Exhibit 12

THE TOTAL DISTRICTION OF THE PROPERTY OF THE P

NMR Relaxation Times

Published for the American Association of Physicists in Medicine by the American Institute of Physics

Volume 11, Number 4, July/August 1984

Our Cover

Understanding factors affecting NMR relaxation times is critical to designing and interpreting data from clinical imaging and spectroscopic instrumentation. Our front cover is taken from an article in this issue by Bottomley *et al.* which reviews and analyzes data for normal tissue hydrogen.

REVIEW ARTICLE

A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: Dependence on tissue type, NMR frequency, temperature, species, excision, and age

Paul A. Bottomley, Thomas H. Foster, Raymond E. Argersinger, and Leah M. Pfeifer

425

ARTICLES

Performance characteristics of A150 plastic-equivalent gases in A150 plastic proportional counters for 14.8-MeV neutrons P. M. DeLuca, Jr., M. C. Schell, D. W. Pearson, P. D. Higgins, and F. H. Attix

449

(Continued)

<u> </u>				
Subscription Prices (1984)	U.S.A. and Poss.	Foreign (incl. Can. & Mex.)	Optional ai Europe, Mideast, N. Africa	r freight Asia and Oceania
AAPM members Members of IOMP, AIP, and Affiliated Societies	On Membe	ership	\$19.00	\$25.00
Societies	\$60.00	\$70.00	\$79.00	\$85.00
All others	\$120.00	\$130.00	\$139.00	\$145.00

Back number prices: Single copies: \$25.00.

Medical Physics (ISSN: 0094-2405) is published bimonthly by the American Institute of Physics for the AAPM. Second class postage paid at Woodbury, NY and at additional mailing offices.

Subscriptions, renewals, address changes, and single-copy orders should be addressed to AIP Subscription Fulfillment Division, 335 East 45th St. New York, NY 10017. Allow at least six weeks advance notice. For address changes please send both old and new addresses and, if possible, include a mailing label from the wrapper of a recent issue. For your convenience a change of address form is included in every issue of Physics Today; please use it. Requests from subscribers for missing journal issues will be honored without charge only if received within six months of the issue's actual date of publication; otherwise, the issue may be purchased at the single-copy price. (AIP Headquarters and Advertising offices are located at 335 East 45th St., New York, NY 10017; Subscription Fulfillment offices are located at 500 Sunnyside Blvd., Woodbury, NY 11797.)

Reprints of individual articles in this journal may be ordered singly at \$10.00 per article copy (postage included) for articles up to 20 pages. Beyond 20 pages there is a surcharge of \$0.20 per page. Air mail delivery available. Orders are filled in 24 hours. Send orders to the American Institute of Physics, Current Physics Reprints, 335 East 45th St., New York, NY 10017.

Advertising rates will be supplied on request. Orders, advertising copy, and offset negatives should be sent to the AIP Advertising Manager, Edward P. Greeley.

Copying Fees: The code that appears on the first page of articles in this journal gives the fee for each copy of the article made beyond the free copying permitted by AIP. (See statement under "Copyright" elsewhere in this journal.) If no code appears, no fee applies. The fee for pre-1978 articles is \$0.25 per copy. With the exception of copying for advertising and promotional purposes, the express permission of AIP is not required provided the fee is paid through the Copyright Clearance Center, Inc. (CCC), 21 Congress Street, Salem, MA 01970. Contact the CCC for information on how to report copying and remit payment.

Microfilm editions of back volumes of Medical Physics are available on 16 mm and 35 mm. Medical Physics appears on a monthly basis in Current Physics Microform (CPM) Section I along with 26 other journals published by the American Institute of Physics and its member societies. A Microfilm Catalog is available on request. Medical Physics is indexed quarterly in Current Physics Index, a subject and author index (with abstracts) to all journals published by AIP and its member societies.

Copyright 1984, American Association of Physicists in Medicine. Individual readers of this journal, and nonprofit libraries acting for them, are freely permitted to make fair use of the material in it, such as to copy an article for use in teaching or research. (For other kinds of copying see "Copying Fees.") Permission is granted to quote from this journal in scientific works with the customary acknowledgment of the source. To reprint a figure, table, or other excerpt requires, in addition, the consent of one of the original authors and notification of the Editor. Republication or systematic or multiple reproduction of any material in this journal (including abstracts) is permitted only under license from AIP; in addition, AIP may require that permission also be obtained from one of the authors. Address inquiries and notices to Office of Rights and Permissions, American Institute of Physics, 335 East 45th St., New York, NY 10017.

A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: Dependence on tissue type, NMR frequency, temperature, species, excision, and age

Paul A. Bottomley, Thomas H. Foster, Raymond E. Argersinger, and Leah M. Pfeifer

General Electric Corporate Research and Development Center, Schenectady, New York 12301

(Received 9 February 1984; accepted for publication 4 May 1984)

The longitudinal (T_1) and transverse (T_2) hydrogen (¹H) nuclear magnetic resonance (NMR) relaxation times of normal human and animal tissue in the frequency range 1-100 MHz are compiled and reviewed as a function of tissue type, NMR frequency, temperature, species, in vivo versus in vitro status, time after excision, and age. The dominant observed factors affecting T_1 are tissue type and NMR frequency (ν) . All tissue frequency dispersions can be fitted to the simple expression $T_1 = Av^B$ in the range 1-100 MHz, with A and B tissue-dependent constants. This equation provides as good or better fit to the data as previous more complex formulas. T2 is found to be multicomponent, essentially independent of NMR frequency, and dependent mainly on tissue type. Mean and raw values of T_1 and T_2 for each tissue are tabulated and/or plotted versus frequency and the fitting parameters A, B and the standard deviations determined to establish the normal range of relaxation times applicable to NMR imaging. The mechanisms for tissue NMR relaxation are reviewed with reference to the fast exchange two state (FETS) model of water in biological systems, and an overview of the dynamic state of water and macromolecular hydrogen compatible with the frequency, temperature, and multicomponent data is postulated. This suggests that ¹H tissue T₁ is determined predominantly by intermolecular (possibly rotational) interactions between macromolecules and a single bound hydration layer, and the T_2 is governed mainly by exchange diffusion of water between the bound layer and a free water phase. Deficiencies in measurement techniques are identified as major sources of data irreproducibility.

Key words: NMR relaxation, T_1 , T_2 , review, biological tissue, NMR imaging, relaxation mechanisms

I. INTRODUCTION

Longitudinal (T_1) and transverse (T_2) nuclear magnetic resonance (NMR) relaxation times play a pivotal role in the understanding of molecular level organization of biological systems in general and in NMR imaging in particular. Differences amongst hydrogen (1 H) NMR relaxation times of normal and pathological tissue are key to NMR image contrast and the discrimination of disease, $^{1-161}$ a fact responsible for their widespread use as diagnostic parameters in clinical NMR imaging. They directly effect the selection of imaging pulse sequence timing parameters, 51 and consequently, the total image scan times and patient throughput. They also influence the choice of the optimum magnetic field strength for NMR imaging because of their significant variation with NMR frequency. 22,55,73

Since the early ¹H relaxation time studies on animal and human tissue by Odelblad *et al.* in the late 1950s, ^{89,120–124} the observation of elevated T_1 's in cancer by Damadian in 1971, ⁴⁰ and the more general T_1 variations in pathologies reported by Eggleston *et al.* in 1975, ⁵² the literature has burgeoned with hundreds of investigations of relaxation time

behavior in biological tissue. The majority of publications that report tissue relaxation time measurements ignore or make few attempts to interpret the physical mechanisms responsible for tissue relaxation or to compare them with similar published data, although the issues of species, frequency, temperature, and in vivo/in vitro dependence offer mitigating reasons. Moreover, efforts to collate this vast body of relaxation time information for the purpose of establishing the range of normal values and their frequency dependence are nonexistent.

This article reviews the published 1H relaxation time data from normal human and animal tissues in an attempt to establish the normal range of T_1 and T_2 values for NMR imaging and their dependence on tissue type, NMR frequency, species, temperature, time after excision, in vitro versus in vivo measurement, and age. The data are presented graphically, to illustrate trends and deficiencies with the work to date; in tabular form, for locating sources, providing additional information, and for future collation; and as parameters of best fit to a simple expression, to enable rapid computation of the T_1 at any desired frequency. Since

whole-body ¹H NMR imaging systems currently operate within the frequency range of 1 to 65 MHz, with even higher frequencies imminent, ^{22,23} data extending over the frequency range 1–100 MHz are examined. Experimental results are analyzed theoretically in terms of available fast exchange two state (FETS) models involving water in essentially free and bound phases in biological tissues, thereby providing a cogent description of the spectrum of ¹H T₁ and T₂ relaxation mechanisms and molecular motions. A similar study of pathological tissue relaxation time data is underway. ²⁴

II. METHODS

A current awareness subscription from the New England Research Application Center was conducted from 1980 to 1983 to monitor the abstracting service data bases AGRIC-OLA (agricultural literature), Biological Abstracts, the Conference Papers Index, Energy Abstracts, the Engineering Index, Index Medicus, INSPEC (physics, electronics and computer abstracts), NTIS (government technical reports), SPIN (physics information), and the US Government Patent File. The search was keyed to tissue NMR relaxation time measurements, NMR imaging, and authors publishing in these research domains." Publications on tissue relaxation times prior to 1980 were searched by cross referencing personal files of papers collected since 1975, in addition to papers cited in the abstracting subscription. This procedure netted about 300 relevant articles by December 1983. Onehalf of these were rejected either because they contained no explicit relaxation time data for normal tissue; or because the NMR frequency (or field strength) was not stated; or because the relaxation times pertained only to isolated cell cultures, blood serum, plasma, dehydrated or homogenized tissues; or because measurements were performed below 0 °C; or because measurements were taken from tumor or pathology bearing animals; or because T_2 values were calculated from resonance linewidths. Of the remainder, results were presented in the text or in tables or in graphs. Where graphical information was the sole source, relaxation time information was read from the curves directly, thereby introducing some reading error. Arithmetic means are assumed for data tabulated as ranges. Data recorded in vivo, from fetal or immature tissue, or under other special circumstances are noted. Finally, data were checked for duplication in publications by the same authors, and in reviews.

III. RESULTS

A. Tissue, species, and frequency dependence

 1 H NMR T_1 and T_2 data from normal liver, muscle (skel etal and heart), kidney, spleen, brain (grey and white matter), adipose, breast, lung, body fluids (blood, marrow, cerebral spinal fluid, amniotic fluid, bile, urine) and other miscellaneous tissues are presented in Tables 2–11, respectively. Table 1 summarizes the abbreviations used and the symbol legend for the plotted data. The mean cited standard deviation for each relaxation data point, expressed as a percentage of the T_1 and T_2 values, is about $(10 \pm 10)\%$ for all tissues. T_1 relaxation is typically characterized by a single-component exponential on a timescale > 5 ms except in several reports of

in vivo and in vitro measurements of mouse liver and embalmed human liver and muscle, ⁵ in vivo newt tails, ¹⁴¹ in vitro rat muscle, ³⁵ and in vitro human breast tissue ^{25,101,113} where dual, relatively long ($> 50 \, \mathrm{ms}$) T_1 components of comparable magnitude were measured.

The T_1 frequency dispersions of tissues with sufficient data are plotted in Figs. 1-8. Where papers present data recorded at several temperatures, only those closest to physiological values are depicted. Fetal and immature tissue data are excluded from the plots because of their vastly elevated values. Different symbols denote human, rat, mouse. chicken, cow, pig, dog, gerbil, hamster, rabbit, frog, and newt contributions. Skeletal and heart muscle (Fig. 2), and grey and white brain matter (Fig. 5) have different T_1 's and therefore, are differentiated where possible. Similarly, kidney cortex and medulla have significantly different T_1 's, but because few authors make such distinction, segregation of the kidney plot is impractical. Thus Fig. 3 should be regarded cautiously, as an organ average only. Note that for a given tissue type, there is no detectable difference in correlation between T_1 points and NMR frequency due to differences in species (Fig. 1-9), despite individual observations of T_1 differences amongst species by some researchers (Tables 2-11).

Curves of the form

$$T_1 = A v^B, \tag{1}$$

where A and B are constants and ν is the NMR frequency, are fitted to liver, muscle, kidney, spleen, brain, adipose, and lung T_1 dispersions combining all species, using the method of minimizing the sum of the squares of the fractional difference of T_1 data from the curve. Conventional fitting routines that minimize the sum of the squares of the absolute differences between the curve and the data preferentially weight the less numerous high-frequency points. This generates curves that appear better, but have slightly higher fractional errors. Power series expansions, and the dipolar expression for T_1 with a single correlation time (see Sec. IV A) diverge or are less successful at fitting data at extreme frequencies. However, the Escanye $et\ al.\ relation^{54}$

$$T_1^{-1} = A' \nu^{-1/2} + B', (2)$$

(A', B', constants) yields quite comparable results. A best fit to the Escanye et al. expression is plotted in Figs. 1 and 4 for comparison. Values of the fitting coefficients and the percentage standard deviations (assuming random distributions) of T, values from the curves for each tissue are tabulated in Table 12. The curves are not weighted with the number of samples averaged for each point because the scatter in T_1 values measured at the same frequency often greatly exceeds the cited standard deviations. The concentration of disagreeable data around 15 and 20 MHz attests to this. For breast tissue (Fig. 7), where the scatter exceeds 400%, curves from muscle and adipose plots [Figs. 2(a) and 6] are superimposed on the data suggesting tissue heterogeneity as the main cause: breast tissue is apparently a mixture of fibrous and fatty components. The applicability of the curve-fitting algorithm to individual T_1 dispersion data is demonstrated in Fig. 9 with measurements from Escanye et al.,54 and Koenig

Tabulated tissue T_2 values appear essentially independent

427

Table 1.

KEY TO SYMBOLS USED IN THE TABLES 2-11 AND FIGURES 1-10.

A = Auricle	P = Pregnant
B = Breast	Pa = Parenchyma
C = Cortex	R = Red muscle
Cl = Clotted	Ref = Reference
de = Day embryo	RT = Room temperature
Di = Dead intact	S = Solid component
do = Day old	Sh = Short component
F = Fetus	SL = Semi liquid component
Freq = Frequency	SS = Semi solid component
Hp = Heparinised	T = Temperature at which measurements were made
I = Immature	V = Vivo
Intc = Intercostal	Ven = Ventricle
L = Liquid component	Verte = Vertebral
Lac = Lactating	Vgn = Virgin
Lo = Long component	White muscle
M = Medium component	* — = Not reported
Med = Medulla	% = Percent of total proton population contribution
N = Number of samples	to this component
Species:	
≁ ⊙ — rat	— newt (Figure 1) or cow (Figure 5)
3 -	
× — chio	ken + — hamster
Δ — dog	frog
	•
<u> </u>	ise
⊸ geri	oil ∇ — rabbit
A Box	··· V
♦ — hur	ап .

Units:

 T_1 and T_2 are in ms, frequencies are in MHz, and temperatures are in degrees °C.

Note:

In Table 8 the 17, 65 and 75 which precede Lo and Sh indicate the percentage of tissue fat in the breast sample.

of frequency. Figure 10 illustrates the T_2 dispersion for liver. T_2 data scatter is significantly greater than for T_1 . Many researchers report multiple (\leq 4) T_2 components that constitute between 6% and 76% of the total observed tissue NMR signal intensity (Tables 2–11). Only the single T_2 component values are used in Fig. 10 and in computing the average T_2 values listed in Table 12.

B. Temperature dependence

The vast majority of tabulated relaxation data were measured either at room temperature (~ 23 °C) for in vitro studies, or physiological temperature (~ 37 °C) for in vivo measurements. The effect of temperature on T_1 was noted by Frey et al.⁵⁹ and Damadian et al.⁴² The former reported that mice spleen T_1 depends "only mildly" on temperature from 5–40 °C, whereas the latter commented that "temperature

control was found to be important" in the precise determination of T_1 's. Neither group presented data supporting these assertions.

