Ordenação

Estruturas de Dados e Algoritmos – Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

Instituto Federal de Brasília, Câmpus Taguatinga

Sumário

- Introdução
- Ordenação
- Ordenação por Comparações
- 4 Ordenação em O(n)
- Comparações
- 6 Links

Sumário

Introdução

Introdução

Introdução

Ordenação

- O problema da ordenação é fundamental para a Ciência da Computação. Através da resolução deste problema, podemos solucionar diversos outros.
- Formalmente o problema é postulado como, dado uma lista de elementos, ordenar cada elemento segundo uma relação de ordem < de maneira crescente. Ou seja, temos:
 - ▶ Entrada: Sequência de elementos $\{a_0, a_1, \dots, a_{n-1}\}$.
 - Saída: Permutação da sequência original em ordem crescente, isto é, $\{a'_0, a'_1, \dots, a'_{n-1}\}, a'_i < a'_{i+1}, 0 \le i < n-2.$

Introdução

- Lista de inteiros a ser ordenada segundo a relação \leq sobre \mathbb{N} .
- Lista de reais a ser ordenada segundo a relação \leq sobre \mathbb{R} .
- Lista de palavras a ser ordenada segundo a ordem lexicográfica induzida sobre um alfabeto.

Introdução

Ordenação

- Existem diversos métodos de ordenação diferentes, cada qual com sua técnica.
- No entanto, métodos de ordenação podem compartilhar algumas propriedades:
 - In-place: Usa-se a entrada e mais um número constante de posições de memória para executar a ordenação (n + O(1)).
 - Estável: Se dois elementos v[i] e v[j] são iguais, com i < j, eles terão a mesma posição relativa após a ordenação, isto é, o elemento v[i] vai vir antes de v[j] no vetor ordenado, apesar de terem o mesmo valor.
 - $(7, 2, 1, 2, 4, 3, 6, 5) \rightarrow (1, 2, 2, 3, 4, 5, 6, 7)$

Sumário

Sumário

- Bubblesort
- Insertionsort
- Mergesort
- Quicksort
- Heapsort

Bubblesort

- O Bubblesort, em cada iteração, lê o vetor da esquerda para a direita e troca os elementos se v[i] > v[i+1].
- Como consequência disso, os maiores elementos são colocados em sua posição devida após cada iteração.
- ullet Observe que são necessárias n-1 iterações para o algoritmo ordenar a sequência original, sendo que cada iteração precisa passar por toda a sequência.

11	2	7	17	3	13	5	19	23	29
2	11	7	17	3	13	5	19	23	29
2	7	11	17	3	13	5	19	23	29
2	7	11	3	17	13	5	19	23	29
2	7	11	3	13	17	5	19	23	29
2	7	11	3	13	5	17	19	23	29
2	7	3	11	13	5	17	19	23	29
2		3	11	5	13	17	19	23	29
2	7	3 7	11 11	5	13 13	17 17	19 19	23 23	29 29
2	7	3 7	11 11	5	13 13	17 17	19 19	23 23	29 29 29 29
2 2 2 2	7 3 3	3 7 7 5	11 11 5	5 11 11	13 13 13	17 17 17	19 19 19	23 23 23 23	29 29 29

