The intuitive understanding of angles can be made more precise by considering a unit circle.

In this way, an angle $0 \le \theta \le 2\pi$ corresponds to a unique point on the unit circle.

Since the equation of a semicircle on the axes xOy is $y = \sqrt{1-x^2}$ and the area of the unit circle is π , we thus define $\pi = 2 \int_{-1}^{1} \sqrt{1-x^2} \, dx$. The area of the sector corresponding to an angle θ with $\cos \theta = x$, if $-1 \le x \le 1$, is

$$A(x) = \frac{x\sqrt{1-x^2}}{2} + \int_x^1 \sqrt{1-t^2} \, dt.$$

Consider now A'(x):

$$A'(x) = \frac{1}{2}(\sqrt{1-x^2} - \frac{x^2}{\sqrt{1-x^2}}) - \sqrt{1-x^2} = \frac{-1}{2\sqrt{1-x^2}}$$

Note that A' is well-defined for $x \in (-1, 1)$.

We also note that $A(-1) = \frac{\pi}{2}$ and A(0) = 0. The graph of A is such that it is:

- decreasing (since A' < 0)
- injective

Therefore, it has an inverse.

Question. How to express $\cos \theta$ as a function of 2A?

Answer. Note that $\cos \theta$ is the inverse function of 2A. Given 2A, which determines an angle θ , define $\cos \theta$ to be the unique x such that 2A = 2A(x), thus $\theta = 2A(\cos \theta)$.

We define $\sin \theta = \sqrt{1 - \cos^2 \theta}$ and B = 2A. B is the inverse of $\cos \theta$, and thus, from above,

$$\frac{\mathrm{dcos}\,\theta}{\mathrm{d}\theta} = \frac{1}{B'(\cos\theta)} = -\sin\theta$$

Similarly,

$$\frac{\mathrm{dsin}\,\theta}{\mathrm{d}\theta} = \frac{\mathrm{d}\sqrt{1-\cos^2\theta}}{\mathrm{d}\theta} = \cos\theta$$