Algebra e matematica discreta, a.a. 2020/2021,

Scuola di Scienze - Corso di laurea:

Informatica

Svolgimento degli Esercizi per casa 8

$$\boxed{\mathbf{1}} \text{ Sia } \quad \mathbf{A}_{\alpha} = \begin{pmatrix} 2 & 0 & 0 & 2i \\ 0 & \alpha & 0 & 2i \\ 4 & \alpha - 1 & 0 & 4i \\ 0 & 2 & 4\alpha - 6 & 0 \end{pmatrix}, \quad \text{dove } \alpha \in \mathbb{C}.$$

Per ogni $\alpha \in \mathbb{C}$ si dica qual è $rk(\mathbf{A}_{\alpha})$ e si trovi una base \mathcal{B}_{α} di $C(\mathbf{A}_{\alpha})$.

$$\mathbf{A}_{\alpha} = \begin{pmatrix} 2 & 0 & 0 & 2i \\ 0 & \alpha & 0 & 2i \\ 4 & \alpha - 1 & 0 & 4i \\ 0 & 2 & 4\alpha - 6 & 0 \end{pmatrix} \quad \xrightarrow{E_{31}(-4)E_{1}(\frac{1}{2})} \quad \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & \alpha & 0 & 2i \\ 0 & \alpha - 1 & 0 & 0 \\ 0 & 2 & 4\alpha - 6 & 0 \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & 2\alpha - 3 & 0 \\ 0 & 0 & -(2\alpha - 3)(\alpha - 1) & 0 \\ 0 & 0 & -(2\alpha - 3)\alpha & 2i \end{pmatrix} = \mathbf{B}_{\alpha}$$

$$1^0 \text{ CASO}$$
 $\alpha = 1$

$$\mathbf{B_1} = \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2i \end{pmatrix} \quad \xrightarrow{E_{34}} \quad \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 2i \\ 0 & 0 & 0 & 0 \end{pmatrix} = \mathbf{U_1}$$

$$\operatorname{rk}(A_1) = 3$$

Una base
$$\mathcal{B}_1$$
 di $C(\mathbf{A_1})$ è $\mathcal{B}_1 = \left\{ \begin{pmatrix} 2\\0\\4\\0 \end{pmatrix}; \begin{pmatrix} 0\\1\\0\\2 \end{pmatrix}; \begin{pmatrix} 0\\0\\0\\-2 \end{pmatrix} \right\}.$

$$2^0$$
 CASO $\alpha = \frac{3}{2}$

$$\mathbf{B}_{\frac{3}{2}} = \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2i \end{pmatrix} \xrightarrow{E_{3}(\frac{1}{2i})E_{34}} \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \mathbf{U}_{\frac{3}{2}}$$

$$\operatorname{rk}(\mathbf{A}_{\frac{3}{2}}) = 3$$

Una base
$$\mathcal{B}_{\frac{3}{2}}$$
 di $C(\mathbf{A}_{\frac{3}{2}})$ è $\mathcal{B}_{\frac{3}{2}} = \left\{ \begin{pmatrix} 2 \\ 0 \\ 4 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ \frac{3}{2} \\ \frac{1}{2} \\ 2 \end{pmatrix}; \begin{pmatrix} 2i \\ 2i \\ 4i \\ 0 \end{pmatrix} \right\}.$

$$3^0$$
 CASO $\alpha \notin \{1, \frac{3}{2}\}$

$$\mathbf{B}_{\alpha} = \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & 2\alpha - 3 & 0 \\ 0 & 0 & -(2\alpha - 3)(\alpha - 1) & 0 \\ 0 & 0 & -(2\alpha - 3)\alpha & 2i \end{pmatrix} \xrightarrow{E_{43}((2\alpha - 3)\alpha)E_3(\frac{1}{-(2\alpha - 3)(\alpha - 1)})}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & 2\alpha - 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2i \end{pmatrix} \xrightarrow{E_4(\frac{1}{2i})} \begin{pmatrix} 1 & 0 & 0 & i \\ 0 & 1 & 2\alpha - 3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{U}_{\alpha}$$

$$\operatorname{rk}(A_{\alpha}) = 4$$

Una base
$$\mbox{\mathcal{B}}_{\alpha}$$
 di $C(\mathbf{A}_{\pmb{\alpha}})$ è $\mbox{$\mathcal{B}$}_{\alpha} = \left\{ \begin{pmatrix} 2 \\ 0 \\ 4 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 2 \\ \alpha-1 \\ 2 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 0 \\ 4\alpha-6 \end{pmatrix}; \begin{pmatrix} 2i \\ 2i \\ 4i \\ 0 \end{pmatrix} \right\}.$

N.B.: Essendo in questo caso $C(\mathbf{A}_{\alpha}) \leq \mathbb{C}^4$ è $\dim(C(\mathbf{A}_{\alpha})) = 4 = \dim(\mathbb{C}^4)$, allora $C(\mathbf{A}_{\alpha}) = \mathbb{C}^4$ e si sarebbe potuto prendere $\mathcal{B}_{\alpha} = \{\mathbf{e_1}; \mathbf{e_2}; \mathbf{e_3}; \mathbf{e_4}\}$.

