10/589590

IAP11 Rec'd PCT/PTO 16 AUG 2006

ATTACHMENT A

Claims 1 - 10: (Cancelled)

- 11. (New) A catalyst system obtained by a process comprising:
 - contacting:
 - (i) a partially dealcoholated adduct of formula MqT_2 wR'OH, wherein

T is chlorine, bromine, or iodine;

R' is a linear or branched $C_1 - C_{10}$ alkyl radical; and w is a non-integer number ranging from 3 to 0.1; with

(ii) an organo-aluminium compound of formula H_eAlU_{3-e} or $H_eAl_2U_{6-e}$, wherein

U, same or different, are hydrogen, halogen, or hydrocarbon radicals comprising from 1 to 20 carbon atoms, and optionally comprise at least one silicon or germanium atom; with the proviso that at least one U is different from halogen; and

E is a non-integer number ranging from 0 to 1; to obtain an adduct of formula (I)

 MgT_2 'yAlQ_j(OR'')_{3-j} (I)

wherein

y ranges from 1.00 to 0.05;

Q, same or different, are hydrocarbon radicals comprising from 1 to 20 carbon atoms, and optionally comprise at least one silicon or germanium atom;

R'' is a linear or branched C_1-C_{10} alkyl radical; and J is a non-integer number ranging from 0.01 to 3.00; and

- contacting the adduct of formula (I) with at least one metallocene compound comprising titanium as a central metal and at least one ligand comprising a cyclopentadienyl skeleton;

with the proviso that the metallocene compound has not been previously treated with an organo-aluminium compound of formula H_eAlU_{3-e} or $H_eAl_2U_{6-e}$, or an alumoxane.

- 12. (New) The catalyst system according to claim 11, wherein T is chlorine; R' is a linear C_1 - C_{10} alkyl radical; and w is a non-integer number ranging from 3 to 0.5.
- 13. (New) The catalyst system according to claim 11, wherein U is a linear or branched C_1 - C_{20} -alkyl radical.
- 14. (New) The catalyst system according to claim 11, wherein y ranges from 0.50 to 0.10; and j is a non-integer number ranging from 2.50 to 2.00.
- 15. (New) The catalyst system according to claim 11, wherein the adduct of formula (I) has a surface area (BET) higher than 30 m^2/g .
- 16. (New) The catalyst system according to claim 11, wherein the adduct of formula (I) comprises generally between 1000 μ mol/g to 1 μ mol/g of the metallocene compound, and the adduct of formula (I) supports the metallocene compound after the adduct of formula (I) is contacted with the metallocene compound.
- 17. (New) The catalyst system according to claim 11, wherein the metallocene compound is a titanocene compound

comprising at least one of formulas (II), (III), (IV) or (V):

$$R^3$$
 R^4
 R^4
 R^4
 R^1
 R^4
 R^5
 R^1
 R^4
 R^5
 R^1
 R^1
 R^2
 R^3
 R^2
 R^2
 R^3
 R^3
 R^2
 R^3
 R^3

wherein

Ti is titanium;

X, same or different, are monoanionic sigma ligands selected from the group consisting of hydrogen, halogen, R^6 , OR^6 , $OCOR^6$, SR^6 , $NR^6{}_2$ and $PR^6{}_2$, wherein R^6 is a hydrocarbon radical comprising from 1 to 20 carbon atoms, wherein R^6 optionally comprises one or more Si or Ge atoms;

p is an integer ranging from 1 to 2;

L is a divalent bridging group selected from a C_1 - C_{20} alkylidene, a C_3 - C_{20} cycloalkylidene, a C_6 - C_{20} arylidene, a C_7 - C_{20} alkylarylidene, or a C_7 - C_{20} arylalkylidene radical optionally comprising at least one heteroatom belonging

to groups 13-17 of the Periodic Table of Elements, and a silvlidene radical containing up to 5 silicon atoms;

 R^1 , R^2 , R^3 , R^4 and R^5 , same or different, are selected from hydrogen and C_1 - C_{40} hydrocarbon groups optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements; or two adjacent R^1 , R^2 , R^3 , R^4 and R^5 form at least one 3-7 membered ring optional comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements;

A is NR^8 , O, or S, wherein R^8 is a C_1 - C_{20} hydrocarbon group optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements;

 A^1 is hydrogen, halogen, R^6 , OR^6 , $OCOR^6$, SR^6 , $NR^6{}_2$, $PR^6{}_2$, or NR^9 , wherein R^6 is a hydrocarbon radical comprising from 1 to 20 carbon atoms, wherein R^6 optionally comprises one or more Si or Ge atoms; and R^9 is a C_1 - C_{40} hydrocarbon group optionally comprising one or more heteroatoms belonging to groups 13-17 of the Periodic Table of Elements;

- 18. (New) A process for (co)polymerizing at least one olefin comprising from 2 to 20 carbon atoms comprising contacting the at least one olefin under polymerization conditions in presence of the catalyst system of claim 11.
- 19. (New) The process according to claim 18, wherein at least one alpha-olefin is (co)polymerized.
- 20. (New) The process according to claim 19, wherein the alpha-olefin is selected from propylene, ethylene, 1-butene, 1-hexene, 1-octene, and combinations thereof.