Марковские свойства преобразования «Book Stack»

Бзикадзе А.В., студент кафедры статистического моделирования СПбГУ, seryrzu@gmail.com

Некруткин В.В., кандидат физико-математических наук, доцент кафедры статистического моделирования СПбГУ, vnekr@statmod.ru

Аннотация

В докладе изучаются вероятностные свойства преобразования «Book Stack», предложенного Б. Я. Рябко (Пробл. передачи. инф., т. 16, вып. 4, 1980) в качестве процедуры сжатия информации, в случае, когда «входная» последовательность процедуры представляет собой однородную цепь Маркова. Особое внимание уделяется ситуации, когда «входная» последовательность является последовательностью независимых одинаково распределенных случайных величин. Показано, что предложенный Б.Я. Рябко и А.И. Пестуновым (Пробл. передачи. инф., т. 40, вып. 1, 2004) тест для проверки гипотезы о том, что «входная» повторная выборка соответствует дискретному равномерному распределению с известным носителем, и основанный на том, что соответствующий критерий применяется в «выходной» последовательности процедуры, будет иметь, вообще говоря, меньшую мощность, чем тот же критерий, примененный ко «входной» последовательности.

Введение

В статье [1] предложено преобразование, названное Book Stack (в дальнейшем, BS-преобразование) и используемое в качестве простой и наглядной процедуры сжатия информации. В англоязычной литературе (например, [2]) более распространено название Move-to-Front.

Дадим формальное описание BS-преобразования. Пусть $\mathbb{S}=\{1,2,\ldots,S\}$ и \mathfrak{S}_S — множество всевозможных перестановок чисел из \mathbb{S} . Для любого $x\in\mathbb{S}$ и любой перестановки $\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_S)^{\mathrm{T}}\in\mathfrak{S}_S$ обозначим $i_0=i_0(\alpha,x)$ такой индекс, что $\alpha_{i_0}=x$. Тогда

$$f(\alpha,x)[i] \stackrel{\mathrm{def}}{=} \begin{cases} x & \text{при } i=1,\\ \alpha_i & \text{при } i>i_0,\\ \alpha_{i-1} & \text{при } 1< i\leqslant i_0. \end{cases}$$

Тем самым мы получили отображение

$$f = (f(\alpha, x)[1], \dots, f(\alpha, x)[S])^{\mathrm{T}} : \mathfrak{S}_S \times \mathbb{S} \mapsto \mathfrak{S}_S,$$

которое и называется BS-преобразованием. Рассмотрим последовательность случайных величин $\{\eta_i\}_{i\geqslant 1}$, предполагая, что $\eta_i\in\mathbb{S}$ при любом i.

Введем последовательность векторов $\{\Xi_n\in\mathfrak{S}_S\}_{n\geqslant 0}$ так, что для

$$\Xi_i = (\Xi_i[1], \Xi_i[2], \dots, \Xi_i[S])^{\mathrm{T}} = f(\Xi_{i-1}, \eta_i),$$
 (1)

при $i\geqslant 1$, а Ξ_0 — вообще говоря, случайный вектор, принимающий значения во множестве перестановок \mathfrak{S}_S . Предполагается, что этот случайный вектор Ξ_0 не зависит от $\{\eta_i\}_{i\geqslant 1}$.

Наконец, определим последовательность $\{\xi_i\}_{i\geqslant 1}$, где $\xi_i\in\mathbb{S}$ задается как решение уравнения $\eta_i=\Xi_{i-1}[\xi_i]$. Заметим, что для любого $i\geqslant 1$ это решение существует и единственно, так как Ξ_{i-1} является некоторой перестановкой чисел $1,2,\ldots,S$, а $\eta_i\in\mathbb{S}$.

Результаты, анонсируемые в докладе, можно разделить на 3 части. В первой части (Предложение 1) показано, что в случае, если случайные величины $\{\eta_i\}_{i\geqslant 1}$ образуют однородную марковскую цепь (далее — ОМЦ), последовательность случайных величин $\{\Xi_i\}_{i\geqslant 1}$ также образует ОМЦ. При этом из эргодичности ОМЦ $\{\eta_i\}_{i\geqslant 1}$ следует, что у $\{\Xi_i\}_{i\geqslant 1}$ есть ровно один непериодический эргодический класс и, быть может, несколько несущественных состояний.

