

海凌科雷达模块天线罩设计指南

2023/04/28

天线罩对毫米波传感器性能的影响

- 雷达波在天线罩边界上发生反射
 - 使得雷达辐射或接收的总功率有所损耗;
 - 反射波进入接收通道,影响发射、接收通道之间的隔离度;
 - 反射可能使天线的驻波变差,进一步影响天线增益
- 雷达波在介质中传播会发生损耗,理论上来说频率越高损耗会越大;
- 电磁波在穿过介质时会产生一定程度的折射,
 - 影响天线的辐射方向图, 进而影响传感器的覆盖范围

天线罩的设计原则

- 天线罩的结构形状
 - 表面光滑平整,厚度均匀一致。如平面或者球面,不能凹凸不平
 - 若有表面涂层,不能含有金属或导电的材料
 - 在天线正上方,天线罩面与天线平面保持平行
- 天线到天线罩内表面的的高度H
 - 理想的高度是空气中电磁波半波长的整数倍 $H = \frac{m}{2} * \frac{c_0}{f}$ 其中m为正整数, c_0 为真空光速, f 为工作中心频率
 - 比如,24.125GHz中心频率,其在空气中的半波长约6.2mm

- 理想的厚度是介质中电磁波半波长的整数倍
- $D = \frac{m}{2} * \frac{c_0}{f\sqrt{\epsilon_r}}$ 其中m为正整数, ϵ_r 为天线罩材质的相对介电常数
- 比如某ABS材料 $\epsilon_r=2.5$,其半波长约3.92mm

常见材料

M-Link

- 设计之前, 先了解天线罩的材质和电气特性
 - 右表仅供参考,实际值请与供应商确认
- 天线到天线罩内表面的的高度H
 - 在空间允许时,优先推荐1倍或1.5倍波长
 - 比如,对应24.125GHz推荐12.4或18.6mm
 - 误差控制: ±1.2mm
- 天线罩的厚度D
 - 推荐半波长,误差控制±20%
 - 如不能满足半波长的厚度要求
 - 推荐使用低 ϵ_r 的材料;
 - 厚度推荐1/8波长或更薄
- 不均匀材料或多层组合材料对雷达性能的影响, 建议在设计时进行实验调

常见材料特性 (基于 24.125GHz)

介质	ϵ_r 典型值	半波长 (mm)	1/8波长 (mm)	1/10波长 (mm)
空气	1.00	6.20	1.55	1.24
ABS1	1.50	5.06	1.27	1.01
ABS2	2.50	3.92	0.98	0.78
PC材料	3.00	3.58	0.89	0.72
PMMA亚克力1	2.00	4.38	1.10	0.88
PMMA亚克力2	5.00	2.77	0.69	0.55
PVC硬	4.00	3.10	0.78	0.62
PVC软	8.00	2.19	0.55	0.44
高密度PE	2.40	4.00	1.00	0.80
低密度PE	2.30	4.09	1.02	0.82
石英玻璃	5	2.77	0.69	0.55

驱动电源

1. 采用稳定的电源

务必采用输出电压、电流及纹波系数等都达标的驱动电源。防止雷达模组误报、无感知、循环自启等现象。

2. 电流与电源纹波

驱动电流不可低于雷达模组工作电流,且电源纹波 (≤50mV)、毛刺和工频波动幅度尽可能小。

3. 防止电源干扰信号

避免雷达模组正/背对驱动电源模块,尽量远离整流桥、开关变压器等工频干扰大的器件。

测试和使用

1. 信号强度与环境

四周有墙壁或障碍物反射微波的情况下, 感知距离和感知角度会有增益, 反之会衰减。

- 2. 保护雷达天线保护好天线,表面不要有金属物体(例如焊锡丝)等,否则会影响感知距离。
- 3. 避免震动、挤压与遮挡 轻拿轻放,避免激烈震动,雷达模组保持平整不变 形。感光元件周围应避免有不透光的 遮挡物。
- 4. 模组周围预留空间 雷达模组保持独立使用空间,四周空间保持 2mm以上的空间间隔。

- 5. 初始化完成后开始测试 通电后有初始化噪声分析时间,在此期间属于非正常感知工作。
- 光感被遮挡后重新确定门限值
 如果雷达模组的感光器件上面有遮挡(例如外 壳等),需要重新测试确定感光门限值。
- 7. 保持模组间距

产线测试和老化作业时,大量的雷达模组上电 并堆叠到一起,可能会出现自激现象,请确保雷达 模组之间保持 50cm 以上的安全距离。

模组安装

1. 远离机械震动

装配了雷达模组的器件,安装位置应远离通风管 道、消防管道、排水管道或有大型金属设备等强烈振动物 体的地方。

2. 严禁带电作业

严禁带电作业,以免动作失误,接错,烧坏电路或触电。

3. 避免日晒雨淋

避免安装在日晒雨淋的地方, 防止损坏和影响使用寿命。

4. 远离磁场干扰

器件务必安装在远离电磁场的地方,以免电磁干扰产生误动作。

5. 保持器件间距

数个内置雷达模组的器件固定安装时,应保证各个器件之间的间距 ≥0.5m.

6. 模组与外壳保持间距

雷达微波模块的天线面建议距离产品外壳

3~5mm, 否则会影响感知距离。

模组安装

7. 安装角度

器件内置了雷达模组的产品后,建议水平或者垂直放置,在有效的感知范围内,尽量避免面对面的安装两个或者更多的内置 雷达模组的器件。

8. 避免光照干扰

避免内置雷达模组的器件附近,有其他光照物(例如应急灯,导向灯等干扰光源),以免造成器件内置感光判断失效。

9. 中频干扰解决方案

如果雷达模组受到中频干扰,一直判断为有动目标在感知范围内,此时应关断电源,检查电源板的供电状态是否正常以及模组空间距离是否改变。

10. 依次排除问题

若以上问题还不能解决,请先断电和观察安装位置周围情况,先排除周围环境干扰因素的影响;重启电源后仍有问题,则考虑更换设备的驱动电源板,或者雷达模组再验证。