

18.1. Основні поняття

Оскільки висновки про параметри і закони розподілу ознаки X генеральної сукупності робляться на основі обмеженого вибіркового матеріалу, вони не можуть бути категоричними і мають сприйматись лише як деякі припущення. Такі припущення про закони розподілу або їхні параметри називаються статистичними гіпотезами. Наприклад, статистичною гіпотезою є припущення: ознака X генеральної сукупності розподілена за нормальним законом.

Задача статистичної перевірки гіпотези полягає в побудові за вибірковими даними статистичного критерію (критерію узгодження), який дає змогу прийняти або відхилити висунуту гіпотезу.

Статистичною називають гіпотезу щодо типу невідомого розподілу або щодо параметрів відомого розподілу.

Висунуту гіпотезу H_0 називається *основною* або *нульовою*.

Конкуруючою (*альтернативною*) називають гипотезу H_1 , яка суперечить нульовій.

Розрізняють гіпотези, які містять одне або більше припущень:

- *Простою* називають гіпотезу, що містить одне припущення.
- *Складною* називають гіпотезу, що містить скінчену або нескінчену кількість простих гіпотез.

Число α також називається *ймовірністю помилки* 1-го роду, яка полягає у відкиданні вірної нульової гіпотези.

Число β називається *ймовірністю помилки* **2**-го роду, яка полягає у прийнятті невірної нульової гіпотези.

Статистичним критерієм називається випадкова величина K який призначений для перевірки гіпотез.

Спостережуваним (*емпіричне*) *значенням* називають те значення $K_{\rm cn}$, яке обчислено по вибіркам.

Критичною областю називають сукупність значень критерію, при яких нульову гіпотезу відкидають.

Областю прийняття гіпотези називають сукупність значень критерію, при яких нульову гіпотезу приймають.

Критичною точкою називають число $K_{\rm kp}$, яке відрізняють критичну область від області прийняття гіпотез.

Правостворонньою називається критична область, що визначається нерівність $K > K_{\rm Kp}$, де $K_{\rm Kp}$ – додатнє число.

Лівосторонньою називається критична область, що визначається нерівність $K < K_{\rm KD}$, де $K_{\rm KD}$ – від'ємне число.

Двосторонньою називається критична область, що визначається нерівність $|K| > K_{KD}$,

Для визначення критичної області задається рівень значущості та шукають критичні точки з наступних умов:

1. Для правосторонньої області (18.1):

$$P(K > K_{KD}) = \alpha (K_{KD} > 0).$$
 (18.1)

2. Для лівосторонньої області (18.2):

$$P(K < K_{Kp}) = \alpha (K_{Kp} < 0).$$
 (18.2)

3. Для двосторонньої симетричної області (18.3):
$$P(K > K_{\rm Kp}) = \frac{\alpha}{2}, P(K < -K_{\rm Kp}) = \frac{\alpha}{2} (K_{\rm Kp} > 0). \tag{18.3}$$

Потужність критерію називають ймовірність попадання в критичну область, за умовою, що справедлива конкуруюча гіпотеза.

З усього вищесказаного можна підсумувати, що розрізняють два типи статистичних критеріїв:

- 1). В яких в умові задано випадкову величину з відомим законом розподілу. Нульова гіпотеза полягає у рівності певних числових характеристик генеральної сукупності (математичне сподівання, дисперсія, коефіцієнт кореляції, тощо) або їхня рівність наперед заданому гіпотетичному значенню.
- 2). В яких в умові дано вибірку, взяту з певної генеральної сукупності. Нульова гіпотеза полягає у припущенні щодо типу розподілу всієї генеральної сукупності.

Етапи перевірки статистичної гіпотези

- 1. Формулювання нульової та альтернативної гіпотез.
- 2. Розрахунок необхідних статистичних характеристик.
- 3. Вибір рівня значущості α .
- 4. Вибір та обчислення розрахункового значення критерію для перевірки гіпотез. Критичне значення визначається за відповідною таблицею.
- 5. Порівняння розрахункового і табличного значень критерію, на основі чого робиться висновок про прийняття чи відхилення гіпотези.

Перевірка статистичної гіпотези щодо параметрів відомого розподілу

Для зручності, надалі генеральні сукупності в статистичних критеріях будуть позначатися великими латинськими літерами, а вибірки з них малими. Частоти елементів вибірок вважатимемо рівними 1.

18.2. Одновибірковий *t*-критерій (критерій Стьюдента)

Одновибірковий t-критерій Стьюдента застосовується для перевірки нульової гіпотези про рівність математичного сподівання генеральної сукупності деякому відомому значенню.

Правило 1

Збір даних: з генеральної сукупності зібрати дані вибірки $x = \{x_1, ..., x_n\}$ і розрахувати її середнє значення $\overline{x_B}$ та стандартне відхилення s.

Формулювання гіпотез:

- нульова гіпотеза H_0 : $M(X) = a_0$ середнє значення генеральної сукупності дорівнює певному значенню a_0 ,
- альтернативна гіпотеза $H_1: M(X) \neq a_0$ середнє значення генеральної сукупності не дорівнює a_0 .

Розрахунок спостережуваного значення: спостережуване значення розраховується за формулою (18.4):

$$t_{\rm cm} = \frac{\sqrt{n} \cdot (\overline{x_{\rm B}} - a_0)}{s},\tag{18.4}$$

де $\overline{x_{\rm B}}$ — середнє значення вибірки, a_0 — відоме середнє значення популяції, s — стандартне відхилення вибірки, n — об'єм вибірки (малий).

Визначення критичного значення: критичне значення $t_{\rm двост. kp}$ визначається з таблиці розподілу Стьюдента для заданого рівня значущості α і ступеня свободи k=n-1 (див. дод. 6 Гмурмана).

Прийняття рішення:

- якщо розраховане значення $|t_{\rm cn}| > t_{\rm двост.кр},$ відхилити нульову гіпотезу,
- якщо розраховане значення $|t_{\rm cn}| < t_{\rm двост.кр}$, не відхиляти нульову гіпотезу.

Правило 2

Збір даних: аналогічно до правила 1.

Формулювання гіпотез:

- нульова гіпотеза H_0 : $M(X) = a_0$ середнє значення генеральної сукупності дорівнює певному значенню a_0 ,
- альтернативна гіпотеза $H_1: M(X) > a_0$ середнє значення генеральної сукупності більше, ніж a_0 .

Розрахунок спостережуваного значення: спостережуване значення розраховується за формулою (18.4)

Визначення критичного значення: критичне значення $t_{\text{прав.кр}}$ визначається з таблиці розподілу Стьюдента для заданого рівня значущості α і ступеня свободи k=n-1 (див. дод. 6 Гмурмана).

Прийняття рішення:

- якщо розраховане значення $t_{\rm cn} > t_{\rm прав. kp}$, відхилити нульову гіпотезу,
- якщо розраховане значення $t_{\rm cn} < t_{\rm прав. kp}$, не відхиляти нульову гіпотезу.

Правило 3

Збір даних: аналогічно до правила 1.

Формулювання гіпотез:

- нульова гіпотеза H_0 : $M(X) = a_0$ середнє значення генеральної сукупності дорівнює певному значенню a_0 ,
- альтернативна гіпотеза $H_1: M(X) > a_0$ середнє значення генеральної сукупності менша, ніж a_0 .

Розрахунок спостережуваного значення: спостережуване значення розраховується за формулою (18.4)

Визначення критичного значення: критичне значення $t_{\text{прав.кр}}$ визначається з таблиці розподілу Стьюдента для заданого рівня значущості α і ступеня свободи k=n-1 (див. дод. 6 Гмурмана).

Прийняття рішення:

- якщо розраховане значення $t_{\rm cn} < -t_{\rm прав. \kappa p}$, відхилити нульову гіпотезу,
- якщо розраховане значення $t_{\rm cn} > -t_{\rm прав. \kappa p}$, не відхиляти нульову гіпотезу.

Одновибірковий t-критерій Стьюдента є потужним інструментом для порівняння середнього значення вибірки з відомим середнім значенням популяції. Його використання дозволяє зробити висновки про статистичну значущість відмінностей у даних, що може бути корисним у різних сферах, таких як медицина, соціологія, економіка тощо.

Приклад 18.1. Необхідно при рівні значущості $\alpha = 0.05$ перевірити, чи відрізняється середнє значення ваги певної групи (сукупності) людей від 70 кг. Маємо вибірку з 10 людей, середнє значення ваги яких становить 72 кг, а стандартне відхилення — 5 кг. Альтернативна гіпотеза H_1 : $M(X) \neq a_0$.

Розв'язання. Застосуємо одновибірковий t-критерій Стьюдента при рівні значущості. Скористаємося правилом 1 даного критерію.

Збір даних: $\overline{x_B} = 72$, $a_0 = 70$, s = 5, n = 10.

