Due: Monday, March 10, 2003

- 1. An abrupt Si p-n junction is formed by alloying a uniformly doped n-type silicon bar where $N_d = 8x10^{16}/\text{cm}^3$ in the beginning. During the alloying process, a uniform counter doping of acceptors of $N_a = 1.4x10^{17}/\text{cm}^3$ is introduced in the region for x<0. Basically, x<0 is the p-side and x>0 is the n-side.
 - (a) Calculate the Fermi level positions at 300 K in the p and n regions.
 - (b) Draw an equilibrium band diagram for the junction and determine the contact potential $V_{\rm o}$ from the diagram.
 - (c) Compare the results of part (b) with V_0 as calculated from Eq. (5-8).
 - (d) Using Eq. (5-8), calculate and plot V_0 versus temperature ranging from 250 K to 500 K.
- 2. Refer to problem 1, the silicon bar has a cross section with diameter 20 μ m. Assume that the depletion approximation holds. (a) Calculate W, X_{no} and X_{po} at 300 K. (b) Determine the total positive ion charge in the depletion region. (c) Sketch to scale the charge density $\rho(x)$, electrical field E(x), and electrostatic potential V(x) in the depletion region. Assume that the electrostatic potential is zero at x=0. (d) Draw the energy band diagram for the device.
- 3. Refer to problem 1 again. In reality, the alloying process will introduce a much higher concentration of acceptor. Assume that the uniform counter doping is $N_a = 3x10^{19}/\text{cm}^3$ instead. Determine and plot the contact potential V_o and depletion widths W, X_{no} and X_{po} versus temperature ranging from 250 K to 500 K.