ELEMENTARY STATISTICS

Summary:

1. The following terms are computed as follows:

For a set of n values x	For frequency distribution table,
Mean $\overline{x} = \frac{\sum x}{n}$	Mean $\overline{x} = \frac{\sum fx}{\sum f}$
Variance $= \frac{\sum (x - \overline{x})^2}{n}$ $= \frac{\sum x^2}{n} - \overline{x}^2$	Variance $= \frac{\sum f(x - \overline{x})^2}{\sum f}$ $= \frac{\sum fx^2}{\sum f} - \overline{x}^2$
Standard deviation $= \sqrt{\text{variance}}$	$Standard\ deviation = \sqrt{variance}$

NOTE: Graphically, SD = $\frac{1}{2}$ × range of the middle 68% or $\frac{2}{3}$ of the data

- 2 (i) Mode is the mostly occuring value. There can be more than one mode in a given data.
- (ii) In case of grouped data with equal class width, the modal class is the one with the highest frequency.
- (iii) In case of grouped data with unequal class widths, the modal class is the one with the highest frequency density,

$$\left(\begin{array}{ccc} \textit{Frequency} & \textit{density} & = \frac{\textit{class} & \textit{frequency}}{\textit{class} & \textit{width}} \end{array} \right)$$

(iv) For grouped data, mode =
$$L + \left(\frac{D_1}{D_1 + D_2}\right)c$$

In case of equal class width

L = lower boundary of the modal class

D 1 = modal frequency - premodal frequency

p = modal frequency – post modal frequency

C = modal class width

In case of unequal class widths

L = lower boundary of the modal class

p₁ = modal frequency density – premodal frequency density

D₂ = modal frequency density – post modal frequency density

C = modal class width

NOTE: The modal class must be determined before calculating the mode

3 (i) Median is the middle value when the given data is listed in order of magnitude. If the number of items is even, the average of the middle two is used.

(ii) For grouped data, median
$$= L + \left(\frac{\frac{1}{2}\sum_{b}^{c} f - Cf_{b}}{f_{w}}\right)c$$
, where

L = lower boundary of the median class

 \sum f = total frequency

Cf _b = cumulative frequency before the median class

f _w = frequency within the median class

C = median class width

NOTE:

- (a) The median class must be determined before calculating the median
- **(b)** The median class corresponds to the cumulative frequency of $\frac{1}{2}\sum f$
- **4.** (i) The lower quartile q_1 is the value for which **25%** of the data falls below it.
- (ii) The upper quartile q_3 is the value for which **75%** of the data falls below it.
 - (iii) Interquartile range = Q 3 Q 1
 - (iv) Semi-interquartile range = $\frac{1}{2}$ $\left(q_3 q_1 \right)$
- (v) The Jth percentile P_J is the value for which **J%** of the data falls below it.
 - (vi) The J^{th} decile D_J is the value for which $\frac{J}{10}$ of the data falls below it.
 - (vii) For grouped data, the following terms are computed as follows:

Lower quartile
$$Q_1 = L + \left(\frac{\frac{1}{4}\sum f - Cf_b}{f_w}\right)c$$

Upper quartile $Q_3 = L + \left(\frac{\frac{3}{4}\sum f - Cf_b}{f_w}\right)c$

The J th percentile
$$P_J = L + \left(\frac{\frac{J}{100}\sum f - Cf_b}{f_w}\right)c$$

The J th decile $D_J = L + \left(\frac{\frac{J}{100}\sum f - Cf_b}{f_w}\right)c$

NOTE:

- (a) The quartile class must be determined before calculating the required quartile
- **(b)** The lower and upper quartile classes correspond to the cumulative frequencies

of
$$\frac{1}{4}\sum$$
 f and $\frac{3}{4}\sum$ f respectively.

(c) The Jth percentile and decile classes correspond to the cumulative frequencies

of
$$\frac{J}{100}\sum$$
 f and $\frac{J}{10}\sum$ f respectively.

5 (i) The cumulative frequency curve or an ogive is a curve where cumulative

frequencies are plotted against the upper class boundaries.

(ii) A histogram with equal class widths consists of bars with frequency as the

height of each and class boundaries as the width of each.

(iii) A histogram with unequal class widths consists of bars with frequency

density as the height of each and class boundaries as the width of each.

(iv) A frequency polygon is a line graph drawn by plotting frequency or frequency density against class mid values.

NOTE:

(a) The points are joined by straight lines.

