Chapter 6 The Link Layer and LANs

Courtesy to the textbooks' authors and Pearson Addison-Wesley because many slides are adapted from the following textbooks and their associated slides.

Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach", 7th Edition, Pearson, 2016.

Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach", 8th Edition, Pearson, 2020.

All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - · addressing, ARP
 - Ethernet
 - switches
- VLANs
- link virtualization: MPLS
- data center networking
- a day in the life of a web request

Link layer: introduction

- Terminology
 - host and router are layer-3 nodes
 - switch (and bridge) is layer-2
 - frame is layer-2 packet
- link layer is responsible to transfer packets from one layer-3 node to another via a link (subnet)
 - wired
 - wireless
 - LAN

Link layer: context

- datagram transferred by different link-layer protocols over different links:
 - e.g., WiFi on first link, Ethernet on next link

- each link protocol provides different services
 - e.g., may or may not provide reliable data transfer over link

3

Link layer: services

- framing
 - encapsulate datagram into frame
 - · adding header, trailer
 - "MAC" addresses in frame headers identify source, destination
 - MAC address is different from IP address!
- channel access (multiple access, MAC)
 - if shared medium
- reliable delivery in link layer
 - we already know how to do this!
 - · seldom used on low bit-error links
 - wireless links: high error rates
 - Q: why both link-level and end-to-end reliability?

datagram | | H_{link} | datagram | T_{link}

Link layer: services (more)

- flow control:
 - · pacing between adjacent sending and receiving nodes
- error detection:
 - errors caused by signal attenuation, noise.
 - retransmits or drops frame, if receiver detects errors
- error correction:
 - receiver identifies and corrects bit error(s) without retransmission
- half-duplex and full-duplex:
 - with half duplex, nodes at both ends of link can transmit, but not at same time

5

Where is the link layer implemented?

- in each host
- link layer implemented in network interface card (NIC)
 - (Ethernet, WiFi) card or chip
 - implements link+physical layers
- attaches into host's system buses
- combination of hardware, software, firmware

Interfaces communicating

sending side:

- encapsulates datagram in frame
- adds error checking bits, reliable data transfer, flow control, etc.

receiving side:

- looks for errors, reliable data transfer, flow control, etc.
- extracts datagram, passes to upper layer at receiving side

6

Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - · addressing, ARP
 - Ethernet
 - switches
 - VLANs
- link virtualization: MPLS
- data center networking
- a day in the life of a web request

Error detection

EDC: error detection and correction bits (e.g., redundancy)
D: data protected by error checking, may include header fields

Error detection has its capability

- protocol may miss some errors, but rarely
- larger EDC field yields better detection
 - same as correction

9

Parity checking

single bit parity:

detect single bit errors

Even parity: set parity bit so there is an even number of 1's

no errors: 10101|1 11110|0 01110|1

101010

two-dimensional bit parity:

detect and correct single bit errors

detected and correctable single-bit error:

UDP/TCP/IP checksum (review)

Goal: detect errors (i.e., flipped bits) in transmitted segment

sender:

- treat contents of UDP segment (including UDP header fields and IP addresses) as sequence of 16-bit integers
- checksum: addition (one's complement sum) of segment content
- checksum value put into UDP checksum field

receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - not equal error detected
 - equal no error detected. But maybe errors nonetheless? More later

10

11

Cyclic Redundancy Check (CRC)

- error-detection code more powerful than TCP/UDP/IP's checksum
 - used by Ethernet and WiFi
 - can detect all burst errors less than r+1 bits
- both sender and receiver know G in advance:
 - G: generator of length r+1 bits
- sender computes the CRC bits R and transmits <D,R>

• D: data bits r CRC bits

- $R = D \cdot 2^r \% G = \langle D,00...0 \rangle \% G$ is the remainder
 - the CRC bits R is of length r bits
 - use bitwise-XOR for addition/subtraction
 - <D,R> is divisible by G
- receiver checks out whether <D,R> % G = 0
 - non-zero remainder → error detected
 - zero remainder → either no error or error not detected

Cyclic Redundancy Check (CRC): example

- •G = 1001 and D = 101110
 - in binary representations
 - r = 3 in this example
- sender computes the remainder R
 - R = D·2^r % G = <D,00...0> % G

13

r CRC bits