DRL final project

Group 3

109356024 蘇品維 109356011 簡琬玲 106703055 黃浩瑋

Table of Contents

03 消息面資料 04 環境設置

 05
 模型訓練
 06
 結果呈現 & 未來展望

01

期中狀況回顧與反思

資料預處理

State:

country risk level, fund price, fund_delta, div_yield

時間(每天日期):

若今日基金有價錢,明日無價錢,明日無價錢,明日價錢視 為跟今日一樣

全部基金種類 資料經merge後 大概2000多檔

期中方向

	研究	實作
Model 1:DQN	簡琬玲	蘇品維
Model2 :Stable base line	黄浩瑋	

主要是在釐清問題,所以利用 DQN以及Stable base line進行簡單版本的實作,並且看看哪個效果較佳。

Model 1:DQN

Model 2: stable base line

二者結果比較

成效比較

	DQN	Stable baseline
採用state 維度	✓	
Min max draw down		✓
最終獲利		略勝

原因分析與後續改善方向

	DQN	Stable baseline
原因	1.從2000多檔基金中挑選10檔基金這任務對於模型有點太複雜(採納的state的資料維度可能太少) 2.分配比例屬於連續型的action,而dqn屬於離散型action的算法	1.前置的資料挑選屬於隨機, 所以可能 挑到本身獲利較不穩定的基金 2.所採納的state只有基金淨值
共同原因	1.每天都進行基金權重的變化,可能導致前期的訓練太過於隨機性,而導致模型 可能錯過最佳的基金權重分配比重 2.後續加入手續費時,手續費所造成的損失可能十分可觀。	
後續改善方向	在績效較好的stable base line採納dqn多個state的特性, 並且針對於前置的挑選作業多下功夫。	

後續專案架構

後續專案分工

內容	分工
金融指標研究與計算消息面的爬取與特徵轉換	簡琬玲、蘇品維
模型建置(十檔基金的權重分配)。	黃浩瑋

02

基金挑選方式

02-1

報酬相關指標

KD

- 全名為隨機指標(Stochastic Oscillator),是由K值和D值所組成的兩條線圖,適合作為短線研判買賣點之用
- K值和D值代表股價的變化速度,一般認為當K值>D值時,股價為上漲行情, 適合做多:當 D值>K值時,則屬於下跌行情,適合做空
- RSV:未成熟隨機值(Row Stochastic Value),代表著當天股價在最近N天內是
 相對強勢或弱勢

計算方式:

RSV = (今日收盤價 - 最近九天最低價)/(最近九天最高價 - 最近九天最低價) * 100 今日K值 = 2/3 * (昨日K值) + 1/3 * (今日RSV) 今日D值 = 2/3 * (今日D值) + 1/3 * (今日RSV)

RSI

- 又稱為相對強弱指標,主要用來衡量在過去一段時間(N日)內,股價買盤與 賣盤的相對強弱比例
- RSI>80: 超買訊號,市場過熱,股價反轉下跌
 RSI<20: 超賣訊號,市場過冷,準備逆勢上漲
 (以50作為區隔)
- 計算每檔基金RSI大於50且小於80的總天數, 作為挑選方式之一

計算方式:

RSI = 前N日漲幅平均值/(前N日漲幅平均值 + 前N日跌幅平均值) * 100

02-2

風險相關指標

價格變動標準差

- 代表著基金淨值在一段時間內的波動情況
- 當標準差愈大,表示淨值的漲跌較劇烈,風險程度也較高。

最大回撤(Max Drawdown)

- 衡量投資組合從高峰到低谷的最大跌幅
- 此指標需考慮較長期的投資時間,其中應包含空頭市場
- 能反應出買入某基金後可能出現的最糟糕情況,因此挑選基金時,需考量其 最大回撤指標是否在承受範圍內

下行偏差(Downside Deviation)

- 標準差的變形, 只考量低於目標收益率的變動
- 加入時間序列的考量,能精準考慮到每支基金隨著時間的標準差變化

貝塔係數(Beta)