(bi) The polygon extends to the next lower and higher classes with zero frequencies

EXAMPLES:

- 1. The lengths in cm of 6 metal rods were as follows: 31, 28, 30, 33, 25, 30 Find the:
 - (i) mean length
 - (ii) standard deviation
 - (iii) mode
 - (iv) median
 - (v) semi-interquartile range

Solution:

Sum	7						
X	31	28	30	33	25	30	177
x ²	961	78 4	900	108 9	625	900	5259

(i) mean
$$\bar{x} = \frac{177}{6}$$

= 29.5

(ii) Standard deviation
$$\sigma = \sqrt{\frac{5259}{6} - \left(\frac{177}{6}\right)^2}$$
= 2.5

(iv) 25, 28, 30, 30, 31, 33

$$median = \frac{30 + 30}{2}$$

= 30

(v) 25,
$$(28)$$
, 30, (31) , 33
media $\frac{1}{Q_{3}}$

Semi-interquartile range =
$$\frac{31 - 28}{2}$$

= 1.5

2. The lengths **a, b, 8, 7,5** in cm of five metal rods are distributed with a mean of **6** and variance of **2**. Given that **a > b**, find the values of **a** and **b**. **Solution:**

						Sum
X	Α	В	8	7	5	a+b+20
x ²	a ²	b ²	64	49	25	a ² + b ² + 138

$$If \frac{a+b+20}{5} = 6$$

$$a + b = 10 - - - (i)$$

$$f \frac{a^2 + b^2 + 138}{5} - 6^2 = 2$$

$$\Rightarrow a^2 + b^2 = 52 - - (ii)$$

$$f b = 10 - a$$

$$\Rightarrow a^2 + (10 - a)^2 = 52$$

$$a^2 - 10a + 24 = 0$$

$$a = \frac{10 \pm \sqrt{100 - 96}}{2}$$

$$a = 4 \text{ or } 6$$

$$b = 10 - a$$

а	4	6
b	6	4

3. The ages in years of 100 students were as follows:

Age	12	1	16	18	20	22

		4				
Frequenc	15	2	18	22	12	8
<i>y</i>		5				

Find the:

- (i) mean age
- (ii) standard deviation
- (iii) mode
- (iv) median
- (v) semi-interquartile range

Solution:

Age (x)	f	fX	fx ²	Cf
12	15	180	2160	<i>15</i>
14	25	350	4900	40
16	18	288	4608	<i>58</i>
18	22	396	7128	80
20	12	240	4800	92
22	8	176	3872	100
Sum	100	1630	27468	

(i) mean
$$\bar{x} = \frac{1630}{100}$$

= 16.3

(ii) Standard deviation
$$\sigma = \sqrt{\frac{27468}{100} - \left(\frac{1630}{100}\right)^2}$$

= 2.9983

(iv) median position =
$$\frac{100}{2}$$
 = 50
:: median = 16

(v) lower quartile position =
$$\frac{100}{4}$$
 = 25
.: lower quartile = 14
upper quartile position = $\frac{3}{4} \times 100$ = 75
.: upper quartile = 18
Semi-interquartile range = $\frac{18 - 14}{2}$
= 2

4. A certain frequency distribution with standard deviation **2.5** has the following results: \sum fx = 177 and \sum fx 2 = 5259. Find its: (i) \sum f

(ii) mean

Soln:

(i) If
$$\sqrt{\frac{5259}{n} - (\frac{177}{n})^2} = 2.5$$

 $\Rightarrow \frac{5259}{n} - \frac{31329}{n^2} = 6.25$
 $6.25n^2 - 5259n + 31329 = 0$
 $n = \frac{5259 \pm \sqrt{(-5259)^2 - 783225}}{12.5}$
 $n = 6 \text{ or } 835.44$
 $\therefore \sum_{i=0}^{\infty} f_{i=0}^{\infty} = 6$

(ii) mean =
$$\frac{177}{6}$$
 = 29 · 5

5. The prices in thousands of shillings of 50 bags were as follows:

(a) Starting with the lowest class limit of 2.0 thousand shillings, form a frequency

distribution table with class intervals of 0.5 thousand shillings.

- (b) Calculate the:
 - (i) mean price (ii) variance
- (iii) mode

- (iv) median
- (v) semi-interquartile range
- (vi) 60 th percentile (vii) 4 th decile
- (viii) number of bags cheaper than 3.3 thousand shillings.
- (c) Display the data on a histogram and use it to estimate the:
 - (i) mode
 - (ii) median
- (c) Draw an ogive for the data and use it to estimate the:
 - (i) median
 - (ii) semi-interquartile range
 - (iii) 40 th to 90 th percentile price range
 - (iv) range of the prices of the middle 60% of the bags
 - (v) 3rd to 6th decile price range.
 - (vi) standard deviation

Solution:

Price	Tallys	f	X	fX	fx ²	Cf
2.0 -	++++	8	2.2	17.6	38.72	8
2.4 2.5 –	 	9	2.7	24.3	65.61	17
2.9 3.0 –	 	10	3.2	32	102.4	27
3.4 3.5 –	- //// /	6	3.7	22.2	82.14	33
3.9 4.0 –		12	4.2	50.4	211.68	45
4.4						
4.5 – 4.9	 	5	4.7	23.5	110.45	50
Sum		50		170	611	

