CS/ECE/ME532 Classroom Activity

1. Let
$$z = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $w = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

- a) Sketch the subspace spanned by z in \mathbb{R}^2 .
- **b)** Sketch the subspace spanned by \boldsymbol{w} in \mathbb{R}^2 .
- c) Sketch span $\{z, w\}$ in \mathbb{R}^2 .
- d) Are z and w orthogonal? Why or why not?
- e) Do $\{z, w\}$ form an orthonormal basis? Why or why not? If not, can you modify z and w to form an orthonormal basis?
- **2.** Consider the line in \mathbb{R}^2 defined by the equation $x_2 = x_1 + 1$.
 - a) Sketch the line in \mathbb{R}^2 .
 - **b)** Does this line define a subspace of \mathbb{R}^2 ? Why or why not?
- **3.** You collect ratings of three space-related science fiction movies and two romance movies from seven friends on a scale of 1-10.

Movie	Jake	Jennifer	Jada	Theo	Ioan	Во	Juanita
Star Trek	4	7	2	8	7	4	2
Pride and Prejudice	9	3	5	6	10	5	5
The Martian	4	8	3	7	6	4	1
Sense and Sensibility	9	2	6	5	9	5	4
Star Wars: Empire Strikes	4	9	2	8	7	4	1

You put this data into a matrix X (available in the file movie.mat) and decide to model (approximate) as the product of a rank-r taste matrix with orthonormal columns and a weight matrix. That is, $X \approx TW$.

- a) What is the rank of **X**? Relevant Python commands are numpy.linalg.matrix_rank().
- b) What are the dimensions of T and W (in terms of r)?

c) You know that each user's ratings have an average value that is greater than zero because the scale is 1-10. And you suspect the baseline (average) rating may differ from user to user. To account for this you decide your first basis vector in the taste matrix should be

$$m{t}_1 = rac{1}{\sqrt{5}} \left[egin{array}{c} 1 \ 1 \ dots \ 1 \end{array}
ight]$$

Choose w_{1j} so that each element of the vector \boldsymbol{t}_1w_{1j} equals the average value j^{th} column of \boldsymbol{X} , denoted as $\boldsymbol{X}_{:,j}$. Find an expression for w_{1j} that depends on \boldsymbol{t}_1 and $\boldsymbol{X}_{:,j}$.

- d) Define $\mathbf{w}_1^T = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{17} \end{bmatrix}$ and find the rank-1 approximation to \mathbf{X} that reflects the baseline ratings of each friend, $\mathbf{t}_1 \mathbf{w}_1^T$.
- e) Which friend has the highest baseline rating? Which friend has the lowest baseline rating?
- f) Find the residual not modeled by $t_1 w_1^T$, that is, $X t_1 w_1^T$. Do you see any patterns in the residual? Briefly describe them qualitatively.

This problem is continued in a homework assignment.