Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

WATER SUPPLY OUTLOOK FOR NEVADA

FEDERAL - STATE - PRIVATE COOPERATIVE SNOW SURVEYS

UNITED STATES DEPARTMENT of AGRICULTURE...SOIL CONSERVATION SERVICE,
and

NEVADA DEPARTMENT of CONSERVATION and NATURAL RESOURCES
DIVISION of WATER RESOURCES

Data included in this report were obtained by the agencies named above in cooperation with Federal, State and private organizations listed on the last page of this report.

TO RECIPIENTS OF WATER SUPPLY OUTLOOK REPORTS:

Mast of the usable water in western states ariginates as mountain snowfall. This snowfall accumulates during the winter and spring, several months before the snow melts and appears as streamflow. Since the runaff from precipitation as snow is delayed, estimates of snowmelt runoff can be made well in advance of its occurrence. Streamflow forecasts published in this report are based principally on measurement of the water equivalent of the mountain snowpack.

Forecasts become more accurate as more of the data affecting runoff are measured. All forecasts assume that climatic factors during the remainder of the snow accumulation and melt season as they affect runoff will add to be an effective average. Early season forecasts are therefore subject to a greater change than those made on later dates.

The snow course measurement is obtained by sampling snow depth and water equivalent at surveyed and marked locations in mauntain areas. A total of about ten samples are taken at each location. The average of these are reported as snow depth and water equivalent. These measurements are repeated in the same location near the same dates each year.

Snow surveys are made monthly or semi-monthly from January 1 through June 1 in most states. There are about 1400 snaw courses in Western United States and in the Columbia Basin in British Columbia. In the near future, it is anticipated that automatic snow water equivalent sensing devices along with radio telemetry will provide a continuous record of snaw water equivalent at key locations.

Detailed data on snaw course and soil moisture measurements are presented in state and lacal reports. Other data or reservoir storage, summaries of precipitation, current streamflow, and soil moisture conditions at valley elevations are also included. The report for Western United States presents a broad picture of water supply outloak conditions, including selected streamflow forecasts, summary of snow accumulation to date, and storage in larger reservoirs.

Snow survey and soil moisture data for the period of record are published by the Sail Conservation Service by states about every five years. Data for the current year is summarized in a West-wide basic data summary and published about October 1 of each year.

PUBLISHED BY SOIL CONSERVATION SERVICE

D. A. WILLIAMS, Administrator

The Soil Conservation Service publishes reports fallowing the principal snaw survey dates fram January 1 through June 1 in cooperation with state water administrators, agricultural experiment stations and others. Copies of the reports for Western United States and all state reports may be obtained fram Soil Conservation Service, Western Regional Technical Service Center, Room 507, 701 N. W. Glisan, Portland, Oregon 97209.

Copies of state and local reports may also be obtained from state offices of the Soil Conservation Service in the following states:

STATE	ADDRESS
Alaska	P. O. Box "F", Palmer, Alaska 99645
Arizona	6029 Federal Building, Phoenix, Arizona 85205
Colorado (N. Mex.)	12417 Federal Building, Denver, Colorado 80202
Idaho	P. O. Box 38, Boise, Idaho 83707
Montana	P. O. Box 98, Bozeman, Montana 59715
Nevada	P. O. Box 4850, Reno Nevada 89505
Oregon	1218 S. W. Washington St., Portland, Oregon 97205
Utah	4012 Federal Building, Salt Lake City, Utah 84111
Washington	360 Federal Office Building, Spokane, Washington 99201
Wyoming	P. O. Box 340, Casper, Wyoming 82602

PUBLISHED BY OTHER AGENCIES

Water Supply Outland reports prepared by other agencies include a report for California by the Water Supply Forecast and Snaw Surveys Unit, California Department of Water Resources, P. O. Box 388, Sacramento, California 95802 --- and for British Columbia by the Department of Lands, Forests and Water Resources, Water Resources, Service, Parliament Building, Victoria, British Columbia

WATER SUPPLY OUTLOOK FOR NEVADA

and
FEDERAL - STATE - PRIVATE COOPERATIVE SNOW SURVEYS

Issued by

D.A. WILLIAMS

ADMINISTRATOR
SOIL CONSERVATION SERVICE
WASHINGTON, D.C.

Released by

CHARLES W. CLEARY, JR.

