CS 228 : Logic in Computer Science

S. Krishna

Let $\varphi = \forall x (x \neq x)$. Lets consider only words as possible structures for satisfying φ .

- 1. φ is unsatisfiable
- 2. $\epsilon \in L(\varphi)$
- 3. $L(\varphi) = \{\epsilon\}$
- **4**. $\{\epsilon\} \subset L(\varphi)$
- 5. $L(\neg \varphi) = \Sigma^*$
- 6. $\Sigma^+ \subseteq L(\neg \varphi)$
- 7. $\neg \varphi$ is the formula $\exists x (x \neq x)$
- 8. $\neg \varphi$ is the formula $\forall x (x \neq x)$
- 9. Flipping the \forall quantifier in φ to \exists results in the formula $\psi = \exists x (x \neq x)$ which is satisfied by words of length 1
- 10. Flipping the \forall quantifier in φ to \exists results in the formula $\psi = \exists x (x \neq x)$ which is unsatisfiable

Recap

- ▶ We focus on FO over words: the signature has <, S, Q_a , Q_b , Remember you always have = with you. Recall the terms structure, universe, and assignment.
- ▶ Formula φ is satisfiable iff $L(\varphi) \neq \emptyset$.
- ▶ Formula φ is valid iff $L(\varphi) = \Sigma^*$.
- Question : How to check satisfiability of FO over words?

Idea for SAT checking

Given FO formula φ over an alphabet Σ, construct an edge labeled graph Gφ: a graph whose edges are labeled by Σ.

- Each path in the graph gives rise to a word over Σ , obtained by reading off the labels on the edges
- G_{φ} has some special kinds of vertices
 - ► There is a unique vertex called the start vertex (blue vertex)
 - There are some vertices called good vertices (magenta vertex)
- ▶ Read off words on paths from the start vertex to any final vertex and call this set of words $L(G_{\varphi})$
- ▶ Ensure that G_{φ} is constructed such that $L(\varphi) = L(G_{\varphi})$.

Idea for SAT checking

- Why does this help?
- We know how to check the existence of a path between 2 vertices in a graph easily (how?)
- If somehow we manage to construct G_{φ} correctly, then checking satisfiability of φ is same as checking the reachability of some good vertex from the start vertex of G_{φ} .
- ▶ How to construct G_{ω} ?

A First Labeled Graph A

- Let us call the vertices of the graph states
- ▶ A path from one state to another gives a word over $\Sigma = \{a, b\}$
- The graph accepts words along paths from an initial state to a good state
- ► The set of words accepted by the graph is called the language of the graph

A First Labeled Graph A

- ▶ What is the language L accepted by this graph, L(A)?
- Write an FO formula φ such that $L(\varphi) = L(A)$

A Second and a Third Graph B, C

- ▶ What are L(B), L(C)?
- ▶ Give an FO formula φ such that $L(\varphi) = L(B) \cup L(C)$

$$\neg \exists x (x = x) \lor \exists x (Q_a(x) \land first(x)) \land \exists y (Q_b(y) \land last(y)) \land \\ \forall x \forall y [(S(x,y) \land Q_a(x) \rightarrow Q_b(y)) \land (S(x,y) \land Q_b(x) \rightarrow Q_a(y))]$$

 \vee

$$\forall x(Q_a(x))$$

These graphs are called......

A deterministic finite state automaton (DFA) $A = (Q, \Sigma, \delta, q_0, F)$

- Q is a finite set of states
- Σ is a finite alphabet
- ▶ $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- ▶ $q_0 \in Q$ is the initial state
- ▶ $F \subset Q$ is the set of final states
- ▶ L(A)=all words leading from q_0 to some $f \in F$

Languages, Machines and Logic

A language $L \subseteq \Sigma^*$ is called regular iff there exists some DFA A such that L = L(A).

A language $L \subseteq \Sigma^*$ is called FO-definable iff there exists an FO formula φ such that $L = L(\varphi)$.

Is it Regular? Is it FO-definable?

 $\Sigma = \{a, b\}$. Consider the following languages $L \subseteq \Sigma^*$:

► Even length words

