ÉCOLE NORMALE SUPÉRIEURE

CONCOURS D'ADMISSION 2018

FILIÈRE MPI

COMPOSITION DE MATHÉMATIQUES – D – (U)

(Durée : 6 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

* * *

NOTATIONS ET OBJECTIFS DU SUJET

Dans tout ce problème, I désigne un intervalle de \mathbf{R} de la forme I = [a, b] avec a < b. On note $C^0(I, \mathbf{R})$ l'espace vectoriel des fonctions continues $f \colon I \to \mathbf{R}$. On munit cet espace de la norme $\|\cdot\|_I$ définie par $\|f\|_I = \sup_{x \in I} |f(x)|$. Si A est une partie de $C^0(I, \mathbf{R})$ et si $f \in C^0(I, \mathbf{R})$, on dit que f est une limite uniforme d'éléments de A s'il existe une suite $\{f_n\}_{n\geq 1}$ d'éléments de A telle que $\|f - f_n\|_I \to 0$ quand $n \to +\infty$.

On note **N** l'ensemble des entiers positifs (ou nuls). Si $n \in \mathbf{N}$, on note $\mathbf{R}_n[X] \subset \mathbf{R}[X]$ l'espace vectoriel des polynômes de degré au plus n. On dit qu'un polynôme $p \in \mathbf{R}[X]$ est unitaire si p(X) = 1 ou bien s'il existe un entier $n \geq 1$ et un polynôme $r \in \mathbf{R}_{n-1}[X]$ tels que $p(X) = X^n + r(X)$.

La restriction à I permet de voir $\mathbf{R}[X]$ comme un sous-espace vectoriel de $C^0(I, \mathbf{R})$, ce que nous faisons. Nous munissons alors $\mathbf{R}_n[X]$ et $\mathbf{R}[X]$ de la norme $\|\cdot\|_I$.

On rappelle le théorème de Weierstrass.

Théorème. Toute fonction $f \in C^0(I, \mathbf{R})$ est limite uniforme d'éléments de $\mathbf{R}[X]$.

L'essentiel du problème (les parties 3 à 7) est inspiré par la question suivante : quelles fonctions continues sur I sont limites uniformes de polynômes à coefficients entiers? Le problème comporte sept parties. Les résultats des questions 2.4 à 2.8 ne sont pas utilisés dans la suite. La partie 5 n'utilise pas les résultats des parties précédentes.

- 1. Existence et unicité d'une meilleure approximation
- Soit $n \in \mathbf{N}$ et soit $f \in C^0(I, \mathbf{R})$. On pose $m = \inf_{p \in \mathbf{R}_n[X]} ||f p||_I$.
- **1.1.** Montrer que l'ensemble C des $g \in \mathbf{R}_n[X]$ tels que $||f g||_I \le 1 + m$ est un compact non vide de $\mathbf{R}_n[X]$.

1.2. Montrer qu'il existe un élément $p \in \mathbf{R}_n[X]$ tel que $||f - p||_I = m$. En déduire que si m = 0, on a alors $f \in \mathbf{R}_n[X]$.

On suppose dans la suite de cette partie que m > 0.

1.3. Soit k le nombre de solutions dans I de l'équation |f(x) - p(x)| = m; on suppose que $k \le n + 1$ et on note ces solutions $x_1 < \cdots < x_k$, avec $x_i \in I$.

Montrer qu'il existe un polynôme $q \in \mathbf{R}_n[X]$ tel que $q(x_i) = f(x_i)$ pour tout $i \in \{1, \ldots, k\}$.

1.4. Pour $\delta > 0$, on pose

$$U_{\delta} = \{x \in I \mid \exists i \in \{1, \dots, k\} \mid |x - x_i| < \delta\}.$$

Soit $\varepsilon > 0$. Montrer qu'il existe $\delta > 0$ tel que $|f(x) - q(x)| < \varepsilon$ pour tout $x \in U_{\delta}$.

