Problem Set 10 - Solutions

Problem 6.1

- (a) Starting with the definition of the Helmholtz energy in Equation 6.3, derive the fundamental property relation in Equation 6.10
- (b) Starting with the definition of the Gibbs energy in Equation 6.4, derive the fundamental property relation in Equation 6.11.

Solution to Part (a)

Introduce the definition of Helmholtz energy, equation 6.3:

Out[•]//TraditionalForm=

 $A \equiv U - S T$

Take the total differential of A:

Out[•]//TraditionalForm=

dA = dU - TdS - SdT

Fundamental property relation for U, Equation 6.8, presented in class:

Out[•]//TraditionalForm=

dU = TdS - PdV

Substitute equation 6.8 into the equation for dA:

Out[•]//TraditionalForm=

dA = TdS - PdV - TdS - SdT

Simplify by cancelling *T* dS, giving equation 6.10:

Out[•]//TraditionalForm=

dA = -PdV - SdT

Solution to Part (b)

Introduce the definition of Gibbs energy, equation 6.4:

Out[•]//TraditionalForm=

 $G \equiv H - ST$

Take the total differential of G:

Out[•]//TraditionalForm=

dG = dH - SdT - TdS

Fundamental property relation for H, Equation 6.9, presented in class:

Out[•]//TraditionalForm=

dH = TdS + VdP

Substitute equation 6.9 into the equation for dG:

Out[•]//TraditionalForm=

dG = TdS + VdP - SdT - TdS

Simplify by cancelling *T* dS, giving equation 6.11:

Out[•]//TraditionalForm=

dG = VdP - SdT

Problem 6.4

- (a) Starting with the fundamental property relation Equation 6.10, derive the Maxwell relation given in Equation 6.16.
- (b) Starting with the fundamental property relation Equation 6.9, derive the Maxwell relation given in Equation 6.15.

Solution to Part (a)

Introduce the fundamental property relationship equation 6.10:

$$dA = -PdV - SdT$$

Introduce the function A = A(V, T), where V and T are the canonical (special) variables, and take the total differential of A:

$$A = A(V, T)$$

$$dA = \left(\frac{\partial A}{\partial V}\right)_T dV + \left(\frac{\partial A}{\partial T}\right)_V dT$$

Compare this result to equation 6.10 and equate the coefficients of the differentials:

$$P \equiv \left(\frac{\partial A}{\partial V}\right)_{T}$$
$$S \equiv \left(\frac{\partial A}{\partial T}\right)_{V}$$

Take the second partial cross-derivatives and equate them:

$$\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial}{\partial T}\left(-\left(\frac{\partial A}{\partial V}\right)_{T}\right)\right)_{V} = -\frac{\partial^{2} A}{\partial T \partial V}$$

$$\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial}{\partial V}\left(-\left(\frac{\partial A}{\partial T}\right)_{V}\right)\right)_{T} = -\frac{\partial^{2} A}{\partial V \partial T}$$

$$-\frac{\partial^{2} A}{\partial T \partial V} = -\frac{\partial^{2} A}{\partial V \partial T}$$

$$\therefore \left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}$$

This is the Maxwell relationship equation 6.16. //ANS

Solution to Part (b)

Introduce the fundamental property relationship equation 6.9:

$$dH = T dS + V dP$$

Introduce the function H = H(S, P), where S and P are the canonical (special) variables, and take the total differential of H:

$$H = H(S, P)$$

$$dH = \left(\frac{\partial H}{\partial S}\right)_{P} dS + \left(\frac{\partial H}{\partial P}\right)_{S} dP$$

Compare this result to equation 6.9 and equate the coefficients of the differentials:

$$T \equiv \left(\frac{\partial H}{\partial S}\right)_{P}$$
$$V \equiv \left(\frac{\partial H}{\partial P}\right)_{S}$$

Take the second partial cross-derivatives and equate them:

$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial}{\partial P}\left(\left(\frac{\partial H}{\partial S}\right)_{P}\right)\right)_{S} = \frac{\partial^{2} H}{\partial P \partial S}$$

$$\left(\frac{\partial V}{\partial S}\right)_{P} = \left(\frac{\partial}{\partial S}\left(\left(\frac{\partial H}{\partial P}\right)_{S}\right)\right)_{P} = \frac{\partial^{2} H}{\partial S \partial P}$$

$$\frac{\partial^{2} H}{\partial P \partial S} = \frac{\partial^{2} H}{\partial S \partial P}$$

$$\therefore \left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

This is the Maxwell relationship equation 6.15. //ANS

Problem 6.141

Calculate Z, H^R , and S^R by the Redlich-Kwong equation for the following:

- (a) Ethylene at 300 K and 35 bar.
- (b) Hydrogen sulfide at 400 K and 70 bar.
- (c) Nitrogen at 150 K and 50 bar.
- (d) n-Octane at 575 K and 15 bar.
- (e) Propane at 375 K and 25 bar.

