試験開始の指示があるまで、この問題冊子の中を見てはいけません。

数 学 ② 〔数学 \mathbf{I} 数学 \mathbf{I} 、数学 \mathbf{B} 〕 $\begin{pmatrix} 100 \text{ Å} \\ 60 \text{ } \end{pmatrix}$

簿記・会計及び情報関係基礎の問題冊子は、出願時にそれぞれの科目の受験を希望 した者に配付します。

I 注意事項

- 1 解答用紙に、正しく記入・マークされていない場合は、採点できないことがあります。特に、解答用紙の**解答科目欄にマークされていない場合又は複数の科目** にマークされている場合は、0点となることがあります。
- 2 出題科目、ページ及び選択方法は、下表のとおりです。

出	題	科	目	ページ	選	択	方	法
数	计	<u>*</u>	П	4~24	左の2科目	目のうちた	1961科目	目を選択し,
数学	: П •	数:	学 B	25~53	解答しなさい	7°		

- 3 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に 気付いた場合は、手を高く挙げて監督者に知らせなさい。
- 4 選択問題については、いずれか2問を選択し、その問題番号の解答欄に解答し なさい。
- 5 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。
- 6 不正行為について
- ① 不正行為に対しては厳正に対処します。
- ② 不正行為に見えるような行為が見受けられた場合は、監督者がカードを用いて注意します。
- ③ 不正行為を行った場合は、その時点で受験を取りやめさせ退室させます。
- 7 試験終了後、問題冊子は持ち帰りなさい。

Ⅱ 解答上の注意

解答上の注意は、裏表紙に記載してあります。この問題冊子を裏返して必ず読みなさい。

Ⅱ 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。
- 2 問題の文中の **ア** , **イウ** などには、符号(-), 数字(0~9), 又は文字(a~d)が入ります。**ア**, **イ**, **ウ**, …の一つ一つは、これらのいずれか一つに対応します。それらを解答用紙の**ア**, **イ**, **ウ**, …で示された解答欄にマークして答えなさい。

 \mathbf{O} \mathbf{O}

ア	© 0 0 2 3 4 5 6 7 8 9 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1	000000000000000000000000000000000000000
ゥ	000000000000000000000000000000000000000

- 3 数と文字の積の形で解答する場合,数を文字の前にして答えなさい。 例えば、3aと答えるところを、a3と答えてはいけません。
- 4 分数形で解答する場合、分数の符号は分子につけ、分母につけてはいけません。

例えば,
$$\frac{\boxed{\mathtt{x}}}{\boxed{\mathtt{x}}}$$
に $-\frac{4}{5}$ と答えたいときは, $\frac{-4}{5}$ として答えなさい。

また、それ以上約分できない形で答えなさい。

例えば、 $\frac{3}{4}$ 、 $\frac{2a+1}{3}$ と答えるところを、 $\frac{6}{8}$ 、 $\frac{4a+2}{6}$ のように答えてはいけません。

5 小数の形で解答する場合,指定された桁数の一つ下の桁を四捨五入して答えな さい。また,必要に応じて,指定された桁まで**②**にマークしなさい。

例えば, キ. クケ に 2.5 と答えたいときは, 2.50 として答えなさい。

6 根号を含む形で解答する場合、根号の中に現れる自然数が最小となる形で答えなさい。

例えば、 $4\sqrt{2}$, $\frac{\sqrt{13}}{2}$, $6\sqrt{2a}$ と答えるところを、 $2\sqrt{8}$, $\frac{\sqrt{52}}{4}$, $3\sqrt{8a}$ のように答えてはいけません。

- 7 問題の文中の二重四角で表記された コ などには、選択肢から一つを選んで、答えなさい。
- 8 同一の問題文中に **サシ** , **ス** などが 2 度以上現れる場合, 原則として, 2 度目以降は, サシ , ス のように細字で表記します。

