Seminar: Computeralgebra 1

Thema 7:

Berechnung des Minimalplolynoms zu einem Endomorphismus

Die Algorithmen Ordpoly und Minpoly

Hannes Buchholzer

Generalvoraussetzungen:

Seien K ein Körper, R ein euklidischer Ring, V ein K-Vektorraum mit $dimV = n(n \in \mathbb{N})$, $\tau \in End(V)$, und M ein eindlich erzeugter Modul über R.

Gliederung:

1. Wiederholung

2. Der Algorithmus Ordpoly

3. Der Algorithmus Minpoly

1 Wiederholung

- 1. Der Polynomring K[X] ist ein euklidischer Ring, insbesondere ein Hauptidealring (HIR).
- 2. Das Annulatorideal von M ist $A(M) := \{r \in R \mid rm = 0 \ \forall m \in M\}.$
- 3. Das Ordnungsideal von $m \in M$ ist $O(m) := \{r \in R \mid r \cdot m = 0\}$. O(m) ist ein Ideal.
- 4. Ein Element $m \in M$ heißt Torsionselement, wenn $O(m) \supseteq \{0\}$. Ist jedes $m \in M$ Torsionselement, so heißt M Torsionsmodul.

1 Wiederholung

<u>Definition</u> 1 (K[X]-Modul V_{τ})

Sei $f \in K[X]$ und $v \in V$. Durch die Definition $f \cdot v := (f(\tau))(v)$ wird V zu einem K[X]-Modul, bezeichnet mit V_{τ} .

Bemerkung 1

- 1. Für Elemente $k \in K \subset K[X]$ folgt aus diese Definition: $k \cdot v = k \cdot \tau^0(v) = k \star v$, wobei \star die Skalarmultiplikation im K-Vektorraum V bezeichnet.
- 2. Der Modul V_{τ} ist endlich erzeugt.
- 3. Außerdem ist V_{τ} ein Torsionsmodul.

2. Der Algorithmus Ordpoly

- Definition des Ordnungspolynoms
- Beispiel zur Berechnung des Ordnungspolynoms
- ullet Ordnungspolynom in einem Faktorraum V/U
- Algorithmus Ordpoly

Definition des Ordnungspolynoms

Definition 2 (Ordnungspolynom)

Sei $v \in V$. Das Polynom $o \in K[X]$ heißt Ordnungspolynom von v, wenn gilt: o ist normiert und (o) = K[X]o = O(v)

Bemerkung 2

- 1. Das Ordnungspolynom ist eindeutig bestimmt, weil K[X] ein H.I.R. ist und weil es normiert ist.
- 2. Allgemein gilt: Jedes Ideal $I \subset K[X]$ wird von allen Polynomen des kleinsten Grades in I erzeugt.

Beispiel zur Berechnung des Ordnungspolynoms

Beispiel 1

Hier ist $K = \mathbb{Z}_5$, $V = (\mathbb{Z}_5)^3$ und $End(V) = Mat(3 \times 3, \mathbb{Z}_5)$.

Sei
$$\tau = A \in Mat(3 \times 3, \mathbb{Z}_5)$$
, $A := \begin{pmatrix} 3 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 1 & 2 \end{pmatrix} und \ v \in (\mathbb{Z}_5)^3$, $v := \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

Berechne:
$$Av = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}$$
, $A^2v = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$, $A^3v = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}$.

Bestimmes s minimal, so daß v, Av, \dots, A^sv linear abhängig sind. Hier s = 3.

$$A^{3}v = v + 4Av + A^{2}v \implies A^{3}v + 4A^{2}v + Av + 4v = 0$$

$$\implies (A^{3} + 4A^{2} + A + 4E)v = 0 \implies (X^{3} + 4X^{2} + X + 4)v = 0.$$

Dann ist $o := X^3 + 4X^2 + X + 4$ das Ordnungspolynom von v.

