Author: Sai Teja Yaruva

Project: Credit Card Fraud Detection

Email: teja1029azby@gmail.com

In this notebook I will try to predict fraud transactions from a given data set. Given that the data is imbalanced, standard metrics for evaluating classification algorithm (such as accuracy) are invalid. I will focus on the following metrics: Sensitivity (true positive rate) and Specificity (true negative rate). Of course, they are dependent on each other, so we want to find optimal trade-off between them. Such trade-off usually depends on the application of the algorithm, and in case of fraud detection I would prefer to see high sensitivity (e.g. given that a transaction is fraud, I want to be able to detect it with high probability).

IMPORTING LIBRARIES:

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pylab import rcParams
import warnings
warnings.filterwarnings('ignore')
```

READING DATASET:

In [2]:

```
data=pd.read_csv('/kaggle/input/creditcardfraud/creditcard.csv')
```

In [3]:

```
data.head()
```

Out[3]:

	Ti	ime	V1	V2	V3	V4	V5	V6	V7	V8	V9	 V21	V22	V23	
()	0.0	1.359807	0.072781	2.536347	1.378155	0.338321	0.462388	0.239599	0.098698	0.363787	 0.018307	0.277838		0
			1.191857	0.266151			0.060018	-	-		-	-	-	0.101288	
	1	0.0	-	-	0.166480	0.448154	-	0.082361 1.800499	0.078803 0.791461	0.085102	0.255425	 0.225775 0.247998	0.638672 0.771679		0
:	2	1.0	1.358354		1.773209	0.379780	0.503198			0.247676	1.514654	 -		0.909412	0
3	3	1.0	0.966272	0.185226	1.792993	0.863291	0.010309	1.247203	0.237609	0.377436	1.387024 0.817739	 0.108300 - 0.009431	0.005274	0.190321	1
4	4	2.0			1.548718	0.403034		0.095921	0.592941	0.270533			0.798278	0.137458	0

5 rows × 31 columns

NULL VALUES:

In [4]:

```
data .isnull() .sum()
```

Out[4]:

```
Time 0
V1 0
V2 0
```

```
V3
    V4
           0
V5
     V6
          0
V7
     V8
           0
V9 V10
V11 V12
           0
V13 V14
          0
V15 V16
           0
V17 V18
          0
V19 V20
          0
V21 V22
          0
V23 V24
           0
V25 V26
V27 V28
          0
Amount
           0
Class
          0
           Ω
           0
           Ω
           0
           0
           0
           0
           0
           0
           0
           0
           Ω
```

dtype: int64

Thus there are no null values in the dataset.

INFORMATION

```
In [5]:
```

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):
        284807 non-null float64
V1
         284807 non-null float64
V2
          284807 non-null float64
V3
         284807 non-null float64
V4
         284807 non-null float64
V5
          284807 non-null float64
          284807 non-null float64
V6
         284807 non-null float64
V7
V8
          284807 non-null float64
V9
          284807 non-null float64
         284807 non-null float64
V10
         284807 non-null float64
V11
V12
         284807 non-null float64
V13
          284807 non-null float64
V14
         284807 non-null float64
V15
         284807 non-null float64
V16
          284807 non-null float64
V17
          284807 non-null float64
         284807 non-null float64
V18
V19
          284807 non-null float64
V20
         284807 non-null float64
V21
          284807 non-null float64
V22
         284807 non-null float64
V23
          284807 non-null float64
V24
          284807 non-null float64
          284807 non-null float64
V25
          284807 non-null float64
V26
V27
          284807 non-null float64
          284807 non-null float64
V28
         284807 non-null float64
Amount
Class
         284807 non-null int64
```

dtypes: float64(30), int64(1)

memory usage: 67.4 MB

```
DESCRIPTIVE STATISTICS
In [6]:
data .describe() .T.head ()
Out[6]:
                                                       25%
                                                                     50%
                                                                                 75%
        count
                    mean
Time 284807.0 9.481386e+04 47488.145955 0.000000 54201.500000 84692.000000 139320.500000 172792.0000000
  V1 284807.0 3.919560e-15
                               1.958696 -56.407510
                                                     -0.920373
                                                                  0.018109
                                                                               1.315642
                                                                                            2.454930
  V2 284807.0 5.688174e-16 1.651309 -72.715728
                                                     -0.598550
                                                                  0.065486
                                                                               0.803724
                                                                                           22.057729
  V3 284807.0 -8.769071e-15
                                                     -0.890365
                                                                  0.179846
                               1.516255 -48.325589
                                                                               1.027196
                                                                                            9.382558
  V4 284807.0 2.782312e-15 1.415869 -5.683171
                                                     -0.848640
                                                                  -0.019847
                                                                               0.743341
                                                                                           16.875344
In [7]:
data.shape
Out[7]:
```

