01DR01 Decision Making under Uncertainty

2017/2018

Basics of Sequential DM

Lecture 2

27.02.2017

Readings

- Martin Puterman, Markov decision processes, John Wiley & Sons, 1994
- D.P. Bertsekas, Dynamic Programming, Prentice Hall, 1987
- Richard E. Bellman, *Dynamic Programming*, Dover Publications, 2003

Announcement:

28.2 01DROS is cancelled, replacement will be announced later.

Where are we?

Last time.. Agent and Environment

Agent

(knowledge, observations) \rightarrow actions

observations

sensors

actuators

built-in knowledge, DM objectives

Environment

Agent: human; artificial device; both

Environment: part of the world

Physical vs. digital or virtual worlds make no difference

actions

Last time.. Environment and Modelling

- Fully observable vs. partially observable
- Deterministic vs. stochastic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous number of actions/observations is fixed
- Single agent vs. multi-agent
- Complete vs incomplete model (learning)

Hardest case: Partially observable, stochastic, sequential, dynamic, continuous, multi-agent environment ≡ Real world!

Last time.. Closed-loop

Measurement **Actuate** (sense) of (gas pedal) car speed Mr Bean "computing" control action

Feedback can "make good system from bad components", i.e. it can

- make system insensitive to disturbances
- stabilise unstable system (bicycle)
- produce desired behaviour (e.g. non-linear components produce linear behaviour)

Feedback	Feedforward
Actions are computed based on the difference "actual output – desired output"	Make a plan of actions and execute it
Closed-loop control	Open-loop control
System-driven	"Pure" planning
Acts whenever there is a deviation of actual from desired => sensor noise is fed into system	Acts according to the planned sequence
Potential for instability	No risk of instability

Last time.. Intelligent Rational Agent

- Agent autonomously observes, decides and acts (closed-loop interaction with environment)
- Rational agent acts to achieve best outcome when
 - changing the state of the environment (targeted influence)
 - discovering the state of the environment and make better decisions then (learn, describe)

Agent should account for other agents in the environment

Last time.. DM problem formalisation

needs description (from the agent's point of view) of:

- environment
- possible actions (actuators)
- possible observations (sensors)
- DM goal (performance measure -utility, loss, reward)

Note that rationality considers exploration, learning, adaptation

Today...

Uncertainty in DM

Rational DM depends on the relative importance of different DM objectives and the likelihood that they will be achieved

Any rule how to select a decision cannot rely on absolute knowledge and should handle uncertain knowledge and quantify it.

Example: consider rules for taking umbrella. Sources of uncertainty:

- a rule is not known completely
- the current state (rain, no rain) is unknown
- influence of unknown factors (rule, state) on our reasoning => =>

complexity (difficult to describe all consequents by rules and/or hard to use them)

To capture uncertainty we express our degrees of belief via probability.

Uncertainty and rational DM

- Agent has a DM goal and executes any action ensuring DM goal
- Different degrees of belief: let action a have a 70% chance of success.
 How about a' with probability of 90%? How about a'' with a higher cost of executing but same probability of success? (see examples Lecture 1)
- Agent must have preferences over possible outcomes of actions.
- Utility theory can be used to reason about those preferences
 Idea: for an agent every state has a degree of usefulness; agent prefers states with a higher utility.

Under some conditions on preferences we can always design the utility function that respects our preferences

Decision theory = probability theory + utility theory

Foundation of decision theory:

An agent is *rational* iff it chooses the action yielding the highest expected utility, averaged over all possible outcomes.

The Maximum Expected Utility (MEU) principle [von Neumann & Morgenstern, 1944] says that a rational agent should choose an action a that maximizes its expected utility EU(s,a) in the current state s:

```
EU(s,a) = \sum_{i} P(result_{i}(a) | a, s) U(result_{i}(a), a, K),
a^{best} = argmax_{a} EU(s,a), \text{ where}
result_{i}(a) \text{ is } i\text{-th possible outcome of action } a
K \text{ is other knowledge available for choice } a
```

Wrap: Design for a decision-theoretic agent

General design for a decision-theoretic (utility-based) agent:

- formulate and formalise DM problem
- define A, S, beliefs and utility
- update *belief state* based on previous *action* and *envir.state*
- find probabilities of next envir.state for considered actions and belief states
- select action with highest expected utility given probabilities of next state and utility

What I have not mentioned

- Knowing the current environment state s requires perception, learning and inference.
- Computing $P(result_i(a)|a, s)$ requires a complete environment model.
- Computing $U(result_i(a), a)$ may require knowledge what utilities could be gained from the state s

Way out:

To avoid computationally intractable solution, we need to consider agent's "resource-bounded rationality" instead of "perfect rationality".

