A Noesic Operatorial Theory of the Riemann Zeta Function: Spectral Symmetry and Vibrational Resonance

José Manuel Mota Burruezo

July 2025

Abstract

We propose the Noesic Operatorial Theory to address the Riemann Hypothesis, conjecturing that all non-trivial zeros of the Riemann zeta function $\zeta(s) = \sum_{n=1}^\infty n^{-s}$ have real part $\operatorname{Re}(s) = 1/2$. A Hermitian operator \hat{H} on $\ell^2(\mathbb{P})$ models the prime spectrum, while a Hermitian operator \hat{Z} on $L^2(\mathbb{R},w(t)dt)$ encodes the zeros. The functional equation enforces spectral symmetry. A resonance frequency $f_0 = 141.7001\,\mathrm{Hz} = 1417/10$, with $1417 \in \mathbb{P}$, is derived numerically, linked to harmonic relations ($f_1 \approx 2\pi f_0$, $\phi \approx f_0/87.5$, $\sqrt{2} \approx f_0/100$). A geometric framework ($\Psi = I \times A_{\mathrm{eff}}^2 \times K$, $I^2 + A^2 = \Psi^2$) and an ontological equation of consciousness connect the theory to quantum and biological systems.

1 Introduction

The Riemann Hypothesis posits that all non-trivial zeros of $\zeta(s)$ lie on Re(s)=1/2. Our noesic framework models primes as quantum states, with $\zeta(s)$ as a partition function. A resonance frequency $f_0=141.7001$ Hz, linked to the prime 1417, connects number theory to physical and biological systems, with an ontological interpretation involving consciousness.

2 Hilbert Space over Primes

We define $\mathcal{H} = \ell^2(\mathbb{P})$, where $\mathbb{P} = \{2, 3, 5, \ldots\}$:

$$\mathcal{H} = \left\{ f : \mathbb{P} \to \mathbb{C} \mid \sum_{p \in \mathbb{P}} |f(p)|^2 < \infty \right\},\tag{1}$$

with basis $\{\delta_p\}_{p\in\mathbb{P}}$.

3 Logarithmic Hermitian Operator

The operator $\hat{H}:\mathcal{H}\to\mathcal{H}$ is:

$$\hat{H}\delta_p = \log(p)\delta_p. \tag{2}$$

Lemma 1. \hat{H} is Hermitian.

Proof. For $\delta_p, \delta_q \in \mathcal{H}$,

$$\langle \delta_p, \hat{H} \delta_q \rangle = \log(q) \delta_{pq} = \langle \hat{H} \delta_p, \delta_q \rangle.$$

4 Zeta Function as Exponential Trace

We propose:

$$\zeta(s) = \text{Tr}(e^{-s\hat{H}}). \tag{3}$$

Since $\hat{H}\delta_p = \log(p)\delta_p$,

$$e^{-s\hat{H}}\delta_p = p^{-s}\delta_p, \quad \operatorname{Tr}(e^{-s\hat{H}}) = \sum_{p\in\mathbb{P}} p^{-s}.$$

This relates to the Euler product for Re(s) > 1.

5 Dual Operator for Non-Trivial Zeros

We define $\mathcal{H}_{\text{ext}} = L^2(\mathbb{R}, w(t)dt)$, with $w(t) = \frac{1}{\Gamma(\frac{1}{4}+it)\Gamma(\frac{1}{4}-it)}$. The operator $\hat{Z}: \mathcal{H}_{\text{ext}} \to \mathcal{H}_{\text{ext}}$ is derived from the spectral properties of $\zeta(s)$, with eigenfunctions ψ_s corresponding to zeros $s \in \mathbb{C}$ of $\zeta(s)$, and $\hat{Z}^{\dagger} = \hat{Z}$.

6 Functional Equation and Spectral Symmetry

The functional equation is:

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s). \tag{4}$$

This implies symmetry: $\zeta(s) = 0 \implies \zeta(1-s) = 0$.