STATE CONSERVATIONIST SOIL CONSERVATION SERVICE RENO, NEVADA

In Cooperation with

ELMO J. DE RICCO

DIRECTOR
DEPARTMENT OF CONSERVATION AND
NATURAL RESOURCES
CARSON CITY, NEVADA

Report prepared by

BOB L. WHALEY, Snow Survey Supervisor

ROY E. MALSOR, JR., Assistant Snow Survey Supervisor SOIL CONSERVATION SERVICE

P. O. BOX 4850 RENO, NEVADA

INDEX TO NEVADA SNOW COURSES

(By Basins)

NAME NAME SEC. TWP. ROC. ELEV.						
SHAKE RIVER	NUMBER				RGE.	ELEV.
15H12 FOX CREEK	5 N A K					
OWYHEE RIVER	15H2 15H13 15H15A 14H1 15H20a 15H14 15H18a 15H3A	FOX CREEK GOAT CREEK HUMMINGBIRO 5PRINGS JAKES CREEK MERRITT MOUNTAIN POLE CREEK RANGER 5TATION RED POINT 76 CREEK	33 31 6 6 10 13 15	46N 46N 45N 42N 46N 46N 47N 44N	58E 60E 60E 54E 59E 61E 58E	6800 8800 3945 7000 7000 8330 7940 7100
SHAMP SHO SHOP Shop				7		, , , , ,
UPPER HUMBOLOT RIVER 15J17a AMERICAN BEAUTY 32 31N 58E 7800 16H66 COLUMBIA BASIN 31 44N 55E 6650 15J12A CORRAL CANYON 27 28N 57E 8500 15J12A CORRAL CANYON 27 28N 57E 8500 15J17 PRY CALEER 3 35M 60E 8100 15J1MP ORSEY BASIN 31 34N 60E 6700 15J1MP ORSEY BASIN 31 31 31 31 31 31 31 31 31 31 31 31 31	15H4MP 16H6a 16H8a 15H5 16H1M 16H2A 16H5 17G4a	81G BENO COLUMBIA BASIN FAWN CREEK GOLO CREEK JACK CREEK, LOWER JACK CREEK, UPPER JACKS PEAK LAUREL ORAW LOUSE CANYON (OREG.)	3 1 2 32 1 8 9 2 8 2 0 2 7	4 4 N 4 5 N 4 5 N 4 2 N 4 2 N 4 2 N 4 5 N 4 5 N 4 5 N	53E 52E 56E 53E 53E 53E 53E 44E	6650 7000 6600 6800 7250 8420 6700 6440
15 17 a		INTERIOR				
16H6	UPPE	R HUMBOLOT RIVER				
17K1	16H6 B 15J12A 15J1MP 15J3 15H7 15J9MP 15J10 15J11 15J6 15J6M 15J6 15J6M 15J6 15J18 B 15J16 B 1	COLUMBIA BASIN OORSEY BASIN OORSEY BASIN ORY CREEK FRY CANYON HARRISON PASS #1 HARRISON PASS #2 LAMOILLE #1 LAMOILLE #2 LAMOILLE #2 LAMOILLE #3 LAMOILLE #4 LAMOILLE #5 POLE CANYON ROBINSON LAKE ROOEO FLAT RYAN RANCH	31 27 28 51 23 96 15 14 24 19 31 23 36 19 28	44N 28N 35N 343N 29N 288N 322N 322N 332N 332N 332N 333N 337N	55706047EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	6650 8500 8100 6500 6700 8000 7400 7100 7300 7700 8700 9200 6800 5700 6900
17K2						
14L1	17K2 17K3 17H2 17H1 17J2 17H4 17H5 17L1 17H3 16H3AP 18H7	BIG CREEK MINE BIG CREEK, UPPER BUCKSKIN, LOWER BUCKSKIN, UPPER GOLCONOA M2 GRANITE PEAK LAMANCE CREEK LOWER CORRAL MARTIN CREEK MIOAS TOE JAM a	2 3 2 6 2 5 1 1 2 2 2 2 1 3 1 2 1 8 1 8 2 9	17N 17N 45N 45N 35N 44N 42N 11N 44N 39N 40N	43E 43E 39E 39E 39E 39E 36E 40E 46E 50E	7600 8000 6700 8200 6000 7800 6000 7500 6700 7200 7700
1412						
18M2	1 4L 2 1 4L 3 1 4K 2 1 4K 1 1 5J 1 3 1 5J 1 4 1 5J 1 5 1 4K 8 1 4K 3 1 5K 1 1 4K 7 1 4K 5	BAKER #2 BAKER #3 BERRY CREEK BIRO CREEK CAVE CREEK HAGER CANYON HOLE-IN-MIN KALAMAZOO CREEK MURRAY SUMMIT ROBINSON SUMMIT SILVER CREEK #2 WARO MOUNTAIN #2	3 0 2 5 2 3 3 4 2 5 3 4 2 6 2 3 3 0 2 5	13N 13N 17N 19N 27N 27N 35N 20N 16N 16N 15N	69E 68E 65E 57E 571E 65E 69E 69E	8950 9250 9100 7500 7500 8000 7400 7250 7600 8000 7875
18M5a		RAL GREAT 8A5 IN				
19H1	1 8M 2 1 8M 5 a 1 5N 2 1 8M 1 1 8M 3 a 1 8M 4 a	CAMPITO MTN (CAL.) CHICTOVICH FLAT CLARK CANYON MONTGOMERY PASS PINCHOT CREEK PIUTE PASS (CAL.)	3 2 8 4 2 8 3 3	25 195 1N	34E 56E 33E	9000 7100
20	NORT					
	20H5 20H6 18G6a 18H1 20H3a 20H7 19H3	BARBER CREEK (CAL.) CEDAR PASS (CAL.) OENIO CREEK (OREG.) OISASTER PEAK DISMAL SWAMP (CAL.) EAGLE PEAK (CAL.) HAYS CANYON	23 12 14 8 31 35 7 1 8 9	39 N 43 N 41 5 47 N 48 N 40 N 42 N 39 N 45 N 40 5 47 N	16E 14E 34E 34E 22E 15E 19E 18E 19E 40E 41E 15E	6500 7100 6000 6500 7000 7200 6000 6400 7240 6300

