Assignment 3

Davide Cozzi, 829827

Capitolo 1

Esercizio 1

1.1 Parte a

Iniziamo disegnando la regione ammissibile del problema di programmazione lineare intera.

Disegnamo sul piano cartesiano le due rette che rappresentano i vincoli, ovvero:

$$-2x_1 + 5x_2 = 10$$

$$6x_1 - 5x_2 = 30$$

ottenendo:

Essendo però un problema di programmazione lineare intera non avremo l'area ammissibile data unicamente dai vincoli bensì avremo i punti di coordinate intere in quest'area, ovvero:

1.2 Parte b

Procediamo ora con la risoluzione del problema.

Iniziamo risolvendo il rilassamento lineare del problema. Chiamiamo P_0 questo problema.

Dovendo risolvere il rilassamento lineare avremo a che fare con:

$$\min z = x_1 - 3x_2$$
soggetto ai vincoli
$$-2x_1 + 5x_2 \le 10$$

$$6x_1 - 5x_2 \le 30$$

$$x_1, x_2 \ge 0$$

I punti di nostro interesse sono (0,0), ovvero l'origine, (0,2), ovvero l'incrocio tra il primo vincolo e l'asse x_2 , (5,0), ovvero l'incrocio tra il secondo vincolo e l'asse x_1 , e il punto di incontro tra i due vincoli. Calcoliamo questo punto di incontro:

$$\begin{cases}
-2x_1 + 5x_2 = 10 \\
6x_1 - 5x_2 = 30
\end{cases} \implies x_1 = \frac{5}{2}, \quad x_2 = 3 \Longrightarrow (\frac{5}{2}, 3)$$

Procediamo quindi con la risoluzione grafica mediante il metodo del simplesso.

Partiamo valutando il punto (0,0), qui si ha z=0. Come vertici adiacenti ha (0,2) e (5,0). Grazie alla funzione obiettivo notiamo che z decresce (stiamo cercando il minimo) se ci spostiamo verso (0,2), dove z=-6, e cresce se ci spostiamo verso (5,0) dove z=5.

Arrivato in (0,2) ho solamente $(\frac{5}{2},3)$ come vertice ammissibile da verificare. Si ha che, in $(\frac{5}{2},3)$, $z=-\frac{13}{2}$, abbiamo trovato quindi la soluzione ottimale. Graficamente si avrebbe:

Possiamo quindi dire che nel nodo P_0 abbiamo $z_0 = -\frac{13}{5}$, $UB_0 = 6$ (ovvero l'upperbound intero) e $z^* = +\infty$ (ovvero la migliore soluzione intera fino a P_0 , posta a $+\infty$ in quanto non ancora trovata).

Posso quindi procedere con il Metodo Branch&Bound.

Avendo come soluzione ottima di P_0 il punto $(\frac{5}{2},3)$ cerchiamo la soluzione intera partizionando su x_1 , specificando gli intervalli secondo le formule:

$$P_1: x_j \le \lfloor x_j^* \rfloor$$

$$P_2: x_i \ge |x_i^*| + 1$$

ottenendo quindi, nel nostro caso, i seguenti vincoli per il problema P_1 :

$$-2x_1 + 5x_2 \le 10$$

$$6x_1 - 5x_2 < 30$$

$$x_1 \leq 2$$

$$x_1, x_2 \in \mathbb{N}$$

e per P_2 :

$$-2x_1 + 5x_2 \le 10$$

$$6x_1 - 5x_2 \le 30$$
$$x_1 \ge 3$$
$$x_1, x_2 \in \mathbb{N}$$

Iniziamo valutando P_1 . Disegnandolo si ottiene:

Risolviamo P_1 e P_2 mediante il bounding, risolvendone i rilassamenti lineari. Per il problema P_1 si ha:

$$-2x_1 + 5x_2 \le 10$$
$$6x_1 - 5x_2 \le 30$$
$$x_1 \le 2$$
$$x_1, x_2 \ge 0$$

e per P_2 :

$$-2x_1 + 5x_2 \le 10$$
$$6x_1 - 5x_2 \le 30$$
$$x_1 \ge 3$$
$$x_1, x_2 \ge 0$$

Partiamo quindi da (0,0) che ha z=0. Come vertici adiacenti abbiamo (0,2), con z=-6, e (2,0), con z=2. Ci spostiamo in (0,2). Calcoliamo l'incorcio tra $-2x_1+5x_2=10$ e $x_1=2$ e otteniamo il punto $(2,\frac{14}{2})$, che ha $z=-\frac{32}{5}$, ovvero la soluzione ottima di P_1 , anche se ancora non intera. Per P_1 si avrà quindi $z_1=-\frac{32}{5}$, $UB_1=6$ e $z_1^*=-\infty$. Non possiamo usare il fathoming per chiudere questo problema.

Passiamo ora a P_2 che invece si presenta come:

Partiamo quindi, per il metodo del simplesso, da (3,0), che ha z=3. Come vertici adiacenti abbiamo (5,0), con z=5 e l'incrocio tra $6x_1+5x_2=30$ e $x_1=3$. Calcolato il punto si ottiene che è $(3,\frac{12}{5})$, con $z=-\frac{21}{5}$, ovvero la soluzione ottima, anche se ancora non intera, per P_2 . In P_2 si ha quindi $z_2=\frac{21}{5}$, $UB_2=4$ e $z_2^*=-\infty$. Non possiamo usare il fathoming per chiudere questo problema.

Avendo ancora entrambi nodi attivi procediamo col branching di P_1 . In questo caso, avendo $x_2 = \frac{14}{5}$, procediamo col creare P_3 con i seguenti vincoli (usando la stessa tecnica usata sopra):

$$-2x_1 + 5x_2 \le 10$$

$$6x_1 - 5x_2 \le 30$$

$$x_1 \le 2$$

$$x_2 \le 2$$

$$x_1, x_2 \in \mathbb{N}$$

e per P_4 :

$$-2x_1 + 5x_2 \le 10$$
$$6x_1 - 5x_2 \le 30$$
$$x_1 \le 2$$
$$x_2 \ge 3$$
$$x_1, x_2 \in \mathbb{N}$$

Procedendo col bounding otteniamo i rispettivi rilassamenti lineari. Per P_3 :

$$-2x_1 + 5x_2 \le 10$$
$$6x_1 - 5x_2 \le 30$$
$$x_1 \le 2$$
$$x_2 \le 2$$
$$x_1, x_2 \ge 0$$

e per P_4 :

$$-2x_1 + 5x_2 \le 10$$
$$6x_1 - 5x_2 \le 30$$
$$x_1 \le 2$$
$$x_2 \ge 3$$
$$x_1, x_2 \ge 0$$

Partiamo da P_3 che si presenta così:

Partiamo valutando il punto (0,0), con z=0. Come vertici adiacenti ha il vertice (0,2), con z=-6, e il vertice (2,0), con z=2. Mi sposto in (0,2) e valuto l'unico vertice adiacente rimasto, ovvero (2,2), con z=-4, valore che mi fa restare in (0,2). Abbiamo quindi che in (0,2) si ha la soluzione ottima, intera, e, quindi, per P_3 si ha $z_3=-6$, $UB_3=-6$ e $z_3^*=-6$. Possiamo chiudere il branch grazie alla terza regola di fathoming Valutiamo P_4 , disegnandolo si ottiene:

Notando subito che P_4 non ha soluzioni ammissibili (non si hanno punti nella regione ammissibile) e quindi posso usare la prima regola di fathoming per chiudere il branch.

