PROYECTO COMPILANDO CONOCIMIENTO

MATEMÁTICAS DISCRETAS

Teoría de Números

Una Pequeña Introducción

AUTOR:

Rosas Hernandez Oscar Andres

Índice general

1.	Enteros y Naturales		
	1.1.	Principio de Buen Orden	3
	1.2.	Divisibilidad	4
	1.3.	Algoritmo de División	7
		1.3.1. Par e Inpar	8
2.	Combinatoria		
	2.1.	Definición	10

Capítulo 1

Enteros y Naturales

1.1. Principio de Buen Orden

Definición Formal

1.2. Divisibilidad

Definición Formal

Dados dos números cualquiera $a, b \in \mathbb{Z}$. Decimos que la proposición "b" divide a "a" b|a es verdad si y solo si $\exists q \in \mathbb{Z}, \ a = bq$.

Definición Alterna

Veamos que lo que de verdad nos estan preguntando si es que $\frac{a}{b} \in \mathbb{Z}$.

Ya que de ser así eso quiere decir que podemos escribir a a como a=bq. Y con esto logramos ver que $\frac{bq}{b}=q$ y habiamos dicho que $q\in\mathbb{Z}$.

Por lo tanto podemos resumir esto en que: "a divide a b si y solo si es que $\frac{a}{b}$ continua estando en los enteros"

$$b|a \iff \frac{a}{b} \in \mathbb{Z}$$

Ideas Imporantes

- Si b|a y $b \neq 0$ entonces q es único.
- Si $b|a \text{ y } a \neq 0 \text{ entonces } |b| \leq |a|$.

Demostración:

Supongamos entonces que b divide a a y que $a \neq 0$, por lo tanto la frase a = bq nos da mucha información, pues obliga a que b y q no sean ninguno 0, entonces tenemos que a = bq donde $b \neq 0$ y $q \neq 0$.

Luego ya que no son 0, tenemos que $|q| \ge 1$ y $|b| \ge 1$, ya que sabemos como funcionan los números enteros tenemos que sin importar cuanto valgan q y b se cumple que $|b||q| \ge |b|$ esto es lo mismo que $|bq| \ge |b|$ y sabemos que a = bq, por lo tanto tenemos que $|a| \ge |b|$.

Esto es lo mismo que $|b| \le |a|$

Propiedades de Divisilibidad

■ *b*|*b*

Demostración:

Basta con ver que si a = b entonces b = bq, por lo tanto q = 1. Y listo, $1 \in \mathbb{Z}$.

■ *b*|0

Demostración:

Basta con ver que si a=0 entonces 0=bq, por lo tanto q=0. Y listo, $0\in\mathbb{Z}$.

■ 1|a y también -1|a

Demostración:

Basta con ver que si $b=\pm 1$ entonces $a=\pm q$, por lo tanto $q=\pm a$. Y listo, $\pm a\in \mathbb{Z}$.

 \bullet 0|a si y solo a=0

Demostración:

Basta con ver que tenemos a = 0q, esto es lo mismo que a = 0.

• b|1 si y solo si b=1 ó b=-1

Demostración:

Sabemos que a=1=bq, esto nos obliga a que $b=\frac{1}{q}$, ahora tenemos que recordar que $b,q\in\mathbb{Z}$, por lo tanto q=1 o bien q=-1 que es lo mismo que decir que b=1 ó b=-1.

• $b|a \ y \ a|b \ \text{si} \ y \ \text{solo} \ \text{si} \ a = \pm b$

Demostración:

Sabemos que $a=bq_1$, y $b=aq_2$ por lo tanto podemos sustituir, $a=(aq_2)q_1$ por lo tanto $1=(q_1)(q_2)$, que es lo mismo que $\frac{1}{q_2}=q_1$ ahora que para q_1 siga en los \mathbb{Z} , $q_2=\pm 1$ por lo tanto $q_1=\pm \frac{1}{1}=\pm 1$ por lo tanto tenemos que $a=bq_1$ que es lo mismo que decir que $a=\pm b$.

■ Si b|a y a|c entonces b|c

Demostración:

Sabemos que $a=bq_1$, y $c=aq_2$ por lo tanto podemos sustituir, $c=(bq_1)q_2$ que es lo mismo que $c=bq_3$, donde $q_3=q_1q_2$ donde $q_3\in\mathbb{Z}$. Y ya que $c=bq_3$ podemos decir que b|c.

• Si b|a y b|c entonces b|a+c y b|a-c

Demostración:

Sabemos que $a=bq_1$, y $c=bq_2$ por lo tanto podemos decir que sumar o restar ambas ecuaciones, lo que nos daría $a\pm c=bq_1\pm bq_2$ que es lo mismo que $a\pm c=b(q_1\pm q_2)$ por lo que podemos decir que $b|a\pm c$.

• Si b|a entonces $b|ak \ \forall k \in \mathbb{Z}$.

Demostración:

Sabemos que a = bq por lo mismo podemos decir que ak = b(qk) por lo tanto b|ak.

■ b|a si y solo si b|-a si y solo si -b|a si y solo si -b|-a

Demostración:

Sabemos que existe q_1 tal que $a=bq_1$ para nuestro primer ssi basta con decir que $-a=b(-q_1)=bq_2$ y listo, encontre a q_2 con lo que puedo afirmar que b|-a.

