Aperiodicity Conditions in Topological *k***-Graphs**

Sarah E. Wright

The College of the Holy Cross

2011 Fall Central Sectional Meeting of the AMS

University of Nebraska, Lincoln

Special Session \sim Recent Progress in Operator Algebras

October 15, 2011

Graph Algebras

- 2 Topological k-Graphs
- **3** Aperiodicity Conditions
- Proof of Equivalence
- 5 Example(s)

Begin with a directed graph

Begin with a directed graph

Graph Algebras

Begin with a directed graph

Begin with a directed graph

Begin with a directed graph

Graph Algebras

Define projections $\{P_v \mid v \in E^0\}$

Begin with a directed graph

Define projections
$$\{P_v \mid v \in E^0\}$$

and partial isometries $\{S_e \mid e \in E^1\}$

Begin with a directed graph

Define projections $\{P_v \mid v \in E^0\}$

and partial isometries $\{S_e \, | \, e \in E^1 \}$

Use Cuntz-Krieger Realtions

Begin with a directed graph

Define projections
$$\{P_v \mid v \in E^0\}$$

and partial isometries $\{S_e \mid e \in E^1\}$

Use Cuntz-Krieger Realtions

$$S_e^*S_e = P_{s(e)} \text{ and }$$

$$P_v = \sum_{r(e)=v} S_e S_e^*$$

Begin with a directed graph

Graph Algebras

Define projections $\{P_v \mid v \in E^0\}$

and partial isometries $\{S_e \mid e \in E^1\}$

Use Cuntz-Krieger Realtions

$$S_e^* S_e = P_{s(e)}$$
 and
$$P_v = \sum_{r(e)=v} S_e S_e^*$$

Build a C*-algebra

Begin with a directed graph

Graph Algebras

Define projections $\{P_v \mid v \in E^0\}$

and partial isometries $\{S_e \mid e \in E^1\}$

Use Cuntz-Krieger Realtions

$$S_e^*S_e = P_{s(e)} \text{ and }$$

$$P_v = \sum_{r(e)=v} S_e S_e^*$$

Build a C*-algebra

 $C^*(\mathcal{E}_n) = \mathcal{O}_n$

 $C^*(E) = M_4(\mathbb{C})$

 $C^*(F) = C(S_q^7)$

Begin with a directed graph

Define projections $\{P_v \mid v \in E^0\}$

and partial isometries $\{S_e \mid e \in E^1\}$

Use Cuntz-Krieger Realtions

$$S_e^*S_e = P_{s(e)} \text{ and }$$

$$P_v = \sum S_e S_e^*$$

ns Build a C*-algebra

 $C^*(\mathcal{E}_n) = \mathcal{O}_n$

 $C^*(E) = M_4(\mathbb{C})$

 $C^*(F) = C(S_q^7)$

What do the combinatorics of the graph tell us about the C*-algebra?

Aperiodicity Conditions in Topological k-Graphs

r(e)=v

Graph algebras provide a rich class of accessible examples. They include:

• The Toeplitz and Cuntz-Krieger algebras

- The Toeplitz and Cuntz-Krieger algebras
- ullet The compact operators and $C(\mathbb{T})$

- The Toeplitz and Cuntz-Krieger algebras
- ullet The compact operators and $C(\mathbb{T})$
- All AF-algebras (up to ME)

- The Toeplitz and Cuntz-Krieger algebras
- ullet The compact operators and $C(\mathbb{T})$
- All AF-algebras (up to ME)
- ullet All SPIN algebras with free K_1 -group (up to ME)

- The Toeplitz and Cuntz-Krieger algebras
- \bullet The compact operators and $C(\mathbb{T})$
- All AF-algebras (up to ME)
- All SPIN algebras with free K_1 -group (up to ME)

- The Toeplitz and Cuntz-Krieger algebras
- ullet The compact operators and $C(\mathbb{T})$
- All AF-algebras (up to ME)
- All SPIN algebras with free K_1 -group (up to ME)
 - •
 - •

- The Toeplitz and Cuntz-Krieger algebras
- The compact operators and $C(\mathbb{T})$
- All AF-algebras (up to ME)
- All SPIN algebras with free K_1 -group (up to ME)
 - •
 - •
 - •

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.

