

# 1. Vorgehenmodell = Kanban Warum Kanban?

- Maximale Flexibilität bei sich ändernden Anforderungen
- Einfaches Task-Tracking über 8 Wochen
- Visuelles Management (Notion)
- · Ideal für Einzelprojekte ohne aufwendige Planung

# 2. Programmierparadigma: Objektorientiert Warum OOP?

- Gute Strukturierung und Wiederverwendbarkeit
- Erleichtert spätere Erweiterung oder Änderungen
- Besonders bei datenbasierten Systemen sinnvoll

#### 3. Zeitmanagement + Aufwandsschätzung

Gesamtdauer: ca. 8 Stunden über 8 Wochen, also im Schnitt

Anforderungen & Planung 30min

PSP erstellen 20min

Architektur & Datenstruktur 1h

Implementierung Kernlogik 2h

Tests & Fehlerbehebung 1.30min

Dokumentation und PM 2h

Puffer 40min

# 4.PSP/WBS

## 1. Projektplanung

#### • 1.1 Anforderungen erfassen

- Analyse der Projektziele
- 。 Grobspezifikation der Funktionen

## • 1.2 PSP & Zeitplanung

- Erstellung des Projektstrukturplans
- Aufwandsschätzung
- Zeitrahmen mit Meilensteinen

#### • 1.3 Ressourcen- & Risikomanagement

- o Identifikation benötigter Ressourcen (HW/SW/Personal)
- Risikobetrachtung (intern/extern)
- 。 Maßnahmenplanung zur Risikovermeidung

# 2. Implementierung

#### • 2.1 Architektur festlegen

- Auswahl des Programmierparadigmas
- $_{\circ}$  Strukturierung der Softwaremodule

•

#### • 2.2 Datenstrukturen und Logik

- o Entwurf und Umsetzung zentraler Algorithmen
- Einbindung benötigter Bibliotheken

•

#### • 2.3 Modultests

- Testfälle definieren
- Durchführung der Tests (Fehleranalyse und Bugfixing)

#### 3. Abschluss

#### • 3.1 Dokumentation

- 。 Quellcodedokumentation
- Anwenderdokumentation (falls nötig)

## • 3.2 Lizenzprüfung / Veröffentlichung

- Prüfung genutzter Bibliotheken auf Lizenzbedingungen
- Abklärung Urheberrecht / PSF / Open-Source

## 3.3 Abschlussbericht / Übergabe

- Zusammenfassung des Projekts
- Abgabe der finalen Dateien und Doku





## 6. Ressourcenmanagement

- **Personal:** ICH (evtl. Review durch Mitschüler)
- Hardware: PC/Laptop mit Python
- Software:
  - 。 IDE (z. B. VS Code, Sublime Text)
  - 。 GitHub (für version control)
- **Dokumentation:** Word bissl Notion

## 7. Risikomanagement

**Innere Risiken** 

| Zeitmangel durch andere<br>Fächer | Wöchentliche Micro-Ziele setzen           |
|-----------------------------------|-------------------------------------------|
| Demotivation / Überarbeitung      | Realistische Pausen + Puffer<br>einbauen  |
| Fehler im Code / Bugs             | Frühzeitig testen + Git-<br>Versionierung |
| Äußere Risiken                    | Maßnahme                                  |
| PC defekt / Datenverlust          | Backups via Git / Cloud                   |
| Krankheit                         | Pufferzeit einbauen, notfalls verschieben |

Maßnahme

## 8. Lizenzprüfung (Veröffentlichung)

- Nutze nur Open-Source-Module mit erlaubten Lizenzen (MIT, Apache, BSD = ✓)
- Keine GPL mischen, wenn du nicht Open Source veröffentlichen willst

- PSF License (Python Standard) erlaubt kommerzielle Nutzung = ✓
- Keine urheberrechtlich geschützten Inhalte (Logos, fremde Daten etc.)

## **AUFGABEN CODEN**

#### **Aufgabe 1: Wurzelgleichung**

$$\sqrt{(n)} = x$$

$$\Rightarrow x^2 - n = 0$$

## **Aufgabe 5 Bisektion:**

$$c = (a+b)/2$$

Quadrieren:  $n = x^2$ 

Nullstellenform:  $f(x) = x^2 - n = 0$ 

Neues Intervall wählen basierend auf f(c)

#### **Aufgabe 6 Newton:**

$$f(x) = x^2 - n$$
 (Wie vorher bei Bisektion)

Lernressource: https://studyflix.de/mathematik/newton-verfahren-1780

## **Aufgabe 9: Kettenlinie**

Ausgangsformel:

$$y(x) = a \cdot \cosh((x-x_0)/a) - a + y_0$$

Randbedingungen:

$$x_0 = w/2$$
 (Symmetrie)

$$y(0) = 0$$
 (Mastbasis)

Durchhang 
$$s = y(0) - y(w/2)$$

Umformung:

$$0 = a \cdot \cosh(w/2a) - a + y_0$$

$$s = -y_0$$

$$\rightarrow$$
 a·cosh(w/2a) - a - s = 0

Code-Form:

$$x*cosh(w/(2x)) - x - s = 0$$
 (s und w in m)

**Aufgabe 8: Polynomtest (P**<sub>4</sub>(x) =  $-x^4 + 3x^3 + x^2 + 2x$ )

Intervall: [3, 4]

Toleranz  $\varepsilon = 10^{-2}$ : 7 Iterationen  $\rightarrow$  Lösung  $\approx 3.4531$ 

Toleranz  $\varepsilon = 10^{-8}$ : 27 Iterationen  $\rightarrow$  Lösung  $\approx 3.4567$