

Analog IC Design

Lecture 14 OTA Design Example

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Analog Design Trade-offs

- ☐ There are always tradeoffs between gain, speed, and energy efficiency.
- ☐ The design knobs that you use to control the tradeoffs are gm/ID and L.
- Choice of gm/ID
 - Large gm/ID: high efficiency (low power), large swing (low V*), high gain (low V*)
 - Small gm/ID: high speed, small area
- $oldsymbol{\square}$ Choice of L
 - Long L: high gain, good matching, low flicker noise (more later)
 - Short *L*: high speed, small area
- Finding the best compromise for design tradeoffs given required specs is your job as a designer.

- □ OTA required specifications
- ☐ Topology selection
- ☐ Tradeoffs Matrix
- Design of input pair
- Design of current mirror load
- Design of tail current source
- ☐ Sizing and simulation results

- OTA required specifications
- ☐ Topology selection
- ☐ Tradeoffs Matrix
- Design of input pair
- Design of current mirror load
- Design of tail current source
- ☐ Sizing and simulation results

OTA Design Example

☐ Design a diff input SE output OTA that meets the following specs.

Technology	180 nm CMOS
Supply voltage	1.8 V
Load	5 pF
Open loop DC voltage gain	>= 32 dB
Phase margin	>= 70°
Reference Current	10 uA
OTA current consumption	<= 20 uA
CM input range – low	<= 0.2 V
CM input range – high	>= 1.1 V
GBW	5 MHz
CMRR @DC	70 dB

- □ OTA required specifications
- Topology selection
- ☐ Tradeoffs Matrix
- Design of input pair
- Design of current mirror load
- Design of tail current source
- ☐ Sizing and simulation results

Topology Selection

- The required gain is not high (only 32 dB = 40) so it can be achieved by a simple single stage OTA
 - If the gain is high, we must use cascode or two stage OTA
- ☐ Since the required CMIR is close to the ground rail, we need to use a PMOS input stage
- PMOS input stage has other advantages as well
 - PMOS input transistors can be placed in a separate well so they don't suffer from body effect
 - PMOS has lower flicker noise

Topology Selection

- Single stage OTA has a single dominant pole, so we don't need to worry about phase margin
 - For two-stage you must use compensation network
- Use simple current mirror for biasing
 - The reference current is 10 uA
 - Doubled by the mirror such that 20 uA goes to the diff pair

- OTA required specifications
- ☐ Topology selection
- ☐ Tradeoffs Matrix
- Design of input pair
- Design of current mirror load
- Design of tail current source
- ☐ Sizing and simulation results

Trade-offs Matrix

Spec	I_{SS}	L_{12}	$\left(\frac{g_m}{I_D}\right)_{12}$	L_{34}	$\left \left(\frac{g_m}{I_D} \right)_{34} \right $	L_5	$\left(\frac{g_m}{I_D}\right)_5$
DC gain ↑							
CMIR – low ↓							
CMIR – high 个							
GBW ↑							
CMRR @DC 个							

- OTA required specifications
- ☐ Topology selection
- ☐ Tradeoffs Matrix
- Design of input pair
- Design of current mirror load
- Design of tail current source
- ☐ Sizing and simulation results

PMOS Input Stage (1/3)

$$\Box GBW = \frac{g_m}{2\pi C_L}$$

$$\Box g_m = 2\pi \times 5 p \times 5 M \approx 160 \,\mu\text{S}$$

$$\Box I_D = \frac{20 \, \mu}{2} = 10 \, \mu A$$

$$\Box \frac{g_m}{I_D} = 16 \, S/A$$

PMOS Input Stage (2/3)

- ☐ Next, we need to find the channel length to get the required gain
- lacktriangle For simplicity, assume PMOS and NMOS have same g_{ds}

$$A_v = \frac{g_m r_o}{2} > 40 \quad \rightarrow \quad Let: \ g_{ds2} = g_{ds4} < 2 \ \mu S$$

$$A_v = \frac{g_m r_o}{2} \rightarrow \frac{g_m}{g_{ds}} > 80$$

 \Box From the design chart, we find that required length is **L = 0.8 um**

PMOS Input Stage (3/3)