数学Ⅱ·数学B

問題	選択方法				
第1問	必答				
第2問	必答				
第3問					
第 4 問	いずれか2問を選択し、 解答しなさい。				
第5問					

数学Ⅱ・数学B (注) この科目には、選択問題があります。(25ページ参照。)

第 1 問 (必答問題) (配点 30)

- 〔1〕 三角関数の値の大小関係について考えよう。
 - (1) $x = \frac{\pi}{6}$ のとき $\sin x$ ア $\sin 2x$ であり, $x = \frac{2}{3}\pi$ のとき $\sin x$ イ $\sin 2x$ である。

アー, 「イ」の解答群(同じものを繰り返し選んでもよい)	(~)
------------------------------	-----

(a) (b) (c)	② > _.
--------------------	------------------

(2) $\sin x \ge \sin 2x$ の値の大小関係を詳しく調べよう。

$$\sin 2x - \sin x = \sin x$$
 (ウ $\cos x -$ エ)

であるから、 $\sin 2x - \sin x > 0$ が成り立つことは

または

が成り立つことと同値である。 $0 \le x \le 2\pi$ のとき,① が成り立つようなx の値の範囲は

$$0 < x < \frac{\pi}{\boxed{7}}$$

であり、②が成り立つような x の値の範囲は

$$\pi < x < \frac{\pi}{1}$$

である。よって、 $0 \le x \le 2\pi$ のとき、 $\sin 2x > \sin x$ が成り立つようなx の値の範囲は

$$0 < x < \frac{\pi}{3}, \quad \pi < x < \frac{\pi}{3}$$

である。

数学Ⅱ·数学B

(3) $\sin 3x \ge \sin 4x$ の値の大小関係を調べよう。 三角関数の加法定理を用いると、等式 $\sin (\alpha + \beta) - \sin (\alpha - \beta) = 2\cos \alpha \sin \beta$ ③

が得られる。 $\alpha+\beta=4x$, $\alpha-\beta=3x$ を満たす α , β に対して③ を用いることにより、 $\sin 4x-\sin 3x>0$ が成り立つことは

「cos **ク** > 0 かつ sin **ケ** > 0 」 ………… ④ または

「cos <u>ク</u> < 0 かつ sin <u>ケ</u> < 0 」 ……………… ⑤ が成り立つことと同値であることがわかる。

 $0 \le x \le \pi$ のとき、④、⑤ により、 $\sin 4x > \sin 3x$ が成り立つようなx の値の範囲は

$$0 < x < \frac{\pi}{\Box}, \quad \frac{\forall}{\flat} \pi < x < \frac{\Box}{\Box} \pi$$

である。

6 0	<u> </u>		8 3
0 0	① x	2 2 x	3 3 x
4 4 x	⑤ 5 x	6 6 x	
			b $\frac{9}{2}x$

数学Ⅱ·数学B

(4) (2), (3) の考察から、 $0 \le x \le \pi$ のとき、 $\sin 3x > \sin 4x > \sin 2x$ が成り立つようなx の値の範囲は

$$\frac{\pi}{\Box} < x < \frac{\pi}{\forall}, \quad \frac{\Box}{\forall} \pi < x < \frac{\cancel{9}}{\cancel{\cancel{5}}} \pi$$

であることがわかる。

数学Ⅱ・数学B

[2]

(1) a > 0, $a \ne 1$, b > 0 のとき, $\log_a b = x$ とおくと, \boxed{y} が成り立つ。

_____ の解答群

(a) $x^a = b$

 $(1) x^b = a$

 $a^x = b$

 $\mathbf{4} \quad a^b = x$

- $b^a = x$
- (2) 様々な対数の値が有理数か無理数かについて考えよう。
 - (i) $\log_5 25 =$ $\boxed{}$ $\boxed{}$ $\boxed{}$ $\boxed{}$ $\boxed{}$ であり、どちらも有理数である。
 - (ii) log₂3が有理数と無理数のどちらであるかを考えよう。

