Convex Optimization Note

Garrick Lin

March 13, 2019

1 Affine Set

1.1 Definition

A set A is called affine set when it satisfied:

If
$$\mathbf{x_1} \in \mathcal{A}$$
 and $\mathbf{x_2} \in \mathcal{A}$, then, $\forall \theta \in \mathcal{R}$, $x = \theta \mathbf{x_1} + (1 - \theta) \mathbf{x_2}$ also belong to \mathcal{A} .

The expression $\theta \mathbf{x_1} + (1 - \theta)\mathbf{x_2}$ represent a line that cross through $\mathbf{x_1}$ and $\mathbf{x_2}$. Hence, affine set can be explained intuitively as:

Affine set is a set that contain the line which cross through any two point within this set.

1.2 Properties

Assume a affine set $\mathcal{A} \subseteq \mathcal{R}^n$. If \mathcal{A} contain original point(0), then, \mathcal{A} is a subspace. In order to prove this, \mathcal{A} must satisfied following three rules:

- 1. \mathcal{A} contain original point.
- 2. If $\mathbf{v} \in \mathcal{A}$, then, $\forall \theta \in \mathcal{R}$, $\theta \mathbf{v} \in \mathcal{A}$.
- 3. If $\mathbf{v_1}, \mathbf{v_2} \in \mathcal{A}$, then, $\mathbf{v_1} + \mathbf{v_2} \in \mathbf{A}$.

The first rule is already satisfied. For the second rule, $\forall \theta \in \mathcal{R}, \theta \mathbf{v}$ satisfied:

$$\theta \mathbf{v} = \theta \mathbf{v} + (1 - \theta) \mathbf{0}$$

Since \mathcal{A} is affine and $\mathbf{v}, \mathbf{0} \in \mathcal{A}, \, \theta \mathbf{v} \in \mathcal{A}$ always true. For the third rule, there is:

$$\mathbf{v_1} + \mathbf{v_2} = 2(\frac{1}{2}\mathbf{v_1} + \frac{1}{2}\mathbf{v_2})$$

 $\frac{1}{2}\mathbf{v_1} + \frac{1}{2}\mathbf{v_2} \text{ is in } \mathcal{A} \text{ as } \mathcal{A} \text{ is affine and } \frac{1}{2}\mathbf{v_1}, \frac{1}{2}\mathbf{v_2} \in \mathcal{A}(\text{According to the second rule, } \mathbf{v_1}, \mathbf{v_2} \in \mathcal{A}, \text{ then, } \frac{1}{2}\mathbf{v_1}, \frac{1}{2}\mathbf{v_2} \in \mathcal{A}).$ According to the second rule, $2(\frac{1}{2}\mathbf{v_1} + \frac{1}{2}\mathbf{v_2}) \in \mathcal{A}$

Therefore, any affine set \mathcal{A}' can be thought as a subspace \mathcal{V} with a transportation \mathbf{v} , which means, $\mathcal{A}' = \mathcal{V} + \mathbf{v}$. On the other hand, an affine set subtract some constant vector $(\mathcal{A}' - \mathbf{v})$, which make the new set contain original point, can form a subspace. Formally, for a affine set $\mathcal{A} = \{\mathbf{a_1}, \mathbf{a_2}, \cdots, \mathbf{a_n}\}$ and $\mathbf{a_i} \in \mathcal{A}$, the set:

$$A - a_i = \{a_1 - a_i, a_2 - a_i, \cdots, a_{i-1}, 0, a_{i+1}, \cdots, a_n - a_i\}$$
(1)

form a subspace. Furthermore, any affine set \mathcal{A} has the form:

$$\mathcal{A} = \{ \mathbf{x} | \mathcal{B}\mathbf{x} = \mathbf{c} \} \tag{2}$$

Proof: According to equation 1, $\mathcal{A} - \mathbf{a_i}$ is a subspace. Denote this subspace as $\mathcal{L} = \mathcal{A} - \mathbf{a_i}$. Assume the space that perpendicular to \mathcal{L} , denote as \mathcal{L}^{\perp} , has basis $\{\mathbf{b_1}, \mathbf{b_2}, \cdots, \mathbf{b_n}\}$. Then, \mathcal{L} is the set of vectors that perpendicular to the basis of \mathcal{L}^{\perp} . As a result, if we write the basis of \mathcal{L}^{\perp} in matrix form, which is:

$$\mathcal{B} = \begin{bmatrix} \mathbf{b_1}^T \\ \mathbf{b_2}^T \\ \vdots \\ \mathbf{b_n}^T \end{bmatrix}$$

We have:

$$\mathcal{L} = \{ \mathbf{y} | \mathcal{B} \mathbf{y} = 0 \} \tag{3}$$

Equation 3 always hold as all vector in \mathcal{L}^{\perp} is the linear combination of the basis, hence, if a vector \mathbf{v} satisfied $\mathbf{b_1}^T \mathbf{v} = 0, \mathbf{b_2}^T \mathbf{v} = 0, \cdots, \mathbf{b_n}^T \mathbf{v} = 0$, then, $(\theta_1 \mathbf{b_1} + \theta_2 \mathbf{b_2} + \cdots \theta_n \mathbf{b_n})^T \mathbf{v} = 0$, which means, \mathbf{v} is perpendicular to any vector in \mathcal{L}^{\perp} if \mathbf{v} is perpendicular to the basis of \mathcal{L}^{\perp} .

Since the vector in \mathcal{L} come from \mathcal{A} subtract $\mathbf{a_i}$, for all $\mathbf{y} \in \mathcal{L}$, there must exists $\mathbf{x} \in \mathcal{A}$ such that:

$$y = x - a_i \tag{4}$$

By combining equation 4 and equation 3, we have:

$$\mathcal{A} = \{ \mathbf{x} | \mathcal{B}(\mathbf{x} - \mathbf{a_i}) = 0 \}$$

Which is equivalent to:

$$\mathcal{A} = \{\mathbf{x}|\,\mathcal{B}\mathbf{x} = \mathcal{B}\mathbf{a_i}\}$$

and has the same form as equation 2, where $\mathbf{c} = \mathcal{B}\mathbf{a_i}$.