Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Розрахунково-графічна робота з дисципліни «Комп'ютерна схемотехніка»

Виконав: студент ННІКІТ групи СП-225 Клокун Владислав Перевірив: Іскренко Ю. Ю.

1 Завдання

Параметр	Значення
<u></u>	16
Тип операції	Додавання
Початковий код операндів	ДК
Розрядність операндів	16
KBMCM	МДК
Структура ОБ	ЗМО
Тип автомата	Мілі
Пам'ять автомата	D
OP	P
ЛО	NAND

Табл. 1: Завдання на розрахунково-графічну роботу

3 завдання на розрахунково-графічну роботу (табл. 1) видні такі характеристики цільового арифметико-логічного пристрою:

- 1. Тип арифметичної операції додавання двійкових чисел.
- 2. Початковий код подання операндів доповняльний.
- 3. Розрядність операндів 8 біт.
- 4. Код виконання операції у суматорі доповняльний модифікований.
- 5. Структура операційного блока із закріпленими мікроопераціями.
- 6. Тип керуючого блока автомат Мілі з пам'яттю на *D*-тригерах.
- 7. Схема логічної ознаки парності молодшого байту.

2 Хід роботи

2.1 Алгоритм

Алгоритм додавання двійкових чисел можна словесно описати так:

- 1. У першому і другому машинних тактах із вхідної шини паралельним кодом записуються операнди A і B у відповідні регістри RGA і RGB. Зчитування операндів здійснюється ЦПК.
- 2. Протягом одного машинного такту виконується мікрооперація додавання.

- 3. За відсутності переповнення розрядної сітки результат записується у регістр *RGC*.
- 4. За наявності переповнення результат не фіксується і в ЦПК подається сигнал переповнення «ПП».

2.2 Граф-схеми

У процесі виконання розрахунково-графічної роботи за алгоритмом була розроблена мікропрограма додавання (її змістовний граф на рис. 1).

Далі змістовний граф мікропрограми був закодований (рис. 2).

2.3 Автомат

За результатом кодування графа згідно відповідно до завдання був синтезований автомат Мілі (рис. 3).

3 синтезованого автомата Мілі видно, що максимальна кількість станів автомата L=8. Для реалізації такої кількості станів необхідно використати $n=\left\lceil \log_2 8 \right\rceil=3$ D-тригери.

Закодуємо стани автомата Мілі значеннями виходів *D*-тригерів відповідно до принципів кодування Грея та зобразимо це відповідним чином на рисунку.

$$\begin{split} z_1 &= \overline{Q_1} \overline{Q_2} \overline{Q_3}, \quad z_2 &= \overline{Q_1} \overline{Q_2} \overline{Q_3}, \quad z_3 &= \overline{Q_1} \overline{Q_2} \overline{Q_3}, \\ z_4 &= \overline{Q_1} \overline{Q_2} \overline{Q_1}, \quad z_5 &= \overline{Q_3} \overline{Q_2} \overline{Q_1}, \quad z_6 &= \overline{Q_3} \overline{Q_2} \overline{Q_1}, \\ z_7 &= \overline{Q_3} \overline{Q_2} \overline{Q_1}, \quad z_8 &= \overline{Q_3} \overline{Q_2} \overline{Q_1}. \end{split}$$

Для наочності складемо структурну таблицю переходів автомату Мілі (табл. 2).

$\overline{z_i}$	$k(z_i)$	z_j	$k(z_j)$	$\{x_i\}$	{ <i>y</i> _{<i>i</i>} }	D_1	D_2	D_3
z_1	000	z_1	000	$\overline{eta_1}$	_	0	0	0
z_1	000	z_2	001	1	y_1	0	0	1
z_2	001	z_3	011	1	y_2	0	1	1
z_3	011	z_4	010	1	y_3	0	1	0
z_4	010	z_5	110	1	y_4	1	1	0
z_5	110	z_6	111	1	y_5	1	1	1
z_6	111	z_7	101	1	y_6	1	0	1
z_7	101	z_1	000	x_1	y_9	0	0	0
z_7	101	z_8	100	$\overline{x_1}$	y_7	1	0	0
z_8	100	z_1	000	1	y_8	0	0	0

Табл. 2: Структурна таблиця переходів автомата Мілі

На підставі даних структурної таблиці переходів автомату Мілі записуємо систе-

Рис. 1: Змістовний граф мікропрограми додавання

Рис. 2: Закодований граф мікропрограми додавання

Рис. 3: Граф автомата Мілі для мікропрограми додавання

ми логічних рівнянь. Для функцій збудження входів:

$$D_1 = z_4 \lor z_5 \lor z_6 \lor z_7 \overline{x_2},$$

$$D_2 = z_2 \lor z_3 \lor z_4 \lor z_5,$$

$$D_3 = z_1 \lor z_2 \lor z_5 \lor z_6.$$

Перетворимо отримані функції до заданого у завданні елементного базису NAND («І—НЕ», тут і далі позначається символом $\overline{\wedge}$):

$$\begin{split} D_1 &= z_4 \vee z_5 \vee z_6 \vee z_7 \overline{x_2} = \overline{z_4} \,\overline{\wedge}\, \overline{z_5} \,\overline{\wedge}\, \overline{z_6} \,\overline{\wedge}\, (z_7 \,\overline{\wedge}\, x_2)\,, \\ D_2 &= z_2 \vee z_3 \vee z_4 \vee z_5 = \overline{z_2} \,\overline{\wedge}\, \overline{z_3} \,\overline{\wedge}\, \overline{z_4} \,\overline{\wedge}\, \overline{z_5}, \\ D_3 &= z_1 \vee z_2 \vee z_5 \vee z_6 = \overline{z_1} \,\overline{\wedge}\, \overline{z_2} \,\overline{\wedge}\, \overline{z_5} \,\overline{\wedge}\, \overline{z_6}. \end{split}$$

Для вихідних сигналів:

$$y_1 = z_1,$$
 $y_2 = z_2,$ $y_3 = z_3,$
 $y_4 = z_4,$ $y_5 = z_5,$ $y_6 = z_6,$
 $y_7 = z_7\overline{x_1},$ $y_8 = z_8,$ $y_9 = z_7x_1.$

3 Висновок

Під час виконання даної розрахунково-графічної роботи ми навчились розробляти мікропрограми для виконання арифметично-логічних операцій, синтезувати за розробленим алгоритмом відповідні керуючі автомати та реалізовувати синтезовані автомати.