Advanced R: Statistical Machine Learning

Dan Schmutz, MS Chief Environmental Scientist

Zoom Workshop for SJRWMD September 24, 2020

Regularized Regression: Ridge, Lasso, and Elastic Net

Regularization introduces some bias to reduce variance

- In statistical machine learning we frequently encounter datasets with multicollinearity: intercorrelated variables.
- Multicollinearity makes regression coefficients unstable: high variance between datasets.
- Normal regression seeks to minimize squared residuals
- Regularized regression adds either an L1 or L2 penalty to the regression coefficients (or a mixture of both).

Ridge (L2 regularization)

• As lambda increases, the coefficients are forced to be smaller, introducing bias, but decreasing variance

minimize
$$\left(SSE + \lambda \sum_{j=1}^{p} \beta_{j}^{2}\right)$$

Lasso (L1 Regularlization)

• As lambda increases, the coefficients are forced to go to zero, effectively making the lasso a form of variable selection

minimize
$$\left(SSE + \lambda \sum_{j=1}^{p} |\beta_j|\right)$$

Elastic Net Regularization

 Two hyper parameters, lambda you know, and alpha which controls the mixing ratio of L2 and L1

minimize
$$\left(SSE + \lambda_1 \sum_{j=1}^p \beta_j^2 + \lambda_2 \sum_{j=1}^p |\beta_j|\right)$$

Ridge on ames data

```
# Create training feature matrices
# we use model.matrix(...)[, -1] to discard the intercept
X <- model.matrix(Sale_Price ~ ., train_3)[, -1]
Xnotused<-model.matrix(Sale_Price ~ ., train_3)

# transform y with log transformation
Y <- log(train_3$Sale_Price)

# Apply ridge regression to ames data
ridge <- glmnet(
    x = X,
    y = Y,
    alpha = 0

plot(ridge, xvar = "lambda")</pre>
```

Ridge on ames data

coefficients down to near but not

reaching zero.

45

Ridge on ames data

- glmnet chose range of 100 lambdas to investigate
- Compare coefficients at the largest and smallest lambdas

What is the optimal lamda for inference on out-of-sample data?

• Glmnet offers built-in crossvalidation (10-fold)

```
# Apply CV ridge regression to ames data
ridge <- cv.glmnet(
    x = X,
    y = Y,
    alpha = 0
)</pre>
```

• Str(ridge)

```
... attr(*, "class")= chr [1:2] "elnet" "glmnet"
$ lambda.min: num 0.142
$ lambda.1se: num 0.628
- attr(*, "class")= chr "cv.glmnet"
```

crossvalidated results for ridge penalty

All 303 coefficients stay in model.

> log(ridge\$lambda.1se)

[1] -0.4652815

cv-selected ridge performance on train and test

• Looks much better than the glmulti-selected model (which only included numeric variables)

```
> # compute RMSE of transformed predicted
> RMSE(exp(predridge), exp(Y))
[1] 28870.87
> # can we run it on test?
> Xtest <- model.matrix(Sale_Price ~ ., test_3)[, -1]
> predridgetest <- predict(ridge, Xtest)
> Ytest <- log(test_3$Sale_Price)
> RMSE(exp(predridgetest), exp(Ytest))
[1] 43656.97
```

Value(s) of the penalty parameter lambda at which predictions are required. Default is the value s="lambda.1se" stored on the CV object. Alternatively s="lambda.min" can be used. If s is numeric, it is taken as the value(s) of lambda to be used. (For historical reasons we use the symbol 's' rather than 'lambda' to reference this parameter)

Is lamda.min or lambda.1se better for inference on outof-sample data?

- This is a question about parsimony. The lambda.min option refers to value of λ at the lowest CV error. The error at this value of λ is the average of the errors over the k folds and hence this estimate of the error is uncertain. The lambda.1se represents the value of λ in the search that was simpler than the best model (lambda.min), but which has error within 1 standard error of the best model. In other words, using the value of lambda.1se as the selected value for λ results in a model that is slightly simpler than the best model but which cannot be distinguished from the best model in terms of error given the uncertainty in the k-fold CV estimate of the error of the best model.
- The choice is yours:
- The best model that may be too complex of slightly overfitted: lambda.min
- The simplest model that has comparable error to the best model given the uncertainty: lambda.1se

https://stats.stackexchange.com/questions/70249/feature-selection-model-with-glmnet-on-methylation-data-pn

Obs vs. exp plot for ames test_3

Lasso on ames data

4

Lasso on ames data

Lasso on ames data

Note coefficients being forced to 0 with L1 regularization, 57 left in model at 1SE rule

Lasso penalty

289 288 274 260 249 244 214 181 149 122 100 79 57 47 36 24 11 8 7 5 4 4 0

cv-selected lasso performance on train and test

Not as good as ridge for this problem

```
> # evaluation on train_3 lasso
> predlasso <- predict(lasso, X)
> # compute RMSE of transformed predicted
> RMSE(exp(predlasso), exp(Y))
[1] 33823.32
> predlassotest <- predict(lasso, Xtest)
> RMSE(exp(predlassotest), exp(Ytest))
[1] 56674.53
```

Obs vs. exp plot for lasso on test_3


```
> cor(test_3aug$predlassotest,test_3aug$Sale_Price)^2
         [,1]
1 0.5856687
> res_predlassotest<-test_3aug$Sale_Price-test_3aug$predlassotest
> (mean((res_predlassotest)^2))^0.5
[1] 56674.53
```

elastic net on ames data requires tuning of both lambda and alpha hyperparmeters

• Grid search implemented using caret package

```
# elastic net model
# for reproducibility
set.seed(42)
# grid search across
cv_glmnet <- train(</pre>
 X = X.
 V = Y.
 method = "glmnet",
 preProc = c("zv", "center", "scale"),
 trControl = trainControl(method = "cv", number = 10),
 tuneLength = 10
# model with lowest RMSE
cv_glmnet$bestTune
    alpha
             lambda
      0.1 0.04728445
# results for model with lowest RMSE
cv_glmnet$results %>%
 filter(alpha == cv_glmnet$bestTune$alpha, lambda == cv_glmnet$bestTune$lambda
           lambda
                          RMSE Rsquared
                                                MAE RMSESD RsquaredSD
## 1 0.1 0.04728445 0.1382785 0.8852799 0.08427956 0.0273119 0.04179193
## MAESD
## 1 0.005330001
```

elastic net tuning results

ggplot(cv_glmnet)

Elastic net performance on train and test

Better than ridge on training set but worse on test!

```
> RMSE(exp(predelastic), exp(Y))
[1] 25329.31
> predelastictest <- predict(cv_glmnet, Xtest)
> RMSE(exp(predelastictest), exp(Ytest))
[1] 50741.77
> test_3aug$predelastictest<-exp(predelastictest)
> ggplot(test_3aug,aes(x=predelastictest,y=Sale_Price))+
+ geom_point()+stat_smooth(method=lm)+geom_abline(slope=1, intercept=0
'geom_smooth()' using formula 'y ~ x'
> cor(test_3aug$predelastictest,test_3aug$Sale_Price)^2
[1] 0.6622576
> res_predelastictest<-test_3aug$Sale_Price-test_3aug$predelastictest
> (mean((res_predelastictest)^2))^0.5
[1] 50741.77
```

Varianble importance for elastic net (top 20 variables)

• vip(cv_glmnet, num_features = 20, geom = "point")

