(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-247112

(43)公開日 平成6年(1994)9月6日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FΙ	技術表示箇所
B 6 0 C	23/00	A	8711-3D		
B 6 0 G	23/00	G	8710 - 3D		
G 0 1 L	17/00	E	7269-2F		

審査請求 未請求 請求項の数2 FD (全 4 頁)

(21)出願番号	特願平5-59678	(71)出願人	000004640
			日本発条株式会社
(22)出願日	平成5年(1993)2月24日		神奈川県横浜市金沢区福浦3丁目10番地
		(72)発明者	福村 武夫
			神奈川県横浜市金沢区福浦3丁目10番地
			日本発条株式会社内
		(74)代理人	弁理士 大島 陽一

(54) 【発明の名称】 圧力検出装置及びタイヤ空気圧検出装置

(57)【要約】 (修正有)

【目的】 圧力の増減を、遠隔位置、例えば車室内から リアルタイムにかつ継続的に監視することを可能にす

【構成】 圧力検出対象に連通するケーシング1内に真 空ベローズ10を設置し、ベローズ内に設けられた摺動 軸受8を介して、ベローズの伸縮に応動して変位可能な 磁石片12を設け、外部に設けられた磁気検出手段によ り、磁石片の運動に応じて変化する磁束を検出し、それ に基づき圧力を検出する。特に、ベローズ内を真空にし た密封構造とすることにより、磁石片の変位に際して必 要となる軸受などの、水分や大気中の酸素などによる劣 化を回避することができ、好適な軸受を用いることによ り、大きな遠心力の作用のもとでも、可動部の摩擦によ る検出誤差を減少させることができる。

1

【特許請求の範囲】

【請求項1】 圧力検出装置であって、

圧力検出対象に連通しかつ外気に対して密封された内室 を有するケーシングと、

前記内室内にて伸縮自在に設置された密封ベローズと、 前記ベローズの伸縮に応動するべく摺動軸受を介して摺 動自在に支持されたロッドに固着された磁石片と、

前記磁石片と対向し得る位置に設けられた磁気検出手段 とを有し、

前記ベローズ内が概ね真空であることを特徴とする圧力 10 アルタイムにかつ継続的に監視することが可能となる。 検出装置。

【請求項2】 タイヤ空気圧検出装置であって、

車輪の適所に固定され、かつ該車輪に装着されたタイヤ の内部に連通しかつ外気に対して密封された内室を有す るケーシングと、

前記内室内にて伸縮自在に設置された密封ベローズと、 前記ベローズ内にて、前記ベローズの伸縮に応動するベ く摺動軸受を介して摺動自在に支持されたロッドに固着 された磁石片と、

前記車輪外にあつて、前記磁石片と対向し得る位置に設 20 けられた磁気検出手段とを有し、

前記ベローズ内が、概ね真空であることを特徴とするタ イヤ空気圧検出装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は圧力検出装置に関し、特 に車室内から各タイヤの空気圧を監視し或いは必要に応 じて警告を発したり、タイヤ空気圧の減少に対する対策 を取り得るようにする目的に適する圧力検出装置に関す る。

[0002]

【従来の技術】自動車の安全な運行のためには、タイヤ の空気圧を常に適正に維持するのが望ましいことは知ら れているが、始業点検を必ずしも十分に行わない場合が ある。また走行中に、何らかの理由でタイヤの空気圧が ある程度急速に減少する場合もあり、自動車の挙動のみ から、そのようなタイヤの空気圧の減少を判定すること は困難である。

[0003]

【発明が解決しようとする課題】このような従来技術の 40 問題点に鑑み、本発明の主な目的は、車室内からでも、 タイヤ空気圧の状態を常に監視し得るような、或いは他 の目的に利用可能な圧力検出装置を提供することにあ る。

[0004]

【課題を解決するための手段】このような目的は、本発 明によれば、圧力検出装置であって、圧力検出対象に連 通しかつ外気に対して密封された内室を有するケーシン グと、前記内室内にて伸縮自在に設置された密封ベロー ズと、前記ベローズの伸縮に応動するべく摺動軸受を介 50 れていることとなる。この空気圧検出装置を構成するア

して摺動自在に支持されたロッドに固着された磁石片 と、前記磁石片と対向し得る位置に設けられた磁気検出 手段とを有し、前記ベローズ内が概ね真空であることを 特徴とする圧力検出装置を提供することにより達成され

[0005]

る。

【作用】このように、圧力の増減が、例えば、磁気検出 手段としてのコイルに誘起される誘導電流として捕捉さ れるため、遠隔位置例えば車室内からタイヤ空気圧をリ 特に、ベローズ内を密封構造とすることにより、磁石片 の変位に際して必要となる軸受などの、水分や大気中の 酸素などによる劣化を回避することができる。また、好 適な軸受を用いることにより、可動部の摩擦による検出 誤差を減少させることができる。特に、このような構造 を有する検出部分を、較正用の固定磁石からなるもう1 つの部分と組み合わせて用いることにより、磁気検出を 正確に行うことができることから、タイヤ空気圧等の圧 力の正確な検出が可能となる。

[0006]