Далее подробно изучается частный случай, когда $\{\eta_i\}_{i\geqslant 1}$ независимы и одинаково распределены. Тогда (Теорема 1) оказывается, что, последовательность ξ_i сходится к некоторому предельному распределению, а для частот последовательности ξ_i выполняется вариант закона больших чисел.

Наконец, этот последний результат используется для исследования статистического Book Stack-критерия (и его вариантов), предложенного в [3]. Нетрудно показать, что случайные величины $\{\xi_i\}_{i\geqslant 1}$ являются независимыми и равномерно распределенными на множестве $\mathbb S$ (последнее будет обозначаться как $\xi_i\in \mathbb U_S$) тогда и только тогда, когда последовательность $\{\eta_i\}_{i\geqslant 1}$ обладает таким же свойством.

В статье [3] предложен статистический критерий для проверки гипотезы H_0 о том, что повторная независимая выборка η_i взята из распределения U_S . Общую идею статистических тестов, основанных на BS-преобразовании, можно описать так: эта гипотеза проверяется с помощью случайных величин ξ_i , а не исходных η_i .

Для проверки гипотезы H_0 существует много статистических критериев (см., например, [4]), среди которых наиболее популярными являются критерий χ^2 и критерий отношения правдоподобия. В настоящей работе показано,

что в условиях альтернативы $\mathcal{P} \stackrel{\mathrm{def}}{=} \mathcal{L}(\eta_i) \neq \mathrm{U}_S$ (здесь и далее $\mathcal{L}(\delta)$ обозначает распределение случайной величины δ) критерии отношения правдоподобия и χ^2 , примененные к последовательности $\{\xi_i\}_{i\geqslant 1}$, будут при больших объемах выборки (и при некоторых дополнительных условиях) менее мощными, чем такие же критерии, примененные к исходной последовательности $\{\eta_i\}_{i\geqslant 1}$. Аналогичный факт оказывается верным и для нескольких других критериев.

Доказательство этих утверждения основано на результате Теоремы 2, показывающем, что предельное распределение последовательности ξ_i оказывается «ближе» к равномерному U_S , чем $\mathcal{P} \neq U_S$.

Введем дополнительное обозначение. А именно, для любого $\alpha \in \mathfrak{S}_S$ определим

$$C_{\alpha}^{\mathfrak{S}_S} = \{\beta \mid \text{ существует } k : f(\beta, k) = \alpha\} \subset \mathfrak{S}_S.$$
 (2)

Результаты

Марковское свойство последовательности Ξ_i

В этом разделе предполагается, что выполнены следующие условия:

- а) последовательность $\{\eta_n\}_{n\geqslant 1}$ является ОМЦ с фазовым пространством $\mathbb S$, переходной матрицей $\mathbf P^{(\eta)}=(p_{ij})$ и начальным распределением $(p_1^{(1)},p_2^{(1)},\ldots,p_S^{(1)}),$
- b) марковская цепь $\{\eta_n\}_{n\geqslant 1}$ и случайный вектор $\Xi_0\in\mathfrak{S}_S$, имеющий распределение $(\pi_\beta^{(0)},\beta\in\mathfrak{S}_S)$, независимы.

Предложение 1 1. Последовательность (1) образует ОМЦ с фазовым пространством \mathfrak{S}_S , начальным распределением

$$P(\Xi_1 = \alpha) = p_{\alpha[1]}^{(1)} \sum_{\beta \in C_{\alpha}^{\mathfrak{S}_S}} \pi_{\beta}^{(0)}, \quad \alpha \in \mathfrak{S}_S,$$

и матрицей переходных вероятностей $\mathbf{P}^{(\Xi)} = \left(p_{lphaeta}^{(\Xi)}
ight)$

$$p_{\alpha\beta}^{(\Xi)} = \begin{cases} p_{\alpha[1]\beta[1]} & \textit{npu } \alpha \in \mathcal{C}_{\beta}^{\mathfrak{S}_S}, \\ 0 & \textit{unave}, \end{cases}$$

где $\alpha,\beta\in\mathfrak{S}_S$, а множество $\mathcal{C}_{\alpha}^{\mathfrak{S}_S}$ введено в (2).

2. Если дополнительно потребовать, чтобы входная ОМЦ $\{\eta_i\}_{i=1}^\infty$ была эргодической, то марковская цепь $\{\Xi_n\}_{n\geqslant 1}$ будет иметь ровно один непериодический эргодический класс и, быть может, несколько несущественных состояний. Если же $p_{ij}>0$ при всех i,j, то несущественных состояний нет.

