МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний технічний університет України «Київський Політехнічний Інститут» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторна робота №6

з дисципліни «Методи оптимізації та планування експерименту» на тему:

«Проведення трьохфакторного експерименту при використанні рівняння регресії з квадратичними членами (рототабельний композиційний план)»

Виконав:

Студент 2-го курсу ФІОТ групи IO-82 Шендріков Є.О. Залікова книжка № 8227 Номер у списку групи: 25

Перевірив:

Регіда П. Г.

BAPIAHT

225 -5 15 50 -25 -15 3,5+6,6*x1+5,3*x2+5,0*x3+5,1*x1*x1+0,1*x2*x2+7,2*x3*x3+1,4*x1*x2+0,7*x1*x3+4,2*x2*x3+7,7*x1*x2*x3

ФРАГМЕНТ КОДУ

from math import sqrt

```
from scipy.stats import f, t
 from functools import partial
 from random import randrange
 from numpy.linalg import solve
x1, x2, x3 = [-25, -5], [15, 50], [-25, -15]
m, N, l = 2, 15, 1.73 # кількість повторень кожної комбінації \& кількість
повторення дослідів
x \text{ avg} = [(\max(x1) + \max(x2) + \max(x3)) / 3, (\min(x1) + \min(x2) + \min(x3)) / 3]
 # Xcp(max) & Xcp(min)
xo = [(min(x1) + max(x1)) / 2, (min(x2) + max(x2)) / 2, (min(x3) + max(x3)) / 2]
 # Xoi
delta x = [max(x1) - xo[0], max(x1) - xo[1], max(x1) - xo[2]] # delta Xi
y \text{ range} = [200 + int(max(x avg)), 200 + int(min(x avg))] # Yi(max) & Yi(min)
xn = [[-1, -1, -1, -1, +1, +1, +1, +1, -1.73, 1.73, 0, 0, 0, 0, 0], \# нормовані
 значення факторів
                         [-1, -1, +1, +1, -1, -1, +1, +1, 0, 0, -1.73, 1.73, 0, 0, 0],
                         [-1, +1, -1, +1, -1, +1, -1, +1, 0, 0, 0, 0, -1.73, 1.73, 0]
xx = [[int(x * y) for x, y in zip(xn[0], xn[1])], # нормовані значення факторів
для ефекту взаємодії
                         [int(x * y) for x, y in zip(xn[0], xn[2])],
                         [int(x * y) for x, y in zip(xn[1], xn[2])]]
xxx = [int(x * y * z) for x, y, z in zip(xn[0], xn[1], xn[2])]
x \times xn = [[round(xn[j][i] ** 2, 3) for i in range(N)] for j in range(3)] #
нормовані знач. факторів для квад. членів
x = [[min(x1), min(x1), min(x1), min(x1), max(x1), max(
round(-1 * delta x[0] + xo[0], 3),
                         round(1 * delta x[0] + xo[0], 3), xo[0], xo[0], xo[0], xo[0], xo[0], xo[0],
натуральні значення факторів
                     [min(x2), min(x2), max(x2), max(x2), min(x2), min(x2), max(x2), max(x2), max(x2), min(x2), max(x2), max(x2), min(x2), max(x2), max(x2), min(x2), min(x2), max(x2), max(x2), min(x2), min(x2), max(x2), min(x2), min(x2), max(x2), min(x2), 
xo[1], xo[1],
                       round(-1 * delta x[1] + xo[1], 3), round(1 * delta x[1] + xo[1], 3),
xo[1], xo[1], xo[1],
                     [\min(x3), \max(x3), \min(x3), \max(x3), \max(x3), \min(x3), \max(x3), \min(x3), \max(x3), \min(x3), \max(x3), \min(x3), \max(x3), \min(x3), \min(x3),
xo[2], xo[2], xo[2], xo[2],
                        round(-1 * delta x[2] + xo[2], 3), round(1 * delta x[2] + xo[2], 3),
xo[2]]]
xx2 = [[round(x * y, 3) for x, y in zip(x[0], x[1])], # натуральні значення
 факторів для ефекту взаємодії
                             [round(x * y, 3) for x, y in zip(x[0], x[2])],
                             [round(x * y, 3) for x, y in zip(x[1], x[2])]]
xxx2 = [round(x * y * z, 3) for x, y, z in zip(x[0], x[1], x[2])]
x x = [[round(x[j][i] ** 2, 3) for i in range(N)] for j in range(3)] #
натуральні значення факторів для квадрат. членів
while True:
                 # формування Ү
                 y = [[round(3.5 + 6.6 * x[0][j] + 5.3 * x[1][j] + 5 * x[2][j]] + 5.1 *
x[0][j] * x[0][j] + 0.1 * x[1][j] * x[1][j] +
```

```
7.2 * x[2][j] * x[2][j] + 1.4 * x[0][j] * x[1][j] + 0.7 *
x[0][j] * x[2][j] + 4.2 * x[1][j] * x[2][j] +
               7.7 * x[0][j] * x[1][j] * x[2][j] + randrange(0, 10) - 5, 2) for
i in range(m)] for j in range(N)]
   arr avg = lambda arr: round(sum(arr) / len(arr), 4)
   y avg = list(map(arr avg, y)) # середнє значення Y
   dispersions = [sum([((y[i][j] - y avg[i]) ** 2) / m for j in range(m)]) for
i in range(N)] # дисперсії по рядках
