Principiul minimului. Metode numerice. Probleme cu restricții

Problema de control optimal 1

Pentru un sistem descris în spațiul stărilor de:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t), \ \ 0 \le t \le t_f, \ \ \text{cu condiția inițială } \mathbf{x}(0) = \mathbf{x}_0$$

se cere să se determine comanda optimală $\mathbf{u}^*(t)$ pentru care sistemul să urmeze o traiectorie optimală $\mathbf{x}^*(t)$ care să minimizeze funcția de cost

$$J = h(\mathbf{x}(t_f), t_f) + \int_0^{t_f} g(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

2 Condițiile necesare pentru control optimal

Se notează hamiltonianul H:

$$H(\mathbf{x}, \mathbf{u}, \lambda) = g(\mathbf{x}, \mathbf{u}, t) + \lambda^T \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$
(1)

Dacă stările și variabilele de comandă nu sunt supuse restricțiilor, timpul final t_f este fixat și starea finală nu este fixată, atunci condițiile necesare pentru control optimal sunt:

$$\dot{\mathbf{x}}^* = \frac{\partial H}{\partial \lambda} = \mathbf{f}(\mathbf{x}^*, \mathbf{u}^*, t)$$
 (2)

$$\dot{\lambda}^* = -\frac{\partial H}{\partial \mathbf{x}}$$

$$0 = \frac{\partial H}{\partial \mathbf{u}}$$

$$\mathbf{x}^*(t_0) = \mathbf{x}_0$$
(5)

$$0 = \frac{\partial H}{\partial u} \tag{4}$$

$$\mathbf{x}^*(t_0) = \mathbf{x}_0 \tag{5}$$

$$\lambda^*(t_f) = \frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}^*(t_f)) \tag{6}$$

Rezolvarea problemelor utilizând condițiile necesare pentru opti-3 malitate

Dacă stările și comenzile nu sunt supuse restricțiilor, starea finală nu este precizată și timpul final este precizat, atunci se urmează pașii:

1. Scrieți hamiltonianul

$$H(\mathbf{x}, \mathbf{u}, \lambda) = g(\mathbf{x}, \mathbf{u}, t) + \lambda^T \mathbf{f}(\mathbf{x}, \mathbf{u}, t)$$

2. Se calculează **u** care minimizează hamiltonianul:

$$\frac{\partial H}{\partial \mathbf{u}} = 0, \quad \frac{\partial^2 H}{\partial u^2} > 0$$

3. Se determină ecuațiile diferențiale pentru variabilele auxiliare, co-stările $\lambda(t)$:

$$\dot{\lambda} = -\frac{\partial H}{\partial \mathbf{x}}$$

4. Se determină condițiile finale pentru λ :

$$\lambda(t_f) = \frac{\partial h}{\partial \mathbf{x}}(\mathbf{x}(t_f))$$

5. Se integreaza sistemul de ecuații diferențiale pentru λ și sistemul de ecuații de stare, cu condițiile finale calculate pentru λ și condițiile inițiale impuse pentru stările x. Dacă valorile finale ale co-stărilor depind de valorile finale ale stărilor, atunci se rezolvă problema TPBVP (Two Point Boundary Value Problem), urmând de exemplu algoritmul descris în continuare.

4 Rezolvarea TPBVP

Algoritmul se bazează pe observația că $u^*(t)$ care minimizează hamiltonianul va minimiza funcția de cost J. Astfel, algoritmul numeric va determina funcția u^* care anulează prima derivată a hamiltonianului.

4.1 Rezolvarea TPBVP utilizând funcții de optimizare din Matlab

- 1. Scrieţi hamitonianul $H(x(t), u(t), \lambda(t))$.
- 2. Calculați prima derivată a hamiltonianului în raport cu u: $\partial H/\partial u$.
- 3. Scrieți sistemul de ecuații diferențiale pentru costări
- 4. Determinați condițiile finale pentru $\lambda(t_f)$
- 5. Stabiliți o aproximare discretă inițială u(t), $t \in [0, t_f]$. De exemplu împărțiți intervalul $[t_0, t_f]$ în N subintervale și considerați comanda u constantă pe fiecare subinterval: $u(t) = u(t_k)$, k = 1..N
- 6. Minimizați $H(\mathbf{u})$ cu o funcție Matlab (de exemplu *fminunc* sau *fminsearch*) sau cu un algoritm numeric pentru determinarea minimului (de exemplu metoda de gradient). Funcția de minimizat are ca argument de intrare vectorul de valori \mathbf{u} și trebuie să rezolve următoarele:
 - (a) Utilizând vectorul \mathbf{u} se integreaza ecuațiile de stare cu condițiile inițiale $\mathbf{x}(\mathbf{0}) = \mathbf{x}\mathbf{0}$ și se obțin valorile stărilor în același număr de puncte ca și \mathbf{u} , pe N subintervale.
 - (b) Se calculează $\lambda(t_f)$
 - (c) Se rezolvă sistemul de ecuații diferențiale pentru co-stări, cu condițiile finale $\lambda(t_f)$, integrând invers, de la timpul final spre timpul inițial $(t_f \to t_0)$. Se obțin vectori de valori pentru λ de aceeași dimensiune ca și \mathbf{x} .
 - (d) Utilizând $u, x \le \lambda$ se calculează hamiltonianul (prima derivată a hamiltonianului).
 - (e) Funcția de optimizat returnează norma hamiltonianului (sau a primei derivate a hamiltonianului).

