

(19)



JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000221397 A

(43) Date of publication of application: 11.08.00

(51) Int. Cl

**G02B 15/163**  
**G02B 13/18**

(21) Application number: 11025694

(71) Applicant: MINOLTA CO LTD

(22) Date of filing: 03.02.99

(72) Inventor: OMORI SHIGETO

**(54) LENS OPTICAL SYSTEM**

**(57) Abstract:**

**PROBLEM TO BE SOLVED:** To efficiently use a diffraction grating and to make an optical system compact in terms of aberration by providing a 2nd group with the diffraction grating in the lens optical system performing zooming by changing a distance between a 1st group and a 2nd group.

**SOLUTION:** This optical system is constituted to perform the zooming by changing the distance between the 1st group Gr1 and the 2nd group Gr2. The 1st group Gr1 is constituted of a biconcave negative lens and a positive meniscus lens which is convex to an object side. The 2nd group Gr2 is constituted of a bonded lens consisting of a biconvex positive lens and a negative meniscus lens which is concave to the object side, and is provided with the diffraction grating on a 6th surface r6 being a bonded surface. It is desirable to provide the 2nd group Gr2 with the lens bonded surface and the lens bonded surface with the diffraction grating in terms of excellently compensating chromatic aberration. In order to make the zoom type lens optical system compact, it is effective to use the diffraction grating in the 2nd

group Gr2 in terms of compensating the aberration.

COPYRIGHT: (C)2000,JPO



(19)日本国特許庁 (J P)

(12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号  
特開2000-221397  
(P2000-221397A)

(43)公開日 平成12年8月11日(2000.8.11)

(51) Int.Cl.  
G 0 2 B 15/163  
13/18

識別記号

F I  
G 0 2 B 15/163  
13/18

テ-マ-ト(参考)  
2H087

審査請求・主張書・請求書の範本

(21) 出願番号 特願平11-25694  
(22) 出願日 平成11年2月3日(1999.2.3)

(71) 出願人 000006079  
ミノルタ株式会社  
大阪府大阪市中央区安土町二丁目3番13号  
大阪国際ビル  
(72) 発明者 大森 淳人  
大阪市中央区安土町二丁目3番13号 大阪  
国際ビル ミノルタ株式会社内  
(74) 代理人 100085501  
弁理士 佐野 静夫

(54) 【発明の名称】 レンズ光学系

(57) 【要約】

【課題】 回折格子を効果的に用いることにより収差的な面からコンパクト化が達成されたレンズ光学系を提供する。

【解決手段】 物体側より順に、負のパワーを有する第1群(Gr1)と、正のパワーを有する第2群(Gr2)と、正のパワーを有する第3群(Gr3)と、を備える。第1群(Gr1)と第2群(Gr2)との間隔等を変化させることによりズミングを行う。第2群(Gr2)が回折格子(r#)を有する。



## 【特許請求の範囲】

【請求項1】 物体側より順に、負のパワーを有する第1群と、正のパワーを有する第2群と、正のパワーを有する第3群と、を備え、前記第1群と前記第2群との間隔を変化させることによりズーミングを行うレンズ光学系であって、前記第2群が回折格子を有することを特徴とするレンズ光学系。

【請求項2】 前記回折格子について以下の条件式を満たすことを特徴とする請求項1記載のレンズ光学系；

$$0.005 < \phi_{DOE} / \phi_{gr2} < 0.03$$

ただし、

$\phi_{DOE}$ ：回折格子によるレンズパワー、

$\phi_{gr2}$ ：第2群のパワー、

である。

【請求項3】 前記第2群がレンズ接合面を有し、そのレンズ接合面に前記回折格子が設けられていることを特徴とする請求項1記載のレンズ光学系。

【請求項4】 前記回折格子について以下の条件式を満たすことを特徴とする請求項1又は請求項2記載のレンズ光学系；

$$0.1 < tW / fW < 0.4$$

$$0.4 < tT / fT < 1.2$$

ただし、

$tW$ ：広角端での回折格子と絞りとの空気換算軸上面間隔、

$tT$ ：望遠端での回折格子と絞りとの空気換算軸上面間隔、

$fW$ ：広角端でのズーム全系の焦点距離、

$fT$ ：望遠端でのズーム全系の焦点距離、

である。

【請求項5】 以下の条件式を満たすことを特徴とする請求項1又は請求項2記載のレンズ光学系；

$$|Y'_{max} / PZ| < 0.4$$

ただし、

$Y'_{max}$ ：最大像高、

$PZ$ ：像面から射出瞳位置までの距離、

である。

## 【発明の詳細な説明】

## 【0001】

【発明の属する技術分野】本発明はレンズ光学系に関するものであり、更に詳しくは回折格子を有するレンズを用いたレンズ光学系に関するものである。

## 【0002】

【従来の技術】光学機器(例えば、デジタルカメラ、ビデオカメラ、銀塩カメラ)に用いられるレンズ光学系(例えば、ズームレンズ等の撮像光学系、ファインダー光学系等の観察光学系)をコンパクト化するには、回折格子を用いることが収差補正上有効である。具体的には、光学要素の表面や媒質境界面に形成された回折格子で回折光学面が構成され、その回折作用によってレンズ作用を

実現する回折光学素子(すなわち回折レンズ)を用いればよい。回折レンズを有するズームレンズは、特開平10-148757号公報や特開平10-161022号公報で提案されている。前者は正・負・正・正の4成分タイプのズームレンズであり、第2群又は第3群に回折レンズを有している。一方、後者は負・正の2成分タイプのズームレンズであり、第2群に回折レンズを有している。

## 【0003】

【発明が解決しようとする課題】本発明は、上記従来例とは異なるズームタイプに回折格子を効果的に用いることにより、収差的な面からコンパクト化が達成されたレンズ光学系を提供することを目的とする。

## 【0004】

【課題を解決するための手段】上記目的を達成するためには、第1の発明のレンズ光学系は、物体側より順に、負のパワーを有する第1群と、正のパワーを有する第2群と、正のパワーを有する第3群と、を備え、前記第1群と前記第2群との間隔を変化させることによりズーミングを行うレンズ光学系であって、前記第2群が回折格子を有することを特徴とする。

【0005】第2の発明のレンズ光学系は、上記第1の発明の構成において、前記回折格子について以下の条件式を満たすことを特徴とする。

$$0.005 < \phi_{DOE} / \phi_{gr2} < 0.03$$

ただし、

$\phi_{DOE}$ ：回折格子によるレンズパワー、

$\phi_{gr2}$ ：第2群のパワー、

である。

【0006】第3の発明のレンズ光学系は、上記第1の発明の構成において、前記第2群がレンズ接合面を有し、そのレンズ接合面に前記回折格子が設けられていることを特徴とする。

【0007】第4の発明のレンズ光学系は、上記第1又は第2の発明の構成において、前記回折格子について以下の条件式を満たすことを特徴とする。

$$0.1 < tW / fW < 0.4$$

$$0.4 < tT / fT < 1.2$$

ただし、

$tW$ ：広角端での回折格子と絞りとの空気換算軸上面間隔、

$tT$ ：望遠端での回折格子と絞りとの空気換算軸上面間隔、

$fW$ ：広角端でのズーム全系の焦点距離、

$fT$ ：望遠端でのズーム全系の焦点距離、

である。

【0008】第5の発明のレンズ光学系は、上記第1又は第2の発明の構成において、以下の条件式を満たすことを特徴とする。

$$|Y'_{max} / PZ| < 0.4$$

ただし、

$Y'_{\max}$  : 最大像高、  
PZ : 像面から射出瞳位置までの距離、  
である。

## 【0009】

【発明の実施の形態】以下、本発明を実施したレンズ光学系を、図面を参照しつつ説明する。図1は本実施の形態のズームレンズを示すレンズ構成図であり、その広角端[W]、ミドル(中間焦点距離状態)[M]及び望遠端[T]でのレンズ配置を示している。レンズ構成図中、 $di$ ( $i=1, 2, 3, \dots$ )が付された空気間隔は、物体側から数えて*i*番目の軸上面間隔のうち、ズーミングにおいて変化する可変間隔を示している。またレンズ構成図中、 $ri$ ( $i=1, 2, 3, \dots$ )が付された面は物体側から数えて*i*番目の面{ただし最終面は像面(I)}であり、 $ri$ に\*印が付された面は非球面、 $ri$ に#印が付された面は回折格子が形成された回折レンズ面である。