   x matrix = x + xx2 + [xxx2] + x x y повна матриця y натуральними значеннями
факторів
   norm matrix = xn + xx + [xxx] + x xn # повна матриця з нормованими
значеннями факторів
   mx = list(map(arr avg, x matrix)) # середні значення x по колонкам
   my = sum(y avg) / N # середнє значення Y avg
   # ======= Форматування таблиці
_____
   table_factors_1 = ["X1", "X2", "X3"]
   table factors 2 = ["X1X2", "X1X3", "X2X3", "X1X2X3", "X1^2", "X2^2", "X3^2"]
   table y = ["Y{}]".format(i + 1) for i in range(m)]
   other = ["#", "Y"]
   header format norm = "+\{0:=^3\}" + "+\{0:=^8\}" * (len(table factors 1)) +
"+{0:=^8s}" * (len(table_factors_2))
   header format = "+\{0:=^3\}" + "+\{0:=^8\}" * (len(table factors 1)) +
"+\{0:=^10s\}" * (len(table factors 2)) + "+\{0:=^10s\}" * (len(table y)) +
"+{0:=^10s}"
   row_format_norm = "|{:^3}" + "|{:^8}" * (len(table_factors_1)) + "|{:^8}" *
(len(table factors 2))
   row format = "|\{:^3\}" + "|\{:^8\}" * (len(table factors 1)) + "|\{:^10\}" *
(len(table factors 2)) + "|{:^10}" * (len(table y)) + "|{:^10}"
   separator_format_norm = "+\{0:-^3s\}" + "+\{0:-^8s\}" * (len(table factors 1)) +
"+\{0:-^8s\}" * (len(table factors 2))
   separator_format = "+{0:-^3s}" + "+{0:-^8s}" * (len(table factors 1)) +
"+\{0:-^10s\}" * (len(table factors 2)) + "+\{0:-^10s\}" * (len(table y)) + "+\{0:-^10s\}" *
^10s}"
   my sep norm = "|{:^93s}| n"
   my sep = "|\{:^140s\}| \n" if m == 2 else "|\{:^151s\}| \n"
   # ======== Нормальні значення
______
   print(header format norm.format("=") + "+\n" + my sep norm.format("Матриця
ПФЕ (нормальні значення факторів)") +
        header_format norm.format("=") + "+\n" +
row_format_norm.format(other[0], *table factors 1, *table factors 2)
         + "|\n" + header format norm.format("=") + "+")
   for i in range(N):
       print("|{:^3}|".format(i + 1), end="")
       for j in range(3): print("{:^+8}|".format(xn[j][i]), end="")
       for j in range(3): print("{:^+8}|".format(xx[j][i]), end="")
       print("{:^+8}|".format(xxx[i]), end="")
       for j in range(3): print("{:^+8}|".format(x xn[j][i]), end="")
       print()
   print(separator format norm.format("-") + "+\n'")
   # ======= Натуральні значення
_____
   print(header format.format("=") + "+\n" + my sep.format("Матриця ПФЕ
(натуральні значення факторів)") +
        header format.format("=") + "+\n" + row format.format(other[0],
*table factors 1, *table factors 2, *table y,
                                                            other[1]) +
```

```
"|\n" + header format.format("=") + "+")
    for i in range(N):
        print("|{:^3}|".format(i + 1), end="")
        for j in range(3): print("{:^ 8}|".format(x[j][i]), end="")
        for j in range(3): print("{:^ 10}|".format(xx2[j][i]), end="")
        print("{:^ 10}|".format(xxx2[i]), end="")
        for j in range(3): print("{:^ 10}|".format(x x[j][i]), end="")
        for j in range(m): print("{:^ 10}|".format(y[i][j]), end="")
        print("{:^10.2f}|".format(y avg[i]))
    def a(first, second): return sum([x matrix[first - 1][j] * x matrix[second -
1][j] / N for j in range(N)])
    def find a(num): return sum([y_avg[j] * x_matrix[num - 1][j] / N for j in
range(N)])
    def check(b lst, k):
        return \overline{b} lst[0] + b lst[1] * x matrix[0][k] + b lst[2] * x matrix[1][k]
+ b_lst[3] * x_matrix[2][k] + \
               b lst[4] * x matrix[3][k] + b lst[5] * x matrix[4][k] + b lst[6]
* x matrix[5][k] + \
               b lst[7] * x matrix[6][k] + b lst[8] * x matrix[7][k] + b lst[9]
* x matrix[8][k] + \
               b lst[10] * x matrix[9][k]
    unknown = [[1, mx[0], mx[1], mx[2], mx[3], mx[4], mx[5], mx[6], mx[7],
mx[8], mx[9]],
               [mx[0], a(1, 1), a(1, 2), a(1, 3), a(1, 4), a(1, 5), a(1, 6),
a(1, 7), a(1, 8), a(1, 9), a(1, 10)],
               [mx[1], a(2, 1), a(2, 2), a(2, 3), a(2, 4), a(2, 5), a(2, 6),
a(2, 7), a(2, 8), a(2, 9), a(2, 10)],
               [mx[2], a(3, 1), a(3, 2), a(3, 3), a(3, 4), a(3, 5), a(3, 6),
a(3, 7), a(3, 8), a(3, 9), a(3, 10)],
