Lecture Note: Mathematical Analysis – Bài Giảng: Giải Tích Toán Học

Nguyễn Quản Bá Hồng*

Ngày 16 tháng 5 năm 2025

Tóm tắt nội dung

This text is a part of the series *Some Topics in Advanced STEM & Beyond*: URL: https://nqbh.github.io/advanced_STEM/.
Latest version:

• Lecture Note: Mathematical Analysis – Bài Giảng: Giải Tích Toán Học.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/lecture/NQBH_mathematical_analysis_lecture.pdf.

TEX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/lecture/NQBH_mathematical_analysis_lecture.tex.

• Slide: Mathematical Analysis – Slide: Giải Tích Toán Học.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/slide/NQBH_mathematical_analysis_slide.pdf.

 $TeX: \verb| URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/slide/NQBH_mathematical_analysis_slide.tex. \\$

- Codes:
 - ${\tt o~C++: https://github.com/NQBH/advanced_STEM_beyond/tree/main/analysis/C++.}\\$
 - $\circ \ \ Python: https://github.com/NQBH/advanced_STEM_beyond/tree/main/analysis/Python.$

Mục lục

1	Basic Mathematical Analysis – Giải Tích Toán Học Cơ Bản	2		
	1.1 Numbers – Các loại số	2		
	1.2 Notations & conventions – Ký hiệu & quy ước	2		
_				
2	Sequence – Dãy Số	3		
	2.1 Definition of a sequence – Định nghĩa của dãy số			
	2.2 Convergent- & divergent sequences – Dãy số hội tụ & dãy số phân kỳ	4		
	2.3 Subsequences – Dãy con	4		
	2.4 Limit of sequences – Giới hạn của dãy số	5		
		11		
	2.6 Sequences with SymPy	11		
	2.6.1 Sequence Base	11		
	2.7 Problems: Sequences	12		
	21 Troubles Sequences 17 17 17 17 17 17 17 17 17 17 17 17 17			
3	Function – Hàm Số			
4	Continuity – Sự Liên Tục			
5	Series – Chuỗi Số			
6	Derivative & Differentiability – Đạo Hàm & Tính Khả Vi			
U	Derivative & Differentiability Data Ham & Him Kha Vi	10		
7	Integral – Tích Phân	17		
	7.1 SymPy/integrals module			
	7.2 Leibniz integral rule – Quy tắc tích phân Leibniz	19		
	7.2 Belonz moegiar rate Quy vae vien phan Belonz	10		
8	Functional Equation – Phương Trình Hàm	19		
9	Fourier transform – Biến đổi Fourier	19		

^{*}A scientist- & creative artist wannabe, a mathematics & computer science lecturer of Department of Artificial Intelligence & Data Science (AIDS), School of Technology (SOT), UMT Trường Đại học Quản lý & Công nghệ TP.HCM, Hồ Chí Minh City, Việt Nam. E-mail: nguyenquanbahong@gmail.com & hong.nguyenquanba@umt.edu.vn. Website: https://nqbh.github.io/. GitHub: https://github.com/NQBH.

	9.1	Discrete Fourier transform – Biến đổi Fourier rời rạc	19
		See also	
Тà	i liê		20

1 Basic Mathematical Analysis – Giải Tích Toán Học Cơ Bản

Resources - Tài nguyên.

- 1. Đặng Đình Áng. Nhập Môn Giải Tích.
- 2. [Rud76]. Walter Rudin. Principles of Mathematical Analysis.
- 3. [Tao22a]. TERENCE TAO. Analysis I.
- 4. [Tao22b]. TERENCE TAO. Analysis II.

Question 1 (Definition of mathematical analysis). What is mathematical analysis? Cf. mathematical analysis with other types of analysis.

For answers, see, e.g., [Tao22a, Chap. 1, Sect. 1.1: What Is Analysis?, pp. 1–2], Wikipedia/mathematical analysis. For other types of analysis, see, e.g., Wikipedia/analysis.

Question 2 (Motivation of mathematical analysis). Why do mathematical analysis?

For answers, see, e.g., [Tao22a, Chap. 1, Sect. 1.2: Why Do Analysis?, pp. 2–10]

Example 1 (Division by zero & infinity). The cancellation law for multiplication $ac = bc \Rightarrow a = b$ does not work when c = 0 & $c = \pm \infty$. The cancellation law for addition $a + c = b + c \Rightarrow a = b$.

Example 2 (Cancellation properties).

See, e.g., Wikipedia/cancellation property.

Example 3 (Geometric series – Chuỗi hình học). When does the geometric series $G(a) := \sum_{i=0}^{\infty} \frac{1}{a^i}$ converge? When does G(a) diverge?

1.1 Numbers – Các loại số

Trong chương trình Toán phổ thông, học sinh đã được học: số tự nhiên ở chương trình Toán 6 [Thá+23a; Thá+23b], & số hữu tỷ & số thực ở chương trình Toán 7,

1.2 Notations & conventions – Ký hiệu & quy ước

Đặt tập hợp các đa thức (polynomial) 1 biến với hệ số nguyên, hệ số hữu tỷ, hệ số thực, hệ số phức lần lượt cho bởi:

$$\mathbb{Z}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{Z}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\},$$

$$\mathbb{Q}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{Q}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\},$$

$$\mathbb{R}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{R}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\},$$

$$\mathbb{C}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{C}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\}.$$

Ta có quan hệ hiển nhiên $\mathbb{N}[x] \subset \mathbb{Z}[x] \subset \mathbb{Q}[x] \subset \mathbb{R}[x] \subset \mathbb{C}[x]$. Tổng quát, với \mathbb{F} là 1 trường bất kỳ, tập hợp các đa thức 1 biến với hệ số thuộc trường \mathbb{F} (e.g., $\mathbb{Z}, \mathbb{Z}_p, \mathbb{Q}, \mathbb{R}, \mathbb{C}$) cho bởi:

$$\mathbb{F}[x] := \left\{ \sum_{i=0}^{n} a_i x^i; n \in \mathbb{N}, \ a_i \in \mathbb{F}, \ \forall i = 0, \dots, n, \ a_n \neq 0 \right\}.$$

Tập xác định của đa thức có thể là toàn bộ trường số thực \mathbb{R} hoặc trường số phức \mathbb{C} , i.e., $D_P = \text{dom}(P) = \mathbb{R}$ or $D_P = \text{dom}(P) = \mathbb{C}$, tùy vào trường \mathbb{F} của các hệ số & mục đích sử dụng đa thức.

Problem 1 (Cf: Calculus vs. Mathematical Analysis). Distinguish & compare Calculus vs. Mathematical Analysis.

Analysis is more pure mathematics. Calculus is more applied mathematics.

Problem 2 (Examples & counterexamples in mathematical analysis – Ví dụ & phản ví dụ trong phân tích toán học). Find, from simple to advanced, examples & counterexamples to each mathematical concepts & mathematical results, including lemmas, propositions, theorems, & consequences.

- Tìm các ví dụ & phản ví dụ từ đơn giản đến nâng cao cho mỗi khái niệm toán học & kết quả toán học, bao gồm các bổ đề, mệnh đề, định lý, & hệ quả.

Problem 3 (Python SymPy). Study SymPy to support calculus & mathematical analysis.

Definition 1 (Neighborhood, [WS10], p. 6). The set of all points x s.t. $|x - a| < \delta$, where $\delta > 0$, is called a δ neighborhood of the point a. The set of all points x s.t. $0 < |x - a| < \delta$, in which x = a is excluded, is called a deleted δ neighborhood of a or an open ball of radius δ about a.

Theorem 1 (Bolzano-Weierstrass theorem). Every bounded infinite set has at least 1 limit point.

Definition 2 (Algebraic- & transcendental numbers – số đại số & số siêu việt). A number $x \in \mathbb{R}$ which is a solution to the polynomial equation

$$\sum_{i=0}^{n} a_i x^i = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0,$$
(1)

where $n \in \mathbb{N}^*$, called the degree of the equation, $a_i \in \mathbb{Z}$, $\forall i = 0, 1, ..., n$, $a_n \neq 0$, is called an algebraic number. A number which cannot be expressed as a solution of any polynomial equation with integer coefficients is called a transcendental number.

Theorem 2 (Common transcendental numbers). π , e are transcendental.

Theorem 3 (Countability of sets of algebraic- & transcendental numbers). (i) The set of algebraic numbers is a countably infinite set. (ii) The set of transcendental numbers is noncountably infinite.

2 Sequence – Dãy Số

• sequence [n] /'si:kwəns/ 1. [countable] sequence (of sth) a set of events, actions, numbers, etc. which have a particular order & which lead to a particular result; 2. [countable, uncountable] the order that events, actions, etc. happen in or should happen in; 3. [countable] a part of a film that deals with 1 subject or topic or consists of 1 scene. [v] 1. sequence sth (specialist) to arrange things into a sequence; 2. sequence sth (biology) to identify the order in which a set of genes or parts of molecules are arranged.

Resources – Tài nguyên.

- 1. [Rud76]. Walter Rudin. Principles of Mathematical Analysis. Chap. 3: Numerical Sequences & Series.
- 2. [Tao22a]. Terence Tao. Analysis I.
- 3. [Tao22b]. TERENCE TAO. Analysis II.
- 4. [WS10]. ROBERT WREDE, MURRAY R. SPIEGEL. Advanced Calculus. 3e. Schaum's Outline Series. Chap. 2: Sequences.

This section deals primarily with sequences of real- & complex numbers, sequences in Euclidean spaces, or even in metric spaces.

– Phần này chủ yếu đề cập đến các dãy số thực & phức, các dãy trong không gian Euclid hoặc thậm chí trong không gian metric.

2.1 Definition of a sequence – Định nghĩa của dãy số

Definition 3 (Numerical sequence – dãy số, [WS10], p. 25). A sequence is a set of numbers u_1, u_2, \ldots in a definite order of arrangement (i.e., a correspondence with the natural numbers or a subset thereof) & formed according to a definite rule. Each number in the sequence is called a term; u_n is called the nth term. The sequence is called finite or infinite according as there are or are not a finite number of terms. The sequence u_1, u_2, \ldots is also designated briefly by $\{u_n\}$.

Có thể hiểu khái niệm dãy (sequence) ở đây 1 cách tổng quát hơn là 1 dãy các đối tượng Toán học hoặc Tin học, e.g., dãy số phức $\{a_n\}_{n=1}^{\infty}$ là 1 dãy gồm các số $a_n \in \mathbb{C}$, $\forall n=1,2,\ldots$, dãy các hàm số thực $\{f_n\}_{n=1}^{\infty}$ là 1 dãy gồm các hàm số $f_n: \mathbb{R} \to \mathbb{R}$, $\forall n=1,2,\ldots$, hay dãy các dãy $\{\{a_{m,n}\}_{n=1}^{\infty}\}_{m=1}^{\infty}$ tức 1 dãy gồm các phần tử của dãy lại là các dãy số $\{a_{m,n}\}_{n=1}^{\infty}$, $\forall m=1,2,\ldots$ Trước hết, ta tập trung là khái niệm dãy đơn giản nhất: dãy số – numerical sequence, trước khi đến với khái niệm hội tụ đều của dãy hàm (uniform convergence of sequences of functions).

2.2 Convergent- & divergent sequences – Dãy số hội tụ & dãy số phân kỳ

Definition 4 (Limit of a sequence, [WS10], p. 25). A number $l \in \mathbb{R}$ is called the limit of an infinite sequence u_1, u_2, \ldots if for any positive number ϵ we can find a positive number N depending on ϵ s.t. $|u_n - l| < \epsilon$, $\forall n \in \mathbb{N}$, n > N. In such case we write $\lim_{n \to +\infty} u_n = l$.

Definition 5 (Convergent sequences, [Rud76], Def. 3.1, p. 47). A sequence $\{p_n\}$ in a metric space X is said to converge if there is a point $p \in X$ with the following property: For every $\varepsilon > 0$ there is an integer N such that $n \geq N$ implies that $d(p_n, p) < \varepsilon$. (Here d denotes the distance in X.) In this case we also say that $\{p_n\}$ converges to p, or that p is the limit of $\{p_n\}$, & we write $p_n \to p$, or $p_n \to p$ as $n \to \infty$, or $\lim_{n \to +\infty} p_n = p$. If $\{p_n\}$ does not converge, it is said to diverge.

Remark 1. Dịnh nghĩa 5 về dãy hội tụ trong các không gian metric không chỉ phụ thuộc vào bản thân dãy $\{p_n\}$ mà còn vào chính không gian metric X. Nhân tiện, vì ở đây đang xét không gian metric mà mỗi phần tử của nó được coi là 1 điểm (point), nên thành phần của dãy số được ký hiệu là p_n để ám chỉ bản chất của mỗi phần tử của dãy là 1 điểm trong không gian metric tổng quát X. Nếu $X = \mathbb{R}$ hoặc $X = \mathbb{C}$ thì mỗi điểm trên trực số thực hoặc 1 số phức z = a + bi tương ứng với điểm (a,b) trên mặt phẳng phức \mathbb{R}^2 , khi đó ký hiệu p_n có thể được thay bởi các ký hiệu quen thuộc hơn cho số (numerals), e.g., a_n, x_n, \ldots

In cases of possible ambiguity, we can be more precise & specify "convergent in X" rather than "convergent".

- Trong trường hợp có thể có sự mơ hồ, chúng ta có thể chính xác hơn & cụ thể hơn "hội tụ trong X" thay vì "hội tụ".

