第三章 导数、微分、边际与弹性

1.	函数 $f(x) = \frac{x^2 - x}{x^2 - 1}$	$\sqrt{1+rac{1}{x^2}}$ 的第一类间	断点的个数为()	
	(A) 0	(B) 1	(C) 2	(D) 3
2.	若价格为 100 元 / 『 调整为 101 元 / 吨即		$(100) = -\frac{100}{f(100)}, f'($	为需求量 (单位: 吨) 100) = 0.25, 则当价格 (D) 减少 0.25%
3.	函数 $y = \sin x $ 在 x	x=0 处是 ().		
	(A) 无定义 (C) 连续但不可导		(B) 有定义,但不适 (D) 连续且可导	E 续
4.	. 设 $y = x + \sin x$, dy 是 y 在 $x = 0$ 点的微分,则当 $\Delta x \to 0$ 时,有 () . (A) dy 与 Δx 相比是等价无穷小 (B) dy 与 Δx 相比是同阶 (非等价) 无穷小 (C) dy 是比 Δx 高阶的无穷小 (D) dy 是比 Δx 低阶的无穷小			
5 .		x) ^{arcsin x} , 则微分 dy		(D) ln 2 d v
6.		(B) -ln2d <i>x</i> 00e ^{-0.125p} , 则当价格 <i>j</i> (B) 增加 1.25%		
7.	设 $f(x)$ 的定义域为 (A) [0,1]	$f\left(0,1\right)$,则函数 $f\left(x+1\right)$	$\left(\frac{1}{4}\right) + f\left(x - \frac{1}{4}\right)$ 的定(C) $\left[-\frac{1}{4}, \frac{1}{4}\right]$	-1 0-

- **8.** 设函数 $f(x) = \sin 2x + 3^x$, 则导数值 f'(0) = ().
 - (A) $\ln 3 2$
- (B) $\ln 3 + 2$
- (C) 1
- (D) $\ln 3 + 1$
- **9.** 设 $f(x) = 3^x + x^2 + \ln 3$, 则 f'(1) 等于 ().
 - $(A) 3 \ln 3$
- (B) $\frac{1}{3}$ (C) $\frac{3}{\ln 3} + 2$ (D) $3\ln 3 + 2$
- **10.** 设 f(x) 在 x = 1 处可导,则 $\lim_{x \to 0} \frac{f(x+1) f(1-x)}{x} = ($)
 - (A) f'(1)
- (B) 2f'(1)
- (D) f'(2)
- **11.** 某需求函数为 Q = -100P + 3000,那么当 P = 20 时需求的价格弹性 $E_d = ($)
 - (A) 2
- (B) 1000
- (C) -100
- (D) -2

- **12**. 设 $f(x) = 2^x + \ln 2$, 则 f'(1) 等于 ().

- (A) $2 \ln 2$; (B) $2 \ln 2 + \frac{1}{2}$; (C) $\frac{2}{\ln 2}$; (D) $\frac{2}{2 \ln 2} + \frac{1}{2}$.
- **13.** 设函数 $f(x) = (1 + \cos x)^{\frac{1}{x}}$, $dy|_{x=\frac{\pi}{2}} = _____.$
- **14.** 设 $\begin{cases} x = f'(t) \\ y = t f'(t) f(t) \end{cases}$, 其中 f(t) 具有二阶导数, 且 $f''(t) \neq 0$, 则 $\frac{d^2 y}{dx^2} =$ ______.
- **15.** 设函数 $f(x) = x(\sin x)^{\cos x}$, 则 $f'(\frac{\pi}{2}) =$ _____.
- **16.** 设商品的需求函数为 Q = 100 5P, 其中 Q, P 分别表示需求量和价格. 如果商 品需求弹性的绝对值大于1,则商品的价格的取值范围是
- **17**. 设曲线 $f(x) = x^n, n \in N$ 在点 (1,1) 处的切线与 x 轴相交于 (ξ_n ,0), 则极限 $\lim_{n\to\infty} f(\xi_n) = \underline{\qquad}.$
- **18.** 由参数方程 $\begin{cases} x = 2\cos t \\ y = 2\sin^3 t \end{cases}$ 所确定的曲线在 $t = \frac{\pi}{4}$ 处的切线方程是 ______.
- **19.** 设 $y = f(\sqrt{x})f^2(x) + f(e)$, 其中 f(x) 在 R 上可导,则 y' =______
- **20.** 设函数 $y = xe^x$, 对正整数 n, n 阶导数 $y^{(n)} =$

