R6. 07. 10 Network (1)

大城 優賀

インターネットと ネットワークは何が違う?

まずはネットワークとは?

ネットワークとは

複数のコンピュータを互いに接続して使うこと

ネットワークの分類

 $LAN(5) \geq WAN(7)$

ネットワークの分類

LAN:1つの建物内や学内等の限られた狭い地域のネットワークのこと

ネットワークの分類

WAN:離れた地域のコンピュータやLAN同士を接続したネットワークのこと

次にインターネットとは?

インターネットとは

WANを世界規模で実現しているのが、インターネットである(世界規模のネットワーク)

インターネットを通じて 世界とつながる!

インターネット

これでインターネットと ネットワークの違いに ついて理解した

どうやってコンピュータ同士は通信できるのか?

通信の仕組み

コンピュータ同士が通信できているわけには

「プロトコル」と呼ばれる「約束事」を決めてい

るからである

通信の仕組み

同じ「プロトコル」を用いることで、メーカーや OSが異なるコンピュータ同士でも通信ができる!

通信の仕組み

こんにちは

HELLO

プロトコル (共通の言語)を 決めていないから会話が不成立

こんにちは

こんにちは

プロトコル (共通の言語)を 決めているから会話が成立

コンピュータ同士の通信は 複数のプロトコルを 用いて通信をしている

OSI参照モデルとは?

OSI参照モデルとは

国際標準化機構(ISO)によって、策定された コンピュータネットワークに求められる通信機能 を7階層に分割、定義したものである

OSI参照モデル

層	名称	主な役割	
第7層	アプリケーション層	アプリケーションごとの規定	
第6層	プレゼンテーション層	データフォーマットの交換	
第5層	セッション層	通信の管理	
第4層	トランスポート層	データ転送の管理	
第3層	ネットワーク層	アドレスの管理と経路選択	
第2層	データリンク層	データフレームの識別と転送	
第1層	物理層	物理的な接続の規定	

※これは「モデル」であり、プロトコルの設計や勉強する時のガイドラインである

現在、使われているプロトコル はTCP/IPである

TCP/IPとは?

TCP/IPとは

現在のインターネット通信等で最も利用されているプロトコルである。プロトコル群の総称である中心的な役割を果たすのがTCPとIPの2つのプロトコルであるため、この名称である。

TCP/IPとOSI参照モデルの対応付け

層	OSI参照モデル名称	TCP/IP	プロトコル
第7層	アプリケーション層		HTTP, POP
第6層	プレゼンテーション層	アプリケーション層	SMTP
第5層	セッション層		TELNET,IMAP
第4層	トランスポート層	トランスポート層	UDP, TCP
第3層	ネットワーク層	インターネット層	IP, ICMP
第2層	データリンク層	ネットワークインターフェース層	Ethernet, PPP
第1層	物理層	イットフーンインダーフェー人僧	Linemet, FFF

まず「IP」とは

OSI参照モデルの第3層ネットワーク層の「IP」は パケットを送り届けるためのプロトコルである。 パケットを目的のコンピュータまで届ける役割が ある

ネットワークに接続するコンピュータにはIPアドレスという識別子が割り当てられている。

例. 204.56.3.1

郵便物を送るときの住所のようなもの

IPアドレス 「204.56.3.1」

IPアドレスが 「204. 56. 3. 1」に データを届けよう

現在多く使われているのがIPv4である

[11001011000000000111000100000000]

このような2進数32桁の数字の列

人間にとってわかりずらい 普段使っている10進数のほうが 分かりやすい

なので、IPアドレスを記述するときは

8桁ずつ4つに分け、2進数から10進数に変換

110010110000000000111000100000000

「203.0.113.0」のようにピリオドで区切る

IPv4アドレスが割り当てられる数は2³²、約43億である

インターネットが発達したこと により、IPアドレスが 不足し始めた。

このままだと、使い切る可能性

対策として

自宅や社内などの限定されたネットワーク内で

はプライベートIPアドレスが各デバイスに割り振

ることにした

グローバルIPアドレスと プライベートIPアドレス とは?

IPアドレスの種類

グローバルIPアドレス:インターネットに接

続するとき際に割り当てられるIPアドレス

世界でユニーク(唯一)である

グローバルIPアドレス

IPアドレスの種類

プライベートIPアドレス:特定のネットワーク

内で割り当てられるIPアドレスのこと。

そのネットワーク内でユニーク(唯一)である

プライベートIPアドレス

IPアドレスを見てみよう

cmdと入力

クリック

グローバルIPアドレスを見 てみよう

グローバルIPアドレスの見方

C:\Users\youny>nslookup

上記のコマンド「nslookup」を入力する

「nslookup」 を使うことでIPアドレス やドメイン名を知ることができる

グローバルIPアドレスの見方

C:\Users\youny>nslookup www.kanazawa-it.ac.jp

金沢工業大学ホームページのドメインである「www.kanazawa-it.ac.jp」の
IPアドレスを調べる

「nslookup」の後に上記のドメインを入力する

グローバルIPアドレスの見方

```
C:\Users\youny>nslookup www.kanazawa-it.ac.jp
サーバー: kitns-offload.kanazawa-it.ac.jp
Address: 202.13.160.201
```

権限のない回答:

名前: www.kanazawa-it.ac.jp

Address: 61.120.101.31

工大ホームページのIPアドレスは 「61.120.101.31」であることが分かる pingコマンドを使ってみよう!

