回归分析 Regression

房价预测

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	•••

特征值(feature)

标签/结果(target)

一元线性回归

- 回归分析(regression analysis)用来建立方程模拟两个或者多个变量之间如何关联
- 被预测的变量叫做:因变量(dependent variable), 输出(output)
- 被用来进行预测的变量叫做: 自变量(independent variable), 输入(input)
- 一元线性回归包含一个自变量和一个因变量
- 以上两个变量的关系用一条直线来模拟
- 如果包含两个以上的自变量,则称作多元回归分析 (multiple regression)

一元线性回归

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

这个方程对应的图像是一条直线,称作回归线。其中, θ_1 为回归线的斜率, θ_0 为回归线的截距。

一元线性回归-正相关

一元线性回归-负相关

一元线性回归-不相关

求解方程系数

训练集:	Size in feet ² (x)	Price (\$) in 1000's (y)
711-21-2K ·	2104	460
	1416	232
	1534	315
	852	178
	•••	•••

需要求解方程:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

- 最小二乘法
- 真实值y,预测值 $h_{\theta}(x)$,则误差平方为 $(y h_{\theta}(x))^2$
- 找到合适的参数,使得误差平方和:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(y^i - h_\theta(x^i) \right)^2$$
最小

Python机器学习-覃秉丰

假设

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

成本函数

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

简化

Simplified

$$h_{\theta}(x) = \theta_1 x$$

 θ_1

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 \qquad J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

 $\underset{\theta_1}{\text{minimize}} J(\theta_1)$

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

我们使用相关系数去衡量线性相关性的强弱

$$r_{XY} = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum (X_i - \overline{X})^2 \sum (Y_i - \overline{Y})^2}}$$

通过计算,左图的相关系数为0.993,右图的相关系数为0.957

Python机器学习-覃秉丰

决定系数

相关系数R²(coefficient of determination)是用来描述两个变量之间的线性关系的,但决定系数的适用范围更广,可以用于描述非线性或者有两个及两个以上自变量的相关关系。它可以用来评价模型的效果。

总平方和(SST): $\sum_{i=1}^{n} (y_i - \bar{y})^2$

回归平方和(SSR): $\sum_{i=1}^{n} (\hat{y} - \bar{y})^2$

残差平方和(SSE): $\sum_{i=1}^{n} (y_i - \hat{y})^2$

它们三者的关系是:SST = SSR +SSE

决定系数: $R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$

梯度下降法 Gradient Descent

梯度下降法

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{ heta_0, heta_1} J(heta_0, heta_1)$$

- 初始化 θ_0, θ_1
- 不断改变 θ_0, θ_1 , 直到 $J(\theta_0, \theta_1)$ 到达一个全局最小值, 或局部极小值。

梯度下降法


```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \text{ (for } j = 0 \text{ and } j = 1)  } 学习率
```

正确做法:同步更新

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

不正确做法

$$\begin{array}{l} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} \end{array}$$

梯度下降法

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Python机器学习-覃秉丰

有可能会陷入局部极小值

用梯度下降法来求解线性回归

梯度下降法

repeat until convergence {
$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$
(for $j = 1$ and $j = 0$)
}

线性回归的模型和代 价函数

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

用梯度下降法来求解线性回归

$$j = 0: \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$
 对 放射 (x)用 1求导得到的x
$$j = 1: \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

这里是两个参数才是x 若三个参数应该也是x 不过 第三个,也就是2,得到的 应该是x^2

线性回归的代价函数是凸函数

Python机器学习-覃秉丰

非凸函数和凸函数

梯度下降法优化过程

梯度下降法优化过程

梯度下降法优化过程

矩阵运算

矩阵

$$A = \begin{bmatrix} 2 & 3 \\ -1 & 6 \\ 4 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$A_{11}=6,A[1,1]=6$$

 $A_{20}=4,A[2,0]=4$
 $A[0]=[2,3]$

$$B_{02}=3,B[0,2]=3$$

 $B_{11}=5,B[1,1]=5$
 $B[0]=[1,2,3]$

矩阵运算

正确的按位加减乘除,两个矩阵的形状要一致:

$$\begin{bmatrix} 2 & 3 \\ -1 & 6 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 2 & 10 \\ 9 & 6 \end{bmatrix}$$

