2^η Εργαστηριακή Αναφορά

Βιομηχανική Ηλεκτρονική

Ιωάννης Τσαντήλας

03120883

Ημερομηνία Διεξαγωγής: 13/12/2022

Θεωρήσαμε πως: V _s ≈ 70,8V f _s ≈ 53 Hz	Υπολογισμοί Προεργασίας						Εργαστηριακές Μετρήσεις						
	Μέρος Α: R = 50 Ω, L = 0 mH												
	α=0°	α=36°	α=72°	α=90°	α=108°	α=144°	α=0°	α=36°	α=72°	α=90°	α=108°	α=144°	
Ενεργός Τιμή V _{so} (V)	70	68,27	58,29	49,49	38,75	15,43	69,3	67,1	61,3	52,0	40,2	16,5	
Ενεργός Τιμή Ι _{so} (A)	1,4	1,36	1,16	0,989	0,776	0,309	1,39	1,35	1,08	1,08	0,845	0,363	
Ενεργός Ισχύς P _{so} (W)	98	93,061	67,84	49	30,15	4,76	96,327	90,585	56,16	56,16	33,969	5,989	
Φαινόμενη ισχύς στην είσοδο S (VA)	98	95,587	81,61	69,29	54,25	21,61	98,412	95,58	76,464	76,464	59,826	25,7	
Συντελεστής ισχύος στην είσοδο λ	1	0,975	0,833	0,707	0,554	0,221	0,978	0,947	0,734	0,734	0,567	0,233	
		Μέρος Β: R = 0 Ω, L = 150 mH											
	α = 90°		α = 108°		α = 144°		α = 90°		α = 108°		α = 144°		
Ενεργός Τιμή V _{so} (V)	70		54,802		21,832		69,5		50,04		23,06		
Ενεργός Τιμή Ι _{so} (A)							1,37		0,75		0,19		
Πλάτος ρεύματος εισόδου Î _{so} (V)	2,101		1,452		0,401		2,16		1,36		0,52		

Συνολικός πίνακας μετρήσεων των 2 πειραμάτων, τόσο θεωρητικές όσο εργαστηριακές.

Εικόνες, από αριστερά προς τα δεξιά:

- 1. Τάση και ρεύμα στα άκρα του θυρίστορ Τ1 (L=0), με γωνία α<90°.
- 2. Τάση και ρεύμα στα άκρα του θυρίστορ Τ1 (L=0), με γωνία α>90°.
- 3. Τάση και ρεύμα στα άκρα του θυρίστορ Τ1 (L=0), με γωνία α=0°.
 - 4. Τάση και ρεύμα στα άκρα του πηνίου (R=0), με γωνία α=144°.

Σημειώνουμε πως:

- Η **5**^η αρμονική συνιστώσα του ρεύματος **μεγιστοποιείται** σε γωνία **103°**.
- Η **7**^η αρμονική συνιστώσα του ρεύματος **μηδενίζεται** σε γωνία **118,8°**.

Απάντηση Ερωτήσεων Αναφοράς

- 1. Παρατηρούμε στις μετρήσεις μας πως υπάρχουν σφάλματα μεταξύ των θεωρητικών και των εργαστηριακών. Είναι λογικό, αφού τα όργανα του εργαστηρίου δεν είναι ιδανικά και οι τιμές που αναγράφουν είναι προσεγγιστικές, προκαλώντας έτσι ανακρίβειες στα εργαστηριακά αποτελέσματα.
- 2. Η ενεργός τιμή της τάσης εξόδου:
 - a. Στην περίπτωση του **ωμικού** φορτίου, για κάθε τιμή της γωνίας έναυσης α:

$$V_{S0} = V_S \sqrt{\frac{1}{\pi} \left[\pi - a + \frac{\sin(2a)}{2} \right]}$$

b. Στην περίπτωση του **επαγωγικού** φορτίου, για κάθε τιμή των γωνιών έναυσης α, σβέσης β=2π-α:

$$V_{S0} = V_S \sqrt{\frac{1}{\pi} \left[\beta - a + \frac{\sin(2a) + \sin(2\beta)}{2} \right]} = V_S \sqrt{\frac{2}{\pi} \left[\pi - a + \frac{\sin(2a)}{2} \right]}$$

3. Η ενεργός ισχύς στην περίπτωση του ωμικού φορτίου, συναρτήσει της γωνίας έναυσης α, δίνεται από τον τύπο:

$$P_{SO} = \frac{V_{S0}^2}{R} = \frac{V_S^2}{R} \left\{ \frac{1}{\pi} \left[\pi - a + \frac{\sin(2a)}{2} \right] \right\}$$

Η γραφική παράσταση της οποίας είναι:

5. Βασιζόμενος στο βιβλίο «Ηλεκτρονικά Ισχύος», του Στέφανου Μανιά, 4^η έκδοση, 2021, Υποενότητα 8.3 Λειτουργία μονοφασικού ΑC ρυθμιστή με ωμικόεπαγωγικό φορτίο, σελίδα 510:

Όταν ένα από τα 2 θυρίστορ άγει, ισχύει η σχέση:

$$L\frac{di}{dt} + Ri = \sqrt{2}\widetilde{V}_{l}\sin(\omega t) \to \dots \to i = \frac{\sqrt{2}\widetilde{V}_{l}}{|Z|} \{ \sin(\omega t - \varphi) - \sin(\alpha - \varphi)e^{(R/L)(\frac{\alpha}{\omega} - t)} \}$$

$$\varphi = \gamma \omega v (\alpha \varphi o \rho \tau (ov = tan^{-1}(\frac{\omega L}{R})) \qquad |Z| = \sqrt{R^{2} + (\omega L)^{2}}$$

Η κυματομορφή του ρεύματος φορτίου δεν είναι πια ημιτονοειδής, αλλά αποτελείται από μια **ημιτονοειδή και μία εκθετική συνιστώσα,** που φθίνει με **σταθερά χρόνου** $\tau=L/R=0.006$. Το ρεύμα θα αρχίζει να κυκλοφορεί αμέσως μόλις δοθεί παλμός έναυσης στο θυρίστορ Q_1 στην γωνία α. Αντικαθιστώντας στον τύπο της φ, προκύπτει ότι $\phi=87.08^\circ > \alpha=30^\circ$. Επομένως, (**περίπτωση iii**, σελίδα 513) έχουμε δυσλειτουργία του ρυθμιστή, αφού ο παλμός έναυσης του θυρίστορ T_2 είναι ανάστροφα πολωμένο.