МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И.УЛЬЯНОВА (ЛЕНИНА) Кафедра ИБ

ЛАБОРАТОРНАЯ РАБОТА №4 по дисциплине «Криптография и защита информации» Тема: Изучение шифра DES

> Санкт-Петербург 2019

Цель работы

Цель работы: исследовать шифры Hill, ADFGVX, Playfair и получить практические навыки работы с ними, в том числе и в программном продукте CrypTool 1 и 2.

1. Исследование преобразований DES

1.1. Описание

DES (англ. Data Encryption Standart) — стандарт шифрования данных — блочный шифр с симетричными ключами. Разработан NIST (National Institute of Standarts and Technology).

1.1.1. Сеть Фейстеля

Шифр DES основан на сети Фейстеля (см. рисунок 1). Принцип работы сети следующий:

Рисунок 1. Сеть Фейстеля

- 1. Выбранный блок делится на два равных субблока L_0 и R_0
- 2. R_0 преобразуется функцией шифра $f(R_0,K_0)$, после чего складывается по модулю 2 с L_0
- 3. Результат сложения становится R_1 , а R_0 становится L_1 для следующего раунда
- 4. Операция повторяется N-1 раз. При переходе между раундами меняются раундовые ключи K_0, K_1, \ldots

T.e.:

$$L_i = R_{i-1};$$

$$R_i = L_{i-1} \oplus f(R_{i-1}),$$

где i — номер текущего рауда, K_i — ключ раунда.

В шифре DES размер блока — 64 бита, число раундов — 16. Перед входом в сеть производится начальная перестановка.

1.1.2. Структура раудовой функции

Структура функции представлена на рисунке 2.

Рисунок 2. Структура f

Этапы функции:

- 1. Расширяющая перестановка, преобразует 32 бита в 48 бит (рисунок 3)
- 2. Полученные 48 бит складываются с K_i операцией хог (рисунок 4)

Рисунок 3. Расширящая перестановка

- 3. Результат сложения разбивается на 8 блоков по 6 битов. Каждый блок обрабатывается соответствующей таблицей замен (рис. 5).
 - Первый и последний биты составляют стороку
 - Средние 4 бита номер столбца

Таблицы замен для каждого блока свои.

4. Над полученными 32 битами, после выполнения замен, выполняется перестановка (P)

1.1.3. Генерация раундовых ключей

Генерация раундовых ключей представлена на рисунке 6. Из 64-битного

Рисунок 5. Таблица замен

ключа используется только 56 бит — каждый 8-й бит исключается. После выполняется перестановка (E).

После перестановки блок в 56 бит делится на два 28-битных блока (C, D). Затем выполняются 16 раудов преобразований:

- 1. Текущие C, D циклически сдвигаются влева на определенное количество бит
- 2. C, D объединяются в 56-битное значение, к которому применяется сжимающая перестановка CP. Получается 48-битный ключ.

Рисунок 6. Генерация раундовых ключей

1.2. Формулировка задания

- 1. Изучить преобразования шифра DES с помощью демонстрационного приложения из Cryptool 1.
 - Indiv.Procedures-> Visualization...-> DES...
- 2. Выполнить вручную преобразования одного раунда и вычисление раундовых ключей при следующих исходных данных:
 - Открытый текст (не более 64 бит) фамилия_имя (транслитерация латиницей)
 - Ключ (56 бит) номер зачетной книжки II инициал (всего 7 символов)
- 3. Выполнить вручную обратное преобразование зашифрованного сообщения

1.3. Ход работы

- 1. С помощью демонстрационного приложения изучена работа шифра. В 1.1 вставлены скриншоты.
- 2. Проведено ручное преобразование одного раунда.

Открытый текст — KORYTOVP, ключ — 0630417. Перестановки выбраны отсутствующие.

