Using Tactile Sensing to Inform Low-Cost, Force-Feedback Haptics

Christopher White, Dr Efi Psomopoulou

University of Bristol, Department of Engineering Mathematics

Introduction

Widespread adoption of haptic technologies is hampered by high cost and low accessibility [1]. This work considers the use of TacTip optical tactile sensors, mounted on a Model-O robotic gripper (the T-MO [2]), in informing force-feedback (FF) haptics provided by a low-cost, open source haptic exoskeleton, called Remote Feelings (RF) [3].

Key contributions include:

- Redesign and construction of RF, adding finger tracking and reducing cost.
- Estimation of contact force from tactile images.
- Bilateral teleoperation framework with T-MO and RF.

Remote Feelings Haptic Exoskeleton

- Forces are measured with force sensing resistors (FSRs) embedded in the servo housings.
- Rotary encoders added to exoskeleton joints to allow calculation of finger pose with forwards and inverse kinematics.

Step response of fingertip force to sudden, constant artificial contact force.

- Two modes of FF implemented: blocking (binary) feedback and variable FF (simulates stiffness of grasped object).
- Total cost of £92.91, 30−50 times less than commercial offerings.
 [3] X. HU, A. WANG, AND A. CURTIS, Remote feelings, 2021.
 https://github.com/BerkeleyCurtis/EECS249_HapticGlove, last accessed: 09-04-2023.

Contact Force Estimation

- A dataset of 3000 tactile images and corresponding force data is collected for each TacTip.
- A CNN is trained using the data for each sensor as well as a CNN using the data from all three sensors.
- Best trade-off between accuracy and inference time found with combined dataset which is recommended for use in teleoperation.
- Three tactile image processing methods are explored: no processing, Gaussian adaptive thresholding and masking the image with detected blobs.

• MAE of 0.1012N achieved with combined dataset. MAE of 0.1214N, 0.1069N and 0.0848N for index, middle and thumb sensors.

Teleoperation Framework

Diagram outlining the teleoperation procedure with RF and the T-MO.

- I_T denotes the tactile images and \tilde{I}_T denotes the processed images.
- F_T and F_f denote the forces on the TacTip and fingertip.
- f, g and h are functions for image processing, calculating the fingertip force and contact force estimation.
- ϕ and θ denote the exoskeleton and finger joint angles.
- FK and IK denote the forwards and inverse kinematics.
- $\hat{\phi}_1$ is the servo angle deviation required for providing FF.

Servo Deviations During Grasp Soft Item Firm Item 20 20 25 50 75 100 125 150 175

Servo deviations from initial contact point recorded during grasps of a soft and a firm object, simulating varying stiffnesses.

Deviation (microseconds)

Conclusion and Future Work

- Successfully kept costs low and accessibility high.
- RF and T-MO combination successfully allows rendering of variable stiffnesses.
- Contact force estimation accuracy stands to be improved.
- Room for addition of cutaneous feedback (e.g. via TactiGrip [3]).
- Further experimentation in impact of feedback on teleoperation tasks required.

[1] G. E. BARNABY, Breaking boundaries for adoption of accessible high fidelity haptic feedback technologies, PhD thesis, The University of Bristol, 2022. [2] J. W. JAMES, A. CHURCH, L. CRAMPHORN, AND N. F. LEPORA, Tactile model o: Fabrication and testing of a 3d-printed, three-fingered tactile robot hand, Soft Robotics, 8 (2021), pp. 594–610.