# Fertilizers Recommendation System For Disease Prediction

IBM PROJECT REPORT SUBMITTED BY

**Team ID**: PNT2022TMID01288

**Team Leader:** GOKUL

**Team member:** AKASH DEEP

**Team member:** GIRIDHARAN

**Team member:** GOKULAN



#### PANIMALAR ENGINEERING COLLEGE

**BACHELOR OF TECHNOLOGY** 

in

INFORMATION TECHNOLOGY POONAMALLEE

ANNA UNIVERSITY: CHENNAI 600 025

### **INTRODUCTION**

### 1.1 OVERVIEW OF THE PROJECT

Agriculture is the maximum vital region in today's life. Most flowers are suffering from a huge type of bacterial and fungal sicknesses. Diseases in flowers located a prime constraint on the manufacturing and a prime hazard to meal security. Hence, early and correct identification of plant sicknesses is crucial to make the certain excessive amount and first-class quality. In latestyears, the number of sicknesses on flowers and the diploma of damage precipitated has expanded because of the variant in pathogen varieties, modifications in cultivation methods, and insufficient plant safety strategies. A computerized gadget is added to pick out special sicknesses on flowers via way of means of checking the signs and symptoms proven on the leaves of the plant. Deep gaining knowledge of strategies is used to pick out the sicknesses and recommend the precautions that may be taken for the one's sicknesses.

Machine learning is particularly effective in detecting and recognizing plant illnesses, and it can provide early disease sign identification. Plant disease specialists can examine the digital photos processed with digital image processing to identify blights on plants. computer vision and image processing applications Processing methods merely help farmers throughout all regions. about agriculture. In most cases, plant diseases are brought on by plant physiological functions that are aberrant. as a result, the generation of distinctive symptoms is based on distinguishing between typical physiological functions and abnormalities in the way that plants function physiologically. Typically, the pathogens that cause plant leaf diseases are put in place on the plant's stems.

These are distinct Different factors that can predict the signs and diseases of leaves processing methods for images. These many approaches make use of various core techniques like segmentation, feature extraction, and classification, among others. Most often, segmentation is used to distinguish between healthy and diseased tissues of leaves in order to forecast and diagnose leaf diseases.

#### 1.2 PURPOSE

The main purpose of this project is used to test the leaves and fruits of the plant's sample and identify the diseases. Then provide the recommended fertilizer for that disease. The process starts with the user has to take an image of the affected leaves and then uploading that image. It scans the leaves with the help of the CNN layer and machine learning technique. Machine learning is particularly effective in detecting and recognizing plant illnesses, and it can provide early disease sign identification. Plant disease specialists can examine the digital photos processed with digital image processing to identify blights on plants. computer vision and image processing applications Processing methods merely help farmers throughout all regions. It detects the type of that disease and finds the recommended fertilizer which should be used for that disease.

Traditional approaches depend on experts, encounters, and guides, but the bulk of them are expensive, time-consuming, and labor-intensive, and it might be challenging to precisely identify them. As a result, it seems crucial for trade and biology in agriculture that a quick and accurate method be used to identify plant infections. If the illness is not correctly detected, disease control measures could be a waste of time and money and result in further plant loss. A deep learning-based model is what our project suggests, and it will be trained using images of crop leaves that are both healthy and diseased that are taken from a dataset. The model will accomplish its objective by grouping images of leaves into harmful categories based on flaw patterns.

### **LITERATURE SURVEY**

### **2.1 EXISTING PROBLEM**

Indumathi proposed a method for leaf disease detection and suggest Fertilizers to cure leaf diseases [1]. But the method involves in less number of training and test sets which results in poor accuracy. Pandi Selvi [2] proposed a simple prediction method for soil-based fertilizer recommendation systems for predicted crop diseases. This method gives less accuracy and prediction. Shiva reddy [3] proposed an IoT-based system for leaf disease detection and fertilizer recommendation which is based on Machine Learning techniques and yields less than 80 percent accuracy.

### **2.2 REFERENCES**

- [1] R Indumathi.; N Sagari.; V Thejuswini.; R Swarnareka.,"Leaf Disease Detection and Fertilizer Suggestion", IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), 29-30 March 2019, DOI:10.1109/ICSCAN.2019.8878781.
- [2] P. Pandi Selvi, P. Poornima, "Soil Based Fertilizer Recommendation System for Crop Disease Prediction System", International Journal of Engineering Trends and Applications (IJETA)–Volume 8 Issue 2, Mar-Apr2021.
- [3] Dimitrovski, Ivica, GjorgjiMadjarov, DragiKocev, and PetreLameski, "Maestra at LifeCLEF 2014 Plant Task: Plant Identification using Visual Data", In CLEF (Working Notes), pp. 705-714, 2014.
- [4] Naresh, Y. G., and H. S. Nagendraswamy, "Classification of medicinal plants: an approachusing modified LBP with symbolic representation", Neurocomputing 173, pp. 1789-1797, 2016.
- [5] Sue Han, CheeSeng Chan, Paul Wilkin, and Paolo Remagnino, "Deep-plant: Plant identification with convolutional neural networks", In Image Processing (ICIP), 2015 IEEE International Conference on, pp. 452-456, IEEE, 2015.
- [6] Kaur, Lakhvir, and Vijay Laxmi, "A Review on Plant Leaf Classification and Segmentation", International Journal Of Engineering And Computer Science 5, no. 8, 2016.

- [7] Kadir, Abdul, Lukito Edi Nugroho, AdhiSusanto, and Paulus InsapSantosa, "Leaf classification using shape, color, and texture features", arXiv preprint arXiv:1401.4447, 2013.
- [8] Lee, Sue Han, CheeSeng Chan, Simon Joseph Mayo, and Paolo Remagnino, "How deep learning extracts and learns leaf features for plant classification", Pattern Recognition 71, pp. 1-13, 2017.

### 2.3 PROBLEM STATEMENT DEFINITION

Agriculture is the most important sector in today's life. Most plants are affected by a wide variety of bacterial and fungal diseases. Diseases in plants placed a major constraint on the production and a major threat to food security. Hence, early and accurate identification of plant diseases is essential to ensure high quantity and best quality. In recent years, the number of diseases in plants and the degree of harm caused has increased due to the variation in pathogen varieties, changes in cultivation methods, and inadequate plant protection techniques.

An automated system is introduced to identify different diseases in plants by checking the symptoms shown on the leaves of the plant. Deep learning techniques are used to identify the diseases and suggest the precautions that can be taken for those diseases. The disease can be found easily in the early stage by looking at changes in the color of the leaves. So, without knowing about the correct disease they use some fertilizers and it doesn't cure the disease properly. This fertilizer recommendation system helps to find the accurate disease and helps them to cure the disease and increase in the growth of plants.