Poichè $N(\mathbf{A}_{\alpha}) = N(\mathbf{U}_{\alpha})$ per ogni forma ridotta di Gauss \mathbf{U}_{α} di \mathbf{A}_{α} , troviamo una base dello spazio nullo di una forma ridotta di Gauss per \mathbf{A}_{α} .

$$\mathbf{A}_{\alpha} = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 1 & \alpha + 2 & \alpha & \alpha + 2 \\ 2 & 4 & 0 & \alpha + 6 \end{pmatrix} \quad \xrightarrow{E_{31}(-2)E_{21}(-1)} \quad \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & \alpha & \alpha & \alpha - 1 \\ 0 & 0 & 0 & \alpha \end{pmatrix} = \mathbf{B}_{\alpha}$$

$$\begin{bmatrix} 1^0 \text{ CASO} \end{bmatrix} \qquad \alpha = 0$$

$$\mathbf{B_0} = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \xrightarrow{E_2(-1)} \quad \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \mathbf{U_0}$$

Per il Teorema nullità+rango,

 $\dim\,N(\mathbf{U_0}) = \text{ (numero delle colonne di }\mathbf{U_0})_0 - \text{ rk }(\mathbf{U_0}) = 4 - 2 = 2.$

Da

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in N(\mathbf{U_0}) \quad \Longleftrightarrow \quad \begin{cases} x_1 + 2x_2 + 3x_4 &= 0 \\ x_4 &= 0 \end{cases}$$

prendendo come parametri le variabili corrispondenti alle colonne libere di U_0 , ossia la 2^a e la 3^a , con la sostituzione all'indietro si ottiene

$$\begin{cases} x_2 &= h \\ x_3 &= k \\ x_4 &= 0 \\ x_1 &= -2x_2 - 3x_4 &= -2h \end{cases}$$

Quindi
$$N(\mathbf{A_0}) = N(\mathbf{U_0}) = \left\{ \begin{pmatrix} -2h \\ h \\ k \\ 0 \end{pmatrix} | h, k \in \mathbb{C} \right\}.$$

Siano $\mathbf{v_1}$ il vettore di $N(\mathbf{A_0})$ che si ottiene ponendo h=1 e k=0, e $\mathbf{v_2}$ il vettore di $N(\mathbf{A_0})$ che si ottiene ponendo h=0 e k=1:

$$\mathbf{v_1} = \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix} \quad \mathbf{e} \quad \mathbf{v_2} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}.$$

Allora $\left\{\mathbf{v_1} = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix}; \mathbf{v_2} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ è una base di $N(\mathbf{A_0})$.

$$2^0$$
 CASO $\alpha \neq 0$

$$\mathbf{B}_{\alpha} = \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & \alpha & \alpha & \alpha - 1 \\ 0 & 0 & 0 & \alpha \end{pmatrix} \xrightarrow{E_{3}(\frac{1}{\alpha})E_{2}(\frac{1}{\alpha})} \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 1 & 1 & \frac{\alpha - 1}{\alpha} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{U}_{\alpha}$$

Per il Teorema nullità+rango,

 $\dim N(\mathbf{U}_{\alpha}) = \text{ (numero delle colonne di } \mathbf{U})_{\alpha} - \text{ rk } (\mathbf{U}_{\alpha}) = 4 - 3 = 1.$

Da

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in N(\mathbf{U}_{\alpha}) \iff \begin{cases} x_1 + 2x_2 + 3x_4 &= 0 \\ x_2 + x_3 + \frac{\alpha - 1}{\alpha} x_4 &= 0 \\ x_4 &= 0 \end{cases}$$

prendendo come parametro la variabile corrispondente all'unica colonna libera di \mathbf{U}_{α} , ossia la 3^a , con la sostituzione all'indietro si ottiene

$$\begin{cases} x_3 &= h \\ x_4 &= 0 \\ x_2 &= -x_3 - \frac{\alpha - 1}{\alpha} x_4 &= -h \\ x_1 &= -2x_2 - 3x_4 &= 2h \end{cases}$$

Quindi
$$N(\mathbf{A}_{\alpha}) = N(\mathbf{U}_{\alpha}) = \left\{ \begin{pmatrix} 2h \\ -h \\ h \\ 0 \end{pmatrix} | h \in \mathbb{C} \right\}.$$

Sia $\mathbf{v_1}$ il vettore di $N(\mathbf{A}_{\alpha})$ che s ottiene ponendo h = 1: $\mathbf{v_1} = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \end{pmatrix}$.

