— Plano de Ensino 2024.2 —

Código...DisciplinaTheory and Practice of SMT solvingTurma...ProfessorHaniel BarbosaHorário...Sala...

Ementa.

- $\bullet\,$ Satisfiability Modulo Theories
- \bullet CDCL(T) architecture
- Theory solvers
- Quantifiers
- Proofs
- State-of-the-art review

Programa.

Class	Date	Content
1	25/09 (Wed)	SMT intro and overview
2	$30/09 \; (Mon)$	Propositional Logic
3	02/10 (Wed)	Clausification and Resolution
4	$07/10 \; (Mon)$	DPLL and CDCL
5	$09/10 \; (Wed)$	Efficient SAT solving
6	$14/10 \; (Mon)$	First-order Logic and SMT
7	$16/10 \; (Wed)$	From SAT to SMT
8	$21/10 \; (Mon)$	Laboratory: SMT introduction
9	$23/10 \; (Wed)$	Theory solvers: EUF
_	$28/10 \; (Mon)$	Holiday: Dia do Servidor Público
_	$30/10 \; (Wed)$	No class
10	$04/11 \; (Mon)$	Theory solvers: Difference Logic, Arrays
11	$06/11 \; (Wed)$	Theory solvers: Arithmetic
12	$11/11 \; (Mon)$	Theory solvers: Arithmetic
13	$13/11 \; (Wed)$	Theory solvers: bit-vectors
14	$18/11 \; (Mon)$	Exam 1
_	$20/11 \; (Wed)$	Holiday: Dia da Consciência Negra
15	$25/11 \; (Mon)$	Theory combination
16	$27/11 \; (Wed)$	Quantifiers
17	$02/12 \; (Mon)$	Quantifiers
18	$04/12 \; (Wed)$	Laboratory: Applications
19	$09/12 \; (Mon)$	Proofs
20	$11/12 \; (Wed)$	Proofs
21	$16/12 \; (Mon)$	Proofs
22	18/12 (Wed)	
_	$23/12 \; (Mon)$	Blocked: Recesso de fim de ano
_	25/12 (Wed)	Holiday: Natal

```
Blocked: Recesso de fim de ano
    30/12 \; (Mon)
    01/01 \text{ (Wed)}
                     Holiday: Ano novo
23
    06/01 (Mon)
                     Laboratory: Proofs
    08/01 \text{ (Wed)}
24
                     Project check-in
25
    13/01 \; (Mon)
                     Exam 2
26
    15/01 \; (Wed)
                     Seminars
27
    20/01 (Mon)
                     Seminars
    22/01 \text{ (Wed)}
28
                     Seminars
29
    27/01 \; (Mon)
                     Seminars
30
    29/01 (Mon)
                     Seminars
```

Bibliografia. A disciplina não possui um livro-texto. Diversos materiais de leitura, entre notas de aula, tutoriais, capítulos de livros e artigos, serão passados durante o semestre e serão disponibilizados na página da disciplina.

- Decision Procedures: An Algorithmic Point of View by Daniel Kroening and Ofer Strichman
- A Mathematical Introduction to Logic by Herbert B. Enderton (online version).

Avaliações.

1	Prova 1	25%	18/11
2	Prova 2	25%	13/01
3	Projeto	30%	
4	Seminário	20%	