Partial Functions

A **partial function** f from a set A to a set B is a relation $f \subseteq A \times B$ such that just **some** elements of A are related to unique elements of B:

$$\langle a, b_1 \rangle \in f \land \langle a, b_2 \rangle \in f \implies b_1 = b_2$$

The partial function f is regarded as **undefined** on those elements which do not have an image under f.

We can call this undefined value \bot (pronounced **bottom**). A partial function from A to B is a function from A to B \cup { \bot }

A partial function does not need to be a function.

Examples of Partial Functions

▶ The relation $R = \{\langle 1, a \rangle, \langle 3, a \rangle\} \subseteq \{1, 2, 3\} \times \{a, b\}$:

Not every element in A maps to an element in B.

The binary relation R on R defined by $R \triangleq \{\langle x, y \rangle \mid \sqrt{x} = y\}$; it is not defined when x is negative.

Properties of Functions

Let $f : A \rightarrow B$ be a function

f is onto (surjective) when every element of B is in the image of f:

$$\forall b \in B \exists a \in A (f(a) = B b)$$

f is **one-to-one** (**injective**) when for each $b \in B$ there is at most one $a \in A$ with f(a) = b:

$$\forall a, a' \in A (f(a) = B f(a') \implies a = A a')$$

f is a bijection when f is one-to-one and onto

If there exists functions $f:A\to B$ and $g:B\to A$, both injective or both surjective, then there exists a bijection $h:A\to B$

Example 1

Let $A = \{1, 2, 3\}$ and $B = \{a, b\}$. The function $f = \{\langle 1, a \rangle, \langle 2, b \rangle, \langle 3, a \rangle\}$ is *onto*, but *not one-to-one*:

We cannot define a *one-to-one* function from A to B. There are too many elements in A for them to map uniquely to B.

Example 2

Let $A = \{1, 2\}$ and $B = \{a, b, c\}$. The function $f = \{\langle 1, c \rangle, \langle 2, a \rangle\}$ is *one-to-one*, but not *onto*:

It is not possible to define an *onto* function from A to B; there are not enough elements in A to map to all the elements of B.

Example 3

Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$. The function $f = \{\langle 1, a \rangle, \langle 2, c \rangle, \langle 3, b \rangle\}$ is bijective:

The function $f: \mathbb{N}^2 \to \mathbb{N}$ defined by f(x,y) = x + y is *onto* but not *one-to-one*. To prove that f is *onto*, take an arbitrary $n \in \mathbb{N}$. Then f(n,0) = n + 0 = n.

To show that f is not *one-to-one*, we need to produce a counter example: that is, find $\langle m_1, m_2 \rangle$, $\langle n_1, n_2 \rangle$ such that $\langle m_1, m_2 \rangle \neq \langle n_1, n_2 \rangle$, but $f(m_1, m_2) = f(n_1, n_2)$. Take, for example, $\langle 1, 0 \rangle$ and $\langle 0, 1 \rangle$.

The function $f: \mathbb{N} \to \mathbb{N}$ defined by $f(x) = x^2$ is *one-to-one*. Defined on \mathbb{Z} it is not.

The function $f: \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = x + 1 is *onto*. The similar function on \mathbb{N} is not.

The function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 4x + 3 is a bijective function.

A Proposition

Let A and B be **finite** sets, and let $f: A \rightarrow B$

If f is **one-to-one**, then $|A| \le |B|$ If f is **onto**, then $|A| \ge |B|$ If f is a **bijection**, then |A| = |B|

Proof: (Sketch.) The first part is the contrapositive of the pigeonhole principle.

For the second, notice that if f is *onto* then f[A] = B. Hence, |f[A]| = |B|. Also $|A| \ge |f[A]|$ by previous proposition. Therefore $|A| \ge |B|$ as required.

The third part follows from the first two parts.