

混频回归与Stata应用: midasreg

王群勇(南开大学数量经济研究所,教授、博士生导师,QunyongWang@outlook.com)

内容

混频回归

Stata混频回归: midasreg

案例

结论

引言

经典的模型中因变量和自变量的观测频率是相同的,但实践中往往需要对不同频率的数据进行回归,比如通过月度数据来实现对季度数据的及时预测。

常见做法:

- 对高频数据进行简单加总或平均为低频数据,这种做法对高频数据不同期的权重约束 为相同,不能有效地对低频数据进行预测或解释。
- 低频数据按照某些插值法转换为高频数据。

混频回归(Midas)则是通过对高频变量自动赋权实现对低频变量回归或预测的一种方法,在宏观经济、金融市场预测中得到越来越多的应用。

混频回归模型

Ghysels (2004, 2006), Andreou(2013), Armesto (2010):

$$y_t = x_t \beta + B(L^{1/m}; \theta) x_{t-h}^{(m)} \lambda + \epsilon_t.$$

 y_t 低频因变量, x_t 为低频自变量。 $x_t^{(m)}$ 为高频自变量,m为高频数据的抽样频率。比如,y为季度数据, $x^{(m)}$ 为月度数据,那么m=3。

$$B(L^{1/m};\theta) = \sum_{k=0}^{K} \alpha_k L^{k/m}; L^{s/m} x_{t-h}^{(m)} = x_{t-h-s/m}^{(m)}.$$

$$B(L^{1/m};\theta)x_{t-h}^{(m)} = \sum_{k=0}^{K} \alpha_k L^{k/m} x_{t-h}^{(m)} = \sum_{k=0}^{K} \alpha_k x_{t-h-k/m}^{(m)}.$$

U-MIDAS and STEP

 α_k 无约束,每个滞后项都有不同的系数(Foroni, 2015; Ghysels, 2018)。

step: $x_t^{(m)}$ 的每s个滞后项具有相同的系数。

- 比如,季度对月度数据的混频回归,1、2、3月具有共同的系数,4、5、6月具有共同的系数,依此类推。
- 月度对日度数据的混频回归,每个月的天数不同,可以约束一个固定的步长,比如1 0.

Almon多项式法

假定系数满足多项式: $\alpha_k = \sum_{j=0}^p a_j k^j$,

$$\begin{array}{rcl} \alpha_0 & = & a_0 \\ \alpha_1 & = & a_0 + a_1 + a_2 + \dots + a_p \\ \alpha_2 & = & a_0 + 2a_1 + 2^2 a_2 + \dots + 2^p a_p \\ \dots & = & \dots \\ \alpha_K & = & a_0 + Ka_1 + K^2 a_2 + \dots + K^p a_n \end{array}$$

Almon多项式法

midas回归可以写为

$$y_{t} = x_{t}\beta + \sum_{k=0}^{K} \left(x_{t-k/m}^{(m)} \sum_{j=0}^{p} k^{j} a_{j} \right) + \epsilon_{t}$$

$$= x_{t}\beta + \sum_{j=0}^{p} m_{j,t} a_{j} + \epsilon_{t}$$

$$m_{j,t} = \sum_{k=0}^{K} k^{j} x_{t-k/m}^{(m)}.$$

回归系数为个数为p而不是k。

normalized exponential Almon weighting

$$\alpha_{k} = \frac{\exp(k\theta_{1} + k^{2}\theta_{2})}{\sum_{j=0}^{K} \exp(j\theta_{1} + j^{2}\theta_{2})}$$

$$y_{t} = x_{t}\beta + \sum_{k=0}^{K} x_{t-k/s}^{(m)} \left(\frac{\exp(k\theta_{1} + k^{2}\theta_{2})}{\sum_{j=0}^{K} \exp(j\theta_{1} + j^{2}\theta_{2})}\right) \lambda + \epsilon_{t}$$

$$= x_{t}\beta + \sum_{j=0}^{k} m_{j,t} \lambda + \epsilon_{t}$$

$$m_{j,t} = \frac{\exp(k\theta_{1} + k^{2}\theta_{2})}{\sum_{j=0}^{K} \exp(j\theta_{1} + j^{2}\theta_{2})} x_{t-j/m}^{(m)}.$$

