Lecture 4

Announcements

- \bullet Tuesday lectures in SF1101
- Practicals start on 23/9 or 26/9

Figure 1: Symbols for different logic gates

Logic Gates

Truth Gates

x2	AND
0	0
1	0
0	0
1	1
	0 1 0

<u>x1</u>	x2	OR
0	0	0
0	1	1
1	0	1
1	1	1

Design Example: Switches x and y and a light L. L is off if both x and y are on or off.

Truth table:

x1	x2	NOR
0	0	0
0	1	1
1	0	1
1	1	0

Additional Gates:

<u>x1</u>	x2	NAND
0	0	1
0	1	1
1	0	1
1	1	0

NAND (not and) gates are used because they are cheaper to produce than combining NOT and AND (4 vs 6 transistors). They are **functionally complete**, ie they can implement all logic functions.

<u></u>	x2	NOR
A1	ΛΔ	
0	0	1
0	1	0
1	0	0
1	1	1

NOR (not or) gates are also **functionally complete**. Similarly, NOR is cheaper to build than OR (4 vs 6 transistors).

Sum of Products

- Literal: any variable or its complement
- Product Term: synonym for AND
- Sum Term: synonym for OR
- Sum of Products: as the name suggests
- Minterm: a product term that evaluates to 1 for exactly 1 row of truth table
- Canonical SOP: SOP expression for a function that comprises its minterms

Example:

x1	x2	х3	Minterm
0	0	0	$\overline{x_1x_2x_3}$

x1	x2	x3	Minterm
0	0	1	$\overline{x_1}\overline{x_2}x_3$
0	1	0	$\frac{\overline{x_1}x_2\overline{x_3}}{\overline{x_1}x_2\overline{x_3}}$
0	1	1	$\overline{x_1}x_2x_3$
1	0	0	$x_1\overline{x_2}\overline{x_3}$
1	0	1	$x_1\overline{x_2}x_3$
1	1	0	$x_1x_2\overline{x_3}$
1	1	1	$x_1x_2x_3$

The short forms above are $m_0, m_1, m_2, \ldots, m_7$, and a function can be represented as

$$f = m_0 + m_1 + m_2 + m_3 + m_6 + m_7$$