

Р/З727-5

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(РОСПАТЕНТ)

ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

рег.№ 20/12-60

"30" января 2002 г.

С П Р А В К А

Федеральный институт промышленной собственности Российского агентства по патентам и товарным знакам настоящим удостоверяет, что приложенные материалы являются точным воспроизведением первоначального описания, формулы и чертежей (если имеются) заявки на выдачу патента на изобретение № 99118248, поданной в августе месяце 24 дня 1999 года (24.08.1999).

Название изобретения

Способ получения пищевых продуктов

Заявитель

Закрытое акционерное общество
«Катализаторная компания»

Действительный автор(ы)

ОШУРКОВ Михаил Степанович
САУШКИН Сергей Александрович
МАКАРЕНКО Владимир Григорьевич
МАКАРЕНКО Михаил Григорьевич
КИЛЬДЯШЕВ Сергей Петрович
ПАРФЕНОВ Анатолий Николаевич

Уполномоченный заверить копию
заявки на изобретение

А.Л. Журавлев
Заведующий отделом

МПК⁶ A 23L1/24;
B01F 11/02, 7/28;
B06B1/18

Способ получения пищевых продуктов

Изобретение относится к пищевой промышленности, а именно к получению пищевых продуктов различной вязкости, например, майонеза, эмульсий, молока, паст, паштетов и др.

Известен способ переработки пищевого сырья (А.с. СССР № 1000000, кл. A23C11/00, 1983) с помощью излучателя высокочастотных акустических колебаний частотой 8-10 кГц и интенсивностью ~1,5 Вт/см² в результате этого происходит полное разложение сырья, смешивание его с водой и образование однородной смеси в виде суспензии, а также уничтожение микробов. Для интенсификации процесса обработки высокочастотными колебаниями в замкнутой среде создается избыточное давление 3-4 атм. При данных частоте и интенсивности акустических колебаний необходимое время для пребывания частиц сырья в зоне излучателя составляет 2-5 мин. Чтобы повысить степень однородности суспензии, смешивание продолжается в дополнительных ваннах.

Недостатком известного способа является необходимость двухстадийного предварительного измельчения сырья и необходимость предварительных операций (влаготермическая обработка и др.), большая номенклатура (более 10 единиц) и сложность используемого технологического оборудования, а также невозможность получения густых паст - с вязкостью более 10 Па•с (при скорости сдвига 3 с⁻¹).

Известен способ получения эмульсий, в котором предлагается производить гомогенизацию в электромагнитном поле с магнитной индукцией при определенных условиях. В результате применения данного способа увеличивается стабильность эмульсий (Патент РФ № 2099974, кл. A23L1/24, 1997).

Недостатком способа является сложность используемого оборудования, что затрудняет его использование в широких масштабах.

Наиболее близким способом к заявляемому является получение пищевых продуктов, а именно, способ производства соевого молока (Патент РФ № 2104650, МПК A 23 C 11/10, A 23 L 1/20, 1998), в котором набухшая соя подается в измельчитель-эмульгатор (скорость вращения ножей 4000 об/мин), куда одновременно

поступает в двойную зону измельчения горячая вода, температура ее 95-97°С. Одновременный процесс измельчения и термовлагообработка производится 3-5 мин. Готовый продукт пропускают через охладитель.

Недостатком данного способа являются сложность процесса, а также невозможность получения густых паст.

Задачей настоящего изобретения является упрощение технологии и снижение затрат на производство эмульсионных, супензионных и/или желированных и пастообразных продуктов питания, а также экстрактов, растворов труднорастворимых веществ.

Поставленная задача решается за счет способа получения пищевых продуктов различной вязкости, например, майонеза, эмульсий, молока, паст и др., включающего стадии одновременного измельчения, перемешивания, гомогенизации и тепловой обработки исходных компонентов с использованием специального оборудования, получение продуктов проводят обработкой при необходимых условиях исходных компонентов в емкости, снабженной роторно-диспергирующим аппаратом, создающим акустическое поле наряду с интенсивным механическим воздействием.

Обработку ведут с интенсивностью 100-500 вт/кг продукта.

Частота акустической обработки составляет 2-6 кГц.

