Exercício 1. Considere o autômato AF1 a seguir. Qual linguagem é reconhecida por ele?

RESPOSTA:

Exercício 2. Considere o autômato AF2 a seguir.

- a) Qual linguagem é reconhecida por ele?
- b) Citar uma cadeia reconhecida por ele e uma não reconhecida.

RESPOSTA:

Exercício 3. Escreva a definição formal do autômato AF3 a seguir incluindo a função de transição.

RESPOSTA:

Exercício 4. Desenhe o diagrama do autômato AF4 que reconheça a linguagem L(AF4) = {w/w termina em 00} sabendo que ele possui apenas 03 estados.

RESPOSTA:

Exercício 5. Dado o alfabeto $\Sigma = \{a,b\}$, construa AFDs para as seguintes linguagens:

a) $\{b(ab)^n b \mid n \ge 0\}$

RESPOSTA:

b) $\{ba^nba \mid n \ge 0\}$

RESPOSTA:

c) $\{a^mb^n \mid m+n \text{ e par}\}$

RESPOSTA:

 $d) \{ab^mba(ab)^n \mid m, n \ge 0\}$

RESPOSTA:

Exercício 6. Dado o alfabeto $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$, construa AFDs para as seguintes linguagens:

- a) $\{x \in \Sigma + | \text{ a sequência descrita por } x \text{ corresponda a um valor inteiro par} \}$ **RESPOSTA:**
- b) $\{x \in \Sigma^+ \mid a \text{ sequência descrita por } x \text{ corresponda a um valor inteiro divisível por 5} \}$ **RESPOSTA:**
- c) { $x \in \sum^{+} | a \text{ sequência descrita por } x \text{ corresponda a um valor inteiro impar} \}$

Exercício 7. Faça um AFD para o seguinte cenário:

- -Em uma máquina de Doce pode ser inserida somente três tipos de Nota/moeda (R\$1,00, R\$ 2,00 e R\$ 5,00).
- -Há três tipos de doces na máquina (Doce A = R\$ 6,00, Doce B = R\$ 7,00 e Doce C = R\$ 8,00).
- -O Cliente deverá inserir as notas/moedas e a máquina deverá ativar as opções de doces, conforme os valores forem sendo atingidos.

-Possíveis finais: Doce A sem troco, Doce B sem troco, Doce C sem troco, Doce A com troco, Doce B com troco, Doce C com troco.