NARC, PATH

5.224 lex_chain_greatereq

Origin Derived from lex_chain_lesseq

Constraint lex_chain_greatereq(VECTORS)

Usual name lex_chain

Type VECTOR : collection(var-dvar)

Argument VECTORS : collection(vec - VECTOR)

Restrictions $|VECTOR| \ge 1$

required(VECTOR, var)
required(VECTORS, vec)
same_size(VECTORS, vec)

For each pair of consecutive vectors VECTOR_i and VECTOR_{i+1} of the VECTORS collection we have that VECTOR_i is lexicographically greater than or equal to VECTOR_{i+1}. Given two vectors, \vec{X} and \vec{Y} of n components, $\langle X_0, \ldots, X_{n-1} \rangle$ and $\langle Y_0, \ldots, Y_{n-1} \rangle$, \vec{X} is lexicographically greater than or equal to \vec{Y} if and only if n = 0 or $X_0 > Y_0$ or $X_0 = Y_0$ and $\langle X_1, \ldots, X_{n-1} \rangle$ is lexicographically greater than or equal to $\langle Y_1, \ldots, Y_{n-1} \rangle$.

Purpose

Example

$$(\langle \mathtt{vec} - \langle 5, 2, 6, 2 \rangle, \mathtt{vec} - \langle 5, 2, 6, 2 \rangle, \mathtt{vec} - \langle 5, 2, 3, 9 \rangle))$$

The lex_chain_greatereq constraint holds since:

- The first vector $\langle 5, 2, 6, 2 \rangle$ of the VECTORS collection is lexicographically greater than or equal to the second vector $\langle 5, 2, 6, 2 \rangle$ of the VECTORS collection.
- The second vector $\langle 5,2,6,2 \rangle$ of the VECTORS collection is lexicographically greater than or equal to the third vector $\langle 5,2,3,9 \rangle$ of the VECTORS collection.

Typical

$$\begin{aligned} |\text{VECTOR}| &> 1 \\ |\text{VECTORS}| &> 1 \end{aligned}$$

Arg. properties

- Contractible wrt. VECTORS.
- Suffix-contractible wrt. VECTORS.vec (remove items from same position).

Usage

This constraint was motivated for breaking symmetry: more precisely when one wants to lexicographically order the consecutive columns of a matrix of decision variables. A further motivation is that using a set of lexicographic ordering constraints between two vectors does usually not allows to come up with a complete pruning.

20130730 1533

Algorithm A filtering algorithm achieving arc-consistency for a chain of lexicographical ordering con-

straints is presented in [95].

Six different ways of integrating a chain of lexicographical ordering constraints within non-overlapping constraints like diffn or geost and within their corresponding necessary

condition like the cumulative constraint are shown in [3].

See also common keyword: lex_between, lex_greater, lex_less,

lex_lesseq(lexicographic order).

implied by: lex_chain_greater (non-strict order implied by strict order).

part of system of constraints: lex_greatereq.
used in graph description: lex_greatereq.

Keywords characteristic of a constraint: vector.

constraint type: system of constraints, decomposition, order constraint.

filtering: arc-consistency.

heuristics: heuristics and lexicographical ordering.

symmetry: symmetry, matrix symmetry, lexicographic order.

 \overline{NARC} , PATH

Arc input(s)	VECTORS
Arc generator	$PATH \mapsto collection(vectors1, vectors2)$
Arc arity	2
Arc constraint(s)	${\tt lex_lesseq}({\tt vectors1.vec}, {\tt vectors2.vec})$
Graph property(ies)	NARC = VECTORS - 1

Graph model

Parts (A) and (B) of Figure 5.479 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NARC** graph property, the arcs of the final graph are stressed in bold. The lex_chain_greatereq constraint holds since all the arc constraints of the initial graph are satisfied.

Figure 5.479: Initial and final graph of the lex_chain_greatereq constraint

Signature

Since we use the PATH arc generator on the VECTORS collection the number of arcs of the initial graph is equal to |VECTORS| - 1. For this reason we can rewrite NARC = |VECTORS| - 1 to $NARC \ge |VECTORS| - 1$ and simplify \overline{NARC} to \overline{NARC} .

20130730 1535