PNNL Chemometric Methods

This example shows how to use the methods in the PNNL Chemometric Toolbox.

Copyright 2022-2023 Battelle Memorial Institute

Supporting Information

A Practical Guide to Chemometric Analysis of Optical Spectroscopic Data

Hope E. Lackey, ^{1,2} Rachel L. Sell, ¹ Gilbert L. Nelson, ^{3*} Thomas A. Bryan, ^{4*} Amanda M. Lines, ^{1,2*} Samuel A. Bryan, ^{1,2*}

- ¹ Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352
- ² Washington State University, Department of Chemistry, Pullman WA 99164
- ³College of Idaho, Department of Chemistry, 2112 Cleveland Blvd, Caldwell, ID 83605
- ⁴ The MathWorks, 3 Apple Hill Drive, Natick, MA 01760-2098
- *Email: sam.bryan@pnnl.gov Phone 1 509 375 5648; orcid.org/0000-0002-8826-0880
- *Email: tbryan@mathworks.com Phone 1 508 647 7669
- *Email: amanda.lines@pnnl.gov Phone: 1 509 375 5689
- *Email: gnelson@collegeofidaho.edu Phone: 1 208 459 5241

Table of Contents

PNNL Chemometric Methods	1
Supporting Information	1
A Practical Guide to Chemometric Analysis of Optical Spectroscopic Data	1
Classical Least Squares (CLS)	2
Principal Component Regression (PCR)	
Partial Least Squares (PLS)	
Napalm Data	3
Examine the Data	
Root Mean Square Error (RMSE)	5
Calibration Predictions	
Training	5
Cross-validation	
Plot the concentration results	6
Functions that load napalm data, predict, and plot	8
Plotting	
Output Data	11
Optimal number of principal components for PCR with the napalm data	11
Optimal number of latent variables for PLS with the napalm data	15
Single Constituent Analysis	18
Single-Constituent Analysis Function	18
PCR single-constituent analysis	19
PLS single-constituent analysis (PLS1)	22

Principal Components and Principal Component Scores	25
Scores definition	
Singular Value Decomposition	
Principal Components	
Principal Compent Scores	
Plot scores with labels	
Display concentration percentages of training set	
Display concentration percentages of unknown set	
Display all combinations of scores	
Spectra	
Measured spectra	
CLS K vs Pure Spectra	
GlossaryMethods	37
Numbers	
Matrices	
Specific Matrices	38
Root Mean Square Error	38
Disclaimer	

Classical Least Squares (CLS)

Classical least squares computes C_{cls} that minimizes $||CK_{\text{cls}} - A_{\text{unkown}}||_2$, where CK = A is the Beer's law relationship between concentration C, extinction coefficient K, and absorbtion A. Multiplier matrix B_{cls} is the pseudo-inverse of Beer's law extinction coefficient matrix K_{cls} such that $C_{\text{cls}} = A_{\text{unknown}} \cdot B_{\text{cls}}$. The CLS algorithm is encapsulared in function pnnl_cls.

```
function [C_cls, B_cls, K_cls] = pnnl_cls(A_train, C_train, A_unknown)

K_cls = C_train \ A_train;

C_cls = A_unknown / K_cls;

B_cls = pinv(K_cls);
end
```

Principal Component Regression (PCR)

Principal component regression computes C_{pcr} using C_{train} and the first r principal components of A_{train} . The PCR algorithm is encapsulated in function pnnl_pcr.

```
function [C_pcr, B_pcr] = pnnl_pcr(A_train, C_train, A_unknown, r)
  [U,S,V] = svd(A_train, 'econ');

B_pcr = V(:,1:r) / S(1:r,1:r) * U(:,1:r)' * C_train;

C_pcr = A_unknown * B_pcr;
```

Partial Least Squares (PLS)