Формулювання гіпотез: $H_0: M(X) = 70, H_1: M(X) \neq 70.$

Розрахунок спостережуваного значення: $t_{\rm cn} = \frac{\sqrt{10} \cdot (72-70)}{5} \approx 1,265.$

Визначення критичного значення: для рівня значущості $\alpha = 0.05$ і ступенів свободи k = 10 - 1 = 9, критичне значення дорівнює $t_{\text{двост.кр}}(9;0.05) \approx 2.262$.

Прийняття рішення: Розраховане значення $t_{\rm cn} \approx 1,265$ менше критичного значення $t_{\rm двост.кр} \approx 2,262$. Отже, немає достатніх підстав відхилити нульову гіпотезу. Середнє значення вибірки не відрізняється статистично значущо від 70 кг.

Відповідь. Нульова гіпотеза приймається.

18.3. Критерій порівняння двох середніх генеральних сукупностей, дисперсії яких відомі

Критерій порівняння двох середніх генеральних сукупностей з відомими дисперсіями для випадку двох незалежних вибірок x; y великих об'ємів $(n, m \ge 30)$ використовується для порівняння їх середніх значень при відомих дисперсіях генеральних сукупностей. Він допомагає визначити, чи є статистично значуща різниця між середніми значеннями двох груп (сукупностей).

Правило 1

Збір даних: з нормально розподілених генеральних сукупностей, які мають дисперсії D(X), D(Y) відповідно, зібрати дані вибірок $x = \{x_1, ..., x_n\}; y =$ $\{y_1, ..., y_m\}$ $(n, m \ge 30)$ і розрахувати їх середні значення $\overline{x_B}, \overline{y_B}$.

Формулювання гіпотез:

- нульова гіпотеза $H_0: M(X) = M(Y)$ середні значення генеральних сукупностей рівні,
- альтернативна гіпотеза $H_1: M(X) \neq M(Y)$ середні значення двох генеральних сукупностей не рівні.

Розрахунок спостережуваного значения: спостережуване значения для даного критерію розраховується за формулою (18.5):

$$Z_{\text{CII}} = \frac{\overline{x_{\text{B}}} - \overline{y_{\text{B}}}}{\sqrt{\frac{D(X)}{n} + \frac{D(Y)}{m}}},$$
(18.5)

де: $\overline{x_{\mathrm{B}}}$, $\overline{y_{\mathrm{B}}}$ — середні значення вибірок, D(X), D(Y) — дисперсії генеральних сукупностей, n, m — об'єми вибірок ($n, m \ge 30$).

Визначення критичного значення: критичне значення $z_{\rm kp}$ для заданого рівня значущості α визначається з рівняння (18.6): $\phi(z_{\rm kp}) = \frac{1-\alpha}{2},$

$$\Phi(z_{\rm Kp}) = \frac{1-\alpha}{2},$$
(18.6)

де $\Phi(z_{\rm kp})$ – функція Лапласа (див. дод. 2 Гмурмана).

Прийняття рішення:

- якщо розраховане значення $|z_{\rm cn}| > z_{\rm kp}$, відхилити нульову гіпотезу,
- якщо розраховане значення $|z_{\rm cn}| < z_{\rm kp}$, не відхиляти нульову гіпотезу.

Правило 2

Збір даних: аналогічно до правила 1.

Формулювання гіпотез:

- нульова гіпотеза $H_0: M(X) = M(Y)$ середні значення генеральних сукупностей рівні,
- альтернативна гіпотеза $H_1: M(X) > M(Y)$ середнє значення генеральної сукупності Х більше, ніж середнє значення генеральної сукупності Y.

Розрахунок спостережуваного значення: спостережуване значення для даного критерію розраховується за формулою (18.5)

Визначення критичного значення: критичне значення $z_{\rm kp}$ для заданого рівня значущості α визначається з рівняння (18.7): $\Phi \big(z_{\kappa p}\big) = \frac{1-2\cdot \alpha}{2},$

$$\Phi(z_{\rm kp}) = \frac{1 - 2 \cdot \alpha}{2},\tag{18.7}$$

де $\Phi(z_{\kappa p})$ – функція Лапласа (див. дод. 2 Гмурмана).

Прийняття рішення:

- якщо розраховане значення $z_{\rm cn} > z_{\rm kp}$, відхилити нульову гіпотезу,
- якщо розраховане значення $z_{\rm cn} < z_{\rm kp}$, не відхиляти нульову гіпотезу.

Правило 3

Збір даних: аналогічно до правила 1.

Формулювання гіпотез:

- нульова гіпотеза $H_0: M(X) = M(Y)$ середні значення двох генеральних сукупностей рівні,
- альтернативна гіпотеза $H_1: M(X) < M(Y)$ середнє значення генеральної сукупності X менше, ніж середнє значення генеральної сукупності Y.

Розрахунок спостережуваного значення: спостережуване значення для даного критерію розраховується за формулою (18.5)

Визначення критичного значення: критичне значення $z_{\rm кp}$ для заданого рівня значущості α визначається за формулою (18.7).

Прийняття рішення:

- якщо розраховане значення $z_{\rm cn} < -z_{\rm kp}$, відхилити нульову гіпотезу,
- якщо розраховане значення $z_{\rm cn}>-z_{\rm kp},$ не відхиляти нульову гіпотезу.

Приклад 18.2. Необхідно перевірити при рівні значущості $\alpha = 0.05$, чи відрізняються середні значення балів двох груп студентів на екзамені. Генеральні дисперсії D(X) = 6, D(Y) = 5. Дані для двох вибірок з цих груп:

Вибірка
$$x$$
 (група 1): $\overline{x_B} = 85$, $n = 36$,

Вибірка у (група 2):
$$\overline{y_{\rm B}}=80,\,m=35.$$

Альтернативна гіпотеза $H_1: M(X) \neq M(Y)$.

Розв'язання. Скористаємося правилом 1 даного критерію.

Збір даних:
$$\overline{x_B} = 85$$
, $n = 36$, $\overline{y_B} = 80$, $m = 35$, $D(X) = 6$, $D(Y) = 5$.

Формулювання гіпотез: $H_0: M(X) = M(Y), H_1: M(X) \neq M(Y).$

Розрахунок спостережуваного значення:
$$z_{\text{сп}} = \frac{85-80}{\sqrt{\frac{6}{36} + \frac{5}{35}}} \approx 8,99$$

Визначення критичного значення: Для рівня значущості $\alpha = 0.05$, критичне значення $z_{\rm кp} \approx 1.96$.

Прийняття рішення: Розраховане значення $z_{\rm cn} \approx 8,99$ більше критичного значення $z_{\rm kp} \approx 1,96$. Отже, ми відхиляємо нульову гіпотезу. Є статистично значуща різниця між середніми значеннями балів двох груп студентів. **Відповідь.** Нульова гіпотеза не приймається.

18.4. Двовибірковий *t*-критерій для незалежних вибірок

Двовибірковий t-критерій для незалежних вибірок використовується для порівняння середніх значень двох нормально розподілених генеральних сукупностей, з невідомими але однаковими дисперсіями, якщо відомі вибіркові середні з двох незалежних вибірок x; y малих об'ємів (n, m < 30), зроблених з них. Він допомагає визначити, чи є статистично значуща різниця між середніми значеннями двох груп.

Правило 1

Збір даних: зібрати дані для двох незалежних вибірок $x = \{x_1, ..., x_n\}; y = \{y_1, ..., y_m\} (n, m < 30)$ і розрахувати їхні середнє значення $\overline{x_B}$, $\overline{y_B}$ та стандартне відхилення s_x , s_y .

Формулювання гіпотез:

- нульова гіпотеза $H_0: M(X) = M(Y)$ середні значення двох генеральних сукупностей рівні,
- альтернативна гіпотеза $H_1: M(X) \neq M(Y)$ середні значення двох генеральних сукупностей не рівні.

Розрахунок спостережуваного значення: спостережуване значення для двовибіркового t-критерію розраховується за формулою (18.8):

$$t_{\text{CII}} = \frac{\overline{x_{\text{B}}} - \overline{y_{\text{B}}}}{\sqrt{\left(\frac{1}{n} + \frac{1}{m}\right) \cdot \frac{(n-1) \cdot s_{\chi}^{2} + (m-1) \cdot s_{y}^{2}}{n + m - 2}}},$$
(18.8)

де $\overline{x_{\rm B}}$, $\overline{y_{\rm B}}$ — середні значення вибірок, n,m — об'єми вибірок, s_x , s_y — стандартні відхилення вибірок.

Визначення критичного значення: критичне значення $t_{\text{двост.кр}}$ визначається з таблиці розподілу Стьюдента для заданого рівня значущості α і ступеня свободи k=n+m-2 (див. дод. 6 Гмурмана).

Прийняття рішення:

- якщо розраховане значення $|t_{\rm cn}| > t_{\rm двост.кр},$ відхилити нульову гіпотезу,
- якщо розраховане значення $|t_{\rm cn}| < t_{\rm двост.кр},$ не відхиляти нульову гіпотезу.

Правило 2

Збір даних: аналогічно правилу 1.

