<u>Listen</u>

- -*0 = Anker; *m->n = m+1; *m->n=NULL
- -*0+*m = Anker; *m->n = m+1; *m->n=NULL
- ^^ auch mit Dummy für leichteres ändern von *head und *tail
- -*0 = Anker; *m->n = m+1; *m->0 (ringförmig)
- ^^ auch doppeltverkettet (next+prev)
- -Stack = LIFO; Queue = FIFO

Bäume

Binär Baum: Grad=2; leer o. rechter binTB+Wurzel+linker binTB **BB als Array:** Vorgänger = i/2; Nachfolger = 2*i && 2*i+1

Löschen mit zwei Nachfolgern: max aus linkem/min aus rechtem TB

Baum durchlaufen (traversieren)

- -Hauptreihenfolge = preorder/fix = WLR
- -Nebenreihenfolge = postorder/fix LRW (m. Stack direkt rechenbar)
- -Symmetrische Reihenfolge = inoder/fix = LWR

Vollst. BB: $h = log_2(ba) = log_2(ik+1) = log_2(gk+1) - 1$

Interne Pfadlänge: $ipl = \sum_{i} tiefe(i) + 1$ (Vgl. zum Finden aller Kn.)

Durchschn. Suchpfadlänge: $dpl = \frac{ipl}{ik}$; $ik = 2^h - 1$; $ba = 2^h$; $gk = 2^{h+1} - 1$

Vergleich zweier Bäume: Rekursiver Vgl. Wurzel \rightarrow l. TB \rightarrow r. TB

Sortieren

stabiles Sort. = Reihenfolge gleicher Werte bleibt erhalten Speicherbedarf = insitu (Array)/ exsitu (Liste)

Verfahren	Vergleiche	Austausche	stabil	insitu
Bubble	O(N^2/2)	O(N^2/2)	io	ja
(sort)	O(N)	O(N)	ја	
Selection	O(N^2/2)	O(N)	nein	ja
Insert	O(N^2/4)	O(N^2/8)	io	ja
(sort.)	O(N)	O(N)	ja	
Shell	O(N log (N)^2)	O(N log (N)^2)	nain	ja
(opt. Dist.)	O(N^1.2)	O(N^1.2)	nein	
Quick	O(N log N)	O(N log N)	noin	ja
(worst-case)	O(N^2)	O(N^2)	nein	
Merge	O(N log N)	O(N log N)	ja	nein

Automaten und Sprachen

BNF: <XYZ> ::= <ABC> | | <ABC>

nichtdeterministischer → deterministische Automaten

- -Schritt 1: Aufspalten von Kanten mit Zeichenketten
- -Schritt 2: Zusammenführen von Kanten und Zuständen mit gleichem Zeichen und Ausgangszustand (jeder Knoten, der einen Finalzustand enthält ist selbst Finalzustand; Fehlende Kanten führen zu einem Fehlerzustand)

<u>Graphen</u>

- -Kantenzug: Folge von inzidenten (benachbarten) Kanten
- -Weg: Kantenzug, ohne mehrfach vorkommende Knoten
- -Kreis: geschlossener Weg (alle Knote → Hamilton Kreis)
- -Eulerzug: Kantenzug, der alle Kanten genau einmal enthält
- -Spannbaum: Alle Knoten, Kanten reduziert \rightarrow Baum
- -zusammenhäng. G: jeder Knoten mit jedem verbunden

Tiefensuche (für Zusammenhangsprobleme)

Start \rightarrow Markieren \rightarrow rekursiver Aufruf für alle nicht

markierten Nachbarknoten **Breitensuche** (für Distanzprobleme)

Start → Markieren → markieren aller Nachfolger, speichern dieser in einer Warteschlange → rekursiver Aufruf mit erstem Knoten aus der Warteschlange

Zusammenhangskomponenten

Durchlaufen aller Knoten → unmarkiert? → Tiefensuche (Knoten markieren) → Zahl der Komponenten erhöhen **Transitive Hülle** (Erweit. um indirekt erreichbare Kanten)

Warshall: k = i = j = 0..n; (3x for)

a[i][j]=a[i][j]||(a[i][k]&&a[k][j]);

Alle kürzesten Pfade (zw. zwei Knoten)

Floyd: k = i = j = 0..n; (3x for) $a[i][j]=\min(a[i][j], a[i][k]+a[k][j])$;

Minimaler Spannbaum (Prim)

Start \rightarrow kürzeste Kante eines zum Teilbaum adjazenten unmarkierten Knoten \rightarrow als TB markieren \rightarrow wiederholen

Travelling Salesman (Approximation mit MST)

MST → Kanten verdoppeln → Eulerzug → minimaler Hamilton-Kreis (besuchte Knoten überspringen)

Suchen

Auswahlproblem: i-größten/kleinsten Keys einer Sequenz -mehrfaches Durchlaufen ø → jeweils min/max entfernen Sequentielle Suche: alles einmal seq. Durchlaufen Binäre Suche: Sequenz sortiert → mittlerer Key entscheidet, welche Hälfte weiter durchsucht wird (rekursiv) Interpolationss.: bin. Such. mit geschätzt verkl/grö. Bereich Selbstanord. List: verschieben zugegriffener Elem (v. Met.) Hashverfahren: Hash als Arrayindex → kein Suchaufwand

- -Divisions-Rest oder Multiplikative Methode
- -Gleicher Hashwert → Kollision (Synonym) → Behandlung (Überläufer o. Sondieren)

Sondierungsfunktion S(j, k): (H(k)-S(s,k)) % m

Knuth-Morris-Pratt: Präfixtabelle

→ Offset des Mismatch wird Index
des Zeichens darunter

()						
0	1	2	3	4	5	
a	b	c	a	b	a	
-1	0	0	0	1	2	1