

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Clase 7 – Proceso de Normalización

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Lo que vamos a ver hoy:

- Normalización
- Normalización de atributos
- Dependencias Funcionales
- Reglas de Derivación
- Significado de los atributos en una relación (Cardinalidad)
- Formas Normales

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

NORMALIZACIÓN

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

La normalización es el proceso de organizar los datos de una base de datos. Se incluye la creación de tablas y el establecimiento de relaciones entre ellas según reglas diseñadas tanto para proteger los datos como para hacer que la base de datos sea más flexible al eliminar la redundancia y las dependencias incoherentes.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Ejemplo de Normalización:

Factura							
Nro	Fecha	CUIT	Nombre	Telefono	Importe		
1	12/01/2020	11111111	Juan Perez	1144552445	1000		
2	12/01/2020	2222222	María Sanchez	1156467254	2000		
3	13/01/2020	3333333	Javier Rodriguez	1134227685	2000		
4	13/01/2020	11111111	Juan Perez	1144552445	1500		
5	14/01/2020	11111111	Juan Perez	1144552445	4000		

Problemas de este modelo:

- Redundancia
- Inconsistencia

Mediante la normalización buscamos obtener un esquema de base de datos con redundancia mínima y sin inconsistencias

Lic. Leandro Mariano Abraham

Tecnicatura Universitaria en Programación

Clase 7 – Normalización

Ejemplo de Normalización:

		act	Тока		
Nro	Fecha	CUIT	Nombre	Telefono	Importe
1	12/01/2020	11111111	Juan Perez	1144552445	1000
2	12/01/2020	2222222	María Sanchez	1156467254	2000
3	13/01/2020	3333333	Javier Rodriguez	1134227685	2000
4	13/01/2020	11111111	Juan Perez	1144552445	1500
5	14/01/2020	11111111	Juan Perez	1144552445	4000

CUIT → Nombre
CUIT → Telefono

Proceso de Normalización

Dependencias Funcionales

Esto se dep

Nro	Fecha	<u>CUIT</u>	Importe			
1	12/01/2020	11111111	1000			
2	12/01/2020	2222222	2000			
3	13/01/2020	3333333	2000			
4	13/01/2020	11111111	1500			
5	14/01/2020	11111111	4000			

Factura

пе	пте

CUIT	Nombre	Telefono
1111111 1	Juan Perez	1144552445
222222	María Sanchez	1156467254
3333333	Javier Rodriguez	1134227685

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

NORMALIZACIÓN DE ATRIBUTOS

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Ejemplo de Normalización de atributos:

¿Qué problemas podemos observar que devienen de registrar de esta manera el género?

Lic. Leandro Mariano A<u>braham</u>

Tecnicatura Universitaria en Programación

Clase 7 – Normalización

Proceso de Normalización:

Pelicula

cod_pel	titulo	cod_gen_
1000	Volver al futuro	1
1001	Volver al futuro 2	1
1002	La llamada	2
1003	Duro de matar	3
1004	Duro de matar 2	3
1005	Duro de matar 3	3

Genero

cod_gen	descripcion
1	Ciencia Ficción
2	Terror
3	Acción

Campos claves dentro de las tablas:

• Clave Primaria: Identifica de manera univoca a cada uno de los registros de la tabla. No puede ni repetirse ni ser nula.

EJ: Película → cod_pel
Genero → cod_gen

• Clave foránea (Segundaria o ajena) : Es el campo que me une con otra tabla. Generalmente es un campo que es clave primaria en la otra tabla.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

DEPENDENCIAS FUNCIONALES

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Las dependencias funcionales son un concepto fundamental en la teoría de bases de datos relacionales. Este concepto se utiliza para describir la relación entre diferentes atributos en una tabla y es crucial para el diseño y la normalización de bases de datos. Existen diferentes tipos de dependencias funcionales en bases de datos, las cuales abordaremos a continuación.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Dependencia Funcional Completa

Una dependencia funcional X→Y es completa si al eliminar cualquier atributo de X, la dependencia ya no se mantiene.

