P3 de Álgebra Linear I – 2001.2

Data: Sábado, 24 de novembro de 2001.

Nome:	Matrícula:	
Assinatura:	Turma:	

Questão	Valor	Nota	Revis.
1a	0.5		
1b	1.0		
1c	0.5		
1d	0.5		
2a	0.5		
2b	0.5		
2c	0.5		
2d	0.5		
3a	1.0		
3b	1.0		
3c	1.0		
4a	1.0		
4b	1.0		
4c	0.5		
Total	10.0		

Instruções:

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando ou rasuradas terá nota zero.
- Justifique todas as respostas de forma completa, ordenada e coerente. Escreva de forma clara e legível.
- Em cada uma das questões da prova não haverá pontuação menor que 0.5 Verifique cuidadosamente suas respostas.
- Faça a prova na sua turma.

1) Seja $T\colon \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear ortogonal. Suponha que o determinante da matriz de T na base canônica é -1 e que

$$T(1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}) = (-1/\sqrt{2}, 0, 1/\sqrt{2}), \quad T(-1/\sqrt{2}, 0, 1/\sqrt{2}) = (1/\sqrt{6}, -2/\sqrt{6}, 1/\sqrt{6}).$$

- a) Determine um autovalor de T.
- **b)** Determine T(1, -2, 1).
- c) Determine T(1,0,0).
- d) Determine a matriz de T em uma base ortonormal (v. escolhe a base e deve especifica-la).
 - 2) Seja A uma matriz 3×3 . Suponha que

$$\det(A - \lambda I) = -(\lambda - 3)^2(\lambda - 2).$$

- a) Estude se A é inversível.
- b) Estude se A pode ser encontrada de maneira que A seja semelhante à matriz diagonal

$$D = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array}\right),$$

isto é,
$$A = PDP^{-1}$$
,

c) Estude se A pode ser encontrada de maneira que A seja semelhante à matriz

$$D = \left(\begin{array}{ccc} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

d) Suponha agora que A é simétrica. Estude se A pode ser encontrada de maneira que seja semelhante à matriz

$$D = \left(\begin{array}{ccc} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{array}\right).$$

3) Estude que tipo de transformações representam as matrizes.

$$A = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{6} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{6} & -1/\sqrt{6} & -2/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}.$$

$$B = \begin{pmatrix} -1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{6} & -1/\sqrt{3} \\ 0 & -2/\sqrt{6} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{2}/2 & -\sqrt{2}/2 & 0 \\ \sqrt{2}/2 & \sqrt{2}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{6} & -1/\sqrt{6} & -2/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}.$$

$$C = \frac{1}{3} \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

No casos envolvendo projeções determine a reta ou plano de projeção, nos casos envolvendo espelhamentos determine o plano ou reta de espelhamento, e nos casos envolvendo rotações determine o ângulo e o eixo de rotação.

4)

- a) Seja A uma matriz simétrica 3×3 . Sabendo que $A^{2001} = -I$ (I é a matriz identidade), determine A.
- b) Estude se existe uma matriz simétrica 3×3 , B, tal que $B^{2000} = -I$.
- c) Estude se é verdadeira a afirmação seguinte: Seja C uma matriz 3×3 tal que $C^5 = 0$. Então C é a matriz zero.