Multiple Linear Regression II

General Linear F-Tes

rediction

wullicollinearity

Model Diagnostics

Non-Constant Variance &

Lecture 4

Multiple Linear Regression II

Reading: Forecasting, Time Series, and Regression (4th edition) by Bowerman, O'Connell, and Koehler: Chapter 4

MATH 4070: Regression and Time-Series Analysis

Whitney Huang Clemson University

Agenda

Multiple Linear Regression II

- General Linear F-Tes
- Prediction
- Multicollinearity
- lon-Constant ariance &

- General Linear F-Test
- 2 Prediction
- Multicollinearity
- **Model Selection**
- **Model Diagnostics**
- **6** Non-Constant Variance & Transformation

- t-test: Testing one predictor
 - **Null/Alternative Hypotheses**: $H_0: \beta_j = 0$ vs. $H_a: \beta_j \neq 0$
 - **2** Test Statistic: $t^* = \frac{\hat{\beta}_j 0}{\hat{\operatorname{se}}(\hat{\beta}_j)}$
 - **o** Reject H_0 if $|t^*| > t_{1-\alpha/2, n-p}$
- Overall F-test: Test of all the predictors

 - \bullet H_a : at least one $\beta_j \neq 0, 1 \leq j \leq p-1$
 - **1** Test Statistic: $F^* = \frac{MSR}{MSE}$
 - **1** Reject H_0 if $F^* > F_{1-\alpha,p-1,n-p}$

Both tests are special cases of General Linear *F*-test

School of MATHEMATICAL AND STATISTICAL SCIENCES Chemoon University

General Linear F-Test

Prediction

Multicollinearity

nodor odrodion

on-Constant triance &

wullicollinearity

Model Diagnostic

Non-Constant Variance & Transformation

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- Consider a full model with k predictors and reduced model with ℓ predictors ($\ell < k$)
- Test statistic: $F^* = \frac{(SSE_{reduce} SSE_{full})/(k-\ell)}{SSE_{full}/(n-k-1)} \Rightarrow$ Testing H_0 that the regression coefficients for the extra variables are all zero
 - Example 1: $x_1, x_2, \cdots, x_{p-1}$ vs. intercept only \Rightarrow Overall F-test

Multicollinearity

Andal Dinapostic

Non-Constant Variance &

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- Consider a full model with k predictors and reduced model with ℓ predictors ($\ell < k$)
- Test statistic: $F^* = \frac{(SSE_{reduce} SSE_{full})/(k-\ell)}{SSE_{full}/(n-k-1)} \Rightarrow$ Testing H_0 that the regression coefficients for the extra variables are all zero
 - Example 1: $x_1, x_2, \cdots, x_{p-1}$ vs. intercept only \Rightarrow Overall F-test
 - Example 2: x_j , $1 \le j \le p-1$ vs. intercept only $\Rightarrow t$ -test for β_j

Multicollinearity

tadal Diagram

Non-Constant Variance &

- Comparison of a "full model" and "reduced model" that involves a subset of full model predictors
- Consider a full model with k predictors and reduced model with ℓ predictors ($\ell < k$)
- Test statistic: $F^* = \frac{(\mathrm{SSE}_{\mathrm{reduce}} \mathrm{SSE}_{\mathrm{full}})/(k-\ell)}{\mathrm{SSE}_{\mathrm{full}}/(n-k-1)} \Rightarrow$ Testing H_0 that the regression coefficients for the extra variables are all zero
 - Example 1: $x_1, x_2, \cdots, x_{p-1}$ vs. intercept only \Rightarrow Overall F-test
 - Example 2: x_j , $1 \le j \le p-1$ vs. intercept only $\Rightarrow t$ -test for β_j
 - Example 3: x_1, x_2, x_3, x_4 vs. $x_1, x_3 \Rightarrow H_0: \beta_2 = \beta_4 = 0$