Allora $\left\{\mathbf{v_1} = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \end{pmatrix}\right\}$ è una base di $N(\mathbf{A}_{\alpha})$.

3 Siano

$$\mathbf{v_1} = \begin{pmatrix} 1 \\ i \\ 2 \\ 0 \\ 1 \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} i \\ -1 \\ 2i \\ 0 \\ i \end{pmatrix}, \mathbf{v_3} = \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v_4} = \begin{pmatrix} 1 \\ 2i \\ 2 \\ -i \\ 1 \end{pmatrix}$$

ed

$$\boldsymbol{\mathcal{S}} \ = \{v_1; v_2; v_3; v_4\}.$$

Sia W il sottospazio di \mathbb{C}^5 generato da ${\mathcal S}$. Si trovi una base ${\mathcal B}$ di W contenuta in ${\mathcal S}$.

Sia $\mathbf{A} = (\mathbf{v_1} \quad \mathbf{v_2} \quad \mathbf{v_3} \quad \mathbf{v_4})$ una matrice che ha come colonne gli elementi di $\boldsymbol{\mathcal{S}}$. Allora $W = C(\mathbf{A})$. Facendo una E.G. su \mathbf{A} otteniamo:

$$\mathbf{A} = \begin{pmatrix} 1 & i & 0 & 1 \\ i & -1 & -1 & 2i \\ 2 & 2i & 0 & 2 \\ 0 & 0 & 1 & -i \\ 1 & i & 0 & 1 \end{pmatrix} \quad \xrightarrow{E_{41}(-1)E_{31}(-2)E_{21}(-i)} \quad \begin{pmatrix} 1 & i & 0 & 1 \\ 0 & 0 & -1 & i \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -i \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow$$

Poichè le colonne dominanti di U sono la 1^a e la 3^a, $\mathcal{B} = \{\mathbf{v_1}; \mathbf{v_3}\}$ è una base di $C(\mathbf{A}) = W$ contenuta in \mathcal{S} .

$$\boxed{\textbf{4}} \text{ Si dica per quali } \alpha \in \mathbb{R} \text{ l'insieme } \textbf{\textit{B}}_{\alpha} = \left\{ \begin{pmatrix} 1 \\ \alpha \\ 1 \end{pmatrix}; \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}; \begin{pmatrix} 1 \\ \alpha+1 \\ \alpha+1 \end{pmatrix} \right\} \text{ è una base di } \mathbb{R}^3.$$

Costruiamo una matrice le cui colonne siano gli elementi di \mathcal{B}_{α} :

$$\mathbf{A}_{\alpha} = \begin{pmatrix} 1 & 2 & 1 \\ \alpha & 0 & \alpha + 1 \\ 1 & 2 & \alpha + 1 \end{pmatrix}.$$

Il problema diventa stabilire per quali $\alpha \in \mathbb{R}$ si ha che rk $\mathbf{A}_{\alpha} = 3$. Facciamo un'eliminazione di Gauss su \mathbf{A}_{α} .

$$\mathbf{A}_{\alpha} = \begin{pmatrix} 1 & 2 & 1 \\ \alpha & 0 & \alpha + 1 \\ 1 & 2 & \alpha + 1 \end{pmatrix} \quad \xrightarrow{E_{31}(-1)E_{21}(-\alpha)} \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & -2\alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix} = \mathbf{B}_{\alpha}$$

1º CASO:
$$\alpha = 0$$
 $\mathbf{B_0} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{U_0}$

$$rk(\mathbf{A_0}) = rk(\mathbf{U_0}) = 2 \neq 3 \Longrightarrow \ \mathcal{B}_0$$
 NON E' una base di \mathbb{R}^3 .

$$2^0$$
 CASO: $\alpha \neq 0$

$$\mathbf{B}_{\alpha} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -2\alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix} \quad \xrightarrow{E_3(1/\alpha)E_2(-1/2\alpha)} \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -1/2\alpha \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{U}_{\alpha}$$

$$rk(\mathbf{A}_{\alpha}) = rk(\mathbf{U}_{\alpha}) = 3 \implies \mathbf{\mathcal{B}}_{\alpha} \quad \mathbf{E}'$$
 una base di \mathbb{R}^3 .

- 5 Si dica quale delle due seguenti posizioni definisce un'applicazione lineare:
- (a) $f_1: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ definita da $f_1(\mathbf{A}) = \mathbf{A}^T$ per ogni $\mathbf{A} \in M_n(\mathbb{C})$;
- (b) $f_2: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ definita da $f_2(\mathbf{A}) = \mathbf{A}^2$ per ogni $\mathbf{A} \in M_n(\mathbb{C})$.

