Prof. Dr.-Ing. J. Vollmer Hochschule für Angewandte Wissenschaften Hamburg Department für Informations- und Elektrotechnik

88 / WS	Semester	Fach	Dozeni	,
65	E 4	G.N	VLM	
FCS	Klaueu	rensamm	Juno 1	//

Vorname:

Matr.-Nr.:_

Anzahl der abgegebenen Blätter:_

Klausur: Grundlagen der Nachrichtentechnik (E4)

vom 13. Juli 2009

Lösungen ohne Herleitungen und die korrekte Angabe der Einheiten erhalten nur eine verringerte Punktzahl. Reine Ja/Nein Antworten erhalten Null Punkte.

	Punkte in Unteraufgaben	' Erreichte Punkte	Maximal (+ ZP)
Aufgabe 1	2+4+6+3+3 (+4)	2+4+6+2+3(+1)	18 (+4)
Aufgabe 2	6+4+4 (+4)	3+4+0(+4)	14 (+4)
Aufgabe 3	6+6+4+8 (+6)	4+6+4+6(+2)	24 (+4)
Aufgabe 4	12+6 (+6)	9+5(+5)	18 (+6)
Aufgabe 5	4+2+6+4 (+8)	4+2+6+4 (+3+2)	16 (+8)
	Summe:	834	90 (+26)
Bewertung:	Summe:	834	90

Kleine Formelsammlung:

Lange I Leitung, Länge I			Trigonometrie und Euler		
$\alpha' = \frac{R'}{2\sqrt{L'/C'}}$	$v_{ph} = \frac{1}{\sqrt{L'C'}}$	CO	$\cos(x) \cdot \cos(y) = [\cos(x+y) + \cos(x-y)]/2$ $\cos(x) = (e^{jx} + e^{-jx})/2$		
$c_0 \approx 3 \cdot 10^8 \text{ m/s}$	$k = v_{ph}/c_0$		Fourier-Transformation		
$Z_{E} = Z_{W} \frac{Z_{2} + Z_{W} \cdot \tanh(\gamma l)}{Z_{2} \cdot \tanh(\gamma l) + Z_{W}}$	$ Z_{\mathbf{w}} = \sqrt{\frac{\mathbf{L'}}{\mathbf{C'}}}$	$ Z_{\mathbf{w}} = \sqrt{\frac{L'}{C'}} \mathbf{x}(t) e^{j2\pi f_0 t} \leftrightarrow \mathbf{X}(f - f_0) \qquad e^{j2\pi f_0 t} \leftrightarrow \delta(f - f_0)$			
Rauschen und Rauschzahl			Informationstheorie, diskrete Nachrichten- quellen mit N verschiedenen Zeichen		
Rauschzahl			Informationsgehalt eines Zeichen x		
SNR _{Eingang}			$I_x = -Id(p_x)$ Bit pro Zeichen		
$F = \frac{SNR_{Eingang}}{SNR_{Ausgang}}$			Entropie, mittlerer Informationsgehalt		
Verfügbare Rauschleistung (thermisch)			$H = -\sum_{n=1}^{N} p_n \cdot Id(p_n)$ Bit pro Zeichen		
$\mathbf{P} = \mathbf{k} \cdot \mathbf{B} \cdot \mathbf{T}$			Mittlere Anzahl von Bits zur Codierung		
Boltzmannkonstante k: = 1,38 10 ⁻²³ Watt·s / KB: Bandbreite in Hertz, T: Temperatur in Kelvin		$\sqrt{\frac{K}{N}} = \sum_{n=1}^{N} p_n \cdot \text{Codelänge}(n)$ Bit pro Zeichen			
Gesamtrauschzahl bei Reihenschaltung F_2-1 , F_3-1		ıg	Maximale Entropie	Redundanz	
		_	$H_{max} = Id(N)$	$R = H_{max} - H$	
$F_{Gesamt} = F_1 + \frac{F_2 - 1}{v_1} + \frac{F_3 - 1}{v_1 \cdot v_2} + \dots$			Bit pro Zeichen	Bit pro Zeichen	

Aufgabe 1 Huffman Codierung (18+4 Punkte)

35, NS	Comester E 4	Fodi GN	VLM
FS	R - Klausu	rensamm	lung 2/

Von einer Nachrichtenquelle ist der Zeichensatz und die Zeichenwahrscheinlichkeiten p_i bekannt.

Zeichen	Α	В
$\mathbf{p_i}$	0,3	0,7

Der Zeichensatz hat eine Entropie H = 0.88129 Bit pro Zeichen, ein zugehöriger Huffman Codesatz erfordert im Mittel \overline{N} = 1 Bit pro Zeichen (Nullen und Einsen) zur Übertragung.

