Recall the steps for proving a statement " $\forall n \geq 0$: something" using mathematical induction:

- (1) Clearly state the property P(n), that you are using mathematical induction, and what variable you are doing induction over.
- (2) Prove the base case: P(0).
- (3) Prove the inductive case: $P(n-1) \Rightarrow P(n)$.

In this activity, you will prove that $\forall n \geq 0$

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}.$$

Answer the following questions:

• Do you believe the claim? I give you an example of it holding below. Give at least two more examples of n for which the claim holds by filling in two more rows of the table for different n.

n	$\sum_{i=0}^{n} i$	$\frac{n(n+1)}{2}$
1	$\sum_{i=0}^{1} i = 0 + 1 = 1$	$\frac{1(1+1)}{2} = \frac{1(2)}{2} = 1$

- What is the predicate P(n) that you will prove holds $\forall n \geq 0$?
- What variable will you do induction over?
- What is the base case? (Don't just write P(0); translate it into the specific P(n) you defined above.)
- What is the inductive case? (Again, don't just write $P(n-1) \Rightarrow P(n)$; translate it into the specific P(n) you defined above.)
- What is the inductive hypothesis?

Now that you have answered the above questions, you are ready t steps are labeled in the proof for you to fill in.	o write the full proof!	The three
Proof.		
(1)		
(2) For the base case, we prove that		
(3) For the inductive case, we prove that $\forall n \geq 1$,	·	