Igraph: An introduction

Sebastian Robledo Ph.D.(c)

IG

IGRAPH PRACTICE

R language has become very popular between researchers because it let them do sophisticated statistical calculations to a lot of data and with the support of a huge community.

Purpose

The purpose of this session is to introduce the participants to the main technical concepts of network data analysis in R using igraph, for example: how to read data from R, how to convert this data to a graph object and how to do some descriptive analysis.

Methodology

Just run the code!

The objective is to focus On the main features of igraph (what can we do with it?) and avoid the thecnical problems.

INTRODUCTION EXAMPLE IGRAPH PRACTICE

Statistical Analysis of Network Data with R

A User's Guide to Network Analysis in R

Useful links

Datasets

Triads Go Boink!

Longitudinal Network Data Sources

Network Analysis and Visualization with R and igraph

Network Datasets

Social Network Analysis Labs in R and SoNIA

The Koblenz Network Collection

Examples...

Stanford Large Network Dataset Collection

Getting Data

Cleaning Data

Tidying Data

Exploratory Analysis

Results

Question

What are the most important papers in a research topic using graph theory?

- 1. High in-degree and 0 out-degree
- 2. High Betweeness
- 3. High out-degree and 0 in-degree

Seminals

Structurals

Current

Getting Data	Cleaning Data	Tidying Data	Exploratory Analysis	Results	
Data					
Web of Science	TITLE: (s	ocial networks) AND TO	OPIC: (organization)	306 papers	

EXAMPLE

INTRODUCTION

IGRAPH

PRACTICE

Tidying Data **Exploratory Analysis Getting Data** Cleaning Data Results Deleting nodes with in-degre = 1 and out-degree = 0 * R2.1 R2 L2 H L2 H R1 В

Extracting the giant component

Getting Data

Cleaning Data

Tidying Data

Exploratory Analysis

Results

Deleting in and out degree attributes

```
net.tidied.2 <- delete_vertex_attr(net.tidied.1, "outdegree" )
net.tidied.3 <- delete_vertex_attr(net.tidied.2, "indegree" )
net.tidied <- net.tidied.3
summary(net.tidied)</pre>
```

IGRAPH DN-- 1062 3115 -- + attr: name (v/c), label (v/c)

Global Properties

Density

graph.density(net.tidied)

Transitivity

transitivity(net.tidied, type = "global")

Diameter

diameter(net.tidied, directed = TRUE, weights = NA)

Centralization

centr_degree(net.tidied, mode = "all")\$centralization

Local Properties

Degree: in and out

V(net.tidied)\$indegree <- degree(net.tidied, mode = "in")

V(net.tidied)\$outdegree <- degree(net.tidied, mode = "out")

V(net.tidied)\$degree <- degree(net.tidied, mode = "all")

Betweenness

V(net.tidied)\$bet <- betweenness(net.tidied)

Bonacich

V(net.tidied)\$bonacich <- power_centrality(net.tidied)</pre>

Transitivity

V(net.tidied)\$transitivity <- transitivity(net.tidied, type

= "local")

head(as_data_frame(net.tidied, what = "vertices"))

Tidying Data

Subgroups and communities

Based on greedy optimization of modularity

community <-

Getting Data

cluster_fast_greedy(as.undirected(net.tidied))

V(net.tidied)\$community <- community\$membership

Cleaning Data

Coreness

V(net.tidied)\$coreness <- coreness(net.tidied)

Exploratory Analysis

Results

Topological Properties

Degree Distribution

```
hist(degree(net.tidied, mode = "in"), col="blue",
main = "In-degree distribution on co-citation networks",
xlab = "Vertex Degree", ylab = "Frecuency")
```


Topological Properties

Degree Distribution

```
hist(degree(net.tidied, mode = "out"), col="blue",
main = "Out-degree distribution on co-citation networks",
xlab = "Vertex Degree", ylab = "Frecuency")
```


