Suites de fonctions

I. Limite uniforme d'un produit

Tout se fait avec l'inégalité triangulaire, parfois en repassant à une majoration pour tout x.

II. Étude du type de convergence (banque CCP MP)

1) Soit $g_n: X \longrightarrow \mathbb{C}$ et $g: X \longrightarrow \mathbb{C}$. Dire que (g_n) converge uniformément vers g sur X signifie que :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}/\forall n \in \mathbb{N}, n \geqslant N \Longrightarrow \forall x \in X, |g_n(x) - g(x)| \leqslant \varepsilon.$$

Ou encore, (g_n) converge uniformément vers g sur $X \iff \lim_{n \to +\infty} \left(\sup_{x \in X} |g_n(x) - g(x)| \right) = 0.$

2) a) On pose pour tout $x \in \mathbb{R}$, $f_n(x) = \frac{n+2}{n+1} e^{-nx^2} \cos(\sqrt{n}x)$. Soit $x \in \mathbb{R}$. Si x = 0, alors $f_n(0) = \frac{n+2}{n+1}$, donc $\lim_{n \to +\infty} f_n(0) = 1$. Si $x \neq 0$, alors $\lim_{n \to +\infty} f_n(x) = 0$. En effet, $|f_n(x)| \underset{+\infty}{\sim} e^{-nx^2} |\cos(\sqrt{n}x)|$ et $0 \leqslant e^{-nx^2} |\cos(\sqrt{n}x)| \leqslant e^{-nx^2} \underset{n \to +\infty}{\longrightarrow} 0$.

On en déduit que (f_n) converge simplement sur \mathbb{R} vers la fonction f définie par :

$$f(x) = \begin{cases} 0 & \text{si} \quad x \neq 0 \\ 1 & \text{si} \quad x = 0 \end{cases}$$

- **b)** Pour tout $n \in \mathbb{N}$, f_n est continue sur $[0, +\infty[$ et f non continue en 0 donc (f_n) ne converge pas uniformément vers f sur $[0, +\infty[$.
- c) Soit a > 0. On a: $\forall x \in [a, +\infty[, |f_n(x) - f(x)| = |f_n(x)| \le \frac{n+2}{n+1} e^{-na^2}$ (majoration indépendante de x). Donc $||f_n - f||_{\infty} \le \frac{n+2}{n+1} e^{-na^2}$.

Par ailleurs, $\lim_{n\to+\infty} \frac{n+2}{n+1} e^{-na^2} = 0$ (car $\frac{n+2}{n+1} e^{-na^2} \underset{+\infty}{\sim} e^{-na^2}$). Donc (f_n) converge uniformément vers f sur $[a, +\infty[$.

d) On remarque que pour tout $n \in \mathbb{N}$, f_n est bornée sur $]0, +\infty[$ car pour tout $x \in]0, +\infty[$, $|f_n(x)| \leq \frac{n+2}{n+1} \leq 2$. D'autre part f est bornée sur $]0, +\infty[$ donc pour tout $n \in \mathbb{N}$

D'autre part, f est bornée sur $]0,+\infty[$, donc, pour tout $n\in\mathbb{N}$, $\sup_{x\in]0,+\infty[}|f_n(x)-f(x)|$ existe.

On a
$$|f_n(\frac{1}{\sqrt{n}}) - f(\frac{1}{\sqrt{n}})| = \frac{(n+2)e^{-1}\cos 1}{n+1}$$
 donc $\lim_{n \to +\infty} |f_n(\frac{1}{\sqrt{n}})| - f(\frac{1}{\sqrt{n}})| = e^{-1}\cos 1 \neq 0.$

$$\operatorname{Or} \sup_{\substack{x \in]0, +\infty[\\ n \to +\infty}} |f_n(x) - f(x)| \geqslant |f_n(\frac{1}{\sqrt{n}}) - f(\frac{1}{\sqrt{n}})|, \operatorname{donc} \sup_{\substack{x \in]0, +\infty[\\ n \to +\infty}} |f_n(x) - f(x)| \geqslant |f_n(x) - f(x)| \geqslant |f_n(x) - f(x)|$$

Donc (f_n) ne converge pas uniformément vers f sur $]0, +\infty[$.

