Latent Variable Modelling with Hyperbolic Normalizing Flows

Avishek Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, William L. Hamilton ICML 2020

- . Why hyperbolic?
- 2. Related work
- 3. Hyperbolic normalizing flows
- 4. Experiments
- 5. Conclusion

Why hyperbolic?

Unlike Euclidean space, geodesics go near origin

Bose et al. Latent Variable Modelling with Hyperbolic Normalizing Flows (2020)

Naturally models hierarchical structure:

- origin is close to everything
- the further you go, the more space there is
- non-intersecting lines are easy to draw

Good for embedding trees!

Poincaré ball model

Projects manifold onto unit ball of same dimension

- boundary is at infinity
- easy to visualize
- numerically unstable

Straight lines in 2D:

- circles orthogonal to boundary
- lines through origin

Projects onto hyperboloid in Euclidean space (*d*+1)

- a.k.a. Minkowski space
- can project to Poincaré ball at origin along a line from the center of the opposite hyperboloid

Straight lines in 2D:

planes intersecting hyperboloid and origin

Lorentz (Minkowski) inner product over \mathbb{R}^{n+1} :

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}} := -x_0 y_0 + x_1 y_1 + \dots + x_n y_n$$
 "special" $\mathbf{0}^{\text{th}}$ coordinate

Lorentz (Minkowski) inner product over \mathbb{R}^{n+1} :

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}} := -x_0 y_0 + x_1 y_1 + \dots + x_n y_n$$

Points on the manifold satisfy:

$$\mathbb{H}_K^n := \{ x \in \mathbb{R}^{n+1} : \langle \mathbf{x} . \mathbf{x} \rangle_{\mathcal{L}} = 1/K, \ x_0 > 0, \ K < 0 \}.$$

Lorentz (Minkowski) inner product over \mathbb{R}^{n+1} :

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}} := -x_0 y_0 + x_1 y_1 + \dots + x_n y_n$$

Points on the manifold satisfy:

$$\mathbb{H}_K^n := \{ x \in \mathbb{R}^{n+1} : \langle \mathbf{x} . \mathbf{x} \rangle_{\mathcal{L}} = 1/K, \ x_0 > 0, \ K < 0 \}.$$

Induced distance on the manifold:

$$d(\mathbf{x}, \mathbf{y})_{\mathcal{L}} := \frac{1}{\sqrt{-K}} \operatorname{arccosh}(-K\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}).$$

In the tangent space of the origin, norm is identical to Euclidean norm!

Related work

Hyperbolic embedding (Poincaré)

Hyperbolic embedding (Lorentz)

Nickel & Kiela. Learning continuous hierarchies in the lorentz model of hyperbolic geometry (ICML 2018)

Hyperbolic graph neural networks

Hyperbolic VAEs

Figure 7: MNIST Posteriors mean (Left) sub-sample of digit images associated with posteriors mean (Middle) Model samples (Right) – for $\mathcal{P}^{1.4}$ -VAE (Top) and \mathcal{N} -VAE (Bottom).

Mathieu et al. Continuous hierarchical representations with Poincaré variational auto-encoders (NeurIPS 2019)

Normalizing flows

Use invertible transforms to turn an initial probability density into a more complex target

Need to efficiently compute determinant of Jacobian to change density

Normalizing flows

Use invertible transforms to turn an initial probability density into a more complex target

• Need to efficiently compute determinant of Jacobian to change density

Real non-volume-preserving (NVP) transform:

- affine transform half of input channels at a time, conditioning on other half
- triangular Jacobian (det = product of diagonal)

Hyperbolic Normalizing Flows

Projection: map vector in ambient space to manifold

$$x_0 = \sqrt{||\hat{x}||_2^2 + \frac{1}{K}}$$

can also project from \mathbb{R}^n by concatenating 0^{th} coordinate

Projection: map vector in ambient space to manifold

$$\operatorname{proj}_{\mathbb{H}^n_K}(x) = \frac{x}{\sqrt{-K}||x||_{\mathcal{L}}} \qquad \qquad \text{vector in } \mathcal{T}_{\mathbf{x}}\mathbb{H}^n_K$$

$$x_0 = \sqrt{||\hat{x}||_2^2 + \frac{1}{K}}$$

Exponential map: tangent space to manifold

$$R = 1/\sqrt{-K}$$
 generalized radius

Projection: map vector in ambient space to manifold

$$\operatorname{proj}_{\mathbb{H}_{K}^{n}}(x) = \frac{x}{\sqrt{-K||x||_{\mathcal{L}}}}$$

