Apprentissage Automatique

Régularisation / SVM + régression

Stéphane Herbin

stephane.herbin@onera.fr

Aujourd'hui

- Approfondissement:
 - Régularisation
 - Un algorithme efficace: Support Vector Machines (SVM)
 - Multiclasse
 - Régression
- TD:
 - SVM: étude de l'influence des paramètres
 - Validation croisée (reprise!)

Apprentissage supervisé (rappel)

On veut construire une fonction de décision F à partir d'exemples

• On dispose d'un **ensemble d'apprentissage** \mathcal{L} sous la forme de paires $\{x_i, y_i\}$ où x_i est la donnée à classer et y_i est la classe vraie:

$$D = \{(x_i, y_i)\}_{i=1...n}$$

• L'apprentissage consiste à identifier cette fonction de classification dans un certain espace paramétrique W optimisant un certain critère L:

$$W = \arg\min_{W'} L(D, W')$$

On l'applique ensuite à de nouvelles données.

$$y = f(x; W)$$

Régularisation

Retour sur le sur-apprentissage

	M=0	M = 1	M = 3	M = 9
$\overline{w_0^\star}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

Coefficients des polynômes

Très grandes valeurs!

Moindre carrés régularisés

Idée: on rajoute une pénalisation des grandes valeurs des paramètres à la fonction de coût:

$$L(\mathbf{W}) = \sum_{i=1}^{N} (f(\mathbf{x}_i, \mathbf{W}) - y_i)^2 + \lambda ||\mathbf{W}||^2$$

Coût d'attache aux données

Paramètre de régularisation

Dont l'optimum exact est alors:

$$\mathbf{W}^* = (\mathbf{\Phi}^t.\mathbf{\Phi} + \lambda \mathbf{I})^{-1}\mathbf{\Phi}^t Y$$

Si on pénalise les grandes valeurs des coefficients du polynôme, on obtient une fonction moins « zigzagante »

Effet de la régularisation

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
$w_3^{\overline{\star}}$	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
$\widetilde{w_9^\star}$	125201.43	72.68	0.01

Régularisation: \mathcal{E}_{RMS} **vs.** $ln(\lambda)$

$$\mathcal{E}_{\text{RMS}}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (F(\mathbf{x}_i, \mathbf{w}) - y_i)^2$$

Régularisation: \mathcal{E}_{RMS} vs. M

$$\mathcal{E}_{\text{RMS}}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (F(\mathbf{x}_i, \mathbf{w}) - y_i)^2$$

Influence de la quantité de données

Polynôme d'ordre 9

Trois critères à ne pas confondre

Risque ou erreur empirique

$$\mathcal{E}_{\text{test}}(\mathbf{w}, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \{ F(\mathbf{x}_i, \mathbf{w}) \neq y_i \}$$

Erreur de généralisation (ou idéale...)

$$\mathcal{E}(\mathbf{w}) = E_{\mathbf{X},Y} [\{ F(\mathbf{x}, \mathbf{w}) \neq y \}]$$

Critère à optimiser (forme assez générique)

Adéquation aux données

$$L(\mathbf{w}, \mathcal{D}) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} l(F(\mathbf{x}_i, \mathbf{w}), y_i) + r(\mathbf{w})}_{\text{Régularisation}}$$

« Support Vector Machines »

Deux types d'approches: génératives vs. discriminatives

Support Vector Machines

- Historique
- Principe: maximiser la marge de séparation d'un hyperplan
- Le cas séparable
- Le cas non séparable: les fonctions de perte (« hinge loss »)
- L'extension au cas non linéaire: les noyaux
- Parcimonie
- Les paramètres de contrôle

Historique du Machine Learning

Modèles linéaires de décision

Hypothèse = les données sont *linéairement séparables*.

- En 2D, par une droite
- En ND, par un hyperplan.

Classifieur linéaire

Equation de l'hyperplan séparateur

$$b + \mathbf{w} \cdot \mathbf{x} = 0$$

Expression du classifieur linéaire (pour y_i valant -1 et 1)

$$F(\mathbf{x}; \mathbf{w}) = \operatorname{sign}(b + \mathbf{w}.\mathbf{x})$$

Erreur

$$\mathcal{E}_{test}(\mathbf{w}, \mathcal{L}) = \frac{1}{N} \sum_{i=1}^{N} \left\{ y_i. sign(b + \mathbf{w}. \mathbf{x}_i) < 0 \right\}$$

Quel hyperplan choisir?