Ordnungspolynom in V/U

Dies erfordert den Übergang zum K[X]-Faktormodul V_{τ}/U_{τ} :

- 1. Die Untermoduln von V_{τ} sind gerade diejenigen Unterräume U von V die $\tau(U) \subset U$ (d.h. U ist τ -invariant) erfüllen , hier bezeichnet mit U_{τ} .
- 2. Der Endomorphismus τ muss nun verändert werden: Setze

$$\overline{\tau}: V_{\tau}/U_{\tau} \longrightarrow V_{\tau}/U_{\tau} \quad ; \overline{\tau}(\overline{v}) = \overline{\tau(v)}$$

Dies ist die kanonische Definition.

3. Die Addition ist gegeben durch $\overline{v} + \overline{w} = \overline{v + w} \quad \forall v, w \in V_{\tau}$. Und die Multiplikation ist gegeben durch $p \cdot \overline{v} = p(\overline{\tau})(\overline{v}) = \overline{p(\tau)(v)} \quad \forall p \in K[X] \ \forall v \in V$. \Rightarrow Man rechnet ganz in V_{τ} und macht erst zum Schluss der Rechnung den Übergang modulo U_{τ} .

Algorithmus Ordpoly

Sei $\overline{v} \in V_{\tau}/U_{\tau}$, und U τ -invariant. Weiter sei $b_0, \ldots b_k$ eine Basis von U_{τ} .

Setzte i := 0

Wiederhole solange die Vektoren $b_0, \ldots, b_k, v, \tau(v), \ldots, \tau^i(v)$ linear unabhängig sind (dies wird mit der Funktion gauss getestet) : setzte i := i+1 . Setze m := i.

Die Funktion gauss liefert dann einen Vektor f, so daß gilt :

$$\tau^{m}(v) = f_0 b_0 + \dots + f_k b_k + f_{k+1} v + \dots + f_{k+m} \tau^{m-1}(v)$$

Setze $w := (f_0, \dots, f_k)$ (Anteil in U_{τ})

Setze $f := (f_{k+1}, \dots, f_{k+m})$ (Anteil im direkten Komplement von U_{τ}).

Dann gilt: $\tau^m(v) - f_{m-1}\tau^{m-1}(v) - \dots - f_0v = w_0b_0 + \dots + w_kb_k$.

modulo U_{τ} : $\overline{\tau}^m(\overline{v}) - f_{m-1}\overline{\tau}^{m-1}(\overline{v}) - \cdots - f_0\overline{v} = \overline{0}$

Setze $o := X^m - f_{m-1}X^{m-1} - \dots - f_1X - f_0$.

Dann ist o das Ordnungspolynom.

3. Der Algorithmus Minpoly

- Definition des Minimalpolynoms
- Beispiel zur Berechnung eines Minimalpolynoms
- Theoretische Bestimmung des Minimalpolynoms
- Bestimmung eines maximalen Vektors
- Algorithmus Minpoly

Definition des Minimalpolynoms

Definition 3 (Minimalpolynom)

Sei $\tau \in End(V)$. Das Polynom $m \in K[X]$ heißt Minimalpolynom von τ , wenn gilt: m ist normiert und $(m) = K[X]m = A(V_{\tau}) = \{p \in K[X] \mid p \cdot v = 0 \quad \forall v \in V_{\tau}\}$

Beispiel zur Berechnung eines Minimalpolynoms

Beispiel 2

Hier ist $K = \mathbb{Z}_5$, $V = (\mathbb{Z}_5)^4$ und $End(V) = Mat(4 \times 4, \mathbb{Z}_5)$.

Gegeben: Basis von
$$V: v_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
 , $v_1 = \begin{pmatrix} 2 \\ 2 \\ 4 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 3 \\ 3 \\ 2 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.

ein Endomorphismus
$$A = \tau \in Mat(4 \times 4, \mathbb{Z}_5)$$
 , $A := \begin{pmatrix} 3 & 4 & 2 & 4 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 2 \end{pmatrix}$

und die Ordnungspolynome zu den Basisvektoren:

$$o_0 = X^2 + X + 3 = (X + 2)(X + 4)$$
 $o_1 = X^2 + 1 = (X + 2)(X + 3)$
 $o_2 = X^3 + 2X + 2 = (X + 2)(X + 4)^2$ $o_3 = X + 2$

Beispiel (Fortsetzung)

Schritt 0: Setze: $m = o_0$ und $v = v_0$.