Exemplo

5 1 12 -5 16

5 1 12 -5 16

1 5 12 -5 1 1 5 12 -5 1

1 5 -5 12 16

1 5 -5 12 16 1 5 -5 12 16

1 -5 5 12 16

1 -5 5 12 16 -5 1 5 12 16

-5 1 5 12 16

-5 1 5 12 16

unsorted

5 > 1, swap

 $5 \le 12$, ok

12 > -5, swap

 $12 \le 16$, ok

1 < 5, ok

5 > -5, swap

5 < 12, ok

1 > -5, swap

1 < 5, ok -5 < 1, ok

sorted

10 de 75

Function Bubblesort

```
Input: V
```

```
Output: V, V[i] < V[i+1], 0 \le i < n-1
```

```
\begin{array}{c|cccc} \mathbf{1} & trocou \leftarrow \mathbf{true} \\ \mathbf{2} & \mathbf{for}( \ i \leftarrow 0; i < V.\mathrm{SIZE}() \wedge trocou = \mathbf{true}; i + + \ ) \\ \mathbf{3} & trocou \leftarrow \mathbf{false} \\ \mathbf{4} & \mathbf{for}( \ j \leftarrow 0; j < V.\mathrm{SIZE}() - 1; j + + \ ) \\ \mathbf{5} & \mathbf{if}( \ V[j] > V[j + 1] \ ) \\ \mathbf{6} & \mathsf{SWAP}(V[j], V[j + 1]) \\ \mathbf{7} & trocou \leftarrow \mathbf{true} \end{array}
```


Análise

No pior caso, são necessários n-1 iterações sobre a sequência original. Na iteração i são realizadas n-1-i comparações ao todo. Portanto, o custo do algoritmo é dado como:

$$\sum_{i=0}^{n-1} i = 1 + 2 + \ldots + n - 1 \in \Theta(n^2)$$

In-place	Estável
✓	✓

Sumário

- Bubblesort
- Insertionsort
- Mergesort
- Quicksort
- Heapsort

Insertionsort

O projeto do algoritmo Insertionsort segue um argumento análogo à indução matemática.

- Caso base: uma sequência com um elemento está ordenada.
- Passo de indução: a inserção de um elemento em uma sequência ordenada na posição correta também gera uma sequência ordenada.

Analogia com Baralho

Function Insertionsort

```
Input: V
```

Output:
$$V, V[i] < V[i+1], 0 \le i < V.SIZE() - 1$$

- 1 for $(i \leftarrow 1; i < V.SIZE(); i + +)$
- $chave \leftarrow V[i]$ 2
- **for** $(i \leftarrow i 1; i > 0 \land V[i] > chave; i -)$
- $V[j+1] \leftarrow V[j]$
- $V[i+1] \leftarrow chave$

Análise

- No pior caso, são necessários n-1 iterações sobre a sequência original. Na iteração i são realizadas no máximo, i comparações ao todo.
- ullet A inserção do elemento na posição correta, também necessita de ioperações de troca (em vetores). Portanto, o número de comparações do algoritmo (o mesmo número de trocas em vetores) é dado como:

$$\sum_{i=0}^{n-1} i = 1 + 2 + \ldots + n - 1 \in \Theta(n^2)$$

Observação

- Eficiente para entradas pequenas.
- Mais rápido na prática do que outros algoritmos quadráticos (como o Bubblesort).

In-place	Estável
✓	✓

Sumário

- Bubblesort
- Insertionsort
- Mergesort
- Quicksort
- Heapsort

Mergesort

- O Mergesort se baseia no conceito de Merge (junção) de duas sequências ordenadas. Primeiramente ele subdivide a sequência original na metade e ordena recursivamente essas seguências.
- Por fim, faz a junção das duas seguências ordenadas para compor uma sequência maior ordenada.
- \bullet $(1,3,5,7,9) + (0,2,4,6,8) \xrightarrow{merge} (0,1,2,3,4,5,6,7,8,9)$

Function Mergesort

Input: (V, i, j)

Output: V, $V[i] < V[i+1], 0 \le i < V.SIZE() - 1$

- 1 if($i \geq j$)
- 2 return V[i,j];
- $m \leftarrow (i+j)/2$
- 4 $V_1 \leftarrow \text{MERGESORT}(V, i, m)$
- 5 $V_2 \leftarrow \text{MERGESORT}(V, m+1, j)$
- **6** $V \leftarrow \text{Merge}(V_1, V_2)$
- 7 return V

