I. EINLEITUNG

Motivation

50% weniger Aufwand bei Anwendungsentwicklung mit DB Ermöglicht neue Anwendungen, die ohne DB zu komplex wären Ausfaktorisieren der Verwaltung großer Datenmengen ohne Datenbanken

Daten in Dateien abgelegt, Zugriffsfunktionalität Teil der Anwendung

Redundanz (in Daten und Funktionalität)

Programme oft nicht atomar (= Programm wird entweder ganz oder gar nicht ausgeführt) – nur bei nicht fehlerfreien Systemen relevant

Transaktionen (= Programm oder Kommandofolge) oft nicht isoliert (= keine inkonsistenten Zwischenzustände sichtbar) – nur bei mehreren Transaktionen, aber auch bei fehlerfreien Systemen relevant

Nebenläufigkeit (concurrency – paralleler Zugriff auf dieselben Daten) schwer umsetzbar

Anwendungsentwicklung abhängig von der physischen Repräsentation der Daten (z.B. Datenspeicherung als Tabelle: Reihenfolge Zeilen/Spalten muss bekannt sein)

 $\label{eq:def:Datenschutz} \ (= kein \ unbefugter \ Zugriff) \ nicht gewährleistet \\ Datensicherheit \ (= kein \ Datenverlust, \ insb. \ bei \ Defekten) \\ nicht gewährleistet$

Relationale Datenbanken

auch <u>RDBMS</u> (relational database management system) \cong Menge von Tabellen Relation = Menge von Tupeln = Tabelle

RDBMS - Terminologie

Relationenschema: Fett geschrieben Relation: Weitere Einträge der Tabelle

Tupel: Eine Zeile der Tabelle
Attribut: Spaltenüberschrift
Relationenname: Name der Tabelle

 $\underline{DBS} \colon Datenbanksystem = DBMS \, + \, Datenbank(en)$

 $\underline{\operatorname{Schl\"{u}ssel}} :$ Attribut, das nicht doppelt vergeben werden darf

Fremdschlüssel: Attribut taucht in anderem Relationenschema als

Schlüssel auf

Integritätsbedingungen:

- 1. lokal: Schlüssel in Relationenschema
- 2. global: Fremdschlüssel in Datenbankschema

 $\underline{\mbox{DB-Schema}}:=\mbox{Menge}$ der Relationsschemat
a+globale Integritätsbedingungen

 $\underline{\underline{\rm Sicht}}$ $(view)\colon$ Häufig vorkommende Datenabfrage, kann mit Sichtnamen als "virtuelle" Tabelle gespeichert werden

create view CArtist as
 select NAME, JAHR
 from Kuenstler
 where LAND == "Kanada"

Verwendung wie "normale" Relation:

 $\mathbf{select} \ * \ \mathbf{from} \ \mathsf{CArtist} \ \mathbf{where} \ \mathsf{JAHR} \ < \ \mathsf{2000}$

Nutzung für Datenschutz: Unterschiedliche Benutzer sehen unterschiedlichen DB-Ausschnitt

${\bf RDBMS-An frage operation en}$

Ausgangsrelation:

TITLE ID	NAME	ART	GRÖSSE	KID
102	Neil Young - Heart of Gold	mp3	2.920kb	1012
103	Rammstein –	wma	4.234kb	1014
	Ich liebe Neil Young			
	Neil Young – Old Man	mp3	3.161kb	1012
105	Neil Young –	wma	5.125kb	1012
	Four Strong Winds			

Ergebnis:

	ART
Neil Young – Heart of Gold Neil Young – Old Man	mp3
Neil Young – Old Man	mp3
Neil Young –	wma
Four Strong Winds	

Weitere Operationen: Verbund (join), Vereinigung, Differenz, Durchschnitt, Umbenennung

${\bf RDBMS-Andragen optimierung}$

Algebraische Ausdrücke äquivalent, Abfrage aber unterschiedlich komplex, z.B.

 $\sigma_{\text{Vorname}=\text{'Klemens'}}(\sigma_{\text{Wohnort}=\text{'KA'}}(SNUSER)) \text{ vs.}$

 $\sigma_{\text{Wohnort}='\text{KA}'}(\sigma_{\text{Vorname}='\text{Klemens}'}(SNUSER))$