

CLAIMS

What is claimed is:

1 1. A method comprising:
2 maintaining a first form of an intermediate result of an operation in a first register;
3 maintaining a second form of the intermediate result in a second register;
4 responsive to receiving digits l to $L-2$ of the intermediate result from a digit
5 recurrence unit, where L represents a number of digits that satisfies a predetermined
6 precision for the operation, updating each of the first form and the second form of the
7 intermediate result by register swapping or concatenation under the control of load and
8 shift control logic and on-the-fly conversion logic;

9 generating a rounded result by determining digits d_{L-1} and d_L and deriving from
10 these the two digits d'_{L-1} and d_L^{rnd} which are then appended to either the first form of the
11 intermediate result or the second form of the intermediate result.

1 2. The method of claim 1, wherein the first form of the intermediate result comprises
2 a value R_j representing a sum of intermediate digits, $d_1 r^{-1} + d_2 r^{-2} + \dots + d_j r^{-j}$, which
3 converges to an infinitely precise result as j tends to infinity, where r represents a radix
4 associated with a digit-recurrence algorithm implemented by the digit-recurrence unit, j
5 represents a current iteration of the digit recurrence algorithm, and d_j represents a digit
6 generated during iteration j of the digit-recurrence algorithm.

1 3. The method of claim 2, wherein the second form of the intermediate result
2 comprises a value R_j^- , where R_j^- differs from R_j by a unit of the j^{th} position, r^{-j} .

1 4. The method of claim 3, wherein said updating each of the first form and the
2 second form of the intermediate result by register swapping or concatenation comprises
3 updating R_j and R_j^- based upon d_j , r , and R_{j-1} and R_{j-1}^- .

1 5. The method of claim 1, wherein storage typically allocated to a value, R_j^+ ,
2 representing $R_j + r^{-j}$ in conventional digit-recurrence procedures employing on-the-fly
3 rounding is saved by not relying upon and not maintaining R_j^+ during iterations I to $L-2$
4 of the digit-recurrence procedure.

1 6. The method of claim 1, wherein:

$$R_j = \begin{cases} (R_{j-1}, d_j) & d_j \geq 0 \\ (R_{j-1}^-, d_j + r) & d_j \leq -1 \end{cases}; \text{ and}$$
$$R_j^- = \begin{cases} (R_{j-1}, d_j - 1) & d_j \geq 1 \\ (R_{j-1}^-, d_j + r - 1) & d_j \leq 0 \end{cases}.$$

1 7. The method of claim 1, wherein said generating a rounded result further
2 comprises:

3 generating the rounded last digit d_L^{rnd} ;

4 if $d_L^{rnd} \leq -1$, then modifying d_L^{rnd} and d_{L-1} as follows:

5 $d_L^{rnd} \leftarrow r + d_L^{rnd}$, and

6 $d_{L-1} \leftarrow d_{L-1} - 1$; and

7 otherwise, if $d_L^{rnd} \geq r$, then modifying d_L^{rnd} and d_{L-1} as follows:

8 $d_L^{rnd} \leftarrow d_L^{rnd} - r$, and

9 $d_{L-1} \leftarrow d_{L-1} + 1$.

1 8. The method of claim 1, wherein:

2 the digits are restricted to the digit set $\{-r+1, -r+2, \dots, r-2\}$.

1 9. A method comprising:

2 receiving one or more operands upon which an operation is to be performed using

3 a digit-recurrence procedure employing on-the-fly rounding;

4 providing a first storage location in which an intermediate result, R_j , of the

5 operation is maintained as a sum of intermediate digits, $d_1 r^{-1} + d_2 r^{-2} + \dots + d_j r^{-j}$, where

6 *r* represents a radix associated with the digit-recurrence procedure, *j* represents a current
7 iteration of the digit-recurrence procedure, and d_j represents a digit generated during
8 iteration *j* of the digit-recurrence procedure;
9 providing a second storage location in which a value, R_j^- , is maintained
10 representing $R_j - r^{-j}$;
11 during iterations 1 to *L*-2 of the digit-recurrence procedure, where *L* represents a
12 number of digits that satisfies a predetermined precision for the operation, (1)
13 generating d_j , and (2) updating R_j and R_j^- based upon d_j , *r*, and R_{j-1} and R_{j-1}^- ; and
14 determining a rounded fractional result based upon (1) digits d_{L-1} and d_L and (2)
15 R_{L-2} or R_{L-2}^- .

