LA FONCTION INVERSE E03

EXERCICE N°2 Attention à l'ensemble de définition (Le corrigé)

Soit f la fonction définie sur l'intervalle [0,1;1] par : $f(x) = 2 - 0.1x - \frac{0.025}{x}$

1) Montrer que pour tout réel x appartenant à l'intervalle [0,1;1]:

$$f'(x) = \frac{-0.1(x-0.5)(x+0.5)}{x^2}$$

D'une part,

$$f(x) = 2 - 0.1x - \frac{0.025}{x}$$

$$f(x) = 2 - 0.1 \times x - 0.025 \times \frac{1}{x}$$

$$f'(x) = 0 - 0.1 - 0.025 \times \frac{1}{x^2}$$

$$f'(x) = -0.1 + \frac{0.025}{x^2}$$

D'autre part,

$$\frac{-0.1(x-0.5)(x+0.5)}{x^2} = \frac{-0.1[x^2-0.25]}{x^2} = \frac{-0.1^2+0.025}{x^2} = \frac{-0.1x^2}{x^2} + \frac{0.025}{x^2} = -0.1 + \frac{0.025}{x^2}$$

On en déduit que $f'(x) = \frac{-0.1(x-0.5)(x+0.5)}{x^2}$

2) Dresser le tableau de variation de la fonction f sur l'intervalle [0,1;1].

Nous aurons du tableau de signes de la dérivée que nous allons inclure dans le tableau de variation.

- -0.1 est toujours négatif,
- $x-0.5 > 0 \Leftrightarrow x > 0.5$ et
- $x+0.5 > 0 \Leftrightarrow x > -0.5$
- x^2 est positif sur [0,1;1]

Et là, on fait bien attention à l'ensemble de définition... [0,1;1]

x	0,1		0,5		1
-0,1		_		_	
x - 0.5		_	0	+	
x+0,5		+		+	
x^2		+		+	
f'(x)		+	0	_	
f(x)			1 ,9		
	1,74 /				1,875

$$f(0,1)=1,74$$
; $f(0,5)=1,9$ et $f(1)=1,875$

Cela nous évite de faire des calculs qui ne sont pas demandés...