פתרון 4 לוגיקה מתמטית - תרגיל

.1

- א. נניח בדרך השלילה ששני הפסוקים C ,D אינם יכיחים. ממשפט השלמות נובע ששניהם אינם טאוטולוגיות. לכן קיימות השמות השלמות נובע ששניהם אינם אינם אינם $M_1 \not\models \neg C$, $M_2 \not\models D$ כך ש־ M_1 , M_2 אינו מופיע גם ב־ C וגם ב־ C וגם ב־ C ומסכימה עם אינו מופיע גם ב־ C וגם ב־ C ומסכימה עם C אינו מופיעים ב־ C על המופיעים ב־ C עבור C כזאת מתקיים C אינו טאוטולוגיה, ולכן ולכן $C \not\models C$ מכאן נובע כי $C \not\models C$ אינו טאוטולוגיה, ולכן לפי משפט הנאותות אינו יכיח, בסתירה להנחה.
- ב. נקח p o p אבל לא רp o p, כאשר א פסוק אטומי. אז C = D = p ב. נקח רונים אינם טאוטולוגיות. ריקני שני האחרונים אינם טאוטולוגיות.

.2

- א. הפסוק A יכיח במערכת כי הוא אקסיומה במערכת א. הפסוק A איננו טאוטולוגיה, ולכן המערכת איננה נאותה.
- ב. תהי M השמה שבה A שקרי (קיימת כזאת כי A איננו טאוטולוגיה). נבצע ב־ A את הפעולות הבאות: במקום כל פסוק אטומי p כך ש־ A את הפעולות הבאות: במקום כל פסוק כך ש־ A (עציב טאוטולוגיה כלשהי, ובמקום כל פסוק אטומי A כך ש־ A עד שר A (עציב סתירה כלשהי. נסמן ב־ A את הפסוק המתקבל בדרך זו. מכיוון ש־ A התקבל ע"י הצבת פסוקים במקום הפסוקים האטומיים ב־ A, הוא אקסיומה במערכת A ולכן יכיח בה. מצד שני, לפי בנייתו A הוא סתירה, ולכן A ולכן יכיח בה. לפי משפט השלמות A יכיח במערכת ההוכחה הרגילה, ולכן בוודאי במערכת A. יוצא אפוא ש־ A הוא פסוק שהוא ושלילתו יכיחים במערכת A.
- ג. לפי למה מההרצאה, הפסוק $\neg \hat{A} \to (\hat{A} \to C)$ יכיח במערכת הרגאה, הפלון אגם לכל \mathcal{L}_{+A} , ומכיוון אגם הרגילה לכל C לכן הוא יכיח בה את C ע"י ניתוקי רישא. $\neg \hat{A}, \hat{A}$

- . תהי \subseteq קבוצת פסוקים ויהי A פסוק, כך ש־ \subseteq עלינו להראות כי \subseteq תהי \subseteq קבוצת פסוקים ויהי E של \subseteq מתקיים E איהי E מודל E מתקיים E באינדוקציה על E כי עבור E כלשהו. קיימות שלוש אפשרויות: E כל מודל E מתקיים E מתקיים E מתבונן ב־ E כלשהו. קיימות שלוש אפשרויות:
 - א. אקסיומה B_i
 - $.B_i \in \Sigma$.ם
 - ג. B_i נובע מפסוקים קודמים ע"י כלל היסק.

במקרה א', B_i אמיתי בכל השמה, בפרט ב־ M. במקרה ב', נובע מן העובדה ש־ M מודל של M שמתקיים $M \models B_i$ במקרה ב', קיימים $M \models B_i$ כך ש־ $M \models B_i$ לפי הנחת במקרה ג', קיימים $M \models B_i$, $M \models B_i$ ולכן לפי הגדרת האמיתות עבור גרירה, חייב להתקיים $M \models B_i$

נניח כי $\{A_1,A_2,\ldots,A_n\}$. נניח כי $\{A_1,A_2,\ldots,A_n\}$. נניח כי $A_1,A_2,\ldots,A_n\}$. והפסוק הזה הוא טאוטולוגיה, $B=A_1\to (A_2\to (\cdots (A_n\to A)\cdots))$ כי אילו היתה השמה A שבה הוא שקרי, היא היתה חייבת לקיים A עבור A_1,\ldots,A_n ורז A_2 ואז היא היתה מודל של A_2 שבו A_3 שבור A_4 עבור חלומות נובע ש־ A_4 שקרי, בסתירה להנחה ש־ A_4 מתוך A_4 באופן הבא: נכתוב הוכחה של A_4 נכתוב את A_4 ננתק רישא, נכתוב את A_4 ננתק רישא, וכן הלאה עד לקבלת A_4 .