In [0]:

```
#importando as bibliotecas
import pandas as pd #bibioteca responsável para o tratamento e limpeza dos dados
import numpy as np #biblioteca utilizada para o tratamento eficiente de dados numéricos
import datetime #biblioteca utilizada para trabalhar com datas
from matplotlib import pyplot as plt #plotar os gráficos
from sklearn.preprocessing import MinMaxScaler
import seaborn as sns #plot de gráficos
```

In [65]:

```
#importando os dados para o google colab
from google.colab import files
uploaded = files.upload()
```

Choose File No file selected

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving aircrafts.csv to aircrafts (2).csv

In [63]:

```
#importando os dados para o google colab
from google.colab import files
uploaded = files.upload()
```

Choose File No file selected

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving occurrences.csv to occurrences (1).csv

In [66]:

```
# Carregando dataframe aeronaves
df_aeronaves = pd.read_csv("aircrafts.csv", encoding='latin-1')
df_aeronaves.head()
```

Out[66]:

	Unnamed: 0	aircraft_id	occurrence_id	registration	operator_id	equipment	manufacturer	model	engine_type	engines_amount	ta
0	0	4	45602	PPGXE	241	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	56-C	PISTON	1.0	
1	1	40	53551	PPGSZ	160	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	56-C	PISTON	1.0	
2	2	118	43721	PTCMT	1232	AIRPLANE	BEECH AIRCRAFT	95- B55	PISTON	2.0	
3	3	130	35556	PTEQI	3992	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	EMB- 721C	PISTON	1.0	
4	4	191	32579	PPVMM	4365	AIRPLANE	BOEING COMPANY	737- 241	JET	2.0	
4											F

In [67]:

```
# Carregando dataframe ocorrências
df_occurrences = pd.read_csv("occurrences.csv", encoding='latin-1')
df_occurrences.head()
```

	Unnamed: 0	occurrence_id	classification	type of occurrence	localization	fu	country	aerodrome	occurrence_day	time	under_inves
0	0	47965	ACCIDENT	ENGINE FAILURE DURING THE FLIGHT	ARIQUEMES	RO	BRAZIL	SJOG	2013-05-05	11:00:00	UN
1	1	50313	SERIOUS INCIDENT	LANDING WITHOUT LANDING GEAR	CACOAL	RO	BRAZIL	SSKW	2013-11-25	12:32:00	
2	2	34078	ACCIDENT	LOSS OF CONTROL ON THE GROUND	CEREJEIRAS	RO	BRAZIL	***	2008-08-07	15:10:00	
3	3	44988	ACCIDENT	SLOW LANDING	AMAJARI	RR	BRAZIL	***	2011-08-11	17:00:00	
4	4	38855	ACCIDENT	LOSS OF CONTROL IN THE AIR	ACEGUÁ	RS	BRAZIL	***	2009-12-28	17:30:00	
4											Þ

In [68]:

```
#Fazendo um Join com os dois dataframes

df_acidentes = df_aeronaves.merge(df_occurrences, on="occurrence_id", how='left')

df_acidentes.head()
```

Out[68]:

	Unnamed: 0_x	aircraft_id	occurrence_id	registration	operator_id	equipment	manufacturer	model	engine_type	engines_amount	ta
0	0	4	45602	PPGXE	241	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	56-C	PISTON	1.0	
1	1	40	53551	PPGSZ	160	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	56-C	PISTON	1.0	
2	2	118	43721	PTCMT	1232	AIRPLANE	BEECH AIRCRAFT	95- B55	PISTON	2.0	
3	3	130	35556	PTEQI	3992	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	EMB- 721C	PISTON	1.0	
4	4	191	32579	PPVMM	4365	AIRPLANE	BOEING COMPANY	737- 241	JET	2.0	
4											Þ

In [69]:

```
# Removendo Colunas desnecessárias
colunas_retiradas = ['Unnamed: 0_x', 'Unnamed: 0_y', 'extraction_day_y', 'Unnamed: 0_x'] #lista
que contém as colunas a serem retiradas
df_acidentes.drop(columns=colunas_retiradas,axis=1,inplace=True)
df_acidentes.head()
```

Out[69]:

	aircraft_id	occurrence_id	registration	operator_id	equipment	manufacturer	model	engine_type	engines_amount	takeoff_max_v
0	4	45602	PPGXE	241	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	56-C	PISTON	1.0	
1	40	53551	PPGSZ	160	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	56-C	PISTON	1.0	

