

■Issued Date: Mar. 08, 2021

ISED CERTIFICATION TEST REPORT

FOR

Applicant	:	SHEN ZHEN HOPE MICROELECTRONICS CO., LTD.
Address	 30th Floor, Block A, Building 8, Vanke Cloud City Phase III, Xili Street, Nanshan District, Shenzhen GD, P.R. China 	
Equipment under Test	:	BLE MODULE
Model No.	• •	HM-BT2204, HM-BT2202, HM-BT2201
Trade Mark	••	1
IC	:	24999-BT2204
Manufacturer	:	SHEN ZHEN HOPE MICROELECTRONICS CO., LTD.
Address	••	30th Floor, Block A, Building 8, Vanke Cloud City Phase III, Xili Street, Nanshan District, Shenzhen, GD, P.R. China

Issued By: Dongguan Dongdian Testing Service Co., Ltd.

Add.: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park,

Dongguan City, Guangdong Province, China, 523808

Tel.: +86-0769-38826678, E-mail: ddt@dgddt.com, http://www.dgddt.com

Table of Contents

	Test report declares]
1.	Summary of Test Results	6
2.	General Test Information	
2.1.	Description of EUT	
2.2.	Accessories of EUT	
2.3.	Assistant equipment used for test	-
2.4.	Block diagram of EUT configuration for test	
2.5.	Test environment conditions	8
2.6.	Deviations of test standard	8
2.7.	Test laboratory	8
2.8.	Measurement uncertainty	
3.	Equipment Used During Test	10
4.	6 dB Bandwidth and 99% Bandwidth	12
4.1.	Block diagram of test setup	12
4.2.	Limits	12
4.3.	Test procedure	12
4.4.	Test result	12
4.5.	Original test data	
5.	Maximum Peak Output Power	18
5.1.	Block diagram of test setup	18
5.2.	Limits	18
5.3.	Test procedure	18
5.4.	Test result	
5.5.	Original test data	19
6.	Power Spectral Density	21
6.1.	Block diagram of test setup	2
6.2.	Limits	
6.3.	Test procedure	21
6.4.	Test result	
6.5.	Original test data	
7.	Band Edge Compliance (Conducted Method)	
7.1.	Block diagram of test setup	
7.2.	Limits	24
7.3.	Test procedure	24
7.4.	Test result	25
7.5.	Original test data	

8.	Radiated Emission	
8.1.	Block diagram of test setup	
8.2.	Limit	. 28
8.3.	Test procedure	
8.4.	Test result	
9.	RF Conducted Spurious Emissions	. 35
9.1.	Block diagram of test setup	. 35
9.2.	Limits	
9.3.	Test procedure®	
9.4.	Test result	
9.5.	Original test data	
10.	Emissions in Restricted Frequency Bands	. 43
10.1.	Block diagram of test setup	
10.2.	Limit	
10.3.	Test procedure	. 43
10.4.	Test result	
11.	Power Line Conducted Emission	
11.1.	Block diagram of test setup	
11.2.	Power line conducted emission limits	
11.3.	Test procedure	
11.4.	Test result	. 53
12.	Antenna Requirements	. 54
12.1.	Limit	. 54
12.2.	Result	
13.	Test Setup Photograph	. 55
14.	Photos of the EUT	. 56

Applicant	:	SHEN ZHEN HOPE MICROELECTRONICS CO., LTD.
Address	:	30th Floor, Block A, Building 8, Vanke Cloud City Phase III, Xili Street, Nanshan District, Shenzhen, GD, P.R. China
Equipment under Test	:	BLE MODULE
Model No.	:	HM-BT2204, HM-BT2202, HM-BT2201
Trade mark	:	/ ®
Manufacturer		SHEN ZHEN HOPE MICROELECTRONICS CO., LTD.
Address	. 30th Floor, Block A, Building 8, Vanke Cloud City Phase III, Street, Nanshan District, Shenzhen, GD, P.R. China	

Test Standard Used:

RSS-247 Issue 2 February 2017.

Test procedure used:

RSS-Gen Issue 5, Apr. 2018, ANSI C63.10:2013.

We Declare:

The equipment described above is tested by Dongguan Dongdian Testing Service Co., Ltd. and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan Dongdian Testing Service Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above ISED standards.

Report No:	DDT-R21020412-1E1		
Date of Receipt:	Feb. 19, 2021	Date of Test:	Feb. 19, 2021 ~ Mar. 08, 2021

Prepared By:

Sam Li/Engineer

Approved By:

Damon Hu/EMC Manager

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan Dongdian Testing Service Co., Ltd.