Definition 6 (Range of a sequence, bounded sequence). The set of all points p_n , n = 1, 2, ..., is the range of $\{p_n\}$. The range of a sequence may be a finite set, or it may be infinite. The sequence $\{p_n\}$ is said to be bounded if its range is bounded.

Problem 4. Prove: (a) If $s_n = \frac{1}{n}$, then $\lim_{n \to +\infty} s_n = 0$; the range is infinite, & the sequence is bounded. (b) If $s_n = n^2$, the sequence $\{s_n\}$ is unbounded, is divergent, & has infinite range. (c) If $s_n = 1 + \frac{(-1)^n}{n}$, the sequence $\{s_n\}$ converges to 1, is bounded, & has infinite range. (d) If $s_n = i^n$, the sequence $\{s_n\}$ is divergent, is bounded, & has finite range. (e) If $s_n = 1$, $\forall n \in \mathbb{N}^*$, then $\{s_n\}$ converges to 1, is bounded, & has finite range. (f) Find similar examples.

Theorem 4 (Some important properties of convergent sequences in metric spaces, [Rud76], Thm. 3.2, p. 48). Let $\{p_n\}$ be a sequence in a metric space X.

- (a) $\{p_n\}$ converges to $p \in X$ iff every neighborhood of p contains all but finitely many of the terms of $\{p_n\}$.
- (b) (Uniqueness of limit) If $p \in X, p' \in X$, & if $\{p_n\}$ converges to p & to p', then p' = p.
- (c) If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- (d) If $E \subset X$ & if p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $p = \lim_{n \to +\infty} p_n$.

For sequences in Euclidean spaces \mathbb{R}^d , we can study the relation between convergence & the algebraic operations.

Theorem 5 (Algebraic operations on limit of sequences of complex numbers, [Rud76], Thm. 3.3, p. 49). Suppose $\{a_n\}$, $\{b_n\}$ are complex sequences, $\mathcal{E} \lim_{n \to +\infty} a_n = a, \lim_{n \to +\infty} b_n = b$. Then:

- (a) $\lim_{n\to+\infty} (a_n + b_n) = \lim_{n\to+\infty} a_n + \lim_{n\to+\infty} b_n = a + b$.
- (b) $\lim_{n\to+\infty} ca_n = ca$, $\lim_{n\to+\infty} (c+a_n) = c + \lim_{n\to+\infty} a_n = c+a$, $\forall c \in \mathbb{C}$.
- (c) $\lim_{n\to+\infty} a_n b_n = \lim_{n\to+\infty} a_n \lim_{n\to+\infty} b_n = ab$.
- (d) $\lim_{n\to+\infty} \frac{1}{a_n} = \frac{1}{a}$, provided $a_n \neq 0$, $\forall n \in \mathbb{N}^*$, & $a \neq 0$.

Theorem 6 (Algebraic operations on limit of sequences in Euclidean spaces, [Rud76], Thm. 3.4, p. 50).

- (a) Suppose $\mathbf{x}_n \in \mathbb{R}^d$, $\forall n \in \mathbb{N}^*$, & $\mathbf{x}_n = (x_{1,n}, \dots, x_{d,n})$. Then $\{\mathbf{x}_n\}$ converges to $\mathbf{x} = (x_1, \dots, x_n)$ iff $\lim_{n \to +\infty} x_{i,n} = x_i$, $\forall i = 1, \dots, k$.
- (b) Suppose $\{\mathbf{x}_n\}_{n=1}^{\infty}, \{\mathbf{y}_n\}_{n=1}^{\infty}$ are sequences in \mathbb{R}^d , $\{a_n\}_{n=1}^{\infty}$ is a sequence of reals, & $\mathbf{x}_n \to \mathbf{x}, \mathbf{y}_n \to \mathbf{y}, a_n \to a$. Then

$$\lim_{n \to +\infty} \mathbf{x}_n + \mathbf{y}_n = \mathbf{x} + \mathbf{y}, \ \lim_{n \to +\infty} \mathbf{x}_n \cdot \mathbf{y}_n = \mathbf{x} \cdot \mathbf{y}, \ \lim_{n \to +\infty} a_n \mathbf{x}_n = a \mathbf{x}.$$

2.3 Subsequences – Dãy con

Definition 7. Given a sequence $\{p_n\}_{n=1}^{\infty}$, consider a sequence $\{n_k\}$ of positive integers, s.t. $n_1 < n_2 < \cdots$. Then the sequence $\{p_n\}_{n=1}^{\infty}$ is called a subsequence of $\{p_n\}_{n=1}^{\infty}$. If $\{p_{n_i}\}_{i=1}^{\infty}$ converges, its limit is called a subsequential limit of $\{p_n\}_{n=1}^{\infty}$.

Problem 5. Prove that $\{p_n\}_{n=1}^{\infty}$ converges to p iff every subsequence of $\{p_n\}_{n=1}^{\infty}$ converges to p.

Theorem 7 ([Rud76], Thm. 3.6, p. 50).

- (a) If $\{p_n\}_{n=1}^{\infty}$ is a sequence in a compact metric space X, then some subsequence of $\{p_n\}_{n=1}^{\infty}$ converges to a point of X.
- (b) Every bounded sequence in \mathbb{R}^d contains a convergent subsequence.

Theorem 8 ([Rud76], Thm. 3.7, p. 52). The subsequential limits of a sequence $\{p_n\}_{n=1}^{\infty}$ in a metric space X form a closed subset of X.

2.4 Limit of sequences – Giới hạn của dãy số

Định nghĩa 1 (Dãy số thực có giới hạn 0, [Thá+25], p. 60). Dãy số thực $\{u_n\}_{n=1}^{\infty} \subset \mathbb{R}$ có giới hạn 0 khi n dần tới dương vô cực nếu $|u_n|$ có thể nhỏ hơn 1 số dương bé tùy ý, kể từ 1 số hạng nào đó trở đi, ký hiệu $\lim_{n\to+\infty} u_n=0$.

Notation. Ngoài ký hiệu, $\lim_{n\to+\infty}u_n=0$, ta cũng sử dụng các ký hiệu: $\lim u_n=0$ hay $u_n\to 0$ khi $n\to\infty$.

Nhận xét 1. Nếu u_n ngày càng gần tới 0 khi n ngày càng lớn thì $\lim u_n = 0$.

Định nghĩa 2 (Dãy số thực có giới hạn 0 theo ngôn ngữ ε - δ). 1 dãy số thực $\{u_n\}_{n=1}^{\infty}$ có giới hạn 0 nếu $\mathscr E$ chỉ nếu với mọi số nguyên dương ε , tồn tại 1 số nguyên dương $N_{\varepsilon} \in \mathbb N^{\star}$ để $|u_n| < \varepsilon$ kể từ chỉ số N_{ε} đó trở đi:

$$\forall \varepsilon \in (0, \infty), \exists N_{\varepsilon} \in \mathbb{N}^{\star}, |u_n| < \varepsilon, \forall n \geq N_{\varepsilon},$$

hay tương đương:

$$\forall \varepsilon \in (0, \infty), \exists N_{\varepsilon} \in \mathbb{N}^{\star}, n \geq N_{\varepsilon} \Rightarrow |u_n| < \varepsilon.$$

Remark 2 (Optimal/smallest/best indices – Các chỉ số tối ưu/nhỏ nhất/tốt nhất). Định nghĩa 2 chỉ yêu cầu tồn tại $N_{\varepsilon} \in \mathbb{N}^{*}$ đủ lớn với $m \tilde{\delta} i \varepsilon \in (0, \infty)$. Tuy nhiên nếu tìm được chỉ số $N_{\varepsilon} \in \mathbb{N}^{*}$ tối ưu, i.e., chỉ số nhỏ nhất trong các chỉ số N_{ε} thỏa mãn, i.e.:

$$N_\varepsilon^{\mathrm{opt}} \coloneqq \min\{N_\varepsilon \in \mathbb{N}; |u_n| < \varepsilon, \ \forall n \ge N_\varepsilon\} = \min\{N_\varepsilon \in \mathbb{N}; n \ge N_\varepsilon \Rightarrow |u_n| < \varepsilon\}.$$

thì ta có thể sử dụng ký hiệu $N_{\varepsilon}^{\rm opt}$ để chỉ rõ tính tối ưu (i.e., nhỏ nhất, chặt/ngặt nhất) của N_{ε} .

Remark 3 (Ceil- vs. floor functions).

$$\lceil x \rceil = \begin{cases} \lfloor x \rfloor & \text{if } x \in \mathbb{Z}, \\ \lfloor x \rfloor + 1 & \text{if } x \in \mathbb{R} \backslash \mathbb{Z}. \end{cases} = \lfloor x \rfloor + \chi_{\mathbb{R} \backslash \mathbb{Z}}(x), \ \forall x \in \mathbb{R}.$$

Bài toán 1 ([Thá+25], p. 60). Chứng minh $\lim_{n\to +\infty} u_n = 0$ & chỉ ra $N_{\varepsilon}^{\text{opt}}$ với $\varepsilon = 0.1, 0.01, 10^{-n}$, $\forall n \in \mathbb{N}$, & với $\varepsilon > 0$ bất kỳ: (a) $u_n = 0$. (b) $u_n = \frac{(-1)^n}{n}$. (c) $u_n = \frac{1}{\sqrt{n}}$. (d) $u_n = -\frac{1}{\sqrt{n}}$. (e) $u_n = \frac{(-1)^n}{\sqrt{n}}$ (f) $u_n = \frac{a\epsilon_n}{n^b}$ với $\{\epsilon_n\}_{n=1}^{\infty} \subset \{\pm 1\}$, $a \in \mathbb{R}, b \in (0, \infty)$.

Chứng minh. (a) Lấy $\varepsilon > 0$ bất kỳ, c
ó $|u_n| = |0| = 0 < \varepsilon, \forall n \geq 1$. Theo định nghĩa giới hạn theo ngôn ngữ
 ε - δ , suy ra $\lim_{n \to +\infty} u_n = 0$. Ta có thể chọ
n $N_\varepsilon \coloneqq N_\varepsilon^{\rm opt} = 1, \, \forall \varepsilon > 0$, nên $N_{0.1}^{\rm opt} = N_{0.01}^{\rm opt} = N_{10^{-n}}^{\rm opt} = 1, \, \forall n \in \mathbb{N}$.

(b) Lấy
$$\varepsilon > 0$$
 bất kỳ, có $|u_n| = \left| \frac{(-1)^n}{n} \right| = \frac{1}{n}$, nên $|u_n| < \varepsilon \Leftrightarrow \frac{1}{n} < \varepsilon \Leftrightarrow n > \frac{1}{\varepsilon} \Rightarrow N_{\varepsilon}^{\text{opt}} = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$, nên nếu chọn $N_{\varepsilon} := N_{\varepsilon}^{\text{opt}} = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1$ thì $|u_n| < \varepsilon$, $\forall n \geq N_{\varepsilon}$. Theo định nghĩa giới hạn theo ngôn ngữ ε - δ , suy ra $\lim_{n \to +\infty} u_n = 0$.

(c) Lấy
$$\varepsilon > 0$$
 bất kỳ, có $|u_n| = \left| \frac{1}{\sqrt{n}} \right| = \frac{1}{\sqrt{n}}$, nên $|u_n| < \varepsilon \Leftrightarrow \frac{1}{\sqrt{n}} < \varepsilon \Leftrightarrow \sqrt{n} > \frac{1}{\varepsilon} \Leftrightarrow n > \frac{1}{\varepsilon^2} \Rightarrow N_{\varepsilon}^{\text{opt}} = \left\lfloor \frac{1}{\varepsilon^2} \right\rfloor + 1$, nên nếu chọn $N_{\varepsilon} := N_{\varepsilon}^{\text{opt}} = \left\lfloor \frac{1}{\varepsilon^2} \right\rfloor + 1$ thì $|u_n| < \varepsilon$, $\forall n \geq N_{\varepsilon}$. Theo định nghĩa giới hạn theo ngôn ngữ ε - δ , suy ra $\lim_{n \to +\infty} u_n = 0$.

(d) Lấy
$$\varepsilon > 0$$
 bất kỳ, có $|u_n| = \left| -\frac{1}{\sqrt{n}} \right| = \frac{1}{\sqrt{n}}$, nên $|u_n| < \varepsilon \Leftrightarrow \frac{1}{\sqrt{n}} < \varepsilon \Leftrightarrow \sqrt{n} > \frac{1}{\varepsilon} \Leftrightarrow n > \frac{1}{\varepsilon^2} \Rightarrow N_\varepsilon^{\text{opt}} = \left\lfloor \frac{1}{\varepsilon^2} \right\rfloor + 1$, nên nếu chọn $N_\varepsilon := N_\varepsilon^{\text{opt}} = \left\lfloor \frac{1}{\varepsilon^2} \right\rfloor + 1$ thì $|u_n| < \varepsilon$, $\forall n \geq N_\varepsilon$. Theo định nghĩa giới hạn theo ngôn ngữ ε - δ , suy ra $\lim_{n \to +\infty} u_n = 0$.

