Цифровое моделирование физикохимических систем

Раздел 4. Кинетика и катализ

Лекция 4.2-4.4. Кинетика сложных многостадийных реакций. Константа скорости химической реакции. Теория активированного комплекса

Лектор: доцент кафедры информационных компьютерных технологий, к.т.н. Митричев Иван Игоревич

Москва

2024

Сложные реакции

Сложные реакции – многостадийные.

Элементарные реакции, входящие в состав сложной, называют **стадиями** (reaction step).

Некоторые типы сложных реакций:

- а) обратимые (двусторонние)
- б) параллельные
- в) последовательные

Это наиболее примитивные типы сложных реакций.

Также есть универсальный метод построения кинетических уравнений для любых сложных реакций, рассмотрим после.

Принцип независимости скоростей элементарных стадий

<u>Каждая элементарная реакция идет независимо от других</u>. Поэтому можно записать ряд уравнений для скоростей стадий (закон действующих масс) и рассчитать скорости изменения компонентов как суммы по каждой реакции:

$$r_k = \sum_r (\nu_{rk}^{\prime\prime} - \nu_{rk}^{\prime}) \, r_r$$

где v'_{rk} — стехиометрический коэффициент частиц k-го сорта как реагента стадии r, v''_{rk} — стехиометрический коэффициент частиц k-го сорта как продукта стадии r.

A + 2B = C
$$(r_1)$$

C = E + F (r_2)
 $r_1 = k_1 C_A C_B^2 - k_{-1} C_C$
 $r_2 = k_2 C_C - k_{-2} C_E C_F$
 $w_A = -r_1$
 $w_B = -2r_1$
 $w_C = r_1 - r_2$

Построение кинетических моделей. Прямая и обратная задача химической кинетики

Прямая задача х.к. – по известным кинетическим параметрам найти значения концентрации в разные моменты времени (или при разных условиях реакции).

Обратная задача х.к. – по известным кинетическим кривым (или по известным значенияим концентрации при разных условиях реакции) найти неизвестные кинетические параметры. Имеет за исключением простейших случаев неединственное решение.

Построим кинетическую модель для реакции

$$A + 2B \rightleftarrows D (r_1)$$

 $D \rightleftarrows E + F (r_2)$

$$r_{1} = k_{1}C_{A}C_{B}^{2} - k_{-1}C_{D}, \quad r_{2} = k_{2}C_{D} - k_{-2}C_{E}C_{F}$$

$$w_{A} = \frac{dc_{A}}{dt} = -r_{1} \quad w_{B} = \frac{dc_{B}}{dt} = -2r_{1}$$

$$w_{C} = \frac{dc_{D}}{dt} = r_{1} - r_{2} \quad w_{E} = w_{F} = \frac{dc_{E}}{dt} = \frac{dc_{F}}{dt} = r_{2}$$

Решение прямой задачи химической кинетики

$$r_{1} = k_{1}C_{A}C_{B}^{2} - k_{-1}C_{C} r_{2} = k_{2}C_{C} - k_{-2}C_{E}C_{F}$$

$$w_{A} = \frac{dc_{A}}{dt} = -r_{1} \quad w_{B} = \frac{dc_{B}}{dt} = -2r_{1}$$

$$w_{C} = \frac{dc_{C}}{dt} = r_{1} - r_{2} \quad w_{E} = w_{F} = \frac{dc_{E}}{dt} = \frac{dc_{F}}{dt} = r_{2}$$

Систему обыкновенных дифференциальных уравнений решают численным методом при начальных условиях (например, $C_A^0 = 1.5 \frac{\text{кмоль}}{\text{м}^3}$, $C_B^0 = 1.3 \frac{\text{кмоль}}{\text{м}^3}$). Метод Рунге-Кутты 4 порядка и выше.

Мы для простоты рассмотрим явный метод Эйлера (явную разностную схему).

$$\frac{dc_A}{dt} = \frac{C_A^{n+1} - C_A^n}{\Delta t} = -r_1$$

Так расписывают все 5 дифференциальных уравнений. В начальный момент заданы начальные концентрации и n=0, t=0. И пошагово (итерационно) рассчитывают значения C_A^{n+1} , C_B^{n+1} , C_C^{n+1} , C_E^{n+1} , C_F^{n+1} для n=1...N (n=1, t = Δt) n=N, t = $N\Delta t$ = t_{max} .

