STAT 448 -Advanced Data Analysis

Homework 1

Name:Xinyan Yang NetID:xinyany2

1. Descriptive Statistics Solution:

(a)

From the box plot, we can see that the median and mean of sepal length is around 57mm. Also, as the length becomes longer, the data has a larger variation. About 50% of the data has a length between 50-64mm.

(b)

From the box plots above,we could see that the Virginica group has higher sepal length than the Versicolor group and the Versicolor group has higher sepal length than the Setosa group. Also, the distance between the 25% quantile and the 75% quantile of the setosa is shorter than the other two species, so the distribution plot of this group will be more higher.

(c)

Moments					
N	150	Sum Weights	150		
Mean	58.4333333	Sum Observations	8765		
Std Deviation	8.28066128	Variance	68.5693512		
Skewness	0.31491096	Kurtosis	-0.552064		
Uncorrected SS	522385	Corrected SS	10216.8333		
Coeff Variation	14.171126	Std Error Mean	0.67611316		

Basic Statistical Measures				
Location Variability				
Mean	58.43333	Std Deviation	8.28066	
Median	58.00000	Variance	68.56935	
Mode	50.00000	Range	36.00000	
		Interquartile Range	13.00000	

Quantiles (Definition 5)				
Level	Quantile			
100% Max	79			
99%	77			
95%	73			
90%	69			
75% Q3	64			
50% Median	58			
25% Q1	51			
10%	48			
5%	46			
1%	44			
0% Min	43			

Tests for Normality				
Test	Statistic p Value			1e
Shapiro-Wilk	W	0.97609	9 $Pr < W$ 0.010	
Kolmogorov-Smirnov	D	0.088654	Pr > D	< 0.0100
Cramer-von Mises	W-Sq	0.127398	Pr > W-Sq	0.0479
Anderson-Darling	A-Sq	0.889199	Pr > A-Sq	0.0231

Frome the results above, we can conclude that the mean value of sepallength of all species is 58.43mm and the value range from 43mm to 79mm.

About the normality, qualitatively, from the histogram we can see that the data basically follows the normal distribution. And quantitatively, according to the results of Tests for Normality, we could reject the null hypothesis at the significance level of 5% and conclude that the data doesn't follow the normal distribution.

(d) Iris Species=Setosa

Moments					
N	50	Sum Weights	50		
Mean	50.06	Sum Observations	2503		
Std Deviation	3.52489687	Variance	12.424898		
Skewness	0.12008699	Kurtosis	-0.2526888		
Uncorrected SS	125909	Corrected SS	608.82		
Coeff Variation	7.04134413	Std Error Mean	0.4984957		

	Basic Statistical Measures				
Loca	Location Variability				
Mean	50.06000	Std Deviation	3.52490		
Median	50.00000	Variance	12.42490		
Mode	50.00000	Range	15.00000		
		Interquartile Range	4.00000		

Tests for Normality				
Test	Statistic p Value			
Shapiro-Wilk	W 0.977699 Pr < W		0.4595	
Kolmogorov-Smirnov	D	0.11486	Pr > D	0.0962
Cramer-von Mises	W-Sq	0.071753	Pr > W-Sq	>0.2500
Anderson-Darling	A-Sq	0.407986	Pr > A-Sq	>0.2500

Iris Species=Versicolor

1110 × P 0 0 1 0 1 0 1 0 1 0 1					
Moments					
N	50	Sum Weights	50		
Mean	59.36	Sum Observations	2968		
Std Deviation	5.16171147	Variance	26.6432653		
Skewness	0.10537762	Kurtosis	-0.5330095		
Uncorrected SS	177486	Corrected SS	1305.52		
Coeff Variation	8.69560558	Std Error Mean	0.72997624		

	Basic Statistical Measures				
Location Variability					
Mean	59.36000	Std Deviation	5.16171		
Median	59.00000	Variance	26.64327		
Mode	55.00000	Range	21.00000		
		Interquartile Range	7.00000		

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	W	0.977836	6 Pr < W 0.464		
Kolmogorov-Smirnov	D	0.096241	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.057273	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.360841	Pr > A-Sq	>0.2500	

Iris Species=Virginica

iris Species—virginica				
Moments				
N	50	Sum Weights	50	
Mean	65.88	Sum Observations	3294	
Std Deviation	6.35879593	Variance	40.4342857	
Skewness	0.11801512	Kurtosis	0.03290442	
Uncorrected SS	218990	Corrected SS	1981.28	
Coeff Variation	9.65208854	Std Error Mean	0.89926954	

	Basic Statistical Measures				
Loca	Location Variability				
Mean	65.88000	Std Deviation	6.35880		
Median	65.00000	Variance	40.43429		
Mode	63.00000	Range	30.00000		
		Interquartile Range	7.00000		

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	W	0.971179	Pr < W	0.2583		
Kolmogorov-Smirnov	D	0.115034	Pr > D	0.0953		
Cramer-von Mises	W-Sq	0.089467	Pr > W-Sq	0.1538		
Anderson-Darling	A-Sq	0.551641	Pr > A-Sq	0.1506		

From the results above, we can find that as the group changes, not only does the group mean becomes larger, but the range, the skewness and the number of observations also increases, which means that the Virginica group tends to have a larger variation.

Both three Shapiro-Wilk tests give us a large p-value under which we couldn't reject null hypothsis and it means that both three groups follow the normal distribution. Although the Virginica group is a little right-tailed, it still shows normality.

(e) Something unusual is that the species-wise statistics tell us that the group data shows normality

while in the last question, the overall data doesn't follow the normal distribution, which is very tricky.

