

MECH366: Modeling of Mechatronic Systems

L12: Modeling of thermal systems

Dr. Ryozo Nagamune
Department of Mechanical Engineering
University of British Columbia

- Up to now, we have studied for mechanical, electrical and fluid systems:
 - How to draw linear graphs & derive state-space models
- Today, we will study modeling of thermal systems.
- Various models and their relations

__ : State variable

Constitutive relation for

	Energy storage element		Energy dissipating element	
System type	A-Type	T-Type	D-Type	
Mechanical	Mass	Spring	Viscous Damper	
(translational)				power
v: velocity across va	ar. $m\underline{\dot{v}} = f$	$\underline{\dot{f}} = kv$	f = bv	$\mathcal{P} = fi$
f: force through var	m: mass	k: stiffness	b: damping const.	, ,
Electrical	Capacitor	Inductor	Resistor	
v: voltage across va	ar. $C\underline{\dot{v}} = i$	$\underline{L}\dot{\underline{i}} = v$	v = Ri	$\mathcal{P} = iv$
i: current through	C: capacitance	L: inductance	R: resistance	, 00
	Thermal capacitor	None	Thermal resistor	
T: temperature $[K]$	$C_t \dot{\underline{T}} = Q$	"Thermal inductor"	$T = R_t Q$	$\mathcal{P} = Q$
Q: heat transfer rate C_t :	: thermal capacitance	does not exist!	R_t : thermal resistance	V
through var. Fluid across var.	Fluid capacitor	Fluid inertor	Fluid resistor	
P : pressure difference $[N/m^2]$	$C_f\underline{\dot{P}} = Q$	$I_f \underline{\dot{Q}} = P$	$P = R_f Q$	$\mathcal{P} = Q$
Q: volume flow rate $[m^3/s]$	C_f : fluid capacitance	I_f : fluid inertance	R_f : fluid resistance	, – &
through var.				

a place of mind

Energy expressions based on across and through variables

	A-type element	T-type element
$\begin{aligned} & w &: \text{Across variable} \\ & f &: \text{Through variable} \end{aligned}$	Kinetic energy $\frac{1}{2}mv^2$	Potential energy $\left(\frac{1}{2}kx^2 = \right)\frac{1}{2}\frac{f^2}{k}$
Electrical $v: Across \ variable$ $i: Through \ variable$	Electrostatic energy $\frac{1}{2}Cv^2$	Electromagnetic energy $\frac{1}{2}Li^2$
Thermal $T: \mbox{Across variable} \\ Q: \mbox{Through variable}$	Thermal energy $\int Q = C_t T$	N/A
Fluid $P : {\it Across variable} \\ Q : {\it Through variable}$	Potential energy $\frac{1}{2}C_fP^2$	Kinetic energy $rac{1}{2}I_fQ^2$

MECH 366

Main differences of thermal systems from other systems

- No thermal inductor
 - Only one energy storage element
 - No natural oscillatory behaviour
 - Mechanical examples: Pendulum, mass spring system exchanges kinetic and potential energies.
 - Electrical example: LC circuit exchanges electrostatic (in C) and electromagnetic (in L) energies.
- Power is defined by only one variable.
- Resistor does not dissipate energy, but impedes heat flow.

Linear graph representation

- Single-port elements
 - Energy storage elements
 - Energy (dissipation) elements
 - Energy sources

Energy storage element Thermal capacitor

Constitutive equation

$$C_t \frac{dT}{dt} = Q \qquad C_t = \rho V c$$

 C_t [J/K]: thermal capacitance

 $\rho [kg/m^3]$: mass density of the object

 $V[m^3]$: volume of the object

 $c[J/(K \cdot kg)]$: specific heat of the object

Amount of heat per unit mass required to raise temperature by one degree

• Thermal energy stored
$$\mathcal{E} = C_t T$$

MECH 366

Linear graph representation

- Single-port elements
 - Energy storage elements
 - Energy (dissipation) elements
 - Energy sources

Energy dissipation element Thermal resistor

Constitutive equation

$$R_t Q = T$$

 $R_t [Ks/J] ([K/W]) : \text{thermal resistance}$

- No energy dissipation
 - Thermal resistance simply acts to impede heat flow.
- Three heat transfer mechanisms
 - Conduction
 - Convection
 - Radiation (nonlinear) $R_tQ = T_1^4 T_2^4$

Linear graph

Energy dissipation element Thermal resistor: Conduction

- Heat transfer through a material (e.g. metal block)
 - For a uniform material below

• Thermal resistance is

$$R_t = \frac{\Delta x}{k \Delta}$$
 $k [W/K]$: thermal conductivity

High *k*-value: Thermal conductor (e.g. metal)

Low *k*-value: Insulator (e.g. wood, plastic)

Energy dissipation element Thermal resistor: Convection

Heat transfer by moving fluids (e.g. air)

Thermal resistance is

$$R_t = \frac{1}{h_c A}$$
 $\frac{h_c [W/m^2 K]}{A [m^2]}$: convection heat transfer coefficient

- Natural convection (e.g. hot air rises)
- Forced convection (e.g. fluid moved by fan or pump)

Linear graph representation

- Single-port elements
 - Energy storage elements
 - Energy dissipation elements
 - Energy sources

Linear graph representation Fluid energy sources

- Heat source
 - Heater

Linear graph

- Temperature source
 - Heater
 - Large reservoir

Linear graph

Example: "watalappam" making (taken from de Silva's book)

C: thermal capacitance

R: thermal resistance

T: temperature

Q: heat transfer rate

Input: heat transfer rate Q

Disturbance input:

ambient temperature T_a

Output: temperature T_d

Example Linear graph drawing

• Constitutive eq.

$$R_d Q_{R_d} = T_w - T_d$$

$$R_c Q_{R_c} = T_d - T_a$$

$$R_w Q_{R_w} = T_w - T_a$$

$$C_w \dot{T}_w = Q_{C_w} C_d \dot{T}_d = Q_{C_d}$$

Node eq.

$$Q_{R_d} = Q_{R_c} + Q_{C_d}$$

$$Q_{R_d} + Q_{R_w} + Q_{C_w} = Q$$

$$Q_{R_c} + Q_{R_w} + Q_a = 0$$

Example

State-space model derivation

$$\dot{T}_w = \frac{1}{C_w} Q_{C_w} = \frac{1}{C_w} \{ Q - \underbrace{\frac{1}{R_w} (T_w - T_a)}_{Q_{R_w}} - \underbrace{\frac{1}{R_d} (T_w - T_d)}_{Q_{R_d}} \}$$

$$\dot{T}_d = \frac{1}{C_d} Q_{C_d} = \frac{1}{C_d} \{ \underbrace{\frac{1}{R_d} (T_w - T_d)}_{Q_{R_d}} - \underbrace{\frac{1}{R_c} (T_d - T_a)}_{Q_{R_c}} \}$$

$$\left\{ \begin{bmatrix} \dot{T}_w \\ \dot{T}_d \end{bmatrix} = \begin{bmatrix} -\frac{1}{C_w} \left(\frac{1}{R_w} + \frac{1}{R_d} \right) & \frac{1}{C_w R_d} \\ \frac{1}{C_d R_d} & -\frac{1}{C_d} \left(\frac{1}{R_d} + \frac{1}{R_c} \right) \end{bmatrix} \begin{bmatrix} T_w \\ T_d \end{bmatrix} + \begin{bmatrix} \frac{1}{C_w} & \frac{1}{C_w R_w} \\ 0 & \frac{1}{C_d R_c} \end{bmatrix} \begin{bmatrix} Q \\ T_a \end{bmatrix} \right\}$$

$$T_d = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} T_w \\ T_d \end{bmatrix}$$

Example A detailed model

Example Linear graph drawing

• Constitutive eq.

$$R_{p1}Q_{R_{p1}} = T_w - T_p$$

$$R_{p2}Q_{R_{p2}} = T_p - T_d$$

$$R_cQ_{R_c} = T_d - T_a$$

$$R_wQ_{R_w} = T_w - T_a$$

$$C_w\dot{T}_w = Q_{C_w} C_d\dot{T}_d = Q_{C_d}$$

• Node eq. $C_p \dot{T}_p = Q_{C_p}$

$$Q_{R_{p2}} = Q_{R_c} + Q_{C_d}$$

$$Q_{R_{p1}} = Q_{R_{p2}} + Q_{C_p}$$

$$Q_{R_{p1}} + Q_{R_w} + Q_{C_w} = Q$$

$$Q_{R_c} + Q_{R_w} + Q_a = 0$$

Example

a place of mind

State-space model derivation

$$\dot{T}_{w} = \frac{1}{C_{w}} Q_{C_{w}} = \frac{1}{C_{w}} \{ Q - \underbrace{\frac{1}{R_{w}} (T_{w} - T_{a})}_{Q_{R_{w}}} - \underbrace{\frac{1}{R_{p1}} (T_{w} - T_{p})}_{Q_{R_{p1}}} \}$$

$$\dot{T}_{d} = \frac{1}{C_{d}} Q_{C_{d}} = \frac{1}{C_{d}} \{ \underbrace{\frac{1}{R_{p2}} (T_{p} - T_{d})}_{Q_{R_{p2}}} - \underbrace{\frac{1}{R_{c}} (T_{d} - T_{a})}_{Q_{R_{c}}} \}$$

$$\dot{T}_{p} = \frac{1}{C_{p}} Q_{C_{p}} = \frac{1}{C_{p}} \{ \underbrace{\frac{1}{R_{p1}} (T_{w} - T_{p})}_{Q_{R_{p1}}} - \underbrace{\frac{1}{R_{p2}} (T_{p} - T_{d})}_{Q_{R_{p2}}} \}$$

$$\begin{cases}
\begin{bmatrix}
T_w \\
\dot{T}_d \\
\dot{T}_p
\end{bmatrix} &= A \begin{bmatrix} T_w \\
T_d \\
T_p
\end{bmatrix} + B \begin{bmatrix} Q \\
T_a
\end{bmatrix}$$

$$T_d = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} T_w \\
T_d \\
T_p
\end{bmatrix}$$

MECH 366

Simscape in Matlab/Simulink

- Physical system modeling tool in Matlab/Simulink
- Software which utilizes linear graph concept
- Read/watch
 - www.mathworks.com/products/simscape.html
 - <u>www.mathworks.com/help/physmod/simscape/getting-</u> started-with-simscape.html
 - Essential Steps for Constructing a Physical Model
 - Evaluating Performance of a DC Motor

Summary

- Linear graph for thermal systems
 - Single-port elements
 - Energy storage elements
 - Energy (dissipation) elements
 - Energy sources
- We are done with linear graph!
- Next, Laplace transform and transfer function
- Homework 4: Due Oct 28 (Monday), 3pm
- Lab 3 report: Due Nov 1 (Friday), 6pm