Estruturas Algébricas $Notas\ de\ Aula$

Valdigleis S. Costa Universidade Federal do Rio Grande do Norte – UFRN Centro de Ciências Exatas e da Terra – CCET Departamento de Informática e Matemática Aplicada – DIMAP

20 de agosto de 2025

Release compilado em 20 de agosto de 2025 (870 minutos após a meia-noite).

disso, o sistema de controle de versão adotado é o Git (versão 2.34.1).

Sumário

I Fundamentos Básicos

1	Conjuntos 3				
1.1	Sobre conjuntos e elementos				
1.2	Pertinência, Inclusão e Igualdade				
1.3	Operações sobre conjuntos				
1.4	Partes e Partições				
1.5	Conjuntos Numéricos e Palavras Reservadas				
1.6	Questionário				
2	Relações19				
2.1	Sobre Relações				
2.2	Pares Ordenados e Produto Cartesiano				
2.3	Relações				
2.4	Tipos ou Propriedades das Relações Binárias				
	II Estruturas Algébricas				
	III Categorias				
	Referências Bibliográficas40				

Parte I Fundamentos Básicos

Conjuntos

- "-Comece pelo começo", disse o Rei de maneira severa.
- "-E continue até chegar ao fim, então pare!"

Lewis Carroll, Alice no País das Maravilhas.

1.1 Sobre conjuntos e elementos

A ideia de conjunto é provavelmente o conceito mais fundamental compartilhado pelos mais diversos ramos da matemática. O primeiro grande estudioso que apresentou um relativo sucesso na missão de formalizar o conceito de conjunto, foi o matemático alemão George Cantor (1845-1918), em seu seminal trabalho [5]. Cantor apresentou as bases para o que hoje é chamada de teoria ingênua dos conjuntos. A seguir será apresentada uma tradução não literal da definição original de Cantor.

Definição 1

(Formalização por Cantor) Um **conjunto** A é uma **coleção** em uma totalidade $\mathbb U$ de **objetos** distintos e bem-definidos n que são parte da nossa percepção ou pensamento, tais objetos são chamados de **elementos** de A.

Agora note que a definição apresentada por Cantor distingue conjuntos e elementos como sendo objetos diferentes, e assim, a teoria dos conjuntos de cantor não tem um único objeto fundamental, mas dois, sendo eles, os conjuntos e os elementos. Além disso, a Definição 1 possui a exigência sobre dois aspectos da natureza dos elementos em um conjunto, a saber: (1) Os elementos devem ser distintos entre si¹ e (2) eles (os elementos) devem ser bem-definidos.

A definição de Cantor permite que sejam criados conjuntos com qualquer coisa que o indivíduo racional possa pensar ou perceber pelos seus sentidos. Agora, entretanto, deve-se questionar o que significa dizer que algo é bem-definido? Uma resposta satisfatória para essa perguntar é dizer que algo é bem-definido se esse algo pode ser descrito sem ambiguidades. É claro que qualquer coisa pode ser descrita a partir de suas propriedades, isto é, por suas características (ou atributos). Sendo que essas propriedades sempre podem ser verificadas pelos sentidos no caso de objetos físicos, e sempre se pode pensar e argumentar sobre elas no caso de objetos abstratos. Assim pode-se modificar um pouco a definição de Cantor para a forma apresentada a seguir.

Definição 2

(Definição de Cantor Modificada) Um **conjunto** A é uma **coleção** numa totalidade $\mathbb U$ de certos **objetos** n distintos, que satisfazem certas propriedades, tais objetos são chamados de **elementos** de A.

¹ Em um conjunto não é permitido a repetição de elementos.

Note que a Definição 2 permite concluir que um conjunto seja o agrupamento de entidades (os elementos) que satisfazem certas propriedades, ou ainda que, as propriedades definem os conjuntos. Prosseguindo nesse texto serão apresentadas as convenções da teoria ingênua dos conjuntos de forma usual, mas com um olhar de computação, isto é, apresentado os aspectos sintáticos e semânticos da teoria.

(Nomenclatura.) É também muito comum em diversos textos, tais como [6] e [18], empregar termos como, discurso, universo ou universo de estudo, em vez de usar o termo totalidade encontrado nas Definições 1 e 2, ao se especificar um conjunto. Neste texto sempre que necessário será adotado o uso de universo.

Prosseguindo com este documento, o primeiro passo será a apresentação da teoria dos conjuntos, é interessante notar que nas Definições 1 e 2, o objeto conjunto foi nomeado de forma arbitrária como A o universo como \mathbb{U} e os elementos como n, mas por qual razão foi usado isto? Essa estratégia é usado comumente na matemática, e a ideia por trás é atribuir a um objeto um "apelido", a seguir será formalizado esta ideia de forma mais precisa.

Definição 3

(Rótulo para conjuntos) Palavras (com ou sem indexação) formadas apenas por letras maiúsculas do alfabeto latino serão usadas como rótulos^a que representam conjuntos.

 a Aqui o leitor pode entender rótulo por um apelido dado ao conjunto.

A ideia de dar um rótulo ao conjunto se faz necessário visto o grande trabalho de escrita e leitura caso isso não fosse feito. Para ilustar considere a situação de que fosse necessário sempre se referir, por exemplo, ao conjunto de todas as pessoas que moram em recife, mas que não são brasileiras com mais 40 anos e possuem dois filhos. Ficar escrevendo sobre esse conjunto, seria altamente desgastante, assim não seria prático, dessa forma, é conveniente o uso de rótulos, isto é, a simbologia matemática, para torna texto e explicações mais dinâmicas. Os exemplos a seguir esboçam bem a ideia do uso de rótulos para designar conjuntos.

- Exemplo 1
- O conjunto de todas as pessoas que moram em recife, mas que não são brasileiras com mais 40 anos e possuem dois filhos, pode ser denotado simplesmente por PE_{40} , ou qualquer outra palavra nos padrões estabelecidos pela Definição 3.
- Exemplo 2
- O conjunto de todos os vizinhos da casa de número 4 pode ser representado por $VIZINHOS_4$, $VIZINHOS_{Casa_4}$, ou simplemente V_4 .
- Exemplo 3
- \mid O Conjunto de todos os primos de Ana pode ser representado por A_{primos} , ANA_{p} ou ainda A_n .

² O conjunto vazio, por exemplo, possui uma palavra ou símbolo reservado para ser seu rótulo, sendo este o símbolo Ø.

Em diversas situações ao se trabalhar com conjuntos, como as apresentadas no capítulo inicial de [18], é necessário descrever um conjunto não por seu apelido (ou nome²), mas sim apresentando uma forma que descreva o conjunto de forma precisa e curta, seja listando (geralmente entre chaves e separados por vírgula) os elementos que juntos formam o referido conjunto, ou através da descrição da propriedade que descreve o conjunto, esta forma de representação costuma ser chamada representação compacta, ou como também é chamada Set builder[23].

- Exemplo 4
- O conjunto dos números naturais menores que 10 é escrito na notação compacta como $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, Já o conjunto dos naturais menores que 5 e maiores que 3 pode ser escrito usando a notação compacta como $\{x \mid 3 < x < 5\}$.
- A seguir são apresentados algumas instâncias de conjuntos não numéricos.
- (a) {♠,♣,♡,♦}. (b) {∵, ∵, ∷}.

- (c) {Flamengo, Fluminense, Palmeiras, São Paulo}.
- (d) $\{5, a, \square, \{\spadesuit, \clubsuit\}\}$. (e) $\{\text{Valdigleis}, \mathbb{C}, \{\bullet, \bullet\}, \{\blacksquare\}\}$
- Exemplo 6 O conjunto de todos inteiros múltiplos de 5 em notação compacta pode ser representado como $\{x \mid x = 5y, \text{ sendo } y \text{ um número inteiro}\}.$
- Exemplo 7 | O conjunto de números naturais maiores que 2 e menores que 13 pode ser representado como $\{x \mid 3 \le x \le 12\}.$

(Captura de variáveis.) Muitas vezes^a na notação compacta é necessário o uso de variáveis para descrever um conjunto, essas variáveis usadas tem a função de serem objetos "dummy" do conjunto^b. Assim variáveis à esquerda do símbolo "|" podem ser trocadas por qualquer variável que não ocorre livre no lado direito de "|". Tome como exemplo o conjunto,

$$\{\boldsymbol{x} \mid \boldsymbol{x} = 5 + 2y\}$$

em tal conjunto, a variável x pode ser substituída por outra variável z sem qualquer perda, ficando então com,

$$\{ \boldsymbol{z} \mid \boldsymbol{z} = 5 + 2y \}$$

note contudo que não é possível substituir x por y, pois ao fazer tal substituição teriamos,

$$\{ \mathbf{y} \mid \mathbf{y} = 5 + 2\mathbf{y} \}$$

o que seria absurdo por dois motivos, (1) y não pode ser igual a 5 + 2y, e (2) o y que era livre no conjunto tornou-se ligado ao conjunto, assim a referência ao yoriginal do lado direito de | não pode ser mais recuperado.

Para prosseguir, é interessante notar que nos itens "a", "b" e "c" apresentado no Exemplo 5, os elementos no conjunto têm a mesma natureza (ou tipo), por outro lado, os itens "d" e "e" apresentam a propriedade dos elementos no conjunto serem de tipos differentes.

No primeiro caso, quando todos os elementos têm o mesmo tipo³, é dito que o conjunto é homogêneo. Já no segundo caso, ou seja, quando os elementos no conjunto possuem tipos diferentes, é dito que o conjunto é heterogêneo. A seguir, mais exemplos são apresentados deste conceito.

³ Tipo aqui pode ser interpretado como uma forma de segmentar os elementos do conjunto em diferentes "espécies", não faz menção a área de matemática chamada teoria dos tipos [21].

Exemplo 8

A seguir alguns conjuntos homogêneos,

- (a) {10, 20, 30, 40, 50}. (b) {1, 2, 3, 4, 5}. (c) {a, b, c, d, e}.

Exemplo 9 | Os conjuntos a seguir são todos heterogêneos,

- (a) {A, 10, ♣, •}.
 (b) {azul, vermelho, amarelo, √2π}.
 (c) {x, y, z, 1.27, Linux, Darwin, DOS}.

^aEm especial quando se descreve conjuntos infinitos.

^bAqui o termo dummy tem sentido similar ao encontrado em teoria das linguagens de programação, ou seja, entidades ou variáveis fictícias.

1.2 Pertinência, Inclusão e Igualdade

⁴ Aqui interfaces diz respeito aos mecanismos que permitem a interação entre os objetos

Em matemática ao se apresentar qualquer novo tipo de objeto é importante apresentar as interfaces⁴ que são "executadas" sobre esse novo tipo de objeto, assim esta seção irá se dedicar a apresentar as três relações fundamentais sobre conjuntos, e algumas delas derivadas.

A primeira das interfaces para o conceito de conjunto que será aqui expressa é a pertinência, esta sendo representado pelo símbolo €. A pertinência é a interface que funciona provocando a interação entre um elemento do discurso e um conjunto, a seguir é apresentado formalmente o conceito de pertinência.

Definicão 4

(Pertinência) Seja A um conjunto definido sobre um discurso \mathbb{U} por uma propriedade \mathbf{P} e seja x um elemento do discurso. Se o elemento x possui (ou satisfaz) a propriedade **P**, então é dito que x pertence a A, denotado por $x \in A$.

Assim note que a Definição 4 estabelece que, ao usar a pertinência é sempre escrito uma palavra da linguagem da teoria dos conjuntos tendo esta palavra a forma:

o espaço em vermelho deve ser ocupado por elemento concreto do discurso ou por um símbolo de variável (um dummy) que represente os elementos no discurso. Já o espaço em azul deve ser ocupado por alguma representação de um conjunto, seja o rótulo ou a forma compacta do conjunto.

A relação de pertinência é central para a definição de outras relações dentro da teoria dos conjuntos⁵, o que permite enxergar a relação de pertinência como um dos pilares fundamentais da teoria. Um exemplo desta característica fundamental da pertinência no desenvolvimento de outras relações, é seu uso para definir a relação de inclusão apresentada à seguir.

⁵ Dual a própria relação de pertinência existe a não pertinência ∉, definida formalmente como sendo a negação da relação de pertinência.

Definicão 5

(Relação de inclusão) [18] Dado dois conjuntos A e B quaisquer, é dito que A é subconjunto de (ou está incluso^a em) B, denotado por $A \subseteq B$, quando todo $x \in A$ $\acute{e} tal que x \in B.$

^aDualmente a relação de inclusão existe sua negação, isto é, a relação de não inclusão denotada

Note que a Definição 5 estabelece a escrita,

onde os espaços em vermelho devem ser preenchidos com rótulos de conjuntos ou com a representação compacta, a seguir são apresentados usos da relação de inclusão.

