Documentación de UltraProHexPlayer

Autor: Rodrigo Mederos González

12 de abril de 2025

Índice

1.	Introducción	2
2.	Visión general de la clase 2.1. Atributos principales	2 2
3.	Hashing Zobrist 3.1. Inicialización	3
4.	Selección de movimiento	3
5.	Búsqueda $Alpha$ - $Beta$	4
6.	Heurísticas de evaluación 6.1. Prioridad de movimientos	5 5 5 5 5
7.	Monte Carlo Tree Search	6
8.	Aprendizaje por refuerzo	6
9.	Conclusión	6

1. Introducción

La clase UltraProHexPlayer implementa un jugador para el juego de Hex que combina múltiples técnicas de inteligencia artificial:

- Hashing Zobrist para reconocimiento rápido de posiciones.
- Tabla de transposición para almacenar evaluaciones previas.
- Búsqueda minimax con poda alpha-beta y ordenamiento heurístico de movimientos.
- Evaluaciones heurísticas avanzadas (distancia mínima, control de territorio, detección de patrones).
- Monte Carlo Tree Search (MCTS) para fases de apertura.
- Aprendizaje por refuerzo simple basado en refuerzo de estadísticas de movimientos.

2. Visión general de la clase

Listing 1: Definición inicial y atributos de clase

```
def __init__(self, player_id: int):
    super().__init__(player_id)
    self.player_id = player_id
    self.opponent_id = 3 - player_id
    self.transposition_table = {}
    self.neighbor_cache = {}
    self.move_history = []  # [(board_key, move)]
    self.move_stats = {}  # {(board_key, move): score}
    self.directions = [(-1, 0), (1, 0), (0, -1), (0, 1), (-1, 1), (1, -1)]
    self.max_depth = 3
```

2.1. Atributos principales

- zobrist_table: Tabla estática de valores aleatorios para hashing Zobrist.
- transposition_table: Diccionario para almacenar evaluaciones de posiciones ya analizadas.
- neighbor_cache: Caché opcional para vecindad de casillas.
- move_history: Historial de movimientos jugados, usado para aprendizaje.
- move_stats: Estadísticas de refuerzo asociadas a movimientos y posiciones.
- directions: Lista de direcciones hexagonales para navegación.
- max_depth: Profundidad máxima para búsqueda alpha-beta.

3. Hashing Zobrist

3.1. Inicialización

Se generan valores aleatorios de 64 bits para cada casilla y cada posible estado (vacío, jugador 1, jugador 2):

```
Listing 2: Método init_zobrist_table
```

\subsection{C lculo de la llave} Se recorre el tablero y se aplica XOR con los

4. Selección de movimiento

El método play orquesta la decisión de jugada:

Listing 3: Método play

```
. . .
   # Limpiar transposici n si crece mucho
   if len(self.transposition_table) > 200000:
        self.transposition_table.clear()
   possible_moves = board.get_possible_moves()
   total cells = board.size * board.size
   # Apertura: usar MCTS si tablero muy vac o
   if len(possible_moves) > total_cells * 0.8:
       return self. mcts select move(board, simulations=200, top k=10)
   # Primera jugada: centro
   if len(possible_moves) == total_cells:
       return (board.size // 2, board.size // 2)
   # Victoria o bloqueo inmediato
   for move in possible_moves:
       b2 = board.clone()
       b2.place_piece(move[0], move[1], self.player_id)
       if b2.check_connection(self.player_id):
            return move
   for move in possible_moves:
       b2 = board.clone()
       b2.place_piece(move[0], move[1], self.opponent_id)
       if b2.check_connection(self.opponent_id):
            return move
   # Ajuste profundidad seg n fase
   moves_played = total_cells - len(possible_moves)
   ratio = moves_played / total_cells
   if ratio < 0.2:
        self.max_depth = 2
   elif ratio < 0.6:
       self.max depth = 3
```

```
else:
    self.max depth = 4
# Ordenar y limitar movimientos
move limit = min(12, len(possible moves))
ordered = sorted(
    possible moves,
    key=lambda m: self. move priority (board, m),
    reverse=True
) [: move limit]
best move, best val = ordered[0], float('-inf')
alpha, beta = float('-inf'), float('inf')
for move in ordered:
    b2 = board.clone()
    b2.place_piece(move[0], move[1], self.player_id)
    val = -self.alpha\_beta(b2\,, self.max\_depth-1, -beta\,, -alpha\,, False)
    if val > best val:
        best val, best move = val, move
        alpha = max(alpha, val)
# Guardar en historial
key = self. normalized board key(board)
self.move_history.append((key, best_move))
if len(self.move history) > 200:
    self.move\_history.pop(0)
return best_move
```

