

# ● 再业工業大学 NORTHWESTERN POLYTECHNICAL UNIVERSITY



### 离散数学

## 循环群的生成元



- \*定理6.18 设G=<a>是循环群.
- (1) 若G是无限循环群,则G只有两个生成元,即a和 $a^{-1}$ .
- (2) 若G是 n 阶循环群,则G含有 $\phi(n)$ 个生成元. 对于任何小于n且与 n 互质的数 $r \in \{0,1,...,n-1\}$ ,  $a^r$ 是G的生成元.

 $\phi(n)$ 称为<mark>欧拉函数</mark>,例如 n=12,小于12且与12互质的正整数有4个: 1, 5, 7, 11,

所以*ϕ*(12)=4.



2

## 证明



证 (1) 先证 $a^{-1}$ 是G的生成元, 再证G只有a和 $a^{-1}$ 这两个生成元.

**先证:** 显然 $<a^{-1}>\subseteq G$ .  $\forall a^k \in G$ , $a^k=(a^{-1})^{-k} \in <a^{-1}>$ ,因此 $G\subseteq <a^{-1}>$ , $a^{-1}$ 是G的生成元.

### 再证:

假设 b 也是G 的生成元,则  $G=\langle b\rangle$ . 由 $a\in G$  可知存在整数 t 使得 $a=b^t$ . 由 $b\in G=\langle a\rangle$  知存在整数 m 使得  $b=a^m$ . 从而得到

$$a = b^t = (a^m)^t = a^{mt}$$

由G中的消去律得

$$a^{mt-1}=e$$

因为G是无限群,必有mt-1=0. 从而证明了m=t=1或 m=t=-1,即 b=a 或  $b=a^{-1}$ 



#### 离散数学

## 证明



(2) 只须证明:对任何正整数  $r(r \le n)$ ,  $a^r \ne G$ 的生成元  $\Leftrightarrow n = n = n$ .

**充分性(证<a^r>=G).** 设r与n互质,且r≤n,那么存在整数 u 和 v 使得 ur + vn = 1 (数论中的重要定理)

从而  $a = a^{ur+vn} = (a^r)^u (a^n)^v = (a^r)^u$ 这就推出 $\forall a^k \in G$ ,  $a^k = (a^r)^{uk} \in \langle a^r \rangle$ , 即 $G \subseteq \langle a^r \rangle$ . 另一方面,显然有 $\langle a^r \rangle \subseteq G$ . 从而 $G = \langle a^r \rangle$ .

必要性. 设 $a^r$ 是G的生成元,则  $|a^r| = n$ . 令r与n的最大公约数为d,则存在正整数 t 使得 r = dt. 因此  $(a^r)^{n/d} = (a^{dt})^{n/d} = (a^n)^t = e$ 

所以 $|a^r|$  是n/d的因子,即n整除n/d.从而证明了d=1,所以n与r互质.



# 实例



#### \*例6

- (1) 设 $G=\{e,a,\ldots,a^{11}\}$ 是12阶循环群,则 $\phi(12)=4$ . 小于12且与12互素的数是1, 5, 7, 11, 由定理6.18可知  $a,a^5,a^7$  和  $a^{11}$ 是G的生成元.
- (2) 设 $G=\langle Z_9, \oplus \rangle$  是模9的整数加群,则 $\phi$ (9)=6. 小于9且与9互素的数是 1, 2, 4, 5, 7, 8. 根据定理6.18,G的生成元是1, 2, 4, 5, 7和8.
- (3) 设 $G=3Z=\{3z \mid z \in Z\}$ , G上的运算是普通加法. 那么G只有两个生成元: 3和-3.



5



### THE END



● 再业工業大学 NORTHWESTERN POLYTECHNICAL UNIVERSITY