

Universidad de Valladolid

Facultad de Ciencias

Trabajo Fin de Grado

Grado en Estadística

El problema de entregas y recogidas (Pickup and Delivery Problem) [TODO: Concretar nombre]

Autor: Sergio García Prado

Universidad de Valladolid

Facultad de Ciencias

Trabajo Fin de Grado

Grado en Estadística

El problema de entregas y recogidas (Pickup and Delivery Problem) [TODO: Concretar nombre]

Autor:

Sergio García Prado

Tutor:

Jesús Saez Aguado

Δ	bstra	ct
\boldsymbol{A}	usura	υu

[TODO]

Resumen

[TODO]

Este trabajo puede ser consultado a través del siguiente enlace: https://github.com/garciparedes/tfg-pickup-and-delivery

Agradecimientos

[TODO]

Prefacio

[TODO]

Índice general

	Resumen	1
	Agradecimientos	3
	Prefacio	5
1.	Introducción	9
2.	Formulación del Problema	11
	2.1. Introducción	11
	2.2. Notación	11
	2.3. Formulación básica	11
	2.4. Restricciones Addicionales	12
	2.5. Resolución Dinámica	12
	2.6. Conclusiones	12
3.	Heurísticas	13
4.	Metaheurísticas	15
5.	Implementación	17
6.	Resultados	19
7.	Conclusiones	21
	Bibliografía	21

Introducción

Formulación del Problema

2.1. Introducción

[TODO]

2.2. Notación

[TODO]

2.3. Formulación básica

[TODO]

$$\begin{aligned} & \text{Minimizar} & \sum_{k \in K} \sum_{(i,j) \in A} c_{ij}^k x_{ij}^k \\ & \text{sujeto a} & \sum_{k \in K} \sum_{j:(i,j) \in A} x_{0j}^k = 1, & \forall i \in P \cup D \\ & \sum_{j:(0,j) \in A} x_{i,n+\tilde{n}+1}^k = 1, & \forall k \in K \\ & \sum_{j:(i,n+\tilde{n}+1) \in A} x_{ij}^k = 1, & \forall k \in K \\ & \sum_{i:(i,j) \in A} x_{ij}^k - \sum_{j:(j,i) \in A} x_{ij}^k = 0, & \forall j \in P \cup D, \forall k \in K \\ & \sum_{i:(i,j) \in A} x_{ij}^k - \sum_{j:(j,i) \in A} x_{ij}^k = 0, & \forall j \in P \cup D, \forall k \in K \\ & x_{ij}^k = 1, \implies B_j^k \geq B_i^k + d_i + t_{ij}^k & \forall (i,j) \in A, \forall k \in K \\ & x_{ij}^k = 1, \implies Q_j^k = Q_i^k + q_j & \forall (i,j) \in A, \forall k \in K \\ & x_{ij}^k = 1, \implies Q_j^k = Q_i^k & \forall i \in V, \forall k \in K \\ & max\{0, q_i\} \leq Q_i^k & \forall i \in V, \forall k \in K \\ & Q_i^k \leq min\{C^k, C^k + q_i\} & \forall i \in V, \forall k \in K \\ & x_j \in \{0, 1\}, & \forall j \in \{1, ..., n\} \end{aligned}$$

Ecuación 2.1: [TODO]

2.4. Restricciones Addicionales

[TODO]

2.5. Resolución Dinámica

[TODO]

2.6. Conclusiones

[TODO]

Heurísticas

Metaheurísticas

Implementación

Resultados

Conclusiones

Bibliografía