Page : 26 of 70 Issued date : June 8, 2012

FCC ID

: W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (D5GHzV2-1070 Feb12/2)

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

CALIBRATION C		(Replacement of N	o:D5GHzV2-1070 Feb12\
Object			0100011E12 1010_10512)
	D5GHzV2 - SN: 1	070	
Calibration procedure(s)	QA CAL-22.v1 Calibration proces	dure for dipole validation ki	ts between 3-6 GHz
Calibration date:	February 16, 201	2	
The measurements and the uncert	ed in the closed laborator	onal standards, which realize the phy robability are given on the following p y facility: environment temperature (2	ages and are part of the certificate.
Primary Standards	l ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01968)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe EX3DV4	SN: 3503	30-Dec-11 (No. EX3-3503, Dec11)	
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	•
	Name	Function	Signature
Calibrated by:	Israe El-Naoug	Laboratory Technician	
canorated by.			Oxer Cl Davig
Approved by:	Katja Pokovic	Technical Manager	Leig
		full without written approval of the lai	Issued: March 2, 2012

Certificate No: D5GHzV2-1070_Feb12/2

Page 1 of 27

Page : 27 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schwelzerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1070_Feb12/2

Page 2 of 27

Page

: 28 of 70

Issued date

: June 8, 2012

FCC ID

: W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Speag Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.03 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.0 mW /g ±17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.9 mW /g ±16.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.57 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	85.3 mW / g ±17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.44 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.3 mW / g ± 16.5 % (k=2)

Certificate No: D5GHzV2-1070_Feb12/2

Page 3 of 27

Page : 29 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.19 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.8 mW / g ± 16.5 %(k=2)

Certificate No: D5GHzV2-1070_Feb12/2

Page 4 of 27

Page : 30 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.6 ± 6 %	5.48 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.42 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	74.1 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.8 mW / g ± 17.6 %(k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.1 ± 6 %	5.87 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	80.0 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.2 mW / g ± 17.6 %(k=2)

Certificate No: D5GHzV2-1070_Feb12/2

Page : 31 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	6.29 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.4 mW / g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.9 mW / g ± 17.6 % (k=2)

Certificate No: D5GHzV2-1070_Feb12/2

Page 6 of 27

Page : 32 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	51.8 Ω - 13.8 jΩ
Return Loss	- 17.3 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.5 Ω - 8.0 jΩ
Return Loss	- 21.9 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	53.6 Ω - 3.3 jΩ
Return Loss	- 26.5 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	51.9 Ω - 10.7 jΩ
Return Loss	- 19.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.0 Ω - 5.4 jΩ
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.4 Ω - 2.4]Ω
Return Loss	- 25.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 26, 2008	

Certificate No: D5GHzV2-1070_Feb12/2

Page : 33 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

DASY5 Validation Report for Head TSL

Date: 16.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.6$ mho/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.89$ mho/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ mho/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 ~ SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue - Spacer SPEAG/Pin=100mW, dist=10mm, f=5200

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.235 V/m; Power Drift = -0.0022 dB

Peak SAR (extrapolated) = 30.1280

SAR(1 g) = 8.03 mW/g; SAR(10 g) = 2.3 mW/g

Maximum value of SAR (measured) = 18.715 mW/g

Dipole Calibration for Head Tissue - Spacer SPEAG/Pin=100mW, dist=10mm, f=5500

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.915 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 34.1720

SAR(1 g) = 8.57 mW/g; SAR(10 g) = 2.44 mW/g

Maximum value of SAR (measured) = 20.497 mW/g

Dipole Calibration for Head Tissue - Spacer SPEAG/Pin=100mW, dist=10mm, f=5800

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.666 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 33.9990

