Revision Exercise 5

1. Conic curve equations are given as follows. Identify the type of curve and find their eccentricity e:

(a)
$$2x^2 - y^2 + 6x + 2y + 3 = 0$$

Sol.

$$2x^{2} + 6x - y^{2} + 2y = -3$$

$$2(x^{2} + 3x) - (y^{2} - 2y) = -3$$

$$2\left(x^{2} + 3x + \frac{9}{4}\right) - (y^{2} - 2y + 1) = -3 + 2\left(\frac{9}{4}\right) - 1$$

$$2\left(x + \frac{3}{2}\right)^{2} - (y - 1)^{2} = \frac{1}{2}$$

$$4\left(x + \frac{3}{2}\right)^{2} - 2(y - 1)^{2} = 1$$

The equation is of the form

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Therefore, the curve is a **hyperbola** with $a^2 = \frac{1}{4}$ and $b^2 = \frac{1}{2}$.

The eccentricity of the hyperbola is given by

$$e = \frac{1}{\frac{1}{2}}\sqrt{\frac{1}{4} + \frac{1}{2}}$$
$$= 2\sqrt{\frac{3}{4}}$$
$$= \sqrt{3} \qquad \Box$$

(b)
$$y^2 - 4y - 4x + 16 = 0$$

Sol.

$$y^{2} - 4y - 4x + 16 = 0$$

$$y^{2} - 4y + 16 = 4x$$

$$(y - 2)^{2} - 4 + 16 = 4x$$

$$(y - 2)^{2} = 4x - 12$$

$$(y - 2)^{2} = 4(x - 3)$$

The equation is of the form

$$(y-k)^2 = 4a(x-h)$$

Therefore, the curve is a parabola.

The eccentricity of the parabola is 1. \Box

(c)
$$x^2 + 4y^2 + 8x - 16y - 17 = 0$$

Sol.

$$x^{2} + 8x + 4y^{2} - 16y - 17 = 0$$

$$(x^{2} + 8x + 16) - 16 + 4(y^{2} - 4y + 4) - 16 - 17 = 0$$

$$(x + 4)^{2} + 4(y - 2)^{2} = 49$$

$$\frac{(x + 4)^{2}}{49} + \frac{4(y - 2)^{2}}{49} = 1$$

The equation is of the form

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Therefore, the curve is an **ellipse** with $a^2 = 49$ and $b^2 = \frac{49}{4}$. The eccentricity of the ellipse is given by

$$e = \frac{1}{7}\sqrt{49 - \frac{49}{4}}$$

$$= \frac{1}{7}\sqrt{\frac{147}{4}}$$

$$= \frac{1}{7} \cdot \frac{\sqrt{147}}{2}$$

$$= \frac{\sqrt{3}}{2} \quad \Box$$

(d)
$$x^2 - y^2 - 4x + 2y - 1 = 0$$

Sol.

$$x^{2} - 4x - y^{2} + 2y - 1 = 0$$

$$x^{2} - 4x - y^{2} + 2y = 1$$

$$(x^{2} - 4x + 4) - 4 - (y^{2} - 2y + 1) - 1 = 1$$

$$(x - 2)^{2} - (y - 1)^{2} = 6$$

The equation is of the form

$$(x-h)^2 - (y-k)^2 = a^2$$

Therefore, the curve is a **rectangular hyperbola** with $a^2 = 6$.

The eccentricity of any rectangular hyperbola $\sqrt{2}$.

2. Discuss the conic curve represented by $kx^2 + 2y^2 - 8x = 0$ for the three cases of k > 0, k = 0, and k < 0.

Sol.

