UPOREDBA FRISC-a I ARM-a	FRISC	ARM
VRSTA	ugradbeno računalo	ugradbeno računalo
RAZINE APSTRAKCIJE	razina arhitekture skupa naredaba i mikroarhitekture	
PRISTUP MEMORIJI	von Neumanov	
ARHITEKTURA SKUPA NAREDABA (S OBZIROM NA SMJEŠTAJ OPERANADA)	load-store arhitektura (reg-reg)	load-store arhitektura (reg-reg)
MEMORIJSKI PODSUSTAV	Adresna sabirnica A[20:0] - određuje mem. lokaciju kojoj se pristupa Podatkovna sabirnica D[31:0] - služi za prijenos podataka između procesora i memorije Upravljačka sabirnica (RD, WR, SIZE) - upravlja prijenosom podataka	
SKUP NAREDABA PROCESORA	RISC	RISC (ima i karakteristike CISC-a)
BROJ REGISTARA	8 (RO-R7, R7 tj SP služi za stog) i SR (registar stanja) zastavice Z, V, C i N se nalaze od 3-0 bita	16 (RO-R15, R13 tj LR služi za stog, R14 tj LR sadrži pov. adresu iz potprograma, a R15 ili PC sadrži adresu iduće naredbe u glavnom programu) i CPSR, SPSR (registri stanja) zastavice Z, V, C i N se nalaze od 31-28 bita
SKUP NAREDBI	8 vrsta naredbi, 3 osnovne: aritmetičko-logičke (ADD, SUB, AND, OR, XOR), memorijske (LOAD, STORE), upravljačke (JP, JP_uvjet) naredbe; i 5 proširenja: aritmetičko-logičke (CMP, SHL, SHR, ASHR, ROTL, ROTR, ADC, SBC), memorijske (LOADB, LOADH, STOREB, STOREH), upavljačke naredbe (CALL), upravljačke naredbe (JR), upravljačke naredbe (RET, RETI, RETN, HALT)	6 osnovnih grupa: naredbe load i store (LDR, STR), naredbe za obradu podataka (ADD, SUB, MAC, CLZ), naredbe grananja (B (skače na petlje) i BL ()poziva potprogram), naredbe za prijenos registara stanja (prijenos iz CPSR ili SPSR u neki registar opće razmjene), koprocesorske naredbe (MRS, MSR), naredbe za generiranje iznimke (BIC)
ZAPIS U MEMORIJI	little-endian	little-endian
NAČINI ADRESIRANJA (podcrtano znači u primjeru da se na to odnosi)	registarsko adresiranje (ADD RO, 12, RO; MOVE SR, R3; LOAD R6, (1000)), neposredno adresiranje (ADD RO, 12, R2; MOVE 200, R3; ROTL R2, ZA TRI, R2), apsolutno adresiranje (LOAD RO, (1200); JP 2000; CALL POTPROG), relativno adresiranje (JR 1200, JR PETLJA), registarsko indirektno adresiranje (JP_CC (RO), CALL (R6)), registarsko indirektno adresiranje s odmakom (LOAD R5, (R0+4); STORE R5, (R6-12); STORE R5, (R6)), implicitno adresiranje (PUSH R5, POP R6)	
KARAKTERISTIKE	5 osnovnih dijelova: ulaz, izlaz, memorija, put podataka i upravljačka jedinica (unutar procesora se nalaze pp i uj); osnovne zadaće procesora: dohvat naredbe, dekodiranje i izvršavanje; interni registri procesora (znači da programer nema izravan pristup njima): podatkovni registar (DR – međusklop između unutrašnjosti procesora i podatkovne sabirnice), adresni registar (AR – međusklop između unutrašnjosti procesora i adresne sabirnice) i instrukcijski registar (IR – registar koji čuva strojni kod naredbe za vrijeme njenog dekodiranja)	Load i store vrste odmaka: Osnovni odmak Reg = mem[BazniReg + Odmak] Predindeksiranje BazniReg = BazniReg + Odmak Reg = mem[BazniReg] Postindeksiranje Reg = mem[BazniReg] BazniReg = BazniReg + Odmak; dodavanjem slova S na kraju naredbi za obradu podataka, mijenja se stanje zastavica (npr MOVS, SUBS);

		-
POTPROGRAM	inicijalizira se stog (MOVE 10000, SP), potprogram se poziva naredbom CALL, sprema se vrijednost PC (pokazuje adresu iduće naredbe) na stog, sa PUSH (npr. R0, R1) spremamo registre koje ćemo koristiti, a obrnutim redoslijedom ih vraćamo sa POP (R1, R0) i iz potprograma se izlazi sa naredbom RET	inicijalizira se stog (MOV R13, #0x8100), potprogram se poziva naredbom BL, sprema se vrijednost PC u registar R14 (ili LR), spremamo registre sa STMFD R13!, {R0, R1}, a vraćamo sa LDMFD R14!, {R0, R1} i nakraju izlazimo iz potprograma sa naredbom MOV PC, LR
KRAJ PROGRAMA	HALT	SWI 123456 ili
(naredba za zaustavljanje		
procesora)		
	brojevi po općenitom su u HEKSADEKADSKOM	brojevi su po općenitom u
VRIJEDNOSTI	sustavu	HEKSADEKADSKOM sustavu u
VRIJEDNOSTI		glavnom programu se vrijednosti pišu
		sa ljestvicom ispred sebe (npr #2)
		BRISANJE BITA U STATUS REGISTRU
NEKE STVARI		MRS RO, CPSR
		BIC R0, R0, #0x80
		MSR CPSR_C, R0
HAZARDI	Strukturni i upravljački	Strukturni, upravljački i podatkovni

