SEARCH NOTES FOR SERIAL NUMBER: 10/593539

FILED 09/19/2006

EFFECTIVE 09/19/2006

PRIORITY

Parent Data

10593539, filed 09/19/2006

is a national stage entry of PCT/JP06/01346 International Filing Date: 01/27/2006

Also: foreign priority claimed to JP 2005-021627 1/28/2005 (not in PALM; see oath)

PGPUB <u>US20070194978A1</u>

342	028000	Y
342	070000	
342	198000	
342	192000	

IDS – 2, including search report

PLUS SEARCH

6/26/2008

- submitted

PALM INVENTOR SEARCH

6/26/2008

Last Name = TESHIROGI

First Name = TASUKU

Application#	Patent#	Status	Date Filed	Title	Inventor Name
<u>06365265</u>	4584581	150	ş	BEAM FORMING NETWORK FOR MULTIBEAM ARRAY ANTENNA	TESHIROGI, TASUKU
06550120	4543579	150	11/09/1983	CIRCULAR POLARIZATION ANTENNA	TESHIROGI, TASUKU
09554470	6317095	250	:	PLANAR ANTENNA AND METHOD FOR	TESHIROGI, TASUKU

				MANUFACTURING THE SAME	
<u>09741276</u>	6489930	150	12/19/2000	DIELECTRIC LEAKY-WAVE ANTENNA	TESHIROGI, TASUKU
10009396	6597323	250	10/22/2001	DIELECTRIC LEAKY WAVE ANTENNA HAVING MONO- LAYER STRUCTURE	TESHIROGI, TASUKU
10398333	6839032	150	04/03/2003	PORTABLE RADIO TERMINAL TESTING APPARATUS USING SINGLE SELF- COMPLEMENTARY ANTENNA	TESHIROGI, TASUKU
<u>10471942</u>	6995724	150	09/15/2003	WAVEGUIDE SLOT TYPE RADIATOR HAVING CONSTRUCTION TO FACILITATE MANUFACTURE	TESHIROGI, TASUKU
<u>10582067</u>	Not Issued	19	01/01/0001	Short range radar small in size and low in power consumption and controlling method thereof	TESHIROGI, TASUKU
<u>10585832</u>	Not Issued	20	07/12/2006	Circularly Polarized Antenna and Radar Device Using the Same	TESHIROGI, TASUKU
<u>10593055</u>	Not Issued	19	01/01/0001	Short range radar and method of controlling the same	TESHIROGI, TASUKU
<u>10593539</u>	Not Issued	30	09/19/2006	Uwb short-range radar	TESHIROGI, TASUKU
<u>11631426</u>	Not Issued	19	01/01/0001	Dielectric leaky wave antenna	TESHIROGI, TASUKU
<u>11794872</u>	Not Issued	30	07/05/2007	Linearly Polarized Antenna and Radar Apparatus Using the Same	TESHIROGI, TASUKU
<u>11989274</u>	Not Issued	19	01/01/0001	Short-range radar and control method thereof	TESHIROGI, TASUKU

Last Name = SAITO
First Name = SUMIO

Application#	Patent#	Status	Date Filed	Title	Inventor Name
07757311	<u>5218061</u>	150	2	PARTIALLY POST- GLYCIDYLATED EPOXY RESIN, EPOXY RESIN COMPOSITION AND CURED PRODUCT THEREOF	SAITO, SUMIO
<u>07764158</u>	5210712	150		WAVEFORM SHAPING CIRCUIT AND DIGITAL SIGNAL ANALYZING APPARATUS USING THE SAME	SAITO, SUMIO
10562988	Not Issued	80		Radar oscillator capable of preventing leak of oscillation output	SAITO, SUMIO
10579385	Not Issued	30		Digital Signal Offset Adjusting Apparatus and Pulse Pattern	SAITO, SUMIO

