Chapter 6: Techniques of Integration

- 6.1 Integration by Parts
- 6.2 Trigonometric Integrals and Substitutions
- 6.3 Partial Fractions
- 6.4 Integration with Tables and Computer Algebra Systems
- 6.5 Approximate Integration
- 6.6 Improper Integrals

The pictures are taken from the books:

[1) James Stewart, Essential Calculus, Early Transcendentals, Cengage Learning, 2nd Edition, 2012, ISBN-13: 978-1133112280]
2) G. Strang and E. J. Herman, Calculus 1, https://openstax.org/details/books/calculus-volume-1

6.1 Integration by Parts

• Formula for Integration by parts

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

• Let u = f(x) and v = g(x), then

$$\int u dv = uv - \int v du$$

6.1 Examples

• Calculate the following integrals

1.
$$\int x \sin(x) dx$$

2.
$$\int \ln(x) dx$$

3.
$$\int e^x \sin(x) dx$$

$$\mathbf{4.} \int t^2 e^t \mathrm{d}t$$

6.1 Integration by Parts

• Formula for definite Integration by parts

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$$

Examples

1.
$$\int_0^1 \tan^{-1}(x) dx$$

2.
$$\int \sin^n(x) dx = -\frac{1}{n} \cos(x) \sin^{n-1}(x) + \frac{n-1}{n} \int \sin^{n-2}(x) dx$$
, where $n \ge 2$

6.2 Trigonometric Integrals and Substitutions

1.
$$\int \cos^3(x) dx$$

5.
$$\int \tan^6(x) \sec^4(x) dx$$

2.
$$\int \sin^5(x) \cos^2(x) dx$$

6.
$$\int \tan(x) dx$$

$$\mathbf{3.} \int_0^\pi \sin^2(x) \mathrm{d}x$$

7.
$$\int \sec(x) dx$$

4.
$$\int \sin^4(x) dx$$

8.
$$\int \tan^3(x) dx$$

6.2 Trigonometric Substitutions

Expression	Substitution	Identity
$\sqrt{a^2-x^2}$	$x = a \sin \theta, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$1 - \sin^2\theta = \cos^2\theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta, -\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$1 + \tan^2\theta = \sec^2\theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$, $0 \le \theta < \frac{\pi}{2}$ or $\pi \le \theta < \frac{3\pi}{2}$	$\sec^2\theta - 1 = \tan^2\theta$

6.2 Examples

$$1. \int \frac{\sqrt{9-x^2}}{x^2} \mathrm{d}x$$

2.
$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$$
 3. $\int \frac{x}{\sqrt{x^2 + 4}} dx$

3.
$$\int \frac{x}{\sqrt{x^2+4}} dx$$

4.
$$\int \frac{1}{\sqrt{x^2 - a^2}} dx$$

$$\mathbf{5.} \int_0^{3\sqrt{3}/2} \frac{x^3}{(4x^2+9)^{3/2}} \mathrm{d}x$$

6. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

• Integrate any rational function (a ratio of polynomials) by expressing it as a sum of simpler fractions, called partial fractions, that we already know how to integrate.

$$\frac{2}{x-1} - \frac{1}{x+2} = \frac{2(x+2) - (x-1)}{(x+2)(x-1)} = \frac{x+5}{x^2+x-2}$$

• Reverse the procedure.

$$\int \frac{x+5}{x^2+x-2} dx = \int \left(\frac{2}{x-1} - \frac{1}{x+2}\right) dx = 2\ln|x-1| - \ln|x+2| + C$$

• Consider the polynomials

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
$$Q(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

with $deg(P) > deg(Q) \Leftrightarrow n > m$, and the integrand

$$f(x) = \frac{P(x)}{Q(x)}.$$

Then, the general procedure for f is

$$f(x) = \frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}, \quad \deg(R) < \deg(Q),$$

where S and R are also polynomials

• There are 4 cases to be considered:

Case I: Q(x) is a product of linear factors

$$Q(x) = (a_1x + b_1)(a_2x + b_2) + \dots + (a_kx + b_k)$$

$$\Rightarrow \frac{R(x)}{Q(x)} = \frac{A_1}{a_1x + b_1} + \frac{A_2}{a_2x + b_2} + \dots + \frac{A_k}{a_kx + b_k}$$

Example:
$$\int \frac{x^2 + 2x - 1}{2x^3 + 3x^2 - 2x} dx = \int \frac{x^2 + 2x - 1}{x(2x - 1)(x + 2)} dx$$