Function Merge

```
Input: V, V_1, V_2
  Output: V, V[i] < V[i+1], 0 \le i < n-1
1 for (i \leftarrow 0, j \leftarrow 0, k \leftarrow 0; j < V_1.SIZE() \land k < V_2.SIZE(); i + +)
      if(V_1[j] < V_2[k])
      V[i] \leftarrow V_1[j++]
3
      else
      V[i] \leftarrow V_2[k++]
5
6 while j < V_1.\text{SIZE}() do V[i++] \leftarrow V_1[j++]
```

while $k < V_2$.SIZE() do $V[i++] \leftarrow V_2[k++]$

Análise

A relação de recorrência do Mergesort corresponde à:

$$T(n) = 2 \cdot T(n/2) + O(n) \in \Theta(n \lg n)$$

In-place	Estável
X	<

Observação

- Requer uma quantidade de memória superior a O(1) (vetores auxiliares).
- Recursivo!
- 28 de 75

Sumário

- Bubblesort
- Insertionsort
- Mergesort
- Quicksort
- Heapsort

Quicksort

Quicksort

- O Quicksort se baseia na escolha de um pivô. Após escolhido este pivô, a sequência original é particionada em três partes:
- Elementos menores que o pivô;
- Pivô;
- Elementos maiores que o pivô;
- O procedimento é aplicado recursivamente na primeira e última partes.

Quicksort

exampleblock

Function Quicksort

Input: V, i, j

Output: $V, V[i] < V[i+1], 0 \le i < n-2$

- 1 **if**(i < j)
- $\mathbf{2} \quad | \quad p \leftarrow \text{Partition}(V, i, j)$
- 3 Quicksort(V, i, p-1)
- 4 Quicksort(V, p+1, j)

Quicksort: Análise

Análise

A relação de recorrência do Mergesort, no pior caso, corresponde à:

$$T(n) = T(n-1) + O(n) \in \Theta(n^2)$$

Contanto, no caso médio, o Quicksort divide as partições de modo em que a primeira e a última partição tenham tamanhos similares, o que leva a uma relação de recorrência que se aproxima de:

$$T(n) = 2 \cdot T(n/2) + O(n) \in \Theta(n \lg n)$$

In-place	Estável	
X	X	

Análise

Sumário

- Bubblesort
- Insertionsort
- Mergesort
- Quicksort
- Heapsort

Heap

A chave do heapsort é uma estrutura denominada heap. Uma heap binária é uma estrutura de natureza recursiva e tem as seguinte propriedades:

- lacktriangle O elemento pai é \geq do que os seus filhos.
- O filho da esquerda é uma heap.
- O filho da direita também é uma heap.

Heapify

Para construir uma Heap, devemos aplicar o procedimento de **heapify** nos nós que não apresentam a propriedade de Heap.

Heap

Note que os nós folha, já são heaps (por vacuidade). Logo, o heapify só necessita ser aplicado aos nós acima dos nós folhas.

Heapsort

- Uma vez que a Heap está contruída, sabemos que o elemento raiz (primeiro elemento) é o maior de todos, logo podemos retirá-lo e colocá-lo no fim da sequência.
- Escolhemos o último nó folha para ser a raiz (primeiro elemento da sequência) e aplicamos heapify para manter a estrutura da heap.
- O procedimento é repetido até que tenhamos a sequência ordenada.

Exemplo

Function Heapsort

Input: V

Output: $V, V[i] < V[i+1], 0 \le i < n-1$

- 1 MakeHeap(V)
- 2 for($i \leftarrow V.\text{SIZE}() 1; i > 0; i -)$
- 3 SWAP(V[0], V[i])
- 4 Heapify(V,0,i)

Function MakeHeap

Input: V

Output: V, com propriedade de **Heap**

- 1 for $(i \leftarrow V.SIZE()/2; i \ge 0; i -)$
- 2 | Heapify(V, i, V.size())

Function Heapify

Input: V, i, heapSize

```
1 l \leftarrow 2 \cdot i + 1
r \leftarrow 2 \cdot i + 2
3 largest \leftarrow i
4 if (l < heapSize \land V[l] > V[i])
    largest \leftarrow l
6 if (r < heapSize \land V[r] > V[largest])
   largest \leftarrow r
8 if (largest \neq i)
       SWAP(V[i], V[largest])
        HEAPIFY(V, largest, heapSize)
10
```