【0010】本実施の形態は、物体側より順に、負のパワーを有する第1群(Gr1)と、正のパワーを有する第2群(Gr2)と、正のパワーを有する第3群(Gr3)と、を備えた3成分タイプのズームレンズであり、第1群(Gr1)と第2群(Gr2)との間隔等を変化させることによりズーミングを行う構成になっている。第2群(Gr2)と第3群(Gr3)との間には第3群(Gr3)と共にズーミング時位置固定の絞り(S)が配置されており、最も像面(I)側にはローパスフィルター(LPF)が配置されている。

【0011】実施の形態(図1)において、各群は物体側から順に以下のように構成されている。第1群(Gr1)は、両凹の負レンズと、物体側に凸の正メニスカスレンズと、で構成されている。第2群(Gr2)は、両凸の正レンズと物体側に凹の負メニスカスレンズとから成る接合レンズで構成されており、接合面である第6面(r6)に回折格子を有している。このように第2群(Gr2)にレンズ接合面を設け、そのレンズ接合面に回折格子を設けるのが、色収差を良好に補正する上で望ましい。また、このズームタイプのレンズ光学系をコンパクト化するためには、第2群(Gr2)に回折格子を用いることが収差補正上有効であり、これについては後で詳しく説明する。第3群(Gr3)は、物体側に凸の正メニスカスレンズと、物体側に凹の負メニスカスレンズと、両凸の正レンズと、で構成されている。

【0012】次に、本実施の形態のように第2群(Gr2)に回折格子を有する、負・正・正の3成分を備えたズームタイプのレンズ光学系が満足することの望ましい条件式を説明する。なお、以下に示す全ての条件式を同時に満たす必要はなく、個々の条件式をそれぞれ単独に満足すれば対応する作用・効果を達成することが可能である。もちろん、複数の条件式を満足する方が、光学性能、コンパクト化等の観点からより望ましいことはいうまでもない。

【0013】前記回折格子について以下の条件式(1)を

満たすことが望ましい。

$$0.005 < \phi_{DOE} / \phi_{gr2} < 0.03 \quad \dots(1)$$

ただし、

$\phi_{DOE}$  : 回折格子によるレンズパワー、

$\phi_{gr2}$  : 第2群(Gr2)のパワー、

である。

【0014】条件式(1)は、第2群(Gr2)のパワー  $\phi_{gr2}$  ( $\phi_{DOE}$ を含む。)に対する回折格子によるレンズパワー  $\phi_{DOE}$  の比の望ましい条件範囲を規定している。この条件式(1)を満たすことにより、コンパクトなレンズ光学系を達成することができる。条件式(1)の下限を下回った場合、回折レンズの色収差補正効果が得られなくなるため、レンズ光学系の大きさが大きくなる。条件式(1)の上限を上回った場合、回折レンズの非点収差が増大するため非点収差補正効果が得られなくなり、その結果、それを補正するためにレンズ光学系の大きさが大きくなる。

【0015】前記回折格子について以下の条件式(2)、(3)のうちの少なくとも一方を満たすことが望ましい。

$$0.1 < tW / fW < 0.4 \quad \dots(2)$$

$$0.4 < tT / fT < 1.2 \quad \dots(3)$$

ただし、

$tW$  : 広角端[W]での回折格子と絞り(S)との空気換算軸上面間隔、

$tT$  : 望遠端[T]での回折格子と絞り(S)との空気換算軸上面間隔、

$fW$  : 広角端[W]でのズーム全系の焦点距離、

$fT$  : 望遠端[T]でのズーム全系の焦点距離、

である。

【0016】この条件式(2)、(3)を満たすことにより、色収差の良好なレンズ光学系を達成することができる。条件式(2)の下限を下回った場合、レンズ保持ができないくなる。条件式(2)の上限を上回った場合、広角端[W]での軸上色収差補正が不十分となる。条件式(3)の下限を下回った場合、望遠端[T]での倍率色収差補正が不十分となる。条件式(3)の上限を上回った場合、レンズ光学系の大きさが大きくなる。