SAR(1 g) = 8.08 mW/g; SAR(10 g) = 2.3 mW/g

Maximum value of SAR (measured) = 19.547 mW/g

Certificate No: D5GHzV2-1070_Feb12/2 Page 8 of 27

Page : 34 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

0 dB = 19.550 mW/g = 25.82 dB mW/g

Certificate No: D5GHzV2-1070_Feb12/2

Page 9 of 27

Page : 35 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1070_Feb12/2

Page 10 of 27

Page : 36 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

DASY5 Validation Report for Body TSL

Date: 15.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.48$ mho/m; $\epsilon_r = 48.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.87$ mho/m; $\epsilon_r = 48.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.29$ mho/m; $\epsilon_r = 47.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue - Spacer SPEAG/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.023 V/m; Power Drift = -0.0003 dB

Peak SAR (extrapolated) = 29.0440

SAR(1 g) = 7.42 mW/g; SAR(10 g) = 2.08 mW/g

Maximum value of SAR (measured) = 17.104 mW/g

Dipole Calibration for Body Tissue - Spacer SPEAG/Pin=100mW, dist=10mm, f=5500

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.498 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 34.2230

SAR(1 g) = 8 mW/g; SAR(10 g) = 2.22 mW/g

Maximum value of SAR (measured) = 18.964 mW/g

Dipole Calibration for Body Tissue - Spacer SPEAG/Pin=100mW, dist=10mm, f=5800

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.286 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 35.0830

SAR(1 g) = 7.55 mW/g; SAR(10 g) = 2.09 mW/g

Maximum value of SAR (measured) = 18.335 mW/g

Certificate No: D5GHzV2-1070_Feb12/2

Page 11 of 27

Page : 37 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

0 dB = 18.340 mW/g = 25.27 dB mW/g

Certificate No: D5GHzV2-1070_Feb12/2

Page 12 of 27

Page : 38 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Impedance Measurement Plot for Body TSL

Certificate No: D5GHzV2-1070_Feb12/2

Page 13 of 27

Page : 39 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Appendix B: Additional Measurements

Upon customer request, additional measurements were done using customized Zoom Scan settings and with customer spacer, for Head and Body conditions. Results are summarized on the following pages.

Alternations to Measurement Conditions

DASY system configuration, as far as not given on pages 1 and 3.

Distance Dipole Center - TSL	10 mm	with UL Spacer #1
Zoom Scan Resolution (UL)	dx, dy = 4.0 mm, dz = 2.0 mm	Graded Ratio = 1.5 (Z direction)
Frequency	See page 3	
Head TSL parameters	See pages 3 and 4	
Body TSL parameters	See pages 5 and 6	

SAR result with Head TSL at 5200 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm3 (1 g) of Head TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	80.0 mW/g ± 17.0 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL #1	80.1 mW/g ± 17.0 % (k=2)
UL Zoom Scan settings (page 14)	UL #1	80.6 mW/g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	22.9 mW/g ± 16.5 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL #1	23.0 mW/g ± 16.5 % (k=2)
UL Zoom Scan settings (page 14)	UL #1	23.1 mW/g ± 16.5 % (k=2)

SAR result with Head TSL at 5500 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm ³ (1 g) of Head TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	85.3 mW/g ±17.0 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL. #1	85.9 mW/g ±17.0 % (k=2)
UL Zoom Scan settings (page 14)	UL #1	86.4 mW/g ±17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	24.3 mW/g ±16.5 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL #1	24.5 mW/g ±16.5 % (k=2)
UL Zoom Scan settings (page 14)	UL, #1	24.6 mW/g ±16.5 % (k=2)

Certificate No: D5GHzV2-1070_Feb12/2

Page : 40 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

SAR result with Head TSL at 5800 MHz

SAR results normalized to 1W input power and for nominal TSL parameters

SAR averaged over 1 cm ³ (1 g) of Head TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	80.3 mW/g ±17.0 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL #1	80.9 mW/g ±17.0 % (k=2)
UL Zoom Scan settings (page 14)	UL #1	80.8 mW/g ±17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	22.8 mW/g ±16.5 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL.#1	22.9 mW/g ±16.5 % (k=2)
UL Zoom Scan settings (page 14)	UL #1	22.9 mW/g ±16.5 % (k=2)