Quantitative investigations were undertaken by Barroilhet and Moran, ⁵ Escanye et al., ^{54,55} Finch and Homer, ⁵⁷ Fung, ⁶² Fung and McGaughy, ⁶⁴ Fung et al., ⁶³ Parker et al., ¹²⁵ Koenig et al., ⁹⁹ and Lewa and Majewska. ¹⁰² Barroilhet and Moran concluded that "in general, relaxation times are strongly temperature dependent," although the principal effect of a temperature increase was an elevation in the longer of the dual T_1 components observed in embalmed human tissue, whereas the initial slope average T_1 in two samples increased less than 7% between 20 and 33 °C. Escanye et al. recorded mice T_1 's of muscle, spleen, liver, and kidney at 20 (Ref. 54) and 24 °C⁵⁵ and at NMR frequencies between 10 and 90 MHz without significant difference. Over

Table 2. Liver

T1	Т2	Freq	N	T	Species	Ref	· T1	T2	Freq	N	Т	Species	Ref
100		1.0	1	35	dog	99	281	3 2	20.0	16	-	rat	137
120	-	1.0	1	3 5	rabbit	99	320	-		1	30	rat	99
84	-	1.0	1		ret	8.5	250	40	20.0	54	23	rat	46
107	-	1.0	1	30	rat	99	205	63	20.0	6	40	rat	72
123	-	1.6	1	30	rat	99	271	38	22.5	5	-	rat	68
155	-	1.7	20	V	human	90,147,148,149,150	339	_	24.0	-	-	human	109
105	-	2.0	1	-	rat	8.5	350	_	24.0	10	26	mouse	12,39
133	-	2.0	1	30	rat	99	283	_	24.0	1	RT	mouse	84
141	-	2.5	3	20	rabbit	105	296	_		1	RT	mouse	84
138	36	2.7	10	19	monse	38	271			10	RT	mouse	84
133	-	3.0	1	35	dog	99	263	_		1	RT	monse	12,84
182	_	3.0	1	35	rabbit	99	400	-				rabbit	109
154		3.0	1	30	rat	9 9	311	_		3	23	rabbit	
194	-	4.3		v	rabbit	70	309	_		_		rabbit	105
215	37	4.3	_	v	πabbit	70,71	324	_			_		109
210	_	4.5	_	37	mouse	*63	309	_		12		rat	109
190		4.5	_	28	moñse	63	296	_			25	rat	50
186	49	5.0	50	RT	rat	156				72		rat	106
153	-	5.0	1		rat	85	293	52		5	_	rat	12,40
200	_	5.0	1	30		99	301	-		1	26	dog	39
161	44	5.1	6	-	rat		303	-		5	26	hamster	39
160	44	5.1	6		dog	160,161	383	-		8	26	human	39
250	_			25	rabbit	160	280	-		10	23	mouse	142
		6.5	10	· V	human	129	225	-		4	23	mouse	. 86
240	•••	6.5	12	V	human	49,154	-	51		2	26	mouse	39
392	-	6.7	- 9	20	mouse	5.4	353	-		4	26	rabbit	39
229	-	7.0	ī	30	rat	99	205	-	24.3	32	23	rat	86
250		7.5	-	37	mouse	63	270	_	24.3	_	24	rat	87
215	-	7.5	-	28	mouse	63	721	-	25.0	1	23	human (F)	94
240	-	8.0	1	20	mouse	5	375	_	25.0	6	25	mouse	144
228	-	8.0	10	v	mouse	5	370	_		_	20	mouse	5 4
251	-	8.0	11	-	mouse(Di)	5	426	-	25.0	26	25	mouse	144
165	-	8.0	2	-	rat	58	274	_	25.0	1		rat	85
172	-	8.0	3	-	rat	58	438	_		27	_	mouse	134
163	_	8.0	2	_	rat	58	273	_		3	RT	rat	
153	_	8.0	2	_	rat	58		53	25.6	5	33		12,37
380	40	8.5	10	v	human	139	_	48	25.6	5	33	hamster	103
171	_	10.0	1	3.5	dog	99	_					hamster	103
275	-	10.0	_	20	monse	54	298	68	25.6	5	33	hamster	103
275	-	10.0	20	24	mouse	55		_	30.0	4	-	human	92
267	_	10.0	1	35	rabbit	99	385		30.0	-	20	mouse	5 4
205	_	10.0	1	-	rat		341	-	30.0	2.5	_	mouse	92
232	_	10.0	1	30		85	400	-	30.0	20	24	monse	5 5
225	_	10.7	2		rat	99	386	-	30.0	7	2 5	mouse	5 9
235	_			RT	rat	33	361	-	30.0	2	-	mouse	92
		10.7	4	-	rat	18	382	-	30.0	1	25	mouse	59
-	47	10.7	8	-	rat	18	356	-	30.0	. 1	30	rat	99
300	-	12.0	-	37	mouse	63	-	47	30.0	-	_	rat -	34
275	_	12.0	-	28	monse	63	412	33	30.3	6	25	monse	12,76
238		13.6	4	_	rat	17	438	33	30.3	6	25	monse	12,76
	49	15.0	11	V	human	158	208	-	32.0	6	25	chicken	12,136
293	37	15.0	10	19	mouse	38	475	_	35.0	_	37	monse	63
-	25	15.0	1	25	mouse	59	425	-	35.0	_	28	mouse	63
-	30	15.0	1	25	mouse	59	410	_	36.5	-	20	mouse	54
315	-	15.0	-	20	mouse	54	_	78	60.0	1	22	human (Lo)	146
267	-	15.0	1	30	rat	99		12	60.0	1	22	human (Sh)	146
18	37	15.0	16	v	rat	152	520	-	60.0	20	24	mouse	55
20	40	15.0	_	v	rat	43,44,80	531	_	60.0			•	
120	38	15.0	8	v	rat	43,44,80				11	27	mouse	4
222	_	15.0	1	·	rat	85	630	_	60.0		37	monse	63
96	_	17.1	_	25	mouse	108	560	-	60.0	_	28	mouse	63
285	_	17.1	_	25			467	-	60.0	4	25	rat	12,26
182	_				rat	108	580	33	60.0	2	RT	rat	95
		20.0	1	35	dog	99	340	30	60.0	2	20	rat	96,97
97	96	20.0	3	40	human	72	527	43	60.0	2	20	rat(I)	96,97
350	_	20.0	-	20	monse	54	640	-	90.0	20	24	monse	5 5
75	_	20.0	20	24	mouse	5 5	635	-	90.0	-	20	mouse	5 4
11	-	20.0	20	RT	monse	112	570	_	100.0	14	26	human	12,41,4
325	-	20.0	-	37	mouse	63	420		100.0	_	-	monse	12,91
100	-	20.0	-	28	monse	63	550		100.0	5	_	monse	91
280	-	20.0	-	22	newt	141	637		100.0	4	-	rat	17
82	41	20.0	8	40	pig	72	612		100.0	4	-	rat	18
					rabbit	· ·				-7			

(a.) 230 118 151 130 1380 1380 1380 1380 1380 1380 1380		Freq eletal 1.0 1.0 1.1 1.7 1.7 1.7 2.0 2.3 2.5 2.5 2.5 2.5 4.0	N Musc		frog rat mouse human human rabbit rabbit(Di) rat	78 85 62 150 90 148 104	538 596 807 475	T2	Freq 24.0	N 5	T	Species	Ref
211510 308 11510 11300 11505 11881 1	56	1.0 1.0 1.1 1.7 1.7 1.7 2.0 2.3 2.5 2.5 2.5	- 1 - - - 1 1 1 - 3 3	25 25 V V V V 25	rat mouse human human human rabbit rabbit(Di)	85 62 150 90 148 104	596 807 475	-	24.0	5	_		
118 11510 11880 11880 11881 11	42 49 64 40	1.0 1.1 1.7 1.7 1.7 1.7 2.0 2.3 2.5 2.5 2.5 2.5	1 - - - 1 1 1 - 3 3	25 V V V V - - 25	rat mouse human human human rabbit rabbit(Di)	85 62 150 90 148 104	596 807 475	-	24.0	5	_		
118 11510 11880 11880 11881 11	42 49 64	1.1 1.7 1.7 1.7 1.7 2.0 2.3 2.5 2.5 2.5 2.5	- - - 1 1 1 - 3	25 V V V V - - 25	rat mouse human human human rabbit rabbit(Di)	62 150 90 148 104	807 475			~	_	rat	12,40
151 1130 1130 1130 1130 1150 1150 1150 1	- - - - - - - - - - - - - - - - - - -	1.1 1.7 1.7 1.7 1.7 2.0 2.3 2.5 2.5 2.5 2.5	- - 1 1 1 - 3	V V V - - 25	mouse human human human rabbit rabbit (Di)	150 90 148 104	475		24.0	18	25	rat	107
130 1130 1136 1136 1136 1137 1137 1137 1137 1137		1.7 1.7 1.7 1.7 2.0 2.3 2.5 2.5 2.5 2.5 2.5	- 1 1 1 - 3 3	V V V - - 25	human human human rabbit rabbit(Di)	90 148 104		-	24.3	2	26	human	39
180 1180 1180 1180 1181 1182 1188 1188 1		1.7 1.7 1.7 2.0 2.3 2.5 2.5 2.5 2.5 2.5	- 1 1 1 - 3 3	V V - - 25	human rabbit rabbit(Di)	148 104		-	24.3	4	23	mouse	142
130 1163 1155 1183 1185 1188 1188 1188 1188 118	- - - - 42 49 - 64 - 40	1.7 1.7 2.0 2.3 2.5 2.5 2.5 2.5 2.5 2.5	1 1 - 3 3	V - - 25	human rabbit rabbit(Di)	104	465	-	24.3	4	23	mouse	86
1843 1153 1175 1183 1175 1183 1185 1185 1185 1185 1185 1185 118	- - - - 42 49 - 64 - 40	1.7 1.7 2.0 2.3 2.5 2.5 2.5 2.5 2.5 2.5	1 1 - 3 3	_ _ 25	rabbit rabbit(Di)	104	525	-	24.3	-	24	rat	87
163 1175 1182 1188 1188 1188 1188 1188 1188 118	- - - 42 49 - 64 - 40	1.7 2.0 2.3 2.5 2.5 2.5 2.5 2.5 2.5	1 - 3 3	25	rabbit(Di)		641	-	25.0	-	20	топье	54
1505 1183 1183 1183 1185 1187 1187 1187 1187 1187 1187 1187	- - - 42 49 - 64 - 40	2.0 2.3 2.5 2.5 2.5 2.5 2.7 3.5	- 3 3	25		104	449		25.0	1	-	rat	8.5
175 11883 11883 11991 12770 23125 2444 - 955 23224 21625 23224 21625 23224 232	- - 42 49 - 64 - 40	2.3 2.5 2.5 2.5 2.5 2.7 3.5	- 3 3			85	-	195	25.0	_	24	rat(Lo,10%)	75
182 1193 1193 1188 1188 1188 1188 1188 1188	42 49 - 64 - 40	2.5 2.5 2.5 2.5 2.7 3.5	3	20	mouse	62	-	45	25.0	-	24	rat(M,82%)	75
191 1185 1270 23150 1270 23150 1270 23150 13150	42 49 64 40	2.5 2.5 2.7 3.5			rabbit	105	-	5	25.0	-	24	rat(Sh, 8%)	75
181 12790 2291 2291 2291 2291 2291 210 2291 210 2291 210 2291 230 230 240 240 240 240 240 240 240 240 240 24	42 49 - 64 - 40	2.5 2.7 3.5	3	20	rabbit (Abd)	105	575	-	25.6	10	25	rat, cow	102
181 12790 2291 2291 2291 2291 2291 210 2291 210 2291 210 2291 230 230 240 240 240 240 240 240 240 240 240 24	49 64 - 40	2.7 3.5		20	rabbit(Intc)	105	588	-	26.0		25	топпо	98
185 2270 312 312 2244 2251 2223 2323 231 2323 243 243 243 243 243 243 243 243 24	64 - 40	2.7 3.5	36	20	rat	104	490	46	26.5	-	14	frog	57
290 291 201 201 201 201 201 201 201 201 201 20	64 - 40		10	19	mouse	38	700	44	27.5	-	23	frog	57
290 291 201 201 201 201 201 201 201 201 201 20	40		_	25	mouse	62	574		30.0	7	-	human	92
312 2501 2644 - 9 2525 21222 21222 3130 3130 3130 3130 3130 31	40		_	25	frog	78	635	÷	30.0	1	25	пове	59
250 241 250 250 250 250 250 250 250 250 250 250		4.0	-	25	monse	62	563	-	30.0	3	-	шопве	92
241 264 - 9 2165 2223 2310 - 0 3330 3300 3000		4.3	_	-	frog	28	660	-	30.0	20	24	mouse	5 5
264 - 9 2165 2165 225 323 231 - 0 310 324 310 324 336 336 336 336 336 336 336 336 336 33		4.3	_	٧	rabbit	70	590	-	30.0	25	-	mouse	92
259 1625 2223 2294 310 313 3240 2270 2333 340 245 3360 3345 400	-	4.3	-	v	rabbit	70	690	-	30.0	-	20	пове	54
259 165 2223 294 310 3133 2270 33360 2270 33360 420 3345	21	4.3	_	Ÿ	tabbit	70	680	-	30.0	-	25	mouse	61
165 225 323 310 313 2270 3333 240 2245 3360 4285 3400	28	4.3	_	v		70,71	615		30.0	8	25	mouse	59
225 323 3294 310 313 3240 3240 2245 3360 420 3340		4.3	-	_	rabbit	70	625	-	30.0	_	25	mouse	62
323 294 310 313 3240 2270 245 333 360 420 3345 400	_	4.3	-	_			637	-	30.0	-	25	mouse	98
294 310 310 333 240 270 245 333 360 420 385 345	_	4.5	-	37	-mouse	. 70 ~ 62	586	-	30.0	4	_	mouse(P)	92
310 310 333 240 270 245 333 360 420 385 345 400	_	4.5	_		mouse	62	608	_	30.0	-	25	rat	8
310 333 240 270 245 333 360 420 385 345 400	_	4.5	2	30	rat	64	642	-	32.0	6	25	chicken(R)	136
310 333 240 270 245 333 360 420 385 345 400	65	5.0	_		frog	78	598	-	32.0	6	25	chicken(W)	136
333 240 270 245 333 360 420 385 345 400	_	5.0	_	2.5	MOBSO	61	700	-	33.5	2	30	rat	64
240 270 245 333 360 420 385 345	_	5.0	-	25	MORSO	62	800	60	33.8	-	21		140
270 245 333 360 420 385 345 400	_	5.0	1	_	rat	8.5	_	143	33.8	-		mouse(L,7%)	
245 333 360 420 385 345 400	64	5.1	5	25	dog	160,161	-	2	33.8	-	20	monse (S, 11%)	128
333 360 420 385 345 400	_	5.1	6	25	rabbit	160	-	41	33.8	-	20	monse (SL, 76%	128
360 420 385 345 400	_	6.0		2.5	MOUSO	62	_	503	33.8	-	20	mouse(SS,6%)	128
420 385 345 400	_	6.7	_	20	monse	54	800	58	35.0	-	25	frog	78
385 345 400	63	7.0	_	25	frog	78	684	-	35.0	-	25	вопъе	98
345 400	_	7.5	-	37	поцве	62	667	_	35.0	-	37	mouse	62
	_	7.5	_	28	mouse	62 .	589	-	35.0	-	28	mouse .	62
	_	7.5	2	30	rat	64	730	_	36.5	_	20	шодве	5 4
	_	8.0	-	25	mouse	62	741	-	41.0	-	25	топье	98
480	64	8.5	-	25	frog	78	725	-	43.5	5	37	human	. 21
400	50	8.6	10	y	human	139	762	-	45.0	-	25		98
460	-	10.0	20	24	BORSO	5.5	-	168	60.0	30		frog(Lo,15%)	
461	-	10.0	4-	20	mouse	54	-	38	60.0	30	20	frog(M,67%)	
525	-	10.0	10		rat	130	-	10	60.0	30	20	frog(Sh,18%)	
301	-	10.0	1	-	rat	8.5	740	-	60.0	11	27	поцье	4
450	-	10.5	2	30	rat	64	875	-	60.0	20	24	mouse	5 5
376	-	10.7	2	RT	rat	33	667	-	60.0	-	25	mouse	62
404	-	13.6	4	-	rat	17	1111	-	60.0	-	37	monse	62
400		14.0	-	25	mouse	62	769		60.0	-	. 28	топве	62
541	35	15.0	13	V	human	116	1000	-	60.0	2		rat	64
476	51	15.0	10	20	ROUSE	38	850		60.0	6	25	rat	12,26
	36	15.0	2	25	monso	59	950	63		-	25	frog	78
529	-	15.0	-	20	mouse	54	1053		90.0	_	20	попве	54
	30	15.0	5	¥	rat	115	1050	-	90.0		24		5.5
356	33	15.0	3	V	rat	81	1023		100.0			human	11,12,41,
620	29	15.0	11	V	rat	81	1100		100.0	-		валош	61
596	33	15.0	11	V	rat	81	950		100.0	5	_	mouse	91
355		15.0	. 1	_		8.5	850		100.0	5	20	mouse	12,91
		15.0	21	V	rat	44	1138	-	100.0	4	-	rat	17
700	28	15.0	5	V	rat	45							
510	-		2		rat	64	(ъ.	.) H	eart My	scle			
488	-	17.0	-	25		98							
610	-		-	25		108	187	-	1.0	1	30		99
246	-		5	36			250	-		-	V		90,148
746	-		5		chicken(8do		295	-			20		105
647	-		5		chickn(16do		243	-				rabbit (Ven)	
234	-		5		chickn(18de		333	70				dog	160,161
244	-	20.0	5		chickn(20de		263	-				rabbit	160
390	47		-		frog	57	434	-				rat	33
650		20.0	-	25	frog	78	650	42					82
629	03	20.0	3		human	72	-		15.0			mouse	59
528			20	RT	mouse	112	-	45	15.0			mouse	5 9
523			20		поцве	112	630	-				mouse	108
500	45		-	25	monse	62	644	75	20.0	3		human	72
599	4 5 -												
600	45 - -		_	20	mouse	54	576	-	20.0		-		112
556	45 - - -			20 24	mouse mouse	5 4 5 5	688	71			40		112 72 72

1 3 --

10 1 7 25 25 25

RT 23 23

25

26 24

RT rat

26

20

105 109 50

39 87

102 59 59

96.97

96,97

105,109

rat(Sh) monse

monse monse

mouse

rat

rat

human

rat,cow mouse mouse

mouse(I)
rat

human

rabbit(A)
rabbit(Ven)

rabbit (Ven)

20.0 20.0 23.3 24.0 24.0

24.0 24.0 24.0 24.0

24.3 24.3 25.3 25.6 30.0 30.0

- 100.0

69 46 60.0

637 700

481

873 550

518

620 664 650

62 72

85

98

68

28

109

105

105

mouse pig rat rat

monse

rat

rat frog

human

моцзе

mouse

mouse

mouse

rabbit rabbit

rabbit (Abd)
rabbit (Abd)
rabbit (Intc)

rabbit (Intc)