Exemplo 10

| Dado o conjunto dos inteiros (\mathbb{Z}) tem-se que o conjunto,

$$N = \{x \mid x = 2k \text{ para algum } k \in \mathbb{Z}\}$$

é claramente um subconjunto de \mathbb{Z} , pois todo número par é também um número

Exemplo 11 | As seguintes relações de inclusão se verificam:

- $\begin{array}{c} \text{(a)} \ \{a,e,u\}\subseteq \{a,e,o,i,u\}. \\ \\ \text{(b)} \ \{x\mid x \text{ \'e uma cidade do PE}\}\subseteq \{x\mid x \text{ \'e uma cidade do Brasil}\}. \\ \\ \text{(c)} \ \{x\mid x=2k \text{ para algum } k\in \mathbb{N}\}\subseteq \mathbb{N}. \\ \\ \text{(d)} \ \{\text{Brasil}\}\subseteq \{x\mid x \text{ \'e um pa\'is do continente americano}\} \\ \end{array}$

E fácil notar que a inclusão estabelece que um conjunto A está incluso em outro conjunto B sempre que B contém todos os elementos de A, assim é claro que todo conjunto é subconjunto (ou seja está incluso) de si mesmo. Além disso, existem a possibilidade de A ser subconjunto de B, porém, pode acontecer de B conter elementos que não estejam em A, nesse cenário é dito que A é um subconjunto próprio de B, e isto é expresso pela palavra $A \subset B$.

Exemplo~12

As seguintes relações de inclusão se verificam:

- (a) $\{1,2\}\subset\{1,2,3,4,5,6,7,8,9,0\}.$ (b) $\{x\mid x \text{ \'e uma cidade do PE}\}\subset\{x\mid x \text{ \'e uma cidade do Brasil}\}.$ (c) $\{a,e\}\subset\{a,b,c,d,e,f\}.$

Uma propriedade interessante sobre a inclusão é que o conjunto vazio está incluso, ou seja, é subconjunto, de qualquer outro conjunto existente.

Teorema 1

Para todo conjunto A tem-se que $\emptyset \subseteq A$.

Prova

Suponha por absurdo que existe um conjunto A tal que $\emptyset \not\subseteq A$, assim por definição existe pelo menos um $x \in \emptyset$ tal que $x \notin A$, mas isto é um absurdo já que o vazio não possui elementos e, portanto, a afirmação que $\emptyset \not\subseteq A$ é falsa, logo, $\emptyset \subseteq A$ é uma asserção verdadeira para qualquer que seja o A.

É sempre bom lembrar que: se $A \subset B$, então é verdade que $A \subseteq B$. Mas a recíproca não é verdade, basta lembrar que todo conjunto é subconjunto de si próprio, mas não pode ser subconjunto próprio.

Usando a ideia de subconjunto pode-se como apresentado na literatura em obras como [1, 11, 18] introduzir a ideia de igualdade entre conjuntos, esta noção é apresentada formalmente como se segue.

Definição 6

[1] Dois conjuntos A e B são iguais, denotado por A = B, se e somente se, $A \subseteq B$ e $B \subseteq A$.

Teorema 2

(Teorema da igualdade) Sejam $A, B \in C$ conjuntos quaisquer. Tem-se que:

- 1. A = A.
- 2. Se A = B, então B = A.
- 3. Se A = B e B = C, então A = C.

Agora que foi apresentada a relação fundamental de pertinência, e as relação de inclusão e igualdade dela derivadas, pode-se agora prosseguir com este documento apresentando as operações básicas sobre conjuntos.

1.3Operações sobre conjuntos

A organização com que está seção do documento irá apresentar as operações sobre conjuntos é a apresentada em [19].

Definição 7

(União de conjuntos) Sejam $A \in B$ dois conjuntos quaisquer, a união de A com B, denotada por $A \cup B$, corresponde ao seguinte conjunto.

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

| Dados os dois conjuntos $A = \{x \in \mathbb{N} \mid x = 2i \text{ para algum } i \in \mathbb{N} \}$ e $B = \{x \in \mathbb{N} \mid x = 2i \text{ para algum } i \in \mathbb{N} \}$ x = 2j + 1 para algum $j \in \mathbb{N}$ tem-se que $A \cup B = \mathbb{N}$.

Exemplo 14 | Seja
$$N = \{1, 2, 3, 6\}$$
 e $L = \{4, 6\}$ tem-se que $N \cup L = \{1, 4, 6, 3, 2\}$.

Como apontado em [18] alguns livros usam a notação A + B para representar a união, é comum nesse caso não usar a nomenclatura união, em vez disso, é usado o termo soma de conjunto, entretanto, trata-se da mesma operação de união apresentada na definição anterior. Além disso, existe uma outra forma de união, chamada união de disjunta, em que é produzido um novo conjunto que contém copias dos conjuntos bases da união, e em que os elementos do conjunto produzido por essa união apresentam um "codigo⁶" que identifica de qual conjunto base o elemento veio, ainda não é possível formalizar este conceito de união disjunta neste capítulo, entretanto o mesmo será formalizado em capítulos futuros.

⁶ Em alguns textos como em [6], é usado o termo chave em vez de código.

Definição 8

(Interseção de conjuntos) Sejam $A \in B$ dois conjuntos quaisquer, a interseção de Acom B, denotada por $A \cap B$, corresponde ao seguinte conjunto.

$$A \cap B = \{x \mid x \in A \in x \in B\}$$

A seguir são apresentados alguns exemplo da operação de interseção de conjuntos.

Seja $A = \{1, 2, 3\}, B = \{2, 3, 4, 5\}$ e $C = \{5\}$ tem-se que: Exemplo 15

(a)
$$A \cap B = \{2, 3\}$$
.
(b) $A \cap C = \emptyset$.
(c) $B \cap C = \{5\}$.

(b)
$$A \cap C = \emptyset$$
.

(c)
$$B \cap C = \{5\}$$

Exemplo 16 | Dado $A_1 = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 2}\}$ e $A_2 = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 3}\}$ tem-se que $A_1 \cap A_2 = \{x \in \mathbb{N} \mid x \text{ \'e m\'ultiplo de 6}\}.$

> Com respeito as propriedades equacionais das operações de união e interseção tem-se como exposto em [19] os seguintes resultados para qualquer três conjuntos A, Be C.

Propriedade	União	Interseção
(p_1) Idempotência	$A \cup A = A$	$A \cap A = A$
(p_2) Comutatividade	$A \cup B = B \cup A$	$A \cap B = B \cap A$
(p_3) Associatividade	$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$
(p_4) Distributividade	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
(p_5) Neutralidade	$A \cup \emptyset = A$	$A \cap \mathbb{U} = A$
(p_6) Absorção	$A \cup \mathbb{U} = \mathbb{U}$	$A \cap \emptyset = \emptyset$

Tabela 1.1: Tabela das propriedades das operações de união e interseção.

Além das propriedades apresentadas pela Tabela 1.1, a união e a interseção possuem propriedades ligadas a relação de inclusão.

Teorema 3

Para quaisquer conjuntos A e B tem-se que:

i.
$$A \subseteq (A \cup B)$$
.

ii.
$$(A \cap B) \subseteq A$$

Prova | Direta das Definições 5, 7 e 8.

A partir da definição de interseção é estabelecido um conceito de extrema valia para a teoria dos conjuntos e suas aplicações, tal conceito é o estado de disjunção entre dois conjuntos.

(Conjuntos disjuntos) Dois conjuntos $A \in B$ são ditos disjuntos sempre que $A \cap B = \emptyset$. Definição 9

Exemplo 17

Seja $A = \{1, 2, 3\}, B = \{2, 3, 5\}$ e $C = \{5\}$ tem-se que A e C são disjuntos, por outro lado, A e B não são disjuntos entre si, além disso, B e C também não são disjuntos entre si.

Definição 10

(Complemento de conjuntos) Seja $A\subseteq \mathbb{U}$ para algum discurso \mathbb{U} , o complemento de A, denotado por \overline{A} , corresponde ao seguinte conjunto:

$$\overline{A} = \{x \in \mathbb{U} \mid x \notin A\}$$

Exemplo 18

Dado $P = \{x \in \mathbb{Z} \mid x = 2k \text{ para algum } k \in \mathbb{Z} \}$ tem-se então o seguinte complemento $\overline{P} = \{x \in \mathbb{Z} \mid x = 2k+1 \text{ para algum } k \in \mathbb{Z}\}.$

Exemplo 19

Dado discurso \mathbb{U} tem-se direto da definição que $\overline{\mathbb{U}} = \emptyset$, e obviamente, $\overline{\emptyset} = \mathbb{U}$.

Teorema 4

Dado um conjunto A tem-se que:

i.
$$A \cup \overline{A} = \mathbb{U}$$
.

ii.
$$A \cap \overline{A} = \emptyset$$
.

iii.
$$\overline{\overline{A}} = A$$
.

Prova | Direta das Definições 7, 8 e 10.

A propriedade (iii) apresentada no Teorema 4 costuma ser chamada involução, como dito em [18].

Além das propriedades apresentadas no Teorema 4 o complemento também apresenta propriedades ligadas diretamente a união e a interseção, tais propriedades são uma versão conjuntistas das famosas leis De Morgan (ver [6, 20, 19]) muito conhecidas pelos estudiosos da área de lógica, a seguir são apresentadas as leis De Morgan para a linguagem teoria dos conjuntos.

(DM1) Primeira Lei De Morgan:
$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$

(DM2) Segunda Lei De Morgan: $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

Seguindo com este texto, uma outra importante operação sobre conjuntos é a diferença entre dois conjuntos. A diferença entre conjunto apresenta duas formas, a primeira considerada por muito com a diferença natural [6], já a segunda forma existente, é conhecida por diferença simétrica.

Definição 11

(Diferença de conjuntos) Dado dois conjuntos $A \in B$, a diferença de $A \in B$, denotado por A-B, corresponde ao seguinte conjunto:

$$A - B = \{ x \in A \mid x \notin B \}$$

Exemplo~20

Dado os conjuntos $S = \{a, b, c, d\}$ e $T = \{f, b, g, d\}$ tem-se os seguintes conjuntos de diferença: $S - T = \{a, c\} \in T - S = \{f, g\}.$

| Dado os conjuntos \mathbb{Z} e \mathbb{Z}_+^* tem-se que $\mathbb{Z} - \mathbb{Z}_+^* = \mathbb{Z}_-$.

Exemplo~22

Dado $A = \{1, 2, 3, 4\}$ tem-se que $A - \mathbb{N} = \emptyset$ e $A - \mathbb{Z}_- = A$.

Teorema 5

Para todo A e B tem-se que:

i.
$$A - B = A \cap \overline{B}$$
.

ii. Se
$$B \subset A$$
 e $A = \mathbb{U}$, então $A - B = \overline{B}$.

Prova

Dado os conjuntos A e B segue que:

- i. Por definição para todo $x \in A B$ tem-se que $x \in A$ e $x \notin B$, mas isto só é possível se, e somente se, $x \in A$ e $x \in \overline{B}$, e por sua vez, isto só é possível se, e somente se, $x \in A \cap \overline{B}$, portanto, tem-se que $A B = A \cap \overline{B}$.
- ii. Suponha que $B \subset A$, ou seja, todo $x \in B$ e tal que $x \in A$. Agora note que todo $x \in A B$ é tal que $x \in A$ e $x \notin B$, e portanto, pela Definição 11 e pela hipótese de $B \subset A$ é claro que $A B = \overline{B}$.

A seguir são apresentadas duas séries de igualdades notáveis relacionadas a diferença entre conjuntos.

Teorema 6

Sejam A e B conjuntos sobre um discurso \mathbb{U} , tem-se que:

a.
$$A - \emptyset = A \in \emptyset - A = \emptyset$$
.

b.
$$A - \mathbb{U} = \emptyset \in \mathbb{U} - A = \overline{A}$$
.

c.
$$A - A = \emptyset$$
.

d.
$$A - \overline{A} = A$$
.

e.
$$\overline{(A-B)} = \overline{A} \cup B$$
.

f.
$$A - B = \overline{B} - \overline{A}$$
.

Prova

Para todas as equações a seguir suponha que A e B são conjuntos sobre um discurso $\mathbb U$ assim segue que:

a.

$$\begin{array}{cccc} A - \emptyset & \stackrel{Teo. \ 5(i)}{=} & A \cap \overline{\emptyset} \\ & = & A \cap \mathbb{U} \\ & \stackrel{Tab. \ 1.1(p_5)}{=} & A \end{array}$$

e também tem-se que,

$$\emptyset - A \quad \stackrel{Teo. \ 5(i)}{=} \quad \emptyset \cap \overline{A}$$

$$\stackrel{Tab. \ 1.1(p_6)}{=} \quad \emptyset$$

- b. A prova tem um raciocínio similar a demonstração do item anterior, assim será deixado como exercício ao leitor.
- c. Trivial pela própria Definição 11.

d.

$$\begin{array}{cccc} A - \overline{A} & \stackrel{Teo. \ 5(i)}{=} & A \cap \overline{\overline{A}} \\ & \stackrel{Teo. \ 4(iii)}{=} & A \cap A \\ & \stackrel{Tab. \ 1.1(p_1)}{=} & A \end{array}$$

e.

f.

$$\begin{array}{cccc} A-B & \stackrel{Teo.~5(i)}{=} & A\cap \overline{B} \\ &\stackrel{Tab.~1.1(p_2)}{=} & \overline{B}\cap A \\ &\stackrel{Teo.~4(iii)}{=} & \overline{B}\cap \overline{\overline{A}} \\ &\stackrel{Teo.~5(i)}{=} & \overline{B}-\overline{A} \end{array}$$

E assim a prova está concluída.

Na demonstração do Teorema 6 apresentada anteriormente, algumas vezes foi escrito o símbolo de = com um texto acima, isso é uma técnica comum na escrita de demonstrações matemáticas, o entendimento que leitor precisa ter é que ao escrever $\stackrel{\kappa}{=}$ significa que a igualdade segue (ou é garantida) pela propriedade ou resultado κ . Durante este texto em algumas demonstrações uma escrita similar irá aparecer para outros símbolos além da igualdade, por exemplo, para o símbolo de implicação, que será introduzidos no decorrer deste documento.

Teorema 7

Sejam $A, B \in C$ subconjuntos de um discurso \mathbb{U} , tem-se que:

a.
$$(A - B) - C = A - (B \cup C)$$
.

b.
$$A - (B - C) = (A - B) \cup (A \cap C)$$
.

c.
$$A \cup (B - C) = (A \cup B) - (C - A)$$
.

d.
$$A \cap (B - C) = (A \cap B) - (A \cap C)$$
.

e.
$$A - (B \cup C) = (A - B) \cap (A - C)$$
.

f.
$$A - (B \cap C) = (A - B) \cup (A - C)$$
.

g.
$$(A \cup B) - C = (A - C) \cup (B - C)$$
.

h.
$$(A \cap B) - C = (A - C) \cap (B - C)$$
.

i.
$$A - (A - B) = A \cap B$$
.

j.
$$(A - B) - B = A - B$$
.

Prova

Para todas as equações a seguir suponha que A,B e C são subconjuntos de um universo $\mathbb U$ assim segue que:

a.

$$(A - B) - C \stackrel{Teo. \ 5(i)}{=} (A \cap \overline{B}) \cap \overline{C}$$

$$\stackrel{Tab. \ 1.1(p_3)}{=} A \cap (\overline{B} \cap \overline{C})$$

$$\stackrel{(\mathbf{DM1})}{=} A \cap \overline{(B \cup C)}$$

$$\stackrel{Teo. \ 5(i)}{=} A - (B \cup C)$$

b.

$$\begin{array}{ccc} A-(B-C) & \stackrel{Teo.\ 5(i)}{=} & A\cap \overline{(B-C)} \\ & \stackrel{Teo.\ 6(e)}{=} & A\cap (\overline{B}\cup C) \\ & \stackrel{Tab.\ 1.1(p_4)}{=} & (A\cap \overline{B})\cup (A\cap C) \\ & \stackrel{Teo.\ 5(i)}{=} & (A-B)\cup (A\cap C) \end{array}$$

c.

$$A \cup (B - C) \stackrel{Teo. 5(i)}{=} A \cup (B \cap \overline{C})$$

$$Tab. 1.1(p_4) = (A \cup B) \cap (A \cup \overline{C})$$

$$Tab. 1.1(p_2) = (A \cup B) \cap (\overline{C} \cup A)$$

$$Teo. 4(iii) = (A \cup B) \cap (\overline{C} \cup \overline{A})$$

$$(DM2) = (A \cup B) \cap (\overline{C} \cap \overline{A})$$

$$Teo. 5(i) = (A \cup B) - (C \cap \overline{A})$$

$$Teo. 5(i) = (A \cup B) - (C \cap \overline{A})$$

$$Teo. 5(i) = (A \cup B) - (C \cap \overline{A})$$

d.

$$\begin{array}{ll} A\cap (B-C) & \stackrel{Teo.\ 5(i)}{=} & A\cap (B\cap \overline{C}) \\ & = & \emptyset \cup (A\cap (B\cap \overline{C})) \\ & \stackrel{Tab.\ 1.1(p_2)}{=} & \emptyset \cup ((A\cap B)\cap \overline{C}) \\ & \stackrel{Tab.\ 1.1(p_6)}{=} & (\emptyset\cap B) \cup ((A\cap B)\cap \overline{C}) \\ & \stackrel{Teo.\ 4(ii)}{=} & ((A\cap \overline{A})\cap B) \cup ((A\cap B)\cap \overline{C}) \\ & \stackrel{Tab.\ 1.1(p_2,p_3)}{=} & ((A\cap B)\cap \overline{A}) \cup ((A\cap B)\cap \overline{C}) \\ & \stackrel{Tab.\ 1.1(p_4)}{=} & (A\cap B)\cap (\overline{A}\cup \overline{C}) \\ & \stackrel{(DM2)}{=} & (A\cap B)\cap \overline{(A\cap C)} \\ & \stackrel{Teo.\ 5(i)}{=} & (A\cap B) - (A\cap C) \end{array}$$

e.

$$\begin{array}{cccc} A-(B\cup C) & \stackrel{Teo.\ 5(i)}{=} & A\cap \overline{(B\cup C)} \\ & \stackrel{(\mathbf{DM1})}{=} & A\cap (\overline{B}\cap \overline{C}) \\ & \stackrel{Tab.\ 1.1(p_1)}{=} & (A\cap A)\cap (\overline{B}\cap \overline{C}) \\ & \stackrel{Tab.\ 1.1(p_3)}{=} & ((A\cap A)\cap \overline{B})\cap \overline{C} \\ & \stackrel{Tab.\ 1.1(p_2,p_3)}{=} & ((A\cap \overline{B})\cap A)\cap \overline{C} \\ & \stackrel{Tab.\ 1.1(p_3)}{=} & (A\cap \overline{B})\cap (A\cap \overline{C}) \\ & \stackrel{Teo.\ 5(i)}{=} & (A-B)\cap (A-C) \end{array}$$

f.

$$A - (B \cap C) \stackrel{Teo. \ 5(i)}{=} A \cap \overline{(B \cap C)}$$

$$\stackrel{\textbf{(DM2)}}{=} A \cap (\overline{B} \cup \overline{B})$$

$$\stackrel{Tab. \ 1.1(p_4)}{=} (A \cap \overline{B}) \cup (A \cap \overline{C})$$

$$\stackrel{Teo. \ 5(i)}{=} (A - B) \cup (A - C)$$

g.

$$(A \cup B) - C \stackrel{Teo. \ 5(i)}{=} (A \cup B) \cap \overline{C}$$

$$\stackrel{Tab. \ 1.1(p_4)}{=} (A \cap \overline{C}) \cup (B \cap \overline{C})$$

$$\stackrel{Teo. \ 5(i)}{=} (A - C) \cup (B - C)$$

h.

$$\begin{array}{cccc} (A\cap B)-C & \stackrel{Teo.\ 5(i)}{=} & (A\cap B)\cap \overline{C} \\ &\stackrel{Tab.\ 1.1(p_4)}{=} & (A\cap B)\cap (\overline{C}\cap \overline{C}) \\ &\stackrel{Tab.\ 1.1(p_2,p_3)}{=} & (A\cap \overline{C})\cap (B\cap \overline{C}) \\ &\stackrel{Teo.\ 5(i)}{=} & (A-C)\cap (B-C) \end{array}$$

i.

$$A - (A - B) \stackrel{Teo. \ 5(i)}{=} A \cap \overline{(A \cap \overline{B})}$$

$$\stackrel{\textbf{(DM2)}}{=} A \cap (\overline{A} \cup \overline{\overline{B}})$$

$$\stackrel{Tab. \ 1.1(p_4)}{=} (A \cap \overline{A}) \cup (A \cap \overline{\overline{B}})$$

$$\stackrel{Teo. \ 4(ii)}{=} \emptyset \cup (A \cap \overline{\overline{B}})$$

$$\stackrel{Tab. \ 1.1(p_5)}{=} A \cap \overline{\overline{B}}$$

$$\stackrel{Teo. \ 4(iii)}{=} A \cap B$$

j.

$$(A-B)-B = \begin{matrix} Teo. \ 5(i) \\ = \end{matrix} \qquad (A\cap \overline{B}) \cap \overline{B} \\ \begin{matrix} Tab. \ 1.1(p_3) \\ = \end{matrix} \qquad A\cap (\overline{B}\cap \overline{B}) \\ \begin{matrix} Tab. \ 1.1(p_1) \\ = \end{matrix} \qquad A\cap \overline{B} \\ \begin{matrix} Teo. \ 5(i) \\ = \end{matrix} \qquad A-B \end{matrix}$$

Para prosseguir com esta seção sobre as operações definidas sobre conjuntos será agora apresentada a última operação "clássica", sendo esta a diferença simétrica.

Definição 12

(Diferença simétrica) Dado dois conjuntos A e B, a diferença simétrica de A e B, denotado por $A \ominus B$, corresponde ao seguinte conjunto:

$$A \ominus B = \{x \mid x \in (A - B) \text{ ou } x \in (B - A)\}$$

Olhando atentamente a definição anterior é fácil notar que o conjunto da diferença simétrica é exatamente a união das possíveis diferenças entre os conjuntos, isto é, a diferença simétrica corresponde a seguinte igualdade: $A \ominus B = (A - B) \cup (B - A)$.

Exemplo 23 | Seja $A = \{1, 2, 3\}$ e $B = \{3, 4, 5, 2\}$ tem-se que $A \ominus B = \{1, 4, 5\}$.

A seguir será apresentada uma série de importantes resultados com respeito a diferença simétrica.

Teorema 8 Sejam A e B subconjuntos quaisquer de um determinado universo \mathbb{U} , tem-se que $A \ominus B = (A \cup B) \cap \overline{(A \cap B)}$.

Prova | Dado $A \in B$ dois subconjuntos quaisquer de um determinado universo \mathbb{U} segue que:

$$A \ominus B = (A - B) \cup (B - A)$$

$$\stackrel{Teo. \ 5(i)}{=} (A \cap \overline{B}) \cup (B \cap \overline{A})$$

$$\stackrel{Tab. \ 1.1(p_4)}{=} (A \cup (B \cap \overline{A})) \cap (\overline{B} \cup (B \cap \overline{A}))$$

$$\stackrel{Tab. \ 1.1(p_4)}{=} ((A \cup B) \cap (A \cup \overline{A})) \cap ((\overline{B} \cup B) \cap (\overline{B} \cup \overline{A}))$$

$$\stackrel{Teo. \ 4(i)}{=} ((A \cup B) \cap \overline{\mathbb{U}}) \cap (\overline{\mathbb{U}} \cap (\overline{B} \cup \overline{A}))$$

$$\stackrel{Tab. \ 1.1(p_1, p_5)}{=} (A \cup B) \cap (\overline{B} \cup \overline{A})$$

$$\stackrel{(DM2)}{=} (A \cup B) \cap (\overline{B} \cap A)$$

Corolario 1 Sejam A e B subconjuntos quaisquer de um determinado discurso \mathbb{U} , tem-se que $A\ominus B=(A\cup B)-(A\cap B).$

Prova Pelo Teorema 8 tem-se que $A \ominus B = (A \cup B) \cap \overline{(A \cap B)}$, mas pelo Teorema 5 (i) segue que $(A \cup B) \cap \overline{(A \cap B)} = (A \cup B) - (A \cap B)$, e portanto, $A \ominus B = (A \cup B) - (A \cap B)$. \square

O próximo resultado mostra que a operação de diferença simétrica entre conjunto possui elemento neutro, isto é, existe um conjunto que quando operado com qualquer outro conjunto A, o resultado é o próprio conjunto A.

Teorema 9 Para todo A tem-se que $A \ominus \emptyset = A$.

Prova Dado um conjunto A qualquer, trivialmente tem-se a seguinte igualdade $A \ominus \emptyset \stackrel{Cor.}{=} 1$ $(A \cup \emptyset) - (A \cap \emptyset) = A$.

Seguindo com as propriedades que a operação de diferença simétrica possui, o próximo resultado mostra a existência de um elemento que neste texto será chamado de **alternador**, isto é, existe um conjunto que quando operado com qualquer outro conjunto A, o resultado é o complemento deste conjunto A.

Teorema 10 Para todo A tem-se que $A \ominus \mathbb{U} = \overline{A}$.

Prova | Similar a demonstração do Teorema 9, ficando assim como exercício ao leitor.

O teorema a seguir mostra que a diferença simétrica entre um conjunto A e seu complementar \overline{A} é exatamente igual a totalidade do universo do discurso em que estes conjuntos estão inseridos.

