EXERCICE 1 (Démonstrations préparées.)

Traiter deux questions.

- 1. Prouver que si n^2 est pair, alors n est pair (par contraposée).
- 2. Résoudre l'équation $\sqrt{5-x} = 1+x$.
- 3. Résoudre l'équation $x^3 x^2 + x 6 = 0$.
- 4. Montrer par récurrence que, pour tout $n \ge 1$, on a $2^n > n$.
- 5. Montrer que pour tout $n \in \mathbb{N}$, $\frac{n(n+1)}{2}$ est un entier.

Exercice 2

Soit A, B, C trois ensembles. Montrer que $A \cup B = A \cap C \Leftrightarrow B \subset A \subset C$.

Exercice 3

Que peut-on dire de deux ensembles A, B tels que $A \cup B = A \cap B$?

Exercice 4

Montrer que pour tout entier $n \ge 4$, on a $n! \ge n^2$ (où $n! = 1 \times 2 \times \cdots \times n$).

Exercice 5

Ecrire avec des quantificateurs les propositions suivantes puis dans chaque cas dire si la proposition est vraie ou fausse.

- 1. « Tout entier naturel est pair ou impair. »
- 2. « Tout entier naturel est pair ou tout entier naturel est impair. »
- 3. « Pour chaque entier, on peut trouver un entier strictement plus grand. »
- 4. « Il y a un entier plus grand que tous les entiers. »

Exercice 6

Soit f une fonction de $\mathbb R$ dans $\mathbb R$. Écrire avec des quantificateurs les propositions suivantes.

- 1. « f est constante sur \mathbb{R} . »
- 2. « f n'est pas constante sur \mathbb{R} . »
- 3. « f ne prend jamais deux fois la même valeur. »
- 4. « f prend des valeurs arbitrairement grandes. »
- 5. « f présente un minimum. »

Exercice 7

Soit f une fonction de $\mathbb R$ dans $\mathbb R$. Exprimer verbalement la signification des propositions suivantes.

- 1. « $\exists \lambda \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = \lambda$ »
- 2. $\forall \lambda \in \mathbb{R}, \exists x \in \mathbb{R}, f(x) = \lambda \gg$
- 3. $\forall (x,y) \in \mathbb{R}^2, x \leq y \Rightarrow f(x) \leq f(y) \gg$
- 4. $\forall (x,y) \in \mathbb{R}^2, f(x) = f(y) \Rightarrow x = y \gg$
- 5. « $\forall M \in \mathbb{R}, \exists a \in \mathbb{R}, \forall x \in \mathbb{R}, x > a \Rightarrow f(x) > M$ »

Exercice 8

Résoudre dans \mathbb{R} l'équation $(E): \sqrt{2x+3} - \sqrt{x+2} = 2$.

Exercice 9

Résoudre les inéquations suivantes.

- 1. |2x-3| < |x+2|
- 2. $|x^2 10| \le 6$
- $3. \left| \frac{1}{x} 2 \right| < 4$

Exercice 10

Montrer que $\sqrt{2}$ est irrationnel, c'est-à-dire $\sqrt{2} \notin \mathbb{Q}$.

Exercice 11

Résoudre les inéquations suivantes.

- 1. $|x^2 6x + 4| \le 1$
- 2. $|x-1| \le |2x+1| + 1$
- $3. \ \frac{x}{x+1} \le \frac{x+2}{x+3}$
- 4. $\sqrt{x^2-1} < 2-x$

Exercice 12

Pour $x,y\in\mathbb{R}$, montrer l'inégalité $(x-\sqrt{2}y)^2(x+\sqrt{2}y)^2\leq x^4+4y^4$. À quelle condition a-t-on égalité ?

Exercice 13

Nous allons prouver que pour tout entier naturel $n \in \mathbb{N}$, $7^n - 1$ est divisible par 6.

- 1. Traduire en « langage mathématiques ».
- 2. Démontrer cette assertion.

Exercice 14

Résoudre dans $\mathbb R$ l'équation $(E): x^3-13x+12=0$ puis factoriser l'expression $x^3-13x+12.$