488 605

400 576

471 554

500

534 600

58

61

50

40

25

RT RT

RT RT

23

23

23

1 6

5

10

Tabl	e 4.	Kidne	у			
T1	T2	Freq	N.	T	Species	Ref
160		1.0	1	30	rat .	99
320	-	1.7	20	V	human	90,147,148,150,151
200	_	2.0 2.5	1 3	30 20	rat rabbit(C)	99 105
206 426	_	2.5	3	20	rabbit (Med)	105
214	56	2.7	10	19	monse	38
229	-	3.0	1	30	rat	99
335	70	4.3 4.3	-	v	rabbit rabbit	70 70,71
419	-	4.3	_	Ÿ	rabbit	70,71
359	-	4.3	-	V	rabbit	70
419	39	4.3	-	V V	rabbit	70 70
230 433	-	4.3	-	_	rabbit(C) rabbit(Di)	70
520	_	4.3	-	V	rabbit (Med)	70
320	-	5.0	1	30	rat	99
312 604	69 171	5.1 5.1	6 6	_	dog(C) dog(Hed)	161 161
216		5.1	6	25	rabbit (C)	160
473	-	5.1	6	25	rabbit (Med)	160
319	_	6.7	-	20	mouse	54 99
360 670	50	7.0 8.5	1 10	3 O V	rat human	139
370		10.0	-	20	mouse	54 📸
260	-	10.0	20	24	mouse	5.5
400 342	_	10.0 10.7	1 2	30 RT	rat rat	99 33
410	_	13.6	_		rat	17
670	57	15.0	-	V	human (C)	88
516	25	15.0	23	V 25	human (Pa)	53 59
415	35	15.0 15.0	1	25 20	mouse mouse	5 4
390	59	15.0	10	19	mouse	38
1	42	15.0	1	25	monse	5 9
467 671	52	15.0 15.0	1	3 O V	rat rat(Pa)	99 27
524	_	17.1	_	2.5	monse	108
634	.	17.1	-	2.5	rat	108
765 450	124	20.0 20.0	3 20	40 24	human mouse	7 2 5 5
391	_	20.0	20	RT	mouse	112
455	-	20.0	-	20	попзе	54
405	96	20.0	8	4 O 3 O	pig	72 99
533	81	20.0 20.0	1 6	40	rat rat	72
459	-	24.0	-	25	human	12,84
370	-	24.0	1	RT	mouse	84
290	_	24.0 24.0	1	RT 25	mouse mouse	84 50 .
286	_	24.0	1	RT	mouse	84
294	-	24.0	10	RT	mouse	84
500 406	-	24.0	3	23	rabbit rabbit(C)	109 105
801	_	24.0	3	23	rabbit(Mod)	105
480	-	24.0	5	-	rat	40
450	-	24.0	3	26	ret	106
398	_	24.3 24.3	1 4	26 26	dog hamster	39 39
770.	_	24.3	4	26	humen	39
396	-	24.3	10	26	monse	3 9
330		24.3	10 2	23	тоц в е	142 39
322	52	24.3	4	2.5 2.3	mouse mouse	39 86
363	-	24.3	2	26	rabbit	39
390	-	24.3		24	rat	87
365 993	_	24.3 25.0	32 1	23	rat human(F)	86 94
581	_	25.0	6	25	monse	144
612	-	25.0	15	25	mouse	144
490	-	25.0	3	20 RT	mouse rat	5 4 3 7
577 520	_	25.3 30.0	1	RT 25	rat mouse	37 59
526	-	30.0	-	20	monse	5 4
449	-	30.0	3	-	mouse	92
520 452	_	30.0 30.0	20 25	24	mouse mouse	55 92
470	_	30.0		25	mouse	59
-	61	30.0	<u>9</u>		rat	34
503	47	30.3	6	25	mouse	12,13,76
551 403	50	30.3 32.0	6 6	25 25	mouse chicken	12,76 136
602	45	33.8	-	21	Bonse	140
565	-	36.5	-	20	mouse	5.4
800	-	45.0	1	30	rat	9 9 4
700	_	60.0 60.0	11 20	27 24	mouse mouse	. 55
760	27	60.0	2	RT	rat	95
685	56	60.0	2	20	rat	96,97
860	-	60.0 90.0	12 20	25 24	rat monse	2 6 5 5
870	_	90.0	20	20	mouse mouse	54
862		100.0	13	26	human	41,42
903	-	100.0	-	-	rat	17
ь						

a wider temperature range of 4 to 25 °C, Finch and Homer reported increases in frog muscle T_1 from 0.4 to 0.53 s measured at 23.3 MHz: the dependence was linear with reciprocal of absolute temperature (1/T). Fung and colleagues studied mouse muscle and liver T_1 's from 0.01 to 100 MHz over a temperature range of about -70 to 40 °C: increases in T_1 (linear in 1/T) of approximately 20%, 30%, and 40%between 17 and 37 °C at 7.5, 35, and 60 MHz were measured. respectively. Parker et al. observed an essentially linear increase in blood T₁ between 0 and 50 °C with the increase between 20 and 37 °C being about 30% at 15 MHz. The T. values also varied linearly with 1/T. Similarly, Koenig et al. measured T_1 increases of 23% at 1 MHz to 85% at 20 MHz as a result of increasing the temperature of rabbit blood from 5 to 35 °C. Lewa and Majewska presented a comprehensive study of rat and cow liver, muscle, heart, spleen, and lung tissue T_1 's over a 10 to 70 °C temperature range at 15.6 MHz. Their data (Fig. 11) indicate T_1 increases of about 10% between room and physiological temperatures, also linear in 1/T.

Few investigations of the temperature dependence of tissue T_2 's above freezing point were found. Finch and Homer reported no change in frog muscle T_2 between 4 and 25 °C at 23.3 MHz, within experimental error. Belton et al. reported a decrease in frog muscle T_2 's with increasing temperature from 0 to 25 °C. The widespread observation of multiple T_2 components and large T_2 scatter (Fig. 10) renders dubious the value of analyzing the tabulated T_2 data for temperature dependence.

C. Time after excision

Tabulated *in vitro* data were recorded up to 12 h following excision or death. Therefore the dependence of tissue relaxation on time after excision is another potential source of variation amongst *in vitro* data. It has been extensively studied, 5,8,35,37,39-42,45,59,68,84,99,126,127,141,156

Frey et al.59 and Hollis et al.84 noted no appreciable change in mouse and human tissue T_1 's kept at room temperature in air-tight tubes 12 to 24 h after excision. Damadian⁴⁰ measured decreases in T_1 of less than 10% from human liver, kidney, and brain. Cottam et al. 39 also measured T_1 changes of less than 10% in mouse liver, spleen, kidney, lymph node, and lymph sarcoma tissues kept at room temperature for 24 h. Damadian measured more marked decreases of 36% and 11% for human stomach and small intestine. Pearson et al.127 observed no significant change in porcine muscle T_1 and in the dominant (short) T_2 component at 1.75 and 24 h postmortem. Similarly, Thickman et al. 156 reported constant T_1 's of untreated rat liver and spleen tissue kept at room temperature for 6 h after excision, and declines in T_1 of only 12% and 18% in liver and spleen, respectively, after 24 h. They observed essentially no change in the T_2 of both rat liver and spleen samples over 48 h following excision. In apparent contrast, Small et al. 145 reported dual component T₂ measurements of human breast tissue which "decline significantly as a function of time" when stored at room temperature. Examination of the data, however, indicates

Ref			109	>				, w				142				200	144	144	5.4			103		103		80 5	φ c	7 4				. 25	26	16	9	12,136							9	4.	in 1	4.		11,12,41,42	
Species		ons	rabbit	rabbit	ø	₫	80	hamster	human	human	human	nonse	monse		rabbit	rat	E	w	nonse	rat	rat	hamster	amst	ns te			HOUSE		101126	0	n u	ú	ىد	HOLSE	monse	chicken	Bouse	nouse	monse	S 11 0	HOUSE	•	rat	Bouse	nonse	nonse	House	human	
H	RT	ВŢ		£ 7	I	1	9 7											23	70	ا پ	RT	m m	m i	m (25	2.5	ı	} 4	7 6		4 6	4	2.5	25	2.5	25		21	25	70		25	30			20		26	
z	ο.	7	1 9	m (7.		-	-	-		10	٠O	7	0	m		20	14	1	H	es	S)	vs '	so (10	1	1 8	7 7	y +	+ 1		20	12	9	9	φ	10	ı	ı	ì	ı	ı	⊣ ′	9	70	1	50	17	
Freq	24.0	24.0	4.	4.				4.	24.3	4.		2.4	24	•	₹.	æ.		'n	'n	į.	25.	25.	25.	25.	25.	26.0	30.0	30.				. 0	30.0	30.	30.	32.	33.	33.	35.	36.5	_;	ς.	٠.	;	•	•	·.	- 100.0	
T2	1	i	i	1	ì	1	ı	i	1	1 **	1	1	61	1	1	ı	1	1	1	ı	ı	72	78	69	ł	1	ı	1 5	4.0	ים מ	1	,	ı	4.5		,	33	40	1	,		1	•	•	•	•		•	
T1	366	458	529	509	202	531	539	009	267	H	α	425		571	H	₩.	S	712	3	406	457	1	1		580	521	200	523	7/5	0 4	7 + 7	089	582	671	737	596		0	578	2	625	4	0	9	4	980	950	701	
Ref	66			6		48	66	8.5			66	66	156	66	161	160	49,129,154	54	66	5.8	58	58	139	5.5				85.	m ·	× × ×	יים יי	υ Σν ου			108	108	72	112	5.4	55	72	66		66	72	. 86			84
Species	rabbit	rat	rat	rat	human	Bonse	rat	rat	rabbit	mouse	rabbit	rat	rat	rat	dog	rabbit	human	nouse	rat	rat	rat	rat	human	nouse	monse	rabbit	rat	rat	rat	human	поцѕе	monse	D S D O E		E C E C E	rat	human	HOUSE	House	monse	pig	rabbit	rat	rat	rat	monse	human	Bouse	monse
I	3.5	30	ì	30	>	1	30	ı	70	19	35	30	RT	30	30	2.5	Δ	20	30	ı	1	1	>	24	2.0	35	30	ì	RI	> 1	. 52	5 2	٠ د) t	1 6	2 5	40	RT	20	24	40	35	ì	30	4 0	2.5	1	RT	RI
z	 	7			4					П			V)											•						٠.	*		•					Н											
Freq	1.0	1.0	1.0	1.5	1.7	2.0	2.0	2.0	2.5	2.7	3.0	3.0	5.0	5.0	5.1	5.1	6.5	6.7	7.0	8	8.0	0.8	8.5	_					_		15.0			~ ~		- 1-	. ~	0	_	_	0	0	0	0	0	N	4	4	4
T2	1	ì	ì	ı	,	ı	ì	ı	1	99	ı	1	63	1	107	•	ì	ı		i	ı	1	20	1	1	1	1	1	i	61	4 5	ر د د	7.0	1 1	i I	ı	140		ı	1	49	ı	1	1	94		1	i	1
T.1		219	10	-	~	\sim	44	. 0	ഹ	യ	\sim	- On	vo	_	•			, ,	•		, ,-			~	~	533		_	-	ı		1 9	493	247	074	461	760	999	909	009	507	800	385	800	431	500	535	433	399

Table 7. Adipose

Tab1	e 7.	Adip	ose			
T1	T2	Freq	N	T	Species	Ref
171		1.5	1	30	rat	99
130	-	1.7	-	V	human	90
145	-	1.7	28	v	human	148
70	_	1.7	40	v	human	150
146	_	1.8	3	V	human (B)	138
175	-	2.0	1	30	rat	99
187	_	3.0	1	30	rat	99
75	_	4.3	-	-	rabbit	70
183	-	4.3	-	V	rabbit	70,71
196	_	4.3	-	V	rabbit	70
-	63	4.3	_	V	rabbit	70
_	69	4.3	-	ν	rabbit	70,71
172	_	4.3	-	v	rabbit	70
105	-	4.3	-	_	rabbit(Di)	70
75	7.3	5.1	5	-	dog	161
206	-	7.0	1	30	rat	99
240	60	8.5	10	V	human	139
213	_	10.0	1	30	rat	99
158	122	10.7	-	-	human	66
218	61	15.0	12	V	human	116
-	51	15.0	_	V	human	83
229	-	15.0	1	30	rat	99
305	57	15.0	5	V	rat _	115
310	50	15.0	10	V	rat	43,44,45,80
192	108	20.0	3	40	human	72
192	105	20.0	8	40	pig	72
240	-	20.0	1	30	rat	99
221	173	20.0	6	40	rat	72
-	105	22.5	32	-	human	67
133	_	22.5	36	-	' human	67
148	-	24.3	4	2 3		52
191	-	24.3	2	23	human (B)	52
190	-	24.3	-	24	rat	87
144	-	30.0	8	-	human	92
320	-	30.0	1	30	rat	99
320	_	45.0	1	30	rat	99
-	165	60.0	2	22	hum (BLo, 61%)	
-	52	60.0	2	22	hum (BSh, 38%)	
200	-	60.0		24	human (B)	2.5
245	-	60.0	3	27	mouse	4
279	-	100.0	5	26	human	41,42
<u> </u>						

Table 8. Breast

1 T2 Freq N T Species Ref
6 - 1.8 22 - human 138
7 - 13.6 4 - rat(Lac) 17
7 46 22.5 12 - human 67
4 46 22.5 11 - human 67
0 - 24.0 6 - human 109
1 - 24.3 2 23 human(Fat) 52
1 - 30.0 - 25 human 8
3 47 30.0 - 25 mouse(P) 6,9
2 36 30.3 7 25 human 12,113
0 39 30.3 5 25 mouse(P) 10,12,73
7 47 30.3 8 25 mouse(P) 12,76
5 84 30.3 22 25 mouse(Vgn) 9,11,12
- 155 60.0 - 22 hum(17Lo,62%)145
- 52 60.0 - 22 hum(17Sh,38%)145
- 182 60.0 - 22 hum(65Lo,59%)145
- 57 60.0 - 22 hum(65Sh,41%)145
- 157 60.0 - 22 hum(75Lo,60%)145
- 50 60.0 - 22 hum(75Sh,40%)145
7 - 60.0 15 24 human 25
0 - 60.0 15 24 human(Fat) 25
- 105 60.0 26 22 human(Lo) 146
- 23 60.0 26 22 human(Sh) 146
- 182 60.0 - 22 hum(65Lo,59%)145 - 57 60.0 - 22 hum(65Sh,41%)145 - 157 60.0 - 22 hum(75Lo,60%)145 - 50 60.0 - 22 hum(75Sh,40%)145 7 - 60.0 15 24 human 25 0 - 60.0 15 24 human(Fat) 25 - 105 60.0 26 22 human(Lo) 146 - 23 60.0 26 22 human(Sh) 146 7 - 100.0 5 26 human 41 8 - 100.0 1 26 human(Lac) 41

Table 9. Lung

T 1	T 2	Freq	N	T	Species	Ref
293	_	2.5	6	20	rabbit	105
268	_	4.3	-	v	rabbit	70
423	_	4.3	-	v	rabbit	70
-	33	4.3	-	v	rabbit	70
374	98	5.1	6	_	dog	161
576	_	10.7	2	RT	rat	33
	47	15.0	1	25	mouse	59
_	50	15.0	1	25	mouse	59
756	139	20.0	3	40	human	72
844	87	20.0	8	40	pig	72
586	78	20.0	6	40	rat	72
534	92	22.5	22		human	101
535	87	22.5	17	_	human	69
544	91	22.5	11	_	rat	68
403	_	24.0	2	RT	human	84
491	_	24.0	3	RT	mouse	84
700	_	24.0			rabbit	109
800	_	24.0	_	-	rabbit	109
655	_	24.0	6	23	rabbit	105
587	_	25.3	3	RT	rat	37
_	71	25.6	5	33	hamster	103
690		25.6	10	25	rat,cow	102
657	_	30.0	1	25	mouse	59
641	_	30.0	6	25	mouse	59
670	_	32.0	6	25	chicken	136
788	_	100.0	5	26	human	41,42

only a change of approximately 10% in long and short breast tissue T_2 components over a 24 h period.

Authors reporting dual T_1 components note contrary behavior of both components with time after excision. Chang et al.³⁵ measured an increase in the long rat muscle T_1 component to a maximum of about 16% at 3 h after excision. This was followed by a reduction to a level 5% above the initial value at 4 h after excision, where it remained constant for 27 h. The short T_1 component remained constant within 2% for the entire duration of the experiment. Sandhu and Friedmann¹⁴¹ observed similar results, albeit on newt tails, except the long component increased 36% after 3 h and the short component declined 5% over 5 h postmortem. The opposite behavior in T_1 components of mouse liver measured in vivo, at 2.5 and at 3.5 h postmortem is indicated by Barroilhet and Moran.⁵ Their results showed that the long T_1 component declined up to about 25%, whereas the short component first decreased about 10% then increased more than 10% after death. Their in vivo data for both components, however, show a 60% spread attributed to "intrinsic changes taking place in the tissue" which could easily explain their postmortem results. Moreover, while the behavior of multiple T_1 components with time after excision may not be clear, both Chang et al. and Barroilhet and Moran data demonstrate that variations in the combined, average effective T_1 's are less than 10% during the periods studied.

