# RADII OF COVERING DISKS FOR LOCALLY UNIVALENT HARMONIC MAPPINGS

SERGEY YU. GRAF, SAMINATHAN PONNUSAMY, AND VICTOR V. STARKOV

ABSTRACT. For a univalent smooth mapping f of the unit disk  $\mathbb{D}$  of complex plane onto the manifold  $f(\mathbb{D})$ , let  $d_f(z_0)$  be the radius of the largest univalent disk on the manifold  $f(\mathbb{D})$  centered at  $f(z_0)$  ( $|z_0|<1$ ). The main aim of the present article is to investigate how the radius  $d_h(z_0)$  varies when the analytic function h is replaced by a sense-preserving harmonic function  $f=h+\overline{g}$ . The main result includes sharp upper and lower bounds for the quotient  $d_f(z_0)/d_h(z_0)$ , especially, for a family of locally univalent Q-quasiconformal harmonic mappings  $f=h+\overline{g}$  on |z|<1. In addition, estimate on the radius of the disk of convexity of functions belonging to certain linear invariant families of locally univalent Q-quasiconformal harmonic mappings of order  $\alpha$  is obtained.

### 1. Introduction and Main results

Let  $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$  be the unit disk, and h be a smooth univalent mapping of the unit disk  $\mathbb{D}$  onto two-dimensional manifold M. For a point  $a \in \mathbb{D}$ , we write  $d_h(z)$  as the radius of the largest univalent disk centered at h(a) on the manifold M. Here a univalent disk on M centered at h(a) means that h maps an open subset of  $\mathbb{D}$  containing the point a univalently onto this disk.

The question about lower estimation of  $d_h$  for univalent analytic functions first was considered in papers of Koebe [16] and Bieberbach [2] in connection with the well known problem of covering disk in the class  $\mathcal{S}$ . Here  $\mathcal{S}$  denotes the classical family of all normalized univalent (analytic) functions in  $\mathbb{D}$  investigated by a number of researchers (see [12, 14, 21]). In the class of analytic functions h in  $\mathbb{D}$  with h'(0) = 1, the determination of the exact value of the greatest lower bound of all  $d_h$  is one of the most important problems in geometric function theory of one complex variable. For historical discussion of the attempts of various mathematicians to estimate the lower bound for  $d_h(z)$ , we refer to [18] and also [4, 6, 7] for recent developments.

If  $\mathcal{L}\mathcal{U}$  denotes the family of functions h analytic and locally univalent  $(h'(z) \neq 0)$  in  $\mathbb{D}$ , then the classical Schwarz lemma for analytic functions gives the following well-known sharp upper estimate for  $d_h(z)$ :

$$d_h(z) \le |h'(z)|(1-|z|^2).$$

Often the right hand side quantity, namely,  $r(h(z), h(\mathbb{D})) = |h'(z)|(1 - |z|^2)$  is referred to as the conformal radius of the domain  $h(\mathbb{D})$  at h(z). Sharp and nontrivial lower estimate for  $d_h(z)$  was obtained by Pommerenke [20] in a detailed analysis of

<sup>2000</sup> Mathematics Subject Classification. Primary: 30C62, 31A05; Secondary: 30C45,30C75. Key words and phrases. Locally univalent harmonic mappings, linear and affine invariant families, convex and close-to-convex functions, and covering theorems.

what is called *linear invariant families* of locally univalent analytic functions in  $\mathbb{D}$ . Throughout we denote by Aut ( $\mathbb{D}$ ), the set of all conformal automorphisms (Möbius self-mappings)  $\phi(z) = e^{i\theta} \frac{z+a}{1+\overline{a}z}$ , where |a| < 1 and  $\theta \in \mathbb{R}$ , of the unit disk  $\mathbb{D}$ .

**Definition 1.** (cf. [20]) A non-empty collection  $\mathfrak{M}$  of functions from  $\mathcal{L}\mathcal{U}$  is called a linear invariant family (LIF) if for each  $h \in \mathfrak{M}$ , normalized such that  $h(z) = z + \sum_{k=2}^{\infty} a_k(h)z^k$ , the functions  $H_{\phi}(z)$  defined by

$$H_{\phi}(z) = \frac{h(\phi(z)) - h(\phi(0))}{h'(\phi(0))\phi'(0)} = z + \dots,$$

belong to  $\mathfrak{M}$  for each  $\phi \in \operatorname{Aut}(\mathbb{D})$ .

The order of the family  $\mathfrak{M}$  is defined to be  $\alpha := \operatorname{ord} \mathfrak{M} = \sup_{h \in \mathfrak{M}} |a_2(h)|$ . The universal LIF, denoted by  $\mathcal{U}_{\alpha}$ , is defined to be the collection of all linear invariant families  $\mathfrak{M}$  with order less than or equal to  $\alpha$  (see [20]). An interesting fact about the order of a LIF family is that many properties of it depend only on the order of the family. It is well-known [20] that  $\mathcal{U}_{\alpha} \neq \emptyset$  if and only if  $\alpha \geq 1$ . The family  $\mathcal{U}_1$  is precisely the family  $\mathcal{K}$  of all normalized convex univalent (analytic) functions whereas  $\mathcal{S} \subset \mathcal{U}_2$ .

Note that  $\mathcal{U}_{\alpha}$  is the largest LIF of functions h with the restriction of growth (see [26]):

$$|h'(z)| \le \frac{(1+|z|)^{\alpha-1}}{(1-|z|)^{\alpha+1}}.$$

In [20], Pommerenke has proved that for each  $h \in \mathcal{U}_{\alpha}$  the following sharp lower estimate of  $d_h(z)$  holds:

$$d_h(z) \ge \frac{1}{2\alpha} |h'(z)| (1 - |z|^2).$$

In the present paper we obtain estimate of the functional  $d_f(z)$  when instead of analytic functions h(z) we consider harmonic locally univalent mappings

(1.1) 
$$f(z) = h(z) + \overline{g(z)} = \sum_{k=1}^{\infty} \left( a_k z^k + a_{-k} \overline{z}^k \right),$$

i.e. when  $\overline{g(z)}$  is added to the functions h. In the above decomposition of f, the functions h and g are called the analytic and co-analytic parts of f, respectively. We say that a harmonic functions  $f = h + \overline{g}$  is sense-preserving if the Jacobian  $J_f(z) = |h'(z)|^2 - |g'(z)|^2$  of f is positive. Lewy's theorem [17] (see also for example [13, Chapter 2, p. 20] and [22]) implies that every harmonic function f on  $\mathbb D$  is locally one-to-one and sense-preserving on  $\mathbb D$  if and only if  $J_f(z) > 0$  in  $\mathbb D$ . Note that  $J_f(z) > 0$  in  $\mathbb D$  if and only if  $h'(z) \neq 0$  and there exists an analytic function  $\omega_f$  in  $\mathbb D$  such that

$$(1.2) |\omega_f(z)| < 1 for z \in \mathbb{D},$$

where  $\omega_f(z) = g'(z)/h'(z)$ . Here  $\omega_f$  is referred to as the (complex) dilatation of the harmonic mapping  $f = h + \overline{g}$ . When it is convenient, we simply use the notation  $\omega$  instead of  $\omega_f$ .

There are different generalizations of the notion of the linear invariant family to the case of harmonic mappings. For example, the question about a lower estimate of the radius  $d_f(0)$  of the univalent disk centered at the origin was examined by Sheil-Small [24] in the linear and affine invariant families of univalent harmonic functions f. There are a number of articles in the literature proving such inequalities or studying the related mappings in various settings. For example, see [4, 5, 6, 7, 8, 9, 10, 27, 29], and also the work from [3] in which one can obtain a lower bound on the radius for quasi-regular mappings. The concept of linear and affine invariance was also discussed by Schaubroeck [23] for the case of locally univalent harmonic mappings.

