Table of Contents for Modified Modules:

- 1. Module NoahMP hrldas driver wt.F
- 2. Module hrldas netcdf io wt.F
- 3. Module sf noahmpdrv wt.F
- 4. Module sf noahmplsm wt.F

module NoahMP hrldas driver wt.F

In MODULE NoahMP hrldas driver:

- Define new water tracer variables
- Add "water tracer option" in the namelist
 - It will be transferred to "OPT WT"
- Add "partial mixing option" in the namelist
 - It will be transferred to "IOPT PM"
- In subroutine "land_driver_init":
 - o Read in namelist and assign "IOPT PM", "NSUB", "NTRACER"
 - o Assign "wvtstart" and "wvtend" values according to namelist
 - Allocate water tracer variables
 - Initialize tracer variables to be 0.0 or undefined real
- In subroutine "land driver exe":
 - Assign "wvtflag" according to whether the time step is within the tagging period or not
 - Initialize tracer variables to be 0.0 if wvtflag == 1
 - Assign "wvt ratio" according to "wvtflag" values
 - If water tracer is activated
 - Call "noahmplsm" with optional variables passing
 - Output new tracer variables for each time step

module_hrldas_netcdf_io_wt.F

- Subroutine add_to_output_3d
 - Added option for snow_or_soil to be "TRAC" so that it can output tracer variables in the sub-soil layers
 - elseif
 - Assign "zdimid"

- zdimid = dimid tracer layers remember
- Define "dimid tracer layers remember" at the beginning (line 46)
 - Integer, private :: dimid_tracer_layers_remember
- Assign "dimid tracer layers remember" in subroutine "prepare output file seq"
 - o Add "ntracer" into the argument as input and define it
 - Integer, intent(in) :: ntracer
 - Define "dimid tracer layers"
 - Integer :: dimid tracer layers
 - o Define "tracer_layers" dimension in output file and assign "dimid_tracer_layers"
 - iret = nf90_def_dim(acid, "tracer_layers", nsnow, dimid_tracer_layers)
 - Assign "dimid_tracer_layers_remember"
 - dimid tracer layers remember = dimid tracer layers
- For a different soil layer and depth configuration other than the default 0.1, 0.3. 0.6
 1.0m, in "readinit_hrldas" subroutine, it will do the interpolation accordingly for soil temperature and soil moisture
 - By calling "init_interp"
- Subroutine "prepare_output_file_mpp"
 - o Add "ntracer" into the argument when calling "prepare output file seq"
 - Define "ntracer" as input argument

module_sf_noahmpdrv_wt.F

In subroutine "noahmplsm":

- Add water tracer variable (2-D or 3-D) as argument and define them
 - "NTRACER" is not an optional variable because it will be needed to define dimensions
- Define 1-D tracer variables to transfer 3-D variables for column calculation
 - o Lines 495
- Transfer 3-D tracer variables to 1-D variables
 - Using "if present(WVTFLAG)" statement
- Add "NSOIL" and "ZSOIL" as new argument when calling "TRANSFER MP PARAMETERS"
- Call "NOAHMP SFLX"
 - o Add 1-D tracer variables as optional arguments
- Update 3-D tracer variables with each column
 - Use "if present(WVTFLAG)" statement

In subroutine "TRANSFER MP PARAMETERS":

- Add "NSOIL" and "ZSOIL" as new arguments and define them
 - NSOIL as input
 - INTEGER, INTENT(IN) :: NSOIL
 - ZSOIL as optional input
 - REAL, DIMENSION(1:NSOIL), INTENT(IN), OPTIONAL :: ZSOIL
- In this newer version, SOILTYPE can vary vertically but has been hard-wired to be 4 layers
 - Therefore, also adjust the dimension of SOILTYPE using NSOIL
- Define "ZSOIL OLD" and "IZ" as local variables
 - o ZSOIL_OLD to store default soil layer configuration
 - REAL, DIMENSION(1:NSOIL) :: ZSOIL OLD = (/0.1, 0.4, 1.0, 2.0/)
 - IZ for vertical loop
 - INTEGER :: IZ
 - o If (present(ZSOIL)), do the vertical loop from 1 to NSOIL
 - Redefind parameter%NROOT

module sf noahmplsm wt.F

Here defines most of the new subroutines that will be used for water tracer calculation

