

Chen Yuxuan 1W15BG12

| 3 | 5 | 9 | 2 | 4 | 7 | 6 | 6 | 9 | 8 |  |
|---|---|---|---|---|---|---|---|---|---|--|
| 9 | 8 | 3 | 7 | 9 | 1 | 4 | 6 | J | 1 |  |
| 4 | 9 | 7 | 3 | 7 | 9 | 7 | 5 | 5 | ታ |  |
| 4 | 7 | ٦ | 7 | 9 | 1 | 7 | 1 | 8 | 0 |  |
| 0 | 8 | 8 | 4 | 8 | 9 | 0 | 3 | 8 | J |  |
| 1 | 0 | 3 | 1 | 1 | 5 | 0 | 3 | 1 | 9 |  |
| 7 | 0 | 4 | 3 | 1 | 3 | 0 | 9 | 8 | 2 |  |
| 0 | 8 | 7 | 5 | 9 | જ | 0 | 0 | 7 | / |  |
| 5 | 9 | 1 | 7 | 2 | 4 | 1 | 5 | 8 | 9 |  |
| 3 | 9 | 0 | 7 | 8 | 1 | 9 | 8 | 8 | 5 |  |
|   |   |   |   |   |   |   |   |   | 1 |  |

### XOR problem

• AIM: Build a neural network that can successfully learn to produce the correct output given the four different inputs in the table.



| Given th              | nis input             | Produce this output |  |  |
|-----------------------|-----------------------|---------------------|--|--|
| <i>X</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | у                   |  |  |
| 0                     | 0                     | 0                   |  |  |
| 0                     | 1                     | 1                   |  |  |
| 1                     | 0                     | 1                   |  |  |
| 1                     | 1                     | 0                   |  |  |

#### Introduction to Neural Networks

- Configuration
- Cost Function
- Learn from Errors

$$\theta^{1}_{(2,1)}$$
 $\theta^{1}_{(1,2)}$ 
 $\theta^{1}_{(1,2)}$ 
 $\theta^{1}_{(2,2)}$ 
 $\theta^{1}_{(1,3)}$ 
 $\theta^{2}_{(1,2)}$ 
 $\theta^{2}_{(1,2)}$ 
 $\theta^{2}_{(1,3)}$ 
 $\theta^{2}_{(1,3)}$ 
 $\theta^{2}_{(1,3)}$ 
 $\theta^{2}_{(1,3)}$ 
 $\theta^{2}_{(1,3)}$ 
 $\theta^{3}_{(2,3)}$ 
 $\theta^{4}_{(2,3)}$ 

$$Cost(h_{\theta}(x), y) \ = \ \left\{ \frac{-log(h_{\theta}(x)) \ if \ y=1}{-log(1-h_{\theta}(x)) \ if \ y=0} \right.$$

$$Cost(h_{\theta}(x),y) = -ylog(h_{\theta}(x))-(1-y)log(1-h_{\theta}(x))$$

## Results of XOR problem

| Iterations | Result of 0,0 | Deviation J |  |  |
|------------|---------------|-------------|--|--|
| 1000       | 0.47689       | 0.69423     |  |  |
| 68000      | 0.026558      | 0.037856    |  |  |
| 100000     | 0.019090      | 0.025859    |  |  |

```
Iteration :
99000
Hypothesis for
0.019508
Hypothesis for
0.97161
Hypothesis for
0.97153
Hypothesis for
0.026528
Iteration
100000
Hypothesis for
0.019090
Hypothesis for
0.97231
Hypothesis for
Hypothesis for
0.027530
```

- Network guesses small numbers (close to 0) for the first and last XOR examples and high (close to 1) for the two middle examples
- Result is more accurate when Iterations is larger.
- Successfully trained!

# Handwritten Digits Recognition

• AIM: Build a neural network that can successfully learn to produce the correct output given the MNIST handwritten digits.



| E | 3 | 5 | 9 | 2 | 4 | 7 | 6 | 6 | 9 | 8 |
|---|---|---|---|---|---|---|---|---|---|---|
| K | 6 | 8 | 3 | 7 | 9 | 1 | 4 | 6 | L | l |
| K | 4 | 9 | 7 | 3 | 7 | 9 | 7 | 5 | 5 | ታ |
| 1 | 4 | 7 | 7 | 7 | 9 | 1 | 7 | / | 8 | 0 |
| I | 6 | 8 | 8 | 4 | 8 | 7 | 0 | 3 | 8 | J |
|   | / | 0 | 3 | 1 | 1 | 5 | 0 | 3 | 1 | 9 |
| F | 7 | 0 | 4 | 3 | 1 | 3 | 0 | 9 | 8 | 2 |
| K | ٥ | 8 | 7 | 5 | 9 | ಒ | 0 | 0 | 7 | 1 |
| - | 5 | 9 | 1 | 7 | 2 | 4 | 1 | 5 | P | 9 |
| E | 3 | 9 | 0 | 7 | 8 | 1 | 9 | 8 | 8 | 5 |
|   |   |   |   |   |   |   |   |   |   |   |

# Results of Handwritten Digits Recognition

| Accuracy | Samples | Hidden<br>Neruons |  |  |
|----------|---------|-------------------|--|--|
| 23.3%    | 120     | 4                 |  |  |
| 66.7%    | 120     | 16                |  |  |
| 95.5%    | 5000    | 25                |  |  |

TRAINLM, Epoch 0/200, MSE 0.902926/0, Gradient 600.48/1e-010
TRAINLM, Epoch 21/200, MSE 0.0738405/0, Gradient 0.0262333/1e-010
TRAINLM, Validation stop.

#### SIMULATION...

Training Set Accuracy: 23.333333

63% with the small sample (120) and small hidden neurons (16).

Training set accuracy is around

• While, larger sample (5000), and more hidden neurons (25) yields 95%.

Sucessfully Trained!