

# Future of Computing: Moore's Law & Its Implications 计算的未来: 摩尔定律及其启示

100076202: 计算机系统导论

任课教师:

计卫星 宿红毅 张艳

原作者:

Randal E. Bryant and David R. O'Hallaron







## 摩尔定律的起源/Moore's Law Origins



**April 19, 1965** 



# Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore

Director, Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp.



## 摩尔定律的起源 / Moore's Law Origins



# ■ 摩尔的论文/Moore's Thesis

- 将每个设备的价格降至最 低/Minimize price per device
- 每年每个芯片上的晶体管数量变为2倍/Optimum number of devices / chip increasing 2x / year

#### Later

- 2x / 2 years
- 摩尔预测/"Moore's Prediction"



# 摩尔定律50年/Moore's Law: 50 Years

#### **Transistor Count by Year**



#### 摩尔定律的意义/What Moore's Law Has Meant





#### 1976 Cray 1

- 250 M Ops/second
- ~170,000 chips
- 0.5B transistors
- 5,000 kg, 115 KW
- \$9M
- 80 manufactured



#### 2014 iPhone 6

- > 4 B Ops/second
- ~10 chips
- > 3B transistors
- 120 g, < 5 W
- **\$649**
- 10 million sold in first 3 days

#### 摩尔定律的意义/ What Moore's Law Has Meant



1965 Consumer Product



2015 ConsumerProduct





**Apple A8 Processor 2 B transistors** 

#### 迄今为止摩尔定律的可视化/Visualizing Moore's Law to

# - China

**Date** 

如果晶体管有一粒沙子那么大/

If transistors were the size of a grain of sand

Intel 400419702,300 transistors





0.1 g

Apple A8
2014
2 B transistors





88 kg

# 摩尔定律经济学/Moore's Law Economics



消费品支撑着价值3000亿美元的半导体产业/ Consumer products sustain the \$300B semiconductor industry



#### 摩尔定律的意义/ What Moore's Law Has Meant



#### 自2007年以来的9代iPhone/ 9 generations of iPhone since 2007



## 摩尔定律的含义/What Moore's Law Could Mean



Kurzweil, The Singularity is Near, 2005 10





**Consumer Product** 





- 便携式的/Portable
- 低功耗/Low power
- 将推动市场和创新/Will drive markets & innovation



#### 未来技术要求/Requirements for Future Technology

- 必须适合便携式、低功耗操作/Must be suitable for portable, low-power operation
  - 消费品/Consumer products
  - 物联网组件/Internet of Things components
  - 不是低温,不是量子/Not cryogenic, not quantum
- 制造成本必须低廉/Must be inexpensive to manufacture
  - 与当前半导体技术相当/Comparable to current semiconductor technology
    - O(1) cost to make chip with O(N) devices
- 无需基于晶体管/Need not be based on transistors
  - 忆阻器、碳纳米管、DNA转录/Memristors, carbon nanotubes, DNA transcription, ...
  - 可能的新计算模型/Possibly new models of computation
  - 但是,仍然需要集成系统中的许多设备/But, still want lots of devices in an integrated system



#### 摩尔定律100年/Moore's Law: 100 Years



## 可视化10<sup>17</sup>个设备/Visualizing 10<sup>17</sup> Devices

如果装置有一粒沙子那 么大/If devices were the size of a grain of sand



0.1 m<sup>3</sup>
3.5 X 10<sup>9</sup> grains



1 million m<sup>3</sup> 0.35 X 10<sup>17</sup> grains



#### 增加晶体管数量/Increasing Transistor Counts

- 1. 芯片变得更大/Chips have gotten bigger
  - 每10年变大1倍/1 area doubling / 10 years
- 2. 晶体管变小了/Transistors have gotten smaller
  - 4倍密度/10年/4 density doublings / 10 years

这些趋势还会继续吗?/Will these trends continue?

