

1 Principal Schematic for HTPA80x64d:

^{*} EE_Enable : The slave select is used to switch communication between sensor and EEPROM.

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

Pin Assignment-Bottom View:

Figure 1: pin-allocation

Pin	Symbol	Description
1	VDD	Positive supply voltage
2	VSS	Negative supply voltage / Ground (0V) (connected to housing)
3	EE_Enable	Digital I/O, Sensor/EEPROM select
4	MISO	Digital I/O, Serial data in of module
5	MOSI	Digital I/O, Serial data out of module
6	SCLK	Digital I/O, Serial clock

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

HEIMANN Sensor

2 Optical Orientation:

Datasheet HTPA80x64dR1L10.5/0.95F7.7 Page 4 of 25

HTPA80x64dR1L10.5/0.95F7.7

Thermopile Array With Lens Optics

Rev.5: 2017.04.25 Schnorr

3 Order Code Example

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

4 Serial Order of Frame

The sensor is divided into two parts (top and bottom half) which are again separated into 4 blocks. The readout order is shown below for the different blocks.

Block 0 (top)
Block 1 (top)
Block 2 (top)
Block 3 (top)
Block 3 (bottom)
Block 2 (bottom)
Block 1 (bottom)
Block 0 (bottom)

Whenever a conversion is started the block x of the top and bottom half are measured at the same time. Each block consists of 640 Pixel that are sampled fully parallel. The readout order on the bottom half is mirrored compared to the top half so that the central lines are always read last.

The electrical offsets are sampled according to the top and bottom half. The matching rows for the corresponding electrical offsets and active Pixel are marked with the same color. The conversion of the electrical offsets is started by setting the BLIND bit during the start command, see 7.3.

Thermopile Array With Lens Optics

Rev.5: 2017.04.25 Schnorr

5 Characteristics:

5.1 Common Specifications:

Technology n-poly/p-poly Si Element Resistance approx. 300 kOhms

Sensitivity approx. 450 V/W without optics and filter

Thermal pixel time constant <4 ms
Digital Interface SPI
Analog Output No

selectable Clock 1 to 13 MHz EEPROM size 256 kBit

Pitch 90 µm Absorber size 44 µm Max. Framerate 200 Hz

(complete frame with maximum SPI and sensor clock speed and reduced ADC resolution)

5120 sensitive elements

5.2 Optical characteristics:

Focal length: 10.5 mm ("L" equals the focal length of the lens)

F-Number: 0.95

Field of view: 39 x 31 deg

Lens coating: LWP-Coating 7.7

Cut On (Tr. 5%): 7.7 μ m \pm 0.3 μ m

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

5.3 Electric Specifications:

Absolute Maximum Ratings:

10001444 11441114411180									
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit			
Supply Voltage	V_{DD}		-0.3		3.6	V			
Voltage at All inputs and outputs	V_{IO}		-0.3		V _{DD} +0.3	V			
Storage Temperature	T _{STG}		-40		85	Deg. C			

Operating Conditions:

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		3.3	3.35	3.6	V
Supply Current (sensor running)	I_{DD}		20	25	30	mA
Supply Current (sensor in idle state)	I_{DD}		tbd	tbd	tbd	mA
Standby Current (sensor in sleep state)	I_{SBY}		tbd	tbd	10	μΑ
Operation Temperature	T_{A}		-20		65	Deg. C
ESD-Protection		Human body model 100pF + 1k5Ohm	2.0			kV

Electrical Characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Digital Input						
Internal Clock frequency	F _{CLK}		1	5	13	MHz
Internal I ² C Pull up	R_{PU}		1	100	100	kOhm
Bias current	I _{BIAS}		1	3	13	μΑ
BPA current	I_{BPA}		0.2	1.5	4.0	μΑ
Input voltage high	V_{IH}		$0.7xV_{DD}$			V
Input voltage low	V_{IL}				$0.3xV_{DD}$	V
PTAT				•	•	
Temperature range			tbd		tbd	Deg. C
PTAT gradient			tbd	174	tbd	K/V

Thermopile Array With Lens Optics

Rev.5: 2017.04.25 Schnorr

Preamplifier / ADC

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Chopper frequency	F_{CHP}			20		kHz
Preamplifier Noise	N_{PA}	at 20 kHz		72		$nV/HZ^{1/2}$
Frame rate (Full Array)	FR1		1.8	8.9	21.9	Hz
Frame rate (Quarter Array)	FR4		7.2	35.6	87.6	HZ
ADC pos. Reference	V_{REFP}	REF_CAL 00		1.529		
		REF_CAL 01		1.442		V
		REF_CAL 10		1.355		'
		REF_CAL 11		1.268		
ADC neg. Reference	V_{REFN}	REF_CAL 00		0.850		
		REF_CAL 01		0.901		V
		REF_CAL 10		0.968		ľ
		REF_CAL 11		1.056		
ADC resolution	ADC_{LSB}	at 16 Bit	6.5		20.7	μV

SPI Timings HTPA80x64d:

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
SPI clock frequency	F _{CLK}		10		MHz
low pulse duration	$T_{CLK,lo}$	30			ns
high pulse duration	T _{CLK,hi}	40			ns
data set up time	$T_{SU,data}$	30			ns
data hold time	T _{hd,data}	10			ns
start setup time	T _{SU,start}	50			ns
stop setup time	T _{SU,stop}	50			ns
Time between STOP/ START	T_{buf}	200			ns

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

7 SPI Communication:

The chip uses the 8-bit command for accessing configuration and sensor data.

7.1 Write Command:

In case of a write access to an internal register the command is followed by the data byte.

7.2 Read Command:

To read data from the chip first the read command must be sent. The command initiates the read sequence and the first bit of read bytes will be set on MISO with falling edge of SCLK after last command bit. There can be as many byte reads as required.