### **IDEATION & PROPOSED SOLUTION**

### **3.1 EMPATHY MAP CANVAS**

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes.

It is a useful tool to help teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it along with his or her goals and challenges.



Fig 3.1 Empathy Map

### 3.2 IDEATION AND BRAINSTORMING

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem-solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.



Step-1: Team Gathering, Collaboration and Select the Problem Statement

Fig 3.2 Brainstorming step-1

Step-2: Brainstorm, Idea Listing and Grouping



Fig 3.3 step-2

Step-3: Idea Prioritization



Fig 3.4 step-3

# **3.3 PROPOSED SOLUTION**

| S.No. | Parameter                   | Description                       |
|-------|-----------------------------|-----------------------------------|
| •     | Problem Statement           | Disease in plants reduced         |
|       | (Problem to be solved)      | the quantity and quality of       |
|       |                             | the plant's productivity.         |
|       |                             | Identifying the disease in        |
|       |                             | plants is hard to find.           |
| •     | Idea / Solution description | One of the solutions to the       |
|       |                             | problem is to identify the        |
|       |                             | disease in its early stage and    |
|       |                             | use the correct fertilizer.       |
| •     | Novelty / Uniqueness        | This application can              |
|       |                             | suggest good fertilizer for       |
|       |                             | the disease in the plant by       |
|       |                             | recognizing the images.           |
| •     | Social Impact / Customer    | It helps the farmer by            |
|       | Satisfaction                | identifying the disease in        |
|       |                             | the early stage and               |
|       |                             | increasing the quality and        |
|       |                             | quantity of crops                 |
|       |                             | inefficiently way.                |
| •     | Business Model (Revenue     | The application is recommended to |
|       | Model)                      | farmers on a subscription basis.  |
| •     | Scalability of the Solution | This application can be           |
|       |                             | improved by introducing           |
|       |                             | online purchases of crops,        |
|       |                             | fertilizer easily.                |

### 3.4 PROBLEM SOLUTION FIT



Fig 3.5 solution fit

# **REQUIREMENT ANALYSIS**

# **4.1 FUNCTIONAL REQUIREMENT**

Following are the functional requirements of the proposed solution.

| FR No. | Functional Requirement | Sub Requirement (Story / Sub-Task) |  |  |  |  |
|--------|------------------------|------------------------------------|--|--|--|--|
|        | (Epic)                 |                                    |  |  |  |  |
| FR-1   | User Registration      | Registration through               |  |  |  |  |
|        |                        | Form Registration                  |  |  |  |  |
|        |                        | through Gmail                      |  |  |  |  |
|        |                        | Registration through LinkedIn      |  |  |  |  |
| FR-2   | User Confirmation      | Confirmation via Email             |  |  |  |  |
|        |                        | Confirmation via OTP               |  |  |  |  |
|        |                        |                                    |  |  |  |  |
|        |                        |                                    |  |  |  |  |
| FR-3   | Image Uploading        | Upload from local storage          |  |  |  |  |
|        |                        |                                    |  |  |  |  |
| FR-4   | Image Pre-processing   | Evaluating using DL Algorithm      |  |  |  |  |
|        |                        |                                    |  |  |  |  |
| FR-5   | Displaying result      | Display results got from the model |  |  |  |  |
|        |                        |                                    |  |  |  |  |
| FR-6   | Feedback               | Give feedback through forms        |  |  |  |  |
|        |                        |                                    |  |  |  |  |

# **4.2 NON-FUNCTIONAL REQUIREMENT**

Following are the non-functional requirements of the proposed solution.

| FR No.                   | Non-Functional | Description                                       |  |  |  |  |
|--------------------------|----------------|---------------------------------------------------|--|--|--|--|
|                          | Requirement    |                                                   |  |  |  |  |
| NFR-1                    | Usability      | We propose a user-friendly web application        |  |  |  |  |
|                          |                | system based on machine learning. So, the user    |  |  |  |  |
|                          |                | can provide the input using forms on our user     |  |  |  |  |
|                          |                | interface and quickly get their results. The      |  |  |  |  |
|                          |                | proposed method is also found to perform          |  |  |  |  |
|                          |                | better and produce a higher                       |  |  |  |  |
|                          |                | number of yields.                                 |  |  |  |  |
| NFR-2 <b>Reliability</b> |                | More farmers get benefited from this system as    |  |  |  |  |
|                          |                | they simply have to upload an image to get the    |  |  |  |  |
|                          |                | fertilizer recommendation. Using the proposed     |  |  |  |  |
|                          |                | model, crop yield production increased and        |  |  |  |  |
|                          |                | gave the super ability to decide the right        |  |  |  |  |
|                          |                | combination of different types of available       |  |  |  |  |
|                          |                | resources. This will help farmers and             |  |  |  |  |
|                          |                | agriculture experts to adopt the                  |  |  |  |  |
|                          |                | method for other crops.                           |  |  |  |  |
| NFR-3                    | Performance    | Deep learning techniques are used to identify the |  |  |  |  |
|                          |                | diseases and suggest the precautions that can be  |  |  |  |  |
|                          |                | taken for those diseases. So, it provides better  |  |  |  |  |
|                          |                | performance and recommends fertilizers in a       |  |  |  |  |
|                          |                | quick manner.                                     |  |  |  |  |

# **PROJECT DESIGN**

# **5.1 DATA FLOW DIAGRAMS**

#### **DFD LEVEL - 0**



#### DFD LEVEL - 1



Fig 5.1 data flow diagram

# **5.2 SOLUTIONS AND TECHNICAL ARCHITECTURE**



Fig 5.2 technical architecture

Table-1: Components & Technologies:

| S.<br>No | Component                 | Description                                                                                                    | Technology                    |  |
|----------|---------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| 1.       | User Interface            | How user interacts with application e.g. Web UI, Mobile App, Chatbot etc.                                      | HTML, CSS, JavaScript         |  |
| 2.       | Application Logic-1       | A page to upload images as input                                                                               | Python                        |  |
| 3.       | Application Logic-2       | To use the Machine Learning model and predicting the result                                                    | Python                        |  |
| 4.       | Database                  | Structured data-images                                                                                         | MySQL                         |  |
| 5.       | Cloud Database            | Database that typically runs on a cloud computing platform and access to the database is provided as-a-service | IBM Cloud Databases for MySQL |  |
| 6.       | File Storage              | To store data in a hierarchical structure                                                                      | Local File system             |  |
| 7.       | Machine Learning<br>Model | We use a Support Vector Machine Algorithm that is used widely in Classification and Regressionproblems.        | Random Forest ,XG<br>Boost    |  |