Revision History

Rev.	Revisions		Issue Date	Revised By
	Initial issue	(8)	Mar. 08, 2021	®
	07		nP	7

Description of Test Item	Standard	Results
0 JD David (100 David	RSS-247 Issue 2	Desc
6 dB Bandwidth and 99% Bandwidth	ANSI C63.10:2013	Pass
Book Output Bours	RSS-247 Issue 2	Door
Peak Output Power	ANSI C63.10:2013	Pass
Dower Chartral Daneity	RSS-247 Issue 2	Pass
Power Spectral Density	ANSI C63.10:2013	Pass
Band Edge Compliance	RSS-247 Issue 2	
	RSS-Gen Issue 5	Pass
(Conducted Method)	ANSI C63.10: 2013	カレバ
	RSS-247 Issue 2	
Radiation Emission	RSS-Gen Issue 5	Pass
8	ANSI C63.10:2013	
	RSS-247 Issue 2	
RF Conducted Spurious Emissions	RSS-Gen Issue 5	Pass
	ANSI C63.10: 2013	
	RSS-247 Issue 2	
Emission in Restricted Frequency Bands	RSS-Gen Issue 5	Pass
	ANSI C63.10: 2013	
	RSS-Gen Issue 5	
Power Line Conducted Emission	ANSI C63.10: 2013	N/A
Antenna Requirement	RSS-Gen Issue 5	Pass

2. General Test Information

2.1. Description of EUT

EUT* Name	:	BLE MODULE		
Model Number	:	HM-BT2204, HM-BT2202, HM-BT2201		
Difference of model number : Output		Il models are identical except the CPU frequency, Flash and utput power, and HM-BT2204 is the max power, the therefore test performed on the model HM-BT2204.		
EUT Function Description	:	Please reference user manual of this device		
Power Supply	÷	DC 3.3V		
Radio Specification	:	Bluetooth V5.2		
Operation Frequency		2402 MHz - 2480 MHz		
Modulation	:	GFSK		
Data Rate	:	1 Mbps, 2 Mbps		
Antenna Type	:	: Integral PCB antenna, maximum PK gain: 1.5 dBi		
Serial Number	:	N/A		

Report No.: DDT-R21020412-1E1

Note: EUT is the abbreviation of equipment under test.

Channel Inform	ation				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	14	2430	28	2458
1	2404	15	2432	29	2460
2	2406	16	2434	30	2462
3	2408	17	2436	31	2464
4	2410	18	2438	32	2466
5	2412	19	_@ 2440	33	2468
6	2414	20	2442	34	2470
7	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

2.2. Accessories of EUT

Description of Accessories	Manufacturer	Model number	Description	Remark
N/A	N/A	N/A	N/A	N/A

2.3. Assistant equipment used for test

Assistant equipment	Manufacturer	Model number	EMC Compliance	SN
Notebook	Lenovo Beijing Co. Ltd.	ThinkPad	FCC/CE	TP00015A

2.4. Block diagram of EUT configuration for test

Test software: Serial Port Utility

The test software was used to control EUT work in Continuous Tx mode, and select test channel, wireless mode as below table:

Report No.: DDT-R21020412-1E1

THI GIGGG HIGGG GG GGIGTT	tabio.		
Tested Mode, Channel,	Information		
® Mode	Setting Tx Power	Channel	Frequency (MHz)
P .	4	CH0	2402
GFSK 1M	4	CH19	2440
	4	CH39	2480
	4	CH0	2402
GFSK 2M	4	CH19	2440
	4	CH39	2480

2.5. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	® 21-25 °C ®
Humidity range:	40-75%
Pressure range:	86-106 kPa

2.6. Deviations of test standard

No deviation.

2.7. Test laboratory

Dongguan Dongdian Testing Service Co., Ltd.

Add.: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City

Guangdong Province, China, 523808

Tel.: +86-0769-38826678, http://www.dgddt.com, Email: ddt@dgddt.com

CNAS Registration No. CNAS L6451; A2LA Certificate Number: 3870.01;

FCC Designation Number: CN1182; FCC Test Firm Registration Number: 540522

Industry Canada Site Registration Number: 10288A-1; CAB identifier: CN0048

2.8. Measurement uncertainty

Test Item	Uncertainty
Bandwidth	1.1%
Rook Output Power (Conducted) (Spectrum analyzer)	0.86 dB (10 MHz ≤ f < 3.6 GHz);
Peak Output Power (Conducted) (Spectrum analyzer)	1.38 dB (3.6 GHz ≤ f < 8 GHz)
Peak Output Power (Conducted) (Power Sensor)	0.74 dB
Dower Spectral Density	$0.74 \text{ dB } (10 \text{ MHz} \le f < 3.6 \text{ GHz});$
Power Spectral Density	1.38 dB (3.6 GHz ≤ f < 8 GHz)
Fraguencies Ctobility	6.7 x 10 ⁻⁸ (Antenna couple method)
Frequencies Stability	5.5 x 10 ⁻⁸ (Conducted method)
×	0.86 dB (10 MHz ≤ f < 3.6 GHz);
Conducted Spurious Emissions	1.40 dB (3.6 GHz ≤ f < 8 GHz)
	1.66 dB (8 GHz ≤ f < 22 GHz)
Uncertainty for Radio Frequency (RBW < 20 kHz)	3×10⁻ ⁸
R Temperature	⊚ 0.4 ℃
Humidity	2 %
Uncertainty for Radiation Emission Test	4.70 dB (Antenna Polarize: V)
(30 MHz - 1 GHz)	4.84 dB (Antenna Polarize: H)
	4.10 dB (1-6 GHz)
Uncertainty for Radiation Emission Test	4.40 dB (6 GHz - 18 GHz)
® (1 GHz - 40 GHz) ®	3.54 dB (18 GHz - 26 GHz)
	4.30 dB (26 GHz - 40 GHz)
	3.32 dB (150 kHz - 30 MHz)

95% confidence level using a coverage factor of k=2.

