TODO!!!

Definice 0.1 (Lineární PDR)

Parciální diferenciální rovnice (PDR) je lineární, jde-li ji zapsat ve tvaru

$$\sum_{|\alpha| \leqslant m, \alpha \in (\mathbb{N}_0)^n} a_{\alpha} D^{\alpha} u = f$$

pro neznámou funkci u, f(x) a $a_{\alpha}(x)$ je dáno $(x \in \Omega \in \mathbb{R}^n)$.

Je-li $f\equiv 0$, pak říkáme, že PDR je homogenní (bez pravé strany). Pokud a_{α} jsou konstanty, pak říkáme, že PDR je s konstantními koeficienty.

Definice 0.2 (Semilineární PDR)

Semilineární rovnice má tvar

$$\sum_{|\alpha|=m} a_{\alpha} D^{\alpha} u + b = 0,$$

kde a(x) a $b(x, u, \nabla u, \dots, \nabla^{n-1}u)$ je dáno.

Definice 0.3 (Kvazilineární PDR)

Kvazilineární rovnice je

$$\sum_{|\alpha|=m} a_{\alpha} D^{\alpha} u + f = 0,$$

kde $a_{\alpha}(x, u, \nabla u, \dots, \nabla^{m-1}u)$ a $f(x, u, \nabla u, \dots, \nabla^{m-1}u)$ je dáno.

Definice 0.4 (Řád rovnice)

m v předchozích definicích nazýváme řád rovnice.

Definice 0.5 (Korektně zadaný problém)

Problém je korektně zadaný podle Hadamarda, pokud má řešení, řešení je jednoznačné a řešení závisí spojitě na datech.

Definice 0.6 (Klasické řešení)

Rovnice platí bodově, derivace jsou spojité.

Definice 0.7 (Okrajové podmínky)

Dirichlet: zadaná hodnota na hranici.

Neumann: zadány normálové tečny na hranici.

1 Cauchyova úloha pro kvazilineární rovnici 1. řádu

Definice 1.1

Buď $a_1, \ldots, a_n, f \in \mathbb{C}(\mathbb{R} \times \mathbb{R}^n), n \in \mathbb{N} \setminus \{1\}$. Rovnici

$$\sum_{j=1}^{n} a_j(u(x), x) \partial_j u(x) = f(u(x), x), \qquad x \in \mathbb{R}^n$$

nazveme kvazilineární rovnici prvního řádu.

Počáteční podmínku předepisujeme ve tvaru $u(0, \overline{x}) = u_0(\overline{x})$, kde $\overline{x} \in \mathbb{R}^{n-1}$. Funkci $u: \Omega \to \mathbb{R}$, $\omega \subseteq \mathbb{R}^n$ nazveme klasickým řešením Cauchyovy úlohy pro kvazilineární rovnici 1. řádu, pokud $u \in \mathbb{C}^1(\Omega)$ a podmínky platí bodově v Ω .