

Language Modeling

Introduction to N-grams

Advanced smoothing algorithms

- Intuition used by many smoothing algorithms
 - Good--Turing
 - Kneser--Ney
 - Witten--Bell
- Use the count of things we've seen once
 - to help estimate the count of things we've never seen

Notation: N_c = Frequency of frequency c

 N_c = the count of things we've seen c times

Sam I am I am Sam I do not eat

I 3

sam 2

am 2

do 1

not 1

eat 1

72

$$N_1 = 3$$

$$N_2 = 2$$

$$N_3 = 1$$

Good-Turing smoothing intuition

You are fishing (a scenario from Josh Goodman), and caught:

- 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel = 18 fish
- How likely is it that next species is trout?
 - 1/18
- How likely is it that next species is new (i.e. catfish or bass)
 - Let's use our estimate of things-we-saw-once to estimate the new things.
 - 3/18 (because $N_1=3$)
- Assuming so, how likely is it that next species is trout?
 - Must be less than 1/18
 - How to estimate?

Good Turing calculations

$$P_{GT}^*$$
 (things with zero frequency) = $\frac{N_1}{N}$

- c = 0:
- MLE p = 0/18 = 0
- P_{GT}^* (unseen) = $N_1/N = 3/18$

Unseen (bass or catfish)

•
$$c = 1$$

• MLE
$$p = 1/18$$

•
$$C^*(trout) = 2 * N2/N1$$

= 2 * 1/3
= 2/3

•
$$P_{GT}^*(trout) = c^*/N = 2/3 / 18 = 1/27$$

Resulting Good-Turing numbers

- Numbers from Church and Gale (1991)
- 22 million words of AP Newswire

$$c^* = \frac{(c+1)N_{c+1}}{N_c}$$

• It sure looks like $c^* = (c - .75)$

Count c	Good Turing c*
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

Ney et al.'s Good Turing Intuition

H. Ney, U. Essen, and R. Kneser, 1995. On the estimation of 'small' probabilities by leaving—one—out. IEEE Trans. PAMI. 17:12,1202--1212

Held-out words:

Ney et al. Good Turing Intuition (slide from Dan Klein)

Intuition from leave—one—out validation

- Take each of the c training words out in turn
- c training sets of size c-1, held-out of size 1
- What fraction of held—out words are unseen in training?
 - N_1/c (that occurred once)
- What fraction of held-out words are seen k times in training?
 - $(k+1)N_{k+1}/c$
- So in the future we expect $(k+1)N_{k+1}/c$ of the words to be those with training count k
- There are N_k words with training count k
- Each should occur with probability:
 - $(k+1)N_{k+1}/c/N_k$
- ...or expected count:

Training

Held out

 N_2

 N_3

 N_0

 N_1

 N_2

N₄₄₁₆

Good-Turing complications

(slide from Dan Klein)

- Problem: what about "the"? (say c=4417)
 - For small k, $N_k > N_{k+1}$
 - For large k, too jumpy, zeros wreck estimates
- Simple Good--Turing [Gale and Sampson]: replace empirical N_k with a best-fit power law once counts get unreliable
- The best-fit power law is a model that predicts the probability of an event based on its frequency, and it is chosen to fit the observed counts as closely as possible.

Resulting Good-Turing numbers

- Numbers from Church and Gale (1991)
- 22 million words of AP Newswire

$$c^* = \frac{(c+1)N_{c+1}}{N_c}$$

Count c	Good Turing c*
0	.0000270
1	0.446
2	1.26
3	2.24
4	3.24
5	4.22
6	5.19
7	6.21
8	7.24
9	8.25

Absolute Discounting

Save ourselves some time and just subtract 0.75 (or some d)!
 discounted bigram

$$P_{\text{AbsoluteDiscounting}}(w_i \mid w_{i-1}) = \max(\frac{c(w_{i-1}, w_i) - d, 0}{c(w_{i-1})})$$

- (Maybe keeping a couple extra values of d for counts 1 and 2)
- d=0.75 for c>2, smaller d for c<2
- P(Francisco|san)= (c(san francisco) 0.75)/c(san)

Absolute Discounting Interpolation

• Save ourselves some time and just subtract 0.75 (or some d)!

discounted bigram Interpolation weight

$$P_{\text{AbsoluteDiscounting}}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) - d}{c(w_{i-1})} + \lambda(\widetilde{w}_{i-1})P(w)$$
uniquan

- But should we really just use the regular unigram P(w)?
- Use continuation probability
 - Because of discounting you can estimate lambda directly don't need held out dataset for it
 - Lambda (san)= d* num of distinct words following san/c(san)

Kneser-Ney Smoothing I

Better estimate for probabilities of lower--order unigrams!

- Shannon game: I can't see without my reading—Francisco—?
- "Francisco" is more common than "glasses"
- ... but "Francisco" always follows "San"
- The unigram is useful exactly when we haven't seen this bigram!
- Instead of P(w): "How likely is w"
- P_{continuation}(w): "How likely is w to appear as a novel continuation?
 - For each word, count the number of bigram types it completes
 - Every bigram type was a novel continuation the first time it was seen

$$P_{CONTINUATION}(w) \propto |\{w_{i-1}: c(w_{i-1}, w) > 0\}|$$

Kneser-Ney Smoothing II

How many times does w appear as a novel continuation:

$$P_{CONTINUATION}(w) \propto |\{w_{i-1}: c(w_{i-1}, w) > 0\}|$$

Normalized by the total number of word bigram types

$$|\{(w_{j-1}, w_j): c(w_{j-1}, w_j) > 0\}|$$

$$P_{CONTINUATION}(w) = \frac{\left|\left\{w_{i-1} : c(w_{i-1}, w) > 0\right\}\right|_{\text{of how many unique words?}}^{\text{Francisco is a continuation of how many unique words?}}{\left|\left\{(w_{j-1}, w_j) : c(w_{j-1}, w_j) > 0\right\}\right|_{\text{bigrams}}^{\text{Count of all non-zero bigrams}}}$$