

# TSA02: Exponential Smoothing Models Jakey BLUE



## **Decomposition of Time Series**

- Level; Trend; Seasonality
  - Additive Model
    - systematic component = level + trend + seasonality
  - Multiplicative
    - systematic component = level × trend × seasonality
  - Mixed
    - (level + trend) × seasonality



## Which Model is Making More Senses?

Let's start with an easy case



#### At time t, we want to forecast t + k

- Additive Model  $F_{t+k} = L + (t+k)T + S_{t+k}$
- Multiplicative Model  $F_{t+k} = L \times (t+k)T \times S_{t+k}$
- Mixed  $F_{t+k} = [L + (t+k)T] \times S_{t+k}$





#### Procedure to Build a Static Model

Identify the # of periods in a season.

De-seasonalize the series.

Estimate the level and trend.

Recover the seasonality factors.

Finalize the static model.



#### De-seasonalize the series





#### Formulation of Deseasonalization





| Year | Quarter | Period, t | Demand, $D_t$ | Deseasonalized Demand |
|------|---------|-----------|---------------|-----------------------|
| 1    | 2       | 1         | 8000          |                       |
| 1    | 3       | 2         | 13000         |                       |
| 1    | 4       | 3         | 23000         | 19750                 |
| 2    | 1       | 4         | 34000         | 20625                 |
| 2    | 2       | 5         | 10000         | 21250                 |
| 2    | 3       | 6         | 18000         | 21750                 |
| 2    | 4       | 7         | 23000         | 22500                 |
| 3    | 1       | 8         | 38000         | 22125                 |
| 3    | 2       | 9         | 12000         | 22625                 |
| 3    | 3       | 10        | 13000         | 24125                 |
| 3    | 4       | 11        | 32000         |                       |
| 4    | 1       | 12        | 41000         |                       |



#### The Trend of Deseasonalized Series

| SUMMARY OUTPUT    |              |
|-------------------|--------------|
|                   |              |
| Regression S      | tatistics    |
| Multiple R        | 0.958065237  |
| R Square          | 0.917888998  |
| Adjusted R Square | 0.90420383   |
| Standard Error    | 414.5033124  |
| Observations      | 8            |
|                   |              |
| ANOVA             |              |
|                   | df           |
| Regression        | 1            |
| Residual          | 6            |
| Total             | 7            |
|                   |              |
|                   | Coefficients |
| L                 | 18438.9881   |
| Т                 | 523.8095238  |
|                   |              |





## Level and Trend are Known. Seasonality?

$$\overline{D}_t = 18439 + 524t \qquad S_t = \frac{D_t}{\overline{D}_t}$$

| Year | Quarter | Period, t | <b>Demand,</b> $D_t$ | Deseasonalized<br>Demand | Seasonality, $S_t$ |   |
|------|---------|-----------|----------------------|--------------------------|--------------------|---|
| 1    | 2       | 1         | 8000                 | 18963                    | 0.42               | _ |
| 1    | 3       | 2         | 13000                | 19487                    | 0.67               | _ |
| 1    | 4       | 3         | 23000                | 20010                    | 1.15               | _ |
| 2    | 1       | 4         | 34000                | 20534                    | 1.66               | _ |
| 2    | 2       | 5         | 10000                | 21058                    | 0.47               | _ |
| 2    | 3       | 6         | 18000                | 21582                    | 0.83               | _ |
| 2    | 4       | 7         | 23000                | 22106                    | 1.04               | _ |
| 3    | 1       | 8         | 38000                | 22629                    | 1.68               | _ |
| 3    | 2       | 9         | 12000                | 23153                    | 0.52               | _ |
| 3    | 3       | 10        | 13000                | 23677                    | 0.55               | _ |
| 3    | 4       | 11        | 32000                | 24201                    | 1.32               | _ |
| 4    | 1       | 12        | 41000                | 24725                    | 1.66               | _ |
|      |         |           |                      |                          |                    |   |



#### Predict the Next 4 Periods of Demand

$$F_{4-2} = F_{13} = (L + 13T)\overline{S}_2 = (18439 + 13 \times 524) \times 0.47 = 11868$$
  
