МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

Физтех-школа радиотехники и компьютерных технологий

Отчёт по лабораторной работе № 1.2.2 "Экспериментальная проверка закона вращательного движения на крестообразном маятнике"

> Выполнил: Студент гр. Б01-305 Миннахметов Артур

Содержание

1	Введение	3
2	Ход работы	5
	2.1 Измерения	5
	2.2 Обработка	6
3	Выводы	8

1 Введение

Цель работы: экспериментально проверить уравнение (1), получив зависимость углового ускорения от момента инерции и момента прикладываемых к системе сил, а также проанализировать влияние сил трения, действующих в оси вращения.

В работе используются: крестообразный маятник, набор перегрузков, секундомер, линейка, штангенциркуль.

Основное уравнение вращательного движения тела вокруг закреплённой оси:

$$I\ddot{\varphi} = M,\tag{1}$$

где $\ddot{\varphi} \equiv \dot{\omega} \equiv \beta$ — угловое ускорение (ω — угловая скорость), I — полный момент инерции тела относительно оси вращения, M — суммарный момент внешних сил относительной этой оси.

Рис. 1: Крестообразный маятник Обербека

Экспериментальная установка. Для экспериментального исследования закона вращательного движения (1) в работе используется крестообразный «маятник», устройство которого изображено на рис. 1. Маятник состоит из четырех тонких стержней радиуса a, укрепленных на втулке под прямым углом друг к другу. Втулка и два шкива различных радиусов (r_1 и r_2) насажены на общую ось. Ось закреплена в подшипниках, так что вся система может свободно вращаться вокруг горизонтальной оси. Момент инерции I маятника можно изменять, передвигая грузы m_i ($i=1\dots 4$) вдоль стержней и меняя R_i . На один из шкивов маятника навита тонкая нить. Привязанная к ней легкая платформа известной массы $m_{\rm II}$, служит для размещения перегрузков $m_{\rm II}$.

Установка оснащена датчиком, позволяющим фиксировать моменты времени прохождения концов стержней через него. Данные с датчика передаются на компьютер для последующей обработки и получения зависимостей угла поворота $\varphi(t)$, угловой скорости $\omega \equiv \dot{\varphi}$ и углового ускорения маятника $\beta \equiv \ddot{\varphi}$ от времени, а также углового ускорения от угловой скорости $\beta(\omega)$.

Вывод уравнения движения маятника. Рассмотрим силы, действующие на маятник. Основной вращающий момент создаётся подвешенным на нити перегрузком. Непосредственно на маятник действует момент силы натяжения нити: $M_{\rm H}=rT$, где r - радиус шкива (r_1 или r_2). Силу T выразим из уравнения движения платформы: $m_{\rm H}\ddot{y}=m_{\rm H}g-T$, где $m_{\rm H}=m_{\rm H}+m_{\rm T}$, — масса платформы с перегрузком. Ускорение платформы связано с угловым ускорением маятника условием нерастяжимости нити $\ddot{y}=\beta r$. Отсюда момент силы натяжения нити

$$M_{\rm H} = m_{\rm H} r \left(g - \beta r \right). \tag{2}$$

Вращению маятника препятствует момент силы трения в оси $M_{\rm TP}$. Таким образом, с учетом (2) уравнение (1) может быть записано как

$$(I + m_{\rm H}r^2)\beta = m_{\rm H}gr - M_{\rm Tp}. \tag{3}$$

Заметим, что в наших опытах, как правило, $m_{\rm H}r^2\ll I$, и соответственно $M_{\rm H}\approx m_{\rm H}gr$. Если трение мало, $M_{\rm TP}\ll m_{\rm H}gr$, то маятник будет раскручиваться с постоянным угловым ускорением $\beta_0\approx m_{\rm H}gr/I$.

Поскольку зависимость момента силы трения от нагрузки на маятник и скорости его вращения не известна (её исследование — отдельная экспериментальная задача), методика измерения должна быть построена так, чтобы минимизировать или вовсе исключить влияние $M_{\rm Tp}$. Можно высказать следующие качественные соображения о природе и величине $M_{\rm Tp}$. Она может иметь как составляющую, пропорциональную силе реакции в оси N (сухое трение в подшипниках), так и составляющую, пропорциональную угловой скорости и вращения маятника (вязкое трение в подшипниках и сопротивление воздуха). Учитывая, что сила реакции уравновешеннего маятника равна $N=m_{\rm M}g+T$, где $m_{\rm M}$ масса маятника (как правило, $m_{\rm M}\gg m_{\rm H}$), можно записать

$$M_{\rm TP} \simeq \left(1 + \frac{m_{\rm H}}{m_{\rm M}}\right) M_0 + \eta \omega \approx M_0 + \eta \omega,$$
 (4)

где M_0 — момент сил трения для покоящегося маятника при нулевой массе подвеса (минимальное значение силы трения), η - некоторый коэффициент, отвечающий за вязкое трение.

