Istituzioni di Geometria 2023/2024

Francesco Minnocci

16 giugno 2024

Quarta Consegna

Esercizio 10.1 Considera lo spazio iperbolico nel modello del semispazio:

$$H^n = \{x \in \mathbb{R}^n \mid x_n > 0\}, \quad g(x) = \frac{1}{x_n^2} g_E(x)$$

dove g_E è il tensore euclideo. Mostra che le mappe seguenti sono isometrie per la varietà riemanniana H^n :

- f(x) = x + b, con $b = (b_1, \dots, b_{n-1}, 0)$;
- $f(x) = \lambda x \operatorname{con} \lambda > 0$.

Deduci che il gruppo di isometrie $\text{Isom}(H^n)$ di H^n agisce transitivamente sulla varietà riemanniana H^n .

Dimostrazione. Sia $x \in H^n$ e $v, w \in T_xH^n$. Allora

$$\langle v, w \rangle_x = \frac{1}{x_n^2} \langle v, w \rangle_E$$

dove $\langle \cdot, \cdot \rangle_E$ è il prodotto scalare euclideo. Consideriamo la mappa f(x) = x + b; poichè $df_x(v) = v$ per ogni $v \in T_x H^n$, abbiamo

$$\langle df_x(v), df_x(w) \rangle_{f(x)} = \langle v, w \rangle_{x+b} = \frac{1}{x_n^2} \langle v, w \rangle_E$$

per ogni $v, w \in T_xH^n$. Dunque f è un'isometria.

Presa invece la mappa $h(x) = \lambda x$ con $\lambda > 0$, si ha $dh_x = \lambda \operatorname{id}_{T_x H^n}$, dunque

$$\langle dh_x(v), dh_x(w) \rangle_{h(x)} = \langle \lambda v, \lambda w \rangle_{\lambda x} = \frac{1}{(\lambda x_n)^2} \langle \lambda v, \lambda w \rangle_E = \frac{1}{x_n^2} \langle v, w \rangle_E$$

per ogni $v, w \in T_xH^n$ per bilinearità del prodotto scalare. Quindi anche f è un'isometria.

Infine, presi $x, y \in H^n$, esiste $\lambda > 0$ tale che $y_n = \lambda x_n$ (ovvero $\lambda = \frac{y_n}{x_n}$). Allora, posto

$$b = (y_1 - \lambda x_1, \dots, y_{n-1} - \lambda x_{n-1}, 0),$$

l'isometria

$$y = \lambda x + b$$

manda x in y, per cui il gruppo $Isom(H^n)$ agisce transitivamente su H^n .

Esercizio 10.2 Considera il piano iperbolico nel modello del semipiano:

$$H^2 = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}, \quad g = \frac{1}{y^2} g_E$$

Calcola l'area del dominio

$$[-a,a] \times [b,\infty)$$

per ogni a, b > 0. L'area è ovviamente quella indotta dalla forma volume della varietà riemanniana H^2 .

Dimostrazione. La forma volume indotta dalla metrica g sul piano iperbolico è

$$\omega = \frac{1}{y^2} \, dx \wedge dy.$$

L'area di $A := [-a, a] \times [b, \infty)$ è quindi

$$\int_A \omega = \int_A \frac{1}{y^2} \, dx \wedge dy \int_b^\infty \int_{-a}^a \frac{1}{y^2} \, dx \, dy = 2a \cdot \int_b^\infty \frac{1}{y^2} \, dy = 2a \left[-\frac{1}{y} \right]_b^\infty = \frac{2a}{b}.$$

Esercizio 10.7 Sia G un gruppo di Lie. Mostra che esiste sempre una metrica riemanniana su G invariante a sinistra, cioè tale che $L_g: G \to G$ sia un'isometria per ogni $g \in G$.

Dimostrazione. Sia n la dimensione di G. Possiamo identificare $\mathfrak{g} = T_e G$ con \mathbb{R}^n fissandone una base, ed usare la metrica euclidea standard su \mathbb{R}^n per definire un prodotto scalare $\langle \cdot, \cdot \rangle_e$ su $T_e G$.

Se poi $g \in G$ e $v, w \in T_gG$, possiamo estendere il prodotto scalare definito su T_eG per traslazione, cioè ponendo

$$\langle v, w \rangle_g = \langle (dL_{g^{-1}})_g(v), (dL_{g^{-1}})_g(w) \rangle_e$$

Per costruzione, $\langle \cdot, \cdot \rangle_q$ è invariante a sinistra:

$$\langle (dL_q)_h(v), (dL_q)_h(w) \rangle_{qh} = \langle v, w \rangle_h$$

per ogni $g, h \in G$ e $v, w \in T_hG$.

Esercizio 11.4 Consideriamo la connessione ∇ su \mathbb{R}^3 con simboli di Christoffel

$$\Gamma_{12}^3 = \Gamma_{23}^1 = \Gamma_{31}^2 = 1,$$

 $\Gamma_{21}^3 = \Gamma_{32}^1 = \Gamma_{13}^2 = -1$

e tutti gli altri simboli di Christoffel nulli. Mostra che questa connessione è compatibile con il tensore metrico euclideo g, ma non è simmetrica. Quali sono le geodetiche?

Dimostrazione. Per la Proposizione 9.3.5 delle dispense, ∇ è compatibile con g se e solo se

$$\frac{\partial g_{ij}}{\partial x^k} = \Gamma^l_{ki} g_{lj} + \Gamma^l_{kj} g_{li}.$$

Poiché g è il tensore metrico euclideo, $g_{ij} = \delta_{ij}$, e quindi la condizione di compatibilità diventa

$$0 = \Gamma_{ki}^j g_{jj} + \Gamma_{kj}^i g_{ii} = \Gamma_{ki}^j + \Gamma_{kj}^i.$$

D'altronde, se i, j, k non sono tutti distinti allora $\Gamma^j_{ki} = \Gamma^i_{kj} = 0$ per ipotesi, mentre se lo sono allora $\Gamma^j_{ki} = -\Gamma^i_{kj}$. Dunque ∇ è compatibile con g.

Inoltre ∇ non è simmetrica perché $\Gamma^3_{12} \neq \Gamma^3_{21}$.

Infine, se x(t) è la geodetica massimale passante per x_0 in direzione v, allora x(t) risolve

$$\begin{cases} x(0) = x_0, \\ \dot{x}(t) = v, \\ \frac{\partial^2 x^k}{\partial t^2} + \frac{\partial x^i}{\partial t} \frac{\partial x^j}{\partial t} \Gamma_{ij}^k = 0 \end{cases}$$

per k=1,2,3. Visto che $\Gamma^1_{23}=-\Gamma^1_{32},\,\Gamma^2_{31}=-\Gamma^2_{13}$ e $\Gamma^3_{12}=-\Gamma^3_{21},$ questo implica

$$\frac{\partial^2 x^1}{\partial t^2} = \frac{\partial^2 x^2}{\partial t^2} = \frac{\partial^2 x^3}{\partial t^2} = 0,$$

e quindi $x(t) = x_0 + tv$. In conclusione, le geodetiche sono tutte e solo le rette.

Esercizio 11.6 Consideriamo il modello dell'iperboloide $I^n\subset\mathbb{R}^{n,1}$ dello spazio iperbolico. Mostra che per ogni $p,q\in I^n$ vale l'uguaglianza

$$\cosh d(p,q) = -\langle p,q \rangle.$$