Devoir maison 9.

À rendre le jeudi 4 avril 2024

On ne se servira pas du théorème du rang dans cet exercice.

Soit n un entier supérieur ou égal à 2. Soit f la fonction définie sur $\mathbb{R}_n[X]$ par :

$$f: P \mapsto X(P(X) - P(X - 1)).$$

(Ici P(X) désigne le polynôme P, et P(X-1) désigne le polynôme P composé par le polynôme X-1.)

Question préliminaire : Soit $P \in \mathbb{R}_n[X]$ vérifiant P(X-1) = P(X). Justifier que P est un polynôme constant.

- **1**°) Calculer $f(1), f(X), f(X^2)$.
- **2°)** Déterminer, pour tout $k \in \{1, ..., n\}$, le degré de $f(X^k)$ en fonction de k.
- **3°)** Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$.
- 4°) Déterminer le noyau de f.
- **5**°) On pose $F = \{ P \in \mathbb{R}_n[X] / P(0) = 0 \}$, et:

$$P_1 = X$$
, $P_2 = X(1-X)$, $P_3 = X(1-X)(2-X)$, ..., $P_n = X(1-X)(2-X)$... $(n-1-X)$.

- a) Quelle inclusion simple a-t-on entre Im(f) et F?
- b) Déterminer une famille génératrice simple de F.
- c) À l'aide d'une récurrence, montrer que pour tout $k \in \{1, ..., n\}$:

$$\operatorname{Vect}\left(X, X^{2}, \dots, X^{k}\right) \subset \operatorname{Vect}\left(P_{1}, \dots, P_{k}\right).$$

- d) Montrer que pour tout $k \in \{1, ..., n\}$, $f(P_k) = kP_k$.
- e) Déduire des questions précédentes que Im(f) = F.

Question bonus:

Obtenir plus rapidement le résultat final de la question 5, Im(f) = F, en utilisant le théorème du rang.