形状不一致的两个矩阵 不能按位进行加减乘

$$\begin{bmatrix} 8 : 3 \\ -1 & 6 \\ 4 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

矩阵运算

$$3 * \begin{bmatrix} 2 & 3 \\ -1 & 6 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 9 \\ -3 & 18 \\ 12 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 \\ -1 & 6 \\ 4 & 0 \end{bmatrix} + 3 = \begin{bmatrix} 5 & 6 \\ 2 & 9 \\ 7 & 3 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 \\ -1 & 6 \\ 4 & 0 \end{bmatrix} / 3 = \begin{bmatrix} 2/3 & 1 \\ -1/3 & 2 \\ 4/3 & 0 \end{bmatrix}$$

n行m列的矩阵乘以m行n列的矩阵得到n行n列的矩阵:

$$\begin{bmatrix} 2 & 3 \\ -1 & 6 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 2 \times 1 + 3 \times 4 & 2 \times 2 + 3 \times 5 & 2 \times 3 + 3 \times 6 \\ -1 \times 1 + 6 \times 4 & -1 \times 2 + 6 \times 5 & -1 \times 3 + 6 \times 6 \\ 4 \times 1 + 0 \times 4 & 4 \times 2 + 0 \times 5 & 4 \times 3 + 0 \times 6 \end{bmatrix}$$
$$= \begin{bmatrix} 14 & 19 & 24 \\ 23 & 28 & 33 \\ 4 & 8 & 12 \end{bmatrix}$$

单位矩阵

单位矩阵:

$$I_{3\times3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \cdot I = I \cdot A = A$$

转置矩阵

$$A = \begin{bmatrix} 2 & 3 \\ -1 & 6 \\ 4 & 0 \end{bmatrix}$$

$$A^T = \begin{bmatrix} 2 & -1 & 4 \\ 3 & 6 & 0 \end{bmatrix}$$

$$A_{ij} = A_{ji}^T$$

逆矩阵特点:

$$AA^{-1} = A^{-1}A = I$$

举例:
$$\begin{bmatrix} 3 & 4 \\ 2 & 16 \end{bmatrix} \begin{bmatrix} 0.4 & -0.1 \\ -0.05 & 0.075 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

多元线性回归

单特征

Size (feet²)	Price (\$1000)	
2104	460	
1416	232	
1534	315	
852	178	
•••		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••				•••

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

多元线性回归模型

当Y值的影响因素不是唯一时,采用多元线性回归模型

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

二元线性回归

多元线性回归

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$

$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n)$$
 $\}$ (simultaneously update for every $j=0,\dots,n$)

多元线性回归

Gradient Descent

```
Previously (n=1):  
Repeat \left\{ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right.  
\left. \frac{\partial}{\partial \theta_0} J(\theta) \right.  
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}  
(simultaneously update \theta_0, \theta_1)
```

```
(n \ge 1)
New algorithm
Repeat {
    \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}
               (simultaneously update \theta_j for
              j=0,\ldots,n )
 \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}
 \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{\substack{i=1 \ m}}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}
 \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}
```

例子

一家快递公司送货:X1: 运输里程 X2:

运输次数 Y: 总运输时间

Driving	X1=Miles	X2=Number of Deliveries	Y= Travel Time (Hours)
Assignment	Traveled		
1	100	4	9.3
2	50	3	4.8
3	100	4	8.9
4	100	2	6.5
5	50	2	4.2
6	80	2	6.2
7	75	3	7.4
8	65	4	6.0
9	90	3	7.6
10	90	2	6.1

假如我们不是要找直(或者超平面),而是一个需要找到一个用多项式所表示的曲线(或者超曲面),例如二次曲线: y=at²+bt+c

多项式回归可以写成下面这种形式:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_k X_i^k$$

Position	Level	Salary
Business Analyst	1	45000
Junior Consultant	2	50000
Senior Consultant	3	60000
Manager	4	80000
Country Manager	5	110000
Region Manager	6	150000
Partner	7	200000
Senior Partner	8	300000
C-level	9	500000
CEO	10	1000000

