BLE Bluetooth Low Energy

BACLE Lucas, ESTIVAL Emilie, POTIERS Léo, SERONIE-VIVIEN Paul

Physical layer

First layer of the protocol

The services provided by this layer go directly to the **link** layer

→ Link Layer (LL)

2.4GHz range and 40 channels

BLE has **40 different channels** that are spaced by 2MHz, either dedicated to data or advertising.

→ Connection is made with channels that are out of the Wi-Fi range

Link layer

- Device address
- Packets format
- Reliability
- Encryption
- MAC level operations

Power consumption

Low power consumption

- Peak current 2 times lower than Bluetooth Classic
- Power consumption 2 to 100 times lower

→ But highly dependent on the use case

Optimizing current consumption

- Extends battery life and makes better products
- Peripherals can function for 1 to 4 years on coin cell battery

→ BLE is designed to enable devices to have very low power consumption

What can affect power consumption in BLE?

- Amount of power transmitted
- Total amount of time that the radio is active

→ Highly dependent on the environment and parameters

Security

Passive eavesdropping

When a **third device listens to the data** being exchanged between the two paired devices.

→ AES Encryption, but vulnerabilities in the key exchange protocol

Men In The Middle (MITM) attacks

When both the central and peripheral devices will connect to the malicious device which redirects the communication route to himself.

→ Data interception and false data injection risk

Identity tracking

When a malicious entity is able to associate the address of a BLE device with a specific user and tracks him.

→ Need to change frequently the device connection address (but it is not done efficiently or frequently enough)

Do you have any questions?

