Assignment 11

PM522b Introduction to the Theory of Statistics Part 2

Due: April 26, 2018

- 1. CB 10.1
- 2. Using the definitions in the course slides, develop a consistent estimator for the binomial parameter p.
- 3. Are the methods of moments estimators for $N(\mu, \sigma^2)$ (both parameters) consistent?
- 4. CB 10.3
- 5. From class, $X \sim \text{Gamma}(4, \theta)$, show that the MLE is efficient for θ , and what is the asymptotic distribution of $\sqrt{n}(\hat{\theta}_{mle} \theta)$?
- 6. Let $X_1, ... X_n$ be a random sample from $N(\mu, \sigma^2)$, both parameters unknown. Given $S^{*2} = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2 = \frac{n-1}{n} S^2$:
 - 1. Show S^{*2} is asymptotically unbiased.
 - 2. Find the asymptotic relative efficiency of S^{*2} and S^{2} .
 - 3. Compare the MSE of the two estimators and their asymptotic behaviour.
- 7. Suppose $X_1,...,X_m$ and $Y_1,...,Y_{2m} \sim \text{Exp}(1)$. Define $\bar{X}_m = \sum_{i=1}^m X_i/m$ and $\bar{Y}_{2m} = \sum_{i=1}^{2m} Y_i/2m$. Let

$$B_m = \frac{\bar{X}_m}{\bar{X}_m + 2\bar{Y}_{2m}}$$

- a. Show that B_m converges in probability to 1/3 as $m \to \infty$.
- b. Derive the moment generating function of $\bar{X}_m \bar{Y}_{2m}$.
- c. Show that $\sqrt{m}(\bar{X}_m \bar{Y}_{2m})$ converges in distribution to a normal random variable with mean 0 and variance 3/2.
- d. Derive the asymptotic distribution of $\sqrt{m}(B_m 1/3)$.