MATH 321 CLAIMED HW #7 SOLUTIONS

(1) 2.3.3

Exercise 2.3.3. Let $\epsilon > 0$ be arbitrary. We must show that there exists an N such that $n \geq N$ implies $|y_n - l| < \epsilon$. In terms of ϵ -neighborhoods (which are a bit easier to use in this case), we must equivalently show $y_n \in (l - \epsilon, l + \epsilon)$ for all $n \geq N$.

Because $(x_n) \to l$, we can pick an N_1 such that $x_n \in (l - \epsilon, l + \epsilon)$ for all $n \geq N_1$. Similarly, because $(z_n) \to l$ we can pick an N_2 such that $z_n \in (l-\epsilon, l+\epsilon)$ whenever $n \geq N_2$. Now, because $x_n \leq y_n \leq z_n$, if we let $N = \max\{N_1, N_2\}$, then it follows that $y_n \in (l - \epsilon, l + \epsilon)$, for all $n \geq N$. This completes the proof.

(2) 2.3.10

(a) True; by the Algebraic Limit Theorem, if $\lim(a_n) = a$ and $\lim(b_n) = b$, then

$$0 = \lim(a_n - b_n) = a - b,$$

and hence $\lim a_n = a = b = \lim b_n$. (b) False; consider $b_n = \sum_{i=1}^n \frac{(-1)^{n+1}}{n}$. Then $\lim b_n$ exists by the Alternating Series Test, but

$$|b_n| = \sum_{i=1}^n \frac{1}{n},$$

and we know that the harmonic series does not converge.

(c) True; by the Algebraic Limit Theorem, assuming $(a_n) \to 0$,

$$0 = \lim(b_n - a_n) = \lim b_n - \lim a_n = \lim b_n - 0$$

so that $\lim b_n = 0$ as well.

(d) True. Let $\epsilon > 0$ be arbitrary. By the definition of $(a_n) \to 0$, we can choose $N \in \mathbb{N}$ so that $|a_n| = |a_n - 0| < \epsilon$ whenever $n \ge N$. Thus, whenever $n \ge N$,

$$|b_n - b| \le a_n < \epsilon,$$

1

hence $(b_n) \to b$ by definition.

(3) 2.3.11

Exercise 2.3.11. Let $\epsilon > 0$ be arbitrary. Then we need to find an N such that $n \geq N$ implies $|y_n - L| < \epsilon$. Because $(x_n) \to L$, we know that there exists M > 0 such that $|x_n - L| < M$ for all n. Also, there exists an $N_1 \in \mathbb{N}$ such that $n \geq N_1$ implies $|x_n - L| < \epsilon/2$. Now for $n \geq N_1$ we can write

$$\begin{split} |y_n - L| &= \left| \frac{x_1 + x_2 + \dots + x_{N_1} + \dots + x_n}{n} - \frac{nL}{n} \right| \\ &= \left| \frac{(x_1 - L) + (x_2 - L) + \dots + (x_{N_1 - 1} - L)}{n} + \frac{(x_{N_1} - L) + \dots + (x_n - L)}{n} \right| \\ &\leq \left| \frac{(x_1 - L) + (x_2 - L) + \dots + (x_{N_1 - 1} - L)}{n} \right| + \left| \frac{(x_{N_1} - L) + \dots + (x_n - L)}{n} \right| \\ &\leq \frac{(N_1 - 1)M}{n} + \frac{\epsilon(n - N_1)}{2n}. \end{split}$$

Because N_1 and M are fixed constants at this point, we may choose N_2 so that $\frac{(N_1-1)M}{n}<\epsilon/2$ for all $n\geq N_2$. Finally, let $N=\max\{N_1,N_2\}$ be the desired N. To see that this works, keep in mind that $\frac{n-N_1}{n}<1$ and observe

$$|y_n - L| \le \frac{(N_1 - 1)M}{n} + \frac{\epsilon(n - N_1)}{2n} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

for all $n \geq N$. This completes the proof.

The sequence $(x_n) = (1, -1, 1, -1, \cdots)$ does not converge, but the averages satisfy $(y_n) \to 0$.

(4) 2.3.12

(a) True. (no proof required) Assume for contradiction that a is not an upper bound for B; then there exists $b \in B$ so that a < b. Since $(a_n) \to a$, if we take $\epsilon = b - a > 0$, then there is an $n \in \mathbb{N}$ so that

$$|a_n - a| < b - a$$

whenever $n \ge N$. But this implies in particular that $|a_N - a| < b - a$. Since a_N is an upper bound for B, $a_N > b > a$, so we can rewrite this inequality as

$$a_N - a < b - a$$
$$a_N < b$$

contradicting that a_N is an upper bound for B.

- (b) True (no proof required).
- (c) False; let a_n be the first n digits of π (or e or $\sqrt{2}$ or any other irrational number).