

C程序设计 Programming in C

1011014

主讲: 姜学锋, 计算机学院

批量数据的遍历与访问

1、幻方编程

例题分析

双偶(n=4K)阶魔方阵的填法。

- (1) 先给出一个定义。互补:如果两个数字的和等于幻方最大数和最小数的和,即n*n+1,称为互补。
 - (2) 先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	16	

例题分析

(3) 这个方阵的对角线,已经用颜色标出。将对角线上的数字,换成与它互补(同色)的数字。

这里, n*n+1 = 4*4+1 = 17; 把1换成17-1 = 16; 把6换成17-6 = 11; 把11换成17-11 = 6......换完后就是一个4阶幻方。

例题分析

双偶(n=4K)阶魔方阵的填法。

- (1) 对于n=4k阶幻方,先把数字按顺序填写。
- (2)按4*4把它划分成k*k个方阵。因为n是4的倍数,一定能用4*4的小方阵分割。
- (3) 然后把每个小方阵的对角线,像制作4阶幻方的方法一样,对角线上的数字换成互补的数字,就构成幻方。

例题分析

64	2	3	61	60	6	7	57
9	55	54	12	13	51	50	16
17	47	46	20	21	43	42	24
40	26	27	37	36	30	31	33
32	34	35	29	28	38	39	25
41	23	22	44	45	19	18	48
49	15	14	52	53	11	10	56
8	58	59	5	4	62	63	1

```
例6.56
  1 #include <stdio.h>
  2 #define N 100 //定义足够大的数组
  3 int main()
  4 { //求解4k阶魔方阵(双偶阶幻方)
  5 int MA[N][N] = \{0\};
      int i, j, m, n, L, S;
     int x, y, ox, oy;
      scanf("%d",&n); //输入n阶(n为4的倍数)
     if (n>=4 && n<N && n%4==0) { //超过12列显示不下
 10
       x=y=0;
       L=n*n;
 11
 12
       for(i=1; i<=L; i++) { //先填数字
 13
         MA[y][x]=i;
```

二】程序设计

14

15

if(i%n==0) x=0, y++;

else x++;

例6.56

```
1 #include <stdio.h>
2 #define N 100 //定义足够大的数组
3 int main()
4 { //求解4k阶魔方阵(双偶阶幻方)
 5 int MA[N][N] = \{0\};
    int i, j, m, n, L, S;
    int x, y, ox, oy;
    scanf("%d",&n); //输入n阶(n为4的倍数)
    if (n>=4 && n<N && n%4==0) { //超过12列显示不下
10
      x=y=0;
11
      L=n*n;
12
      for(i=1; i<=L; i++) { //先填数字
13
        MA[y][x]=i;
        if(i\%n==0) x=0, y++;
14
        else x++;
15
```

二】程序设计

```
例6.56
 16
        S=1+L; //最大数和最小数之和
 17
 18
        m=n/4; //以4x4大小分割魔方阵
 19
        x=y=ox=oy=0;
        L=m*m;
 20
 21
        for(j=1; j<=L; j++) {
         for(i=0;i<4;i++) { //对每个4x4魔方阵做对角互补替换
 22
 23
           MA[oy+i][ox+i]=S-MA[oy+i][ox+i];
           MA[oy+i][ox+(4-i-1)]=S-MA[oy+i][ox+(4-i-1)];
 24
 25
          if(j\%m==0) ox=0, oy+=4;
 26
 27
         else ox=j%m*4; //转移到下一个4x4魔方阵
 28
 29
        for(i=0; i<n; i++) { //输出魔方阵
 30
         S=0; //S累计一行之和
```

二 程序设计

```
例6.56
 16
        S=1+L; //最大数和最小数之和
 17
        m=n/4; //以4x4大小分割魔方阵
 18
        x=y=ox=oy=0;
 19
 20
        L=m*m;
 21
        for(j=1; j<=L; j++) {
 22
          for(i=0;i<4;i++) { //对每个4x4魔方阵做对角互补替换
 23
           MA[oy+i][ox+i]=S-MA[oy+i][ox+i];
 24
           MA[oy+i][ox+(4-i-1)]=S-MA[oy+i][ox+(4-i-1)];
 25
          }
 26
          if(j\%m==0) ox=0, oy+=4;
 27
          else ox=j%m*4; //转移到下一个4x4魔方阵
 28
 29
        for(i=0; i<n; i++) { //输出魔方阵
 30
          S=0; //S累计一行之和
```

二】程序设计

```
例6.56
 31
          printf(" ");
 32
          for(j=0; j<n; S=S+MA[i][j],j++)</pre>
 33
            printf("%4d ", MA[i][j]);
          printf(" =%4d\n",S); //输出一行之和
 34
 35
 36
        printf("=");
 37
        for(j=0; j<n; j++) { //输出魔方阵列之和
 38
          S=0;
 39
          for(i=0; i<n; i++) S=S+MA[i][j];</pre>
 40
          printf("%4d ",S); //输出一列之和
 41
 42
        L=S=0;
 43
        for(i=0; i<n; i++) S=S+MA[i][i] , L=L+MA[i][n-1-i];
        printf(" =%4d =%4d\n",S,L); //输出对角线与反对角线之和
 44
 45
```

