Principy počítačů a operačních systémů

Historický úvod a základní koncepty

Zimní semestr 2009/2010

Předchůdci moderních počítačů

1930 – 1948

- analogové počítače
- elektro-mechanické počítače

Základní koncepty

- externí vstup programu a dat
- binární kód

První digitální počítač

Konrad Zuse, 1910 – 1995

- 1938: Z1, mechanický, binární
 - výrazně jednodušší realizace než decimální
- 1941: Z3, reléový, děrná páska
 - první univerzální, programem řízený digitální počítač
 - floating point (znaménko, exponent, mantissa)
 - sčítání 0.7s, násobení 3s, příkon 4kW, váha 1000kg
- 1944: Z4, první prodaný počítač
- 1945: Plankalkül, programovací jazyk vyšší úrovně

Alan Turing

1912 – 1954

- zakladatel moderní počítačové vědy
 - formalizace algoritmu a výpočtu
- 1936: Turingův stroj
 - abstraktní zařízení pro manipulaci se symboly
 - mohou simulovat libovolný počítač
 - univerzální turingův stroj
 - halting problem
- 1943: Colossus Mk I
 - plně elektronický, ne však univerzální
 - útok na šifrovací zařízení Lorenz SZ 40/42

Turingův stroj

Páska

- políčka obsahující symboly
- vstup, výstup, pracovní paměť

Čtecí/zapisovací hlava

čtení/zápis symbolů na pásce, pohyb po pásce

Tabulka instrukcí

- klíč: stav, symbol na pásce
- výsledek: co zapsat, posun hlavy, nový stav

Stavový registr

stav stroje, část klíče do tabulky instrukcí

Turingův stroj, příklad

Úloha:

TS s oddělenou vstupní a výstupní páskou. Zapiš **1** na výstupní pásku, když jsou na vstupní pásce nalezeny alespoň tři po sobě jdoucí jedničky, jinak zapiš 0.

Čtecí a záznamová hlava

1 0 1 1 0 1

- červené šipky reprezentují vstup 0
- modré šipky reprezentují vstup 1
- černá čísla reprezentují výstup odpovídající příslušnému vstupu

Páska

Turingův test

Vztah člověka a stroje

základy vědy o "umělé inteligenci"

Test inteligence stroje

- komunikace prostřednictvím dálnopisu
- pokud není možno v rozumném čase rozlišit zda odpovídá stroj či člověk, pak stroj "vykazuje znaky inteligence"

Elektronické počítače (téměř)

1944: Harvard Mark I

- Howard Aiken, Harvard Univ.
- Automatic Sequence-Controlled Calculator Mk I
- základní vlastnosti
 - desítkový, plně automatický
 - standardní aritmetika, logaritmy, trigonometrie
 - program na děrné pásce, později více pásek
 - data na samostatné pásce nebo štítcích
 - výpočty balistických tabulek pro námořnictvo
 - 18 x 2.5m, 5 tun, 530 mil drátu, 760 000 součástí

Elektronické počítače

1946: ENIAC

- John W. Mauchly, J. Presper Eckert
- Electronic Numerical Integrator And Computer
- základní vlastnosti
 - dekadický, desetimístná čísla
 - 20 sčítaček, násobička, dělička, druhá odmocnina
 - programování pomocí propojování speciálních programových jednotek
 - použita "rychlá" registrová paměť
 - testování hypotéz ohledně vodíkové bomby
 - 30 tun, 18 000 elektronek, 5000 součtů/s, 385 násobení

ENIAC vs. Pentium

	ENIAC	Pentium @ 150MHz
rychlost (součtů/s)	5 000	300 000 000
paměť	200 čísel	512 000 Bytů L2 cache
prvky	17 500 elektronek 6 000 přepínačů 10 000 kondenzátorů 70 000 odporů 1 500 relé	4 000 000 tranzistorů
velikost	3m výška, plocha 167m²	29x21 mm
hmotnost	30 tun	<20g