2	aircraft _∐ ig	occurren <u>ce, j</u> d	regist retion	operator <u>z</u> ję	PARTIPUARITE	manufacturer AIRCRAFT	modet B55	engi pe_Stype	engines_amouূnt	takeoff_max_\
3	130	35556	PTEQI	3992	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	EMB- 721C	PISTON	1.0	
4	191	32579	PPVMM	4365	AIRPLANE	BOEING COMPANY	737- 241	JET	2.0	1
4		188								Þ

In [70]:

Verificando Informações do dataframe df acidentes.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 2043 entries, 0 to 2042 Data columns (total 39 columns):

	COTUMNIS (COCAT 3) COTUMNIS		
#	Column	Non-Null Count	Dtype
0	aircraft_id	2043 non-null	int64
1	occurrence_id	2043 non-null	int64
2	registration	2043 non-null	object
3	operator_id	2043 non-null	int64
4	equipment	2042 non-null	object
5	manufacturer	2043 non-null	object
6	model	2043 non-null	object
7	engine_type	2043 non-null	object
8	engines_amount	2034 non-null	float64
9	takeoff_max_weight (Lbs)	2043 non-null	int64
10	seatings_amount	2025 non-null	float64
11	year manufacture	2039 non-null	float64
12	registration country	2031 non-null	object
13	registration category	2043 non-null	object
14	registration aviation	2043 non-null	object
15	origin flight	2043 non-null	object
16	destination flight	2043 non-null	object
17	operation phase	2042 non-null	object
18	type operation	2043 non-null	object
19	damage level	2043 non-null	object
20	fatalities amount	355 non-null	float64
21	extraction day x	2043 non-null	object
22	classification	2043 non-null	object
23	type of occurrence	2043 non-null	object
24	localization	2043 non-null	object
25	fu	2043 non-null	object
26	country	2043 non-null	object
27	aerodrome	2040 non-null	object
28	occurrence day	2043 non-null	object
29	time	2043 non-null	object
30	under investigation	2043 non-null	object
31	investigating command	2043 non-null	object
32	investigation status	1834 non-null	object
33	report number	436 non-null	object
34	published report	1001 non-null	float64
35	publication day	1001 non-null	object
36	recommendation amount	2043 non-null	int64
37	aircrafts involved	2043 non-null	int64
38	takeoff	256 non-null	float64
	es: float64(6), int64(6),	object(27)	1100001
acy po		0~) 000 (2 / /	

dtypes: float64(6), int64(6), object(27)

memory usage: 638.4+ KB

In [71]:

```
#verificar informações dos dados do nosso dataset
df acidentes.describe()
```

Out[71]:

coun	t 2043.000000 aircraft_id	2043.000000 occurrence_id	2043.000000 operator_id	2034.000000 engines_amount	takeoff_2004x3_0000000000000000000000000000000000	2025.000000 seatings_amount	year_manufacture	fatalities_
_mea	12300.670093	43961.869799	3156.447871	1.244346	11750.045032	8.928889	1902.494850	3
sto	1 7654.268691	7857.658738	1645.351104	0.483653	48511.565643	26.922299	402.024605	13.
mi	4.000000	25799.000000	13.000000	0.000000	0.000000	0.000000	0.000000	1.
25%	9061.000000	38839.500000	1821.000000	1.000000	1860.000000	2.000000	1975.000000	1.
50%	11267.000000	45564.000000	3992.000000	1.000000	3600.000000	4.000000	1986.000000	2.
75%	13601.500000	50353.500000	3992.000000	2.000000	4750.000000	6.000000	1999.000000	2.
ma	39147.000000	65312.000000	6270.000000	4.000000	630499.000000	301.000000	2015.000000	199.
4								Þ

In [72]:

Verificando Ocorrências que possuem mais de um registro, ou seja um acidente envolvendo mais de
1 avião.
df_acidentes['occurrence_id'].value_counts()

Out[72]:

Name: occurrence_id, Length: 2027, dtype: int64

In [73]:

45056

Verificando um exemplo de ocorrência com mais de um registro, ou seja um acidente envolvendo mai s de 1 avião. # Neste caso abaixo temos o acidente que aconteceu em Congonhas no dia 26/08/2009 df_acidentes[df_acidentes['occurrence_id'] == 38419]