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

7.3 Sensor Commands:

The sensor has several registers that can be written and read, they are listed below.

Configuration register (write only)

Addr / CMD	0x1A (7 Bit!) / 0x01										
Config Reg	7	7 6 5 4 3 2 1 0									
Name	RFU		BLOCK		START	VDD_MEAS	BLIND	WAKEUP			
Default	0	0	0	0	0	0	0	0			

The WAKEUP bit is used to switch on / off the chip and must be set prior all other operations. After the START bit is set the chip starts a conversion of the array or blind elements and enters the idle state (not sleep!) when finished. The BLOCK selects one of the four multiplexed array blocks.

If the BLIND bit is set the electrical offsets are sampled instead of the active pixel and the setting of the BLOCK is ignored.

If VDD_MEAS bit is set the VDD voltage is measured instead of the PTAT value. RFU means reserved for future use and can be subject to change.

Status Register (read only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x02									
Status Reg	7 6 5 4 3 2 1						0				
Name	RI	FU.	BLC	OCK	RFU	VDD_MEAS	BLIND	EOC			
Default	0	0	0	0	0	0	0	0			

If the EOC flag is set a previous started conversion has been finished.

Rev.5: 2017.04.25 Schnorr

Trim Register 1 (write only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x03								
Trim Reg 1	7	6	5	4	3	2	1	0		
Name	RI	-TU	REF_	CAL	MBIT TRIM					
Default	0	0	0	1	1	1	0	0		

REF CAL: selectable amplification, see Fehler! Verweisquelle konnte nicht gefunden werden. for more detail

MBIT TRIM: m = 4 to $12 \implies (m+4)$ bit as ADC resolution (Default: m=12)

Trim Register 2 (write only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x04								
Trim Reg 2	7	6	5	4	3	2	1	0		
Name		RFU		BIAS TRIM TOP						
Default	0	0	0	0	0	1	0	1		

BIAS_TRIM_TOP: 0 to 31 \Rightarrow 1 μ A to 13 μ A

(Default: 3µA)

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Trim Register 3 (write only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x05								
Trim Reg 3	7	6	5	4	3	2	1	0		
Name		RFU			BIAS TRIM BOT					
Default	0	0	0	0	0	1	0	1		

BIAS TRIM BOT: 0 to 31 \Rightarrow 1µA to 13µA

(Default: 3µA)

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Trim Register 4 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0	06					
Trim Reg 4	7	6	5	4	3	2	1	0
Name	RI	FU			CLK '	TRIM		
Default	0	0	0	1	0	1	0	1

CLK TRIM: $0 \text{ to } 63 \implies 1 \text{MHz to } 13 \text{MHz}$

(Default: 5MHz)

NOTE: The measure time depends on the clock frequency settings. One quarter frame takes

$$t_{FR4} = \frac{32 \cdot (2^{MBIT} + 4)}{F_{CLV}} \approx 27ms @ 5MHz$$

Trim Register 5 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)7					
Trim Reg 5	7	6	5	4	3	2	1	0
Name		RFU			BP	A TRIM T	OP	
Default	0	0	0	0	1	1	0	0

BPA_TRIM_TOP: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

(Default: 1.5µA)

This setting is used to adjust the common mode voltage of the preamplifier.

HEIMANN Sensor GmbH Contact / Customer Support Phone 49 (0) 6123 60 50 30 Maria-Reiche-Str. 1 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

www.heimannsensor.com mail: info@heimannsensor.com

Datasheet HTPA80x64dR1L10.5/0.95F7.7 Page 12 of 25

HTPA80x64dR1L10.5/0.95F7.7

Thermopile Array With Lens Optics

Rev.5: 2017.04.25 Schnorr

Trim Register 6 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)8					
Trim Reg 6	7	6	5	4	3	2	1	0
Name		RFU			BP	A TRIM E	BOT	
Default	0	0	0	0	1	1	0	0

BPA TRIM BOT: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

(Default: 1.5µA)

This setting is used to adjust the common mode voltage of the preamplifier.

Trim Register 7 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)9					
Trim Reg 7	7	6	5	4	3	2	1	0
Name		PU SDA	A TRIM			PU SCI	L TRIM	
Default	1	0	0	0	1	0	0	0

PU_SDA_TRIM: select internal pull up resistor on SDA (Default: 100kOhm)
PU_SCL_TRIM: select internal pull up resistor on SCL (Default: 100kOhm)

Read Data 1 Command (Top Half of Array)

Iteaa Data I Communa	(= 0 P ======	02 122 2 44,	"					
CMD	0x0A							
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte		PTAT 1 MSB / LSB or Vdd 1 MSB / LSB						
3. Byte / 4. Byte		Pixel (0+BLOCK*640) MSB / LSB						
5. Byte / 6. Byte		Pixel (1+BLOCK*640) MSB / LSB						
1281. Byte / 1282. Byte		Pixel (127+BLOCK*640) MSB / LSB						

Read Data 2 Command (Bottom Half of Array)

Read Data 2 Command	(Duttum I	ian or A	iiay)					
CMD	0x0B							
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte		PTAT 2 MSB / LSB or Vdd 2 MSB / LSB						
3. Byte / 4. Byte			Pixel (504	0-BLOCK	(*640) M	ISB / LSB		
5. Byte / 6. Byte			Pixel (504	1-BLOCK	(*640) M	ISB / LSB		
161. Byte / 162. Byte		Pixel (5119-BLOCK*640) MSB / LSB						
163. Byte / 164. Byte			Pixel (496	60-BLOCK	(*640) M	ISB / LSB		
165. Byte / 166. Byte			Pixel (496	61-BLOCK	(*640) M	ISB / LSB		
321. Byte / 322. Byte			Pixel (503	89-BLOCK	(*640) M	ISB / LSB		
323. Byte / 324. Byte	Pixel (4880-BLOCK*640) MSB / LSB							
1281. Byte / 1282. Byte		Pixel (4559-BLOCK*640) MSB / LSB						

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere. A new initialized readout proceeds at this stopped byte, but the index is reset when a new conversion has been started.