(b) (i) mean =
$$\frac{170}{50}$$
 = 3.4

(ii) Variance =
$$\frac{611}{50} - \left(\frac{170}{50}\right)^2$$

= 0.66

(iii)
$$mode = 3.95 + \left(\frac{6}{6+7}\right) \times 0.5$$

= 4.1808

(iv) median position =
$$\frac{50}{2}$$
 = 25

median = $2 \cdot 95 + \left(\frac{50}{2} - 17\right) \times 0 \cdot 5$

.: median = 3.35

(v) lower quartile position =
$$\frac{50}{4}$$
 = 12 · 5

lower quartile,
$$Q_1 = 2.45 + \left(\frac{50}{4} - 8\right) \times 0.5$$

upper quartile position =
$$\frac{3}{4} \times 50 = 37 \cdot 5$$

upper quartile,
$$Q_3 = 3.95 + \left(\frac{\frac{3}{4} \times 50 - 8}{9}\right) \times 0.5$$

= 4.1375

:: Semi-interquartile range =
$$\frac{4 \cdot 1375 - 2 \cdot 7}{2}$$
= 0.71875

(vi) 60 th percentile position =
$$\frac{60}{100} \times 50 = 30$$

60 th percentile, $P_{60} = 3.45 + \left(\frac{60}{100} \times 50 - 27}{6}\right) \times 0.5$

(vii) 4th decile position =
$$\frac{4}{10} \times 50 = 20$$

$$4^{th} \text{ decile, D}_4 = 2.95 + \left(\frac{\frac{4}{10} \times 50 - 17}{10}\right) \times 0.5$$

$$= 3.1$$

$$\frac{x - 17}{3 \cdot 3 - 2 \cdot 95} = \frac{27 - 17}{3 \cdot 45 - 2 \cdot 95}$$

$$x = 24$$

6. The weights in kg of 70 students were as follows:

Weights	<i>40</i> –	<i>45</i> –	<i>50</i> –	<i>55</i> –	<i>60</i> –	<i>65</i> –	70 –
	44	49	<i>54</i>	<i>59</i>	64	69	74
Frequency	5	8	16	12	14	9	6

(a) Calculate the:

(i) mean weight

(ii) standard deviation

(iii) number of students whose weights exceed the mean

weight

- (b) (i) Display the data on a histogram and superimpose a frequency polygon.
 - (ii) Use your histogram to estimate the mode
 - (c) Draw an ogive for the data and use it to estimate the:
 - (i) number of students weighing below 51kg
 - (ii) percentage of students weighing above 61kg
- (iii) probability that the weight of a student picked at random lies between

62.5kg and 68.5kg.

(iv) number of students whose weights lie within one standard deviation of

the mean

- (v) weight exceeded by 20% of the students.
- (vi) standard deviation

Solution:

Weight	f	X	fX	fx ²	Cf
40 – 44	5	42	210	8820	5
45 – 49	8	47	376	17672	13
<i>50 – 54</i>	16	<i>52</i>	832	43264	29
<i>55 – 59</i>	12	<i>57</i>	684	38988	41
60 – 64	14	62	868	<i>53816</i>	<i>55</i>
65 – 69	9	67	603	40401	64
70 – 74	6	72	432	31104	70
Sum	70		4005	234065	

(a) (i) mean =
$$\frac{4005}{70}$$

= 57.2143

(ii) SD =
$$\sqrt{\frac{234065}{70} - \left(\frac{4005}{70}\right)^2}$$

= 8.3852

(iii)

weigh	<i>54.5</i>	<i>57.214</i>	<i>59.5</i>
t		3	
Cf	41	X	29

$$\frac{x - 41}{57 \cdot 2143 - 54 \cdot 5} = \frac{29 - 41}{59 \cdot 5 - 54 \cdot 5}$$

7. The heights in cm of 100 plants were as follows:

Heights	<i>30</i> –	40 –	<i>50</i> –	<i>55</i> –	70 –	<i>80</i> –
	39	49	<i>54</i>	69	79	84
Frequency	11	22	15	27	12	13

- (a) Calculate the:
 - (i) mode
 - (ii) median
 - (iii) number of plants shorter than 71.5cm
- (b) Display the data on a histogram and use it to estimate the mode
- (c) Plot a cumulative frequency curve for the data and use it to estimate the:
 - (i) median
 - (ii) range of the heights of the middle 50% of the plants.
 - (iii) shortest height for sale if the top 10% of the plants qualify for sale.

