Interpretable Machine Learning

Inherently Interpretable Models - Motivation

Learning goals

- Why should we use interpretable models?
- Advantages and disadvantages of interpretable models

MOTIVATION

- Achieving interpretability by using interpretable models is the most straightforward approach
- Classes of models deemed interpretable:
 - (Generalized) linear models (LM, GLM)
 - Generalized additive models (GAM)
 - Decision trees
 - Rule-based learning
 - Model-based boosting / component-wise boosting

• ..

→ LM provides straightforward interpretation

 Inherently interpretable - some additional model-agnostic interpretation methods not required

→ Eliminates a source of error

- Inherently interpretable some additional model-agnostic interpretation methods not required
 - → Eliminates a source of error
- Interpretable models often simple
 - \rightsquigarrow training time is fairly small

- Inherently interpretable some additional model-agnostic interpretation methods not required
 - → Fliminates a source of error.
- Some interpretable models fulfill the monotonicity constraint
 - → Larger feature values always lead to higher (or smaller) outcomes (e.g., GLMs)

- Inherently interpretable some additional model-agnostic interpretation methods not required
 - → Eliminates a source of error
- Interpretable models often simple
 - \leadsto training time is fairly small
- Some interpretable models fulfill the monotonicity constraint
 Larger feature values always lead to higher (or smaller) outcomes (e.g., GLMs)
- Many people are familiar with traditional interpretable models

- Often certain assumptions about data / model structure required
 - → If assumptions are wrong, models may perform bad

- Often certain assumptions about data / model structure required
 - → If assumptions are wrong, models may perform bad
- Interpretable models may also be difficult to interpret, e.g.:
 - Linear model with hundreds of features and interactions
 - Decision trees with huge tree depth

- Often certain assumptions about data / model structure required
 - → If assumptions are wrong, models may perform bad
- Interpretable models may also be difficult to interpret, e.g.:
 - Linear model with hundreds of features and interactions
 - Decision trees with huge tree depth
- Often not able to automatically model complex relationships due to limited model flexibility
 - e.g., high-order main or interaction effects need to be specified manually in a LM

- Often certain assumptions about data / model structure required
 - → If assumptions are wrong, models may perform bad
- Interpretable models may also be difficult to interpret, e.g.:
 - Linear model with hundreds of features and interactions
 - Decision trees with huge tree depth
- Often not able to automatically model complex relationships due to limited model flexibility
 - e.g., high-order main or interaction effects need to be specified manually in a LM
- Inherently interpretable models do not provide all types of explanations
 → Methods providing other types of explanations still useful (e.g., counterfactual explanations)

FURTHER COMMENTS

- Some argue that one should always use interpretable models in the first place
 Rudin 2019
 - ... and not try to explain uninterpretable models post-hoc
 - Can sometimes work out by spending enough time and energy on data pre-processing

FURTHER COMMENTS

- Some argue that one should always use interpretable models in the first place
 Rudin 2019
 - ... and not try to explain uninterpretable models post-hoc
 - Can sometimes work out by spending enough time and energy on data pre-processing
- → Drawback: Hard to achieve for data for which end-to-end learning is crucial (e.g., hard to extract good features for image / text data → information loss = bad performance)

FURTHER COMMENTS

- Some argue that one should always use interpretable models in the first place
 Rudin 2019
 - ... and not try to explain uninterpretable models post-hoc
 - Can sometimes work out by spending enough time and energy on data pre-processing
- → Drawback: Hard to achieve for data for which end-to-end learning is crucial (e.g., hard to extract good features for image / text data → information loss = bad performance)
- Often there is a trade-off between interpretability and model performance

RECOMMENDATION

- Start with most simple model that makes sense for application at hand
- Gradually increase complexity if performance is insufficient
 will usually lower interpretability and require additional interpretation methods
- Choose the most simple, sufficient model (Occam's razor)

Bike Data, 4-fold CV

Model	RMSE	R^2
LM	800.15	0.83
Tree	981.83	0.74
Random Forest	653.25	0.88
Boosting (tuned)	638.42	0.89

