Wireless Broadband Networks

WLAN: Support of mobile devices, but low data rate for higher number of users

→ What to do for a high number of users or even needed QoS support?

Problem of the last mile

- Provide broadband Internet access to private buildings
- Modem, ISDN, xDSL, CATV (Cable TV), PLC (Power Line Communications) everything needs a (costly) installation of cables
 - → WirelessMAN (WMAN)
 - Wireless Internet connection of hotspots
 - High-speed Internet access for mobile users
 - DSL replacement für residential areas and companies
 - Wireless backbone
 - → IEEE **802.16** (Broadband Wireless Access, BWA)
 - → IEEE 802.20 (Mobile Broadband Wireless Access, MBWA)
 - → IEEE **802.22** (Wireless Regional Area Network, WRAN)

802.16 - Usage

Need for Speed

WMAN

WPAN: IEEE 802.15 (WirelessPAN, Bluetooth)

WLAN: IEEE 802.11 (WirelessLAN) WMAN: IEEE 802.16 (WirelessMAN)

WWAN: IEEE 802.16e (WirelessMAN), IEEE 802.20 (Wireless Mobility)

IEEE 802.21: Handover between the network types

802.16: Topology: Point-to-Multipoint

- A base station supplies a certain geographical area
- All base stations are connected to a fixed backbone network

Core Network

Chapter 3.3: WMAN Page 5

802.16: Mesh Topology

- Designated subscribers serve as relay stations (repeater)
- A meshed network arises
- Good adaptation to geographical situation and bandwidth needs

Mesh Topology

Chapter 3.3: WMAN

Page 7

IEEE 802.16

Working group "Broadband Wireless Access"

- Founded July 1999
- Standard adopted December 2002
- Standardized as WirelessMAN (Europe: ETSI HIPERMAN)

Specification of PHY and MAC layer in 10 - 66 GHz

- Line-of-sight (LOS) necessary low or no mobility
- Usage of license-free frequency bands as well as such which are subject to license
- Variable channel bandwidth for optimal usage of the frequency range
- Optimized for packet-oriented data communication
- QoS support
- Variable data rates

a, b, c, ...

IEEE 802.16.1

- Frequency range: 10 66 GHz
- Line-of-sight (LOS), up to 134 MBit/s IEEE 802.16.2
- Minimization of the interference of coexisting WMANs

IEEE 802.16a

- Frequency range: 2 11 GHz
- Non-line-of-sight (NLOS, higher range, but lower data rate)
- Mesh topology

IEEE 802.16b

 Frequency range: 5 - 6 GHz ("WirelessHUMAN")

IEEE 802.16c

 Detailed System Profiles (interoperability)

IEEE 802.16d

 Combination of 16 and 16a with some modifications to PHY and MAC layer

IEEE 802.16e

- Support of mobility
 IEEE 802.16f / g / i
- Management Information Base / Management Procedures and Services / Mobile Management Information Base

IEEE 802.16h

Coexistence Mechanisms

IEEE 802.16j / k

 Multihop Relay Specification / MAC Bridging of 802.16

IEEE 802.16m

Data rates of 100 Mbit/s (mobile) resp. 1
 Gbit/s (fixed)

802.16, 802.16a, and 802.16e

	802.16	802.16a	802.16e	
Frequency range	10 - 66 GHz	2 - 11 GHz	5 - 6 GHz	
Transmission	LOS	NLOS	NLOS	
Data rate	32 - 134 MBit/s	up to 75 MBit/s	up to 15 MBit/s	
Modulation	QPSK, 16QAM, 64QAM	QPSK, 16QAM, 64QAM 64QAM		
Mobility	no	no	"pedestrian mobility"	
Typical cell size	1.5 - 5 km ; 50 km is maximum size	7 - 10 km; 50 km is maximum size	•	
Application area	Connection of stationary users of a region	Fast connection of hotspots, Mesh topology	Enhancement by user mobility	

802.16 - Medium Access

IEEE 802.16 standard

- Defined is a so-called WirelessMAN-SC (Single Carrier) which means:
 - > TDD (Time Division Duplex) or
 - > FDD (Frequency Division Duplex) or
 - ➤ Half-Duplex FDD (cheaper)
- TDD und FDD variants realize a highly flexible duplexing schema: uplink and downlink bandwidths are dynamically assigned by adaptive modulation and coding, depending on the traffic requirements (DAMA-TDMA)

