Building user-based recommendation model for Amazon

Analysis Task

- Exploratory Data Analysis:

Which movies have maximum views/ratings? What is the average rating for each movie? Define the top 5 movies with the maximum ratings. Define the top 5 movies with the least audience.

• Recommendation Model: Some of the movies hadn't been watched and therefore, are not rated by the users. Netflix would like to take this as an opportunity and build a machine learning recommendation algorithm which provides the ratings for each of the users.

Divide the data into training and test data

Build a recommendation model on training data

Make predictions on the test data

```
In [2]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

```
In [3]:
```

```
data= pd.read_csv('Amazon-Movies and TV Ratings.csv')
```

In [4]:

data.head()

Out[4]:

	user_id	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6	Movie7	Movie8	Movi
0	A3R5OBKS7OM2IR	5.0	5.0	NaN	NaN	NaN	NaN	NaN	NaN	N
1	AH3QC2PC1VTGP	NaN	NaN	2.0	NaN	NaN	NaN	NaN	NaN	N
2	A3LKP6WPMP9UKX	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	N;
3	AVIY68KEPQ5ZD	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN	N;
4	A1CV1WROP5KTTW	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN	N:

5 rows × 207 columns

In [5]:

data.shape

Out[5]:

(4848, 207)

In [6]:

data.describe()

Out[6]:

	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6	Movie7	Movie8	Movie9	Movie10
count	1.0	1.0	1.0	2.0	29.000000	1.0	1.0	1.0	1.0	1.0
mean	5.0	5.0	2.0	5.0	4.103448	4.0	5.0	5.0	5.0	5.0
std	NaN	NaN	NaN	0.0	1.496301	NaN	NaN	NaN	NaN	NaN
min	5.0	5.0	2.0	5.0	1.000000	4.0	5.0	5.0	5.0	5.0
25%	5.0	5.0	2.0	5.0	4.000000	4.0	5.0	5.0	5.0	5.0
50%	5.0	5.0	2.0	5.0	5.000000	4.0	5.0	5.0	5.0	5.0
75%	5.0	5.0	2.0	5.0	5.000000	4.0	5.0	5.0	5.0	5.0
max	5.0	5.0	2.0	5.0	5.000000	4.0	5.0	5.0	5.0	5.0

8 rows × 206 columns

Task 1 - Which movies have maximum views/ratings?

```
In [7]:
#movie with highest views
data.describe().T['count'].sort_values(ascending=False)[:1].to_frame()
Out[7]:
          count
 Movie127 2313.0
In [8]:
data.describe().T['count']
Out[8]:
Movie1
             1.0
Movie2
             1.0
Movie3
             1.0
Movie4
             2.0
Movie5
            29.0
             . . .
Movie202
             6.0
Movie203
             1.0
Movie204
             8.0
Movie205
            35.0
Movie206
            13.0
Name: count, Length: 206, dtype: float64
In [9]:
#Movie with highest Ratings
data.drop('user_id',axis=1).sum().sort_values(ascending=False)[:1].to_frame()
Out[9]:
 Movie127 9511.0
```

Task 2 - What is the average rating for each movie? Define the top 5 movies with the maximum ratings

In [10]: data.drop('user_id',axis=1).mean() Out[10]: Movie1 5.000000 Movie2 5.000000 Movie3 2.000000 Movie4 5.000000 Movie5 4.103448 . . . Movie202 4.333333 Movie203 3.000000 Movie204 4.375000 Movie205 4.628571 Movie206 4.923077 Length: 206, dtype: float64 In [11]: data.drop('user_id',axis=1).mean().sort_values(ascending=False)[:5].to_frame() Out[11]: 0

task3- Define the top 5 movies with the least audience.

Movie55 5.0

Movie131 5.0 Movie132 5.0 Movie133 5.0

```
In [12]:
```

```
data.describe().T['count']
Out[12]:
Movie1
             1.0
Movie2
             1.0
Movie3
             1.0
Movie4
             2.0
Movie5
            29.0
             . . .
Movie202
             6.0
             1.0
Movie203
Movie204
             8.0
Movie205
            35.0
Movie206
            13.0
Name: count, Length: 206, dtype: float64
In [13]:
data.describe().T['count'].sort_values(ascending=True)[:5].to_frame()
```

Out[13]:

	count
Movie1	1.0
Movie71	1.0
Movie145	1.0
Movie69	1.0
Movie68	1.0

Recommendation Model

In [29]:

```
from surprise import Reader
from surprise import accuracy
from surprise import Dataset
from surprise.model_selection import train_test_split
from surprise import SVD
from surprise.model_selection import cross_validate
```

In [30]:

```
data_melt = data.melt(id_vars = data.columns[0],value_vars=data.columns[1:],var_name="Movi
es",value name="Rating")
```

In [31]:

```
data_melt
```

Out[31]:

	user_id	Movies	Rating
0	A3R5OBKS7OM2IR	Movie1	5.0
1	AH3QC2PC1VTGP	Movie1	NaN
2	A3LKP6WPMP9UKX	Movie1	NaN
3	AVIY68KEPQ5ZD	Movie1	NaN
4	A1CV1WROP5KTTW	Movie1	NaN
998683	A1IMQ9WMFYKWH5	Movie206	5.0
998684	A1KLIKPUF5E88I	Movie206	5.0
998685	A5HG6WFZLO10D	Movie206	5.0
998686	A3UU690TWXCG1X	Movie206	5.0
998687	AI4J762YI6S06	Movie206	5.0

998688 rows × 3 columns

In [32]:

```
rd = Reader()
df = Dataset.load_from_df(data_melt.fillna(0),reader=rd)
df
```

Out[32]:

<surprise.dataset.DatasetAutoFolds at 0x7f95c8be2c90>

In [33]:

```
trainset, testset = train_test_split(df,test_size=0.25)
```

In [34]:

```
svd = SVD()
svd.fit(trainset)
```

Out[34]:

<surprise.prediction_algorithms.matrix_factorization.SVD at 0x7f95c8be28d0>

In [35]:

```
pred = svd.test(testset)
```

```
In [36]:
accuracy.rmse(pred)
RMSE: 1.0262
Out[36]:
1.026193509669748
In [37]:
accuracy.mae(pred)
MAE: 1.0121
Out[37]:
1.0121444735294005
In [39]:
cross_validate(svd, df, measures = ['RMSE', 'MAE'], cv = 3, verbose = True)
Evaluating RMSE, MAE of algorithm SVD on 3 split(s).
                          Fold 2 Fold 3 Mean
                  Fold 1
                                                  Std
RMSE (testset)
                  1.0256
                          1.0273 1.0252 1.0260
                                                  0.0009
MAE (testset)
                  1.0119
                          1.0125 1.0115 1.0120
                                                  0.0004
Fit time
                  36.17
                          36.27
                                  36.44
                                          36.29
                                                  0.11
Test time
                  3.58
                                          3.46
                                                  0.21
                          3.17
                                  3.63
Out[39]:
{'test_rmse': array([1.02561997, 1.02733875, 1.02516155]),
 'test mae': array([1.01189892, 1.012476 , 1.01154928]),
 'fit_time': (36.17048525810242, 36.26771950721741, 36.43838095664978),
 'test time': (3.5817606449127197, 3.172581434249878, 3.6323931217193604)}
In [ ]:
```