EN 2040

Random Signals and Processes

Simulation Assignment Report

H.K.R.L. GUNASEKARA 180205H

$$\sigma^2 = 1 \cdot \mu = 0$$

$$\sigma^2 = 4$$
 , $\mu = 0$

$$\sigma^2=0.5^2$$
 , $\mu=0$

When σ increases the deviation from the original signal value increases

Q4)

There can be erros in decoding, as shown below

Q5) ${\it Comparison \ between \ builtin \ function \ and \ written \ function \ (no \ of \ bins = 10)}$

The histograms have a distant appearance of Gaussian distribution.

Comparison between builtin function and written function (no of bins = 100)

Upon increasing the no of bins, histograms have obtained a close look of Gaussian distribution.

 $f_{R|S}(r|S=-A), A=1$

b)

0

-3

-4

-2

-1

0

2

3

$$f_{R|S}(r|S=-A), A=3$$

$$pdf \ of \ f_{R|S}(r|S=-A)$$

$$0.45$$

$$0.35$$

$$0.3$$

$$0.25$$

$$0.2$$

$$0.15$$

$$0.1$$

$$0.05$$

$$f_{R|S}(r|S=A), A=3$$
 pdf of $f_{R|S}(r|S=A)$

0.25 0.25 0.15 0.1 0.05 0 1 2 3 4 5 6 7

When A increases the pdfs deviates from its initial positions when A=1.

This is due to mean values of the pdfs is -A for $f_{R|S}(r|S=-A)$ and A for $f_{R|S}(r|S=A)$

0.45

0.4

0.35

c)

0

For the expected value,

$$E[X] = \sum_{i=1}^{N} x_i f_{x_i} \Delta x_i$$

Where,

$$f_{x_i} = frequency \ of \ each \ bin$$
 $x_i = mid \ value \ of \ bin$ $\Delta x_i = width \ of \ bin$

А	E [R S = A]	E [R S = -A]	E [R]
1	1.0025	-1.0017	0.003864
2	1.9976	-2.0006	-0.0012
3	3.0006	-3.0068	-0.0029

Q6)

b)

$$A = 1$$

$$f_{R|S}(r|S = -A)$$

$$f_{R|S}(r|S=A)$$

$$A = 3$$

$$f_{R|S}(r|S = -A)$$

$$f_{R|S}(r|S=A)$$

c)

А	E [R S = A]	E [R S = -A]	E [R]
1	0.9965	-0.9965	-0.000091
2	2.0001	-2.0088	-0.0044
3	2.999	-3.0159	-0.0081

When increasing A, the middle separation of $f_R(r)$ increases, but it is not quite dominant as without the interference (in Q5-d). This is due to interference another Gaussian random signal gets added to the Initial Signal which increased the variance of both $f_{R|S}(r|S=-A)$ and $f_{R|S}(r|S=-A)$.

Upon calculating error it is noticed that Error has increased from 0.7965 to 0.9756

Q7)

b)

$$\alpha = 0.5$$
, $A = 1$

$$\alpha = 2$$
, $A = 1$

$f_{R|S}(r|S=A)$

$$\alpha = 3$$
, $A = 1$

$$f_{R|S}(r|S = -A)$$

$$f_{R|S}(r|S=A)$$

c) A=1

α	E [R S = A]	E [R S = -A]	E [R]
0.5	0.5011	-0.5090	-0.0038
2	1.9994	-2.0056	-0.0031
3	2.9899	-2.9972	-0.0035

When increasing α , the middle separation of $f_R(r)$ increases. This is due to mean values of the pdfs is - α A for $f_{R|S}(r|S=-A)$ and α A for $f_{R|S}(r|S=A)$.

Upon calculating error it is noticed that Error has decreased from 0.7965 to 0.0738 when the α increased to 3. Therefore Scaling reduces the error.

APPENDIX

```
L =100000;
D = zeros(1,L);
positions = randperm(L,L/2);
D(positions) = ones(1,L/2);

figure;
stairs(1:L,D);
axis([0 50 -0.5 1.5])
title("Binary Sequence");

%sequence of pulses
A = 1
S = -A*ones(1,L);
S(D==1) = A;

figure;
```

```
stairs(1:L,S);
axis([0 50 -1*A-1 A+1])
title("Transmitted Signal");
% AWGN
mean = 0;
sigma = 1;
N = mean + sigma*randn(1,L);
R = S + N;
%Interference
meanI = 0;
sigmaI = 1;
I = meanI + sigmaI*randn(1,L);
%R = S + N + I;
%Scaling
alpha=3
R = alpha*S + N;
figure;
stairs(1:L,R);
%axis([0 L -1.5*A 1.5*A])
title("Received Signal");
%generating Y sequence
threshold = 0;
Y = -A*ones(1,L);
Y(R>threshold) =A;
figure;
subplot(2,1,1);
stairs([1:L],S);
axis([0 50 -1*A-1 A+1])
title("Transmitted Signal");
subplot(2,1,2);
stairs([1:L],Y);
axis([0 50 -1*A-1 A+1])
title("Y Signal");
%Error rate
Error = sqrt(sum((S-Y).^2)/L)
bin no=100;%No of bins
R \max = \max(R);
R \min = \min(R);
width = (R max-R min)/bin no;
bin limits = R min:width:R max;
%histogram calclation
bins centers = R min+width/2:width:R max-width/2;
frequency= zeros(1,bin no);
for i=1:bin_no
    for j = \overline{1}:L
        if (R(j) \le bin limits(i+1)) && (R(j) > bin limits(i))
             frequency(i) = frequency(i) + 1;
        end
    end
end
figure;
```

```
bar(bins_centers, frequency, 1);
title ("Histogram of R");
figure;
hist(R,bin no);
title("Histogram of R (Using hist())");
%fR|S(r|S=A)
r_ifsA = R(s==A); %s = A
R_max1 = max(r_ifSA);
R_min1 = min(r_ifSA);
widthSA = (R_max1-R_min1)/bin_no;
[y1,x1] = hist(r ifSA,bin no);
prob1 = y1/(length(r ifSA)*widthSA);
figure;
bar(x1,prob1);
hold on;
plot(x1,prob1,'r');
title("pdf of f \{R|S\} (r|S=A)");
%fR|S(r|S=-A)
r_ifs_A = R(s==-A); %s = -A
R_max1 = max(r_ifS_A);
R_min1 = min(r_ifS_A);
widthS_A = (R_max1-R_min1)/bin_no;
[y2,x2] = hist(r ifS A, bin no);
prob2 = y2/(length(r_ifS_A)*widthS_A);
figure;
bar(x2,prob2);
hold on;
plot(x2,prob2,'r');
title("pdf of f \{R|S\} (r|S=-A)");
%f R(r)
R \max = \max(R);
R min = min(R);
width= (R max-R min)/bin no;
[y,x] = h\overline{i}st(R,\overline{b}in\_no);
probR = y/(length(R)*width);
figure;
bar(x,probR);
hold on;
plot(x,probR,'r');
title("pdf of f_R(r)");
%E[R|S=A]
E R ifSA = 0;
for i1 = 1:bin no
    E_R_{ifSA} = E_R_{ifSA} + x1(i1) *prob1(i1) *widthSA;
end
E R ifSA
%E[R|S=-A]
E R ifS A = 0;
for i2 = 1:bin no
    E R ifS A = E R ifS A + x2(i2)*prob2(i2)*widthS A;
end
E R ifS A
%E[R]
ER = 0;
\overline{\text{for}} i3 = 1:bin no
E_R = E_R + (x(i3) * probR(i3) * width);
end
E_R
```