CHAPITRE MI2 Dynamique du point matériel

CHAPITRE MI2 Dynamique du point matériel

> Problématique

Quelles sont les causes responsables de la trajectoire du ballon et du volant ?

Comment expliquer la différence de trajectoires observées par un spectateur assis sur les gradins ?

Lycée M. Montaigne – MP2I 2

CHAPITRE MI2 Dynamique du point matériel

FIGURE 1 : Trajectoires d'un ballon de basket (à gauche) et d'un volant de badminton (à droite)

État mécanique initial + lois de la dynamique = État mécanique à tout instant t Système déterministe : évolution prévisible

Lycée M. Montaigne – MP2I 3

- 1 Éléments cinétiques d'un point matériel
- 1.1 Masse d'inertie d'un point matériel
- > Cinématique

Vecteurs: position, vitesse, accélération

> Dynamique

grandeur caractérisant la capacité de l'objet à résister au mouvement : inertie du système

Définition:

grandeur scalaire, > 0 : masse m (kg)

1 Éléments cinétiques d'un point matériel

- 1.2 Quantité de mouvement
- 1.2.1 Quantité de mouvement d'un point matériel
- > <u>Définition</u>:

vecteur quantité de mouvement (ou résultante cinétique)

$$\overrightarrow{p}_{M/\mathfrak{R}} = \overrightarrow{mv}_{M/\mathfrak{R}}$$

Remarque dépend du référentiel d'étude

- 1 Éléments cinétiques d'un point matériel
- 1.2 Quantité de mouvement

1.2.2 Quantité de mouvement d'un système de points matériels

- > Système considéré
- > Masse totale du système

$$m = m_1 + m_2$$

> Position du centre d'inertie

Définition: centre d'inertie ou centre de masse

$$\overrightarrow{OG} = \frac{m_1 \overrightarrow{OM_1} + m_2 \overrightarrow{OM_2}}{m_1 + m_2} = \frac{m_1 \overrightarrow{OM_1} + m_2 \overrightarrow{OM_2}}{m}$$

CHAPITRE MI2 Dynamique du point matériel

1 Éléments cinétiques d'un point matériel

1.2 Quantité de mouvement

1.2.2 Quantité de mouvement d'un système de points matériels

- > Vitesse du centre d'inertie
- > Quantité de mouvement du système

Définition

$$\overrightarrow{p}(S) = \overrightarrow{p} = \overrightarrow{p_1} + \overrightarrow{p_2} = m_1 \overrightarrow{v_1} + m_2 \overrightarrow{v_2}$$

Propriété

$$\overrightarrow{p}(S) = (m_1 + m_2)\overrightarrow{v}_G = \overrightarrow{m}_G$$

2 Principes de la dynamique ou les trois lois de Newton

- 2.1 Première loi ou principe d'inertie
- > Point isolé

<u>Définition</u>: point matériel isolé

Définition : point matériel pseudo-isolé

> 1^{ère} loi de Newton ou ppe d'inertie

Il existe des réf. dits **galiléens**, ds lesquels 1 pt matériel **isolé ou pseudo-isolé** est :

- soit en mouvement rectiligne uniforme
- soit au repos

- 2 Principes de la dynamique ou les trois lois de Newton
- 2.1 Première loi ou principe d'inertie

> Référentiels galiléens

Propriété:

- réf. galiléens en translation rectiligne uniforme
 - Référentiel terrestre ou de laboratoire

FIGURE 2 : Référentiel terrestre

- 2 Principes de la dynamique ou les trois lois de Newton
- 2.1 Première loi ou principe d'inertie

Référentiel géocentrique

FIGURE 3 : Référentiel géocentrique

2 Principes de la dynamique ou les trois lois de Newton

2.1 Première loi ou principe d'inertie

Référentiel héliocentrique ou de Képler

FIGURE 4 : Référentiel héliocentrique

Référentiel de Copernic

- 2.2 Deuxième loi ou principe fondamental de la dynamique
- > <u>Définition</u> : résultante
- > 2ème loi de Newton ou principe fondamental de la dynamique (P.F.D.) ou principe de la résultante cinétique :

$$\vec{F} = \frac{d\vec{p}}{dt}$$

- 2 Principes de la dynamique ou les trois lois de Newton
- 2.2 Deuxième loi ou principe fondamental de la dynamique
- > Cas d'un point matériel

- > Commentaire
- > Principe fondamental de la statique (P.F.S.)