A second class of experiments examined the effect of refrigeration of excised tissue samples prior to NMR measurements. Frey et al., ⁵⁹ Damadian et al., ⁴² Parish et al., ¹²⁶ and Koenig et al. ⁹⁹ all reported negligible or less than 10% variations in T_1 relaxation times of animal and human tissues stored at 4–5 °C for periods of up to a week after excision. In addition, Parish et al. ¹²⁶ and Goldsmith et al. ⁶⁸ compared surgical and autopsy samples. In the former study, excised dog grey matter brain specimens placed on ice (surgical

Table 10. Fluids

T1	T2	Freq	N	T	Species	Fluid	Ref
3300		1.0	_	37	human	amniotic.fluid	15
3400	_	3.0	-	37	human	amniotic.fluid	15
3600	-	7.0	_	37	human	amniotic.fluid	15
	2300	100.0	-	37	human	amniotic.fluid	15
275	-	1.7	_	V	human	bile	147
380	-	1.7		V	human	bile	148
888	-	2.5	3	20	rabbit	bile	105
383	339	5.1	3	Ξ.	dog	bile	161
890	80	8.5	6	v	human	bile	139 ·
805	-	15.0	3	_	dog		`117
1078 303		24.0	3	23	rabbit	bile	105
385	_	1.0	1 1	35	rabbit ∜rabbit	blood	99
355	_	1.0	20	3 3 V		blood	99
444	_	2.0	1	3 5	human rabbit	blood	147,148,149,150
404	_	2.5	3	20		blood	99
372	_	2.5	3	20	rabbit (C1)	blood	105
500	_	3.0	1	35	rabbit(Hp)	blood	105
667	_	`- A	1	35	rabbit rabbit	blood	99
571	261	5.1	6	-	dog	blood blood	99
833		7.5	1	35	rabbit	blood	161
909	_	10.0	1	35	rabbit	blood	99 99
472	_	10.7	2	RT	rat	blood	33
1000	_	15.0	1	35	rabbit	blood	99
900		19.8	20	33	human	blood	100
893	362	20.0	3	40	human	blood	72
902	_	20.0	20	RT	mouse	blood	112
800	_	20.0		22	newt	blood	141
1111	-	20.0	1	. 35	rabbit	blood	99
901	251	20.0	6	40	rat	blood	72
800	_	24.0	_	_	rabbit	blood	109
867	-	24.0	3	23	rabbit(C1)	blood	105
872	_	24.0	3	23	rabbit (Hp)	· blood	105
920	-	32.0	6	25	chicken	blood	136
900	_	1.7	-	V	human	cerebrospinal.fl	148
675	-	1.7	-	V	human	cerebrospinal.fl	
-	915	6.5	6	v	human	cerebrospinal.fl	3
1450	-	6.5	10	V	human	cerebrospinal.fl	3 2
1155	145	12.8	1	V	human	cerebrospinal.fl	157
175	_	2.5	3	20	rabbit	marrow	105
306	-	4.3	1	V	rabbit	mariow	70,71
-	59 17	4.3	-	V	rabbit	WSLIOA	70
359	17	4.3 4.3	- 1	V V	rabbit	marrow	70
	_	4.3			rabbit	marrow	70
271 280	80	8.5	1 · 10	V V	rabbit	marrow	70
380	70	8.5	10	V V	human	Marrow	139
320	80	12.8	4	V.	human (Verte) human	Mariow	139
420	50	15.0	16	V	human (Verte)	MATTOW	157
130	-	24.0	-		human (verte)		116
200	_	24.0	_	_	rabbit	marrow	109 109
202	_	24.0	3	23	rabbit	Dalloa Mailoa	105
803	_	25.0	5	_	human	mariow .	132
408	_	32.0	6	25	chicken	marrow	136
1000	_	1.7	_	v	human	urine	148
800	_	1.7	_	Ÿ	homan	urine	147
2650	2600	5.1	3	-	dog	urine	161
			6	v	human		
2200	570	8.5	D		numun	urine	1.39

								-		_							_			_								_			-			-					_						_							
	61					7																		7								2							4 2				4 2			109	2		1.42		•	4
	4	2 6	; و	4.5	9 00	1,4	200	0.5	9	157	501	6 0	2 4	0.5	2.5	7 2	103	0. 9	٠ -	105	4.	103	0 9	41,4	105	100		103	0 4	7 10	6 2	4 7 7 ,	105	333	7.5	105	109	3 00	•	2 6	109	30	41,4	12	72	105	41,	105	105	105	105	1 6
	∢7 (σ,	٦.	- 113	•	-	_		-			٠	_		,		-, -																																		
	_								D T	1										tine	t ine	ntestine	. intestine	. intestine . intestine																										_	_	
	land						118	111	3	99										ntes	tes.	1168	t es	100	ord	D I O																								A I	W 8 1	
		nta	a.t.o	a t e	8 10	a to) E E	B	selivary.glo											. 10			=	=======================================	5	2.5	. d	4 d	, E.	о д С р	ц,	4 c	8 1	80 E0	. es	ω m		e e	8	H 10 8	P 7 0	ro1d	9 7 9	90	g ,	9 0 D	p o g		3 6	•	•	E
	pineal	place	prostat	prosta	prosta	rostate	ooten ooten	5	A .	C 8 1 2	skin		# # #	E T	r i n	# #	1 5	다.	S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.ma11	1881	na I	Ball Bell	pinal	pana 1	tomac	tomecl	E C	tomach	tomec	tomach tomach	esti	osti	9 5 4	9 6 6 7	est.	0811 0811	osti.	NA NA NA	byrot	ъдq.	hyroid hyroid	0118110	onguo	rache	rache	ureter	ureter nferns	1101	ter.	V & 8 1 11 2
١	ď,	ď	Ď,	Ē,	4 6	. 2	ŭ ;	ü	2 :	2 %	72	8	3 75	2	2.	2.2	3 2	٦.	G .		S	2 2	- - -	2 2		io •	•	ro eu	. 03	w w		10 10	•						-	٠.		٠ بد		•				Р	P F		Р	-
																						ŧ;																						_								
		_	_					* *					п о		n _	_	14 0				مص				, ;			***	:	g.		• F	++		я	. +	#	a a	ជ	# 1		a	R =		:			#	<u></u> .	= =	=	A
	հսոցո	1 m a n	Then	homan		10 10 10 10 10 10 10 10 10 10 10 10 10 1	200	abbi	abbit	homen homen	rabbi	00000	Dunen House	abbi	homod	HOTS OF	rat homsto	HOUSE	00 0	rabbi	Bonse	rabbi	.	11000	rabb	rabbi	. H	rabbi	a t	8 4	HOUS	013	rabbi	dog	Ътшар	nouse	a b b	human human	humen	human	rabbi	0 0 11 11 11	n n n n n n	bumon	p 18	9 4	9 5 5	rabbi	abb	rabbi	Q .	880
l	,#I	Ā,	Ā,	д,	9.4	-	н,	• 4	٠,	8 ,5				. 4						- н	-			4 4	: 1					4 H												.	n v		۰.	۰ ۳			m v			
١	26	76	>	> (7 7	26	1 5	13	, ,	7	20	2.5	E	. 23	23	23	4 6	2.5	2, 0	7 6	2	1.6	1	2 5	ន័	2 6	25			N E	~	7	N	~	4	# 6	•	7 7	ų	4	•	7	7 6	4	4 (9 0	1 (1	7	2.0	4 ~		61
	-	-	ı	, (۰-	1 61	۱ ۳	'n	1 0	∞ →	· m	٧,٧	6 (1)	m	7	v, n	n 40	S	٦ ،	o 170	8	j er	'n	64 E	m	m •	1 63	l m	. 40	H 65	• •	-ı «	. 67	9 6	. m	н 6	1	4 -	4	ч.	n þ	-	7 1-	· m	∞ (m m	·	m ·	m ×	.	-	13
.	0	m i	-	٠.	٠,		۰ 4	. m	0 0	- œ	'n	., 0 c	0 0		m	m .	2 0		۰.			0 0	. •			0.4	. 0	0.9		m ==		0 0				0 0		m m		w.		e,	m c		0	'n	0	٠,	0.0	2 %	0	
	100	24.	~ i	-i ;	7 6	1001	4,	4 4	24.	1 0	1	15	2 4	1 2	24	24	2 6	30	30	700	24	2 4	24	24	7	77	15	2 2	2.	4 .	30	30			50				٠,					507			1001	~	77 2	ž ~		5
:			ı	1 5	ים מ		1 1		ı.	1 09	2 1	3.5	ıı	. 1	i	ı	1 45	1 1	1	1 1	ı	1 1	1	1 1	•	1	35	1 1	ı	1 }	1	1 1	1	111	153	1 1	١	1 1	١	1 6	707	ı	1 1	61	28	1 1	1	ı	1	1 1	ı	ı
	_	_	_		n r-	- m	0 4	. ~	٥,	e 40	. 00		۰.	2 0	6	ς,			27	6 4	. 40	o -		→ +	י א	4 6	- 1	00	. 0	41	4	8 4		10										584		6 4	o m	7.7	252	4 9		19
:	129	100	20	28	1 0	803	9 7	4 4	40	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	198	:	÷ -	3 2	42	225	7.7	390	72	2 2 2	308	400	7.2	28	3 6	44 6	4	400	7 2	40 0	53	3 1	4	4.	974	205	8	1010	1200	ω̈;	2 0	ŝ	4 9	8 55	Ň	ii è	1 6	H	21 0	- N	ivė	9
+	_		_	-						_		_	_								_				-		_										_															_
							_																			_																		8.1								
			105,109		2		05,109		2			2			12							4 2		,		, 109	n vo	4	2							5	1			41,42				47.14				_	:	4.2		
:	105	161	105,	39	41,42	103	105,	101	41,42	90	109	41	105	601	41,	105	101	8 6	109	105	3.5	1,	105	109	41, 105	105	105	<u>.</u>	41,4	7.9	105	105	59	6, 5	116	72	1 5	109	109	41	163	109	105	147	161	139	13	109	33	41,42	139	105
	•				•																									-	- E		4		0																	
						-	_						CET	t 0 r y 1 1	:														yelens allopian.tube	emoral, heads	trointestinsi er.venacava	.venacava			ende																arotid.gland	a nd
						Lo Te	o x o						H	8 6									8 8	s	9 8 8	2 11 8	2 p	8 11	п П	à.	9110	e n e	terverieo. u testine	e :	++	opo.	oge	F,							n 10	55	s v		ış	e .	a.g.an d.glan	1.81
:	renal	renal	renal	n a 1	renal	9 7	+ c -	tery	der				E E	7 7	, X		4 0	# #	a	= 1	8 8	¤ .	1sphram isphram	iaphram	hra	pididymu	sophagus sophagus	sophag	9 10 0	ra1	troi er.v	٠ ب	terveri	estine	testine gament/	mph. node	4	inte		ě	<u>ه</u> ج	, <u>P</u>	7	<u>.</u>	BRCKER	ancrea	B'DCT 0	BUCTOR	snores	anores	0 t 1 d	otic
22.00	drè	dre	dre	drenal	dre	orta	sortic.arch	rtery	ladder	010	bone bone		aroti	carotid.	9 1 0	colon	0010	COLOR	colon	colon	co!oo	0.10n	d 12 phram d 12 phram	diap	diaphram enididymus	epid	108	801	8 4 6 1 8 2 1	i e ii	sast Infe	lnfer	inte	int	1118	l yn	lymph.node	8 6 8	10140	nerve	04059	OVBEY	отвту	04859	n e d	pan	78,0		pen	0.00	paroti paroti	90
۱	4 3	•	•	4	8	4 5	•	۰.	о "Б	٠.	ع, د		٠	•	, ,	Ü	•		•	•		•	-	Ĭ		_		_	•																							
, 1			÷.	p	Ħ	# *	i.	:		#	-		11	# + 1 7		7	=	8 0	it) i t	E .	. a a	bit bit	bit	an bit	bit	1 1	a a	T 8 C	H C	5 H	bit	# e	9	0 H	E	1 0 10 11	bit	bit	11 11	b i t	8	bit	# F	1080	1	5	sobit	10 m s m	11.5	1 1 0	bit
	.4			日日	TT I	Duns n	rabb	dos	10000	humen	human	human	rabt	rabbit	1000	rabbil	hane.	rat huma	rabbi	rabl	human rat	в.	rabt rabt	rabb	buna rabb	rabl	rabb	hum	日の日かり日日の日の日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	human	boman rabbil	rab.	DOUSE Bouse	B 11 0 E	поцве Рипап	P D D	Dunan	rab	rabbit	hum	rabi	human	rabbit	bung n	909	P.C.	7 P	rab	h un	homen	T to to	,c
	rabbit	108	100	1							1 1	. 9		m ;	•		-	 		m	n H	9	_ n	1 '			O m	10	27	Δ	10	m ;	> 10	v	n >	0	e 1	ì		56		1	en 1	9 >	> 1	> !	R T			9 5		
H	-	-0		9	v ;	> 0	m		~			61	77	~	7	. ~																7		~		4							7						•			
H	20 r	1	23	76	56	•	7					_	m	es I	4	· w													∞ ⊣																							
entondo 1 N	3 20 r	1	3 23	1 26	5 26	10 3	3 2														m m	0	v 0	0	0 4	۰.	v, c	0	0.0	0 '	n in	0	00	0.	0 0	0	? ?	۰,	- 0	0	s -	. 0	_									0
T N ba	3 20 r	1	3 23	1 26	5 26	10 3	3 2										٠.	n 0		٠.													., vi						n	·-	∹.	: :	ጋ.		7.7			0.0	. m	0.0		
	2.5 3 20 r	5.1 5 - 6	24.0 3 23	24,3 1 26	100.0 5 26	2 5 10	24.0 3 2	5.1	100.0	1.7	24.0	100.00	2.5	24.0	100.0	2.5	22.5	24.0	24.0	24.	24.	100	2. 4.	7	100	24	2 4	100	9 0	-	7	~	н н	en) e	m i	50	100	24,	24.0	100	. 4	24.	24.	100.0	- 1.5	8.5	10.7	24.0	24.3	100.0	71 00	2.4
٠	2.5 3 20 r	5.1 5 - 6	24.0 3 23	24,3 1 26	100.0 5 26	2 5 10	24.0 3 2	5.1	100.0	1.7	24.0	100.00	2.5	24.0	100.0	2.5	64 22.5	22.5	- 24.0	- 24.0	- 24.	100	- 24.	1 24	100	- 24	1 1	- 100	100	55 15	8 1	1	36 1	eni e	107 13	91 20	75 100	1 24	28 2	- 100	1,75	- 24.	24.	100,0	43 5.1	60 8.5	180 20 0	24.0	- 24.3	- 100.0	30 8	24.
rred N L	- 2.5 3 20 r	79 5.1 5	- 24.0 3 23	- 24,3 1 26	- 100.0 5 26	90 8.5 10	- 24.0 3 2	47 5.1	100.0	1.7	1 24.0	0.001 -	2.5	24.0	100.0	1 2.5	64	9 1	1	1	3 1	ı	1 1	1	1 1	'	1 1	1	329 - 60 1247 - 100	5.5	so i	1 :	8 t t		107	91	75	1 ;	ž,	'	,	1	•	•	4	9		9 ,	,	•	, 8	,

FIG. 1. T_1 dispersion data for liver fitted to $T_1 = Av^B$ with A = 0.000534, B = 0.3799 and standard deviation from the curve of 22% using a method of least squares. A least-squares fit to the Escanye *et al.* expression

$$T_1^{-1} \doteq A' \nu^{-1/2} + B'$$

gave the same standard derivation and a best fit with A' = 9807, B' = 0.689. These parameters are the same as determined previously with less data (Ref. 54). The mean cited standard deviation for each point expressed as a percentage of the T_1 value is about $(9 \pm 5)\%$.

FIG. 2. (a) T_1 dispersion data for skeletal muscle and (b) heart muscle fitted to $T_1 = Av^B$. Fitting parameters are listed in Table 12. The mean cited standard deviation for each point expressed as a percentage of the T_1 value is about $(5 \pm 3)\%$.

FIG. 3. T_1 dispersion data for kidney fitted to $T_1 = Av^B$ with parameters listed in Table 12. Cortex and medulla are undifferentiated. The mean cited standard deviation for each point expressed as a percentage of the T_1 value is about $(6 \pm 5)\%$.

group) were compared with tissues taken from an intact carcass (autopsy group), and excised tissue refrigerated overnight. No changes in T_1 greater than the experimental error (8%) were observable in any of these tissues, even after two days. The Goldsmith group observed no difference between autopsy and surgical rat muscle, liver, and lung T_1 's and T_2 's within experimental error (6%-16%). However, a 20% difference in colon T_1 's was noted and attributed to intraperitoneal injection of anesthetic. In contrast, Beale implored researchers to "resist the temptation to place tissues on ice or in the refrigerator," but cited decreases in T_1 of only 8%, 8%, 18%, and 14% in muscle, breast, nipple, and lymph node, respectively, following 48 h refrigeration. Also Small et al. 145 measured up to a 30% decline in both long and short T_2 components of breast tissue following 24 h refrigeration, compared with the decrease of only 10% noted above with the samples kept at room temperature for the same period.

Fig. 4. T_1 dispersion data for spleen fitted to $T_1 = Av^8$ with Table 12 fitting parameters (standard deviation = 19%). A best fit to Escanye *et al.*'s equation

$$T_1^{-1} = A' \nu^{-1/2} + B'$$

with A' = 5036, and B' = 0.520, gave a 21% standard deviation (Ref. 54). The mean cited standard deviation for each point expressed as a percentage of the T_1 value is about (8 \pm 5)%.