**Definition 2.** The family  $\mathcal{LU}_H$  of locally univalent sense-preserving harmonic functions f in the disk  $\mathbb{D}$  of the form (1.1) is called a *linear invariant family* (LIF) if for each  $f = h + \overline{g} \in \mathcal{LU}_H$  the following conditions are fulfilled:  $a_1 = 1$  and

$$\frac{f(\phi(z)) - f(\phi(0))}{h'(\phi(0))\phi'(0)} \in \mathcal{LU}_H$$

for each  $\phi \in \text{Aut}(\mathbb{D})$ . A family  $\mathcal{AL}_H$  is called *linear and affine invariant* (ALIF) if it is LIF and in addition each  $f \in \mathcal{AL}_H$  satisfies the condition that

$$\frac{f(z) + \varepsilon \overline{f(z)}}{1 + \varepsilon \overline{f_{\overline{z}}(0)}} \in \mathcal{AL}_H \text{ for every } \varepsilon \in \mathbb{D}.$$

The number ord  $\mathcal{AL}_H = \sup_{f \in \mathcal{AL}_H} |a_2|$  is known as the order of the ALIF  $\mathcal{AL}_H$ .

The order of LIF  $\mathcal{LU}_H$  without the assumption of affine invariance property is defined in the same way: ord  $\mathcal{LU}_H = \sup_{f \in \mathcal{LU}_H} |a_2|$ .

Throughout the discussion, we suppose that the orders of these families, namely, ord  $\mathcal{AL}_H$  and ord  $\mathcal{LU}_H$ , are finite. The universal linear and affine invariant family, denoted by  $\mathcal{AL}_H(\alpha)$ , is the largest ALIF  $\mathcal{AL}_H$  of order  $\alpha = \text{ord }\mathcal{AL}_H$ . Thus, the subfamily  $\mathcal{AL}_H^0$  of ALIF  $\mathcal{AL}_H$  consists of all functions  $f \in \mathcal{AL}_H$  such that  $f_{\overline{z}}(0) = 0$ . If  $f \in \mathcal{AL}_H^0$  is univalent in  $\mathbb{D}$ , then according to the result of Sheil-Small [24] one has the following sharp lower estimate:

$$(1.3) d_f(0) \ge \frac{1}{2\alpha}.$$

For  $\alpha > 0$  and  $Q \geq 1$ , denote by  $\mathcal{H}(\alpha, Q)$  the set of all locally univalent Q-quasiconformal harmonic mappings  $f = h + \overline{g}$  in  $\mathbb{D}$  of the form (1.1) with the normalization  $a_1 + a_{-1} = 1$  such that

$$h(z)/h'(0) \in \mathcal{U}_{\alpha}, \ |g'(z)/h'(z)| \le k, \ k = (Q-1)/(Q+1) \in [0,1).$$

The family  $\mathcal{H}(\alpha, Q)$  was introduced and investigated in details [27, 28]. In particular, he established double-sided estimates of the value  $d_f(z)$  for functions belonging to the family  $\mathcal{H}(\alpha, Q)$  (see [29]).

Note that the classes  $\mathcal{H}(\alpha, Q)$ , which expand with the increasing values of  $\alpha \in [1, \infty]$  and  $Q \in [1, \infty]$ , cover all sense-preserving locally quasiconformal harmonic mappings with the indicated normalization.

We shall restrict ourselves to the case of finite Q. In [27, 28], it was also shown that the family  $\mathcal{H}(\alpha,Q)$  possess the property of linear invariance in the following sense: for each  $f = h + \overline{g} \in \mathcal{H}(\alpha,Q)$  and for every  $\phi(z) = e^{i\theta} \frac{z+a}{1+\overline{a}z} \in \operatorname{Aut}(\mathbb{D})$ , the transformation

(1.4) 
$$\frac{f(\phi(z)) - f(\phi(0))}{\partial_{\theta} f(\phi(0)) |\phi'(0)|} \in \mathcal{H}(\alpha, Q),$$

where  $\partial_{\theta} f(z) = h'(z)e^{i\theta} + \overline{g'(z)e^{i\theta}}$  denotes the directional derivative of the complex-valued function f in the direction of the unit vector  $e^{i\theta}$ .

In [29], Starkov proved that for each  $f \in \mathcal{H}(\alpha, Q)$  and  $z \in \mathbb{D}$ ,

$$\frac{1-|z|^2}{2\alpha Q} \max_{\theta} |\partial_{\theta} f(z)| \le d_f(z) \le Q(1-|z|^2) \min_{\theta} |\partial_{\theta} f(z)|$$

which is equivalent to

$$(1.5) \quad \frac{1-|z|^2}{2\alpha Q} \left( |h'(z)| + |g'(z)| \right) \le d_f(z) \le Q(1-|z|^2) \left( |h'(z)| - |g'(z)| \right),$$

and the lower estimate is sharp in contrast to the upper one.

One of the main aims of this article is to establish sharp estimations of the ratio  $d_f(z)/d_h(z)$  for Q-quasiconformal harmonic mappings  $f = h + \overline{g}$ . In particular, sharp upper estimate in (1.5) is obtained. The ratio  $d_f(z)/d_h(z)$  demonstrates how the radius of the largest univalent disk with the center at h(z) on the manifold  $h(\mathbb{D})$  varies if we add, to the analytic function h, the function  $\overline{g}$ .

We now state our first result.

**Theorem 1.** Let  $f = h + \overline{g} \in \mathcal{H}(\alpha, Q)$  for some  $Q \in [1, \infty]$ , and  $\omega(z) = g'(z)/h'(z)$  be the complex dilatation of the mapping f. Then for  $z \in \mathbb{D}$ ,

(1.6) 
$$1 - k \le m\left(\frac{|\omega(z)|}{k}, Q\right) \le \frac{d_f(z)}{d_h(z)} \le M\left(\frac{|\omega(z)|}{k}, k\right) \le 1 + k,$$

where  $k = (Q-1)/(Q+1) \in [0,1]$ . Here the functions M(.,k) and m(.,Q) are defined as follows:

$$(1.7) \ M(x,k) = \left\{ \begin{array}{ll} 1 + \frac{k}{x} \left\{ 1 - \left(\frac{1}{x} - x\right) \log\left(1 + x\right) \right\} & \text{when } x \in (0,1] \\ \lim_{x \to 0^+} M(x,k) = 1 + \frac{k}{2} & \text{when } x = 0 \end{array} \right.,$$

and

(1.8) 
$$\frac{1}{m(x,Q)} = \begin{cases} \int_0^1 \frac{1 + \varphi^{-1}(\varphi(t)/Q)x}{1 - kx + \varphi^{-1}(\varphi(t)/Q)(x - k)} dt & \text{when } Q < \infty \\ 0 & \text{when } Q = \infty \end{cases},$$

with

$$\varphi(t) = \frac{\pi}{2} \frac{\mathcal{K}'(t)}{\mathcal{K}(t)} \quad (t \in (0,1))$$

where K denotes the (Legendre) complete elliptic integral of the first kind given by

$$\mathcal{K}(t) = \int_0^{\pi/2} \frac{dx}{\sqrt{1 - t^2 \sin^2 x}} = \int_0^1 \frac{dx}{\sqrt{(1 - x^2)(1 - t^2 x^2)}}$$

and  $\mathcal{K}'(t) = \mathcal{K}(\sqrt{1-t^2})$ . The argument t is sometimes called the modulus of the elliptic integral  $\mathcal{K}(t)$ .