 $\log_2 3$ が有理数であると仮定すると、 $\log_2 3 > 0$ であるので、二つの自然数 p、q を用いて $\log_2 3 = \frac{p}{q}$ と表すことができる。このとき、(1) により $\log_2 3 = \frac{p}{q}$ は ここと変形できる。いま、2 は偶数であり 3 は奇数であるので、ここを満たす自然数 p、q は存在しない。

したがって、log23は無理数であることがわかる。

(iii) a, b を 2 以上の自然数とするとき、(ii) と同様に考えると、「 $\boxed{\mathbf{z}}$ ならば $\log_a b$ はつねに無理数である」ことがわかる。

ニの解答群

- $0 q^2 = p^3$
- ② $2^q = 3^p$

- 3 $p^3 = 2 q^3$
- **6** $2^p = 3^q$

ヌの解答群

- ① b が偶数
- ② a が奇数
- ③ b が奇数
- \bigcirc a と b が と も に 偶数, また は a と b が と も に 奇数
- ⑤ a と b のいずれか一方が偶数で、もう一方が奇数

数学Ⅱ・数学B

· 第 2 問 (必答問題) (配点 30)

[1]

(1) kを正の定数とし、次の3次関数を考える。

$$f(x) = x^2(k - x)$$

ある。

f(x)の導関数f'(x)は

$$f'(x) =$$
 イウ $x^2 +$ エ kx

である。

x = のとき, f(x) は極大値 **ク** をとる。

また、0 < x < kの範囲において $x = \begin{bmatrix} + \\ \end{bmatrix}$ のときf(x)は最大となる ことがわかる。

─ の解答群(同じものを繰り返し選んでもよ (,4)

- $\bigcirc \frac{1}{3}k$
- ② $\frac{1}{2}k$ ③ $\frac{2}{3}k$

- $9 \frac{4}{27} k^3$
- **a** $\frac{4}{9}k^3$
- **6**) $4 k^3$

(2) 後の図のように底面が半径 9 の円で高さが 15 の円錐に内接する円柱を考える。円柱の底面の半径と体積をそれぞれx, Vとする。Vをxの式で表すと

$$V = \frac{\boxed{\tau}}{\boxed{\Box}} \pi x^2 (\boxed{\forall} - x) \quad (0 < x < 9)$$

(数学Ⅱ・数学B第2問は次ページに続く。)

数学Ⅱ・数学B

(2)

(1) 定積分
$$\int_0^{30} \left(\frac{1}{5}x + 3\right) dx$$
 の値は $\boxed{9 + 9}$ である。
また、関数 $\frac{1}{100}x^2 - \frac{1}{6}x + 5$ の不定積分は
$$\int \left(\frac{1}{100}x^2 - \frac{1}{6}x + 5\right) dx = \frac{1}{\boxed{r}}x^3 - \frac{1}{\boxed{r}}x^2 + \boxed{r}$$
 である。ただし、 C は積分定数とする。

(2) ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題になる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってからの気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの気温の折れ線グラフを見ながら、次のように考えることにした。

xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)また、x日後の気温をy $^{\circ}$ とする。このとき、yはxの関数であり、これをy = f(x)とおく。ただし、yは負にはならないものとする。

気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の**設定**で考えることにした。

設定

正の実数 t に対して、f(x)を 0 から t まで積分した値を S(t) とする。すなわち、 $S(t) = \int_0^t f(x) dx$ とする。この S(t) が 400 に到達したとき、ソメイヨシノが開花する。

設定のもと、太郎さんは気温を表す関数y = f(x)のグラフを図 2 のように直線とみなしてソメイヨシノの開花日時を考えることにした。

図 2 図 1 のグラフと、太郎さんが直線とみなした y = f(x) のグラフ

(i) 太郎さんは

$$f(x) = \frac{1}{5}x + 3 \quad (x \ge 0)$$

| ノ の解答群

0	30 日後	① 35日後	② 40 日後
3	45 日後	④ 50 日後	⑤ 55 日後
6	60 日後	⑦ 65 日後	

(数学Ⅱ・数学B第2問は次ページに続く。)

