## Esame Scritto 17/12/2018 Esperimentazioni II – Primo Modulo

1) Dato il circuito presentato in figura calcolare il valore ed il verso della corrente che passa nella resistenza  $R_1$  quando il circuito si trova nel suo stato stazionario.



**Soluzione** 

L'induttanza è un cortocircuito quindi la tensione ai suoi capi vale 0 V. La tensione ai capi della resistenza  $R_1$  è di 10 V e la corrente che circola sarà  $I_1 = \frac{10}{5} mA = 2 mA$ .

2) Un filtro RC passa basso ha una frequenza di taglio di 1 kHz ed è composto da una resistenza di 5 k $\Omega$  ed un condensatore C. Se l'uscita di questo filtro è collegata ad un carico resistivo di 5 k $\Omega$  quale è la nuova frequenza di taglio?

## **Soluzione**



N.B.: Lo schema circuitale fa parte della soluzione

La capacità del condensatore è 
$$C = \frac{1}{2\pi R f_H} = \frac{1}{2\pi 5 \cdot 10^3 \cdot 1 \cdot 10^3} = \frac{10^{-7}}{\pi} F \simeq 31.8 \, nF$$
.

Per calcolare la nuova frequenza di taglio si applica Thevenin, avendo avuto cura di scambiare R<sub>2</sub> e C.

$$R_{Th} = \frac{5 k \cdot 5 k}{5 k + 5 k} = 2.5 k\Omega$$
. La nuova frequenza di taglio sarà  $f_H = \frac{1}{2 \pi 2.5 \cdot 10^3 \cdot 10^{-7} / \pi} = 2 kHz$ .

## 3) Dato il circuito presentato in figura calcolare la tensione $V_i$ continua che bisogna applicare all'ingresso affinché il punto di funzionamento $V_o$ sia di 5 V. Il transistor ha $\beta_f=140$ .



## **Soluzione**

La corrente che passa sul collettore è  $I_c = \frac{12-5}{0.1} mA = 70 mA$ , quindi la corrente di base del transistor è  $I_b = \frac{70}{140} mA = 0.5 mA$ .

La tensione di ingresso è  $V_i = (0.5 \cdot 10^{-3} \cdot 5 \cdot 10^3 + 0.7) V = 3.2 V$ .