- State them at the beginning of the code
 - Public :: tag precip
 - Private :: calculate_dz
 - Etc (see the end of this file listing new subroutines for tracer calculation)
- Subroutine "NOAHMP SFLX"
 - Add tracer variables as optional arguments
 - Define these tracer variables as optional variables
 - NTRACER is not optional, because it would be required to define dimension
 - Others are optional
 - Define local tracer variables
 - Call "tag precip" to tag precipitation as water tracer (Line 740, after call "ATM")
 - If (present(WVTFLAG)) call tag precip(RAIN, wvt ratio, RAIN TR)
 - Call "calculate_dz" to calculated tracer snow/soil layer thickness (Line 752)
 - Call "PRECIP HEAT"
 - Add tracer variables as optional arguments
 - Call "ENERGY"

- Add tracer variables as optional arguments
- Update "SICE TR" and "SICE SUB"
 - If (present(WVTFLAG)) SICE_TR(:)=MAX(0.0, SMC_TR(:)-SH2O_TR(:))
- Call "WATER"
 - Add tracer variables as optional arguments
- Call "calculate_lh_energy" to calculate tracer energy fluxes
 - If (present(WVTFLAG)) call calculate Ih energy
- Update "SNOWH TR" and "SNEQV TR" if "SNOWH" is close to 0
 - If (present(WVTFLAG)) SNOWH TR = 0.0
- Subroutine "PRECIP HEAT"
 - o Add water tracer variables as optional arguments
 - o Define water tracers as optional variables
 - Define local tracer variables
 - Initialize tracer variables
 - If (present(WVTFLAG)) QINTR_TR = 0.0
 - Call "tag_prcip" to tag intercepted or through fall as tracer intercepted or through
 - Update "CANLIQ TR"
 - Update "CANICE TR"
 - Update "CMC_TR" (tracer canopy water)
 - Update tracer snow/rain on the ground
- Subroutine "ENERGY"
 - Add water tracer variables as optional arguments
 - o Define water tracer variables as optional variables
 - Call "PHASECHANGE"
 - Add tracer variable as optional arguments
- Subroutine "PHASECHANGE":
 - Add water tracer variables as optional arguments
 - o Define water tracer variables as optional variables
 - Initialize tracer variables
 - Calculate the rate of melting/freezing for tracer snow and soil
 - Call "MELTING SUB"
 - Or call "FREEZING_SUB"
 - Update "MLIQ_TR", "QMELT_TR"
 - o Update "SNLIQ TR" and "SNICE TR", "SMC TR" and other "SUB" variables

- Subroutine "WATER":
 - Add water tracer variables as optional arguments
 - o Define water tracer variables as optional variables
 - Initialize water tracer variables
 - Call "CANWATER"
 - Add tracer variables as optional arguments
 - Call "SNOWWATER"
 - Add tracer variables as optional arguments
 - For frozen ground, call "TOPSOIL_SUB" or update "SICE TR", "EDIR TR"
 - Update "QINSUR TR"
 - o If lake, call "get_wt_ratio" and update "WSLAKE_TR" and "EDIR_TR"
 - If soil, call "SOILWATER"
 - Add water tracer variables as optional arguments
 - Update "EDIR TR"
 - Update "RUNSUB TR"
 - Update "SMC TR" and "SMC SUB"
 - Update "RUNSUB TR" by adding "SNOFLOW TR"

Subroutine "CANWATER":

- Add water tracer variables as optional arguments
- Define water tracer variables as optional variables
- Define local tracer variables
- Initialize tracer variables
- o Call "get wt ratio" to calculate tracer ratio in "CANLIQ" and "CANICE"
- Update "CANLIQ TR" due to evaporation/condensation
- Update "CANICE TR" due to sublimation/frost
- Update "CANLIQ TR" and "CANICE TR" due to melting/freezing
- Update "CANLIQ TR" and "CANICE TR" due to melting/freezing
- Calculate "CMC TR" and "ECAN TR"

• Subroutine "SNOWWATER"

- Add water tracer variables as optional arguments
- Define water tracer variables as optional variables
- Define local tracer variables
- Call "SNOWFALL"
 - Add water tracer variables as optional argument
- Call "COMPACT":
 - Add water tracer variables as optional argument

