

Mathématiques

Classe: BAC

Chapitre: Fonctions logarithmes

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 25 min

4 pt

Soit f la fonction définie sur $0; +\infty$ par : $f(x) = (1 - \ln x)^2$.

- 1°) Etudier les variations de la fonction f.
- **2°) a)** Soit g la restriction de f à la l'intervalle $\left[e ; +\infty\right[$ Montrer que g réalise une bijection de $\left[e ; +\infty\right[\text{ sur } \left[0; +\infty\right[$
 - **b)** Tracer la courbe C de f et la courbe C' de $g^{\scriptscriptstyle -1}$ dans un même repère orthonormé $\left({\left. {{
 m{O}},\vec {i},\vec {j}} \right)}$
- **4°)** Pour tout $n \in IN^*$, on pose : $I_n = \int_1^e (1 \ln t)^n dt$.
 - **a)** Calculer I_1 .
 - **b)** À l'aide d'une intégration par partie, Monter que pour tout $n \in IN^*$ on a :

$$I_{n+1} = -1 + (n+1)I_n$$
.

c) On désigne par A et B les points de C d'abscisses respectifs 1 et e.

Soit \mathbf{v} le volume de révolution engendré par la rotation de l'arc AB de la courbe C autour de l'axe $(0,\vec{i})$. Calculer \mathbf{v} .

Exercice 2

5 pt

 \vec{j}

Dans te graphique ci-contre, désigne la courbe représentative d'une fonction f dans un repère orthonormé.

La droite (Δ) : x = -2 est une asymptote à la courbe (\mathbf{c}) .

- 1°) Donner:
 - a) f(-1) et f'(-1).
 - **b)** $\lim_{x\to(-2)^+} f(x)$.
 - c) Le nombre de solutions dans IR de l'équation f(x) = 0.
- **2°)** On suppose dans la suite que pour tout $x \in \left]-2,+\infty\right[$,
- $f(x) = -2x + m + p \ln(x+2)$, où m et p sont deux constantes réelles.
 - a) Montrer que m=1.
 - **b)** Calculer f'(x) à l'aide de p.
 - c) Montrer que $f(x) = -2x + 1 + 2\ln(x+2)$.
 - **d)** Étudier la position de la courbe (\mathbf{c}) par rapport à la droite D d'équation y=-2x+1.
- 3°) a) Montrer à l'aide d'une intégration par parties que $\int_{-1}^{1} \ln(x+2) dx = 3\ln(3) 2$.
 - **b)** En déduire l'aire de la partie du plan limitée par la courbe (\mathbf{c}), la droite D et les droites d'équations respectives x=-1 et x=1.

c) En déduire les valeurs de I et K.

Exercice 3

(\$\) 25 min

5 pt

Soit la fonction f définie par $f(x) = \frac{\sqrt{1 - (\ln x)^2}}{x}$.

- 1°) Montrer que l'ensemble de définition de f est $D_f = \left\lceil \frac{1}{e}, e \right\rceil$.
- **2°)** Soit *G* la fonction définie sur D_f par $G(x) = \int_1^{\ln x} \sqrt{1-t^2} \ dt$.
 - a) Montrer que G est dérivable sur D_f et calculer G'(x).
 - **b)** En déduire que pour tout $x \in D_f$, F(x) = G(x) + F(e) (où F est la primitive de f sur D_f qui s'annule en 1)
- 3°) Soit *H* la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $H(x) = \int_{1}^{\sin x} \sqrt{1 t^2} dt$.
 - a) Montrer que H est dérivable sur $\left[0,\frac{\pi}{2}\right]$ et calculer H'(x).
 - **b)** Donner alors l'expression de H(x).
- **4°)** Déduire de ce qui précède l'aire de la partie du plan limité par la courbe de f, l'axe des abscisses et les droites d'équations x=1 et x=e.

Exercice 4

6 pt

I– La fonction f est définie sur $]0,+\infty[$ par : $f(x)=x-2+\frac{1}{2}\ln x$.

- 1°) Étudier le sens de variations de f. Calculer les limites de f aux bords de l'ensemble de définition et dresser le tableau de variations de f.
- **2°)** Montrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle $]0;+\infty[$. Déterminer l'entier n tel que $\alpha \in]n,n+1[$.
- **3°)** Déterminer le signe de f(x).
- II– La fonction g est définie sur $\left[0,+\infty\right[$ par : $\begin{cases} g(0)=0 \\ g(x)=-\frac{7}{8}x^2+x-\frac{1}{4}x^2\ln x, & \text{si } x>0 \end{cases}$.
- 1°) a) Montrer que la fonction g est continue en 0.
 - **b)** Calculer $\lim_{x\to 0^+} \frac{g(x)}{x}$ et interpréter graphiquement cette limite.
- **2°)** Montrer que pour tout x > 0, $g'(x) = x f\left(\frac{1}{x}\right)$.
- **3°)** Montrer que $g\left(\frac{1}{\alpha}\right) = \frac{1+4\alpha}{8\alpha^2}$. Dresser le tableau de variation de g.

- Taki Academy 4°) Donner une équations de la tangente à la courbe C_g représentative de g au point d'abscisses 1.
- **5°)** Représenter \mathbf{C}_g et ses tangentes dans un repère orthonormé $(0,\vec{i},\vec{j})$. (on prend α = 1,72)
- **6°) a)** À l'aide d'une intégration par parties, calculer $I_{\alpha} = \int_{1}^{\frac{1}{\alpha}} x^{2} \ln x \, dx$ en fonction de α .
 - **b)** On désigne par $\mathcal{A}(\alpha)$ l'aire de la partie du plan limitée par les courbes \mathbf{C}_g et l'axe des abscisses et les droite d'équations respective \mathbf{x} = 1 et \mathbf{x} = $\frac{1}{\alpha}$. Calculer $\mathcal{A}(\alpha)$ en fonction de α .

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000