- 衡量一種證券或一個投資組合相對總體市場的波動性
- 可以間接衡量每一支基金相對於大盤的波動率 (大盤資料指所有基金淨值的價格平均)
- 將整體市場報酬率、對單一資產報酬率做回歸分析時, Beta 值就是斜率的係數

02-3

最終挑選基金標的

挑選步驟

- 將2000檔基金從該指標的風險或報酬中由好到壞進行排序,並且抓取前300筆作 為篩選標的
- 風險指標與報酬指標分別作出交集,得出經由多種風險指標與多種獲利指標的 綜合排名最高的基金
- 分為兩種方式進行挑選:
- 1. 風險為主、獲利為輔:將由風險指標衡量過後的指標也到獲利指標進行衡量,若 獲利能力在500名之外者進行剔除
- 2. 獲利為主、風險為輔:由獲利指標衡量出來的基金也以同樣的方式衡量風險

挑選結果

● 最終十檔基金標的為:基金代碼'762', '1908', '1762', '1912', '2110', '929', '4407', '4405', '3148', '4163'

消息面資料

總體經濟面新聞

- 爬取 2015-01-23~2019-12-31 由「第一銀行」官網所提供的總體經濟面新聞標題
- 取出每天熱度前十名的新聞標題進行詞向量轉換
- 資料處理: 結巴斷詞→去除停用字→Stanza取出重要詞性→word2vec詞向量轉換

日期	新聞標題	斷詞結果	Stanza詞性挑選
2015/3/12	富邦人壽去年獲利	富邦 人壽 去年	人壽 去年 獲利
	再奪冠;今年徵才	獲利 奪冠 今年	奪冠 今年 徵才
	6800人	徴才 人	人

```
去年→ [-3.58251512e-01, 2.71741748e-01, -1.75890811e-02, -7.39504620e-02, ..., -1.02303743e-01, 1.95837572e-01, -9.87455249e-02]
```

加入情緒分數

- 將新聞標題轉換成情緒分數
- 利用 google cloud api 所提供的nlp套件, 把新聞標題的中文文字轉為由-1~+1
 的分數, 分數越高代表此文字所透露出來的正向情緒越高
- 將一天所獲得的十則情緒分數進行加總,並算出每天新聞的情緒加總作為當 日的情緒分數。

日期	新聞標題	熱度	情緒分數
2015/2/4	復航班機墜落基隆河 已知13死28人送醫	590	-0.4
2015/1/23	去年商業營業額創歷 年新高,年增2.7%	2428	+0.9

環境設置

Actions & State

Reward function

Total asset amount

Logarithm of the marginal portfolio profit

Marginal Portfolio Profit Changed Ratio

Reward function (with Risk)

Transition cost

1 Clipped Actions changes (0.5% ~ 5%)

Trading Interval (5 days a step)

05

模型訓練

Null Model

Because we filter it before

- Every object each 10%
- Final Asset: 950,000
- Then, what' more?

DDPG

Why DDPG?

- Advantage (1)
 - DQN -> Discrete
 - DDPG -> Continuous
- Advantage (2)
 - Less Sample
 - Efficiency

DDPG Details

1 Exploration Problem (Noise)

2 Replay Buffer

3 Tau (Soft update)

06

結果呈現 &未來展望

Comparison (Basic v.s. Improved)

Final Result (Our Reward function)

Final Asset: 1022511.892

0.04553056928141963

-0.018187664454270003

Final Result (Sharpe Ratio)

Final Asset: 1034319.503

0.069815793761

-0.020469415070560548

未來可研究方向

- 利用離散型action的模型(ex:DQN)進行基金的挑選, 節省許人力挑基金的決策時間
- 消息面改為該基金所包含的公司的新聞資料
- 可改用其他演算法進行訓練,例如:Soft-actor-critic
- 在基金的action的交易頻率上,我們採取的是固定的交易頻率(每五天交易一次),但其實在 實務上,甚麼時候下交易也是對於整體獲利會造成很大的影響,或許後續的專案可以針對 交易頻率進行訓練。

Thank you for listening Questions and advices are welcomed!