Nonlocal UFL: Finite elements for Helmholtz equations with a nonlocal boundary condition

Robert Kirby¹ Andreas Klöckner² Ben Sepanski³
¹Baylor University
²University of Illinois at Urbana-Champaign
³University of Texas at Austin
25 March 2021

Order of Presentation

Motivating Problem: Helmholtz scattering

A nonlocal boundary condition

Nonlocal UFL

Numerical Results

Thanks to...

- NSF 1525697, 1909176
- ► The U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of Energy Computational Science Graduate Fellowship under Award Number DE-SC0021110
- ► Luke Olson (UIUC)

 Model waves reflecting off of obstacle Γ

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \mathbb{R}^d \setminus \Omega \\ -\frac{\partial u}{\partial n} = f, & \Gamma \end{cases}$$

 Model waves reflecting off of obstacle Γ

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \mathbb{R}^d \setminus \Omega \\ -\frac{\partial u}{\partial n} = f, & \Gamma \end{cases}$$

Without any spurious reflections from infinity

$$\lim_{r\to\infty} r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - i\kappa u \right) = 0$$

 Model waves reflecting off of obstacle Γ

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \mathbb{R}^d \setminus \Omega \\ -\frac{\partial u}{\partial n} = f, & \Gamma \end{cases}$$

Without any spurious reflections from infinity

$$\lim_{r\to\infty} r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - i\kappa u \right) = 0$$

In some finite domain of interest $\Omega' \subseteq \mathbb{R}^d \setminus \Omega'$ bounded by Σ .

Exterior scattering: computational problem

Problem we want to solve

$$\begin{cases} -\Delta u + \kappa^2 u = 0, \\ -\frac{\partial u}{\partial n} = f, \\ \lim_{r \to \infty} r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - i\kappa u \right) = 0 \end{cases}$$

Exterior scattering: computational problem

Problem we want to solve

$$\begin{cases} -\Delta u + \kappa^2 u = 0, \\ -\frac{\partial u}{\partial n} = f, \\ \lim_{r \to \infty} r^{(d-1)/2} \left(\frac{\partial u}{\partial r} - i\kappa u \right) = 0 \end{cases}$$

Problem we can actually solve

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ ?????, & \Sigma \end{cases}$$

Integral form of the solution

With K the Green's function, the *true* solution satisfies:

$$u(x) = D(u)(x) - S(\frac{\partial}{\partial n})(x), \quad x \in \Omega'$$

where

Integral form of the solution

With K the Green's function, the *true* solution satisfies:

$$u(x) = D(u)(x) - S(\frac{\partial}{\partial n})(x), \quad x \in \Omega'$$

where

$$D(u)(x) = \int_{\Gamma} \left(\frac{\partial}{\partial n} \mathcal{K}(x - y) \right) u(y) dy,$$

Integral form of the solution

With K the Green's function, the *true* solution satisfies:

$$u(x) = D(u)(x) - S(\frac{\partial}{\partial n})(x), \quad x \in \Omega'$$

where

$$D(u)(x) = \int_{\Gamma} \left(\frac{\partial}{\partial n} \mathcal{K}(x - y) \right) u(y) dy,$$

$$S(u)(x) = \int \mathcal{K}(x - y)u(y)dy$$

Exact boundary conditions

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ (i\kappa - \frac{\partial}{\partial n})(u - D(u) + S(f)) = 0, & \Sigma \end{cases}$$

Exact boundary conditions

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ (i\kappa - \frac{\partial}{\partial n})(u - D(u) + S(f)) = 0, & \Sigma \end{cases}$$

Variational Form:

$$a(u, v) = F(v)$$
 for all $v \in H^2(\Omega')$

Exact boundary conditions

$$\Sigma \begin{cases}
-\Delta u + \kappa^2 u = 0, & \Omega' \\
-\frac{\partial u}{\partial n} = f, & \Gamma \\
(i\kappa - \frac{\partial}{\partial n})(u - D(u) + S(f)) = 0, & \Sigma
\end{cases}$$

Variational Form:

$$a(u, v) = F(v)$$
 for all $v \in H^2(\Omega')$

$$a(u,v) = (\nabla u, \nabla v) - \kappa^2(u,v) - i\kappa \langle u,v \rangle_{\Sigma} + \langle \left(i\kappa - \frac{\partial}{\partial n}\right) D(u), v \rangle$$

Texas at Austin Science

Exact boundary conditions

$$\sum \begin{cases}
-\Delta u + \kappa^2 u = 0, & \Omega' \\
-\frac{\partial u}{\partial n} = f, & \Gamma \\
(i\kappa - \frac{\partial}{\partial n})(u - D(u) + S(f)) = 0, & \Sigma
\end{cases}$$