3. Equipment Used During Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
RF Connected Test (Tonscend RF M	leasurement	System 1#)		
Spectrum analyzer	R&S	FSU26	101272	Jul. 01, 2020	1 Year
Spectrum analyzer	Agilent	N9020D	MY49100362	Sep. 28, 2020	1 Year
Wideband Radio Communication tester	R&S	CMW500	117491	Jul. 01, 2020	1 Year
Vector Signal Generator	Agilent	E8267D	US49060192	Sep. 24, 2020	1 Year
Vector Signal Generator	Agilent	N5182A	MY48180737	Jul. 01, 2020	1 Year
Power Sensor	Agilent	U2021XA	MY55150010	Jul. 01, 2020	1 Year
Power Sensor	Agilent	U2021XA	MY55150011	Jul. 01, 2020	1 Year
DC Power Source	MATRIS	MPS-3005L- 3	D813058W	Apr. 25, 2020	1 Year
RF Cable	Micable	C10-01-01-1	100309	Sep. 28, 2020	1 Year
Temp&Humi Programmable	ZHIXIANG	ZXGDJS-15 0L	ZX170110-A	Jul. 01, 2020	1 Year
Test Software	JS Tonscend	JS1120-3	Ver.2.7	N/A	N/A
RF Connected Test (Tonscend RF N	l leasurement	System 2#)		
Spectrum analyzer	R&S	FSU26	200071	Sep. 25, 2020	1 Year
Spectrum analyzer	Agilent	N9020D	MY49100362	Sep. 28, 2020	1 Year
Wideband Radio Communication tester	R&S	CMW500	117491	Jul. 01, 2020	1 Year
Vector Signal Generator	Agilent	N5182A	MY19060405	Jul. 01, 2020	1 Year
Vector Signal Generator	Agilent	N5182A	MY48180912	Jul. 01, 2020	1 Year
RF Control Unit	Tonsend	JS0806-2	DDT-ZC01449	Jul. 01, 2020	1 Year
DC Power Source	MATRIS	MPS-3005L- 3	D813058W	Apr. 25, 2020	1 Year
RF Cable	Micable	C10-01-01-1	100309	Sep. 28, 2020	1 Year
Temp&Humi Programmable	ZHIXIANG	ZXGDJS-15 0L	ZX170110-A	Jul. 01, 2020	1 Year
Test Software	JS Tonscend	JS1120-3	Ver.2.7	N/A	N/A
Radiation 1#chambe	r				
EMI Test Receiver	R&S	ESU8	100316	Sep. 24, 2020	1 Year
Spectrum analyzer	Agilent	E4447A	MY50180031	Jul. 01, 2020	1 Year
Trilog Broadband Antenna	Schwarzbeck	VULB9163	9163-462	Nov. 13, 2020	1 Year
Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	Nov. 13, 2020	1 Year
Double Ridged Horn Antenna	R&S	HF907	100276	Nov. 18, 2020	1 Year
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	790	Apr. 11, 2020	1 Year
Pre-amplifier®	A.H.	PAM-0118	360	Sep. 28, 2020	1 Year
RF Cable	HUBSER	CP-X2+ CP-X1	W11.03+ W12.02	Sep. 24, 2020	

RF Cable	N/A	5m+6m+1m	06270619	Sep. 30, 2020	1 Year
MI Cable	HUBSER	C10-01-01-1 M	1091629	Sep. 30, 2020	1 Year
Test software	Audix	E3	V 6.11111b	N/A	N/A
Radiation 2#chambe	er _®		R		R
EMI Test Receiver	R&S	ESCI	101364	Sep. 28, 2020	1 Year
Spectrum analyzer	Agilent	E4447A	MY50180031	Jul. 01, 2020	1 Year
Trilog Broadband Antenna	Schwarzbeck	VULB 9163	9163-994	Nov. 13, 2020	1 Year
Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	Nov. 13, 2020	1 Year
Double Ridged Horn Antenna	Schwarzbeck	BBHA9120	02108	Jul. 11, 2020	1 Year
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	790	Apr. 11, 2020	1 Year
Pre-amplifier	TERA-MW	TRLA-0040 G35	1013 03	Sep. 28, 2020	1 Year
RF Cable	N/A	14+1.5m	06270619	Sep. 28, 2020	1 Year
Test software	Audix	E3	V 6.11111b	N/A	N/A

4. 6 dB Bandwidth and 99% Bandwidth

4.1. Block diagram of test setup

4.2. Limits

The minimum 6 dB bandwidth shall be 500 kHz.