Zastavice općenito:

ništica Z (ako broj nije 0 onda je z=0)

preljev ov (gledaju se najviša 2 bita brojeva koji se prenose i radi se XOR i ako je 1 i 1 onda je to 0)

prijenos (gleda se zadnji broj i ako je 0 onda je prijenos 0)

posudba (ona je suprotno od prijenosa)

predznak (najviši bit rezultata)

GREŠKE:

kod NBC brojeva se javljaju kad je prijenos=1 (a kod oduzimanja se vidi kad je prijenos =0) kod 2'k brojeva se javljaju kad je preljev=1 (a kod oduzimanja se vidi kad je preljev=1)

LITTLE-ENDIAN (HEXA ZAPISI BROJEVA)

MOVE	10000, SP	FFFC	34
MOVE	1234, R0	FFFD	12
PUSH	RO .	FFFE	00
		FFFF	00
		10000	

BIG-ENDIAN (HEXA ZAPISI BROJEVA) ightarrow od gore prema dolje se čitaju brojevi

MOVE 10000, SP	FFFC	00
MOVE 1234, R0	FFFD	00
PUSH RO	FFFE	12
	FFFF	34
	10000	

Adresiranje u load/store ARM	Osnovni odmak	Predindeksiranje	Postindeksiranje
Neposredni	[RO, #4]	[R0, #4]!	[RO], #4
Registarski	[R7, -R3]	[R7, R3]!	[R7], R3
Registarski s pomakom	[R3, R5, LSL #2]	[R3, R5, LSL #2]!	[R3], R5, LSL #2

POJMOVI:

paritet -> broj jedinica u nekom podatku

'DW -> definira 8 bitni podatak/tke na lokaciji koja je zadana, odnosno ne poravnava ili dijeli

DW, DH, DB -> definiraju 32, 16, 8 bitne podatke i poravnavaju sa adresom djeljivom sa 4, 2, 1

'EQU -> hmm a labeli daje neku vrijednost, da lakše baratamo

'DS -> zauzima, odnosno rezervira mjesta na lokaciji za podatke

64 bitni brojevi, zbrajanje sa carry, slajd 100 03_FRISC i oduzimanje sa posudbom sajd 104

PRIMJERI (što se događa interno):

CALL ADRESA

SP - 4 -> SP (smanji se stog za 4 bajta i vrh stoga sad tamo pokazuje)

PC -> (SP) (vrijednost iduće naredbe se sprema na stog, vrh stoga se ne pomiče normalno)

ADRESA —> PC (upisuje se adresa potprograma u brojilo i izvodi se)

RET

(SP) -> PC

SP + 4 -> SP

Sabirnice prema namjeni dijele se na adresnu, podatkovnu i upravljačku. Sabirnice se mogu dijeliti i na memorijsku, ulazno-izlaznu sabirnicu i sabirnicu specijalne namjene. Prema načinu komunikacije dijele se na asinkrone i sinkrone. Sinkrone koriste CLOCK (takt) za sinkronizaciju, a asinkrone preko zahtjeva odnosno potvrda spremnosti.

PROTOČNA STRUKTURA:

Razina za dohvat Razina za izvođenje

Dohvat nardbe Izvođenje AL operacije

Dekodiranje naredbe Spremanje rezultata

Dohvat operanada

Do trenutka dekodiranja sve naredbe imaju jednaku fazu dohvata:

Rastući brid CLOCK-a: PC → AR

Padajući brid CLOCK-a: PC+4 \rightarrow PC, (AR) \rightarrow IR, dekodiranje

uglavnom preko primjera napisati sto je isto, izdvojiti primjere svih i napisati neku tablicu, 5 FISC preedavanj, 23 slajd

TRAJANJE IZVOĐENJA NAREDBI (FRISC):

Jednociklusne – aritmetičko logičke naredbe i registarske naredbe (ADD, CMP, SUBB, MOVE ...)

Dvociklusne – memorijske naredbe i upravljačke naredbe (STORE, LOAD, PUSH, POP, JR, JP, HALT...)

IZNIMKE : ako zadnja naredba traje 1 ciklus, onda dodajemo +1 jedan (zato jer izlazimo iz protočne strukture)

HAZARDI:

Strukturni (u protočnoj strukturi se nemogu tako brzo izvest naredbe, zato dođe do zastoja i da se ukloni treba se čejkati) se pojavljuje kod STORE, LOAD, PUSH i POP (zato su dvociklusne).