 μ_1

So... Aperiodicity is Important?

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.

 u_5

 μ

Let E be a row finite such that every cycle has an entry. Then $C^*(E)$ is simple if and only if E is cofinal.

In the groupoid model of the C*-algebra, the elements are paths which differ only by an initial segment. Aperiodicity and cofinality cause more infinite paths to be "related".

Topological k-Graphs

For $k \in \mathbb{N}$, a topological k-graph is a pair (Λ, d) consisting of a category $\Lambda = (\mathrm{Obj}(\Lambda), \mathrm{Mor}(\Lambda), r, s)$ and a functor $d : \Lambda \to \mathbb{N}^k$. called the degree map, which satisfy:

- **1** Obj(Λ) and Mor(Λ) are second countable, locally compact Hausdorff spaces:
- 2 $r, s : Mor(\Lambda) \to Obj(\Lambda)$ are continuous and s is a local homeomorphism;
- **3** Composition $\circ: \Lambda \times_c \Lambda \to \Lambda$ is continuous and open, where $\Lambda \times_c \Lambda$ has the relative topology inherited from the product topology on $\Lambda \times \Lambda$:
- **4** d is continuous, where \mathbb{N}^k is given the discrete topology;
- **5** The unique factorization property: For all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$, there exists unique $(\mu, \nu) \in \Lambda \times_c \Lambda$ such that $\lambda = \mu \nu$, $d(\mu) = m$ and $d(\nu) = n$.

Topological *k***-Graphs**

For $k \in \mathbb{N}$, a topological k-graph is a pair (Λ, d) consisting of a category $\Lambda = (\mathrm{Obj}(\Lambda), \mathrm{Mor}(\Lambda), r, s)$ and a functor $d : \Lambda \to \mathbb{N}^k$, called the degree map, which satisfy:

- $\textbf{0} \ \operatorname{Obj}(\Lambda) \ \text{and} \ \operatorname{Mor}(\Lambda) \ \text{are second countable, locally compact}$ Hausdorff spaces;
- ② $r,s:\operatorname{Mor}(\Lambda)\to\operatorname{Obj}(\Lambda)$ are continuous and s is a local homeomorphism;
- **3** Composition $\circ: \Lambda \times_c \Lambda \to \Lambda$ is continuous and open, where $\Lambda \times_c \Lambda$ has the relative topology inherited from the product topology on $\Lambda \times \Lambda$;
- \bullet d is continuous, where \mathbb{N}^k is given the discrete topology;
- **5** The unique factorization property : For all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$, there exists unique $(\mu, \nu) \in \Lambda \times_c \Lambda$ such that $\lambda = \mu \nu, \ d(\mu) = m$ and $d(\nu) = n$.

Topological k-Graphs

For $k \in \mathbb{N}$, a topological k-graph is a pair (Λ, d) consisting of a category $\Lambda = (\mathrm{Obj}(\Lambda), \mathrm{Mor}(\Lambda), r, s)$ and a functor $d : \Lambda \to \mathbb{N}^k$. called the degree map, which satisfy:

- **1** $\operatorname{Obj}(\Lambda)$ and $\operatorname{Mor}(\Lambda)$ are second countable, locally compact Hausdorff spaces:
- 2 $r, s : Mor(\Lambda) \to Obj(\Lambda)$ are continuous and s is a local homeomorphism:
- **3** Composition $\circ: \Lambda \times_c \Lambda \to \Lambda$ is continuous and open, where $\Lambda \times_c \Lambda$ has the relative topology inherited from the product topology on $\Lambda \times \Lambda$:
- \bullet d is continuous, where \mathbb{N}^k is given the discrete topology;
- **5** The unique factorization property: For all $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$, there exists unique $(\mu, \nu) \in \Lambda \times_c \Lambda$ such that $\lambda = \mu \nu$, $d(\mu) = m$ and $d(\nu) = n$.