- 3. Произведено преобразование в бинарный формат:
 - KORYTOVP 01001011 01001111 01010010 01011001 01010100 01001111 01010110 01010000

В матричном виде:

4. Сначала нужно вычислить раундовый ключ. Из таблиц DES взята перестановка PC1:

$$PC1 = \begin{bmatrix} 57 & 49 & 41 & 33 & 25 & 17 & 9 \\ 1 & 58 & 50 & 42 & 34 & 26 & 18 \\ 10 & 2 & 59 & 51 & 43 & 35 & 27 \\ 19 & 11 & 3 & 60 & 52 & 44 & 36 \\ 63 & 55 & 47 & 39 & 31 & 23 & 15 \\ 7 & 62 & 54 & 46 & 38 & 30 & 22 \\ 14 & 6 & 61 & 53 & 45 & 37 & 29 \\ 21 & 13 & 5 & 28 & 20 & 12 & 4 \end{bmatrix}$$
 (1.2)

К ключу добавлен ещё один пустой столбец, произведена перестановка:

$$K_{perm} = PC1(K) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$
(1.3)

5. Ключ разделен на две части, произведен циклический сдвиг:

$$K_{L} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$K_{R} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow K_{roll1} = \begin{bmatrix} >> K_{L} \\ >> K_{R} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$(1.4)$$

6. К сдвинутому ключу применена перестановка PC2. Получен первый раундовый ключ

$$PC2 = \begin{bmatrix} 14 & 17 & 11 & 24 & 1 & 5 \\ 3 & 28 & 15 & 6 & 21 & 10 \\ 23 & 19 & 12 & 4 & 26 & 8 \\ 16 & 7 & 27 & 20 & 13 & 2 \\ 41 & 52 & 31 & 37 & 47 & 55 \\ 30 & 40 & 51 & 45 & 33 & 48 \\ 44 & 49 & 39 & 56 & 34 & 53 \\ 46 & 42 & 50 & 36 & 29 & 32 \end{bmatrix}; K_1 = PC2(K_{roll1}) = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0$$

7. Ко входному тексту (1.1) применена перестановка IP:

$$I_{perm} = IP(I) = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$(1.7)$$

8. Текст разделен на два блока:

$$L_{0} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$R_{0} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$(1.8)$$

9. К R_0 применена функция f. Сначала применена расширяющая переста-

новка:

$$EP = \begin{bmatrix} 32 & 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 9 & 10 & 11 & 12 & 13 \\ 12 & 13 & 14 & 15 & 16 & 17 \\ 16 & 17 & 18 & 19 & 20 & 21 \\ 20 & 21 & 22 & 23 & 24 & 25 \\ 24 & 25 & 26 & 27 & 28 & 29 \\ 28 & 29 & 30 & 31 & 32 & 1 \end{bmatrix}; R_{0E} = EP(R_0) = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Затем — сложение по модулю с раундовым ключом K_1 (1.5):

$$R_{0X} = R_{0E} \oplus K_{1} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
(1.10)

После применены таблицы подстановки:

$$S_0 = \begin{bmatrix} 14 & 4 & 13 & 1 & 2 & 15 & 11 & 8 & 3 & 10 & 6 & 12 & 5 & 9 & 0 & 7 \\ 0 & 15 & 7 & 4 & 14 & 2 & 13 & 1 & 10 & 6 & 12 & 11 & 9 & 5 & 3 & 8 \\ 4 & 1 & 14 & 8 & 13 & 6 & 2 & 11 & 15 & 12 & 9 & 7 & 3 & 10 & 5 & 0 \\ 15 & 12 & 8 & 2 & 4 & 9 & 1 & 7 & 5 & 11 & 3 & 14 & 10 & 0 & 6 & 13 \end{bmatrix}$$

$$S_{1} = \begin{bmatrix} 15 & 1 & 8 & 14 & 6 & 11 & 3 & 4 & 9 & 7 & 2 & 13 & 12 & 0 & 5 & 10 \\ 3 & 13 & 4 & 7 & 15 & 2 & 8 & 14 & 12 & 0 & 1 & 10 & 6 & 9 & 11 & 5 \\ 0 & 14 & 7 & 11 & 10 & 4 & 13 & 1 & 5 & 8 & 12 & 6 & 9 & 3 & 2 & 15 \\ 13 & 8 & 10 & 1 & 3 & 15 & 4 & 2 & 11 & 6 & 7 & 12 & 0 & 5 & 14 & 9 \end{bmatrix}$$

