Getting a Quick Fix on Comonads

A quest to extract computation and not duplicate work

Kenneth Foner kenny.foner@gmail.com

Brandeis University

September 17, 2014

Dan Piponi, November 2006 (blog.sigfpe.com):

"From Löb's Theorem to Spreadsheet Evaluation"

```
loeb :: Functor f \Rightarrow f (f a \rightarrow a) \rightarrow f a loeb fs = xs where xs = fmap (\$ xs) fs
```

```
Dan Piponi, November 2006 (blog.sigfpe.com):
```

"From Löb's Theorem to Spreadsheet Evaluation"

```
loeb :: Functor f \Rightarrow f (f a \rightarrow a) \rightarrow f a loeb fs = xs where xs = fmap (\$ xs) fs
```

Example:

```
> loeb [length, (!! 0), x \rightarrow x !! 0 + x !! 1]
```

```
Dan Piponi, November 2006 (blog.sigfpe.com):
```

"From Löb's Theorem to Spreadsheet Evaluation"

```
loeb :: Functor f \Rightarrow f (f a \Rightarrow a) \Rightarrow f a loeb fs = xs where xs = fmap (\$ xs) fs
```

Example:

```
> loeb [length, (!! 0), x \rightarrow x !! 0 + x !! 1 [3,3,6]
```

```
Dan Piponi, November 2006 (blog.sigfpe.com):
```

"From Löb's Theorem to Spreadsheet Evaluation"

```
loeb :: Functor f \Rightarrow f (f a \rightarrow a) \rightarrow f a loeb fs = xs where xs = fmap (\$ xs) fs
```

Example:

> loeb [length, sum]

```
Dan Piponi, November 2006 (blog.sigfpe.com):

"From Löb's Theorem to Spreadsheet Evaluation"

loeb :: Functor f => f (f a -> a) -> f a
loeb fs = xs where xs = fmap ($ xs) fs

Example:

> loeb [length, sum]
____
```

Dan Piponi, December 2006 (blog.sigfpe.com):

"Evaluating Cellular Automata is Comonadic"

I want to work on 'universes' that extend to infinity in both directions. And I want this universe to be constructed lazily on demand.

We can think of a universe with the cursor pointing at a particular element as being an element with a neighbourhood on each side.

An unexpected journey

```
loeb :: Functor f \Rightarrow f (f a \rightarrow a) \rightarrow f a loeb fs = xs where xs = fmap (\$ xs) fs
```

- ▶ loeb: each element refers to absolute positions in a structure
- ▶ comonads: computations in context of *relative position* in a structure

These are almost the same thing!

(Co)monads: a brief summary

Monads:

Most Haskellers define monads via return and (>>=). Today, we'll use return and join. Note: x >>= f == join (fmap f x).

(Co)monads: a brief summary

Monads:

Most Haskellers define monads via return and (>>=). Today, we'll use return and join. Note: x >>= f == join (fmap f x).

Comonads:

(from Edward Kmett's Control.Comonad)

```
data Stream a = Cons a (Stream a) -- no nil!
(from Wouter Swierstra's Data.Stream)
```

```
data Stream a = Cons a (Stream a) -- no nil!
(from Wouter Swierstra's Data.Stream)
head :: Stream a -> a
head (Cons x _) = x
tail :: Stream a -> Stream a
tail (Cons _ xs) = xs
iterate :: (a -> a) -> a -> Stream a
iterate f x = Cons x (iterate f (f x))
```

```
data Tape a = (Stream a) a (Stream a)
```

```
instance Comonad Tape where
  extract (Tape _ c _) = c
  duplicate = iterate moveL moveR
```

```
instance Comonad Tape where
  extract (Tape _ c _) = c
  duplicate = iterate moveL moveR
```

Duplicate is "diagonalization." Movement and duplication commute:

```
moveL . duplicate == duplicate . moveL
moveR . duplicate == duplicate . moveR
```

Back to Piponi's loeb

(Piponi, 2006)

Löb's theorem: $\Box(\Box P \to P) \to \Box P$ I'm going to take that as my theorem from which I'll derive a type. But what should \Box become in Haskell?

We'll defer that decision until later and assume as little as possible. Let's represent \Box by a type that is a Functor.

