Motion in One Dimension

Scalar and Vector Quantities

Scular Quantity: The quantities which have only magnitude but no direction

Vector Quantity: The quantities which have both magnitude and direction

Terms Related to Motion

- **□** Distance
- □ Displacement
- □ Speed
- □ Velocity
- \square Acceleration

Distance & Displacement

Distance: It is the length of path taken by a body when moving from one point to another.

Displacement: It is the shortest path taken by the body.

Distance

- Scalar quantity
- No direction

Displacement

- >> Vector quantity
- Magnitude and direction

Distance = (1 km + 5 km + 4 km

- Distance = 18 km
- Displacement = 10 km east of A

Speed

- Definition: Distance travelled in a certain interval of time
- >> Scalar quantity

SI Unit: (ms-1), (cm s-1), (km h-1)

Speed

Example:

100 m

5 s

Speed

Example:

100 m

5 s

Speed = 20 ms-1

Velocity

- Definition: A measure of the distance an object travels in a stated direction in a given length of time
- >> Vector quantity
- Velocity = displacement time
- SI Unit: (ms-1), (cm s-1), (km h-1)

Velocity

Example:

100 km/h

Velocity

Example:

Acceleration

- Acceleration = change of velocity
 time taken for the change
- >> Vector quantity

where,
$$u = initial \ velocity$$
 $v = final \ velocity$
 $t = time \ taken \ for \ change$

SI Unit: (ms-2), (cm s-2)

Acceleration

Acceleration positive: Velocity increases

- Acceleration negative (Deceleration): Velocity decreases
- Uniform acceleration

>> Zero acceleration: Constant velocity

Acceleration

Example:

$$a = \frac{v - u}{t} = \frac{20 - 10}{5}$$

= 2 ms⁻²

Motion Graph Types of motion graph

Displacement/ cm

Gradient = Velocity of the o

>> Types of displacement-time graph

(a)

displacement / cm

Velocity = 0 m s⁻¹

Types of displacement-time graph displacement / cm

(b)

- Fixed gradient uniform velocity
- Acceleration = 0 m s⁻²

>> Types of displacement-time graph

Displacement / cm Time / s Increasing gradient -

Increasing velocity

Types of displacement-time graph displacement / cm

(d)

 Decreasing gradient decreasing velocity

Velocity-Time Graph

Fradient = Velocity of the object

Velocity-Time Graph

Distance travelled = area under v-t graph

Velocity-Time Graph

>> Types of velocity-time graph

Acceleration-Time Graph

Types of acceleration-time graph:

Wuniform acceleration

(a) acceleration / ms-2

Acceleration-Time Graph

Types of acceleration-time graph:

>> Uniform deceleration

Acceleration-Time Graph

Types of acceleration-time graph:

>> Stationary or constant velocity