Geometric Illustration of General Linear *F***-Test**

General Linear F-Tes

Prediction

Multicollinearity

Non-Constant Variance &

Source: Faraway, Linear Models with R, 2014, p.34

Prediction

Multicollinearit

Non-Constant Variance &

```
> summary(gala_fit2)
```

Call:

lm(formula = Species ~ Elevation + Area)

Residuals:

Min 1Q Median 3Q Max -192.619 -33.534 -19.199 7.541 261.514

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 79.34 on 27 degrees of freedom Multiple R-squared: 0.554, Adjusted R-squared: 0.521 F-statistic: 16.77 on 2 and 27 DF, p-value: 1.843e-05

Prediction

Multicollineari

Maria Brassa

Non-Constant Variance &

```
> summary(gala_fit1)
```

Call:

lm(formula = Species ~ Elevation)

Residuals:

Min 1Q Median 3Q Max -218.319 -30.721 -14.690 4.634 259.180

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.33511 19.20529 0.590 0.56
Elevation 0.20079 0.03465 5.795 3.18e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 78.66 on 28 degrees of freedom Multiple R-squared: 0.5454, Adjusted R-squared: 0.5291 F-statistic: 33.59 on 1 and 28 DF. p-value: 3.177e-06

• $H_0: \beta_{\text{Area}} = 0 \text{ VS. } H_a: \beta_{\text{Area}} \neq 0$

•
$$F^* = \frac{(173254 - 169947)/(2-1)}{169947/(30-2-1)} = 0.5254$$

ullet p-value: $\mathbb{P}[F > 0.5254] = 0.4748$, where $F \sim \mathbf{F}_{1, 27}$

> anova(gala_fit1, gala_fit2) Analysis of Variance Table

Model 1: Species ~ Elevation

Model 2: Species ~ Elevation + Area

Res.Df RSS Df Sum of Sq F Pr(>F)

28 173254

27 169947 1 3307 0.5254 0.4748

Visualizing p-value

p-value is the shaped area under the density curve of the null distribution

General Linear F-Test

Prediction

ulticollinearity

lon-Constant ariance &

```
Multiple Linear
Regression II
```

```
MATHEMATICAL AND STATISTICAL SCIENCE
```

```
General Linear F-Tes
```

1 1001011011

viuiticoilinear

lon-Constant

ariance & ransformation

```
> full <- lm(Species ~ Area + Elevation + Nearest + Scruz + Adjacent,</pre>
data = qala)
> anova(full)
Analysis of Variance Table
Response: Species
         Df Sum Sa Mean Sa F value Pr(>F)
          1 145470 145470 39.1262 1.826e-06 ***
Area
Elevation 1 65664 65664 17.6613 0.0003155 ***
               29
Nearest 1
                       29 0.0079 0.9300674
Scruz 1 14280 14280 3.8408 0.0617324 .
Adjacent 1 66406 66406 17.8609 0.0002971 ***
Residuals 24 89231
                     3718
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> reduced <- lm(Species ~ Elevation + Adjacent)</pre>
> anova(reduced)
Analysis of Variance Table
Response: Species
         Df Sum Sq Mean Sq F value Pr(>F)
Elevation 1 207828 207828 56.112 4.662e-08 ***
Adjacent 1 73251 73251 19.777 0.0001344 ***
Residuals 27 100003
                     3704
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

$$H_0: \beta_{\texttt{Area}} = \beta_{\texttt{Nearest}} = \beta_{\texttt{Scruz}} = 0$$

 $H_a: \text{ at least one of the three coefficients } \neq 0$

•
$$F^* = \frac{(100003 - 89231)/(5-2)}{89231/(30-5-1)} = 0.9657$$

ullet p-value: $\mathbb{P}[F > 0.9657] = 0.425$, where $F \sim \mathsf{F}_{3,24}$