Out[73]:

	aircraft_id	occurrence_id	registration	operator_id	equipment	manufacturer	model	engine_type	engines_amount	takeoff_
882	2 10406	38419	PRSJE	3992	AIRPLANE	HAWKER BEECHCRAFT	C90GTI	TURBOPROP	2.0	
88	3 10407	38419	PRONE	3992	AIRPLANE	LEARJET	45	JET	2.0	
884	4 10408	38419	PTWVG	1657	AIRPLANE	RAYTHEON AIRCRAFT	HAWKER 800XP	JET	2.0	
1998	8 34248	38419	N413HB	3992	AIRPLANE	HAWKER BEECHCRAFT	HAWKER 4000	JET	2.0	
4										Þ

In [0]:

Criando um dataframe para utilizarmos como analise no Boxplot
df boxplot = df acidentes

In [75]:

Preparar um dataset para analisar os seus outliers

```
colunas_retiradas = ['registration','equipment','manufacturer','model','engine_type','registration_
country','registration_category','registration_aviation'
,'origin flight','destination flight','operation phase','type operation','damage level','extraction
_day_x','classification','type of occurrence','localization','fu'
,'country',
'aerodrome','occurrence_day','time','under_investigation','investigating_command','investigation_st
atus','report_number','publication_day'] #lista que contém as colunas a serem retiradas
df boxplot = df boxplot.drop(columns=colunas retiradas,axis=1)
df boxplot.values.reshape((-1, 1))
# Ajustando a Escala para exibir o boxplot de análise de outliers
min max scaler = MinMaxScaler()
df scaled boxplot = pd.DataFrame(min max scaler.fit transform(df boxplot.iloc[:, 1:-1]))
df scaled boxplot.columns = df boxplot.columns[1:-1]
plt.figure(figsize=(12,8))
fig = sns.boxplot(data=df_scaled_boxplot)
for item in fig.get xticklabels():
    item.set_rotation(90)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.show()
4
```

No handles with labels found to put in legend.

In [76]:

```
#identificando os outliers
plt.figure(figsize=(5,5))
df_acidentes.boxplot(['year_manufacture'])
```

Out[76]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f1630339ef0>

In [77]:

#identificando os outliers
df_acidentes[df_acidentes['year_manufacture']==0]

Out[77]:

	aircraft_id	occurrence_id	registration	operator_id	equipment	manufacturer	model	engine_type	engines_amount	takeoff_m
97	1629	41569	PTGRE	120	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	EMB- 201A	PISTON	1.0	
139	2398	32378	PTGEE	2388	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	EMB- 200A	PISTON	1.0	
196	3352	45594	PTGQD	1552	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	EMB- 201	PISTON	1.0	
369	6283	51437	PPZZZ	3992	AIRPLANE	FABRICACAO PROPRIA	RANS S-10- AVIAO	PISTON	1.0	
388	6691	42365	PTNTR	3992	AIRPLANE	NEIVA INDUSTRIA AERONAUTICA	EMB- 710C	PISTON	1.0	
2023	34635	51597	CXJYN	5932	AIRPLANE	CESSNA AIRCRAFT	402B	PISTON	2.0	
2024	34636	52539	RA0976G	3992	AIRSHIP	MAULE AIRCRAFT	***	PISTON	1.0	
2025	34637	52539	SPBBP	3992	AIRSHIP	MAULE AIRCRAFT	***	PISTON	1.0	
2028	34643	53193	PTXXX5	3992	AIRPLANE	***	***	UNKNOWN	NaN	
2042	39147	28437	DGOMM	3992	AIRPLANE	PIPER AIRCRAFT	PA34	PISTON	2.0	

87 rows × 39 columns

In [78]:

#identificando os outliers
df_acidentes[df_acidentes['equipment']=='UNKNOWN']

	aircraft_id	occurrence_id	registration	operator_id	equipment	manufacturer	model	engine_type	engines_amount	takeoff_max
1931	29955	53341	PTZPD	3992	UNKNOWN	***	***	UNKNOWN	0.0	
1944	31111	53150	PUDSJ	3992	UNKNOWN	***	***	UNKNOWN	0.0	
1954	31810	53474	PUIPF	3992	UNKNOWN	***	***	UNKNOWN	0.0	
1984	33745	53484	PUTOF	3992	UNKNOWN	***	***	UNKNOWN	0.0	
2041	38941	60879	ZPTVU	3992	UNKNOWN	WZQ-OKECIE	PZL 106 KRUK	UNKNOWN	NaN	
4										Þ

In [0]:

```
# Remover dados que consideramos como Outliers

# Aeronaves sem ANO de Fabricação
df_remove = df_acidentes.loc[df_acidentes['year_manufacture']==0]
#df_bike.loc[df_bike["dteday"].isnull()]
df_acidentes = df_acidentes.drop(df_remove.index)

# Tipos de Aeronaves não definidas
df_remove = df_acidentes.loc[df_acidentes['equipment']=='UNKNOWN']
#df_bike.loc[df_bike["dteday"].isnull()]
df_acidentes = df_acidentes.drop(df_remove.index)
# df_bike.shape
```