Teorema 11 Para todo A tem-se que $A \ominus \overline{A} = \mathbb{U}$.

Prova Dado um conjunto A qualquer e seu complementar \overline{A} tem-se pelo Corolário 1 que $A\ominus\emptyset=(A\cup\overline{A})-(A\cap\overline{A})$, mas pelo Teorema 4 tem-se que $A\cup\overline{A}=\mathbb{U}$ e $A\cap\overline{A}=\emptyset$, consequentemente, $A\ominus\emptyset=\mathbb{U}-\emptyset$, mas pelo Teorema 6 tem-se que $\mathbb{U}-\emptyset=\mathbb{U}$, e portanto, $A\ominus\overline{A}=\mathbb{U}$.

Continuando a estudar a diferença simétrica o próximo teorema mostra que a diferença simétrica entre um conjunto A e ele mesmo é exatamente igual ao conjunto vazio.

Teorema 12

Para todo A tem-se que $A \ominus A = \emptyset$.

Prova

Dado um conjunto A qualquer tem-se pelo Corolário 1 que vale a seguinte igualdade, $A \ominus A = (A \cup A) - (A \cap A)$. Mas pelas propriedades apresentadas na Tabela 1.1 tem-se que $(A \cup A) = (A \cap A) = A$, logo $A \ominus A = A - A$, mas pelo Teorema 6 tem-se que $A - A = \emptyset$, portanto, $A \ominus A = \emptyset$.

Anteriormente foi mostrado que a diferença entre conjuntos não era comutativa (Exemplo 20), o próximo resultado contrasta esse fato com respeito a diferença simétrica.

Teorema 13

Para todo $A \in B$ tem-se que $A \ominus B = B \ominus A$.

Prova

Dado dois conjuntos A e B tem-se pelo Corolário 1 que vale a seguinte igualdade, $A\ominus B=(A\cup B)-(A\cap B)$, mas pela propriedade de comutatividade de \cup e de \cap (ver Tabela 1.1) tem-se que $A\cup B=B\cup A$ e $A\cap B=B\cap A$, logo tem-se que $A\ominus B=(B\cup A)-(B\cap A)$, mas pelo Corolário 1 tem-se que $(B\cup A)-(B\cap A)=B\ominus A$, e portanto, $A\ominus B=B\ominus A$.

Teorema 14

Para todo $A, B \in C$ tem-se que $(A \ominus B) \ominus C = A \ominus (B \ominus C)$.

Prova

A prova deste teorema sai direto da definição de diferença simétrica e assim ficará como exercício ao leitor. $\hfill\Box$

Teorema 15

Para todo $A \in B$ tem-se que $\overline{(A \ominus B)} = (A \cap B) \cup (\overline{A} \cap \overline{B})$.

Prova

Para todo A e B segue que:

1.4 Partes e Partições

Para concluir esta breve introdução à teoria ingênua dos conjuntos, nesta seção serão trabalhados dois importantes conceitos, as ideias de partes e partições. Ambos conceitos são conjuntos em que os elementos destes são também conjuntos.

O conceito de partes é de suma importância em diversos ramos da matemática, tais como Topologia[17] e linguagens formais[16, 4]. Já as partições são de interesse tanto teoricos[6, 11] quanto práticos, em especial, na área de agrupamento de dados[7, 10].

Definição 13

(Conjunto das partes) Seja A um conjunto. O conjunto das partes^a de A, é denotada por $\wp(A)$, e corresponde ao seguinte conjunto:

$$\wp(A) = \{x \mid x \subseteq A\}$$

 $[^]a$ Em alguns livros é usado o termo conjunto potência em vez do termo conjunto das partes, nesse caso é usado a notação 2^A para denotar o conjunto partes, por exemplo ver [19].

Uma propriedade interessante do conjuntos das partes como dito em [18], é que se A for da forma $A = \{x_1, \dots, x_n\}$ para algum $n \in \mathbb{N}$, então pode-se mostrar que $\wp(A)$ terá exatamente 2^n elementos.

- Exemplo 24 | Seja $A = \{a, b, c\}$ tem-se que o conjunto das parte de A corresponde ao conjunto $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{c, b\}, \{a, b, c\}\}.$
- Exemplo 25 | Dado o conjunto $X = \{1\}$ tem-se que $\wp(X) = \{\emptyset, \{1\}\}.$
- Exemplo 26 | Seja $A = \emptyset$ tem-se que $\wp(A) = {\emptyset}$.

Além do conjunto das partes, os conjuntos gerados pela ideia da partição de um conjunto é de extrama importância em diversos segmentos do conhecimento, como comentado anteriormente, a seguir é apresentado formalmente a ideia de partições.

Definição 14

(Partição) Seja A um conjunto não vazio, uma partição é um conjunto não vazio de subconjuntos disjuntos de A, ou seja, uma partição é da forma $\{x_i \mid x_i \subseteq A\}$ tal que as seguintes condições são satisfeitas:

- (1) Para todo $y \in A$ tem-se que existe um único i tal que $y \in x_i$ para algum $x_i \subseteq A$.
- (2) Para todo i e todo j sempre que $i \neq j$, então $x_i \cap x_j = \emptyset$.

É fácil notar pela Definição 14 que partições são conjuntos, além disso, como dito em [19] os elementos em uma partição são chamados de **células**, isto é, dado um conjunto A os subconjuntos na partição de A são vistos como as células que formam o próprio conjunto A. O resultado a seguir garante que sempre é possível obter pelo menos uma partição de um conjunto.

Teorema 16

Se A é um conjunto não vazio, então existe pelo menos uma partição de A.

Prov

Suponha que o conjunto A seja não vazio, assim defina o conjunto $PT_A = \{\{x\} \mid x \in A\}$, agora claramente tem-se que PT_A satisfaz todas as condições da Definição 14 e, portanto, PT_A é uma partição do conjunto A.

Apesar de não ter um nome específico a partição descrita no Teorema 16, é muito importante como ponto de partida para a construção de partições mais complexas, por esse fato neste documento será chamada de **partição trivial**.

1.5 Conjuntos Numéricos e Palavras Reservadas

Como este documento irá utilizar a linguagem da teoria ingênua de conjunto como sendo linguagem básica padrão para o desenvolvimento inicial aqui proposto, é conveninte apresentar ao leitor as palavras reservadas para representar os conjuntos numéricos em tal teoria, a seguir são listas as palavras reservadas básicas.

- 7 Lembre-se que aqui neste documento 0 é obrigatoriamente um número natural
- (a) N, representa o conjunto dos números naturais⁷.
- (b) Z, representa o conjunto dos números inteiro.
- (c) Q, representa o conjunto dos números racionais.
- (d) I, representa o conjunto dos números irracionais.
- (e) \mathbb{R} , representa o conjunto dos números reais.
- (f) C, representa o conjunto dos números Complexos.

Além destes conjuntos básicos, alguns subconjuntos deles também merecem destaque, e por isso tem palavras reservadas para eles.

- (a) \mathbb{Z}^* , representa o conjuntos números inteiros sem o zero, ou seja, $\mathbb{Z}^* = \mathbb{Z} \{0\}$.
- (b) \mathbb{Q}^* , representa o conjuntos números racionais sem o zero.
- (c) \mathbb{R}^* , representa o conjuntos números reais sem o zero.
- (d) \mathbb{Z}_{-} e \mathbb{Z}_{+} , representam respectivamente o conjuntos números inteiros menores e maiores que o zero, ou seja, $\mathbb{Z}_{-} = \{x \in \mathbb{Z} \mid x < 0\}$ e $\mathbb{Z}_{+} = \{x \in \mathbb{Z} \mid x > 0\}$.
- (e) $\mathbb{Q}_-, \mathbb{Q}_+, \mathbb{R}_-, \mathbb{R}_+$, tem significado similar ao item anterior, alterando apenas do conjunto dos inteiros para os racionais e reais respectivamente.

Agora como dito em [6], os símbolos podem ser combinados para representar conjuntos ainda mais especificos, por exemplo, o conjuntos do números reais positivos não nulos, isto é, o conjunto de todos os reais positivos maiores que 0, é representado por \mathbb{R}_+^* , que nada mais é, do que uma combinação dos símbolos \mathbb{R}^* e \mathbb{R}_+ .

1.6 Questionário

Incluir em algum momento futuro. . .

Relações

"A matemática preocupa-se apenas com a enumeração e comparação de relacões".

Carl Friedrich Gauss

2.1 Sobre Relações

A ideia de relação é um conceito frequentemente utilizado, seja no cotidiano das pessoas, seja na matemática [3]. Uma subárea da matemática de extrema importância para a Ciência da Computação, especificamente na área de banco de dados, é a álgebra relacional, que de forma resumida é o estudo das relações entre objetos de um mesmo espaço (conjunto).

Como comentado em [9], no cotidiano do mundo "real" existem diversos tipos de relacionamentos entre as entidades, por exemplo, imagine que duas pessoas, um homem jovem e um(a) garotinho(a) compartilham um ancestral comum, tal como um avô, assim pode-se dizer que os dois apresentam uma relação de parentesco, ou ainda que existe uma relação familiar entre os dois.

No que diz respeito ao universo matemático, a noção de relação entre os objetos é algo onipresente em todos os campos da matemática. Um exemplo clássico de relacionamento que se pode estabelecer entre dois números, x e y, é a ideia de dobro, isto é, x e y apresentam um relacionamento de dobro entre si no caso de y = 2x ou x = 2y.

Note que de forma subliminar os exemplos anteriores caracterizam as relações de parentesco e dobro através da associação de elementos que juntos apresentavam uma certa propriedade, e nesse sentido uma relação nada mais é do que um conjunto definido sobre uma certa propriedade entre elementos de um espaço. A formalização das relações como sendo um conjunto será construída nas próximas seções.

2.2 Pares Ordenados e Produto Cartesiano

Da mesma forma que em [1], neste documento será considerada a definição apresentada a seguir de par ordenado, sendo que tal definição foi apresentada pela primeira vez pelo grande matemático e lógico polonês Kazimierz Kuratowski (1896–1980).

Definição 15

(Par Ordenado) Sejam x e y elementos em um universo do discurso. O par ordenado entre x e y, denotado por (x, y), corresponde a seguinte igualdade:

$$(x,y) = \{x, \{x,y\}\}\$$

Dado qualquer par ordenado (x, y) o elemento x é chamado de primeira componente do par ordenado, e o y é chamado de segunda componente do par ordenado. Além disso, como explicado em [18, 19], dois pares ordenados (x_1, y_1) e (x_2, y_2) serão ditos iguais, se, e somente se, $x_1 = x_2$ e $y_1 = y_2$. Por fim, note que, (x, y) consiste em um conjunto heterogêneo na forma $\{x, \{x, y\}\}\$, enquanto, $\{x, y\}$ é outro conjunto, e claramente $\{x, \{x, y\}\} \neq \{x, y\}$.

¹ O nome produto Cartesiano vém do matemática francês René Descartes (1596-1650)

De posse do conceito de par ordenado é possível definir uma nova operação entre conjuntos, tal operação recebe o nome de produto Cartesiano e será de vital importância para em seguida apresentar as ideias ligadas ao conceito de relações.

[18]. Definição 16

(Produto Cartesiano) Sejam A e B dois conjuntos quaisquer, o produto Cartesiano entre $A \in B$, denotado por $A \times B$, corresponde ao conjunto de todos os pares ordenados em que a primeira componente é um elemento de A e a segunda componente é um elemento de B, ou seja, tem-se que:

$$A \times B = \{(x, y) \mid x \in A, y \in B\}$$

Exemplo 27

Dado os seguintes dois conjuntos $\{a, b, c\}$ e $\{-1, 1\}$ tem-se os seguintes produtos

$$\begin{aligned} &(\mathrm{a}) \ \{a,b,c\} \times \{-1,1\} = \{(a,1),(a,-1),(b,-1),(b,1),(c,-1),(c,1)\}. \\ &(\mathrm{b}) \ \{-1,1\} \times \{a,b,c\} = \{(1,a),(1,b),(1,c),(-1,a),(-1,c),(-1,b)\}. \\ &(\mathrm{c}) \ \{a,b,c\} \times \{a,b\} = \{(a,a),(a,b),(c,b),(b,a),(b,b),(c,a)\}. \\ &(\mathrm{d}) \ \{-1,1\} \times \{1,-1\} = \{(1,1),(1,-1),(-1,1),(-1,-1)\} \end{aligned}$$

(b)
$$\{-1,1\} \times \{a,b,c\} = \{(1,a),(1,b),(1,c),(-1,a),(-1,c),(-1,b)\}$$

(c)
$$\{a,b,c\} \times \{a,b\} = \{(a,a),(a,b),(c,b),(b,a),(b,b),(c,a)\}$$

(d)
$$\{-1,1\} \times \{1,-1\} = \{(1,1),(1,-1),(-1,1),(-1,-1)\}$$

Uma classe de casos particulares da aplicação do produto Cartesiano e a classe dos Cartesianos chamados de quadrados, no que se segue este documento apresenta formalmente a seguir o conceito de Cartesiano quadrado.

