Paolo PRINETTO

Director **CINI Cybersecurity National** Laboratory

Paolo.Prinetto@polito.it Mob. +39 335 227529

The Role of Hardware in Security

https://cybersecnatlab.it

License & Disclaimer

License Information

This presentation is licensed under the Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

Disclaimer

- We disclaim any warranties or representations as to the accuracy or completeness of this material.
- Materials are provided "as is" without warranty of any kind, either express or implied, including without limitation, warranties of merchantability, fitness for a particular purpose, and non-infringement.
- Under no circumstances shall we be liable for any loss, damage, liability or expense incurred or suffered which is claimed to have resulted from use of this material.

Acknowledgments

- The presentation includes material from
 - Nicolò MAUNERO
 - Gianluca ROASCIO

whose valuable contribution is here acknowledged and highly appreciated.

Goal

- Understanding why hardware plays a key role in the protection of any system.
- Introducing a clear distinction between the 3 main roles of hardware when dealing with security, and namely:
 - Hardware Security
 - Hardware-based Security
 - Hardware Trust.

Prerequisites

None

Outline

- The role of Hardware in Security
- Hardware Security
- Hardware-based Security
- Hardware Trust

Why Hardware & Security?

- As with software, data and communication infrastructures, the hardware must be
 - Designed
 - > Built
 - > Tested
 - > Used
 - Maintained
 - > dismissed

considering possible cyber attacks and their consequences.

Motivations

Hardware runs software and is, in fact, the last line of defense

Motivations

Hardware runs software and is, in fact, the last line of defense

Consequences (1)

If the hardware is corrupted, all the mechanisms introduced to make the software secure (at any level) may become useless

Important side effect

Hardware runs software and is, in fact, the last line of defence

Consequences (2)

A trusted and secure Hardware can effectively be used to protect other system components (e.g., software, data communication infrastructures)

A multi-faceted reality

A multi-faceted reality

Belarusian National Library

Нацыянальная бібліятэка Беларусі

Национальная библиотека Беларуси

A multi-faceted reality

A complex puzzle

Hardware & Security: a complex puzzle

- Hardware Vulnerabilities
- Hardware Attacks
- Hardware Trust
- Hardware Counterfeiting
- Hardware-based Defenses

- Security-oriented Architectures
- Built-in security features
- PUFs (Physically Unclonable Functions)
- **>** ...

For each tile, many dimensions

- Technology
- Target abstraction level
- Types of components
- Application domain
- System complexity
- System criticality
- **>** ...

The role of Hardware in Cybersecurity

Trying to move from a mess to a more rigorous view, the role of Hardware in security can be seen as follows:

The role of Hardware in Cybersecurity

Trying to move from a mess to a more rigorous view, the role of Hardware in security can be seen as follows:

Outline

- > The role of Hardware in Security
- Hardware Security
- Hardware-based Security
- Hardware Trust

Hardware Security: What

Refers to all those aspects of security
(i.e., weaknesses, vulnerabilities,
countermeasures) that concern *hardware components*, regardless their actual
implementations, the exploited design tools, and the target abstraction level.

SECURITY

Hardware Security: What

- "Everything" related to:
 - hardware vulnerabilities:
 - Their analysis, identification, detection, prevention, remediation, patching, ...
 - prevention of their exploitation
 - hardware attacks:
 - Any technique and solution aimed at preventing, mitigating, defeating, making them ineffective, regardless the tools and the abstraction levels (e.g., software or any upper level) used to carry them out
 - > protection solutions:
 - aimed at preventing hardware vulnerabilities and hardware attacks.

HARDWARE SECURITY

Hardware Security: What

HARDWARE SECURITY

HARD

- "Everything" related to:
 - hardware vulnerabilities:
 - Their analysis, notification detection prevention remediation, patching
 - prevention of their expl
- See lecture:
- CS 1.4 Vulnerabilities

- hardware attacks:
 - Any technique and solution aimed at preventing mitigating defeating making them ineffective, read or any upper level) used See lecture:
- > protection solutions:
- HS_1.3 Hardware Attacks
- aimed at preventing hardware vulnerabilities and hardware attacks.

Hardware Security: When

- Hardware Security issues must be faced:
 - During the design and production phases (Security-by-design)
 - > When hardware is already operating in the field.

Outline

- The role of Hardware in Security
- Hardware Security
- Hardware-based Security
- Hardware Trust

Hardware-based Security

HARDWARE-BASED SECURITY

WARE

Refers to all those solutions aimed at resorting to hardware devices to protect the system from attacks that exploit vulnerabilities of other components of the system itself.

