Unigene set selection

Basic problem

RNA seq is method to sequence mRNAs from any organisms. This method is so popular and being affordable to many research groups. It has important applications such as gene discovery, differential gene expression and SNP calling and Alternative splicing events etc. Unfortunately, the RNA seq assembly and analysis has many challenges. Because it produces multiple contigs per gene locus and they are not truly representative of isoforms. Therefore, I made a strategy to select one contigs per gene locus.

First, We align assembled transcriptome sequence to reference genome sequence using below blast command.

"blastn -db genome_v01 -query unigenes_seq.fa -num_threads 35 -evalue 1e-05 -outfmt 6 -max_target_seqs 2 -out genome_hits.txt"

All the steps are done on this output file (Pg genome hits.txt)

1_alignment_issue.py

This	scr	ipt reso	lves	an		error	ir	1	the	outp	ut	file.
TCONS C	00002182	scaffold8400	99.32	148	1	0	182	329	166203	166350	3e-69	268
TCONS C	00002182	scaffold8400	95.77	142	3	3	327	467	166556	166695	2e-56	226
TCONS C	00002182	scaffold8400	100.00	92	0	0	617	708	167644	167735	1e-39	171
TCONS_C	00002183	scaffold8400	88.48	495	11	19	1	461	190681	191163	3e-156	556
TCONS_C	00002183	scaffold10267	100.00	227	0	0	1	227	117762	117988	4e-115	420
TCONS_C	00002183	scaffold10267	100.00	179	0	0	283	461	118102	118280	2e-88	331
TCONS_C	00002183	scaffold10267	100.00	56	0	0	227	282	118014	118069	4e-20	104
TCONS C	00002197	scaffold10267	99.66	592	2	0	131	722	118461	117870	0.0	1083
TCONS C	00002197	scaffold10267	100.00	109	0	0	34	142	118933	118825	2e-49	202
TCONS C	00002197	scaffold10267	100.00	35	0	0	1	35	119061	119027	3e-08	65.8
TCONS C	00002197	scaffold8400	99.44	360	2	0	131	490	191344	190985	0.0	654
TCONS C	00002197	scaffold8400	90.05	201	4	5	522	722	190984	190800	1e-62	246
TCONS C	00002197	scaffold8400	98.17	109	2	0	34	142	191902	191794	5e-46	191

From the out result, we need to extract the top hits. But some hits can be first based on blast score but they may not be biologically from same locus. So these type of error can be detected by this script

2_Format_genome_hits.py

The above errors will be removed by this script and produce new output file "formatted_genome_hits.txt"

3_top_genome_alignment.py

From the above output file, we select only the top hit alignment and this will produce "new_top_hits_1e_5.txt"

4_mapped_region_extract.py

From the above top hits result, make each sequence ID's start and end position on the genome sequence. This gives output of "T_mapped_regions.txt"

5_Gene_cluster_final.pl

Then each sequence IDs are clustered using the perl script. It generates "final_updated_cluster.txt" file.

6_mode_new_filter.py

Then we calculate mode value for each clusters based on alignment. It will give "Nr_mode_update.txt" file.

7_2_Final_transcript_cluster.py

This script will make consensus cluster based on the above mode output file. It gives "final_cds_update.txt"

7 1 RNA contribution.py

This script calculates sequence size of each contigs and produce "seq_id_size.txt"

8_uni_merge.py

This script will merge "final_cds_update.txt" and "seq_id_size.txt" by ID wise and gives "formatted_cds_update.txt"

9_unigene_selector.py

Based one sequence length, it selects candidate set from each cluster and gives output as "candidate_unigenes_update.txt".