【0017】以下の条件式(4)を満たすことが望ましい。この条件式(4)を満たすことにより、撮像素子を用いた場合に画面周辺の照度低下が良好な範囲となる。

$$| Y'_{\max} / PZ | < 0.4 \quad \dots(4)$$

ただし、

$Y'_{\max}$  : 最大像高、

$PZ$  : 像面(I)から射出瞳位置までの距離、

である。

## 【0018】

【実施例】以下、本発明を実施したレンズ光学系の構成等を、コンストラクションデータ、収差図等を挙げて、更に具体的に説明する。なお、以下に挙げる実施例は、前述した実施の形態に対応しており、実施の形態を表す

レンズ構成図(図1)は、対応する実施例のレンズ構成を示している。また、実施例に対する比較例(回折格子を有しない。)を併せて示すとともに、そのレンズ構成を図3に示す。

【0019】実施例及び比較例のコンストラクションデータにおいて、 $r_i$ ( $i=1,2,3,\dots$ )は物体側から数えてi番目の面の曲率半径、 $d_i$ ( $i=1,2,3,\dots$ )は物体側から数えてi番目の軸上面間隔を示しており、 $N_i$ ( $i=1,2,3,\dots$ )、 $\nu_i$ ( $i=1,2,3,\dots$ )は物体側から数えてi番目の光学要素のd線に対する屈折率(nd)、アッペ数(nd)を示している。また、コンストラクションデータ中、ズーミングにおいて変化する軸上面間隔(可変間隔)は、広角端(短焦点距離端)[W]～ミドル(中間焦点距離状態)[M]～望遠端(長焦点距離端)[T]での各群間の軸上空気間隔である。各焦点距離状態[W],[M],[T]に対応する全系の焦点距離f、半画角ω(°)及びFナンバーFNO、並びに条件式対応値を併せて示す。

【0020】曲率半径 $r_i$ に\*印が付された面は、非球面で構成された面であることを示し、非球面の面形状を表わす以下の式(AS)で定義されるものとする。また、曲率半径 $r_i$ に#印が付された面は、回折格子が形成された回折レンズ面であることを示し、回折レンズ面のピッチの位相形状を表す以下の式(DS)で定義されるものとする。各非球面の非球面データ及び各回折レンズ面の回折面データを他のデータと併せて示す。

【0021】

$$Z(H) = (C_0 \cdot H^2) / \{1 + \sqrt{(1 - C_0^2 \cdot H^2)}\} + (A \cdot H^4 + B \cdot H^6 + C \cdot H^8 + D \cdot H^{10}) \quad \dots (AS)$$

ただし、式(AS)中、

$Z(H)$  : 高さHの位置での光軸方向の変位量(面頂点基準)、

$H$  : 光軸からの高さ(光軸垂直方向高さ)、

$C_0$  : 近軸曲率、

$A, B, C, D$  : 非球面係数、

である。

【0022】

$$\Phi(H) = (2\pi/\lambda_0) \cdot (C_1 \cdot H^2 + C_2 \cdot H^4 + C_3 \cdot H^6) \quad \dots (DS)$$

ただし、式(DS)中、

$\Phi(H)$  : 位相関数、

$H$  : 光軸からの高さ(光軸垂直方向高さ)、

$\lambda_0$  : 設計波長、

$C_1, C_2, C_3$  : 位相係数、

である。

【0023】

## 《実施例》

$f = 4.1 \sim 6.9 \sim 11.75$   
 $\omega = 39.1 \sim 24.2 \sim 14.8^\circ$   
 $FNO = 4.1 \sim 4.1 \sim 4.1$   
 [曲率半径] [軸上面間隔] [屈折率] [アッペ数]  
 $r1=-199.087$   
 $d1= 0.20 \ N1=1.62 \ \nu 1=60.3$   
 $r2= 6.18$   
 $d2= 0.82$   
 $r3= 6.66$   
 $d3= 1.37 \ N2=1.755 \ \nu 2=27.6$   
 $r4= 8.70$   
 $d4= 15.0 \sim 5.9 \sim 0.3$   
 $r5= 10.46$   
 $d5= 3.72 \ N3=1.5 \ \nu 3=69$   
 $r6= -4.01$   
 $d6= 1.27 \ N4=1.741 \ \nu 4=28.6$   
 $r7= -5.96$   
 $d7= 0.1 \sim 2.7 \sim 7.3$   
 $r8= \infty(S)$   
 $d8= 0.10$   
 $r9= 1.94$   
 $d9= 0.30 \ N5=1.746 \ \nu 5=39.4$   
 $r10= 2.09$   
 $d10= 2.37$   
 $r11= -1.85$   
 $d11= 1.01 \ N6=1.755 \ \nu 6=27.6$   
 $r12= -3.83$   
 $d12= 0.17$   
 $r13= 4.89$   
 $d13= 1.79 \ N7=1.487 \ \nu 7=70.4$   
 $r14= -10.78$   
 $d14= 0.10$   
 $r15= \infty$   
 $d15= 3.40 \ N8=1.517 \ \nu 8=64.1$   
 $r16= \infty$   
 $d16= 2.40$   
 $r17= \infty(I)$

