1. Consider the LIBRARY relational database schema shown in Figure shown below, which is used to keep track of books, borrowers, and book loans. Referential integrity constraints are shown as directed arcs in figure. Write down relational expressions for the following queries:

a. Retrieve the number of copies of the book titled "The Lost Tribe" are owned by the library branch whose name is 'Sharpstown'?

$$ANS = \pi_{No_of_copies}(BOOK_COPIES * \sigma_{Title='The\ Lost\ Tribe'}(BOOK) \\ * \sigma_{Branch_name='Sharpstown'}(LIBRARY_BRANCH))$$

b. Retrieve the number of copies of the book titled The Lost Tribe are owned by each library branch?

$$ANS = \pi_{Branch_name,No_of_copies}(BOOK_COPIES \\ * \sigma_{Title='The\ Lost\ Tribe'}(BOOK) \\ * _{Branch_name} \Im(LIBRARY_BRANCH))$$

c. Retrieve the names of all borrowers who do not have any books checked out.

$$Borr_Card = \pi_{Card_no}(\sigma_{Date_out\ IS\ NOT\ NULL}(BORROWER * BOOK_LOANS))$$

$$ANS = \pi_{Name}(\sigma_{Card_no\ NOT\ IN\ Borr_Card}(BORROWER))$$

d. For each library branch, retrieve the branch name and the total number of books loaned out from that branch.

$$ANS = {}_{Branch_name} \Im_{COUNT(*),Branch_name} (LIBRARY_BRANCH * BOOK_LOANS)$$

2. Consider the two tables T1 and T2 shown in Figure below. Show the results of the following operations:

TABL	ET1		TABL	TABLE T2			
Р	Q	R	Α	В	C		
10	a	5	10	b	6		
15	b	8	25	C	3		
25	a	6	10	b	5		

- a) T1 ⋈ T1.P = T2.A T2
- **b)** T1 ⋈ T1.Q = T2.B T2
- c) T1 U T2
- **d)** T1 \bowtie (T1.P = T2.A AND T1.R = T2.C) T2

a.

P	Q	R	A	В	C
10	a	5	10	ь	6
25	a	6	25	С	3
10	a	5	10	b	5

b.

P	Q	R	A	В	С
15	ь	8	10	b	6
15	b	8	10	b	5

 $\mathcal{C}.$

P	Q	R
10	a	5
15	b	8
25	a	6
10	b	6
25	c	3
10	b	5

d.

P	Q	R	A	В	C
10	a	5	10	Ъ	5

3. Specify the following queries on the COMPANY relational database state shown in Figure below (next page) using the concept of nested queries and the relational operators.

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DDOLECT

Department Dname Dnumber Mgr_ssn Mgr_start_date Research 5 333445555 1988-05-22 Administration 4 987654321 1995-01-01 Headquarters 1 888665555 1981-06-19

DEPT_LOCAT	IONS
Dnumber	Diocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
- 5	Houston

Essn	Pno	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	M	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	M	1942-02-28	Spouse
123456789	Michael	M	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

a. Find the names of all employees who are directly supervised by 'Franklin Wong'.

```
SELECT concat (E.fname, " ", E.lname) AS Names
FROM employee AS E, employee as M
WHERE E.super_ssn = M.ssn
AND M.fname = 'Franklin'
AND M.lname = 'Wong'
```

b. Retrieve the names of all employees who do not work on any project.

```
SELECT concat(fname, " ", lname) AS Names
FROM employee
WHERE ssn NOT IN (SELECT DISTINCT(w_ssn) FROM `works_on`)
```

c. For each department, retrieve the department name and the average salary of all employees working in that department.

```
SELECT D.dname, AVG (E.salary) AS "AVG_SALARY"

FROM employee AS E, department AS D

WHERE E.dno = D.dnumber

GROUP BY D.dnumber
```

d. List the names of all employees who work in the department that has the employee with the highest salary among all employees.

e. List the names of all employees whose supervisor's supervisor has '888665555' for SSN.