M à l'équilibre :
$$\vec{v} = \vec{0}$$
 et $\vec{a} = \vec{0}$

$$\overrightarrow{F} = \overrightarrow{0}$$

2.3 Troisième loi ou principe des actions réciproques

- \succ force exercée par M_1 sur $M_2:\overline{F}_{1\to 2}$ force exercée par M_2 sur $M_1:\overline{F}_{2\to 1}$
- > 3^{ème} loi de Newton ou ppe des actions réciproques

$$\overrightarrow{F}_{2\rightarrow 1} = -\overrightarrow{F}_{1\rightarrow 2} \Leftrightarrow \overrightarrow{F}_{2\rightarrow 1} + \overrightarrow{F}_{1\rightarrow 2} = \overrightarrow{0}$$

3 Méthode de résolution d'un problème de mécanique du point

15

- 1. Système
- 2. Référentiel galiléen + base choisie
- 3. Bilan des forces + SCHEMA
- 4. PFD (vectoriel)
- 5. Projection du PFD sur la base : éq. du mvt
- 6. Résolution éq. diff + interprétation

Lycée M. Montaigne – MP2I

- 4 Lois de forces
- 4.1 Interactions fondamentales
- > Description
 - interactions à distance : pt matériel libre échelles d'action / portées différentes :
 - ❖ interaction gravitationnelle
 - interaction électromagnétique
 - interaction forte
 - interaction faible

Lycée M. Montaigne – MP2I 16

- 4 Lois de forces
- 4.1 Interactions fondamentales
- > Forces usuelles
 - interactions fondamentales

résultent à notre échelle des interactions fondamentales ou de la combinaison de plusieurs d'entre elles : résultantes macroscopiques

4.2 Forces à distance

Point de représentation des forces à distance :

centre d'inertie G

4.2.1 Interaction gravitationnelle

Définition: interaction gravitationnelle

$$\overrightarrow{F}_{A \to B} = -G \frac{m_A m_B}{r_{AB}^2} \overrightarrow{u}_{AB} = -\overrightarrow{F}_{B \to A} \qquad \overrightarrow{u}_{AB} = \frac{\overrightarrow{AB}}{r_{AB}}$$

$$\vec{u}_{AB} = \frac{\overrightarrow{AB}}{r_{AB}}$$

constante de gravitation universelle (Cavendish):

$$G = 6,67.10^{-11} \text{ m}^3.\text{kg}^{-1}.\text{s}^{-2}$$

4 Lois de forces

4.2 Forces à distance

4.2.2 Poids

Force de pesanteur

<u>Définition</u>: poids

$$\vec{P} = m\vec{g}$$

\vec{g} champ de pesanteur

[1] J.-M. Courty, É. Kierlik, Le nec plus ultra de la chute libre, *Pour la Science*, n°488, p. 88-90, Juin 2018

Exercice d'application 1

Déterminer l'expression de g en fonction de $R_T=6,38.10^6$ m, le rayon de la Terre et $M_T=5,98.10^{24}$ kg, la masse de la Terre. Calculer la valeur de g.

