MODEL STRUCTURES

ISAIAH DAILEY

Contents

1.	Preliminaries	1
2.	Topological Spaces	4

1. Preliminaries

Definition 1.1 (Hovey Definition 2.1.1). Suppose \mathcal{C} is a cocomplete category, and λ is an ordinal. A λ -sequence in \mathcal{C} is a colimit-preserving functor $X:\lambda\to\mathcal{C}$, commonly written as

$$X_0 \to X_1 \to \cdots \to X_\beta \to \cdots$$
.

Since X preserves colimits, for all limit ordinals $\gamma < \lambda$, the induced map

$$\operatorname{colim}_{\beta<\gamma}X_{\beta}\to X_{\gamma}$$

is an isomorphism. We refer to the map $X_0 \to \operatorname{colim}_{\beta < \lambda} X_{\beta}$ as the *composition* of the λ -sequence. Given a collection \mathcal{D} of morphisms in \mathcal{C} such that every map $X_{\beta} \to X_{\beta+1}$ for $\beta+1 < \lambda$ is in \mathcal{D} , we refer to the composition $X_0 \to \operatorname{colim}_{\beta < \lambda} X_{\beta}$ as a *transfinite composition* of maps in \mathcal{D} .¹

Definition 1.2 (Hovey Definition 2.1.2). Let γ be a cardinal. An ordinal α is γ -filtered if it is a limit ordinal and, if $A \subseteq \alpha$ and $|A| \le \gamma$, then $\sup A < \alpha$.

Given a cardinal γ , a γ -filtered category is one such that any diagram $\mathcal{D} \to \mathcal{C}$ has a cocone where \mathcal{D} has $<\gamma$ arrows. A category is just "filtered" if it is ω -filtered, i.e., if every finite diagram in \mathcal{C} admits a cocone. Note that an ordinal α is γ -filtered precisely when it is γ -filtered as a category, and in particular every ordinal is ω -filtered.

Definition 1.3 (Hovey Definition 2.1.3). Suppose \mathcal{C} is a comcomplete category, $\mathcal{D} \subseteq \mathrm{Mor}\,\mathcal{C}$ is some collection of morphisms of \mathcal{C} , A is an object of \mathcal{C} , and κ is a cardinal. We say that A is κ -small relative to \mathcal{D} if, for all κ -filtered ordinals λ and all λ -sequences

$$X_0 \to X_1 \to \cdots \to X_\beta \to \cdots$$

such that each map $X_{\beta} \to X_{\beta+1}$ is in \mathcal{D} for $\beta+1 < \lambda$, the map of sets

$$\operatorname{colim}_{\beta < \lambda} \mathcal{C}(A, X_{\beta}) \to \mathcal{C}(A, \operatorname{colim}_{\beta < \lambda} X_{\beta})$$

is an isomorphism. We say that A is *small relative to* \mathcal{D} if it is κ -small relative to \mathcal{D} for some κ . We say that A is *small* if it is small relative to \mathcal{C} itself.

Recall that given a small category \mathcal{D} and a functor $F:\mathcal{D}\to \operatorname{Set}$, we may explicitly construct the colimit of F as the set

$$\operatorname{colim} F := \left(\coprod_{d \in \mathcal{D}} F(d)\right) / \sim,$$

Date: February 10, 2023.

¹To be more precise, there may be different (isomorphic) choices of colimit $\operatorname{colim}_{\beta < \gamma} X_{\beta}$, which give rise to different choices of composition $X_0 \to \operatorname{colim}_{\beta < \gamma} X_{\beta}$. Thus, the composition of a λ -sequence is only unique up to composition by a unique isomorphism.

where the equivalence relation \sim is **generated** by

$$((x \in F(d)) \sim (x' \in F(d')))$$
 if $(\exists (f : d \to d') \text{ with } Ff(x) = x').$

In particular, if \mathcal{D} is a filtered category then the resulting relation can be described as follows:

(1)
$$((x \in F(d)) \sim (x' \in F(d')))$$
 iff $(\exists d'', (f : d \to d''), (g : d' \to d'') \text{ with } Ff(x) = Fg(x')).$

given a cone $\eta: F \Rightarrow \underline{Y}$ under F, the unique map colim $F \to Y$ maps the equivalence class of $x \in F(d)$ to the element $\eta_d(x) \in X$. We will use this characterization of the colimit in the following example.