Fissato $i \in \{1,2\}$, per vedere che $f_i: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ è un'applicazione lineare occorre verificare che siano soddisfatte le seguenti condizioni:

- (1) $f_i(\mathbf{A} + \mathbf{B}) = f_i(\mathbf{A}) + f_i(\mathbf{B})$ per ogni $\mathbf{A}, \mathbf{B} \in M_n(\mathbb{C})$;
- (2) $f_i(\alpha \mathbf{A}) = \alpha f_i(\mathbf{A})$ per ogni $\mathbf{A} \in M_n(\mathbb{C})$ ed ogni $\alpha \in \mathbb{C}$.
- f_1 verifica la condizione (1) ?

Poichè la trasposta della somma di matrici è la somma delle trasposte si ha:

$$f_1(\mathbf{A} + \mathbf{B}) = (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T = f_1(\mathbf{A}) + f_1(\mathbf{B}) \quad \forall \mathbf{A}, \mathbf{B} \in M_n(\mathbb{C}).$$

Dunque f_1 verifica la condizione (1).

 f_1 verifica la condizione (2) ?

Poichè la trasposta del prodotto di una matrice per uno scalare è il prodotto della trasposta della matrice per lo scalare, si ha:

$$f_1(\alpha \mathbf{A}) = (\alpha \mathbf{A})^T = \alpha \mathbf{A}^T = \alpha f_1(\mathbf{A}) \quad \forall \mathbf{A} \in M_n(\mathbb{C}), \forall \alpha \in \mathbb{C}.$$

Dunque f_1 verifica la condizione (2).

Verificando entrambe le condizioni (1) e (2), f_1 è un'applicazione lineare.

• f_2 verifica la condizione (1) ?

Essendo

Essendo
$$\begin{cases} f_2(\mathbf{A} + \mathbf{B}) = (\mathbf{A} + \mathbf{B})^2 = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{B}) = \mathbf{A}^2 + \mathbf{B}\mathbf{A} + \mathbf{A}\mathbf{B} + \mathbf{B}^2 \\ f_2(\mathbf{A}) = \mathbf{A}^2 \\ f_2(\mathbf{B}) = \mathbf{B}^2 \end{cases}$$

se fosse $f_2(\mathbf{A} + \mathbf{B}) = f_2(\mathbf{A}) + f_2(\mathbf{B})$ per ogni $\mathbf{A}, \mathbf{B} \in M_n(\mathbb{C})$, sarebbe

(*)
$$\mathbf{B}\mathbf{A} + \mathbf{A}\mathbf{B} = \mathbf{O} \quad \forall \mathbf{A}, \mathbf{B} \in M_n(\mathbb{C})$$

Ma (*) è falsa: si prenda, ad esempio, $\mathbf{A} = \mathbf{B} = \mathbf{I}_n$.

Dunque f_2 non verifica la condizione (1) e quindi non è un'applicazione lineare.

- **6** Sia $f: M_2(\mathbb{C}) \to \mathbb{C}^2$ definita da $f(\mathbf{A}) = \mathbf{Ae_1}$ per ogni $\mathbf{A} \in M_2(\mathbb{C})$.
- (a) Si provi che f è un'applicazione lineare.
- (b) Si trovino lo spazio nullo (il nucleo) N(f) e l'immagine Im(f) di f.
- (a) $M_2(\mathbb{C})$ e \mathbb{C}^2 sono entrambi spazi vettoriali complessi. Verificare che f è un'applicazione lineare significa verificare che sono soddisfatte le seguenti condizioni:
 - (1) $f(\mathbf{A} + \mathbf{B}) = f(\mathbf{A}) + f(\mathbf{B})$ per ogni $\mathbf{A}, \mathbf{B} \in M_2(\mathbb{C})$;
 - (2) $f(\alpha \mathbf{A}) = \alpha f(\mathbf{A})$ per ogni $\mathbf{A} \in M_2(\mathbb{C})$ ed ogni $\alpha \in \mathbb{C}$.
- (1): $f(\mathbf{A} + \mathbf{B}) = (\mathbf{A} + \mathbf{B})\mathbf{e_1} = \mathbf{A}\mathbf{e_1} + \mathbf{B}\mathbf{e_1} = f(\mathbf{A}) + f(\mathbf{B}) \quad \forall \mathbf{A}, \mathbf{B} \in M_2(\mathbb{C});$ Dunque f verifica la condizione (1).
- (2): $f(\alpha \mathbf{A}) = (\alpha \mathbf{A})\mathbf{e_1} = \alpha(\mathbf{A}\mathbf{e_1}) = \alpha f(\mathbf{A}) \quad \forall \mathbf{A} \in M_2(\mathbb{C}), \quad \forall \alpha \in \mathbb{C}.$ Dunque f verifica anche la condizione (2), per cui è un'applicazione lineare.
 - (b) Poichè $f(\mathbf{A}) = \mathbf{Ae_1}$ è la 1^a colonna di \mathbf{A} , allora
- $N(f) = \{ \mathbf{A} \in M_2(\mathbb{C}) | f(\mathbf{A}) = \mathbf{0} \}$ è l'insieme delle matrici complesse 2×2 con la prima colonna nulla, ossia

$$\mathbf{N}(f) = \left\{ \begin{pmatrix} 0 & a \\ 0 & b \end{pmatrix} \middle| a, b \in \mathbb{C} \right\},\,$$