Back to Piponi's loeb

```
Löb's theorem: □(□P → P) → □P

I'm going to take that as my theorem from which I'll derive a type. But what should □ become in Haskell?

We'll defer that decision until later and assume as little as possible. Let's represent □ by a type that is a Functor.

(Piponi, 2006)

loeb :: Functor f => f (f a -> a) -> f a
```

Back to Piponi's loeb

```
Löb's theorem: \Box(\Box P \rightarrow P) \rightarrow \Box P
     I'm going to take that as my theorem from which I'll derive a
     type. But what should \square become in Haskell?
     We'll defer that decision until later and assume as little as
     possible. Let's represent \square by a type that is a Functor.
(Piponi, 2006)
loeb :: Functor f \Rightarrow f (f a \rightarrow a) \rightarrow f a
But □ could also have more structure...
```

```
loeb :: Functor f \Rightarrow f (f a \rightarrow a) \rightarrow f a loeb fs = xs where xs = fmap (\$ xs) fs
```

```
loeb :: Functor f \Rightarrow f (f a \rightarrow a) \rightarrow f a
loeb fs = xs where xs = fmap (\$ xs) fs
fix :: (a \rightarrow a) \rightarrow a
fix f = let x = f x in x
```

```
loeb :: Functor f \Rightarrow f (f a \rightarrow a) \rightarrow f a
loeb fs = xs where xs = fmap (\$ xs) fs
fix :: (a \rightarrow a) \rightarrow a
fix f = let x = f x in x
```

We can redefine Piponi's loeb in terms of fix:

```
loeb :: Functor f \Rightarrow f (f a \rightarrow a) \rightarrow f a loeb fs = fix $ \xs \rightarrow fmap ($ xs) fs
```

I'll use this one from now on.

```
loeb :: Functor f \Rightarrow f (f a \rightarrow a) \rightarrow f a loeb fs = fix $ \xs \rightarrow fmap ($xs) fs
```

We want to find:

```
???? :: Comonad w \Rightarrow w (w a \rightarrow a) \rightarrow w a
```

```
loeb :: Functor f => f (f a -> a) -> f a
loeb fs = fix $ \xs -> fmap ($ xs) fs

We want to find:
????? :: Comonad w => w (w a -> a) -> w a
cfix :: Comonad w => (w a -> a) -> w a
```

```
loeb :: Functor f => f (f a -> a) -> f a
loeb fs = fix $ \xs -> fmap ($ xs) fs

We want to find:

????? :: Comonad w => w (w a -> a) -> w a

cfix :: Comonad w => w (w a -> a) -> w a

wfix :: Comonad w => w (w a -> a) -> a
```

```
loeb :: Functor f => f (f a -> a) -> f a
loeb fs = fix $ \xs -> fmap ($ xs) fs

We want to find:

???? :: Comonad w => w (w a -> a) -> w a

cfix :: Comonad w => (w a -> a) -> w a

cfix f = fix (fmap f . duplicate)

wfix :: Comonad w => w (w a -> a) -> a

wfix w = extract w (fmap wfix (duplicate w))
```

Is this our fix?

```
possibility :: Comonad w => w (w a -> a) -> w a possibility = fmap wfix . duplicate
```

Is this our fix?

```
possibility :: Comonad w => w (w a -> a) -> w a possibility = fmap wfix . duplicate
```

It type-checks, so it has to be right! Right?

Let's try to count to 10000!

(This syntax gets more elegant later.)

\$ time ./possibility

```
$ time ./possibility
```

```
[0,1,2,3,4 ... some time later ... 9998, 9999, 10000]
39.49 real 38.87 user 0.38 sys
```

Sharing is caring (as well as polynomial complexity)

```
wfix :: Comonad w => w (w a -> a) -> a
wfix w = extract w (fmap wfix (duplicate w))
possibility :: Comonad w => w (w a -> a) -> w a
possibility = fmap wfix . duplicate
```

Sharing is caring (as well as polynomial complexity)

```
wfix :: Comonad w => w (w a -> a) -> a
wfix w = extract w (fmap wfix (duplicate w))
possibility :: Comonad w => w (w a -> a) -> w a
possibility = fmap wfix . duplicate
```

