## **International Olympiad in Informatics 2016**



12-19th August 2016 Kazan, Russia day1 1

molecules
Country: PRT

## **Detetando Moléculas**

O Petr trabalha para uma empresa que construiu uma máquina que deteta moléculas. Cada molécula tem um peso inteiro positivo. A máquina tem um *intervalo de detecção* [l,u], onde l e u são inteiros positivos. A máquina consegue detetar um conjunto de moléculas se e só se este conjunto contém um subconjunto de moléculas cujo peso total pertence ao intervalo de detecção da máquina.

Formalmente, considere n moléculas com pesos inteiros positivos  $w_0,\ldots,w_{n-1}$ . A detecção é bem sucedida se existe um conjunto de índices distintos  $I=\{i_1,\ldots,i_m\}$  tais que  $l\leq w_{i_1}+\ldots+w_{i_m}\leq u$ .

Devido às especificações da máquina, é garantido que a diferença entre l e u é maior do que ou igual à diferença entre o peso da molécula mais pesada e o da molécula mais leve. Formalmente,  $u-l \geq w_{max}-w_{min}$ , onde  $w_{max}=\max(w_0,\ldots,w_{n-1})$  e  $w_{min}=\min(w_0,\ldots,w_{n-1})$ .

A sua tarefa é escrever um programa que, ou encontra um subconjunto de moléculas com peso total incluído no intervalo de detecção, ou determina que não existe um subconjunto nessas condições.

## Detalhes da implementação

Você deve implementar uma função (método):

- o int[] solve(int I, int u, int[] w)
  - le u: os extremos do intervalo de detecção,
  - w: os pesos das moléculas,
  - se o subconjunto pedido existe, a função deve retornar um vetor de indíces das moléculas que formam um tal subconjunto. Se existirem várias respostas corretas, devolva uma qualquer,
  - se o subconjunto pedido não existe, a função deve retornar um vetor vazio.

Para a linguagem C a assinatura da função é ligeiramente diferente:

- int solve(int I, int u, int[] w, int n, int[] result)
  - o n: o número de elementos em w (i.e., o número de moléculas),
  - o os restantes parâmetros são os mesmos que os anteriores.
  - $\circ$  em vez de retornar um vetor com m indíces (como acima), a função deve escrever os índices para as primeiras m posições do vetor result e depois retornar m.
  - se o subconjunto pretendido não existir, a função não deve escrever nada

para o vetor result e deve retornar 0.

O seu programa pode escrever os índices para o vetor retornado (ou para o vetor result em C) em qualquer ordem.

Por favor use os ficheiros modelo providenciados para ver mais detalhes sobre a implementação na sua linguagem de programação.

## **Exemplos**

#### Exemplo 1

```
solve(15, 17, [6, 8, 8, 7])
```

Neste exemplo temos quatro moléculas com pesos 6, 8, 8 e 7. A máquina consegue detectar subconjuntos de moléculas com peso total entre 15 e 17, inclusive. Note que  $17-15 \geq 8-6$ . O peso total das moléculas 1 e 3 é  $w_1+w_3=8+7=15$ , por isso a função pode retornar [1, 3]. Outras possíveis respostas corretas são [1, 2] ( $w_1+w_2=8+8=16$ ) e [2, 3] ( $w_2+w_3=8+7=15$ ).

### Exemplo 2

```
solve(14, 15, [5, 5, 6, 6])
```

Neste exemplo temos quatro moléculas com pesos 5, 5, 6 e 6, e estamos à procura de um subconjunto delas com peso total entre 14 e 15, inclusive. Novamente, note que  $15-14 \geq 6-5$ . Não há nenhum subconjunto de moléculas com peso total entre 14 e 15 por isso a função deve retornar um vetor vazio.

#### Exemplo 3

```
solve(10, 20, [15, 17, 16, 18])
```

Neste exemplo temos quatro moléculas com pesos 15, 17, 16, 18, e estamos à procura de um subconjunto delas com peso total entre 10 e 20, inclusive. Novamente, nota que  $20-10 \geq 18-15$ . Qualquer subconjunto que consista de exatamente um elemento tem peso total entre 10 e 20, logo as possíveis respostas corretas são: [0], [1], [2] ou [3].

#### **Subtarefas**

- 1. (9 pontos):  $1 \leq n \leq 100$  ,  $1 \leq w_i \leq 100$  ,  $1 \leq u, l \leq 1000$  , todos os  $w_i$  são iguais.
- 2. (10 pontos):  $1\leq n\leq 100$  ,  $1\leq w_i,u,l\leq 1000$  e  $\max(w_0,\ldots,w_{n-1})-\min(w_0,\ldots,w_{n-1})\leq 1$  .
- 3. (12 pontos):  $1 \leq n \leq 100$  e  $w_i, u, l \leq 1000$  .
- 4. (15 pontos):  $1 \leq n \leq 10\,000$  e  $w_i, u, l \leq 10\,000$  .
- 5. (23 pontos):  $1 \le n \le 10000$  e  $w_i, u, l \le 500000$
- 6. (31 pontos):  $1 \le n \le 200\,000$  e  $w_i, u, l < 2^{31}$ .

# Corretor exemplo

O corretor exemplo lê a entrada no seguinte formato:

- $\circ$  linha 1: inteiros n, l, u.
- $\circ$  linha 2: n inteiros:  $w_0,\ldots,w_{n-1}$  .