

QUAD 2 CHANNEL MULTIPLEXER (INV.)

- HIGH SPEED: t_{PD} = 4ns (TYP.) at V_{CC} = 5V
- LOW POWER DISSIPATION: $I_{CC} = 4\mu A(MAX.)$ at $T_A=25^{\circ}C$
- HIGH NOISE IMMUNITY: V_{NIH} = V_{NIL} = 28 % V_{CC} (MIN.)
- 50Ω TRANSMISSION LINE DRIVING CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 24mA (MIN)
- BALANCED PROPAGATION DELAYS: $t_{PLH} \cong t_{PHL}$
- OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 158
- IMPROVED LATCH-UP IMMUNITY

The 74AC158 is an advanced high-speed CMOS QUAD 2-CHANNEL MULTIPLEXER (INVERTING) fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS tecnology.

It consists of four 2-input digital multiplexer with common select and strobe inputs. It is an inverting

ORDER CODES

PACKAGE	TUBE	T & R
DIP	74AC158B	
SOP	74AC158M	74AC158MTR
TSSOP		74AC158TTR

multiplexer. When the STROBE input is held high selection of data is inhibit and all the outputs become high. The SELECT decoding determines whether the A or B inputs get routed to their corresponding Y outputs.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

April 2001 1/10

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	SELECT	Common Data Select Inputs
2, 5, 11, 14	1A to 4A	Data Inputs From Source A
3, 6, 10, 13	1B to 4B	Data Inputs From Source B
4, 7, 9, 12	1Y to 4Y	Multiplexer Outputs
15	STROBE	Strobe Input
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

TRUTH TABLE

	INP	UTS		ОИТРИТ
STROBE	SELECT	Α	В	Y
Н	X	Х	X	Н
L	L	L	Х	Н
L	L	Н	X	L
L	Н	X	L	Н
L	Н	X	Н	L

X : Don't Care

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 50	mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current	± 200	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 6	V
V _I	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time V _{CC} = 3.0, 4.5 or 5.5V (note 1)	8	ns/V

¹⁾ V_{IN} from 30% to 70% of V_{CC}

DC SPECIFICATIONS

		1	Test Condition	Value							
Symbol	Parameter	Parameter V _{CC}		T _A = 25°C			-40 to	85°C	-55 to 125°C		Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
V _{IH}	High Level Input	3.0	$V_0 = 0.1 \text{ V or}$	2.1	1.5		2.1		2.1		
	Voltage	4.5	$V_{\rm CC} = 0.1 \text{ V or}$	3.15	2.25		3.15		3.15		V
		5.5	VCC 0V	3.85	2.75		3.85		3.85		
V_{IL}	Low Level Input	3.0	$V_{O} = 0.1 \text{ V or}$		1.5	0.9		0.9		0.9	
	Voltage	4.5	V _{CC} -0.1V		2.25	1.35		1.35		1.35	V
		5.5			2.75	1.65		1.65		1.65	
V_{OH}	High Level Output	3.0	I _O =-50 μA	2.9	2.99		2.9		2.9		
	Voltage	4.5	I _O =-50 μA	4.4	4.49		4.4		4.4		
	5.5	I _O =-50 μA	5.4	5.49		5.4		5.4		V	
	3.0	I _O =-12 mA	2.56			2.46		2.4		V	
		4.5	I _O =-24 mA	3.86			3.76		3.7		
		5.5	I _O =-24 mA	4.86			4.76		4.7		
V _{OL}	Low Level Output	3.0	I _O =50 μA		0.002	0.1		0.1		0.1	
	Voltage	4.5	I _O =50 μA		0.001	0.1		0.1		0.1	
		5.5	I _O =50 μA		0.001	0.1		0.1		0.1	V
		3.0	I _O =12 mA			0.36		0.44		0.5	V
		4.5	I _O =24 mA			0.36		0.44		0.5	
		5.5	I _O =24 mA			0.36		0.44		0.5	
I _I	Input Leakage Current	5.5	$V_I = V_{CC}$ or GND			± 0.1		± 1		± 1	μΑ
I _{CC}	Quiescent Supply Current	5.5	$V_I = V_{CC}$ or GND			4		40		80	μΑ
I _{OLD}	Dynamic Output	5.5	V _{OLD} = 1.65 V max					75		50	mA
I _{OHD}	Current (note 1, 2)	5.5	V _{OHD} = 3.85 V min					-75		-50	mΑ

¹⁾ Maximum test duration 2ms, one output loaded at time
2) Incident wave switching is guaranteed on transmission lines with impedances as low as 50\Omega.

AC ELECTRICAL CHARACTERISTICS (C $_L$ = 50 pF, R_L = 500 $\Omega,$ Input t_r = t_f = 3ns)

		Test Condition		Value							
Symbol	Parameter	v _{cc}	Vcc		T _A = 25°C			-40 to 85°C		-55 to 125°C	
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLH} t _{PHL}	Propagation Delay	3.3 ^(*)		1.5	7.0	11.5	1.5	12.5	1.5	12.5	
	Time SELECT to Y	5.0(**)		1.5	5.0	9.0	1.5	10.0	1.5	10.0	ns
t _{PLH} t _{PHL}	Propagation Delay	3.3 ^(*)		1.5	7.0	11.0	1.5	12.0	1.5	12.0	
	Time STROBE to Y	5.0 ^(**)		1.5	5.5	8.5	1.5	9.5	1.5	9.5	ns
t _{PLH} t _{PHL}	Propagation Delay	3.3 ^(*)		1.5	5.0	8.0	1.5	8.5	1.5	8.5	
	Time A, B to Y	5.0 ^(**)		1.5	4.0	7.0	1.5	7.5	1.5	7.5	ns

^(*) Voltage range is $3.3 \text{V} \pm 0.3 \text{V}$ (**) Voltage range is $5.0 \text{V} \pm 0.5 \text{V}$

CAPACITIVE CHARACTERISTICS

		Test Condition		Value							
Symbol	Parameter	v _{cc}		Т	_A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			4.5						pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0	f _{IN} = 10MHz		34						pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/n$ (per circuit)

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = R_1 = 500 $\!\Omega$ or equivalent R_T = Z_{OUT} of pulse generator (typically 50 $\!\Omega$)

WAVEFORM 1: PROPAGATION DELAYS FOR NON INVERTING CONDITIONS (f=1MHz; 50% duty cycle)

WAVEFORM 2: PROPAGATION DELAYS FOR INVERTING CONDITIONS (f=1MHz; 50% duty cycle)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM.		mm			inch	
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
Е		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050

SO-16 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.2	0.004		0.007
a2			1.65			0.064
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.019	
c1			45 ((typ.)		
D	9.8		10	0.385		0.393
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
М			0.62			0.024
S			8 (n	nax.)		

TSSOP16 MECHANICAL DATA

DIM.		mm			inch		
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.1			0.433	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
A2	0.85	0.9	0.95	0.335	0.354	0.374	
b	0.19		0.30	0.0075		0.0118	
С	0.09		0.20	0.0035		0.0079	
D	4.9	5	5.1	0.193	0.197	0.201	
E	6.25	6.4	6.5	0.246	0.252	0.256	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°	4°	8°	0°	4°	8°	
L	0.50	0.60	0.70	0.020	0.024	0.028	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com