Solution to Part (a)

```
p = 35.; (*bar*)
         pc = 50.40; (*bar*) (*Table B.1, p.664*)
         pr = p / pc; (*reduced pressure*)
In[121]:=
         t = 300.; (*K*)
         tc = 282.3; (*K*) (*Table B.1, p.664*)
         tr = t / tc; (*reduced temperature*)
In[124]:=
          (*Information from Table 3.1 page 100*)
         \epsilon = 0;
         \sigma = 1;
         \Omega = 0.08664;
         \Psi = 0.42748;
          (*\omega=.087 Table B.1 p.664 but not needed for RK EOS*)
In[128]:=
         \alpha[x_{-}] = x^{-1/2}; \text{ (*Table 3.1*)}
         \beta = \Omega * pr / tr; (*eqs 3.50 and 3.51*)
         q[x_{-}] = (\Psi * \alpha[x]) / (\Omega * x);
In[131]:=
         eq1 = z == \left(1 + \beta - q[tr] * \beta * \frac{z - \beta}{(z + \epsilon * \beta) * (z + \sigma * \beta)}\right); (*Eq. 3.48*)
In[132]:=
         Z = z /. Solve[eq1, z, Reals] [[1, 1]] // Quiet
Out[132]=
         0.771200680752
In[133]:=
         Integral = \frac{1}{\sigma - \epsilon} * Log \left[ \frac{Z + \sigma * \beta}{Z + \epsilon * \beta} \right]; (*Eq. 13.72*)
In[134]:=
         R = 8.314; (*\frac{J}{mol+K}*)
         Hr[x_] = (Z - 1 + x * \partial_x q[x] * Integral) * R * t; (*L28 Slide 8*)
         Sr[x_] = (Log[Z - \beta] + (q[x] + x * \partial_x q[x]) * Integral) * R;
```

```
In[137]:=
         Hr[tr]
         Sr[tr]
Out[137]=
         -1764.40667518
Out[138]=
         -4.12033343009
         Z = 0.7712 //ANS; H^R = -1764.407 \frac{J}{mol} //ANS; S^R = -4.12033 \frac{J}{mol K} //ANS
         Solution to Part (b)
In[155]:=
         p = 70.; (*bar*)
         pc = 89.63; (*bar*) (*Table B.1, p.665*)
         pr = p / pc; (*reduced pressure*)
In[158]:=
         t = 400.; (*K*)
         tc = 373.5; (*K*) (*Table B.1, p.665*)
         tr = t / tc; (*reduced temperature*)
In[161]:=
         \alpha[x_{-}] = x^{-1/2}; (*Table 3.1*)
         \beta = \Omega * pr / tr; (*eqs 3.50 and 3.51*)
         q[x_{-}] = (\Psi * \alpha[x]) / (\Omega * x);
In[164]:=
         eq1 = z == \left(1 + \beta - q[tr] * \beta * \frac{z - \beta}{(z + \epsilon * \beta) * (z + \sigma * \beta)}\right); (*Eq. 3.48*)
In[165]:=
         Z = z /. Solve[eq1, z, Reals] [[1, 1]] // Quiet(*//ANS*)
Out[165]=
         0.744472607587
In[166]:=
         Integral = \frac{1}{\sigma - \epsilon} * Log \left[ \frac{Z + \sigma * \beta}{Z + \epsilon * \beta} \right]; (*Eq. 13.72*)
In[167]:=
         R = 8.314; (*\frac{J}{mol*K}*)
         Hr[x_] = (Z - 1 + x * \partial_x q[x] * Integral) * R * t; (*L28 Slide 8*)
         Sr[x_] = (Log[Z - \beta] + (q[x] + x * \partial_x q[x]) * Integral) * R;
In[170]:=
         Hr[tr]
         Sr[tr]
Out[170]=
         -2658.79192074
Out[171]=
         -4.69814218997
```

```
Z = 0.7445 //ANS; H^R = -2658.792 \frac{J}{mol\ K} //ANS; S^R = -4.698 \frac{J}{mol\ K} //ANS
```

