

Contents

1. INTRODUCTION	2
2 A DESCRIPTION OF DATA	2

1. INTRODUCTION

Road accidents have become very common nowadays. As more people are buying automobiles, the incidences of road accidents are just increasing day by day. According to The Annual Global Road Crash Statistics report published by www.asirt.org, approximately 1.35 million people die in road crashes each year, and on average 3,700 people lose their lives every day on the roads. An additional 20-50 million suffer non-fatal injuries, often resulting in long-term disabilities.

Considering the importance of this problem, we have to try our best to understand what factors affect the probability of being injured during the car crash the most. To achieve this, we will use the modern tools data science has to offer.

This research is based on collisions data from Seattle; however, I believe that the derived conclusions can serve as a benchmark for all other cities and counties.

This report will be of interest to anyone who drives cars or works in traffic regulation authorities. Understanding the roots of this problem may bring us one step closer to making our cities a safer place to live and may save the lives of those readers who take this issue seriously.

2. A DESCRIPTION OF DATA

Every data-driven solution requires one most important thing: data. In our research, we will use the Traffic Collisions Dataset compiled and maintained by the Seattle Department of Transportation (SDOT). This dataset has been referred to within the IBM capstone project, and therefore we have no doubts regarding its authenticity and quality.

Below is the quick summary of our dataset:

a. Range: 2004 to Present

b. 37 Attributes

c. Almost 195,000 rows (observations)

The key intention of our research will be an attempt to measure the **impact of various** characteristics on the severity of the accident. It will be helpful to mention what severity codes correspond to:

Code	Meaning		
3	Fatality		
2b	Serious injury		
2	Injury		
1	Property damage		
0	Unknown		

Our dataset will contain only the following severities:

- √ 1 (Property Damage, 136 485 observations)
- ✓ 2 (Injury, 58 188 observations)

After investigating the dataset, I decided to keep only the most important attributes, and the resulted data frame after basic pre-processing looks the following way:

	SEVERITYCODE	ADDRTYPE	UNDERINFL	WEATHER	ROADCOND	LIGHTCOND	SPEEDING
0	2	Intersection	N	Overcast	Wet	Daylight	NaN
1	1	Block	0	Raining	Wet	Dark - Street Lights On	NaN
2	1	Block	0	Overcast	Dry	Daylight	NaN
3	1	Block	N	Clear	Dry	Daylight	NaN
4	2	Intersection	0	Raining	Wet	Daylight	NaN

Let us have a quick look at what each column represents and what actions we might need to take to prepare it for analysis:

Column	Description
SEVERITYCODE	Already described in the previous table
ADDRTYPE	Whether an incident occurred at an intersection or block. Requires 0/1 encoding
UNDERINFL	Whether a driver was under influence of drugs or alcohol. Requires 0/1 encoding. Contains NA values which will be filled with 0 by default
WEATHER	Weather conditions during the accident. The column includes 11 types of conditions. For efficiency, they will be converted to FAVORABLE (0) and UNFAVORABLE (1)
ROADCOND	Road conditions during the accident. The column includes 9 types of conditions. For simplicity, they will be encoded to FAVORABLE (0) and UNFAVORABLE (1)
LIGHTCOND	Light conditions during the accident. The column includes 9 types of conditions. For simplicity, they will be encoded to DAY (0), OTHER (1)
SPEEDING	Whether an incident occurred while the driver was obeying or disobeying the speed limit. Requires 0/1 encoding.

Other important points:

- ✓ The data has unbalanced labels (more property damage in comparison to injuries). To avoid bias, we will have to trim it and keep an equal amount of labeled observations for both categories.
- ✓ Some categories like weather, road, and light conditions contain "unknown" observations. To avoid guessing, we will just remove those observations entirely. I believe this will not have a significant statistical impact on the quality of research, as the overall number of recorded rows is still very large.

I will not include the long list of all processing actions taken here; they will be available in my Git repository in a separate workbook. After processing the data this is the final table we arrived at:

	SEVERITYCODE	ADDRTYPE	UNDERINFL	WEATHER	ROADCOND	LIGHTCOND	SPEEDING
0	2	1	0	1	1	0	0
1	2	0	0	0	0	0	0
2	2	1	0	1	0	0	0
3	2	0	0	0	0	1	0
4	2	1	0	0	0	0	0

- ✓ The shape of data: 7 columns (1 label, 6 categorical variables)
- ✓ All categorical variables are encoded in 1/0 format
- ✓ The total number of rows is 96 662
- ✓ Both Severity Codes 1 and 2 have an equal amount of observations (48 331 each)

We can now move to our next "Methodology" section, where we will make a quick visual exploratory analysis, and then try to use some Machine Learning techniques to predict what conditions can be linked to severity codes.