In [80]:

```
# Verificando novamente como ficou nosso gráfico de Outliers, e está Ok!!
df_boxplot = df_acidentes
colunas retiradas = ['registration','equipment','manufacturer','model','engine type','registration
country','registration_category','registration_aviation'
,'origin_flight','destination_flight','operation_phase','type_operation','damage_level','extraction
_day_x','classification','type of occurrence','localization','fu'
,'country',
'aerodrome', 'occurrence day', 'time', 'under investigation', 'investigating command', 'investigation st
atus', 'report number', 'publication day'] #lista que contém as colunas a serem retiradas
df_boxplot = df_boxplot.drop(columns=colunas_retiradas,axis=1)
df boxplot.values.reshape((-1, 1))
# Ajustando a Escala para exibir o boxplot de análise de outliers
min max scaler = MinMaxScaler()
df scaled boxplot = pd.DataFrame(min max scaler.fit transform(df boxplot.iloc[:, 1:-1]))
df_scaled_boxplot.columns = df_boxplot.columns[1:-1]
plt.figure(figsize=(12,8))
fig = sns.boxplot(data=df scaled boxplot)
for item in fig.get_xticklabels():
    item.set rotation(90)
plt.legend(loc='center left', bbox to anchor=(1, 0.5))
plt.show()
4
No handles with labels found to put in legend.
```


In [81]:

```
# Tipos de Aeronaves que mais tiveram acidentes

fig = plt.figure(figsize=(12,6))
fig = sns.countplot(y='equipment', data=df_acidentes, order = df_acidentes['equipment'].value_count
s().index)
fig.set_title('Tipos de Aeronaves que mais tiveram acidentes',fontsize=15)
fig.set_ylabel('Tipos de Aeronaves',fontsize=15)
fig.set_xlabel('Quantidade de Acidentes',fontsize=15)
```

Out[81]:

Text(0.5, 0, 'Quantidade de Acidentes')

In [82]:

```
# Fabricantes de Aviões que mais tiveram acidentes
fig = plt.figure(figsize=(12,35))
```

```
fig = sns.countplot(y = 'manufacturer', data = df acidentes, order = df acidentes['manufacturer'].v
alue_counts().index)
fig.set title('Fabricantes de Aeronaves que mais tiveram acidentes',fontsize=15)
fig.set ylabel('Fabricantes das Aeronaves',fontsize=15)
fig.set_xlabel('Quantidade de Acidentes',fontsize=15)
```

Out[82]:

Fabricantes das Aeronaves


```
CARLOS GILBERTO FRAGA MARQUES
            DOREEDSON RIBEIRO PEREIRA
        MARCO AUGUSTO SCOBOZA GULIN
        ISMAEL FERNANDES NUNES JUNIOR
                CLAIBER VIEIRA BORGES
              MARCELO QUEIROZ DUARTE
                          SONEX LTDA
  ROMULO ARAUJO / HUGO FREIRE M JUNIOR
          GLAUCO ANDRE MACHADO - ME
    HENRIQUE DRUMOND LIMA DE OLIVEIRA
                   EXTRA-FLUGZEUGBAU
                   HUGHES HELICOPTER
                    JOAO LUIZ FAUSTINO
                     AEROBRAVO LTDA
  HENRIQUE HAMILTON CERQUEIRA SANTOS
        ALBERTO BENEDITO PAULO IRALAH
                  JOÃO ISMAEL VICENTINI
        EURIPIDES MOURA FERREIRA FILHO
     MELO TRANSPORTES E LOGISTICA LTDA
                       JOAO L TEIXEIRA
     JOAO HENRIQUE SIGNORELLI DRAEGER
                  AIRCRAFT INDUSTRIES
                       FRANCISCO E.D.
                     STINSON AIRCRAFT
ESC RIB PRET DE PIL VEIC AUTOPROPULSADO
            EDEVALDO MARTINS FERREIRA
                JOSE ROBERTO BARBOSA
  CLINICA MEDICA PRIETO & ANTUNES LTDA.
               SLICK AIRCRAFT COMPANY
                           JOHN SEELY
                           GIPPSI AND
                       ANTONINO MOTA
                NILSON SULZBACH PERES
                        LAKE AIRCRAFT
                              STEMME
                             KAPPA 77
               AEROCENTRO AERONAVES
                        IVAN MOLCHAN
          AEROALCOOL TECNOLOGIA LTDA
                JOSE ANTONIO ZATTAR JR
                                                                100
                                                                              150
                                                                                           200
                                                                                                         250
                                                                                                                       300
                                                                                                                                     350
                                                                             Quantidade de Acidentes
```

