```
<h1>Assignment 4</h1>
1.Loading Dataset into tool
from google.colab import files
uploaded = files.upload()
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
data = pd.read csv("abalone.csv")
<IPython.core.display.HTML object>
Saving abalone.csv to abalone.csv
2.Performing Visualization
Univariate Analysis
data.head()
  Sex Length
               Diameter
                          Height
                                  Whole weight Shucked weight
                                                                 Viscera
weight
   Μ
        0.455
                  0.365
                           0.095
                                        0.5140
                                                         0.2245
0.1010
                  0.265
    М
        0.350
                           0.090
                                        0.2255
                                                         0.0995
1
0.0485
        0.530
                  0.420
                           0.135
                                        0.6770
                                                         0.2565
    F
0.1415
        0.440
                  0.365
                                        0.5160
3
   М
                           0.125
                                                         0.2155
0.1140
        0.330
                  0.255
                           0.080
                                        0.2050
                                                         0.0895
4
    Ι
0.0395
   Shell weight
                 Rings
0
          0.150
                     15
```

```
sns.boxplot(data['Diameter'])
```

0.070

0.210

0.155

0.055

7

9

10

7

1

2

3

4

<matplotlib.axes._subplots.AxesSubplot at 0x7f9624513c90>


```
plt.hist(data['Diameter'])
```



```
plt.plot(data['Diameter'].head(10))
[<matplotlib.lines.Line2D at 0x7f9623fc7ed0>]
```



```
plt.pie(data['Diameter'].head(),autopct='%.3f')
([<matplotlib.patches.Wedge at 0x7f9623edc590>,
  <matplotlib.patches.Wedge at 0x7f9623edcc10>,
  <matplotlib.patches.Wedge at 0x7f9623ee7650>,
  <matplotlib.patches.Wedge at 0x7f9623ee7e90>,
  <matplotlib.patches.Wedge at 0x7f9623e72990>];
 [Text(0.8507215626110557, 0.6973326486753676,
  Text(-0.32611344931648134, 1.0505474849691026,
  Text(-1.0998053664078908, -0.02069193128747144,
  Text(-0.08269436219656089, -1.096887251480709,
 Text(0.9758446362287218, -0.5076684409569241,
 [Text(0.46402994324239394, 0.3803632629138369,
  Text(-0.17788006326353525, 0.5730259008922377, '15.868')
 Text(-0.5998938362224858, -0.011286507974984419, '25.150'),
  Text(-0.045106015743578656, -0.5983021371712958, '21.856'),
  Text(0.5322788924883937, -0.2769100587037768, '15.269')])
```


sns.distplot(data['Diameter'].head(300))
<matplotlib.axes._subplots.AxesSubplot at 0x7f9623e90250>

plt.scatter(data['Diameter'].head(400),data['Length'].head(400))
<matplotlib.collections.PathCollection at 0x7f9623d79c10>


```
plt.bar(data['Sex'].head(20),data['Rings'].head(20))
plt.title('Bar plot')
plt.xlabel('Diameter')
plt.ylabel('Rings')
```

Text(0, 0.5, 'Rings')

sns.barplot(data['Sex'], data['Rings'])
<matplotlib.axes._subplots.AxesSubplot at 0x7f9623ce8450>

sns.jointplot(data['Diameter'].head(50),data['Rings'].head(100))
<seaborn.axisgrid.JointGrid at 0x7f9623c44c50>

sns.barplot('Diameter','Rings',hue='Sex',data=data.head())
<matplotlib.axes._subplots.AxesSubplot at 0x7f9623b9e310>

sns.lineplot(data['Diameter'].head(),data['Rings'].head())
<matplotlib.axes._subplots.AxesSubplot at 0x7f96212682d0>

sns.boxplot(data['Sex'].head(10),data['Diameter'].head(10),data['Rings'].head(10))

<matplotlib.axes._subplots.AxesSubplot at 0x7f962116c4d0>

fig=plt.figure(figsize=(8,5))
sns.heatmap(data.head().corr(),annot=True)
<matplotlib.axes._subplots.AxesSubplot at 0x7f9621046fd0>

sns.pairplot(data.head(),hue='Height')
<seaborn.axisgrid.PairGrid at 0x7f9620eb5910>

sns.pairplot(data.head())

<seaborn.axisgrid.PairGrid at 0x7f961ff9fcd0>

$3. Perform\ Descriptive\ Statistics\ on\ the\ dataset$

data.head()

Sex weight	Length \	Diameter	Height	Whole weight	Shucked weight	Viscera
0 M 0.1010	0.455	0.365	0.095	0.5140	0.2245	
1 M	0.350	0.265	0.090	0.2255	0.0995	
0.0485 2 F	0.530	0.420	0.135	0.6770	0.2565	
0.1415 3 M	0.440	0.365	0.125	0.5160	0.2155	
0.1140 4 I	0.330	0.255	0.080	0.2050	0.0895	
0.0395						

```
Shell weight
                  Rings
0
          0.150
                     15
1
          0.070
                      7
2
          0.210
                      9
3
                     10
          0.155
4
          0.055
                      7
data.tail()
     Sex
          Length
                   Diameter
                              Height
                                      Whole weight
                                                     Shucked weight
4172
           0.565
                                             0.8870
                                                              0.3700
       F
                      0.450
                               0.165
4173
       М
           0.590
                      0.440
                               0.135
                                             0.9660
                                                              0.4390
4174
                      0.475
                               0.205
                                                              0.5255
       Μ
           0.600
                                             1.1760
4175
       F
           0.625
                      0.485
                               0.150
                                             1.0945
                                                              0.5310
4176
           0.710
                      0.555
                               0.195
       М
                                             1.9485
                                                              0.9455
                                      Rings
      Viscera weight
                       Shell weight
4172
               0.2390
                              0.2490
                                         11
4173
               0.2145
                              0.2605
                                         10
4174
                                          9
               0.2875
                              0.3080
4175
               0.2610
                              0.2960
                                         10
4176
               0.3765
                                         12
                              0.4950
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):
 #
     Column
                      Non-Null Count
                                       Dtvne
```