Estimations in (1.6) are sharp for the family  $\mathcal{H}(\alpha, Q)$  for  $Q < \infty$  and for each  $\alpha \geq 1$ . When  $Q = \infty$ , estimations in (1.6) are sharp in the sense that for each  $z \in \mathbb{D}$ ,

$$\inf_{f\in\mathcal{H}(\alpha,\infty)}\frac{d_f(z)}{d_h(z)}=m(x,\infty)=0\quad and\quad \sup_{f\in\mathcal{H}(\alpha,\infty)}\frac{d_f(z)}{d_h(z)}=M(1,1)=2.$$

**Remark 1.** For fixed  $\zeta \in \mathbb{D}$ , the least value of the upper estimation in (1.6) is attained when x = 0; that is when  $\omega(\zeta) = 0$ . In this case the estimation in (1.6) takes the form

$$\frac{d_f(\zeta)}{d_h(\zeta)} \le 1 + \frac{k}{2}.$$

Suppose that  $f = h + \overline{g} \in \mathcal{H}(\alpha, Q)$ ,  $\alpha \in [1, \infty]$ , and  $f_1(z) = C \cdot f(z) = h_1(z) + \overline{g_1(z)}$ , where C is a complex constant. Then the following relations hold:

$$d_{f_1}(z) = |C| d_f(z)$$
 and  $d_{h_1}(z) = |C| d_h(z), z \in \mathbb{D}$ .

Moreover, after appropriate normalization, every Q-quasiconformal harmonic mapping in  $\mathbb{D}$  belongs to the family  $\mathcal{H}(\alpha, Q)$  for some  $\alpha$ . Therefore an equivalent formulation of Theorem 1 may now be stated.

**Theorem 2.** Let  $f = h + \overline{g}$  be a locally univalent Q-quasiconformal harmonic mapping of the disk  $\mathbb{D}$ ,  $Q \in [1, \infty]$ , and  $\omega(z) = g'(z)/h'(z)$ . Then the inequalities (1.6) continue to hold and the estimations in (1.6) are sharp.

Next, we consider  $f = h + \overline{g} \in \mathcal{H}(\alpha, Q)$  and introduce H(z) = h(z)/h'(0) from  $\mathcal{U}_{\alpha}$ . Then we have (see [27, 28])

$$\frac{1}{1+k} \le |h'(0)| \le \frac{1}{1-k}$$

and thus,

$$\frac{d_H(z)}{1+k} \le d_h(z) = |h'(0)| \cdot d_H(z) \le \frac{d_H(z)}{1-k}.$$

These inequalities and (1.6) give the following.

Corollary 1. Let  $f = h + \overline{g} \in \mathcal{H}(\alpha, Q)$  and h(z) = h'(0)H(z). Then we have

$$\frac{d_H(z)}{Q} \le d_f(z) \le Q d_H(z) \text{ for } z \in \mathbb{D}.$$

The sharpness of the last double-sided inequalities at the point z=0 follows from the proof of Theorem 1.

We now state the remaining results of the article.

**Theorem 3.** Let  $f = h + \overline{g}$  be a locally quasiconformal harmonic mapping belonging to the family  $\mathcal{AL}_H$  with  $\operatorname{ord}(\mathcal{AL}_H) = \alpha < \infty$ ,  $\omega(z) = g'(z)/h'(z)$  and  $|\omega(z)| < 1$ . Then

(1.9) 
$$d_f(z) \ge \frac{1 - |\omega(z)|}{2\alpha} \left(\frac{1 - |z|}{1 + |z|}\right)^{\alpha} \quad \text{for } z \in \mathbb{D}.$$

The estimation  $d_f(0)$  is sharp for example in the universal ALIF  $\mathcal{AL}_H(\alpha)$ .

Recall that a locally univalent function f is said to be convex in the disk  $\mathbb{D}(z_0, r) := \{z : |z - z_0| < r\}$  if f maps  $\mathbb{D}(z_0, r)$  univalently onto a convex domain. The radius of convexity of the family  $\mathcal{F}$  of functions defined on the disk  $\mathbb{D}$  is the largest number  $r_0$  such that every function  $f \in \mathcal{F}$  is convex in the disk  $\mathbb{D}(0, r_0)$ .

**Theorem 4.** If  $f \in \mathcal{H}(\alpha, Q)$ , then for every  $z \in \mathbb{D}$ , the function f is convex in the disk  $\mathbb{D}(z, R(z))$ , where

(1.10) 
$$R(z) = \frac{1}{2} \left( R_0 + R_0^{-1} - \sqrt{\left( R_0 - R_0^{-1} \right)^2 + 4|z|^2} \right),$$

and

(1.11) 
$$R_0 = \alpha + k^{-1} - \sqrt{k^{-2} - 1} - \sqrt{\left(\alpha + k^{-1} - \sqrt{k^{-2} - 1}\right)^2 - 1}.$$

In particular, the radius of convexity of the family  $\mathcal{H}(\alpha, Q)$  is no less than  $R_0$ .

The proofs of Theorems 1, 3 and 4 will be presented in Section 2.

## 2. Proofs of the Main results

#### 2.1. **Proof of Theorem 1.** The proof of the theorem is divided into three parts.

**Part 1:** Let  $f = h + \overline{g}$  satisfy the assumptions of Theorem 1. In compliance with the definition of the value  $d_f(0)$ , there exists a boundary point A of the manifold  $f(\mathbb{D})$  such that  $A \in \{w : |w| = d_f(0)\}$ . Consider the smooth curve  $\ell_0 = f^{-1}([0, A))$ , namely, the preimage of the semi-open segment [0, A) with the starting point 0 in the disk  $\mathbb{D}$ . Then

$$d_f(0) = |A| = \left| \int_{\ell_0} df(z) \right| = \min_{\gamma} \left| \int_{\gamma} df(z) \right|,$$

where the minimum is taken over all smooth paths  $\gamma(t)$ ,  $t \in [0, 1)$ , such that  $\gamma(0) = 0$ ,  $|\gamma(t)| < 1$  and  $\lim_{t\to 1^-} |\gamma(t)| = 1$ .

Similarly we define the value

$$d_h(0) = |B| = \left| \int_{\ell} dh(z) \right| = \min_{\gamma} \left| \int_{\gamma} dh(z) \right|,$$

where the simple smooth curve  $\ell = h^{-1}([0, B))$  is emerging from the origin, the preimage of the semi-open segment [0, B) under the mapping h. Consider the following parametrization of the curve  $\ell$ :  $\ell(t) = h^{-1}(Bt)$ ,  $t \in [0, 1)$ . Then  $h'(\ell(t))\ell'(t) = B$ 

and

$$d_{f}(0) = \left| \int_{0}^{1} df(\ell_{0}(t)) \right| \leq \left| \int_{0}^{1} df(\ell(t)) \right|$$

$$= \left| \int_{0}^{1} \left\{ h'(\ell(t))\ell'(t) + \overline{g'(\ell(t))\ell'(t)} \right\} dt \right|$$

$$= \left| B \right| \left| \int_{0}^{1} \left\{ 1 + \frac{\overline{g'(\ell(t))\ell'(t)}}{h'(\ell(t))\ell'(t)} \right\} dt \right|$$

$$\leq d_{h}(0) \left\{ 1 + \int_{0}^{1} \left| \omega(\ell(t)) \right| dt \right\}.$$

$$(2.1)$$

At first we consider the case  $k = \sup_{z \in \mathbb{D}} |\omega(z)| < 1$ . Since  $|\omega(z)| \leq k$  for  $z \in \mathbb{D}$ , we have

$$\omega(0)/k = \overline{a_{-1}}/(k a_1) =: u \in \overline{\mathbb{D}}.$$

If |u| = 1 for k < 1, then we have the inequality

$$d_f(0) \le d_h(0)(1+k) = d_h(0)M(1,k)$$

which proves the upper estimate in the inequality (1.6) for z = 0.

