武汉大学 2014-2015 学年第一学期期末考试

高等数学 A1 (A 卷答题卡)

								考 生 学 号							
姓名	班级														
		[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	
		[1]	[1]	[1]	[]]	[1]	[1]	[1]	[1]	[1]	[]]	[1]	[1]	[1]	
注意事项	1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	
	考号信息点。	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	
	2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	
	作解答题:字体工整、笔迹清楚。	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	
	3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	
	写的答题无效;在草稿纸、试题卷上答题无效。	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	
	4.保持卷面清洁,不要折叠、不要弄破。	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	
		[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	

一、(10 分) 已知:
$$\lim_{x\to 0} \frac{1}{x^4} \int_0^{x^2} \frac{t}{\sqrt{a+t}} dt = 1$$
, 求 a 的值.

二、(10分) 设
$$y = 2^{3x} \cdot \ln(2x) - \sqrt{1 + x^2}$$
, 求 y' .

三、(8分) 设
$$\begin{cases} x = t^3 + t \\ y = \frac{3}{4}t^4 + t^3 + \frac{1}{2}t^2 + t \end{cases}$$
 且 $t = t_0$ 时, $dy = 2dx$, 试求 t_0 .

四、(8分) 设微分方程
$$x'' - \tan t \cdot x' + 2x = 0$$
 的一特解为 $x_1 = \sin t$ $(0 < |t| < \frac{\pi}{2})$,求它的通解。

五、(8分) 验证极限
$$\lim_{x\to +\infty} \frac{1+x+\sin x\cos x}{x-\sin x\cos x}$$
存在,但不能用罗必塔得出.

六、
$$(8 分)$$
 求 $\int_a^b \frac{dx}{\sqrt{(x-a)(b-x)}} (a < b).$

十、(8 分)设 f(x) 在 $[0,\frac{\pi}{2}]$ 上连续,在 $(0,\frac{\pi}{2})$ 内可导,且 $f(\frac{\pi}{2})=0$,证明 存在一点 $\xi \in (0,\frac{\pi}{2})$,使 $f(\xi)+\tan\xi\cdot f'(\xi)=0$.

八、(8分)设 $f(x) = [\varphi(x) - \varphi(0)] \ln(1+2x), g(x) = \int_0^x \frac{t}{1+t^3} dt, 其中 \varphi(x) 在 x = 0 处可导,且 <math>\varphi'(0) = 1$,证明 f(x)与 g(x)为 $x \to 0$ 时的同阶无穷小。

十一、 $(8\,
ho)$ 位于x 轴上区间[0,l]上长为l,密度为 $\rho(x)$ 的杆绕x=a 旋转的转动惯量为 $I=\int_0^l (x-a)^2 \rho(x) dx$,试求这个转动惯量为最小时的a 值。

九、(8分) 判断函数 $y = \frac{1}{1+x}$ 的单调性,并证明 $\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}$

十二、 $(8\, \mathcal{G})$ 如图所示,设以(0,a) 为中心的 a 为半径的圆弧 PmQ 与以(0,0) 为中心的 $\sqrt{2}a$ 为半径的圆弧 pnQ 所围成的平面图形的面积为 S ,试证明 S 等于正方形 OAQB 的面积。