▶ No sharing: computation is shaped like a tree, not a DAG

```
wfix :: Comonad w => w (w a -> a) -> a
wfix w = extract w (fmap wfix (duplicate w))
possibility :: Comonad w => w (w a -> a) -> w a
possibility = fmap wfix . duplicate
```

- ▶ No sharing: computation is shaped like a tree, not a DAG
- ▶ Count all the way up from zero for each number, so $O(n^2)$

```
wfix :: Comonad w => w (w a -> a) -> a
wfix w = extract w (fmap wfix (duplicate w))

possibility :: Comonad w => w (w a -> a) -> w a
possibility = fmap wfix . duplicate
```

- ▶ No sharing: computation is shaped like a tree, not a DAG
- ▶ Count all the way up from zero for each number, so $O(n^2)$
- ▶ In a higher-dimensional space with > 1 reference per cell, would be exponential or worse.

```
wfix :: Comonad w => w (w a -> a) -> a
wfix w = extract w (fmap wfix (duplicate w))

possibility :: Comonad w => w (w a -> a) -> w a
possibility = fmap wfix . duplicate
```

- ▶ No sharing: computation is shaped like a tree, not a DAG
- ▶ Count all the way up from zero for each number, so $O(n^2)$
- ▶ In a higher-dimensional space with > 1 reference per cell, would be exponential or worse.

```
wfix :: Comonad w => w (w a -> a) -> a
wfix w = extract w (fmap wfix (duplicate w))

possibility :: Comonad w => w (w a -> a) -> w a
possibility = fmap wfix . duplicate
```

- ▶ No sharing: computation is shaped like a tree, not a DAG
- ▶ Count all the way up from zero for each number, so $O(n^2)$
- ▶ In a higher-dimensional space with > 1 reference per cell, would be exponential or worse.

That really succs.

```
wfix :: Comonad w => w (w a -> a) -> a
wfix w = extract w (fmap wfix (duplicate w))
```

The root of the problem: wfix can't be expressed in terms of fix.

```
wfix :: Comonad w => w (w a -> a) -> a
wfix w = extract w (fmap wfix (duplicate w))
The root of the problem: wfix can't be expressed in terms of fix.
notWhatI'mTalkingAbout :: Comonad w => w (w a -> a) -> a
notWhatI'mTalkingAbout =
  fix $ \wfix ->
  \w -> extract w (fmap wfix (duplicate w))
```

Holding on to the future

```
wfix :: Comonad w => w (w a -> a) -> a
wfix w = extract w (fmap wfix (duplicate w))
```

More specifically: wfix is inexpressible in terms of fix on its argument.

Why does this mean it's inefficient?

Holding on to the future

```
wfix :: Comonad w => w (w a -> a) -> a
wfix w = extract w (fmap wfix (duplicate w))
```

More specifically: wfix is inexpressible in terms of fix on its argument.

Why does this mean it's inefficient?

No single reference to the eventual future of the computation.

Holding on to the future

Epiphany: Any efficient "evaluation" function looks like:

```
evaluate :: Comonad w => w (w a -> a) -> w a evaluate fs = fix $ _
```

```
evaluate :: Comonad w => w (w a -> a) -> w a evaluate fs = fix \$ _
```

```
evaluate :: Comonad w => w (w a -> a) -> w a
evaluate fs = fix $ _

Found hole with type: w a -> w a
(Error messages have been cleaned for your viewing enjoyment.)
```

```
evaluate :: Comonad w \Rightarrow w (w a \rightarrow a) \rightarrow w a evaluate fs = fix s = 0. duplicate
```

```
evaluate :: Comonad w => w (w a -> a) -> w a evaluate fs = fix  _ . duplicate Found hole with type: w (w a) -> w a
```

```
evaluate :: Comonad w \Rightarrow w (w a \rightarrow a) \rightarrow w a evaluate fs = fix s = fs . duplicate
```

```
evaluate :: Comonad w => w (w a -> a) -> w a evaluate fs = fix  _ fs . duplicate Found hole with type: w (w a -> a) -> w (w a) -> w a
```

```
evaluate :: Comonad w \Rightarrow w (w a \rightarrow a) \rightarrow w a
evaluate fs = fix $ (fs <@>) . duplicate

(<@>) :: ComonadApply w \Rightarrow w (a \rightarrow b) \rightarrow w a \rightarrow w b
```

```
evaluate :: Comonad w => w (w a -> a) -> w a
evaluate fs = fix $ (fs <@>) . duplicate

(<@>) :: ComonadApply w => w (a -> b) -> w a -> w b

Could not deduce (ComonadApply w)
   arising from a use of '<@>'
   Possible fix:
      add (ComonadApply w) to the context
      of the type signature for evaluate.
```

```
evaluate :: ComonadApply w => w (w a -> a) -> w a
evaluate fs = fix $ (fs <@>) . duplicate

(<@>) :: ComonadApply w => w (a -> b) -> w a -> w b
```