(e) Lấy
$$\varepsilon > 0$$
 bất kỳ, có $|u_n| = \left| \frac{a\epsilon_n}{n^b} \right| = \frac{|a|}{n^b}$, nên $|u_n| < \varepsilon \Leftrightarrow \frac{|a|}{n^b} < \varepsilon \Leftrightarrow n^b > \frac{|a|}{\varepsilon} \Leftrightarrow n > \left(\frac{|a|}{\varepsilon} \right)^{\frac{1}{b}} \Rightarrow N_{\varepsilon}^{\text{opt}} = \left[\left(\frac{|a|}{\varepsilon} \right)^{\frac{1}{b}} \right] + 1$,

nên nếu chọn $N_{\varepsilon} := N_{\varepsilon}^{\text{opt}} = \left[\left(\frac{|a|}{\varepsilon} \right)^{\frac{1}{b}} \right] + 1$ thì $|u_n| < \varepsilon$, $\forall n \geq N_{\varepsilon}$. Theo định nghĩa giới hạn theo ngôn ngữ ε - δ , suy ra $\lim_{\varepsilon \to \infty} u_{\varepsilon} = 0$

Remark 4 (Dấu của số hạng của dãy số có giới hạn 0). Đối với bài toán chứng minh dãy $\{u_n\}_{n=1}^{\infty}$ có $\lim_{n\to+\infty}u_n=0$ thì dấu của từng số hạng u_n của dãy $\{u_n\}_{n=1}^{\infty}$ không quan trọng lắm, i.e., $\operatorname{sgn} u_n$ không làm ảnh hưởng tới bất đẳng thức $|u_n|<\varepsilon$ trong định nghĩa giới hạn theo ngôn ngữ ε - δ vì sau khi lấy giá trị tuyệt đối, $|u_n|\geq 0$, $\forall n\in\mathbb{N}^*$.

Bài toán 2. (a) Chứng minh $\lim \frac{1}{2^n} = 0$. (b) Viết chương trình C/C++, Python để tính $N_{\varepsilon}^{\text{opt}}$ với $\varepsilon \in (0, \infty)$ được nhập từ bàn phím.

Bài toán 3. (a) Chứng minh $\lim \frac{n}{n+1} = 1$. (b) Viết chương trình C/C++, Python để tính $N_{\varepsilon}^{\text{opt}}$ với $\varepsilon \in (0,\infty)$ được nhập từ bàn phím.

Bài toán 4. Cho dãy $\{u_n\}_{n=1}^{\infty}$ có $\lim_{n\to+\infty}u_n=l\in\mathbb{R}$. Chứng minh $\lim_{n\to+\infty}v_n=0$ với $v_n=u_n-u_{n-1}$. (b) $\lim_{n\to+\infty}u_n-u_{n-1}=0$ có suy ra được $\lim_{n\to+\infty}u_n=l\in\mathbb{R}$ không?

Định nghĩa 3 (Dãy số thực có giới hạn hữu hạn, $[\text{Th\acute{a}+25}]$, p. 61). Dãy số thực $\{u_n\}_{n=1}^{\infty} \subset \mathbb{R}$ có giới hạn hữu là $l \in \mathbb{R}$ khi n dần tới dương vô cực nếu $\lim_{n \to +\infty} (u_n - l) = 0$, ký hiệu $\lim_{n \to +\infty} u_n = L$.

Notation. Ngoài ký hiệu $\lim_{n\to+\infty}u_n=l$, ta cũng sử dụng các ký hiệu $\lim u_n=L$ hay $u_n\to l$ khi $n\to\infty$.

Nhận xét 2. Nếu u_n ngày càng gần tới l khi n ngày càng lớn thì $\lim u_n = l$.

Định nghĩa 4 (Dãy số thực có giới hạn thực theo ngôn ngữ ε - δ). 1 dãy số thực $\{u_n\}_{n=1}^{\infty}$ có giới hạn hữu hạn là $l \in \mathbb{R}$ nếu \mathscr{E} chỉ nếu với mọi số nguyên dương ε , tồn tại 1 số nguyên dương $N_{\varepsilon} \in \mathbb{N}^{\star}$ để $|u_n - l| < \varepsilon$ kể từ chỉ số N_{ε} đó trở đi:

$$\forall \varepsilon \in (0, \infty), \exists N_{\varepsilon} \in \mathbb{N}^{\star}, |u_n| < \varepsilon, \forall n \geq N_{\varepsilon},$$

hay tuong đương:

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N}^{\star}, \ n \geq N_{\varepsilon} \Rightarrow |u_n| < \varepsilon.$$

Remark 5 (Optimal/smallest/best indices – Các chỉ số tối ưu/nhỏ nhất/tốt nhất). Định nghĩa 2 chỉ yêu cầu tồn tại $N_{\varepsilon} \in \mathbb{N}^{\star}$ đủ lớn với mỗi $\varepsilon \in (0, \infty)$. Tuy nhiên nếu tìm được chỉ số $N_{\varepsilon} \in \mathbb{N}^{\star}$ tối ưu, i.e., chỉ số nhỏ nhất trong các chỉ số N_{ε} thỏa mãn, i.e.:

$$N_{\varepsilon}^{\mathrm{opt}} \coloneqq \min\{N_{\varepsilon} \in \mathbb{N}; |u_n| < \varepsilon, \ \forall n \geq N_{\varepsilon}\} = \min\{N_{\varepsilon} \in \mathbb{N}; n \geq N_{\varepsilon} \Rightarrow |u_n| < \varepsilon\}.$$

thì ta có thể sử dụng ký hiệu $N_{\varepsilon}^{\text{opt}}$ để chỉ rõ tính tối ưu (i.e., nhỏ nhất, chặt/ngặt nhất) của N_{ε} .

Bài toán 5. Tính $\lim_{n\to+\infty} u_n$ với: (a) $u_n=c\in\mathbb{R}$, $\forall n\in\mathbb{N}^*$. (b) $u_n=\frac{an+b}{n}$, $\forall n\in\mathbb{N}^*$, với $a,b\in\mathbb{R}$. (c) $u_n=\frac{an+b}{cn+d}$, $\forall n\in\mathbb{N}^*$ với $a,b,c,d\in\mathbb{R}$ thỏa $cn+d\neq 0$, $\forall n\in\mathbb{N}^*$.

Chứng minh. (a) Lấy $\varepsilon > 0$ bất kỳ, có $|u_n - c| = |c - c| = 0 < \varepsilon$, $\forall n \ge 1$, suy ra $N_{\varepsilon}^{\text{opt}} = 1$, $\forall \varepsilon \in (0, \infty)$. Theo định nghĩa giới hạn theo ngôn ngữ ε - δ , suy ra $\lim_{n \to +\infty} u_n = 0$.

(b) Lấy
$$\varepsilon > 0$$
 bất kỳ, có $|u_n - a| = \left|\frac{an + b}{n} - a\right| = \left|\frac{b}{n}\right| = \frac{|b|}{n}$, nên $|u_n| < \varepsilon \Leftrightarrow \frac{|b|}{n} < \varepsilon \Leftrightarrow n > \frac{|b|}{\varepsilon} \Rightarrow N_\varepsilon^{\text{opt}} = \left\lfloor\frac{|b|}{\varepsilon}\right\rfloor + 1$, nên nếu chọn $N_\varepsilon := N_\varepsilon^{\text{opt}} = \left\lfloor\frac{|b|}{\varepsilon}\right\rfloor + 1$ thì $|u_n| < \varepsilon$, $\forall n \ge N_\varepsilon$. Theo định nghĩa giới hạn theo ngôn ngữ ε - δ , suy ra $\lim_{n \to +\infty} u_n = a$. \square

Bài toán 6 (Programming: Compute $N_{\varepsilon}^{\text{opt}}$). Cho $\{u_n\}_{n=1}^{\infty}$ có giới hạn $\lim_{n\to+\infty}u_n=L$. Viết chương trình C/C++, Python, với $\varepsilon\in(0,\infty)$ được nhập từ bàn phím, output N_{ε} : (a) $u_n=\frac{(-1)^n}{n}$. (b) $u_n=\frac{1}{\sqrt{n}}$ & $u_n=-\frac{1}{\sqrt{n}}$. (c) $u_n=\frac{(-1)^n}{\sqrt{n}}$.

Python: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/Python/limit.py.

```
from math import sqrt
def ua(n):
    return (-1)**n / n
def ub(n):
    return 1 / sqrt(n)
def uc(n):
    return -1 / sqrt(n)
def ud(n):
    return (-1)**n / sqrt(n)
MAX_LOOP = 100000
epsilon = float(input())
for i in range(1, MAX_LOOP + 1):
    if abs(ua(i)) < epsilon:
        print(i) # N_epsilon
        break
for i in range(1, MAX_LOOP + 1):
    if abs(ub(i)) < epsilon:</pre>
        print(i) # N_epsilon
        break
```

```
for i in range(1, MAX_LOOP + 1):
    if abs(uc(i)) < epsilon:
        print(i) # N_epsilon
        break
for i in range(1, MAX_LOOP + 1):
    if abs(ud(i)) < epsilon:</pre>
        print(i) # N_epsilon
        break
C++:
• NLDK's C++ script to compute N_{\varepsilon}^{\text{opt}}:
  URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/analysis/C%2B%2B/NLDK_limit.cpp.
  #include<bits/stdc++.h>
  #define Sanic_speed ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
  #define el "\n";
  #define fre(i, a, b) for(int i = a; i <= b; ++i)
  using namespace std;
  double long qa(int n) {
      return (pow(-1, n)/n);
  }
  double long qb(int n) {
      double long deno = sqrt(n);
      return (1/deno);
  }
  double long qc(int n) {
      double long deno = sqrt(n);
      return (-1/deno);
  }
  double long qd(int n) {
      double long deno = sqrt(n);
      return (pow(-1, n)/deno);
  }
  void solve() {
      double long epsilon;
      cin >> epsilon;
      int maxN = 100000;
      fre(i, 1 ,maxN) {
          if (abs(qa(i)) < epsilon) {</pre>
               cout << "a) " << i << el
               break;
          }
      }
      fre(i, 1 ,maxN) {
          if (abs(qb(i)) < epsilon) {</pre>
               cout << "b) " << i << el
               break;
          }
      }
      fre(i, 1 ,maxN) {
          if (abs(qc(i)) < epsilon) {</pre>
               cout << "c) " << i << el
               break;
          }
      }
      fre(i, 1 ,maxN) {
          if (abs(qd(i)) < epsilon) {</pre>
               cout << "d) " << i << el
               break;
```

```
}
}
int main() {
    Sanic_speed
    int t = 1;// cin >> t;
    while(t > 0) {
        solve();
        --t;
    }
}
```

Tính giới han:

Bài toán 7 ([Quỳ+20], 1.). (a) $\lim_{n\to+\infty} \frac{1}{n(n+1)}$. (b) $\lim_{n\to+\infty} \frac{\sin n}{\sqrt{n}}$. (c) $\lim_{n\to+\infty} \frac{2n-1}{2n+2}$. (d) Mở rộng bài toán.

Bài toán 8 ([Quỳ+20], 2.). (a) $\lim_{n\to+\infty} \sqrt{\frac{2n^2-1}{n^2+n}}$. (b) $\lim_{n\to+\infty} \frac{3^n}{1+2^n+3^n}$. (c) $\lim_{n\to+\infty} \frac{\sum_{i=1}^n i}{n^2}$.

Bài toán 9 ([Quỳ+20], 3.). Chứng minh: (a) $\lim_{n\to+\infty} \sqrt[n]{2} = 1$. (b) $\lim_{n\to+\infty} \sqrt[n]{n} = 1$.

Hint. Sử dụng định lý kẹp.

Bài toán 10 ([Quỳ+20], 4.). Biểu diễn số thập phân vô hạn tuần hoàn 0.(1428571) dưới dạng phân số.

Biểu diễn số thập phân vô hạn tuần hoàn $\overline{a_n a_{n-1} \dots a_1 a_0.a_{-1} a_{-2} \dots a_{-m}(b_1 b_2 \dots b_p)}$ dưới dạng phân số. Viết chương trình C/C++, Pascal, Python để mô phỏng.

Bài toán 11.

Bài toán 12 ([Quỳ+20], 5.). (a) $\lim_{n\to+\infty} 2^n - 3^n$. (b) $\lim_{n\to+\infty} n + \sin n$. (c) $\lim_{n\to+\infty} \sqrt[3]{n^3 + 3n + 1}$. (d) \mathring{Mor} rộng bài toán.

Bài toán 13 ([Quỳ+20], 6.). (a) $\lim_{n\to+\infty} \sqrt{n^2+n+1} - n$. (b) $\lim_{n\to+\infty} n(\sqrt{n+1} - \sqrt{n})$.

Bài toán 14 ([Quỳ+20], 7.). Cho $\Delta A_0 B_0 C_0$ đều cạnh $a \in (0, \infty)$. $\Delta A_{n+1} B_{n+1} C_{n+1}$ có 3 đỉnh là trung điểm của $\Delta A_n B_n C_n$, $\forall n \in \mathbb{N}$. Gọi P_n, S_n lần lượt là chu vi & diện tích $\Delta A_n B_n C_n$, $\forall n \in \mathbb{N}$. Tính: (a) $\lim_{n \to +\infty} p_n, \lim_{n \to +\infty} S_n$. (b) $\sum_{i=0}^{\infty} p_i, \sum_{i=0}^{\infty} S_i$.

Bài toán 15. $\lim_{n\to+\infty} x_n \ v \acute{\sigma} i \ x_n = \sum_{i=1}^n \frac{1}{i(i+1)}$.

Chứng minh.
$$x_n = \sum_{i=1}^n \frac{1}{i} - \frac{1}{i+1} = 1 - \frac{1}{n+1} \to 1 \text{ as } n \to \infty \text{ nên } \lim_{n \to +\infty} x_n = 1.$$

Bài toán 16. $\lim_{n\to +\infty} \frac{4^n-5^{-n}}{3^n-2^{2n}-5n^6}$

Bài toán 17. $\lim_{n\to+\infty} \frac{\ln(3n^2-2n)}{n^9+3n^2}$.