```
> anova(reduced, full)
Analysis of Variance Table
```

```
Model 1: Species ~ Elevation + Adjacent
Model 2: Species ~ Area + Elevation + Nearest + Scruz + Adjacent
Res.Df RSS Df Sum of Sq F Pr(>F)
1 27 100003
2 24 89231 3 10772 0.9657 0.425
```

General Linear F-les

,

Model Diagnostics

lon-Constant ariance &

Multiple Linear Regression Prediction

Multiple Linear

Given a new set of predictors, $x_0 = (1, x_{0,1}, x_{0,2}, \dots, x_{0,v-1})^T$, the predicted response is

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_{0,1} + \hat{\beta}_2 x_{0,2} + \dots + \hat{\beta}_{p-1} x_{0,p-1}.$$

Again, we can use matrix representation to simplify the notation

$$\hat{y}_0 = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}},$$

where
$$\boldsymbol{x}_{0}^{\mathrm{T}}$$
 = $(1, x_{0,1}, x_{0,2}, \cdots, x_{0,p-1})$

We will use this formula to carry out two different kinds of predictions

There are two kinds of predictions can be made for a given x_0 :

• Predicting a future response:

Based on MLR, we have $y_0 = x_0^T \beta + \varepsilon$. Since $E(\varepsilon) = 0$, therefore the predicted value is

$$\hat{y}_0 = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}}$$

• Predicting the mean response:

Since $E(y_0) = x_0^T \beta$, there we have the predicted mean response

$$\widehat{E(y_0)} = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}},$$

the same predicted value as predicting a future response

Next, we need to assess their prediction uncertainties, and then we will identify the differences in terms of these uncertainties

From page 30 of slides 3, we have $Var(\hat{\beta}) = \sigma^2 (X^T X)^{-1}$. Therefore we have

$$\operatorname{Var}(\hat{y}_0) = \operatorname{Var}(\boldsymbol{x}_0^{\mathrm{T}}\hat{\boldsymbol{\beta}}) = \sigma^2 \boldsymbol{x}_0^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_0$$

We can now construct $100(1-\alpha)\%$ CI for the two kinds of predictions:

• Predicting a future response y_0 :

$$\boldsymbol{x}_{0}^{\mathrm{T}}\hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2,n-p} \times \hat{\boldsymbol{\sigma}} \sqrt{\underbrace{1}_{\mathrm{accounting for } \boldsymbol{\varepsilon}} + \boldsymbol{x}_{0}^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0}}$$

• Predicting the mean response $E(y_0)$:

$$\boldsymbol{x}_{0}^{\mathrm{T}}\hat{\boldsymbol{\beta}} \pm t_{1-\alpha/2,n-p} \times \hat{\sigma} \sqrt{\boldsymbol{x}_{0}^{\mathrm{T}} \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{0}}$$

General Linear F-Test

rediction

lulticollinea

Woder Ocicotion

on-Constant ariance &

General Linear F-Tes

rediction

Iulticollinea

moder colocitor

on-Constant ariance &

```
lm(formula = brozek ~ age + weight + height + neck + chest +
   abdom + hip + thigh + knee + ankle + biceps + forearm + wrist.
   data = fat)
Residuals:
   Min
            10 Median
                                  Max
-10.264 -2.572 -0.097
                       2.898
                                9.327
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -15.29255
                       16.06992 -0.952 0.34225
                        0.02996
                                        0.05929
aae
             0.05679
                                 1.895
                       0.04958 -1.620
weiaht
            -0.08031
                                        0.10660
height
            -0.06460
                       0.08893 -0.726
                                        0.46830
            -0.43754
                        0.21533 -2.032
                                        0.04327 *
neck
chest
            -0.02360
                        0.09184 -0.257
                                        0.79740
           0.88543
                        0.08008 11.057 < 2e-16 ***
abdom
hip
            -0.19842
                        0.13516 -1.468 0.14341
                                1.734 0.08418 .
thiah
            0.23190
                        0 13372
                       0.22414 -0.052
knee
            -0.01168
                                        0.95850
           0.16354
                       0.20514
ankle
                                 0.797
                                        0.42614
biceps
           0.15280
                       0.15851
                                  0.964
                                        0.33605
forearm
            0.43049
                        0.18445
                                 2.334 0.02044 *
wrist
            -1.47654
                        0.49552 -2.980 0.00318 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.988 on 238 degrees of freedom
Multiple R-squared: 0.749.
                             Adjusted R-squared: 0.7353
F-statistic: 54.63 on 13 and 238 DF. p-value: < 2.2e-16
```

What is our prediction for the future response of a "typical" (e.g., each predictor takes its median value) man?

- lacktriangle Calculate the median for each predictor to get $oldsymbol{x}_0$
- ② Compute the predicted value $\hat{y}_0 = \boldsymbol{x}_0^{\mathrm{T}} \hat{\boldsymbol{\beta}}$
- Quantify the prediction uncertainty

