Universidade Federal de Viçosa CCE - Departamento de Matemática Lista 4 de MAT 137

Introdução à Álgebra Linear: Transformações Lineares, Autovalores e Autovetores

- 1. Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear que dobra o comprimento do vetor u = (2,1) e triplica o comprimento do vetor v = (1,2) sem alterar as direções e nem inverter os sentidos.
 - (a) Determine T(x, y).
 - (b) Determine a matriz da transformação linear em relação à base $\beta = \{(2,1), (1,2)\}.$
- 2. Consider a transformação linear $T:\mathbb{R}^2\to\mathbb{R}^3$ cuja matriz em relação às bases $\beta=\{(-1,1),(1,0)\}$ e $\beta'=\{(1,1,-1),(2,1,0),(1,1,0)\}$ de \mathbb{R}^2 e \mathbb{R}^3 , respectivamente, é dada por

$$A=\left[egin{array}{ccc} 3&1\ 2&5\ 1&-1 \end{array}
ight]\;.$$

- (a) Encontre a expressão de T(x, y) em relação às bases canônicas de cada espaço.
- (b) Qual é a imagem do vetor (2, -3) pela T.
- (c) Se T(v) = (2, 4, -2), calcule v.
- 3. Determine as matrizes $[T]_{\beta,\beta'}$ em cada uma das seguintes transformações lineares com relação às bases dadas.
 - (a) $T(x,y)=(x+2y,2x-2y),\ eta=\{(0,1),(2,-2)\},\ eta'=\{(1,0),(2,-2)\}$
 - (b) $T(x,y)=(3x+2y,4x-2y),\ eta=\{(-3,1),(2,-2)\},\ eta'=\{(1,0),(1,3)\}$
 - $\text{(c)} \ \ T(x,y,z) = (x,4x+y,x+z), \, \beta = \{(1,1,0),(0,1,0),(1,1,1)\}, \, \beta' = \{(1,1,0),(0,1,0),(1,1,1)\}$
- 4. Sabendo que a matriz do operador linear $T:\mathbb{R}^3 o \mathbb{R}^3$ em relação à base

$$m{eta}' = \{(1,1,1), (1,2,1), (1,1,3)\}$$

é

$$A=rac{1}{2}\left[egin{array}{cccc} 3 & 1 & 3 \ 0 & 2 & 0 \ -1 & -1 & -1 \end{array}
ight] \; ,$$

determinar a matriz de T relativa à base canônica.

- 5. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear dada por T(x,y,z) = (x-y,x+2y-z,y-z) e considere $\alpha = \{(1,0,0),(0,1,1),(1,0,1)\}$ e $\beta = \{(1,0,1),(0,1,1),(0,0,1)\}$ duas bases de \mathbb{R}^3 .
 - (a) Encontre a matriz da transformação linear T da base α para a β .
 - (b) Se $[T(v)]_{\beta} = (1, 2, -1)$, encontre v.
- **6.** Dada a transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^3$ definida por T(1,0,0,0) = (1,1,2), T(0,1,0,0) = (1,2,3), T(0,0,1,0) = (2,0,2) e T(0,0,0,1) = (4,0,4).
 - (a) Encontre T(x, y, z, t),

- (b) Determine uma base de N(T).
- (c) Determine uma base de Im(T).
- 7. Sejam os subespaços vetoriais de \mathbb{R}^3 , $W_1=\{(x,y,z)\in\mathbb{R}^3 \text{ tal que } x-y+4z=0\}$, e $W_2=[(0,1,0),(1,0,1)]$ então:
 - (a) Prove que W_1 é um subespaço e determine uma base.
 - (b) Determinar a dimensão de $W_1 \cap W_2$.
- 8. Determine uma transformação linear $T:P_2(\mathbb{R})\to P_2(\mathbb{R})$ tal que $T(1)=x,\ T(x)=1-x^2$ e $T(x^2)=2x$. Encontre o núcleo e a imagem de T.
- 9. Seja $T:\mathbb{R}^3 o \mathbb{R}^3$ um operador linear definido pela fórmula:

$$T(x, y, z) = (x + 3y + 2z, 2x + 7y + 5z, -x - 2y).$$

- (a) Verifique que T é injetora.
- (b) Encontre T^{-1} .
- 10. Determine uma transformação linear $T:\mathbb{R}^3\to\mathbb{R}^2$ cujo núcleo seja gerado pelos vetores $v_1=(1,0,0)$ e $v_2=(1,2,1)$.
- 12. Determine uma transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ cujo imagem seja gerada pelos vetores $v_1 = (1, 1, 0)$ e $v_2 = (0, 1, 1)$.
- 13. Mostre que o operador linear $T:\mathbb{R}^3\to\mathbb{R}^3$ dado por T(x,y,z)=(x-3y-2z,y-4z,-z) é inversível e determine T^{-1} .
- **14.** Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear tal que $T(1,0,1)=(1,1,0), \ T(0,1,0)=(1,0,-1)$ e T(0,1,1)=(0,0,1).
 - (a) Determine T(x, y, z).
 - (b) Determinar a matriz da transformação com respeito à base canônica de \mathbb{R}^3 .
 - (c) T é inversível? Se for, calcule sua inversa.
- 15. Determine os autovalores e autovetores dos seguintes opeadores lineares:
 - (a) $T:\mathbb{R}^2 o\mathbb{R}^2,\, T(x,y)=(x+2y,-x+4y).$
 - (b) $T: \mathbb{R}^2 o \mathbb{R}^2, \ T(x,y) = (2x+2y,x+3y).$
 - $\text{(c)} \ \ T:\mathbb{R}^3\to\mathbb{R}^3, \ T(x,y,z)=(x+y+z,2y+z,2y+3z).$
- $\text{(d)} \ \ T: \mathbb{R}^3 \to \mathbb{R}^3, \ T(x,y,z) = (x, -2x-y, 2x+y+2z).$
- (e) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x,y,z) = (3x-4z,3y+5z,-z).
- 16. Os vetores $v_1=(1,1)$ e $v_2=(2,-1)$ são autovetores de um operador linear $T:\mathbb{R}^2\to\mathbb{R}^2$ associados a $\lambda_1=5$ e $\lambda_2=-1$ respectivamente. Usando estas informações, determine a imagem do vetor v=(4,1) por este operador.
- 17. Determinar o operador linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ cujos autovalores são $\lambda_1 = 3$ e $\lambda_2 = -2$, associados aos autovetores $v_1 = (1,2)$ e $v_2 = (-1,0)$.
- 18. Seja $T:P_2(\mathbb{R}) o P_2(\mathbb{R})$ definida por $T(ax^2+bx+c)=(a+c)x^2+(3a+2b-c)x+3c.$
 - (a) Encontre os autovalores de T.

- (b) Encontre uma base para cada auto-espaço de T.
- **19.** Consider a aplicação $T:M_2(\mathbb{R}) o\mathbb{R}$ dada por $T\Big(\left[egin{array}{cc} a_{11} & a_{12} \ a_{21} & a_{22} \end{array}
 ight]\Big)=a_{11}+a_{22}.$
 - (a) Mostre que T é transformação linear.
 - (b) A matriz $\begin{bmatrix} 2 & 1 \\ 2 & -2 \end{bmatrix}$ pertence ao núcleo de T?.
 - (c) Encontre uma base do núcleo de T.
 - (d) Encontre uma base da imagem de T.
- **20.** Considere o operador $T:\mathbb{R}^3 o \mathbb{R}^3$ dado por T(x,y,z) = (-2x-4y,2x+4y,-2x-2y+2z).
 - (a) Determine o polinômio característico de T.
 - (b) Quais são os autovalores de T?
 - (c) T é inversível.
- 21. Dê, quando possível, exemplos de transformações lineares T e S satisfazendo as seguintes condições:
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ sobrejetora.
 - (b) $S: \mathbb{R}^3 \to \mathbb{R}^2 \text{ com } N(S) = \{(0,0,0)\}.$
- **22.** Considere a transformação linear $T:\mathbb{R}^3 o \mathbb{R}^3$ dada por T(x,y,z)=(2z,-y,2x).
 - (a) Encontre os autovalores de T.
 - (b) Encontre os autovetores de T.
 - (c) Diagonalize T.
- 23. Verifique se as matrizes dadas são diagonalizáveis.

$$A = \left[egin{array}{ccc} 1 & -1 & 0 \ 2 & 3 & 2 \ 1 & 1 & 2 \end{array}
ight] \; , \; B = \left[egin{array}{ccc} 1 & -1 & 0 \ 2 & 3 & 2 \ 1 & 1 & 2 \end{array}
ight] \; , \; C = \left[egin{array}{ccc} 2 & 2 & 3 \ 1 & 2 & 1 \ 2 & -2 & 1 \end{array}
ight]$$

- **24.** Considere o operador linear $T:\mathbb{R}^4 o\mathbb{R}^4$ dado por T(x,y,z,t)=(y+t,x+z,y+t,x+z).
 - (a) Determine o polinômio de T.
 - (b) Quais são os autovalores de T?
 - (c) Encontre os autovetores de T.
 - (d) T é inversível?
 - (e) T é diagonalizável? Em caso afirmativo, dê uma base β na qual $[T]_{\beta}$ é diagonal.