Т.е., рассчитали C_A^1 , C_B^1 , C_C^1 , C_E^1 , C_F^1 , увеличили счетчик n, время, затем рассчитали C_A^2 , C_B^2 , C_C^2 , C_E^2 , C_E^2 , C_F^2 , увеличили счетчик, время, и т.д.

Обратимые реакции первого порядка

Обратимые: $CO + \frac{1}{2}O_2 \rightleftarrows CO_2$ по сути, это ни что иное, как две реакции, с взаимно обратными реагентами и продуктами и разными скоростями. Итоговая скорость реакции в рассматриваемом направлении: $\mathbf{r} = \mathbf{r}_{np} - \mathbf{r}_{oбp}$. В уравнении реакции \rightleftarrows или =

Термодинамический критерий обратимости реакций – реакция может считаться необратимой при изменении энергии Гиббса (Гельмгольца) реакции, превышающей ± (3-5) RT [Воронцов А.В., Окунев А.Г. Основные понятия и формулы химической. Методическое пособие. Новосибирск, НГУ, 2009. 118 с.]

Рассмотрим обратимую реакцию первого порядка

$$A \leftrightarrows B$$

Общая (результирующая) скорость реакции равна разности скоростей в прямом и обратном направлениях:

$$r_1 = r_{1f} - r_{1b} = k_{1f}C_A - k_{1b}C_B$$

 $w_A = \frac{dC_A}{dt} = -r_1$

Обратимые реакции (2)

В начальный момент времени концентрации C_{AO} и C_{BO} . Пусть к некоторому моменту времени прореагировало x моль A. $C_A = C_{AO} - x$, $C_B = C_{BO} + x$ Тогда имеем

$$r = -\frac{dC_A}{dt} = \frac{dx}{dt} = k_{1f}(C_{AO} - x) - k_{1b}(C_{BO} + x)$$

$$x_{\text{равн.}} = \frac{k_{1f}C_{A0} - k_{1b}C_{BO}}{k_{1f} + k_{1b}}$$

$$K_{\mathbb{C}} = \frac{k_{1f}}{k_{1b}}$$
 - константа равновесия

Параллельные реакции первого порядка

$$A \xrightarrow{k_1} B$$

$$A \xrightarrow{k_2} C$$

Кинетические уравнения

$$\frac{dC_A}{dt} = -(k_1 + k_2)C_A$$
$$C_A = C_{AO}e^{-(k_1 + k_2)t}$$

$$C_B = \frac{k_1}{k_1 + k_2} \cdot C_{AO} (1 - e^{-(k_1 + k_2)t})$$

$$C_C = \frac{k_2}{k_1 + k_2} \cdot C_{AO} (1 - e^{-(k_1 + k_2)t})$$

$$C_B/C_C = k_1/k_2$$

Последовательные реакции

Кинетическая схема

$$\begin{array}{ccc}
k_1 & k_2 \\
A \to B \to C
\end{array}$$

Начальные условия t = 0 $C_A = C_{AO}$; $C_{BO} = C_{CO} = 0$

Кинетические уравнения в дифференциальной форме.

$$\frac{dC_A}{dt} = -k_1 C_A$$

$$\frac{dC_B}{dt} = k_1 C_A - k_2 C_B$$

$$\frac{dC_C}{dt} = k_2 C_B$$

Решив систему уравнений аналитически, имеем

$$C_A = C_{AO} \cdot e^{-k_1 t}$$

$$C_B = \frac{k_1 C_{AO}}{k_2 - k_1} \left(e^{-k_1 t} - e^{-k_2 t} \right)$$

Последовательные реакции (2)

Можно рассчитать по балансу $C_{\rm C} = C_{AO} - C_{A} - C_{B}$.

Координаты максимума для концентрации продукта В находят из условия

$$\frac{dC_B}{dt} = 0$$

C 1
$$C_{A0}$$
 C_{C} C_{C}

$$t_{max} = rac{lnrac{k_2}{k_1}}{k_2-k_1}$$
, $C_{B,max} = C_{AO} \cdot \gamma^{rac{\gamma}{1-\gamma}}$ (при выводе $e^{-k_1rac{ln\gamma}{k_2-k_1}} = \gamma^{rac{-k_1}{k_2-k_1}} = \gamma^{rac{1}{1-\gamma}} = \gamma^{rac{1-\gamma+\gamma}{1-\gamma}} = \gamma\gamma^{rac{\gamma}{1-\gamma}}$

где $\gamma = \frac{k_2}{k_1}$ - соотношение констант скорости 2 и 1 реакции.