Замечание 1 В условиях второго пункта Предложения 1 у марковской цепи $\{\Xi_n\}_{n\geqslant 1}$ имеется стационарное распределение $\Pi_S=(\pi_\alpha,\ \alpha\in\mathfrak{S}_S)$, причем $\pi_\alpha=0$, если α — несущественное состояние.

Предельное поведение последовательности ξ_i

Везде в дальнейшем будем предполагать, что случайные величины $\{\eta_n\}_{n\geqslant 1}$ независимы и одинаково распределены на множестве $\mathbb S$ с распределением $\mathcal P=(p_1,\ldots,p_S)$, причем $p_k>0$ для всех $k\in\mathbb S$.

делением $\mathcal{P}=(p_1,\dots,p_S)$, причем $p_k>0$ для всех $k\in\mathbb{S}$. Обозначим $\tau_k=\tau_k(n)=\sum_{j=1}^n\mathbb{I}_k(\xi_j)$, где \mathbb{I}_A — индикатор множества A и $1\leqslant k\leqslant S$. Кроме того, положим

$$s_j = \sum_{k=1}^{S} p_k \sum_{\substack{\alpha \in \mathfrak{S}_S \\ \alpha_j = k}} \pi_{\alpha}. \tag{3}$$

Ясно, что $s_k>0$ и $\sum_k s_k=1$. Для распределения с вероятностями (3) далее будет использоваться обозначение \mathcal{R} .

Теорема 1 Для любого начального распределения $\mathcal{L}(\Xi_0)$

$$P(\xi_n = k) \xrightarrow[n \to +\infty]{} s_k$$

и

$$\tau_k/n \xrightarrow[n \to +\infty]{P} s_k, \tag{4}$$

где s_k — вероятности, определенные в (3).

Эффект выравнивания вероятностей

Оказывается, что в случае, когда распределение $\mathcal{P} = \mathcal{L}(\eta_i)$ отличается от равномерного U_S , предельное распределение \mathcal{R} последовательности $\{\xi_i\}_{i\geqslant 1}$ оказывается «ближе» к равномерному, чем у исходных η_i . В качестве меры

близости распределения $\mathcal{Q}=(q_1,\ldots,q_S)$ к равномерному распределению U_S рассматриваются следующие характеристики:

а) двоичная энтропия

$$\mathcal{H}_2(\mathcal{Q}) = -\sum_{i=1}^n q_i \log_2 q_i$$

(чем она больше, тем «ближе» распределение Q к равномерному),

b) $\rho_1(Q,\mathrm{U}_S)\stackrel{\mathrm{def}}{=}\sum_{k=1}^S|q_k-1/S|$, что представляет собой удвоенное расстояние по вариации между Q и $\mathrm{U}_S,$ ____

c)
$$\rho_2(Q, \mathbf{U}_S) \stackrel{\text{def}}{=} \sqrt{\sum_{k=1}^S (q_k - 1/S)^2}$$
 и

d)
$$\rho_{\infty}(Q, U_S) \stackrel{\text{def}}{=} \max_k |q_k - 1/S|$$
.

Теорема 2 Имеют место неравенства l) $\rho_{\infty}(\mathcal{R}, U_S) < \rho_{\infty}(\mathcal{P}, U_S)$, $\rho_{q}(\mathcal{R}, U_S) \leqslant \rho_{q}(\mathcal{P}, U_S)$ при $q \in \{1, 2\}$ и 3) $\mathcal{H}_{2}(\mathcal{R}) > \mathcal{H}_{2}(\mathcal{P})$.