Topological Properties

Log - Log Degree Distribution

```
d.net.tidied <- degree(net.tidied, mode = "all")
dd.net.tidied <- degree.distribution(net.tidied)
d <- 1:max(d.net.tidied)
ind <- (dd.net.tidied != 0)</pre>
plot(d[ind], dd.net.tidied[ind], log = "xy", col = "blue",
   xlab = c("Log-Degree"), ylab = c("Log-Intensity"),
   main = "Log-Log Degree Distribution")
```


Topological Properties

Log - Log Average Neighbor Degree

```
a.nn.deg.net.tidied <- graph.knn(net.tidied,V(net.tidied))$knn plot(d.net.tidied, a.nn.deg.net.tidied,
```

```
log="xy", col="goldenrod",
xlab=c("Log Vertex Degree"),
ylab=c("Log Average Neighbor Degree"))
```


IGRAPH PRACTICE

Exploratory Analysis

Results

Identifidying key actors in the network: Seminal, Structural, and Current papers

EXAMPLE

```
df.1 <- as data frame(net.tidied, what = "vertices")
df.1 <- df.1[, c("label", "outdegree", "indegree", "bet")]
seminals <- df.1[df.1$outdegree == 0,]
seminals <- head(seminals[order(seminals$indegree,
                    rev(seminals$indegree),
                    decreasing = TRUE), "label"], 10)
structurals <- head(df.1[order(df.1$bet, rev(df.1$bet),
                 decreasing = TRUE), "label"], 10)
currents <- df.1[df.1$indegree == 0,]
currents <- head(currents[order(currents$outdegree,
                    rev(currents$outdegree).
                    decreasing = TRUE), "label"], 10)
key.papers <- data.frame(seminals, structurals, currents, stringsAsFactors = FALSE)
```

INTRODUCTION

INTRODUCTION	EXAMPLE	IGRAPH	PRACTICE

Getting Data	Cleaning Data	Tidying Data	Exploratory Analysis	Results

Identifidying key actors in the network: Seminal, Structural, and Current papers

	seminals	structurals	currents
1	Wasserman S., 1994, Social Network Anal, P249	Cross R, 2002, Calif Manage Rev, V44, P25	Farine Dr, 2015, J Anim Ecol, V84, P1144, Doi 10.11
2	Scott J., 1991, Social Network Anal, P92	Borgatti Sp, 2009, J Supply Chain Manag, V45, P5, Doi	Conway S, 2014, Brit J Manage, V25, P102, Doi 10.11
3	Freeman Lc, 1979, Soc Networks, V1, P215, Doi 10.1	Burt Rs, 2013, Annu Rev Psychol, V64, P527, Doi 10	Rose Pe, 2015, Anim Welfare, V24, P123, Doi 10.712
4	Borgatti S. P., 2002, Ucinet Windows Softw	Fattore G, 2009, Health Policy, V92, P141, Doi 10.10	El Louadi M, 2008, Knowl Man Res Pract, V6, P199, D
5	Granovetter Ms, 1973, Am J Sociol, V78, P1360, Doi 1	Hu C, 2008, Int J Hosp Manag, V27, P302, Doi 10.10	Ho Y, 2013, Asia Pac J Manag, V30, P1265, Doi 10.1
6	Burt R. S., 1992, Structural Holes Soc	Kasper C, 2009, Primates, V50, P343, Doi 10.1007/s	Diez-vial I, 2014, Knowl Man Res Pract, V12, P276, D
7	Borgatti Sp, 2003, J Manage, V29, P991, Doi 10.1016	James R, 2009, Behav Ecol Sociobiol, V63, P989, Doi	Sutanto J, 2011, Long Range Plann, V44, P421, Doi 1
8	Hanneman Ra, 2005, Intro Social Network	Yousefi-nooraie R, 2012, Bmc Health Serv Res, V12,	Garcia Md, 2016, Rev Esp Investig Soc, P23, Doi 10.5
9	Borgatti Sp, 2009, Science, V323, P892, Doi 10.1126	Makagon Mm, 2012, Appl Anim Behav Sci, V138, P15	Khan Gf, 2016, Commun Assoc Inf Sys, V39, P367
10	Borgatti Sp, 2005, Soc Networks, V27, P55, Doi 10.10	Allen J, 2007, R&d Manage, V37, P179, Doi 10.1111/	Zheng X, 2016, Int J Proj Manag, V34, P1214, Doi 10