Последовательные реакции (3)

 $\gamma = \frac{k_2}{k_1}$ увеличивается (увеличим k_2), вторая реакция идет быстрее, В не успевает накопиться, и $C_{B.max}$ уменьшается, при этом t_{max} также снижается.

Последовательные реакции (4)

Если
$$\gamma \ll 1$$
: $k_2 \ll k_1 \to k_2 - k_1 \approx -k_1$, $e^{-k_1t} - e^{-k_2t} \approx -e^{-k_2t}$
$$C_B = \frac{k_1 C_{AO}}{k_2 - k_1} \left(e^{-k_1t} - e^{-k_2t} \right) = \frac{k_1 C_{AO}}{-k_1} \left(-e^{-k_2t} \right)$$

$$= k_1 C_{AO} e^{-k_2t} \text{ реакция 1 порядка с константой } k_2$$

$$\gamma = \frac{k_2}{k_1}$$

$$A \xrightarrow{k_2} B$$

Скорость определяет самая маленькая константа k_1 . Стадия 2- лимитирующая.

Если $\gamma\gg 1$: $C_B o 0$, тогда $C_c=C_{A0}-C_A=C_{AO}\cdot \left(1-e^{-k_1t}\right)-$

реакция 1 порядка с константой k_1

По сути,

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

превратилось в

$$A \xrightarrow{k_1} C$$

В не успевает накопиться. Его концентрация мала

$$C_B \approx \frac{C_{AO}k_1}{k_2}e^{-k_1t}$$

сл. 8 нижний — начиная с $t>t_{max}$

Отношение почти постоянно — квазистационарный режим $C_B/C_A \approx k_1/k_2$

Скорость определяет самая маленькая константа k_1 . Стадия 1- **лимитирующая**.

Уравнение Аррениуса

Для константы скорости предложено несколько выражений. Одним из самых распространенных является уравнение Аррениуса:

$$k = A \cdot e^{-\frac{E_a}{RT}}$$

 E_a – энергия активации (Дж/моль, кДж/моль, ккал/моль, эВ). R – универсальная газовая постоянная. Если E_a в Дж/моль, то R в Дж/моль/К и т.д.

A — предэкспоненциальный множитель. Имеет роль стерического (пространственного фактора), или числа соударений.

Заметим, что как энергия активации, так и предэкспонента, полагаются независимыми от температуры. На самом деле, оба параметра имеют слабую температурную зависимость, которая станет ясна после рассмотрения их физического смысла (ТАК, ТАС).

Определение энергии активации реакции

Энергию активации простой или брутто-реакции можно определить двумя методами.

1) Аналитический.

Измерим значения константы скорости при двух температурах. Тогда

$$E_a = \frac{R \cdot T_1 \cdot T_2}{T_2 - T_1} \ln \frac{k_2}{k_1}$$

2) Графический

Прологарифмируем уравнение Аррениуса:

$$\ln k = \ln A - \frac{E_a}{RT}$$

Построим график по экспериментальным данным в координатах $\ln k - 1/T$. Тангенс угла наклона полученной прямой

$$tg a = -E_a/R$$

Преимущество: более точный метод, так как определяем E_a по всем имеющимся экспериментальным точкам.

Зависимость скорости химических реакций от температуры

Было замечено, что на абсолютное число реакций сильное положительное влияние оказывает температура.

Правило Вант-Гоффа — при увеличении температуры на каждые 10 градусов скорость гомогенной химической реакции увеличивается в 2 — 4 раза:

$$\frac{r(T_2)}{r(T_1)} = \gamma^{\frac{T_2 - T_1}{10}}$$

 γ – температурный коэффициент реакции ($\gamma = 2 - 4$).

Это связано с тем, что с ростом температуры изменяется распределение молекул по энергиям/скоростям (молекулярно-кинетическая теория) и доля активных молекул, обладающих энергией, выше энергии активации E_a , или активационного барьера.