SAR result with Body TSL at 5200 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm ³ (1 g) of Body TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	74.1 mW/g ± 18.1 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL #1	74.5 mW/g ± 18.1 % (k=2)
UL Zoom Scan settings (page 14)	UL #1	74.8 mW/g ± 18.1 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	Dipole Spacer	-
SPEAG Zoom Scan setting (page 3)	SPEAG	20.8 mW/g ± 17.6 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL #1	21.0 mW/g ± 17.6 % (k=2)
UL Zoom Scan settings (page 14)	UL #1	21.0 mW/g ± 17.6 % (k=2)

SAR result with Body TSL at 5500 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm3 (1 g) of Body TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	80.0 mW/g ± 18.1 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL #1	80.8 mW/g ± 18.1 % (k=2)
UL Zoom Scan settings (page 14)	UL #1	81.0 mW/g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	22.2 mW/g ± 17.6 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL #1	22.5 mW/g ± 17.6 % (k=2)
UL Zoom Scan settings (page 14)	UL#1	22.5 mW/g ± 17.6 % (k=2)

Certificate No: D5GHzV2-1070_Feb12/2

Page 15 of 27

Page : 41 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

SAR result with Body TSL at 5800 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm3 (1 g) of Body TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	75.4 mW/g ± 18.1 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL #1	76.4 mW/g ± 18.1 % (k=2)
UL Zoom Scan settings (page 14)	UL #1	75.7 mW/g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Dipole Spacer	
SPEAG Zoom Scan setting (page 3)	SPEAG	20.9 mW/g ± 17.6 % (k=2)
SPEAG Zoom Scan setting (page 3)	UL #1	21.2 mW/g ± 17.6 % (k=2)
UL Zoom Scan settings (page 14)	UL #1	21.0 mW/g ± 17.6 % (k=2)

Certificate No: D5GHzV2-1070_Feb12/2 Page 16 of 27

Page : 42 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Antenna Parameters with Head TSL at 5200 MHz

SPEAG reference spacer	51.8 Ω - 13.8 jΩ	- 17.3 dB
UL spacer #1	51.7 Ω - 13.9 jΩ	- 17.3 dB
UL spacer #2	51.4 Ω - 14.2 jΩ	- 17.1 dB

Antenna Parameters with Head TSL at 5500 MHz

SPEAG reference spacer	49.5 Ω - 8.0 jΩ	- 21.9 dB
UL spacer #1	49.3 Ω - 8.1 jΩ	- 21.8 dB
UL spacer #2	49.0 Ω - 8.7 jΩ	-21.1 dB

Antenna Parameters with Head TSL at 5800 MHz

SPEAG reference spacer	53.6 Ω - 3.3 jΩ	- 26.5 dB
UL spacer #1	53.8 Ω - 3.2 jΩ	- 26.5 dB
UL spacer #2	53.4 Ω - 3.7 jΩ	- 26.3 dB

Antenna Parameters with Body TSL at 5200 MHz

SPEAG reference spacer	51.9 Ω - 10.7 jΩ	- 19.5 dB
UL spacer #1	51.8 Ω - 12.4 jΩ	- 18.3 dB
UL spacer #2	52.0 Ω - 12.0 jΩ	- 18.6 dB

Antenna Parameters with Body TSL at 5500 MHz

SPEAG reference spacer	51.0 Ω - 5.4 jΩ	- 25.2 dB
UL spacer #1	49.6 Ω - 6.5 jΩ	- 23.7 dB
UL spacer #2	49.9 Ω - 6.1 jΩ	- 24.3 dB

Antenna Parameters with Body TSL at 5800 MHz

SPEAG reference spacer	55.4 Ω - 2.4 jΩ	- 25.0 dB
UL spacer #1	54.3 Ω - 1.7 jΩ	- 27.1 dB
UL spacer #2	54.6 Ω - 1.2 jΩ	- 27.0 dB

Certificate No: D5GHzV2-1070_Feb12/2

Page 17 of 27

Page : 43 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

DASY5 Validation Report for Head TSL

Date: 16.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.6$ mho/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.89$ mho/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ mho/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5200

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 63.699 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 30.0420

