Explicit Runge Kutta Methods

HONG N. Q. B., TUNG D. T. N., THINH N. A.

December 16, 2016

Outline

- Obstables
 - How to Solve ODEs, PDEs Practically/Generally
 - Accuracy and Efficiency in Numerical Schemes
- 2 Explicit Runge Kutta Methods
 - General Form of Explicit Runge Kutta Method
 - Practical Problems (Stiffness)
- 3 Adaptive Time Steps Algorithm (explicit RK)
- 4 Applications

Table of Contents

- Obstables
 - How to Solve ODEs, PDEs Practically/Generally
 - Accuracy and Efficiency in Numerical Schemes
- 2 Explicit Runge Kutta Methods
 - General Form of Explicit Runge Kutta Method
 - Practical Problems (Stiffness)
- 3 Adaptive Time Steps Algorithm (explicit RK)
- 4 Applications

Solve ODEs and PDEs analytically vs. numerically.

- "There is no general theory known concerning the solvability of all partial differential equations. Such a theory is extremely unlikely to exist, given the rich variety of physical, geometric, and probabilistic phenomena which can be modeled by PDE." L. C. Evans.
- Numerical solutions are usually assigned to physical situations and as a result require a lot of background information on the type of DEs in order to solve.

Accuracy and Efficiency.

Although we can solve ODEs and PDEs numerically, many practical problems rise then.

Accuracy and Efficiency Problems

Accuracy and efficiency in a particular numerical scheme.

- Partial differentials and systems can be solved with FDM, FVM and FEM.
- Most equations can be solved some level of accuracy, but are **computationally** expensive lots of processing time (Efficiency Problems).

and especially Stiffness Problems.

Stiffness Problems.

Figure 1: Stiffness Problems.

Table of Contents

- Obstables
 - How to Solve ODEs, PDEs Practically/Generally
 - Accuracy and Efficiency in Numerical Schemes
- 2 Explicit Runge Kutta Methods
 - General Form of Explicit Runge Kutta Method
 - Practical Problems (Stiffness)
- 3 Adaptive Time Steps Algorithm (explicit RK)
- 4 Applications

Introduction to Runge Kutta Methods.

- Classic, popular, well-known methods.
- Are a family of **explicit and implicit iterative methods** for the approximate solutions of ODEs.
- Extremely powerful tools for the solution of ODEs.
- One can solve a **majority of ODEs** using a Runge-Kutta scheme.

General Form of Explicit Runge Kutta Method

Definition of explicit Runge Kutta methods.

The family of explicit Runge Kutta methods is given by

$$y^{(n+1)} = y^{(n)} + h \sum_{i=1}^{s} b_i k_i$$
 (2.1)

where $k_i = f(\tau_i, \eta_i), i = 1, 2, \dots, s$ with

$$\tau_i = t_n + c_i h \tag{2.2}$$

$$\eta_i = y_n + \sum_{j=1}^{i-1} a_{ij} k_j \tag{2.3}$$

Notations. s (the number of stages), a_{ij} , $1 \le j < i \le s$, b_i , i = 1, 2, ..., s and c_i , i = 2, 3, ..., s (the coefficients), $A = [a_{ij}]$ (the Runge Kutta matrix) and b_i (weights), c_i (nodes).

Butcher Tableau.

Consistent Runge Kutta method

The Runge Kutta method is **consistent** if

$$\sum_{j=1}^{i-1} a_{ij} = c_i, i = 2, \dots, s$$
(2.4)

Butcher tableau.

These data are usually arranged in a Butcher tableau.

0							
c_2	a_{21}						
c_3	a_{31}	a_{32}					
:	:	•	٠				
c_s	a_{s1}	a_{s2}	• • •	$a_{s,s-1}$			
	b_1	b_2		b_{s-1}	b_s		

(2.5)

van der Pol Stiffness Problem.

Table of Contents

- Obstables
 - How to Solve ODEs, PDEs Practically/Generally
 - Accuracy and Efficiency in Numerical Schemes
- 2 Explicit Runge Kutta Methods
 - General Form of Explicit Runge Kutta Method
 - Practical Problems (Stiffness)
- 3 Adaptive Time Steps Algorithm (explicit RK)
- 4 Applications

An Adaptive Time Step Algorithm.

- Adaptive Time Steps Scheme is **not well-known**.
- There are lots of Adaptive Time Step Schemes.
- An adaptive time steps algorithm for explicit Runge Kutta method can be found in the following article.

Article.

Tan Trung Nguyen, Frédérique Laurent, Rodney Fox, Marc Massot. Solution of population balance equations in applications with fine particles: mathematical modeling and numerical schemes. 2016. https://doi.org/10.1012/10.247390v2>

Table of Contents

- Obstables
 - How to Solve ODEs, PDEs Practically/Generally
 - Accuracy and Efficiency in Numerical Schemes
- 2 Explicit Runge Kutta Methods
 - General Form of Explicit Runge Kutta Method
 - Practical Problems (Stiffness)
- 3 Adaptive Time Steps Algorithm (explicit RK)
- 4 Applications

Curtiss-Hirchfelder Equation.

Applications. Used to test numerical methods for the solution of ODEs.