NUMBER	NAME	SEC.	TWP.	RGE.	ELEV.
LAKE	TAHOE				
20L3 20L1 20L2	OAGGETTS PASS ECHO 5 UMMIT (CAL.) FREEL BENCH (CAL.) GLEWBROOK #2 HAGANS MEAOOW (CAL.) LAKE LUCILLE (CAL.) MARLETTE LAKE RICHAROSONS #2 (CAL.) RUBICON #1 (CAL.) RUBICON #2 (CAL.) TAHOE CITY (CAL.) UPPER TRUCKEE (CAL.) WARD CREEK (CAL.) WARO CREEK #2 (CAL.)	3 6 2 8 1 8	1 3N 1 1,N 1 2N 1 4N 1 2N 1 2N 1 5N 1 3N 1 3N 1 5N 1 5N 1 5N	17E	7 3 5 0 7 4 5 0 7 3 0 0 6 9 0 0 8 2 0 0 8 2 0 0 8 1 0 0 7 5 0 0 6 4 0 0 7 0 0 0 6 7 5 0
	KEE RIVER				
20 K 1 4 20 K 2 2 20 K 2 1 20 K 10 * 20 K 7 * 20 K 8 20 K 4 MP 20 K 3 20 K 5 19 K 3 19 K 2 20 K 1 9 20 K 1 9 20 K 1 3 20 K 1 3 20 K 2 20 K 1 3 20 K 1 3 20 K 1 3 20 K 1 3	SOCA #2 (CAL.) BROCKWAY SUMMIT (CAL.) OONNER PARK #2 (CAL.) OONNER SUMMIT (CAL.) FOROYCE LAKE (CAL.) FURNACE FLAT (CAL.) FURNACE FLAT (CAL.) INOEPENOENCE CARP (CAL.) INOEPENOENCE CARE (CAL.) INTE VALLEY MT. ROSE 5 AGE HEN CREEK (CAL.) 5 SOUAW VALLEY #2 (CAL.) TRUCKEE #2 (CAL.) WEBBER BAKE (CAL.)	28 3 18 25 34 10 34 .) 14) 17 7 7 6 22 29 30	18N 17N 17N 17N 18N 19N 19N 18N 16N 15N 15N 19N	17 E E 16 E E 14 E E E E E E E E E E E E E E E E	6500 6700 7000 6500
	ON RIVER				
19L16 a 19L20 a	ON RIVER BLUE LAKES (CAL.) CARSON PASS, UPPER (CAL CLEAR CREEK EBBETS PASS (CAL.) POISON FLAT (CAL.) UPPER FISH VALLEY (CAL. WOLF CREEK (CAL.) WET MEAOOWS LAKE (CAL.)	30 22 6 17 25 18 35 26	9 N 1 O N 1 4 N 8 N 8 N 7 N 8 N 9 N	19E 18E 19E 20E 21E 22E 20E 19E	8000 8600 7300 8700 7900 8050 8000 8100
WALK	ER RIVER				
18L1 19L8 19L17 a 18L2 19L7M 19L23 stz. 19M1* 19L13M 19L9	BUCKEYE FORKS (CAL.) BUCKEYE ROUGHS (CAL.) CENTER MOUNTAIN (CAL.) LAPON MEAOOW LEAVITT MEADOWS (CAL.) LOBOELL LAKE (CAL.) MT. GRANT 50NORA PASS (CAL.) 50NORA PASS (CAL.) 7110GA PASS (CAL.) VIRGINIA LAKES (CAL.) VIRGINIA LAKES RIDGE VIRGINIA LAKES RIDGE	20 15 4 36 4 20 23 1 6 30 5 21 32	4N 4N 8N 5N 7N 8N 5N 1N 2N 5N 3N	28E 21E 22E	8500 7900 9400 9000 7200 9200 9000 8800 9800 9500 8250 9200
LOWE	COLORADO RIVER	0			
1 5N 5	KYLE CANYON	27	195	56 E	8200
1 5N 4 1 5N 3 1 5N 8 1 4M 1 1 4M 2 1 5N 7	LEE CANYON #1 LEE CANYON #2 LEE CANYON #3 MATHEW CANYON PINE CANYON RAINBOW CANYON #2	1 0 9 1 0 1 0 2 3 6	195 195 195 65 65 205	56E 56E 70E 69E 57E	8 400 9 200 8 500 6 000 6 200 8 100

NUMBERING SYSTEM (EXAMPLE)

19K4 SNOW COURSE ONLY
19K45 SNOW COURSE AND SNOW PILLOW
19K4M SNOW COURSE AND SOIL MOISTURE
19K4AP SNOW COURSE AND AERIAL MARKER
19K4P SNOW COURSE AND STORAGE PRECIPITATION GAGE
19K4MP SNOW COURSE, SOIL MOISTURE AND AERIAL MARKER
19K4MP SNOW COURSE, SOIL MOISTURE AND PRECIPITATION
GAGE
19K45TZ SNOW COURSE, SNOW PILLOW AND TEMPERATURE RADIO
TELEMETERED.