- Call "COMBINE"
 - Add water tracer variables as optional argument
- Call "DIVIDE"
 - Add water tracer variables as optional argument
- o Call "SNOWH2O"
 - Add water tracer variables as optional argument
- Set tracer variables in empty snow layers to zero
- For glacier regions, update tracer variables
- Sum up tracer snow mass for layered snow as "SNEQV_TR"
- Reset and update "DZSNSO TR"
- Subroutine "SNOWFALL":
 - Add water tracer variables as optional argument
 - Define water tracer variables as optional variables
 - Update "SNOWH TR" and "SNEQV TR"
 - Update "SNLIQ_TR" and "SNICE_TR" and "DZSNSO_TR"
- Subroutine "COMBINE":
 - Add water tracer variables as optional arguments
 - Define water tracer variables as optional variables
 - Update "SNEQV_TR", "SNOWH_TR", "PONDING1_TR"
 - Call "TOPSOIL SUB" if sublimation removes water from soil
 - Update tracer snow variables for case of too large surface sublimation
 - Update tracer snow variables if all snow is going (converted into pounding water on soil surface)
 - For snow layers exist:
 - Call "COMBO_TR" to combine layers (WHY??)
 - Add water tracer variables as arguments
 - Shift tracer elements above this down one
- Subroutine "DIVIDE":
 - Add water tracer variables as optional arguments
 - Define water tracer variables as optional variables
 - Update "SWICE_TR" and "SWLIQ_TR"
 - Split snow layers into to if needed
 - For splitting into more layers
 - Update each layer tracer snow vars according to snow depth
 - Call "COMBO TR" if needed

- Update "SNICE_TR", "SNLIQ_TR" and "DZSNSO_TR"
- Subroutine "COMBO_TR":
 - Modified upon "COMBO"
 - o Add water tracer variables as new arguments
 - Define water tracer variables
 - Update tracer snow variables
- Subroutine "COMPACT":
 - Add water tracer variables as optional arguments
 - o Define water tracer variables as optional variables
 - Update "DZSNSO TR" due to melting
- Subroutine "SNOWH20":
 - o Add water tracer variables as optional argument
 - Define water tracer variables
 - o If SNEQV = 0 (melting) and perhaps melt top soil snow into water
 - Call "TOPSOIL SUB"
 - Update "SICE TR" and "SICE SUB"
 - For shallow snow
 - Call "get wt ratio" or "TOPSOIL SUB" if needed
 - update "EDIR_TR", "SNEQV_TR", "SNOWH_TR"
 - For deep snow
 - Update "SNICE TR" and "EDIR TR"
 - Call "COMBINE"
 - Update "SNLIQ TR"
 - Update "QIN TR" and "QOUT TR"
 - "QOUT TR" being liquid water from snow bottom to soil
- Subroutine "SOILWATER"
 - Add water tracer variables as optional arguments
 - Define water tracer variables as optional variables
 - Define local tracer variables
 - Initialize tracer variables
 - If snowmelt is too large, call "TOPSOIL_SAT" or "SOIL_SAT" to update "SH2O SUB" and "SH2O TR"

- Call "get wt ratio" to update "RUNSRF TR" and "PDDUM TR"
- o Call "SMT TR" to update tracer soil water variables
- Update "QDRAIN_TR", "RUNSRF_TR" and "ETRAN_TR"

After subroutine "noahmp_options" before the end of END MODULE "MODULE_SF_NOAHMPLSM":

Add all new tracer subroutines here:

- Subroutine "tag precip"
 - Tag water as tracer water using wvt_ratio
- Subroutine "calculate dz"
 - o Compute tracer snow and soil layer depth
- Subroutine "calculate_lh_energy"
 - o Compute latent heat due to evaporation/sublimation amount
- Subroutine "get wt ratio"
 - Calculate tracer/total water ratio
- Subroutine "MELTING SUB"
 - o Deals with melting in each soil sublayer
- Subroutine "FREEZING SUB"
 - o Deals with freezing in each soil sublayer
- Subroutine "TOPSOIL SUB"
 - Deals with top soil layer "SH2O_TR" and "SICE_TR"
- Subroutine "TOPSOIL SAT"
 - Deals with top soil layer for saturated situation
- Subroutine "SOIL_SAT"
 - o Deals with non-top soil layers fro saturated situation
- Subroutine "SMT TR"
 - Updates tracer soil variables
 - Each steps are explained by the comments

Note: **RED BOLD** suggests new water tracer related subroutines