- $\operatorname{Im}(f) = \{f(\mathbf{A}) | \mathbf{A} \in M_2(\mathbb{C})\}$ è l'insieme dei vettori di \mathbb{C}^2 che siano prime colonne di matrici complesse 2×2 . Poichè per ogni $\begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{C}^2$ esiste $\mathbf{A} \in M_2(\mathbb{C})$ tale che $\begin{pmatrix} a \\ b \end{pmatrix}$ sia la prima colonna di \mathbf{A} (si prenda, ad esempio $\mathbf{A} = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$), allora $\operatorname{Im}(f) = \mathbb{C}^2$.
- 7 Sia $f: \mathbb{R}^2 \to M_2(\mathbb{R})$ definita da:

$$f\Big(\begin{pmatrix} a \\ b \end{pmatrix}\Big) = \begin{pmatrix} a & a+b \\ a-b & b \end{pmatrix} \quad \forall \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2$$

- (a) Si provi che f è un'applicazione lineare.
- (b) Si determini la matrice **A** associata ad f rispetto alle basi ordinate

$$\boldsymbol{\mathcal{B}} \ = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\} \quad \text{e} \ \boldsymbol{\mathcal{D}} \ = \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}; \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

su dominio e codominio rispettivamente.

 (\bullet) Per provare che f è un'applicazione lineare occorre provare :

1.
$$f\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} = f\begin{pmatrix} a_1 \\ b_1 \end{pmatrix} + f\begin{pmatrix} a_2 \\ b_2 \end{pmatrix}$$
 $\forall a_1, b_1, a_2, b_2 \in \mathbb{R}$

2.
$$f(\alpha \begin{pmatrix} a \\ b \end{pmatrix}) = \alpha f(\begin{pmatrix} a \\ b \end{pmatrix}) \quad \forall \alpha, a, b \in \mathbb{R}$$

1.
$$f(\binom{a_1}{b_1} + \binom{a_2}{b_2}) = f(\binom{a_1 + a_2}{b_1 + b_2}) =$$

$$=\begin{pmatrix} a_1+a_2 & (a_1+a_2)+(b_1+b_2) \\ (a_1+a_2)-(b_1+b_2) & b_1+b_2 \end{pmatrix} =$$

$$= \begin{pmatrix} a_1 + a_2 & (a_1 + b_1) + (a_2 + b_2) \\ (a_1 - b_1) + (a_2 - b_2) & b_1 + b_2 \end{pmatrix} =$$

$$= \begin{pmatrix} a_1 & a_1 + b_1 \\ a_1 - b_1 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & a_2 + b_2 \\ a_2 - b_2 & b_2 \end{pmatrix} = f(\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}) + f(\begin{pmatrix} a_2 \\ b_2 \end{pmatrix})$$

2.
$$f(\alpha \begin{pmatrix} a \\ b \end{pmatrix}) = f(\begin{pmatrix} \alpha a \\ \alpha b \end{pmatrix}) = \begin{pmatrix} \alpha a & \alpha a + \alpha b \\ \alpha a - \alpha b & \alpha b \end{pmatrix} =$$
$$= \begin{pmatrix} \alpha a & \alpha (a+b) \\ \alpha (a-b) & \alpha b \end{pmatrix} = \alpha \begin{pmatrix} a & a+b \\ a-b & b \end{pmatrix} = \alpha f(\begin{pmatrix} a \\ b \end{pmatrix})$$

La matrice A associata ad f rispetto alle basi ordinate \mathcal{B} e \mathcal{D} su dominio e codominio rispettivamente è la matrice

$$\mathbf{A} = \left(C_{\mathcal{D}} \left(f(\begin{pmatrix} 1 \\ 1 \end{pmatrix}) \right) \quad C_{\mathcal{D}} \left(f(\begin{pmatrix} 1 \\ 2 \end{pmatrix}) \right) \right).$$

Dalla definizione di f si ottiene:

$$f\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 1 & 2\\0 & 1 \end{pmatrix}, \qquad f\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} 1 & 3\\-1 & 2 \end{pmatrix},$$

quindi

$$\mathbf{A} = \left(C_{\,\mathcal{D}}\, \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\right) \quad C_{\,\mathcal{D}}\, \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix})\right).$$