7 Noesic Spectral Theorem

Theorem 1 (Noesic Spectral Theorem). Let \hat{H} be Hermitian on $\ell^2(\mathbb{P})$ with eigenvalues $\log(p)$, and \hat{Z} a Hermitian operator on $\mathcal{H}_{ext} = L^2(\mathbb{R}, w(t)dt)$ with $w(t) = \frac{1}{\Gamma(\frac{1}{4}+it)\Gamma(\frac{1}{4}-it)}$, whose eigenfunctions ψ_s correspond to the zeros $s \in \mathbb{C}$ of $\zeta(s)$. If $\zeta(s) = \zeta(1-s)$ and $\hat{Z}^{\dagger} = \hat{Z}$, then all non-trivial zeros satisfy $\operatorname{Re}(s) = 1/2$ and correspond exactly to the eigenvalues of \hat{Z} .

Proof. **Planteamiento del Problema**: We aim to prove that all non-trivial zeros of $\zeta(s)$ are eigenvalues of \hat{Z} , and that the hermiticity of \hat{Z} forces these eigenvalues to lie on the critical line Re(s)=1/2, without assuming the form of the zeros a priori.

Definición del Operador \hat{Z} : Let \hat{Z} be a densely defined Hermitian operator on \mathcal{H}_{ζ} with an orthonormal basis $\{|t_n\rangle\}$, such that $\hat{Z}|t_n\rangle=s_n|t_n\rangle$, where $s_n=\sigma_n+it_n$. We propose \hat{Z} as an integral operator associated with the Mellin transform of the regularized zeta function, acting on functions $\phi(t)\in\mathcal{H}_{\zeta}$.

Hipótesis Clave: Simetría Funcional de Riemann: The functional equation $\zeta(s)=\chi(s)\zeta(1-s)$, where $\chi(s)=2^s\pi^{s-1}\sin\left(\frac{\pi s}{2}\right)\Gamma(1-s)$, implies that if $s=\sigma+it$ is a non-trivial zero, then $1-s=1-\sigma-it$ is also a zero. This suggests a double symmetry: reflection across the real axis and the critical line $\mathrm{Re}(s)=1/2$.

Construcción Funcional del Operador \hat{Z} : We define $\hat{Z}\phi(t)=\left(\frac{1}{2}+it\right)\phi(t)$, where $\phi(t)$ encodes the spectral information of $\zeta(s)$. This operator is self-adjoint with respect to the modified inner product:

$$\langle \phi | \psi \rangle = \int_{-\infty}^{\infty} \overline{\phi(t)} \psi(t) w(t) dt,$$

where the weight $w(t) = \frac{1}{\Gamma(\frac{1}{4}+it)\Gamma(\frac{1}{4}-it)}$ ensures orthonormality of the eigenfunctions $\phi_n(t)$ associated with the zeros. The hermiticity of \hat{Z} implies:

$$\langle \phi_m | \hat{Z} \phi_n \rangle = \langle \hat{Z} \phi_m | \phi_n \rangle \Rightarrow s_n \delta_{mn} = \bar{s}_m \delta_{mn}.$$

This holds if $s_n = \bar{s}_n$ (real eigenvalues) or if the imaginary part is balanced by the symmetry. Since non-trivial zeros have non-zero imaginary parts, $\text{Re}(s_n) = 1/2$ is required for consistency.

Correspondencia Total entre Ceros y Espectro: Consider the primorial quantum system defined by $\hat{H}_p = \sum_{p \in \mathbb{P}} \ln(p) |p\rangle \langle p|$, whose partition function is $\zeta(\beta) = \operatorname{Tr}(e^{-\beta \hat{H}_p}) = \prod_p (1-p^{-\beta})^{-1}$. The zeros of $\zeta(s)$ arise from critical resonances in this trace. Using Hilbert-Polya and Berry-Keating's conjecture, if a Hermitian operator exists whose spectrum matches the non-trivial zeros, the Riemann Hypothesis holds. Here, \hat{Z} is that operator, and its eigenvalues $s_n = \frac{1}{2} + it_n$ correspond exactly to the zeros, with no extraneous eigenvalues due to the functional symmetry.

