

主动信息收集

防知馬攻知志

PTES渗透测试标准

- 前期交互阶段
- •情报收集阶段
- 威胁建模阶段
- •漏洞分析阶段
- 渗透攻击阶段
- 后渗透攻击阶段
- 渗透测试报告阶段

为什么需要主动信息收集?

• 被动信息收集的结果可能已经过时

• 使用主动信息收集对被动信息收集的结果进行验证

主动信息收集

- 直接与目标系统进行通信
- 无法避免留下访问痕迹
 - 使用受控的第三方电脑进行探测
 - 代理或肉鸡
 - 使用噪声迷惑目标, 淹没真实的探测流量

主机发现

- 识别存活的主机
 - 潜在的被攻击目标
- •二、三、四层发现

二层发现

- ARP协议
 - 扫描速度快, 扫描结果可靠
 - 不可路由

问题:什么时候会用到二层发现?

二层发现

- Arping命令——arp级别的ping工具
- arping 192.168.80.128
- arping 192.168.80.128 -c 1
- arping 192.168.80.12 -c 3

使用wireshark抓包查看数据流。

二层发现

- Netdiscover
 - 只用于二层发现
 - 支持主动探测和被动探测
- 主动探测
 - netdiscover -i eth0 -r 192.168.80.0/24
- 被动探测
 - 混杂模式:接收所有经过它的数据流,而不论目的地址是否是它
 - netdiscover –p

使用wireshark抓包查看数据流。

三层发现

- IP, ICMP协议
 - 速度比二层发现慢
 - 可路由
 - 容易被边界防火墙过滤

三层发现

- Ping命令——向目标主机发送icmp数据包
 - type8: ping请求
 - type0: ping应答
- ping 192.168.80.128
- ping 192.168.80.128 -c 1
- traceroute Linux系统
- tracert Windows系统

使用wireshark抓包查看数据流。

三层发现

- fping
 - 支持对整个网段进行主机发现
- fping -g 192.168.80.0/24
- fping -g 192.168.80.0/24 >> result.txt
- cat result.txt | grep alive

四层发现

- TCP、UDP协议
 - 可路由
 - 不太可能被防火墙过滤, 结果相对可靠
 - 速度慢

四层发现

• 三次握手

- SYN Ping扫描,目的端口80
 - -PS参数
 - nmap -sn -PS80 www.baidu.com
- ACK Ping扫描,目的端口80
 - -PA参数
 - nmap -sn -PA www.baidu.com

使用wireshark抓包查看数据流。

四层发现

- Nmap
- UDP Ping扫描, 目的端口40125
 - -PU参数
 - nmap -sn -PU www.baidu.com
- 测试了一下, 大多数设备不会响应...

- 主机发现的下一步是要进行端口扫描
- 端口对应网络服务
- 通过服务的漏洞攻击进入目标主机

- Nmap所识别的6个端口状态
 - open(开放的)
 - closed(关闭的)
 - filtered(被过滤的)
 - unfiltered(未被过滤的)
 - open|filtered(开放或者被过滤的)
 - closed|filtered(关闭或者被过滤的)

- TCP connect()扫描
 - 调用connect()函数
 - 端口开放:与目标主机建立完整的三次握手
 - •端口关闭:收到RST
- -sT参数
 - 默认扫描常用的1000个端口
 - nmap -sT 192.168.80.201
 - nmap -sT -p80 192.168.80.201
 - nmap -sT -p800 192.168.80.201
 - wireshark抓包分析

- TCP SYN扫描(半开扫描)
 - Nmap默认的扫描方式
 - 不建立完整的三次握手, 较隐蔽
 - 端口开放: 收到SYN/ACK并回复RST
 - 端口关闭:收到RST
- -sS参数
 - 默认扫描常用的1000个端口
 - nmap -sS 192.168.80.201
 - nmap -sS -p80 192.168.80.201
 - nmap -sS -p800 192.168.80.201
 - wireshark抓包分析

- UDP扫描
 - 端口开放:没有回复(UDP是无连接协议)
 - 端口关闭:ICMP port-unreachable
- -sU, UDP扫描
 - 默认扫描常用的1000个端口
 - nmap –sU 192.168.80.201 –p1-100
 - nmap –sU 192.168.80.201 –p53
 - nmap –sU 192.168.80.201 –p800
 - wireshark抓包分析

注意:如果既扫描TCP又扫描UDP,必须指定-sU以及至少一个TCP扫描类型(-sT/-sS) nmap -sT -sU -p T:53,U:53 192.168.80.201

服务扫描

- 服务的类型
- 服务的版本
 - 已知的漏洞和弱点

服务扫描

- Nmap
 - -sV参数
 - nmap 192.168.80.201 -p1-100 -sV

操作系统识别

- 操作系统类型
- 操作系统版本
 - 已知的缓冲区溢出、代码执行漏洞

操作系统识别

- 通过TTL值判断操作系统
 - Linux 64 (1-64)
 - Windows 128 (65-128)
 - Unix 255

操作系统识别

- Nmap
 - -〇参数
 - nmap –O 192.168.80.201

SNMP扫描

- SNMP(简单网络管理协议)
 - 容易被配置错误, 黑客喜欢的攻击目标
 - Security is Not My Problem
 - 代理进程:UDP 161, 管理进程:UDP 162
 - community,管理进程和代理进程之间的认证口令,默认为public
- 防护措施
 - 升级SNMPv3

SNMP扫描

- onesixtyone
 - /usr/share/doc/onesixtyone/dict.txt
 - onesixtyone -c dict.txt 192.168.80.132暴力猜解community
- snmpwalk
 - snmpwalk 192.168.80.132 -c admin -v 2c 查询详细信息

SNMP扫描

- Nmap
 - nmap -sU -p161 --script="snmp-brute" 192.168.80.132
 - nmap -sU -p161 --script="snmp-netstat" 192.168.80.132
 - nmap -sU -p161 --script="snmp-win32-services" 192.168.80.132
- -sC参数, 根据端口识别的服务,调用默认脚本
 - nmap -sU -sC -p161 192.168.80.132

SMB扫描

• 微软历史上出现安全问题最多的协议

- Nmap
 - nmap -p139,445 --script="smb-vuln-ms08-067" 192.168.80.132
 - nmap -p139,445 --script="smb-vuln-ms17-010" 192.168.80.132

FTP扫描

• FTP匿名登录

- nmap -p21 --script="ftp-anon" 192.168.80.201
- ftp 192.168.80.201

WAF识别

- Web应用防火墙
- wafw00f
 - wafw00f -I 列出支持的waf类型
- nmap

Nmap其它参数

- -D, IP地址欺骗
 - nmap -p21 -D 192.168.80.1,192.168.80.2,192.168.80.3 192.168.80.201
 - nmap -p21 -D RND:10 192.168.80.201
- --spoof-mac, MAC地址欺骗
 - 数字"0"表示随机分配一个mac地址
 - nmap -p21 --spoof-mac 0 192.168.80.201

Nmap其它参数

- --traceroute 路由追踪
 - nmap --traceroute 223.5.5.5
- -iR 随机扫描
 - nmap -iR 200 -p21 --open
- -Pn不检测主机存活,默认目标主机存活
- -n, 禁止对目标ip作反向域名解析
- --script-help 脚本使用帮助
- --scan-delay, 设置扫描延迟时间
 - nmap 192.168.80.201 --scan-delay=1
- -A, OS识别,版本探测,脚本扫描,traceroute的组合