Elektronické počítače

1949: EDVAC

- John W. Mauchly, J. Presper Eckert
- Electronic Discrete Variable Automatic Computer
- základní vlastnosti
 - binární aritmetika
 - vnitřní paměť na rtuťových zpožďovacích linkách
 - řízení programem uloženým v paměti
 - 8 tun, 6 000 elektronek, 12 000 diod
- von Neumannova architektura
- do provozu uveden 1951

EDVAC

John L. von Neumann

1903 – 1957

- americký matematik maďarského původu
- zakladatel teorie her
- technická zpráva o návrhu počítače EDVAC: první detailní popis návrhu počítače s programem uloženým v paměti
 - von Neumannova architektura
- základní koncepce moderního počítače

von Neumannova architektura

von Neumannova architektura

Hlavní koncepty

- paměť
 - posloupnost buněk stejné velikosti
 - buňka identifikována adresou (pořadovým číslem)
- program
 - program je uložen v paměti, nelze rozlišit od dat
 - program se nemění při změně vstupních dat
 - posloupnost elementárních příkazů v paměti
 - · pořadí provádění se mění pouze instrukcemi skoku
- univerzální počítač
 - struktura počítače nezávisí na typu úlohy

Harvardská architektura

Hlavní koncepty

- oddělené adresové prostory pro program a data
- oddělené cesty k procesoru
 - procesor může současně číst program i data
- rozdílná implementace pamětí
 - různé technologie, rychlost, šířka slova, ...
 - paměť programu umožňuje pouze čtení

Modifikovaná harvardská architektura

- podpora pro čtení dat z paměti programu
 - konstanty sloužící k inicializaci

Sálové počítače

1949: EDSAC

- Maurice Wilkes, Cambridge
- Electronic Delay Store Automatic Computer
- první praktický počítač s programem v paměti
 - EDVAC začal fungovat až v r. 1951
- základní vlastnosti
 - binární aritmetika, paměť 1024 18-bitových slov
 - logické operace posunu
 - programování mnemotechnickým kódem
 A45 add 45
 - 3500 elektronek

Zdokonalování von Neumannovy koncepce

1 byte akumulátoru v počítači Borroughs 205 (1954)

Desítkový čítač s elektronkami

Ovládací panel bloku počítače

Feritová paměť

Počítače IBM

1948: IBM 604

elektronkový s registry

1952: IBM 701

elektronkový s paměťovou elektronkou

1954: IBM 650

elektronkový s magnetickou bubnovou pamětí

1964: IBM 704

feritové paměti

1960: IBM 7090

první počítač vybavený polovodičovou technologií

Sálové počítače

1964: IBM 360

- postaven na integrovaných obvodech
- zásadní změny výstavby
 - stavebnicová konstrukce

- jednotná struktura dat a instrukcí
- jednotný způsob připojování periferií
- ochrana dat v paměti
- koncepce zůstala dlouho zachována

Generace moderních počítačů

o. generace

relé, jednotky operací/s (Z3, Harvard M1)

1. generace

1951: elektronky, bubnová paměť 1kB, 0.01 MIPS (ENIAC, UNIVAC)

2. generace

1957: tranzistory, ferritová paměť 10kB, 0.1 MIPS (IBM 1401, IBM 7070)

3. generace

• 1964: IO malé integrace (SSI), ferritová paměť 1MB, 1 MIPS (IBM 360)

3.5. generace

1971: IO střední integrace (MSI), paměť MSI 1MB, 1 MIPS (IBM 370)

4. generace

■ 1981: IO velké integrace (LSI), paměť 10MB, 10 MIPS (IBM 308x)

Současné třídy počítačů

Kompromis v multikriteriálním návrhu

- vestavěné
 - omezené zdroje (pamět, výkonnost, cena)
- osobní
 - optimální poměr cena výkon
- servery
 - "lepší" osobní, vyšší propustnost a spolehlivost
- superpočítače
 - maximalizace výpočetního výkonu
- mainframy
 - maximalizace spolehlivosti a propustnosti