Lower case letters $m,\,a,\,p,\,s,\,t,\,z,\,$ indicate no snow course, only a soll moisture station, aerial marker, storage precipitation gage, snow pillow, temperature, or radio telemetered.

*LOCATEO ON AOJACENT WATERSHED

WATER SUPPLY OUTLOOK

FOR NEVADA

February 1, 1968

January precipitation was light over most of the state, and selected stations show a drier-than-average trend for the October-January period.

Snow Surveys taken before the January 30 storm showed well below-average water content, while those measured after the storm gained as much as seven inches of water. Basin snow-water averages range from 98% of average on the Upper Humboldt to 124% on the Lower Colorado. The Truckee River Basin is 100% of the February 1 average, and the Tahoe Basin is 95% of average. The Walker and Carson Basins are 52 to 65% of average, based on only a few courses measured, and those measurements were taken prior to the storm.

Radio-reporting snow sensors at Independence Camp, Ward Creek #3, Marlette Lake, Hagans Meadow, Sonora Pass Bridge, and Virginia Lakes Ridge reported water-content increases of 1.3 to 6.9 inches for the last storm period January 25 to February 2.

Soil moisture is near average, and soils will require little snow-melt water this year in order to become fully wetted before runoff occurs.

Nevada reservoir storage is well above average for this time of year, except for Wild Horse and Rye Patch. These reservoirs now hold 4,000 and 52,000 acre-feet, or 33% and 93% of average respectively. Tahoe has 559,000 acre-feet, or 148%, and Lahontan has 226,000 acre-feet, or 138%. Bridgeport and Topaz are near capacity at 41,000 and 56,000 acre-feet respectively.

January streamflow varied from 49% of average on the Owyhee to 98% on the Virgin River. The Humboldt was 65% of average, the West Walker 76%, the Truckee 84% and the Carson at Carson City 89%. Flow of these same streams was 2 to 46% below average for the October-through-January period.

The following table show a comparison of streamflow forecasts for the coming irrigation season the flow of past years:

	April-Jul	y Streamf	low, Thousar	nd Acre	-Feet	
		15-Yr.	1968 as	Measured		
	Forecast	Average	% of	Run	off	
	1968	1948-62	15-Yr. Av.	1967	1966	
Owyhee River near Gold Creek, Nev.	10	22	45	11	6	
Owyhee River near Owyhee, Nev. *	34	74	46	72	21	
Humboldt River at Palisade, Nev.	90	173	52	200	54	
West Walker below East Fork near Coleville, Calif.	119	140	85	236	98	
Virgin River at Virgin, Utah **	54	43	126	NA	39	

^{*} Corrected for storage in Wild Horse Reservoir.

^{**} April-June forecast furnished by SCS, Salt Lake City, Utah.

NA Not available.

STATUS OF NEVADA RESERVOIR STORAGE

FEBRUARY 1, 1968

			USAB	LE STORAGE	- 1000 A	CRE-FEET
BASIN AND STREAM	RESERVOIR	USABLE CAPACITY (1000 AF)	1968	1967	1966	FEBRUARY 1 15-YR. AVE. 1948-62
Owyhee	Wild Horse	33	4	2	16	12
Lower Humboldt	Rye Patch	179	52	70	172	56
Colorado	Mohave	1,810	1,691	1,639	1,768	1,319 **
Colorado	Mead	27,217	14,566	15,629	15,502	17,402
Tahoe	Tahoe	732	559	451	555	378
Truckee	Boca	41	1	2	2	8
Truckee	Prosser ***	30	10	9	8	Storage began 1/30/63
Carson	Lahontan	286	226	160	228	164
West Walker	Topaz	59	56	27	50	28
East Walker	Bridgeport	42	41	24	31	24

^{*} Reservoir drained during summer to effect repairs to dam.

TOTAL RESERVOIR STORAGE

Developed from Wild Horse, Rye Patch, Tahoe, Boca, Lahontan, Topaz, and Bridgeport Reservoirs in 1000's Acre-Feet

MONTH	1962-63	1963-64	1964-65	1965-66	1966-67	1967-68	AVERAGE 1948-62
October 1	338	702	497	1135	559	965	572
January 1	408	748	789	1114	593	904	622
February 1	579	776	922	1051	736	939	670
March 1	690	774	949	1035	792		725
April 1	765	774	1002	1054	943		776
May 1	840	818	1103	1089	978		834

TOTAL USABLE CAPACITY 1,372

^{** 1950-62}

^{***} Flood control use allocation of 20,000 A.F. between November 1 and April 10.