Partial least squares computes $C_{\rm pls}$ using the weights from the SIMPLS algorithm with r latent variables. The PLS algorithm without mean centering is encapsulated in function pnnl_pls.

```
function [C_pls, B_pls] = pnnl_pls(A_train, C_train, A_unknown, r)

X = A_train;
Y = C_train;

[X_loadings, Y_loadings, X_scores, Y_scores, Weights] = pnnl_simpls(X, Y, r);

B_pls = Weights * Y_loadings';

C_pls = A_unknown * B_pls;
end
```

Napalm Data

Load the included napalm data to run the CLS, PCR, and PLS algorithms.

```
clearvars
load pnnl_napalm_data
whos
```

Name	Size	Bytes	Class	Attributes
A train	20×1713	274080	double	
A_train A_unknown	12x1713	164448	double	
C train	20x3	480	double	
C validation	12x3	288	double	
ConcentrationUnits	1x4	8	char	
ConstituentNames	1x3	364	cell	
WavenumberLabel	1x20	40	char	
Wavenumbers	1x1713	13704	double	
ans	1x1	8	double	

For example, predict C_{pcr} with 3 principal components.

```
C_pcr = pnnl_pcr(A_train, C_train, A_unknown, 3)
```

```
C_pcr = 12 \times 3
   12.9651
              41.5598
                        48.0989
   11.3438
              43.0304
                         49.0159
   13.3397
                        47.5971
              40.7442
              39.9731
   20.1845
                        44.0269
   20.8106
              34.9763
                         45.9648
   15.0783
              37.3312
                         51.0697
   14.2210
              39.6347
                        49.2717
   14.8666
              38.2302
                        49.9465
   20.3575
              40.8076
                        42.7753
   19.5111
              41.4280
                        41.7355
```

Examine the Data

It's a good idea to look at the data before analyzing it.

```
plot(Wavenumbers,A_train)
xlabel(WavenumberLabel)
ylabel('Absorbance')
title('Training Spectra')
```



```
plot(Wavenumbers,A_unknown)
xlabel(WavenumberLabel)
ylabel('Absorbance')
title('Unknown Spectra')
```


Root Mean Square Error (RMSE)

The root mean square error of the prediction C_{pcr} is RMSEP = $\sqrt{\text{mean}\left((C_{pcr} - C_{validation})^2\right)}$. The RMSE algorithm is encapsulated in function pnnl_rmse. Using vecnorm is theoretically equivalent, but is better than computing the square and square root with respect to very large or very small numbers.

```
function rmse = pnnl_rmse(C_computed,C_actual)
    p = size(C_actual,1);
    rmse = vecnorm(C_computed - C_actual, 2, 1) / sqrt(p);
end
```

The columns correspond to the RMSEP of the compnents benzene, polystyrene, and gasoline.

```
RMSEP_pcr = pnnl_rmse(C_pcr, C_validation) %#ok<*NASGU>

RMSEP_pcr = 1×3
7.7847 2.2831 9.9695
```

Calibration Predictions

Training

You can run a predictor method against the training data.

```
C_pcr_train = pnnl_pcr(A_train, C_train, A_train, 3);
RMSEC = pnnl_rmse(C_pcr_train, C_train)
```

```
RMSEC = 1×3
4.2787 2.3856 5.6681
```

Cross-validation

You can cross-validate by running a predictor method against the training data. For each of the rows in the training set, leave one row out, and use that row as the unknown data. The pnnl_cross_validation function encapsulates this,

where method is a function handle.

```
method = @pnnl_cls

or

method = @pnnl_pcr

or

method = @pnnl_pls
```

and the variable input argument varargin is the number of principal components for PCR or the number of latent variables for PLS.

