

Design and Analysis of Algorithms

Lecture - 8

Success is always inevitable with Hard Work and Perseverance

N. Ravitha Rajalakshmi

Learning Objective

- Learn the proof of Master theorem
- Discuss the recurrences when Master theorem is not applicable

Problem size	# nodes	Amount of work done
n	1	$n^{ m d}$
n/b	а	a $n^{ m d}/b^{ m d}$
n/b^2	a^2	$a^2 n^d/b^{2^d}$
n/b^i	a^i	a ⁱ n ^d /b ^{i^d}
I	$n^{\log_b a}$	$n^{\log_b a}$

Design and Analysis of Algorithm

3

Pause & Think

How will you prove master theorem?

Using recursion tree

Cost = cost of root node + cost of internal node + cost of leaf node

$$\sum_{i=0}^{\log n-1} n^d \left(\frac{a}{b^i}\right)^d + n^{\log_b a}$$

$$\sum_{i=0}^{\log n-1} n^d (a/_{b^d})^i + n^{\log_b a}$$

$$r = \frac{a}{b^d} \ , \qquad a = n^d$$

$$r = \frac{a}{b^d}, \quad a = n^d$$

$$O(a) \quad r < 1$$

$$O(ar^{n-1}) \quad r > 1$$

$$\sum_{i=0}^{\log n-1} n^d \left(\frac{a}{b^d}\right)^i + n^{\log_b a}$$

Case 1:
$$\log_b a > d$$
 $\frac{a}{b^d} > 1$
$$n^d \left(\frac{a}{b^d}\right)^{\log n} + n^{\log_b a}$$

$$n^d \frac{a^{\log n}}{(b^d)^{\log n}} + n^{\log_b a} = n^d \frac{a^{\log n}}{(n^d)^{\log b}} + n^{\log_b a} = a^{\log n} + n^{\log_b a} = O(n^{\log_b a})$$

$$\sum_{i=0}^{\log n-1} n^d \left(\frac{a}{b^d}\right)^i + n^{\log_b a}$$

Case 2:
$$\log_b a = d \frac{a}{b^d} = 1$$

$$= \sum_{i=0}^{\log n-1} n^d (1)^i + n^{\log_b a}$$

$$= n^d \sum_{i=0}^{\log n-1} (1)^i + n^{\log_b a}$$

$$= n^d \log n + n^{\log_b a}$$

$$= O(n^d \log n)$$

$$\sum_{i=a}^{b} 1^i = b - a + 1$$

$$\sum_{i=0}^{\log n-1} n^d (a/_{b^d})^i + n^{\log_b a}$$

Case 3:
$$\log_b a < d$$
 $\frac{a}{b^d} < 1$

$$= \sum_{i=0}^{\log n-1} n^d (a/b^d)^i + n^{\log_b a}$$

$$= n^d + n^{\log_b a}$$

$$= O(n^d)$$

$$\sum_{i=0}^{n} a(r^i) = a \quad \text{if } r < 1$$

Why Regularity Condition?

а	1
b	2
d	2
n^d	n^2
$n^{\log_b a}$	$n^{\log_b a} = 1$

Check for regularity condition

$$a \cdot f(n/b) \le c \cdot f(n)$$

$$\frac{n^2}{4 * \log(n/2)} <= c \cdot \frac{n^2}{\log(n)}$$

$$\frac{n^2}{4 * \log(n/2)} > c \cdot \frac{n^2}{\log(n)}$$

$$\log(n/2) << \log(n)$$

а	1
b	2
d	2
n^d	n^2
$n^{\log_b a}$	$n^{\log_b a} = 1$

Regularity condition not satisfied

When Master theorem is not applicable?

If f(n) and $n^{\log_b a}$ does not differ by polynomial

$$T(n) = 3T(n/4) + n \log n$$

f(n) +ve function

a and b are non negative integers a > 0 b>1

Worksheet problem

$$T(n) = T(n/2) + c$$
 c can be any integer

C indicates fixed number of computations. It does not vary with input size

If Problem size is 2, number of computation is c

Size = n + computations = c

Size = n/2 # computations = c

Permutation Vs Combination

Different ways in which elements can be selected

Path acdefb , adcefb, acdfeb

Ordering matters = Permutation

Select subset of items which maximize the revenue items are {a,b,c...........f}

Subsets acd aeb abcdef

Ordering doesn't matter = Combination

Given n elements, number of subsets = 2^n

Given n elements find all possible permutations of say r elements = $np_r = \frac{n!}{(n-r)!}$

Given n elements find all possible combinations of say r elements = $nC_r = \frac{n!}{r! \cdot (n-r)!}$

Fibonacci mod m

For every m , Fib mod m produces a repeating sequence which starts with $\{0\ 1\ \ldots\}$ of length I

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
F_{i}	0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610
$F_i \mod 2$	0	1	1	0	1	1	0	1	1	0	1	1	0	1	1	0
$F_i \mod 3$	0	1	1	2	0	2	2	1	0	1	1	2	0	2	2	1

Length of the sequence is known as piasno period

Even for very large numbers, piasno period is too small

Summary

- Discussed proof of master theorem
- Discussed on combinatorial problems and complexity of Brute force techniques

Thank You Happ Learning

Success is always inevitable with Hard Work and Perseverance