	00 00	non nate count	2 1 7 7 2
0	Sex	4177 non-null	object

2 Diameter 4177 non-null float64

4177 non-null

float64

1

Length

3 Height 4177 non-null float64

4 Whole weight 4177 non-null float64

5 Shucked weight 4177 non-null float64

6 Viscera weight 4177 non-null float64

7 Shell weight 4177 non-null float64

8 Rings 4177 non-null int64

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

data.describe()

	Length	Diameter	Height	Whole weight	Shucked
weight count 4 4177.000		4177.000000	4177.000000	4177.000000	
mean 0.359367	0.523992	0.407881	0.139516	0.828742	
std 0.221963	0.120093	0.099240	0.041827	0.490389	
min 0.001000	0.075000	0.055000	0.000000	0.002000	
25% 0.186000	0.450000	0.350000	0.115000	0.441500	
50% 0.336000	0.545000)	0.425000	0.140000	0.799500	
75% 0.502000	0.615000	0.480000	0.165000	1.153000	
max 1.488000	0.815000)	0.650000	1.130000	2.825500	
count mean std min 25% 50% 75% max	/iscera weigh 4177.00000 0.18059 0.10961 0.00050 0.09350 0.17100 0.25300 0.76000	4 0.23883 4 0.13920 0 0.00150 0 0.13000 0 0.23400 0 0.32900	90 4177.000 31 9.933 93 3.224 90 1.000 90 8.000 90 9.000 11.000	684 169 000 000 000 000	

data.mode().T

	0	7
	0	1
Sex	М	NaN
Length	0.55	0.625
Diameter	0.45	NaN
Height	0.15	NaN
Whole weight	0.2225	NaN
Shucked weight	0.175	NaN
Viscera weight	0.1715	NaN
Shell weight	0.275	NaN
Rings	9.0	NaN

data.shape

(4177, 9)

data.kurt()

Length	0.064621
Diameter	-0.045476
Height	76.025509
Whole weight	-0.023644
Shucked weight	0.595124
Viscera weight	0.084012
Shell weight	0.531926
Rings	2.330687

dtype: float64

data.skew()

Length	-0.639873
Diameter	-0.609198
Height	3.128817
Whole weight	0.530959
Shucked weight	0.719098
Viscera weight	0.591852
Shell weight	0.620927
Rings	1.114102

dtype: float64

data.var()

Length	0.014422
Diameter	0.009849
Height	0.001750
Whole weight	0.240481
Shucked weight	0.049268
Viscera weight	0.012015
Shell weight	0.019377
Rings	10.395266

dtype: float64

data.nunique()

Sex	3
Length	134
Diameter	111
Height	51
Whole weight	2429
Shucked weight	1515
Viscera weight	880
Shell weight	926
Rings	28
al 4	

dtype: int64

4.Check for missing values and deal with them

data.isna()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	\
0	False	False	False	False	False	False	
1	False	False	False	False	False	False	
2	False	False	False	False	False	False	
3	False	False	False	False	False	False	
4	False	False	False	False	False	False	
4172	False	False	False	False	False	False	
4173	False	False	False	False	False	False	
4174	False	False	False	False	False	False	
4175	False	False	False	False	False	False	
4176	False	False	False	False	False	False	

	Viscera weight	Shell	_	Rings
0	False		False	False
1	False		False	False
2	False		False	False
3	False		False	False
4	False		False	False
4172	False		False	False
4173	False		False	False
4174	False		False	False
4175	False		False	False
4176	False		False	False

[4177 rows x 9 columns]

data.isna().any()

Sex	False
Length	False
Diameter	False
Height	False
Whole weight	False
Shucked weight	False
Viscera weight	False
Shell weight	False
Rings	False
1	

dtype: bool

data.isna().sum()

Sex	0
Length	0
Diameter	0
Height	Θ

```
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Rings 0
dtype: int64
data.isna().any().sum()
```

5.Find the outliers and replace them outliers

sns.boxplot(data['Diameter'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c642c10>

quant=data.quantile(q=[0.25,0.75])quant

Length	Diameter	Height	Whole weight	Shucked weight	Viscera
weight \					
0.25 0.450	0.35	0.115	0.4415	0.186	
0.0935					
0.75 0.615	0.48	0.165	1.1530	0.502	
0.2530					

	Shell	weight	Rings
0.25		0.130	8.0
0.75		0.329	11.0

```
igr=quant.loc[0.75]-quant.loc[0.25]
iqr
                  0.1650
Length
                  0.1300
Diameter
Heiaht
                  0.0500
Whole weight
                  0.7115
Shucked weight
                  0.3160
Viscera weight
                  0.1595
Shell weight
                  0.1990
                  3.0000
Rings
dtype: float64
low=quant.loc[0.25]-(1.5*iqr)
low
Length
                  0.20250
Diameter
                  0.15500
Height
                  0.04000
Whole weight
                -0.62575
Shucked weight
                 -0.28800
Viscera weight
                 -0.14575
Shell weight
                 -0.16850
Rinas
                  3.50000
dtype: float64
up=quant.loc[0.75]+(1.5*iqr)
up
Length
                   0.86250
Diameter
                   0.67500
Height
                   0.24000
Whole weight
                   2.22025
Shucked weight
                   0.97600
Viscera weight
                   0.49225
Shell weight
                   0.62750
Rings
                  15.50000
dtype: float64
data['Diameter']=np.where(data['Diameter']<0.155,0.4078,data['Diameter']</pre>
'])
sns.boxplot(data['Diameter'])
<matplotlib.axes. subplots.AxesSubplot at 0x7f961c621090>
```


sns.boxplot(data['Length'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c5ba1d0>

data['Length']=np.where(data['Length']<0.23,0.52, data['Length'])
sns.boxplot(data['Length'])</pre>

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c5618d0>

sns.boxplot(data['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c4b55d0>

data['Height']=np.where(data['Height']<0.04,0.139, data['Height'])
data['Height']=np.where(data['Height']>0.23,0.139, data['Height'])
sns.boxplot(data['Height'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c4325d0>

sns.boxplot(data['Whole weight'])
<matplotlib.axes._subplots.AxesSubplot at 0x7f961c3eba10>


```
data['Whole weight']=np.where(data['Whole weight']>0.9,0.82,
data['Whole weight'])
sns.boxplot(data['Whole weight'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c383d50>

sns.boxplot(data['Shucked weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c2f6150>

data['Shucked weight']=np.where(data['Shucked weight']>0.93,0.35,
data['Shucked weight'])
sns.boxplot(data['Shucked weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c266bd0>

sns.boxplot(data['Viscera weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c298e10>

data['Viscera weight']=np.where(data['Viscera weight']>0.46,0.18,
data['Viscera weight'])
sns.boxplot(data['Viscera weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c396ad0>


