Risolvere tramite metodo dello sviluppo l'equazione

$$T(n) = 5T\left(\frac{n}{2}\right) + n$$
$$T(1) = 1$$

Risolvere tramite metodo dello sviluppo l'equazione

$$T(n) = 5T\left(\frac{n}{2}\right) + n$$
$$T(1) = 1$$

Sviluppo:

$$T\left(\frac{n}{2}\right) = 5T\left(\frac{n}{4}\right) + \frac{n}{2}$$
$$T\left(\frac{n}{4}\right) = 5T\left(\frac{n}{8}\right) + \frac{n}{4}$$

Risolvere tramite metodo dello sviluppo l'equazione

$$T(n) = 5T\left(\frac{n}{2}\right) + n$$
$$T(1) = 1$$

Sostituzione:

$$T(n) = n + \frac{5}{2}n + \left(\frac{5}{2}\right)^2 n + 5^3 T\left(\frac{n}{8}\right)$$
$$= n \sum_{0 \le i \le s} \left(\frac{5}{2}\right)^i$$

Risolvere tramite metodo dello sviluppo l'equazione

$$T(n) = 5T\left(\frac{n}{2}\right) + n$$
$$T(1) = 1$$

Terminazione per n = 1, ogni volta dimezzo:

$$\frac{n}{2^s} = 1$$

$$2^s = n$$

$$s = \log_2(n)$$

Risolvere tramite metodo dello sviluppo l'equazione

$$T(n) = 5T\left(\frac{n}{2}\right) + n$$
$$T(1) = 1$$

Sostituzione:

$$T(n) = n \sum_{0 \le i \le \log_2(n)} \left(\frac{5}{2}\right)^i$$
$$= n \left(\frac{\left(\frac{5}{2}\right)^{\log_2(n) + 1} - 1}{\frac{5}{2} - 1}\right)$$

Risolvere tramite metodo dello sviluppo l'equazione

$$T(n) = 5T\left(\frac{n}{2}\right) + n$$
$$T(1) = 1$$

Sostituzione:

$$n\left(\frac{\left(\frac{5}{2}\right)^{\log_2(n)+1}-1}{\frac{5}{2}-1}\right) = n\frac{2}{3}\left(\frac{5}{2} \cdot \frac{5^{\log_2(n)}}{2^{\log_2(n)}}-1\right)$$
$$= n\frac{1}{3}\left(5 \cdot \frac{5^{\log_2(n)}}{n}-2\right)$$
$$= n\frac{1}{3}\left(5 \cdot \frac{n^{\log_2 5}}{n}-2\right)$$
$$= \frac{1}{3}\left(5 \cdot n^{\log_2 5}-2n\right)$$

Risolvere tramite metodo dello sviluppo l'equazione

$$T(n) = 5T\left(\frac{n}{2}\right) + n$$
$$T(1) = 1$$

Sostituzione:

$$T(n) = \frac{1}{3} \left(5 \cdot n^{\log_2 5} - 2n \right)$$

Quindi:

$$T\left(n\right) = O\left(n^{\log_2 5}\right)$$

Determinare il codice di Huffman ottimo per i seguenti caratteri con le frequenze specificate:

A: 1 B: 1 C: 2 D: 3 E: 5 F: 8 G: 11 H: 21

Memorizziamo le informazioni in una coda a priorità

A: 1 B: 1 C: 2 D: 3 E: 5 F: 8 G: 11 H: 21

Estraiamo i due elementi a frequenza minore, A e B, e creiamo un nuovo albero che fonde i due nodi. Il nuovo albero ha frequenza 2, e va reinserito nella coda a priorità

Estraiamo nuovamente i due elementi a frequenza minore, C e l'albero che contiene A, B, e li fondiamo in un novo albero con frequenza 4. Reinseriamo il nuovo albero nella coda

Iterando, si ottiene:

Α	101110
В	101111
С	10110
D	1010
Ε	100
F	110
G	111
Н	0

Visite grafi

Consideriamo il seguente grafo

Visite grafi

Considerando B come nodo iniziale:

- Si effettui una visita in ampiezza
- Si effettui una visita in profondità, considerando i vertici in ordine alfabetico e etichettando i vertici con tempo di inizio/fine elaborazione
- Si etichettino gli archi come T (tree), B (back), F (forward), C (cross)

