Thumbs Up? Sentiment Classification using Machine Learning Techniques

Pang, Lee, Vaithyanathan - EMNLP 2002

Slides by: Dor Cohen, Itai Gat

IE&M @ Technion

October 23, 2018

Sentiment analysis

Motivation

Should we watch this movie?

Sentiment analysis

Motivation

- Should we watch this movie?
- Ideally: read each review and decide

This movie is perfect, it made me cry from the beginning to the end, it deserves several Oscar's nominations. Lady Gaga is a true astist.

Sentiment analysis

Motivation

- Should we watch this movie?
- Ideally: read each review and decide

- Find mapping from text to binary label
 - Supervised learning

- Find mapping from text to binary label
 - Supervised learning
- For *m* numeric features (extracted from text) we define:

Definition (Binary classifier)

$$f: X o y$$
 where $X \in \mathbb{R}^m$, $y \in \{0,1\}$

- Find mapping from text to binary label
 - Supervised learning
- For *m* numeric features (extracted from text) we define:

Definition (Binary classifier)

$$f: X o y$$
 where $X \in \mathbb{R}^m$, $y \in \{0,1\}$

- Evaluate by loss function
- e.g., Zero-one loss: $L(x, y, f_w) = \mathbf{1}\{f_w(x) \neq y\}$
 - w denotes learned parameters

Data: IMDB Movie Reviews

- Lucky for us: user rating provides supervised learning
- Converted into 3 categories:
 - Positive, negative, (neutral not used)
- Avoid bias issues:
 - 20 reviews per author per sentiment
 - ▶ 752 negative vs 1301 positive
 - total of 144 reviewers

Human based sentiment classifiers

- Hypothesis: certain words indicate on sentiment type
- Test: count positive vs. negative words

Human	Proposed words	Accuracy	Ties ¹
1	positive (5): dazzling, brilliant negative (5): suck, terrible	58%	75%
2	positive (11): gripping, spectacular negative (6): cliched, boring	64%	39%

Table: Baseline results for human word lists, data is balanced (700 vs. 700)

¹Documents percentage where sentiments rated equally

Human based sentiment classifiers

Should we worry about high rate of ties?

- Proposed list is relatively short (usually effect is 0 vs. 0)
 - ▶ Not necessarily the reason for low accuracy!
- Authors propose their list
 - Backed up with statistics

Human	Proposed words	Accuracy	Ties
3+Stats	positive (7): love, wonderful negative (7): bad, worst, '?', '!',	69%	16%

Table: Results where words (total 14) were chosen based on data statistics

Human based sentiment classifiers

(2018) Data analysis

We reproduced the analysis, following are example estimates

Note words occurrences were binarized

Methods

Bag of words

Example

• d₁: "Audio rocks"

• d_2 : "Act boring"

	act	audio	boring	rocks
mapping	0	1	2	3
d1	0	1	0	1
d2	1	0	1	0

• d_3 : "Boring effects", $d_3^{bow} = ?$

Bag of words

Example

- d₁: "Audio rocks"
- d₂: "Act boring"

	act	audio	boring	rocks
mapping	0	1	2	3
d1	0	1	0	1
d2	1	0	1	0

- d_3 : "Boring effects", $d_3^{bow} = ?$
- $d_3^{bow} = (0,0,1,0)$

• Assign class which maximizes: $c^* = argmax_c P(c|d)$

- Assign class which maximizes: $c^* = argmax_c P(c|d)$
- Recap:

Definition (Bayes theorem)

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- Assign class which maximizes: $c^* = argmax_c P(c|d)$
- Recap:

Definition (Bayes theorem)

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

• To estimate P(d|c) we **naively** assume f_i 's are independent

- Assign class which maximizes: $c^* = argmax_c P(c|d)$
- Recap:

Definition (Bayes theorem)

$$P(c|d) = \frac{P(c)P(d|c)}{P(d)}$$

- To estimate P(d|c) we **naively** assume f_i 's are independent
 - Hence $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$

	act	audio	boring	rocks
mapping	0	1	2	3
positive	1	3	1	3
negative	3	1	3	1

Assume the following Bow model with 4 documents for each class:

	act	audio	boring	rocks
mapping	0	1	2	3
positive	1	3	1	3
negative	3	1	3	1

ullet $d_3=$ "Boring effects" , $d_3^{bow}=(0,0,1,0)$

	act	audio	boring	rocks
mapping	0	1	2	3
positive	1	3	1	3
negative	3	1	3	1

- d_3 = "Boring effects", $d_3^{bow} = (0,0,1,0)$
- Recall $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$

	act	audio	boring	rocks
mapping	0	1	2	3
positive	1	3	1	3
negative	3	1	3	1

- ullet $d_3=$ "Boring effects" , $d_3^{bow}=(0,0,1,0)$
- Recall $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$
- $P(d|pos) = \frac{1}{4}^0 * \frac{1}{4}^0 * \frac{1}{4}^1 * \frac{1}{4}^0 = \frac{1}{4}$

	act	audio	boring	rocks
mapping	0	1	2	3
positive	1	3	1	3
negative	3	1	3	1

- ullet $d_3=$ "Boring effects" , $d_3^{bow}=(0,0,1,0)$
- Recall $\widehat{P(d|c)} = \prod_{i=1}^m P(f_i|c)^{n_i(d)}$
- $P(d|pos) = \frac{1}{4}^{0} * \frac{1}{4}^{0} * \frac{1}{4}^{1} * \frac{1}{4}^{0} = \frac{1}{4}$
- $P(d|neg) = \frac{1}{4}^0 * \frac{1}{4}^0 * \frac{3}{4}^1 * \frac{1}{4}^0 = \frac{3}{4}$

SVM vs. Logistic regression

- Can view both parametrically: $f(x_i, W) = Wx_i + b$
- Train with gradient descent:
 - Initialize parameters
 - ▶ 1. Update parameters following loss gradient
 - 2. Repeat until convergence

SVM vs. Logistic regression

- Can view both parametrically: $f(x_i, W) = Wx_i + b$
- Train with gradient descent:
 - Initialize parameters
 - ▶ 1. Update parameters following loss gradient
 - 2. Repeat until convergence

Methods differ in their loss functions:

Definition (SVM loss)

$$L_i = \sum_{j \neq i} max(0, s_j - s_{y_i} + \delta)$$
, where $s_j = f(x_i, W)_j$

Definition (Softmax loss)

$$L_i = -log(\frac{e^{fy_i}}{\sum_j e^{f_j}})$$

SVM vs. Logistic regression

Evaluate loss example

Results

Experimental setup

- Features:
 - ▶ d: "Audio quality rocks"
 - ► Unigram: {'audio', 'rocks',...}
 - ▶ Bigram: {'audio quality',...}
 - ▶ N-gram !

Setup

- Unigram/bigram appear at least 4/7 times
- Uniform class distributions ("balanced" dataset)
- 3-fold average accuracies reported
- Expressions with negation handled with unified NOT tag
- Punctuation treated as separate lexicon, no stemming used

Results and discussion

Using feature presence

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%
8	unigram+position	22430	81.0%	80.1%	81.6%

Results and discussion

Using feature presence

ID	Features	count	NB	ME	SVM
2	unigrams	16165	81.0%	80.4%	82.9%
3	uni+bigrams	32330	80.6%	80.8	82.7%
4	bigrams	16165	77.3%	77.4%	77.1%
5	unigrams+POS	16695	81.5%	80.4%	81.9%
6	adjectives	2633	77.0%	77.7%	75.1%
7	top 2633 unigrams	2633	80.3%	81.0%	81.4%
8	unigram+position	22430	81.0%	80.1%	81.6%

- Adding bigrams doesn't improve results; Bigrams alone is worse
- Part-of-speech: "I love this movie" vs. "This is a love story"
- Position based on dividing text into quarters

Conclusions

Conclusions

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms
- Contrarily, performance isn't comparable to topic classification

Review example

"This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up."

Conclusions

- Unigrams presence setting achieves the best performance
 - Apply feature selection algorithms
- Contrarily, performance isn't comparable to topic classification

Review example

"This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can't hold up."

- Difficult for bag-of-words classifiers
- Authors suggest determining the focus of each sentence

Thank you for participating! Questions?