EXAMEN DE DEUXIÈME SESSION

Théorie de la mesure et intégration—2021-2022 Pierre-O Goffard

Instructions: On éteint et on range son téléphone.

- La calculatrice et les appareils éléctroniques ne sont pas autorisés.
- Vous devez justifier vos réponses de manière claire et concise.
- Vous devez écrire de la manière la plus lisible possible. Souligner ou encadrer votre réponse finale.
- Document autorisé: Une feuille manuscrite recto-verso

Question:	1	2	3	Total
Points:	6	5	6	17
Score:				

- 1. Question de cours indépendantes
 - (a) (2 points) Soit $f: \Omega \to \overline{\mathbb{R}}$ une application mesurable et intégrable par rapport à une mesure μ . Montrer que l'ensemble $\{f=\infty\}$ est de mesure nulle, autrement dit que f est finie $\mu-pp$.

Solution: Il s'agit d'un résultat du cours.

(b) (2 points) Soient $\alpha, \beta > 0$ et $\Delta = \{(x, y) \in \mathbb{R}^2 : 0 < x < y\}$. Calculer

$$\int_{\mathbb{R}^2} e^{-\alpha x} e^{-\beta x} \mathbb{I}_{\Delta}(x, y) \mathrm{d}\lambda(x, y).$$

Solution:

$$\frac{1}{\beta(\alpha+\beta)}$$

(c) (2 points) Calculer

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{4t^3 + 12}{12t^6 + 3nt + 2} dt.$$

Solution: On définit $f_n(t) = \frac{4t^3 + 12}{12t^6 + 3nt + 2}$, on a

$$|f_n(t)| \le \frac{4t^3 + 12}{12t^6 + 2}$$
, pour tout $n \ge 0$

Par application du théorème de convergence dominée, il vient

$$\int f_n(t) dt \to 0 \text{ pour } n \to +\infty.$$

2. Soit $f: \mathbb{R}^d \mapsto \mathbb{R}_+$ une fonction mesurable tel que $0 < \int_{\mathbb{R}^d} f d\lambda < \infty$ où λ désigne la mesure de Lebesgue sur \mathbb{R}^d . Soit $\alpha > 0$ un paramètre, on définit la suite

$$a_n = \int_{\mathbb{R}} n \log \left[1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right] d\lambda(x), \ n \geqslant 1.$$

(a) (1 point) Montrer que

$$\lambda\left(\left\{x\in\mathbb{R}^d:\,f(x)\neq0\right\}\right)>0.$$

Solution: Par le cours nous avons l'équivalence

$$\int f d\lambda = 0 \Leftrightarrow f = 0 \ \lambda - pp$$

Ici comme $\int f d\lambda > 0$ alors par contraposée f n'est pas nulle presque partout.

(b) (1 point) Montrer que

$$\lim_{n\to\infty} a_n = \infty,$$

pour $\alpha < 1$.

Hint: Penser au Lemme de Fatou

Solution: La suite de fonction

$$f_n(x) = n \log \left[1 + \left(\frac{f(x)}{n} \right)^{\alpha} \right]$$

est une suite de fonction mesurable positve. Le lemme de Fatou s'applique, nous avons donc

$$\int \liminf f_n d\lambda < \liminf \int f_n d\lambda$$

Or $f_n(x) \sim n^{1-\alpha} f(x) \to +\infty$ pour $n \to \infty$ et $x \in \mathbb{R}^d$. On en déduit que $\liminf \int f_n d\lambda = \infty$ et donc $\lim_{n \to \infty} a_n = \infty$.

(c) (1 point) Montrer que

$$\lim_{n \to \infty} a_n = \int_{\mathbb{R}^d} f \, \mathrm{d}\lambda,$$

pour $\alpha = 1$.

Solution: Pour $x \ge 0$, nous avons l'inégalité $\log(1+x) \le x$. Nous en déduisons que

$$|f_n(x)| \leqslant f(x).$$

De plus comme $f_n(x) \to f(x)$ alors il vient

$$\lim_{n \to \infty} a_n = \int_{\mathbb{R}^d} f \, \mathrm{d}\lambda,$$

par convergence dominée.

(d) (2 points) Montrer que

$$\lim_{n \to \infty} a_n = 0,$$

pour $\alpha > 1$.

<u>Hint:</u> On peut commencer par démontrer que la fonction $y \mapsto \frac{\log(1+y^{\alpha})}{y}$ est bornée sur \mathbb{R}_+ .

