$$(1) \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = 1 \qquad (2) \quad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = 0 \qquad (3) \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 1$$

$$(4) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = 1 \qquad (5) \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 1 \qquad (6) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = -1 = 1 \pmod{2}$$

$$(7) \quad \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = 1 \qquad (8) \quad \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = 0 \qquad (9) \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = -1 = 1 \pmod{2}$$

$$(10) \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = -1 = 1 \pmod{2}$$

在所有的 3 边组合中,除 e_1,e_2,e_4 和 e_2,e_3,e_5 的导出子图不是 $G-e_6$ 的生成树外,其它的导出子图均为 $G-e_6$ 的生成树。 $G-e_6$ 的生成树加上 e_6 后,即为 G 的生成树。

10.3 完全图
$$K_4$$
 的关联矩阵为 $M = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$

求 M_f 的所有 3 阶子方阵的行列式,要求计算结果属于 $F = \{0,1\}$,子方阵的个数为 $C_6^3 = 20$,它们的行列式依次为:

$$\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix} = 1 \qquad (2) \qquad \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} = 1 \qquad (3) \qquad \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix} = 0$$

$$(4) \quad \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 1 \qquad (5) \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = 1 \qquad (6) \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = -1 = 1 \pmod{2}$$

$$(7) \quad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = 1 \qquad (8) \quad \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} = 0 \qquad (9) \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = -1 = 1 \pmod{2}$$