Contents

1	Inti	roduction to Vectors	3			
	1.1	Vectors and Linear Combinations	3			
	1.2	Lengths and Dot Products	3			
	1.3		4			
		1.3.1 Linear Equations	4			
		1.3.2 The Inverse Matrix	4			
		1.3.3 Cyclic Differences	4			
2	Solving Linear Equations 5					
	2.1	Vectors and Linear Equations	5			
	2.2	The Idea of Elimination	5			
	2.3	Elimination Using Matrices	5			
	2.4		6			
	2.5	Inverse Matrices	6			
	2.6	Elimination = Factorization: $A = LU \dots \dots \dots$	6			
	2.7	Transposes and Permutations	6			
3	Vector Spaces and Subspaces 7					
	3.1	Spaces of Vectors	7			
	3.2	The Nullspace of A: Solving $Ax = 0$	7			
	3.3	The Rank and the Row Reduced Form	7			
	3.4	The Complete Solution to $Ax = b$	7			
	3.5	Independence, Basis and Dimension	7			
	3.6	Dimensions of the Four Subspaces	7			
4	Orthogonality 9					
	4.1	Orthogonality of the Four Subspaces	9			
	4.2		9			
	4.3	· ·	9			
	4.4		9			
	1.1					
5		serminants 1	1			
5		terminants 1	1 1			

2 CONTENTS

	5.3	Cramer's Rule, Inverse, and Volumes	1			
6	Elgenvalues and Elgenvectors					
	6.1	Introduction to Eigenvalues	3			
	6.2	Diagonalizing a Matrix	3			
	6.3	Applications to Differential Equations				
	6.4	Symmetric Matrices	-			
	6.5	Positive Definite Matrices				
	6.6	Similar Matrices				
	6.7	Singular Value Decomposition				
7	Line	ar Transformations 1	5			
	7.1	The idea of a Linear Transformation	5			
	7.2	The Matrix of a Linear Transformation	5			
	7.3	Diagonalization and the Pseudoinverse	5			
8	Applications 17					
	8.1	Matrices in Engineering	7			
	8.2	Graphs and Networks	7			
	8.3	Markov Matrices, Population, and Economics	7			
	8.4	Linear Programming	7			
	8.5	Fourier Series: Linear Algebra for Functions	7			
	8.6	Linear Algebra for Statistics and Probability	7			
	8.7	Computer Graphics	7			
9	Nun	nerical Linear Algebra	9			
	9.1	Gaussian Elimination in Practice	9			
	9.2	Norms and Condition Numbers	9			
	9.3	Iterative Methods and Preconditioners	9			
10	Con	aplex Vectors and Matrices 2	1			
		Complex Numbers	1			
		Hermitian and Unitary Matrices	1			
		The Fast Fourier Transform				

Introduction to Vectors

1.1 Vectors and Linear Combinations

REVIEW OF THE KEY IDEAS

- 1. A vector \mathbf{v} in two-dimensional space has two components v_1 and v_2 .
- 2. $\mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2)$ and $c\mathbf{v} = (cv_1, cv_2)$ are found a component at a time.
- 3. A linear combination of three vectors \mathbf{u} and \mathbf{v} and \mathbf{w} is $c\mathbf{u} + d\mathbf{v} + e\mathbf{w}$.
- 4. Take all linear combination of \mathbf{u} , or \mathbf{u} and \mathbf{v} , or \mathbf{u} , \mathbf{v} , \mathbf{w} . In three dimensions, those combinations typically fill a line, then a plane, and the whole space \mathbf{R}^3 .