If the VDD_MEAS bit (Bit 2 in Config 0x01) is set then the Vdd is sampled instead of the PTAT.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

www.heimannsensor.com mail: info@heimannsensor.com

[&]quot;1000" = 100 kOhm; "0100" = 50 kOhm; "0010" = 10 kOhm; "0001" = 1 kOhm

Datasheet HTPA80x64dR1L10.5/0.95F7.7 Page 13 of 25

HTPA80x64dR1L10.5/0.95F7.7

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

If the bit for the electrical offsets (Bit 1 in Config 0x01) is set the electrical offsets are sampled and can be read similar to the active pixel:

Read Data electrical offsets (Top Half of Array)

CMD	0x0A	0x0A						
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte		PTAT 1 MSB / LSB or Vdd 1 MSB / LSB						
3. Byte / 4. Byte		electrical offset (0) MSB / LSB						
5. Byte / 6. Byte		electrical offset (1) MSB / LSB						
1281. Byte / 1282. Byte		electrical offset (639) MSB / LSB						

Read Data electrical offsets (Bottom Half of Array)

CMD	0x0B							
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte			PTAT 2 N	MSB / LSB	or Vdd 2 N	MSB / LSB		
3. Byte / 4. Byte		electrical offset (640) MSB / LSB						
5. Byte / 6. Byte		electrical offset (641) MSB / LSB						
1281. Byte / 1282. Byte		electrical offset (1279) MSB / LSB						

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere. A new initialized readout proceeds at this stopped byte, but the index is reset when a new conversion has been started.

7.4 EEPROM communication

The built-in EEPROM (25AA256 from Microchip) consists of 32 blocks of 1K x 8-bit. The chip select of the EEPROM is set to 000 (A2 to A0). For further information please see the corresponding datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/21822D.pdf

Thermopile Array With Lens Optics

Rev.5: 2017.04.25 Schnorr

7.5 SPI Example Sequences – Init and Read Thermopile Array

CONFIG_REG	WAKEUP
0x01	0x01

TRIM_REG1	MBIT_TRIM
0x03	0x0C

TRIM_REG2	BIAS_TRIML
0x04	0x0C

TRIM_REG3	BIAS_TRIMR
0x05	0x0C

TRIM_REG4	CLK_TRIM		
0x06	0x14		

TRIM_REG5	BPA_TRIML
0x07	0x0C

TRIM_REG6	BPA_TRIMR
80x0	0x0C

CONFIG_REG	START WAKEUP
0x01	0x09

STATUS_REG	STATUS
0x02	??

WAIT 30ms

STATUS_REG	STATUS
0x02	??

READ_DATA 1	PTAT1 MSB	PTAT1 LSB			Px,y MSB	
0x0A	??	??	??	??	 ??	??

READ_DATA 2	PTAT2 MSB	PTAT2 LSB	P0,0 MSB		 Px,y MSB	Px,y LSB
0x0B	??	??	??	??	 ??	??

CONFIG_REG	SLEEP
0x01	0x00

Datasheet HTPA80x64dR1L10.5/0.95F7.7 Page 15 of 25

HTPA80x64dR1L10.5/0.95F7.7

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

8 Temperature calculation

The object and ambient temperature can be calculated from the sensor output and the stored calibration data. The table below is showing an overview of the EEPROM.

80x64d	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F
0x0000		PixCmi	n [float]			PixCma	x [float]		gradScale			TN as 16 b	it unsigned	epsilon		
0x0010											MBIT(calib)	BIAS(calib)	CLK(calib)	BPA(calib)	PU(calib)	
0x0020			Arraytype				Vdd	lCalib								
0x0030						PTAT-grad	dient (float)			PTAT-off	set (float)					
0x0040															VddScGrad	VddScOff
0x0050					GlobalOff	Globa	alGain									
	MBIT(user)	BIAS(user)	CLK(user)	BPA(user)	PU(user)											
0x0070						Devi	iceID									NrOfDefPix
0x0080																
0x0090							DeadPi	xAdr as 16	bit unsigne	ed values						
0x00A0																
0x00B0								Deadh	ixMask							
0x00C0				DeadP	ixMask							tree t	o use			
								free t	to use							
 0x0800																
						\/.	ddCompC	rad stored	00 16 hit 6	igond volu	00					
 0x11F0						V	udCompe	ilau Storeu	as 10 bit s	igenu valu	62					
0x11r0																
						\	/ddCompt	Off stored a	s 16 hit si	nend value	9					
 0x1BF0						,	dacomp	on otorea t	ao To Dit oi	geria value	J					
0x1C00																
							ThGrad	ii stored as	8 bit signe	d values						
0x2FF0		ThGrad _{ii} stored as 8 bit signed values														
0x3000																
		ThOffseti, stored as 16 bit signed values														
0x57F0																
0x5800																
		P∉stored as 16 bit unsigned values														
0x7FF0																

All values are stored as unsigned 8 bit values unless they are specified otherwise. The little endian format is used for larger values. Grey marked areas are used during calibration or for future use and are Heimann Sensor reserved.

MBIT(calib), BIAS(calib), CLK(calib), BPA(calib) and PU(calib) are the settings for the registers that have been used during calibration (see chapter 7.3 on how to set them). MBIT(user), BIAS(user), CLK(user), BPA(user) and PU(user) are free to be set by the user. The temperature calculation is only valid if the same settings are used that have been set during calibration!

