Dimensionality Reduction

t-Distributed Stochastic Neighbor Embedding (t-SNE)

Where does t-SNE fit in?

- Dimensionality reduction algorithms:
 - Map high-dimensional data to a lower dimension
 - While preserving structure
- They are used for
 - Visualization
 - Performance
 - Curse of dimensionality
- A ton of algorithms exist
- t-SNE is specialized for visualization

t-Stochastic neighbor embedding (t-SNE)

- t-Distributed Stochastic Neighbor Embedding is a non-linear dimensionality reduction algorithm used for exploring highdimensional data.
- It maps multi-dimensional data to 2- or 3-dimensions for visualization.
- Better than existing techniques at creating a single map that reveals structure at many different scales.
- t-SNE is distance-based dimensionality approach, but also tends to preserve topology

PCA, LDA, t-SNE example comparison

- PCA, LDA, and t-SNE were all applied to the MNIST handwritten digit data
 - The data is original in 783 dimensions
 - The following plots are 2 dimensions

Visualization of classes in MNIST data

Principal Component Analysis (PCA)

Visualization of classes in MNIST data

Linear Discriminant Analysis (LDA)

First Linear Discriminant

Visualization of classes in MNIST data

Stochastic Neighbor Embedding

- t-SNE is a variant of SNE which is computationally faster
- We'll start with SNE however:
 - it is easier to explain
 - the t-SNE improvements will not make sense unless we get the basic idea first

SNE summary idea

- Computes pairwise distances between points in the original highdimensional space
 - the distance function (actually a similarity measure) is NOT Euclidean, but based on Gaussian probability assumptions
 - points close together have a value close 1; points far apart have values close to 0
- Attempts to place the points on the low-dimensional space (usually 2d or 3d space) so that they have the same pairwise distances on the lower dimensional space
- It is an iterative and stochastic technique
 - Not deterministic like PCA (every run can produce different results)
 - Not as fast as PCA
- Note: The results are not "interpretable"
 - There are no weights or loadings like PCA or LDA, only transformed points

SNE more details...

- Convert Euclidean distances between high-dimensional data points into conditional probabilities that represent similarity
- Similarity of point x_i with x_j is the conditional probability, p_{ji} , that x_i would pick x_j as its neighbor if neighbors were picked in proportion to their probability density under a Gaussian centered at x_i .

$$p_{j|i} = \frac{\exp(-\parallel x_i - x_j \parallel^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\parallel x_i - x_k \parallel^2 / 2\sigma_i^2)}$$

Probabilistic similarity example

Euclidean Distances

	X_2	X ₃	X_4	X ₅	x ₆
From x ₁ to:	5.8	29.4	25.1	45.7	17.3

$$\exp\left(-\|x_1 - x_k\|^2 / 2\sigma_1^2\right)$$

Assuming σ_1^{2}		x_2	X ₃	x_4	X ₅	x ₆	Sum
110	From x ₁ to:	0.86	0.02	0.06	0.00	0.26	1.1
40	From x_1 to:	0.65	0.00	0.00	0.00	0.02	0.6

Probabilistic similiarities

Assuming σ_1^2		X_2	X ₃	X_4	X ₅	x ₆	_
110	From x_1 to:	0.72	0.02	0.05	0.00	0.22	
40	From x_1 to:	0.96	0.00	0.00	0.00	0.04	

The "perplexity" parameter is used to determine the size of a neighborhood around a point; and it is used to set the σ_i^2 values.

t-SNE variation (1 of 2)

- The high-D similarities in SNE are not symmetric.
- t-SNE modifies this to make the similarities symmetric.

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}$$

t-SNE variation (2 of 2)

 For SNE, similarities are also computed for the low dimensional space according to a Gaussian probability distribution

$$q_{ij} = \frac{\exp(-||\mathbf{y}_i - \mathbf{y}_j||^2)}{\sum_{k \neq i} \exp(-||\mathbf{y}_i - \mathbf{y}_k||^2)}$$

 To improve quality of resuls, t-SNE modifies the low-D similarity to be based on a t-Distribution

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k - y_l\|^2\right)^{-1}}$$

t-SNE continued

- The original high-D points are fixed
 - Indeed, once we have the pairwise similarity matrix; we no longer need the original points
- The representation of the original points on the lower dimensional space however is what we can change.
- The goal is to make similar high-D points also similar in low-D; and dissimilar high-D points also dissimilar in low-D
- Mathematically, t-SNE does this by arranging the low-D points in a way to minimize the Kullback-Leibler divergence function:

$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

t-SNE continued

- The Kullback-Leibler divergence function: $C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$
 - \rightarrow large penalty if a large p_{ij} is modeled by a small q_{ij}
 - \rightarrow only a small penalty if a small p_{ij} is modeled by a large q_{ij}
 - This provides a focus on "local structure" of the data
- The points in low-D space are moved around to minimize C; there are multiple iterations, and the directions of movement are determined by the gradient function:

$$\frac{\delta C}{\delta y_i} = 4 \sum_{j} (p_{ij} - q_{ij}) (y_i - y_j) \left(1 + ||y_i - y_j||^2 \right)^{-1}$$

t-SNE continued

The movement on low-D space, influence by the gradient function, appears to be like acts like a spring action: points that should be close together are attracted; points that should be far apart are repelled.

9

t-SNE in R