Minimalne ploskve in Björlingov problem

Lucija Fekonja Mentor: Doc. dr. Uroš Kuzman

Fakulteta za matematiko in fiziko Oddelek za matematiko

19. december 2022

Definicija

Enotsko normalo N regularne ploskve s parametrizacijo $\phi(u,v)$ definiramo kot vektor $N = \frac{\phi_u \times \phi_v}{|\phi_u \times \phi_v|}$.

Definicija

Binormala B v točki $p \in S$ je vektor $B = N \times T$, kjer je N enotska normala in T izbrani tangentni vektor iz T_pS .

Definicija

Normalna ukrivljenosti κ_n je komponenta ukrivljenosti κ ploskovne krivulje γ v smeri normale.

$$\kappa_n = \frac{dT}{ds} \cdot N.$$

Definicija

Geodetska ukrivljenost κ_g je komponenta ukrivljenosti κ ploskovne krivulje γ v smeri stranske normale.

$$\kappa_{\mathsf{g}} = \frac{\mathsf{d}T}{\mathsf{d}\mathsf{s}} \cdot \mathsf{B}.$$

Definicija

Naj bo p točka na ploskvi. Poglejmo vse krivulje γ_i na ploskvi, ki gredo skozi točko p. Naj bo κ_1 maksimalna izmed normalnih ukrivljenosti teh krivulj v točki p, κ_2 pa minimalna. Srednja ukrivljenost H je definirana kot $H = \frac{\kappa_1 + \kappa_2}{2}$.

Definicija

Ploskev se imenuje minimalna ploskev, če je njena srednja ukrivljenost enaka nič.

Od kod prihaja ime minimalna ploskev?

Definicija

Ploskev $M \subset \mathbb{R}$ je minimalna ploskev natanko tedaj, ko ima vsaka točka $p \in M$ okolico, za katero ima M najmanjšo ploščino med vsemi z enakim robom.

- Definicija je lokalna.
- Definicija je povezana z milnimi filmi.

Katenoida

Slika: Verižnica za $a \in \{0.5, 0.6, 0.7, 0.8, 0.9, 1\}$

Slika: Katenoida

Helikoid

Slika: Helikoid

Scherkova prva in druga ploskev

Slika: Del prve Scherkove ploskve

Slika: Del druge Scherkove ploskve

Björlingov problem

Definicija

Funkcija f(x) realne spremenljivke x je realno analitična, če je f(z) holomorfna za kompleksno spremenljivko z.

Naj velja:

$$lpha(t):I\mapsto\mathbb{R}^3$$
realno analitična krivulja
$$\eta:I\mapsto\mathbb{R}^3$$
realno analitično vektorsko polje
$$|\eta|=1$$
 $\eta(t)\cdotlpha'(t)=0$

Björlingov problem

Najdi parametrizacijo minimalne ploskve $\phi(u, v)$, za katero velja:

- Ploskev M naj vsebuje krivuljo α pri v=0. To pomeni, $\forall u \in I. \alpha(u) = \phi(u,0)$.
- Normale na ploskev M se naj vzdolž celotne krivulje α ujemajo z vektorji vektorskega polja $\eta\colon \forall u\in I. \eta(u)=N(u,0).$

Rešitev:

$$\phi(u, v) = Re\left(\alpha(z) - i \int_{z_0}^{z} \eta(w) \times \alpha'(w) dw\right)$$

