## Lógica y Algebra de Boole





Lógica Matemática

**Proposiciones** 

**Operadores** 

Tablas de Verdad

Algebra de Boole

**Expresiones booleanas** 

**Teoremas** 

Optimización de expresiones booleanas

## INTRODUCCIÓN A LÓGICA

- La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero.
- Es ampliamente aplicada en filosofía, matemáticas, computación y física.
- En filosofía se utiliza para establecer si un razonamiento es válido o no.
- En matemática es útil para demostrar teoremas, inferir resultados y resolver problemas.
- En computación se aplica en la elaboración y revisión de programas, estudio de lenguajes formales y la relacion existente entre ellos.
- En física se necesita tanto para establecer procedimientos de un experimento como para interpretar resultados

## INTRODUCCIÓN A LÓGICA

- La lógica matemática es la rama más matemática de la lógica, que estudia la inferencia mediante sistemas formales como la lógica proposicional, la lógica de primer orden y la lógica modal.
- La lógica computacional es la aplicación de la lógica matemática a las ciencias de la computación.
- La lógica filosófica utiliza los métodos y resultados de la lógica moderna para el estudio de problemas filosóficos.

#### **PROPOSICIONES**

- Una proposición o enunciado es una oración, frase o expresión matemática que puede ser falsa o verdadera, pero no ambas a la vez
- La proposición es un elemento fundamental en la lógica matemática

### PROPOSICIONES SIMPLES

Ejemplo:

Aprobaré el semestre

## PROPOSICIONES COMPUESTAS

- Existen conectores u operadores lógicos que permiten formar proposiciones compuestas.
- Se dice que una proposición es compuesta cuando está integrada por dos o más proposiciones simples conectadas por operadores lógicos.
- Una proposición simple es aquella que no se puede dividir

### PROPOSICIONES COMPUESTAS

## Ejemplo:

 Si asisto a clase y estudio, entonces me irá bien en la carrera.

- AND (y)
- **8**
- Λ

| Operador AND                      |           |           |  |  |  |
|-----------------------------------|-----------|-----------|--|--|--|
| Condición 1 Condición 2 Resultado |           |           |  |  |  |
| FALSO                             | FALSO     | FALSO     |  |  |  |
| FALSO                             | VERDADERO | FALSO     |  |  |  |
| VERDADERO                         | FALSO     | FALSO     |  |  |  |
| VERDADERO                         | VERDADERO | VERDADERO |  |  |  |



## AND Ejemplo:

Está lloviendo y hace frío

- OR (o)

| Operador OR                       |           |           |  |  |  |
|-----------------------------------|-----------|-----------|--|--|--|
| Condición 1 Condición 2 Resultado |           |           |  |  |  |
| FALSO                             | FALSO     | FALSO     |  |  |  |
| FALSO                             | VERDADERO | VERDADERO |  |  |  |
| VERDADERO                         | FALSO     | VERDADERO |  |  |  |
| VERDADERO                         | VERDADERO | VERDADERO |  |  |  |



## OR Ejemplo:

En verano llueve o hace calor

- NOT (no)
- ~

TABLA DE VERDAD DEL OPERADOR NOT

NOT true  $\rightarrow$  false

NOT false  $\rightarrow$  true



## NOT Ejemplo:

- Sea p: el caballo es blanco, el complemento de p es:
- p': el caballo no es blanco

XOR (or exclusivo)



| XOR         |             |           |  |  |
|-------------|-------------|-----------|--|--|
| Condición 1 | Condición 2 | Resultado |  |  |
| VERDADERO   | VERDADERO   | FALSO     |  |  |
| VERDADERO   | FALSO       | VERDADERO |  |  |
| FALSO       | VERDADERO   | VERDADERO |  |  |
| FALSO       | FALSO       | FALSO     |  |  |



