Today: Video over Internet

- "Isochronous" transmission: transmit a continuous data over the Internet
 - Two PCs each with a microphone
 - Microphone: vibration -> voltage going up and down
 - Sampling: Voltage -> discrete samples
 - Why digital? Digital can be corrected.
 - Take discrete measurements of the analog signal. If the sampling rate is greater than twice of the largest frequency (if the signal occupies 0 to largest frequency), the samples can reconstruct the original signal perfectly.
 - Quantization: set a limited number of options and round off each sample to the nearest option -> a sequence of integers
 - Typical sampling rate for sound: 48 kSa/s (48000 sample / s)
 - Human ears' dynamic range ~90 dB -> Typical quantization 16 bits (65, 536 levels)
 - Bitrate: 48 kSa /s * 2 byte / Sa = 96 kByte/s
- One design: 48,000 packets/second and each packet = 2 byte sample + 8 byte UDP header + 20 byte IP header + Ethernet header + preamble. A lot of overhead
- Another design: 48 packets/second and each packet = 2000 byte payload
 - The penalty for droppint a packet becomes higher
 - Each packet takes longer to transmit
 - Take 100 samples before sending a packet
 - Latency Increases
- 50 packets / second, each of 2 KB.
- Each packet contains 20ms of audio. Ideally, the receiver receives a new packet, starts to play the audio and when it is about to run out of the last packet, it receives a new one.
 - In other words, this is an "elasticity buffer"
- In a perfect world where the time it takes for a packet to travel from one end to the other is the same, this works. But, there is a variance in travel time == "Jitter"
- How to solve jitters?
 - Wait longer before it starts playing the audio. (Just like the receiver of the elasticity buffer waits for more bytes to start draining)
 - But again, Latency Increases
- In live video, there is a microphone and a camera attached to each end.
 - How does contiguous video become discrete data?
 - Originally By Eadweard Muybridge: continuous video -> frames of photos
 - Camera: continuous light coming in -> frames of snapshot of light
 - For human eyes, each frame is around 1920 columns and 1080 rows of pel/"picture element"/pixel
 - Each picture element, in practice, is 3 illuminants. Each illuminant is 8 bits.
 - You need a sample rate of 30 Hz
 - This is 1.5 Gbit/s. (This is a lot)
 - In practice, the frames are compressed

- Intraframe compression (JPEG) "I" "I pictures"
- Predictive frames: utilize the similarity between neighboring frames. "P" "P pictures"
- These compression techniques get 1.5 Gbit/s => 3 Mbit/s
- The price:
 - More compute (hardware encoder)
 - Less accurate to reality
 - Less predictable
 - The compression outcome size varies based on whether neighboring frames are similar or not (e.g. for a large action scene, the outcome would be bigger)
 - Larger variance => Larger elasticity buffer
- What if a frame is missing:
 - If a P frame is missing, the next P frame and the next next P frame can't be decoded
 - So you have to retransmit that P frame (this takes a while to realize a retransmission is needed)
 - Or restart on a new I frame (I frame is larger than P frame)
- How the upper-level application changes its behavior to the lower-level networking performance affects the overall performance of the system.
- We have been talking about interfaces, layers, and modularity across this lecture.
 But choosing the right level of modularity and the right interface is very important.
- These labs have been (hopefully) making a lot of sense, since they have been used in the real world for ~40 years, and through that process, people gradually found out the right modularity and interface of the networking stack. However, for newer applications (e.g. video) we don't know yet.