               [mx[3], a(4, 1), a(4, 2), a(4, 3), a(4, 4), a(4, 5), a(4, 6),
a(4, 7), a(4, 8), a(4, 9), a(4, 10)],
               [mx[4], a(5, 1), a(5, 2), a(5, 3), a(5, 4), a(5, 5), a(5, 6),
a(5, 7), a(5, 8), a(5, 9), a(5, 10)],
               [mx[5], a(6, 1), a(6, 2), a(6, 3), a(6, 4), a(6, 5), a(6, 6),
a(6, 7), a(6, 8), a(6, 9), a(6, 10)],
               [mx[6], a(7, 1), a(7, 2), a(7, 3), a(7, 4), a(7, 5), a(7, 6),
a(7, 7), a(7, 8), a(7, 9), a(7, 10)],
               [mx[7], a(8, 1), a(8, 2), a(8, 3), a(8, 4), a(8, 5), a(8, 6),
a(8, 7), a(8, 8), a(8, 9), a(8, 10)],
               [mx[8], a(9, 1), a(9, 2), a(9, 3), a(9, 4), a(9, 5), a(9, 6),
a(9, 7), a(9, 8), a(9, 9), a(9, 10)],
               [mx[9], a(10, 1), a(10, 2), a(10, 3), a(10, 4), a(10, 5), a(10, 6)]
6), a(10, 7), a(10, 8), a(10, 9), a(10, 10)]]
    known = [my, find a(1), find a(2), find a(3), find a(4), find a(5),
find a(6), find a(7), find a(8), find a(9), find a(10)]
    b = solve(unknown, known)
    print(separator format.format("-") + f"+\n\n\tOтримане рівняння регресії при
m = \{m\} : \n''
                                          f''\hat{y} = \{b[0]:.3f\} + \{b[1]:.3f\}*X1 +
\{b[2]:.3f\}*X2 + "
                                          f''\{b[3]:.3f\}*X3 + \{b[4]:.3f\}*X1X2 +
\{b[5]:.3f\}*X1X3 + "
                                          f''\{b[6]:.3f\}*X2X3 + \{b[7]:.3f\}*X1X2X3 +
\{b[8]:.3f\}*X11^2 + "
                                          f''\{b[9]:.3f\}*X22^2 +
{b[10]:.3f}*X33^2\n\n\tПеревірка:")
    for i in range(N): print("\hat{y}{} = {:.3f} \approx {:.3f}".format((i + 1), check(b,
i), y avg[i]))
    # ======= Критерій Кохрена
```

```
def table fisher (prob, n, m, d):
        x \text{ vec} = [i * 0.001 \text{ for } i \text{ in range}(int(10 / 0.001))]
        f\overline{3} = (m - 1) * n
        for i in x vec:
            if abs(f.cdf(i, n - d, f3) - prob) < 0.0001:
                 return i
    f1, f2 = m - 1, N
    f3 = f1 * f2
    fisher = table fisher (0.95, N, m, 1)
    Gp = max(dispersions) / sum(dispersions)
    Gt = fisher / (fisher + (m - 1) - 2)
    print("\nОднорідність дисперсії (критерій Кохрена): ")
    print(f"Gp = {Gp} \setminus nGt = {Gt}")
    if Gp < Gt:
        print("\nДисперсія однорідна (Gp < Gt)")
        D beta = sum(dispersions) / (N * N * m)
        S\overline{b} = sqrt(abs(D beta))
        beta = [sum([(y_avg[j] * norm matrix[i][j]) / N for j in range(N)]) for
i in range(len(norm matrix))]
        t list = [abs(i) / Sb for i in beta]
        student = partial(t.ppf, q=1-0.025)
        d, T = 0, student(df=f3)
        print("\nt табличне = ", Т)
        for i in range(len(t_list)):
            if t list[i] < T:
                 \overline{b}[i] = 0
                 print("\tt{} = {} => коефіцієнт незначимий, його слід виключити
з рів-ня регресії".format(i, t list[i]))
                 print("\tt{} = {} => коефіцієнт значимий".format(i, t list[i]))
                 d += 1
        print("\nОтже, кіл-ть значимих коеф. d =", d, "\n\n\tPiв-ня регресії з
урахуванням критерія Стьюдента:\n\hat{y} = ", end="")
        print("{:.3f}".format(b[0]), end="") if b[0] != 0 else None
        for i in range(1, 10):
            print(" + \{:.3f\}*\{\}".format(b[i], (table factors 1 +
table factors 2)[i]), end="") if b[i] != 0 else None
        print("\n\n\tПеревірка при підстановці в спрощене рів-ня регресії:")
        for i in range(N): print("y`{} = \{:.3f\} \approx \{:.3f\}".format((i + 1),
check(b, i), y avg[i]))
        f4 = N - d
        fisher sum = sum([(check(b, i) - y avg[i]) ** 2 for i in range(N)])
        D ad = (m / f4) * fisher sum
        fisher = partial(f.ppf, q=1-0.05)
        Fp = D ad / sum(dispersions) / N
        Ft = fisher(dfn=f4, dfd=f3)
        print("\nКритерій Фішера:")
        if Fp > Ft:
            print("\tРівняння регресії неадекватне (Ft < Fp).")
            break
        else:
            print("\tPiвняння регресії адекватне (Ft > Fp)!")
            break
    else:
        print ("Дисперсія неоднорідна (Gp > Gt), збільшуємо m, повторюємо
операції")
        m += 1
```