Solution:

30 – 39	11	10	1.1	11
40 – 49	22	10	2.2	33
<i>50 – 54</i>	<i>15</i>	5	3	48
<i>55 – 69</i>	27	<i>15</i>	1.8	75
70 – 79	12	10	1.2	87
80 – 84	13	5	2.6	100
Sum	100			

(a) (i) mode =
$$49 \cdot 5 + \left(\frac{0 \cdot 8}{0 \cdot 8 + 1 \cdot 2}\right) \times 5$$

(ii) median position =
$$\frac{100}{2}$$
 = 50

$$median = 54 \cdot 5 + \left(\frac{\frac{100}{2} - 48}{27}\right) \times 15$$

(iii)

Heigh t	69.5	71.5	79.5
Cf	<i>75</i>	X	<i>87</i>

$$\frac{x - 75}{71 \cdot 5 - 69 \cdot 5} = \frac{87 - 75}{79 \cdot 5 - 69 \cdot 5}$$

$$x = 77.4$$

8. The marks of 160 students in a test were as follows:

Marks	<i>30</i> –	40 –	<i>50</i> –	60 –	70 –	<i>80</i> –
Frequency	5	42	61	37	<i>15</i>	0

(a) Calculate the:

- (i) standard deviation of the distribution
- (ii) mode

(iii) number of students who scored above 68 marks

- (b) Display the data on a histogram and use it to estimate the mode
- (c) Plot a cumulative frequency curve for the data and use it to estimate the:
 - (i) range of the marks of the middle 70% of the students.
 - (ii) standard deviation
- (iii) lowest mark for a distinction one if the top 5% of the students qualify for

distinction.

Solution:

Marks	f	X	fX	fx ²	Cf
30 – 40	5	35	175	6125	5
40 – 50	42	45	1890	85050	47
<i>50 – 60</i>	61	<i>55</i>	3355	184525	108
60 – 70	37	65	2405	156325	145
70 – 80	15	75	1125	84375	160
Sum	160	·	<i>8950</i>	516400	

(a) (i) SD =
$$\sqrt{\frac{516400}{160} - \left(\frac{8950}{160}\right)^2}$$

= 9.9245

(ii)
$$mode = 50 + \left(\frac{19}{19 + 24}\right) \times 10$$

= 54.4186

(iii)

Mark	60	68	70
S			
Cf	<i>52</i>	X	15

$$\frac{x - 52}{68 - 60} = \frac{15 - 52}{70 - 60}$$

9. The lengths in cm of 40 metal rods were as follows:

Lengths	Frequency
30 and under 35	8
35 and under 40	5
40 and under 55	12
55 and under 60	9
60 and under 65	6

(a) Calculate the:

- (i) mean length
- (ii) modal length
- (iii) number of metal rods shorter than 45cm.
- (b) (i) Display the data on a histogram and superimpose a frequency polygon.
 - (ii) Use your histogram to estimate the mode
 - (c) Draw an ogive for the data and use it to estimate the:
 - (i) median.
 - (ii) semi-interquartile range
 - (iii) 40 th to 60 th percentile length range **Solution**:

Lengths	f	X	fX	С	fd	Cf
30 - <	8	32.	260	5	1.6	8
35		5				
35 – <	5	<i>37.</i>	<i>187.5</i>	5	1	13
40		5				

40 - <	12	<i>47</i> .	570	1	0.8	25
55		5		5		
55 – <	9	<i>57</i> .	<i>517.5</i>	5	1.8	34
60		5				
60 - <	6	<i>62</i> ·	<i>375</i>	5	1.2	40
65		5				
Sum	40		1910			

(a) (i) mean =
$$\frac{1910}{40}$$

= 47.75

(ii) mode = 55 +
$$\left(\frac{1}{1+0.6}\right) \times 5$$

= 58.125

(iii)

Length s	40	45	55
Cf	13	X	25

$$\frac{x - 13}{45 - 40} = \frac{25 - 13}{55 - 40}$$

$$X = 17$$

10. The lengths in inches of 40 nails were as follows:

(a) Display use it to

(b)

distribution

Lengths (h)	frequenc
	У
<i>3.0 ≤ h < 3.5</i>	8
<i>3.5≤h<4.0</i>	5
<i>4.0 ≤ h < 5.5</i>	12
5.5≤h<6.0	9
6.0≤h<6.5	6

the data on a histogram and estimate the mode

Calculate the:

(i) standard deviation of the

- (ii) number of nails shorter than 4.5 inches.
- (c) Draw an ogive for the data and use it to estimate the:

- (i) length exceeded by 75% of the nails.
- (ii) number of nails whose lengths lie within one standard deviation of the

mean.

Solution:

Length	f	С	fd	X	fX	fx ²	Cf
3.0 – 3.5	8	0.5	16	3.25	26	<i>84.5</i>	8
3.5 - 4.0	5	0.5	10	3.75	<i>18.75</i>	70.3125	13
4.0 - 5.5	12	1.5	8	4.75	<i>57</i>	270.75	25
5.5-6.0	9	0.5	18	<i>5.75</i>	<i>51.75</i>	297.562	34
						5	
6.0 - 6.5	6	0.5	12	6.25	<i>37.5</i>	234.375	40
Sum	40				191	<i>957.5</i>	

(b) (i) SD =
$$\sqrt{\frac{957 \cdot 5}{40} - \left(\frac{191}{40}\right)^2}$$

= 1.0662

Lengt h	4.0	4.5	5.5
Cf	13	X	25

$$\frac{x - 13}{4 \cdot 5 - 4 \cdot 0} = \frac{25 - 13}{5 \cdot 5 - 4 \cdot 0}$$

$$X = 17$$

11. The cumulative distribution of the ages in years of 98 employees were as follows:

Age (years)	< 15	< 20	< 30	< 40	< 50	< 60	< 65
Cumulative	0	<i>17</i>	<i>39</i>	69	<i>87</i>	92	98
Frequency							

(a) Draw an ogive for the data and use it to estimate the semiinterquartile range (b) Calculate the mean age of the employees.