```
sns.boxplot(data['Shell weight'])
<matplotlib.axes._subplots.AxesSubplot at 0x7f961c191f90>
```



```
data['Shell weight']=np.where(data['Shell weight']>0.61,0.2388,
data['Shell weight'])
sns.boxplot(data['Shell weight'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f961c10dd50>

 $6. Check \ for \ Categorical \ columns \ and \ perform \ encoding.$

data['Sex'].replace({'M':1,'F':0,'I':2},inplace=True)
data

0 1 2 3 4 4172 4173 4174 4175 4176	Sex 1 0 1 2 0 1 1 0 1	Length 0.455 0.350 0.530 0.440 0.330 0.565 0.590 0.600 0.625 0.710	0.365 0.265 0.420 0.365 0.255 0.450 0.440 0.475 0.485 0.555	Height 0.095 0.090 0.135 0.125 0.080 0.165 0.135 0.205 0.150 0.195	Whole	weight 0.5140 0.2255 0.6770 0.5160 0.2050 0.8870 0.8200 0.8200 0.8200 0.8200	Shucked	weight 0.2245 0.0995 0.2565 0.2155 0.0895 0.3700 0.4390 0.5255 0.5310 0.3500	\
0 1 2 3 4 4172 4173 4174 4175	Visc	era weight 0.1010 0.0485 0.1140 0.0395 0.2390 0.2145 0.2875) 5 6 7 8 8	weight 0.1500 0.0700 0.2100 0.1550 0.0550 0.2490 0.2605 0.3080 0.2960	Rings 15 7 9 10 7 11 10 9				

```
4176
               0.3765
                               0.4950
                                           12
[4177 rows x 9 columns]
7. Split the data into dependent and independent variables.
x=data.drop(columns= ['Rings'])
y=data['Rings']
Х
      Sex
            Length
                     Diameter
                                Height
                                         Whole weight
                                                         Shucked weight
0
         1
             0.455
                        0.365
                                 0.095
                                                0.5140
                                                                  0.2245
1
         1
             0.350
                        0.265
                                 0.090
                                                0.2255
                                                                  0.0995
2
         0
             0.530
                        0.420
                                 0.135
                                                0.6770
                                                                  0.2565
3
         1
             0.440
                        0.365
                                 0.125
                                                0.5160
                                                                  0.2155
4
         2
             0.330
                        0.255
                                 0.080
                                                0.2050
                                                                  0.0895
4172
         0
             0.565
                        0.450
                                 0.165
                                                0.8870
                                                                  0.3700
4173
         1
             0.590
                        0.440
                                 0.135
                                                0.8200
                                                                  0.4390
4174
         1
             0.600
                        0.475
                                 0.205
                                                0.8200
                                                                  0.5255
4175
             0.625
                        0.485
                                 0.150
                                                0.8200
                                                                  0.5310
         0
4176
         1
             0.710
                        0.555
                                 0.195
                                                0.8200
                                                                  0.3500
      Viscera weight
                        Shell weight
0
               0.1010
                               0.1500
1
               0.0485
                               0.0700
2
               0.1415
                               0.2100
3
               0.1140
                               0.1550
4
               0.0395
                               0.0550
4172
               0.2390
                               0.2490
4173
               0.2145
                               0.2605
4174
               0.2875
                               0.3080
                               0.2960
4175
               0.2610
4176
               0.3765
                               0.4950
[4177 rows x 8 columns]
У
0
         15
1
          7
2
          9
3
         10
4
          7
4172
         11
4173
         10
4174
         9
4175
         10
```

```
4176
        12
Name: Rings, Length: 4177, dtype: int64
8. Scale the independent variables
from sklearn.preprocessing import scale
x = scale(x)
array([[-0.0105225 , -0.67088921, -0.50179694, ..., -0.61037964,
        -0.7328165 , -0.64358742],
       [-0.0105225, -1.61376082, -1.57304487, ..., -1.22513334,
        -1.24343929, -1.25742181],
       [-1.26630752, 0.00259051,
                                    0.08738942, ..., -0.45300269,
        -0.33890749, -0.18321163],
       [-0.0105225 ,
                      0.63117159,
                                    0.67657577, ..., 0.86994729,
         1.08111018.
                      0.56873549],
                                    0.78370057, ...,
       [-1.26630752, 0.85566483,
                                                      0.89699645,
         0.82336724,
                      0.47666033],
       [-0.0105225 ,
                      1.61894185,
                                    1.53357412, ..., 0.00683308,
         1.94673739, 2.00357336]])
9. Split the data into training and testing
from sklearn.model selection import train test split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size =
0.2)
print(x_train.shape, x_test.shape)
(3341, 8) (836, 8)
10.Build the Model
from sklearn.linear model import LinearRegression
MLR=LinearRegression()
11.Train the model
MLR.fit(x train,y train)
LinearRegression()
12.Test the model
y pred=MLR.predict(x test)
y pred
