K-Means++: Deterministic vs. Random²

Mauro Sozio

April 7, 2017

Input Points

- C1 and C2 contain $\frac{n}{2}$ points each. O = (5, d) (d large constant).
- distance between any two points in C1 and any two points in C2 is at most 1.
- ullet distance between any point in C1 and O, and any point in C2 and O is pprox d (d large).
- We study the SSE of the algorithms as a function of n with d being a large constant.

Deterministic Algorithm (k = 2)

- Selects O and one point in C1 or C2 as centroids.
- SSE $\approx \frac{n}{2} + \frac{n}{2} \cdot d^2$. Huge error!

k-Means++ (k = 2)

- Suppose we select one point p in C1 as first centroid. Then, $\Phi_X \approx 10^2 \cdot \frac{n}{2} + d^2$.
- Any given point in C2 is selected with prob. $\approx \frac{100}{\Phi_X}$. The prob. that one point in C2 is selected as second centroid is $\approx \frac{n}{2} \cdot \frac{100}{\Phi_X}$, while O is selected with prob. $\approx \frac{d^2}{\Phi_X}$.

k-Means++ (k = 2)

- O is selected with probability at most $\frac{1}{n} + \frac{d^2}{\Phi_X}$, in which case the SSE is $\approx \frac{n}{2} + d^2 \cdot \frac{n}{2}$.
- two points in a same cluster (C1 or C2) are selected with probability at most $\frac{1}{\Phi_\chi}$ in which case the SSE is $\approx \frac{n}{2} + 100 \cdot \frac{n}{2} + d^2$.
- one point in C1 and one point in C2 are selected as centroids with probability $1 \frac{1}{n} \frac{d^2}{\Phi_V} \frac{1}{\Phi_V}$, in which case the SSE is $\approx \frac{n}{2} + \frac{n}{2} + d^2$.

k-Means++: SSE on average

Therefore, we can compute the SSE on average for k-Means++ as follows. Remember:

- $\Phi_X \approx 10^2 \cdot \frac{n}{2} + d^2.$
- O is selected with probability at most $\frac{1}{n} + \frac{d^2}{\Phi_X}$, in which case the SSE is $\approx \frac{n}{2} + d^2 \cdot \frac{n}{2}$.
- two points in a same cluster (C1 or C2) are selected with probability at most $\frac{1}{\Phi\chi}$ in which case the SSE is $\approx \frac{n}{2} + 100 \cdot \frac{n}{2} + d^2$.
- one point in C1 and one point in C2 are selected as centroids with probability $1-\frac{1}{n}-\frac{d^2}{\Phi_X}-\frac{1}{\Phi_X}$, in which case the SSE is $\approx \frac{n}{2}+\frac{n}{2}+d^2$.

k-Means++: SSE on average

Therefore, we can compute the SSE on average for k-Means++ as follows. Remember:

- $\Phi_X \approx 10^2 \cdot \frac{n}{2} + d^2.$
- O is selected with probability at most $\frac{1}{n} + \frac{d^2}{\Phi_X}$, in which case the SSE is $\approx \frac{n}{2} + d^2 \cdot \frac{n}{2}$.
- two points in a same cluster (C1 or C2) are selected with probability at most $\frac{1}{\Phi_\chi}$ in which case the SSE is $\approx \frac{n}{2} + 100 \cdot \frac{n}{2} + d^2$.
- one point in C1 and one point in C2 are selected as centroids with probability $1-\frac{1}{n}-\frac{d^2}{\Phi_X}-\frac{1}{\Phi_X}$, in which case the SSE is $\approx \frac{n}{2}+\frac{n}{2}+d^2$.

It follows that:

$$\begin{split} \text{Expected SSE} \; &\approx \left(\frac{1}{n} + \frac{d^2}{\Phi_X}\right) \cdot \left(\frac{n}{2} + d^2 \cdot \frac{n}{2}\right) + \\ &\qquad \qquad \frac{1}{\Phi_X} \cdot \left(\frac{n}{2} + 100 \cdot \frac{n}{2} + d^2\right) + \\ &\qquad \qquad \left(1 - \frac{1}{n} - \frac{d^2}{\Phi_X} - \frac{1}{\Phi_X}\right) \cdot \left(\frac{n}{2} + \frac{n}{2} + d^2\right) \end{split}$$

一人口人 不問人 不是人 不是人 二基二唑

Mauro Sozio

⁸Advanced topic, not asked at the exam

Last steps:

Remember: $\Phi_X \approx 10^2 \cdot \frac{n}{2} + d^2$.

Expected SSE
$$\approx \left(\frac{1}{n} + \frac{d^2}{\Phi_X}\right) \cdot \left(\frac{n}{2} + d^2 \cdot \frac{n}{2}\right) + \frac{1}{\Phi_X} \cdot \left(\frac{n}{2} + 100 \cdot \frac{n}{2} + d^2\right) + \left(1 - \frac{1}{n} - \frac{d^2}{\Phi_X} - \frac{1}{\Phi_X}\right) \cdot \left(\frac{n}{2} + \frac{n}{2} + d^2\right)$$

We obtain:

Expected SSE
$$\approx c_1 \cdot d^2 + c_2 + n + d^2 + c_3 \cdot d^2 \approx n + d^2$$
,

where c_1, c_2, c_3 are some constants. As a result, when n is large k-means++ performs much better than the deterministic algorithm (whose SSE $\approx \frac{n}{2} \cdot d^2$).

Input Points: case 2

In this case, we can use a similar argument and prove similar bounds for SSE of k-means++. Note that in this case the deterministic algorithm might perform slightly better.

k-means++: conclusions

- k-means++ is able to distinguish between a single outlier and a whole cluster of points. This is not the case for the deterministic algorithm (which fails in the first case).
- k-means++ performs well on average, that is, several runs of the algorithm might be necessary so as to obtain a good SSE error.