

Università degli Studi di Cagliari

Facoltà di Scienze Matematiche, Fisiche e Naturali

Laurea Magistrale in Fisica

Observation-Guided Simulation of the Extragalactic Binary Gravitational Wave Foreground in View of LISA

Relatore:

Candidato:

Prof. Riccardo Murgia

Gabriele Todde

Co-relatori:

Prof. Thomas Kupfer

Weitian Yu

ANNO ACCADEMICO 2024/2025

Contents

1	The	oretical Framework	7					
	1.1	Gravitational Waves Theory						
		1.1.1 Gravitational Waves as Perturbations	7					
		1.1.2 The physical wave	ç					
			2					
			2					
		• •	3					
		· · ·	3					
	1.2	• · · · · · · · · · · · · · · · · · · ·						
			3					
			3					
	1.3		3					
	1.4		3					
2	Met	hods and Data	5					
	2.1		5					
			16					
		01	7					
		0	7					
	2.2		[8					
			8					
		2.2.2 Astrophysical population						
	2.3	GWGC and Galaxy Properties						
		2.3.1 What it has vs what we need						
		2.3.2 Mass-luminosity relation						
		2.3.3 Mass-metallicity relation						
		2.3.4 Missing galaxies						
	2.4	Final steps						
		2.4.1 The final fixed populations						
		2.4.2 LISA's frequency resolution						
3	Resi	ults 3	<u>.</u> 1					

C	ONTENTS	4
4	Conclusions and Future Perspectives	33
A	Appendix	35

Introduction

In the context of the gravitational waves study, there are mainly two possible paths: the first is the analysis of existing data from experiments like Ligo, Virgo and Kagra, with the goal of detecting and characterizing the observable sources within their relative frequency bands; the second approach is the forecasting approach, which aims to characterize future experiments in order to better understand what types of sources they could detect and how well.

One of the most important future detectors is the European Laser Interferometer Space Antenna (LISA), the first space-based gravitational wave detector. LISA will be arranged as an equilateral triangle with 2.5 million kilometers long arms, placed in a heliocentric orbit, and will operate within the frequency range from approximately 0.1mHz to 1Hz. Among the typical sources that emit gravitational wave signal in this range are the compact binaries, and in our particular case we are interested in double white dwarf binaries (WDBs).

The goal of this work is to estimate the gravitational wave background produced by the extragalactic WDBs in the local universe, by using the COSMIC code to generate synthetic astrophysical populations to represent the galaxies listed in the Gravitational Wave Galaxy Catalog (GWGC).

In Chapter 1 we will introduce the theoretical foundations of gravitational waves, derive the amplitude of the signal generated by a binary system, and define the most important parameters. Finally, we discuss how to combine the signals from multiple sources, to find a cumulative background.

In Chapter 2 we will give a brief overview of how gravitational wave detectors work, trying to better understand what kinds of sources LISA will be able to see, what resolution and what sensitivity it will have and why in particular we are interested in WDBs.

In Chapter 3 we introduce the concept of stellar population synthesis and the code COSMIC used for this purpose. We will introduce its features, main parameters, and pipeline, and explain how it is used to generate full-size astrophysical populations of WDBs.

In Chapter 4 we introduce the GWGC, list the key information it provides and explain how we move from there to infer the remaining parameters that we need.

CONTENTS 6

In Chapter 5 we use the obtained information to compute the total gravitational wave signal summing the contribution from all the simulated sources, taking into account their spatial distribution, LISA's frequency resolution, and the *zone of avoidance* caused by the milky way.

In Chapter 6 we plot the total resulting signal on the LISA sensitivity curve, and discuss the results and their possible implications.

Finally, in Chapter 7 we will draw some conclusions from the work as a whole, discussing its limitations, assumptions and its possible extensions and follow-ups.

Chapter 1

Theoretical Framework

1.1 Gravitational Waves Theory

After considering, in 1905, the problem of the apparently *instantaneous* propagation of light, with the theory of Special Relativity, in 1916 Albert Einstein considered the problem of the apparently *instantaneous* propagation of gravity through *long distances*, in his theory of General Relativity. Einstein showed that long-distance interaction arises from the deformation of space time caused by massive objects. Hence, in the "static case", the deviated motion apparently caused by the interaction between two distant masses really is, in fact, a manifestation of space time curvature nearby, generated by the presence of the two objects. The "static case" just depicted, though, treats the curvature as if it had always been there, and doesn't take into account of any variation in the masses, positions or velocities of the two objects, that would induce an evolution to the curvature itself. In truth, after a change in the mass-energy distribution, the corresponding curvature variation requires its time to reach far distances, and a fascinating prediction of General Relativity is that it propagates in the form of a wave, that travels at the speed of light.

1.1.1 Gravitational Waves as Perturbations

The typical approach to the study of gravitational waves is to derive them as small perturbations of the background from the Einstein's equations:

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R, \tag{1.1}$$

which can be conveniently written as

$$R_{\mu\nu} = \frac{8\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{2} g_{\mu\nu} T \right),\tag{1.2}$$

where $G_{\mu\nu}$ is the Einstein tensor, $R_{\mu\nu}$ is the Ricci tensor, R is the Ricci scalar, $g_{\mu\nu}$ is the metric of space time, and $T_{\mu\nu}$ is the stress-energy tensor. As a background

solution we can consider the flat space time described by the metric $\eta_{\mu\nu}$, to which the perturbation term appears as a fluctuation in the metric $|h_{\mu\nu}| \ll |\eta_{\mu\nu}|$, known as weak field approximation. Thus, the perturbed space time can be written as:

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad |h_{\mu\nu}| \ll |\eta_{\mu\nu}|.$$

