UTN-FRC - Electrónica de Potencia - Trabajo Práctico Nro. 4

Calculo de los tiristores

Para diseñar circuitos convertidores es necesario determinar las especificaciones de los tiristores.

Los tiristores se especifican mediante la corriente promedio, la corriente RMS, la corriente pico y el voltaje de pico inverso. En el caso de los rectificadores controlados las especificaciones de corriente de los dispositivos dependen del ángulo de retraso (o de control).

Las especificaciones de los dispositivos de potencia deben diseñarse para la condición del peor caso, que ocurre cuando el convertidor entrega el voltaje de salida promedio máximo.

Para elegir el modelo de tiristor a utilizar partimos de las especificaciones de diseño de una Imax = 100A y una Vmax = 311V.

$$I_{avg} = \frac{I_{max}}{g} = \frac{100 \text{ A}}{3} = 33,33 \text{ A}$$

$$I_{RMS} = \frac{I_{max}}{\sqrt{3}} = \frac{100 \text{ A}}{\sqrt{3}} = 57,73 \text{ A}$$

$$V_{RRM} = 2V_{max} \cos(\frac{\pi}{6}) = 540v$$

Teniendo en cuenta esto se selecciona el SEMIPACK de Semikron SKKT57/08E que es un modelo con dos tiristores conectados en serie, por lo que se necesitarán tres de estos módulos.

SKKT 57

Thyristor / Diode Modules SEMIPACK 1 (93x20x30)

Part Number:	07897321; 07897331; 07897341;			
	07897351; 07897361			
Product Status:	In production			
Housing:	SEMIPACK 1			
(LLxBBxHH):	93x20x30			
Switches:	2			
V _{RRM} / V _{DRM} in V:	800-1800			
I _{TAV} / I _{FAV} in A:	50			
I _{FSM} / I _{TSM} in A:	1250			

Correcciones:

Calculo del ángulo de retardo α

Como ya se mencionó en el marco teórico, al controlar el instante en el cual se dispara al tiristor, la tensión media puede controlarse en forma continua desde cero hasta un valor máximo. Lo mismo se cumple para la potencia suministrada por la fuente de CA.

El voltaje medio de CC , V_{avg} , para un rectificador trifásico controlado esta dado por la siguiente ecuación:

$$V_{avg} = \frac{3\sqrt{3}V_{max}}{\pi} \cos(\alpha)$$

En las especificaciones de diseño se estableció que VAV G debe variar entre 150V - 300V y que Vmax tiene un valor de 380V. Despejando de la ecuación anterior el angulo de disparo se tiene que:

$$\alpha = \cos^{-1}\left(\frac{\pi \cdot V_{avg}}{3\sqrt{3}V_{max}}\right)$$

Evaluando esta función para V_{avg} = 150V y V_{avg} = 300V se obtiene que los tiristores deberán dispararse con un angulo de retardo de 73,045° y 54, 323° respectivamente, es decir:

54, 323°≤
$$\alpha$$
 ≤73,045°

Circuitos de protección

El circuito debe poseer protección contra sobre corrientes o cortocircuitos. Esta protección se implementará mediante fusibles para cada fase. El fusible debe elegirse de tal manera que la corriente nominal del mismo sea igual a la corriente de fase en funcionamiento normal más un 20%, como margen de seguridad. Además, el fusible debe tener un I^2t menor que el tiristor a proteger, de tal manera que se rompa el fusible antes que el dispositivo semiconductor.

UTN-FRC - Electrónica de Potencia - Trabajo Práctico Nro. 4

La hoja de datos del tiristor seleccionado índica:

Para 25°C: *I*2*t*=11000 *A*²*s* Para 125°C: *I*2*t*=8000 *A*²*s*

El fabricante Semikrom nos brinda una tabla con los distintos fusibles disponibles.

Fuses 000

Types ¹⁾ visual indication	Types for micro- switch 2)	Size	Nom. current	Nom. voltage U _N	i ² t at U _N	Losses at I _N
			Α	V	A ² s	W
30119541	30140923	000	32	660	270	10
30119551	30140924		40		460	12
30119561	30140925		50		730	14
30138821	30140926		63		1.500	16
30119571	30140927		80		2.500	21
30119581	30140928		100		4.200	23
30119591	30140929		125		8.900	26
30119601	30140931		160		16.000	31
30140914	30140932		200		31.500	36
30140915	30140933		250		52.000	45
30140916	30140934		315		82.000	58
30140948	30140935		350	500	110.000	58
30140917	30140936		400	300	160.000	66

¹⁾ total height H = 38 ,5 mm

El fusible adoptado es el 30119551, con $I^2t = 460A^2$ y $I_N = 40$.

²⁾ μ-switch 30137972, total height G = 55 mm

Carga resistiva e inductiva:

El circuito a implementar es el mismo, únicamente que agregamos una inductancia de 10mH en serie con la resistencia. Para un ángulo de α =135° tendremos:

Tensión de salida:

