Supervised learning

Overview: What is Supervised learning?

- The aim is to develop a mathematical model that takes in an input x' and returns an output \overline{x}'
- The model is simply a mathematical equation with a fixed form. $y = \pm [x]$
- Inference: process of making predictions using the model.
- The model y=f[x] represents a family of relations blu the ilp and olp. We also add parameter to the model to determine a particular relation, so our model is $y = f(x, \phi)$ where Q are the model parameters.
- we want to find a model that makes the most sensible mapping from up to o/p. This is called Learning or training a model.
 - What do me want to learn? : The parameters
 - How do me learn ?: with the help of the training data set I, pairs of 1/p & 0/p 2 72, y; f. This the name supervised. We try to map the training up to its associated o/p as closely as possible.
 - we need a way to quantify the mismatch in this mapping. This is using a loss kunction. Selection of a param Q will result in a loss value which quantifies how bad the mapping is so the loss is a fiv. of the parameters.
 - So, to train/ learn a model is to find parameters that minimizes the loss function. or. $\delta = \operatorname{argmin}[L[\phi]]$
- basic nethod is to choose a random set of param values then "Walk down the loss for to reach the bottom.

Once trained, we want to see how well the model performs on novel fata [test fata] and how well it generalizes.

- It's possible that the model might undersit: model does not capture the true mapping

over &it: wodel learns the pecularities of the training set

Example: Linear Regression.

- 1D linear regression model. (i.e scaler xy), a straight line 7 = FCx, 47

y intercept of the line (barameter)

= \$\display + \display \text{\$\frac{1}{2}\text{\$\text{\$\limbda\$}}} \text{\$\frac{1}{2}\text{\$\text{\$\limbda\$}}} \text{\$\frac{1}{2}\text{\$\text{\$\limbda\$}}} \text{\$\text{\$\limbda\$}} \text{\$\text{\$\text{\$\limbda\$}} \text{\$\text{\$\limbda\$}} \text{\$\text{\$\limbda\$}} \text{\$\text{\$\limbda\$}} \text{\$\text{\$\limbda\$}} \text{\$\text{\$\text{\$\limbda\$}} \text{\$\text{\$\text{\$\text{\$\text{\$\limbda\$}}} \text{\$

This eq describes the family of all possible lines, we want to find the parameters that best fit our training data.

- Loss function: (remember, it assigns a num value to each param selection inficating how bad the mismatch is in that mapping) · lower loss -> better fit.
- One way to calculate this is to find out the deviation blu the prediction made by the model (i.e f[xi, \pli]) for an input and it's ground truth (ie y:) [for the whote training data set]

or $L[\phi] = \sum_{i=1}^{2} (f(x_i, \phi) - y_i)^2$ Ethis is the Square loss]. Unimposition of desciption

To find the best param, we want to minimize the squareloss

$$\hat{Q} = \underset{Q}{\operatorname{argmin}} \left[L [Q] \right]$$

$$= \underset{Q}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \left(f[x_i, \phi] - y_i \right) \right]$$

$$= \underset{Q}{\operatorname{argmin}} \left[\sum_{i=1}^{I} \left(\phi_0 + \phi_1 z_i - y_i \right)^2 \right]$$

What is a neural network and why do we need one?

Linear regression give a linear relationship dw x ly which is not always true in real life. Neural N. describes piecewise linear functions which are much move expressive and can approximate complex relation by x ly.

Intuition behind Neural New using an example Consider a model $y = f [X, \phi]$ described by [0] parameters. $\phi = d \phi_0, \phi_1, \phi_2, \phi_3, \theta_{10}, \theta_{11}, \theta_{20}, \theta_{21}, \theta_{30}, \theta_{31}$ The model is described as: $y = \phi + \phi_1 \quad \alpha(\theta_{10} + \theta_{11}x) + \phi_2 \quad \alpha(\theta_{20} + \theta_{21}x) + \phi_3 \quad \alpha(\theta_3 + \theta_3x)$

notice that we are doing 3 steps here:

1. We compute 3 linear functions: $\theta_{10} + \theta_{11} \chi$, $\theta_{20} + \theta_{21} \chi$, $\theta_{30} + \theta_{31} \chi$

2. We pass the result through a function a called the activation in a [.]

3. Add meights to the resulting activation and odd an offset

Activation for: many types. Most common: Retified linear Unit (Rell)

A[z] = 10 if z < 0

Relu(z)

(Clips - we values to O)

Which family of equ does this model belong to ?

A family of continious piecewise linear Lus with upto 4 linear regions.