每个高频变量有三个参数, λ , θ_1 , θ_2 . 如果 $\theta_1 = \theta_2 = 0$,即退化为简单平均。

Beta weighting

$$y_{t} = x_{t}\beta + \sum_{k=0}^{K} x_{t-k/m}^{(m)} \left(\frac{\omega_{k}^{\theta_{1}-1} (1 - \omega_{k})^{\theta_{2}-1}}{\sum_{j=0}^{K} \omega_{k}^{\theta_{1}-1} (1 - \omega_{k})^{\theta_{2}-1}} + \theta_{3} \right) \lambda + \epsilon_{t}$$

$$= x_{t}\beta + \sum_{j=0}^{K} m_{j,t} \lambda + \epsilon_{t}.$$

$$m_{j,t} = \left(\frac{\omega_{k}^{\theta_{1}-1} (1 - \omega_{k})^{\theta_{2}-1}}{\sum_{j=0}^{K} \omega_{k}^{\theta_{1}-1} (1 - \omega_{k})^{\theta_{2}-1}} + \theta_{3} \right) x_{t-j/m}^{(m)},$$

$$\omega_{i} = \begin{cases} \delta, & i = 0 \\ i/K, & i = 1, 2, \dots, K-1 \\ 1 - \delta, & i = K \end{cases}$$

其中,δ设定为非常小的数值(程序中设置为 $2.22e^{-16}$)。

Beta weighting

Beta函数可以表现为多种形状,递增、递减、水平、U型、倒U型,取决于 θ_1 , θ_2 , θ_3 . 特殊情况:

- $\theta_1 = \theta_2 = 1$, 简单平均。
- $\theta_1 = 1, \theta_2 > 1, : 递减;$
- $\theta_1 = 1, \theta_2 < 1, : 递增;$
- $\theta_3 = 0$: $\alpha_0 = 0$, $\alpha_K = 0$.

估计方法

NLS

Bayesian estimation
maximum likelihood estimation
nonparametric estimation

AR动态项

$$y_t = \rho y_{t-1} + x_t \beta + B(L^{1/m}; \theta)(1 - \rho L) x_{t-h}^{(m)} \lambda + \epsilon_t.$$

权重函数的选择

混频回归中权重的函数形式是事先设定的,函数中的参数需要估计。

权重函数的选择:

- 信息准则
- cross-validation: 最低预测误差

内容

混频回归

midasreg: Stata混频回归程序

案例

结论

midasreg功能概览

可以回归多种不同频率的数据(年度-季度(月度等)、季度-月度、月度-日度等等)

多种赋权方法,包括step、U-midas、Almon PDL、normalized exponential Almon、normalized Beta等加权函数

可以根据信息准则、滚动回归和递归回归预测误差等方法自动选择模型

该指令兼容标准的estat、predict等指令。

语法

midasreg depvar[if][in], hframe(frame) hvars(varlist) [hlag(numlist) hweight(method) swhich(integer) lagselect(spec) genlink(linkname) ar noconstant $nolog\ options$]

hframe(frame) 高频数据的frame名称。 midasreg默认当前的工作frame为低频数据。

hvars(varlist) 高频变量

hlag(numlist) 高频变量的滞后阶数

语法

hweight(method,[spec])设定赋权方法,包括

- step (step weighting): 日度数据默认为10, 其它数据默认为观测频数(比如季度对月度回归, 那么step=3)。比如, hweight(step,5).
- umidas (individual coefficient)
- pdl (Almon polynomial distributed lags): 默认为3阶多项式。比如,hweight(pdl,4)
- exp (Almon exponential coefficient):
- beta (beta weighting)。比如,hweight(beta, (1 . .))约束 $heta_1=1$, hweight(beta, (1 . 0))约束 $heta_1=1$, $heta_3=0$ 。hweight(beta, (1 1 .))约束 $heta_1= heta_2=1$.

