(104168) אלגברה ב'

תרגילים ממבחנים על דטרמיננטות ועל צורת ובסיס ז'ורדן

אלן סורני

2022 בנובמבר 30

 $\det\left(I+A
ight)=1$ וגם $\det\left(A
ight)=0$ ווא ביל $\det\left(A
ight)=0$ מועד א' - אביב 2020). תהיינה $A\in\operatorname{Mat}_n\left(\mathbb{F}
ight)$ תהיינה $A,B\in\operatorname{Mat}_3\left(\mathbb{R}
ight)$. תהיינה (2020). תהיינה ל

$$\det(A) = \det(A + B) = \det(A + 2B) = \det(A + 3B) = 1$$

 $\det{(3A+7B)}$ מיצאו את

תהיל 3 (מועד א' - חורף 2022). תהי

$$.A := \begin{pmatrix} 0 & -1 & -1 & 0 \\ 1 & -2 & -1 & -1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix} \in \operatorname{Mat}_{4}\left(\mathbb{C}\right)$$

- עבורה $P^{-1}AP$ מטריצת ז'ורדן. את עבורה $P\in \mathrm{Mat}_4\left(\mathbb{C}\right)$ מטריצה מטריצה ומיצאו את את צורת ז'ורדן של 1.
 - . הוכיחו כי A^{3} ו ו- A^{3} דומות.

. הראו כי $J_n\left(\lambda
ight)^2$ אינה לכסינה. $\lambda\in\mathbb{C}\setminus\{0\}$ היהי $\lambda\in\mathbb{C}\setminus\{0\}$ אינה לכסינה. $J_n\left(\lambda
ight)^2$ מועד א' - אביב

 $T\in \mathrm{End}_{\mathbb{C}}\left(V
ight)$ יהי , \mathbb{C} מועד א' - אביב 2022). יהי V מרחב וקטורי יהי (מועד א' - אביב

עבורנו V של B פיים בסיס אם ורק אם ורק אם עבורו $p\left(S\right)=T$ עבורו אפיים אפיים של אינתן $S\in\mathrm{End}_{\mathbb{C}}\left(V\right)$ של אינתן אם חיים אם A עבורה מטריצת ז'ורדן עבורה (ב)

.
$$[T]_{B}=p\left(J\right)$$

- עבורו $S\in \mathrm{End}_{\mathbb{C}}\left(V
 ight)$ כי און הוט הוכיחו הוא $m_{T}\left(x
 ight)=x^{3}$ הוא המינימלי של הפולינום המינימלי לווא $M_{T}\left(x
 ight)=x^{3}$ הוא המינימלי של הפולינום המינימלי הפולינום המינימלי האוא $S^{2}=T$
 - . $\dim\ker\left(S^4
 ight)=3$ וגם $\dim\ker\left(S^2
 ight)=2$ עבורו אבורו $S\in\operatorname{End}_{\mathbb C}\left(\mathbb C^4
 ight)$ אופרטור לאופרטת מפורשת מפורשת 3.3

עבורה $A\in {
m Mat}_3\left(\mathbb{R}
ight)$ מטריצה כי קיימת הראו יהרא א' - חורף 2021). הראו כי קיימת מטריצה (מועד א'

$$A^{20} + A^{21} = \begin{pmatrix} 1 & 20 & 0 \\ 0 & 1 & 21 \\ 0 & 0 & 1 \end{pmatrix}$$

רמז: ראינו בהרצאה כי

$$J_n(\lambda)^k = \sum_{i=0}^k \binom{k}{i} \lambda^{k-i} J_n(0)^i$$