```
> X <- model.matrix(lmod)</pre>
> (x0 \leftarrow apply(x, 2, median))
(Intercept)
                     aae
                              weiaht
                                           height
                                                         neck
                                                                     chest
       1.00
                  43.00
                              176.50
                                            70.00
                                                        38.00
                                                                     99.65
                                            ankle
                                                       biceps
                                                                   forearm
        hip
                  thiah
                                knee
      99.30
                  59.00
                               38.50
                                            22.80
                                                        32.05
                                                                     28.70
> (v0 <- sum(x0 * coef(lmod)))
Γ17 17.49322
> predict(lmod, new = data.frame(t(x0)))
       1
17.49322
> predict(lmod, new = data.frame(t(x0)), interval = "prediction")
       fit
               lwr
1 17.49322 9.61783 25.36861
> predict(lmod, new = data.frame(t(x0)), interval = "confidence")
       fit
                 1wr
                          upr
1 17.49322 16.94426 18.04219
```

General Linear F-Test

rediction

lulticollinearity

on-Constant triance &

abdom

90.95

wrist

18.30

Multicollinearity

> cor(sim1) x1 x2 1.0000000 0.7987777 0.8481084 x1 0.7987777 1.0000000 0.9281514

x2 0.8481084 0.9281514 1.0000000

Multicollinearity

Multicollinearity Cont'd

Multiple Linear Regression II

Multicollinearity is a phenomenon of high inter-correlations among the predictor variables

- Numerical issue \Rightarrow the matrix X^TX is nearly singular
- Statistical issues/consequences
 - β's are not well estimated ⇒ spurious regression coefficient estimates
 - R² and predicted values are usually okay even with multicollinearity

General Linear F-Test

manaconi icanty

Model Diagnostics

Non-Constant
Variance &

Model Disappetics

Non-Constant Variance &

Suppose the true relationship between response y and predictors (x_1, x_2) is

$$Y = 4 + 0.8x_1 + 0.6x_2 + \varepsilon$$
,

where $\varepsilon \sim N(0,1)$ and x_1 and x_2 are positively correlated with ρ = 0.9. Let's fit the following models:

- Model 1: $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon_1$ This is the true model with parameters unknown
- Model 2: $Y = \beta_0 + \beta_1 x_1 + \varepsilon_2$ This is the wrong model because x_2 is omitted

Prediction

Multicollinearity

Non-Constant Variance &

Model Diagnostic

Non-Constant Variance & Transformation

Call:

 $lm(formula = Y \sim X1 + X2)$

Residuals:

Min 1Q Median 3Q Max -1.91369 -0.73658 0.05475 0.87080 1.55150

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.0710 0.1778 22.898 < 2e-16 *** X1 2.2429 0.7187 3.121 0.00426 **

X2 -0.8339 0.7093 -1.176 0.24997

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9569 on 27 degrees of freedom Multiple R-squared: 0.673, Adjusted R-squared: 0.6488

F-statistic: 27.78 on 2 and 27 DF, p-value: 2.798e-07

Model 2 Fit

Call:

 $lm(formula = Y \sim X1)$

Residuals:

Min 10 Median 30 Max -2.09663 -0.67031 -0.07229 0.87881 1.49739

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 4.0347 0.1763 22.888 < 2e-16 *** X1 1.4293 0.1955 7.311 5.84e-08 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9634 on 28 degrees of freedom Multiple R-squared: 0.6562, Adjusted R-squared: 0.644 F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839e-08

Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9569 on 27 degrees of freedom

F-statistic: 27.78 on 2 and 27 DF. p-value: 2.798e-07

Model 2 fit:

Coefficients:

(Intercept) 4.0347

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9634 on 28 degrees of freedom

Multiple R-squared: 0.6562, F-statistic: 53.45 on 1 and 28 DF, p-value: 5.839e-08

0.1778 22.898 < 2e-16 ***

0.7093 -1.176 0.24997

3.121 0.00426 **

Adjusted R-squared: 0.6488

$lm(formula = Y \sim X1 + X2)$ 10 Median

2.2429

-0.8339

Estimate Std. Error t value Pr(>|t|)

0.7187

e
$$\varepsilon \sim N(0$$

Recall the true model:

$$Y = 4 + 0.8x_1 + 0.6x_2 + \varepsilon,$$

where $\varepsilon \sim N(0,1)$, x_1 and x_2 are positively correlated with $\rho = 0.9$

Multiple Linear

Regression II

Summary:

- β's are not well estimated in model 1 ⇒ Spurious regression coefficient estimates
