Numerične metode 2 - zapiski s predavanj prof. Knez

Domen Vogrin

pomlad 2023

Kazalo

1	Teorija aproksimacije														1									
	1.1	Aproksimacija funkcij																						1

1 Teorija aproksimacije

1.1 Aproksimacija funkcij

Denimo, da imamo podano funkcijo f. Radi bi jo aproksimirali s kakšno 'preprostejšo' funkcijo \tilde{f} , ki bi bila lažje izračunljiva, bi se jo dalo enostavno odvajati, integrirati ...

Primer.

$$sin(x) \sim x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

Ključna vprašanja, ki se nam postavijo, so:

- V kakšni množici/podprostoru naj iščemo aproksimant \tilde{f} ?
- V čem naj si bo \tilde{f} podobna/sorodna z f?
- Ali \tilde{f} obstaja (v množici, kjer jo iščemo)?
- če obstaja, ali je določen enolično?
- Kako konstruirati aproksimant \tilde{f} ?
- Kako dobro nadomestilo za f je izračunan \tilde{f} ?

V splošnem aproksimacijski problem formaliramo takole:

z X označimo vektorski prostor, katerega elemente želimo aproksimirati, $S\subseteq X$ naj označuje podprostor/podmnožico v X, v katerem iščemo aproksimante. Aproksimacijska shema je operator

$$A: X \to S$$

ki vsakemu elementu $f \in X$ priredi aproksimacijski element (aproksimant)

$$\tilde{f} = \mathcal{A}f \in S'$$

Primer. Vektorski prostori:

- $X = \mathcal{C}([a, b]), X = \mathcal{C}^{k}([a, b])$
- $X = \mathcal{L}^2_{\rho}([a,b]) = \{f \colon [a,b] \to \mathbb{R} \ \int_a^b \rho(x) dx < \infty\},$ pri čemer je ρ **pozitivna utež:** $\rho(x) > 0$ za vsak $x \in [a,b]$
- $X = \mathbb{R}^n$

Primer. Podprostori, v katerih iščemo aproksimante:

- $S = P_n = Lin\{1, x, x^2, \dots, x^n\}$ polinom stopnje $\leq n = \{\sum_{i=0}^n a_i x^i; a_i \in \mathbb{R}\}$
- $S = Lin\{1, \sin x, \cos x, \sin 2x, \cos 2x, \dots, \sin nx, \cos nx\}$ triginimetrični polinomi
- podprostori racionalnih funkcij, odsekoma polinomskih funkcij

Da bomo lahko definirali aproksimacijski problem in tudi ocenili napako aproksimacije, potrebujemo **normo**. Najbolj znane norme na prostoru funkcij so naslednje:

• neskončna norma ($||f||_{\infty}$)

$$f \in \mathcal{C}([a,b]), ||f||_{\infty,[a,b]} = \max_{x \in [a,b]} |f(x)|$$

Za izračun numeričnega približka za neskončno normo na intervalu [a,b] izberemo dovolj gosto zaporedje točk:

$$a \le x_0 < x_1 < \dots < x_n \le b, \mathbf{x} = (x_i)_{i=0}^N$$

in izračunamo

$$||f||_{\infty,\mathbf{x}} = \max_{i=1,\dots,N} |f(x_i)|$$

• druga norma - norma, porojena iz skalarnega produkta Naj bo vektorski prostor X opremljen s skalarnim produktom $\langle \cdot, \cdot \rangle$. Potem je $||f||_2 = \sqrt{\langle f, f \rangle}$. Primeri skalarnih produktov:

·
$$\langle f, g \rangle = \int_a^b f(x)g(x)\rho(x)dx, f, g \in \mathcal{L}^2_{\rho}([a, b])$$

$$\cdot \|f\|_2 = \sqrt{\int_a^b f^2(x)\rho(x)dx}$$

Za $f(x) \equiv 1$ to imenujemo standardni skalarni produkt

• diskretni semi-skalarni produkt

$$\mathbf{x} = (x_i)_{i=0}^N, a \le x_0 < x_1 < \dots < x_n \le b$$

$$\langle f, g \rangle = \sum_{i=0}^{N} f(x_i)g(x_i)\rho(x_i)$$

Če ga še delimo z dolžino intervala, dobimo približek za prejšnjega.

$$||f||_{2,\mathbf{x}} = \sqrt{\sum_{i=0}^{N} f^2(x_i)\rho(x_i)}$$