For example

```
C_pcr_cross_validation = pnnl_cross_validation(@pnnl_pcr, A_train, C_train,
3);
RMSECV = pnnl_rmse(C_pcr_cross_validation, C_train)

RMSECV = 1×3
5.1022 2.9924 6.7526
```

Plot the concentration results

Plot the results of $C_{\text{validation}}$ against C_{pcr} using a scatter plot

```
figure
plot(C_validation,C_pcr,'.','MarkerSize',35);
```

Save the color order of the constituents to coordinate the colors of the training and cross-validation data.

```
colorOrder = get(gca, 'ColorOrder');
```

Hold the axis and plot the training and cross-validation sets.

```
hold on
```

Plot training prediction with o marker.

```
plot(C_train,C_pcr_train,'o','MarkerSize',10,'LineWidth',1)
```

Plot cross-validation concentrations with + marker.

```
plot(C_train,C_pcr_cross_validation,'+','MarkerSize',10,'LineWidth',1)
```

Draw a 1-1 line.

```
line(C_train, C_train, 'Color', 'k');
```

Reset the color order so the training and cross-validation sets have the same colors for their constituents.

```
n = size(C_validation,2);
set(gca,'ColorOrder',colorOrder(1:n,:));
```

Create a legend and make the axis square, so you can see that the training line is 45 degrees.

```
legend(ConstituentNames{:},'Location','northwest')
xlabel('Known constituent (wt %)')
ylabel('Predicted constituent (wt %)')
axis square
grid on
box on
```


Unknown prediction is displayed as a solid dot. Training prediction is displayed as an open circle. Cross-validation prediction is displayed as a plus sign.

Functions that load napalm data, predict, and plot

The following functions encapsulate the steps in the previous sections for each of the methods. They load the napalm data, predict and plot the concentration matrices, and display the RMSE values.

```
pnnl_napalm_cls
pnnl_napalm_pcr(nPrincipalComponents)
meanCentered = true;
pnnl_napalm_pls(nLatentVariables, meanCentered)
```

Plotting

If you call them with no output arguments, then the plots and displays are shown. If you input a vector to PCR and PLS, then they are run for the number of principal components or latent variables, respectively.

```
meanCentered = true;
pnnl_napalm_pls([2 4 8], meanCentered);
```


Legend: Dot is predicted. Circle is calibration. Cross is cross-validation.

PLS,	2 latent	variables	Benzene	Polystyrene	Gasoline
		RMSEC	4.1479	2.296	5.5014
		RMSECV	5.0229	2.924	6.5258
		RMSEP	10.164	2.4566	8.8266

Legend: Dot is predicted. Circle is calibration. Cross is cross-validation.

PLS,	4 latent variables	Benzene	Polystyrene	Gasoline
	RMSEC	1.3963	1.3754	0.94211
	RMSECV	2.6054	2.7754	1.6862
	RMSEP	1.692	5.7011	5.157

Legend: Dot is predicted. Circle is calibration. Cross is cross-validation.

PLS,	8 latent variables	Benzene	Polystyrene	Gasoline
	RMSEC	0.55266	0.64849	0.3842
	RMSECV	4.1383	3.7088	1.2699
	RMSEP	3.3601	7.1028	9.9981

Output Data

The computed data are returned if you call the functions with output arguments, and the plot and display are suppressed.

```
[C_cls, RMSEP_cls, C_cls_train, RMSEC_cls, C_cls_cross_validation, RMSECV_cls] =
pnnl_napalm_cls
[C_pcr, RMSEP_pcr, C_pcr_train, RMSEC_pcr, C_pcr_cross_validation, RMSECV_pcr] =
pnnl_napalm_pcr(nPrincipalComponents)
[C_pls, RMSEP_pls, C_pls_train, RMSEC_pls, C_pls_cross_validation, RMSECV_pls] =
pnnl_napalm_pls(nLatentVariables, meanCentered)
```

Optimal number of principal components for PCR with the napalm data

Compute PCR for 1 through 18 principal components and plot RMSEP for them.

```
nPrincipalComponents = 1:18;
[C_pcr, RMSEP_pcr] = pnnl_napalm_pcr(nPrincipalComponents);
plot(nPrincipalComponents, RMSEP_pcr,'.-','LineWidth',2,'MarkerSize',20)
xlabel('Number of principal components')
ylabel('RMSEP')
title('PCR')
```


It looks like 3 is the knee in the curve for polystyrene and 4 for benzene and gasoline, with 7 being better for benzene and 5 being better for gasoline. It may be best to use 4 principal components across the board, but visualize 4, 7, and 5 to see what they look like.

```
nPrincipalComponents = [4 7 5];
pnnl_napalm_pcr(nPrincipalComponents);
```


Legend: Dot is predicted. Circle is calibration. Cross is cross-validation.

