140 Logic exercises 3: arguments

Unassessed

- 1. Which of the following are true? In each case, either give a direct argument to show that premise \models conclusion, or (if premise $\not\models$ conclusion) specify a situation in which the premise is true and the conclusion false.
 - (a) $p \wedge q \models p$
 - (b) $p \lor q \models p$
 - (c) $p \to q \models q \to p$
 - (d) $p \to q \models \neg q \to \neg p$
 - (e) $(p \land q) \lor (r \land s) \models (p \lor r) \land (q \lor s)$
 - (f) $(p \lor r) \land (q \lor s) \models (p \land q) \lor (r \land s)$
- 2. Use direct argument to show that the following formulas are logically equivalent:
 - (a) $\perp \vee p$ and p
 - (b) $\top \vee p$ and \top
 - (c) $p \wedge \top$ and p
 - (d) $\perp \rightarrow p$ and \top
 - (e) $p \vee q$ and $(p \rightarrow q) \rightarrow q$
 - (f) $p \leftrightarrow (q \leftrightarrow r)$ and $(p \leftrightarrow q) \leftrightarrow r$ (that is, \leftrightarrow is associative very useful)
- 3. Using equivalences (distributivity is useful!):
 - (a) show that $p \vee q$ is logically equivalent to $(p \to q) \to q$,
 - (b) show that $p \wedge q \to r$ is logically equivalent to $(p \to r) \vee (q \to r)$,
 - (c) show that $p \to (q \to p)$ is valid,
 - (d) show that $((p \to q) \to p) \to p$ ('Peirce's axiom') is valid,
 - (e) show that $(p \wedge q) \vee (p \wedge \neg q)$ is logically equivalent to p,
 - (f) rewrite $(p \to q) \land (p \to r)$ into disjunctive normal form.
- 4. Show the following, using natural deduction.
 - (a) $p \wedge q \vdash p$
 - (b) $\vdash p \land q \rightarrow p$
 - (c) $p \vdash q \rightarrow p \land q$
 - (d) $p \to (q \to r) \vdash p \land q \to r$
 - (e) $p \to (q \to r) \vdash (p \to q) \to (p \to r)$
 - (f) $(p \land q) \rightarrow r \vdash p \rightarrow (q \rightarrow r)$
 - (g) $p, q \lor (p \to q) \vdash p \land q$
- 5. (from KLEENE) Al, Beau and Casey are indicted on criminal charges of violating state election laws. They testify under oath as follows:

Al: Beau is guilty and Casey is innocent.

Beau: If Al is guilty then so is Casey.

Casey: I am innocent, but at least one of the others is guilty.

- (a) Let A, B, C stand for 'Al is innocent', 'Beau is innocent', and 'Casey is innocent', respectively. Express the testimonies in terms of A, B, C.
- (b) Are the testimonies consistent? That is, is there a situation in which they are all true?
- (c) The testimony of one suspect logically follows (\models) from that of the other two. Which from which?
- (d) Assuming all are innocent, who committed perjury?
- (e) Assuming all statements are true, who is innocent and who is guilty?
- (f) Could they all be lying (all statements false)? Explain your answer.
- (g) If the innocent were truthful and the guilty lied, who is innocent and who is guilty? (Don't exclude the possibility that all are innocent or all are guilty.) Hint: could Al be innocent?
- 6. This question concerns the connective *if-then-else*. The meaning of the operator *if* A *then* B *else* C is conveniently given in a table, as follows, where 1 means true and 0 means false:

	A	B	C	value
	1	1	1	1
	1	1	0	1
İ	1	0	1	0
İ	1	0	0	0

A	B	C	value
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

(a) Show that if A then B else C is equivalent to $(A \to B) \land (\neg A \to C)$, and also to $(A \land B) \lor (\neg A \land C)$.

Any connective can be defined in terms of \neg , \wedge , \vee . For example, from the *if-then-else* (A,B,C) table above, we can see that *if* A *then* B *else* C is true in four cases, namely $A \wedge B \wedge C$, $A \wedge B \wedge \neg C$, $\neg A \wedge B \wedge C$, $\neg A \wedge \neg B \wedge C$ — that is, when A, B, C are all A, A are A and A is A, etc. The formula A is A is A is thus equivalent to A then A else A is also equivalent to A is A then A else A is also equivalent to A is A then A else A is also equivalent to A is A then A else A is also equivalent to A is A then A else A is also equivalent to A is A then A else A is A then A else A is also equivalent to A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A is A then A else A then A else A is A then A else A is A then A else A is A then A else A is A then A else A then A else A then A else A is A then A else A else A then A else A e

This method can be used for any connective given by a table, as long as at least one row evaluates to 1. If not, the connective always yields 0 so is expressible by \perp .

