

이용도에 대론 대출 송인

당나병지단예측

 Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age
6	148	72	35	0	33.6	0.627	50
 	.85	-66	29	0	26.6	0.351	31
 8	183	64	0	0	23.3	0.672	32
1	89	66	23	94			21
 0	137	40	35	168		2.288	33

Pregnancies - 임신횟수
Glucose -글루코스 내성
BloodPressure - 확장기 혈압
SkinThickness - 상완심두근 피부 두께
Insulin - 혈액내 인슐린 수치
BMI - BMI 지수
DiabetesPedigreeFunction - 당뇨병 가족력
Age - 나이

SPAM 필터링

	SPAM	PAM
Free	8	2
Cash	8	1
Can	2	9
Won	7	2
Never	10	1
Chance	9	3
Sorry	0	8
Need	2	9
Click	10	0
Can	3	8

제일이용한이랑 분포 모델링

제일이용한이랑 분포 모델링

$$y=wx+b$$
, if $y > T$, $y = T$
if $y < 0$, $y = 0$

확률 합수로 변환

$$y=wx+b$$
, if $y > 1$, $y = 1$
if $y < 0$, $y = 0$

미분 가능한 연속 함수로 변화

MIROUS ELACSIGMOID function)

- S자 모양을 갖는 함수
- 중심축 0을 중심으로 좌측은 0으로 수렴, 우측은 1로 수렴

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

弘则

$$y = H(x) = \frac{1}{1 + e^{-(wx+b)}}$$

弘明可引

 \bullet w = [0.4, 1.0, 2.0]

$$y = H(x) = \frac{1}{1 + e^{-(wx+b)}}$$

• b=0

弘隆到刊

• 3개의 영역을 잘 구분할 수 있는 직언 학습: softmax 알고리즘

꽃잎의 폭, 길이 꽃받침의 폭, 길이

아이 분류

13개의 화학적 분석

- 알코올
- 사과산
- 마그네슘
- 색 강도

3가지 와인 범주로 분류

关朴 인의

● 186(28x28)개의 특징, 10(0~9)개의 class로 구성

- 28x28영상 - 0 ~ 9 필기 숫자

0000000000000000 / 1 | 1 / 1 / 1 / 1 / 1 / / / / 2222222222222 3333333333333333 444444444444 555555555555555 66666666666666 ファチ17フフフフフフフフンフ 9999999999999

GUL OLVI

- 28x28영상
- T-shirt, Coat, Bag 등 10개 범주

다중 클래스(Multinomial Classification)

● 주어진 5개 데이터의 붓꽃 3종류 예측

꽃잎폭	꽃잎길이	붓꽃종류
3	8	А
4	7	А
3	4	В
2	2	В
8	2	С

꽃잎길이

꽃잎폭

다중 클래스(Multinomial Classification)

- 3개의 class 분류를 위해 3개의 분류기 사용
 - > 임의의 봇꽃 data에 대해 각각의 w와 b를 학습한 분류기에서 확률값 추정

[日本] HACMultinomial Classification]

data를 행렬로 변형하면 계산을 쉽고 빼르게 할 수 있음

$$\begin{array}{ccc}
X & & Y \\
(x_1, x_2) & \longrightarrow & (0, 0, 1) \\
& & y_1, y_2, y_3
\end{array}$$

$$\left[w_{a_1} w_{a_2}\right] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b_a \xrightarrow{f} y_1$$

$$[w_{a_1} w_{a_2}] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b_a \xrightarrow{f} y_1 \qquad X \longrightarrow w_a, b_a \longrightarrow 0$$

$$\left[w_{b_1} w_{b_2}\right] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b_b \xrightarrow{\mathsf{f}} y_2$$

$$[w_{b_1} w_{b_2}] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b_b \xrightarrow{f} y_2 \qquad X \longrightarrow w_{b_1} b_b \longrightarrow 0$$

$$\begin{bmatrix} w_{c_1} & w_{c_2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b_c \xrightarrow{f} y_3$$

$$[w_{c_1} \ w_{c_2}] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b_c \xrightarrow{f} y_3 \qquad X \longrightarrow w_{c'} \ b_c \longrightarrow 1$$

행렬 표현으로 바꾸기(y=wx+b)

- 3개의 분류기를 하나의 수식으로 묶어서 간단하게 표현
 - > W들을 열벡터로 표현해 class 수 x 특징 차원 수 행렬로 표현 (3x2 행렬)

$$[w_{a_1} \ w_{a_2}] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b_a = w_{a_1} x_1 + w_{a_2} x_2 + b_a$$

$$[w_{b_1} \ w_{b_2}] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b_b = w_{b_1} x_1 + w_{b_2} x_2 + b_b$$

$$[w_{c_1} \ w_{c_2}] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b_c = w_{c_1} x_1 + w_{c_2} x_2 + b_c$$

$$\begin{bmatrix} w_{a_1} \ w_{a_2} \\ w_{b_1} \ w_{b_2} \\ w_{c_1} \ w_{c_2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} b_a \\ b_b \\ b_c \end{bmatrix} = \begin{bmatrix} w_{a_1} x_1 + w_{a_2} x_2 + b_a \\ w_{b_1} x_1 + w_{b_2} x_2 + b_b \\ w_{c_1} x_1 + w_{c_2} x_2 + b_c \end{bmatrix}$$

행렬 표현으로 바꾸기(y=xw+b)

- ullet 클래 Δ 3, 데이터 4개인 경우 ullet 데이터를 행벡터로 표기
- 열벡터로 정의된 w는 샘플 수에 따라서 행렬의 크기가 변화되지 않고 고정됨