Moderní sálové počítače

2005: IBM z9-109 model S54

- 1-54 konfigurovatelných PU
- SAP; CP, IFL, ICF, zAAP
 (max 54/54/16/27)
- ESCON, FICON, OSA (max 1024/120/48)
- CMOS 10K-SOI
- paměť 16-512 GB memory
- 1740kg, příkon 18.3kW, 62.4kBTU, 2.49m²
- dostupnost, bezpečnost

Fakta o dnešních mainframech (IBM)

Kdo je používá?

většina Fortune 1000 společností 60% dat dostupných na Internetu

K čemu se používají?

- zpracování řádově tisíců transakcí/s
- souběžný přístup k systémovým prostředkům
- podpora pro tisíce uživatelů a programů
- vysokokapacitní úložiště v řádu TB
- širokopásmové komunikace

Organizace počítače

Základní součásti

- vstup vstupní zařízení
 - klávesnice, myš, tablet, disk, zvuková karta, kamera, joystick, volant, pedály, síťová karta, snímač otisků, ...
- výstup výstupní zařízení
 - CRT monitor, LCD panel, zvuková karta, grafická karta, tiskárna, disk, síťová karta, plotter, force-feedback, ...
- paměť
- datová cesta
- řízení

Spuštění počítače

Od spuštění počítače k bežící aplikaci

- BIOS (Basic Input/Output System)
- zavaděč operačního systému
 - boot sektor, boot loader
- operační systém
- uživatelské rozhraní
- aplikace

Od aplikace k instrukcím programu

Od instrukcí ke strojovému kódu

Jak se domluvit s procesorem?

Nutno použít správný jazyk

- slova na abecedou {0, 1}
 - 1000110010100000
- odpovídají příkazům instrukcím
 - sečti A a B
- v symbolickém zápisu
 - add A, B
- ve vyšším jazyce
 - fruits = apples + oranges

Co s těmi všemi jazyky?

Překládat z jednoho do druhého

- zmenšení sémantické mezery
- vyšší jazyk ⇒ vyšší produktivita

Překladač

 typicky překlad z vyššího jazyka do nižšího až na úroveň symbolického zápisu instrukcí

Assembler

 překlad symbolického zápisu instrukcí do binárního kódu vykonatelného procesorem

Zdrojový text ve vyšším jazyce

```
void swap (int array [], int k) {
  int old = array [k];
  array [k] = array [k+1];
  array [k+1] = old;
}
```

Symbolický zápis pro MIPS

```
swap:
 sll $a1, $a1, 2
 addu $a1, $a1, $a0
 lw $v0, 0 ($a1)
 lw $v1, 4 ($a1)
 sw $v1, 0 ($a1)
    $v0, 4 ($a1)
 SW
 jr
    $ra
```

Symbolický zápis pro x86_64

swap:

```
movslq %esi, %rsi
    (%rdi, %rsi, 4), %rdx
leaq
leaq 4 (%rdi, %rsi, 4), %rax
movl (%rdx), %ecx
movl (%rax), %esi
movl %esi, (%rdx)
movl %ecx, (%rax)
retq
```

Strojový zápis pro MIPS

Strojový zápis pro x86_64

Abstrakce a vrstvy systému

Co a jak ovliňuje výkon programu?

Algoritmus	Počet příkazů ve zdrojovém textu a počet V/V operací
Programovací jazyk, překladač, architektura	Počet strojových instrukcí na každý příkaz ve zdrojovém textu
Procesor a paměť	Rychlost provádění instrukcí
V/V subsystém (hardware + operační systém)	Počet a rychlost provádění V/V operací

Literatura

Knihy

- C. Wurster
 - Computers An Illustrated History
- R. Rojas, U. Hashagen
 - The First Computers History and Architectures

Internet

- Charles Babbage Institute
 - http://www.cbi.umn.edu
- Computer History Museum
 - http://www.computerhistory.org