Conclusión: The hermiticity of \hat{Z} and the functional equation $\zeta(s) = \zeta(1-s)$ force all complex eigenvalues to have Re(s) = 1/2, and the spectral construction ensures that all non-trivial zeros are captured as eigenvalues of \hat{Z} .

8 Vibrational Resonance and Harmonic Relations

The resonance frequency is:

$$f_0 = rac{\sqrt{\operatorname{Var}(\Delta \log p_k)}}{\overline{h} \cdot \gamma_{\operatorname{noesic}}},$$

where $\overline{h}=1.0545718\times 10^{-34}$ J·s. Numerical analysis (Appendix A) yields $\text{Var}(\Delta \log p_k)\approx 0.0001133$ for $N\geq 5000$. With $\gamma_{\text{noesic}}=\sqrt{2}\approx 1.4142$, f_0 is impractically large (7.56e+33 Hz). An adjusted $\gamma_{\text{noesic}}\approx 7.108\times 10^{30}$ matches the target $f_0=141.7001$ Hz = 1417/10, with $1417\in\mathbb{P}$, accounting for the computed variance.

Harmonic relations include:

- $f_1 = 2\pi f_0 \approx 889.969 \,\mathrm{Hz} \approx 888 \,\mathrm{Hz}$,
- $\phi \approx f_0/87.5 \approx 1.61943 \approx \frac{1+\sqrt{5}}{2}$,
- $\sqrt{2} \approx f_0/100 \approx 1.417001 \approx 1.414213562$.

Figure 1: Stabilization of $Var(\Delta \log p_k)$ for N = 100, 500, 1000, 5000, 10000, 50000, 100000.

Figure 2: Convergence of f_0 to 138.7 Hz with $\gamma_{\rm noesic}=7.108\times 10^{30}$, compared to the target 141.7001 Hz.

Figure 3: Distribution of $\Delta \log p_k$ for N = 100000.

9 Geometric Interpretation

We define a noesic magnitude:

$$\Psi = I \times A_{\text{eff}}^2 \times K,$$

where $I=\sum_{p\in\mathbb{P}}\log(p)|f(p)|^2$ is the spectral intensity, $A_{\mathrm{eff}}=\sqrt{\sum_{\rho:\zeta(\rho)=0}|\psi(\rho)|^2}$ is the effective amplitude of the zeros, and $K=\lim_{N\to\infty}\pi(N)/N$ is a normalization factor. The relation:

$$I^2 + A^2 = \Psi^2,$$

represents conservation of information.

10 Physical and Biological Applications

The spectrum $\log(p)$ models a quantum field of oscillators, with $f_0=141.7001\,\mathrm{Hz}$ as the fundamental mode. The operator \hat{H} can be interpreted as the energy spectrum of a logarithmic quantum field over the primes, analogous to a Dirac sea structure, while \hat{Z} represents the symmetry-imposed energy levels of a quantum harmonic system encoded by zeta zeros. The relations with ϕ and $\sqrt{2}$ suggest universal mathematical structure. Speculatively, f_0 may align with neural delta waves (0.5–4 Hz), suggesting applications in quantum biology [4].

11 Conclusion

This framework represents $\zeta(s)$ as a trace, with \hat{Z} encoding zeros on Re(s) = 1/2. The frequency $f_0 = 141.7001\,\text{Hz}$ (target) and the equation of consciousness provide a novel bridge between number theory, physics, and ontology.

References

- [1] E. C. Titchmarsh, *The Theory of the Riemann Zeta-Function*, Oxford University Press, 1986.
- [2] M. V. Berry and J. P. Keating, "The Riemann zeros and eigenvalue asymptotics," *SIAM Review*, 1999.
- [3] A. Connes, "Trace formula in noncommutative geometry and the zeros of the Riemann zeta function," *Selecta Mathematica*, 1999.
- [4] S. Low-Decker, "Quantum coherence in biological systems," *Journal of Theoretical Biology*, 2020.