21.	某商品的需求函数为 $Q = 400 - 100P$,则 $P = 2$ 时的需求弹性为
22.	设函数 $y = \frac{x}{\ln x}$, 则导数 $y' = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
23.	曲线 $\begin{cases} x = \ln(1+t^2) \\ y = \arctan t \end{cases}$ 在 $t = 1$ 的对应点处的切线方程是
24.	设 $y = (1 + \sin x)^x$,则 $y' _{x=\pi} = $
25.	已知某商品的需求函数为 $Q = 16 - \frac{P}{3}(P)$ 为价格, Q 为需求量), 当价格 $P = 8$ 时, 若价格上涨 1%, 则需求量将下降约
26.	曲线 $y + xe^y = 1$ 在点 $P(0,1)$ 处的切线方程是
27.	已知某商品的需求函数为 $Q = 3000 - 100P$, (P 为价格, Q 为需求量), 当价格 $P = 20$ 时, 若价格上涨 1%, 则需求量将下降
28.	设函数 $f(x) = xe^x$, 对正整数 n , 则 $f^{(n)}(0) = $
29.	设函数 $y = \frac{x \sin x}{1+x}$, 则微分 $dy = \underline{\qquad}$.
30 .	曲线 $y = xe^x$ 在点 $(0,0)$ 处切线的方程是
31.	设某种商品的总收益 R 关于销售量 Q 的函数为 $R(Q) = 104Q - 0.4Q^2$,则销售量 Q 为 50 个单位时总收益的边际收入是
32.	设生产某产品 Q 单位的总成本为 $C(Q) = 1100 + \frac{Q^2}{1200}$,则生产 1800 个单位产品时的边际成本是
33.	曲线 $y = xe^x$ 在拐点处切线的斜率是
34.	设某种商品的总收益 R 关于销售量 Q 的函数为 $R(Q) = 104Q - 0.4Q^2$,则销售量 Q 为 50 个单位时总收益的边际收入是
35 .	设 $f(x)$ 是可导函数, 求函数 $y = f(\tan x) \cdot \arcsin[f(x)] + e^2$ 的导数.

36. 设函数
$$f(x) = \begin{cases} \frac{\varphi(x) - \cos x}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
, 其中 $\varphi(t)$ 具有连续的二阶导数, 且 $\varphi(0) = x = 0$

1.

- (1) 确定 a 的值, 使 f(x) 在点 x = 0 处可导, 并求 f'(x);
- (2) 讨论 f'(x) 在点 x=0 处的连续性.

- (1) k 为何值时, f(x) 有极限;
- (2) k 为何值时, f(x) 连续;
- (3) k 为何值时, f(x) 可导.
- **38.** 求由参数方程 $\begin{cases} x = \ln \sqrt{1+t^2} \\ y = \arctan t \end{cases}$,所确定的函数的一阶导数 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 及二阶导数 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **39.** 求由方程 $\sin(xy) + \ln(y-x) = x$ 所确定的隐函数 y 在 x = 0 处的导数 y'(0).
- **40.** 己知 $y = x \ln x$, 求 $y^{(n)}$.

41. 设函数
$$f(x) = \begin{cases} \sin(x^2), & x \le 0 \\ \frac{\ln(1+x)}{1+x}, & x > 0 \end{cases}$$

42. 设
$$f(x) = \begin{cases} b(1+\sin x) + a + 2, & x > 0 \\ e^{ax} - 1, & x \le 0 \end{cases}$$
 在 $(-\infty, +\infty)$ 上可导, 求 a, b 及 $f'(x)$.

