Distributed Computer Systems Engineering

CIS 508: Lecture 1
Overview

Lecturer: Sid C.K. Chau Email: ckchau@masdar.ac.ae

What is this course about

In a nutshell, anything about "More Than One Computer System"

- Systems in *different* locations
- Systems in *different* logical places
- Systems performing *different* functions, tasks, operations
- Systems owned by different organizations
- Systems in different designs, protocols, standards
- Systems are .. *different*!

What is this course about

In a nutshell, anything about "More Than One Computer System"

- How to enable different systems to work together?
 - One system provides the *inputs* to other systems
 - One system depends on the *outputs* from other systems
- How to share data among systems?
- How to ensure robustness, security, efficiency?
- Many practically important and theoretically intriguing questions

What is this course about

Examples:

- Distributed database systems
 - Handle transactions among banks (traditional distributed systems)
- Distributed embedded systems
 - Connect controllers/microprocessors in cars/planes/plants
 - Tightly coupled interaction of systems
- Mobile devices, sensors, appliances
 - Internet-of-things, Pervasive computing
 - Loosely coupled interaction of systems

Many, Many Examples

Benefits

Economy

Multiple low-end systems are cheaper than a single high-end centralized system

Efficiency

- Multiplexing multiple lowly utilized systems
- Merging the workload of lowly utilization systems

Geographical Separation

- Resources can span multiple organizations, domains, countries
- Data can locate in different locations, users access from different locations

Flexibility

Pooling resources to support different applications simultaneously

Reliability

Aggregating multiple unreliable systems

Scalability

Allowing dynamic incremental upgrade

Challenges

Interoperability

Standardized interfaces and abstractions between different computer systems

Consistency

Data sharing among simultaneous systems without errors, deadlocks, uncertainty

Fault Tolerance

Systems availability despite failures, crashes, unexpected events

Asynchrony

Tolerate communication latency, inaccurate clock, scheduled operation shut-down

Dynamics

Tolerate fluctuations in resources, network connectivity, uncertain participants

Networking

Sufficient network connectivity to enable communications

Security

Open to unintended accesses, malicious attackers

The *Evolving* Industry

First Generation: Enterprises & Infrastructure

Second Generation: Information & Contents

Third Generation: Social, Pervasive & Interactive Media

<<This is You ?>>

Fourth Generation & Beyond: Internet-of-things, Autonomous Cars/Robots

Books and Readings

- Textbooks (partially covered in this course)
 - Distributed Systems: Principles and Paradigms
 Andrew Tanenbaum and Maarten van Steen; Prentice Hall
 - Computer Networking
 James F. Kurose and Keith W. Ross; Pearson Addison-Wesley

Plus other supplementary readings (e.g. papers, websites)

How is this course taught

- 13 Lectures
 - Teaching concepts and principles
- 4x3 Labs
 - Hands-on experiences of systems
- 4 Assignments
 - Open questions
 - Programming assignments of labs
- Teaching Assistant
 - Muhammad Aftab (<u>maftab@masdar.ac.ae</u>)
 - Majid Khonji (<u>mkhonji@masdar.ac.ae</u>)

Assessment

Assignments/Labs 30%

■Mid-term Exam 20%

■Final Exam 20%

■Project 30%

About Labs

- Android
 - Basic programming of smart phones and developing Apps
- AWS
 - Basic operations for cloud computing; installing web applications
- Arduino & Raspberry Pi
 - Basic embedded system programming
 - Interconnecting sensors and gadgets

- Purposes
 - Leverage skills from labs to develop a creative project
 - To showcase innovative applications using mobile systems, cloud computing and embedded systems
- Group Size
 - 2 students
- Tasks
 - In-class demo (including public try-out)
 - Project report
- Assessment
 - 50%: Panel (including me, TA, other faculty)
 - 50 %: Peer review (by students themselves)

Rules

- Students are required to attend other students' presentations, and try out their applications
- Then fill up a reviewer's form to assess other students' project and provide justifications and comments for improvements
- Submit reviewer's form to me
- Anonymous assessments and comments will be provided to the developers

- Suggested Projects
 - Social games (e.g. treasure hunting)
 - Crowd sourcing
 - Social instant messaging
 - Mobility sensing and tracking
 - Automotive apps (e.g. car-sharing)
 - Smart home apps
 - Healthcare apps
 - Internet-of-things apps
 - Entertainment (e.g. interconnecting with Kinect)

- Assessment Criteria
 - Does the project demonstrate sufficient technicality?
 - Demonstrating the use of Android (as front-end) and AWS (as back-end)
 - Arduino & Raspberry Pi are optional, but are encouraged
 - Is the project creative?
 - Demonstrating creativity in application designs, concepts, and use of technologies
 - Graphical interface is not emphasized
 - Has the project any potential to start a new business?
 - Demonstrating novelty of ideas, or even potential for startups

Deadlines

- Finalizing group members: early Feb
- Project demos: early May
- Project report due: early May

Report

- Web-based reports
- The report should document technical aspects of the project, challenges encountered, and future extensions
- Multi-media contents should be submitted along with the report (e.g. UI figures and a demonstrating video in Youtube)

Tentative Course Plan

1	6 Jan	Lecture 1: Overview	
2	9 Jan	Lecture 2: Architecture	
3	13 Jan	Lecture 3: Consistency	
4	16 Jan	Lecture 4: Fault Tolerance	
5	27 Jan	Lecture 5: Wireless & Mobile Networks	
6	30 Jan	Lab 1.1: (Android)	Assignment 1 Due
7	3 Feb	Lab 1.2: (Android)	Lab Exercise 1.1 Due
8	6 Feb	Lab 1.3: (Android)	Lab Exercise 1.2 Due
9	10 Feb	Lecture 6: Cloud Computing	Lab Exercise 1.3 Due
10	13 Feb	Lab 2.1: (AWS)	
11	17 Feb	Lab 2.2: (AWS)	Lab Exercise 2.1 Due
12	20 Feb	Lab 2.3: (AWS)	Lab Exercise 2.2 Due
13	3 Mar	Lecture 7: Embedded Systems	Lab Exercise 2.3 Due
14	6 Mar	Lab 3.1: (Arduino)	Assignment 2 Due
15	10 Mar	Lab 3.2: (Arduino)	Lab Exercise 3.1 Due
16	13 Mar	Lab 3.3: (Arduino)	Lab Exercise 3.2 Due

Tentative Course Plan

17	17 Mar	Mid-term	Lab Exercise 3.3 Due
18	20 Mar	Lecture 8: Sensor Networks	
19	24 Mar	Lecture 9: Networking Protocols I	
20	27 Mar	Lecture 10: Networking Protocols II	
	31 Mar	Spring Break	
	3 Apr	Spring Break	
	7 Apr	Spring Break	
	9 Apr	Spring Break	
21	14 Apr	Lab 4.1: (Raspberry Pi)	Assignment 3 Due
22	17 Apr	Lab 4.2: (Raspberry Pi)	Lab Exercise 4.1 Due
23	21 Apr	Lab 4.3: (Raspberry Pi)	Lab Exercise 4.2 Due
24	24 Apr	Lecture 11: Peer-to-peer Systems	Lab Exercise 4.3 Due
25	28 Apr	Lecture 12: Distributed Algorithms: Byzantine Problem	
26	1 May	Lecture 13: Computing for Sustainability	
27	5 May	Project Presentations	Assignment 4 Due
28	8 May	Project Presentations	Project Report Due

Other Information

- Course website: http://cis508.SustainableNetworks.org
 - Course announcements
 - Lecture slides
 - Assignments
 - Project information
 - Lab instructions