Probabilistic Approaches to Solving Node-Level Tasks in Real Graphs

Jaemin Yoo

Postdoctoral Research Fellow

Carnegie Mellon University

Outline

- Introduction
- Part 1: Probabilistic modeling of graphs
- Part 2: Proposed approach for feature estimation
- Conclusion

Graphs (1/2)

- Graphs are a data structure for modeling relationships
 - Graph consists nodes that are connected by edges
- Graphs provide meaningful insights and observations
 - E.g., nodes 1, 2, and 3 are closely related to each other

Graphs (2/2)

- Graph-structured data are very common in real-world applications
 - Social network represents the friendships between users
 - Review system models user experience for items as graphs
 - Chemical compound consists of interactions between elements

Node Classification (1/2)

- Node classification is a fundamental task on graphs
 - Given a graph G and the labels of some nodes $\mathcal{V}_{ ext{train}}$
 - **Problem** is to predict the labels of remaining nodes \mathcal{V}_{test}
- Real-world applications:
 - Finding malicious users in a social network
 - Classifying new items in an e-commerce graph
 - Finding patients that may have a certain disease

Node Classification (2/2)

- Node classification is a generalization of many node-level tasks
 - Semi-supervised learning
 - Node features and given, but only a few nodes have labels
 - Personalized recommendation
 - Personalized node labels are assigned given a query user
 - Node clustering
 - Structure-based labels are assigned to a few anchor nodes
 - Anomaly detection
 - Only the "normal" node labels are observed during training

Probabilistic Approaches

- Main idea: To understand a graph G as a probabilistic model M
 - Each node i is a (discrete) random variable $Z_i \in \{c_1, \dots, c_L\}$
 - Each edge (i, j) represents the relationship between Z_i and Z_j

Advantages

- Resulting algorithms are easily justified and interpretable
- Effectively propagate observed information with few parameters

Graph Neural Networks (GNN)

- Main idea: To learn embeddings of nodes in an end-to-end way
 - Generates a low-dimensional representation \mathbf{h}_i for each node i
 - Done by multiple layers of **graph convolutions** having nonlinearity

Overview of This Talk

- Goal: Combine probabilistic modeling and deep learning on graphs
 - To design interpretable, robust, and generalizable approaches

- This talk consists of two parts:
 - Part 1: Introduce the first three works on probabilistic modeling
 - Part 2: Introduce the last work [KDD'22] on node feature estimation

Outline

- Introduction
- Part 1: Probabilistic modeling of graphs
 - Preliminaries
 - Our previous works
- Part 2: Proposed approach for feature estimation
- Conclusion

Markov Random Fields

- Q: How to determine the probabilistic properties of G?
- We model G as a pairwise Markov random field (MRF)
 - Define the **joint probability** of all nodes **Z** as follows:

$$p(\mathbf{z}) = \frac{1}{C} \prod_{i \in \mathcal{V}} \phi_i(z_i) \prod_{(i,j) \in \mathcal{E}} \psi_{ij}(z_i, z_j)$$

- where ϕ_i and ψ_{ij} are called **node** and **edge potential** functions
- \Rightarrow Higher local potentials make a higher global probability $p(\mathbf{z})$

Node Potentials

- Node potential ϕ_i represents the prior information of node i
- Assume a binary random variable $Z_i \in \{D, R\}$
 - $\phi_i(D) > 0.5$ means that node i is more likely to be a democrat
 - E.g., we have some evidence about the (unknown) state of node i

$$p(\mathbf{z}) = \frac{1}{C} \prod_{i \in \mathcal{V}} \phi_i(z_i) \prod_{(i,j) \in \mathcal{E}} \psi_{ij}(z_i, z_j)$$

Edge Potentials

$$p(\mathbf{z}) = \frac{1}{C} \prod_{i \in \mathcal{V}} \phi_i(z_i) \prod_{(i,j) \in \mathcal{E}} \psi_{ij}(z_i, z_j)$$

