TP 2

Champs de deux variables : représentation, gradient, divergence, rotationnel

1 Représentation : la spirale

Soit le champ de vecteurs de \mathbb{R}^2 dans \mathbb{R}^2 défini comme $F(x,y)=(f_1(x,y),f_2(x,y))$ avec

$$f_1(x,y) = -x + y,$$

$$f_2(x,y) = -x - y.$$

1.1 Avec streamplot

- \rightarrow Discrétiser le domaine de représentation $[-3,3] \times [-3,3]$ avec 40 points dans chaque direction. Définir les matrices correspondant aux valeurs de f_1 et f_2 sur cette grille.
- \rightarrow Utiliser plt.streamplot pour tracer le champ de vecteurs F. On utilisera la norme euclidienne du vecteur F pour la colorisation.

1.2 Avec quiver

- >> Utiliser maintenant plt.quiver pour tracer ce champ de vecteurs.
- ➤ Est-ce lisible? Que peut-on faire pour bien voir les flèches? (et le faire bien entendu).

2 Opérateurs du premier ordre

On définit les deux fonctions d_1 et d_2 qui à un point de coordonnées (x, y) associent la norme euclidienne de leur distance aux points (-1, -1) et (1, 1) respectivement.

Soit le champ de vecteurs de \mathbb{R}^2 dans \mathbb{R}^2 défini comme $G(x,y)=(g_1(x,y),g_2(x,y))$ avec

$$g_1(x,y) = -\frac{y+1}{d_1^{1.5}(x,y)} + \frac{x-1}{d_2^{1.5}(x,y)},$$

$$g_2(x,y) = \frac{x+1}{d_1^{1.5}(x,y)} + \frac{y-1}{d_2^{1.5}(x,y)}.$$

 \longrightarrow Tracer côte-à-côte les surfaces correspondant à g_1 et g_2 pour $(x,y) \in [-2,2]^2$.

2.1 Gradient

- \rightarrow Définir une fonction grad qui à une fonction f de \mathbb{R}^2 dans \mathbb{R} associe son gradient.
- ightharpoonup Tracer côte-à-côte les champs correspondant au gradient de chacune des composantes de G.
- Comment améliorer le rendu visuel?

2.2 Divergence

- ightharpoonup Définir une fonction div qui à deux fonctions f_1 et f_2 de \mathbb{R}^2 dans \mathbb{R} associe la divergence de $F=(f_1,f_2)$.
- \rightarrow Tracer la divergence de notre fonction G.

2.3 Rotationnel

On peut "généraliser" la notion de rotationnel pour une fonction de \mathbb{R}^2 dans \mathbb{R}^2 par

$$\operatorname{rot}(F)(x,y) = \frac{\partial f_2}{\partial x}(x,y) - \frac{\partial f_1}{\partial y}(x,y).$$

- ightharpoonup Définir une fonction rot qui à deux fonctions f_1 et f_2 de \mathbb{R}^2 dans \mathbb{R} associe le rotationnel de $F=(f_1,f_2)$.
- \longrightarrow Tracer le rotationnel de notre fonction G.