Even \wedge can be eliminated by using the equivalence $A \wedge B \equiv \neg(\neg A \vee \neg B)$. So $(A \wedge B) \wedge C$ becomes $\neg(\neg A \vee \neg B \vee \neg C)$, and just \vee and \neg will suffice. \rightarrow , \bot are also adequate to define all other connectives.

- (b) Write $p \land q$, $p \lor q$, $p \leftrightarrow q$, $\neg p$
 - i. in terms of \bot , \to , p, q (that is, find formulas involving only these connectives and logically equivalent to $p \land q$ etc). Hint: don't do them in this order.
 - ii. in terms of *if-then-else*, \bot , \top , p, q.
- (c) Using \land , \neg only, express \bot and \top .

There is yet another connective that can express \vee and \neg , and hence (see above) any connective at all. It is called the Sheffer Stroke ' \uparrow ' (or NAND): see lectures. Its truth table is below and is equivalent to $\neg(p \land q)$.

p	q	$p \uparrow q$
1	1	0
1	0	1
0	1	1
0	0	1

(d) Express $p \land q$, $p \lor q$, $p \to q$, $\neg p$, \bot , \top in terms of \uparrow , p, q.

Logic exercises 3 Solutions

Unassessed but could be discussed in PMT 30 Oct-3 Nov 2017

- - (a) $p \wedge q \models p$, because in any situation, if $p \wedge q$ is true then p is.
 - (b) $p \lor q \not\models p$: just because $p \lor q$ is true in a situation doesn't mean that p is e.g., if it makes p false and q true.
 - (c) $p \to q \not\models q \to p$: if p is false and q true in a situation, then the LHS is true and the RHS false.
 - (d) $p \to q \models \neg q \to \neg p$. Take a situation such that IF p is true in it THEN q is. Now, IF $\neg q$ is true in this situation, then q is false. SO p can't be true (because if it were true, then by assumption, q would be true which it isn't). So p is false, and so $\neg p$ is true, in this situation. We conclude that in any situation in which $p \to q$ is true, so is $\neg q \to \neg p$. Hence $p \to q \models \neg q \to \neg p$.
 - (e) $(p \land q) \lor (r \land s) \models (p \lor r) \land (q \lor s)$. Take a situation in which $(p \land q) \lor (r \land s)$ is true. There are two possibilities.
 - 1) If $p \wedge q$ is true, then both p, q are true. So $p \vee r$ is true (as p is), and $q \vee s$ is true (as q is). So $(p \vee r) \wedge (q \vee s)$ is true.
 - 2) if not, then $r \wedge s$ is true. So r, s are true. So $p \vee r$ is true (as r is), and $q \vee s$ is true (as s is). So again, $(p \vee r) \wedge (q \vee s)$ is true.
 - Either way, $(p \lor r) \land (q \lor s)$ is true in this situation.
 - This generalises to show $\bigvee_{1 \leq i \leq n} \bigwedge_{1 \leq j \leq m} p_{ij} \models \bigwedge_{1 \leq j \leq m} \bigvee_{1 \leq i \leq n} p_{ij}$.
 - (f) $(p \lor r) \land (q \lor s) \not\models (p \land q) \lor (r \land s)$. E.g., take a situation in which p, s are true and q, r false. Then $(p \lor r) \land (q \lor s)$ is true, but $(p \land q) \lor (r \land s)$ is false.
- 2. Use direct argument to show that the following formulas are logically equivalent:
 - (a) $\bot \lor p$ and p: in any situation, $\bot \lor p$ is true if \bot is true (but it never is!) or p is true. This can happen only when p is true. So $\bot \lor p$ and p are true in the same situations, and are equivalent.
 - (b) $p \wedge \top$ and p. $p \wedge \top$ holds in a situation if both p and \top are true. Since \top is true, this is so just when p is true. So $p \wedge \top$ and p are true in the same situations, so are equivalent.
 - (c) $\top \lor p$ and \top . $\top \lor p$ holds in a situation if either \top is true in it or p is. But \top is true. So $\top \lor p$ holds in any situation. So does \top . So they're equivalent.
 - (d) $\bot \to p$ and \top . By definition of semantics of \to , we know that $\bot \to p$ holds in a situation just when ' \bot is false or p is true' in the situation. But \bot is false in any situation, so this is always the case. So $\bot \to p$ is true in *every* situation. So is \top . So they're equivalent.
 - (e) $p \lor q$ and $(p \to q) \to q$. The RHS, $(p \to q) \to q$, is false in a situation just when $p \to q$ is true and q is false. But if q is false, $p \to q$ can only be true if p is false. So the RHS is false just in case p,q are both false. And this is exactly the condition for the LHS, $p \lor q$, to be false. So LHS and RHS are equivalent.
 - (f) $p \leftrightarrow (q \leftrightarrow r)$ and $(p \leftrightarrow q) \leftrightarrow r$ (that is, \leftrightarrow is associative very useful). LHS is true in a situation if p has the same truth value as $q \leftrightarrow r$: either p is true and both or none of q, r are true, or p is false and just one of q, r is true. This amounts to saying that (a) an odd number of p, q, r are true. Reading $(p \leftrightarrow q) \leftrightarrow r$ as the equivalent $r \leftrightarrow (p \leftrightarrow q)$, the same argument shows it is true just when (b) an odd number of r, p, q are true. Since (a) and (b) are obviously equivalent, we've shown the original formulas are equivalent. In general, $A_1 \leftrightarrow A_2 \leftrightarrow \cdots \leftrightarrow A_n$, however bracketed, is true just when the number of As that are true has the same parity (even or odd) as n. Exercise: prove this!

