Demo on Verification and Validation of Microservice Systems

Alberto Avritzer¹, Barbara Russo², Matteo Camilli², **Andrea Janes**², André van Hoorn³, Catia Trubiani⁴

¹eSulabSolutions, ²Free University of Bolzano, ³University of Hamburg, ⁴Gran Sasso Science Institute

September 19, 2022

Contents

Plan

PPTAM: Architectural Overview

Conducting an experiment: Step by Step

Plan

- Understand the components of PPTAM
- Setup a performance test
 - Define the software under test
 - Define how this software can be installed automatically
 - Define the load test
 - Configure PPTAM
- Execute performance tests
- Analyze the results

Contents

Plan

PPTAM: Architectural Overview

Conducting an experiment: Step by Step

PPTAM: Overview (container diagram)¹

¹https://github.com/pptam/pptam-tool

Operational profile

PPTAM: Overview (container diagram)

PPTAM: Overview (component diagram)

PPTAM: Process

Variable	Service 1	Service 2
$\overline{x}(l_0)$	0.018	2.008
σ	0.008	0.003
Req.	0.042	2.017
$\overline{x}(I_{op})$	0.015	2.009
Pass/fail	pass	pass
Calls	20%	80%

Success rate=20% + 80%

Success rate for different workloads

Operational profile

Success rate × probabilty

Contents

Plan

PPTAM: Architectural Overview

Conducting an experiment: Step by Step

Setup a performance test

- Define the software under test
- Define how this software can be installed automatically
- Define the load test
- Configure PPTAM

Execute performance tests

- Go to the folder ./toolchain
- Execute ./execute.py ../design_sockshop_demo
- Results are stored into the folder ./executed

Analyze the results: store results into db

- Store each exeperiment into the database using store.py,
 e.g., ./store.py ../executed/202209191121-sock_shop-test1
 - Alternatively: ./store_all_experiments.sh
- The db is a sqlite database, but you can also use a tool we developed:
 - ./manage.py projects list visualizes all projects
 - ./manage.py profiles list "Demo Project" visualizes the operational profiles stored together with the "Demo Project"

Database structure

Analyze the results: calculate polygons

- Export Polygons using ./analyze_polygons.py "Demo Project"
- Visualize results e.g., using the Jupyter Notebook file dashboard.ipynb

Example Visualization

Thank you for your attention!