				Generator Using the Same	
10588871	Not Issued	6I	08/10/2006	Radar oscillator	SAITO, SUMIO
10588910	Not Issued	93		HIGH-FREQUENCY ELECTRONIC SWITCH, AND BURST WAVE GENERATING DEVICE USING THE SAME AND SHORT RANGE RADAR USING THE SAME	SAITO, SUMIO
10593539	Not Issued	30	09/19/2006	Uwb short-range radar	SAITO, SUMIO
<u>06296729</u>	4383057	150		PROCESS OF PREPARING COATING COMPOSITIONS COMPRISING POLYVINYL BUTYRAL AND COLLOIDAL SILICA	SAITOH, SUMIO
06343920	4499217	150	- 6	THERMO-SETTING RESINOUS LIQUID COMPOSITIONS	SAITOH, SUMIO
<u>06469677</u>	Not Issued	161	02/25/1983	COATING COMPOSITIONS	SAITOH, SUMIO
<u>06821082</u>	4721652	150	01/21/1986	COMPOSITE FOR DECOMPOSING AND ADSORBING UREA DISSOLVED IN LIQUID	SAITOH, SUMIO

Last Name = UCHINO
First Name = MASAHARU

Application#	Patent#	Status	Date Filed	Title	Inventor Name
09314346	<u>6509728</u>	150	05/19/1999	SPECTRUM ANALYZER HAVING FUNCTION OF DISPLAYING AMPLITUDE PROBABILITY DISTRIBUTION EFFECTIVELY	UCHINO, MASAHARU
<u>09777437</u>	<u>6681235</u>	150	02/06/2001	FREQUENCY SYNTHESIZER AND GAUSSIAN NOISE GENERATOR USING THE SAME	UCHINO, MASAHARU
<u>09890441</u>	7206339	150	07/25/2001	WONDER GENERATOR, DIGITAL LINE TESTER COMPRISING THE SAME, AND PHASE NOISE TRANSFER CHARACTERISTIC ANALYZER	UCHINO, MASAHARU
10469224	<u>6909270</u>	150	08/27/2003	PHASE DETECTOR CAPABLE OF DETECTING AN ACCUMULATED VALUE OF PHASE DISPLACEMENT AT A HIGH SPEED AND FREQUENCY	UCHINO, MASAHARU

				STABILITY MEASURING APPARATUS FOR ARBITRARY NOMINAL FREQUENCY USING THE SAME	
10548400	7248205	150	09/08/2005	RADAR APPARATUS	UCHINO, MASAHARU
<u>10581935</u>	Not Issued	93		SMALL-SIZED LOW-POWER DISSIPATION SHORT-RANGE RADAR THAT CAN ARBITRARILY CHANGE DELAY TIME BETWEEN TRANSMISSION AND RECEPTION WITH HIGH TIME RESOLUTION AND METHOD OF CONTROLLING THE SAME	UCHINO, MASAHARU
<u>10593539</u>	Not Issued	30	09/19/2006	Uwb short-range radar	UCHINO, MASAHARU
<u>11365993</u>	Not Issued	30		Signal measuring/analyzing apparatus and signal measuring/analyzing method	UCHINO, MASAHARU
11683313	Not Issued	71	03/07/2007	WANDER GENERATOR, AND DIGITAL LINE TESTER AND PHASE NOISE TRANSFER CHARACTERISTIC ANALYZER USING THE SAME	UCHINO, MASAHARU

Last Name = EJIMA First Name = MASANORI

Application#	Patent#	Status	Date Filed	Title	Inventor Name		
<u>10562988</u>	Not Issued	80		Radar oscillator capable of preventing leak of oscillation output	EJIMA, MASANORI		
10588871	Not Issued	61	08/10/2006	Radar oscillator	EJIMA, MASANORI		
10593539	Not Issued	30	09/19/2006	Uwb short-range radar	EJIMA, MASANORI		

IEEE SEARCH

7/7/2008

teshirogi t.

UWB Radar RF Front-End to Mitigate Impacts on EESS and Radio Astronomy Teshirogi, T.; Ejima, M.; Uchino, M.; Saito, S.; Kawamura, T.; Arayashiki, Y.; Sakamoto, Y.; Yoshida, T.; Watanabe, Y.; Ishida, A.; Ultra-Wideband. The 2006 IEEE 2006 International Conference on

Sept. 2006 Page(s):287 - 291 Digital Object Identifier 10.1109/ICU.2006.281564

UWB automotive radar to mitigate impact on radio services using restricted band

Teshirogi, T.; Ejima, M.; Uchino, M.; Saito, S.; Kawamura, T.; Arayashiki, Y.; Sakamoto, Y.; Yoshida, T.; Watanabe, Y.; Ishida, A.;

Microwave Conference Proceedings, 2005, APMC 2005, Asia-Pacific Conference Proceedings

Volume 1, 4-7 Dec. 2005 Page(s):4 pp.

