## Week 10: V(s) and Q(s,a) for Bellman's Optimality

Saturday, April 9, 2022 9:51 Al

Bellman's Optimality Equations are defined in two ways: V(s) and Q (s,a) functions.

Both give us a set of equations for V(s) and Q, respectively. In essence, they're the same.

N(s) is a vector (one variable function)

Q(s,a) is a matrix (two variable function)

|        | a1 🤦     | Q(s,a)   | a(m=3)      |                                                                         |
|--------|----------|----------|-------------|-------------------------------------------------------------------------|
| s1     | Q(s1,a1) | Q(s1,a2) | Q(s1,a3)    | 7                                                                       |
| \$2    | Q(s2,a1) | Q(s2,a2) | Q(s2,a3)    | the max Q of each                                                       |
| s3     | Q(s3,a1) | Q(s3,a2) | Q(s3,a3)    | [ row, goes to V(s) => to know th                                       |
| s4     | Q(s4,a1) | Q(s4,a2) | Q(s4,a3)    | Nector and the Q(s,a) action is                                         |
| s(n=5) | Q(s5,a1) | Q(s5,a2) | Q(s5,a3)    | action is the action of V(si) to know                                   |
|        |          | tray     | ectories th | e accumulated reward of all at start in 53 and execute al initial state |



The bellman equations will discover the politic set of actions.

Ly the optimal politic and thus Q(s,a) too

→ Since V(G) Involves max() function, the solution cannot be analytical: we will use a numerical method, Value Iteration.

For this, both the Transition Model and reward function must be known.

Taking the example world:

The world contains the set of states  $S = \{S1, S_2, S_3, SF1, SF2\}$  where S1 = initial state and, SF1 and SF2 are final states:

The world has the following set of Actions  $A = \{ \rightarrow, \leftarrow \}$ , where:  $o \rightarrow = agent$  moves to left, one cell J deterministic example  $o \leftarrow = agent$  moves to right, one cell J

 $\rightarrow$  The reward Function  $f_R(s,a,s_f) = f_R(s_f)$  only depends on the state that the agent arrives to.

In the excel file, choose the sheet WITHOUT FIT (5): we have the calculation with V(5) Value Iteration, under Bellman's Optimal Politic



- Not all systems of Equations converge under Value Iteration, but Bellman's Optimality Equation Systems always converge (either VCS) or Q(s,a) versions).
- -> What determines the Optimal Politic is the Reward function fr(s,a,st)
- -> Both V(s) and Q(s,a) give the same output:

| V(s)= 71.861           | 8263 79.954 | 2263 88.990 | 2263 99.0302 | 2263 99.0302 | 263 V(5)   | will      | take th  | 4 BOGV | Q value,  |
|------------------------|-------------|-------------|--------------|--------------|------------|-----------|----------|--------|-----------|
| 1                      | •           | 1           | , 1          | ſ            | So         | יוי סוקפר | examples | v(s)   | will have |
| Q(s,a1=←)=             | 54.5786663  | \$4.5786663 | 71.8618263   | 79.9542263   | 88.9902263 | a1=←      | other    | Q row  | value.    |
| $Q(s,a2=\rightarrow)=$ | 71.8618263  | 79,954226   | 88.9902263   | 99.0302263   | 99.0302263 | a2=→      |          |        |           |

 $\rightarrow$  Q needs more memory: V(s) calculates the same but when needed.  $\rightarrow$  For V(s) and Q(s,a) we need PMT and fR to be known.