NAND



NOR



XNOR



## PROPOSICIÓN CONDICIONAL

 Una proposición condicional es aquella proposición que teniendo un antecedente deriva en una consecuencia, tiene una estructura "si P entonces Q"



| Proposición Condicional |           |           |  |  |
|-------------------------|-----------|-----------|--|--|
| Р                       | Resultado |           |  |  |
| VERDADERO               | VERDADERO | VERDADERO |  |  |
| VERDADERO               | FALSO     | FALSO     |  |  |
| FALSO                   | VERDADERO | VERDADERO |  |  |
| FALSO                   | FALSO     | VERDADERO |  |  |

## PROPOSICIÓN CONDICIONAL

## Ejemplo:

Si es feriado, entonces no tengo clase

## PROPOSICIÓN BICONDICIONAL

Su estructura P ↔ Q se traduce a "P si y solo si Q", "entonces y solo entonces".

■ P ← Q

| Proposición Bicondicional |           |           |  |  |  |
|---------------------------|-----------|-----------|--|--|--|
| P Q Resultado             |           |           |  |  |  |
| VERDADERO                 | VERDADERO | VERDADERO |  |  |  |
| VERDADERO                 | FALSO     | FALSO     |  |  |  |
| FALSO                     | VERDADERO | FALSO     |  |  |  |
| FALSO                     | FALSO     | VERDADERO |  |  |  |

## PROPOSICIÓN BICONDICIONAL

## Ejemplo:

El programa corre, si y solo si no tiene errores de compilación.

## JERARQUÍA DE OPERACIÓN

| Jerarquía | Operador                            |
|-----------|-------------------------------------|
| 1°        | ()                                  |
| 2°        | ,                                   |
| 3°        | ٨                                   |
| 4°        | V                                   |
| 5°        | $\rightarrow$ $\longleftrightarrow$ |

## TABLAS DE VERDAD

- Es una tabla que muestra el valor de verdad de una proposición simple o compuesta, para cada combinación de verdad que se pueda asignar
- Verdadero (El valor verdadero se representa con la letra V; si se emplea notación numérica se expresa con un 1)
- Falso (El valor falso F; si se emplea notación numérica se expresa con un 0)

## TABLAS DE VERDAD

#### Ejemplo:

| р | q |   | Resultado |
|---|---|---|-----------|
| 0 | 0 | 0 | 0         |
| 0 | 0 | 1 | 0         |
| 0 | 1 | 0 | 1         |
| 0 | 1 | 1 | 0         |
| 1 | 0 | 0 | 1         |
| 1 | 0 | 1 | 0         |
| 1 | 1 | 0 | 1         |
| 1 | 1 | 1 | 1         |

# TAUTOLOGÍA, CONTRADICCIÓN Y CONTINGENCIA

- Tautología: proposición verdadera para todos los valores de verdad de sus variables
- Contradicción: proposición falsa para todos los valores de verdad de sus variables
- Contingencia: proposición que puede ser verdadera o falsa dependiendo de los valores de verdad de sus variables

## **TAUTOLOGÍA**

#### Ejemplo:

| р | q |   | Resultado |
|---|---|---|-----------|
| 0 | 0 | 0 | 1         |
| 0 | 0 | 1 | 1         |
| 0 | 1 | 0 | 1         |
| 0 | 1 | 1 | 1         |
| 1 | 0 | 0 | 1         |
| 1 | 0 | 1 | 1         |
| 1 | 1 | 0 | 1         |
| 1 | 1 | 1 | 1         |

## CONTRADICCIÓN

#### Ejemplo:

| р | q |   | Resultado |
|---|---|---|-----------|
| 0 | 0 | 0 | 0         |
| 0 | 0 | 1 | 0         |
| 0 | 1 | 0 | 0         |
| 0 | 1 | 1 | 0         |
| 1 | 0 | 0 | 0         |
| 1 | 0 | 1 | 0         |
| 1 | 1 | 0 | 0         |
| 1 | 1 | 1 | 0         |

#### ALGEBRA DE BOOLE

El álgebra booleana se relaciona con la lógica matemática, la cual sienta los principios de la electrónica digital que, a su vez, es la que hace funcionar los sistemas informáticos. El álgebra de Boole permite la simplificación de circuitos lógicos en el contexto de la electrónica digital, utilizar menos componentes y hacer más económicos y eficientes los procesos derivados de hacer las cosas de forma más simple y concreta.

