Hubbard dimer: exact hamiltonian solutions

Julien Prodhon

17 juillet 2021

Table des matières

1 Introduction						
2	General case : $U_1 \neq U_2$ and $\epsilon_1 \neq \epsilon_2$					
	2.1	Hamil	tonian solutions			
		2.1.1	one electron solution			
		2.1.2	two electrons solution			
		2.1.3	three electrons solution			
		2.1.4	other solutions			
3	Bas	ic case	$e:U_1=U_2=U$ and $\epsilon_1=\epsilon_2=\epsilon_0$			
	3.1	Hamil	tonian solutions			
		3.1.1	one electron solution			
		3.1.2	two electrons solution			
		3.1.3	three electrons solution			

1 Introduction

Conventions:

$$|\uparrow\downarrow\rangle \uparrow\downarrow\rangle = c_{2\downarrow}^{\dagger} c_{2\uparrow}^{\dagger} c_{1\downarrow}^{\dagger} c_{1\uparrow}^{\dagger} |0\rangle 0\rangle$$

$$c_{i}^{\dagger} |\dots, n_{i}, \dots\rangle_{a} = (1 - n_{i}) \cdot (-1)^{\sum_{j>i} n_{j}} |\dots, n_{i} + 1, \dots\rangle_{a}$$

$$c_{i} |\dots, n_{i}, \dots\rangle_{a} = n_{i} \cdot (-1)^{\sum_{j>i} n_{j}} |\dots, n_{i} - 1, \dots\rangle_{a}$$

$$\hat{n}_{i\sigma} = c_{i\sigma}^{\dagger} c_{i\sigma}$$

$$\hat{n}_{i\sigma} |\dots, n_{i\sigma}, \dots\rangle_{a} = n_{i\sigma} |\dots, n_{i\sigma}, \dots\rangle_{a}$$

Hamiltonian:

$$H = -t \sum_{\substack{i,j=1,2\\i\neq j}} \sum_{\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{U}{2} \sum_{i=1,2} \sum_{\sigma\sigma'} c_{i\sigma}^{\dagger} c_{i\sigma'}^{\dagger} c_{i\sigma'} c_{i\sigma} + \epsilon_0 \sum_{\sigma,i=1,2} n_{i\sigma}$$

Useful relations:

$$\left\{c_{i\sigma}, c_{j\sigma'}^{\dagger}\right\} = \delta_{\sigma\sigma'}\delta_{ij} \quad \left\{c_{i\sigma}, c_{j\sigma'}\right\} = 0 \quad \left\{c_{i\sigma}^{\dagger}, c_{j\sigma'}^{\dagger}\right\} = 0$$
$$<\alpha|c_{i}|\beta> = <\beta|c_{i}^{\dagger}|\alpha>$$

2 General case : $U_1 \neq U_2$ and $\epsilon_1 \neq \epsilon_2$

2.1 Hamiltonian solutions

2.1.1 one electron solution

$$H = \begin{pmatrix} \epsilon_1 & 0 & -t & 0 \\ 0 & \epsilon_1 & 0 & -t \\ -t & 0 & \epsilon_2 & 0 \\ 0 & -t & 0 & \epsilon_2 \end{pmatrix}$$

$$\begin{array}{|c|c|c|c|}\hline E_i & |\uparrow 0\rangle & |\downarrow 0\rangle & |0 \uparrow\rangle & |0 \downarrow\rangle \\\hline (\epsilon_1 + \epsilon_2)/2 - d & 0 & -(\epsilon_1 - \epsilon_2 - 2d)/e & 0 & 2t/e \\ (\epsilon_1 + \epsilon_2)/2 - d & -(\epsilon_1 - \epsilon_2 - 2d)/e & 0 & 2t/e & 0 \\ (\epsilon_1 + \epsilon_2)/2 + d & 0 & -(\epsilon_1 - \epsilon_2 + 2d)/f & 0 & 2t/f \\ (\epsilon_1 + \epsilon_2)/2 + d & -(\epsilon_1 - \epsilon_2 + 2d)/f & 0 & 2t/f & 0 \\ \hline \end{array}$$

with
$$d = \sqrt{(\epsilon_1 - \epsilon_2)^2 + 4t^2}/2$$
, $e = \sqrt{(\epsilon_1 - \epsilon_2 - 2d)^2 + 4t^2}$, and $f = \sqrt{(\epsilon_1 - \epsilon_2 + 2d)^2 + 4t^2}$.

