EE281 - Phasors & Impedances

Dr. M. Mert ANKARALI

Let $v_i(t) = \cos(10^3 t)$

$$v_i(t)$$
 0.5H $v_o(t)$

$$V_o = \frac{5}{\sqrt{2}} \angle \frac{-3\pi}{4}$$

$$V_o(t) = \frac{5}{\sqrt{2}}\cos(10^3t - 135^o)$$

$$V_i = 1$$

$$\frac{1}{100} + \frac{V_o}{500} + \frac{V_o}{j500} = 0$$

$$\frac{V_o}{500}(1-j) = \frac{-1}{100}$$

$$V_o = 5 - \frac{1}{-1 + j} = \frac{5}{\sqrt{2}} \angle (-1 - j)$$

Using the Node Voltage method and the impedances of each element, setup a system of phasor domain equations in terms of nodes a, b, and c

Let
$$R = 1 \Omega$$
, $C = 1 F$, $L = 1H$, and $V_i(t) = cos(t)$

$$\begin{bmatrix}
2+j & -1 & 0 \\
-1 & 1 & j \\
0 & j & 1-j
\end{bmatrix}
\underbrace{\begin{bmatrix}
V_a(j\omega) \\
V_b(j\omega) \\
V_c(j\omega)\end{bmatrix}}_{\mathbf{V}(\mathbf{j}\omega)} = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}$$

$$\mathbf{G}(\mathbf{j}\omega)$$

$$\begin{bmatrix}
\sqrt{5}\angle 26.56^{\circ} & \angle 180^{\circ} & 0 \\
\angle 180^{\circ} & 1\angle 0^{\circ} & \angle 90^{\circ} \\
0 & \angle 90^{\circ} & \sqrt{2}\angle - 45^{\circ}
\end{bmatrix}
\underbrace{\begin{bmatrix}V_{a}(j\omega) \\ V_{b}(j\omega) \\ V_{c}(j\omega)\end{bmatrix}}_{\mathbf{V}(\mathbf{j}\omega)} = \underbrace{\begin{bmatrix}} \angle 0^{\circ} \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{G}(\mathbf{j}\omega)$$