\mathbf{C}	3	2	Ω	Ω	7
-	-	•			- 4

(Pages : 2)

Name	

Reg. No.....

FIRST SEMESTER B.C.A. DEGREE EXAMINATION, NOVEMBER 2017

(CUCBCSS—UG)

Complementary Course

BCA 1C 02—DISCRETE MATHEMATICS

Time : Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all the ten questions. Each question carries 1 mark.

- 1. What do you mean by a proposition?
- 2. Write the negation of the statement 'all people are intelligent'.
- Draw the graph K_{3,2}.
- A closed path is called a ———
- State Euler's formula for plane graph.
- Assign a truth value for the statement $6 + 4 = 10 \land 0 < 2$.
- Give an example of a 2 regular graph.
- What do you mean by a cut vertex?
- What can you say about sets A and B if A \cap B = B

 $(10 \times 1 = 10 \text{ mark})$

Part B (Short Answer Type)

Answer all five questions. Each question carries 2 marks.

- Construct a truth table for $\sim p\Lambda \sim q$.
- Give an example of a relation which is reflexive and transitive but not symmetric.
- Define isomorphism of two graphs.

- Define bipartite graph. 15. What do you mean by a self complimentary graph? Give an example.

 $(5 \times 2 = 10 \text{ mark}_{k_j})$

Part C (Short Essay)

Answer any five questions. Each question carries 4 marks.

- Define a boolean algebra. Show that $[(p \lor q) \Rightarrow r] \land (\neg p) \Rightarrow (q \Rightarrow r)$ is a tautology without using truth tables.
- Prove that in a tree every vertex of degree greater than one is a cut vertex.
- Prove that every connected graph contains a spanning tree.
- Let G be a graph in which the degree of every vertex is at least 2. Show that G contains a circuit
- 21. Find the power set of each of these sets:
 - (a) φ;

(b) $\{\phi\};$

 $\{\phi, \{\phi\}\}\ ;$ (c)

- (d) $\{a, b\}.$
- 22. Show that in any group of two or more people, there are always two with exactly same number of friends inside the group.
- 23. Prove that a connected graph G is a tree if and only if every edge of G is a cut edge of G.

 \cdot (5 × 4 = 20 marks

Part D

Answer any five questions. Each question carries 8 marks.

- 24. (a) Write the disjunctive normal form of : $p \Rightarrow ((p \Rightarrow q) \land \neg (\neg q \lor \neg p))$.
 - (b) Write the conjunctive normal form of : $(q \lor (p \lor r)) \land \neg ((p \lor r) \land q)$.
- Give a short note on traveling salesman problem.
- 26. Prove that a connected graph G with at least two vertices contains at least two vertices that are no cut vertices.
- Prove that a graph has a dual if and only if it is planar.
- Show that G is Euler if and only if every vertex of G is even.
- Write short notes on (a)network; (b)Max-flow min-cut theorem. 29.
- Prove that a graph is bipartite if and only if it contains no odd cycles.
- If G in a simple graph such that $d(v) \ge \frac{n}{2}$ for all vertices v of G, then show that G in Hami Honiar $(5 \times 8 = 40 \text{ marks})$