Visualizing Higher Rank Graphs

Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons

Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices

.

. . .

.

.

Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices and edges of shape e_i

• • •

. . . .

. . . .

•

We represent k graphs by drawing their 1-skeletons, which consist of the vertices and edges of shape e_i

Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices and edges of shape e_i

Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices and edges of shape e_i

Visualizing Higher Rank Graphs

We represent k graphs by drawing their 1-skeletons, which consist of the vertices and edges of shape e_i , and giving the appropriate factorization rules if necessary.

$$da = a'c$$
, $fa = a'e$, $bd = cb'$, $bf = eb'$

Infinite Paths

Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional commutative diagram

Infinite Paths

An infinite path in a k-graph is an infinite k-dimensional commutative diagram

Infinite Paths

Infinite Paths

Infinite Paths

Infinite Paths

Infinite Paths

Infinite Paths

We can shift an infinite path of a k graph, x, using the shift map σ .

The Shift Map

We can shift an infinite path of a k graph, x, using the shift map σ . $\sigma^n(x)$ is the infinite path obtained by removing the initial segment of degree n from x.

We can shift an infinite path of a k graph, x, using the shift map σ . $\sigma^n(x)$ is the infinite path obtained by removing the initial segment of degree n from x.

For x below,

Graph Algebras

We can shift an infinite path of a k graph, x, using the shift map σ . $\sigma^n(x)$ is the infinite path obtained by removing the initial segment of degree n from x.

For x below, this is $\sigma^{(2,0)}(x)$.

Proof of Equivalence

We can shift an infinite path of a k graph, x, using the shift map σ . $\sigma^n(x)$ is the infinite path obtained by removing the initial segment of degree n from x.

For x below, this is $\sigma^{(1,1)}(x)$.

Proof of Equivalence

We can shift an infinite path of a k graph, x, using the shift map σ . $\sigma^n(x)$ is the infinite path obtained by removing the initial segment of degree n from x.

For x below,

We say that a path x is aperiodic if $\sigma^m x = \sigma^n x$ only when m = n.

Aperiodicity Conditions

Definition

We say a topological k-graph (Λ, d) is aperiodic, or satisfies Condition (A), if for every open set $V \subseteq \Lambda^0$ there exists an infinite aperiodic path $x \in V\Lambda$.

Proposition (Yeend, 2007)

Suppose Λ is a compactly aligned topological k-graph that satisfies Condition (A). Then, \mathcal{G}_{Λ} is topologically principal.

Let (Λ,d) be a compactly aligned topological k-graph and V be any nonempty open subset of Λ^0 . The following conditions are equivalent.

Let (Λ,d) be a compactly aligned topological k-graph and V be any nonempty open subset of Λ^0 . The following conditions are equivalent.

(A) There exists an aperiodic path $x \in V\partial \Lambda$.

Let (Λ,d) be a compactly aligned topological k-graph and V be any nonempty open subset of Λ^0 . The following conditions are equivalent.

- (A) There exists an aperiodic path $x \in V\partial \Lambda$.
- (B) For any pair $m \neq n \in \mathbb{N}^k$ there exists a path $\lambda_{V,m,n} \in V\Lambda$ such that $d(\lambda) \geq m \vee n$ and

$$\lambda(m, m + d(\lambda) - (m \vee n)) \neq \lambda(n, n + d(\lambda) - (m \vee n)). \tag{*}$$

Let (Λ, d) be a compactly aligned topological k-graph and V be any nonempty open subset of Λ^0 . The following conditions are equivalent.