 $F_{4-3} = F_{14} = (L + 14T)\overline{S}_3 = (18439 + 14 \times 524) \times 0.68 = 17527$   
 $F_{4-4} = F_{15} = (L + 15T)\overline{S}_4 = (18439 + 15 \times 524) \times 1.17 = 30770$   
 $F_{5-1} = F_{16} = (L + 16T)\overline{S}_1 = (18439 + 16 \times 524) \times 1.67 = 44794$ 





#### **Evaluating the Adequacy of Models**

- How do we measure the errors?  $E_t = F_t D_t$ 
  - variance of forecasting error
  - Mean Absolute Deviation (MAD) ...... MAD<sub>n</sub> =  $\frac{1}{n}\sum_{t=1}^{n}|E_t|$ estimate the standard deviation  $\sigma = 1.25$ MAD
  - Mean Absolute Percentage Error (MAPE) ...... MAPE $_n = \frac{100\%}{n} \sum_{t=1}^{n} \frac{|E_t|}{|D_t|}$ 
    - accuracy in percentage
  - Bias.... Bias<sub>n</sub> =  $\sum_{t=1}^{n} E_t$ 
    - if the model constantly over- or under-estimates demand
  - - $TS_t < -6 \rightarrow underforecasting; TS_t > 6 \rightarrow overforecasting$



## **Homework Revisited**

| Year | Quarter | Period, t | Demand, $D_t$ |
|------|---------|-----------|---------------|
| 1    | 2       | 1         | 8000          |
| 1    | 3       | 2         | 13000         |
| 1    | 4       | 3         | 23000         |
| 2    | 1       | 4         | 34000         |
| 2    | 2       | 5         | 10000         |
| 2    | 3       | 6         | 18000         |
| 2    | 4       | 7         | 23000         |
| 3    | 1       | 8         | 38000         |
| 3    | 2       | 9         | 12000         |
| 3    | 3       | 10        | 13000         |
| 3    | 4       | 11        | 32000         |
| 4    | 1       | 12        | 41000         |





| Year | Q | t  | Demand, $D_t$ | Forecast, $F_t$ | Error, $E_t$ | $E_t^2$  | $MSE_t$ | $ E_t $ | $\mathrm{MAD}_t$ | $\left \frac{E_t}{D_t}\right $ % | $MAPE_t$ | Bias <sub>t</sub> | $TS_t$ |
|------|---|----|---------------|-----------------|--------------|----------|---------|---------|------------------|----------------------------------|----------|-------------------|--------|
| 1    | 2 | 1  | 8000          | 8944            | -944         | 891863   | 891863  | 944     | 944              | 12%                              | 11.80%   | -944              | -1     |
| 1    | 3 | 2  | 13000         | 13317           | -317         | 100637   | 496250  | 317     | 631              | 2%                               | 7.12%    | -1262             | -2     |
| 1    | 4 | 3  | 23000         | 23426           | -426         | 181781   | 391427  | 426     | 563              | 2%                               | 5.37%    | -1688             | -3     |
| 2    | 1 | 4  | 34000         | 34178           | -178         | 31532    | 301453  | 178     | 466              | 1%                               | 4.16%    | -1866             | -4     |
| 2    | 2 | 5  | 10000         | 9933            | 67           | 4534     | 242069  | 67      | 387              | 1%                               | 3.46%    | -1798             | -5     |
| 2    | 3 | 6  | 18000         | 14749           | 3251         | 10568164 | 1963085 | 3251    | 864              | 18%                              | 5.89%    | 1453              | 2      |
| 2    | 4 | 7  | 23000         | 25879           | -2879        | 8290194  | 2866958 | 2879    | 1152             | 13%                              | 6.84%    | -1427             | -1     |
| 3    | 1 | 8  | 38000         | 37665           | 335          | 112273   | 2522622 | 335     | 1050             | 1%                               | 6.09%    | -1092             | -1     |
| 3    | 2 | 9  | 12000         | 10921           | 1079         | 1164345  | 2371702 | 1079    | 1053             | 9%                               | 6.42%    | -12               | 0      |
| 3    | 3 | 10 | 13000         | 16181           | -3181        | 10118912 | 3146423 | 3181    | 1266             | 24%                              | 8.22%    | -3194             | -3     |
| 3    | 4 | 11 | 32000         | 28332           | 3668         | 13452890 | 4083375 | 3668    | 1484             | 11%                              | 8.52%    | 474               | 0      |
| 4    | 1 | 12 | 41000         | 41152           | -152         | 23191    | 3745026 | 152     | 1373             | 0%                               | 7.84%    | 322               | 0      |