4.3. Test procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) 99% Bandwidth set the spectrum analyzer as follows:

RBW:

30 kHz

VBW:

100 kHz

Detector Mode:

Peak

Sweep time:

auto

Trace mode

Max hold

(3) 6 dB Bandwidth set the spectrum analyzer as follows:

RBW:

100 kHz

VBW:

300 kHz

Detector Mode:

Peak

Sweep time:

auto

Trace mode

Max hold

(4) Allow the trace to stabilize, measure the 6 dB and 99% bandwidth of signal.

4.4. Test result

Mode	Channel	99% bandwidth Result (MHz)	6 dB bandwidth Result (MHz)	6 dB width Limit (MHz)	Verdict
	CH0	1012	0.656	>0.5	Pass
GFSK 1M	® CH19	1012 ®	0.652	>0.5	Pass
	CH39	1012	0.652	>0.5	Pass
GFSK 2M	CH0	2020	1.176	>0.5	Pass

CH19	2016	1.172	>0.5	Pass
CH39	2020	1.164	>0.5	Pass

4.5. Original test data

6 dB bandwidth:

Page 14 of 60

5. Maximum Peak Output Power

5.1. Block diagram of test setup

Same with 4.1

5.2. Limits

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

Report No.: DDT-R21020412-1E1

5.3. Test procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Set the spectrum analyzer as follows:

RBW:

≥DTS bandwidth

VBW:

≥3 x RBW

Span

≥3 x RBW

Detector Mode:

Peak

Sweep time:

auto

Trace mode

Max hold

(3) Allow the trace to stabilize, Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges measure out the PK output power.

5.4. Test result

Mode	Freq. (MHz)	Peak Output Power (dBm)	Limit (dBm)	Verdict
	2402	4.09	30	Pass
GFSK 1M	2440	4.15	30	Pass
(8)	2480 🥷	4.18	® 30	Pass
	2402	4.08	30	Pass
GFSK 2M	2440	4.18	30	Pass
	2480	4.15	30	Pass

5.5. Original test data

6. Power Spectral Density

6.1. Block diagram of test setup

Same with 4.1

6.2. Limits

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Report No.: DDT-R21020412-1E1

6.3. Test procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Set the spectrum analyzer as follows:

Center frequency DTS Channel center frequency

RBW: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$

VBW: ® ≥ 3RBW®

Span 1.5 times the DTS bandwidth

Detector Mode: Peak
Sweep time: auto

Trace mode Max hold

- (3) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- (4) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.4. Test result

EUT Set Mode	Antenna	Channel	Result (dBm/3 kHz)
	ANT1	CH0	-12.15
GFSK 1M	ANT1	CH19	-11.98
	ANT1	CH39	-11.99
	ANT1	CH0	-15.29
[®] GFSK 2M	ANT1	CH19	-15.18
	ANT1	CH39	-15.17
Limit: <8 dBm/3 kHz	11/		Conclusion: Pass

6.5. Original test data

7. Band Edge Compliance (Conducted Method)

7.1. Block diagram of test setup

Same with 4.1

7.2. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

Report No.: DDT-R21020412-1E1

7.3. Test procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Establish a reference level by using the following procedure:

Center frequency DTS Channel center frequency

RBW: 100 kHz VBW: 300 kHz

Span 1.5 times the DTS bandwidth

Detector Mode: Peak
Sweep time: auto

Trace mode Max hold

- (3) Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.
- (4) Set the spectrum analyzer as follows:

RBW: 100 kHz

VBW: 300 kHz

Span Encompass frequency range to be

measured

Number of measurement points ≥ span/RBW

Detector Mode: Peak
Sweep time: auto

Trace mode Max hold

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

7.4. Test result

EUT Set Mode	CH or Frequency	Measured Range	Verdict
CECK 1M	CH0	2.310 GHz - 2.410 GHz	Pass
GFSK 1M	CH39	2.470 GHz - 2.570 GHz	Pass
CECK 3M	CH0	2.310 GHz - 2.410 GHz	Pass
GFSK 2M	CH39	2.470 GHz - 2.570 GHz	Pass

7.5. Original test data

8. Radiated Emission

8.1. Block diagram of test setup

In 3 m Anechoic Chamber, test setup diagram for 9 kHz - 30 MHz

In 3 m Anechoic Chamber, test setup diagram for below 1 GHz

Semi-Anechoic 3m Chamber

ANTENNA ELEVATION VARIES FROM 1 TO 4 METER

3m

(Reference Point)

1.5m(L)*1.0m(W)*1.5m(H)

EUT

TURN TABLE
(FIBRE GLASS)

1.5m

AMP | Spectrum Receiver | PC System

In 3 m Anechoic Chamber, test setup diagram for frequency above 1 GHz

Note: For harmonic emissions test an appropriate high pass filter was inserted in the input port of AMP.

