CE394M: Critical State and Cam-Clay

Krishna Kumar

University of Texas at Austin

krishnak@utexas.edu

April 28, 2019

Overview

Critical State Soil Mechanics

Critical State Soil Mechanics

Roscoe et al., (1958), Schofield & Worth (1968), Wood (1990):

- Provides a conceptual framework in which to interpret stress-strain-strength-volumetric strain response of soil.
- Started as a qualitative, rather than a mathematical model
- A unified framework of known or observed soil responses: drained / undrained / etc

Critical state variables

- Mean stress: $p' = \frac{\sigma_a' + 2\sigma_r'}{3} = p u$.
- Deviatoric stress: $q = \sigma'_a \sigma'_r = \sigma_a \sigma_r$
- Specific volume: $v = \frac{V_T}{V_s} = \frac{V_s + V_v}{V_s} = 1 + e$.

Roscoe, Schofield & Worth (1958): At shear-failure, soil exists at a unique state

- $d\varepsilon_q >> 0$ unlimited shear strain potential.
- $dp' = dq = d\varepsilon_p = 0$ no change in p', q, ε_p .
- Critical state stress ratio: $\eta = q/p' = const = M$ at failure q = Mp'.

-Critical State Hypothesis: I

Rosson, Scholidd & Worth (1958). All shear-fathers, soil exists at a unique state, with q > 0 uniform dates retrieve parental. $w + d_1 > 0$ uniform dates retrieve parental. $v + d_2 > 0$ uniform dates are parental. $v + d_1 > 0$ uniform dates are parental. $v + d_2 > 0$ uniform dates are parental. $v + d_1 > 0$ uniform date are parental. $v + d_2 > 0$ uniform dates are parental. $v + d_1 > 0$ uniform date are parental. $v + d_2 > 0$ uniform dates are parental. $v + d_2 > 0$ uniform d

Soil is sheared to a point where stresses are stationary (dq = dp' = 0) with no futher change in volume $(d\varepsilon_p = 0)$, unlimited shear strains $(d\varepsilon_q >> 0)$ and q/p' has a fixed value: **critical state**.

M can be related to phi': $M = \frac{6 \sin \phi'}{3 - \sin \phi'}$.

Critical state is a function of q, p', v.

The CSL (p', v, q) space is given by the intersection of two planes: q = Mp' and a cruved vertical plane $v = \Gamma - \lambda \ln p'$

-Critical State Hypothesis: II

Critical state curve connecting critical state points:

- Crticial state line
- Defined in 3D but we'll look at projections into $q-p^\prime$ and $v-p^\prime$ space

The CSL in (a) (p', q) plot and (b) (p', v) plot (isotropic normal compression line is shown in dashed)

—Critical State Hypothesis: II

Isotropic virgin compression line (VCL) $\eta=0$. NCL is parallel to CSL. VCL is $\eta=0$, while CSL $\eta=M$. Oedometer falls between VCL and CSL at a constant η : $0<\eta< M$.

—Critical State Hypothesis: II

 v_{κ} depends on which κ line you are on. $\kappa \neq c_{r}$ and $\lambda \neq C_{c}$

Stress paths $\sigma_3'/\sigma_1' = K_c = const$

Clay behavior

Critical state boundary surface

Summary of critical state behavior

- Can only traverse NCL in one direction
- Can traverse RCL (κ -line) in both directions
- To move from one κ -line to another must move along NCL. Hence, plastic volumetric strains must occur.
- Critical state line is **NOT** a yield surface. It's where it's going but a lot of plastic straining is needed to get there. (if CSL = F = 0) then with associative flow rule $d\varepsilon_p^p \neq 0$ at critical state. Real F is horizontal at critical state.