语法

lagselect(spec)

first lag, maximum lag numlis, method, [, length]

比如,lagselect(1, 6/12, ic) 根据信息准则进行选择,备选滞后项为1/6, 1/7, ..., 1/12. lagselect(1, 6/12, rolling, 100) 根据滚动回归RMSE进行选择,窗口长度为100。

语法

swhich(integer)

设置匹配的季节。比如,季度对月度回归,swhich(3)表示利用每个季度的第3个月份进行回归。默认值为0,swhich(0)表示用每个季节的最后一个观测值进行估计。

genlink(linkname)设置低频frame和高频frame的链接名称。

ar: 估计MIDAS-AR模型.

内容

混频回归

midasreg: Stata混频回归程序

案例

结论

季度-月度

. frame reset

. use usq, clear

. tsset

time variable: qdate, 1947q1 to 2020q1

delta: 1 quarter

. frame rename default flow

- . frame create fhigh
- . frame change fhigh

. use usm, clear

. tsset

time variable: mdate, 1919m1 to 2020m5 delta: 1 month

. frame dir
 fhigh 1217 x 10; usm.dta
 flow 293 x 6; usq.dta

- . frame change flow
- . midasplot growth if tin(1980q1,2019q4), hvar(dlnemp)

- . frame change flow
- . midasreg growth L.growth, hvar(dlnemp) hlag(1/6) hweight(step)

Weight Low frequency High frequency log-likelihood AIC		step q m 289.2290 586.4580		R-squa	squared	= = = =	291 0.5092 0.5041 0.6583 2.1460
BIC		601.1513		From		=	1947q3
HQIC	=	592.3442 		To		=	2020q1
growth	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
Low growth							
L1.	.0274032	.0589419	0.46	0.642	0881	L208	.1429271
_cons	.3988614	.0503128	7.93	0.000	.3002	2501	.4974726
High dlnemp_Step1 dlnemp_Step2	1.240293 4305778	.084082 .0912213	14.75 -4.72	0.000 0.000	1.075 6093		1.405091 2517873

. estat lagcoef

	Lag1	Lag2	Lag3	Lag4	Lag5	Lag6
dlnemp	1.240293	1.240293	1.240293	4305778	4305778	4305778

季度-月度

 $dlnemp_{t-1/3}$, $dlnemp_{t-2/3}$, $dlnemp_{t-1}$ 的系数为1.2403

 $dlnemp_{t-1-1/3}$, $dlnemp_{t-1-2/3}$, $dlnemp_{t-2}$ 的系数为 -1.4306

midasreg生成低频frame和高频frame的链接,默认名称为midaslink。链接可以将低频变量复制到高频数据的frame中,其中包括低频数据中的日期变量。

默认方法为Almon PDL法:

. midasreg growth L.growth, hvar(dlnemp) hlag(1/6)

Weight Low frequency High frequency log-likelihood AIC BIC HQIC		pdl q m -280.7410 573.4820 595.5220 582.3113		R-squa	squared	= = = = =	291 0.5370 0.5288 0.6350 2.1402 1947q3 2020q1
growth	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
growth L1.	.0552539 .3929575	.0577501	0.96 8.00	0.339 0.000	0579 .296		.1684419
High dlnemp_PDL0 dlnemp_PDL1 dlnemp_PDL2 dlnemp_PDL3	1.168311 1.128427 8469424 .1109222	.1461796 .2966547 .1601267 .0222431	7.99 3.80 -5.29 4.99	0.000 0.000 0.000 0.000	.8818 .5469 -1.160	941 9785	1.454818 1.709859 5331 .1545179

. estat lagcoef

	Lag1	Lag2	Lag3	Lag4	Lag5	Lag6
dlnemp	1.168311	1.560717	.9247721	0739917	7700407	4978418

季度-月度

```
. midasreg growth L.growth, hvar(dlnemp) hlag(1/6) hweight(exp)
```

Iteration 0: f(p) = -410.27425 (not concave) Iteration 1: f(p) = -326.61472 (not concave)