1.5. Soit $\ell = ||p - q||_I$ et soit $\varepsilon > 0$, à ajuster ensuite. Soit δ comme à la question 1.4. Pour $t \in]0,1[$, on pose $p_t = (1-t)p + tq$. Montrer que pour tout $x \in I$, on a

$$|f(x) - p_t(x)| \le \begin{cases} (1 - t)m + t\varepsilon & \text{si } x \in U_\delta; \\ t\ell + \sup_{y \in I \setminus U_\delta} |f(y) - p(y)| & \text{si } x \in I \setminus U_\delta. \end{cases}$$

- **1.6.** Montrer que pour un choix convenable de $\varepsilon > 0$, il existe $t \in]0,1[$ tel que $||f-p_t||_I < m$. En déduire que l'équation |f(x)-p(x)| = m admet au moins n+2 solutions distinctes dans I.
- **1.7.** On suppose qu'il existe $p_1, p_2 \in \mathbf{R}_n[X]$ tels que $||f p_1||_I = ||f p_2||_I = m$. Montrer que $p_1 = p_2$ (on pourra appliquer la question 1.6 à $(p_1 + p_2)/2$).

2. Capacité d'un compact

Soit K une partie compacte de \mathbf{R} . Si $f \in C^0(K, \mathbf{R})$, on pose $||f||_K = \sup_{x \in K} |f(x)|$. On suppose que K est un ensemble infini.

2.1. Montrer que si $n \geq 1$ est un entier, il existe un polynôme $q \in \mathbf{R}[X]$, unitaire de degré n, tel que $||q||_K = \inf_p ||p||_K$, où p parcourt l'ensemble des polynômes unitaires de degré n à coefficients dans \mathbf{R} . On pose $t_n = ||q||_K = \inf_p ||p||_K$.

Montrer que si a < b et K = [a, b], un tel polynôme q est unique. On le note T_n^K .

2.2. Soit $\{\ell_n\}_{n\geq 1}$ une suite de réels telle que pour tout $m,\,n\geq 1,$ on a

$$\ell_{m+n} \le \ell_n \frac{n}{m+n} + \ell_m \frac{m}{m+n}.$$

Soit $\ell = \inf_{n \ge 1} \ell_n \in \{-\infty\} \cup \mathbf{R}$. Montrer que $\ell_n \to \ell$ quand $n \to +\infty$.

2.3. Montrer que la suite $\{t_n^{1/n}\}_{n\geq 1}$ admet une limite, notée $d_1(K)$.

- **2.4.** On pose $w_1 = 1$ et, pour tout $n \ge 2$, on pose $w_n = \sup_{(x_1, \dots, x_n) \in K^n} \prod_{1 \le i < j \le n} |x_i x_j|$. Montrer que la suite $\{w_n^{2/(n(n-1))}\}_{n \ge 2}$ est décroissante. En déduire qu'elle converge; on notera $d_2(K)$ sa limite.
- **2.5.** Montrer que pour tout entier $n \ge 1$, on a $t_n \le w_{n+1}/w_n$.

On pourra montrer qu'il existe $x_1, \ldots, x_n \in K$ tels que $w_n = \prod_{1 \le i < j \le n} |x_i - x_j|$, puis considérer $p(X) = (X - x_1) \cdots (X - x_n)$ et choisir judicieusement $x_{n+1} \in K$.

2.6. Montrer qu'il existe $x_1, \ldots, x_{n+1} \in K$ tels que pour tout polynôme unitaire $p \in \mathbf{R}[X]$ de degré n, on a

$$w_{n+1} = \left| \det \begin{pmatrix} 1 & \cdots & x_1^{n-1} & p(x_1) \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \cdots & x_{n+1}^{n-1} & p(x_{n+1}) \end{pmatrix} \right|.$$

En déduire que $w_{n+1} \leq (n+1)w_n t_n$.

- **2.7.** Soit $\{u_n\}_{n\geq 1}$ une suite de réels qui converge vers une limite u. Pour $n\geq 1$, on pose $z_n=(u_1+\cdots+u_n)/n$. Montrer que $z_n\to u$ quand $n\to+\infty$.
- **2.8.** Montrer que $d_1(K) = d_2(K)$.

Remarque. Cette limite commune est appelée la *capacité* de K.

3. Polynômes de Tchebychev

Dans toute cette partie, n est un entier strictement positif.