## 【0024】

[第1面(r1)の非球面データ]  
 $A=2.33 \times 10^{-4}, B=-1.80 \times 10^{-6}, C=1.66 \times 10^{-8}$   
 [第5面(r5)の非球面データ]  
 $A=-7.21 \times 10^{-4}, B=-1.77 \times 10^{-5}, C=-5.35 \times 10^{-7}$   
 [第7面(r7)の非球面データ]  
 $A=6.72 \times 10^{-5}, B=-7.66 \times 10^{-6}, C=-7.23 \times 10^{-9}$   
 [第11面(r11)の非球面データ]  
 $A=5.01 \times 10^{-2}, B=1.22 \times 10^{-3}, C=-2.03 \times 10^{-3}$   
 [第12面(r12)の非球面データ]  
 $A=2.24 \times 10^{-2}, B=2.35 \times 10^{-3}, C=-5.63 \times 10^{-4}$   
 [第13面(r13)の非球面データ]

$$A=-1.24 \times 10^{-2}, B=1.51 \times 10^{-3}, C=-8.17 \times 10^{-5}$$

[第14面(r14)の非球面データ]

$$A=-8.52 \times 10^{-3}, B=-1.82 \times 10^{-4}, C=3.67 \times 10^{-5}$$

【0025】[第6面(r6)の回折面データ]

$$C1=-6.82 \times 10^{-4}, C2=3.33 \times 10^{-5}$$

【0026】[条件式対応値]

$$\text{条件式(1)}: \phi_{DOE}/\phi_{gr2}=0.013$$

$$\text{条件式(2)}: tW/fW=0.20$$

$$\text{条件式(3)}: tT/fT=0.68$$

条件式(4)(広角端[W]時, 望遠端[T]時共):  $|Y'_{max}/PZ| = 0.27$

【0027】

## 《比較例》

 $f = 4.1 \sim 6.9 \sim 11.75$  $\omega = 39.3 \sim 24.2 \sim 14.8 (\text{°})$  $FNO = 4.1 \sim 4.1 \sim 4.1$ 

[曲率半径] [軸上面間隔] [屈折率] [アッペ数]

 $r1 = -1227.278$  $d1 = 1.40 \quad N1 = 1.773 \quad \nu 1 = 49.8$  $r2 = 6.46$  $d2 = 0.81$  $r3 = 7.13$  $d3 = 2.51 \quad N2 = 1.799 \quad \nu 2 = 22.6$  $r4 = 9.68$  $d4 = 13.4 \sim 5.6 \sim 0.9$  $r5 = 9.38$  $d5 = 4.13 \quad N3 = 1.517 \quad \nu 3 = 69.4$  $r6 = -4.30$  $d6 = 1.60 \quad N4 = 1.843 \quad \nu 4 = 23.7$  $r7 = -6.28$  $d7 = 0.5 \sim 3.6 \sim 9.1$  $r8 = \infty (S)$  $d8 = 0.10$  $r9 = 2.33$  $d9 = 0.98 \quad N5 = 1.646 \quad \nu 5 = 31.9$  $r10 = 1.92$  $d10 = 1.79$  $r11 = -2.33$  $d11 = 0.65 \quad N6 = 1.799 \quad \nu 6 = 22.6$  $r12 = -3.97$  $d12 = 0.10$  $r13 = 7.65$  $d13 = 2.39 \quad N7 = 1.530 \quad \nu 7 = 67.6$  $r14 = -5.94$  $d14 = 0.30$  $r15 = \infty$  $d15 = 3.40 \quad N8 = 1.517 \quad \nu 8 = 64.1$  $r16 = \infty$  $d16 = 2.40$  $r17 = \infty (D)$ 

