

Minería de datos y Patrones

Version 2024-I

Bayes

[Capítulo 4]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

¿cómo separar las mandarinas de las naranjas?

Clasificación por tamaño: (las mandarinas son más pequeñas)

Extracción de Característica: Área en Pixeles

Naranja-01	19.327	Mandarina-01	13.221
Naranja-02	18.265	Mandarina-02	14.987
Naranja-03	17.456	Mandarina-03	15.321
Naranja-04	19.341	Mandarina-04	15.987
Naranja-05	16.342	Mandarina-05	16.345
Naranja-06	16.987	Mandarina-06	15.965
Naranja-07	17.001	Mandarina-07	16.341
•	19.056	•	
Naranja-75	15.900	Mandarina-50	13.439

Histogramas:

Histogramas:

Definiciones

 ω_1 Clase Mandarina

 ω_2 Clase Naranja

x Característica (área)

Definiciones

 ω_1 Clase Mandarina

 ω_2 Clase Naranja

x Característica (área)

 $p(x|\omega_1)$ Distribución de x para Mandarinas

 $p(x|\omega_2)$ Distribución de x para Naranjas

Dado el valor x (área), calculamos

- p_1 , la probabilidad de que sea ω_1 (mandarina)
- p_2 , la probabilidad de que sea ω_2 (naranja)

Clasificamos x como ω_1 si $p_1 > p_2$,

en caso contrario clasificamos ${\it x}$ como ω_2

Dado el valor x (área), calculamos

- p_1 , la probabilidad de que sea ω_1 (mandarina)
- p_2 , la probabilidad de que sea ω_2 (naranja)

Clasificamos x como ω_1 si $p_1 > p_2$,

en caso contrario clasificamos x como ω_2

$$p(\omega_1|x)>p(\omega_2|x) \rightarrow \omega_1$$
 (mandarina)

else
$$\rightarrow \omega_2$$
 (naranja)

$$\mathsf{p}_1 = p(\omega_1|x)$$

$$p_2 = p(\omega_2|x)$$

$$p(\omega_1|x)>p(\omega_2|x)
ightarrow \omega_1$$
 (mandarina) else $ightarrow \omega_2$ (naranja)

$$p(\omega_1|x) = \frac{p(\omega_1)p(x|\omega_1)}{p(x)}$$

$$p(\omega_2|x) = \frac{p(\omega_2)p(x|\omega_2)}{p(x)}$$

Histogramas:

PDF:

$$p(\omega_1|x)>p(\omega_2|x)
ightarrow \omega_1$$
 (mandarina) else $ightarrow \omega_2$ (naranja)

$$p(\omega_1|x) = \frac{p(\omega_1)p(x|\omega_1)}{p(x)}$$

$$p(\omega_2|x) = \frac{p(\omega_2)p(x|\omega_2)}{p(x)}$$

EJEMPLO: Una clase de cocina que imparte la municipalidad

Se inscriben 100 personas

- 60 hombres (40 jóvenes y 20 adultos)
- 40 mujeres (30 jóvenes y 10 adultos)

$$P(H)P(J|H) = P(J)P(J|H)$$
$$\frac{60}{100} \frac{40}{60} = \frac{70}{100} \frac{40}{70}$$

$$p(\omega_1|x)>p(\omega_2|x)
ightarrow \omega_1$$
 (mandarina) else $ightarrow \omega_2$ (naranja)

$$\frac{p(\omega_1)p(x|\omega_1)}{p(x)} > \frac{p(\omega_2)p(x|\omega_2)}{p(x)}$$

$$p(\omega_1|x)>p(\omega_2|x)
ightarrow \omega_1$$
 (mandarina) else $ightarrow \omega_2$ (naranja)

$$p(\omega_1)p(x|\omega_1) > p(\omega_2)p(x|\omega_2)$$

ALGORITMO:

$$p(\omega_1)p(x|\omega_1)>p(\omega_2)p(x|\omega_2) \to \omega_1$$
 (mandarina) else $\to \omega_2$ (naranja)

Definiciones

$$\omega_2$$
 Clase Naranja

$$p(x|\omega_1)$$
 Distribución de x para Mandarinas

$$p(x|\omega_2)$$
 Distribución de x para Naranjas

$$p(\omega_1)$$
 Probabilidad a priori de clase ω_1

$$p(\omega_2)$$
 Probabilidad a priori de clase ω_2

ALGORITMO:

$$p(\omega_1)p(x|\omega_2) \not\sim p(\partial_2)p(x|\omega_2) \to \omega_1$$
 (mandarina) else $\to \omega_2$ (naranja)

Cómo calcular la PDF en 1D? KDE

PASO 1: Histograma

PASO 2: Convolución con una Gaussiana (Kernel)

PASO 2: Convolución con una Gaussiana (Kernel)

PASO 2: Convolución con una Gaussiana (Kernel)

PASO 3: División por el área

PDF en 1D

Cómo calcular la PDF en 2D? KDE

PDF en 2D

Muestras PDF

Naïve Bayes

$$p(x_1, \dots, x_n | \omega_0) = p(x_1 | \omega_0) p(x_2 | \omega_0) \dots p(x_n | \omega_0)$$

$$p(x_1, \dots, x_n | \omega_1) = p(x_1 | \omega_1) p(x_2 | \omega_1) \dots p(x_n | \omega_1)$$

Eventos independientes

Naïve Bayes

$$p(x_1, \dots, x_n | \omega_0) = p(x_1 | \omega_0) p(x_2 | \omega_0) \dots p(x_n | \omega_0)$$

$$p(x_1, \dots, x_n | \omega_1) = p(x_1 | \omega_1) p(x_2 | \omega_1) \dots p(x_n | \omega_1)$$

Eventos independientes