Using WordNet and Short-Term Memory for Contextual Disambiguation

William T. F. Strachan

Word Count - PLACEHOLDER Supervisor - Dr Dimitar Kazakov Department of Computer Science University of York 20 November 2016

Contents

1	${ m Lit}\epsilon$	erature	e Review	2
	1.1	Natur	al Language Processing	2
		1.1.1	Text Preprocessing	2
		1.1.2	Lexical Analysis	2
		1.1.3	Syntactic Parsing	3
		1.1.4	Semantic Analysis	3
		1.1.5	Latent Semantic Analysis	3
	1.2	Psych	olinguistics	3
		1.2.1	Long-term Store	3
		1.2.2	Short-term Store	4
		1.2.3	Disambiguation Models	4
	1.3	Wordı	net	5
		1.3.1	Nouns	6
		1.3.2	Adjectives	7
		1.3.3	Verbs	7
	1.4	Previo	ous Work	7
		1.4.1	Kazakov	7
		1.4.2		7

1 Literature Review

In order to define a problem, we must first establish the previous works, so as to build upon them effectively.

1.1 Natural Language Processing

The study of natural language processing aims to allow a computer to understand natural language, and formulate a relevant response based upon its input. Within this, the problem of input text analysis has traditionally be broken down into smaller sub-problems [1]:

- Text Preprocessing
- Lexical Analysis
- Syntactic Parsing
- Semantic Analysis

The subsequent subsections will discuss each of these in more detail.

1.1.1 Text Preprocessing

Before any analysis can take place, the inputted raw text must be converted into a usable format. This, once again, can be broken down into multiple steps [1]:

• Document Triage

- Character encoding must be identified.
- The language can then be identified.
- Non-useful data, such as images and html formatting must be removed.

• Text Segmentation

- Individual words (tokens) must be separated from one another.
- Text Normalisation; replacing multiple equivalent tokens with one token (e.g. "Ave." and "Avenue").
- Identifying sentences, i.e. locating where a sentence begins and ends.

1.1.2 Lexical Analysis

One word can have multiple forms, for example "judge" (the lemma) has the forms {"judge", "judges", "judging", "judged"} (morphological variants). The job of Lexical Analysis is to replace all morphological variants of a word, with their corresponding lemma, a process known as stemming [1].

1.1.3 Syntactic Parsing

When deriving meaning from sentances, the grammatical structure can provide important insight. The Syntactic parsing technique extracts this infomation using two processes [2]:

• Part-of-speech Tagging

- Each word is given tags denoting their syntactic role (e.g. noun/adjective/verb).

• Chunking

 Noun phrases and verb phrases are detected and tagged using "begin chunk" and "inside chunk" labels

1.1.4 Semantic Analysis

The semantics of a sentence, is the meaning given by it's tokens [3]. The topic of semantic analysis will be expanded upon on in the proceeding subsections.

1.1.5 Latent Semantic Analysis

1.2 Psycholinguistics

Language understanding is a problem which, it can be stated, is solved by the human brain. From this satatement, it can be derived that a computational solution could be effectively built around knowledge of the processes at work in the brain. The process of language comprehension can be described using the working memory model [4].

According to Baddely et al. [4] there exist multiple, special purpose, memory structures within two main categories, the Short-term Store and the Long-term Store.

1.2.1 Long-term Store

The long-term store (LTS) contains semi-permanent information. Within the LTS, there exist Explicit and Implicit memory structures. The contents of the Implicit memory describe skills and methods of doing things, whereas the Explicit memory contains factual information [4]. When considering these structures, it can be seen that Explicit memory is of greater interest in the context of NLP.

Within the Explicit memory exists knowledge of semantics [4]. The information held here not only defines concepts (meanings of word forms), but also

their attributes and rules of use. In 1966, M. Quillain proposed a model of Semantic Memory [5]. The model consists of a graph of nodes, each representing a concept, connected by edges of differing types, each representing a different syntactic feature (for example, hypernym).

1.2.2 Short-term Store

The short-term store (STS) is a structure of limited capacity, used to store items for periods usually of no more than a few seconds [4]. In 1955, G. Miller, based upon previous experimental results, concluded that the size of the STS existed in the realm of 7 ± 2 items of information [6].

In 1971, R. Atkinson and R. Shiffrin proposed a model of the STS [7]. In this model, the STS can both send information to, and draw information from the LTS. Inputs from the sensory registers (memory structures holding information relating to inputs from senses) are also sent to the STS. Atkinson and Shiffrin proposed that, over time, the activation of items in the STS decreased; they went on to theorise that items could be lost from the STS, only when a new, more highly activated item could take its place. To counter this loss of activation, the authors discussed the control process, rehearsal. This process makes use of repetition to increase the activation of items in memory, decreasing their chance of loss.

1.2.3 Disambiguation Models

In some cases, when assigning meaning to words, ambiguity can arise. Some words have multiple concepts, for example, bank can refer to a building, or a sloped surface alongside a body of water. In such cases, the brain uses some process to select the correct concept. One such model of this disambiguation is the Multiple-access model [8].

According to the multiple-access model, when presented with an ambiguious word, initially all corresponding concepts are activated [9]. The most appropriate concept is then chosen using context and frequency.

Previously, we established that the process of disambiguation begins with the activation of all possible word concepts. The context-sensitive model deals with the use of context and frequency in the selection of the most appropriate of these [8]. In cases where the context is strong, i.e. the correct concept can be chosen using it's surrounding context, the context is primarily relied upon for disambiguation. In the opposite case, i.e. when context gives little indication of which is the correct concept, the most frequently used concept is used, assuming it fits with the available context.

1.3 Wordnet

In 1990, it was noted by G. Miller et al. that current attemps to organise the english lexicon, i.e. conventional dictionaries, offered few benefits when used in conjunction with computers [10]. Wordnet was an effort to produce a dictonary, containing more information than a conventional dictionary, that could be useful for computational applications.

Central to the design of wordnet, is the idea of synsets [10]. The authors began using the assumption that all concepts can be uniquely defined by their set of synonyms (words which share like meaning). In most cases, this assumption holds true, though, in cases where more detail is required, a "gloss" was added [10].

Wordnet builds upon models of the semantic memory, such as that discussed in the Long-term store section [10]. The overall structure relies on four main semantic relations:

• Synonymy

 If two words are to be called synonyms, they must share at least one like meaning.

• Atonymy

- Conceptually, Atonymy can be seen as the opposite of Synonymy. Atonymy is difficult to define, as not all words which share opposite meaning can be called atonyms, for example, {up, down} is an atonym pair, but {up, fall} is not.

• Hyponymy

 If we consider a a synset to be a object-oriented class, its hypernym can be considered its parent class, for example, birch is a type of tree.

• Meronymy

 Meronymy is relationship between two synsets where one is a part of another, for example, a goat has horns, therefore horn is a meronym of goat.

It is common knowledge that words can fall into one of a number of categories, nouns, adjectives, verbs and adverbs. G. Miller et al. note that, due to the differences in the relations between words in these categories, each type has differs in the structure they produce and are therefore held in different files [10]. The proceeding subsections will go into each of these categories in more detail.

1.3.1 Nouns

G. Miller et al. note that a noun can be defined using only its immediate hypernym, and how it differs from its hypernyms other hyponyms [11]. From this, it can be seen that hyponymy is perhaps the most important relation in the organisation of nouns. For this reason, nouns form a hierarchical structure in wordnet.

Wordnet's designers stated the assumption that all nouns can be contained in a single hierarchial structure [11]. The issue with having a single word, of which all other words are hyponyms, is that this hypernym is relatively meaningless. It was instead decide to divide all words into 25 separate files, each containing a hierarchical tree beginning with one of the following synsets [11]:

```
{act, action, activity}
                                         {natural object}
{animal, fauna}
                                         {natural phenomenon}
{artifact}
                                         {person, human being}
{attribute, property}
                                         {plant, flora}
{body, corpus}
                                         {possession}
{cognition, knowledge}
                                         {process}
{communication}
                                         {quantity, amount}
{event, happening}
                                         {relation}
{feeling, emotion}
                                         {shape}
{food}
                                         {state, condition}
{group, collection}
                                         {substance}
{location, place}
{motive}
                                         {time}
```

Other than synonymy, nouns have three other important features [11]:

• Attributes

 The attributes of a noun consist of adjectives which distinguish it from other hyponyms of its hypernym, for example {huge, green, fluffy}.

• Parts

- The parts of a noun consist of its meronyms, described previously.

- Functions
 - The functions of a noun consist of verbs which are associated with its actions, for example chair has the functions {sit, rest}.

1.3.2 Adjectives

Adjectives in can be divided into three distinct groups [12]:

- Descriptive Adjectives
- \bullet Reference-Modifying Adjectives
- Color Adjectives
- 1.3.3 Verbs
- 1.4 Previous Work
- 1.4.1 Kazakov
- 1.4.2

References

- [1] F. Damerau. N. Indurkhya, *Handbook of Natural Language Processing*, 2nd ed. Taylor and Francis Group, 2010.
- [2] R. Collobert. et al., "Natural language processing (almost) from scratch," Journal of Machine Learning Research, vol. 12, no. 76, pp. 2493–2537, Aug 2011.
- [3] C. Goddard, Semantic Analysis: A Practical Introduction, 2nd ed. Oxford University Press, 2011.
- [4] M. Eysenck. A. Baddeley and M. Anderson, *Memory*, 2nd ed. Psychology Press, 2015.
- [5] M. Quillain, "Semantic memory," BBN Report, vol. 675, no. 2, pp. 227–270, Oct 1966.
- [6] G. Miller, "The magical number seven, plus or minus two some limits on our capacity for processing information," *Psycological Review*, vol. 101, no. 2, pp. 343–352, May 1955.
- [7] R. Shiffrin. R. Atkinson, "The control processes of short term memory," *Technical Report*, vol. 173, Apr 1971.
- [8] T. Harley, *The Psychology of Language: From Data to Theory*, 3rd ed. Psychology Press, 2008.
- [9] D. Swinney. W. Onifer, "Accessing lexical ambiguities during sentence comprehension: Effects of frequency of meaning and contextual bias," *Memory & Cognition*, vol. 9, no. 3, pp. 225–236, May 1981.
- [10] G.Miller. et al., "Introduction to wordnet: An on-line lexical database," *International Journal of Lexicography*, vol. 3, no. 4, pp. 235–244, Aug 1990.
- [11] G.Miller, "Nouns in wordnet: A lexical inheritance system," *International Journal of Lexicography*, vol. 3, no. 4, pp. 235–244, Aug 1990.
- [12] C. Fellbaum. et al., "Adjectives in wordnet," *International Journal of Lexicography*, vol. 3, no. 4, pp. 235–244, Aug 1990.