**HTWG Konstanz** 

MSI Seminar Advanced Topics in Data Analysis and Deep Learning

# **Vision Transformer**

**Alexander Haab** 

Sommersemester 2025

#### **Contents**

- Paper Introduction
- Inspecting Vision Transformer
- Model Variants
- Training & Fine-tuning
- Comparison to State of the Art
- Fine-tuning a Vision Transformer on a Pokemon dataset
- Applications
- Conclusion / Outlook



# An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

(Dosovitskiy et al., 2021)

NLP: Transformer

Vision: CNN

- Introducing ViT architecture
- Google Research, 2020
- Pure transformer
- Image classification tasks



Source: https://www.kaggle.com/code/vigneshwar472/google-vision-transformer-results

# An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale



HTWG Konstanz - MSI Seminar

Vision Transformer

Alexander Haab

Output Probabilities

Softmax

Linear

### Image -> Embeddings -> Transformer Encoder -> Classifier -> Classification



(Silva, 2023)

Vision Transformer

Alexander Haab

### **Embeddings**



The standard **Transformer** receives a **1D sequence of token embeddings** as **input**.

(Dosovitskiy et al., 2021)

The Embedding layer maps 2D image patches into 1D vectors.

(Silva, 2023)

## **Token Embeddings**



The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

 $T\ h\ e\ q\ u\ i\ c\ k\ b\ r\ o\ w\ n\ f\ o\ x\ j\ u\ m\ p\ s\ o\ v\ e\ r\ t\ h\ e\ l\ a\ z\ y\ d\ o\ g\ .$ 



(Silva, 2023)

### Split image into patches



Reshape the **image x** into **sequence** of

## flattened 2D patches $x_{p}$

$$x \in R^{H \times W \times C}$$



$$x_p \in R^{N \times (P^2 * C)}$$

(H, W): Input image resolution, (C): Channels, (P, P): Resolution of each image patch  $N = HW / P^2$ : number of patches

(Dosovitskiy et al., 2021)



#### **Example:**

image resolution: **224** x **224** pixel x **3** RGB

patch resolution: 16 x 16 pixel ("An Image is Worth 16 x 16 Words")

N = **196** Patches

$$x \in R^{224 \times 224 \times 3}$$

$$\rightarrow$$

$$x_p \in R^{196 \times 768}$$

(Silva, 2023)

Advanced Topics in Data Analysis and Deep Learning

## **Linear Projection**

Transformer uses vector size D (=768 Base Model) through all of its layers.

Map each patch  $x_p \in R^{196 \times 768}$  to D dimensions.

Trainable linear projection matrix  $E \in R^{768 \times 768}$ 

Output: patch embeddings  $\in$  R <sup>196 x 768</sup>

$$\mathbf{z}_0 = [\mathbf{x}_{\mathrm{class}}; \, \mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$
 ( Dosovitskiy et al., 2021 )



(Silva, 2023)



### **Position embedding**



Position embeddings  $E_{pos}$  are added to the patch embeddings to retain positional information.

Patch embeddings  $\in R^{196 \times 768}$ 

Learnable 1D position embeddings  $\in R^{196 \times 768}$ 

$$\mathbf{z}_0 = [\mathbf{x}_{\mathrm{class}}; \, \mathbf{x}_p^1 \mathbf{E}; \, \mathbf{x}_p^2 \mathbf{E}; \cdots; \, \mathbf{x}_p^N \mathbf{E}] + \mathbf{E}_{pos}, \qquad \mathbf{E} \in \mathbb{R}^{(P^2 \cdot C) \times D}, \, \mathbf{E}_{pos} \in \mathbb{R}^{(N+1) \times D}$$
( Dosovitskiy et al., 2021 )

### **Position embedding**



The model learns to **encode distance** within the image in the **similarity of position embeddings**.

Closer patches tend to have more similar position embeddings.

Row-column structure appears.

#### **Transformer Encoder**

- Multi-Head Attention Layer
- Feed-Forward (MLP)
  - two layers
  - GELU non-linearity
- Layer Norm & Residual Connections
  - ensures robust and efficient training





(Silva, 2023)

## **Multi-Head Attention Layer**

Self-attention allows to **integrate information across** the entire image.