8.2. Limit

(1) RSS-Gen Restricted frequency band

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	® 399.9-410	® 4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.1772-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.2072-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	® 1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	
13.36-13.41			

(2) RSS-Gen Limit.

Frequency (MHz)	Measurement distance (meters)	Field streng	gth limit
		μV/m	dB(μV)/m
0.009 ~ 0.490	300	2400/F(kHz)	67.6-20log(F)
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F)
1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	® 500	54.0 ®
Above 1000	3	74.0 dB(μV)/i 54.0 dB(μV)/m	

Report No.: DDT-R21020412-1E1

- Note: (1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.
 - (2) At frequencies below 30 MHz, measurement may be performed at a distance closer than that specified, and the limit at closer measurement distance can be extrapolated by below formula:

 $Limit_{3m}(dBuV/m) = Limit_{30m}(dBuV/m) + 40Log(30m/3m)$

8.2.3 Limit for this EUT

All the emissions appearing within RSS-Gen restricted frequency bands shall not exceed the limits shown in RSS-Gen, all the other emissions shall be at least 20 dB below the fundamental emissions or comply with RSS-Gen limits.

8.3. Test procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1 G and 150 cm above the ground plane inside a semi-anechoic chamber for above 1 G.
- (2) Test antenna was located 3 m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used	Test antenna distance
9 kHz - 30 MHz	Active Loop antenna	® 3 m
30 MHz - 1 GHz	Trilog Broadband Antenna	3 m
1 GHz - 18 GHz	Double Ridged Horn Antenna	3 m
יי כ	(1 GHz - 18 GHz)	יוסוי אוסוי
18 GHz - 40 GHz	Horn Antenna	1 m
	(18 GHz - 40 GHz)	

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also

is positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. For measurement above 30 MHz, the Trilog Broadband Antenna or Horn Antenna was located 3 m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

Report No.: DDT-R21020412-1E1

- (3) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9 kHz to 25 GHz:
- (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1 m to 4 m (Except loop antenna, it's fixed 1 m above ground.)
 - (b) Change work frequency or channel of device if practicable.
 - (c) Change modulation type of device if practicable.
 - (d) Change power supply range from 85% to 115% of the rated supply voltage
- (e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.
 - Spectrum frequency from 9 kHz to 25 GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 9 kHz to 30 MHz and 18 GHz to 25 GHz, so below final test was performed with frequency range from 30 MHz to 18 GHz.
- (4) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission.
 Measurements in both horizontal and vertical polarities were made and the data was recorded.
 In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013 on Radiated Emission test.
- (5) The emissions from 9 kHz to 1 GHz were measured based on CISPR QP detector except for the frequency bands 9-90 kHz, 110-490 kHz, for emissions from 9 kHz 90 kHz, 110 kHz 490 kHz and above 1 GHz were measured based on average detector, for emissions above 1 GHz, peak emissions also be measured and need comply with Peak limit.
- (6) The emissions from 9 kHz to 1 GHz, QP or average values were measured with EMI receiver with below RBW

Frequency band	RBW
9 kHz - 150 kHz	200 Hz
150 kHz - 30 MHz	9 kHz
30 MHz - 1 GHz	120 kHz

(7) For emissions above 1 GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1 MHz, VBW is set at 3 MHz for Peak measure; according ANSI C63.10:2013 clause 4.1.4.2.2 procedure for average measure.

8.4. Test result

Pass. (See below detailed test result)

All the emissions except fundamental emission from 9 kHz to 25 GHz were comply with 15.209 limits.

Note1: According exploratory test no any obvious emission was detected from 9 kHz to 30 MHz and 18 GHz to 25 GHz.

Note2: For emissions below 1 GHz, according exploratory explorer test, when change Tx mode and channel, have no distinct influence on emissions level, so for emissions below 1 GHz, the final test was only performed with EUT working in GFSK 1M Tx 2480 MHz mode.

Note3: For emissions above 1 GHz. If peak results comply with AV limit, AV Result is deemed to comply with AV limit.

Radiated Emission test (below 1 GHz)

TR-4-E-009 Radiated Emission Test Result

Test Site : DDT 3m Chamber 2#

D:\2021 RE2# Report Data\Q21020412-1E HM-BT2204\FCC

Report No.: DDT-R21020412-1E1

BELOW 1G.EM6

Test Date : 2021-03-04

Tested By : Jacky Huang

EUT : BLE MODULE

Model Number : HM-BT2204

Power Supply : DC 5V

Test Mode : Tx mode

Condition : Temp:24.5°C,Humi:55%,Press:101.4kPa

Antenna/Distanc

Δ

: 2020 VULB 9163 2#/3m/VERTICAL

Memo :

Data:

Item	Freq.	Read	Antenna	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	95.76	14.88	9.87	4.37	29.12	43.50	-14.38	QP	VERTICAL
2	119.44	16.65	8.99	4.55	30.19	43.50	-13.31	QP	VERTICAL
3	143.33	19.88	7.67	4.71	32.26	43.50	-11.24	QP	VERTICAL
4	167.24	16.57	8.45	4.86	29.88	43.50	-13.62	QP	VERTICAL
5	383.93	17.88	15.28	5.86	39.02	46.00	-6.98	QP	VERTICAL
6	633.91	7.96	19.27	6.84	34.07	46.00	-11.93	QP	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

- 2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
- 3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

TR-4-E-009 Radiated Emission Test Result

Test Site : DDT 3m Chamber 2# D:\2021 RE2# Report Data\Q21020412-1E HM-BT2204\FCC

BELOW 1G.EM6

Report No.: DDT-R21020412-1E1

Test Date : 2021-03-04 Tested By : Jacky Huang

EUT : BLE MODULE **Model Number** : HM-BT2204

Power Supply : DC 5V Test Mode : Tx mode

Condition : Temp:24.5°C,Humi:55%,Press:101.4kPa Antenna/Distanc : 2020 VULB 9163 2#/3m/HORIZONTAL

Memo :

Data:

Item	Freq.	Read	Antenna	Cable	Result	Limit	Over	Detector	Polarization
		Level	Factor	Loss	Level	Line	Limit		
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	(dBµV/m)	(dBµV/m)	(dB)		8
1	95.76	16.46	9.87	4.37	30.70	43.50	-12.80	QP	HORIZONTAL
2	119.44	22.99	8.99	4.55	36.53	43.50	-6.97	QP	HORIZONTAL
3	143.33	24.98	7.67	4.71	37.36	43.50	-6.14	QP	HORIZONTAL
4	167.82	20.46	8.46	4.86	33.78	43.50	-9.72	QP	HORIZONTAL
5	359.19	16.41	15.08	5.75	37.24	46.00	-8.76	QP	HORIZONTAL
6	383.93	22.99	15.28	5.86	44.13	46.00	-1.87	QP	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Radiated Emission test	(above 1 GHz)
------------------------	---------------

Radiated	EIIIISSI	on test (above	I GHZ	<u>) </u>				
Freq.	Read	Antenna	PRM	Cable	Result	Limit	Margin	Detector	Polarization
(MHz)	level	Factor	Facto	Loss	Level	(dBµ	(dB)	type	
	(dBµV)	(dB/m)	r(dB)	(dB)	(dBµV/m	V/m)			
GFSK Tx m						I			
4791.00	53.39	32.28	43.35	6.78	49.10	74.00	-24.90	Peak	HORIZONTAL
7205.00	46.60	36.63	42.85	8.33	48.71	54.00	-5.29	Average	HORIZONTAL
7206.00	53.18	36.63	42.85	8.34	55.30	74.00	-18.70	Peak	HORIZONTAL
9959.00	45.08	38.80	42.18	10.23	51.93	74.00	-22.07	Peak	HORIZONTAL
11404.00	44.23	39.80	42.28	11.02	52.77	74.00	-21.23	Peak	HORIZONTAL
12645.00	44.53	39.13	42.45	11.82	53.03	74.00	-20.97	Peak	HORIZONTAL
5420.00	47.05	32.87	43.33	7.11	43.70	74.00	-30.30	Peak	VERTICAL
7206.00	50.74	36.63	42.85	8.34	52.86	74.00	-21.14	Peak	VERTICAL
10010.00	46.01	38.82	42.21	10.28	52.90	74.00	-21.10	Peak	VERTICAL
12645.00	45.21	39.13	42.45	11.82	53.71	74.00	-20.29	Peak	VERTICAL
17915.00	42.31	47.64	42.48	<u></u> 14.43	61.90	74.00	-12.10	Peak	VERTICAL
17915.00	31.37	47.64	42.48	14.43	50.96	54.00	-3.04	Average	VERTICAL
GFSK Tx m				1					
4880.00	52.17	32.46	43.29	6.89	48.23	74.00	-25.77	Peak	HORIZONTAL
7320.00	53.55	36.81	42.77	8.53	56.12	74.00	-17.88	Peak	HORIZONTAL
7320.00	45.52	36.81	42.77	8.53	48.09	54.00	-5.91	Average	HORIZONTAL
10180.00	44.24	39.09	42.33	10.31	51.31	74.00	-22.69	[®] Peak	HORIZONTAL
11965.00	43.75	39.61	41.45	11.07	52.98	74.00	-21.02	Peak	HORIZONTAL
12815.00	45.21	39.40	42.71	11.50	53.40	74.00	-20.60	Peak	HORIZONTAL
5420.00	47.31	32.87	43.33	7.11	43.96	74.00	-30.04	Peak	VERTICAL
7320.00	47.85	36.81	42.77	8.53	50.42	74.00	-23.58	Peak	VERTICAL
9534.00	44.98	38.80	42.02	9.70	51.46	74.00	-22.54	Peak	VERTICAL
12866.00	45.32	39.49	42.79	11.41	53.43	74.00	-20.57	Peak	VERTICAL
17966.00	42.01	47.86	42.49	14.55	61.93	74.00	-12.07	Peak	VERTICAL
17966.00	30.99	47.86	42.49	14.55	50.91	54.00	-3.09	Average	VERTICAL
GFSK Tx m	node 2480	MHz							
4960.00	51.60	32.62	43.23	6.99	47.98	74.00	-26.02	Peak	HORIZONTAL
7440.00	51.36	37.00	42.68	8.74	54.42	74.00	-19.58	Peak	HORIZONTAL
7440.00	45.27	37.00	42.68	8.74	48.33	54.00	-5.67	Average	HORIZONTAL
9959.00	44.77	38.80	42.18	10.23	51.62	74.00	-22.38	Peak	HORIZONTAL
11081.00	45.12	39.80	42.77	10.66	52.81	74.00	-21.19	Peak	HORIZONTAL
12645.00	45.02	39.13	42.45	11.82	53.52	74.00	-20.48	Peak	HORIZONTAL
4961.00	51.71	32.62	43.23	6.99	48.09	74.00	-25.91	Peak	VERTICAL
7426.00	50.25	36.98	42.69	8.71	53.25	74.00	-20.75	Peak	VERTICAL @
10401.00	45.84	39.44	42.49	10.34	53.13	74.00	-20.87	Peak	VERTICAL
12849.00	45.44	39.46	42.77	11.44	53.57	74.00	-20.43	Peak	VERTICAL
17881.00	41.48	47.50	42.47	14.35	60.86	74.00	-13.14	Peak	VERTICAL
17881.00	31.45	47.50	42.47	14.35	50.83	54.00	-3.17	Average	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