Tabla Prestamos de Biblioteca

ID_Prestamo	ID_Libro	ID_Usuario	Fecha_Prestamo	Fecha_Devolucion
1	L001	U001	1/1/2024	15/1/2024
2	L002	U002	3/1/2024	17/1/2024
3	L003	U003	5/1/2024	19/1/2024
4	L001	U004	7/1/2024	21/1/2024

- (ID_Libro, ID_Usuario) → Fecha_Prestamo
- (ID_Libro, ID_Usuario) → Fecha_Devolucion

La combinación de ID_Libro y ID_Usuario determina la Fecha_Prestamo y la Fecha_Devolucion. Es decir, dado un libro y un usuario específico, podemos determinar de manera única las fechas de préstamo y devolución.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Comprobación

Para verificar que esta dependencia es completa, consideremos eliminar uno de los atributos de la combinación:

- **ID_Libro** → Fecha_Prestamo: No es cierto, ya que un mismo libro puede ser prestado en diferentes fechas a diferentes usuarios.
- **ID_Usuario** → Fecha_Prestamo: No es cierto, ya que un mismo usuario puede prestar diferentes libros en diferentes fechas.

Por lo tanto, necesitamos ambos atributos (**ID_Libro** y **ID_Usuario**) para determinar de manera única las fechas de préstamo y devolución. Esto confirma que la dependencia funcional es completa.

Cabe aclarar, además, que existe una dependencia funcional entre el ID_préstamo y el resto de los atributos de la tabla.

• ID_Prestamo → ID_Libro, ID_Usuario, Fecha_de_Prestamo, Fecha_de_Devolución

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Dependencia Funcional Parcial

Una dependencia funcional X→Y es parcial si un subconjunto propio de X aún determina Y. En otras palabras, se puede eliminar uno o más atributos de X y la dependencia aún se mantiene.

Tabla Ventas de Tiendas

ID_Venta	ID_Producto	ID_Tienda	Precio_Unitario	Cantidad	Total_Venta
1	P001	T001	10.00	2	20.00
2	P002	T001	15.00	1	15.00
3	P001	T002	10.50	3	31.50
4	P003	T001	20.00	1	20.00

• (ID_Producto, ID_Tienda) → Precio_Unitario

Esta es una dependencia funcional que no es parcial porque necesitamos ambos atributos, ID_Producto e ID_Tienda, para determinar el Precio_Unitario. No podemos eliminar ninguno de ellos.

• (ID_Producto, ID_Tienda, Cantidad) → Total_Venta

Esta dependencia es una dependencia funcional completa porque necesitamos los tres atributos para determinar el Total_Venta.

Lic. Leandro Mariano A<u>braham</u>

Clase 7 – Normalización

Ejemplo de Dependencia Funcional Parcial

Ahora, para entender mejor una dependencia funcional parcial, supongamos que:

(ID_Producto, ID_Tienda) determina Precio_Unitario, es decir, (IDProducto,IDTienda) → PrecioUnitario

Si eliminamos **Cantidad**, aún tenemos una dependencia funcional porque **(IDProducto,IDTienda) → PrecioUnitario.**

Esto muestra que (IDProducto,IDTienda) es suficiente para determinar Precio_Unitario. Por lo tanto, la dependencia (IDProducto,IDTienda,Cantidad) -> PrecioUnitario es parcial en relación con (IDProducto,IDTienda) porque podemos eliminar Cantidad y aún tener una dependencia funcional válida.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Dependencia Funcional Transitiva

Una dependencia funcional transitiva en una base de datos ocurre cuando un atributo A determina un atributo B, y B determina un atributo C, entonces A también determina C de manera indirecta a través de B. En otras palabras, si $A \rightarrow B$ y $B \rightarrow C$, entonces $A \rightarrow C$.