Формулювання гіпотез:

- нульова гіпотеза H_0 : M(X) = M(Y) середні значення двох генеральних сукупностей рівні,
- альтернативна гіпотеза $H_1: M(X) > M(Y)$ середнє значення генеральної сукупності X більше, ніж середнє значення генеральної сукупності Y.

Розрахунок спостережуваного значення: спостережуване значення для двовибіркового t-критерію розраховується за формулою (18.8).

Визначення критичного значення: критичне значення $t_{\text{прав.кр}}$ визначається з таблиці розподілу Стьюдента для заданого рівня значущості α і ступеня свободи k=n+m-2 (див. дод. 6 Гмурмана).

Прийняття рішення:

- якщо розраховане значення $t_{\rm cn} > t_{\rm прав. kp}$, відхилити нульову гіпотезу,
- якщо розраховане значення $t_{\rm cn} < t_{\rm прав. kp}$, не відхиляти нульову гіпотезу.

Правило 3

Збір даних: аналогічно правилу 1.

Формулювання гіпотез:

- нульова гіпотеза H_0 : M(X) = M(Y) середні значення двох генеральних сукупностей рівні,
- альтернативна гіпотеза $H_1: M(X) < M(Y)$ середнє значення генеральної сукупності X менше, ніж середнє значення генеральної сукупності Y.

Розрахунок спостережуваного значення: спостережуване значення для двовибіркового t-критерію розраховується за формулою (18.8).

Визначення критичного значення: критичне значення $t_{\text{прав.кр}}$ визначається з таблиці розподілу Стьюдента для заданого рівня значущості α і ступеня свободи k=n+m-2 (див. дод. 6 Гмурмана).

Прийняття рішення:

- якщо розраховане значення $t_{\rm cn} < -t_{\rm прав. kp}$, відхилити нульову гіпотезу,
- якщо розраховане значення $t_{\rm cn} > -t_{\rm прав. \kappa p}$, не відхиляти нульову гіпотезу.

Двовибірковий t-критерій для незалежних вибірок ϵ корисним інструментом для порівняння середніх значень двох груп. Він допомагає зробити висновки про значущість відмінностей між групами, що може бути корисним у багатьох дослідницьких сферах, таких як психологія, медицина, соціальні науки тощо.

Приклад 18.3. Необхідно перевірити при рівні значущості $\alpha = 0,05$, чи відрізняються середні значення балів двох груп студентів на екзамені. Дані для двох незалежних вибірок:

Вибірка
$$x$$
 (група 1): $\overline{x_B} = 85, s_x = 5, n = 15,$
Вибірка y (група 2): $\overline{y_B} = 80, s_v = 6, m = 15.$

Альтернативна гіпотеза H_1 : M(X) ≠ M(Y)

Розв'язання. За правилом 1 даного критерію:

Збір даних:
$$\overline{x_B} = 85, s_x = 5, n = 15, \overline{y_B} = 80, s_v = 6, m = 15.$$

Формулювання гіпотез: $H_0: M(X) = M(Y), H_1: M(X) \neq M(Y).$

Розрахунок спостережуваного значення:

$$t_{\rm cri} = \frac{85 - 80}{\sqrt{\left(\frac{1}{15} + \frac{1}{15}\right) \cdot \frac{14 \cdot 25 + 14 \cdot 36}{15 + 15 - 2}}} \approx 2,49.$$

Визначення критичного значення: Для рівня значущості $\alpha=0.05$ і ступенів свободи k=15+15-2=28, критичне значення можна знайти в таблиці розподілу Стьюдента $t_{\rm двост. Kp}\approx 2.048$.

Прийняття рішення: Розраховане значення $t_{\rm cn} \approx 2,49$ більше критичного значення $t_{\rm двост. \kappa p} \approx 2,048$. Отже, ми відхиляємо нульову гіпотезу. Є статистично значуща різниця між середніми значеннями балів двох груп студентів.

Відповідь. Нульова гіпотеза не приймається.

18.5. Двовибірковий *t*-критерій для залежних вибірок

Двовибірковий t-критерій для залежних вибірок використовується для порівняння середніх значень двох залежних вибірок x; y, тобто коли кожен елемент однієї вибірки пов'язаний з конкретним елементом іншої вибірки. Це критерій часто використовується для аналізу даних до і після певного втручання або для парних спостережень.

Правило

Збір даних: зібрати дані для двох залежних вибірок $x = \{x_1, ..., x_n\}; y = \{y_1, ..., y_n\}$ і розрахувати різниці $d_i = x_i - y_i$ $(i = \overline{1, n})$ для кожної пари спостережень. З елементів d_i складаємо вибірку .

Формулювання гіпотез:

- нульова гіпотеза H_0 : M(d) = 0 середнє значення вибірки d дорівнює нулю (середні значення двох x; y рівні),
- альтернативна гіпотеза H_1 : $M(d) \neq 0$ середнє значення вибірки d не дорівнює нулю (середні значення двох вибірок x; y не рівні).

Розрахунок спостережуваного значення: спостережуване значення для двовибіркового t-критерію для залежних вибірок розраховується за формулою (18.9):

$$t_{\rm CII} = \frac{\overline{d_{\rm B}} \cdot \sqrt{n}}{s_d},\tag{18.9}$$

де $\overline{d_B} = \frac{\sum_{i=1}^n d_i}{n}$ — середнє значення різниць парних спостережень,

$$s_d = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (d_i - \overline{d_B})^2}$$
 — стандартне відхилення різниць,

n — кількість пар спостережень.

Визначення критичного значення: критичне значення $t_{\rm двост.кр}$, визначається з таблиці розподілу Стьюдента для заданого рівня значущості α і ступеня свободи k=n-1.

Прийняття рішення:

- якщо розраховане значення $|t_{\rm cn}| > t_{\rm двост.кр}$ (або знаходиться в критичній області), відхилити нульову гіпотезу.
- якщо розраховане значення $|t_{\rm cn}| < t_{\rm двост.кр}$, не відхиляти нульову гіпотезу.

Двовибірковий t-критерій для залежних вибірок ϵ важливим інструментом для аналізу парних спостережень. Він дозволя ϵ зробити висновки про ефективність втручання або методики, що використовується, і допомага ϵ визначити, чи ϵ різниця між двома залежними вибірками статистично значущою.

Приклад 18.4. Перевірити ефективність нової методики навчання для рівня значущості $\alpha = 0.05$. Наведено дані балів до та після застосування методики для 10 студентів (табл. 18.1):

Таблиця 18.1. Дані балів для студентів

Студент	1	2	3	4	5	6	7	8	9	10
До	70	68	75	72	69	74	73	71	72	70
Після	75	70	78	74	73	76	77	74	73	71

Розв'язання. Скористаємося двовибірковим t-критерієм для залежних вибірок.

Обчислення різниць:

$$d_i = x_{\text{після}} - x_{\text{до}}.$$

 d_i : 5, 2, 3, 2, 4, 2, 4, 3, 1, 1.

Формулювання гіпотез: $H_0: M(d) = 0, H_1: M(d) \neq 0.$

Середнє значення різниць
$$\overline{d_B}$$
:
$$\overline{d_B} = \frac{5+2+3+2+4+2+4+3+1+1}{10} = 2,7$$

Стандартне відхилення різниць s_d :

$$s_d = \frac{1}{9} \cdot ((5 - 2.7)^2 + (2 - 2.7)^2 + (3 - 2.7)^2 + (2 - 2.7)^2 + (4 - 2.7)^2 + (2 - 2.7)^2 + (4 - 2.7)^2 + (3 - 2.7)^2 + (1 - 2.7)^2 + (1 - 2.7)^2) \approx 1.33$$

Розрахунок спостережуваного значення:

$$t_{\text{CII}} = \frac{2.7 \cdot \sqrt{10}}{1.33} \approx 6.43.$$

Визначення критичного значення: для рівня значущості $\alpha = 0.05$ і ступенів свободи k=10-1=9, критичне значення $t_{\rm двост. \kappa p} \approx 2,262$.

рішення: Розраховане значення $t_{\rm cn} \approx 6,43.3$ Прийняття критичного значення $t_{\text{двост.кр}} \approx 2,262$. Отже, ми відхиляємо нульову гіпотезу. Є статистично значуща різниця між середніми значеннями балів до і після застосування методики.

Відповідь. Нульова гіпотеза не приймається.

18.6. *F*-критерій (критерій Фішера)

Критерій Фішера, також відомий як *F-тест* або дисперсійний аналіз (ANOVA), використовується для порівняння дисперсій двох або більше генеральних сукупностей X та Y, за відомими значення виправлених вибіркових дисперсій s_x^2 і s_y^2 для вибірок x; y, зроблених з них. Критерій Фішера особливо корисний при аналізі різниць між групами в експериментах.

