- **34.** Supongamos que u es una función armónica definida en D (es decir, $\nabla^2 u = 0$ en D) y que u tiene un máximo (o mínimo) local en un punto \mathbf{p} de D.
 - (a) Demostrar que u debe ser constante en algún disco centrado en **p**. (SUGERENCIA: Utilizar los resultados del Ejercicio 25).
 - (b) Supongamos que D es conexo por arcos [es decir, dados dos puntos cualesquiera \mathbf{p} y \mathbf{q} contenidos en D, existe un camino continuo $\mathbf{c} \colon [0,1] \to D$ tal que $\mathbf{c}(0) = \mathbf{p}$ y $\mathbf{c}(1) = \mathbf{q}]$ y que para algún \mathbf{p} el máximo o mínimo en \mathbf{p} es absoluto; entonces, $u(\mathbf{q}) \leq u(\mathbf{p})$ o $u(\mathbf{q}) \geq u(\mathbf{p})$ para todo \mathbf{q} en D. Demostrar que u debe ser constante en D.

(El resultado de este ejercicio se llama principio del máximo fuerte (o del mínimo fuerte) para funciones armónicas. Compárese esto con los ejercicios 46 a 50 de la Sección 3.3.)

- **35.** Se dice que una función es *subarmónica* en D si $\nabla^2 u \geq 0$ para todos los puntos de D. Se dice que es *superarmónica* si $\nabla^2 u \leq 0$.
 - (a) Deducir un principio del máximo fuerte para funciones subarmónicas.
 - (b) Deducir un principio del mínimo fuerte para funciones superarmónicas.
- **36.** Supongamos que D es el círculo $\{(x,y) \mid x^2 + y^2 < 1\}$ y que C es la circunferencia $\{(x,y) \mid$

- $x^2+y^2=1$ }. Se puede demostrar que si f es una función continua con valores reales en C, entonces existe una función continua u definida en $D\cup C$ que coincide con f sobre C y es armónica en D. Es decir, f tiene una extensión armónica al círculo. Suponiendo cierto este resultado, demostrar lo siguiente:
- (a) Si q es una función continua no constante en $D \cup C$ que es subarmónica (pero no armónica) en D, entonces existe una función continua u definida en $D \cup C$ que es armónica en D y tal que u coincide con q sobre C y q < u en todos los puntos de D.
- (b) El mismo resultado sigue siendo válido si "subarmónica" se sustituye por "superarmónica" y "q < u" por "q > u."
- **37.** Sea D como en el Ejercicio 36. Sea $f: D \to \mathbb{R}$ una función continua. Demostrar que hay una única solución de la ecuación $\nabla^2 u = 0$ que satisfaga $u(\mathbf{x}) = f(\mathbf{x})$ para todo $\mathbf{x} \in \partial D$.
- **38.** Usar el teorema de Green para demostrar la fórmula del cambio de variables en el siguiente caso particular:

$$\iint_D dx \, dy = \iint_{D^*} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du \, dv$$

para una transformación $(u, v) \mapsto (x(u, v), y(u, v)).$

8.2 El teorema de Stokes

El teorema de Stokes relaciona la integral de línea de un campo vectorial a lo largo de una curva simple cerrada C en \mathbb{R}^3 con una integral sobre una superficie S cuya frontera es C. En este sentido, es muy similar al teorema de Green.

El teorema de Stokes para gráficas

Comencemos por recordar algunos hechos expuestos en el Capítulo 7. Consideremos una superficie S que es la gráfica de una función f(x,y), de manera que S puede parametrizarse por

$$\begin{cases} x = u \\ y = v \\ z = f(u, v) = f(x, y) \end{cases}$$