

Online Learning

Instructor: Jesse Davis

- Motivation and Background
- Naïve Bayes
- Logistic Regression
- Perceptron
- Hoeffding Trees

Inductive Learning

- Inductive learning or Prediction:
 - **Given:** Data $S = \{(x_1, y_1), ..., (x_n, y_n)\}$
 - **Learn:** Function *F: x -> y*
- Discrete y: Classification
- Continuous y: Regression
- Probability(X): Probability estimation

Standard Assumptions of Classical Machine Learning Algorithms

- Can access example whenever needed
- Data set is fixed

Feature set is defined in advance

 Test and train examples are drawn from same distribution

Motivation I: Lots of Examples

Many data sets contain a large number of examples

 Even if data fits in memory, it can be very slow to iterate over data multiple times

Motivation II: Streaming Data

Data Streams

- In a stream
 - Large (infinite?) number of examples
 - Data continuously arrives
 - Data may change over time
- Many applications characterized by this type of data
 - Sensor networks
 - Stock market
 - Etc.

Challenges with Data Streams

- Traditional algorithms rely on
 - (Random) Access to entire data set
 - Make multiple pass over the data
 - Much time per data item
- In data streams
 - Impossible to store all data
 - Random access is expensive
 - Streaming nature of data limits computation time per each example

4

Notation

- Data T = $((x_1, y_1),...,(x_n,y_n))$
- Single example: x, y
- All examples: X, Y
- X has d dimensions
- Y has two values: 0, 1
- j ranges over examples
- i ranges over attributes

Batch vs. Online Learning

Batch:

- Receive all training examples at once
- Learn model
- Apply learned model to test examples
- Online
 - Receive examples one at a time
 - Apply model to example, receive true label
 - Update model

Naïve Bayes

$$\log \frac{P(Y_j=1 \mid x_j)}{P(Y_j=0 \mid x_j)} = \log \frac{P(Y=1)}{P(Y=0)} + \sum_i \log \frac{P(X_i=x_{j,i} \mid Y_j=1)}{P(X_i=x_{j,i} \mid Y_j=0)}$$

Training Naïve Bayes: Binary Classification

- Called estimating parameters
- Just involves estimating: P(X_i | Y) and P(Y)
- Just involves computing counts in the data

Number of positive examples where feature X_i has value x_i

$$P(X_i = x_i \mid Y = Positive) = \frac{\#X_i = x_i \text{ when } Y = Positive}{\sum \#X_i = v \text{ when } Y = Positive}$$

$$vis a value of X_i$$

Example: Training Naïve Bayes

Color	Shape	Size	Class
Red	•	big	+
Blue	Δ	small	+
red		small	+
red	Δ	big	_
blue	•	small	_

$$P(red|+) = 2 / 3$$

 $P(blue|+) = 1 / 3$
 $P(red|-) = 1 / 2$
 $P(blue|-) = 1 / 2$

$$P(\bullet|+) = 1/3$$

$$P(\bullet|-) = 1 / 2$$

$$P(\Delta|+) = 1 / 3$$

$$P(\Delta|-) = 1 / 2$$

$$P(\Box | +) = 1 / 3$$

$$P(\Box | -) = 0 / 2$$

$$P(+) = 1$$
 for any example with \square

Not ideal...

Zero probability

Color	Shape	Size	Class
Red	•	big	+
Blue	Δ	small	+
red		small	+
red	Δ	big	_
blue	•	small	_

$$P(red|+) = 3 / 5$$

 $P(blue|+) = 2 / 5$
 $P(red|-) = 2 / 4$
 $P(blue|-) = 2 / 4$

$$P(\bullet|+) = 2 / 6$$
 $P(\bullet|-) = 2 / 5$
 $P(\Delta|+) = 2 / 6$ $P(\Delta|-) = 2 / 5$
 $P(\Box|+) = 2 / 6$ $P(\Box|-) = 1 / 5$

Naïve Bayes in Practice

Empirically, estimates <u>relative</u> probabilities more reliably than absolute ones:

```
\frac{P(Pos \mid Features)}{P(Neg \mid Features)} = \frac{P(Features \mid Pos) * P(Pos)}{P(Features \mid Neg) * P(Neg)}
```

Better thanP(Pos | Features) = P(Features | Pos) * P(Pos)

 Naïve Bayes tends to push probability estimates towards either 0 or 1

4

Training Naïve Bayes

```
ex = 0;
for each (x_j,y_j) do
ex++;
p[y_j]++;
for each variable i do
c[y_j][i][x_{j,i}]++;
```

Two important implementation details:

- 1) Always work with log
- 2) Avoid zero counts!

