Introduction to WrightEagle RoboCup Soccer Simulation 2D Team

Aijun Bai http://home.ustc.edu.cn/~baj/

University of Science and Technology of China

October 9, 2014

1 Introduction to RoboCup 2D

2 World Champion Team – WrightEagle

1 Introduction to RoboCup 2D

2 World Champion Team – WrightEagle

The RoboCup 2D domain - introduction

- Simulated soccer game
- Two teams of 11 players
- Independently controlled
- In each cycle (100ms)
 - Receive perception
 - Make decision
 - Send action(s)
- Normally 6,000 cycles

Figure 1: RoboCup 2D.

The RoboCup 2D domain - model

- State:
 - Ball state, player states and game information
- Observation:
 - Visual information (within field of view):
 - Simulated ball, landmark, and player detections
 - Aural information: $msg \ (|msg| \le 10)$
- Action (with parameters):
 - $turn, dash, kick, tackle, say, [catch], \dots$

The RoboCup 2D domain - model (cont'd)

- Transition model: game rules, physical laws with noise
- Observation model: noise and hidden information
- Key feature:
 - · Abstraction made by the simulator
 - High-level planning, learning and cooperation
 - No need to handle robot hardware issues
- Key challenges:
 - Fully distributed multi-agent stochastic system
 - Continuous state, observation and action spaces
- Demonstration before Q&A session

1 Introduction to RoboCup 2D

2 World Champion Team – WrightEagle

WrightEagle 2D soccer simulation team

- Have participated in RoboCup 2D, since 2000
- 5 world champions: 2006, 2009, 2011, 2013 and 2014
- Website: http://www.wrighteagle.org/2d/
- Key components:
 - 1 Belief update via particle filtering
 - 2 Hierarchical online planning
 - 3 Monte-Carlo planning
 - 4 Multi-agent decision-making

Belief update via particle filtering

- Particle filter based self-localization and multi-object tracking
- Belief state is useful in:
 - Information gathering
 - State estimation
 - 3 Probability estimation
 - 4 Future state prediction

Figure 2: Local views.

Belief state via particle filtering - example

Figure 3: Unobservable real state.

Aijun Bai - USTC WrightEagle 10 / 20

Belief state via particle filtering - example (cont'd)

Figure 4 : Updated belief state of player #7.

Aijun Bai - USTC WrightEagle 11 / 20

Hierarchical online planning

Decision tree:

• Hierarchical online planning:

```
\begin{split} & \mathsf{PlanAttack}() \; \{ \\ & \dots \\ & \mathsf{shoot} \leftarrow \mathsf{PlanShoot}() \\ & \mathsf{pass} \leftarrow \mathsf{PlanPass}() \\ & \mathsf{dribble} \leftarrow \mathsf{PlanDrrible}() \\ & \dots \\ & \mathsf{return} \; \max \{ \mathsf{shoot}, \; \mathsf{pass}, \\ & \qquad \qquad \mathsf{dribble}, \; \dots \} \\ \} \end{split}
```

Hierarchical task graph in WrightEagle

Figure 5: MAXQ hierarchical structure in WrightEagle.

Hierarchical online planning - an example

Figure 6: Hierarchical planning of pass behavior.

Aijun Bai - USTC WrightEagle 14 / 20

Evaluation function - an example

$$V(s) = \max_{a} Q(s, a) \tag{1}$$

$$Q(s,a) = pV(s') + (1-p)V(s'')$$
(2)

- s is the state
- a is the macro-action
- V is the state value function
- Q is the action value function
- p is the probability of success
- ullet s' and s'' are the predicted states

Heuristic search in action space

- Efficiently search in huge (macro-)action spaces
 - Enumeration is impossible and not necessary
 - Behavior dependent: hill climbing, best-first-search, pruning, . . .

Figure 7: Search in shoot.

Monte-Carlo planning

- Explicit transition matrix $\Pr(s' \mid s, a)$ is unavailable
- State sampling rules $s' \sim \Pr(s' \mid s, a)$ given by the simulator
- Monte-Carlo tree search
- Low-level skills: NavTo, KickTo, . . .
- Embedded in the overall hierarchical framework

Figure 8 : Search tree in NavTo.

Multi-agent decision-making

- Formation and role system
 - Formation: $Pr(x_1, y_1, \dots, x_{22}, y_{22} \mid x_b, y_b)$
 - Role classification: forward, midfielder, defender
 - Task allocation (particularly in defense behavior)
- Plan for the team
 - $oldsymbol{1}$ Pass the ball to teammate t
 - 2 Recursively plan t's future actions after receiving the ball
 - 3 Evaluate the pass behavior
- Communicate whenever possible
 - Share information
 - 2 Propose future plans
 - 3 Broadcast emergence

1 Introduction to RoboCup 2D

2 World Champion Team – WrightEagle

- 1 RoboCup soccer simulation 2d domain
 - Fully-distributed multi-agent stochastic system
 - Continuous state, observation and action spaces
- WrightEagle soccer simulation team
 - Planning and sensing in belief space
 - Utilizing MAXQ hierarchical structure
 - Exploiting heuristic and Monte-Carlo techniques