РЕЗУЛЬТАТ РОБОТИ ПРОГРАМИ

++	=+=======	Матрі	иця ПФЕ	(нормальні	значення	факторів)		+======	-=====+
+===+=================================	=+======- X2	X3	+====== X1X2	, X1X3		X1X2X3		+======= X2^2	X3^2
1 -1	=+======= -1	+======: -1	+===== +1	=+====== +1	+======: +1	+=====+ -1	+1	+====== +1	+1
2 -1		+1	+1			+1	+1	+1	+1
3 -1	+1	-1		+1		+1	+1	+1	+1
4 -1	+1	+1			+1		+1	+1	+1
5 +1		-1			+1	+1	+1	+1	+1
6 +1		+1		+1			+1	+1	+1
7 +1	+1	-1	+1				+1	+1	+1
8 +1	+1	+1	+1	+1	+1	+1	+1	+1	+1
9 -1.73	+0	+0	+0	+0	+0	+0	+2.993	+0	+0
10 +1.73	+0	l +0	+0	+0	+0	+0	+2.993	+0	+0
11 +0	-1.73	+0	+0	+0	+0	+0	+0	+2.993	+0
12 +0	+1.73	l +0	+0	+0	+0	+0	+0	+2.993	+0
13 +0	+0	-1.73	+0	+0	+0	+0	+0	+0	+2.993
14 +0	+0	+1.73	+0	+0	+0	+0	+0	+0	+2.993
15 +0	+0	+0	+0	+0	+0	+0	+0	+0	+0
++						++		+	+