SAR(1 g) = 8.04 mW/g; SAR(10 g) = 2.31 mW/gMaximum value of SAR (measured) = 18.830 mW/g

Dipole Calibration for Head Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5500

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 23.994 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 34.3130

SAR(1 g) = 8.63 mW/g; SAR(10 g) = 2.46 mW/g

Maximum value of SAR (measured) = 20.553 mW/g

Dipole Calibration for Head Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5800

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 23.451 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 34.3360

SAR(1 g) = 8.14 mW/g; SAR(10 g) = 2.31 mW/g

Maximum value of SAR (measured) = 19.852 mW/g

Certificate No: D5GHzV2-1070_Feb12/2 Page 18 of 27

Page : 44 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

0 dB = 19.850 mW/g = 25.96 dB mW/g

Certificate No: D5GHzV2-1070_Feb12/2

Page 19 of 27

Page : 45 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

DASY5 Validation Report for Head TSL

Date: 16.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.6 \text{ mho/m}$; $\varepsilon_r = 35.3$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: f = 5500 MHz; $\sigma = 4.89$ mho/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.19 \text{ mho/m}; \ \varepsilon_r = 34.4; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 63.699 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 30.6260

SAR(1 g) = 8.1 mW/g; SAR(10 g) = 2.32 mW/gMaximum value of SAR (measured) = 15.779 mW/g

Dipole Calibration for Head Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm

Reference Value = 23.994 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 34.7080

SAR(1 g) = 8.68 mW/g; SAR(10 g) = 2.47 mW/g

Maximum value of SAR (measured) = 17.013 mW/g

Dipole Calibration for Head Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5800

MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 23.451 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 34.4850

SAR(1 g) = 8.13 mW/g; SAR(10 g) = 2.31 mW/g

Maximum value of SAR (measured) = 16.326 mW/g

Certificate No: D5GHzV2-1070_Feb12/2

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN Telephone: +81 463 50 6400 / Facsimile: +81 463 50 6401

Page 20 of 27

Page : 46 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Certificate No: D5GHzV2-1070_Feb12/2

Page 21 of 27

Page : 47 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Impedance Measurement Plot for Head TSL (UL Spacer #1)

Impedance Measurement Plot for Head TSL (UL Spacer #2)

Certificate No: D5GHzV2-1070_Feb12/2

Page 22 of 27

Page : 48 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

DASY5 Validation Report for Body TSL

Date: 15.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=5.48$ mho/m; $\epsilon_r=48.6;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=5.87$ mho/m; $\epsilon_r=48.1;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=6.29$ mho/m; $\epsilon_r=47.5;$ $\rho=1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5200

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.949 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 29.4580

SAR(1 g) = 7.46 mW/g; SAR(10 g) = 2.1 mW/g

Maximum value of SAR (measured) = 17.691 mW/g

Dipole Calibration for Body Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5500

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.644 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 34.9420

SAR(1 g) = 8.08 mW/g; SAR(10 g) = 2.25 mW/g

Maximum value of SAR (measured) = 19.688 mW/g

Dipole Calibration for Body Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5800

MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.296 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 35.9150

SAR(1 g) = 7.65 mW/g; SAR(10 g) = 2.12 mW/g

Maximum value of SAR (measured) = 19.112 mW/g

Certificate No: D5GHzV2-1070_Feb12/2

Page 23 of 27

Page : 49 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

0 dB = 19.110 mW/g = 25.63 dB mW/g

Certificate No: D5GHzV2-1070_Feb12/2

Page 24 of 27

Page : 50 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

DASY5 Validation Report for Body TSL

Date: 15.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.48$ mho/m; $\epsilon_r = 48.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.87$ mho/m; $\epsilon_r = 48.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.29$ mho/m; $\epsilon_r = 47.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

Reference Value = 57.949 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 29.6900

SAR(1 g) = 7.49 mW/g; SAR(10 g) = 2.1 mW/g

Maximum value of SAR (measured) = 14.830 mW/g

Dipole Calibration for Body Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm

Reference Value = 58.644 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 34.4440