PCR,	4 principal components	Benzene	Polystyrene	Gasoline
	RMSEC	1.5239	2.1479	3.0752
	RMSECV	2.3196	2.7733	3.9613
	RMSEP	1.9709	4.2039	3.7242

Legend: Dot is predicted. Circle is calibration. Cross is cross-validation.

PCR,	7 principal	components	Benzene	Polystyrene	Gasoline
		RMSEC	1.4425	1.0488	0.72249
		RMSECV	3.8273	2.4622	1.4638
		RMSEP	1.1476	10.928	5.6779

Legend: Dot is predicted. Circle is calibration. Cross is cross-validation.

PCR,	5 principal components	Benzene	Polystyrene	Gasoline
	RMSEC	1.518	1.5102	1.1154
	RMSECV	2.5405	2.8788	2.1064
	RMSEP	1.9013	3.2618	2.5142

Optimal number of latent variables for PLS with the napalm data

Compute PLS for 1 through 18 latent variables and plot RMSEP for them.

```
nLatentVariables = 1:18;
meanCentered = true;
[C_pls, RMSEP_pls] = pnnl_napalm_pls(nLatentVariables, meanCentered);
plot(nLatentVariables, RMSEP_pls,'.-','LineWidth',2,'MarkerSize',20)
xlabel('Number of latent variables')
ylabel('RMSEP')
title('PLS')
legend(ConstituentNames{:})
```


It looks like the knee in the curve for benzene and gasoline is 3 latent variables, and 2 for polystyrene. Plot them to see what they look like.

```
nLatentVariables = [3 2];
meanCentered = true;
pnnl_napalm_pls(nLatentVariables, meanCentered);
```


Legend: Dot is predicted. Circle is calibration. Cross is cross-validation.

PLS,	3 latent	variables	Benzene	Polystyrene	Gasoline
		RMSEC	1.3968	1.8465	1.5789
		RMSECV	2.2406	2.6176	2.7657
		RMSEP	1.6799	5.0647	4.2528

Legend: Dot is predicted. Circle is calibration. Cross is cross-validation.

PLS,	2 latent va	ariables	Benzene	Polystyrene	Gasoline
		RMSEC	4.1479	2.296	5.5014
		RMSECV	5.0229	2.924	6.5258
		RMSEP	10.164	2.4566	8.8266

Single Constituent Analysis

Single-Constituent Analysis Function

Loop over one constituent at a time for a range of number of principal components for PCR or latent variables for PLS

```
C_predicted(:,j,i) = method(A_train,C_train(:,j),A_unknown,r);
                   C_predicted_train(:,j,i) = method(A_train,C_train(:,j),A_train,r);
                   C_cross_validation(:,j,i) = pnnl_cross_validation(method,A_train,C_train(:,j),r);
               end
           end
           RMSEP = zeros(nSamples,n);
          RMSEC = zeros(nSamples,n);
           RMSECV = zeros(nSamples,n);
           for i = 1:nSamples
               RMSEP(i,:) = pnnl_rmse(C_predicted(:,:,i), C_validation);
               RMSEC(i,:) = pnnl rmse(C predicted train(:,:,i), C train);
               RMSECV(i,:) = pnnl_rmse(C_cross_validation(:,:,i), C_train);
           end
       end
where
      method = @pnnl_pcr
or
      method = @pnnl_pls
```

PCR single-constituent analysis

```
nPrincipalComponents = 1:18;
[C_pcr_single,RMSEP_pcr_single,C_pcr_train,RMSEC_pcr_single,C_pcr_cross_vali
dation,RMSECV_pcr_single] =
pnnl_single_constituent_analysis(@pnnl_pcr,A_train,C_train,A_unknown,C_valid
ation,nPrincipalComponents);

figure
plot(nPrincipalComponents,
RMSEP_pcr_single,'.-','LineWidth',2,'MarkerSize',20)
xlabel('Number of principal components')
ylabel('RMSEP')
title('PCR Single Constituent Analysis')
legend(ConstituentNames{:})
```