Schritt 1: Setze:
$$c := m = (X + 2)(X + 4) = X^2 + X + 3$$

 $d := o_1 = (X + 2)(X + 3) = X^2 + 1$

Berechne:

$$t := ggT(c,d) = X + 2$$

$$C := r(c, \frac{d}{t}) = r(c, (X+3)) = (X+2)(X+4) = X^2 + X + 3$$

$$D := r(d, \frac{c}{t}) = r(d, (X+4)) = (X+2)(X+3) = X^2 + 1$$

$$T := ggT(C,D) = X + 2$$

$$D_2 := \frac{D}{T} = X + 3$$

$$m := CD_2 = (X+2)(X+3)(X+4) = X^3 + 4X^2 + X + 4$$

$$v := \frac{c}{C} \cdot v + \frac{d}{D_2} \cdot v_1 = 1 \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + (X+2)\begin{pmatrix} 2 \\ 2 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 1 \\ 4 \end{pmatrix}$$

Beispiel (Fortsetzung)

Schritt 2: Setze:
$$c := m = (X + 2)(X + 3)(X + 4) = X^3 + 4X^2 + X + 4$$

 $d := o_2 = (X + 2)(X + 4)^2 = X^3 + 2X + 2$

Berechne:

$$t := ggT(c,d) = (X+2)(X+4) = X^{2} + X + 3$$

$$C := r(c,\frac{d}{t}) = r(c, (X+4)) = (X+2)(X+3) = X^{2} + 1$$

$$D := r(d,\frac{c}{t}) = r(d, (X+3)) = (X+2)(X+4)^{2} = X^{3} + 2X + 2$$

$$T := ggT(C,D) = X + 2$$

$$D_{2} := \frac{D}{T} = (X+4)^{2} = X^{2} + 3X + 1$$

$$m := CD_{2} = (X+2)(X+3)(X+4)^{2} = X^{4} + 3X^{3} + 2X^{2} + 3X + 1$$

$$v := \frac{c}{C} \cdot v + \frac{d}{D_{2}} \cdot v_{2} = (X+4) \begin{pmatrix} 0 \\ 4 \\ 1 \\ 4 \end{pmatrix} + (X+2) \begin{pmatrix} 3 \\ 3 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 2 \\ 4 \end{pmatrix}$$

Hier Abbruch der Berechnungen, denn das Minimalpolynom m kann nach der Theorie nicht mehr größer werden.

14

1. Schritt:

Es sei $m \in K[X]$ das Minimalpolynom von τ . Dann gilt

$$K[X]m = A(V_{\tau}) = \bigcap_{v \in V} O(v)$$
(1)

nach Definition.

2. Schritt:

Sei $E=(e_0,e_1,\ldots,e_k)$ ein endliches Erzeugendensystem von V_{τ} . Wegen dem Satz 1 , reicht es den Schnitt in (1) nur über das Erzeugendensystem E zu bilden:

$$K[X]m = \bigcap_{i=0}^{k} O(e_i)$$

Satz 1

Sei e_0,e_1,\ldots,e_k ein Erzeugendensystem von dem R-Modul M. Dann gilt :

$$A(M) = \bigcap_{i=0}^{k} O(e_i)$$

3. Schritt:

Sei $o_i \in K[X]$ das Ordnungspolynom von e_i für i = 0, ..., k d.h. $K[X]o_i = O(e_i)$ (i = 0, ..., k). Dann gilt nach Satz 2:

$$K[X]m = \bigcap_{i=0}^{k} K[X]o_i = K[X] \cdot \mathsf{kgV}(o_0, \dots, o_k)$$

$$\implies m \in \mathsf{kgV}(o_0, \ldots, o_k)$$

Satz 2

Seien $b_0, \ldots, b_m \in R$. Dann gilt:

$$\bigcap_{i=0}^{m} Rb_i = R \cdot \mathsf{kgV}(b_0, \dots, b_m)$$

Bemerkung 3

Seien $r_0, \ldots, r_m, r, s \in R$. Dann gilt:

$$kgV(r_0,...,r_m) = kgV(r_0,kgV(r_1,...,r_m))$$
$$kgV(r,s) = \frac{rs}{ggT(r,s)}$$