Методика эксперимента. Малость величины трения $M_{\rm TP}$ в работе обеспечивается за счёт использования в креплении подшипников качения. Однако учёт трения всё же оказывается необходим, поскольку оно существенно влияет на результаты опыта как при малых массах перегрузков (когда $m_{\rm H} \sim M_0/gr$), так и при больших, поскольку при увеличении $m_{\rm H}$ возрастает сила реакции в оси и угловая скорость вра-щения маятника, а с ней и вязкое трение.

Влияние вязкой составляющей трения можно исключить следующим образом. Экспериментальная установка позволяет измерять зависимость углового ускорения от угловой скорости $\beta(\omega)$. Если верны высказанные выше соображения о величине силы трения, из (3) и (4) следует, что угловое ускорение должно быть линейной функцией угловой скорости: $\beta = \beta_0 + k\omega$. В таком случае, определив по экспериментальным данным (с помощью расчётной программы) коэффициенты прямой, можно найти начальное угловое ускорение β_0 , значение которого и используется при проверке основного соотношения (3) при различных параметрах системы $(m_{\rm H}, I, r)$.

Момент инерции всей системы вычисляется по теореме Гюйгенса- Штейнера:

$$I = I_0 + \sum_{i=1}^{4} \left(I_i + m_i R_i^2 \right), \tag{5}$$

где I_0 - момент инерции системы без грузов, I_i - момент инерции i-го груза относительно оси, проходящей через его центр масс (перпендикулярно плоскости рис. 1).

2 Ход работы

2.1 Измерения

- 1. Основные величины, которые были измерены самыми первыми:
- ullet диаметр малого шкива $d_1 = (18, 9 \pm 0, 1)$ мм
- ullet диаметр большого шкива $d_2 = (35, 9 \pm 0, 1)$ мм
- $\bullet\,$ для 2 и 3 расстояние между грузами 225 мм

Номер груза	Масса груза, г	Высота груза, мм	Диаметр груза, мм
4.1	155,5	25,0	32,9
4.2	148,9	25,1	32,9
4.3	151,9	25,0	32,9
4.4	150,1	25,0	33,0

2. Теперь измерим показатели k и β_0 для маятника без грузов:

Направление	$k,1/\mathrm{c}$	$\beta_0, 1/c^2$	$m_{\scriptscriptstyle \mathrm{H}}$, г
Вверх	$-0,03424 \pm 0,0018$	$3,147 \pm 0,0057$	110,1
Вниз	$-0,0419 \pm 0,004$	$3,014 \pm 0,0077$	110,1
Вверх	$-0,0661 \pm 0,015$	$2,184 \pm 0,028$	72,1
Вниз	$-0,04039 \pm 0,0025$	$1,996 \pm 0,0062$	72,1
Вверх	$-0,05968 \pm -0,013$	$1,776 \pm 0,023$	60
Вниз	$-0,03976 \pm 0,0045$	$1,664 \pm 0,0095$	60

3. Далее рассмотрим вращение маятника с грузами при закрчивании нити на большой шкив:

Направление	$k,1/{ m c}$	$\beta_0, 1/c^2$	$m_{\scriptscriptstyle \mathrm{H}}, \Gamma$
Вверх	$-0,01922 \pm 0,004$	$1,361 \pm 0,0086$	110,1
Вниз	$-0,01643 \pm 0,0011$	$1,324 \pm 0,0028$	110,1
Вверх	$-0,02582 \pm 0,0053$	$1,398 \pm 0,0091$	110,1
Вниз	$-0,01409 \pm 0,0019$	$1,337 \pm 0,0046$	110,1
Вверх	$-0,01509 \pm 0,00099$	$1,332 \pm 0,00096$	110,1
Вниз	$-0,01714 \pm 0,0015$	$1,317 \pm 0,0029$	110,1
Вверх	$-0,01322 \pm 0,0022$	$0,8557 \pm 0,0021$	72,1
Вниз	$-0,01645 \pm 0,0011$	$0,8592 \pm 0,0012$	72,1
Вверх	$-0,01268 \pm 0,0012$	$0,8537 \pm 0,001$	72,1
Вниз	$-0,01457 \pm 0,0013$	$0,8739 \pm 0,0019$	72,1
Вверх	$-0,01077 \pm 0,0012$	$0,8401 \pm 0,0012$	72,1
Вниз	$-0,01464 \pm 0,001$	$0,8747 \pm 0,0016$	72,1
Вверх	$-0,01157 \pm 0,0021$	$0,697 \pm 0,0019$	60
Вниз	$-0,01437 \pm 0,0012$	$0,7255 \pm 0,001$	60
Вверх	$-0,01787 \pm 0,0057$	$0,7172 \pm 0,0075$	60
Вниз	$-0,01402 \pm 0,0017$	$0,7273 \pm 0,0036$	60
Вверх	$-0,01531 \pm 0,0013$	$0,7414 \pm 0,0011$	60
Вниз	$-0,01351 \pm 0,0015$	$0,7641 \pm 0,0027$	60

4. Далее рассмотрим вращение маятника с грузами при закрчивании нити на малый шкив:

Направление	k, 1/c	$\beta_0, 1/c^2$	$m_{\scriptscriptstyle m H}$, г
Вверх	$-0,003826 \pm 0,0014$	$0,3444 \pm 0,00082$	60
Вниз	$-0,01046 \pm 0,00087$	$0,4352 \pm 0,0012$	60
Вверх	$-0,005627 \pm 0,0026$	$0,3494 \pm 0,001$	60
Вниз	$-0,01134 \pm 0,0016$	$0,4279 \pm 0,0023$	60

5. Далее рассмотрим вращение маятника с грузами при закрчивании нити на большой шкив, но с другим расстоянием между грузами (312 мм):

Направление	k, 1/c	$\beta_0, 1/c^2$	$m_{\scriptscriptstyle \mathrm{H}}$, г
Вверх	$-0,008358 \pm 0,0017$	$0,5206 \pm 0,0017$	60
Вниз	$-0,001135 \pm 0,0012$	$0,558 \pm 0,0021$	60
Вверх	$-0,008094 \pm 0,0013$	$0,526 \pm 0,0012$	60
Вниз	$-0,01042 \pm 0,0015$	$0,5627 \pm 0,0013$	60
Вверх	$-0,001018 \pm 0,0023$	$0,5309 \pm 0,0015$	60
Вниз	$-0,01011 \pm 0,00065$	$0,5639 \pm 0,00059$	60

6. Далее рассмотрим вращение маятника с грузами при закрчивании нити на большой шкив, но с другим расстоянием между грузами (382 и 375 мм):

Направление	$k,1/\mathrm{c}$	$\beta_0, 1/c^2$	$m_{\scriptscriptstyle \mathrm{H}}$, г
Вверх	$-0,008433 \pm 0,00037$	$0,3982 \pm 0,00018$	60
Вниз	$-0,006391 \pm 0,00093$	$0,4259 \pm 0,00079$	60

2.2 Обработка

7. Из (3) можно посчитать момент инерции для маятника без грузов:

$$I_0 pprox rac{m_{
m H} gr}{eta_0} = (62 \pm 1) \cdot 10^{-4} \ {
m KF} \cdot {
m M}^2$$

8. Посчитаем $M_{\rm H}$ для большого шкива:

$$M(m=110~\mathrm{r}) = (193\pm1)\cdot10^{-4}~\mathrm{H\cdot m^2},$$

$$M(m=72~\mathrm{r}) = (127\pm1)\cdot10^{-4}~\mathrm{H\cdot m^2},$$

$$M(m=60~\mathrm{r}) = (106\pm1)\cdot10^{-4}~\mathrm{H\cdot m^2}.$$

9. Для малого шкива:

$$M(m = 60 \text{ r}) = (56 \pm 1) \cdot 10^{-4} \text{ H} \cdot \text{m}^2.$$

10. Аналогичные иземерения для изменения расстояния между грузами:

$$M(\rho = 312 \text{ mm}) = (106 \pm 1) \cdot 10^{-4} \text{ H} \cdot \text{m}^2,$$

$$M(\rho = 379 \text{ mm}) = (106 \pm 1) \cdot 10^{-4} \text{ H} \cdot \text{m}^2.$$

Заметим, что отклонений от значений в пункте 8 нет.

11. Построим зависимость $M(\beta_0)$ для значений из 8 и 9:

Получилось уравнение $M(\beta_0) = (143, 8 \cdot \beta_0 - 0, 4) \cdot 10^{-4} \text{ H} \cdot \text{m}^2 \approx const$, где β_0 в $1/\text{c}^2$, что говорит, что мы идём в правильном направлении, так как это уравнение приблизительно соответствует уравнению вращательного движения.

Добавка $M_{\rm TP} = 4 \cdot 10^{-5} \ {\rm H \cdot m^2}$ объясняется наличием силы трения.

Из этого уравнения $I = (143, 8 \pm 2, 5) \cdot 10^{-4} \ \mathrm{kg \cdot m^2}.$

12. Посчитаем суммарный момент инерции по (5) и высчитаем из него I_0 :

$$I_0 = (67 \pm 3) \cdot 10^{-4} \ \mathrm{kg \cdot m}^2$$

13. Получилась зависимость $\beta_0(\rho)$. По этой зависимости посчитаем $I=\frac{M}{\beta_0}$ и $I_0=I-\sum_{i=1}^4 \left(I_i+m_iR_i^2\right)$:

на данном этапе была слишком большая погрешность (относительная >50%), что говорит о том, что при измерениях допущены ошибки.

7

3 Выводы

Эксперемнтально проверено уравнение вращательного движение: доказана линейная зависимость между угловым ускорением и моментом сил. Несмотря на то, что момент инерции, полученный эксперементально, не попал в погрешность с полученным теоритически, можно констатировать, так как они получились достаточно близкими, что момент инерции является коэффициентом пропорциональности в уравнении вращательного движения.

Оценен момент силы трения, который оказался прнеприжимо мал по сравнению с другими измеряемыми величинами.