Norm and Trace

Definition: Conjugate

Let $\alpha = r + s\sqrt{d} \in \mathbb{Q}(\sqrt{d})$. The *conjugate* of α is given by:

$$\alpha' = r - s\sqrt{d} \in \mathbb{Q}(\sqrt{d})$$

Note that when d < 0 then $\alpha' = \overline{\alpha}$.

Definition

Let $\alpha = r + s\sqrt{d} \in \mathbb{Q}(\sqrt{d})$. The *norm* of α is given by:

$$N(\alpha) = \alpha \alpha'$$

The *trace* of α is given by:

$$T(\alpha) = \alpha + \alpha'$$

Note that $N(\alpha)=r^2-ds^2$ and $T(\alpha)=2r$, and so $N(\alpha),T(\alpha)\in\mathbb{Q}.$

Properties

Let $\alpha = r + s\sqrt{d}, \beta = u + v\sqrt{d} \in \mathbb{Q}(\sqrt{d})$:

1).
$$T(\alpha + \beta) = T(\alpha) + T(\beta)$$

2).
$$N(\alpha\beta) = N(\alpha)N(\beta)$$

3).
$$N(\alpha) = 0 \iff \alpha = 0$$

4).
$$\alpha \neq 0 \implies \alpha^{-1} = \frac{\alpha'}{N(\alpha)}$$

5).
$$d < 0 \implies N(\alpha) \ge 0$$