Semiparametric robust mean estimations based on the orderliness of quantile averages

Tuban Lee

This manuscript was compiled on July 4, 2023

semiparametric | mean-median-mode inequality | asymptotic | unimodal | Hodges—Lehmann estimator

 \square Proof.

- Inequalities Between and Among Robust Mean Esti-
- mates
- 4 Analogous to the γ -orderliness, the γ -trimming inequality for
- $_{5}~$ a right-skewed distribution is defined as $\forall 0 \leq \epsilon_{1} \leq \epsilon_{2} \leq$
- $\epsilon = \frac{1}{1+\gamma}, TM_{\epsilon_1,\gamma} \geq TM_{\epsilon_2,\gamma}.$ γ -orderliness is a sufficient condition
- for the γ -trimming inequality, as proven in the SI Text. The
- 8 next theorem shows a relation between the ϵ, γ -quantile average
- 9 and the ϵ, γ -trimmed mean under the γ -trimming inequality,
- $_{10}$ $\,$ suggesting the $\gamma\text{-}\mathrm{orderliness}$ is not a necessary condition for
- the γ -trimming inequality.
- Data Availability. Data for Figure ?? are given in SI Dataset
- S1. All codes have been deposited in GitHub.
- ACKNOWLEDGMENTS. I sincerely acknowledge the insightful
- 15 comments from the editor which considerably elevated the lucidity
- and merit of this paper.