Calcoliamo le coordinate rispetto alla base ordinata \mathcal{D} di un generico elemento $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^2$.

$$C_{\mathcal{D}}\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \delta \\ \gamma \end{pmatrix} \quad \begin{vmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$$

$$= \alpha \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \beta \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + \delta \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} =$$

$$= \begin{pmatrix} 2\gamma & \alpha + \beta \\ \beta + \delta & \beta \end{pmatrix}$$

Risolvendo il sistema
$$\begin{cases} 2\gamma & = & a \\ \alpha + \beta & = & b \\ \beta + \delta & = & c \\ \beta & = & d \end{cases} \text{ otteniamo } \begin{cases} \beta & = & d \\ \gamma & = & a/2 \\ \alpha = b - \beta = b - d \\ \delta = c - \beta = c - d \end{cases},$$

quindi

$$C_{\mathcal{D}}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \begin{pmatrix} b-d \\ d \\ c-d \\ a/2 \end{pmatrix}.$$

In particolare, specializzando a $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$, otteniamo

$$C_{\mathcal{D}}\left(\begin{pmatrix}1&2\\0&1\end{pmatrix}\right)=\begin{pmatrix}1\\1\\-1\\1/2\end{pmatrix},\quad C_{\mathcal{D}}\left(\begin{pmatrix}1&3\\-1&2\end{pmatrix}\right)=\begin{pmatrix}1\\2\\-1\\1/2\end{pmatrix}.$$

La matrice A associata ad f rispetto alle basi ordinate \mathcal{B} e \mathcal{D} su dominio e codominio rispettivamente è quindi la matrice

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ -1 & -3 \\ 1/2 & 1/2 \end{pmatrix}.$$

8 Siano

$$\mathcal{B} = \left\{ \mathbf{v_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}; \mathbf{v_2} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}; \mathbf{v_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
 e

$$\mathcal{B}' = \left\{ \mathbf{v_1}' = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}; \mathbf{v_2}' = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}; \mathbf{v_3}' = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

Dopo aver provato che \mathcal{B} e \mathcal{B}' sono due basi ordinate di \mathbb{R}^3 , si calcolino le matrici di passaggio

$$\mathbf{M}_{\mathcal{B}\leftarrow\mathcal{B}'} (\mathrm{da}~\mathcal{B}'~\mathrm{a}~\mathcal{B}) \in \mathbf{M}_{\mathcal{B}'\leftarrow\mathcal{B}} (\mathrm{da}~\mathcal{B}~\mathrm{a}~\mathcal{B}').$$

Siano
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 ed $\mathbf{A}' = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ le matrici che hanno come colonne

gli elementi di \mathcal{B} e di \mathcal{B}' rispettivamente. Per provare che \mathcal{B} e \mathcal{B}' sono due basi ordinate di \mathbb{R}^3 , occorre provare che \mathbf{A} ed \mathbf{A}' hanno entrambe rango uguale a 3.

Facendo una E.G. su A si ottiene:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad \xrightarrow{E_{21}(-1)} \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \quad \xrightarrow{E_{32}(-1)E_2(-1)} \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{U}$$

per cui $rk(\mathbf{A})=rk(\mathbf{U})=3$, ed, analogamente, facendo una E.G. su \mathbf{A}' si ottiene:

$$\mathbf{A}' = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \quad \xrightarrow{E_{31}(-1)} \quad \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \quad \xrightarrow{E_{32}(-1)} \quad \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix} \rightarrow$$

$$\xrightarrow{E_3(-\frac{1}{2})} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{U}'$$

per cui
$$\operatorname{rk}(\mathbf{A}') = \operatorname{rk}(\mathbf{U}') = 3.$$

La matrice di passaggio M $_{\mathcal{B}}\leftarrow_{\mathcal{B}'}$ da \mathcal{B}' a \mathcal{B} è

$$\mathbf{M}_{\mathcal{B} \leftarrow \mathcal{B}'} = \begin{pmatrix} C_{\mathcal{B}} (\mathbf{v_1'}) & C_{\mathcal{B}} (\mathbf{v_2'}) & C_{\mathcal{B}} (\mathbf{v_3'}) \end{pmatrix} =$$

$$= \begin{pmatrix} C_{\mathcal{B}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} & C_{\mathcal{B}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} & C_{\mathcal{B}} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \end{pmatrix}.$$

