STAT 771: My notes

Ralph Møller Trane Fall 2018 (compiled 2018-09-20)

Contents

4 CONTENTS

Intro

6 CONTENTS

Chapter 1

Lecture Notes

Lecture 1: 9/6

Goals for the first few lectures:

- 1. Develop basic understanding of floating point numbers (fp numbers)
- 2. Develop some basic notions of errors and their consequences

References:

- i. David Goldberg (1991)
- ii. John D. Cook (2009)
- iii. Hingham (2002)

1.1 Positional numeral system

We assume we have a decimal representation of numbers. I.e. that it exists. It is not within the scope of this class to prove this.

Now, this is NOT the optimal way for a computer to represent numbers. For various reasons, there are more desirable ways to store numbers. So we need a different way of representing the numbers.

Ingredients for different representation:

- i. A base, referred to as β . It holds that $\beta \in 2, 3, 4, ...$
- ii. A significand: a sequence of digits: $d_0.d_1d_2d_3d_4...$, where $d_j \in \{0, 1, ..., \beta 1\}$
- iii. An exponent: $e \in \mathbb{Z}$.

The representation $d_0.d_1d_2... \times \beta^e$ means $(d_0 + d_1 \cdot \beta^{-1} + ... + d_{p-1}\beta^{-(p-1)}) \cdot \beta^e$.

1.2 Floating Point Format

Definition 1.1. A fp is one that can be represented in a base β with a fixed digit p (precision), and whose exponent is between e_{min} and e_{max} .

Example 1.1. Let $\beta = 10, p = 3, e_{min} = -1, e_{max} = 1$. Want to represent 0.1. Several options:

- i. Let $d_0=0$, $d_1=0$, $d_2=1$, e=1.
- ii. Let $d_0=0$, $d_1=1$, $d_2=0$, e=0.
- iii. $d_0 = 1$, $d_1 = 0$, $d_2 = 0$, e = -1.

If we fill into the equation above, we get 0.1:

$$i: (0+0\cdot 10^{-1}+1\cdot 10^{-2})\cdot 10^{1}$$
$$ii: (0+1\cdot 10^{-1}+1\cdot 10^{-2})\cdot 10^{0}$$
$$iii: (1+0\cdot 10^{-1}+1\cdot 10^{-2})\cdot 10^{-1}$$

Definition 1.2. A fp number is said to be *normalized* if $d_0 \neq 0$.

Exercise 1.1. What is the total number of values that can be represented in the normalized fp format with base β , p, e_{min} , e_{max} ?

We count the different values each of the elements of a fp can take:

- d_0 can be from 1 to $\beta 1$, so $\beta 1$ different values.
- $d_1, ..., d_{p-1}$ each takes a value in $\{0, 1, ..., \beta 1\}$. Hence, we can choose the digits $d_1, ..., d_{p-1}$ in β^{p-1} different ways.
- e can take $e_{max} e_{min} + 1$ different values (all integers from e_{min} to e_{max} , both included, hence the +1).

So, in total, there are $(\beta - 1) \cdot \beta^{p-1} \cdot (e_{max} - e_{min} + 1)$ different values that can be represented in the normalized fp format with base β , precision p, and e_{min}, e_{max} given.

1.3 IEEE Standards

IEEE have standards for how to deal with approximations and errors.

For our purposes, a bit is a single unit of storage on a computer, which can either be 0 or 1. Hence, we'll be focusing on fp formats where $\beta = 2$.

1.3.1 The 16 bit standard (half precision standard).

The 16 bits of storage are used in the following way, when following the 16 bit standard:

- 1 bit for the sign
 - -0 = positive
 - -1 = negative
- 5 bits for the exponent
 - 00000 is reserved for 0
 - 11111 is reserved for ∞
 - -30 exponents left: $2^5 2 = 30$
 - the 16 bit standard dictates that the used exponents are -14, ..., 15.
 - * **Note**: 0 is also included in this list of 30 exponents. This is because the 00000 representation is reserved for integers, while 01111 is used with non-integers.
- 11 bit for the significand.
 - 10 are actually stored we always work with normalized FP numbers, i.e. $\beta_0 = 1$.

Question: What are smallest and largest positive numbers that can be represented?

Answer: Smallest non-normalized number would be the one with the smallest possible exponent, and all digits of the significand are 0 except the very last one. So, the smallest non-normalized FP number in the 16 bit standard would be

$$(0+0\cdot 2^{-1}+...+0\cdot 2^{-9}+1\cdot 2^{-10})\cdot 2^{-14}=2^{-24}\approx 5.96\cdot 10^{-8}$$

1.3. IEEE STANDARDS 9

The smallest normalized number is the one with all digits 0 (except for the leading digit, of course, which has to be 1 for it to be normalized), and e = -14. So the smallest normalized FP number:

$$(1+0\cdot 2^{-1}+...+0\cdot 2^{-10})\cdot 2^{-14}=2^{-14}\approx 6.10\cdot 10^{-5}$$

Finally, the largest (finite) FP number in the 16 bit standard is the one where the exponent is as large as possible (e = 15), and all digits are 1. So

$$(1+1\cdot 2^{-1}+...+1\cdot 2^{-10})\cdot 2^{15}=65504$$

Lecture 2: 9/11

1.3.2 The 32 bit standard (single precision)

The 32 bits of storage are used in the following way, when following the 32 bit standard:

- 1 bit for the sign
 - -0 = positive
 - -1 = negative
- 8 bits for the exponent
 - -000000000 is reserved for 0
 - 111111111 is reserved for ∞
 - exponents left: $2^8 2 = 254$
 - the 32 bit standard dictates that the used exponents are -126, ..., 127.
 - * Note: 0 is also included in this list of the 254 exponents. This is because the 000000000 representation is reserved for integers, while 01111111 (I think this is the representation for 0 here...) is used with non-integers.
- 24 bit for the significand.
 - 23 are actually stored we always work with normalized FP numbers, i.e. $\beta_0 = 1$.