- 4. Consider the following set of requirements for a UNIVERSITY database that is used to keep track of student's transcripts.
 - a. The university keeps track of each student's name, student number, Social Security number, current address and phone number, permanent address and phone number, birth date, sex, class (freshman, sophomore, ..., graduate), major department, minor department (if any), and degree program (B.A., B.S., ..., Ph.D.). Some user applications need to refer to the city, state, and ZIP Code of the student's permanent address and to the student's last name. Both Social Security number and student number have unique values for each student.
 - b. Each department is described by a name, department code, office number, office phone number, and college. Both name and code have unique values for each department.
 - c. Each course has a course name, description, course number, number of semester hours, level, and offering department. The value of the course number is unique for each course.
 - d. Each section has an instructor, semester, year, course, and section number. The section number distinguishes sections of the same course that are taught during the same semester/year; its values are 1, 2, 3, ..., up to the number of sections taught during each semester.
 - e. A grade report has a student, section, letter grade, and numeric grade (0,1, 2, 3, or 4)

Design an ER schema for this application, and draw an ER diagram for the schema. Specify key attributes of each entity type, and structural constraints on each relationship type. Note any unspecified requirements, and make appropriate assumptions to make the specification complete.

Type under both Phone attribute and Address of Student relation is an Enum valued attribute which consists of Permanent and Current Values.

5. Consider the ER diagram shown in the figure below for part of a BANK database. Each bank can have multiple branches, and each branch can have multiple accounts and loans

a. List the strong (non-weak) entity types in the ER diagram.

Strong Entity Types = { BANK, ACCOUNT, LOAN, CUSTOMER }

b. Is there a weak entity type? If so, give its name, partial key, and identifying relationship.

Weak Entity Type: BANK BRANCH

Partial Key: Branch No

Identifying Relationship: BRANCHES

c. What constraints do the partial key and the identifying relationship of the weak entity type specify in this diagram?

The partial key BranchNo in BANK-BRANCH specifies that the same BranchNo value may occur under different BANKs. The identifying relationship BRANCHES specifies that BranchNo values are uniquely assigned for those BANK-BRANCH entities that are related to the same BANK entity. Hence, the combination of BANK Code and BranchNo together constitute a full identifier for a BANK-BRANCH

d. List the names of all relationship types, and specify the (min, max) constraint on each participation of an entity type in a relationship type. Justify your choices.

Every Bank has at least one or more bank branches. And every bank branch is associated to a bank.

A bank branch can have 0 or more loans sanctioned. While, a loan is associated to a single bank branch. Similarly a bank branch can have 0 or more accounts. But every account is mapped or associated to a bank branch.

Every loan or an account has a single or multiple customers under it. But not all customers can have only loans or only accounts associated to a bank branch.

6. Cardinality ratios often dictate the detailed design of a database. The cardinality ratio depends on the real-world meaning of the entity types involved and is defined by the specific application. For the following binary relationships, suggest cardinality ratios based on the common-sense meaning of the entity types. Clearly state any assumptions you make.

Entity 1	Cardinality Ratio	Entity 2
1. STUDENT		SOCIAL_SECURITY_CARD
2. STUDENT		TEACHER
3. CLASSROOM		WALL
4. COUNTRY		CURRENT_PRESIDENT
5. COURSE		TEXTBOOK
6. STUDENT		CLASS
7. CLASS		INSTRUCTOR

Entity 1	Cardinality Ratio	Entity 2
STUDENT	1 - Many	SOCIAL
		_SECURITY
	Here, every student is assigned with an unique	_CARD
	social security number. But a student can have 'N'	
	number of copies of the same. Every SSN is unique	
	to the student.	
STUDENT	Many - Many	TEACHER
	Every student can have multiple teachers based on	
	the courses he takes up. Every teacher would have	
	multiple students to teach to.	
CLASSROOM	Many – Many	WALL
	Every classroom is bound by walls on all the sides.	
	A circular classroom would have infinite walls,	
	considered when walls are supposed to be straight.	
	Every wall can be shared between classrooms.	
COUNTRY	1-1	CURRENT
		_PRESIDENT
	Every country is governed by one president	
	considering a normal state in the country. Every	
	current president should be a president of the	

	country. Excluding the presidents of organizations,	
	clubs, groups, etc.	
COURSE	Many – Many	TEXTBOOK
	Every course can have multiple text books written	
	for it. Usually textbooks can have multiple editions	
	too. Every textbook could be a reference for	
	multiple courses too.	
STUDENT	Many – Many	CLASS
	A Student can be a part of multiple class. While a	
	class has multiple students as a part of it.	
CLASS	Many - 1	INSTRUCTOR
	Assuming a class has only one instructor. If a class	
	allowed multiple teachers, then the mapping would	
	be Many – Many.	
	Every instructor can have multiple class to take.	

References:

- $\bullet \quad \underline{http://comp.eng.ankara.edu.tr/files/2013/03/ErDiagram.pdf}$
- Fundamentals of Database Systems, Sixth Edition, by Elmasri/Navathe
- http://www.tutorialspoint.com/dbms/er model basic concepts.htm