## Notes

January 16, 2015



## error fixup

neighborhood is  $N_G(V_i) = \{V_j | (v_i, v_j) \in E(G)\}$ 

# degree sequences

these will be ascending, book is descending

### definitionn

if G is finite with  $V(G) = \{v_1, \ldots, v_n\}$  such that  $d_i = \deg(v_i) \leq \deg(v_j)$  for  $i \leq j$  then  $(d_1, \ldots, d_n)$  is the degree sequence of G.



d = (3, 3, 3, 3) three regular graph



## Havel, Hakimi thm

if  $(d_1,\ldots,d_n)$  is a non decreasing sequence with  $d_n\geq 1$  (avoid the empty graph) it is a degree sequence iff  $(d_1,\ldots,d_{n-d_n-1},d_{n-d_n}-1,\ldots,d_{n-1}-1)$  is a degree sequence

### example

given





### proof

 $\Rightarrow$  careful vertex deletion

$$\Leftarrow \text{ let G have a degree sequeence} * \text{ then } \deg(v_i) = \begin{cases} d_i & i = 1, \dots, n - d_n - 1 \\ d_i - 1 & i = n - d_n, \dots, n - 1 \end{cases}$$

add a vertex to G and add edges between the new vertex and all vertices of degree  $d_i - 1$ 

the degree of the new vertex is  $n-1-(n-d_n)+1=d_n$  the new graph has degree sequence  $(d_1,\ldots,d_n)\square$ 

#### claim

havel-hakimi can be used to verify, refute the degree sequenceness of any nondecreasing sequence of integers

i.e. we can say rather quickly that (polynomial time) if (2,3,3,5,5,5,5,5,5,6) is graphical

$$n = 10, 10 - 6 - 1 = 3, d_3 = 3, n - d_n = 4, d_4 - 1 = 4, d_9 - 1 = 5$$

$$(2, 3, 3, 4, 4, 4, 4, 4, 4) \cdots \rightarrow \dots (1, 1, 2, 2, 2, 2)$$

question, if two degree sequences are the same, are the graphs isomorphic?  $\operatorname{no!}$ 

#### homework 1.2