Table 2: Application Characteristics:

| S. No | Characteristics             | Description                                                                                                                                                   | Technology                                                                                                                                                                                                                                                           |
|-------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Open-Source<br>Frameworks   | Flask micro web framework                                                                                                                                     | Written in Python. It is classified as a micro frame work because it does not require particular tools or libraries. It has no database abstraction layer, form validation, or any other components where preexisting third-party libraries provide common functions |
| 2.    | Security<br>Implementations | With all aspects of the job, including detecting malicious attacks, analysing the network endpointprotection and vulnerability assessment, Sign in encryption | IBM Cloud App ID Services                                                                                                                                                                                                                                            |
| 3.    | Scalable<br>Architecture    | It can expand according to plant diseases and fertilizer recommendation system                                                                                | -                                                                                                                                                                                                                                                                    |
| 4.    | Availability                | Available for all data size                                                                                                                                   | -                                                                                                                                                                                                                                                                    |
| 5.    | Performance                 | Can extend the storage according to our needs                                                                                                                 | Python, AngularJS                                                                                                                                                                                                                                                    |

# **5.3 USER STORIES**

Use the below template to list all the user stories for the product.

| User<br>Type                 | Function<br>al<br>Require<br>ment<br>(Epic) | User<br>Story<br>Num<br>ber | User Story /<br>Task                                                                                                     | Acceptance<br>criteria                         | Priori<br>ty |          |
|------------------------------|---------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------|----------|
| Customer<br>(Mobile<br>user) | Registratio<br>n                            | USN-1                       | As a user, I can register for the application by entering my email, password, and confirming my password.                | I can access<br>my account<br>/ dashboard      | High         | Sprint-1 |
|                              | Login                                       | USN-2                       | As a user, I can log into the application by entering email & password                                                   | using my Email ID account or user credentials  | High         | Sprint-1 |
|                              | Dashboard                                   | USN-3                       | As a user, I can view the page of the application where I can upload my images and the fertilizer should be recommended. | I can access<br>my account/<br>dashboard       | High         | Sprint-2 |
| Customer<br>(Web user)       | Registratio<br>n                            | USN-4                       | As a user, I can log in to web Dashboard just Like website dashboard.                                                    | I can register using my username and password. | High         | Sprint-3 |
|                              | Login                                       | USN-5                       |                                                                                                                          | I can log in using my user credentials.        | High         | Sprint-3 |

|               | Dashboard | USN-6 | with the login credentials  As a user, I can view the web application where I can upload myimages and the fertilizer should be | I can access my account/ dashboard.                                | High | Sprint-4 |
|---------------|-----------|-------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------|----------|
|               |           | USN-7 | As the user, the fertilizer recommendedshould be of higher accuracy                                                            | I can access my account/ dashboard.                                | High | Sprint-4 |
| Administrator | Login     | USN-8 | As an admin, Ican log in to the website, using my login credentials.                                                           | I can log into<br>the website<br>using my<br>login<br>credentials. | High | Sprint-5 |
|               | Dashboard | USN-9 | As an admin, Ican view the dashboard of the application.                                                                       | I can accessmy<br>dashboard                                        | High | Sprint-5 |

# **PROJECT PLANNING & SCHEDULING**

# **6.1 SPRINT PLANNING AND ESTIMATION**

| Sprint       | Functiona<br>I<br>Requirem<br>ent (Epic) | User<br>Stor<br>V<br>Nu<br>mbe<br>r | User Story / Task                                                                                                                                                  | Stor<br>V<br>Poin<br>ts | Priori<br>ty |                                                                 |
|--------------|------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|-----------------------------------------------------------------|
| Sprint-<br>1 | Registration                             |                                     | As a user, I can sign up and register respective sites to access the required details and data. And import the required libraries for the processes.               | 2                       | High         | Gokul.N<br>Akashdeep.<br>V<br>Giridharan.L<br>Gokulan.N         |
| Sprint-2     | Login                                    | USN-2                               | As a user, I will access the page and test and train the CNN model to predict or detect the plant disease.                                                         | 2                       | High         | Gokul.N<br>Akashdeep.<br>V<br>Giridharan.<br>L<br>Gokulan.<br>N |
| Sprint-3     | Customer<br>Service                      | USN-3                               | As a customer care executive, I am available to the customers. so if the customers have any issues or in need of any assistance they will get help and solve them. | 1                       | Mediu<br>m   | Gokul.N<br>Akashdeep.<br>V<br>Giridharan.L<br>Gokulan.N         |
| Sprint-4     | Dashboard                                | USN-4                               | As a user, I will have the access to knowabout the activities in the plant.                                                                                        | 2                       | High         | Gokul.N<br>Akashdeep.<br>V<br>Giridharan.L<br>Gokulan.N         |

### **6.2 SPRINT DELIVERY SCHEDULE**

| Sprint       | Tota l Stor y Poin ts | Duratio<br>n | Sprint Start<br>Date | Sprin<br>t End<br>Date<br>(Plan<br>ned) | Story Points<br>Completed (as<br>on<br>Planned End<br>Date) | Sprint Release<br>Date(Actual) |
|--------------|-----------------------|--------------|----------------------|-----------------------------------------|-------------------------------------------------------------|--------------------------------|
| Sprint-<br>1 | 20                    | 6 Days       | 24 Oct 2022          | 29 Oct 2022                             | 20                                                          | 04 Nov 2022                    |
| Sprint-2     | 20                    | 6 Days       | 31 Oct 2022          | 05 Nov<br>2022                          |                                                             | 06 Nov 2022                    |
| Sprint-      |                       | 6 Days       | 07 Nov 2022          | 12 Nov<br>2022                          |                                                             | 09 Nov 2022                    |
| Sprint-      | 20                    | 6 Days       | 14 Nov 2022          | 19 Nov<br>2022                          |                                                             | 12 Nov 2022                    |

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's averagevelocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

#### AV:

Sprint 1 = 20/6 = 3.33,

Sprint 2 = 20/6 = 3.33,

Sprint 3 = 20/6 = 3.33,

Sprint 4 = 20/6 = 3.33.

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as scrum. However, burn-down charts can be applied to any project containing measurable progress over time.