Tabla de Libros

ID_Libro	Titulo	ID_Autor	Nombre_Autor	ID_Editorial	Nombre_Editor ial
1	El Quijote	A001	Miguel de Cervantes	E001	Editorial A
2	Cien Años de Soledad	A002	Gabriel García Márquez	E002	Editorial B
3	Don Juan Tenorio	A003	José Zorrilla	E001	Editorial A
4	La Sombra del Viento	A004	Carlos Ruiz Zafón	E003	Editorial C

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

En esta tabla, tenemos varias dependencias funcionales:

- ID_Libro → ID_Autor
- ID_Autor → Nombre_Autor

Dado que ID_Libro determina ID_Autor y ID_Autor determina Nombre_Autor, podemos concluir que:

• ID_Libro → Nombre_Autor

Esto representa una dependencia funcional transitiva porque ID_Libro determina Nombre_Autor de manera indirecta a través de ID_Autor

La dependencia funcional transitiva es importante porque su existencia puede indicar que la base de datos no está completamente normalizada. Identificar y eliminar estas dependencias es esencial para lograr un diseño de base de datos más eficiente y evitar problemas de redundancia y actualización.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Dependencia Funcional Multivaluada

Una dependencia funcional multivaluada ocurre cuando un atributo en una tabla determina un conjunto de valores, en lugar de un solo valor.

Tabla de Habilidades y Proyectos

Proyecto_ID	Empleado_ID	Habilidad
101	E01	Java
101	E01	Python
102	E02	SQL

ProyectoID, EmpleadoID → **Habilidad**. Para cada combinación de **Proyecto_ID** y **Empleado_ID**, el conjunto de habilidades no es unívoca, sino multivaluada, ya que para cada proyecto, cada empleado puede tener más de una habilidad.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Dependencia Funcional Compuesta

Una dependencia funcional compuesta ocurre cuando la dependencia funcional se aplica a una combinación de atributos.

Tabla de Ventas

ID_Venta	Producto	Cantidad	Precio_Total
V001	Α	10	100
V001	В	5	50
V003	Α	2	20

En esta tabla, la combinación de ID_Venta y Producto determina la Cantidad y el Precio_Total. Esto se expresa como:

- •(ID_Venta, Producto) → Cantidad
- •(ID_Venta, Producto) → Precio_Total

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

REGLAS DE DERIVACIÓN

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Las reglas de derivación en bases de datos son un conjunto de principios que permiten derivar o inferir nuevas dependencias funcionales a partir de un conjunto dado de dependencias funcionales. Estas reglas son esenciales para el proceso de normalización, que busca asegurar la consistencia y la integridad de los datos en una base de datos.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Regla de Reflexividad:

Si un conjunto de atributos Y es un subconjunto de un conjunto de atributos X, entonces X→Y

Ejemplo:

Tabla de Empleados

Empleado_ID	Nombre	Departamento	Edad
1	Ana	Finanzas	30
2	Juan	IT	25

En esta tabla, sabemos que **{EmpleadoID,Nombre,Departamento,Edad} → Nombre** porque el atributo Nombre es un subconjunto del conjunto completo de atributos. (O sea, pertenece al conjunto)

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Regla de Augmentación:

Si $X \rightarrow Y$, entonces para cualquier conjunto de atributos Z, $XZ \rightarrow YZ$.

Ejemplo:

Tabla de Pedidos

Pedido_ID	Cliente_ID	Fecha	Monto
101	C01	1/8/2024	500
102	C02	2/8/2024	300

Si tenemos la dependencia funcional **{PedidoID} > {ClienteID,Fecha,Monto},** podemos derivar que:

{PedidoID} → *{ClienteID,Fecha,Monto,Estado}* para cualquier atributo adicional como Estado.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Regla de Transitividad:

Si $X \rightarrow Y$ y $Y \rightarrow Z$, entonces $X \rightarrow Z$

Ejemplo:

Tabla de Cursos

Curso_ID	Profesor	Departamento
C01	Smith	Matemáticas
C02	Jones	Ciencias

Si sabemos que:

{CursoID} →{Profesor} (un curso tiene un único profesor) {Profesor} → {Departamento} (cada profesor pertenece a un único departamento)

Entonces, podemos inferir que:

{CursoID} → **{Departamento}** (un curso también determina el departamento).

