Introduction to Machine Learning

Fall 2018

Lecturer: Jie Wang
Posted: Sep. 10, 2018
Name: Shilong Zhang
Homework 1
Due: Sep. 17, 2018
ID: PB14214061

Notice, to get the full credits, please present your solutions step by step.

Exercise 1: 2pts

Show that $(1 - \epsilon)^m \leq e^{-m\epsilon}$, where $m \in \mathbb{N}$.

Solution: There may be another condition lost, the $\epsilon \in [-\infty, 1]$,otherwise if $\epsilon = 2$ and m = 2 , the inequality is broken.

And with my condition, the question will be easy, we all know that

$$e^x \le (1-x), \forall x \in [-\infty, 1]$$

This is easy to prove. We can make the fuction

$$f(x) = e^{-x} - 1 + x$$

f(x) = 0 when x = 0, and $f'(x) = 1 - e^{-x}$, and we can know

$$f'(x) \begin{cases} \leq 0 & \text{if } x \leq 0 \\ > 0 & \text{if } x > 0 \end{cases} \tag{1}$$

So

$$0 s f(x)_{min} when x \in [-\infty, 1] (1)$$

and for m=0, m=1, the inequality is ok, and we can assume that the inequality is ok for all $m \leq N$, and for m=N+1,

$$(1 - \epsilon)^{N+1} = (1 - \epsilon)^N * (1 - \epsilon) \le e^{-(N\epsilon)} * (1 - \epsilon)$$

then use (1) we have proved,

$$e^{-(N\epsilon)} * (1 - \epsilon) \le e^{-(N\epsilon)} * e^{-\epsilon} = e^{-(N+1)\epsilon}$$

The inequality is ok for N+1,so we prove it!

Exercise 2: Markov inequality 2pts

Let X be a nonnegative randome variable on \mathbb{R} . Then, for all t > 0, show that

$$\mathbf{P}(X \ge t) \le \frac{\mathbf{E}[X]}{t}.$$

Solution: For noneegatave randome variable, we assume f(x) is the probability distribution function of the x; for any $t \ge 0$

$$E(X) = \int_0^\infty x f(x) dx \ge \int_t^\infty x f(x) dx \ge t \int_t^\infty f(x) dx = t P(x \ge t)$$

This exactly the what we need.

Exercise 3: VC-dimension 2pts

Assume that the instance space $X = \mathbb{R}^2$ and the hypothesis space H be the set of all linear threshold functions defined on \mathbb{R}^2 . Find VC(H) and prove it.

Solution: VC(H) = 3, and we know that three points can be shatted if points $\in R^2$ (there are all cases in the ppt), and we can construct samples that 4 points can't be shatted.

The red and black points represent two categories.

Exercise 4: Learning intervals 4pts

Let the target concept class be $C = \{[a,b] : a < b, a, b \in \mathbb{R}\}$ and the hypotheses class H = C, and the version space be $VS_{H,D}$. Each $c \in C$ labels the points inside the interval positive and the others negative. A consistent learner will pick a consistent hypothesis—if any— $h \in H$ according to a set of i.i.d. samples $\{(x_1, c(x_1)), (x_2, c(x_2), \ldots, (x_m, c(x_m))\}$ that obey an unknown distribution \mathcal{D} . Please find

$$\mathbf{P}[\exists h \in VS_{H,D} \text{ and } error_{\mathcal{D}}(h) > \epsilon],$$

and the corresponding sample complexity.

Solution: The learner can be sample, we make the min negative points as the a' and the max positive point as b'.

We should find a upper bound of the probablity because calculate it directly is very difficult and I don't know the bound I find is tight or not .

we use B represent $\exists h \in VS_{H,D}$ and $error_{\mathcal{D}}(h) > \epsilon$, and we should find a event E and $P(E) \geq P(B)$. and error(D) can be define as the Integration of distribution functions between [a,a'] and [b',b]

How to define E? This is very difficult to describe it clearly . if we limit Integration of distribution functions between [a,a'] equal to $\frac{\epsilon}{2}$ and [b',b] as same. we define E as none of train points hit the interval. So the $P(B) \leq 2(1-\frac{\epsilon}{2})^m \leq 2e^{-\frac{m\epsilon}{2}} \leq \delta$ (because it must be at least one interval is miss) So the complexity of ample $m \geq 2\frac{\ln\frac{\delta}{2}}{\epsilon}$