- (A) There exists an aperiodic path $x \in V \partial \Lambda$.
- (B) For any pair $m \neq n \in \mathbb{N}^k$ there exists a path $\lambda_{V,m,n} \in V\Lambda$ such that $d(\lambda) \ge m \vee n$ and

$$\lambda(m, m + d(\lambda) - (m \vee n)) \neq \lambda(n, n + d(\lambda) - (m \vee n)). \tag{*}$$

(C) There is a vertex $v \in V$ and paths $\alpha, \beta \in \Lambda$ with $s(\alpha) = s(\beta) = v$ such that there exists a path $\tau \in s(\alpha)\Lambda$ with $MCE(\alpha\tau, \beta\tau) = \emptyset$.

Visualizing the Conditions

Visualizing the Conditions

Graph Algebras

n

Graph Algebras

m

Visualizing the Conditions

Visualizing the Conditions

Visualizing the Conditions

Tube Lemma

Let $V \subset \Lambda^0$ be open, $m \neq n \in \mathbb{N}^k$, and $\lambda \in V\Lambda$ satisfy (\star) . Then there exists a compact neighborhood $E \subset V\Lambda^{d(\lambda)}$ of λ such that every $\mu \in E$ satisfies (\star) .

Tube Lemma

Let $V \subset \Lambda^0$ be open, $m \neq n \in \mathbb{N}^k$, and $\lambda \in V\Lambda$ satisfy (\star) . Then there exists a compact neighborhood $E \subset V\Lambda^{d(\lambda)}$ of λ such that every $\mu \in E$ satisfies (\star) .

"Proof":

Tube Lemma

Let $V \subset \Lambda^0$ be open, $m \neq n \in \mathbb{N}^k$, and $\lambda \in V\Lambda$ satisfy (\star) . Then there exists a compact neighborhood $E \subset V\Lambda^{d(\lambda)}$ of λ such that every $\mu \in E$ satisfies (\star) .

"Proof":

$$\lambda = \lambda(0, m)\lambda(m, m + d(\lambda) - (m \vee n))\lambda(m + d(\lambda) - (m \vee n), d(\lambda))$$

and

$$\lambda = \lambda(0, n)\lambda(n, n + d(\lambda) - (m \vee n))\lambda(n + d(\lambda) - (m \vee n)), d(\lambda))$$

Tube Lemma

Let $V \subset \Lambda^0$ be open, $m \neq n \in \mathbb{N}^k$, and $\lambda \in V\Lambda$ satisfy (\star) . Then there exists a compact neighborhood $E \subset V\Lambda^{d(\lambda)}$ of λ such that every $\mu \in E$ satisfies (\star) .

"Proof":

$$\lambda = \left[\lambda(0,m) \left| \lambda(m,m+d(\lambda)-(m\vee n)) \right| \lambda(m+d(\lambda)-(m\vee n),d(\lambda)) \right]$$

and

$$\lambda = \left[\lambda(0, n) \left| \lambda(n, n + d(\lambda) - (m \vee n)) \right| \lambda(n + d(\lambda) - (m \vee n)), d(\lambda)) \right]$$

Tube Lemma

Let $V \subset \Lambda^0$ be open, $m \neq n \in \mathbb{N}^k$, and $\lambda \in V\Lambda$ satisfy (\star) . Then there exists a compact neighborhood $E \subset V\Lambda^{d(\lambda)}$ of λ such that every $\mu \in E$ satisfies (\star) .

"Proof":

$$\lambda = \boxed{\lambda(0,m)} \begin{bmatrix} \lambda(m,m+d(\lambda)-(m\vee n)) \\ E_m \end{bmatrix} \frac{\lambda(m+d(\lambda)-(m\vee n),d(\lambda))}{\lambda(m+d(\lambda)-(m\vee n),d(\lambda))}$$

$$\lambda = \boxed{\lambda(0,n)} \begin{bmatrix} \lambda(n,n+d(\lambda)-(m\vee n)) \\ E_n \end{bmatrix} \frac{\lambda(n+d(\lambda)-(m\vee n),d(\lambda))}{\lambda(n+d(\lambda)-(m\vee n)),d(\lambda))}$$

Graph Algebras

Now... Use That Lemma!

