The group G is isomorphic to the group labelled by [27, 2] in the Small Groups library. Ordinary character table of $G \cong C9 \times C3$:

1a	9a	9 <i>b</i>	3a	9c	9d	3b	9e	9f	3c	9g	9h	3d	9i	9j	3e	9k	91	3f	9m	9n	3g	90	9p	3h	9q	9r
χ_1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2 1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^2$
χ_3 1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)	1	$E(3)^2$	E(3)
$ \chi_4 $ 1	1	1	1	1	1	1	1	1	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$
χ_5 1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)
χ_6 1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1
χ_7 1	1	1	1	1	1	1	1	1	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	$E(3)^{2}$	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)	E(3)
χ_8 1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1
χ_9 1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	$E(3)^2$
χ_{10} 1	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^{4}$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$	1	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^4$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$	1	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^{4}$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$
χ_{11} 1	$E(9)^4 E(9)^7$	$-E(9)^2 - E(9)^5$	E(3)	$E(9)^{7}$	$E(9)^{2}$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	1	$E(9)^4$	$-E(9)^2 - E(9)$	5 $E(3)$	$E(9)^{7}$	$E(9)^{5}$ $E(9)^{2}$ $-E(9)^{2} - E(9)^{5}$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$		1	$E(9)^4 E(9)^7$	$-E(9)^2 - E(9)^5$	E(3)	$E(9)^{7}$	$E(9)^{2}$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$E(9)^5$
χ_{12} 1	$E(9)^{7}$	$E(9)^{5}$	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^5$	$E(3)^{2}$	$E(9)^4$	$E(9)^{2}$	1	$E(9)^{7}$ $E(9)^{4}$	$E(9)^{5}$ $E(9)^{5}$ $E(9)^{2}$ $-E(9)^{2} - E(9)$	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^5$	$E(3)^{2}$	$E(9)^4$	$E(9)^2 E(9)^2$	1	$E(9)^{7}$	$E(9)^{5}$	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^2$	$)^5 E(3)^2$	$E(9)^{4}$	$E(9)^2$
χ_{13} 1	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^{4}$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$	E(3)	$E(9)^4$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$	1	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	$E(3)^{2}$		$-E(9)^2 - E(9)^5$	1	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^4$	$E(9)^5$
$\chi_{14} \mid 1$	$E(9)^4 E(9)^7$	$-E(9)^2 - E(9)^5$		\	$E(9)^2$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	E(3)	$E(9)^{7}$	$E(9)^{2}$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	1	$E(9)^4$	$-E(9)^2 - E(9)^5$	$E(3)^{2}$		$E(9)^{5}$	1	$E(9)^{4}$	$-E(9)^2 - E(9)$	$)^5 E(3)$	$E(9)^{7}$	$E(9)^2$
χ_{15} 1		$E(9)^{5}$	E(3)		$-E(9)^2 - E(9)^5$	$E(3)^{2}$	$E(9)^4 E(9)^7$	$E(9)^{2}$	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)$	5 $E(3)^{2}$	$E(9)^4$	$E(9)^2 E(9)^2$	1	$E(9)^7 E(9)^4$	$E(9)^{5}$ $E(9)^{5}$ $E(9)^{2}$ $-E(9)^{2} - E(9)^{5}$	$E(3)^2$ $E(3)$	$E(9)^4$ $E(9)^4$ $E(9)^7$	$E(9)^2 E(9)^5$	1	$E(9)^{7}$	$E(9)^{5}$	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^5$
χ_{16} 1	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^4$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)^5$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)$	⁵ 1	$-E(9)^4 - E(9)^7$	$E(9)^{2}$	E(3)	$E(9)^4$	$E(9)^{5}$	E(3)	$E(9)^4$	$E(9)^{5}$	$E(3)^{2}$	$E(9)^{7}$	$-E(9)^2 - E(9)^2$	$)^{5}$ 1	$-E(9)^4 - E(9)^7$	$E(9)^2$
