Range-to-Range Reg<u>ression</u>

Propagating Uncertainty in Environment Model

> Zoe Shao, L.A.C.E. Lab Advisor: Erin Talvitie

Reinforcement Learning

Goal: reach the top in fewest frames

Source: Gym Documentation - Acrobot

What is Reinforcement Learning (RL)?

How does the agent learn?

How does the agent learn?

Planning

3-Step Planning

Planning Helps

Planning with Perfect Model

Sample From Real **Environment**

Torque 1

Torque 1

Est. Torque 1: 90 Torque 0: 60 Torque -1:90

Est. Torque 1: 80 Torque 0:90 Torque -1:100

Torque 0: 60 Torque -1:95 Torque 1: 100 Torque 0: 45 Torque -1:60

Est.

Est.

Torque 1: 90

Torque 0: 60

Torque -1:90

Torque 1

Est. Torque 1: 80 Torque 0:90 Torque -1:100

Torque -1:95

Est.

Torque 1: 100

Torque 0

Est. Torque 1: 80 Torque 0: 70 Torque -1:90

Est. Torque 1: 90 Torque 0: 70 Torque -1:80

Testing Hypothesis

- → State and target can be used as uncertainty signal to measure how confident model is
- → Oracle experiment
 - Assume differences are known and weigh experiences differently accordingly.
 - For one-step state error, we accumulate them through planning

Testing Hypothesis

- → State and target can be used as uncertainty signal to measure how confident model is
- → Oracle experiment
 - Assume differences are known and weigh experiences differently accordingly
 - ◆ For one-step state error, we accumulate them through planning

Testing Hypothesis

- → State and target can be used as uncertainty signal to measure how confident model is
- → Oracle experiment
 - Assume differences are known and weigh experiences differently accordingly
 - For one-step state error, we accumulate them through planning

New Idea: Planning With Range

Approach: Neural Networks with Quantile Regression

Approach: Neural Networks with Quantile Regression

Source: <u>Ready to Score 1500+ on S.A.T? - Boost Your S.A.T Score Quickl</u>y

Approach: Neural Networks with Quantile Regression

Preliminary Results

Preliminary Results

Reference

- → MBRL Wishlist, Talk by Erin Talvitie
- → Sutton, Richard S., and Andrew G. Barto.
 Reinforcement Learning: An Introduction. The MIT Press, 2012.
- → Abbas, Zaheer, et al. "Selective Dyna-Style Planning under Limited Model Capacity." arXiv.Org, 7 Mar. 2021, arxiv.org/abs/2007.02418.