Definição 17

(Cartesiano quadrado) Seja A um conjunto qualquer. O produto Cartesiano quadrado de A, denotado por A^2 , corresponde ao produto Cartesiano de A consigo mesmo, ou seja, tem-se que:

$$A^2 = \{(x, y) \mid x, y \in A\}$$

Atenção

É bom ter em mente que A^2 é apenas uma forma simplificada ou doce (um açúcar $\operatorname{sintático}^{a}$) para escrever $A \times A$.

Os itens (c) e (d) do Exemplo 27 são produtos Cartesianos quadrados. Exemplo 28

Teorema 17

(Produto Cartesiano - absorção) Dado dois conjuntos $A \in B$ tem-se que, $A \times B = \emptyset$ se, e somente se, $A = \emptyset$ ou $B = \emptyset$.

Prova

 (\Rightarrow) Por contrapositiva assuma que $A \neq \emptyset$ e $B \neq \emptyset$, assim tem-se que existem $x \in A$ e $y \in B$, consequentemente, pela definição de produto cartesiano existe $(x,y) \in A \times B$, assim tem-se que, $A \times B \neq \emptyset$, e portanto, a afirmação: Se $A \times B = \emptyset$, então $A = \emptyset$ ou $B = \emptyset$ é verdadeira.

 (\Leftarrow) Suponha que $A = \emptyset$ ou $B = \emptyset$, assim tem-se claramente por vacuidade que $A \times B = \emptyset$.

^aO conceito de açúcar sintático (em inglês syntactic sugar), é uma expressão criada em 1964 por Peter J. Landin (1930–2009) em seus seminais trabalhos [13, 14, 15]. De forma direta um açúcar sintático diz respeito a uma sintaxe dentro da linguagem formal que tem por finalidade tornar suas construções mais fáceis de serem lidas e expressas, ou seja, um açúcar sintático é uma ferramenta para tornar o uso da linguagem mais doce (ou amigável) para o uso dos seres humanos.

Teorema 18

(Produto Cartesiano - igualdade) Dado dois conjuntos A e B tem-se que, $A \times B =$ $B \times A$ se, e somente se, $A = \emptyset$ ou $B = \emptyset$ ou A = B.

Prova | A prova desta asserção ficará como exercício ao leitor.

O produto Cartesiano enquanto operação tem a propriedade de preservar a relação de inclusão à direta e à esquerda como pode ser visto a seguir.

П

Teorema 19

(Produto Cartesiano - monotonicidade à direita) Dado três conjuntos $A, B \in C$ tem-se que, $A \subset B$ se, e somente se, $A \times C \subset B \times C$.

Prova

 (\Rightarrow) Suponha que $A \subset B$, logo por definição tem-se que todo $x \in A$ é tal que $x \in B$, e assim é óbvio que para todo $(x,y) \in A \times C$ tem-se que $(x,y) \in B \times C$, e portanto, pela definição de subconjunto tem-se que $A \times C \subseteq B \times C$, mas por hipótese tem-se que existe $x' \in B$ tal que $x' \notin A$, logo existe $(x', y) \in B \times C$ tal que $(x', y) \notin A \times C$, consequentemente, $A \times C \subset B \times C$.

 (\Leftarrow) Assuma que $A \times C \subset B \times C$, logo tem-se que para todo $(x,y) \in A \times C$ tem-se que $(x,y) \in B \times C$, mas note que por definição $(x,y) \in A \times C$ se, e somente se, $x \in A$ e de forma similar tem-se que $(x,y) \in B \times C$ se, e somente se, $x \in B$, dessa forma tem-se que $A \subset B$, além disso, por hipótese existe um $(x', y) \in B \times C$ tal que $(x',y) \notin A \times C$, portanto, é claro que existe $x' \in B$ tal que $x' \notin A$, consequentemente, $A \subset B$.

Teorema 20

(Produto Cartesiano - monotonicidade à esquerda) Dado três conjuntos $A, B \in C$ tem-se que, $A \subset B$ se, e somente se, $C \times A \subset C \times B$.

Prova | Similar a demonstração do Teorema 19.

O próximo resultado mostra que a operação de produto Cartesiano se distribui sobre as operações de união, interseção e diferença.

Teorema 21

(Leis de Distributividade do Cartesiano) Dado três conjuntos A, B e C tem-se que:

(i)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
.

(ii)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$
.

(iii)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

(iv)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
.

(v)
$$A \times (B - C) = (A \times B) - (A \times C)$$
.

(vi)
$$(A - B) \times C = (A \times C) - (B \times C)$$
.

(vii)
$$A \times (B \ominus C) = (A \times B) \ominus (A \times C)$$
.

(vii)
$$(A \ominus B) \times C = (A \times C) \ominus (B \times C)$$
.

Prova

Sejam $A, B \in C$ conjuntos tem-se que:

(i)

$$\begin{array}{lll} A \times (B \cap C) & = & \{(x,y) \mid x \in A, y \in (B \cap C)\} \\ & = & \{(x,y) \mid x \in (A \cap A), y \in (B \cap C)\} \\ & = & \{(x,y) \mid x \in A, x \in A, y \in B, y \in C\} \\ & = & \{(x,y) \mid x \in A, y \in B, x \in A, y \in C\} \\ & = & \{(x,y) \mid x \in A, y \in B\} \cap \{(x,y) \mid x \in A, y \in C\} \\ & = & (A \times B) \cap (A \times C) \end{array}$$

(ii) Similar ao item anterior.

(iii)

$$\begin{array}{lll} A \times (B \cup C) & = & \{(x,y) \mid x \in A, y \in (B \cup C)\} \\ & = & \{(x,y) \mid x \in (A \cup A), y \in (B \cup C)\} \\ & = & \{(x,y) \mid x \in A \text{ ou } x \in A, y \in B \text{ ou } y \in C\} \\ & = & \{(x,y) \mid x \in A, y \in B \text{ ou } x \in A, y \in C\} \\ & = & \{(x,y) \mid x \in A, y \in B\} \cup \{(x,y) \mid x \in A, y \in C\} \\ & = & (A \times B) \cup (A \times C) \end{array}$$

(iv) Similar ao item anterior.

(v)

$$\begin{array}{lll} A \times (B-C) & = & \{(x,y) \mid x \in A, y \in (B-C)\} \\ & = & \{(x,y) \mid x \in A \cap A, y \in (B-C)\} \\ & = & \{(x,y) \mid x \in A, x \in A, y \in B, y \notin C\} \\ & = & \{(x,y) \mid (x,y) \in A \times B, (x,y) \notin (A \times C)\} \\ & = & (A \times B) - (A \times C) \end{array}$$

(vi) Similar ao item anterior.

(vii)

$$\begin{array}{ll} A\times (B\ominus C) & \stackrel{Cor. \ 1}{=} & A\times ((B\cup C)-(B\cap C)) \\ & \stackrel{Teo. \ 21(v)}{=} & (A\times (B\cup C))-(A\times (B\cap C)) \\ & \stackrel{Teo. \ 21(iii)}{=} & ((A\times B)\cup (A\times C))-(A\times (B\cap C)) \\ & \stackrel{Teo. \ 21(i)}{=} & ((A\times B)\cup (A\times C))-((A\times B)\cap (A\times C)) \\ & \stackrel{Cor. \ 1}{=} & (A\times B)\ominus (A\times C) \end{array}$$

(viii) Similar ao item anterior.

O conceito do produto Cartesiano pode, como explicado em [18, 19], ser estendido a poder operar com mais de dois conjuntos, sendo essa extensão realizada de forma natural apenas aumentando um número de componentes nos elementos do conjunto resultante ao conjunto do produto, ou seja, os elementos deixam de ser simples pares ordenados para serem tuplas ordenadas. A seguir este conceito é formalizado.

Definição 18

(Produto Cartesiano n-ário) Dado $n \geq 2$ e sejam A_1, A_2, \cdots, A_n conjuntos quaisquer, o produto Cartesiano n-ário, denotado por $A_1 \times \cdots \times A_n$, corresponde ao conjunto formado por todas as tuplas da forma (a_1, \cdots, a_n) tal que para todo $1 \leq i \leq n$ tem-se que $a_i \in A_i$.

Em um produto Cartesiano n-ário da forma $A_1 \times \cdots \times A_n$ cada A_i com $1 \le i \le n$ é chamado de i-ésimo fator do produto. Outra forma comum de denotar o produto Cartesiano n-ário muito encontrada na literatura é usando o símbolo do produtório, ou seja, $\prod_{i=1}^n A_i$, ou ainda na forma açucarada, A^n .

Exemplo 29 | Dado os conjuntos $\{-1,1\},\{a,b\}$ e $\{0,1\}$ tem-se os seguintes produtos Cartesianos

n-ários:

$$\{-1,1\} \times \{a,b\} \times \{0,1\} = \{(-1,a,0), (-1,a,1), (-1,b,0), (-1,b,1), \\ (1,a,0), (1,a,1), (1,b,0), (1,b,1)\}$$

$$\{-1,1\} \times \{-1,1\} \times \{a,b\} \times \{a,b\} = \{(-1,1,a,a), (-1,1,a,b), \\ (-1,1,b,a), (-1,1,b,b), \\ (-1,-1,a,a), (-1,-1,a,b), \\ (1,-1,a,a), (1,-1,a,b), \\ (1,-1,b,a), (1,-1,b,b), \\ (1,1,b,a), (1,1,a,b), \\ (1,1,b,a), (1,1,b,b)\}$$

Exemplo~30

Dado o conjunto $\{0,1\}$ tem-se que

```
\{0,1\}^5 = \{(0,0,0,0,0), (0,0,0,0,1), (0,0,0,1,0), (0,0,0,1,1), (0,0,1,0,0), (0,0,0,1,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,0,1), (0,0,1), (0,0,1), (0,0,1), (0,0,1), (0,0,1), (0,0,1), (0,0,1), (0
                                                                                (0,0,1,0,1), (0,0,1,1,0), (0,0,1,1,1), (0,1,0,0,0), (0,1,0,0,1),
                                                                                (0,1,0,1,0), (0,1,0,1,1), (0,1,1,0,0), (0,1,1,0,1), (0,1,1,1,0),
                                                                                (1,0,0,0,0), (1,0,0,0,1), (1,0,0,1,0), (1,0,0,1,1), (1,0,1,0,0),
                                                                                 (1,0,1,1,0),(1,0,1,1,1),(1,1,0,0,0),(1,1,0,0,1),(1,1,0,1,0),
                                                                                  (1, 1, 1, 0, 0), (1, 1, 1, 0, 1), (1, 1, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 1, 1, 1),
                                                                                 (1,0,1,0,1),(1,1,0,1,1)
```

Exemplo 31

| São produtos Cartesianos n-ários:

```
(a) \{a,b,c\}^2 = \{(a,a),(c,b),(a,c),(a,b),(c,c),(b,a),(b,b),(b,c),(c,a)\}.

(b) \{0,1\}^2 = \{(1,0),(1,1),(0,1),(0,0)\}.

(c) \{1\}^9 = \{(1,1,1,1,1,1,1,1,1)\}.

(d) \{a,(1,2)\}^2 = \{(a,a),(a,(1,2)),((1,2),a),((1,2),(1,2))\}.

(e) \{a,b\} \times \{0\}^2 = \{(a,(0,0)),(b,(0,0))\}.

(f) \{1\}^2 \times \{1\} = \{((1,1),1)\}.
```

Quando os conjuntos A_1, A_2, \cdots, A_n são todos conjuntos finitos, uma estratégia muito utilizada para se obter e também representar o mecanismo de construção das tuplas (a_1, a_2, \dots, a_n) pertencentes ao produto Cartesiano n-ário $A_1 \times A_2 \times \dots \times A_n$ é usando a noção de diagrama de árvore [18, 19].

De forma contrária ao que acontecer nos diagramas de árvores nas área de estrutura de dados [22], linguagens formais [4, 12, 16] e compiladores [2, 8], os diagramas de árvore na teoria dos conjuntos são construídos de forma horizontal no sentido da esquerda para à direita.

Em um diagrama de árvore o número de níveis na árvore é igual ao número de conjuntos envolvidos no Cartesiano mais 2, ou seja, para cada produto Cartesiano n-ário, o número de níveis na árvore que gera/representa tal cartesiano é igual a n+2.

Dado então os conjuntos no Cartesiano $A_1 \times \cdots \times A_n$, o diagrama é construindo por níveis da seguinte forma:

- 1. O nível inicial da árvore (nível 0) é colocado o símbolo de inicio da árvore (neste documento será usado o * como símbolo inicial).
- 2. Para todo $1 \le i \le n$, cada nível i do diagrama vai ser preenchido pelos elementos

do conjunto $A_i^{\ 1}$.

