# APEC Math Review Lagrange

Natalia Ordaz Reynoso

Summer 2019

## Constrained Optimization

- Typically, some of the constraints do matter
- We examine necessary conditions for optima under such circumstances
- Let  $D = U \cap \{x \in \mathbb{R}^n | g(x) = 0, h(x) \ge 0\}$  be the constraint set
- Where  $U \subset \mathbb{R}^n$  is open,  $g : \mathbb{R}^n \to \mathbb{R}^k$ , and  $h : \mathbb{R}^n \to \mathbb{R}^l$
- functions g are equality constraints, h are inequality constraints
- This is a very general form. Write a budget constraint example

2 / 8

# Equality Constraints and the Theorem of Lagrange

Theorem 5.1 (Theorem of Lagrange) Let  $f: \mathbb{R}^n \to \mathbb{R}$  and  $g_i: \mathbb{R}^n \to \mathbb{R}^k$  be  $C^1$  functions i=1,...,k. Suppose  $x^*$  is a local maximum of minimum of f on the set  $D=U\cap \{x\in \mathbb{R}^n|g_i(x)=0\}$ . Suppose also that  $\rho(Dg(x*))=k$ . Then there exists a vector  $\lambda*=(\lambda_1^*,...\lambda_L^*)\in \mathbb{R}^k$  such that:

$$Df(x^*) + \sum_{i=1}^k \lambda_i^* Dg_i(x^*) = 0$$

- If a pair  $(x^*, \lambda^*)$  satisfies that  $g(x^*) = 0$  and te equation above, we will say that the pair satisfies the ncessary FOC of the Theorem of Lagrange.
- Note: not sufficient!
- Rank condition is key (constraint qualification)



# Lagrangean Multipliers

- The vector  $\lambda * = (\lambda_1^*, ... \lambda_k^*) \in \mathbb{R}^k$  is called the vector of lagrangean multipliers corresponding to the local optimum  $x^*$
- The i-th multiplier measures the sensitivity of the value of the objective function at  $x^*$  to a small relaxation of the i-th constraint  $g_i$  (See P 116 of Sundaram for a proof)
- In economics we call this a shadow price: the maximum amount the decision maker is willing to pay for a marginal relaxation of constraint i.

#### Second Order Conditions

- Consider  $f: \mathbb{R}^n \to \mathbb{R}$  over  $D = U \cap \{x \in \mathbb{R}^n | g(x) = 0\}$ ,  $g: \mathbb{R}^n \to \mathbb{R}^k$ , U is open. We will assume f and g are both  $C^2$ .
- Define  $L(x; \lambda) = f(x) + \sum_{i=1}^{k} \lambda_i g_i(x)$
- Note that the second derivative  $D^2L(x;\lambda) = D^2f(x) + \sum_{i=1}^k \lambda_i D^2g_i(x)$  is symmetric and defines a quadratic form.

#### Second Order Conditions

Suppose that there are points  $x^* \in D$ ,  $\lambda^* \in \mathbb{R}^k$  such that  $\rho(Dg(x^*)) = k$  and  $Df(x^*) + \sum_{i=1}^k \lambda_i^* Dg_i(x^*) = 0$ . Define  $Z(x^*) = \{z \in \mathbb{R}^n | Dg(x^*)z = 0\}$ , and let  $D^2L^*$  denote the matrix  $D^2L(x^*,\lambda^*)$ . Then

- If f has a local maximum on D at  $x^*$ , then  $D^2L^*$  is negative semidefinite for all z
- ② If f has a local minimum on D at  $x^*$  then  $D^2L^*$  is positive semidefinite for all z
- If  $D^2L^*$  is negative definite for all z,  $x^*$  is a strict local maximum
- If  $D^2L^*$  is positive definite for all z,  $x^*$  is a strict local minimum

Note the differences with the unconstrained: we modify the second derivative by adding a correction term, and we restrict to the feasible set.

## Lagreangean Method: Cookbook

Let  $f: \mathbb{R}^n \to \mathbb{R}$ ,  $g: \mathbb{R}^n \to \mathbb{R}^k$ . max f(x) subject to  $x \in D = U \cap \{x: g(x) = 0\}$ 

- Set up  $L(x, \lambda) = f(x) + \sum_{i=1}^{k} \lambda g_i(x)$
- ② Find critical points of  $L(x,\lambda)$ , ie  $DL(x,\lambda)=0, x\in U$ . This results in a system of (n+k) equations, and (n+k) unknowns. Let M be the set of all solutions to these equations for  $x\in U$
- **3** Now we evaluate f at every point in the set  $\{x \in \mathbb{R}^n : \exists \lambda \text{ such that } (x,\lambda) \in M\}$  and pick the largest one

## Restatement of the Lagrangean Theorem

Suppose the following two conditions hold:

- A global optimum  $x^*$  exists to the given problem
- 2 The constraint qualification is met at  $x^*$

Then, there is a  $\lambda^*$  such that  $(x^*, \lambda^*)$  is a critical point of L

When it could fail:

- If there is an optimum but the constraint qualification is not met there
- Examples
- Exercises: Sundaram Chapter 5