Question: What are smallest and largest positive numbers that can be represented in the 32 bit standard?

Answer: Smallest non-normalized number would be the one with the smallest possible exponent, and all digits of the significand are 0 except the very last one. So, the smallest non-normalized FP number in the 32 bit standard would be

$$\left(0 + 0 \cdot 2^{-1} + \ldots + 0 \cdot 2^{-22} + 1 \cdot 2^{-23}\right) \cdot 2^{-126} = 2^{-149} \approx 1.40 \cdot 10^{-45}$$

The smallest normalized number is the one with all digits 0 (except for the leading digit, of course, which has to be 1 for it to be normalized), and e = -126. So the smallest normalized FP number:

$$\left(1 + 0 \cdot 2^{-1} + \ldots + 0 \cdot 2^{-23}\right) \cdot 2^{-126} = 2^{-126} \approx 1.18 \cdot 10^{-38}$$

Finally, the largest (finite) FP number in the 32 bit standard is the one where the exponent is as large as possible (e = 127), and all digits are 1. So

$$\left(1 + 1 \cdot 2^{-1} + \dots + 1 \cdot 2^{-126}\right) \cdot 2^{127} = 3.40 \cdot 10^{38}$$

1.3.3 The 64 bit standard (double precision)

The 64 bits of storage are used in the following way, when following the 64 bit standard:

• 1 bit for the sign

- -0 = positive
- -1 = negative
- 11 bits for the exponent
 - 000000000 is reserved for 0
 - 111111111 is reserved for ∞
 - exponents left: $2^11 2 = 2046$
 - the 64 bit standard dictates that the used exponents are -1024, ..., 1023.
 - * Note: 0 is also included in this list of the 254 exponents. This is because the 00000000 representation is reserved for integers, while 01111111 (I think this is the representation for 0 here...) is used with non-integers.
- 53 bit for the significand.
 - 52 are actually stored we always work with normalized FP numbers, i.e. $\beta_0=1.$

1.4 Errors

1.4.1 Units in the Last Place (ULP)

1.4.2 Absolute and Relative Error

Let $fl: \mathbb{R}_{\geq 0} \to \mathcal{S}$ be a function that takes a real value and return a FP number. Then we define the absolute and relative error as follows:

Definition 1.3. Let $z \in \mathbb{R}_{\geq 0}$. The absolute error is defined as

$$|fl(z)-z|$$
.

The relative error is defined as

$$\left| \frac{fl(z) - z}{z} \right|$$

Lemma 1.1. If z has exponent e, then the maximum absolute error is $\frac{\beta^{e-p+1}}{2}$.

Proof.

Lemma 1.2. If z has exponent e, then the maximum relative error is $\frac{\beta^{1-p}}{2}$.

Proof. If z has exponent e, then $\beta^e \leq z$. Using this with ??, we get that

$$\left|\frac{fl(z)-z}{z}\right| \leq \frac{\beta^{e-p+1}}{2\beta^e} = \frac{\beta^{1-p}}{2}.$$

Note: the upper bound of the relative error is called the *machine epsilon*. This can be obtained in Julia using the function eps.

1.4. ERRORS 11

1.4.2.1 The Fundamental Axiom

... is that for any of the four arithmetic operations $(+,-,\cdot,/)$, we have the following error bound:

$$fl(xopy) = (xopy)(1 + \delta),$$

with $|\delta| \le u$, where u is commonly $2 \cdot \epsilon$. (NOTE: NEED TO CLARIFY IF THE ABOVE IS CORRECT!)

**Example:* Matrix storage. Let $A \in \mathbb{R}^{m \times n}$. Then:

$$|fl(A) - A| \le u |A|$$

Example: Dot product. Let $x, y \in \mathbb{R}^n$. Recall that the dot product of x and y is definted as $x'y = \sum_{i=1}^n x_i \cdot y_i$. This can be calculated in the following way:

```
fl = function(x,y)
  # Get length of x
  n = length(x)
  # Check that length of y is equal to length of x. If not, throw error.
  if(length(y) != n)
    return "ERROR: y does not have same dimension as x"
  end

# s will be the result of the dot product calculation
  s = 0

for i = 1:n
    s += x[i]*y[i]
  end

return(s)
```

Next we want to prove the following lemma:

Lemma 1.3. Let $x, y \in \mathbb{R}^n$, and $n \cdot u \leq 0.01$. Then

$$|fl(x'y) - x'y| \le 1.01 \cdot n \cdot u \cdot |x|'|y|$$

Lecture 3: 9/13

To prove the lemma above, we will need another lemma...

Lemma 1.4. If $|\delta_i| \le u, \forall i = 1, ..., n$ s.t. $n \cdot u < 2$. Let $1 + \eta = \prod_{i=1}^n (1 + \delta_i)$. Then

$$|\eta| \le \frac{n \cdot u}{1 - \frac{n \cdot u}{2}}$$

Proof. Using the definition of ν , we can rewrite it to get

$$|\eta| = \left| \prod_{i=1}^n (1+\delta_i) - 1 \right|.$$

By induction, we will show that the expression above is less than or equal to $(1+u)^n - 1$. [TO BE COMPLETED!]

Since $1 + u \leq e^u$ for all $u \in \mathbb{R}$, we have that

$$\begin{split} &|\eta| \leq e^{n \cdot u} - 1 \\ &\leq n \cdot u + \frac{(n \cdot u)^2}{2!} + \frac{(n \cdot u)^3}{3!} + \dots \text{(used the Taylor expansion)} \\ &\leq n \cdot u + \frac{(n \cdot u)^2}{2^1} + \frac{(n \cdot u)^3}{2^2} + \frac{(n \cdot u)^4}{2^3} + \dots \text{(used that } x! > 2^{x-1} \text{ for } x > 1) \\ &= \sum_{k=0}^{\infty} n \cdot u \left(\frac{n \cdot u}{2}\right)^k \text{ (identify this as a geometric series with } r = \frac{n \cdot u}{2}, \text{ which is less than 1 by assumption)} \\ &= \frac{n \cdot u}{1 - \frac{n \cdot u}{2}}, \end{split}$$

which is exactly what we wanted.