Example 1.4 (Hovey 2.1.5). Every set is small. Indeed, if A is a set we claim that A is |A|-small. To see this, suppose λ is an |A|-filtered ordinal, and X is a λ -sequence of sets. Given $\alpha < \beta < \lambda$, let $\iota_{\alpha,\beta} : X_{\alpha} \to X_{\beta}$ denote the induced morphism. We will write $X_{\lambda} := \operatorname{colim}_{\beta < \lambda} X_{\beta}$, and let $\iota : X \Rightarrow X_{\lambda}$ be the colimit cone, so that given $\beta < \lambda$, $\iota_{\beta} : X_{\beta} \to X_{\lambda}$ is the leg of the colimit cone at X_{β} . By composing with the functor $\mathcal{C}(A, -) : \operatorname{Set} \to \operatorname{Set}$, we get another λ -sequence $\{\mathcal{C}(X_{\beta}, A)\}_{\beta < \lambda}$. The cone ι under X induces a cone ι_* under $\mathcal{C}(X_{\beta}, A)$ with nadir $\mathcal{C}(A, X_{\lambda})$. Let $\eta : \mathcal{C}(X_{\beta}, A) \Rightarrow \operatorname{colim}_{\beta < \lambda} \mathcal{C}(X_{\beta}, A)$ be the colimit cone, and let $\ell : \operatorname{colim}_{\beta < \lambda} \mathcal{C}(A, X_{\lambda}) \to \mathcal{C}(A, X_{\lambda})$ be the unique morphism of cones so that the following diagram commutes

First, we wish to show that ℓ is surjective. Indeed, let $f:A\to X_\lambda$. For each $a\in A$, there exists some $\beta_a\in\lambda$ and some $a'\in X_{\beta_a}$ such that $f(a)=\eta_{\beta_a}(a')$ (see the preceding discussion). Then let $\gamma:=\sup_{a\in A}\beta_a$. Since $|\{\beta_a\}_{a\in A}|\leq |A| \text{ and }\lambda$ is |A|-filtered, necessarily $\gamma<\lambda$. Now, define $g:A\to X_\gamma$ like so: for $a\in A$, define $g(a):=\iota_{\beta_a,\gamma}(a')$, where $a'\in X_{\beta_a}$ was chosen earlier so that $\iota_{\beta_a}(a')=f(a)$. Then we claim that $\ell(\eta_\gamma(g))=f$. Indeed, as ℓ is a morphism of cocones, $\ell\circ\eta=\iota_*$, so that we have

$$\ell(\eta_{\gamma}(g)) = (\iota_{\gamma})_{*}(g) = \iota_{\gamma} \circ g,$$

and given $a \in A$ we have

$$\iota_{\gamma}(g(a)) = \iota_{\gamma}(\iota_{\beta_a,\gamma}(a')).$$

By definition of a cone, $\iota_{\gamma} \circ \iota_{\beta_a,\gamma} = \iota_{\beta_a}$, so that

$$\ell(\eta_{\gamma}(g))(a) = \iota_{\gamma}(\iota_{\beta_{a},\gamma}(a')) = \iota_{\beta_{a}}(a') = f(a),$$

so that indeed $\ell(\eta_{\gamma}(g)) = f$.

It remains to show ℓ is injective. Suppose we are given $[f], [g] \in \operatorname{colim}_{\beta < \lambda} \mathbb{C}(A, X_{\beta})$ such that $\ell([f]) = \ell([g])$. Then by the preceding discussion, there exists $\alpha, \beta < \lambda$, $f \in \mathbb{C}(A, X_{\alpha})$, and $g \in \mathbb{C}(A, X_{\beta})$ such that $\eta_{\alpha}(f) = [f]$ and $\eta_{\beta}(g) = [g]$. Then since $\ell \circ \eta = \iota_*$, we have

$$\ell([f]) = \ell([g]) \implies \iota_{\alpha} \circ f = (\iota_{\alpha})_{*}(f) = \ell(\eta_{\alpha}(f)) = \ell(\eta_{\beta}(g)) = (\iota_{\beta})_{*}(g) = \iota_{\beta} \circ g.$$

For each $a \in A$, since $\iota_{\alpha}(f(a)) = \iota_{\beta}(g(a))$, by Equation 1 there exists γ_a with $\alpha, \beta \leq \gamma_a$ such that $\iota_{\alpha,\gamma_a}(f(a)) = \iota_{\beta,\gamma_a}(g(a))$. Then let $\gamma := \sup_{a \in A} \gamma_a$. Since $|\{\gamma_a\}_{a \in A}| \leq |A|$ and λ is |A|-filtered, necessarily $\gamma < \lambda$. Now, in order to show [f] = [g], by Equation 1 it suffices to show that $(\iota_{\alpha,\gamma})_*(f) = (\iota_{\beta,\gamma})_*(g)$. Indeed, given $a \in A$, we have

$$(\iota_{\alpha,\gamma})_*(f)(a) = \iota_{\alpha,\gamma}(f(a)) = \iota_{\gamma_a,\gamma} \circ \iota_{\alpha,\gamma_a}(f(a)) = \iota_{\gamma_a,\gamma} \circ \iota_{\beta,\gamma_a}(g(a)) = \iota_{\beta,\gamma}(g(a)) = (\iota_{\beta,\gamma})_*(g)(a),$$
 precisely the desired result..

Definition 1.5 (Hovey Definition 2.1.7). Let I be a class of maps in a category \mathcal{C} .

(1) A map is *I-injective* if it has the right lifting property w.r.t. every map in *I*. The class of *I*-injective maps is denoted *I*-inj (or I_{\perp}).