$$x_0 = \sqrt{||\hat{x}||_2^2 + \frac{1}{K}}$$

Exponential map: tangent space to manifold

$$\exp_{\mathbf{x}}^{K}(v) = \cosh\left(\frac{||v||_{\mathcal{L}}}{R}\right)\mathbf{x} + \sinh\left(\frac{||v||_{\mathcal{L}}}{R}\right)\frac{Rv}{||v||_{\mathcal{L}}}$$

$$R = 1/\sqrt{-K}$$

Logarithmic map: inverse of exp map (manifold to tangent space)

vector in \mathbb{H}_K^n

$$\log_{\mathbf{x}}^{K} \mathbf{y} = \frac{\operatorname{arccosh}(\alpha)}{\sqrt{\alpha^{2} - 1}} (\mathbf{y} - \alpha \mathbf{x})$$

$$\alpha = K\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}$$

Projection: map vector in ambient space to manifold

$$\operatorname{proj}_{\mathbb{H}_{K}^{n}}(x) = \frac{x}{\sqrt{-K||x||_{\mathcal{L}}}}$$

$$x_0 = \sqrt{||\hat{x}||_2^2 + \frac{1}{K}}$$

Exponential map: tangent space to manifold

$$\exp_{\mathbf{x}}^{K}(v) = \cosh\left(\frac{||v||_{\mathcal{L}}}{R}\right)\mathbf{x} + \sinh\left(\frac{||v||_{\mathcal{L}}}{R}\right)\frac{Rv}{||v||_{\mathcal{L}}}$$

$$R = 1/\sqrt{-K}$$

Logarithmic map: inverse of exp map (manifold to tangent space)

$$\log_{\mathbf{x}}^{K} \mathbf{y} = \frac{\operatorname{arccosh}(\alpha)}{\sqrt{\alpha^{2} - 1}} (\mathbf{y} - \alpha \mathbf{x})$$

$$\alpha = K\langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}$$

Parallel transport: map from one tangent space to another

$$PT_{\mathbf{x}\to\mathbf{y}}^{K}(v) = v + \frac{\langle \mathbf{y}, v \rangle_{\mathcal{L}}}{R^{2} - \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}} (\mathbf{x} + \mathbf{y})$$

$$\mathcal{T}_{\mathbf{y}}\mathbb{H}_{K}^{n}$$

$$\mathcal{T}_{\mathbf{x}}\mathbb{H}_{K}^{n}$$

$$(\mathsf{PT}^K_{\mathbf{x} \to \mathbf{y}}(v))^{-1} = \mathsf{PT}^K_{\mathbf{y} \to \mathbf{x}}(v)$$

swap x and y for inverse

Hyperbolic normal distributions

Riemannian normal: like Euclidean normal distribution, but replace norm with induced distance

Hyperbolic normal distributions

Riemannian normal: like Euclidean normal distribution, but replace norm with induced distance

Restricted normal: condition normal distribution in \mathbb{R}^{n+1} by whether a point is on the manifold

$$p(z) = p(x \sim \mathcal{N}(0, I) \mid \langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{L}} = 1/K)$$
 ambient space \mathbb{R}^{n+1} Lorentzian metric condition for \mathbb{H}^n_K

Hyperbolic normal distributions

Riemannian normal: like Euclidean normal distribution, but replace norm with induced distance

Restricted normal: condition normal distribution in \mathbb{R}^{n+1} by whether a point is on the manifold

$$p(z) = p(x \sim \mathcal{N}(0, I) \mid \langle \mathbf{x}, \mathbf{x} \rangle_{\mathcal{L}} = 1/K)$$
 ambient space \mathbb{R}^{n+1} Lorentzian metric condition for \mathbb{H}^n_K

Wrapped normal: reparameterize standard normal from tangent space at origin

1. Sample from $\mathcal{N}(0, I)$

- 1. Sample from $\mathcal{N}(0, I)$
- 2. Put in tangent space at origin (concatenate 0 at 0th coordinate)

- 1. Sample from $\mathcal{N}(0, I)$
- 2. Put in tangent space at origin (concatenate 0 at 0th coordinate)
- 3. Parallel transport to tangent space of another point

- 1. Sample from $\mathcal{N}(0, I)$
- 2. Put in tangent space at origin (concatenate 0 at 0th coordinate)
- 3. Parallel transport to tangent space of another point
- 4. Map to manifold

Density is given by change of variable:

$$\log p(\mathbf{z}) = \log p(v) - (n-1) \log \left(\frac{\sinh (\|u\|_{\mathcal{L}})}{\|u\|_{\mathcal{L}}} \right)$$

Hyperbolic normalizing flows

Base distribution is wrapped normal

Use RealNVP transform

$$\tilde{f}^{\mathcal{T}C}(\tilde{x}) = \begin{cases} \tilde{z}_1 &= \tilde{x}_1 \\ \tilde{z}_2 &= \tilde{x}_2 \odot \sigma(s(\tilde{x}_1)) + t(\tilde{x}_1) \end{cases}$$

