

Context-Aware Implicit Feedback based Hotel Recommender System for Anonymous Business Travellers

Molood Arman

Supervisor: Nacera Bennacer

Advisors:

Srudeep Katamreddy Christophe Blaya

Confidential Thesis

- 01. Introduction
- 02. Literature Review
- 03. Preprocessing & Analysis Data
- 04. Solution
- 05. Evaluation
- 06. Conclusion & Future works
- 06. Q & A

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Problem Statement

Booking data is gathering From different travel agencies

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Objectives

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Evolution Of RS

Attribute-based RS

You like action movies

starring Clint Eastwood,

then you probably like

"good, bad and the ugly"

You like Godfather, then you will like Scarface -Netflix

Collaborative Filtering (user-user similarity)

People like you, who bought beer, also bought diapers.

-Target

Model based

training SVM, LDA, SVD, NN and etc. for implicit features

-Netflix

If you buy printer, you will need ink

-BestBuy

Schlumberger-Private

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Challenges

Sparsity

There is no access to enough information

Scalability

Capacity to deal with growing amount of data.

Cold Start

There are not any current available data for new items /users

Over Specialization

Users are limited to getting recommendations which def initely known or defined in their profiles

	Companies	Hotels	Density
Data	38,308	94,074	0.025%

Schlumberger-Private

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Context Aware RS

Contextual Pre Filtering

2D recommender system

The current context is used for just selecting only the relevant set of data

Contextual Post Filtering

2D recommender system

The resulting set of recommendations is adjusted for each user using the contextual information

Contextual Modeling

MD recommender system

contextual information is used directly inside the model as part of the rating estimation

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Data Acquisition

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Data Acquisition

Passenger Name Record (PNR)

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Preprocessing & Analysis Data

Raw Data

Duplication

Transforming Data

Missing Value

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Inferring Business Policy

Representative Context

Confidence

Frequent itemset Mining

Association Rule Mining

Needs lots of memory

Apriori Algorithm

Pattern	Frequency	Diversity of Itemset					
MCKINSEY MUCAP21WH MCK ZQ	9002	31485					
NoCompany Namos DA DDI 4100 DEGIDI	7904	21946					
EDF items=frozenset('DEF', 'ROH',	'MILAX21E	BN', 'HS', 'FAT', 'FCAGROUP','5'), sup-					
BABCOCKINTE port=0.07995707002951435, confidence=1.0, lift=4.781270044900578							
NORDEAJCFHBAZ8CGJNKDJKD	4218	28193					

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Inferring Business Policy

Representative Context

Integration OLAP with RS

Multi Dimensional Model

Integration OLAP with RS

Multi Dimensional Model

Literature Review

Data preprocessing

Solution

Popularity base RS

Similarity Base RS

Matrix Factorization

Evaluation

Conclusion

Integration OLAP with RS

Multi Dimensional Model

Algorithm 1 Cluster based popular ranking algorithm

RQUIRE: The priority of each dimensions and hierarchical structure of them. City and Company should be part of Dimensions

 ${\bf INPUT:}$ Dimensions, a list contains the value of dimensions for aggregation . K, the number of hotels which we want to recommend

OUTPUT: ListofHotels, returns a list of most booked hotel in those context


```
1: ListofHotels ← []
 2: DictofHotels ← []
 3: while DictofHotels!= [] do
      DictofHotels ← [SELECT hotels, Count(*) groupby Dimensions]
      \mathbf{if} \; \mathtt{DictofHotels} == \| \; \mathbf{then} \;
        if length(Dimensions) > 4 then
          Dimensions ← two dimensions with highest priority from Dimensions + [City,
 7:
          Company
        else
          Dimensions \leftarrow [City, Company]
10:
        \mathtt{Dimensions} \leftarrow [\mathtt{City}]
11:
12: DictofHotels ← Sort DictofHotels based on their Count
13: ListofHotels \leftarrow [SELECT Top K hotel from DictofHotels]
    {If number of Input dimensions in addition of city and company are greater than 4,
   we choose two other dimensions except city and company}
```


Integration OLAP with RS

Cluster based popular ranking method

Property IDs for new company 'Samanu' in Paris

```
RTPARDFS , MERCURE PARIS LA DEFENSE : 1901
Company
           SMPARDEF , MELIA PARIS LA DEFENSE
Rate Code RTPARORG , NOVOTEL POISSY ORGEVAL : 1095
           RTPARLDF , NOVOTEL PARIS LA DEFENSE : 1080
           RTPARARM . MERCURE PARIS GARE DE LYON TGV : 1026
           RTPARLAD . IBIS PARIS LA DEFENSE CENTRE : 1002
City Code BLPARP11 , BALLADINS ESBLY - MARNE-LA-VALLEE : 948
                      BALLADINS GENNEVILLIERS: 909
           RTPAREXP , IBIS PARIS BERCY VILLAGE : 903
           RTPARPLA , MERCURE PARIS PTE VERSAIL EXPO : 891
Chain Cod RTPARMTT , IBIS PARIS MONTMARTRE : 846
Country CAZPARDEF
Year
           RTPARISS . NOVOTEL SUITES PARIS ISSY
```


Submit

RTPARLYO , NOVOTEL PARIS GARE DE LYON : 640

Introduction Literature Review Data preprocessing Solution Popularity base RS Similarity Base RS Matrix Factorization Evaluation Conclusion