Análise

- Para construir a Heap, leva-se tempo $O(n \lg n)$, uma vez que é necessário manter a propriedade de Heap para todos os nós, e cada nó tem altura $O(\lg n)$.
- Apesar de ser um limite superior, uma análise mais detalhada mostra que a construção da Heap é feita em tempo $\Theta(n)$.
- Uma vez que a Heap é construída, a retira do nó raiz e a manutenção da propriedade da Heap levam tempo $\Theta(\lg n)$.
- Como esse procedimento é repetido para todos os nós, temos que o Heapsort leva tempo $\Theta(n \lg n)$.

In-place	Estável
✓	X

Teorema

MakeHeap(V) leva tempo O(n).

Demonstração

O procedimento Heapify() quando chamado de um nó de altura hleva tempo O(h).

Logo, MAKEHEAP(V) leva tempo:

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \lceil \frac{n}{2^{h+1}} \rceil O(h) \qquad \in \qquad \diamond \quad \mathsf{cada} \ \mathsf{nível} \ \mathsf{de} \ \mathsf{altura} \ \mathsf{h} \ \mathsf{tem} \ \mathsf{essa} \ \mathsf{quantidade} \ \mathsf{de} \ \mathsf{folhas}$$

$$O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right) \qquad \leq \qquad \diamond \quad \mathsf{Isola} \ \mathsf{o} \ \mathsf{termo} \ n$$

$$O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right) \qquad = \qquad \diamond \quad \mathsf{Majoração}$$

$$O\left(n \frac{1/2}{(1-1/2)^2}\right) \qquad = \qquad \diamond \quad \mathsf{Equivalência}$$

$$O\left(2n\right) \qquad \in O(n)$$

Sumário

Ordenação por Comparações

Ordenação por Comparações

Cota Inferior para Algoritmos de Ordenação por Comparações

- Vimos até o presente momento, diversos algoritmos de ordenação que se baseiam em comparações de chaves para resolver o prolema da Ordenação.
- Até agora, sabemos que uma cota superior para o problema da ordenação é de $O(n \lg n)$, obtidas por algoritmos como o Heapsort e o Mergesort.
- Existe uma cota mínima para algoritmos de ordenação por comparação?

Ordenação por Comparação

Ordenação por Comparação

- Durante o seu trajeto, um algoritmo de ordenação faz comparações de modo a obter uma permutação da sequência original em ordem crescente.
- Isso corresponde de um percurso da raiz até uma folha.
- Quantas folhas temos? Qual a altura da árvore de decisões? Se o algoritmo deixar de explorar um caminho para todas as instâncias do problema o que acontece?

Ordenação por Comparação

- Durante o seu trajeto, um algoritmo de ordenação faz comparações de modo a obter uma permutação da sequência original em ordem crescente.
- Isso corresponde de um percurso da raiz até uma folha.
- Quantas folhas temos? Qual a altura da árvore de decisões? Se o algoritmo deixar de explorar um caminho para todas as instâncias do problema o que acontece?

O problema de ordenações usando comparações possui cota $\Omega(n \lg n)$.

Algoritmos Ótimos

Algoritmos Ótimos

- O Heapsort e o Mergesort são algoritmos ótimos de ordenação por comparações.
- No pior caso, eles levam o mesmo tempo que o melhor algoritmo possível para o problema da ordenação por comparações, que por sua vez, possui uma cota inferior de $\Omega(n\lg n)$.