array([11.54069678, 9.49895399, 6.52443921, 8.83112905,
7.17856508,
       11.05657152, 11.64851477, 8.14081022, 10.27889967,
6.95196725,
        8.55440106, 6.83326006, 13.65739688, 9.64587342,
```

```
8.9877502 ,
        6.6198843 , 7.80248655, 8.80790722, 8.69792834,
11.26489978,
       12.58112011. 15.56881783. 12.24601581. 7.78309109.
12.33762125.
       11.95248582, 10.96621889, 10.29262391, 6.41772893,
12.64866118.
        9.42259048, 11.69398584, 13.81562522, 10.56547208,
13.77344532,
        9.46104164, 11.50841302, 9.09427682, 11.52031183,
9.70834125,
        8.75237909, 10.55322532, 6.848486 , 10.7103863 ,
8.06918025,
        9.7279291 , 9.73358905 , 11.56150296 , 8.6842891 ,
6.37816315,
        7.73366501, 11.2405997, 7.49066102, 9.62782361,
15.33711265,
        9.8808388 , 13.66376956 , 12.11126275 , 8.49532274 ,
9.8658764 ,
       14.14171599, 10.31795531, 9.16754365, 13.22474541,
6.92352778,
       12.04355879, 11.15099777, 12.75412711, 9.20082015,
12.1712762
        8.89864407, 12.43181958, 6.81709844, 6.5583841,
9.980448
        7.51277931, 10.74486258, 11.35120432, 9.69690972,
7.8923869
        8.13969586, 8.8475261, 7.36041772, 6.64092439,
11.26322908,
        7.71181081, 8.97342293, 10.94593504, 10.4868579 ,
11.73430544,
        8.5731762 , 10.51921164 , 9.73482231 , 9.15055446 ,
7.04296576,
       10.13047939, 8.93314545, 7.37894174, 10.64731869,
11.36743605.
       12.38734199, 9.24562918, 11.19180978, 11.07303436,
9.68069916,
        7.58254393, 9.044852 , 9.95115811, 11.0582989 ,
11.72043006,
        9.67082246, 11.09766282, 9.96802379, 7.53600837,
10.51973965,
        9.17255415, 11.13257636, 10.63089427, 8.75554344,
13.41820769,
       11.5738427 , 10.58324109, 7.60918431, 8.7857617 ,
7.7827081
        7.36470215, 9.94393466, 6.66549046, 7.69276842,
10.08500178,
       11.4109651 , 10.62891559 , 10.82433697 , 10.59739469 ,
10.01546589,
       11.71960777, 6.93158646, 6.21466601, 10.06788277,
```

```
10.72273275,
        8.9801887 , 12.10745006, 12.04020196, 6.88791044,
13.29018362,
       13.22568905. 9.27016388. 10.08534367. 11.90450271.
4.64919239.
       13.61539616, 9.11384336, 12.8187526, 4.31801239,
7.15719192.
        4.8870934 , 12.90531414, 11.12777407, 10.02845693,
6.15250609,
       13.09957628, 10.65641679, 13.42556673, 9.89013183,
7.78006145,
       11.23521899, 14.51022451, 13.47270706, 11.85214133,
9.37453725,
       11.65696338, 10.11378553, 5.86883913, 9.29581286,
13.19204926,
       11.17191568, 6.5645379, 15.48418468, 10.62798278,
12.2998294
        9.70337247, 13.01686409, 8.49448202, 9.16106491,
10.63770327,
        8.35417634, 13.10041415, 13.42677458, 5.79134174,
11.33063144,
       10.39325912, 13.38584917, 13.40916376, 10.42568761,
7.73749088.
        9.16003971, 11.30348186, 7.95272523, 7.93512011,
7.86977829,
        9.1494961 , 10.8396161 , 10.42791526, 12.06135993,
11.31430079,
       13.98523552, 10.72480273, 10.76613282, 10.12098284,
6.66718688,
       10.58914884, 10.93595723, 9.91502263, 11.29411918,
7.88521276,
       9.33995138, 6.50229808, 11.58257584, 6.87771628,
12.67517329,
       16.55763652, 10.69159895, 11.24279756, 9.13442737,
8.72323611.
       10.22601629, 12.05258808, 8.71989817, 12.93656197,
6.45097046,
        6.98213794, 11.52635762, 11.40841129, 10.76663776,
9.38412642,
       10.89935953, 7.31982532, 11.97448724, 9.72507277,
12.26438271,
        9.37215795, 7.12058354, 9.27677394, 8.63066054,
11.30215674,
        6.08077549, 7.92229701, 7.2767753, 10.88676783,
9.21305141,
       12.15461642, 9.63110367, 7.70126284, 12.46114346,
7.59480401.
       12.00577623, 10.28743849, 8.82975649, 11.45512588,
8.3442881
       10.02688931, 10.02630384, 11.44411395, 11.90229353,
```

```
12.00368773,
        7.98148357, 11.33917258, 9.32368155, 7.93424756,
10.99753962,
        7.91754348. 6.16968169. 8.42003195. 10.57324381.
8.73373817.
        8.80732335, 10.8936687, 8.61627177, 12.0350052,
12.42387851.
       15.51804693, 9.82438264, 6.61711709, 8.53958333,
10.29161468,
        5.94139478, 9.97690317, 10.336068 , 10.16515659,
9.15840085,
       10.32360899, 11.30860679, 11.53640835, 7.85714689,
9.15165221,
        6.38278905, 7.59652161, 10.16159927, 10.07843594,
7.97044259,
        8.03569699, 8.02497031, 6.4322271, 11.25501593,
11.83823874,
       11.28503596, 6.87043255, 10.62894104, 10.99084524,
10.87908847,
       12.06087707. 9.72764585. 7.79195275. 11.64611316.
10.57040484,
        8.35775137, 12.23658447, 10.99945952, 15.50560555,
6.87374354.
        8.60776074, 10.8593621 , 10.92229355, 11.07865536,
11.18738022,
       10.93889866, 11.02435426, 10.99694487, 12.24766539,
7.87130066,
       11.28334764, 13.07071067, 14.55709035, 8.95150329,
9.64381581,
        8.53787374, 9.49814311, 11.04742947, 13.38410997,
10.43320536,
        7.60519427, 8.32091959, 13.06360894, 14.50773568,
11.73965713,
       12.48794147, 10.53951409, 11.04174252, 6.71936628,
11.1749459 .
        8.80586382, 8.26446109, 8.00674414, 11.58885536,
6.28875443,
       8.33768758. 12.16236891. 10.08951878. 11.23161672.
11.92167545,
        9.72787884, 9.89092893, 11.41601555, 8.75136282,
8.40485261,
        6.99332406, 12.65369418, 9.28696132, 12.34199251,
11.55961076,
        9.49910065, 7.71538709, 7.66748446, 7.92104409,
9.99653039,
       12.10311262, 13.27010447, 13.89632175, 7.96276005,
8.28105499.
       11.92062257, 11.86485603, 11.30236942, 11.72699485,
7.07287823,
       10.01222378, 9.07595321, 10.99479604, 6.89937414.
```

```
14.57880665,
        9.66840208, 9.34428944, 11.97554553, 7.06939809,
10.02929938,
       10.01331059, 11.15814941, 13.12856179, 11.20333523,
7.57481498.
       13.24071771, 10.50038133, 9.41093928, 11.99729048,
7.34077605.
        7.85625332, 10.20192578, 10.00426864, 6.20358916,
10.16448511,
        6.55642685, 10.77799647, 11.1162666, 13.3863546,
11.92437896,
        9.12040391, 5.99458465, 10.1199788, 9.75812607,
7.02392668,
       13.26021246, 9.4738486, 10.97756881, 8.30744953,
10.68386186,
       12.40904103, 7.22187259, 12.07846073, 9.60276861,
10.5635443 ,
        7.73462142, 13.59163377, 9.06150914, 14.06291771,
10.43109922,