Let us now assume that |u| < 1 for some k < 1. Then, from a generalized version of the classical Schwarz lemma (see for example [14, Chapter VIII, §1]), it follows that

(2.2) 
$$\frac{|\omega(z)|}{k} \le \frac{|z| + |u|}{1 + |u||z|}.$$

Consequently, by (2.1), one has

(2.3) 
$$d_f(0) \le d_h(0) \left\{ 1 + k \int_0^1 \frac{|\ell(t)| + |u|}{1 + |u| |\ell(t)|} dt \right\}.$$

Also, the function  $h^{-1}(B\zeta)$  maps biholomorphically  $\mathbb D$  onto some subdomain of the disk  $\mathbb D$ . Applying the classical Schwarz lemma, we obtain the inequality  $|h^{-1}(B\zeta)| \le |\zeta|$  and hence,  $|\ell(t)| \le t$  holds. Using the last estimate and the inequality (2.3), one can obtain, after evaluating the integral, the inequality

$$d_f(0) \le d_h(0) \left\{ 1 + k \int_0^1 \frac{t + |u|}{1 + |u|t} dt \right\} = d_h(0) M(|u|, k),$$

where M(x, k) is defined by (1.7). The function M(x, k) is strictly increasing on (0, 1] with respect to the variable x and for each fixed  $k \in [0, 1]$ . This follows from the observation that (see (1.7))

$$\frac{\partial M(x,k)}{\partial x} = -\frac{k}{x^2} + \frac{2k}{x^3} \log(1+x) - k \left(\frac{1-x}{x^2}\right),$$

which is positive, since  $\log(1+x) > x - x^2/2$ . Hence

$$(2.4) d_f(0) < d_h(0)M(|u|,k) < d_h(0)M(1,k) = (1+k)d_h(0).$$

We now set k = 1. According to Lewy's theorem [17] for locally univalent harmonic mapping f, we obtain that  $|\omega(z)| \neq 1$  for all  $z \in \mathbb{D}$ . Next we obtain the inequality (2.4) in the case k = 1 by repeating the argument of the case k < 1.

We now begin to prove that the upper estimate in (1.6) is true for all  $\zeta \in \mathbb{D}$ . As mentioned above, the family  $\mathcal{H}(\alpha, Q)$  is linear invariant in the sense of [27, 28] (see (1.4) above). Hence, for each fixed  $\zeta = re^{i\theta} \in \mathbb{D}$   $(r \in [0, 1), \theta \in \mathbb{R})$ , the function F defined by

$$F(z) = \frac{f\left(e^{i\theta} \frac{z+r}{1+rz}\right) - f(re^{i\theta})}{\partial_{\theta} f(re^{i\theta})(1-r^2)} = H(z) + \overline{G(z)}$$

belongs to the family  $\mathcal{H}(\alpha, Q)$ , where H and G are analytic in  $\mathbb{D}$  such that H(0) = G(0) = 0. Therefore, in view of (2.4) for  $k \in [0, 1]$ , we have

$$d_F(0) = \frac{d_f(\zeta)}{|\partial_{\theta} f(\zeta)|(1 - |\zeta|^2)} \le d_H(0)M(x, k),$$

where  $x = |G'(0)/H'(0)|/k = |\omega(\zeta)|/k \in [0, 1]$  if  $k \in [0, 1)$ , and  $x = |G'(0)/H'(0)| = |\omega(\zeta)| \in [0, 1)$  when k = 1. Note that

$$H(z) = \frac{h\left(e^{i\theta}\frac{z+r}{1+rz}\right) - h(re^{i\theta})}{\partial_{\theta}f(re^{i\theta})(1-r^2)}.$$

Consequently,

$$d_H(0) = \frac{d_h(\zeta)}{|\partial_{\theta} f(\zeta)|(1 - |\zeta|^2)}$$

so that

$$d_f(\zeta) \le d_h(\zeta)M(x,k) \le (1+k)d_h(\zeta)$$

and we complete the proof of the upper estimate in (1.6).

Part 2: We now deal with the sharpness of the upper estimate in (1.6). Consider the case  $k \in [0,1)$ . For every  $\alpha \in \mathbb{N}$  and every  $\zeta \in \mathbb{D}$ , we shall indicate functions from the families  $\mathcal{H}(\alpha,Q)$  such that  $d_f(\zeta)/d_h(\zeta) = M(x) = 1 + k$ , where  $x = |\omega(\zeta)|/k$ . Since the families  $\mathcal{H}(\alpha,Q)$  are enlarging with increasing values of  $\alpha$ , the sharpness of the upper estimate in (1.6) will be shown for every  $\zeta \in \mathbb{D}$  and each  $\alpha \in [1,\infty]$ .

Consider the sequence  $\{k_n\}_{n=1}^{\infty}$  of functions from  $\mathcal{U}_n$  defined by

$$k_n(z) = \frac{i}{2n} \left[ \left( \frac{1-iz}{1+iz} \right)^n - 1 \right].$$

Then we have  $d_{k_n}(0) = 1/2n$  (see [20]) and observe that  $k_n$  maps the unit disk  $\mathbb{D}$  univalently onto the Riemann surface  $k_n(\mathbb{D})$  whose boundary described by

$$\partial k_n(\mathbb{D}) = \left\{ \frac{i}{2n} [(i\lambda)^n - 1] : \lambda \in \mathbb{R} \right\} = \left\{ \frac{i}{2n} [s e^{\pm i\pi n/2} - 1] : s \ge 0 \right\}$$

consists of two rays. Then the univalent image of the disk  $\mathbb{D}$  under the mapping

$$f_n(z) = h_n(z) + \overline{g_n(z)} = \frac{1}{1-k} [k_n(z) - k \overline{k_n(z)}] \in \mathcal{H}(n, Q), \ k \in [0, 1),$$

 $(a_1 = \frac{1}{1-k}, a_{-1} = -\frac{k}{1-k})$  represents the manifold with the boundary

$$\partial f_n(\mathbb{D}) = \left\{ \frac{i}{2n(1-k)} [s(e^{\pm i\pi n/2} + k e^{\mp i\pi n/2}) - 1 - k] : s \ge 0 \right\},\,$$

which consists of two rays parallel to the coordinate axes and arising from the point  $-\frac{i}{2n}Q$ . Note that the function  $f_n$  maps the semi-open segment [0,-i) bijectively onto  $[0,-\frac{i}{2n}Q)$  and thus, we conclude that

$$d_{f_n}(0) = \frac{Q}{2n}.$$

This gives

$$d_{f_n}(0) = d_{k_n}(0)Q = d_{h_n}(0)(1+k),$$

where  $h_n(z) = k_n(z)/(1-k)$ . The sharpness of the upper estimate in (1.6) is proved for  $\zeta = 0$  and k < 1.

Next we let  $0 \neq \zeta \in \mathbb{D}$ , k < 1, and consider a conformal automorphism  $\phi(z) = (z + \zeta)/(1 + \overline{\zeta}z)$  of the unit disk  $\mathbb{D}$ . Then the inverse mapping is given by  $\phi^{-1}(z) = (z - \zeta)/(1 - \overline{\zeta}z)$ . From the condition (1.4) of the linear invariance property of the family  $\mathcal{H}(\alpha, Q)$ , it follows that the function f defined by

$$f(z) = \frac{f_n(\phi^{-1}(z)) - f_n(-\zeta)}{\partial_0 f_n(-\zeta)(1 - |\zeta|^2)} = h(z) + \overline{g(z)}$$

belongs to  $\mathcal{H}(\alpha, Q)$ , where h and g have the same meaning as above. Taking into account of the normalization condition for functions in the family  $\mathcal{H}(\alpha, Q)$ , we deduce that

$$\frac{f(\phi(z)) - f(\zeta)}{\partial_0 f(\zeta)(1 - |\zeta|^2)} = f_n(z) = h_n(z) + \overline{g_n(z)}.$$

Therefore,

$$d_{f_n}(0) = \frac{d_f(\zeta)}{|\partial f_0(\zeta)|(1-|\zeta|^2)} = d_{h_n}(0)(1+k).$$