Inference in Naïve Bayes

Color	Shape	Size	Category
blue	Δ	small	?

$$P(Y_{j}=1 \mid X_{j}) = \frac{P(Y=1) * P(blue \mid 1) * P(\Delta \mid 1) * P(small \mid 1)}{(P(Y=1) * P(blue \mid 1) * P(\Delta \mid 1) * P(small \mid 1)} + P(Y=0) * P(blue \mid 0) * P(\Delta \mid 0) * P(small \mid 0))$$

Logistic Regression

- Discriminative model for learning: P(Y | X)
- Form: Sigmoid applied to linear function of data

$$P(Y_{j}=0 \mid X_{j}, w) = \frac{1}{1 + \exp(w_{0} + \Sigma_{i} w_{i} x_{j,i})}$$

Real value

Features can be continuous or discrete

Understanding Logistic Regression

$$P(Y=0 \mid X) = \frac{1}{1 + \exp(w_0 + \Sigma w_i x_i)}$$

$$P(Y=1 \mid X) = \frac{\exp(w_0 + \Sigma w_i x_i)}{1 + \exp(w_0 + \Sigma w_i x_i)}$$

$$\frac{P(Y=1 \mid X)}{P(Y=0 \mid X)} = \exp(w_0 + \Sigma w_i x_i)$$

$$\ln \frac{P(Y=1 \mid X)}{P(Y=0 \mid X)} = w_0 + \Sigma w_i x_i$$

Logistic Regression Training Task

• Given data: D = $((x_1, y_1), ..., (x_n, y_n))$

Find weights that maximize P(Y | X)

 $\operatorname{Argmax}_{w} \Sigma_{j} P(Y_{j} \mid X_{j}, w)$

The Objective Function: I

$$P(Y \mid X) = \sum_{j}^{N} P(Y_{j} \mid X_{j})$$

$$= \sum_{j}^{N} y_{j} \ln p_{j} + (1 - y_{j}) \ln (1 - p_{j})$$

$$y_{j} \ln \frac{\exp(w_{0} + \sum_{i}^{d} w_{i} x_{j,i})}{1 + \exp(w_{0} + \sum_{i}^{d} w_{i} x_{j,i})}$$

$$y_{j} [w_{0} + \sum_{i}^{d} w_{i} x_{j,i} - \ln(1 + \exp(w_{0} + \sum_{i}^{d} w_{i} x_{j,i}))]$$

The Objective Function: II

$$P(Y \mid X) = \sum_{j}^{N} P(Y_{j} \mid X_{j})$$

$$= \sum_{j}^{N} y_{j} \ln p_{j} + (1 - y_{j}) \ln (1 - p_{j})$$

$$(1 - y_{j}) \ln \frac{1}{1 + \exp(w_{0} + \sum_{i} w_{i} x_{j,i})}$$

$$(y_{j} - 1) \ln (1 + \exp(w_{0} + \sum_{i} w_{i} x_{j,i}))]$$

The Objective Function: Put It Together

$$\begin{split} P(Y \mid X) &= \Sigma_{j}^{N} P(Y_{j} \mid X_{j}) \\ &= \Sigma_{j}^{N} y_{j} \ln p_{j} + (1 - y_{j}) \ln (1 - p_{j}) \\ &= \Sigma_{j} y_{j} \left[w_{0} + \Sigma_{i} w_{i} x_{j,i} - \ln (1 + \exp(w_{0} + \Sigma_{i} w_{i} x_{j,i})) \right] \\ &+ (y_{j} - 1) \ln (1 + \exp(w_{0} + \Sigma_{i} w_{i} x_{j,i})) \end{split}$$
 Underlined terms cancel
$$= \Sigma_{j} y_{j} (w_{0} + \Sigma_{i} w_{i} x_{j,i}) - y_{j} \ln (1 + \exp(w_{0} + \Sigma_{i} w_{i} x_{j,i})) \\ &+ y_{j} \ln (1 + \exp(w_{0} + \Sigma_{i} w_{j} x_{j,i})) \end{split}$$