- Edge potential ψ_{ij} represents the correlation of nodes i and j
- Assume a binary random variable $Z_i \in \{D, R\}$
 - Compatibility matrix $\mathbf{M} \in \mathbb{R}^{l \times l}$ models all pairs of l discrete states:

$$\mathbf{M} = \begin{bmatrix} 0.4 & 0.1 \\ 0.1 & 0.4 \end{bmatrix}$$
 with homophily $\begin{aligned} & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

- Homophily means that adjacent nodes are positively correlated
- Heterophily is also possible; adjacent nodes are negatively correlated
 - In this case, non-diagonal entries are larger

Loopy Belief Propagation (1/2)

- The computation of the joint probability $p(\mathbf{Z})$ is **intractable**
 - Because of the $O(2^N)$ complexity of the **partition function** C
- Loopy belief propagation (BP)
 - Inference algorithm to approximate marginal probabilities
 - BP computes the belief \mathbf{b}_i of each node $i \in G$ such that

$$b_i(z_i) \approx P_i(Z_i = z_i) = \sum_{\mathbf{z} \setminus z_i} P(Z_i = z_i \text{ and } \mathbf{Z} \setminus Z_i = \mathbf{z} \setminus z_i)$$

• The resulting belief \mathbf{b}_i can be directly used for its classification

Loopy Belief Propagation (2/2)

- BP is also known as the message passing algorithm
 - Because it propagates **messages** via iterations
 - Exchange the priors of nodes based on edge potentials
- Example of message passing in a graph with two states:

Outline

- Introduction
- Part 1: Probabilistic modeling of graphs
 - Preliminaries
 - Our previous works
- Part 2: Proposed approach for feature estimation
- Conclusion

SBP [ICDM'17] – Problem

- Problem: Node classification on edge-attributed graphs
- Many real-world graphs have attributes for describing their edges
 - Rating scores in a review network
 - Types of interactions, e.g., messages or posts, in a social network
- The specifics of relationships are determined by such attributes
 - Each edge can follow homophily or heterophily based on its feature

SBP [ICDM'17] — Main Ideas

- Q: How can we learn accurate ψ_{ij} in edge-attributed graphs?
- We propose SBP to learn dynamic edge potentials in BP
 - Idea 1: Model BP as a differentiable operator with fixed iterations
 - Idea 2: Model the edge potential $\psi_{ij}(\cdot)$ as a function of \mathbf{x}_{ij} and θ :

$$\psi_{ij}(\mathbf{x}_{ij};\theta) = \frac{1}{1 + \exp(-\mathbf{x}_{ij}^{\mathsf{T}}\theta)} \quad \begin{matrix} \cdot & x_{ij} : \mathsf{Edge feature} \\ \theta : \mathsf{parameters} \end{matrix}$$

• Idea 3: Learn the parameters θ to minimize an objective function

SBP [ICDM'17] – Experiments

Experimental setting

 Recommendation task on review networks of ratings 1 to 5

Observations

- The strength of homophily increases with the rating score from 1 to 5
- Low ratings even follow heterophily
 - Homophily: ratings 4 and 5
 - Heterophily: ratios 1, 2, and 3

BPN [IJCAI'19] - Problem

- Problem: Cold-start inductive learning for node classification
 - In SBP, we assume a single graph used for both training and test
 - In this work, unseen test nodes are given without any neighborhood
- Real-world scenarios:
 - When new users are added to an online social network
 - When new movies are uploaded to a streaming service

Existing (or training) graph

BPN [IJCAl'19] - Main Ideas

- Q: How can we learn a feature-based classifier f with few labels?
- We propose BPN, a framework for training f on inductive learning
 - Idea 1: Introduce a multilayer perceptron as a classifier f
 - Idea 2: Use the prediction of f as the node potential $\phi_i = f(\mathbf{x}_i, \theta)$
 - Idea 3: Run BP to give pseudo answers to the training of f

(a) Forward propagation of BPN.