Usiamo una coda per contenere i nodi scoperti e non ancora visitati

Partiamo dal nodo B, lo inseriamo nella coda e lo etichettiamo come nodo a distanza 0 da B stesso

Proseguiamo estraendo dalla coda il primo nodo X, andando quindi a inserire utti i nodi adiacenti a X non ancora scoperti, che saranno etichettati come a distanza D+1, dove D è la distanza di X da B

Albero della visita in ampiezza:

Partiamo dal nodo B e iniziamo a percorrere cammini finchè possibile senza ripassare da nodi già visitati.

Quando ciò non è possibile, torniamo indietro fino al primo nodo da cui partono ancora cammini inesplorati e proseguiamo la visita

Etichettiamo i nodi con tempo di inizio e fine elaborazione

La visita genera un albero (o una foresta)

Etichettiamo gli archi che percorriamo come archi T (tree, in rosso nelle figure)

Per gli altri archi, distinguiamo tra archi F (forward, in verde), archi B (back, in blu) e archi C (cross, in giallo)

Albero della visita in profondità:

Completando il grafo:

Consideriamo il grafo orientato aciclico

Per trovare un ordinamento topologico utilizziamo una visita DFS

Consideriamo i nodi ordinati lessicograficamente

63/230

73/230

74/230

Vogliamo calcolare un cammino massimo

Partiamo dall'ordinamento topologico calcolato in precedenza:

Percorriamo l'ordinamento topologico, calcolando, per ogni nodo:

$$d(v) = \max_{u|(u,v)\in E} (d(u)+1) \tag{1}$$

Se il nodo v non ha predecessori, mettiamo d(v) = 0

Cammino di lunghezza massima: nodo finale I ($\arg \max_{v} d(v)$)

Percorrendo all'indietro gli archi che portano a I:

Consideriamo il seguente grafo (nota — il grafo è leggermente diverso da quello considerato nella prima parte):

Primo passo: DFS sul grafo trasposto

Ordinamento dei nodi per tempo di fine:

B 2 D 6 E 7 F 8 A 9 C 11 J 15 (I 18 K 19 H 20 G 21)

DFS su grafo originale secondo tempi di fine elaborazione decrescenti

Data la sequenza

calcolare una sottosequenza crescente di lunghezza massima

LIS: ultimo elemento in posizione 8 (massimo del vettore LIS)

Completiamo la sequenza seguendo all'indietro i riferimenti nel vettore Parent:

LIS: ultimo elemento in posizione 8 (massimo del vettore LIS

Completiamo la sequenza seguendo all'indietro i riferimenti nel vettore Parent:

In alternativa, una seconda sequenza termina con l'elemento in posizione 6

Equivalente a ricerca cammino di lunghezza massima su DAG

Ogni elemento della sequenza è un nodo

I nodi sono (topologicamente) ordinati secondo l'ordine della sequenza

Un arco (u,v) collega i nodi u e v se e solo se v segue u nell'ordinamento (topologico) e il valore di v è maggiore del valore di u

Applichiamo l'algoritmo per i cammini massimi, mettendo d(v)=1 per i nodi senza predecessori

6 3 4 12 8	9 14 7 10 8
------------	-------------

1

1 1

Una LIS termina in nodo 10 (alternativamente, in nodo 14)

Seguendo gli archi a ritroso possiamo ricostruire la sequenza

141/230

Inserimento in radice: dato il seguente BST, inserire il valore 11 in radice

Inseriamo il nodo come foglia

Cancellazione: vogliamo rimuovere il nodo 6

157/230

Partizionamento del sottoalbero DX rispetto al nodo 7

Ricostruzione dell'albero

Ricostruzione dell'albero

Ordinare tramite Heapsort il vettore

6	3	4	12	8	9	14	7	10
---	---	---	----	---	---	----	---	----

Ordinare tramite Heapsort il vettore

Heapbuild: trasformazione dell'albero in un heap

Le foglie sono già heap

Heap:

Ricostruzione Heap: 1 solo elemento \implies già heap

Elementi esauriti \implies array ordinato:

