4. 識別 一統計的手法一

• カテゴリ特徴

•数值特徵

• 3章 (決定木):正解を表現する概念を得る

説明性

4章(統計):結果の確率を得る

意思決定

・最大事後確率則による識別

$$C_{MAP} = rg \max_{i} P(\omega_{i} | \boldsymbol{x})$$
 \boldsymbol{x} :特徴ベクトル ω_{i} $(1 \leq i \leq c)$: クラス

- データから直接的にこの確率を求めるのは難しい
- ベイズの定理 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

$$C_{MAP} = \arg \max_{i} P(\omega_{i}|\boldsymbol{x})$$

$$= \arg \max_{i} \frac{P(\boldsymbol{x}|\omega_{i})P(\omega_{i})}{P(\boldsymbol{x})}$$

$$= \arg \max_{i} P(\boldsymbol{x}|\omega_{i})P(\omega_{i})$$

- ベイズ統計とは
 - 結果から原因を求める
 - ベイズ識別
 - 観測結果 x から、それが生じた原因 ω_i を求める
 - 通常、確率が与えられるのは原因→結果(尤度)
 - ベイズ識別では、事前分布 $P(\omega_i)$ が、観測によって事後分布 $P(\omega_i | \mathbf{x})$ に変化したと考えることができる

- 例題 4.1 観測からの原因の計算
 - 1.白玉が出る確率は
 - 2.白玉が出たときの箱 A の確率は
 - 3.事前確率が 9:1 のときの 2 の確率は

- 事前確率 $P(\omega_i)$
 - 特徴ベクトルを観測する前の、各クラスの起こりや すさ
- 事前確率の最尤推定

$$P(\omega_i) = \frac{n_i}{N}$$

N: 全データ数、 n_i : クラス ω_i のデータ数

- 尤度 $P(x|\omega_i)$
 - 特定のクラスから、ある特徴ベクトルが出現する尤もらしさ
- は次元ベクトルの場合の最尤推定
 - 値の組合せが データ中に出 現しないもの 多数

Weka の weather.nominal データ 3×3×2×2=36 種類の組合せ

4.2.2 ナイーブベイス識別

- ナイーブベイズの近似
 - 全ての特徴が独立であると仮定

$$P(\boldsymbol{x}|\omega_i) = P(x_1, \dots, x_d | \omega_i)$$

$$\approx \prod_{j=1}^d P(x_j | \omega_i)$$

$$C_{NB} = \arg \max_i P(\omega_i) \prod_{j=1}^d P(x_j | \omega_i)$$

4.2.2 ナイーブベイス識別

• 尤度の最尤推定

$$P(x_j|\omega_i) = \frac{n_{ij}}{n_i}$$

 n_{ij} : クラス ω_i のデータのうち、j 次元目の値が x_j の個数

ゼロ頻度問題

• 確率の m 推定

$$P(x_j|\omega_i) = \frac{n_{ij} + mp}{n_i + m}$$

p: 事前に見積もった各特徴値の割合

m: 事前に用意する標本数

ラプラス推定

- m: 特徴値の種類数、 p: 等確率 とすると、 mp=1

4.2.2 ナイーブベイス識別

• ラプラス推定

weather.nominal

No.	outlook	temperature	humidity	windy	play
1	sunny	hot	high	FALSE	no
2	sunny	hot	high	TRUE	no
3	overcast	hot	high	FALSE	yes
4	rainy	mild	high	FALSE	yes
5	rainy	cool	normal	FALSE	yes
6	rainy	cool	normal	TRUE	no
7	overcast	cool	normal	TRUE	yes
8	sunny	mild	high	FALSE	no
9	sunny	cool	normal	FALSE	yes
10	rainy	mild	normal	FALSE	yes
11	sunny	mild	normal	TRUE	yes
12	overcast	mild	high	TRUE	yes
13	overcast	hot	normal	FALSE	yes
14	rainy	mild	high	TRUE	no

Weka NaiveBayes の学習結果

outlook	yes	no
sunny	(3.0)	4.0
overcast	5.0	1.0
rainy	4.0	3.0
[total]	12.0	8.0

4.3 ベイジアンネットワーク

- ベイジアンネットワークの仮定
 - 変数の部分集合が、ある分類値のもとで独立である

数の部分集合が、ある分類値のもとで独立である
$$P(x_1,\ldots,x_d) pprox \prod_{i=1}^d P(x_i|Parents(X_i))$$
 $(Cloudy)$ $P(C)=0.5$ $(Dudy)$ $(D$

まとめ

- ・ Weka デモ
 - weather nominal (カテゴリ特徴)
 - NaiveBayes, BayesNet
- 統計的識別手法
 - 事後確率最大となるクラス
 - →事前確率と尤度の積が最大となるクラス
 - 単純ベイズ法:多次元特徴の同時確率計算を、各次 元で得られた尤度の積で近似したもの