

FIGURA 19 $\lim_{x \to \infty} f(x) = \infty$

Por último, observe que un límite infinito al infinito puede definirse como sigue. En la figura 19 se muestra una ilustración geométrica.

9 Definición de un límite infinito al infinito Sea f una función definida sobre algún intervalo (a, ∞) . Entonces

$$\lim_{x\to\infty} f(x) = \infty$$

significa que para todo número positivo M existe un correspondiente número positivo N tal que

si
$$x > N$$
 entonces $f(x) > M$

Definiciones similares se aplican cuando el símbolo ∞ se reemplaza por $-\infty$. (Véase el ejercicio 80.)

2.6 EJERCICIOS

1. Explique con sus propias palabras el significado de cada uno de los límites siguientes

(a)
$$\lim_{x \to 0} f(x) = 5$$

(b)
$$\lim_{x \to 0} f(x) = 3$$

- **2.** (a) ¿Puede la gráfica de y = f(x) intersecar una asíntota vertical? ¿Puede intersecar una asíntota horizontal? Ilustre trazando gráficas.
 - (b) ¿Cuántas asíntotas horizontales puede tener la gráfica de y = f(x)? Trace gráficas que muestren las posibilidades.
- **3.** Para la función f cuya gráfica está dada, determine lo siguiente:

(a)
$$\lim_{x \to \infty} f(x)$$

(b)
$$\lim f(x)$$

(c)
$$\lim_{x \to a} f(x)$$

(d)
$$\lim_{x \to a} f(x)$$

(e) Las ecuaciones de las asíntotas

- **4.** Para la función g cuya gráfica está dada, determine lo siguiente.
 - (a) $\lim_{x\to\infty} g(x)$
- (b) $\lim g(x)$
- (c) $\lim_{x \to a} g(x)$
- (d) $\lim g(x)$
- (e) $\lim_{x \to a} g(x)$

鵩

(f) Las ecuaciones de las asíntotas

5–10 Trace la gráfica de un ejemplo de una función f que satisfaga todas las condiciones dadas.

5.
$$\lim_{x \to 0} f(x) = -\infty$$
, $\lim_{x \to -\infty} f(x) = 5$, $\lim_{x \to \infty} f(x) = -5$

- **6.** $\lim_{x \to 2} f(x) = \infty$, $\lim_{x \to -2^+} f(x) = \infty$, $\lim_{x \to -2^-} f(x) = -\infty$, $\lim_{x \to -2^-} f(x) = 0$, $\lim_{x \to -2^-} f(x) = 0$
- 7. $\lim_{x \to 2} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to 0^+} f(x) = \infty$, $\lim_{x \to 0^-} f(x) = -\infty$
- **8.** $\lim_{x \to \infty} f(x) = 3$, $\lim_{x \to 2^{-}} f(x) = \infty$, $\lim_{x \to 2^{+}} f(x) = -\infty$, f es impar
- **9.** f(0) = 3, $\lim_{x \to 0^{-}} f(x) = 4$, $\lim_{x \to 0^{+}} f(x) = 2$, $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = 3$
- **10.** $\lim_{x \to 3} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = 2$, f(0) = 0, f es par

11. Conjeture el valor del límite

$$\lim_{x \to \infty} \frac{x^2}{2^x}$$

evaluando la función $f(x) = x^{2}/2^{x}$ para x = 0, 1, 2, 3, 4, 5,6, 7, 8, 9, 10, 20, 50 y 100. Después, utilice una gráfica de f para respaldar su conjetura.

12. (a) Utilice la gráfica de

$$f(x) = \left(1 - \frac{2}{x}\right)^x$$

para calcular el valor de $\lim_{x\to\infty} f(x)$ con una aproximación de dos cifras decimales.

- (b) Utilice una tabla de valores de f(x) para calcular el límite con cuatro cifras decimales.
- 13-14 Evalúe el límite y justifique cada paso indicando las propiedades adecuadas de los límites.

13.
$$\lim_{x \to \infty} \frac{2x^2 - 7}{5x^2 + x - 3}$$

13.
$$\lim_{x \to \infty} \frac{2x^2 - 7}{5x^2 + x - 3}$$
 14.
$$\lim_{x \to \infty} \sqrt{\frac{9x^3 + 8x - 4}{3 - 5x + x^3}}$$

15-42 Encuentre el límite o demuestre que no existe.