43. 已知函数
$$\begin{cases} x = \sin t \\ y = \cos 2t \end{cases}$$
,求 $\frac{d^2 y}{dx^2} \Big|_{t=\frac{\pi}{6}}$.

- **44.** 设 $y = \cos(f^2(x)) + f(\sin 1)$, 其中 f(x) 可微, 求 dy.
- **45.** 设函数 $y = f\left(\arcsin\frac{1}{x}\right) + \left(f(\sin x)\right)^3$, 其中 f(x) 在 $(-\infty, +\infty)$ 上具有一阶导数, 求 dy.

- **46.** 设函数 y = y(x) 由方程 $e^y + xy e^x = 0$ 确定, 试求 $\frac{dy}{dx}$ 与 y''(0).
- **47.** 设函数 $y = f(\sin x) + \cos(f(x))$, 其中 f(x) 在 $(-\infty, +\infty)$ 上具有一阶导数与二阶导数, 求 $\frac{dy}{dx}$ 与 $\frac{d^2y}{dx^2}$.
- **48.** 设函数 y = f(x) 由参数方程 $\begin{cases} x = t \arctan t \\ y = \ln(1 + t^2) \end{cases}$ 所确定, 试求 $\frac{dy}{dx} = \frac{d^2y}{dx^2}$.
- **49.** 设 $f(x) = \begin{cases} ax + b, & x < 0 \\ e^x, & x \ge 0 \end{cases}$, 确定 a, b 的值使 f(x) 在 x = 0 处可导.
- **50.** 已知函数 $y = x [\sin(\ln x) + \cos(\ln x)]$, 试求 dy.
- **51.** 设函数 y = y(x) 由方程 $x^2y e^{2x} = \sin y$ 所确定, 试求 $\frac{dy}{dx}$ 与 $\frac{d^2y}{dx^2}$.
- **52.** 设函数 y = f(x) 由参数方程 $\begin{cases} x = 1 t^2 \\ y = t t^3 \end{cases}$ 所确定, 试求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 与 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **53.** 设函数 $y = (x^2 + 1)^3(x + 2)^2x^6$, 试求 y'.
- **54.** 已知函数 $y = \arctan e \sqrt{x}$,试求 dy
- **55.** 设函数 y = y(x) 由方程 $\cos(x + y) = y$ 所确定,试求 $\frac{d^2y}{dx^2}$
- **56.** 设函数 y = f(x) 由参数方程 $\begin{cases} x = t \ln(1+t) \\ y = t^3 + t^2 \end{cases}$ 所确定,试求 $\frac{\mathrm{d}y}{\mathrm{d}x}$
- **57.** 确定 a, b 的值,使得函数 $f(x) = \begin{cases} 2^x, & x \ge 0 \\ ax + b, & x < 0 \end{cases}$ 在 x = 0 处可导。
- **58.** 已知函数 $y = \ln(x + \sqrt{x^2 + 1})$, 试求 dy.
- **59.** 设函数 y = f(x) 由方程 $x y + \frac{1}{2} \sin y = 0$ 所确定, 计求 $\frac{d^2 y}{dx^2}$.

60. 设函数
$$y = f(x)$$
 由参数方程
$$\begin{cases} x = \ln(1+t^2), \\ y = t - \arctan t, \end{cases}$$
 所确定, 试求 $\frac{d^2 y}{dx^2}$.

61. 设函数
$$y = \frac{(2x+1)^2\sqrt[3]{3x-2}}{\sqrt[3]{(x-3)^2}}$$
, 试求 $\frac{dy}{dx}$.

62. 已知函数 f(x) 在 $(-\infty, +\infty)$ 上有定义, 对任意的实数 x_1, x_2 , 有 $f(x_1 + x_2) = f(x_1) f(x_2)$, 且 $f(0) \neq 0$, f'(0) = 1, 证明: f'(x) = f(x).