Assignment 2: SVM, Decision tree, Boosting, pruning, cross validation

Dataset – Average GPU runtime:

The dataset (SGEMM GPU kernel performance) dataset can be downloaded at: https://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance#

There are 14 parameters. The first 4 are ordinal and the last four variables are binary. The dataset has total 241600 data entries and 18 features with the last four being the runtime measurement.

Converted the dataset into categorical dataset by categorizing the data into high and low processing. Used the value of average_gpu_runtime > 70ms as 70ms lies in the 50th percentile range it is at the center of the major amount of readings. So this would be a good value to categorize the dataset.

Divided the dataset into 60-40 ratio dataset.

SVM Model:

Linear Kernel: Parameters tested:	[[10515 1624] [2473 9577]]				
Parameters testeu.	Accuracy: 0.830	6254909256	273		
C = 0.1, 1, 10	p	recision	recall	f1-score	support
gamma = 1, 0.1, 0.01	0	0.81	0.87	0.84	12139
kernel = 'Linear'	1	0.86	0.79	0.82	12050
Best result: C = 1, gamma = 1, kernel = 'Linear'	accuracy			0.83	24189
Best train accuracy: 0.827	macro avg	0.83	0.83	0.83	24189
Best test accuracy: 0.8306	weighted avg	0.83	0.83	0.83	24189

Gaussian Kernel:	[[11303 836]				
Parameters tested:	[1528 10522]] Accuracy: 0.9022	0606266000	177		
C = 0.1, 1, 10	-	ecision		f1-score	support
gamma = 1, 0.1, 0.01	0	0.88	0.93	0.91	12139
kernel = 'rbf'	1	0.93	0.87	0.90	12050
Best result: C = 10, gamma = 0.1, kernel = 'rbf'.	accuracy			0.90	24189
Best train accuracy: 0.922	macro avg	0.90	0.90	0.90	24189
Best test accuracy: 0.9022	weighted avg	0.90	0.90	0.90	24189

Polynomial kernel: Parameters tested:	[[11133 1006] [1893 10157]] Accuracy: 0.8801521352680971					
C = 0.1, 1, 10;	I	precision	recall	f1-score	support	
gamma = 1, 0.1, 0.01; degree = 2, 3;	0	0.85 0.91	0.92	0.88	12139 12050	
kernel = 'poly'	accuracy	0.51	0.01	0.88	24189	
Best result: C = 10, degree= 3, gamma = 0.1, kernel = poly	macro avg	0.88	0.88	0.88	24189	
Best train accuracy: 0.884	weighted avg	0.88	0.88	0.88	24189	
Best test accuracy: 0.8801						

Decision tree: Performed 5 fold cross-validation for all descision	[[10824 : [1554 10 Accuracy:	0496]]	3923684319	319		
trees.		p	recision	recall	f1-score	support
Best train accuracy: 0.973 Best test accuracy: 0.8813		0	0.87 0.89	0.89 0.87	0.88 0.88	12139 12050
•	accura	асу			0.88	24189
	macro a	avg	0.88	0.88	0.88	24189
	weighted a	avg	0.88	0.88	0.88	24189

Pruned Decision tree:

Tested the data set with two methods of partition (gini, entropy). Entropy gave the better result. Entropy works better for the dataset if it is an imbalanced dataset and since we the dataset has a good balance of both 1s and 0s class, gini index gave the better result.