Remark

- To offer security features to upper layers, hardware itself must be secure at first
- From this point of view, Hardware Security play the role of a key enabler for Hardware-based Security.

Hardware-based Security Role

"Although hardware-based security is not a silver bullet, it does provide a "chain of trust" rooted in silicon that makes the device and extended network more trustworthy and secure."

[https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/intel-security-essentials-solution-brief.pdf]

Hardware-based Implementations

- Hardware-based Implementations can be clustered as:
 - System level solutions
 - > Architectural level solutions
 - > Security-oriented components
 - Proprietary Solutions
 - Open Security Platforms
 - Built-in Security Features

Hardware-based Implementations

- Hardware-based Implementations can be clustered as:
 - System level solutions
 - > Architectural level solutions
 - Security-oriented components
 - Proprietary Solutions
 - Open Security Platforms
 - > Built-in Security Features

System level solutions

- Two significant standards:
 - > Trusted Platform Module
 - > Trusted Execution Environments

System level solutions

- Two significant standards:
 - Trusted Platform Module
 - > Trusted Execution Environments

Trusted Platform Module – TPM

- Standard guideline for developing chips with strong cybersecurity features
- Trustworthiness of TPM is based on different Root of Trust components and well-defined interactions among them

Root of Trust

Component that needs to always behave in the expected manner because its misbehaviour cannot be detected

Root of Trust

Trust in the Roots of Trust can be achieved through a variety of means including technical evaluation by competent experts.

Root of Trust - Role

Is used as basic block for the construction of a Chain of Trust

TPM History

Specification initially released by the *Trusted Computing Group* in 2003

[https://trustedcomputinggroup.org/]

The current version is TPM 2.0, which is standardized under ISO/IEC 11889

[https://www.iso.org/standard/66510.html]

[https://ebrary.net/24701/computer_science/a_practical_guide_to_tpm_20]

TPM 2.0

[https://ebrary.net/24701/computer_science/ a_practical_guide_to_tpm 20]

System level solutions

- Two significant standards:
 - > Trusted Platform Module
 - Trusted Execution Environments

Trusted Execution Environment

TEE is a concept that provides a secure area of the main processor

"to provide end-to-end security by protecting the execution of authenticated code, confidentiality, authenticity, privacy, system integrity and data access rights"

[Global Platform Device Committee, "EE protection profile," version 1.2, Public Release, November 2014, Document Reference: GPD_SPE_021 https://csrc.nist.gov/publications/detail/fips/140/2/final]

Trusted Execution Environments

- TEEs are secure area of a System-on-Chip that guarantee code and data protection
- They typically offer the minimal security required by low-end, closed embedded systems, such as IoT and "bare-metal" (i.e., without any Operating System) solutions.

Hardware-based Implementations

- Hardware-based Implementations can be clustered as:
 - System level solutions
 - Architectural level solutions
 - Security-oriented components
 - Proprietary Solutions
 - Open Security Platforms
 - Built-in Security Features

Architectural level solutions

General purpose Design-for-Security solutions adopted at the architectural level, mainly to improve the security of the CPUs and of the involved memories.

Architectural level solutions

- Examples include, among the others:
 - Memory Protection Units
 - > Shadow Stacks
 - > Custom proprietary solutions
 - > ...

Memory Protection Unit - MPU

- Present in a wider and wider number of processors
- Each memory page can be read, written or executed just by a predefined set of tasks/processes
- Access rights are decided by the kernel, which runs privileged
- Addresses sent to the memory are automatically processed by the MPU without the intervention of the kernel
- Violations cause the immediate abortion of the task

Hardware-based Implementations

- Hardware-based Implementations can be clustered as:
 - System level solutions
 - > Architectural level solutions
 - Security-oriented components
 - Proprietary Solutions
 - Open Security Platforms
 - > Built-in Security Features

Security-oriented components

- Set of custom, special-purpose components used for performing specific security-oriented operations, including:
 - > Hardware Cyphers
 - > Smart Cards & SIM Cards
 - > Secure storage devices
 - > Random Number Generators

Hardware-based Implementations

- Hardware-based Implementations can be clustered as:
 - System level solutions
 - > Architectural level solutions
 - > Security-oriented components
 - Proprietary Solutions
 - Open Security Platforms
 - Built-in Security Features

Proprietary Solutions

- Intel® vPro® Platform
- ➤ AMD Secure Technology™
- ARM® TrustZone®
- Microsoft BitLocker
- Synopsys DesignWare® tRoot™
- Apple Secure Enclave Processor
- Google Titan
- Cisco[®] Trust Anchor
- > ...