15.
$$\lim_{x \to \infty} \frac{1}{2x + 3}$$

16.
$$\lim_{x \to \infty} \frac{3x + 5}{x - 4}$$

17.
$$\lim_{x \to -\infty} \frac{1 - x - x^2}{2x^2 - 7}$$

18.
$$\lim_{y \to \infty} \frac{2 - 3y^2}{5y^2 + 4y}$$

19.
$$\lim_{t \to \infty} \frac{\sqrt{t} + t^2}{2t - t^2}$$

20.
$$\lim_{t \to \infty} \frac{t - t\sqrt{t}}{2t^{3/2} + 3t - 5}$$

21.
$$\lim_{x \to \infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

22.
$$\lim_{x \to -\infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

23.
$$\lim_{x \to \infty} \frac{\sqrt{1 + 4x^6}}{2 - x^3}$$

24.
$$\lim_{x \to -\infty} \frac{\sqrt{1 + 4x^6}}{2 - x^3}$$

25.
$$\lim_{x \to \infty} \frac{\sqrt{x + 3x^2}}{4x - 1}$$

26.
$$\lim_{x \to \infty} \frac{x + 3x^2}{4x - 1}$$

27.
$$\lim_{x \to \infty} (\sqrt{9x^2 + x} - 3x)$$

28.
$$\lim_{x \to -\infty} (\sqrt{4x^2 + 3x} + 2x)$$

29.
$$\lim_{x \to \infty} (\sqrt{x^2 + ax} - \sqrt{x^2 + bx})$$

30.
$$\lim_{x \to -\infty} (x + \sqrt{x^2 + 2x})$$

31.
$$\lim_{x \to \infty} \frac{x^4 - 3x^2 + x}{x^3 - x + 2}$$

32.
$$\lim_{x \to \infty} (e^{-x} + 2 \cos 3x)$$

33.
$$\lim_{x \to -\infty} (x^2 + 2x^7)$$
 34. $\lim_{x \to -\infty} \frac{1 + x^6}{x^4 + 1}$

34.
$$\lim_{x \to -\infty} \frac{1 + x}{x^4 + x^4}$$

35.
$$\lim_{x \to \infty} \arctan(e^x)$$

36.
$$\lim_{x \to \infty} \frac{e^{3x} - e^{-3x}}{e^{3x} + e^{-3x}}$$

37.
$$\lim_{x \to \infty} \frac{1 - e^x}{1 + 2e^x}$$
 38. $\lim_{x \to \infty} \frac{\sin^2 x}{x^2 + 1}$

$$\mathbf{38.} \lim_{x \to \infty} \frac{\operatorname{sen}^2 x}{x^2 + 1}$$

39.
$$\lim_{x \to \infty} (e^{-2x} \cos x)$$

40.
$$\lim_{x \to 0^{+}} \tan^{-1}(\ln x)$$

41.
$$\lim_{x \to \infty} \left[\ln(1 + x^2) - \ln(1 + x) \right]$$

42.
$$\lim_{x \to \infty} [\ln(2+x) - \ln(1+x)]$$

43. (a) Para $f(x) = \frac{x}{\ln x}$ determine cada uno de los límites siguientes.

(i)
$$\lim_{x \to 0^+} f(x)$$

(ii)
$$\lim_{x \to 1^{-}} f(x)$$

(ii)
$$\lim_{x \to 1^-} f(x)$$
 (iii) $\lim_{x \to 1^+} f(x)$

- (b) Utilice una tabla de valores para calcular lím f(x).
- (c) Utilice la información de los incisos (a) y (b) para hacer un trazo de la gráfica de f.

44. Para $f(x) = \frac{2}{x} - \frac{1}{\ln x}$ determine cada uno de los límites siguientes.

(a)
$$\lim_{x \to \infty} f(x)$$

(b)
$$\lim_{x \to 0^+} f(x)$$

(c)
$$\lim_{x \to 1^{-}} f(x)$$

(d)
$$\lim_{x \to 1^+} f(x)$$

(e) Utilice la información de los incisos (a)-(d) para hacer un trazo de la gráfica de f.

45. (a) Estime el valor de

$$\lim_{x \to -\infty} \left(\sqrt{x^2 + x + 1} + x \right)$$

al trazar la gráfica de $f(x) = \sqrt{x^2 + x + 1} + x$.

- (b) Use una tabla de valores de f(x) para inferir el valor del
- (c) Demuestre que su estimación es correcta.

46. (a) Utilice una gráfica de

$$f(x) = \sqrt{3x^2 + 8x + 6} - \sqrt{3x^2 + 3x + 1}$$

Para obtener el valor de $\lim_{x\to\infty} f(x)$ con un decimal de precisión.

- (b) Utilice una tabla de valores de f(x) para calcular el límite con cuatro decimales de precisión.
- (c) Encuentre el valor exacto del límite.

47-52 Encuentre las asíntotas horizontal y vertical de cada curva. Si tiene un dispositivo de graficación, verifique su trabajo al trazar la gráfica de la curva y determinando las asíntotas.