SAR(1 g) = 8.1 mW/g; SAR(10 g) = 2.25 mW/g

Maximum value of SAR (measured) = 16.373 mW/g

Dipole Calibration for Body Tissue - Spacer #1/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm

Reference Value = 55.296 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 34.0500

SAR(1 g) = 7.58 mW/g; SAR(10 g) = 2.1 mW/g

Maximum value of SAR (measured) = 15.404 mW/g

Certificate No: D5GHzV2-1070_Feb12/2

Page 25 of 27

Page : 51 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

0 dB = 15.400 mW/g = 23.75 dB mW/g

Certificate No: D5GHzV2-1070_Feb12/2

Page 26 of 27

Page : 52 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Impedance Measurement Plot for Body TSL (UL Spacer #1)

Impedance Measurement Plot for Body TSL (UL Spacer #2)

Certificate No: D5GHzV2-1070_Feb12/2

Page 27 of 27

Page : 53 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Appendix C: Additional Measurements

Upon customer request, additional measurements were done to compare the influence of the dipole spacer on the SAR results. Summary of these tests are outlined below.

Same measurement conditions including the extended standard uncertainty (K=2) were used as given in the D5GHzV2 1070_Feb12/2 calibration certificate.

SAR result with Head TSL at 5200 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm3 (1 g) of Head TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer#1	80.6 mW/g
UL Zoom Scan setting (page 14)	No spacer	79.5 mW/g

SAR averaged over 10 cm ³ (10 g) of Head TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer #1	23.1 mW/g
UL Zoom Scan setting (page 14)	No spacer	23.2 mW/g

SAR result with Head TSL at 5500 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm ³ (1 g) of Head TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer#1	86.4 mW/g
UL Zoom Scan setting (page 14)	No spacer	87.0 mW/g

SAR averaged over 10 cm ³ (10 g) of Head TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer #1	24.6 mW/g
UL Zoom Scan setting (page 14)	No spacer	25.2 mW/g

SAR result with Head TSL at 5800 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm ² (1 g) of Head TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer#1	80.8 mW/g
UL Zoom Scan setting (page 14)	No spacer	80.6 mW/g

SAR averaged over 10 cm ² (10 g) of Head TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer#1	22.9 mW/g
UL Zoom Scan setting (page 14)	No spacer	23.3 mW/g

Certificate No: D5GHzV2-1070_Feb12/2_Appx

Page A1 of A6

Page : 54 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

SAR result with Body TSL at 5200 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm ³ (1 g) of Body TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer #1	74.8 mW/g
UL Zoom Scan setting (page 14)	No spacer	72.7 mW/g

SAR averaged over 10 cm ³ (10 g) of Body TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer #1	21.0 mW/g
UL Zoom Scan setting (page 14)	No spacer	20.7 mW/g

SAR result with Body TSL at 5500 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm ³ (1 g) of Body TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer #1	81.0 mW/g
UL Zoom Scan setting (page 14)	No spacer	81.1 mW/g

SAR averaged over 10 cm ³ (10 g) of Body TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer #1	22.5 mW/g
UL Zoom Scan setting (page 14)	No spacer	22.8 mW/g

SAR result with Body TSL at 5800 MHz

SAR results normalized to 1W input power and for nominal TSL parameters.

SAR averaged over 1 cm ³ (1 g) of Body TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer #1	75.7 mW/g
UL Zoom Scan setting (page 14)	No spacer	74.7 mW/g

SAR averaged over 10 cm3 (10 g) of Body TSL	Dipole Spacer	
UL Zoom Scan setting (page 14)	Spacer #1	21.0 mW/g
UL Zoom Scan setting (page 14)	No spacer	21.0 mW/g

Certificate No: D5GHzV2-1070_Feb12/2_Appx

Page A2 of A6

Page : 55 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

DASY5 Validation Report for Head TSL "No Spacer"

Date: 16.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.6$ mho/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.89$ mho/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.19$ mho/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue - No Spacer/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dx=2mm

Reference Value = 62.152 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 29.7210