With this in hand, we will prove the previously stated lemma.

Proof. Let s_p denote the value of s after the p'th iteration of the algorithm described above. Then, since we're assuming the Fundamental Axiom, we have that $s_1 = fl(x_1y_y) = x_1y_1(1+\delta_1)$, where $|\delta_1| \leq u$. We can similarly find s_p as

$$s_p = fl(s_{p-1} + fl(x_p y_p))$$

$$= (s_{p-1} + fl(x_p y_p))(1 + \epsilon_p) \text{ (where } |\epsilon_p| \le u)$$

$$= (s_{p-1} + x_p y_p (1 + \delta_p))(1 + \epsilon_p) \text{ (where } |\delta_p| \le u).$$

Let $\epsilon_1 = 0$. s_p is a recursive formula, and can be rewritten as follows:

$$s_p = \sum_{i=1}^{p} x_i y_i (1 + \delta_i) \prod_{j=1}^{p} (1 + \epsilon_j).$$

So,

$$|s_n - x'y| = \left| \sum_{i=1}^n (x_i y_i) (1 + \delta_i) \prod_{j=1}^p (1 + \epsilon_j) - \sum_{i=1}^n x_i y_i \right|$$

$$= \left| \sum_{i=1}^n (x_i y_i) \left((1 + \delta_i) \prod_{j=1}^p (1 + \epsilon_j) - 1 \right) \right|$$

$$\leq \sum_{i=1}^n |x_i y_i| \left| (1 + \delta_i) \prod_{j=1}^p (1 + \epsilon_j) - 1 \right|.$$

We now use ?? to get:

$$\left| \sum_{i=1}^{n} |x_i y_i| \left| (1 + \delta_i) \prod_{j=1}^{p} (1 + \epsilon_j) - 1 \right| \le \frac{nu}{1 - \frac{nu}{2}} \sum_{i=1}^{n} |x_i y_i|$$

$$\le \frac{nu}{0.995} \sum_{i=1}^{n} |x_i| |y_i|$$

$$\le 1.01 \cdot nu \cdot |x|' |y|$$

1.5 Square Linear Systems

In the following, let $A \in \mathbb{R}^{n \times m}$ be an invertible matrix, and assume Ax = b for a $b \neq 0$. This implies that $x = A^{-1}b$.

Theorem 1.1. Let $\kappa_{\infty} = ||A||_{\infty} ||A^{-1}||_{\infty}$. Assume we can store A with precision E (i.e. as A + E), where $||E||_{\infty} \le u \, ||A||_{\infty}$, and b with precision e (i.e. as b + e), where $||e||_{\infty} \le u \, ||b||_{\infty}$.

If $||A + E|| \hat{x} = b + e$ and $u \cdot \kappa_{\infty} < 1$, then

$$\frac{||x - \hat{x}||_{\infty}}{||x||} \le \frac{2 \cdot u \cdot \kappa_{\infty}}{1 - u \cdot \kappa_{\infty}}$$

Lemma 1.5. Let $I \in \mathbb{R}^{n \times n}$ be the identity matrix, and $F \in \mathbb{R}^{n \times n}$ s.t. $||F||_p < 1$ for some $p \in [1, \infty]$. Then I - F is invertible, and

$$\left| \left| (I - F)^{-1} \right| \right|_p \le \frac{1}{1 - \left| \left| F \right| \right|_p}$$

Proof. HOMEWORK

Lemma 1.6. Suppose $\exists \epsilon > 0$ s.t. $||\Delta A|| \le \epsilon ||A||$ and $||\Delta b|| \le \epsilon ||b||$, and y s.t. $(A + \Delta A)y = b + \Delta b$. If $\epsilon ||A|| ||A^{-1}|| = r < 1$, then $A + \Delta A$ is invertible and

$$\frac{||y||}{||x||} \le \frac{1+r}{1-r}.$$

Proof. Note that $A + \Delta A = A(I + A^{-1}\Delta A) = A(I - (-A^{-1}\Delta A))$. Since $||-A^{-1}\Delta A|| = ||A^{-1}\Delta A|| \le \epsilon ||A^{-1}|| \cdot ||A|| < 1$ (by assumptions), Lemma ?? gives us that $I + A^{-1}\Delta A$ is invertible. Since A is also invertible (again, by assumption), $A + \Delta A$ is invertible (product of two invertible matrices is invertible).

Performing some linear algebra:

$$\begin{split} (A+\Delta A) &= b+\Delta b \Leftrightarrow \\ A(I+A^{-1}\Delta A)y &= b+\Delta b \Leftrightarrow \\ (I+A^{-1}\Delta A)y &= A^{-1}b+A^{-1}\Delta b \Leftrightarrow \\ y &= (I+A^{-1}\Delta A)^{-1}A^{-1}b+A^{-1}\Delta b. \end{split}$$

Remember that $A^{-1}b = x$. From the definition of r we have that $|A^{-1}| = \frac{r}{|A|}$. These two identities with the assumption that $|\Delta b| \le \epsilon b$ gives us

$$\begin{split} ||y|| &\leq \left|\left|(I+A^{-1}\Delta A)^{-1}\right|\right| \left(||x|| + \left|\left|A^{-1}\Delta b\right|\right|\right) \\ &\leq \frac{1}{1-||A^{-1}\Delta A||} \left(||x|| + \frac{r}{\epsilon \, ||A||} \cdot ||\Delta b||\right) \\ &\leq \frac{1}{1-r} \left(||x|| + \frac{r}{\epsilon \, ||A||} \cdot \epsilon \, ||b||\right) \\ &= \frac{1}{1-r} \left(||x|| + \frac{r \cdot ||b||}{||A||}\right). \end{split}$$