Variational Form:

$$a(u, v) = F(v)$$
 for all $v \in H^2(\Omega')$

$$a(u,v) = (\nabla u, \nabla v) - \kappa^2(u,v) - i\kappa \langle u,v \rangle_{\Sigma} + \langle \left(i\kappa - \frac{\partial}{\partial n}\right) D(u), v \rangle$$

$$F(v) = \langle f, v \rangle_{\Gamma} + \langle \left(i\kappa - \frac{\partial}{\partial n} \right) S(u), v \rangle_{\Sigma}$$

yof Texas at Austi

Exact boundary conditions

$$\begin{cases} -\Delta u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ (i\kappa - \frac{\partial}{\partial n})(u - D(u) + S(f)) = 0, & \Sigma \end{cases}$$

Variational Form:

$$a(u,v)=F(v)$$
 for all $v\in H^2(\Omega')$

$$a(u,v) = \underbrace{\left(\nabla u, \nabla v\right) - \kappa^2\left(u,v\right) - i\kappa\langle u,v\rangle_{\Sigma}}_{\text{local}} + \underbrace{\left(\left(i\kappa - \frac{\partial}{\partial n}\right)D(u),v\right)}_{\text{nonlocal}}$$

$$F(v) = \underbrace{\langle f, v \rangle_{\Gamma}}_{\text{local}} + \underbrace{\langle \left(i\kappa - \frac{\partial}{\partial n} \right) S(u), v \rangle_{\Sigma}}_{\text{nonlocal}}$$

yof Texas at Aust er Science

- ightharpoonup Problem: Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D

- ightharpoonup Problem: Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation

- ▶ *Problem:* Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation

▶ *Problem:* Naive evaluation of layer potentials is $\mathcal{O}(|\Gamma| \cdot |\Sigma|)$

- ightharpoonup Problem: Nonlocal operations have large support (all of Σ!)
 - This makes our stiffness matrix dense, especially in 3D
 - Solution: Firedrake's matrix-free evaluation

- ▶ *Problem:* Naive evaluation of layer potentials is $\mathcal{O}(|\Gamma| \cdot |\Sigma|)$
 - Solution: Use pytential to evaluate layer potentials with fast multiple methods (FMM)

 Build LayerPotential as a UFL external operator (in-development at firedrake)

- Build LayerPotential as a UFL external operator (in-development at firedrake)
 - √ Build pytential representation of domain of interest

- Build LayerPotential as a UFL external operator (in-development at firedrake)
 - ✓ Build pytential representation of domain of interest

- Build LayerPotential as a UFL external operator (in-development at firedrake)
 - ✓ Build pytential representation of domain of interest
 - √ Build pytential representation of function space

- Build LayerPotential as a UFL external operator (in-development at firedrake)
 - ✓ Build pytential representation of domain of interest
 - ✓ Build pytential representation of function space
 - ✓ Build efficient converter between pytential and firedrake representations

- Build LayerPotential as a UFL external operator (in-development at firedrake)
 - ✓ Build pytential representation of domain of interest
 - ✓ Build pytential representation of function space
 - ✓ Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation

- Build LayerPotential as a UFL external operator (in-development at firedrake)
 - √ Build pytential representation of domain of interest
 - ✓ Build pytential representation of function space
 - ✓ Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- Evaluation of $\langle (i\kappa \frac{\partial}{\partial n})D(u), v \rangle_{\Sigma}$

- Build LayerPotential as a UFL external operator (in-development at firedrake)
 - √ Build pytential representation of domain of interest
 - √ Build pytential representation of function space
 - ✓ Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- Evaluation of $\langle (i\kappa \frac{\partial}{\partial n})D(u), v \rangle_{\Sigma}$
 - \checkmark LayerPotential evaluates D(u) (using pytential under the hood)

- Build LayerPotential as a UFL external operator (in-development at firedrake)
 - √ Build pytential representation of domain of interest
 - √ Build pytential representation of function space
 - ✓ Build efficient converter between pytential and firedrake representations
 - Fully support automatic differentiation
- Evaluation of $\left\langle (i\kappa \frac{\partial}{\partial n})D(u), v \right\rangle_{\Sigma}$
 - \checkmark LayerPotential evaluates D(u) (using pytential under the hood)
 - √ Firedrake evaluates inner product

Solving the system with Firedrake

Extend UFL:

$$a(u,v) = (\nabla u, \nabla v) - \kappa^2(u,v) - i\kappa \langle u,v \rangle_{\Sigma} + \langle (i\kappa - \frac{\partial}{\partial n}) D(u)v \rangle_{\Sigma}$$