Abbiamo ancora il nodo P_2 da valutare. P_2 aveva soluzione pottima in $(3, \frac{12}{5})$ quindi procediamo col metodo di branch su x_2 . Per P_5 si ottiene:

$$-2x_1 + 5x_2 \le 10$$

$$6x_1 - 5x_2 \le 30$$

$$x_1 \ge 3$$

$$x_2 \ge 2$$

$$x_1, x_2 \in \mathbb{N}$$

e per P_6 :

$$-2x_1 + 5x_2 \le 10$$
$$6x_1 - 5x_2 \le 30$$
$$x_1 \ge 3$$
$$x_2 \ge 3$$
$$x_1, x_2 \in \mathbb{N}$$

Procedendo col bounding otteniamo i rispettivi rilassamenti lineari. Per ${\cal P}_5$ si ottiene:

$$-2x_1 + 5x_2 \le 10$$
$$6x_1 - 5x_2 \le 30$$
$$x_1 \ge 3$$
$$x_2 \ge 2$$

$$x_1,x_2\geq 0$$
e per P_6 :
$$-2x_1+5x_2\leq 10$$

$$6x_1-5x_2\leq 30$$

$$x_1\geq 3$$

$$x_2\geq 3$$

$$x_1,x_2\geq 0$$

Partiamo da P_5 che si presenta così:

partiamo valutando il punto (3,0), con z=3. Come vertici adiacenti abbiamo (5,0), con z=5, e (3,2), con z=-3. Ci spostiamo quindi in (3,2) e valutiamo l'unico vertice adiacente rimasto, ovvero l'incrocio tra $6x_1+5x_2=30$ e $x_2=2$. Questo incrocio è rappresentato dal punto $(\frac{10}{3},2)$ che ha $z=-\frac{8}{3}$, valore che ci fa restare in (3,2), che è la soluzione ottima intera di P_5 . Per P_5 si ha quindi $z_5=-3$, $UB_5=-3$ e $z_5^*=-6$. Possiamo quindi chiudere questo branch per la prima regola di fathoming in quanto si ha un upperbound inferiore a z^* .

Valutiamo infine P_6 :

Come si vede non si hanno soluzioni ammissibili (non si hanno punti nella regione ammissibile) e quindi il branch viene chiuso per la seconda regola di fathoming.

Siamo quindi giunti alla conclusione che il problema lineare intero ha:

punto di minimo in (0,2) e minimo pari a z=-6

Graficamente si avrebbe:

Capitolo 2

Esercizio 2

2.1 Parte a

Dobbiamo applicare un'iterazione del metodo del gradiente effettuando la line-search in modo esatto, a partire dal punto $A^T=(-1,4)$ sul problema di minimizzazione non lineare:

$$\min f(x_1, x_2) = 2x_1^2 + x_1x_2 + 2(x_2 - 3)^2$$

Iniziamo quindi definendo $x^0=x^A,\,k=0,\,\varepsilon_1=0.01$ e $\varepsilon_2=0.1.$ Innazitutto calcolo il gradiente della funzione. Calcolo quindi la derivata parziali:

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = 4x_1 + x_2$$
$$\partial f(x_1, x_2) = x_1 + 4(x_1 + x_2)$$

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = x_1 + 4(x_2 - 3)$$

Ottenendo quindi:

$$\nabla f(x_1, x_2) = \begin{bmatrix} 4x_1 + x_2 & x_1 + 4(x_2 - 3) \end{bmatrix}$$

Studio quindi la direzione di discesa studiando il gradiente nel punto iniziale $x^0 = x^A$:

$$d^{0} = -\nabla f(x^{0}) = -[4(-1) + (4) \quad (-1) + 4((4) - 3)] = [0 \quad -3]$$

Seguendo il metodo del gradiente cerchiamo ora il punto x^1 . Sappiamo che:

$$x^{k+1} = x^k + \alpha^k d^k$$

quindi:

$$x^{1} = [-1 \quad 4] + \alpha^{0}[0 \quad -3] \Longrightarrow x^{1} = [-1 \quad 4 - 3\alpha^{0}]$$