Solution:

(b)

[′]				
Ages	Cf	f	X	fX
15 – <	17	17	<i>17</i> .	297.5
20			5	
20 - <	39	22	25	550
30				
30 - <	69	<i>30</i>	<i>35</i>	1050
40				
40 - <	87	18	45	810
50				
<i>50 - <</i>	92	5	<i>55</i>	275
60				
60 - <	98	6	<i>62</i> ·	375
65			5	
Sum		98		<i>3357</i> .
				5

$$mean = \frac{3357 \cdot 5}{98}$$
= 34.2602

12. The height distribution of 50 players in a certain Football club were:

Height (cm)	> 160	> 164	> 168	> 172	> 176	> 180
No of players	50	45	37	23	7	0

Form a frequency table for the above data starting with a class of 160 – < 164.

Hence calculate the mean height and standard deviation.

Solution:

Ages No of players	f	X	fx	fx ²
--------------------	---	---	----	-----------------

160 – <	50	5	162	810	131220
164					
164 – <	<i>45</i>	8	166	132	220448
168				8	
168 – <	<i>37</i>	14	170	238	404600
172				0	
172 – <	23	16	174	278	484416
176				4	
176 – <	7	7	178	124	221788
180				6	
Sum		<i>50</i>		<i>854</i>	146247
				8	2

$$mean = \frac{8548}{50}$$
= 170.96

$$SD = \sqrt{\frac{1462472}{50} - \left(\frac{8548}{50}\right)^2}$$
= 4.70302

EER:

- 1. The lengths in cm of 5 metal rods were as follows: 8, 5, 2, 6, 4 Find the:

 - (i) mean length (ii) standard deviation

[Ans: (i) 5 (ii) 2]

2. A certain frequency distribution with standard deviation **7** has the following results: $\sum fx = 288$ and $\sum fx^2 = 7500$. Find the total number of items that were considered

[Ans: 12]

3. Two samples of size 100 and 150 respectively have mean 50 and 60 and standard deviation 5 and 6. Calculate the combined mean and standard deviation

[Ans: 56, 7.4565]

- 4. The weights in kg of 8 boxes were as follows: 11, 5, 2, 3, 11, 5, 8, 11 Find the:
 - (i) mean weight
 - (ii) standard deviation
 - (iii) semi-interquartile range

[Ans: (i) 7 (ii) 3.5 (iii) 3.5]

5. A certain frequency distribution with standard deviation **7** has the following results: $\sum fx = 177$ and $\sum fx^2 = 5259$. Find its $\sum f$

[Ans: 6]

6. A random sample of 6 books had the following masses in grams: 31, 28, 30, 33, 25, 30

Find the sample:

- (i) mean mass
- (ii) standard deviation

[Ans: (i) 29.5 (ii) 2.5]

7. The table below shows the mass of boys in a certain school

Mass (kg)	15	20	25	30	35
Number of	5	6	10	20	9
boys					

Calculate the mean mass

[Ans: 27.2]

8. The number of children in 30 families were as follows:

No of children per family	1	2	3	4	5
No of families	10	X	4	y	1

Given that the average number of children per family is 2.1, find the values of x and y

9. The weights in kg of 80 boys were as follows:

Weights	50 -	60 -	65 –	70 –
	<i>59</i>	64	69	/9
Frequency	18	20	X	у

Given that 60% of the boys have their weights below 66.5kg, find the values of x and y

10. The heights in cm of 80 plants were as follows:

Heights	0-9	10 – 19	20 – 29	30 – 39	40 – 49	50 – 59
Frequency	7	13	11	16	18	<i>15</i>

Draw an ogive for the data and use it to estimate the:

- (i) median height
- (ii) interquartile range
- (iii) 10 th to 90 th percentile range
- (iv) range of the heights of the middle 60% of the plants.
- (v) 4th decile

[Ans: (i) 35.5 (ii) 27 (iii) 44 (iv) 37.5 (v) 30]

11. The weights in kg of 50 students were as follows:

Weights	20 –	25 –	30 –	35 –	40 –	45 –
	24	29	34	39	44	49
Frequency	8	9	10	6	12	5

- (a) Calculate the:
 - (i) variance
 - (ii) 40 th percentile
- (b) Display the data on a histogram and use it to estimate the:
 - (i) modal weight
 - (ii) median weight
- (c) Display the data on an ogive and use it to estimate the standard deviation

[Ans: a (i) 66 (ii) 31 b (i) 42 (ii) 33.5 (c) 8.75]

