Università della Svizzera italiana	Institute of Computing CI

High-Performance Computing

2022

Student: Anthony Bugatto Solution for Project 6

Discussed with: Riccardo Giacometti and Qianbo Zang

Due

date: 07.12.2022, 23:59

- 1. Task: Install METIS 5.0.2, and the corresponding Matlab mex interface
- 2. Task: Construct adjacency matrices from connectivity data [10 points]

3. Task: Implement various graph partitioning algorithms [25 points]

The output of the bisections looks exactly as intended, with the spectral method seeming to perform slightly better in general but not always. Different methods of implementing the spectral method were tried, sich as using different configurations of the Fiedler vector, but ultimately the median method was chosen as it exactly reproduced the airfoil partition in the project specification.

Table 1: Bisection results

Mesh	Coordinate	Metis 5.0.2	Spectral	Inertial
mesh1e1	18	17	18	20
mesh2e1	37	37	39	47
mesh3e1	19	19	22	19
${ m mesh3em5}$	19	19	142	19
airfoil1	94	77	132	93
$netz4504_dual$	25	23	23	27
stufe	16	16	16	16
3elt	172	124	117	257
barth4	206	97	127	208
ukerbe1	32	27	28	28
crack	353	201	233	384

4. Task: Recursively bisecting meshes [15 points]

The results mainly follow from the singular version, with the latter two seeming to give better cuts in general. Interestingly when using the eig function, there was an initial error for non-singularity, which shouldn't be possible in a Laplacian matrix. Probably due to some numerical instability, the problem was solved by using 'smallestreal' in the eig function.

Bisection	Spectral	Metis 5.0.2		Coordinate		Inertial				
Partitions	8 16	8	16	8	16	8	16			
mesh1e1.mat	mesh1e1.mat		58	 58	 55	 55	63	63	 77	77
mesh2e1.mat	mesh2e1.mat		173	267	131	207	134	231	193	292
mesh3e1.mat	mesh3e1.mat		75	127	75	117	75	122	75	122
mesh3em5.mat	mesh3em5.ma	t	290	311	75	117	75	122	75	122
airfoil1.mat	airfoil1.ma	t	397	631	320	563	516	819	672	1081
netz4504_dua	l.matnetz4504_du	al.mat	111	185	110	161	127	198	165	269
stufe.mat	stufe.mat .		128	243	107	194	123	227	324	609
3elt.mat	3elt.mat		469	752	395	651	733	1168	814	1230
barth4.mat .	barth4.mat		549	835	405	689	875	1306	974	1491
ukerbe1.mat	ukerbe1.mat		126	236	128	224	225	374	339	499
crack.mat	crack.mat .		883	1419	784	1290	1343	1860	1351	1884

5. Task: Comparing recursive bisection to direct k-way partitioning [10 points]

From the data below it can be seen that the k-way partitions seem to yield a slightly lower number of edgecuts, but visually look practically the same as the recursive partitions.

luxembourg_osm.mat .		197	322	170	279
usroads.mat	607	988	579	961	
GR-3117.mat	297	509	278	471	
CH-4468.mat	730	1089	673	1042	
VN-4031.mat	245	445	245	411	
NO-9935.mat	284	470	255	439	
RU-40527.mat	616	1006	551	933	

6. Task: Utilizing graph eigenvectors [25 points]

Below we can see the eigenvalue coordinate plots for the: airfoil, 3elt, barth, mesh3, and crack meshes.