Solving the system with Firedrake

Extend UFL:

$$a(u,v) = (\nabla u, \nabla v) - \kappa^2(u,v) - i\kappa \langle u,v \rangle_{\Sigma} + \langle (i\kappa - \frac{\partial}{\partial n}) D(u)v \rangle_{\Sigma}$$

Will be written as:

Solving the system with Firedrake

Extend UFL:

$$a(u,v) = (\nabla u, \nabla v) - \kappa^2(u,v) - i\kappa \langle u,v \rangle_{\Sigma} + \langle (i\kappa - \frac{\partial}{\partial n}) D(u)v \rangle_{\Sigma}$$

Can currently be written as:

Numerical results: 2D

Numerical results: 2D

Preconditioning: LU of local part

Preconditioning: LU of local part

Preconditioning: PyAMG

► If we can find a good preconditioner for the local problem, we get a good preconditioner for the nonlocal problem

Preconditioning: PyAMG

- ► If we can find a good preconditioner for the local problem, we get a good preconditioner for the nonlocal problem
- PyAMG: Precondition with plane waves

Future work

Coming soon: automatic differentiation of LayerPotentials through UFL

Future work

Coming soon: automatic differentiation of LayerPotentials through UFL

Coming soon: VolumePotentials in UFL

Future work

 Coming soon: automatic differentiation of LayerPotentials through UFL

Coming soon: VolumePotentials in UFL

- Leveraging nonlocal UFL to solve more FEM-BEM problems in Firedrake!
 - Further investigation into preconditioners

Thank you!

Questions?

► Perfectly Matched Layers:

$$\begin{cases} -\nabla \cdot \beta(x) \nabla u + \kappa^2 u = 0, & \Omega \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ u = 0, & \Sigma \end{cases}$$

► Perfectly Matched Layers:

$$\begin{cases} -\nabla \cdot \beta(x) \nabla u + \kappa^2 u = 0, & \Omega \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ u = 0, & \Sigma \end{cases}$$

 $\beta = I \text{ in } \Omega'$

► Perfectly Matched Layers:

$$\begin{cases} -\nabla \cdot \beta(x) \nabla u + \kappa^2 u = 0, & \Omega' \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ u = 0, & \Sigma \end{cases}$$

- $\Sigma \qquad \triangleright \quad \beta = I \text{ in } \Omega'$
 - ightharpoonup eta is complex-valued, eats waves in $\Omega_{\mathcal{S}}$

► Perfectly Matched Layers:

$$\begin{cases} -\nabla \cdot \beta(x) \nabla u + \kappa^2 u = 0, & \Omega \\ -\frac{\partial u}{\partial n} = f, & \Gamma \\ u = 0, & \Sigma \end{cases}$$

- $ightharpoonup \beta = I \text{ in } \Omega'$
- ightharpoonup eta is complex-valued, eats waves in $\Omega_{\mathcal{S}}$
- Solution is right in Ω'

Perfectly Matched Layers:

$$\begin{cases}
-\nabla \cdot \beta(x)\nabla u + \kappa^2 u = 0, & \Omega' \\
-\frac{\partial u}{\partial n} = f, & \Gamma \\
u = 0, & \Sigma
\end{cases}$$

- $\triangleright \beta = I \text{ in } \Omega'$
- ightharpoonup eta is complex-valued, eats waves in $\Omega_{\mathcal{S}}$
- **Solution** is right in Ω'
- Solvers are a pain!

ightharpoonup a is a bounded bilinear form on $H^1 \times H^1$

- ▶ *a* is a bounded bilinear form on $H^1 \times H^1$
- \triangleright F is a bounded linear functional on H^1

- \triangleright a is a bounded bilinear form on $H^1 \times H^1$
- \triangleright F is a bounded linear functional on H^1
- ▶ Gårding inequality. There exist M and an $\alpha > 0$ such that

$$Re(a(u, u)) + M ||u||^2 \ge \alpha ||u||_{H^1(\Omega)}^2$$
.

- \triangleright a is a bounded bilinear form on $H^1 \times H^1$
- \triangleright F is a bounded linear functional on H^1
- lacktriangle Gårding inequality. There exist M and an lpha>0 such that

$$Re(a(u, u)) + M ||u||^2 \ge \alpha ||u||_{H^1(\Omega)}^2$$
.

For $h \le h_0$, we have optimal-order H^1 and L^2 error estimaes.

Numerical results: 2D, degree 2

Numerical results: 2D, degree 3

Numerical results: 2D, degree 4

Numerical results: 3D, degree 1