12. The weights in kg for a group of animals were as follows:

Weight (kg)	Frequency
10 – 19	20
20 – 24	20
<i>25 – 29</i>	<i>15</i>
30	14
31 – 34	16
<i>35 – 39</i>	10
40 – 59	10

- (a) Calculate the:
 - (i) mean
 - (ii) standard deviation of the distribution
- (b) Draw a histogram for the data and use it to estimate the modal weight

[Ans: a(i) 28 (ii) 9.8525 (b) 30]

13. The lengths in inches of 40 nails were as follows:

Lengths	3.0-3.5	<i>3.5–4.</i>	4.0-5.	5.5–6.0	6.0–6.
		0	<i>5</i>		<i>5</i>
Frequency Density	16	10	8	18	12

(a)

Display the data on a histogram and use it to estimate the mode

- (b) Calculate the:
 - (i) standard deviation of the distribution
 - (ii) number of nails shorter than 4.5 inches.

14. The table below shows the weights in kg of 36 boys

Weights	60 –	65 –	70 –	<i>75</i> –	<i>80</i> –	85 – 90
Frequency	6	10	8	6	2	4

- (a) Calculate the:

 - (i) mean (ii) mode
- (b) Draw an ogive for the data and use it to estimate the:
 - (i) median
 - (ii) range of the weights of the middle 50% of the boys
 - (iii) standard deviation

15. The table below shows the marks scored by students in a certain test

Marks	< 20	< 30	< 35	< 40	< 50	< 60
Cumulative	4	20	<i>32</i>	42	48	<i>50</i>
Frequency						

(a) Construct a frequency distribution table

- (b) Draw a histogram for the data and use it to estimate the modal mark
- (c) Calculate the mean mark

[Ans: (b) 33 (c) 31.7]

16. The lengths in cm of 40 metal rods were as follows:

Lengths	Frequency
30 – < 35	8
35 – < 40	5
40 – < 55	12
<i>55 – < 60</i>	9
60 – < 65	6

- (a) Calculate the mean and mode of the distribution
- (b) Display the data on a histogram and use it to estimate the mode

[Ans: (a) 47.75, 58.125 (b) 58]

17. The table below shows the marks of 50 boys in a certain test

Marks	< 20	< 30	< 40	< 50	< 60	< 70
No of	0	8	20	34	44	<i>50</i>
boys						

- (a) Calculate the:
 - (i) variance for the distribution.
 - (ii) number of boys weighing below 48kg
- (b) (i) Display the data on a histogram and superimpose a frequency polygon.
 - (ii) Use your histogram to estimate the mode

[Ans:(a) (i) 154.56 (ii) 32 (b)(ii) 46.7 [

18. The marks of 100 students were as follows:

Marks	Frequency
Below 5	6
5 and under 10	11
10 and under 15	17
15 and under 25	28
25 and under 30	20
<i>30</i> and under <i>35</i>	15
35 and under 40	3

- (a) Calculate the:
- (i) upper quartile mark
- (ii) variance of the distribution
- (b) Display the data on a histogram and use it to estimate the mode [Ans: (a) (i) 28.25 (ii) 88.96 (b) 27.5]
- 19. The heights in cm of 100 recruits were as follows:

Height	No of
(cm)	recruits
148 – 153	6
153 – 158	11
<i>158 – 163</i>	17
163 – 173	28
173 – 178	20
178 – 183	<i>15</i>
183 – 188	3

- (a) Calculate the:
 - (i) mode
 - (ii) variance of the distribution
- (b) Display the data on an ogive and use it to estimate the:
 - (i) semi-interquartile range
 - (ii) height exceeded by 15% of the recruits.
 - (iii) range of the heights of the middle 20% of the recruits.

[Ans: a(i) 175-7273 (ii) 88-96 b(i) 8 (ii) 179 (iii) 7-25]

20. The lifetimes in hours of 80 solar bulbs were as follows:

Lifetimes	No of bulbs
$0 \le T < 10$	14
$10 \leq T < 20$	19
$20 \leq T < 30$	<i>15</i>
$30 \leq T < 40$	20
$40 \leq T < 50$	12

- (a) Calculate the variance of the distribution
- (b) Draw an ogive for the data and use it to estimate the lifetime

exceeded

by 75% of the bulbs.

[Ans: (a) 178.6094 (b) 13]

21. The marks of 40 boys were as follows:

Marks	> 30	> 35	> 40	> 55	> 60	> 65
No of boys	40	32	27	15	6	0

(a) Calculate the:

(i) mean

(ii) mode

- (b) Draw an ogive for the data and use it to estimate the:
 - (i) median
 - (ii) range of the marks of the middle 60% of the students.