#### <u>Model Performance</u>:

 $MSE_{12} = 3745026$   $MAD_{12} = 1375$  $MAPE_{12} = 8\%$ 



## Making the Model More Dynamic

What were the STATIC parts?



## **An Adaptive Forecasting Model**

• From  $F_{t+k} = [L + (t+k)T]S_{t+k}$ to  $F_{t+k} = [L_t + (t+k)T_t]S_{t+k}$ 

#### **Notation Definition:**

 $D_t$  = actual demand observed in period t  $L_t$  = estimate of level at the end of period t  $T_t$  = estimate of trend at the end of period t  $S_t$  = estimate of seasonal factor for period t  $F_{t+k}$  = demand forecast for period t+k $E_t$  = forecast error in period t

- 1. Moving Average
- 2. Single (Simple) Exponential Smoothing
- 3. Trend-Corrected Exponential Smoothing
- 4. Trend- and Seasonality-Corrected Exponential Smoothing



## **Moving Average Model**

• What is "MOVING AVERAGE"?

$$F_{t+1} = L_t = \frac{(D_t + D_{t-1} + \dots + D_{t-N+1})}{N}$$

- Is it really useful? When?
- How to predict?  $F_{t+k} = ?$
- When  $D_{t+1}$  arrived,  $F_{t+k} = L_{t+1} = \frac{(D_t + D_{t-1} + \dots + D_{t-N+2})}{N}$



|      |     |    |       |       | -     |        |       |          |         |         |          |                   |        |
|------|-----|----|-------|-------|-------|--------|-------|----------|---------|---------|----------|-------------------|--------|
| Year | Q   | t  | $D_t$ | $L_t$ | $F_t$ | $E_t$  | Et    | $MSE_t$  | $MAD_t$ | Error % | $MAPE_t$ | Bias <sub>t</sub> | $TS_t$ |
| 1    | 2   | 1  | 8000  |       |       |        |       |          |         |         |          |                   |        |
| 1    | 3   | 2  | 13000 | N = 4 | 1     |        |       |          |         |         |          |                   |        |
| 1    | 4   | 3  | 23000 |       | _     |        |       |          |         |         |          |                   |        |
| 2    | 1   | 4  | 34000 | 19500 |       |        |       |          |         |         |          |                   |        |
| 2    | 2   | 5  | 10000 | 20000 | 19500 | 9500   | 9500  | 18050000 | 9500    | 95.00%  | 95.00%   | 9500              | 1.00   |
| 2    | 3   | 6  | 18000 | 21250 | 20000 | 2000   | 2000  | 15708333 | 5750    | 11.11%  | 53.06%   | 11500             | 2.00   |
| 2    | 4   | 7  | 23000 | 21250 | 21250 | -1750  | 1750  | 13901786 | 4417    | 7.61%   | 37.91%   | 9750              | 2.21   |
| 3    | 1   | 8  | 38000 | 22250 | 21250 | -16750 | 16750 | 47234375 | 7500    | 44.08%  | 39.45%   | -7000             | -0.93  |
| 3    | 2   | 9  | 12000 | 22750 | 22250 | 10250  | 10250 | 53659722 | 8050    | 85.42%  | 48.64%   | 3250              | 0.40   |
| 3    | 3   | 10 | 13000 | 21500 | 22750 | 9750   | 9750  | 57800000 | 8333    | 75.00%  | 53.04%   | 13000             | 1.56   |
| 3    | 4   | 11 | 32000 | 23750 | 21500 | -10500 | 10500 | 62568182 | 8643    | 32.81%  | 50.15%   | 2500              | 0.29   |
| 4    | 1   | 12 | 41000 | 24500 | 23750 | -17250 | 17250 | 82151042 | 9719    | 42.07%  | 49.14%   | -14750            | -1.52  |
| 4    | 2   | 13 | 10000 |       | 24500 | 14500  | 14500 | 92004808 | 10250   | 145.00% | 59.79%   | -250              | -0.02  |
| 4    | 3   | 14 | 16800 |       | 24500 | 7700   | 7700  | 89668036 | 9995    | 45.83%  | 58.39%   | 7450              | 0.75   |
| 4    | 4   | 15 | 24500 |       | 24500 | 0      | 0     | 83690167 | 9086    | 0.00%   | 53.08%   | 7450              | 0.82   |
| 5    | 1   | 16 | 36800 |       | 24500 | -12300 | 12300 | 87915156 | 9354    | 33.42%  | 51.45%   | -4850             | -0.52  |
|      | ~~~ |    |       |       |       |        |       |          |         |         |          |                   |        |



