Partie IV: Les capteurs de vibration

Les capteurs de vibrations

• Un capteur de vibration est un transducteur capable de convertir en signal électrique le niveau de vibrations qu'il subit à un instant donné.

Les capteurs de vibrations

- Les technologies des capteurs de vibration peuvent être classées comme suit:
 - Déplacement
 - Vitesse
 - Accélération
 - Force
 - Chocs.

Ces capteurs peuvent êtres :

- Mécanique
- Electrique
- Optique

Capteurs de déplacement vibratoire

- Les capteurs de déplacement vibratoire sont utilisés qu'en très basses fréquences puisque les amplitudes décroissent rapidement quand la fréquence augmente.
- Ces capteurs sont généralement utilisés dans des applications très spécifiques telle que la surveillance sismiques.
- Les capteurs de déplacement peuvent être linéaires ou angulaires capacitif ou inductif.

Capteurs de Vitesse vibratoire

Ordre de grandeur des limites atteintes au moyen de capteurs de vitesse industriels			
Principe	Vitesse (m.s ⁻¹)	Fréquence (Hz)	Mise en œuvre
Électrodynamique :			
– linéaire	≈ 0 à 1	≈ 0 à 10 ³	Champ magnétique et bobine mobile
– angulaire	≈ 0 à 10² tours/s	0 à 10 ² tours/s	Dynamo tachymétrique
Optoélectronique à effet Doppler	10 ⁻⁵ à 1	≈ 0 à 10 ⁴	Rétrodiffusion de rayons laser

Accéléromètres Domaine de mesure

Les accéléromètres sont utilisés généralement pour:

- •Le diagnostic de machine (par analyse vibratoire).
- •La détection de défaut dans les matériaux (en mesurant la propagation d'une vibration à travers les matériaux).

Accéléromètres catégories

Les accéléromètres sont généralement classées en trois grandes catégories :

- Les chocs
- L'accélération vibratoire
- L'accélération de mobiles

Accéléromètres catégories

Les accéléromètres sont généralement classées en trois grandes catégories :

- Les chocs
- L'accélération vibratoire
- L'accélération de mobiles

Les chocs

Les chocs sont des accélérations de très forte amplitude. Ce sont des accélérations très brèves et qui nécessitent un capteur de bande passante allant généralement de 0 à 100 kHz.

Les capteurs couramment associés :

- à détection piézoélectrique
- à détection piézorésistive
- à détection capacitive

Exemples:

- déclenchement des coussins de sécurité dans les voitures
- crash-tests

Accélération vibratoire

Les accélérations vibratoires sont considérées comme des accélérations de niveau moyen.

Les accéléromètres utilisés sont :

- à détection piézoélectrique
- à détection piézorésistive ou jauge d'extensométrie
- à détection inductive

Exemples:

- le contrôle vibratoire pour la R&D
- le contrôle industriel

Accélération vibratoire

Les accélérations vibratoires sont considérées comme des accélérations de niveau moyen.

Les accéléromètres utilisés sont :

- à détection piézoélectrique
- à détection piézorésistive ou jauge d'extensométrie
- à détection inductive

Exemples:

- le contrôle vibratoire pour la R&D
- le contrôle industriel

L'accélération de mobiles

Les accélérations de mobiles sont de faible niveau.

Les accéléromètres utilisés sont :

- des capteurs d'accélération non asservis (jauges, capacités, induction, optique, potentiomètre);
- des capteurs d'accélération asservis.

Exemple:

- les stations inertielles des avions
- l'aide à détermination dynamique de la position d'un train sur une ligne