SAR(1 g) = 7.98 mW/g; SAR(10 g) = 2.33 mW/g

Maximum value of SAR (measured) = 15.399 mW/g

Dipole Calibration for Head Tissue - No Spacer/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 63.595 V/m; Power Drift = -0.0084 dB

Peak SAR (extrapolated) = 34.6390

SAR(1 g) = 8.74 mW/g; SAR(10 g) = 2.53 mW/g

Maximum value of SAR (measured) = 17.135 mW/g

Dipole Calibration for Head Tissue - No Spacer/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=2mm Reference Value = 59.759 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 33.3780

SAR(1 g) = 8.11 mW/g; SAR(10 g) = 2.35 mW/g

Maximum value of SAR (measured) = 15.874 mW/g

Certificate No: D5GHzV2-1070_Feb12/2_Appx

Page A3 of A6

Page : 56 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

Certificate No: D5GHzV2-1070_Feb12/2_Appx

Page A4 of A6

Page : 57 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

DASY5 Validation Report for Body TSL "No Spacer"

Date: 15.02,2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.48$ mho/m; $\epsilon_r = 48.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.87$ mho/m; $\epsilon_r = 48.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.29$ mho/m; $\epsilon_r = 47.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue - No Spacer/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 56.822 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 28.5420

SAR(1 g) = 7.28 mW/g; SAR(10 g) = 2.07 mW/g

Maximum value of SAR (measured) = 13.985 mW/g

Dipole Calibration for Body Tissue - No Spacer/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 58.019 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 33.9610

SAR(1 g) = 8.11 mW/g; SAR(10 g) = 2.28 mW/g

Maximum value of SAR (measured) = 15.846 mW/g

Dipole Calibration for Body Tissue - No Spacer/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=2mm custom (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 54.561 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 33.3380

SAR(1 g) = 7.48 mW/g; SAR(10 g) = 2.1 mW/g

Maximum value of SAR (measured) = 14.827 mW/g

Certificate No: D5GHzV2-1070_Feb12/2_Appx

Page A5 of A6

Page : 58 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-11: Calibration certificate: Dipole (D5GHzV2) (sn:1070) (cont'd)

0 dB = 14.830 mW/g = 23.42 dB mW/g

Certificate No: D5GHzV2-1070_Feb12/2_Appx

Page A6 of A6

Page : 59 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

OF THE HOUSE PATTS

CALIBRATION	CERTIFICATE
Object	EX3DV4 - SN:3679
Calibration procedure(s)	QA CAL-01.v7, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v3 Calibration procedure for dosimetric E-field probes
Calibration date:	May 19, 2011
	currents the traceability to national standards, which restize the physical units of measurements (SI), incertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been con	nducted in the closed leboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Primary Standards	ID G	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: 85054 (3c)	29-Mar-11 (No. 217-01389)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe E83DV2	8N: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	U\$37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Sol H.S.
Approved by:	Fin Bomholt	R&D Director	F. Brokelt
			Issued: May 19, 2011
This calibration certificate	e shall not be reproduced except in ful	I without written approval of the labora	itory.

Certificate No: EX3-3679_May11

Page 1 of 11

Page : 60 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679) (cont'd)

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughwasstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service aulsse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ or rotation around probe axis

Polarization 3 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 3 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- VR: VR is the validity range of the calibration related to the average clode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to Improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3679_May11 Page 2 of 11

: 61 of 70 : June 8, 2012 Issued date

FCC ID : W2Z-01000004

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679) (cont'd)

EX3DV4 -- SN:3679 May 19, 2011

Probe EX3DV4

SN:3679

Manufactured: Calibrated:

September 9, 2008

May 19, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3679_May11

Page 3 of 11

: 62 of 70 Issued date : June 8, 2012

: W2Z-01000004 FCC ID

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679) (cont'd)

EX3DV4-- SN:3679 May 19, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3679

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.59	0.54	0.53	± 10.1 %
DCP (mV) ⁶	94,8	96.0	97.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	128.0	±3.0 %
			Υ	0.00	0.00	1.00	118.6	
			Z	0.00	0.00	1.00	117.6	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3679_May11

