ML LAB 07 - LOGISTIC REGRESSION

Name: Tulasi Raman R

Register Number: 21MIS1170

Importing Libraries

```
In [40]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import confusion_matrix, classification_report
         from sklearn.preprocessing import StandardScaler
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import confusion_matrix
         from sklearn.metrics import accuracy_score
In [41]: df = pd.read_csv('Student-Pass-Fail-Data.csv')
         df.head()
Out[41]:
             Self_Study_Daily Tution_Monthly Pass_Or_Fail
          0
                                         27
          1
          2
                          7
                                         26
          3
                                         29
          4
                          3
                                         42
```

In [42]: df.describe()

Out[42]:		Self_Study_Daily	Tution_Monthly	Pass_Or_Fail
	count	1000.000000	1000.000000	1000.000000

count	1000.000000	1000.000000	1000.000000
mean	5.744000	31.230000	0.499000
std	2.121076	5.976355	0.500249
min	0.000000	20.000000	0.000000
25%	4.000000	26.000000	0.000000
50%	6.000000	30.000000	0.000000
75%	7.000000	36.000000	1.000000
max	10.000000	50.000000	1.000000

In [43]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 3 columns):

#	Column	Non-Null Count	Dtype
0	Self_Study_Daily	1000 non-null	int64
1	Tution_Monthly	1000 non-null	int64
2	Pass_Or_Fail	1000 non-null	int64

dtypes: int64(3)
memory usage: 23.6 KB

Data Visualization

```
In [44]: sns.countplot(x='Pass_Or_Fail', data=df)
```

Out[44]: <Axes: xlabel='Pass_Or_Fail', ylabel='count'>

In [45]: sns.displot(x='Self_Study_Daily', data=df, color='red', kde=True)

Out[45]: <seaborn.axisgrid.FacetGrid at 0x1a8a79bef60>


```
In [46]: sns.displot(x='Tution_Monthly', data=df, color='red', kde=True)
```

Out[46]: <seaborn.axisgrid.FacetGrid at 0x1a8a79cda90>

Splitting the data into independent(X) and dependent(y) variables

```
In [47]: X = df.iloc[:,[0,1]]
          X.head()
Out[47]:
              Self_Study_Daily Tution_Monthly
          0
                            7
                                            27
          1
                            2
                                            43
                            7
          2
                                            26
          3
                            8
                                            29
                            3
                                            42
          4
```

```
In [48]: y = df.iloc[:, 2]
y.head()
```

```
Out[48]: 0 1
1 0
2 1
3 1
4 0
Name: Pass_Or_Fail, dtype: int64
```

Feature scaling

Splitting the dataset into train and test sets

Fitting the logistic regression model and predicting test results

Out[53]:		Actual	Predicted
	507	0	1
	818	1	1
	452	0	0
	368	1	1
	242	1	1
	•••		
	459	0	0
	415	1	1
	61	1	1
	347	0	0
	349	0	0

300 rows × 2 columns

Coefficient and Intercept

```
In [54]: classifier.coef_
Out[54]: array([[ 3.82639026, -3.54178377]])
In [55]: classifier.intercept_
Out[55]: array([-2.68767548])
```

Evaluating the model

```
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
```

Out[58]: Text(0.5, 23.52222222222, 'Predicted label')

Confusion matrix

In [59]: accuracy_score(y_test,y_pred)

Out[59]: 0.95333333333333334

Classification Report

In [60]: target_names = ['Fail', 'Pass']
 print(classification_report(y_test, y_pred,target_names=target_names))

	precision	recall	f1-score	support
Fail	1.00	0.91	0.95	153
Pass	0.91	1.00	0.95	147
accuracy			0.95	300
macro avg	0.96	0.95	0.95	300
weighted avg	0.96	0.95	0.95	300

Model Interpretation

Why logistic regression?

- Here we have a large dataset of where the predictor variables and the log-odds of the response variable are in linear relationship.
- Dependant variable is a binary datatype and independant variables have very little or no multicollinearity.

Model Observation:

- Coefficient i.e, the Slope of the line is [3.82639026, -3.54178377], which means the change of "Self_Study_Daily" for a unit, X increases and the change of "Tution_Monthly" for a unit, X decreases.
- The intercept represents the value of the dependent variable when all independent variables are zero. For logistic regression model here, the intercept of -2.68767548 would represent the estimated pass percentage for students with zero years of experience will result in fail.
- From the classification report we can see that the precision and recall for class "Fail" is 1.00 and 0.91 respectively meaning that the 100% of the predictions made by the model is correct and 91% of the relevant data points were correctly identified. Similarly for class "Pass" precision is 91% and recall is 100%. Means the preprocessed dataset is well trained and processed such that it yeilds about 95% precise outcome.
- And as for the accuracy of the model it is 0.95 i.e., 95% of outcomes were predicted correct.