

Universidad Nacional de Ingeniería Facultad de Ciencias

Escuela Profesional de Matemática

Ciclo 2017-I

[Cod: CM-132 Curso: Cálculo Integral]

- (x)= 3x 2 6x 0 - 9(x)= 3x2= Examen Parcial

- 1. Indique la veracidad o falsedad de los siguientes enunciados. Justifique su respuesta.
 - (a) (1pt) $\cosh^2 x \sinh^2 x = 1, \forall x \in \mathbb{R}$
 - b) (2pts) Si las segundas derivadas de dos funciones son iguales, entonces las funciones difieren a los mas por una constante.
 - (1pts) La fracción $\frac{x^2-9}{x^2(x^2+9)^2}$ se puede expresar como $\frac{A}{x}+\frac{B}{(x^2+9)^2}$, donde A y B son constantes.
- (2) (4pts) Demuestre que si f es una función periódica de periodo T, continua en $\mathbb R$ y (4pts) Demuestre que si f es una runción periódica de periodo $\int_0^T f = 0$, entonces $F(x) = \int_0^x f$, $\forall x \in \mathbb{R}$ define una función periódica de periodo T.

 (4pts) Sea $F: [0, +\infty[\to \mathbb{R} \text{ dada por}]$
- 3. (4pts) Sea $F \colon [0, +\infty[\to \mathbb{R}]$ dada por

$$F(x) = \int_{x}^{2x} e^{-t^2} dt$$

Determine sus extremos absolutos y sus puntos de inflexión.

4. (4pts) Calcule: $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx \rightarrow (4x)^{-1} \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$

5. (4pts) Calcule el área de R, la región delimitada por las gráficas de $x=0, y=e^x$ y la recta tangente a $y = e^x$ que pasa por el origen.

1-605(20) - 605(20) 8 de mayo de 2017 * Lin f(x) L

1: 1a(x)

Hecho en LATEX