Thus there are 284807 rows and 31 columns.

```
In [8]:
```

(284807, 31)

```
data.columns
```

```
Out[8]:
```

FRAUD CASES AND GENUINE CASES

```
In [9]:
fraud_cases=len(data['Class']==1])
```

```
In [10]:
print(' Number of Fraud Cases:', fraud cases)
```

Number of Fraud Cases: 492

```
In [11]:
non_fraud_cases =len(data [data ['Class' ]== 0])
```

```
In [12]:
print('Number of Non Fraud Cases:',non_fraud_cases)
```

Number of Non Fraud Cases: 284315

In [13]:

```
fraud=data[data['Class']==1]
```

In [14]:

```
genuine=data[data['Class']==0]
```

In [15]:

```
fraud.Amount.describe()
```

Out[15]:

count	492.000000
mean	122.211321
std	256.683288
min	0.000000
25%	1.000000
50%	9.250000
75%	105.890000
max	2125.870000

Name: Amount, dtype: float64

In [16]:

```
genuine.Amount.describe()
```

Out[16]:

count	284315.000000
mean	88.291022
std	250.105092
min	0.000000
25%	5.650000
50%	22.000000
75%	77.050000
max	25691.160000

Name: Amount, dtype: float64

EDA

In [17]:

```
data.hist(figsize=(20,20),color='lime')
plt.show()
```


In [18]:

```
rcParams['figure.figsize'] = 16, 8
f,(ax1, ax2) = plt.subplots(2, 1, sharex=True)
f.suptitle('Time of transaction vs Amount by class')
ax1.scatter(fraud.Time, fraud.Amount)
ax1.set_title('Fraud')
ax2.scatter(genuine.Time, genuine.Amount)
ax2.set_title('Genuine')
plt.xlabel('Time (in Seconds)')
plt.ylabel('Amount')
plt.show()
```

Time of transaction vs Amount by class

CORRELATION

```
In [19]:
```

```
plt.figure(figsize=(10,8))
corr =data .corr ()
sns.heatmap(corr,cmap='BuPu')
```


Let us build our models:

```
In [20]:
```

```
from sklearn.model_selection import train_test_split
```

Model 1:

```
In [21]:

X=data .drop ([ 'Class' ], axis =1)
```

```
In [22]:
```

```
y=data['Class']
```

In [23]:

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30,random_state=123)
```

In [24]:

```
\textbf{from sklearn.ensemble import} \ \texttt{RandomForestClassifier}
```

In [25]:

```
rfc=RandomForestClassifier()
```

In [26]:

```
model=rfc.fit(X_train,y_train)
```

In [27]:

```
prediction=model.predict(X_test)
In [28]:
from sklearn.metrics import accuracy_score
In [29]:
accuracy_score(y_test,prediction)
Out[29]:
0.9995786664794073
Model 2:
In [30]:
from sklearn.linear_model import LogisticRegression
In [31]:
X1=data.drop(['Class'],axis=1)
In [32]:
y1=data['Class']
In [33]:
\texttt{X1\_train}, \texttt{X1\_test}, \texttt{y1\_train}, \texttt{y1\_test=train\_test\_split} (\texttt{X1}, \texttt{y1}, \texttt{test\_size=0.3}, \texttt{random\_state=123})
In [34]:
lr=LogisticRegression()
In [35]:
model2=lr.fit(X1_train,y1_train)
In [36]:
prediction2=model2.predict(X1_test)
In [37]:
accuracy_score(y1_test,prediction2)
Out[37]:
0.9988764439450862
Model 3:
In [38]:
from sklearn.tree import DecisionTreeRegressor
In [39]:
X2=data.drop(['Class'],axis=1)
```

```
In [40]:
y2=data['Class']
In [41]:
dt=DecisionTreeRegressor()
In [42]:
X2_train,X2_test,y2_train,y2_test=train_test_split(X2,y2,test_size=0.3,random_state=123)
In [43]:
model3=dt.fit(X2_train,y2_train)
In [44]:
prediction3=model3.predict(X2_test)
In [45]:
accuracy_score(y2_test,prediction3)
Out[45]:
0.999133925541004
Overall models performed with a very high accuracy.
In [ ]:
```