Digital Object Identifier 10.1109/APMC.2005.1606193

((gresham i.)<in>au) <and> ultra

Ultra-wideband radar sensors for short-range vehicular applications

Gresham, I.; Jenkins, A.; Egri, R.; Eswarappa, C.; Kinayman, N.; Jain, N.; Anderson, R.; Kolak, F.; Wohlert, R.;

Bawell, S.P.; Bennett, J.; Lanteri, J.-P.;

Microwave Theory and Techniques, IEEE Transactions on

Volume 52, <u>Issue 9</u>, Part 1, Sept. 2004 Page(s):2105 - 2122

Digital Object Identifier 10.1109/TMTT.2004.834185

7/9/2008

(uwb <or> ultra) <and> ((restricted <or> prohibited) <sentence> band)

Quasi-Millimeter-Wave UWB Bandpass Filter with Sharp Notch at Restricted Band

Li, Keren; Nomura, Taro;

Millimeter Waves, 2008, GSMM 2008, Global Symposium on

21-24 April 2008 Page(s):2 - 5

Digital Object Identifier 10.1109/GSMM.2008.4534541

(uwb <or> ultra) <and> (eess)

Interference from 24-GHz automotive radars to passive microwave earth remote sensing satellites

Younis, M.; Maurer, J.; Fortuny-Guasch, J.; Schneider, R.; Wiesbeck, W.; Gasiewski, A.J.;

Geoscience and Remote Sensing, IEEE Transactions on

Volume 42, <u>Issue 7</u>, July 2004 Page(s):1387 - 1398

Digital Object Identifier 10.1109/TGRS.2004.830633

(uwb <or> ultra) <and> srr

Technology development of short range ultrawide-band radar system

Ogawa, H.; Hamaguchi, K.; Yamamoto, Y.; Hirose, T.; Kobayashi, T.; Kohno, R.

Ultra Wideband Systems, 2004. Joint with Conference on Ultrawideband Systems and Technologies. Joint

UWBST & IWUWBS, 2004 International Workshop on

18-21 May 2004

Page(s): 351-355

Digital Óbject Identifier 10.1109/UWBST.2004.1320994

Automotive radar - status and perspectives

Wenger, J.

Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05. IEEE

30 Oct.-2 Nov. 2005

Page(s): 4 pp.-

Digital Object Identifier 10.1109/CSICS.2005.1531741

(notch <and> filter <and> band <and> (uwb <or> ultra)

A parametric study of band-notched UWB planar monopole antennas

Kerkhoff, A.; Hao Ling;

Antennas and Propagation Society International Symposium, 2004. IEEE

Volume 2, 20-25 June 2004 Page(s):1768 - 1771 Vol.2

Digital Object Identifier 10.1109/APS.2004.1330540

Metamaterial Resonator Based Wave Propagation Notch for Ultra-wide Band Filter Applications Ali, A.; Hu, Z.;

Antennas and Wireless Propagation Letters, IEEE: Accepted for future publication

Volume PP, Forthcoming, 2003 Page(s):1 - 1

Digital Object Identifier 10.1109/LAWP.2008.920964

INSPEC SEARCH

7/7/2008

No.	Database	Search term	Info added since	Results	
CP		[Clipboard]		0	-
1	INZZ	teshirogi-t\$	unrestricted	73	show titles
2	INZZ	saito-s\$	unrestricted	2383	show titles
3	INZZ	uchino-m\$	unrestricted	46	show titles
4	INZZ	ejima-m\$	unrestricted	24	show titles
5	INZZ	arayashiki-y\$	unrestricted	10	show titles
6	INZZ	1 OR 2 OR 3 OR 4 OR 5	unrestricted	2520	show titles
7	INZZ	6 AND oscillator	unrestricted	35	show titles

Title

UWB radar RF front-end to mitigate impacts on EESS and radio astronomy.

Conference information

2006 IEEE International Conference on Ultra-Wideband, Waltham, MA, USA, 24-27 Sept. 2006.

Source

2006 IEEE International Conference on Ultra-Wideband (IEEE Cat. No. 06EX1275), 2006, p. 6 pp., 10 refs, pp. CD-ROM, ISBN: 1-4244-0101-1. Publisher: IEEE, Piscataway, NJ, USA.

