LINEAR REGRESSION III

11.19.2018

HOMEWORK 4

- * due a week from today!
- * there will be an extra office hour TOMORROW (Tuesday, 11/20/2018) from 10-11am

RECAP

- * np.linalg.lstsq numpy function that does least squares regression
- * R-squared is a measure of how good a regression model is

RECAP

- * in-set vs. out-of-set evaluation of a regression model
 - * in-set biased upwards (to 1.0 in even not-so-extreme cases!)
 - * out-of-set unbiased (maybe?) or biased downwards, depending on assumptions

RECAP

- * regression stability
 - * similar (or linearly dependent) regressors can cause instability in the weight estimates
 - * can be assessed by looking at the singular values output by lstsq
 - * tiny singular values correspond to unstable directions in regression

STABILITY

- * how do we correct unstable regression?
- * remember the issue is that many different values for the weights can give us ~the same answer

STABILITY

- * we correct unstable regression by making assumptions about what the weights should look like
 - * this is called regularization
 - * imo this is the most important concept in all of machine learning

STABILITY

- * the most common assumption is that the weights should be *small*
- * what does "small" mean? and how can we enforce "smallness"?

- * one way to get regularization is to modify the **error function** that we minimize to get the weights
- * we want small weights, so we can make large weights look like an error!

* recall the "least squares" error function:

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2$$

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t) + \lambda^2 + \sum_{i=1}^P \lambda^2 + \lambda^2 = 1$

* we can modify this to add a *penalty* for large weights

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \sum_{i=1}^{P} \beta_i^2$$

* now the error is the sum of a loss term and a penalty term

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \sum_{i=1}^{P} \beta_i^2$$

* it also introduces an extra parameter, λ, which is the regularization coefficient, or, in this case, ridge coefficient

$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \sum_{i=1}^{P} \beta_i^2$$

* what effect does adding this type of regularization have on a regression model?

subject

- * y = output of a neuron that you are measuring
- * x = how many times per second the screen
 flashes

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t \beta)^2$

$$Err(\beta) = \sum_{t=1}^{I} (y_t - x_t \beta)^2$$

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t \beta)^2$

$$Err(\beta) = \sum_{t=1}^{I} (y_t - x_t \beta)^2$$

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t)$ \beta)^2 + \lambda \beta^2

Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \beta^2$$

 $Err(\beta) = \sum_{t=1}^T (y_t - x_t)$ \beta)^2 + \lambda \beta^2

Regularization:
$$Err(\beta) = \sum_{t=1}^{T} (y_t - x_t \beta)^2 + \lambda \beta^2$$

- * what effect does adding this type of regularization have on a regression model?
- * it changes the shape of the error function to be more circular (and thus more stable)
- * (example)

- * what effect does this have on the weights?
- * among the many ~equivalent sets of weights, it preferentially chooses those that are small
- * (example)

- * this type of regularization (penalizing the sum of squared weights) is called ridge regression
- * and because the ridge error function
 (loss + penalty) is parabolic, it has an
 analytic solution!

* a nice implementation is in scikit-learn (a package that we'll talk more about next week) in **sklearn.linear_model.Ridge**

* but when doing ridge regression you have a new issue: how do you choose the ridge parameter, λ?

* if you train and test your regression model on the same piece of data, $\lambda=0$ is always going to be the best

* ~bogus~

- * if you train and test on different datasets (as discussed friday) it's better
 - * but using your test data multiple times
 (to choose a parameter!) creates an
 issue of bias (aka overfitting)

- * the correct solution is cross-validation:
 - * break your dataset into training and test (X -> [X_trn, X_test])
 - * further break up your training set(X_trn
 -> [X_fit, X_val])
 - * fit weights using X_fit, choose λ based on performance on X_val, then finally test on X_test

END