Classifieur « Large margin »

Choisir l'hyperplan qui maximise la distance aux points les plus proches

Support Vector Machines

On cherche l'hyperplan qui maximise la <u>marge</u>.

$$\mathbf{x}_i \text{ positif } (y_i = 1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \ge 1$$

$$\mathbf{x}_i$$
 négatif $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

Pour les vecteurs de $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ support,

Distance entre point et $\frac{|\mathbf{x}_i \cdot \mathbf{w} + b|}{\|\mathbf{w}\|}$

Pour les « support vectors »:

$$\frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|} = \frac{\pm 1}{\|\mathbf{w}\|} \qquad M = \left| \frac{1}{\|\mathbf{w}\|} - \frac{-1}{\|\mathbf{w}\|} \right| = \frac{2}{\|\mathbf{w}\|}$$

Principe du SVM (Large Margin)

 Maximiser la marge = distance des vecteurs à l'hyperplan séparateur des vecteurs de supports

$$\max \frac{1}{\|\mathbf{w}\|^2}$$

Sous contraintes

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 \quad \forall i$$

• Les vecteurs de support vérifiant:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$$

Le 1 est conventionnel.

N'importe quelle
constante >0 est valable.

Formulation du SVM

$$\min_{w,b} \|w\|^2$$

Tel que:

$$y_i(w \cdot x_i + b) \ge 1 \ \forall i$$

Si les données sont séparables Problème d'optimisation quadratique Avec contraintes linéaires

Problème d'optimisation quadratique classique

Mais avec beaucoup de contraintes! (autant que d'exemples d'apprentissage)

Classification « Soft Margin »

Comment traiter le cas non linéairement séparable?

Classification « Soft Margin »

$$\min_{w,b} \|w\|^2$$
Tel que: $y_i(w \cdot x_i + b) \ge 1 \ \forall i$

On aimerait obtenir une séparation robuste à quelques données non séparées

Idée: « Slack variables »

$$\min_{w,b} \|w\|^2$$

tq:

$$y_i(w \cdot x_i + b) \ge 1 \ \forall i$$

$$\min_{w,b} \|w\|^2 + C \sum_i \xi_i$$

tq:

$$y_i(w \cdot x_i + b) \ge 1 - \xi_i \quad \forall i$$
$$\xi_i \ge 0$$

Permet de relacher la contrainte de séparabilité pour chaque exemple.

slack variables (une par exemple)

« Slack variables »

$$\min_{w,b} \|w\|^2 + C \sum_i \xi_i$$

Tel que:

$$y_i(w \cdot x_i + b) + \xi_i \ge 1 \quad \forall i$$
$$\xi_i \ge 0$$

Relâchement de la contrainte

Utilisation des « Slack variables »

tq

$$y_i(w \cdot x_i + b) \ge 1 - \xi_i \quad \forall i$$

$$\xi_i \ge 0$$

Contrainte autorisée à être relachée

Soft margin SVM

$$\min_{w,b} \|w\|^2 + C \sum_i \xi_i$$

Tel que

$$y_i(w \cdot x_i + b) \ge 1 - \xi_i \quad \forall i$$
$$\xi_i \ge 0$$

On garde un problème quadratique!

Mais avec un très grand nombre de variables+contraintes

Autre formulation

$$\min_{w,b} \|w\|^2 + C\sum_i \xi_i$$
 tq:
$$y_i(w \cdot x_i + b) \ge 1 - \xi_i \ \forall i$$

$$\xi_i \ge 0$$

$$\min_{w,b} \|w\|^2 + C \sum_{i} \max(0,1-y_i(w \cdot x_i + b))$$

Problème d'optimisation non contraint

→ Autres méthodes d'optimisation (descente de gradient)

Interprétation du « Soft Margin SVM »

$$\min_{w,b} \|w\|^2 + C \sum_{i} \max(0,1-y_i(w \cdot x_i + b))$$

On retrouve la formulation:

Loss
$$(\mathbf{w}, \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} l(F(\mathbf{x}_i, \mathbf{w}), y_i) + r(\mathbf{w})$$

Avec

$$r(\mathbf{w}) = \frac{1}{C} \|\mathbf{w}\|^2$$

$$l(F(\mathbf{x}_i, \mathbf{w}), y_i) = \max(0, 1 - y_i(\mathbf{w}.\mathbf{x}_i + b))$$

Le SVM est un cas particulier du formalisme: « erreur empirique + régularisation »

Autres Fonctions de coût

0/1 loss:
$$l(y, y') = 1[yy' \le 0]$$

Hinge: $l(y, y') = \max(0, 1 - yy')$

Squared loss:

$$l(y, y') = (y - y')^2$$

$$l(y, y') = (y - y')^2$$
 Exponential: $l(y, y') = \exp(-yy')$

Surrogate loss functions

Forme duale du SVM

Problème d'optimisation sous contrainte

Pour simplifier l'expression des calculs

Primal
$$\underset{\mathbf{w}}{\operatorname{argmin}}_{\mathbf{w}} \frac{\|\mathbf{w}\|^2}{2} + C \sum_{i} \xi_{i}$$
 Multiplicateurs de Lagrange $s.t.\ \forall i, y_i(\mathbf{w}.x_i + b) \geq 1 - \xi_i$ α_i $\xi_i \geq 0$ β_i

Dual (Lagrangien)

$$L(\mathbf{w}, \xi, \alpha, \beta) = \frac{\|\mathbf{w}\|^2}{2} + \sum_{i} (C\xi_i - \alpha_i(y_i(\mathbf{w}, \mathbf{x}_i + b) - 1 + \xi_i) - \beta_i \xi_i)$$

s.t.
$$\forall i, \alpha_i \geq 0, \beta_i \geq 0$$

Forme duale du SVM

Lagrangien

Dual des contraintes « slack »

Solution optimale (conditions de Kuhn-Tucker): $\alpha_i(y_i w^T x_i - 1 + \xi_i) = 0$

Interprétation: $\alpha_i = 0$ si la contrainte est satisfaite (bonne classification)

 $\alpha_i > 0$ si la contrainte n'est pas satisfaite (mauvaise classification)

Parcimonie du SVM

 Seuls certains α sont non nuls = autre manière de définir les vecteurs de support.

Optimalité =
$$\alpha_i(y_i w^T x_i - 1 + \xi_i) = 0$$

Direction de l'hyperplan séparateur $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$

Données non linéairement séparables

• Transformation non linéaire $\phi(x)$ pour séparer linéairement les données d'origine

 $\phi(x)$ = Transformation polynomiale

Données non linéairement séparables

• Transformation non linéaire $\phi(x)$ pour séparer linéairement les données d'origine

 $\phi(x)$ = Transformation polaire

Retour sur la formulation duale du SVM

Lagrangien

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i} x_{j}$$

$$\text{tq } \forall i, 0 \leq \alpha_{i} \leq C$$
 Produit scalaire uniquement

« Kernel trick »

$$\max_{\alpha} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\boldsymbol{x}_{i}, \boldsymbol{x}_{j})$$

$$\mathsf{tq} \ \forall i, 0 \leq \alpha_{i} \leq C$$
Noyau

Le noyau *K* est un produit scalaire dans l'espace transformé:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Il est uniquement nécessaire de connaître la similarité entre données pour introduire la non linéarité dans le problème (avec des conditions...)

Utilisation de noyaux dans les SVM

- Permet d'introduire des mesures de similarités propres au domaine étudié et sans avoir à gérer la complexité de la transformation
- Permet de séparer modélisation = noyau de la classification et SVM (optimisation)
- Définit la fonction de classification à partir de noyaux « centrés » sur les vecteurs de support

$$F(\mathbf{x}, \mathbf{w}) = b + \sum_{i} \alpha_{i} y_{i} \mathbf{K}(\mathbf{x}_{i}, \mathbf{x})$$