Hardware-based Implementations

- Hardware-based Implementations can be clustered as:
 - System level solutions
 - > Architectural level solutions
 - Security-oriented components
 - Proprietary Solutions
 - Open Security Platforms
 - Built-in Security Features

Open Security Platforms

- Platforms designed with cybersecurity in mind and packed with strong cybersecurity features:
 - Hardware accelerators for cryptography
 - > Anti tamper
 - Secure boot process
- They include:
 - > SEcube™
 - USB Armory

Hardware Platform – SEcube™

- System-In-Package developed by Blu5™ Group
 - Cortex-M4 microcontroller
 - Flexible and fast FPGA
 - SmartCard certified EAL 5+
- Strong Cybersecurity features and capabilities

[https://www.secube.eu/]

Applications

3D SiP − An Example: SEcubeTM

Hardware-based Implementations

- Hardware-based Implementations can be clustered as:
 - System level solutions
 - > Architectural level solutions
 - Security-oriented components
 - Proprietary Solutions
 - Open Security Platforms
 - Built-in Security Features

Built-in Security Features

- Functionalities present in most of modern microcontrollers
- Mostly introduced for safety
- A proper exploitation could significantly increase the system protection against the common threats in the embedded system landscape

Outline

- The role of Hardware in Security
- Hardware Security
- Hardware-based Security
- Hardware Trust

Trust

"A trusted component, operation, or process is one whose behavior is predictable under almost any operating condition, and which is highly resistant to subversion by application software, virus, and a given level or physical interference."

[ISO/IEC 24000]

Hardware Trust: Role

HARDWARE TRUST

Hardware trust mainly concerns Hardware Authenticity

Hardware Trust: What

- "Everything" related to:
 - > hardware counterfeiting:
 - Counterfeiting types
 - Counterfeiters
 - Counterfeiting detection approaches
 - Counterfeiting consequences
 - protection from counterfeiting:
 - > Any technique and solution aimed at preventing counterfeiting in all the stages of the product lifecycle.

Hardware Trust: What

HARDWARE TRUST

- "Everything" related to:
 - > hardware counterfeiting:
 - Counterfeiting types
 - Counterfeiters
 - Counterfeiting detection app
 - Counterfeiting consequences
 - > protection from counterfeiting:
 - Any technique the stages of the p

See lecture:

HS_1.6 - Physically Unclonable Functions - PUFs

See lecture:

HS_1.5 - Hardware Counterfeiting

Alarm

© CINI - 2022

Counterfeiting

Causes

- The complexity of electronic systems significantly increased over the past few decades
- To reduce production cost, they are mostly fabricated and assembled globally

Counterfeiting

Causes

- The complexity of electronic systems significantly increased over the past few decades
- To reduce production cost, they are mostly fabricated and assembled globally

Consequences

This globalization has led to an illicit market willing to undercut the competition with counterfeit and fake parts

Counterfeiting

Lacks

- Deficiencies in the existing test solutions
- Lack of low-cost and effective avoidance mechanisms in place

Counterfeiting types

[Ujjwal Guin, Ke Huang, Daniel DiMase, John M. Carulli, Mohammad Tehranipoor, and Yiorgos Makris: "Counterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor Supply Chain", in Proceedings of the IEEE · August 2014 - DOI: 10.1109/JPROC.2014.2332291]

Problems of Recycled ICs

- Financial damage
- Safety
- Security

Problems of Recycled ICs

Safety

Aging Phenomena (shorter lifetime)

Failure Rate Function

(Bathtub curve relationship)

Failure Rate Function

(Bathtub curve relationship)

Problems of Recycled ICs

Safety

- Aging Phenomena (shorter lifetime)
- Potential damage, due to the reclaiming process (removal under very high temperature, aggressive physical removal from boards, washing, sanding, repackaging, etc.)
- Lower performances

Problems of Recycled ICs

Safety

- Aging Phenomena (shorter lifetime)
- Potential damage, due to the reclaiming process (removal under very high temperature, aggressive physical removal from boards, washing, sanding, repackaging, etc.)
- Lower performances

Security

Unpatched vulnerabilities

Paolo PRINETTO

Director
CINI Cybersecurity
National Laboratory
Paolo.Prinetto@polito.it
Mob. +39 335 227529

https://cybersecnatlab.it