- (2) A map is *I-projective* if it has the left lifting property w.r.t. every map in *I*. The class of *I*-projective maps is denoted *I*-proj (or $_{\perp}I$).
- (3) A map is an *I-cofibration* if it has the left lifting property w.r.t. every *I*-injective map. The class of *I*-cofibrations is the class (*I*-inj)-proj and is denoted *I*-cof (or $_{\perp}(I_{\perp})$).
- (4) A map is an *I-fibration* if it has the right lifting property w.r.t. every *I*-projective map. The class of *I*-fibrations is the class (*I*-proj)-inj and is denoted *I*-fib (or $(| I)_{\perp}$).

Lemma 1.6. Given classes A and B of maps in a category $\mathfrak C$ with $A \subseteq B$, $A \subseteq {}_{\perp}(A_{\perp})$, $A \subseteq ({}_{\perp}A)_{\perp}$, $({}_{\perp}(A_{\perp}))_{\perp} = A_{\perp}$, ${}_{\perp}(({}_{\perp}A)_{\perp}) = {}_{\perp}A$, $A_{\perp} \supseteq B_{\perp}$, ${}_{\perp}A \supseteq {}_{\perp}B$, ${}_{\perp}(A_{\perp}) \subseteq {}_{\perp}(B_{\perp})$, and $({}_{\perp}A)_{\perp} \subseteq ({}_{\perp}B)_{\perp}$.

Definition 1.7 (Hovey Definition 2.1.9). Let I be a set of maps in a cocomplete category \mathbb{C} . A relative I-cell complex is a transfinite composition of pushouts of elements of I. That is, if $f: A \to B$ is a relative I-cell complex, then there is an ordinal λ and a λ -sequence $X: \lambda \to \mathbb{C}$ such that f is the composition of X and such that, for each β such that $\beta + 1 < \lambda$, there is a pushout square

$$\begin{array}{ccc}
C_{\beta} & \longrightarrow X_{\beta} \\
g_{\beta} \downarrow & & \downarrow \\
D_{\beta} & \longrightarrow X_{\beta+1}
\end{array}$$

with $g_{\beta} \in I$. We denote the collection of relative *I*-cell complexes by *I*-cell. We say that $A \in \mathcal{C}$ is an *I*-cell complex if the map $0 \to A$ is a relative *I*-cell complex.

Lemma 1.8. Let C be a category and I a class of morphisms in C. Then I-cell is closed under composition with isomorphisms.

Proof. Suppose that $f: B \to C$ is an element of *I*-cell, and $h: A \to B$ and $g: C \to D$ are isomorphisms in \mathbb{C} . We wish to show $f \circ h$ and $g \circ f$ are also elements of *I*-cell. Since $f \in I$ -cell, there exists an ordinal λ , a λ -sequence X with $X_0 = B$, and a colimit cone $\eta: X \Rightarrow \underline{C}$, such that $\eta_0 = f$.

First of all, construct a new cone $\eta': X \Rightarrow \underline{D}$ under X where $\eta'_{\beta} := g \circ \eta_{\beta}$. It is straightforward to verify that η' is a colimit cone for X since η is a colimit cone and g is an isomorphism. Thus, $g \circ f = g \circ \eta_0 = \eta'_0 \in I$ -cell, as η'_0 is the composition of a sequence of pushouts of elements of I.

On the other hand, we may construct a new λ -sequence X' by defining $X'_0 = A$, $X'_{\beta} = X_{\beta}$ for all $0 < \beta < \lambda$, the map $X'_0 \to X'_{\beta}$ for $0 < \beta < \lambda$ to be the composition

$$A \xrightarrow{h} B = X_0 \longrightarrow X_{\beta},$$

and the composition $X'_{\alpha} \to X'_{\beta}$ to simply be the same map $X_{\alpha} \to X_{\beta}$ for $0 < \alpha \le \beta < \lambda$. It is straightforward to verify that defines a λ -sequence, and that we may define a colimit cone $\eta': X' \Rightarrow \underline{C}$ by $\eta'_0 = \eta_0 \circ h = f \circ h$, and $\eta'_{\beta} = \eta_{\beta}$ for $0 < \beta < \lambda$. Furthermore, clearly for all $1 < \beta + 1 < \lambda$, we have the arrow $X'_{\beta} \to X'_{\beta+1}$ is a pushout of a map in I. Thus, in order to show $f \circ h \in I$ -cell, it remains to show that the arrow $A = X'_0 \to X'_1 = X_1$ is a pushout of a map in I. Indeed, we know since $B = X_0 \to X_1$ is a pushout of a map $k: P \to Q$ in I, and it can be easily verified the diagram on the right is a pushout diagram:

Lemma 1.9 (Hovey 2.1.10). Suppose I is a class of maps in a category \mathfrak{C} with all small colimits. Then $I\text{-cell} \subseteq {}_{\perp}(I_{\perp})$.