数学Ⅱ・数学B

(ii) 太郎さんと花子さんは、2月に入ってから30日後以降の気温について話をしている。

太郎: 1次関数を用いてソメイヨシノの開花日時を求めてみたよ。

花子: 気温の上がり方から考えて、2月に入ってから30日後以降の

気温を表す関数が2次関数の場合も考えてみようか。

花子さんは気温を表す関数 f(x) を、 $0 \le x \le 30$ のときは太郎さんと同じように

とし、 $x \ge 30$ のときは

$$f(x) = \frac{1}{100}x^2 - \frac{1}{6}x + 5$$

として考えた。なお、x = 30 のとき① の右辺の値と② の右辺の値は一致する。花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より

$$\int_0^{30} \left(\frac{1}{5} x + 3 \right) dx = \boxed{9 + 9}$$

であり

$$\int_{30}^{40} \left(\frac{1}{100} x^2 - \frac{1}{6} x + 5 \right) dx = 115$$

となることがわかる。

また, $x \ge 30$ の範囲において f(x) は増加する。よって

$$\int_{30}^{40} f(x) \, dx \qquad \boxed{ } \int_{40}^{50} f(x) \, dx$$

であることがわかる。以上より、ソメイヨシノの開花日時は2月に入ってから 上 となる。

	1
ハ	の解答群

0 <

0 =

2 >

ヒの解答群

- ◎ 30日後より前
- ① 30日後
- ② 30日後より後,かつ40日後より前
- 3 40 日後
- 40日後より後,かつ50日後より前
- ⑤ 50日後
- **⑥** 50 日後より後,かつ 60 日後より前
- ⑦ 60 日後
- 8 60日後より後

数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

以下の問題を解答するにあたっては、必要に応じて 43 ページの正規分布表を用いてもよい。

- (1) ある生産地で生産されるピーマン全体を母集団とし、この母集団におけるピーマン1個の重さ(単位は g)を表す確率変数をXとする。mと σ を正の実数とし、Xは正規分布 $N(m, \sigma^2)$ に従うとする。
 - (i) この母集団から 1 個のピーマンを無作為に抽出したとき、重さがmg以上である確率 $P(X \ge m)$ は

$$P(X \ge m) = P\left(\frac{X-m}{\sigma} \ge \boxed{7}\right) = \boxed{1}$$

である。

(ii) 母集団から無作為に抽出された大きさnの標本 X_1 , X_2 , …, X_n の標本平均を \overline{X} とする。 \overline{X} の平均(期待値)と標準偏差はそれぞれ

$$E(\overline{X}) = \boxed{\mathbf{I}}, \quad \sigma(\overline{X}) = \boxed{\mathbf{J}}$$

となる。

n = 400, 標本平均が30.0g, 標本の標準偏差が3.6gのとき, mの信頼度90%の信頼区間を次の方針で求めよう。

- 方針 -

Zを 標 準 正 規 分 布 N(0,1)に 従 う 確 率 変 数 と し て, $P(-z_0 \le Z \le z_0) = 0.901$ となる z_0 を正規分布表から求める。この z_0 を 用いると m の信頼度 90.1 % の信頼区間が求められるが,これを信頼度 90 % の信頼区間とみなして考える。

方針において、
$$z_0 =$$
 カ . も か である。

一般に、標本の大きさnが大きいときには、母標準偏差の代わりに、標本 の標準偏差を用いてよいことが知られている。n = 400 は十分に大きいので、 **方針**に基づくと、m の信頼度 90 % の信頼区間は ケ となる。

]|の解答群(同じものを繰り返し選んでもよい。)

© σ	$ \bigcirc \hspace{1in} \bigcirc \hspace{1in} \sigma^2$		
4 m	⑤ 2 m	6 m ²	$\sqrt[n]{m}$
$\otimes \frac{\sigma}{n}$	9 no	(a) nm	$\bigcirc \frac{m}{n}$