IEEE 802.16a

- Multipath signal propagation is to be considered
- Defined are three different transmission modes:
 - WirelessMAN-SC2 (adopted version from SC1)
 - WirelessMAN-OFDM on 256 sub-bands, access by TDMA (mandatory for license-free frequency bands)
 - WirelessMAN-OFDMA (OFD Multiple Access) on 2048 sub-bands; a transmission is assigned a subset of those sub-bands
- IEEE 802.16e: WirelessMAN-OFDMA as well as a scalable version (SOFDMA)

Principle - TDD

The whole time axis is divided into frames. a frame consists of an uplink (UL) sub-frame and a downlink (DL) sub-frame:

- Preamble: synchronization
- DL-Map: specifies changes in modulation and/or FEC schema which occur during the frame transmission
- UL-Map: notifies all stations about the bandwidth allocation for the following UL sub-frame
- DL-Burst: one or more MAC frames for a certain station

Frames in TDD

The whole time axis is divided into frames. a frame consists of an uplink (UL) sub-frame and a downlink (DL) sub-frame:

- Initial Maintenance: first access by stations to detect round-trip-time to the base station as well as necessary transmission power (random choice of a time slot in that field by backoff mechanism); collisions are possible
- Request Contention: demand reservations in coming UL maps (again by backoff mechanism), collisions are possible
- The following data re for several stations, as described in the UL map

802.16 - Transmission Control

- Scalability
 - > The base station can manage several hundreds of stations
- Usage of flexible TDMA for medium access
- Dynamic frequency choice
- Support of different traffic types
 - Continuous data (video), bursty data (WWW)
- Provision of several levels of QoS
- Security mechanisms
 - Key management, authentication, encryption of payload
- Retransmissions, if necessary (ARQ)

802.16 MAC-Layer: QoS

- The MAC layer is connection-oriented!
- Four types of service classes are offered (like in ATM):
 - Unsolicited Grant Service (UGS)
 - ➤ Real-time Polling Service (rtPS)
 - ➤ Non-real-time Polling Service (nrtPS)
 - ➤ Best Effort Service (BE)
- Data of a connection are seen as a Service Flow

Service Classes

Unsolicited Grant Service

- Real-time transmission (e.g. voice), periodically transmission of fixed-length packets
- The base station reserves capacity in fixed time intervals

Real-Time Polling Service

- Real-time transmission (e.g. MPEG), periodically transmission of variable-length packets
- The base station initiates periodic polls to serve the bandwidth need of a receiver

Non-Real-Time Polling Service

- Variable-length packets with weak delay requirements
- The base station initiates polls frequently (but not necessarily periodically)
- Also could use Contention Requests

Best Effort Service

- No polling
- Stations use Contention Requests

Scheduling

To enforce QoS requirements, all transmission need to be scheduled

Centralized Scheduling

The base station assigns capacity to the other stations

Decentralized Scheduling

- Stations exchange scheduling information with their neighbors
- Each station notes the scheduling request of the neighbors
- The base station is not longer involved in scheduling, it only assigns bandwidth
- Variant 1: Coordinated. The base station reserves bandwidth for the exchange of scheduling messages (with a 3-Way-Handshake)
- Variant 2: Uncoordinated. Exchange of scheduling messages in done with a contention mechanism (using a backoff) – risk of collisions

802.16c-Forum (WiMAX)

Worldwide Interoperability for Microwave Access Forum (WiMAX)

- Members: Airspan Networks, Alvarion, Aperto Networks, Ensemble Communication, Fujitsu of America, Intel, Nokia, Proxim, Wi-LAN
- Goal: global compatibility between 802.16a-Produkten by definition of profiles

802.16 vs. 802.11

	802.11	802.16	Explanation
Range	• 30 - 100 Meter	 Typical cell size: 7 - 10 km Up to 50 km No Hidden Stations 	802.16 handles multipath propagation much better – signal quality in larger distances I still good
Target usage	• Indoor	Outdoor, Support of mesh topologies	
Scalability	Bandwidth of 20 MHz is fixed	Bandwidth between 1.5 and 28 MHz allows an adaptation to the users	802.16 has no problem with overlapping cells, usage of DAMA- TDMA instead of CSMA/CA, adaptive modulation possible
Data rate	Up to 54 MBit/s	Up to 134 MBit/s, depending on assigned bandwidth	OFDM with higher modulation ratio, net data rate also is higher (due to DAMA)
QoS	• Only with 802.11e	Differentiated Services	Reservation of capacity allows several service classes
Costs	License-free	License-free as well as licensed bands	Costs are accepted in 802.16 – Alternative to xDSL

IEEE 802.20

"Mobile Broadband Wireless Access" (MBWA)