Attends to image regions that are relevant for classification.

$$[\mathbf{q}, \mathbf{k}, \mathbf{v}] = \mathbf{z} \mathbf{U}_{qkv}$$

$$\mathbf{U}_{akv} \in \mathbb{R}^{D \times 3D_h}$$
,

$$A = \operatorname{softmax} \left( \mathbf{q} \mathbf{k}^{\top} / \sqrt{D_h} \right)$$

$$A \in \mathbb{R}^{N \times N}$$
,

$$SA(\mathbf{z}) = A\mathbf{v}$$
.

(7)

**Multi-head self-attention** (MSA) runs **k self-attention** operations, called "**heads**", in **parallel**, and project their concatenated outputs.

$$MSA(\mathbf{z}) = [SA_1(z); SA_2(z); \cdots; SA_k(z)] \mathbf{U}_{msa}$$

$$\mathbf{U}_{msa} \in \mathbb{R}^{k \cdot D_h \times D} \tag{8}$$

Input

Attention













### **Multi-Head Attention Layer**

Some **heads attend most** of the image, showing the ability to **integrate information globally.** 

Other attention heads have **consistently** small attention distances.

Further, the **attention distance increases** with **network depth**.





( Dosovitskiy et al., 2021 )

### Classifier

Prepend a learnable embedding [class] token to the sequence of embedded patches.

(1)

(2)

(3)

(4)

Serves as the **image representation** y, after Transformer encoder output.



### **Classification head** is implemented by a **MLP**:

- pre-training time -> one hidden layer
- fine-tuning time -> single linear layer



#### **Model Variants**

| Model     | Layers | ${\it Hidden \ size \ } D$ | MLP size | Heads | Params |
|-----------|--------|----------------------------|----------|-------|--------|
| ViT-Base  | 12     | 768                        | 3072     | 12    | 86M    |
| ViT-Large | 24     | 1024                       | 4096     | 16    | 307M   |
| ViT-Huge  | 32     | 1280                       | 5120     | 16    | 632M   |

Table 1: Details of Vision Transformer model variants.

| Models            | Dataset      | Epochs | Base LR           | LR decay | Weight decay | Dropout |
|-------------------|--------------|--------|-------------------|----------|--------------|---------|
| ViT-B/{16,32}     | JFT-300M     | 7      | $8 \cdot 10^{-4}$ | linear   | 0.1          | 0.0     |
| ViT-L/32          | JFT-300M     | 7      | $6 \cdot 10^{-4}$ | linear   | 0.1          | 0.0     |
| ViT-L/16          | JFT-300M     | 7/14   | $4 \cdot 10^{-4}$ | linear   | 0.1          | 0.0     |
| ViT-H/14          | JFT-300M     | 14     | $3 \cdot 10^{-4}$ | linear   | 0.1          | 0.0     |
| R50x{1,2}         | JFT-300M     | 7      | $10^{-3}$         | linear   | 0.1          | 0.0     |
| R101x1            | JFT-300M     | 7      | $8 \cdot 10^{-4}$ | linear   | 0.1          | 0.0     |
| R152x{1,2}        | JFT-300M     | 7      | $6 \cdot 10^{-4}$ | linear   | 0.1          | 0.0     |
| R50+ViT-B/{16,32} | JFT-300M     | 7      | $8 \cdot 10^{-4}$ | linear   | 0.1          | 0.0     |
| R50+ViT-L/32      | JFT-300M     | 7      | $2 \cdot 10^{-4}$ | linear   | 0.1          | 0.0     |
| R50+ViT-L/16      | JFT-300M     | 7/14   | $4 \cdot 10^{-4}$ | linear   | 0.1          | 0.0     |
| ViT-B/{16,32}     | ImageNet-21k | 90     | $10^{-3}$         | linear   | 0.03         | 0.1     |
| ViT-L/{16,32}     | ImageNet-21k | 30/90  | $10^{-3}$         | linear   | 0.03         | 0.1     |
| ViT-*             | ImageNet     | 300    | $3 \cdot 10^{-3}$ | cosine   | 0.3          | 0.1     |

Table 3: Hyperparameters for training. All models are trained with a batch size of 4096 and learning rate warmup of 10k steps. For ImageNet we found it beneficial to additionally apply gradient clipping at global norm 1. Training resolution is 224.