[Ans: a(i) 47.75 (ii) 58.125 b(i) 50 (ii) 24]

22. The marks of 160 students in a test were as follows:

Marks	<i>30</i> –	40 –	<i>50</i> –	<i>60</i> –	70 –	<i>80</i> –
Frequency	5	42	61	<i>37</i>	<i>15</i>	0

(a) Calculate the:

- (i) mean
- (ii) standard deviation of the distribution
- (iii) mode
- (iv) median
- (v) lower quartile
- (vi) upper quartile
- (vii) 80 th percentile
- (viii) 4th decile
- (ix) number of students who scored above 68 marks
- (b) Display the data on a histogram and use it to estimate the mode

- (c) Plot a cumulative frequency curve for the data and use it to estimate the:
 - (i) range of the marks of the middle 70% of the students.
 - (ii) lowest mark for a distinction one if the top 5% of the students qualify for distinction.
- (iii) number of students whose marks lie within one standard deviation of

the mean.

[Ans: (a) (i) 55-9375 (ii) 9-9245 (iii) 54-4186 (iv) 55-4098 (v) 48-3333 (vi) 63-2432 (vii) 65-4054 (viii) 52-7869 (ix) 23 (b)(i) 21 (ii) 74 (iii) 106] 23. The weights in kg for a group of animals were as follows:

Weight (kg)	Frequency
21 – 25	10
26 – 30	20
31 – 35	<i>15</i>
<i>36 – 40</i>	10
41 – 50	30
<i>51 – 65</i>	45
66 – 75	5

- (a) Calculate the:
 - (i) mode
 - (ii) standard deviation of the distribution
- (b) Draw a cumulative frequency curve for the data and use it to estimate the

semi-interquartile range

[Ans: a(i) 28-8333 (ii) 13-3565 (b) 12]

24. The allowances in thousands of shillings to participants during a workshop

were as follows:

Amount (Sh'000s)	No of
	participants
110 – 114	13

115 – 119	20
120 – 129	32
130 – 134	17
135 – 144	16
145 – 159	12

- (a) Calculate the mean and median allowance.
- (b) Display the data on a histogram and use it to estimate the modal allowance.

[Ans: (a) 128, 126.375 (b) 117.5]

25. The marks of 40 students were as follows:

- (a) Form a frequency distribution table with a lower class of 10 14.
- (b) (i) Display the data on a histogram and superimpose a frequency polygon
 - (ii) Use your histogram to estimate the modal mark.
- (c) Calculate the:
 - (i) mean
 - (ii) standard deviation
 - (iii) semi-interquartile range

[Ans: b(i) 27.5 c (i) 28.375 (ii) 10.5468 (iii) 9.3452]

26. The ages in years of 40 students were as follows:

<i>12</i>	<i>13</i>	14	<i>12</i>	<i>15</i>	14	<i>13</i>	16	14	<i>15</i>
<i>13</i>	14	<i>16</i>	<i>15</i>	14	<i>12</i>	<i>13</i>	14	<i>15</i>	<i>13</i>
<i>15</i>	16	<i>15</i>	14	<i>15</i>	<i>12</i>	<i>15</i>	<i>13</i>	<i>12</i>	<i>15</i>
<i>13</i>	<i>15</i>	<i>12</i>	<i>15</i>	<i>16</i>	14	<i>15</i>	14	16	14

- (a) Form an ungrouped frequency distribution table for the data
- (b) Find the:

(i) mode

- (ii) median
- (iii) standard deviation
- (iv) semi-interquartile range

[Ans: b(i) 15 (ii) 14 (iii) 14.075 (iv) 1.2527]

27. The expenditure on 40 students in thousands of shillings were as follows:

<i>10</i>	11	10	<i>12</i>	14	16	20	25
<i>21</i>	<i>22</i>	<i>13</i>	<i>17</i>	18	<i>24</i>	<i>30</i>	<i>32</i>
<i>27</i>	<i>35</i>	27	<i>30</i>	16	<i>26</i>	25	29
<i>32</i>	<i>37</i>	<i>36</i>	<i>17</i>	26	28	<i>22</i>	<i>15</i>
<i>16</i>	19	<i>34</i>	<i>33</i>	<i>38</i>	26	27	34

(a) Form a frequency distribution table with class intervals of 5000 shillings and

the lowest class limit being 10,000

- (b) (i) Display the data on a histogram and superimpose a frequency polygon
 - (ii) Use your histogram to estimate the modal expenditure.
 - (c) Calculate the:
 - (i) mean expenditure
 - (ii) standard deviation

[Ans: b(ii) 27.5 (c) (i) 24 (ii) 3.9370]

28. The prices in thousands of shillings for 40 bags were as follow:

<i>3.6</i>	<i>5.2</i>	<i>3.8</i>	<i>4.3</i>	<i>5.3</i>	<i>3.1</i>	<i>3.8</i>	<i>4.0</i>	<i>5.4</i>	4.6
<i>3.7</i>	<i>3.0</i>	<i>4.2</i>	<i>3.7</i>	<i>3.2</i>	4.8	4.6	<i>3.5</i>	<i>4.1</i>	3.9
<i>5.3</i>	<i>4.8</i>	4.4	<i>5.0</i>	<i>3.3</i>	<i>4.2</i>	3.6	<i>5.3</i>	<i>3.8</i>	3.0
5.2	3.9	<i>4.7</i>	3.8	5.1	4.0	3.2	4.2	5.3	3.8

(a) Starting with the lowest class limit of 3.0 thousand shillings, form a frequency

distribution table with class intervals of 0.5 thousand shillings.