## 【0028】

[第1面(r1)の非球面データ]

 $A = 1.87 \times 10^{-4}, B = -1.25 \times 10^{-6}, C = 9.52 \times 10^{-9}$ 

[第5面(r5)の非球面データ]

 $A = -6.17 \times 10^{-4}, B = -1.66 \times 10^{-5}, C = -1.47 \times 10^{-7}$ 

[第7面(r7)の非球面データ]

 $A = 1.11 \times 10^{-4}, B = -5.37 \times 10^{-6}, C = 9.83 \times 10^{-8}$ 

[第11面(r11)の非球面データ]

 $A = 3.86 \times 10^{-2}, B = 1.82 \times 10^{-3}, C = -1.78 \times 10^{-3}$ 

[第12面(r12)の非球面データ]

 $A = 2.31 \times 10^{-2}, B = 2.86 \times 10^{-3}, C = -8.77 \times 10^{-4}$ 

## [第13面(r13)の非球面データ]

 $A = -7.05 \times 10^{-3}, B = 1.65 \times 10^{-3}, C = -1.35 \times 10^{-4}$ 

## [第14面(r14)の非球面データ]

 $A = -4.00 \times 10^{-3}, B = -3.30 \times 10^{-4}, C = 3.88 \times 10^{-5}$ 

【0029】上記比較例は負・正・正の3成分ズームレンズであり、第1群(Gr1)が負レンズと正レンズとの2枚、第2群(Gr2)が正レンズと負レンズとの2枚、第3群(Gr3)が正レンズと負レンズと正レンズとの3枚、で構成されている。表1に、比較例の広角端[W]、望遠端[T]における、光学系全体の色収差係数と各群(Gr1~Gr3)の色収差係数を示す(ただし、LC:軸上色収差係数、TC:倍率色収差係数である)。比較例の光学系全体での色収差係数値から、広角端[W]での軸上色収差係数LCと倍率色収差係数TCが正に大きいこと、望遠端[T]での倍率色収差係数TCが負に大きいことが分かる。この比較例の第1群(Gr1)、第2群(Gr2)又は第3群(Gr3)に回折レンズを用いたときの色収差補正効果を以下に検討する。

## 【0030】

【表1】  
<回折レンズを有しない場合(比較例)の色収差係数>

|       |    | 全体   | 第1群 | 第2群  | 第3群  |    |
|-------|----|------|-----|------|------|----|
| 色収差係数 | W  | LC   | 1.3 | -8   | 2.5  | -4 |
|       | TC | 3.2  | 2.8 | 1.5  | -1.0 |    |
|       | T  | LC   | 1   | -8   | 1.0  | 0  |
|       | TC | -1.5 | 7.5 | -8.0 | -1.0 |    |

【0031】上記比較例の第1群(Gr1)に回折レンズを配置したと仮定する。第1群(Gr1)は絞り(S)から離れて前に位置するため、倍率色収差係数TCが大きくなる。しかし、比較例の倍率色収差係数TCは、広角端[W]から望遠端[T]にかけて正から負へと変化するため、第1群(Gr1)の回折レンズが発生する倍率色収差係数TCにより、全体の倍率色収差係数TCを広角端[W]から望遠端[T]にわたって小さくすることはできない。したがって、第1群(Gr1)に回折レンズを配置することは適当でない。

【0032】上記比較例の第2群(Gr2)に回折レンズを配置したと仮定する。この場合のレンズ構成は前記実施例に相当する。表2に、実施例の広角端[W]、望遠端[T]における、光学系全体の色収差係数と各群(Gr1~Gr3)の色収差係数を、表1と同様に示す。ただし、第2群(Gr2)で発生する色収差係数については、第2群(Gr2)全体での色収差係数と回折レンズが発生する色収差係数とに分けて示す。

