Lineare Algebra (61112)

Einsendeaufgaben zu Lektion 2

Einsendetermin: 30.10.2024

- WiSe 2024/25-

Begründen Sie Ihre Antworten sorgfältig! Bewertet wird der Rechenweg und nicht nur das Ergebnis.

Aufgabe 2.1 (5 Punkte).

Es sei K ein Körper. Für invertierbare Matrizen $A, B \in GL_n(K)$ schreiben wir $A \simeq B$, wenn es ganze Zahlen $k, \ell \in \mathbb{Z} \setminus \{0\}$ gibt mit $A^k = B^{\ell}$.

Zeigen Sie, dass \approx eine Äquivalenzrelation auf $\operatorname{GL}_n(K)$ ist.

Aufgabe 2.2 (10 Punkte).

Im \mathbb{R} -Vektorraum \mathbb{R}^4 betrachten wir den Unterraum

$$U = \operatorname{Ker} \begin{pmatrix} 1 & 2 & 0 & -1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

und für jedes $t \in \mathbb{R}$ die Vektoren $v_t = \begin{pmatrix} 2 \\ t \\ 0 \\ 1 \end{pmatrix}$ und $w_t = \begin{pmatrix} 0 \\ 2 \\ 2 \\ t \end{pmatrix}$.

Bestimmen Sie alle Parameter $t \in \mathbb{R}$, sodass $\mathbb{R}^4 = U \oplus \langle v_t \rangle \oplus \langle w_t \rangle$ gilt.

Aufgabe 2.3 (10 Punkte).

Sei V ein endlich-dimensionaler K-Vektorraum. Ist U ein Unterraum von V, dann definieren wir

$$r_U \colon V^* \to U^*$$
 durch $r_U(\alpha) = \alpha|_U$.

- (a) Zeigen Sie, dass r_U eine surjektive lineare Abbildung ist.
- (b) Wir nehmen an, dass $V = U_1 \oplus U_2$ die direkte Summe zweier Unterräume ist. Zeigen Sie, dass $\operatorname{Ker}(r_{U_1})$ isomorph ist zu U_2^* .

Aufgabe 2.4 (10 Punkte).

Sei V ein endlich-dimensionaler K-Vektorraum. Den Dualraum V^{**} von V^* nennt man Bidualraum. Für $v \in V$ definieren wir $\iota_v \colon V^* \to K$ durch $\iota_v(\alpha) = \alpha(v)$

- (a) Zeigen Sie, dass ι_v in V^{**} liegt.
- (b) Zeigen Sie, dass $\iota \colon V \to V^{**}$ mit $v \mapsto \iota_v$ ein Isomorphismus ist.

Aufgabe 2.5 (10 Punkte).

Wir betrachten den reellen Vektorraum $V = \mathbb{R}^3$ mit dem Unterraum $U = \langle u_0 \rangle$, der von

$$u_0 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
 erzeugt wird. Sei weiter $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{3,3}(\mathbb{R}).$

- (a) Zeigen Sie, dass durch $\varphi \colon V/U \to V/U, v+U \mapsto Av+U$ eine wohldefinierte lineare Abbildung gegeben ist.
- (b) Bestimmen Sie eine geordnete Basis \mathcal{B} von V/U und bestimmen Sie die Darstellungsmatrix $_{\mathcal{B}}M_{\mathcal{B}}(\varphi)$ von φ von bezüglich \mathcal{B} .

Zusatzaufgaben

Die Zusatzaufgaben werden nicht korrigiert.

Zusatzaufgabe 2.6 (Einfach).

Sei $V = \{ f \in \mathbb{F}_5[X] \mid \operatorname{Grad}(f) \leq 3 \}$ der \mathbb{F}_5 -Vektorraum der Polynome vom Grad höchstens 3 über \mathbb{F}_5 . Sei weiter

$$\partial \colon V \to V, \ \sum_{i=0}^{3} a_i X^i \mapsto \sum_{i=1}^{3} \bar{i} a_i X^{i-1}$$

die Ableitungsfunktion auf V.

- (a) Zeigen Sie, dass ∂ eine lineare Abbildung ist.
- (b) Bestimmen Sie die Matrixdarstellung von ∂ zur geordneten Basis $\mathcal{B}=(\overline{1},X,X^2,X^3).$
- (c) Bestimmen Sie die Matrixdarstellung $_{\mathcal{C}}M_{\mathcal{C}}(\partial)$ zur geordneten Basis

$$C = (\overline{1} + X, X + X^2, X^2 + X^3, \overline{2} + X^3)$$

mithilfe von (b) und der Transformationsformel.

Zusatzaufgabe 2.7 (Mittel).

Es sei V ein Vektorraum mit drei Unterräumen U_1, U_2, U_3 . Beweisen oder widerlegen Sie: "Gilt $U_1 \cap U_2 = U_1 \cap U_3 = U_2 \cap U_3 = \{0\}$, dann ist die Summe $U_1 + U_2 + U_3$ direkt."