Para el segundo basta con ver que $a=-bq_3$ donde $q_3=q_2$, con lo que puedo afirmar que -b|a.

Para el último ssi basta con con ver que $-a=-bq_4$ donde $q_4=q_1$ así que puedo afirmar que -b|-a.

1.3. Algoritmo de División

Definición Formal

Dados dos enteros a, b donde $b \neq 0$, existen otros dos enteros únicos q, r, donde $0 \leq r < |b|$ tal que se cumple:

$$a = bq + r \tag{1.1}$$

Vemos que basicamente nos dice cuántas veces cabe b en a sin pasarse (esto es q) y cuantos le faltan para alcanzar a a (esto es r).

Demostración:

Esta sale del Principio de Buen Orden, el primer paso es crear el conjunto $Residuos = \{a-|b|q \mid q \in \mathbb{Z}, (a-|b|q) \geq 0\}.$

Esto es un conjunto que basicamente contiene a los residuos, o visto de otra manera a los números que salen como resultado de sumarle multiplos de |b| a a y que son mayores que 0.

Ahora gracias al principio de buen orden (y que Residuos es el conjunto de los Naturales más el cero) podemos llamar a r al elemento mas pequeño de este conjunto.

Ahora, gracias a la definición del conjunto Residuos podemos decir que $r = a - |b|q_1$ que es decir $a = |b|q_1 + r$.

Ahora podemos poner esto como a = bq + r donde si $b < 0 \implies q = -q_1$ y si $b > 0 \implies q = q_1$.

Para ver que $0 \le r < |b|$, bueno, es mayor o igual que 0 porque pertenece a los Naturales más el cero, ahora para ver que es menor que |b|, basta con ver que si no fuera así pasaría que $r-|b| \ge 0$ (donde r es el elemento más pequeño del conjunto Residuos) que es lo mismo que poner $(a-|b|q_1)-|b| \ge 0$ que es lo mismo que $a-|b|(q_1+1)\ge 0$, ahora basta con ver que esa no es la r más pequeña, pues entonces si $a-|b|(q_1+1)\ge 0$, también $a-|b|q_1\ge 0$, por lo que la nueva r_2 (donde $r_2=a-|b|q_1$), es mas pequeña que r, pero elegimos a r como la más pequeña, por lo tanto contradicción.

Y ya por fin, para demostrar que q, r son únicos dados a, b, tendría que pasar que $a = bq_1 + r_1 = bq_2 + r_2$.

Recordemos que r debe de ser única, pues r es el menor elemento del conjunto del que tendríamos que sacar a la otra, así que r solo hay una.

Dado eso, tenemos que $a = bq_1 + r = bq_2 + r$ que es lo mismo que $bq_1 = bq_2$ que es lo mismo que $q_1 = q_2$ y bingo. Demostrado.

Oscar Andrés Rosas 7 Ve al Índice

1.3.1. Par e Inpar

Dado un 2 como divisor, osea b=2, nuestra r siempre será 0 ó 1. Digo recuerda que $0 \le r < |b|$.

Pares

Por lo tanto puedo definir a un número entero par como aquellos números que podemos escribirlos gracias al algoritmo de la división como 2q+0 o de manera más común como 2k.

$$Pares = \{ a \in \mathbb{Z} \mid a = 2q + 0, \ q \in \mathbb{Z} \}$$

$$Pares = \{ 2k \mid k \in \mathbb{Z} \}$$

$$(1.2)$$

Inpares

Por lo tanto puedo definir a un número entero inpar como aquellos números que podemos escribirlos gracias al algoritmo de la división como 2q+1 o de manera más común como 2k+1.

$$Pares = \{ a \in \mathbb{Z} \mid a = 2q + 1, q \in \mathbb{Z} \}$$

$$Pares = \{ 2k + 1 \mid k \in \mathbb{Z} \}$$

$$(1.3)$$

Y de esto sacamos algunas ideas bastante obvias:

Ideas Importantes

• Un número n es un cuadrado $n=m^2$ si y solo si al aplicarle el algoritmo de la división con b=4 implica que r=1 ó r=0.

Demostración:

Si es un número par m=2k, entonces $(2k)^2$ que es igual a $4k^2$ donde podemos decir que $n=4(k^2)+0.$

Si es inpar m=2k+1, entonces $(2k+1)^2$ que es igual a $4k^2+4k+1$ donde podemos decir que $n=4(k^2+k)+1$.

Capítulo 2

Combinatoria

2.1. Definición

Una relación R entre dos conjuntos A y B es ante todo otro conjunto, una relación binaria es aquella que es en el fondo un conjunto de pares ordenados (x,y) donde x es un elemento de A, y así mismo y es un elemento de B.

Este nuevo conjunto R nos muestra como es que esta relacionados algunos (o todos) elementos de A con otros elementos de B.

Definiciones Formales

Una Relación $R: A \to B$ es un subconjunto de $A \times B$.

Solemos escribir la proposición $(x,y) \in R$ como xRy para que se vea más bonito.

Solemos escribir la proposición $(x,y) \notin R$ como $x \not R y$ para que se vea más bonito.