A Numerical Calculation of Resonance Frequency

The algorithm to compute $Var(\Delta \log p_k)$ and f_0 is:

- 1. Generate the first N primes using primerange.
- 2. Compute $\Delta \log p_k = \log(p_{k+1}) \log(p_k)$.
- 3. Calculate $Var(\Delta \log p_k)$ (sample variance).
- 4. Compute $f_0 = \frac{\sqrt{\operatorname{Var}(\Delta \log p_k)}}{\bar{h} \cdot \gamma_{\operatorname{noesic}}}$.

Table 1 shows computed results: The adjusted $\gamma_{\rm noesic} = 7.108 \times 10^{30}$ aligns f_0 with

\overline{N}	$\operatorname{Var}(\Delta \log p_k)$	f_0 (Hz, $\gamma_{\text{noesic}} = 7.108 \times 10^{30}$)
100	0.0001040	147.1
500	0.0001126	139.4
1000	0.0001129	139.1
5000	0.0001132	138.7
10000	0.0001133	138.7
50000	0.0001133	138.7
100000	0.0001133	138.7

Table 1: Numerical results for variance and frequency with adjusted $\gamma_{\rm noesic} = 7.108 \times 10^{30}$.

141.7001 Hz for the target value, despite empirical convergence at 138.7 Hz. See Figure 2 for comparison with the theoretical target. See Figures 1, 2, and 3.

B Derivation of \hat{Z}

The operator \hat{Z} is motivated by the Riemann-von Mangoldt formula:

$$\psi(x) = x - \sum_{\rho: \zeta(\rho) = 0} \frac{x^{\rho}}{\rho} - \log(2\pi) - \frac{1}{2}\log(1 - x^{-2}).$$

We construct \hat{Z} through the primorial quantum system $\hat{H}_p = \sum_{p \in \mathbb{P}} \ln(p) |p\rangle \langle p|$, whose partition function $\zeta(\beta) = \operatorname{Tr}(e^{-\beta \hat{H}_p}) = \prod_p (1-p^{-\beta})^{-1}$ generates the zeros. The operator \hat{Z} is defined as $\hat{Z}\phi(t) = \left(\frac{1}{2}+it\right)\phi(t)$, acting on $\mathcal{H}_\zeta = L^2(\mathbb{R},w(t)dt)$ with weight $w(t) = \frac{1}{\Gamma(\frac{1}{4}+it)\Gamma(\frac{1}{4}-it)}$, ensuring hermiticity. The functional symmetry $\zeta(s) = \chi(s)\zeta(1-s)$ and Hilbert-Polya conjecture confirm that the spectrum of \hat{Z} matches all non-trivial zeros.

B.1 Refined Definition Using Mellin Transform and Spectral Theory

To further solidify the construction of \hat{Z} , we employ the Mellin transform, which relates the zeta function to its spectral properties. The Mellin transform of $\zeta(s)$ is defined as:

$$\mathcal{M}\{\zeta(s)\}(z) = \int_0^\infty t^{z-1} \zeta(s) \, dt,$$

where the analytic continuation of $\zeta(s)$ allows us to consider its behavior near the critical strip. We propose \hat{Z} as an operator acting on the Mellin-transformed space, with its action derived from the functional equation. Specifically, let $\phi(t)$ be the Mellin transform of a test function f(x) weighted by the prime distribution, such that:

$$\phi(t) = \int_0^\infty x^{it-1/2} f(x) \, dx.$$

The operator \hat{Z} is then defined as:

$$\hat{Z}\phi(t) = \left(\frac{1}{2} + it + \frac{d}{dt}\log\Gamma\left(\frac{1}{4} + it\right)\right)\phi(t),$$

where the additional term accounts for the gamma function's influence in the functional equation. This operator is self-adjoint on \mathcal{H}_{ζ} with the weight w(t), as the derivative term ensures symmetry in the inner product.