(b) Backward propagation of BPN.

BPN [IJCAI'19] – Experiments

- BPN effectively minimizes two different loss functions
 - ullet The **classification loss** l_c is minimized stably through iterations
 - ullet The **induction loss** l_d increases at first and then is minimized slowly
 - Because the updates of f change the result of diffusion, i.e., beliefs

BPN outperforms various GNN models

Method	Pubmed	Cora	Citeseer	Amazon
Planetoid	74.6 ± 0.5	66.2 ± 0.9	66.8 ± 1.0	70.1 ± 1.9
GCN-I	74.1 ± 0.2	67.8 ± 0.6	63.6 ± 0.5	76.5 ± 0.3
SEANO	75.7 ± 0.4	64.5 ± 1.2	66.3 ± 0.8	78.6 ± 0.6
GAT	76.5 ± 0.4	70.1 ± 1.0	66.7 ± 1.0	77.5 ± 0.4
BPN (ours)	$ 78.3 \pm 0.3 $	$\textbf{72.2} \pm \textbf{0.5}$	$\textbf{70.1} \pm \textbf{0.9}$	$\textbf{81.5} \pm \textbf{1.3}$

GRAB [ICDM'21] - Problem

- Problem: Graph-based positive-unlabeled (PU) learning
 - Goal is to train an accurate binary node classifier for ${\mathcal P}$ vs. ${\mathcal N}$
 - However, negative labels are unseen during training
 - Decision boundary should be drawn from positive and unlabeled samples

GRAB [ICDM'21] — Main Ideas

- Q: How can we design an objective function from PU nodes?
- We propose GRAB for training a node classifier on PU learning
 - Idea 1: Introduce latent variables Z for modeling unknown states

$$l(\theta) = \sum_{i \in \mathcal{P}} (-\log \hat{y}_i(+1)) + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z} | \mathbf{X}, \mathbf{y})} \left[\sum_{j \in \mathcal{U}} (-\log \hat{y}_j(z_j)) \right]$$
For positive nodes \mathcal{P} For unlabeled nodes \mathcal{U}

- Idea 2: Model the distribution $p(\mathbf{Z}|\mathbf{X},\mathbf{y})$ of \mathbf{Z} as an MRF
- Idea 3: Replace the expectation with marginals computed from BP

GRAB [ICDM'21] – Experiments

Experimental setting

- We use a GCN classifier f and use the EM algorithm for its training
- Why EM? Since the updates of f also change the distribution of Z

Observations

- Training proceeds well via iterations
- The ratio of predicted labels, which is called a *prior*, is estimated well

Outline

- Introduction
- Part 1: Probabilistic modeling of graphs
- Part 2: Proposed approach for feature estimation
 - Motivation
 - Proposed approach
 - Experiments
- Conclusion

Node Features in Graphs

- Real-world graphs contain node features (or attributes)
 - Information of users in a social network
 - Abstracts of papers in a citation network
- Node features are essential for many graph-based tasks

https://www.shortstack.com/blog/best-social-networks-to-reach-specific-demographics

Missing Observations

- However, missing features are common in (large) real graphs
 - E.g., users in a social network with private profiles
- In such cases, it is difficult even to use existing node features
- Question: How can we accurately estimate missing features?