Fig 6.1 Burn-down chart

### **CODING & SOLUTIONING**

### **7.1 FEATURE 1**

### **7.1.1 DATASET**

Two datasets will be used, we will be creating two models one to detect vegetable leaf diseases like tomato, potato, and pepper plants and the second model would be for fruit diseases like corn, peach, and apple.

### 7.1.2 IMAGE PROCESSING

Before training the model, you have to pre-process the images and then feed them onto the model for training. We make use of the Keras ImageDataGenerator class for image pre-processing.

Image Pre-processing includes the following main tasks

- Import ImageDataGenerator Library.
- Configure ImageDataGenerator Class.
- Applying ImageDataGenerator functionality to the trainset and test set.

Image data augmentation is a technique that can be used to artificially expand the size of atraining dataset by creating modified versions of images in the dataset. The Keras deep learning neural network library provides the capability to fit models using imagedata augmentation via the ImageDataGenerator class.

### 7.1.3 MODEL BUILDING FOR DISEASE PREDICTION

For model building, we are following the below steps

- Import the libraries
- Initializing the model
- Add CNN layers
- Add dense layer
- Train and Save the model

### 7.1.4 IMPORT THE LIBRARIES

Here we have Imported the libraries that are required to initialize the neural network layer, and create and add different layers to the neural network model.

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Convolution2D

from keras.layers import MaxPooling2D

from keras.layers import Flatten

#### 7.1.5 ADD CNN AND CONVOLUTION LAYER

We will be adding three layers for CNN

- · Convolution layer
- Pooling layer

Flattening layer

The first layer of the neural network model, the convolution layer will be added. To create a convolution layer, Convolution2D class is used. It takes a number of feature detectors, feature detector size, expected input shape of the image, and activation function as arguments. This layer applies feature detectors on the input image and returns a feature map (features from the image).

Activation Function: These are the functions that help us to decide if we need to activate the node or not. These functions introduce non-linearity in the networks.

model.add(Convolution2D(32,(3,3),input\_shape=(128,128,3),activation='relu'))

### 7.1.6 TRAIN AND SAVE THE MODEL

After adding all the required layers, the model is compiled, for this step, the loss function, optimizer, and metrics for evaluation can be passed as arguments

```
model.compile(optimizer='adam', loss =''categorical_crossentropy'' , metrics
=['accuracy'])
```

Fit the neural network model with the train and test set

```
model.fit(x_train,epochs=20,steps_per_epoch=89,validation_data= x_test, validation_steps = 27)
```

The weights are to be saved for future use. The weights are saved in as .h5 file using save(). model.save("fruit.h5")

model.summary() can be used to see all parameters and shapes in each layer in our models

#### **7.1.7 OUTPUT**

| Layer (type)                                                  | Output Shape       | Param #     |                                         |
|---------------------------------------------------------------|--------------------|-------------|-----------------------------------------|
| conv2d (Conv2D)                                               | (None, 126, 12     | 6, 32) 896  |                                         |
| max_pooling2d (Ma                                             | axPooling2D (None, | 63, 63, 32) | 0                                       |
| flatten (Flatten)                                             | (None, 127008)     | 0           |                                         |
| dense (Dense)                                                 | (None, 40)         | 5080360     |                                         |
| dense_1 (Dense)                                               | (None, 20)         | 820         |                                         |
| dense_2 (Dense)                                               | (None, 6)          | 126         |                                         |
| Total params: 5,082, Trainable params: 5, Non-trainable param | 082,202            |             |                                         |
| Epoch 1/20                                                    |                    |             |                                         |
| 89/89 [====<br>curacy:                                        |                    | ======      | ======] - 717s 8s/step - loss: 1.3023 - |
| 0.5609 - val_                                                 | loss: 59.3136 -    | val_accu    | racy: 0.7199                            |

```
Epoch 2/20
  89/89
                                          4s/
                                                     0.
[========]
                                  354s step
                                             loss:
                                                  6571 accuracy:
  0.7882 - val_loss: 60.1567 - val_accuracy:
0.7824
  Epoch 3/20
  89/89
                                          2s/
                                                     0.
[========]
                                  183s step
                                             loss: 4134 accuracy:
  0.8615 - val_loss: 124.2583 - val_accuracy:
0.6863
  Epoch 4/20
  89/89
                                          1s/
                                                     0.
[======== loss: 3113 accuracy:
  0.8982 - val_loss: 615.5879 - val_accuracy:
0.4329
  Epoch 5/20
  89/89
                                        836m
                                                     0.2
                                                            acc
[======] - 5s s/step
                                               oss 583 -
                                                          uracy:
  0.9129 - val_loss: 541.0003 - val_accuracy:
0.4641
  Epoch 6/20
  89/89
                                        673m
                                                     0.2
                                                            acc
oss 481 -
                                   0s s/step
                                                          uracy:
  0.9112 - val_loss: 663.6074 - val_accuracy:
0.4630
  Epoch 7/20
  89/89
                                        599m
                                                     0.2
                                                            acc
[======] - 4s s/step
                                               oss 167 -
                                                          uracy:
  0.9252 - val_loss: 504.1471 - val_accuracy:
0.4850
  Epoch 8/20
  89/89
                                        584m
                                                     0.2
                                                            acc
[======] - 2s s/step
                                               oss 076 -
                                                          uracy:
  0.9274 - val_loss: 554.8959 - val_accuracy:
0.4618
```

```
Epoch 9/20
   89/89
                                           574m
                                                        0.2
                                                               acc
[=======] - 1s s/step
                                                  oss 308 -
                                                             uracy:
   0.9200 - val_loss: 591.8171 - val_accuracy:
0.4618
   Epoch 10/20
   89/89
                                           564m
                                                        0.1
                                                               acc
[======] - 0s s/step
                                                  oss 834 -
                                                             uracy:
   0.9402 - val_loss: 927.3312 - val_accuracy:
0.4028
   Epoch 11/20
   89/89
                                           558m
                                                               acc
[======] - 0s s/step
                                                  oss 923 -
                                                             uracy:
Epoch 2/20
89/89
                                   - 354s 4s/step - loss: 0.657 -
[==========]
                                                      1
                                                           accuracy:
0.7882 - val_loss: 60.1567 - val_accuracy:
0.7824
Epoch 3/20
                                          2s/step - loss: 0.413 -
89/89
                                   - 183s
                                                           accuracy:
0.8615 - val_loss: 124.2583 - val_accuracy:
0.6863
Epoch 4/20
                                           1s/step - loss: 0.311 -
89/89
                                    - 108s
3
                                                           accuracy:
0.8982 - val_loss: 615.5879 - val_accuracy:
0.4329
Epoch 5/20
```

```
89/89
                             75s
                                  836ms/st - loss 0.2583 accurac
ep : -
                                                 y:
0.9129 - val_loss: 541.0003 - val_accuracy:
0.4641
Epoch 6/20
89/89
                                  673ms/st - loss 0.2481 accurac
                             60s
[=======] -
                                 ep : -
                                                 y:
0.9112 - val_loss: 663.6074 - val_accuracy:
0.4630
Epoch 7/20
89/89
                                599ms/st - loss 0.2167 accurac
                             54s
ep : -
                                                 y:
0.9252 - val_loss: 504.1471 - val_accuracy:
0.4850
Epoch 8/20
89/89
                             52s
                                 584ms/st - loss 0.2076 accurac
ep : -
                                                 y:
0.9274 - val_loss: 554.8959 - val_accuracy:
0.4618
Epoch 9/20
89/89
                             51s
                                  574ms/st - loss 0.2308 accurac
y:
0.9200 - val_loss: 591.8171 - val_accuracy:
0.4618
Epoch 10/20
89/89
                                  564ms/st - loss 0.1834 accurac
                             50s
```