When k > 0,

$$kx^{2} + 2y^{2} - 8x = 0$$

$$kx^{2} - 8x + 2y^{2} = 0$$

$$k\left(x^{2} - \frac{8}{k}x\right) + 2y^{2} = 0$$

$$k\left(x^{2} - 2 \cdot \frac{4}{k}x + \left(\frac{4}{k}\right)^{2} - \left(\frac{4}{k}\right)^{2}\right) + 2y^{2} = 0$$

$$k\left(x^{2} - 2 \cdot \frac{4}{k}x + \left(\frac{4}{k}\right)^{2}\right) - \frac{16}{k} + 2y^{2} = 0$$

$$k\left(x - \frac{4}{k}\right)^{2} + 2y^{2} = \frac{16}{k}$$

$$\frac{k\left(x - \frac{4}{k}\right)^{2}}{\frac{16}{k}} + \frac{2y^{2}}{\frac{16}{k}} = 1$$

$$\frac{k^{2}\left(x - \frac{4}{k}\right)^{2}}{\frac{16}{k}} + \frac{ky^{2}}{8} = 1$$

The equation is of the form

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Therefore, the curve is an **ellipse**.

When k = 0,

$$0x^{2} + 2y^{2} - 8x = 0$$
$$2y^{2} - 8x = 0$$
$$2y^{2} = 8x$$
$$y^{2} = 4x$$

The equation is of the form

$$y^2 = 4ax$$

Therefore, the curve is a **parabola**.

When k < 0,

$$-kx^{2} + 2y^{2} - 8x = 0$$

$$\frac{k^{2}\left(x + \frac{4}{k}\right)^{2}}{16} - \frac{ky^{2}}{8} = 1$$

The equation is of the form

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Therefore, the curve is a **hyperbola**.

3

- 3. Find the equations of curves that satisfy the following conditions:
 - (a) An ellipse with center at O'(-2, 1), semi-major axis length 10, foci on lines parallel to the x-axis, and the distance between the two foci is 12.

Sol.

Move the center of the ellipse to the origin by translating the axes such that

$$x' = x + 2 \qquad \text{and} \qquad y' = y - 1$$

Since the foci are on lines parallel to the x-axis, the equation of the ellipse is

$$\frac{(x')^2}{a^2} + \frac{(y')^2}{b^2} = 1$$

$$a = 10$$

$$2ae = 12$$

$$ae = 6$$

$$b^2 = 100 - 36$$

$$= 64$$

Therefore, the equation of the ellipse is

$$\frac{(x')^2}{100} + \frac{(y')^2}{64} = 1$$

$$\frac{(x+2)^2}{100} + \frac{(y-1)^2}{64} = 1$$

(b) A hyperbola with imaginary axis length of 8, vertices at A(2,1) and A'(2,-5).

Sol.

The center of the hyperbola is at the midpoint of the vertices, which is at $\left(2, \frac{1+(-5)}{2}\right) = (2, -2)$. Move the center of the hyperbola to the origin by translating the axes such that

$$x' = x - 2 \qquad \text{and} \qquad y' = y + 2$$

The vertices of the hyperbola are now at (0,3) and (0,-3).

Since the vertices are on the y-axis, the equation of the hyperbola is of the form

$$\frac{(y')^2}{a^2} - \frac{(x')^2}{b^2} = 1$$

The imaginary axis length is 2b = 8, so b = 4.

The vertices are at $(0, \pm 3)$, so a = 3. Therefore, the equation of the hyperbola is

$$\frac{(y+2)^2}{9} - \frac{(x-2)^2}{16} = 1 \qquad \Box$$

4

(c) Foci at F(3, -3), directrix equation is y = 1 for a parabola.

Sol.

Let any point on the parabola be P(x, y).

$$(x-3)^{2} + (y+3)^{2} = \left(\frac{y-1}{1}\right)^{2}$$

$$(x-3)^{2} + (y+3)^{2} = (y-1)^{2}$$

$$x^{2} - 6x + 9 + y^{2} + 6y + 9 = y^{2} - 2y + 1$$

$$x^{2} - 6x + 17 + 8y = 0$$

$$(x-3)^{2} + 8 + 8y = 0$$

$$(x-3)^{2} = -8y - 8$$

$$(x-3)^{2} = -8(y+1)$$

- 4. Lazy to do. =)
- 5. A straight line passing through the focus of the parabola $y^2 = 4ax$ intersects the parabola at two points with vertical coordinates y_1 and y_2 . Prove that $y_1 \cdot y_2 = -4a^2$.

Proof.

The focus of the parabola is at (a, 0).

Let the two points of intersection be $A(x_1, y_1)$ and $B(x_2, y_2)$.