Resolving Uncertainty

- Search uncertainty about which action to take
 Connect together a sequence of actions
- Uncertainty Reasoning uncertainty about the 'correct' interpretation of a piece of information
 - Connect together a set of interrelated uncertain information
- Learning uncertainty about the implication of an observed event
 Connect together observed events that are similar

Brief summary of basic notions

- X set of possible outcomes of random variable x; or domain of x, dom(x),
 e.g dom(*)={1,2,3,4,5,6}.
- P(b) expresses degree of belief that x=b i.e your belief in a, $P(\emptyset) = 5 = 1/6$
- $P(\emptyset)=0$
- If $A \subset B$, then $P(A) \leq P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$, $P(A \cup B) \le P(A) + P(B)$
- Conditional probability of A given B: $P(A \mid B) = P(A \cap B) / P(B)$, assuming P(B) > 0
- If x is state of , then P(x) specifies relative a likelihood of any side you consider possible. If it is 0, you consider it to be impossible.

Brief summary of basic properties

- P(x,y) = P(x|y) P(y)
- $P(x) = \sum_{y \in dom(Y)} P(x|y)P(y)$
- P(x,y,z)=P(x|y,z)P(y|z)P(z) chain rule
- $P(x|y)=P(y|x)P(x)/P(y) \propto P(y|x)P(x)$ Bayes rule

A brief review on probabilistic inference

- Agent's beliefs about environment is critical for DM => beliefs must quantify degree of agent's uncertainty
- Quantification used: evidential (Bayesian) probability, i.e. the degree to which your belief is supported by the available evidence.
- Data (measurement, etc.) influence degrees of belief.

 Before evidence is obtained we speak of prior/unconditional probability, after evidence of posterior probability.

P(wine=Italian)=0.7

Do not confuse with:

- degrees of truth are the subject of other methods (fuzzy logic)
 we do not deal with here
- environment changes that might make any statement true or false.

P(wine=Italian)=0.9

Probabilistic inference: conditioning

Given:

- prior P(x) over $x \in X$, representing your degrees of belief
- new measurement $y=y_0$ for a variable $y \in Y$

To revise your degrees of belief:

find posterior $P(x|y=y_0)$ by conditioning P(x) on the measured y_0

Bayesian networks (belief network)

BN is a graphical representation of the direct dependencies over a set of random variables $\{x_1, x_2, ..., x_n\}$.

• Nodes represent random variables x_i connected by links. An arrow from node x_i to node x_i implies x_i be a parent of x_i .

• Each node x_i has a conditional probability table $P(x_i \mid Parents(x_i))$ quantifying

the *strength* of influence its parents.

Judea Pearl

Summary of BN

- Info on conditional independence is a robust way to structure information about an uncertain domain.
- Bayesian networks are a natural way to represent conditional independence
 Links between nodes represent qualitative aspects of the domain, the
 conditional probability tables represent the quantitative aspects.
- BN is a complete representation for the joint probability distribution for the domain, but is often exponentially smaller.
- Inference in BN means computing the probability distribution of a set of query variables, given a set of evidence variables. Complexity of inference given by BN structure => constructing a tractable network with n>100 need effort.

Sequential Decision Problems

- Real life has few episodic DM tasks
- Our world needs sequences of decisions that
 - give opportunity to take further actions
 - change the state of the world (targeted influence)
 - provide information that can inform future decisions
 - provide immediate benefit
 or a combination of all of them.

Sequential Decision Making

Examples of applications

- Robotics (e.g., control)
- Investments (e.g., portfolio management)
- Computational linguistics (e.g., dialogue management in computer system intended to converse with a human)
- Operations research (e.g., resource allocation, call admission control in VoIP networks)
- ...

Sequential DM

Static Inference

Bayesian Networks

Static Decision Making

Decision Networks

Sequential Inference

Hidden Markov Models Dynamic Bayesian Networks

Sequential Decision Making

Markov Decision Processes

Dynamic Decision Networks

Very briefly about preference ordering

You are using mobile apps to call a taxi service.

Your preferences: or or

new > old; 5min> 20min; 100Kc > 500Kc; maybe other preferences..

If not satisfied, alternatives can be used => additional cost (more money, less comfort, longer waiting)!

Preference ordering must fulfil: $(x \ge y \land y \ge z) => x \ge z$; $(x \ge y \land y \ge x) => x = y$; $(x > y \land y > x) = > \emptyset$

DM: 'one-time-never-return'

One-shot decision (irreversible action in partially known environment):

- finite set of actions A, and a set of possible states S
- given preference ordering ≥ over S

Deterministic actions: let $f: A \longrightarrow S$ then $\{f(a) \in A\}$ is a set of possible states.