### **7.2 FEATURE 2**

### 7.2.2 APPLICATION BUILDING

After the model is built, we will be integrating it into a web application so that normal users can also use it. The new users need to initially register in the portal. After registration users can login to browse the images to detect the disease.

In this section, you have to build

- HTML pages front end
- Python script Server-side script

### 7.2.3 BUILD PYTHON CODE

After the model is built, we will be integrating it into a web application so that normal users can also use it. The user needs to browse the images to detect the disease.

Activity 1: Build a flask application

Step 1: Load the required packages

from\_future\_\_\_import division, print\_functionimport os

import numpy as np

import cv2

# Keras

 $from\ tensorflow. keras. models\ import\ load\_model$ 

from tensorflow.keras.preprocessing.image import img\_to\_array

**Step 2**: Initializing the flask app and loading the model

flask applications must create an application instance. The web server passes all the requests it receives from clients to objects for handling using a protocol for WSG from flask import Flask app = Flask ( name ) (An application instance is an object of class Flask.)

```
app = Flask(_name_) MODEL_PATH = 'fruit.h5'
MODEL LOADING
```

```
model
                    load model(MODEL PATH) model.make predict function()
default_image_size = (128, 128)
      abels=["Apple Black rot","Apple healthy","Corn (maize) healthy",
"Corn_(maize) Northern_Leaf_Blight","Peach Bacterial_spot","Peach
      healthy'']
      def convert_image_to_array(image_dir):try:
      image = cv2.imread(image_dir)
   if image is not None:
      image = cv2.resize(image, default image size)return img to array(image)
   else:
      return np.array([]) except Exception as e:print(f"Error : {e}") return None
      def model_predict(file_path, model):
      x = convert image to array(file path)x = np.expand dims(x, axis=0)
      preds = model.predict(x)
   return preds
```

### **Step 3:** Configure the home page

#### Routes and View Functions in Flask Framework Instance

Clients send requests to the webserver, in turn, sends them to the Flask application instance. The instance needs to know what code needs to run for each URL requested and map URLs toPython functions. The association between a URL and the function that handles it is called a route. The most convenient way to define a route in a Flask application is through the (app.route). Decorator exposed by the application instance, which registers the 'decorated

function,' decorators are python feature that modifies the behavior of a function.

@app.route("/", methods=['GET'])def index():

return render\_template("index.html", query="")

**Step 4:** Pre-process the frame and run

Pre-process the captured frame and given it to the model for prediction. Based on the prediction the output text is generated and sent to the HTML to display.

#### Request

To process incoming data in Flask, you need to use the request object, including mime-type, IPaddress, and data. HEAD: Un-encrypted data sent to server w/o response.

#### **GET**

Sends data to the server requesting a response body.

#### **POST**

Read form inputs and register a user, send HTML data to the server are methods handled by the route. Flask attaches methods to each route so that different view functions can handle different request methods to the same URL.

```
@app.route(''/'', methods=['GET', 'POST'])def upload():
    if (request.method == 'POST'):f = request.files['file']
    basepath = os.path.dirname(_____file__)
file_path=os.path.join(basepath,'uploads',secure_filename(f.filename))f.save(file_path)
    preds = model_predict(file_path, model)preds = np.argmax(preds)
    result = labels[preds]
    return render_template('index.html', prediction_text=result)return None
```

**Server Startup -** The application instance has a 'run' method that launches flask's integrated development webserver –

```
if_name__ == ''__main__'':app.run(debug=True)
Output:
```

- \* Serving Flask app 'app'
- \* Debug mode: on
- \* Running on <a href="http://127.0.0.1:500">http://127.0.0.1:500</a>

### 7.2.4 BUILD HTML PAGES

```
<h3 class="text-wh">MyCrop-Plant Disease Prediction</h3>
 <h4 class="text-wh mx-auto my-4"><b>Get informed decisions about your
    farmingstrategy.<br/>
<br/>br>In Your Own Language.<br/>
</b>
 <h4 class="text-wh mx-auto my-4"><strong> Here are some questions
    we'llanswer</strong></h4>
 Which disease do your crop have? <br>
            What cause the disease to plant? <br/> <br/>
         2.
            How to prevent the disease?<br>
         How
                                 the
      4.
                  to
                         cure
          disease?<br>
                          5.Fertilizer
          Recommended
                      </div>
                   </div>
</div>
</div>
 </section>
 <!-- //banner -->
 <!-- core values -->
 <section class="core-value py-5">
 <div class="container py-md-4">
 <h3 class="heading mb-sm-5 mb-4 text-center"> About Us</h3>
       <div class="row core-grids">
       <div class="col-lg-6 core-left"><br>
 <img src="{{ url_for('static', filename='images/13.jpg') }}" class="img-fluid" alt=""</pre>
    /></div>
```

```
<div class="col-lg-6 core-right">
```

