Теория вероятностей и математическая статистика Условная вероятность. Полная вероятность. Формула Байеса.

Глеб Карпов

ВШБ Бизнес-информатика

Мыслительный эксперимент

Мыслительный эксперимент

• Зеленая группа: 1,2,3,4,7

• Красная группа: 4,5,7,8

• Синяя группа: 2,3

• Оранжевая группа: 6,9

i Definition

Условная вероятность пересчитывается через обычную вероятность в виде:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

i Definition

Условная вероятность пересчитывается через обычную вероятность в виде:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

При каждом зафиксированном значении параметра (условия) P(X|K) - отдельная самостоятельная вероятностная функция. Для каждой справедливы указанные ранее свойства:

• $\forall X, K \in \mathcal{F}: 0 \le P(X|K) \le 1$

При каждом зафиксированном значении параметра (условия) P(X|K) - отдельная самостоятельная вероятностная функция. Для каждой справедливы указанные ранее свойства:

- $\forall X, K \in \mathcal{F} : 0 \le P(X|K) \le 1$
- $\forall K \in \mathcal{F}: \ P(\Omega|K) = 1.$ Easy to show: $P(\Omega|K) = \frac{P(\Omega \cap K)}{P(K)} = (K \subseteq \Omega) = \frac{P(K)}{P(K)} = 1$

При каждом зафиксированном значении параметра (условия) P(X|K) - отдельная самостоятельная вероятностная функция. Для каждой справедливы указанные ранее свойства:

- $\forall X, K \in \mathcal{F} : 0 \le P(X|K) \le 1$
- $\forall K \in \mathcal{F}: \ P(\Omega|K) = 1.$ Easy to show: $P(\Omega|K) = \frac{P(\Omega \cap K)}{P(K)} = (K \subseteq \Omega) = \frac{P(K)}{P(K)} = 1$
- Аддитивность вероятности:

$$\forall X, Y, K \in \mathcal{F}: X \cap Y = \emptyset, P((X \cup Y)|K) = P(X|K) + P(Y|K)$$

• $G = \{1, 2, 3, 4\}$ • $R = \{3, 4, 5, 6\}$ • $B = \{6, 8\}$

• P(G) = 0.5, P(R) = 0.5, P(B) = 0.25

i Question

P(G|R), P(R|G) = ?

i Question

 $P(R|B),\,P(B|R)=?$

• $G = \{1, 2, 3, 4\}$ • $R = \{3, 4, 5, 6\}$ • $B = \{6, 8\}$

- P(G) = 0.5, P(R) = 0.5, P(B) = 0.25
- i Question

 $P(G|R),\,P(R|G)=?$

- P(G|R) = 0.5, P(R|G) = 0.5
- i Question

P(R|B), P(B|R) = ?

• $G = \{1, 2, 3, 4\}$ • $R = \{3, 4, 5, 6\}$ • $B = \{6, 8\}$

- P(G) = 0.5, P(R) = 0.5, P(B) = 0.25
- i Question

P(G|R), P(R|G) = ?

- P(G|R) = 0.5, P(R|G) = 0.5
- i Question

P(R|B), P(B|R) = ?

• P(R|B) = 0.5, P(B|R) = 0.25

•
$$G = \{1, 2, 3, 4\}$$
 • $R = \{3, 4, 5, 6\}$ • $B = \{6, 8\}$

•
$$R = \{3, 4, 5, 6\}$$
 • $B = \{6, 8\}$

•
$$P(G) = 0.5$$
, $P(R) = 0.5$, $P(B) = 0.25$

$$P(G|R),\,P(R|G)=?$$

•
$$P(G|R) = 0.5, P(R|G) = 0.5$$

$$P(R|B),\,P(B|R)=?$$

• P(R|B) = 0.5, P(B|R) = 0.25

• Наблюдаем: P(B) = P(B|R), P(R) = P(R|B). Коэффициент ожидания этих событий а.к.а. вероятность не зависит от того, происходит ли одновременно другое событие или нет. Мы называем такие события независимыми.

•
$$G = \{1, 2, 3, 4\}$$
 • $R = \{3, 4, 5, 6\}$ • $B = \{6, 8\}$

- P(G) = 0.5, P(R) = 0.5, P(B) = 0.25
- i Question

$$P(G|R), P(R|G) = ?$$

- P(G|R) = 0.5, P(R|G) = 0.5
- i Question

$$P(R|B),\,P(B|R)=?$$

- P(R|B) = 0.5, P(B|R) = 0.25
- Наблюдаем: P(B) = P(B|R), P(R) = P(R|B). Коэффициент ожидания этих событий a.k.a. вероятность не зависит от того, происходит ли одновременно другое событие или нет. Мы называем такие события **независимыми**.
- Более формально, чтобы называть A и B независимыми, должно выполняться:

$$P(A|B) = P(A) \text{ VI } P(B|A) = P(B), \text{ при } P(A), P(B) > 0.$$

• Если немного поработаем с идеей о независимости, получим более удобное определение:

$$P(A) = P(A|B) = \frac{P(A \cap B)}{P(B)} \longrightarrow P(A \cap B) = P(A) \cdot P(B)$$

i Definition

События A и B из одного вероятностного пространства (Ω, \mathcal{F}, P) называются независимыми, если:

$$P(A \cap B) = P(A) \cdot P(B),$$

и зависимыми в обратном случае.

• Концепция условной вероятности неразрывно связана со следующей идеей полной вероятности.

 Ω B_{n-1} B_1 B_n B_2 ...

- Концепция условной вероятности неразрывно связана со следующей идеей полной вероятности.
- Рассмотрим зафиксированное пространство (Ω, \mathcal{F}, P) . Назовем **разбиением** Ω коллекцию событий $\{B_k, k \in I\}$, таких что $B_i \cap B_j = \emptyset$ при $i \neq j$ и $\bigcup B_i = \Omega$.

 Ω

- Концепция условной вероятности неразрывно связана со следующей идеей полной вероятности.
- Рассмотрим зафиксированное пространство (Ω, \mathcal{F}, P) . Назовем **разбиением** Ω коллекцию событий $\{B_k, k \in I\}$, таких что $B_i \cap B_i = \emptyset$ при $i \neq j$ и $\bigcup B_i = \Omega$.
- Вдобавок, рассмотрим какое-то другое событие B, которое пересекается с какими-то событиями из разбиения, но не обязано пересекаться со всеми.

 Ω

i Theorem

Если $\{B_1, B_2, ...\}$ - разбиение Ω , с $P(B_i) > 0 \ \forall i$, то:

$$P(A) = \sum_i P(A|B_i)P(B_i), \, \forall A \in \mathcal{F}$$

Доказательство. Заметим, что мы можем реконструировать событие A из его частичек-пересечений со всеми B_i : $A = \bigcup_i (A \cap B_i)$. Эти кусочки $\{A \cap B_i\}$ попарно не пересекаются, как и оригинальные элементы разбиения. Поэтому далее можем применить свойство аддитивности вероятности:

$$\begin{split} P(A) &= P\left(\bigcup_i (A \cap B_i)\right) \\ &= \sum_i P\left(A \cap B_i\right) = \sum_i P(A|B_i)P(B_i) \end{split}$$

Теорема Байеса

$$\boxed{P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum\limits_i P(A|B_i)P(B_i)}}$$

Let us recall definition of conditional probability:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

We can notice that probability of intersection $(A \cap B)$ may be written in two ways:

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A),$$

which gives us a formula, how two 'inverted' conditional probabilities are connected:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}.$$