$$(1.11)$$

$$S_2 = \begin{bmatrix} 10 & 0 & 9 & 14 & 6 & 3 & 15 & 5 & 1 & 13 & 12 & 7 & 11 & 4 & 2 & 8 \\ 13 & 7 & 0 & 9 & 3 & 4 & 6 & 10 & 2 & 8 & 5 & 14 & 12 & 11 & 15 & 1 \\ 13 & 6 & 4 & 9 & 8 & 15 & 3 & 0 & 11 & 1 & 2 & 12 & 5 & 10 & 14 & 7 \\ 1 & 10 & 13 & 0 & 6 & 9 & 8 & 7 & 4 & 15 & 14 & 3 & 11 & 5 & 2 & 12 \end{bmatrix}$$

$$S_3 = \begin{bmatrix} 7 & 13 & 14 & 3 & 0 & 6 & 9 & 10 & 1 & 2 & 8 & 5 & 11 & 12 & 4 & 15 \\ 13 & 8 & 11 & 5 & 6 & 15 & 0 & 3 & 4 & 7 & 2 & 12 & 1 & 10 & 14 & 9 \\ 10 & 6 & 9 & 0 & 12 & 11 & 7 & 13 & 15 & 1 & 3 & 14 & 5 & 2 & 8 & 4 \\ 3 & 15 & 0 & 6 & 10 & 1 & 13 & 8 & 9 & 4 & 5 & 11 & 12 & 7 & 2 & 14 \end{bmatrix}$$

$$S_4 = \begin{bmatrix} 2 & 12 & 4 & 1 & 7 & 10 & 11 & 6 & 8 & 5 & 3 & 15 & 13 & 0 & 14 & 9 \\ 14 & 11 & 2 & 12 & 4 & 7 & 13 & 1 & 5 & 0 & 15 & 10 & 3 & 9 & 8 & 6 \\ 4 & 2 & 1 & 11 & 10 & 13 & 7 & 8 & 15 & 9 & 12 & 5 & 6 & 3 & 0 & 14 \\ 11 & 8 & 12 & 7 & 1 & 14 & 2 & 13 & 6 & 15 & 0 & 9 & 10 & 4 & 5 & 3 \end{bmatrix}$$

$$S_5 = \begin{bmatrix} 12 & 1 & 10 & 15 & 9 & 2 & 6 & 8 & 0 & 13 & 3 & 4 & 14 & 7 & 5 & 11 \\ 10 & 15 & 4 & 2 & 7 & 12 & 9 & 5 & 6 & 1 & 13 & 14 & 0 & 11 & 3 & 8 \\ 9 & 14 & 15 & 5 & 2 & 8 & 12 & 3 & 7 & 0 & 4 & 10 & 1 & 13 & 11 & 6 \\ 4 & 3 & 2 & 12 & 9 & 5 & 15 & 10 & 11 & 14 & 1 & 7 & 6 & 0 & 8 & 13 \end{bmatrix}$$

$$S_6 = \begin{bmatrix} 4 & 11 & 2 & 14 & 15 & 0 & 8 & 13 & 3 & 12 & 9 & 7 & 5 & 10 & 6 & 1 \\ 13 & 0 & 11 & 7 & 4 & 9 & 1 & 10 & 14 & 3 & 5 & 12 & 2 & 15 & 8 & 6 \\ 1 & 4 & 11 & 13 & 12 & 3 & 7 & 14 & 10 & 15 & 6 & 8 & 0 & 5 & 9 & 2 \\ 6 & 11 & 13 & 8 & 1 & 4 & 10 & 7 & 9 & 5 & 0 & 15 & 14 & 2 & 3 & 12 \end{bmatrix}$$

