Групповой проект. Тема: Рост дендритов

Этап 2

Артамонов Тимофей Евгеньевич Федорина Эрнест Васильевич Морозов Михаил Евгеньвич Коротун Илья Игоревич Маслова Анастасия Сергеевна

Содержание

1	Введение	4
2	Шаг 1: Инициализация параметров симуляции	5
	2.1 Определение параметров вещества:	5
	2.2 Задание начальных условий:	6
3	Шаг 2: Настройка симуляционной сетки	7
	3.1 Создание симуляционной сетки:	7
	3.2 Инициализация затравки:	7
4	Шаг 3: Расчет температурного поля	9
	4.1 Применение уравнения теплопроводности:	9
	4.2 Численное решение уравнения:	9
5	Шаг 4: Моделирование роста дендритов	10
	5.1 Использование условия Стефана:	10
	5.2 Применение условия Гиббса-Томсона:	10
	5.3 Обновление температурного поля:	11
6	Шаг 5: Анализ структуры дендритов	12
	6.1 Оценка морфологии:	12
	6.2 Сравнение с экспериментальными данными:	12
7	Шаг 6: Визуализация и оценка результатов	13
	7.1 Визуализация роста дендритов:	13
	7.2 Анализ результатов и формулировка выводов:	13
8	Вывод	15
Сп	писок литературы	16

Список иллюстраций

2.1	Хар-ки титана	6
3.1	Вычислительная сетка в физическом пространстве	8
	Фазовое поле и соответствующее температурное поле дендритной структуры	
7.1	Рост ленлрита	14

1 Введение

На втором этапе группового проекта нужно сделать алгоритм решения задачи. Прежде чем описывать этапы алгоритма скажем о том для чего он нужен. Алгоритм — это упорядоченный набор действий, который необходимо выполнить для решения поставленной задачи. Алгоритмы нужны для: Получения результата более эффективным и быстрым путем и уменьшения количества ошибок, которые возникают при решении задач вручную.

2 Шаг 1: Инициализация параметров симуляции

На первом этапе задается начальное состояние системы, включающее все необходимые физические параметры материала и начальные условия для симуляции. Этот этап критически важен для обеспечения корректности всего процесса моделирования.

2.1 Определение параметров вещества:

- Плотность ρ: Масса на единицу объема материала, необходима для расчета массы вещества в заданном объеме и определения выделяемого или поглощаемого тепла в процессе фазового перехода.
- Удельная теплота плавления L: Количество теплоты, необходимое для перехода единицы массы вещества из твердого состояния в жидкое без изменения температуры, используется для расчета тепловых эффектов при кристаллизации.
- **Теплоемкость при постоянном давлении** c_p : Энергия, требуемая для нагрева единицы массы вещества на один градус Цельсия, важна для определения изменений температуры в материале.
- **Коэффициент теплопроводности** κ : Описывает способность материала проводить тепло, критичен для расчета распределения температуры в системе.

• **Температура плавления** T_m [1] : Температура перехода вещества из твердого состояния в жидкое, определяет начальную точку фазового перехода.

Титан

Атомный номер	22
Атомная масса	47,867
Плотность, кг/м ⁸	4510
Температура плавления, °С	1668
Температура кипения, °С	
Теплоемкость, кДж/(кг·°С)	0,527
Электроотрицательность	1,5
Ковалентный радиус, А	1,32
1-й ионизац. потенциал, эв	6,83

Рис. 2.1: Хар-ки титана

2.2 Задание начальных условий:

- Начальная температура расплава T_{∞} : Температура жидкой фазы в начале симуляции, влияет на степень переохлаждения и условия начала кристаллизации.
- Безразмерное переохлаждение S: Вычисляется как $S=\frac{c_p(T_m-T_\infty)}{L}$, является ключевым фактором, определяющим начало процесса кристаллизации.

3 Шаг 2: Настройка симуляционной сетки

Создается симуляционная сетка [2], служащая пространством для моделирования роста дендритов. Этап включает подготовку сетки и начальную конфигурацию затравки кристаллизации.

3.1 Создание симуляционной сетки:

- Определение размера сетки $N \times N$, где N- количество узлов по каждому измерению. Размер сетки должен обеспечивать достаточную детализацию для визуализации роста дендритов и учитывать вычислительные ограничения.
- Установка расстояния между узлами сетки h, влияющего на детализацию моделирования и точность результатов.

3.2 Инициализация затравки:

• В центре сетки создается затравка [3], представляющая участок в твердой фазе. Размер и форма затравки могут варьироваться в зависимости от целей симуляции.