- <h3 class="mt-4">Improving Agriculture, Improving Lives, Cultivating Crops To Make FarmersIncrease Profit.</h3>
- We use state-of-the-art machine learning and deep learning technologies to help you to guide through the entire farming process. Make informed decisions to understand the demographics of your area, understand the factors that affect your crop and keep them healthy for a super awesome successful yield.

```
</div>
</div>
       </div>
 </section>
 <!-- //core values -->
 <!-- Products & Services -->
 <section class="blog py-5">
 <div class="container py-lg-5">
 <h3 class="heading mb-sm-5 mb-4 text-center"> Our Services</h3>
 <div class="row blog-grids">
 <div class="col-lg-4 col-md-6 blog-left mb-lg-0 mb-md-5 pb-md-5 pb-5">
 <a href="{{ url_for('home') }}">
 <img src="{{ url_for('static', filename='images/s35.jpg') }}" class="img-fluid" alt=""/>
 <div class="blog-info">
 <h4>Crop Disease</h4>
 Predicting the name of the disease through the plant leaf
</div></a>
```

```
<br><br><br>><br>>
 </div><div class="col-lg-4 col-md-6 blog-middle mb-lg-0 mb-md-5 pb-md-5 pb-5">
<a href="{{ url_for('home') }}">
 <img src="{{ url_for('static', filename='images/s6.jpg') }}" class="img-fluid" alt="" />
 <div class="blog-info">
 <h4>Fertilizer Recommendation and Prevention</h4>
 Recommendation about the prevention step to the user to prevent the
    disease infuture.
 <div class="col-lg-4 col-md-6 blog-right mb-lg-0 mb-sm-5 pb-lg-5 pb-md-5">
 <a href="{{ url_for('disease_prediction') }}">
 <img src="{{ url_for('static', filename='images/s7.jpg') }}" class="img-fluid" alt="">
 <div class="blog-info">
 <h4>Cause of Disease</h4>
 Predicting the cause of disease to the plant
                         </div>
                       </a>
                   </div>
               </div>
        </section>
     <style>
 </style>
 <!-- //Products & Services -->
 </html>
 {% endblock %}
```









# **TESTING**

# **8.1 TEST CASE**

| TEST SCENARIO  Verify user is able to run theapplication by login to the home page | STEPS TO EXECUTE  1. Click on the run.app 2. A link will be generated 3. click on the link provided to visit the home page | TEST DAT A  http://12 7. 0.0.1:500 0 | EXPECTE D RESULT Home page isdisplayed                      | ACTUAL RESULT  Home page is displayed          | pass |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------|------------------------------------------------|------|
| Verify theuser can see the homepage and see the diseases                           | homepage 2.Click                                                                                                           | http://12 7. 0.0.1:500 0             | Predict<br>button page<br>will be<br>displayed              |                                                | pass |
| Verify theuser can see the leaf images by clicking the                             | 1.Click the predict button 2. A list of images will be displayed                                                           | http://12 7. 0.0.1:500 0             | Images of<br>thediseased<br>leaves has<br>tobe<br>displayed | Images of the diseased leaves has to displayed | pass |

| predict<br>button | 3.Select a leaf      |             |                |                 |      |
|-------------------|----------------------|-------------|----------------|-----------------|------|
|                   | image that has to    |             |                |                 |      |
|                   | be predicted         |             |                |                 |      |
|                   | 4. After the leaf is |             |                |                 |      |
|                   | predicted, theleaf   |             |                |                 |      |
|                   | has to determine     |             |                |                 |      |
|                   | the diseases.        |             |                |                 |      |
| Verify the        | 1.The information    | http://127. | Successfull    | Have            | pass |
| leafdisease       | has to provide       | 0.0.1:5000  | y predicted    | successfully    |      |
| i                 | correct disease      |             | the disease    | predicted the   |      |
| spredicted        | 2.if the disease is  |             | and displays   | disease and     |      |
| correctly         | correct test case    |             | the fertilizer | correctly       |      |
|                   | is passed,           |             | recommend      | recommended     |      |
|                   | or else the test     |             | ed             | the fertilizer. |      |
|                   | case is fail.        |             |                |                 |      |

## **8.2 USER ACCEPTANCE TESTING**

## 1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

## 2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

| Resolution            | Severit<br>y 1 | Severit<br>y 2 | Severit<br>y 3 | Severity 4 | Subtota<br>1 |
|-----------------------|----------------|----------------|----------------|------------|--------------|
| By Design             | 6              | 4              | 2              | 3          | 15           |
| Duplicate             | 1              | 0              | 3              | 0          | 4            |
| Not<br>Reproduce<br>d | 0              | 0              | 1              | 0          | 1            |
| Skipped               | 0              | 0              | 1              | 1          | 2            |
| Won't Fix             | 0              | 1              | 2              | 2          | 5            |
| Totals                | 7              | 5              | 9              | 6          | 27           |

# 3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

| Section             | Total<br>Cases | Not Tested | Fail | Pas<br>s |
|---------------------|----------------|------------|------|----------|
| Client Application  | 5              | 0          | 0    | 5        |
| Security            | 2              | 0          | 0    | 2        |
| Final Report Output | 4              | 0          | 0    | 4        |
| Version Control     | 2              | 0          | 0    | 2        |

## **RESULT**

## **9.1 PERFORMANCE METRICS**

## **VEGETABLE**

Model: "sequential\_2"

| Layer (type)                               | Output Shape         | Param #  |  |  |
|--------------------------------------------|----------------------|----------|--|--|
| conv2d_1 (Conv2D)                          | (None, 126, 126, 32) | 896      |  |  |
| <pre>max_pooling2d_1 (MaxPooling 2D)</pre> | (None, 63, 63, 32)   | 0        |  |  |
| flatten_1 (Flatten)                        | (None, 127008)       | 0        |  |  |
| dense_7 (Dense)                            | (None, 300)          | 38102700 |  |  |
| dense_8 (Dense)                            | (None, 150)          | 45150    |  |  |
| dense_9 (Dense)                            | (None, 75)           | 11325    |  |  |
| dense_10 (Dense)                           | (None, 9)            | 684      |  |  |
|                                            |                      |          |  |  |

Total params: 38,160,755 Trainable params: 38,160,755 Non-trainable params: 0

## **FRUIT**

Model: "sequential"

| Layer (type)                             | Output Shape         | Param # |
|------------------------------------------|----------------------|---------|
| conv2d (Conv2D)                          | (None, 126, 126, 32) | 896     |
| <pre>max_pooling2d (MaxPooling2D )</pre> | (None, 63, 63, 32)   | 0       |
| flatten (Flatten)                        | (None, 127008)       | 0       |
| dense (Dense)                            | (None, 40)           | 5080360 |
| dense_1 (Dense)                          | (None, 20)           | 820     |
| dense_2 (Dense)                          | (None, 6)            | 126     |
|                                          |                      |         |