 $(B) \Longrightarrow (A)$:

Graph Algebras

$$(B) \Longrightarrow (A)$$
:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m,n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

14000...

 $(B) \Longrightarrow (A)$:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

$$(B) \Longrightarrow (A)$$
:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m,n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

 $\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

$$(B) \Longrightarrow (A)$$
:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m,n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

$$\lambda_i := \lambda_{V_i, m_i, n_i}$$
 satisfy (\star) for m_i and n_i ,

 $F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and

$$(B) \Longrightarrow (A)$$
:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m,n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

 $V_i := \text{interior of } s(F_{i-1}),$

 $\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

 $F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and

Proof of Equivalence

$(B) \Longrightarrow (A)$:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

 $V_i := \text{interior of } s(F_{i-1}),$

 $\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

 $F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and

$$(B) \Longrightarrow (A)$$
:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m,n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

 $V_i := \text{interior of } s(F_{i-1}),$

 $\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

 $F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and

$$(B) \Longrightarrow (A)$$
:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m, n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

 $V_i := \text{interior of } s(F_{i-1}),$

 $\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

 $F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and

$$(B) \Longrightarrow (A)$$
:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m,n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

 $V_i := \text{interior of } s(F_{i-1}),$

 $\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

 $F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and

$$(B) \Longrightarrow (A)$$
:

Fix an open set $V_1 \subset \Lambda^0$ and let $\{(m_i, n_i)\}_{i=1}^{\infty}$ be a listing of the set $\{(m,n) \in \mathbb{N}^k \times \mathbb{N}^k : m \neq n\}$.

 $V_i := \text{interior of } s(F_{i-1}),$

 $\lambda_i := \lambda_{V_i, m_i, n_i}$ satisfy (\star) for m_i and n_i ,

 $F_i :=$ a compact neighborhood of λ_i given by the Tube Lemma, and

Graph Algebras

Twisted Product Graphs

Aperiodicity Conditions

Let (Λ, d) be a finitely aligned k-graph with no sources,

Graph Algebras

Twisted Product Graphs

Let (Λ, d) be a finitely aligned k-graph with no sources, X be a second countable, locally compact, Hausdorff space

Let (Λ, d) be a finitely aligned k-graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau:\Lambda\to\{\tau_\lambda:X\to X\,|\,\tau_\lambda\text{ is a local homeomorphism}\}$$
 a continuous functor.

Let (Λ, d) be a finitely aligned k-graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau:\Lambda\to\{\tau_\lambda:X\to X\,|\,\tau_\lambda\text{ is a local homeomorphism}\}$$
 a continuous functor. Then the pair $(\Lambda\times_\tau X,\tilde d)$

Aperiodicity Conditions

Let (Λ, d) be a finitely aligned k-graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau: \Lambda \to \{\tau_{\lambda}: X \to X \mid \tau_{\lambda} \text{ is a local homeomorphism}\}$$

a continuous functor. Then the pair $(\Lambda \times_{\tau} X, d)$, with object and morphism sets

$$\mathrm{Obj}(\Lambda \times_{\tau} X) := \mathrm{Obj}(\Lambda) \times X \text{ and } \mathrm{Mor}(\Lambda \times_{\tau} X) := \mathrm{Mor}(\Lambda) \times X,$$

Let (Λ, d) be a finitely aligned k-graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau: \Lambda \to \{\tau_{\lambda}: X \to X \,|\, \tau_{\lambda} \text{ is a local homeomorphism}\}$$

a continuous functor. Then the pair $(\Lambda \times_{\tau} X, d)$, with object and morphism sets

$$\mathrm{Obj}(\Lambda \times_{\tau} X) := \mathrm{Obj}(\Lambda) \times X$$
 and $\mathrm{Mor}(\Lambda \times_{\tau} X) := \mathrm{Mor}(\Lambda) \times X$, range and source maps

$$r(\lambda, x) := (r(\lambda), \tau_{\lambda}(x))$$
 and $s(\lambda, x) := (s(\lambda), x)$,

