Was ist eine Reaktanz

Die Reaktanz (X) ist der Blindwiderstand. Somit ist er der Imaginärteil der Impedanz (Z). Die Reaktanz lässt sich folgendermassen berechnen:

Für Kapazitäten: Für Induktivitäten: $X = -\frac{1}{C} \qquad \qquad X = \omega L$

Da die Impedanz Z = jX ist folgt:

Für Kapazitäten: Für Induktivitäten: $Z=jX=-\frac{j}{\omega C}=\frac{1}{i\omega C}$ $Z=jX=j\omega L$

Frequenzabhängigkeit

Was ist die Güte und wie ist sie definiert?

Die Güte eines reaktiven Elements ist definiert als das Verhältnis seiner Reaktanz (Imaginärteil der Impedanz) und seiner Resistanz (Realteil der Impedanz):

$$Q = \frac{|\operatorname{Im} Z|}{\operatorname{Re} Z} = \frac{|X|}{R}$$

Grundsätzlich ist ein Bauteil besser je grösser die Güte ist.

3

Frequenzabhängigkeit

Was ist der Verlustfaktor d und was sagt der Winkel δ aus?

Der Verlustfaktor ist der Kehrwert der Güte.

$$d = \frac{1}{Q} = \frac{\text{Re}}{|\operatorname{Im} Z|} = \tan(\delta)$$
$$\delta = \frac{\pi}{2} - |\varphi|$$

4

Frequenzabhängigkeit

Was ist die Güte einer Induktivität und einer Kapazität?

Für Induktivitäten:

$$Q_L = \frac{X_L}{R_L} = \frac{\omega_L}{R_L} = \omega \tau_L$$

Für Kapazitäten:

$$Q_C = \frac{|X_C|}{R_C} = \frac{1}{\omega R_C C} = \frac{1}{\omega \tau_C}$$

Was ist ein Schwingkreis und welche Betriebsmodus gibt es?

Ein Schwingkreis ist:

- $\bullet\,$ ein Netzwerk aus Ohmischen und Kapazitive Bauteile
- ullet ein resonanzfähiges Netzwerk
- Kann parallel oder seriell geschaltet werden

Es gibt 2 Betriebsmodus:

- Freie Schwingung
- Erzwungene Schwingung (Durch Quelle angeregt)

Welche Frequenzen gibt es in einem Schwingkreis?

Es gibt drei verschiedene Frequenzen in einem Schwingkreis:

- Eigenfrequenz ω_0 (Resonanzfrequenz des verlustlosen Schwingkreis)
- Resonanzfrequenz ω_r (Im(Z) = 0, Reine Reelle Impedanzen und Admitanzen)
- Extremalfrequenz ω_m (Frequenz bei welcher die Impedanz maximal oder minimal ist)

Wie ist die Bandbreite eines Schwingkreises definiert?

(Absolute) Bandbreite:

$$B = f^{+} - f^{-} = \frac{\omega^{+} - \omega^{-}}{2\pi}$$

Die Bandbreite ist der Frequenzbereich, in welchem die Impedanz bzw. Admittanz des Resonators sich nur um den Faktor $\sqrt{2}$ vom nächsten (lokalen) Minimum ω_m unterscheidet. Oder Formal ausgedrückt: $|Z(\omega^{\pm})| = \sqrt{2} \cdot |Z(\omega_m)|$

relative Bandbreite:

$$B_{rel} = \frac{f^+ - f^-}{f_m} = \frac{\omega^+ - \omega^-}{\omega_m} = \frac{1}{Q_s}$$

Wobei Q_s die Schwingkreisgüte ist.

Was bedeutet Resonanz?

- Aus der Akustik:
 - Verstärktes Mitschwingen eines schwingfähigen Systems
- Die Resonanzfrequenz ω_r ist die Frequenz bei welcher die elektrische und magnetische Energie gleich gross sind $W_C=W_L.$

Bei der Resonanzfrequenz gilt folglich:

- $\bullet |X_C| = |X_L|$
- Im(Z) = 0
- $tan(\varphi) = 0 \rightarrow \varphi = 0$

Wie verhält sich ein echter Kondensator?

Ein Kondensator ist laut dem Ersatzschaltbild ein Serienschwingkreis und hat dementsprechend folgenden Verlauf:

Das Minimum der Impedanzfunktion ist rein reell und wird ESR (Equivalent Series Resistance) genant. Es enspricht dem Wert des Seriewiderstands bei der entsprechenden Frequenz.

Wie verhält sich ein echten Widerstand?

Das Ersatzschaltbild eines Widerstands hat entweder eine Spule in Serie (für kleine R) oder einen Kondensator Parallel (für grosse R).

 $log \omega$

Wie verhält sich eine echte Spule?

Das Ersatzschaltbild einer Spule ist ein Parallelschwingkreis. Deshalb hat der Impedanzverlauf folgende Eigenschaften.

Reaktanzeintore (RET)

Was ist ein Reaktanzeintor?

Ein Reaktanzeintor hat zwei Anschlüsse, besteht nur aus Reaktanzen und hat somit keine Wirkwiderstände.

Es wird zwischen minimalen und nicht minimalen Eintoren unterschieden. Nicht minimale Eintore können auf ein minimales Eintor reduziert werden ohne das die Änderung von aussen bemerkt wird.

Da die RET nur aus L und C bestehen hat das RET bei $\omega=0$ und bei $\omega\to\infty$ jeweils eine Pol oder eine Nullstelle.

Als erstes wird das Verhalten des RET bei DC und bei sehr grossen Frequenzen analysiert. Für DC leiten beide Induktivitäten also ist dort eine NS. Für hohe Frequenzen sperrt die Erste Spule also ist dort eine PS.

Da es bei dieser Schaltung um ein minimales RET handelt und aus drei Bauteilen besteht, hat der Reaktanzverlauf drei Pol/Null stellen. Diese treten abwechselnd auf.

Wie sieht der Reaktanzverlauf des folgenden RET aus?

14 Antwort

Als erstes wird das Verhalten des RET bei DC und bei sehr grossen Frequenzen analysiert. Für DC leiten beide Induktivitäten also ist dort eine NS. Für hohe Frequenzen leiten Beide Kapazitäten also ist dort ebenfalls NS. Da es bei dieser Schaltung um ein minimales RET handelt und aus vier Bauteilen besteht, hat der Reaktanzverlauf vier Pol/Null stellen. Diese treten abwechselnd auf.

Ist folgendes RET ein minimales

Nein! Denn es hat ein Ring aus Induktivitäten. In diesem Ring kann ein Strom fliesen. Dieser Strom ist von aussen nicht sichtbar. Eine Induktivität kann ersatzlos gestrichen werden, wenn dementsprechend die anderen Induktivitäten angepasst werden. Danach ist von aussen kein Unterschied feststellbar.

Welche Eigenschaften eines RET sind in der Praxis am unwahrscheinlichsten?

Es gibt zwei Probleme:

- Impedanz wird nie 0 erreichen
- Die Impedanz kann nicht undendlich gross werden.

Allerdings wird die Impedanz sich nicht komplett anders verhalten als die Reaktanz.

Frage

$\frac{\# 17}{\text{Antwort}}$

Frage

18 Antwort Antwort

Antwort

ELT4 # 19 EMV

Frage

19 Antwort

antwort