Use case: Fraud Detection

ML Use case design

Problem Framing

	Qualitative	Quantitative		Question
Current State	Higher rates of frauds => negative user experience => loss of trust and reputation => reduction in engagement => less revenue	10% fraud =>10% less engagement => 10% loss in revenue		what is the current situation (pains/desires) that we want to address and why?
Objectives	 build a model that can detect fraudulent activity as soon as they take place decrease fraud => improve user experience => gain user trust => more engagement => improve topline 	reduce at least 50% of the fraud(from 10% to 5%) => 5% more engagement => 5% more revenue		what is that we want to do and why? (to improve the topline/bottom line?)
Benefit/ Cost tradeoff And prioritization	 cost of errors: FN => fraud not detected => very bad user experience => more complaints => more churn => big loss of revenue FP => genuine transaction marked as fraud => bad user experience => low engagement => less revenue benefits of correct 	cost-benefit matrix		what is the cost of errors/benefits of correct predictions
		c(TP)	c(FP)	and why?
		c(FN)	c(TN)	
		1% TP => 1% => + 1% reve 1% FP => 0.5 engagement = revenue 1% FN => 1%	nue % less => 0.5% less	

	predictions: TP => correctly detected fraud => better user experience => better engagement => more revenue TN => correctly kept non-fraud => maintained user experience as expected => no significant impact on revenue	experiences => 0.1% risk of churn => 10% less engagement over customer lifetime => 10% less revenue 1% TN => no significant impact on revenue	
Constraints	can only afford a small FN percent => very small percent of very bad user experience => limited risk of churn => limited loss of revenue	at most 1% FN => 1% very bad experiences => 1% churn => 1% risk of revenue loss => acceptable risk for 5% potential upside in revenue	what are the acceptable risks/budgets and why?
Desired state	 benefit: significantly fewer frauds => significantly better user experience => significantly better engagement => significantly better revenue cost: very few false negatives => limited risk of very bad user experience => limited risk of churn => limited risk to revenue 	 at least 50% decrease in fraud (from 10% to 5%) => 2.5% better engagement => 2.5% more revenue at most 1% false negatives => 1% very bad experiences => 1% churns => 1% risk to revenue 	what is the desired outcome (benefits/costs) that we want to see and why?

Why ML

	Qualitative	Quantitative	Question
Best non-ML alternative hypothesis	classify based on a curated list of keywords => too many FP and FN => very bad user experience => lesser engagement => loss of revenue	30% FP 10% FN => not cleaning enough frauds and causing more complaints for misplacing fraudulent transactions as genuine => 10% revenue loss risk	what are the non-ML alternatives and why are they problematic? (pains/missed gains)?
ML value proposition hypothesis	much fewer FP and FN => much better user experience => better reputation => much better revenue	15% FP 5% FN => 50% decrease in spam (from 10% to 5%) at the expense of 1% bad engagements => 5% increase in revenue at the expense of 0.1% risk	what are the advantages (pain relievers/gain creators) of ML solution and why?
ML feasibility hypothesis	 data: labeled samples of historic bank transactions data are available model: state-of-the-art review suggests promising candidates are available 	 data: around five thousand samples model: state-of-the-art claim solutions with 10% FP 5% FN 	what data and model are good candidates and why?

ML Solution Design

	choices	metrics	experiment
data	(labeled) bank transaction data	label imbalance	 randomized 70/15/15 train/validatio n/test split
model	P(fraud)[Probability of fraud]	AUCPR (precision-recall curve)	rule-based heuristic tf-idf + logistic regression tf-idf + random forest Neural Networks train these benchmark models (from simpler to more complex) using train data. validate and tune using validation data. select the model with the best AUCPR on test data
actions	if pr(spam) > threshold: Depending on the probability either a direct takedown or put aside for manual check	 precision recall confusion matrix 	 choose a threshold to maximize the recall (estimated reward) subject to recall > 95%
reward	decrease in fraud cost of misclassification	 % decrease in fraud % increase in satisfied customers 	shadow testA/B test