4 ISAIAH DAILEY

Theorem 1.10 (Small Object Argument, Hovey 2.1.14). Suppose \mathcal{C} is a cocomplete category, and I is a set of maps in \mathcal{C} . Suppose the domains of the maps of I are small relative to I-cell. Then there is a functorial factorization (γ, δ) on \mathcal{C} such that for all morphisms $f \in \mathcal{C}$, the map $\gamma(f)$ is in I-cell and the map $\delta(f)$ is in I-inj.

Proof. TODO.

Corollary 1.11 (Hovey 2.1.15). Suppose that I is a set of maps in a cocomplete category C. Suppose as well that the domains of I are small relative to I-cell. Then given $f: A \to B$ in $_{\perp}(I_{\perp})$, there is a $g: A \to C$ in I-cell such that f is a retract of g by a map which fixes A.

Proof. TODO

Definition 1.12 (Hovey Definition 2.1.17). Suppose \mathcal{C} is a model category. We say that \mathcal{C} is *cofibrantly generated* if there are sets I and J of maps such that:

- 1. The domains of the maps of I are small relative to I-cell;
- 2. The domains of the maps of J are small relative to J-cell;
- 3. The class of fibrations is J_{\perp} ; and
- 4. The class of trivial fibrations is I_{\perp} .

We refer to I as the set of generating cofibrations and to J as the set of generating trivial cofibrations. A cofibrantly generated model category is finitely generated if we can choose the sets I and J above so that the domains and codomains of I and J are finite relative to I-cell.

Proposition 1.13 (Hovey Proposition 2.1.18). Suppose \mathfrak{C} is a cofibrantly generated model category, with generating cofibrations I and generating trivial fibrations J.

- (a) The cofibrations form the class $_{\perp}(I_{\perp})$.
- (b) Every cofibration is a retract of a relative I-cell complex.
- (c) The domains of I are small relative to the cofibrations.
- (d) The trivial cofibrations form the class $_{\perp}(J_{\perp})$.
- (e) Every trivial cofibration is a retract of a relative J-cell complex.
- (f) The domains of J are small relative to the trivial cofibrations.

If C is fibrantly generated, then the domains and codomains of I and J are finite relative to the cofibrations.

Proof. TODO.

Theorem 1.14 (Hovey Theorem 2.1.19). Suppose \mathcal{C} is a complete \mathcal{E} cocomplete category. Suppose \mathcal{W} is a subcategory of \mathcal{C} , and I and J are sets of maps of \mathcal{C} . Then there is a cofibrantly generated model structure on \mathcal{C} with I as the set of generating cofibrations, J as the set of generating trivial fibrations, and \mathcal{W} as the subcategory of weak equivalences if and only if the following conditions are satisfied.

- 1. The subcategory W has the 2-of-3 property and is closed under retracts.
- 2. The domains of I are small relative to I-cell.
- 3. The domains of J are small relative to J-cell.
- 4. J-cell $\subseteq W \cap {}_{\perp}(I_{\perp})$.
- 5. $I_{\perp} \subseteq \mathcal{W} \cap J_{\perp}$.
- 6. Either $W \cap_{\perp}(I_{\perp}) \subseteq_{\perp}(J_{\perp})$ or $W \cap J_{\perp} \subseteq I_{\perp}$.

Proof. TODO.

Definition 1.15. Let \mathcal{C} be a category and I a collection of morphisms in \mathcal{C} . Then if I is closed under transfinite composition, pushouts, and retracts then we say I is saturated.

2. Topological Spaces

An injective map $f: X \to Y$ in **Top** is an *inclusion* if U is open in X if and only if there is a V open in Y such that $f^{-1}(V) = U$. If f is a closed inclusion and every point in $Y \setminus f(X)$ is closed, then we call f a closed T_1 inclusion. We will let \mathcal{T} denote the class of closed T_1 inclusions in **Top**.

The symbol D^n will denote the unit disk in \mathbb{R}^n , and the symbol S^{n-1} will denote the unit sphere in \mathbb{R}^n , so that we have the boundary inclusions $S^{n-1} \hookrightarrow D^n$. In particular, for n = 0 we let $D^0 = \{0\}$ and $S^{-1} = \emptyset$.

Recall: If $F: \mathcal{J} \to \mathbf{Top}$ is a functor, where \mathcal{J} is a small category, the limit of F is obtained by taking the limit in the category of sets, and then topologizing it with the *initial topology*, where if $\eta: \underline{\lim} F \Rightarrow F$ is the limit cone, then the open sets in $\lim F$ are precisely the sets of the form $\eta_j^{-1}(U)$ where $j \in \mathcal{J}$ and $U \subseteq F_j$ is open. Similarly, the colimit of F is obtained by taking the colimit colim F in the category of sets, and declaring a set $U \subseteq \operatorname{colim} F$ to be open if and only if $\varepsilon_j^{-1}(U)$ is open in F_j for all $j \in \mathcal{J}$, where $\varepsilon: F \Rightarrow \operatorname{colim} F$ is the colimit cone.

