Kernl

United States Patent [19]

Gabriel et al.

[11] Patent Number:

6,005,582

[45] Date of Patent:

*Dec. 21, 1999

[54] METHOD AND SYSTEM FOR TEXTURE MAPPING IMAGES WITH ANISOTROPIC FILTERING

[75] Inventors: Steven A. Gabriel, Redmond; Kent E.

Griffin, Bellevue, both of Wash.

[73] Assignee: Microsoft Corporation, Redmond,

Wash.

[*] Notice: This patent issued on a continued prosecution application filed under 37 CFR

1.53(d), and is subject to the twenty year patent term provisions of 35 U.S.C.

154(a)(2).

[21] Appl. No.: 08/672,347

[22] Filed: Jun. 27, 1996

Related U.S. Application Data

[63]	Continuation-in-part of application No. 08/560,114, Nov.
	17, 1995, abandoned, which is a continuation of application
	No. 08/511,553, Aug. 4, 1995, abandoned.

[51]	Int. Cl. ⁶	G06F 15/00
[52]	U.S. Cl	345/430
[50]	Field of Sparch	245/419_20_420_21

345/433–37, 501–85

[56] References Cited

U.S. PATENT DOCUMENTS

5,586,234	12/1996	Sakuraba et al	345/430
5,630,043	5/1997	Uhlin	345/425
5,651,104	7/1997	Cosman	345/428

OTHER PUBLICATIONS

Foley, James D., et al, "Computer Graphics: Principles and Practices", Addison-Wesley Publishing Co., 2nd ed. pp. 806-813, 855-921, 1990.

Collaborative work, "Pixel-Planes", Pixel Planes Home Page, url—http://www.cs.unc.edu/"pxpl/, University of North Carolina, pp. 1–25, update, Sep. 26, 1995.

Oak Technology WARP5 Press Releases, "Oak Technology Sets New Standard for 3D Realism with Breakthrough WARP 5 Chip Architecture", Atlanta, GA, Jun. 19, 1997. Bergman, et al "Image Rendering by Adaptive Refinement", ACM Siggraph '86, vol. 20, No. 4, pp. 29–37, Aug. 18–22, 1986.

Chen, Chein-Liang, et al, "A Raster Engine for Computer Graphics and Image Compositing", Abstract, APCCAS '94, IEEE, pp. 103-108, Dec. 5-8, 1994.

Yoo, Terry S., et al, "Direct Visualization of vol. Data", *IEEE Computer Graphics and Applications Magazine, Volume 12, No. 4, pp. 63-71, Jul. 92.*

Bove, Jr., V. Michael, et al, "Real-Time Decoding and Display of Structured Video", *IEEE Multimedia*, 1994 international Conference, pp. 456-462, 1994.

Heb, Andreas, et al, "Three Dimensional Reconstruction of

Heb, Andreas, et al, "Three Dimensional Reconstruction of Brains from 2-Deoxyglucose Serial Section Autoradiographs", Image Processing, 1994 International Conference, vol. 3, pp. 290-294, 1994.

(List continued on next page.)

Primary Examiner—Phu K. Nguyen
Attorney, Agent, or Firm—Klarquist Sparkman Campbell
Leigh & Whinston LLP

[57] ABSTRACT

A method for texture mapping an image includes passing an interpolating filter along a line of anisotropy in a texture map and computing a weighted sum of the outputs of the interpolating filter to compute pixel intensity values. The weighting of these output values can be computed using a one dimensional digital filter. The line of anisotropy is derived from the inverse transform, which describes the mapping of a point on the surface of a geometric primitive to a point in the texture map. A system supporting anisotropic filtering includes texture memory, a set-up processor, and a texture filter engine. The set-up processor parses a command stream and retrieves texture data into the texture memory. The texture filter engine determines the line of anisotropy for a pixel and computes a weighted sum of interpolated values sampled along the line of anisotropy.

24 Claims, 36 Drawing Sheets