Creating Graphs: Undirected

Graph Data

Plotting

library(igraph) library(sand)

Create a graph object g with N = 7 vertices

g <- graph.formula(1-2, 1-3, 2-3, 2-4, 3-5, 4-5, 4-6, 4-7, 5-6, 6-7)

To see the vertices

```
V(g) > V(g) + 7/7 vertices, named: [1] 1 2 3 4 5 6 7
```

To see the edges

```
E(g)
```

```
> E(g)
+ 10/10 edges (vertex names):
[1] 1--2 1--3 2--3 2--4 3--5 4--5 4--6 4--7 5--6 6--7
```


Creating Graphs: Undirected Graph Data Plotting

More compressed format str(g)

```
> str(g)
IGRAPH UN-- 7 10 --
+ attr: name (v/c)
+ edges (vertex names):
1 -- 2, 3
2 -- 1, 3, 4
3 -- 1, 2, 5
4 -- 2, 5, 6, 7
5 -- 3, 4, 6
6 -- 4, 5, 7
7 -- 4, 6
```

UN: Undirected

UNW: Undirected + Weighted

plot(g)

Creating Graphs: Directed

Graph Data

EXAMPLE

Plotting

dg <- graph.formula(1-+2, 1-+3, 2++3)

plot(dg)

dg.1 <- graph.formula(Sam-+Mary, Sam-+Tom, Mary++Tom)

plot(dg.1)

Creating Graphs: Representations

Graph Data

Plotting

edgelist <- get.edgelist(g) View(edgelist)</pre>

V1 ÷	V2 ÷
1	2
1	3
2	3
2	4
3	5
4	5
4	6
4	7
5	6
6	7

matrix <- as.matrix(get.adjacency(g)) View(matrix)

	1 ‡	2 0	3 ‡	4 0	5 0	6 ‡	7 :
1	0	1	1	0	0	0	0
2	1	0	1	1	0	0	0
3	1	1	0	0	1	0	0
4	0	1	0	0	1	1	1
5	0	0	1	1	0	1	0
6	0	0	0	1	1	0	1
7	0	0	0	1	0	1	0

adjlist <- get.adjlist(g) adjist

```
> adjlist
$`1`
 + 2/7 vertices, named:
[1] 2 3
+ 3/7 vertices, named:
[1] 1 3 4
 $.3.
+ 3/7 vertices, named:
[1] 1 2 5
+ 4/7 vertices, named:
[1] 2 5 6 7
 + 3/7 vertices, named:
 [1] 3 4 6
 $ 6'
 + 3/7 vertices, named:
[1] 4 5 7
 + 2/7 vertices, named:
[1] 4 6
```

Creating Graphs: Operations

Graph Data

Plotting

Consider the subgraph of g induced by the first five vertices.

h <- induced.subgraph(g, 1:5)
plot(h)</pre>

Also, we could remove vertices 6 and 7 from g to generate h

 $h \leftarrow g - vertices(c(6,7))$

Recovering g from h by adding these two vertices and the apropiate edges

```
h <- h + vertices(c(6,7))
plot(h)
g <- h + edges(c(4,6),c(4,7),c(5,6),c(6,7))
plot(g)
```


Creating Graphs

Graph Data: Adding Attributes

Plotting

dg.2 <- graph.formula(1-+2, 1-+3, 2++3) plot(dg.1)

Adding a name to our graph dg.2\$name <- "Toy Graph"

Adding names to our nodes

V(dg.2)\$name <- c("Sam", "Mary", "Tom")

Adding gender to our nodes

V(dg.2)\$gender <- c("M","F","M")

Adding color to our nodes

V(dg.2)\$color <- "red" summary(dg.2) plot(dg.2)

Creating Graphs

Graph Data: Dataframes

Plotting

library(sand)

View vertices and edges

View(elist.lazega)

View(v.attr.lazega)

Name ‡	Seniority	Status 0	Gender [‡]	Office *	Years ‡	Age ‡	Practice	School [©]
V1	1	1	1	1	31	64	1	1
V2	2	1	1	1	32	62	2	1
V3	3	1	1	2	13	67	1	1
V4	4	1	1	1	31	59	2	3
	25	_	28				<u></u>	্