Two ways to make this hyperbolic:

- 1. Tangent coupling (simple, fast)
- 2. Wrapped hyperboloid coupling (not tied to origin, better results)

Tangent Coupling

For each layer:

1. Sample point in manifold

Tangent Coupling

For each layer:

- 1. Sample point in manifold
- 2. Map to tangent space at origin

Tangent Coupling

For each layer:

- 1. Sample point in manifold
- 2. Map to tangent space at origin
- 3. Apply Euclidean flow transform

Tangent Coupling

For each layer:

- 1. Sample point in manifold
- 2. Map to tangent space at origin
- 3. Apply Euclidean flow transform
- 4. Map back to manifold

Jacobian of TC layer

- 1. Sample point in manifold
- 2. Map to tangent space at origin
- 3. Apply $W \mathbb{H} C$ flow transform
- 4. Map back to manifold

$$\tilde{f}^{W H C}(\tilde{x}) = \begin{cases}
\tilde{z}_{1} = \tilde{x}_{1} \\
\tilde{z}_{2} = \log_{\mathbf{o}}^{K} \left(\exp_{t(\tilde{x}_{1})}^{K} \left(\operatorname{PT}_{\mathbf{o} \to t(\tilde{x}_{1})}(v) \right) \right) \\
v = \tilde{x}_{2} \odot \sigma(s(\tilde{x}_{1})) \\
f^{W H C}(\mathbf{x}) = \exp_{\mathbf{o}}^{K} \left(\tilde{f}^{W H C} (\log_{\mathbf{o}}^{K}(\mathbf{x})) \right).$$
(13)

same scaling

- 1. Sample point in manifold
- 2. Map to tangent space at origin
- 3. Apply $W \mathbb{H} C$ flow transform
- 4. Map back to manifold

$\mathcal{W} \mathbb{H} C$ transform:

- 1. Split inputs
- 2. Scale by non-linear factor
- 3. Parallel transport to new tangent space (instead of translating)
- 4. Map to manifold
- 5. Map back to tangent space at origin

Bose et al. Latent Variable Modelling with Hyperbolic Normalizing Flows (2020)

To guarantee x_2 does not affect x_1 :

• find the parallel transport target t by explicitly setting components from x_1 to 0

$$t = [t_0, 0, ..., 0, t_{d+1}, ..., t_n]$$

• find t_o using the trick to project from \mathbb{R}^n to the manifold:

$$t_0 = \sqrt{||t||_2^2 + \frac{1}{K}}$$

Jacobian of $\mathcal{W} \mathbb{H} C$

RealNVP transform Four maps
$$\left| \det \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \right) \right| = \prod_{i=d+1}^{n} \sigma(s(\tilde{x}_{1}))_{i} \times \left(\frac{R \sinh(\frac{||q||_{\mathcal{L}}}{R})}{||q||_{\mathcal{L}}} \right)^{l} \times \left(\frac{R \sinh(\frac{||\log_{o}^{K}(\hat{q})||_{\mathcal{L}}}{R})}{||\log_{o}^{K}(q)||_{\mathcal{L}}} \right)^{-l} \times \left(\frac{R \sinh(\frac{||\tilde{z}||_{\mathcal{L}}}{R})}{||\tilde{z}||_{\mathcal{L}}} \right)^{n-1} \times \left(\frac{R \sinh(\frac{||\log_{o}^{K}(x)||_{\mathcal{L}}}{R})}{||\log_{o}^{K}(x)||_{\mathcal{L}}} \right)^{1-n}, \quad (15)$$

$$where \ \tilde{z} = \operatorname{concat}(\tilde{z}_{1}, \tilde{z}_{2}), \ the \ constant \ l = n - d, \ \sigma \ is \ a$$

non-linearity, $q = PT_{\boldsymbol{o} \to t(\tilde{x}_1)}(v)$ and $\hat{\boldsymbol{q}} = \exp_{\boldsymbol{t}}^K(q)$.

Experiments

Density estimation

Bose et al. Latent Variable Modelling with Hyperbolic Normalizing Flows (2020)

Density estimation

Branching diffusion process (BDP)

sample from a "binary decision tree"

Dynamically binarized MNIST

• randomly threshold pixels to {0, 1}

Estimate likelihood of test data with importance sampling

Model	BDP-2	BDP-4	BDP-6
N-VAE ℍ-VAE	$-55.4_{\pm 0.2}$	$-55.2_{\pm 0.3}$	$-56.1_{\pm 0.2}$
$\mathcal{N}C$	$-54.9_{\pm 0.3} \\ -55.4_{\pm 0.4}$	$-55.4_{\pm 0.2}$ -54.7 $_{\pm 0.1}$	$-58.0_{\pm 0.2}$ -55.2 $_{\pm 0.3}$
$\mathcal{T}C$ $\mathcal{W}\mathbb{H}C$	-54.9 $_{\pm 0.1}$ -55.1 $_{\pm 0.4}$	$-55.4_{\pm 0.1}$ $-55.2_{\pm 0.2}$	$-57.5_{\pm 0.2}$ $-56.9_{\pm 0.4}$

Table 1. Test Log Likelihood on Binary Diffusion Process versus latent dimension. All normalizing flows use 2-coupling layers.

