

IRF6728MPbF IRF6728MTRPbF

HEXFET® Power MOSFET plus Schottky Diode ②
Typical values (unless otherwise specified)

- RoHS Compliant Containing No Lead and Halogen Free ①
- Integrated Monolithic Schottky Diode
- Low Profile (<0.7 mm)
- Dual Sided Cooling Compatible ①
- Ultra Low Package Inductance
- Optimized for High Frequency Switching ①
- Ideal for CPU Core DC-DC Converters
- Optimized for Sync. FET socket of Sync. Buck Converter ①
- Low Conduction and Switching Losses
- Compatible with existing Surface Mount Techniques ①
- 100% Rg tested

Typical values (amous sine mes specimea)									
V_{DSS}		V _{GS}		R _{DS(on)}			R _{DS(on)}		
30V ma	Х	±20V max				ax 1.8mΩ@ 10V		2.8mg	Ω@ 4.5V
$Q_{g tot}$		\mathbf{Q}_{gd}	Q	gs2	Q_{rr}	(Q _{oss}	$V_{gs(th)}$	
28nC		8.7nC	3.1	nC	29nC	:	22nC	1.8V	

Applicable DirectFET Outline and	Substrate Outline	(see p.7,8 for details) 1)
----------------------------------	-------------------	---------------------------	---

_						,			
	SQ	SX	ST	MQ	MX	MT	MP		

Description

The IRF6728MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

The IRF6728MPbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to reduce both conduction and switching losses. This part contains an integrated Schottky diode to reduce the Qrr of the body drain diode further reducing the losses in a Synchronous Buck circuit. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6728MPbF has been optimized for parameters that are critical in synchronous buck converter's Sync FET sockets.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	30	V
V_{GS}	Gate-to-Source Voltage	±20	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ③	23	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ③	18	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V ④	140	
I _{DM}	Pulsed Drain Current ®	180	
E _{AS}	Single Pulse Avalanche Energy ®	230	mJ
I _{AB}	Avalanche Current ©	18	Α

V_{GS}, Gate -to -Source Voltage (V)

Fig 1. Typical On-Resistance vs. Gate Voltage

Notes:

① Click on this section to link to the appropriate technical paper.

② Click on this section to link to the DirectFET Website.③ Surface mounted on 1 in. square Cu board, steady state.

Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage

- ⊕ T_C measured with thermocouple mounted to top (Drain) of part.
- S Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_J = 25$ °C, L = 1.37mH, $R_G = 50Ω$, $I_{AS} = 18$ A.

Static @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_{D} = 1.0mA$
$\Delta \mathrm{BV}_{\mathrm{DSS}}\!/\!\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		2.7		mV/°C	Reference to 25°C, I _D = 6mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.8	2.5	mΩ	V _{GS} = 10V, I _D = 23A ⑦
			2.8	3.6		V _{GS} = 4.5V, I _D = 18A ⑦
V _{GS(th)}	Gate Threshold Voltage	1.35	1.8	2.35	٧	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-4.8		mV/°C	$V_{DS} = V_{GS}$, $I_D = 10mA$
I _{DSS}	Drain-to-Source Leakage Current			500	μA	$V_{DS} = 24V, V_{GS} = 0V$
				5.0	mA	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	1	V _{GS} = -20V
gfs	Forward Transconductance	61			S	$V_{DS} = 15V, I_{D} = 18A$
Q_g	Total Gate Charge		28	42		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		6.5]	$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		3.1		nC	$V_{GS} = 4.5V$
Q _{gd}	Gate-to-Drain Charge		8.7			I _D = 18A
Q_godr	Gate Charge Overdrive		9.7]	See Fig. 15
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		11.8		1	
Q _{oss}	Output Charge		22		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_{G}	Gate Resistance		1.3		Ω	
t _{d(on)}	Turn-On Delay Time		16			V _{DD} = 15V, V _{GS} = 4.5V ⑦
t _r	Rise Time		34		ns	I _D = 18A
t _{d(off)}	Turn-Off Delay Time		19			$R_G = 1.8\Omega$
t _f	Fall Time		19			See Fig. 17
C _{iss}	Input Capacitance		4110			V _{GS} = 0V
C _{oss}	Output Capacitance		970		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance	_	340		1	f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			23		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			180		integral reverse
	(Body Diode) ⑤					p-n junction diode.
V_{SD}	Diode Forward Voltage		0.7	0.75	V	$T_J = 25^{\circ}C, I_S = 18A, V_{GS} = 0V$ ⑦
t _{rr}	Reverse Recovery Time		21	32	ns	$T_J = 25^{\circ}C, I_F = 18A$
Q _{rr}	Reverse Recovery Charge		29	44	nC	di/dt = 300A/µs ⑦