Convert them into a graph object (g.lazega)

g.lazega <- graph.data.frame(elist.lazega, directed="FALSE", vertices=v.attr.lazega)</pre>

Checking the values of the graph

vcount(g.lazega)

ecount(g.lazega)

list.vertex.attributes(g.lazega)

summary(g.lazega)

elist.lazega

V1 ÷	V2 ÷		
V1	V17		
V2	V7		
V2	V16		
V2	V17		

IGRAPH

PRACTICE

Creating Graphs

Graph Data: Importing/Exporting

Convert them into a graph object (g.lazega.1)

Plotting

Uploading vertices and edges

vertices <- read.csv("vertices.csv", stringsAsFactors = FALSE)

edges <- read.csv("edges.csv", stringsAsFactors = FALSE)

g.lazega.1 <- graph.data.frame(edges, directed = "FALSE", vertices = vertices)

Uploading graph object

lazega <- read.graph("lazega.graphml", format = "graphml")
summary(lazega)</pre>

plot(lazega)

Uploading matrix file

matrix.lazega <- read.csv("matrix_1.csv", stringsAsFactors = FALSE)</pre>

matrix.lazega.1 <- as.matrix(matrix.lazega)

q.matrix.lazega <- graph.adjacency(adjmatrix = matrix.lazega.1, mode = "undirected")

summary(g.matrix.lazega)

Creating Graphs

Graph Data: Importing/Exporting

Plotting

Exporting graph objects as vertices and edges

write.csv(v.attr.lazega, "lazega_vertices.csv", row.names = FALSE)

write.csv(elist.lazega, "lazega_edges.csv", row.names = FALSE)

Exporting graph objects as graph objects

write.graph(g.lazega, "lazega.graphml", format = "graphml")

Creating Graphs Graph Data: Importing/Exporting Plotting: Example I

plot(g, vertex.size = 30, vertex.shape = "rectangle", vertex.color = "green")
title("Toy Graph")

Creating Graphs

Graph Data: Importing/Exporting

Plotting: Example II

```
library(igraphdata)
data(karate)
set.seed(42)
l <- layout.kamada.kawai(karate)</pre>
par(mfrow=c(1,1))
plot(karate, layout=l, vertex.label=NA)
V(karate)$label <- sub("Actor ", "", V(karate)$name)
V(karate)$shape <- "circle"
V(karate)[c("Mr Hi", "John A")]$shape <- "rectangle"
V(karate)[Faction == 1]$color <- "red"
V(karate)[Faction == 2]$color <- "dodgerblue"
V(karate)$size <- 4*sqrt(graph.strength(karate))
V(karate)$size2 <- V(karate)$size * .5
```

```
E(karate)$width <- E(karate)$weight
F1 <- V(karate)[Faction==1]
F2 <- V(karate)[Faction==2]
E(karate)[F1 %--% F1]$color <- "pink"
E(karate)[F2 %--% F2]$color <- "lightblue"
E(karate)[F1 %--% F2]$color <- "yellow"
V(karate)$label.dist <-
ifelse(V(karate)$size >= 10, 0, 0.75)
plot(karate, layout=l)
```

Creating Graphs Graph Data: Importing/Exporting Plotting: Example II

Getting Data

Cleaning Data

Tidying Data

Exploratory Analysis

Restults

We are going to do an exploratory analysis of karate dataset

karate.vertices <- read.csv("Practice_karate_vertices.csv", stringsAsFactors = FALSE) karate.edges <- read.csv("Practice_karate_edges.csv", stringsAsFactors = FALSE)

View(head(karate.edges))

	from =	to ‡	weight*
1	Mr Hi	Actor 2	4
2	Mr Hi	Actor 3	5
3	Mr Hi	Actor 4	3
4	Mr Hi	Actor 5	3
5	Mr Hi	Actor 6	3
6	Mr Hi	Actor 7	3

View(head(karate.vertices))

	Faction	name =	label =	color =
1	1	Mr Hi	Н	1
2	1	Actor 2	2	1
3	1	Actor 3	3	1
4	1	Actor 4	4	1
5	1	Actor 5	5	1
6	1	Actor 6	6	1

Zachary, Wayne W. "An information flow model for conflict and fission in small groups." Journal of anthropological research 33.4 (1977): 452-473.

