Review of Mathematical Foundation – Part 1

Yan Liu
Thomas Lord Department of Computer Science
University of Southern California

Credits to Joseph Chuang-Chieh Lin

Logistics

- Course project and TA preference: https://forms.gle/49emCRwYXdzXeRja9
- Piazza is mostly set-up. Questions will be answered shortly

Linear Algebra

Vectorization Example (1/3)

```
y_i = \langle \mathbf{m}, \mathbf{x}_i \rangle

= m_1 x_{i,1} + m_2 x_{i,2} + \ldots + m_k x_{i,k}.

m = \text{np.random.rand(1,5)}

x = \text{np.random.rand(5000000,5)}

#assume k=5
```


 \mathbf{m}^{\top}

Vector Space

Vector Space

A real-valued vector space $V = (\mathcal{V}, +, \cdot)$ is a set \mathcal{V} with two operations:

$$+: \mathcal{V} \times \mathcal{V} \mapsto \mathcal{V}$$

$$\cdot: \mathbb{R} \times \mathcal{V} \mapsto \mathcal{V}$$

where

- \bullet $(\mathcal{V},+)$ is an Abelian group.
- Distributivity holds:
 - $\forall \lambda \in \mathbb{R}$, $\mathbf{x}, \mathbf{y} \in \mathcal{V}$: $\lambda \cdot (\mathbf{x} + \mathbf{y}) = \lambda \cdot \mathbf{x} + \lambda \cdot \mathbf{y}$.
 - $\forall \lambda, \psi \in \mathbb{R}$, $\mathbf{x} \in \mathcal{V}$: $(\lambda + \psi) \cdot \mathbf{x} = \lambda \cdot \mathbf{x} + \psi \cdot \mathbf{x}$.
- $\forall \lambda, \psi \in \mathbb{R}$, $\mathbf{x} \in \mathcal{V}$: $\lambda \cdot (\psi \cdot \mathbf{x}) = (\lambda \psi) \cdot \mathbf{x}$.
- $\forall x \in \mathcal{V}$: $1 \cdot x = x$.
- ⋆ Note: A vector multiplication is not defined.

Linear Combination

Linear Combination

Consider a vector space V and a finite number of vectors $\mathbf{x}_1, \dots, \mathbf{x}_k \in V$. Then, every $\mathbf{v} \in V$ of the form

$$\mathbf{v} = \lambda_1 \mathbf{x}_1 + \cdots \lambda_k \mathbf{x}_k = \sum_{i=1}^k \lambda_i x_i \in V$$

with $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ is a linear combination of the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_k$.

• Question: How to represent **0** as a linear combination of x_1, \ldots, x_k ?

Linearly Independent

Linear (In)dependence

Consider a vector space V with k > 0 vectors $\mathbf{x}_1, \dots, \mathbf{x}_k \in V$.

- If there is a nontrivial linear combination such that $\mathbf{0} = \sum_{i=1}^k \lambda_i x_i$ with at least one $\lambda_i \neq 0$, then we say $\mathbf{x}_1, \dots, \mathbf{x}_k$ are linearly dependent.
- If only the trivial solution exists (i.e., $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$), then we say $\mathbf{x}_1, \dots, \mathbf{x}_k$ are linearly independent.

Remark (1/2)

Consider a vector space V with k linear independent vectors $\mathbf{b}_1, \dots, \mathbf{b}_k$ and m linear combinations

$$\mathbf{x}_{1} = \sum_{i=1}^{k} \lambda_{i,1} \mathbf{b}_{i}$$

$$\vdots$$

$$\mathbf{x}_{m} = \sum_{i=1}^{k} \lambda_{i,m} \mathbf{b}_{i}$$

• Define $\mathbf{B} = [\mathbf{b}_1, \dots, \mathbf{b}_k]$ (i.e., a matrix), then

$$\mathbf{x}_j = oldsymbol{B} oldsymbol{\lambda}_j, ext{ for } oldsymbol{\lambda}_j = \left[egin{array}{c} \lambda_{1j} \ dots \ \lambda_{ki} \end{array}
ight], \ j=1,\ldots,m.$$

Remark (2/2)

We want to test whether $\mathbf{x}_1, \dots, \mathbf{x}_m$ are linearly independent.

