

InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel UC Berkeley Open AI

Ilya Sutskever
Research Director of OpenAl
Verified email at openai.com - Homepage

Machine Learning Neural Networks

GET MY OWN PROFILE

Cited	by
-------	----

Office by		
	All	Since 2013
Citations	56520	56032
h-index	41	41
i10-index	61	60
		24000
		18000
	_	12000
		6000
20132	014201520162	0172018

TITLE	CITED BY	YEAR
Imagenet classification with deep convolutional neural networks A Krizhevsky, I Sutskever, GE Hinton Advances in neural information processing systems, 1097-1105	23698	2012
Distributed representations of words and phrases and their compositionality T Mikolov, I Sutskever, K Chen, GS Corrado, J Dean Advances in neural information processing systems, 3111-3119	7649	2013
Dropout: A simple way to prevent neural networks from overfitting N Srivastava, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov The Journal of Machine Learning Research 15 (1), 1929-1958	6225	2014
Sequence to sequence learning with neural networks I Sutskever, O Vinyals, QV Le Advances in neural information processing systems, 3104-3112	3552	2014

Co-founder and Research Director of OpenAl.

I spent three wonderful years as a Research Scientist at the Google Brain Team.

Before that, I was a co-founder of **DNNresearch**.

And before that, I was a postdoc in Stanford with <u>Andrew Ng</u>'s group.

And in the beginning, I was a student in the Machine Learning group of Toronto, working with Geoffrey Hinton.

My email address is ilyasu@openai.com.

Motivation

How can we achieve unsupervised learning of disentangled representation?

In general, learned representation is entangled, i.e., encoded in a data space in a complicated manner

When a representation is disentangled, it would be more interpretable and easier to apply to tasks

Related works

- Unsupervised learning of representation
 - (no mechanism to force disentanglement)
 - ✓ Stacked (often denoising) auto-encoder, RBM
 - ✓ Many others, including semi-supervised approach
- Supervised learning of disentangled representation
 - ✓ Bilinear models, multi-view perceptron
 - √ VAEs, adversarial auto-encoders
- Weakly supervised learning of disentangled representation
 - ✓ disBM, DC-IGN
- Unsupervised learning of disentangled representation
 - √ hossRBM, applicable only to discrete latent factors

This work:

Unsupervised learning of disentangled representation applicable to both continuous and discrete latent factors

Generative Adversarial Nets(GANs)

Generative model trained by competition between two neural networks:

- ✓ Generator x = G(z), $z \sim p_z(Z)$ $p_z(Z)$: an arbitrary noise distribution
- ✓ Discriminator $D(x) \in [0,1]$: Probability that x is sampled from the real data $p_{data}(X)$ Rather than generated by the generator G(Z)

Optimization problem to solve:

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim P_{\text{data}}}[\log D(x)] + \mathbb{E}_{z \sim \text{noise}}[\log (1 - D(G(z)))]$$

Problems with GANs

From the perspective of representation learning

- ✓ No restrictions on how G(z) uses z
 - z can be used in a highly entangled way
 - Each dimension of z does not represent any salient feature of the training data

Proposed Resolution: InfoGAN -Maximizing Mutual Information

Observation in conventional GANs:

a generated data x does not have much information on the noise z from which x is generated because of heavily entangled use of z

Proposed resolution = InfoGAN:

the generator G(z,c) trained so that it maximize the mutual information I(C|X) between the latent code C and the generated data X

$$\min_{G} \max_{D} \{V_{\text{GAN}}(G, D) - \lambda I(C | X = G(Z, C))\}$$

Mutual Information

$$I(X;Y) = H(X) - H(X|Y)$$
, where

- $H(X) = E_{x \sim p(X)}[-\ln p(X = x)]$: Entropy of the prior distribution
- $H(X|Y) = E_{y \sim p(Y), x \sim p(X|Y=y)}[-\ln p(X=x|Y=y)]$ Entropy of the posterior distribution

Major difficulty:

Evaluation of I(C|X) based on evaluation and sampling from the posterior p(C|X)

Two strategies:

- ✓ Variational maximization of mutual information
 - ✓ Use an approximate function Q(C|X) = p(C = c|X = x)
- ✓ Sharing the neural net between Q(C|X) and the discriminator D(x)

Lower bounding mutual information

$$I(c; G(z, c)) = H(c) - H(c|G(z, c))$$

$$= \mathbb{E}_{x \sim G(z, c)} [\mathbb{E}_{c' \sim P(c|x)} [\log P(c'|x)]] + H(c)$$

$$= \mathbb{E}_{x \sim G(z, c)} [\underbrace{D_{\text{KL}}(P(\cdot|x) \parallel Q(\cdot|x))}_{\geq 0} + \mathbb{E}_{c' \sim P(c|x)} [\log Q(c'|x)]] + H(c)$$

$$\geq \mathbb{E}_{x \sim G(z, c)} [\mathbb{E}_{c' \sim P(c|x)} [\log Q(c'|x)]] + H(c)$$

Variational Maximization of MI

With Q(c,x) approximating p(C=c|X=x), we obtain an variational Estimate of the mutual information:

$$L_I(G, Q) = E_{c \sim P(c), x \sim G(z, c)} [\log Q(c|x)] + H(c)$$

$$= E_{x \sim G(z, c)} [\mathbb{E}_{c' \sim P(c|x)} [\log Q(c'|x)]] + H(c)$$

$$\leq I(c; G(z, c))$$

Optimization problem to solve in InfoGAN:

$$\min_{G,Q} \max_{D} V_{\text{InfoGAN}}(D, G, Q) = V(D, G) - \lambda L_I(G, Q)$$

Sharing layers between D and Q

- \checkmark Model Q(c,x) using neural network
- ✓ Reduce the calculation costs by

Sharing all the convolution layers with *D*

- InfoGAN on MNIST dataset
- Latent code $c \sim Cat(K = 10, p = 0.1)$ =10-class categorical code

The lower bound $L_I(G, Q)$ is quickly Maximized to H(c) = 2.3

Figure 1: Lower bound L_I over training iterations

- InfoGAN on MNIST dataset
- > Latent codes
 - $\succ c_1$:10-class categorical code $c_1 \sim \text{Cat}(K = 10, p = 0.1)$
 - $\triangleright c_2, c_3$:continuous code,

$$c_2$$
, $c_3 \sim Unif(-2,2)$

- (a) Varying c_1 on InfoGAN (Digit type)
- (b) Varying c_1 on regular GAN (No clear meaning)

- \checkmark c_1 can be used as a classifier with 5% error rate.
- \checkmark c_2 and c_3 captured the rotation and width respectively

- (c) Varying c_2 from -2 to 2 on InfoGAN (Rotation)
- (d) Varying c_3 from -2 to 2 on InfoGAN (Width)

Dataset: P. Paysan, et al., AVSS, 2009, pp. 296-301.

Dataset: M. Aubry, et al., CVPR, 2014, pp. 3762-3769.

InfoGAN learned salient features without supervision

Dataset: Street View House Number

(a) Continuous variation: Lighting

(b) Discrete variation: Plate Context

Dataset: CelebA

(a) Azimuth (pose)

(b) Presence or absence of glasses

(c) Hair style

(d) Emotion

Conclusion

≻Goal

✓ Unsupervised learning of disentangled representations

≻Approach

✓ GANs + Maximizing Mutual Information between generated images and input codes

≻Benefit

✓ Interpretable representation obtained without supervision and substantial additional costs

Future Prospect

Mutual information maximization can be applied to other methods, e.g. VAE

> Learning hierarchical latent representation

- >Improving semi-supervised learning
- > High-dimensional data discovery