

Last update: August 2013

CW for Microcontrollers v10 and MQX™

Contents

- Import MQX Libraries
- Build MQX libraries
- ► Import and Debug MXQ Hello World Project
- New MQX project
- Debugging with J-Link
- CW10.x, MQX and Processor Expert
- CW10.x, MQX and PE : New LDD driver

Import MQX Libraries

Import MQX Libraries

- Navigate to C:\Freescale\Freescale MQX X.X\config\<board_name> and drag <board>.wsd to the CodeWarrior
- All BSP libraries will be loaded to your environment automatically

Import MQX libraries

▶ Both, the projects, and the Working Set configuration have been imported.

Building MQX Libraries

Use MQX toolbar to select desired configuration you wish to build.

Hit the icon to build all MQX libraries for a selected working set as shown below:

Note:

Debug configuration of MQX libraries, workingset, has the compiler optimization set to the lowest level for all imported projects. The Release configuration uses the highest possible compiler optimization setting.

Import and Debug MXQ Hello World Project

Import 'Hello World' MQX example

- Right-Click on Project Explorer and Import.
- Select Existing Projects into Workspace and Browse.

Import 'Hello World' MQX example

► Select <install mqx folder>\mqx\examples\hello\CW10\hello_twrk60n512

Build 'Hello World' MQX example

Right-Click on Project Explorer hello_twrk60n512 and select Build Project.

Prepare your hardware

▶ Prepare your Tower System:

Connect TWR-SER and TWR-K60N512 to TWR-ELEV (primary and

secondary).

Prepare your hardware

► Connect USB Cable to the TWR-K60N512 (J13) and to the laptop.

Debug MQX 'Hello World' example

- Select hello_twrk60n512 project and Click 'Debug icon.'
- Select hello_twrk60n512_Int_Flash_Debug_PEOSJTAG connection.

Debug MQX 'Hello World' example

You are ready to Run and Debug the project.

Run MQX 'Hello World' example

Execute the code 'Resume' icon and 'Pause' execution.

Run MQX 'Hello World' example

➤ You can explore the Debugging Eclipse perspective.

Run MQX 'Hello World' example

- Terminate the Debugging session and change Eclipse perspective.
- You have Run and Debug your first MQX CW10 project.

- ► File -> New -> MQX Project
- Give it a name and click Next.

Select TWRK60n512 Board.

Select Basic application.

- Select P&E Open Source JTAG.
- A project is created.

Build New MQX Project

Right-Click on Project Explorer New_MQX_Project and Build Project.

Debug New MQX Project

- Select New_MQX_Project : twrk60n512_Int_RAM
- Select New_MQX_Project_twrk60n512_Int_Ram_PnE OSJTAG

Run New MQX Project

Execute the code 'Run' icon.

Run New MQX Project

Pause execution.

TAD: Task Summary

MQX -> Task Summary

TAD: Task Summary

Observe Tasks in your Application.

Run New MQX Project

Terminate execution.

Debugging with J-Link

Edit the Connection Settings of the project.

Edit the Remote System.

Select J-Link\J-Trace for ARM®

Confirm changes.

Click OK.

Debug with J-Link

- ► Connect J-Link target cable to TWR-K60N512 (J11).
- Connect USB J-Link cable to laptop.
- ► Connect USB Cable to TWR-K60N512 (J13) and laptop.

Change Connection Type

- Select New_MQX_Project : twrk60n512_Int_RAM
- Click Debug.

Run New MQX Project

Execute the code 'Resume' icon.

Run New MQX Project

Pause execution.

TAD: Stack Usage

MQX -> Stack Usage.

TAD: Stack Usage

Observe Stack Data.

CW10.x, MQX and Processor Expert

Import MQX BSP

- ▶ Right-Click on Project Explorer and Import (or) File -> Import.
- All Kinetis BSP projects are Processor Expert Ready.

- Expand bsp_twrk60n512 project view:
- ► Show Processor Expert View:

Generate code:

Click on PE components to watch the properties.

- Processor Expert gives you a easy way to add device drivers to the MQX BSP.
- In the BSP example two Timers, GPIO, WatchDog, and DAC are included.
- Properties of the component can be changed easily, such as GPIO pin.

- GPIO1 component in BSP is driving LED's in Tower board.
- TRG Timer will generate a 64KHz interrupt.

▶ PWM configures Channel 0 in Flex Timer 0 a PWM of 4096 timer-ticks

Besides Properties, Components also include Methods and Events that we can enable or disable.

Import MQX PE Demo

- Right-Click on Project Explorer and Import.
- Select Existing Projects into Workspace and Browse.

Import MQX PE Demo

► Select <install mqx folder>\mqx\pe_demo\pe_demo_twrk60n512

Select in Menu : Processor Expert -> Show Views.

Build PE BSP

▶ Right-Click on Project Explorer bsp_twrk60n512_pe and Build Project.

