- Establecer si es válida la conclusión en cada uno de los siguientes conjuntos de premisas:
 - (a) A continuación el razonamiento ordenado:

P1.
$$p \Longrightarrow q$$
 Premisa 1
P2. $\neg q$ Premisa 2
P3. $\neg p \Longrightarrow r$ Premisa 3
C. $\therefore r$ Conclusión

Si tomamos la P2. y la P1:

$$\begin{array}{ccc}
P2. & \neg q \\
P1. & p \Longrightarrow q \\
\hline
 & \neg p
\end{array}$$

Table 1: Ley Modus Tolens

Si tomamos $\neg p$ y la Premisa 3:

$$\begin{array}{ccc} & \neg p & \\ \hline P3. & \neg p & \xrightarrow{r} & r \\ \hline & r & \end{array}$$

Table 2: Ley Modus Ponens Por lo tanto es un razonamiento válido

(b) A continuación el razonamiento ordenado:

P1.
$$r \Longleftrightarrow (p \land q)$$
 Premisa 1
P2. $\neg q \Longrightarrow t$ Premisa 2
P3. $\neg t \lor s$ Premisa 3
P4. $\neg s \land p$ Premisa 4
C. $\therefore r$ Conclusión

Como asumo que todas las premisas son verdaderas, en particular si asumo que la premisa 4 es verdadera al ser una conjunción de proposiciones, todas estas tiene que ser verdaderas, o sea:

P4:
$$v(\neg s \land p) = V$$
, entonces $v(p) = V$ y $v(\neg s) = V$ Luego como $v(\neg s) = V$

$$\begin{array}{ccc}
 & \neg s \\
 & \neg t & \lor s \\
\hline
 & \neg t
\end{array}$$

Table 3: Ley Silogismo Disyuntivo

Luego $v(\neg t) = V$

Table 4: Ley Modus Tolens

Luego como v(q) = V y v(p) = V, entonces $v(p \land q) = V$. Además como la premisa 1 es verdadera, v(r) = V. Por lo tanto el razonamiento es válido.

(c) A continuación el razonamiento ordenado:

$$\begin{array}{cccc} \text{P1.} & p \Longrightarrow q & \text{Premisa 1} \\ \text{P2.} & r \Longrightarrow \neg q & \text{Premisa 2} \\ \hline \text{C.} & \therefore r \Longrightarrow \neg p & \text{Conclusión} \end{array}$$

Primero podemos sustituir la premisa 1 por su contrarecíproco, o sea:

$$p \implies q \; por \; su \; contrareciproco \; \neg q \; \Longrightarrow \; \neg p$$

Entonces:

$$\begin{array}{ccc}
 & r \implies \neg q \\
 & \neg q \implies \neg p \\
\hline
 & r \implies \neg p
\end{array}$$

Table 5: Ley Transitividad de la implicación

Por lo tanto el razonamiento es válido.

(d) A continuación el razonamiento ordenado:

$$\begin{array}{c|ccc} \text{P1.} & p \vee \neg q & \text{Premisa 1} \\ \text{P2.} & \neg q \Longleftrightarrow r & \text{Premisa 2} \\ \text{P3.} & p \vee \neg r & \text{Premisa 3} \\ \text{C.} & \therefore p & \text{Conclusión} \end{array}$$

Como asumimos que todas las premisas son verdaderas, en particular asumimos que la premisa 2 es verdadera, o sea:

$$v(\neg q \leftrightarrow r) = V$$

Esto pasa en dos casos:

• **CASO 1**: $v(\neg q) = V$ y v(r) = V. Entonces:

$$\begin{array}{c|c}
 & r \\
\hline
 & p \lor \neg r \\
\hline
 & p
\end{array}$$

Table 6: Ley Silogísmo Disyuntivo

• CASO 2: $v(\neg q) = F$ y v(r) = F. Entonces:

$$\begin{array}{cc} & q \\ \hline P3. & p \lor \neg q \\ \hline & p \end{array}$$

Table 7: Ley Silogísmo Disyuntivo

Por lo tanto el razonamiento es válido.

12. Anlaizar la validez de la conclusión en cada caso:

(a) Ordenamos:

P1.
$$\neg s$$
 Premisa 1
P2. $p \Longrightarrow r$ Premisa 2
P3. $q \Longrightarrow p$ Premisa 3
P4. $q \lor t$ Premisa 4
P5. $t \Longrightarrow s$ Premisa 5
C. $\therefore r$ Conclusión

Si observamos la premisa 1 con el contrarecíproco de la premisa 5:

Table 8: Ley Modus Ponens

Entonces:

$$\begin{array}{c|c}
 & \neg t \\
\hline
 P4. & q \lor t \\
\hline
 & q
\end{array}$$

Table 9: Ley Silogismo Disyuntivo

Además por transitividad entre las P3 y P2, vale que $\,v(q
ightarrow r) = V\,\,$, entonces:

$$\underbrace{\begin{array}{c} q \\ q \Longrightarrow r \end{array}}_{}$$

Table 10: Ley Modus Ponens

Por lo tanto la conclusión es válida.