Model	MNIST 2	MNIST 4	MNIST 6
N-VAE ℍ-VAE	$-139.5_{\pm 1.0}$	$-115.6_{\pm 0.2}$ $-113.7_{\pm 0.9}$	$-100.0_{\pm 0.02}$ $-99.8_{\pm 0.2}$
$\mathcal{N}C$	* $-139.2_{\pm 0.4}$	$-115.2_{\pm 0.6}$	-98.7 _{0.3}
$\mathcal{T}C$ $\mathcal{W}\mathbb{H}C$	* -136.5 _{±2.1}	-112.5 $_{\pm 0.2}$ -112.8 $_{\pm 0.5}$	$-99.3_{\pm 0.2}$ $-99.4_{\pm 0.2}$

Table 2. Test Log Likelihood on MNIST averaged over 5 runs verus latent dimension. * indicates numerically unstable settings.

Graph reconstruction

- 1. Disorders and disease genes: linked by known disorder-gene associations
- 2. SIR disease spreading model: nodes are individuals with varying susceptibility to disease

Nodes, adjacency matrix, node feature matrix:

$$G = (V, A, X)$$

Encode nodes with variational graph autoencoder (VGAE):

$$q_{\phi}(Z \mid A, X)$$

Replace decoder with simple inner product:

$$p(A_{u, v} = 1 \mid z_u, z_v) = \sigma(z_u^T z_v)$$

inner product in hyperbolic space

Graph reconstruction

Model	Dis-I AUC	Dis-I AP	Dis-II AUC	Dis-II AP
N-VAE ℍ-VAE	$0.90_{\pm 0.01} \ 0.91_{\pm 5e-3}$	$0.92_{\pm 0.01} \ 0.92_{\pm 5e-3}$	$0.92_{\pm 0.01} \ 0.92_{\pm 4e-3}$	$0.91_{\pm 0.01}$ $0.91_{\pm 0.01}$
$\mathcal{N}C$	$0.92_{\pm 0.01}$	$0.93_{\pm 0.01}$	$0.95_{\pm 4 ext{e-3}}$	$0.93_{\pm 0.01}$
$\mathcal{T}C$ $\mathcal{W}\mathbb{H}C$	$egin{array}{l} 0.93_{\pm 0.01} \ 0.93_{\pm 0.01} \end{array}$	$0.93_{\pm 0.01} \ extbf{0.94}_{\pm 0.01}$	$egin{array}{l} 0.96_{\pm 0.01} \ 0.96_{\pm 0.01} \end{array}$	$0.95_{\pm 0.01} \ extbf{0.96}_{\pm 0.01}$

Table 3. Test AUC and Test AP on Graph Embeddings where Dis-I has latent dimesion 6 and Dis-II has latent dimension 2.

Bose et al. Latent Variable Modelling with Hyperbolic Normalizing Flows (2020)

Graph generation

Pretrain graph autoencoder on trees

Decode edge probabilities with:

distance between nodes in latent space

$$p(A_{u,v} = 1 \mid z_u, z_v) = \sigma((-d_{\mathcal{G}}(u, v) - b)/\tau)$$

sigmoid function

learned bias, temperature

Evaluating generated graphs

Hard to evaluate graphs by likelihood, due to multiple isomorphic orderings

Compare statistics using maximum mean discrepancy (Wasserstein/earth mover's distance):

- degree (neighbours per node)
- local clustering coefficient ("triangles to neighbours" per node)
- global clustering coefficient (total triangles to triplets)
- spectrum (eigenvalues of graph Laplacian)
- accuracy (valid trees)

Evaluating generated graphs

Figure 5. MMD scores for graph generation on Lobster graphs. Note, that $\mathcal{N}C$ achieves 0% accuracy.

Graph generation results

Conclusion

Advantages and disadvantages

- + Good at generating/reconstructing trees
- Less effective with more latent dimensions
- Clamping for numerical stability limits depth(?)

Further thoughts

- What problems benefit from high-dimensional hyperbolic spaces?
- How does performance and cost scale with increased model depth?
- Can tiling methods fix numerical instability?
- Hyperbolic diffusion when?

						(0,	,1)						
\Box	_		H	F	F						H		Ļ

Thanks!