Geben Sie im Folgenden immer die Einheiten mit an.

- a) Wie viele Bits sind zur Übertragung von 1000 Zeichen im Mittel notwendig? (2 Punkte)
- b) Zur Verbesserung der Codierung sollen nun folgende, teilweise zusammengesetzte, Zeichen codiert werden. Vervollständigen Sie die Tabelle. Testen Sie, ob die Summe der Wahrscheinlichkeiten 1 ist. Die Zeichenabfolgen von A und B sind nicht wakkorreliert. (4 Punkte)

İ	Zeichen	AA	AB	BA	BB	110
	$\mathbf{p_i}$	0,09	0,21	0,21	0,47	142

- c) Bestimmen Sie einen Satz von Huffman Codes für den neuen Zeichensatz. Geben Sie die Codes explizit an. (6 Punkte)
- d) Berechnen Sie \overline{N} , d.h. die im Mittel erforderliche Anzahl von Bits zur Codierung Übertragung eines der "neuen" Zeichens. (4 Punkte)
- e) Wie viele Bit sind im Mittel zur Übertragung von 1000 "alten" Zeichen (A, B, 9) Bit mit den neuen Codes notwendig? (2 Punkte)
 - Beachten Sie, dass Sie zusammengesetzte Zeichen codiert haben (siehe zweite Tabelle).
- f) Zusatzfrage: Begründen Sie, warum die neuen Codes effizienter sind. (4 Punkte)

Ein Signal $u_{\rm G}(t)$ von 1 MHz Bandbreite wird über das obige System übertragen. Die Ein- und Ausgangsimpedanz des Verstärkers ist jeweils $50\,\Omega$. Die Temperatur des gesamten Systems beträgt T=300 Kelvin. Die von der Spannungsquelle $u_{\rm G}(t)$ abgegebene Leistung beträgt 100 W und $u_{\rm G}(t)$ ist, bis auf das thermische Rauschen, fehlerfrei.

- a) Berechnen Sie die Rauschzahl F_s und den Verstärkungsfaktor v_s des Systems mit Eingangsspannung $u_1(t)$ und der Ausgangsspannung $u_1(t)$. (6 Punkte)
- b) Wie groß ist das SNR des Signals $u_1(t)$ in dB? (4 Punkte)
- c) Bestimmen Sie den Effektivwert der Spannung $u_A(t)$. (4 Punkte)
- d) **Zusatzaufgabe:** Ist die Reihenfolge der Teilkomponenten typisch und sinnvoll für ein Nachrichtenübertragungssystem? Begründen Sie Ihre Antwort. (4 Punkte)

 Die Aufgabe ist ohne die vorherigen Unterpunkte lösbar.

Aufgabe 3: Leitung (24+8 Punkte)

Auf eine schwach gedämpfte Leitung mit Verkürzungsfaktor k=2/3 wird zum Zeitpunkt t=0 vom Generator ein Spannungspuls der Größe $\hat{u}_0=8$ V für die der Dauer 200ns abgegeben. Die Spannung am Leitungseingang ist bis zum Zeitpunkt t=1,2 μs im Bild angegeben. Der Dämpfungsbelag ist $\alpha=10^{-3}$ 1/m und der Betrag des Wellenwiderstandes $|Z_w|=50\,\Omega$.

Geben Sie immer die Einheiten der Ergebnisse an.

- a) Berechnen Sie die Leitungslänge I, die Ausbreitungsgeschwindigkeit v_{ph} und den Dämpfungsfaktor A_{L} . (6 Punkte)
- b) Bestimmen Sie die Leitungsbeläge R', L' und C'. (6 Punkte)

Vernachlässigen Sie bei den folgenden Rechnungen die Phase von $\, Z_{\mathrm{w}} \, .$

- c) Berechnen Sie den Generatorwiderstand R₁. (4 Punkte)
- d) Bestimmen Sie den Reflexionsfaktor ρ₂ am Leitungsende. (8 Punkte)
 Hinweis: Die Verwendung des Latticediagramms ist hilfreich zur Veranschaulichung.

