Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені І. Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт з лабораторної роботи № 3 «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційні цикли алгоритмів»

Варіант 2

Виконав студент: ІП-13 Бабашев Олексій Дмитрович

Перевірив:

Лабораторна робота 3

Дослідження ітераційних циклів алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 2

1) Постановка задачі: 3 точністю $\varepsilon=10^{-6}$ обчислити значення функції $\ln x$: $\ln a=(a-1)-\frac{(a-1)^2}{2}+\frac{(a-1)^3}{3}-\ldots$, для $0< a\leq 2$.

Порівняти одержане за допомогою ряду значення зі значенням, отриманим стандартною функцією.

2) Побудова математичної моделі:

Змінна	Тип	Назва	Призначення
Задане число (0 <a 2)<="" td="" ≤=""><td>Дійсний</td><td>a</td><td>Вхідне дане</td>	Дійсний	a	Вхідне дане
Кількість ітерацій	Цілечислеьний	n	Проміжне дане
Різниця $y_n - y_{n-1}$ Значення n-ого члена ряду, який додається до ряду з кожною наступною ітерацією	Дійсний	diff	Проміжне значення
Значення ряду у	Дійсний	у	Вихідне дане
Натуральний логарифм ln x	Дійсний	ln	функція
Значення стандартної функції ln а	Дійсний	ln_a	Проміжне дане
Степінь від числа pow(основа, показник степені)	Дійсний	pow	функція
Модуль числа	Дійсний		функція
$\varepsilon = 10^{-6}$	Дійсний	eps	Константа
Різниця стандартної Дійсний функції і значення ряду у		ans	Вихідне дане

Математичне формулювання задачі зводиться до знаходження значення ряду за формулою $y=(a-1)-\frac{(a-1)^2}{2}+\frac{(a-1)^3}{3}-\ldots$, за допомогою циклу з кількістю ітерацій п, залежних від умови $|\text{diff}| \geq \text{eps}(\text{обчислення продовжуються поки}$ виконується умова), де $\text{diff} = (-1)^{n+1} * \frac{(a-1)^n}{n}$, а $\text{eps} = 10^{-6}$. Другою дією обчислюємо різницю ans між значенням стандартної функції $\ln(a)$ та значення ряду у.

Розв'язання:

Крок 1. Визначимо основні дії

Крок 2. Обчислення ряду у

Крок 3. Обчислити стандартну функцію ln a

Крок 4. Обчислення різниці ans

3) Псевдокод:

Крок 1

Початок

Введення а

Обчислення значення ряду у

Обчислення стандартної функції ln a

Обчислення різниці ans

Виведення у та ans

Кінепь

Крок 2

Початок

Введення а

n := 1

eps := 0.000001

y := 0

Повторити

diff := pow(-1, n+1) *
$$\frac{pow(a-1,n)}{n}$$

y := y + diff
n := n + 1

Поки

$$|diff| > = eps$$

Все повторити

Обчислити значення стандартної функції ln a

Обчислити різницю ans

Виведення у та ans

Кінець

Крок 3

Початок

Введення а

$$n := 1$$

$$eps := 0.000001$$

$$y := 0$$

Повторити

$$diff := pow(-1, n+1) * \frac{pow(a-1,n)}{n}$$

$$y := y + diff$$

$$n := n + 1$$

Поки

$$|diff| >= eps$$

Все повторити

$$ln_a := ln(a)$$

Обчислити різницю ans

Виведення у та ans

Кінець

Крок 4

Початок

Введення а

$$n := 1$$

$$eps := 0.00001$$

$$y := 0$$

Повторити

diff := pow(-1, n+1) *
$$\frac{pow(a-1,n)}{n}$$

$$y := y + diff$$

$$n := n + 1$$

Поки

$$|diff| >= eps$$

Все повторити

$$ln_a := ln(a)$$

$$ans := ln_a - y$$

Виведення значень у та ans

Кінець

4) Блок-схема:

Крок 1

Крок 3

Крок 4

5) Випробування алгоритму:

Блок	Дія 1			
	Початок			
1	a=0.99			
2	diff: =-0.01 y: = -0.01 Порівняти diff з eps 0.01>0.000001			
3	diff: =-0.00005 y: = -0.01005 Порівняти diff з eps 0.00005>0.000001			
4	diff: =-3.3(3)*0.0000001 y: = -0.010050333 Порівняти diff з eps $3.3(3)*0.0000001 < 0.000001$			
5	$ln_a := ln (0.99) = -0.0100503359$			
6	y = -0.010050333 $ans = -0.0000000029$ $ln(a)>y$			
	Кінець			

6) Висновок: дослідив подання операторів повторення дій та набув практичних навичок їх використання під час складання циклічних програмних специфікацій.