RAN SUVAS

@ kiran.suvas.patil@gmail.com

contract kirangit 27

% portfolio

EDUCATION

University of Maryland - College Park | M.Eng. in Robotics - 3.88/4

Aug 2022 - Expected May 2024

KLS Gogte Institute of Technology - Belagavi | B.E. in Electronics & Communication - 8.45/10

May 2015 - May 2019

SKILLS

C C++ Python MATLAB Git PyTorch/PyTorch3D TensorFlow Keras NumPy Pandas | Matplotlib OpenCV Scikit-Learn ROS/ROS2 Movelt Gazebo Blender Maya 3D-CAD SolidWorks Fusion360 Docker LaTeX

TECHNICAL EXPERIENCE

Robotics Algorithms & Autonomous Systems (RAAS) Lab, UMD | Research Assistant

Feb 2024 - Present

- Adapted Neural Implicit Scalable Encoding (NICE) SLAM, originally designed for RGBD images, to work efficiently with RGB images alone, enhancing its applicability to outdoor environments.
- Integrated a depth estimation module into the NICE-SLAM framework, enabling accurate depth perception using monocular RGB images. Conducting extensive tests in real-world outdoor environments.

Perception and Robotics Group (PRG), UMD | Graduate Research Assistant

May 2023 - Aug 2023

- Built an underwater oyster detection system that utilized the YOLOv8 segmentation model, trained on the "Curvy-Oysters" dataset, to identify oysters in seabed images.
- Modeled an underwater environment with an oyster bed in Blender to produce realistic underwater images for testing. Applied Deep-WaveNet over the rendered scene to enhance the underwater imagery, improving the mAP by 18.65%.

Dept. of Computer Science & Engineering, IIT Bombay | Summer Intern 🖸 🛗

May 2018 - July 2018

- Designed and implemented a multi-robot system for autonomously solving jigsaw puzzles, including firmware development for Firebird V (ATMEGA 2560-based robot), localization using Aruco markers, and path planning exploration.
- Developed Python software for robot localization using Aruco markers and Xbee communication. Additionally, explored diverse path-planning algorithms for the multi-robot setup.

PROJECTS

Occlusion Resilient Object Detection for Industrial Settings | Blender, Python, ROS2, C++, Gazebo Feb 2024 - Present

- Generated a large synthetic dataset exceeding 60k images using Blender for 3D modeling and scripting. Trained a YOLOv9 model on this data, achieving a strong mAP@0.5 score of 0.67 for object detection in occluded environments.
- Deployed the trained model onto the backend of a ROS node to enable object detection within the ARIAC industrial gazebo environment.

RecolorNeRF | PyTorch3D 🗘

₩ Dec 2023

- Decomposed neural radiance field into layers with associated learnable color-palettes for efficient and user-friendly color editing of 3D scenes. Optimized the model by integrating UNet architecture, improving LPIPS by 40.83%.
- For analysis, crafted a custom NeRF dataset employing InstantNGP for efficient generation and used Dense Prediction Transformer (DPT) for improved quality.

Terraformers - UMDs University Rover Challenge team | Software subteam lead

May 2023 - Dec 2023

• Guided the software sub-team to achieve the rover's software requirements. Simulated motion planning for the rover's 6DOF manipulator arm. Constructed an autonomous navigation perception system for the rover's localization.

PointNet | PyTorch3D 🗘

• Executed PointNet, a deep net architecture on point clouds (as unordered point sets) for 3D Classification & Segmentation, achieving a test accuracy of 97.58% & 88.52% respectively. Also, conducted a robustness analysis on the learned model.

Single View to 3D | PyTorch3D 🗘

₩ Oct 2023

• Generated 3D models (voxels, point-clouds, and meshes) from RGB images using the R2N2 ShapeNet dataset, with F1 scores of 86.95, 96.47, and 88.18 respectively. Explored various loss and decoder functions for regressing the 3D models.

ARIAC - Agile Robotics for Industrial Automation Competition by NIST | ROS2, C++, Movelt 🗘

math display="block" | Jan 2023 - May 2023 | May 2023 |

 Programmed a robotic solution for industrial automation challenges. Developed a competitor control system (CCS) for communicating with the competition environment and facilitating task execution (Kitting, Assembly, Combined).

Hungry Bird - eYRC 2018 | ROS, Python, V-REP, OpenCV

m Oct 2018 - Mar 2019

- Implemented motion-planning for navigating a Bird (Drone-PlutoX) through a sequence of trees(hoops). Fine-tuned PID controller for the Drone, and used ROS to communicate/control it
- Localized drone using an overhead camera and Whycon markers. Also, the entire drone flight was emulated in V-REP.

CERTIFICATION

• First Principles of Computer Vision - by Columbia University

Coursera

Deep Learning Specialization - by DeepLearning.Al

Coursera