Правило 1

Збір даних: задані дві вибірки $x=(x_1,...,x_n),\, x_i\in\mathbb{R};\, Y=(y_1,...,y_m),\, y_i\in\mathbb{R}$ \mathbb{R} . Вибірки зроблено з генеральних сукупностей X і Y, які ϵ нормальними. Позначимо через σ_X^2 і σ_Y^2 дисперсії генеральних сукупностей X і Y, а через s_x^2 і s_y^2 ($s_x^2 > s_y^2$) — вибіркові оцінки дисперсій σ_X^2 і σ_Y^2 :

$$s_x^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i - \overline{x_B})^2, s_y^2 = \frac{1}{m-1} \cdot \sum_{i=1}^m (y_i - \overline{y_B})^2,$$

де $\overline{x_{\mathrm{B}}} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$, $\overline{y_{\mathrm{B}}} = \frac{1}{m} \cdot \sum_{i=1}^{m} y_i$ — вибіркові средніх вибірок x і y.

Формулювання гіпотез:

- нульова гіпотеза H_0 : $\sigma_X^2 = \sigma_Y^2$ дисперсії двох генеральних сукупностей рівні,
- альтернативна гіпотеза $\sigma_X^2 > \sigma_Y^2$ дисперсія генеральної сукупності менша, ніж дисперсія генеральної сукупності

Розрахунок спостережуваного значення: спостережуване значення обчислюється за формулою (18.10).

$$F_{\rm CII} = \frac{s_{\chi}^2}{s_{\nu}^2}. (18.10)$$

має росподіл з n-1 і m-1 степенями свободи.

Визначення критичного значення: критичне значення $F_{\rm kp}$, визначається з таблиці розподілу Фішера (див. дод. 7 Гмурмана) для заданого рівня значущості α і ступенів свободи $k_x = n-1, k_y = m-1$.

Прийняття рішення:

- якщо розраховане значення $F_{\rm cn} > F_{\rm kp}$ (або знаходиться в критичній області), відхилити нульову гіпотезу.
- якщо розраховане значення $F_{cn} < F_{kp}$, не відхиляти нульову гіпотезу.

Правило 2

Збір даних: аналогічно правилу 1.

Формулювання гіпотез:

- нульова гіпотеза H_0 : $\sigma_X^2 = \sigma_Y^2$ вибіркові оцінки дисперсій двох генеральних сукупностей рівні,
- альтернативна гіпотеза $\sigma_X^2 \neq \sigma_Y^2$ дисперсія генеральної сукупності менша, ніж дисперсія генеральної сукупності

Розрахунок спостережуваного значення: спостережуване значення обчислюється за формулою (18.10).

Визначення критичного значення: критичне значення $F_{\text{кр}}$, визначається з таблиці розподілу Фішера (див. дод. 7 Гмурмана) для заданого рівня значущості $\frac{\alpha}{2}$ і ступенів свободи $k_x = n - 1$, $k_y = m - 1$.

Прийняття рішення:

- якщо розраховане значення $F_{\rm cn} > F_{\rm kp}$ (або знаходиться в критичній області), відхилити нульову гіпотезу.
- якщо розраховане значення $F_{\rm cn} < F_{\rm kp}$, не відхиляти нульову гіпотезу.

Критерій Фішера (F-критерій) ϵ важливим інструментом для порівняння дисперсій та визначення значущих відмінностей між групами. Він широко використовується в аналізі даних та експериментальних дослідженнях для виявлення впливу різних факторів на результати.

Приклад 18.5. У студентській групі з 10 осіб проводилося тестування з двох навчальних дисциплін (табл. 18.2). Чи є відмінності в ступені

однорідності показників успішності між результатами тестів? Рівень значущості $\alpha = 0,05$. Альтернативна гіпотеза $\sigma_X^2 > \sigma_Y^2$.

Розв'язання. За правилом 1 даного критерію:

Збір даних: Розглянемо дві вибірки: тест x і тест y (табл. 18.2):

Таблиця 18.2. Результати тестування

Nº	ПІБ	Тест х	Тест у
1	Андрєєв Л.	90	41
2	Валєєва I.	29	49
3	Енокян А.	39	56
4	Іванов П.	79	64
5	Сидорова М	88	72
6	Петров А.	53	65
7	Попова Л.	34	63
8	Шестаков I.	40	87
9	Еховий М.	75	77
10	Якушева А.	79	62

$$n = 606, m = 636, \overline{x_{\rm B}} = 60,6, \overline{y_{\rm B}} = 63,6.$$

Розрахувавши виправлені дисперсії для вибірок x і y, отримуємо:

$$s_x^2 = 572,83; s_y^2 = 174,04.$$

Формулювання гіпотез: H_0 : $\sigma_X^2 = \sigma_Y^2$ – нульова гіпотеза;

 $\sigma_X^2 > \sigma_Y^2$ – альтернативна гіпотеза.

Розрахунок спостережуваного значення: За формулою (18.10) для розрахунку F-критерію знаходимо:

$$F_{\rm cri} = \frac{572,83}{174,04} = 3,29.$$

Визначення критичного значення: По таблиці критичних значень для критерію Фішера при рівні значущості $\alpha = 0.05$ та ступенях свободи в обох випадках рівних $k_x = k_y = 10 - 1 = 9$ знаходимо $F_{\rm kp} = 3.18$.

Прийняття рішення: Оскільки $F_{\rm cn} > F_{\rm kp}$, в термінах статистичних гіпотез можна стверджувати, що H_0 (гіпотеза про подібність) може бути відкинута на рівні 5%, а приймається в цьому випадку гіпотеза H_1 . Дослідник може стверджувати, що за ступенем однорідності такого показника, як розумовий розвиток, ϵ відмінність між вибірками з двох класів.

Відповідь. Нульова гіпотеза не приймається.

18.7. Перевірка гіпотези про значущість вибіркового коефіцієнту кореляції

Правило 1

Збір даних: нехай із генеральної сукупності двовимірної випадкової величини (X,Y), розподіленої за нормальним законом, здійснено вибірку об'єму n і за даними вибірки (x; y) $(x = \{x_1, ..., x_n\}; y = \{y_1, ..., y_n\})$

обчислено вибірковий коефіцієнт кореляції Пірсона $\rho_{\rm B}(x,y)$, = $\rho_{\rm \Pi}(x,y)$, який виявився відмінним від нуля.

Формулювання гіпотез:

- нульова гіпотеза H_0 : $\rho_{\Gamma}(X,Y) = 0$, коефіцієнт кореляції Пірсона для двовимірної генеральної сукупності дорівнює нулю,
- альтернативна гіпотеза H_1 : $\rho_{\Gamma}(X,Y) \neq 0$, коефіцієнт кореляції Пірсона для двовимірної генеральної сукупності не дорівнює нулю.

Розрахунок спостережуваного значення:

За критерій перевірки нульової гіпотези беруть випадкову величину (18.11):

$$t_{\rm cm} = \rho_{\rm B}(x, y) \cdot \sqrt{\frac{n-2}{1-\rho_{\rm B}^2(X, Y)}}.$$
 (18.11)

Визначення критичного значення: за даними таблиці критичних точок розподілу Стьюдента для двосторонньої області при заданому рівні значущості α і числі ступенів свободи k=n-2 необхідно відшукати критичну точку $t_{\rm кp}$ (див. дод. 6 Гмурмана).

Прийняття рішення:

- якщо $|\hat{t}_{\rm cn}| < t_{\rm kp}$, то нульову гіпотезу приймають,
- якщо $|t_{\rm cn}| > t_{\rm kp}$, то нульову гіпотезу відхиляють.

Якщо нульова гіпотеза буде відхилена, то це означає, що вибірковий коефіцієнт кореляції суттєво відрізняється від нуля, тобто значущий, і випадкові величини X і Y — корельовані. Якщо нульова гіпотеза буде прийнята, то вибірковий коефіцієнт кореляції мало відрізняється від нуля і випадкові величини X і Y — некорельовані.

Правило 2

Збір даних: нехай із генеральної сукупності двовимірної випадкової величини (X,Y), розподіленої за нормальним законом, здійснено вибірку об'єму n і за даними вибірки (x; y) $(x = \{x_1, ..., x_n\}; y = \{y_1, ..., y_n\}$ обчислено вибірковий коефіцієнт рангової кореляції Спірмена $\rho_B(x,y)$, = $\rho_C(x,y)$, який виявився відмінним від нуля.

Формулювання гіпотез:

- нульова гіпотеза H_0 : $\rho_{\Gamma}(X,Y) = 0$, коефіцієнт рангової кореляції Спірмена для двовимірної генеральної сукупності дорівнює нулю,
- альтернативна гіпотеза H_1 : $\rho_{\Gamma}(X,Y) \neq 0$, коефіцієнт кореляції Спірмена для двовимірної генеральної сукупності не дорівнює нулю.

Розрахунок спостережуваного значення:

За критерій перевірки нульової гіпотези беруть випадкову величину (18.12):

$$t_{\rm cri} = \rho_{\rm B}(x, y).$$
 (18.12)

Визначення критичного значення: за даними таблиці критичних точок розподілу Стьюдента для двосторонньої області при заданому рівні

значущості α і числі ступенів свободи k=n-2 необхідно відшукати критичну точку $t_{\rm кp}$ (див. дод. 6 Гмурмана).