「ping」とは

相手と通信できるか確認するときに使うコマンド。生きているかどうか確認OSI参照モデルの第3層「ネットワーク層」に含まれるプロトコルである「ICMP」を使っている

pingコマンドを使ってみよう

C:\Users\youny>ping 61.120.101.31

工大ホームページのIPアドレスに向けて pingを飛ばしてみる

pingコマンドを使ってみよう

```
C:\Users\youny>ping 61.120.101.31

61.120.101.31 に ping を送信しています 32 バイトのデータ:
61.120.101.31 からの応答: バイト数 =32 時間 =4ms TTL=61
61.120.101.31 からの応答: バイト数 =32 時間 =5ms TTL=61
61.120.101.31 からの応答: バイト数 =32 時間 =5ms TTL=61
61.120.101.31 からの応答: バイト数 =32 時間 =6ms TTL=61
61.120.101.31 からの応答: バイト数 =32 時間 =6ms TTL=61
61.120.101.31 の ping 統計:
    パケット数: 送信 = 4、受信 = 4、損失 = 0 (0% の損失)、ラウンド トリップの概算時間 (ミリ秒):
    最小 = 4ms、最大 = 6ms、平均 = 5ms
```

通信できることが確認された

実際、工大のホームページにアクセスできる

次は自分のIPアドレスを見てみよう

C:\Users\youny>ipconfig

上記のコマンド「ipconfig」を入力する

「ipconfig」 とはIPネットワークの 設定情報を表示するコマンド

□ コマンド プロンプト × + ∨	-	×
Wireless LAN adapter ローカル エリア接続* 1:		
メディアの 状態・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
Wireless LAN adapter ローカル エリア接続* 2:		
メディアの 状態・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
イーサネット アダプター イーサネット 3:		
メディアの 状態・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
Wireless LAN adapter Wi-Fi:		
接続固有の DNS サフィックス : リンクローカル IPv6 アドレス: fe80::926a:20fe:3932:9b7c%5 IPv4 アドレス : 172.16.30.117 サブネット マスク : 255.255.0.0 デフォルト ゲートウェイ : 172.16.0.1		
イーサネット アダプター Bluetooth ネットワーク接続:		
メディアの状態メディアは接続されていません 接続固有の DNS サフィックス:		
C:\Users\youny>		

無線でネットに繋げている人はWi-Fiと

書かれている箇所に注目

赤枠内のIPv4アドレスの隣の数字列が

あなたのパソコンに割り振られた

プライベートIPアドレス

自分のIPアドレスと周りの人のIP アドレス見比べてみると全員違う IPアドレス割り振られているはず

「IPv4アドレス」の下の「サブネットマスク」に

ついて知りましょう

ネットワークの範囲を定義するためのもの 1つの大きなネットワークを小さなネット ワークに分割する

IPアドレスはネットワーク部とホスト部に分けることができる サブネットマスクとはネットワーク部とホスト部を示している

ネットワーク部:「どのネットワークですよ」 という情報を示している

ホスト部:「どのコンピュータですよ」という情報を示している

サブネットマスクとは ネットワーク部とホスト部を 示している

ネットワーク部とホスト部に分けてみよう!

分けてみよう

IPアドレス「192. 168. 0. 2」 サブネットマスク「255. 255. 255. 0」

まずはIPアドレスを2進数に変換する

IPアドレス「192.168.0.2」 サブネットマスク「255.255.255.0」

IPアドレスを2進数に変換すると

```
    \begin{array}{r}
      192 \Rightarrow 11000000 \\
      168 \Rightarrow 10101000 \\
      0 \Rightarrow 00000000 \\
      2 \Rightarrow 00000010
    \end{array}
```

11000000. 10101000. 00000000. 00000010

IPアドレス「192.168.0.2」 サブネットマスク「255.255.255.0」

サブネットマスクを2進数に変換すると

 $255 \Rightarrow 11111111$

 $0 \quad \Rightarrow \quad 00000000$

11111111. 11111111. 11111111. 00000000

2進数に変換したIPアドレスと サブネットマスクを並べてみると

 サブネットマスクの「1」の部分に対応するところがIPアドレスのネットワーク部を示している

11000000. 10101000. 00000000. 00000010 1111111. 1111111. 1111111. 00000000 つまり、IPアドレス「192.168.0.2」は

11000000. 10101000. 00000000. 00000010 の中の

「11000000.10101000.0000000」の部分である

これが、どのネットワークかを示すアドレス

残りのサブネットマスクの「0」の部分に対応するところがIPアドレスのホスト部を示している

 つまり、IPアドレス「192.168.0.2」は

11000000. 10101000. 00000000. 00000010 の中の

「0000010」の部分である

これが、どのコンピュータかを示すアドレス

言い換えれば、

2進数に変換したIPアドレスとサブネットマスクの論理積(AND)を取ってあげればよい。

11000000. 10101000. 00000000. 00000010

11111111. 11111111. 11111111. 00000000

論理積(AND)取って、

サブネットが「1」のところはIPアドレスと同じ サブネットが 0 のところは「0」

論理積(AND)

入力1	入力2	出力
0	0	0
1	0	0
0	1	0
1	1	1

簡単にネットワークの解説はこんな感じ

かなり省略して説明しまります。

詳しくは後学期の 情報ネットワーク で学びます

おしまい

ありがとうございました

終わった後で申し訳ないですが、

アンケートの回答をお願いします。

https://forms.gle/DBwGLaWaukTQNRho9