

Sri Lanka Institute of Information Technology B. Sc Degree in IT/IS/CSN, Diploma in Information Technology Year 01 – Semester I – 2017

Mathematics for Computing (IT1030)

Tutorial 06

- 01. a. Find all functions from $X = \{a, b\}$ to $Y = \{u, v\}$
 - b. Find all functions from $X = \{a, b, c\}$ to $Y = \{u\}$
 - c. Find all functions from $X = \{a, b, c\}$ to $Y = \{u, v\}$
- 02. Define functions f and g from **R** to **R** by the formulas: for all $x \in \mathbf{R}$,

$$f(x) = 2x$$
 and $g(x) = \frac{2x^3 + 2x}{x^2 + 1}$

Show that f = g.

03. Let $X = \{a, b, c, d\}$ and $Y = \{x, y, z\}$. Define functions F and G by the arrow diagrams below.

domain of F co-domain of F

domain of G co-domain of G

- 04. Let $X = \{1, 2, 3\}$, $Y = \{1, 2, 3, 4\}$, and $Z = \{1, 2\}$
 - a. Define a function $f: X \to Y$ that is one-to-one but not onto.
 - b. Define a function $g: X \to Z$ that is onto but not one-to-one.
- 05. A function f is defined on a set of real numbers. Determine whether or not f is one-to-one and justify your answer.

$$f(x) = \frac{x+1}{x}$$
 for all real number $x \neq 0$

06. Let a function
$$f: [0,2] \longrightarrow [-1,2]$$
 be given by, $f(x) = \sqrt{x} - 1$

Decide whether f is an onto function.

07. Let a function $f: R \longrightarrow R$ be given by,

$$f(x) = |x|$$

Decide whether f has the inverse function and construct it.

08. Find the inverse of the following functions.

a)
$$f: R \to R$$
, $f(x) = \frac{2x+3}{3x+5}$ b) $f: R \to R$, $f(x) = \frac{x-1}{6x+3}$

Further Exercises

- 1. Let f_1 and f_2 be functions from R to R such that $f_1 = x^2$ and $f_2 = x x^2$ what are the functions $f_1 + f_2$ and $f_1 f_2$?
- 2. Show that $f(x) = x^2$ is not one-to-one?
- 3. Let f be the function from $\{a,b,c,d\}$ to $\{1,2,3,4\}$ with f(a)=4, f(b)=2, f(c)=1, and f(d)=3. Is f a bijection?
- 4. Let $f: Z \to Z$ be such that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?
- 5. Let f be the function from R to R with $f(x) = x^2$. Is f invertible?
- 6. Prove that if *n* is an integer, then $\left\lfloor \frac{n}{2} \right\rfloor = \frac{n}{2}$ if n is even and $\frac{(n-1)}{2}$ if n is odd.
- 7. Draw the graph of the function $f(x) = \lfloor x \rfloor$.