

淘宝: fire-stm32.taobao.com

论坛: www.firebbs.cn

扫描进入淘宝店铺

主讲内容

- 4.1 SysTick简介
- 4.2 初始化SysTick
- 4.3 编写SysTick中断服务函数
- 4.4 main()函数
- 4.5 实验现象

参考资料:《μCOS-III内核实现与应用开发实战指南》

RTOS需要一个时基来驱动,系统任务调度的频率等于该时基的频率。

SysTick简介

Cortex-M内核中有一个内核定时器SysTick,它内嵌在NVIC中,是一个24位的递减的计数器,计数器每计数一次的时间为1/SYSCLK。当重装载数值寄存器的值递减到0的时候,系统定时器就产生一次中断。

寄存器名称	寄存器描述
CTRL	SysTick 控制及状态寄存器
LOAD	SysTick 重装载数值寄存器
VAL	SysTick 当前数值寄存器

位段	名称	类型	复位值	描述
16	COUNTFLAG	R/W	0	如果在上次读取本寄存器后, SysTick 已经计到
				了 0,则该位为 1。
2	CLKSOURCE	R/W	0	时钟源选择位,0=AHB/8,1=处理器时钟 AHB
1	TICKINT	R/W	0	1=SysTick 倒数计数到 0 时产生 SysTick 异常请
				求, 0=数到 0 时无动作。也可以通过读取
				COUNTFLAG标志位来确定计数器是否递减到0
0	ENABLE	R/W	0	SysTick 定时器的启用位

位段	名称	类型	复位值	描述
23:0	RELOAD	R/W	0	当倒数计数至零时,将被重装载的值

位段	名称	类型	复位值	描述
23:0	CURRENT	R/W	0	读取时返回当前倒计数的值,写它则使之清
				零,同时还会清除在 SysTick 控制及状态寄存
				器中的 COUNTFLAG 标志

初始化SysTick

OS_CPU_SysTickInit函数在os_cpu_c.c中定义

编写SysTick中断服务函数

SysTick中断服务函数也是在os_cpu_c.c中定义

OSTimeTick()是与时间相关的函数,在os_time.c中定义

main()函数

main()函数与上一章区别不大, 仅仅是加入了SysTick相关的内容

THANKS

淘宝: fire-stm32.taobao.com

论坛: www.firebbs.cn

扫描进入淘宝店铺