Ordenação em Tempo "Linear"

Ordenação em Tempo "Linear"

- É possível resolver o problema da ordenação em tempo linear ao explorar propriedades de algumas instâncias e resolver este problema reduzido em tempo $o(n\lg n)$, desde que não se use comparações.
- Dois métodos de ordenação em tempo "pseudolinear" são:
 - Countingsort;
 - Radixsort;

Sumário

 $lack {f Q}$ Ordenação em O(n)

Sumário

- Ordenação em O(n)
 - Countingsort
 - Radixsort

Countingsort

- O Countingsort conta as ocorrências de cada elemento na sequência original.
- Uma vez computada essa informação, o Countingsort calcula o número de elementos menor ou igual a um elemento i qualquer.
- A partir disso, o Countingsort consegue ordenar a sequência original.

exampleblock

Function Countingsort

Input: V, i

Output: V, V[i] < V[i+1], 0 < i < n-2

- 1 $V' \leftarrow V$
- 2 for $(i \leftarrow 0; i < k; i++)$
- $C[i] \leftarrow 0$
- 4 for $(i \leftarrow 0; i < V.SIZE(); i + +)$
- 5 C[V'[i]] + +
- 6 for $(i \leftarrow 1; i < k; i + +)$
- 7 $C[i] \leftarrow C[i] + C[i-1]$
- 8 for $(i \leftarrow V.SIZE() 1; i \ge 0; i -)$
- 9 $V[-C[V'[i]] \leftarrow V'[i]$

Countingsort: Análise

Análise

- Primeiramente, é necessário contar a ocorrência de cada elemento. o que leva tempo $\Theta(n)$.
- Depois, é preciso computar a quantidade de elementos menores ou iguais a um outro determinado elemento, o que leva tempo $\Theta(k)$, onde k é o valor do maior elemento possível na sequência.
- Por fim, uma inspeção no vetor é necessária para executar a ordenação, logo, é necessário tempo $\Theta(n)$.
- Portanto, o custo total é de $\Theta(n+k)$.

In-place	Estável
X	✓

Sumário

- Ordenação em O(n)
 - Countingsort
 - Radixsort

Radixsort

- A ideia do Radixsort é olhar, para cada iteração i, olhar para o i-ésimo dígito menos significativo e ordenar a sequência original baseado na ordem dos dígitos e na informação da iteração anterior.
- Ele pode usar o Countingsort para ordenar os dígitos na i-ésima iteração.
- Além disso, para ser um método estável, ele deve utilizar um método estável de ordenação para ordenar os dígitos em cada iteração.

exampleblock

329	720	720			329
457	355		329		355
657	436		436		436
839	457]]]]]-	839	ասվի-	457
436	657		355		657
720	329		457		720
355	839		657		839

Function Radixsort

Input: V

Output: $V, V[i] < V[i+1], 0 \le i < n-1$

- 1 for $(i \leftarrow 0; i < d; i + +)$
- 2 Use um método de ordenação estável considerando apenas o i-ésimo dígito menos significativo

Análise

- ullet Suponha que o maior elemento possua d dígitos.
- Se em cada iteração utilizarmos o Countingsort para ordenar os dígitos, levaremos tempo O(n+k) para a iteração, onde k corresponde ao maior dígito.
- Como são necessárias d iterações, temos que o tempo total do Algoritmo corresponde à $\Theta(d\cdot(n+k))$.

In-place	Estável
X	✓

Sumário

Comparações

Comparações

Método	Complexidade	In-place	Estável
Bubblesort	$\Theta(n^2)$	✓	✓
Insertionsort	$\Theta(n^2)$	✓	✓
Mergesort	$\Theta(n \lg n)$	X	✓
Quicksort	$\Theta(n^2)$	X	X
Heapsort	$\Theta(n \lg n)$	✓	X
Countingsort	$\Theta(n+k)$	Х	✓
Radixsort	$\Theta(d \cdot (n+k))$	Х	✓

Sumário

6 Links

Links

- Sonorização de algoritmos de ordenação: http://youtu.be/t8g-iYGHpEA
- Sonorização de algoritmos de ordenação 2: http://youtu.be/kPRAOW1kECg
- Grupo AlgoRythmics de dança: http://www.youtube.com/user/AlgoRythmics
- Animações de algoritmos de ordenação: http://www.sorting-algorithms.com/