情報計測学基礎I課題

T11710M 鳥居拓耶

【課題】オプティカルフローを用いた物体検出プログラムの開発とインストールマニュアルの制作

【インストールマニュアル】

*移動物体を検出するプログラムは、T11707M の篠原君の Github にアップロードされているプログラムを参考に作成.

- 1. OpenCV の環境構築とプログラムのビルド (cv_bridge パッケージの準備)
 - パッケージを保存するフォルダの作成 mkdir -p my_robot/src
 - 2) 作成するパッケージ名と依存するパッケージを指定する.
 cd my_robot/src
 catkin_create_pkg <u>image_converter sensor_msgs cv_bridge roscpp std_msgs_image_transport</u>
 ※ _: 作成するパッケージ名, _: 依存するパッケージ
 - 3) ソースコード (移動物体を検出するプログラム) を作成する.
 cd ~my_robot/src/my_opencv/src
 gedit image_optical.cpp
 下記の URL の Github 内にあがっている image_optical.cpp ファイルのダウンロード
 https://github.com/t11710m-chukyo/My1stRepository/tree/master/src/my_opency/src
 - 4) プログラムをビルドするために、必要なファイルの設定 Github にアップロードされているファイル (labeling.h_no_hozon_basyo) を 「~my_robot/src/my_opencv/src」にダウンロードし、ファイル (Labeling.h) を 「labeling.h_no_hozon_basyo」に記載されているパスにダウンロードする.
 - 5) My_opency フォルダ内にある CMakeList.txt に以下の 2 行を追加する. add_executable(image_converter src/image_optical.cpp) target_ling_libraries(image_converter \${catkin_LIBRARIES}))
 - 6) パッケージ先のフォルダ内の src フォルダで catkin_init_workspace を実行する. cd ~my_opencv/src catkin_init_workspace

7) パッケージ先のフォルダ内で catkin_make を実行する. cd ~my_opencv catkin_make

図 1 修正後の CMakeList.txt

- 2. USB カメラの使用準備
 - usb_cam パッケージのダウンロード
 cd ~my_opencv/src
 git clone https://github.com/bosch-ros-pkg/usb_cam.git
 - 2) usb_cam パッケージの make cd ~my_opencv catkin_make
- 3. プログラムの実行方法
 - 1) USB カメラを PC に接続する.
 - 2) 3 つのターミナルを用意し、my_opencv まで移動した後、setup.bash を実行する. cd ~my_opencv source devel/setup.bash

3) 各ターミナルで以下のコマンドの1つを実行する. (すべてのコマンドを実行する必要有り)

Roscore //

rosrun usb_cam usb_cam_node rosrun my_opencv image_converter

図 2 移動物体の検出結果の例

ウインドウ上の移動物体に対してバウンディングボックスが囲われる.