9ª Série de exercícios – Teoria dos Grafos

- 1) Determine a coloração dos grafos abaixos
 - i) Utilizando o algoritmo sequencial simples.
 - ii) Utilizando o algoritmo de Welsh & Powell.
 - iii) Utilizando o algoritmo de Matula, Marble e Isaacson.

3) Uma empresa deseja armazenar sete produtos químicos diferentes: C1, C2, C3, C4, C5, C6 e C7. Uma vez que alguns desses produtos não podem ser armazenados juntos, por problema de segurança, diferentes locais de armazenamento são necessários. A tabela a seguir mostra (com um asterisco) quais pares de produtos químicos não podem ser armazenados em um mesmo local. Use coloração de vértices para encontrar o número mínimo de locais necessários e identifique os produtos que podem ser alocados a esses locais, respectivamente (Use o algoritmo de Matula, Marble & Isaacson).

	C1	C2	C3	C4	C5	C6	C7
C1	-10-	*				*	*
C2	*		*	*			
C3		*		*	*		
C4		*	*		*	*	***************************************
C5	26/		*	*	-	*	*
C6	*			*	*		*
C7	*			-	*	*	

4) Uma nova empresa aérea irá começar a operar com 7 aeronaves seguindo a programação de vôos (de A a G) definida pela tabela abaixo, sendo que todos os vôos partem de São Paulo e visitam cada uma das cidades listadas nas rotas na sequência em que elas aparecem:

Vôo	Rota			
A	Florianópolis – Rio de Janeiro – Natal – Fortaleza			
В	Curitiba - Campinas - Ribeirão Preto - Fortaleza			
С	Belo Horizonte – Natal – Fortaleza – Manaus			
D	Belo Horizonte – São José do Rio Preto – Rio de Janeiro			
Е	Belo Horizonte – Recife – Natal			
F	Brasília – Ribeirão Preto – Fortaleza			
G	Brasília - Presidente Prudente – Campinas			

Devido ao número limitado de aeronaves, o diretor da companhia não quer mais de um vôo por dia visitando uma determinada cidade, ou seja, se dois vôos passam pela cidade X eles devem obrigatoriamente não estar alocados para o mesmo dia. Sendo assim, modelando o problema com um grafo, e utilizando *o algoritmo Welsh & Powell*, determine o número mínimo de dias necessários para que a empresa opere de acordo com a sua política de funcionamento. (2.5 ptos)

5) Desenhe o dual dos grafos planos a seguir.

6) Para cada um dos grafos abaixo, determine se ele é planar ou não. Se o grafo for planar, encontre uma representação gráfica de modo a evidenciar que as arestas não se cruzam (a não ser nos vértices). Se o grafo não for planar, use o teorema de Kuratowski para mostrar tal fato, encontrando um subgrafo homeomorfo a K5 ou K3,3.