TN is the tablenumber and has to match the given tablenumber in the sample code. GlobalOff is stored as an 8 bit signed value, GlobalGain and VddCalib are both stored as 16 bit unsigned.

VddCalib is the used supply voltage during calibration measured by the sensor itself and stored in Digits.

The corresponding order of $ThGrad_{ij}$, $ThOffset_{ij}$ and P_{ij} to the Pixelnumber is given by the following overview:

Thermopile Array With Lens Optics

Rev.5: 2017.04.25 Schnorr

ThGrad_{0,0} \rightarrow Pixel 0 ThGrad_{0,1} \rightarrow Pixel 1 ... ThGrad_{0,79} \rightarrow Pixel 79 ThGrad_{1,0} \rightarrow Pixel 80 ThGrad_{1,1} \rightarrow Pixel 81 ... ThGrad_{1,79} \rightarrow Pixel 179

.

ThGrad_{31,0} \rightarrow Pixel 2480 ThGrad_{31,1} \rightarrow Pixel 2481 ... ThGrad_{31,79} \rightarrow Pixel 2559 ThGrad_{32,0} \rightarrow Pixel 5040 ThGrad_{32,1} \rightarrow Pixel 5041 ... ThGrad_{32,79} \rightarrow Pixel 5119 ThGrad_{33,0} \rightarrow Pixel 4960 ThGrad_{33,1} \rightarrow Pixel 4961 ... ThGrad_{33,79} \rightarrow Pixel 5039

.

ThGrad_{63,0} \rightarrow Pixel 2560 ThGrad_{63,1} \rightarrow Pixel 2561 ... ThGrad_{63,79} \rightarrow Pixel 2639

The order of $VddCompGrad_{ij}$ and $VddCompOff_{ij}$ is similar to the electrical Offsets and have to be used block by block.

VddCompGrad₀,0 → Pixel 0	VddCompGrad₀,₁ → Pixel 1		VddCompGrad₀,79 → Pixel 79	
VddCompGrad₁,0 → Pixel 80	VddCompGrad₁,1 → Pixel 81		VddCompGrad₁,79 → Pixel 159	
				af
VddCompGrad₀,₀ → Pixel 64	0 VddCompGrad₀,₁ → Pixel 641		VddCompGrad₀,79 → Pixel 719	top half
				\$
•				
VddCompGrad _{7,0} → Pixel 24	·		VddCompGrad₁,79 → Pixel 2559	
VddCompGrad _{8,0} → Pixel 50	40 VddCompGrad _{8,1} → Pixel 504	1	VddCompGrad₃,79 → Pixel 5119	
VddCompGrad _{9,0} → Pixel 49	60 VddCompGrad _{9,1} → Pixel 496	1	VddCompGrad _{9,79} → Pixel 5039	
				half
VddCompGrad _{8,0} → Pixel 44	00 VddCompGrad _{8,1} → Pixel 440	1	VddCompGrad _{8,79} → Pixel 4479	ωo
				bottom
VddCompGrad∉s → Pivel 25	60 VddCompGrad#4 -> Pivel 256	1	VddCompGrader = Pivel 2630	

8.1 Ambient Temperature:

The ambient temperature (Ta) is calculated from the average measured PTAT value, the $PTAT_{gradient}$ and the $PTAT_{offset}$.

 $Ta = PTAT_{av} \cdot PTAT_{gradient} + PTAT_{offset}$ (Value is given back in dK)

where:

 $PTAT_{gradient}$ is the gradient of the PTAT stored in the EEPROM as a float value $PTAT_{offset}$ is the offset of the PTAT stored in the EEPROM as a float value

 $PTAT_{av} = \frac{\sum_{i=0}^{7} PTAT_i}{8}$ is the average measured PTAT value

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

8.2 Thermal Offset:

The thermal offset of the sensor needs to be subtracted for each pixel to compensate for any thermal drifts.

$$V_{ij_Comp} = V_{ij} - \frac{ThGrad_{ij} \cdot PTAT_{av}}{2^{gradScale}} - ThOffset_{ij}$$

where:

ij represents the row (i) and column (j) of the pixel

 $V_{ii Comp}$ is the thermal offset compensated voltage

 V_{ij} is the raw pixel data (digital), readout from the RAM

 $ThGrad_{ij}$ is the thermal gradient, stored in the EEPROM from 0x740 to 0xF3F $ThOffset_{ii}$ is the thermal offset, stored in the EEPROM from 0xF40 to 0x173F

gradScale is the scaling coefficient for the thermal gradient stored in the EEPROM

8.3 Electrical Offset

The electrical offset is used to compensate changes in the supply voltage. This compensation is only a subtraction so it can be done before or after the thermal offset compensation (here done afterwards).

The compensation for the top half is done by using the following formula:

$$V_{ij_Comp} = V_{ij_Comp} - elOffset[(j+i\cdot32):128]$$

and the bottom half analogue with this formula:

$$V_{ij_Comp} *= V_{ij_Comp} - elOffset[(j+i\cdot 32):128+128]$$

where:

ij represents the row (i) and column (j) of the pixel and electrical offset

 V_{ij_Comp} * is the thermal and electrical offset compensated voltage

 V_{ij_Comp} is the thermal offset compensated voltage elOffset [ij] is the electrical offset belonging to Pixel ij

i:128 is the rest of the integer division of i by 128 (e.g. 130:128=2)

Please see chapter 4 for the serial order.

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

8.4 Vdd Compensation

A supply voltage compensation called VddComp is used to take care of supply voltage changes. In order to use this compensation the supply voltage of the sensor (Vdd) has to be measured by the sensor from time to time by setting the configuration register and the average of Vdd 1 and Vdd 2 is resulting in Vdd (similar like *PTAT*_{av}).

