Datum : 2022	SPŠ CHOMUTOV	Třída: A3
číslo úlohy : 21	MĚŘENÍ NA TTL I.	Vaněček Adam

Zadání:

Změřte převodní a výstupní charakteristiku TTL obvodu.

Schéma zapojení:

Převodní charakteristika:

Výstupní charakteristika stav log.1:

Výstupní charakteristika stav log.0 :

Použité přístroje:

Název	Označení	Parametry	Ev. Číslo
Zdroj	U ₁	5V/2A	LE2 1033
Zdroj	U ₂	5V/	LE1 1843
Potenciometr	P ₁	410Ω/1,2A	LE1 367
Reostat	R _{Z1}		
Reostat	R _{Z2}		
Číslicový voltmetr	ČV	U3401A	LE 5096
Voltmetr	V	0-600V (0,5 \$\frac{1}{2}\$	
Miliampérmetr	mA		
TTL	&	MH 7400	-

Teorie:

Polovodičové prvky TESLA řady MH7400 jsou křemíkové planárně epitaxní TTL logické integrované obvody. Charakteristickou zvláštností těchto monolitických integrovaných obvodů je vazba pomocí tranzistoru s dvěma a více emitory.

Vstupní napětí úroveň H = min 2V; Vstupní napětí úroveň L = max 0,8V

Výstupní napětí úroveň H = min 2,4V; Výstupní napětí úroveň L = max 0,4V

Postup:

Převodní charakteristika:

- 1) Zapojíme obvod dle schématu pro převodní charakteristiku.
- 2) Potenciometrem nastavujeme vstupní napětí 0-5V.
- 3) Odečítáme výstupní napětí, snažíme se zachytit zejména body zlomu.

Výstupní charakteristika stav log.1:

- 1) Zapojíme obvod dle schématu pro výstupní charakteristiku pro stav log. 1.
- 2) Při vyřazeném R_{Z,} změříme výstupní napětí naprázdno.
- 3) Zařadíme odpor R_Z a postupním vyřazováním nastavuji požadované hodnoty I_{VYST} a odečítám odpovídající U_{VYST} .

Výstupní charakteristika stav log.0:

- 1) Zapojíme obvod dle schématu pro výstupní charakteristiku pro stav log. 1.
- 2) Pomocí Rz nastavujeme I_{VÝST} a odečítáme U_{VÝST}.
- 3) Měření ukončíme při dosažní výstupního napětí 0,4V.

Tabulka naměřených hodnot:

Převodní char.:

U _{vst} (V)	U _{výst} (V)
0	3,9
0,4	3,9
0,6	3,8
0,8	3,5
1	3,2
1,1	3
1,4	0,84
1,5	0,057
2	0,057
4	0,057
5	0,057

Výstupní char. stav log.1:

I _{výst} (mA)	U _{výst} (V)
0	3,9
1	3,4
3	3,3
5	3,2
7	2,9
9	2,7
11	2,4
13	2,1
15	1,8
17	1,5
19	1,2
21	0,9
23	0,6
25	0,3

Výstupní char. stav log.0:

I _{výst} (mA)	U _{výst} (V)
1	75
2	90
3	106
4	121
7	160
10	200
13	239
16	275
19	306
21	337
24	376
27,5	400

<u>Grafy:</u>

Převodní char.:

Výstupní char. stav log.1:

Výstupní char. stav log.0:

Příklad výpočtu:

Výstupní char. stav log.1:

$$R_{zmax} = \frac{U_0}{1mA} = \frac{3.9}{1 * 10^{-3}} = 3900\Omega$$

Výstupní char. stav log.0:

$$R_{zmax} = \frac{U_{cc} - U_{TTL}}{1mA} = \frac{5 - 0.4}{1 * 10^{-3}} = 4600\Omega$$

Závěr:

Z měření jsem zjistil, že napětí u převodní charakteristiky začíná prudce klesat mezi 0,8V až 1,5V vstupního napětí, poté už je výstupní napětí malé a skoro se nemění. Toto je zapříčiněno změnou logické hodnoty hradla. U výstupních charakteristik jsem zjistil, že jsou až na pár hodnot skoro lineární, pravděpodobně se jedná o chybně změřené hodnoty.

