BRAC University

Department of Computer Science and Engineering

Midterm Exam
Full Marks: 15 x 3 = 45
Time: 1 hour 30 minutes
Date: 9th September 2022

Semester: **Summer 2022** Course Code: **CSE460** Course Title: **VLSI Design**

Set A

Student ID:	Name:	Section:
		ı

[Answer any **THREE** questions out of **FOUR**. Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]

1. (CO4, CO5)

Mr. Xin Chao is a VLSI engineer in a renowned chip manufacturing company. He sets the physical positions of all the components on a chip to optimize the delay and power consumption. Suppose, Mr. Xin is working on a chip that consists of 6 nodes illustrated in the figure below. Firstly, he partitions the nodes into two equal-sized blocks, and then, using the Kernighan-Lin algorithm, he minimizes the number of connections between the blocks. After floor-planning, placement, and maintaining all other design considerations, Mr. Xin can dispatch the chip to the fabrication unit.

The dotted line in the figure represents the initial partitioning with A (2,3,4) & B (1,5,6) blocks. For the *first* iteration, answer the following:

(a)	Draw the corresponding graph representation of the above circuit.	
(b)	Find the initial cut cost.	2
(c)	Calculate the cost of each node.	3
(d)	d) Evaluate necessary gains (Δ g) for the first iteration.	
(e)	Perform the first swap and compare the new cut cost with the initial one.	4

Consider a CMOS inverter in a 45 nm 1 V process, where the pMOS transistor has 3 times the width of the nMOS transistor. The ratio of electron mobility to hole mobility is 3:2 , and the threshold voltages are $IV_{tp}I = V_{tn} = 0.2 \text{ V}$. Assume all other parameters are the same for both of the transistors.				
(a)	Calculate the beta ratio (r) of the inverter.			
(b)	Determine the inverter threshold voltage (V _{inv}).			
(c)	Draw an approximate transfer characteristic curve (V _{out} vs V _{in}) for the inverter.			
(d)	Plot the I _{ds} vs. V _{ds} curve for the nMOS using the following values of V _{ds} . Given, V _{gs} = 0.4 V, and $β_n$ = 120 μA/V ² . Evaluate V _{ds(sat)} and show the value of V _{ds(sat)} in the plot. [6]			
	V _{ds} 0.10 V 0.15 V 0.20 V 0.25 V			
(a)	Identify and design the CMOS circuit (indicate both nMOS and pMOS networks). Determine the individual transistor widths k_{nMOS} and k_{pMOS} to achieve the effective rise and fall resistance equal to that of a unit inverter, R , in the worst case.			
(10)	·	2		
(c)	effective rise and fall resistance equal to that of a unit inverter, R , in the worst	5		
	effective rise and fall resistance equal to that of a unit inverter, R , in the worst case.			