二 程序设计

例6.56

```
46 else printf("error input: n=4k\n");
47 return 0;
48 }
```

若输入的n值不满足双偶(n=4K)阶魔方阵,提示输入错误信息。

例6.56 #include <std

程序运行屏幕

```
61
             60
                 6 \quad 7 \quad 57 = 260
 9 55 54 12 13 51 50 16 = 260
   47
       46 20 21 43 42 24 = 260
          37 36
   26
                 30 31 33 = 260
       27
 32
    34
       35 29
             28
                 38 39 25 = 260
 41 23
       22 44 45
                 19 18 48 = 260
   15 14 52 53 11 10 56 = 260
 8 58 59 5 4 62 63 1 = 260
= 260 260 260 260 260 260 260 = 260 = 260
```

8 🗸

例题分析

单偶(n=4K+2)阶魔方阵的填法。

单偶阶魔方阵是三种之中最复杂的魔方阵。这里以n=10为例。此时k=2。

(1) 把方阵分为A、B、C、D四个象限,则每一个象限肯定是奇数阶。用楼梯法,依次在A、D、B、C象限按奇数阶魔方阵的填法填数。

例题分析

```
      17
      24
      1
      8
      15
      67
      74
      51
      58
      65

      23
      5
      7
      14
      16
      73
      55
      57
      64
      66

      4
      6
      13
      20
      22
      54
      56
      63
      70
      72

      10
      12
      19
      21
      3
      60
      62
      69
      71
      53

      11
      18
      25
      2
      9
      61
      68
      75
      52
      59

      92
      99
      76
      83
      90
      42
      49
      26
      33
      40

      98
      80
      82
      89
      91
      48
      30
      32
      39
      41

      79
      81
      88
      95
      97
      29
      31
      38
      45
      47

      85
      87
      94
      96
      78
      35
      37
      44
      46
      28

      86
      93
      100
      77
      84
      36
      43
      50
      27
      34
```


例题分析

(2) 在A象限的中间行、中间格开始,按自左向右的方向,标出k格。A 象限的其它行则标出最左边的k格。将这些格和C象限相应位置上的数互换位置。

例题分析

17	24	1	8	15	67	74	51	58	65
23	5	7	14	16	73	55	57	64	66
4	6	13	20	22	54	56	63	70	72
10	12	19	21	3	60	62	69	71	53
11	18	25	2	9	61	68	75	52	59
92	99	76	83	90	42	49	26	33	4 0
98	80	82	89	91	48	30	32	39	41
79	81	88	95	97	29	31	38	45	47
85	87	94	96	78	35	37	44	46	28
86	93	100	77	84	36	4 3	50	27	34

92	99	1	8	15	67	74	51	58	65
98	80	7	14	16	73	55	57	64	66
4	6	88	95	22	54	56	63	70	72
85	87	19	21	3	60	62	69	71	53
86	93	25	2	9	61	68	75	52	59
17	24	76	83	90	42	49	26	33	40
23	5	82	89	91	48	30	32	39	41
79	81	13	20	97	29	31	38	45	47
10	12	94	96	78	35	37	44	46	28
11	18	100	77	84	36	43	50	27	34

例题分析

(3) 在B象限任一行的中间格,自右向左标出k-1列。(注意: 当k-1<=0时,不用作此步骤),将B象限标出的这些数,和D象限相应位置上的数进行交换,就形成10阶幻方。

例题分析

92	99	1	8	15	67	74	51	58	65
98	80	7	14	16	73	55	57	64	66
4	6	88	95	22	54	56	63	70	<i>7</i> 2
85	87	19	21	3	60	62	69	71	53
86	93	25	2	9	61	68	75	52	59
17	24	76	83	90	42	49	26	33	40
23	5	82	89	91	48	30	32	39	41
79	81	13	20	97	29	31	38	45	47
10	12	94	96	78	35	37	44	46	28
11	18	100	77	84	36	43	5 0	27	34

```
      92
      99
      1
      8
      15
      67
      74
      26
      58
      65

      98
      80
      7
      14
      16
      73
      55
      32
      64
      66

      4
      6
      88
      95
      22
      54
      56
      38
      70
      72

      85
      87
      19
      21
      3
      60
      62
      44
      71
      53

      86
      93
      25
      2
      9
      61
      68
      50
      52
      59

      17
      24
      76
      83
      90
      42
      49
      51
      33
      40

      23
      5
      82
      89
      91
      48
      30
      57
      39
      41

      79
      81
      13
      20
      97
      29
      31
      63
      45
      47

      10
      12
      94
      96
      78
      35
      37
      69
      46
      28

      11
      18
      100
      77
      84
      36
      43
      75
      27
      34
```

