Međuispit iz Kvantnih računala (29. studenog 2018.)

Ime, prezime i JMBAG:

Uputa:

- Ispit se sastoji od 10 zadataka najčešće u obliku pitanja s ponuđenim odgovorima.
- Odgovore koje smatrate točnima označite (zacrnite) na posebnom obrascu. Mogu se pojaviti zadaci u kojima je potrebno označiti više od jednog ponuđenog odgovora.
- U praznom prostoru pored zadatka ili na dodatnim papirima napišite obrazloženje ili računski postupak koji vas je doveo do rješenja koje smatrate točnim.
- Točno riješeni zadatak donosi 4 boda. Kazneni (negativni) bodovi se ne obračunavaju.

Notacija i terminologija:

- Vektori $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ i $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ čine ortonormiranu bazu u $\mathcal{H}^{(2)}$.
- Pri realizaciji qubita stanjima polarizacije fotona, vektori $|0\rangle = |x\rangle$ i $|1\rangle = |y\rangle$ odgovaraju stanjima linearne polarizacije u x-smjeru i u y-smjeru, bazu $\{|x\rangle, |y\rangle\}$ obilježavamo simbolom \bigoplus , a bazu $\{\frac{1}{\sqrt{2}}(|x\rangle \pm |y\rangle)\}$ obilježavamo simbolom \bigotimes .
- Pri realizaciji qubita projekcijom spina čestice spinskog kvantnog broja s=1/2 na z-os uzimamo da $|0\rangle$ i $|1\rangle$ odgovarju projekcijama $\hbar/2$ i $-\hbar/2$.
- Računalnu bazu u prostoru stanja dvaju qubitova obilježavamo s $\{|ij\rangle = |i\rangle \otimes |j\rangle$; $i, j = 0, 1\}$.

- 1 Koji od navedenih vektora nije/nisu normiran/i? // Which of the following vectors is/are not normalized?
 - (a) $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$
 - (b) $\frac{1}{\sqrt{5}} |0\rangle + i \frac{2}{\sqrt{5}} |1\rangle$
 - (c) $\frac{3}{5}|0\rangle i\frac{2}{5}|1\rangle$ **točno**
 - (d) $\frac{1}{\sqrt{10}} |0\rangle + \frac{3}{\sqrt{10}} |1\rangle$
 - (e) $\frac{5}{\sqrt{29}} |0\rangle \frac{2}{\sqrt{29}} |1\rangle$
- 2 Koja dva od navedenih vektora čine ortonormiranu bazu u $\mathcal{H}^{(2)}$? // Which two of the following vectors comprise a orthonormal basis in $\mathcal{H}^{(2)}$?
 - (a) $\frac{1}{\sqrt{13}}(2|0\rangle + 3|1\rangle)$
 - (b) $\frac{1}{\sqrt{13}}(3|0\rangle + 2|1\rangle)$
 - (c) $\frac{1}{\sqrt{13}}(2|0\rangle + 3i|1\rangle)$ točno
 - (d) $\frac{1}{\sqrt{13}}(3|0\rangle + 2i|1\rangle)$
 - (e) $\frac{1}{\sqrt{13}}(3|0\rangle 2i|1\rangle)$ **točno**
- 3 Koji (dva ili više) od navedenih vektora predstavljaju isto stanje kvantnog bita? // Which (two or more) of the following kets represent the same qubit state?
 - (a) $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ točno
 - (b) $\frac{1}{\sqrt{2}}(-|0\rangle |1\rangle)$ točno
 - (c) $\frac{1}{\sqrt{2}}(|0\rangle i|1\rangle)$
 - (d) $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$
 - (e) $\frac{1}{\sqrt{2}}(i|0\rangle + i|1\rangle)$ točno

4 Stanje kvantnog bita je: // Qubit state is:

$$\cos \frac{\vartheta}{2} |0\rangle + e^{i\varphi} \sin \frac{\vartheta}{2} |1\rangle, \qquad \vartheta, \varphi \in \mathbb{R}$$

Vjerojatnost da taj kvantni bit bude izmjeren u stanju $|1\rangle$ // The probability that this qubit is measured in the state $|1\rangle$