The compensation for the top half is done by using the following formula:

$$V_{ij_VDDComp} = V_{ij_Comp} * \\ - \underbrace{\left(\frac{VddCompGrad[(j+i\cdot32):128] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[(j+i\cdot32):128] \right) \cdot \left(Vdd - VddCalib \right)}_{2^{VddScOff}}$$

and the bottom half analogue with this formula:

$$V_{ij_VDDComp} = V_{ij_Comp} * \\ - \frac{\left(\frac{VddCompGrad[(j+i \cdot 32):128+128] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[(j+i \cdot 32):128+128] \right) \cdot \left(Vdd - VddCalib \right)}{2^{VddScOff}}$$

where:

represents the row (i) and column (j) of the pixel ij

is the Vdd compensated voltage $V_{ij\ VDDComp}$

is the thermal and electrical offset compensated voltage $V_{ij_Comp} *$ VddCompGrad[ij] is the VddComp gradient belonging to Pixel ij VddCompOff |ij | is the VddComp offset belonging to Pixel ij

i:128is the rest of the integer division of i by 128 (e.g. 130:128=2) Vdd is the average measured supply voltage of the sensor in Digits

VddCalib is the supply voltage during calibration stored in the EEPROM 0x26 & 0x27

VddScGrad is a scaling coefficient and stored in the EEPROM is a scaling coefficient and stored in the EEPROM **VddScOff**

Internet

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

8.5 Object Temperature:

The calculation of the object temperature is done by using a look-up table and doing a bilinear interpolation, the matching table is given by the tablenumber (TN). The table is supplied in a separate file named "Table.c". If you do not have the file, please ask Heimann Sensor for support.

The sensitivity coefficients ($PixC_{ii}$) are calculated in the following way:

$$PixC_{ij} = \left(\frac{P_{ij} \cdot \left(PixC_{\max} - PixC_{\min}\right)}{65535} + PixC_{\min}\right) \cdot \frac{epsilon}{100} \cdot \frac{GlobalGain}{10000}$$

where:

 $PixC_{ii}$ is the sensitivity coefficient for each pixel

 P_{ii} is the stored sensitivity coefficient scaled to 16 bit

 $PixC_{min}$ is the minimum sensitivity coefficient, used for scaling $PixC_{max}$ is the maximum sensitivity coefficient, used for scaling

epsilon is the emissivity factor

GlobalGain is a factor for fine tuning of the sensitivity for all Pixel

Leading to a compensation of the pixel voltage

$$V_{ij_PixC} = \frac{V_{ij_VDDComp} \cdot \text{PCSCALEVAL}}{PixC_{ii}}$$

where:

 V_{ij_PixC} is the sensitivity compensated IR voltage

PCSCALEVAL is a defined scaling coefficient, typically set to $1 \cdot 10^8$

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

HEIMANN Sensor

8.6 Example calculation:

Example values:

$$PTAT_{av} = \frac{\sum_{i=0}^{7} PTAT_i}{8} = 38152 Digits$$

$$PTAT_{gradient} = 0.0211 \, dK / Digit$$

$$PTAT_{offset} = 2195.0 dK$$

$$V_{00} = 34435 \ Digits$$

$$elOffset[0] = 34240$$

$$gradScale = 24$$

$$ThGrad_{00} = 11137$$
 $\xrightarrow{signcheck}$ 11137

$$ThOffset_{00} = 65506$$
 $\xrightarrow{siencheck}$ -36

$$Vdd = 35000$$

$$VddCalib = 33942$$

$$VddCompGrad[0] = 10356$$
 $\xrightarrow{\text{circulate}}$ 10356

$$VddCompOff[0] = 51390 \xrightarrow{signcheck} -14146$$

$$VddScGrad = 16$$

$$VddScOff = 23$$

$$PixC_{00} = 1.1 \cdot 10^8$$

$$PCSCALEVAL = 1.10^{8}$$

Calculation of ambient temperature:

$$Ta = PTAT_{av} \cdot PTAT_{gradient} + PTAT_{offset} = 38152 \cdot 0.0211 + 2195.0 dK = 3000 dK$$

Compensation of thermal offset:

$$V_{00_Comp} = V_{00} - \frac{ThGrad_{00} \cdot PTAT_{av}}{2^{gradScale}} - ThOffset_{00} = 34435 - \frac{11137 \cdot 38152}{2^{15}} - \left(-30\right) = 34439$$

Compensation of electrical offset:

$$V_{00_Comp}^* = V_{00_Comp} - elOffset[0] = 34439 - 34240 = 199$$

Compensation of supply voltage:

$$V_{ij_VDDComp} = V_{ij_Comp} * - \frac{\left(\frac{VddCompGrad[0] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[0]\right) \cdot \left(Vdd - VddCalib\right)}{2^{VddScOff}}$$

$$= 199 - \frac{\left(\frac{10356 \cdot 38152}{2^{16}} - 14146\right) \cdot \left(35000 - 33942\right)}{2^{23}} = 199 - (-1) = 200$$

Thermopile Array With Lens Optics

Rev.5: 2017.04.25 Schnorr

Example look-up table:

	1			
TA[dK]/dig	2882	3032	3182	3332
-64	1494	2128	2491	2775
-32	2466	2692	2898	3091
0	2882	3032	3182	3332
32	3170	3285	3406	3530
64	3396	3491	3592	3699
96	3584	3665	3754	3848
128	3746	3818	3897	3981
160	3890	3954	4025	4102
192	4019	4078	4143	4214
224	4137	4191	4251	4317
256	4246	4296	4351	4413
288	4347	4393	4445	4503
320	4441	4485	4534	4588

$$V_{00_PixC} = \frac{200 \cdot 1 \cdot 10^8}{1.1 \cdot 10^8} = 182$$

Ta was calculated before to 3000 dK.