Finally, recall that Ax = b, hence $||A|| \cdot ||x|| \ge ||b||$, so $||x|| \ge \frac{||b||}{||A||}$. So,

$$||y|| \le \frac{1}{1-r} (||x|| + r \cdot ||x||) \Leftrightarrow \frac{||y||}{||x||} \le \frac{1+r}{1-r}.$$

Lemma 1.7.

$$\frac{||y-x||}{||x||} \le \frac{2\epsilon \left|\left|A^{-1}\right|\right| \cdot ||A||}{1-r}.$$

Proof.

$$\begin{split} (A + \Delta A) \, y &= b + \Delta b \Leftrightarrow \\ Ay - b &= \Delta b - \Delta A y \Leftrightarrow \\ y - A^{-1}b &= A^{-1}\Delta b - A^{-1}\Delta A y \Leftrightarrow \\ y - x &= A^{-1}\Delta b - A^{-1}\Delta A y \Leftrightarrow \\ ||y - x|| &\leq \left|\left|A^{-1}\right|\right| \left|\left|\Delta b\right|\right| + \left|\left|A^{-1}\right|\right| \left|\left|\Delta A\right|\right| \left||y|\right| \\ &\leq \left|\left|A^{-1}\right|\right| \epsilon \left|\left|b\right|\right| + \left|\left|A^{-1}\right|\right| \epsilon \left|\left|A\right|\right| \left||y|\right| \\ &\leq \epsilon \left|\left|A^{-1}\right|\right| \left|\left|A\right|\right| \left|\left|x\right|\right| + \epsilon \left|\left|A^{-1}\right|\right| \left|\left|A\right|\right| \left||y|\right| \\ &\leq \epsilon \left|\left|A^{-1}\right|\right| \left|\left|A\right|\right| \left(\left|\left|x\right|\right| + \left|\left|x\right|\right|\right) \\ &\leq \epsilon \left|\left|A^{-1}\right|\right| \left|\left|A\right|\right| \left(\left|\left|x\right|\right| + \left|x\right|\right|\right) \\ &= \epsilon \left|\left|A^{-1}\right|\right| \left|\left|A\right|\right| \left(\left|\left|x\right|\right| + \frac{1+r}{1-r}\right|\left|x\right|\right|\right) \Leftrightarrow \\ &\frac{\left|\left|y - x\right|\right|}{\left|\left|x\right|} &\leq \epsilon \left|\left|A^{-1}\right|\right| \left|\left|A\right|\right| \left(\frac{1-r}{1-r} + \frac{1+r}{1-r}\right) \\ &= 2\epsilon \left|\left|A^{-1}\right|\right| \left|\left|A\right|\right| \frac{1}{1-r} \end{split}$$

1.6 Orthogonalization

Goals

- 1) Introduce and prove the existence of QR decomposition
- 2) Overview of the algorithm to perfor QR decomposition
- 3) Solve least squares problems
- 4) "Large" data problems

Outline

- 1) Motivating problems and solutions with QR
- 2) Gram-Schmidt procedure, existence of QR
- 3) Householder, Givens
- 4) "Large" least squares problems datadown

1.6.1 Motivating problems

Example 1.2 (Motivating Problem 1 (Consistent Linear System)). Assume $A \in \mathbb{R}^{n \times m}$, $n \ge m$, rank(A) = m, and $b \in \text{range}(A) \subset \mathbb{R}^m$. Find $x \in \mathbb{R}^m$ s.t. Ax = b.

Example 1.3 (Motivating Problem 2 (Least Squares Regression)). Assume $A \in \mathbb{R}^{n \times m}$, $n \ge m$, rank(A) = m, and $b \in \mathbb{R}^n$. Find $x \in \mathbb{R}^m$ s.t.

$$x \in \operatorname{argmin}_{y \in \mathbb{R}^m} ||Ay - b||_2$$
.

Example 1.4 (Motivating Problem 3 (Underdetermined Linear System). Assume $A \in \mathbb{R}^{n \times m}$, $n \geq m$, rank(A) < m, and $b \in \text{range}(A)$. Find $x \in \mathbb{R}^m$ s.t.

$$x \in \operatorname{argmin}_{y \in \mathbb{R}^m} \{||y||_2 |Ay = b\}$$
.

Example 1.5 (Motivating Problem 4 (Underdetermined Least Squares Regression)). Assume $A \in \mathbb{R}^{n \times m}$, $n \geq m$, rank(A) < m, and $b \in \mathbb{R}^n$. Find $x \in \mathbb{R}^m$ s.t.

$$x \in \operatorname{argmin}_{z \in \mathbb{R}^m} \left\{ \left| \left| z \right| \right|_2 \left| \left| \left| Ay - b \right| \right|_2 = \min_{y \in \mathbb{R}^m} \left| \left| Ay - b \right| \right|_2 \right\}.$$

Example 1.6 (Motivating Problem 5 (Constrained Least Squares Regression)). Assume $A \in \mathbb{R}^{n \times m}$, $n \ge m$, rank(A) < m, and $b \in \mathbb{R}^n$. Let $C \in \mathbb{R}^{p \times m}$, C = p, and $d \in \mathbb{R}^p$. Find $x \in \mathbb{R}^m$ s.t.

$$x = \operatorname{argmin}_{y \in \mathbb{R}^m} ||Ay - b||_2$$
 s.t. $Cy = d$.

Before we take a crack at solving these problems, we will need to get some definitions down.

Definition 1.4 (Permutation Matrix). A permutation matrix is a square matrix such that each column has exactly one element that is 1, the rest are 0.

Example 1.7. The following is a permutation matrix:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Definition 1.5 (Orthogonal Matrix). A matrix Q is said to be an orthogonal matrix if $Q^TQ = QQ^T = I$.