$$S_{7} = \begin{bmatrix} 13 & 2 & 8 & 4 & 6 & 15 & 11 & 1 & 10 & 9 & 3 & 14 & 5 & 0 & 12 & 7 \\ 1 & 15 & 13 & 8 & 10 & 3 & 7 & 4 & 12 & 5 & 6 & 11 & 0 & 14 & 9 & 2 \\ 7 & 11 & 4 & 1 & 9 & 12 & 14 & 2 & 0 & 6 & 10 & 13 & 15 & 3 & 5 & 8 \\ 2 & 1 & 14 & 7 & 4 & 10 & 8 & 13 & 15 & 12 & 9 & 0 & 3 & 5 & 6 & 11 \end{bmatrix}$$

$$S = \langle S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7} \rangle$$

$$(1.13)$$

$$R_{0S} = S(R_{0X}) = \begin{cases} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{cases}$$

$$(1.14)$$

После чего применена перестановка P:

$$P = \begin{bmatrix} 16 & 7 & 20 & 21 \\ 29 & 12 & 28 & 17 \\ 1 & 15 & 23 & 26 \\ 5 & 18 & 31 & 10 \\ 2 & 8 & 24 & 14 \\ 32 & 27 & 3 & 9 \\ 19 & 13 & 30 & 6 \\ 22 & 11 & 4 & 25 \end{bmatrix}; R_1 = P(R_{0X}) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
(1.15)

10. $L_1 = R_0$. Для IP (1.6) вычислена обратная перестановка IP^{-1} :

$$IP^{-1} = \begin{bmatrix} 40 & 8 & 48 & 16 & 56 & 24 & 64 & 32 \\ 39 & 7 & 47 & 15 & 55 & 23 & 63 & 31 \\ 38 & 6 & 46 & 14 & 54 & 22 & 62 & 30 \\ 37 & 5 & 45 & 13 & 53 & 21 & 61 & 29 \\ 36 & 4 & 44 & 12 & 52 & 20 & 60 & 28 \\ 35 & 3 & 43 & 11 & 51 & 19 & 59 & 27 \\ 34 & 2 & 42 & 10 & 50 & 18 & 58 & 26 \\ 33 & 1 & 41 & 9 & 49 & 17 & 57 & 25 \end{bmatrix}$$

$$(1.16)$$

11. Получен шифротекст.

$$T = IP^{-1} \left(\begin{bmatrix} L_1 \\ R_1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
 (1.17)

12. Проведена расшифровка. Для этого сначала проведена перестановка IP (1.6):

$$T_{IP} = IP(T) = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
(1.18)

13. Текст разделен на две части. $R_0 = L_1$ — известна. К R0 применена функция f , результаты применения совпадают с описанными в уравнениях 1.9— 1.15

$$f(R_0, K_1) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
(1.19)

Теперь по R_1 и $f(R_0)$ вычислен L_0 :

$$L_0 = R_1 \oplus f(R_0) = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$
(1.20)

14. К получившемуся тексту применена IP^{-1} :

Результаты совпадают.

2. Исследование DES в режимах ECB и CBC

2.1. Описание

Режим ECB (рис. 7a) шифра DES работает независимо с каждым 64-битным блоком шифруемых данных. Режим CBC (рис. 7b) перед запуском шифрования каждого очередного блока складывает его с предыдущим операцией хог

Рисунок 7. Режимы DES

2.2. Формулировка задания

- Создать картинку со своими ФИО (формат bmp).
- Зашифровать картинку шифром DES в режиме ECB.
- Зашифровать картинку шифром DES в режиме CBC с тем же ключом.
- Сохранить скриншоты картинок для отчета.
- Сжать исходную и 2 зашифрованных картинки средствами CrypTool. Зафиксировать размеры полученных файлов в таблице.
- Выбрать случайный текст на английском языке (не менее 1000 знаков) и зашифровать его DES в режиме ECB.
- Для одного и того же шифротекста оцените время проведения атаки «грубой силы» в случаях, когда известно n-4, n-6, n-8,.., 2 байт секретного ключа. Зафиксировать результаты измерений в таблице.