The matching region in the look-up table is already marked yellow, the bi-linear interpolation is leading to an object temperature of 3941 dK = 120.9 °C.

A global Offset (GlobalOff) is used for fine tuning of the measured object temperature and has to be added to the object temperature. This value is stored in the EEPROM.

Internet

Thermopile Array With Lens Optics

Rev.5: 2017.04.25 Schnorr

8.7 Pixel Masking

A maximum of 24 defect Pixels are allowed on the complete array, this means that at least 99.5 % of the Pixels are working correctly. The amount of defect Pixels is given in the EEPROM at address 0x007F and is named NrOfDefPix. DeadPixAdr is the address of the defect Pixels and *DeadPixMask* determines the neighbours that should be used for masking the pixel. A simple averaging of all selected nearest neighbours is done to overwrite the temperature value of these Pixel.

The order of the top and bottom half is the same as the readout order that is stated in 4. The neighbours to use is given in a binary format and the order is shown in the overview below in decimal and binary values for the top and bottom half.

top half

128	1	2
64	DeadPix	4
32	16	8

0b1000 0000	0b0000 0001	0b0000 0010
0b0100 0000	DeadPix	0b0000 0100
0b0010 0000	0b0001 0000	0b0000 1000

bottom half

32	16	8
64	DeadPix	4
128	1	2

0b0010 0000	0b0001 0000	0b0000 1000
0b0100 0000	DeadPix	0b0000 0100
0b1000 0000	0b0000 0001	0b0000 0010

Example values for the masking:

NrOfDefPix = 0x03

 $DeadPixAdr[0] = 0x002D \rightarrow Pixel 45$

 $DeadPixAdr[1] = 0x031F \rightarrow Pixel 799$

 $DeadPixAdr[2] = 0x1054 \rightarrow Pixel 3461$

 $DeadPixMask[0] = 0x7C \rightarrow 0b01111100 \text{ (top)}$

 $DeadPixMask[1] = 0x8F \rightarrow 0b10001111 (top)$

 $DeadPixMask[2] = 0xFE \rightarrow 0b111111110 (bot)$

According to the sample values 3 Pixels are defect and need to be interpolated. 2 Pixels are on the top and 1 Pixel on the bottom half. Assuming that the neighbouring Pixels are having the temperature data stated below and the green marked cells are used for averaging (according to DeadPixMask) then the interpolated temperature will be the following:

Pixel
$$45 = \frac{3007 + 3008 + 3008 + 3011 + 3009}{5} dK = \frac{15043}{5} dK \approx 3009 dK$$

Pixel $799 = \frac{3010 + 3012 + 3005 + 3008 + 3009}{5} dK = \frac{15044}{5} dK \approx 3009 dK$

Pixel
$$3461 = \frac{3010 + 3012 + 3005 + 3007 + 3008 + 3008 + 3009}{7} dK = \frac{21059}{7} dK \approx 3008 dK$$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

www.heimannsensor.com mail: info@heimannsensor.com

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

All values are given in dK

8					
3007	Pixel 45	3008			
3008	3011	3009			

Pixel 44	Pixel 45	Pixel 46
Pixel 124	Pixel 125	Pixel 126

3010	3012	3005
3007	Pixel 799	3008
3008	3011	3009

Pixel 718	Pixel 719	Pixel 720
Pixel 798	Pixel 799	Pixel 800
Pixel 878	Pixel 879	Pixel 880

3010	3012	3005
3007	Pixel 3461	3008
3008	3011	3009

Pixel 3380	Pixel 3381	Pixel 3382
Pixel 3460	Pixel 3461	Pixel 3462
Pixel 3540	Pixel 3541	Pixel 3542

Thermopile Array With Lens Optics Rev.5: 2017.04.25 Schnorr

Look-up Table

The matching look-up table has to be taken from the Table.c file. Here is just shown an