In [83]:

```
# Causa dos Acidentes

fig = plt.figure(figsize=(18,12))
fig = sns.countplot(y = 'type of occurrence', data = df_acidentes, order = df_acidentes['type of occurrence'].value_counts().index)
for item in fig.get_xticklabels():
    item.set_rotation(0)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
fig.set_title('Causas/Motivos dos Acidentes',fontsize=15)
fig.set_ylabel('Causas dos Acidentes',fontsize=15)
fig.set_xlabel('Quantidade de Acidentes',fontsize=15)
No handles with labels found to put in legend.
```

Out[83]:

Text(0.5, 0, 'Quantidade de Acidentes')

In [84]:

```
# Quantidade de Acidentes por Ano
import datetime

df_acidentes['occurrence_day'] = pd.to_datetime(df_acidentes.occurrence_day)
year = df_acidentes['occurrence_day'].dt.year
order = df_acidentes['occurrence_day'].dt.year.value_counts().index
order = order.sort_values(ascending=True)

fig = plt.figure(figsize=(12,8))
fig = sns.countplot(x = year, data = df_acidentes, order = order)
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
fig.set_title('Quantidade de Acidentes por Ano (até 2015)',fontsize=15)
fig.set_ylabel('Quantidade de Acidentes',fontsize=15)
fig.set_xlabel('Ano',fontsize=15)
No handles with labels found to put in legend.
```

Out[84]:

Text(0.5, 0, 'Ano')

In [85]:

```
"classification", "type of occurrence", "localization", "fu", "cou
try", "aerodrome", "time", "aircrafts_involved", "takeoff"]
for coluna in categoricas:
  df matriz correlacao[coluna]=pd.Categorical(df matriz correlacao[coluna]).codes
# Matriz de Correlação
df matriz correlacao = df copia[["fatalities amount", "manufacturer", "equipment", "engines amount"
,"seatings_amount","registration", "model","takeoff_max_weight (Lbs)",
                                  "registration_category", "registration_aviation", "origin_flight", "
estination flight", "operation phase", "type operation", "damage level",
                                   "classification", "type of occurrence", "localization", "fu", "cou
try", "aerodrome", "time", "aircrafts involved", "takeoff"]]
#realizando o plot da matriz de correlação
plt.figure(figsize=(30, 18))
matriz de correlação = df matriz correlacao.corr() #construindo a matriz de correlação
sns.heatmap(matriz de correlação, annot=True, vmin=-1, vmax=1, center= 0) #plotando a matriz de corr
elação com o seaborn
plt.show()
# Considerações sobre nossa matriz de correlação
# 1: Temos uma correlação FORTE para TYPE OPERATION x REGISTRATION AVIATION
                                                                                        0.83
# 2: Temos uma correlação MODERADA para ENGINES AMOUNT x TAKEOFF MAX WEIGHT (LSB) 0.67
# 3: Temos uma correlação MODERADA para SEATINGS AMOUNT x TAKEOFF MAX WEIGHT (LSB)0.62
# 4: Temos uma correlação MODERADA para ENGINES AMOUNT x SEATINGS AMOUNT
                                                                                       0.5
# 5: Temos uma correlação FRACA para MANUFACTURER x MODEL
                                                                                        0.46
# 6: Temos uma correlação FRACA para FATALITIES AMOUNT x DAMAGE LEVEL
# 7: Temos uma correlação FRACA para SEATINGS AMOUNT x REGISTRATION CATEGORY
                                                                                        0.33
# Temos mais correlações mais que consideramos despresiveis para nossa análise.
4
                                                                                                    - | ₩ ▶ |
  fatalities_amount - 1 -0.019 0.056 0.056
                                                                                                       0.75
                                                                                                       0.50
                           -0 096
                                                                                                       0.25
                                         1
                                                        0.83
                                      0.15
                        -0.14
                                                              0.0001 0.088
                                                                                                        -0.25
                                         0.039
                                                                      0.044
                                                                          -0.044
                                                                                                        -0.50
                                                                                                       -0.75
                                             0.034 0.0033
                                                    0.12 0.024 0.062 0.18 0.15
                                                                      -0.025 -0.0058 -0.0051
                                                                                 0.19 -0.0015 -0.044
```