       11.25463293. 11.92593621. 12.17267906. 8.77355942.
10.24123609,
       13.80654218, 6.3145801, 9.96318075, 10.62635096,
12.9487035
        8.78554027, 12.65575278, 11.00725139, 14.78443748,
8.43861728,
       10.6263765 , 10.28836292 , 10.01449497 , 8.25546854 ,
12.1758287 ,
        6.95523486, 8.90112605, 10.04798264, 10.43414356,
9.99962877,
       11.03583022, 9.52482548, 10.7294708, 8.86458229,
10.65738116,
       11.12856712, 13.64794822, 9.60929351, 7.96351326,
9.32198228,
        6.85888818, 10.87625026, 10.08503211, 11.25642064,
10.63925411.
       10.21518367, 10.23375535, 12.56757299, 8.73411142,
10.28266098,
        9.09557167, 12.33719483, 10.23237896, 12.03494537,
7.20341854,
        9.04576135, 13.45789077, 8.05741121, 11.2391486,
9.90515751,
       11.63561003, 10.82240081, 10.02462766, 10.37319587,
9.2853041
        7.32561844, 7.74274613, 7.96664097, 12.12810876,
9.65800013,
        7.05560025, 7.0765866, 8.08674607, 6.1525542,
12.74588665.
        4.48862357, 9.35569147, 10.06336609, 10.56911428,
11.9991985 ,
       11.031902 , 9.10207106, 9.16700788, 4.25036511,
```

```
10.44505832,
       10.5248957 , 6.68575993 , 15.96716935 , 10.82662125 ,
8.09924411,
       10.70869237. 12.35006318. 10.11425341. 9.28638073.
11.28456034.
        6.88890746, 12.26664829, 8.33975993, 8.63395437,
12.7534647 .
       11.58794713, 12.32931121, 11.03947718, 14.44278997,
9.1526754
        9.96753573, 12.26568522, 11.35694972, 12.31490192,
12.81720079,
       10.21722021, 16.29976957, 12.370311 , 12.24447926,
11.173701
       10.179486 , 11.81898172, 9.86346586, 9.27256167,
6.39317203,
        7.96060048, 11.98230431, 7.20884879, 10.19870416,
10.54332877,
        9.60829602, 8.90425344, 8.94845116, 9.35246022,
14.56196371,
       11.03963102, 12.5023797, 9.67399269, 9.3511401,
10.96072018,
       10.69721757, 7.51690148, 11.511517, 9.67811192,
7.33734619.
       11.00287908, 11.87786789, 8.0526612, 11.01033907,
13.36181267,
       10.62125768, 10.75647649, 9.05527551, 9.39940694,
11.25291985,
        9.67323418, 7.80449237, 9.04200461, 11.76068937,
8.95085535,
       15.56892138, 10.43707649, 12.59822203, 12.83931103,
11.14957871,
       11.93105691, 7.80490952, 10.47569057, 7.80852019,
10.03441283,
       11.00290668, 6.3213835, 13.28008836, 5.44262249,
10.0072763 .
        6.90588402, 10.62869477, 8.71239076, 10.87123808,
11.72001852,
        7.19167124, 7.92167321, 7.68634043, 9.96813104,
10.21169043.
        8.96348928, 10.75308121, 11.65412869, 14.58618679,
14.05054621,
       12.02425713, 10.66056363, 8.00168655, 8.56812593,
6.02905054,
       12.895106 , 9.4923062 , 11.47145176 , 10.53720392 ,
12.83304005,
       10.33670183, 16.03943759, 12.02522946, 8.5739522,
11.98857379,
        8.82110981, 10.45519425, 9.1200697, 10.52044421,
8.87813041,
        6.72495962, 8.06392527, 9.19981327, 13.39096262,
```

```
9.26367146,
        8.14837182, 8.85554945, 6.30515766, 10.25859235,
11.04432486,
       11.93588945. 9.36256843. 9.68425387. 11.76199261.
9.00569387.
        9.23569088, 11.51970577, 9.12069266, 7.94013073,
11.06286984.
       12.92030963, 13.8943073, 10.91871503, 8.74697235,
6.71089935,
       14.71731037, 12.09769803, 8.54391856, 11.68705443,
11.08870433,
       10.27946584, 10.51998226, 12.85751036, 9.9292065
10.70116006,
        8.89267373, 7.05760295, 11.68713402,
                                              6.20648635,
10.82224239,
       11.04772861, 11.3995166, 10.33354214, 6.34144409,
15.50105519,
        7.92176241, 9.87279381, 6.70097096, 7.83487912,
6.55063095,
        5.93984218, 11.28170239, 7.97955425, 7.27822732,
10.22515415,
        4.28748681, 7.5934957, 12.16089328, 13.19196436,
11.89672074.
        7.14104358, 10.51890117, 6.9754901, 10.98348927,
11.85615632,
       12.27658476, 10.26603983, 11.40583227, 7.99224812,
12.32434175,
       11.09305975, 10.71953854, 10.25748861, 10.4759517,
8.49307286,
       12.12488102, 8.65438527, 8.01858675, 7.14776458,
8.63032337,
       11.2980198 , 11.29170328 , 10.86003592 , 6.26014084 ,
12.08001959,
       10.43953314, 7.73987972, 11.99588048, 13.72401048,
8.63330819.
        7.49253125, 10.20135478, 9.58333657, 10.5842399,
11.62679412,
        7.68972791, 9.4646659, 10.75059857, 6.69462086,
10.68554059.
        7.55337542, 10.11978428, 11.15513888, 9.78756708,
7.86669589,
        9.40048379, 5.66182888, 7.03918958, 11.57230128,
6.92239735,
       10.71587496, 11.52892599, 7.79487777, 6.4461293,
11.59679899,
       10.91807069, 11.65768382, 11.5984792 , 12.56106231,
10.52476051.
        9.20765166, 14.4122295 , 8.04542852, 11.0218053 ,
6.12226262,
       10.45628958, 11.0452751, 10.65411905, 11.95752265,
```

```
11.4082904 ,
       10.44351749, 5.87083955, 12.67297728, 9.14008833,
11.14123184,
       10.97716762. 7.66987454. 10.21859958. 8.11501349.
4.03027355.
        9.84334321, 11.14981452, 12.15089576, 7.67781124,
11.38619315.
       13.20374376, 7.11300851, 8.49650293, 14.82672519,
9.7862761
       11.59659898, 7.85166071, 8.49747448, 7.43724277,
12.13105014,
       10.07690974, 6.28311991, 10.87273209, 9.28976732,
7.25922486,
       10.9465525 , 15.16016343 , 7.79559915 , 12.09636916 ,
10.19603123,
        7.37850565, 6.6609198, 6.75683481, 6.00570726,
10.00832715,
        8.4120339 , 9.89161085, 13.39563291, 10.02679784,
10.73800476,
        8.44704692, 12.26196649, 11.45369701, 9.22437065,
9.12619882,
        7.25844296, 8.19338082, 10.0747906, 8.26008144,
10.92636769.
        7.66241316, 10.30171643, 11.85160087, 8.24892183,
11.82981831,
       15.76865947, 8.55261702, 11.5525222, 8.34384644,
6.62327531,
        8.88634835, 13.30231386, 11.10002118, 9.72346458,
13.64771642,
       10.265396441)
pred=MLR.predict(x train)
pred
array([11.08442404, 7.61246988, 11.40560108, ..., 6.23338339,
        6.68160695, 11.62326458])
from sklearn.metrics import r2 score
accuracy=r2 score(y test,y pred)
accuracy
0.4563299997265451
MLR.predict([[1,0.455,0.365,0.095,0.5140,0.2245,0.1010,0.150]])
array([9.87256759])
13. Measure the performance using Metrics
from sklearn import metrics
from sklearn.metrics import mean squared error
np.sqrt(mean squared error(y test,y pred))
```