exemplary data for one optics

exemp	lary	data	for c	ne o	ptics.		
dig \ Ta[dK]	2782	2882	2982	3082	3182 1804	3282	3382
-256 -192				1159 2211	2407	2115 2576	2343 2727
-128 -64	⊣ Tα	o in (dΚ	2605 2873	2742 2986	2872 3097	2995 3206
0				3082	3182	3282	3382
64 128	2993 3167	3078 3243	3166 3322	3256 3405	3347 3491	3440 3579	3534 3669
192 256	3316 3448	3385 3512	3459 3582	3537 3656	3619 3734	3703 3816	3790 3901
320	3565	3626	3693	3764	3840	3920	4003
384 448	3673 3771	3731 3827	3794 3889	3864 3956	3938 4029	4016 4105	4097 4186
512	3863	3916	3977	4043	4114	4189	4269
576 640	3948 4028	4000 4079	4059 4137	4124 4200	4194 4270	4269 4344	4348 4423
704	4104	4154	4210	4273	4342	4415	4494
768 832	4176 4244	4224 4292	4280 4346	4342 4408	4410 4476	4484 4549	4561 4626
896	4309 4371	4356 4417	4410 4471	4471	4538	4611 4671	4689 4748
960 1024	4431	4417	4530	4532 4590	4599 4657	4729	4806
1088 1152	4488 4543	4533 4588	4586 4641	4646 4700	4713 4767	4785 4839	4862 4916
1216	4597	4641	4693	4753	4819	4891	4968
1280 1344	4648 4698	4692 4742	4744 4793	4803 4852	4869 4918	4941 4990	5018 5068
1408	4746	4790	4841	4900	4966	5038	5115
1472 1536	4793 4839	4836 4881	4888 4933	4946 4991	5012 5057	5084 5129	5162 5207
1600	4883	4926	4977	5035	5101	5173	5251
1664 1728	4926 4968	4968 5010	5019 5061	5078 5120	5144 5185	5216 5258	5294 5336
1792 1856	5009 5049	5051 5091	5102 5142	5160 5200	5226 5266	5299 5338	5377 5417
1920	5088	5130	5180	5239	5305	5377	5456
1984 2048	5126 5164	5168 5205	5218 5256	5277 5314	5343 5380	5416 5453	5494 5532
2112	5200	5242	5292	5351	5417	5490	5569
2176 2240	5236 5271	5277 5312	5328 5363	5386 5421	5453 5488	5526 5561	5605 5640
2304 2368	5305	5347 5380	5397 5431	5456	5522	5595 5629	5675 5709
2432	5339 5372	5413	5464	5490 5523	5556 5589	5663	5742
2496 2560	5405 5437	5446 5478	5496 5528	5555 5587	5622 5654	5695 5728	5775 5808
2624	5468	5509	5560	5619	5685	5759	5840
2688 2752	5499 5529	5540 5570	5590 5621	5649 5680	5716 5747	5790 5821	5871 5902
2816	5559	5600	5651	5710	5777	5851	5932
2880 2944	5588 5617	5629 5658	5680 5709	5739 5768	5806 5836	5881 5910	5962 5992
3008	5646	5687	5737	5797	5864 5893	5939 5968	6021
3072 3136	5674 5701	5715 5742	5765 5793	5825 5853	5920	5996	6049 6078
3200 3264	5729 5756	5770 5797	5820 5847	5880 5907	5948 5975	6023 6051	6105 6133
3328	5782	5823	5874	5934	6002	6078	6160
3392 3456	5808 5834	5849 5875	5900 5926	5960 5986	6028 6054	6104 6130	6187 6213
3520	5859	5900	5951	6012	6080	6156	6239
3584 3648	5885 5909	5926 5950	5977 6001	6037 6062	6105 6131	6182 6207	6265 6290
3712 3776	5934 5958	5975 5999	6026 6050	6086 6111	6155 6180	6232 6257	6315 6340
3840	5982	6023	6074	6135	6204	6281	6365
3904 3968	6006 6029	6047 6070	6098 6121	6159 6182	6228 6252	6305 6329	6389 6413
4032	6052	6093	6145	6205	6275	6352	6437
4096 4160	6075 6097	6116 6139	6167 6190	6228 6251	6298 6321	6376 6399	6460 6484
4224	6120	6161	6213	6274	6344	6421	6507
4288 4352	6142 6164	6183 6205	6235 6257	6296 6318	6366 6388	6444 6466	6529 6552
4416 4480	6185 6207	6227 6248	6278 6300	6340 6361	6410 6432	6488 6510	6574 6596
4544	6228	6269	6321	6383	6453	6532	6618
4608 4672	6249 6269	6290 6311	6342 6363	6404 6425	6475 6496	6553 6575	6639 6661
4736	6290	6332	6384	6446	6516	6596	6682
4800 4864	6310 6330	6352 6372	6404 6424	6466 6486	6537 6558	6616 6637	6703 6724
4928	6350	6392	6444	6507	6578	6657	6744
4992 5056	6370 6390	6412 6431	6464 6484	6527 6546	6598 6618	6678 6698	6765 6785
5120	6409	6451	6503	6566 6585	6638	6718 6737	6805
5184 5248	6447	6470 6489	6523 6542	6605	6677	6757	6825 6845
5312 5376	6466 6485	6508 6527	6561 6580	6624 6643	6696 6715	6776 6795	6864 6884
5440	6504	6546	6598	6661	6734	6815	6903
5504 5568	6522 6540	6564 6582	6617 6635	6680 6699	6752 6771	6833 6852	6922 6941
5632	6558	6600	6654	6717	6789	6871	6960
5696 5760	6576 6594	6618 6636	6672 6690	6735 6753	6808 6826	6889 6907	6978 6997
5824	6612	6654	6707	6771	6844	6926	7015
5888 5952	6629 6647	6672 6689	6725 6742	6789 6806	6862 6879	6944 6961	7033 7051
6016 6080	6664 6681	6706 6723	6760 6777	6824 6841	6897 6914	6979 6997	7069 7087
6144	6698	6741	6794	6858	6932	7014	7104
6208 6272	6715 6732	6757 6774	6811 6828	6875 6892	6949 6966	7031 7049	7122 7139
6336	6748	6791	6845	6909	6983	7066	7156
6400 6464	6765 6781	6807 6824	6861 6878	6926 6942	7000 7016	7083 7100	7174 7191
6528	6797	6840	6894	6959	7033	7116	7207
6592 6656	6813 6830	6856 6872	6910 6927	6975 6991	7050 7066	7133 7149	7224 7241
6720	6845	6888	6943	7007	7082	7166	7257