- 3. Using equivalences (distributivity is useful!):
 - (a) show that $p \vee q$ and $(p \rightarrow q) \rightarrow q$ are logically equivalent:

$$\begin{array}{ll} (p \to q) \to q \\ \neg (\neg p \lor q) \lor q & \text{using } X \to Y \equiv \neg X \lor Y \text{ twice} \\ (\neg \neg p \land \neg q) \lor q & \text{using de Morgan laws} \\ (p \land \neg q) \lor q & \text{using } \neg \neg X \equiv X \\ (p \lor q) \land (\neg q \lor q) & \text{using distributivity} \\ (p \lor q) \land \top & \text{using } \neg q \lor q \equiv \top \\ p \lor q & \text{using } X \land \top \equiv X \end{array}$$

(b) show that $p \land q \to r$ and $(p \to r) \lor (q \to r)$ are logically equivalent:

$$\begin{array}{ll} (p \to r) \vee (q \to r) \\ (\neg p \vee r) \vee (\neg q \vee r) \\ \neg p \vee (r \vee (\neg q \vee r)) \\ \neg p \vee (r \vee (r \vee \neg q)) \\ \neg p \vee ((r \vee r) \vee \neg q) \\ \neg p \vee ((r \vee r) \vee \neg q) \\ \neg p \vee (\neg q \vee r) \\ \neg p \vee (\neg q \vee r) \\ \neg p \vee (\neg q \vee r) \\ (\neg p \vee \neg q) \vee r \\ \neg (p \wedge q) \vee r \\ \neg (p \wedge q) \vee r \\ p \wedge q \to r \end{array} \qquad \begin{array}{ll} \text{using } X \to Y \equiv \neg X \vee Y \\ \text{using associativity of } \vee \\ \text{using commutativity of } \vee \\ \text{using associativity of } \vee \\ \text{using associativity of } \vee \\ \text{using de Morgan law} \\ p \wedge q \to r \\ \end{array}$$

- (c) show $p \to (q \to p)$ is valid by rewriting it with equivalences to \top . One solution is:
 - i. $p \to (q \to p)$
 - ii. $\neg p \lor (q \to p)$ (by $X \to Y \equiv \neg X \lor Y$)
 - iii. $\neg p \lor (\neg q \lor p)$ (again by $X \to Y \equiv \neg X \lor Y$)
 - iv. $\neg p \lor (p \lor \neg q)$ (by commutativity of \lor)
 - v. $(\neg p \lor p) \lor \neg q$ (by associativity of \lor)
 - vi. $\top \vee \neg q \text{ (by } \neg X \vee X \equiv \top)$
 - vii. \top (by $\top \lor X \equiv \top$)
- (d) Show that $((p \to q) \to p) \to p$ ('Peirce's axiom') is valid. Here's a short proof (there are correct longer ones too):
 - i. $((p \to q) \to p) \to p$
 - ii. $(\neg(p \to q) \lor p) \to p \text{ (by } X \to Y \equiv \neg X \lor Y)$
 - iii. $((p \land \neg q) \lor p) \to p \text{ (by } \neg(X \to Y) \equiv X \land \neg Y)$
 - iv. $p \to p$ (by $(X \land Y) \lor X \equiv X$)
 - v. \top (by $X \to X \equiv \top$)
- (e) rewrite $(p \land q) \lor (p \land \neg q)$ to p:
 - i. $p \wedge (q \vee \neg q)$ (using distributivity backwards; can be done otherwise, but longer)
 - ii. $p \wedge \top$ (by $X \vee \neg X \equiv \neg X \vee X \equiv \top$)
 - iii. p (by $X \wedge \top \equiv X$)
- (f) rewrite $(p \to q) \land (p \to r)$ into disjunctive normal form.
 - i. $(p \to q) \land (p \to r)$
 - ii. $(\neg p \lor q) \land (\neg p \lor r)$ (by $X \to Y \equiv \neg X \lor Y$)
 - iii. $\neg p \lor (q \land r)$ (using distributivity backwards)
- 4. Natural deduction:

(a)
$$p \wedge q \vdash p$$

$$\begin{array}{ccc} 1 & p \wedge q & \text{given} \\ 2 & p & \wedge E(1) \end{array}$$

(b)
$$\vdash p \land q \rightarrow p$$

1	$p \wedge q$	ass
2	p	$\wedge E(1)$
3	$p \land q \rightarrow p$	$\rightarrow I(1,2)$

(c)
$$p \vdash q \rightarrow (p \land q)$$

1	p	given
2	q	ass
3	$p \wedge q$	$\wedge I(1,2)$
$\overline{4}$	$q \to p \land q$	$\rightarrow I(2,3)$

(d)
$$p \to (q \to r) \vdash p \land q \to r$$

1	$p \to (q \to r)$	given
2	$p \wedge q$	ass
3	p	$\wedge E(2)$
4	$q \rightarrow r$	$\rightarrow E(1,3)$
5	q	$\wedge E(2)$
6	r	$\rightarrow E(4,5)$
7	$p \wedge q \rightarrow r$	$\rightarrow I(2,6)$

(e)
$$p \to (q \to r) \vdash (p \to q) \to (p \to r)$$

1	$p \to (q \to r)$	given
2	$p \rightarrow q$	ass
3	p	ass
4	q	$\rightarrow E(2,3)$
5	$q \rightarrow r$	$\rightarrow E(1,3)$
6	r	$\rightarrow E(4,5)$
$\overline{7}$	$p \rightarrow r$	$\rightarrow I(3,6)$
8	$(p \to q) \to (p \to q)$	$r \rightarrow I(2,7)$

(f) $(p \land q) \to r \vdash p \to (q \to r)$

1	$p \wedge q \to r$	given
2	p	ass
3	\overline{q}	ass
4	$p \wedge q$	$\wedge I(2,3)$
5	r	$\rightarrow E(1,4)$
6	$q \rightarrow r$	$\rightarrow I(3,5)$
7	$p \to (q \to r)$	$\rightarrow I(2,6)$

(g) $p, q \lor (p \to q) \vdash p \land q$

5. (a) Al: $\neg B \wedge C$

Beau: $\neg A \rightarrow \neg C$.

Casey: $C \wedge (\neg A \vee \neg B)$.

(b) If Al is honest, we have $\neg B$ and C.

If Beau is honest, then we have A, because otherwise we'd have $\neg A$, and Beau says $\neg A \rightarrow \neg C$, so we get $\neg C$, contradiction.

So we must have $A, \neg B, C$. This makes Casey's statement true. So yes, there is just one situation in which they're all true. The testimonies are consistent.

- (c) Casey's follows from the others (in fact, just from Al's). We just saw this: if Al's and Beau's statements are true, then so is Casey's. (Also, Al's statement follows from those of the other two.)
- (d) If all are innocent, A, B, C are all true. Then Al is lying (he says Beau is guilty). Casey is also a liar: he says at least one is guilty. But Beau is honest, since $\neg A \rightarrow \neg C$ is true (as $\neg A$ is false).
- (e) If all statements are true, we are in case (5b) above. So Al and Casey are innocent, Beau is guilty.
- (f) If Beau's statement is false, then we have $\neg A$ and C. But now Casey's statement is true. So no, they can't all be lying.
- (g) If the innocent are honest and the guilty not, we have

(1) $A \leftrightarrow \neg B \land C$, (2) $B \leftrightarrow (\neg A \rightarrow \neg C)$, and (3) $C \leftrightarrow C \land (\neg A \lor \neg B)$.

