$SO_3(\mathbb{R})$ est simple

Leçons: 103, 106, 108, 160, 161, 204

Théorème 1

Le groupe $SO_3(\mathbb{R})$ *est simple.*

Lemme 2

1 Les retournements (i.e. les rotations d'angle π) sont tous conjugués dans $SO_3(\mathbb{R})$.

2 Le centre de $SO_3(R)$ est réduit à {id}.

Démonstration. 1 Soient r_D , r'_D des retournements de droites respectives D et D'. Une rotation $s \in SO_3(\mathbb{R})$ de plan Vect(D, D') bien choisie envoie D sur D'. Donc sr_Ds^{-1} est une rotation de droite s(D) = D' et d'angle π , c'est à dire r'_D .

2 Si h est une rotation de droite Δ et $g \in Z(SO_3(\mathbb{R}))$, on a $ghg^{-1} = h$. Mais ghg^{-1} est une rotation de droite $g(\Delta)$ donc g fixe toutes les droites donc est une homothétie. En dimension impaire, on a nécessairement g = id. En dimension paire, il y a aussi —id donc en particulier, les $SO_{2n}(\mathbb{R})$ ne sont pas simples.

Démonstration (du théorème). Soit H un sous-groupe distingué de $SO_3(\mathbb{R})$ non réduit à {id}. Comme $SO_3(\mathbb{R})$ est engendré par les retournements, on montrera que $H = SO_3(\mathbb{R})$ en montrant qu'il contient tous les retournements. Comme les retournements sont conjugués dans $SO_3(\mathbb{R})$, il suffit de montrer que H en contient un pour qu'il les contienne tous.

Soit
$$h \neq I_3 \in G$$
 et $\varphi: SO_3(\mathbb{R}) \longrightarrow \mathbb{R}$. Par continuité de la trace, φ est $g \longmapsto \operatorname{Tr}(ghg^{-1}h^{-1})$

continue.

Comme $SO_3(\mathbb{R})$ est compact et connexe par arcs, l'image de φ est un compact connexe par arcs de \mathbb{R} , c'est-à-dire un segment.

De plus, dans une base adaptée, $g \in SO_3(\mathbb{R})$ peut s'écrire :

$$g = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

donc Tr(g) = 1 + 2 cos $\theta \in [0, 3]$.

Donc comme $\varphi(h)=\mathrm{Tr}(I_3)=3$, l'image de φ est de la forme [a,3] pour un certain $a\geqslant 0$

Supposons que a=3. Alors pour tout $g \in SO_3(\mathbb{R})$, $ghg^{-1}h^{-1}$ est une rotation d'angle 0 c'est à dire I_3 donc h est dans le centre de $SO_3(\mathbb{R})$ dont on a vu qu'il était réduit à $\{I_3\}$, ce qui est contradictoire.

Donc a < 3 et on peut trouver $n \in \mathbb{N}^*$ tel que $a < 1 + 2\cos\left(\frac{\pi}{n}\right) < 3$ car $1 + 2\cos\left(\frac{\pi}{n}\right) \xrightarrow[n \to +\infty]{n \to +\infty}$ 3. Ainsi, il existe $g_n \in SO_3(\mathbb{R})$ tel que $h_n = g_n h g_n^{-1} h^{-1}$ soit une rotation d'angle $\pm \frac{\pi}{n}$. Or, comme H est distingué, $h_n \in H$ donc le retournement h_n^n est dans H, ce qui conclut. **Remarque.** • On peut montrer que pour tout $n \ge 1$, $SO_{2n+1}(\mathbb{R})$ est simple (cf GONNORD et TOSEL 1998), la preuve repose sur la structure de sous-variété de cet ensemble.

• Comme le développement est un peu court, on peut expliquer, à partir du théorème de Cartan-Dieudonné, pourquoi $SO_3(\mathbb{R})$ est engendré par les retournements. Ou bien dans la leçon 204, donner les raisons de la connexité de $SO_3(\mathbb{R})$: tout élément de ce

groupe est conjugué à une matrice de rotation
$$\begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Référence : Philippe CALDERO et Jérôme GERMONI (2013). *Histoires hédonistes de groupes et de géométrie*. T. 1. Calvage et Mounet, p. 239.

Merci à Antoine Diez pour ce développement.