#### <u>Model Performance</u>:

 $MSE_{12} = 82151042$   $MAD_{12} = 9719$  $MAPE_{12} = 49\%$ 



## Single Exponential Smoothing

•  $0 < \lambda < 1$ : smoothing constant

 $\bullet \quad L_0 = \frac{1}{t} \sum_{i=1}^t D_i$ 

#### **Exponentially Weighted Average**





| Year | Q | t  | $D_t$ | $L_t$ | $F_t$ | $E_t$  | Et    | $MSE_t$   | $MAD_t$ | Error % | $MAPE_t$ | Bias <sub>t</sub> | $TS_t$ |
|------|---|----|-------|-------|-------|--------|-------|-----------|---------|---------|----------|-------------------|--------|
|      |   | 0  |       | 22083 |       |        |       |           |         |         |          |                   |        |
| 1    | 2 | 1  | 8000  | 20675 | 22083 | 14083  | 14083 | 198340278 | 14083   | 176.04% | 176.04%  | 14083             | 1.00   |
| 1    | 3 | 2  | 13000 | 19908 | 20675 | 7675   | 7675  | 128622951 | 10879   | 59.04%  | 117.54%  | 21758             | 2.00   |
| 1    | 4 | 3  | 23000 | 20217 | 19908 | -3093  | 3093  | 88936486  | 8284    | 13.45%  | 82.84%   | 18666             | 2.25   |
| 2    | 1 | 4  | 34000 | 21595 | 20217 | -13783 | 13783 | 114196860 | 9659    | 40.54%  | 72.27%   | 4883              | 0.51   |
| 2    | 2 | 5  | 10000 | 20436 | 21595 | 11595  | 11595 | 118246641 | 10046   | 115.95% | 81.00%   | 16478             | 1.64   |
| 2    | 3 | 6  | 18000 | 20192 | 20436 | 2436   | 2436  | 99527532  | 8777    | 13.53%  | 69.76%   | 18913             | 2.15   |
| 2    | 4 | 7  | 23000 | 20473 | 20192 | -2808  | 2808  | 86435714  | 7925    | 12.21%  | 61.54%   | 16105             | 2.03   |
| 3    | 1 | 8  | 38000 | 22226 | 20473 | -17527 | 17527 | 114031550 | 9125    | 46.12%  | 59.61%   | -1422             | -0.16  |
| 3    | 2 | 9  | 12000 | 21203 | 22226 | 10226  | 10226 | 112979315 | 9247    | 85.21%  | 62.45%   | 8804              | 0.95   |
| 3    | 3 | 10 | 13000 | 20383 | 21203 | 8203   | 8203  | 108410265 | 9143    | 63.10%  | 62.52%   | 17007             | 1.86   |
| 3    | 4 | 11 | 32000 | 21544 | 20383 | -11617 | 11617 | 110824074 | 9368    | 36.30%  | 60.14%   | 5389              | 0.58   |
| 4    | 1 | 12 | 41000 | 23490 | 21544 | -19456 | 19456 | 133132065 | 10208   | 47.45%  | 59.08%   | -14066            | -1.38  |
| 4    | 2 | 13 | 10000 |       | 23490 | 13490  | 13490 | 136889542 | 10461   | 134.90% | 64.91%   | -576              | -0.06  |
| 4    | 3 | 14 | 16800 |       | 23490 | 6690   | 6690  | 130308553 | 10192   | 39.82%  | 63.12%   | 6114              | 0.60   |
| 4    | 4 | 15 | 24500 |       | 23490 | -1010  | 1010  | 121689327 | 9579    | 4.12%   | 59.19%   | 5104              | 0.53   |
| 5    | 1 | 16 | 36800 |       | 23490 | -13310 | 13310 | 125156051 | 9813    | 36.17%  | 57.75%   | -8206             | -0.84  |