\$ time ./evaluate

```
$ time ./evaluate
```

```
[0,1,2,3,4 ... a blur on the screen ... 9999, 10000]
0.01 real 0.00 user 0.00 sys
```

\$ time ./evaluate

Still very slightly slower than take 10000 [1..], almost certainly because GHC fuses away the intermediate list.

Aside: list fusion in evaluate: reducible to halting problem?

"Hang on, Kenny! We don't know why Tapes are ComonadApply!"

"Hang on, Kenny! We don't know why Tapes are ComonadApply!"

```
instance ComonadApply Tape where
  (Tape ls c rs) <@> (Tape ls' c' rs') =
        Tape (ls <@> ls') (c c') (rs <@> rs')
```

"Hang on, Kenny! We don't know why Tapes are ComonadApply!"

```
instance ComonadApply Tape where
  (Tape ls c rs) <@> (Tape ls' c' rs') =
        Tape (ls <@> ls') (c c') (rs <@> rs')
```

"But that relies on the ComonadApply instance for Streams!"

"Hang on, Kenny! We don't know why Tapes are ComonadApply!"

```
instance ComonadApply Tape where
  (Tape ls c rs) <@> (Tape ls' c' rs') =
        Tape (ls <@> ls') (c c') (rs <@> rs')
```

"But that relies on the ComonadApply instance for Streams!"

```
instance ComonadApply Stream where (<0>) = (<*>)
```

```
"Hang on, Kenny! We don't know why Tapes are ComonadApply!"
instance ComonadApply Tape where
   (Tape ls c rs) <0> (Tape ls' c' rs') =
      Tape (ls <0> ls') (c c') (rs <0> rs')
"But that relies on the ComonadApply instance for Streams!"
instance ComonadApply Stream where (<0>) = (<*>)
instance Applicative Stream where
 pure = repeat
  (<*>) = zipWith ($)
```

It is a strong lax symmetric semi-monoidal comonad on the category Hask of Haskell types. That it to say that w is a strong lax symmetric semi-monoidal functor on Hask, where both extract and duplicate are symmetric monoidal natural transformations.

-Edward Kmett

It is a strong lax symmetric semi-monoidal comonad on the category Hask of Haskell types. That it to say that w is a strong lax symmetric semi-monoidal functor on Hask, where both extract and duplicate are symmetric monoidal natural transformations.

-Edward Kmett

ComonadApply is to Comonad like Applicative is to Monad.

-Edward Kmett

The laws of ComonadApply:

```
(.) <$> u <@> v <@> w == u <@> (v <@> w)  
extract  (p <@> q) == extract p (extract q)  
duplicate (p <@> q) == (<@>) <$> duplicate p <@> duplicate q
```

The laws of ComonadApply:

```
(.) <$> u <@> v <@> w == u <@> (v <@> w)  
extract  (p <@> q) == extract p (extract q)  
duplicate (p <@> q) == (<@>) <$> duplicate p <@> duplicate q
```

These laws mean (<0>) must be "zippy."

The laws of ComonadApply:

```
(.) <$> u <0> v <0> w == u <0> (v <0> w) extract (p <0> q) == extract p (extract q) duplicate (p <0> q) == (<0>) <$> duplicate p <0> duplicate q
```

These laws mean (<0>) must be "zippy."

Uustalu and Vene's The Essence of Dataflow Programming calls it:

```
czip :: (ComonadZip d) => d a -> d b -> d (a,b)
```

The laws of ComonadApply:

```
(.) <$> u <0> v <0> w == u <0> (v <0> w) extract (p <0> q) == extract p (extract q) duplicate (p <0> q) == (<0>) <$> duplicate p <0> duplicate q
```

These laws mean (<0>) must be "zippy."