Також необхідно розрахувати $T_{\kappa p}$ (18.13):

$$T_{\rm Kp} = t_{\rm Kp} \cdot \sqrt{\frac{1 - \rho_{\rm B}^2(x, y)}{n - 2}}.$$
 (18.13)

Прийняття рішення:

- якщо $|t_{\rm cn}| < T_{\rm kp}$, то нульову гіпотезу приймають,
- якщо $|t_{\rm cn}| > T_{\rm kp}$, то нульову гіпотезу відхиляють.

Якщо нульова гіпотеза буде відхилена, то це означає, що вибірковий коефіцієнт кореляції суттєво відрізняється від нуля, тобто значущий, і випадкові величини X і Y — корельовані. Якщо нульова гіпотеза буде прийнята, то вибірковий коефіцієнт кореляції мало відрізняється від нуля і випадкові величини X і Y — некорельовані.

Правило 3

Збір даних: нехай із генеральної сукупності двовимірної випадкової величини (X,Y), розподіленої за нормальним законом, здійснено вибірку об'єму n і за даними вибірки (x; y) $(x = \{x_1, ..., x_n\}; y = \{y_1, ..., y_n\}$ обчислено вибірковий коефіцієнт рангової кореляції Кендалла $\rho_B(x,y) = \rho_K(x,y)$, який виявився відмінним від нуля.

Формулювання гіпотез:

- нульова гіпотеза H_0 : $\rho_{\Gamma}(X,Y)=0$, коефіцієнт рангової кореляції Кендалла для двовимірної генеральної сукупності дорівнює нулю,
- альтернативна гіпотеза $H_1: \rho_{\Gamma}(X,Y) \neq 0$, коефіцієнт рангової кореляції Кендалла для двовимірної генеральної сукупності не дорівнює нулю.

Розрахунок спостережуваного значення:

За критерій перевірки нульової гіпотези беруть випадкову величину (18.14):

$$t_{\rm cn} = \rho_{\rm B}(x, y).$$
 (18.14)

Визначення критичного значення: за даними таблиці критичних точок розподілу Стьюдента для двосторонньої області при заданому рівні значущості α необхідно відшукати критичну точку $z_{\rm кp}$ з рівняння $\Phi(z_{\rm kp}) = \frac{1-\alpha}{2}$ (див. дод. 2 Гмурмана).

Також необхідно розрахувати $T_{\rm Kp}$ (18.15): $T_{\rm Kp} = z_{\rm Kp} \cdot \sqrt{\frac{2 \cdot (2 \cdot n + 5)}{9 \cdot n \cdot (n - 1)}}.$

$$T_{\text{Kp}} = z_{\text{Kp}} \cdot \sqrt{\frac{2 \cdot (2 \cdot n + 5)}{9 \cdot n \cdot (n - 1)}}.$$
 (18.15)

Прийняття рішення:

- якщо $|t_{\rm cn}| < T_{\rm kp}$, то нульову гіпотезу приймають,
- якщо $|t_{\rm cn}| > T_{\rm \kappa p}$, то нульову гіпотезу відхиляють.

Якщо нульова гіпотеза буде відхилена, то це означає, що вибірковий коефіцієнт кореляції суттєво відрізняється від нуля, тобто значущий, і

випадкові величини X і Y — корельовані. Якщо нульова гіпотеза буде прийнята, то вибірковий коефіцієнт кореляції мало відрізняється від нуля і випадкові величини X і Y — некорельовані.

Приклад 18.6. За допомогою коефіцієнта кореляції Пірсона оцінити значущість кореляційного зв'язку між успішністю виконання тестових завдань з фізики (X) і математики (Y) учнями загальноосвітньої школи. Фрагмент результатів тестування наведено в табл. 18.3. Рівень значущості $\alpha = 0,01$.

Розв'язання. Скористаємося правилом 1 про значущість коефіцієнту кореляції Пірсона.

Збір даних: Розглянемо дві вибірки: тест x і тест y (табл. 18.3).

Таблиця 18.3. Фрагмент результатів тестування

No	ПІБ	Тест х	Тест у
1	Жураковська Л.	22	18
2	Радченко I.	25	22
3	Коган А.	18	20
4	Онищенко П.	24	25
5	Митник М	14	15
6	Андрієць А.	20	18
7	Лісовенко Л.	16	20
8	Мельник I.	15	13
9	Нечитайло М.	24	18
10	Чирва А.	20	15
11	Гамкало С.	11	10
12	Борисюк О.	11	13

Між вибірками x та y коефіцієнт кореляції $\rho_{\rm B}(x,y)=0.78,$ а n=12. Формулювання гіпотез:

- нульова гіпотеза H_0 : $\rho_{\Gamma}(X,Y) = 0$;
- альтернативна гіпотеза H_1 : $\rho_{\Gamma}(X,Y) \neq 0$.

Розрахунок спостережуваного значення: за формулою (18.11)

$$t_{\rm cn} = 0.78 \cdot \sqrt{\frac{10}{1 - 0.78^2}} \approx 3.94.$$

Визначення критичного значення: $t_{\rm кp}=3,\!17$ при рівні значущості $\alpha=0,\!01$ та степені свободи k=10.

Прийняття рішення: $|t_{\rm cn}| > t_{\rm kp}$, отже нульова гіпотеза відхиляється. Тобто, між результатами тесту X і тесту Y значущий існує кореляційний зв'язок.

Інтерпретація результатів наведені на рис. 18.1.

Рис 18.1. Інтерпретація результатів

Відповідь. Нульова гіпотеза не приймається.

Приклади практичного застосування даних критеріїв наведено в лекції 13. В якості генеральних сукупностей в них розглядалися статистика замовлення множини електронних послуг, а також курси обраної криптовалюти. Вибірками були відповідно розглядалися статистика замовлення множини електронних послуг, а також курси обраної криптовалюти за 30 та за 10 днів відповідно.

18.8. Порівняння виправленої вибіркової дисперсії з гіпотетичною генеральною дисперсією нормальної сукупності

Нехай генеральна сукупність X розподілена нормально, причому генеральна дисперсія хоч і невідома, але є підстави припускати, що вона дорівнює гіпотетичному (передбачуваному) значенню σ_0^2 . Насправді σ_0^2 встановлюється виходячи з попереднього досвіду чи теоретично.

Правило 1

Збір даних:

Нехай із генеральної сукупності X вилучено вибірку $x = \{x_1, ..., x_n\}$ об'єму n і для неї знайдено виправлену вибіркову дисперсію s^2 з k = n-1 ступенями свободи. Потрібно по виправленої дисперсії при заданому рівні значущості перевірити нульову гіпотезу, яка полягає в тому, що генеральна дисперсія аналізованої сукупності дорівнює гіпотетичному значенню σ_0^2 .

Формулювання гіпотез:

- нульова гіпотеза $H_0: \sigma^2 = \sigma_0^2$ дисперсія генеральної сукупності дорівнює гіпотетичному значенню;
- альтернативна гіпотеза H_1 : $\sigma^2 > \sigma_0^2$ дисперсія генеральної сукупності більша за деяке гіпотетичне значення.

Розрахунок спостережуваного значення:

Як критерій перевірки нульової гіпотези приймемо випадкову величину (18.16):

$$\mathcal{X}_{\text{CII}}^2 = \frac{(n-1)\cdot s^2}{\sigma_0^2}.$$
 (18.16)

Визначення критичного значення: за таблицею критичних точок розподілу \mathcal{X}^2 за заданим рівнем значущості α і числом ступенів свободи k=n-1 знайти критичну точку $\mathcal{X}_{ ext{kp}}^2$ (див. дод. 5 Гмурмана).

Прийняття рішення:

- якщо $\hat{\mathcal{X}}_{\text{cn}}^2 < \mathcal{X}_{\text{кp}}^2$, то нульову гіпотезу приймають,
- якщо $\mathcal{X}_{\text{cn}}^2 > \mathcal{X}_{\text{кр}}^2$, то нульову гіпотезу відхиляють.

Збір даних: аналогічно правилу 1.

Формулювання гіпотез:

- нульова гіпотеза $H_0: \sigma^2 = \sigma_0^2$ дисперсія генеральної сукупності дорівнює гіпотетичному значенню;
- альтернативна гіпотеза H_1 : $\sigma^2 \neq \sigma_0^2$ дисперсія генеральної сукупності не дорівнює гіпотетичному значенню.

Розрахунок спостережуваного значення: критерій перевірки нульової гіпотези обчислюється за формулою (18.16).

Визначення критичного значення: за таблицею критичних точок розподілу \mathcal{X}^2 знайти критичну точку $\mathcal{X}^2_{\text{лів.кр}}$ за заданим рівнем значущості $1-\frac{\alpha}{2}$ і числом ступенів свободи k=n-1 (див. дод. 5 Гмурмана) та $\mathcal{X}_{\text{прав.кр}}^2$ за заданим рівнем значущості $\frac{\alpha}{2}$ і числом ступенів свободи k=n-1.