Iteration 2: f(p) = -317.53566Iteration 3: f(p) = -302.38784Iteration 4: f(p) = -299.95699Iteration 5: f(p) = -299.63817

Iteration 6: f(p) = -299.63203Iteration 7: f(p) = -299.63201

=	exp		Number (of obs	=	291
=	q		R-square	ed	=	0.4728
=	m		Adj R-so	quared	=	0.4635
= -29	99.6320		Root MSI	E	=	0.6775
= 66	9.2640		DW		=	1.6259
= 62	27.6306		From		=	1947q3
= 61	16.6218		То		=	2020q1
Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
092836	.0556763	-1.67	0.095	2019	9596	.0162875
.3987914	.0524296	7.61	0.000	.2960	9312	.5015517
.7590752	.2869594	2.65	0.008	.1966	5451	1.321505
4977317	.1351623	-3.68	0.000	7626	5449	2328185
18.8855	1.412575	13.37	0.000	16.3	1169	21.65409
3892753	.0414513	-9.39	0.000	470	5184	3080322
_	= -29 = -29 = 66 = 62 = 61 Coef. 092836 .3987914 .7590752 4977317 18.8855	= q = m = -299.6320 = 609.2640 = 627.6306 = 616.6218 Coef. Std. Err. 092836 .0556763 .3987914 .0524296 .7590752 .28695944977317 .1351623 18.8855 1.412575	= q = m = -299.6320 = 609.2640 = 627.6306 = 616.6218 Coef. Std. Err. z 092836 .0556763 -1.67 .3987914 .0524296 7.61 .7590752 .2869594 2.654977317 .1351623 -3.68 18.8855 1.412575 13.37	= q R-square = m Adj R-sq = -299.6320 Root MSI = 609.2640 DW = 627.6306 From = 616.6218 To Coef. Std. Err. z P> z 092836 .0556763 -1.67 0.095 .3987914 .0524296 7.61 0.000 .7590752 .2869594 2.65 0.0084977317 .1351623 -3.68 0.000 18.8855 1.412575 13.37 0.000	= q R-squared Adj R-squared Adj R-squared Root MSE DW E 609.2640 DW E 616.6218 To Coef. Std. Err. Z P> z [95%	= q R-squared = Adj R-squared = Adj R-squared = Root MSE = Root MS

. estat lagcoef

	Lag1	Lag2	Lag3	Lag4	Lag5	Lag6
dlnemp	6.212527	8.068046	3.872079	.6867454	.0450115	.0010903

季度-月度

. midasreg growth L.growth, hvar(dlnemp dlnip) hlag(1/6) hweight(pdl)

Weight	=	pdl	Number of obs	=	291
Low frequency	=	q	R-squared	=	0.6281
High frequency	=	m	Adj R-squared	=	0.6162
<pre>log-likelihood</pre>	=	-248.8628	Root MSE	=	0.5691
AIC	=	517.7255	DW	=	2.0365
BIC	=	554.4588	From	=	1947q3
HQIC	=	532.4410	То	=	2020q1

growth	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Low						
growth						
L1.	0611198	.0594779	-1.03	0.304	1776942	.0554547
_cons	.4876619	.0495333	9.85	0.000	.3905783	.5847454
High						
dlnemp_PDL0	.3336255	.2039422	1.64	0.102	0660938	.7333448
dlnemp_PDL1	.5259734	.3510672	1.50	0.134	1621056	1.214052
dlnemp_PDL2	3986482	.1783656	-2.24	0.025	7482384	049058
dlnemp_PDL3	.0573218	.0238161	2.41	0.016	.0106431	.1040005
dlnip_PDL0	.1952605	.0534325	3.65	0.000	.0905348	.2999861
dlnip_PDL1	.1731124	.0993305	1.74	0.081	0215718	.3677967
dlnip_PDL2	0932891	.0496416	-1.88	0.060	1905849	.0040067
dlnip_PDL3	.0098849	.0065704	1.50	0.132	0029928	.0227625