- Since December 2002 independent IEEE working group 802.20
- Before, part of 802.16 as ECSG (Executive Committee Study Group)
- Still work in progress, but similar to 802.16e

Specification of PHY- and MAC layer:

- Focus on data communications, especially IP-based services, e.g.
 - ➤ Intranet of a company, VLAN Services
 - Games and entertainment
 - Internet and location-based services
- Support of different service classes (including real-time)
- Data rates as for ADSL: Downlink > 1 MBit/s, Uplink > 300 KBit/s
- Mobility support for speeds up to 250 km/h
- World-wide roaming by Mobile IP

Integration in 3G networks (UMTS)

Vision: 2009 30 Million participants should use 802.20

802.20 (Wireless Mobility)

- 802.20 is a competitor to 3G Wireless Cellular Networks/UMTS. Main question here: CDMA or OFDM?
- 802.20 is specified for 500 MHz up to 3.5GHz
- Packet-based network
- 802.20 interface:
 - > Real-time transmission
 - Wireless networking of whole cities
 - Competitor to 802.16, DSL and cable links (more than 1MBit/s)
 - ➤ Cell size up to 15 km
 - ➤ Mobile usage possible up to 250 km/h
 - > E.g. usable in high-speed trains
- Maybe in future: Combination of 802.11, 802.16, 802.20 for a mobile Internet

802.20 vs. 802.16

802.16

- Originally for fixed stations, frequencies: 10-66 GHz, bandwidth per channel: 20-28 MHz
- Enhancement 802.16a: 2-11 GHz,
 Bandwidth per channel ~ 6 MHz
- Mobility only with 802.16e, basing on PHY/MAC of 802.16a, for lower speeds, regional roaming

802.20

- Designed for mobile stations, frequencies lower than 3,5 GHz, bandwidth per channel in FDD: 1.25 MHz up/down, in TDD: 5 MHz
- New PHY und MAC layer, handover between cells and cell sectors with different mobility classes up to 250 km/h, world-wide roaming

Possible Technologies for Hotspots

Standard	Bit rate	Range	Mobility	Costs	Available from
802.11 (a, b, g)	1 - 54 MBit/s	100 m	Walking speed	Ca. 13% of the costs of a UMTS cell	Since years
802.16 (a, e)	Up to 134 MBit/s	Up to 50 km	120 - 150 km/h (cars, trains)	20% of the costs of a UMTS cell	USA - 2004 EU - 2005
802.20	Up to 1 MBit/s	Up to 15 km	Up to 250 km/h (high-speed trains)	n/a	200x???

802.20 und 3G (UMTS)

3G (UMTS)

- Relatively low spectral efficiency and relatively low number of users per cell with current CDMA technology
- Circuit-switched access- und core network, optimized for constant data rates (voice), not optimal for data services
- Transmission principle unsuitable for TCP because of relatively high error rate and slow error correction
- Relatively high costs by expensive 3G-infrastruktur
- Data rates of 144 KBit/s for 100 km/h

802.20

- Higher spectral efficiency and more users per cell because of OFDM tchnology
- Only packet switching (IP), also for voice services (Voice over IP), efficient usage of bandwidth also for varying data rates
- Transmission suited for TCP by using FEC together with fast ARQ
- Relatively low costs by "flat" IPbased architecture
- Data rates of 1 MBit/s for 250 km/h

IEEE 802.22 - WRAN

Relatively new standard – working group formed in 2004, but only general specification:

- Deploy wireless regional area networks using unused TV channels between 54 and 862 MHz without interfering with the licensed services now operating in the TV bands – alternative for regions in which DSL and WiMAX are not profitable
- PHY layer: FDD/OFDMA with QAM-64
 - ➤ By using just one TV channel (a TV channel has a bandwidth of 6 MHz, in some countries they can be of 7 or 8 MHz) the approximate maximum bit rate is 19 MBit/s at a 30 km distance
- MAC layer: cognitive protocol for point-to-multipoint network
 - ➤ A base station ensures that no harmful interference to the licensed incumbent services in the TV broadcast bands is caused by sensing unused frequencies
 - ➤ A base station could be equipped with a GPS receiver which would allow its position to be reported so, based on the location, channels can be chosen
 - ➤ Or: the base station lets its customers sense the whole bandwidth, i.e. distributed sensing is done to decide about possible frequencies.
- But: only in early development

Conclusion: 4G and Hotspots Today

Chapter 3.3: WMAN Page 26

Hotspots Tomorrow?

Chapter 3.3: WMAN Page 27