6912	6877 6892	6920 6936	6974 6990	7039 7055	7114 7130	7198 7214	729 730
6976	6908	6951	7006	7071	7146	7230	732
7040 7104	6923 6939	6966 6982	7021 7036	7086 7102	7162 7177	7246 7262	733 735
7168	6954	6997	7052	7117	7193	7277	737
7232 7296	6969 6984	7012 7027	7067 7082	7133 7148	7208 7223	7293 7308	738i 740
7360	6999	7042	7097	7163	7239	7324	741
7424 7488	7014	7057 7072	7112 7127	7178 7193	7254	7339	743: 744:
7552	7028 7043	7072	7141	7193	7269 7284	7354 7369	746
7616	7057	7101	7156	7222	7298	7384	747
7680 7744	7072 7086	7115 7130	7171 7185	7237 7251	7313 7328	7399 7414	749: 750:
7808	7100	7144	7199	7266	7342	7428	752
7872 7936	7114	7158	7214 7228	7280 7294	7357	7443	753 755
8000	7129 7143	7172 7186	7242	7309	7371 7386	7457 7472	756
8064	7156	7200	7256	7323	7400	7486	758
8128 8192	7170 7184	7214 7228	7270 7284	7337 7351	7414 7428	7500 7515	759 760
8256	7198	7242	7298	7365	7442	7529	762
8320 8384	7211 7225	7255 7269	7311 7325	7378 7392	7456 7470	7543 7557	763 765
8448	7238	7282	7338	7406	7483	7570	766
8512	7252	7296 7309	7352	7419 7433	7497 7511	7584 7598	768 769
8576 8640	7265 7278	7309	7365 7379	7446	7511	7612	770
8704	7291	7336	7392	7460	7538	7625	772
8768 8832	7304 7317	7349 7362	7405 7418	7473 7486	7551 7564	7639 7652	773 774
8896	7330	7375	7431	7499	7578	7665	776
8960	7343	7388	7444	7512	7591	7679	777
9024 9088	7356 7369	7401 7413	7457 7470	7525 7538	7604 7617	7692 7705	778 780
9152	7382	7426	7483	7551	7630	7718	781
9216 9280	7394 7407	7439 7451	7496 7508	7564 7577	7643 7656	7731 7744	782 784
9344	7407	7464	7521	7589	7668	7757	785
9408	7432	7476	7533	7602	7681	7770	786
9472 9536	7444 7456	7489 7501	7546 7558	7614 7627	7694 7706	7783 7795	788 789
9600	7468	7513	7571	7639	7719	7808	790
9664 9728	7481 7493	7526 7538	7583 7595	7652 7664	7731 7744	7821 7833	791 793
9792	7505	7550	7607	7676	7756	7846	794
9856	7517	7562	7619	7688	7768	7858	795
9920 9984	7529 7541	7574 7586	7631 7643	7701 7713	7781 7793	7870 7883	796 798
10048	7553	7598	7655	7725	7805	7895	799
10112 10176	7564 7576	7610	7667	7737	7817	7907	800
10176	7588	7621 7633	7679 7691	7749 7760	7829 7841	7919 7931	801
10304	7599	7645	7703	7772	7853	7943	804
10368	7611 7622	7656 7668	7714 7726	7784 7796	7865 7876	7955 7967	805 806
10496	7634	7679	7737	7807	7888	7979	807
10560 10624	7645 7657	7691 7702	7749 7760	7819 7830	7900 7911	7991 8002	809
10688	7668	7713	7772	7842	7923	8014	811
10752	7679	7725	7783	7853	7935	8026	812
10816 10880	7690 7702	7736 7747	7794 7806	7865 7876	7946 7957	8037 8049	813 814
10944	7713	7758	7817	7887	7969	8060	816
11008 11072	7724 7735	7769 7781	7828 7839	7899 7910	7980 7991	8072 8083	817
11136	7746	7792	7850	7921	8003	8094	819
11200	7757	7803	7861	7932	8014	8106	820
11264 11328	7767 7778	7813 7824	7872 7883	7943 7954	8025 8036	8117 8128	821 822
11392	7789	7835	7894	7965	8047	8139	824
11456 11520	7800 7811	7846 7857	7905 7916	7976 7987	8058 8069	8150 8161	825 826
11584	7821	7867	7926	7998	8080	8173	827
11648 11712	7832 7842	7878 7889	7937 7948	8008 8019	8091 8102	8183 8194	828 829
11776	7853	7899	7958	8030	8112	8205	830
11840	7863	7910	7969	8040	8123	8216	831
11904 11968	7874 7884	7920 7931	7980 7990	8051 8062	8134 8145	8227 8238	832
12032	7895	7941	8000	8072	8155	8248	835
12096	7905 7915	7951 7962	8011 8021	8083 8093	8166 8176	8259 8270	836
12224	7925	7972	8032	8104	8187	8280	838
12288	7936	7982	8042	8114 8124	8197 8208	8291	839
12352 12416	7946 7956	7992 8003	8052 8062	8124	8208 8218	8301 8312	840
12480	7966	8013	8073	8145	8228	8322	842
12544 12608	7976 7986	8023 8033	8083 8093	8155 8165	8239 8249	8333 8343	843 844
12672	7996	8043	8103	8175	8259	8353	845
12736 12800	8006 8016	8053 8063	8113 8123	8185 8195	8269 8279	8364 8374	846 847
12864	8026	8073	8133	8205	8290	8384	848
12928	8035	8082	8143	8215	8300	8394	849
12992 13056	8045 8055	8092 8102	8153 8162	8225 8235	8310 8320	8404 8414	850 851
13120	8065	8112	8172	8245	8330	8424	852
13184	8074	8122	8182	8255	8340	8435	853 854
13248 13312	8084 8094	8131 8141	8192 8201	8265 8275	8349 8359	8444 8454	854 855
13376	8103	8150	8211	8284	8369	8464	856
13440	8113 8122	8160 8170	8221 8230	8294 8304	8379 8389	8474 8484	857 858
13504		01/0		WU#			
13504 13568	8132	8179	8240	8313	8398	8494	
13504 13568 13632	8141	8189	8249	8323	8408	8504	860
13504 13568	8141 8151	8189 8198	8249 8259	8323 8333		8504 8513	860 861
13504 13568 13632 13696	8141	8189	8249	8323	8408 8418	8504	859 860 861 862 863 864

9 Outer Dimensions:

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

www.heimannsensor.com mail: info@heimannsensor.com