Note: for an orthogonal matrix $Q \in \mathbb{R}^{n \times m}$, it holds that $||Q_{i*}||_2 = 1$ for all i = 1, ..., n, and $||Q_{*j}||_2 = 1$ for all j = 1, ..., m.

Definition 1.6 (Upper Triangular Matrix). A matrix R is an upper triangular matrix if $R_{ij} = 0$ for all i > j.

Lecture 4: 9/18

1.6.2 QR Decomposition

In order to actually solve the problems listed above, we need the QR Decomposition:

Theorem 1.2 (Existence of QR Decomposition). Let $A \in \mathbb{R}^{n \times m}$ and let r = rank(A). Then there exists:

1) an $m \times m$ permutation matrix Π ,

¹Here we use the notion Q_{i*} to mean the *i*'th row, and Q_{*j} to mean the *j*'th column of Q.

- 2) an $n \times n$ orthogonal matrix Q,
- 3) an $r \times r$ upper triangular matrix R, with non-zero diagonal elements (i.e. invertible)
- 4) an $r \times (m-r)$ matrix S (if m > r),

such that

$$A = Q \begin{bmatrix} R & S \\ 0 & 0 \end{bmatrix} \Pi^T.$$

With this in hand, we can solve the motivating problems stated above. Solution (Example ref(exm:linear-system)). We want to find x such that Ax = b.

We use theorem ?? to rewrite this as $Q\begin{bmatrix} R \\ 0 \end{bmatrix}\Pi^T x = b$. Note that since rank(A) = m, there is no S matrix.

Now, since Q is an orthogonal matrix, we know that $Q^{-1} = Q^T$, so

$$\begin{bmatrix} R \\ 0 \end{bmatrix} \Pi^T x = Q^T b = c = \begin{bmatrix} c_1 \\ 0 \end{bmatrix}. \tag{1.1}$$

So now the equation we are trying to solve becomes

$$R\Pi^T x = c_1.$$

Since R is an upper triangular matrix with non-zero diagonal elements, it is invertible. Since Π is a permutation matrix, $\Pi^{-1} = \Pi^{T}$. Using this we can find the solution:

$$x = \Pi R^{-1} c_1.$$

Solution (Example ??(exm:least-squares). We want to find x such that $x \in \operatorname{argmin}_{y \in \mathbb{R}^m} ||Ay - b||_2$.

Once again, rank(A) = m, so using theorem ??, we can rewrite the expression we are trying to minimize as

$$\min \left| \left| Q \begin{bmatrix} R \\ 0 \end{bmatrix} \Pi^T y - b \right| \right|_2$$
.

Since $Q^T = Q^{-1}$ is orthogonal, $||Q^Tx||_2 = ||x||_2$ for all x (homework exercise $\ref{eq:condition}$). So, we get that $\ref{eq:condition}$ is the same as

$$\min \left| \left| \begin{bmatrix} R \\ 0 \end{bmatrix} \Pi^T y - Q^T b \right| \right|_2.$$

Now let $c = Q^T b$. Then, c is of the form $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, where c_2 is the last n - r rows (i.e. corresponding to the 0 rows of $\begin{bmatrix} R \\ 0 \end{bmatrix}$). Then

$$\min \left\| \begin{bmatrix} R\Pi^T y - c_1 \\ -c_2 \end{bmatrix} \right\|_{c} = \min \sqrt{\|R\Pi^T y - c_1\|_2^2 + \|c_2\|_2^2}.$$

Now this is minimized by $\operatorname{argmin}_y ||R\Pi^T y - c_1||_2^2$. As before, R^{-1} exists since R is upper triangular with non-zero diagonal elements, $\Pi^T = \Pi^{-1}$ since Π is a permutation matrix, so

$$x = \operatorname{argmin}_{y} \left| \left| R\Pi^{T} y - c_{1} \right| \right|_{2}^{2} \Leftrightarrow$$

$$R\Pi^{T} x = c_{1} \Leftrightarrow$$

$$x = \Pi R^{-1} c_{1}.$$

 $Solution \ (\text{Example ref}(\text{exm:und-linear-system})). \ \text{In this scenario, } \\ \text{rank}(A) = r < m. \ \text{We are looking for } \\ x \in \\ \text{argmin}_y \left\{ ||y||_2 \, |Ay = b \right\}. \ \text{Using theorem ??}, \ \text{we can rewrite this as } \\ \text{argmin}_y \left\{ ||y||_2 \, |Q \begin{bmatrix} R & S \\ 0 & 0 \end{bmatrix} y = b \right\}, \ \text{and} \\ \text{multiplying by } Q^T, \\ \text{argmin}_y \left\{ ||y||_2 \, \Big| \begin{bmatrix} R & S \\ 0 & 0 \end{bmatrix} y = Q^T b \right\}. \ \text{We introduce the vector } \\ c \\ \text{such that } Q^T b = \begin{bmatrix} c & 0 \end{bmatrix}^T \\ \text{(0 entries correspond to 0 rows in } \begin{bmatrix} R & S \\ 0 & 0 \end{bmatrix}). \ \text{If we furthermore write } \\ \Pi^T y \\ \text{as } \begin{bmatrix} z_1 & z_2 \end{bmatrix}^T. \end{aligned}$

Then, since $||y||_2 = ||z||_2$, our problem becomes

$$\begin{split} &x \in \operatorname{argmin}_z \left\{ ||z||_2 \left| Rz_1 + Sz_2 = c \right\} \right. \\ &x \in \operatorname{argmin}_z \left\{ ||z||_2 \left| z_1 = R^{-1}c - R^{-1}Sz_2 \right\} \right. \\ &x \in \operatorname{argmin}_z \sqrt{\left| \left| R^{-1}c - R^{-1}Sz_2 \right| \right|_2^2 + \left| \left| z_2 \right| \right|_2^2} \\ &x \in \operatorname{argmin}_z \left\{ \left| \left| R^{-1}c - R^{-1}Sz_2 \right| \right|_2^2 + \left| \left| z_2 \right| \right|_2^2 \right\}, \end{split}$$

where the last equality is a consequence of the result proved in homework @ref{exr:q403}. Now, let $d = R^{-1}c$ and $p = R^{-1}Sz_2$. Then we can find the minimum of the above expression by differentiating and setting equal to zero:

$$0 = -P^{T}d + (P^{T}P + I)z_{2} \to z_{2}$$

$$= (P^{T}P + I)^{-1}P^{T}d.$$
 (1.2)

