Um processador foi observado durante 30 seg. e registrou-se a seguinte sequência de comportamento:

- a. Determine, Ai, Ci, Bi e To.
- b. Calcular a taxa de chegada de visitas ao dispositivo.
- c. Calcule a utilização do dispositivo
- d. Calcule o tempo médio de serviço do dispositivo
- e. Calcule o tempo médio de resposta do dispositivo
- f. Calcule o tempo médio de espera do dispositivo
- g. Se a taxa de chegada fosse 10% a mais que a original, qual será o tempo médio de resposta e de espera do dispositivo.
- h. Considerando a taxa de chegada 10% a mais que a original. Se for comprado um dispositivo que consuma a metade do tempo. Qual será a utilização do dispositivo, o novo tempo de resposta e de espera do dispositivo?
- i. Considerando a taxa de chegada 10% a mais que a original. Se o tempo médio de resposta for estabelecido em 5 s/v. Qual será o tempo médio de serviço e o Fator de velocidade do novo dispositivo?
- j. Considerando a taxa de chegada 10% a mais que a original. Se o tempo de espera for estabelecido em 5 s/v. Qual será o tempo médio de serviço e o Fator de velocidade do novo

RESOLUÇÃO DE EXERCÍCIOS:

- Determine, Ai, Ci, Bi e To.
- a) To (Tempo total-> eixo X no grafico = 30 segundos
- a) Ai (Visitas que chegam -> subidas no grafico = 15
- a) Ci (Visitas atendidas -> descidas no grafico = 15
- a) Bi (Tempo de ocupação) =

Tempo total - tempo sem fazer nada = To - 4 = 30 - 4 = 26 segundos

- Calcular a taxa de chegada de visitas ao dispositivo.
- b) CARGA DE TRABALHO (Taxa de chegada -> Lambda i)
- b) CARGA DE TRABALHO = Ai / To
- b) CARGA DE TRABALHO = 15 / 30
- b) CARGA DE TRABALHO = 0.5 visitas por segundo

c. Calcule a utilização do dispositivo c) UTILIZACAO # USAMOS A FORMULA ABAIXO QUANDO CONSIDERAMOS OS VALORES INICIAIS UTILIZACAO = Bi / To UTILIZACAO = 26 / 30 UTILIZACAO = 0.8667 (0.87)DISPONIBILIDADE = 1 - UTILIZACAO DISPONIBILIDADE = 1 - 0.87 DISPONIBILIDADE = 0.13 (13%) d. Calcule o tempo médio de serviço do dispositivo d) Si (quanto tempo preciso para servir aquela visita) d) Si = Bi / Ci d) Si = 26 / 15d) Si = 1.73 segundo por visita e. Calcule o tempo médio de resposta do dispositivo e) Ri (tempo de resposta do dispositivo) e) Ri = Si / DISPONIBILIDADE e) Ri = 1.73 / 0.13 e) Ri = 13.30 segundos por visita f. Calcule o tempo médio de espera do dispositivo f) Wi (tempo medio de espera)

f) Wi = Ri - Si

f) Wi = 13.30 - 1.73

f) Wi = 11.57 segundos por visita

g. Se a taxa de chegada fosse 10% a mais que a original, qual será o tempo médio de resposta e de espera do dispositivo.

g) Taxa de chegada 10% a mais que a original

UTILIZACAO NOVA = Utilizacao antiga * 1.1

UTILIZACAO NOVA = 0.87 * 1.1

UTILIZACAO NOVA = 0.95

DISPONIBILIDADE NOVA = 1 - UTILIZACAO NOVA

DISPONIBILIDADE NOVA = 1 - 0.95

DISPONIBILIDADE NOVA = 0.05

Ri novo (tempo de resposta novo) = Si / DISPONIBILIDADE NOVA

Ri novo = 1.73 / 0.05

Ri novo = 34.6 segundos

Wi novo (tempo de espera novo) = Ri novo - Si

Wi novo = 34.6 - 1.73

Wi novo = 32.87

- h. Considerando a taxa de chegada 10% a mais que a original. Se for comprado um dispositivo que consuma a metade do tempo. Qual será a utilização do dispositivo, o novo tempo de resposta e de espera do dispositivo?
- h) Taxa de chegada 10% a mais que a original AND dispositivo gastando metade do tempo:
- -> UTILIZACAO NOVA = Si novo * lambda i nova # (carga de trabalho nova que eu tenho apos o aumento de 10%)

