Introduction Financial Derivatives

Derivatives

A derivative is a financial product whose value depends on the values of other more basic underlying assets.

Examples:

- Forward contract on a stock: a contract written today, to buy a stock at time = T at strike price K.
- Call option on a stock: a contract written today, which gives the holder the right but not the obligation to buy a stock at time t=T at strike price K.

Terminology

- The party that has agreed to buy has what is termed a long position
- The party that has agreed to sell has what is termed a short position

Profit from a Long Forward Position

Forward Price

- The forward price for a contract is the delivery price that would be applicable to the contract if were negotiated today (i.e., it is the delivery price that would make the contract worth exactly zero)
- The forward price may be different for contracts of different maturities

Arbitrage

- Derivative pricing models are based on noarbitrage principle
- What is an arbitrage opportunity?

Arbitrage Example

- A stock price is quoted as £100 in London and \$172 in New York
- The current exchange rate is 1.7500
- What is the arbitrage opportunity?

Gold: An Arbitrage Opportunity?

- Suppose that:
 - The spot price of gold is US\$300
 - The 1-year forward price of gold is US\$300
 - The 1-year US\$ interest rate is 5% per annum
- Is there an arbitrage opportunity?

Gold: An Arbitrage Opportunity?

If you own Gold

- Sell Gold for the spot price
- Enter the Forward Contract
- Invest the proceeds at interest rate 5% for one year
- Buy gold back after 1 year

Pricing Forward Contracts

Determine the strike that will make the value of the forward contract equal to zero

- Hedge the forward contract : borrow S_0 today and buy the stock
- At time=T: Sell stock for K to holder of the forward contract and pay S_0e^{rT}
- No arbitrage: $K = S_0 e^{rT}$

Options

• A call is an option to buy a certain asset by a certain date for a certain price (the strike price)

 A put is an option to sell a certain asset by a certain date for a certain price (the strike price)

Payoffs from Options

What is the Option Position in Each Case?

K =Strike price, $S_T =$ Price of asset at maturity

Specification of Exchange-Traded Options

- Expiration date
- Strike price
- European or American
- Call or Put (option class)

Terminology

Moneyness:

- At-the-money option
- In-the-money option
- Out-of-the-money option

Put-Call Parity

- Consider the following 2 portfolios:
 - Portfolio A: European call on a stock + PV of the strike price in cash
 - Portfolio C: European put on the stock + the stock
- Both are worth $MAX(S_T, K)$ at the maturity of the options
- They must therefore be worth the same today
 - This means that $c + Ke^{-rT} = p + S_0$

Ways Derivatives are Used

- To hedge risks
- To speculate (take a view on the future direction of the market)
- To lock in an *arbitrage* profit

American Options

- A European option can be exercised only at the end of its life
- An American option can be exercised at any time

American vs European Options

An American option is worth at least as much as the corresponding European

$$C \ge c$$

$$P \ge p$$

Notation

- c: European call option price
- p: European put option price
- S_0 :Stock price today
- K: Strike price
- T: Life of option
- σ: Volatility of stock price

- *C*: American Call option price
- P: American Put option price
- S_T :Stock price at option maturity
- D: Present value of dividends during option's life
- r: Risk-free rate for maturity T with cont comp

Effect of Variables on Option Pricing

Variable	\boldsymbol{c}	p	C	P
$egin{array}{c} S_0 \ K \end{array}$	<u>+</u>		<u>+</u>	
T	?	<u></u>	+	+
σ	+	+	+	+
r			+	
D		+		+