- $\bullet \ \sum_{j=1}^m \psi_j \mathbf{x}_j = \mathbf{0}.$
- So,

$$\sum_{j=1}^m \psi_j \mathbf{x}_j = \sum_{j=1}^m \psi_j oldsymbol{B} oldsymbol{\lambda}_j = oldsymbol{B} \sum_{j=1}^m \psi_j oldsymbol{\lambda}_j.$$

- Why does the last equality hold?
- $\{x_1, \ldots, x_m\}$ are linearly independent iff $\{\lambda_1, \ldots, \lambda_m\}$ are linearly independent.

Basis

Spanning/Generating

Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and a set $\mathcal{A} = \{\mathbf{x}_1, \dots, \mathbf{x}_k\} \subseteq \mathcal{V}$.

If every vector $\mathbf{v} \in \mathcal{V}$ can be expressed as a linear combination of vectors in \mathcal{A} , then \mathcal{A} is called a spanning set (or generating set) of V.

• \mathcal{A} spans V; span $(\mathcal{A}) = V$.

Basis

Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and a set $\mathcal{A} \subseteq \mathcal{V}$. Then if one of the following condition holds, we say that \mathcal{A} is a basis of V.

- \mathcal{A} is a minimal generating set of V. No smaller set $\mathcal{A}' \subsetneq \mathcal{A} \subseteq \mathcal{V}$ that spans V.
- ullet A spans V and is also linearly independent.

Dimension

Dimension

The number of basis vectors of a vector space V is the *dimension* of V and denoted by $\dim(V)$.

• For $U \subset V$ a subspace of V, $\dim(U) \leq \dim(V)$

Rank

Rank

Rank: the number of linearly independent columns of a matrix $\mathbf{A} = \mathbb{R}^{m \times n}$. This equals the number of linearly independent rows of \mathbf{A} .

Denote by rank(A) the rank of A.

Linear Mappings/Linear Transformation

A mapping $\Phi: V \mapsto W$ preserves the structure of the vector space if

- $\Phi(\mathbf{x} + \mathbf{y}) = \Phi(\mathbf{x}) + \Phi(\mathbf{y})$
- $\Phi(\lambda \mathbf{x}) = \lambda \Phi(\mathbf{x})$

for all $\mathbf{x}, \mathbf{y} \in V$ and $\lambda \in \mathbb{R}$.

Linear Mapping

For two vector spaces V, W, a mapping $\Phi : V \mapsto W$ is a linear mapping if

$$\forall \mathbf{x}, \mathbf{y} \in V, \forall \lambda, \psi \in \mathbb{R} : \Phi(\lambda \mathbf{x} + \psi \mathbf{y}) = \lambda \Phi(\mathbf{x}) + \psi \Phi(\mathbf{y}).$$

Transformation Matrix

Transformation Matrix

Given vector spaces V, W with corresponding bases $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ and $C = (\mathbf{c}_1, \dots, \mathbf{c}_m)$. Consider a linear mapping $\Phi : V \mapsto W$. For $1 \le j \le n$,

$$\Phi(\mathbf{b}_j) = \alpha_{1,j}\mathbf{c}_1 + \cdots + \alpha_{m,j}\mathbf{c}_m = \sum_{i=1}^m \alpha_{ij}\mathbf{c}_i$$

is the unique representation of $\Phi(\mathbf{b}_j)$ w.r.t. C (i.e., coordinate). Then, we call the $m \times n$ matrix \mathbf{A}_{Φ} , whose elements are $A_{\Phi}(i,j) = \alpha_{ij}$, the transformation matrix of Φ .

