Übungen zur Einführung in die Geometrie und Topologie - Blatt 2

Uni Bonn, SS 2023

Aufgabe 5. Seien K und L disjunkte kompakte Teilmengen des Hausdorff Raums X. Beweise oder widerlege, dass es disjunkte offene Teilmengen U und V von X mit $K \subseteq U$ und $L \subseteq V$ gibt.

Aufgabe 6. Sei X ein kompakter Raum und $f: X \to \mathbb{R}$ eine stetige Abildung. Zeige, dass f nicht surjektiv ist.

Aufgabe 7. Zeige, dass der 1-dimensionale reelle projektive Raum \mathbb{RP}^1 homöomorph zu S^1 ist.

Aufgabe 8. Betrachte auf \mathbb{R}^2 die Äquivalenz-Relation

$$(r_1, r_2) \sim (r'_1, r'_2) \iff r_1 - r'_1, r_2 - r'_2 \in \mathbb{Z}.$$

Versehe die Menge der Aquivalenzklassen \mathbb{R}^2/\sim mit der Quotiententopologie bezüglich der Projektion $\mathbb{R}^2 \to \mathbb{R}^2/\sim$.

Beweise oder widerlege, dass \mathbb{R}^2/\sim homöomorph zu $S^1\times S^1$ ist.