4.2 Rezolvarea TPBVP utilizând metoda de gradient

- 1. Scrieți hamitonianul $H(x(t), u(t), \lambda(t))$.
- 2. Calculați prima derivată a hamiltonianului în raport cu u: $\partial H/\partial u$.
- 3. Scrieți sistemul de ecuații diferențiale pentru costări
- 4. Determinați condițiile finale pentru $\lambda(t_f)$

- 5. Stabiliți o aproximare discretă inițială u(t), $t \in [0, t_f]$. De exemplu împărțiți intervalul $[t_0, t_f]$ în N subintervale și considerați comanda u constantă pe fiecare subinterval: $u(t) = u(t_k)$, k = 1..N
- 6. Utilizând vectorul \mathbf{u} se integreaza ecuațiile de stare cu condițiile inițiale $\mathbf{x}(\mathbf{0}) = \mathbf{x}\mathbf{0}$ și se obțin valorile stărilor în același număr de puncte ca și \mathbf{u} , pe N subintervale.
- 7. Se calculează $\lambda(t_f)$
- 8. Se rezolvă sistemul de ecuații diferențiale pentru co-stări, cu condițiile finale $\lambda(t_f)$, integrând invers, de la timpul final spre timpul inițial $(t_f \to t_0)$. Se obțin vectori de valori pentru λ de aceeași dimensiune ca si \mathbf{x} .
- 9. Utilizând $u,\,x$ și λ se calculează prima derivată a hamiltonianului $\frac{\partial H}{\partial u}$.
- 10. Dacă

$$\|\frac{\partial H}{\partial \mathbf{u}}\| \le \varepsilon \tag{7}$$

unde ε este o constantă mică pozitivă, procedura iterativă se termină şi se returneaza valorile comenzii optimale.

11. Dacă condiția de oprire nu este îndeplinită se generează un nou vector u, dat de iterația:

$$\mathbf{u} \leftarrow \mathbf{u} - \tau \frac{\partial H}{\partial \mathbf{u}} \tag{8}$$

unde τ este pasul metodei de gradient.

5 Exerciţii

Rezolvaţi următoarele probleme utilizând:

- Condițiile necesare pentru control optimal și calcul analitic. Pentru integrarea ecuațiilor diferențiale se poate utiliza funcția Matlab dsolve.
- Un algoritm numeric descris în secțiunea 4, la alegere:
 - Pentru optimizare cu funcții Matlab utilizați fminunc sau fminsearch
 - Pentru optimizare cu metoda de gradient scrieți algoritmul în Matlab.
- P1. Pentru sistemul dinamic descris de ecuația de stare:

$$\dot{x}(t) = -x(t) + u(t), \quad x(0) = 1$$

se cere să se determine comanda optimală $u^*(t)$ care minimizează funcția de cost:

$$J = \int_0^2 \left(u^2(t) + x(t) \right) dt$$

Reprezentați grafic $u^*(t)$ și traiectoria de stare optimă $x^*(t)$.

P2. Pentru sistemul dinamic descris de ecuația de stare:

$$\dot{x}(t) = -2x(t) + u(t), \quad x(0) = 0$$

se cere să se determine comanda optimală $u^*(t)$ care minimizează funcția de cost:

$$J = \int_0^{10} \left(0.01u^2(t) + (x(t) - \cos t)^2 \right) dt$$

Reprezentați grafic $u^*(t)$ și traiectoria de stare optimă $x^*(t)$.

6 Probleme cu restricții

R1. Arătați că pentru sistemul scalar

$$\dot{x}(t) = -x(t) + u(t), \quad x(0) = 1, \quad |u(t)| \le M \quad t \in [0, 1]$$
(9)

un control admisibil $u^*(t)$ care minimizează funcția de cost:

$$J = x(1) + \int_0^1 u^2(t)dt \tag{10}$$

este de forma:

(a) dacă $2M \ge 1$:

$$u^*(t) = -\frac{1}{2}e^{t-1} \tag{11}$$

(b) dacă 2M < 1:

$$u^*(t) = \begin{cases} -\frac{1}{2}e^{t-1}, \text{ for } 0 \le t \le 1 + \ln 2M \\ -M, \text{ for } 1 + \ln 2M \le t \le 1 \end{cases}$$
 (12)

R2. Pentru sistemul descris de ecuația de stare:

$$\dot{x}(t) = x(t) + u(t), \ x(0) = 5$$
 (13)

cu restricția: $0 \le u(t) \le 2$, minimizați funcția de cost:

$$J = \int_0^2 \left(u^2(t) + 3u(t) - 2x(t) \right) dt \tag{14}$$

R3. Verificați ca soluția problemei:

$$\dot{x}(t) = -x(t) + u(t), \quad x(0) = 0 \tag{15}$$

$$\min_{u} J = 2x(1) + \int_{0}^{1} \left(x(t) + \frac{1}{2}u^{2}(t) \right) dt \tag{16}$$

cu restricția $|u(t)| \leq M$ este controlul optimal:

$$u^*(t) = \begin{cases} -\lambda(t) & \text{dacă} & |\lambda(t)| \le 1\\ -M \text{sign}(\lambda(t)) & \text{dacă} & |\lambda(t)| > 1 \end{cases}$$
 (17)

unde $\lambda(t) = 1 + e^{t-1}$ este soluția ecuației:

$$\dot{\lambda}(t) = \lambda(t) - 1, \quad \lambda(0) = 2 \tag{18}$$

Verificați că:

a)
$$u^*(t) = -M \quad \text{dacă} \quad M \le 1 + e^{-1}$$
 (19)

b)
$$u^*(t) = -1 - e^{t-1} \quad \text{dacă} \quad M \ge 2$$
 (20)

c)
$$u^*(t) = \begin{cases} -1 - e^{t-1} & \text{dacă} & 0 \le t \le \ln(M-1) \\ -M & \text{if} & t > 1 + \ln(M-1) > 1 \end{cases}$$
 (21)

dacă $1 + e^{-1} \le M \le 2$.