Another way to write this ea;

let $h_1 = A(\theta_{10} + \theta_{11}z)$, $h_2 = a(\theta_{20} + \theta_{21}z)$, $h_3 = a(\theta_{30} + \theta_{31}z)$

then $y = \varphi_0 + \varphi_1 h_1 + \varphi_2 h_2 + \varphi_3 h_3$. Let all his has "hidden layers". To compute your first (

lets call his higher layers". To compute y, we first compute the higher layers, then combine their result with a linear for.

This flow of computation can be described in a network nodes are in input & hidden layer and edges are the parameters.

- The positions where the lines crosses zero becomes the joints

in the final 9/P.

9,+0x

Ph+Az

030+ 031 ×

- In each region a hidden layer is either clapped (inactive) or bresent (active)
- Each hidden layer introduces one joint ⇒ there are 4 linear regions
 - r introduces The offset ϕ_0 controls the eare 4 overall height of the final fN

In this region,

h, is inactive

h, is had are active

and determines the

Slope.

How can neural networks describe complex relations? (The Universal approximation theorem.)

A general SHALLOW Neural Network with D hidden Layers:

-A layer i is defined by $h_i = \alpha \left[\Theta_{in} + \Theta_{in} \times \Omega \right]$

- All a layers, combined, gives the 9 $y = \phi_0 + \sum_{k=1}^{\infty} \phi_k h_k$

- D is the capacity of the N/W

- The piecewise for has at most D joints (LD+1 linear regions)

- As more layers are odded, complexity increases

A shallow n/w can describe any continious 1D function

As we all more and more hidden layers, we all more and more smaller linear regions that represent a part of the fin increasingly well approximated by alive. This can be proven using the universal approximation theorem.

Shallow networks for Multi Variate Jata

i.e. when input is $\vec{x} = [x_1, x_2, \dots, x_n]^T e \ opis \vec{y} = [y_1, y_2, \dots, y_n]^T$ let's consider them individually:

Multivariable output: i.e. $x_i, y_i = [y_1, y_2]^T$: Each output is a different linear function of the hidden layers:

Example: 4 hidden layers: $x_i = A[\theta_{10} + \theta_{11}x_i], h_2 = a[\theta_{20} + \theta_{21}x_i]$ $x_i = A[\theta_{10} + \theta_{11}x_i], h_4 = a[\theta_{20} + \theta_{21}x_i]$ $x_i = A[\theta_{10} + \theta_{11}x_i], h_4 = a[\theta_{20} + \theta_{21}x_i]$ $x_i = A[\theta_{10} + \theta_{11}x_i], h_4 = a[\theta_{20} + \theta_{21}x_i]$ $x_i = A[\theta_{10} + \theta_{11}x_i], h_4 = a[\theta_{20} + \theta_{21}x_i]$ $x_i = A[\theta_{10} + \theta_{11}x_i], h_4 = a[\theta_{20} + \theta_{21}x_i]$

Multivariate input: i.e x= $[x_1, x_2...]$: contend the relation blu ips & hidden layers. Example: 3 hidden layers, $x = [x_1, x_2]$, y is scaler.

 $h_{1} = a \left[\theta_{10} + \theta_{11} \chi_{1} + \theta_{12} \chi_{2} \right]$ $h_{2} = a \left[\theta_{20} + \theta_{21} \chi_{1} + \theta_{22} \chi_{2} \right]$ $h_{3} = a \left[\theta_{30} + \theta_{31} \chi_{1} + \theta_{32} \chi_{2} \right]$ $h_{3} = a \left[\theta_{30} + \theta_{31} \chi_{1} + \theta_{32} \chi_{2} \right]$

In this case the input is 20 i.e a plance, the activation for clips the negative part of the plane which are combined as continious linear piecewise planes (convex polygon regions)

Shallow neural n/w: general case $\vec{y} = f(\vec{x}, \phi)$, $\vec{x} \in \mathbb{R}^i$, $\vec{y} \in \mathbb{R}^j$ & D hidden layers hidden layer $d = h_d = a \left[\theta_{d0} + \sum_{t=1}^i \theta_{dt} \cdot x_t \right]$ and each output $y = \phi_{jD} + \sum_{t=1}^{D} \phi_{jt} \cdot h_t$

The model has an activation for a and parameter set ϕ most common being ReLV

The network divides the ip space into convex polytopes defined by the intersection of hyper planes computed by the joints, in the ReLU functions.

- pre-activations: the value of inputs to hidden layers before ReLU functions are applied (i.e. $\Theta_{10} + \Theta_{11} \times 1 + \Theta_{12} \times 2$)

- activations: value at the hidden layer.

- n/w with atleast 1 hidden layer are called multilevel perceptron.

- Np with 1 hidden layer shallow N.N; with multiple hidden layers: Deep N.N

- Fred forward NW: NN where the connections form an

acyclic grouph.