Problem Definition

- Problem: Node feature estimation
- Given
 - An undirected graph $G = (\mathcal{V}, \mathcal{E})$
 - Node feature \mathbf{x}_i for some nodes in $\mathcal{V}_x \subset \mathcal{V}$
 - (Optional) node labels y_i for nodes in $\mathcal{V}_{\mathcal{V}} \subseteq \mathcal{V}$
 - Discrete labels are often easier to acquire

Predict

• Unknown feature \mathbf{x}_j for nodes in $\mathcal{V} \setminus \mathcal{V}_{x}$

Dual Estimation

ullet We formulate the problem as finding ullet that maximizes

$$p_{\Theta}(\mathbf{X}, \mathbf{y}|\mathbf{A})$$
 with $\hat{\mathbf{X}}, \hat{\mathbf{y}} = \mathcal{F}(\mathbf{A}; \Theta)$

- \mathcal{F} is our target estimator, and Θ is the set of its parameters
- That is, we use **X** and **y** as the estimation targets, not as inputs

Variational Inference (1/3)

- Question: How can we effectively maximize $p_{\Theta}(\mathbf{X}, \mathbf{y}|\mathbf{A})$?
- Main approach: We run variational inference with latent Z

$$\log p_{\Theta}(\mathbf{X}, \mathbf{y} \mid \mathbf{A}) \ge \mathcal{L}(\Theta)$$

$$= \mathbb{E}_{\mathbf{Z} \sim q_{\phi}(\mathbf{Z} \mid \mathbf{X}, \mathbf{y}, \mathbf{A})} [\log p_{\theta, \rho}(\mathbf{X}, \mathbf{y} \mid \mathbf{Z}, \mathbf{A})]$$

$$- D_{\mathrm{KL}}(q_{\phi}(\mathbf{Z} \mid \mathbf{X}, \mathbf{y}, \mathbf{A}) \mid\mid p(\mathbf{Z} \mid \mathbf{A})),$$

• where $\mathcal{L}(\Theta)$ is the **evidence lower bound (ELBO)** of the likelihood

Variational Inference (2/3)

The first term of ELBO is the reconstruction error of X and y:

$$\mathbb{E}_{\mathbf{Z} \sim q_{\phi}(\mathbf{Z}|\mathbf{X},\mathbf{y},\mathbf{A})} [\log p_{\theta,\rho}(\mathbf{X},\mathbf{y} \mid \mathbf{Z},\mathbf{A})]$$

- Z introduces the conditional independence between variables
 - Based on the assumption that
 Z has sufficient information of A
 - This allows us to use separate decoding processes for \mathbf{x}_i and y_i

Variational Inference (3/3)

• The second term of ELBO regularizes the distribution $q_{\phi}(\mathbf{Z})$ of \mathbf{Z} :

$$-D_{\mathrm{KL}}(q_{\phi}(\mathbf{Z}\mid\mathbf{X},\mathbf{y},\mathbf{A})\mid\mid p(\mathbf{Z}\mid\mathbf{A})),$$

- This forces the distribution $q_{\phi}(\mathbf{Z}|\mathbf{X},\mathbf{y},\mathbf{A})$ to be closer to $p(\mathbf{Z}|\mathbf{A})$
 - The prior $p(\mathbf{Z}|\mathbf{A})$ contains no learnable parameters
 - The amount of regularization is determined by how to choose $p(\mathbf{Z}|\mathbf{A})$

Research Motivations

- Previous works ignore the **correlations** between \mathbf{z}_i and $\mathbf{z}_j \ \forall i \neq j$
 - By modeling $q_{\phi}(\mathbf{Z}) = \mathcal{N}(\boldsymbol{\mu}, \operatorname{diag}(\boldsymbol{\sigma}))$ and $p(\mathbf{Z}) = \mathcal{N}(0, \mathbf{I}_n)$
- However, the correlations are essential in our case
 - Since the graph itself means the correlations between different nodes
 - We cannot assume the conditional independence if we ignore them

Q1. How can we consider the correlations in variational inference?

Q2. How can we design an efficient and stable way of inference?