В роторно-диспергирующем аппарате статор расположен между лопатками и цилиндром ротора.

При необходимости производства продуктов различных физических свойств роторно-диспергирующий аппарат снабжается приводом, позволяющим изменять скорость вращения ротора.

Предлагаемый способ может быть использован для получения многих пищевых продуктов различной вязкости. В качестве роторно-диспергирующего аппарата используют аппарат по заявке № 99109305/12. Использование этого аппарата позволяет интенсифицировать процессы диспергирования и позволяет загружать неизмельченные предварительно исходные компоненты, например, целые бобы.

В емкость загружают необходимые компоненты для приготовления различных продуктов. Компоненты могут загружаться последовательно по технологии приготовления продуктов. Роторно-диспергирующий аппарат может быть размещен в различных местах внутри емкости (сверху, снизу, сбоку).

После загрузки исходных компонентов в емкость включают роторно-диспергирующий аппарат и жидкую среду с твердыми компонентами поступает в полость ротора. Центробежной силой, а также лопатками твердые включения прижимаются к статору и интенсивно сострагиваются зубцами статора чем достигается предварительное измельчение материала. Углы прорезей и затыловки заставляют работать статор подобно напильнику, надежно и быстро измельчая обрабатываемый материал, который, увлекаемый жидкой средой, проходит через прорези и, подвергаясь в потоке акустической обработке. Обработанный материал покидает роторно-диспергирующий аппарат через выходной патрубок и поступает снова в емкость через выходной патрубок роторно-диспергирующего аппарата.

В течение незначительного времени получаются очень устойчивые пищевые эмульсии или суспензии из самых различных компонентов.

Способ отличается от известных простотой технологической схемы. Подготовленное сырье загружается в емкость, снабженную роторно-диспергирующим аппаратом, который позволяет проводить обработку сырья с интенсивностью 100-500 вт/кг, частота акустического поля в зависимости от перерабатываемого сырья составляет 2-6 кГц.

Предлагаемый способ позволяет по простой технологической линии, меняя условия обработки (подвод тепла к емкости, охлаждение и изменение времени и интенсивности обработки роторно-диспергирующим аппаратом), изменяя скорость вращения ротора, получать продукты различной вязкости.

Таким образом под воздействием роторно-диспергирующего аппарата водно-соевая или другая смесь циркулирует в емкости, многократно проходя через роторно-диспергирующий аппарат и измельчаясь при этом на рабочих органах роторно-диспергирующего аппарата и в создаваемом ими акустическом поле. При получении более сложных продуктов недостающие компоненты постепенно добавляют в циркулирующую смесь.

Предлагаемый способ получения пищевых продуктов отличается простотой оборудования, низкими затратами на производство продукции различной вязкости.

В таблице 1 приведены данные о свойствах продуктов, получаемых по предлагаемому способу.

Ниже следующие примеры иллюстрируют предлагаемое решение.

Пример 1

Способ получения соевой пасты.

Предварительно замоченные в холодной воде шелущенные и нешелущенные бобы сои в необходимом количестве (по сухому веществу) от требуемой массы готового продукта загружают в емкость. Внутри емкости размещают роторно-диспергирующий аппарат, изготовленный по заявке № 99109305 с приоритетом от 27.04.99. В емкости осуществляются все операции, необходимые для получения водно-соевой пасты.

Под воздействием роторно-диспергирующего аппарата водно-соевая смесь циркулирует в емкости, многократно проходя через диспергатор и измельчаясь при этом на рабочих органах диспергатора и в создаваемом ими акустическом поле. Достигаемые при этом давление и температура обеспечивают дезодорацию (инактивацию антипитательных веществ) сои. Таким образом в одном объеме одновременно осуществляются операции дезодорации и измельчения бобов сои до микронного размера, смешения их с водой, нагрева и гомогенизации обрабатываемой смеси и получается пластичная, устойчивая к расслаиванию пищевая водно-соевая паста заданной вязкости (консистенции).

Получение водно-соевой пасты проводят при содержании сои в воде от 5 до 25 % (по сухому веществу) при температуре от 70 до 100°C, атмосферном давлении, интенсивность обработки составляет 500 вт/кг, частота акустической обработки составляет 6 кГц. Полученная соевая паста может быть использована для приготовления различных продуктов.