Zusatzaufgabe, allgemeine Frage zu schwach gedämpften Leitungen:

e) Bei einer schwach gedämpften Leitung wird am Generator eine Spannung u_0 permanent eingeschaltet. Erklären Sie, wie man die Spannung $u_{1\infty}=u_1(t\to\infty)$ und $u_{2\infty}=u_2(t\to\infty)$ berechnen kann. Geben Sie alle notwendigen Gleichungen an. Einsetzen und Umformungen sind nicht gefordert. (6 Punkte)

Aufgabe 4 Modulation (18+6 Punkte)

Betrachten Sie das Übertragungssystem. Das zu übertragene Tiefpasssignal a(t) der Bandbreite f_A wird auf die Trägerfrequenz $f_T = \omega_T/(2\pi) = 1$ GHz hochgemischt. Die Konstante x_0 hat die Einheit 1 und $K = 10^{-4}$. Das empfangene Signal r(t) wird mit dem geschätzten Trägersignal $\hat{x}_T(t) = \hat{x}_0 \cdot \cos(\omega_T t + \hat{\phi})$ heruntergemischt. Der Tiefpass TP ist ideal mit Grenzfrequenz f_g und der Erwartungswert der Rauschleistungsdichte ist $\left|S_m(f)\right| = \sigma^2$. Das Rauschen ist unkorreliert.

Die Fouriertransformierten (Spektren) der Zeitsignale werden mit den zugehörigen Großbuchstaben bezeichnet. Zum Beispiel: $A(f) = F\{a(t)\}$.

Beschreiben Sie die zu skizzierenden Spektren immer in Abhängigkeit des Sendespektrums |A(f)|. Alle Achsen und Signale vollständig zu beschriften.

a) Skizzen Sie |R(f)|, |U(f)| und |V(f)| für $f_g = f_A$ und $\hat{x}_T(t) = x_T(t)$. (12 Punkte) Beachten Sie, dass für das Rauschen die erwartete Rauschleistungsdichte bekannt ist.

Nun soll eine (im Bild nicht mit einbezogene) reale Signallaufzeit durch den Kanal von $T = \sqrt{90} \, \mu s$ berücksichtigt werden.

- b) Bestimmen Sie das kleinste $\hat{\phi}$, für dass das SNR des Signals v(t) maximal wird. (6 Punkte)
- c) **Zusatzfrage:** Wie beschreibt man im Zeitbereich die Verzögerung im Kanal, wie im Frequenzbereich? Was folgt daraus für die Skizzen aus a), wenn $\hat{x}_T(t)$ ideal wäre und T berücksichtigt würde? (6 Punkte)

Aufgabe 5 Transversalfilter (16+8 Punkte)

Ein Datensignal $u_x(t)$ soll über einen Kanal übertragen werden. Dadurch tritt Intersymbolinterferenz (ISI) auf. Diese soll durch einen Entzerrer (Transversalfilter) verringert werden.

Das Datensignal $u_x(t) = \sum_k d_k \cdot p(t-kT_s)$ ist eine Summe aus, mit den Datensymbolen d_k gewichteten, Rechteckpulsen $p(t) = \hat{p} \cdot \text{rect}([t-0,5T_s]/T_s)$ mit $T_s = 1\mu s$ und $\hat{p} = 10\,V$.

Das Transversalfilter wird beschrieben durch $u_z(t) = \sum_{m=0}^{M} c_m \cdot u_y(t - mT_S)$.

Die Systemantwort des Kanals auf den Spannungspuls p(t) ist gegeben durch:

$$h_{p}(t) = 0.5 \cdot \hat{p} \cdot \begin{cases} t/T & \text{für } 0 \le t \le T \\ \left(\frac{t-5T}{4T}\right)^{2} & \text{für } T < t \le 5T & \text{mit } T = 0.75 \,\mu\text{s} \,. \\ 0 & \text{sonst} \end{cases}$$

a) Skizzen Sie h_p (t). Beschriften Sie die Achsen vollständig. (4 Punkte)

Die Abtastzeitpunkte nach dem Transversalfilter sind durch $t=t_{\rm m}=m\cdot T_{\rm S}+t_{\rm 0}$ definiert.

- b) Wählen Sie t_0 so, dass die Amplitude bei der Abtastung maximal wird. (2 Punkte) Hinweis: Im Augendiagramm würde das maximale Augenhöhe bedeuten.
- c) Bestimmen Sie $h_p(t_m)$ für m = 1, 2, 3. (6 Punkte)
- d) Bestimmen Sie die Koeffizienten c_k für k=1,2. Es gilt $c_0=1$. (4 Punkte)

Verwenden Sie:
$$c_k = \left[\sum_{i=0}^{k-1} c_i \cdot h_p(t_{k-i+1})\right] / h_p(t_i)$$

- e) **Zusatzaufgabe:** Ist es prinzipiell möglich mit einem realen Transversalfilter die Intersymbolinterferenz völlig zu eliminieren? (3 Punkte)
- f) **Zusatzaufgabe:** Wie kann $h_p(t)$ aus der <u>Impulsantwort</u> des Kanals $h_K(t)$ berechnet werden? Es geht um die Gleichungen, eine explizite Berechnung ist nicht gefordert. (5 Punkte)