4 Lois de forces

4.2 Forces à distance

4.2.3 Interaction électrostatique

> Loi de Coulomb

Définition :

$$\overrightarrow{F}_{\textit{\'elec},1
ightarrow 2} = rac{1}{4\pi arepsilon_0} rac{q_1 q_2}{r^2} \overrightarrow{u}_{1
ightarrow 2} = - \overrightarrow{F}_{\textit{\'elec},2
ightarrow 1}$$

 ε_0 : permittivité diélectrique absolue du vide

$$\frac{1}{4\pi\epsilon_0} = 9.10^9 \text{ USI}(\text{kg.m}^3.\text{s}^{.4}.\text{A}^{.2})$$

 \succ Sens de la force électrostatique $\overrightarrow{F}_{\mathit{élec},1 o 2}$

4.3 Forces de contact

Point de représentation des forces de contact : point de contact

4.3.1 Force de rappel d'un ressort : loi de Hooke

FIGURE 5 : Allongement (élongation) et force de rappel d'un ressort

4 Lois de forces

4.3 Forces de contact

4.3.1 Force de rappel d'un ressort : loi de Hooke

> <u>Définition</u>:

$$\vec{F} = -k(l - l_0)\vec{u}_{\text{sortant}}$$

k: la constante de raideur du ressort (N.m⁻¹) > 0

1: la longueur du ressort

 I_0 : la longueur du ressort au repos (à vide)

 $\Delta l = (l - l_0)$: l'allongement du ressort (gdr alg.)

 $\vec{\mu}_{\text{sortant}}$: le vecteur unitaire sortant du ressort

CHAPITRE MI2 Dynamique du point matériel

- 4 Lois de forces
- 4.3 Forces de contact
- 4.3.1 Force de rappel d'un ressort : loi de Hooke

> Sens et nature de la force $\vec{f}_{rappel} = -\mathbf{k} \cdot \Delta l \cdot \vec{u}_{l}$ J rappel **Traction** ressort au repos élongation $\Delta I = (I - I_0)$ ressort au repos ressort en situation longueur au repos du ressort lo Compression

FIGURE 5 : Allongement (élongation) et force de rappel d'un ressort force de rappel

Lycée M. Montaigne – MP2I

4 Lois de forces

4.3 Forces de contact

4.3.2 Tension d'un fil inextensible

> Définition

tension du fil

$$\overrightarrow{T} = -T\overrightarrow{u}_{ ext{sortant}}$$

Fil et poulie
Propriétés

4 Lois de forces

4.3 Forces de contact

4.3.3 Action exercée par un support solide

> Réaction d'un support solide

$$\overrightarrow{R} = \overrightarrow{R_N} + \overrightarrow{R_T}$$

> Caractéristiques de la réaction normale

Propriété

condition de contact $|R_N>0|$

$$R_N > 0$$

> Caractéristiques de la réaction tangentielle

force de frottement solide ou sec

[2] J.-M. Courty, É. Kierlik, La voiture, un sport... de glisse!, Pour la Science, n°489, p. 82-84, Juillet 2018

CHAPITRE MI2 Dynamique du point matériel

4 Lois de forces

4.3 Forces de contact

4.3.3 Action exercée par un support solide

Exercice d'application 2

Le référentiel terrestre \mathcal{R}_g est supposé galiléen et le champ de pesanteur \overrightarrow{g} uniforme. Un skieur, assimilé à un point matériel M de masse m glisse sur la ligne de plus grande pente d'un plan incliné faisant un angle α avec l'horizontale, sans pousser sur les bâtons. Le skieur est soumis à une force de frottement solide telle que $|R_T| = f|R_N|$, R_T et R_N étant respectivement les composantes tangentielle et normale de la réaction \overrightarrow{R} de la piste.

Déterminer les expressions des composantes de la réaction R de la piste en fonction de g, m et α .

[3] J.-M. Courty, É. Kierlik, Un saut en hauteur... de 39 4 Lois de forces kilomètres, Pour la Science, n°423, p. 90-92, Janvier 2013

4.3 Forces de contact

4.3.4 Actions exercées par un fluide

- > Caractéristiques de la force de frottement fluide force de traînée
- > Poussée d'Archimède

<u>Définition</u>: poussée d'Archimède $\pi = -m_f g$

$$\vec{\pi} = -m_f \vec{g}$$

 m_f est la masse de fluide déplacée par la présence du solide $m_f =
ho_f V_{
m immerg\acute{e}}$

 ρ_f la masse volumique du fluide

V_{immergé} le volume du corps immergé

Pt d'applica° de la poussée d'Archimède : centre d'inertie du fluide déplacé = centre de poussée