### **Training & Fine-tuning**

- Pre-trained on large amounts
- Fine-tuned for task
- Trained in supervised fashion
- **ImageNet** 
  - 1.3M images
  - 1k classes 0
- ImageNet-21k
  - 14M images
  - 21k classes 0
- JFT-300M
  - 300M images
  - 18k classes 0







Figure 4: Linear few-shot evaluation on ImageNet versus pre-training size. ResNets perform better with smaller pre-training datasets but plateau sooner than ViT, which performs better with larger pre-training. ViT-b is ViT-B with all hidden dimensions halved.

### **Training & Fine-tuning**

#### CIFAR-10:

- 60000 images
- 10 classes

#### CIFAR-100:

- 60000 images
- 100 classes

#### Oxford Flowers-102

- 102 classes
- 8000 images

|              |                    | ViT-B/16 | ViT-B/32 | ViT-L/16 | ViT-L/32 | ViT-H/14 |
|--------------|--------------------|----------|----------|----------|----------|----------|
| ImageNet     | CIFAR-10           | 98.13    | 97.77    | 97.86    | 97.94    | 828      |
| O            | CIFAR-100          | 87.13    | 86.31    | 86.35    | 87.07    | -        |
|              | ImageNet           | 77.91    | 73.38    | 76.53    | 71.16    | -        |
|              | ImageNet ReaL      | 83.57    | 79.56    | 82.19    | 77.83    | -        |
|              | Oxford Flowers-102 | 89.49    | 85.43    | 89.66    | 86.36    | -        |
|              | Oxford-IIIT-Pets   | 93.81    | 92.04    | 93.64    | 91.35    | -        |
| ImageNet-21k | CIFAR-10           | 98.95    | 98.79    | 99.16    | 99.13    | 99.27    |
|              | CIFAR-100          | 91.67    | 91.97    | 93.44    | 93.04    | 93.82    |
|              | ImageNet           | 83.97    | 81.28    | 85.15    | 80.99    | 85.13    |
|              | ImageNet ReaL      | 88.35    | 86.63    | 88.40    | 85.65    | 88.70    |
|              | Oxford Flowers-102 | 99.38    | 99.11    | 99.61    | 99.19    | 99.51    |
|              | Oxford-IIIT-Pets   | 94.43    | 93.02    | 94.73    | 93.09    | 94.82    |
| JFT-300M     | CIFAR-10           | 99.00    | 98.61    | 99.38    | 99.19    | 99.50    |
|              | CIFAR-100          | 91.87    | 90.49    | 94.04    | 92.52    | 94.55    |
|              | ImageNet           | 84.15    | 80.73    | 87.12    | 84.37    | 88.04    |
|              | ImageNet ReaL      | 88.85    | 86.27    | 89.99    | 88.28    | 90.33    |
|              | Oxford Flowers-102 | 99.56    | 99.27    | 99.56    | 99.45    | 99.68    |
|              | Oxford-IIIT-Pets   | 95.80    | 93.40    | 97.11    | 95.83    | 97.56    |

Table 5: Top1 accuracy (in %) of Vision Transformer on various datasets when pre-trained on ImageNet, ImageNet-21k or JFT300M. These values correspond to Figure 3 in the main text. Models are fine-tuned at 384 resolution. Note that the ImageNet results are computed without additional techniques (Polyak averaging and 512 resolution images) used to achieve results in Table 2 (Dosovitskiy et al., 2021)