NAO USAMOS A FORMULA DO COMECO. AGORA USAMOS A FORMULA ACIMA (PORQUE CONSIDERAMOS O TEOREMA DA UTILIZACAO)

Si novo = (Si anterior / 2) # divide por 2 porque o dispositivo gasta metade do tempo

Si novo = 1.73 / 2 = 0.865

Lambda i nova = CARGA DE TRABALHO anterior com os 10% a mais

Lambda i nova = 0.5 * 1.1

Lambda i nova = 0.55

UTILIZACAO NOVA = Si novo * lambda i nova

```
UTILIZACAO NOVA = 0.865 * 0.55
UTILIZACAO NOVA = 0.47
-> DISPONIBILIDADE NOVA:
DISPONIBILIDADE NOVA = 1 - UTILIZACAO NOVA
DISPONIBILIDADE NOVA = 1 - 0.47
DISPONIBILIDADE NOVA = 0.53
-> TEMPO DE RESPOSTA (Ri) NOVO:
TEMPO DE RESPOSTA NOVO = Si novo / DISPONIBILIDADE NOVA
TEMPO DE RESPOSTA NOVO = 0.865 / 0.53
TEMPO DE RESPOSTA NOVO = 1.63
   i. Considerando a taxa de chegada 10% a mais que a original. Se o tempo médio de resposta for
      estabelecido em 5 s/v. Qual será o tempo médio de serviço e o Fator de velocidade do novo
       dispositivo?
i) Taxa de chegada 10% a mais que a original AND tempo medio de RESPOSTA igual a 5s/v (5
segundos por visita)
Si: variavel que quero achar
Si = Ri / (1 + Ri * lambda i)
# Veio do enunciado
Ri = 5
```

Veio do enunciado

Ri = 5

Calculando o lambda i novo

lambda i novo = CARGA DE TRABALHO * 1.1

lambda i novo = 0.55

Si = 5 / (1 + 13.30 * 0.55)

Si = 1.33333

- j. Considerando a taxa de chegada 10% a mais que a original. Se o tempo de espera for estabelecido em 5 s/v. Qual será o tempo médio de serviço e o Fator de velocidade do novo
- j) Taxa de chegada 10% a mais que a original AND tempo medio de ESPERA igual a 5s/v (5 segundos por visita)

Si: variavel que quero achar EM FUNÇÃO DO Wi (que eh o o tempo de espera)

Exercí	حنه				317		
To=	· I hora						
Co	= 7200						
Ucr	ou= 60:1.	V01=	10-J.	J0	2- 80.	١-	
. 0	AT Open i	7				t:	

QUESTAO 01:

No enunciado diz que o sistema foi observado durante 1 hora (To = 1h) e que foram processadas 7200 requisições (Co = 7200).

Logo:

Xo == throughput do sistema

Xo = REQUISICOES / TEMPO TOTAL

Xo = 7200 / 1 hora

Xo = 7200 / 3600 (em segundos, 1h == 3600 segundos)

Xo = 2 requisicoes por segundo

No enunciado tambem diz que: UTILIZACAO CPU = 60%, UTILIZACAO DISCO 1 = 70%, UTILIZACAO DISCO 2 = 80% Logo: Precisamos do 'Di' pra calcular o somatorio que vai nos dar o tempo que o sistema inteiro vai gastar para processar uma requisicao Di = UTILIZACAO DISPOSITIVO 'i' / Xo Logo: Dcpu = UTILIZACAO CPU / Xo Dcpu = 60% / 2 Dcpu = 0.60 / 2Dcpu = 0.30Ddisco1 = UTILIZACAO DISCO 1 / Xo Ddisco1 = 70% / 2 Ddisco1 = 0.70 / 2Ddisco1 = 0.35 Ddisco2 = UTILIZACAO DISCO 2 / Xo Ddisco2 = 80% / 2