# 芯片变得更大了/Chips Have Gotten Bigger

Intel 4004

1970

2,300 transistors

12 mm<sup>2</sup>

**Apple A8** 

2014

2 B transistors

89 mm<sup>2</sup>

**IBM z13** 

205

4 B transistors

678 mm<sup>2</sup>







## 芯片尺寸趋势/Chip Size Trend

**Area by Year** 





## 芯片尺寸外推/Chip Size Extrapolation

**Area by Year** 



### 推断: iPhone 31/Extrapolation: The iPhone 31s

Apple A59 2065 10<sup>17</sup> transistors 173 cm<sup>2</sup>





#### 晶体管变小了/Transistors Have Gotten Smaller

- 面积/Area *A*
- N devices/设备
- 线性比例/Linear Scale L

$$L = \sqrt{A/N}$$





## 线性缩放趋势/Linear Scaling Trend

#### **Linear Scale by Year**







Intel 4004 1970 2,300 transistors L = 72,000 nm



Apple A8
2014
2 B transistors
L = 211 nm





#### **Linear Scaling Trend**



Year

# - Carlo

## 亚毫米尺寸/Submillimeter Dimensions



# 亚毫米尺寸/ Submicrometer Dimensions





#### 线性缩放外推/Linear Scaling Extrapolation

**Linear Scale by Year** 



## 亚毫米尺寸/ Subnanometer Dimensions





# 实现2065年目标/Reaching 2065 Goal

#### Target

- 10<sup>17</sup> devices
- 400 mm<sup>2</sup>
- L = 63 pm





■ 这可能吗? /Is this possible?



Not with 2-d fabrication



## 3D堆叠/Fabricating in 3 Dimensions



#### ■ 参数/Parameters

- 10<sup>17</sup> devices
- 100,000 logical layers
  - Each 50 nm thick
  - ~1,000,000 physical layers
    - To provide wiring and isolation
- L = 20 nm
  - 10x smaller than today



2065 mm<sup>3</sup>



## 3D堆叠挑战/3D Fabrication Challenges

- 产量/Yield
  - 如何避免或容忍缺陷/How to avoid or tolerate flaws
- 成本/Cost
  - 光刻成本高/High cost of lithography
- 功耗/Power
  - 将功耗保持在可接受的范围内/Keep power consumption within acceptable limits
  - 可用能源有限/Limited energy available
  - 散热能力有限/Limited ability to dissipate heat



## 光刻/Photolithography



- 一步成型整个芯片/Pattern entire chip in one step
- 现代芯片需要约60个光刻步骤/Modern chips require ~60 lithography steps
- 有限步制造N晶体管系统/Fabricate N transistor system with O(1) steps



## 制造成本/Fabrication Costs

#### Method of stepper



- 步进器/Stepper
  - 制造设施中最昂贵的设备/Most expensive equipment in fabrication facility
  - 速率限制过程步骤/Rate limiting process step
    - 18s / wafer
  - 每步暴露858 mm2/Expose 858 mm² per step
    - 芯片面积的1.2%/1.2% of chip area



## 制造业经济学/Fabrication Economics

- 目前/Currently
  - 固定数量的光刻步骤/Fixed number of lithography steps
  - 制造成本10-20美元/芯片/Manufacturing cost \$10-\$20 / chip
    - 包括设施摊销/Including amortization of facility
- 制造1000000个物理层/Fabricating 1,000,000 physical layers
  - 无法在每个步骤上进行光刻/Cannot do lithography on every step
- 选项/Options
  - 化学自组装/Chemical self assembly
    - 设备通过化学过程自行生成/Devices generate themselves via chemical processes
  - 一次填充多个图层/Pattern multiple layers at once



#### 三星V-Nand Flash示例/Samsung V-Nand Flash Example





- 建立未加图案的材料层/Build up layers of unpatterned material
- 然后使用光刻技术在所有层上切片、钻孔、蚀刻和沉积材料/Then use lithography to slice, drill, etch, and deposit material across all layers
- 约30个masking步骤/~30 total masking steps
- 多达48层存储单元/Up to 48 layers of memory cells
- 利用闪存电路的特殊结构/Exploits particular structure of flash memory circuits

#### 迎接功耗限制/Meeting Power Constraints







- 2 B transistors/晶体管
- 2 GHz operation/主频
- 1—5 W

我们可以在不增加功率需求的情况下将设备数量增加50000x吗? Can we increase number of devices by 500,000x without increasing power requirement?