With this metric, the equations 1.2 becomes

$$\{\Box_F h_{\mu\nu} - \left[\frac{\partial^2}{\partial x^\lambda \partial x^\mu} h^\lambda_\nu + \frac{\partial^2}{\partial x^\lambda \partial x^\nu} h^\lambda_\mu + \frac{\partial^2}{\partial x^\nu \partial x^\mu} h^\lambda_\lambda\right]\} = -\frac{16\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} T\right).$$

Now, by requiring that the *weak-field* approximation remains satisfied for infinitesimal diffeomorphisms, and by choosing a coordinate system in which the *harmonic gauge condition*¹, defined as

$$\Gamma^{\lambda} = g^{\mu\nu} \Gamma^{\lambda}_{\mu\nu} = 0, \tag{1.3}$$

where $\Gamma^{\lambda}_{\mu\nu}$ are the *affine connections*, is satisfied, we can find that, up to first order in $h_{\mu\nu}$, the harmonic gauge condition is equivalent to

$$\frac{\partial}{\partial x^{\mu}} h^{\mu}_{\rho} = \frac{1}{2} \frac{\partial}{\partial x^{\rho}} h, \quad h = \eta^{\mu\nu} h_{\mu\nu} \equiv h^{\nu}_{\nu}. \tag{1.4}$$

After defining the trace-reversed² tensor as

$$\bar{h}_{\mu\nu} \equiv h_{\nu\mu} - \frac{1}{2} \eta_{\mu\nu} h,$$

we can finally write the linearized Einstein equations as

$$\begin{cases} \Box \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}, \\ \partial^{\mu} \bar{h}_{\mu\nu} = 0. \end{cases}$$

This form, and its twin with $T_{\mu\nu}=0$, where the first equation becomes the D'Alambert equation, are relevant because they show that a perturbation of a flat space time propagates as a wave travelling at the speed of light. As in Electrodynamics, the solution of (1.5) can be written in terms of retarded potentials:

$$\bar{h}_{\mu\nu}(t,\mathbf{x}) = \frac{4G}{c^4} \int_V \frac{T_{\mu\nu}(t - \frac{|\mathbf{x} - \mathbf{x}'|}{c}, \mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3x', \tag{1.5}$$

where V is the three dimensional source volume, x' is the distance of an element of the emitting source from the origin of a frame centered in the same point of the source, x is the distance between source and observer. It can be proved that the solutions in (1.5) automatically satisfy the harmonic gauge condition in the second equation of the (1.5).

¹It is an arbitrary coordinate condition which makes it possible to solve the Einstein field equations. It can be found by requiring that the linearized Einstein equations satisfy the D'Alambert equation.

²The name comes by noting that $\bar{h} = \eta^{\mu\nu} \bar{h}_{\mu\nu} = -h$.

Harmonic gauge

It is important to notice that if the *harmonic gauge* condition is not satisfied in a reference frame, a new frame in which it is can always be found, by making an infinitesimal coordinate transformation

$$x^{\lambda'} = x^{\lambda} + \epsilon^{\lambda},\tag{1.6}$$

provded that ϵ^{λ} satisfies the following equation:

$$\Box_F \epsilon_\rho = \frac{\partial h_\rho^\beta}{\partial x^\beta} - \frac{1}{2} \frac{\partial h}{\partial x^\rho} = 0.$$

This is an inhomogeneous wave equation that can be solved to find the components ϵ_{α} , which identify the coordinate system in which the harmonic gauge condition is satisfied. Notice though, that the harmonic condition in (1.3) does not determine the gauge uniquely, but instead leaves some more gauge freedom to be used.

1.1.2 The physical wave

As we have seen, perturbations of flat space-time satisfy a wave equation and a harmonic gauge condition, as in (1.5). The general solutions of these wave equation is a linear superposition of monochromatic plane waves, with a polarization tensor (or wave amplitude) $A_{\mu\nu}$ and a wave four-vector \vec{k} , such as

$$\overline{\Box_F h \mu \nu} = -A_{\mu\nu} \eta^{\alpha\beta} k_{\alpha} k_{\beta} e^{ik_{\gamma} x^{\gamma}} = 0.$$

Thus, neglecting the trivial solution $A_{\mu\nu} = 0$, gives

$$\eta^{\alpha\beta}k_{\alpha}k_{\beta}=0,$$

which means that \vec{k} is a null vector. If we also consider the harmonic gauge, we find a condition that imposes the orthogonality of the wave four-vector to the polarization tensor,

$$k_{\mu}A^{\mu}_{\nu}=0.$$

The wavefronts, i.e. the spatial surfaces where $h_{\mu\nu}=const.$ are the planes where $k_ix^i=const.$ Conventionally, k^0 is referred to as $\frac{\omega}{c}$, where ω is the frequency, thus

$$\vec{k}_0 = \left(\frac{\omega}{c}, \mathbf{k}\right),$$

where k is the wave three-vector orthogonal to the wavefront, and is related to the wavelenght by $|\mathbf{k}| = 2\pi/\lambda$. Notice that, since the wave four-vector \vec{k} is a null vector, it follows that

$$-(k^{0})^{2} + |\mathbf{k}| = 0 \longrightarrow \omega = ck_{0} = c|\mathbf{k}|,$$

which gives the dispersion relation for a wave moving at the speed of light.