Given a space $X \in \mathbf{Top}$, we say that X is compactly generated or a k-space if for every subset $A \subseteq X$, A is closed in X if and only if $A \cap K$ is closed in K for all compact subspaces $K \subseteq X$.

Proposition 2.1. If X is a compactly generated Hausdorff space, then the functor $-\times X$: **Top** \to **Top** has a right adjoint (so that in particular, $-\times X$ preserves colimits).

Proof. TODO.

Definition 2.2. A map $f: X \to Y$ in **Top** is called a *weak equivalence* if

$$\pi_n(f,x):\pi_n(X,x)\to\pi_n(Y,f(x))$$

is an isomorphism for all $n \geq 0$ and for all $x \in X$. We will write \mathcal{W} to refer to the class of all weak equivalences in **Top**.

Define the set of maps I' to consist of all the boundary inclusion $S^{n-1} \hookrightarrow D^n$ for all $n \geq 0$, and define the set J to consist of all the inclusions $D^n \hookrightarrow D^n \times I$ mapping $x \mapsto (x,0)$ for $n \geq 0$. Then a map f will be called a *cofibration* if it is in I-cof $= {}_{\perp}(I'_{\perp})$, and a *fibration* if it is in J-inj $= J_{\perp}$.

A map in I'-cell is usually called a relative cell complex; a relative CW-complex is a special case of a relative cell complex, where, in particular, the cells can be attached in order of their dimension. Note that in particular maps of J are relative CW complexes, hence are relative I'-cell complexes. A fibration is often known as a Serre fibration in the literature.

Theorem 2.3 (Hovey Theorem 2.4.19). There is a finitely generated model structure on **Top** with I' as the set of generating cofibrations, J as the set of generating trivial cofibrations, and the cofibrations, fibrations, and weak equivalences as above. Every object of **Top** is fibrant, and the cofibrant objects are retracts of relative cell complexes.

Proof. We will apply Theorem 1.14 to get that there is a cofibrantly generated model structure on **Top** with I' as the set of generating cofibrations, J as the set of generating trivial fibrations, and W as the subcategory of weak equivalences. The six requirements outlined in the theorem will be verified like so:

- 1. W is a subcategory of C which has the 2-of-3 property and is closed under retracts: Lemma 2.8.
- 2. The domains of I' are small relative to I'-cell: Proposition 2.7.
- 3. The domains of J are small relative to J-cell: Proposition 2.7.
- 4. J-cell $\subseteq W \cap_{\perp}(I'_{\perp})$: In Proposition 2.9, we will show $_{\perp}(J_{\perp}) \subseteq W \cap_{\perp}(I'_{\perp})$, and by Lemma 1.9 J-cell $\subseteq_{\perp}(J_{\perp})$.
- 5. $I'_{\perp} \subseteq \mathcal{W} \cap J_{\perp}$: Proposition 2.10
- 6. $W \cap J_{\perp} \subseteq I'_{\perp}$: Proposition 2.11

It will follow by the definition of a cofibrantly generated model structure (Definition 1.12) that the fibrations in this model structure are given by J_{\perp} , which is precisely how we defined it. By Proposition 1.13, the class of cofibrations will be given by $_{\perp}(I'_{\perp})$, which is likewise exactly how we defined them.

In Proposition 2.5, we will show that compact spaces are finite relative to the class \mathcal{T} of closed T_1 inclusions. Hence, this model structure will be finitely generated, as the domains and codomains of I' and J are all compact, and by the reasoning given above we will have shown I'-cell $\subseteq \mathcal{T}$.

We will show that every object of \mathbf{Top} is fibrant in Corollary 2.12. Finally, to see that cofibrant objects are retracts of relative cell complexes, FINISH

Lemma 2.4 (Hovey 2.4.1). Every topological space is small relative to the inclusions.

Proof. As with the case of sets, we claim that every topological space X is |X|-small relative to the inclusions. Indeed, suppose X is a λ -sequence of inclusions in **Top**. First, we claim that each map $\iota_{\alpha,\beta}: X_{\alpha} \to X_{\beta}$ is an inclusion for $\alpha \leq \beta < \lambda$. We do so by presuming $\alpha < \lambda$ fixed and performing transfinite induction on β . First of all, in the case $\beta = \alpha$, $\iota_{\alpha,\alpha}$ is the identity and therefore clearly an inclusion. Now, suppose that $\iota_{\alpha,\beta}$