RMSEP_pcr_single

```
RMSEP_pcr_single = 18x3
   29.9750
             23.9417
                        23.7927
   28.6263
             24.1762
                        24.5626
   7.7847
              2.2831
                         9.9695
   1.9709
              4.2039
                         3.7242
   1.9013
              3.2618
                         2.5142
   1.2574
              9.9258
                         3.7027
   1.1476
             10.9276
                         5.6779
   7.3318
             11.0582
                         8.5945
                         9.2745
   8.2835
             10.5548
    5.7046
              9.0578
                         7.5328
```

```
figure
plot(nPrincipalComponents,
RMSEC_pcr_single,'.-','LineWidth',2,'MarkerSize',20)
xlabel('Number of principal components')
ylabel('RMSEC')
title('PCR Single Constituent Analysis')
legend(ConstituentNames{:})
```


RMSEC_pcr_single

```
RMSEC_pcr_single = 18x3
   37.7112
             13.7234
                        25.0924
   17.3697
             11.8892
                         8.8694
    4.2787
              2.3856
                         5.6681
    1.5239
              2.1479
                         3.0752
   1.5180
              1.5102
                         1.1154
   1.4748
              1.1014
                         1.0794
   1.4425
              1.0488
                         0.7225
   1.1541
              1.0486
                         0.5920
                         0.4704
   0.9278
              1.0113
    0.9120
                         0.4550
              1.0066
```

```
figure
plot(nPrincipalComponents,
RMSECV_pcr_single,'.-','LineWidth',2,'MarkerSize',20)
xlabel('Number of principal components')
ylabel('RMSECV')
title('PCR Single Constituent Analysis')
legend(ConstituentNames{:})
```


RMSECV_pcr_single

```
RMSECV_pcr_single = 18 \times 3
   39.4672
              14.7174
                        26.6809
   19.3866
              13.4528
                          9.8643
               2.9924
    5.1022
                          6.7526
    2.3196
               2.7733
                          3.9613
    2.5405
               2.8788
                          2.1064
               2.7548
    2.5757
                          2.1532
    3.8273
               2.4622
                          1.4638
    4.0755
               2.5793
                          1.4817
    4.0295
               2.6122
                         1.3666
    5.3362
               5.0141
                          1.0877
```

PLS single-constituent analysis (PLS1)

```
nLatentVariables = 1:18;
meanCentered = true;
[C_pls_single,RMSEP_pls_single,C_pls_train,RMSEC_pls_single,C_pls_cross_vali
dation,RMSECV_pls_single] =
pnnl_single_constituent_analysis(@pnnl_pls,A_train,C_train,A_unknown,C_valid
ation,nLatentVariables,meanCentered);

figure
plot(nLatentVariables, RMSEP_pls_single,'.-','LineWidth',2,'MarkerSize',20)
xlabel('Number of latent variables')
ylabel('RMSEP')
```


RMSEP_pls_single

```
RMSEP_pls_single = 18\times3
                        17.8789
    3.1308
             11.0967
    9.9863
              2.5181
                         7.5506
    1.9121
              6.4373
                         4.4750
    2.8748
              7.4979
                         5.0049
    3.5529
             11.4055
                         9.7827
    2.2445
              8.7721
                         9.6469
    1.7867
              5.7572
                        10.1628
    3.6749
              3.8344
                         9.6194
    6.7532
              4.6419
                        10.1391
    8.6112
              4.2729
                        12.7604
```

```
figure
plot(nLatentVariables, RMSEC_pls_single,'.-','LineWidth',2,'MarkerSize',20)
xlabel('Number of latent variables')
ylabel('RMSEC')
title('PLS Single Component Analysis')
legend(ConstituentNames{:})
```