- 64 B neurons/神经元
- 100 Hz operation/主频
- 15—25 W
  - 水冷/Liquid cooling
  - 高达身体总能耗的 25%/Up to 25% body's total energy consumption

#### 摩尔定律的挑战: 经济/Challenges to Moore's



**Law: Economic** 

| Altis<br>Semiconductor                    | AN ANATOMERAN                             | •                                                                                                                                | 不断增长的资本成本/Growing Capital Costs 最先进的生产线/State of art fab line ~\$20B |                    |                 |  |
|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|-----------------|--|
| Dongbu HiTek Grace Semiconductor SMIC UMC | Dongbu HiTek Grace Semiconductor SMIC UMC | <ul> <li>必须有非常高的数量才能摊销投资/Must havery high volumes to amortize investment</li> <li>已导致重大整合/Has led to major consolidat</li> </ul> |                                                                      |                    |                 |  |
| TSMC                                      | TSMC                                      | SMIC                                                                                                                             |                                                                      |                    |                 |  |
| Globalfoundries                           | Globalfoundries                           | UMC                                                                                                                              |                                                                      |                    |                 |  |
| Seiko Epson                               | Seiko Epson                               | TSMC                                                                                                                             |                                                                      |                    |                 |  |
| Freescale                                 | Freescale                                 | Globalfoundries                                                                                                                  | SMIC                                                                 |                    |                 |  |
| Infineon                                  | Infineon                                  | Infineon                                                                                                                         | UMC                                                                  |                    |                 |  |
| Sony                                      | Sony                                      | Sony                                                                                                                             | TSMC                                                                 |                    |                 |  |
| Texas<br>Instruments                      | Texas<br>Instruments                      | Texas<br>Instruments                                                                                                             | Globalfoundries                                                      |                    |                 |  |
| Renesas (NEC)                             | Renesas                                   | Renesas                                                                                                                          | Renesas                                                              |                    |                 |  |
| BM                                        | IBM                                       | IBM                                                                                                                              | IBM                                                                  | UMC                |                 |  |
| Fujitsu                                   | Fujitsu                                   | Fujitsu                                                                                                                          | Fujitsu                                                              | TSMC               |                 |  |
| Toshiba                                   | Toshiba                                   | Toshiba                                                                                                                          | Toshiba                                                              | Globalfoundries    | TSMC            |  |
| STMicroelectronics                        | STMicroelectronics                        | STMicroelectronics                                                                                                               | STMicroelectronics                                                   | STMicroelectronics | Globalfoundries |  |
| Intel                                     | Intel                                     | Intel                                                                                                                            | Intel                                                                | Intel              | Intel           |  |
| Samsung                                   | Samsung                                   | Samsung                                                                                                                          | Samsung                                                              | Samsung            | Samsung         |  |
| 130nm                                     | 90nm                                      | 65nm                                                                                                                             | 45/40nm                                                              | 32/28nm            | 22/20nm         |  |



## Dennard缩放定理/Dennard Scaling

- Robert Dennard 1974年在IBM工作期间提出/Due to Robert Dennard, IBM, 1974
- 量化摩尔定律的好处/Quantifies benefits of Moore's Law
- 如何缩小IC制造工艺/How to shrink an IC Process
  - 在横向和纵向两个维度上缩小k倍/Reduce horizontal and vertical dimensions by *k*
  - 电压降低k倍/Reduce voltage by k
- 结果/Outcomes
  - 晶体管密度增加k²/Devices / chip increase by k²
  - 核心频率增加k/Clock frequency increases by k
  - 单位面积功耗保持不变/Power / chip constant
- 关键点/Significance
  - 增加了容量和性能/Increased capacity and performance
  - 功耗没有增加/No increase in power



#### Dennard缩放定理的终结/End of Dennard Scaling



- 发生了什么事情? /What Happened?
  - 电压不能低于~1V/Can't drop voltage below ~1V
  - 2004年已达到每个芯片的功率极限/Reached limit of power / chip in 2004
  - 片上有了更多的逻辑资源,但是却不能跑得更快/More logic on chip (Moore's Law), but can't make them run faster
    - 结果就是增加每个芯片上的核数/Response has been to increase cores / chip



#### **Final Thoughts**

- 与未来相比,过去50年似乎相当简单/Compared to future, past 50 years will seem fairly straightforward
  - 使用光刻技术在二维表面上对晶体管进行构图的50年/50 years of using photolithography to pattern transistors on two-dimensional surface
- 关于未来集成系统的问题/Questions about future integrated systems
  - 我们是否可以建造这样一个系统? /Can we build them?
  - 这是一个什么样的技术? /What will be the technology?
  - 它们在商业上可行吗?/Are they commercially viable?
  - 我们能保持低功耗吗?/Can we keep power consumption low?
  - 我们将如何处理它们?/What will we do with them?
  - 我们将如何编程/定制它们? /How will we program / customize them?