Getting Data

Cleaning Data

Tidying Data

Exploratory Analysis

Restults

Now, we need to create our graph object

net.karate <- graph.data.frame(karate.edges, directed = FALSE)</pre>

summary(net.karate)

IGRAPH UNW- 34 78 --

+ attr: name (v/c), Faction (v/n), weight (e/n)

IGRAPH

Exploratory Analysis

PRACTICE

Restults

Adding attributes to vertices

Getting Data

```
net.karate.1 <- set.vertex.attribute(net.karate, name = "Faction", value = karate.vertices$Faction)
net.karate.2 <- set.vertex.attribute(net.karate, name = "label", value = karate.vertices$label)
net.karate.3 <- set.vertex.attribute(net.karate, name = "color", value = karate.vertices$color)
net.karate.tidied <- net.karate.3
```

Cleaning Data

summary(net.karate.tidied)

IGRAPH UNW- 34 78 -+ attr: name (v/c), Faction (v/n), color (v/n), weight (e/n)

Tidying Data

Getting Data

Cleaning Data

Tidying Data

Exploratory Analysis

Restults

Global properties

Density

edge_density(net.karate.tidied, loops = FALSE)

Transitivity

transitivity(net.karate.tidied, type = "global")

Diameter

diameter(net.karate.tidied, directed = TRUE, weights = NA)

Centralization

centr degree(net.karate.tidied, mode = "all")\$centralization

Restults

PRACTICE

Local properties

Degree

V(net.karate.tidied)\$degree <- degree(net.karate.tidied, mode = "all")

Betweenness

V(net.karate.tidied)\$bet <- betweenness(net.karate.tidied)

Bonacich

V(net.karate.tidied)\$bonacich <- power_centrality(net.karate.tidied)

Transitivity

V(net.karate.tidied)\$transitivity <- transitivity(net.karate.tidied, type = "local")

View(head(as_data_frame(net.karate.tidied, what = "vertices")))

Subgroups and communities

Greedy optimization of modularity

community <- cluster_fast_greedy(as.undirected(net.karate.tidied))
V(net.karate.tidied)\$community <- community\$membership</pre>

table(V(net.karate.tidied)\$community)

Coreness

V(net.karate.tidied)\$coreness <- coreness(net.karate.tidied)

table(V(net.karate.tidied)\$coreness)

Topological Properties

Degree distribution

hist(degree(net.karate.tidied, mode = "all"), col="blue", main = "Degree distribution karate network", xlab = "Vertex Degree", ylab = "Frecuency")

Tidying Data

INTRODUCTION

31.0 11 11

Exploratory Analysis

Restults

PRACTICE

Topological Properties

Getting Data

Log - log Degree distribution

d.net.karate.tidied <- degree(net.karate.tidied, mode = "all")
dd.net.karate.tidied <- degree.distribution(net.karate.tidied)</pre>

Cleaning Data

```
d <- 1:max(d.net.karate.tidied)
ind <- (dd.net.karate.tidied != 0)
plot(d[ind], dd.net.karate.tidied[ind], log = "xy", col = "blue",
    xlab = c("Log-Degree"), ylab = c("Log-Intensity"),
    main = "Log-Log Degree Distribution")</pre>
```


Topological Properties

Average network degree versus vertex degree

```
a.nn.deg.net.karate.tidied <- graph.knn(net.karate.tidied,
    V(net.karate.tidied))$knn
plot(d.net.karate.tidied, a.nn.deg.net.karate.tidied,
    log="xy", col="goldenrod",
    xlab=c("Log Vertex Degree"),
    ylab=c("Log Average Neighbor Degree"),
    main =
    "Average network degree versus degree (log-log scale)")</pre>
```


Visualization

kc <- fastgreedy.community(net.karate.tidied)
plot(kc, net.karate.tidied, vertex.label = NA)</pre>

THANKS!