2.Hypothesis Testing Solution:

(a)

Tests for Location: Mu0=60						
Test	Statistic p Value					
Student's t	t	-2.31717	Pr > t	0.0219		
Sign	M	-11	Pr >= M	0.0798		
Signed Rank	S	-1238.5	Pr >= S	0.0129		

First, the data doesn't show the normality. Second, although the skewness is greater than 0, the histogram plot actually shows that the data is symmetric. So we should choose the Signed Rank test for location. The p-value for the signed rank test is 0.0129, therefore under the significance level of 5%, we should reject the null hypothesis and conclude that the mean of sepal length is significantly different from 60.

(b) The median value for sepal length of all species is 58 so we set h0=58 and perform the one-sided t test and get the following result.

Mean	95% (Mea	~—	Std Dev	95% (D	CL Std ev
65.8800	64.3723	Infty	6.3588	5.3117	7.9239

DF	t Value	Pr > t
49	8.76	<.0001

From the t-test result, since p-value is smaller than 0.001, we can conclude that under the significant level of 5%, we should reject the null hypothesis and think that the mean of virginica is significantly greater than the general population.

(c) Since the p-value of the first table is 0.0087, we can reject the null hypothesis and think that the variances of these two groups are significantly different.

Therefore we can use the Satterthwaite test to test the mean of these two groups, since the p-value is less than 0.001, we can reject the null hypothesis and conclude that the mean of these two groups are significantly different.

Equality of Variances					
Method	Num DF	Den DF	F Value	Pr > F	
Folded F	49	49	2.14	0.0087	

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	98	-10.52	<.0001
Satterthwaite	Unequal	86.538	-10.52	<.0001

3. Correlation Solution:

(a)

Pearson Correlation Coefficients, N = 150 Prob > r under H0: Rho=0							
	SepalLength SepalWidth PetalLength PetalWidth						
SepalLength Sepal Length (mm)	1.00000	-0.11757 0.1519	0.87175 <.0001	0.81794 <.0001			
SepalWidth Sepal Width (mm)	-0.11757 0.1519	1.00000	-0.42844 <.0001	-0.36613 <.0001			
PetalLength Petal Length (mm)	0.87175 <.0001	-0.42844 <.0001	1.00000	0.96287 <.0001			
PetalWidth Petal Width (mm)	0.81794 <.0001	-0.36613 <.0001	0.96287 <.0001	1.00000			

According to the results above, we notice that the correlation coefficient between the sepal length and the petal length, the correlation between the sepal length and the petal width, the one between the sepal width and the petal length, the correlation between the sepalwidth and the petal width, the correlation between the petal length and the petal width are all significant under the significant level of 5%.

In other words, except the correlation between the sepal length and the sepal width, there are relationship in all the other groups.

Among all these correlations, we can notice that the one between the petallength and the petalwidth is 0.96287, which is nearly 1. We can assume that there's some linear relationship between these two variables.

(b)

Iris Species=Setosa

Pearson Correlation Coefficients, N = 50 Prob > r under H0: Rho=0							
	SepalLength SepalWidth PetalLength PetalWidth						
SepalLength Sepal Length (mm)	1.00000	0.74255 <.0001	0.26718 0.0607	0.27810 0.0505			
SepalWidth Sepal Width (mm)	0.74255 <.0001	1.00000	0.17770 0.2170	0.23275 0.1038			
PetalLength Petal Length (mm)	0.26718 0.0607	0.17770 0.2170	1.00000	0.33163 0.0186			
PetalWidth Petal Width (mm)	0.27810 0.0505	0.23275 0.1038	0.33163 0.0186	1.00000			

Iris Species=Versicolor

Pearson Correlation Coefficients, N = 50 Prob > r under H0: Rho=0						
SepalLength SepalWidth PetalLength PetalWidth						
SepalLength Sepal Length (mm)	1.00000	0.52591 <.0001	0.75405 <.0001	0.54646 <.0001		
SepalWidth Sepal Width (mm)	0.52591 <.0001	1.00000	0.56052 <.0001	0.66400 <.0001		
PetalLength Petal Length (mm)	0.75405 <.0001	0.56052 <.0001	1.00000	0.78667 <.0001		
PetalWidth Petal Width (mm)	0.54646 <.0001	0.66400 <.0001	0.78667 <.0001	1.00000		

Iris Species=Virginica

Pearson Correlation Coefficients, N = 50 Prob > r under H0: Rho=0					
	SepalLength	SepalWidth	PetalLength	PetalWidth	
SepalLength Sepal Length (mm)	1.00000	0.45723 0.0008	0.86422 <.0001	0.28111 0.0480	
SepalWidth Sepal Width (mm)	0.45723 0.0008	1.00000	0.40104 0.0039	0.53773 <.0001	
PetalLength Petal Length (mm)	0.86422 <.0001	0.40104 0.0039	1.00000	0.32211 0.0225	
PetalWidth Petal Width (mm)	0.28111 0.0480	0.53773 <.0001	0.32211 0.0225	1.00000	

From the correlation matrix above, we can find the following results.

About the Setosa species, only the correlation between the sepal length and the sepal width is significant under the significance level of 0.1%.

About the Versicolor species, all correlation coefficients between these variables are significant.

About the Virginica species, the correlation between the sepallength and petallength and the correlation between the sepalwidth and the petalwidth are significant.

(c) We can find that the correlation matrix of Setosa species is totally different from that of the entire data set. While there's only one significant coefficient in the former, that coefficient is the only one that is not significant in the latter matrix, which is very surprising. And we can probabily infer that the setosa group has the least effect on the performance of the overall dataset. At the same time, we can find that the Versicolor group has a great effect on the overall data set.