Статистические приложения

Рассмотрим теперь применение полученных результатов к проверке гипотезы H_0 . Для этой цели применим критерий отношения правдоподобия. Зададим при $k\in\mathbb{S}$ величину $\tau_k^{(\xi)}=\sum_{j=1}^n\mathbb{I}_k(\xi_j)$, аналогичным образом положим $\tau_k^{(\eta)}=\sum_{j=1}^n\mathbb{I}_k(\eta_j)$, и рассмотрим статистики

$$G_n^2(\eta) = 2 \sum_{k=1}^S \tau_k^{(\eta)} \ln \left(S \tau_k^{(\eta)} / n \right) \quad \text{if} \quad G_n^2(\xi) = 2 \sum_{k=1}^S \tau_k^{(\xi)} \ln \left(S \tau_k^{(\xi)} / n \right).$$

Хорошо известно, что при выполнении нулевой гипотезы обе статистики асимптотически имеют распределение χ^2 с S-1-й степенью свободы. На этом факте и основан критерий отношения правдоподобия, отвергающий гипотезу H_0 при больших значениях $G_n^2(\eta)$ или $G_n^2(\xi)$. В то же время нетрудно видеть, что

$$\widehat{\mathcal{H}}_n(\mathcal{P}) \stackrel{\text{def}}{=} -\sum_{k=1}^{S} \left(\tau_k^{(\eta)} / n \right) \log_2 \left(\tau_k^{(\eta)} / n \right) = \log_2 S - \frac{G_n^2(\eta)}{2n \ln 2} ,$$

и для выборочной энтропии $\widehat{\mathcal{H}}_n(\mathcal{R})$ выполняется аналогичное тождество. Это означает, что гипотеза H_0 отвергается при слишком маленьких значениях выборочной энтропии.

Поскольку (см. Теорему 2) предельные значения выборочных энтропий $\widehat{\mathcal{H}}_n(\mathcal{P})$ и $\widehat{\mathcal{H}}_n(\mathcal{R})$ удовлетворяют неравенству $\mathcal{H}_2(\mathcal{R}) > \mathcal{H}_2(\mathcal{P})$, то отсюда (и из сходимости (4)) сразу же следует, что при альтернативе $\mathcal{P} \neq \mathrm{U}_S$ критерий отношения правдоподобия, примененный к ξ_i , будет при больших n иметь меньшую мощность, чем такой же критерий, примененный к η_i .

Аналогичные рассуждения можно применить к критерию, основанному на метрике ρ_{∞} .

С некоторыми оговорками такой же вывод можно сделать относительно критерия χ^2 . В этом случае вместо статистик $G_n^2(\eta)$ и $G_n^2(\xi)$ мы имеем дело с

$$\chi_n^2(\eta) = \sum_{k=1}^S \frac{\left(\tau_k^{(\eta)} - n/S\right)^2}{n/S} \quad \text{и} \quad \chi_n^2(\xi) = \sum_{k=1}^S \frac{\left(\tau_k^{(\xi)} - n/S\right)^2}{n/S} \; ,$$

причем нулевая гипотеза отвергается, если статистика χ^2_n оказывается слишком большой. Заметим, что

$$\chi_n^2(\eta)/(Sn) = \sum_{k=1}^S \left(\tau_k^{(\eta)}/n - 1/S\right)^2 \stackrel{\mathrm{P}}{\to} \rho_2(\mathcal{P}, U_S),$$

для статистики $\chi_n^2(\xi)/(Sn)$ имеет место аналогичная сходимость к $\rho_2(\mathcal{R},\mathrm{U}_S)$, причем $\rho_2(\mathcal{P},\mathrm{U}_S)\geqslant \rho_2(\mathcal{R},\mathrm{U}_S)$. Поэтому можно ожидать, что при больших n с вероятностью, близкой к 1, значение статистики $\chi_n^2(\eta)$ будет больше, чем значение статистики $\chi_n^2(\xi)$ — по крайней мере для тех распределений \mathcal{P} , для которых $\rho_2(\mathcal{P},\mathrm{U}_S)>\rho_2(\mathcal{R},\mathrm{U}_S)$.

Подобные рассуждения годятся и для критерия, основанного на метрике ρ_1 .

Литература

- [1] Рябко Б.Я., Сжатие данных с помощью стопки книг // Проблемы передачи информации, 1980, Т. XVI, Вып. 4, С. 16–20.
- [2] A locally adaptive data compression scheme / Jon Louis Bentley, Daniel D. Sleator, Robert E. Tarjan, Victor K. Wei // Commun. ACM., 1986., Vol. 29, no. 4.
- [3] Рябко Б.Я., Пестунов А.И., "Стопка книг" как новый статистический тест для случайных чисел, // Пробл. передачи информ., 2004, Т. 40,

Вып. 1, С. 73-78.

[4] Read T., Cressie N., Goodness-of-Fit Statistics for Discrete Multivariate Data, Springer-Verlag, New York, 1988.