- (b) Calculate the median and standard deviation.
- (c) Display the data on a histogram and use it to estimate the mode

[Ans: (b) 4.075, 0.6936 (c) 3.75]

29. At 7:30am daily a bus leaves town P for town Q. The times in minutes

taken to cover the journey were recorded over a period of time and

grouped as follows.

Time (min)	Frequency
40 – 44	12
45 – 49	<i>15</i>
<i>50 – 54</i>	35
<i>55 – 59</i>	40
60 – 64	28
65 – 69	20

- (a) calculate the mode, mean and standard deviation for the distribution
 - (b) Draw an ogive for the data and use it to estimate the:
 - (i) median time for the journey
 - (ii) semi-interquartile range for the distribution
 - (iii) number of times the bus arrived in town Q between 8:20 - 8:36am

[Ans: (a) 55.9706, 55.9, 7.1150 b (i) 56 (ii) 5.25 (iii) 108]

30. The cumulative distribution of the heights in cm of 400 students were as

follows:

Height (cm)	< 100	< 110	< 120	< 130	< 140	< 150	< 160	< 170
Cumulative	0	27	<i>85</i>	215	<i>320</i>	<i>370</i>	<i>395</i>	400
Frequency								

- (a) Draw an ogive for the data and use it to estimate the:
 - (i) median height
 - (ii) interquartile range
 - (iii) 10 th to 90 th percentile range
- (b) (i) Calculate the standard deviation for the data.
 - (ii) Draw a histogram for the above data.

[Ans: a(i) 129 (ii) 16 (iii) 34 b(i) 13-1114]

31. The marks scored by 200 students in a test were as follows:

Marks Frequency

 Below 10
 23

 10 and under 20
 67

 20 and under 30
 42

 30 and under 40
 25

 40 and under 50
 21

 50 and under 60
 15

 passed,
 60 and under 70
 7

Calculate the:

- (i) upper quartile mark
- (ii) standard deviation
- (iii) number of students who if the pass mark was **38**.
- **(b)** Draw a cumulative frequency curve for the data and use it to estimate the:
- (i) lowest mark for a distinction one if the top 5% of the students qualify for distinction.
 - (ii) number of students who scored between 15 and 45 marks.

[Ans: a(i) 37-2 (ii) 15-9899 (iii) 48 b(i) 58 (ii) 106]

32. The heights in cm of 40 plants were as follows:

 Heights
 H
 No of Plants

 $30 \le H < 35$ 8

 $35 \le H < 40$ 5

 $40 \le H < 55$ 12

 $55 \le H < 60$ 9

 $60 \le H < 65$ 6

the:

(i) mode

(ii) number of plants

45cm

an ogive for the data

and use it to estimate the:

- (i) median
- (ii) range of the heights of the middle 50% of the plants.

[Ans: a(i) 58 (ii) 17 b(i) 49 (ii) 21]

33. The marks scored by 20 students in a test are as follows:

60 80 60 80 70 90 *50 60 80* 90 60 80 70 70 70 80 60 60 70

- (a) Form an ungrouped frequency distribution table for the data (b) Find the:
 - (i) mode
 - (ii) standard deviation
 - (iii) median
 - (iv) semi-interquartile range

[Ans: (i) 60 (ii) 11.5217 (iii) 70 (iv) 10]

34. A set of **9** observations had the following results: $\sum x = 290$ and $\sum x^2 = 8469$. Find the mean and variance of the distribution.

[Ans: 29, 5.9]

35. The lengths **a, b, 8, 7,5** in cm of five metal rods are distributed with a mean of **6** and variance of **2**. Given that **a > b**, find the values of **a** and **b**.

36. A certain frequency distribution gave the following results: $\sum f = 20$, $\sum fx = 563$ and $\sum fx^2 = 16143$. Find the mean and standard deviation of the distribution.

[Ans: 28-15, 3-8376]

37. A certain frequency distribution gave the following results: $\sum f = 30$, $\sum f(x - \overline{x})^2 = 182 \cdot 3$ and $\sum fx^2 = 1025$. Find the mean of the distribution.

[Ans: 5.3]

38. A set of ten observations had the following results: $\sum (x - \overline{x})^2 = 60$ and

 $\sum x^2 = 285$. Find the mean of the distribution.

[Ans: 5]

39. Show that the standard deviation of the first **n** integers is $\sqrt{\frac{n^2-1}{12}}$. Hence obtain the mean and standard deviation of the integers **1**, **2**, --- **26**.

[Ans: 13.5, 7.5]

40. Two samples of equal size respectively have mean μ_1 and μ_2 and standard deviation σ_1 and σ_2 . Show that the combined variance

$$\sigma^2 = \frac{2(\sigma_1^2 + \sigma_2^2) + (\mu_1 - \mu_2)^2}{4}$$