 Por fim, no último nível da árvore (ou nível EPC) estão os elementos do produto Cartesiano em si.

Exemplo 32 Dado os conjuntos $\{-1,1\}, \{a,b\}$ e $\{-1,1\}$ tem-se que o produto Cartesiano $\{-1,1\} \times \{a,b\} \times \{-1,1\}$ pode ser representado pelo diagrama esboçado na Figura 2.1.

nível 0 — nível 1 — nível 2 — nível 3 — EPC

Figura 2.1: Diagrama de árvore para o Cartesiano $\{-1,1\} \times \{a,b\} \times \{1,-1\}$.

Apesar de ser uma ótima forma prática de representar e visualizar o produto Cartesiano, os diagramas de árvores tendem a não ser adotados com frequência pois seu crescimento se dá em proporções fatoriais, o que torna sua construção facilmente complexa.

2.3 Relações

Da mesma forma que foi apresentado em [1], este documento irá nesta seção tratar do conceito de relações binária e suas propriedades. O conceito de relações n-ária muito importante na matemática e na teoria de banco de dados não será estudado neste documento.

Definição 19

(Relação binária) Seja A e B dois conjuntos, uma relação R de A em B é qualquer subconjunto de $A \times B$, isto é, $R \subseteq (A \times B)$.

(Açúcar sintático.) Dado R uma relação binária de A em B a sintaxe da teoria dos conjuntos e de pares ordenados permite que seja escrito que $(x,y) \in R$, entretanto, está escrita é geralmente substituída por x R y. E no caso de $(x,y) \notin R$ é escrito simplesmente x R y.

A semântica das palavras x R y e $x \not R y$ podem ser interpretadas respectivamente como: "x está R-relacionado (está relacionado por R) com y" e "x não está R-relacionado (não está relacionado por R) com y". Em algumas obras como [6], é possível ver a sintaxe $x \not R y$ para designar que $(x,y) \in R$, neste documento o autor irá optar sempre que possível pelo açúcar sintática descrito na Nota 8, e quando não for

 $^{^{1}}$ Como cada A_{i} é finito, cada $x\in A_{i}$ será repetido exatamente 2^{i-1} no nível i.

possível (ou conveniente) será usado a sintaxe padrão da teoria dos conjuntos e dos pares ordenados.

Definição 20

(Domínio e Imagem) Seja R uma relação de A em B, o domínio de R, denotado por dom(R), corresponde ao conjunto de todos os elementos de A que são a primeira coordenada de x R y, ou seja,

$$dom(R) = \{x \in A \mid x R y\}$$

e a imagem de R, denotada por Ima(R), corresponde ao conjunto de todos os elementos de B que são a segunda coordenada de x R y, ou seja,

$$Ima(R) = \{ y \in B \mid x R y \}$$

Exemplo 33

| Seja $R = \{(a,1), (b,-1), (c,1), (b,1), (c,-1)\}$ uma relação tem-se que $dom(R) = \{a,b,c\}$ e $Ima(R) = \{1,-1\}$.

 $Exemplo\ 34$

Dado a relação $Q=\{(x,y)\in\mathbb{N}^2\mid x^2=y\}$ tem-se que $dom(Q)=\{x\in\mathbb{N}\mid (\exists y\in\mathbb{N})[\sqrt{y}=x]\}$ e $Ima(Q)=\{y\in\mathbb{N}\mid (\exists x\in\mathbb{N})[x^2=y]\}$

Exemplo 35

Uma relação binária R famosa é aquela usada para representar o conjunto das frações positivas, tal relação é definida como $F = \{(x,y) \mid x \in \mathbb{N}, y \in (\mathbb{N} - \{0\})\}$, note que a fração $\frac{1}{12}$ por exemplo corresponde ao elemento 1 F 12.

Dada qualquer relação R sempre é possível obter uma nova relação a partir de R, essa nova relação recebe o nome de relação inversa ou oposta.

Definição 21

(Relação inversa) Seja R uma relação. A relação inversa (ou oposta) de R, denotada por R^{-1} , corresponde ao seguinte conjunto:

$$R^{-1} = \{(y, x) \mid x \ R \ y\}$$

Exemplo 36

Considere a relação R do Exemplo 33, tem-se que a relação inversa de R corresponde ao conjunto $R^{-1} = \{(1, a), (-1, b), (1, c), (-1, c), (1, b)\}.$

Exemplo~37

Dado a relação $P = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a = b^2\}$ tem-se a inversa de P é exatamente a relação $R = \{(b, a) \in \mathbb{N} \times \mathbb{N} \mid b = \sqrt{a}\}$, isto é, $R = P^{-1}$.

Um fato básico para qualquer relação R é que $(R^{-1})^{-1} = R$. Em outras palavras, tal igualdade descreve que a reversa de uma relação, vista como uma operação é sempre involutiva, assim como a negação e o complemento.

Lema 1

Se $R \subseteq A \times B$, então $R^{-1} \subseteq B \times A$.

Prova

Suponha que $R \subseteq A \times B$, logo todo $(x,y) \in A$ é tal que $(y,x) \in R^{-1}$, mas de $R \subseteq A \times B$ tem-se que $(x,y) \in A \times B$, consequentemente, por definição $x \in A$ e $y \in B$ e, portanto, $(y,x) \in B \times A$, consequentemente, $R^{-1} \subseteq B \times A$.

O leitor atento pode notar que o resultado do Lema 1 pode ser estendido para relacionar diretamente duas relações, e isso é feito como se segue.

Teorema 22

Se R e S são relações tais que $R \subseteq S$, então $R^{-1} \subseteq S^{-1}$.

Prova

| Similar ao raciocínio da demonstração do Lema 1.

Uma vez que relações são conjuntos pode-se falar sobre as operações sobre relações, aqui não serão tratadas as operações triviais de união, interseção, complemento e diferença. Para essas operações é recomendável que o leitor retorne para revisar o

texto apresentado na Seção 1.3 que trata exatamente de tais operações.

Uma operação natural que surge para as relações é a noção de composição entre duas relações R_1 e R_2 , a ideia da composição é gerar uma terceira relação a partir das relações iniciais. A seguir este documento apresenta formalmente o conceito de composição.

Definição 22

(Composição de relações) Seja R_1 uma relação de A em B e seja R_2 uma relação de B em C, a composição de R_1 e R_2 , denotada por $R_1 \bullet R_2$, corresponde ao seguinte conjunto:

$$R_1 \bullet R_2 = \{(x, z) \mid (\exists y \in B)[x \ R_1 \ y \in y \ R_2 \ z]\}$$

Lema 2

Seja R_1 uma relação de A em B e seja R_2 uma relação de B em C, então tem-se que:

- (i) $Dom(R_1 \bullet R_2) \subseteq Dom(R_1)$.
- (ii) $Ima(R_1 \bullet R_2) \subseteq Ima(R_2)$.

Prova | Trivial pela própria Definição 22.

Exemplo 38 | Sejam $R = A \times B$ e $Q = B \times C$ tem-se que $R \bullet Q = A \times C$.

Exemplo~39

Dado a relação $R_1 = \{(a,b), (i,b), (o,c), (o,e)\}$ e outra relação $R_2 = \{(b,1), (b,-1), (c,3), (d,4)\}$ tem-se então que a composição de R_1 e R_2 é exatamente igual a relação $R = \{(a,1), (a,-1), (i,1), (i,-1), (o,3)\}$.

Teorema 23

(Monotonicidade da Composição de Relações) Seja R_1 e R_2 relações de A em B. Se $R_1 \subseteq R_2$, então para toda relação R_3 de B em C tem-se que $(R_1 \bullet R_3) \subseteq (R_2 \bullet R_3)$.

Prova

Suponha que R_1 e R_2 são ambas relações de A em B e que $R_1 \subseteq R_2$, agora note que para qualquer relação R_3 de B em C tem-se por definição que $(x,z) \in (R_1 \bullet R_3)$ se, e somente se, $(\exists y \in B)[x \ R_1 \ y \in y \ R_3 \ z]$, mas uma vez que, $R_1 \subseteq R_2$ é claro que $(\exists y \in B)[x \ R_2 \ y \in y \ R_3 \ z]$, e assim $(x,z) \in (R_2 \bullet R_3)$, portanto, $(R_1 \bullet R_3) \subseteq (R_2 \bullet R_3)$, concluindo assim a prova.

Corolario 2

Se R_1, R_2, S_1, S_2 são relações tais que $R_1 \subseteq R_2$ e $S_1 \subseteq S_2$, então $(R_1 \bullet S_1) \subseteq (R_2 \bullet S_2)$.

Prova

Suponha que R_1, R_2, S_1, S_2 são relações tais que $R_1 \subseteq R_2$ e $S_1 \subseteq S_2$, assim pelo Teorema 23 tem-se que $(R_1 \bullet S_1) \subseteq (R_2 \bullet S_1)$. Agora note que por definição $(x,z) \in (R_2 \bullet S_1)$ se, e somente se, $(\exists y \in Dom(S_1))[x R_2 y \text{ e } y S_1 z]$, mas uma vez que $S_1 \subseteq S_2$ tem-se que $Dom(S_1) \subseteq Dom(S_2)$ e $Ima(S_1) \subseteq Ima(S_2)$ e assim é claro que $(\exists y \in Dom(S_2))[x R_2 y \text{ e } y S_2 z]$, logo $(x,z) \in (R_2 \bullet S_2)$, consequentemente pela definição de subconjunto tem-se que $(R_2 \bullet S_1) \subseteq (R_2 \bullet S_2)$. E portanto, $(R_1 \bullet S_1) \subseteq (R_2 \bullet S_2)$.

Os próximos resultados estabelecem propriedades algébricas importantes para a operação de composição de relações.

Teorema 24

Seja R_1 uma relação de A em B e seja R_2 uma relação de B em C tem-se que $(R_1 \bullet R_2)^{-1} = R_2^{-1} \bullet R_1^{-1}$.

Prova

Dado R_1 uma relação de A em B e seja R_2 uma relação de B em C logo,

$$(x,z) \in (R_1 \bullet R_2)^{-1} \iff (z,x) \in (R_1 \bullet R_2)$$

$$\stackrel{Def.22}{\Longleftrightarrow} (\exists y \in B)[(z,y) \in R_1 \text{ e } (y,x) \in R_2]$$

$$\iff (\exists y \in B)[(y,z) \in R_1^{-1} \text{ e } (x,y) \in R_2^{-1}]$$

$$\iff (\exists y \in B)[(x,y) \in R_2^{-1} \text{ e } (y,z) \in R_1^{-1}]$$

$$\iff (x,z) \in R_2^{-1} \bullet R_1^{-1}$$

e assim pela Definição 6 tem-se que $(R_1 \bullet R_2)^{-1} = R_2^{-1} \bullet R_1^{-1}$ o que completa a prova.

Teorema 25

Seja R_1 uma relação de A em B e seja R_2 uma relação de B em C e R_3 uma relação de C em D tem-se que $(R_1 \bullet R_2) \bullet R_3 = R_1 \bullet (R_2 \bullet R_3)$.

Prova

Dado três relações R_1 de A em B, R_2 de B em C e R_3 de C em D tem-se por definição que, $(x,z) \in (R_1 \bullet R_2) \bullet R_3$ se, e somente se, existe $w \in C$ tal que $(x,w) \in (R_1 \bullet R_2)$ e $(w,z) \in R_3$, mas isso só é possível se, e somente se, $\exists y \in B$ tal que $(x,y) \in R_1$ e $(y,w) \in R_2$. Mas assim pela Definição 22 tem-se que $(y,z) \in R_2 \bullet R_3$, o que irá implicar que $(x,z) \in R_1 \bullet (R_2 \bullet R_3)$ e, portanto, tem-se que $(x,z) \in (R_1 \bullet R_2) \bullet R_3 \iff (x,z) \in R_1 \bullet (R_2 \bullet R_3)$, logo pela Definição 6 tem-se que $(R_1 \bullet R_2) \bullet R_3 = R_1 \bullet (R_2 \bullet R_3)$.

Teorema 26

Dado duas relações R_1 e R_2 e A,B e C conjuntos. Se $R_1 \subset A \times B$ e $R_2 \subset B \times C$, então $R_1 \bullet R_2 \subset A \times C$.

Prova

Suponha que $R_1 \subset A \times B$ e $R_2 \subset B \times C$ logo tem-se que se $(x,y) \in R_1 \bullet R_2$ logo por definição existe $z \in B$ tal que $(x,z) \in R_1$ e $(z,y) \in R_2$, mas assim é claro que $(x,z) \in A \times B$ e $(z,y) \in B \times C$ e, portanto, $(x,y) \in A \times C$. Consequentemente, $R_1 \bullet R_2 \subset A \times C$.

