

Problema 1 Considereu el següent autòmat amb pila $M = (Q, \{a, b, c\}, \Gamma, \delta, q_0, z_0, \{3\})$, on $Q = \{0, 1, 2, 3\}$ i $\Gamma = \{z_0, z_a\}$, amb acceptació per estat final:

i) Justifiqueu si es tracta d'un autòmat amb pila determinista o indeterminista.

Es tracta de un autòmat amb pila indeterminista ja que posseeix almenys un estat $q \in Q$, tal que per a un símbol $a \in \Sigma$ de l'alfabet, existeix més d'una transició $\delta(q,a)$ possible. En aquest cas del esta 1 i del estat 2 es pot arribar al estat 3.

$m{ii}$) Digueu si les paraules a^3c^3 i a^3bc són o no acceptades per M, tot donant les seqüències de configuracions que ho justifiquin.

$$a^3c^3$$
:

$$(0, aaaccc, z_0) \vdash (0, aaccc, z_0z_a) \vdash (0, accc, z_0z_az_b) \vdash (1, ccc, z_0z_az_a) \vdash (2, cc, z_0z_a) \vdash (2, cc, z_0z_a)$$

Al trobar-se la pila buida podem afirmar que aquesta paraula no es acceptada.

a³bc:

$$(0, aaabc, z_0) \vdash (0, aabc, z_0z_a) \vdash (0, sbc, z_0z_az_a) \vdash (1, bc, z_0z_az_a) \vdash (1, c, z_0z_a) \vdash (2, \lambda, z_0) \vdash (3, \lambda, z_0)$$

Finalment aquesta paraula es acceptada.

iii) Determineu raonadament el llenguatge acceptat per M.

$$a^n * b^m * c^{(b-m)}$$

Aquest llenguatge es acceptat ja que per arribar al estat final 3 es necessari tenir buida de z_a per tant es necessari buidar la pila amb λ fins que sigui possible passar al estat final 3.

iv) Digueu raonadament si L(M) és regular.

No es un llenguatge regular.

Problema 2 Una gramàtica $G = (\Sigma_N, \Sigma_T, P, S)$ es diu que està en forma normal de Greibach (FNG) si totes les seves produccions són de la forma

$$A \longrightarrow a\alpha$$
, on $A \in \Sigma_N$, $a \in \Sigma_T$, $\alpha \in \Sigma_N^*$.

El mètode que presentem tot seguit permet construir un autòmat amb pila M que reconegui el llenguatge generat per una gramàtica en forma normal de Greibach. Així doncs, sigui $G = (\Sigma_N, \Sigma_T, P, S)$ una gramàtica en FNG. Considerem l'autòmat amb pila $M = (Q, \Sigma, \Gamma, \delta, q_0, z_0, F)$ amb acceptació per estat final, on:

$$Q = \{q_0, q_f\}, \ \Sigma = \Sigma_T, \ \Gamma = \Sigma_N, \ z_0 = S, \ F = \{q_f\},$$

i la funció de transició ve definida de la forma següent:

$$\delta(q_0, a, A) = \{(q_0, \gamma^R) \in Q \times \Sigma_N^* \mid A \longrightarrow a\gamma \in P\}, \ \forall a \in \Sigma_T, \ \forall A \in \Sigma_N; \ \delta(q_0, \lambda, \lambda) = (q_f, \lambda).$$

Considereu la gramàtica $G = (\{S, A, B\}, \{a, b, \#\}, P, S)$ que té per produccions:

$$\begin{array}{ccc} P: & S & \longrightarrow & aAB \\ & A & \longrightarrow & aAB | \# \\ & B & \longrightarrow & b \end{array}$$

 $m{i})$ Digueu raonadament si la gramàtica $m{G}$ està en FNG.

Si que es FNG.

- ii) Doneu, emprant el mètode explicat, un autòmat amb pila M que reconegui L(G).
- $m{iii}$) Determineu raonadament el llenguatge acceptat per M. $a^n * b^n$