^{2.} For emissions above 1 GHz. If peak results comply with AV limit, AV Result is deemed to comply with AV limit.

9. RF Conducted Spurious Emissions

9.1. Block diagram of test setup

Same as section 4.1

9.2. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

Report No.: DDT-R21020412-1E1

9.3. Test procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Establish a reference level by using the following procedure:

Center frequency Test frequency

RBW: 100 kHz

VBW: 300 kHz

Span Wide enough to capture the peak level of the

in-band emission

Detector Mode: Peak

Sweep time: auto

Trace mode Max hold

- (3) Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.
- (4) Set the spectrum analyzer as follows:

RBW: 100 kHz

VBW: 300 kHz

Span Encompass frequency range to be measured

Number of measurement

points ≥span/RBW

Detector Mode: Peak

Sweep time: auto

Trace mode Max hold

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

9.4. Test result

Mode	Freq. (MHz)	Verdict		
	2402	Pass		
GFSK 1M	2440	Pass		
	2480	Pass		
	2402	Pass		
GFSK 2M	2440	Pass		
	2480	Pass		

9.5. Original test data

Page 37 of 60

Page 38 of 60

Page 40 of 60

10. Emissions in Restricted Frequency Bands

10.1. Block diagram of test setup

10.2. Limit

All restriction band should comply with RSS-Gen, other emission should be at least 20 dB below the fundamental.

10.3. Test procedure

Same with clause 8.3 except change investigated frequency range from 2310 MHz to 2410 MHz and 2475 MHz to 2500 MHz.

Remark: All restriction band have been tested, and only the worst case is shown in report.

10.4. Test result

Pass. (See below detailed test result)

Test Site : DDT 3m Chamber 2# D:\2021 RE2# Report Data\Q21020412-1E HM-BT2204\FCC

ABOVE 1G.EM6

Report No.: DDT-R21020412-1E1

Test Date : 2021-03-03 Tested By : Jacky

EUT : BLE MODULE Model Number : HM-BT2204

Power Supply : DC 5V Test Mode : Tx mode

Memo : BLE 1M 2402 POWER4

Data: 16

	Item (Mark)	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line (dBuV/m)	Over Limit	Detector	Polarization
	1	2324.70	53.51	27.82	dB 43.07	4.72	42.98	74.00	-31.02	Peak	VERTICAL
1	2	2390.00	48.85	27.89	43.14	4.80	38.40	74.00	-35.60	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Test Site : DDT 3m Chamber 2# D:\2021 RE2# Report Data\Q21020412-1E HM-BT2204\FCC

ABOVE 1G.EM6

Report No.: DDT-R21020412-1E1

Test Date : 2021-03-03 Tested By : Jacky

EUT : BLE MODULE Model Number : HM-BT2204

Power Supply : DC 5V Test Mode : Tx mode

Memo : BLE 1M 2402 POWER4

Data: 17

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2363.50	53.30	27.86	43.11	4.77	42.82	74.00	-31.18	Peak	HORIZONTAL
2	2390.00	49.19	27.89	43.14	4.80	38.74	74.00	-35.26	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Test Site : DDT 3m Chamber 2# D:\2021 RE2# Report Data\Q21020412-1E HM-BT2204\FCC

