Homework 10

Peyton Hall

03/28/2024

rm(list=ls())

library(rvest)

```
# 1. This website https://en.wikipedia.org/wiki/2016_Summer_Olympics recorded
# the medal counts for the 2016 Summer Olympics. Scrape the table 11 to find
# the medal counts

url <- "https://en.wikipedia.org/wiki/2016_Summer_Olympics"
page <- read_html(url) # Read the HTML content
# Scrape the table with the caption "2016 Summer Olympics medal table"
table_11 <- page %>%
html_nodes("table.wikitable:contains('2016 Summer Olympics medal table')") %>%
html_table()
table_11
```

```
## [[1]]
## # A tibble: 12 x 6
##
      Rank
                           NOC
                                                 Gold Silver Bronze Total
##
                           <chr>
      <chr>
                                                <int>
                                                        <int>
                                                               <int> <int>
##
   1 1
                           United States
                                                   46
                                                           37
                                                                  38
                                                                        121
## 2 2
                           Great Britain
                                                   27
                                                           23
                                                                  17
                                                                         67
## 3 3
                           China
                                                    26
                                                           18
                                                                  26
                                                                         70
## 4 4
                           Russia
                                                    19
                                                                  20
                                                           17
                                                                         56
##
  5 5
                                                   17
                                                           10
                           Germany
                                                                  15
## 66
                           Japan
                                                    12
                                                            8
                                                                  21
                                                                         41
##
   7 7
                           France
                                                    10
                                                           18
                                                                  14
                                                                         42
## 88
                           South Korea
                                                    9
                                                            3
                                                                   9
                                                                         21
## 9 9
                                                    8
                                                                         28
                           Italy
                                                           12
                                                                   8
## 10 10
                                                                         29
                           Australia
                                                    8
                                                                  10
                                                           11
## 11 11-86
                           Remaining NOCs
                                                  124
                                                          150
                                                                 181
                                                                        455
## 12 Totals (86 entries) Totals (86 entries)
                                                  306
                                                          307
                                                                 359
                                                                        972
```

```
# 2. A data analyst received permission to post a data set that was scraped from
# a social media site. The full data set included name, screen name, email
# address, geographic location, IP address, demographic profiles, and
# preferences for relationships.
# a. Why might this be a possible ethical issue?
# This could be a possible ethical issue because the data was scraped without
# consent from the users of the social media site. Users typically expect their
```

```
# information to be used only within each platform for specific purposes.
# b. Can the de-identified data be re-identified?
# The de-identified data might still be re-identified. Even if the original data
# was stripped of direct identifiers like names or e-mail addresses, other
# identifiers like geographic location or IP address, when combined with
# external data sources, could potentially lead to the re-identification. In
# summary, while de-identification can reduce the risk, it may not completely
# eliminate the possibility of re-identification.
```

```
# 3. A company uses a machine learning algorithm to determine which job

# advertisement to display for users searching for technology jobs. Based on

# past results, the algorithm tends to display lower-paying jobs for women

# than for men.

# c. What was the ethical issue?

# The ethical issue is that the opposing genders are being shown non-equivalent

# job salaries on average. For jobs which require the same task, it would be

# most logical for the same pay to be provided regardless of gender.

# d. What can we do to avoid any ethical issues?

# Ensure the algorithm is evaluated and adjusted properly. Ensure that the

# training data used for the algorithm is diverse and representative of the

# population it serves. Implement regular monitoring and auditing processes to

# assess the algorithm's performance and detect any biases or discriminatory

# patterns.
```

```
# 4. A reporter carried out a clinical trial of chocolate where a small number
    of overweight subjects (16 subjects) who had received medical clearance and
     consented were randomized to either eat dark chocolate or milk chocolate.
    They were followed for a period, and their change in weight was recorded
#
    from the bass line until the end of the study. They found that there is a
    significant weight gain difference between the dark chocolate group and the
   milk chocolate group. This study was publicized and received coverage from
   a number of magazines and television programs.
# e. What can be the potential problems with this study?
# The potential problems could include a small sample size, a lack of diversity,
# randomization issues (i.e. in terms of the subjects being from the same
# institution), publication bias, and generalizations due to the subjects
# having already had issues prior to receiving medical clearance.
# f. How could we implement this study to avoid this issue?
# Increase the sample size, ensure there is diversity (for the sake of data),
# randomize each subject to a different treatment group (i.e. dark or milk
# chocolate), and potentially extend the duration of the study.
```

```
# 5. Use the data Donation Data on D2L to complete a) to c). The variable

# Donation ID shows the ID of each donation. The variable Type shows the type

# of the donation. The variable Status shows whether a donation is complete

# or failed, and the last variable shows the donation amount.

# Complete the following and submit your Excel file to the drop box.

# a) Create a pivot table to show the average donation amount of each type.

# b) Create a pivot graph to show the average donation amount of each type.

# c) Create a pivot table to keep only the completed donations and show the average donation of each type.
```

6. Use the USTrading2021 data on D2L. The data recorded the trading between

the U.S. and other countries during 2021. The variables, trade flow, and

trade flow code, represent if the trading is an import or export or a

re-export. The variable Partner is the country traded with the United

States, and the Trade Value is the amount of trade between that country and

the U.S. Use the data to do the following:

a) Create a pivot table to show the mean import trading values for each

Partner country, using the filter to keep only the imports. Filter to

remove world and blank as Partners.

b) Sort the trade values from the largest to the smallest using the pivot

table in a) to only show the top 3 countries.

c) Create a pivot graph to show the mean import trading values for each

Partner country. Do not include world or blank.

3