볼트조임형압전진동자의 제작과 특성

주광호, 차경철

압전소자의 특성을 미세구조[2]와 함께 제작조건과의 련관속에서 밝히는것은 실천적 으로 중요하다.

론문에서는 볼트조임형압전진동자의 압전특성을 구성요소들과의 련관속에서 조임응 력에 따라 실험적으로 고찰하고 합리적인 제작조건을 밝혔다.

1. 볼트조임형압전진동자의 제작과 측정방법

볼트조임형압전진동자의 구조는 그림 1과 같다.

먼저 K_p =0.74, ε = 2 500 인 PZT합성분말을 써서 Φ 외=12mm, Φ 내=4.5mm, t=6.8mm인 고리형시편들을 소성하였다.

고리형시편들의 량면들을 *t*=6.0mm의 두께로 평면연마한 다음 은전극을 입히고 고온분극법으로 분극시켰다.

분극된 압전시편들을 24h동안 경화시키고 LRC 측정계로 정전용량을, 직시장치 《LSW-115》와 결합된 공진-반공진측정회로에서 공진 및 반공진주파수와 공진저항을 측정하였다.

금속편들을 그림 1에서와 같이 가공한 다음 고 리형압전시편과 접착되는 면들을 평면연마하였다.

조임응력에 따르는 공진특성의 변화를 고찰하기 위하여 접착면들에 경화제를 섞지 않은 에 폭시를 바르고 조임응력을 증가시키면서 직시장 치에서 공진 및 반공진주파수와 공진저항을 측정하였다.

그릮 1. 볼트조임형압전진동자의 구조

조임응력의 크기는 다음식[2]으로 결정하였다.

$$P = 2\pi LF / HS \tag{1}$$

여기서 F는 나사축에 수직으로 작용하는 힘, L은 나사축으로부터 힘의 작용점까지의 거리, H는 나사의 걸음, S는 나사축에 수직인 시편의 자름면면적, P는 조임응력이다.

유효전기력학결합결수는 다음식[1]으로 결정하였다.

$$K_{\hat{T}, \hat{S}} = \sqrt{1 - (f_r / f_a)^2}$$
 (2)

여기서 f_r 는 공진주파수, f_a 는 반공진주파수이다.

2. 실험결과 및 분석

조임응력의 증가에 따르는 공진 및 반공진주파수의 변화곡선은 그림 2와 같다.

그림 2. 조임응력에 따르는 공진 및 반공진주파수의 변화곡선

보여주었다.

그림 2에서 보는바와 같이 공진주파수 f_r 는 조임응력의 증가에 따라 선형적으로 증가한다.

일반적으로 막대기형진동자에서 공 진주파수는 다음과 같이 표시된다.

$$f_r = (1/2L)\sqrt{C^{\rm E}/\rho} \tag{3}$$

여기서 L은 막대기진동자의 길이, ρ 는 밀도, C^{E} 는 튐성률이다.

식 (3)에서 밀도는 변하지 않는다고 보면 공진주파수는 튐성률과 길이의 함 수로서 고찰할수 있다.

 C^{E} 와 L중에서 어느 인자가 본질적 인 영향을 주는가를 밝히기 위해서 조임 응력을 변화시키면서 길이와 공진주파수 의 변화를 고찰한 실험결과를 그림 3에

그림 3. 조임응력의 증가에 따르는 f_r, L 의 변화곡선

그림 3에서 보는바와 같이 조임응력의 증가에 따르는 f_r 와 L의 변화률은 심히 차이

난다. 24MPa의 조임응력이 작용할 때 f_r 의 변화률은 6.8%이지만 L의 변화률은 0.165%로 서 f_r 의 변화률이 L의 변화률보다 40배이상 더 크다.

식 (3)에 기초하여 24MPa의 조임응력에서 튐성률의 증가률을 계산하면 11.6%로서 길이의 변화률보다 70배정도 크다.

이것은 공진주파수의 변화에 직접적인 영향을 미치는 인자는 길이가 아니라 튐성률 이라는것을 명백히 보여준다.

조임응력이 증가할 때 튐성률이 증가하는것은 이온들사이의 거리가 줄어들 때 정전 기적척력이 비선형적으로 증가하는것과 관련된다고 볼수 있다.

조임응력에 따르는 유효전기력학결합결수와 공진시등가유효저항 R의 변화곡선은 그림 4와 같다.

그림 4. 조임응력의 증가에 따르는 $K_{+\hat{x}}$ 와 R의 변화곡선

그림 4에서 보는바와 같이 $K_{\text{유효}}$ 와 R는 $6\sim 9$ MPa의 조임응력에서 최대 및 최소값을 가진다.