Fig. 5. (a) T_1 dispersion data for grey brain matter, (b) white brain matter, and (c) other undifferentiated brain tissue, fitted to $T_1 = Av^B$ with Table 12 fitting parameters. The mean cited standard deviation for each point expressed as a percentage of the T_1 value is about $(7 \pm 4)\%$.

Fig. 6. T_1 dispersion data for adipose fitted to $T_1 = A\nu^B$ with Table 12 fitting parameters. The mean cited standard deviation for each point expressed as a percentage of the T_1 value is about $(12 \pm 6)\%$.

FIG. 7. T_1 dispersion data for breast tissue. The best-fit curves from skeletal muscle and adipose are superimposed for comparison. The mean cited standard deviation for each point expressed as a percentage of the T_1 value is about $(12 \pm 13)\%$.

Fig. 8. T_1 dispersion data for lung tissue fitted to $T_1 = Av^B$ with Table 12 fitting parameters. The mean cited standard deviation for each point expressed as a percentage of the T_1 value is about $(10 \pm 10)\%$.

Table 12 MEAN 1 H TISSUE T $_1$ and T $_2$ RELAXATION TIMES

Tissue		T_1^1		7	Γ_2^2
	A	В	SD(%)	T ₂ (ms)	SD (ms)
Muscle					
skeletal	.000455	.4203	18	47	13
heart	.00130	.3618	16	57	16
Liver	.000534	.3799	22	43	14
Kidney ³	.00745	.2488	27	58	24
Spleen	.00200	.3321	19 .	62	27
Adipose	.0113	.1743	28	84	36
Brain			ĺ		
grey matter	.00362	.3082	17	101	13
white matter	.00152	.3477	17	92	22
unspecified	.00232	.3307	19	76	21
Lung	.00407	.2958	19	79	29
Marrow ⁴				39	24
Breast ⁵				49	16

- 1. $T_1 = A \nu^B \pm SD \%$, where $\nu = {}^{I}H$ NMR frequency in Hz, SD = standard deviation expressed as a percentage of T_1 , T_1 in sec.
- Assumes T₂ is independent of frequency. Multicomponent data is omitted from the computations. T₂ is in ms. SD = standard deviation in ms.
- 3. Averages medulla and cortex.
- 4. Insufficient data for a T₁ fit.
- 5. Use skeletal muscle and/or adipose T₁ fits.

D. In vitro versus in vivo human measurements

In vivo relaxation time measurements from macroscopically homogeneous tissue types have arguably only become possible with the recent innovation of NMR imaging techniques. Tabulated ¹H human in vivo relaxation data are available only up to 15 MHz with grey and white brain matter having the most points. Figure 12 compares the human in vivo brain T_1 dispersions with the computed best-fit grey and white matter curves from Fig. 5. Note that data conform to the curves within the specified standard deviation (Table 12), and significant point scatter exists despite the constancy of species, temperature, tissue status, and averaged sample heterogeneity represented by the points. There may be a tendency for slightly elevated T_1 values measured in vivo compared to in vitro (see Sec. IV C), but such trends are concealed from the curve by the noise. For example, Gore et al.70 and Ling and Foster104 observe an approximately 13% decrease in the T_1 's of muscle of dead intact rabbits compared to the living animals.

E. Dependence on age

Drastically elevated relaxation times are reported for neonatal tissue 30,77,94,96,97,103,114,148 persisting a few weeks in animals to at least several months after birth in humans. Hazlewood *et al.* 77 noted that immature muscle T_1 and T_2 (< 10 days old) were, respectively, 1.7 and 2.7-fold the mature values (> 40 days). They proposed that the fraction of

"ordered water" increases during postnatal development. Similarly, Kiricuta $et\ al.^{96,97}$ reported immature rat brain, heart, and liver T_1 elevations of 110%, 50%, and 40%, respectively, attributable to an approximately 14% increase in water content in neonates compared to adults. Lewa and Zbytniewski¹⁰³ measured 8%–40% increases in the T_2 's of liver, spleen, and skin in 3-month-old hamsters compared to 6-month-old animals. Buonnano $et\ al.^{30}$ observed that neonatal gerbil brain T_1 's changed from 1.83 to 1.26 s in three weeks time after birth at which point "adult levels" are reached (Fig. 13). Misra $et\ al.^{114}$ recorded muscle T_1 's of 1.24 s in 18-day embryo and 1-day postnatal chickens which declined to 0.746 and 0.647 s at 8 and 16 days postnatal, respectively (Fig. 13).

Some human fetal T_1 's were tabulated by Kasturi et al. ⁹⁴: 0.721, 1.05, and 0.993 at 25 MHz for liver, lung, and kidney, respectively. These are about double the mean (adult) values plotted in Figs. 1, 8, and 3. Also Smith ¹⁴⁸ noted " T_1 images of the neonatal brain (of a 9-week-old child) show a uniformly long T_1 , due to the absence of myelin, and cannot differentiate between grey and white matter, the T_1 of both being markedly elongated at 390–400 ms" (at 1.7 MHz).

Evidence for relatively minor fluctuations in T_1 with circadian rhythm also exists. De Certaines et al. 46 observed a statistically significant 12% variation in rat liver T_1 's excised as a function of time, with a peak at midday and minimum at dawn. No substantial corresponding fluctuations in either T_2 or water content were measured.

IV. COMPARISON WITH THEORY

A. Spin-lattice relaxation

The liquidlike ${}^{1}H$ T_{1} frequency dispersions observed in biological tissue can involve both intramolecular and intermolecular dipolar interactions of macromolecules and water molecules of the general form

$$\frac{1}{T_1} = \frac{9}{8} \gamma^4 \bar{h}^2 [J^1(\nu) + J^2(2\nu)], \tag{3}$$

with $\gamma=2.675\times10^8~{\rm s}^{-1}~T^{-1}$, $\bar{h}=1.055\times10^{-34}$ Js, and where $J^1(\nu)$, $J^2(2\nu)$ are spectral density functions for the various motions evaluated at the resonance frequency and at twice that frequency. Intramolecular processes involve mainly rotational motion with spectral density functions

$$J^{1}(\nu) = \frac{J^{2}(\nu)}{4} = \sum_{i,j} \frac{4C_{ij}}{15r_{i}^{6}} \left[\frac{\tau_{ij}}{1 + 4\pi^{2}\nu^{2}\tau_{ij}^{2}} \right], \tag{4}$$

where r_j is an intramolecular (H–H) distance between nuclear dipoles, C_{ij} are weighting coefficients independent of frequency, and the τ_{ij} are correlation times for the *i*th characteristic mode of motion of the *j*th intramolecular dipole pair. ^{1,57,64,98,159} Ignoring macromolecular hydrogen enables omission of the *j* summation so the r_j becomes the (fixed) separation between hydrogens in water molecules.

Many established models invoke two components of water in tissue undergoing rapid exchange relative to the NMR observation time: a large free water compartment and a bound water compartment hydrogen bonded to macromolecules or hydration layers. ^{38,47,54,55,57,60,61,75,92,96,98,140} The observation of a nonfreezing water component in many tissues,

FIG. 9. (a) T_1 dispersion data for mouse muscle from Escanye *et al.* (Ref. 54), fitted to $T_1 = Av^B$ with A = 0.000 645, B = 0.4044, and standard deviation 3.7%. The Escanye *et al.* fit,

$$T_1^{-1} = A' \nu^{-1/2} + B'$$

with A=6225, B=0.300 yielded the same standard deviation. (b) T_1 dispersion data for rat liver from Koenig et al. (Ref. 99) fitted to $T_1=A\nu^B$ with A=0.000 741, B=0.3592, and standard deviation 3.9%. The latter data were derived from relaxation rate curves and probably contains reading errors.

Fig. 10. T_2 dispersion data for liver omitting multicomponent measurements. The mean cited standard deviation for each point expressed as a percentage of the T_2 value is about $(10 \pm 10)\%$.

Fig. 11. The temperature (T) dependence of rat and cow T_1 values at 25.6 MHz from Lewa and Majewska (Ref. 102). O spleen; \triangle heart; \times lung; \square muscle.

Fig. 12. T_1 dispersion data for grey and white brain matter comparing human in vivo, with all of the in vitro measurements. Circles and diamonds denote in vivo and in vitro data, respectively; shaded symbols correspond to grey matter. Curves of best fit from Figs. 5(a) and 5(b) are shown for comparison. The mean cited standard deviation for each point expressed as a percentage of the T_1 values are about $(7 \pm 4)\%$. O white matter in vivo; $\textcircled{\bullet}$ gray matter in vivo.

FIG. 13. T_1 's of neonatal gerbil brain at 150 MHz from Buonnano *et al.* (Ref. 30), and chicken muscle at 20 MHz from Misra *et al.* (Ref. 114), as a function of age. The cited standard deviations for both data sets expressed as a percentage of the T_1 values is about 1%.

often directly identified with the bound phase, is key evidence for this FETS model. 111 A hypothesis, due to Ling, in which all intracellular water exists in an ordered, polarized state has also been invoked. 40,63,75

The relaxation rate in the FETS model is a weighted average of the two states:

$$\frac{1}{T_1} \sim \frac{b}{T_{1b}} + \frac{1-b}{T_{1f} + \tau_e},\tag{5}$$

where T_{1b} is the T_1 of the bound fraction $(b \le 1)$ of water, T_{1f} the T_1 of the free water fraction, and τ_e is the (short) residence time of water in the restricted compartment. 75,57 T_{1f} is approximately equal to the T_1 of tap water (~2-3 s) and constitutes ~75%-99% of the total observed water $(b \sim 0.01-0.25)$. Free water undergoes rapid translational and rotational diffusion, that is, $4\pi^2 v^2 \tau_f^2 \leqslant 1$ for $v \leqslant 100$ MHz with a single free water correlation time $\tau_f \sim 1$ ps. Thus T_{if} is essentially independent of frequency. The frequency dependence of the measured T_1 is therefore determined by T_{1b} . That this is so for biological tissues is shown by T_1 experiments performed by Fung at 5, 30, and 100 MHz in which b is varied by soaking tissue samples in solutions of different osmolarity. 61,142 The extrapolated intercept from Eq. (5) is identified as $\sim 1/T_{1f}$ provided that $\tau_e \ll T_{1f}$, and corresponds to $T_{1f} \sim 1.7$ s independent of frequency. Also Escanye et al.54 determined

$$T_{1f} \sim 1.8 \begin{bmatrix} + & 1.3 \\ - & 0.5 \end{bmatrix}$$
 s

independent of frequency from 6.7 to 90 MHz as a tissue average over normal and cancerous muscle, spleen, liver, and kidney. This results from equating Eq. (5) with their dispersion Eq. (2) wherein $B' \sim (1-b)/T_{1f}$.

The simplest model characterizes the rate $1/T_{1b}$ by isotropic rotational motion and a single correlation time, implying, from Eqs. (3)–(5), $T_1 \propto v^2$. Such behavior was fitted by Knispel et al. 98 to T_1 data measured over 17-45 MHz, but this model does not satisfactorily cope with the extended 1-100 MHz range investigated here.⁵⁴ Thus, multiple or continuously distributed correlation times are required. A dual

FIG. 14. Discrete distribution of six correlation times and their weighting factors fitted by Finch and Homer (Ref. 57) to frog muscle T_1 and $T_{1\rho}$ dispersions using Eqs. (3) and (4), and omitting the j-summation.

Fig. 15. Investigation of the isotropic diffusion model of T_1 relaxation in the bound phase (Ref. 54). The curves were obtained by numerical integration of Eq. (7) as a function of frequency from 1-100 MHz with different diffusion correlation times τ_d . Since

$$1/T_1 \propto J^1(\nu) + J^2(2\nu),$$

the model satisfies the empirical Eqs. (1) and (2) when a τ_d is found for which the curves are linear. Straight lines with gradients of 0.2 and 0.5 depict the actual range of B values observed (Table 12).

correlation time model involving intramolecular interactions with anisotropic reorientation of bound water fitted Escanye et al.'s data, 54 but required excessive free water fractions in the range $0.98 \le 1 - b < 1$. Here, one correlation time would correspond to rapid motion about an axis perpendicular to the H-H direction, and the other to slow reorientation of this axis under the influence of macromolecular motion. 159

Whilst correlation times associated with intramolecular interactions are dominated by rotation, intermolecular interactions involve mainly translational motion. However, rotation and translation of water molecules in water are arguably coupled, suggesting that the same correlation times could be used to characterize both motions. This offers some justification for floating C_{ij} and r_j to intermolecular/intramolecular averages, and computing T_{1b} from Eqs. (3)-(5) with a single summation over the i correlation times. 57 Finch and Homer fitted such a model to frog muscle dispersion data to within experimental accuracy (5%), albeit using nine fitting parameters, including five discrete correlation times for the bound compartment and a single correlation time for the free compartment, and only 19 data points.⁵⁷ The resultant weighting coefficients (C.) are plotted against correlation time in Fig. 14. The results appear consistent with the existence of several hydration layers bonded to macromolecules with increasing mobility in outer layers, and suggest a distribution of residence times (τ_e) rather than the single value assumed. However, the estimates of (1-b) and τ_e seem somewhat excessive at 0.97 and 0.8 ms, respectively.

Models incorporating distributed correlation times for the molecular motion of the bound water fraction were proffered by Held et al.,78 Fung and McGaughy,64 and Escanye et al.54 All attempted a log-Gaussian distribution function of intramolecular correlation times for rotation

$$g(\tau) = \frac{\alpha}{\tau \sqrt{\pi}} \exp\left\{-\left[\alpha \ln \left|\frac{\tau}{\tau_0}\right|\right]^2\right\},\tag{6}$$

 (α, τ_0) empirically determined constants), not dissimilar from the discrete distribution of Fig. 14, to provide a good fit to frog muscle frequency dispersion data recorded between 3 kHz and 75 MHz. This requires replacement of the Eq. (4) summation by the integral $\int g(\tau)d\tau$ which is then evaluated numerically, ⁶⁴ again implicitly incorporating both intramolecular and intermolecular contributions by empirically fitting the parameters.

Escanye et al. 54 also proposed a model involving distributed correlation times to explain their fit to Eq. (2). In this model, T_1 relaxation is dominated by intermolecular interactions that consist entirely of translational diffusion of bound tissue water treated as spheres. The spectral density functions for isotropic, uniform translational diffusion are

$$J^{1}(v) = \frac{J^{2}(v)}{4} = \frac{M}{dD} \int_{0}^{\infty} [J_{3/2}(u)]^{2} \frac{u \, du}{u^{4} + 4\pi^{2} \, v_{d}^{2} \, \tau_{d}^{2}}, (7)$$

where M is the ¹H spin density, $J_{3/2}(u)$ is a Bessel function of order 3/2, u=rd, r is the distance variable between diffusing molecules, d is the distance of closest approach, D is the diffusion coefficient and $\tau_d=d^2/2D$ is the diffusion jump time. ^{1,54} Assuming d=5 Å and a 50-ns jump time, the model⁵⁴ yields a bound water diffusion coefficient of 2.5×10^{-8} cm⁻² s⁻¹ that is about 400 times less than Hazelwood et al.'s bulk muscle tissue measurements. ^{75,74} However, the latter must be considered as free/bound fraction averages. Alternatively, Koenig et al. ⁹⁹ used the heuristic Cole–Cole expression

$$\frac{1}{T_1} = \frac{1}{T_{1f}} + G + \frac{H\left[1 + (\nu/\nu_c)^{\beta/2}\cos(\pi\beta/4)\right]}{1 + 2(\nu/\nu_c)^{\beta/2}\cos(\pi\beta/4) + (\nu/\nu_c)^{\beta}},$$
(8)

where G, H, ν_c , and β are four fitting parameters to be determined.

Semiempirical multiparameter models such as these are susceptible to the criticism that given enough variables, success is virtually guaranteed, particularly since the experimental dispersions are apparently continuous, slow varying, and monotonic. Close scrutiny of predicted parameters is necessary to determine their physical relevance. Thus the relation, $T_1 = A v^B$, allowing the exponent to vary empirically, provides as good or better average fit to the tabulated data as the Escanye group's equation (Figs. 1 and 4), and an excellent, if not superior fit to the individual tissue dispersions of Escanye et al. and Koenig et al. (Fig. 9) with minimal fitting coefficients compared to Eq. (3)-(8). Although its physical significance is yet to be determined, the resemblance of Eq. (1) to the Escanye et al. isotropic diffusion model and Eq. (2) is undeniable. However, numerical evaluation of Eqs. (3) and (7) using similar values of τ_d , d, and D yields curves nonlinear in $\log(T_1)$ versus $\log(\nu)$ over 1–100 MHz, contrary to the requirements of both Eqs. (1) and (2) (Fig. 15). Therefore, either a distribution of diffusional correlation times are necessary, or intramolecular rotational contributions cannot be totally neglected.