- In model 2, R^2 and predicted values are OK compared to model 1

$lm(formula = Y \sim X1)$

10 Median

1.4293

Estimate Std. Error t value Pr(>|t|)

0.1763 22.888 < 2e-16 ***

0.1955 7.311 5.84e-08 ***

Adjusted R-squared: 0.644

We can use the variance inflation factor (VIF)

 $VIF_i = \frac{1}{1 - R_i^2}$

to quantifies the severity of multicollinearity in MLR, where R_i is the **coefficient of determination** when X_i is regressed on the remaining predictors

R example code

> librarv(farawav) > vif(sim1Γ, 2:37) 7.218394 7.218394

√VIF indicates how much larger the standard error increases compared to if that variable had 0 correlation to other predictor variables in the model.

Multiple Linear Regression Model:

 $Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$

Basic Problem: how to choose between competing linear regression models?

- Model too "small": underfit the data; poor predictions; high bias: low variance
- Model too big: "overfit" the data; poor predictions; low bias; high variance

In the next few slides we will discuss some commonly used model selection criteria to choose the "right" model to balance bias and variance

An Example of Bias and Variance Tradeoff

-10

Multiple Linear Regression II

General Linear F-Test

Prediction

Multicollinearity

Model Selection

Non-Constant /ariance &

Balancing Bias And Variance: Mallows' C_n Criterion

A good model should balance **bias** and **variance** to get good predictions

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathbb{E}(\hat{Y}_i) + \mathbb{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathbb{E}(\hat{Y}_i))^2}_{\sigma^2_{\hat{Y}_i} \text{ Variance}} + \underbrace{(\mathbb{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

where
$$\mu_i = \mathbb{E}(Y_i|X_i = x_i)$$

- Mean squared prediction error (MSPE): $\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2} + \sum_{i=1}^{n} (\mathbb{E}(\hat{Y}_{i}) \mu_{i})^{2}$
- ullet C_p criterion measure:

$$\Gamma_p = \frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^{n} (\mathbb{E}(\hat{Y}_i) - \mu_i)^2}{\sigma^2}$$
$$= \frac{\sum \text{Var}_{\mathsf{pred}} + \sum \mathsf{Bias}^2}{\text{Var}_{\mathsf{error}}}$$

General Linear F-Test

Prediction

Multicollinearity

on-Constant triance &

$$C_p = \frac{\text{SSE}}{\text{MSE}_{\mathsf{F}}} + 2p - n$$

- When model is correct $E(C_p) \approx p$
- When plotting models against p
 - Biased models will fall above $C_p = p$
 - Unbiased models will fall around line $C_p = p$
 - ullet By definition: C_p for full model equals p

We desire models with small p and C_p around or less than p. See R session for an example

General Linear F-Test

Prediction

Multicollinearity

on-Constant ariance &

Model Diagnostic

Non-Constant Variance & Transformation

Adjusted R^2 , denoted by $R^2_{\rm adj}$, attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to the model.

$$R_{\text{adj}}^2 = 1 - \frac{\text{SSE}/(n-p-1)}{\text{SST}/(n-1)}$$

- ullet Choose model which maximizes $R_{
 m adj}^2$
- Same approach as choosing model with smallest MSE

.

Model Diagnosti

Variance &

Information criteria are statistical measures used for model selection. Commonly used information criteria include:

Akaike's information criterion (AIC)

$$n\log(\frac{\mathrm{SSE}_k}{n}) + 2k$$

Bayesian information criterion (BIC)

$$n\log(\frac{\mathrm{SSE}_k}{n}) + k\log(n)$$

Here k is the number of the parameters in the model.

These criteria balance the goodness of fit of a model with its complexity

Automatic Search Procedures

Multiple Linear

- Forward Selection: begins with no predictors and then adds in predictors one by one using some criterion (e.g., p-value or AIC)
- Backward Elimination: starts with all the predictors and then removes predictors one by one using some criterion
- Stepwise Search: a combination of backward elimination and forward selection. Can add or delete predictor at each stage
- All Subset Selection: Comparing all possible models using a selected criterion. Impractical for "large" number of predictors

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon, \quad \varepsilon \stackrel{i.i.d.}{\sim} \mathrm{N}(0, \sigma^2)$$

We make the following assumptions:

Linearity:

$$E(Y|x_1, x_2, \dots, x_{p-1}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1}$$

 Errors have constant variance, are independent, and normally distributed

$$\varepsilon \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$$

General Linear F-Test

Prediction

Multicollinearity

Model Diagnostics

Non-Constant /ariance &

Model Diagnostics

We will revisit this in the end of the lecture

Assessing Normality of Residuals: Histogram