The TT gauge

In a one dimension case, the wave equation can be written as

$$\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial x^2}\right)\bar{h}^{\mu}_{\nu} = 0,$$

which generally has, as solution, an arbitrary function of $t \pm \frac{x}{c}$. If we consider, for example, a progressive wave $\bar{h}^{\mu}_{\nu}[f(t,x)]$, where $f(t,x) = t - \frac{x}{c}$, and apply the harmonic gauge condition, focusing only in the time-dependent part of the solution, we find the *first four* conditions:

$$\bar{h}_{t}^{t} = \bar{h}_{t}^{x}, \quad \bar{h}_{x}^{t} = \bar{h}_{x}^{x}, \quad \bar{h}_{y}^{t} = \bar{h}_{y}^{x}, \quad \bar{h}_{z}^{t} = \bar{h}_{z}^{x}.$$
 (1.7)

As we have already discussed, there still is the freedom of making an infinitesimal coordinate change, and by requiring that the harmonic gauge remains satisfied in the new coordinates generates *four more conditions*:

$$\bar{h}_x^t = \bar{h}_y^t = \bar{h}_z^t = \bar{h}_y^y + \bar{h}_z^z = 0,$$
 (1.8)

and with the (1.7) follows

$$\bar{h}_x^x = \bar{h}_y^x = \bar{h}_z^x = \bar{h}_t^t = 0.$$

The only non zero components are \bar{h}_y^z and $\bar{h}_y^y - \bar{h}_z^z$, which cannot be set to zero because now we have completely used all the gauge freedom. It can be shown that, from all the above conditions, it follows that $\bar{h} \equiv h$, i.e. in this gauge the wave results to be *traceless*. Thus, a plane gravitational wave propagating along the x-axis is characterized by only two non-zero functions h_{zy} and $h_{yy} = -h_{zz}$:

In conclusion, the gravitational wave only has two physical degrees of freedom which correspond to two polarization states. This gauge is called **TT** gauge because of the *transverse traceless* nature: $h_{\mu\nu}$ is traceless, thus h=0, and transverse, since the components of $h_{\mu\nu}$ along the direction of propagation are null (in this case h=0).

1.1.3 Motion and geodesics

Free test particles in General Relativity move along geodesic, which means that, in terms of a world line $x^{\mu}(\tau)$ parametrized by proper time τ , they satisfy the geodesic equation:

$$\frac{d^2x^{\alpha}}{d\tau^2} + \Gamma^{\alpha}_{\mu\nu}\frac{dx^{\mu}}{d\tau}\frac{dx^{\nu}}{d\tau} \equiv \frac{du^{\alpha}}{d\tau} + \Gamma^{\alpha}_{\mu\nu}u^{\mu}u^{\nu} = 0, \tag{1.10}$$

where $u^{\alpha} = \frac{dx^{\alpha}}{d\tau}$ is the particle velocity. By imposing the rest condition, $u^{\alpha} = (1,0,0,0)$, to the (1.10) and considering the TT gauge component prescriptions for $h_{\mu\nu}$, we find that a particle initially at rest is not accelerated by the passage of a wave, but remains at a fixed coordinate position: the motion of a single particle is not affected by the gravitational waves.

The geodesic deviation

If we consider, instead, the relative motion of close particles, the situation is different. This relative motion is governed by the *geodesic deviation*, which quantifies how two very close geodesics deviate from one another. Although, as we have seen, the coordinates of the two particles (and thus their difference) do not change when a gravitational wave passes, this does not hold true for their *proper distance* of

$$\Delta l = \int ds \neq const.$$

This apparent contradiction arises from the fact that the coordinate difference is not a *tensorial* quantity, and therefore is not suited to describe properly a physical process. This is the reason we consider the geodesic deviation, which provides a tensorial formulation of the relative acceleration between the two particles:

$$\frac{D^2 \delta x^{\alpha}}{d\tau^2} \equiv (\Delta_{\vec{t}} (\Delta_{\vec{t}} \vec{\delta x}))^{\alpha} = R^{\alpha}_{\beta\mu\nu} t^{\beta} t^{\mu} \delta x^{\nu}, \tag{1.11}$$

where

$$R_{\alpha k \lambda \mu} = \frac{1}{2} (g_{\alpha \mu, \lambda k} + g_{k \lambda, \mu \alpha} - g_{\alpha \lambda, \mu k} - g_{k \mu, \lambda \alpha})$$
 (1.12)

is the Riemann curvature tensor, \vec{t} is the tangent vector to one of the geodesic, and $\vec{\delta x}$ is a deviation vector between the two geodesics. it is important to note that in the presence of a gravitational wave the Riemann tensor is never zero in any reference frame, and consequently neither is the geodesic deviation. In contrast, the quantity $\frac{d^2\delta x^i}{d\tau^2}$ (which is not a tensorial quantity) vanishes in the TT frame.

Knowing this, to analyze this effect in more detail we can choose to integrate the (1.11) in a *Locally Inertial Frame*, LIF $\{\xi^{\alpha}\}$, centered on one of the two particles, where the metric can be approximated close to the origin as Minkowski up to quadratic, negligible, corrections:

$$ds^2 = \eta_{\alpha\beta} d\xi^{\alpha} d\xi^{\beta} + O(|\xi|^2).$$

In this frame, the Riemann tensor in (1.12), which depends on second derivatives of the metric perturbation $h_{\mu\nu}$ (with $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$), is not only covariant, but actually *invariant* under infinitesimal coordinate transformations from a generic LIF to the TT frame. This is especially useful because in the TT frame $h_{\mu\nu}^{TT}$ takes a particularly simple form, as we have seen in the (1.9) example, simplifying also

the expression for $R^{TT}_{\alpha k \lambda \mu}$. Assuming that the wave travels along the ξ^1 direction, the solutions for the geodesic deviation equation for two close particles are the non zero components of

$$\delta \xi^j = \delta \xi_0^j + \frac{1}{2} \eta^{ji} h_{ik}^{TT} \delta \xi_0^k, \tag{1.13}$$

where $\delta \xi_0^j$ represent the initial, constant separaion between the particles. As previously discussed, the non-zero components of the strain tensor h_{ik}^{TT} correspond to two possible polarizations of the gravitational wave. Their distinct effects on a ring of close particles are viually represented in Figure 1.1.