Estimates of the relative importance of the intermolecular and intramolecular mechanisms to bound water relaxation are open to ambiguous interpretation. A priori, the r_j^{-6} dependence of the dipole—dipole interaction [Eq. (4)] strongly

favors dominance by intramolecular processes. However, both intermolecular and intramolecular models can be fitted to the T_1 dispersions with essentially equivalent ease or difficulty because both contain terms quadratic in frequency [compare Eqs. (4) and (7)]. To elucidate the relative importances of the two mechanisms, Civan and Shporer,37 and Fung⁶² observed the 1 H T_{1} 's at 4.3, 8.1, and 35 MHz of muscle and brain tissue bathed in various concentrations of deuterated water (²H₂O) in Krebs or Ringers solution for 1-3 h. Since the gyromagnetic ratio of ²H is 0.15 that of ¹H, the substitution of ²H₂O for ¹H₂O in bulk water reduces the strength of intermolecular H₂O-H₂O dipolar interactions for 1H. It also reduces the intramolecular H-H dipolar interaction since ¹H₂O and ²H₂O undergo rampant chemical exchange to ${}^{1}\text{HO}{}^{2}\text{H}$. Thus, bulk water T_{1} rapidly increases as the ratio [2H2O/1H2O] increases. In tissue, the increase is much less: about 20% extrapolating to complete substitution compared to a factor of 24 for bulk water. Rustgi et al. 140 extended these measurements over the frequency range 15-60 MHz for muscle tissue, recording essentially the same observation.

This somewhat surprising and significant result is interpreted as evidence that tissue 1H relaxation is dominated by intermolecular interactions between macromolecules and water molecules in the first hydration layer. This is the only remaining relaxation mechanism that is transparent to the ²H₂O substitution. ⁶² The small 20% change observed is possibly attributable to chemical exchange between macromolecular and water hydrogens. The implication is that tissue T_1 relaxation entirely hinges on the interaction between macromolecules and a single adsorbed layer of water. The relaxation mechanism may be either translational or rotational and likely involves the stronger H-H interactions. To explain the dispersion data, a distribution of correlation times in the neighborhood ~ 10 ns is necessary. If the interaction is principally translational, as in the Escanye et al. model, then the residence time τ_e also cannot be much longer than 10 ns.

B. Spin-spin relaxation

An expression for the T_2 dispersion corresponding to Eq. (3) is

$$\frac{1}{T_2} = \frac{3}{4} \gamma^4 \, \bar{h}^2 \left[\frac{3}{8} J^0(0) + \frac{15}{4} J^1(\nu) + \frac{3}{8} J^2(2\nu) \right], (9)$$

where $J^0(0)$ is the static component of the spectral density functions and includes here effects due to microscopic and molecular level field heterogeneity in biological tissue. Thus T_2 is independent of frequency if the latter two terms in Eq. (9) are small compared to the first, static contribution. The similarity of structure of these terms with Eq. (3) ensures the frequency independence of T_2 if T_2 is much less than T_1 . This is true of virtually all of the (nonfluid) tissues, except perhaps for the longest of the liquidlike (L) multiple components of T_2 , and for adipose whose T_1 dispersion is essentially constant above 10 MHz anyway. The dispersions of long T_2 components are more likely to follow those of the corresponding T_1 's. Like T_1 , T_2 can also be equated to a sum of contributions from free and bound components in an expression analogous to Eq. (5). The static intramolecular spectral

density function due to rotation is $J^{0}(0) = 6J^{1}(0)$ in Eq. (4), and the static intermolecular spectral density function, due to isotropic translational diffusion, is

$$J^{0}(0) = 2N/15dD = 2\pi N\eta/5kT$$

where η is the viscosity and k is Boltzmann's constant.

Evidence for multicomponent relaxation times is less compelling for T_1 than for T_2 . The sparse multicomponent T_1 data reported are largely explicable by sample or chemical heterogeneity. For example, in adipose tissues, ¹H chemical shift spectroscopy reveals two principal components associated with H₂O and -CH₂- (macromolecular) hydrogens²³ with different T_1 and T_2 relaxation times thus far neglected in the above analysis. Breast and other tissues with large fatty components, high blood content, or other heterogeneity such as grey and white brain matter, or kidney cortex and medula can easily yield multicomponent relaxation values. Multicomponent T_2 's that are not attributable to macroscopic or microscopic heterogeneity are difficult to explain at a molecular level. Given the similarity of mechanisms responsible for T_1 and T_2 relaxation, can multicomponent T_2 's coexist with single-valued T_1 's?

Hazlewood, Chang, and colleagues interpreted the multicomponent T_2 data as evidence against the fast exchange model.34,75 However, slow exchange would require residence times τ_e of the order T_2 (~10 ms), which could be expected to generate observable multicomponent T_1 data. Diegel and Pintar responded that the different behavior is explicable via the static T_2 spectral density term. ⁴⁷ They observed dual component tissue $T_{1\rho}$'s (effectively, the T_1 at extremely low frequency) from ~0-60 kHz equivalent to the T_2 values and attributed to intercellular (150 ms) and intracellular (53 ms) water. The faster low-frequency $1/T_{1\rho}$ and $1/T_2$ relaxation rates can be accounted for by a $\sim 10 \,\mu s$ correlation time identified with the residence time τ_e for diffusion of water in the hydration layer. 47,98 This exchange diffusion is too slow to directly effect T_1 relaxation between 1–100 MHz, but, since $\tau_e \ll T_1$, it strongly averages the different T_1 values from the various compartments leaving the observed T_1 single valued in the > 1 ms range. T_{10} measurements in normal and deuterated muscle, spleen, and kidney by Rustgi et al. 140 confirm the importance of exchange diffusion as a relaxation process at extremely low frequencies. The exchange diffusion can directly effect tissue water T_2 's by exposing water molecules to static field inhomogeneities at the exchange interface: Fung and McGaughy⁶⁴ note microscopic field inhomogeneity as a likely explanation why $T_2 < T_1$ in tissue.

This model is incompatible with the Escanye et al. view of T_1 dispersions in the 1–100 MHz range dominated by diffusion, since it would require $\tau_e \sim \tau_d$, but is compatible with the rotational modeling of T_1 . The free water correlation time is still ~ 1 ps, much faster than both the exchange correlation time $\tau_e \sim 10 \, \mu \rm s$ and the suggested distribution of rotational correlation times τ in the range 10 ns responsible for T_1 relaxation.

Some additional information on multicomponent T_2 's is provided by Peemoeller *et al.*¹²⁸ who analyzed the relative contributions of water and macromolecular hydrogens to

each component in mouse muscle by comparison with tissue soaked in an osmotically balanced 2H_2O solution for 4 h. They ascribe a 143 ms (L) and a 24 μ s (S) T_2 component to macromolecules, a 40 ms (SL) component to water alone, and a 5 ms (SS) component to both water (70%) and macromolecules (30%). This is a more likely allocation of T_2 components than the Diegel and Pintar intercellular/intracellular assignment, 47 and is consistant with the aforementioned observation of discrete H_2O and $-CH_2$ —peaks in some tissue ^{1}H NMR spectra. 23 Aside from the possibility of chemical exchange, macromolecular components cannot be expected to participate in fast exchange.

C. Temperature dependence

The relaxation times depend on temperature via the rotational and translational correlation times τ_i and τ_d . Setting

$$\tau_i = \tau_{i0} \, \exp(E_{ia}/kT) \tag{10}$$

for the bound water hydrogens in Eqs. (3)–(7) and (9), where τ_{i0} and E_{ia} are, respectively, a constant and the activation energy for the *i*th mode of motion, 1 could precisely define the temperature dependence of the relaxation times if indeed the relaxation time model were precisely understood. Assuming the bound fraction b is temperature independent, then in the limit $2\pi\nu\tau_i \ll 1$ the frequency-dependent denominators of the rotational spectral density functions [Eq. (4)] approach unity, and substitution of Eq. (10) in Eqs. (5) and (3) gives

$$T_{1f} \sim \exp(-E_{af}/kT)$$
 and $T_{1b} \sim \exp(-E_{ab}/kT)$, (11) or more crudely,

$$T_1 \sim \exp(-E_a/kT)$$

where E_{af} , E_{ab} , and E_a are activation energies for the T_{1f} , T_{1b} , and T_1 processes. This dependence is assumed by Lewa and Majewska¹⁰² and Parker et al. 125 to explain their observed linear behavior of T_1 with temperature. It should also describe the T_2 temperature dependence when the static spectral density term is dominant. For small temperature variations, the series expansion for exponentials suggests an approximately linear relationship between T_1 and 1/T, with T_1 increasing with increasing temperature. Furthermore, if the reorientation is random, then Stokes' formula $D_r = kT/2$ $8\pi a\eta$ for the rotational diffusion coefficient of spheres, where a equals the molecular radius, provides $\tau_i = 4\pi \eta a^3/$ 3kT, instead of Eq. (10). Thus the same result $T_1 \propto 1/T$ obtains directly. 1,19 In models dominated by translational diffusion, application of Stokes' formula $D = kT/3\pi d\mu$ (so $\tau_d = 3\pi d^3 \eta/2kT$) for the translational diffusion coefficient to Eqs. (7) and (3) repeats this result. 1,19 Since absolute temperature changes relatively little between 0 and 40 °C, T₁ also varies roughly linearly with T. Extending the temperature range beyond this risks irreversible structural transitions in tissue not representative of the physiological state. 102

The small temperature range and the relatively modest variations in the observed T_1 's so induced, are likely responsible for the success of these simple formulations for the temperature dependence, despite the somewhat dubious assumptions. Moreover, to explain the experimental tissue T_1 dispersions requires $2\pi\nu\tau_i \gtrsim 1$ for the dominant relaxation processes⁵⁴ in models employing Eqs. (4) or (7), thereby

modifying the above proportionalities and introducing frequency dependence to the temperature dependence. Indeed, under this condition, the denominators of Eqs. (4) and (7) predominate, and application of either Stokes' formulas or Eq. (10) anticipates a decreasing T_1 with increasing temperature, contrary to the data. The dilemma is resolved in the T_1 model employing a log-Gaussian distribution of correlation times by incorporating temperature dependence into the distribution function parameters [Eq. (6)] via $\alpha = \alpha_0 \sqrt{T}$, and

$$\tau_0 = \tau_{0\infty} \exp(E_a/kT),$$

where α_0 and $\tau_{0\infty}$ are constants.^{63,64} Fung and colleague's simultaneous fitting of muscle and liver T_1 dispersion data from 4.5 to 60 MHz over - 70 to 40 °C utilizing this model is persuasive evidence for its validity.

The observed increase in the derivative of T_1 with respect to temperature $(\partial T_1/\partial T)$ with increasing frequency is an important feature of the data, consistent with the distributed correlation times of Fung et al.'s model. In fact, since the temperature-dependent correlation times appear as coefficients of the frequency dependent terms in Eqs. (4) and (7), Eq. (1) might suggest $\partial T_1/\partial T \sim v^B$ with $B \sim 1/3$. Thus an eightfold frequency change from 7.5 to 60 MHz could result in an approximately twofold increase in the temperature dependence, in fair agreement with Fung et al.'s observation on mouse muscle and liver, 62 and the 20-fold increase in frequency between 1-20 MHz studied by Koenig et al. might account for a threefold increase in temperature dependence in approximate agreement with their rabbit blood data.⁹⁹ However, above 20 MHz the magnitude of the difference between T_1 values measured at room temperature and at physiological temperature is unresolved due to the dearth of physiological temperature data from all tissues except Fung et al.'s muscle and liver data. If the larger temperature dependences noted by Fung et al. were generally applicable, then the tissue curves (Figs. 1-9) could seriously underestimate the high-frequency behavior of the in vivo T_1 values. Below 20 MHz, the consensus from the tables and in vivo versus in vitro plot (Fig. 12) is that temperature differences between 20 and 37 °C do not significantly affect the T_1 values of nonfluid tissues.

The slight increase in T_2 with decreasing temperature observed by Belton et al. 14 is consistent with the role of the exchange process as a T_2 relaxation mechanism, 14,47 transparent to T_1 processes except for the mixing of free and bound values. As the temperature decreases, exchange slows and contributes less to T_2 relaxation so that T_2 initially increases. 14 Eventually T_2 decreases as other molecular motions slow with further declines in temperature. No frequency variations in tissue T_2 temperature dependence over 1–100 MHz are anticipated in view of the apparent frequency independence of T_2 .

D. Tissue, species, and age dependence

The $^1\mathrm{H}$ tissue water relaxation times measure molecular level structure and motion and therefore depend on the organization and composition of the tissue. Investigations of the correlation between T_1 and tissue water content are legion, $^{6.26,36,43,46,61,76,80,86,87,92-94,96,104,108,127,130,133,134,142,144}$

The mean fractional water contents by weight of normal rat and mouse liver, kidney, spleen, muscle, brain, and adipose tissue are 0.69 ± 0.01 , 0.74 ± 0.01 , 0.77 ± 0.02 , 0.75 ± 0.02 , 0.79 ± 0.01 , 0.18 ± 0.03 , respectively, averaged from Refs. 26, 43, 46, 76, 80, 86, 87, 92, 96, 97, 130, 134, 142, and 144. These correlate directly with T_1 : the higher the water content, the longer the T_1 , prompting Mansfield and Morris¹¹¹ to write for a (nonadipose) tissue with fractional water content w

$$T_1 = 7.94 \ w - 5.16, \tag{12}$$

assuming Kiricuta et al.'s 60-MHz rat data. ⁹⁶ This relation emphasizes the observation that quite marginal changes in w are associated with large variations in T_1 . In fact, the changes in w with respect to T_1 are so marginal that the physical significance of the correlation between T_1 and water content alone is doubtful. ^{108,133} Differences in macromolecular composition and structure, which could well influence the amount and motion of adsorbed water molecules and indeed the total tissue water content, thus probably constitute the primary source of variations in T_1 amongst different tissue types.

A remarkable feature of the relaxation data is its apparent independence of species. From the NMR standpoint, a human muscle is a rat muscle is a pig muscle is a frog muscle is a chicken muscle, etc., notwithstanding potential variations due to temperature. Again composition and structure are possible causes. Mansfield and Morris¹¹¹ tabulate human tissue water contents that are 2% to 7% higher than the rat/ mouse averages cited above. In view of Eq. (12), these differences are too significant to permit the species independence of relaxation times, suggesting that water content is not directly responsible for the species' similarities amongst relaxation times. Macromolecular composition and structure are important to tissue function as well as to the relaxation times. Thus once the function has evolved, differences amongst species are apparently only of secondary importance at the molecular NMR level. Alternatively, it is possible that the differences in water content cited reflect systematic differences in the methods of measurement of water

Mansfield and Morris¹¹¹ also note a 2.5% per decade decline in human body water content from ages 40 to 70, which should dramatically reduce the corresponding T_1 's if Eq. (12) were a determining influence. Subject age is a widely neglected parameter in human studies that could potentially create chaos of efforts to develop normal ranges of T_1 , should significant variations occur. For immature tissue, large elevations in T_1 (Fig. 13) do correlate with increased water content, yet the possible role of macromolecular structural development as the principal determining factor again cannot be ruled out.

V. ERROR AND OMISSIONS

While evidence for the dependence of tissue relaxation times on temperature, time after excision, in vivo versus in vitro status, time of day, age, and species exists, these factors are demonstrably not entirely responsible for the scatter amongst T_1 and T_2 tissue dispersions. Other possible factors

are inherent tissue heterogeneity, sample handling techniques, the NMR measurement methods, the existence of multiple T_2 components, as well as presently unidentified sources. Tissue heterogeneity is unlikely to significantly influence scatter because of the large number of samples typically studied and the relatively small standard deviations quoted for individual T_1 points. Sample handling is a key issue for in vitro studies, addressed in depth by Beall. We recommend that investigators perform measurements as soon as possible after death and excision, and that measurements for in vivo comparison be performed at physiological temperatures with samples that have not been overheated, frozen, homogenized, soaked, dehydrated, or otherwise abused.

The reviewed in vitro T_1 measurements were performed by either inversion recovery, or by partial saturation, or saturation recovery, or in one case by rapid ramping of the field, 90 or by the less accurate null method. The few investigators that employed the null technique almost invariably verify experimental accuracy by comparison with measurements obtained by the other methods. In vitro T_2 measurements were performed mainly by the standard Carr-Purcell or Carr-Purcell-Meiboom-Gill methods. Therefore, we could not objectively discriminate against T_1 and T_2 data on the basis of measurement technique, nor were there sufficient grounds to exclude data due to sample handling transgressions, except where stated in the Sec. II.

Perhaps the most dubious practices abound in the measurement of relaxation times, particularly T_2 , in vivo utilizing NMR imaging techniques. To expedite patient scan times, T_1 and T_2 measurements are typically performed using only two points on the nuclear magnetization relaxation each image picture element. 32,33,44,45,49,70,79,82,83,88,109,110,116,117,139,148-152,158 Unfortunately, the standard expressions employed for computing T_1 from inversion or saturation recovery presume precise 90° or 180° radiofrequency (rf) NMR pulses at each picture point across the image plane,⁵¹ a difficult task for conventional NMR transmitter coil designs. The effect is dramatically illustrated by Gore et al., 70 who reported T_1 variations of up to 60% from the same sample as a result of increasing the relaxation recovery time t from 0.2 to 0.4 s. They attributed the variations to multiple-component T_1 behavior which our review deems unlikely. A prudent approach to accurate T_1 measurement in the presence of inhomogeneous rf fields in NMR imaging is to use a three-parameter fit to the signal intensity

$$S = P + Q \exp(-t/T_1), \tag{13}$$

where P, Q, and T_1 are fitting constants.⁵⁶ Obviously, more than two data points would be required.

