

Total Marks: 90

Times: 3 hours

BRAC University MNS Department Final Examination Spring Semester 2014

Course Title:Principles of Physics - II

Course ID: PHY 112

Date: April 24, 2014

Instructions: Read them carefully:

- DO NOT make any rough work on the question paper. Do it on the last page of your answer script.
- Answer the MCQ part in Section B on the question paper, NOT on the answer script.
- Write your name and ID# at the top of each page of the MCQ part (i.e. from page-3 to page-5).
- You must return the question paper along with your answer script.

SECTION A: Problem solving

Answer any five questions. Marks are as indicated:

Four point charges are placed at each corner of a square with side length $a = 1.50 \, m$. The charges all have the same magnitude $q=20.0\mu C$. Two of the charges are positive and two are negative, as shown in Figure-1.

Figure 2: Question-2(b)

- (a) (7 marks) What is the direction and magnitude of the net electric field at the centre of the square due to the four charges?
- (b) (5 marks) If a particle of charge $q_o = -15.0 \mu C$ and mass $m = 1.78 \times 10^{-8} \, kg$ is placed at the centre P of the square, calculate the net force on this charge due to the other charges.
- (c) (4 marks) If the charged particle qo is released from rest at point P, find the magnitude and direction of its acceleration just after being released.
- a) The plates of a parallel-plate capacitor in vacuum are 5.00 mm apart and the area of each plate is $U_{2.00 \, m^2}$. A $10.0 \, kV$ potential difference is applied across the capacitor.
 - i. (6 marks) Compute the capacitance C and the charge Q on each plate.
 - ii (4 marks) Calculate the magnitude of the electric field between the plates.
- (b) (6 marks) Figure-2 shows a system of six capacitors with capacitance $C_1=C_5=C_6=6\mu {
 m F}$ and 3. A particle with a charge $q = -1.24 \times 10^{-8} \, \mathrm{C}$ and mass $m = 1.81 \times 10^{-3} \, kg$ is moving with a velocity $\vec{v} = (4.19 \times 10^4 \, m/s)\hat{i} - (3.85 \times 10^4 \, m/s)\hat{j}$ in a uniform magnetic field $\vec{B} = (1.40 \, \hat{i})^{\mathrm{T}}$. $C_2 = C_3 = C_4 = 4\mu F$. The potential difference across the points a and b is V_{ab} . Calculate the

 - (b) (5 marks) Find the magnitude and direction of the acceleration of the charged particle. (c) (4 marks) What is the angle between \vec{B} and \vec{F} ?

Page 1 of 5

Figure 4: Question-5

4. Two infinitely long wires separated by a distance $d = 22 \, cm$ are carrying currents in the same direction as shown in Figure-3. Current in wire 1 is $I_1 = 2.5 \,\mathrm{A}$ and current in the wire 2 is $I_2 = 5.5 \,\mathrm{A}$.

- (a) (7 marks) Find the magnitude and direction of the net magnetic field \vec{B} half-way between the wires.
- (b) (5 marks) Calculate the magnitude and direction of the force on 1 m long section of wire 1, due to the current in wire 2.
- (c) (2 marks) Will wire 1 and wire 2 attract or repel each other?
- (d) (2 marks) If the current in wire 2 is reversed what will be the magnitude and direction of the force on wire 1?
- When the loop with $2.00 \, m$ sides is perpendicular to a uniform magnetic field \vec{B} , with half the area of the loop in the field as shown in Figure-4. The loop contains an ideal battery with $E_b = 20.0 \, V$ and a resistor of $R = 25 \, \Omega$. The magnitude of the field varies with time according to:

$$\vec{B} = 0.0420 + 0.870 \,t$$

with \vec{B} in tesla and t in seconds.

- (a) (7 marks) Calculate the magnitude and direction of the induced emf in the circuit.
- (b) (5 marks) Find out the net emf in the circuit.
 - (c) (4 marks) What are the size and direction of the net current around the loop?
 - 6. The LRC series circuit consists of a 300Ω resistor, a 60mH inductor and a $0.50\mu F$ capacitor as shown in Figure-5. It is connected to a 1×10^4 rad/s excillator with a peak voltage, $\varepsilon_m = 50 V$.

(a) (6 marks) Calculate the capacitive reactance X_C , inductive reactance X_L and the total integral Zof the circuit.

