

Impianti Informatici

Reti

Cos'è una rete

Rete: insieme di sistemi per l'elaborazione delle informazioni interconnessi tra loro

Obiettivi:

- condividere il software
- consultare archivi comuni
- comunicare dati fra i sistemi stessi

Tipologie di reti

LAN (Local Area Network)

 Estensione limitata, elevata velocità di trasferimento dei dati (edificio, edifici adiacenti, ~100m)

MAN (Metropolitan Area Network)

- Trasferimento dati ad alta velocità (città, ~ 10 Km), ad esempio utilizzando cavi in fibra ottica
- Può connettere varie LAN all'interno della stessa città

WAN (Wide Area Network)

- Consiste solitamente in più LAN e MAN distribuite in un'ampia area geografica
- La più ampia è Internet

Modello ISO-OSI

OSI (Open System Interconnection) è un modello teorico di riferimento definito dalla ISO (International Standard Organization) che definisce le caratteristiche della comunicazione multilivello

- I tre livelli più alti sono applicationoriented
- I tre livelli più bassi sono networkoriented
- Il livello di trasporto fa da intermediario

application
presentation
session
transport
network
data link
physical media

Stratificazione

Protocollo: insieme di regole per gestire la comunicazione tra entità che scambiano informazioni

Il livello *n* di un sistema comunica **virtualmente** con il livello *n* di un altro

Principio dell'incapsulamento

Principio dell'incapsulamento

- i messaggi dei livelli superiori vengono incapsulati nel campo dati del livello inferiore e trasmessi in maniera trasparente
 - non vengono né interpretati né modificati
- Garantisce l'indipendenza tra layer

Header e payload di un messaggio

Ogni livello aggiunge ai dati (*payload*) le proprie informazioni di controllo (*header*) Per ogni coppia di livelli adiacenti esiste un'**interfaccia** per lo scambio delle informazioni

Funzioni dei 7 livelli OSI

Physical Layer: interfaccia con il mezzo fisico

Data Link Control: comunicazione *point-to-point*

Network Layer: instradamento dei pacchetti da sorgente a destinazione

Transport Layer: crea la connessione logica end-to-end

I protocolli Internet nel modello OSI

Internet	OSI
	physical media
	data link
IP network interface	network
TCP/UDP	transport
	session
application	presentation
	application

Impianti Informatici

Ogni nodo della rete è identificato da un indirizzo IP.

Un nodo che è collegato a più reti (multi homed host) ha un indirizzo per ogni interfaccia
 Un indirizzo è una stringa lunga 32 bit (nel caso IPv4)
 L'indirizzo IP è solitamente espresso nella notazione decimale a gruppi di 8 bit (dotted decimal notation):
 8 bit . 8 bit . 8 bit

Ad esempio: 131.175.54.140

Indirizzi IP classful

Protocolli di trasporto

Creano una connessione logica (end-to-end) tra sorgente e destinazione La sorgente, così come la destinazione, è identificata da un *socket* (indirizzo IP + porta)

- L'IP identifica il nodo
- La porta identifica il servizio richiesto
 - il livello di trasporto esegue la demultiplazione (e multiplazione) per inviare i dati alla corretta applicazione

Protocolli TCP e UDP

La connessione logica è descritta in modo completo da una coppia di socket **UDP** (User Datagram Protocol):

- Segmentazione
- Multiplazione/demultiplazione

TCP (Trasmission Control Protocol):

- È connection-oriented (virtual circuit)
- Offre le stesse funzioni di UDP + un servizio reliable:
 - Controllo di flusso
 - Controllo di sequenza
 - Controllo di congestione
 - Correttezza delle informazioni (gestisce perdite e duplicazioni)

Struttura di un segmento TCP

Apertura e chiusura di una connessione TCP

Reti

HUB (livello 1)

Opera al livello fisico dello stack ISO-OSI

È un semplice ripetitore di segnale

 Anche denominato accentratore di rete

Unisce LAN perfettamente identiche tra loro (con stesso protocollo MAC)

BRIDGE/SWITCH (livello 2)

nei layer superiori a quello MAC

Opera a livello MAC (Medium Access Control) del Data Link Layer Ha nozioni di *trama*, quindi non replica semplicemente il segnale Unisce LAN che usano gli stessi protocolli

