Computer Vision Overview & Pipeline Introduction

What is Computer Vision?

 Computer vision refers to algorithms that enable computers to derive meaningful information from images, videos and other visual inputs

Computer Vision and Al

Not all CV methods use machine learning

Popular Applications of Computer Vision

- Autonomous Vehicles
- Drones
- Crop Monitoring
- Photo Filters
- Animated Avatars

Common Benchmark Tasks in Computer Vision

- Image Classification
- Object Detection
- Object Segmentation

How does Computer Vision work?

- Powered by Math:
 - Linear Algebra, Matrix Theory, Probability/Statistics, Calculus, Set Theory, etc.

Introductory Materials to CV

- Textbooks
 - Multiple View Geometry in Computer Vision | Richard Hartley and Andrew Zisserman
 - Neural Networks and Learning Machines | Simon Haykin
- 3Blue1Brown Youtube Videos
 - Linear Algebra
 - https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
 - Neural Networks
 - https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
- Andrew Ng's Coursera on Machine Learning
 - O https://www.coursera.org/learn/machine-learning
- PyTorch
 - O https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.htm

How does our project use computer vision?

- Object detection/localization
- Entity Pairing
- Generating Synthetic Data

1. Two models

- a. Find Text and Indicator Heads
- b. Find relationship body

- 1. Two models
 - a. Find Text and Indicator Heads
 - b. Find relationship body
- 2. OCR
 - a. Use Google OCR to get text

- 1. Two models
 - a. Find Text and Indicator Heads
 - b. Find relationship body
- 2. OCR
 - a. Use Google OCR to get text
- 3. Filter Text Results
 - a. Filter with pubtator gene names
 - b. Filter with gene name list

- 1. Two models
 - a. Find Text and Indicator Heads
 - b. Find relationship body
- 2. OCR
 - a. Use Google OCR to get text
- 3. Filter Text Results
 - a. Filter with pubtator gene names
 - b. Filter with gene name list
- 4. Gene Pairing

Homework Task

- Evaluating Model Output
 - Problem: Matching Similar Strings Gene Names
 - want to consider root of elements
 - ignore suffix
 - could treat alpha as a beta as b etc.
 - ignore after dash and backslash
 - can't ignore all text after dashes ex.) N-Wasp