Bestimmung eines maximalen Vektors

Satz 3

Seien $c,d \in R$. Setzte: $t := ggT(c,d), C := r(c,\frac{d}{t})$ und $D := r(d,\frac{c}{t})$. Dann gilt: kgV(c,d) = kgV(C,D)

Beispiel 3

Seien $c=2^33^25^4, d=2^337^2 \in \mathbb{Z}$. Dann ist: $t=\operatorname{ggT}(c,d)=2^33 \Rightarrow \frac{c}{t}=35^4, \frac{d}{t}=7^2$. Weiter ist: $C=r(c,\frac{d}{t})=r(2^33^25^4,7^2)=2^33^25^4$ $D=r(d,\frac{c}{t})=r(2^337^2,35^4)=2^37^2$ und $T=\operatorname{ggT}(C,D)=2^3$

$$\Rightarrow \text{kgV}(C, D) = \frac{CD}{T} = 2^3 3^2 5^4 7^2.$$

Bestimmung eines maximalen Vektors

Satz 4

Seien $v_0, v_1 \in M$ Torsionselemente. Ferner sei $O(v_0) = Rc$ und $O(v_1) = Rd$. Setze: $C := r(c, \frac{d}{ggT(c,d)})$, $D := r(d, \frac{c}{ggT(c,d)})$ und $D_2 := \frac{D}{ggT(C,D)}$. Setze ferner $v := \frac{c}{C}v_0 + \frac{d}{D_2}v_1$. Dann gilt:

$$O(v) = O(v_0) \cap O(v_1) = Rc \cap Rd = R \cdot \mathsf{kgV}(c,d)$$

Algorithmus Minpoly

Sei v_0,v_1,\ldots,v_{n-1} eine Basis von V. Dann ist $\overline{v_0},\overline{v_1},\ldots,\overline{v_{n-1}}$ ein Erzeugendensystem von V_{τ}/U_{τ} (auch $U_{\tau}=\{0\}$ möglich).Bestimme Minimalpolynom von $\overline{\tau}$.

Vorarbeit: Berechne Ordnungspolynom von $\overline{v_i}$ und speichere es in ordpol[i] für $i=0,\ldots,n-1$.

Schritt 0: Setze \overline{v} und m wie folgt:

$$\overline{v} := \overline{v_0}$$
 $m := ordpol[0]$

Algorithmus Minpoly

```
Schritt i: ( Für i=1,\ldots,n-1 ) Setze: c:=m und d:=ordpol[i] , wobei m=\ker(ordpol[0],\ldots,ordpol[i-1]) Berechne Hilfsvariblen: t:=\operatorname{ggT}(c,d) , C:=r(c,\frac{d}{t}) , D:=r(d,\frac{c}{t}) , T:=\operatorname{ggT}(C,D) und D_2:=\frac{D}{T}. Berechne neues m und neues \overline{v} :
```

$$m := C \cdot D_2 \qquad (\text{d.h.} \ m := \text{kgV}(m, orpol[i]))$$

$$\overline{v} := \frac{c}{C}\overline{v} + \frac{d}{D_2}\overline{v_i} \qquad (\text{d.h.} \ O(\overline{v}) = K[X]m)$$

Falls grad(m) = dimV - dimU verlasse Schleife vorzeitig.

Nacharbeit: Normiere *m*.

Algorithmus Minpoly

Ergebnis:

Es ist $m = \text{kgV}(ordpol[0], \dots, ordpol[n-1])$ Also ist $K[X]m = \bigcap_{i=0}^{n-1} K[X]ordpol[i] = \bigcap_{i=0}^n O(\overline{v_i}) = A(V_{\tau}/U_{\tau})$ nach den Sätzen 1 und 2. Damit ist m das Minimal-polynom von $\overline{\tau}$ nach der Definition 1.

Es ist $O(\overline{v}) = \bigcap_{i=0}^{n-1} O(\overline{v_i}) = K[X]m$ nach Satz 4. Also hat \overline{v} das Polynom m als Ordnungspolynom.