Рис. 3.1: Вычислительная сетка в физическом пространстве

4 Шаг 3: Расчет температурного поля

Моделирование распределения температуры в системе с течением времени, являющееся основой для анализа роста дендритов.

4.1 Применение уравнения теплопроводности:

• Используется уравнение теплопроводности $\rho c_p \frac{\partial T}{\partial t} = \kappa \nabla^2 T$ для моделирования изменений температуры, учитывая приток тепла в систему и его распределение.

4.2 Численное решение уравнения:

• Реализация численного метода, например, метода конечных разностей, для аппроксимации производных и расчета температуры в каждом узле сетки. Выбор временного шага Δt и пространственного шага h важен для стабильности и точности расчетов.

5 Шаг 4: Моделирование роста дендритов

На этом этапе реализуется моделирование роста дендритов на основе рассчитанных температурных полей и соответствующих физических законов [4].

5.1 Использование условия Стефана:

- Скорость роста границы кристаллизации Vопределяется условием Стефана: $V=rac{\kappa}{
 ho L}(
 abla T|_sabla T|_l)$, что позволяет связать скорость роста с разницей градиентов температуры на границе фаз.
- Исходя из скорости V, происходит обновление положения границы кристаллизации, тем самым моделируя расширение твердой фазы.

5.2 Применение условия Гиббса-Томсона:

• Условие Гиббса-Томсона корректирует температуру плавления на границе кристалла: $T_b = T_m \left(1 - \frac{\gamma T_m}{\rho L^2 R}\right)$, учитывая кривизну границы и влияние поверхностного натяжения.

5.3 Обновление температурного поля:

• После каждого этапа роста дендритов требуется пересчитать температурное поле, учитывая выделение или поглощение теплоты за счет фазового перехода.

Рис. 5.1: Фазовое поле и соответствующее температурное поле дендритной структуры

Рис. 5.2: Фазовое поле и соответствующее температурное поле дендритной структуры

6 Шаг 5: Анализ структуры дендритов

Проводится детальный анализ сформированных дендритных структур для оценки их свойств и сравнения с теоретическими и экспериментальными данными.

6.1 Оценка морфологии:

- Анализ формы, размеров и ветвления дендритов позволяет понять механизмы их роста и определить влияющие на это процессы.
- Использование методов измерения фрактальной размерности дает количественную оценку сложности структуры дендритов.

6.2 Сравнение с экспериментальными данными:

• Сопоставление результатов моделирования с экспериментальными данными по росту дендритов помогает проверить точность и надежность модели.

7 Шаг 6: Визуализация и оценка результатов

Заключительный этап проекта включает подготовку визуализации процесса роста дендритов и анализ полученных результатов.

7.1 Визуализация роста дендритов:

- Использование графических инструментов для создания изображений и видео, демонстрирующих динамику роста дендритов и конечную структуру.
- Визуализация является ключевым элементом для наглядного представления исследования и помогает в анализе результатов.

7.2 Анализ результатов и формулировка выводов:

- Оценка эффективности использованных методов моделирования, сопоставление с теоретическими предположениями и экспериментальными данными.
- Подготовка выводов о механизмах роста дендритов и возможных путях улучшения процессов материаловедения на основе результатов моделирования.

Рис. 7.1: Рост дендрита

8 Вывод

Представлен процесс разработки алгоритма моделирования роста дендритов, начиная с инициализации параметров симуляции и настройки симуляционной сетки, и заканчивая моделированием роста дендритов и анализом их структуры. Алгоритмы играют важную роль в решении задач, обеспечивая более эффективный и точный способ получения результатов, а каждый этап моделирования от инициализации параметров до анализа результатов имеет свою важную роль в создании полной картины процесса.

Список литературы

- 1. Температура плавления [Электронный ресурс]. Wikimedia Foundation, Inc., 2023. URL: https://ru.wikipedia.org/wiki/Температура_плавления.
- 2. Mesh generation [Электронный ресурс]. Wikimedia Foundation, Inc., 2024. URL: https://en.wikipedia.org/wiki/Mesh_generation.
- 3. Seed crystal [Электронный ресурс]. Wikimedia Foundation, Inc., 2024. URL: https://en.wikipedia.org/wiki/Seed_crystal.
- 4. Медведев Д. А. П.Э.Р. Куперштох А. Л. Моделирование физических процессов и явлений на ПК: Учеб. пособие. Новосибирск: Новосиб. гос. ун-т., 2010. 101 с.