2.3. Ход работы

• Создана картинка с ФИО автора в формате .bmp

Рисунок 8. ФИО автора

Рисунок 9. fio.hex

• В формате ВМР первые 54 бита являются заголовком; их нужно убрать, чтобы потом можно было открыть расшифрованную картинку. Картинка зашифрована в режиме ЕСВ ключом 88 00 55 53 53 50 63 04. 54 бита из заголовка восстановлены. Результаты на рис. 10. Как можно

Рисунок 10. Шифрование DES (ECB)

видеть, из-за того, что блоки независимы, однаковые блоки шифруются одинаково. Контуры фигуры всё ещё видно.

Если сделать изображение 16-битное, то становится видно ещё лучше (рис. 11)

Рисунок 11. Шифрование DES (ECB) для 16-битного изображения

- Проведено шифрование в режиме CBC. Изображение более неразличимо (рис. 12)
- Произведено сжатие (Indiv. Procedures > Tools > Compression > Zip) получившихся файлов.

Файл	Процент сжатия		
Исходный	87%		
DES (ECB)	66%		
DES (CBC)	0%		

Как можно заметить, файл, сжатый DES в режиме CBC, не сжался вовсе

- Для шифрования взят абзац из книги Ричарда Докинза "Delusion God". Произведено зашифрование DES (ECB).
- Исследовано время атак грубой силой на шифр, если известно некоторое количество байт ключа:

Известно байт	6	5	4	3	2
Время дешифровки	0 c	21 c	43 мин	3.8 дней	1.8 лет

Рисунок 12. Шифрование DES (CBC)

Рисунок 13. Шифрование

3. Исследование 3-DES

3.1. Описание

Шифр 3-DES состоит в трехкратном применении обычного шифра DES. Существуют 4 основные версии этого шифра:

- 1. DES-EEE3 шифрование происходит 3 раза независимыми ключасми
- 2. DES-EDE3 операция шифровка-расшифровка-шифровка с тремя разными ключами
- 3. DES-EEE2 то же, что и DES-EE3, но на первом и последнем шаге одинаковый ключ
- 4. DES-EDE2 то же, что и DES-EDE2, но на первом и последнем шаге одинаковый ключ

На текущий момент самыми популярными разновидностями шифра являются DES-EDE3 и DES-EDE2.

3.2. Формулировка задания

- Выбрать случайный текст на английском языке (не менее 1000 знаков).
- Создать бинарный файл с этим текстом, зашифровав и расшифровав его DES на 0-м ключе.
- Снять и сохранить частотную и автокорреляционную характеристику этого файла.
- Зашифровать бинарный файл шифром 3-DES в режиме ECB.
- Снять и сохранить частотную и автокорреляционную характеристику файла с шифровкой.
- Зашифровать исходный бинарный файл 3-DES в режиме CBC с тем же ключом.
- Снять и сохранить частотную и автокорреляционнуюх арактеристику файла с шифровкой.
- Определить экспериментальным путем по какой схеме работает реализация 3-DES в CrypTool. Сохранить подтверждающие скриншоты.

3.3. Ход работы

- 1. Выбран тот же текст, что и в предыдущем пункте
- 2. Создан бинарный файл с текстом
- 3. Снята частотная (рис. 15) характеристика и автокорелляционная (рис. 16) характеристика.

Рисунок 14. Текст в бинарном виде

Рисунок 15. Частотная характеристика исходного текста

Рисунок 16. Автокорелляционная характеристика исходного текста

- 4. Произведено зашифрование 3-DES (ECB)
- 5. Сняты те же характеристики для шифротекста (рис. 17, 18)

Рисунок 17. Частотная характеристика шифротекста 3-DES (ECB)

Рисунок 18. Автокорелляционная характеристика шифротекста 3-DES (ECB)

- 6. Произведено зашифрование 3-DES (CBC)
- 7. Снова сняты частотная и автокорелляционная характеристики (рис. 19, 20)

Рисунок 19. Частотная характеристика шифротекста 3-DES (CBC)

8. Используемая длина ключа — 112 бит (рис. 21), значит исключаются варианты DES-EEE3 и DES-EDE3. Чтобы выбрать между DES-EEE2 и DES-

Рисунок 20. Автокорелляционная характеристика шифротекста 3-DES (CBC)

Рисунок 21. Параметры шифра 3-DES

EDE2, произведено зашифрование текста нулевым ключом обычным DES и исследуемым 3-DES. Результаты совпали (рис. 22).

