A Hybrid Particle Whale Optimization Algorithm with application to workflow scheduling in cloud-fog environment

Daria Yashnova, 5120301/20102

Introduction

Problem statement:

- limited number of scientific processes;
- a limited number of performance indicators.

Cloud-fog computing

Fitness Function

Fitness(F1) = Total execution cost (TEC)

 $ext{TEC} = \sum_{j=0}^{nV M-1} C[j] * (ext{LET}[j] - ext{LST}[j])$

LST Least start time

LST[j] Least start time of j_{th} virtual machine

LET Least end time

LET[j] Least end time of j_{th} virtual machine

Fitness(F2) = Total Execution Time(TET)

 $\text{TET}_{\text{w}} = \max\{\text{CT}_{\text{i}}|\text{i} = 1, 2, 3, 4 \dots \text{m}\}$

CT Completion time

 $\mathbf{CT_i}$ Completion time of job T_i 's

Global best and particle best values

Update particles velocity and next position

- global best (gbest)
- particle best (pbest)

$$\begin{split} V_i(iter+1) &= w * V_i(iter) + c_1 * r_1 * (pbest-x_i(iter)) \\ + c_2 * r_2 * (gbest-x_i(iter)) . \ldots . \end{split}$$

r ₁ , r ₂	[0,1]	Factor to control social influence of swarm
c ₁	2	Inertia makes the particle move in the same direction and with the same velocity
c ₂	2	Random variable to be assigned in [0,1] interval on every iteration

WOA

$$|\overrightarrow{D} = \left|\overrightarrow{C}.\overrightarrow{X^*}\left(t
ight) - \overrightarrow{X}\left(t
ight)
ight|$$

$$\overrightarrow{X}\left(t+1
ight)=\overrightarrow{X^{st}}\left(t
ight)-\overrightarrow{A}\cdot\overrightarrow{D}$$

t indicates the current iteration

 X^* is the position vector of the best solution

$$\overrightarrow{A}=2\overrightarrow{a}\cdot\overrightarrow{r}-\overrightarrow{a}$$

$$\overrightarrow{C}=2\cdot\overrightarrow{r}$$

 \overrightarrow{a} is linearly decreased from 2 to 0 over the course of iterations

 \overrightarrow{r} is a random vector in [0,1].

WOA

Bubble net attacking method (exploitation phase)

$$\overrightarrow{X}(iter+1) = \begin{cases} \overrightarrow{\overrightarrow{X}}^*(iter) - \overrightarrow{A}. \overrightarrow{D} & \text{if } p < 0.5 \\ D'* e^{bl}*\cos(2\pi l) + \overrightarrow{X}^*(iter) & \text{if } p \geq 0.5 \end{cases} \text{ where 'p' is a random number in the range [0,1].}$$

Bubble-net search mechanism implemented in WOA (X* is the best solution obtained so far):

- (a) shrinking encircling mechanism and
- (b) spiral updating position

WOA

Search for prey (exploration phase)

$$\overrightarrow{D} = \left| \overrightarrow{C} \cdot \overrightarrow{X_{rand}} - \overrightarrow{X}
ight|$$

$$\overrightarrow{X}\left(t+1
ight)=\overrightarrow{X_{rand}}-\overrightarrow{A}.\overrightarrow{D}$$

where $\overrightarrow{X_{rand}}$ is a random position vector (a random whale) chosen from the current population.

Proposed PWOA algorithm

Yes

Results

TEC:

-Better than PSO from 1.23% to 22.6%
-Better than WOA from 30.43% to 71.31%

Results

TET:

-Better than PSO from 1.45% to 7.73% -Better than WOA from 12.47% to 50.37%

Conclusion

This article introduces a new meta-heuristic algorithm called Particle Whale Optimization Algorithm (PWOA) for workflow optimization. PWOA combines two existing algorithms to reduce Total Execution Time (TET) and Total Energy Consumption (TEC) in various workflows like Cybershake, Montage, Epigenomics, Sipht, and Inspiral.

PWOA outperforms standard Particle Swarm Optimization (PSO) and Whale Optimization Algorithm (WOA). For example, PWOA reduces TEC by 22.60%, 71.31%, 2.46%, 56.92%, and 6.08% compared to PSO for Cybershake, Epigenomics, Inspiral, Montage, and Sipht, respectively. It also reduces TET by 7.73%, 17.75%, 6.60%, 50.37%, and 3.72%.

Thanks for your attention