$_{ m QCM}^{ m Algo}$

- 1. Lorsque deux éléments distincts ont même de valeur de hachage, on dit que l'on a?
 - (a) Collision principale
 - ✗(b) Collision primaire
 - (c) Collision secondaire
 - (d) Collision simple
- 2. Une fonction de hachage ne peut pas être?
 - (a) Déterministe
 - ✗ (b) Universelle
 - (c) Facile à calculer
 - (d) Rapide à calculer
- 3. Le hachage coalescent est une méthode indirecte de gestion des collisions?
 - ⊀ (a) Oui
 - (b) Non
 - (c) Cela dépend
- 4. La division et la multiplication sont des méthodes de hachage de base?
 - (a) Oui
 - X(b) Non
 - (c) Cela dépend
- 5. Le hachage par double chaînage linéaire est une méthode indirecte de gestion des collisions?
 - (a) Oui
 - (b) Non
 - (c) Cela dépend

QCM N°6

Question 11

Soit $\alpha \in \mathbb{R}$. $\sum \frac{1}{n^{\alpha}}$ converge ssi

- a. $\alpha > 0$
- b. $\alpha < 0$
- c. $0 < \alpha < 1$
- $\alpha > 1$
- e. $\alpha < 1$

Question 12

Soit (u_n) une suite réelle telle que $\sum (u_{n+1} - u_n)$ converge. Alors (u_n) converge.

- a. vrai
- b. faux

Question 13

Soit (u_n) une suite réelle telle que $n^{4/3}u_n$ converge vers 0. Alors

- a. $\sum u_n$ converge
- b. $\sum u_n$ diverge
- c. on ne peut rien dire sur la nature de $\sum u_n$

Question 14

Soit (u_n) une suite réelle quelconque convergeant vers 0. Alors

- a. $\sum u_n$ converge
- b. $\sum u_n$ diverge
- c. On ne peut rien dire sur la nature de $\sum u_n$

Question 15

Soient (u_n) et (v_n) deux suites réelles telles que $(\forall n \ge n_0 : u_n \le v_n)$ et $\sum v_n$ converge. Alors

- $(a) \sum u_n$ converge
- b. $\sum u_n$ diverge
- \overline{c} on ne peut rien dire sur la nature de $\sum u_n$

Info-Spé 2006/2007

Q.C.M de Physique

- 21) Le théorème de Gauss permet
- a) le calcul du champ électrique à partir de la circulation du vecteur E
- b) de relier le champ électrique E et le potentiel électrique V.
- x c) le calcul de E à partir du flux du vecteur E.
 - d) de trouver le sens et la direction du vecteur E.
 - 22) La propriété fondamentale de B signifie :
 - a) les lignes du champ B divergent
- ∠ b) les lignes du champ B sont toujours fermées
 - c) le flux de B à travers une surface fermée est non nul
 - d) le flux de B est strictement positif.
 - 23) Une sphère chargée en volume avec une densité ρ (r) crée :
 - a) un champ électrique \vec{E} radial
 - b) un champ électrique \vec{E} tangentiel
- c) un champ électrique E qui dépend des variables θ et φ
 - d) un champ électrique E qui dépend des variables θ et z
 - 24) Le Théorème d'Ampère permet :
 - a) la détermination de la direction et du sens du champ magnétique
 - b) de trouver l'équation de propagation du champ magnétique
 - c) la détermination des lignes du vecteur champ magnétique
 - d) le calcul de l'intensité du champ magnétique
 - 25) Le phénomène auto-induction se manifeste lorsque :
 - a) le flux électrique varie en fonction du temps
 - b) le champ électrique est variable
 - c) le flux magnétique varie au cours du temps
 - d) le potentiel électrique est variable

QCM Electronique

Q31: Soit le circuit suivant :

Ce circuit comprend

- a. 5 nœuds, 5 branches et 2 mailles
- - c. 2 nœuds, 5 branches et 3 mailles
 - d. 5 nœuds, 3 branches et 2 mailles

Q32:

La tension U3 aux bornes de R3 est égale à :

$$\begin{array}{ll} \text{a-} & E \\ \text{b-} & \frac{R_1 + R_2 + R_3}{R_3} \cdot E \\ \text{c-} & \frac{R_3}{R_1 + R_2 + R_3} \cdot E \\ \text{d-} & \frac{R_1 + R_2}{R_2} \cdot E \end{array}$$

$$E + R_1 I + R_2 I - V_3 = 0$$

$$U_3 = E + R_1 I + R_2 I$$

$$U_3 = E + I (R_1 + R_2)$$

Q33 : Tout dipôle générateur complexe peut être représenté entre 2 bornes A et B par un générateur équivalent formé d'une source de courant en parallèle avec une résistance interne. Cet énoncé correspond :

- a- au théorème de Thévenin
- ь- au théorème de Millman
- e- à la loi des mailles
- ✓ d- au théorème de Norton

Q34 : Tout dipôle générateur complexe peut être représenté entre 2 bornes A et B par un générateur équivalent formé d'une source de tension en série avec une résistance interne. Il s'agit :

∠ au théorème de Thévenin

&- au théorème de Millman

e- à la loi des mailles

d- au théorème de Norton

Q35 : Soit le circuit suivant :

= M-E

a-
$$U = RI$$

$$\star$$
 b- $U = R.\frac{I}{2}$

$$c- U = \frac{I}{2.R}$$

$$d-U=E$$