#### **Model Performance**:

 $MSE_{12} = 133132065$   $MAD_{12} = 10208$  $MAPE_{12} = 59\%$ 



## **Double Exponential Smoothing**

- a.k.a. Trend-Corrected Exponential Smoothing
- a.k.a. Holt's Model

$$F_{t+1} = L_t + T_t$$
 and  $F_{t+k} = L_t + kT_t$ 

- - $0 < \alpha < 1$ : smoothing constant for LEVEL
- - $0 < \beta < 1$ : smoothing constant for TREND



| Year | Q  | t  | $D_t$ | $L_t$ | $F_t$ | $E_t$ | Et     | $MSE_t$ | $MAD_t$     | Error % | $MAPE_t$ | Bias <sub>t</sub> | $TS_t$ | Year  |
|------|----|----|-------|-------|-------|-------|--------|---------|-------------|---------|----------|-------------------|--------|-------|
|      |    | 0  |       | 12015 | 1549  |       |        |         |             |         |          |                   |        |       |
| 1    | 2  | 1  | 8000  | 13008 | 1438  | 13564 | 5564   | 5564    | 30959237.34 | 5564    | 69.55%   | 69.55%            | 5564   | 1.00  |
| 1    | 3  | 2  | 13000 | 14301 | 1409  | 14445 | 1445   | 1445    | 16524153.32 | 3505    | 11.12%   | 40.33%            | 7009   | 2.00  |
| 1    | 4  | 3  | 23000 | 16439 | 1555  | 15710 | -7290  | 7290    | 28732809.71 | 4767    | 31.70%   | 37.46%            | -281   | -0.06 |
| 2    | 1  | 4  | 34000 | 19594 | 1875  | 17993 | -16007 | 16007   | 85604032.58 | 7577    | 47.08%   | 39.86%            | -16288 | -2.15 |
| 2    | 2  | 5  | 10000 | 20322 | 1645  | 21469 | 11469  | 11469   | 94788912.25 | 8355    | 114.69%  | 54.83%            | -4819  | -0.58 |
| 2    | 3  | 6  | 18000 | 21570 | 1566  | 21967 | 3967   | 3967    | 81613688.31 | 7624    | 22.04%   | 49.36%            | -852   | -0.11 |
| 2    | 4  | 7  | 23000 | 23123 | 1563  | 23136 | 136    | 136     | 69957245.79 | 6554    | 0.59%    | 42.39%            | -716   | -0.11 |
| 3    | 1  | 8  | 38000 | 26017 | 1830  | 24686 | -13314 | 13314   | 83370484.37 | 7399    | 35.04%   | 41.48%            | -14030 | -1.90 |
| 3    | 2  | 9  | 12000 | 26262 | 1513  | 27847 | 15847  | 15847   | 102009888.3 | 8338    | 132.06%  | 51.54%            | 1817   | 0.22  |
| 3    | 3  | 10 | 13000 | 26297 | 1217  | 27775 | 14775  | 14775   | 113638498.2 | 8981    | 113.65%  | 57.75%            | 16592  | 1.85  |
| 3    | 4  | 11 | 32000 | 27963 | 1307  | 27514 | -4486  | 4486    | 105136814.7 | 8573    | 14.02%   | 53.78%            | 12106  | 1.41  |
| 4    | _1 | 12 | 41000 | 30443 | 1541  | 29270 | -11730 | 11730   | 107841791.9 | 8836    | 28.61%   | 51.68%            | 376    | 0.04  |
| 4    | 2  | 13 | 10000 |       |       | 31984 | 21984  | 21984   | 136723869.3 | 9847    | 219.84%  | 64.61%            | 22361  | 2.27  |
| 4    | 3  | 14 | 16800 |       |       | 33526 | 16726  | 16726   | 146939977.2 | 10339   | 99.56%   | 67.11%            | 39086  | 3.78  |
| 4    | 4  | 15 | 24500 |       |       | 35067 | 10567  | 10567   | 144588268.3 | 10354   | 43.13%   | 65.51%            | 49653  | 4.80  |
| 5    | 1  | 16 | 36800 |       |       | 36609 | -191   | 191     | 135553792.1 | 9719    | 0.52%    | 61.45%            | 49462  | 5.09  |