- $\ln (1 + \exp(w_0 + \Sigma_i w_i x_{i,i}))$

 $= \sum_{i} y_{i} (w_{0} + \sum_{i} w_{i} x_{i,i}) - \ln (1 + \exp(w_{0} + \sum_{i} w_{i} x_{i,i}))$

How Do We Select Weights?

Objective function:

Argmax_w
$$\Sigma_j$$
 y_j (w₀+ Σ_i w_ix_{j,i}) – ln (1+exp(w₀ + Σ_i w_ix_{j,i})

- Good: this function is concave
- Bad: no closed-form solution
- Good: Concave functions are easy to optimize

Gradient Ascent

General optimization technique for concave functions

• Gradient:
$$\nabla_{\mathbf{w}} l(\mathbf{w}) = \left[\frac{\partial l(\mathbf{w})}{\partial \mathbf{w}_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial \mathbf{w}_d} \right]$$

• Update:
$$w_{i+1} \leftarrow w_i + \eta \frac{\partial l(w)}{\partial w_i}$$

Note on Derivative

Easy to derive the gradient using:

1. Chain rule:

let
$$F(f \circ g(x))$$
 then
 $F' = f'(g(x)) g'(x)$

$$2. \frac{\partial \ln(x)}{\partial x} = \frac{1}{x}$$

3.
$$\frac{\partial \exp(x)}{\partial x} = \exp(x)$$

Derivative of Loss Function

$$l(w) = \sum_{j} y_{j} (w_{0} + \sum_{i} w_{i} x_{i}) - \ln (1 + \exp(w_{0} + \sum_{i} w_{i} x_{i}))$$

$$\frac{\partial l(w)}{\partial w_i} = \sum_j y_j x_{j,i} - x_{j,i} \qquad \frac{\exp(w_0 + \sum_i w_i x_i)}{1 + \exp(w_0 + \sum_i w_i x_i)}$$

$$\frac{\partial l(w)}{\partial w_i} = \sum_j x_{j,i} [y_j - P(Y_j = 1 \mid x_{j,i}, w)]$$

Putting It All Together

while (change $< \varepsilon$) do

$$\mathbf{w}_0^{t+1} \leftarrow \mathbf{w}_0^t + \eta \; \Sigma_j \left[\mathbf{y}_j - \mathbf{P}(\mathbf{Y}_j = 1 \mid \mathbf{x}_j, \mathbf{w}) \right]$$

for each variable i do

$$w_i^{t+1} \leftarrow w_i^t + \eta \sum_j x_{j,i} \left[y_j - P(Y_j = 1 \mid x_j, w) \right]$$

Iterate over ALL examples: SLOW!!!

Idea: Stochastic Gradient

Approximate gradient with one example!!!

for each example j do

$$w_0^{t+1} \leftarrow w_0^t + \eta [y_j - P(Y_j = 1 \mid x_j, w)]$$

for each variable i do

$$w_i^{t+1} \leftarrow w_i^t + \eta x_{j,i} [y_j - P(Y_j = 1 | x_j, w)]$$

Gradient Descent Pictorially

Gradient Descent

Stochastic Gradient Descent

.