• If $\hat{\mathbf{x}}$ is the coordinate of $\mathbf{x} \in V$ w.r.t. B and $\hat{\mathbf{y}} = \Phi(\mathbf{x}) \in W$ w.r.t. C, then $\hat{\mathbf{y}} = \mathbf{A}_{\Phi}(\hat{\mathbf{x}})$.

Transformation Matrix

Transformation Matrix

Given vector spaces V, W with corresponding bases $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ and $C = (\mathbf{c}_1, \dots, \mathbf{c}_m)$. Consider a linear mapping $\Phi : V \mapsto W$. For $1 \le j \le n$,

$$\Phi(\mathbf{b}_j) = \alpha_{1,j}\mathbf{c}_1 + \cdots + \alpha_{m,j}\mathbf{c}_m = \sum_{i=1}^m \alpha_{ij}\mathbf{c}_i$$

is the unique representation of $\Phi(\mathbf{b}_j)$ w.r.t. C (i.e., coordinate). Then, we call the $m \times n$ matrix \mathbf{A}_{Φ} , whose elements are $A_{\Phi}(i,j) = \alpha_{ij}$, the transformation matrix of Φ .

• If $\hat{\mathbf{x}}$ is the coordinate of $\mathbf{x} \in V$ w.r.t. B and $\hat{\mathbf{y}} = \Phi(\mathbf{x}) \in W$ w.r.t. C, then

$$\hat{\mathbf{y}} = \mathbf{A}_{\Phi}(\hat{\mathbf{x}}).$$

Example

Consider a linear mapping $\Phi: V \mapsto W$ and ordered bases $B = (\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ of V and $C = (\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{c}_4)$ of W. Assume that

$$\Phi(\mathbf{b}_1) = \mathbf{c}_1 - \mathbf{c}_2 + 3\mathbf{c}_3 - \mathbf{c}_4$$

 $\Phi(\mathbf{b}_2) = 2\mathbf{c}_1 + \mathbf{c}_2 + 7\mathbf{c}_3 + 2\mathbf{c}_4$
 $\Phi(\mathbf{b}_3) = 3\mathbf{c}_2 + \mathbf{c}_3 + 4\mathbf{c}_4.$

The transformation matrix \mathbf{A}_{Φ} w.r.t. B and C satisfying $\Phi(\mathbf{b}_k) = \sum_{i=1}^4 \alpha_{ik} \mathbf{c}_i$ for k = 1, 2, 3 is

$$m{A}_{\Phi} = [m{lpha}_1, m{lpha}_2, m{lpha}_3] = \left[egin{array}{cccc} 1 & 2 & 0 \ -1 & 1 & 3 \ 3 & 7 & 1 \ -1 & 2 & 4 \end{array}
ight].$$

Norm

Norm

A norm on a vector space V is a function

$$\|\cdot\|: V \mapsto \mathbb{R}$$

 $\mathbf{x} \mapsto \|\mathbf{x}\|$

such that for $\lambda \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$ the following hold:

- $\bullet \|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|.$
- $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.
- $\|\mathbf{x}\| \ge 0$ and $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$.

ℓ_1 norm & ℓ_2 norm

ℓ_1 norm (Manhattan Norm)

For $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_1 := \sum_{i=1}^n |x_i|.$$

ℓ_2 norm

For $\mathbf{x} \in \mathbb{R}^n$,

$$\|\mathbf{x}\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\mathbf{x}^\top \mathbf{x}}.$$

USC

Dot Product

Dot Product

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\mathbf{x}^{\top}\mathbf{y} = \sum_{i=1}^{n} x_i y_i.$$

General Inner Products

Bilinear Mapping f

Given a vector space V. For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\lambda, \psi \in \mathbb{R}$, such that

$$f(\lambda \mathbf{x} + \psi \mathbf{y}, \mathbf{z}) = \lambda f(\mathbf{x}, \mathbf{z}) + \psi f(\mathbf{y}, \mathbf{z})$$

$$f(\mathbf{x}, \lambda \mathbf{y} + \psi \mathbf{z}) = \lambda f(\mathbf{x}, \mathbf{y}) + \psi f(\mathbf{x}, \mathbf{z})$$

Symmetric & Positive Definite (1/6)

Symmetric

Let V be a vector space and $f: V \times V \mapsto \mathbb{R}$ be a bilinear mapping. Then f is symmetric if $f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x})$.