ABOVE 1G.EM6

Report No.: DDT-R21020412-1E1

Test Date : 2021-03-03 Tested By : Jacky

EUT : BLE MODULE Model Number : HM-BT2204

Power Supply : DC 5V Test Mode : Tx mode

Memo : BLE 1M 2480 POWER4

Data: 18

	em ark)	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(IVI	1	(MHz) 2483.50	(dBµV) 51.86	(dB/m) 27.98	dB 43.23	dB 4.90	(dBµV/m) 41.51	(dBµV/m) 74.00	(dB) -32.49	Peak	VERTICAL
2	2	2484.88	51.36	27.98	43.24	4.90	41.00	74.00	-33.00	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

 $2. \ If \ Peak \ Result \ complies \ with \ AV \ limit, \ AV \ Result \ is \ deemed \ to \ comply \ with \ AV \ limit.$

Test Site : DDT 3m Chamber 2#

D:\2021 RE2# Report Data\Q21020412-1E HM-BT2204\FCC

Report No.: DDT-R21020412-1E1

ABOVE 1G.EM6

Test Date : 2021-03-03

Tested By : Jacky

EUT : BLE MODULE

Model Number : HM-BT2204

Power Supply : DC 5V

Test Mode : Tx mode

Condition : Temp:24.5°C,Humi:55%,Press:100.1kPa

Antenna/Distance: 2020 BBHA9120D/3m/HORIZONTAL

Memo : BLE 1M 2480 POWER4

Data: 19

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2483.50	50.50	27.98	43.23	4.90	40.15	74.00	-33.85	Peak	HORIZONTAL
2	2483.88	52.25	27.98	43.23	4.90	41.90	74.00	-32.10	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Test Site : DDT 3m Chamber 2# D:\2021 RE2# Report Data\Q21020412-1E HM-BT2204\FCC

ABOVE 1G.EM6

Report No.: DDT-R21020412-1E1

Test Date : 2021-03-03 Tested By : Jacky

EUT : BLE MODULE Model Number : HM-BT2204

Power Supply : DC 5V Test Mode : Tx mode

Memo : BLE 2M 2402 POWER4

Data: 20

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2328.00	52.76	27.83	43.07	4.73	42.25	74.00	-31.75	Peak	VERTICAL
2	2390.00	48.16	27.89	43.14	4.80	37.71	74.00	-36.29	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Test Site : DDT 3m Chamber 2# D:\2021 RE2# Report Data\Q21020412-1E HM-BT2204\FCC

ABOVE 1G.EM6

Report No.: DDT-R21020412-1E1

Test Date : 2021-02-28 Tested By : Jacky

EUT : BLE MODULE Model Number : HM-BT2204

Power Supply : DC 5V Test Mode : Tx mode

Memo : BLE 2M 2402 POWER6

Data: 21

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2363.50	53.92	27.86	43.11	4.77	43.44	74.00	-30.56	Peak	HORIZONTAL
2	2390.00	49.96	27.89	43.14	4.80	39.51	74.00	-34.49	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Test Site : DDT 3m Chamber 2# D:\2021 RE2# Report Data\Q21020412-1E HM-BT2204\FCC

ABOVE 1G.EM6

Report No.: DDT-R21020412-1E1

Test Date : 2021-03-03 Tested By : Jacky

EUT : BLE MODULE Model Number : HM-BT2204

Power Supply : DC 5V Test Mode : Tx mode

Memo : BLE 2M 2480 POWER4

Data: 22

	tem	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(N	Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
	1	2483.50	51.76	27.98	43.23	4.90	41.41	74.00	-32.59	Peak	VERTICAL
	2	2483.70	53.46	27.98	43.23	4.90	43.11	74.00	-30.89	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Test Site : DDT 3m Chamber 2# D:\2021 RE2# Report Data\Q21020412-1E HM-BT2204\FCC

ABOVE 1G.EM6

Report No.: DDT-R21020412-1E1

Test Date : 2021-03-03 Tested By : Jacky

EUT : BLE MODULE Model Number : HM-BT2204

Power Supply : DC 5V Test Mode : Tx mode

Memo : BLE 2M 2480 POWER4

Data: 23

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2483.50	58.16	27.98	43.23	4.90	47.81	74.00	-26.19	Peak	HORIZONTAL
2	2483.83	57.34	27.98	43.23	4.90	46.99	74.00	-27.01	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

11. Power Line Conducted Emission

11.1. Block diagram of test setup

Report No.: DDT-R21020412-1E1

11.2. Power line conducted emission limits

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)
150 kHz ~ 500 kHz	66 ~ 56*	56 ~ 46*
500 kHz ~ 5 MHz	56	46
5 MHz ~ 30 MHz	60	50

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

11.3. Test procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 kHz.

11.4. Test result

Not Applicable

Conducted limits are not required for devices which only employ battery power for operation according to RSS-Gen

12. Antenna Requirements

12.1. Limit

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

12.2. Result

The antenna used for this product is Integral PCB antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 1.5 dBi.

13. Test Setup Photograph

Report No.: DDT-R21020412-1E1

14. Photos of the EUT

END OF REPORT