$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \\ x_{41} & x_{42} \end{bmatrix} \begin{bmatrix} w_{a_1} & w_{b_1} & w_{c_1} \\ w_{a_2} & w_{b_2} & w_{c_2} \end{bmatrix} + \begin{bmatrix} b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \end{bmatrix}$$

$$[4 \times 2] \times [2 \times 3] + [4 \times 3] = [4 \times 3]$$

$$=\begin{bmatrix} x_{11}w_{a1} + x_{12}w_{a2} + b_1 & x_{11}w_{b1} + x_{12}w_{b2} + b_2 & x_{11}w_{c1} + x_{12}w_{c2} + b_3 \\ x_{21}w_{a1} + x_{22}w_{a2} + b_1 & x_{21}w_{b1} + x_{22}w_{b2} + b_2 & x_{21}w_{c1} + x_{22}w_{c2} + b_3 \\ x_{31}w_{a1} + x_{32}w_{a2} + b_1 & x_{31}w_{b1} + x_{32}w_{b2} + b_2 & x_{31}w_{c1} + x_{32}w_{c2} + b_3 \\ x_{41}w_{a1} + x_{42}w_{a2} + b_1 & x_{41}w_{b1} + x_{42}w_{b2} + b_2 & x_{41}w_{c1} + x_{42}w_{c2} + b_3 \end{bmatrix}$$

행렬 표현으로 바꾸기(y=xw+b)

$$\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \\ x_{41} & x_{42} \end{bmatrix} \begin{bmatrix} w_{a_1} & w_{b_1} & w_{c_1} \\ w_{a_2} & w_{b_2} & w_{c_2} \end{bmatrix} + \begin{bmatrix} b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} x_{11} & x_{12} & 1 \\ x_{21} & x_{22} & 1 \\ x_{31} & x_{32} & 1 \\ x_{41} & x_{42} & 1 \end{bmatrix} \begin{bmatrix} w_{a_1} & w_{b_1} & w_{c_1} \\ w_{a_2} & w_{b_2} & w_{c_2} \\ b_1 & b_2 & b_3 \end{bmatrix}$$

$$\begin{bmatrix} x_{11} & x_{12} & 1 \\ x_{21} & x_{22} & 1 \\ x_{31} & x_{32} & 1 \\ x_{41} & x_{42} & 1 \end{bmatrix} \begin{bmatrix} w_{a_1} & w_{b_1} & w_{c_1} \\ w_{a_2} & w_{b_2} & w_{c_2} \\ b_1 & b_2 & b_3 \end{bmatrix}$$

One-hot 인코딩

Sample 하나에 대해 3개의 y값 필요

2클래스 분류

[1]

[0]

3클래스 분류

One-hot 인코딩으로 표현할 때 행렬 크기는 n*class 수

One-hot 인코딩

 $[1 \quad 0 \quad 0]$

 $[0 \quad 1 \quad 0]$

 $[0 \quad 0 \quad 1]$

● 주어진 data는 최대값을 갖는 class로 분류

클래스 레이블 예측

● 예측값은 M 개 중에서 가장 확률값이 높은 class의 위치 값

$$h = wx + b$$
$$y = argmax(h)$$

Ex)
$$h = [0.05 \quad 0.8 \quad 0.15]$$

$$y = 1$$

클래 레이블 예측

● N개의 샘플, C개의 클래스, d 특징 차원의 경우 행렬 크기

$$H = XW$$

 $Y = argmax(H)$

$$X = N \times (d + 1)$$

$$W = (d+1) \times c$$

$$H = N \times c$$

$$Y = N$$

Ex) 클래스3개, 샘플 2개

$$H = \begin{bmatrix} 0.9 & 0.02 & 0.08 \\ 0.05 & 0.8 & 0.15 \end{bmatrix}$$

$$Y = [0 \ 1]$$

다중 클래스 예측

上安 3州人 明幸

● 확률의 합이 1을 초과하므로 정규화 필요

Softmax 전급화

- 전체 data 합으로 자신의 출력값을 나누어줄 때 지수 함수 사용
 - > 지수함수를 사용하는 이유는 값이 급격하게 변하기 때문

$$\sigma(x_j) = \frac{x_j}{\sum x_i}$$

$$\sigma(x_j) = \frac{\exp(x_j)}{\sum \exp(x_i)}$$

Softmax 전구화

- $[0.2 \ 0.8 \ 0.4]$, sum = 1.2
- 정규화
 - **>** [0.2 0.8 0.4] / 1.2 = [0.142, 0.5714, 0.2857]
- O Softmax 정규화
 - > [1.22, 2.22, 1.49], sum=4.93
 - > [1.22, 2.22, 1.49] / 4.93 = [0.24, 0.45, 0.30]

클래스 레이블 예측

• 예측값은 M 개 중에서 가장 확률값이 높은 class의 위치 값

$$h = softmax(wx + b)$$
$$\hat{y} = argmax(h)$$

Ex)
$$h = [0.05 \quad 0.8 \quad 0.15]$$
 $\hat{y} = 1$

다중 클래스 학습

- 학습 데이터
 - > 학습데이터 x와 one-hot 코딩 레이블

 $(x,[1\ 0\ 0\ 0\ 0\])$

- 학습 모델 정의
 - > softmax

s(x) = softmax(wx + b)

- 예측
 - > w,b를 사용해 함수의 최대값 위치

$$h = softmax(wx + b)$$
$$y = argmax(h)$$