SELECTED CURRENT STREAMFLOW STATIONS

February 1, 1968

Owyhee near Owyhee, Nev.

Truckee at Farad, Calif.

W. Walker near Coleville, Calif.

Humboldt at Palisade, Nev.

Carson near Carson City, Nev.

Virgin at Littlefield Ariz.

SELECTED PRECIPITATION STATIONS°

PRECIPITATION as PERCENT of the 1948-62 AVERAGE										
STATION	LAST MONTH	WATER YEAR ^b TO DATE	STATION	LAST MONTH	WATER YEAR ^b TO DATE					
Cedarville (Calif.)	67	69	Owyhee	51	61					
Tahoe City (Calif.)	80	74	E1ko	93	81					
Meyers (Calif.)	120	115	Ely	22	82					
Bishop (Calif.)	1	60	Austin	69	4.5					
Reno	109	63	Tonopah	NA	NA					
Lovelock	46	41	Caliente	36	75					
Winnemucca	90	63	Las Vegas	L ₄	74					
NA Not Available										

SNOW WATER ACCUMULATION IN NEVADA

Percent of average maximum accumulation

1968

SNOW WATER ACCUMULATION IN NEVADA

Percent of average maximum accumulation

1968

NOTE ----- 1968 ----- 1948-62 Average

				SNOW	COURSE ME.	ASUREME	VTS	
				1968			ast Reco	rd
DRAINAGE BASIN			Date	Snow	Water	Water	Content	
AND		Elev.	of	Depth	Content			1948-62
SNOW COURSE	No.	(Ft.)	Survey	(In.)	(In.)	1967	1966	Ave.
SNAKE RIVER								
Bear Creek	15H1MA	7800	2/2	36	10.0a	15.6a	9.8a	11.7 *
+Big Bend	15H4M	6700	1/30	11	2.2	5.3	3.4	6.4 *
Goat Creek	15H13A	8800	2/2	30	8.4a	11.3a	4.1a	10.0 *
+Gold Creek	15H5	6600	1/30	T	T	3.6	2.1	4.7 *
Hummingbird Springs	15H15A	8945	2/2	36	10.0a	17.4a	9.5a	10.7 *
Merritt Mountain	15H20a	7000	1/25	1	0.2a	5.3a	Та	
Pole Creek R. S.	151114	8330	1/29	33	9.2	14.7	8.2	10.5 *
Red Point	15H18a	7940	2/2	14	3.9a	13.2a	3.4a	
76-Creek	15H3A	7100	1/25	11	3.1a	6.7a	4.2a	7.4 *
Stag Mountain	15H19a	7700	1/25	6	1.1a	4.1a	1.4a	
OWYHEE RIVER								
+Bear Creek	15H1MA	7800	2/2	3 6	10.0a	15.6a	9.8a	11.7 *
Big Bend	15H4M	6700	1/30	11	2.2	5.3	3.4	6.4 *
Columbia Basin	16H6a	6650	1/25	4	0.9a	6.7a	2.6a	
Fawn Creek	16H8a	7000	1/25	4	0.9a	4.5a	2.4a	
+Fry Canyon	15H7	6700.	1/30	9	2.1	6.0	5.0	6.0 *
Gold Creek	15H5	6600	1/30	T	T	3.6	2.1	4.7 *
+Granite Peak	17H4	7800	2/1	29	6.6	15.3	5.7	7.5 *
Jack Creek - Upper	16H2A	7250	1/25	5	1.1a	4.9a	2.8a	6.8 *
Laurel Draw	16H5	6700	2/6	20	5.4	6.6	4.2	5.2 *
+Martin Creek	17H3	6700	2/1	28	5.8	12.2	4.0	5.8 *
+Rodeo Flat	15H6M	6800	1/30	6	1.4	4.5	3.4	5.6 *
+76-Creek	15H3A	7100	1/25	11	3.1a	6.7a	4.2a	7.4 *
Taylor Canyon	15H9M	6200	1/31	16	3.5	6.0	4.0	3.9 *
+Toe Jam	16H7a	7700	1/25	37	8.la	7.5a	4.6a	
+Tremewan Ranch	15н8	5700	1/30	T	T	2.4	2.2	1.7 *
UPPER HUMBOLDT RIVE	R							
American Beauty	15J17a	7800	1/25	14	3.1a	8.7a	4.2a	
+Bear Creek	15H1MA	7800	2/2	36	10.0a	15.6a	9.8a	11.7 *
+Big Bend	15H4M	6700	1/30	11	2.2	5.3	3.4	6.4 *
Corral Canyon	15J12A	8500	1/25	13	3.0a	8.1a	7.6a	
Fry Canyon	15H7	6700	1/30	9	2.1	6.0	5.0	6.0 *
+Gold Creek	15H5	6600	1/30	T	T	3.6	2.1	4.7 *
+Jack Creek - Upper	16H2A	7250	1/25	5	1.1a	4.9a	2.8a	6.8 *
Lamoille #1	15J4	7100	2/1	22	3.8	8.0	6.0	6.9 *
Lamoille #2	15J5	7200	2/1	19	3.5	7.3	5.9	6.4 *
Lamoille #3	15J6	7700	2/1	26	5.6	10.4	6.4	8.3 *
Lamoille #4	15J7	8000	2/1	27	5.5	15.8	9.5	12.0 *
Lamoille #5	15J8	8700	2/1	37	9.0	19.0	14.0	17.8 *

⁺ Located on adjacent drainage.

a Aerial snow depth gage reading; water content estimated.

