

# Olimpiada Națională de Matematică

# Etapa Județeană a Sectoarelor Municipiului București, 2025

#### CLASA a VI-a - soluții

**Problema 1.** Fie numerele naturale a, b, c pentru care numerele  $m = \frac{5a + 6b + 7c + 6}{4a + 3b + 2c + 3}$  și  $n = \frac{a + 2b + 3c + 5}{3a + b + 2c + 5}$  sunt simultan numere naturale.

- a) Arătați că  $m \ge 2$ .
- b) Determinați numerele m și n.

Din m=2 rezultă 5a+6b+7c+6=8a+6b+4c+6, adică c=a și cum b+c=2a, deducem a=b=c. Aşadar, m=2 și n=1, valori care se obțin pentru a=b=c. . **1p** 

**Problema 2.** Aflați numerele naturale nenule a și b pentru care

$$\frac{a}{(a,b)} = b + \frac{48 \cdot (a,b)}{[a,b]}$$
 și  $\frac{b}{(a,b)} = a - \frac{312 \cdot (a,b)}{[a,b]}$ .

Am notat cu (a, b) cel mai mare divizor comun al numerelor a și b, iar cu [a, b] cel mai mic multiplu comun al numerelor a si b.

Notăm cu d=(a,b). Atunci a=dx, b=dy, [a,b]=dxy cu (x,y)=1, x>y. Obținem  $x=dy+\frac{48}{xy}$  și  $y=dx-\frac{312}{xy}$ , (1).

Aşadar, 
$$xy \mid 48$$
 şi  $xy \mid 312 \Rightarrow xy \mid (48, 312) = 24...$  **2p**

## Continuarea 1.

Tot din (1) rezultă 
$$xy(x - dy) = 48$$
 și  $xy(dx - y) = 312 \Rightarrow \frac{x - dy}{dx - y} = \frac{48}{312} = \frac{2}{13} \Rightarrow x(13 - 2d) = y(13d - 2) \Rightarrow 13 - 2d > 0...$  **1p**

Avem de analizat cazurile: I.  $d=1\Rightarrow 11x=11y\Rightarrow a=b$ , fals, deoarece a>b. II.  $d=2\Rightarrow 3x=8y$ . Cum (x,y)=1, obţinem x=8,y=3, deci  $a=16,b=6\ldots 1p$  III.  $d=3\Rightarrow 7x=37y\Rightarrow x=37,y=7$ , fals, deoarece  $xy\mid 24$ . IV.  $d=4\Rightarrow x=10y\Rightarrow x=10,y=1$ , fals, deoarece  $xy\mid 24$ . V.  $d=5\Rightarrow x=21y\Rightarrow x=21,y=1$ , fals, deoarece  $xy\mid 24$ . VI.  $d=6\Rightarrow x=76y\Rightarrow x=76,y=1$ , fals, deoarece  $xy\mid 24$ . .... 2p

### Continuarea 2.

Din  $xy \mid 24$  rezultă că  $xy \in \{1, 2, 3, 4, 6, 8, 12, 24\}$ , de unde rezultă (și se analizează) cazurile  $(x, y) \in \{(2, 1), (3, 1), (4, 1), (6, 1), (3, 2), (8, 1), (12, 1), (4, 3), (24, 1), (8, 3)\}$ .

Obținem x=8,y=3, care implică d=2 și soluția unică a=16,b=6 ...........4p

**Problema 3.** Fie ABC un triunghi isoscel cu  $\not\subset BAC = 30^{\circ}$  și AB = AC. Considerăm punctul D pe latura AC și punctele distincte E, F, G pe latura AB astfel încât BC = BD = DE = EF, iar DG = DF.

- a) Arătati că BF = GE.
- b) Aflați măsura unghiului BCG.

Solutie.

Deci 
$$\angle BCG = \angle BGC = \frac{180^{\circ} - \angle CBG}{2} = \frac{105^{\circ}}{2} = 52^{\circ}30'....$$
 1p

**Problema 4.** Determinați numerele naturale  $n \ge 2$  cu proprietatea că n este divizibil cu fiecare dintre numerele

$$d_1, d_1 + d_2, \ldots, d_1 + d_2 + \ldots + d_{k-1},$$

unde  $1 = d_1 < d_2 < \ldots < d_{k-1} < d_k = n$  sunt toți divizorii naturali ai lui n.

Soluție. Numerele prime au proprietatea din enunț, deoarece, dacă n este număr prim, divizorii săi sunt  $1 = d_1 < d_2 = n$ , iar n este divizibil cu  $d_1 \dots 1$ 

Fie n un număr compus, având  $k \ge 3$  divizori, cu proprietatea din enunț.

| Presupunând că $n$ este număr impar, toți cei $k$ divizori ai săi sunt numere impare.                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Din ipoteză, $n$ este divizibil cu $d_1 + d_2$ , care este număr par, deci $n$ ar trebui să fie tot                                                                                                                  |
| număr par, contradicție. Așadar, $n$ este număr par                                                                                                                                                                  |
| Atunci $d_1 = 1$ , $d_2 = 2$ , deci $n$ este divizibil și cu $d_1 + d_2 = 3$ , deci $d_3 = 3$ . În plus,                                                                                                             |
| deducem că 6   $n$                                                                                                                                                                                                   |
| Deoarece, pentru orice divizor $d$ al lui $n$ , numărul $\frac{n}{d}$ este de asemenea un divizor al lui $n$ , deducem că $\frac{n}{6}$ , $\frac{n}{3}$ și $\frac{n}{2}$ se află printre cei $k$ divizori ai lui $n$ |
| Deducem că singurii divizori ai lui $n$ , mai mici decât $n$ , sunt $\frac{n}{6}$ , $\frac{n}{3}$ și $\frac{n}{2}$ , deci $\frac{n}{6} = d_1 = 1$ ,                                                                  |
| $\frac{n}{3}=d_2=2$ și $\frac{n}{2}=d_3=3$ , deci $n=6$ este singurul număr compus cu proprietatea din                                                                                                               |
| 8 enunț 2 p                                                                                                                                                                                                          |