## 【0033】

【表2】

## 〈第2群に回折レンズを有する場合(実施例)の色収差係数〉

|       |   | 全体 | 第1群 | 第2群 |       | 第3群 |
|-------|---|----|-----|-----|-------|-----|
| 色収差係数 | W |    |     | 群全体 | 回折レンズ |     |
|       | T | LC | 9   | -5  | 14    | -17 |
|       | C | TC | 32  | 29  | 9     | -6  |
|       | T | LC | 0   | -5  | 5     | 0   |
|       | C | TC | 3   | 47  | -37   | 44  |
|       |   |    |     |     |       | -6  |

【0034】第2群(Gr2)は広角端[W]では絞り(S)直前に位置し、望遠端[T]では絞り(S)から離れて前に位置するため、広角端[W]では軸上色収差係数LCが大きくなり、望遠端[T]では倍率色収差係数TCが大きくなる。したがって、第2群(Gr2)の回折レンズが発生する広角端[W]での負の軸上色収差係数LCが、広角端[W]での全体の軸上色収差係数LCを小さくすることに効果的である。また、望遠端[T]での正の倍率色収差係数TCが、望遠端[T]での全体の倍率色収差係数TCを小さくすることに効果的である。

【0035】上記比較例の第3群(Gr3)に回折レンズを配置したと仮定する。第3群(Gr3)は絞り(S)直後に位置するため、軸上色収差係数LCが大きくなる。したがって、第3群(Gr3)の回折レンズが発生する広角端[W]での負の軸上色収差係数LCが、広角端[W]での全体の軸上色収差係数LCを小さくすることに効果的である。以上の検討結果から、回折レンズは第2群(Gr2)に配置されるのが適当であり、回折レンズによる色収差補正効果は第2群(Gr2)で最も大きくなることが分かる。

【0036】次に、回折レンズを用いたときの非点収差とペツツバールの効果を以下に検討する。図5(a)～(c)に示す3種類の薄肉レンズの光学系：

- (a)正・負の接合レンズ，
- (b)接合面が回折レンズ面(破線部)から成る正・負の接合レンズ，
- (c)回折レンズ面(破線部)を有する正の単レンズ，

をモデルとして考える。モデル(a)では正・負の接合で色収差補正が行われ、モデル(b)では正・負の接合と回折レンズ面で色収差補正が行われ、モデル(c)では回折レンズ面のみで色収差補正が行われる。回折レンズによる色収差正度合いには(a) < (b) < (c)の関係があるため、回折レンズのレンズパワーにも(a) < (b) < (c)の関係が生じる。したがって、回折レンズによる色収差補正度合いの最も大きいモデル(c)の回折レンズのレン

ズパワーが最も大きくなる。

【0037】前記比較例の第2群(Gr2)は正レンズと負レンズで構成されており、正レンズの硝種は相対的に低屈折率・低分散、負レンズの硝種は相対的に高屈折率・高分散である。そこで、モデル(a), (b)の接合レンズも、正レンズの硝種を相対的に低屈折率・低分散とし、負レンズの硝種を相対的に高屈折率・高分散とする。表3に、各硝種データ(ただし、nd: d線に対する屈折率, vd: アッペ数である。)を示す。

【0038】

【表3】

## 〈硝種データ〉

| 硝種       | nd  | vd    |
|----------|-----|-------|
| 低屈折率・低分散 | 1.5 | 80    |
| 高屈折率・高分散 | 1.8 | 30    |
| 回折レンズ面   | ∞   | -3.45 |

【0039】表4に、各モデル(a)～(c)の光学系全体の収差係数を示す(ただし、PT: ペツツバール係数, AS: 非点収差係数である)。比較例において第2群(Gr2)は絞り(S)より前に位置するため、各モデル(a)～(c)も同様に絞り(S)より前に位置すると仮定して、収差係数の計算を行った。また、各モデル(a)～(c)の収差係数算出に当たっては、光学系全体の球面収差係数が最小となるベンディングを与えた。表4から、ペツツバール係数PTは回折レンズのレンズパワーが大きくなるほど小さくなることが分かる。また、非点収差係数ASは回折レンズのレンズパワーが小さく又は大きくなるほど大きくなり、所定のレンズパワーのとき最小となることが分かる。