Author(s)

<u>Teshirogi-T, Ejima-M, Uchino-M, Saito-S, Kawamura-T, Arayashiki-Y, Sakamoto-Y, Yoshida-T, Watanabe-Y, Ishida-A.</u>

Author affiliation

Teshirogi, T., Ejima, M., Uchino, M., Saito, S., Kawamura, T., Arayashiki, Y., Anritsu Corp., Kanagawa, Japan.

Abstract

A novel UWB short-range radar (SRR) which effectively mitigates its impacts on radio services using the restricted band such as radio astronomy or Earth Exploring Satellite Service is introduced. The essential components, a burst oscillator generating no carrier leak, and antennas with notch-filtering function are presented in detail. Other key MMICs, such as a high-speed square-law detector, variable gain LNA, a sample-hold circuit, etc. are also described with the performances of the SRR.

Development of automotive UWB radar to reduce impact on radio services in restricted band.

Source

Anritsu Technical Bulletin, { Anritsu-Tech-Bull-Japan}, <u>Sept. 2006</u>, no. 83, p. 52-8, 13 refs, CODEN: ANTKAE, ISSN: 0003-5211.

Publisher: Anritsu Electr. Co, Japan.

Author(s)

Kawamura-T, Teshirogi-T, Ejima-M, Aravashiki-Y, Saito-S.

Abstract

Development of automotive short-range radar using ultra-wideband (UWB) technology in the quasi-millimeter-wave band is progressing worldwide. However, this band includes the restricted band for protecting radio services, such as passive sensors for the Earth Exploring Satellite Service (EESS), or radio astronomy. Consequently, technologies are needed to reduce the impact of UWB radar on passive radio services and permit coexistence. In December 2004, the FCC revised the rules and prescribed a new spectrum mask. We have developed a novel UWB SRR that complies with the new mask by using a carrier-leak-free burst oscillator and planar antenna with notch filtering. We also have developed several key MMICs, such as a square-law detector with high-speed operation, variable-gain LNA, low-droop sample-hold circuit, etc., which are essential for building a simple UWB.

Title

Residual-carrier-free burst oscillator for automotive UWB radar applications.

Source

Electronics Letters, { Electron-Lett-UK}, <u>28 April 2005</u>, vol. 41, no. 9, p. 535-6, 6 refs, CODEN: ELLEAK, ISSN: 0013-5194.

Publisher: IEE, UK.

Author(s)

Teshirogi-T, Saito-S, Uchino-M, Ejima-M, Hamaguchi-K, Ogawa-H, Kohno-R.

Author affiliation

Teshirogi, T., Saito, S., Uchino, M., Ejima, M., Core Technol. R&D Center, Anritsu Corp., Atsugi, Japan.

Abstract

The design and performance of an MMIC burst oscillator that oscillates only while the driving pulse is applied are described. Since it does not generate carrier leak, a UWB radar using this oscillator may effectively mitigate interference with services using the restricted frequency band by locating its spectrum sufficiently far from the band.

8 INZZ	kawamura-t\$	unrestricted	1113	show titles
9 INZZ	8 AND uwb	unrestricted	5	show titles

Title

UWB radar antenna with emission notch in restricted frequency band.

Conference information

ISAP'05 - International Symposium on Antennas and Propagation, Seoul, South Korea, 3-5 Aug. 2004.

Source

Proceedings of the 2005 International Symposium on Antennas and Propagation (ISAP 2005), 2005, vol.3, p. 941-4 vol.3, 5 refs, pp. 3 vol xxx+1288, ISBN: 89-86522-77-2. Publisher: Korea Electromagnetic Engineering Society, Seoul, South Korea.

Author(s)

Kawamura-T, Yamamoto-A, Umeda-H, Teshirogi-T.

Author affiliation

Kawamura, T., Yamamoto, A., Umeda, H., Teshirogi, T., Core Technol. R&D Center, Anritsu Corp., Kanagawa, Japan.

Abstract

The development of a novel planar antenna for automotive radars is discussed in this paper. The 2 \times 4-element array antenna composed of rimmed-cavity-back spiral antennas achieved a gain of more than 14 dBi over the specified frequency band. A notch for emission rejection in the restricted band was effective in mitigating interference. In addition, the antenna has excellent polarization isolation characteristics by using the sequential-rotation-array technique, which is useful for automotive radars.

GOOGLE

6/30/2008

"burst oscillator"

Residual-carrier-free burst oscillator for automotive UWB radar applications Teshirogi, Saito, Uchino, Ejima, Hamagucki, Ogawa, Kohno 2/16/2005