Funzionalità dei router

I router eseguono il routing dei pacchetti IP tra le reti ad essi connesse:

- Rimuovono l'intestazione di livello 2
- Esaminano l'intestazione di livello 3 per eseguire l'instradamento
- Modificano l'intestazione di livello 3 (ad es. TTL)
- Inseriscono una nuova intestazione di livello 2

Funzionalità dei router

Hanno algoritmi di instradamento sofisticati

Se necessario, frammentano ulteriormente i pacchetti per adattarsi alla rete fisica su cui trasmette

Si utilizzano solitamente per interconnessioni MAN/WAN

I router attuali offrono generalmente anche funzioni aggiuntive al puro instradamento,

 Esse richiedono l'integrazione di protocolli superiori al livello di rete (ad esempio quando fungono da NAPT-BOX)

Esempio tabella di routing

Migrazione IPv4 → IPv6

Migrazione istantanea non fattibile Tecniche di migrazione:

- Dual Protocol
 - Ogni nodo deve implementare sia IPv4 che IPv6
- IPv4 Tunnelling
 - Edge router con stack IPv4 e IPv6
- Protocol Translation
 - Impossibilità di usare i nuovi campi di IPv6

PROXY (livello 4)

Sono in grado di ricostruire un intero messaggio o flusso di dati scambiato tra due reti

Possono (limitatamente) analizzare e modificare il flusso informativo tra due reti o stazioni

- a livello di proxy è possibile applicare un antivirus alle e-mail in transito
- a livello di proxy è possibile decidere se un utente ha il diritto di visualizzare una certa pagina Web
- intermediario tra nodi
 - caching

GATEWAY APPL. (livello 7)

GATEWAY APPLICATIVO

I gateway applicativi interconnettono applicazioni diverse (agiscono da interfaccia tra protocolli differenti)

Esempio: posta elettronica (via web mail)

- L'e-mail si avvale di protocolli applicativi (SMTP, POP, IMAP) e di applicazioni client/server adatte a questi protocolli
- Un gateway Web permette di leggere e inviare e-mail usando un protocollo applicativo totalmente diverso (HTTP) e applicazioni client/server totalmente diverse (Web browser/Web server)

Differenza tra gateway e router

Il gateway opera a livello 7 dello stack ISO-OSI

• È in grado di interpretare i dati ricevuti e in parte di modificarli prima di trasmetterli

Il router opera a livello 3 dello stack ISO-OSI

- Instrada i pacchetti
- Non modifica il flusso di dati

È un protocollo di rete (livello 3 modello OSI) a pacchetto

- Si occupa della consegna dei pacchetti tra due nodi della rete
- È un protocollo di *interconnessione tra reti* (*Inter-Net*working *Protocol*), nato per collegare reti eterogenee per tecnologia, prestazioni, gestione.

Caratteristiche Internet Protocol

Servizio unreliable

• È compito dei livelli superiori fornire particolari garanzie

Funzioni di instradamento e indirizzamento

- Identifica i nodi sorgente e destinazione mediante un indirizzo IP
- Consente ad un pacchetto di circolare dalla sorgente alla destinazione

Esegue frammentazione e riassemblamento dei pacchetti

Consente di partizionare lo spazio degli indirizzi per creare delle sottoreti

Mediante una **subnet-mask** si allunga il *network prefix* con un nuovo campo che individua la sottorete (*subnet prefix*)

La lunghezza della subnet-mask viene solitamente indicata con /n (ad es: 175.16.1.5/16)

Indirizzo rete Subnet-mask

<u>10</u> 000010	00000101	0000 000	00000000
11111111	11111111	11111 000	00000000
R	ete	Sottorete	Host

255.255.248.0

130.5.0.0

Rete Sottorete Host
(2¹⁴ reti) (2⁵ sottoreti (2¹¹ host per ogni rete) per ogni sottorete)

Indirizzi IP ad uso "privato"

Esistono degli intervalli di indirizzi "privati"

- Questi indirizzi non possono essere utilizzati su internet, ma chiunque è libero di utilizzarli per una rete privata, che sia domestica o di una grande azienda:
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16
 - 169.254.0.0/16
- Un computer che utilizzi uno di questi indirizzi non potrà collegarsi direttamente ad un computer su un indirizzo pubblico, a meno di utilizzare particolari meccanismi:
 - NAPT
 - Proxy