### Comparison to State of the Art

- Beats state-of-the-art convolutional networks,
- on multiple image recognition benchmarks,
- while requiring substantially fewer computational resource to train

|                    | Ours-JFT<br>(ViT-H/14) | Ours-JFT<br>(ViT-L/16) | Ours-I21k<br>(ViT-L/16) | BiT-L<br>(ResNet152x4) | Noisy Student<br>(EfficientNet-L2) |
|--------------------|------------------------|------------------------|-------------------------|------------------------|------------------------------------|
| ImageNet           | $88.55 \pm 0.04$       | $87.76 \pm 0.03$       | $85.30 \pm 0.02$        | $87.54 \pm 0.02$       | 88.4/88.5*                         |
| ImageNet ReaL      | $90.72 \pm 0.05$       | $90.54 \pm 0.03$       | $88.62 \pm 0.05$        | 90.54                  | 90.55                              |
| CIFAR-10           | $99.50 \pm 0.06$       | $99.42 \pm 0.03$       | $99.15 \pm 0.03$        | $99.37 \pm 0.06$       | _                                  |
| CIFAR-100          | $94.55 \pm 0.04$       | $93.90 \pm 0.05$       | $93.25 \pm 0.05$        | $93.51 \pm 0.08$       | -                                  |
| Oxford-IIIT Pets   | $97.56 \pm 0.03$       | $97.32 \pm 0.11$       | $94.67 \pm 0.15$        | $96.62 \pm 0.23$       | -                                  |
| Oxford Flowers-102 | $99.68 \pm 0.02$       | $99.74 \pm 0.00$       | $99.61 \pm 0.02$        | $99.63 \pm 0.03$       | _                                  |
| VTAB (19 tasks)    | $77.63 \pm 0.23$       | $76.28 \pm 0.46$       | $72.72 \pm 0.21$        | $76.29 \pm 1.70$       | -                                  |
| TPUv3-core-days    | 2.5k                   | 0.68k                  | 0.23k                   | 9.9k                   | 12.3k                              |

## Comparison to State of the Art

Image Classification on ImageNet

| Rank | Modell   | Accuracy | Num. Parameters | Year |
|------|----------|----------|-----------------|------|
| #1   | Coco     | 91%      | 2100M           | 2022 |
| #15  | ViT-L/16 | 89.6%    | 307M            | 2023 |

Image Classification in CIFAR-10

| Rank | Model    | Accuracy | Num. Parameters | Year |
|------|----------|----------|-----------------|------|
| #1   | ViT-H/14 | 99.5%    | 632M            | 2020 |

Source: https://paperswithcode.com/task/image-classification

## Fine-tuning a Vision Transformer on a Pokemon dataset

Github: https://github.com/alexanderhaab/msi\_seminar\_vision\_transformer



**Copyright Nintendo** 

### **Applications**

- Image Classification
- Image captioning
- Object Detection
- Video Deepfake Detection
- Image segmentation
- Anomaly detection
- Autonomous driving













Source:

https://www.v7labs.com/blog/vision-transformer-guide https://en.wikipedia.org/wiki/Vision\_transformer

HTWG Konstanz - MSI Seminar
Vision Transformer

#### Conclusion

- Benefits of pure transformers to computer vision:
  - computational efficiency
  - scalability (possibility to train large models)
- Matches or exceeds the state of the art

### **Outlook**

- Apply ViT to other computer vision tasks
- continue exploring self-supervised pre-training methods.
- Further scaling would likely lead to improve performance.

#### References

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021).

An image is worth 16x16 words: Transformers for image recognition at scale.

arXiv. <a href="https://arxiv.org/abs/2010.11929">https://arxiv.org/abs/2010.11929</a>

Github. https://github.com/google-research/vision transformer

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017).

Attention Is All You Need.

arXiv. https://arxiv.org/abs/1706.03762

#### Silva, Thalles Santos (2023).

An Intuitive Introduction to the Vision Transformer

Github. <a href="https://sthalles.github.io/an-intuitive-introduction-to-the-vision-transformer/">https://sthalles.github.io/an-intuitive-introduction-to-the-vision-transformer/</a>

HTWG Konstanz - MSI Seminar

Advanced Topics in Data Analysis and Deep Learning

Alexander Haab