Total params: 5,082,202 Trainable params: 5,082,202 Non-trainable params: 0

#### PARAMETER ACCURACY

Training Accuracy

Validation Accuracy

#### **VEGETABLE**

```
model.fit(x_train,epochs=10,steps_per_epoch=89,validation_data = x_test, validation_steps = 27)
model.save("veg.h5")
Epoch 1/10
Epoch 2/10
Epoch 3/10
89/89 [=========== ] - 361s 4s/step - loss: 0.7985 - accuracy: 0.7229 - val loss: 664.0219 - val accuracy: 0.3275
Epoch 4/10
89/89 [====
               =========] - 290s 3s/step - loss: 0.6901 - accuracy: 0.7598 - val loss: 870.4464 - val accuracy: 0.2859
Epoch 5/10
           89/89 [======
Epoch 6/10
89/89 [=============] - 183s 2s/step - loss: 0.5603 - accuracy: 0.7978 - val_loss: 842.9805 - val_accuracy: 0.2384
Epoch 7/10
           ===========] - 148s 2s/step - loss: 0.5167 - accuracy: 0.8195 - val loss: 1794.7992 - val accuracy: 0.1296
89/89 [=====
Epoch 8/10
89/89 [============] - 118s 1s/step - loss: 0.4628 - accuracy: 0.8385 - val_loss: 1593.1969 - val_accuracy: 0.1516
Epoch 9/10
           =====================] - 103s 1s/step - loss: 0.4795 - accuracy: 0.8304 - val_loss: 1793.0253 - val_accuracy: 0.1551
89/89 [====
Fnoch 10/10
89/89 [============] - 94s 1s/step - loss: 0.3958 - accuracy: 0.8575 - val_loss: 1651.8546 - val_accuracy: 0.1505
```

#### **FRUIT**

```
model.fit(x_train,epochs=10,steps_per_epoch=89,validation_data = x_test, validation_steps = 27)
model.save("fruit.h5")
Epoch 1/10
Epoch 2/10
Epoch 3/10
89/89 [============== ] - 234s 3s/step - loss: 0.4787 - accuracy: 0.8441 - val_loss: 227.8628 - val_accuracy: 0.5243
Epoch 4/10
89/89 [===========] - 122s 1s/step - loss: 0.3456 - accuracy: 0.8835 - val_loss: 233.2232 - val_accuracy: 0.5359
Epoch 5/10
89/89 [======
          Epoch 6/10
             =========] - 68s 767ms/step - loss: 0.2261 - accuracy: 0.9235 - val_loss: 681.6103 - val_accuracy: 0.3993
89/89 [=====
Epoch 7/10
89/89 [===========] - 59s 663ms/step - loss: 0.2459 - accuracy: 0.9125 - val_loss: 233.5868 - val_accuracy: 0.6343
Epoch 8/10
89/89 [============] - 52s 587ms/step - loss: 0.2116 - accuracy: 0.9245 - val_loss: 600.8589 - val_accuracy: 0.4167
Epoch 9/10
89/89 [========] - 51s 572ms/step - loss: 0.1742 - accuracy: 0.9431 - val_loss: 729.3225 - val_accuracy: 0.4167
Epoch 10/10
89/89 [=============] - 52s 587ms/step - loss: 0.1638 - accuracy: 0.9437 - val_loss: 778.6277 - val_accuracy: 0.3681
```

## **ADVANTAGES & DISADVANTAGES**

#### **10.1 ADVANTAGES**

Farmers can interact with the portal build

- · Interacts with the user interface to upload images of diseased leaf
- Our model-built analyses the Disease and suggests the farmer with fertilizers are to be used
  - It is easy to maintain.
  - It is user-friendly.
  - The system can easily detect the leaf from the image.
  - It will also detect which type of leaf it is.
- It will suggest the recommended fertilizer for that disease quickly with in a minute of time.

#### **10.2 DISADVANTAGES**

- 1. More training samples more speed of computing distances sensitive irrelevant inputs so expensive test every time.
- 2. It is slower in execution speed and long training time.
- 3. Sometimes it can predict the wrong disease which may cause difficulty for farmers.
- 4. Recommending the wrong fertilizers can damage crops.
- 5. It requires more samples to prepare the application and if any wrong updates that make crop damage.
- 6. Previously yield is predicted on the bases of the farmers prior experience but now weather conditions may change drastically so they cannot guess the yield.

#### **CONCLUSION**

We have proposed an automated system to identify and classify the disease caused in plants at an earlier stage with pest management, to detect and identification of various diseases, we usethe convolutional neural network (CNN) and deep learning. The result from can be used to identify the disease with a highly accurate and suggested solution. A high-performance model is obtained by using the best hyperparameters and good training data. The final model will give high accuracy for the given data. An application to detect, control, and monitor plant disease helps the farmer to reduce their work as well as time. This application helps the farmer to reduce their effort, and also helps in increasing the farm of production. The proposed method helps to find the plant disease and in monitoring the several environmental conditions the status of the leaf has been identified with the help of neural network classification. Then the environmental circumstances such as temperature, humidity, and moisture have been monitored the environmental condition is abnormal, then the pump will automatically. This project gives the executed results on different disease classification techniques that can be used for plant leaf disease detection a. Therefore, related diseases for these plants were taken for identification. With very less computational effort the optimum results were obtained, which also shows the efficiency of the proposed algorithm in the recognition and classification of the leaf diseases. Another advantage of using this method is that plant diseases can be identified at an early stage or the initial stage. By using this concept, disease identification is done for all kinds of leaves and also the user can know the affected area of the leaf in percentage by identifying the disease properly the user can rectify the problem very easily.

### **FUTURE SCOPE**

- This system can be enhanced in the future by using the trained model in android apps tomake it more feasible and efficient.
- In the future, the use of more advanced algorithms can be implemented into the system to showhigh accuracy and less process time.
- Using the camera we can implement the system in continuous monitoring of crops and plants for detecting the texture of plants for more early detection of plants.
- After the leaf undergoes detection, the disease is identified, and checked whether
  the leaf can be cured under certain conditions or not, and fertilizers are
  recommended according to the leaf.

