Assignment 1 – Answers

1. **Q:** Figure out data coordinates of the dataset, i.e., min & max of each dimension (SATM, SATV, ACT, GPA)

Ans:

From the data statistics:

	SATM	SATV	ACT	GPA
count	271.000000	271.000000	271.000000	271.000000
mean	622.952030	614.612546	27.697417	3.352469
std	89.476634	92.838656	4.208100	0.510941
min	370.000000	280.000000	15.000000	1.704000
25%	560.000000	560.000000	25.000000	3.034500
50%	630.000000	630.000000	28.000000	3.475000
75%	690.000000	680.000000	31.000000	3.764500
max	800.000000	800.000000	35.000000	4.000000

We can know that the coordinates are:

SATM: [370, 800] SATV: [280, 800] ACT: [15, 35] GPA: [1.704, 4.0]

2. Q: Determine view volume coordinates, for SATM and SATV, that are suitable for visualization.

Ans:

SATM: [200, 1000] SATV: [200, 1000]

3. **Q:** Suppose you would like to map the scores of SATM (x-axis) and SATV (y-axis) onto a viewport of [(100,100), (200,200)], what transformation matrix would you use? Describe how the matrix is derived.

Ans:

To transform [(200, 200), (1000, 1000)] to [(100,100), (200,200)], we can use $\vec{Q} = \vec{M}\vec{P} + \vec{T}$,

so that the scaling coordinates are: (S_x, S_y)

$$S_x = S_y = (200-100)/(1000-200) = 100/800 = 1/8$$

i.e.
$$\overrightarrow{M} = (1/8, 1/8)^{\mathrm{T}}$$

Translation coordinates are: (Tx, Ty)

$$T_x = T_y = -200*1/8 + 100 = 75$$

i.e.
$$\vec{T} = (75, 75)^{\mathrm{T}}$$

So the scaling matrix is
$$M = \begin{bmatrix} 1/8 & 0 \\ 0 & 1/8 \end{bmatrix}$$

The translation matrix is
$$T = \begin{bmatrix} 75 \\ 75 \end{bmatrix}$$

4. **Q:** Figure out position of the first data point (430, 470) in the viewport.

Ans:

In this case,
$$\vec{P} = (430, 470)^{\text{T}}$$
,

$$\vec{Q} = \vec{M}\vec{P} + \vec{T} = \begin{bmatrix} 1/8 & 0 \\ 0 & 1/8 \end{bmatrix} \begin{bmatrix} 430 \\ 470 \end{bmatrix} + \begin{bmatrix} 75 \\ 75 \end{bmatrix} = \begin{bmatrix} 128.75 \\ 133.75 \end{bmatrix}$$

So the view point of (430, 470) is (128.75, 133.75)