- How to choose $\alpha \in A$ leading to the most preferred state?
- Problem when α points to some sequence=> how to decide which α ?

Clearly $s_1 \ge s_2 \ge s_3 \ge s_4$ implies a_1 But if *there is*:

- uncertainty in the next state (environ.)
- stochastic actions (agent)
- uncertainty about initial state

Then no deterministic solution exists!

DM: 'one-time-never-return'

One-shot decision (irreversible action in partially known environment):

- finite set of actions A, and a set of possible states S
- given preference ordering ≥ over S

Deterministic actions: let $f: A \longrightarrow S$ then $\{f(a) \in A\}$ is a set of possible states.

- How to choose $\alpha \in A$ leading to the most preferred state?
- Problem when α points to some sequence=> how to decide which α ?

Clearly $s_1 \ge s_2 \ge s_3 \ge s_4$ implies a_1 But if *there is*:

- uncertainty in the next state (environ.)
- stochastic actions (agent)
- uncertainty about initial state

Then no deterministic solution exists!

- more about one-shot decision theory you can find here:
 P.Guo One short decision theory IEEE Trans. on System Man and Cybernetics 41(5) 917-926, 2011.
- more about taxi service apps will be at 01DROS on 7.3.

Sequential decision model: environment evolution

Example: stochastic environment

To find best action sequence:

- Assign utility to each trajectory e.g., $u(s_1 \rightarrow s_2 \rightarrow s_6)$
- For each action sequence compute probability of any trajectory:

e.g.,
$$Pr(s_1 \rightarrow s_2 \rightarrow s_6 | [a_1,a_1]) = 0.9*0.7 = 0.63$$

Compute expected utility of each action sequence:

Exp.utility of
$$[a_1,a_1]$$
, $[a_1,a_2]$, $[a_2,a_1]$, $[a_2,a_2]$

Choose the best sequence of actions

Problems:

- In stochastic environment use of a sequence of actions may result in a state other than the most preferred one (DM goal)
- Complexity: m actions, t stages give m^t action sequences to evaluate; and if there are n outcomes per action, the number of possible trajectories is m^t n^t
- Practical: easier to consider utility of particular states (and cost of actions) not utility of entire trajectories (taken as a sum of states utili)
- Conceptual: sequences of actions do not reflect 'natural' behaviour: After action a1, I go to s2 or s3. It may be better to do a1 again if I end up to s2, but the best to do a2 if I end up at s3.

Policy

The mentioned problems be partially solved with use of *policy*. For observable outcomes policy = (do a1; if s2, do a1; if s3, do a2;...)

- Policies specify what the agent should do for any reachable state.
- By using policy we can make more state trajectories possible.
 It (weakly) increases expected utility of the best behavior, since policies include sequences as a special case.
- Complexity problem: there exist much more policies than sequences => hard computation problem.
 - Partial solution: use dynamic programming (next lecture)

Decision Trees

A decision tree:

- is an simple way to structure sequencing of decisions based on observed events
- explicitly represents all the possible decision sequences from a given state.

Each path corresponds to decisions made by the agent, actions taken, possible observations, state changes, and a final outcome node.

Nodes in a Decision Tree

- decision nodes representing decisions available to agent point to

 i) next decision nodes,
 ii) chance nodes if stochastic.
- chance nodes indicate possible outcomes and their probabilities;
 must be observable
- terminal nodes: final outcome of trajectory (labeled with utilities)
- sequencing of decisions based on observed outcomes

Solution: backward induction (simple form of dynamic programming) helps to compute optimal course of action, or *policy*

! choices at each stage can depend on observed outcomes at any previous stages

- EU(make) = 0.3 * \$380K + 0.7 * \$450K = \$429K
- EU(reuse) = 0.4 * \$275K + 0.6 * [0.2 * \$310K + 0.8 * \$490K] = \$382.4K
- EU(buy) = 0.7 * \$210K + 0.3 * \$400K = \$267K; best choice

Decision Tree

- In DT information-gathering actions are important and easily modeled => DT is good tool for understanding value of information (for instance, pay for tests, trials in order to determine more precise likelihood of the outcomes of certain decisions)
- in evaluating trees a direct use of Bayes rule is required

Further reading: C.Kirkwood: Decision Tree Primer, available on web

Nodes in a Decision Network

- Decision networks or influence diagrams are an extension of belief networks.
- Chance nodes have conditional probability tables that depend on the states of the parent nodes (chance or decision).
- Decision nodes represent decision-making points at which decisions are available to the agent
- Utility nodes provide the overall utility given the states of the parent nodes (nodes that affect utility directly).
- Often nodes describing outcome states are omitted and expected utility associated with actions is expressed (rather than states) action-utility tables