] については,最も適当なものを,次の〇~⑤のうちから一つ選べ。

- $28.6 \le m \le 31.4$ ① $28.7 \le m \le 31.3$ ② $28.9 \le m \le 31.1$

- $29.6 \le m \le 30.4$ **4** $29.7 \le m \le 30.3$ **5** $29.9 \le m \le 30.1$

数学Ⅱ·数学B

(2) (1)の確率変数 X において、m = 30.0、 $\sigma = 3.6$ とした母集団から無作為にピーマンを 1 個ずつ抽出し、ピーマン 2 個を 1 組にしたものを袋に入れていく。このようにしてピーマン 2 個を 1 組にしたものを 25 袋作る。その際、 1 袋ずつの重さの分散を小さくするために、次のピーマン分類法を考える。

ピーマン分類法 一

無作為に抽出したいくつかのピーマンについて,重さが30.0g以下のときをSサイズ,30.0gを超えるときはLサイズと分類する。そして,分類されたピーマンからSサイズとLサイズのピーマンを一つずつ選び,ピーマン2個を1組とした袋を作る。

(i) ピーマンを無作為に 50 個抽出したとき, **ピーマン分類法**で 25 袋作ることが できる確率 p₀ を考えよう。無作為に 1 個抽出したピーマンが S サイズである

のピーマンの個数を表す確率変数を U_0 とすると、 U_0 は二項分布

$$p_0 = {}_{50}C_{2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right) \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right) \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c} \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c|c} \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c|c|c} \hline \\ \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|c|c} \hline \\ \hline \end{array}\right)^{50-2} \times \left(\begin{array}{|c|c|$$

となる。

 p_0 を計算すると, $p_0 = 0.1122$ …となることから, ピーマンを無作為に 50 個抽出したとき, 25 袋作ることができる確率は 0.11 程度とわかる。

(ii) **ピーマン分類法**で 25 袋作ることができる確率が 0.95 以上となるようなピーマンの個数を考えよう。

k を自然数とし、ピーマンを無作為に(50 + k) 個抽出したとき、S サイズのピーマンの個数を表す確率変数を U_k とすると、 U_k は二項分布

(50+k)は十分に大きいので、 U_k は近似的に正規分布

に標準正規分布N(0,1)に従う。

$$p_k = P(25 \le U_k \le 25 + k) = P\left(-\frac{9}{\sqrt{50 + k}} \le Y \le \frac{9}{\sqrt{50 + k}}\right)$$

となる。

$$\boxed{g} = \alpha, \sqrt{50 + k} = \beta$$
 とおく。

 $p_k \ge 0.95$ になるような $\frac{\alpha}{\beta}$ について、正規分布表から $\frac{\alpha}{\beta} \ge 1.96$ を満たせばよいことがわかる。ここでは

$$\frac{\alpha}{\beta} \ge 2$$
 ①

したがって、少なくとも $(50 + \boxed{fy})$ 個のピーマンを抽出しておけば、 ピーマン分類法で 25 袋作ることができる確率は 0.95 以上となる。

セーー~ 夕 の解答群(同じものを繰り返し選んでもよい。)

①
$$k$$
 ① $2k$ ② $3k$ ③ $\frac{50+k}{2}$
② $\frac{25+k}{2}$ ⑤ $25+k$ ⑥ $\frac{\sqrt{50+k}}{2}$ ⑦ $\frac{50+k}{4}$

(数学Ⅱ・数学B第3問は43ページに続く。)

数学Ⅱ·数学B

(下書き用紙)

