

Телепорти

Ана и Бека са в различни точки на координатната линия и искат да се срещнат. Единственият им начин да се придвижват е като използват телепорти.

Има N телепорта, като i-тият телепорт се намира в точка c[i] и работи с честота f[i]. В момента, не всички от тях могат да се използват; само тези, които работят с честота в интервала [L,R] могат да се използват.

Използването на телепорт отнема една минута и телепортира този, който го използва в координата, която е отражение на първоначалната координата спрямо координатата на телепорта. С други думи, ако първоначалната координата е била x_1 и в резултат на използване на телепорт i, координатата е x_2 , то ще бъде изпълнено равенството $(x_1+x_2)/2=c[i]$. По време на телепортирането, този, който използва телепорта, ще комуникира чрез устройство, което има честота f[i].

Всяка минута, Ана и Бека трябва да използват по един от наличните телепорти (не непремено различни). Те ще комуникират по време на телепортирането и ще изпитат неудобство, равно на абсолютната разлика на честотите на техните устройства. Максималното неудобство, което са изпитали, ще наричаме трудност на пътуването.

Ще трябва да отговорите на Q заявки, като за всяка от тях, ще трябва да определите дали Ана и Бека могат да се срещнат, използвайки само работещите телепорти, и ако това е така, трябва да намерите и каква е минималната трудност на пътуването.

Една заявка е описана от четири цели числа:

- A: Първоначалната координата на Ана
- В: Първоначалната координата на Бека
- ullet L: Минималната честота на работещите телепорти
- R: Максималната честота на работещите телепорти

За всяка заявка, отпечатайте минималната трудност на пътуването, ако могат да се срещнат и -1 в противен случай. Забележете, че общото време за пътуване не е от значение за тази задача.

Вход

Първият ред съдържа две цели числа: N и Q.

Вторият ред съдържа N цели числа: c[1], c[2], ..., c[N].

Третият ред съдържа N цели числа: f[1], f[2], ..., f[N].

Всеки от следващите Q реда описва по една заявка с четири цели числа: $A,\ B,\ L$ и $R\ (A \neq B).$

Изход

Отпечатайте един ред с Q цели числа, разделени с по един интервал: отговорите на заявки $1,\,2,\,\dots$,Q.

Ограничения

- $2 \le N \le 50~000$
- $1 \le Q \le 50\ 000$
- $1 \le f[i] \le 10^9$
- $-10^9 \le c[i], A, B \le 10^9$
- $1 \le L \le R \le 10^9$

Пример 1

Вход	Изход
43	2 3 -1
46810	
7194	
3 11 1 50	
3 11 1 5	
5711	

В първата заявка, ако Ана използва телепорт 2 и Бека използва телепорт 4, те ще се срещнат в координата 9 с дискомфорт |1-4|=3.

По-добро решение е, ако вместо това, Ана използва телепорт 1 и Бека използва телепорт 3; в този случай, те ще се срещнат в F=5 и ще изпитат дискомфортно усещане равно на |7-9|=2.

Във втората заявка, по-добрата възможност няма да я има, тъй като има ограничение в интервала на честотата.

В третата заявка има само един работещ телепорт и среща е невъзможна.

Вход	Изход
33	-1 2 7
-2 1 -1	
10 1 3	
-6 6 20 20	
-6 6 0 20	
-6 6 2 20	

Координатите могат да бъдат отрицателни числа.

Подзадачи

- 1. (11 точки) $N,Q \leq 10$; $|c[i]|,f[i] \leq 50$ за всяко $1 \leq i \leq N.$
- 2. (10 точки) $N \leq 100$; L=1; $R=10^9$; $|c[i]|, f[i] \leq 100$ за всяко $1 \leq i \leq N$.
- 3. (5 точки) N=2; L=1; $R=10^9$
- 4. (9 точки) $N \leq 1000$; L=1; $R=10^9$; f[i]=1 за всяко $1 \leq i \leq N$.
- 5. (6 точки) L=1; $R=10^9$; f[i]=1 за всяко $1\leq i\leq N$.
- 6. (7 точки) $N \leq 1000$; L=1; $R=10^9$
- 7. (17 точки) L=1; $R=10^9$
- 8. (8 точки) L=1
- 9. (14 точки) $N,Q \leq 20000$
- 10. (13 точки) Няма допълнителни ограничения.