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Regla de Unión:

Si $X \rightarrow Y$ y $X \rightarrow Z$, entonces $X \rightarrow YZ$

Ejemplo:

Tabla de Productos

Producto_ID	Nombre	Precio	Stock
P001	Laptop	1000	10
P002	Mouse	20	100

Si sabemos que:

{ProductoID} → {Nombre} {ProductoID} → {Precio}

Entonces, podemos derivar que: {ProductoID} ->{Nombre,Precio}

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Regla de Separación:

 $Si X \rightarrow YZ$, entonces $X \rightarrow Y y X \rightarrow Z$

Ejemplo:

Tabla de Estudiantes

Estudiante_ID	Curso_ID	Nota	Comentario
S01	C01	85	Bueno
S02	C02	90	Excelente

Si tenemos la dependencia **{EstudianteID,CursoID} → {Nota,Comentario}**, podemos inferir:

{EstudianteID,CursoID} →{Nota} {EstudianteID,CursoID} →{Comentario}

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

SIGNIFICADO DE LOS ATRIBUTOS EN UNA RELACIÓN (CARDINALIDAD)

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Reglas para optimizar las relaciones:

Si la entidad A contiene tuplas que se relacionan de a una con más de una tupla de la entidad B (o sea una relación de uno a muchos), la relación correspondiente a "muchos" (en este caso la entidad B) contendrá un atributo que la relacione con la otra.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Ejemplo:

Tenemos una tabla-relación que contiene datos de las provincias disponibles para residir en una convención laboral. Por otro lado, la tabla que contiene datos de los becados que concurrirán a dicha convención.

Enti	dad A:	Provin	cias	Ent	idad B: E	Becados
	Cod-Prov	Descripción		ID	Nombre	Cod-Prov
	1	La Pampa		1	Farina, Ana	1
	2	Corrientes		2	Perez, Ariel	4
	3	Neuquén		3	Gómez, Luis	2
	4	La Rioja		4	Valdez, María	1

Esto me indica la relación:

A una provincia \rightarrow concurren \rightarrow varios becados

Un becado → puede concurrir a → una provincia

No hizo falta la creación de una tercera tabla, ya que la vinculación se produce cuando se agrega en la entidad B el atributo COD-PROV (el cual es clave ajena referenciando a la entidad A).

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Reglas para optimizar las relaciones:

Si la entidad A contiene más de una tupla que se relaciona con tuplas de la entidad B de a una (o sea una relación de muchos a uno), sucede lo mismo que en el caso anterior, en la relación de "muchos" (en este caso la entidad A) contendrá un atributo que la relacione con la otra.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Ejemplo:

Tenemos una tabla-relación que contiene datos de los empleados de una empresa. Por otro lado, tenemos la tabla que contiene los datos de las gerencias de esa empresa

Ε	ntidac	l A: Em	pleados	Entid	ad B: G	ierenci	as
	Legajo	Nombre	IdGerencia		IdGerencia	Nombre	
	1010	Torres, José	01		01	Sistemas	
	1012	Perez, Sergio	03		02	Contaduría	
	1015	Funes, Diego	02		03	Finanzas	
	1020	López, Alan	01		04	Recursos Humanos	

Esto me indica la relación:

Un empleado → pertenece a → una gerencia

A una gerencia → pueden pertenecer a → varios empleados

En este caso tampoco hizo falta la creación de una tercera tabla, ya que la vinculación se produce cuando se agrega en la entidad A el atributo IDGERENCIA (el cual es clave ajena referenciando a la entidad B)

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Reglas para optimizar las relaciones:

Si la entidad A contiene más de una tupla que se relaciona con más de una tupla de la entidad B (o sea una relación de muchos a muchos), se justifica la creación de una tercera tabla que interrelacione las otras 2.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Ejemplo:

Contamos con la entidad A: PACIENTES, que contiene más de una tupla que se relaciona con más de una tupla de la entidad B: MEDICAMENTOS (o sea una relación de muchos a muchos), se justifica la creación de una tercera tabla PAC-MED que interrelacione las otras 2.

