C12 - 5.1 - TOV Radians sinx, cosx, tanx TOV Graphs Notes

 $y = \sin x$

Table of Values

X	у
0	0
$\frac{\pi}{2}$	1
π	0
$\frac{3\pi}{2}$	-1
2π	0

Pt.	
(0,0)	
$(\frac{\pi}{2},1)$	
$(\pi,0)$	
$(\frac{3\pi}{2}, -1)$	
$(2\pi,0)$	

Center Line Up

 $y = \cos x$

Table of Values

X	у
0	1
$\frac{\pi}{2}$	0
π	-1
$\frac{3\pi}{2}$	0
2π	1

Pt.
(0,1)
$(\frac{\pi}{2}, 0)$
$(\pi, -1)$
$(\frac{3\pi}{2},0)$
$(2\pi,1)$

$y = \tan x$

Table of Values

X	у
0	0
$\frac{\pi}{4}$	1
$\frac{\pi}{2}$	und
$\frac{3\pi}{4}$	-1
π	0

C12 - 5.1 - TOV Radians cscx,secx,cotx TOV Graphs Notes

Table of Values

Tubic	i vuide
X	у
0	0
$\frac{\pi}{2}$	1
π	0
$\frac{3\pi}{2}$	-1
2π	0

Pt.
(0,0)
$(\frac{\pi}{2},1)$
$(\pi,0)$
$\left(\frac{3\pi}{2},-1\right)$
$(2\pi,0)$

$y = \sec x$

Table of Values

X	у
0	1
$\frac{\pi}{2}$	0
π	-1
$\frac{3\pi}{2}$	0
2π	1

Pt.
(0,1)
$(\frac{\pi}{2}, 0)$
(π,-1)
$(\frac{3\pi}{2},0)$
$(2\pi,1)$

$y = \cot x$

Table of Values

X	у
0	0
$\frac{\pi}{4}$	1
$\frac{\pi}{2}$	und
$\frac{3\pi}{4}$	-1
π	0

C12 - 5.2 - (a,b) Sine Transformations Notes

Amplitude Change

Period Change

$$p = \frac{2\pi}{b}$$
$$p = \frac{2\pi}{2}$$
$$p = \pi$$

C12 - 5.3 - (d,c) Sinusoidal Transformations Notes

Trig F Page 4

C12 - 5.3 - Graphing Sin Equations Notes

$$y = a \sin(b(x - c)) + d$$
Amplitude Period = $\frac{2\pi}{b}$ Phase Shift Center Line

$$y = \sin(x)$$

Draw horizontal center line "d" Draw max and min horizontal center line " $a \pm d$ " Draw phase shift vertical start line "c" Calculate period "p" Draw end "c + p" 12345

$$y = 2\sin(2\left(x - \frac{\pi}{2}\right)) - 1$$

$$y = \operatorname{asin}(b(x-c)) + d$$

$$a = 2$$
 $d = -1$

$$d = -1$$

$$b=2 c=\frac{\pi}{2} \left(Right\frac{\pi}{2}\right)$$

$$p = \frac{b}{2\pi}$$
$$p = \frac{2\pi}{2}$$

$$p = \pi$$

$$c+p=\frac{\pi}{2}+\pi=\frac{3\pi}{2}$$

Remember: Make x-increments lcm of c and p.

$$\frac{2 \cos \frac{2}{3} \left(\frac{\pi}{3} + \frac{3}{3} \right)}{1 + \frac{3}{3}} = \frac{2\pi}{3} = \frac{6\pi}{3}$$

$$\frac{3}{3} + \frac{3}{3} + \frac{3}{3} = \frac{3}{3} + \frac{3}{3} + \frac{3}{3} + \frac{3}{3} = \frac{3}{3} + \frac{3}{3} + \frac{3}{3} + \frac{3}{3} + \frac{3}{3} = \frac{3}{3} + \frac{3}{3}$$

C12 - 5.3 - Find Sin Equation From Graphs Notes

$$y = a \sin(b(x - c)) + d$$
Amplitude Period = $\frac{2\pi}{b}$ Phase Shift Center Line

Draw horizontal center line "d" Draw max and min horizontal center line " $a\pm d$ " Draw phase shift vertical start line "c" Calculate period "p" Draw end "c+p" 12345

$$a = 1.5 - \frac{1}{2} = 1$$
$$d = \frac{1}{2}$$

$$c = -\frac{\pi}{2} \left(left \frac{\pi}{2} \right)$$

$$p = End - c$$

$$p = \frac{7\pi}{2} - \left(-\frac{\pi}{2} \right)$$

$$p = \frac{7\pi}{2} + \frac{\pi}{2}$$

$$p = \frac{8\pi}{2}$$

$$p = 4\pi$$

$$b = \frac{2\pi}{4\pi}$$

$$b = \frac{2\pi}{4\pi}$$

$$b = \frac{1}{2}$$

$$y = \operatorname{asin}(b(x-c)) + d$$

$$y = -1\sin\left(\frac{1}{2}\left(x + \frac{\pi}{2}\right)\right) + \frac{1}{2}$$

Negative because it opens downward

C12 - 5.4 - Ferris Wheel Notes

A Ferris wheel with radius 10 m is 1 m off the ground. It takes 16 seconds for one complete revolution. Draw a diagram of the Ferris wheel, graph the height of a passenger starting at the bottom with a table of values and write the equation. How high at 6 second in. How long above 18m in one cycle.

h	
1	4
11	
21	
11	
1	1
	11 21

Starting at the bottom: Make negative

Starting at a max/min: Use cos

The middle is 11: k = 11

The difference from the middle to either extreme is 10: a = 10

$$y = a\cos(b(x-h)) + k$$

$$y = a\cos(b(x-h)) + k$$
 $y = a\sin(b(x-h)) + k$ $h = -10\cos(\frac{\pi}{8}(t)) + 11$ $h = 10\sin(\frac{\pi}{8}(t-4)) + 11$

$$p = \frac{2\pi}{b}$$

$$b = \frac{2\pi}{p}$$

$$b = \frac{2\pi}{16}$$

$$b = \frac{\pi}{8}$$

$$p = 16 \text{ seconds}$$

$$h = -10\cos\left(\frac{\pi}{8}(6)\right) + 11$$
$$h = 18.1m$$

$$y_1 = -10\cos\left(\frac{\pi}{8}(t)\right) + 11$$

 $y_2 = 18$

Find Intersection, and Subtract