Positive Definite

Let V be a vector space and $f: V \times V \mapsto \mathbb{R}$ be a bilinear mapping. Then f is positive definite if $\forall \mathbf{x} \in V \setminus \{\mathbf{0}\}$, we have

$$f(\mathbf{x}, \mathbf{x}) > 0$$
 and $f(\mathbf{0}, \mathbf{0}) = 0$.

Inner Product

A positive definite & symmetric bilinear mapping $f: V \times V \mapsto \mathbb{R}$ is called an inner product on V and we write $f(\mathbf{x}, \mathbf{y})$ as $\langle \mathbf{x}, \mathbf{y} \rangle$.

Orthogonal Matrix

Orthogonal Matrix

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix iff its columns are orthonormal so that

$$\mathbf{A}\mathbf{A}^{\top} = \mathbf{I} = \mathbf{A}^{\top}\mathbf{A},$$

which implies

$$A^{-1} = A^{\top}$$
.

Remark

Transformations by orthogonal matrices do NOT change the length of a vector.

$$\|\mathbf{A}\mathbf{x}\|^2 = (\mathbf{A}\mathbf{x})^{\top}(\mathbf{A}\mathbf{x}) = \mathbf{x}^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{x}^{\top}\mathbf{I}\mathbf{x} = \mathbf{x}^{\top}\mathbf{x} = \|\mathbf{x}\|^2.$$

Let θ be the angle between $\mathbf{A}\mathbf{x}$ and $\mathbf{A}\mathbf{y}$, what is $\cos\theta$?

Orthogonality

Orthogonality

- Two vectors **x** and **y** are orthogonal if and only if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.
 - We write $\mathbf{x} \perp \mathbf{y}$.
- If x and y are orthogonal and ||x|| = ||y|| = 1, then x and y are both orthonormal.

Matrix Decomposition

Eigenvalue Equation

Eigenvalues & Eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square matrix. Then

- $\lambda \in \mathbb{R}$ is an eigenvalue of **A** and
- $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ is the corresponding eigenvector of A

if
$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
.

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \iff (\mathbf{A} - \lambda\mathbf{I})\mathbf{x} = \mathbf{0}$$

Equivalent statements:

- λ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$.
- There exists an $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ with $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ (i.e., $(\mathbf{A} \lambda \mathbf{I}_n)\mathbf{x} = \mathbf{0}$) that can be solved non-trivially (i.e., $\mathbf{x} \neq \mathbf{0}$).
- $\operatorname{rank}(\boldsymbol{A} \lambda \boldsymbol{I}_n) < n$.
- $\det(\boldsymbol{A} \lambda \boldsymbol{I}_n) = 0.$

Cholesky Decomposition

Cholesky Decomposition

A symmetric, positive definite matrix \mathbf{A} can be factorized into a product $\mathbf{A} = \mathbf{L}\mathbf{L}^{\top}$, where \mathbf{L} is a lower-triangular matrix with positive diagonal elements.

Example of Cholesky Factorization

$$m{A} = egin{bmatrix} a_{11} & a_{21} & a_{31} \ a_{21} & a_{22} & a_{32} \ a_{31} & a_{32} & a_{33} \end{bmatrix} = m{L}m{L}^ op = egin{bmatrix} \ell_{11} & 0 & 0 \ \ell_{21} & \ell_{22} & 0 \ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix} egin{bmatrix} \ell_{11} & \ell_{21} & \ell_{31} \ 0 & \ell_{22} & \ell_{32} \ 0 & 0 & \ell_{33} \end{bmatrix}.$$

We have

$$\mathbf{A} = \begin{bmatrix} \ell_{11}^2 & \ell_{21}\ell_{11} & \ell_{31}\ell_{11} \\ \ell_{21}\ell_{11} & \ell_{21}^2 + \ell_{22}^2 & \ell_{31}\ell_{21} + \ell_{32}\ell_{22} \\ \ell_{31}\ell_{11} & \ell_{31}\ell_{21} + \ell_{32}\ell_{22} & \ell_{31}^2 + \ell_{32}^2 + \ell_{33}^2 \end{bmatrix}$$

Finally, solve $\ell_{11}, \ldots, \ell_{33}$.

