Construcción de un Modelo de Agujero Negro

1. Objetivos:

- Comprender las características y comportamientos de los agujeros negros.
- Aplicar conceptos teóricos en la construcción de un modelo tangible.
- Fomentar la colaboración en equipo y el desarrollo de habilidades de resolución de problemas.
- Relacionar la actividad con la importancia de la exploración espacial y el conocimiento científico.

2. Contenidos a Desarrollar:

- Introducción a los agujeros negros: conceptos básicos, formación y propiedades.
- Construcción del modelo: selección de materiales y diseño del agujero negro en miniatura.
- Etapas del proceso: Aproximación, cruzar el horizonte de eventos, estiramiento espagueti, acumulación y singularidad.
- Exploración de las implicaciones: discusión sobre el impacto de los agujeros negros en el universo y la investigación espacial.

3. Recursos y Herramientas:

- Materiales para construcción: cartón, papel, pegamento, pinturas, lápices, cinta adhesiva, chincheta, tijeras...etc.
- Dos pelotas de diferentes tamaños y masas.
- Un bastidor de un 50 cm x 50 cm.
- Bastidor

- Openclipart, Bastidor (CC BY)
- Recursos educativos: presentaciones, videos y lecturas sobre agujeros negros.
- Espacio adecuado para trabajar en equipos

4. Método de Construcción:

- Investigación preliminar sobre agujeros negros y sus etapas.
- Diseño del modelo en miniatura basado en las etapas mencionadas.
- Reunión de materiales y construcción del modelo de agujero negro

5. Forma de Presentación:

Los equipos presentarán sus modelos de agujeros negros de manera oral y visual. Se explicará cada etapa del proceso de formación y comportamiento del agujero negro. Se fomentará la participación activa de todos los miembros del equipo durante la presentación.

- a) Iniciar la Actividad: El profesor explicará a los alumnos-cadetes el concepto de los agujeros negros, haciendo referencia al texto proporcionado y al símil del globo y las pelotas. Se les mostrarán imágenes y videos para reforzar la comprensión.
- b) **Preparar el Escenario:** Cada grupo de alumnos recibirá un globo y un bastidor. Deberán inflar el globo y luego recortar un cuadrado de la superficie del globo, que representará la membrana del espacio-tiempo.
- c) **Fijar la Membrana:** Los alumnos fijarán la membrana del globo al bastidor utilizando cinta adhesiva, de manera que quede ligeramente en tensión.
- d) Colocar las Pelotas: Cada grupo colocará las dos pelotas sobre la membrana. La pelota grande de 5 cm de diámetro y 1 kg de masa se ubicará en el centro de la membrana, mientras que la pelota pequeña de 1 cm de diámetro y 100 gramos de masa se colocará a unos 30 cm de distancia de la más grande.
- e) **Observar las Deformaciones:** Los alumnos observarán cómo la masa de las pelotas afecta la deformación de la membrana, creando perturbaciones en forma de depresiones alrededor de las pelotas.
- f) Crear un "Agujero Negro": Los alumnos comprimirán la pelota grande poco a poco hasta tener un diámetro de un milímetro, manteniendo el 90% de su masa. Observarán cómo la superficie en contacto con la membrana es menor, lo que genera una deformación más acentuada, similar a un embudo profundo. Esto simulará la formación de un agujero negro.
- g) Observar la Trayectoria de la Pelota Pequeña: Los alumnos colocarán nuevamente la pelota pequeña cerca de la "deformación" generada por la pelota grande, y notarán cómo la pelota pequeña se ve atraída hacia la deformación y puede quedar orbitando alrededor de la pelota grande.
- h) **Reflexionar y Discutir:** Después de realizar el experimento, los alumnos reflexionarán sobre lo observado y discutirán cómo este símil simple representa algunos conceptos fundamentales de los agujeros negros, como la deformación del espacio-tiempo y la órbita de los objetos cercanos.
- i) **Presentación de Resultados:** Cada grupo creará un breve informe o presentación para compartir sus observaciones y conclusiones con el resto de la clase.

6. Instrumento de Evaluación:

- Calidad y precisión del modelo construido.
- Claridad y coherencia en la explicación de cada etapa.
- Participación equitativa de todos los miembros del equipo.
- Uso adecuado de recursos visuales y materiales.

7. Rúbrica de Evaluación:

Criterios de Evaluación	Excelente (10)	Bueno (7)	Aceptable (5)	Insuficiente (2)	Inaceptable (0)
Calidad del Modelo	El modelo demuestra un alto nivel de detalle, precisión y creatividad. Cada etapa del agujero negro se representa de manera clara y realista.	El modelo es adecuado en términos de calidad y precisión, pero podría mejorar en algunos detalles. Las etapas del agujero negro son reconocibles.	El modelo cumple con los requisitos mínimos, pero carece de algunos detalles y precisiones. Las etapas del agujero negro son presentes, pero no muy claras.	El modelo presenta deficiencias significativas en cuanto a calidad, precisión y representación de las etapas del agujero negro.	El modelo es incoherente, poco detallado o inexistente.
Claridad de Explicación	La explicación de cada etapa es clara, coherente y demuestra un profundo entendimiento del proceso de formación de agujeros negros.	La explicación es comprensible y coherente, pero podría mejorar en términos de profundidad y claridad.	La explicación es aceptable, pero carece de detalles clave y claridad en algunas partes.	La explicación es confusa o incoherente, dificultando la comprensión del proceso de formación de agujeros negros.	La explicación es confusa o inexistente.
Participación en Equipo	Todos los miembros del equipo participan activamente en la investigación, diseño y construcción del modelo.	La mayoría de los miembros del equipo participan en la actividad, pero uno o dos pueden mostrar una contribución limitada.	La participación en equipo es equitativa en general, pero algunos miembros pueden estar menos involucrados.	La mayoría de los miembros del equipo tienen una participación limitada, mientras que uno o dos no participan de manera significativa.	La mayoría de los miembros del equipo no participan o su contribución es mínima.
Uso de Recursos Visuales	Los recursos visuales (diagramas, imágenes, gráficos) se utilizan de manera efectiva para respaldar la explicación de cada etapa.	Se utilizan recursos visuales adecuados, pero podrían ser más claros o relevantes para cada etapa.	Algunos recursos visuales son utilizados, pero no siempre respaldan de manera efectiva la explicación de las etapas.	Los recursos visuales son limitados o poco relevantes para la explicación de las etapas.	No se utilizan recursos visuales o su uso es inadecuado.

8. Principios del Diseño Universal para el Aprendizaje (DUA):

- Proporcionar opciones para la percepción y comprensión.
- Ofrecer opciones para la acción y la expresión.
- Proporcionar opciones para la implicación y la participación.

9. Objetivo de Desarrollo Sostenible (ODS):

Relacionado con el ODS 4: Educación de calidad. La actividad fomenta la educación científica y el aprendizaje activo, contribuyendo al desarrollo de habilidades y conocimientos.