Online 3D Gaussian Splatting Modeling with Novel View Selection

Byeonggwon Lee, Junkyu Park, Soohwan Song Dongguk University, Republic of Korea

Khang Troung Giang 42dot, Republic of Korea

Novel View Selection (NVS)

Summary

- Goal
 - Online 3D Gaussian Splatting (3DGS) modeling from RGB frames
- Previous Approach: Monocular Dense SLAM
 - Point clouds generated from low-resolution depth maps hinder dense reconstruction
 - Monocular depth prediction leads to depth inconsistencies
 - Reliance solely on keyframes is insufficient to capture the entire scene

□ Keyframe **□** NVS

- **Key Idea**
 - Employ online MVS to estimate depth maps and initialize Gaussians
 - Select non-keyframes by estimating Gaussian uncertainty
 - Use non-keyframes to further train 3DGS and fill incomplete regions

NVS based on Gaussian uncertainty

- Select non-keyframes observing the most uncertain Gaussian
- Gaussian uncertainty:

$$U_{n,i} = \alpha_1 \lambda_{n,i} + \alpha_2 A_{n,i}$$

- $\lambda_{n,i}$: Largest eigenvalue of Cov
- $A_{n,i}$: Gaussian gradients

Results

Method

Frontend

- Build keyframe pose graph and sparse depths via DROID-SLAM
- Run GBA every 30 keyframes to maintain global frame consistency
- Estimate high-resolution depth maps from keyframes within a local time window using the SOTA MVS method, MVSFormer

Backend

- Generate new Gaussians from the MVS depth maps for each keyframe and integrate them into the 3DGS model
- Independently of the frontend, continuously train the 3DGS model until the next keyframe is received
- Non-keyframes selected through NVS are also used for training

System Framework with Parallel Frontend-Backend Operation

Results

Results for Replica dataset

Quantitative results on Replica evaluation set

Method	Off0	Off1	Off2	Off3	Off4	Rm0	Rm1	Rm2	Avg.
				PSNR 1					
Q-SLAM	36.31	37.22	30.68	30.21	31.96	29.58	32.74	31.25	32.49
MonoGS	32.00	31.21	23.26	25.77	23.85	23.53	25.00	22.42	25.88
Splat-SLAM	40.81	40.64	35.19	35.03	37.40	32.25	34.31	35.95	36.45
Photo-SLAM	36.99	37.52	31.79	31.62	34.17	29.77	31.30	33.18	33.29
MGS-SLAM	35.51	34.25	30.83	31.86	34.38	29.91	31.06	31.49	32.41
MVS-GS	41.02	42.04	34.00	34.65	33.33	32.20	31.54	35.84	35.58
Ours	43.93	43.98	37.98	36.31	39.59	34.88	37.99	39.60	39.28
				SSIM ↑	-				
Q-SLAM	0.94	0.94	0.90	0.88	0.89	0.83	0.91	0.87	0.89
MonoGS	0.90	0.88	0.82	0.84	0.86	0.75	0.79	0.81	0.83
Splat-SLAM	0.97	0.99	0.97	0.97	0.97	0.96	0.97	0.96	0.97
Photo-SLAM	0.96	0.95	0.93	0.92	0.94	0.87	0.91	0.93	0.93
MGS-SLAM	0.94	0.93	0.90	0.92	0.95	0.89	0.90	0.91	0.92
MVS-GS	0.98	0.98	0.95	0.96	0.95	0.95	0.92	0.96	0.96
Ours	0.99	0.99	0.98	0.97	0.98	0.96	0.97	0.98	0.98
				LPIPS .	l .				
Q-SLAM	0.13	0.15	0.20	0.19	0.18	0.18	0.16	0.15	0.17
MonoGS	0.23	0.22	0.30	0.24	0.34	0.33	0.35	0.39	0.30
Splat-SLAM	0.05	0.07	0.06	0.04	0.10	0.09	0.06	0.05	0.06
Photo-SLAM	0.06	0.06	0.09	0.09	0.07	0.10	0.08	0.07	0.08
MGS-SLAM	0.07	0.11	0.12	0.07	0.08	0.08	0.09	0.09	0.09
MVS-GS	0.05	0.05	0.09	0.07	0.10	$\overline{0.10}$	0.13	0.07	0.08
Ours	$\overline{0.02}$	$\overline{0.02}$	0.03	0.03	0.03	0.04	0.04	0.03	0.03

Qualitative results on Aerial and T&T

High vs. Low Uncertainty Visualization

Uncertainty Map

	PSNR ↑	SSIM ↑	LPIPS \downarrow	Uncertainty Value
High Uncertainty	19.609	0.632	0.193	1236.9
Low Uncertainty	28.787	0.899	0.132	446.22

- 1]3D Gaussian splatting for real-time radiance field rendering, ACM Transactions on Graphics, 2023.
- [2] MVSFormer: Multi-View Stereo by Learning Robust Image Features and Temperature-based Depth, TMLR, 2023.
- [3] Photo-SLAM: Real-time Simultaneous Localization and Photorealistic Mapping ..., CVPR, 2024
- [4] MVS-GS: High-Quality 3D Gaussian Splatting Mapping via Online Multi-View Stereo, IEEE Access, 2025