(b) Ordenamos:

P1.	$p \land \neg q$	Premisa 1
P2.	$\neg q \Longleftrightarrow t$	Premisa 2
P3.	$\neg t \vee \neg r$	Premisa 3
C.	$\therefore r$	Conclusión

Como la P1 asumimos que es verdadera y es una conjunción de proposiciones, entonces v(p) = V y $v(\neg q) = V$. Como P2 es verdadera y $v(\neg q) = V$, vale que v(t) = V . Además:

$$\begin{array}{c|c} t \\ \hline P3. & \neg t \vee \neg r \\ \hline \neg r \end{array}$$

Table 11: Ley Silogismo Disyuntivo

Por lo tanto la conlcusión es no válida.

- c) Usando la Ley del silogismo disyuntivo es fácil ver que la conclusión es válida.
- d) Ordenamos:

P1.	$(r \implies q) \land r$	Premisa 1
P2.	$s \implies t$	Premisa 2
P3.	$r \implies s$	Premisa 3
C.	$\therefore q \lor t$	Conclusión

Observemos que como la P1 es válida entonces $v(r) = V \quad ext{y} \ v(r o q) = V \quad .$

Luego la Ley Modus Ponens v(q) = V . Entonces $v(q \lor t) = V$. Por lo tanto la conclusión es válida.

- 13. Demostrar los siguientes teoremas por vía exclusivamente lógica, sin recurrir a propiedades de los números reales:
 - (a) Primero traducimos a lenguaje proposicional:
 - p: x = 0
 - q: y = 1
 - \mathbf{r} : x = y
 - s: y = z

Entonces:

H1.
$$\neg p \Longrightarrow q$$
 Hipótesis 1
H2. $r \Longrightarrow s$ Hipótesis 2
H3. $s \Longrightarrow \neg q$ Hipótesis 3
H4. r Hipótesis 4
T. $\therefore p$ Tesis

Usando la Ley de transitividad de la implicación podemos ver que H2 Y H3 implican

que $v(r \to \neg q) = V$. Además que por el contrarrecíproco de H1 tenemos que $v(\neg q \to p) = V$.

Usando la Ley transitiva entre $r \to \neg q$ y $\neg q \to p$, tenemos que $v(r \to p) = V$. Entonces

$$\begin{array}{ccc}
 & H4. & r \\
 & r \Longrightarrow p \\
\hline
 & p
\end{array}$$

Table 12: Ley Modus Ponens

Por lo tanto el teorema es válido.

(b) Se resuelve de manera similar. Pista: usar mucho el contrarecíproco.

- 14. Justificar los siguientes razonamientos:
 - (a) Primero traducimos a lenguaje proposicional:
 - p: 2 > 1
 - q: 3 > 1
 - r: 3 > 0

Por lo tanto el razonamiento queda de la siguiente manera:

Usando la transitividad de la implicación: $p \rightarrow r$ y como v(p) = V.

Usando Modus Ponens concluímos que v(r) = V. Por lo tanto el razonamiento es válido.

- (b) Igual al ejercicio 11d .
- (c) Antes de resolver este ejercicion veamos una equivalencia que nos va a resultar muy útil:

EQUIVALENCIA DE LA IMPLICACIÓN:

$$(p \to q) \leftrightarrow (\neg p \lor q)$$

Volviendo al problema, primero ordenamos:

Usando la equivalencia, podemos cambiar la hipótesis 3 por:

$$\neg(\neg p \to s) \quad \leftrightarrow \quad \neg[\neg(\neg p) \lor s] \qquad \leftrightarrow \quad \neg(p \lor s) \qquad \qquad \leftrightarrow \quad \neg p \quad \land \quad \neg s$$

Por lo tanto como asumimos que todas las hipótesis son verdaderas, tenemos que $v(\neg p \land \neg s) = V$, o sea, $v(\neg p) = V$ y $v(\neg s) = V$. Usando el contrarrecíproco de la hipótesis 1 y que $v(\neg s) = V$, deducimos que $v(\neg r) = V$ por Modus Ponens. Y como $v(\neg p) = V$ y la H4 usando Modus Ponens nuevamente, deducimos que v(q) = V.

Luego, como $v(\neg r) = V \quad \text{y } v(q) = V$, entonces $v(q \land \neg r) = V$.

Por lo tanto, el razonamiento es válido.