```
par(las = 1)
hist(mod$residuals, 12, prob = T,
    col = "lightblue", border = "gray")
xg <- seq(-200, 200, 1)
yg <- dnorm(xg, 0, 60.86)
lines(xg, yg)</pre>
```

Histogram of mod\$residuals

Multiple Linear Regression II

General Linear F-Test

Prediction

Multicollinearit

Model Diagnostics

Non-Constant Variance & plot(qnorm(1:30 / 31, 0, 60.86), sort(mod\$residuals), pch = 16,

Model Diagnostics

- Recall in MLR that $\hat{y} = X(X^TX)^{-1}X^Ty = Hy$ where H is the hat-matrix
 - The leverage value for the i_{th} observation is defined as:

$$h_i = \boldsymbol{H}_{ii}$$

- Can show that $Var(e_i) = \sigma^2(1 h_i)$, where $e_i = y_i \hat{y}_i$ is the residual for the i_{th} observation
- $\frac{1}{n} \le h_i \le 1$, $1 \le i \le n$ and $\bar{h} = \sum_{i=1}^n \frac{h_i}{n} = \frac{p}{n} \Rightarrow$ a "rule of thumb" is that leverages greater than $\frac{2p}{n}$ should be examined more closely

Leverage Values of Species ~ Elev + Adj

Multiple Linear

Model Diagnostics

Widder delection

Non-Constant Variance &

As we have seen ${\rm Var}(e_i)$ = $\sigma^2(1-h_i)$, this suggests the use of $r_i=rac{e_i}{\hat{\sigma}\sqrt{(1-h_i)}}$

- r_i's are called **standardized residuals**. r_i's are sometimes preferred in residual plots as they have been standardized to have equal variance.
- If the model assumptions are correct then $Var(r_i) = 1$ and $Corr(r_i, r_j)$ tends to be small

Standardized Residuals of Species ~ Elev + Adj

Studentized Residuals

Multiple Linear Regression II

General Linear F-Tes

Prediction

/luiticollinearity

Model Diagnostics

lon-Constant /ariance &

Non-Constant Variance & Fransformation

- For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{y}_{i(i)}$
- The observation i is an outlier if $\hat{y}_{i(i)} y_i$ is "large"
- Can show $\text{Var}(\hat{y}_{i(i)} y_i) = \sigma_{(i)}^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_i \right) = \sigma_{(i)}^2 (1 h_i)$
- Define the Studentized (Jackknife) Residuals as

$$t_i = \frac{\hat{y}_{i(i)} - y_i}{\sqrt{\hat{\sigma}_{(i)}^2 (1 - h_i)}} = \frac{\hat{y}_{i(i)} - y_i}{\sqrt{\mathsf{MSE}_{(i)} (1 - h_i)}}$$

which are distributed as a t_{n-p-1} if the model is correct and $\varepsilon \sim \mathrm{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Studentized (Jackknife) Residuals of Species ~ Elev + Adj

General Linear F-Tes

i rediction

viulticonniearity

Model Diagnostics

on-Constant ariance &

rediction

Model Selection

Model Diagnostics

Non-Constant
Variance &
Fransformation

Cook's Distance quantifies how much the predicted values change when a particular observation is excluded from the analysis.