6 ISAIAH DAILEY

is an inclusion, then we wish to show that $\iota_{\alpha,\beta+1}$ is an inclusion. Since $\iota_{\alpha,\beta+1} = \iota_{\beta,\beta+1} \circ \iota_{\alpha,\beta}$ the composition of inclusions, it too is clearly an inclusion. Finally, suppose that γ is a limit ordinal, and that the map $\iota_{\alpha,\beta}$ is an inclusion for all $\alpha \leq \beta < \gamma$. We wish to show that the map $\iota_{\alpha,\gamma}$ is an inclusion. First, we claim this map is an injection. Since γ is a limit ordinal and X is colimit-preserving, X_{γ} is the colimit of the diagram X restricted to those X_{β} such that $\beta < \gamma$, so that in particular by Equation 1 and the discussion at the beginning of this section, given $a, b \in X_{\alpha}$, $\iota_{\alpha,\gamma}(a) = \iota_{\alpha,\gamma}(b)$ iff $\iota_{\alpha,\beta}(a) = \iota_{\alpha,\beta}(b)$ for some $\alpha \leq \beta < \gamma$. But we know the map $\iota_{\alpha,\beta}$ is an inclusion, so that if $\iota_{\alpha,\beta}(a) = \iota_{\alpha,\beta}(b)$, then it must have been true a = b in X_{α} . Hence, $\iota_{\alpha,\gamma}$ is injective. Finally, we wish to show that $U \subseteq X_{\alpha}$ is open if and only if there is some $V \subseteq X_{\gamma}$ open such that $\iota_{\alpha,\gamma}^{-1}(V) = U$. The backwards direction is clear as $\iota_{\alpha,\gamma}$ is continuous. Now suppose, $U \subseteq X_{\alpha}$ is open. Then since $\iota_{\alpha,\beta}$ is an inclusion for all $\alpha \leq \beta < \gamma$, for $\alpha \leq \beta$ there exists $V_{\beta} \subseteq X_{\beta}$ open such that $\iota_{\alpha,\beta}^{-1}(V_{\beta}) = U$. Now, define

$$V := \bigcup_{\alpha \le \beta < \gamma} \iota_{\beta,\gamma}(V_{\beta}).$$

First of all, we claim that $\iota_{\beta,\gamma}^{-1}(V) = V_{\beta}$ for all $\beta < \gamma$. TODO: FINISH.

Proposition 2.5 (Hovey 2.4.2). Compact topological spaces are finite relative to the class \mathfrak{T} of closed T_1 inclusions.

Proof.

Proposition 2.6 (Hovey 2.4.5 & 2.4.6). The class \mathfrak{T} of closed T_1 inclusions is saturated.

Proof. TODO.

Proposition 2.7. The domains of I' (resp. J) are small relative to I'-cell.

Proof. By Lemma 2.4, every space is small relative to the inclusions, and in particular every space is small relative to the class \mathcal{T} of closed T_1 inclusions. Hence, it suffices to show that J-cell, I'-cell $\subseteq \mathcal{T}$. We showed above in Proposition 2.6 that \mathcal{T} is saturated, and clearly every map in I' and J is a closed T_1 inclusion, so the desired result follows.

Lemma 2.8 (Hovey Lemma 2.4.4). The weak equivalences in **Top** are closed under retracts and satisfy 2-of-3 axiom (so that in particular the weak equivalences form a subcategory, as clearly identities are weak equivalences).

Proof. First we show that weak equivalences satisfy 2-of-3. Let $f: X \to Y$ and $g: Y \to Z$ be continuous functions of topological spaces.

First of all, suppose f and g are both weak equivalences. Then by functoriality of π_n , since $\pi_n(f,x)$ and $\pi_n(g,f(x))$ are isomorphisms for all $x \in X$, $\pi_n(g \circ f,x) = \pi_n(g,f(x)) \circ \pi_n(f,x)$ is likewise an isomorphism for all $x \in X$, so that $g \circ f$ is a weak equivalence.

Now, suppose that $g \circ f$ and g are weak equivalences. Pick a point $x \in X$. We wish to show that $\pi_n(f,x): \pi_n(X,x) \to \pi_n(Y,f(x))$ is an isomorphism for all $n \geq 0$. We know that $\pi_n(g \circ f,x)$ is an isomorphism, and $\pi_n(g,f(x))$ is an isomorphism, say with inverse, φ , so that

$$\varphi \circ \pi_n(g \circ f, x) = \varphi \circ \pi_n(g, f(x)) \circ \pi_n(f, x) = \pi_n(f, x)$$

is an isomorphism, as it is a composition of isomorphisms.

Now, suppose that $g \circ f$ and f are weak equivalences. Pick a point $y \in Y$. Since $\pi_0(f)$ is an isomorphism, there exists a point $x \in X$ such that f(x) belongs to the path component containing y, so that there exists some $\alpha: I \to Y$ with $\alpha(0) = f(x)$ and $\alpha(1) = f(y)$. Then consider the following diagram

$$\pi_n(Y,y) \xrightarrow{\pi_n(g,y)} \pi_n(Z,g(y))$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi_n(Y,f(x)) \xrightarrow{\pi_n(g,f(x))} \pi_n(Z,g(f(x)))$$

where the left arrow is the isomorphism given by conjugation by the path α , and the right arrow is the isomorphism given by conjugation by the path $g \circ \alpha$. It is tedious yet straightforward to verify that the

diagram commutes. Furthermore, we know that $\pi_n(f,x)$ and $\pi_n(g \circ f,x) = \pi_n(g,f(x)) \circ \pi_n(f,x)$ are isomorphisms for all n, so that if we denote the inverse of $\pi_n(f,x)$ by φ , then

$$\pi_n(g \circ f, x) \circ \varphi = \pi_n(g, f(x)) \circ \pi_n(f, x) \circ \varphi = \pi_n(g, f(x))$$

is an isomorphism, as it is given as a composition of isomorphisms. Hence, the top arrow must likewise be an isomorphism, precisely the desired result.