Noyaux courants

Polynômes de degrés supérieurs à d

$$K(x,y) = (x,y+1)^{\boxed{d}}$$

Noyau gaussien

Paramètres à définir
> = degré de liberté
supplémentaire

$$K(x, y) = \exp\left(-\frac{(x - y)^T(x - y)}{2\sigma^2}\right)$$

Intersection d'histogrammes

$$K(\mathbf{x}, \mathbf{y}) = \sum_{i} \min(x^{i}, y^{i})$$

Résumé sur SVM

- Une formulation optimale <u>quadratique</u> du problème de classification binaire:
 - Primal: optimisation d'un critère empirique + régularisation
 - Dual: permet d'introduire parcimonie et « kernel trick »
 - → plusieurs manières d'optimiser
- Les solutions s'expriment comme des combinaisons linéaires éparses de noyaux:

$$F(\mathbf{x}) = sign(b + \sum_{i} \alpha_{i} y_{i} \mathbf{K}(\mathbf{x}_{i}, \mathbf{x}))$$

où α_i >0 seulement pour les vecteurs de support, 0 sinon.

- En pratique, ce qu'il faut régler:
 - Le coefficient de régularisation: C
 - Le type de noyau et ses caractéristiques
 - Les paramètres de l'optimiseur

Multiclasse

Différents types de classification

$$\mathcal{A} = \{-1,1\}$$

$$\mathcal{A} = \{1, 2...L\}$$

$$\mathcal{A} = \{1, 2...L\} \times R^4$$

• Caractérisation des données:

$$\mathcal{A} = \{1, 2...L, \text{ambigu,inconnu}\}$$

Anomalie

Hypothèses multiples

- Toutes les classes/hypothèses ne se valent pas
 - Classes plus rares que d'autres (non équilibrées)
 - Coût d'une erreur de classification dépend des classes (Zèbre vs. Gazelle vs. Lion)
- Deux stratégies:
 - Optimiser un critère multi-hypothèse dans l'apprentissage
 - Par exemple entropie dans arbre de décision, softmax dans réseaux de neurones...
 - Utiliser un ensemble de classifieurs binaires
 - SVM, adaboost, perceptron...

Multiclasse à partir de classifieurs

- Comment passer d'une classification binaire à N classes?
- Plusieurs techniques:
 - One vs Rest
 - One vs One (ou All vs All)
- OVO:
 - On apprend autant de classifieurs que de paires de classes (N(N-1)/2)
 - Classification = choix de la classe ayant le plus de votes
 - Pb: peut être indécidable dans certains cas
- OVR:
 - On apprend un classifieur par classe
 - Classification = choix de la classe ayant le meilleur score
 - Pb: déséquilibre des données entre classe cible et « reste »

Evaluation du multi-classe

Erreur globale:

$$Err = \frac{\text{nombre d'échantillons mal classés}}{\text{nombre d'échantillons testés}}$$

- Matrice de confusion:
 - conf(i,j)=probabilité de classer comme i | vraie classe est j estimée sur données de test
- Risque ou coût moyen

$$R = \sum_{j} \sum_{i} \lambda(i, j) \operatorname{conf}(i, j) p(j)$$

où $\lambda(i,j)$ est le coût de décider i lorsque j est vrai

Régression

A quoi ça sert

- **Prédire** une valeur (interpolation, extrapolation)
- Expliquer/détecter/repérer des corrélations/tendances
- Exemples de prédiction:
 - Prédiction de régime moteur
 - Prédiction de durée de survie
 - Estimation de prix
 - Prévision météo ou climatique
 - Prévision de cours de la bourse
 - Super résolution
 - Estimation de pose d'objet

Formulation de la régression

- Prédicteur: $W, x \mapsto y$
- Modèle: P(y | x, W) ou $y = f(x, W) + \varepsilon$

Où

- entrée $x \in \mathbb{R}^M$, prédiction $y \in \mathbb{R}^p$
- W paramètres du prédicteur estimé à partir d'un ensemble d'apprentissage: $\mathcal{L} = \{x_i, y_i\}_{i=1..N}$
- ε variable aléatoire décrivant l'erreur de prédiction (souvent considérée gaussienne)

- C'est du « Machine Learning » (Apprentissage supervisé)
- C'est du « Data Mining » (Estimation de dépendances entre variables)