The situation is worse for in vivo T_2 studies since multiple components are widely identified in vitro. Hence, Gore et al. ⁷⁰ tabulated variations in T_2 of up to 350% comparing values from the same sample computed from spin echoes occurring at 32 and 64 ms after the initial 90° rf pulse. Furthermore, the pulsed gradient spin-echo imaging experiment employed in T_2 imaging studies is a facsimile of the standard Stejskal and Tanner pulsed gradient diffusion measurement technique. ¹⁵³ Since bulk tissue diffusion coefficients are sig-

nificant fractions of pure water values, 74,75 attenuation of computed T_2 's by diffusion effects is quite predictable. Diffusion and ignorance of multiple components may thus substantially account for the sad state of the T_2 data. If dualpoint T_1 and T_2 imaging measurements become convention, and if the resultant T_1 and T_2 values are to be useful as diagnostic parameters independent of the particular imaging system and suitable for comparison, then standardized image sequence timing parameters should be adopted and any rf inhomogeneity problems solved.

The sparsity of relaxation data above 30 MHz and the absence of *in vivo* data above 15 MHz are additional deficiencies, although we certainly do not claim to have found all of the published measurements.

VI. CONCLUSIONS

The principal determinants of T_1 relaxation in normal biological tissue in the range 1-100 MHz are NMR frequency (ν) and tissue type. All of the tissue T_1 dispersions studied obey the simple relationship $T_1 = Av^B$, where A and B are parameters dependent on tissue type and $B \sim 1/3$. This expression gives an equivalent or better fit to T_1 data than previously used expressions and models and is simple enough to enable rapid computation of T_1 values at any desired frequency between 1 and 100 MHz. The standard deviations of T_1 from the fitted curves are about 20% reflecting mainly systematic errors not readily identifiable with species, temperature, in vivo versus in vitro status, time after excision, or age differences. Fetal and immature tissue excluded from this analysis exhibit dramatically elevated T_i values. Most data are recorded at room temperature or physiological temperature, but there is a dearth of the latter measurements above 20 MHz. Evidence that the temperature dependence of T_1 increases significantly at higher frequencies could, therefore, result in our mean curves underestimating the high-frequency physiological temperature data. Virtually all researchers report single component T_1 values. However, breast tissue T_1 dispersions can be resolved into two components comprising adipose and fibrous tissue which have essentially equivalent dispersions to those of skeletal muscle and adipose. Dual components can arise from macroscopic tissue heterogeneity or from the discrete chemical species H₂O and -CH₂- on macromolecules when these are sufficiently mobile to be detectable on the time scale of the NMR experiment.

The principal determinant of T_2 relaxation in normal biological tissue in the range 1–100 MHz is tissue type. No substantial dependence on NMR frequency, temperature, in vivo versus in vitro status, time after excision, or age can be differentiated within systematic errors of about 30%. Therefore average T_2 values are tabulated as constants for each tissue. Substantial evidence for multiple T_2 components exists. In muscle, the major component ($T_2 \sim 40$ ms), constituting about 75% of the signal, derives from tissue water. There exist very long ($T_2 \sim 140$ ms) and very short ($T_2 \sim 20~\mu$ s) T_2 components from macromolecules contributing about 7% and 11% each, and a short T_2 component ($T_2 \sim 5$ ms) of about 7% derived from both water and macromolecules. Multicomponent T_2 's and diffusion in the presence of imag-

ing gradients are deleterious factors affecting in vivo T_2 measurements which must be dealt with.

The observed tissue T_1 and T_2 relaxation data can be substantially accounted for by the FETS model with free and bound phases of water undergoing rapid exchange. There is disagreement concerning the detailed mechanisms responsible for relaxation, however we tentatively offer the following scenario consistent with the reviewed data and which incorporates elements from the models of Fung $et\ al.$, Diegel and Pintar, Rustgi $et\ al.$, and the results of the deuterated water exchange experiments of Fung, Rustgi $et\ al.$, Civan and Shporer, and Peemoeller $et\ al.$

Water in the free phase undergoes rapid, probably correlated, rotational and translational motion with a correlation time of order 1 ps. This is too fast to directly affect relaxation between 1 and 100 MHz so the T_1 of the free phase is long $(T_{1f} \sim 1.7 \text{ s})$ like ordinary water and independent of frequency. In muscle, the bound phase constitutes about 10% of the total tissue water content and consists of a single hydration layer adsorbed on the surface of macromolecules. The intramolecular rotational correlation time of these water molecules is probably still about 1 ps, but faster relaxation of water hydrogen is facilitated via intermolecular interactions involving mainly macromolecular hydrogen. The latter mechanisms requires a log-Gaussian or similar distribution of correlation times for motion, probably rotational, in the NMR frequency range, of order 10 ns. This faster intermolecular relaxation process is primarily responsible for the observed T_1 frequency, temperature, tissue type, and age dependencies. The bound water undergoes exchange diffusion with the free component with a slower correlation time of about 10 μ s, which may be identified as the residence time in the bound state. The exchange diffusion correlation time is too long to facilitate T_1 relaxation directly but could provide an important relaxation mechanism for $T_{1\rho}$ and T_2 . Nevertheless, it is sufficiently short to prohibit resolution of the free and bound water T_1 's on the time scale of the T_1 experiment. Thus the observed water T_1 relaxation rate $(1/T_1)$ is essentially equal to the sum of the free and bound water relaxation rates.

Unlike T_1 , T_2 largely measures the low-frequency and static components of molecular motion and can therefore discriminate free and bound water and macromolecule phases. The bound water and the corresponding macromolecular adsorption surface must share the same low-frequency or static motional environment and can therefore be assigned the joint short T_2 component of about 5 ms in muscle. The major free water component exhibits a unique, significantly longer T_2 value (~40 ms in muscle) reflecting its greater mobility. However the free water component T_2 value is much less than the free water T_1 values (~500 ms) owing to an exchange diffusion relaxation mechanism. Thus, the free water component T_2 relaxation rate $(1/T_2)$ is equal to the sum of the rate due to exchange diffusion at the exchange interface, and the much slower rate in the true liquid water phase. The exchange diffusion rate decreases with decreasing temperature, causing the free water component T_2 to increase slightly. Since this is the major component, and T_2 varies with tissue type, the exchange diffusion correlation time is likely tissue dependent. A physical candidate for the exchange diffusion relaxation mechanism is local static field gradients between the exchange interface and the free phase due to the presence of the macromolecules. The remaining two macromolecular T2 components have no water counterparts. The extremely short component around 20 μs probably corresponds to rigid membrane or protein structures not normally observable in the NMR experiment, and the very long 140-ms component to highly mobile hydrogen on fatty acids, with essentially no hydration layer. The dominant role of low-frequency relaxation mechanisms for all T2 components except the very long component ensures T_2 dispersions independent of the NMR frequency. The 140-ms fatty acid T_2 component may be associated with the comparably valued T_1 observed in adipose tissue, in which case its frequency dispersion will be similar.

Further effort is necessary to evaluate the full range of fitting parameters for the model peculiar to each tissue, and to tighten the uncertainty of the normal T_1 and T_2 values. It is imperative that guidelines be established for reproducible measurement of tissue NMR relaxation in vivo.

Note added in proof: Koenig et al. 162 recently published 1H T, dispersions of normal and partially deuterated rat tissue from 10 kHz to 100 MHz. The Fung and Rustgi et al. observations on deuterated tissues are confirmed over 1-100 MHz. Koenig et al. attribute the 1-100 MHz dispersions to intermolecular interactions at the macromolecule-water interface. Below 1 MHz the difference between the normal and partially deuterated tissue T_1 increased to twofold at 10 kHz, indicating the increasing role of intra- (and possibly inter-) molecular H₂O-H₂O interactions at low frequencies. These observations are consistent with our best-guess model. Slight structure ($\sim 6\% T_1$) was observed in the heart muscle dispersions between 2 and 3 MHz and attributed to magnetization transfer (cross relaxation) between H2O and 14N nuclei on protein amides. A similar effect is noted in leeches by Kimmich et al.163

Bakker and Vriend¹⁶⁴ published statistically significant dual-component excised mice fat, kidney, muscle, and spleen tissue ¹H T_1 's at 60 MHz. Except for fat, results showed a short component of 2–10 ms constituting 5%–8% of the magnetization, and a long component of comparable value of those cited herein. Dual components are attributed to the use of long (150 μ s) 180° rf pulses in an inversion recovery sequence combined with a mechanism of ¹H–¹H cross relaxation¹⁶⁵ between H₂O and macromolecules at the interface.

ACKNOWLEDGMENTS

We thank W. A. Edelstein for modifying our least-squares fitting routine to minimize the fractional T_1 differences, R. W. Redington for scientific support, and the staff of the Research Center's Whitney Library for locating publications.

¹A. Abragam, *The Principles of Nuclear Magnetism* (Oxford University, London, 1978), pp. 291-303.

²T. Araki, T. Inouye, T. Matozaki, and M. Iio, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 3-4.

- ³D. R. Bailes, I. R. Young, D. J. Thomas, K. Straughan, G. M. Bydder, and R. E. Steiner, Clin. Radiol. 33, 395 (1982).
- ⁴C. J. G. Bakker and J. Vriend, Phys. Med. Biol. 28, 331 (1983).
- ⁵L. E. Barroilhet and P. R. Moran, Med. Phys. 2, 191 (1975).
- ⁶P. T. Beall, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 28–29.
- ⁷P. T. Beall, Magn. Reson. Imag. 1, 189 (1982).
- ⁸P. T. Beall, Magn. Reson. Imag. 1, 165 (1982).
- ⁹P. T. Beall, Physiol. Chem. Phys. 14, 339 (1982).
- ¹⁰P. T. Beall, B. B. Asch, D. C. Chang, D. Medina, and C. F. Hazlewood, J. Natl. Cancer Inst. **64**, 335 (1980).
- ¹¹P. T. Beall, B. B. Asch, D. Medina, and C. Hazlewood, in the *Transformed Cell*, edited by I. L. Cameron and T. B. Pool (Academic, New York, 1981), pp. 293-325.
- ¹²P. T. Beall and C. F. Hazlewood, in *Nuclear Magnetic Resonance (NMR) Imaging*, edited by C. L. Partain, E. James, and F. D. Rollo (Saunders, Philadelphia, 1983), pp. 312–338.
- ¹³P. T. Beall, D. Medina, and C. F. Hazlewood, in NMR in Medicine, edited by R. Damadian (Springer-Verlag, New York, 1981), pp. 39-57.
 ¹⁴P. S. Belton, R. P. Jackson, and K. J. Packer, Biochim, Biophys. Acta
- ¹⁴P. S. Belton, R. R. Jackson, and K. J. Packer, Biochim. Biophys. Acta 286, 16 (1972).
- ¹⁵G. J. Bene, B. Borcard, V. Graf, E. Hiltbrand, P. Magnin, and F. Naock, Z. Naturforsh. 37, 394 (1982).
- ¹⁶J. A. O. Besson, F. M. Corrigan, E. L. Iljon-Foreman, L. M. Eastwood, F. W. Smith, and G. W. Ashcroft, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 43-44.
- ¹⁷R. E. Block and G. P. Maxwell, J. Magn. Reson. 14, 329 (1974).
- ¹⁸R. E. Block, G. P. Maxwell, and D. L. Branam, J. Natl. Cancer Inst. **59**, 1731 (1977).
- ¹⁹N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).
- ²⁰C. A. Boicelli, C. Guarnieri, and R. Toni, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 47–48.
- L. Borghi, F. Savoldi, R. Scelsi, and M. Villa, Exp. Neurol. 81, 89 (1983).
 P. A. Bottomley, H. R. Hart, W. A. Edelstein, J. F. Schenck, L. S. Smith,
- W. M. Leue, O. M. Mueller, and R. W. Redington, Lancet 2, 273 (1983). ²³P. A. Bottomley, H. R. Hart, W. A. Edelstein, J. F. Schenck, L. S. Smith, W. M. Leue, O. M. Mueller, and R. W. Redington, Radiology 150, 441 (1984).
- ²⁴P. A. Bottomley, T. H. Foster, R. E. Argersinger, and L. M. Pfeifer (in preparation).
- ²⁵W. M. M. J. Bovee, K. W. Getreuer, J. Smidt, and J. Lindeman, J. Natl. Cancer Inst. 61, 53 (1978).
- ²⁶W. Bovee, P. Huisman, and J. Smidt, J. Natl. Cancer Inst. **52**, 595 (1974). ²⁷R. C. Brasch, D. A. London, G. E. Wesbey, T. N. Tozer, D. E. Nitecki, R.
- D. Williams, J. Doemeny, L. D. Tuck, and D. P. Lallemand, Radiology 147, 773 (1983).
 ²⁸C. B. Bratton, A. L. Hopkins, and J. W. Weinberg, Science 147, 738
- (1965). ²⁹F. S. Buonanno, J. P. Kistler, L. D. De Witt, I. L. Pykett, and T. J. Brady,
- ²⁹F. S. Buonanno, J. P. Kistler, L. D. De Witt, I. L. Pykett, and T. J. Brady, Neurol. Clinics 1, 243 (1983).
- ³⁰F. S. Buonanno, I. L. Pykett, T. J. Brady, J. Vielma, C. T. Burt, M. R. Goldman, W. S. Hinshaw, G. M. Pohost, and J. P. Kistler, Stroke 14, 178 (1983).
- ³¹F. S. Buonanno, I. L. Pykett, J. Vielma, T. J. Brady, C. T. Burt, M. R. Goldman, J. H. Newhouse, P. F. J. New, W. S. Hinshaw, G. M. Pohost, and J. P. Kistler, in *Proceedings of the International Symposium on NMR Imaging*, edited by R. L. Witcofski, N. Karsaedt, and C. L. Partain (Bowman Gray School of Medicine, Winston-Salem, NC, 1982), pp. 147-157.
- ³²G. M. Bydder, R. E. Steiner, I. R. Young, A. S. Hall, D. J. Thomas, J. Marshall, C. A. Pallis, and N. J. Legg, Am. J. Roentgenol. 139, 215 (1982).
- ³³R. Chandra, D. J. Pizzarello, A. F. Keegan, and N. E. Chase, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 132-133.
- ³⁴D. C. Chang and C. F. Hazlewood, J. Magn. Reson. 18, 550 (1975).
- ³⁵D. C. Chang, C. F. Hazlewood, and D. E. Woessner, Biochim. Biophys. Acta 437, 253 (1976).
- ³⁶R. S. Chaughule, S. F. Kasturi, and S. S. Ranade, Proc. Nucl. Phys. Solid State Phys. Symp. 17C, 416 (1974).
- ³⁷R. S. Chaughule, S. R. Kasturi, R. Vijayaraghavan, and S. S. Ranade,

