CMU 15-451/15-651

Lecturer: Avrim Blum

11/16/15

The multiplicative weights method

Last time / today

Last time: looked at model where data is coming from some probability distribution.

- Take a sample S, find h with low $err_s(h)$.
- Ask: when can we be confident that $err_D(h)$ is low too? (Or more generally, that the gap $|err_D(h) err_S(h)|$ is low.)
- Gives us confidence in our predictions.

Today: what if we don't assume the future looks like the past. What can we say then?

Will be more like online algorithms / competitive analysis, and how we analyzed Perceptron.

Online learning

- What if we don't want to make assumption that data is coming from some fixed distribution? Or any assumptions on data?
- Can no longer talk about past performance predicting future results.

Idea: regret bounds.

>Show that our algorithm does nearly as well as best predictor in some large class.

Using "expert" advice

Say we want to predict the stock market.

- We solicit n "experts" for their advice. (Will the market go up or down?)
- We then want to use their advice somehow to make our prediction. E.g.,

Expt 1	Expt 2	Expt 3	neighbor's dog	truth
down	up	up	up	up
down	up	up	down	down

Basic question: Is there a strategy that allows us to do nearly as well as best of these in hindsight?

["expert" = someone with an opinion. Not necessarily someone who knows anything.]

Simpler question

- We have n "experts".
- One of these is perfect (never makes a mistake).
 We just don't know which one.
- Can we find a strategy that makes no more than lg(n) mistakes?

Answer: sure. Just take majority vote over all experts that have been correct so far.

- Each mistake cuts # available by factor of 2.
- >Note: this means ok for n to be very large.

What if no expert is perfect?

But what if none is perfect? Can we do nearly as well as the best one in hindsight?

Strategy #1:

- Iterated halving algorithm. Same as before, but once we've crossed off all the experts, restart from the beginning.
- Makes at most lg(n)[OPT+1] mistakes, where OPT is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've "learned". Can we do better?

What if no expert is perfect?

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority / Multiplicative Weights Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

Analysis: do nearly as well as best expert in hindsight

- M = # mistakes we've made so far.
- m = # mistakes best expert has made so far.
- W = total weight (starts at n).
- After each mistake, W drops by at least 25%.
 So, after M mistakes, W is at most n(3/4)^M.
- Weight of best expert is (1/2)^m. So,

$$(1/2)^m \le n(3/4)^M$$

 $(4/3)^M \le n2^m$
 $M \le 2.4(m + \lg n)$

Constant Ratio! So, if m is small, then M is pretty small too.

Randomized Wtd Majority / Mult Wts

- 2.4(m + lg n) not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.
- Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30) Idea: smooth out the worst case.
- Also, multiply by 1- ε instead of $\frac{1}{2}$.

```
Solves to M \leq \frac{-m \ln(1-\epsilon) + \ln(n)}{\epsilon} \approx \left(1 + \frac{\epsilon}{2}\right) m + \frac{1}{\epsilon} \ln(n)

M = expected #mistakes 
M \leq 1.39 m + 2 \ln n \quad \leftarrow \epsilon = 1/2
M \leq 1.15 m + 4 \ln n \quad \leftarrow \epsilon = 1/4
M \leq 1.07 m + 8 \ln n \quad \leftarrow \epsilon = 1/8
```

Analysis

- Say at time t we have fraction $F_{\rm t}$ of weight on experts that made mistake.
- So, we have probability $F_{\rm t}$ of making a mistake, and we remove an $\epsilon F_{\rm t}$ fraction of the total weight.
 - $W_{final} = n(1-\epsilon F_1)(1 \epsilon F_2)...$
 - $ln(W_{final})$ = ln(n) + $\sum_{t} [ln(1 \epsilon F_{t})] \le ln(n) \epsilon \sum_{t} F_{t}$ (using ln(1-x) < -x)

=
$$ln(n) - \varepsilon M$$
. ($\sum F_t = E[\# mistakes]$)

- If best expert makes **m** mistakes, then $ln(W_{final}) > ln((1-\epsilon)^m)$.
- Now solve: ln(n) ε M > m ln(1-ε).