 $\alpha = 0.1$  $\beta = 0.2$ 



#### **Model Performance**:

 $MSE_{12} = 107841792$   $MAD_{12} = 8836$  $MAPE_{12} = 52\%$ 



## **Triple Exponential Smoothing**

- a.k.a. Trend- and Seasonality-Corrected Exponential Smoothing
- a.k.a. Holt-Winter's Model

$$F_{t+1} = (L_t + T_t)S_{t+1}$$
 and  $F_{t+k} = (L_t + T_t)S_{t+k}$ 

$$\bullet L_t = \alpha \left( \frac{D_t}{S_t} \right) + (1 - \alpha)(L_{t-1} + T_{t-1})$$

- $0 < \alpha < 1$ : smoothing constant for LEVEL
- - $0 < \beta < 1$ : smoothing constant for TREND

•  $0 < \gamma < 1$ : smoothing constant for SEASONALITY



| Year | Q | t  | $D_t$ | $L_t$ | $T_t$ | $\mathcal{S}_t$ | $F_t$ | $E_t$ | $ E_t $ | $MSE_t$     | $MAD_t$ | Error% | $MAPE_t$ | Bias <sub>t</sub> | $\mathrm{TS}_t$ |
|------|---|----|-------|-------|-------|-----------------|-------|-------|---------|-------------|---------|--------|----------|-------------------|-----------------|
|      |   | 0  |       | 18439 | 524   |                 |       |       |         |             |         |        |          |                   |                 |
| 1    | 2 | 1  | 8000  | 18863 | 514   | 0.47            | 8944  | 944   | 944     | 891863.2602 | 944     | 11.80% | 11.80%   | 944               | 1.00            |
| 1    | 3 | 2  | 13000 | 19359 | 512   | 0.68            | 13242 | 242   | 242     | 475208.2322 | 593     | 1.86%  | 6.83%    | 1186              | 2.00            |
| 1    | 4 | 3  | 23000 | 19860 | 511   | 1.17            | 23263 | 263   | 263     | 339848.0274 | 483     | 1.14%  | 4.94%    | 1449              | 3.00            |
| 2    | 1 | 4  | 34000 | 20373 | 511   | 1.66            | 33905 | -95   | 95      | 257140.1562 | 386     | 0.28%  | 3.77%    | 1354              | 3.51            |
| 2    | 2 | 5  | 10000 | 20911 | 514   | 0.47            | 9751  | -249  | 249     | 218062.8927 | 359     | 2.49%  | 3.51%    | 1106              | 3.08            |
| 2    | 3 | 6  | 18000 | 21673 | 539   | 0.68            | 14616 | -3384 | 3384    | 2089737.397 | 863     | 18.80% | 6.06%    | -2278             | -2.64           |
| 2    | 4 | 7  | 23000 | 22084 | 526   | 1.17            | 25975 | 2975  | 2975    | 3055910.711 | 1165    | 12.94% | 7.04%    | 698               | 0.60            |
| 3    | 1 | 8  | 38000 | 22621 | 527   | 1.66            | 37643 | -357  | 357     | 2689843.68  | 1064    | 0.94%  | 6.28%    | 341               | 0.32            |
| 3    | 2 | 9  | 12000 | 23273 | 539   | 0.47            | 10835 | -1165 | 1165    | 2541898.04  | 1075    | 9.71%  | 6.66%    | -825              | -0.77           |
| 3    | 3 | 10 | 13000 | 23554 | 514   | 0.70            | 16598 | 3598  | 3598    | 3582350.293 | 1327    | 27.68% | 8.76%    | 2773              | 2.09            |
| 3    | 4 | 11 | 32000 | 24247 | 532   | 1.16            | 27838 | -4162 | 4162    | 4831609.551 | 1585    | 13.01% | 9.15%    | -1389             | -0.88           |
| 4    | 1 | 12 | 41000 | 24770 | 531   | 1.67            | 41291 | 291   | 291     | 4436030.044 | 1477    | 0.71%  | 8.45%    | -1098             | -0.74           |
| 4    | 2 | 13 | 10000 |       |       | 0.47            | 11963 | 1963  | 1963    | 4391105.79  | 1514    | 19.63% | 9.31%    | 865               | 0.57            |
| 4    | 3 | 14 | 16800 |       |       | 0.68            | 17631 | 831   | 831     | 4126804.533 | 1466    | 4.95%  | 8.99%    | 1696              | 1.16            |
| 4    | 4 | 15 | 24500 |       |       | 1.17            | 30922 | 6422  | 6422    | 6601423.556 | 1796    | 26.21% | 10.14%   | 8118              | 4.52            |
| 5    | 1 | 16 | 36800 |       |       | 1.67            | 44784 | 7984  | 7984    | 10173002.34 | 2183    | 21.70% | 10.86%   | 16102             | 7.38            |