数学Ⅱ・数学Bの試験問題は次に続く。

正 規 分 布 表

次の表は、標準正規分布の分布曲線における右図の灰 色部分の面積の値をまとめたものである。

~.	0.00	0. 01	0. 02	0. 03	0. 04	0. 05	0. 06	0. 07	0. 08	0.09
20										
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0. 0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0. 1915	0.1950	0.1985	0.2019	0. 2054	0.2088	0.2123	0.2157	0.2190	0. 2224
0.6	0. 2257	0. 2291	0. 2324	0. 2357	0. 2389	0.2422	0. 2454	0. 2486	0.2517	0. 2549
0.7	0. 2580	0.2611	0. 2642	0. 2673	0.2704	0.2734	0.2764	0.2794	0. 2823	0. 2852
0.8	0. 2881	0.2910	0. 2939	0.2967	0. 2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0. 3577	0.3599	0.3621
1.1	0. 3643	0.3665	0. 3686	0. 3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0. 4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0. 4319
1.5	0.4332	0.4345	0. 4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0. 4713	0.4719	0. 4726	0.4732	0.4738	0.4744	0.4750	0. 4756	0.4761	0.4767
2.0	0.4772	0.4778	0. 4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0. 4817
2. 1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2. 2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2. 5	0. 4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0. 4949	0.4951	0. 4952
2. 6	0. 4953	0.4955	0.4956	0.4957	0. 4959	0.4960	0. 4961	0.4962	0.4963	0.4964
2. 7	0. 4965	0.4966	0. 4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2. 9	0. 4981	0. 4982	0.4982	0.4983	0.4984	0.4984	0.4985	0. 4985	0.4986	0.4986
3.0	0. 4987	0.4987	0. 4987	0.4988	0.4988	0.4989	0. 4989	0. 4989	0.4990	0. 4990

数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

花子さんは、毎年の初めに預金口座に一定額の入金をすることにした。この入金を始める前における花子さんの預金は 10 万円である。ここで、預金とは預金口座にあるお金の額のことである。預金には年利 1 % で利息がつき、ある年の初めの預金がx 万円であれば、その年の終わりには預金は 1.01x 万円となる。次の年の初めには 1.01x 万円に入金額を加えたものが預金となる。

毎年の初めの入金額をp万円とし、n年目の初めの預金を a_n 万円とおく。ただし、p>0とし、nは自然数とする。

例えば、 $a_1 = 10 + p$, $a_2 = 1.01(10 + p) + p$ である。

参考図

(1) a_n を求めるために二つの方針で考える。

方針1

n年目の初めの預金と(n+1)年目の初めの預金との関係に着目して考え る。

nについて

$$a_{n+1} = \boxed{1} a_n + \boxed{\dot{\mathcal{D}}}$$

が成り立つ。これは

$$a_{n+1} + \boxed{\mathtt{I}} = \boxed{\mathtt{J}} \left(a_n + \boxed{\mathtt{I}}\right)$$

と変形でき、 a_n を求めることができる。

の解答群

- $0 1.01\{1.01(10+p)+p\}$
- (1) $1.01\{1.01(10+p)+1.01p\}$
- ② 1.01{1.01(10 + p) + p} + p 3 1.01{1.01(10 + p) + p} + 1.01 p
- **4** 1. 01 (10 + p) + 1. 01 p **5** 1. 01 (10 + 1. 01 p) + 1. 01 p

∥の解答群(同じものを繰り返し選んでもよい。)

(0) 1.01

- (1) 1.01^{n-1}
- **2** 1. 01ⁿ

- **(4)** 100 p
- (5) np

- **6** $100 \, np$
- $\bigcirc 1.01^{n-1} \times 100 p$
- (8) $1.01^n \times 100 p$

数学Ⅱ・数学B

方針 2

もともと預金口座にあった 10 万円と毎年の初めに入金した p 万円について、n 年目の初めにそれぞれがいくらになるかに着目して考える。

もともと預金口座にあった 10 万円は, 2 年目の初めには 10×1.01 万円になり, 3 年目の初めには 10×1.01^2 万円になる。同様に考えると n 年目の初めには $10 \times 1.01^{n-1}$ 万円になる。

- 1年目の初めに入金したp万円は,n年目の初めにはp imes 1.01 万円になる。
- 2年目の初めに入金したp万円は,n年目の初めには $p \times 1.01$ 万円になる。
- n年目の初めに入金したp万円は、n年目の初めにはp万円のままである。