Substituting (x_1, y_1) and (x_2, y_2) into the equation of the parabola, we get

$$y_1^2 = 4ax_1$$

$$x_1 = \frac{y_1^2}{4a}$$

$$y_2^2 = 4ax_2$$

$$x_2 = \frac{y_2^2}{4a}$$

$$\frac{0 - y_1}{a - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$$

$$\frac{-y_1}{a - \frac{y_1^2}{4a}} = \frac{y_2 - y_1}{\frac{y_2^2}{4a} - \frac{y_1^2}{4a}}$$

$$\frac{-y_1}{4a^2 - y_1^2} = \frac{y_2 - y_1}{\frac{y_2^2 - y_1^2}{4a}}$$

$$\frac{-y_1}{4a^2 - y_1^2} = \frac{y_2 - y_1}{y_2^2 - y_1^2}$$

$$\frac{-y_1}{4a^2 - y_1^2} = \frac{y_2 - y_1}{y_2^2 - y_1^2}$$

$$\frac{-y_1}{4a^2 - y_1^2} = \frac{y_2 - y_1}{(y_2 - y_1)(y_2 + y_1)}$$

$$\frac{-y_1}{4a^2 - y_1^2} = \frac{1}{y_2 + y_1}$$

$$-y_1(y_2 + y_1) = 4a^2 - y_1^2$$

$$-y_1y_2 = 4a^2$$

$$y_1y_2 = -4a^2 \qquad \Box$$

6. In the figure, there is a parabolic arch bridge. When the water surface is at l, the height of the arch from the water surface is 2 m, and the width of the water surface is 4 m. After the water surface descends by 1 m, what is the new width of the water surface?

Sol.

Let the equation of the parabola be of the form

$$x^2 = 4ay$$

When x = 2, y = -2

$$2^2 = 4a(-2)$$

$$4 = -8a$$

$$a=-\frac{1}{2}$$

Therefore, the equation of the parabola is

$$x^2 = -2y$$

When y = -3,

$$x^2 = -2(-3)$$

$$x^2 = 6$$

$$x = \pm \sqrt{6}$$

Hence, the new width of the water surface is $2\sqrt{6} \approx 4.9$ m.

7. The parabola $y^2 = 4x + 4$ intersects the line y = 2x - 2. A chord AB is parallel to the x-axis, and the y-coordinate of points on the chord is t. Find the range of t and the length of the chord AB.

Sol.

Substituting y = 2x - 2 into the equation of the parabola, we get

$$(2x-2)^{2} = 4x + 4$$

$$4x^{2} - 8x + 4 = 4x + 4$$

$$4x^{2} - 12x = 0$$

$$4x(x-3) = 0$$

$$x = 0 \text{ or } x = 3$$

When x = 0, y = -2, and when x = 3, y = 4. Therefore, the range of t is $-2 \le t \le 4$. When y = t,

$$A\left(\frac{t^2-4}{4},t\right)$$
$$B\left(\frac{t+2}{2},t\right)$$

The length of the chord \overline{AB} is

$$|\overline{AB}| = \sqrt{\left(\frac{t+2}{2} - \frac{t^2 - 4}{4}\right)^2 + (t-t)^2}$$

$$= \sqrt{\left(\frac{2t+4-t^2+4}{4}\right)^2}$$

$$= \sqrt{\left(\frac{-t^2+2t+8}{4}\right)^2}$$

$$= \frac{1}{4}(t+2)(4-t) \quad \Box$$

8. For a line segment \overline{AB} with length 1, where the endpoints A and B move along the x-axis and y-axis respectively, let P be a point on \overline{AB} such that $|\overline{PA}| : |\overline{PB}| = m : n$. Find the equation of the locus of point P, and state what type of curve it is.

Sol.