Ddisco2 = 0.80 / 2

Ddisco2 = 0.40

```
R = 0
Para cada dispositivo
{
R = R + (Di / 1 - UTILIZACAO DISPOSITIVO 'i')
}
# OU SEJA
R = (Dcpu / 1 - UTILIZACAO CPU) + (Ddisco1 / 1 - UTILIZACAO DISCO 1) + (Ddisco2 / 1 -
UTILIZACAO DISCO 2)
R = (0.30 / 1 - 0.60) + (0.35 / 1 - 0.70) + (0.40 / 1 - 0.80)
R =
        0.75
                         1.1667
                                                 2.0
R = 3.9167
E SE AUMENTARMOS A CARGA DE TRABALHO EM 10%, QUANTO VALE O NOVO TEMPO DE
RESPOSTA?
UTILIZACAO NOVA = UTILIZACAO ANTIGA * 1.1
UTILIZACAO NOVA CPU = 0.6 + 0.06
UTILIZACAO NOVA CPU = 0.66
Dcpu = UTILIZACAO NOVA CPU / Xo
Dcpu = 0.66 / 2
Dcpu = 0.33
```

Após isso, agora podemos calcular R, que se da' pelo seguinte

UTILIZACAO NOVA DISCO 1 = 0.7 + 0.07

UTILIZACAO NOVA DISCO 1 = 0.77

Ddisco1 = UTILIZACAO NOVA DISCO 1 / Xo

Ddisco1 = 0.77 / 2

Ddisco1 = 0.385

UTILIZACAO NOVA DISCO 2 = 0.8 + 0.08

UTILIZACAO NOVA DISCO 2 = 0.88

Ddisco2 = UTILIZACAO NOVA DISCO 2 / Xo

Ddisco2 = 0.88 / 2

Ddisco2 = 0.44

R = (Dcpu / 1 - UTILIZACAO NOVA CPU) + (Ddisco1 / 1 - UTILIZACAO NOVA DISCO 1) + (Ddisco2 / 1 - UTILIZACAO NOVA DISCO 2)

$$R = (0.33 / 1 - 0.66) + (0.385 / 1 - 0.77) + (0.44 / 1 - 0.88)$$

R = 6.31

.....

E SE AUMENTARMOS A CARGA DE TRABALHO EM 10% DE NOVO, QUANTO VALE O NOVO TEMPO DE RESPOSTA?

UTILIZACAO NOVA = UTILIZACAO ANTIGA * 1.2

UTILIZACAO NOVA CPU = 0.72

Dcpu = UTILIZACAO NOVA CPU / Xo

Dcpu = 0.72 / 2

Dcpu = 0.36

UTILIZACAO NOVA DISCO 1 = 0.84

Ddisco1 = UTILIZACAO NOVA DISCO 1 / Xo

Ddisco1 = 0.84 / 2

Ddisco1 = 0.42

UTILIZACAO NOVA DISCO 2 = 0.96

Ddisco2 = UTILIZACAO NOVA DISCO 2 / Xo

Ddisco2 = 0.96 / 2

Ddisco2 = 0.48

R = (Dcpu / 1 - UTILIZACAO NOVA CPU) + (Ddisco1 / 1 - UTILIZACAO NOVA DISCO 1) + (Ddisco2 / 1 - UTILIZACAO NOVA DISCO 2)

$$R = (0.36 / 1 - 0.72) + (0.42 / 1 - 0.84) + (0.48 / 1 - 0.96)$$

R = 15.9 = 16

Logo, o problema é o segundo disco. Trocamos ele

QUANDO COMPRAMOS MAIS SERVIDORES? QUANDO TEMOS RAJADAS DE CARGA INESPERADA

Um sistema de computação foi observado durante 1 hora. Durante esse período de tempo foram processados dois tipos de carga de trabalho A e B. Durante o período de observação foram coletados os seguintes dados referentes às utilizações dos dispositivos:

Dispositivo	Carga A	Carga B
CPU	0,5	0,2
Disco 1	0,4	0,3
Disco 2	0,4	0,2

O número de requisições processadas, durante o tempo de observação, foi de:

Transações	Transações
processadas tipo A	processadas tipo B
1000	2000

Para o próximo mês foram previstos os seguintes aumentos nas cargas de trabalho: Considere seu número de mátricula: 999999XY. Onde X corresponde ao aumento na carga A e Y ao aumento na carga B em porcentagem.