Decision Tree vs Decision Network

'Taking an Umbrella' as a Decision Tree

'Taking an Umbrella' as an Influence Diagram

Case 1:U(Umbrella|W=Rain)*P(W=Rain|WR=Rain) +U(Umbrella|W=not Rain)*P(W= not Rain|WR=Rain)

Parameters: P(Rain), P(WeatherReport|Rain), P(WeatherReport|¬Rain), Utility(Rain,Umbrella)

Knowledge in Decision Network

- Causal knowledge about how events influence each other
- Knowledge about what decision sequences are feasible in a given set of circumstances (defines possible temporal ordering of decisions) => admissible policies
- Knowledge about how desirable the consequences are => utility

Evaluating Decision Networks

- 1. Set the evidence variables (observation) for the current state.
- 2. For each possible value of the decision node(s):
- (a) Set the decision node to that value.
- (b) Calculate the posterior probabilities for the parent nodes of the utility node.
- (c) Calculate the expected utility for the action/decision.
- 3. Execute the action/decision with the highest expected utility.

Decision Trees vs. Decision Networks

Decision trees are not good for representing domain knowledge

- Requires large amount of memory
- Multiple decisions nodes → expands tree
- Duplication of knowledge along different paths is unavoidable

Decision network:

- generates decision tree from more economical forms of knowledge
- has an assumption that the agent remembers all past observations and decisions

A more useful but less structured formalism- Markov Decision Process

What is a Markov decision process?

A *mathematical* representation of a sequential decision making problem in which:

- A environment evolves through time.
- An agent influences it by taking actions at pre-specified points of time.

MDP-Markov Decision Process

- MDP is a math framework for modelling DM where environment states are random and influenced by the agent.
- Markov property is a memoryless property of a stochastic process

$$Pr(s_{t+1} \mid s_t = s_t, a_t = a_t, s_{t-1} = s_{t-1}, a_{t-1} = s_{t-1}, ..., s_0 = s_0, a_0 = s_0)$$

$$= Pr(s_{t+1} \mid s_t = s_t, a_t = a_t)$$

Historic notes

- A model of sequential decision-making developed in operations research in the 1950's
 - Abraham Wald Sequential Analysis (1940's)
 - Richard Bellman Dynamic Programing (1950's)
- 1950- 1980's development of theory and algorithms, applications
- since 1990's adopted by the AI community as a framework for:
 - Decision-theoretic planning (e.g., [Dean et al., 1995])
 - Reinforcement learning (e.g., [Barto et al., 1995])
- Allows reasoning about actions with uncertain outcomes more than 60 years of successful applications

Markov Decision Processes are also known as:

- Dynamic Programs
- Stochastic Dynamic Programs
- Sequential Decision Processes
- Stochastic Control Problems

MDP-Markov Decision Process

- Markov decision processes are an extension of Markov chains; the difference is the addition of actions (allowing choice) and rewards (a kind of feedback giving motivation).
- If only one action exists for each state and all rewards are the same a Markov decision process reduces to a Markov chain.

MDP: formalisation

MDP is defined by (*T, S, A, R, Pr*):

- S finite set of all possible states, |S| = n
- A_s finite set of allowable *actions* (decisions) in state s.
 - $A = \bigcup_{s \in S} A_s$ the set of all possible actions, |A| = m
- $Pr(s_{t+1}|s_t,a_t)$ state transition function
 - represented by set of n x n probability matrices for each a_t
 - each $Pr(s_{t+1} | s_t, a_t)$ is a distribution over S
- bounded, real-valued reward function R(s)
 - represented by an *n*-vector
 - can be generalised to include action costs R(s,a)
 - can be negative to reflect the cost incurred
 - generally can be stochastic (replaceable by expectation)

Decision Epochs

- Times at which decisions are made (analogous to period start times in Markov Process)
- The set T of decisions epochs can be either a discrete set or a continuum.
- The set *T* can be finite (*finite horizon problem*) or infinite (*infinite horizon*).

States and Transition Functions

States s are analogous to states in Markov Processes and include all info from the past relevant to the future.

Transition function is a distribution that governs how the state changes as actions are taken over time.

As a result of choosing action $a \in A_s$ in state s at decision epoch t, the system state at t+1 is determined by the probability distribution $p_t(., s, a)$.

Remarks

- If the transition matrix $p_t(...|s,a)$ is independent of the action a, MDP is a Markov process => recall course 01MAPR
- If transition matrix $p_t(...|s, a)$ is independent of s we have an i.i.d. process => recall course 01PRA12