2.1.2 two electrons solution

$$H = \begin{pmatrix} \epsilon_1 + \epsilon_2 & 0 & 0 & 0 & -t & -t \\ 0 & \epsilon_1 + \epsilon_2 & 0 & 0 & t & t \\ 0 & 0 & \epsilon_1 + \epsilon_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \epsilon_1 + \epsilon_2 & 0 & 0 \\ -t & t & 0 & 0 & 2\epsilon_1 + U_1 & 0 \\ -t & t & 0 & 0 & 0 & 2\epsilon_2 + U_2 \end{pmatrix}$$

$$a = (18t^{2} + 3U_{1}U_{2} - 9(\epsilon_{1} - \epsilon_{2})(\epsilon_{1} - \epsilon_{2} + U_{1} - U_{2}))(U_{1} + U_{2}) - 2(U_{1}^{3} + U_{2}^{3})$$

$$b = -3(\epsilon_{1} - \epsilon_{2})^{2} - 3(U_{1} - U_{2})(\epsilon_{1} - \epsilon_{2}) - U_{1}^{2} - U_{2}^{2} + U_{1}U_{2} - 12t^{2}$$

$$d = (a + \sqrt{4b^{3} + a^{2}})^{\frac{1}{3}}$$

$$p = -b/9$$

$$q = -a/45$$

$$K_{0} = \frac{U_{1} + U_{2}}{3} - \frac{(1 + i\sqrt{3})b}{3 \times 2^{\frac{2}{3}}d} + \frac{(1 - i\sqrt{3})d}{6 \times 2^{\frac{1}{3}}} = \frac{U_{1} + U_{2}}{3} + 2\sqrt{p}\cos\left(\arccos\left(\frac{q}{p^{\frac{3}{2}}}\right)/3\right)$$

$$K_{1} = \frac{U_{1} + U_{2}}{3} - \frac{(1 - i\sqrt{3})b}{3 \times 2^{\frac{2}{3}}d} + \frac{(1 + i\sqrt{3})d}{6 \times 2^{\frac{1}{3}}} = \frac{U_{1} + U_{2}}{3} + 2\sqrt{p}\cos\left(\left(\arccos\left(\frac{q}{p^{\frac{3}{2}}}\right) - 2\pi\right)/3\right)$$

$$K_{2} = \frac{U_{1} + U_{2}}{3} + \frac{2^{\frac{1}{3}}b}{3d} - \frac{d}{3 \times 2^{\frac{1}{3}}} = \frac{U_{1} + U_{2}}{3} + 2\sqrt{p}\cos\left(\left(\arccos\left(\frac{q}{p^{\frac{3}{2}}}\right) - 4\pi\right)/3\right)$$

Despite K_i have imaginary parts, especially with D which is an imaginary number, all these quantites are real when evaluated numerically!