Bài toán 18. $\lim_{n\to+\infty} \left(\frac{2n-3}{2n+5}\right)^{\frac{n^2+1}{n+1}}$.

Bài toán 19. $\lim_{n\to+\infty} \sqrt[n]{n+(-1)^n}$.

Bài toán 20. $\lim_{n\to+\infty} \left(\frac{n-2}{n+2}\right)^{\frac{1+n}{2-\sqrt{n}}}$.

Bài toán 21. $\lim_{n\to+\infty} \left(\frac{2n-1}{5n+2}\right)^n$.

Bài toán 22. $\lim_{n\to+\infty}\left(\frac{n+1}{n+2}\right)^{\frac{1+n}{2-n^2}}$.

Bài toán 23. $\lim_{n\to+\infty} \sqrt[n]{\frac{n^2+4^n}{n+5^n}}$.

Bài toán 24.
$$\lim_{n\to+\infty} \sqrt[n]{\frac{5n+1}{n^{10}+2n}}$$
.

Bài toán 25.
$$\lim_{n\to+\infty} \left(\frac{2n+1}{n^2-1}\right)^{\frac{1}{n-2}}$$
.

Bài toán 26.
$$\lim_{n\to+\infty} \left(\frac{n-1}{n^2+1}\right)^{1-n}$$
.

Bài toán 27.
$$\lim_{n\to+\infty}\frac{1}{\sqrt[n]{n!}}$$
.

Bài toán 28.
$$\lim_{n\to+\infty}\frac{n}{\sqrt[n]{n!}}$$
.

Bài toán 29.
$$\lim_{n\to+\infty} u_n \ v \acute{o}i \ u_n = \sum_{i=1}^n \frac{1}{(2i-1)(2i+1)}$$

Bài toán 30.
$$\lim_{n\to+\infty}u_n\ v\acute{o}i\ u_1=\sqrt{3},u_{n+1}=\sqrt{3+u_n},\ \forall n\in\mathbb{N}^\star.$$

Bài toán 31 ([Hùn+23], VD1, p. 86). Cho dãy số
$$a_n = \frac{n}{n+1}$$
, $n = 1, 2, \dots$ Chứng minh dãy (a_n) có giới hạn là 1.

Bài toán 32 ([Hùn+23], VD2, p. 87). Chứng minh
$$\lim_{n\to+\infty}\frac{1}{n}=0$$
.

Bài toán 33 ([Hùn+23], VD3, p. 87). Chứng minh
$$\lim_{n\to+\infty} q^n = 0$$
 nếu $0 < |q| < 1$.

Bài toán 34 ([Hùn+23], VD4, p. 87). Chứng minh dãy
$$u_n = (-1)^n$$
 phân kỳ.

Bài toán 35 ([Hùn+23], VD5, p. 88).
$$Tim \lim_{n\to+\infty} \frac{n^3+3n+1}{2n^3-1}$$
.

Bài toán 36 ([Hùn+23], VD6, p. 88).
$$Tim \lim_{n \to +\infty} \frac{n^4 + 2n^3 + 7n^2 + 8n + 9}{2n^4 + 3n^3 + n + 10}$$

Bài toán 37 ([Hùn+23], VD7, p. 88).
$$Tim \lim_{n\to+\infty} (n-\sqrt[3]{n}-\sqrt{n})$$
.

Bài toán 38 ([Hùn+23], VD1, p. 89).
$$Tim \lim_{n\to+\infty} \frac{\sin n}{n}$$
.

Bài toán 39 ([Hùn+23], VD2, p. 89). Chứng minh nếu
$$\lim_{n\to+\infty} |a_n| = 0$$
 thì $\lim_{n\to+\infty} a_n = 0$.

Bài toán 40 ([Hùn+23], VD3, p. 89). Chứng minh
$$\lim_{n\to+\infty} \sqrt[n]{n} = 1$$
.

Bài toán 41 ([Hùn+23], VD4, p. 89). Cho dãy số nguyên dương
$$(u_n)$$
 thỏa mãn $u_n > u_{n-1}u_{n+1}$, $\forall n \in \mathbb{N}, n \geq 2$. Tính giới hạn $\lim_{n \to +\infty} \frac{1}{n^2} \sum_{i=1}^n \frac{i}{u_i} = \lim_{n \to +\infty} \frac{1}{n^2} \left(\frac{1}{u_1} + \frac{2}{u_2} + \dots + \frac{n}{u_n} \right)$.

Bài toán 42 ([Hùn+23], VD5, p. 90). *Tính*
$$\lim_{n\to+\infty} \frac{1}{n^2} \sum_{i=2}^n i \cos \frac{\pi}{i}$$
.

Bài toán 43 ([Hùn+23], VD1, p. 90). Cho dãy số (u_n) được xác định theo công thức $u_n = f(u_{n-1})$. Giả sử $u_n \in [a,b]$ với mọi chỉ số n & f là hàm tăng trên [a,b]. Chứng minh: (a) Nếu $u_1 \leq u_2$ thì (u_n) là dãy tăng. (b) Nếu $u_1 \geq u_2$ thì (u_n) là dãy giảm. (c) Nếu hàm f bị chặn thì (u_n) hội tụ.

Bài toán 44 ([Hùn+23], VD2, p. 90). Cho dãy (u_n) được xác định bởi $u_n = \frac{1}{3} \left(2u_{n-1} + \frac{1}{u_{n-1}^2} \right)$, $\forall n \in \mathbb{N}, n \geq 2, u_1 > 0$. Chứng minh dãy (u_n) hội tụ & tìm giới hạn của dãy.

Bài toán 45 ([Hùn+23], VD3, p. 91). *Tìm u*₁ $d\hat{e}$ $d\tilde{a}y$ $u_n = u_{n-1}^2 + 3u_{n-1} + 1$ $h\hat{o}i$ tu.

Bài toán 46 ([Hùn+23], VD4, p. 92). Chứng minh tồn tại
$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n$$
.

Bài toán 47 (Số Napier
$$e$$
). Dặt $e := \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n$. Chứng minh: (a) $\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$, $\forall n \in \mathbb{N}^*$. (b) $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$, trong đó $\ln x$ là logarith cơ số e của x .

Bài toán 48 ([Hùn+23], VD5, p. 91). Chứng minh dãy
$$u_n = \sum_{i=1}^n \frac{1}{i} - \ln n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$
 có giới hạn hữu hạn.

Lưu ý 1. $C = \lim_{n \to +\infty} \sum_{i=1}^{n} \frac{1}{i} - \ln n = \lim_{n \to +\infty} 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$ được gọi là hằng số Euler.

Bài toán 49 ([Hùn+23], VD1, p. 92). Chứng minh không tồn tại $\lim_{n\to+\infty}\cos\frac{n\pi}{2}$.

Bài toán 50 ([Hùn+23], VD2, p. 92). Cho hàm $f:[0,+\infty) \to (0,b)$ liên tục & nghịch biến. Giả sử hệ phương trình

$$\begin{cases} y = f(x), \\ x = f(y), \end{cases}$$

có nghiệm duy nhất x = y = q. Chứng minh dãy $u_n = f(u_{n-1})$ hội tụ tới q với $u_1 > 0$.

Bài toán 51 ([Hùn+23], VD3, p. 93). Cho dãy số $u_n = 1 + \frac{2}{1 + u_{n-1}}$, $u_1 > 0$. Chứng minh dãy hội tụ & tìm giới hạn.

Bài toán 52 ([Hùn+23], VD1, p. 93). Cho dãy $a_n = \sum_{i=1}^n \frac{1}{i^2} = 1 + \frac{1}{2^2} + \dots + \frac{1}{n^2}$, $\forall n \in \mathbb{N}^*$. Chứng minh dãy này hội tụ.

Bài toán 53 ([Hùn+23], VD2, p. 93). Cho dãy $a_n = \sum_{i=1}^n \frac{1}{i} = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$, $\forall n \in \mathbb{N}^*$. Chứng minh dãy này phân kỳ.

Bài toán 54 ([Hùn+23], VD3, p. 94). Chứng minh $\lim_{n\to+\infty} \frac{1^p+2^p+\cdots+n^p}{n^{p+1}} = \frac{1}{p+1}, \ \forall p\in\mathbb{N}.$

Bài toán 55 ([Hùn+23], VD1, p. 94). Khảo sát sự hội tụ của dãy Héron (u_n) được xác định bởi $u_1 = 1$, $u_n = \frac{1}{2} \left(u_{n-1} + \frac{2}{u_{n-1}} \right)$, $\forall n \in \mathbb{N}, n \geq 2$.

Bài toán 56 ([Hùn+23], VD2, p. 95). Cho dãy số (x_n) thỏa mãn $|x_{n+1}-a| \le \alpha |x_n-a|$, $\forall n \in \mathbb{N}$, trong đó $a \in \mathbb{R}$ & $0 < \alpha < 1$. Chứng minh dãy số (x_n) hội tụ về a.

Bài toán 57 ([Hùn+23], VD3, p. 95). Cho dãy số (x_n) xác định bởi $x_1 = a \in \mathbb{R}$, $x_{n+1} = \cos x_n$, $\forall n \in \mathbb{N}^*$. Chứng minh (x_n) hội tu.

Bài toán 58 ([Hùn+23], VD4, p. 95, Canada 1985). Dãy số (x_n) thỏa mãn $1 < x_1 < 2$ & $x_{n+1} = 1 + x_n - \frac{1}{2}x_n^2$, $\forall n \in \mathbb{N}^*$. Chứng minh (x_n) hội tụ. Tìm $\lim_{n \to +\infty} x_n$.

Bài toán 59 ([Hùn+23], VD5, p. 95, VMO2023). Xét dãy số (a_n) thỏa mãn $a_1 = \frac{1}{2}$, $a_{n+1} = \sqrt[3]{3a_{n+1} - a_n}$ & $0 \le a_n \le 1$, $\forall n \in \mathbb{N}^*$. Chứng minh dãy (a_n) có giới hạn hữu hạn.

Bài toán 60 ([Hùn+23], VD6, p. 96, VMO2022). Cho dãy số (u_n) xác định bởi $u_1 = 6$, $u_{n+1} = 2 + \sqrt{u_n + 4}$, $\forall n \in \mathbb{N}^*$. Chứng minh dãy (u_n) có giới hạn hữu hạn.

Bài toán 61 ([Hùn+23], VD7, p. 96, VMO2019). Cho dãy số (x_n) xác định bởi $x_1 = 1$ & $x_{n+1} = x_n + 3\sqrt{x_n} + \frac{n}{\sqrt{x_n}}$, $\forall n \in \mathbb{N}^*$.

(a) Chứng minh $\lim_{n\to+\infty} \frac{n}{x_n} = 0$. (b) Tính giới hạn $\lim_{n\to+\infty} \frac{n^2}{x_n}$.

Bài toán 62 ([Hùn+23], VD1, p. 97, VMO1984). Dãy số (u_n) được xác định như sau: $u_1=1, u_2=2, u_{n+1}=3u_n-u_{n-1}$. Dãy số (v_n) được xác định như sau: $v_n=\sum_{i=1}^n \operatorname{arccot} u_i$. Tim giới hạn $\lim_{n\to+\infty} v_n$.

Bài toán 63 ([Hùn+23], VD2, p. 97, VMO1988). Dãy số (u_n) bị chặn thỏa mãn điều kiện $u_n + u_{n+1} \ge 2u_{n+2}$, $\forall n \in \mathbb{N}^*$ có nhất thiết hội tụ không?

Bài toán 64 ([Hùn+23], VD3, p. 98, Olympic 30.4 lần V). Cho $x_k = \sum_{i=1}^k \frac{i}{(i+1)!} = \frac{1}{2!} + \frac{2}{3!} + \cdots + \frac{k}{(k+1)!}$. Tính $\lim_{n \to +\infty} \sqrt[n]{\sum_{i=1}^{1999} x_i^n} = \lim_{n \to +\infty} \sqrt[n]{x_1^n + x_2^n + \cdots + x_{1999}^n}$.

Bài toán 65 ([Hùn+23], VD4, p. 98, VMO2013A). Gọi F là tập hợp tất cả các hàm số $f:(0,+\infty)\to (0,+\infty)$ thỏa mãn $f(3x)\geq f(f(2x))+x,\ \forall x>0$. Tìm hằng số A lớn nhất để $f(x)\geq Ax,\ \forall f\in F,\ \forall x>0$.

Bài toán 66 ([Hùn+23], VD5, p. 98, Hải Dương 2019–2020). Cho dãy số thực (x_n) thỏa mãn $x_1 = \frac{1}{6}$, $x_{n+1} = \frac{3x_n}{2x_n + 1}$, $\forall n \in \mathbb{N}^*$. Tìm số hạng tổng quát của dãy số & tính giới hạn của dãy số đó.

Bài toán 67 ([Hùn+23], VD6, p. 99, Hải Dương 2015–2016). Cho đãy số (u_n) thỏa mãn $u_1 = -1$, $u_{n+1} = \frac{u_n}{2} + \frac{2}{u_n}$, $\forall n \in \mathbb{N}^*$ & dãy số (v_n) thỏa mãn $u_n v_n - u_n + 2v_n + 2 = 0$, $\forall n \in \mathbb{N}^*$. Tính v_{2015} & $\lim_{n \to +\infty} u_n$.

Bài toán 68 ([Hùn+23], VD7, p. 99, Hải Dương 2013–2014). Cho dãy số (u_n) thỏa mãn $u_1 = \frac{5}{2}$, $u_{n+1} = \frac{1}{2}u_n^2 - u_n + 2$. Tính $\lim_{n \to +\infty} \sum_{i=1}^n \frac{1}{u_i}$.