$\chi_{17} \mid 1$	$E(9)^4$ $E(9)^7$ $E(9)^2$ $E(9)^5$	$-E(9)^2 - E(9)^5$	E(3)	$E(9)^{4}$ $E(9)^{7}$ $-E(9)^{4} - E(9)^{7}$	$E(9)^2$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$E(9)^5$ $E(9)^2$ $E(9)^7$ $E(9)^4$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	1	$E(9)^4$	$-E(9)^{2} - E(9)^{5}$ $E(9)^{5}$	E(3)	$E(9)^{7}$	$E(9)^2$	E(3)	$E(9)^{7}$	$E(9)^{2} - E(9)^{2} - E(9)^{5}$	$E(3)^{2}$	$-E(9)^4 - E(9)^7$	$E(9)^{5}$	1	$E(9)^4$	$-E(9)^2 - E(9)^5$
χ_{18} 1	$E(9)^{7}$	$E(9)^{5}$	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^5$	$E(3)^{2}$	$E(9)^4$ $E(9)^5$	$E(9)^{2}$	$E(3)^{2}$	$E(9)^4$ $E(9)^2$	$E(9)^2 E(9)^4$	1	$E(9)^{7}$	$E(9)^5$	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^5$	E(3)	$-E(9)^4 - E(9)^7$	$-E(9)^2 - E(9)^5$	$E(3)^{2}$	$E(9)^4$	$E(9)^{2}$	1	$E(9)^{7}$	$E(9)^{5}$
$\chi_{19} \mid 1$	$E(9)^{2}$	$E(9)^4$	$E(3)^{2}$			E(3)	$E(9)^{5}$	$E(9)^{7}$	1	$E(9)^{2}$		$E(3)^{2}$	$-E(9)^2 - E(9)^5$	$-E(9)^4 - E(9)^7$	E(3)	$E(9)^{5}$	E(9)'	1	$E(9)^2$	$E(9)^4$	$E(3)^{2}$	$-E(9)^2 - E(9)^5$	$-E(9)^4 - E(9)$	$)^7 E(3)$	$E(9)^{5}$	$E(9)^{7}$
χ_{20} 1	$E(9)^{5}$	$-E(9)^4 - E(9)^7$		$E(9)^{2}$	$E(9)^{7}$	E(3)	$-E(9)^2 - E(9)^5$	$E(9)^4$	1	$E(9)^{5}$	$-E(9)^4 - E(9)$	7 $E(3)^{2}$	$E(9)^2$ $E(9)^5$ $E(9)^2$	$E(9)^7$ $E(9)^4$ $E(9)^4$	E(3)	$-E(9)^2 - E(9)^5$	$E(9)^4$	1	$E(9)^{5}$	$-E(9)^4 - E(9)^7$	$E(3)^{2}$	$E(9)^{2}$	$E(9)^{7}$	E(3)	$-E(9)^2 - E(9)^5$	$E(9)^4$
χ_{21} 1	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	$E(3)^{2}$	$E(9)^{5}$	$E(9)^4$	E(3)	$E(9)^2 E(9)^5$	$-E(9)^4 - E(9)^7$	1	$-E(9)^2 - E(9)^5$	$E(9)^7$ $E(9)^7$ $E(9)^4$	$E(3)^{2}$	$E(9)^{5}$	$E(9)^4$	E(3)	$E(9)^2$	$-E(9)^4 - E(9)^7$	1	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	$E(3)^{2}$	$E(9)^{5}$ $E(9)^{5}$	$E(9)^4$ $E(9)^7$	E(3)	$E(9)^{2}$	$-E(9)^4 - E(9)^7$
$\chi_{22} \mid 1$	$E(9)^2 E(9)^5$	$E(9)^4$	$E(3)^{2}$	$-E(9)^2 - E(9)^5$	$-E(9)^4 - E(9)^7$	E(3)	$E(9)^{5}$	$E(9)^7$ $E(9)^4$	E(3)	$E(9)^5$	$E(9)^{7}$	1	$E(9)^{2}$		$E(3)^{2}$	$-E(9)^2 - E(9)^5$	$-E(9)^4 - E(9)^7$	$E(3)^{2}$	$-E(9)^2 - E(9)^5$		E(3)		$E(9)^{7}$	1	$E(9)^{2}$	$E(9)^4$
χ_{23} 1	$E(9)^{5}$	$-E(9)^4 - E(9)^7$	\ /		$E(9)^{7}$	E(3)	$-E(9)^2 - E(9)^5$	$E(9)^4$	E(3)	$-E(9)^2 - E(9)^5$	$E(9)^4$	_ 1	$E(9)^{5}$	$-E(9)^4 - E(9)^7$	\ /	$E(9)^{2}$	$E(9)^{7}$	$E(3)^{2}$	$E(9)^{2}$	$E(9)^{7}$	E(3)	$-E(9)^2 - E(9)^5$	$E(9)^4$	_ 1	$E(9)^{5}$	$-E(9)^4 - E(9)^7$
χ_{24} 1	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	$E(3)^{2}$	$E(9)^5$	$E(9)^4$	E(3)	$E(9)^{2}$	$-E(9)^4 - E(9)^7$	E(3)	$E(9)^2$	$-E(9)^4 - E(9)$	⁷ 1	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	$E(3)^{2}$		$E(9)^4$	$E(3)^{2}$	$E(9)^{5}$	$E(9)^{4}$	E(3)	$E(9)^{2}$	$-E(9)^4 - E(9)^4$	$)^{7}$ 1	$-E(9)^2 - E(9)^5$	$E(9)^7$
χ_{25} 1	$E(9)^{2}$	$E(9)^4$	$E(3)^{2}$	$-E(9)^2 - E(9)^5$		E(3)	$E(9)^{5} - E(9)^{2} - E(9)^{5}$	$E(9)^{7}$	$E(3)^{2}$	$-E(9)^2 - E(9)^5$		E(3)	$E(9)^{5}$	$E(9)^7$	1	$E(9)^{2}$	$E(9)^4$	E(3)	$E(9)^5$	$E(9)^{7}$	1	$E(9)^{2}$	$E(9)^4$	$E(3)^2$	$-E(9)^2 - E(9)^5$	$-E(9)^4 - E(9)^7$
χ_{26} 1	$E(9)^{5}$	$-E(9)^4 - E(9)^7$	$E(3)^{2}$	$E(9)^{2}$	$E(9)^{7}$	E(3)		$E(9)^4$	$E(3)^{2}$	$E(9)^{2}$	$E(9)^{7}$	E(3)	$-E(9)^2 - E(9)^5$	$E(9)^4$	1	$E(9)^{5}$	$-E(9)^4 - E(9)^7$	E(3)	$-E(9)^2 - E(9)^5$	$E(9)^4$	1	$E(9)^{5}$	$-E(9)^4 - E(9)^4$	$)^7 E(3)^2$	$E(9)^{2}$	$E(9)^{7}$
$ \chi_{27} 1$	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	$E(3)^{2}$	$E(9)^{5}$	$E(9)^{4}$	E(3)	$E(9)^{2}$	$-E(9)^4 - E(9)^7$	$E(3)^{2}$	$E(9)^{5}$	$E(9)^4$	E(3)	$E(9)^{2}$	$-E(9)^4 - E(9)^7$	1	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	E(3)	$E(9)^{2}$	$-E(9)^4 - E(9)^7$	1	$-E(9)^2 - E(9)^5$	$E(9)^{7}$	$E(3)^{2}$	$E(9)^{5}$	$E(9)^4$