Ma bisogna calcolare α^0 . Calcolo quindi il minimo della funzione f lungo d^0 , ovvero calcolo $f(x_1)$:

$$f(x^{1}) = 2(-1)^{2} + (-1)(4 - 3\alpha^{0}) + 2((4 - 3\alpha^{0}) - 3)^{2}$$

$$= 2 - 4 + 3\alpha^{0} + 2(-3\alpha^{0} + 1)^{2}$$

$$= -2 + 3\alpha^{0} + 2(9\alpha^{0^{2}} - 6\alpha^{0} + 1)$$

$$= 18\alpha^{0^{2}} - 9\alpha^{0}$$

ma per avere un punto di minimo ci serve:

$$\frac{df(x^1)}{d\alpha^0} = 0$$

quindi la derivata di $18\alpha^{0^2}-9\alpha^0$ nulla, ovvero otteniamo come punto di minimo:

$$36\alpha^0 - 9 = 0 \Longrightarrow \alpha^0 = \frac{1}{4}$$

Possiamo quindi calcolare effettivamente x^1 :

$$x^{1} = \begin{bmatrix} -1 & 4 \end{bmatrix} + \frac{1}{4} \begin{bmatrix} 0 & -3 \end{bmatrix} \Longrightarrow x^{1} = \begin{bmatrix} -1 & \frac{13}{4} \end{bmatrix}$$

Procediamo ora con la verifica dei 2 criteri d'arresto. Innazitutto valutiamo la funzione nei punti x^0 e x^1 :

$$f(x^{0}) = 2(-1)^{2} + (-1)(4) + 2((4) - 3)^{2} = 2 - 4 + 2 = 0$$
$$f(x^{1}) = 2(-1)^{2} + (-1)(\frac{13}{4}) + 2((\frac{13}{4}) - 3)^{2} = 2 - \frac{13}{4} + \frac{1}{8} = -\frac{9}{8}$$

calcolo inoltre il gradiente in x^1 :

$$\nabla f(x^1) = \begin{bmatrix} -\frac{3}{4} & 0 \end{bmatrix}$$

Verifico quindi i due criteri:

1. verifichiamo $|f(x^{k+1}) - f(x^k)| < \varepsilon_1$:

$$\left| -\frac{9}{8} - 0 \right| < 0.01$$

ma $\frac{9}{8} \not< 0.01$ quindi il criterio d'arresto non è verificato

2. verifichiamo $\|\nabla f(x^1)\| < 0.1$:

$$\sqrt{\frac{9}{16} + 0} = \frac{3}{4}$$

ma $\frac{3}{4} \not< 0.1$ quindi il criterio d'arresto non è verificato

Possiamo dire che con una sola iterazione non si riesce a calcolare una soluzione ottima del problema

2.2 Parte b

Dobbiamo applicare un'iterazione del metodo di Newton a partire dal punto $A^T = (-1, 4)$ sul problema di minimizzazione non lineare:

$$\min f(x_1, x_2) = 2x_1^2 + x_1x_2 + 2(x_2 - 3)^2$$

Notiamo innazitutto che abbiamo a che fare con una funzione quadratica quindi il metodo convergerà con una sola iterazione.

Iniziamo quindi definendo $x^0 = x^A$, k = 0, $\varepsilon_1 = 0.01$ e $\varepsilon_2 = 0.1$.

Innazitutto calcolo il gradiente della funzione. Calcolo quindi la derivata parziali:

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = 4x_1 + x_2$$
$$\frac{\partial f(x_1, x_2)}{\partial x_2} = x_1 + 4(x_2 - 3)$$

Ottenendo quindi:

$$\nabla f(x_1, x_2) = [4x_1 + x_2 \quad x_1 + 4(x_2 - 3)]$$

Studio poi il gradiente nel punto iniziale $x^0 = x^A$:

$$\nabla f(x^0) = [4(-1) + (4) \quad (-1) + 4((4) - 3)] = [0 \quad 3]$$

Procedo poi col calcolo della matrice Hessiana. Calcolo quindi le derivate parziali seconde:

$$\frac{\partial f(x_1, x_2)}{\partial x_1 x_1} = 4, \quad \frac{\partial f(x_1, x_2)}{\partial x_1 x_2} = 1$$
$$\frac{\partial f(x_1, x_2)}{\partial x_2 x_1} = 1, \quad \frac{\partial f(x_1, x_2)}{\partial x_2 x_2} = 4$$