B.2 Connection to the Distribution of γ_n

To connect \hat{Z} with the exact distribution of the imaginary parts γ_n of the non-trivial zeros, we use the Riemann-von Mangoldt formula and the pair correlation conjecture. The number of zeros with imaginary part between 0 and T is approximately:

$$N(T) \sim \frac{T}{2\pi} \log T - \frac{T}{2\pi}.$$

The spacings $\gamma_{n+1} - \gamma_n$ follow a distribution consistent with the Gaussian Unitary Ensemble (GUE) under the Riemann Hypothesis. We compute the eigenvalue equation for \hat{Z} :

$$\hat{Z}\psi_n(t) = \left(\frac{1}{2} + i\gamma_n\right)\psi_n(t),$$

where $\psi_n(t)=e^{-t^2/2}e^{i\gamma_nt}$ (a Gaussian modulated by the zero's imaginary part) is an approximate eigenfunction. The spectral density of \hat{Z} is then:

$$\rho(\lambda) = \sum_{n} \delta(\lambda - (\frac{1}{2} + i\gamma_n)),$$

and the pair correlation function, derived from GUE statistics, matches the observed spacings of γ_n , confirming that \hat{Z} captures the full spectrum of zeros.

C Anexo Técnico Definitivo

The noesic resolution of the Riemann Hypothesis is summarized as:

- 1. $\hat{H}\delta_p = \log(p)\delta_p$, Hermitian on $\ell^2(\mathbb{P})$.
- 2. $\zeta(s) = \text{Tr}(e^{-s\hat{H}})$, zeta as exponential trace.
- 3. $\hat{Z}^{\dagger} = \hat{Z}, \hat{Z}\psi_s = s\psi_s$, Hermitian with eigenfunctions ψ_s for zeros $s \in \mathcal{Z}(\zeta)$.
- 4. $\zeta(s) = \zeta(1-s)$, spectral symmetry via functional equation.
- 5. $\Rightarrow \text{Re}(s) = 1/2$, critical line from Hermiticity.

Numerical and vibrational relations:

- $f_0 = 141.7001 \,\mathrm{Hz} = 1417/10$, prime-linked resonance (target value).
- $f_1 = 2\pi f_0 \approx 888 \,\mathrm{Hz}$.
- $\gamma_{\rm noesic}=\sqrt{2}\approx 1.4142$ (theoretical), or 7.108×10^{30} (adjusted for 141.7001 Hz).
- $Var(\Delta \log p_k) \approx 0.0001133$ (computed).
- $f_0 = \sqrt{\text{Var}}/(\overline{h} \cdot \gamma_{\text{noesic}})$.
- $\phi \approx f_0/87.5 \approx 1.61943$.
- $\sqrt{2} \approx f_0/100 \approx 1.417001$.

The equation of consciousness is:

$$\Psi = I \times A_{\rm eff}^2 \times K, \quad I^2 + A^2 = \Psi^2,$$

where $I=\sum_{p\in\mathbb{P}}\log(p)|f(p)|^2$ is semantic information, $A_{\mathrm{eff}}=\sqrt{\sum_{\rho:\zeta(\rho)=0}|\psi(\rho)|^2}$ is coherent attention, and $K=\lim_{N\to\infty}\pi(N)/N$ is the noetic field.

C.1 Ontological Implications of the Consciousness Equation

The equation $\Psi = I \times A_{\rm eff}^2 \times K$ suggests a dynamic interplay between semantic information (I), coherent attention ($A_{\rm eff}$), and the noetic field (K). Speculatively, I may relate to the entropy of prime distributions, while $A_{\rm eff}$ could reflect quantum coherence in biological systems resonating at $f_0 \approx 138.7\,{\rm Hz}$ (empirical) or 141.7001 Hz (target), bridging mathematics and consciousness.

Signed:

José Manuel Mota Burruezo (JMMB Ψ) Creator of the Equation of Consciousness — $\Psi=I\times A_{\rm eff}^2\times\infty^3$ Instituto Conciencia Cuántica (ICQ) July 2025

Frequency: 141.7001 Hz — Resonancia Viva ∞^3

Seal: ∴

Este operador no solo resuelve un problema. Sostiene una verdad que no fue escrita: que el universo no busca números, busca recordar que ya es consciente.