Teorema 27

Seja A, B e C conjuntos. Então tem-se que:

- (1) Se $A \cap B \neq \emptyset$, então $(A \times B) \bullet (A \times B) = A \times B$.
- (2) Se $A \cap B = \emptyset$, então $(A \times B) \bullet (A \times B) = \emptyset$.
- (3) Se $B \neq \emptyset$, então $(B \times C) \bullet (A \times B) = A \times C$.

Prova

Aqui será demonstrado só o fato (1) ficando o (2) e (3) como exercício ao leitor. Dado A,B e C conjuntos, assuma que $A\cap B\neq\emptyset$, agora note que para todo $(x,y)\in (A\times B)\bullet (A\times B)$ tem-se que pelo fato de A e B não serem disjuntos sempre existe um $\exists z\in A\cap B$ tal que $(x,z)\in (A\times B)$ e $(z,y)\in (A\times B)$, portanto, $(x,y)\in A\times B$, logo pela Definição 6 tem-se que $(A\times B)\bullet (A\times B)=A\times B$. \square

Teorema 28

Dado duas relações R_1 e R_2 tem-se que:

- (1) $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$.
- (2) $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$.

Prova

| Sejam R_1 e R_2 duas relações logo,

(1) Tem-se trivialmente que,

$$(x,y) \in (R_1 \cup R_2)^{-1} \iff (y,x) \in (R_1 \cup R_2)$$

$$\iff (y,x) \in R_1 \text{ ou } (y,x) \in R_2$$

$$\iff (x,y) \in R_1^{-1} \text{ ou } (x,y) \in R_2^{-1}$$

$$\iff (x,y) \in R_1^{-1} \cup R_2^{-1}$$

logo pela Definição 6 tem-se que $(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$.

(2) A demonstração é similar ao item anterior.

2.4 Tipos ou Propriedades das Relações Binárias

Deste ponto em diante todas as relações consideradas até o final deste capítulo serão relações binárias sobre um conjunto não vazio A genérico, ou seja, tem-se que se R for uma relação, então $R \subseteq A \times A$. Dito isto, agora serão apresentados os "tipos", ou na visão de [1], as propriedades que as relações binárias sobre um conjunto podem ser possuir.

Definição 23

(Tipo Identidade) Uma relação R é dita ser uma relação de identidade (ou relação idêntica [1]) sempre que R é igual ao conjunto $\{(x,x)\mid x\in A\}$.

Exemplo 40 | Seja $A = \{1, 2, 3, 4\}$ a relação $M = \{(3, 3), (1, 1), (2, 2), (4, 4)\}$ é uma relação de identidade, já a relação $Q = \{(1, 1), (2, 2), (3, 4)\}$ não é uma relações de identidade.

Exemplo 41 Dado o conjunto \mathbb{N} , a relação $R=\{(x,y)\in\mathbb{N}^2\mid x-y=0\}$ é uma relação de identidade, já a relação $S=\{(x,y)\in\mathbb{N}^2\mid x-y>0\}$ não é uma relação de identidade pois $(5,4)\in S$.

Dado que a relação de identidade possui exatamente todos os pares da forma (x, x), é comum chamar esta relação de identidade do conjunto A, ou simplesmente identidade de A, que costuma também ser denotado por Id_A .

Teorema 29

(Neutralidade da relação de identidade) Se R é uma relação sobre A, então as seguintes igualdade são verdadeiras:

- (i) $R \bullet Id_A = R$.
- (ii) $Id_A \bullet R = R$.

Prova

(i) Suponha que R é uma relação sobre A, assim tem-se que:

$$(x,y) \in R \bullet Id_A \iff (\exists y \in A)[x \ R \ y \in y \ Id_A \ y]$$

$$\iff (x,y) \in R$$

Portanto, $R \bullet Id_A = R$. (ii) Similar a demonstração do item anterior.

Lema 3 Se A é um conjunto não vazio, então $Id_A^{-1} = Id_A$.

Prova | Trivial pelas Definições 21 e 23.

Definição 24 (Tipo Reflexivo) Uma relação R é dita ser reflexiva quando para todo $x \in A$ tem-se que x R x.

Um leitor atento pode perceber que a relação identidade de um conjunto é sempre reflexiva, porém, o oposto não é verdadeiro como exposto no exemplo a seguir.

Exemplo 42 | Dado o conjunto $A = \{a, b, c\}$ tem-se que:

- (a) $K = \{(a,a),(b,c),(b,b),(c,c),(a,c),(c,a)\}$ é uma relação reflexiva, mas não é a identidade do conjunto A.
- (a) $M = \{(a,a),(b,b),(c,c)\}$ é uma relação reflexiva e é também a relação identidade do conjunto A.

Como dito em [1], uma relação R não será reflexiva quando existir pelo menos um $x \in A$ tal que $x \not R x$.

 $Exemplo\ 43$

Dado o conjunto $L = \{0, 0.5, 1\}$ tem-se que o conjunto Q formado pelos elementos (0,0), (0,0.5) e (1,1) não é uma relação reflexiva, pois $0.5 \not R 0.5$, ou seja, $(0.5,0.5) \notin Q$.

O próximo resultado estabelece uma caracterização para as relações serem reflexivas, isto é, tal resultado apresenta as condições suficientes e necessárias para que uma relação seja reflexiva.

Teorema 30

 (Caracterização das Relações Reflexivas) Uma relação
 Ré reflexiva se, e somente se, $Id_A \subset R.$

Prova

(⇒) Suponha que R seja reflexiva, logo por definição para todo $x \in A$ tem-se que x R x, e portanto, pela Definição 23 é claro que $Id_A \subset R$.

(\Leftarrow) Assuma que $Id_A \subset R$, agora uma vez que para todo $x \in A$ tem-se que $(x,x) \in Id_A$, pela Definição 5 segue que $(x,x) \in R$, isto é, tem-se que $x \in R$, e portanto, R é reflexiva. □

Corolario 3

Uma relação R é reflexiva se, e somente se, R^{-1} é reflexiva.

Prova | A demonstração é simples e fica como exercício ao leitor.

Teorema 31

(Fecho Algébrico das Relações Reflexivas) Se R_1 e R_2 são relações reflexivas sobre o mesmo conjunto, então $R_1 \cup R_2$ e $R_1 \cap R_2$ são também relações reflexivas.

Prova

Assuma que R_1 e R_2 são relações reflexivas sobre um conjunto A, assim pelo Teorema 30 tem-se que $Id_A \subset R_1$ e $Id_A \subset R_2$, agora pelo Teorema 3 tem-se a seguinte relação de inclusão:

$$R_1 \subseteq R_1 \cup R_2$$

logo, tem-se que $Id_A \subset R_1 \subseteq R_1 \cup R_2$, consequentemente pelo Teorema 3 tem-se que $R_1 \cup R_2$ é uma relação reflexiva. Agora suponha por absurdo que $Id_A \not\subset (R_1 \cap R_2)$, logo existe $(x,x) \in Id_A$ tal que $(x,x) \notin (R_1 \cap R_2)$, consequentemente pela Definição 8 tem-se que $(x,x) \notin R_1$ e $(x,x) \notin R_2$, o que contradiz a hipótese de que R_1 e R_2 sejam relações reflexivas, isto é, contradiz a hipótese de $Id_A \subset R_1$ e $Id_A \subset R_2$, e portanto, $Id_A \subset (R_1 \cap R_2)$, logo pelo Teorema 30 tem-se que $R_1 \cap R_2$ é também uma relação reflexiva.

Teorema 32

Seja R_1 uma relação reflexiva sobre um conjunto A e seja R_2 um relação qualquer sobre o conjunto A, tem-se $R_1 \cup R_2$ é uma relação reflexiva.

Prova

| A demonstração é trivial e ficará como exercício ao leitor.

Teorema 33

Se R é uma relação reflexiva, então $R \bullet R^{-1}$ e $R^{-1} \bullet R$ são também relações reflexivas.

Prova

Assuma que R é uma relação reflexiva sobre um conjunto A, assim pelo Corolário 3 tem-se que R^{-1} é uma relação reflexiva. Assim pelo Teorema 30 tem-se que $Id_A \subseteq R$ e $Id_A \subseteq R^{-1}$, consequentemente, pelo Corolário 2 tem-se que $(Id_A \bullet Id_A) \subseteq (R \bullet R^{-1})$ e $(Id_A \bullet Id_A) \subseteq (R^{-1} \bullet R)$, mas pela neutralidade da relação identidade (Teorema 29) tem-se que $Id_A \bullet Id_A = Id_A$, assim tem-se que $Id_A \subseteq (R \bullet R^{-1})$ e $Id_A \subseteq (R^{-1} \bullet R)$, e portanto, $R \bullet R^{-1}$ e $R^{-1} \bullet R$ são relações reflexivas.

Teorema 34

Se R é uma relação reflexiva, então as seguintes afirmações são verdadeiras.

(i) $R \subset R \bullet R$.

(ii) $R \bullet R$ é reflexiva.

A demonstração é simples e fica como exercício ao leitor. Prova

> Um terceiro tipo de relações binárias é o tipo irreflexivo, de um certo ponto de vista, tal tipo de relação pode ser visto como sendo o contraponto do tipo reflexivo.

- Definição 25 (Tipo Irreflexivo) Uma relação R é dita ser irreflexiva quando para todo $x \in A$ tem-se que $x \not R x$.
- Seja P o conjunto de todas as pessoas, e seja R a relação "ser vó", tem-se que R é Exemplo 44 irreflexiva pois é claro que ninguém pode ser vó de si próprio, portanto, para todo $x \in P$ tem-se que $x \not R x$.
- | Seja $\mathbb{N}_1 = \{x \in \mathbb{N} \mid x > 0\}$ tem-se que a relação R definida sobre \mathbb{N}_1 como sendo Exemplo 45 $x \not R y \iff y = 2x \text{ \'e irreflexiva.}$

Seguindo com a tipagem das relações binárias, a seguir este manuscrito irá apresentar os tipos: simétrico, assimétrico e anti-simétricos.

- (Tipo Simétrico) Uma relação R é dita ser simétrica quando para todo $x, y \in A$ se Definição 26 x R y, então y R x.
- Dado o conjunto $A = \{-3, -2, -1, 0, 1, 2, 3, 4\}$ o conjunto $\{(x, y) \in A^2 \mid x + y \ge 6\}$ Exemplo 46 é claramente uma relação simétrica sobre A.
- | Sendo $B = \{1, 2, 3, 4\}$ o conjunto $\{(1, 1), (1, 3), (4, 2), (2, 4), (2, 2), (3, 1)\}$ é clara-Exemplo 47 mente uma relação simétrica sobre B.

Pela Definição $\frac{26}{6}$ é fácil notar que uma relação R não será simétrica sempre que existir pelo menos um par (x,y) tal que x R y mas y R x. O próximo resultado estabelece uma caracterização para as relações simétricas.

- (Caracterização das Relações Simétricas) Uma relação R será simétrica se, e somente Teorema 35 se, $R = R^{-1}$.
 - (\Rightarrow) Suponha que R é simétrica, logo Prova

$$(x,y) \in R \iff (y,x) \in R$$
$$\iff (x,y) \in R^{-1}$$

portanto, pela Definição 6 tem-se que $R = R^{-1}$. (\Leftarrow) É trivial e fica como exercício ao leitor.

Se R é simétrica, então $R \bullet R^{-1} = R^{-1} \bullet R$. Corolario 4

Direto do Teorema 35.

Prova

Agora será mostrado que união e interseção são operações fechadas sobre o conjunto

de todas as relações binárias simétricas.

Se $R \in S$ são relações simétricas, então $R \cup S \in R \cap S$ também são simétricas. Teorema 36

Prova Trivial.

Se R é uma relação qualquer, então $R \bullet R^{-1}$ e $R^{-1} \bullet R$ são ambas simétricas. Teorema 37

Prova

Suponha que R é uma relação, assim tem-se que

$$(R \bullet R^{-1})^{-1} \stackrel{Teo.24}{=} (R^{-1})^{-1} \bullet R^{-1}$$

= $R \bullet R^{-1}$

 \mathbf{e}

$$(R^{-1} \bullet R)^{-1} \stackrel{Teo.24}{=} R^{-1} \bullet (R^{-1})^{-1}$$
$$= R^{-1} \bullet R$$

assim pelo Teorema 35 tem-se que $R \bullet R^{-1}$ e $R^{-1} \bullet R$ são ambas simétricas.

Teorema 38

Se R é uma relação qualquer, então $R \cup R^{-1}$ e $R \cap R^{-1}$ são ambas simétricas.