47.
$$y = \frac{5 + 4x}{x + 3}$$

48.
$$y = \frac{2x^2 + 1}{3x^2 + 2x - 1}$$

49.
$$y = \frac{2x^2 + x - 1}{x^2 + x - 2}$$
 50. $y = \frac{1 + x^4}{x^2 - x^4}$

50.
$$y = \frac{1 + x^4}{x^2 - x^4}$$

51.
$$y = \frac{x^3 - x}{x^2 - 6x + 5}$$

52.
$$y = \frac{2e^x}{e^x - 5}$$

53. Calcule la asíntota horizontal de la función

$$f(x) = \frac{3x^3 + 500x^2}{x^3 + 500x^2 + 100x + 2000}$$

al hacer gráfica de f para $-10 \le x \le 10$. Después obtenga la ecuación de la asíntota evaluando el límite. ¿Cómo explica la discrepancia?

754. (a) Trace la gráfica de la función

$$f(x) = \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

¿Cuántas asíntotas horizontales y verticales observa? Utilice la gráfica para estimar el valor de los límites

$$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 1}}{3x - 5} \qquad \text{y} \qquad \lim_{x \to -\infty} \frac{\sqrt{2x^2 + 1}}{3x - 5}$$

- (b) Calcule algunos valores de f(x) y proporcione estimaciones numéricas de los límites del inciso (a).
- (c) Calcule los valores exactos de los límites en el inciso (a). ¿Obtiene el mismo valor o valores diferentes de esos dos límites? [De acuerdo con su respuesta al inciso (a), tendrá que verificar su cálculo para el segundo límite.]

55. Sea *P* y *Q* polinomios. Determine

$$\lim_{x \to \infty} \frac{P(x)}{O(x)}$$

si el grado de P es (a) menor que el grado de Q y (b) mayor que el grado de Q.

- **56.** Realice un trazo de la curva $y = x^n$ (n un entero) para los cinco casos siguientes:
 - (i) n = 0
- (ii) n > 0, n impar
- (iii) n > 0, n par
- (iv) n < 0, n impar
- (v) n < 0, n par

Luego use estos trazos para encontrar los límites siguientes.

(a) $\lim_{r\to 0^+} x^r$

(b) $\lim_{n \to \infty} x$

(c) $\lim_{n\to\infty} x^n$

- (d) $\lim_{n \to -\infty} x^n$
- **57.** Encuentre una fórmula para una función *f* que satisfaga las condiciones siguientes:

$$\lim_{x \to \pm \infty} f(x) = 0, \quad \lim_{x \to 0} f(x) = -\infty, \quad f(2) = 0,$$

$$\lim_{x \to 2^{-}} f(x) = \infty, \quad \lim_{x \to 2^{+}} f(x) = -\infty$$

- **58.** Determine una fórmula para una función que tiene asíntotas verticales x = 1 y x = 3 y asíntota horizontal y = 1.
- **59.** Una función f es un cociente de funciones cuadráticas y tiene una asíntota vertical x = 4 y una intersección con

el eje x en x=1. Se sabe que f tiene una discontinuidad removible en x=-1 y lím $_{x\to -1} f(x)=2$. Evalúe

(a) f(0)

(b) $\lim_{x \to \infty} f(x)$

60–64 Determine los límites cuando $x \to \infty$ y cuando $x \to -\infty$. Utilice esta información junto con las intersecciones para trazar la gráfica como en el ejemplo 12.

- **60.** $y = 2x^3 x^4$
- **61.** $y = x^4 x^6$
- **62.** $y = x^3(x+2)^2(x-1)$
- **63.** $y = (3 x)(1 + x)^2(1 x)^4$
- **64.** $y = x^2(x^2 1)^2(x + 2)$
- **65.** (a) Utilice el teorema de la compresión para evaluar $\lim_{x \to \infty} \frac{\operatorname{sen} x}{x}.$

(b) Trace la gráfica de $f(x) = (\sin x)/x$. ¿Cuántas veces cruza la gráfica la asíntota?

(a) Describa y compare el *comportamiento en los extremos* de las funciones

$$P(x) = 3x^5 - 5x^3 + 2x$$
 $Q(x) = 3x^5$

al trazar la gráfica de las dos funciones en los rectángulos de vista [-2, 2] por [-2, 2] y [-10, 10] por [-10, 000, 10, 000].