Per calcolar
la, piuttosto che calcolare separatamente $C_{\,\mathcal{B}}\,(\begin{pmatrix}1\\0\\1\end{pmatrix}), C_{\,\mathcal{B}}\,(\begin{pmatrix}0\\1\\1\end{pmatrix})$ e

$$C_{\mathcal{B}}\begin{pmatrix} 2\\1\\1 \end{pmatrix}$$
), calcoliamo $C_{\mathcal{B}}\begin{pmatrix} a\\b\\c \end{pmatrix}$) per un generico vettore $\begin{pmatrix} a\\b\\c \end{pmatrix} \in \mathbb{R}^3$, e spe-

cializziamo la formula ottenuta ai tre diversi vettori $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$. Poichè

$$C_{\mathcal{B}}\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \delta \end{pmatrix} \quad \begin{vmatrix} a \\ b \\ c \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \delta \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha + 2\beta + \delta \\ \alpha + \beta + \delta \\ \beta + \delta \end{pmatrix},$$

 α , β e δ sono soluzioni del sistema lineare

(*)
$$\begin{cases} \alpha + 2\beta + \delta = a \\ \alpha + \beta + \delta = b \\ \beta + \delta = c \end{cases}$$

Facendo una E.G. sulla matrice aumentata di (*) otteniamo

$$\begin{pmatrix}
1 & 2 & 1 & | & a \\
1 & 1 & 1 & | & b \\
0 & 1 & 1 & | & c
\end{pmatrix}
\xrightarrow{E_{21}(-1)}
\begin{pmatrix}
1 & 2 & 1 & | & a \\
0 & -1 & 0 & | & b-a \\
0 & 1 & 1 & | & c
\end{pmatrix}
\rightarrow$$

$$\frac{E_{32}(-1)E_{2}(-1)}{\longrightarrow}
\begin{pmatrix}
1 & 2 & 1 & | & a \\
0 & 1 & 0 & | & a-b \\
0 & 0 & 1 & | & c-a+b
\end{pmatrix}$$

da cui, con la sostituzione all'indietro,

$$\begin{cases} \delta = c - a + b \\ \beta = a - b \\ \alpha = -2\beta - \delta + a = -2a + 2b - c + a - b + a = b - c \end{cases}$$

Dunque
$$C_{\mathcal{B}}(\begin{pmatrix} a \\ b \\ c \end{pmatrix}) = \begin{pmatrix} b-c \\ a-b \\ c-a+b \end{pmatrix}$$
, per cui

$$C_{\,\mathbf{\mathcal{B}}}\left(\begin{pmatrix}1\\0\\1\end{pmatrix}\right) = \begin{pmatrix}-1\\1\\0\end{pmatrix}, \quad C_{\,\mathbf{\mathcal{B}}}\left(\begin{pmatrix}0\\1\\1\end{pmatrix}\right) = \begin{pmatrix}0\\-1\\2\end{pmatrix}, \quad C_{\,\mathbf{\mathcal{B}}}\left(\begin{pmatrix}2\\1\\1\end{pmatrix}\right) = \begin{pmatrix}0\\1\\0\end{pmatrix},$$

e quindi

$$\mathbf{M}_{\mathbf{B}\leftarrow\mathbf{B}'} = \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 2 & 0 \end{pmatrix}.$$

Analogamente si ha:

$$\mathbf{M}_{\mathbf{\mathcal{B}}'\leftarrow\mathbf{\mathcal{B}}} = \left(C_{\mathbf{\mathcal{B}}'}\begin{pmatrix} 1\\1\\0 \end{pmatrix}\right) \quad C_{\mathbf{\mathcal{B}}'}\begin{pmatrix} 2\\1\\1 \end{pmatrix}) \quad C_{\mathbf{\mathcal{B}}'}\begin{pmatrix} 1\\1\\1 \end{pmatrix}),$$

ma dal momento che M $\boldsymbol{\beta}' \leftarrow \boldsymbol{\beta} = \mathbf{M}_{\boldsymbol{\beta}}^{-1} \leftarrow \boldsymbol{\beta}'$, calcoliamo M $\boldsymbol{\beta}' \leftarrow \boldsymbol{\beta}$ usando l'algoritmo di Gauss-Jordan:

Dunque
$$\mathbf{M}_{\boldsymbol{\mathcal{B}}'\leftarrow\boldsymbol{\mathcal{B}}} = \mathbf{M}_{\boldsymbol{\mathcal{B}}\leftarrow\boldsymbol{\mathcal{B}}'}^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} \\ 1 & 1 & \frac{1}{2} \end{pmatrix}.$$

9 Sia $\mathbf{v} \in \mathbb{R}^n$. Si provi che $\|\mathbf{v}\|_{\infty} = \|\mathbf{v}\|_1$ se e solo se \mathbf{v} è un multiplo di una colonna di \mathbf{I}_n .

Sia
$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$
. Allora

$$\|\mathbf{v}\|_1 = |v_1| + |v_2| + \dots + |v_n|$$
 e

 $\|\mathbf{v}\|_{\infty} = |v_i|$ dove $i \in \{1, \dots, n\}$ è tale che $|v_i| \ge |v_j| \quad \forall j \ne i$.

