Algebra general exam. January 11, 2019, 9am -1pm

Your UVa ID Number:

Directions.

- Please show all your work and justify any statements that you make.
- State clearly and fully any theorem you use.
- Vague statements and hand-waving arguments will not be appreciated
- You may assume the statement in an earlier part proven in order to do a later part.

DO EACH PROBLEM ON A SEPARATE SHEET OF PAPER, AND STAPLE THEM TOGETHER IN THE CORRECT ORDER BEFORE TURNING THE EXAM IN.

Sign below the pledge:

"On my honor, I pledge that I have neither given nor received help on this assignment."

- 1. Let X and Y be non-abelian simple groups.
 - (a) (7 pts) Let $G = X \times Y$. Prove that the only normal subgroups of G are $G, X \times \{1\}, \{1\} \times Y$ and the trivial subgroup.

Hint: Show that if N is a normal subgroup of G not contained in $X \times \{1\}$ (respectively, $\{1\} \times Y$), then N contains an element of the form (1, y) with $y \neq 1$ (respectively, (x, 1) with $x \neq 1$).

- (b) (7 pts) Use (a) to prove that $\operatorname{Aut}(X \times X)$ is isomorphic to a semi-direct product of $\operatorname{Aut}(X) \times \operatorname{Aut}(X)$ and \mathbb{Z}_2 (a cyclic group of order 2).
- **2.** Let G be a finite group of order n.
 - (a) (7 pts) Prove that there exists an injective homomorphism $\varphi: G \to S_n$ such that for every $g \in G$, the permutation $\varphi(g)$ is a product of n/k disjoint cycles of length k (for some k depending on g)
 - (b) (6 pts) Now assume that n is even and a Sylow 2-subgroup of G is cyclic. Use (a) to prove that G has a subgroup of index 2.
- **3.** (10 pts) Let $R = \mathbb{Z}[x]$. Find the number of maximal ideals of R which contain $x^2 + 1$ and 15 and find explicit generators for each such ideal. **Hint:** Reduce to a question about Gaussian integers.

1

- **4.** Let F be a field with $\operatorname{char}(F) \neq 2$, let V be a finite-dimensional vector space over F, and let B be a symmetric bilinear form on V.
 - (a) (4 pts) Prove that if $B \neq 0$, there exists $v \in V$ such that $B(v, v) \neq 0$.
 - (b) (4 pts) Prove that for any $v \in V$ with $B(v,v) \neq 0$ there exists a subspace W such that $V = Fv \oplus W$ and $W \perp v$, that is, B(w,v) = 0 for all $w \in W$.
 - (c) (4 pts) Use (a) and (b) to prove that there is a basis $\{v_n\}$ of V such that $B(v_i, v_j) = 0$ for all $i \neq j$.
- **5.** Let F be an algebraically closed field, $n \in \mathbb{N}$ and $A \in GL_n(F)$ an invertible $n \times n$ matrix over F.
 - (a) (9 pts) Assume that $char(F) \neq 2$. Prove that if A^2 is diagonalizable, then A is also diagonalizable over F
 - (b) (4 pts) Give an example where char(F) = 2, A^2 is diagonalizable, but A is not diagonalizable.
- **6.** Let R be a commutative ring with 1, let M be an R-module and N a submodule of R.
 - (a) (8 pts) Prove that if N and M/N are both finitely generated, then M is finitely generated
 - (b) (5 pts) Give an example where M is finitely generated and N is not.
- **7.** Let $F = \mathbb{Q}(\sqrt[6]{3}, i)$.
 - (a) (4 pts) Prove that $[F:\mathbb{Q}]=12$
 - (b) (4 pts) Prove that the extension F/\mathbb{Q} is Galois
 - (c) (4 pts) Prove that the Galois group $Gal(F/\mathbb{Q})$ is isomorphic to D_{12} , the dihedral group of order 12.
- **8.** Let p > 2 be a prime, let \mathbb{F}_p be a field of order p and let $\overline{\mathbb{F}_p}$ be an algebraic closure of \mathbb{F}_p . Let $f(x) = x^m + 1$ for some $m \in \mathbb{N}$. Assume that f is irreducible, and let α be a root of f in $\overline{\mathbb{F}_p}$.
 - (a) (5 pts) Prove that the multiplicative order of α is equal to 2m.
 - (b) (5 pts) Prove that 2m divides $p^m 1$ and 2m does not divide $p^k 1$ for any 0 < k < m.
 - (c) (3 pts) Prove that $m \neq 4$.