Bài toán 69 ([Hùn+23], VD1, p. 99). Cho dãy số (u_n) được xác định: u_1 , $u_n = \alpha u_{n-1} + \beta$. Biện luận theo tham số α , β giá trị giới hạn của dãy số.

Bài toán 70 ([Hùn+23], VD1, p. 100). Cho (u_n) là dãy số hội tụ $\mathcal{E}\lim_{n\to+\infty}u_n=u$. Khi đó, dãy trung bình cộng $v_n=\frac{1}{n}\sum_{i=1}^nu_i$ cũng hội tụ $\mathcal{E}\lim_{n\to+\infty}v_n=u$.

Bài toán 71 ([Hùn+23], VD2, p. 100). $Gi\mathring{a} \ s\mathring{u} \lim_{n \to +\infty} a_n = a$, $\lim_{n \to +\infty} b_n = b$. $Ch\mathring{u}ng \ minh \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n a_i b_{n+1-i} = \lim_{n \to +\infty} \frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} = ab$. $T\mathring{u} \ d\acute{o}$, $suy \ ra \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n a_i = \lim_{n \to +\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$.

Bài toán 72 ([Hùn+23], VD3, p. 101). $Gi\mathring{a} s\mathring{u} a_n > 0$, $\forall n \in \mathbb{N}^*$. $Ch\mathring{u}ng \ minh \ n\acute{e}u \ \lim_{n \to +\infty} a_n = a > 0 \ thì \ \lim_{n \to +\infty} \sqrt[n]{\prod_{i=1}^n a_i} = \lim_{n \to +\infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$.

2.5 Cauchy sequences – Day Cauchy

Definition 8 ([Rud76], Def. 3.8, p. 52). A sequence $\{p_n\}$ in a metric space X is said to be a Cauchy sequence if for every $\epsilon > 0$ there is an integer N s.t. $d_X(p_n, p_m) < \epsilon$ if $n \geq N$ & $m \geq N$.

Briefly:

 $\{p_n\}$ is a Cauchy sequence in a metric space $X \Leftrightarrow \forall \varepsilon > 0, \exists N_{\varepsilon} \text{ s.t. } \min\{m,n\} \geq N_{\varepsilon} \Rightarrow d_X(p_n,p_m) < \varepsilon$, or equivalently,

 $\{p_n\}$ is a Cauchy sequence in a metric space $X \Leftrightarrow \forall \varepsilon > 0, \exists N_{\varepsilon} \text{ s.t. } d_X(p_n, p_m) < \varepsilon, \ \forall m \geq N_{\varepsilon}, \ \forall n \geq N_{\varepsilon}.$

Definition 9. Let E be a subset of a metric space X, & let S be the set of all real numbers of the form d(p,q), with $p \in E, q \in E$. The sup of S is called the diameter of E.

Problem 6 ([Rud76], p. 48, +1). (a) Prove that the sequence $\{\frac{1}{n}\}$ converges in $\mathbb{R} = \mathbb{R}^1$ (to 0), but fails to converge in the set of all positive real numbers, with d(x,y) := |x-y|, $\forall x,y \in X$. (b) Find similar or more advanced examples.

2.6 Sequences with SymPy

A sequence is a finite or infinite lazily evaluated list.

sympy.series.sequences.sequence(seq, limits=None)

returns appropriate sequence object.

Explanation: If seq is a SymPy sequence, returns SeqPer object otherwise returns SeqFormula object. E.g.:

```
from sympy import sequence
from sympy.abc import n
sequence(n**2, (n, 0, 5))
# output: SeqFormula(n**2, (n, 0, 5))
sequence((1, 2, 3), (n, 0, 5))
# output: SeqPer((1, 2, 3), (n, 0, 5))
```

2.6.1 Sequence Base

class sympy.series.sequences.SeqBase(*args): Base class for sequences.

- coeff(pt): returns the coefficient at point pt.
- coeff_mul(other): should be used when other is not a sequence. Should be defined to define custom behavior.

```
from sympy import SeqFormula
from sympy.abc import n
SeqFormula(n**2).coeff_mul(2)
# output: SeqFormula(2*n**2, (n, 0, oo))
```

- * defines multiplication of sequences with sequences only.
- find_linear_recurrence(n, d = None, gfvar = None,): Finds the shortest linear recurrence that satisfies the 1st n terms of sequence of order ≤ n/2 if possible. If d is specified, find shortest linear recurrence of order ≤ min{d, n/2} if possible. Returns list of coefficients [b(1), b(2), ...] corresponding to recurrence relation x(n) = b(1)*x(n 1) + b(2)*x(n 2) + Return [] if no recurrence is found. If gfvar is specified, also returns ordinary generating function as a function of gfvar.

2.7 Problems: Sequences

Bài toán 73. Tính $\lim_{n\to+\infty}\frac{an+b}{cn+d}$ theo $a,b,c,d\in\mathbb{R},\ (c,d)\neq(0,0).$

Bài toán 74. *Tính* $\lim_{n\to +\infty} \frac{an^2 + bn + c}{dn^2 + en + f}$ theo $a, b, c, d, e, f \in \mathbb{R}, (d, e, f) \neq (0, 0, 0).$

Bài toán 75. Tính $\lim_{n\to+\infty}\frac{P(n)}{Q(n)}$ với: (a) $P,Q\in\mathbb{R}[x],\ Q\not\equiv 0.$ (b) $P,Q\in\mathbb{C}[x],\ Q\not\equiv 0.$

Bài toán 76. Cho $a,b,c,d,\alpha \in \mathbb{R}, \ \alpha \neq 0$. Tính: (a) $\lim_{n \to +\infty} \frac{a+b\alpha^n}{c+d\alpha^n}$. (b) $\lim_{n \to +\infty} \frac{an+b\alpha^n}{cn+d\alpha^n}$. (c) $\lim_{n \to +\infty} \frac{an^2+b\alpha^n}{cn^2+d\alpha^n}$. (d) $\lim_{n \to +\infty} \frac{P(x)+a\alpha^n}{Q(x)+b\alpha^n}$ với $P,Q \in \mathbb{R}[x]$.

Bài toán 77 ([VMS23], 1.1, p. 30, HCMUT). Cho $f \in C^1(\mathbb{R}, \mathbb{R})$ thỏa f'(x) < 0, $\forall x \in \mathbb{R}$. Xét dãy số $\{a_n\}$:

$$\begin{cases} a_1 = 1, \\ a_{n+1} = a_n - \frac{f(a_n)}{f'(a_n)}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

(a) $N\acute{e}u\ f(x) > 0$, $\forall x \in \mathbb{R}$, $tinh\ \lim_{n \to +\infty} a_n$. (b) $N\acute{e}u\ f(2023) = 0$ & $f \in C^2(\mathbb{R})$ thỏa f''(x) > 0, $\forall x \in \mathbb{R}$, $tinh\ \lim_{n \to +\infty} a_n$.

Bài toán 78 ([VMS23], 1.2, p. 30, VNUHCM UIT). Cho dãy số $\{u_n\}_{n=1}^{\infty}$ thỏa

$$\begin{cases} u_0 \ge -2, \\ u_n = \sqrt{2 + u_{n-1}}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

(a) Chứng minh $\{u_n\}$ có giới hạn hữu hạn. Tính $\lim_{n\to+\infty}u_n$. (b) Cho 2 dãy $\{v_n\}_{n=1}^{\infty}, \{w_n\}_{n=1}^{\infty}$ đặt bởi

$$\begin{cases} v_n = 4^n |u_n - 2|, \\ w_n = \frac{u_1 u_2 \cdots u_n}{2^n}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

 $Tinh \lim_{n\to+\infty} v_n, \lim_{n\to+\infty} w_n.$

Bài toán 79 ([VMS23], 1.3, p. 30, DH Đồng Tháp). Xét dãy số $\{u_n\}_{n=1}^{\infty}$ đặt bởi

$$u_1 = \frac{3}{2}, \ u_n = 1 + \frac{1}{2} \arctan u_{n-1}, \ \forall n \in \mathbb{N}^*.$$

Chứng minh $\{u_n\}_{n=1}^{\infty} \ h \hat{o}i \ t u$.

Bài toán 80 ([VMS23], 1.4, p. 31, ĐH Đồng Tháp). Cho dãy số $\{a_n\}_{n=1}^{\infty}$ đặt bởi

$$a_1 = 1, \ a_{n+1} = \frac{n^2 - 1}{a_n} + 2, \ \forall n \in \mathbb{N}^*.$$

(a) Chứng minh $n \le a_n \le n+1$, $\forall n \in \mathbb{N}^{\star}$. (b) Đặt $S_n^{(3)} \coloneqq \sum_{i=1}^n a_i^3$. Tính $\lim_{n \to +\infty} \frac{S_n^{(3)}}{n^4}$.

Bài toán 81 ([VMS23], 1.5, p. 31, DHGTVT). Cho dãy số $\{a_n\}_{n=1}^{\infty}$ đặt bởi

$$a_1 > 0, \ a_{n+1} = \frac{a_n^2}{a_n^2 - a_n + 1}, \ \forall n \in \mathbb{N}^*.$$

Chứng minh $\{a_n\}_{n=1}^{\infty}$ giảm & tính $\lim_{n\to+\infty} a_n$.

Bài toán 82 ([VMS23], 1.6, p. 31, ĐH Hùng Vương, Phú Thọ). Cho dãy số $\{u_n\}_{n=1}^{\infty}$ đặt bởi

$$\begin{cases} u_0 = 0, \ u_1 = \beta, \\ u_{n+1} = \frac{u_n + u_{n-1}}{2}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

(a) Tìm công thức số hạng tổng quát của $\{u_n\}_{n=1}^{\infty}$. (b) Tính $\lim_{n\to+\infty} u_n$.

Bài toán 83 ([VMS23], 1.7, p. 31, ĐHKH, Thái Nguyên). Cho dãy số $\{u_n\}_{n=1}^{\infty}$ đặt bởi

$$x_n = \sum_{i=1}^n \frac{i}{(i+1)!} = \frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!}, \ \forall n \in \mathbb{N}^*.$$

$$Tinh \lim_{n \to +\infty} \sqrt[n]{\sum_{i=1}^{2023} x_i^n} = \lim_{n \to +\infty} \sqrt[n]{x_1^n + x_2^n + \dots + x_{2023}^n}.$$

Bài toán 84 ([VMS23], 1.8, p. 31, ĐH Mỏ-Địa chất). *Tính*

$$\lim_{n \to +\infty} \frac{\left(\prod_{i=1}^n i^{i^{2021}}\right)^{\frac{1}{n^{2022}}}}{n^{\frac{1}{2022}}} = \lim_{n \to +\infty} \frac{\left(1^{1^{2021}} \cdot 2^{2^{2021}} \cdot \cdot \cdot \cdot n^{n^{2021}}\right)^{\frac{1}{n^{2022}}}}{n^{\frac{1}{2022}}}.$$

Bài toán 85 ([VMS23], 1.9, pp. 31–32, DHSPHN2). Cho dãy số $\{x_n\}_{n=1}^{\infty}$ đặt bởi

$$x_1 \in (0,1), \ x_{n+1} = \frac{1}{n} \sum_{i=1}^{n} \ln(1+x_i), \ \forall n \in \mathbb{N}^*.$$

(a) Chứng minh dãy $\{x_n\}_{n=1}^{\infty}$ có giới hạn hữu hạn. (b) Chứng minh $\lim_{n\to+\infty}\frac{n(x_n-x_{n+1})}{x_n^2}=\frac{1}{2}$.

Bài toán 86 ([VMS23], 1.10, p. 32, ĐH Trà Vinh). Cho dãy số $\{x_n\}_{n=1}^{\infty}$ đặt bởi

$$a_1 = a_2 = 1, \ a_{n+2} = \frac{1}{a_{n+1}} + a_n, \ \forall n \in \mathbb{N}^*.$$

 $Tinh \ x_{2022}$.

Bài toán 87 ([VMS23], 1.11, p. 32, DH Trà Vinh). Cho 2 dãy số $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ đặt bởi

$$x_1 = y_1 = \sqrt{3}, \ x_{n+1} = x_n + \sqrt{1 + x_n^2}, \ y_{n+1} = \frac{1}{1 + \sqrt{1 + y_n^2}}, \ \forall n \in \mathbb{N}^*.$$

Chứng minh $x_n y_n \in (2,3), \forall n \geq 2 \ \& \lim_{n \to +\infty} y_n = 0.$

Bài toán 88 ([VMS23], 1.11, p. 32, DH Vinh). Cho dãy số $\{x_n\}_{n=1}^{\infty}$ đặt bởi

$$x_n = \prod_{i=1}^n \left(1 + \frac{1}{2^i} \right) = \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{2^2} \right) \cdots \left(1 + \frac{1}{2^n} \right), \ \forall n \in \mathbb{N}^*.$$

(a) Tìm tất cả $n \in \mathbb{N}^*$ thỏa $x_n > \frac{15}{8}$. (b) Chứng minh $\{x_n\}_{n=1}^{\infty}$ hội tụ.

Bài toán 89 ([VMS24], p. 32, 1.1, VNUHCM UIT). Cho $a,b \in \mathbb{R},\ a < b.$ Xét dãy số

$$\begin{cases} x_0 = a, \ x_1 = b, \\ x_{n+1} = x_n + \frac{1}{2} x_{n-1} \left(1 - \cos \frac{\pi}{n} \right). \end{cases}$$

Chứng minh $\{x_n\}$ hội tụ.

