Optimization Models: Homework #3

Due on October 10, 2025 at 11:59pm

Zachary Brandt zbrandt@berkeley.edu

Problem 1

Consider an aerial system that moves in \mathbb{R}^3 according to the dynamics

$$x(k+1) = Ax(k) + Bu(k), \quad k = 0, 1, 2, 3$$
 (1)

where $x(k) \in \mathbb{R}^3$ is the position of the system at time $k \in \{0, 1, 2, 3, 4\}$ and $u(k) \in \mathbb{R}$ is the scalar input applied to the system at time k. Assume that the initial position x(0) is equal to $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$. Given a target position $x_d \in \mathbb{R}^3$, the goal is to design the input sequence u(0), u(1), u(2), u(3) to take the system to the target position x_d at time k = 4, i.e., $x(4) = x_d$.

i) Find a matrix $H \in \mathbb{R}^{3\times 4}$ in terms of A and B with the property that

$$x(4) = H \begin{bmatrix} u(0) \\ u(1) \\ u(2) \\ u(3) \end{bmatrix}$$
 (2)

ii) Assume that

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 (3)

Show that the vector $[1 \ 1 \ 0]^T$ belongs to $\mathcal{N}(H^T)$ (note: you are allowed to use a calculator to compute H, but you cannot use a calculator or a computer code to study the null space of H^T and the analysis should be done by hand).

- iii) Again, consider the system parameters given in (3). By studying the relationship between $\mathcal{N}(H^T)$ and $\mathcal{R}(H)$, prove that there is no sequence of inputs that can take the system to the position $x_d = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$ at time 4.
- iv) Again, consider the system parameters given in (3). By finding $\mathcal{N}(H^T)$ and using the relations $\mathcal{N}(H^T) \perp \mathcal{R}(H)$ and $\mathcal{N}(H^T) \oplus \mathcal{R}(H) = \mathbb{R}^3$, show that there exists a sequence of inputs to take the system to the position x_d at time 4 if and only if x_d belongs to the set

$$\{x \in \mathbb{R}^3 \mid x_1 + x_2 = 0\} \tag{4}$$

v) (Coding) Now, assume that

$$A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
 (5)

The goal is to find a sequence of inputs such that the total energy $u(0)^2 + u(1)^2 + u(2)^2 + u(3)^2$ is minimized and yet the system arrives at the target position $x_d = \begin{bmatrix} 3 & 2 & 2 \end{bmatrix}^T$ at time 4. Formulate this as an optimization problem and write a code in CVX to solve the problem numerically. Plot the optimal trajectory (i.e., plot the optimal values of the points x(0), ..., x(4) in \mathbb{R}^3 and then connect each point to the next one (such as x(1) to x(2)).

vi) (Coding) Consider the safety set

$$S = \{ x \in \mathbb{R}^3 \mid -3.3 \le x_i \le 3.2, \quad i = 1, 2, 3 \}$$
 (6)

Assume that the state x(k) must always stay in the safety set S for k = 0, 1, ..., 4. Redo Part (v) under this additional constraint and find the optimal input sequence. Compares the optimal trajectories and optimal energies (objective values) obtained in Parts (v) and (vi).

Problem 2

(Coding) Consider the matrix A and vector x^* defined as

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}, \qquad x^* = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$(7)$$

Define $b = Ax^* + v$ where $v \in \mathbb{R}^6$ is some measurement noise. Assume that the user has no access to x^* and aims to learn x^* from the measurement vector b. We consider two different estimators to learn x^* :

$$l_1$$
 estimator: $\min ||Ax - b||_1$, (8a)

$$l_1$$
 estimator: $\min_{x} ||Ax - b||_1$, (8a)
 l_2 estimator: $\min_{x} ||Ax - b||_2$ (8b)

Given a solution \hat{x} obtained from any of the above estimators, we define the estimation error $e = \|\hat{x} - x^*\|_2$ (note that the error is always computed with respect to the l_2 -norm no matter which estimator is used for obtaining \hat{x}^*). Assume that the noise v is in the form

$$v = \begin{bmatrix} t_1 \\ 0 \\ 0 \\ 0 \\ t_2 \\ 0 \end{bmatrix}$$
 (9)

where t_1 and t_2 are constants that belong to the discrete set $\{-2, -1.9, -1.8, ..., -0.1, 0, 0.1, ..., 1.8, 1.9, 2\}$ (the increment is 0.1).

- i) For each possible value of the pair (t_1, t_2) , solve the l_1 and l_2 estimators in CVX and record the corresponding estimation errors (note: there are 41×41 possibilities for (t_1, t_2)).
- ii) Draw a grid in \mathbb{R}^2 obtained as follows: For each possible value of the pair (t_1, t_2) , we put a symbol in the location (t_1, t_2) in \mathbb{R}^2 , where the symbol is a small red circle if the l_1 estimator gives the lowest estimation error and is a small blue circle if the l_2 estimator gives the lowest estimation error (note: if the estimation errors for both estimators are the same, use the blue circle). Analyze the plot and report your observations.

Problem 3

Consider the optimization problem

$$\min_{x \in \mathbb{R}^2} \quad e^{x_1 + x_2} + 2x_1^2 + 2x_2^2 - x_1 x_2 - \sin(x_1 + x_2) \tag{10}$$

By analyzing the gradient and Hessian of the objective function, prove that $x^* = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a global minimum of the optimization problem (Hint: A matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$ is positive definite if and only if a > 0 and $ac - b^2 > 0$).