Let (Λ, d) be a finitely aligned k-graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau: \Lambda \to \{\tau_{\lambda}: X \to X \mid \tau_{\lambda} \text{ is a local homeomorphism}\}$$

a continuous functor. Then the pair $(\Lambda \times_{\tau} X, d)$, with object and morphism sets

$$\mathrm{Obj}(\Lambda \times_{\tau} X) := \mathrm{Obj}(\Lambda) \times X$$
 and $\mathrm{Mor}(\Lambda \times_{\tau} X) := \mathrm{Mor}(\Lambda) \times X$, range and source maps

$$r(\lambda, x) := (r(\lambda), \tau_{\lambda}(x))$$
 and $s(\lambda, x) := (s(\lambda), x)$,

and composition

$$(\lambda, \tau_{\mu}(x)) \circ (\mu, x) = (\lambda \mu, x),$$

whenever $s(\lambda) = r(\mu)$ in (Λ, d)

Let (Λ, d) be a finitely aligned k-graph with no sources, X be a second countable, locally compact, Hausdorff space, and

$$\tau: \Lambda \to \{\tau_{\lambda}: X \to X \,|\, \tau_{\lambda} \text{ is a local homeomorphism}\}$$

a continuous functor. Then the pair $(\Lambda \times_{\tau} X, d)$, with object and morphism sets

$$\mathrm{Obj}(\Lambda \times_{\tau} X) := \mathrm{Obj}(\Lambda) \times X$$
 and $\mathrm{Mor}(\Lambda \times_{\tau} X) := \mathrm{Mor}(\Lambda) \times X$,

$$r(\lambda, x) := (r(\lambda), \tau_{\lambda}(x)) \text{ and } s(\lambda, x) := (s(\lambda), x),$$

and composition

$$(\lambda, \tau_{\mu}(x)) \circ (\mu, x) = (\lambda \mu, x),$$

whenever $s(\lambda) = r(\mu)$ in (Λ, d) , and degree functor

$$\tilde{d}(\lambda, x) = d(\lambda)$$

Graph Algebras

Graph Algebras

$$\alpha_i^n\beta_j^{n+1}=\beta_{i+1}^n\alpha_{j+1}^{n+1}$$

$$\alpha_i^n \beta_i^{n+1} = \beta_{i+1}^n \alpha_{i+1}^{n+1}$$

$$X := \mathbb{T}$$

$$\alpha_i^n \beta_j^{n+1} = \beta_{i+1}^n \alpha_{j+1}^{n+1}$$

$$X := \mathbb{T}$$

$$\tau_{\alpha_i^n}(z) = \tau_{\beta_i^n}(z) := z^n$$

Graph Algebras

Checking Condition (C)

$$\mu = \left(\alpha_{i_0}^m, z^k\right) \dots \left(\alpha_{i_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\alpha_{i_n}^{m+n}, z\right)$$

$$\mu = \left(\alpha_{i_0}^m, z^k\right) \dots \left(\alpha_{i_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\alpha_{i_n}^{m+n}, z\right)$$

$$\nu = \left(\beta_{j_0}^m, z^k\right) \dots \left(\beta_{j_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\beta_{j_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\beta_{j_n}^{m+n}, z\right)$$

$$\mu = \left(\alpha_{i_0}^m, z^k\right) \dots \left(\alpha_{i_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\alpha_{i_n}^{m+n}, z\right)$$

$$\nu = \left(\beta_{j_0}^m, z^k\right) \dots \left(\beta_{j_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\beta_{j_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\beta_{j_n}^{m+n}, z\right)$$

$$\lambda = \left(\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}\right)$$

Graph Algebras

Checking Condition (C)