【0040】

【表4】

〈モデル(a)～(c)の収差係数〉

| レンズ位置   | 収差係数 | モデル(a) | モデル(b) | モデル(c)      |             |
|---------|------|--------|--------|-------------|-------------|
|         |      |        |        | 低屈折率<br>低分散 | 高屈折率<br>高分散 |
| 位置に関係なく | P T  | 0. 778 | 0. 759 | 0. 63       | 0. 498      |
| 絞りより前   | A S  | 1. 964 | 1. 027 | 1. 601      | 1. 333      |
| 絞り位置    | A S  | 1      | 1      | 1           | 1           |

【0041】表5に、比較例と実施例(第2群(Gr2)に回折レンズを有する光学系)のペッツバール係数P Tと非点収差係数A Sを示す。2つの光学系は、同等のレンズ性能が得られる大きさで設計した。表5から、比較例は望遠端[T]で非点収差係数A Sが正に大きいが、第2群(Gr2)の回折レンズの効果により第2群(Gr2)の非点収差係数A Sが小さくなっていることが分かる。

## 【0042】

【表5】〈比較例と実施例の収差係数〉

|     |     | 全体  | 第1群 | 第2群  | 第3群 |
|-----|-----|-----|-----|------|-----|
| 比較例 | W   | A S | 39  | 629  | 258 |
|     | T   | A S | 401 | 433  | 815 |
|     | P T |     | 201 | -514 | 821 |
| 実施例 | W   | A S | -80 | 624  | 435 |
|     | T   | A S | 282 | 834  | 586 |
|     | P T |     | 245 | -487 | 803 |

【0043】以上の検討結果から、回折レンズを用いる場合、色収差補正効果とペッツバール及び非点収差の影響とのバランスにより、コンパクト化度合いが決まることが分かる。そして、本実施例のように負・正・正の3成分を備えたズームタイプの第2群(Gr2)に回折レンズを用いれば、色収差補正効果によりコンパクトな光学系を得ることができる。

【0044】図2は実施例の収差図、図4は比較例の収差図であり、それぞれ広角端[W]、ミドル[M]、望遠端[T]での諸収差を示している。各焦点距離状態での収差図は、左から順に、[A]球面収差、[B]非点収差、[C]

歪曲収差を表している。球面収差図[A]において、縦軸は入射瞳への入射高さHをその最大高さH0(=1)で規格化した値(すなわち入射瞳平面を切る相対高さ)H/H0であり、横軸は近軸結像位置からの光軸方向のズレ量(mm)である。破線はC線(波長:  $\lambda C=656.3\text{nm}$ )に対する球面収差量、実線はd線(波長:  $\lambda d=587.6\text{nm}$ )に対する球面収差量、一点鎖線はg線(波長:  $\lambda g=435.8\text{nm}$ )に対する球面収差量を表している。非点収差図[B]において、縦軸は像高Y'(mm)であり、横軸は近軸結像位置からの光軸方向のズレ量(mm)である。また、実線Xはサジタル面での非点収差を表しており、実線Yはメリディオナル面での非点収差を表している。歪曲収差図[C]において、縦軸は像高Y'(mm)であり、横軸は歪曲収差量(%)である。

## 【0045】

【発明の効果】以上説明したように本発明によれば、回折格子が効果的に用いられるため、収差的な面からレンズ光学系のコンパクト化を達成することができる。

## 【図面の簡単な説明】

【図1】実施の形態(実施例)のレンズ構成図。

【図2】実施例の収差図。

【図3】比較例のレンズ構成図。

【図4】比較例の収差図。

【図5】回折レンズを用いた場合の非点収差とペッツバールの効果を説明するための図。

## 【符号の説明】

Gr1 … 第1群

Gr2 … 第2群

Gr3 … 第3群

S … 絞り

LPF … ローパスフィルター

## 【図5】



【図1】



【図2】



【図3】



【図4】



フロントページの続き

Fターム(参考) 2H087 KA02 KA03 PA06 PA18 PB07  
 QA03 QA07 QA19 QA21 QA25  
 QA34 QA42 QA45 RA05 RA12  
 RA13 RA32 RA43 RA46 SA14  
 SA16 SA19 SA62 SA63 SA74  
 SB03 SB13 SB24

THIS PAGE BLANK (USPTO)