Since the length of \overline{AB} is 1,

$$x^2 + y^2 = 1$$

Let the coordinates of A and B be (x,0) and (0,y) respectively, and the coordinates of P be (s,t).

$$(s,t) = \left(\frac{nx}{m+n}, \frac{my}{m+n}\right)$$

$$s = \frac{nx}{m+n}$$

$$x = \frac{(m+n)s}{n}$$

$$t = \frac{my}{m+n}$$

$$y = \frac{(m+n)t}{m}$$

Substituting the equations of x and y into the equation of the circle, we get

$$\left(\frac{(m+n)s}{n}\right)^{2} + \left(\frac{(m+n)t}{m}\right)^{2} = 1$$
$$\frac{(m+n)^{2}s^{2}}{n^{2}} + \frac{(m+n)^{2}t^{2}}{m^{2}} = 1$$

Hence, the equation of the locus of point P is

$$\frac{(m+n)^2 x^2}{n^2} + \frac{(m+n)^2 y^2}{m^2} = 1 \qquad \Box$$

And the type of curve is an **ellipse**. \Box

9. Find a point on the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ such that the angle formed by the lines connecting it to the two foci of the ellipse is a right angle.

Sol.

The foci of the ellipse are at $(\pm 4, 0)$.

Let the point on the ellipse be P(x, y).

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
$$9x^2 + 25y^2 = 225$$
$$25y^2 = 225 - 9x^2$$
$$y^2 = 9 - \frac{9}{25}x^2$$

$$\frac{y-0}{x-4} \cdot \frac{y-0}{x+4} = -1$$

$$\frac{y^2}{x^2 - 16} = -1$$

$$y^2 = -x^2 + 16$$

$$9 - \frac{9}{25}x^2 = -x^2 + 16$$

$$\frac{16}{25}x^2 = 7$$

$$x^2 = \frac{175}{16}$$

$$x = \pm \frac{5\sqrt{7}}{4}$$

$$y^2 = 9 - \frac{9}{25} \times \frac{175}{16}$$

$$y = \pm \frac{9}{4}$$

Therefore, the points on the ellipse are $\left(\frac{5\sqrt{7}}{4}, \frac{9}{4}\right)$, $\left(\frac{5\sqrt{7}}{4}, -\frac{9}{4}\right)$, $\left(-\frac{5\sqrt{7}}{4}, \frac{9}{4}\right)$, and $\left(-\frac{5\sqrt{7}}{4}, -\frac{9}{4}\right)$.

10. Given that the vertex of a parabola lies at the center of the ellipse $\frac{x^2}{100} + \frac{y^2}{64} = 1$ and one focus lies on the right focus of the ellipse, find the intersection points of the ellipse and the parabola.

Sol.

The center of the ellipse is at the origin, and the foci are at $(\pm 6,0)$.

Let the equation of the parabola be of the form

$$u^2 = 4ax$$

The focus of the parabola is at (6,0), therefore a=6. The equation of the parabola is

$$y^2 = 24x$$

Substituting the equation of the parabola into the equation of the ellipse, we get

$$\frac{x^2}{100} + \frac{24x}{64} = 1$$

$$\frac{x^2}{100} + \frac{3x}{8} = 1$$

$$8x^2 + 300x - 800 = 0$$

$$2x^2 + 75x - 200 = 0$$

$$(x+40)(2x-5) = 0$$

$$x = -40 \text{ (rejected)} \quad \text{or} \quad x = \frac{5}{2}$$

$$y^2 = 24\left(\frac{5}{2}\right)$$

$$y^2 = 60$$

$$y = \pm 2\sqrt{15}$$

Therefore, the intersection points of the ellipse and the parabola are at $\left(\frac{5}{2}, 2\sqrt{15}\right)$ and $\left(\frac{5}{2}, -2\sqrt{15}\right)$.

11. Find the equation of the hyperbola with eccentricity $e = \frac{5}{4}$ that shares a common focus with the ellipse $\frac{x^2}{49} + \frac{y^2}{24} = 1$.

Sol.

The foci of the ellipse are at $(\pm 5, 0)$.

Since the foci of the hyperbola are at $(\pm ae, 0)$, the equation of the hyperbola is of the form

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$ae = 5$$

$$a = \frac{5}{5} = 4$$

$$b^2 = a^2 e^2 - a^2 = 25 - 16 = 9$$

Therefore, the equation of the hyperbola is

$$\frac{x^2}{16} - \frac{y^2}{9} = 1 \qquad \square$$

12. The cross-section of an oil tank on a tanker truck is an ellipse with a major axis length of 1.5 m and a minor axis length of 1 m. If the length of the tank is 4 m, find its volume. Given the formula for the area of an ellipse $S = \pi ab$ (where a and b are the lengths of the semi-major and semi-minor axes respectively), and assuming the density of gasoline is $0.7 \,\mathrm{g/cm^3}$, find the maximum weight of gasoline the tank can hold in kilograms.