Figure 1.1: Effect of the two gravitational wave polarizations on a ring of free-falling particles: blue and red dots represent two opposite phases of the wave.

1.1.4 The Quadrupole Approximation

The weak-field, slow-motion approximation

The quadrupole formula

Transform to the TT gauge

1.1.5 Gravitational waves from a binary system

General solution for circular orbits

Up to 13.86/7 at page 255 of the book.

1.1.6 Energy carried by a gravitational wave

Stress-energy pseudo-tensor

Gravitational wave luminosity

1.1.7 Evolution of a compact binary system

Signal from inspiralling compact objects

Here we get to the actual amplitude we used, and the parameters involved.

1.2 White dwarfs and galaxies

1.2.1 White dwarfs

1.2.2 Galaxies

Morphological types

Here I introduce Hubble types, explaining general physical differences between them. Later I will introduce the T value notation and how to translate in the Hubble sequence types.

1.3 LISA

1.4 interferometers

- Instrument description (what is an interferometer, why in space, how it will be made, orbit) - frequency band - what will it see? - frequency resolution - sensibility curve and ASD meaning - Why WD choice in particular?

Chapter 2

Methods and Data

The abundance of information of the electromagnetic spectrum allowed us to build highly detailed models of various celestial objects such as stars, both on their individual internal structure and on how this is influenced by the interaction with other bodies, for instance in binary systems. In the pursuit of reaching a greater sensitivity in the gravitational counterpart too, which could potentially reveal new information, or place better constrains on the existing models, these stellar models, when combined with a good theory of gravity, can be used to construct synthetic populations that reproduce observable features like luminosity, color, and chemical composition, which could enable us to predict what their gravitational signal would look like. In gravitational waves research, our observational capabilities are still very limited, and the signals are still comparatively very weak relative to their electromagnetic counterpart. Therefore, methods that rely on simulations can be very useful both to explore how different sources could look like in the gravitational wave domain, and how effectively they could be detected with current or future instruments.

2.1 Stellar populations synthesis codes

Generating a synthetic population of stars is a very complex task, that involves multiple steps, each involving important choices. *First*, we need to choose a starting point: we could start from the very beginning of stars formation and simulate all the process from the birth onward, or we could select a later phase in the stars evolution, shared from the most, in order to reduce unnecessary computational power and time consumption. If we want to simulate entire stellar populations choosing a starting point also implies selecting appropriate distributions for the main parameters that characterize the "starting point population", like masses, metallicities, but also orbital parameters for the stars that are in binary systems, like orbital period, distance, and eccentricity. *Second*, we must choose how the stars will evolve from the starting point, and this involves the single star evolution but also the effects that interaction with other stars in binary systems have

on it. *Finally*, we have to decide when we want to stop the simulation, choosing an endpoint that aligns with the needs of this study.

2.1.1 The starting point

As we know, in the Hertzsprung-Russel diagram, which plots the *luminosity* of the stars vs their *color index*, most of the stars appear distributed in the main sequence (MS), a continuous and distinctive band. A star's position on this band is determined by its initial mass, and a good rule of thumb is that the most massive stars are hotter, more luminous, and evolve more quickly, while the lower-mass stars burn their fuel more slowly, and remain on the MS longer.

Figure 2.1: WRITE CAPTION, INSERT REFERENCE

Since almost all stars go through a phase in the MS, and evolve from there differently, in this work, the chosen starting point for stellar evolution is the Zero Age Main Sequence (ZAMS). At this stage, stars have just begun hydrogen burning in their cores, marking the start of their stable main sequence phase. This allows to bypass the early phases of star formation, which are much less relevant to the gravitational wave sources of interest, while still capturing the essential evolutionary processes that lead to the formation of compact objects.

2.1.2 Single star evolution

Simulating the evolution of a single star is in itself a very complex matter, and the only way to make it computationally feasible in the context of large-scale population synthesis is to approximate the evolution for a wide range of mass M and metallicity Z. In fact, detailed evolution codes can require substantial computational time even for the evolution of a single star, which is not practical when generating a full-scale astrophysical population containing millions of stars. Also, in order to make population synthesis statistically robust a large enough number of stars of a certain type must be evolved in order to overcome stochastic noise (in particular, the Poisson noise for n simulations of a particular type of star, implies an error that grows as \sqrt{n}). A winning strategy, adopted by several population synthesis frameworks, is to pre-generate a large grid of detailed stellar evolution models, and use them to derive a number of interpolation formulae as functions that approximate stellar properties as a function of age, mass and metallicity. In? this method is implemented through the development of a set of Single Star Evolution (SSE) formulae, with the result of a very compact, efficient and adaptable code, which makes it perfect for the integration of binarystar interactions. The work presented in? therefore serves as the theoretical and computational foundation for many complex stellar population synthesis codes, including the one used in this thesis. It takes care of the single-star evolution of stars from ZAMS through all the possible evolutionary outcomes, depending on the star's initial conditions.

