Espacios Métricos

Sesión 02

Alejandro Ucan

2025-02-10

Objetivos de la Sesión

- Introducir el concepto de Métrica.
- Definir el concepto de Espacio Métrico.
- Establecer ejemplos de Espacios Métricos.
- Definir la equivalencia entre métricas.

Motivación:

Consideremos el conjunto de los números reales \mathbb{R} , dados dos números reales x y y, la distancia entre ellos se puede medir por la diferencia |x-y|.

Consideremos el conjunto de los pares de números reales \mathbb{R}^2 , dados dos pares de números reales (x_1,x_2) y (y_1,y_2) , la distancia entre ellos se puede medir por la fórmula $\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}$.

Métrica

Definición: Una **métrica** en un conjunto X (no vacío) es una función $d:X\times X\to\mathbb{R}$ que satisface las siguientes propiedades para cualesquiera $x,y,z\in X$:

- $d(x,y) \geq 0$,
- d(x,y) = 0 si y solo si x = y,
- $\bullet \ d(x,y) = d(y,x),$
- $d(x,y) \leq d(x,z) + d(z,y)$.

Definición: Un conjunto X se dice que es **espacio métrico** si está equipado con una métrica.

Ejemplos y Contraejemplos

- 1. La función $d(x,y) = \lvert x-y
 vert$ es métrica.
- 2. La función $f(x,y)=\leftert xy
 ightert$ no es métrica.
- 3. La función $d((x_1,x_2),(y_1,y_2))=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}$ es métrica.
- 4. La función $d((x_1,x_2),(y_1,y_2))=rac{1}{1-\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}}$ no es métrica.

Espacio Euclidiano

Sea \mathbb{R}^n el conjunto de los n-tuplas de números reales, la función $d(x,y)=\sqrt{(x_1-y_1)^2+\cdots+(x_n-y_n)^2}$ es una métrica en \mathbb{R}^n .

Grafos Métricos

Sea G=(V,E) un grafo no dirigido, la función d(u,v) que asigna a cada par de vértices $u,v\in V$ la longitud del camino más corto entre u y v es una métrica en V.

Un Espacio Múltiples Métricas:

Consideremos el conjunto de pares de números reales \mathbb{R}^2 .

La métrica euclidiana $d_2(\mathbf{x},\mathbf{y})=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2}$ es una métrica en \mathbb{R}^2 .

Pero si consideramos la función $d_1(\mathbf{x},\mathbf{y})=|x_1-y_1|+|x_2-y_2|,$ esta también es una métrica en $\mathbb{R}^2.$

De igual manera sucede con la función $d_{\infty}(\mathbf{x},\mathbf{y}) = \max\{|x_1-y_1|,|x_2-y_2|\}.$

¿Qué tan similares serán estas métricas?

Veamos un ejemplo con los puntos $\mathbf{x}=(3,6,9)$ y $\mathbf{y}=(1,0,1)$.

Comparación de algunas métricas.

Equivalencia de Métricas

Definición: Dos métricas d_1 y d_2 en un conjunto X se dicen **equivalentes** si existen constantes $c_1, c_2 > 0$ tales que para cualesquiera $x, y \in X$ se tiene que $c_1d_1(x,y) \leq d_2(x,y) \leq c_2d_1(x,y)$.

Afirmación: En \mathbb{R}}^n todas las métricas son equivalentes.

Métricas en \mathbb{R}^n

- Métrica Euclidiana: $d_2(\mathbf{x},\mathbf{y}) = \sqrt{(x_1-y_1)^2 + \cdots + (x_n-y_n)^2}.$
- Métrica Manhattan: $d_1(\mathbf{x},\mathbf{y}) = |x_1-y_1| + \cdots + |x_n-y_n|$.
- Métrica del Chebysev: $d_{\infty}(\mathbf{x},\mathbf{y}) = \max\{|x_1-y_1|,\cdots,|x_n-y_n|\}.$
- ullet Métrica de Minkowski: $d_p(\mathbf{x},\mathbf{y}) = \left(\sum_{i=1}^n \left|x_i-y_i
 ight|^p
 ight)^{1/p}.$
- Métrica Discreta: $d_0(\mathbf{x}, \mathbf{y}) = \delta_{\mathbf{x}, \mathbf{y}}$.

¿Qué métricas son usadas en la Ciencia de Datos?