#### <u>Model Performance</u>:

 $MSE_{12} = 4436030$   $MAD_{12} = 1477$  $MAPE_{12} = 8\%$ 



## **Comparing the FIVE Models**

| Forecasting Method                                           | MSE <sub>12</sub> | MAD <sub>12</sub> | MAPE <sub>12</sub> | TS <sub>1~12</sub> Range |
|--------------------------------------------------------------|-------------------|-------------------|--------------------|--------------------------|
| Static Model                                                 | 3745026           | 1373              | 7.84%              | -1.68 to 4.65            |
| Moving Average $(N = 4)$                                     | 82151042          | 9719              | 49.14%             | -1.52 to 2.21            |
| Single Exponential Smoothing ( $\lambda=0.1$ )               | 133132065         | 10208             | 59.08%             | -1.38 to 2.25            |
| Holt's Model ( $\alpha = 0.1, \beta = 0.2$ )                 | 107841792         | 8836              | 51.68%             | -2.15 to 1.85            |
| Holt-Winter's Model ( $\alpha=0.05, \beta=0.1, \gamma=0.1$ ) | 4436030           | 1477              | 8.45%              | -2.74 to 4.00            |

Everything should be made as simple as possible, but no simpler.



## **Summary**

- Mathematically, a time series is decomposed into:
  - Level; Trend; Seasonality
- Static Model:  $F_{t+k} = [L + (t+k)T] \times S_{t+k}$
- Single Exponential Smoothing:  $F_{t+1} = L_t = \lambda D_t + (1 \lambda)L_{t-1}$
- Trend-Corrected Exponential Smoothing:  $F_{t+1} = L_t + T_t$ 
  - $\bullet L_t = \alpha D_t + (1 \alpha)(L_{t-1} + T_{t-1})$
  - $\bullet \quad T_t = \beta(L_t L_{t-1}) + (1 \beta)T_{t-1}$
- Trend- and Seasonality-Corrected Exponential Smoothing:  $F_{t+1} = (L_t + T_t)S_{t+1}$ 
  - $\bullet \qquad L_t = \alpha \left( \frac{D_t}{S_t} \right) + (1 \alpha)(L_{t-1} + T_{t-1})$
  - $T_t = \beta (L_t L_{t-1}) + (1 \beta) T_{t-1}$