Example Steps for Cholesky Factorization

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} \ell_{11}^2 & \ell_{21}\ell_{11} & \ell_{31}\ell_{11} \\ \ell_{21}\ell_{11} & \ell_{21}^2 + \ell_{22}^2 & \ell_{31}\ell_{21} + \ell_{32}\ell_{22} \\ \ell_{31}\ell_{11} & \ell_{31}\ell_{21} + \ell_{32}\ell_{22} & \ell_{31}^2 + \ell_{32}^2 + \ell_{33}^2 \end{bmatrix}$$

•
$$\ell_{11} = \sqrt{a_{11}}$$
, $\ell_{21} = \frac{a_{21}}{\ell_{11}}$, $\ell_{22} = \sqrt{a_{22} - \ell_{21}^2}$, $\ell_{31} = \frac{a_{31}}{\ell_{11}}$, $\ell_{32} = \frac{a_{32} - \ell_{31}\ell_{21}}{\ell_{22}}$, $\ell_{33} = \sqrt{a_{33} - \ell_{31}^2 - \ell_{32}^2}$.

Motivations of Using Cholesky Decomposition

- Symmetric positive definite matrices require frequent manipulation.
 - E.g., Covariance matrix of a multivariate Gaussian variable.
 - The Cholesky factorization of the covariance matrix allows us to generate samples from a Gaussian distribution.
- Computing gradients in deep stochastic models such as variational auto-encoder (VAE).
- Compute determinants efficiently.

USC

- $\det(\mathbf{A}) = \det(\mathbf{L}) \det(\mathbf{L}^{\top}) = \det(\mathbf{L})^2$.
- Note: det(L) can be computed efficiently (∵ triangular).

Eigendecomposition (Diagonalization)

Theorem [Eigendecomposition (Diagonalization)]

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be factored into

$$A = PDP^{-1}$$

where $P \in \mathbb{R}^{n \times n}$ and D is a diagonal matrix whose diagonal entries are the eigenvalues of A

if and only if

the eigenvectors of **A** form a basis of \mathbb{R}^n .

Remark

The spectral theorem tells us that:

We can find an orthonormal basis of the corresponding vector space consisting of eigenvectors of of a symmetric matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$.

Theorem

A symmetric matrix $\boldsymbol{S} \in \mathbb{R}^{n \times n}$ can be always diagonalized.

Why Singular Value Decomposition?

- It can be applied to all matrices (not only to square matrices).
- It always exists.

Illustration

$$\mathbf{A} \in \mathbb{R}^{m \times n}$$
, rank $(\mathbf{A}) = r \leq \min(m, n)$:

- $U \in \mathbb{R}^{m \times m}$ with orthogonal columns vectors u_i , $i = 1, \ldots, m$.
- $V \in \mathbb{R}^{n \times n}$ with orthogonal columns vectors v_j , $j = 1, \ldots, n$.
- $\Sigma \in \mathbb{R}^{m \times n}$ with $\Sigma_{ii} = \sigma_i \ge 0$ and $\Sigma_{ij} = 0$ for $i \ne j$.
 - σ_i : singular values; $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r \geq 0$.
 - u_i : left-singular vectors;
 - \mathbf{v}_j : right-singular vectors;

SVD & Eigendecomposition

• Recall the eigendecomposition of a symmetric positive definite matrix

$$S = S^{\top} = PDP^{\top}.$$

with the corresponding SVD

$$S = U\Sigma V^{\top}$$

so
$$\boldsymbol{U} = \boldsymbol{P} = \boldsymbol{V}$$
, $\boldsymbol{D} = \boldsymbol{\Sigma}$.

The first step: Constructing the right-singular vectors

- Recall: Eigenvectors of a symmetric matrix form an orthonormal basis (The Spectral theorem).
- Also, we can always construct a symmetric, positive semidefinite matrix $\mathbf{A}^{\top} \mathbf{A} \in \mathbb{R}^{n \times n}$ from any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- Thus,

$$m{A}^{ op}m{A} = m{P}m{D}m{P}^{ op} = m{P} \left[egin{array}{cccc} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{array} \right] m{P}^{ op},$$

where P is orthogonal and composed of orthonormal eigenbasis.

 $\star \lambda_i \geq 0$ are the eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$.

The first step (2/2)

Assume the SVD of A exists.

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = (\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}}(\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}}) = \mathbf{V}\mathbf{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}}$$

where $\boldsymbol{U}, \boldsymbol{V}$ are orthonormal matrices $(:: \boldsymbol{U}^{\top} \boldsymbol{U} = \boldsymbol{I})$. So,

$$m{A}^{ op}m{A} = m{V}m{\Sigma}^{ op}m{\Sigma}m{V}^{ op} = m{V} egin{bmatrix} \sigma_1^2 & 0 & 0 \ 0 & \ddots & 0 \ 0 & 0 & \sigma_n^2 \end{bmatrix} m{V}^{ op}$$

• Hence, we identify $\mathbf{V}^{\top} = \mathbf{P}^{\top}$ (right-singular vectors) and $\sigma_i^2 = \lambda_i$.

The second step: Constructing the left-singular vectors

- Similarly, we can always construct a symmetric, positive semidefinite matrix $\mathbf{A}\mathbf{A}^{\top} \in \mathbb{R}^{m \times m}$ from any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$.
- Thus, by assuming the SVD of A exists, we have

$$m{A}m{A}^{ op} = (m{U}m{\Sigma}m{V}^{ op})(m{U}m{\Sigma}m{V}^{ op})^{ op} = m{U}m{\Sigma}m{V}^{ op}m{V}m{\Sigma}^{ op}m{U}^{ op}$$
 $= m{U}egin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_m^2 \end{bmatrix} m{U}^{ op}$

Note: AA^{\top} and $A^{\top}A$ have the same eigenvalues.

Vector Calculus

Motivations

- Machine learning algorithms that optimize an objective function w.r.t. a set of model parameters.
- Examples:
 - Curve-fitting.
 - Neural networks (parameters as weights & biases of layers, repeatedly application of chain rule, etc.)
 - Gaussian mixture models (maximizing the likelihood of the model).
- We focus on functions.
 - $f: \mathbb{R}^D \mapsto \mathbb{R}$ (i.e., $\mathbf{x} \mapsto f(\mathbf{x})$).

Derivative

Consider a univariate function y = f(x), $x, y \in \mathbb{R}$.

Difference Quotient

$$\frac{\delta y}{\delta x} := \frac{f(x + \delta x) - f(x)}{\delta x}.$$

Derivative

For h > 0, the derivative of f at x:

$$\frac{\mathrm{d}f}{\mathrm{d}x} := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Taylor Series

For a function $f: \mathbb{R} \mapsto \mathbb{R}, f \in \mathcal{C}^{\infty}$, the Taylor series f at x_0 is:

$$T_{\infty}(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

For $x_0 = 0$, it is the *Maclaurin series*.

f is analytic: $f(x) = T_{\infty}(x)$.

Differentiation Rules

- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x).
- (f(x) + g(x))' = f'(x) + g'(x).
- $(g(f(x)))' = (g \circ f)'(x) = g'(f(x))f'(x)$.
 - Chain rule.
- **Example:** Compute h'(x) where $h(x) = (2x + 1)^4$.