. estat lagcoef

	Lag1	Lag2	Lag3	Lag4	Lag5	Lag6
dlnemp	.3336255	.5182725	.2495537	1286004	272259	.1625083
dlnip	.1952605	.2849687	.2474079	.1418875	.0277168	035795

季度-月度

estat lagplot

- . qui midasreg growth L.growth, $hvar(dlnemp\ dlnip)\ hlag(1/6)\ hweight(pdl)\ swhich(2)$
- . tsappend, add(1)
- . capture drop xb
- . predict xb if tin(2020q2, 2020q2), xb Linear prediction
- . list xb if tin(2020q1, 2020q2)

	xb
293.	
294.	-9.29716

. midasreg growth L.growth, hvars(dlnemp) hweight(pdl) lagselect(1, 6/10, "ic")

lag	logl	aic	bic	hqic	N	rmse
6	-277.3018	566.6036	588.6021	575.4183	289	.6316519
7	-279.1216	570.2433	592.2418	579.058	289	.635642
8	-283.6477	579.2955	601.294	588.1102	289	.6456753
9	-279.1426	570.2852	592.263	579.0926	288	.6378237
10	-276.6253	565.2505	587.2283	574.0579	288	.6322729

季度-月度

. midasreg growth L.growth, hvars(dlnemp) hweight(step) lagselect(1, 6/15, "rolling", 120)

	lag	rmse
r1	6	.6802348
r2	7	.6764846
r3	8	.66101
r4	9	.6530716
r5	10	.6555312
r6	11	.6568462
r7	12	.651029
r8	13	.6513945
r9	14	.650822
r10	15	.6526567

```
. frame change flow
. matrix wmat = J(5,4,.)
. local r=1
. foreach w in step umidas pdl exp beta {
    2. if "`w'"=="beta" qui midasreg growth L.growth, hvar(dlnemp) hlag(1/12)
hweight(`w',(1 . .))
    3. else qui midasreg growth L.growth, hvar(dlnemp) hlag(1/12) hweight(`w')
    4. matrix wmat[`r',1] = e(aic)
    5. matrix wmat[`r',2] = e(bic)
    6. matrix wmat[`r',3] = e(hqic)
    7. matrix wmat[`r',4] = e(r2a)
    8. local ++r
    9. }
. matrix colnames wmat = aic bic hqic r2a
. matrix rownames wmat = step umidas pdl exp beta
```

. matlist wmat

	aic	bic	hqic	r2a
step	559.633	581.673	568.4623	.5508333
umidas	561.6664	613.0929	582.2681	.5594227
pdl	573.94	595.9799	582.7693	.5280965
exp	609.2641	627.6307	616.6219	.4635164
beta	609.7307	631.7706	618.56	.4644568

```
. midasreg growth, hvar(dlnemp) hlag(1/12) hweight(step) ar Iteration 0: f(p) = -275.67904 Iteration 1: f(p) = -273.88477 Iteration 2: f(p) = -273.8615 Iteration 3: f(p) = -273.8615
```

Weight Low frequency High frequency log-likelihood AIC BIC HQIC	= -: = !	step q m 273.8615 559.7230 581.7629 568.5523		R-squa	squared =	291 0.5461 0.5365 0.6200 1.8039 1947q3 2020q1
growth	Coef.	Std. Err.	Z	P> z	[95% Con	f. Interval]
Low _cons	.5394313	.0554337	9.73	0.000	.4307832	.6480795
High dlnemp_Step1 dlnemp_Step2 dlnemp_Step3 dlnemp_Step4	1.223584 2382278 04271 3064493	.0794717 .1057195 .1042566 .0767596	15.40 -2.25 -0.41 -3.99	0.000 0.024 0.682 0.000	1.067822 4454343 2470491 4568953	
AR alpha	1735674	.1223173	-1.42	0.156	4133049	.0661701
Variance lnsigma	4778337	.0414513	-11.53	0.000	5590768	3965906