5 Lancement d'un projectile dans le champ de pesanteur = tir balistique

5.1 Mise en équation

Étude du mvt du ballon de basket ou du volant de badminton lancé avec une vitesse initiale $\overline{v_0}$, faisant un angle α avec l'horizontale, à partir d'un point O en t=0

- > Système étudié
- > Référentiel
- > Bilan des forces
- > PFD

[4] J.-M. Courty, É. Kierlik, Football : pourquoi les tirs de dégagement sont-ils si courts ? *Pour la Science*, n°416, p. 96-98, Juin 2012

[5] G. Dupeux et al., Le football et ses trajectoires, Reflets de la Physique, n°28, p. 10-14, Mars 2012

5.2 Résolution en l'absence de frottement fluide : chute libre

> Chute libre

$$\vec{a} = \vec{g}$$

mouvement uniformément accéléré

> Équation cartésienne de la trajectoire

$$z(x) = -\frac{1}{2}g\frac{x^2}{\left(v_0\cos(\alpha)\right)^2} + x\tan(\alpha)$$

trajectoire parabolique

5 Lancement d'un projectile dans le champ de pesanteur

5.2 Résolution en l'absence de frottement fluide : chute libre

> Tir tendu ou tir en cloche

FIGURE 6: Tir en cloche ou tir tendu

 x_P = portée du tir : 2 valeurs de α

CHAPITRE MI2 Dynamique du point matériel

5 Lancement d'un projectile dans le champ de pesanteur

5.2 Résolution en l'absence de frottement fluide : chute libre

> Retour à la problématique

FIGURE 1 : Trajectoires d'un ballon de basket (à gauche) et d'un volant de badminton (à droite)

Modèle chute libre :

Ballon basket: OUI Volant badminton: NON

5.3 Prise en compte des frottements fluides pour un objet lent

- > Retour à la problématique
- > PFD
- > Analyse de l'équation différentielle vectorielle
- > Projection du PFD
- > Résolution des équations
- \triangleright Étude du comportement limite quand $t \rightarrow +\infty$
- > Allure des trajectoires
 - Animation 1 : Figures animées pour la Physique / Mécanique / Relation fondamentale / Chute libre

http://www.sciences.univ-

nantes.fr/physique/perso/gtulloue/Meca/R.F.D/Chute1.php

CHAPITRE MI2 Dynamique du point matériel

4. Étude dynamique de plusieurs mouvements

4.3 Projectile soumis à un frottement fluide

FIGURE 7 : Trajectoires du projectile pour différents coefficients de frottement h : $m=0,4~{\rm kg}$, $v_0=30~{\rm m.s^{-1}}$, $\alpha=60^\circ$, $h=0;~0,1;~0,2~{\rm kg.s^{-1}}$

- 4. Étude dynamique de plusieurs mouvements
- 4.3 Projectile soumis à un frottement fluide

> Retour à la problématique

Modèle insuffisant pour le mvt du volant de badminton

5.4 Prise en compte des frottements fluides pour un objet rapide

- > Retour à la problématique
- > PFD
- > Vitesse limite
- > Équations du mouvement

5.4 Prise en compte des frottements fluides pour un objet rapide

> Allure des trajectoires

FIGURE 8: Trajectoires pour différentes vitesses initiales avec $\alpha = 45^{\circ}$ $v_0 = 0.1v_{lim}$ (pointillés), $v_0 = v_{lim}$ (trait gris) et $v_0 = 10v_{lim}$ (trait noir)

5 Lancement d'un projectile dans le champ de pesanteur

5.4 Prise en compte des frottements fluides pour un objet rapide

> Retour à la problématique

Modèle adapté!