Integration OLAP with RS

Multi Dimensional Model

a generalized grouping by on a coarse-grained level

Travel Network		City Coo	de
	Similarity	RMSE	MAE
SVD	Dot product	0.0541	0.0178
SVD++	Dot product	0.0002	0.0001
KNN	Pearson	0.0708	0.0291
KNN	Cosine	0.0589	0.0203

LBE

OSL

Matrix Factorization

R = Rating Matrix, m Companies, n Hotels;

P = User Matrix, m Companies, f latent factors/features;

Q = Item Matrix, n Hotels, f latent factors/features;

A rating rui can be estimated by dot product of user vector pu and item vector qi

Introduction Literature Review Data preprocessing Solution **Popularity** base RS Similarity Base RS Matrix Factorization Evaluation Conclusion

Matrix Factorization

- pu indicates how much user likes f latent factors;
- qi means how much one item obtains f latent factors;
- The dot product indicates how much user likes item;
- The Latent Factor for companies could be "Company Size", "Industry Type", "Revenue Category" and etc.

Matrix Factorization

- ❖ Fill in missing values
- Dimension Reduction
- Inferring unknown features (Unknown Business Policy)

Model

Company Profile

Top 4 cities

Average price

Top 4 most used rate codes

Number of Bookings

Average Length of Stay

Number of visited cities

Nordea Bank Danmark A/S

Banking company

Nordea Bank Danmark A/S is a bank in Denmark. It is part of Nordea - the largest Scandinavian financial group. Wikipedia

Headquarters: Copenhagen, Denmark

Number of employees: 31,596 (FTE, end 2016)

Traded as: Nasdaq Stockholm: NDA SEK; Nasdaq Helsinki: NDA1V

Founded: 1997

Key people: Björn Wahlroos (Chairman), Casper von Koskull (President

and CEO)

Parent organization: Nordea

Nordea

Nordeo

Financial services company

Nordea Bank AB, commonly referred to as Nordea, is a Nordic financial services group operating in Northern Europe. Wikipedia

CEO: Casper von Koskull (Nov 1, 2015-)

Headquarters: Stockholm, Sweden Revenue: 9.303 billion EUR (2016) Total assets: 615.7 billion USD (2016)

Number of employees: 31,596 (FTE, end 2016)

Subsidiary: PlusGirot

Nordea Profile

Other features

```
{'STO': 1,
'CPH': 1,
'HEL': 1,
'OSL': 1,
'Nb_city_7': 1,
'NRD': 1,
'RAC': 1,
'6R2': 1,
'H4R': 1,
'AvgPrice 2': 1,
'Nbbooking_3': 1,
'Month_march': 1,
'Month_january': 1,
 'Month december': 1,
'Month november': 1,
'Month october': 1,
'Month september': 1,
'Month feburary': 1,
'NoNight_4': 1}
```

Average Price

Category 2: 8-27 Euro

Booking Times

Category 3: 27-64

Months

March
January
December
November
October
September
February

Average length of stay

Category 4: 16-25 nights

NRD RAC 6R2 H4R

Rate codes

Hotel Profile

City of the hotel

Average price

Top 4 most used rate codes

Supplier code

Number of Bookings

Average Length of Stay

Average Lead Time

Average Commission Price

Hotel Nice Riviera Profile

City	Average Price	Number of Booking	Average Commission	Supplier Code	Months	Top 4 rate codes	Length of Stay	Average Lead Time
Nice	Category 5: 64 - 125	Category 3: 8 - 27	Category 2: 1 – 2	Default	January October November	PR3 PR4	Category 2: 1 - 4	14 days in advance

September

01

Matrix Factorization Without Embedding

Considering Implicit data without considering side information.

03

Embedding Company Profile

Considering Implicit data combined with company profiles.

04

Embedding both Profiles

Considering Implici t data combined wi th both profiles. Company and hote Is

02

Embedding Hotel Profile

Considering Implicit data combined just with hotel profiles.

Literature Review

Data Analysis

Our Solution

Evaluation

Conclusion

Learning Algorithms

- Stochastic gradient descent (SGD)
 - Also known as incremental learning
 - For each given training case, the system predicts rul and computes the associated prediction error
- ❖ Alternating Least Squares (ALS)
- Bayesian Personalized Ranking (BPR)
- Weighted Approximate-Rank Pairwise loss (WARP)

Literature Review

Data Analysis

Our Solution

Evaluation

Conclusion

Hyperparameters

	Model	Obj. value	epochs	learning_rate	no_factors	alpha	scaling
	Model 1	0.91365	85	0.01845	106	3.184e-05	-
	Model 2	0.92175	62	0.00950	103	1.856e-05	0.0697
ĺ	Model 3	0.91330	22	0.01422	107	6.075e-04	0.77801
Ī	Model 4	0.92963	22	0.01422	107	6.075e-04	0.77801

Schlumberger-Private

Literature Review

Data Analysis

Our Solution

Evaluation

Conclusion

Collaborative Deep Learning

Stacked Denoising Autoencoders

Yang, 2018

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Schlumberger-Private

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Post-filtering

Obligatory

This dimension is obligatory for our model

Separated RS

If we want different r esult for recommend ations per each office ID, we can first filter based on the officeID and give more priorit y to the hotels were was booked already with the officeID.

Time

More accurate result based on the expected availability of the hotels in different months

Priority

Giving Priority to the hotels which they are sponsors

••

Any other kind of information can be Considered for post-filtering

Schlumberger-Private

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Conclusion

Python 3.6 16 GB RAM Corei7

Schlumberger-Private

Literature Review

Data preprocessing

Solution

Evaluation

Conclusion

Future Work