Parameters tested: Criterion = gini, entropy	[[9522 2617] [4702 7348]] Accuracy: 0.69	974244491297	698		
Min_samples_split = 2, 10, 20	-	precision		f1-score	support
Max_depth = None, 2, 5, 10		p			
Min_Samples_leaf = 1, 5, 10	0	0.67	0.78	0.72	12139
Max_leaf_nodes = None, 5, 10, 20	1	0.74	0.61	0.67	12050
Best result: Criterion = gini, min_samples_split = 10,					
max_depth= 10, max_leaf_nodes = None,	accuracy			0.70	24189
min_sample_split = 20	macro avg	0.70	0.70	0.69	24189
Best train accuracy: 0.695	weighted avg	0.70	0.70	0.70	24189
Best test accuracy: 0.6974					

XG Boost: Objective = binary: logistic	[[11219 920] [1399 10651]] Accuracy: 0.904129976	355699		
Nthread = 4	precision		f1-score	support
Seed = 42	0 0.1	9 0.92	0.91	12139
Best train accuracy: 0.930	1 0.		0.90	12050
Best test accuracy: 0.9041	accuracy		0.90	24189
	macro avg 0.9 weighted avg 0.9		0.90 0.90	24189 24189

Pruned XG Boost:	[[11171 968]				
Parameters tested:	[1344 10706]	1			
N_estimators = 100, 500, 1000	Accuracy: 0.90	44193641737	98		
		precision	recall	f1-score	support
Learning_rate = 0.01, 0.005, 0.001	0	0.89	0.92	0.91	12139
Min_child_weight = 1, 5	1	0.92	0.89	0.90	12050
Eta = .3					
Gamma = 0, 1, 5	accuracy			0.90	24189
Best result: n_estimators = 500, min_child_weight = 5,	macro avg	0.90	0.90	0.90	24189
max_depth = 10, learning_rate = 0.001, gamma = 1, eta = 0.3	weighted avg	0.90	0.90	0.90	24189

Best train accuracy: 0.978 **Best test accuracy:** 0.9044

Model Performance:

Learning curve - Training Set Size vs Accuracy

Algorithm	Train Accuracy	Test Accuracy	Train Error	Test Error
SVM(Linear)	0.827	0.83	0.1726	0.1693
SVM(Gaussian / RBF)	0.922	0.9022	0.0777	0.0977
SVM(Polynomial)	0.884	0.8801	0.1159	0.1198
Decision Tree	0.973	0.8813	0.0274	0.1186
Pruned Tree	0.695	0.6974	0.3052	0.3025
XG Boost	0.93	0.9041	0.0702	0.0958
XG Boost (pruned)	0.978	0.9044	0.0218	0.0955

• The best model among svm kernels is SVM (Gaussian / RBF) for this dataset. It gives a train and test accuracy of 0.922 and 0.9022.

Algorithm	Accuracy	Precision	Recall	F1-Score
SVM(Linear)	0.83	0.83	0.83	0.83
SVM(Gaussian / RBF)	0.9022	0.9	0.9	0.9
SVM(Polynomial)	0.8801	0.88	0.88	0.88
Decision Tree	0.8813	0.88	0.88	0.88
Pruned Tree	0.6974	0.7	0.7	0.7
XG Boost	0.9041	0.9	0.9	0.9
XG Boost (pruned)	0.9044	0.9	0.9	0.9

- XG Boost (pruned) has given the best accuracy, precision, recall and f1-score. XG Boost and SVM (Gaussian/RBF) are almost close to XG Boost (pruned).
- I haven't used the full dataset (100,000+) instead I used a subset of 60,000 out of the full dataset. I would get better result if all the instances are included in model.
- **Cross validation** reduces bias as we are using most of the data for fitting and significantly reduces variance of most of the data.
- XG Boost gives a high bias in train and test accuracy even after cross validation.

<u>Dataset – Rains in Australia:</u>

The dataset is obtained from Kaggle. The following is the link to the dataset.

https://www.kaggle.com/jsphyg/weather-dataset-rattle-package. The weather dataset contains 142,193 daily weather observations from 49 weather stations across Australia over the period November 2007 to June 2017 and with 24 features such as Rain tomorrow, min Temp, max Temp etc. This dataset excites me because it has lot of missing values and many categorical features.