Solution (Example ref(exm:und-least-squares)). We want to find $\min_z \{||z||_2 | z \in \operatorname{argmin}_y ||Ay - b||_2\}$ Use theorem ??:

$$\begin{split} \min_{z} \left\{ ||z||_{2} \left| z \in \operatorname{argmin}_{y} ||Ay - b||_{2} \right\} &= \left\{ ||z||_{2} \left| z \in \operatorname{argmin}_{y} \left| \left| \begin{bmatrix} R & S \\ 0 & 0 \end{bmatrix} \Pi^{T}y - Q^{T}b \right| \right|_{2} \right\} \\ &= \left\{ ||w||_{2} \left| w \in \operatorname{argmin}_{y} \left| \left| \begin{bmatrix} R & S \\ 0 & 0 \end{bmatrix} y - Q^{T}b \right| \right|_{2} \right\}, \end{split}$$

since $||y||_2 = ||\Pi^T y||_2$. This is exactly the problem solved in example ??. In conclusion,

$$w = \begin{bmatrix} R^{-1}(c_1 - Sy_y) \\ y_2 \end{bmatrix}.$$

Solution (Example ref(exm:constrained-least-squares).

1.6.3 Existence of QR-decomposition.

To prove the existence of the QR-decomposition, we need the Gram-Schmidt process.

Lemma 1.8 (The Gram-Schmidt Process). Let $r \in \mathbb{N}$. Given a set of linearly independent vectors $\{a_1, \ldots, a_r\}$, there exists a set of orthonormal vectors $\{q_1, \ldots, q_r\}$ such that $span\{q_1, \ldots, q_r\} = span\{a_1, \ldots, a_r\}$.

The q_i 's are given by...

Proof. We will prove this by induction. For i=1: let $R_{11}=||a_1||_2$, $q_1=\frac{1}{R_11}a_1$. Notice that $||q_1||=1$. (At this point, it might be beneficial to check out the intuitive side note (??))

Define q^r in the following way: let $R_{ir} = q_i' a_r$, $\tilde{q}_r = a_r - \sum_{i=1}^{r-1} R_{ir} q_i$, and $R_r r = ||\tilde{q}_r||_2$. Then $q_r = \frac{\tilde{q}_r}{R_{rr}}$. (Note: $\tilde{q}_r \neq 0$ since the a_i s are linearly independent, and q_i is given as a linear combination of a_1, \ldots, a_i .)

Assume the result holds for $i \leq r-1$. I.e. we have vectors q_1, \ldots, q_{r-1} given as above, and that

- $\begin{array}{ll} \text{i)} & \operatorname{span}\{q_1,\ldots,q_{r-1}\} = \operatorname{span}\{a_1,\ldots,a_{r-1}\},\\ \text{ii)} & q_i\cdot q_j \text{ for all } i,j=1,\ldots,r-1 \text{ with } i\neq j,\\ \text{iii)} & q_i'\cdot q_i=1 \text{ for all } i=1,\ldots,r-1. \end{array}$

Now, we want to show that we can construct a q_r such that

- a) $\operatorname{span}\{q_1, \dots, q_r\} = \operatorname{span}\{a_1, \dots, a_r\},$ b) $q_r \cdot q_j = 0$ for all $j = 1, \dots, r 1$,
- c) $q'_r \cdot q_r = 1$.

We start from below.

- c) By definition of q_r : $q'_r q_r = \frac{\tilde{q}'_r \tilde{q}_r}{R_{rr}^2} = \frac{||\tilde{q}_r||^2}{R_{rr}^2} = 1$.

$$q_i'\tilde{q}_r = q_i'a_r - \sum_{j=1}^{r-1} R_{jr}q_i'q_j$$

$$= q_i'a_r - R_{ir}q_i'q_i$$

$$= q_i'a_r - R_{ir} = 0 \text{ (by definition of } R_{ir}).$$

a) We need to show that a_r can be written as a linear combination of q_i s.

$$\begin{split} \sum_{i=1}^{r} R_{ir}q_i &= \sum_{i=1}^{r-1} R_{ir}q_i + R_{rr}q_r \\ &= \sum_{i=1}^{r-1} R_{ir}q_i + R_{rr}\frac{1}{R_{rr}}\tilde{q}_r \\ &= \sum_{i=1}^{r-1} R_{ir}q_i + R_{rr}\frac{1}{R_{rr}}\left(a_r - \sum_{i=1}^{r-1} R_{ir}q_i\right) \\ &= \sum_{i=1}^{r-1} R_{ir}q_i + a_r - \sum_{i=1}^{r-1} R_{ir}q_i \\ &= a_r. \end{split}$$

Remark 1.1 (Intuitive side note). It is fairly easy to find q_2 . We want to find it such that $a_2 = R_{12}q_1 + R_{22}q_2$, and $||q_2||_2 = 1$ and $q_1 \perp q_2$, i.e. $q_1 \cdot q_2 = 0$. So, if we multiply the equation by q_1 , we get that $q_1 a_2 = R_{12}$. Substituting this into the first equation, $q_2 = \frac{a_2 - R_{12}q_1}{R_{22}}$.

Note that this is a circular argument, and hence not a formal way of doing this.

Lecture 5: 9/20

(Finished up proof of The Gram-Schmidt Process (??))

