CG 2021 HW3

Advanced texture mapping

- In this assignment, you are going to write a program based on the provided template that implements several shader effect on texture mapping with GLSL

Spec

- Implementation (80%)
 - [Part 1] Skybox (10%)
 - [Part 1] Environmental Mapping (35%)
 - Apply Fresnel effect
 - reflection + refraction + chromatic dispersion
 - The refraction can compute single side only.
 - No need to consider the wood plane in this part.

You can ignore this refraction

Spec

- Implementation (80%)
 - [Part 2] Normal mapping (35%)
 - Generate the normal map as a sine wave (20%)
 - Correct tangent space transform matrix (10%)
 - Apply Blinn-Phong shading (5%)
 - Directional light
 - Look what you did in HW2
 - The light direction is correct now (source → target)
 - Ks = 0.75, Kd = 0.75, Shininess = 8, attenuation = 1

Spec

- Report(20%)
 - Implementation(HOW & WHY)
 - Problems you encountered
 - Don't paste code without any explaination
 - File name: report_<your student ID> .pdf
- Bonus(10%)
 - Ex: displacement mapping and/or parallax mapping on the fake wave
 - Ex: Show the height map correctly
 - Other creativity

Hint

- Read the TODOs in the template
- Read comments to get more hints & ideas
- Before you ask question on E3, make sure you have Googled it
- If you have questions when you reading other part of the template code, you can ask it in forum too.
- Feel free to report bugs if you find one.:)

Notes

- Deadline: 12/06 23:59
 - You need to upload hw3_<your student ID>.zip and report_<your student ID>.pdf respectively
 - hw3_<your student ID>.zip (root)
 - assets
 - include
 - src
 - You can use script/pack.ps1 (PowerShell) or script/pack.sh (Bash)
 - Incorrect submission will -5 points
- No plagiarism, -10 points per day after deadline
- No demo required this time

Notes

- Final's group list
- Final proposal presentation starts from 11/23 NEXT WEEK 12:30
 - Remote presentation
 - Submit your proposal to E3 before 11/23 23:59
- The form for paper presentation will be anounced recently
 - MUST discuss the paper's topic with teacher in advance

HW 1 Scoring

- Receive feedbacks until 11/26 23:59
- Viewing transformation
- Report

Appendix: Skybox

Appendix: Fresnel Effect

- Fresnel equation we use: it's an approximation
 - The coefficient presents how strong the reflection is

 $reflectionCoefficient = max(0, min(1, bias + scale \times (1 + I \cdot N)^{power}))$

Appendix: Normal Mapping

Appendix: Normal Mapping

- Note the difference with bumping mapping
- Though range is [-1, 1], but store as RGB
 - \rightarrow you have to transform it before using it
- Incorrect after rotation
 - \rightarrow Tangent space

Appendix: Normal Mapping

- How to generate the normal vector in HW3(sine wave)?
 - calculating with fragment's position
 - Order? Space?
 - Online creator

https://zh.wikipedia.org/wiki/File:Simple_sine_wave.svg

Appendix: Tangent Space

Appendix: Tangent Space

https://docs.cryengine.com/plugins/viewsource/viewpagesrc.action?pageId=1605679

Appendix: Displacement mapping

- cons:
 - Need a lot of vertice to have good result
 - A plane needs ~10000 vertices, which is not efficient.
- pros:
 - Very easy to implement (move position along normal in vertex shader)

Appendix: Parallax occlusion mapping

- cons:
 - More difficult to implement.
- pros:
 - You can achieve similar effect of displacement mapping using only 4 vertices.

Appendix: 100% reflection

Appendix: 100% refraction, close

Appendix: 100% refraction, far

Appendix: Reflection + Refraction

Appendix: Normal mapping

Appendix: Normal + Displacement (10000 vertices)

Appendix: Normal + Parallax mapping

Appendix: Displacement map with 4 vertices

Appendix: Useful tools

- GLSL language integration (Visual Studio extension)
- GLSL validator (glslang)

Reference

- E3
 - textureMapping.ppt and textureMapping2.ppt
- https://learnopengl.com/Advanced-Lighting/Normal-Mapping
- https://developer.download.nvidia.com/CgTutorial/cg_tutorial_chapter0
 7.html