Aperiodicity Conditions

$$\mu = \left(\alpha_{i_0}^m, z^k\right) \dots \left(\alpha_{i_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\alpha_{i_n}^{m+n}, z\right)$$

$$\nu = \left(\beta_{j_0}^m, z^k\right) \dots \left(\beta_{j_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\beta_{j_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\beta_{j_n}^{m+n}, z\right)$$

$$\lambda = \left(\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}\right)$$

$$\mu\lambda = \left(\alpha_{i_0}^m, z^k\right) \left(\alpha_{i_1}^{m+1}, z^{k/m+n}\right) \dots \left(\alpha_{i_n}^{m+n}, z\right) \left(\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}\right)$$

Checking Condition (C)

$$\mu = \left(\alpha_{i_0}^m, z^k\right) \dots \left(\alpha_{i_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\alpha_{i_n}^{m+n}, z\right)$$

$$\nu = \left(\beta_{j_0}^m, z^k\right) \dots \left(\beta_{j_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\beta_{j_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\beta_{j_n}^{m+n}, z\right)$$

$$\lambda = \left(\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}\right)$$

$$\mu \lambda = \left(\alpha_{i_0}^m, z^k\right) \left(\alpha_{i_1}^{m+1}, z^{k/m+n}\right) \dots \left(\alpha_{i_n}^{m+n}, z\right) \left(\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}\right)$$

$$= \left(\alpha_{i_0}^m, z^k\right) \left(\alpha_{i_1}^{m+1}, z^{k/m+n}\right) \dots \left(\beta_{j_0-n+1}^{m+n}, z\right) \left(\alpha_{i_n+1}^{m+n+1}, z^{1/m+n+1}\right)$$

Checking Condition (C)

Aperiodicity Conditions

$$\begin{split} \mu &= \left(\alpha_{i_0}^m, z^k\right) \dots \left(\alpha_{i_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\alpha_{i_n}^{m+n}, z\right) \\ \nu &= \left(\beta_{j_0}^m, z^k\right) \dots \left(\beta_{j_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\beta_{j_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\beta_{j_n}^{m+n}, z\right) \\ \lambda &= \left(\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}\right) \\ \mu \lambda &= \left(\alpha_{i_0}^m, z^k\right) \left(\alpha_{i_1}^{m+1}, z^{k/m+n}\right) \dots \left(\alpha_{i_n}^{m+n}, z\right) \left(\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}\right) \\ &= \left(\alpha_{i_0}^m, z^k\right) \left(\alpha_{i_1}^{m+1}, z^{k/m+n}\right) \dots \left(\beta_{j_0-n+1}^{m+n}, z\right) \left(\alpha_{i_n+1}^{m+n+1}, z^{1/m+n+1}\right) \\ &= \left(\beta_{j_0+1}^m, z^k\right) \left(\alpha_{i_0+1}^{m+1}, z^{k/m+n}\right) \dots \left(\alpha_{i_n+1}^{m+n}, z^{1/m+n+1}\right) \end{split}$$

$$\mu = \left(\alpha_{i_0}^m, z^k\right) \dots \left(\alpha_{i_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\alpha_{i_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\alpha_{i_n}^{m+n}, z\right)$$

$$\nu = \left(\beta_{j_0}^m, z^k\right) \dots \left(\beta_{j_{n-2}}^{m+n-2}, \left(z^{m+n}\right)^{m+n-1}\right) \left(\beta_{j_{n-1}}^{m+n-1}, z^{m+n}\right) \left(\beta_{j_n}^{m+n}, z\right)$$

$$\lambda = \left(\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}\right)$$

$$\mu \lambda = \left(\alpha_{i_0}^m, z^k\right) \left(\alpha_{i_1}^{m+1}, z^{k/m+n}\right) \dots \left(\alpha_{i_n}^{m+n}, z\right) \left(\beta_{j_0-n}^{m+n+1}, z^{1/m+n+1}\right)$$

$$= \left(\alpha_{i_0}^m, z^k\right) \left(\alpha_{i_1}^{m+1}, z^{k/m+n}\right) \dots \left(\beta_{j_0-n+1}^{m+n}, z\right) \left(\alpha_{i_n+1}^{m+n+1}, z^{1/m+n+1}\right)$$

$$= \left(\beta_{j_0+1}^m, z^k\right) \left(\alpha_{i_0+1}^{m+1}, z^{k/m+n}\right) \dots \left(\alpha_{i_n+1}^{m+n}, z^{1/m+n+1}\right)$$

$$\vdots$$

Graph Algebras

Checking Condition (A)

 $oldsymbol{0}$ Consider a path x in "standard form".