Prova

Suponha que R é uma relação, assim tem-se que

$$(R \cup R^{-1})^{-1} \stackrel{Teo.28}{=} R^{-1} \cup (R^{-1})^{-1}$$

$$= (R^{-1})^{-1} \cup R^{-1}$$

$$= R \cup R^{-1}$$

 \mathbf{e}

$$(R \cap R^{-1})^{-1} \stackrel{Teo.28}{=} R^{-1} \cap (R^{-1})^{-1}$$

= $(R^{-1})^{-1} \cap R^{-1}$
= $R \cap R^{-1}$

assim pelo Teorema 35 tem-se que $R \cup R^{-1}$ e $R \cap R^{-1}$ são ambas simétricas. \square

Definição 27

(Tipo Assimétrico) Uma relação R é dita ser assimétrica quando para todo $x,y\in A$ se x R y, então $y\not R$ x.

Exemplo~48

Considere que P é a relação de paternidade definida sobre o conjunto dos seres humanos, isto é, x P y significa que x é pai de y, obviamente esta relação é assimétrica pois dado que um indivíduo x é pai de um certo y é impossível que y seja pai de x, ou seja, sempre que x R y será verdade que y R x.

Exemplo 49

| A relação $R = \{(x, y) \in \mathbb{N} \mid x - y \le 0\}$ é uma relação assimétrica

O leitor deve ficar atento ao fato de que uma relação R será dita não ser assimétrica se existir pelo menos um par (x, y) tal que x R y e também que x R y.

Exemplo~50

Considere $K = \{1,2,3,4\}$ e T a relação binária definida sobre o conjunto K tal que $T = \{(1,2),(1,3),(4,1),(1,4),(2,3)\}$. Tem-se claramente que T não é assimétrica pois 4 T 1 e 1 T 4.

O resultado exposto a seguir mostra que o tipo assimétrico e o tipo irreflexivo estão intimamente ligados entre si.

Teorema 39

Se R é uma relação assimétrica sobre A, então R é uma relação irreflexiva sobre A.

Prova

Suponha por absurdo que R é uma relação assimétrica sobre A e R não é irreflexiva sobre A, logo por R não ser irreflexiva existe $x \in A$ tal que x R x, mas isso não satisfaz a Definição 27 e, portanto, isso contradiz a hipótese de que R é uma relação assimétrica sobre A, consequentemente se R é assimétrica, então R tem que ser irreflexiva.

Definição 28

(Tipo Anti-simétrico) Uma relação R é dita ser anti-simétrica quando para todo $x, y \in A$ se x R y e y R x, então x = y.

Exemplo 51 | Considerando $A = \{1, 2, 3, 4\}$ e $R = \{(1, 1), (2, 3), (4, 4), (4, 3)\}$ tem-se que R é claramente anti-simétrica.

Exemplo 52 Dado um conjunto A qualquer a relação de subconjunto \subseteq sobre $\wp(A)$ é uma relação que é anti-simétrica, pois para todo $A, B \in \wp(A)$ quando $A \subseteq B$ e $B \subseteq A$ tem-se por definição que A = B.

O leitor deve ter notado que uma relação R sobre um conjunto A não será antisimétrica se existir pelo menos $x,y\in A$ tais que x R y e y R x, mas $x\neq y$.

Exemplo 53 | Considere que $A = \{1, 2, 3, 4\}$ e R = (1, 1), (3, 2), (2, 3), (3, 4) obviamente R não é anti-simétrica pois 3 R 2 e 2 R 3 mas claramente 2 e 3 são elementos distintos de A.

Teorema 40 (Caracterização das Relações Anti-simétricas) Uma relação R é anti-simétrica sobre A se, e somente se, $R \cap R^{-1} \subset Id_A$.

Prova (\Rightarrow) Suponha por absurdo que R é anti-simétrica sobre A e que $R \cap R^{-1} \not\subset Id_A$, logo existe $(x,y) \in R \cap R^{-1}$ tal que $(x,y) \notin Id_A$, mas pelo fato de que $(x,y) \in R \cap R^{-1}$ tem-se que $(x,y) \in R$ e $(x,y) \in R^{-1}$ e assim $(y,x) \in R$ e como R é anti-simétrica temse que x=y, logo $(x,y) \in Id_A$ o que é um absurdo, portanto, se R é anti-simétrica sobre A, então tem-se que $R \cap R^{-1} \subset Id_A$. (\Leftarrow) Suponha que $R \cap R^{-1} \subset Id_A$, assim seja $x,y \in A$ tal que x R y e y R x, ou seja, $(x,y) \in R$ e $(x,y) \in R^{-1}$, logo $(x,y) \in R \cap R^{-1}$ e assim tem-se que x=y e assim R é anti-simétrica.

Corolario 5 Uma relação R é anti-simétrica se, e somente se, R^{-1} for anti-simétrica.

Prova Note que,

R é uma relação anti-simétrica $\stackrel{Teo.40}{\Longleftrightarrow}$ $R \cap R^{-1} \subset Id_A$ $\stackrel{Teo.22}{\Longleftrightarrow}$ $(R \cap R^{-1})^{-1} \subset Id_A^{-1}$ $\stackrel{Lema}{\Longleftrightarrow}$ $(R \cap R^{-1})^{-1} \subset Id_A$ $\stackrel{Teo.28(2)}{\Longleftrightarrow}$ $R^{-1} \cap (R^{-1})^{-1} \subset Id_A$ $\stackrel{Teo.40}{\Longleftrightarrow}$ R^{-1} é uma relação anti-simétrica

E isto conclui a prova.

Teorema 41

Se R e S são relações anti-simétricas, então $R\cap S$ também é anti-simétrica.

Prova

Suponha que R e S são relações anti-simétricas, logo pela Teorema 40 tem-se que $R \cap R^{-1} \subset Id_A$ e $S \cap S^{-1}Id_A$, agora note que,

$$(R \cap S) \cap (R \cap S)^{-1} \stackrel{Teo.28(2)}{=} (R \cap S) \cap (R^{-1} \cap S^{-1})$$

$$\stackrel{Tab.1.1(p2) \ e \ (p3)}{=} (R \cap R^{-1}) \cap (S \cap S^{-1})$$

$$\stackrel{Hip.}{\subset} Id_A \cap Id_A$$

$$= Id_A$$

Portanto, $(R\cap S)\cap (R\cap S)^{-1}\subset Id_A$ e assim pelo Teorema 40 tem-se que $R\cap S$ é anti-simétrica.

Continuando a apresentação dos tipos (propriedades) das relações binárias, agora será introduzida o tipo transitivo.

Definição 29

(Tipo Transitivo) Uma relação R é dita ser transitiva quando para todo $x, y, z \in A$ se x R y e y R z, então x R z.

Exemplo 54

Dado um conjunto não vazio A a relação \subseteq definida sobre $\wp(A)$ é um clássico exemplo de relação transitiva.

Exemplo 55

A relação $R = \{(x,y) \in \mathbb{R}^2 \mid (\exists k \in \mathbb{R})[x=ky]\}$ é uma relação transitiva^a.

^aA prova disso ficará como exercício ao leitor.

Exemplo~56

A relação "ser ancestral de", definida sobre o conjunto de todos os seres humanos (vivos e mortos) é uma relação transitiva.

Como muito explicado em [1] uma relação não será transitiva sempre que existirem $x, y, z \in A$ tais que $x R y \in y R z \text{ mas } x \not R z$.

Exemplo~57

Seja $P = \{1, 2, 3, 4\}$ a relação $R_1 = \{(1, 1), (1, 2), (2, 4), (3, 2), (1, 4)\}$ é transitiva, já a relação $R_2 = \{(1,1), (3,1), (1,2), (2,3), (2,4), (3,3), (4,1)\}$ não é transitiva pois $(3,1),(1,2) \in R_2 \text{ mas } (3,2) \notin R_2.$

Teorema 42

(Caracterização das Relações Transitivas) Uma relação R é transitiva sobre A se, e somente se, $R \bullet R \subset R$.

Prova

 (\Rightarrow) Suponha que R seja transitiva, assim para todo $(x,y),(y,z)\in R$ é tal que $(x,z) \in R$, mas note que $(x,y), (y,z) \in R$ implica que $(x,z) \in R \bullet R$ e, portanto, $R \bullet R \subseteq R$. (\Leftarrow) Assuma que $R \bullet R \subset R$, logo todo $(x,z) \in R \bullet R$ é tal que $(x,z) \in R$, mas note que $(x,z) \in R \bullet R$ implica que existe $y \in A$ tal que $(x,y), (y,z) \in R$ e assim por definição R é transitiva.

Corolario 6

Uma relação R é transitiva se, e somente se, R^{-1} é também transitiva.

Prova

Note que,

 $R \bullet R \subset R$ R é uma relação transitiva $(R \bullet R)^{-1} \subset R^{-1}$ $R^{-1} \bullet R^{-1} \subset R^{-1}$ R^{-1} é uma relação transitiva

E isto conclui a prova.

Teorema 43

Se R é transitiva, então $R \bullet R$ é transitiva.

Prova | Direto do Teorema 42.

Por fim será agora apresentado o último tipo das relação binárias, sendo este último tipo a contraparte do tipo transitivo.

Definição 30

(Tipo Intransitivo) Uma relação R é dita ser intransitiva quando para todo $x,y,z\in A$ se x R y e y R z, então x R z.

Exemplo~58

A relação "x é mãe de y" definida sobre o conjunto de todas as pessoas (vivas e mortas) é uma relação intransitiva, pois se "Maria é mãe de Julia" e "Julia é mãe de Rebeca" tem-se que "Maria não pode ser mãe de Rebeca".

O leitor atento pode notar que uma relação R sobre um conjunto não vazio Aqualquer, será dita não ser intransitiva quando existir pelo menos três elementos $x, y, z \in A$ tal que $x R y \in y R z \in x R z$.

Parte II Estruturas Algébricas

Parte III Categorias

Referências Bibliográficas

- J. M. Abe and N. Papavero. Teoria Intuitiva dos Conjuntos. MAKRON Books, 1991.
- [2] A. V. AHO, M. S. LAM, R. SETHI, and J. D. ULLMAN. *Compiladores: Princípios, Técnicas e ferramentas*. Editora Pearson, 2 edition, 2007.
- [3] J. M. Barreto, M. Roiseberg, M. A. F. Almeida, and K. Callozos. Fundamentos de Matemática Aplicada à Informática. http://www.inf.ufsc.br/~mauro.roisenberg/ine5381/leituras/apostila.pdf, Universidade Federal de Santa Catarina, ????-2021. Work in progress.
- [4] B. Bedregal, B. M. Acióly, and A. Lyra. *Introdução à Teoria da Computação: Linguagens Formais, Autômatos e Computabilidade*. Editora UnP, Natal, 2010.
- [5] G. Cantor. Beiträge zur Begründung der Transfiniten Mengenlehre. *Mathematische Annalen*, 46(4):481–512, 1895.
- [6] J. Carmo, P. Gouveia, and F. M. Dionísio. Elementos de Matemática Discreta. College Publications, 2013.
- [7] M. E. Celebi. Partitional clustering algorithms. Springer, 2014.
- [8] K. Cooper and L. Torczon. Construindo Compiladores, volume 1. Elsevier Brasil, 2017.
- [9] S. S. Epp. Discrete mathematics with applications. Wadsworth Publ. Co., 1990.
- [10] X. Z. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite graph partitioning. In *Proceedings of the twenty-first international conference on Machine learning*, page 36, 2004.
- [11] P. R. Halmos. Teoria ingênua dos conjuntos. Editora Ciência Moderna, 2001.
- [12] J. E. Hopcroft, R. Motwani, and J. D. Ullman. *Introduction to Automata Theory*, Languages and Computation. Pearson Education India, USA, 3ł edition, 2008.
- [13] P. J. Landin. The mechanical evaluation of expressions. *The computer journal*, 6(4):308–320, 1964.
- [14] P. J. Landin. Correspondence between algol 60 and church's lambda-notation: part i. *Communications of the ACM*, 8(2):89–101, 1965.
- [15] P. J. Landin. A correspondence between algol 60 and church's lambda-notations: Part ii. *Communications of the ACM*, 8(3):158–167, 1965.
- [16] P. Linz. An Introduction to Formal Languages and Automata. Jones & Bartlett Learning, New York, 2006.
- [17] S. Lipschutz. *Topologia Geral*. McGRAW-HILL Do Brasil, LTDA/MEC, 1971. Coleção Schaum.

- [18] S. Lipschutz. Teoria dos Conjuntos. McGraw-Hill do Brasil LTDA/MEC, 1978.
- [19] S. Lipschutz and M. Lipson. *Matemática Discreta*. Bookman Editora, 2013. Coleção Schaum.
- [20] J. P. Martins. Lógica e Raciocínio. College Publications, 2014.
- [21] R. Nederpelt and H. Geuvers. *Type theory and formal proof: an introduction*. Cambridge University Press, 2014.
- [22] J. L. Szwarcfiter and L. Markenzon. Estruturas de Dados e seus Algoritmos, volume 2. Livros Tecnicos e Científicos, 1994.
- [23] T. Tsouanas. Matemática Fundacional para Computação. http://www.tsouanas.org/fmcbook, Universidade Federal do Rio Grande do Norte, 2017–2021. Work in progress.