The fact that weak equivalences in **Top** are closed under retracts is entirely straightforward and follows from the fact that the functors π_n preserve retract diagrams and that the class of isomorphisms in any category is closed under retracts.

Proposition 2.9 (Hovey 2.4.9). $_{\perp}(J_{\perp}) \subseteq \mathcal{W} \cap _{\perp}(I'_{\perp})$.

Proof. First, in order to show $_{\perp}(J_{\perp}) \subseteq _{\perp}(I'_{\perp})$, It suffices to show that $J \subseteq I'$ -cell, as by Lemma 1.9 we would have $J \subseteq _{\perp}(I'_{\perp})$, and

$$J \subseteq {}_{\perp}(I'_{\perp}) \implies {}_{\perp}(J_{\perp}) \subseteq {}_{\perp}(({}_{\perp}(I'_{\perp}))_{\perp}) = {}_{\perp}(I'_{\perp}),$$

where the implication and equality both follow from Lemma 1.6 which asserts that

$$A \subseteq B \implies {}_{\perp}(A_{\perp}) \subseteq {}_{\perp}(B_{\perp}) \quad \text{ and } \quad ({}_{\perp}(A_{\perp}))_{\perp} = A_{\perp}.$$

Now, to show $J \subseteq I'$ -cell, first consider the composition $j_n : D^n \hookrightarrow S^n \hookrightarrow D^{n+1}$, where the first map is the pushout

$$S^{n-1} \longleftrightarrow D^n$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \longleftrightarrow S^n$$

obtained by gluing two copies of D^n along their boundary, and the second map map is simply the inclusion $S^n \hookrightarrow D^{n+1}$, which can be written as the pushout

$$S^{n} = S^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^{n+1} = D^{n+1}$$

It can be seen that j_n includes D^n as a hemisphere of $S^n = \partial D^{n+1} \subseteq D^{n+1}$. Note that $D^n \times I$ is homeomorphic to D^{n+1} ("smooth out" the sharp edges of the cylinder) via some homeomorphism $h_n: D^{n+1} \to D^n \times I$, and in particular, we may define h_n so that $h_n(j_n(D^n)) = D^n \times \{0\} \subseteq D^n \times I$ by squashing the hemisphere $j_n(D^n)$ to be one of the faces of the cylinder $D^n \times I$, in which case $h_n \circ j_n: D^n \to D^n \times I$ is precisely the inclusion $D^n \to D^n \times I$ sending $x \mapsto (x,0)$, and since $j_n \in I'$ -cell, $h_n \circ j_n \in I'$ -cell by Lemma 1.8.

Now, we claim that $_{\perp}(J_{\perp}) \subseteq \mathcal{W}$. First note that by Proposition 2.7 and Corollary 1.11, every map in $_{\perp}(J_{\perp})$ is a retract of an element of J-cell. Thus, it suffices to find a saturated class S of maps in **Top** with $J \subseteq S \subseteq \mathcal{W}$. Indeed, let S be the class of *inclusions of a deformation retract*, i.e., those **injective** maps $i: A \to B$ such that there exists a homotopy $H: B \times I \to B$ with H(i(a), t) = i(a) for all $a \in A$, H(b, 0) = b for all $b \in B$, and H(b, 1) = i(r(b)) for some map $r: B \to A^2$. We must complete three steps:

(1) $S \subseteq W$.

It suffices to show that if $i:A\to B$ belongs to S, then i is a homotopy equivalence. Indeed, given $i:A\to B$, let $H:B\times I\to B$ and $r:B\to A$ be a homotopy and retract satisfying the conditions above. Then in particular, H is a homotopy between id_B (at time t=0) and $i\circ r$ (at time t=1). It remains to show that $r\circ i=\mathrm{id}_A$. First of all, note that since H(b,1)=i(r(b)) for all $b\in B$, we have H(i(a),1)=i(r(i(a))). Yet, we also know that H(i(a),t)=i(a) for all $t\in I$, so i(r(i(a)))=i(a), and i is injective so r(i(a))=a.

²Hovey has a typo here, namely, he does not specify that i must be injective. Without this specification, his assertion fails. For example, tkae $A = \mathbb{R}^2$, $B = \mathbb{R}$, i(x,y) = x, H(b,t) = b, and r(b) = (b,0). Then i is an inclusion of a deformation retract according to Hovey's "definition," but i is not injective and r is not a retract.

- Q
- (2) $J \subseteq S$.

