Test di Calcolo Numerico

Ingegneria Informatica 30/01/2016

COGNOME NOME		
Μ	ATRICOLA	
Risposte		
1)		
2)		
3)		
4)		
5)		

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 30/01/2016

1) Si vuole calcolare la funzione

$$f(x,y) = x \cdot y$$

in un punto $P_0 \in [0, 1] \times [1, 2]$.

Per avere un errore assoluto $|\delta_f| \leq 10^{-2}$, quali limitazioni devono soddisfare l'errore assoluto algoritmico $|\delta_a|$ e gli errori assoluti $|\delta_x|$ e $|\delta_y|$?

2) La matrice

$$A = \left(\begin{array}{rrrr} -1 & 0 & 0 & 1\\ 0 & 3 & 1 & 2\\ 2 & 2 & 4 & 0\\ 5 & 0 & 0 & 1 \end{array}\right)$$

è riducibile. Determinare una matrice di permutazione P che riduce la matrice data.

3) Le soluzioni distinte dell'equazione

$$x^5 + 3x^4 - 2x^3 - 6x^2 + x + 3 = 0$$

sono $\alpha_1 = 1$, $\alpha_2 = -1$ e $\alpha_3 = -3$.

Se si applicasse il metodo di Newton per approssimarle, quale ordine di convergenza otterremmo per ciascuna di esse?

4) Data la tabella di valori

determinare la retta di equazione y = ax + b che approssima la funzione nel senso dei minimi quadrati.

5) Si vuole approssimare l'integrale $I(f) = \int_0^1 e^{-x} dx$ utilizzando la formula dei trapezi.

In quanti sotto intervalli si deve dividere l'intervallo di integrazione per avere una approssimazione con un errore massimo $E \leq 10^{-2}$?

SOLUZIONE

1) È noto che

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y|.$$

La limitazione richiesta si ottiene se, per esempio, $|\delta_a| \leq 10^{-2}/2$, $A_x |\delta_x| \leq 10^{-2}/4$ e $A_y |\delta_y| \leq 10^{-2}/4$. Avendo $A_x = 2$ e $A_y = 1$ si ottiene $|\delta_x| \leq 10^{-2}/8$ e $|\delta_y| \leq 10^{-2}/4$. Ciò significa arrotondare il risultato della moltiplicazione alla seconda cifra decimale e introdurre le approssimazioni di x e y troncandone i valori alla terza cifra decimale.

- **2)** Una matrice che riduce $A
 e P = \{e^{(1)}|e^{(4)}|e^{(3)}|e^{(2)}\}.$
- 3) Le soluzioni α_1 e α_2 hanno molteplicità 2 per cui il metodo di Newton converge a tali valori con ordine p=1 mentre converge ad α_3 con ordine $p\geq 2$ (con ulteriori conti si verifica p=2).
- 4) Il sistema delle equazioni normali $A^TAc = A^Tb$ è dato da

$$\left(\begin{array}{cc} 18 & 4 \\ 4 & 4 \end{array}\right) \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 1 \\ 4 \end{array}\right) \ .$$

La soluzione è a = -3/14, b = 17/14.

5) Da $f(x) = e^{-x}$ si ottiene $M_2 = \sup_{x \in [0,1]} |f''| = 1$. Imponendo che l'errore della formula dei trapezi sia minore di $10^{-2}/2$ si ha

$$\frac{(b-a)^3 M_2}{12 L^2} \le \frac{10^{-2}}{2} \implies \frac{1}{12 L^2} \le \frac{10^{-2}}{2} \implies L \ge 5.$$