Афинни пространства

Дефиниция и примери

Определение 1 Нека V е реално линейно пространство. Непразното множество A се нарича $a\phi$ инно пространство, моделирано върху V (или c направляващо пространство V), ако е зададено изображение

$$A \times A \to V : \quad (P, Q) \mapsto \overrightarrow{PQ},$$

което има свойствата:

- 1. $\forall P \in A$ и $\forall v \in V \ \exists ! Q \in A : \overrightarrow{PQ} = v$.
- 2. $\forall P,Q,R\in A$ е в сила $\overrightarrow{PQ}+\overrightarrow{QR}=\overrightarrow{PR}$ (правило на триъгълника за събиране на вектори).

Елементите на A се наричат mочки.

Pазмерност на A се нарича размерността на V.

Пример 1 Едноточковото множество $A = \{O\}$ е афинно пространство, моделирано върху тривиалното линейно пространство $V = \{0\}$, тоест е 0-мерно афинно пространство.

Пример 2 Нека V е реално линейно пространство. Тогава A = V е афинно пространство, моделирано върху V, с изображението

$$V \times V \to V$$
: $(P,Q) \mapsto \overrightarrow{PQ} = Q - P$.

Когато линейно пространство се разглежда като афинно, винаги се има предвид тоя пример.

Пример 3 Частен случай на предишния пример: \mathbb{R}^n е n-мерно афинно пространство, моделирано върху себе си.

Пример 4 Геометричното пространство е 3-мерно афинно пространство, моделирано върху линейното пространство на векторите в пространството.

Геометричната равнина е 2-мерно афинно пространство, моделирано върху линейното пространство на векторите в равнината (компланарни с равнината).

Геометричната права е 1-мерно афинно пространство, моделирано върху линейното пространство на векторите върху правата (колинеарни с правата).

Твърдение 1 В афинно пространство са в сила свойствата:

1.
$$\overrightarrow{PQ} = 0 \Leftrightarrow P = Q$$
.

$$2. \overrightarrow{QP} = -\overrightarrow{PQ}.$$

3.
$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$$
.

4. Ако
$$\overrightarrow{PQ} = \overrightarrow{RS}$$
, то $\overrightarrow{PR} = \overrightarrow{QS}$ (свойство на успоредника).

Забележка 1 В горните неща (с изключение на Пример 4) никъде не се използват някакви специфични свойства на полето на реалните числа, така че те важат без промяна и ако V е линейно пространство над произволно поле F.

Ориентация

Определение 2 1. *Ориентация* в крайномерно афинно пространство е ориентация в направляващото линейно пространство.

2. Казваме, че крайномерно афинно пространство е *ориентирано*, ако е избрана едната от двете възможни ориентации (тоест, ако направляващото пространство е ориентирано). Избраната ориентация се нарича *положителна*, а другата — *отрицателна*.

Забележка 2 Ориентация върху права се нарича още *посока върху правата*, а ориентирана права – *ос.* Ориентация в равнина се нарича още *посока на въртене в равнината*.

Пример 5 \mathbb{R}^n , разглеждано като линейно пространство, се счита ориентирано чрез стандартната ориентация (тоест чрез дефинираната от стандартния базис ориентация). Следователно получаваме ориентация в \mathbb{R}^n , разглеждано като афинно пространство. Тя също се нарича *стандартна ориентация*.

Евклидови афинни пространства

Определение 3 *Евклидово афинно пространство* е афинно пространство, чието направляващо линейно пространство е евклидово линейно пространство (тоест в направляващото пространство е фиксирано едно скаларно произведение).

Пример 6 Нека U е евклидово линейно пространство. Тогава U, разглеждано като афинно пространство, моделирано върху себе си, е евклидово афинно пространство. В частност, \mathbb{R}^n е евклидово афинно пространство.

Пример 7 При фиксирана единична отсечка получаваме скаларно произведение в линейното пространство на векторите в геометричното пространство. Следователно геометричното пространство става 3-мерно евклидово афинно пространство. Аналогично геометричната равнина става 2-мерно евклидово афинно пространство, а геометричната права става 1-мерно евклидово афинно пространство.

Нека A е евклидово афинно пространство.

Определение 4 *Разстояние между точките* $P, Q \in A$ се нарича дължината на вектора \overrightarrow{PQ} . Означава се с |PQ|, тоест $|PQ| = |\overrightarrow{PQ}|$.

Твърдение 2 $\exists a \ P, Q, R \in A \ ca \ в \ cuлa:$

1.
$$|PQ| \ge 0$$
 $u = \Leftrightarrow P = Q$.

- 2. |QP| = |PQ|.
- 3. $|PR| \le |PQ| + |QR|$ (неравенство на тригелника).

Определение 5 Ако $O, P, Q \in A, O \neq P, O \neq Q$, то дефинираме $\angle POQ = \angle \left(\overrightarrow{OP}, \overrightarrow{OQ}\right)$.

Пример 8 Ако $O,P\in A,\,O\neq P,$ то $\sphericalangle POP=0.$

Твърдение 3 *Нека* $O, P, Q \in A, O \neq P, O \neq Q$. *Tогава* $\sphericalangle QOP = \sphericalangle POQ$.

Твърдение 4 (косинусова теорема) $\textit{Hexa O}, \textit{P}, \textit{Q} \in \textit{A}, \textit{O} \neq \textit{P}, \textit{O} \neq \textit{Q}. \textit{Torasa}$

$$|PQ|^2 = |OP|^2 + |OQ|^2 - 2|OP||OQ|\cos \sphericalangle POQ.$$