C^* -algebras

IKHAN CHOI

Contents

1.	Basics	2
1.1.	Continuous functional calculus	2
1.2.	Positive elements	3
1.3.	Operator topologies	3
2.	von Neumann algebras	9

Definition. In this note, an *algebra* refers to a vector space over \mathbb{C} that has a pseudoring structure; always associative but possibly nonunital.

Definition. An normed *-algebra \mathcal{A} is called C^* -algebra if

- (1) \mathcal{A} is Banach,
- (2) \mathcal{A} satisfies the C^* -identity: $||x^*x|| = ||x||^2$.

Theorem. Every nonunital C^* -algebra is a maximal ideal of a unital C^* -algebra.

Proof. Let \mathcal{A} be a nonunital C^* -algebra. It is enough to show the existence of unital C^* -algebra $\widetilde{\mathcal{A}}$ such that \mathcal{A} is a normed *-subalgebra of $\widetilde{\mathcal{A}}$ with codimension one. It is because a subalgebra is a maximal ideal if and only if the quotient can have a natural ring structure that makes a field.

Step 1: Construct a unital normed *-algebra. Since \mathcal{A} is a Banach space, the space of bounded operators $B(\mathcal{A})$ is a Banach algebra. We can recognize \mathcal{A} as a normed subalgebra of $B(\mathcal{A})$ because the left multiplication $(y \mapsto xy) \in B(\mathcal{A})$ has the norm

$$\|(y \mapsto xy)\| = \sup_{y \in \mathcal{A}} \frac{\|xy\|}{\|y\|}$$

that is shown to be equal to ||x|| by putting $y=x^*$ and applying the C^* -identity. Define an algebra $\widetilde{\mathcal{A}}$ as the subalgebra:

$$\widetilde{\mathcal{A}} := \{ (y \mapsto xy + \lambda y) \in B(\mathcal{A}) : x \in \mathcal{A}, \ \lambda \in \mathbb{C} \}.$$

Since $\widetilde{\mathcal{A}} \cong \mathcal{A} \oplus \mathbb{C}$ as algebras, let us write the map $y \mapsto xy + \lambda y$ as (x, λ) . Then, $\widetilde{\mathcal{A}}$ is a normed *-algebra with induced norm and involution

$$\|(x,\lambda)\| = \sup_{y \in \mathcal{A}} \frac{\|xy + \lambda y\|}{\|y\|}, \qquad (x,\lambda)^* = (x^*,\overline{\lambda}).$$

First Written: October 14, 2019. Last Updated: October 14, 2019. IKHAN CHOI

Then, \mathcal{A} is a normed *-subalgebra of $\widetilde{\mathcal{A}}$ because the norm and involution of \mathcal{A} agree with $\widetilde{\mathcal{A}}$.

Step 2: $\widetilde{\mathcal{A}}$ is Banach. Suppose (x_n, λ_n) is Cauchy in $\widetilde{\mathcal{A}}$. Since \mathcal{A} is complete so that it is closed in $\widetilde{\mathcal{A}}$, we can induce a norm on the quotient $\widetilde{\mathcal{A}}/\mathcal{A}$ so that the canonical projection is (uniformly) continuous so that λ_n is Cauchy. Also, the inequality $||x|| \leq ||(x,\lambda)|| + |\lambda||$ shows that x_n is Cauchy in \mathcal{A} .

Since a finite dimensional normed space is always Banach and \mathcal{A} is Banach, λ_n and x_n converge. Finally, the inequality $\|(x,\lambda)\| \leq \|x\| + |\lambda|$ implies that (x_n,λ_n) converges.

Step 3: \widetilde{A} is C^* . The C^* -identity easily follows from the following inequality:

$$||(x,\lambda)||^{2} = \sup_{\|y\|=1} ||xy + \lambda y||^{2}$$

$$= \sup_{\|y\|=1} ||(xy + \lambda y)^{*}(xy + \lambda y)||$$

$$= \sup_{\|y\|=1} ||y^{*}((x^{*}x + \lambda x^{*} + \overline{\lambda}x)y + |\lambda|^{2}y)||$$

$$\leq \sup_{\|y\|=1} ||(x^{*}x + \lambda x^{*} + \overline{\lambda}x)y + |\lambda|^{2}y||$$

$$= ||(x,\lambda)^{*}(x,\lambda)||.$$

1. Basics

1.1. Continuous functional calculus.

Theorem 1.1 (Gelfand-Naimark). For commutative unital C^* -algebra \mathcal{A} , the Gelfand transform gives an isometric *-isomorphism $\Gamma: \mathcal{A} \to C(\sigma(\mathcal{A}))$.

Proof. Step 1: Γ *is a* *-homomorphism. We will show $h(x^*) = \overline{h(x)}$ for linear characters $h \in \sigma(A)$. First assume that $x \in A$ is self-adjoint.