Issue: Overfitting

- Weights go to infinity, if data is linearly separable => overfitting

 L2 penalty: More on
- Idea: Penalize high weights

Argmax_w
$$[\Sigma_j \ln P(y_j | x_j)] - (\lambda/2) ||w||_2^2$$

Conditional likelihood

$$(\lambda/2) \Sigma_i w^2$$

these in DM class

Gradient update rule:

$$W_i^{t+1} \leftarrow w_i^t + \eta \left\{ -\lambda w_i + x_{j,i} \left[y_j - P(Y_j = 1 \mid x_j, w) \right] \right\}$$

Note: Do not regularize w₀

General Stochastic Gradient

Multiple iterations possible

Shuffle example order

while (change $< \varepsilon$) do

for each example j do

$$w_0^{t+1} \leftarrow w_0^t + \eta [y_j - P(Y_j = 1 \mid x_j, w)]$$

for each variable i do

$$w_i^{t+1} \leftarrow w_i^t + \eta x_{j,i} [y_j - P(Y_j = 1 \mid x_j, w)]$$

Vary with each outer loop

Stochastic Gradient Details

- Each update: noisy estimate of gradient
- General technique that is widely used
 - Ascent for concave functions
 - Descent for convex functions
- Strong statistical theory behind algorithm
 - View loss function as expectation (average)
 - Theoretical guarantees on convergence

Perceptron

$$o(x_1,...,x_N) = \begin{cases} 1 \text{ if } w_0 + w_1x_1 + ... + w_nx_n > 0 \\ 0 \text{ otherwise} \end{cases}$$

Vector Notation

$$o(\vec{x}) = \begin{cases} 1 \text{ if } \vec{w} \cdot \vec{x} > 0 \\ -1 \text{ otherwise} \end{cases}$$

Perceptron Training

Two ways to do this:

 Perceptron rule which works in the unlikely case that the data is linearly separable

$$o = \begin{cases} 1 & \text{if } v > 0 \\ 0 & \text{otherwise} \end{cases}$$

Delta rule which is most often used in practice

$$o = w_0 + \Sigma w_i x_i$$
$$E = \Sigma_j 0.5(y_j - o_j)^2$$

Unthresholded perceptron or linear unit

Online Learning for Perceptron (Delta Rule)

Set initial weights to random value

for each example (x_j, y_j) do

let o_i be the prediction with current weights

for each variable i do

$$w_i \leftarrow w_i + \eta (y_j - o_j) x_{j,i}$$

If label is correct, do nothing
If weights are too high, decrease them
If weights are too low, increase them

How Are These Algorithms Related?

- All are linear classifiers!
- Can only perfectly classify data if a hyperplane can separate positive and negative examples!

What Is The Difference?

The optimization function!

• Naïve Bayes: $l(\Theta) = \Sigma_j P(Y_j, X_j | \Theta)$

Maximize likelihood

• Logistic Regression: $l(w) = \Sigma_j P(Y_j | X_j, w)$

Maximize conditional likelihood

• Perceptron: $l(w) = \frac{1}{2} \sum_{j} (y_j - o_j)^2$

Minimize squared error

- Despite all being linear, results can vary greatly among the three for a given dataset
 - Many equally good hypotheses
 - Each algorithm has different bias
- Always good to include linear baseline
- Linear classifiers more robust to concept drift
- All approaches generalize to multiclass setting

- Motivation and Background
- Naïve Bayes
- Logistic Regression
- Perceptron
- Hoeffding Trees

Decision Tree Representation

Basic Decision Tree Algorithm

```
BuildTree(TraingData)
      Split(TrainingData)
Split(D)
      If (all points in D are of the same class)
             Then Return
      For each attribute A
             Evaluate splits on attribute A
             Use best split to partition D into D1, D2
             Split(D1)
             Split(D2)
```


Split Criteria: Information Gain

Gain(S,A) = Entropy(S) -
$$\sum (|S_v| / |S|)$$
 Entropy(S_v)
 $v \in Values(A)$

Where:

- 1) Entropy(S) = -P $log_2(P)$ N $log_2(N)$
- 2) P is proportion of positive example
- 3) N is proportion of negative examples

Challenge

• Question: Can you think of you to make a decision tree learner that only makes one pass over the data?