☐ Going to the ID/W chart

$$\frac{I_d}{W} = 0.44 \rightarrow W = \frac{10}{0.44} \approx 24 \ \mu m$$

- □ OTA required specifications
- ☐ Topology selection
- ☐ Tradeoffs Matrix
- Design of input pair
- Design of current mirror load
- Design of tail current source
- ☐ Sizing and simulation results

NMOS Current Mirror Load (1/6)

☐ From the DC gain spec select the length of the current mirror load

$$g_{dS4} = \frac{I_D}{V_A} < 2 \,\mu S \to V_A > 5 \,V$$

- \Box $V_A = I_D r_o$ slightly decreases with gm/ID (weak dependence)
- \square Assume an arbitrary but large gm/ID, e.g., gm/ID = 15

14: OTA Design Example gm/ID (S/A) 16

NMOS Current Mirror Load (1/6)

☐ From the DC gain spec select the length of the current mirror load

$$g_{ds4} = \frac{I_D}{V_A} < 2 \,\mu S \to V_A > 5 \,V$$

- \Box $V_A = I_D r_o$ slightly decreases with gm/ID (weak dependence)
- \square Assume an arbitrary but large gm/ID, e.g., gm/ID = 15

$$\frac{g_m}{I_D} = 15 \to g_m = 150 \,\mu\text{S} \to \frac{g_m}{g_{ds}} = 75 \to L = 0.6 \,\mu\text{m}$$

NMOS Current Mirror Load (2/6)

The design of the current mirror load is determined by CMIR, noise, and output swing specs

$$CMIR_{LOW} = -|V_{GS1}| + |V_{dSat1}| + V_{GS3} < 0.2 V$$

 \blacksquare Get V_{GS1} and V_{dSat1} (or use $V_1^* = 0.125 V$)

$$0.2 = -0.57 + |V_{dsat1}| + V_{GS3,max}$$

NMOS Current Mirror Load (3/6)

☐ The design of the current mirror load is determined by CMIR, noise, and output swing specs

$$CMIR_{LOW} = -|V_{GS1}| + |V_{dSat1}| + V_{GS3} < 0.2 V$$

 \blacksquare Get V_{GS1} and V_{dSat1} (or use $V_1^* = 0.125 V$)

$$0.2 = -0.57 + 0.1 + V_{GS3,max}$$

NMOS Current Mirror Load (4/6)

☐ The design of the current mirror load is determined by CMIR, noise, and output swing specs

$$V_{GS3,max} = 0.67 V$$

$$\left(\frac{g_m}{I_D}\right)_{min} = 8.33$$

NMOS Current Mirror Load (5/6)

☐ The design of the current mirror load is determined by CMIR, noise, and output swing specs

$$V_{GS3,max} = 0.67 V$$

$$\left(\frac{g_m}{I_D}\right)_{min} = 8.33$$

 \Box Given no strict noise specification (to be discussed later), and to avoid placing M1,2 at edge of saturation, select a bit larger gm/ID

$$\frac{g_m}{I_D} = 10$$

NMOS Current Mirror Load (6/6)

- \Box Assume minimum finger width is 2 μm
- ☐ Going to the ID/W chart

$$\frac{I_d}{W} = 6.7 \rightarrow W = 2 \ \mu m$$

- OTA required specifications
- ☐ Topology selection
- Tradeoffs Matrix
- Design of input pair
- Design of current mirror load
- Design of tail current source
- ☐ Sizing and simulation results

Tail Current Source (1/4)

$$A_{vCM} = \frac{V_{out}}{V_{iCM}} \approx -\frac{1}{2g_{m3,4}R_{SS}}$$

$$CMRR = \frac{A_v}{A_{vCM}} \approx g_{m1,2}(r_{o2}//r_{o4}) \cdot 2g_{m3,4}R_{SS}$$