Uustalu and Vene's The Essence of Dataflow Programming calls it:

```
czip :: (ComonadZip d) \Rightarrow d a \Rightarrow d b \Rightarrow d (a,b)
```

Enlightening exercise: for an arbitrary Functor f, show how czip and (<0>) can be defined in terms of each other and fmap.

Zippy comonads → zippy computation

The "zippiness" required by the laws of ComonadApply leads to evaluate's *computational* "zippiness."

Can going fast be total(ly safe)?

Can going fast be total(ly safe)?

Short answer: no.

Long answer: not in ways we would care about.

Nesting Tapes inside one another leads us into to higher-dimensional (discrete) spaces to explore.

```
Tape a \cong Integer \rightarrow a 
Tape (Tape a) \cong (Integer,Integer) \rightarrow a 
Tape (Tape (Tape a)) \cong (Integer,Integer,Integer) \rightarrow a 
Etcetera, ad infinitum!
```

We could define a newtype for each added dimension, but this carries an overhead of between $O(n^2)$ and $O(n^3)$ boilerplate per dimension.

We could define a newtype for each added dimension, but this carries an overhead of between $O(n^2)$ and $O(n^3)$ boilerplate per dimension.

```
newtype Tape2 a = Tape (Tape a)
newtype Tape3 a = Tape (Tape (Tape a))
. . .
instance Functor Tape2 where ...
instance Comonad Tape2 where ...
instance ComonadApply Tape2 where ...
instance Functor Tape3 where ...
instance Comonad Tape3 where ...
instance ComonadApply Tape3 where ...
. . .
```

That also really succs.

```
Composition of functors (from Data.Functor.Compose):

newtype Compose f g a = Compose { getCompose :: f (g a) }

(Functor f, Functor g) => Functor (Compose f g)

(Applicative f, Applicative g) => Applicative (Compose f g)
```

```
Composition of functors (from Data.Functor.Compose):

newtype Compose f g a = Compose { getCompose :: f (g a) }

(Functor f, Functor g) => Functor (Compose f g)

(Applicative f, Applicative g) => Applicative (Compose f g)

instance (Comonad f, Comonad g) => Comonad (Compose f g) where extract = extract . extract . getCompose duplicate = ...
```

(N.B. In this section, I've specialized many type signatures.) What can you do with (Compose f g a)?

```
(N.B. In this section, I've specialized many type signatures.)

What can you do with (Compose f g a)?

Equivalent: what can you do with

(Comonad f, Comonad g) => f (g a)?
```

```
(N.B. In this section, I've specialized many type signatures.)
What can you do with (Compose f g a)?
Equivalent: what can you do with
(Comonad f, Comonad g) => f (g a)?
Duplicate outer layer:
duplicate :: f (g a) -> f (f (g a))
```

```
(N.B. In this section, I've specialized many type signatures.)
What can you do with (Compose f g a)?
Equivalent: what can you do with
(Comonad f, Comonad g) => f (g a)?
Duplicate outer layer:
duplicate :: f (g a) -> f (f (g a))
Duplicate inner layer:
fmap duplicate :: f (g a) -> f (g (g a))
```

```
(N.B. In this section, I've specialized many type signatures.)
What can you do with (Compose f g a)?
Equivalent: what can you do with
(Comonad f, Comonad g) => f (g a)?
Duplicate outer layer:
duplicate :: f(g a) \rightarrow f(f(g a))
Duplicate inner layer:
fmap duplicate :: f(g a) \rightarrow f(g(g a))
Duplicate both:
duplicate . fmap duplicate :: f (g a) -> f (f (g (g a)))
```

Whatever ??? is, it likely has a more generic type.

Whatever ??? is, it likely has a more generic type.

Whatever ??? is, it likely has a more generic type.

```
??? :: f (g x) -> g (f x)
fmap ??? :: f (f (g (g a))) -> f (g (f (g a)))

Compose . fmap Compose -- wrap again
. fmap ??? -- swap middle two layers
. duplicate -- duplicate outside
. fmap duplicate -- duplicate inside
. getCompose -- unwrap
:: Compose f g a -> Compose f g (Compose f g a)
```

Two candidates (thanks Hoogle!):

```
sequenceA -- from Data.Traversable
:: (Traversable t, Applicative f) => t (f a) -> f (t a)
distribute -- from Data.Distributive
:: (Distributive g, Functor f) => f (g a) -> g (f a)
```

```
sequenceA -- from Data.Traversable
:: (Traversable t, Applicative f) => t (f a) -> f (t a)
```

Initially promising—I know and love Traversable.

```
sequenceA -- from Data.Traversable
:: (Traversable t, Applicative f) => t (f a) -> f (t a)
```

Initially promising—I know and love Traversable.

