2ª Avaliação de Cálculo Numérico Prof. Glauber Cintra

Você deve enviar essa avaliação pelo Classroom até o dia 14/set/2020 às 18h.

Aluno: João Gabriel Carneiro Medeiros | Cadeira: Cálculo Numérico | Prof. Glauber Cintra | IFCE | 2020 |

 (2 pontos) Dados os pontos da tabela abaixo, encontre o polinômio do terceiro grau que passa por esses pontos.

i	X_i	y i
0	1	3
1	2	1
2	3	3
3	4	15

- 2) (3 pontos) Seja $p_4(x)$ o polinômio do quarto grau que passa pelos pontos da tabela abaixo. Calcule:
 - a) p₄(1) usando a Fórmula de Lagrange.
 - **b)** p₄(3) usando a Fórmula de Newton.
 - c) p₄(5) usando a Fórmula de Gregory-Newton.

I	Xi	y i
0	0	27
1	2	24,6
2	4	12,6
3	6	0,6
4	8	36,6

- 3) (3 pontos) Dada a função f(x) definida a partir da tabela abaixo, calcule uma aproximação para $\int_{0}^{6} f(x)dx$:
 - a) Aplicando a regra dos trapézios com 6 subintervalos.
 - **b)** Aplicando a primeira regra de Simpson com 6 subintervalos.
 - c) Aplicando a segunda regra de Simpson com 6 subintervalos.
 - d) Aplicando a extrapolação de Richardson à regra dos trapézios com $n_1 = 3$ e $n_2 = 6$.
 - e) Aplicando a extrapolação de Richardson à primeira regra de Simpson com $n_1 = 2$ e $n_2 = 6$.
 - f) Aplicando a extrapolação de Richardson à segunda regra de Simpson com $n_1 = 3$ e $n_2 = 6$.

Xi	y i
0	7
1	6,82
2	4,44
3	1,66
4	0,28
5	4,5
6	23,32

4) **(2 pontos)** Dada a função f(x) definida a partir da tabela abaixo, calcule uma aproximação para $\int_0^8 f(x) dx$. Utilize as regras mais precisas que for possível.

Xi	y i
0	-2
1	10
2	8
5	-22
6	-20
7	-2
8	38

1)

į	Xi	V i
0	1	3
1	2	1
2	3	3
3	4	15

=	polinômio do <u>terceiro grau</u>	
	P(x)= a3x3+a2x7+a2x7+a2x7	

🚺 Usando da eliminação de 0

$$\Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 3 \\ 1 & 2 & 4 & 8 & 1 \\ 1 & 3 & 9 & 27 & 3 \\ 1 & 4 & 16 & 64 & 15 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & 4 & 8 & 1 \\ 1 & 3 & 9 & 27 & 3 \\ 1 & 4 & 16 & 64 & 15 \end{pmatrix} \leftarrow \begin{pmatrix} L_2 + M_2 L_1 \\ \leftarrow L_3 + M_3 \cdot L_4 \\ \leftarrow L_4 + M_4 \cdot L_4 \end{pmatrix}$$

$$M_2 = -(1/1) = -1$$

$$M_4 = -(1/1) = -1$$

$$\Rightarrow \begin{pmatrix} 1 & p \stackrel{1}{4} & 1 & 1 & 3 \\ 0 & 1 & 3 & 7 & -2 \\ 0 & 2 & 8 & 26 & 0 \\ 0 & 3 & 15 & 63 & 12 \end{pmatrix} \leftarrow \begin{matrix} L_{3} + m_{3} \cdot L_{2} \\ \leftarrow L_{4} + m_{4} \cdot L_{2} \end{matrix} \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 3 \\ 0 & 1 & p \stackrel{1}{10} & 7 & -1 \\ 0 & 0 & 2 & 12 & 4 \\ 0 & 0 & 6 & 42 & 18 \end{pmatrix} \leftarrow \begin{matrix} L_{4} + m_{4} \cdot L_{3} \\ \leftarrow L_{4} + m_{4} \cdot L_{3} \\ m_{4} = -(6/2) = -3 \end{pmatrix}$$

$$m_{4} = -(6/2) = -3$$

$$\Rightarrow \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 7 & -1 \\ 0 & 0 & 2 & 12 & 4 \\ 0 & 0 & 0 & 6 & 6 \end{pmatrix} \Rightarrow 2 \cdot \alpha_{1} + 1 \cdot \alpha_{2} + 4 \cdot \alpha_{3} = 4 \cdot \alpha_{1} = 3$$

$$1 \cdot \alpha_{0} + 1 \cdot \alpha_{1} + 1 \cdot \alpha_{2} + 1 \cdot \alpha_{3} = 3 \cdot \alpha_{0} = 3$$