Прийняття рішення:

- якщо $\mathcal{X}_{\text{лів.кр}}^2 < \mathcal{X}_{\text{сп}}^2 < \mathcal{X}_{\text{прав.кр}}^2$, то нульову гіпотезу приймають, якщо $\mathcal{X}_{\text{сп}}^2 < \mathcal{X}_{\text{лів.кр}}^2$, або $\mathcal{X}_{\text{сп}}^2 > \mathcal{X}_{\text{прав.кр}}^2$, то нульову гіпотезу відхиляють.

Правило 3

Збір даних: аналогічно правилу 1.

Формулювання гіпотез:

- нульова гіпотеза $H_0: \sigma^2 = \sigma_0^2$ дисперсія генеральної сукупності дорівнює гіпотетичному значенню;
- альтернативна гіпотеза H_1 : $\sigma^2 < \sigma_0^2$ дисперсія генеральної сукупності менша за деяке гіпотетичне значення.

Розрахунок спостережуваного значення: критерій перевірки нульової гіпотези обчислюється за формулою (18.16).

Визначення критичного значення: за таблицею критичних точок розподілу \mathcal{X}^2 знайти критичну точку $\mathcal{X}_{\text{KD}}^2$ за заданим рівнем значущості 1- α і числом ступенів свободи k = n - 1 (див. дод. 5 Гмурмана).

Прийняття рішення:

- якщо $\hat{\mathcal{X}}_{\text{сп}}^2 > \mathcal{X}_{\text{кр}}^2$, то нульову гіпотезу приймають,
- якщо $\mathcal{X}_{\text{сп}}^2 < \mathcal{X}_{\text{кр}}^2$, то нульову гіпотезу відхиляють.

Приклад 18.7. З нормальної генеральної сукупності вилучено вибірку обсягу n=13 і по ній знайдено виправлену вибіркову дисперсію $s^2=14$,6. Потрібно при рівні значущості $\alpha=0$,01 перевірити нульову гіпотезу H_0 : $\sigma^2=\sigma_0^2=12$, прийнявши в якості конкуруючої гіпотези H_1 : $\sigma^2>12$. **Розв'язання.** Скористаємося правилом 1 даного критерію.

Збір даних: нормальна генеральна сукупность, n=13, $s^2=14.6$, $\alpha=0.01$. **Формулювання гіпотез:** H_0 : $\sigma^2=\sigma_0^2=12$, H_1 : $\sigma^2>12$.

Розрахунок спостережуваного значення: знайдемо спостережуване значення критерію:

$$\mathcal{X}_{\text{CII}}^2 = \frac{(n-1) \cdot s^2}{\sigma_0^2} = \frac{(13-1) \cdot 14,6}{12} = 14,6.$$

Визначення критичного значення: за рівнем значущості $\alpha = 0.01$ і числом ступенів свободи k = n - 1 = 13 - 1 = 12 знаходимо критичну точку $\mathcal{X}_{\text{кр}}^2 = 26.2$.

Прийняття рішення: оскільки $\mathcal{X}_{\text{сп}}^2 < \mathcal{X}_{\text{кр}}^2$ — немає підстав відкинути нульову гіпотезу. Іншими словами, різниця між виправленою дисперсією та гіпотетичною генеральною дисперсією — незначна.

Відповідь. Нульова гіпотеза приймається.

Перевірка статистичної гіпотези щодо типу невідомого розподілу

Критерієм згоди називають критерій перевірки гіпотези про вигляд невідомого закону розподілу.

18.9. Критерій \mathcal{X}^2 -Пірсона

 \in ряд критеріїв згоди: \mathcal{X}^2 -Пірсона, Колмогорова, Смірнова та інші.

Критерій X^2 -*Пірсона* (*хі-квадрат Пірсона*) використовується для перевірки гіпотез про розподіл випадкових величин. Цей критерій дозволяє визначити, чи є статистично значущі відмінності між очікуваними та спостережуваними частотами в одній або кількох категоріях.

Правило

Збір даних: нехай за вибіркою об'єму n отримано інтервальний статистичний ряд (табл. 18.4) із частковими інтервалами однакової довжини

$$\sum_{i=1}^{l} n_i = n.$$

Таблиця 18.4. Інтервальний статистичний ряд

$[x_i; x_{i+1})$	$[x_1; x_2)$	$[x_2; x_3)$	 $[x_l; x_{l+1})$
n_i	n_1	n_2	 n_l

Формулювання гіпотез: потрібно при рівні значущості α перевірити нульову гіпотезу:

- нульова гіпотеза H_0 : генеральна сукупність розподілена за нормальним законом,
- альтернативна гіпотеза H_1 : генеральна сукупність не розподілена за нормальним законом.

Розрахунок спостережуваного значення: критерієм перевірки цієї гіпотези беруть випадкову величину $\mathcal{X}_{\text{сп}}^2$ (18.17):

$$\mathcal{X}_{\text{cn}}^2 = \sum_{i=1}^l \frac{(n_i - n_i')^2}{n_i'},\tag{18.17}$$

де m – число часткових інтервалів в статистичному ряді, n_i (i=1,...,l) – їх частоти (емпіричні частоти), і n'_i – теоретичні частоти, обчислені за припущенням, що генеральна сукупність розподілена нормально (число появ в n випробуваннях значень нормально розподіленої випадкової величини X із i-го часткового інтервалу).

Щоб знайти теоретичні частоти нормального розподілу, необхідно:

- середини x_i^* (i=1,...,l) часткових інтервалів статистичного ряду (усереднені варіанти);
- 2) обчислити вибіркову середню $\overline{x_{\rm B}^*}$ та вибіркове середнє квадратичне відхилення σ^* за даним розподілом вибірки, беручи в якості варіант середини часткових інтервалів (18.18), (18.19):

$$\overline{x_B^*} = \frac{1}{n} \cdot \sum_{i=1}^{l} (n_i \cdot x_i^*), \tag{18.18}$$

$$\sigma_B^* = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^l (n_i \cdot (x_i^*)^2) - \left(\frac{1}{n} \cdot \sum_{i=1}^l (n_i \cdot x_i^*)\right)^2}.$$
 (18.19)

3) нормалізувати випадкову величину X, тобто перейти до величини Z = $\frac{X-\overline{x_{B}^{*}}}{\sigma_{n}^{*}}$ і обчислити кінці інтервалів (z_{i}, z_{i+1}) (18.20):

$$z_i = \frac{X_i - \overline{X_B^*}}{\sigma_B^*}, z_{i+1} = \frac{X_{i+1} - \overline{X_B^*}}{\sigma_B^*},$$
 (18.20)

покладаючи при цьому $z_i = -\infty$, $z_{i+1} = +\infty$;

4) обчислити теоретичні ймовірності $P\{Z \in (z_i, z_{i+1})\} = P_i$ потрапляння величини Z в інтервал (z_i, z_{i+1}) (18.21): $P_i = \Phi(z_{i+1}) - \Phi(z_i).$

$$P_i = \Phi(z_{i+1}) - \Phi(z_i). \tag{18.21}$$

5) знайти теоретичні частоти (18.22):

$$n_i' = n \cdot P_i. \tag{18.22}$$

Визначення критичного значення: за таблицею критичних точок розподілу \mathcal{X}^2 знайти критичну точку $\mathcal{X}^2_{\mathrm{кр}}$ (див. дод. 5 Гмурмана) за заданим рівнем значущості α і числом ступенів свободи k=l-r-1=l-3, де l-1кількість інтервалів, r — кількість параметрів, які описують відповідний тип розподілу (для нормального розподілу r = 2).

Прийняття рішення:

- якщо $\hat{\mathcal{X}}_{\text{сп}}^2 < \mathcal{X}_{\text{кр}}^2$, то нульову гіпотезу приймають, якщо $\mathcal{X}_{\text{сп}}^2 > \mathcal{X}_{\text{кр}}^2$, то нульову гіпотезу відхиляють.

Слід зазначити, що критерій Пірсона використовується також для перевірки гіпотез про інші типи розподілів генеральної сукупності (біноміальний, експоненційний тощо). Для цього в формулі (18.21) P_i шукається в залежності від типу розподілу за формулою (18.23):

$$P_i = F(z_{i+1}) - F(z_i). (18.23)$$

Дана формула отримується з формули (6.6) лекції 6, де $\alpha=z_i$; $\beta=z_{i+1}$.

Приклад 18.8. За даним інтервальним розподілом вибірки об'єму n=100 при рівні значущості $\alpha=0.05$ за критерієм згоди Пірсона перевірити гіпотезу про нормальний розподіл генеральної сукупності (табл.18.5).

Таблиця 18.5. Інтервальний варіативний ряд

$[x_i, x_{i+1})$	[3;8)	[8; 13)	[13; 18)	[18; 23)	[23; 28)	[28; 33)	[33; 38)
n_i	6	8	15	40	16	8	7

Розв'язання. Скористаємося критерієм \mathcal{X}^2 -Пірсона.