By the holomorphic functional calculus,

$$e^{itx} = \sum_{n=1}^{\infty} \frac{(itx)^n}{n!}.$$

Since the involution is continuous,

$$(e^{itx})^* = \sum_{n=1}^{\infty} \frac{(-itx)^n}{n!} = e^{-itx},$$

so we have $||e^{itx}||^2 = ||e^{itx}e^{-itx}|| = 1$. Then, the inequality

$$1 = ||e^{itx}|| \ge |h(e^{itx})| = |e^{ith(x)}| = e^{-t\operatorname{Im} h(x)}$$

proves $h(x) \in \mathbb{R}$.

For arbitrary $x \in \mathcal{A}$, if we define self-adjoints

Re
$$x := \frac{x + x^*}{2}$$
, Im $x := \frac{x - x^*}{2i}$,

then

$$h(x^*) = h(\operatorname{Re} x) - ih(\operatorname{Im} x) = \overline{h(\operatorname{Re} x)} - i\overline{h(\operatorname{Im} x)} = \overline{h(\operatorname{Re} x) + ih(\operatorname{Im} x)} = \overline{h(x)}$$

 C^* -algebras 3

for all $h \in \sigma(\mathcal{A})$.

Step 2: Γ is isometric. Note that we have

$$\|\widehat{x}\| = \sup_{h \in \sigma(\mathcal{A})} |\widehat{x}(h)| = \sup_{h \in \sigma(\mathcal{A})} |h(x)| = r(x).$$

For self adjoint $x \in \mathcal{A}$, since we have $||x||^2 = ||x^*x|| = ||x^2||$, the spectral radius coincides with the norm by the Gelfand formula for spectral radius in Banach algebras:

$$r(x) = \lim_{n \to \infty} ||x^{2^n}||^{1/2^n} = ||x||.$$

Hence

$$||x||^2 = ||x^*x|| = ||\widehat{x^*x}|| = ||\widehat{x}^*\widehat{x}|| = ||\widehat{x}||$$

for arbitrary $x \in \mathcal{A}$.

Step 3: Γ is surjective. The step 1 shows that $\Gamma(\mathcal{A})$ is a unital *-subalgebra of $C(\sigma(\mathcal{A}))$, and it separates points by definition. By the Stone-Weierstrass theorem, $\Gamma(\mathcal{A})$ is dense in $C(\sigma(\mathcal{A}))$. The step 2 shows that $\Gamma(\mathcal{A})$ is complete and hence closed so that $\Gamma(\mathcal{A}) = C(\sigma(\mathcal{A}))$.

Theorem 1.2 (Gelfan-Naimark). For commutative C^* -algebra \mathcal{A} , the Gelfand transform gives an isometric *-isomorphism $\Gamma: \mathcal{A} \to C_0(\sigma(\mathcal{A}))$.

1.2. Positive elements.

1.3. Operator topologies.

Theorem 1.3. Let f be a linear functional on B(H) for a Hilbert space H. Then, TFAE:

- (1) f is WOT-continuous.
- (2) f is SOT-continuous,
- (3) $f(T) = \sum_{i=1}^{n} \langle Tx_i, y_i \rangle$ for some x_i, y_i .

Proof. (2) \Rightarrow (3) is the only nontrivial implication. By the definition of SOT, there exists $v \in \mathcal{H}^n$ such that

$$|f(T)| \le ||T^{\oplus n}v||.$$

The functional $f: \mathcal{A} \to \mathbb{C}$ factors through \mathcal{H}^n such that

$$\mathcal{A} \stackrel{v}{\to} \mathcal{H}^n \to \mathbb{C}$$
.

2. VON NEUMANN ALGEBRAS

Theorem 2.1 (Double commutant theorem). Let \mathcal{A} be a C^* -algebra in $\mathcal{B}(\mathcal{H})$. Then, $\mathcal{A}'' = \overline{\mathcal{A}}^{\text{WOT}}$.

Proof. Since $\overline{\mathcal{A}}^{\text{WOT}}$ is closed convex, $\overline{\mathcal{A}}^{\text{SOT}} = \overline{\mathcal{A}}^{\text{WOT}}$. Also, \mathcal{A}'' is weakly closed, $\overline{\mathcal{A}}^{\text{WOT}} \subset \mathcal{A}''$. Let $T \in \mathcal{A}''$ and $v \in \mathcal{H}^n$. We want to show $Tv \in \overline{\mathcal{A}v}$.

Let P be the orthogonal projection on $\overline{Av} \subset \mathcal{H}^n$. If $a \in \mathcal{A}$, then $a\overline{Av} \subset \overline{Av}$ because the multiplication by a is continuous on \mathcal{H}^n . It implies that $\operatorname{ran}(aP) \subset \operatorname{ran}(P)$ and P(aP) = aP for all $a \in \mathcal{A}$. Because \mathcal{A} is closed under the involution, P commutes with a, so $P \in \mathcal{A}'$.

Then, TP = PT implies $Tv = T(Pv) = P(Tv) \in ran(P) = \overline{Av}$.

4 IKHAN CHOI