武汉大学 2013—2014 学年度第二学期期末考试

《高频电子线路》试卷 (A)

班级	学号	姓名	成绩
一、埃	真空题(每空1分,共35分)		
1.	调频广播的中频为 10.7MHz,这个	·频率属于频段	, 0
2,	采用超外差技术可以提高无线接收	女机的适应性和选择	k性,其中的关键部件为。
3,	并联谐振回路并接入信号源和负载	战之后,其品质因素	長将,通频带将,可考
虑采用	抽头接入方式提高电路性能;采用	多个单回路构成的精	隅合振荡回路, 相对于单回路其
通频带	,选择性。		
4.	由于存在内部反馈,高频小信号放	文大器易产生,为	与克服这种现象, 使放大器能稳
定工作	,常采用的方法有和。		
5,	小信号放大器在工作中不可避免均	也会产生噪声,则其	L输出端的信噪比将
输	入端的信噪比。		
6.	丙类功放中,负载失谐将使输出;	办率,集电极损	员耗功率; 丙类谐振功放作
振幅限	幅器时,应设置在工作状态,	作集电极调幅电路	时应设置在工作状态。
7.	设计一工作在临界状态的丙类功剂	女, 实测得其输出功	J率 P。远小于设计值,而集电极
直流电	流 I.o. 却略大于设计值,则功放处于	F工作状态,可	「考虑 <u></u> 负载。
8.	采用晶体振荡器产生调频信号,该	周频波中心频率的稳	总定性将,其频偏将。
9.	提高振荡器的静态工作点,电路导	更易起振,输出信号	h的幅度将,振荡频率的稳
定度_	°		
10)、若非线性器件端电压为 v=V ₀ +v1+	v2,为使器件工作a	生相对于 ν2 的线性时变状态,
信号幅	度关系应选择为 V1 _m V2 _m 。		
11	、用 300~3400Hz 的多频信号进行	DSB 调幅后的信号频	顶带宽度为。
12	2、ma=0.4的普通调幅波中,有用信	息的功率占总功率	的百分比为。
	s、调幅与调频相比,的抗干扰		
	、已知调幅收音机中频为 465KHz,		 自台广播节目时,有时会受到
	lz 信号的干扰,这种干扰属于		
	5、二极管峰值包络检波电路中特有	·	<u> </u>
16	5、间接调频有三种实现方法: 矢量	合成法、、	_,其中可以得到较高的调
相指数			
	、相位检波型鉴频器中, 其线性网络	-	
	包络检波型鉴频器中, 其线性网络	将调频波转变为 <u></u>	_,再利用包络检波电路进行解
调。			
	、反馈控制系统的三个构成部分为	:、控制对象、	;自动相位控制电路又称
为锁相	环路,其调节的参量为。		
	t today halandara (tt at)		
	分析计算题(共 65 分)	Amilia De El Si	
)分)已知载波信号为 νω=Vωcosωct,	调制信号为 ν _Ω =V _Ω	灬cosΩt,画出实规调幅的发射
机框图	l,并画出各处对应的频谱结构。		

2、(10 分) 某中频放大器的电路如图 1 所示,其工作频率为 f_1 =10.7MHz,回路电容 C=50pF,接入系数 p_1 =0.35, p_2 =0.3,回路空载 Q_0 =100,两个晶体管的 y 参数均相同

$$g_{ie} = 1.0mS$$
 , $C_{ie} = 41pF$, $y_{fe} = 40mS$, $C_{oe} = 4.3pF$, $g_{oe} = 45\mu S_{\circ}$ $\stackrel{?}{\!\!\!\!/}$:

- (1) 画出放大器的高频交流通路图;
- (2) 单级放大器谐振时的电压增益及通频带。

3、(15 分)高频大功率晶体管 3DA4 参数为 f_{τ} =100MHz, β =20,集电极最大允许耗散功率 P_{CM} =20W,饱和临界线跨导 g_{cr} =0.8A/V,用它做成 2MHz 的谐振功率放大器,选定 V_{CC} =24V, θ $_{\text{C}}$ =70 0 , i_{Cmax} =2.2A,并工作于临界状态。

- (1) 计算功放电路输出功率 P。、直流电源提供的功率 P。和效率n。;
- (2) 晶体管静态工作点应该如何设置?
- (3) 若输入信号减小, 电路的工作状态和输出功率将如何改变?

4、(15分)变容二极管调频电路如图 2 所示,要求:

- (1) 画出高频交流通路;
- (2) 若 ν_0 =0V 时,变容二极管等效电容 C_{5Q} =40pF,求振荡器中心频率;向上调整 R_{11} 的抽头端,中心频率将如何变化?为减小中心频率的偏移和非线性失真,变容管的变容指数 γ 应如何选取?
- (3) 指出电路中的稳频措施。

- 5、(15 分) 已知载波 $u_c(t)=5\cos(100\,\pi\,\times\,10^6t)(V)$,调制信号 $u_{\Omega}(t)=1.5\cos(4\,\pi\,\times\,10^3t)(V)$
- (1) 若进行调频,调制灵敏度 k_{\vdash} 8kHz / V,求调频波的最大频偏 $\triangle f_{m}$ 和频带宽度 BW;
- (2) 若调制信号的振幅不变,调制信号的频率提高一倍,再求调频波的频带宽度 BW。
- (3) 若采用间接调频, 画出实现框图。