Canonical quantization of symplectic manifolds

Juan Diego Rojas

A thesis submitted in partial fulfilment of the requirements for the degree of Master of Arts in Mathematics,
Universidad de los Andes, 2020.

— CHAPTER I —

DQ-ALGEBRAS AND DQ-ALGEBROIDS

1 STAR PRODUCTS

some words on history...

Definition 1.1 ([Bay+78], [KS12, Definition 2.2.2.]). An associative operation \star on $\mathscr{O}_X[[\hbar]]$ is a *star product* if it is $\mathbb{C}[[\hbar]]$ -bilinear and satisfies

$$f \star g = \sum_{i \ge 0} P_i(f, g) \hbar^i \quad \text{for } f, g \in \mathscr{O}_X$$
 (1.2)

where the P_i 's are bi-differential operators such that $P_0(f,g) = fg$ and $P_i(f,1) = P_i(1,f) = 0$ for all $f \in \mathscr{O}_X$ and i > 0. We call $(\mathscr{O}_X[[\hbar]],\star)$ a star algebra.

Moyal-Weyl star product

Definition 1.3. Let $X = \mathbb{R}^{2n}$ endowed with its standard symplectic structure. We define the *Moyal-Weyl* \star -product by the rule

$$f \star g = \operatorname{prod}\left(\exp\left(\frac{i\hbar}{2}\Pi\right)(f \otimes g)\right)$$
 (1.4)

where Π is the Poisson bi-vector. One calls $\mathscr{O}_X[[\hbar]]$ equipped with the Moyal-Weyl star product, the *Weyl algebra*.

the previous probably needs some background on differential operators... Remark 1.5. The notation Weyl algebra in Definition 1.3 is supported in the following observation. Consider the subalgebra $(\mathbb{C}[p,q],\star)^1$ of the algebra $(\mathscr{O}_{\mathbb{R}^{2n}}(\mathbb{R}^{2n}), \star)$. An easy computation yields

$$p_r \star q_s = p_s q_s + \delta_{rs} \frac{i\hbar}{2}$$
 and, $q_s \star p_r = p_r q_s - \delta_{sr} \frac{i\hbar}{2}$.

Therefore,

$$[p_r, q_s] = \delta_{rs} i\hbar,$$

which is Planck's law. Particularly, this presents an isomorphism between $(\mathbb{C}[p,q],\star)$ and $\mathbb{C}\{x,\partial\}/\langle x\partial-\partial x-1\rangle$, also known as the Weyl algebra. This will be further explained by the identification of \mathbb{R}^{2n} with $T^*\mathbb{R}^n$ and deformation quantization of the cotangent bundle. In the meantime, this identification is proven useful in the following Lemma.

Lemma 1.6. The center of the algebra $\mathbb{C}\{x,\partial\}/\langle x\partial-\partial x-1\rangle$ is \mathbb{C} . In particular, from Remark 1.5, it follows that the center of $(\mathcal{O}_{\mathbb{R}^{2n}}, \star)$ is $\mathbb{C}[[t]]$.

Proof. We carry out the case n = 1. Let $P = \sum_a f_a(x) \partial^a$ be a central element. An easy calculation, using the fact that $[\partial, f] = f'$, yields

$$[\partial, P] = \sum_{a} f'_{a}(x)\partial^{a}.$$

Since P is central, we conclude that $f'_a = 0$, so that f_a is a constant for all a. Therefore, $P = g(\partial)$ for some polynomial g. Again, we have

$$[x, g(\partial)] = g'(\partial)$$

and centrality yields that P is constant. The previous proof only uses that the ground ring of the Weyl algebra is of characteristic zero, so that one carries inductively using $\mathbb{C}[x,\partial_x][y_1,\ldots,y_m,\partial_1,\ldots,\partial_m]$ $\mathbb{C}[x, y_1, \dots, y_m, \partial_x, \partial_1, \dots, \partial_m].$

2 DQ-ALGEBRAS

See Kashiwara-Schapira.

write reference when cotangent bundle is explained.

¹Here p and q are shorthand for coordinates $(p_1, \ldots, p_n, q_1, \ldots, q_n)$

²We mantain the same shorthand as before, and we extend it correctly to $x\partial - \partial x - 1$

3 DQ-algebroids

See Kashiwara-Schapira. Important here to include some motivation.

— CHAPTER II —

DILATION EQUIVARIANCE

Let (X, ω) be a symplectic manifold and $\mathscr A$ a symplectic DQ-algebra on X. Denote by $Z(\mathscr A)$ the center of $\mathscr A$. From Lemma 1.6 and the natural map $\mathbb C[[\hbar]] \to \mathscr A$ is injective onto the center.

include reference of DQ-Darboux

— Appendix і —

ABSTRACT NONSENSE

Once and for all fix a strongly inaccesible cardinal κ , so that V_{κ} is a Grothendieck universe. (hahaha)

REFERENCES

- [Bay+78] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer. "Deformation theory and quantization. I, II. Physical applications". In: *Ann. Physics* 111.1 (1978), pp. 61–110, 111–151. ISSN: 0003-4916. DOI: 10.1016/0003-4916(78)90225-7 (cit. on p. 2).
- [KS12] Masaki Kashiwara and Pierre Schapira. "Deformation quantization modules". In: *Astérisque* 345 (2012), pp. xii+147. ISSN: 0303-1179. DOI: 10.24033/ast.902 (cit. on p. 2).