【実施例】以下、本発明の好適実施例を添付の図面につ いて詳しく説明する。

【0007】図1は、本発明に基づくタイヤ空気圧検出 装置としての圧力検出装置の好適実施例を示すもので、 車輪の適所に固定されたケーシング1内には小径部2と 大径部3とからなる内孔が設けられている。このケーシ ング1は、車輪に装着されるものであっても、或いは車 輪の一部をなすものであっても良い。小径部2と大径部 3との中間の部分には、ベース部材4が嵌入され、かつ 30 小径部2を大気と遮断するべく、ベース部材4の外周に は〇リング5が装着されている。大径部3の内部に於い て、磁束の透過を妨げない、例えばアルミニウムまたは 樹脂製の有底筒状のカバー6がベース部材4に装着され ている。また、小径部2の内部に於いては、例えばステ ンレス鋼の薄板からなるベローズ10が、ベース部材4 に固着されている。

【0008】更に、ベース部材4の中心に設けられた開 孔内には多数のボールを使用した直動式ボールベアリン グ8が嵌入されており、該ベアリングによりロッド部材 9が摺動自在に支持されている。ロッド部材9の一端 は、ベローズ10の外端部の内壁に衝当しかつ固着され ており、ロッド部材9のカバー6の側の端部には環状の 永久磁石片12が固着されている。

【0009】従って、ベローズ10及びカバー6により 画定される空間は、小径部2及び大径部3からなる空室 に対して密封されている。特に、小径部2は通路13を 介してタイヤの内部に連通しており、大径部3は大気に 連通することから、ベローズ10及びカバー6により画 定される空間は、外気及びタイヤ内部の両者から隔絶さ

3

センブリの全体は、カバー6に係止された止め輪7を介 してケーシング1内に保持されている。更に、ロッド部 材9の周りを巻回する圧縮コイルばね11が、ベローズ 10の外端部の内壁と、ベース部材4の対向端面との間 に挟持され、ベローズ10を常に膨張させる向きに付勢 している。

【0010】図2は、この空気圧検出装置Aがホイール 14に装着される様子を示しており、磁石片12に対向 する車体側の適所には磁気検出用のコイル20が固着さ れている。所望に応じて、コイル20に代えて、ホール 10 素子など他の検出素子を用いても良い。また、車輪14 の、装置Aとほぼ同一円周上の位置、例えば車輪14の 対角位置には較正用の固定磁石装置Bが設けられてい る。この装置は、前記装置Aとほぼ同様の外形を有する が、ベローズなどを備えておらず、そのケーシング15 内には前記と同様なロッド部材16が摺動自在に支持さ れ、その、図2に於ける左端には永久磁石片19が固着 され、ケーシング15の外に突出するロッド部材16の 他方の端部にはナット17が螺合され、ロッド16を適 宜に軸線方向に調節し得るようにしてある。またロッド 20 5 〇リング 部材16を所望の位置に固定するためにケーシング15 には止めねじ18が螺合されている。

【0011】図3は、コイル20に接続された制御/表 示ユニット24の作動を説明するもので、先ずコイルか ら検出された交流信号を整流して半波信号とし、それを 積分し、A/D変換器21によりデジタル値に変換し、 部分A、部分Bから交互に得られる信号のレベルを比較 することにより、空気圧の増減を、圧力計算ユニット2 2により計算し、その結果を例えば車室内に設けられた 表示ユニット23により表示する。

[0012]

【発明の効果】このように、本発明によれば、可動部分 が全て外気から密封されており、外気の影響、結露、酸 化などの問題を完全に回避することが可能となる。特 に、高速走行する車輌に於いては、遠心力の作用によ り、可動部分の信頼性が問題となり得るが、本発明のよ うに、密封された状態の直動型のボールベアリングを用 いることにより摩擦力を小さくし、ヒステリシスを減少 させることができ、車速に関わらず常に正確なタイヤ空 気圧の検出が可能となる。また、ベローズ内が真空であ 40 ることから、その内部空気の熱膨張等による温度変化の 影響を回避することができ、常に正確な圧力検出が可能 となる。

【図面の簡単な説明】

(3)

【図1】本発明に基づくタイヤ空気圧検出装置の、タイ ヤ空気圧を検出するための構造を示す拡大縦断面図であ る。

【図2】1つのシステムとして構成された本発明に基づ くタイヤ空気圧検出装置の全体を模式的に示すダイヤグ ラム図である。

【図3】本発明に基づくタイヤ空気圧検出装置の信号処 理の手順を示すブロック図である。

【符号の説明】

- A 第1の部分(タイヤ空気圧検出装置)
- B 第2の部分(構成用の固定磁石装置)
- 1 ケーシング
- 2 小径部
- 3 大径部
- 4 ベース部材
- - 6 カバー
 - 7 止め輪
 - 8 直動型ボールベアリング
 - 9 ロッド部材
 - 10 ベローズ
 - 11 圧縮コイルばね
 - 12 永久磁石片
 - 13 通路
 - 14 車輪
- 30 15 ケーシング
 - 16 ロッド部材
 - 17 ナット
 - 18 止めねじ
 - 19 永久磁石片
 - 20 コイル
 - 21 A/D変換器
 - 22 圧力計算ユニット
 - 23 圧力表示ユニット
 - 24 制御/表示ユニット

[図3]

【図1】

【図2】