 $(E\sim v)$

Кинетика по з.д.м. (степенной закон)

Для выражения скорости реакции часто используют степенную функцию, отражающую влияние различных веществ на процесс. В отличие от з.д.м. в выражение могут входить и степенные зависимости скорости от концентрации продуктов реакции, а также некоторых других веществ (например, присутствующих в реакторе ингибиторов). Наличие дробных частных порядков означает, что реакция не является простой. Модель отражает ингибирующий (n_i <0) и промотирующий (n_i >0) эффекты, но не отражает механизм реакции.

Возьмем, к примеру, реакцию селективного окисления CO на CuO-CeO2 катализаторе,

модель Lee и Kim [*]

$$\begin{array}{c} \mathrm{CO} + 1/2\mathrm{O}_2 \to \mathrm{CO}_2, \\ \mathrm{H}_2 + 1/2\mathrm{O}_2 \to \mathrm{H}_2\mathrm{O} \end{array}$$

$$r_{CO} = -k_{CO}P_{CO}^a P_{CO2}^b P_{H2O}^c, \qquad \mathrm{где} \ k_{CO} = A_{CO}\mathrm{exp}(-\frac{E_{CO}}{RT})$$

$$r_{H2} = -k_{H2}P_{H2}P_{CO2}^d P_{H2O}^e, \qquad \mathrm{гдe} \ k_{H2} = A_{H2}\mathrm{exp}(-\frac{E_{H2}}{RT})$$

$$-r_{\mathrm{CO}} = 3.4 \times 10^{10}\,\mathrm{exp}\bigg(\frac{-94.4\,\mathrm{kJ/mol}}{RT}\bigg) \bigg| \qquad -r_{\mathrm{H}_2} = 6.1 \times 10^{13}\,\mathrm{exp}\bigg(\frac{-142\,\mathrm{kJ/mol}}{RT}\bigg) \bigg| \times P_{\mathrm{H}_2}P_{\mathrm{CO}_2}^{-0.48}P_{\mathrm{H}_2\mathrm{O}}^{-0.69}\,\mathrm{mol/kg/s} \end{array}$$

Парциальное давление выражено в кПа.

^{*} Lee H.C., Kim D.H. Kinetics of CO and H₂ oxidation over CuO-CeO₂ catalyst in H₂ mixtures with CO₂ and H₂O //Catalysis Today. 2008. V. 132. №. 1. P. 109-116.

Детальный механизм реакции

Ранее мы рассматривали упрощенные модели, как правило, не отражающие детальный механизм реакции. Детальный механизм реакции состоит из десятков, сотен, а иногда и тысяч элементарных реакций (например, механизм горения природного газа GRI-Mech). Если реакция каталитическая, в уравнениях реакций фигурирует катализатор. Частицы, связанные с ним, записывают как * или (S).

Таблица 2. Кинетические параметры для реакции взаимодействия СО с молекулярным кислородом

$N_{\underline{0}}$	Описание реакций	$A, c^{-1}/\mathcal{S}$	β	E, Дж/моль
1	Pt(S) + CO = CO(S)	0.8321	0.5	0
2	$Pt(S) + CO_2 = CO_2(S)$	0.1775	0.5	0
3	CO(S) = CO + Pt(S)	4.38·10 ¹⁷	0	133751
4	$CO_2(S) = CO_2 + Pt(S)$	$6.27 \cdot 10^{13}$	0	18363.9
5	$CO_2(S) + Pt(S) + O_2 = OOCO(S_1)$	0.508	0.5	42310.3
6	$OOCO(S_1) = CO(S) + Pt(S) + O_2$	1.26·10 ¹³	0	69005.1
7	$OOCO(S_1) = O(S_2) + CO_2$	$6.25 \cdot 10^{13}$	0	12378
8	$O(S_2) + CO_2 = OOCO(S_1)$	0.020	0.5	129516
9	$CO_2(S) + 2Pt(S) = CO(S) + O(S_2)$	1.21·10 ¹³	0	224942
10	$CO(S) + O(S_2) = CO_2(S) + 2Pt(S)$	9.18·10 ¹³	0	41781.2

17

Теория активированного комплекса (ТАК)

