Summer Programme 2021

Equivalence of metric spaces

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

We claim that the following metrics on \mathbb{R}^n are equivalent, in that they induce the same topology on \mathbb{R}^n .

- 1. $d_1(x, y) = |x y|$, the Euclidean metric.
- 2. $d_2(\boldsymbol{x}, \boldsymbol{y}) = \max_i \{|x_i y_i|\}, \text{ the Chebyshev metric.}$
- 3. $d_3(x, y) = |x y|/(1 + |x y|)$.

Label the metric spaces $M_i = (\mathbb{R}^n, d_i)$, and their respective collections of open sets τ_i . Denote $B_r^i(\boldsymbol{x})$ to be the open ball in M_i , centred at \boldsymbol{x} with radius r, i.e. the collection of points $\boldsymbol{y} \in M_i$ such that $d_i(\boldsymbol{x}, \boldsymbol{y}) < r$.

 $(\tau_1 \subseteq \tau_2)$ Consider an open ball $B_r^1(\boldsymbol{x}) \subseteq M_1$. Any point \boldsymbol{y} in this ball satisfies $d_1(\boldsymbol{y}, \boldsymbol{x}) = |\boldsymbol{y} - \boldsymbol{x}| < r$. Let $d_1(\boldsymbol{y}, \boldsymbol{x}) = r - \epsilon$ for some $\epsilon > 0$, and set $\epsilon' = \epsilon/\sqrt{n}$. For all \boldsymbol{z} in the open ball $B_{\epsilon'}^2(\boldsymbol{y})$, i.e. such that $d_2(\boldsymbol{z}, \boldsymbol{y}) < \epsilon'$, we have

$$d_1(\boldsymbol{z}, \boldsymbol{y})^2 = \sum_i (z_i - y_i)^2 \le n \max\{|z_i - y_i|\}^2 = n d_2(\boldsymbol{z}, \boldsymbol{y})^2 < \epsilon^2.$$

The triangle inequality gives

$$d_1(\boldsymbol{z}, \boldsymbol{x}) \leq d_1(\boldsymbol{z}, \boldsymbol{y}) + d_1(\boldsymbol{y}, \boldsymbol{x}) < \epsilon + r - \epsilon = r,$$

hence $z \in B_r^1(x)$.

Thus, the open ball $B_y := B_{\epsilon'}^2(y) \subseteq M_2$ is contained within the open ball $B := B_r^1(x) \subseteq M_1$. Take the union of B_y for all $y \in B$, and note that this is precisely equal to B. This is because any element of B is the center of some B_y , and every element in the union is contained within some B_y , which in turn is contained within B. Hence, any open ball in M_1 is open in M_2 . Since every open set in a metric space can be written as the union of open balls, we see that every open set in M_1 is an open set in M_2 .

 $(\tau_2 \subseteq \tau_1)$ Consider an open ball $B_r^2(\boldsymbol{x}) \subseteq M_2$. Any point \boldsymbol{y} in this ball satisfies $d_2(\boldsymbol{y}, \boldsymbol{x}) = \max_i \{|y_i - x_i|\} < r$. Let $d_2(\boldsymbol{y}, \boldsymbol{x}) = r - \epsilon$ for some $\epsilon > 0$. For all \boldsymbol{z} in the open ball $B_{\epsilon}^1(\boldsymbol{y})$, we have

$$d_1(z, y)^2 = \sum_i (z_i - y_i)^2 < \epsilon^2,$$

hence $|z_i - y_i| < \epsilon$ for all i. Specifically,

$$d_2(\boldsymbol{z}, \boldsymbol{y}) = \max_i \{|z_i - y_i|\} < \epsilon.$$

The triangle inequality further gives

$$d_2(\boldsymbol{z}, \boldsymbol{x}) \le d_2(\boldsymbol{z}, \boldsymbol{y}) + d_2(\boldsymbol{y}, \boldsymbol{x}) < \epsilon + r - \epsilon = r.$$

Thus, the open ball $B_y := B_{\epsilon}^1(y) \subseteq M_1$ is contained within the open ball $B := B_r^2(x)$. Like before, the union of all such B_y for $y \in B$ yields precisely B, so any open ball in M_2 is an open set in M_1 . It follows that any open set in M_2 is an open set in M_1 .

 $(au_1 = au_3)$ Note that for any open ball $B_r^1(\boldsymbol{x}) \subseteq M_1$, any point \boldsymbol{y} in this ball satisfies $d_1(\boldsymbol{y}, \boldsymbol{x}) < r$, which is equivalent to $d_3(\boldsymbol{y}, \boldsymbol{x}) = d_1(\boldsymbol{y}, \boldsymbol{x})/(1 + d_1(\boldsymbol{y}, \boldsymbol{x})) < r/(1+r) := r'$. Thus, $B_r^1(\boldsymbol{x}) = B_{r'}^3(\boldsymbol{x})$.

Similarly, for any open ball $B_r^3(\boldsymbol{x}) \subseteq M_3$, if $r \ge 1$ then $B_r^3(\boldsymbol{x}) = \mathbb{R}^n$ (every point $\boldsymbol{y} \in \mathbb{R}^n$ satisfies $d_3(\boldsymbol{y}, \boldsymbol{x}) < 1$ because s/(1+s) < 1 for all non-negative reals s). Otherwise, we can find $r' \ge 0$ such that r'/(1+r') = r, specifically choose r' = r/(1-r). Again, this gives $B_r^3(\boldsymbol{x}) = B_{r'}^1(\boldsymbol{x})$.

Thus, every open ball in M_1 is an open ball in M_3 , and vice versa. It follows that a set is open in M_1 if and only if it is open in M_3 .

Note that we have not used any specific property of d_1 here, merely its relation with d_3 . This means that more generally, the open sets in the metric space (\mathbb{R}^n, d) are identical to those in the metric space (\mathbb{R}^n, d') , where d'(x, y) = d(x, y)/(1 + d(x, y)).

We have used that fact that for all real numbers,

$$0 \le x < y \iff 0 \le \frac{x}{1+x} \le \frac{y}{1+y}$$
.

This is equivalent to stating that the function $f:[0,\infty)\to[0,1)$ defined by $x\mapsto x/(1+x)$ is strictly increasing, which is evident by

$$f(x) = \frac{x}{1+x} = \frac{x+1-1}{1+x} = 1 - \frac{1}{1+x}.$$

The map $x \mapsto 1/(1+x)$ is strictly decreasing, hence $x \mapsto 1-1/(1+x)$ is strictly increasing.

Together, we have $\tau_1 = \tau_2 = \tau_3$, which means that all three metrics induce the same topology on \mathbb{R}^n .