Number of days of rain tomorrow: 31877 Number of days no rain tomorrow: 110316

The dataset's final output variable is already a categorical variable with values 'yes' and 'no' for rains tomorrow.

Divided the dataset into 70-30 ratio dataset.

SVM Model:

Linear Kernel:	[[1880 65]				
Parameters tested :	[320 235]] Accuracy: 0.8				
C = 0.1, 1, 10, 100;	Accuracy. U.o	precision	recall	f1-score	support
gamma = 1, 0.1, 0.01, 0.001, 0.0001;	0.0	0.85	0.97	0.91	1945
kernel = 'Linear'	1.0	0.78	0.42	0.55	555
Best result: C = 1, gamma = 1, kernel = 'Linear'	accuracy			0.85	2500
Best train accuracy: 0.850	macro avg	0.82	0.70	0.73	2500
Best test accuracy: 0.846	weighted avg	0.84	0.85	0.83	2500

Gaussian Kernel:	[[1876 69]				
Parameters tested :	[317 238]] Accuracy: 0.8				
C = 0.1, 1, 10, 100;		precision	recall	f1-score	support
gamma = 1, 0.1, 0.01, 0.001, 0.0001;	0.0	0.86	0.96	0.91	1945
kernel = 'rbf'	1.0	0.78	0.43	0.55	555
Best result: C = 100, gamma = 0.01, kernel = 'rbf'.	accuracy			0.85	2500
Best train accuracy: 0.867	macro avg	0.82	0.70	0.73	2500
Best test accuracy: 0.8456	weighted avg	0.84	0.85	0.83	2500

Polynomial kernel:	[[1869 76]				
Parameters tested:	[313 242]] Accuracy: 0.8	444			
C = 0.1, 1, 10;	Accuracy. 0.0	precision	recall	f1-score	support
gamma = 1, 0.1, 0.01, 0.001;	0.0	0.86	0.96	0.91	1945
degree = 3, 5;	1.0	0.76	0.44	0.55	555
kernel = 'poly'	accuracy			0.84	2500
Best result: C = 10, degree= 3, gamma = 0.1, kernel = poly	macro avg	0.81	0.70	0.73	2500
, ,	weighted avg	0.84	0.84	0.83	2500
Rest train accuracy: 0.888					

Best train accuracy: 0.888 Best test accuracy: 0.8444

Decisoin tree:

[[1679 266] Performed **5 fold cross-validation** for all descision [271 284]] Accuracy: 0.7852 trees.

Descision tree breaks down a data set into smaller and smaller subsets while at the same time an associated decision tree is incremently developed. The train and test accuracy are 1 and 0.7852 respectively. There is a huge gap between training and test accuracy. The model is suffering from high bias. The training error is zero and the tree has used all the features.

Best train accuracy: 1 **Best test accuracy:** 0.7852

	precision	recall	il-score	support
0.0 1.0	0.86 0.52	0.86 0.51	0.86 0.51	1945 555
accuracy macro avg weighted avg	0. 69 0.78	0.69 0.79	0.79 0.69 0.78	2500 2500 2500

Pruned Decision tree:

Tested the data set with two methods of partition (gini, entropy). Entropy gave the better result as it works better for the dataset if it is an imbalanced dataset.

Parameters tested:	[[1916 29]				
Criterion = gini, entropy	[406 149]]				
Min_samples_split = 2, 10, 20	Accuracy: 0.826				
Max_depth = None, 2, 5, 10		precision	recall	f1-score	support
Min_Samples_leaf = 1, 5, 10	0.0	0.83	0.99	0.90	1945
Max_leaf_nodes = None, 5, 10, 20	1.0	0.84	0.27	0.41	555
<pre>Best result: Criterion = entropy, min_samples_split = 10,</pre>					
max_depth= 5, max_leaf_nodes = None,	accuracy			0.83	2500
min sample split = 2	macro avg	0.83	0.63	0.65	2500
Best train accuracy: 0.835	weighted avg	0.83	0.83	0.79	2500