RMSEC_pls_single

```
RMSEC_pls_single = 18x3
    7.1284
              6.8256
                         6.7547
    3.9581
              2.2700
                         5.2652
    1.4067
              1.4287
                         1.4405
    1.1976
              1.1857
                         0.9208
   0.9781
              0.9835
                         0.5819
   0.7375
              0.7626
                         0.4047
              0.5739
                         0.3629
   0.6659
   0.4745
              0.2977
                         0.3193
              0.2440
   0.2418
                         0.2915
    0.1866
              0.1746
                         0.2706
```

```
figure
plot(nLatentVariables, RMSECV_pls_single,'.-','LineWidth',2,'MarkerSize',20)
xlabel('Number of latent variables')
ylabel('RMSECV')
title('PLS Single Component Analysis')
legend(ConstituentNames{:})
```


RMSECV_pls_single

```
RMSECV_pls_single = 18 \times 3
    8.2183
               9.7797
                          7.6180
    4.8587
               2.9092
                          6.2563
    2.3988
               2.7267
                          2.7035
    2.5116
               2.7840
                          1.6352
    3.2345
               2.4518
                          1.6484
               3.0753
                          1.5637
    3.7072
                          1.4498
    4.0285
               3.7219
    4.0955
               3.5892
                          1.3431
    3.8895
               3.6171
                          1.3255
                          1.4143
    3.3971
               3.1633
```

Principal Components and Principal Component Scores

Scores definition

The scores are the left-singular vectors multiplied by the singular values of the absorbance matrix. The economy-size singular value decomposition is

$$A_{p \times m} = U \cdot \sum_{p \times p} V^{\mathrm{T}}_{p \times m}$$

where U and V have orthonormal columns, $\Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p)$, and $\sigma_1 \ge \sigma_2 \ge \dots \sigma_p \ge 0$.

It can be written as a sum of rank-one outer products

$$A_{p \times m} = \sigma_1 U(:,1) V(:,1)^{\mathrm{T}} + \sigma_2 U(:,2) V(:,2)^{\mathrm{T}} + \dots + \sigma_p U(:,p) V(:,p)^{\mathrm{T}}.$$

where $\sigma_i U(:,i)$ is called the score of the *i* th principal component V(:,i) (Cleve Moler, "Professor SVD").

In matrix form, this is written as

Scores = $U\Sigma$.

Singular Value Decomposition

Function pnnl_rectifiedSVD returns the economy-size singular value decomposition, where the maximum magnitude element of each column of V is positive, which is the convention for principal components. The singular value decomposition is unique up to the signs of the columns of U and V, like 1*2*1 == -1*2*-1. Rectified singular value decompositions are unique, which makes it convenient to compare one score to another.

```
[U,S,V] = pnnl_rectifiedSVD(A_train);
```

Principal Components

The principal components are the right singular vectors in the columns of matrix *V*.

Plot the first four principal components.

```
figure
pnnl_strip_plot(Wavenumbers, V(:,1:4)',...
    'Principal Components',...
WavenumberLabel,'V^T');
```


Principal Compent Scores

The scores are the left singular vectors multplied by the singular values.

```
Scores = U*S;
```

Plot the scores of one principal component against the other.

```
fontSize = 14;
plot(Scores(:,1),Scores(:,2),'.','MarkerSize',35);
xlabel('Scores on PC1');
ylabel('Scores on PC2');
set(gca,'FontSize',fontSize);
box on
```


Plot scores with labels

The scores only rely on an absorbance matrix, without having to know the actual concentrations. If you also know the concentrations, then you can use that information to label the scores. Function pnnl_plot_scores computes and plots the scores as in the previous section, and also uses information in the known concentrations to label the scores plot.

pnnl_plot_scores(A_train, C_train, 1, 2, ConstituentNames)

Display concentration percentages of training set

If you input an additional parameter to pnnl_plot_scores, then it will also display the concentration percentages as (%benzene, %polystyrene, %gasoline), which may be useful to zoom in and explore the linear relationship between the scores.

```
displayConcentrations = true;
pnnl_plot_scores(A_train, C_train, 1, 2, ConstituentNames,
displayConcentrations)
```