2.1.3 Binary stars evolution

While the evolution of single stars already represents a challenge, the inclusion of binary interactions introduces a much higher level of complexity. In such systems, the evolution of each star is strongly influenced by its companion through a variety of processes, such as mass transfer and accretion, common envelope evolution, collisions, supernova kicks, tidal effects, angular momentum loss, and mergers. These interactions can drastically alter the final outcomes, and are essential for modeling the formation of compact binaries that are potential gravitational wave targets for LISA. To efficiently model binary evolution within the framework of stellar population synthesis, the work of? extends the SSE formalism by introducing a set of prescriptions for binary interactions, and updating the treatment of processes such as Roche lobe overflow, common envelope evolution ans coalescence by collision, leading to the development of the Binary Star Evolution (BSE) algorithm. This code includes the interpolation-based approach used in SSE for single-star evolution, but adds a comprehensive treatment of binaryspecific processes, enabling the simulation of a wide range of binary configurations but keeping the affordable computational requirements of SSE. The BSE algorithm tracks the joint evolution of both stars in a binary system, taking into account their initial parameters, such as masses, orbital period, eccentricity, and metallicity, and updates these properties dynamically as the system evolves. The flexibility and speed of the BSE code make it a key component in many modern population synthesis tools, including the one used in this thesis, which we will now introduce.

2.2 COSMIC

For the purposes of this work, we employ a community-developed binary population synthesis (BPS) python-based code, called the Compact Object Synthesis and Monte Carlo Investigation Code (COSMIC), whose «primary purpose is to generate synthetic populations with an adaptive size based on how the shape of binary parameter distributions change as the number of simulated binaries increases» ¹. COSMIC's binary evolution is built upon BSE, incorporating extensive modifications in order to include updated physical prescriptions. It includes all necessary tools to generate a population, from the generation of initial conditions, to scaling the simulated systems to full-scale astrophysical populations. The code is presented in ?, where it is described in full detail and used, as a proof of concept, to simulate the Galactic population of compact binaries and their associated gravitational wave signal. In the following section we will see the main features of the code, and explain what makes it the right choice for this thesis work.

2.2.1 Fixed population

A fundamental concept in COSMIC, which is the key to the code's efficiency, is the idea of *fixed population*. This refers to a relatively small sample² of just enough binaries to capture, in a statistically meaningful way, the underlying shape of the parameter distribution functions of the target population, as determined by the user specified Star Formation History (SFH) and evolution model. This is achieved following an iterative process designed to reach a convergence with respect to a defined matching condition, and consists of five key steps:

- 1. The user selects a binary evolution model and SFH;
- 2. Based on the SFH and the chosen initial parameter distribution, an initial population is generated;
- 3. The population evolves for a user specified number of steps, according to the selected evolution model;
- 4. If it is the first iteration, half of the simulated systems is compared with the total population. In the following steps, the population from the previous

¹https://cosmic-popsynth.github.io/docs/stable/pages/about.html

²Note that, from now on, every time we talk about sampling, that is where the "M" of COS-MIC comes into play: this code uses proficiently the Monte Carlo Markov Chain methods to sample populations and parameter distributions, as will follow in this section.

2.2. COSMIC 19

one gets compared to the population containing both the current and previous iterations. In any case, the comparison is done in order to check if the matching condition has been achieved;

5. Once the parameter distributions of the population have converged, the corresponding population is called *fixed population*, which represents the statistical features of a binary evolution model.

In practice, the fixed population is the converged, computationally efficient representation of the systems that we want to simulate, embedded in a complete small-scale synthetic galaxy that also contains other stellar components. The output is stored in a data frame, which separates the full galaxy properties from the fixed population ones. The last step required to construct a full size galaxy is to scale the fixed population (by mass or by number of stars) with a re-sampling approach with replacement, allowing to extrapolate a larger final population that preserves the statistical properties encoded in the fixed population.

Initialization

The fixed population is generated from an initial collection of binaries sampled from distribution functions to assign to each binary an initial value of metallicity (Z), primary star mass (m), mass ratio (q), orbital separation (a), eccentricity (e), and birth time (T_0) according to the selected SFH. In COSMIC the user can choose between different binary parameter distributions, and different parameters can be treated independently. Moreover, COSMIC allows a complete personalization of the initial population through a number of other parameters, including different time-steps to control the binary physics, metallicity, stellar winds, common envelope phase, natal kicks, remnant mass, remnant spin, gravitational wave orbital decay, mass transfer, tides, and particular specifications for different kinds of stellar objects, mixing variables, and magnetic braking. In this work all the parameters were left default, but one: we tweaked the metallicity value, in order to different types. We will go more into detail on this topic in the next chapters.

Convergence

The number of simulated systems in the fixed population ideally describes the final parameter distribution functions while being low enough to keep the code efficient. Since every population depends on a different binary evolution model, to quantify this number a *discrete match criteria* is developed, based on the work?. Independently generated histograms for each parameter are used to track their distribution as successive populations are generated and cumulatively added to the fixed population. The physical limits of the simulated systems are then enforced

2.2. COSMIC 20

by taking the logistic transform, and finally the match is defined as:

$$match = \frac{\sum_{k=1}^{N} P_{k,i} P_{k,i+1}}{\sqrt{\sum_{k=1}^{N} (P_{k,i} P_{k,i}) \sum_{k=1}^{N} (P_{k,i} P_{k,i+1})}}, u$$

where $P_{k,i}$ is the probability for the kth bin, for the ith iteration. For how it is defined, the match value shifts between 0 and 1, and tends to unity as the parameter distributions converge to a distinct shape.

The output

Since COSMIC uses BSE as it's core binary evolution algorithm, the output of COSMIC follows most of the same conventions as BSE. The kstar values (e.g. the number that represent a specific stellar type) and evolution stages are nearly identical to their BSE counterparts, and the exact references can be found in the Appendix. In order to generate a fixed population, the COSMIC can be ran through a one-line command directly on the terminal, specifying a parameter file, the kstar values for the primary and secondary star, the maximum number of systems to evolve, every how many systems to check in, in order to track the distributions of the parameters, and how many processors to use. The final output is in an hdf5 file containing several data frames, that keep track pf various important quantities during the evolution: the total number of stars and total mass of the entire population, the number of binaries, the convergence, and so on. The conv data frame contains all the information about the final fixed population, and thus is the one that we will use the most: from it we can extract all the parameter distributions of the fixed population, such as the orbital parameters, and the individual star information. The parameter distributions of a fixed population of binary white dwarfs with a default metallicity value set at 0.020 is shown in Figure 2.2.

