

Institutt for matematiske fag

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Faglig kontakt under eksamen: Nikolai Us Tlf: 45128897	shakov		
Eksamensdato: August 2017 Eksamenstid (fra–til): 09:00 – 13:00 Hjelpemiddelkode/Tillatte hjelpemidler: 0 – Tabeller og formler i statistikk, Tapir forlag – K.Rottman. Matematisk formelsamling, – Ett gult ark (A4 med stempel) med egne h – Kalkulator: HP30S, Citizen SR-270X, Citiz	, nåndskrevne formlei	•	
Annen informasjon: Sensur: Målform/språk: bokmål Antall sider: 3			
Antall sider vedlegg: 0 Informasjon om trykking av eksamensoppgave Originalen er:			Kontrollert av:
1-sidig □ 2-sidig ⊠ sort/hvit ⊠ farger □ skal ha flervalgskjema □	 Da	to	Sign

Merk! Studenter finner sensur i Studentweb. Har du spørsmål om din sensur må du kontakte instituttet ditt. Eksamenskontoret vil ikke kunne svare på slike spørsmål.

Oppgave 1

La $X_1, ..., X_{100}$ være et tilfeldig utvalg fra normalfordeling med ukjent forventningsverdi μ og varians $\sigma^2 = 25$. Hypotesen $H_0: \mu = 0$ er testet mot $H_1: \mu > 0$ (H_0 forkastes for store verdier av \bar{X}). I $\mu = 1$ er styrken av testen $1 - \beta(1) = 0.5$.

- a) Hva er signifikansnivået α lik?
- b) Finn styrken $1 \beta(2)$ i $\mu = 2$.

Oppgave 2

To uavhengige tilfeldige utvalg av størrelser n=200 og m=240 er tatt fra normalfordelinger med ukjente forventningsverdier μ_X , μ_Y og kjente varianser $\sigma_X^2=1$ og $\sigma_Y^2=1.2$. $H_0:\mu_X=\mu_Y$ er testet mot $H_1:\mu_X\neq\mu_Y$.

a) Finn P-verdien for testen hvis de observerte gjennomsnittsverdiene er $\bar{x} = 2.1$ og $\bar{y} = 2.0$.

Oppgave 3

0.57	0.84	0.61	0.39	0.42	0.71	0.28	0.32
0.63	0.51	0.48	0.82	0.69	0.77	0.53	0.56

Data i tabellen angir 16 uavhengige observasjoner fra en kontinuerlig, symmetrisk (rundt ukjent forventningsverdi μ) fordeling. Vi ønsker å teste hypotesen $H_0: \mu = 0.5 \text{ mot } H_1: \mu > 0.5$ på to ulike måter. Benytt signifikansnivå $\alpha = 0.05$ for begge testene.

- a) Utfør den gitte hypotesetesten ved å bruke tegntesten for store utvalg (large-sample sign test) og konkluder.
- b) Benytt nå Wilcoxons fortegn-rang test for store utvalg (the large-sample Wilcoxon signed rank test) til å teste hypotesen. Hva blir konklusjonen for denne testen?

Oppgave 4

Under fotball EM 2012 ble det scoret 77 mål. Tabellen viser antall kamper hvor 0, 1, 2 osv. mål ble scoret.

antall mål i en kamp	Antall kamper
0	2
1	6
2	10
3	6
4	3
5	3
6	1
7+	0

- a) Test hypotese at antall mål i en kamp har Poissonfordeling med parameter $\lambda=1$. Signifikansnivå er 0.05.
- b) Test hypotese at antall mål i en kamp har en Poissonfordeling (med ukjent parameter λ). Signifikansnivå er 0.05.

Oppgave 5

Følgende tabell er en delvis utfylt variansanalysetabell (ANOVA-tabell) hvor noe informasjon mangler (stjerner).

Source	df	SS	MS	F
Treatment	3	*	*	1.6
Error	*	*	5.1	
Total	43	*		

- a) Finn tallene som mangler og skriv opp den fullstendige ANOVA-tabellen. Vis hvordan du beregner verdiene der det står \star i tabellen.
- **b)** Utfør hypotesetesten for

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4.$$

Signifikansnivået er $\alpha = 0.05$.

Oppgave 6

I en studie undersøkte man om temperamentet til ektemenn og hustruer var uavhengige. 111 ektepar ble tilfeldig valgt og en slektning av ekteparet kryssklasifisserte ektemanen og hustruen til enten å ha et godt eller dårlig temperament.

a) Er det grunn til å tro at temperamentet (godt/dårlig) til ektemannen er avhengig av temperamentet (godt/dårlig) til hustruen? Skriv ned null hypotesen og den alternative hypotesen og utfør en hypotesetest basert på tabellen. Bruk signifikansnivå 0.05.

	God hustru	Dårlig hustru
God ektemann	24	27
Dårlig ektemann	34	26