Control Systems

G V V Sharma*

CONTENTS

1 Stability

1

Abstract—This manual is an introduction to control systems in feedback circuits. Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/feedback/codes

1 STABILITY

1.1. An op amp having a low-frequency gain of 10^3 and a single-pole rolloff at 10^4 rad/s is connected in a negative feedback loop via a feedback network having a transmission k and a two-pole rolloff at 10^4 rad/s. Find the value of k above which the closed-loop amplifier becomes unstable.

Solution:

The given oscillator has a low frequency gain

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

10³ and a single-pole rolloff at 10⁴ rad/s. So we have a open loop amplifier gain

$$G(s) = \frac{10^3}{1 + \frac{s}{10^4}} \tag{1.1.1}$$

Given feedback network transmission gain k and two-pole rolloff at 10⁴ rad/s. So, the feedback factor would be

$$H(s) = \frac{k}{\left(1 + \frac{s}{10^4}\right)^2} \tag{1.1.2}$$

The resulting loop-gain would be

$$G(s)H(s) = \frac{10^3 k}{\left(1 + \frac{s}{10^4}\right)^3}$$
 (1.1.3)

Parame-	Definition	For given
ters		case
Open	G	$\frac{10^3}{1+\frac{s}{10^4}}$
loop gain		104
Feedback	Н	$\frac{k}{(1-x)^2}$
factor		$\left(1+\frac{s}{10^4}\right)^2$
Loop gain	GH	$k\left(\frac{10}{1+\frac{s}{10^4}}\right)^3$

TABLE 1.1

The closed loop gain would be

$$T(s) = \frac{G(s)}{1 + G(s)H(s)}$$
(1.1.4)

Generalized condition for the system to be stable:

$$T(j\omega) = \frac{G(j\omega)}{1 + G(j\omega)H(j\omega)}$$
(1.1.5)

Loop gain, $L(j\omega) = G(j\omega)H(j\omega)$.

$$L(j\omega) = |G(j\omega)H(j\omega)| e^{j\phi(\omega)}$$
 (1.1.6)

Let the frequency at which phase angle $\phi(\omega)$ becomes 180° be ω_{180} . At $\omega = \omega_{180}$, $L(j\omega)$ is a negative real number.

- if $|G(j\omega_{180})H(j\omega_{180})| < 1, T(j\omega_{180}) > 1$ \implies system is stable.
- if $|G(j\omega_{180})H(j\omega_{180})| = 1, T(j\omega_{180}) = \infty$ \implies system is unstable.
- if $|G(j\omega_{180})H(j\omega_{180})| > 1$, $T(j\omega_{180}) < 1$ \implies system is unstable.

For the given system:

$$\angle G(j\omega)H(j\omega) = \angle \frac{10^3 k}{\left(1 + \frac{j\omega}{10^4}\right)^3} = -3tan^{-1}\left(\frac{\omega}{10^4}\right)$$
(1.1.7)

So,

$$180^{\circ} = -3tan^{-1} \left(\frac{\omega_{180}}{10^4} \right) \tag{1.1.8}$$

$$\implies \omega_{180} = -\sqrt{3} \times 10^4 \tag{1.1.9}$$

The Loop gain at ω_{180} is $G(j\omega_{180})H(j\omega_{180})$. The system becomes unstable if

$$G(j\omega_{180})H(j\omega_{180}) \ge 1$$
 (1.1.10)

$$\implies \left| \frac{10^3 k}{\left(1 + \frac{j\omega}{10^4}\right)^3} \right| \ge 1 \tag{1.1.11}$$

$$\left| \frac{10^3 k}{\left(1 - \sqrt{3}j\right)^3} \right| \ge 1 \tag{1.1.12}$$

$$\frac{10^3 k}{\left|\sqrt{1+\sqrt{3}^2}\right|} \ge 1\tag{1.1.13}$$

$$\frac{10^3 k}{8} \ge 1\tag{1.1.14}$$

$$\implies k \ge 0.008 \tag{1.1.15}$$

Hence, the value of k above which the system becomes unstable is 0.008.