Requires two constraints:

- ▶ Applicative f: outer layer has to have (<*>) and pure—pure is a hard pill to swallow.
- ► Traversable t—that's a deal-breaker!

```
sequenceA -- from Data.Traversable
:: (Traversable t, Applicative f) => t (f a) -> f (t a)
```

Initially promising—I know and love Traversable.

Requires two constraints:

- Applicative f: outer layer has to have (<*>) and pure—pure is a hard pill to swallow.
- ▶ Traversable t—that's a deal-breaker!

Jaskelioff & Rypacek, MSFP 2012, "An Investigation of the Laws of Traversals": "We are not aware of any functor that is traversable and is not a finitary container."

▶ Infinite streams are definitely not Traversable.

```
distribute    -- from Data.Distributive
    :: (Distributive g, Functor f) => f (g a) -> g (f a)
```

But what does Distributive mean?

```
distribute   -- from Data.Distributive
    :: (Distributive g, Functor f) => f (g a) -> g (f a)
```

But what does Distributive mean?

What can you do underneath a Functor?

```
distribute  -- from Data.Distributive
    :: (Distributive g, Functor f) => f (g a) -> g (f a)
But what does Distributive mean?
What can you do underneath a Functor?
"Touch, don't look."
```

```
distribute -- from Data.Distributive
    :: (Distributive g, Functor f) => f (g a) -> g (f a)
```

Strategy/intuition for distribute:

- ► Start with f (g a)
- Create a g with f (g a) in each 'hole': g (f (g a))
- For each f (g a) on the inside of g:
 - navigate to a particular focus (using fmap)
 - ▶ fmap extract to eliminate the inner g
- ► Result: g (f a)

Mystery solved

Mystery solved

Efficient evaluation:

```
evaluate :: ComonadApply w => w (w a -> a) -> w a
```

```
Efficient evaluation:
```

```
evaluate :: ComonadApply w => w (w a -> a) -> w a
```

Elegant composition:

```
(Comonad f, Comonad g, Distributive g) => Comonad (Compose f g)
```

```
Efficient evaluation:
```

```
evaluate :: ComonadApply w => w (w a -> a) -> w a
```

Elegant composition:

```
(Comonad f, Comonad g, Distributive g) \Rightarrow Comonad (Compose f g)
```

I could make a library out of this!

{-# LANGUAGE OverlappingInstances #-}


```
type family ComposeCount f where
  ComposeCount (Compose f g a) = Succ (ComposeCount (f (g a)))
  ComposeCount x = Zero

class CountCompose f where
  countCompose :: f -> ComposeCount f
```

```
{-# LANGUAGE FeelBadAboutYourself #-}

type family ComposeCount f where
   ComposeCount (Compose f g a) = Succ (ComposeCount (f (g a)))
   ComposeCount x = Zero

class CountCompose f where
   countCompose :: f -> ComposeCount f
```

```
{-# LANGUAGE OverlappingInstances #-}

type family ComposeCount f where
   ComposeCount (Compose f g a) = Succ (ComposeCount (f (g a)))
   ComposeCount x = Zero

class CountCompose f where
   countCompose :: f -> ComposeCount f
```

```
{-# LANGUAGE OverlappingInstances #-}
type family ComposeCount f where
  ComposeCount (Compose f g a) = Succ (ComposeCount (f (g a)))
  ComposeCount x
                               = 7.ero
class CountCompose f where
  countCompose :: f -> ComposeCount f
instance (CountCompose (f (g a)))
  => CountCompose (Compose f g a) where
  countCompose (Compose x) = Succ (countCompose x)
```

Baby, there's a shark in the water

```
{-# LANGUAGE OverlappingInstances #-}
type family ComposeCount f where
  ComposeCount (Compose f g a) = Succ (ComposeCount (f (g a)))
  ComposeCount x
                               = 7.ero
class CountCompose f where
  countCompose :: f -> ComposeCount f
instance (CountCompose (f (g a)))
  => CountCompose (Compose f g a) where
  countCompose (Compose x) = Succ (countCompose x)
instance (ComposeCount f ~ Zero) => CountCompose f where
  countCompose _ = Zero
```

GADTs to the rescue!