Збір даних: Побудуємо статистичний розподіл, варіантами якого є середини даних інтервалів (табл. 18.6):

Таблиця 18.6. Допоміжний варіативний ряд

x_i^*	5,5	10,5	15,5	20,5	25,5	30,5	35,5
n_i	6	8	15	40	16	8	7

За формулами (18.18), (18.19) обчислимо вибіркову середню та вибіркове середнє квадратичне відхилення: $\overline{x_{\rm B}^*}\approx 20,7$; $\sigma_{\rm B}^*\approx 7,28$.

Формулювання гіпотез: потрібно при рівні значущості α перевірити нульову гіпотезу:

- нульова гіпотеза H_0 : генеральна сукупність розподілена за нормальним законом,
- альтернативна гіпотеза H_1 : генеральна сукупність не розподілена за нормальним законом.

Розрахунок спостережуваного значення: використовуючи формули (18.21),(8.22), обчислимо теоретичні частоти і n_i' . Для цього складемо розрахункову таблицю 18.7:

Таблиця 18.7. Розрахункова таблиця (частина 1)

i	x_i	x_{i+1}	z_i	z_{i+1}	$\Phi(z_i)$	$\Phi(z_{i+1})$	P_i	n_i'		
1	3	8	-∞	-1,74	-0,5000	-0,4591	0,0409	4		
2	8	13	-1,74	-1,06	-0,4591	-0,3554	0,1037	10		
3	13	18	-1,06	-0,37	-0,3554	-0,1443	0,2111	21		
4	18	23	-0,37	0,32	-0,1443	0,1255	0,2698	27		
5	23	28	0,32	1,00	0,1255	0,3413	0,2158	22		
6	28	33	1,00	1,69	0,3413	0,4545	0,1132	11		
7	33	38	1,69	+∞	0,4545	0,5000	0,0455	5		
	$\sum_{i=1}^{n}$									

Обчислимо спостережуване значення критерію $\mathcal{X}_{\text{сп}}^2$, для чого складемо розрахункову таблицю 18.8:

Таблиия 18.8. Розрахункова таблиия (частина 2)

i	n_i	n_i'	$n_i - n_i'$	$(n_i - n_i')^2$	$\frac{(n_i - n_i')^2}{n_i'}$
1	6	4	2	4	1,0000

2	8	10	-2	4	0,4000
3	15	21	-6	36	1,7143
4	40	27	13	169	6,2593
5	16	22	-6	36	1,6364
6	8	11	-3	9	0,8181
7	7	5	2	4	0,4000
\sum	100	100			12,2281

Отже, $\chi_{\text{сп}}^2 \approx 12,2281$.

Визначення критичного значення: за даними таблиці критичних точок розподілу \mathcal{X}^2 при рівні значущості $\alpha=0.05$ та числі ступенів вільності k=4 знаходимо критичну точку $\mathcal{X}^2_{\text{кp}}=9.5$.

Прийняття рішення: оскільки $\mathcal{X}_{\text{сп}}^2 > \mathcal{X}_{\text{кр}}^2$, то гіпотезу про нормальний розподіл генеральної сукупності X відкидаємо. Це означає, що емпіричні та теоретичні частоти відрізняються істотно, тобто дані спостережень не узгоджуються з гіпотезою про нормальний розподіл генеральної сукупності.

Відповідь. Нульова гіпотеза не приймається.

18.10. Критерій узгодження Колмогорова

Критерій Колмогорова (також відомий, як *критерій узгодження Колмогорова-Смірнова*) є одним з основних і найбільш широко використовуваних непараметричних методів у силу своєї достатньої чутливості до розходжень у досліджуваних розподілах.

Критерій Колмогорова призначений для зіставлення:

- емпіричного розподілу з теоретичним розподілом;
- одного емпіричного розподілу з іншим.

Критерій дозволяє знайти точку, у якій сума накопичених розбіжностей між двома розподілами є найбільшою, і оцінити ймовірність цієї розбіжності.

Обмеження для коректного застосування критерію:

- 1. Вибірка досить велика (більше 50 спостережень).
- 2. Класи інтервалів повинні бути впорядковані по зростанню або убуванню деякої ознаки. Вони обов'язково повинні відображати її направлену зміну.

Правило 1

Збір даних: нехай за вибіркою об'єму n отримано інтервальний статистичний ряд (табл. 16.3 лекції 16) із частковими інтервалами однакової довжини.

Формулювання гіпотез:

- нульова гіпотеза H_0 : вибірка походить з заданого теоретичного розподілу,
- альтернативна гіпотеза H_1 : вибірка не походить з заданого теоретичного розподілу.

Обчислення емпіричної функції розподілу: побудова емпіричної функції розподілу $F_n(x)$ на основі вибіркових даних.

Обчислення теоретичної функції розподілу: побудова теоретичної функції розподілу F(x) для заданого типу розподілу.

Обчислення статистики Колмогорова-Смирнова: знаходження максимальної різниці між емпіричною та теоретичною функціями розподілу (18.24):

$$D_{\rm cri} = \max |F_n(x) - F(x)|. \tag{18.24}$$

Визначення критичного значення: для обчислення критичного значення $D_{\rm кр}$ використовується таблиця критичних значень для критерію Колмогорова-Смирнова (табл. 18.9) або відповідна функція в програмному забезпеченні для статистичного аналізу.

Таблиця 18.9. Таблиця критичних значень для критерію Колмогорова-Смирнова

n	$\alpha = 0.10$	$\alpha = 0.05$	$\alpha = 0.01$
[1; 10]	0,409	0,455	0,531
[11; 20]	0,271	0,294	0,334
[21; 30]	0,222	0,240	0,271
[31; 40]	0,187	0,202	0,288
[41; 50]	0,162	0,175	0,198
[51; 60]	0,144	0,155	0,175
[61; 70]	0,131	0,141	0,159
[71; 80]	0,120	0,129	0,146
[81; 90]	0,112	0,121	0,137
[91; 100]	0,105	0,114	0,127

Табл. 18.9 отримано засобами Python (рис. 18.2).

```
import numpy as np
from scipy.stats import kstest

# Генерація вибірки з нормального розподілу
np.random.seed(0)
data = np.random.normal(loc=0, scale=1, size=100)

# Застосування критерію Колмогорова-Смирнова для перевірки нормальності
statistic, p_value = kstest(data, 'norm')

print(f"Статистика Колмогорова-Смирнова: {statistic}")
print(f"p-значення: {p_value}")

# Перевірка гіпотези при рівні значущості 0.05
alpha = 0.05
if p_value < alpha:
    print("Нульова гіпотеза відхиляється: вибірка не походить з нормального розпод else:
    print("Немає підстав відхиляти нульову гіпотезу: вибірка може походити з норма
```

Рис. 18.2. Приклад застосування в Python

Для n > 100 використовуються такі асимптотичні формули:

Для
$$\alpha = 0.10$$
: $D_{\text{кр}} = \frac{1.22}{\sqrt{n}}$,

Для
$$\alpha=0.05$$
: $D_{\mathrm{Kp}}=\frac{1.36}{\sqrt{n}}$, Для $\alpha=0.01$: $D_{\mathrm{Kp}}=\frac{1.63}{\sqrt{n}}$.

Прийняття рішення:

- Якщо $D_{cn} > D_{KD}$, то нульова гіпотеза відхиляється,
- Якщо $D_{\rm cn} < D_{\rm kp}$, то нульова гіпотеза не відхиляється.

Правило 2

Збір даних: аналогічно до правила 1

Формулювання гіпотез:

- нульова гіпотеза H_0 : вибірка походить з заданого теоретичного розподілу,
- альтернативна гіпотеза H_1 : вибірка не походить з заданого теоретичного розподілу.

Обчислення емпіричної функції розподілу: побудова емпіричної функції розподілу $F_n(x)$ на основі вибіркових даних.

Обчислення теоретичної функції розподілу: побудова теоретичної функції розподілу F(x) для заданого типу розподілу.

Колмогорова-Смирнова: Обчислення статистики знаходження максимальної різниці між емпіричною та теоретичною функціями розподілу (18.25):

$$\lambda_{\text{CII}} = \sqrt{n} \cdot \max |F_n(x) - F(x)|. \tag{18.25}$$

 $\lambda_{\rm cn} = \sqrt{n} \cdot max |F_n(x) - F(x)|.$ (18.25) Визначення критичного значення: для обчислення критичного значення $\lambda_{\rm kp}$ використовується таблиця критичних значень ДЛЯ критерію Колмогорова-Смирнова (табл. 18.10) або відповідна функція в програмному забезпеченні для статистичного аналізу.

