Homework 4 Connor Baker, February 2017

1. Prove that if R is a partial order on a set A, then R^{-1} (the inverse relation) is also a partial order on A.

Proof. For R to be a partial order on a set A, it must be reflexive, transitive, and anti-symmetric. R^{-1} must also have these properties to be a partial order on A. We first prove reflexivity:

Assume that $\forall x \in A, (x, x) \in R$. Then, by the reflexivity of R, it must be that case that $(x, x) \in R^{-1}$. As such, R^{-1} is reflexive. We now prove that R^{-1} is anti-symmetric.

Assume that $(x,y) \in R$. Then, since R^{-1} is the inverse of R, $(y,x) \in R^{-1}$. If it was the case that $(y,x) \in R$, then x=y (by the definition of anti-symmetry). As such, if $(x,y) \in R^{-1}$, then y=x, and R^{-1} is anti-symmetric. Assume that $(x,y) \in R$, and $(y,z) \in R$. Then, since R was transitive, $(x,z) \in R$. Because R^{-1} is the inverse of R, if the assumption is true, then $(y,x) \in R^{-1}$, $(z,y) \in R^{-1}$, and $(z,x) \in R^{-1}$. As such, R^{-1} is transitive. Therefore, because R^{-1} is reflexive, anti-symmetric, and transitive, R^{-1} is a partial order on A.

2. Let R be a relation on the set A. Prove that if S is a symmetric relation on A, and $R \subseteq S$, then $R^{-1} \subseteq S$. Proof. Since S is a symmetric relation on A, if $(x,y) \in R$ (which is a subset of S) then $(x,y) \in S$, and by symmetry, $(y,x) \in S$. Then, $(y,x) \in R^{-1}$ since it is the inverse of R. We know this to be in S, so $R \subseteq S$. \square

3.	Let R be an antisymmetric relation on the nonempty set A. Prove that if R is symmetric and $dom(R) = A$,
	then $R = I_A$ (the identity relation on A).

Proof.

4. Prove that the subset of every well-ordered set is well ordered.	
Proof.	

5. Prove that R is transitive on a set A if and only if $R \circ R \subseteq R$.

Proof.