Homework 5

Aiden Kenny STAT GR5205: Linear Regression Models Columbia University

November 25, 2020

Question 1

Collaborators: None

(a) Let Y be the number of nurses in the hospital and let X be the available faculty and services. The left and middle panels of Figure 1 show the histograms of Y and X, respectively. We see that Y is skewed right, while X appears to be normally-distributed. In addition, the scatterplot of Y vs. X, which is in the third panel of Figure 1, shows that there is a nonlinear relationship between Y and X. All of these indicate that Y is suitable for a data transformation. Specifically, we would like to perform a power transformation on Y in order to make it closer to a normal distribution.

Figure 1: Histograms of Y and X and a scatterplot of Y vs. X.

(b) The power transformation function and its scaled counterpart are defined as

$$f_{\lambda}(Y) = \begin{cases} Y^{\lambda} & \text{if } \lambda \neq 0 \\ \log Y & \text{if } \lambda = 0. \end{cases} \quad \text{and} \quad g_{\lambda}(Y) = \begin{cases} (Y^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0 \\ \log Y & \text{if } \lambda = 0. \end{cases}$$

When transforming Y, we first use the scaled power transform to fit the model $g_{\lambda}(Y) = \beta_0 + \beta_1 X + \epsilon$ in order to determine an optimal value of λ via maximum likelihood estimation. We then use f_{λ} to make Y closer to a normal distribution and perform any subsequent inferences. In vector form, our model is $\mathbf{g}_{\lambda}(\mathbf{y}) = \beta_0 \mathbf{1} + \beta_1 \mathbf{x} + \epsilon$, where $\epsilon \sim \mathrm{N}(\mathbf{0}, \sigma^2 \mathbf{I})$ and $\mathbf{g}_{\lambda}(\mathbf{y})$ is the transformed response (so $[\mathbf{g}_{\lambda}(\mathbf{y})]_i = g_{\lambda}(y_i)$) for some unknown λ . It can be shown (see Appendix A) that the log-likelihood function can be expressed as a function of only λ ,

$$m(\lambda) \coloneqq -\frac{n}{2}\log\left(\frac{2\pi\mathrm{e}}{n}\right) - \frac{n}{2}\log\left(\mathbf{g}_{\lambda}^{T}(\mathbf{y})(\mathbf{I} - \mathbf{H})\mathbf{g}_{\lambda}(\mathbf{y})\right) + (\lambda - 1)\sum_{i=1}^{n}\log(y_{i}),$$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is the hat matrix. $m(\lambda)$ has been plotted in the left panel of Figure 2, where we can see that the MLE is maximuzed at $\lambda = 0.085$.

Figure 2: Relevant plots for the power transformation of Y.

Figure 3: Diagnostic plots for the power transformation model.

- (c) Now that we have our optimal λ , we will fit the model $f_{0.085}(Y) = \beta_0 + \beta_1 X + \epsilon$. We have $\hat{\beta}_0 = 1.255$ and $\hat{\beta}_1 = 0.005953$. A plot of this model, along with a 95% confidence interval, has been printed in the middle panel of Figure 2. This means that when X increases by 1 unit, $f_{0.085}(Y)$ is expected to increase by 0.005953 units. We can also make inferences about Y itself; we have $Y = f_{0.085}^{-1}(\hat{\beta}_0 + \hat{\beta}_1 X) = (1.255 + 0.005953X)^{1/0.085}$. A plot of this model has been printed in the right panel of Figure 2. We must keep in mind that this model is non-linear, so it's expected rate of change will depend on the value of X.
- (d) Both diagnostic plots can be found in Figure 3, and the data seems to confirm the model assumptions very well.

(e)