CS 361 Spring 2018 Homework 6

Nathaniel Murphy (njmurph3)

**Note that in this problem set we will be using X to denote the population of what we are sampling.

6.2

(a)

The best estimate for population mean of the weight of the mice is mean of the sample of the mice.

popmean(
$$\{X\}$$
) = mean($\{x\}$) = $\frac{1}{N} \sum_{i=1}^{N} x_i = \frac{199}{10} = 19.9$ grams

$$stderr(\{x\}) = \frac{stdunbiased(\{x\})}{\sqrt{N}}, stdunbiased(\{x\}) = \sqrt{\frac{\sum_{i=1}^{N} (x_i - mean(\{x\}))^2}{N-1}}$$
$$stdunbiased(\{x\}) = \sqrt{\frac{\sum_{i=1}^{N} (x_i - mean(\{x\}))^2}{N-1}} = \sqrt{\frac{110.9}{9}} = 3.51$$
$$stderr(\{x\}) = \frac{stdunbiased(\{x\})}{\sqrt{N}} = \frac{3.51}{\sqrt{10}} = \mathbf{1.11} \text{ grams}$$

(c)

Assuming that stdunbiased($\{x\}$) parameter does not change as the sample size N changes, we have the equation:

$$\operatorname{std}(\{x\}) = \frac{\operatorname{stdunbiased}(\{x\})}{\sqrt{N}} = 0.1$$

$$\frac{\operatorname{stdunbiased}(\{x\})}{0.1} = \sqrt{N}$$

$$\left(\frac{\operatorname{stdunbiased}(\{x\})}{0.1}\right)^2 = N$$

$$\left(\frac{3.51}{0.1}\right)^2 = \mathbf{1233} \text{ mice}$$

6.3

Let us assume that we have the relation yellow $\rightarrow 0$ and blue $\rightarrow 1$.

(a)

stdunbiased(
$$\{x\}$$
) = $\sqrt{\frac{\sum_{i=1}^{N} (x_i - \text{mean}(\{x\}))^2}{N-1}} = \sqrt{\frac{7(-0.3)^2 + 3(0.7)^2}{9}} = 0.483$
stderr($\{x\}$) = $\frac{\text{stdunbiased}(\{x\})}{\sqrt{N}} = \frac{0.483}{\sqrt{10}} = \mathbf{0.153}$

(b)

Assuming that stdunbiased($\{x\}$) does not change as N changes, we have the algorithm:

$$\operatorname{stderr}(\{x\}) = \frac{\operatorname{stdunbiased}(\{x\})}{\sqrt{N}} = 0.05$$

$$\frac{\operatorname{stdunbiased}(\{x\})}{0.05} = \sqrt{N}$$

$$\left(\frac{\operatorname{stdunbiased}(\{x\})}{0.05}\right)^2 = N$$

$$\left(\frac{0.483}{0.05}\right)^2 = \mathbf{94} \text{ draws}$$

6.4

Given N=40, stdunbiased($\{x\}$) = 75 grams, let us compute stderr($\{x\}$).

$$\operatorname{stderr}(\{x\}) = \frac{\operatorname{stdunbiased}(\{x\})}{\sqrt{N}} = \frac{75}{\sqrt{40}} = 11.859 \text{ grams}$$

(a)

A 68% confidence interval for popmean($\{x\}$) is given by the following formula:

$$mean(\{x\}) - stderr(\{x\}) \le popmean(\{x\}) \le mean(\{x\}) + stderr(\{x\})$$

 $340 - 11.859 \le popmean(\{x\}) \le 340 + 11.859$
 $328.141 \le popmean(\{x\}) \le 351.859$

(b)

A 99% confidence interval for popmean($\{x\}$) is given by the following formula:

$$\operatorname{mean}(\{x\}) - 3 \cdot \operatorname{stderr}(\{x\}) \leq \operatorname{popmean}(\{x\}) \leq \operatorname{mean}(\{x\}) + 3 \cdot \operatorname{stderr}(\{x\})$$
$$340 - 3(11.859) \leq \operatorname{popmean}(\{x\}) \leq 340 + 3(11.859)$$
$$304.123 \leq \operatorname{popmean}(\{x\}) \leq 375.577$$

6.5

We observe that z-values for 0.8 and 0.95 are 0.845 adn 1.96, respectively.

The sample dataset is identical to that in problem 6.2, so we may say that mean($\{x\}$) = 19.9 grams and stderr($\{x\}$) = 1.11 grams

(a)

The 80% confidence interval for popmean($\{X\}$):

$$\operatorname{mean}(\{x\}) - 0.845(\operatorname{stderr}(\{x\})) \le \operatorname{popmean}(\{x\}) \le \operatorname{mean}(\{x\}) + 0.845(\operatorname{stderr}(\{x\}))$$

 $19.9 - 0.845(1.11) \le \operatorname{popmean}(\{x\}) \le 19.9 + 0.845(1.11)$
 $18.962 \le \operatorname{popmean}(\{x\}) \le 20.838$

(b)

The 95% confidence interval for popmean($\{x\}$):

$$\operatorname{mean}(\{x\}) - 1.96(\operatorname{stderr}(\{x\})) \le \operatorname{popmean}(\{x\}) \le \operatorname{mean}(\{x\}) + 1.96(\operatorname{stderr}(\{x\}))$$

 $19.9 - 1.96(1.11) \le \operatorname{popmean}(\{x\}) \le 19.9 + 1.96(1.11)$
 $17.724 \le \operatorname{popmean}(\{x\}) \le 22.076$

6.6

Let X be the random variable of a child that is born in Carcelle-le-Grignon. Let x denote the random sample. Assuming that female $\rightarrow 1$ and male $\rightarrow 0$, we have that

•
$$P(x=0) = \frac{983}{2009} = 0.4892$$

•
$$P(x=1) = \frac{1026}{2009} = 0.511$$

stdunbiased(
$$\{x\}$$
) = $\sqrt{\frac{\sum_{i=1}^{N} (x_i - \text{mean}(\{x\}))^2}{N-1}} = \sqrt{\frac{983(0.511)^2 + 1026(0.4892)^2}{2008}} = 0.5005$
stderr($\{x\}$) = $\frac{\text{stdunbiased}(\{x\})}{\sqrt{N}} = \frac{0.5005}{\sqrt{2009}} = 0.0112$

(a)

The 99% confidence interval for P(X = 1):

$$P(x = 1) - 3 \cdot \text{stderr}(\{x\}) \le P(X = 1) \le P(x = 1) + 3 \cdot \text{stderr}(\{x\})$$

 $0.511 - 3(0.0112) \le P(X = 1) \le 0.0511 + 3(0.0112)$
 $0.4771 \le P(X = 1) \le 0.5443$

(b)

The 99% confidence interval for P(X = 0):

$$P(x = 0) - 3 \cdot \text{stderr}(\{x\}) \le P(X = 0) \le P(x = 0) + 3 \cdot \text{stderr}(\{x\})$$

 $0.4892 - 3(0.0112) \le P(X = 0) \le 0.4892 + 3(0.0112)$
 $0.4557 \le P(X = 0) \le 0.5229$

(c)

These intervals do overlap, so this implies that the probabilities could be equal of having a boy or having a girl.