定理 2.19 G, * >を生成元A を持つ有限巡回群とする。 $G \models n$ であるとき,単位元A = A かつ,A = A の。A = A である。

【証明】

- (1) $e = a^m$ かつ $1 \le m < n$ と仮定する。 < G , * > が巡回群であるから , G の任意の要素を a^k と書ける , ここで , k は正整数 , k = mq + r , q は非負整数 , $0 \le r < m$ である。すなわち , $a^k = a^{mq+r} = (a^m)^q * a^r = a^r$ である。よって , G の任意の要素 a^k を a^r ($0 \le r < m$)と書ける。ゆえに , G の要素の個数 (すなわち ,位数)は多くともm であることになり , |G| = n と矛盾する。ゆえに , $e = a^n$ である。
- (2) $a,a^2,...,a^n$ はすべて異なる要素であることを示す。 $1 \le i < j \le n$ かつ $a^i = a^j$ と仮定すると $,a^{j-i} = e$ かつ $1 \le j i < n$ が成り立ち , (1) に矛盾する。よって , $a,a^2,...,a^n$ はすべて異なる要素である。 ゆえに , $G = \{a,a^2,a^3,...,a^n = e\}$ である。