C If ranks are not given

Ques: The marks obtained by 9 students in mathematics and Accountancy are as follows

Marks in Mathematics (X) 30 33 45 23 8 49 \$2 431

Marks in Accountancy (4) 35 23 47 17 10 43 9 6 28

Calculate Spearman's rank correlation coefficient.

solution:

Here, by assigning rank 1 to higher values for both x and y, we have

the following table

x	Rank in X (RI)	Para Y	Rankiny (R2)	D=R1-R2	D2-
30	5	35	3	5-3 = 2	4
33	3	23	5	3-5 = -2	4
45	2	47	l i	2+ = 1	1
23	6	17	6	6-6 = 0	0
08	8	10	7	8-7 = 1	1
49	1	43	2	1-2 = +	
† 2	7	9	8	7-8 = -1	
04	9	6	19	9-9 = 0	0
31	1 +	28	4	4-4 = 0	0
					$\sum D^2 = 12$

Shearman's Coefficient of rank correlation is given by

$$\rho = 1 - \frac{6 \Sigma D^2}{n(n^2-1)}$$

Here.
$$m=q$$
 and $E D^2 = 12$

$$P = 1 - \frac{6 \times 12}{9(9^2 - 1)}$$

$$= 1 - \frac{748}{10} = 1 - \frac{1}{10} = \frac{9}{10} = 0.9 \text{ Arg}$$

$$= 1 - \frac{748}{100} = 1 - \frac{1}{10} = \frac{9}{10} = 0.9 \text{ Arg}$$

Ques: calculate spearman's coefficient of rank correlation for the

X: 70 65 71 62 58 69 78 64 Y: 91 76 65 83 90 64 55 48

Ques: calculate rank correlation coefficient for the following data

X: 80 91 99 71 '61 81 70 59 Y: 123 135 154 110 105 134 121 106