Modèles linéaires

- La base de la régression
 - Fondements mathématiques solides
 - Calculs analytiques ou optimisation séquentielle
- Plusieurs manières de dépasser la linéarité
 - Modèles linéaires généralisés
 - Modèles à base de noyaux (« kernels »)
- Plusieurs manières de maîtriser la complexité
 - « Large margin » (cf. SVM)
 - Régularisateurs

Modèles linéaires généralisés (cas scalaire $y \in \mathbb{R}$)

 Principe simple: utiliser plusieurs fonctions de base φ encodant les données source (« features »)

biais
$$f(\mathbf{x}, \mathbf{w}) \stackrel{\downarrow}{=} w_0 + w_1 x_1 + w_2 x_2 + \dots = \mathbf{w}^T \mathbf{x}$$

$$f(\mathbf{x}, \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \dots = \mathbf{w}^T \Phi(\mathbf{x})$$

- Une fois définies les fonctions, le problème reste linéaire!
- Comment trouver ces fonctions?
 - Se les donner
 - Les apprendre

Exemples classiques de fonctions de base 1D

Remarque: les sigmoïdes et gaussiennes sont des fonctions d'activation usuelles dans les réseaux de neurones

 \rightarrow les RN permettent d'apprendre les ϕ

Apprentissage = trouver W_{ML}

Forme du prédicteur

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

Critère d'erreur (évaluation)

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

Principe statistique: maximum de vraisemblance

$$W_{ML} = \underset{W}{\operatorname{argmax}} P(y \mid x, W)$$

Solution générale $(y \in \mathbb{R}^P)$

Lorsque les cibles sont vectorielles

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{T}.$$

où $\mathbf{T} = [\mathbf{t}_1, \dots, \mathbf{t}_N]^{\mathrm{T}}$ est la matrice des cibles $(N \times p) \mathbf{t}_k = [t_{1k}, \dots, t_{Nk}]^{\mathrm{T}}$ Pour une cible scalaire on a

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}_k = \mathbf{\Phi}^{\dagger}\mathbf{t}_k$$

où Φ^{\dagger} ne dépend que des données d'entrée.

$$\mathbf{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}.$$

Moindre carrés régularisés (retour)

Idée: on rajoute une pénalisation des grandes valeurs des paramètres à la fonction de coût:

$$L(\mathbf{W}) = \sum_{i=1}^{N} (f(\mathbf{x}_i, \mathbf{W}) - y_i)^2 + \lambda ||\mathbf{W}||^2$$

Coût d'attache aux données

Dont l'optimum exact est alors:

Paramètre de régularisation

$$W^* = (\mathbf{\Phi}^t \cdot \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^t Y$$

Si on pénalise les grandes valeurs des coefficients du polynôme, on obtient une fonction moins « zigzagante »

Comment fonctionne la régularisation L2

- Le coût global est la somme de deux « cuvettes ».
- La somme est aussi quadratique.
- Le minimum global est sur une ligne joignant l'origine et le minimum sans contrainte.
- La régularisation a pour effet de diminuer les poids.

Autres types de régularisation

Une manière simple: utiliser une autre norme

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

Interprétation géométrique

Remarque: w1=0 à l'optimum. **Parcimonie** de la solution.

D'autres pénalisations...

- The Tikhonov regularization: $\psi(w) = 1/2 ||w||_2^2$.
- The ℓ_1 -norm: $\psi(w) = |w|_1$.
- The Elastic-Net: $\psi(w) = |w|_1 + \gamma ||w||_2^2$.
- The Fused-Lasso: $\psi(w) = |w|_1 + \gamma ||w||_2^2 + \gamma_2 \sum_{i=1}^{p-1} |w_{i+1} w_i|$.
- The group Lasso: $\psi(w) = \sum_{g \in G} \eta_g ||w_g||_2$, where G are groups of variables.
- The group Lasso with ℓ_{∞} -norm: $\psi(w) = \sum_{g \in G} \eta_g ||w_g||_{\infty}$, where G are groups of variables.
- The sparse group Lasso: same as above but with an additional ℓ_1 term.
- The tree-structured sum of ℓ_2 -norms: $\psi(w) = \sum_{g \in G} \eta_g ||w_g||_2$, where G is a tree-structured set of groups [15], and the η_g are positive weights.
- The tree-structured sum of ℓ_{∞} -norms: $\psi(w) = \sum_{g \in G} \eta_g ||w_g||_{\infty}$. See [15]
- General sum of ℓ_{∞} -norms: $\psi(w) = \sum_{g \in G} \eta_g ||w_g||_{\infty}$, where no assumption are made on the groups G.
- The path-coding penalties of [24].
- the ℓ_1 -constraint.