- **3.1.** Montrer qu'il existe un et un seul polynôme T_n tel que $T_n(\cos(\theta)) = \cos(n\theta)$ pour tout $\theta \in \mathbf{R}$. Quel est son degré?
- **3.2.** Montrer que $2^{1-n}T_n$ est un polynôme unitaire qui admet n+1 extrema dans l'intervalle [-1,1].
- **3.3.** Soit I = [-1, 1], soit f la fonction définie par $f(x) = x^n$ et soit q un élément de $\mathbf{R}_{n-1}[X]$ tel que $||f q||_I = \inf_{p \in \mathbf{R}_{n-1}[X]} ||f p||_I$ (cf. la question 1.2). On suppose que $||f q||_I < 2^{1-n}$.

Montrer que le polynôme $2^{1-n}T_n - (f-q)$ a au moins n racines distinctes dans I. En déduire que si I = [-1,1], alors $T_n^I = 2^{1-n}T_n$ (le polynôme T_n^I est défini à la question 2.1).

3.4. Calculer $T_n^{[a,b]}$ et en déduire que $||T_n^{[a,b]}||_{[a,b]} = 2\left(\frac{b-a}{4}\right)^n$ puis que $d_1([a,b]) = (b-a)/4$ (où d_1 est défini à la question 2.3).

- **3.5.** Montrer que si I = [a, b] avec $b a \ge 4$, et que p est un polynôme non constant à coefficients entiers, alors $||p||_I \ge 2$.
- **3.6.** En déduire que si $b-a \ge 4$, une fonction $f \in C^0(I, \mathbf{R})$ est une limite uniforme de polynômes à coefficients entiers si et seulement si f est elle-même un polynôme à coefficients entiers.
 - 4. L'APPROXIMATION PAR DES POLYNÔMES À COEFFICIENTS ENTIERS

On suppose dans le reste du problème que I = [a, b] avec b - a < 4.

- **4.1.** Montrer qu'il existe un polynôme unitaire non constant $p \in \mathbf{R}[X]$ tel que $||p||_I < 1$.
- **4.2.** Soit $r \in \mathbf{R}[X]$ un polynôme de degré $d \geq 1$. Montrer que si $s \in \mathbf{R}[X]$, il existe $n \geq 0$ et $b_0, \ldots, b_n \in \mathbf{R}_{d-1}[X]$ tels que

$$s(X) = b_0(X) + b_1(X)r(X) + \dots + b_n(X)r(X)^n$$
.

4.3. Soit d le degré du polynôme p construit à la question 4.1 et soient $\ell_0 \geq 1$ et $k \geq \ell_0$ des entiers; on pose $m = \ell_0 d$. Montrer qu'il existe des réels $b_{i,\ell} \in [0,1]$ pour $0 \leq i \leq d-1$ et pour $\ell \geq \ell_0$, tels que l'on peut écrire $p(X)^k = r_k(X) + z_k(X) + p_k(X)$, où

$$r_k(X) = \sum_{\substack{0 \le i \le d-1\\\ell > \ell_0}} b_{i,\ell} X^i p(X)^{\ell},$$

où z_k est un polynôme unitaire de degré kd à coefficients entiers et où p_k est un polynôme de degré au plus m-1 et à coefficients dans [0,1].

4.4. Choisir soigneusement ℓ_0 et montrer qu'il existe alors deux entiers k' > k tels que $q = z_{k'} - z_k$ est un polynôme unitaire non constant à coefficients entiers vérifiant $||q||_I < 1$.

Définition. Soit J(I) l'ensemble des $x \in I$ tels que p(x) = 0 pour tout polynôme p à coefficients entiers vérifiant $||p||_I < 1$. Par la question 4.4, l'ensemble J(I) est fini.

- **4.5.** Déterminer J(I) lorsque I = [a, b] avec -1 < a < b < 1, puis lorsque I = [-1, 1].
- **4.6.** Soit $f \in C^0(I, \mathbf{R})$ une fonction qui est une limite uniforme de polynômes à coefficients entiers. Montrer qu'il existe un polynôme p à coefficients entiers tel que f(x) = p(x) pour tout $x \in J(I)$.
- **4.7.** Montrer qu'il existe un polynôme unitaire q à coefficients entiers tel que $||q||_I < 1$ et que, si $x \in I$ vérifie q(x) = 0, alors $x \in J(I)$.

Notation. Dans le reste de cette partie, q désigne un tel polynôme et n son degré.

