REPORT

Digital Image Processing « Assignments »

Summary

A	Morpholigical Processing		
	A.1	Problem statement	1
	A.2	Python implementation	1
	A.3	Erosion	2
	A.4	Dilation	2
	A.5	Opening	3
	A.6	Closing	3
	A.7	Boundary extraction	4
	A.8	Hole filling	4
	A.9	Connected component extraction	5

A. Morpholigical Processing

A.1 Problem statement

- (a) Implement the morphological operations: erosion, dilation, opening and closing, and use the noisy fingerprint.tif to check your implementation.
- (b) Implement boundary extraction, hole filling, connected component extraction. Using licoln_from_penny.tif, region_filling_refletion.tif and chickenfilet_with_bones.tif to the results, respectively.

A.2 Python implementation

```
Usage: problem8.py [-h] [-debug] [-test] [-erosion] [-dilation] [-opening] [-closing] [-boundary] [-filling] [-connected] image path
```

Use **python problem8.py -h** to see the help.

A.3 Erosion 2

A.3 Erosion

 $python\ problem 8.py\ -erosion\ noisy_fingerprint.tif$

FIGURE A.1 – Original image

FIGURE A.2 - Erosion

A.4 Dilation

python problem8.py -dilation noisy fingerprint.tif

FIGURE A.3 – Original image

FIGURE A.4 – Dilation

A.5 Opening 3

A.5 Opening

 $python\ problem 8.py\ -opening\ noisy\ _fingerprint.tif$

Figure A.5 — Original image

FIGURE A.6 - Opening

A.6 Closing

 $python\ problem 8. py\ -closing\ noisy_fingerprint.tif$

FIGURE A.7 – Original image

FIGURE A.8 - Closing

A.7 Boundary extraction

 $python\ problem 8.py\ -boundary\ licoln\ from\ penny.tif$

FIGURE A.9 – Original image

FIGURE A.10 - Boundary extraction

A.8 Hole filling

 $python\ problem 8. py-filling\ region_filling_reflections.tif$

 ${\bf FIGURE}~{\bf A.11}-{\rm Original~image}$

 ${\bf FIGURE} \ {\bf A.12} - {\bf Hole} \ {\bf filling}$

A.9 Connected component extraction

python problem8.py –connected chickenfilet with bones.tif

FIGURE A.13 – Original image

FIGURE A.14 - Thresholding

FIGURE A.15 – Erosion 5×5

${\bf Connected\ components:}$

Connected component	No of pixels
01	836
02	690
03	44
04	148
05	1
06	18
07	19
08	26
09	2
10	14
11	11
12	13
13	28
14	87
15	18