2)

a)

- 1	Xi	V i
0	0	27
1	2	24,6
2	4	12,6
3	6	0,6
4	8	36,6

a) p4(1) usando a Fórmula de <u>Lagrange</u>.

$$(x_0, y_0) \qquad \dots \qquad (x_n, y_n)$$

$$P_n(x) = y_0 L_0 + \dots + y_n L_n$$

$$L_i(x) = \frac{x - x_0}{x_i - x_0} \cdot \dots \underbrace{\frac{x - x_{i-1}}{x_i - x_{i-1}} \cdot \frac{x - x_{i+1}}{x_i - x_{i+1}}}_{x_i - x_{i+1}} \dots \cdot \frac{x - x_n}{x_i - x_n}$$

$$27. \bigsqcup_{0}(1) = \frac{1-x_{4}}{x_{0}-x_{1}} \cdot \frac{1-x_{2}}{x_{0}-x_{2}} \cdot \frac{1-x_{3}}{x_{0}-x_{3}} \cdot \frac{1-x_{4}}{x_{0}-x_{4}} \cdot 27 = \frac{405}{384} \cdot 27$$

$$24_{1}6 \cdot \bigsqcup_{1}(1) = \frac{1-x_{0}}{x_{1}-x_{0}} \cdot \frac{1-x_{2}}{x_{1}-x_{2}} \cdot \frac{1-x_{3}}{x_{1}-x_{4}} \cdot \frac{1-x_{4}}{x_{1}-x_{4}} \cdot 24_{1}6 = \frac{105}{96} \cdot 24_{1}6$$

$$12_{1}6 \cdot \bigsqcup_{2}(1) = \frac{1-x_{0}}{x_{2}-x_{0}} \cdot \frac{1-x_{4}}{x_{2}-x_{4}} \cdot \frac{1-x_{3}}{x_{2}-x_{4}} \cdot \frac{1-x_{4}}{x_{2}-x_{4}} \cdot 12_{1}6 = \frac{35}{64} \cdot 12_{1}6$$

$$0_{1}6 \cdot \bigsqcup_{3}(1) = \frac{1-x_{0}}{x_{3}-x_{0}} \cdot \frac{1-x_{4}}{x_{3}-x_{4}} \cdot \frac{1-x_{4}}{x_{3}-x_{4}} \cdot \frac{1-x_{4}}{x_{3}-x_{4}} \cdot 0, 6 = \frac{21}{96} \cdot 0, 6$$

$$36.6 \cdot \bigsqcup_{4}(1) = \frac{1-x_{0}}{x_{4}-x_{0}} \cdot \frac{1-x_{4}}{x_{4}-x_{4}} \cdot \frac{1-x_{2}}{x_{4}-x_{3}} \cdot \frac{1-x_{4}}{x_{3}-x_{4}} \cdot \frac{1-x_{3}}{x_{4}-x_{3}} \cdot 36_{1}6 = \frac{45}{284} \cdot 36_{1}6$$

b)

1 Xi Xi Xi 0 0 0 27 1 2 24,6 2 4 12,6 3 6 0,6								
4 8 36,6		x	Ordem 0	Ordem 1	Ordem 2	Ordem 3		Ordem n
	(Ordem Zero)	x ₀	f[x ₀]	F[x ₀ , x ₁]	Ordeni 2	Orden 5		Ordeni ii
b) p4(3) usando a Fórmula de	e Newton. (Ordem 1)	xı	f[x1]	F[x ₁ , x ₂]	$f[x_0,x_1,x_2]$	f[x ₀ , x ₁ , x ₂ , x ₃]		
((Ordem 2)	x ₂	f[x2]	F[x ₂ , x ₃]	$f[x_1, x_2, x_3]$	f[x ₁ , x ₂ , x ₃ , x ₄]		
	(Ordem 3)	Х3	f[x3]	F[x ₃ ,x ₄]	f[x ₂ , x ₃ , x ₄]			$f[x_0, x_1, x_2,, x_n]$
	(Ordem n)	X4	f[x ₄]	$F[x_{n-1},x_n]$	$f[x_{n-2}, x_{n-1}, x_n]$	$f[x_{n\text{-}3},x_{n\text{-}2},x_{n\text{-}1},x_n] .$	-	
	teren	nos a forma	a de Newton p $= f(x_0) + (x - x)$	$(x_0)f[x_0, x_1] + (x_0)f[x_0, x_1] + (x_0)f[x_0,$	o de grau \leq n que $x - x_0$ $(x - x_1)f[x_0, x_{n-1})f[x_0, x_1,, x_n]$		ξ _n	4