Assume for the sake of argument that A is true (Al is innocent). Then by (1), $\neg B \wedge C$. But also, as $\neg A$ is false, $\neg A \rightarrow \neg C$ is true, while B is false. So (2) fails, contradiction. So we have $\neg A$: Al is guilty. By (1), we have $\neg (\neg B \wedge C)$. So by De Morgan laws, we have $\neg \neg B \vee \neg C$ and so (4) $B \vee \neg C$. Also, we have $\neg A$, so $\neg A \rightarrow \neg C$ has the same value as $\neg C$ and (2) reduces to $B \leftrightarrow \neg C$. So (4) becomes $B \vee B$, and we see that B is true. By $B \leftrightarrow \neg C$, we see C is false. So Beau is innocent (and sang like a canary); the others are guilty.

Note we only used (1,2) and not (3)! We should check that if $\neg A, B, \neg C$ then (3) is true; otherwise the situation in the question is impossible. But C is false, so both sides of (3) are false, making (3) true. OK.

Another solution: (1)–(3) are like equations. $X \leftrightarrow Y$ says X, Y have the same truth value. So substituting (2) into (1), we must have (5) $A \leftrightarrow \neg(\neg A \to \neg C) \land C$.

We can see what (5) is really saying by reducing it to DNF using equivalences. I will implicitly use associativity of \wedge , but uses of all other equivalences below are explicit. It goes: $A \leftrightarrow (\neg A \wedge \neg \neg C \wedge C)$, $A \leftrightarrow (\neg A \wedge C)$, $A \leftrightarrow \neg A \wedge C$, $(A \wedge \neg A \wedge C) \vee (\neg A \wedge \neg (\neg A \wedge C))$, $(\bot \wedge C) \vee (\neg A \wedge (\neg \neg A \vee \neg C))$, $\bot \vee (\neg A \wedge (A \vee \neg C))$, $\neg A \wedge (A \vee \neg C)$, $(\neg A \wedge A) \vee (\neg A \wedge \neg C)$, $\bot \vee (\neg A \wedge \neg C)$, and finally, $\neg A \wedge \neg C$. So Al and Casey are quilty.

But then, as A, C are false, $\neg A \rightarrow \neg C$ is true. So by (2), B is true — Beau is innocent. Truth tables can also be used but they give less understanding.

- 6. (a) Just check the truth tables of if A then B else C against the proposed formulas. They are the same.
 - (b) i. $\neg p$ is logically equivalent to $p \to \bot$. $p \lor q$ is equivalent to $\neg p \to q$ and so to $(p \to \bot) \to q$. And $\neg (p \land q)$ is logically equivalent to $p \to \neg q$, so to $p \to (q \to \bot)$. Hence $p \land q$ is logically equivalent to $\neg \neg (p \land q)$ and so to $(p \to (q \to \bot)) \to \bot$. So $p \leftrightarrow q$ is equivalent to $p \to q \land q \to p$, and so, using the translation of $p \land q$ above, to $((p \to q) \to ((q \to p) \to \bot)) \to \bot$.
 - ii. $\neg p$ is equivalent to if p then \bot else \top . $p \lor q$ is equivalent to if p then \top else q. And $p \land q$ is equivalent to if p then q else \bot . Finally, $p \leftrightarrow q$ is equivalent to if p then q else $\neg q$, and so to if p then q else (if q then \bot else \top).

- (c) \bot is equivalent to $p \land \neg p$, and \top is equivalent to $\neg \bot$ and so to $\neg (p \land \neg p)$.
- (d) Using Sheffer stroke \uparrow (NAND: $p \uparrow q$ is equivalent to $\neg(p \land q)$), so $p \uparrow q$ is true just when not both p,q are true, we have
 - $\neg p$ is equivalent to $p \uparrow p$,
 - \top is equivalent to $p \uparrow \neg p$ and so to $p \uparrow (p \uparrow p)$,
 - \bot is equivalent to $\neg \top$ and so to $(p \uparrow (p \uparrow p)) \uparrow (p \uparrow (p \uparrow p))$,
 - '¬NAND = AND', so $p \wedge q$ is equivalent to ¬ $(p \uparrow q)$ and so to $(p \uparrow q) \uparrow (p \uparrow q)$,
 - $p \vee q$ is equivalent to $(\neg p) \uparrow (\neg q)$ and so to $(p \uparrow p) \uparrow (q \uparrow q)$,
 - $p \to q$ is equivalent to $\neg p \lor q$ and so (by above) to $p \uparrow \neg q$, and so to $p \uparrow (q \uparrow q)$.