^{* 1948-62} adjusted average.

b Course disturbed by road construction.

DRAINAGE BASIN AND Elev. of Depth Content SNOW COURSE No. (Ft.) Survey (In.) (In.) 1967 19 UPPER HUMBOLDT RIVER (Continued) Pole Canyon 15J18a 9140 1/25 5 0.9a 1.2a 3	Record ntent (In.) 1948-62 966 Ave. 3.4a 3.5a 3.4 5.6 % 4.2a 7.4 %
AND Elev. of Depth Content SNOW COURSE No. (Ft.) Survey (In.) (In.) 1967 19 UPPER HUMBOLDT RIVER (Continued) Pole Canyon 15J18a 9140 1/25 5 0.9a 1.2a 3	1948-62 966 Ave. 3.4a 3.5a 3.4 5.6 %
SNOW COURSE No. (Ft.) Survey (In.) (In.) 1967 19 UPPER HUMBOLDT RIVER (Continued) Pole Canyon 15J18a 9140 1/25 5 0.9a 1.2a 3	3.4a 3.5a 3.4 5.6 *
UPPER HUMBOLDT RIVER (Continued) Pole Canyon 15J18a 9140 1/25 5 0.9a 1.2a 3	3.4a 3.5a 3.4 5.6 *
Pole Canyon 15J18a 9140 1/25 5 0.9a 1.2a 3	3.4 5.6 *
	3.4 5.6 *
Robinson Lake 15J16a 9200 1/25 11 2.5a 18.0a 19	3.4 5.6 ×
·	.2a 7.4
·	
·	.4a
· · · · · · · · · · · · · · · · · · ·	3.9
	.6a 2.2 1.7 [*]
21 - 2	5.6a
	•0a
LOWER HUMBOLDT RIVER	
·	5.7 7.5
·	5.8
·	.0a
·	.6a
	.5
	3.5
QUINN RIVER	
·).8a
	2.5a
	.1a
	.6a
Trout Creek 18G3a 7800 2/5 6 1.2a 9.6a 1	.8a
LOWER COLORADO RIVER	
Mathew Canyon 14M1 6000 1/31 11 3.6 2.5 0	3.0 %
Pine Canyon 14M2 6200 1/31 16 4.1 2.8 2	2.2 3.2
ТАНОЕ	
	2.1
	0.7 8.9
	23.1
· ·	8.6
	7.6
	9.8 *
	7.8 12.7 %
·	3.1 11.1 %
	0.1 8.4%
Upper Truckee 19L1 6400 1/29 23 6.2 9.4 10	7.4
Ward Creek 20K17 7000 2/1 89 27.0 35.0 28	3.1 25.8 %

⁺ Located on adjacent drainage.

a Aerial snow depth gage reading; water content estimated.

^{* 1948-62} adjusted average.