• Cook's distance measure (D_i) is defined as:

$$D_i = \frac{(y_i - \hat{y}_i)^2}{p \times \text{MSE}} \left(\frac{h_i}{(1 - h_i)^2} \right)$$

- Cook's Distance considers both leverage and residual, providing a broader measure of influence
- Here are the guidelines commonly used:
 - If $D_i > 0.5$, then the ith data point is worthy of further investigation as it may be influential
 - ② If $D_i > 1$, then the ith data point is quite likely to be influential

Cook's Distance of Species ~ Elev + Adj

Prediction

Aulticollinearit

Model Diagnostics

lon-Constant ariance &

Residual Plot of Species ~ Elev + Adj

Residuals

Such a residual plot suggests a violation of constant variance

Multiple Linear Regression II

General Linear F-Test

viouei Selection

Non-Constant Variance & Transformation

Residual Plot After Square Root Transformation

$$\sqrt{\text{Species}} \sim \text{Elev} + \text{Adj}$$

Residuals

Multiple Linear Regression II

General Linear F-Test

Frediction

/lulticollinearity

Non-Constant Variance & Transformation The Box-Cox method [Box and Cox, 1964] is a powerful way to determine if a transformation on the response is needed

$$g_{\lambda}(y) = \begin{cases} \frac{y^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0; \\ \log(y) & \text{if } \lambda = 0. \end{cases}$$

In R, we can use the boxcox function from the MASS package to perform a Box-Cox transformation. The plot suggests a cube root may be needed

General Linear F-Test

Madal Diagnastics

lon-Constant /ariance & iransformation

These slides cover:

- General Linear F-Test provides a unifying framework for hypothesis tests
- Making predictions and quantifying prediction uncertainty
- Multicollinearity and its implications for MLR
- Model/variable selection can be done via some criterion-based methods to balance bias and variance
- Model diagnostics is crucial to ensure valid statistical inference
- Box-Cox Transformation can be used to transform the response in order to correct model violations

General Linear F-Test

Prediction

Multicollinearity

Model Diagnostic

Non-Constant Variance &

- anova for model comparison based on F-test
- predict: obtain predicted values from a fitted model
- vif under the faraway library: computes the variance inflation factors
- regsubsets in the leaps library and step for model selection
- influence.measures includes a suite of functions (hatvalues, rstandard, rstudent, cooks.distance) for computing regression diagnostics
- boxcox in the MASS library for performing a Box-Cox transformation