^A The uncertainties of NormX,Y,Z do not effect the E²-field uncertainty Inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the

: 63 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679) (cont'd)

EX3DV4-SN:3679 May 19, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3679

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) °	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
2450	39.2	1.80	6.99	6.99	6.99	0.62	0.71	± 12.0 %
5200	36.0	4.66	4.62	4.62	4.62	0.45	1.80	± 13.1 %
5300	35.9	4.76	4.40	4.40	4.40	0.45	1.80	± 13.1 %
5500	35.6	4.96	4.27	4.27	4.27	0.45	1.80	±13.1%
5600	35.5	5.07	4.11	4,11	4.11	0.50	1.80	±13.1%
5800	35.3	5.27	4.11	4.11	4.11	0.50	1.80	±13.1%

Certificate No: EX3-3679_May11

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
^r At frequencies below 3 GHz, the validity of tissue parameters (c and d) can be relaxed to ± 10% if figuid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Page : 64 of 70

Issued date : June 8, 2012

FCC ID

: W2Z-01000004

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679) (cont'd)

EX3DV4-SN:3679

May 19, 2011

DASY/EASY - Parameters of Probe: EX3DV4- SN:3679

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	Conv# Z	Alpha	Depth (mm)	Unct. (k=2)
2450	52.7	1.95	7.34	7.34	7.34	0.74	0.67	± 12.0 %
5200	49.0	5.30	4.10	4.10	4.10	0.52	1.95	± 13.1 %
5300	48.9	5.42	3.88	3.88	3.88	0.55	1.95	± 13.1 %
5500	48.6	5.65	3.65	3.65	3.65	0.58	1.95	± 13.1 %
5600	48.5	5.77	3.45	3.45	3.45	0.60	1.95	± 13.1 %
5800	48.2	6.00	3.94	3.94	3.94	0.55	1.95	± 13.1 %

Certificate No: EX3-3679_May11

Page 6 of 11

^o Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (s and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Page : 65 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679) (cont'd)

EX3DV4-SN:3679 May 19, 2011

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3679_May11

Page 7 of 11

Page : 66 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679) (cont'd)

EX3DV4-SN:3679 May 19, 2011

Receiving Pattern (φ), 9 = 0°

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3679_May11

Page 8 of 11

Page : 67 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679) (cont'd)

EX3DV4- SN:3679 May 19, 2011

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3679_May11

Page 9 of 11

Page : 68 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679) (cont'd)

EX3DV4—SN:3679 May 19, 2011

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\$\phi\$, \$\text{3}\$), f = 900 MHz

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: EX3-3679_May11

Page 10 of 11

Page : 69 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-12: Calibration certificate: E-Field Probe (EX3DV4) (sn:3679) (cont'd)

EX3DV4-SN:3679

May 19, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3679

Other Probe Parameters

Sensor Arrangement	Triangular		
Connector Angle (*)	Not applicable		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disabled		
Probe Overall Length	337 mm		
Probe Body Diameter	10 mm		
Tip Length	9 mm		
Tip Diameter	2.5 mm		
Probe Tip to Sensor X Calibration Point	1 mm		
Probe Tip to Sensor Y Calibration Point	1 mm		
Probe Tip to Sensor Z Calibration Point	1 mm		
Recommended Measurement Distance from Surface	2 mm		
Name of the second seco			

Certificate No: EX3-3679_May11

Page 11 of 11

Page : 70 of 70 Issued date : June 8, 2012

FCC ID : W2Z-01000004

Appendix 3-13: Reference

- [1] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [2] Katja Pokovic, Thomas Schmid, and Niels Kuster, "Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM '97, Dubrovnik, October 15-17, 1997, pp. 120-124.
- [3] Katja Pokovic, Thomas Schmid, and Niels Kuster, "E-_field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23-25 June, 1996, pp.172-175.
- [4] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992.
- [6] SPEAG uncertainty document for DASY 4 System from SPEAG (Schmid & Partner Engineering AG).