15

y=0;

```
例6.57
  1 #include <stdio.h>
  2 #define N 100 //定义足够大的数组
  3 int main()
  4 { //求解4k+2阶魔方阵(单偶阶幻方)
  5 int A[N][N] = \{0\};
      int i, j, k, m, n, L, S;
     int x, y, ox, oy;
     scanf("%d",&n); //输入n阶(n>=6, n=4k+2)
     if (n>=6 && n<N && n%2==0 && n%4!=0) { //超过14显示不下
 10
       k=n/2;
       for (j=0; j<4; j++) { //步骤1: 依次填写A、D、B、C象限
 11
 12
         m=k*k*j; //填写n/2(奇数)阶魔方阵
         L=m+k*k;
 13
         x=k/2;
 14
```

厂 程序设计 20

例6.57

```
1 #include <stdio.h>
2 #define N 100 //定义足够大的数组
3 int main()
4 { //求解4k+2阶魔方阵(单偶阶幻方)
 5 int A[N][N] = \{0\};
    int i, j, k, m, n, L, S;
    int x, y, ox, oy;
    scanf("%d",&n); //输入n阶(n>=6, n=4k+2)
    if (n>=6 && n<N && n%2==0 && n%4!=0) { //超过14显示不下
10
      k=n/2;
      for (j=0; j<4; j++) { //步骤1: 依次填写A、D、B、C象限
11
12
        m=k*k*j; //填写n/2(奇数)阶魔方阵
        L=m+k*k;
13
        x=k/2;
14
15
       y=0;
```

二】程序设计

```
例6.57
 16
          ox=(j==0||j==3) ? 0 : n/2;
          oy=(j\%2==0) ? 0 : n/2;
 17
          for(i=m+1; i<=L; i++) {
 18
 19
            A[oy+y][ox+x]=i;
            if(i%k==0) y++;
 20
 21
            else x++,y--; //Hourse法
 22
            x=(x%k+k)%k;
 23
            y=(y\%k+k)\%k;
 24
 25
 26
        m=(n-2)/4; //对ADBC象限奇数阶魔方阵做处理
 27
        for(i=0;i<n/2;i++) {
          for(j=0;j<m;j++) { //步骤2
 28
            k=(i==n/4)?n/4+j:j;
 29
 30
            L=A[i][k], A[i][k]=A[i+n/2][k], A[i+n/2][k]=L;
```

二】程序设计

```
例6.57
 31
          }
 32
          for(j=0;j<m-1;j++) { //步骤3
 33
            k=n/2+n/4+j;
 34
            L=A[i][k], A[i][k]=A[i+n/2][k], A[i+n/2][k]=L;
 35
 36
 37
        for(i=0; i<n; i++) { //输出魔方阵
 38
          S=0; //S累计一行之和
 39
          printf(" ");
 40
          for(j=0; j<n; S=S+A[i][j],j++)</pre>
 41
            printf("%4d ", A[i][j]);
 42
          printf(" =%4d\n",S); //输出一行之和
 43
        printf("=");
 44
 45
        for(j=0; j<n; j++) { //输出魔方阵列之和
```

二 程序设计

```
例6.57
 31
          }
 32
          for(j=0;j<m-1;j++) { //步骤3
 33
            k=n/2+n/4+j;
 34
            L=A[i][k], A[i][k]=A[i+n/2][k], A[i+n/2][k]=L;
 35
 36
 37
        for(i=0; i<n; i++) { //输出魔方阵
 38
          S=0; //S累计一行之和
 39
          printf(" ");
 40
          for(j=0; j<n; S=S+A[i][j],j++)</pre>
 41
            printf("%4d ", A[i][j]);
          printf(" =%4d\n",S); //输出一行之和
 42
 43
 44
        printf("=");
 45
        for(j=0; j<n; j++) { //输出魔方阵列之和
```

二】程序设计

```
例6.57
 46
          S=0;
          for(i=0; i<n; i++) S=S+A[i][j];</pre>
 47
 48
          printf("%4d ",S); //输出一列之和
 49
 50
        L=S=0;
 51
        for(i=0; i<n; i++) S=S+A[i][i] , L=L+A[i][n-1-i];
        printf(" =%4d =%4d\n",S,L); //输出对角线与反对角线之和
 52
 53
 54
      else printf("error input: n=4k+2)\n");
 55
      return 0;
 56 }
```

```
例6.57
 46
          S=0;
          for(i=0; i<n; i++) S=S+A[i][j];
 47
          printf("%4d ",S); //输出一列之和
 48
 49
 50
        L=S=0;
 51
        for(i=0; i<n; i++) S=S+A[i][i] , L=L+A[i][n-1-i];
 52
        printf(" =%4d =%4d\n",S,L); //输出对角线与反对角线之和
 53
 54
      else printf("error input: n=4k+2)\n");
 55
      return 0;
 56 }
```

若输入的n值不满足单偶(n=4K+2)阶魔方阵,提示输入错误信息。

例6.57 程序运行屏幕 1 #include <stdio 35 1 $6 \quad 26 \quad 19 \quad 24 = 111$ 32 7 21 23 25 = 111 31 9 2 22 27 20 = 111 28 33 17 10 15 = 111 5 34 12 14 16 = 111 30 4 36 29 13 18 11 = 111 = 111 111 111 111 111 111 = 111 = 111 6 **K**

二 程序设计

