Natural Language Processing (NLP)

NLP

- Machine translation.
- Information retrieval (e.g., search engines).
- Sentiment analysis (e.g., positive, negative, happiness, sadness, etc.).
- Information extraction (e.g., summary, keywords, etc.).
- Text generation.

Text processing techniques

- Remove stopwords: *a*, *the*, *it*, *is*, *etc*.
- Keep the most *K* "important" words.
- Stemming: chop words to its root. E.g., swimmer, swimming... \rightarrow swim.

Corpus

"ML is fun!"

"We have learned a lot in this ML course! It is not bad."

"We have learned to have fun :)"

Bag-of-Words

```
corpus = [
   'ML is fun!',
   'We have learned a lot in this ML course! It is not bad.',
   'We have learned to have fun :)'
]
```

	bad	course	fun	have	in	is	it	learned	lot	ml	not	this	to	we
0	0	0	1	0	0	1	0	0	0	1	0	0	0	0
1	1	1	0	1	1	1	1	ì	1	1	1	1	0	1
2	0	0	1	2	0	0	0	1	0	0	0	0	1	1

Bag-of-Words

- Problem: we lose semanting meaning of words (we lose context).
- Example:
 - o "not bad" means "decent" or even "good", which is a positive thing.
 - o In a bag-of-words we separate "not" and "bad" in different columns.
 - The model learns that it says "bad", which is negative.

N-Gram model

Uni-Gram	This	Is	Big		Data		Al	Book	
Bi-Gram	This is	Is Big B		Data	Data Al		Al Book		
Tri-Gram	This is Big	Is Big Data	Big Data		Al Data A		Al Book		

Bag-of-2-Grams

```
corpus = [
   'ML is fun!',
   'We have learned a lot in this ML course! It is not bad.',
   'We have learned to have fun :)'
]
```

	bad	course	course it	fun	have	have fun	have learned	in	in this	is	 ml course	ml is	not	not bad	this	this ml	to	to have	we	we have
0	0	0	0	1	0	0	0	0	0	1	 0	1	0	0	0	0	0	0	0	0
1	1	1	1	0	1	0	1	1	1	1	 1	0	1	1	1	1	0	0	1	1
2	0	0	0	1	2	1	1	0	0	0	 0	0	0	0	0	0	1	1	1	1

Bag-of-N-Grams

- Problem: Increase in feature space.
 - With a very big corpus it may become infeasible.

TF-IDF (Term Frequency-Inverse Document Frequency)

TF IDF

Frequency of a word within the document

Frequency of a word across the documents

TF = number of times the term appears in the document / total number of terms in the document.

"ML is fun! ML is interesting!"

Inverse Document Frequency

IDF = log(number of documents in the corpus / number of documents in the corpus that contain the term)

Inverse Document Frequency

IDF = log(number of documents in the corpus / number of documents in the corpus that contain the term)

Inverse Document Frequency

IDF = log(number of documents in the corpus / number of documents in the corpus that contain the term)

"We have learned a lot in this ML course!

Term Frequency-Inverse Document Frequency

TF-IDF = TF * IDF

Term Frequency-Inverse Document Frequency

TF-IDF = TF * IDF

"We have learned a lot in this ML course!

TF-IDF

```
corpus = [
   'ML is fun!',
   'We have learned a lot in this ML course! It is not bad.',
   'We have learned to have fun :)'
]
```

	bad	course	fun	have	in	is	it	learned	lot	ml	not	this
0	0.000000	0.000000	0.57735	0.000000	0.000000	0.577350	0.000000	0.000000	0.000000	0.577350	0.000000	0.000000
1	0.317949	0.317949	0.00000	0.241809	0.317949	0.241809	0.317949	0.241809	0.317949	0.241809	0.317949	0.317949
2	0.000000	0.000000	0.33847	0.676940	0.000000	0.000000	0.000000	0.338470	0.000000	0.000000	0.000000	0.000000

TF-IDF 2-Gram

```
corpus = [
   'ML is fun!',
   'We have learned a lot in this ML course! It is not bad.',
   'We have learned to have fun :)'
]
```

	bad	course	course bad	fun	learned	learned fun	learned lot	lot	lot ml	ml	ml course
0	0.000000	0.000000	0.000000	0.517856	0.000000	0.000000	0.000000	0.000000	0.000000	0.517856	0.000000
1	0.350139	0.350139	0.350139	0.000000	0.266290	0.000000	0.350139	0.350139	0.350139	0.266290	0.350139
2	0.000000	0.000000	0.000000	0.517856	0.517856	0.680919	0.000000	0.000000	0.000000	0.000000	0.000000