For $n \geq 0$, let $j_n: D^n \hookrightarrow D^n \times I$ denote the inclusion of D^n as the subset $D^n \times \{0\}$. Define a deformation retract $H: D^n \times I \times I \to D^n \times I$ by $(x,s,t) \mapsto (x,s(1-t))$. Then indeed we have $H(j_n(x),t) = H(x,0,t) = (x,0) = j_n(x)$ for all $x \in D^n$, H(x,t,0) = (x,t(1-0)) = (x,t) for all $(x,t) \in D^n \times I$, and $H(x,t,1) = (x,t(1-1)) = (x,0) = j_n(r(x))$ for all $(x,t) \in D^n \times I$, where $r: D^n \times I \to D^n$ is the projection onto time zero sending $(x,t) \mapsto (x,0)$. Finally, j_n is clearly injective. Thus, indeed $J \subseteq \mathcal{S}$.

(3) W is saturated.

First, suppose we are given a pushout diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & C \\
\downarrow i & & \downarrow j \\
B & \xrightarrow{g} & D
\end{array}$$

where $i \in \mathcal{S}$. Then we wish to show j in \mathcal{S} . First, injectivity. Suppose for the sake of a contradiction there existed nonequal $c,c' \in C$ such that j(c) = j(c'). Define $X := \{1,2,3\}$ (with the indiscrete topology, if you like), $h: C \to X$ by $c \mapsto 1$, $c' \mapsto 2$, and $C \setminus \{c,c'\} \mapsto 3$, and $k: B \to X$ by $i(f^{-1}(c)) \mapsto 1$, $i(f^{-1}(c')) \mapsto 2$, and $i(f^{-1}(C \setminus \{c,c'\})) \mapsto 3$. Then it is straightforward to see that $h \circ f = k \circ i$. Thus, there must exist a (unique) function $\ell: D \to X$ such that $\ell \circ j = h$ and $\ell \circ g = k$. But then we would have $h(c) = \ell(j(c)) = \ell(j(c')) = h(c')$ since j(c) = j(c'), a contradiction of the fact that $h(c) \neq h(c')$. Hence, j must be injective. Now, we look to construct H and r. Let $K: B \times I \to B$ and $r: B \to A$ be maps satisfying the conditions for i to be an inclusion of a deformation retract. We wish to define a homotopy $H: D \times I \to D$. Then I is a compactly generated Hausdorff space (in particular, it is compact and Hausdorff), so that the functor $- \times I: \mathbf{Top} \to \mathbf{Top}$ preserves colimits (Proposition 2.1), meaning the following is a pushout diagram:

$$\begin{array}{c} A \times I \xrightarrow{f \times \mathrm{id}_I} C \times I \\ i \times \mathrm{id}_I \Big\downarrow & & \downarrow j \times \mathrm{id}_I \\ B \times I \xrightarrow{g \times \mathrm{id}_I} D \times I \end{array}$$

Then by the universal property of the pushout, there is a map $H: D \times I \to D$ (the dashed line) such that the following diagram commutes

Now, note given $c \in C$ and $t \in I$, $H(j(c),t) = H(j \times \operatorname{id}_I(c,t)) = j(\pi_1(c,t)) = j(c)$. Given $d \in D$, we want to show H(d,0) = d. If d = j(c) for some c, we are done by what we have just shown. Thus, we may assume d = g(b) for some $b \in B$, in which case $H(d,0) = H(g \times \operatorname{id}_I(b,0)) = g(K(b,0)) = g(b) = d$.

TODO: Finish.

Proposition 2.10 (Hovey 2.4.10). $I'_{\perp} \subseteq \mathcal{W} \cap J_{\perp}$

Proposition 2.11 (Hovey 2.4.12). $W \cap J_{\perp} \subseteq I'_{\perp}$

Corollary 2.12 (Hovey 2.4.14). Every topological space is fibrant, i.e., given a space X, the unique map $X \to *$ is an element of J_{\perp} .

Proof. TODO.

Questions:

- (1) Lemma 2.3 help pls (limit ordinal case in transfinite induction).
- (2) Am I correct that Hovey's definition of "inclusion of a deformation retract" is wrong?
- (3) Why does it follow that we can take the product of a pushout diagram with I to get a new pushout diagram? I conjecture the following:

Let \mathcal{C} be a monoidal category. Suppose $c \in \mathcal{C}$ is **exponentiable**, i.e., that the functor $-\otimes c : \mathcal{C} \to \mathcal{C}$ has a right adjoint. Then given a small diagram $F: \mathcal{I} \to \mathcal{C}$ and a colimit cone $\eta: F \Rightarrow \underline{x}$, the cone $\eta \otimes \mathrm{id}_c$ defined by $(\eta \otimes \mathrm{id}_c)_i := \eta_i \otimes \mathrm{id}_c$ is a colimit cone with nadir $x \otimes c$ for the diagram $F \otimes c := (-\otimes c) \circ F : \mathcal{I} \to \mathcal{C}$. Is this true?

I also would like to go over the proof that compactly generated Hausdorff spaces are exponentiable.

(4)