- **4.8.** Montrer qu'il existe une constante M > 0 telle que pour tout $p \in \mathbf{R}[X]$, il existe $\tilde{p} \in \mathbf{Z}[X]$ vérifiant $\|p \tilde{p}\|_{I} \leq M$. On pourra utiliser la question 4.2.
- **4.9.** Soit $f \in C^0(I, \mathbf{R})$ une fonction telle que pour tout $x \in I$ vérifiant q(x) = 0, il existe $\delta > 0$ tel que f(y) = 0 pour tout $y \in I$ vérifiant $|x y| < \delta$.

Soit $\varepsilon > 0$. En appliquant le théorème de Weierstrass (rappelé dans l'introduction) à f/q^k pour k grand, montrer qu'il existe un polynôme p à coefficients entiers tel que $||f-p||_I < \varepsilon$.

- **4.10.** Soit $f \in C^0(I, \mathbf{R})$ une fonction telle que pour tout $x \in I$ vérifiant q(x) = 0, on a f(x) = 0. Montrer que f est une limite uniforme de polynômes à coefficients entiers.
- **4.11.** Montrer qu'une fonction $f \in C^0(I, \mathbf{R})$ est une limite uniforme de polynômes à coefficients entiers si et seulement s'il existe un polynôme p à coefficients entiers tel que f(x) = p(x) pour tout $x \in J(I)$.
- **4.12.** Montrer qu'une fonction $f \in C^0([-1,1], \mathbf{R})$ est une limite uniforme de polynômes à coefficients entiers si et seulement si $f(-1) \in \mathbf{Z}$, $f(0) \in \mathbf{Z}$, $f(1) \in \mathbf{Z}$ et f(-1) et f(1) sont de même parité.

5. Polynômes symétriques

Définitions. Soit $n \geq 1$. On considère des polynômes en les n variables T_1, \ldots, T_n et à coefficients dans \mathbf{Z} , c'est à dire $p(T_1, \ldots, T_n) = \sum_{i_1, \ldots, i_n \geq 0} a_{i_1, \ldots, i_n} T_1^{i_1} \cdots T_n^{i_n}$ avec $a_{i_1, \ldots, i_n} \in \mathbf{Z}$ et où la somme est finie. L'ensemble de ces polynômes est noté $\mathbf{Z}[T_1, \ldots, T_n]$ et forme un anneau.

Un monôme est un polynôme de la forme $a_{i_1,\dots,i_n}T_1^{i_1}\cdots T_n^{i_n}$ avec $a_{i_1,\dots,i_n}\neq 0$. Son degré est le n-uplet $\underline{i}=(i_1,\dots,i_n)\in \mathbf{N}^n$. Nous dirons qu'un n-uplet $\underline{i}\in \mathbf{N}^n$ est plus petit qu'un n-uplet $\underline{j}\in \mathbf{N}^n$ si $\sum_k i_k < \sum_k j_k$ ou bien si $\sum_k i_k = \sum_k j_k$ et qu'il existe k tel que $i_1=j_1,\dots,i_{k-1}=j_{k-1}$ et $i_k< j_k$.

- **5.1.** Montrer que si $\underline{i} \in \mathbf{N}^n$ et $\underline{j} \in \mathbf{N}^n$ sont des *n*-uplets avec $\underline{i} \neq \underline{j}$, alors soit \underline{i} est plus petit que \underline{j} , soit \underline{j} est plus petit que \underline{i} .
- **5.2.** Montrer que si l'on se donne un n-uplet $\underline{i} \in \mathbb{N}^n$, l'ensemble des n-uplets $\underline{j} \in \mathbb{N}^n$ qui sont plus petits que \underline{i} est fini.

Définitions. Si $p(T_1, \ldots, T_n) = \sum_{i_1, \ldots, i_n \geq 0} a_{i_1, \ldots, i_n} T_1^{i_1} \cdots T_n^{i_n}$ est un polynôme non nul, on note dom(p) le coefficient a_{i_1, \ldots, i_n} du monôme $a_{i_1, \ldots, i_n} T_1^{i_1} \cdots T_n^{i_n}$, où (i_1, \ldots, i_n) est le plus grand des degrés pour lesquels $a_{i_1, \ldots, i_n} \neq 0$. Le degré (i_1, \ldots, i_n) correspondant est le degré de p, noté deg(p).