2.400658687128463

LASSO

```
from sklearn.linear model import Lasso, Ridge
#intialising model
lso=Lasso(alpha=0.01.normalize=True)
#fit the model
lso.fit(x train,y train)
Lasso(alpha=0.01, normalize=True)
#prediction on test data
lso pred=lso.predict(x test)
#coef
coef=lso.coef
coef
array([-0.00867704, 0.
                               , 0. , 0.47886483,
0.14076131,
                  , 0.
        0.
                               , 0.81943443])
from sklearn import metrics
from sklearn.metrics import mean squared error
metrics.r2 score(y test,lso pred)
0.35217661094369934
np.sqrt(mean squared error(y test,lso pred))
2.6205415255898603
RIDGE
#initialising model
rg=Ridge(alpha=0.01, normalize=True)
#fit the model
rg.fit(x_train,y_train)
Ridge(alpha=0.01, normalize=True)
#prediction
rg pred=rg.predict(x test)
rg pred
array([11.48829185, 9.49185638, 6.52855715, 8.88572713,
7.1794515 ,
       11.05400464. 11.61368185. 8.12311058. 10.32334947.
6.97106698,
        8.57358187, 6.92975464, 13.52565076, 9.71367977,
8.99229802.
        6.59818005, 7.83324476, 8.82713334, 8.70295194,
11.31079488,
       12.46405845. 15.41781124. 12.20179819. 7.80859249.
12.21941921,
       11.89746333, 11.02051962, 10.37978812, 6.40274613,
```

```
12.5752096 ,
        9.49536694, 11.73343905, 13.70396588, 10.53086589,
13.5982056
        9.45932051, 11.46540406, 9.32111182, 11.6327897,
9.67613273.
        8.77272442, 10.55104433, 6.94417975, 10.67002081,
8.22482202.
        9.69096894, 9.80602087, 11.60076362, 8.7238234,
6.37643978,
        7.71860431, 11.30796156, 7.51879937, 9.69349058,
15.22763351,
        9.86282438, 13.54770668, 12.0519293, 8.51635754,
10.01110922,
       13.96406923, 10.35099925, 9.17449114, 13.06598803,
6.91933105,
       11.940958 , 11.09800171, 12.64262738, 9.17196555,
12.14184668,
        8.86549075, 12.32471479, 6.91419185, 6.5446013,
9.87679619,
        7.49979378. 10.76058357. 11.25199274. 9.86106422.
7.89388401,
        8.37874926, 8.85212072, 7.35881066, 6.62699443,
11.2281232 .
        7.6803694 , 8.94168637 , 10.95538742 , 10.53536396 ,
11.75822781,
        8.6316109 , 10.57898259 , 9.72618332 , 9.19702998 ,
7.05287605,
       10.1853031 , 8.93128132, 7.38872276, 10.65090156,
11.36569117,
       12.41541576, 9.2367783, 11.11851486, 11.10208616,
9.68954224,
       7.75166796, 9.05878184, 9.93400923, 11.07427757,
11.68715435,
        9.66808682, 11.04776757, 9.91355145, 7.53134185,
10.56537734.
        9.18490047, 11.15626926, 10.63660332, 8.73460768,
13.27876897,
       11.56363276, 10.5354652, 7.63624197, 8.78808886,
7.84197225.
        7.36098072, 9.92803929, 6.69636345, 7.68963635,
10.03629225,
       11.40370911, 10.62421834, 10.80896965, 10.65490043,
10.11986272,
       11.69670119, 6.96258016, 6.20255724, 10.06623424,
10.72316963,
        8.99348206, 12.09107221, 11.97218142, 6.91257446,
13.19318951.
       13.13463583, 9.28686352, 10.0689656, 11.91721126,
4.7631824
       13.51087731, 9.11531517, 12.81740474, 4.43780222,
```

```
7.16790279,
        5.00112592, 12.86453911, 11.10478879, 10.01843888,
6.1461971
       13.0028451 , 10.79678097, 13.36006937, 9.94739918,
7.83117841.
       11.18475737, 14.32890667, 13.39670664, 11.85487015,
9.33234782,
       11.59427795, 10.15109076, 5.85820739, 9.30382537,
13.18305534,
       11.11248639, 6.54275907, 15.29214822, 10.55212795,
12.32715875,
        9.68922795, 12.94650132, 8.54586199, 9.15940396,
10.60976459,
        8.3247563 , 12.96480032 , 13.40086387 , 5.78719843 ,
11.3238015 ,
       10.45312483, 13.37895337, 13.32003513, 10.36924346,
7.76356965,
        9.17163962, 11.30404613, 7.95803521, 7.94620503,
7.83062425.
        9.15279212. 10.82942256. 10.43350984. 12.06239446.
11.29198439,
       13.86994304, 10.77448157, 10.84682398, 10.08766098,
6.68154558.
       10.6373005 , 11.04170201, 9.90525856, 11.29544118,
7.9058032
        9.35249912, 6.48343295, 11.56325071, 6.91258952,
12.63592168,
       16.38940653, 10.70491488, 11.16838137, 9.10528211,
8.85104643,
       10.23729585, 11.89814771, 8.71838891, 12.79383571,
6.44079822,
        6.9707811 , 11.43537137 , 11.40028719 , 10.7716477 ,
9.36116658,
       10.94608619, 7.34322513, 11.8331405, 9.84685072,
12.11155414.
        9.45815459, 7.11376981, 9.25863825, 8.65726028,
11.31982481,
