Tutorial sheet no.: -09
question no. 01 >> Obtain the frequency-sampling realization of FIR felter, whose system function
realization of FIR felter, whose system function
HEZT is characterized by the set of frequency samples & H(k+2) of as given below
$H[z] = \frac{1-z^{-m}}{m} e^{j\pi d} \underbrace{\sum_{k=0}^{m-1} \frac{H(k+d)}{1-e^{j2\pi(k+d)/m}z^{-1}}}_{k=0}$
$M = 0 - e^{j2\pi(k+d)/m}$
Also comment abouts its poles and zeros in z-domain
pustion no. 02 -> Consent the analy bandpass filter
pustion no. 02 -> Consent the analys bandpass filter weeth system Junction A
$H_{\alpha}(s) = \frac{1}{(s+o(1)^2+9)}$
into a digital IIR gilter by use of the backward sur difference for the downative. Determine its poles and zer
into a digital the domination. Determine to P. at T=0.1.
difference of the
Hint: S = 1-Z'

Hint: $S = \frac{1-z^{-1}}{T}$ question no. 03 \longrightarrow Consent the analog bandpass

question no. 02; Eq. A)

gilter A (as mentioned in question no. 02; Eq. A)

into a digital IIR filter by use of the malphing $S = Z - Z^{-1}$