Unsupervised learning odensity estimation parametric Parametric Vleamip Oconstruct gaussian mixture models (2) Use expectation maximization algo Clustering as a mixture of gaussians i parametric (vs) non-pagametric distribution". Different Statistical distributions: (page) *If data is ordinal/interval based, only non-parametric statistics can be used Data qualitative quantitative Hon-numerial discrete continuous Morninal Ordinal 1 order Interval Ration Scale Scale - present Jequential learning mapping input seq to output seq using state machines. Hidden state seq present. Active leasing.

Theory of rational agency: (action selection theories)
-> Estimator probability density function of random variable in a population
9: Difference between probability density for & probability distribution? 4. what is maximum litelihood estimation? Tinding the values of parameters that result in Least lit come.
* likelihood & loguitedress [L(M, T; data) = P(data; M, T)
q when is least equares minimization same as max likelihood estimation? why does it happen in that case? How
Bayesian Inference for parameter
Bayer theorm: P(P)data) = P(C) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B
0 a set of pagameters (0= Su, o 3 tor gaussian distribution)
P(O) - prior distribution P(dita) - evidence & data = & y1, 42/, yn)

Can we use bayesian inference to classification problems? How? Is it used too descrete deta/ continuous of both?