        6.07524434. 7.97503133. 7.30637776. 10.81806281.
9.20357185,
       12.07204695, 9.61627488, 7.74887857, 12.442504 ,
7.58886688,
       11.99380739, 10.24772157, 8.77839811, 11.45146639,
8.39899075,
       10.11320108, 10.0245763, 11.41739069, 11.82376497,
11.96302391,
        7.97452309, 11.30414343, 9.44022391, 7.94857294,
10.97816286,
        7.89419368, 6.17345341, 8.4501155, 10.59587552,
8.85373305,
        8.87748269, 10.77863866, 8.61787217, 12.01199382,
```

```
12.42080795,
       15.40130648, 9.86589674, 6.65727677, 8.57728889,
10.217948
        5.90972332, 10.00264519, 10.41249197, 10.26984907,
9.21742817.
       10.37729794, 11.33307884, 11.55995441, 7.91042502,
9.15348908.
        6.3819584 , 7.61432151, 10.13642697, 10.19031162,
7.99443324,
        8.0825615 , 8.08070422 , 6.47164249 , 11.24267189 ,
11.84608469,
       11.29310399, 6.89175627, 10.56923366, 11.09699615,
10.90404062,
       11.99250267, 9.80642905, 7.76902873, 11.57262024,
10.6298646 ,
        8.3825652 , 12.26505129 , 10.94913874 , 15.33660141 ,
6.9182721
        8.66492578, 10.8733721 , 10.93365862, 11.02661621,
11.16986407,
       10.96052154. 11.02382056. 10.97735488. 12.20802827.
7.8451432
       11.2313359 , 13.01478444 , 14.40754815 , 9.06007376 ,
9.72137464.
        8.56117855, 9.62320742, 11.06000929, 13.33161608,
10.43813182,
        7.56920004, 8.35508948, 12.99272773, 14.37281313,
11.7633051
       12.39452222, 10.47734612, 11.05119654, 6.71210553,
11.12718781,
        8.83418598, 8.29063699, 8.04954168, 11.53899331,
6.25774546,
        8.35866575, 12.16360395, 10.08106856, 11.17571594,
11.91187196,
        9.8289716 , 9.93515592 , 11.32459497 , 8.75770579 ,
8.45203268.
        7.01934846, 12.66381774, 9.28363872, 12.23227455,
11.57595187,
        9.53096951. 7.73378041. 7.68983706. 7.91609618.
10.07741908,
       12.02544182, 13.19229437, 13.75259075, 7.99893428,
8.30439167,
       11.86533153, 11.86727546, 11.24065322, 11.73004046,
7.07480034,
       10.10675942, 9.20759516, 11.05798055, 6.87157171,
14.43409935,
        9.64182668, 9.38025051, 11.97495499, 7.08438188,
10.03435746,
       10.04408419, 11.14318561, 13.05714042, 11.20794865,
7.56695973,
       13.13045988, 10.55064571, 9.33754557, 11.98287976,
```

```
7.33022646,
        7.8561511 , 10.23271788 , 9.97719298 , 6.21740842 ,
10.22347911,
        6.53635592. 10.74978627. 11.11174262. 13.3400204.
11.85700009.
        9.18547194, 5.99196026, 10.11339035, 9.75578879,
7.01064331.
       13.12775642, 9.44123659, 10.94166899, 8.30328587,
10.65615788,
       12.3805864 , 7.24653988 , 12.02247978 , 9.65949225 ,
10.5457433
        7.76029501, 13.44617552, 9.04120181, 13.93357462,
10.41136326,
       11.25612879, 11.94969346, 12.15010205, 8.78209152,
10.17434646,
       13.7477988 , 6.32931606, 9.92530257, 10.65781341,
12.87900268,
        8.80958739, 12.53166118, 11.10652958, 14.65226729,
       10.61712776. 10.28878344. 10.15604084. 8.244834 .
12.18860294.
        6.930467 , 8.91382648, 10.02706252, 10.47403862,
10.03477945,
       11.02756519, 9.48187924, 10.64974581, 8.86664196,
10.7649816 ,
       11.1032976 , 13.51835898 , 9.75094048 , 8.02888855 ,
9.33012471,
        6.83033455, 10.94304311, 10.21005067, 11.19062782,
10.66915739,
       10.15175642, 10.24459739, 12.45319066, 8.72214027,
10.29686448,
        9.13018844, 12.27167032, 10.20668047, 12.00545148,
7.18755909,
        9.0397991 , 13.37428074, 8.10959737, 11.25904744,
9.94240709.
       11.62649409, 10.78812888, 10.01422036, 10.32715966,
9.29001675,
        7.3266678 . 7.75068445 . 7.97596299 . 12.15602707 .
9.73032029,
        7.05584208, 7.09625707, 8.11239959, 6.16027227,
12.66807021,
        4.60567084, 9.343517 , 10.06244919, 10.65287057,
12.03523628,
       10.99342212, 9.09767521, 9.17552459, 4.36839568,
10.42384283,
       10.60574791, 6.68956059, 15.80742279, 10.7951137,
8.08189712,
       10.6926337 , 12.21128071, 10.14654396, 9.41739236,
11.28195112,
        6.93248938, 12.26885255, 8.39572045, 8.7406461,
```

```
12.69034168,
       11.49318133, 12.25964808, 11.08014253, 14.37427062,
9.21617514,
        9.96818875, 12.27758929, 11.28015796, 12.22329462.
12.77737085.
       10.23352345, 16.08497568, 12.37872426, 12.14813951,
11.18622756.
       10.23787776, 11.8158512 , 9.82904188, 9.33779071,
