Roberto Oliveira Jr. Advisor: Adriano Veloso Co-advisor: Wagner Meira Jr.

Computer Science Dept - UFMG - Brazil

Data Stream

- Definition
 - Fast and possible unbounded sequence of data that arrives at time-varying.
- Motivation
 - It allows us to process huge volumes of data.
- Problem
 - Automatically extraction of relevant patterns and relations from data that is continuously created.
 - Keep track of data streams is useful for systems monitoring, online social network advertising, etc.

Social Networks Streams and Advertising

FIFA World Cup 2014

PlayStation Brasil @PlayStation BR · 2 h #SeFosseNoPLAY era apertar o Reset e começar outra! #BRA

vs #GER

pic.twitter.com/wMtwpsGNFF

Classification in Data Streams

 Classification models are applied to distinguish between pre-defined labels.

Classification in Data Streams

 Classification models are applied to distinguish between pre-defined labels.

• Data characteristics may change with time.

Concept Drifts

• Concept Drift is unforeseen changes in data's nature over time.

Concept Drifts

 Concept Drift is unforeseen changes in data's nature over time.

 Data streams contains combination of such patterns.

Sports (WC 2010)

Classifying Data Streams

- Effective classification requires:
 - Updating the classification model as the stream evolves.
 - Taking into account resources limitation: memory, time and learning requirements.

How to deal with concept drifts?

Classification Model

- Classification models are composed by association rules.
 - $\{x \to y\}$, where $x \in X$ and $y \in Y$
- Models are built on-the-fly:
 - For a given $[x_i, *]$, rules $\{x \to y\}$ such that $x \in x_i$ are produced.
 - Prediction is performed from the combination of these rules.
- At each time step is produced a model $\mathcal{R}(x_i)$.

Classification Model

- Classification models are composed by association rules.
 - $\{x \to y\}$, where $x \in X$ and $y \in Y$
- Models are built on-the-fly:
 - For a given $[x_i, *]$, rules $\{x \to y\}$ such that $x \in x_i$ are produced.
 - Prediction is performed from the combination of these rules.
- At each time step is produced a model $\mathcal{R}(x_i)$.
- Can be updated efficiently as the training set evolves.

Dealing with Drifts

- Two properties are necessary in order to produce classifiers that are robust to drifts:
 - Adaptiveness:
 - The ability to adapt itself to drifts.
 - Memorability:
 - The ability to recover itself from drifts.

- Improving both properties simultaneously may lead to a conflict-objective problem.
 - Improve adaptiveness may hurt memorability, and vice-versa.

Example: hotels in Petrópolist.

Pareto Efficiency

Pareto frontier

Compensation — Kaldor-Hicks Principle

Region of compensation

Utility Measures

- Distance in space:
 - How similar training instance t_j is to the newest instance t_n .
 - $U_s(t_j) = \frac{|\mathcal{R}(t_n) \cap \mathcal{R}(t_j)|}{|\mathcal{R}(t_n)|}$
- Distance in time:
 - How fresh is the training instance.
 - $U_t(t_j) = \frac{\gamma(t_j)}{\gamma(t_n)}$.
 - $\gamma(t_j)$ returns the time in which training instance t_j arrived.
- Random permutation of training instances:
 - $U_r(t_j) = \frac{\alpha(t_j)}{|\mathcal{D}_n|}$
 - $\alpha(t_i)$ returns the position of t_i in the shuffle.
 - \mathcal{D}_n is the training set at time step n.

At each time step n:

- Place training instances in the utility space.
- Select training instances in the Efficiency Region (Pareto-frontier / Kaldor-Hicks Region).

- Random Active Learning
 - Naive strategy.
 - Simple to integrate.
 - Labeling Effort control: β .

Economically-Efficient Selective Sampling

Experimental Evaluation Setup

- Interleaved Test-Then-Train
- 1% of data provided as training seed;
- Massive Online Analysis (MOA) framework as evaluation environment;
- Baselines:
 - AC Active Classifiers (KDD 2011)
 - HAT Hoeffding Adaptive Trees (JMLR 2011)
 - ILAC Incremental Lazy Classifiers (SIGIR 2011)
- Labeling Efforts (AC and EESS): 10%; 25%; 50%; 75% and 100%;

Evaluation

- Measures used:
 - Mean Squared Error.
 - Labeling Effort.
 - Training set site.
 - RAM-Hours:
 - A GB of RAM deployed for 1 hour execution.

Datasets:

	Concept Drift Pattern			
Dataset	Sudden	Incremental	Gradual	Recurrent
Presidential Elections	-	X	Χ	-
Person of the Year	-	X	Χ	-
FIFA World Cup - EN	Χ	-	-	-
FIFA World Cup - PT	Χ	-	-	-
Cover Type	Χ	-	Χ	X
Spam Filtering	Χ	-	Χ	X
Poker Hand	-	_	X	X

Evaluation

Forest Cover Type Prediction

MSE and Labeling Efforts

Evaluation

Forest Cover Type Prediction

Training Size and RAM-Hours

Conclusions

- Data analysis on streams.
 - Limited computing and training resources.
 - Concept drifts.
- Efficiency and accuracy.
 - Incremental classifiers.
 - Pareto efficiency and compensation principle.
- Our results.
 - As more labeled examples better prediction performance (In general).
- Future work includes:
 - Other utility measures.
 - Other application scenarios.

robertolojr@dcc.ufmg.br