Remark 1.2 (Gram-Schmidt in Matrix Form). If we write up a_1, \ldots, a_r in a matrix, we see that

$$\begin{bmatrix} a_1 & \dots & a_r \end{bmatrix} = \begin{bmatrix} q_1 & \dots & q_r \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \dots & R_{1r} \\ 0 & R_{22} & \dots & R_{2r} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & R_{rr} \end{bmatrix}$$

This is quite similar to the result we are after (the QR-decomposition ??).

Proof of theorem ref(thm:qr-decomposition). Since $\operatorname{rank}(A) = r$, A has r linearly independent columns. Hence, there exists a permutation matrix Π such that

$$A\Pi = \begin{bmatrix} a_1 & \dots & a_r & a_{r+1} \dots a_m \end{bmatrix},$$

where a_1, \ldots, a_r are linearly independent, and a_{r+1}, \ldots, a_m are linearly dependent on the first r columns.

Using Gram-Schmidt (lemma ??), we know that there exists $\tilde{Q} \in \mathbb{R}^{n \times r}$, $R \in \mathbb{R}^{r \times r}$ such that $A\Pi = \tilde{Q}R$. Since span $\{\tilde{q}_1, \ldots, \tilde{q}_r\}$ (columns of \tilde{Q}) is equal to span $\{a_1, \ldots, a_r\}$, there exists an $s_{k(j-r+2)}$ for any $j \in \{r+1, \ldots, m\}$ and $k \in \{1, \ldots, r\}$ such that $a_j = \sum_{k=1}^r s_{k(j-r+2)} q_k$. So,

$$A\Pi = \tilde{Q} \begin{bmatrix} R & S \end{bmatrix}$$
.

This is almost the form we want, BUT \tilde{Q} is not orthonormal (it is not square). However, we know that we can pick n-r vectors from \mathbb{R}^n such that adding these as columns to \tilde{Q} we get a set of n linearly independent columns. Now, use Gram-Schmidt to normalize. Since the first r columns are already normalized, these will stay the same. The result is a matrix Q, where the columns are all length 1, and they are all linearly independent. I.e. $Q^TQ = I$. So, $A\Pi = Q\begin{bmatrix} R & S \\ 0 & 0 \end{bmatrix}$, hence

$$A = Q \begin{bmatrix} R & S \\ 0 & 0 \end{bmatrix} \Pi^T.$$

Basically, this gives us a way to perform QR decomposition. However, using the Gram-Schmidt procedure is NOT numerical stable. I.e. we might end up with matrices Q, R, and S from which we CANNOT recover A. To overcome this, there is a different method called the *Modified Gram-Schmidt Procedure*.

Lemma 1.9 (The Modified Gram-Schmidt Procedure). HOMEWORK

1.6.4 Householder

Definition 1.7 (Householder Reflections). A matrix H = I - 2vv', where $||v||_2 = 1$, is called a *Householder Reflection*.

A Householder reflection takes any vector and reflects it over $\{tv: t \in \mathbb{R}\}$.

Lemma 1.10. Householder reflections are orthogonal matrices.

Proof. HOMEWORK

Lemma 1.11. There exists Householder reflections H_1, \ldots, H_r such that $H_r \ldots H_1 A \Pi = R$.

Proof. Let $A\Pi = [a_1 \dots a_r]$. Choose H_1 s.t. $H_1a_1 = R_{11}e_1 = a_1 - 2v_1v_1'a_1$ (last equality due to definition of Householder reflections). This is equivalent to $v_1(2v_1'a_1) = a_1 - R_{11}e_1$.

Now, let $v_1 = \frac{a_1 - R_{11}e_1}{||a_1 - R_{11}e_2||_2}$. Plug this into the equation for $R_{11}e_1$ above to get

$$R_{11}e_1 = a_1 - \frac{(a_1 - R_{11}e_1)}{\|a_1 - R_{11}e_1\|_2} \frac{a_1'a_1 - R_{11}a_1'e_1}{\|a_1 - R_{11}e_1\|_2}.$$

If we multiply this by e'_1 from the right, we get

$$R_{11} = \pm ||a_1||_2, v_1 = \frac{a_1 - ||a_1|| e_1}{||a_1 - ||a_1||_2 e_1||_2}.$$

$$H_1 = I - \frac{a_1 - ||a_1||_2 e_1)(a_1 - ||a_1||_2 e_1)}{||a_1 - ||a_1||_2 e_1||_2^2}$$

1.6.5 Givens Rotations

Definition 1.8 (Givens Rotations). A Givens Rotation is a matrix $G^{(i,j)}$ with entries (g_{ij}) such that

- i) $g_{ii} = g_{jj} = \lambda$ (the *i*th and *j*th elements of the diagonal are λ).
- ii) $g_{kk} = 1$ for all $k \notin \{i, j\}$. (all other diagonal elements are 1)
- iii) $g_{ij} = g_{ji} = \sigma$
- iv) $g_{ij} = 0$ for all other pairs of i, j.

In words: $G^{(i,j)}$ is the identity matrix with the *i*th and *j*th diagonal elements made λ , and the entries at (i,j) and (j,i) are σ .

Chapter 2

Homework Assignments

2.1 Homework 1

Exercise 2.1. Can all nonnegative real numbers be represented in such a manner (i.e. as a fp number) for an arbitrary base $\beta \in \{2, 3, ...\}$?

Solution. No. For any given β and a largest exponent e_{max} , any decimal larger than $\beta \cdot \beta^{e_{max}}$ is larger than the largest number possibly representated.

Exercise 2.2. Suppose e = -1, what are the range of numbers that can be represented for an arbitrary base $\beta \in \{2, 3, ...\}$?

Solution. The smallest number that can be represented for an arbitrary base must be $(0 + 0 \cdot \beta^{-1} + ... + 0 \cdot \beta^{-(p-1)}) \cdot \beta^{-1}$.