6.3901006
       8.03757195, 11.94852768, 7.22909104, 10.18668172,
10.5022804
        9.72012851, 8.88451057, 8.92805863, 9.33431875,
14.39529363,
       11.10718108, 12.2307042, 9.65006821, 9.36205093,
11.05877757,
       10.69884279, 7.53724444, 11.50104215, 9.72891912,
7.35115781,
       11.04419274, 11.79715097, 8.05207826, 11.06362993,
13.2671064 ,
       10.64596476, 10.69952882, 9.24874574, 9.51034352,
11.2793115 .
       9.81975112, 7.81825267, 9.03856725, 11.76784756,
9.02808058.
       15.44633968, 10.40604045, 12.57636427, 12.85224006,
11.09291857,
       11.95890952, 7.83312891, 10.44266764, 7.79073352,
10.0046309 ,
       11.02375359, 6.33725408, 13.11043708, 5.4294093,
10.04486242,
        6.99905506, 10.67360861, 8.74171042, 10.84105225,
11.66436845,
        7.20706858, 7.92164592, 7.68446934, 10.02502452,
10.23595405,
        9.0013227 , 10.68778694, 11.66251239, 14.44788625,
14.05511425.
       11.94679343, 10.64891309, 7.9968667, 8.56823768,
6.00915406,
       12.76016519, 9.50907796, 11.48713264, 10.5648931,
12.79860507.
       10.38920132, 15.85105763, 12.01034026, 8.57200724,
11.99949995,
        8.82714977, 10.4553905, 9.13303597, 10.57447283,
8.86155487,
        6.73062625, 8.07342506, 9.17215383, 13.2858116,
9.26436748,
        8.18105105, 9.0107502, 6.26498889, 10.21779876,
11.0409425 ,
       11.92544274, 9.33789576, 9.67647565, 11.77542023,
9.02666917,
        9.25561352, 11.57869119, 9.12013424, 8.20186749,
```

```
11.06676989,
       12.7788211 , 13.76491299 , 10.94068 , 8.75672159 ,
6.690432
       14.4956619 , 12.06751912 , 8.57345473 , 11.64608222 ,
11.04176895.
       10.36441448, 10.56046046, 12.86718174, 9.99253427,
        8.90708521, 7.08501527, 11.61623972, 6.20261783,
10.88939725,
       11.00938563, 11.41003739, 10.32121915, 6.34835823,
15.26133349,
        7.92926401, 9.85697784, 6.7916182, 7.80934371,
6.56335507,
        5.92765412, 11.25343232, 8.01402096, 7.2498473,
10.40425517,
        4.40903645, 7.614689 , 12.13145246, 13.12946032,
11.86873141,
        7.16295937, 10.57670554, 6.98745094, 11.02971488,
11.86152536,
       12.25054238. 10.35007946. 11.36374006. 8.00953907.
12.26949318,
       11.05956441, 10.64906129, 10.20220601, 10.52735951,
8.51091687.
       12.11579486, 8.65857757, 8.0365289, 7.16009108,
8.59460134,
       11.23746879, 11.33333432, 10.92356515, 6.28305417,
12.07855713,
       10.48508398, 7.72373265, 11.95374443, 13.60155892,
8.61754843,
        7.52310305, 10.27127525, 9.69304382, 10.61604583,
11.67588014,
        7.67551672, 9.50184394, 10.77950122, 6.71044345,
10.68353891,
        7.58866907, 10.14479145, 11.15488106, 9.87437438,
7.86423978.
        9.49931356, 5.6554684, 7.03718954, 11.54741398,
7.1869371
       10.71132375, 11.49623964, 7.84589086, 6.44741686,
11.5387835
       10.95640556, 11.7450581, 11.61736114, 12.42439193,
10.51406192,
        9.21374258, 14.28205012, 8.02749499, 11.10564932,
6.10609667,
       10.352845 , 11.06878526, 10.66838316, 12.01038164,
11.34981665,
       10.47836566, 5.87230133, 12.69151735, 9.15469969,
11.21324205,
       11.03403314, 7.69318537, 10.29300193, 8.17806607,
4.43535199,
        9.82008619. 11.24436145. 12.12476841. 7.66668345.
```

```
11.36774655,
       13.16987311, 7.09171718, 8.51840563, 14.70366035,
9.83090434,
       11.59774925, 7.85011687, 8.52249436, 7.49062757,
12.13273433,
       10.0800497 , 6.25534426, 10.7752602 , 9.29336829,
7.28333626.
       11.00926295, 15.00915824, 7.80843969, 12.03795447,
10.16456012,
        7.38610632, 6.67694658, 6.76395885, 6.00137317,
10.07374731,
        8.40384552, 9.90397019, 13.25680879, 10.10226594,
10.79620112,
        8.47371473, 12.27215101, 11.37223303, 9.24073609,
9.26123534,
        7.30210992, 8.18668614, 10.01057952, 8.16795417,
10.85423587,
        7.67387938, 10.27239999, 11.84077286, 8.26251054,
11.87670125,
       15.55387759, 8.61521603, 11.54492611, 8.36432299,
6.61923449.
       8.89563542, 13.16830017, 11.16941883, 9.72452574,
13.57075134,
       10.31189721])
rg.coef
array([-0.35348315, -0.6483044 , 0.30214801, 1.01384178,
0.86876941,
       -1.37261901, -0.17689802, 1.75483723])
metrics.r2_score(y_test,rg_pred)
0.45466391197604406
np.sqrt(mean squared error(y test,rg pred))
2.4043343069157084
```