Note: rho=2*invlogit(alpha)-1; alpha=logit(rho/2+0.5)

季度-月度

. nlcom 2*invlogit(_b[AR:alpha])-1

_nl_1: 2*invlogit(_b[AR:alpha])-1

growth	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
_nl_1	0865665	.0607003	-1.43	0.154	2055369	.032404

月度-日度

- . frame reset
- . use inf, clear
- . frame rename default flow
- . frame create fhigh
- . frame change fhigh
- . use dff, clear
- . frame change fhigh
- . frame dir
 fhigh 24079 x 3; dff.dta
 flow 880 x 6; inf.dta

月度-日度

- . frame change flow
- . midasreg inf L(1/2).inf, hvars(rate) hweight(pdl) lagselect(10, 20/30, "ic")

lag	logl	aic	bic	hqic	N	rmse
20	45.32334	-76.64668	-43.94245	-64.07574	790	.2284793
21	45.54079	-77.08158	-44.37735	-64.51063	790	.2284164
22	45.22059	-76.44118	-43.73695	-63.87024	790	.228509
23	46.31941	-78.63881	-45.93458	-66.06787	790	.2281914
24	46.65315	-79.30629	-46.60206	-66.73535	790	.228095
25	45.20624	-76.41248	-43.70825	-63.84154	790	.2285131
26	45.39014	-76.78029	-44.07606	-64.20935	790	.2284599
27	45.61395	-77.2279	-44.52367	-64.65696	790	.2283952
28	45.47567	-76.95134	-44.24711	-64.3804	790	.2284352
29	45.18555	-76.37109	-43.66686	-63.80015	790	.2285191
30	45.14523	-76.29045	-43.58622	-63.71951	790	.2285308

月度-日度

. midasreg inf L(1/2).inf, hvars(rate) hweight(pdl) hlag(10/56)

Weight = pdl Low frequency = m High frequency = d log-likelihood = 54.2279 AIC = -94.4559 BIC = -61.7605 HQIC = -81.8876			R-squa	squared	= = = =	789 0.4697 0.4656 0.2259 2.0202 1954m8 2020m4	
inf	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
inf L1. L2.	.4140089 .068718 .0305118	.0353673 .0354223 .0135641	11.71 1.94 2.25	0.000 0.052 0.024	.3446 0007 .0039	7085	.4833275 .1381445 .0570969
High rate_PDL0 rate_PDL1 rate_PDL2 rate_PDL3	.0225777 0056913 .0003202 -4.80e-06	.0062312 .0014387 .0000755 1.09e-06	3.62 -3.96 4.24 -4.42	0.000 0.000 0.000 0.000	.0103 0085 .0001 -6.936	5111 L722	.0347907 0028715 .0004681 -2.67e-06

不规则日度数据

- . use daily, clear
- . list daten bai nor in 5/8

	daten	bai	nor
5.	04dec2014	.3359717	.066735
6.	05dec2014	1052678	.0460042
7.	08dec2014	.4580529	.0256586
8.	09dec2014	0206548	.018157

不规则日度数据

. frame reset

. use monthly

. tsset mdate, monthly

time variable: mdate, 2014m11 to 2019m12

delta: 1 month

. frame rename default flow

不规则日度数据

. frame create fhigh

. frame change fhigh

. use daily

. bcal create midascal , from(daten) gen(bcdate) replace

Business calendar midascal (format %tbmidascal):

purpose:

range: 28nov2014 31dec2019

20055 21914 **in** %td units

0 1204 in %tbmidascal units

center: 28nov2014

20055 **in** %td units

0 in %tbmidascal units

omitted: 655 days

128.6 approx. days/year

included: 1,205 days

236.6 approx. days/year

Notes:

business calendar file midascal.stbcal saved

variable bcdate created; it contains business dates in %tbmidascal format

. tsset bcdate

time variable: bcdate, 28nov2014 to 31dec2019

delta: 1 day

谢谢!

更多计量方法与Stata应用,请扫码关注公众号StataPLUS:

或咨询: StataPLUS@outlook.com