Si π est une permutation de l'ensemble $\{1,\ldots,n\}$ et si $p\in \mathbf{Z}[T_1,\ldots,T_n]$, on note p^{π} le polynôme $p(T_{\pi(1)},\ldots,T_{\pi(n)})$. On dit que p est un polynôme symétrique si $p^{\pi}=p$ pour toute permutation π . Les éléments S_1,\ldots,S_n de $\mathbf{Z}[T_1,\ldots,T_n]$ sont définis par la formule $\prod_{i=1}^n (X-T_i)=X^n-S_1X^{n-1}+\cdots+(-1)^{n-1}S_{n-1}X+(-1)^nS_n$. Ce sont donc des polynômes symétriques. On a $S_k=\sum_{1\leq i_1<\cdots< i_k\leq n}T_{i_1}\cdots T_{i_k}$.

- **5.3.** Soit $p \in \mathbf{Z}[T_1, \dots, T_n]$ un polynôme symétrique non nul et soit (i_1, \dots, i_n) le degré de p. Montrer que $i_1 \geq i_2 \geq \dots \geq i_n$.
- **5.4.** Soit p un polynôme comme dans la question précédente. On pose

$$d_1 = i_1 - i_2, \ d_2 = i_2 - i_3, \dots, d_{n-1} = i_{n-1} - i_n, \ d_n = i_n.$$

Montrer que

- ou bien $p = dom(p) \cdot S_1^{d_1} \cdots S_n^{d_n}$;
- ou bien $\deg(p \dim(p) \cdot S_1^{d_1} \cdots S_n^{d_n})$ est plus petit que $\deg(p)$.
- **5.5.** Montrer que si $p \in \mathbf{Z}[T_1, \dots, T_n]$ est un polynôme symétrique, il existe un polynôme $q \in \mathbf{Z}[T_1, \dots, T_n]$ tel que $p = q(S_1, \dots, S_n)$.

6. Entiers algébriques

Définition. On dit qu'un nombre complexe x est un entier algébrique s'il existe un polynôme unitaire (non nul) à coefficients entiers $p \in \mathbf{Z}[X]$ tel que p(x) = 0.

- **6.1.** Montrer que si $x \in \mathbf{Q}$, alors x est un entier algébrique si et seulement si $x \in \mathbf{Z}$.
- **6.2.** Si $a(X) = a_0 + a_1 X + \cdots + a_n X^n \in \mathbf{Z}[X]$, on note c(a) le pgcd de a_0, \ldots, a_n . Montrer que si $a, b \in \mathbf{Z}[X]$, on a alors c(ab) = c(a)c(b).

On pourra montrer que si un nombre premier divise c(ab), alors il divise c(a) ou c(b).

6.3. Montrer que si x est un entier algébrique, il existe un et un seul polynôme $p_x \in \mathbf{Z}[X]$ unitaire tel que $p_x(x) = 0$ et tel que p_x est irréductible dans $\mathbf{Q}[X]$.

Montrer que p_x est à racines simples dans \mathbf{C} .

Définition. Dans les notations de 6.3, les racines x_1, \ldots, x_n de p_x dans \mathbf{C} (y compris x lui-même) s'appellent les conjugués de x. On a alors $p_x(X) = (X - x_1) \cdots (X - x_n)$.

- **6.4.** Dans les notations ci-dessus, soit r un élément de $\mathbf{Q}[X]$ tel qu'il existe i vérifiant $r(x_i) = 0$. Montrer que p_x divise r dans $\mathbf{Q}[X]$.
- **6.5.** Soient x et y des entiers algébriques et soient y_1, \ldots, y_m les conjugués de y. Montrer (par exemple en utilisant la question 5.5) que les coefficients du polynôme

$$p_x(X-y_1)\cdots p_x(X-y_m)$$

sont dans \mathbf{Z} . En déduire que x + y est un entier algébrique.

6.6. Montrer que si x et y sont des entiers algébriques, alors xy est un entier algébrique.

Définition. Soit I = [a, b] et soit F(I) l'ensemble des $x \in I$ qui sont des entiers algébriques dont tous les conjugués appartiennent aussi à I. Cet ensemble s'appelle le noyau de Fekete de I.

- **6.7.** Soit q un polynôme à coefficients entiers tel que $||q||_I < 1$, soit x un élément de F(I) et soient x_1, x_2, \ldots, x_n ses conjugués. Montrer que $\prod_{i=1}^n q(x_i)$ est un élément de \mathbb{Z} , puis que q(x) = 0. En déduire que $F(I) \subset J(I)$.
- **6.8.** En considérant par exemple le polynôme $X(X^2 1)(X^2 2)$, calculer J(I) pour tout intervalle I = [-a, a] avec $a \le 3/2$.

