1

AI1103: Assignment 8

Chitneedi Geetha Sowmya CS20BTECH11011

2)

4)

Download all latex codes from

https://github.com/Geetha495/Assignment8/blob/main/Assignment8.tex

1 Problem

Let $\phi(t)$ be a characteristic function of some random variable. Then, which of the following is also a characteristic function ?

- 1) $f(t) = [\phi(t)]^2$ for all $t \in \mathbb{R}$
- 2) $f(t) = |\phi(t)|^2$ for all $t \in \mathbb{R}$
- 3) $f(t) = \phi(-t)$ for all $t \in \mathbb{R}$
- 4) $f(t) = \phi(t+1)$ for all $t \in \mathbb{R}$

2 Solution

Definition 2.1 (Characteristic Function). The function $\phi_X(t) = E(e^{itX})$ is called the characteristic function (cf) of random variable X.

Proposition 2.1 (Properties of a Characteristic function). *All cf's have the following properties:*

1) $\phi_X(-t) = \overline{\phi_X(t)}$ (complex conjugate) 2) $\phi_{-X}(t) = \overline{\phi_X(t)}$

Proposition 2.2 (Cf of sum of independent r.v.'s). If X and Y are independent, then

$$\phi_{X+Y}(t) = \phi_X(t) \times \phi_Y(t)$$

Let X be the given random variable and let Y and -X have the same distribution.

1)

$$[\phi_X(t)]^2 = \phi_X(t) \times \phi_X(t)$$

= $\phi_{2X}(t)$ (by proposition 2.2)

Thus, $f(t) = [\phi(t)]^2$ is a characteristic function of random variable 2X.

 $|\phi_X(t)|^2 = \phi_X(t) \times \overline{\phi_X(t)}$

$$|\phi_X(t)|^2 = \phi_X(t) \times \phi_X(t)$$

$$= \phi_X(t) \times \phi_Y(t) \text{ (by proposition 2.1)}$$

$$= \phi_{X+Y}(t)$$

Thus, $f(t) = |\phi(t)|^2$ is a characteristic function of random variable (X + Y).

3) $\phi_X(-t) = E\left(e^{i(-t)X}\right) \quad \text{(by definition 2.1)}$ $= E\left(e^{it(-X)}\right)$ $= E\left(e^{itY}\right)$

Thus, $f(t) = \phi(-t)$ is a characteristic function of random variable Y.

 $\phi_X(t+1) = E\left(e^{i(t+1)X}\right) \text{ (by definition 2.1)}$ $= Ee^{itX} \times e^{iX}$

Thus, $f(t) = \phi(t+1)$ is a not a characteristic function.

Hence, correct options are 1, 2, 3.