III. Limite uniforme d'une suite de fonctions polynomiales

a) Pour = 1/2, il existe $N \in \mathbb{N}$ tel que $\forall n \ge N$, $||P_n - f||_{\infty} \le 1/2$ et donc $||P_n - P_N||_{\infty} \le 1$.

Seules les fonctions polynomiales constantes sont bornées sur \mathbb{R} donc $P_n - P_N$ est une fonction polynomiale constante. Posons λ_n la valeur de celle-ci.

b) $\lambda_n = P_n(0) - P_N(0) \to f(0) - P_N(0) = \lambda_\infty$. $P_n = P_N + P_n - P_N \xrightarrow{CS} P_N + \lambda_\infty$ donc par unicité de limite $f = P_N + \lambda_\infty$ est une fonction polynomiale.

IV. Interversion limite - intégrale sur un segment (banque CCP MP)

1) Pour $x \in [0,1]$, $\lim_{n \to +\infty} f_n(x) = (x^2 + 1)e^x$.

La suite de fonctions (f_n) converge simplement vers $f: x \mapsto (x^2 + 1)e^x$ sur [0, 1].

On a
$$\forall x \in [0, 1]$$
, $f_n(x) - f(x) = (x^2 + 1) \frac{x(e^{-x} - e^x)}{n + x}$,

et donc : $\forall x \in [0,1], |f_n(x) - f(x)| \leq \frac{2e}{n}$ (majoration indépendante de x). Donc $||f_n - f||_{\infty} \leq \frac{2e}{n}$. De plus, $\lim_{n\to+\infty}\frac{2e}{n}=0$ donc la suite de fonctions (f_n) converge uniformément vers f sur [0,1].

2) Par convergence uniforme sur le segment [0, 1] de cette suite de fonctions continues sur [0, 1], on peut intervertir limite et intégrale.

On a donc
$$\lim_{n \to +\infty} \int_0^1 (x^2 + 1) \frac{n e^x + x e^{-x}}{n + x} dx = \int_0^1 (x^2 + 1) e^x dx$$
.
Puis, en effectuant deux intégrations par parties, on trouve $\int_0^1 (x^2 + 1) e^x dx = 2e - 3$.

V. Utilisation du théorème de convergence dominée

Essayons d'appliquer le théorème de convergence dominée. Notons, pour tout $n \in \mathbb{N}^*$:

$$f_n:]0;a] \longrightarrow \mathbb{R}, x \longmapsto \frac{1}{x} \left(\left(1 + \frac{x}{n} \right)^n - 1 \right)$$

- Pour tout $n \in \mathbb{N}^*$, f_n est continue par morceaux (car continue) sur]0; a].
- Soit $x \in]0; a]$. On sait $: \left(1 + \frac{x}{n}\right)^n \xrightarrow[n \to +\infty]{} e^x$, donc $: f_n(x) \xrightarrow[n \to +\infty]{} \frac{e^x 1}{x}$. Ainsi, $f_n \xrightarrow[n \to +\infty]{} f$ sur]0; a], où :

$$f:]0; a] \longrightarrow \mathbb{R}, x \longmapsto \frac{\mathrm{e}^x - 1}{x}$$

- f est continue par morceaux (car continue) sur [0; a].
- Soit $n \in \mathbb{N}^*$.

Puisque : $\forall t \in]-1; +\infty[, \ln(1+t) \leq t,$ on a : $\forall t \in [0; +\infty[, 1+t \leq e^t,$

d'où, pour tout $x \in]0; a] : \left(1 + \frac{x}{n}\right)^n \leqslant \left(e^{\frac{x}{n}}\right)^n = e^x,$

puis : $0 \le \left(1 + \frac{x}{n}\right)^n - 1 \le e^x - 1$,

et enfin : $0 \leqslant f_n(x) \leqslant f(x)$.