7. LE NOYAU DE FEKETE

Le but de cette partie est de montrer que pour tout intervalle I = [a, b] de longueur b - a < 4, on a en fait F(I) = J(I).

Définition. Un pavé est une partie P de \mathbb{R}^n de la forme

$$P = \{\lambda_1 v_1 + \dots + \lambda_n v_n \mid \lambda_1, \dots, \lambda_n \in [-1, 1]\},\$$

où $v_1, \ldots, v_n \in \mathbf{R}^n$. Le volume de P est alors $\operatorname{vol}(P) = 2^n |\operatorname{d\acute{e}t}(V)|$, où V est la matrice de v_1, \ldots, v_n dans la base canonique de \mathbf{R}^n . Pour $h \in \mathbf{R}^n$, on note

$$h + P = \{h + v \mid v \in P\}.$$

Soit \mathbb{Z}^n l'ensemble des vecteurs de \mathbb{R}^n dont toutes les coordonnées sont entières.

7.1. Montrer que si P est un pavé tel que vol(P) > 1, il existe $w \neq w'$ dans P tels que $w - w' \in \mathbf{Z}^n$. On pourra observer que dans le cas contraire, h + P et h' + P sont disjoints pour tous $h \neq h'$ dans \mathbf{Z}^n .

7.2. Soit $x \in \mathbf{R}$ un entier algébrique et soient $x_1 = x, x_2, \dots, x_m$ ses conjugués. On suppose que $m \geq 2$ et qu'il existe $n \in \{2, \dots, m\}$ tel que $x_1, \dots, x_{n-1} \in \mathbf{R}$. On considère la matrice

$$M = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \\ 1 & 1 & 1 & \cdots & 1 \end{pmatrix}$$

et on note $f : \mathbf{R}^n \to \mathbf{R}^n$ l'application linéaire correspondante. Si r > 0, on note B(r) l'ensemble des $a \in \mathbf{R}^n$ tels que $|a_n| \le r$ et que $|a_i| \le 1/2$ pour tout $i \in \{1, \ldots, n-1\}$.

Montrer que si r est assez grand, il existe $h \in \mathbb{Z}^n \setminus \{0\}$ tel que $h \in f^{-1}(B(r))$.

7.3. Soit $h \in \mathbb{Z}^n \setminus \{0\}$ comme à la question précédente. On pose

$$s(X) = h_1 + h_2 X + \dots + h_n X^{n-1},$$

où h_1, \ldots, h_n sont les coordonnées de h. Montrer que pour tout $i \in \{1, \ldots, n-1\}$, on a $|s(x_i)| \le 1/2$ et $s(x_i) \ne 0$.

- **7.4.** On conserve les notations de la question 7.2. Soit $\varepsilon > 0$. Montrer que si $y_1, \ldots, y_{n-1} \in \mathbb{R}$, il existe $p \in \mathbb{Z}[X]$ tel que $|p(x_i) y_i| < \varepsilon$ pour tout $i \in \{1, \ldots, n-1\}$ (on pourra s'inspirer des questions 4.8 et 4.9).
- **7.5.** Soit à présent $S = \{x_1, \ldots, x_n\}$ un ensemble de nombres réels deux à deux distincts tel que, pour tout $1 \le i \le n$, le réel x_i est un entier algébrique qui admet au moins un conjugué qui n'est pas dans S. Montrer que si $y_1, \ldots, y_n \in \mathbf{R}$ et si $\varepsilon > 0$, il existe $p \in \mathbf{Z}[X]$ tel que $|p(x_i) y_i| < \varepsilon$ pour tout $i \in \{1, \ldots, n\}$.
- **7.6.** Soit I = [a, b] avec b a < 4 et soit q un polynôme unitaire à coefficients entiers tel que $||q||_I < 1$. En écrivant l'ensemble des racines de q dans I comme union disjointe $F(I) \cup S$, montrer qu'une fonction $f \in C^0(I, \mathbf{R})$ telle que f(x) = 0 pour tout $x \in F(I)$ est une limite uniforme de polynômes à coefficients entiers.
- **7.7.** Montrer que F(I) = J(I).

FIN DU PROBLÈME