Dr. N. Zerf

Institut für Theoretische Physik Universität Heidelberg Wintersemester 2016/17

3. Übungsblatt

Abgabe in den Tutorien 07.11.2016 Besprechung in den Tutorien 14.11.2016

Aufgabe 3.1 (3 Punkte):

Fortsetzung von Aufgabe 2.1

• Zeigen Sie nun auch für den allgemeinen Fall, dass $|\vec{z}| = |\vec{x}||\vec{y}|\sin(\theta)$ gilt. Gehen Sie dazu wie folgt vor:

Berechnen Sie das Skalarprodukt von \vec{z} nach Gleichung (1) auf Blatt 2 mit sich selbst. Verwenden Sie dabei die Einsteinsche Summenkonvention, bei der über jeden zweifach vorkommenden Index summiert wird und die Kennzeichnung der Summation durch ein Summensymbol \sum entfällt. Machen Sie sich zunächst klar, dass Sie die auftretenden Kontraktion von zwei Levi-Civita-Tensoren wie folgt ersetzen können

$$\epsilon_{ijk}\epsilon_{lmk} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}, \qquad \delta_{ij} = \begin{cases} 1 & i=j\\ 0 & i\neq j \end{cases}, \qquad (1)$$

und schreiben Sie die auftretenden Kontraktionen von Kronecker- δ -Tensoren in Skalarprodukte

$$\delta_{ij}x_iy_j = x_iy_i = \vec{x} \cdot \vec{y} \tag{2}$$

der beteiligten Vektoren um. Verwenden Sie dann

$$\vec{x} \cdot \vec{y} = |\vec{x}||\vec{y}|\cos\theta, \quad \theta = \angle(\vec{x}, \vec{y}),$$
 (3)

um die Skalarprodukte durch die Beträge der Vektoren und den eingeschlossen Winkel auszudrücken.

(Fortsetzung folgt)

Aufgabe 3.2 (2 Punkte):

Bestimmen Sie die allgemeine Lösung der folgenden Differenzialgleichungen

(i)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \exp(-y + 2x), \qquad (ii) \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{2y} \left(e^{-x} + \frac{y^2}{x^2}\right).$$

Aufgabe 3.3 (4 Punkte):

Gegeben seien die Vektoren

$$\vec{a} = (2, 3, 1)^T,$$
 $\vec{b} = (0, 0, 1)^T,$ $\vec{c} = (3, -2, 0)^T.$

Berechnen Sie:

(a) Die Beträge der angegeben Vektoren

- (b) Alle drei gemischten Skalarprodukte $(\vec{a} \cdot \vec{b}, \vec{a} \cdot \vec{c}, \vec{b} \cdot \vec{c})$
- (c) Alle drei gemischten Vektorprodukte

Aufgabe 3.4 (6 Punkte):

Berechnen Sie alle ersten und zweiten partiellen Ableitungen von

$$F(x, y, z) = ze^{xy} + (x^2 + y^2)\sin z + \ln(1 + x^2 + y^2)$$

Zeigen Sie außerdem für dieses Beispiel, dass $\frac{\partial}{\partial x} \frac{\partial}{\partial y} F(x, y, z) = \frac{\partial}{\partial y} \frac{\partial}{\partial x} F(x, y, z)$ (Satz von Schwarz) und genauso für x, z und y, z.

Aufgabe 3.5 (5 Punkte):

Die Krümmung einer durch $\vec{x}(s)$ beschriebenen Trajektorie wurde in der Vorlesung definiert als

$$\frac{1}{\rho} = \left| \frac{d\vec{T}}{ds} \right| \tag{4}$$

Zeigen Sie: Ist die Teilchenbahn durch den Parameter t (die Zeit) parametrisiert, so gilt

$$\frac{1}{\rho} = \frac{|\dot{\vec{x}} \times \ddot{\vec{x}}|}{|\dot{\vec{x}}|^3} \tag{5}$$

Gehen Sie dazu wie folgt vor:

- a) Starten Sie von (5) und drücken Sie mit Hilfe der Identität $\frac{d}{dt}(...) = \frac{ds}{dt} \frac{d}{ds}(...)$ die im Zähler auftretenden Größen durch $d\vec{x}/ds$ und $d^2\vec{x}/ds^2$ aus.
- b) Zeigen Sie, dass das Vektorprodukt zweier paralleler Vektoren verschwindet. Benutzen Sie diese Information um den erhaltenen Ausdruck weiter zu vereinfachen. Drücken Sie ihn schließlich durch \vec{T} und \vec{N} aus.
- c) Mit Ihrem Wissen aus der Vorlesung können Sie $|\vec{T} \times \vec{N}|$ ganz einfach berechnen.

Aufgabe 3.6 (*):

An der Tafel von Captain Chaos lesen Sie die folgenden Gleichungen

(i)
$$\vec{y} = \vec{x} + 1$$
, (ii) $\vec{y} = 1/\vec{x}$, (iii) $\vec{x} = \vec{a} \cdot \vec{b} \cdot \vec{c}$,

Was halten Sie von seinen Gleichungen?