Solves to
$$M \leq \frac{-m \ln(1-\epsilon) + \ln(n)}{\epsilon} pprox \left(1 + \frac{\epsilon}{2}\right) m + \frac{1}{\epsilon} \ln(n)$$

What can we use this for?

- Can use for repeated play of matrix game:
 - Consider cost matrix where all entries 0 or 1.
 - Rows are different experts. Start each with weight 1.
 - Notice that the RWM algorithm is equivalent to "pick an expert with prob $p_i=w_i/\sum_j w_j$, and go with it".
 - Can apply when experts are actions rather than predictors.
 - F_t = fraction of weight on rows that had "1" in adversary's column.
 - Analysis shows do nearly as well as best row in hindsight!

What can we use this for?

In fact, alg/analysis extends to costs in [0,1], not just $\{0,1\}$.

- We assign weights w_i , inducing probabilities $p_i = w_i/\sum_i w_i$.
- Adversary chooses column. Gives cost vector \vec{c} . We pay (expected cost) $\vec{p} \cdot \vec{c}$.
- Update: $w_i \leftarrow w_i(1 \epsilon c_i)$.
- A few minor extra calculations in analysis...

RWM / WM

In fact, gives a proof of the minimax theorem...

Nice proof of minimax thm (sketch)

- · Suppose for contradiction it was false.
- This means some game G has $V_C > V_R$:
 - If Column player commits first, there exists a row that gets the Row player at least V_c .
 - But if Row player has to commit first, the Column player can make him get only V_D.
- Scale matrix so payoffs to row are in [-1,0]. Say $V_R = V_C - \delta$.

Proof sketch, contd

- Now, consider randomized weighted-majority alg, against Col who plays optimally against Row's distrib.
- In T steps.
 - Alg gets \geq [best row in hindsight] $-\epsilon T \log(n)/\epsilon$
 - BRiH $\geq TV_C$ [Best against opponent's empirical distribution]
 - Alg $\leq TV_R$ [Each time, opponent knows your randomized strategy]
 - Gap is δT . Contradicts assumption if use $\epsilon = \delta/2$, once $T > \log(n)/\epsilon^2$.

[ACFS02]: applying RWM to bandit setting

• What if only get your own cost/benefit as feedback?

- Called the "multi-armed bandit problem"
- Will do a somewhat weaker version of their analysis (same algorithm but not as tight a bound).
- For fun, talk about it in the context of online pricing...

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo).
- Protocol #1: for t=1,2,...T
 - Seller sets price pt
 - Buyer arrives with valuation v^t
 - If $v^t \ge p^t$, buyer purchases and pays p^t , else doesn't.

\$2

- v[†] revealed to algorithm.
- repeat Protocol #2: same as protocol without vt revealed.
- Assume all valuations in [1,h]
- Goal: do nearly as well as bes price in hindsight.

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo).
- Protocol #1: for t=1,2,...T
 - Seller sets price p
 - Buyer arrives with valuation v^t
 - If $v^{\dagger} \ge p^{\dagger}$, buyer purchases and pays p^{\dagger} , else doesn't.
 - v^t revealed to algorithm.
- Good algorithm: RWM / MW!
 - Define one expert for each price $p \in [1,h]$.
 - Best price of this form gives profit OPT.
 - Run RWM algorithm. Get expected gain at least: $OPT(1-\epsilon) \,-\, O(\epsilon^{-1}\,h\log h)$

[extra factor of h coming from range of gains]

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo).
- What about Protocol #2? [just see accept/reject decision]
 - Now we can't run RWM directly since we don't know how to penalize the experts!
 - Called the "adversarial multiarmed bandit problem"
 - How can we solve that?

<u>Summary</u>

Algorithms for online decision-making with strong guarantees on performance compared to best fixed choice.

 Application: play repeated game against adversary. Perform nearly as well as fixed strategy in hindsight.

Can apply even with very limited feedback.

 Application: online pricing, even if only have buy/no buy feedback.