- 1 10. The method of claim 9, wherein the operation comprises division.
- 1 11. The method of claim 9, wherein the operation comprises square-root.
- 1 12. The method of claim 9, wherein a value, R_j^+ , representing $R_j + r^{-j}$ is not
2 maintained during iterations 1 to *L*-2 of the digit-recurrence procedure, thereby saving
3 storage typically allocated to R_j^+ in conventional digit-recurrence procedures employing
4 on-the-fly rounding.
- 1 13. The method of claim 9, wherein the first and second storage locations comprise
2 shift registers, and wherein said updating R_j and R_j^- based upon d_j , *r*, and R_{j-1} and
3 R_{j-1}^- comprises shifting the contents of the shift registers and appending new digits.

1 14. The method of claim 9, wherein:

2
$$R_j = \begin{cases} (R_{j-1}, d_j) & d_j \geq 0 \\ (R_{j-1}^-, d_j + r) & d_j \leq -1 \end{cases}; \text{ and}$$

3
$$R_j^- = \begin{cases} (R_{j-1}, d_j - 1) & d_j \geq 1 \\ (R_{j-1}^-, d_j + r - 1) & d_j \leq 0 \end{cases}.$$

- 1 15. The method of claim 9, wherein said determining a rounded fractional result

2 based upon (1) digits d_{L-1} and d_L and (2) R_{L-2} or R_{L-2}^- further comprises:

3 generating the digits d_{L-1} and d_L ;

4 generating a rounded last digit d_L^{rnd} ;

5 if $d_L^{rnd} \leq -1$, then modifying d_L^{rnd} and d_{L-1} as follows:

6 $d_L^{rnd} \leftarrow r + d_L^{rnd}$, and

7 $d_{L-1} \leftarrow d_{L-1} - 1$; and

8 otherwise, if $d_L^{rnd} \geq r$, then modifying d_L^{rnd} and d_{L-1} as follows:

9 $d_L^{rnd} \leftarrow d_L^{rnd} - r$, and

10 $d_{L-1} \leftarrow d_{L-1} + 1$.

1 16. The method of claim 9, wherein:

2 the digits are constrained to the digit set $\{-r+1, -r+2, \dots, r-2\}$.

1 17. A method comprising the steps of:

2 receiving one or more operands upon which an operation is to be performed using

3 a digit-recurrence procedure with on-the-fly rounding;

4 providing a first storage location in which an intermediate result of the

5 operation, R_j , is maintained, where,

6 $R_j = d_1 r^{-1} + d_2 r^{-2} + \dots + d_j r^{-j}$ converges to an infinitely precise result as j

7 tends to infinity,

8 r represents a radix associated with the digit-recurrence procedure,

9 j represents a current iteration of the digit-recurrence procedure, and

10 d_j represents a digit generated during iteration j of the digit-recurrence

11 procedure;

12 providing a second storage location in which a value, R_j^- , is maintained

13 representing $R_j - r^{-j}$;

14 an initialization step for constructing R_0 and R_0^- ;

15 a main iteration step for generating digits d_1 through d_j and updating R_j and R_j^-

16 during iterations I to $L-2$ of the iterative digit-recurrence procedure, where L represents a
17 number of digits that satisfies a predetermined precision for the operation; and
18 a step for determining a rounded fractional result based upon (1) digits d_{L-1} and
19 d_L and (2) R_{L-2} or R_{L-2}^- .

1 18. The method of claim 17, wherein:

2
$$R_j = \begin{cases} (R_{j-1}, d_j) & d_j \geq 0 \\ (R_{j-1}^-, d_j + r) & d_j \leq -1 \end{cases}; \text{ and}$$

3
$$R_j^- = \begin{cases} (R_{j-1}, d_j - 1) & d_j \geq 1 \\ (R_{j-1}^-, d_j + r - 1) & d_j \leq 0 \end{cases}.$$

1 18. The method of claim 17, wherein said step for determining a rounded fractional
2 result based upon (1) digits d_{L-1} and d_L and (2) R_{L-2} or R_{L-2}^- further comprises:

3 generating the digits d_{L-1} and d_L ;

4 generating a rounded last digit d_L^{rnd} ;

5 if $d_L^{rnd} \leq -1$, then modifying d_L^{rnd} and d_{L-1} as follows:

6
$$d_L^{rnd} \leftarrow r + d_L^{rnd}, \text{ and}$$

7
$$d_{L-1} \leftarrow d_{L-1} - 1; \text{ and}$$

8 otherwise, if $d_L^{rnd} \geq r$, then modifying d_L^{rnd} and d_{L-1} as follows:

9
$$d_L^{rnd} \leftarrow d_L^{rnd} - r, \text{ and}$$

10
$$d_{L-1} \leftarrow d_{L-1} + 1.$$

1

✓ 19. An apparatus comprising:
2 a first storage means for storing an intermediate result, R_j , of an operation on one
3 or more operands, the operation implemented as a digit recurrence procedure with on-the-
4 fly rounding, where $R_j = d_1 r^{-1} + d_2 r^{-2} + \dots + d_j r^{-j}$, r represents a radix associated with
5 the digit-recurrence procedure, j represents a current iteration of the digit-recurrence
6 procedure, and d_j represents a digit generated during iteration j of the digit-recurrence
7 procedure;
8 a second storage means, coupled to the first storage means, for storing a
9 value, R_j^- , representing $R_j - r^{-j}$;
10 an update means, coupled to the first and second storage means, for updating
11 R_j and R_j^- based upon d_j , r , and R_{j-1} and R_{j-1}^- during iterations 1 to $L-2$ of the digit-
12 recurrence procedure;
13 a digit selection means, coupled to the update means, for generating d_j during
14 iterations 1 to $L-2$ of the digit-recurrence procedure, where L represents a number of
15 digits that satisfies a predetermined precision for the operation; and
16 means, coupled to the first and second storage means, for determining a rounded
17 fractional result based upon (1) digits d_{L-1} and d_L and (2) R_{L-2} or R_{L-2}^- .

1 ✓ 20. The apparatus of claim 19, wherein the operation comprises a division operation
2 or a square-root operation.

1 ✓ 21. The apparatus of claim 19, wherein the digit selection means supports both
2 division and square-root operations.

1 ✓ 22. The digit recurrence unit of claim 19, further comprising a delay element coupled
2 to the output of the digit selection means to hold at least two iterations of digits.

23.

An apparatus comprising:
a first register to store an intermediate result, R_j , of an operation on one or more
operands, the operation implemented as a digit recurrence procedure with on-the-fly
rounding, where $R_j = d_1 r^{-1} + d_2 r^{-2} + \dots + d_j r^{-j}$, r represents a radix associated with the
digit-recurrence procedure, j represents a current iteration of the digit-recurrence
procedure, and d_j represents a digit generated during iteration j of the digit-recurrence
procedure;

a second register, coupled to the first register, to store a value, R_j^- , representing
 $R_j - r^{-j}$;

a digit selection lookup table to generate d_j during iterations 1 to $L-2$ of the
digit-recurrence procedure, where L represents a number of digits that satisfies a
predetermined precision for the operation;

load and shift control logic and on-the-fly conversion logic to update R_j and R_j^-
based upon d_j , r , and R_{j-1} and R_{j-1}^- during iterations 1 to $L-2$ of the digit-recurrence
procedure; and

final rounding logic to determine a rounded fractional result based upon (1) digits
 d_{L-1} and d_L and (2) R_{L-2} or R_{L-2}^- .

24. The apparatus of claim 23, wherein the operation comprises a division operation
or a square-root operation.

25. The apparatus of claim 23, wherein the digit selection lookup table supports both
division and square-root operations.

26. The apparatus of claim 23, further comprising a delay element interposed between
the digit selection lookup table and the load and shift control logic and on-the-fly
conversion logic to hold at least two iterations of digits.

27. A machine-readable medium having stored thereon data representing sequences of instructions, the sequences of instructions which, if executed by a processor, cause the processor to:

4 maintain a first form of an intermediate result of an operation in a first register;
5 maintain a second form of the intermediate result in a second register;
6 update each of the first form and the second form of the intermediate result by
7 register swapping or concatenation responsive to receiving digits 1 to $L-2$ of the
8 intermediate result from a digit recurrence unit, where L represents a number of digits
9 that satisfies a predetermined precision for the operation; and
10 generate a rounded result by determining digits d_{L-1} and d_L and appending a
11 rounded last digit to either the first form of the intermediate result or the second form of
12 the intermediate result.

28. The machine-readable medium of claim 27, wherein the first form of the intermediate result comprises a value R_j , representing a sum of intermediate digits, $d_1 r^{-1} + d_2 r^{-2} + \dots + d_j r^{-j}$, which converges to an infinitely precise result as j tends to infinity, where r represents a radix associated with a digit-recurrence algorithm implemented by the digit-recurrence unit, j represents a current iteration of the digit recurrence algorithm, and d_j represents a digit generated during iteration j of the digit-recurrence algorithm.

29. The machine-readable medium of claim 28, wherein the second form of the intermediate result comprises a value R_j^- , where R_j^- differs from R_j by a unit of the j^{th} position, r^{-j} .