E_i	$ \uparrow\downarrow\rangle$	$ \downarrow \uparrow\rangle$	$ \uparrow \uparrow \rangle$	$ \downarrow\downarrow\downarrow\rangle$	↑↓ 0⟩	$ 0\uparrow\downarrow\rangle$
$\epsilon_1 + \epsilon_2 + K_0$	$-\frac{1}{C_0}\frac{t(U_1+U_2-2K_0)}{K_0(\epsilon_1-\epsilon_2+U_1-K_0)}$	$\frac{1}{C_0} \frac{t(U_1 + U_2 - 2K_0)}{K_0(\epsilon_1 - \epsilon_2 + U_1 - K_0)}$	0	0	$\frac{1}{C_0} \frac{\epsilon_2 - \epsilon_1 + U_2 - K_0}{\epsilon_1 - \epsilon_2 + U_1 - K_0}$	$\frac{1}{C_0}$
$\epsilon_1 + \epsilon_2 + K_1$	$-\frac{1}{C_1} \frac{t(U_1 + U_2 - 2K_1)}{K_1(\epsilon_1 - \epsilon_2 + U_1 - K_1)}$	$\frac{1}{C_1} \frac{t(U_1 + U_2 - 2K_1)}{K_1(\epsilon_1 - \epsilon_2 + U_1 - K_1)}$	0	0	$\frac{1}{C_1} \frac{\epsilon_2 - \epsilon_1 + U_2 - K_1}{\epsilon_1 - \epsilon_2 + U_1 - K_1}$	$\frac{1}{C_1}$
$\epsilon_1 + \epsilon_2 + K_2$	$ -\frac{1}{C_2} \frac{t(U_1 + U_2 - 2K_2)}{K_2(\epsilon_1 - \epsilon_2 + U_1 - K_2)} $	$\frac{1}{C_2} \frac{t(U_1 + U_2 - 2K_2)}{K_2(\epsilon_1 - \epsilon_2 + U_1 - K_2)}$	0	0	$\frac{1}{C_2} \frac{\epsilon_2 - \epsilon_1 + U_2 - K_2}{\epsilon_1 - \epsilon_2 + U_1 - K_2}$	$\frac{1}{C_2}$
$\epsilon_1 + \epsilon_2$	0	0	0	1	0	0
$\epsilon_1 + \epsilon_2$	0	0	1	0	0	0
$\epsilon_1 + \epsilon_2$	$1/\sqrt{2}$	$1/\sqrt{2}$	0	0	0	0

By normalizing the vectors:

$$C_{i} = \sqrt{\left| -\frac{t(U_{1} + U_{2} - 2K_{i})}{K_{i}(\epsilon_{1} - \epsilon_{2} + U_{1} - K_{i})} \right|^{2} + \left| \frac{t(U_{1} + U_{2} - 2K_{i})}{K_{i}(\epsilon_{1} - \epsilon_{2} + U_{1} - K_{i})} \right|^{2} + \left| \frac{\epsilon_{2} - \epsilon_{1} + U_{2} - K_{i}}{\epsilon_{1} - \epsilon_{2} + U_{1} - K_{i}} \right|^{2} + 1}$$

Numerically, we have these solution converging to the basic case solution!

2.1.3 three electrons solution

$$H = \begin{pmatrix} \epsilon_1 + 2\epsilon_2 + U_2 & 0 & -t & 0\\ 0 & \epsilon_1 + 2\epsilon_2 + U_2 & 0 & -t\\ -t & 0 & 2\epsilon_1 + \epsilon_2 + U_1 & 0\\ 0 & -t & 0 & 2\epsilon_1 + \epsilon_2 + U_1 \end{pmatrix}$$

with
$$g = \sqrt{((\epsilon_1 - \epsilon_2) + (U_1 - U_2))^2 + 4t^2}$$
, $m_+ = \frac{\epsilon_1 - \epsilon_2 + U_1 - U_2 + g}{2t}$, $m_- = \frac{\epsilon_1 - \epsilon_2 + U_1 - U_2 - g}{2t}$

2.1.4 other solutions

$$H|0 \quad 0\rangle = 0|0 \quad 0\rangle$$

$$H|\uparrow\downarrow \quad \uparrow\downarrow\rangle = (2\epsilon_1 + 2\epsilon_2 + U_1 + U_2)|\uparrow\downarrow \quad \uparrow\downarrow\rangle$$

3 Basic case : $U_1 = U_2 = U$ and $\epsilon_1 = \epsilon_2 = \epsilon_0$

3.1 Hamiltonian solutions

3.1.1 one electron solution

$$H = \begin{pmatrix} \epsilon_0 & 0 & -t & 0 \\ 0 & \epsilon_0 & 0 & -t \\ -t & 0 & \epsilon_0 & 0 \\ 0 & -t & 0 & \epsilon_0 \end{pmatrix}$$