Previously:

```
newtype Compose f g a = \{ getCompose :: f (g a) \}
```

GADTs to the rescue!

```
Previously:
newtype Compose f g a = { getCompose :: f (g a) }
What if we put depth of nesting in the types?
data Flat x
data Nest o i
data Nested fs a where
   Flat :: f a -> Nested (Flat f) a
   Nest :: Nested fs (f a) -> Nested (Nest fs f) a
```

GADTs to the rescue!

```
Previously:
newtype Compose f g a = { getCompose :: f (g a) }
What if we put depth of nesting in the types?
data Flat x
data Nest o i
data Nested fs a where
   Flat :: f a -> Nested (Flat f) a
   Nest :: Nested fs (f a) -> Nested (Nest fs f) a
            Just [1] :: Maybe [Int]
      Flat (Just [1]) :: Nested (Flat Maybe) [Int]
Nest (Flat (Just [1])) :: Nested (Nest (Flat Maybe) []) Int
```

Nest it / fmap it / quick rewrap it

Two cases for each instance (base case/recursive case):

```
instance (Functor f) => Functor (Nested (Flat f)) where
  fmap f (Flat x) = Flat $ fmap f x

instance (Functor f, Functor (Nested fs))
  => Functor (Nested (Nest fs f)) where
  fmap f (Nest x) = Nest $ fmap (fmap f) x
```

Other typeclass instances are likewise defined in two parts.

Nest it / fmap it / quick rewrap it

- ▶ Match on types, not constraints
- ▶ Base case is Flat, not every type, so no "universal instance"
- See ya later, OverlappingInstances!

Drag and drop it / zip - unzip it

What's in a reference?

Drag and drop it / zip - unzip it

```
What's in a reference?
{-# LANGUAGE DataKinds #-}
data RefType = Relative | Absolute
data Ref (t :: RefType) where
   Rel :: Int -> Ref Relative
   Abs :: Int -> Ref Absolute
```

Drag and drop it / zip - unzip it

```
type family Combine a b where
   Combine Relative Absolute = Absolute
   Combine Absolute Relative = Absolute
   Combine Relative Relative = Relative

class CombineRefs a b where
   combine :: Ref a -> Ref b -> Ref (Combine a b)
```

```
data x :-: y
data Nil

data ConicList f ts where
   (:-:) :: f x -> ConicList f xs -> ConicList f (x :-: xs)
   ConicNil :: ConicList f Nil

type RefList = ConicList Ref
```

With suitable definition of names...

```
a :: RefList (Relative :-: Relative :-: Nil)
a = belowBy 3 & rightBy 14
```

With suitable definition of names. . .

```
a :: RefList (Relative :-: Relative :-: Nil)
a = belowBy 3 & rightBy 14

b :: RefList (Relative :-: Absolute :-: Nil)
b = columnAt 9000 & aboveBy 1
```

With suitable definition of names. . .

```
a :: RefList (Relative :-: Relative :-: Nil)
a = belowBy 3 & rightBy 14
b :: RefList (Relative :-: Absolute :-: Nil)
b = columnAt 9000 & aboveBy 1
c = columnAt 5 & columnAt 10
```

Take it / view it / go - insert it

```
class Take r t where
   type ListFrom t a
   take :: RefList r -> t a -> ListFrom t a

class View r t where
   type StreamFrom t a
   view :: RefList r -> t a -> StreamFrom t a

class Go r t where
   go :: RefList r -> t a -> t a
```

Take it / view it / go - insert it

```
class Take r t where
   type ListFrom t a
   take :: RefList r -> t a -> ListFrom t a

class View r t where
   type StreamFrom t a
   view :: RefList r -> t a -> StreamFrom t a

class Go r t where
   go :: RefList r -> t a -> t a
```

...and insert — I have discovered a truly marvelous type signature for this, which this margin is too narrow to contain.

What have we learned?

