Assignment-1	EE204 - Analog Circuits	21 th Jan 2019
Submission Deadline-17.00 28th Jan, 2019.	Submission Protocol: Drop notebook in hardcopy and code and plots in Moodel	Comment: Partial

- 1. (a) Find out the peak transconductance (g_m) for the MOSFET (TSMC Spice Model shared with you) at $V_{DS} = 5$ V. (Use SPICE)
 - (b) What is the corresponding V_{GS} for the same? (Using SPICE)
 - (c) Find out the intrinsic output resistance (r₀) for the same MOSFET for V_{GS} found in (b). (Use SPICE)
 - (d) Draw the small signal equivalent circuit for the MOSFET when $V_{DS} = 3 \text{ V}$ and V_{GS} found above.
 - (e) Analytically design a regular class-A amplifier (without blocking and de-coupling capacitor) using the small signal equivalent circuit derived in (c) for an open circuit voltage gain of $A_{\nu}=2$. Find out all the parameters for the circuit e.g. V_{DD} , V_{GG} , R_{D} . Find out the output impedance of the amplifier w/ and w/o R_{D} .
 - (f) Re-design the same circuit in (d) using a single source $V_{DD} = 5$ V and using R_1 - R_2 potential divider network. Assuming the input blocking capacitance in infinite ($C_B = \infty$).
 - (g) Find out the gain for the amplifier at 1 MHz and 1mHz in (e) if an additional load resistance $R_L = 10$ k Ω is connected at the output with a decoupling capacitor of 1 μ F.
- 2. Assume k' = 2 mA/V², $V_{DD} = 15 \text{ V}$ and $\lambda = 0.01 \text{ V}^{-1}$.
- (a) Design a CS amplifier along with biasing circuit for gain -10 with minimum allowed output impedance. You can choose an appropriate biasing circuit based on your requirement.
- (b) Design a CD amplifier along with biasing circuit such that the gain is 0.9 and minimum allowed output impedance. You can choose an appropriate biasing circuit based on your requirement.
- (c) Design a CG amplifier with current gain 0.8 with maximum output impedance. You can choose an appropriate biasing circuit based on your requirement.
 - Simulate the circuits in (a), (b) and (c) and validate your results.
- (d) Cascade the CS and CD amplifier you designed earlier with appropriate coupling capacitor. Find out the overall gain and output impedance of your amplifier.