Partial Derivative

Partial Derivative

For a function $f: \mathbb{R}^n \to \mathbb{R}$ and $x \in \mathbb{R}^n$ of n variables x_1, \ldots, x_n , the partial derivatives are:

$$\frac{\partial f}{\partial x_1} = \lim_{h \to 0} \frac{f(x_1 + h, x_2, \dots, x_n) - f(\mathbf{x})}{h}$$

$$\vdots$$

$$\frac{\partial f}{\partial x_n} = \lim_{h \to 0} \frac{f(x_1 + h, x_2, \dots, x_n) - f(\mathbf{x})}{h}$$

We collect them in the row vector:

$$\nabla_{\mathbf{x}} f = \frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1} \frac{\partial f(\mathbf{x})}{\partial x_2} \cdots \frac{\partial f(\mathbf{x})}{\partial x_n} \right]$$

Examples

Example

Given
$$f(x,y) = (x+2y^3)^2$$
, compute $\frac{\partial f(x,y)}{\partial x}$ and $\frac{\partial f(x,y)}{\partial y}$.

Example

Given $f(x,y) = x_1^2 x_2 + x_1 x_2^3 \in \mathbb{R}$, compute $\frac{\partial f(x,y)}{\partial x}$, $\frac{\partial f(x,y)}{\partial y}$ and $\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$.

Basic Partial Differentiation Rules

•
$$\frac{\partial}{\partial \mathbf{x}}(f(\mathbf{x})g(\mathbf{x})) = \frac{\partial f}{\partial \mathbf{x}}g(\mathbf{x}) + f(\mathbf{x})\frac{\partial g}{\partial \mathbf{x}}$$
.

•
$$\frac{\partial}{\partial \mathbf{x}}(f(\mathbf{x}) + g(\mathbf{x})) = \frac{\partial f}{\partial \mathbf{x}} + \frac{\partial g}{\partial \mathbf{x}}$$
.

•
$$\frac{\partial}{\partial \mathbf{x}}(g \circ f)(\mathbf{x}) = \frac{\partial g}{\partial \mathbf{x}}(g(f(\mathbf{x}))) = \frac{\partial g}{\partial f} \frac{\partial f}{\partial \mathbf{x}}$$
.

• Chain rule.

Chain Rule (Partial Differentiation)

• Consider a function $f: \mathbb{R}^2 \mapsto \mathbb{R}$ of two variables x_1, x_2 .

•
$$x_1(t), x_2(t) : \mathbb{R} \mapsto \mathbb{R}$$
.

Then,

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \end{bmatrix} \begin{bmatrix} \frac{\partial x_1(t)}{\partial t} \\ \frac{\partial x_2(t)}{\partial t} \end{bmatrix} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t}.$$

Here 'd' denotes the gradient and ' ∂ ' denotes partial derivatives.

- **Note:** Here the 't' in dt is in \mathbb{R}^1 .
- Trick: View $[x_1, x_2]^{\top}$ as $\mathbf{x} \in \mathbb{R}^2$.

 $\frac{\mathrm{d}f}{\mathrm{d}\mathbf{x}}$: \mathbb{R} w.r.t. \mathbb{R}^2 .

 $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}$: \mathbb{R}^2 w.r.t. \mathbb{R} .

Example

Example

Consider $f(x_1, x_2) = x_1^2 + 2x_2$, where $x_1 = \sin t$ and $x_2 = \cos t$. Calculate

$$\frac{\mathrm{d}f}{\mathrm{d}t} = 2$$

Heads up

We will see that

- $f: \mathbb{R}^D \to \mathbb{R}$: the gradient is a $1 \times D$ row vector.
- $\mathbf{f}: \mathbb{R} \mapsto \mathbb{R}^E$: the gradient is a $E \times 1$ column vector.
- $\mathbf{f}: \mathbb{R}^D \mapsto \mathbb{R}^E$: the gradient is a $E \times D$ matrix.

Thank you!

53