- (b) (5 marks) Calculate the current amplitude I and the phase angle ϕ .
- (c) (3 marks) Determine the voltage amplitude V_R , V_L and V_C across each circuit element.
- (d) (2 marks) What is the resonant frequency of the circuit in both rad/s and in Hz?
- 7. (a) (4 marks) Find the longest and the shortest wavelengths of the Balmer series. Rydberg constant has the value of $R = 1.097 \times 10^7 \, m^{-1}$.
 - (b) (3 marks) Calculate the hydrogen atom's lowest level energy in eV. You can use the formula given below:

$$E_n = -\frac{me^4}{8\epsilon_0^2 h^2} \left(\frac{1}{n^2}\right), \quad n = 1, 2, 3...$$

where the terms have their usual meanings

- (c) (5 marks) A spacecraft is moving with respect to the earth. A flashing light on the spacecraft generate a flash every 1.5 s. A person based on earth measures that the time between the flashes is 2.5 s. How 2-4 ×100 m fast is the spacecraft moving relative to the earth?
- (d) (4 marks) What is the apparent length of a metre stick which is in the spacecraft to a person on
- (a) A radioactive nucleus ^{226}Ra contains 3.0×10^{16} nuclei at t = 0 sec. The half-life of the nucleus is 1.6×10^3 years.
 - 4.33×104 i. (3 marks) What is the decay constant of ^{226}Ra nucleus?
 - ii. (3 marks) Determine the activity at t = 0 sec for this ^{226}Ra nucleus. 1.2 99×10^3 γ^{-1} Sim. (3 marks) What is the decay rate 2.0×10^3 years later? (8.7 × 10¹²) 7^{-1} iv. (3 marks) How many undecayed nuclei will remain after 3.0×10^3 years? 8.18×10^{15}
 - (b) (4 marks) Complete the following decay processes by stating what the symbol X represents.
 - i. ${}^{226}_{88}Ra \longrightarrow {}^{222}_{86}Rn + X$ ii. ${}^{14}_{6}C \longrightarrow {}^{14}_{7}N + X$

 - iii. $^{30}_{15}P \longrightarrow ^{30}_{14}Si + X$ iv. $^{231}_{90}Th^* \longrightarrow ^{231}_{90}Th + X$

SECTION B. Multiple Choice Questions

Answer any ten questions. Marks are as indicated:

/10

i. Figure-6 shows three points a, b and c in the vicinity of two point charges. The charges have equal magnitudes. Rank the potentials V_a to V_c in order from most positive to most negative :

ii. A charged particle moves perpendicular to a magnetic field as shown in Figure-7. The direction of the magnetic field \vec{B} is:

Figure 7: Queștion-9(ii)

A. Into the page

Out of the page

C. Upward . D. Downward

iii. Figure-8 shows three arrangements of RL circuits with magnitude of each resistor R and inductor L. Rank the three time constants τ_a to τ_c in the circuit a to circuit c, greatest first:

Figure 8: Question-9(iii)

- iv. A magnetic field has the same direction and magnitude B everywhere. A circular area A is bounded by the loop of a wire. Which of the following statements is true concerning the magnitude of the magnetic flux that passes through this area?

A. It is zero these.

- B. It is BA
- \mathcal{G} . Its maximum possible value is BA

iv.

v. Figure-9 shows four situations in which two very long wires are carrying the same current, although the directions of the currents are different. The point P in the drawings is equidistant from each wire. Which one (or more) of these situations give(s) rise to a zero net magnetic field at point P?

Figure 9: Question-9(v)

2 and 4

- B. Only 1
- C. Only 2
- D. 2 and 3
- vi. A positive point charge q_1 creates an electric field of magnitude E_1 at a spot located at a distance r_1 from the charge. The charge is replaced by another positive point charge q_2 , which creates a field of magnitude $E_2 = E_1$ at a distance of $r_2 = 2r_1$. How, is q_2 related to q_1 ?

A.
$$q_2 = 2q_1$$

B.
$$q_2 = \frac{1}{2}q$$

D.
$$q_2 = \frac{1}{4}q_1$$

vi.

vii. You have three resistors, each of which has a value of $R\Omega$. By connecting all the three resistors in various ways, which one of the following resistance values you cannot obtain?

 \mathbf{A} . 3R

D. $\frac{1}{3}R$

vii.

Fach of the four phasor diagrams shown in Figure-10 represents a different circuit. Vo and Io represent respectively, the maximum voltage of the generator and the maximum current in the circuit. Which circuit contains only a resistor?

circuit (b)

circuit (c)

circuit (d)

Figure 10: Question-9(viii)

- A. circuit-(a)
- B. circuit-(b)
- C. circuit-(c)

ix. Which of the following quantities will two observers always measure to be the same, regardless of the relative velocity between the observers?

- A./The time interval between two events The speed of light in a vacuum
- B. The length of an object D. The relative speed between the observers

•	
IX.	_

x. A circular loop of a wire is stationary in a magnetic field \vec{B} as shown in Figure-11. The current in the loop is:

Figure 11: Question-9(x)

B. counterclockwise

D. none of these

xi. The magnitude of the electric filed inside a capacitor having two positively charged parallel conducting plate is:

A.
$$E = \frac{\sigma}{\epsilon_o}$$

$$C$$
. $E=0$

vi			

, xii. If a positive test charge q moves towards an increasing electric potential energy its velocity will:

A. increase

C. remain the same

D. none of these