2.2.2 Astrophysical population

Once the convergence criteria is achieved, an astrophysical population can be sampled. The number of sources in the astrophysical population $N_{astro,tot}$ can be found by upscaling the size of the fixed population, N_{fixed} , by the ratio of the mass of the astrophysical population, M_{astro} , to the mass of all the stars in the whole small-scale galaxy in which the fixed population is embedded, $M_{fixed,stars}$, as follows:

$$N_{astro} = N_{fixed} \frac{M_{astro,tot}}{M_{fixed,stars}},$$
(2.1)

or by the ratio of the number of stars in the astrophysical population, $N_{astro,tot}$, to the total number of stars formed to produce the fixed population, $N_{fixed,tot}$,

$$N_{astro} = N_{fixed} \frac{N_{astro,tot}}{N_{fixed,stars}}.$$
 (2.2)

Figure 2.2: Distributions of the parameters of a fixed population with metallicity Z = 0.020 composed of He+He, CO+He and CO+CO binary white dwarfs. This includes the mass, radius of primary and secondary stars, the radius ratios between the two, the orbital period, average separation, and evolution time.

Thus, to create a full-scale astrophysical population we need a reference population from which we can extract either the total mass or the total number of stars, to then use to scale up our fixed population. As we will now see, the chosen reference for our purpose is a catalog which reports many key galactic parameters in it, which will allow us to proceed using the method in (2.1).

2.3 GWGC and Galaxy Properties

As we have seen, the goal of this work is to simulate the gravitational wave background produced by compact binaries in the *local universe*, by generating the sources using COSMIC. To replicate the existing, observed galaxies in the vicinity of the Milky Way and simulate their stellar content we rely on the dataset provided in?, the Gravitational Wave Galaxy Catalog (GWGC). This catalog includes a list of 53,255 galaxies within 100Mpc from earth, containing information on sky position, distance, blue magnitude, major and minor diameters, position angle, and galaxy type, currently used for follow-up searches of electromagnetic counterparts from gravitational wave searches.

2.3.1 What it has vs what we need

In principle, we could generate a separate fixed population for each galaxy in the GWGC and scale it individually. However, this is simply not practical because of the computational power and time it would require, and therefore we must find a strategy to group them in a few, representative, categories. As we will show in this section, many of the information in the GWGC can be used to infer the missing astrophysical quantities we need for population synthesis. Ultimately, we will find

that metallicity is the most suitable parameter for grouping galaxies. To get there, we follow a chain of empirical relations, starting from the galaxy morphological type, through a luminosity to mass, and then a mass to metallicity relation. This process will enable us to provide COSMIC with the necessary input, found in a consistent and astrophysically motivated way.

2.3.2 Mass-luminosity relation

As previously discussed, in order to scale a fixed population to the size of a specific galaxy, we need either its total stellar mass or the number of stars. In particular, presents a luminosity-to-mass relation that depends on the morphological type. This allows to use the blue magnitude and the T-type provided in GWGC to estimate each galaxy's stellar mass.

Magnitude to luminosity

To compute the stellar mass, the luminosity-to-mass ratio presented in ? applies to the absolute blue luminosity of each galaxy. GWGC provides the absolute blue magnitude, thus we have to convert it into blue luminosity using the Sun's blueband absolute magnitude as a reference (typically $M_{B,\odot} = 5.48$). Starting from the magnitude definition,

$$m_{B,gal} - m_{B,\odot} = -2.5 \log_1 O\left(\frac{L_{B,gal}}{L_{B,\odot}}\right),$$

which, in stellar units, brings us to the following conversion:

$$L_{B,gal} = 10^{-0.4(m_{B,gal} - m_{B,\odot})} L_{B,\odot}$$
 (2.3)

where $m_{B,gal}$ and $m_{B,\odot} \approx 5.48$ are the absolute blue magnitudes of the specific galaxy and the sun.

Galaxy morphological types

Although the GWGC denotes galaxy morphology using the de Vaucouleurs T-type scale, the luminosity-to-mass relations used in? are defined in terms of Hubble morphological classes. This classification is crucial because different morphological types exhibit significantly different stellar populations and star formation histories, which affect both luminosity and mass content. For example, elliptical galaxies generally have lower luminosity-to-mass ratios than spirals due to their older stellar populations and lack of ongoing star formation. Fortunately, a direct correspondence exists between T-type values and Hubble types, and thanks to the results in? we find the following correspondences:

The luminosity resulting from (2.3), expressed in units of solar blue luminosity

T-Value	Hubble Class	$\frac{M}{L_B}$
-6.00 to -4.01	E	8.5
-4.00 to -2.01	$S0^-$	9.5
-2.00 to -0.99	$S0^{+} - S_{a}$	6.2
1.00 to 3.99	$S_{ab}-S_{bc}$	6.5
4.00 to 4.99	$S_{bc} - S_c$	4.7
5.00 to 5.99	$S_{cd} - S_d$	3.9
6.00 to 10.00	$S_{dm}-Irr$	8.5