On the other hand, a direct computation gives

$$h_n(z) = \frac{h(\phi(z)) - h(\zeta)}{\partial_0 f(\zeta)(1 - |\zeta|^2)}$$
 and  $d_{h_n}(0) = \frac{d_h(\zeta)}{|\partial f_0(\zeta)|(1 - |\zeta|^2)}$ 

showing that

$$d_{f_n}(0)|\partial f_0(\zeta)|(1-|\zeta|^2) = d_f(\zeta) = d_h(\zeta)(1+k),$$

which completes the proof of the upper estimation in Theorem 1 for  $k \in [0, 1)$ . If k = 1 then for  $j \in \mathbb{N}$ , we consider the sequence  $\{f_{n,j}\}$  of functions

$$f_{n,j}(z) = h_{n,j}(z) + \overline{g_{n,j}(z)} = jk_n(z) - (j-1)\overline{k_n(z)}.$$

We see that  $f_{n,j} \in \mathcal{H}(n,2j-1) \subset \mathcal{H}(n,\infty)$  for each  $j \in \mathbb{N}$ . Therefore,

$$d_{f_{n,j}}(0) = d_{h_{n,j}}(0)M(1, 1 - 1/j).$$

Hence

$$\sup_{j \in \mathbb{N}} \frac{d_{f_{n,j}}(0)}{d_{h_{n,j}}(0)} = M(1,1) = 2.$$



FIGURE 1. The covering disks for functions  $h_2$  and  $f_2$  for k=0.25 with centers at origin and radii 1/3 and 5/12, respectively.

The sharpness of the upper estimation in (1.6) for k = 1,  $\zeta \neq 0$ , can be proved analogously. So, we omit the details.

The images of polar grid in the unit disk under mappings  $h_2$  and  $f_2$  are indicated in Figures 1(a)-(b) which illustrate the sharpness assertions proved in the above estimations.

**Part 3:** Finally, we deal with lower estimation of  $d_f(z)$ . If k = 1, then the lower estimation in (1.6) is trivial because  $m(x, \infty) = 0$ . So, we may assume that  $k \in [0, 1)$ . As in Part 1, we define the boundary points A and B of the manifolds  $f(\mathbb{D})$  and  $h(\mathbb{D})$ , respectively, and smooth curves  $\ell_0 = f^{-1}([0, A))$  and  $\ell$  in the same manner as

in Part 1. Consider the parametrization of the curve  $\ell_0$ :

$$\ell_0(t) = f^{-1}(At), t \in [0, 1).$$

Then  $df(\ell_0(t)) = Adt$  and thus,

$$d_{h}(0) = \left| \int_{0}^{1} dh(\ell(t)) \right|$$

$$\leq \left| \int_{0}^{1} h'(\ell_{0}(t))\ell'_{0}(t) dt \right|$$

$$= \left| \int_{0}^{1} \left\{ h'(\ell_{0}(t))\ell'_{0}(t) + \overline{g'(\ell_{0}(t))\ell'_{0}(t)} \right\} \right.$$

$$\times \left( 1 - \frac{\overline{g'(\ell_{0}(t))\ell'_{0}(t)}}{h'(\ell_{0}(t))\ell'_{0}(t) + \overline{g'(\ell_{0}(t))\ell'_{0}(t)}} \right) dt \right|$$

$$= \left| \int_{0}^{1} \frac{h'(\ell_{0}(t))\ell'_{0}(t)}{h'(\ell_{0}(t))\ell'_{0}(t) + \overline{g'(\ell_{0}(t))\ell'_{0}(t)}} df(\ell_{0}(t)) \right|$$

$$\leq |A| \int_{0}^{1} \frac{dt}{1 - |\omega(\ell_{0}(t))|}.$$

$$(2.5)$$

In view of the inequality (2.2), we find that

(2.6) 
$$|\omega(\ell_0(t))| \le k \frac{|\ell_0(t)| + x}{1 + x|\ell_0(t)|},$$

where  $x = |\omega(0)|/k$ .

It is possible to obtain an estimate for  $|\ell_0(t)| = |f^{-1}(At)|$ ,  $t \in [0,1)$ , with the help of the analog of the Schwarz lemma for Q-quasiconformal automorphisms of the disk. Let F be a Q-quasiconformal automorphism of  $\mathbb{D}$ , and F(0) = 0. It is known (see for example [1, Chapter 10, equality (10.1)]) that the sharp estimation

$$|F(z)| \le \varphi^{-1} \left( Q^{-1} \varphi(|z|) \right)$$

holds, where  $\varphi$  and Q are as in the statement. The function  $f^{-1}(Aw)$  defined on the unit disk  $\{w: |w| < 1\}$  satisfies the conditions  $f^{-1}(0) = 0$  and  $|f^{-1}(Aw)| < 1$ . Let  $\Phi$  be the univalent conformal mapping of the domain  $f^{-1}(A\mathbb{D})$  onto the unit disk  $\mathbb{D}$  and  $\Phi(0) = 0$ . Then the composition  $\Phi \circ f^{-1}(Az)$  is a Q-quasiconformal automorphism of  $\mathbb{D}$  and  $\Phi^{-1}$  satisfies the conditions of the classical Schwarz lemma for analytic functions. Hence, we have

$$|\ell_0(t)| = |\Phi^{-1}(\Phi \circ f^{-1}(At))| \le |\Phi \circ f^{-1}(At)| \le \varphi^{-1}(Q^{-1}\varphi(t)).$$

As a result of it and taking into account of the last estimation, inequalities (2.5) and (2.6), and the fact that the function (1 + yx)/(1 - kx + y(x - k)) is strictly increasing with respect to y on (0,1), we conclude that

$$d_h(0) \le d_f(0) \int_0^1 \frac{1+yx}{1-kx+y(x-k)} dt \le \frac{d_f(0)}{1-k},$$

where  $y = \varphi^{-1}(Q^{-1}\varphi(t)) \le 1$  for  $t \in (0,1)$ . Therefore the lower estimate in (1.6) is sharp at the origin.

The proof of the lower estimation in (1.6) for  $0 \neq \zeta \in \mathbb{D}$  follows easily if we proceed with the same manner as in Part 1 and use the linear invariance property of the family  $\mathcal{H}(\alpha, Q)$ .

For the sharpness of the left side of the inequality in (1.6) for  $k \in [0,1)$ , we consider the functions (see [27, 28])

(2.7) 
$$h_{\alpha}(z) = \frac{1}{2i\alpha} \left[ \left( \frac{1+iz}{1-iz} \right)^{\alpha} - 1 \right] \in \mathcal{U}_{\alpha}$$

and

$$f(z) = h(z) + \overline{g(z)} := \frac{h_{\alpha}(z)}{1+k} + \frac{k\overline{h_{\alpha}(z)}}{1+k}.$$

Then it is a simple exercise to see that

$$d_f(0) = \frac{1}{2\alpha Q}$$
 and  $d_h(0) = \frac{1}{2\alpha(1+k)}$ .

Comparison of radii  $d_h(0)$  and  $d_f(0)$  and sharpness of the lower estimation of  $d_f(0)/d_h(0)$  is illustrated in Figures 2(a)–(b). In these figures, the images of polar grid in the unit disk under mappings  $h_{\alpha}/(1+k)$  and f are indicated.

If  $k \to 1^-$  then from the last equality we obtain

$$\lim_{k \to 1^{-}} d_f(0) = 0 \text{ and } \lim_{k \to 1^{-}} d_h(0) = \frac{1}{4\alpha},$$

so that

$$\inf_{f \in \mathcal{H}(\alpha, \infty)} \frac{d_f(0)}{d_h(0)} = 0.$$

Thus the last equality is sharp not only at the origin but also at points  $z \in \mathbb{D}$ , in view of the degeneration of functions

$$f(z) = \frac{h_{\alpha}(z) + k \overline{h_{\alpha}(z)}}{1 + k}$$

when  $k \to 1^-$ . The proof of the theorem is complete.