Una expresión booleana es una expresión algebraica que da lugar a uno de dos posibles valores, 1 ("verdadero") o 0 ("falso").

Están compuestas de letras mayúsculas (A, B, C,...), cada una de ellas representando la señal de un sensor, y también pueden contener 1 o 0.

El valor de las señales solo puede ser 1 o 0 (verdadero o falso).

Las letras de las expresiones booleanas pueden estar conectadas por medio de los operadores lógicos: ^ (y), ^ (o), ' (negación).

$$F = A'B + (ABC) + C(B'+A)$$

$$F = 0 + AB + X'Z'Y'$$

| Α | В | С | D | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 |

$$F = A'B'C'D + A'B'CD + AB'C'D + AB'CD' + AB'CD$$

#### Determinar la expresión correspondiente

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
|   |   |   |   |

| Α | В | С | D | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

| Р | Q | R | S | Т | F | Р | Q | R | S | Т | F |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |

## **TEOREMAS**

|    | Teorema                  | Dual                                     |
|----|--------------------------|------------------------------------------|
| 1  | 0A = 0                   | 1 + A = 1                                |
| 2  | 1A = A                   | 0 + A = A                                |
| 3  | AA = A                   | A + A = A                                |
| 4  | AA' = 0                  | A + A' = 1                               |
| 5  | AB = BA                  | A + B = B + A                            |
| 6  | ABC = A(BC)              | A + B + C = A + (B + C)                  |
| 7  | (ABZ)' = A' + B' + + Z'  | (A + B + + Z)' = A'B'Z'                  |
| 8  | AB + AC = A (B + C)      | (A + B)(A + C) = A + BC                  |
| 9  | AB + AB' = A             | (A + B)(A + B') = A                      |
| 10 | A + AB = A               | A(A + B) = A                             |
| 11 | A + A'B = A + B          | A(A' + B) = AB                           |
| 12 | CA + CA'B = CA + CB      | (C + A)(C + A' + B) = (C + A)(C + B)     |
| 13 | AB + A'C + BC = AB + A'C | (A + B)(A' + C)(B + C) = (A + B)(A' + C) |

Están compuestas de letras mayúsculas (A, B, C,...) y cada una de ellas representa la señal de un sensor.

El valor de las señales o de la función solo puede ser 0 o 1, falso o verdadero.

Además de letras, pueden existir los valores 0 o 1.

Las letras de las expresiones booleanas pueden estar conectadas por medio de los operadores lógicos: ^ (y), ^ (o), ¬ (negación). El operador "y" es una multiplicación lógica, el "o" es una suma lógica y la "negación" es el complemento.

$$F=A'B + (ABC) + C(B'+A)$$

### MAPAS DE KARNAUGH

Método para minimizar expresiones booleanas.

Tabla con  $2^n$  casillas, con  $n = n^o$  de variables.

Ej. 
$$F = X'Y + XY$$

Se marcan con 1 los mini términos X'Y, XY.

Se agrupan los '1' adyacentes en bloques cuadrados o

rectangulares

$$F = Y$$

|   | Υ |   |  |  |  |
|---|---|---|--|--|--|
| X | 0 | 1 |  |  |  |
| 0 | 0 | 1 |  |  |  |
| 1 | 0 | 1 |  |  |  |

## MAPAS DE KARNAUGH

#### Ejemplo

$$F = X'Y'Z + X'YZ + XY'Z + XYZ' + XYZ$$

|   | YZ |    |    |    |  |  |  |
|---|----|----|----|----|--|--|--|
| X | 00 | 01 | 11 | 10 |  |  |  |
| 0 |    | 1  | 1  |    |  |  |  |
| 1 |    | 1  | 1  | 1  |  |  |  |
|   |    |    |    |    |  |  |  |

$$F = Z + XY$$

## COMPUERTAS LÓGICAS



## COMPUERTAS LÓGICAS

Ejemplo: Representar en compuerta lógicas la siguiente expresión:

$$F = AB' + A'C' + B$$

