BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE -PILANI, K K BIRLA GOA CAMPUS

Second Semester 2024–2025

Course Handout

Date: 07.01.2025

Course No.: PHY F243

Course Title: Mathematical Methods of Physics

Instructor: Chandradew Sharma

Course Description:

This course will cover some of the mathematical techniques that are routinely used to understand most of the topics in undergraduate physics. It is essential that the students practice problems relevant to the topics covered in the class. It is assumed that students are familiar with the concepts covered in mathematics courses and the previous physics courses.

Text Books:

T1. Mathematical Methods for Physicists, Arfken, and Weber, Elsevier

Reference Books:

- R1. Mathematical Physics: A Modern Introduction to Its Foundations by Sadri Hassani
- R2. Methods of Mathematical Physics: Courant and Hilbert
- **R3.** Mathematical Methods in the Physical Sciences. Mary L Boas.

Evaluation Scheme:

Sr. No.	Evaluation Component	Duration Weightage Date & time (%)	Nature
1	Midsem	(30%) 3/3/25 (Mon, 9:30-11:00 am)	Closed Book
2	Comprehensive Exam	(40%) 1/5/25 (FN)	Closed Book
3	4 Quizzes (best 3 out of 4)	(21%) (29/1/25,28/2/25, 19/3/25, 21/4/25)	Open Book
4	Presentation	(3%) (23/4/25, 25/4/25 and 28/4/25)	Open Book
5	Attendance (lecture + tutorial)	(6%) 1-20 0%	

	20-29 30-39	1% 3%	
	40 or more	6%	

General Information: References for the specific topics will be announced in class.

Course Plan: (C306, Lecture: M, W, F 12-12:50 pm (5), Tutorial M 8-8:50 am (1))

No. of	Topics	References
Lectures		
+		
Tutorials		
1-6	Vector Space: Vector Spaces, Linearly Independence,	T1 Chap 5
	Orthogonalization, Linear Operators, Eigenvalues, Eigenvectors,	
	Linear Transformations, Diagonalization,	
7-13	Complex Analysis: Argand Plane, Branch Points, Cauchy-Riemann	T1 Chap 11
	Theorem, Integral Theorem, Laurent Expansion, Singularities,	
	Residue Theorem, Conformal Mapping, Methods of Steepest	
	Descent, etc	
14-19	Ordinary Differential Equation (ODE): Singular Points, Series	T1 Chap 7
	Solution (Frobenius's method), Linear Independence of Solutions,	& 8
	Sturm-Liouville Theory, Nonlinear differential Equation, IVP, BVP	
20-25	Special Functions: Bessel Functions, Legendre Functions,	T1 Chap
	Spherical Harmonics, Hermite Functions, Laguerre Functions	11, 12, 13
26-32	Integral Transform: Laplace Transform, Fourier Transform	T1 Chap
		14, 15
33-42	Green Functions: Nonhomogenous Equations, Eigenfunction	T1 Chap 8,
	Expansion, Integral Equation, IVP, BVP	9, 16
43-56	Partial Differential Equation (PDE): Classification, Separation of	Lecture
	Variables, Spectral Methods, Pseudo Spectral Methods, Converting	Notes
	PDE into system of coupled ODE, Laplace Equation, Poisson	
	Equation, Wave Equation, Heat Equation, IVP, BVP	

Quiz/Assignment Information: Instructions for the quizzes will be announced in class.

Consultation Hours: TBA

Notices: Quanta.

Make-up Policy: Consideration of make-up will be made as and when necessary

Chandradew Sharma **Instructor-in-charge**