Mês	Requisições tipo A	Requisições tipo B
Próximo	X%	Y%

Avaliar o desempenho do sistema respondendo às seguintes questões:

1) Para o mês atual determine os tempos de resposta para cada carga (10 pontos):

To=3600s

Carga A = 1000 req

Carga B = 2000 req

Dispo	Α	В	Total
CPU	0,5	0,2	0,7
D1	0,4	0,3	0,7
D2	0.4	0.2	0.6

XoA = 1000/3600 = 0.28 req/s

Di=Ui/Xo	Α	В
CPU	0,5/0,28=1,79	0,2/0,56=0,36
D1	0,4/0,28=1,43	0,3/0,56=0,54
D2	0,4/0,28=1,43	0,2/0,56=0,36

Di/1-Ui	Α	В
CPU	1,79/1-0,7=5,97	0,36/1-0,7=1,2
D1	1,43/1-0,7=4,77	0,54/1-0,7=1,8
D2	1,43/1-0,6=3,58	0,36/1-0,6=0,9
Total	Ra=14,32	Rb=3,9

2) Para o próximo mês, calcule os tempos de resposta para cada tipo de carga (10 pontos)

To=3600s

Carga A = 1000 req

Carga B = 2000 req

X= 0

Y= 3

Dispo	Α	В	Total
CPU	0,5	0,206	0,706
D1	0,4	0,309	0,709
D2	0.4	0.206	0.606

XoA = 1000/3600 = 0.28 req/s

Di=Ui/Xo	Α	В
CPU	0,5/0,28=1,79	0,2/0,56=0,36
D1	0,4/0,28=1,43	0,3/0,56=0,54
D2	0,4/0,28=1,43	0,2/0,56=0,36
Di/1-Ui	Α	В
CPU	1,79/1-0,706=6,08	0,36/1-0,706=1,22
D1	1,43/1-0,709=4,91	0,54/1-0,709=1,85
D2	1,43/1-0,606=3,62	0,36/1-0,606=0,91

Total Ra=14,61(0,2%) Rb=3,98(0,2%)

3) Considerando o aumento da carga, da Questão anterior, se for trocado o dispositivo D1 por outro que gaste a metade do tempo calcular o novo tempo de resposta para cada tipo carga (5 pontos).

To=3600s

Carga A = 1000 req

Carga B = 2000 req

X= 0

Y= 3

Dispo	Α	В	Total
CPU	0,5	0,206	0,706
D1	0,2	0,1545	0,3545
D2	0,4	0,206	0,606

XoA = 1000/3600 = 0.28 req/s

Di=Ui/Xo	Α	В
CPU	0,5/0,28=1,79	0,2/0,56=0,36
D1	0,2/0,28=0,714	0,1545/0,56=0,27
D2	0,4/0,28=1,43	0,2/0,56=0,36
Di/1-Ui	Α	В
CPU	1,79/1-0,706=6,08	0,36/1-0,706=1,22
D1	0,714/1-0,3545=1,106	0,27/1-0,3545=0,418
D2	1,43/1-0,606=3,62	0,36/1-0,606=0,91
Total	Ra=10,806	Rb=2,548

4) Considerando a troca de dispositivo da Questão 3. Se o servidor for duplicado, calcular o novo tempo de resposta de cada servidor para cada carga de trabalho (5 pontos).

To=3600s

Carga A = 1000 req

Carga B = 2000 req

X = 0

Y= 3

Dispo	Α	В	Total
CPU	0,5	0,206	0,706
D1	0,2	0,1545	0,3545
D2	0,4	0,206	0,606

XoA = 1000/3600 = 0.28 req/s

Di=Ui/Xo	А	В
CPU	0,5/0,28=1,79	0,2/0,56=0,36
D1	0,2/0,28=0,714	0,1545/0,56=0,27
D2	0,4/0,28=1,43	0,2/0,56=0,36
Di/1-Ui	A	В
CPU	1,79/1-0,353=2,76	0,36/1-0,353=0,556
D1	0,714/1-0,17725=0,86	0,27/1-0,17725=0,3281
D2	1,43/1-0,303=2,05	0,36/1-0,303=0,5164
Total	Ra=5,6716	Rb=1,4005