- \bullet jeder endlich-dimensionale VR V ist gleichwertig zu $\mathbb{R}^n, \mathbb{C}^n$
- V -> W lineare Abbildung
 - lineare Transformation
 - Transformationsmatrix
 - * Spaltenvektoren der die lineare Abbildung F darstellenden Matrix M sind die Koordinatenvektoren der Bilder des Basisvektoren
 - * Beispiel

Komposition von linearen Abbildungen

• Komposition wird wird durch das Produkt der darstellenden Transformationsmatrizen beschrieben

Inverse eines Isomorphismus

- Transformationsmatrix muss regulär sein bei isomorpher Abbildung
 - Inverse ist Transformationsmatrix für Umkehrabbildung

Rang der Transformationsmatrix

- \bullet $V^n -> W^m$
- $\bullet \ M_B^A(F) \in \mathbb{R}^{m \times n}$

- F bijektiv <==> $\dim(\mathbf{V}) = \dim(\mathbf{W})$ <==> $\mathrm{Rang}(\mathbf{M}(\mathbf{F})) = \mathbf{n}$ <==> $M_B^A(F)$ regulär

Bestimmen von Kern und Bild

- Kern VO#16
- Bild VO#16/17
- Dimensionsformel:

- $-\dim Vn = \dim Kern(F) + \dim Bild(F)$
 - *dim Kern(F) = # freie Variablen
 - \ast dim Bild(F) = # nicht freie Variablen = Rang $M_B^A(F)$
 - * VO#18 Fallunterscheidungen
 - \bullet m=n <==> F bijektiv
 - \bullet m<n<==>jedes F ist nicht injektiv
 - \bullet m > n <==> jedes F ist nicht surjektiv

Elementare Zeilenumformungen

- Spaltenräume bleiben nicht gleich
- Zeilenräume bleiben gleich
 - $\operatorname{Span}({\operatorname{Zeilen\ von\ A}}) = \operatorname{Span}({\operatorname{Zeilen\ von\ A'}})$

[[Lineare Abbildungen]]