				SNOW	COURSE ME.	ASUREMEN	NTS	•
			-				st Reco	ord
DRAINAGE BASIN			Date	Snow	Water		Content	
AND		Elev.	o f	Depth	Content			1948-62
SNOW COURSE	No.	(Ft.)	Survey	(In.)	(In.)	1967	1966	Ave.
TRUCKEE RIVER								
Boca #2	20K14	5900	2/2	35	7.4	6.9	7.0	5.9 *
Brockway Summit	20K22	7100	2/1	59	13.9	18.1	12.1	
Donner Park #2	20K21	6000	2/1	70	16.4	19.1	14.1	11.2 *
+Donner Summit	20K10	6900	1/25	45	17.3	45.0	25.2	23.4
+Fordyce Lake	20K7	6500	1/24	48	16.0a	_	23.2	23.1 *
+Furnace Flat	20K8	6600	1/24	45	19.0a	_	30.4	26.2 *
Independence Camp	20K4M	7000	1/31	72	18.4	23.8	16.8	
Sage Hen Creek	20K6	6500	1/31	70	15.9	19.6	14.0	12.2 *
Squaw Valley #2	20K19	7500	2/3	89	29.1	49.1	31.1	29.3 *
Tahoe City	20K16	6250	2/4	37	10.1	13.8	10.1	8.4 *
Truckee #2	20K13M	6400	2/4	46	11.6	18.4		10.5 *
+Ward Creek	20K17	7000	2/1	89	27.0	35.0	28.1	25.8 *
CARSON RIVER		, , , , ,	2/1	0,	27.0		,	
Carson Pass (Upper)	101/	8600	1/25	41	12.6	34.4	24.1	19.3
Ebbetts Pass	19L19a	8700	2/1		20.7a	J	23.0a	
Wet Meadow Lake	19L19a	8100	2/1	74		26.0a	21.6a	
Poison Flat	19L16A	7900		62	17.4a	18.0a	15.9a	
		8050	2/1	48	14.4a	15.6a	20.7a	
Upper Fish Valley	19L16a		2/1	29	8.7a	28.8a	24.8a	
Wolf Creek	19L20a	8000	2/1	64	17.9a	20.08	24.0a	
WALKER RIVER								
Center Mountain	19L12A	9400	2/1	78	23.4a	37.4a	24.8a	
Lobdell Lake	19L17a	9200	2/1	28	8.4a	18.0a	13.8a	
Sonora Pass	19L7	8800	1/26	29	8.1	26.6	18.3	13.0 *
Tioga Pass	19M1	9900	1/30	25	7.9	29.0	14.2	16.2 *
Virginia Lakes	19L13	9500	1/25	18	4.8	18.4	13.8	10.7 *
WHITE MOUNTAINS								
Campito Mountain	18M2	10200	1/31	7	2.4	11.6		3.7 *
Chiatovich Flat	18M5a	10500	2/1	4	1.2a	7.3	T	
Montgomery Pass	18M1	7100	1/29	0	0.0	2.4a	3.5	0.8 *
Pinchot Creek	18M3a	9300	2/1	T	T	0.8a	T	
Piute Pass	18M4a	11700	2/1	2	0.6a	9.2a	5.4	
NORTHERN GREAT BASI				-	0,04			
						5 0		7 6 3
Barber Creek	20H2	6500	1/30	36	7.4	5.8	6.1	7.6 *
Cedar Pass	20H6	7100	2/1	41	10.8	11.1	7.4	10.0
Dismal Swamp	20H3a	7000	1/26	22	5.5a	13.4a	9.2a	8.2 *
49-Mountain	19H3	6000	1/29	18	3.1	5.5	2.1	3.5 *
Hays Canyon	19H2	6400	1/29	15	3.7	2.8	3.4	2.4 *
Little Bally Mtn.	19H4a	6000	1/26	6	1.5a	3.4a	1.1a	7.0 %
Reservation Creek	20H1	5900	1/30	32	5.8	7.0	8.1	7.9 *

⁺ Located on adjacent drainage.

a Aerial snow depth gage reading; water content estimated.

^{* 1948-62} adjusted average.

			CNOU	COLIDEE ME	A CIIDEME	NITIC	
			1968	COURSE ME.			ord
		Date	Snow	Water	Water	Conten	t (In.)
	Elev.	of	Depth	Content			1948-62
No.	(Ft.)	Survey	(In.)	(In.)	1967	1966	Ave.
14L3A	9250	2/2	36	8.3			
14K7A	8000	2/2	21	4.8			
14K5A	8900	2/2	15	3.4			
	14L3A 14K7A	No. (Ft.) 14L3A 9250 14K7A 8000	No. (Ft.) of Survey 14L3A 9250 2/2 14K7A 8000 2/2	1968 Date Snow Elev. of Depth No. (Ft.) Survey (In.) 14L3A 9250 2/2 36 14K7A 8000 2/2 21	1968 Date Snow Water Elev. of Depth Content No. (Ft.) Survey (In.) (In.) 14L3A 9250 2/2 36 8.3 14K7A 8000 2/2 21 4.8	1968 P Date Snow Water Water No. (Ft.) Survey (In.) (In.) 1967 14L3A 9250 2/2 36 8.3 14K7A 8000 2/2 21 4.8	1968 Past Rec

⁺ Located on adjacent drainage.

NEVADA SOIL MOISTURE

February 1, 1968

					SOIL N	MOISTUR	E
BASIN AND STATION	Elevation	PROFIL Depth	E (Inches) Capacity	Date	This Year	Last Year	2 Years Ago
OWYHEE-HUMBOLDT							
Big Bend	6700	48	16.7	1/30	14.9	15.7	14.8
Rođeo Flat	6800	42	11.0	1/30	10.4	10.6	10.6
Taylor Canyon	6200	48	15.1	1/31	14.5	12.1	12.3
TAHOE - TRUCKEE							
Independence Camp	7000	34	6.1	1/31	5.1	5.4	-
Marlette.Lake	8000	50	3.7	12/26	2.5	3.2	-
Sonora Pass	8800	48	8.3	1/26	7.7	8.3	-
Ward Creek	7000	49	5.8	2/1	5.6	5.6	-

a Aerial snow depth gage reading; water content estimated.

^{* 1948-62} adjusted average.