Solution: Pour $x \in (0, \infty)$ la fonction $y \mapsto \frac{\log(1+y^{\alpha})}{y}$ est continue. De plus on a

$$\frac{\log(1+y^{\alpha})}{y} \sim y^{\alpha-1} \to 0 \text{ pour } y \to 0$$

et

$$\frac{\log(1+y^{\alpha})}{y} \to 0 \text{ pour } y \to \infty$$

On en déduit (en vertu de la continuité de la fonction et le fait que en 0 et ∞ la limite soit 0) l'existence d'une constante C_{α} tel que

$$\frac{\log(1+y^{\alpha})}{y} < C_{\alpha}.$$

En prenant y = f(x)/n, on obtient que

$$|f_n(x)| < f(x)$$

puis

$$\lim_{n \to \infty} a_n = 0$$

par convergence dominée.

3. Soit $f: \mathbb{R}_+ \to \overline{\mathbb{R}}$ une fonction mesurable et intégrable par rapport à la mesure de Lebesgue λ . La transformée de Laplace de la fonction f est définie par

$$L_f(t) = \int_{\mathbb{R}_+} e^{-tx} f(x) d\lambda(x), \text{ pour } t \ge 0.$$

(a) (1 point) Montrer que $x \mapsto e^{-tx} f(x)$ est mesurable pour tout $t \in \mathbb{R}_+$.

Solution: Il s'agit du produit de deux fonctions mesurables.

(b) (1 point) Montrer que $t \mapsto L_f(t)$ est une fonction continue.

Solution: Soit $g(x,t) = e^{-tx} f(x)$, l'application $t \mapsto e^{-tx} f(x)$ est continue pour tout $x \ge 0$, de plus on a

$$|g(x,t)| \leqslant |f(x)|.$$

On en déduit la continuité de $L_f(t)$ en vertu du théorème de continuité de l'intégrale dépendant d'un paramètre.

(c) (2 points) Montrer que $\lim_{t\to+\infty} L_f(t) = 0$.

Solution: Grâce à la continuité de $t \mapsto L_f(t)$, nous pouvons montrer que $\lim_{n \to \infty} L_f(t_n) = 0$ pour une suite $(t_n)_{n \geqslant 0}$ telle que $t_n \to \infty$. Considérons une telle suite et définissons la suite de fonctions

$$f_n(x) = e^{-t_n x} f(x)$$

Comme f(x) est fini $\lambda - pp$ (voir a)) alors $f_n(x) \to 0$ pour $n \to \infty$ $\lambda - pp$. De plus, on a

$$|f_n(x)| \leqslant |f(x)|.$$

Par application du théorème de convergence dominé, il vient

$$\lim_{t \to +\infty} L_f(t) = 0.$$

(d) (1 point) Donner l'expression de $L_f(t)$ pour $f(x) = e^{-\theta x}$ avec $\theta > 0$.

Solution:

$$L_f(t) = \frac{1}{t+\theta}.$$

(e) (1 point) De même pour $f(x) = \sin(x)\mathbb{I}_{[0,1]}(x)$.

Solution:

$$L_f(t) = \Im \int_0^1 e^{-x(t-i)} dx = \frac{1 - e^{-t}(\cos 1 + t \sin 1)}{1 + t^2}.$$

FONCTIONS TRIGONOMÉTRIQUES

Fonction	Ensemble de définition	Dérivée
$\sin x$	\mathbb{R}	$\cos x$
$\cos x$	\mathbb{R}	$-\sin x$
$\tan x$	$\bigcup_{n\in\mathbb{Z}}]n\pi - \pi/2, n\pi + \pi/2[$	$1 + \tan^2 x$
$\arccos x$	[-1,1]	$-\frac{1}{\sqrt{1-x^2}}$
$\arcsin x$	[-1, 1]	$\frac{1}{\sqrt{1-x^2}}$
$\arctan x$	\mathbb{R}	$\frac{1}{1+x^2}$

Quelques identités: Pour $a, b \in \mathbb{R}$,

$$cos(a + b) = cos(a)cos(b) - sin(a)sin(b)$$

$$sin(a + b) = sin(a)cos(b) + cos(a)sin(b)$$

$$cos^{2}(a) + sin^{2}(a) = 1$$

Quelques développement en série entière: Pour tout $x \in \mathbb{R}$,

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!},$$
et pour $p \in [0,1)$
$$\frac{1}{1-p} = \sum_{n=0}^{\infty} p^n$$