Si ha:

$$\|\mathbf{v}\|_{\infty} = \|\mathbf{v}\|_{1} \iff |v_{i}| = |v_{1}| + |v_{2}| + \dots + |v_{n}|$$

$$\iff |v_{j}| = 0 \quad \forall j \neq i$$

$$\iff v_{j} = 0 \quad \forall j \neq i$$

$$\iff \mathbf{v} = v_{i} \mathbf{e}_{i}.$$

10 Sia $\mathbf{A} = (a_{ij})$ una matrice complessa quadrata di ordine n tale che $\mathbf{A} = \mathbf{A}^H = \mathbf{A}^2$ e siano $\mathbf{b_1}, \mathbf{b_2}, \ldots, \mathbf{b_n} \in \mathbb{C}^n$ le colonne di \mathbf{A} . Si provi che $\|\mathbf{b_i}\|_2^2 = a_{ii}$ per ogni $i = 1, \ldots, n$.

Poiché $\mathbf{b_i} = \mathbf{Ae_i}$, allora

$$\|\mathbf{b}_i\|_2^2 = \|\mathbf{A}\mathbf{e}_i\|_2^2 = (\mathbf{A}\mathbf{e}_i)^H \mathbf{A}\mathbf{e}_i = \mathbf{e}_i^H \mathbf{A}^H \mathbf{A}\mathbf{e}_i.$$

Da $\mathbf{A} = \mathbf{A}^H = \mathbf{A}^2$ segue che

$$\mathbf{e_i}^H \mathbf{A}^H \mathbf{A} \mathbf{e_i} = \mathbf{e_i}^H \mathbf{A} \mathbf{A} \mathbf{e_i} = \mathbf{e_i}^H \mathbf{A} \mathbf{e_i} = \mathbf{e_i}^H \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{ni} \end{pmatrix} = a_{ii},$$

quindi in conclusione abbiamo:

$$\|\mathbf{b}_i\|_2^2 = a_{ii}.$$

11 Sapendo che la posizione $(\cdot|\cdot): M_2(\mathbb{C}) \times M_2(\mathbb{C}) \to \mathbb{C}$

$$\left(\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \middle| \begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix} \right) = \sum_{i=1}^4 \overline{a_i} b_i.$$

definisce un prodotto scalare, si consideri la norma $\|\cdot\|: M_2(\mathbb{C}) \to \mathbb{R}_{\geq 0}$ da esso indotta. Si trovino tutte le matrici complesse scalari **A** di ordine 2 tali che $\|\mathbf{A}\| = 2\sqrt{2}$.

La norma $\|\cdot\|: M_2(\mathbb{C}) \to \mathbb{R}_{\geq 0}$ indotta dal prodotto scalare è definita da:

$$\begin{aligned} \left| \left| \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \right| \right| &= \sqrt{\left(\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \middle| \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \right)} = \sqrt{\sum_{i=1}^4 \overline{a}_i \cdot a_i} = \\ &= \sqrt{\sum_{i=1}^4 |a_i|^2} \qquad \forall \begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \in M_2(\mathbb{C}). \end{aligned}$$

Una matrice $\mathbf{A}=\begin{pmatrix} a_1 & a_2 \\ a_3 & a_4 \end{pmatrix} \in M_2(\mathbb{C})$ è scalare se e solo se $a_2=a_3=0$ ed

 $a_1 = a_3 = \alpha$ per un opportuno $\alpha \in \mathbb{C}$, ossia se e solo se

$$\exists \alpha \in \mathbb{C} \, | \, \mathbf{A} = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$$

Dal momento che

$$\left| \left| \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \right| \right| = 2\sqrt{2} \qquad \Longleftrightarrow \qquad \sqrt{|\alpha|^2 + |0|^2 + |0|^2 + |\alpha|^2} = 2\sqrt{2}$$

$$\iff \quad |\alpha|\sqrt{2} = 2\sqrt{2}$$

$$\iff \quad |\alpha| = 2,$$

le matrici complesse scalari ${\bf A}$ di ordine 2 tali che $\|{\bf A}\|=2\sqrt{2}$ sono tutte e sole le matrici del tipo

$$\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \quad \text{con } \alpha \in \mathbb{C} \text{ tale che } |\alpha| = 2.$$

N.B. I numeri complessi α tali che $|\alpha|=2$ sono tutti e soli quei numeri complessi che corrispondono ai punti nel piano di Gauss che stanno sulla circonferenza di centro 0 e raggio 2. In particolare, ci sono infiniti numeri complessi α tali che $|\alpha|=2$, per cui ci sono infinite matrici complesse scalari $\bf A$ di ordine 2 tali che $\|{\bf A}\|=2\sqrt{2}$.