INCHES OF WATER IN SHOWPACK

	1		=1=]==	1=	1		=	F												<u> </u>		=							==				- aboxy			30
Z	E																									۱		=			3						
EASURING STATION OBSERVATIONS HILLING	E								==																		-										- 20
- ₹ <u> </u> <u> </u>	E													===									Ξ		\equiv					==		=		-			LCNE
S	E								===											Ξ			E		\equiv		=			\equiv		=	==				
() ESE	E		MO		ם ב									=							=																- 9
MEASURING M. OBSERVATION M. OBSERVATION	Ē	-	H		Watershed	Elevation			==					\equiv						==	=				\equiv		Ξ			=							
8 2	Ę	00	PI		rs	rat			#- 0- V-		4								=			=			٥								=				m
SL	E	EAI	MO		ate	le)																-										===					
EA EBO		Z	SNC																		=																
		NS	O		Tahoe	8000 Feet Elevation					\equiv										E																-22 >
≥ E4 5		GA	TI		ah	E C			**************************************																\equiv												MAY
ATIC SNOW MEASURING STRING STRUMENTS SOO A.M. OBSERVATIONS SHILL RADION BY HILLING STRUMENTS SOO A.M. OBSERVATIONS		HA	AUTOMATIC SNOW PILLOW			0	, =							Ξ	\equiv	Ξ				Ξ							\equiv			Ξ		===					-0
Z Eo=	=		JTC		Lake	8000			=			=		\equiv								Ξ					\equiv										
	E		AL		L	ω														=			E														0
	E																						=														30
A =0=	E																									\equiv						=	\equiv				
TOMATIC SNOW M TOMATIC SNOW M DAILY 8:00 A.W.	Ē																																	- 22 .			
	E																								\equiv												APRIL
AUTOMATIC																								-													-0- A-A
				==																							=										_
<i>≿</i> (0)						\equiv																															
TS				-	10															=									~	morbe a					341.0	rate	3
C/				E	E	=														=									=							\equiv	
0 ===					E	\equiv														Ξ								=									0
S E						E									\equiv						=						=		\equiv								CH 20-
				E	E	E														Ξ		E	E			Ξ	Ξ										MARCH
RADIO						E							\equiv		\equiv							E				\equiv											- º ²
Q =			=	E		=					\equiv									Ξ																	
0.				=																																	m
>																																					28
DAILY									Ξ											=							\equiv					=					o >
o =																																					JAR
ıu																																5.					BRE
SERVIC				=		\equiv																		Ξ	\equiv												10 20 FEBRUARY
2					E																													E			
S	77.27.22.33.49.4	- (-		****	7900			~~~	450		15 15-1				· Fr. 274	Market 1		THE ST													1	FETTING		3.
Z																							E														
CONSERVATION																								Ξ								=					
FEE									Ξ		3																							-1			10 20 JANUARY
>																																		- 2			
E S						-																												\			JAN
5				-																			E							==							
õ					-										=-								Ξ					Ξ									
U				t-		AC /2000		=									~											=	1 212							4.000	m
			=		E											=											\equiv										
SOIL				=														Ξ						=				-							1		2 K
			-	E		1==	=					=															=										2 BE
4					E																										=						E Z
S.D						=									===																						10 20 DECEMBER
S. U				=																	==				- -		Ξ										
			Œ			E																														国	-
80			70					9				Ü	า									,	သိ				20	3			C					, ,	

INCHES OF WATER IN SNOWPACK

INCHES OF WATER IN SNOAPACK

INCHES OF WATER IN SNOWPACK

INCHES OF WATER IN SNOWPACK

Agencies Cooperating in Collecting Data Contained in this Bulletin

FEDERAL

Agricultural Research Service
Army
Bureau of Reclamation
Fish and Wildlife Service
Forest Service
Geological Survey
Navy
Soil Conservation Service
U.S. District Court - Federal Water Master
Weather Bureau

STATE

California Cooperative Snow Surveys
California Department of Parks and Recreation
California Department of Water Resources
Colorado River Commission of Nevada
Idaho Cooperative Snow Surveys
Nevada Association of Soil Conservation Districts
Nevada Cooperative Snow Surveys
Nevada Department of Conservation & Natural Resources
Division of Water Resources
Nevada State Forester-Firewarden
Oregon Cooperative Snow Surveys
University of Nevada
Utah Cooperative Snow Surveys
White Mountain Research Station, Univ. of California

PRIVATE

Amalgamated Sugar Company
Kennecott Copper Corporation
Nevada Irrigation District
Owyhee Project North Board of Control
Owyhee Project South Board of Control
Pacific Gas & Electric Company
Pershing County Water Conservation District
Sierra Pacific Power Company
Squaw Valley Development Company
Truckee-Carson Irrigation District
Walker River Irrigation District
Washoe County Water Conservation District

Other organizations and individuals furnish valuable information for the snow survey reports. Their Cooperation is gratefully acknowledged.

UNITED STATES DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE P.O. Box 4850

RENO, NEVADA 89505

OFFICIAL BUSINESS

FEDERAL - STATE - PRIVATE

COOPERATIVE SNOW SURVEYS

Furnishes the basic data necessary for forecasting water supply for irrigation, domestic and municipal water supply, hydro-electric power generation, navigation, mining and industry

"The Conservation of Water begins with the Snow Survey"