Ex.No-2 PANDAS
AIM:
To analyse and study the best performance point of Reciprocating pumps using Pandas.
PROCEDURE:
1. Dataset Creation:
Create a hypothetical dataset containing information about actual discharge(m3/s), inputpower(W), and output power(W).
2. Correlation Analysis :
Calculate the correlation matrix to examine the relationships between actual Discharge, inputpower, and output power using pandas' 'corr()' function.
3. Efficiency calculation :
Calculate the efficiency for each input value using the given formula: Efficiency(%)
= Output_power/Input_power *100
4. Head calculation:
Calculate the total head for each performance using the given formula : Head (m) =
output_power/actual discharge *ρg
5. Best Efficiency Point (BEP) :
Identify the Best Efficiency Point of the reciprocating pump from
the efficiency by selecting the highest index values using the pandas'

' nlargest()' function

PROGRAM:

```
import pandas as pd data={

'Actual Discharge':[40,50,60,70,80,90],

'Input Power':[1,2,3,4,5,10],

'Output Power':[70,30,90,100,140,170]
}

density=1000

gravity=9.81

a=pd.DataFrame(data)

a['Efficiency']=(a['Output Power']/a['Input Power'])*100

a['Head']=(a['Output Power']/a['Actual Discharge'])/(density*gravity)

corr_matrix=a.corr()print(corr_matrix)

max_efficiency=corr_matrix['Efficiency'].nlargest(2).iloc[1]

print("\nParameter with the highest correlation with efficiency=",max_efficiency)
```

OUTPUT:

	Actual Discharge	Input Power	Output Power	Efficiency	1
Actual Discharge	1.000000	0.922018	0.901611	-0.614487	
Input Power	0.922018	1.000000	0.881684	-0.533271	
Output Power	0.901611	0.881684	1.000000	-0.227847	
Efficiency	-0.614487	-0.533271	-0.227847	1.000000	
Head	0.466245	0.489913	0.797480	0.391574	
	Head				
Actual Discharge	0.466245				
Input Power	0.489913				
Output Power	0.797480				
Efficiency	0.391574				
Head	1.000000				

Result:

The programs were run successfully