Trivial source character table of $G \cong C9 \times C3$ at n = 1

Trivial source character table of $G \cong C9 \times C3$ at $p=3$:								
Normalisers N_i	N_1	$N_2 \mid N_2$	$_3 N_4$	N_5	N_6	N_7	$\overline{N_8 \mid N_9}$	N_{10}
p-subgroups of G up to conjugacy in G	P_1	P_2 P_3	P_4	P_5	P_6	P_7	P_8 P_9	P_{10}
Representatives $n_j \in N_i$	1a	1a 1a	$a \mid 1a$	1a	1a	1a	1a 1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 1 \cdot $	27	0 0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	9	9 0	0	0	0	0	0 0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20} + 1 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	9	0 9	0	0	0	0	0 0	0
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 1 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 $	9	0 0	9	0	0	0	0 0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 1 \cdot \chi_{26} + 1 \cdot \chi_{27} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot $	9	0 0	0	9	0	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	3	3 0	0	0	3	0	0 0	0
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 $	3	3 3	3	3	0	3	0 0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 $	3	3 0	0	0	0	0	3 0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 $	3	3 0	0	0	0	0	0 3	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot $	1	1 1	1	1	1	1	1 1	1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(4,7,10)(5,8,11)(6,9,12)]) \cong C3$

 $P_3 = Group([(1, 2, 3)]) \cong C3$

 $P_4 = Group([(1,2,3)(4,7,10)(5,8,11)(6,9,12)]) \cong C3$

 $P_5 = Group([(1,2,3)(4,10,7)(5,11,8)(6,12,9)]) \cong C3$

 $P_6 = Group([(4,7,10)(5,8,11)(6,9,12),(4,5,6,7,8,9,10,11,12)]) \cong C9$

 $P_7 = Group([(4,7,10)(5,8,11)(6,9,12),(1,2,3)]) \cong C3 \times C3$

 $P_8 = Group([(4,7,10)(5,8,11)(6,9,12),(1,2,3)(4,5,6,7,8,9,10,11,12)]) \cong C9$

 $P_9 = Group([(4,7,10)(5,8,11)(6,9,12),(1,3,2)(4,5,6,7,8,9,10,11,12)]) \cong C9$

 $P_{10} = Group([(4,7,10)(5,8,11)(6,9,12),(4,5,6,7,8,9,10,11,12),(1,2,3)]) \cong C9 \times C3$

 $N_1 = Group([(1,2,3), (4,5,6,7,8,9,10,11,12)]) \cong C9 \times C3$

 $N_2 = Group([(1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11, 12)]) \cong C9 \times C3$ $N_3 = Group([(1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11, 12)]) \cong C9 \times C3$

 $N_4 = Group([(1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11, 12)]) \cong C9 \times C3$

 $N_5 = Group([(1,2,3), (4,5,6,7,8,9,10,11,12)]) \cong C9 \times C3$ $N_6 = Group([(1,2,3), (4,5,6,7,8,9,10,11,12)]) \cong C9 \times C3$

 $N_7 = Group([(1, 2, 3), (4, 5, 6, 7, 8, 9, 10, 11, 12)]) \cong C9 \times C3$

 $N_8 = Group([(1,2,3), (4,5,6,7,8,9,10,11,12)]) \cong C9 \times C3$

 $N_9 = Group([(1,2,3), (4,5,6,7,8,9,10,11,12)]) \cong C9 \times C3$

 $N_{10} = Group([(1,2,3), (4,5,6,7,8,9,10,11,12)]) \cong C9 \times C3$