

Dual-Domain Image Synthesis Using Segmentation-Guided GAN

Dena Bazazian Andrew Calway Dima Damen

Department of Computer Science, University of Bristol

{dena.bazazian, andrew.calway, dima.damen}@bristol.ac.uk

Overview

- A segmentation-guided approach to synthesise images that integrate features from two distinct domains.
- Images synthesised by our dual-domain model belong to one domain within the semantic-mask, and to another in the rest of the image - smoothly integrated.

Method

Semantic mask: hair.

Unpaired examples.

Quantitative Results

The impact of backbones.

Metr	Metric comparisons on the face domains.													
		$DDS_{caricature \rightarrow natural}$			$DDS_{natural \rightarrow caricature}$			$DDS_{sketch \rightarrow natural}$			$DDS_{natural \rightarrow sketch}$			
		FID↓	SSIM↑	PSNR↑	FID↓	SSIM↑	PSNR↑	FID↓	SSIM↑	PSNR↑	FID↓	SSIM↑	PSNR↑	
	\mathcal{D}_s	281.61	0.39	27.98	259.12	0.38	27.95	195.80	0.31	27.87	225.31	0.33	27.81	
\mathcal{M}_1	$\{x_c\}$	114.03	0.69	29.45	121.21	0.75	28.75	200.35	0.71	29.81	207.41	0.65	29.28	
	${\cal D}_t$	73.51	0.70	29.51	74.51	0.76	28.76	79.87	0.73	29.84	97.65	0.66	29.29	
	\mathcal{D}_s	296.61	0.47	27.99	290.63	0.42	27.92	245.61	0.38	27.87	262.90	0.36	27.83	
\mathcal{M}_2	$\{x_c\}$	155.91	0.73	29.63	95.30	0.71	28.43	177.03	0.66	29.25	152.41	0.61	28.54	
	${\cal D}_t$	87.28	0.74	29.65	76.96	0.72	28.45	90.58	0.64	29.31	94.83	0.62	28.49	

Dual-Domain Synthesis vs. Image Blending

References

- [1] U. Ojha, et al., Few-shot Image Generation via Cross-domain Correspondence. CVPR, 2021.
- [2] T. Karras, et al., Analyzing and Improving the Image Quality of StyleGAN. CVPR, 2020.
- [3] N. Tritrong, et al., Repurposing GANs for One-shot Semantic Part Segmentation. CVPR, 2021.
- [4] K. Sofiiuk et al., Foreground-aware semantic representations for image harmonization. WACV, 2021. [5] L. Zhang et al., Deep image blending. WACV, 2020.

Code