Bài toán 90 ([VMS24], p. 32, 1.2, ĐH Đồng Tháp). Cho dãy số $\{u_n\}_{n=1}^{\infty}$ đặt bởi

$$u_n = \sum_{i=1}^n \frac{i}{(i+1)!} = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!}, \ \forall n \in \mathbb{N}^*.$$

(a) Tìm $n \in \mathbb{N}$ lớn nhất để $u_n < \frac{2023}{2024}$. (b) Tính giới hạn $\lim_{n \to +\infty} \sqrt[n]{\sum_{i=1}^{2024} u_i^n} = \sqrt[n]{u_1^n + u_2^n + \dots + u_{2024}^n}$.

Bài toán 91 ([VMS24], p. 32, 1.3, DHGTVT). Cho dãy số $\{a_n\}_{n=1}^{\infty}$ thỏa $\frac{1}{2} < a_n < 1$, $\forall n \in \mathbb{N}^{\star}$. Dãy số $\{x_n\}$ đặt bởi

$$x_1=a_1,\ x_{n+1}=\frac{2(a_{n+1}+x_n)-1}{1+2a_{n+1}x_n},\ \forall n\in\mathbb{N}^\star.$$

(a) Chứng minh dãy số $\{x_n\}_{n=1}^{\infty}$ tăng & bị chặn trên. (b) Tìm $\lim_{n\to+\infty}x_n$.

Bài toán 92 ([VMS24], p. 33, 1.4, DH Vinh). Cho dãy số $\{x_n\}_{n=1}^{\infty}$ đặt bởi

$$\begin{cases} x_1 = 2024, \\ x_{n+1} = \frac{x_n^2}{3\lfloor x_n \rfloor + 4}, \ \forall n \in \mathbb{N}^*. \end{cases}$$

(a) Chứng minh $x_8 < 1$. (b) Chứng minh $\{x_n\}_{n=1}^{\infty}$ hội tụ \mathcal{E} tìm giới hạn.

3 Function – Hàm Số

Bài toán 93 ([VMS23], 3.1, p. 33, HCMUT). (a) Chứng minh tồn tại hàm số $f \in C^2(\mathbb{R}, \mathbb{R})$ thỏa $xf''(x) + 2f'(x) = x^{2023}$, $\forall x \in \mathbb{R}$. (b) Giả sử $g \in C^2(\mathbb{R}, \mathbb{R})$ thỏa $xg''(x) + 2g'(x) \ge x^{2023}$, $\forall x \in \mathbb{R}$. Chứng minh $\int_{-1}^{1} x(g(x) + x^{2023}) dx \ge \frac{2}{2025}$.

Bài toán 94 ([VMS23], 3.2, p. 33, DH Đồng Tháp). Cho hàm $f(x)x = 2(x-1) - \arctan x$, $\forall x \in \mathbb{R}$. Chứng minh phương trình f(x) = 0 có nghiệm duy nhất là $a \in (1, \sqrt{3})$.

Proposition 1 (Luật bình phương nghịch đảo). Mỗi sự gia tăng khoảng cách từ nguồn cho ra kết quả giảm mức độ âm thanh theo tỷ lệ nghịch với bình phương của sự gia tăng khoảng cách.

Bài toán 95 ([VMS23], 3.3, pp. 33–34, ĐH Đồng Tháp). Sử dụng luật bình phương nghịch đảo, giải quyết bài toán: 1 người có 1 mảnh đất lớn có chiều dài mặt tiền là l m ở giữa 2 quán karaoke thường phát ra âm thanh có cường độ lần lượt là I_1, I_2 . Người này định xây 1 ngôi nhà nhỏ trên mảnh đất đó nhưng muốn tìm vị trí sao cho chịu ảnh hưởng của âm thanh từ 2 quán karaoke là ít nhất. Giúp người này nếu biết: (a) Cường độ âm thanh $I_1 = I_2$. (b) Cường độ âm thanh $I_1 = 8I_2$. (c) $I_1 = aI_2$ với $a \in (0, \infty)$ cho trước.

Bài toán 96 ([VMS23], 3.5, p. 34, DH Hùng Vương, Phú Thọ). Cho hàm

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} + \alpha x & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

(a) Tính f'(x) khi $x \neq 0$. (b) Tính f'(0). (c) Chứng minh hàm f(x) không đơn điệu trên mỗi khoảng mở chứa điểm 0.

Bài toán 97 ([VMS23], 3.6, p. 34, ĐH Hùng Vương, Phú Thọ). (a) Gia đình bác Nam muốn xây 1 cái bể hình hộp với đáy là hình vuông có thể tích $V=10~\text{m}^3$. Biết giá thành để xây mỗi m^2 mặt đấy là a=700000 đồng & 1 mặt bên là b=500000 đồng. Để tổng chi phí xây dựng là nhỏ nhất thì bác Nam nên xây bể với kích thước như thế nào? (b) Giải bài toán với $a,b,V\in(0,\infty)$ bất kỳ.

Bài toán 98 ([VMS23], 3.7, pp. 34–35, ĐHKH Thái Nguyên). Tìm các hàm liên tục $f: \mathbb{R} \to \mathbb{R}, f \not\equiv 0$, thỏa

$$f(x+y) = 2023^y f(x) + 2023^x f(y), \ \forall x, y \in \mathbb{R}.$$

Từ đó tính

$$\lim_{x \to 0} \frac{e^{f(x)} - 1}{\sin f(x)}, \ \lim_{n \to +\infty} \frac{n}{f^{(n)}(0)}.$$

Bài toán 99 ([VMS23], 3.8, p. 35, ĐH Mỏ-Địa chất). Tính

$$\lim_{(x,y,z)\to (0,0,0)} \frac{\sin x^2 + \sin y^2 + \sin z^2}{x^2 + y^2 + z^2}.$$

Bài toán 100 ([VMS23], 3.9, p. 35, DH Mỏ-Địa chất). Gọi $y_1(x), y_2(x), y_3(x)$ là 3 nghiệm của phương trình vi phân y''' + a(x)y'' + b(x)y'c(x)y = 0 thỏa $y_1^2(x) + y_2^2(x) + y_3^2(x) = 1$, $\forall x \in \mathbb{R}$. Tim các hằng số α, β để hàm $z = (y_1'(x))^2 + (y_2'(x))^2 + (y_3'(x))^2$ là nghiệm của phương trình vi phân $z' + \alpha a(x)z + \beta c(x) = 0$.

Bài toán 101 ([VMS23], 3.10, p. 35, DH Mỏ-Địa chất). Trên hình ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, tìm tất cả các điểm $T = (x_0, y_0)$ thỏa: tam giác bị giới hạn bởi các đường thẳng x = 0, y = 0 & tiếp tuyến với ellipse tại điểm T có diện tích nhỏ nhất.

Bài toán 102 ([VMS23], 3.11, p. 35, FTU Hà Nội). Chứng minh đa thức $f(x) = \sum_{i=0}^{2022} (-1)^i \frac{x^i}{i!} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{x^{2022}}{2022!}$ không có nghiệm thực.

Bài toán 103 ([VMS23], 3.12, p. 35, DHSPHN2). Cho $f \in C(\mathbb{R}, \mathbb{R})$, $a, b \in \mathbb{R}$, a < b. 1 điểm x được gọi là 1 điểm mù nếu tồn tại 1 điểm $y \in \mathbb{R}$ với y > x sao cho f(y) > f(x). Giả sử tất cả các điểm thuộc khoảng mở I = (a, b) là các điểm mù $\mathscr E$ a, b không phải là 2 điểm mù. Chứng minh f(a) = f(b).

Bài toán 104 ([VMS23], 3.13, p. 36, ĐH Trà Vinh). Chứng minh hàm số $f(x) = x^{x^x}$ đồng biến trên $(0, \infty)$ & $\lim_{x\to 0^+} f(x) = 0$.

Bài toán 105 ([VMS23], 3.14, p. 36, ĐH Vinh). Cho hàm

$$f(x) = \begin{cases} \sqrt[3]{x^2} \sin \frac{1}{x^{2023}} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

(a) Chứng minh hàm số f liên tục tại x = 0. (b) Hàm số f có khả vi tại x = 0 hay không?

Bài toán 106 ([VMS23], 3.15, p. 36, DH Vinh). Cho hàm $f \in C([0,1],\mathbb{R})$, khả vi trên khoảng (0,1), thỏa f(0) = 0, & $|f'(x)| \leq 2023|f(x)|$, $\forall x \in (0,1)$. Chứng minh f(x) = 0, $\forall x \in [0,1]$.

Bài toán 107 ([VMS23], 3.16, p. 36, DH Vinh). $Gi\mathring{a}$ sử hàm $f:(0,\infty)\to\mathbb{R}$ khả vi trên khoảng $(0,\infty)$ & thỏa 2 điều kiện: (i) $|f(x)|\leq 2023$, $\forall x\in(0,\infty)$; (ii) $f(x)f'(x)\geq 2022\cos x$, $\forall x\in(0,\infty)$. Có tồn tại $\lim_{x\to+\infty}f(x)$ không?

4 Continuity – Sự Liên Tục

Definition 10 ([Tao22a], Def. 6.1.1, p. 109: distance between 2 reals). Given $x, y \in \mathbb{R}$, their distance d(x, y) is defined to be $d(x, y) := |x - y| \in [0, \infty)$.

Definition 11 ([Tao22a], Def. 6.1.2, p. 109: ε -close reals). Let $\varepsilon > 0$ be a real number. $x, y \in \mathbb{R}$ is said to be ε -close iff $d(x, y) \leq \varepsilon$.

5 Series – Chuỗi Số

Bài toán 108 ([VMS23], 2.1, p. 32, VNUHCM UIT). Cho dãy số $\{x_n\}_{n=1}^{\infty} \subset (0,\infty)$ thỏa $\sum_{n=1}^{\infty} \frac{x_n}{(2n-1)^2} < 1$. Chứng minh $\sum_{k=1}^{k} \sum_{n=1}^{k} \frac{x_n}{k^3} < 2$.

Bài toán 109 ([VMS23], 2.2, p. 32, DHGTVT). Cho dãy số $\{a_n\}_{n=1}^{\infty} \subset (0,\infty)$ đặt bởi

$$a_1 > 0, \ a_{n+1} = \frac{a_n^2}{a_n^2 - a_n + 1}, \ \forall n \in \mathbb{N}^*.$$

 $Tinh \sum_{n=1}^{\infty} a_n$.

Bài toán 110 ([VMS23], 2.2, p. 32, ĐH Mỏ-Địa chất). Gọi S là dãy con của dãy điều hòa $\left\{\frac{1}{n}\right\}_{n=1}^{\infty} = 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots$ & có tổng hữu hạn. Gọi c(n) là số lượng các phần tử của S có số thứ tự trong dãy mẹ (điều hòa) ban đầu không vượt quá n. Chứng minh $\lim_{n\to+\infty}\frac{c(n)}{n}=0$.

Bài toán 111 ([VMS24], p. 33, 2.1, ĐHCNTT TpHCM). Khảo sát sự hội tụ của chuỗi số

$$\sum_{i=1}^{+\infty} \frac{\beta \sin^2 l\alpha}{1+\beta \sin^2 k\alpha}, \ \alpha \notin \{k\pi: k \in \mathbb{Z}\}, \ \beta > 0.$$

6 Derivative & Differentiability – Đạo Hàm & Tính Khả Vi

Bài toán 112 ([VMS23], p. 36, 4.1, VNUHCM UIT). Cho hàm $f \in C^2(\mathbb{R})$ thỏa f(0) = 2, f'(0) = -2, f(1) = 1. Chứng minh tồn tại $c \in (0,1)$ thỏa f(c)f'(c) + f''(c) = 0.

Bài toán 113 ([VMS23], p. 37, 4.2, ĐH Đồng Tháp). Cho f khả vi trên (a, ∞) , $\forall a \in (0, \infty)$ & $\lim_{x \to +\infty} f'(x) = 0$. Chứng $minh \lim_{x \to +\infty} \frac{f(x)}{x} = 0$.

Bài toán 114 ([VMS23], p. 37, 4.3, ĐH Đồng Tháp). Cho f là hàm số có đạo hàm f' đồng biến trên [0,2] & f(0)=-1, f(2)=1. Chứng minh tồn tại $a,b,c\in[0,2]$ thỏa f'(a)f'(b)f'(c)=1.

Bài toán 115 ([VMS23], p. 37, 4.4, DHGTVT). Cho $f \in C^{\infty}(\mathbb{R})$ thỏa $f^{(n)}(0) = 0$, $\forall n \in \mathbb{N}$ & $f^{(n)}(x)x \geq 0$, $\forall k \in \mathbb{N}^{\star}$, $\forall x \in (0,\infty)$. Chứng minh f(x) = 0, $\forall x \in (0,\infty)$.

Bài toán 116 ([VMS23], p. 37, 4.5, ĐH Hùng Vương, Phú Thọ). $Gi \mathring{a} s \mathring{u} h \mathring{a} m f \in C([1,2023])$, $kh \mathring{a} vi trong kho \mathring{a} ng (1,2023)$, & f(2023) = 0. $Ch \mathring{u} ng minh tồn tại <math>c \in (1,2023)$ thỏa

$$f'(c) = \frac{2024 - 2023c}{1 - c} f(c).$$

Bài toán 117 ([VMS23], p. 37, 4.6, ĐHKH Thái Nguyên). $Gi\mathring{a} s\mathring{u} f(x) \in C^{\infty}([-1,1]), f^{(n)}(0) = 0, \forall n \in \mathbb{N}, \& t \mathring{o}n tại \alpha \in (0,1)$ thỏa $\sup_{x \in [-1,1]} |f^{(n)}(x)| \leq \alpha^n n!, \forall n \in \mathbb{N}.$ Chứng minh $f(x) \equiv 0$ trên đoạn [-1,1].