- Long channel length means large output resistance: good CMRR @DC and good mirroring (less CLM)
 - But large area → large parasitic cap: CMRR degrade at high frequencies
- ☐ Large gm/ID (small V*): wide CMIR and wide swing
 - But large area → large parasitic cap: ...
 - And more sensitivity to systematic V_{GS} errors (e.g., IR drops)

Tail Current Source (2/4)

$$|A_{vCM}| = \left| \frac{V_{out}}{V_{iCM}} \right| \approx \left| -\frac{1}{2g_{m3,4}R_{SS}} \right| = -38 \ dB \rightarrow g_{ds5} < 2.6 \ \mu S$$

- \Box $V_A = I_D r_o$ slightly decreases with gm/ID (weak dependence)
- \square Assume an arbitrary but large gm/ID, e.g., gm/ID = 15

$$\frac{g_m}{I_D} = 15 \rightarrow g_m = 300 \,\mu S \rightarrow \frac{g_m}{g_{ds}} > 115 \rightarrow L = 1.2 \,\mu m$$

Tail Current Source (3/4)

 \Box The design is completed by CMIR spec (use V_{dsat5} or V_5^*)

$$\begin{aligned} CMIR_{HIGH} &= V_{DD} - |V_{GS1}| - |V_{dsat5}| > 1.1 \, V \\ &|V_{dsat5}| < 130 \, mV \end{aligned}$$

$$\frac{g_m}{I_D} > 11.8 \rightarrow \text{keep some margin and use } \frac{g_m}{I_D} = 14$$

Tail Current Source (4/4)

- □ Note that the tail current source has double the current
- ☐ Going to the ID/W chart

$$\frac{I_d}{W} = 0.4 \to W \approx 52 \,\mu m$$

- OTA required specifications
- ☐ Topology selection
- ☐ Tradeoffs Matrix
- Design of input pair
- Design of current mirror load
- ☐ Design of tail current source
- ☐ Sizing and simulation results

Sizing Results

Transistor	g_m/I_D	Length	Width	Function
M1 and M2	16	$0.8\mu m$	$24\mu m$	Input pair
M3 and M4	10	$0.6\mu m$	$2\mu m$	Current mirror load
M5 and M6	14	$1.2\mu m$	$52\mu m$ and $26\mu m$	Bias current mirror

Simulation Results (1/4)

Simulation Results (2/4)

Simulation Results (3/4)

Simulation Results (4/4)

Specification	Required	Achieved
OTA Current Consumption	$20\mu A$	$20\mu A$
GBW	5MHz	5MHz
Phase Margin	70°	900
Open Loop DC gain	32 dB	33.5 dB
Total Integrated Thermal Noise	$50\mu Vrms$	$48.6\mu Vrms$
Input Range	0.2V - 1.1V	0.14 V - 1.12 V
CMRR	70 dB	73.6dB

Notes

- \Box The design charts (especially gm/gds) depend on V_{DS}
 - We neglected this dependence for simplicity
- ☐ We neglected body effect (should be considered if input pair is NMOS)
- We did not consider OTA self-loading
- We did not consider process variations, mismatch, and noise
- Taking the above points into account (and even more)
 - The design procedure becomes a bit complicated iterative procedure
 - But it is still "systematic"
 - Thus can be automated using a computer program!

Thank you!

References (1/3)

P. Jespers and B. Murmann, Systematic Design of Analog CMOS Circuits Using Pre-Computed Lookup Tables, Cambridge University Press, 2017.

References (2/3)

M. N. Sabry, H. Omran and M. Dessouky, "Systematic design and optimization of operational transconductance amplifier using gm/ID design methodology," *Microelectronics Journal*, vol. 75, pp. 87-96, May 2018.

References (3/3)

- B. Murmann, Gm/ID Starter Kit. [Online]. Available:
 - https://web.stanford.edu/~murmann/gmid
- ☐ B. Murmann, EE214B Course Reader, Stanford University.
- ☐ B. Razavi, "Design Of Analog CMOS Integrated Circuit," 2nd ed., McGraw-Hill, 2017.
- ☐ T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," 2nd ed., Wiley, 2012.