- Ind. J. Biochem. Biophys. 11, 256 (1974); M. M. Civan and M. Shporer, Biophys. J. 15, 299 (1975).
- ³⁸B. Coles, J. Natl. Cancer Inst. 57, 389 (1976).
- ³⁹G. L. Cottam, A. Vasek, and D. Lusted, Res. Commun. Chem. Pathol. Pharmacol. 4, 495 (1972).
- ⁴⁰R. Damadian, Science 171, 1151 (1971).
- ⁴¹R. Damadian, K. Zaner, and D. Hor, Physiol. Chem. Phys. 5, 381 (1973).
- ⁴²R. Damadian, K. Zaner, D. Hor, and T. DiMaio, Proc. Natl. Acad. Sci. 71, 1471 (1974).
- ⁴³P. L. Davis, L. Kaufman, and L. E. Crooks, in *Proceedings of the International Symposium on NMR Imaging*, edited by R. L. Witcofski, N. Karstaedt, C. L. Partain (Bowman Gray School of Medicine, Winston-Salem, NC, 1982), pp. 101-105.
- ⁴⁴P. L. Davis, L. Kaufman, L. E. Crooks, and A. R. Margulis, *Nuclear Magnetic Resonance Imaging in Medicine*, edited by R. L. Witcofski, N. Karstaedt, and C. L. Partain (Igaku-Shoin, New York, 1981), pp. 71-100.
- ⁴⁵P. L. Davis, P. Sheldon, L. Kaufman, L. E. Crooks, A. R. Margulis, J. Miller, J. Watts, M. Arakawa, and J. Hoenninger, Cancer 51, 433 (1983).
- ⁴⁶J. D. deCertaines, J. P. Moulinoux, L. Benoist, A. Bernard, and P. Rivet, Life Sci. 31, 505 (1982).
- ⁴⁷J. G. Diegel and M. M. Pintar, Biophys. J. 15, 855 (1975).
- ⁴⁸G. Diegel and M. M. Pintar, J. Natl. Cancer Inst. 55, 725 (1975).
- ⁴⁹F. H. Doyle, J. M. Pennock, L. M. Banks, M. J. McDonnell, G. M. Bydder, R. E. Steiner, I. R. Young, G. J. Clarke, T. Pasmore, and G. Gilderdale, Am. J. Roentgenol. 138, 193 (1982).
- ⁵⁰J. S. Economou, L. C. Parks, L. A. Saryan, D. P. Hollis, J. L. Czeisler, and J. C. Eggleston, Surg. Forum 24, 127 (1973).
- ⁵¹W. A. Edelstein, P. A. Bottomley, H. R. Hart, and L. S. Smith, J. Comput. Assist. Tomogr. 7, 391 (1983).
- ⁵²J. C. Eggleston, L. A. Saryan, and D. P. Hollis, Cancer Res. 35, 1326 (1975).
- ⁵³S. J. El Yousef, J. P. Lipuma, P. J. Bryan, J. R. Haaga, and R. J. Alfidi, Appl. Radiol. 12, 65 (1983).
- ⁵⁴J. M. Escanye, D. Canet, and J. Robert, Biochim. Biophys. Acta 721, 305 (1982).
- ⁵⁵J. M. Escanye, D. Canet, J. Robert, and J. Brondeau, Cancer Detection and Prevention 4, 261 (1981).
- ⁵⁶J. L. Evelhoch and J. J. H. Ackerman, J. Magn. Reson. 53, 52 (1983).
- ⁵⁷E. D. Finch and L. D. Homer, Biophys. J. 14, 907 (1974).
- 58R. A. Floyd, T. Yoshida, and J. S. Leigh, Jr., Proc. Natl. Acad. Sci. 72, 56 (1975)
- ⁵⁹H. E. Frey, R. R. Knispel, J. Kruuv, A. R. Sharp, R. T. Thompson, and M. M. Pintar, J. Natl. Cancer Inst. 49, 903 (1972).
- ⁶⁰G. D. Fullerton, J. L. Potter, and N. C. Dornbluth, Magn. Reson. Imag. 1, 209 (1982).
- ⁶¹B. M. Fung, Biochim. Biophys. Acta 497, 317 (1977).
- 62B. M. Fung, Biophys. J. 18, 235 (1977).
- ⁶³B. M. Fung, D. L. Durham, and D. A. Wassil, Biochim. Biophys. Acta 399, 191 (1975).
- ⁶⁴B. M. Fung, and T. McGaughy, Biochim. Biophys. Acta 343, 663 (1974).
 ⁶⁵M. Furuse, K. Saso, Y. Motegi, S. Inao, and A. Izawa, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 132–133.
- ⁶⁶K. J. Go, R. L. Kamman, F. A. J. Muskiet, H. J. C. Berendsen, and P. Van Dijk, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 140-141.
- ⁶⁷M. Goldsmith, J. A. Koutcher, and R. Damadian, Br. J. Cancer 38, 547 (1978).
- 68M. Goldsmith, J. Koutcher, and R. Damadian, Cancer 41, 183 (1978).
- ⁶⁹M. Goldsmith, J. A. Koutcher, and R. Damadian, Br. J. Cancer 36, 235 (1977).
- ⁷⁰J. C. Gore, F. H. Doyle, and J. M. Pennock, in *Nuclear Magnetic Resonance Imaging*, edited by C. L. Partain, A. E. James, F. D. Rollo, and R. R. Price (Saunders, Philadelphia, 1983), pp. 94-106.
- ⁷¹J. C. Gore, F. H. Doyle, and J. M. Pennock, Proc. Soc. Photo-Opt. Instrum. Eng. 273, 8 (1981).
- ⁷²W. Von Grodd and W. G. H. Schmitt, Fortschr. Roentgenstr. 139, 223 (1983).
- ⁷³H. R. Hart, P. A. Bottomley, W. A. Edelstein, S. G. Karr, W. M. Leue, O. M. Mueller, R. W. Redington, J. F. Schenck, L. S. Smith, and D. Vatis, Am. J. Roentgenol. 141, 1195 (1983).
- ⁷⁴C. F. Hazlewood, D. C. Chang, D. Medina, G. Cleveland, and B. L.

- ¹⁵C. F. Hazlewood, D. C. Chang, B. L. Nichols, and D. E. Wiessner, Biophys. J. 14, 583 (1974).
- ⁷⁶C. F. Hazlewood, G. Cleveland, and D. Medina, J. Natl. Cancer Inst. 52, 1849 (1974).
- ¹⁷C. F. Hazlewood, B. L. Nichols, D. C. Chang, and B. Brown, Johns Hopkins Med. J. 128, 117 (1971).
- ¹⁸G. Held, F. Noack, V. Pollack, and B. Melton, Z. Naturforsch. 28 C, 59 [1973].
- ⁷⁹M. Heller, K. L. Moon, C. A. Helms, H. Schild, N. I. Chafetz, J. Rodrigo, H. E. Jergesen, and H. K. Genant, in *Proceedings of the 2nd Annual Meeting of the Society Magnetic Resonance in Medicine* (Society Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 152–153.
- 80R. Herfkens, P. L. Davis, L. E. Crooks, L. Kaufman, D. Price, T. Miller, A. R. Margulis, J. Watts, J. Hoenninger, M. Arakawa, and R. McRee, Radiology 141, 211 (1981).
- 81R. J. Herfkens, R. Sievers, L. Kaufman, P. E. Sheldon, D. A. Ortendahl, M. J. Lipton, L. E. Crooks, and C. B. Higgins, Radiology 147, 749 (1983).
- 82C. B. Higgins, R. Herfkens, M. J. Lipton, R. Sievers, P. Sheldon, L. Kaufman, and L. E. Crooks, Am. J. Cardiol. 52, 184 (1983).
- B. Higgins, D. Stark, P. Lanzer, E. H. Botvinick, M. J. Lipton, N. Schiller, R. J. Herfkens, L. Crooks, and L. Kaufman, in Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), p. 154.
- ⁸⁴D. P. Hollis, J. S. Economou, L. C. Parks, J. C. Eggleston, L. A. Saryan, and J. L. Czeisler, Cancer Res. 33, 2156 (1973).
- 85D. P. Hollis and R. L. Nunnally (private communication, 1976).
- ⁸⁶D. P. Hollis, L. A. Saryan, J. S. Economon, J. C. Eggleston, J. L. Czeisler, and H. P. Morris, J. Natl. Cancer Inst. 53, 807 (1974).
- ⁶⁷D. P. Hollis, L. A. Saryan, J. C. Eggleston, and H. P. Morris, J. Natl. Cancer Inst. **54**, 1469 (1975).
- 88 H. Hricak, R. D. Williams, K. L. Moon, A. A. Moss, C. Alpers, L. E. Crooks, and L. Kaufman, Radiology 147, 765 (1983).
- 89A. Huggert and E. Odelblad, Acta Radiol. 51, 385 (1958).
- ⁹⁰J. M. S. Hutchison and F. W. Smith, in *Nuclear Magnetic Resonance Imaging*, edited by C. L. Partain, A. E. James, F. D. Rollo, and R. R. Price (Saunders, Philadelphia, 1983), pp. 231-249.
- ⁹¹N. Iijima, S. Saitoo, Y. Yoshida, N. Fujii, T. Koike, K. Osanai, and K. Hirose, Physiol. Chem. Phys. 5, 431 (1973).
- ⁹²W. R. Inch, J. A. McCredie, R. R. Knispel, R. T. Thompson, and M. M. Pintar, J. Natl. Cancer Inst. 52, 353 (1974).
- M. Jezernick, M. Sentjurc, and M. Schara, Acta Neurochir. 67, 1 (1983).
 S. R. Kasturi, S. S. Ranade, and S. S. Shah, Proc. Indian Acad. Sci. Sect. B. 84, 60 (1976).
- ⁹⁵I. C. Kiricuta, Jr., D. Demco, and V. Simplaceanu, Arch. Geschwulstforsh. 42, 226 (1973).
- 96I. C. Kiricuta, Jr. and V. Simplaceanu, Cancer Res. 35, 1164 (1975).
- ⁹⁷I. C. Kiricuta, V. Simplaceanu, and D. Demco, in *Proceedings of the 18th Ampere Congress, Nottingham*, edited by P. S. Allen, E. R. Andrew, and C. A. Bates (North-Holland, Amsterdam, 1975), Vol. I, pp. 287-288.
- ⁹⁸R. R. Knispel, R. T. Thompson, and M. M. Pintar, J. Magn. Reson. 14, 44 (1974).
- ⁹⁹S. H. Koenig, R. D. Brown III, D. Adams, D. Emerson, and C. G. Harrison, IBM Research Report RC 10116 (No. 44807), 1983.
- ¹⁰⁰A. Koivula, K. Suominen, T. Timonen, and K. Kiviniitty, Phys. Med. Biol. 27, 937 (1982).
- ¹⁰¹J. A. Koutcher, M. Goldsmith, and R. Damadian, Cancer 41, 174 (1978).
- ¹⁰²C. J. Lewa and Z. Majewska, Bull. Cancer 67, 525 (1980).
- ¹⁰³C. J. Lewa and Z. Zbytniewski, Bull. Cancer 63, 69 (1976).
- ¹⁰⁴C. R. Ling and M. A. Foster, Phys. Med. Biol. 27, 853 (1982).
- ¹⁰⁵C. R. Ling, M. A. Foster, and J. M. S. Hutchison, Phys. Med. Biol. 25, 748 (1980).
- 106C. R. Ling and M. A. Foster, Br. J. Cancer 42, 148 (1980).
- C. R. Ling, M. A. Foster, and J. R. Mallard, Br. J. Cancer 40, 898 (1979).
 C. R. Ling and M. Tucker, J. Natl. Cancer Inst. 64, 1199 (1980).
- ¹⁰⁹J. R. Mallard, J. M. S. Hutchison, W. Edelstein, C. R. Ling, and M. A. Foster, J. Biomed. Eng. 1, 153 (1979).
- ¹¹⁰I. Mano, R. M. Levy, L. E. Crooks, and Y. Hosobuchi, Invest. Radiol. 17, 345 (1983).
- ¹¹¹P. Mansfield and P. G. Morris, NMR Imaging in Biomedicine (Academic, New York, 1982), pp. 10-32.
- ¹¹²L. A. McLachlan and W. Hamilton, Biochim. Biophys. Acta 583, 119 (1979).
- ¹¹³D. Medina, C. F. Hazlewood, G. G. Cleveland, D. C. Chang, H. J. Spjut, and R. Moyers, J. Natl. Cancer Inst. 54, 813 (1975).

- ¹¹⁴L. K. Misra, P. A. Narayana, P. T. Beall, S. R. Amtey, and C. F. Hazlewood, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 264-265.
- ¹¹⁵K. L. Moon, Jr., P. Davis, L. Kaufman, L. E. Crooks, P. E. Sheldon, T. Miller, A. C. Brito, and J. C. Watts, Radiology 148, 177 (1983).
- ¹¹⁶K. L. Moon, Jr., H. K. Genant, C. A. Helms, N. I. Chafetz, L. E. Crooks, and L. Kaufman, Radiology 147, 161 (1983).
- ¹¹⁷K. L. Moon, M. Mosley, G. Young, and H. Hricak, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 245–246.
- ¹¹⁸S. Naruse, Y. Horikawa, C. Tanaka, K. Hirakawa, H. Nishikawa, and K. Yoshizaki, J. Neurosurg. 56, 747 (1982).
- 119F. Q. H. Ngo, B. J. Glassner, J. W. Bay, A. W. Dudley, and T. F. Meaney, in Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 264-265.
- 120 E. Odelblad, Ann. N. Y. Acad. Sci. 82, 189 (1959).
- ¹²¹E. Odelblad, B. N. Bahr, and G. Lindstrom, Arch. Biochem. Biophys. 63, 221 (1956).
- 122E. Odelblad and U. Bryhn, Acta Radiol. 47, 315 (1957).
- 123E. Odelblad and G. Lindstrom, Acta Radiol. 43, 469 (1955).
- ¹²⁴E. Odelblad and B. Westin, Acta Radiol. 49, 389 (1958).
- ¹²⁵D. L. Parker, V. Smith, P. Sheldon, L. E. Crooks, and L. Fussell, Med. Phys. 10, 321 (1983).
- ¹²⁶R. G. Parrish, R. J. Kurland, W. W. Janese, and L. Bakay, Science 183, 438 (1974).
- ¹²⁷R. T. Pearson, I. D. Duff, W. Derbyshire, and J. M. V. Blanshard, Biochim. Biophys. Acta 362, 188 (1974).
- H. Peemoeller, M. M. Pintar, D. W. Kydon, Biophys. J. 29, 427 (1980).
 J. M. Pennock, Radiography 48, 221 (1982).
- ¹³⁰J. F. Polak, R. D. Neirinckx, J. D. Garnic, and D. F. Adams, in *Proceedings of the 2nd Annual Meeting of the Society Magnetic Resonance in Medicine* (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 282-283.
- ¹³¹S. S. Ranade, R. S. Chaughule, S. R. Kasturi, J. S. Nadkarni, G. V. Talwalkar, U. V. Wagh, K. S. Korgaonkar, and R. Vijayaraghavan, Ind. J. Biochem. Biophys. 12, 229 (1975).
- ¹³²S. S. Ranade, S. Shah, S. H. Advani, and S. R. Kasturi, Physiol. Chem. Phys. 9, 297 (1977).
- ¹³³S. S. Ranade, S. Shah, K. S. Korgaonkar, S. R. Kasturi, R. S. Chaughule, and R. Vijayaraghavan, Physiol. Chem. Phys. 8, 131 (1976).
- ¹³⁴S. S. Ranade, S. Shah, R. S. Phadke, and S. R. Kasturi, Physiol. Chem. Phys. 11, 471 (1979).
- 135S. S. Ranade, S. Shah, and G. V. Talwalkar, Tumori 65, 157 (1979).
- 136S. Ratkovic and C. Rusov, Period. Biol. 76, 19 (1974).
- ¹³⁷A. V. Ratner, E. A. Carter, J. R. Wands, and G. M. Pohost, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society Magnetic Resonance in Medicine, Berkeley, CA, 1983), p. 290.
- ¹³⁸R. J. Ross, J. S. Thompson, K. Kim, and R. A. Bailey, Radiology 143, 195 (1982).
- ¹³⁹N. Rupp. M. Reiser, and E. Steller, Eur. J. Radiol. 3, 68 (1983).
- 140S. N. Rustgi, H. Peemoeller, R. T. Thompson, D. W. Kydon, and M. M. Pintar, Biophys. J. 22, 439 (1978).
- ¹⁴¹H. S. Sandhu and G. B. Friedmann, Med. Phys. 5, 514 (1978).
- ¹⁴²L. A. Saryan, D. P. Hollis, J. S. Economou, and J. C. Eggelston, J. Natl. Cancer Inst. 52, 599 (1974).
- ¹⁴³M. Schara, M. Sentjurc, M. Auersperg, and R. Golouh, Br. J. Cancer 29, 483 (1974).
- ¹⁴⁴S. S. Shah, S. S. Ranade, R. S. Phadke, and S. R. Kasturi, Magn. Reson. Imag. 1, 91 (1982); 1, 155 (1982).
- ¹⁴⁵W. C. Small, M. B. McSweeney, J. H. Goldstein, C. W. Sewell, and R. W. Powell, Biochem. Biophys. Res. Comm. 112, 991 (1983).
- ¹⁴⁶W. C. Small, M. B. McSweeney, M. E. Bernardino, and J. H. Goldstein, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 342–343.
- ¹⁴⁷F. W. Smith, in *Proceedings of the International Symposium on NMR Imaging*, edited by A. L. Witcofski, N. Karstaedt, and C. L. Partain (Bowman Gray School of Medicine, Winston-Salem, NC, 1982), pp. 125-132.
- 148F. W. Smith, Pediatr. Radiol. 13, 141 (1983).
- ¹⁴⁹F. W. Smith, J. R. Mallard, A. Reid, and J. M. S. Hutchison, Lancet 1,

448

963 (1981).

- ¹⁵⁰F. W. Smith, A. Reid, J. M. S. Hutchison, and J. R. Mallard, Radiology 142, 667 (1982).
- ¹⁵¹F. W. Smith, A. Reid, J. R. Mallard, J. M. S. Hutchison, D. A. Power, and G. R. D. Catto, Diagn. Imag. 51, 209 (1982).
- ¹⁵²D. D. Stark, N. M. Bass, A. A. Moss, B. R. Bacon, J. H. McKerrow, C. E. Cann, A. Brito, and H. I. Goldberg, Radiology 148, 743 (1983).

¹⁵³E. O. Stejskal, and J. E. Tanner, J. Chem. Phys. 42, 288 (1965).

- ¹⁵⁴K. Straughan, D. H. Spencer, G. M. Bydder, in *Nuclear Magnetic Resonance Imaging*, edited by C. L. Partain, A. E. James, F. D. Rollo, and R. R. Price (Saunders, Philadelphia, 1983), pp. 195–206.
- ¹⁵⁵J. Tennvall, A. Biorklund, T. Moller, M. Olsson, B. Persson, and M. Akerman, in *Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine* (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 356-357.
- ¹⁵⁶D. I. Thickmann, H. L. Kundel, G. Wolf, Radiology 148, 183 (1983).
 ¹⁵⁷F. W. Wehrli, J. R. MacFall, and G. H. Glover, Proc. SPIE 419, 256 (1983).
- 158G. Wesbey, H. I. Goldberg, J. Mayo, K. Moon, D. Stark, and A. Moss, in Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance in Medicine (Society of Magnetic Resonance in Medicine, Berkeley, CA, 1983), pp. 373–374.

¹⁵⁹D. E. Woessner, J. Chem. Phys. 36, 1 (1962).

- ¹⁶⁰G. L. Wolf and L. Baum, Am. J. Roentgenol. 141, 193 (1983).
- ¹⁶¹G. L. Wolf and B. Conard, Physiol. Chem. Phys. 15, 19 (1983).
- ¹⁶²S. H. Koenig, R. D. Brown, D. Adams, D. Emerson, and C. G. Harrison, Invest. Radiol. 19, 76 (1984).
- ¹⁶³R. Kimmich, W. Nusser, and F. Winter, Phys. Med. Biol. 29, 593 (1984).
- ¹⁶⁴C. J. G. Bakker and J. Vriend, Phys. Med. Biol. 29, 509 (1984).
- 165H. T. Edzes and E. T. Samulski, J. Magn. Reson. 31, 207 (1978).