标准方程法 Normal Equation

$$J(\theta) = a\theta^2 + b\theta + c$$

$$J(\theta_0, \theta_1, \dots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \dots = 0$$

求解:
$$\theta_0, \theta_1, \ldots, \theta_n$$

Python机器学习-覃秉丰

	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
x_0	x_1	x_2	x_3	x_4	y
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} x_0 & x_1 & x_2 & x_3 & x_4 \\ 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$X = \begin{bmatrix} x_0 & x_1 & x_2 & x_3 & x_4 \\ 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

$$\sum_{i=1}^{m} (h_w(x^i) - y^i)^2 = (y - Xw)^T (y - Xw)$$

https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-vector_identities

分子布局(Numerator-layout):分子为列向量或者

分母为行向量)

分母布局(Denominator-layout):分子为行向量

或者分母为列向量)

$$\frac{\partial (y - Xw)^T (y - Xw)}{\partial w}$$

$$\frac{\partial (y^Ty - y^TXw - w^TX^Ty + w^TX^TXw)}{\partial w}$$

$$\frac{\partial y^T y}{\partial w} - \frac{\partial y^T X w}{\partial w} - \frac{\partial w^T X^T y}{\partial w} + \frac{\partial w^T X^T X w}{\partial w}$$

$$\frac{\partial y^T y}{\partial w} - \frac{\partial y^T X w}{\partial w} - \frac{\partial w^T X^T y}{\partial w} + \frac{\partial w^T X^T X w}{\partial w}$$

$$\underbrace{4}_{\partial w} \frac{\partial w^T X^T X w}{\partial w} = 2X^T X w$$

$$\frac{\partial y^T y}{\partial w} - \frac{\partial y^T X w}{\partial w} - \frac{\partial w^T X^T y}{\partial w} + \frac{\partial w^T X^T X w}{\partial w} = 0 - X^T y - X^T y + 2X^T X w$$
$$-2X^T y + 2X^T X w = 0$$
$$X^T X w = X^T y$$
$$(X^T X)^{-1} X^T X w = (X^T X)^{-1} X^T y$$
$$w = (X^T X)^{-1} X^T y$$
$$(X^T X)^{-1} \mathbb{R} X^T X$$
的逆矩阵

Python机器学习-覃秉丰

矩阵不可逆的情况

1.线性相关的特征(多重共线性)。

例如:x1为房子的面积,单位是平方英尺

x2为房子的面积,单位是平方米

预测房价

1平方英尺≈0.0929平方米

2.特征数据太多(样本数m≤特征数量n)

梯度下降法VS标准方程法

梯度下降法

标准方程法

缺点:

需要选择合适的学习率 需要迭代很多个周期 只能得到最优解的近似值

优点: 当特征值非常多的时候也 可以很好的工作 优点: 不需要学习率 不需要迭代 可以得到全局最优解

缺点: 需要计算 $(X^TX)^{-1}$ 时间复杂度大约是 $O(n^3)$ n是特征数量

特征缩放 交叉验证法

特征缩放

假设有多个特征用于决定房屋的价格

x1 = 房子面积(1000000cm²-2000000cm²)

x2 = 房间数量(1-5)

数据归一化

数据归一化就是把数据的取值范围处理为0-1或者-1-1 之间。

```
任意数据转化为0-1之间:
newValue = (oldValue-min)/(max-min)
(1,3,5,7,9)
(1-1)/(9-1)=0
(3-1)/(9-1)=1/4
(5-1)/(9-1)=1/2
(7-1)/(9-1)=3/4
(9-1)/(9-1)=1
```

任意数据转化为-1-1之间:
newValue = ((oldValue-min)/(max-min)-0.5)*2

均值标准化

x为特征数据,u为数据的平均值,s为数据的方差

newValue = (oldValue-u)/s

$$(1,3,5,7,9)$$

 $u = (1+3+5+7+9)/5=5$
 $s = ((1-5)^2+(3-5)^2+(5-5)^2+(7-5)^2+(9-5)^2)/5=8$
 $(1-5)/8=-1/2$
 $(3-5)/8=-1/4$
 $(5-5)/8=0$
 $(7-5)/8=1/4$
 $(9-5)/8=1/2$