Table 2.1: WRITE CAPTION

 $L_{B,\odot}$, can then be multiplied by the appropriate M/L_B ratio, as in Table 2.1, to yield the total stellar mass for the galaxy

$$M_{gal} = \frac{M}{L_B} L_{B,gal} \tag{2.4}$$

2.3.3 Mass-metallicity relation

Now that we have estimated the stellar mass of each galaxy, we can also derive the corresponding metallicity. This is made possible by the results of ?, where an empirical relation between stellar mass and gas-phase oxygen abundance (a proxy for galaxy metallicity) is established. The study, based on a sample of over 50,000 star-forming galaxies observed by the Sloan Digital Sky Survey, reveals a tight correlation between stellar mass and metallicity, spanning three orders of magnitude in mass and a factor of ten in metallicity, which can be written as follows:

$$Z' = -1.492 + 1.847 \times \log(M_*) - 0.08026 \times [\log(M_*)]^2, \tag{2.5}$$

where M_* is the galactic stellar mass, and

$$Z' = 12 + \log(O/H) \tag{2.6}$$

is the metallicity written in terms of the oxygen abundance (all the metallicity values with an apostrophe are intended as in these units).

On metallicity units

Now, in these units the sun's metallicity is $Z'_{\odot} = 8.69$, whereas in the units used by COSMIC it is $Z'_{\odot} = 0.0134$ (all the metallicity values without the apostrophe are intended as in these units). We can easily find a conversion between the two

³This value is taken from the work?

⁴This refers to the work?

unit systems by assuming that the rate of oxygen abundance in the galaxy and the one in the sun is equal to the rate of the metallicities in COSMIC's units,

$$\frac{(O/H)_{gal}}{(O/H)_{\odot}} = \frac{Z_{gal}}{Z_{\odot}},\tag{2.7}$$

where (O/H) can be found inverting (2.6). At this point, knowing that $Z'_{\odot} = 8.69$, we can:

- Compute the Z'_{gal} value for each galaxy in GWGC using (2.5);
- Write $(O/H)_{\odot}$ and $(O/H)_{gal}$ in terms of the corresponding Z' value using (2.6): $(O/H) = 10^{(Z'-12)}$ and $(O/H)_{\odot} \approx 0.32$.

Finally, finding Z_{gal} from (2.7), we can write the metallicity units conversion as:

$$Z_{gal} = 27.3 \times 10^{(Z'-12)},$$
 (2.8)

where the "27.3" coefficient mainly depends on the Z_{\odot} value. This relation allows us to assign a realistic metallicity estimate to each GWGC galaxy in COSMIC's units, which we can now use to group them into representative subsets. This way, we can account for the significant impact of metallicity on stellar wind strength, remnant masses, and binary evolution outcomes, that greatly affects the expected gravitational wave signal.

2.3.4 Missing galaxies

The GWGC is far from being a complete list of the galaxies in the local Universe. As we will now see, there are two main factors contributing to this incompleteness: observational limitations due to the Zone of Avoidance (ZOA) and limitations of the information that the catalog presents.

Zone of avoiance

Since the GWGC is an observation-based catalog compiled from optical surveys, we must account for the Zone of Avoidance — the region of the sky obscured by the Milky Way's interstellar dust and stellar crowding, which impedes the detection of background galaxies. The extent of the ZOA depends on the wavelength of observation: infrared surveys penetrate deeper through the dust, while optical surveys, like those used for GWGC, are more strongly affected. In the optical band, the ZOA is expected to cover about ~ 25% of the sky?. For this work, we estimated the ZOA directly from the spatial distribution of galaxies in GWGC, by plotting their positions in Galactic coordinates. This way, the ZOA appears clearly as a horizontal band centered around the Galactic plane (see Figure 2.3). To quantify its extent, we divided the sky map into $n_{\rm pix}$ equal-area pixels and focused on the band $|b| \leq 15^{\circ}$ in Galactic latitude. Counting the empty pixels in

Figure 2.3: INSERT CAPTION AND REDO IMAGE IN PDF!!!

this band and dividing by $n_{\rm pix}$ gives an estimated ZOA coverage of ~ 20%–25% of the sky, depending on the chosen pixel resolution. This estimate is fully consistent with the literature ?, so in our analysis we will assume that GWGC effectively covers ~ 80% of the sky.

Incompleteness and non-galactic objects

Secondly, the entries of the GWGC represent a source of incompleteness themselves. Not all the objects listed in the GWGC are suitable for our purposes: in addition to galaxies, the catalog also includes globular clusters, which can be identified through their T-type values; moreover, not all galaxies in the catalog contain all the information required to perform the procedures described in the previous sections. To construct a working sample, we applied a series of masks to clean the catalog:

- Only keep entries classified as galaxies;
- Require that the distance, T-type, and absolute blue magnitude are provided;

After this selection, the sample we are left with reduced from the original 53, 255 entries to roughly 20,000 galaxies suitable for population synthesis.

Filling the gap

In order to compensate the missing galaxies, we have make two physically motivated assumptions.

1. Cosmological Principle:

The GWGC lists all the observed galaxies within 100Mpc. On such scales, the Universe can be assumed to be statistically *homogeneous* and *isotropic*. This assumption is supported from observations of the *Cosmic Microwave Background* (CMB), where we know that the correlation function of the temperature fluctuations across the sky peaks at scales of $\sim 100Mpc$. Under this assumption, the selected galaxies of the GWGC should be statistically representative of the overall population in he same volume.

2. Distance Matters:

The angular position is irrelevant in the computation of the gravitational wave signal; only the distance of the source matters. Therefore, missing galaxies from the unexplored volume covered by the Milky Way can be statistically represented by the galaxies from our retained sample.