**Remark 2.** In some neighbourhood of the origin, it is also possible to obtain a simple lower estimate in the inequality (1.6) without the involvement of elliptic integrals. For example, the well-known theorem of Mori [19] reveals that for Q-quasiconformal automorphism F of the disk  $\mathbb{D}$  such that F(0) = 0, one has

$$|F(z)| \le 16|z|^{1/Q}.$$

Using this result in the estimation of  $|\ell_0(t)|$  in Part 3 of the proof of Theorem 1, one can easily obtain that

$$|\ell_0(t)| = |f^{-1}(At)| = \begin{cases} 16t^{1/Q} \text{ when } 0 \le t < 1/16^{-Q} \\ 1 \text{ when } 16^{-Q} \le t < 1. \end{cases}$$



FIGURE 2. Covering disks for functions  $h_{\alpha}/(1+k)$  and  $f=(h_{\alpha}+k\overline{h}_{\alpha})/(1+k)$  for k=0.25 with centers at origin and radii 1/5 and 3/20, respectively.

The last relation provides an opportunity to estimate the ratio  $d_h(z)/d_f(z)$  by means of an integral of an elementary function, namely,

$$\frac{d_h(z)}{d_f(z)} \leq \frac{1}{m(x,Q)} 
\leq \frac{1}{1-k} \left( 1 - 16^{-Q} + (1-k) \int_0^{16^{-Q}} \frac{1+yx}{1-kx+y(x-k)} dt \right) 
\leq \frac{1}{1-k},$$

where  $y = 16t^{1/Q} \le 1$  for  $t \in [0, 16^{-Q}]$ . Here  $x = |\omega(z)|/k, z \in \mathbb{D}$ .

2.2. **Proof of Theorem 3.** We first prove the inequality (1.9) for z = 0. As in the proof of Theorem 1, consider on the circle  $\{w : |w| = d_f(0)\}$  the boundary point A of the manifold  $f(\mathbb{D})$  and define a curve  $\ell_0 = f^{-1}([0, A))$  with the starting point 0 in  $\mathbb{D}$ . Then

(2.8) 
$$d_f(0) = |A| = \left| \int_{\ell_0} df(\zeta) \right| = \int_{\ell_0} |df(\zeta)| \ge \int_{\ell_0} (|h'(\zeta)| - |g'(\zeta)|) |d\zeta|.$$

In view of the affine invariance property of the family  $\mathcal{AL}_H$ , the function F defined by

$$F(\zeta) = H(\zeta) + \overline{G(\zeta)} = \frac{f(\zeta) - \varepsilon \overline{f(\zeta)}}{1 - \varepsilon \overline{f_{\overline{z}}(0)}}$$

belongs  $\mathcal{AL}_H$  for every  $\varepsilon$  with  $|\varepsilon| < 1$ .

For a fixed  $\zeta$ , we introduce  $\theta(z) = \arg h'(z) - \arg g'(z)$  when  $g'(z) \neq 0$ , and  $\theta(z) = \arg h'(z)$  otherwise. Consider then  $\varepsilon = se^{i\theta(z)}$  for  $s \in [0,1)$ . Therefore, taking into account of the relation  $\overline{f_{\overline{z}}(0)} = \omega(0)$ , we obtain that

$$H'(\zeta) = \frac{h'(\zeta) - sg'(\zeta)e^{i\theta(z)}}{1 - \varepsilon\omega(0)}$$

and thus,

(2.9) 
$$|H'(\zeta)| \le \frac{|h'(\zeta)| - s|g'(\zeta)|}{1 - s|\omega(0)|}.$$

For the other side of the inequality for functions in the family  $\mathcal{AL}_H$ , the inequality

(2.10) 
$$|H'(\zeta)| \ge \frac{(1-|\zeta|)^{\alpha-1}}{(1+|\zeta|)^{\alpha+1}}$$

holds, where  $\alpha = \text{ord}(\mathcal{AL}_H)$  is defined as in the sense of Definition 2. The inequality (2.10) was obtained in [24] for ALIF of univalent harmonic mappings, but the proof is still valid without a change for any ALIF  $\mathcal{AL}_H$  of finite order  $\alpha$ . Using inequalities (2.9) and (2.10), we obtain the inequality

$$|h'(\zeta)| - s|g'(\zeta)| \ge (1 - s|\omega(0)|) \frac{(1 - |\zeta|)^{\alpha - 1}}{(1 + |\zeta|)^{\alpha + 1}}$$

for every  $s \in (0,1)$ . Allowing in the last inequality  $s \to 1^-$  and substituting the resulting estimate into (2.8), we easily obtain that

$$d_f(0) \geq (1 - |\omega(0)|) \int_{\ell_0} \frac{(1 - |\zeta|)^{\alpha - 1}}{(1 + |\zeta|)^{\alpha + 1}} |d\zeta|$$
  
 
$$\geq (1 - |\omega(0)|) \int_0^1 \frac{(1 - t)^{\alpha - 1}}{(1 + t)^{\alpha + 1}} dt = \frac{1 - |\omega(0)|}{2\alpha}.$$

If 0 < |z| < 1, then as in the proof of Theorem 1, we may use the linear invariance property of the family  $\mathcal{AL}_H$  in accordance with the function  $F_1 \in \mathcal{AL}_H$ , where

$$F_1(\zeta) = \frac{f\left(\frac{\zeta+z}{1+\overline{z}\zeta}\right) - f(z)}{h'(z)(1-|z|^2)}.$$

In this way, applying the estimation of  $d_f(0)$  to the function  $F_1$ , we see that

$$d_{F_1}(0) \ge \frac{1 - |\omega_f(0)|}{2\alpha}.$$

Also, we have

$$d_{F_1}(0) = \frac{d_f(z)}{|h'(z)|(1-|z|^2)}.$$

It remains to note that  $|\omega_{F_1}(0)| = |\omega_f(z)|$  and apply the inequality (2.10) to the function h'(z).

In order to prove the sharpness of the estimate of  $d_f(0)$ , we first note that the functions  $p(z) = h_{\alpha}(z) + k\overline{h_{\alpha}(z)}$ , where each  $h_{\alpha}$  has the form (2.7), belong to  $\mathcal{AL}_H(\alpha)$  for every  $k = |\omega(0)| \in [0,1)$ . Indeed, for each  $\alpha$ , the function p is locally univalent and meet the normalization condition of the family  $\mathcal{AL}_H(\alpha)$ , and  $|p_{zz}(0)/2| = |h''_{\alpha}(0)/2| = \alpha$ . Affiliation of the functions

$$q(z) = \frac{p(\phi(z)) - p(\phi(0))}{h'_{\alpha}(\phi(0))\phi'(0)} = \frac{h_{\alpha}(\phi(z)) - h_{\alpha}(\phi(0))}{h'_{\alpha}(\phi(0))\phi'(0)} + k \frac{\overline{h_{\alpha}(\phi(z)) - h_{\alpha}(\phi(0))}}{h'_{\alpha}(\phi(0))\phi'(0)},$$

and

$$w(z) = \frac{q(z) + \varepsilon \overline{q(z)}}{1 + \varepsilon \overline{q_z(0)}}$$

$$= \frac{h_{\alpha}(\phi(z)) - h_{\alpha}(\phi(0))}{h'_{\alpha}(\phi(0))\phi'(0)}$$

$$+ \frac{\overline{h_{\alpha}(\phi(z)) - h_{\alpha}(\phi(0))}}{h'_{\alpha}(\phi(0))\phi'(0)} \left( \frac{k + \varepsilon h'_{\alpha}(\phi(0))\phi'(0) / \overline{(h'_{\alpha}(\phi(0))\phi'(0))}}{1 + \varepsilon k h'_{\alpha}(\phi(0))\phi'(0) / \overline{(h'_{\alpha}(\phi(0))\phi'(0))}} \right)$$

to the family  $\mathcal{AL}_H(\alpha)$  for every conformal automorphism  $\phi$  of the disk  $\mathbb{D}$  and every  $\varepsilon \in \mathbb{D}$ , follow from the membership of the function  $h_{\alpha}$  to the universal LIF  $\mathcal{U}_{\alpha}$ . The analogous reasoning is true after the change of order of the linear and affine transforms of the function p.