Curtiss-Hirchfelder equation.

$$\frac{dy}{dt} = -50\left(y - \cos\left(t\right)\right) \tag{4.1}$$

$$y\left(0\right) = 1\tag{4.2}$$

Figure 2: Using Adaptive Time Steps for Curtiss-Hirschfelder equation.

Brusselator.

Applications.

• A theoretical model for a type of autocatalytic reaction.

Brusselator.

$$\frac{dy_1}{dt} = 1 - 4y_1 + y_1^2 y_2 \tag{4.3a}$$

$$\frac{dy_1}{dt} = 1 - 4y_1 + y_1^2 y_2$$

$$\frac{dy_2}{dt} = 3y_1 - y_1^2 y_2$$
(4.3a)

where $y_1(0) = 1$ and $y_2(0) = 1$.

Figure 3: Using Adaptive Time Steps for Curtiss-Hirschfelder equation.

Figure 4: Using Adaptive Time Steps for Curtiss-Hirschfelder equation.

Belousov-Zhabotinsky Reaction (BZ) 2 ODEs

Applications.

- A classical example of **non-equilibrium thermodynamics**, resulting in the establishment of a **nonlinear chemical oscillator**.
- An interesting chemical model of **nonequilibrium biological phenomena**.
- Mathematical models of the BZ reactions are of theoretical interest and simulations.

Belousov-Zhabotinsky reaction (BZ) 2 ODEs

$$\frac{dy_1}{dt} = \frac{1}{\epsilon} \left(y_1 (1 - y_1) + f y_2 \frac{q - y_1}{q + y_1} \right)$$
 (4.4a)

$$\frac{dy_2}{dt} = y_1 - y_2 \tag{4.4b}$$

where the coefficients are given by f = 2/3, $q = 8 * 10^{-4}$ and $\epsilon = 4 * 10^{-2}$.

Figure 5: Using Adaptive Time Steps for Curtiss-Hirschfelder equation.

Figure 6: Using Adaptive Time Steps for Curtiss-Hirschfelder equation.

Oregonator.

Applications.

- A theoretical model for a type of autocatalytic reaction.
- The simplest realistic model of the **chemical dynamics** of the **oscillatory** Belousov-Zhabotinsky reaction.
- A reduced model of the FKN mechanism (developed by Richard Field, Endre Körös, and Richard M. Noyes).

Oregonator.

$$\frac{dy_1}{dt} = 77.27 \left[y_2 + y_1 (1 - 8.375 * 10^{-6} y_1 - y_2) \right]$$
 (4.5a)

$$\frac{dy_1}{dt} = 77.27 \left[y_2 + y_1 (1 - 8.375 * 10^{-6} y_1 - y_2) \right]$$

$$\frac{dy_2}{dt} = \frac{y_3 - (1 + y_1)y_2}{77.27}, \quad \frac{dy_3}{dt} = 0.161(y_1 - y_3)$$
(4.5b)

where $y_1(0) = 1$, $y_2(0) = 2$ and $y_3(0) = 3$.

Belousov-Zhabotinsky reaction (BZ) 3 ODEs

Belousov-Zhabotinsky reaction (BZ) 3 ODEs

$$\frac{dy_1}{dt} = \frac{1}{u}(-qy_1 - y_1y_2 + fy_3) \tag{4.6a}$$

$$\frac{dy_2}{dt} = \frac{1}{\epsilon} (qy_1 - y_1y_2 + y_2 - y_2^2) \tag{4.6b}$$

$$\frac{dy_3}{dt} = y_2 - y_3 \tag{4.6c}$$

where $y_1(0) = 10$, $y_2(0) = 0.04$, $y_3(0) = 0.1$, where the coefficients are given by f = 2/3, $q = 8 * 10^{-4}$, $\mu = 10^{-6}$ and $\epsilon = 4 * 10^{-2}$.

Figure 7: Using Adaptive Time Steps for Curtiss-Hirschfelder equation.

Figure 8: Using Adaptive Time Steps for Curtiss-Hirschfelder equation.

van der Pol Equations.

Applications. A basic model for **oscillatory processes** in physics, electronics, biology, neurology, sociology and economics

- Physics. Models electrical circuits connected with triod oscillators. A prototype for systems with self-excited limit cycle oscillations.
- Medicine. Study the range of stability of heart dynamics. Situation in which a real heart is driven by a pacemaker. Stabilize a heart's irregular beating.
- Biology. The basis of a model of coupled neurons in the gastric mill circuit of the stomatogastric ganglion
- Seismology. Used in the development a model of the interaction of two plates in a geological fault.

van der Pol equations

$$\frac{dy_1}{dt} = y_2 \tag{4.7a}$$

$$\frac{dy_2}{dt} = [(1 - y_1^2)y_2 - y_1]/\epsilon \tag{4.7b}$$

where $\epsilon = 10^{-6}$.

Figure 9: Using Adaptive Time Steps for Curtiss-Hirschfelder equation.

Figure 10: Using Adaptive Time Steps for Curtiss-Hirschfelder equation.

References

References

Tan Trung Nguyen, Frédérique Laurent, Rodney Fox, Marc Massot. Solution of population balance equations in applications with fine particles: mathematical modeling and numerical schemes. 2016. https://doi.org/10.1016/j.com/nat/247390v2