これより

$$a_n = 10 \times 1.01^{n-1} + p \times 1.01 \xrightarrow{\cancel{D}} + p \times 1.01 \xrightarrow{\cancel{F}} + \dots + p$$
$$= 10 \times 1.01^{n-1} + p \sum_{k=1}^{n} 1.01 \xrightarrow{\cancel{D}}$$

となることがわかる。ここで、 $\sum\limits_{k=1}^{n}1.01$ $\boxed{\mathcal{D}}=$ $\boxed{\boldsymbol{\mathcal{T}}}$ となるので、 a_n を求めることができる。

カー, 「キー」の解答群(同じものを繰り返し選んでもよい。)

0 n + 1

n

(2) n-1

(3) n-2

ク の解答群

(0) k+1

(1) k

(2) k-1

(3) k-2

ケの解答群

 $\bigcirc 100 \times 1.01^n$

 $100(1.01^n-1)$

(2) 100 (1. 01ⁿ⁻¹ - 1)

4) 0.01(101 n - 1)

(2) 花子さんは、10年目の終わりの預金が30万円以上になるための入金額について考えた。

$$p \ge \frac{\boxed{\text{#$>}} - \boxed{\text{At}} \times 1.01^{10}}{101(1.01^{10} - 1)}$$

となる。したがって、毎年の初めの入金額が例えば 18000 円であれば、10 年目 の終わりの預金が 30 万円以上になることがわかる。

コの解答群

数学Ⅱ·数学B

(3) 1年目の入金を始める前における花子さんの預金が 10 万円ではなく、13 万円 の場合を考える。すべての自然数 n に対して、この場合の n 年目の初めの預金 は a_n 万円よりも $\boxed{ y }$ 万円多い。なお、年利は 1 %であり、毎年の初めの入金額は p 万円のままである。

ツ の解答群

(6) 3

13

② 3(n-1)

3 n

- **4** 13(n-1)
- **(5)** 13 n

6 3ⁿ

- (7) 3 + 1.01(n 1)
 - $8 3 \times 1.01^{n-1}$

- $9 3 \times 1.01^n$
- (a) $13 \times 1.01^{n-1}$
- **6** 13×1.01^n

(下書き用紙)

数学Ⅱ・数学Bの試験問題は次に続く。

数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第5間 (選択問題) (配点 20)

三角錐 PABC において、辺 BC の中点を M とおく。また、 \angle PAB = \angle PAC とし、この角度を θ とおく。ただし、 0° < θ < 90° とする。

(1) AM は

$$\overrightarrow{AM} = \frac{\overrightarrow{r}}{\overrightarrow{AB}} + \frac{\overrightarrow{p}}{\overrightarrow{L}} \overrightarrow{AC}$$

と表せる。また

$$\frac{\overrightarrow{AP} \cdot \overrightarrow{AB}}{|\overrightarrow{AP}| |\overrightarrow{AB}|} = \frac{\overrightarrow{AP} \cdot \overrightarrow{AC}}{|\overrightarrow{AP}| |\overrightarrow{AC}|} = \boxed{7} \qquad \cdots \qquad \boxed{1}$$

である。

オの解答群

 $0 \sin \theta$

 $0 \cos \theta$

 $2 \tan \theta$

 $\Im \frac{1}{\sin \theta}$

- 6 sin ∠BPC
- ⑦ cos ∠BPC
- 8 tan ∠BPC

(2) $\theta = 45^{\circ}$ とし、さらに

$$|\overrightarrow{AP}| = 3\sqrt{2}$$
, $|\overrightarrow{AB}| = |\overrightarrow{PB}| = 3$, $|\overrightarrow{AC}| = |\overrightarrow{PC}| = 3$

が成り立つ場合を考える。このとき

$$\overrightarrow{AP} \cdot \overrightarrow{AB} = \overrightarrow{AP} \cdot \overrightarrow{AC} = \boxed{ }$$

である。さらに、直線 AM 上の点 D が \angle APD = 90° を満たしているとする。このとき、 $\overrightarrow{AD} = \boxed{\ +\ } \overrightarrow{AM}$ である。