- Efficient comonadic fixed-point requires zipping
- Distributive comonads compose
- Dimension polymorphism needs type-indexed composition
- Heterogeneous lists unify absolute and relative references

What have we learned?

- ▶ Efficient comonadic fixed-point requires zipping
- Distributive comonads compose
- Dimension polymorphism needs type-indexed composition
- ▶ Heterogeneous lists unify absolute and relative references
- ► (Co)monads are (co)ol!

```
fibonacci :: Sheet1 Integer
fibonacci = evaluate . sheet 1 $
  repeat $ cell (leftBy 2) + cell left
(I told you the syntax would get nicer!)
```

```
fibonacci :: Sheet1 Integer
fibonacci = evaluate . sheet 1 $
  repeat $ cell (leftBy 2) + cell left

(I told you the syntax would get nicer!)

> slice (leftBy 2) (rightBy 17) fibonacci
[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584]
```

```
pascal :: Sheet2 Integer
pascal = evaluate . sheet 0 $
  repeat 1 <:> repeat (1 <:> pascalRow)
  where pascalRow = repeat $ cell above + cell left
```

```
pascal :: Sheet2 Integer
pascal = evaluate . sheet 0 $
  repeat 1 <:> repeat (1 <:> pascalRow)
  where pascalRow = repeat $ cell above + cell left
> take (belowBy 9 & rightBy 9) pascal
```

```
pascal :: Sheet2 Integer
pascal = evaluate . sheet 0 $
  repeat 1 <:> repeat (1 <:> pascalRow)
  where pascalRow = repeat $ cell above + cell left
> take (belowBy 9 & rightBy 9) pascal
[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[1, 3, 6, 10, 15, 21, 28, 36, 45, 55],
[1, 4, 10, 20, 35, 56, 84, 120, 165, 220],
[1, 5, 15, 35, 70, 126, 210, 330, 495, 715],
[1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002],
[1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5005],
[1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 11440],
[1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310],
 [1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620]]
```

```
data Cell = X | O deriving (Eq)
life :: ([Int],[Int]) -> [[Cell]] -> Sheet3 Cell
life ruleset seed =
   evaluate $ insert [map (map const) seed] blank where
     blank = sheet (const X) (repeat . tapeOf . tapeOf $ rule)
     rule place =
       case (neighbors place 'elem') 'onBoth' ruleset of
            (True,_) -> 0
            (_,True) -> cell inward place
                    -> X
     neighbors = length . filter (0 ==) . cells bordering
     bordering = map (inward &) (diag ++ vert ++ horz)
     diag = (&) <$> horizontals <*> verticals
                  [above, below]
     vert =
     horz = map d2 [right, left]
conway :: [[Cell]] -> Sheet3 Cell
conway = life ([3], [2,3])
                                       4D > 4B > 4B > B 990
```

> printLife glider

> printLife glider


```
evaluate :: ComonadApply w \Rightarrow w (w a -> a) -> w a evaluate fs = fix $ (fs <@>) . duplicate
```


Credit: Chris Done: chrisdone.com/posts/twitter-problem-loeb

Credit: Chris Done: chrisdone.com/posts/twitter-problem-loeb

Chris Done says:

I think if I'd've heard of [the comonadic fixed-point solution] before, this solution would've come to mind instead, it seems entirely natural!

Sadly, this is the slowest algorithm on the page. I'm not sure how to optimize it to be better.

```
waterflow :: [Integer] -> Integer
waterflow heights =
   sum . zipWith subtract heights . map (foldr1 min)
   . S.toList . view right
   . evaluateF
   . sheet ground . map maxima $ heights
maxima :: Integer -> Pair (Sheet1 (Pair Integer) -> Integer)
maxima here =
   Pair (max here . car . cell left)
        (max here . cdr . cell right)
ground :: Pair (Sheet1 (Pair Integer) -> Integer)
ground = Pair (const 0) (const 0)
data Pair a = Pair { car :: a , cdr :: a }
instance Functor Pair ...
instance Applicative Pair ...
instance Foldable Pair ...
                                        4 D > 4 A > 4 B > 4 B > B 9 9 0
```


> waterflow [2,5,1,2,3,4,7,7,6]
10

cabal install ComonadSheet

github.com/kwf/ComonadSheet
Suggestions, bug reports, pull requests welcome!