MACHINE LEARNING

LINEAR REGRESSION

Sebastian Engelke

MASTER IN BUSINESS ANALYTICS

Simple linear regression

- Recall: $Y = f(X) + \epsilon$
- Simple linear model:

$$f(X) = \beta_0 + \beta_1 X,$$

where β_0 and β_1 are model coefficients or parameters.

- ▶ For training data $\{(x_i, y_i)\}_{i=1}^n$, suppose we have an estimate $(\widehat{\beta}_0, \widehat{\beta}_1)$ of (β_0, β_1) .
- ▶ Fitted value: $\hat{y}_i = \hat{f}(x_i) = \hat{\beta}_0 + \hat{\beta}_1 x_i$
- Residual: $e_i = y_i \hat{y}_i$
- Residual sum of squares (RSS)

$$RSS(\widehat{\beta}_0, \widehat{\beta}_1) = e_1^2 + e_2^2 + \dots + e_n^2$$

$$= \sum_{i=1}^n (y_i - \widehat{f}(x_i))^2$$

$$= \sum_{i=1}^n (y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2$$

Estimation of parameters by least squares

▶ To estimate (β_0, β_1) , we minimize the RSS:

$$\begin{split} &(\widehat{\beta}_0, \widehat{\beta}_1) = \operatorname{argmin}_{(\beta_0, \beta_1) \in \mathbb{R}^2} \operatorname{RSS}(\beta_0, \beta_1) \\ &= \operatorname{argmin}_{(\beta_0, \beta_1) \in \mathbb{R}^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 \end{split}$$

- How do we solve this optimization problem?
- Numerically with computer algorithm (gradient descent, etc.)
- ► Analytically by differentiation (if possible):

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x},$$

where $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ are sample means.

Note: (β̂0, β̂1) are random, since for different training data we obtain different estimates!

Advertising data

Multiple linear regression

• We consider p predictors $X=(X_1,\ldots,X_p)$ for the response Y. The model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon.$$

► For the Advertising data set:

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper + \epsilon$$
.

▶ The training data $\{(x_i, y_i)\}_{i=1}^n$ with $x_i = (x_{i1}, \dots, x_{ip})^\top$ can be written as an $n \times p$ matrix

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}$$

For notational convenience, we sometimes use the dot product between $x,y\in\mathbb{R}^p$

$$x^{\top}y = \sum_{i=1}^{p} x_i y_i = x_1 y_1 + \dots + x_p y_p.$$

Estimation and prediction in multiple linear regression

As before, we obtain parameter estimates $\widehat{eta}_0, \widehat{eta}_1, \dots, \widehat{eta}_p$ as those parameters that minimize the RSS

$$RSS(\beta_0, ..., \beta_p) = \sum_{i=1}^{n} (y_i - \beta_0 - x_i^{\top} \beta)^2$$
$$= \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2$$

We make <u>predictions</u> at a new point $x_0 = (x_{01}, \dots, x_{0p})$ by

$$\widehat{y}_0 = \widehat{\beta}_0 + x_0^{\top} \widehat{\beta}$$

= $\widehat{\beta}_0 + \widehat{\beta}_1 x_{i1} + \dots + \widehat{\beta}_p x_{ip}$,

where
$$\widehat{\beta} = (\widehat{\beta}_1, \dots, \widehat{\beta}_p)$$
.

Advertising data

Coefficient	Estimate	Std. Error	t value	<i>p</i> -value
Intercept	2.939	0.3119	9.42	< 2e-16
TV	0.046	0.0014	32.81	$< 2\mathrm{e}{-16}$
radio	0.189	0.0086	21.89	$< 2\mathrm{e}{-16}$
newspaper	-0.001	0.0059	-0.18	0.8599

Correlations:

	TV	radio	newspaper
TV	1	0.0548	0.0567
radio		1	0.354
newspaper			1

Example: the Auto data set

- ► The Auto data set contains measurements for n = 397 cars, such as mpg (miles per gallon), horsepower, year, etc.
- ▶ We can fit the model

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$

this is still a linear model (in $X_1 = \text{horsepower and } X_2 = \text{horsepower}^2$).

- ▶ In this case, both β_1 and β_2 are significant.
- ▶ Even higher polynomials can be fitted.

Beyond linearity: linear basis functions

- ▶ Most often the true function f(X) is not linear in the predictors $X_1, ..., X_p$! But we can adjust the linear model.
- ▶ Instead of the $X = (X_1, ..., X_p)$ we consider transformation of them. Let $h_m(X) : \mathbb{R}^p \to \mathbb{R}$ be the mth transformation, m = 1, ..., M. The model is

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X).$$

▶ This model is linear in the new predictors, the basis functions $h_1(X), \ldots, h_M(X)$; estimation an prediction can be applied as before!

Possible choices for h_m are:

- $h_m(X) = X_m$, m = 1, ... p, essentially recovers the original linear model.
- ▶ $h_m(X) = X_i^2$ or $h_m(X) = X_j X_k$ allows to achieve higher order polynomials.
- ▶ $h_m(X) = \log(X_j), \sqrt{X_j}$ covers other non-linear transformation.
- etc.