Checking Condition (A)

lacksquare Consider a path x in "standard form".

$$x = \left(\alpha_0^1, z\right) \left(\beta_0^{i+1}, z^{1/i+1}\right) \left(\alpha_0^{i+2}, z^{1/(i+1)(i+2)}\right) \left(\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}\right) \dots$$

Checking Condition (A)

Aperiodicity Conditions

• Consider a path x in "standard form".

$$x = (\alpha_0^1, z) \left(\beta_0^{i+1}, z^{1/i+1}\right) \left(\alpha_0^{i+2}, z^{1/(i+1)(i+2)}\right) \left(\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}\right) \dots$$

2 Calculate $\sigma^{(1,0)}x$ and $\sigma^{(0,1)}x$.

$$\sigma^{(1,0)}x = \left(\beta_0^{i+1}, z^{1/i+1}\right) \left(\alpha_0^{i+2}, z^{1/(i+1)(i+2)}\right) \left(\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}\right) \dots$$

lacktriangle Consider a path x in "standard form".

$$x = \left(\alpha_0^1, z\right) \left(\beta_0^{i+1}, z^{1/i+1}\right) \left(\alpha_0^{i+2}, z^{1/(i+1)(i+2)}\right) \left(\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}\right) \dots$$

2 Calculate $\sigma^{(1,0)}x$ and $\sigma^{(0,1)}x$.

$$\sigma^{(1,0)}x = \left(\beta_0^{i+1}, z^{1/i+1}\right) \left(\alpha_0^{i+2}, z^{1/(i+1)(i+2)}\right) \left(\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}\right) \dots$$

- **3** Find a formula for $\sigma^m x$.
- **1** Deduce range of $\sigma^m x$, |m|, and m_1 and m_2 .
- \bullet Conclude x is aperiodic.
- Other paths and open sets?

• Consider a path x in "standard form".

$$x = \left(\alpha_0^1, z\right) \left(\beta_0^{i+1}, z^{1/i+1}\right) \left(\alpha_0^{i+2}, z^{1/(i+1)(i+2)}\right) \left(\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}\right) \dots$$

2 Calculate $\sigma^{(1,0)}x$ and $\sigma^{(0,1)}x$

$$\sigma^{(1,0)}x = \left(\beta_0^{i+1}, z^{1/i+1}\right) \left(\alpha_0^{i+2}, z^{1/(i+1)(i+2)}\right) \left(\beta_0^{i+3}, z^{1/(i+1)(i+2)(i+3)}\right) \dots$$

- **3** Find a formula for $\sigma^m x$.
- **1** Deduce range of $\sigma^m x$, |m|, and m_1 and m_2 .
- Conclude x is aperiodic.
- Other paths and open sets?
- More complicated 1-skeletons, factorizations, spaces, twistings... FFFKK!

Graph Algebras

You're The BEST!

⊕ THANKS! ⊕

References

Aperiodicity Conditions

lain Raeburn, Graph Algebras, CBMS Regional Conference Series in Mathematics, vol. 103.

Takeshi Katsura, A class of C^* -algebras generalizing both graph algebras and homeomorphism C^* -algebras I, II, III, and IV.

Alex Kumjian and David Pask, Higher rank graph C*-algebras, New York J. Math.

David I. Robertson and Aidan Sims, Simplicity of C*-algebras associated to higher-rank graphs, Bull. Lond. Math. Soc.

Trent Yeend, Topological higher-rank graphs and the C^* -algebras of topological 1-graphs, Operator theory, operator algebras, and applications

Sarah Wright, Aperiodicity Conditions in Topological k-Graphs, Thesis, Dartmouth College, May 2010