			35 / WS Semester OS E4	GNIVL
Klausur: <u>AN</u> Name: Aldaç	Vorname: 📈	Datum:_//3	. (1)	urensammlung
Aufgabe:	1000 Zeichen!	3,88 179 7 7	eichen = 88	31, 29 Bit
BA = 0,3 "BA" = 0,3 "BA" = 0,3 "BA" = 0,3	0,3=0,09 0,7=0,21 =0,21 0,7:0,49	\(\frac{1}{2} \)	31	
1 siele Te	x+ V a	nders als	12/2	belle
Aufgabe 1				
BB (0,U7) BB (0,21) BA (0,21,324) AR (0,091)	0,49 BB pro- 21 32 10,3 AB 32	3331		
1 BB 1	AB 1 BA AA	BB = O BB = O BA = O AA = 0	011/	
	·		·	

6

FSR - Klausurensammlun a) Fais = F1 + F2-1 + F3-1
VP1 + F3-1 $\frac{F_1}{dB} = 10 \implies F_2 = 10$ $\frac{V_{P_1}}{dB} = \frac{q}{dB} = 10$ $\frac{V_{P_2}}{dB} = 10$ $\frac{V_{P_3}}{dB} = 10$ $\frac{V_{P_4}}{dB} = 10$ $\frac{V_{P_4}}{dB} = 10$ $\frac{V_{P_4}}{dB} = 10$ F3 = 1 > F3 = 10 = 17259 18 = 30018 / $F_{99} = 10 + \frac{10^{7} - 1}{610} + \frac{1,259 - 1}{6210} = 6989$ Uncom Robert in dB · SNIZ = Pri = FORM / HOOM 1,707 16 1,707 16 1,145.10 SNRM = 10 log (SNR) = (60, 82 014 () SNR2 = SNR1 - an - az + KB - AB -414 d) Normale weise wurde man Euerst lines paustharmen leistungsstarten Venterter Quibauer dann Wird das System aptimiert, da Be. Kettenschaltungen dann Wird das Wichtigste ist.

\$5 , WS	Semester Fach Dozent F-4 GN VLM
FS	2 - Klausurensammlung 11/16
216	Aufgabe: 3 ? Worn ein System daurhaft mit einer Eingansispunnene Versorgt wird, Schwingf das System ein Donn ist Versorgt wird, Schwingf das System ein Donn ist der Wollen Wider Stand zu vernachlissisch (für Mit 1800)
	Uno Zitz. Ve = Uzoo Die Spannungen Unoo und Un O Singl glichgroß, da du Wellen wider stand vernachlassist woden kann.
	9. It so mer far die verlust freie Lutung &
	Aufgabe:
19/12	(R(t))=(A(t))+(S(t+4+))-4(t-4+))-4+(snn(t))
A THE STATE OF THE	R(C) < A Tro K. Xo [A F+FT] + A(F-F)] + Snr[F] - A R(F) 2 = [A F+FT] + A F-FT + A F-FT-FT+ A F-FT-FT+ A F-FT-FT+ A F-FT-FT+ A FT-FT+ A FT-FT+ A FT-FT+ A FT-FT+ A FT-FT-FT-FT-FT-FT-FT-FT-FT-FT-FT-FT-FT-F

Aufgabe (D)

für Ansganss signal nur Multiplikation du cos (sternu interessent.

cos (wt) - cos (Wtt) = 7 (cos (wt + wt + 4) + cos (wt + wt + 4))

cos (wt + wt + 4)

2 [cos (2wt + 4) + cos (-4)]

Aufgabe: Uc (Ort

RIFIT blubt wie a)

Aufgabe: Maximal fire offices hp(A = 0,5p (t-5T) T=0,7[us +=+ sm.T t=tmsm.Tstto t=0,7 ms = m. 15+ to Ts = 1 us $t = \frac{1}{0.75\mu s}$ $t = 0.75\mu s - T_s = 60.75\mu s$

FSR - Klausurensammiuna (1) jst Park antwork lines Rechteck Signals dur Breite Wenn him gebildet wird, wird aus den Redfeck ein Direct Impulst und die Impulsantwort des Kanals hann bestimmt werden.

14.05 Fel $G(X) = \lim_{T \to \infty} \int_{T}^{\Lambda} \int_{T}^{T} \int_{T}^{$ $a_{x}(t) + h(t) = \mu_{y}(t)$ nur wann pluid ziehig p -> 00 6 hk sollte hier fegebon sein. - > hp Andword der inversen trage hp -> h/R

Aufgabe: