BÀI TOÁN ĐẾM

Lý thuyết tổ hợp

Nội dung

- Các nguyên lý đếm cơ bản
- Nguyên lý bù trừ
- Hoán vị và tổ hợp
- Hệ thức truy hồi

Các nguyên lý đếm cơ bản

Nguyên lý cộng

- Nếu một công việc nào nó có thể thực hiện theo n phương án khác nhau, trong đó:
 - Phương án thứ 1 có m₁ cách thực hiện
 - Phương án thứ 2 có m₂ cách thực hiện
 - **–**
 - Phương án thứ n có m_n cách thực hiện
- Khi đó, có: $m_1 + m_2 + ... + m_n$ cách để hoàn thành công việc đã cho.

Qui tắc cộng

Phát biểu dưới dạng tập hợp:

Nếu A và B là hai tập rời nhau $(A \cap B = \phi)$ thì : $N(A \cup B) = N(A) + N(B)$. Nếu $A_1, A_2, ..., A_n$ là những tập hợp rời nhau thì: $N(A_1 \cup A_2 \cup ... \cup A_n) = N(A_1) + N(A_2) + ... + N(A_n).$

Nguyên lý cộng: Ví dụ 1

- Giả sử cần chọn hoặc một cán bộ hoặc một sinh viên tham gia một hội đồng của một trường đại học.
 - Hỏi có bao nhiều cách chọn vị đại biểu này nếu như có 37 cán bộ và 63 sinh viên.

Lời giải:

- Gọi việc thứ nhất là chọn 1 cán bộ từ tập cán bộ ta có 37 cách.
- Gọi việc thứ hai là chọn 1 sinh viên từ tập sinh viên ta có 63 cách.
- Vì tập cán bộ và tập sinh viên là rời nhau, theo nguyên lý cộng ta có tổng số cách chọn vị đại biểu này là 37 + 63 = 100 cách chọn.

Nguyên lý cộng: Ví dụ 2

- Một đoàn VĐV gồm môn bắn súng và bơi được cử đi thi đấu.
 - Số VĐV nam là 10 người.
 - Số VĐV thi bắn súng kể cả nam và nữ là 14 người.
 - Số VĐV nữ thi bơi bằng số VĐV nam thi bắn súng.
 - Hỏi đoàn có bao nhiêu VĐV.

Lòi giải:

- Chia đoàn thành hai tập, tập các VĐV nam và tập các VĐV nữ.
- Tập nữ lại được chia thành hai: thi bắn súng và thi bơi.
- Thay số nữ thi bởi bằng số nam thi bắn súng, ta được số nữ bằng tổng số vận động viên thi bắn súng.
- Từ đó theo nguyên lý cộng toàn đoàn có 14 + 10 = 24 VĐV.

Nguyên lý cộng: Ví dụ 3

 Giá trị của biến k sẽ bằng bao nhiêu sau khi thực hiện đoạn chương trình sau :

```
k := 0
for i_1 := 1to n_1
k := k+1
for i_2 := 1to n_2
k := k+1
```

• Lời giải:

- Coi mỗi vòng for là một công việc, do đó ta có m công việc T₁, T₂, ..., T_m.
- Trong đó T_i thực hiện bởi n_i cách (i= 1, 2, .., m).
- Theo nguyên lý cộng tổng tất cả các cách để hoàn thành T_1 , T_2 ,..., T_m là $k = n_1 + n_2 + ... + n_m$.

```
for i_m := 1 to n_m
k := k+1
```

Nguyên lý nhân

- Nếu một công việc nào đó phải hoàn thành qua n giai đoạn liên tiếp, trong đó:
 - Phương án thứ 1 có m₁ cách thực hiện
 - Phương án thứ 2 có m_2 cách thực hiện
 - **–**
 - Phương án thứ n có m_n cách thực hiện
- Khi đó, có: m₁.m₂ ...m_n cách để hoàn thành công việc đã cho.

Qui tắc nhân

- Phát biểu tổng quát bằng tập hợp:
 - Nếu A₁, A₂, ..., A_m là những tập hợp hữu hạn,
 - khi đó số phần tử của tích đề-các các tập này bằng tích số các phần tử của mỗi tập thành phần.
 - Hay đẳng thức: $N(A_1 \times A_2 \times ... A_m) = N(A_1) N(A_2) ... N(A_m)$.
 - $N \hat{e} u A_1 = A_2 = ... A_m thì N(A^m) = N(A)^m$

 Giá trị của biến k sẽ bằng bao nhiêu sau khi thực hiện đoạn chương trình sau :

Lời giải:

- Coi mỗi vòng for là một công việc, do đó ta có
 m công việc T₁, T₂, ..., T_m.
- Trong đó T_i thực hiện bởi n_i cách (i= 1, 2, ..., m).
- Theo nguyên lý cộng tổng tất cả các cách để hoàn thành T_1 , T_2 ,..., T_m là $k=n_1\times n_2\times ...\times n_m$

```
k:=0

for i_1 = 1 to n_1

for i_2 = 1 to n_2

......

for i_m = 1 to n_m

k:=k+1
```

- Người ta có thể ghi nhãn cho những chiếc ghế của một giảng đường bằng một chữ cái và sau đó là một số nguyên nhỏ hơn 100.
 - Bằng cách như vậy hỏi có nhiều nhất bao nhiều chiếc ghế có thể ghi nhãn khác nhau.

Lòi giải:

Có nhiều nhất là 26 x 100 = 2600 ghế được ghi nhãn.

Có bao nhiêu xâu nhị phân có độ dài 7?.

Lời giải:

- Một xâu nhị phân có độ dài 7 gồm 7 bít
- Mỗi bít có hai cách chọn (hoặc giá trị 0 hoặc giá trị 1)
- Theo qui tắc nhân ta có $2.2.2.2.2.2 = 2^7 = 128$ xâu bít nhị phân độ dài 7.

- Số điện thoại gồm 10 chữ số:
 - nhóm mã vùng (3 chữ số), nhóm mã chi nhánh (3 chữ số), nhóm mã máy (4 chữ số).
- Một số hạn chế đối với một số con số:
 - X biểu thị một số có thể nhận các giá trị từ 0..9
 - N là số có thể nhận các chữ số từ 2..9
 - Y là các số có thể nhận các chữ số 0 hoặc 1.
 - Hỏi theo hai dự án đánh số NYX NNX XXXX và NXX NXX XXXX có bao nhiêu số điện thoại được đánh số khác nhau?

Lời giải:

- Đánh số theo dự án NYX NNX XXXX được nhiều nhất là: $8 \times 2 \times 10 \times 8 \times 8 \times 10 \times 10 \times 10 \times 10 \times 10 = 2 \times 8^3 \times 10^6 = 1024.10^6$

Nhận xét

- Nếu bỏ 1 giai đoạn nào đó mà ta không thể hoàn thành được công việc (không có kết quả) thì lúc đó ta cần phải sử dụng quy tắc nhân.
- Nếu bỏ 1 giai đoạn nào đó mà ta vẫn có thể hoàn thành được công việc (có kết quả) thì lúc đó ta sử dụng quy tắc cộng.

Một vài ví dụ

- <u>VD1</u>: Người ta có thể đi từ TP.HCM đến Đà Nẵng bằng một trong ba phương tiện: tàu hoả, tàu thuỷ và máy bay. Nếu có 3 cách đi bằng tàu hoả, 4 cách đi bằng tàu thuỷ, và 2 cách đi bằng máy bay, thì sẽ có mấy cách đi từ TP.HCM đến Đà Nẵng?
- <u>VD2</u>: Đề đi từ thành phố HCM đến thành phố Phan Rang người ta phải đi lần lượt qua hai thành phố Biên Hòa và Phan Thiết. Nếu có 3 cách đi từ TP.HCM đến TP. Biên Hòa, 4 cách đi từ TP. Biên Hòa đến TP. Phan Thiết và 2 cách đi từ TP. Phan Thiết đến TP. Phan Rang, thì sẽ có mấy cách đi từ TP. HCM đến TP. Phan Rang?

Một vài ví dụ

- **VD3**: Có 10 người tham gia vào việc chụp ảnh đám cưới (có cả cô dâu và chú rễ). Bức ảnh chỉ có 6 người trong số họ.
 - a) Có bao nhiều bức ảnh có mặt cô dâu?
 - b) Có bao nhiêu bức ảnh có mặt cả cô dâu và chú rễ?
 - c) Có bao nhiêu bức ảnh chỉ có hoặc cô dâu hoặc chú rễ?

Nguyên lý bù trừ

 Nếu không có giả thiết gì về sự rời nhau giữa hai tập A và B thì:

$$N(A \cup B) = N(A) + N(B) - N(A \cap B)$$
.

- Lớp toán học rời rạc có 25 sinh viên giỏi tin học, 13 sinh viên giỏi toán và
 8 sinh viên giỏi cả toán và tin học.
 - Hỏi lớp có bao nhiều sinh viên nếu mỗi sinh viên giỏi toán hoặc học giỏi tin học hoặc giỏi cả hai?

Lời giải:

- Tập các sinh viên giỏi tin học: A
- Tập các sinh viên giỏi toán: B
- Khi đó A ∩B là tập sinh viên giỏi cả toán học và tin học.
- Vì mỗi sinh viên trong lớp hoặc giỏi toán, hoặc giỏi tin học hoặc giỏi cả hai nên ta có tổng số sinh viên trong lớp là N(A∪B).
- Do vậy: $N(A \cup B) = N(A) + N(B) N(A \cap B) = 25 + 13 8 = 30$

Có bao nhiêu số nguyên không lớn hơn 1000 chia hết cho 7 hoặc 11.

• Lời giải:

- A: tập các số nguyên không lớn hơn 1000 chia hết cho 7
- B: tập các số nguyên không lớn hơn 1000 chia hết cho 11.
- Khi đó tập số nguyên không lớn hơn 1000 chia hết cho 7 hoặc chia hết cho 11 là N(A∪B).
- Theo nguyên lý bù trừ ta có:

$$N(A \cup B) = N(A) + N(B) - N(A \cap B) = \lfloor 1000/7 \rfloor + \lfloor 1000/11 \rfloor - \lfloor 1000/7.11 \rfloor$$
$$= 142 + 90 - 12 = 220.$$

Số phần tử của hợp 3 tập A, B, C

- Ta nhận thấy N(A) + N(B) + N(C) đếm một lần những phần tử chỉ thuộc một trong ba tập hợp.
 - số phần tử của A∩B, A∩C, B∩C được đếm hai lần là N(A∩B), N(A∩C),
 N(B∩C),
 - Số phần tử của A∩B∩C được đếm ba lần là N(A∩B∩C)
- Khi đó, biểu thức: N(A∪B∪C) N(A∩B)- N(A∩C) N(B∩C) chỉ đếm các phần tử chỉ thuộc một trong ba tập hợp và loại bỏ đi những phần tử được đếm hai lần.
 - Như vậy, số phần tử được đếm ba lần chưa được đếm, nên ta phải cộng thêm với giao của cả ba tập hợp.
- Từ đó ta có công thức đối với 3 tập không rời nhau:

$$N(A \cup B \cup C) = N(A) + N(B) + N(C) - N(A \cap B) - N(A \cap C) - N(B \cap C) + N(A \cap B \cap C)$$

Nguyên lý bù trừ tổng quát

A₁, A₂, . ., A_m là những tập hữu hạn. Khi đó:

$$N(A_1 \cup A_2 \cup ... \cup A_m) = N_1 - N_2 + ... + (-1)^{m-1} N_m$$

Trong đó:

$$N_1=N(A_1)+N(A_2)+..+N(A_m)$$

1<k<m, N_k là tổng phần tử của tất cả các giao của k
 tập lấy từ m tập đã cho,

$$N_m = N(A_1 \cap A_2 \cap ... \cap A_m)$$

Nói cách khác:

$$N(A_{1} \cup A_{2} \cup ...A_{n}) = \sum_{1 \le i \le n} N(A_{i}) - \sum_{1 \le i, j \prec n} N(A_{i} \cap A_{j}) + \sum_{1 \le i < j < k \le n} N(A_{i} \cap A_{j} \cap A_{k})$$
$$-...+ (-1)^{n+1} N(A_{1} \cap A_{2} \cap ... \cap A_{n})$$

- Tìm công thức tính số phần tử của 4 tập hợp.
- Lời giải:
 - Từ nguyên lý bù trừ tổng quát ta có:

$$\begin{split} N(A_1 \cup A_2 \cup A_3 \cup A_4) &= N(A_1) + N(A_2) + N(A_3) + N(A_4) - N(A_1 \cap A_2) - \\ N(A_1 \cap A_3) &= N(A_1 \cap A_4) - N(A_2 \cap A_3) - N(A_2 \cap A_4) - \\ N(A_3 \cap A_4) &+ N(A_1 \cap A_2 \cap A_3) + N(A_1 \cap A_2 \cap A_4) + \\ N(A_1 \cap A_3 \cap A_4) + N(A_2 \cap A_3 \cap A_4) - N(A_1 \cap A_2 \cap A_3 \cap A_4). \end{split}$$

 Tập X = {1, 2, ..., 10000} có bao nhiều số không chia hết cho bất cứ số nào trong các số 3, 4, 7?.

Lời giải:

- Gọi A là tập các số thuộc X chia hết cho 3, B là tập các số thuộc X chia hết cho 4, C là tập các số thuộc X chia hết cho 7.
- N(ABC): tập các số trong X chia hết cho ít nhất một trong các số 3, 4, 7

```
\begin{split} N(A \cup B \cup C) &= N(A) + N(B) + N(C) - N(A \cap B) - N(A \cap C) - N(B \cap C) + N(A \cap B \cap C) \\ trong \, \text{d\'o} : \\ N(A) + N(B) + N(C) &= [10\ 000/3] + [10\ 000/4] + [10\ 000/7] \\ &= 3333 + 2500 + 1428 = 7261 \\ N(A \cap B) &= [10000/3x4] = 833 \\ N(A \cap C) &= [10000/3x7] = 476 \\ N(B \cap C) &= [10000/4x7] = 357 \\ N(A \cap B) + N(A \cap C) + N(B \cap C) &= 833 + 476 + 357 = 1666 \\ N(A \cap B \cap C) &= [10000/(3x4x7)] = 119. \\ &=> S\acute{o} \ c\acute{a}c \ s\acute{o} \ nh\mathring{o} \ hon \ 10000 \ c\grave{a}n \ d\acute{e}m \ l\grave{a} : \\ &10000 - N(A \cup B \cup C) &= 10000 - (7261 - 1666 + 119) \\ \end{split}
```

Có bao nhiêu xâu nhị phân độ dài 10 bắt đầu bởi 00 hoặc kết thúc bởi 11.

• Lời giải:

- A: số xâu nhị phân độ dài 10 bắt đầu bởi 00,
- B: số xâu nhị phân độ dài 10 kết thúc bởi 11.
- Dễ ràng nhận thấy, N(A) = N(B) = 2^8 = 256, N(A∩B) = 2^6 = 64.
- Theo nguyên lý bù trừ ta có:

$$N(A \cup B)$$
 = $N(A) + N(B) - N(A \cap B)$
= $256 + 256 - 64 = 448$.

Đếm các hoán vị và tổ hợp

Chỉnh hợp lặp

- Một chỉnh hợp lặp chập k của n phần tử là bộ có thứ tự gồm k thành phần lấy từ n phần tử của tập đã cho.
 - Như vậy, một chỉnh hợp lặp chập k của n phần tử có thể xem là phần tử của tích đề các A^k với A là tập đã cho.
- Theo nguyên lý nhân, số các tất cả các chỉnh hợp lặp chập k của n sẽ là n^k.
- Ví dụ 1: Tính số dãy nhị phân có độ dài k bit

```
\Rightarrow n=2; ví dụ k=3: ta có (000),(111): thành phần có thể lặp; (001), (110), (011), (101)... \Rightarrow 2<sup>3</sup> .
```

Chỉnh hợp lặp – Ví dụ (tt)

• **Ví dụ 2:** Từ bảng chữ cái tiếng Anh có thể tạo ra được bao nhiêu xâu có độ dài *k*?

Lời giải: Bảng chữ cái tiếng Anh gồm 26 kí tự ['A'..'Z'], số các xâu có độ dài k được chọn từ 26 chữ cái chính là chỉnh hợp lặp k của 26 phần tử và bằng 26^k.

Chỉnh hợp lặp – Ví dụ (tt)

• **Ví dụ 3:** Tính xác suất lấy ra liên tiếp được 3 quả bóng đỏ ra khỏi bình kín chứa 5 quả đỏ, 7 quả xanh nếu sau mỗi lần lấy một quả bóng ra lại bỏ nó trở lại bình?

• Lời giải:

- Số kết cục có lợi để ta lấy ra liên tiếp 3 quả bóng đỏ là 5³ (là chỉnh hợp lặp vì có 5 quả đỏ ta phải lấy 3 quả và có hoàn lại).
- Toàn bộ kết cục có thể để lấy ra 3 quả bóng bất kỳ trong 12 quả bóng là 12³.
- Như vậy, xác suất để có thể lấy ra 3 quả bóng đỏ liên tiếp là 5³/12³.

Chỉnh hợp không lặp

- Chỉnh hợp không lặp chập k của n phần tử là bộ có thứ tự gồm k
 thành phần lấy ra từ n phần tử đã cho.
 - Các phần tử không được lặp lại.
- Để xây dựng một chỉnh hợp không lặp:
 - Xây dựng từ thành phần đầu tiên. Thành phần này có n khả năng chọn.
 - Mỗi thành phần tiếp theo, những khả năng chọn giảm đi 1 (vì không được lấy lặp lại).
 - Tới thành phần thứ k có n-k + 1 khả năng chọn.
 - Theo nguyên lý nhân ta có số chỉnh hợp không lặp chập k của tập hợp n phần tử ký hiệu là P(n, k) được tính theo công thức:

$$P(n,k) = n(n-1)..(n-k+1) = \frac{n!}{(n-k)!}$$

Chỉnh hợp không lặp – Ví dụ

- Ví dụ 1:Tìm số hàm đơn ánh có thể xây dựng được từ tập k phần tử sang tập n phần tử?
- Lời giải:
 - Số hàm đơn ánh từ tập k phần tử sang tập n phần tử chính là P(n,k).
- Ví dụ 2: Có bao nhiều cách chọn 4 cầu thủ khác nhau trong đội bóng gồm 10 cầu thủ để tham gia các trận đấu đơn.
- · Lời giải:
 - Có P(10,4) = 10.9.8.7 = 5040 cách chọn.

Chỉnh hợp không lặp – Ví dụ (tt)

- Ví dụ 3: Có 8 vận động viên chạy thi. Người về nhất sẽ được nhận huân chương vàng, người về nhì nhận huân chương bạc, người về ba nhận huy chương đồng.
 - Hỏi có bao nhiêu cách trao huy chương nếu tất cả các kết cục đều có thể xảy ra?
- **Lời giải**: Số cách trao huy chương chính là số chỉnh hợp chập 3 không lặp của tập hợp 8 phần tử.
 - Vì thế có P(8,3) = 8.7.6 = 336 cách trao huy chương.

Hoán vị

- Các hoán vị của *n* phần tử là một **cách xếp có thứ tự** các phần tử đó.
 - Số các hoán vị của tập n phần tử có thể coi là trường hợp riêng của chỉnh hợp không lặp với k = n.
 - Ta cũng có thể đồng nhất một hoán vị với một song ánh từ tập n phần tử lên chính nó.
 - Số hoán vị của tập gồm n phần tử là P(n,n) = n! (hoặc P_n)
- Ví dụ 1: Có 6 người xếp thành hàng để chụp ảnh. Hỏi có thể bố trí chụp được bao nhiêu kiểu khác nhau?
- Lời giải: Mỗi kiểu ảnh là một hoán vị của 6 người.
 - Do đó có 6! = 720 kiểu ảnh khác nhau có thể chụp.

Hoán vị - Ví dụ

- Ví dụ 2: Cần bố trí thực hiện n chương trình trên một máy tính. Hỏi có bao nhiêu cách bố trí khác nhau?
- Lời giải: Số chương trình được đánh số từ 1, 2, . ., n. Như vậy, số chương trình cần thực hiện trên một máy tính là số hoán vị của 1, 2, .., n. (n!)
- Ví dụ 3: Một thương nhân đi bán hàng tại 8 thành phố. Cô ta có thể bắt đầu hành trình của mình tại một thành phố nào đó nhưng phải qua 7 thành phố kia theo bất kỳ thứ tự nào mà cô ta muốn. Hỏi có bao nhiêu lộ trình khác nhau mà cô ta có thể đi?
- Lời giải: Vì thành phố xuất phát đã được xác định. Do vậy thương nhân có thể chọn tuỳ ý 7 thành phố còn lại để hành trình.
 - Như vậy, tất cả số hành trình của thương nhân có thể đi qua là 7! = 5040 cách.

Hoán vị lặp

- Hoán vị lặp: Cho n phần tử, trong đó có n_1 phần tử x_1 , n_2 phần tử x_2 , ..., n_k phần tử x_k với $n_1+n_2+...+n_k=n$.
 - Mỗi cách sắp xếp n phần tử đó vào n vị trí gọi là một hoán vị lặp của
 n phần tử đã cho.
- $S \tilde{o} t \tilde{a} t c \tilde{a} c \tilde{a} c \tilde{a} c ho \tilde{a} n vi | l \tilde{a} p c u a n phần tử ở trên là : <math display="block">P(n_1, n_2, ..., n_k) = n!/(n_1! n_2! ... n_k!)$

Tổ hợp

- Một tổ hợp chập k của n phần tử là một bộ không kể thứ tự gồm k thành phần khác nhau lấy từ n phần tử đã cho.
- Có thể coi một tổ hợp chập k của n phần tử là một tập con k phần tử lấy trong n phần tử.
- Số tổ hợp chập k của n phần tử ký hiệu là C(n,k).

$$P(n,k) = C(n,k).P(k,k) \Rightarrow C(n,k) = \frac{P(n,k)}{k!} = \frac{n!}{k!(n-k)!}$$

Số tổ hợp chập k của n phần tử: C(n,k)

- Có thể tính được trực tiếp C(n,k) thông qua chỉnh hợp không lặp của k phần tử.
- Xét tập hợp tất cả các chỉnh hợp không lặp chập k của n phần tử.
 - Sắp xếp chúng thành những lớp sao cho hai chỉnh hợp thuộc cùng một lớp chỉ khác nhau về thứ tự.
 - Mỗi lớp như vậy là một tổ hợp chập k của n phần tử C(n,k).
 - Số chỉnh hợp trong mỗi lớp đều bằng nhau và bằng k! (là số hoán vị k phần tử P(k,k).
 - Số các lớp bằng số chỉnh hợp không lặp chập k của n P(n,k).
 - Từ đó ta có:

$$P(n,k) = C(n,k).P(k,k) \Rightarrow C(n,k) = \frac{P(n,k)}{k!} = \frac{n!}{k!(n-k)!}$$

Tổ hợp – Ví dụ

- Ví dụ 1: Cho $S = \{a,b,c,d\}$, tìm C(4,2)?
- Lời giải:
 - C(4,2) = 6 tương ứng với 6 tập con: {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}.
- Ví dụ 2: Có n đội bóng thi đấu vòng tròn. Hỏi phải tổ chức bao nhiêu trận đấu.
- Lời giải:
 - Cứ hai đội bóng thì có một trận,
 - Số trận đấu sẽ bằng số cách chọn 2 trong n đội,
 - C(n, 2) = n! / 2!(n-2)! = n(n-1)/2 trận đấu.

Tổ hợp – Ví dụ (tt)

• Ví dụ 3: Chứng minh

a)
$$C(n,k) = C(n, n-k)$$

b)
$$C(n, 0) = C(n,n) = 1$$

c)
$$C(n,k) = C(n-1,k-1) + C(n-1,k)$$

Lời giải:

a)
$$C(n,n-k) = n!/(n-k)! (n-n+k)! = n!/k!(n-k)! = C(n,k).$$

Hoặc $C(n, k) = n!/k!(n-k)! = n!/(n-k)! (n-(n-k))! = C(n, n-k);$

b) Chú ý 0!=1 => b hiển nhiên đúng

c)
$$C(n,k) = C(n-1,k-1) + C(n-1,k)$$

$$C(n-1,k-1) + C(n-1,k) = \frac{(n-1)!}{(k-1)!(n-1-k+1)!} + \frac{(n-1)!}{k!(n-k-1)!}$$

$$= \frac{(n-1)!}{(k-1)!(n-k-1)!} \left(\frac{1}{n-k} + \frac{1}{k}\right) = \frac{(n-1)! \cdot n}{(k-1)!k(n-k-1)!(n-k)}$$

$$= \frac{n!}{k!(n-k)!} = C(n.k)$$

Tổ hợp lặp

- Mỗi cách chọn ra k vật từ n loại vật khác nhau (trong đó mỗi loại vật có thể được chọn lại nhiều lần) được gọi là tổ hợp lặp chập k của n.
- Số các tổ hợp lặp chập k của n được ký hiệu là:

$$K_n^k = C_{n+k-1}^k$$
 Hay C(n + k -1, k)

Tổ hợp lặp – Ví dụ

Ví dụ 1: Có 3 loại nón A, B, C. An mua 2 cái nón. Hỏi
 An có bao nhiêu cách chọn?

• Giải:

- Ta có mỗi cách chọn là mỗi *tổ hợp lặp* chập 2 của 3.
- Cụ thể: AA, AB, AC, BB, BC, CC

$$K_3^2 = C_{3+2-1}^2 = C_4^2 = 6$$

Tổ hợp lặp – Ví dụ (tt)

Ví dụ 2: Phương trình x₁ + x₂ + x₃ = 11 có bao nhiều nghiệm nguyên không âm?

• Giải:

- Mỗi nghiệm nguyên không âm của phương trình ứng với một cách chọn 11 phần tử từ một tập có 3 loại,
 - sao cho có x_1 phần tử loại 1 được chọn, x_2 phần tử loại 2 được chọn, x_3 phần tử loại 3 được chọn.
- Số này chính bằng số tổ hợp lặp chập 11 từ tập có 3 phần tử.
- Vì vậy, số nghiệm nguyên không âm của phương trình là:

$$C(3 + 11 - 1, 11) = C(13, 11) = (13.12) / 2 = 78.$$

Tổ hợp lặp – Ví dụ (tt)

Ví dụ 3: Phương trình x₁ + x₂ + x₃ = 11 có bao nhiều nghiệm nguyên không âm thỏa mãn x₁≥1, x₂≥2, x₃ ≥3?

• Giải:

- Mỗi nghiệm nguyên không âm của phương trình ứng với một cách chọn 11 phần tử từ một tập có 3 loại,
 - sao cho có x1 phần tử loại 1 được chọn, x2 phần tử loại 2 được chọn, x3 phần tử loại 3 được chọn.
 - Trong đó, có ít nhất một phần tử loại 1, hai phần tử loại 2 và ba phần tử loại 3.
- Vì thế ta chọn một phần tử loại 1, hai phần tử loại 2, ba phần tử loại 3 sau đó chọn thêm 5 phần tử nữa.
 - Số này chính bằng số tổ hợp lặp chập 5 từ tập có 3 loại phần tử.
- Vì vậy, số nghiệm nguyên không âm của phương trình là:

$$C(3 + 5 - 1, 5) = C(7, 5) = (7.6) / 2 = 21.$$

Hệ thức truy hồi

- Hệ thức truy hồi đối với dãy số {a_n} là công thức biểu diễn a_n qua một hay nhiều số hạng đi trước của dãy, cụ thể là a₁, a₂, .., a_{n-1} với mọi n≥n₀ nguyên dương.
- Dãy số được gọi là nghiệm của hệ thức truy hồi nếu các số hạng của nó thoả mãn hệ thức truy hồi.

Ví dụ 1 - Lãi kép

• Giả sử một người gửi 10000\$ vào tài khoản của mình tại một ngân hàng với lãi suất kép 11% mỗi năm. Hỏi sau 30 năm anh ta có bao nhiều tiền trong tài khoản của mình?

• Lời giải:

- Gọi P_n là tổng số tiền có trong tài khoản sau n năm.
- Vì số tiền có trong tài khoản sau n năm bằng số tiền có được trong n-1 năm cộng với lãi suất năm thứ n.
- Nên dãy {P_n} thoả mãn hệ thức truy hồi:

$$P_n = P_{n-1} + 0.11P_{n-1} = 1.11P_{n-1}$$

Ví dụ 1 - Lãi kép (tt)

• Dùng phương pháp <mark>lặp</mark> để tìm nghiệm cho P_n:

$$P_0 = 10000$$
 $P_1 = 1.11P_0$
 $P_2 = 1.11P_1 = (1.11)^2 P_0$
...
 $P_n = 1.11P_{n-1} = (1.11)^n P_0$

Thay
$$P_0$$
= 10000, và $n = 30$ ta được:

$$P_{30} = (1.11)^{30}10000 = 228922,97$$
\$

Ví dụ 2 - Họ nhà thỏ và số Fibonaci

- Một cặp thỏ sinh đôi (một con đực và một con cái) được thả lên một hòn đảo.
- Giả sử rằng cặp thỏ sẽ chưa sinh sản được trước khi đầy hai tháng tuổi.
- Từ khi chúng đầy hai tháng tuổi, mỗi tháng chúng sinh thêm được một cặp thỏ.
- Tìm công thức truy hồi tính số cặp thỏ trên đảo sau n tháng với giả sử các cặp thỏ là trường thọ.

Ví dụ 2 - Họ nhà thỏ và số Fibonaci (tt)

Lời giải:

- Giả sử f_n là số cặp thỏ sau n tháng. Ta sẽ chỉ ra rằng f₁, f₂, ..., f_n (n=1, 2, ..., n) là các số của dãy fibonaci.
- Cuối tháng thứ nhất số cặp thỏ trên đảo là $f_1 = 1$.
- Vì tháng thứ hai cặp thỏ vẫn chưa đến tuổi sinh sản được nên trong tháng thứ hai $f_2 = 1$.
- Vì mỗi cặp thỏ chỉ được sinh sản sau ít nhất hai tháng tuổi, nên ta tìm số cặp thỏ sau tháng thứ n bằng cách cộng số cặp thỏ sau tháng n-2 và tháng n-1 hay $f_n = f_{n-1} + f_{n-2}$.
- Do vậy, dãy $\{f_n\}$ thoả mãn hệ thức truy hồi $f_n = f_{n-1} + f_{n-2}$ với $n \ge 3$ và $f_1 = 1$, $f_2 = 1$.

Ví dụ 2 - Họ nhà thỏ và số Fibonaci (tt)

Số tháng	Số cặp sinh sản	Số cặp thỏ con	Tổng số cặp thỏ
1	0	1	1
2	0	1	1
3	1	1	2
4	1	2	3
5	2	3	5
6	3	5	8

Ví dụ 3 - Tính hệ số tổ hợp C(n,k)

• Lời giải

- Chọn phần tử cố định *a* trong *n* phần tử đang xét.
- Chia số cách chọn tập con k phần tử này thành hai lớp (lớp chứa a và lớp không chứa a).
- Nếu a được chọn thì ta cần bổ xung k-1 phần tử từ n-1 phần tử còn lại,
 từ đó lớp chứa a gồm C(n-1, k-1) cách.
- Nếu a không được chọn, thì ta phải chọn k phần tử từ n-1 phần tử còn lại, từ đó lớp không chứa a gồm C(n-1, k) cách.
- Theo nguyên lý cộng ta được công thức truy hồi: C(n, k) = C(n-1, k-1) + C(n-1,k)
 - với các giá trị biên được suy ra trực tiếp: C(n,0) = C(n,n) = 1.

Giải công thức truy hồi tuyến tính thuần nhất với hệ số hằng

 Một hệ thức truy hồi tuyến tính thuần nhất bậc k với hệ số hằng số là hệ thức truy hồi có dạng:

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k}$$
trong đó c_1, c_2, \dots, c_k là các số thực và $c_k \neq 0$

- Tìm công thức trực tiếp cho số hạng **a**_n của dãy số {a_n} thoả mãn công thức (1):
 - Theo phương pháp qui nạp toán học thì dãy số {a_n} thoả mãn công thức (1) được xác định duy nhất nếu như nó thoả mãn k điều kiện đầu:

$$a_0 = C_0$$
, $a_1 = C_1$, ..., $a_{k-1} = C_{k-1}$, trong đó C_0 , C_1 , ..., C_{k-1} là các hằng số.

Ví dụ

- Hệ thức truy hồi $P_n=(1.11)P_{n-1}$ là hệ thức truy hồi tuyến tính thuần nhất bậc **1**.
- Hệ thức truy hồi $f_n = f_{n-1} + f_{n-2}$ là hệ thức truy hồi tuyến tính thuần nhất bậc **2**.
- Hệ thức truy hồi $a_n = a_{n-5}$ là hệ thức truy hồi tuyến tính thuần nhất bậc **5**.
- Hệ thức truy hồi $B_n = nB_{n-1}$ không phải là hệ thức truy hồi tuyến tính thuần nhất
 - vì nó không có hệ số hằng số.

Phương pháp cơ bản để giải hệ thức truy hồi tuyến tính thuần nhất

• Tìm nghiệm dưới dạng a_n = rⁿ của (1), *r* là hằng số, nếu và chỉ nếu:

$$a_n = c_1 r^{n-1} + c_2 r^{n-2} + ... + c_k r^{n-k}.$$
Chia cả hai vế cho r^{n-k} ta nhận được
$$r^k - c_1 r^{k-1} - c_2 r^{k-2} - ... - c_{k-1} r - c_k = 0$$
 (2)

• Vậy dãy {a_n} với a_n=rⁿ là nghiệm nếu và chỉ nếu *r* là nghiệm của (2).

Hệ thức truy hồi tuyến tính thuần nhất bậc hai (Định lý 1)

- Cho c₁, c₂ là các hằng số thực.
- Giả sử $r^2 c_1 r c_2 = 0$ có hai nghiệm phân biệt r_1 , r_2 .
- Khi đó dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ khi và chỉ khi $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ với $n = 0, 1, 2, ...; \alpha_1, \alpha_2$ là các hằng số.

Chứng minh - Hệ thức truy hồi tuyến tính thuần nhất bậc hai

- 1. Chiều thuận, cần chỉ ra rằng nếu r_1 , r_2 là hai nghiệm của phương trình đặc trưng và α_1 , α_2 là hai hằng số thì dãy $\{a_n\}$ với $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ là nghiệm của hệ thức truy hồi.
- 2. Ngược lại, cần phải chứng minh rằng nếu $\{a_n\}$ là nghiệm thì $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ với α_1 , α_2 là các hằng số nào đó.

Chứng minh chiều thuận- Hệ thức truy hồi tuyến tính thuần nhất bậc hai (tt)

(\Rightarrow): Giả sử r_1 và r_2 là hai nghiệm phân biệt của $r^2 - c_1 r - c_2 = 0$, khi đó $r_1^2 = c_1 r_1 + c_2$; $r_2^2 = c_1 r_2 + c_2$ đồng thời ta thực hiện dãy các phép biến đổi sau:

$$c_{1}a_{n-1} + c_{2}a_{n-2} = c_{1}(\alpha_{1}r_{1}^{n-1} + \alpha_{2}r_{2}^{n-1}) + c_{2}(\alpha_{1}r_{1}^{n-2} + \alpha_{2}r_{2}^{n-2})$$

$$= \alpha_{1}r_{1}^{n-2}(c_{1}r_{1} + c_{2}) + \alpha_{2}r_{2}^{n-2}(c_{1}r_{2} + c_{2})$$

$$= \alpha_{1}r_{1}^{n-2}r_{1}^{2} + \alpha_{2}r_{2}^{n-2}r_{2}^{2}$$

$$= \alpha_{1}r_{1}^{n} + \alpha_{2}r_{2}^{n} = a_{n}$$

Điều này chứng tỏ dãy $\{a_n\}$ với $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ là nghiệm của hệ thức truy hồi đã cho.

Chứng minh chiều ngược Hệ thức truy hồi tuyến tính thuần nhất bậc hai (tt)

(\Leftarrow):Để chứng minh ngược lại, ta giả sử dãy $\{a_n\}$ là một nghiệm bất kỳ của hệ thức truy hồi. Ta chọn α_l , α_2 sao cho dãy $\{a_n\}$ với $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ thoả mãn các điều kiện đầu $a_0 = C_0$, $a_1 = C_1$. Thực vậy,

$$a_0 = C_0 = \alpha_1 + \alpha_2$$

 $a_1 = C_1 = \alpha_1 r_1 + \alpha_2 r_2$

Từ phương trình đầu ta có $\alpha_2 = C_0 - \alpha_1$ thế vào phương trình thứ hai ta có:

$$C_1 = \alpha_1 r_1 + (C_0 - \alpha_1) r_2 = \alpha_1 (r_1 - r_2) + C_0 r_2$$
; Từ đây suy ra:

$$\alpha_1 = \frac{(C_1 - C_0 r_2)}{r_1 - r_2}; \alpha_2 = C_0 - \alpha_1 = C_0 - \frac{(C_1 - C_0 r_2)}{r_1 - r_2} = \frac{(C_0 r_1 - C_1)}{r_1 - r_2}.$$

Như vậy, khi chọn những giá trị trên cho α_l , α_2 dãy $\{a_n\}$ với $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$ thoả mãn các điều kiện đầu. Vì hệ thức truy hồi và các điều kiện đầu được xác định duy nhất nên $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$. Định lý được chứng minh.

Ví dụ 1

• Tìm nghiệm của hệ thức truy hồi

$$a_n = a_{n-1} + 2a_{n-2} \text{ v\'oi } a_0 = 2, a_1 = 7$$

Lời giải. Phương trình đặc trưng của hệ thức truy hồi có dạng r^2 - r - 2 =0. Nghiệm của nó là r_1 =2 và r_2 = -1. Theo định lý 1, dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi nếu và chỉ nếu :

 $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$ với α_1 , α_2 là các hằng số nào đó. Từ các điều kiện đầu suy ra:

$$a_0 = 2 = \alpha_1 + \alpha_2$$

$$a_1 = 7 = \alpha_1 2 + \alpha_2(-1)$$

Giải ra ta được α_1 =3, α_2 =-1. Vậy nghiệm của biểu thức truy hồi với điều kiện đầu là dãy $\{a_n\}$ với a_n = 3.2ⁿ -(-1)ⁿ.

Ví dụ 2 - Tìm công thức f_n của các số fibonaci

Giải: Các số fibonaci thoả mãn hệ thức $f_n = f_{n-1} + f_{n-2}$ và các điều kiện đầu $f_0 = 0$, f_1 =1. Các nghiệm của phương trình đặc trưng $r^2 - r - 1 = 0$ là:

$$r_1 = \left(\frac{1+\sqrt{5}}{2}\right)$$
; $r_2 = \left(\frac{1-\sqrt{5}}{2}\right)$ theo định lý 1 ta suy ra số fibonaci được cho bởi công

thức sau:

$$f_n = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n \text{với } \alpha_1, \ \alpha_2 \text{ là hai hằng số. Các điều kiện đầu } f_0 = 0,$$

 $f_1=1$ được dùng để xác định các hằng số α_1 , α_2 .

$$f_0 = \alpha_1 + \alpha_2 = 0$$

$$f_1 = \alpha_1 \left(\frac{1 + \sqrt{5}}{2} \right) + \alpha_2 \left(\frac{1 - \sqrt{5}}{2} \right) = 1$$

Từ hai phương trình này ta suy ra $\alpha_1 = \frac{1}{\sqrt{5}}$; $\alpha_2 = -\frac{1}{\sqrt{5}}$ do đó các số fibonaci được cho như sau:

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

Định lý 2 – nghiệm kép

- Cho c₁, c₂ là các hằng số thực, c₂≠0.
- Giả sử $r^2 c_1 r c_2 = 0$ chỉ có một nghiệm r_0 (nghiệm kép)
- Dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ khi và chỉ khi $a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n$ với n =0, 1, 2, . ..; α_1 , α_2 là các hằng số.

Ví dụ

• Tìm nghiệm của công thức truy hồi $a_n = 6a_{n-1} - 9a_{n-2}$ với các điều kiện đầu $a_0 = 1$, $a_1 = 6$

Giải: Phương trình đặc trưng $r^2 - 6r + 9 = 0$ có nghiệm kép $r_{\sigma} = 3$. Do đó nghiệm của hệ thức truy hồi có dạng:

 $a_n = \alpha_1 3^n + \alpha_2 n 3^n$ với α_1 , α_2 là các hằng số nào đó. Từ các điều kiện đầu ta suy ra:

$$a_0 = 1 = \alpha_1$$

 $a_1 = 6 = \alpha_1 3 + \alpha_2 3 \Rightarrow \alpha_1 = 1$, $\alpha_2 = 1$ vậy nghiệm của hệ thức truy hồi và các điều kiện đầu đã cho là:

$$a_n = 3^n + n3^n$$

Định lý 3: Nghiệm các hệ thức truy hồi tuyến tính thuần nhất với các hệ số hằng số - Tổng quát

- Cho c₁, c₂,, c_k là các số thực.
- Giả sử phương trình đặc trưng $r^k c_1 r^{k-1} ... c_k = 0$ có k nghiệm phân biệt $r_1, r_2, ..., r_k$.
- Khi đó dãy $\{a_n\}$ là nghiệm của hệ thức truy hồi $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ khi và chỉ khi $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + ... + \alpha_k r_k^n$ với $n = 0, 1, 2, ...; \alpha_1, \alpha_{2,} \alpha_k$ là các hằng số.

Ví dụ

• Tìm nghiệm của hệ thức truy hồi $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ với điều kiện đầu $a_0 = 2$, $a_1 = 5$, $a_2 = 15$.

Giải: Đa thức đặc trưng của hệ thức truy hồi là:

 $r^3 - 6r^2 + 11r - 6 = 0$ có các nghiệm là $r_1 = 1$, $r_2 = 2$, $r_3 = 3$. Do vậy nghiệm của hệ thức truy hồi có dạng: $a_n = \alpha_1 1^n + \alpha_2 2^n + \alpha_3 3^n$.

Để tìm các hằng số α_1 , α_2 , α_3 ta dựa vào những điều kiện ban đầu:

$$a_0 = 2 = \alpha_1 + \alpha_2 + \alpha_3$$

 $a_1 = 5 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_3$
 $a_2 = 15 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_3$

Giải hệ phương trình này ta nhận được $\alpha_1 = 1$, $\alpha_2 = -1$, $\alpha_3 = 2$. Vì vậy nghiệm duy nhất của hệ thức truy hồi này và các điều đầu đã cho là dãy $\{a_n\}$ với:

$$a_n = 1 - 2^n + 2.3^n$$

- Cô dâu và chú rể mời 4 bạn đứng thành một hàng để chụp ảnh. Hỏi có bao nhiều cách xếp hàng nếu:
 - a) Cô dâu đứng cạnh chú rể.
 - b) Cô dâu không đứng cạnh chú rể.
 - c) Cô dâu đứng ở phía bên phải chú rể

 Xét các chuỗi nhị phân 8 bít. Hỏi có bao nhiều chuỗi không chứa 6 số 0 liền nhau?

- Đếm số byte
 - a) Bất kỳ
 - b) Có đúng hai bit 0.
 - c) Có ít nhất 2 bit 0
 - d) Bắt đầu 00 và kết thúc 00
 - e) Bắt đầu 11 và kết thúc không phải 11

- Đội bóng PTIT-HCM có 20 cầu thủ, chọn 11 cầu thủ ra sân thi đấu chính thức ứng với 11 vị trí trên sân. Hỏi có mấy cách chọn nếu:
 - a) Ai cũng có thể chơi ở bất kỳ vị trí nào.
 - b) Chỉ có một cầu thủ làm thủ môn, các cầu thủ còn lại có thể chơi ở bất kỳ vị trí nào.
 - c) Có 3 cầu thủ có thể làm thủ môn, các cầu thủ còn lại có thể chơi ở bất kỳ vị trí nào.

Tìm số nghiệm nguyên không âm của:

a) Phương trình

$$x_1+x_2+x_3+x_4=20$$
 với $x_1\ge0$, $x_2\ge0$, $x_3\ge0$, $x_4\ge0$

b) Phương trình

$$x_1+x_2+x_3+x_4=25$$
 với $x_1\ge6$, $x_2\ge3$, $x_3\ge9$, $x_4\ge-2$

c) Bất phương trình

$$x_1+x_2+x_3 \le 11 \text{ v\'oi } x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

 Giải các hệ thức truy hồi với các điều kiện đầu sau:

a)
$$a_n = 5a_{n-1} - 6a_{n-2}$$
; $a_0 = 0$ và $a_1 = 1$

b)
$$a_n = 6a_{n-1} - 9a_{n-2}$$
; $a_0 = 1$ và $a_1 = 6$

c)
$$a_n=2a_{n-1}+5a_{n-2}-6a_{n-3}$$
; $a_0=0$, $a_1=-4$ và $a_2=8$

- Gọi a_n là số dãy bit độ dài n không có 2 bit 0 liền nhau.
 - a) Tìm hệ thức truy hồi cho a_n
 - b) Biết giá trị đầu $a_1=2$, $a_2=3$, giải hệ thức truy hồi trên.

- Cho biết dân số của Việt Nam năm 2020 là 100 triệu người. Giả sử tốc độ tăng dân số hằng năm là 0,2% mỗi năm. Gọi D_n là dân số của Việt Nam n năm sau kể từ 2020.
 - a) Lập hệ thức truy hồi tính D_n .
 - b) Dân số Việt Nam năm 2030 là bao nhiêu?