Работа с текстами

Елтышев Женя, DMIA 2016

Этапы работы

- Предобработка
- Токенизация
- Извлечение признаков
- XGBoost Машинное обучение

- Извлечение текста (из HTML, PDF, etc)
 - Для HTML BeautifulSoup
 - Можно варьировать способ извлечения для создания отличающихся наборов фичей

Извлечение текста из HTML

- Извлечение текста (из HTML, PDF, etc)
 - о Для HTML BeautifulSoup
 - Можно варьировать способ извлечения для создания отличающихся наборов фичей
- Удаление стоп-слов
 - Готовые списки from nltk.corpus import stopwords
 - о Фильтрация по частоте убрать топ100 самых частых слов
 - о Можно сделать автоматически TF-IDF

- Извлечение текста (из HTML, PDF, etc)
 - Для HTML BeautifulSoup
 - Можно варьировать способ извлечения для создания отличающихся наборов фичей
- Удаление стоп-слов
 - Готовые списки from nltk.corpus import stopwords
 - Фильтрация по частоте убрать топ100 самых частых слов
 - о Можно сделать автоматически TF-IDF
- Удаление пунктуации

- Извлечение текста (из HTML, PDF, etc)
 - Для HTML BeautifulSoup
 - Можно варьировать способ извлечения для создания отличающихся наборов фичей
- Удаление стоп-слов
 - Готовые списки from nltk.corpus import stopwords
 - Фильтрация по частоте убрать топ100 самых частых слов
 - о Можно сделать автоматически TF-IDF
- Удаление пунктуации
- Лемматизация: быстрая -> быстрый
 - Библиотека pymorphy2 (для русского)

- Извлечение текста (из HTML, PDF, etc)
 - Для HTML BeautifulSoup
 - Можно варьировать способ извлечения для создания отличающихся наборов фичей
- Удаление стоп-слов
 - Готовые списки from nltk.corpus import stopwords
 - Фильтрация по частоте убрать топ100 самых частых слов
 - о Можно сделать автоматически TF-IDF
- Удаление пунктуации
- Лемматизация: быстрая -> быстрый
 - Библиотека pymorphy2 (для русского)
- Стемминг: classes -> class
 - nltk.stem

- Bag of Words
 - sklearn.feature_extraction.text.CountVectorizer

Bag of Words

Феррари врезалась в Запорожец ->

Феррари	врезаться	Запорожец
1	1	1

Запорожец врезался в Феррари ->

Феррари	врезаться	Запорожец
1	1	1

- Bag of Words
 - sklearn.feature_extraction.text.CountVectorizer
- N-gramm BoW
 - sklearn.feature_extraction.text.CountVectorizer с параметром ngram_range = (1, 3)

Большой недостаток Bag of Words

Опечатки!

- 1) Шол мидведь по лесу, видет машина гарит. Сел в ние и сгарел.
- 2) Шел медведь по лесу, видит машина горит. Сел в нее и сгорел.

cosine_similarity(text1, text2) = 0.4

Символьные N-граммы

Шол мидведь по лесу, видет — машина гарит. Сел в ние и сгарел.

шолмидведьполесувидетмашинагаритселвниеисгарел

{"шо": 1, "ол": 2, "лм": 1, "ми": 1, "ид": 2, ...}

Символьные N-граммы

```
мидведь — [1 1 2 1 1 1 1 1 1 1 0 1 1]
медведь — [1 1 2 1 1 2 2 0 0 1 1 0 1]
cosine_similarity("медведь", "мидведь") = 0.83
```

- Bag of Words
 - sklearn.feature_extraction.text.CountVectorizer
- N-gramm BoW
 - sklearn.feature_extraction.text.CountVectorizer с параметром ngram_range = (1, 3)
- Char ngramms
 - Устойчивы к опечаткам
 - Не требуют лемматизацию и стемминг
 - Небольшая размерность

Извлечение признаков

- Bag of words
- TF-IDF
- Word embeddings

TF-IDF

$$ext{tf}(t,d) = rac{n_i}{\sum_k n_k} \ ext{idf}(t,D) = \log rac{|D|}{|(d_i \supset t_i)|}$$

TF-IDF

Рассмотрим задачу классификации новостей по категориям:

- Спорт
- Политика
- Экономика
- Технологии

TF-IDF

- Подсчитаем распределение слова по темам
- Чем более равномерное тем менее "информативное слово"

IDF(t, D) = 1 / GiniCoefficient(t, D)

Word embeddings

Переводит BoW вектора в пространство меньшей размерности

Проблемы:

• Как сравнивать два текста?

Подсчет вектора для текста

- Просуммировать
- Усреднить
- Усрединить с весами (например TF-IDF)

Машинное обучение: особенности

- Очень много признаков лучше использовать линейные методы
- Часто хорошо работает снижение размерности PCA, Feature hashing

Пример: Avito Duplicate Ads Detection

☆ Ford Thunderbird, 1974

№ 821490758, размещено сегодня в 17:18

В 8925 (+24)

Марка: Ford

Модель: Thunderbird

Год выпуска: 1974

Пробег: 110000 км Тип кузова: купе

Цвет: пурпурный

Объём двигателя: 6.0+ л

Коробка передач: автомат

Тип двигателя: бензин

Привод: задний Руль: левый

Состояние: не битый Владельцев по ПТС: 1

VIN-HOMED: 1FALP404*RF****38 Мощность двигателя: 345 л. с.

Автомобиль отреставрирован.

Этапы восстановления фиксировались на фото и видео. Много новых комплектующих.

Комплектация:

- Центральный замок
- Кондиционер
- Гидроусилитель руля
- Передние электростеклоподъемники
- Кожаная обивка салона.

Пример: Avito Duplicate Ads Detection

cosine

jaccard

generalized jaccard

Текстовые признаки:

	ı		
Title			
Description		TF-IDF	
Title+Description		Char N-gramm	
digits(title+description)		word2vec	
english(title+description)			
russian(title+description)			
Attribute1			

Полезные ссылки

- Bag of Words Meets Bags of Popcorn
- Pymorphy2
- NLTK
- Truly Native? @ Kaggle
- Crowdflower Search Results Relevance