- (b) Se dice que dos funciones tienen el mismo comportamiento en los extremos si su cociente tiende a 1 cuando x → ∞. Demuestre que P y Q tienen el mismo comportamiento final en los extremos.
- **67.** Determine $\lim_{x\to\infty} f(x)$ si, para toda x>1,

$$\frac{10e^x - 21}{2e^x} < f(x) < \frac{5\sqrt{x}}{\sqrt{x - 1}}$$

68. (a) Un depósito contiene 5000 *l* de agua pura. Se bombea salmuera que contiene 30 g de sal por litro de agua al depósito a una rapidez de 25 l/min. Demuestre que la concentración de sal *t* minutos después (en gramos por litro) es

$$C(t) = \frac{30t}{200 + t}$$

- (b) ¿Qué sucede con la concentración cuando $x \rightarrow \infty$?
- **69.** En el capítulo 9 se demostrará que, bajo ciertas hipótesis, la velocidad v(t) de una gota de lluvia que cae, en el instante t, es

$$v(t) = v*(1 - e^{-gt/v*})$$

donde g es la aceleración debida a la gravedad y v^* es la velocidad terminal de la gota de lluvia.

- (a) Encuentre $\lim_{t\to\infty} v(t)$.
- \wedge

(b) Trace la gráfica de v(t) si $v^* = 1$ m/s y g = 9.8 m/s². ¿Cuánto tiempo transcurre para que la velocidad de la gota de agua alcance 99% de su velocidad terminal?

- **70.** (a) Al trazar la gráfica de $y = e^{-x/10}$ y y = 0.1 en una pantalla común, descubra cuánto tiene que aumentar x de modo que $e^{-x/10} < 0.1$.
 - (b) ¿Puede resolver el inciso (a) sin un dispositivo de graficación?

si
$$x > N$$
 entonces $\left| \frac{3x^2 + 1}{2x^2 + x + 1} - 1.5 \right| < 0.05$

72. Para el límite

$$\lim_{x \to \infty} \frac{1 - 3x}{\sqrt{x^2 + 1}} = -3$$

ilustre la definición 7 mediante la determinación de valores de N que correspondan a $\varepsilon=0.1$ y $\varepsilon=0.05$.

73. Para el límite

$$\lim_{x \to -\infty} \frac{1 - 3x}{\sqrt{x^2 + 1}} = 3$$

ilustre la definición 8 mediante la determinación de valores de N que correspondan a $\varepsilon = 0.1$ y $\varepsilon = 0.05$.

74. Para el límite

$$\lim_{x \to \infty} \sqrt{x \ln x} = \infty$$

ilustre la definición 9 mediante la determinación de un valor de N que corresponda a M=100.

- **75.** (a) ¿Qué tan grande se tiene que hacer x para que $1/x^2 < 0.0001$?
 - (b) Tomando r = 2 en el teorema 5, se tiene el enunciado

$$\lim_{x \to \infty} \frac{1}{x^2} = 0$$

Demuéstrelo directamente utilizando la definición 7.

- **76.** (a) ¿Qué tan grande se debe tomar x de manera que $1/\sqrt{x} < 0.0001$?
 - (b) Tomando $r = \frac{1}{2}$ en el teorema 5, se tiene el enunciado

$$\lim_{x \to \infty} \frac{1}{\sqrt{x}} = 0$$

Demuéstrelo directamente utilizando la definición 7.

- 77. Utilice la definición 8 para demostrar que $\lim_{x \to -\infty} \frac{1}{x} = 0$.
- **78.** Demuestre, utilizando la definición 9, que $\lim_{x\to\infty} x^3 = \infty$.
- **79.** Utilice la definición 9 para demostrar que $\lim_{x \to \infty} e^x = \infty$.
- 80. Formule una definición precisa de

$$\lim_{x \to -\infty} f(x) = -\infty$$

Luego utilice su definición para demostrar que

$$\lim_{x \to \infty} (1 + x^3) = -\infty$$

81. (a) Demuestre que

$$\lim_{x \to -\infty} f(x) = \lim_{t \to 0^+} f(1/t)$$

$$\lim_{x \to -\infty} f(x) = \lim_{t \to 0^{-}} f(1/t)$$

si estos límites existen.

(b) Utilice el inciso (a) y el ejercicio 65 para encontrar

$$\lim_{x \to 0^+} x \operatorname{sen} \frac{1}{x}$$

2.7 Derivadas y razones de cambio

El problema de encontrar la recta tangente a una curva y el problema de encontrar la velocidad de un objeto implican encontrar el mismo tipo de límite, como se vio en la sección 2.1. Este tipo especial de límite se denomina *derivada* y se puede interpretar como una razón de cambio en las ciencias naturales o sociales y en ingeniería.

Tangentes

Si una curva C tiene la ecuación y = f(x) y uno quiere encontrar la recta tangente a C en el punto P(a, f(a)), entonces considere un punto cercano Q(x, f(x)), donde $x \ne a$, y calcule la pendiente de la recta secante PQ:

$$m_{PQ} = \frac{f(x) - f(a)}{x - a}$$

Luego, acerque Q a P a lo largo de la curva C, haciendo que x tienda a a. Si m_{PQ} tiende a un número m, entonces se define la *tangente t* como la recta que pasa por P con pendiente m.