In class work **5(a)** has questions **1** through **4** with a total of **8** points. Turn in your work at the end of class *on paper*. This assignment is due *Tuesday 19 September 13:20*.

2 1. Use IBP to find an antiderivative of the inverse cosine function; that is find $\int \cos^{-1}(x) dx$. To do the IBP, integrate one and differentiate $\cos^{-1}(x)$.

Solution: In tabular form, IBP gives

	D	I
+	$\cos^{-1}(x)$	1
_	$-\frac{1}{\sqrt{1-x^2}}$	x

So

$$\int \cos^{-1}(x) dx = x \cos^{-1}(x) + \int \frac{x}{\sqrt{1 - x^2}} dx,$$
$$= x \cos^{-1}(x) - \sqrt{1 - x^2}.$$

For $\int \frac{x}{\sqrt{1-x^2}} dx$, let $z = 1 - x^2$. That gives $\int \frac{x}{\sqrt{1-x^2}} dx = -\sqrt{1-x^2}$.

2. Find the area of the region $\{(x, y) | 0 \le y \le \cos^{-1}(x) \text{ and } -1 \le x \le 1\}$. A pretty good graph of this region is

Figure 1: A pretty good graph of $\{(x, y) | 0 \le y \le \cos^{-1}(x) \text{ and } -1 \le x \le 1\}$.

Solution:

We have

$$\int_{-1}^{1} \cos^{-1}(x) \, \mathrm{d}x = x \cos^{-1}(x) - \sqrt{1 - x^2} \Big|_{x = -1}^{x = 1} = \cos^{-1}(1) + \cos^{-1}(-1) = \pi.$$

3. Find the area of the region $\{(x, y) | \cos^{-1}(x) \le y \le \pi \text{ and } -1 \le x \le 1\}$. Try doing this by being clever. A pretty good graph of this region is

Figure 2: A pretty good graph of $\{(x, y) | \cos^{-1}(x) \le y \le \pi \text{ and } -1 \le x \le 1\}$

Solution: To find the area of the given region, from the $2 \times \pi$ rectangle with vertices $(-1,0),(1,0),(1,\pi)$, and $(-1,\pi)$, we subtract the area we found in the previous question. So this area is also π .

4. Use IBP to find $\int x(1-x)\sin(\pi x) dx$. To do this, differentiate x(1-x) and integrate $\sin(\pi x)$. If you enjoy doing more work than needed, expand the integrand as $\int x\sin(\pi x) dx - \int x^2\sin(\pi x) dx$.

	D	I
+	$x-x^2$	$\sin(\pi x)$
_	1-2x	$-\frac{1}{\pi}\cos(\pi x)$
+	-2	$\frac{1}{\pi^2}\sin(\pi x)$
+	0	$-\frac{1}{\pi^3}\cos(\pi x)$

So

$$\int x \sin(\pi x) dx = \frac{1}{\pi^3} (\pi^2 x^2 - \pi^2 x - 2) \cos(\pi x) - \frac{1}{\pi^2} (2x - 1) \sin(\pi x).$$