Discuss in groups of 3-4 for five minutes

Very Fast Decision Tree: VFDT

- Goal: Process each example at most once in a small constant time
- Learns tree by considering a sample of the data at each node
 - Use first examples to pick root
 - Pass future example to second level and use them to select next attributes
- At each node, uses Hoeffding bound to select best attribute to split on

Hoeffding Bound

- For random variable X, with range R
- Given: n observations of X
- Compute empirical mean: x
- Hoeffding bound: With probability 1- δ , the true mean of x is at least $\overline{x} \pm \varepsilon$ where
 - \bullet is a user defined parameter

$$\varepsilon = \sqrt{\frac{R^2 \ln(2/\delta)}{2n}}$$

Independent of X's true distribution

Making Decisions

- G(X_i) is the heuristic to pick attribute to split on
 - X_a: best attribute after n examples
 - X_b: second best attribute after n examples
 - $\Delta G = G(X_a) G(X_b)$
- If $\Delta \overline{G} > \epsilon$, where ϵ is computed using the Hoeffding bound given a user provided δ
- Then true $\Delta G > \Delta \overline{G} \varepsilon$ with probability 1 δ
- If this holds, then split on X_a!

The Splitting Algorithm

- At each node, calculate ΔG between the two best attributes
 - Need to calculate G(X_i) for potential attribute at node
 - Pre-pruning: Can consider not splitting node
- If $\Delta G > \varepsilon$ holds at a node, then split on the X_a
 - Create child nodes based on values of X_a
- If $\Delta G < \epsilon$, continue accumulating examples at this node

Algorithmic Details

- For efficiency, only recompute ΔG after seeing a pre-specified number of examples
- If ΔG is less than a user a threshold then split
 - If two attributes are similar it does not matter which one we split on
 - Don't waste time deciding between them
- Memory management
 - Dominated by storing sufficient statistics
 - Can deactivate leaves that are not promising

Pictorial Overview

Pictorial Overview

Pictorial Overview

$$\varepsilon = 0.05$$

$$\Delta G_{\text{best}} = \Delta G_{\text{best}} =$$

VFDT Summary

- Scales better than pure memory-based or pure disk-based learners
 - Access data sequentially
 - Sampling potentially requires less than one scan of the data
- VFDT is incremental and anytime
 - Can easily incorporate new examples
 - Learned model after relatively few examples, which is progressively defined

Interlude: Spam Filtering

- Question: How would you tackle the problem of spam filtering for email?
 - What features would you use?
 - What model?
 - What challenges are there?

Discuss quickly in groups

Spam Filtering Challenge: Changing Vocabulary

- Spam is inherently an adversarial setting
 - Filters: Improve and adopt models to catch new spam
 - Spammers: Change messages to defeat new models
 - Iterate
- Easiest change: modify words
 - Viagra, VIAgra, Vi8agra, etc.
 - Means feature space isn't fixed!!

Solution: Hashing!

- Original feature space: Words, tokens, etc.
- New feature space: hash values of features
- Transform example and represent it as a (multi)set of hash values

Simple Solution

From: Branded anti-ED Pills <otubu9068@telesp.net.br>

To: andrey.kolobov@gmail.com Date: Fri, Apr 2, 2010 at 7:23 PM

Subject: Hot Sale, andrey.kolobov! 77% off on top goods Emen

Mailed-by: telesp.net.br

Whylaren't vou on our site landrev.kolobov

off today

Bag of Words:

are	why	site	buy	viagra	 have
0	1	1	0	0	 1

Simple hashing: 1. Select hash function h with range [0, p-1]

H(why) = 10

H(aren't) = 4

H(today) = 9

2. Hash each token t and set v[h(t)] = 1

0	1	2	3	4	5	6	7	8	9	 p-1
0	0	0	0	1	0	0	0	0	1	 0

Advice on Assignment

- Follow the instructions!
- Start working on this early
- Carefully test your algorithm
- Critically think about what you can put in the report and make you sure you structure it well

Advice on Reports: High-Level

 Think about the structure of a report: Sections, subsections, etc.

- Make sure graphs, tables are good
 - Fonts big enough
 - Axes labeled
 - Titles meaningful
 - Key does not overlap with lines

Advice on Reports: Experiments

- Pose experimental questions you will address, state how you will answer them
- State all relevant parameter settings
- Good to explore the space of parameters: They greatly effect performance!!
- Employ good machine learning methodology