交叉验证法

过拟合(Overfitting) 正则化(Regularized)

拟合

 $\theta_0 + \theta_1 x$

欠拟合(Underfitting)

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

正确拟合(Just right)

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

过拟合 (Overfitting)

拟合

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \qquad g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2)$$

$$g(\theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^2 x_2 + \theta_4 x_1^2 x_2^2 + \theta_5 x_1^2 x_2^3 + \theta_6 x_1^3 x_2 + \dots)$$

过拟合 (Overfitting)

Python机器学习-覃秉丰

防止过拟合

- 1.减少特征
- 2.增加数据量
- 3.正则化 (Regularized)

正则化(Regularized)

正则化代价函数:

L2正则化:
$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

L1正则化:
$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j| \right]$$

$$\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$$

如果数据的特征比样本点还多,数据特征n,样本个数m,如果n>m,则计算 $(X^TX)^{-1}$ 时会出错。因为 (X^TX) 不是满秩矩阵,所以不可逆。

为了解决这个问题,统计学家引入了岭回归的概念。

$$\mathbf{w} = (X^T X + \lambda I)^{-1} X^T \mathbf{y}$$

λ为岭系数, I为单位矩阵(对角线上全为1, 其他元素全为0)

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 + \lambda \sum_{i=1}^{n} \theta_i^2$$

$$J(\theta) = \frac{1}{2} (X\theta - Y)^T (X\theta - Y) + \lambda \theta^T \theta$$

$$= \frac{1}{2} [(\theta^T X^T X \theta - \theta^T X^T Y - Y^T X \theta + Y^T Y) + \lambda \theta^T \theta]$$

$$\frac{\partial J(\theta)}{\partial \theta} = X^T X \theta - X^T Y + \lambda \theta$$

$$\theta = (X^T X + \lambda I)^{-1} X^T Y$$

岭回归最早是用来处理特征数多于样本的情况,现在也用于在估计中加入偏差,从而得到更好的估计。同时也可以解决多重共线性的问题。岭回归是一种有偏估计。

岭回归代价函数:
$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

线性回归标准方程法: $W = (X^T X)^{-1} X^T y$

岭回归求解:
$$W = (X^TX + \lambda I)^{-1}X^Ty$$

 λ 为岭系数。

选择λ值,使到:

- 1.各回归系数的岭估计基本稳定。
- 2.残差平方和增大不太多。

Python机器学习-覃秉丰

LASSO

LASSO

- Tibshirani(1996)提出了Lasso(The Least Absolute Shrinkage and Selectionator operator)算法。
- 通过构造一个一阶惩罚函数获得一个精炼的模型;通过最终确定一些指标(变量)的系数为零(岭回归估计系数等于0的机会微乎其微,造成筛选变量困难),解释力很强。
- 擅长处理具有多重共线性的数据,与岭回归一样是有偏估计。

LASSO与岭回归

岭回归代价函数:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

 λ 的值可以用于限制 $\sum_{j=1}^{n} \theta_j^2 \leq t$

LASSO代价函数:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} |\theta_{j}| \right]$$

 λ 的值可以用于限制 $\sum_{j=1}^{n} |\theta_j| \leq t$

LASSO与岭回归

Python机器学习-覃秉丰

LASSO与岭回归

Python机器学习-覃秉丰

弹性网 Elastic Net

弹性网(Elastic Net)

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{j=1}^{n} |\theta_{j}|^{q} \right]$$

q=2 岭回归 q=1 Lasso q=4 q=2 q=1 q=0.5 q=0.1

Zou and Hastie (2005)提出elasticnet

只是正则项部分, 还有其他

$$\lambda \sum_{j=1}^{n} \left(lpha heta_{
m j}^2 + (1-lpha) ig| heta_{
m j}
ight)$$
 结合了岭回归和Lasso

$$\alpha=0.2$$