```
In [1]: import pandas as pd
        import warnings
        warnings.filterwarnings('ignore')
        df = pd.DataFrame({"F1":[1,2,4,1,2,4],
                             "F2":[4,5,6,7,8,9],
                             "F3":[0,0,0,0,0,0],
                             "F4":[1,1,1,1,1,1]})
        df
Out[1]:
           F1 F2 F3 F4
                4
                   0
            2
                5
                   0
                       1
         2
            4
                6
                   0
                7
            2
                8
                   0
                     1
            4
                9
                   0
In [2]: from sklearn.feature_selection import VarianceThreshold
        var_thres=VarianceThreshold(threshold=0)
        var_thres.fit(df)
Out[2]: VarianceThreshold(threshold=0)
In [3]: var_thres.get_support()
Out[3]: array([ True, True, False, False])
In [4]: | df.columns[var_thres.get_support()]
Out[4]: Index(['F1', 'F2'], dtype='object')
In [5]: #importing libraries
        from sklearn.datasets import load boston
        import matplotlib.pyplot as plt
        %matplotlib inline
In [6]: #Loading the dataset
        df = load boston()
        x = pd.DataFrame(df.data, columns = df.feature_names)
```

y = df.target

Out[7]: ((354, 13), (152, 13))

In [8]: X_train.corr()

Out[8]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS
CRIM	1.000000	-0.196172	0.382073	-0.049364	0.416560	-0.188280	0.329927	-0.355840
ZN	-0.196172	1.000000	-0.529392	-0.063863	-0.523572	0.319260	-0.583885	0.658331
INDUS	0.382073	-0.529392	1.000000	0.044224	0.750218	-0.392969	0.629257	-0.686848
CHAS	-0.049364	-0.063863	0.044224	1.000000	0.043748	0.088125	0.067269	-0.085492
NOX	0.416560	-0.523572	0.750218	0.043748	1.000000	-0.279202	0.740052	-0.765753
RM	-0.188280	0.319260	-0.392969	0.088125	-0.279202	1.000000	-0.235839	0.183857
AGE	0.329927	-0.583885	0.629257	0.067269	0.740052	-0.235839	1.000000	-0.761543
DIS	-0.355840	0.658331	-0.686848	-0.085492	-0.765753	0.183857	-0.761543	1.000000
RAD	0.603880	-0.314833	0.578459	0.022338	0.627188	-0.179242	0.440578	-0.467653
TAX	0.560570	-0.327834	0.719038	-0.017156	0.683445	-0.275242	0.502429	-0.519643
PTRATIO	0.264780	-0.392838	0.388353	-0.072683	0.179046	-0.385526	0.239729	-0.176620
В	-0.299525	0.164641	-0.331638	0.069682	-0.369445	0.157459	-0.250416	0.248376
LSTAT	0.439369	-0.429178	0.603374	-0.059060	0.577154	-0.623920	0.606530	-0.501780

```
In [9]: import seaborn as sns
#Using Pearson Correlation
plt.figure(figsize=(12,10))
cor = X_train.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.CMRmap_r)
plt.show()
```



```
In [11]: corr_features = correlation(X_train, 0.7)
len(set(corr_features))
```

Out[11]: 4

In [12]: corr_features

Out[12]: {'AGE', 'DIS', 'NOX', 'TAX'}

In [13]: X_train.drop(corr_features,axis=1)
X_test.drop(corr_features,axis=1)

Out[13]:

	CRIM	ZN	INDUS	CHAS	RM	RAD	PTRATIO	В	LSTAT
329	0.06724	0.0	3.24	0.0	6.333	4.0	16.9	375.21	7.34
371	9.23230	0.0	18.10	0.0	6.216	24.0	20.2	366.15	9.53
219	0.11425	0.0	13.89	1.0	6.373	5.0	16.4	393.74	10.50
403	24.80170	0.0	18.10	0.0	5.349	24.0	20.2	396.90	19.77
78	0.05646	0.0	12.83	0.0	6.232	5.0	18.7	386.40	12.34
4	0.06905	0.0	2.18	0.0	7.147	3.0	18.7	396.90	5.33
428	7.36711	0.0	18.10	0.0	6.193	24.0	20.2	96.73	21.52
385	16.81180	0.0	18.10	0.0	5.277	24.0	20.2	396.90	30.81
308	0.49298	0.0	9.90	0.0	6.635	4.0	18.4	396.90	4.54
5	0.02985	0.0	2.18	0.0	6.430	3.0	18.7	394.12	5.21

152 rows × 9 columns

In [14]: import seaborn as sns
 import numpy as np
 df=sns.load_dataset('titanic')
 df.head()

Out[14]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True
4											•

```
In [15]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
```

```
Column
                 Non-Null Count
                                 Dtype
    ----
                 _____
---
                                 ----
                 891 non-null
0
    survived
                                 int64
1
    pclass
                 891 non-null
                                 int64
2
    sex
                 891 non-null
                                 object
3
    age
                 714 non-null
                                 float64
                                 int64
4
    sibsp
                 891 non-null
5
                                 int64
    parch
                 891 non-null
6
    fare
                 891 non-null
                                 float64
7
    embarked
                 889 non-null
                                 object
8
    class
                 891 non-null
                                 category
9
    who
                 891 non-null
                                 object
10 adult_male
                                 bool
                 891 non-null
11 deck
                 203 non-null
                                 category
12 embark town 889 non-null
                                 object
13 alive
                 891 non-null
                                 object
14 alone
                 891 non-null
                                 bool
```

```
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.7+ KB
```

```
In [16]: ##['sex', 'embarked', 'alone', 'pclass', 'Survived']
         df=df[['sex','embarked','alone','pclass','survived']]
         df.head()
```

Out[16]:

	sex	embarked	alone	pclass	survived
0	male	S	False	3	0
1	female	С	False	1	1
2	female	S	True	3	1
3	female	S	False	1	1
4	male	S	True	3	0

```
In [17]: from sklearn.preprocessing import LabelEncoder
```

```
In [18]: le = LabelEncoder()

df['embarked']=le.fit_transform(df['embarked'])
    df['alone'] = le.fit_transform(df['alone'])
    df['sex'] = le.fit_transform(df['sex'])

df
```

Out[18]:

	sex	embarked	alone	pclass	survived
0	1	2	0	3	0
1	0	0	0	1	1
2	0	2	1	3	1
3	0	2	0	1	1
4	1	2	1	3	0
886	1	2	1	2	0
887	0	2	1	1	1
888	0	2	0	3	0
889	1	0	1	1	1
890	1	1	1	3	0

891 rows × 5 columns

```
In [19]: x = df.iloc[:,:-1]
y= df.iloc[:,-1]
```

```
In [20]: ## Perform chi2 test
    ### chi2 returns 2 values
    ### Fscore and the pvalue
    from sklearn.feature_selection import chi2
    f_p_values=chi2(x,y)

f_p_values
```

```
In [21]: import pandas as pd
p_values=pd.Series(f_p_values[0])
p_values.index=x.columns
p_values
```

```
Out[21]: sex 92.702447
embarked 9.755456
alone 14.640793
pclass 30.873699
dtype: float64
```