Following these assumptions, we "fill in" the missing fraction of the sky and the dropped entries of the catalog by sampling with replacement from the cleaned GWGC, just like we did to extract an astrophysical from the fixed one, preserving its parameter distributions. This ensures that the statistical properties of the synthetic galaxy distribution match those of the observed portion while restoring the full-sky coverage. This is shown in a graphical representation of the distributions of distances, blue band magnitudes and T-types, in Figure 2.4: the distributions have been scaled up without visible changes.

Figure 2.4: INSERT CAPTION

2.4 Final steps

Now that the catalog has been completed and its ready for the population synthesis, its time to put all the pieces together. We will analyze the metallicity distribution of the galaxies in the final catalog, categorize and generate the fixed populations accordingly, and make some final considerations regarding LISA's frequency resolution, how to take care of it, and how to sum gravitational wave signals of multiple sources that LISA will not be able to distinguish.

2.4.1 The final fixed populations

As we already discussed, the metallicity of a galaxy has a great impact on the stellar evolution and, thus, gravitational wave signal. This, plus the fact that metallicity is closely linked to the galaxy types too, led us to choose it as characterizing parameter for the populations that we will generate to represent the galaxy in the catalog. In particular, we the final catalog covers a range from a minimum of Z = 0.00748 to a maximum of Z = 0.03948. We decided to group all the values in between in ten equally wide bins, represented in Figure 2.5.

Figure 2.5: insert caption

Each one of the center values of the bins, shown in the *x* label, is linked to a different synthetic fixed population generated with COSMIC. For this thesis project, the fixed populations we generated covered the kstar values 10, 11 and 12, cor-

responding to He, CO, and Ne white dwarfs⁵. The simulation was done using ASK WILL INFO ON COSMIC-POP COMMAND USED.

2.4.2 LISA's frequency resolution

The duration of LISA's mission directly impacts its frequency resolution: the longer the observation time, the finer the frequency bins it can resolve. In this work, we assume an observation tipe of:

$$T_{obs} = 4yr = 126, 144,000s$$

which corresponds to a minimum frequency resolution of

$$\delta v_{LISA,min} \approx \frac{1}{T_{obs}} \sim 8 \times 10^{-9} Hz.$$
 (2.9)

This fundamental limit comes from the Furier transform properties, and determines the smallest frequency interval over which the signals can be resolved. Although this is a very fine resolution, the precision of the orbital period in the simulated binary systems, and thus the frequency resolution on their gravitational signal, is actually much bigger, since these values come from a simulation rather than from real observations. For this reason, when computing the gravitational wave signals of our simulated binaries, we must take into account the fact that LISA will not be able to distinguish sources whose sources fall in the same frequency bin. To model this, we group the resulting gravitational wave signals in bins of size $\delta v_{LISA,min}$, and sum all the signals that fall within each bin, as we will now explain.

Multiple signals summation

To accurately represent the frequency resolution limit imposed by LISA's observation time, we have to sum all the signals within the same frequency bin. In principle, over the observation time T_{obs} , the orbital parameters of the sources may slowly evolve, causing a drift in the gravitational wave frequency. Integrating the resulting signal during this period is no easy task. However, for the slowly evolving white dwarf binaries we are considering, the change in such short time-frames is negligible, so we can treat their signals as effectively monochromatic within the observation window. Thus, we can define a commonly used variable to simplify our job, which is called **Amplitude Spectral Density (ASD)**:

$$ASD = h\sqrt{T_{obs}},\tag{2.10}$$

where h is the gravitational wave strain of the binary, computed in (??), and T_{obs} is the mission duration for LISA. This quantity represents the characteristic strain

⁵INSERISCI TABELLA IN APPENDICE, E QUI IL RIERIMENTO

2.4. FINAL STEPS

29

amplitude of the gravitational wave signal per square root of frequency, scaled by the observation time, and its very convenient for comparing the signals in frequency space. Correspondingly, we can define the Power Spectral Density (PSD) as the square of the ASD

$$PSD = ASD^2, (2.11)$$

which properly represents the signal power per frequency unit. Since power contributions from independent sources add linearly, the total PSD in a given frequency bin is simply found by summing the power of all the sources within it:

$$PSD_{tot,bin_1} = PSD_{1,bin_1} + PSD_{2,bin_1} + \dots$$
 (2.12)

This way, we effectively accounted for LISA's frequency resolution limit. The reason for introducing this quantities is that gravitational waves from different binaries are uncorrelated, so their strains add incoherently. This means we cannot simply sum the strain amplitudes directly. Instead, the PSD provides a way to combine signals that ensures a correct representation of the combined gravitational wave background.

Chapter 3

Results

The signal computation

At this point we are fully equipped to be able to compute the gravitational wave signal of the sources. This will be done in an iterative process applied to each galaxy in the final catalog, which consists of the following steps:

- Compute the right N_{astro} using the (2.1)
- Scale the fixed population accordingly, thus creating the full-scale galaxy simulation. At this point for each binary system in this astrophysical population we:
 - Compute each binary's gravitational wave signal using (??)¹;
 - Bin this signal to LISA's frequency bins, by summing it using (??);
 - Plot this value on LISA's curve.

- Plot of spectral distribution of the computed signal - Analysis of the distribution of the sources - Eventual implications (none, since it shouldn't be visible)

¹Note here that all the binaries within the same galaxy are given the same distance from us. This approximation is valid since the distance of the galaxy is much much bigger the its size, and thus the maximum possible distance between tow binaries within the same galaxy.

Chapter 4

Conclusions and Future Perspectives

Recap of the Work - Limits of the Work, assumptions and approximations used - Possible extensions

Appendix A

Appendix

Dettagli tecnici sul codice.

Tabelle di parametri.

Ulteriori grafici.

Script di calcolo, se rilevante.

INSERISCI TABELLE COI KSTAR VALUES ETC