• There are 4 cases to be considered:

Case II: Q(x) is a product of linear factors, some of which are repeated.

$$Q(x) = (a_1x + b_1)^2 (a_2x + b_2)^3$$

$$\Rightarrow \frac{R(x)}{Q(x)} = \frac{A_1}{a_1x + b_1} + \frac{A_2}{(a_1x + b_1)^2} + \frac{B_1}{a_2x + b_2} + \frac{B_2}{(a_2x + b_2)^2} + \frac{B_3}{(a_2x + b_2)^3}$$

Example:
$$\int \frac{x^4 - 2x^2 + 4x + 1}{x^3 - x^2 - x + 1} dx = \int \frac{x^4 - 2x^2 + 4x + 1}{(x - 1)^2 (x + 1)} dx$$

• There are 4 cases to be considered:

Case III: Q(x) contains irreducible quadratic factors, none of which is repeated.

$$Q(x) = (a_1x + b_1)(a_2x^2 + b_2)(a_3x^2 + b_3)$$

$$\Rightarrow \frac{R(x)}{Q(x)} = \frac{A_1}{a_1x + b_1} + \frac{B_1x + B_2}{a_2x^2 + b_2} + \frac{C_1x + C_2}{a_3x^2 + b_3}$$

Example:
$$\int \frac{2x^2 - x + 4}{x^3 + 4x} dx = \int \frac{2x^2 - x + 4}{x(x^2 + 4)} dx$$

• There are 4 cases to be considered:

Case IV: Q(x) contains a repeated irreducible quadratic factor.

$$Q(x) = (a_1x + b_1)(a_2x^2 + b_2x + c_2)(a_3x^2 + b_3)^3$$

$$\Rightarrow \frac{R(x)}{Q(x)} = \frac{A_1}{a_1x + b_1} + \frac{B_1x + B_2}{a_2x^2 + b_2x + c_2} + \frac{C_1x + C_2}{a_3x^2 + b_3} + \frac{D_1x + D_2}{(a_3x^2 + b_3)^2} + \frac{E_1x + E_2}{(a_3x^2 + b_3)^3}$$

Example:
$$\int \frac{1 - x + 2x^2 - x^3}{x + 2x^3 + x^5} dx = \int \frac{1 - x + 2x^2 - x^3}{x(x^2 + 1)^2} dx$$

6.4 Integration with Tables and Computer Algebra Systems

• There are extensive **tables** with **hunderts of pages** of indefinite integrals. It should be remembered, however, that integrals do not often occur in exactly the form listed in a table.

Examples: 1.
$$I_1 = \int \frac{x^2}{\sqrt{5 - 4x^2}} dx$$

$$2. \quad I_2 = \int x^3 \sin(x) dx$$

3.
$$I_3 = \int x\sqrt{x^2 + 2x + 4} dx$$

6.4 Integration with Tables and Computer Algebra Systems

• Use of software: Derive, Mathematica, Maple

Caution! A hand computation sometimes produces an indefinite integral in a form that is more convenient than a machine answer.

Example:

For the function $f(x) = x^2 + 2x + 4$ we have

$$\int x f(x) dx = \frac{1}{3} [f(x)]^{3/2} - \frac{1+x}{2} \sqrt{f(x)} - \frac{3}{2} \ln\left(x+1+f(x)\right) + C \quad \text{(by hand)}$$

$$= \frac{1}{3} [f(x)]^{3/2} - \frac{2x+2}{4} \sqrt{f(x)} - \frac{3}{2} \sinh^{-1}\left[\frac{\sqrt{3}}{3}(1+x)\right] \quad \text{(Maple)}$$

$$= \left(\frac{5}{6} + \frac{x}{6} + \frac{x^2}{3}\right) \sqrt{f(x)} - \frac{3}{2} \sinh^{-1}\left(\frac{1+x}{\sqrt{3}}\right) \quad \text{(Mathematica)}$$

• There are two situations in which it is impossible to find the exact value of a definite integral:

i. Unknown Antiderivative,

$$f(x) = \int_0^1 e^{x^2} \mathrm{d}x,$$

 $f(x) = \int_0^1 e^{x^2} dx,$ $g(x) = \int_0^1 \sqrt{1 + x^3} dx$

ii. No formula for experimental data,

• Numerical Solution: Any **Riemann sum** could be used as an **approximation**

to the integral,
$$\int_a^b f(x) dx \approx \sum_{i=1}^n f(x_i^*) \Delta x$$
, with $\Delta x = \frac{b-a}{n}$