 K_{R} 호와 R의 이와 같은 변화특성은 금속편과 압전시편사이의 결합특성을 반영한다고 볼수 있다. 낮은 조임응력에서 압전편과 금속편이 완전히 접착되지 않으므로 복합진동자의 압전특성은 최대값을 나타내지 못한다. 조임응력이 지내 높을 때 도멘들의 부분적인 절환에 의해 압전특성이 나빠진다.

일반적으로 시편들을 평면연마하는 경우에 시편들을 개별적으로 연마하면 평면도는 낮아지게 되며 따라서 압전특성이 나빠진다.

시편들을 개별연마한 경우와 300개씩 묶어서 연마한 경우 랑쥬뱅형복합진동자들의 특성을 표 1에 보여주었다.

표 1에서 보는바와 같이 볼트조임형압전진동자의 특성은 접착면의 평면도가 높을수록 개선되며 최적조임응력은 평면도가 낮을수록 높아진다는것을 알수 있다.

THE MEETING OF THE STATE OF STRONG AND ADDRESS AND ADD											
연마방법	고리형압전시편의 특성					볼트조임형진동자의 특성					
	f_r/kHz	f_a/kHz	R/Ω	$\Delta f / \text{kHz}$	$K_{\mathring{\pi}^{\vec{\underline{a}}}}$	최적조임 응력/MPa	f_r/kHz	f_a/kHz	R/Ω	$K_{\hat{\pi}_{\bar{s}}}$	
시편들을 개별적으로 연마한 경우	245.1	301.1	98	56.0	0.581	18	48.1	52.7	210	0.409	
	244.5	305.1	98	60.6	0.598						
시편들을 300개씩 묶어 서 연마한 경우	244.2	302.5	98	58.3	0.590	6	45.9	57.3	140	0.599	
	244.6	302.8	98	58.2	0.589						

표 1. 시편들을 개별연마한 경우와 300개씩 묶어서 연마한 경우 랑쥬뱅형복합진동자들의 특성

볼트조임형압전진동자의 특성은 접착면의 평면도와 함께 고리형압전시편의 특성에 크게 관계된다.

고리형압전시편의 특성에 따르는 볼트조임형진동자의 특성변화를 표 2에 보여주었다.

No.	고리형압전시편의 특성					볼트조임형진동자의 특성					
	f_r/kHz	f_a/kHz	$\Delta f / \text{kHz}$	R/Ω	<i>K</i> _{⊕ <u>å</u>}	f_r/kHz	f_a/kHz	$\Delta f / \text{kHz}$	R/Ω	$K_{\mathring{\mathbb{H}}^{\overset{\circ}{\mathbb{H}}}}$	
1	243.6	299.6	56.0	100	0.582	41.7	48.0	6.1	340	0.495	
	244.2	298.5	54.3	100	0.575						
2	241.4	304.3	62.9	98	0.609	43.6	53.6	10	250	0.582	
	241.5	303.7	62.2	98	0.606						

표 2. 고리형압전시편의 특성에 따르는 볼트조임형진동자의 특성변화(조임응력: 3MPa)

표 2에서 보는바와 같이 고리형압전시편의 특성이 약간만 달라져도 볼트조임형진동 자의 특성은 크게 달라지게 된다.

맺 는 말

- 1) 볼트조임형압전진동자의 공진주파수는 조임응력의 증가에 따라 선형적으로 증가한다. 공진주파수의 변화는 주로 튐성률의 변화에 따른다.
- 2) 볼트조임형진동자의 압전특성은 접착면의 평면도가 높을수록, 고리형압전시편의 특성이 좋을수록 개선된다.
- 3) 볼트조임형진동자의 최적조임응력은 평면도가 높을수록 낮아지며 보통 6~9MPa의 값을 가진다.

참 고 문 헌

- Ю. В. Тофман; Законы, формулы, задачи физики, Наукова думка, 164~167, 1977.
- [2] Fabian Lemke; Journal of the Ceramic Society of Japan, 124, 4, 346, 2016.

주체106(2017)년 12월 5일 원고접수

Study about the Manufacture and the Property of Bolt-Clamping Type Piezoelectric Vibrator

Ju Kwang Ho, Cha Kyong Chol

We investigated the variation of piezoelectric characteristics of bolt-clamping type piezoelectric vibrator along with the variation of clamping stress and determined the optimal clamp stress.

We also found that the characteristics of bolt-clamping type piezoelectric vibrator largely depended upon piezoelectric sample's characteristics and a degree of flatness of adhesion surfaces.

Key words: piezoelectric vibrator, bolt-clamping