	X	V i.
0	0	27
1	2	24,6
2	4	12,6
3	6	0,6
4	8	36,6

c) p4(5) usando a Fórmula de Gregory-Newto

OBS. Espaçamento entre os pontos

Da mesma maneira que com as diferenças divididas, conhecida f(x) ou conhecido: seus valores em x₀, x₁,..., x_n, podemos construir uma tabela de diferenças ordinárias:

		seus valores em x_0 , x_1 ,, x_n , podemos construir uma tabela de diferenças ordinárias:					
4.4.2- A Forma	de Newton-Gregory	Contract of the Contract of th	х	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	
i)	Considere a tabela:	NAME OF TAXABLE PARTY.	\mathbf{x}_0	f(x ₀)			
onde os nós de i	$\frac{x \qquad x_0 \qquad x_1}{f(x) \qquad f(x_0) \qquad f(x_1)}$ nterpolação são tais que: $x_{j+1} - x_j = h$,	x_n $f(x_n)$ = 0, 1,, $(n-1)$.	x_1	f(x _i)	$\Delta f(x_0)$	$\Delta^2 f(x_0)$	
Partind	o de forma de Newton para p _n (x) e usa	ndo o teorema anterior, verifique			$\Delta f(x_1)$		
	$f(x_0) + (x - x_0) \frac{\Delta f(x_0)}{h} + (x - x_0)(x - x_0)$	$(a_1)\frac{\Delta^2 f(x_0)}{2h^2} + +$	x ₂	f(x ₂)	Δf(x ₂)	$\Delta^2 f(x_1)$ etc.	
	$(x_0)(x-x_1)\dots(x-x_{n-1})rac{\Delta^nf(x_0)}{h^nn!}.$ e Newton-Gregory para o polinômio inte	rpolador.	x ₃	f(x ₃)			
			-				

i)
$$\Rightarrow x$$
 $f(x)$ $f(x)$ $f(x)$ $f(x)$ $f(x)$ $f(x)$ $f(x)$

0 $\frac{27}{2}$

2 $\frac{24}{6}$ $\frac{-2}{4}$ $\frac{48}{2}$

4 $\frac{36}{6}$ $\frac{36}{2}$ $\frac{36}{2}$ $\frac{38}{4}$

6 $\frac{36}{6}$ $\frac{36}{2}$ $\frac{36}$

a)

Xi	V i
0	7
1	6,82
2	4,44
3	1,66
4	0,28
5	4,5
6	23,32

$$\int_{a=x_0}^{b=x_n} f(x)dx \approx \frac{h}{2} \left[f(x_0) + 2 \sum_{k=1}^{n-1} f(x_k) + f(x_n) \right]$$

$$\text{onde } h = \frac{b-a}{n} \text{ e } x_k = x_0 + k \cdot h, \quad k \geq 1$$

 $\int_{0}^{c} f(x) dx \to \int_{0}^{\infty} \int_{0}^{\infty} f(x) dx$

ii)
$$\rightarrow \int_{0}^{6} f(x) dx \approx \frac{1}{2} \left[7 + 2 \cdot (6,82 + 4,44 + 1,66 + 0,28 + 4,5) + 23,32 \right] \approx 32,86$$

b)

Xi	y i	
0	7	
1	6,82	
2	4,44	
3	1,66	
4	0,28	
5	4,5	
6	23,32	
	25,52	

$$\int_a^b f(x)dx pprox rac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \ldots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$$
 $\int_a^b f(x)dx pprox rac{h}{3} \left[f(x_0) + 4 \sum_{i=1}^{n-1} f(x_i) + 2 \sum_{j=2}^{n-2} f(x_j) + f(x_n) \right]$

i)
$$\Rightarrow h = \frac{6-0}{6} = 1$$
ii) $\Rightarrow \int_{0}^{6} f(x) dx \approx \frac{1}{3} \cdot \left[7 + (4 - 4)\right] + \frac{1}{3} \cdot \left[7 + (4 - 4)\right]$

 $\begin{array}{c}
37,28 & 8,88 & 6,69 & 0,56 & 18 \\
11) \rightarrow \int_{3}^{6} f(x) dx \approx \frac{1}{3} \cdot \left[7 + (4 \cdot 6,82) + (2 \cdot 4,44) + (4 \cdot 1,66) + (2 \cdot 0,28) + (4 \cdot 4,5) + 23,32\right] \approx \\
\approx \frac{1}{3} \cdot 91,68 \approx 0,33333 \cdot 91,68 \approx 30,556944 \approx 30,556
\end{array}$ Como trata-se de uma dízima, vamos considerar seu resultado como 0,3333 nos cálculos!

Obs. Aproximar com várias técnicas usando múltiplos "pedaços" da tabela e somando suas aproximações fica "mais aproximado" do que usando somente uma técnica pegando a tabela por completo (ela toda).

//-----