D)
$$L(x) = (2-x_1)^2 + 3(4x_2-x_1^2)^2$$
 $V^2(x) = (2-48x_2+36x_1^2-48x_1)$ $V^2(x) = (2-48x_2+36x_1^2-48x_1)$ $V^2(x) = (2-48x_2+36x_1^2-48x_1)$ $V^2(x) = (2-48x_1+36x_1^2-48x_1)$ $V^2(x) = (2-48x_1+36x_1^2-48x_1)$ $V^2(x) = (2-48x_1+36x_1^2-48x_1)$ $V^2(x) = (2-48x_1+36x_1^2-48x_1)$ $V^2(x) = (2-2x_1^2-4x_1$

d)
$$L(x) = 3x^{4} - 28x^{3} + 84x^{2} - 96x^{2} + 64 + 27x^{2}$$
 $VL(x) = \begin{cases} 12x^{3} - 84x^{2} + 168x_{1} - 96 \end{cases}$, when $VL(x) = 0$, $x = 1$ or 2 or 4
 $54x_{2}$
 $VL(x) = \begin{cases} 36x^{2} - 168x_{1} + 168 & 0 \\ 54x_{2} & 0 \end{cases}$

of $(1,0) = \sqrt[3]{2}(x) = \begin{cases} 26 & 0 \\ 0 & 54 \end{cases}$ is p.d., so $(1,0)$ is a strict local minima.

at $(2,0) = \sqrt[3]{2}(x) = \begin{cases} -24 & 0 \\ 0 & 54 \end{cases}$, has both regative and positive eigenvalue $(2,0) = \sqrt[3]{2}(x) = \begin{cases} -24 & 0 \\ 0 & 54 \end{cases}$, has both regative and positive eigenvalue $(2,0) = \sqrt[3]{2}(x) = \begin{cases} -24 & 0 \\ 0 & 54 \end{cases}$, so $(4,0) = 0 = 0$ so $(4,0) = 0 = 0$.

L(1,0) = $\sqrt[3]{2}(x) = \begin{cases} -24 & 0 \\ 0 & 54 \end{cases}$, so $\sqrt[3]{2}(x) = (2,0) = 0 = 0$

L(1,0) = $\sqrt[3]{2}(x) = (2,0) = 0 = 0$, $\sqrt[3]{2}(x) = (2,0) = 0$
 $\sqrt[3]{2}(x) = (2,0) = 0$, $\sqrt[3]{2}(x) = (2,0) = 0$
 $\sqrt[3]{2}(x) = (2,0) = 0$, $\sqrt[3]{2}(x) = (2,0) = 0$
 $\sqrt[3]{2}(x) = (2,0) =$