Best test accuracy: 0.826

XG Boost:	[[1858 87]					
Objective = binary:logistic	[293 262]]					
Nthread = 4	Accuracy: 0.848					
Seed = 42		precision	recall	f1-score	support	
Best train accuracy: 0.867	0.0	0.86	0.96	0.91	1945	
Best test accuracy: 0.848	1.0	0.75	0.47	0.58	555	
	accuracy			0.85	2500	
	macro avg	0.81	0.71	0.74	2500	
	weighted avg	0.84	0.85	0.83	2500	

Pruned XG Boost:	[[1866 79]				
Parameters tested:	[296 259	11				
N_estimators = 100, 500, 1000	Accuracy: 0	.85	5			
Max_depth = 2, 3, 5, 10			precision	recall	f1-score	support
Learning_rate = 0.01, 0.005, 0.001						
Min_child_weight = 1, 5	0.	0	0.86	0.96	0.91	1945
Eta = .3	1.	0	0.77	0.47	0.58	555
Gamma = 0, 1, 5						
Best result: n estimators = 1000, min child weight =	accurac	У			0.85	2500
1, max_depth = 5, learning_rate = 0.01, gamma = 5,	macro av	g	0.81	0.71	0.74	2500
eta = 0.3	weighted av	g	0.84	0.85	0.84	2500
E10 = V)						

Best train accuracy: 0.913 **Best test accuracy:** 0.85

Model Performance:

Learning curve - Training Set Size vs Accuracy

Algorithm	Train Accuracy	Test Accuracy	Train Error	Test Error
SVM(Linear)	0.85	0.85 0.846 0.1498		0.154
SVM(Gaussian / RBF)	0.867	0.8456	0.1334	0.1543
SVM(Polynomial)	0.888	0.8444	0.1119	0.15559
Decision Tree	1	0.7852	0	0.2148
Pruned Tree	0.835	0.826	0.1652	0.174
XG Boost	0.867	0.848	0.1333	0.152
XG Boost (pruned)	0.913	0.85	0.0866	0.15

• The best kernals is SVM(polynomial) with a train and test accuracy of 0.88 and 0.84. It has a minor difference with the other kernals (linear, rbf)

Model Evaluation:

Algorithm	Accuracy	Precision	Recall	F1-Score
SVM(Linear)	0.846	0.84	0.85	0.83
SVM(Gaussian / RBF)	0.8456	0.84	0.85	0.83
SVM(Polynomial)	0.8444	0.84	0.84	0.83
Decision Tree	0.7852	0.78	0.79	0.78
Pruned Tree	0.826	0.83	0.83	0.79
XG Boost	0.848	0.84	0.85	0.83
XG Boost (pruned)	0.85	0.84	0.85	0.84

• XG Boost (pruned) has given the best accuracy, precision, recall and f1-score. SVM (Linear) and SVM (Gaussian/RBF) are almost close to XG Boost (pruned). Pruned tree gives better train and test error rate with comparison with other models.

- I haven't used the full dataset (100,000+) instead I used a subset of 10,000 out of the full dataset. I would get better result if all the instances are included in model. I omitted some variable cloud9am, cloud3pm. Including those values and filling the missing values with mean or median will yield better result.
- We can extract a variable called month from date column, that will give us better prediction.
- **Cross validation:** This significantly reduces bias as we are using most of the data for fitting and significantly reduces variance most of the data the data is also being used in validation set.

Conclusion:

- 1. XG Boost (pruned) performed better for both the data sets. It has better accuracy, precision and recall.
- **2.** Decision tree performed really bad with the weather prediction dataset while pruned tree performed the worst for the gpu_runtime dataset.
- **3.** Better results can be obtained if all the data points will be used in the model and adding relevant variables, extract new variable and implement hyperparameter tuning with wide range and 10 fold cross validation with 3 repeats.