Estudiando el Universo con el bosque de Lyman-Alpha

Hiram K. Herrera-Alcantar

Universidad de Guanajuato hk.herreraalcantar@ugto.mx

Martes, 4 de Mayo del 2021

El modelo ACDM

El modelo ACDM

Redshift

$$z = \frac{\lambda_{obs}}{\lambda_{emit}} - 1$$

Ley de Hubble

Relación entre velocidad y distancia

$$v = H_0 d$$

Hubble, E. (1929)

$$H(z) = H_0 \left[\Omega_m (1+z)^3 + \Omega_r (1+z)^4 + \Omega_\Lambda + \Omega_k (1+z)^2 \right]^{1/2}$$

Distancias

La medición de distancias en el Universo es una tarea muy importante para su entendiento...

¿Cómo se miden?

Candelas Estándar

Supernovas Tipo Ia (SNIa)

Betoule et al. (2014)

$$d_L = \sqrt{\frac{L}{4\pi F}}$$

Regla Estándar

• Oscilaciones Acústicas de Bariones

$$r_d = c \left[3(1 + 3\Omega_b/4\Omega_r) \right]^{-1/2} \int_{z_d}^{\infty} \frac{dz'}{H(z')}$$

Podemos estudiar BAO por medio de sondeos espectroscópicos

DESI

U.S. Department of Energy Office of Science

- Ubicación: Observatorio Nacional de Kitt Peak Arizona.
- Especificaciones:
 - Telescopio 4-m de diametro. (Mayall)
 - 5000 fibras ópticas
 - 10 espectrógrafos
 - 3 bandas

Metas Científicas

U.S. Department of Energy Office of Science

- Medición del espéctro ~30 millones de galaxias en un área de 14,000 sq.deg:
 - Galaxias brillantes: 9.8 millones
 - Galaxias Luminosas Rojas: 4 millones
 - Galaxias de Línea de Emisión: 17.1 millones
 - Cuásares: 1.7 millones con z<2.1 y 0.7 millones Cuásares Lyman-Alpha z>2.1

El bosque de Lyman-a

Andrew Pontzen

El bosque de Lyman-α

Flujo transmitido

$$F(\lambda) = e^{-\tau(\lambda)}$$

Profundidad Óptica

$$\tau(\nu) = \Sigma(\nu) N_{\rm HI}(z)$$

Mo et al. (2010)

Absorbentes

- Bosque Lyman- α : $10^{12} < N_{\rm HI}(z) < 10^{17} {\rm cm}^{-2}$
- Sistemas de Límite de Lyman (LLS): $N_{\rm HI}(z) > 10^{17}~{\rm cm}^{-2}$
- Sistemas Damped Lyman Alpha (DLA): $N_{\rm HI}(z) > 10^{20}~{\rm cm}^{-2}$
- Sistemas Broad Absorption Line (BAL): Interrupción en el espectro después de una línea de emisión
- Contaminantes: metales, Fluctuaciones del fondo UV

La función de correlación (CF)

• Fluctuaciones en el espectro del cuásar:

$$\delta_{\mathrm{F}}(\lambda) = \frac{f(\lambda)}{C(\lambda)\bar{F}(z)} - 1$$

Autocorrelación and cross-correlación

$$\hat{\xi}(A) = \frac{\sum_{i,j \in A} \omega_i \omega_j \delta_i \delta_j}{\sum_{i,j \in A} \omega_i \omega_j} , \quad \hat{\xi}(A) = \frac{\sum_{i,k \in A} \omega_i \delta_i}{\sum_{i,k \in A} \omega_i}$$

¿Qué información obtenemos de la CF?

• Se puede inferir la posición de la escala de BAO a través de dos parámetros de ajuste:

$$\alpha_{\perp} = \frac{D_{A}(\bar{z})/r_{d}}{\left[D_{A}(\bar{z})/r_{d}\right]_{\text{fid}}}$$

$$\mu(\bar{z})r_{d} = \frac{D_{H}(\bar{z})/r_{d}}{\alpha_{\parallel}[D_{H}(\bar{z})/r_{d}]_{\text{fid}}}$$

de Sainte Agathe et al. 2019

¿Qué hacemos cuando (aún) no tenemos datos?

Simulaciones!

¿Qué hacemos cuando (aún) no tenemos datos?

GRACIAS.