環論 (第2回)の解答

問題 2-1

 $(a,b),(c,d) \in A$ に対して、

$$(a,b)\cdot(c,d) = (0,0) \Rightarrow (a,b) = (0,0) \ \sharp \, t \, t \, t \, (c,d) = (0,0) \ \ (eq1)$$

を示せばよい. (a,b) = (0,0) のときは示すことはないので, $(a,b) \neq (0,0)$ とする. まず

$$(ac - bd, ad + bc) = (0, 0)$$

より, ac = bd, ad = -bc. これより,

$$-bc^2 = acd = bd^2.$$

 $b \neq 0$ のとき, $c^2 + d^2 = 0$ より (c,d) = (0,0). 一方, b = 0 のとき, $a \neq 0$ であり, ac = 0, ad = 0. 従って (c,d) = (0,0). 以上より (eq1) が成立する.

問題 2-2

次に注意する.

$$(1,1)\cdot(1,-1)=(1,0)=1_A.$$

よって, p = (1,1) は A の可逆元で, $p^{-1} = (1,-1)$ である.

問題 2-3

まず,

$$(-1) \times (-1) = 1 \times 1 = 1$$

なので、 $\{\pm 1\}\subseteq \mathbb{Z}^{\times}$. 逆に $x\in \mathbb{Z}^{\times}$ とすると、xy=1 となる整数 y がある. x,y は整数より $x=\pm 1$. 従って $\mathbb{Z}^{\times}\subseteq \{\pm 1\}$ である.

問題 2-4

 f_x が単射を示す. $y_1,y_2\in A$ $(f_x(y_1)=f_x(y_2))$ とする. このとき, $xy_1=xy_2$ かつ $x\neq 0$. よって, 定理 2-2 から $y_1=y_2$. 従って f_x は単射. また $|A|<\infty$ より, f_x は全射でもある. 以上より, f_x は全単射である.

Recall: 有限集合 A 上の写像 $f: A \to A$ に対して、「f が単射 $\iff f$ が全射」が成立する.