Ottengo quindi la mia matrice Hessiana per un generico punto:

$$H_f(x) = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$$

Procedo quindi col calcolo dell'inversa della matrice. Calcolo innazitutto il determinante che sarà:

$$det(H_f(x)) = (4 \cdot 4) - (1 \cdot 1) = 15$$

procedo poi col calcolo dei cofattori:

$$c_{11} = (-1)^{1+1} \cdot 4 = 4$$

$$c_{12} = (-1)^{1+2} \cdot 1 = -1$$

$$c_{21} = (-1)^{2+1} \cdot 1 = -1$$

$$c_{22} = (-1)^{2+2} \cdot 4 = 4$$

Sappiamo quindi che la matrice inversa è la matrice dei cofattori, trasposta, divisa per il determinante:

$$H_f(x)^{-1} = \frac{1}{15} \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}^T = \frac{1}{15} \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{4}{15} & -\frac{1}{15} \\ -\frac{1}{15} & \frac{4}{15} \end{bmatrix}$$

Sappiamo ora che il punto x^{k+1} è dato da:

$$x^{k+1} = x^k - H_f(x^k)^{-1} \cdot \nabla f(x^k)$$

quindi, nel nostro caso:

$$x^{1} = x^{0} - H_{f}(x^{0})^{-1} \cdot \nabla f(x^{0})$$

ovvero:

$$x^{1} = \begin{bmatrix} -1\\4 \end{bmatrix} - \begin{bmatrix} \frac{4}{15} & -\frac{1}{15}\\ -\frac{1}{15} & \frac{4}{15} \end{bmatrix} \cdot \begin{bmatrix} 0\\3 \end{bmatrix}$$

Effettuo il prodotto riga per colonna tra l'Hessiana e il gradiente nel punto iniziale:

$$\begin{bmatrix} \frac{4}{15} & -\frac{1}{15} \\ -\frac{1}{15} & \frac{4}{15} \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 - \frac{1}{5} \\ 0 + \frac{4}{5} \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ \frac{4}{5} \end{bmatrix}$$

ed effettuo la sottrazione:

$$x^{1} = \begin{bmatrix} -1\\4 \end{bmatrix} - \begin{bmatrix} -\frac{1}{5}\\\frac{4}{5} \end{bmatrix} = \begin{bmatrix} -1 + \frac{1}{5}\\4 - \frac{4}{5} \end{bmatrix} = \begin{bmatrix} -\frac{4}{5}\\\frac{16}{5} \end{bmatrix}$$

Ho quindi trovato il punto x^1 .

Calcolo il gradiente in x^1 :

$$\nabla f(x^1) = \left[4(-\frac{4}{5}) + \frac{16}{5} - \frac{4}{5} + 4(\frac{16}{5} - 3)\right] = \begin{bmatrix}0 & 0\end{bmatrix}$$

Sappiamo quindi che è un punto di ottimo.

Calcolo ora gli autovalori della matrice Hessiana, scrivo quindi la matrice:

$$\begin{bmatrix} 4 - \lambda & 1 \\ 1 & 4 - \lambda \end{bmatrix}$$

ne calcolo il determinante:

$$d = (4 - \lambda^2) - 1$$

per trovare gli autovalori voglio d=0 quindi:

$$(4 - \lambda^2) - 1 = 0 \to \begin{cases} \lambda = 3 \\ \lambda = 5 \end{cases}$$

essendo entrambi positivi stiamo valutando un punto di minimo.

Il punto di minimo è $x^1 = \left(-\frac{4}{5}, \frac{16}{5}\right)$