Build PE Demo

- Expand pe_demo_twrk60n512 project view.
- Hide Processor Expert View.

- Demo Application demonstrates how to use Processor Expert to configure MQX BSP:
 - It generates sine signal with given period on DACO pin.
 - PWM signal is generated using FlexTimer FTM0 Channel 0.
 - It toggles LEDs (D9-D11) on board using GPIO driver.
 - ewm_task task is periodically refreshing watchdog.
- Application creates four tasks as shown below:

```
* Task template list */
const TASK TEMPLATE STRUCT MQX template list[] =
   /* Task Index,
                    Function,
                                 Stack, Priority,
                                                                   Attributes,
                                                                                                   Time Slice
                                                      Name,
                                                                                          Param,
                                  400,
                                                      "DAC Task", MQX AUTO START TASK,
                                                                                                       0 },
     DAC TASK,
                    dac task,
                                                      "PWM Task", MQX AUTO START TASK,
     PWM TASK,
                    pwm task,
                                  400,
                                                                                                       0 },
      EWM TASK.
                                  300,
                                             10,
                                                      "EWM Task", MQX AUTO START TASK,
                                                                                            Ο,
                                                                                                       0 },
                    ewm task,
                                                      "LED Task", MQX AUTO START TASK,
                                                                                                       0 },
     LED TASK,
                    led task,
                                  200,
                                              11,
    \{ 0 \}
```

- Application uses PE LDD drivers.
- To use PE drivers, some 'handler' variables must be declared:

```
/* DAC */
#define DA1_INTERNAL_BUFFER_SIZE (16)

LDD_TDeviceData *DA1_Device;

LDD_TUserData *DA1_UserDataPtr;

LDD_TError DA1_Error;

LDD_DAC_TBufferWatermark DA1_WatermarkValue = LDD_DAC_BUFFER_WATERMARK_L4;
```

Task must initialize the LDD components.

```
DA1_UserDataPtr = NULL;
DA1_Device = DA1_Init(DA1_UserDataPtr);
if (DA1_Device == NULL) {
   puts("failed");
   _task_block();
} else {
   puts("done");
```

```
PWM_DeviceData = PWM_Init(NULL);
if (PWM_DeviceData == NULL) {
  puts("failed");
    _task_block();
}
else {
    puts("done");
}
```

```
EWM_DeviceData = WDog1_Init(NULL);
if (EWM_DeviceData == NULL) {
  puts("failed");
    _task_block();
}
else {
    puts("done");
}
```

Enable the components:

```
PWM_Error = PWM_Enable(PWM_DeviceData);
EWM_Error = WDog1_Enable(EWM_DeviceData);
```

Application can use the components Methods:

```
DA1_Error = DA1_SetBuffer(DA1_Device, GEN_Buffe DA1_INTERNAL_BUFFER_SIZE, 0);
```


Finally, implement the Events.

```
void PWM OnCounterRestart LDD TUserData *UserDataPtr)
                                                                                            /* Increment PWM duty-cycle from 0-100% */
                                                                                                 ·M Init
                                                                                                  🔰 Deinit
    PWM Value += PWM Step;
                                                                                                  M Enable
                                                                                                  🔰 Disable
                                                                                                  GetInputFrequencyReal
    if (PWM_Value > PWM_MaxValue) PWM_Value = 0;
                                                                                                  GetInputFrequency
                                                                                                  SetPeriodTicks
    /* Set new PWM channel value */
                                                                                                  GetPeriodTicks
    PWM_Error = PWM_SetOffsetTicks(PWM_DeviceData, 0, PWM_Value);
                                                                                                    ResetCounter

    GetCounterValue

                                                                                                  M SetOffsetTicks
                                                                                                  M GetOffsetTicks
                                                                                                  GetCaptureValue
                                                                                                  SelectOutputAction
                                                                                                  SelectCaptureEdge
                                                                                                  PWM_OnCounterRestart
                                                                                                  OnChannel0
                                                                                                  OnChannel1
```

Build PE Demo

▶ Right-Click on the Project Explorer pe_demo_twrk60n512 and Build Project or click on the icon

Run MQX PE Demo

Click on the Debug icon.

Run MQX PE Demo

Click on the Resume (F8).

Run MQX PE Demo

Check PWM output on A67.

CW10.x, MQX and PE: New LDD driver

- ► Expand bsp_twrk60n512_pe project view.
- Show Processor Expert View.
- Select PE Projects Working Set.

- Expand Processor Expert Project View.
- Search ADC_LDD in the Components Library window.

Right click on the component.

Select Add to project.

- Double click on ADC_LDD.
- Select ADC1.
- Enable Interrupt service.

- Select ADC1_DM1 Channel.
- Enable Static sample groups.
- Open Conversion Time Window.

Select 19.23 us.

► ADC LLD Driver is configured.