Display concentration percentages of unknown set

If you input an additional parameter to pnnl_plot_scores, then it will also display the concentration percentages as (%benzene, %polystyrene, %gasoline), which may be useful to zoom in and explore the linear relationship between the scores.

```
displayConcentrations = true;
pnnl_plot_scores(A_unknown, C_validation, 1, 2, ConstituentNames,
displayConcentrations)
```


Display all combinations of scores

Function pnnl_napalm_plot_scores loads the napalm data set and loops over all combinations of principal components.

pnnl_napalm_plot_scores

Spectra

Measured spectra

The pnnl_napalm_plot_spectra function plots the napalm spectra meaasured in A_{train} and $A_{unknown}$.

pnnl_napalm_plot_spectra

CLS K vs Pure Spectra

Classical least squares computes C_{cls} that minimizes $||CK - A||_2$, where CK = A is the Beer's law relationship between concentration C, extinction coefficient K and absorbtion A. An estimation of the extinction coefficient matrix K_{cls} is computed as a byproduct of the CLS method.

```
function [C_cls, K_cls] = pnnl_cls(A_train, C_train, A_unknown)
    K_cls = C_train \ A_train;
    C_cls = A_unknown / K_cls;
end
```

You can see in the following plots that the rows of K_{cls} match the spectra of the pure constituents.

```
[C_cls, B_cls, K_cls] = pnnl_cls(A_train, C_train, A_unknown);
pnnl_napalm_plot_pure_spectra_vs_K_cls
```


Glossary

Methods

- Classical Least Squares (CLS)
- Principal Component Regression (PCR)
- Partial Least Squares (PLS)

Numbers

- m is the number of measured wavenumbers. In the napalm data, m = 1713.
- n is the number of constituents. In the napalm data, n = 3 for constituents benzene, polystyrene, and gasoline.
- p is the number of compounds. In the napalm data, $p_{\text{train}} = 20$ for the training compounds, and $p_{\text{unknown}} = 12$ for the unknown compounds.
- r is the number of principal components in PCR, and the number of latent variables in PLS.

Matrices

- A is a matrix of absorbance spectra
- C is a matrix of concentrations
- K is a matrix of normalized extinction coefficients

Specific Matrices

- A_{train} is the measured absorbance matrix from the training solutions.
- $A_{\rm unknown}$ is the measured absorbance matrix from the solution with unknown concentrations
- C_{train} is the matrix of known concentrations (measured into the solution)
- $C_{
 m validation}$ is the matrix of concentrations of the unknown solution derived by an independent means
- $C_{\rm cls}$, $C_{\rm pcr}$, $C_{\rm pls}$ is the concentration matrix of the unknown solution computed using CLS, PCR, PLS respectively
- K_{cls}, K_{pcr}, K_{pls} is the matrix of normalized extinction coefficients computed using CLS, PCR, PLS respectively

Root Mean Square Error

- RMSE = pnnl_rmse(C_{computed} , C_{known}) = $\sqrt{\text{mean}((C_{\text{computed}} C_{\text{known}}).^2)}$. Root mean square error between a computed value and a known value.
- RMSEP = pnnl_rmse($C_{\text{predicted}}$, $C_{\text{validation}}$). RMSEP is the prediction error measured on real cases and compared to reference values.
- RMSEC = pnnl_rmse($C_{\text{predicted from train}}$, C_{train}). RMSEC is the calibration error. $C_{\text{predicted from train}}$ is computed by using A_{train} as the unknown.
- RMSECV = pnnl_rmse($C_{cross\ validation}$, C_{train}). RMSECV is the cross-validation error. For each of the rows in the training set C_{train} and A_{train} , leave one row out, and use that row as the unknown data in the predictor. Store the result in $C_{cross\ validation}$. Then compute the RMSE between $C_{cross\ validation}$ and C_{train} .

Disclaimer

This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the United States Department of Energy, nor Battelle, nor any of their employees, nor any jurisdiction or organization that has cooperated in the development of these materials, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any information, apparatus, product, software, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830