Esto me indica la relación:

Un paciente → puede consumir → varios medicamentos

Un medicamento → puede ser consumido por varios pacientes

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Relaciones de 1 a 1:

También existen relaciones de 1 a 1, esto significa que para cada fila de la entidad A, existe un único registro de la entidad B y viceversa. Un ejemplo podría ser una tabla de "personas", donde se identifican de manera univoca a cada persona a través de su N° de identidad, y una tabla de "pasaportes" donde cada pasaporte le puede pertenecer únicamente a una persona.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Valores nulos en las tuplas:

En una relación se agrupan determinada cantidad de atributos que a veces conforman una relación demasiado "grande". Si hubiera atributos que no se aplican a la mayoría de las tuplas de esta relación, aparecerán gran número de nulos. Por eso, se trata de evitar incluir en una relación, atributos cuyos valores puedan ser nulos, y de existir, que sea en su minoría.

Ej: Si sólo el 10% de los alumnos trabajan, no se justifica incluir un atributo CUIL o CUIT. Se puede crear una relación ALU-TRAB que contenga sólo tuplas con los alumnos que están empleados.

ALU-TRAB(LEGAJO, CUIT-CUIL)

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

FORMAS NORMALES

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Edgard Codd propuso 3 formas normales, las cuales se conocen como primera (1FN), segunda (2FN) y tercera (3FN) formas normales. Todas estas formas se definen bajo las restricciones de las dependencias funcionales entre los atributos de una relación.

La normalización de los datos consiste en descomponer las relaciones distribuyendo sus atributos en relaciones más pequeñas satisfaciendo un cierto conjunto de restricciones. Es el proceso de producción de grupos óptimos de atributos en las relaciones.

Ventajas de llevar las relaciones hasta la tercera forma normal:

- Se evitan anomalías en la inserción, borrado y modificación.
- Se facilita la extensión: si en un futuro se llevan a cabo ampliaciones, se tendrán menos cambios en la estructura de la base de datos.

repetitivos.

Base de Datos I

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Primera Forma Normal (1fn)

Una relación está en 1FN si y sólo si todos sus dominios subyacentes contienen sólo valores atómicos. Significa la eliminación de grupos

No está en 1º Forma Normal

Legajo	Nombre	Idioma	Nivel de Idioma	Sección
120	Juan	Ingles	В	Sistemas
		Portuges,		Contadurí
121	Jose	Italiano	A,B	а
122	Ana	Ingles	С	Ventas

Legajo	Nombre	Cod-Idioma	Nombre-Idioma	Nivel-Idioma	Sección
120	Juan	01	Inglés	В	Sistemas
121	José	03	Portugués	Α	Contaduría
121	José	04	Italiano	В	Contaduría
122	Ana	01	Inglés	С	Ventas

Los atributos referidos al "idioma" del empleado son los que provocan la repetición de los legajos. Entonces, eliminar los grupos repetitivos significa "llevarme a otra relación los atributos causantes de tal iteración".

Está en 1° Forma Normal

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Así quedan dos relaciones entidades dispuestas de la siguiente manera:

- EMPLEADOS (LEGAJO, NOMBRE, SECCION) Con los atributos propios del empleado.
- IDIOMAS (COD-IDIOMA, NOMBRE-IDIOMA) Con los atributos propios del idioma.

Y una interrelación EMP-IDIOMA para indicar el NIVEL de cada empleado en cada idioma.

EMP-IDIOMAS (LEGAJO, COD-IDIOMA, NIVEL-IDIOMA)

Tabla de Empleados

Legajo	Nombre	Sección
120	Juan	Sistemas
121	José	Contaduría
122	Ana	Ventas

Tabla Idiomas

Cod_Idioma	Idioma
1	Ingles
3	Portuges
4	Italiano

Tabla EMP - IDIOMAS

Legajo	Cod_Idioma	Nivel
120	1	В
121	3	Α
121	4	В
122	1	С

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Segunda Forma Normal (2fn)

Una relación está en 2FN si y sólo si está en 1FN y todos los atributos no clave tienen dependencia funcional completa con la clave primaria, no existen dependencias parciales.