http://spams-devel.gforge.inria.fr/documentation.html

Support Vector Regression

$$\begin{aligned} & \text{Min } \frac{1}{2}||w||^2 + C\sum_{i=1}^n (\xi_i + \xi_i^*) \\ & \text{subject to } \begin{cases} u_i - \mathbf{w}^T \mathbf{x}_i - b \leq \epsilon + \xi_i \\ \mathbf{w}^T \mathbf{x}_i + b - u_i \leq \epsilon + \xi_i^* \\ \xi_i \geq 0, \xi_i^* \geq 0 \end{cases} \end{aligned}$$

Formulation comparable à celle de la classification

- Fonction de coût différente (dépend d'un paramètre)
- Expression du « soft margin » symétrique
- « Kernel trick » applicable
- Sparsité de la solution

$$L_{\varepsilon}(y, f(\mathbf{x}, \omega)) = \max(|y - f(\mathbf{x}, \omega)| - \varepsilon, 0)$$

Classification et Régression: : même combat

Problème liés à la régularisation globale

- La pénalisation est isotrope: toutes les dimensions sont considérées simultanément, avec le même poids
 - → on fait l'hypothèse que les dimensions sont comparables (en unité et signification)
 - → Besoin de normaliser ou « blanchir » les données. Mais risque alors de louper les fortes corrélations entre données.
- Beaucoup de types de régularisation (et d'algorithmes d'optimisation...): comment choisir?
 - Validation croisée
 - Structure du problème (on veut forcer certaines dimensions ou certaines corrélations entre dimensions)
 - On veut obtenir une solution interprétable → sparsité. Mais il y a d'autres approches algorithmiques pour la rechercher directement .
- Remarque: la recherche sur les algorithmes « sparse » était très active avant le « deep learning era ». Maintenant moins…

Evaluer une régression

- Deux objectifs: prédiction ou modélisation
- Prédiction: on cherche la fonction ayant l'erreur de généralisation la plus faible
- → Erreur estimée sur base de test
- → Recherche des paramètres sur base de validation (validation croisée)
- Modélisation: on cherche la fonction qui explique au mieux les corrélations entre données
- → Tests statistiques (R² et p-values)

Formulation bayésienne

- Principes
 - Considérer la distribution jointe des sorties t conditionnellement aux entrées x comme gaussiennes
 - considérer les poids *W* comme des variables aléatoires
 - → on évolue dans des espaces de distributions
- Loi a priori P(W)
- Vraisemblance des entrées P(t | x, W)
- Loi a posteriori P(W|t)
- Plus hyper paramètres de modélisation des lois (en général prises gaussiennes)

Gaussienne variance du bruit de sortie
$$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathsf{N}(t_n \mid \mathbf{w}^T \mathbf{x}_n, \beta^{-1}) \qquad \leftarrow \text{vraisemblance}$$

$$p(\mathbf{w} \mid \alpha) = N(\mathbf{w} \mid 0, \alpha^{-1}\mathbf{I}) \leftarrow \text{prior}$$

$$-\ln p(\mathbf{w} \mid \mathbf{t}) = \frac{\beta}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x}_n)^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} + const$$

On retrouve une formulation avec régularisation

$$\lambda = \frac{\alpha}{\beta}$$

Exemple

Modèle à deux paramètres:

$$y(x, \mathbf{w}) = w_0 + w_1 x$$

- On peut imager la loi a posteriori sur les poids
- La vraisemblance est gaussienne
- → loi a posteriori aussi gaussienne si la loi a priori l'est