E_i	$ \uparrow 0\rangle$	$ \downarrow 0\rangle$	$ 0\uparrow\rangle$	$ 0\downarrow\rangle$
$\epsilon_0 - t$	0	$1/\sqrt{2}$	0	$1/\sqrt{2}$
$\epsilon_0 - t$	$1/\sqrt{2}$	0	$1/\sqrt{2}$	0
$\epsilon_0 + t$		$1/\sqrt{2}$	0	$-1/\sqrt{2}$
$\epsilon_0 + t$	$1/\sqrt{2}$	0	$-1/\sqrt{2}$	0

3.1.2 two electrons solution

$$H = \begin{pmatrix} 2\epsilon_0 & 0 & 0 & 0 & -t & -t \\ 0 & 2\epsilon_0 & 0 & 0 & t & t \\ 0 & 0 & 2\epsilon_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2\epsilon_0 & 0 & 0 \\ -t & t & 0 & 0 & 2\epsilon_0 + U & 0 \\ -t & t & 0 & 0 & 0 & 2\epsilon_0 + U \end{pmatrix}$$

E_i	$ \uparrow\downarrow\rangle$	$ \downarrow\uparrow\rangle$	$ \uparrow\uparrow\rangle$	$ \downarrow\downarrow\rangle$	$ \uparrow\downarrow0\rangle$	$ 0\uparrow\downarrow\rangle$
$2\epsilon_0 + (U-c)/2$	$\frac{4t}{a(c-U)}$	$-\frac{4t}{a(c-U)}$	0	0	1/a	1/a
$2\epsilon_0 + (U+c)/2$	$-\frac{4t}{b(c+U)}$	$\frac{4t}{b(c+U)}$	0	0	1/b	1/b
$2\epsilon_0 + U$	0	0	0	0	$-1/\sqrt{2}$	$1/\sqrt{2}$
$2\epsilon_0$	0	0	0	1	0	0
$2\epsilon_0$	0	0	1	0	0	0
$2\epsilon_0$	$1/\sqrt{2}$	$1/\sqrt{2}$	0	0	0	0

With $a = \frac{\sqrt{2}}{(c-U)}\sqrt{16t^2 + (c-U)^2}$, $b = \frac{\sqrt{2}}{(c+U)}\sqrt{16t^2 + (c+U)^2}$, $c = \sqrt{16t^2 + U^2}$.

3.1.3 three electrons solution

$$H = \begin{pmatrix} 3\epsilon_0 + \mathbf{U} & 0 & -t & 0\\ 0 & 3\epsilon_0 + \mathbf{U} & 0 & -t\\ -t & 0 & 3\epsilon_0 + \mathbf{U} & 0\\ 0 & -t & 0 & 3\epsilon_0 + \mathbf{U} \end{pmatrix}$$

$H = \begin{pmatrix} 3\epsilon_0 + \\ 0 \\ -t \\ 0 \end{pmatrix}$	$3\epsilon_0$ +	$3\epsilon_0$ +	- U	$\begin{pmatrix} 0 \\ -t \\ 0 \\ 0 + \mathbf{U} \end{pmatrix}$	
E_i	$ \uparrow\uparrow\downarrow\rangle$	$\downarrow\uparrow\downarrow\downarrow\rangle$	$ \uparrow\downarrow\uparrow\rangle$	$ \uparrow\downarrow\downarrow\rangle$	
$3\epsilon_0 + U - t$	0	$1/\sqrt{2}$	0	$1/\sqrt{2}$	
$3\epsilon_0 + U - t$	$1/\sqrt{2}$	0	$1/\sqrt{2}$	0	
$3\epsilon_0 + U + t$	0	$-1/\sqrt{2}$	0	$1/\sqrt{2}$	
$3\epsilon_0 + U + t$	$-1/\sqrt{2}$	0	$1/\sqrt{2}$	0	