Таблиця 18.10. Таблиця критичних значень для критерію Колмогорова-Смирнова

Рівень	0,40	0,30	0,20	0,10	0,05	0,025	0,01	0,005	0,001	0,0005
значущост	ri α									
Критичні	0,89	0,97	1,07	1,22	1,36	1,48	1,63	1,77	1,95	2,03
значення д	λ_{kp}									

В табл. 18.10 значення $\lambda_{\rm кр}$ отримано з рівняння (18.26):

$$P(\lambda_{\rm Kp}) = \alpha, \tag{18.26}$$

де $P(\lambda_{\text{кр}})$ обчислюється з рівності (18.27): $P(\lambda) = 1 - \sum_{k=-\infty}^{+\infty} ((-1)^k \cdot e^{-2 \cdot k^2 \cdot \lambda^2}).$

$$P(\lambda) = 1 - \sum_{k=-\infty}^{+\infty} ((-1)^k \cdot e^{-2 \cdot k^2 \cdot \lambda^2}).$$
 (18.27)

Це пов'язано із тим, що практично доведено, що якою б не була теоретична функція розподілу F(x) неперервної випадкової величини X при необмеженій кількості спостережень $(n \to \infty)$ ймовірність нерівності $P(\lambda_{\rm cn} \ge \lambda)$ прямує до границі (18.27).

Прийняття рішення:

Якщо $\lambda_{\rm cn} > \lambda_{\rm kn}$, то нульова гіпотеза відхиляється,

- Якщо $\lambda_{\rm cn} < \lambda_{\rm kp}$, то нульова гіпотеза не відхиляється

Критерій Колмогорова простіше критерію \mathcal{X}^2 -Пірсона, тому його охоче застосовують на практиці. Однак, цей критерій можна застосовувати тільки у випадку, коли гіпотетичний розподіл F(x) разом з усіма параметрами, що в нього входять. Такий випадок порівняно нечасто зустрічається на практиці. Звичайно з теоретичних міркувань відомо тільки загальний вид функції F(x). При застосуванні критерію Пірсона ця обставина враховується відповідним зменшенням числа степенів вільності розподілу \mathcal{X}^2 . Критерій Колмогорова такого узгодження не передбачає.

Приклад 18.9. На основі вибірки (табл. 18.11)

Таблиця 18.11. Інтервальний варіативний ряд

$[x_i, x_{i+1})$	[0; 5)	[5; 10)	[10; 15)	[15; 20)	[20; 25)	[25; 30)	[30; 35)
n_i	30	16	7	3	2	1	1

побудовано експоненціальний закон розподілу часу обслуговування 60 заявок на ATC, що визначається функцією розподілу $F(x) = \begin{cases} 1 - e^{-(0,14\cdot x)}, x \geq 0, \\ 0, x < 0 \end{cases}$. Перевірити узгодженість теоретичних і емпіричних

частот за критерієм Колмогорова. Рівень значущості $\alpha=0.05$.

Розв'язання. За критерієм Колмагорова:

Збір даних: за вибіркою об'єму 60 отримано інтервальний статистичний ряд (табл. 18.11) із частковими інтервалами однакової довжини.

Формулювання гіпотез:

- нульова гіпотеза H_0 : вибірка узгоджується з заданим експоненційним розподілом,
- альтернативна гіпотеза H_1 : вибірка не узгоджується з заданим експоненційним розподілом.

Обчислення емпіричної функції розподілу: по заданому статистичному розподілу побудуємо емпіричну функцію розподілу $F_n(x) = \frac{n_x}{n}$, де n_x – кількість значень ознаки, які не перевищують величину X.

$$F_n(x) = 0$$
, при $-\infty < x < 0$, $F_n(x) = \frac{30}{60} = 0.5$, при $0 \le x < 5$, $F_n(x) = \frac{46}{60} = 0.77$, при $5 \le x < 10$, $F_n(x) = \frac{53}{60} = 0.88$, при $10 \le x < 15$, $F_n(x) = \frac{56}{60} = 0.93$, при $15 \le x < 20$, $F_n(x) = \frac{58}{60} = 0.97$, при $20 \le x < 25$, $F_n(x) = \frac{59}{60} = 0.99$, при $25 \le x < 30$, $F_n(x) = \frac{60}{60} = 1$, при $30 \le x < 35$, $F_n(x) = \frac{60}{60} = 1$, при $35 \le x < +\infty$.

Очевидно, що два останні інтервали можна об'єднати.

Обчислення теоретичної функції розподілу: значення теоретичної функції розподілу для кожного з інтервалів обчислюємо за формулою:

$$F(x) = \begin{cases} 1 - e^{-(0.14 \cdot x)}, x \ge 0, \\ 0, & x < 0 \end{cases}$$
 для правого кінця проміжку.

Наприклад,

$$F(x) = 1 - e^{-(0.14.5)} = 0.503$$
, при $0 < x \le 5$,

$$F(x) = 1 - e^{-(0.14 \cdot 10)} = 0.753$$
, при $5 < x \le 10$.

Обчислення статистики Колмогорова-Смирнова: Обчислення проведемо в табл. 18.12.

Таблиця 18.12. Розрахунок величини D_{cn}

$[x_i, x_{i+1})$	n_i	$F_n(x)$	F(x)	$ F_n(x) - F(x) $
$(-\infty,0)$	0	0	0	0
[0; 5)	30	0,50	0,503	0,003
[5; 10)	16	0,77	0,753	0,017
[10; 15)	7	0,88	0,878	0,002
[15; 20)	3	0,93	0,939	0,009
[20; 25)	2	0,97	0,969	0,001
[25; 30)	1	0,98	0,985	0,005
[30; 35)	1	1	0,993	0,007
[35; +∞)	0	1	1	0

Найбільше значення в останньому стовпці і є спостережуваним значенням. Тобто $D_{\rm cn}=0.017~(\lambda_{\rm cn}=0.017\cdot\sqrt{60}=0.132).$

Визначення критичного значення: згідно таблиці критичних значень (табл. 18.9) при рівні значущості $\alpha = 0.05$ та n = 60 критичне значення $D_{\rm kp} = 0.144$, а згідно табл. 18.10 $\lambda_{\rm kp} = 1.36$.

Прийняття рішення: оскільки $D_{\rm cn} < D_{\rm kp} \, (\lambda_{\rm cn} < \lambda_{\rm kp})$, то за критерієм Колмогорова гіпотезу про розподіл часу обслуговування заявок на ATC за експоненціальним законом варто визнати не суперечною експерименту. Відповідь. Нульова гіпотеза приймається.

18.11. Метод спрямлюючих діаграм

Для перевірки гіпотези про нормальність розподілу генеральної сукупності за допомогою *методу спрямлюючих діаграм*, скористаємося Q-Q діаграмою (*quantile-quantile plot*).

Q-Q діаграма дозволяє оцінити, наскільки розподіл даних відповідає нормальному розподілу, порівнюючи квантилі спостережуваних даних з квантилями теоретичного нормального розподілу.

Правило

Побудова розрахункової таблиці. Побудувати розрахункову таблицю (табл. 18.13).

1	2	3	4	5	6	7
Номер	Правий	Часто	Накопичув	Відносна	Відносна	Кванти
інтерва	кінець	та	ана частота	накопичув	накопичув	лі
лу	інтерва			ана	ана	
	лу			частота	частота	
					(%)	
i	x_i	n_i	$\frac{m}{\sum}$	P_i	P_i	u_{P_i}
			$\sum_{i} n_{i}$	$\sum_{i=1}^{m} n_i$	$\sum_{i=1}^{m} n_i$	
			$\overline{i=1}$	$=\frac{n}{n}$	$=$ ${n}$	
					· 100%	

Таблиця 18.13. Розрахункова таблиця для методу спрямлюючих діаграм

Стовпець 6 обчислюється з міркувань зручності, в разі, коли цього вимагає таблиця квантелів.

Побудова Q - Q діаграми. Для побудови Q - Q діаграми необхідно побудувати в прямокутній системі координат точки $(x_i; u_{P_i})$ та пряму

$$y = x$$
,

яка будується по точках x_i (див. рис. 18.3).

В деякій літературі, зокрема в Гмурмані, рекомендується пряму представляти у вигляді

$$y = \frac{x - a}{\sigma},$$

де a, σ підбираються за допомогою точкових оцінок параметрів нормального розподілу $a = \overline{x_B}, \sigma = s$.

```
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt

# Генерація даних
np.random.seed(0)
normal_data = np.random.normal(loc=0, scale=1, size=1000) # Нормально розподілені
non_normal_data = np.random.exponential(scale=1, size=1000) # Ненормально розподілені
# Створення 0-0 діаграми для нормально розподілених даних
plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)
stats.probplot(normal_data, dist="norm", plot=plt)
plt.title('0-0 діаграми для ненормальнох даних')

# Створення 0-0 діаграми для ненормально розподілених даних
plt.subplot(1, 2, 2)
stats.probplot(non_normal_data, dist="norm", plot=plt)
plt.title('0-0 діаграма для ненормальних даних')

plt.tight_layout()
plt.tight_layout()
plt.tight_layout()
plt.show()
```

Рис. 18.3. Приклад застосування в Python

Прийняття рішення: Якщо дані розподілені нормально, то точки на Q - Q діаграмі будуть лежати на прямій лінії y = x. Якщо дані розподілені ненормально, то точки значно відхиляються від неї (рис. 18.4, 18.5).

Рис. 18.4. Q-Q діаграма для нормальних даних

Рис. 18.5. Q - Q діаграма для ненормальних даних