Struttura di un pacchetto IP

Network Address (and Port) Translation

Il NAT è una tecnica, che consiste nel modificare gli indirizzi IP di un pacchetto in transito

IP masquerading

- Particolare utilizzo del NATTING che consente ai molteplici computer di una rete privata di utilizzare un singolo indirizzo IP (pubblico) per accedere ad Internet
- Risolve il problema del "limitato" numero di indirizzi IP disponibili
- Nasconde dall'esterno la rete privata

Funzionamento di NAT

Cambia alcune informazioni negli header dei messaggi:

- Source address -> Indirizzo IP pubblico
- Source port -> Una porta qualsiasi disponibile

Memorizza in apposite tabelle le modifiche apportate

- Tali informazioni vengono utilizzate per traslare i messaggi di risposta, così da farli pervenire all'host (e al servizio) corretto
- A seconda che si stia modificando l'indirizzo IP sorgente o destinazione, si parla di:
 - Source NAT
 - Destination NAT

Esempio di NAT

	Private Address	Private Port	External Address	Ext. Port	Protocol Used	NAT Address	NAT Port
_	→ 192.168.0.1	13	81.231.110.1	80	TCP	91.168.0.15	231
	192.168.0.6	66	81.231.110.1	80	TCP	91.168.0.15	115
	192.168.0.4	12	211.1.9.115	21	TCP	91.168.0.15	231

IPv6 (Next Generation Protocol)

Limitazioni IPv4:

- Numero di indirizzi limitato (2³² indirizzi non sono più sufficienti)
 - Espansione del numero di utenti della Rete
 - Sottosfruttamento degli indirizzi potenzialmente disponibili
 - le più vecchie assegnazioni disponevano solo di indirizzi classful (/8 /16 /24)
 - Parte dei 2³² indirizzi è destinata per:
 - Reti private
 - Indirizzi multicast
- Esplosione delle tabelle di routing
- Esigenza di nuove funzionalità:
 - Applicazioni Real Time
 - QoS
 - Security (autenticazione, crittografia)
 - Supporto per il roaming

Caratteristiche IPv6

Servizio connectionless

Indirizzo a 128 bit

- Solitamente in 8 gruppi da 4 cifre esadecimali (2001:0db8:85a3:08d3:1319:8a2e:0370:7344)
- Introduce gli indirizzi anycast
- Elimina gli indirizzi broadcast

Indirizzamento gerarchico (indirizzo strutturato)

Sicurezza integrata: autenticazione, cifratura

Header flessibile:

- Base header
- Extension headers: fragment, routing, authentication,...

Funzionalità per l'allocazione delle risorse (QoS):

- Classe / priorità
- Flow label

Supporto per il roaming

Amministrazione della rete: autoconfigurazione (plug&play)

Domain Name System

È un protocollo applicativo che si appoggia su UDP

Consente di utilizzare stringhe, anziché indirizzi IP, per identificare un host

Associa all'indirizzo numerico di un host un nome simbolico (ad esempio **www.polimi.it**) composto da una serie di *label* (<u>www</u>, <u>polimi</u> e <u>it</u> sono label)

Ogni label è assegnata da una naming authority

- Ciascuna di esse è strettamente inclusa in una o più authority più grandi, così da creare una gerarchia di nomi
- Tale gerarchia di inclusione va da destra a sinistra: la prima label (a sinistra) identifica il nome della macchina (o del servizio)

Domain Name System

Ogni nome corrisponde ad un dominio

- La gerarchia dei nomi è sia geografica che organizzativa
- I domini di livello 1 sono, ad es:
 - com, edu, org, gov, it, fr, de...
- I server DNS consentono la risoluzione (restituendo l'indirizzo IP corrispondente ad un dato dominio)
 - Se un server DNS non sa risolvere un indirizzo manda la richiesta ad un server di livello superiore
 - La risoluzione degli indirizzi può essere:
 - Iterativa
 - Ricorsiva

Il nome di dominio va registrato presso l'InterNIC (Internet Network Information Center)

 Ciò assicura l'unicità del nome e la sua associazione ai numeri che identificano le macchine usate dal richiedente

