clustering unsupervised learning

DTL SU @ AU

kristoffer | nielbo
kln@cas.au.dk
github.com/kln-courses/tmgu17
tmgu17.slack.com

DAI|IMC|AARHUS UNIVERSITY

Implicit assumption that we study differences in variables (e.g., terms) between homogeneous objects (e.g., documents)

Systematic differences between objects result in non-random subsets that are often ignored

Cluster analysis: partitions data into homogeneous subsets using inter-object similarity/distance measures

Minimize distance between the centroid and points within each cluster Maximize distance centroids and points between clusters

	t_1	t_2	 t_k			d_1	d_2	 d _n
d_1	f_{d_1, t_1}				d_1	0		
d_2		f_{d_2, t_2}		\rightarrow	d_2		0	
d_n			f_{d_n,t_n}		d_n			0

$$C = \{d_{1,C_{1}}, d_{2,C_{2}}, ..., d_{n,C_{k}}\}$$
 where $k \leq n$

Convert our matrix of n documents measured on k terms to a matrix of inter-document similarity and then apply a clustering method to the similarity/distance matrix

Either because we want conceptually meaningful groups of documents (or terms) that share common characteristics *or* because we want useful groups that abstract from the individual documents (summarization or compression)

Clustering for understanding or utility

k-means clustering

Widely used clustering methods that partitions n documents (or terms) in k clusters

Clusters are non-overlapping, so a document belong exclusively to one cluster

- 1. select k points as initial centroids
- 2. repeat
- 3. form k clusters by assigning each point to its closest centroid
- 4. recompute the centroid of each cluster
- 5. **until** centroid do not change

k-means is a prototyped-based clustering method that finds a centroid (mean) of all the points in a cluster and minimizes the distance (within-cluster sum of squares) of each point to centroid

bibleNLP

Principle Component Analysis of the DTM is often used for visualization purpose

Agglomerative hierarchical clustering

Set of clustering methods that starts with each document as a single cluster and then repeatedly merge the two closest clusters until a single, all encompassing cluster remains (alternate methods use divisive clustering)

Hierarchical clustering produce nested clusters that are organized in a tree-like structure (visualized with a dendrogram)

1.	compute proximity matrix			
2.	repeat			
3.	merge the closest two clusters			
4.	update the proximity matrix to reflect the distance between			
	the new clusters and the original clusters			
5.	until only on cluster remains			

To compute the proximity between groups of data points a particular technique is chosen (e.g. MIN, MAX, group average)

Dualism in Ancient Chinese Litt.

With hierarchical clustering you cut or prune the tree at some level to define clusters.