 Sans données, on échantillonne la loi a priori

 La loi a priori a peu d'impact si 20 points

Utilisation de la loi a posteriori

- Elle permet de faire des prédictions, des tirages aléatoires, des estimations d'intervalle de confiance...
- Dans le cas gaussien, on peut calculer explicitement en intégrant sur les paramètres

$$p(t_{test} \mid x_{test}, \alpha, \beta, D) = \int p(t_{test} \mid x_{test}, \beta, \mathbf{w}) \quad p(\mathbf{w} \mid \alpha, \beta, D) \, d\mathbf{w}$$

$$\uparrow \qquad \qquad \uparrow$$
Données d'apprentissage
$$\uparrow \qquad \qquad \uparrow$$
Paramètre du bruit de sortie

- On peut aussi introduire directement les corrélations dans les modèles et utiliser le « kernel trick »
- → Processus Gaussiens (« kriging »)

Exemple de prédiction à partir d'une base de fonctions sinusoïdales

Intervalle de confiance à un écart-type + moyenne

Echantillonnage de la loi a posteriori

Régression et Deep Learning

- Les RN sont des fonctions paramétriques
- On dispose d'un algorithme « générique » d'optimisation: gradient stochastique (et variantes)
- Fonction de coût: erreur quadratique, cosinus...
- Difficulté: comment introduire la régularisation?
 - « Weight decay » (pénalisation L2)
 - « Drop-out »
 - « Early stopping »
 - Ajout de bruit
 - Multi-tâche
 - Lasso?
 - Discussion générale ici: https://www.deeplearningbook.org/contents/regularization.html

Estimation de pose 6D

https://www.groundai.com/project/posecnn-a-convolutional-neural-network-for-6d-object-pose-estimation-in-cluttered-scenes/

« Single image super-resolution » en deep learning

Régression: les questions à se poser

- Quels sont les modèles & algorithmes?
 - Modèles linéaires généralisés
 - Processus gaussiens (krigeage)
 - Ensembles de prédicteurs (random forest, boosting, bagging…)
 - Réseaux de neurones
- Comment valider les modèles?
 - Validation croisée
 - Tests statistiques
- Comment maîtriser les grandes dimensions?
 - Projection / Construction de caractéristiques (« feature construction »)
 - Sélection de caractéristiques (« feature selection »)
 - Sparsité
- Comment contrôler les données aberrantes (« outliers »)?
 - Régularisation
 - Estimateurs robustes
 - RANSAC

A retenir

- Régularisation
 - Un moyen de contrôler le compromis biais-variance
- SVM
 - Un algorithme <u>optimal</u> et flexible qui permet de traiter un grand nombre de configurations de données (en dimension raisonnable)
- Validation croisée
 - Un moyen empirique d'estimer l'erreur de généralisation
 - Une technique pour optimiser les hyper-paramètres (par ex. ceux du SVM)
- Régression
 - Plusieurs types de pénalisation
- Multi-classe
 - Un problème qui peut s'exprimer et se résoudre de différentes manières

Implémentations logicielles

SPAMS

- Bibliothèque orientée sparsité
- http://spams-devel.gforge.inria.fr/documentation.html

Scikit-learn

- La plupart des modèles classiques implémentés
- Réseaux de neurones (mais pas profonds)
- https://scikit-learn.org/stable/supervised_learning.html#supervised-learning

Pytorch

- Quelques exemples sur le site (https://github.com/pytorch/examples)
 - Régression polynomiale, Super-resolution
- Quelques tutoriels sur le web

Tensorflow

- Quelques modules élémentaires
 - LinearRegressor, DNNRegressor
- Un tutoriel https://www.tensorflow.org/tutorials/keras/basic_regression

Kaggle

Plein d'exemples dans les « kernels »

Références et sources

- Présentations et livre de C. Bishop (https://www.microsoft.com/en-us/research/people/cmbishop/#!prml-book)
- Cours de G. Hinton (http://www.cs.toronto.edu/~hinton/csc2515/lectures.html)
- Autres livres (en ligne):
 - Elements of Statistical Learning

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

An Introduction to Statistical Learning

http://www-bcf.usc.edu/~gareth/ISL/

Gaussian processes

http://www.gaussianprocess.org/gpml/

Machine Learning: a Probabilistic Perspective

https://www.cs.ubc.ca/~murphyk/MLbook/index.html

