$(T_{\rm ch}, P_2 > P_1)$ $2 \rightarrow 3$: détente isotherme réversible depuis l'état $(T_{\rm ch}, P_2 = 1.4 \ \rm bar)$ jusque dans l'état $(T_{\rm ch}, P_3 = P_2 - 0.4 \ \rm bar)$ $3 \rightarrow 4$: détente isentropique depuis l'état $(T_{\rm ch}, P_3 = P_2 - 0.4 \ \rm bar)$ jusque dans

 $1 \rightarrow 2$: compression isentropique depuis l'état ($T_{\rm fr}$, $P_1 = 1$ bar) jusque dans l'état

 $4 \rightarrow 1$: compression isotherme réversible depuis l'état $(T_{\rm fr}, P_4)$ jusque dans l'état

6. Pour les deux transformations isentropiques, la loi de Laplace s'écrit : $PV^{\gamma} = \text{cste}$. En différentiant logarithmiquement, on en déduit $dP/P + \gamma \, dV/V = 0$ soit :

5. Détaillons les 4 étapes :

l'état $(T_{\rm fr}, P_4 < P_3)$

 $(T_{\rm fr}, P_1 > P_4)$

Pour les deux transformations isothermes, la loi des gaz parfaits PV = nRT = cste donne, en différentiant logarithmiquement :

 $\frac{\mathrm{d}P}{\mathrm{d}V} = -\frac{\gamma P}{V}$

en differentiant logarithmiquement : $\frac{\mathrm{d}P}{\mathrm{d}V}=-\frac{P}{V}$ 7. La relation de Mayer permet d'écrire $nR=m(c_P-c_V)$. Par conséquent :

 $\mathrm{d}S=mc_P\frac{\mathrm{d}T}{T}-m(c_P-c_V)\frac{\mathrm{d}P}{P}$ Or, $m=nM=\frac{MP_1V_1}{RT_1}$. On obtient donc :

 $dS = \frac{MP_1V_1}{RT_1} \left(c_P \frac{dT}{T} - (c_P - c_V) \frac{dP}{P} \right)$ 8. Examinons les 4 étapes successives :

• Compression isentropique 1 \rightarrow 2 : dS = 0. On en déduit (on ne fait que retrouve

• Compression isentropique $1 \rightarrow 2$: dS = 0. On en déduit (on ne fait que retrouver la loi de Laplace!): $\frac{dP}{P} = \frac{\gamma}{\gamma - 1} \frac{dT}{T}$

En intégrant, il vient :
$$\ln\left(\frac{P_2}{P_1}\right) = \frac{\gamma}{\gamma - 1}\ln\left(\frac{T_{\rm ch}}{T_{\rm c}}\right)$$

soit: $P_2 = P_1 \left(\frac{T_{\text{ch}}}{T_{\text{ch}}}\right)^{\frac{\gamma}{\gamma - 1}} = P_1 \left(\frac{330}{300}\right)^{\frac{1,4}{0,4}} = (1,1)^{3,5} P_1 = 1,4 \text{ bar}$

• Détente isotherme 2 \rightarrow 3 : la pression finale est donnée par l'énoncé et vaut

 $P_3=P_2-0.4~{\rm bar}=1~{\rm bar}$ • Détente isentropique 3 \rightarrow 4 : on procède comme pour l'étape 1 \rightarrow 2 et on obtient

P₄ = $P_3 \left(\frac{T_{\rm fr}}{T_{\rm e}}\right)^{\frac{\gamma}{\gamma-1}} = (1,1)^{-3.5} P_3 = 0.7$ bar