Solution to Part (c)

```
In[172]:=
         p = 50.; (*bar*)
         pc = 34.00; (*bar*) (*Table B.1, p.665*)
         pr = p / pc; (*reduced pressure*)
In[175]:=
         t = 150.; (*K*)
         tc = 126.2; (*K*) (*Table B.1, p.665*)
         tr = t / tc; (*reduced temperature*)
In[178]:=
         \alpha[x_{-}] = x^{-1/2}; \text{ (*Table 3.1*)}
         \beta = \Omega * pr / tr; (*eqs 3.50 and 3.51*)
         q[x_{-}] = (\Psi * \alpha[x]) / (\Omega * x);
In[181]:=
         eq1 = z == \left(1 + \beta - q[tr] * \beta * \frac{z - \beta}{(z + \epsilon * \beta) * (z + \sigma * \beta)}\right); (*Eq. 3.48*)
In[182]:=
         Z = z /. Solve[eq1, z, Reals] [[1, 1]] // Quiet(*//ANS*)
Out[182]=
         0.662889058847
In[183]:=
         Integral = \frac{1}{C-\epsilon} * Log\left[\frac{Z+\sigma*\beta}{Z+\epsilon*\beta}\right]; (*Eq. 13.72*)
In[184]:=
         R = 8.314; (*\frac{J}{mol+K}*)
         Hr[x_{-}] = (Z - 1 + x * \partial_x q[x] * Integral) * R * t; (*L28 Slide 8*)
         Sr[x_] = (Log[Z - \beta] + (q[x] + x * \partial_x q[x]) * Integral) * R;
In[187]:=
         Hr[tr]
         Sr[tr]
Out[187]=
         -1488.04767962
Out[188]=
         -7.25732313512
         Z = 0.6629 //ANS; H^R = -1488.048 \frac{J}{mal} //ANS; S^R = -7.257 \frac{J}{mal K} //ANS
         Solution to Part (d)
In[189]:=
         p = 15.; (*bar*)
         pc = 24.90; (*bar*) (*Table B.1, p.663*)
         pr = p / pc; (*reduced pressure*)
```

```
In[192]:=
         t = 575.; (*K*)
         tc = 568.7; (*K*) (*Table B.1, p.663*)
         tr = t / tc; (*reduced temperature*)
In[195]:=
         \alpha[x_{-}] = x^{-1/2}; \text{ (*Table 3.1*)}
         \beta = \Omega * pr / tr; (*eqs 3.50 and 3.51*)
         q[x_{-}] = (\Psi * \alpha[x]) / (\Omega * x);
In[198]:=
         eq1 = z == \left(1 + \beta - q[tr] * \beta * \frac{z - \beta}{(z + \epsilon * \beta) * (z + \sigma * \beta)}\right); (*Eq. 3.48*)
In[199]:=
         Z = z /. Solve[eq1, z, Reals][1, 1] // Quiet(*//ANS*)
Out[199]=
         0.765801774832
In[200]:=
         Integral = \frac{1}{G - \epsilon} * Log \left[ \frac{Z + \sigma * \beta}{Z + \epsilon * \beta} \right]; (*Eq. 13.72*)
In[201]:=
         R = 8.314; (*\frac{3}{mal+1}*)
         Hr[x] = (Z - 1 + x * \partial_x q[x] * Integral) * R * t; (*L28 Slide 8*)
         Sr[x_] = (Log[Z - \beta] + (q[x] + x * \partial_x q[x]) * Integral) * R;
In[204]:=
         Hr[tr]
         Sr[tr]
Out[204]=
          -3389.75788422
Out[205]=
          -4.11468647157
         Z = 0.7658 //ANS; H^R = -3389.758 \frac{J}{mol} //ANS; S^R = -4.115 \frac{J}{mol K} //ANS
         Solution to Part (e)
In[206]:=
         p = 25.; (*bar*)
         pc = 42.48; (*bar*) (*Table B.1, p.663*)
```

$$p = 25.; (*bar*)$$

$$pc = 42.48; (*bar*) (*Table B.1, p.663*)$$

$$pr = p/pc; (*reduced pressure*)$$

$$t = 375.; (*K*)$$

$$tc = 369.8; (*K*) (*Table B.1, p.663*)$$

$$tr = t/tc; (*reduced temperature*)$$

$$in[212]:=$$

$$\alpha[X_] = X^{-1/2}; (*Table 3.1*)$$

$$\beta = \Omega * pr/tr; (*eqs 3.50 and 3.51*)$$

$$q[X_] = (\Psi * \alpha[X]) / (\Omega * X);$$

In[215]:= eq1 = z ==
$$\left(1 + \beta - q[tr] * \beta * \frac{z - \beta}{(z + \epsilon * \beta) * (z + \sigma * \beta)}\right); (*Eq. 3.48*)$$
In[216]:= Z = z /. Solve[eq1, z, Reals] [1, 1] // Quiet(*//ANS*)
Out[216]=

0.775001391061

Integral =
$$\frac{1}{\sigma - \epsilon} * Log\left[\frac{Z + \sigma * \beta}{Z + \epsilon * \beta}\right]; (*Eq. 13.72*)$$

In[218]:=
$$R = 8.314; (*\frac{J}{mo1*K}*)$$

$$Hr[x_{_}] = (Z - 1 + x * \partial_{x}q[x] * Integral) * R * t ; (*L28 Slide 8*)$$

$$Sr[x_{_}] = (Log[Z - \beta] + (q[x] + x * \partial_{x}q[x]) * Integral) * R ;$$

$$\begin{array}{l} \text{Out[221]=} \\ -2121.91582396 \end{array}$$

$$Z = 0.7750$$
 //ANS; $H^R = -2121.92 \frac{J}{\text{mol } K}$ //ANS; $S^R = -3.939 \frac{J}{\text{mol } K}$ //ANS