ТАК, теория абсолютных скоростей (TAC) или теория переходного состояния (Transition state theory, TST) – теория, созданная Эйрингом, Эвансом и Полани (1935)

- 1. Скорости реакции можно рассчитать, используя аппарат квантовой химии и статистической механики, исследуя поверхность потенциальной энергии.
- 2. Атомы и молекулы могут образовывать высокоэнергетические, неустойчивые комплексы (активированные комплексы), распадающиеся с образованием реагентов или продуктов. Для превращения в продукты необходима достаточная энергия.
- 3. Активированный комплекс соответствует переходному состоянию то есть, седловой точке первого порядка поверхности потенциальной энергии (точка минимум вдоль всех направлений, кроме координаты реакции, и максимум вдоль координаты реакции).

Как идут реакции. Переходное состояние

Все элементарные реакции идут через переходное состояние

Рис. по: Keith J. A. et al. Combining machine learning and computational chemistry for predictive insights into chemical systems //Chemical reviews. – 2021. – Т. 121. – №. 16. – С. 9816-9872.

Шаростержневая модель молекулы

 C_3H_6O - ацетон

 C_3H_6O — пропен-2-ол-2

$$H_3C$$
C CH_3

кето форма ацетона

Таутомерия ацетона – энергетический профиль

Переходное состояние

Переходное = промежуточное. Новые связи еще не образовались, старые еще не разорвались до конца.

Нужны квантовохимические расчеты для нахождения его энергии.

Переходное состояние (TS)

Таутомерия аденина

Результаты: таутомерия аденина

Равновесное соотношение 100млн: 1

Константа скорости в ТАК

Константа скорости в ТАК рассчитывается по уравнению Эйринга:

$$k_r = \kappa \frac{k_B T}{h} \exp\left(-\frac{\Delta G_r^{0,\dagger}}{RT}\right) [c^{-1}]$$

 $\Delta G_r^{0,\dagger}$ – разница в стандартной энергии Гиббса между переходным состоянием стадии r и ее реагентами, Дж/моль; T – температура, K, $0 \le \kappa \le 1$ – трансмиссионный коэффициент (характеризует вероятность преодоления барьера частицей, имеющей требуемую энергию).

$$\Delta G_r^{0,\ddagger} = \Delta H_r^{0,\ddagger} - T \Delta S_r^{0,\ddagger}$$

Мы увидим в следующих лекциях, что именно так и рассчитывают константу скорости из результатов квантовохимических вычислений.

Соотношение между аррениусовскими (кажущимися) и термодинамическими параметрами

из TST:
$$E_{\text{app}} = \Delta H_r^{0,\ddagger} + nRT$$
, n – порядок стадии; $A_{\text{app}} = \kappa \frac{k_B T}{h} \exp\left(\frac{\Delta S_r^{0,\ddagger}}{R} + n\right) [c^{-1}]$

Изменение энергии в ходе химической реакции

Reaction Energy Diagram For A Simple Substitution Reaction (S_N2)

соединяющая реагенты и продукты через седловую точку первого порядка — переходное состояние — с минимальными затратами энергии). Энергия проходит через максимум, разница энергий дает энергию

На рисунке изображен профиль энергии

вдоль координаты реакции (линия на ППЭ,

© Copyright 2023, Master Organic Chemistry

Удобно рассчитать константу скорости именно по уравнению Эйринга, для этого проще всего строить график выше для изменения энергии Гиббса (Gibbs free energy).

активации.

Определение константы скорости через изменение энергии Гиббса

$$k_f = \kappa_f \frac{k_B T}{h} \exp\left(-\frac{\Delta G_f^0}{RT}\right)$$

$$k_b = \kappa_b \frac{k_B T}{h} \exp\left(-\frac{\Delta G_b^0}{RT}\right)$$

При этом стандартное изменение энергии Гиббса химической реакции

$$\Delta G_{\rho}^{0} = \Delta G_{f}^{0} - \Delta G_{b}^{0}$$

$$K_{eq} = \frac{k_f}{k_b} = \exp\left(-\frac{\Delta G_{\rho}^0}{RT}\right)$$

Эту формулу мы уже выводили. ТАК подчеркивает согласованность термодинамики и кинетики (то есть, это не просто модель, например, степенная кинетика, где константы с термодинамикой не согласованы. Это истинная кинетика реакций).