3D Object Detection of 9-million LiDAR Point Cloud Using Semi-Supervised Machine Learning

Siamak Rabienia

Fall 2019

Problem Definition

Objective: Reconstruct the 3D objects in a local neighborhood with minimum dimension

Motivation: Minimize the Misclassification Error

Applications:

• Autonomous Driving (LYCMU, CVPR '19), (CKZBMFU, NIPS '15), (FDU, NIPS '12)

· Digital Photogrammetry

• Forestry & Vegetation

Data Collection Platform

- The dataset are acquired by HDL-32E
 - ± 2 cm accuracy
 - 32 Channels
 - 80m-100m Range
 - 700,000 Points per Second
 - 360° Horizontal FOV
- . +10° to -30° Vertical FOV
- · The dataset has been labeled

Method

 $\overline{P} = \frac{1}{n+1} \sum_{i=1}^{n+1} P_i$

 $Cov_{3x3} = [\vec{e}_1 \ \vec{e}_2 \ \vec{e}_3] \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$