Outline

- Introduction
- Part 1: Probabilistic modeling of graphs
- Part 2: Proposed approach for feature estimation
 - Motivation
 - Proposed approach
 - Experiments
- Conclusion

Main Idea

- Main idea: To model the prior $p(\mathbf{Z}|\mathbf{A})$ as a Gaussian MRF
- Differences from discrete MRF:
 - Since **Z** is continuous, the choice of ψ_{ij} is not straightforward
 - We model ψ_{ij} based on a graph Laplacian $\mathbf{K} = \mathbf{I} \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$
 - This allows us to rewrite the KL divergence as

$$D_{\mathrm{KL}}(q_{\phi}(\mathbf{Z} \mid \mathbf{X}, \mathbf{y}, \mathbf{A}) \mid\mid p(\mathbf{Z} \mid \mathbf{A}))$$

$$= 0.5(\mathrm{tr}(\mathbf{U}^{\mathsf{T}}\mathbf{K}\mathbf{U}) + d(\mathrm{tr}(\mathbf{K}\Sigma) - \log|\Sigma|)) + C,$$

• where $q_{\phi}(\mathbf{Z})$ is assumed to be a multivariate Gaussian $\mathcal{N}(\mathbf{U}, \Sigma)$

Idea 1: Low-Rank Approximation

- Observation: The computation of $\log |\Sigma|$ is intractable
- Idea 1: We apply low-rank approximation to Σ as follows:

$$\Sigma = \beta \mathbf{I} + \mathbf{V} \mathbf{V}^{\mathsf{T}},$$

- β is a hyperparameter for the self-correlations
- $\mathbf{V} \in \mathbb{R}^{n \times r}$ is a new embedding matrix introduced for Σ
- This reduces the complexity from $O(n^3)$ to $O(r^2n + r^3)$

Idea 2: Unified Embedding

- Observation: The matrices ${\bf U}$ and ${\bf V}$ play similar roles in $D_{\rm KL}$
 - The two terms in D_{KL} are identical if we assume $\mathbf{U} = \mathbf{V}$,

$$D_{\mathrm{KL}}(q_{\phi}(\mathbf{Z} \mid \mathbf{X}, \mathbf{y}, \mathbf{A}) \mid\mid p(\mathbf{Z} \mid \mathbf{A}))$$

$$= 0.5(\operatorname{tr}(\mathbf{U}^{\top}\mathbf{K}\mathbf{U}) + d(\operatorname{tr}(\mathbf{K}\Sigma) - \log|\Sigma|)) + C,$$

• That is,

$$\operatorname{tr}(\mathbf{U}^{\mathsf{T}}\mathbf{K}\mathbf{U}) = \operatorname{tr}(\mathbf{K}\mathbf{\Sigma}) = \sum_{(i,j)\in\mathcal{E}} \left\| \frac{\mathbf{u}_i}{\sqrt{d_i}} - \frac{\mathbf{u}_j}{\sqrt{d_j}} \right\|$$

• Idea 2: We learn a single matrix E and use it as both U and V

Idea 3: Deterministic Inference

- Observation: Stochastic sampling of n variables is unstable
 - Previous works sample z_i independently for each i
 - With correlations in **Z**, the space of sampling becomes $O(2^n)$
- Idea 3: We generate deterministic **Z** from **E** without sampling
 - This is equivalent to taking $Z_{\mathrm{out}} = \operatorname{argmax}_Z q_{\phi}(Z)$

Objective Function

• Our three ideas result in the **proposed objective function** $l(\Theta)$:

$$\sum_{i \in \mathcal{V}_{x}} l_{x}(\hat{\mathbf{x}}_{i}, \mathbf{x}_{i}) + \sum_{i \in \mathcal{V}_{y}} l_{y}(\hat{y}_{i}, y_{i}) + \lambda(\operatorname{tr}(\mathbf{Z}^{\mathsf{T}}\mathbf{K}\mathbf{Z}) - \alpha \log|\mathbf{I} + \beta^{-1}\mathbf{Z}^{\mathsf{T}}\mathbf{Z}|)$$
Error for \mathbf{X} Error for \mathbf{y} Proposed regularizer l_{GMRF}