Since $0 \le d_i < \beta, \forall i$, the largest value must be attained when $d_i = \beta - 1$ for all i. I.e. the largest value must be

$$\begin{split} MAX &= (\beta - 1 + (\beta - 1)\beta^{-1} + \ldots + (\beta - 1)\beta^{-(p-1)}) \cdot \beta^{-1} \\ &= (1 + \beta^{-1} + \ldots + \beta^{-(p-1)})(\beta - 1) \cdot \beta^{-1} \\ &= (1 + \beta^{-1} + \ldots + \beta^{-(p-1)}) \cdot (1 - \beta^{-1}) \\ &= (1 + \beta^{-1} + \ldots + \beta^{-(p-1)}) \cdot (1 - \beta^{-1}) \end{split}$$

Exercise 2.3. Characterize the numbers that have a unique representation in a base $\beta \in \{2, 3, ...\}$. Solution. Let

$$f = \left(d_1 \cdot \beta^{-1} + \ldots + d_{p-1} \cdot \beta^{-(p-1)}\right) \cdot \beta^e,$$

i.e. f is not normarlized. Then,

$$f = (d_1 + d_2\beta^{-1} + \dots + d_{p-1} \cdot \beta^{-p} + 0 \cdot \beta^{-(p-1)}) \cdot \beta^{e-1}.$$

So, non-normalized fp numbers are NOT unique.

Now, let f be a normalized fp number. I.e.

$$f = (d_0 + d_1 \cdot \beta^{-1} + \dots + d_{p-1} \cdot \beta^{-(p-1)}) \cdot \beta^e,$$

where $d_0 \neq 0$. If we let $e_n < e$, then

$$f > (d_0 + d_1 \cdot \beta^{-1} + \ldots + d_{p-1} \cdot \beta^{-(p-1)}) \cdot \beta^{e_n},$$

and if $e_n > e$, then

$$f < (d_0 + d_1 \cdot \beta^{-1} + \dots + d_{p-1} \cdot \beta^{-(p-1)}) \cdot \beta^{e_n}$$

If we let

$$d_i' \neq d_i$$

for some number of i's, then

$$f \neq \left(d'_0 + d_1 \prime \cdot \beta^{-1} + \ldots + d_{p-1} \prime \cdot \beta^{-(p-1)}\right) \cdot \beta^e.$$

Hence, normalized FP numbers are unique.

Exercise 2.4. Write a function that takes a decimal number, base, and precision, and returns the closest normalized FP representation. I.e. a vector of digits and the exponent.

Solution. The function provided in class is actually the solution (?). This is guarenteed to give a normalized FP representation. Using this algorithm gives $d_0 = \lfloor \frac{N}{\beta^{\lfloor \log_\beta(N) \rfloor}} \rfloor$. It holds that $\lfloor \log_\beta(N) \rfloor \leq \log_\beta(N)$, which implies that $\beta^{\lfloor \log_\beta(N) \rfloor} \leq \beta^{\log_\beta(N)} = N$ (remember, $\beta \geq 2$). Hence, $d_0 > 0$.

```
get_normalized_FP = function(number::Float64, base::Int64, prec::Int64)
  #number = 4; base = float(10); prec = 2
  si=sign(number)
  base = float(base)
  e = floor(Int64,log(base,abs(number)))
  d = zeros(Int64,prec)
  num = abs(number)/(base^e)

for j = 1:prec
    d[j] = floor(Int64,num)
    num = (num - d[j])*base
  end

return "The sign is $si, the exponent is $e, and the vector with d is $d"
end
```

#11 (generic function with 1 method)

Exercise 2.5. List all normalized fp numbers that can be representated given base, precision, e_{min} , and e_{max} .

```
all_normalized_fp = function(base::Int64, prec::Int64, emin::Int64, emax::Int64)
    ## Number of possible values for each e:
    N = (base-1)*base^(prec-1)#*(emax-emin+1)

out=zeros(Int64, N, prec, emax-emin+1)

es = emin:emax

for e=1:length(es)
    for b0=1:(base-1)
    for i=1:(base^(prec-1))
```

2.2. HOMEWORK 2 23

#13 (generic function with 1 method)

2.2 Homework 2

Exercise 2.6. Lookup the 64 bit standard to find allowed exponents.

Solution. According to Wikipedia, the allowed exponents for the 64 bit standard are $-1022, \ldots, 1023$.

Exercise 2.7. What is the smallest non-normalized positive value for the 64 bit standard?

Solution. The smallest non-normalized positive value is

$$(0+0\cdot 2^{-1}+\ldots+0\cdot 2^{-51}+1\cdot 2^{-52})\cdot 2^{-1022}=2^{-1074}\approx 4.94\cdot 10^{324}$$

Exercise 2.8. What is the smallest normalized positive value?

Solution. The smallest normalized positive value is

$$(1+0\cdot 2^{-1}+\ldots+0\cdot 2^{-52})\cdot 2^{-1022}=2^{-1022}\approx 2.23\cdot 10^{308}$$

Exercise 2.9. What is the largest normalized positive value?

Solution. The largest normalized finite value is

$$(1+1\cdot 2^{-1}+\ldots+1\cdot 2^{-52})\cdot 2^{-1022}\approx 1.80\cdot 10^{308}.$$

Exercise 2.10. Is there a general formula for determining the largest positive value for a given base β , precision p, and largest exponent e_{max} ?

Solution. The largest positive, finite value is

$$\left(\sum_{i=0}^{p-1} (\beta-1)\beta^{-i}\right) \cdot \beta^{e_{max}}.$$

Exercise 2.11. Verify the smallest non-normalized, positive number that can be represented. *Solution*. See the Julia chunk below.

```
nextfloat(Float64(0)) == 2^{-1074}
```

true

Exercise 2.12. Verify the smallest normalized, positive number that can be represented.

Exercise 2.13. Verify the largest, finite number that can be represented.

```
prevfloat(Float64(Inf))
```

```
## 1.7976931348623157e308
```

Exercise 2.14. Proof lemma (??).