• Trapezoidal Rule: $\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} \frac{1}{2} \Big[f(x_{i-1}) + f(x_{i}) \Big] \Delta x$

where $\Delta x = \frac{b-a}{n}$ and $x_i = a + i \Delta x$

• The **Error**: $\int_a^b f(x) dx = \text{Approximation} + \text{Error}$

Error Bounds: Suppose |f''(x)| < K for $a \le x \le b$. If E_T and E_M are the errors in the **Trapezoidal** and **Midpoint Rules**, then

$$|E_T| \le \frac{K(b-a)^3}{12n^2}$$
 and $|E_M| \le \frac{K(b-a)^3}{24n^2}$

• Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n=5 to approximate the integral $\int_{1}^{2} \frac{1}{x} dx$.

$$\int_{1}^{2} \frac{1}{x} dx = \ln(2) = 0.693147\dots$$

n	L_n	R_n	T_n	M_n
5	0.745635	0.645635	0.695635	0.691908
10	0.718771	0.668771	0.693771	0.692835
20	0.705803	0.680803	0.693303	0.693069

20

• Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n=5 to approximate the integral $\int_{1}^{2} \frac{1}{x} dx$.

$$\int_{1}^{2} \frac{1}{x} dx = \ln(2) = 0.693147\dots$$

n	E_L	E_R	E_T	E_M
5 10 20	-0.052488 -0.025624 -0.012656	0.047512 0.024376 0.012344	-0.002488 -0.000624 -0.000156	0.001239 0.000312 0.000078

21

• How large should we take n in order to guarantee that the **Trapezoidal** and **Midpoint Rule** approximations for $\int_{1}^{2} \frac{1}{x} dx$ are accurate to within 0.0001?

• Simpson's Rule: Approximate a curve by a **parabola**

• Simpson's Rule: Approximate a curve by a **parabola**

$$\int_{a}^{b} f(x)dx \approx \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]$$

Error Bound: Suppose $|f^{(4)}(x)| < K$ for $a \le x \le b$. If E_S is the errors in the **Simpson's Rule**, then

$$|E_S| \le \frac{K(b-a)^5}{180n^4}$$

• How large should we take n in order to guarantee that the **Simpson's Rule** approximations for $\int_{1}^{2} \frac{1}{x} dx$ are accurate to within 0.0001?

6.6 Improper Integrals

Improper Integrals of TYPE I:

- **1.** If f(x) is continuous on $[a, \infty)$ then: $\int_a^\infty f(x) dx = \lim_{b \to \infty} \int_a^b f(x) dx$
- **2.** If f(x) is continuous on $(-\infty, b]$ then: $\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$
- **3.** If f(x) is continuous on $(-\infty, \infty)$ then: $\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$

where c is any real number.

In each case, if the limit is finite we say that the improper integral **converges** and that the limit is the value of the improper integral. If the limit fails to exist, the improper integral **diverges**.

26

6.6 Examples

1. For what values of p is the following integral convergent?

$$\int_{1}^{\infty} \frac{1}{x^{p}} \mathrm{d}x$$

2. Evaluate $\int_{-\infty}^{0} x e^{x} dx$

3. Evaluate
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

6.6 Improper Integrals

Improper Integrals of TYPE II: Discontinuous Integrands

$$\int_{a}^{b} f(x) dx = \lim_{t \to a} \int_{t}^{b} f(x) dx$$

6.6 Improper Integrals

Improper Integrals of TYPE II: Discontinuous Integrands

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$

6.6 Examples

1. Find
$$\int_{2}^{5} \frac{1}{\sqrt{x-2}} dx$$

2. Determine whether $\int_0^{\pi/2} \sec(x) dx$ converges or diverges.

3. Evaluate $\int_0^3 \frac{\mathrm{d}x}{x-1}$ if possible

6.6 Improper Integrals

Comparison Theorem

Suppose that f and g are continuous functions with $f(x) \geq g(x) \geq 0$ for $x \geq a$.

- **a.** If $\int_a^\infty f(x) dx$ is convergent, then $\int_a^\infty g(x) dx$ is convergent.
- **b.** If $\int_a^\infty g(x) dx$ is divergent, then $\int_a^\infty f(x) dx$ is divergent.

6.6 Examples

1. Show that $\int_0^\infty e^{-x^2} dx$ is convergent.

2. Show that the integral $\int_{1}^{\infty} \frac{1 + e^{-x}}{x} dx$ diverges.