TEORÍA DE SINGULARIDADES Y DEL RESIDUO.

1.1 SINGULARIDAD.-

Un punto z_0 es un punto singular o una singularidad deu na función F, si F es analítica en algún punto de toda variedad de z_0 , excepto en z_0 mismo. Existen Varios tipos de Singularidades.

- 1º **SINGULARIDAD AISLADA.** El punto $z = z_0$ si $\exists \delta > 0$, tal que el círculo \parallel $z-z_0 \parallel = \delta$ no encierra puntos singulares distintos de z_0 (es decir $\exists V_{\delta}(z_0)$ sin singularidad).
 - Si tal $\delta \mathbb{Z}$, decimos que z_0 es una singularidad no aislada.
 - Si z_0 no es un punto singular y si $\exists \delta > 0 / \|z z_0\| = \delta$ no encierra puntos singulares, decimos que z_0 es un punto ordinario de F(z).
- 2º **POLOS.** Si podemos encontrar un entero positivo n tal que $\lim_{z \to z_0} (z z_0)^n$ $F(z) = A \neq 0$, entonces $z = z_0$ es llamado polo de orden n, si n = 1. z_0 es

 - llamado un polo simple. **Ejemplo.-** $f(z) = \frac{1}{(z-2)^3}$, se tiene un polo de orden tres en z=2. **Ejemplo.-** $f(z) = \frac{3z-2}{(z-1)^2(z+1)(z-4)}$; tiene un polo de orden dos en z=1 y polos simples en z=-1 y z=4