- Click Methods Tab.
- Click to generate code for methods.

Set 'generate code' for the next Methods:

You can configure more parameters of the components by selecting the Expert View.

Build PE BSP

▶ Right-Click on the Project Explorer bsp_twrk60n512_pe and Build Project.

New LDD driver

- Expand pe_demo_twrk60n512 project view.
- Hide Processor Expert View.

Double click in main.c to view code.


```
© main.c ☎ 🕟 TRG.c
 /* Task enumerations and prototypes */
     DAC TASK = 1,
     PWM TASK,
     LED TASK,
     EWM TASK
 } etask type;
 void dac_task(uint_32);
 void pwm task(uint 32);
 void led task(uint 32);
 void ewm task(uint 32);
 /* Task template list */
 const TASK TEMPLATE STRUCT MQX template list[] =
    /* Task Index,
                    Function,
                                Stack, Priority,
                                                     Name,
                                                                  Attributes,
                                                                                       Param,
                                                                                               Time Slice
     { DAC TASK,
                     dac task,
                                                     "DAC Task", MQX AUTO START TASK,
                                                                                                    0 ),
     { PWM TASK,
                     pwm task,
                                                     "PWM Task", MQX AUTO START TASK,
                                                                                                    0 ),
     { EWM TASK,
                     ewm_task,
                                                     "EWM Task", MQX AUTO START TASK,
                                                                                                    0 ),
     ( LED TASK,
                    led task,
                                                     "LED Task", MOX AUTO START TASK,
                                  200,
                                                                                                    0 ),
     { 0 }
 /* Function prototypes */
 uint 16 ptr GEN CreateTable (int 16 ptr table ptr, uint 16 table size, int 16 peak peak, int 16 offset);
  mqx uint GEN DestroyTable (uint 16 ptr table ptr);
```

Add new task : ADC.

```
/* Task enumerations and prototypes */
enum {
    DAC\ TASK\ =\ 1,
    PWM TASK
    ADC TASK
} etask type;
void dac task (uint 32);
void pwm task(uint 32);
void led task(uint 32);
void ewm task(uint 32)
void adc task(uint 32);
/* Task template list */
const TASK TEMPLATE STRUCT MQX template list[] =
   /* Task Index,
                     Function,
                                 Stack, Priority,
                                                      Name,
                                                                    Attributes,
                                                                                          Param,
                                                                                                    Time Slice
    { DAC TASK,
                     dac task,
                                   400,
                                                      "DAC Task", MQX AUTO START TASK,
                                                                                                        0 ),
                                                                    MQX AUTO START TASK,
                                                      "PWM Task",
      PWM TASK,
                                   400,
                                                                                                        0 },
                     pwm task,
      EWM TASK,
                                   300,
                                                    6_"EWM Task",
                                                                    MQX AUTO START TASK,
                                                                                            Ο,
                                                                                                        0 },
                     ewm task,
                     led task.
                                                      "LED Task". MOX AUTO START TASK.
      LED TASK.
                                   200.
                                                                                                        0 }.
                                                                                                        0 ),
      ADC TASK,
                                  200,
                                                      "ADC Task", MQX AUTO START TASK,
                     adc task,
                                              12,
    { 0 }
```

Add Task function and code.

```
#define SAMPLE GROUP SIZE 1U
volatile AD1 TResultData MeasuredValues[SAMPLE GROUP SIZE];
LDD TDeviceData *MyADCPtr;
LDD TError;
void adc task
    uint 32 initial data
   Error = AD1 Enable(MyADCPtr);
   while (1)
   /* Suspend task for 100ms */
      if (MeasuredValues[0]>2000) GPIO1 ToggleFieldBits(LED DeviceData, LED4, 1);
      time delay(200);
```

Add ADC1 Event function code.

```
void AD1_OnMeasurementComplete(LDD_TUserData *UserDataPtr)
{
   Error = AD1_GetMeasuredValues(MyADCPtr, (LDD_TData *)&MeasuredValues); /* Read measured values */
   }
   /* EOF */
```

ADC1 channel is connected to TWR-K60N512 Potentiometer.

When ADC value is greater than 20000, LED4 (Blue) toggles.

```
while(1)
{
/* Suspend task for 100ms */

if(MeasuredValues[0]>2000)GPIO1_ToggleFieldBits(LED_DeviceData, LED4, 1);
    _time_delay(200);
}
```

Moving potentiometer R52 can start/stop LED4 toggle.

Build PE Demo

► Right-Click on the Project Explorer **pe_demo_twrk60n512** and Build the Project or click on the icon.

Run MQX PE Demo

Click Debug icon.

Run MQX PE Demo

Click Resume (F8).

▶ Test the new functionality in the application and the new LDD driver.

CodeWarrior

- Use this link to access Freescale Infocenter:
- ▶ freescale.com/infocenter/index.jsp