Notes:

 $\ensuremath{ \bigcirc }$ Pulse width $\le 400 \mu s;$ duty cycle $\le 2\%.$

Absolute Maximum Ratings

	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation ^③	2.1	W
P _D @T _A = 70°C	Power Dissipation ^③	1.3	
P _D @T _C = 25°C	Power Dissipation ⁴	75	
T _P	Peak Soldering Temperature	270	°C
T_J	Operating Junction and	-40 to + 150	
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient 3®		60	
$R_{\theta JA}$	Junction-to-Ambient ®®	12.5		
$R_{\theta JA}$	Junction-to-Ambient 90	20		°C/W
$R_{\theta JC}$	Junction-to-Case ⊕®		1.66	[
R _{0J-PCB}	Junction-to-PCB Mounted	1.0		[
	Linear Derating Factor ③	0.	017	W/°C

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 3

Notes:

- $\ensuremath{\$}$ Used double sided cooling , mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- $^{\circledR}$ R_{θ} is measured at T_J of approximately 90°C.

③ Surface mounted on 1 in. square Cu (still air).

Mounted to a PCB with small clip heatsink (still air)

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs.Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com

International

IOR Rectifier 1000 SD, Reverse Drain Current (A) 100 10 $T_J = \overline{150^{\circ}C}$ $T_{.1} = 25^{\circ}C$ 1 $\Gamma_{.1} = -40^{\circ}C$ $V_{GS} = 0V$ 0.1 0.0 0.2 0.4 0.6 8.0 1.0 1.2 V_{SD}, Source-to-Drain Voltage (V)

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig 12. Maximum Drain Current vs. Case Temperature

IRF6728MTRPbF

Fig11. Maximum Safe Operating Area

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 15a. Gate Charge Test Circuit

Fig 16a. Unclamped Inductive Test Circuit

Fig 15b. Gate Charge Waveform

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

DirectFET™ Board Footprint, MX Outline (Medium Size Can, X-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.

This includes all recommendations for stencil and substrate designs.

www.irf.com 7

DirectFET™ Outline Dimension, MX Outline (Medium Size Can, X-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

DIMENSIONS									
	MET	RIC	IMPE	RIAL					
CODE	MIN	MAX	MIN	MAX					
Α	6.25	6.35	0.246	0.250					
В	4.80	5.05	0.189	0.201					
С	3.85	3.95	0.152	0.156					
D	0.35	0.45	0.014	0.018					
Е	0.68	0.72	0.027	0.028					
F	0.68	0.72	0.027	0.028					
G	1.38	1.42	0.054	0.056					
Н	0.80	0.84	0.031	0.033					
J	0.38	0.42	0.015	0.017					
K	0.88	1.02	0.035	0.040					
L	2.28	2.42	0.090	0.095					
М	0.59	0.70	0.023	0.028					
N	0.03	0.08	0.001	0.003					
Р	0.08	0.17	0.003	0.007					

DirectFET™ Part Marking

8 www.irf.com

DirectFET™ Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6728MTRPBF). For 1000 parts on 7" reel, order IRF6728MTR1PBF

	REEL DIMENSIONS									
S.	TANDARD	OPTION	I (QTY 48	00)	TR'	1 OPTION	(QTY 10	00)		
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMPERIAL			
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C		
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C		
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50		
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C		
Е	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C		
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53		
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C		
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C		

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS								
	MET	RIC	IMPERIAL					
CODE	MIN	MAX	MIN	MAX				
Α	7.90	8.10	0.311	0.319				
В	3.90	4.10	0.154	0.161				
С	11.90	12.30	0.469	0.484				
D	5.45	5.55	0.215	0.219				
E	5.10	5.30	0.201	0.209				
F	6.50	6.70	0.256	0.264				
G	1.50	N.C	0.059	N.C				
Н	1.50	1.60	0.059	0.063				

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105