1.2 Lengths and Dot Products

REVIEW OF THE KEY IDEAS

- 1. The dot product $\mathbf{v} \cdot \mathbf{w}$ multiplies each component v_i by w_i and adds all $v_i w_i$.
- 2. The length $\|\mathbf{v}\|$ of a vector is the square root of $\mathbf{v} \cdot \mathbf{v}$.
- 3. $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a **unit vector**, its length is 1.
- 4. The cosine product is $\mathbf{v} \cdot \mathbf{w} = 0$ when vector \mathbf{v} and \mathbf{w} are perpendicular.
- 5. The cosine of θ (the angle between any nonzero ${\bf v}$ and ${\bf w}$) never exceeds 1:

$$\cos\theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} \quad (\text{Schwarz inequality}) \quad |\mathbf{v} \cdot \mathbf{w}| \leq \|\mathbf{v}\| \|\mathbf{w}\|$$

Problem 21 will produce the **triangle inequality** $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$.

1.3 Matrices

1.3.1 Linear Equations

1.3.2 The Inverse Matrix

this part is so hard

1.3.3 Cyclic Differences

REVIEW OF THE KEY IDEAS

- 1. Matrix times vector: $\mathbf{A}\mathbf{x} = combination of the columns of A$.
- 2. The solution to $Ax = bisx = A^{-1}b$, when Aisanin vertible matrix.
- 3. The difference matrix A is inverted by the sum matrix $S = A^{-1}$.
- 4. The cyclic matrix ${\bf C}$ has no inverse. Its three columns lie in the same plane
 - Those dependent columns add to the zero vector. $\mathbf{C}\mathbf{x} = \mathbf{0}$ has many solutions.
- 5. This section is looking ahead to key ideas. not fully explained yet.

Solving Linear Equations

2.1 Vectors and Linear Equations

REVIEW OF THE KEY IDEAS

1.

2.2 The Idea of Elimination

Second lecture

Elimination

Back substitution

Here, we need to pay attention to the particularity of the matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$
 (2.1)

REVIEW OF THE KEY IDEAS

1.

2.3 Elimination Using Matrices

REVIEW OF THE KEY IDEAS

1.

2.4 Rules for Matrix Operations

REVIEW OF THE KEY IDEAS

1.

2.5 Inverse Matrices

REVIEW OF THE KEY IDEAS

1.

2.6 Elimination = Factorization: A = LU

REVIEW OF THE KEY IDEAS

1.

2.7 Transposes and Permutations

REVIEW OF THE KEY IDEAS

1.

Vector Spaces and Subspaces

- 3.1 Spaces of Vectors
- 3.2 The Nullspace of A: Solving Ax = 0
- 3.3 The Rank and the Row Reduced Form
- 3.4 The Complete Solution to Ax = b
- 3.5 Independence, Basis and Dimension
- 3.6 Dimensions of the Four Subspaces

Orthogonality

- 4.1 Orthogonality of the Four Subspaces
- 4.2 Projections
- 4.3 Least Squares Approximations
- 4.4 Orthogonal Bases and Gram-Schmidt

Determinants

- 5.1 The Properties of Determinants
- 5.2 Permutations and Cofactors
- 5.3 Cramer's Rule, Inverse, and Volumes

Elgenvalues and Elgenvectors

- 6.1 Introduction to Eigenvalues
- 6.2 Diagonalizing a Matrix
- 6.3 Applications to Differential Equations
- 6.4 Symmetric Matrices
- 6.5 Positive Definite Matrices
- 6.6 Similar Matrices
- 6.7 Singular Value Decomposition

Linear Transformations

- 7.1 The idea of a Linear Transformation
- 7.2 The Matrix of a Linear Transformation
- 7.3 Diagonalization and the Pseudoinverse

Applications

- 8.1 Matrices in Engineering
- 8.2 Graphs and Networks
- 8.3 Markov Matrices, Population, and Economics
- 8.4 Linear Programming
- 8.5 Fourier Series: Linear Algebra for Functions
- 8.6 Linear Algebra for Statistics and Probability
- 8.7 Computer Graphics

Numerical Linear Algebra

- 9.1 Gaussian Elimination in Practice
- 9.2 Norms and Condition Numbers
- 9.3 Iterative Methods and Preconditioners

Complex Vectors and Matrices

- 10.1 Complex Numbers
- 10.2 Hermitian and Unitary Matrices
- 10.3 The Fast Fourier Transform