Рисунок 22. Шифрование 3-DES и DES

Совпадение результатов возможно, только если используется DES-EDE2 — в таком случае расшифровка на втором этапе компенсирует зашифровку на 1-м.

4. Исследование модификаций DESX, DESL, DESXL шифра DES

4.1. Описание

Алгоритм DESX используется на входе ключ длиной 184 бита, который делится на 3 56-битные части. Процесс шифрования происходит по следующей схеме:

$$DESX(M) = K_2 \oplus DES_K(M \oplus K_1)$$

Если $K_1 = K_2 = 0$, то это обычный DES.

DESL отказывается от входной и выходной перестановки блока. 8 S-блоков заменяются на один, но более криптостойкий.

DESXL используется оптимизации DESL и производит шифрование по DESX.

4.2. Формулировка задания

- Выбрать случайный текст на английском языке (не менее 1000 знаков).
- Создать бинарный файл с этим текстом, зашифровав и расшифровав его DES на 0-м ключе.
- С помощью CrypTool зашифровать текст с использованием шифров DESX, DESL, DESXL.
- Средствами CrypTool вычислить энтропию исходного текста и шифротекстов, полученных в итоге. Зафиксировать результаты измерений в таблице.
- Средствами CrypTool оцените время проведения атаки «грубой силы» при полном отсутствии информации о секретном ключе

4.3. Ход работы

- 1. Выбран тот же текст, что и в предыдущем пункте.
- 2. Описанным образом получен бинарный файл
- 3. Произведено зашифрование текста с помощью DESX, DESL, DESXL (рисунок 23)

Рисунок 23. Шифрование DESX, DESL, DESXL

4. Определена энтропия исходного текста и шифротекстов:

Текст	Энтропия
Исходный	4.46
DESX	7.85
DESL	7.85
DESXL	7.83

5. Произведена оценка времени атаки грубой силы на все шифротексты:

Шифр	Время атаки грубой силы (лет)
DESX	$4.8 \cdot 10^{42}$
DESL	$1.1 \cdot 10^4$
DESXL	$3.9 \cdot 10^{42}$

Выводы

Шифр	Длина ключа (бит)	Brute force (лет)	Энтропия
DES (EBC)	56	$2 \cdot 10^4$	7.85
DES (CBC)	56	$3.2 \cdot 10^4$	7.84
DES-EDE2 (EBC)	112	$2.6 \cdot 10^{21}$	7.84
DES-EDE2 (CBC)	112	$3 \cdot 10^{21}$	7.85
DESX	184	$4.8 \cdot 10^{42}$	7.85
DESL	64	$1.1 \cdot 10^4$	7.85
DESXL	184	$3.9 \cdot 10^{42}$	7.83

Исследованы разновидности блочного шифра DES. Во всех случая размер блока — 64 бит. Эффективный размер ключа меньше реального из-за битов четности.

Использование шифров в режиме EBC (все блоки независимы) для осмысленной информации (с низкой энтропией) значительно снижает криптостойкость, т.к. одинаковые блоки шифруются одинаково. Режим CBC лишен этого недостатка, но в этом случае невозможно распараллелить зашифрование.

Малая длина ключа — другая проблема оригинального DES. С использованием современного вычислительного оборудования, перебрать 2^{56} вполне возможно.

Использование модификации 3-DES значительно повышает криптостой-кость алгоритма; перебор 2^{112} вариантов — гораздо более трудоемкая задача.

Использование DESX — более простой с вычислительной точки зрения способ повысить криптостойкость алгоритма. С точки зрения атаки полного перебора, это даже более эффективно, чем рассмотренный DES-EDE2.

Модификация DESL практически не снижает криптойкость DES, а DESXL — DESX.

Знание части ключа шифрования значительно облегчает дешифровку. Таким образом, если используются слабые ключи (вроде 0630417 из данной л/р), и если это известно криптоаналитику, дешифрование значительно ускорится.