Пример 2

Способ получения заменителя кисломолочного продукта.

Готовят соевую пасту из соевого жмыха в емкости с использованием роторно-диспергирующего аппарата. К подготовленной соевой пасте, содержащей сои 5 % мас. (в пересчете на сухое вещество) вносят специально подобранный смесь заквасок, состоящую из культур ацидофильной палочки и термофильного стрептококка, взятых в соотношении 3:7 и перемешивают мешалкой. Интенсивность обработки составляет 100 вт/кг продукта, частота акустической обработки 2 кГц.

Пример 3

Способ получения майонеза.

В водно-соевую пасту при температуре 35°C добавляют через загрузочную воронку готовую горчицу, соль и сахар, которые перемешиваются с пастой роторно-диспергирующим аппаратом.

Вводят в полученную массу растительное масло и получают маслово-водяную эмульсию с размером капелек масла порядка нескольких микрон. Такая эмульсия образуется в течение 1-3 минут под воздействием рабочих органов роторно-диспергирующего аппарата в создаваемом им интенсивном акустическом поле. Интенсивность обработки составляет 300 вт/кг продукта, частота обработки 4 кГц.

В емкость заливают раствор уксусной, лимонной или иной пищевой кислоты, после чего смесь гомогенизируют с помощью роторно-диспергирующего аппарата. Перед выгрузкой из емкости готовый продукт дополнительно охлаждают до температуры ниже 20°C, используя для этого рубашку охлаждения. Перед расфасовкой готовый продукт вакуумируют.

Таким образом, предлагаемый способ позволяет на простой технологической линии получать пищевые продукты высокого качества и с минимальной потерей питательных веществ.

Таблица 1

Свойства продуктов, полученных по предлагаемому способу

№ п/п	Наименование продукта	Стойкость эмульсии в % выделившегося жира	
		заявляемым способом	известным способом
1	Соевая паста	не расслаивается	0,5
2	Кисломолочный продукт	не расслаивается	1,5
3	Майонез	не расслаивается	4,0

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения пищевых продуктов различной вязкости, например, майонеза, эмульсий, молока, паст и др., включающий стадии одновременного измельчения, перемешивания, гомогенизации и тепловой обработки исходных компонентов с использованием специального оборудования о т л и ч а ю щ и й с я тем, что получение продуктов проводят обработкой при необходимых условиях исходных компонентов в емкости, снабженной роторно-диспергирующим аппаратом, создающим акустическое поле.

2. Способ по п. 1, о т л и ч а ю щ и й с я тем, что обработку ведут с интенсивностью 100-500 вт/кг продукта.

3. Способ по п. 1, о т л и ч а ю щ и й с я тем, что частота акустической обработки составляет 2-6 кГц.

4. Способ по п. 1, о т л и ч а ю щ и й с я тем, что в роторно-диспергирующем аппарате статор расположен между лопатками и цилиндром ротора.

5. Способ по п. 1, о т л и ч а ю щ и й с я тем, что роторно-диспергирующий аппарат имеет привод, позволяющий изменять скорость вращения ротора.

РЕФЕРАТ
Способ получения пищевых продуктов

Изобретение относится к пищевой промышленности, а именно к получению пищевых продуктов различной вязкости, например, майонеза, эмульсий, молока, паст, паштетов и др.

Способ получения пищевых продуктов различной вязкости, например, майонеза, эмульсий, молока, паст и др., включает стадии одновременного измельчения, перемешивания, гомогенизации и тепловой обработки исходных компонентов с использованием специального оборудования, получение продуктов проводят обработкой при необходимых условиях исходных компонентов в емкости с роторно-диспергирующим аппаратом.

Обработку ведут с интенсивностью 100-500 вт/кг продукта.

Частота акустической обработки составляет 2-6 кГц.

В роторно-диспергирующем аппарате статор расположен между лопатками и цилиндром ротора.

При производстве различных наименований продуктов роторно-диспергирующий аппарат снабжается приводом, позволяющим изменять скорость вращения ротора.

Предлагаемый способ позволяет на простой технологической линии получать пищевые продукты высокого качества и с минимальной потерей питательных веществ.