Sol.

Let the equation of the cross section of the ellipse be

$$\frac{x^2}{(0.75)^2} + \frac{y^2}{(0.5)^2} = 1$$

Hence, the volume of the tank is approximately

$$V = \pi abh$$
= $\pi (0.75) (0.5) 4$
= 1.5π
 $\approx 4.71 \,\mathrm{m}^3$

The maximum weight of gasoline the tank can hold is approximately

$$W = \text{density} \times \text{volume}$$

$$= \frac{0.7}{1000} \times 4.71 \times 1000000$$

$$= 3297 \,\text{kg} \quad \Box$$

- 13. Given the equations of two ellipses $C_1: x^2 + 9y^2 45 = 0$ and $C_2: x^2 + 9y^2 6x 27 = 0$:
 - (a) Find the coordinates of the centers and foci of these two ellipses.

Sol.

For C_1 :

$$x^{2} + 9y^{2} - 45 = 0$$
$$x^{2} + 9y^{2} = 45$$
$$\frac{x^{2}}{45} + \frac{y^{2}}{5} = 1$$

The center of the ellipse is at the origin, and the foci are at $(\pm 2\sqrt{10}, 0)$ For C_2 :

$$x^{2} + 9y^{2} - 6x - 27 = 0$$

$$x^{2} - 6x + 9y^{2} - 27 = 0$$

$$(x - 3)^{2} - 9 + 9y^{2} - 27 = 0$$

$$(x - 3)^{2} + 9y^{2} = 36$$

$$\frac{(x - 3)^{2}}{36} + \frac{y^{2}}{4} = 1$$

The center of the ellipse is at (3,0), and the foci are at $(3 \pm 4\sqrt{2},0)$

(b) Find the equation of a circle passing through the intersection points of these two ellipses and tangent to the line x - 2y + 11 = 0.

Sol.

$$x^{2} + 9y^{2} - 45 = 0$$

$$9y^{2} = 45 - x^{2}$$

$$y^{2} = 5 - \frac{1}{9}x^{2}$$

$$x^{2} + 9y^{2} - 6x - 27 = 0$$

$$x^{2} + 45 - x^{2} - 6x - 27 = 0$$

$$6x = 18$$

$$x = 3$$

$$y^{2} = 5 - \frac{1}{9}(3)^{2}$$

$$y^{2} = 4$$

$$y = \pm 2$$

The intersection points are at (3,2) and (3,-2).

Let the equation of the circle be of the form

$$(x-h)^2 + (y-k)^2 = r^2$$

Substituting the intersection points into the equation of the circle, we get

$$(3-h)^2 + (2-k)^2 = r^2$$
$$(3-h)^2 + (-2-k)^2 = r^2$$

Since the circle is tangent to the line x - 2y + 11 = 0, the distance from the center of the circle to the line is equal to the radius of the circle. Therefore,

$$\begin{aligned} \frac{|1(h) - 2(k) + 11|}{\sqrt{1^2 + 2^2}} &= r\\ |h - 2k + 11| &= \sqrt{5}r\\ 5r^2 &= (h - 2k + 11)^2\\ r^2 &= \frac{(h - 2k + 11)^2}{5} \end{aligned}$$

Substituting the value of r^2 into the equation of the circle, we get

$$(3-h)^{2} + (2-k)^{2} = \frac{(h-2k+11)^{2}}{5}$$
$$(3-h)^{2} + (-2-k)^{2} = \frac{(h-2k+11)^{2}}{5}$$

Solving the two equations, we get h = -1, k = 0, or h = 14, k = 0.