- (a) ovisi i o ϑ i o φ . // depends on both φ and ϑ .
- (b) ovisi samo o φ . // depends only on φ .
- (c) ovisi samo o ϑ . // depends only on ϑ . točno
- (d) ne ovisi ni o ϑ ni o φ . // does not depend on φ or ϑ .
- (e) ne može se odrediti. // does not compute.
- 5 Koje od navedenih stanja kvantnog bita ima najveću vjerojatnost nalaženja u stanju $|0\rangle$? // Which of the following states has the highest probability of being measured in the state $|0\rangle$?
 - (a) $\frac{1}{13}(12i|0\rangle + 5|1\rangle)$ **točno**
 - (b) $\frac{1}{\sqrt{5}}(2|0\rangle i|1\rangle)$
 - (c) $\frac{1}{\sqrt{3}}(|0\rangle \sqrt{2}|1\rangle)$
 - (d) $\frac{1}{\sqrt{7}}(\sqrt{3}|0\rangle + 2i|1\rangle)$
 - (e) $\frac{1}{3}(\sqrt{5}|0\rangle 2i|1\rangle)$
- 6 Stanje kvantnog bita je: // The state of a qubit is:

$$|\psi\rangle = e^{-i\varphi/2}\cos\frac{\vartheta}{2}|0\rangle + e^{i\varphi/2}\sin\frac{\vartheta}{2}|1\rangle$$

Djelovanje operatora Pauli-Z (σ_z ili σ_3) na to stanje istovjetno je zamjeni // Action of the Pauli-Z operator on that state (also denoted σ_z or σ_3) is equivalent to the change

- (a) $\varphi \to \varphi \pm 2\pi$
- (b) $\varphi \rightarrow \varphi \pm \pi$ točno
- (c) $\vartheta \to \vartheta \pm 2\pi$
- (d) $\vartheta \rightarrow \vartheta \pm \pi$
- (e) $\vartheta \to \pi \vartheta$

7 Operatoru projekcije na stanje // Projector onto the state

$$\frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle)$$

odgovara matrica // has the matrix representation

- (a) $\frac{1}{2}\begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix}$.
- (b) $\frac{1}{2}\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$. **točno**
- (c) $\begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix}$.
- (d) $\frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.
- (e) $\frac{1}{2} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$.
- 8 Ako je hamiltonijan kvantnog bita // If the Hamiltonian of a qubit is

$$H = \frac{\hbar\omega}{2} |0\rangle \langle 0| - \frac{\hbar\omega}{2} |1\rangle \langle 1|,$$

te ako je početno stanje kvantnog bita // and if the initial state of the qubit is

$$\frac{1}{\sqrt{5}}(2|0\rangle + |1\rangle),$$

taj će se kvantni naći u stanju // that qubit will find itself in the state

$$\frac{1}{\sqrt{5}}(|0\rangle + 2|1\rangle)$$

nakon vremena // after the time

- (a) $\frac{\pi}{2\omega}$
- (b) $\frac{\pi}{\omega}$
- (c) $\frac{3\pi}{2\omega}$
- (d) $\frac{2\pi}{\omega}$
- (e) to se neće dogotiti. // that will not happen. točno

9 Sustav dvaju kvantnih bitova ostvaren je projekcijama spinova dviju čestica spinskog kvantnog broja s=1/2 na z-os. Matrični prikaz hermitskog operatora koji opisuje zbroj projekcija na z-os je // The system of two qubits is realized by z-projections of the spins of two s=1/2 particles. Matrix representation of the Hermitean operator describing the sum of the projections is

Radi se o operatoru: // This is the operator:

- (a) $\frac{\hbar}{2}\sigma_z\otimes I$
- (b) $I \otimes \frac{\hbar}{2} \sigma_z$
- (c) $\frac{\hbar}{2}\sigma_z\otimes I+I\otimes \frac{\hbar}{2}\sigma_z$ točno
- (d) $\frac{\hbar}{2}\sigma_z\otimes\frac{\hbar}{2}\sigma_z$
- (e) $\sigma_x \otimes \sigma_y$
- 10 Operator (gustoće) stanja kvantnog bita je // State (density) operator of a qubit is

$$\rho = \frac{1}{3} \left| 0 \right\rangle \left\langle 0 \right| + \frac{2}{3} \left| 1 \right\rangle \left\langle 1 \right|.$$

Očekivana vrijednost operatora σ_z za taj kvantni bit je // The expectation of the operator σ_z for this qubit is

- (a) -2/3
- (b) -1/3 **točno**
- (c) 0
- (d) 1/3
- (e) $\frac{2}{3}$