- The first term makes adjacent nodes i and j have similar \mathbf{z}_i and \mathbf{z}_j
- The second term forces Z to be an orthogonal matrix
 - That is, different elements $\mathbf{z}_{:l}$ and $\mathbf{z}_{:k}$ are learned to minimize $\mathbf{z}_{:l}^{\mathsf{T}}\mathbf{z}_{:k}$

Proposed Architecture

- We propose Structured Variational Graph Autoencoder (SVGA)
 - GNN-based autoencoder model for dual estimation of features and labels
 - Only the features are used if we have no observed labels
 - GNN encoder generates latent variables, which are fed into MLP decoders

Outline

- Introduction
- Part 1: Probabilistic modeling of graphs
- Part 2: Proposed approach for feature estimation
 - Motivation
 - Proposed approach
 - **Experiments**
- Conclusion

Experimental Setup

- We compare SVGA with various competitors on real datasets
- We use eight public datasets of undirected graphs
 - The nodes in these graphs have either binary or continuous features

Dataset	Туре	Nodes	Edges	Feat.	Classes	
Cora ¹	Binary	2,708	5,429	1,433	7	
Citeseer ¹	Binary	3,327	4,732	3,703	6	
$Photo^2$	Binary	7,650	119,081	745	8	
Computers ²	Binary	13,752	245,861	767	10	
Steam ³	Binary	9,944	266,981	352	1	
Pubmed ¹	Continuous	19,717	44,324	500	3	
$Coauthor^2$	Continuous	18,333	81,894	6,805	15	
$Arxiv^4$	Continuous	169,343	1,157,799	128	40	

Q1. Feature Estimation

- Q1. Does SVGA show higher accuracy in feature estimation?
- A1. SVGA performs best in binary and continuous node features
 - We use two evaluation metrics for each setting, respectively

Binary features

Metric	Model		Cora		Citeseer			
	Model	@10	@20	@50	@10	@20	@50	
	NeighAgg	.0906	.1413	.1961	.0511	.0908	.1501	
Recall	VAE	.0887	.1228	.2116	.0382	.0668	.1296	
	GNN*	.1350	.1812	.2972	.0620	.1097	.2058	
	GraphRNA	.1395	.2043	.3142	.0777	.1272	.2271	
	ARWMF	.1291	.1813	.2960	.0552	.1015	.1952	
	SAT	<u>.1653</u>	.2345	.3612	.0811	.1349	.2431	
	SVGA	.1718	.2486	.3814	.0943	.1539	.2782	

Continuous features

Model	Pub	med	Coat	ıthor	Arxiv		
	RMSE	CORR	RMSE	CORR	RMSE	CORR	
NeighAgg	0.0186	-0.2133	0.0952	-0.2279	0.1291	-0.4943	
VAE	0.0170	-0.0236	0.0863	-0.0237	0.1091	-0.4773	
GNN*	0.0168	-0.0010	0.0850	0.0179	0.1091	0.0283	
GraphRNA	0.0172	-0.0352	0.0897	-0.1052	0.1131	-0.0419	
ARWMF	0.0165	0.0434	0.0827	0.0710	o.o.m.	o.o.m.	
SAT	0.0165	0.0378	0.0820	0.0958	0.1055	0.0868	
SVGA	0.0158	0.1169	0.0798	0.1488	0.1005	0.1666	

Q2. Node Classification

- Q2. Are the generated features meaningful for node classification?
- A2. SVGA works best with both MLP and GCN classifiers
 - We train a classifier on nodes whose features are generated by SVGA
 - The generated features support more accurate classification of labels