6 Oscillateurs harmoniques mécaniques

6.1 Système masse-ressort sans frottement

6.1.1 Équation du mouvement

On considère une masse ponctuelle M(m) suspendue verticalement à un ressort (raideur k, longueur à vide l_0) dans le champ de pesanteur g, en l'absence de frottement. On repère la cote z du point M par rapport à O, extrémité fixe du ressort dans le référentiel d'étude. À l'instant initial t=0, la masse est située à la position d'équilibre $z(0)=z_{\acute{e}q}$ et elle possède une vitesse initiale non nulle $\vec{v}(0)=\vec{v_0}=v_0\vec{u_z}$ avec $v_0>0$.

- 1. Déterminer la position $z_{\ell q}$ du point à l'équilibre.
- 2. Établir et résoudre l'équation différentielle vérifiée par la cote z de M.

CHAPITRE MI2 Dynamique du point matériel

6 Oscillateurs harmoniques mécaniques

6.1 Système masse-ressort sans frottement

6.1.2 Analogie électromécanique

	Oscillateur électrique	Oscillateur mécanique	
Description du système	Circuit <i>LC</i> en régime libre	M relié à un ressort de raideur k , de longueur à vide l_0	
Réponses du système			
Grandeur oscillante vérifiant l'équation différentielle	Charge q (Tension $u = \frac{1}{C}q$)	Élongation Z	
Dérivée de la grandeur représentant ses variations	Courant i	Vitesse \dot{Z}	

CHAPITRE MI2

Dynamique du point matériel

6 Oscillateurs harmoniques mécaniques

6.1 Système masse-ressort sans frottement

6.1.2 Analogie électromécanique

Caractéristique de l'oscillateur harmonique			
Pulsation propre	$\omega_0 = \frac{1}{\sqrt{LC}}$	$\omega_0 = \sqrt{\frac{k}{m}}$	
Comportement			
Mise en oscillation	Condensateur $(\frac{1}{C})$	Ressort (k)	
Répugnance au changement	Inductance (L)	Inertie (m)	
Aspect énergétique			
Énergie magnétique / cinétique	$\mathscr{E}_{\!_{m}}=rac{1}{2}Li^{2}$	$\mathscr{E}_{C}=rac{1}{2}m\dot{Z}^{2}$	
Énergie électrostatique / élastique	$\mathscr{E}_{\!_{\!e}}=rac{1}{2}rac{q^{2}}{C}$	$\mathscr{E}_{\!P,llower las} = rac{1}{2} k Z^2$	
Énergie totale	$\mathcal{E}=\mathcal{E}_{m}+\mathcal{E}_{e}$	$\mathcal{E} = \mathcal{E}_{\!\! C} + \mathcal{E}_{\!\! P,\acute{e}las}$	

FIGURE 9 : Oscillateur harmonique : analogie électromécanique

6 Oscillateurs harmoniques mécaniques

6.2 Pendule simple

6.2.1 Équation du mouvement

Exercice d'application 4

On considère une bille M de masse m attachée à un fil inextensible, de masse négligeable et de longueur OM = l. À l'instant initial, on lâche la bille sans vitesse d'une position faisant un angle θ_0 avec la verticale.

Déterminer l'équation du mouvement.

$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0 \Leftrightarrow \ddot{\theta} + \omega_0^2\sin\theta = 0 \text{ avec } \omega_0^2 = \frac{g}{l}$$

Équation différentielle non linéaire

- * résolution numérique
- linéarisation en vue d'une résolution analytique

6 Oscillateurs harmoniques mécaniques

6.2 Pendule simple

6.2.2 Résolution numérique

Animation 2 : Figures animées pour la Physique / Mécanique / Oscillateurs / Pendule pesant http://www.sciences.univ-

Évolution temporelle de l'angle

Figure 10 : Évolution temporelle de l'angle θ pour différentes conditions initiales

Oscillations périodiques

- \diamond oscillations de gde amplitude : $T = f(\theta_0)$
- oscillations de ptte amplitude : isochronisme

- 6 Oscillateurs harmoniques mécaniques
- **6.2 Pendule simple**

6.2.3 Cas des oscillations de faible amplitude

> Linéarisation et résolution analytique

$$\ddot{\theta} + \omega_0^2 \theta = 0 \text{ avec } \omega_0^2 = \frac{g}{l}$$

oscillateur harmonique