Матриця ПФЕ (натуральні значення факторів) +===+=======+=====+=====+======+======+====																								
	X1	X2		х3		X1X2		X1X3		X2X3		X1X2X3		X1^2		X2^2		X3^2		Y1		Y2		
+- 1		-+ 15	+. 			 -375	-+- 	 625	-+- 	-375	-+- 	 9375	-+- 	 625	-+- 	225	-+- 	625	-+- 	78028 . 0	-+- 	78031.0	+ 7802	
		15		-15		-375		375		-225		5625		625		225		225		46776.0		46777.0	467	16.50
						-1250		625		-1250		31250		625				625		241973.5		241980.5	24197	77.00
				-15		-1250		375				18750		625				225		144820.5		144824.5	14482	22.50
		15		-15						-225		1125				225		225		9413.0		9405.0	9409	
		15						125		-375		1875				225		625		17423.0		17418.0	1742	
				-15								3750						225		27582.5		27582.5	2758	2.50
								125		-1250		6250						625		47603.5		47602.5	4760	3.00
	-32.3	32.5				-1049.75		646.0						1043.29		1056.25				166078.02		166084.02	16608	1.02
		32.5						-46.0				-1495.0		5.29		1056.25				11063.52		11067.52	-1106	55.52
	-15.0	97.37				1460.625				-1947.5		29212.5		225.0		9481.891				220216.15		220219.15	122021	7.65
	-15.0	-32.37				485.625				647.5		-9712.5		225.0		1048.141				67414.65		67416.65	1-6741	5.65
	-15.0	32.5				-487.5				-1493.375		22400.625		225.0		1056.25		2111.403		182314.84	1	182317.84	18231	6.34
	-15.0	32.5				-487.5				193.375		-2900.625		225.0		1056.25				20657.09		20651.09		4.09
15	-15.0	32.5				-487.5						9750.0		225.0		1056.25				75979.38		75977.38		

Перевірка: ŷ1 = 78027.323 ≈ 78029.500 ŷ2 = 46775.977 ≈ 46776.500 ŷ3 = 241976.040 ≈ 241977.000 ŷ4 = 144823.188 ≈ 144822.500 ŷ5 = 9408.798 ≈ 9409.000 ŷ6 = 17418.666 ≈ 17420.500 ŷ7 = 27583.527 ≈ 27582.500 ŷ8 = 47602.372 ≈ 47603.000 ŷ9 = 166082.176 ≈ 166081.020 ŷ10 = -11065.138 ≈ -11065.520 ŷ11 = 220217.162 ≈ 220217.650 ŷ12 = -67414.827 ≈ -67415.650 ŷ13 = 182317.061 ≈ 182316.340 ŷ14 = -20654.641 ≈ -20654.090 ŷ15 = 75980.944 ≈ 75978.380 Однорідність дисперсії (критерій Кохрена): Gp = 0.22939068100358423 Gt = 1.702247191011236

```
t табличне = 2.131449545559523

t0 = 121251.93432319495 => коефіцієнт значимий

t1 = 31708.732832748687 => коефіцієнт значимий

t2 = 76456.50535694358 => коефіцієнт значимий

t3 = 36175.98617600426 => коефіцієнт значимий

t4 = 26490.44849046173 => коефіцієнт значимий

t5 = 9125.80579247702 => коефіцієнт значимий

t6 = 13192.85785953112 => коефіцієнт значимий

t7 = 182470.71609814066 => коефіцієнт значимий

t8 = 181348.88071163805 => коефіцієнт значимий

t9 = 185839.3898524828 => коефіцієнт значимий

Oтже, кіл-ть значимих коеф. d = 10

Pів-ня регресії з урахуванням критерія Стьюдента:

ŷ = 8.975 + 7.165*X2 + 5.020*X3 + 5.405*X1X2 + 1.380*X1X3 + 0.723*X2X3 + 4.183*X1X2X3 + 7.699*X1^2 + 5.104*X2^2 + 0.100*X3^2
```

```
Перевірка при підстановці в спрощене рів-ня регресії:

у`1 = 78027.323 ≈ 78029.500

y`2 = 46775.977 ≈ 46776.500

y`3 = 241976.040 ≈ 241977.000

y`4 = 144823.188 ≈ 144822.500

y`5 = 9408.798 ≈ 9409.000

y`6 = 17418.666 ≈ 17420.500

y`7 = 27583.527 ≈ 27582.500

y`8 = 47602.372 ≈ 47603.000

y`9 = 166082.176 ≈ 166081.020

y`10 = -11065.138 ≈ -11065.520

y`11 = 220217.162 ≈ 220217.650

y`12 = -67414.827 ≈ -67415.650

y`13 = 182317.061 ≈ 182316.340

y`14 = -20654.641 ≈ -20654.090

y`15 = 75980.944 ≈ 75978.380

Критерій Фішера:

Рівняння регресії адекватне (Ft > Fp)!
```