(3)

$$\overrightarrow{AQ} = \boxed{} \Rightarrow \overrightarrow{AM}$$

で定まる点を Q とおく。 \overrightarrow{PA} と \overrightarrow{PQ} が垂直である三角錐 PABC はどのようなものかについて考えよう。例えば (2) の場合では,点 Q は点 D と一致し, \overrightarrow{PA} と \overrightarrow{PQ} は垂直である。

(i) \overrightarrow{PA} と \overrightarrow{PQ} が垂直であるとき、 \overrightarrow{PQ} を \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AP} を用いて表して考えると、 **ク** が成り立つ。さらに①に注意すると、 **ク** から **ケ** が成り立つことがわかる。

したがって、 \overrightarrow{PA} と \overrightarrow{PQ} が垂直であれば、 $\boxed{}$ が成り立つ。逆に、

 $rac{}{}$ が成り立てば、 \overrightarrow{PA} と \overrightarrow{PQ} は垂直である。

ク の解答群

- $\overrightarrow{AP} \cdot \overrightarrow{AB} + \overrightarrow{AP} \cdot \overrightarrow{AC} = \overrightarrow{AP} \cdot \overrightarrow{AP}$

- $\overrightarrow{AP} \cdot \overrightarrow{AB} + \overrightarrow{AP} \cdot \overrightarrow{AC} = -\overrightarrow{AB} \cdot \overrightarrow{AC}$
- $\overrightarrow{AP} \cdot \overrightarrow{AB} + \overrightarrow{AP} \cdot \overrightarrow{AC} = 0$
- $\overrightarrow{AP} \cdot \overrightarrow{AB} \overrightarrow{AP} \cdot \overrightarrow{AC} = 0$

ケの解答群

- $|\overrightarrow{AB}| \sin \theta = |\overrightarrow{AC}| \sin \theta = 2 |\overrightarrow{AP}|$
- $|\overrightarrow{AB}| \cos \theta = |\overrightarrow{AC}| \cos \theta = 2 |\overrightarrow{AP}|$

数学Ⅱ・数学B

(ii) kを正の実数とし

$$k \overrightarrow{AP} \cdot \overrightarrow{AB} = \overrightarrow{AP} \cdot \overrightarrow{AC}$$

が成り立つとする。このとき、コが成り立つ。

また、点Bから直線APに下ろした垂線と直線APとの交点をB'とし、同様に点Cから直線APに下ろした垂線と直線APとの交点をC'とする。

このとき、 \overrightarrow{PA} と \overrightarrow{PQ} が垂直であることは、 $\boxed{}$ であることと同値である。特に k=1 のとき、 \overrightarrow{PA} と \overrightarrow{PQ} が垂直であることは、 $\boxed{}$ であることと同値である。

コの解答群

 $|\overrightarrow{AB}| = k |\overrightarrow{AC}|$

 $2 k |\overrightarrow{AP}| = \sqrt{2} |\overrightarrow{AB}|$

サーの解答群

- B'とC'がともに線分APの中点
- ① $B' \geq C'$ が線分APをそれぞれ(k+1): $1 \geq 1$: (k+1)に内分する点
- ② B'とC'が線分APをそれぞれ1:(k+1)と(k+1):1に内分する点
- ③ $B' \geq C'$ が線分 AP をそれぞれ $k: 1 \geq 1:k$ に内分する点
- B'とC'が線分APをそれぞれ1:kとk:1に内分する点
- **⑤** B'とC'がともに線分APをk:1に内分する点
- **⑥** B'とC'がともに線分APを1:kに内分する点

シの解答群

- ① $\triangle PAB$ と $\triangle PAC$ がそれぞれ $\angle PBA = 90^\circ$, $\angle PCA = 90^\circ$ を満たす 直角二等辺三角形
- ② △PAB と △PAC がそれぞれ BP = BA, CP = CA を満たす二等辺三 角形
- ③ △PAB と △PAC が合同
- $\mathbf{A} \mathbf{P} = \mathbf{B} \mathbf{C}$