

Ganglia & Nagios

Maciej Lasyk 11. Sesja Linuksowa Wrocław, 2014-04-06

Ganglia.. what?

Ganglia – cluster / group of neurons found outside the central nervous system

- the need for monitoring

- the need for monitoring
- measuring availability

- the need for monitoring
- measuring availability
- measuring performance

- the need for monitoring
- measuring availability
- measuring performance
- gathering additional metrics

How to measure availability?

How to measure availability?

A = Uptime / (Uptime + Downtime)

How to measure availability?

A = Uptime / (Uptime + Downtime)

MTTD (Mean Time to Diagnose)

The average time it takes to diagnose the problem

How to measure availability?

A = Uptime / (Uptime + Downtime)

MTTD (Mean Time to Diagnose)

The average time it takes to diagnose the problem

MTTR (Mean Time to Repair)

The average time it takes to fix a problem

How to measure availability?

A = Uptime / (Uptime + Downtime)

MTTD (Mean Time to Diagnose)

The average time it takes to diagnose the problem

MTTR (Mean Time to Repair)

The average time it takes to fix a problem

MTTF (Mean Time to Failure)

The average time there is correct behavior

How to measure availability?

A = Uptime / (Uptime + Downtime)

MTTD (Mean Time to Diagnose)

The average time it takes to diagnose the problem

MTTR (Mean Time to Repair)

The average time it takes to fix a problem

MTTF (Mean Time to Failure)

The average time there is correct behavior

MTBF (Mean Time Between Failures)

The average time between different failures of the service

A = MTTF / MTBF = MTTF / (MTTF + MTTD + MTTR)

What should we monitor?

- hardware housing
- devices
- storage
- network
- hosts
- software (very deep hole)

What should we monitor?

- hardware housing
- devices
- storage
- network
- hosts
- software (very deep hole)

Think dependencies!

- Notifications

- Notifications
- Escalations

```
L1 <-> L2 <-> L3 <-> L4 lol;)

desktop support / devs / ops / networking /
/ storage / middleware / dc / security
```

- Notifications
- Escalations

```
L1 <-> L2 <-> L3 <-> L4 lol;)
desktop support / devs / ops / networking /
/ storage / middleware / dc / security
```

- Clock is ticking - it should be simple

- Notifications
- Escalations

```
L1 <-> L2 <-> L3 <-> L4 lol;)

desktop support / devs / ops / networking /
/ storage / middleware / dc / security
```

- Clock is ticking it should be simple
- What if cell is offline or someone is out?

- false positives

- false positives
- major events

- false positives
- major events
- failover notifications?

- false positives
- major events
- failover notifications?
- tolerance & critical thresholds

- baseline

- baseline
- correlation between incidents and change management

- baseline
- correlation between incidents and change management
- trending info

- baseline
- correlation between incidents and change management
- trending info
- reporting

- don't NIH!

- don't NIH!
- DVCS

- don't NIH!
- DVCS
- testing envs

- don't NIH!
- DVCS
- testing envs
- think usability!

- don't NIH!
- DVCS
- testing envs
- think usability!
- passive checks

- don't NIH!
- DVCS
- testing envs
- think usability!
- passive checks
- automate don't hardcode

- don't NIH!
- DVCS
- testing envs
- think usability!
- passive checks
- automate don't hardcode
- security

Last but not least...

"Quis custodiet ipsos custodes?"

(Who will guard the guards?)

Host / Services / Contacts

- hosts, hostgroups

- hosts, hostgroups
- services, service groups

- hosts, hostgroups
- services, service groups
- templates

- hosts, hostgroups
- services, service groups
- templates
- time periods

- hosts, hostgroups
- services, service groups
- templates
- time periods
- host and services dependencies

- hosts, hostgroups
- services, service groups
- templates
- time periods
- host and services dependencies
- regular expressions

Host Dependencies

Service Dependencies

Checks and states

- frequencies & thresholds

Checks and states

- frequencies & thresholds
- scheduling downtimes

Checks and states

- frequencies & thresholds
- scheduling downtimes
- outages and flapping

Notifications

- periods

- periods
- groups

- periods
- groups
- which states to be notified about?

- periods
- groups
- which states to be notified about?
- escalations / rotations

- periods
- groups
- which states to be notified about?
- escalations / rotations
- custom notifications method

Monitoring remotes

- NRPE daemons
- checks via SSH

Web interface - tactical overview

Network Outages

0 Outages

1 Down 0 Unreachable 8 Up 0 Pending

1 Unhandled Problems

 Services

 0 Critical
 0 Warning
 0 Unknown
 1 Ok
 0 Pending

Monitoring Features Flap Detection Notifications **Event Handlers Active Checks** Passive Checks All Services All Services All Services All Services All Services Enabled Enabled Enabled Enabled Enabled No Services All Hosts Enabled All Hosts Enabled All Hosts Enabled All Hosts Enabled Flapping All Hosts Enabled 6 Hosts Flapping

Web interface – availability reports

Host State Breakdowns:

Host	% Time Up	% Time Down	% Time Unreachable	% Time Undetermined
cubryna.la-tech.eu	100.000% (100.000%)	0.000% (0.000%)	0.000% (0.000%)	0.000%
docent.la-tech.eu	100.000% (100.000%)	0.000% (0.000%)	0.000% (0.000%)	0.000%
host.netrunner.lasyk.info	100.000% (100.000%)	0.000% (0.000%)	0.000% (0.000%)	0.000%
r1.netrunner.lasyk.info	99.377% (99.377%)	0.623% (0.623%)	0.000% (0.000%)	0.000%
vm-2-repo.netrunner.lasyk.info	100.000% (100.000%)	0.000% (0.000%)	0.000% (0.000%)	0.000%
vm-3-ganglia.netrunner.lasyk.info	100.000% (100.000%)	0.000% (0.000%)	0.000% (0.000%)	0.000%
vm-4-nagios.netrunner.lasyk.info	100.000% (100.000%)	0.000% (0.000%)	0.000% (0.000%)	0.000%
vm-6-sec.netrunner.lasyk.info	100.000% (100.000%)	0.000% (0.000%)	0.000% (0.000%)	0.000%
vm-7-unsec.netrunner.lasyk.info	40.971% (40.971%)	52.877% (52.877%)	6.152% (6.152%)	0.000%
Average	93.372% (93.372%)	5.944% (5.944%)	0.684% (0.684%)	0.000%

Web interface - trends

Web interface – network maps

Networking recap

Unicast

Networking recap

Multicast

Networking recap

Broadcast

Ganglia - what is it?

Problems of big scale:

20k hosts with zylion metrics probed every 10 seconds

It is fully redundant (until you spoil it)

It is very scalable

Regexp searches and creating of views – adhoc :)

Ganglia – architecture

Ganglia – architecture

A Two-Host gmond Cluster

Default multicast topology

Deaf / mute multicast topology

Unicast topology

Gmetad HA topology (active - active)

Gmetad hierarchical topology

Ganglia - RRDcached

Ganglia - sFlow

Ganglia - web (grid view)

Ganglia – web (cluster view)

Ganglia – web (physical view)

cpu: CPU clock (GHz) (num CPUs) mem: Total Memory (GB)

Ganglia – web (host view)

Ganglia – web (compare hosts)

Ganglia - web (events)

Events have API json based

Think – integration with whatever app :)

Ganglia – web (dashboards)

- Create view -> apply as dashboard
- Create dashboard from XML
- Generate graphs and add to views

Ganglia – web (graphs)

- base / extended metrics
- own modules
- c / c++
- mod_python
- spoofing
- gmetric
- gmetric4j / java
- Which to choose? gmetric / python / c/c++?

- base / extended metrics

- base / extended metrics
- own modules

- base / extended metrics
- own modules
- c / c++

- base / extended metrics
- own modules
- c / c++
- mod_python

- base / extended metrics
- own modules
- c / c++
- mod_python
- spoofing

- base / extended metrics
- own modules
- c / c++
- mod_python
- spoofing
- gmetric
- gmetric4j / java

- base / extended metrics
- own modules
- c / c++
- mod_python
- spoofing
- gmetric
- gmetric4j / java
- Which to choose? gmetric / python / c/c++?

Ganglia and logfiles?

ganglia-logtailer

- https://bitbucket.org/maplebed/ganglia-logtailer
- parser logfiles (realtime)
- pushes data to ganglia (via gmetric)
- yup based on specific log formats
- yet still open source so poke around ;)

So... Nagios + Ganglia!

3 ways of integration:

ganglia-web/nagios (PHP & bash based)

https://github.com/ganglia/ganglia-web

- ganglia-nagios-bridge (Python & cron based)
 https://github.com/ganglia/ganglia-nagios-bridge
- check-ganglia-metric (Python)
 https://github.com/ganglia/ganglia contrib

Nagios + Ganglia: ganglia-web/nagios

https://github.com/ganglia/ganglia-web
Sending Nagios Data to Ganglia
service_perfdata_command
Or replace Nagios checks with Ganglia!

- Check heartbeat.
- Check a single metric on a specific host.
- Check multiple metrics on a specific host.
- Check multiple metrics across a regex-defined range of hosts

Nagios + Ganglia: ganglia-web/nagios

Nagios pulls info from Ganglia via HTTP

Nagios + Ganglia: ganglia-nagios-bridge

- https://github.com/ganglia/ganglia-nagios-bridge
- Python script run in e.g. in crontab
- pulls data from Ganglia XML via sockets
- parses XML
- send data to Nagios
- Nagios commits only passive checks

Nagios + Ganglia: check_ganglia_metric

- https://pypi.python.org/pypi/check_ganglia_metric/
- basically Nagios plugin
- pulls data from Ganglia XML via sockets
- check_ganglia_metric.py \--gmetad_host=gmetad-server.example.com \--metric_host=host.example.com --metric_name=cpu_idle

Nagios + Ganglia

Which one integration should I use?

Nagios + Ganglia

Which one integration should I use?

Seriously – try yourself and test

Freenode #ganglia

https://lists.sourceforge.net/lists/listinfo/ganglia-general

sources?

- "Monitoring with Ganglia" book
- also nagios.org
- and "Web Operations" book
- plus some experience;)

Thank you:)

Ganglia & Nagios

Maciej Lasyk

11. Sesja Linuksowa

2014-04-06, Wrocław

http://maciek.lasyk.info/sysop

maciek@lasyk.info

@docent-net