Substituting the values of h and k into $r^2 = \frac{(h-2k+11)^2}{5}$, we get $r^2 = 20$ or $r^2 = 125$. Hence, the equation of the circle is

$$(x+1)^2 + y^2 = 20$$

 $x^2 + 2x + 1 + y^2 = 20$
 $x^2 + y^2 + 2x - 19 = 0$

or

$$(x-14)^2 + y^2 = 125$$

 $x^2 - 28x + 196 + y^2 = 125$
 $x^2 + y^2 - 28x + 71 = 0$

14. If the eccentricity of a hyperbola is 2, find the angle between its two asymptotes.

Sol.

$$e = \frac{c}{a}$$

$$\frac{c^2}{a^2} = 4$$

$$\frac{a^2 + b^2}{a^2} = 4$$

$$1 + \frac{b^2}{a^2} = 4$$

$$\frac{b^2}{a^2} = 3$$

$$\frac{b}{a} = \pm\sqrt{3}$$

$$\tan\theta = \pm\sqrt{3}$$

$$\theta = 60^\circ \quad \text{or} \quad 120^\circ (\text{ rejected})$$

Hence, the angle between the asymptotes of the hyperbola is $180 - 2 \times 60^{\circ} = 60^{\circ}$.

15. Given the point P on the hyperbola $\frac{x^2}{64} - \frac{y^2}{36} = 1$ such that its distance to the right focus is 8, find its distance to the left directrix.

Sol.

The foci of the hyperbola are at $(\pm 10, 0)$.

Let the point P be at (x, y).

$$\frac{x^2}{64} - \frac{y^2}{36} = 1$$
$$\frac{x^2}{64} - 1 = \frac{y^2}{36}$$
$$y^2 = \frac{9}{16}x^2 - 36$$

$$\sqrt{(x-10)^2 + y^2} = 8$$

$$(x-10)^2 + y^2 = 64$$

$$x^2 - 20x + 100 + \frac{9}{16}x^2 - 36 = 64$$

$$x^2 - 20x + \frac{9}{16}x^2 = 0$$

$$\frac{25}{16}x^2 - 20x = 0$$

$$25x^2 - 320x = 0$$

$$x^2 - 12.8x = 0$$

$$x(x-12.8) = 0$$

$$x = 0 \text{ (rejected)} \quad \text{or} \quad x = 12.8$$

$$y = \frac{6\sqrt{39}}{5}$$

The equation left directrix is

$$x + \frac{64}{10} = 0$$
$$x = -\frac{32}{5}$$

The distance from the point P to the left directrix is $12.8 + \frac{32}{5} = \frac{96}{5}$.

16. A hyperbola has its asymptotes given by $3x \pm 4y = 0$, one of its directrix given by $5y + 3\sqrt{3} = 0$. Find the equation of the hyperbola and its eccentricity.

Sol.

Let the equation of the hyperbola be of the form

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Then

$$3x \pm 4y = 0$$

$$3x = \pm 4y$$

$$y = \pm \frac{3}{4}x$$

$$\pm \frac{ax}{b} = \pm \frac{3}{4}x$$

$$\frac{a}{b} = \frac{3}{4}$$

$$b = \frac{4}{3}a$$

$$5y + 3\sqrt{3} = 0$$
$$y + \frac{3\sqrt{3}}{5} = 0$$
$$\frac{a^2}{c} = \frac{3\sqrt{3}}{5}$$
$$c = \frac{5a^2}{3\sqrt{3}}$$

$$a^{2} + b^{2} = c^{2}$$

$$a^{2} + \frac{16}{9}a^{2} = \frac{25a^{4}}{27}$$

$$\frac{25}{9}a^{2} = \frac{25a^{4}}{27}$$

$$3a^{2} = a^{4}$$

$$a^{2} = 3$$

$$b^{2} = \frac{16}{9}a^{2}$$

$$b^{2} = \frac{16}{3}$$

Hence, the equation of the hyperbola is

$$\frac{y^2}{3} - \frac{x^2}{\frac{16}{3}} = 1 \implies \frac{y^2}{3} - \frac{3x^2}{16} = 1 \qquad \Box$$

The eccentricity of the hyperbola is given by

$$e = \frac{1}{\sqrt{3}}\sqrt{3 + \frac{16}{3}} = \frac{1}{\sqrt{3}}\sqrt{\frac{25}{3}} = \frac{5}{3}$$

- 17. On one branch of the hyperbola $\frac{y^2}{12} \frac{x^2}{13} = 1$, there exist three distinct points $A(x_1, y_1)$, $B(\sqrt{26}, 6)$, and $C(x_2, y_2)$ such that the distances from each of these points to the focus F(0, 5) form an arithmetic progression.
 - (a) Find $y_1 + y_2$.

