Given a proposed solution to domain decomposition, we can test each domain in turn to see whether every node has a path to every other node. (This can be done very efficiently by testing for strong connectivity.) Thus *Domain Decomposition* is in NP.

We now show that Three-Dimensional Matching \leq_P Domain Decomposition. To do this, we start with an instance of Three-Dimensional Matching, with sets X, Y, and Z of size n each, and a collection C of t ordered triples.

We construct the following instance of *Domain Decomposition*. We construct a graph G = (V, E), where V consists of a node x'_i for each $x_i \in X$, y'_j for each $y_j \in Y$, and z'_k for each $z_k \in Z$. For each triple A_m in C, we will also define three nodes v^x_m , v^y_m , and v^z_m . Let U denote all nodes of the form x'_i , y'_j , or z'_k . We now define the following edges in G. For each triple of nodes v^x_m , v^y_m , and v^z_m , we construct a directed triangle via edges $(v^x_m, v^y_m), (v^y_m, v^z_m), (v^z_m, v^x_m)$. For each node x'_i , and each node v^x_m for which x_i appears in the triple A_m , we define edges (x'_i, v^x_m) and (v^x_m, x'_i) . We do the analogous thing for each node y'_j and z'_k .

So the idea is to create a directed triangle for each triple, and a pair of bi-directional edges between each element and each triple that it belongs to. We want to encode the existence of a perfect tripartite matching as follows. For each triple $A_m = (x_i, y_j, z_k)$ in the matching, we will construct three 2-element domains consisting of the nodes x'_i, y'_j, z'_k together with the nodes v_m^x , v_m^y , and v_m^z respectively. For each triple A_m that is *not* in the matching, we will simply construct the 3-element domain on v_m^x , v_m^y , and v_m^z .

Thus, we claim that G has a decomposition into at least 3n+t-n=2n+t domains if and only there is a perfect tripartite matching in C. If there is a perfect tripartite matching, then the construction of the previous paragraph produces a partition of V into 2n+t domains. So let us prove the other direction; suppose there is a partition of V into 2n+t domains. Let p denote the number of domains containing elements from U. Note that $p \leq 3n$, and p=3n if and only if each element of U appears in a 2-element domain. Let q denote the number of domains not containing elements from U. Each such domain must consist of a single triangle; since at least n triangles are involved in domains with elements of U, we have $q \leq t-n$, and q=t-n if and only if the domains involving U intersect only n triangles. Now, the total number of domains is p+q, and so this number is 2n+t if and only the domains consist of t-n triangles, together with 3n two-element domains involving elements of U. In this case, the triangles that are not used in the domain decomposition correspond to triples in the Three-Dimensional Matchinq instance that are all disjoint.

Thus, by deciding whether G has a decomposition into at least 2n + t domains, we can decide whether our original instance of *Three-Dimensional Matching* has a solution.

 $^{^{1}}$ ex742.89.672