- Fully connected: when all elements of one layer connects to

all the clements of the next layer.

- (bimedians represent slope parameters or Network weights the offset parameters (usually not shown in the N/W) are called biases.

Deep Neural Networks

Composing shadow N.N into Deep N.N.

-0/p of 1 as i/p of 2nd

- Eg:

a: when opp of one is fed as i/p to other , how many region exists in the piecewise

Q: How does composing N/W compare to a shallow N/W with the same total niden units.

Composing S NN results in more linear regions. Consider all I with 3 regions. when composed with another similar N/W, each of the regions in the first NW are further divided into 3 more region, resulting in a total of 9 region Compare this with N/w with 6 hidden layers which can give atmost 7] Another way to think of it is that the 1st NIW Solds the input space into 3 regions. The 2nd n/w further folds each fold.

Proactivations

of all nows

this layer ari same.

Equivalent to:

This is equivalent to a Deep Network with 2 hidden layers.

The result is again a piecewise continious linear for

$$k_1 = a(\theta_{10} + \theta_{11} x)$$

$$h_{i} = o(\alpha_{0i} + \alpha_{1i} l_{1})$$

$$\lambda_2 = \alpha(\theta_{20} + \theta_{21} x)$$

$$h_2 = \alpha (\alpha_{02} + \alpha_{12} R_1)$$

$$h_3 = o(\theta_{30} + \theta_{31}^2)$$

$$h_3' = \alpha(\alpha_{03} + \alpha_{13} \ell_2)$$

$$\ell_1 = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3$$

$$y = \psi_0 + \psi_1 h_1' + \psi_2 h_2'$$
(expand the full things

 $y = \psi_1 + \psi_1 + \psi_2 \psi_2 + \psi_3 \psi_3$ (expand the full things) (it still linear)

Hyperparamers:

- width: # of hidden units in each layer
- depth: # of hidden layers
- capacity: total # of hidden units in the Ww
- These are called hyposp. These values are chosen before we learn the modul parameters.

- K= # Layers, D,, D2 ... Dx : Nodes en each layer.

Matrix Notation:

$$\vec{h} = \alpha \left[\vec{\theta}_0 + \vec{\theta}_1 \vec{\varkappa} \right]$$

$$\vec{k}' = \alpha \left[\vec{\psi}_0 + \vec{\psi}_1 \vec{h} \right]$$

$$\vec{y} = \vec{\phi}_0' + \vec{\phi}_1' \vec{h}'$$

@ layer 2

(Parameter names! 4 to-from) (1)(401,402,403)

$$\Rightarrow \begin{bmatrix} h'_{1} \\ h'_{2} \\ h'_{3} \end{bmatrix} = \alpha \begin{bmatrix} \psi_{01} \\ \psi_{02} \\ \psi_{03} \end{bmatrix} + \begin{bmatrix} \psi_{11} & \psi_{21} & \psi_{31} \\ \psi_{12} & \psi_{22} & \psi_{23} \\ \psi_{31} & \psi_{32} & \psi_{33} \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \\ h_{3} \end{bmatrix}$$

$$\overrightarrow{h} = \alpha \left(\overrightarrow{\psi}_{0} + \overrightarrow{\psi} \cdot h_{1} \right)$$

In general, $h_1 = a(\beta_0 + \Omega_0 x)$ h2 = a (b1+ D1 h1)....

Pavameters @ are all the weights & Biases & = {(3k, 12k) k - if k layer has Dk units, Bias vector (3k-1 will be of size Dk

- size of BK = Do (the output) - Size of $\Omega_{k} = D_{k} \times D_{k+1}$

except for last $\mathcal{Q}_k(D_0 \times D_K)$ and first : $\mathcal{Q}_0:D_0 \times D_1$ (size of input)

bettes.

Shallow vs Deep N.N.

JULION VS DEED 11.10.		
Property		Deep
Ability to approx diff. Ins	can approx well with enough capacity	Can approximate any continious In arbitraly closely (given sufficiently
No. of linear regions per parameter	Given 1 Ve, 1 O/P Q D>2 hidden units, will have atmost D+1 linear regions Defined by 3D+1 params.	Given 1 i/p, 10p, Klayers with DD2 units, (D+1)k linear regions, 3 D+1+ (K-1) D(D+1) parameters linear Regions increases as the # of params increases & For a fixed param budget D.NN creats more complex for
Depth Efficiency		Some for are require exporentially more hidden units Shadow NN than equivalent Deep N/W (This is called DepthEff. of D.N.N)
harge Stavotured ip:		fully connected N/W may not be very practical on the # of parauneters may be prachibitive of parauneters the pricessing (more later!)
Training & Greneralization		- easier to train moderately does Nov. (difficult for over parametrized ones) - seem to generalize new data