Therefore,  $p = h_{\alpha} + k\overline{h_{\alpha}} \in \mathcal{AL}_{H}(\alpha)$  for each  $k \in [0,1)$  and at the same time

$$d_p(0) = \frac{1 - |\omega(0)|}{2\alpha},$$

which proves the sharpness of the established estimate in the universal ALIF  $\mathcal{AL}_H(\alpha)$ . The proof of the theorem is complete.

**Remark 3.** Recall that a domain  $D \subset \mathbb{C}$  is called close-to-convex if its complement  $\mathbb{C} \setminus D$  can be written as an union of disjoint rays or lines. The family  $\mathcal{C}_H$  of all univalent sense-preserving harmonic mappings f of the form (1.1) such that  $a_1 = 1$  and  $f(\mathbb{D})$  is close-to-convex, is ALIF (cf. [24]). Also, the inequality in Theorem 3

is sharp in the ALIF  $C_H$ . The order of the family  $C_H$  is proved to be 3 ([11]). The harmonic analog of the analytic Koebe function  $k(z) = z/(1-z)^2$  (see for example [13, Chapter 5, p. 82]) is given by

$$F(z) = \frac{z - \frac{1}{2}z^2 + \frac{1}{6}z^3}{(1 - z)^3} + \overline{\left(\frac{\frac{1}{2}z^2 + \frac{1}{6}z^3}{(1 - z)^3}\right)},$$

where  $F \in \mathcal{C}_H$  and  $F(\mathbb{D}) = \mathbb{C} \setminus (-\infty, -1/6]$  which is indeed a domain starlike with respect to the origin. From the affine invariance property of the family  $\mathcal{C}_H$ , we deduce that for every  $b \in [0, 1)$ , the affine mapping

$$f(z) = F(z) - b \overline{F(z)}$$

belongs to  $C_H$  such that  $\omega(0) = f_{\overline{z}}(0)/f_z(0) = -b$ . The function f is a composition of the univalent harmonic mapping F of the disk  $\mathbb{D}$  onto  $\mathbb{C} \setminus (-\infty, -1/6]$  and affine transformation  $\psi(w) = w - b\overline{w}$ . The plane  $\mathbb{C}$  with a slit  $(-\infty, -1/6]$  under the transformation  $\psi$  is the plane with a slit along the ray emanating from the point  $\psi(-1/6) = -(1-b)/6$  through the point  $\psi(-1) = b - 1 < (b-1)/6$ , since  $b \in [0, 1)$ . Therefore,  $f(\mathbb{D}) = \mathbb{C} \setminus (-\infty, -(1-b)/6]$  and thus,  $d_f(0) = (1-b)/6$  and the lower estimate of  $d_f(0)$  is sharp in the ALIF  $C_H$ .

In the first part of the present paper, we concerned with the question about the covering of the manifold  $f(\mathbb{D})$  by disks. Now we turn our attention on the problem related with the covering of  $f(\mathbb{D})$  by convex domains.

Sheil-Small [24] proved that the radius of convexity of the univalent subfamily of the linear and affine invariant family  $\mathcal{AL}_H$  of harmonic mappings is equal to

$$(2.11) r_0 = \alpha - \sqrt{\alpha^2 - 1},$$

where  $\alpha = \text{ord}(\mathcal{AL}_H)$ . Later this result was generalized to the families of locally univalent harmonic mappings [15]. Now we will show the radius of convexity will be altered under the assumption of Q-quasiconformality of functions f.

**Lemma 1.** Let  $\mathcal{LU}_H(\alpha, Q)$  denote the LIF of locally univalent Q-quasiconformal harmonic mappings of the order  $\alpha < \infty$ , where  $Q \leq \infty$ . Then the affine hull

$$\mathcal{AL}_{H} = \left\{ F(z) = \frac{f(z) + \varepsilon \overline{f(z)}}{1 + \varepsilon \overline{a_{-1}}} : f \in \mathcal{LU}_{H}(\alpha, Q), \ \varepsilon \in \mathbb{D} \right\}$$

of the family  $\mathcal{LU}_H(\alpha, Q)$  is linear and affine invariant of order no greater than  $\alpha + \frac{1-\sqrt{1-k^2}}{k}$ , where k = (Q-1)/(Q+1).

*Proof.* In [25], it was shown that the affine hull of the linear invariant in the sense of Definition 2 of the family of the locally univalent harmonic mappings is the ALIF  $\mathcal{AL}_H$ . Thus, it remains to determine the estimate of the order of the family  $\mathcal{AL}_H$ .

We begin with  $F = H + \overline{G} \in \mathcal{AL}_H$ . Then there exists an  $f = h + \overline{g} \in \mathcal{LU}_H(\alpha, Q)$  of the form (1.1) with the additional normalization  $f_z(0) = h'(0) = a_1 = 1$ , and  $\varepsilon \in \mathbb{D}$  such that

$$F(z) = \frac{f(z) + \varepsilon \overline{f(z)}}{1 + \varepsilon g'(0)} = H(z) + \overline{G(z)}.$$

It is easy to compute that

$$A_2 = \frac{H''(0)}{2} = \frac{a_2 + \varepsilon \overline{a}_{-2}}{1 + \varepsilon g'(0)},$$

where  $a_2 = h''(0)/2$  and  $a_{-2} = \overline{g''(0)}/2$ . Taking into account of the relation  $g'(z) = \omega(z)h'(z)$ , where  $\omega$  is the complex dilatation of f with  $|\omega(z)| < k$ , we see that

$$g'(0) = \omega(0)$$
 and  $g''(0) = h''(0)\omega(0) + h'(0)\omega'(0)$ ,

so that

$$\overline{a_{-2}} = a_2\omega(0) + \omega'(0)/2.$$

If we apply the Schwarz-Pick lemma (see for example [14, Chapter VIII, §1]) to the function  $\omega(z)/k$ , then the inequality (1.3) in this case leads to

$$\frac{|\omega'(0)|}{k} \le 1 - \frac{|\omega(0)|^2}{k^2}.$$

Using the expression for  $a_2$ , we deduce that

$$|A_2| = \left| \frac{a_2(1 + \varepsilon\omega(0)) + \varepsilon\omega'(0)/2}{1 + \varepsilon\omega(0)} \right|$$

$$\leq |a_2| + \frac{k}{2} \frac{1 - |\omega(0)/k|^2}{1 - |\omega(0)|}$$

$$= |a_2| + \frac{k^2 - |\omega(0)|^2}{2k(1 - |\omega(0)|)}$$

(since  $|\varepsilon| < 1$ ). Calculating the maximum of the function  $u(t) = (k^2 - t^2)/(1 - t)$  over the interval [0, k], we obtain the estimate

$$|A_2| \le |a_2| + \frac{1 - \sqrt{1 - k^2}}{k} \le \alpha + \frac{1 - \sqrt{1 - k^2}}{k} < \alpha + 1.$$

The proof of the lemma is complete.

Using Lemma 1 and the equality (2.11), one obtains the estimate of the radius of convexity of functions in the family  $\mathcal{H}(\alpha, Q)$ .

