ARBOL BINARIO DE BUSQUEDA

Maria C. Torres Madroñero Profesora asociada Departamento de Ciencias de la Computación y la Información

Objetivos

Implementar la estructura de árbol binario de búsqueda y sus operaciones básicas

Recursos requeridos

- PC
- IDE para JAVA o Python el estudiante deberá seleccionar un lenguaje de programación para el desarrollo de las prácticas de laboratorio

Actividades preliminares al laboratorio

Lectura de la guía

Marco teórico

ARBOL BINARIO DE BUSQUEDA

Un árbol binario de búsqueda es un conjunto S tal que sus elementos tienen una relación de orden. Un árbol binario de búsqueda o ABB es un árbol que:

- O Cada nodo v almacena un elemento de S
- O Todos los elementos almacenados en el subárbol izquierdo de v son menores o iguales al elemento de v
- O Todos los elementos almacenados en el subárbol derecho de v son mayores o iguales al elemento de v.

Propiedades:

- El recorrido inorder de un ABB retorna los datos organizados de menor a mayor
- El valor mínimo en un ABB se encuentra en el nodo extremo de la rama izquierda
- o El valor máximo en un ABB se encuentra en el nodo extremo de la rama derecha

Implementación de heap

La clase BinarySearchTree es una extensión de la clase BinaryTree, heredando todos sus atributos y métodos.

BinaryTree -root: Node -size: int +BinaryTree() +right(Node v):Node +size(): int +parent(Node v):Node +depth(Node v): int +isEmpty():Boolean +isRoot(Node v):Boolean +height(Node v):int +isInternal(Node v):Boolean +addRoot(Objecte) +insertLeft(Node v, Object e) +hasLeft(Node v): Boolean +hasRight(Node v): Boolean +insertRight(Node v, Object e) +root():Node +remove(Node v) +left(Node v):Node **BinarySearchTree** +BinarySearchTree() +find(int k): Node +insert(Object e, int k) +remove(int k): Object

La descripción de cada uno de los métodos y atributos se encuentra en las presentaciones de la clase.

Actividades

Problema 1 Implementación de las clases BinaryTree, BSTEntry y BinarySearchTree

En esta primera etapa del laboratorio, implemente la clase BinaryTree, BSTEntry, y BinarySearchTree. Se sugiere que la implementación del BSTEntre permita almacenar datos genéricos (tipo Object) asociados a una clave de tipo entero. La implementación del BinarySearchTree debe permitir al menos realizar las siguientes operaciones:

- Insertar un nuevo dato con su respectiva clave, el sistema debe ingresar el objeto en la posición correcta del árbol para mantener las propiedades de árbol binario de búsqueda
- Eliminar un objeto dada la clave: dada una clave entera, el sistema debe buscar el objeto en el árbol, y si
 existe debe eliminar el nodo, manteniendo las propiedades de árbol binario de búsqueda
- Buscar un objeto dada la clave: dada una clave entera, el sistema buscar el objeto respectivo y retornar el nodo completo.
- Valor máximo: cuando se llame este método, el sistema debe retornar el objeto con la clave mas grande en el árbol
- Valor mínimo: cuando se llame este método, el sistema debe retornar el objeto con la clave mas pequeña en el árbol.
- Mostrar árbol: este método debe permitir visualizar el árbol en la pantalla. Presente una forma ingeniosa de mostrar los datos del árbol y su estructura.
- Recorrido inorder: este método debe mostrar en pantalla las claves de los nodos cuando se realiza el recorrido inorder.

Problema 2 Prueba de la implementación

Para probar su implementación de árbol binario de búsqueda, construya un objeto que almacene el nombre y numero de identificación. Asumiremos la clave como el numero entero resultante de sumar los dígitos del numero de identificación. Realice la prueba de los diferentes métodos, ingresando usuario a su ABB.

Por ejemplo, para los siguientes usuarios el árbol binario de búsqueda resultante debe ser:

- Juan 10101013 k=7
- Pablo 10001011 k = 4
- Maria 10101015 k = 9
- Ana 1010000 k=2
- Diana 10111105 k = 10
- Mateo 10110005 k = 8.

Instrucciones de entrega

- La solución de los problemas debe desarrollarse en JAVA o Python. Los estudiantes tendrán la libertad de seleccionar el lenguaje de programación y plataforma para presentar la solución de los problemas.
- La solución debe emplear librerías nativas y se invita a los estudiantes a no usar código descargado de internet.
 Los laboratorios están diseñados para practicar los fundamentos teóricos; entre más código escriba el estudiante más fácil será su comprensión de los temas de clase.
- La solución se puede presentar en grupos de hasta 3 estudiantes.
- La solución de los problemas debe entregarse y sustentarse en el aula de clase o en la hora de asesoría a estudiantes. No se reciben soluciones por correo electrónico.