Permanente Evaluatie 3_lineaire algebra

B)

0	0.7349	0.7349	0.7349
0.58	0	0	0
0	0.61	0	0
0	0	0.26	0

C) De klasse wordt steeds kleiner.

D)

	201	201	201	201	201	202	202	202	202	202	202
Jaar	201	201	201	201	201	202	202	202	202	202	203
	0	2	4	6	8	0	2	4	6	8	0
0-3	166		366		177		219		181		164
4-7	166		96		212		103		127		105
8-11	166		101		59		129		63		77
12-	166		43		26		15		34		16
15											

E) we kunnen hieruit besluiten dat de diersoort met uitsterven bedreigd is.

Opgave 2

1

1. A)

$$T: R^{2} \to R^{2}: \begin{bmatrix} \cos{\left(-45^{\circ}\right)} & -\sin{\left(-45^{\circ}\right)} \\ \sin{\left(-45^{\circ}\right)} & \cos{\left(-45^{\circ}\right)} \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} \cos{\left(-45^{\circ}\right)} & -\sin{\left(-45^{\circ}\right)} \\ \sin{\left(-45^{\circ}\right)} & \cos{\left(-45^{\circ}\right)} \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 0 & 0.5 \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 & \cdots & 2 & 2 \\ 0 & 0 & \cdots & 2 & 0 \end{bmatrix}$$

B) Ja, voor de transformatie geldt T(0)=0 en de transformatie wordt volledig

bepaald door matrix $A = \begin{bmatrix} 0 & -0.5 \\ -2 & 0 \end{bmatrix}$

C)

2. A)

$$T: R^{2} \to R^{2}: \begin{bmatrix} \cos(-135^{\circ}) & -\sin(-135^{\circ}) \\ \sin(-135^{\circ}) & \cos(-135^{\circ}) \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 & \cdots & 2 & 2 \\ 0 & 0 & \cdots & 2 & 0 \end{bmatrix} + \begin{bmatrix} 2 \\ -4 \end{bmatrix}$$

B) neen, die transformatie kan niet volledig bepaald worden door de matrix A en $T(0) \neq 0$

C)

3. A)

$$T: \mathbb{R}^2 \to \mathbb{R}^2: (\begin{bmatrix} 0.5 & 0.866025 \\ 0.866025 & -0.5 \end{bmatrix} \cdot (\begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 5 \end{bmatrix})) - \begin{bmatrix} 0 \\ 5 \end{bmatrix}$$

b)translatie van snijpunt van rechte met y-as naar de oorsprong:

$$T: \mathbb{R}^2 \to \mathbb{R}^2: \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 5 \end{bmatrix}$$

hoek θ bepalen en rotatie over een hoek - θ rond de oorsprong:

$$T: \mathbb{R}^2 \to \mathbb{R}^2: \begin{bmatrix} 0.866025 & 0.5 \\ -0.5 & 0.866025 \end{bmatrix} : \begin{bmatrix} x \\ y \end{bmatrix}$$

spiegeling t.o.v. x-as:

$$T: \mathbb{R}^2 \to \mathbb{R}^2: \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

rotatie over een hoek θ rond de oorsprong:

$$T: \mathbb{R}^2 \to \mathbb{R}^2: \begin{bmatrix} 0.866025 & -0.5 \\ 0.5 & 0.866025 \end{bmatrix} : \begin{bmatrix} x \\ y \end{bmatrix}$$

translatie van de oorsprong naar snijpunt van de rechte met de y-as:

$$T: \mathbb{R}^2 \to \mathbb{R}^2: \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 0 \\ 5 \end{bmatrix}$$

Dit geeft dezelfde afbeelding als in 3.A.

Opgave 3

$$x+y+z=30$$

$$4x-y=54$$

$$5x-2y=93$$

$$\begin{bmatrix} 1 & 1 & 1 & 30 \\ 4 & -1 & 0 & 54 \\ 5 & -2 & 0 & 93 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 30 \\ 0 & 5 & 4 & 66 \\ 0 & 5 & 3 & 57 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 30 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 4 & 66 \\ 0 & 0 & 1 & 9 \end{bmatrix}$$

$$[0 \ 0 \ 1 \ 9]$$

$$\begin{bmatrix} 1 & 0 & 0 & 15 \end{bmatrix}$$

$$x = 15$$

$$y=6$$

$$z=9$$

Opgave 4

Dit probleem is niet oplosbaar omdat alle onbekenden van elkaar verschillen waardoor het stelsel niet vereenvoudigbaar is en er oneindig veel oplossingen over blijven, de trapvorm is wel geldig.