Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

Alec Radford, Luke Metz, Soumith Chintala

2021.07.29

세종대학교 무인이동체공학전공

곽수지

Contribution

- 안정적 학습이 가능한 convolutional GAN 구조
- Discriminator 성능 평가: 학습된 Discriminator 사용하여 Image Classification 수행 → 학습된 비지도 학습 기반 표현 모델이 지도 학습(분류)에 적용되었을 때 성능 확인
- Discriminator Filter Visualization (no longer black-box)
- Generator의 vector arithmetic 성질

안정된 DCGAN을 위한 구조

Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- <u>Use batchnorm</u> in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use <u>LeakyReLU activation in the discriminator</u> for all layers.

Activation function	Discriminator	Generator
Input layer	LeakyReLU	ReLU
else	LeakyReLU	ReLU
Output layer	LeakyReLU	Tanh

Generator Model

- * Image Pixel 값 [-1, 1] scaling → (Output layer Activation Fuction: Tanh)
- * Image Augmentation 미적용
- * Optimizer: Adam Optimizer

Replace any pooling layers with strided convolutions

Pooling:

Replace any pooling layers with strided convolutions

Stride:

Generator

Fractionally-Strided Convolution

Discriminator

Strided Convolution

Generated bedrooms (1 epoch)

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model could learn to memorize training examples, but this is experimentally unlikely as we train with a small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating memorization with SGD and a small learning rate.

Generated bedrooms (5 epochs)

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual under-fitting via repeated noise textures across multiple samples such as the base boards of some of the beds.

유사 중복 이미지 제거: de-noising autoencoder

Generator의 학습 이미지 <u>암기 가능성 낮추기 위해</u> 도입 인코딩한 벡터에 임계 값을 도입하여 제거

비지도 표현 학습 알고리즘 성능 평가 (Discriminator)

Discriminator,

지도학습 분류 모델의 feature extractor로 사용 + 선형 모델(SVM) 도입하여 분류 모델 생성

Classification Results 1

ImageNet-1k dataset으로 Discriminator 학습 (not pre-trained on CIFAR-10)

→ CIFAR-10 분류 모델

Table 1: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not pre-trained on CIFAR-10, but on Imagenet-1k, and the features are used to classify CIFAR-10 images.

Model	Accuracy	Accuracy (400 per class)	max # of features units
1 Layer K-means	80.6%	63.7% (±0.7%)	4800
3 Layer K-means Learned RF	82.0%	$70.7\%~(\pm 0.7\%)$	3200
View Invariant K-means	81.9%	$72.6\%~(\pm 0.7\%)$	6400
Exemplar CNN	84.3%	$77.4\%~(\pm 0.2\%)$	1024
DCGAN (ours) + L2-SVM	82.8%	$73.8\%~(\pm 0.4\%)$	512

Classification Results 2

DCGAN(Unsupervised), Supervised CNN 비교

Table 2: SVHN classification with 1000 labels

Model	error rate
KNN	77.93%
TSVM	66.55%
M1+KNN	65.63%
M1+TSVM	54.33%
M1+M2	36.02%
SWWAE without dropout	27.83%
SWWAE with dropout	23.56%
DCGAN (ours) + L2-SVM	22.48%
Supervised CNN with the same architecture	28.87% (validation)

Walking in the latent space

Visualize Discriminator filters (no longer black-box)

Guided Backpropagation 이용

Applying arithmetic in the input space

King - Man + Woman = Queen

Conclusion and Future Work

Conclusion:

안정적인 GAN 학습을 위한 구조 제시 GAN, 생성모델링과 지도 학습을 위한 표현 학습한다는 것 입증

Future Work:

모델의 불안정성 문제 (mode collapse) Video, Audio 등 다른 도메인 확장 가능성 제시 학습된 latent space의 성질 조사