## **APPENDIX**

### 13.1 SOURCE CODE

# **Html Code:**

```
<!DOCTYPE html>
<html >
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title> Plant Disease Prediction</title>
 k href='https://fonts.googleapis.com/css?family=Pacifico' rel='stylesheet'
type='text/css'>
k href='https://fonts.googleapis.com/css?family=Arimo' rel='stylesheet'
type='text/css'>
k href='https://fonts.googleapis.com/css?family=Hind:300' rel='stylesheet'
type='text/css'>
k href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300'
rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}">
<link href='https://fonts.googleapis.com/css?family=Merriweather' rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Josefin Sans' rel='stylesheet'>
<link href='https://fonts.googleapis.com/css?family=Montserrat' rel='stylesheet'>
<style>
.header {
                  top:0;
                  margin:0px;
                  left: 0px;
                  right: 0px;
```

```
background-color: #28272c;
                   color: white;
                   box-shadow: 0px 8px 4px grey;
                   overflow: hidden;
                   padding-left:20px;
                   font-family: 'Josefin Sans';
                   font-size: 2vw;
                   width: 100%;
                   height:8%;
                   text-align: center;
             }
            .topnav {
 overflow: hidden;
 background-color: #333;
.topnav-right a {
 float: left;
 color: #f2f2f2;
 text-align: center;
 padding: 14px 16px;
 text-decoration: none;
 font-size: 18px;
.topnav-right a:hover {
 background-color: #ddd;
```

position: fixed;

```
color: black;
.topnav-right a.active {
 background-color: #565961;
 color: white;
.topnav-right {
 float: right;
 padding-right:100px;
body {
 background-color:#ffffff;
 background-repeat: no-repeat;
 background-size:cover;
 background-position: 0px 0px;
 .button {
 background-color: #28272c;
 border: none;
 color: white;
 padding: 15px 32px;
 text-align: center;
 text-decoration: none;
 display: inline-block;
 font-size: 16px;
 border-radius: 12px;
```

```
.button:hover {
 box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24), 0 17px 50px 0 rgba(0,0,0,0.19);
form {border: 3px solid #f1f1f1; margin-left:400px;margin-right:400px;}
input[type=text], input[type=password] {
 width: 100%;
 padding: 12px 20px;
 display: inline-block;
 margin-bottom:18px;
 border: 1px solid #ccc;
 box-sizing: border-box;
}
button {
 background-color: #28272c;
 color: white;
 padding: 14px 20px;
 margin-bottom:8px;
 border: none;
 cursor: pointer;
 width: 15%;
 border-radius:4px;
button:hover {
 opacity: 0.8;
.cancelbtn {
 width: auto;
```

```
padding: 10px 18px;
 background-color: #f44336;
.imgcontainer {
 text-align: center;
 margin: 24px 0 12px 0;
}
img.avatar {
 width: 30%;
 border-radius: 50%;
}
.container {
 padding: 16px;
}
span.psw {
 float: right;
 padding-top: 16px;
@media screen and (max-width: 300px) {
 span.psw {
   display: block;
  float: none;
 .cancelbtn {
   width: 100%;
 }
```

```
.home{
      margin:80px;
 width: 84%;
 height: 500px;
 padding-top:10px;
 padding-left: 30px;
}
.login{
      margin:80px;
      box-sizing: content-box;
 width: 84%;
 height: 420px;
 padding: 30px;
 border: 10px solid blue;
}
.left,.right{
box-sizing: content-box;
height: 400px;
margin:20px;
border: 10px solid blue;
}
.mySlides {display: none;}
img {vertical-align: middle;}
.slideshow-container {
 max-width: 1000px;
 position: relative;
```

```
margin: auto;
.text {
 color: #f2f2f2;
 font-size: 15px;
 padding: 8px 12px;
 position: absolute;
 bottom: 8px;
 width: 100%;
 text-align: center;
}
.dot {
 height: 15px;
 width: 15px;
 margin: 0 2px;
 background-color: #bbb;
 border-radius: 50%;
 display: inline-block;
 transition: background-color 0.6s ease;
}
.active {
 background-color: #717171;
}
.fade {
 -webkit-animation-name: fade;
 -webkit-animation-duration: 1.5s;
 animation-name: fade;
```

```
animation-duration: 1.5s;
@-webkit-keyframes fade {
 from {opacity: .4}
 to {opacity: 1}
}
@keyframes fade {
 from {opacity: .4}
 to {opacity: 1}
}
@media only screen and (max-width: 300px) {
 .text {font-size: 11px}
}
</style>
</head>
<body style="font-family: Times New Roman', Times, serif; background-
color:#C2C5A8;">
<div class="header">
<div style="width:50%;float:left;font-size:2vw;text-align:left;color:white; padding-</pre>
top:1%">Plant Disease Prediction</div>
 <div class="topnav-right"style="padding-top:0.5%;">
  <a class="active" href="{{ url_for('home')}}">Home</a>
  <a href="{{ url_for('prediction')}}">Predict</a>
 </div>
</div>
<div style="background-color:#ffffff;">
<div style="width:60%;float:left;">
```

```
<div style="font-size:50px;font-family:Montserrat;padding-left:20px;text-
align:center;padding-top:10%;">
```

```
<b>Detect if your plant<br> is infected!!</b></div><br>
```

<div style="font-size:20px;font-family:Montserrat;padding-left:70px;padding-right:30px;text-align:justify;">Agriculture is one of the major sectors worls wide.
Over the years it has developed and the use of new technologies and equipment replaced almost all the traditional methods of farming. The plant diseases effect the production. Identification of diseases and taking necessary precautions is all done through naked eye, which requires labour and laboratries. This application helps farmers in detecting the diseases by observing the spots on the leaves, which inturn saves effort and labor costs.

```
</div>
</div>
<div style="width:40%;float:right;"><br><br>
<img src="{{url_for('static',filename='images/12456.png')}}" style="max-
height:100%;max-width:100%;">
</div>
</div>
<div class="home">
<br>
</div>
<script>
var slideIndex = 0;
showSlides();
function showSlides() {
 var i:
 var slides = document.getElementsByClassName("mySlides");
 var dots = document.getElementsByClassName("dot");
 for (i = 0; i < \text{slides.length}; i++)
  slides[i].style.display = "none";
```

```
slideIndex++;
if (slideIndex > slides.length) {slideIndex = 1}
for (i = 0; i < dots.length; i++) {
   dots[i].className = dots[i].className.replace(" active", "");
}
slides[slideIndex-1].style.display = "block";
dots[slideIndex-1].className += " active";
setTimeout(showSlides, 2000); // Change image every 2 seconds
}
</script>
</body>
</html>
```

#### **SOURCE CODE LINK:**

https://drive.google.com/drive/folders/112LgV--jBIyuyeZH4amimFZpK7SyML0n

## 13.2 GITHUB AND PROJECT DEMO LINK

GITHUB LINK: https://github.com/IBM-EPBL/IBM-Project-5212-1658751622

#### PROJECT DEMO LINK:

https://drive.google.com/file/d/1PoqUUViwdEEHxv4pG7--E82MVRsT-uZS/view?usp=sharing