Sol.

The eccentricity of the hyperbola is given by

$$e = \frac{1}{\sqrt{12}}\sqrt{12 + 13}$$
$$= \frac{5}{\sqrt{12}}$$

The directrix of the hyperbola is given by

$$x = \frac{12}{5}$$

The distance from the points to the directrix is also an arithmetic progression.

$$\left(y_1 - \frac{12}{5}\right) + \left(y_2 - \frac{12}{5}\right) = 2\left(6 - \frac{12}{5}\right)$$
$$y_1 + y_2 - \frac{24}{5} = \frac{36}{5}$$
$$y_1 + y_2 = 12$$

(b) Prove that the perpendicular bisector of segment AC passes through a fixed point. Hence, find the coordinates of the fixed point.

Sol.

The midpoint of segment AC is $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) = \left(\frac{x_1+x_2}{2}, 6\right)$.

$$\frac{y_1^2}{12} - \frac{x_1^2}{13} = 1$$

$$\frac{y_2^2}{12} - \frac{x_2^2}{13} = 1$$

$$\frac{(y_1^2 - y_2^2)}{12} - \frac{(x_1^2 - x_2^2)}{13} = 0$$

$$\frac{(y_1 + y_2)(y_1 - y_2)}{12} - \frac{(x_1 + x_2)(x_1 - x_2)}{13} = 0$$

$$\frac{(y_1 + y_2)(y_1 - y_2)}{12} = \frac{(x_1 + x_2)(x_1 - x_2)}{13}$$

$$13(y_1 + y_2)(y_1 - y_2) = 12(x_1 + x_2)(x_1 - x_2)$$

$$(y_1 - y_2) = \frac{12(x_1 + x_2)(x_1 - x_2)}{13(y_1 + y_2)}$$

The gradient of the line AC is given by

$$k = \frac{y_1 - y_2}{x_1 - x_2} = \frac{12(x_1 + x_2)(x_1 - x_2)}{13(y_1 + y_2)} \times \frac{1}{x_1 - x_2} = \frac{12(x_1 + x_2)}{13(y_1 + y_2)} = \frac{12(x_1 + x_2)}{13(12)}$$

$$= \frac{x_1 + x_2}{13} = \frac{2 \times \frac{x_1 + x_2}{2}}{13} = \frac{2x_M}{13}$$

$$\frac{x_M}{k} = \frac{13}{2}$$

The equation of the perpendicular bisector of segment AC is given by

$$y - y_M = -\frac{1}{k}(x - x_M)$$
$$y - 6 = -\frac{x}{k} + \frac{13}{2}$$
$$y = -\frac{x}{k} + \frac{25}{2}$$

When $x = 0, y = \frac{25}{2}$.

Hence, the perpendicular bisector of segment AC passes through the point $\left(0, \frac{25}{2}\right)$, which is its y-intercept. \Box

18. Given that the center of a hyperbola is at the origin, its foci lie on the x-axis, and a line passing through the right focus of the hyperbola with a slope of $\sqrt{\frac{3}{5}}$ intersects the hyperbola at points P and Q such that $OP \perp OQ$ and |PQ| = 4. Find the equation of the hyperbola.

Sol.

Since the foci lie on the x-axis, the equation of the hyperbola is of the form

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

The right focus is at (c, 0), where $c = \sqrt{a^2 + b^2}$, so the slope of the line passing through the right focus is given by

$$y - 0 = \sqrt{\frac{3}{5}}(x - c)$$
$$y = \sqrt{\frac{3}{5}}(x - c)$$

Substituting the equation of the line into the equation of the hyperbola, we get

$$\frac{x^2}{a^2} - \frac{\frac{3}{5}(x-c)^2}{b^2} = 1$$

$$b^2x^2 - \frac{3}{5}a^2(x-c)^2 = a^2b^2$$

$$5b^2x^2 - 3a^2(x^2 - 2cx + c^2) = 5a^2b^2$$

$$5b^2x^2 - 3a^2x^2 + 6a^2cx - 3a^2c^2 = 5a^2b^2$$

$$(5b^2 - 3a^2)x^2 + 6a^2cx - (3a^2c^2 + 5a^2b^2) = 0$$

Let the two roots of the equation be x_1 and x_2 .