Ej: Tabla Asignación de Proyectos

Está en 1° Forma Normal pero no en 2° Forma Normal.

NRO-EMP	NRO-PROY	NOMBRE-EMP	SUELDO-HORA	FECHA-INICIO
1	101	Juan	20	1/1/2024
2	102	María	30	15/2/2024
1	103	Juan	20	10/3/2024

La clave primaria es compuesta: (NRO-EMP, NRO-PROY).

- FECHA-INICIO depende de ambos atributos NRO-EMP y NRO-PROY, ya que la fecha de inicio es específica para cada proyecto.
- Pero NOMBRE-EMP y SUELDO-HORA dependen solo de NRO-EMP (el nombre y el sueldo de Juan no cambian por proyecto).

Esto significa que hay una dependencia parcial, lo que rompe la 2FN.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Segunda Forma Normal (2fn)

Debemos dividir la tabla en dos para que los atributos NOMBRE-EMP y SUELDO-HORA dependan solo de NRO-EMP.

NRO-EMP	NOMBRE-EMP	SUELDO- HORA
1	Juan	20
2	María	30

NRO-EMP	NRO-PROY	FECHA-INICIO
1	101	1/1/2024
2	102	15/2/2024
1	103	10/3/2024

Ahora está en 1° y 2° forma normal.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Tercera Forma Normal (3fn)

Una relación está en 3FN si y sólo si está en 2FN y todos los atributos no clave son mutuamente independientes entre sí.

Partimos de la tabla "Empleados" que contiene los siguientes atributos:

LEGAJO	NOMBRE	NRO-SECCION	OFIC-SECCION
1	Ana	101	A1
2	Juan	102	B2
3	Carla	101	A1

Para que una tabla esté en 3FN, primero debe cumplir con la Primera y Segunda Forma Normal:

- **Primera Forma Normal (1FN):** Todos los atributos contienen valores atómicos y la tabla no tiene filas duplicadas. En este caso, la tabla EMPLEADOS cumple con 1FN.
- Segunda Forma Normal (2FN): La tabla debe estar en 1FN y todos los atributos no clave deben depender completamente de la clave primaria. La clave primaria aquí es LEGAJO, y los atributos NOMBRE, NRO-SECCION, y OFIC-SECCION dependen completamente de LEGAJO.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Para que una tabla esté en 3FN, debe cumplir con 2FN y, además, ningún atributo no clave debe depender funcionalmente de otro atributo no clave.

En nuestra tabla original EMPLEADOS:

- LEGAJO → NOMBRE
- LEGAJO → NRO-SECCION
- LEGAJO → OFIC-SECCION
- NRO-SECCION → OFIC-SECCION (dependencia funcional entre atributos no clave)

La dependencia NRO-SECCION → OFIC-SECCION indica que OFIC-SECCION depende de NRO-SECCION. *Esta dependencia entre atributos no clave viola la 3FN.*

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Para resolver esta violación, necesitamos descomponer la tabla original en dos tablas donde estas dependencias no causen problemas:

Tabla Empleados

LEGAJO	NOMBRE	NRO-SECCION
1	Ana	101
2	Juan	102
3	Carla	101

Tabla Sección

NRO-SECCION	OFIC-SECCION
101	A1
102	B2

Verificamos la Nueva estructura:

- En la tabla EMPLEADOS, LEGAJO es la clave primaria y NOMBRE y NRO-SECCION dependen completamente de LEGAJO. *No hay dependencias entre atributos no clave*.
- En la tabla SECCIONES, NRO-SECCION es la clave primaria y OFIC-SECCION depende completamente de NRO-SECCION.

Con estas tablas, hemos eliminado la dependencia entre atributos no clave, cumpliendo así con la 3FN.

Lic. Leandro Mariano Abraham

Clase 7 – Normalización

Los números tienen una historia importante que contar. Dependen de ti, para darles una voz

- Stephen Few