2.3. **Proof of Theorem 4.** Let  $f_0 = h_0 + \overline{g_0} \in \mathcal{H}(\alpha, Q)$ . It is easy to see that the function  $f_0$  is convex in the same disks as the normalized function

$$f(z) = f_0(z)/h'_0(0) = h(z) + \overline{g(z)}$$

that belongs to some LIF  $\mathcal{LU}_H(\alpha, Q)$ . So it is enough to prove the theorem for such functions f. We first show that the function f is convex in the disk centered at the origin with radius  $R_0$  defined by (1.11).

Clearly, the function f belongs to the affine hull  $\mathcal{AL}_H$  of the family  $\mathcal{LU}_H(\alpha, Q)$ . In view of Lemma 1, the family  $\mathcal{AL}_H$  has the order  $\alpha_1 \leq \alpha + \frac{1-\sqrt{1-k^2}}{k}$ . Taking into consideration of the equality (2.11), we conclude that the function f is convex in the disk of radius  $R_0 = \alpha_1 - \sqrt{\alpha_1^2 - 1}$  centered at the origin. We now let  $0 \neq z_0 \in \mathbb{D}$ . Consider a conformal automorphism  $\Phi$  of the unit disk  $\mathbb{D}$  given by

$$\Phi(\zeta) = e^{i \arg z_0} \left( \frac{\zeta + |z_0|}{1 + |z_0|\zeta} \right).$$

We see that  $\Phi$  maps the disk  $\mathbb{D}(0, R_0)$  onto the disk  $\mathbb{D}(z_0, R(z_0))$ , where  $R(z_0)$  is defined in (1.10). In view of the linear invariance property of the family  $\mathcal{LU}_H(\alpha, Q)$ , the function F defined by

$$F(\zeta) = \frac{f(\Phi(\zeta)) - f(z_0)}{h'(z_0))\Phi'(0)}$$

belongs to  $\mathcal{LU}_H(\alpha, Q)$  and as remarked above, the function F maps the disk  $\mathbb{D}(0, R_0)$  onto a convex domain. Therefore, the function

$$f(z) = F(\Phi^{-1}(z)) \cdot h'(z_0) \Phi'(0) + f(z_0)$$

is convex and univalent in the disk  $\mathbb{D}(z_0, R(z_0))$ . The proof of the theorem is complete.

Acknowledgements. The authors thank the referee for useful comments. The research was supported by the project RUS/RFBR/P-163 under Department of Science & Technology (India) and the Russian Foundation for Basic Research (project 14-01-92692). The second author is currently on leave from Indian Institute of Technology Madras, India. The third author is also supported by Russian Foundation for Basic Research (project 14-01-00510) and the Strategic Development Program of Petrozavodsk State University.

## REFERENCES

- 1. G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, *Conformal invariants, inequalities, and quasiconformal maps*, John Wiley & Sons, 1997.
- 2. L. Bieberbach, Uber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss. 38(1916), 940–955.
- 3. H. Chen, P. M. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings, *Proc. Amer. Math. Soc.* **128**(2000), 3231–3240.
- 4. Sh. Chen, S. Ponnusamy and A. Rasila, Coefficient estimates, Landau's theorem and Lipschitz-type spaces on planar harmonic mappings, *J. Aust. Math. Soc.* **96**(2014), 198–215.
- 5. Sh. Chen, S. Ponnusamy and X. Wang, Bloch and Landau's theorems for planar p-harmonic mappings, J. Math. Anal. Appl. 373(2011), 102–110.
- 6. Sh. Chen, S. Ponnusamy and X. Wang, Landau's theorem and Marden constant for harmonic  $\nu$ -Bloch mappings, *Bull. Aust. Math. Soc.* **84**(2011), 19–32.
- 7. Sh. Chen, S. Ponnusamy and X. Wang, Properties of some classes of planar harmonic and planar biharmonic mappings, *Complex Anal. Oper. Theory*, **5**(2011), 901–916.
- 8. Sh. Chen, S. Ponnusamy and X. Wang, Coefficient estimates and Landau-Bloch's theorem for planar harmonic mappings, *Bull. Malaysian Math. Sciences Soc.* **34**(2)(2011), 255–265.
- 9. Sh. Chen, S. Ponnusamy and X. Wang, Covering and distortion theorems for planar harmonic univalent mappings, *Arch. Math. (Basel)*, **101**(2013), 285–291.
- 10. Sh. Chen, S. Ponnusamy and X. Wang, Harmonic mappings in Bergman spaces, *Monatsh.* Math. 170(2013), 325–342.
- 11. J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9(1984), 3–25.

- 12. P. L. Duren, *Univalent functions* (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo), Springer-Verlag, 1983.
- 13. P. Duren, *Harmonic mappings in the plane*, Cambridge Tracts in Mathematics, **156**, Cambridge Univ. Press, Cambridge, 2004.
- 14. G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I. 1969 vi+676 pp.
- 15. S. Yu. Graf and O. R. Eyelangoli, Differential inequalities in linear and affine-invariant families of harmonic mappings, *Russian Math. (Iz. VUZ)* **54**(10)(2010), 60–62.
- 16. P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven II, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Kl. (1907), 633–669.
- 17. H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, *Bull. Amer. Math. Soc.* **42**(1936), 689–692.
- 18. D. Minda, The Bloch and Marden constants, Computational methods and function theory (Valparaso, 1989), 131–142, Lecture Notes in Math., 1435, Springer, Berlin, 1990.
- 19. A. Mori, On an absolute constant in the theory of quasi-conformal mappings, *J. Math. Soc. Japan.* 8(1956), 156–166.
- Ch. Pommerenke, Linear-invariante familien analytischer funktionen. I, Math. Ann. 155(1964), 108–154.
- 21. Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
- 22. S. Ponnusamy and A. Rasila, Planar harmonic and quasiregular mappings, Topics in Modern Function Theory (Editors St.Ruschewyeh and S. Ponnusamy): Chapter in CMFT, *RMS-Lecture Notes Series No.* **19**, 2013, pp. 267–333.
- 23. L. E. Schaubroeck, Subordination of planar harmonic functions, *Complex Variables* **41**(2000), 163–178.
- 24. T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. 42(1990), 237–248.
- 25. M. Sobczak-Knec, V. V. Starkov, and J. Szynal, Old and new order of linear invariant family of harmonic mappings and the bound for Jacobian, *Annales Universitatis Mariae Curie-Skłodowska*. Sectio A. Mathematica, V. LXV(2)(2011), 191–202.
- 26. V.V. Starkov, Equivalent definitions of linear invariant families, *Materialy XI Konf. Szkolenovej z Teorii Zagadnien Ekstremalnych*, Lodz. 1990, P. 34–38 (in Polish).
- 27. V. V. Starkov, Harmonic locally quasiconformal mappings, *Trudy of Petrozavodsk State University*. Math. 1(1993), 61–69 (in Russian).
- 28. V. V. Starkov, Harmonic locally quasiconformal mappings, Annales Universitatis Mariae Curie-Skłodowska. Sectio A. Mathematica, 14(1995), 183–197.
- 29. V. V. Starkov, Univalence disks of harmonic locally quasiconformal mappings and harmonic Bloch functions, *Siberian Math. J.* **38**(1997), 791–800.
  - S. Yu. Graf, Tver State University, ul. Zhelyabova 33, Tver, 170000 Russia. *E-mail address*: sergey.graf@tversu.ru
- S. Ponnusamy, Indian Statistical Institute (ISI), Chennai Centre, SETS (Society for Electronic Transactions and Security), MGR Knowledge City, CIT Campus, Taramani, Chennai 600 113, India.

E-mail address: samy@isichennai.res.in, samy@iitm.ac.in

V. V. Starkov, Department of Mathematics, University of Petrozavodsk, ul. Lenina 33, 185910 Petrozavodsk, Russia

E-mail address: vstarv@list.ru