$$x_1 + x_2 = -\frac{6a^2c}{5b^2 - 3a^2}$$
$$x_1x_2 = -\frac{3a^2c^2 + 5a^2b^2}{5b^2 - 3a^2}$$

Since P and Q are on the hyperbola,

$$P\left(x_1, \sqrt{\frac{3}{5}}(x_1-c)\right)$$
 and $Q\left(x_2, \sqrt{\frac{3}{5}}(x_2-c)\right)$

17

Since $OP \perp OQ$, the product of the slopes of OP and OQ is -1.

$$\frac{\sqrt{\frac{3}{5}}(x_1 - c)}{x_1} \cdot \frac{\sqrt{\frac{3}{5}}(x_2 - c)}{x_2} = -1$$

$$\frac{3(x_1 - c)(x_2 - c)}{5x_1x_2} = -1$$

$$\frac{3(x_1x_2 - x_1c - x_2c + c^2)}{5x_1x_2} = -1$$

$$3x_1x_2 - 3x_1c - 3x_2c + 3c^2 = -5x_1x_2$$

$$8x_1x_2 - 3x_1c - 3x_2c + 3c^2 = 0$$

$$3c(x_1 + x_2) - 8x_1x_2 - 3c^2 = 0$$

Substituting the values of $x_1 + x_2$ and x_1x_2 together with $c^2 = a^2 + b^2$ into the equation, we get

$$3c\left(-\frac{6a^2c}{5b^2-3a^2}\right) - 8\left(-\frac{3a^2c^2+5a^2b^2}{5b^2-3a^2}\right) - 3(a^2+b^2) = 0$$

$$-18a^2c^2 + 24a^2c^2 + 40a^2b^2 - 3(5b^2-3a^2)(a^2+b^2) = 0$$

$$-18a^2c^2 + 24a^2c^2 + 40a^2b^2 - 6b^2a^2 + 9a^4 - 15b^4 = 0$$

$$6a^2c^2 + 34a^2b^2 + 9a^4 - 15b^4 = 0$$

$$6a^2(a^2+b^2) + 34a^2b^2 + 9a^4 - 15b^4 = 0$$

$$15a^4 + 40a^2b^2 - 15b^4 = 0$$

$$3a^4 + 8a^2b^2 - 3b^4 = 0$$

$$(3a^2 - b^2)(a^2 + 3b^2) = 0$$

$$3a^2 = b^2 \quad \text{or} \quad a^2 = -3b^2 \text{ (rejected)}$$

From |PQ| = 4, we get

$$(x_1 - x_2)^2 + \left(\sqrt{\frac{3}{5}}(x_1 - c) - \sqrt{\frac{3}{5}}(x_2 - c)\right)^2 = 16$$
$$(x_1 - x_2)^2 + \frac{3}{5}(x_1 - x_2)^2 = 16$$
$$\frac{8}{5}(x_1 - x_2)^2 = 16$$
$$(x_1 - x_2)^2 = 10$$
$$(x_1 + x_2)^2 - 4x_1x_2 = 10$$

Substituting the values of $x_1 + x_2$ and x_1x_2 together with $b^2 = 3a^2$ into the equation, we get

$$\left(-\frac{6a^2c}{5b^2 - 3a^2}\right)^2 - 4\left(-\frac{3a^2c^2 + 5a^2b^2}{5b^2 - 3a^2}\right) = 10$$

$$\left(-\frac{12a^3}{15a^2 - 3a^2}\right)^2 - 4\left(-\frac{12a^4 + 15a^4}{15a^2 - 3a^2}\right) = 10$$

$$10a^2 = 10$$

$$a^2 = 1$$

$$b^2 = 3a^2 = 3$$

Therefore, the equation of the hyperbola is $x^2 - \frac{y^2}{3} = 1$