Upravljački se pojavljuje kod grananje, odnosno naredbi JP, JR, CALL, RET ...

Podatkovni (FRISC ga nema)

KASNI_5_MINUTA

PUSH RO

LOAD RO, (KONST); 109 prolazaka

LOOP SUB RO, 1, RO

; 1 takt

JR_NZ LOOP

; 2 takta

POP RO

RET

KONST DW %D 1000000000

Ovaj potprogram je napisan za frekvenciju 10 MHz: 5 min = 300 sek = 300*10*10⁶=3*10⁹ taktova

Prihvaćanje NEMASKIRAJUĆEG prekida kod FRISCa:

aktivira se priključak IACK (VJ treba deaktivirati INT3), briše se IIF (zabranjivanje daljnih prekida), sprema se PC na stog, deaktivira se IACK i na kraju skok u prekidni potprogram na adresi 0C, tj $0C \rightarrow PC$

Prihvaćanje MASKIRAJUĆEG prekida kod FRISCa:

briše se GIE (zabranjivanje daljnih maskirajućih prekida), sprema se PC na stog i na kraju se s memorijske lokacije na adresi 8 uzima adresa PP i ide se tamo.

PREKIDNI POTPROGRAM kod FRISCa:

sprema se kontekst, otkriva se uzročnik prekida (tj otkriva se koja VJ je izazvala prekid), dojavljuje se VJ da je njen prekid prihvaćen (programski za maskirajuće, preko IACK-a za nemaskirajuće), poslužuje se VJ, obnavlja se kontekst, dojavljuje se da je njezin prekid obrađen i na kraju se vraćamo iz potprograma sa RETI (ako je maskirajući) ili RETN (ako je nemaskirajući)

FRISC	Bezuvjetni prijenos	Uvjetni prijenos	Prekidni prijenos	
Lokacije (najčešće u	BVJ 'EQU	UVJ_P 'EQU 0FFFF2000	PVJ_POD 'EQU 0FFFF3000	
kodu koje stavimo)	0FFFF1000	UVJ_S 'EQU 0FFFF2004	PVJ_IACK 'EQU 0FFFF3004	
		BRISI 'EQU OFFFF2004	PVJ_IEND 'EQU 0FFFF3008	
			PVJ_STOP 'EQU 0FFFF300C	
kako se koristi	pomoću petlje,	prvo čekamo da vanjska jedinici	na nemaskirajućim prekidima ne	

	očitavamo stanje sa te lokacije i ispitujemo da li je na toj lokaciji pritisnuta tipka (ili sta vec treba)	bude spremna (odnosno provjeravamo spremnost), kada je spreman uzmemo ili šaljemo podatak, (ovisno sto treba) i na kraju obrišemo spremnost da se nastavi komunikacija sa vanjskom jedinicom	treba čitati spremnost, jer IACK to sam radi na maskirajućim treba prihvaćati prekide (PVJ_IACK) i brisati
Spremnost	ne provjerava	provjerava	

F	RISC-CT	FRISC-PIO	FRISC-DMA
C C C * (s	CTLR 'EQU OFFFF0000 CTCR 'EQU OFFFF0004 CTIACK 'EQU OFFFF0008 CTIEND 'EQU OFFFF000C LR gleda samo 16 nižih bitova sto znaci da treba vise ct-ova ko ocemo do vecih brojeva projati)*	PIOC 'EQU OFFFF0000 PIOD 'EQU OFFFF0004 PIOIACK 'EQU OFFFF0008 PIOIEND 'EQU OFFFF000C	
u C b n s _l r _o o p p	cTLR stavimo od kud broji, u cTCR označimo da krene projati (do nule) (u uvjetnom premnosti, ali korisnije je to aditi u prekidnom načinu), progućimo prekid ako je potrebno i onda u prekidnom premnost (CTIACK), obavimo ta treba i na kraju javimo da prekiaj vj (CTIEND) (VALIDA)	u PIOC upišemo način rada sklopa, omogućimo prekide, zatim u prekidnom programu spremimo kontekst, potvrdimo prihvat prekida (PIOIACK), uzmemo ili izračunamo podatak i šaljemo u sklop (PIOD), kada se obavi što se trebalo, onda se još zabrane daljni prekidi (upisom %B 000 u PIOC) i stavimo nešto bzv u PIOEND na kraju potprograma	

7 načina rada: 1 user i 6 privilegiranih (koristiti ćemo 2, obični i brzi prekidni način); obični koristi R13 i R14 registre, a brzi od R8-R14 .. obični je na adresi 18, a brzi prekid, potprogram je na 1C ... izlazak iz PP se izvodi sa SUBS PC, LR, #4 i time se mijenja PC i CPSR IZNIMKE: procesor pohranjuje pov. adresu u R14, pa pohranjuje CPSR u SPSR, procesor se prebacuje u željeno privilegirano stanje, procesor započinje s izvođenjem potprograma