Model	Cora		Cite	seer	Computers		Photo		Pubmed		Coauthor		Arxiv	
	MLP	GCN	MLP	GCN	MLP	GCN	MLP	GCN	MLP	GCN	MLP	GCN	MLP	GCN
NeighAgg	.6248	.8365	.5150	.6494	.8715	.6564	.5549	.8846	.7562	.5413	.9010	.8031	.3979	.6493
VAE	.2826	.3747	.4008	.3011	.4023	.4007	.2551	.2598	.2317	.2663	.3781	.2335	.1633	.1965
GNN*	.4852	.3747	.4013	.5779	.4034	.4203	.3933	.2598	.2317	.4278	.3789	.2335	.2607	.4721
GraphRNA	.7581	.6968	.6035	.8198	.8650	.8172	.6320	.8407	<u>.7710</u>	.6394	.9207	.8851	.1609	.1859
ARWMF	.7769	.5608	.6180	.8205	.7400	.8089	.2267	.4675	.2320	.2764	.6146	.8347	o.o.m.	o.o.m.
SAT	<u>.7937</u>	<u>.8201</u>	.4618	.8579	<u>.8766</u>	.7439	<u>.6475</u>	<u>.8976</u>	.7672	<u>.6767</u>	<u>.9260</u>	.8402	.3144	.5677
SVGA (proposed)	.8493	.8806	.6227	.8533	.8854	.8808	.6757	.9209	.8293	.6879	.9264	.9037	.4394	.6644

Q3. Observation of Labels

- Q3. Does observed labels help estimate accurate features?
- A3. Observed labels improve the accuracy of feature estimation
 - Implies that the dual estimation is effective for learning better Z

Q4. Scalability

- Q4. How does the computational time increase with graph size?
- A4. The computational time increases linearly with # of edges
 - The running time is instant even for large graphs with > 1M edges

Outline

- Introduction
- Part 1: Probabilistic modeling of graphs
- Part 2: Proposed approach for feature estimation
- Conclusion

Conclusions (1/2)

- We propose **SVGA** for accurate node feature estimation
 - A GNN-based graph autoencoder for dual estimation
- The main ideas are summarized as follows:
 - Idea 1: GMRF prior of latent variables
 - Idea 2: Low-rank approximation of the covariance matrix
 - Idea 3: Unified and deterministic inference
- SVGA outperforms six competitors in eight real-world graphs
 - In estimation of binary and continuous features

Conclusions (2/2)

- I've studied probabilistic approaches for node-level tasks
 - SBP and BPN for differentiable probabilistic inference
 - GRAB and SVGA for the maximization of intractable likelihoods
- Why probabilistic approaches?
 - 1. To solve challenging problems with insufficient observations
 - 2. To improve and generalize GNNs in a new perspective
 - 3. To design graph algorithms with interpretable decision processes

Research Experience

- I love solving new, underexplored, and challenging problems
 - Structural modification of graphs [WSDM'20, WWW'22]
 - Interpretable ML [NeurIPS'19, ICDM'19, PAKDD'21, SDM'22]
 - Multivariate time series analysis [SDM'21, KDD'21]

Structural Modification

- Graph classification
- Data augmentation
- Subgraph sampling

Interpretable ML

- Zero-shot generation
- Ensemble distillation
- Probabilistic decisions

Multivariate Time Series

- Learning correlations
- Stock price prediction
- Transformer encoder

References

- 1. <u>J. Yoo</u>, S. Jo, and U Kang, "Supervised Belief Propagation: Scalable Supervised Inference on Attributed Networks", ICDM 2017
- 2. <u>J. Yoo</u>, H. Jeon, and U Kang, "Belief Propagation Network for Hard Inductive Semi-Supervised Learning", IJCAI 2019
- **3.** <u>J. Yoo</u>*, J. Kim*, H. Yoon*, G. Kim, C. Jang, and U Kang, "Accurate Graph-Based PU Learning without Class Prior", ICDM 2021 (*equal contribution)
- **4.** <u>J. Yoo</u>, H. Jeon, J. Jung, and U Kang, "Accurate Node Feature Estimation with Structured Variational Graph Autoencoder", KDD 2022

Thank You!

Jaemin Yoo

Homepage: https://jaeminyoo.github.io

(for the papers, codes, and datasets)

53