L'application f est continue par morceaux sur $]0;a],\geqslant 0$, et intégrable sur $]0;a] \operatorname{car} f(x) = \frac{\mathrm{e}^x-1}{x} \underset{x\longrightarrow 0}{\longrightarrow} 1$.

Ainsi, la suite $(f_n)_{n\geq 1}$ vérifie l'hypothèse de domination.

D'après le théorème de convergence dominée, on déduit :

$$\int_0^a f_n \xrightarrow[n \to +\infty]{} \int_0^a f$$

c'est-à-dire :

$$\int_0^a \frac{1}{x} \left(\left(1 + \frac{x}{n} \right)^n - 1 \right) dx \underset{n \to +\infty}{\longrightarrow} \int_0^a \frac{e^x - 1}{x} dx$$

VI. Recherche d'un équivalent d'une intégrale à paramètre entier naturel

D'abord, pour tout $n \in \mathbb{N}^*$ l'intégrale

 $I_n = \int_0^1 \ln(1+x^n) dx$, existe comme intégrale d'une application continue sur un segment.

On a, pour tout $n \in \mathbb{N}^*$, par le changement de variable $t = x^n, x = t^{\frac{1}{n}}, dx = \frac{1}{t^n} t^{\frac{1}{n}-1} dt$:

$$I_n = \int_0^1 \ln(1+t) \frac{1}{n} t^{\frac{1}{n}-1} dt = \frac{1}{n} \underbrace{\int_0^1 t^{\frac{1}{n}} \frac{\ln(1+t)}{t} dt}_{\text{notice } I_n},$$

où J_n est d'ailleurs une intégrale de fonction intégrable sur]0;1].

Pour obtenir la limite de J_n (si elle existe), nous allons utiliser le théorème de convergence dominée.

Notons, pour tout $n \in \mathbb{N}^*$:

$$f_n:]0;1] \longrightarrow \mathbb{R}, t \longmapsto t \frac{1}{n} \frac{\ln(1+t)}{t}$$

- Pour tout $n \in \mathbb{N}^*$, f_n est continue par morceaux (car continue) sur]0;1].
- $\int_n \xrightarrow[n \to +\infty]{C.S} f, \text{ où } f:]0;1] \longrightarrow \mathbb{R}, t \longmapsto \frac{\ln(1+t)}{t}, \text{ car, pour } t \in]0;1] \text{ fixé, on a}$ $\frac{1}{t^n} \xrightarrow[n \to +\infty]{1}.$
- f est continue par morceaux (car continue) sur [0;1].
- On a, pour tout $n \in \mathbb{N}^*$ et tout $t \in]0;1]$:

$$|f_n(t)| = t \frac{1}{n} \frac{\ln(1+t)}{t} \leqslant \frac{\ln(1+t)}{t}$$

et l'application $t \longmapsto \frac{\ln(1+t)}{t}$ est continue par morceaux (car continue), $\geqslant 0$, intégrable sur]0;1], puisque $\frac{\ln(1+t)}{t} \underset{t \to 0}{\longrightarrow} 1$. Ceci montre que la suite $(f_n)_{n\geqslant 1}$ vérifie l'hypothèse de domination.

D'après le théorème de convergence dominée :

$$\int_{0}^{+\infty} f_{n} \xrightarrow[n \to +\infty]{} \int_{0}^{+\infty} f$$
Ainsi : $J_{n} \xrightarrow[n \to +\infty]{} \int_{0}^{+\infty} \frac{\ln(1+t)}{t} dt = \frac{\pi^{2}}{12}$.

On conclut :
$$\int_{0}^{+\infty} \ln(1+x^{n}) dx \underset{n \to +\infty}{\sim} \frac{\pi^{2}}{12} \frac{1}{n}$$
.