LAG definice

- Lineární kombinace seznamu vektorů $(\vec{x_1}...\vec{x_n})$ je vektor $\vec{v} = \sum_{i=1}^n a_i \cdot \vec{x_i}$, kde $(a_1...a_n)$ jsou koeficienty z tělesa F.
- Lineární nezávislost je vlastnost pro nějaký seznam vektorů S. Ten je lineárně nezávislý, pokud je buď prázdný, nebo pokud seznam není prázdný a \vec{o} lze vytvořit pouze kombinací vektorů $(\vec{x_1}...\vec{x_n})$ za použití koeficientů $a_1...a_n = 0$. Tedy $\sum_{i=1}^n a_i \cdot \vec{x_i} = \vec{o}$, kde $\vec{x_1}...\vec{x_n} \in S$ a $a_1 = a_2... = a_n = 0$.
- Lineární závislost: Šeznam vektoru S je lineárně závislý, pokud není lineárně nezávislý. Tedy pokud není prázdný a lze \vec{o} sestavit kombinací vektorů $(\vec{x_1}...\vec{x_n})S$ za použití nenulových koeficientů $(a_1...a_n) \in F \setminus \{0\}$. Matematicky: $\vec{o} = \sum_{i=1}^n a_i \cdot \vec{x_i}, \vec{x_1}...\vec{x_n} \in S$ a $(a_1...a_n) \in F \setminus \{0\}$
- Lineární obal množiny M jakýchkoliv vektorů lineárního prostoru L je množina všech lineárních kombinací vektorů z množiny M, pokud $M \neq \{\}$. Pokud $M = \{\}$, tak je lineární obal $span(\{\}) = \vec{o}$
- Lineární podprostor prostoru L je taková podmnožina W prostoru L, pro kterou platí, že span(W) je podmnožinou W. W je tedy uzavřena na tvorbu lineárních kombinací.
- Množina generátorů G je množina vektorů, pomocí jejíchž všech lineárních kombinací jsme schopni vytvořit lineární podprostor W prostoru L. Tedy: span(G) = W.
- Konečně generovaný podprostor: Lineární podprostor W prostoru L je konečně generovaný, pokud množina jeho generátorů G má konečný počet prvků.
- Báze B prostoru L je lineárně nezávislá množina generátorů prostoru
 L. Napíšeme-li B jako seznam (seznam = uspořádaná n-tice prvků),
 označujeme ji jako uspořádanou bázi.
- **Dimenze** konečně generovaného lineárního prostoru L je počet prvků jeho báze. dim(L) = card(B), B je báze prostoru L.
- Souřadnice vektoru \vec{v} vzhledem k uspořádané bázi $B = (\vec{b_1}...\vec{b_n})$ je uspořádaný seznam $(a_1...a_n) \in F$ takový, že $\vec{v} = \sum_{i=1}^n a_i \cdot \vec{b_i}$. Značíme jej

$$coord_B(\vec{v}) = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$
. (Jednoduše řečeno: souřadnice \vec{v} , kterou vytvoříme

pomocí lineární kombinace báze B)

- Lineární zobrazení z lineárního prostoru L_1 do lin. prostoru L_2 , značeno $f: L_1 \to L_2$, je takové zobrazení, kde pro \vec{x}, \vec{y} a skaláry a z F platí: $f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$ a $f(a \cdot \vec{x}) = a \cdot f(\vec{x})$ (zachovává vektorové operace sčítání a násobení skalárem)
- **Jádro** lineárního zobrazení $f: L_1 \to L_2$ je množina všech $\vec{x} \in L_1$, pro které platí $f(\vec{x}) = \vec{o}$. Matematicky: $ker(f) = \{\vec{x} | f(\vec{x}) = \vec{o}\}$. Lidsky: množina všech vektorů, které se při zobrazení "ztratí", tedy převedou na nulový vektor. Jádro indikuje, jak moc je f monomorfismus.
- Obraz lineárního zobrazení $L_1 \to L_2$ je množina všech $\vec{y} \in L_2$ pro které existuje \vec{x} takové, že $f(\vec{x}) = \vec{y}$. Matematicky: $im(f) = \{\vec{y} | \exists \vec{x} : f(\vec{x}) = \vec{y}\}$.

- Lidsky: množina všech vektorů, do kterých mohou být převedeny vektory z jiného prostoru zobrazením. Obraz indikuje, jak foc je f epimorfismus.
- Hodnost lineárního zobrazení $f: L_1 \to L_2$ je dimenze obrazu tohoto zobrazení. Matematicky: rank(f) = dim(im(f))
- **Defekt** lineárního zobrazení $f: L_1 \to L_2$ je dimenze jádra tohoto zobrazení. Matematicky: rank(f) = dim(ker(f))
- Monomorfismus: Lineární zobrazení $f: L_1 \to L_2$ je monomorfismus, pokud je prosté. Tedy když pro každé $x_1, x_2 \in L_1$ platí $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$. Z toho plyne: $ker(f) = \vec{o}$ (různé vstupy mají různé výstupy, nic se nesrazí do \vec{o})
- Epimorfismus Lineární zobrazení $f: L_1 \to L_2$ je epimorfismus, pokud je na (surjektivní). Tedy když pro všechna $y \in L_2$ existuje $x \in L_1$ takové, že f(x) = y. Z toho plyne: $im(f) = L_2$ (pro každý vektor v L_2 je odpovídající vektor v L_1 , zobrazení pokrývá celá prostor L_2)
- Isomorfismus: Lineární zobrazení $f: L_1 \to L_2$ je isoformismus, pokud je prosté a na zároveň (bijektivní).
- Regulární matice M je matice, která má inverzi A^{-1} a platí: $A^{-1} \cdot A = A \cdot A^{-1} = E$
- Singulární matice je matice M, která není regulární.