Bài toán 118 ([VMS23], p. 37, 4.7, DHSPHN2). Cho $f \in C([a,b])$ khả vi trên (a,b). Giả sử f'(x) > 0, $\forall x \in (a,b)$. Chứng minh $\forall x_1, x_2 \in \mathbb{R}$ thỏa $a \leq x_1 < x_2 \leq b$ & $f(x_1)f(x_2) > 0$ thì luôn tồn tại $c \in (x_1, x_2)$ thỏa

$$\frac{x_1 f(x_2) - x_2 f(x_1)}{f(x_2) - f(x_1)} = c - \frac{f(c)}{f'(c)}.$$

Bài toán 119 ([VMS24], p. 33, 3.1, VNUHCM UIT). Cho f là hàm số thực trên $(0, \infty)$. Giả sử

$$f(x^{\alpha}) = f(x)\sin^2\alpha + f(1)\cos^2\alpha, \ \forall x \in (0, \infty), \ \forall \alpha \in \mathbb{R}.$$

Chứng minh f khả vi tai 1.

Bài toán 120 ([VMS24], p. 34, 3.2, DH Đồng Tháp). (a) Chứng minh với mỗi $n \in \mathbb{N}^*$, phương trình $2x = \sqrt{x+n} + \sqrt{x+n+1}$ có nghiệm dương duy nhất, ký hiệu là x_n . (b) Tính $a \coloneqq \lim_{n \to +\infty} \frac{x_n}{\sqrt{n}}$, $b \coloneqq \lim_{n \to +\infty} x_n - a\sqrt{n}$.

Bài toán 121 ([VMS24], p. 34, 3.3, ĐH Đồng Tháp). Cho

$$f(x) = \begin{cases} x^2 \left| \cos \frac{\pi}{x} \right| & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Chứng minh f khả vi tại 0 nhưng f không khả vi tại các điểm $x_n \coloneqq \frac{2}{2n+1}$ với $n \in \mathbb{Z}$.

Bài toán 122 ([VMS24], p. 34, 3.4, DH Đồng Tháp). Giả sử f khả vi liên tục trên $(0, \infty)$, f(0) = 1. Chứng minh nếu $|f(x)| \le e^{-x}$, $\forall x \ge 0$ thì tồn tại $x_0 > 0$ để $f'(x_0) = -e^{-x_0}$.

Bài toán 123 ([VMS24], p. 34, 3.5, ĐHGTVT). Cho $a \in \mathbb{R}$, $b \in (0, \infty)$. Hàm f xác định trên [-1, 1], được cho bởi

$$f(x) = \begin{cases} x^a \sin x^{-b} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

(a) Tìm tất cả các giá trị của a để hàm f liên tục trên [-1,1]. (b) Tìm tất cả các giá trị của a để tồn tại f'(0). (c) Tìm điều kiện của a,b để tồn tại f''(0).

Bài toán 124 ([VMS24], p. 35, 3.7, HUS). Cho $f: \mathbb{R} \to \mathbb{R}$ là hàm số được xác định bởi công thức

$$f(x) = \begin{cases} x^2 + a & \text{if } x \le 0, \\ be^x + x & \text{if } x > 0, \end{cases}$$

 $v\acute{o}i\ a,b\in\mathbb{R}$: tham số. Xác định a,b để f có nguyên hàm trên \mathbb{R} .

Bài toán 125 ([VMS24], p. 35, 3.8, DH Vinh). Cho hàm $f \in C(\mathbb{R}, \mathbb{R})$ thỏa $f_{2024}(x) = x$, $\forall x \in \mathbb{R}$ với

$$\begin{cases} f_{n+1}(x) = f(f_n(x)), \ \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}^*, \\ f_1(x) = f(x), \ \forall x \in \mathbb{R} \end{cases}$$

Chứng minh $f_2(x) = x, \forall x \in \mathbb{R}$.

Bài toán 126 ([VMS24], p. 35, 3.9, DH Vinh). Cho hàm

$$f(x) = \left(\frac{2023^x + 2024^x}{2}\right)^{\frac{1}{x}}, \ x > 0.$$

(a) Tìm $\lim_{x\to 0^+} f(x)$. (b) Chứng minh f là hàm số đơn điệu tăng trên $(0,+\infty)$.

Bài toán 127 ([VMS24], p. 36, 4.1, HCMUT). (a) Cho $f \in C^3(\mathbb{R}, [0, +\infty))$ thỏa $\max_{x \in \mathbb{R}} |f'''(x)| \le 1$. Chứng minh

$$f''(x) \ge -\sqrt[3]{\frac{3}{2}f(x)}, \ \forall x \in \mathbb{R}.$$

(b) Tìm tất cả các hàm số f thỏa mãn điều kiện của (a) thỏa

$$f''(x) = -\sqrt[3]{\frac{3}{2}f(x)}, \ \forall x \in \mathbb{R}.$$

Bài toán 128 ([VMS24], p. 36, 4.2, VNUHCM UIT). Cho hàm số $f:[0,1]\to\mathbb{R}$) liên tục trên [0,1], khả vi trên (0,1) sao cho $\exists M>0,\ \exists c\in[0,1]$ thỏa f(c)=0 &

$$|f'(x)| \le M|f(x)|, \ \forall x \in (0,1).$$

Chứng minh $f(x) = 0, \forall x \in [0, 1].$

Bài toán 129 ([VMS24], p. 36, 4.3, DH Đồng Tháp). Cho f khả vi trên \mathbb{R} & f' giảm ngặt trên \mathbb{R} . (a) Chúng minh

$$f(x+1) - f(x) < f'(x) < f(x) - f(x-1), \ \forall x \in \mathbb{R}.$$

(b) Chứng minh nếu tồn tại $\lim_{x\to +\infty} f(x) = L$ thì $\lim_{x\to +\infty} f'(x) = 0$. (c) Tìm hàm số g khả vi trên \mathbb{R} \mathscr{E} tồn tại $\lim_{x\to +\infty} g(x) = L$ nhưng $\lim_{x\to +\infty} g'(x) \neq 0$.

Bài toán 130 ([VMS24], p. 37, 4.4, DHGTVT). $Gi\mathring{a}$ sử V là tập hợp các hàm liên tục $f:[0,1]\to\mathbb{R}$ & khả vi trên (0,1) thỏa f(0)=0, f(1)=1. Xác định các giá trị $\alpha\in\mathbb{R}$ để với mỗi $f\in V$, luôn tồn tại $\xi\in(0,1)$ thỏa $f(\xi)+\alpha=f'(\alpha)$.

Bài toán 131 ([VMS24], p. 37, 4.5, HUS). Cho $f:[0,3] \to \mathbb{R}$ là hàm liên tục trên [0,3] & khả vi trong (0,3). Chứng minh tồn tại $c \in (0,3)$ thỏa 2f'(c) = f(3) - f(2) + f(1) - f(0).

Bài toán 132 ([VMS24], p. 37, 4.6, DH Mô-Địa chất). Giả sử có chuỗi có 2 đầu hướng ra vô cực

$$\cdots + f''(x) + f'(x) + f(x) + \int_0^x f(t) dt + \int_0^x \int_0^t f(s) ds dt + \cdots$$

 \mathcal{E} hội tụ đều trên khoảng (-1,1). Chuỗi là biểu diễn của số nào?

Bài toán 133 ([VMS24], p. 37, 4.7, DH Vinh). Cho hàm $f \in C^2(\mathbb{R}, \mathbb{R})$ & thỏa $f(x) \leq 2024$, $\forall x \in \mathbb{R}$. Chứng minh tồn tại $x \in \mathbb{R}$ thỏa f''(x) = 0.

7 Integral – Tích Phân

Bài toán 134 ([VMS23], p. 38, 5.1, VNUHCM UIT). Cho hàm $f:(-1,1)\to\mathbb{R}$ khả vi đến cấp 2 thỏa f(0)=1 & $f''(x)+2f'(x)+f(x)\geq 1, \ \forall x\in (-1,1).$ Tìm GTNN của $\int_{-1}^{1}e^{x}f(x)\,\mathrm{d}x.$

Bài toán 135 ([VMS23], p. 38, 5.2, DH Đồng Tháp). Cho hàm $f:[0,2023] \to (0,\infty)$ khả tích & f(x)f(2023-x)=1, $\forall x \in [0,2023]$. Chúng minh $\int_0^{2023} f(x) \, \mathrm{d}x \geq 2023$.

Bài toán 136 ([VMS23], p. 38, 5.3, DHGTVT). Cho hàm $f \in C([0,1])$ thỏa $\int_0^1 f(x) \, \mathrm{d}x = \int_0^1 x f(x) \, \mathrm{d}x$. Chứng minh tồn tại $c \in (0,1)$ thỏa $cf(c) + 2023 \int_0^c f(x) \, \mathrm{d}x = 0$.

Bài toán 137 ([VMS23], p. 38, 5.4, DHGTVT). *Tính*

$$I := \int_{-\pi}^{\pi} \frac{\sin nx}{(1 + 2023^x)\sin x} \, \mathrm{d}x.$$

Bài toán 138 ([VMS23], p. 38, 5.5, DHGTVT). Cho hàm f dương, khả tích trên $[a,b],\ 0 < m \le f(x) \le M,\ \forall x \in [a,b].$ Chứng minh

$$(b-a)^2 \le \int_a^b f(x) dx \int_a^b \frac{dx}{f(x)} \le \frac{(m+M)^2}{4mM} (b-a)^2.$$

Bài toán 139 ([VMS23], p. 39, 5.6, DHKH Thái Nguyễn). Cho hàm $h \in C([0,1])$ thỏa $\int_0^1 x h(x) dx = \int_0^1 h(x) dx$. Chứng minh tồn tại $\beta \in (0,1)$ thỏa $\beta h(\beta^2) = \frac{2023}{2} \int_0^{\beta^2} h(x) dx$.

Bài toán 140 ([VMS23], p. 39, 5.7, DHKH Thái Nguyên). Cho $f \in C([0,\pi])$ thỏa f(0) > 0 & $\int_0^{\pi} f(x) dx < 2$. Chứng minh phương trình $f(x) = \sin x$ có ít nhất 1 nghiệm trong khoảng $(0,\pi)$.

Bài toán 141 ([VMS23], p. 39, 5.8, ĐH Mỏ–Địa chất). Cho $f \in C([0,1]), g \in C([0,1], (0,\infty))$ với f không giảm. Chứng minh

$$\left(\int_0^t f(x)g(x)\,\mathrm{d}x\right)\left(\int_0^1 g(x)\,\mathrm{d}x\right) \leq \left(\int_0^t g(x)\,\mathrm{d}x\right)\left(\int_0^1 f(x)g(x)\,\mathrm{d}x\right),\ \forall t\in[0,1].$$

Bài toán 142 ([VMS23], p. 39, 5.9, DH Mỏ-Địa chất). Cho $f \in C([0,1])$ thỏa $\int_0^1 f(x) dx = 0$. Chứng minh tồn tại điểm $c \in (0,1)$ thỏa $\int_0^c x f(x) dx = 0$.

Bài toán 143 ([VMS23], p. 39, 5.10, DHSPHN2). Gọi $\mathcal F$ là lớp tất cả các hàm khả vi $f:\mathbb R\to (0,\infty)$ thỏa

$$|f'(x) - f'(y)| \le 2023|x - y|, \ \forall x, y \in \mathbb{R}.$$

Chứng minh

$$(f'(x))^2 < 4046 f(x), \ \forall x \in \mathbb{R}.$$

Bài toán 144 ([VMS23], p. 40, 5.11, DHSPHN2). $Gi\mathring{a}$ sử $f \in C^2([a,b])$ thỏa $f(a) \neq -f(b)$ & $\int_a^b f(x) \,\mathrm{d}x = 0$. Tìm GTNN $c\mathring{u}a$

$$A := \frac{(b-a)^3}{(f(a)+f(b))^2} \int_a^b (f''(x))^2 dx.$$

Bài toán 145 ([VMS23], p. 40, 5.12, DH Trà Vinh). Tính

$$I := \int_0^{2\pi} \ln(\sin x + \sqrt{1 + \sin^2 x}) \, \mathrm{d}x.$$

Bài toán 146 ([VMS23], p. 40, 5.12, DH Vinh). Cho $f \in C([0,1])$ thỏa $xf(y) + yf(x) \le 1$, $\forall x, y \in [0,1]$. Chứng minh: (a) $f(x) \le \frac{1}{2x}$, $\forall x \in (0,1]$. (b) $\int_0^1 f(x) \, \mathrm{d}x \le \frac{\pi}{4}$.

Bài toán 147 ([VMS24], p. 37, 5.1, VNUHCM UIT). Cho $\alpha \in (0,\infty)$ & $f \in C([0,1])$ nghịch biến, $a \in (0,1)$ thỏa

$$\int_0^a f(t) \, \mathrm{d}t < \frac{a}{2025}, \ f(0) = \beta > 0.$$

Chúng minh phương trình $f(x) = x^{2024}$ có nghiệm trong [0,1].

