# Comparison Lower Bounds

CS 4231, Fall 2017

Mihalis Yannakakis

### **Comparison Sorts**

- Many sorting algorithms that we saw (Quicksort, Mergesort, Insertion Sort) use at least Ω(n logn) time.
- Is this the best possible?
- All these algorithms are comparison sorts:
   only operations on elements are comparisons
  - Algorithms apply to all ordered domains,
     No special assumptions on the domain of the elements

### Lower bound for Comparison Sorts

Theorem: Every comparison sort must make  $\Omega(n \log n)$  comparisons in the worst case.

Same lower bound applies to

- average case for uniformly random input permutations
- expected time of randomized algorithms

## Decision (Comparison) Tree



Comparison-based sorting algorithm → A decision (comparison) tree for every n

## Input → Path to a leaf



Example: Input  $[a_1, a_2, a_3] = [2, 7, 5]$ 

Answer:  $a_1 \le a_3 \le a_2$ 

#### Lower bound

- # comparisons for an input = length of path
- Worst-case complexity (in #comparisons) = height of the tree (assuming no useless leaves)
- A leaf for each permutation ⇒ n! leaves
- Every binary tree with L leaves has height ≥ logL
- Height of the decision tree ≥ log(n!)
- Stirling's formula:  $n! = \sqrt{2\pi n} (n/e)^n (1 + \Theta(1/n))$ 
  - $\Rightarrow$  Height of the tree  $\geq n \log n n \log e = \Omega(n \log n)$

## Average Case Complexity

average depth of leaves =

$$\frac{\sum_{v \text{ leaf}} depth(v)}{\text{# leaves}}$$

• Among all binary trees with L leaves,  $\sum_{i} depth(v)$ 

$$\sum_{v \text{ leaf}} depth(v)$$

(="external path length") minimized by full binary tree where all leaves at same or adjacent levels

Proof: Interchange argument otherwise reduces external path length

 $\Rightarrow$  Average case also  $\Omega(nlogn)$ 

### Decision Trees for other problems

- Maximum, minimum, selection, ...
- Search problem  $x \in S$ ?



- For any problem, log(#answers) is a lower bound
- but sometimes not a tight lower bound

#### Adversarial lower bound

- Example: Maximum needs *n-1* comparisons
- # possible answers = n
- log(# possible answers)= logn : bound too weak
- ∀ input, all elements except maximum must lose a comparison, otherwise adversary can change the input and force wrong answer
- Progress from initial state : # losers = 0
  to final state # losers = n-1
   ⇒ # comparisons ≥ n-1

### Other problems

- Search Problem  $x \in S$ ?
  - Unsorted S: n comparisons
  - Sorted S: logn
- Duplicate elements?:  $\Omega(n \log n)$
- Set Operations (U,  $\cap$ ,  $\neg$ ):  $\Omega(n \log n)$
- Simultaneous max and min:  $\lceil 3n/2 \rceil 2$

(HW exercise)