5. Búsqueda Alpha-Beta

Implementa minimax con poda y transposición:

Listing 4: Método alpha_beta

```
if board.check_connection(self.player_id):
    return 10000 + depth
if board.check_connection(self.opponent_id):
    return -10000 - depth
if depth == 0:
    score = self._fast_evaluation(board)
    self.transposition_table[key] = score
    return score

moves = board.get_possible_moves()
if not moves:
    return 0
```

```
if maximizing:
       value = float('-inf')
       ordered = sorted (moves, key=lambda m: self. move priority (board, m), reve
        for m in ordered:
            b2 = board.clone(); b2.place_piece(m[0], m[1], self.player_id)
            value = max(value, self.alpha_beta(b2, depth-1, alpha, beta, False))
            alpha = max(alpha, value)
            if alpha >= beta:
                break
   else:
        value = float ('inf')
       ordered = sorted (moves, key=lambda m: self._move_priority_opponent (board,
        for m in ordered:
            b2 = board.clone(); b2.place_piece(m[0], m[1], self.opponent_id)
            value = min(value, self.alpha beta(b2, depth-1, alpha, beta, True))
            beta = min(beta, value)
            if beta <= alpha:
                break
   self.transposition_table[key] = value
   return value
. . .
```

6. Heurísticas de evaluación

6.1. Prioridad de movimientos

Explica la función _move_priority y _move_priority_opponent con bonificaciones por posición, proximidad y puentes.

6.2. Distancia mínima (Dijkstra)

Método _calculate_min_distance calcula la distancia mínima entre los bordes relevantes.

6.3. Control de territorio

Método _calculate_territory_control mide la influencia de casillas propias.

6.4. Detección de patrones

Método _pattern_evaluation detecta estructuras como puentes y penaliza fichas aisladas.

6.5. Evaluación rápida

Combina las anteriores en _fast_evaluation:

- Distancia: peso 60.
- Control de territorio: peso 40.
- Patrones: peso 25.

7. Monte Carlo Tree Search

Método _mcts_select_move realiza simulaciones aleatorias y elige el movimiento con más victorias.

8. Aprendizaje por refuerzo

Método learn_from_game ajusta move_stats según resultado de la partida.

9. Conclusión

La combinación de técnicas garantiza un jugador robusto en distintas fases de la partida.

Conclusiones ampliadas

El agente UltraProHexPlayer funciona excepcionalmente bien gracias a la sinergia de sus componentes principales:

- Eficiencia en la exploración: La poda alfa—beta con ordenación heurística y ajuste de profundidad según la fase de juego reduce drásticamente el número de nodos evaluados, permitiendo decisiones rápidas incluso en tableros grandes.
- Reducción de redundancia: El hashing Zobrist con normalización de simetrías identifica posiciones equivalentes con distintas orientaciones, optimizando la reutilización de evaluaciones almacenadas en la tabla de transposición.
- Aperturas robustas: El uso de MCTS en los primeros movimientos aprovecha simulaciones aleatorias para generar intuiciones globales cuando la información heurística es menos fiable.
- Evaluación heurística integral: La combinación de cálculo de distancia mínima (Dijkstra), control de territorio e identificación de patrones (puentes, fichas aisladas) ofrece una valoración precisa del estado del juego.
- Aprendizaje y adaptación: El refuerzo mediante el registro de movimientos y la actualización de estadísticas tras cada partida permite al agente mejorar sus decisiones con el tiempo, adaptándose a nuevos estilos de juego.

Estos elementos hacen de UltraProHexPlayer un agente versátil y competitivo, que combina lo mejor de la búsqueda adversarial clásica y las simulaciones de Monte Carlo con aprendizaje incremental, garantizando tanto velocidad como calidad en sus jugadas.