Bài toán 148 ([VMS24], p. 38, 5.2, ĐH Đồng Tháp). $Giả sử f \in C^1([0,1])$ thỏa f(0) = 0, $0 \le f'(x) \le 1$, $\forall x \in [0,1]$. Xét hàm số

$$F(t) = \left(\int_0^t f(x) \, \mathrm{d}x\right)^2 - \int_0^t (f(x))^3 \, \mathrm{d}x, \ \forall t \in [0, 1].$$

(a) Chứng minh F đồng biến trên [0,1]. (b) Chứng minh

$$\left(\int_0^1 f(x) \, \mathrm{d}x\right)^2 \ge \int_0^1 (f(x))^3 \, \mathrm{d}x.$$

Cho vài ví dụ về hàm f để đẳng thức xảy ra.

Bài toán 149 ([VMS24], p. 38, 5.3, DHGTVT). Cho $f:[0,1] \to (0,+\infty)$ là 1 hàm khả tích thỏa f(x)f(1-x) = 1, $\forall x \in [0,1]$. Chứng minh $\int_0^1 f(x) dx \ge 1$.

Bài toán 150 ([VMS24], p. 38, 5.4, HUS). Cho $f:[0,1] \to \mathbb{R}$ là hàm khả tích trên [0,1] & liên tục trên (0,1). Chứng minh tồn tại $a,b \in (0,1)$ phân biệt sao cho

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{f(a) + f(b)}{2}.$$

Bài toán 151 ([VMS24], p. 38, 5.5, ĐH Mỏ-Địa chất). Tính tích phân

$$\iiint_{x^2+y^2+z^2+t^2 \le 1} e^{x^2+y^2-z^2-t^2} \, dx \, dy \, dz \, dt.$$

Bài toán 152 ([VMS24], p. 38, 5.6, DH Vinh). Chứng minh

$$\frac{9}{8\pi} < \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \left(\frac{\sin x}{x}\right)^2 \, \mathrm{d}x < \frac{3}{2\pi}.$$

7.1 SymPy/integrals module

See https://docs.sympy.org/latest/modules/integrals/integrals.html. The integrals module in SymPy implements methods to calculate definite & indefinite integrals of expressions. Principal method in this module is integrate():

- integrate(f, x) returns the indefinite integral $\int f dx$
- integrate(f, (x, a, v)) returns the definite integral $\int_a^b f \, dx$.

Problem 7 (Integration of elementary functions). Use SymPy to compute definite- & indefinite integrals of elementary functions as many as possible.

Problem 8 (Integration of nonelementary functions). Use SymPy to compute definite- & indefinite integrals of nonelementary functions as many as possible.

Example 4 (Integral of error function). The indefinite integral of the nonelementary function $e^{-x^2}\operatorname{erf}(x)$, where $\operatorname{erf}(x)$ is the error function, is given by

$$\int e^{-x^2} \operatorname{erf}(x) \, \mathrm{d}x = \frac{\sqrt{\pi}}{4} \operatorname{erf}(x).$$

Run the following Python code:

to obtain the following output:

$$sqrt(pi)*erf(x)**2/4$$

For more information about the error function, see, e.g., Wikipedia/error function.

7.2 Leibniz integral rule – Quy tắc tích phân Leibniz

In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz.

Theorem 9 (Leibniz integral rule – Quy tắc tích phân Leibniz). For an integral of the form $\int_{a(x)}^{b(x)} f(t,x) dt$ where $a(x), b(x) \in \mathbb{R}$ \mathcal{E} the integrands are functions dependent on x, the derivative of this integral is expressible as

$$\frac{d}{dx}\left(\int_{a(x)}^{b(x)} f(t,x) dt\right) = f(b(x),x)\frac{d}{dx}b(x) - f(a(x),x)\frac{d}{dx}a(x) + \int_{a(x)}^{b(x)} \partial_x f(t,x) dt,$$
(Lintr)

where the partial derivative $\partial_x = \frac{\partial}{\partial x}$ indicates that inside the integral, only the variation of f(t,x) with x is considered in taking the derivative.

8 Functional Equation – Phương Trình Hàm

Bài toán 153 ([VMS23], 6.1, p. 40, VNUHCM UIT). Tìm tất cả các hàm số $f \in C^2(\mathbb{R}, (0, \infty))$ thỏa

$$f''(x)f(x) \ge 2(f'(x))^2, \ \forall x \in \mathbb{R}.$$

Bài toán 154 ([VMS23], 6.2, p. 40, ĐH Hùng Vương, Phú Thọ). Tìm tất cả các hàm số $f \in C(\mathbb{R})$ thỏa f(1) = 2023 & $f(x+y) = 2023^x f(y) + 2023^y f(x), \forall x, y \in \mathbb{R}$.

Bài toán 155 ([VMS23], 6.3, p. 40, ĐH Hùng Vương, Phú Thọ). Tìm tất cả các hàm số $f(x) \in C^1([0,1])$ có $f(1) = f(0 \ \mathcal{E} \ thỏa)$

$$\int_0^1 \left(\frac{f'(x)}{f(x)}\right)^2 dx \le 1.$$

Bài toán 156 ([VMS23], 6.4, p. 41, ĐH Mỏ-Địa chất). Cho $r, s \in \mathbb{Q}$. Từm tất cả các hàm số $f : \mathbb{Q} \to \mathbb{Q}$ thỏa

$$f(x+f(y)) = f(x+r) + y + s, \ \forall x, y \in \mathbb{Q}.$$

Bài toán 157 ([VMS23], 6.5, p. 41, FTU Hà Nội). Tìm tất cả các hàm số thực $f:(0,\infty)\to(0,\infty)$ thỏa

$$f(x+f(y)) = xf\left(1+f\left(\frac{y}{x}\right)\right), \ \forall x, y \in (0,\infty).$$

Bài toán 158 ([VMS23], 6.6, p. 41, ĐH Trà Vinh). Tìm tất cả các hàm số f(x) thỏa

$$f\left(\frac{x+1}{x-1}\right) = 2f(x) + \frac{3}{x-1}, \ \forall x \neq 1.$$

Bài toán 159 ([VMS23], 6.7, p. 41, ĐH Trà Vinh). Tìm tất cả các hàm số $f(x) \in C^1([0,1])$ thỏa f(1) = ef(0) &

$$\int_0^1 \left(\frac{f'(x)}{f(x)}\right)^2 dx \le 1.$$

Bài toán 160 ([VMS24], p. 38, 6.1, HUS). Cho $f:(0,1)\to\mathbb{R}$ là 1 hàm khả vi thỏa $(f'(x))^2-3f'(x)+2=0$, $\forall x\in(0,1)$. Tìm f. (b) Mở rộng bài toán cho dạng phương trình hàm phức tạp hơn.

9 Fourier transform – Biến đổi Fourier

Resources - Tài nguyên.

1. [Tao12]. Terence Tao. Higher Order Fourier Analysis.

9.1 Discrete Fourier transform – Biến đổi Fourier rời rạc

See, e.g., Wikipedia/discrete Fourier transform. In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence.

Definition 12 (Discrete Fourier transform). The discrete Fourier transform transforms a sequence of N complex numbers $\mathbf{x} = \{x_n\}_{n=0}^{N-1} \coloneqq x_0, x_1, \dots, x_{N-1} \text{ into another sequence of complex numbers, } \mathbf{X} = \{X_n\}_{n=0}^{N-1} \coloneqq X_0, X_1, \dots, X_{N-1} \text{ defined by } \mathbf{x} = \{X_n\}_{n=0}^{N-1} \coloneqq X_n, X_n = \{X_n\}_{n=0}^{N-1} \coloneqq X_n = \{X_n\}_{n=0}^{N-1} = X_n = \{X_n\}_{n=0}^{N-1} = X_n =$

$$X_k := \sum_{n=0}^{N-1} x_n e^{-i2\pi \frac{k}{N}n}.$$
 (dFt)

The transform is sometimes denoted by the symbol \mathcal{F} , as in $\mathbf{X} = \mathcal{F}\{\mathbf{x}\}$ or $\mathcal{F}(\mathbf{x})$ or $\mathcal{F}\mathbf{x}$.

10 Miscellaneous

10.1 See also

- 1. [Str20]. Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe.
- 2. [Str24]. Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe Sức Mạnh Vô Hạn: Giải Tích Toán Khám Phá Bí Mật Của Vũ Trụ Như Thế Nào?.

Nhận xét. 1 quyển sách hay về thường thức về lịch sử phát triển của Giải tích Toán học & các ý tưởng cơ bản nhất của Giải tích. Khuyến khích đọc thử, cũng như các tác phẩm thường thức Khoa học Tự nhiên nói chung & Toán học nói riêng khác của tác giả STEVEN STROGATZ.

- 3. TS. HUYNH QUANG Vũ. Các Bài Giảng Giải Tích. https://sites.google.com/view/hqvu/teaching.
 - Bộ Môn Giải Tích, Khoa Toán Tin học, Faculty of Mathematics & Computer Science, HCMUS. *Giáo Trình Vi Tích Phân*
 - Bộ Môn Giải Tích, Khoa Toán Tin học, Faculty of Mathematics & Computer Science, HCMUS. Giáo Trình Vi Tích Phân
 2.
- 4. Vietnamese Mathematical Olympiad for High School- & College Students (VMC) Olympic Toán Học Học Sinh & Sinh Viên Toàn Quốc.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/VMC/NQBH_VMC.pdf.

TEX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/VMC/NQBH_VMC.tex.

- Codes:
 - C++ code: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/C++.
 - Python code: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/Python.
- Resource: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/resource.
- Figures: https://github.com/NQBH/advanced_STEM_beyond/tree/main/VMC/figure.
- 5. Olympic Tin Học Sinh Viên OLP & ICPC.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/NQBH_OLP_ICPC.pdf.

TEX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/OLP_ICPC/NQBH_OLP_ICPC.tex.

- Codes:
 - C: https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/C.
 - o C++: https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/C++.
 - Python: https://github.com/NQBH/advanced_STEM_beyond/tree/main/OLP_ICPC/Python.

Tài liêu

- [Hùn+23] Trần Quang Hùng, Lê Thị Việt Anh, Phạm Việt Hải, Khiếu Thị Hương, Tạ Công Sơn, Nguyễn Xuân Thọ, Ninh Văn Thu, and Phạm Đình Tùng. Nâng Cao & Phát Triển Toán 11 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 176.
- [Quỳ+20] Đoàn Quỳnh, Trần Nam Dũng, Nguyễn Vũ Lương, and Đặng Hùng Thắng. *Tài Liệu Chuyên Toán Đại Số & Giải Tích 11.* Nhà Xuất Bản Giáo Dục Việt Nam, 2020, p. 327.
- [Rud76] Walter Rudin. *Principles of mathematical analysis*. Third. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976, pp. x+342.
- [Str20] Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe. Mariner Books, 2020, p. 400.
- [Str24] Steven Strogatz. Infinite Powers: How Calculus Reveals the Secrets of the Universe Sức Mạnh Vô Hạn: Giải Tích Toán Khám Phá Bí Mật Của Vũ Trụ Như Thế Nào? Phạm Văn Thiều dịch. Nhà Xuất Bản Trẻ, 2024, p. 486.
- [Tao12] Terence Tao. Higher order Fourier analysis. Vol. 142. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012, pp. x+187. ISBN: 978-0-8218-8986-2. DOI: 10.1090/gsm/142. URL: https://doi.org/10.1090/gsm/142.
- [Tao22a] Terence Tao. Analysis I. Vol. 37. Texts and Readings in Mathematics. Fourth edition [of 2195040]. Hindustan Book Agency, New Delhi, [2022] © 2022, pp. xvi+355. ISBN: 978-81-951961-9-7.
- [Tao22b] Terence Tao. Analysis II. Vol. 38. Texts and Readings in Mathematics. Fourth edition [of 2195041]. Springer, Singapore; Hindustan Book Agency, New Delhi, [2022] ©2022, pp. xvii+195. ISBN: 978-9-81197-284-3. DOI: 10.1007/978-981-19-7284-3.

- [Thá+23a] Đỗ Đức Thái, Đỗ Tiến Đạt, Nguyễn Sơn Hà, Nguyễn Thị Phương Loan, Phạm Sỹ Nam, and Phạm Đức Quang. Toán 6 Tập 1. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, 2023, p. 128.
- [Thá+23b] Đỗ Đức Thái, Đỗ Tiến Đạt, Nguyễn Sơn Hà, Nguyễn Thị Phương Loan, Phạm Sỹ Nam, and Phạm Đức Quang. Toán 6 Tập 2. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, 2023, p. 108.
- [Thá+25] Đỗ Đức Thái, Phạm Xuân Chung, Nguyễn Sơn Hà, Nguyễn Thị Phương Loan, Phạm Sỹ Nam, and Phạm Minh Phương. *Toán 11 Tập 1*. Cánh Diều. Nhà Xuất Bản Đại Học Sư Phạm, 2025, p. 123.
- [VMS23] Hội Toán Học Việt Nam VMS. Kỷ Yếu Kỳ Thi Olympic Toán Học Sinh Viên-Học Sinh Lần Thứ 29. Huế 2–8/4/2023. VMS, 2023, p. 141.
- [VMS24] Hội Toán Học Việt Nam VMS. Kỷ Yếu Kỳ Thi Olympic Toán Học Sinh Viên-Học Sinh Lần Thứ 30. Đà Nẵng 8–13/4/2024. VMS, 2024, p. 112.
- [WS10] Robert Wrede and Murray R. Spiegel. *Advanced Calculus*. 3rd edition. Schaum's Outline Series. McGraw Hill, 2010, p. 456. ISBN: 978-0071623667.