KNN

May 14, 2024

0.1 MBKMUN001- ML KNN Image Classification

0.1.1 Preprocessing

```
[48]: # Function to extract features from an image
      def load_images_from_folder(folder):
          images = []
          for filename in os.listdir(folder):
              img = Image.open(os.path.join(folder, filename))
              if img is not None:
                  images.append(np.array(img))
          return images
      X = []
      y = []
      # Dataset local path
      Dataset = '/home/nathan/Documents/EEE4114F/MBKMUN001 ML Project/Dataset'
      for i, folder_name in enumerate(os.listdir(Dataset)):
          folder_path = os.path.join(Dataset, folder_name)
          images = load_images_from_folder(folder_path)
          X.extend(images)
          y.extend([i] * len(images))
      X = np.array(X)
      y = np.array(y)
```

0.1.2 Model Training and evaluation

0.1.3 Accuracy

```
[50]: accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")
```

Accuracy: 0.8133333333333334

0.1.4 Classification Report

```
[51]: report = classification_report(y_test, y_pred)
print(report)
```

	precision	recall	f1-score	support
0	0.67	0.95	0.78	19
1	1.00	0.24	0.38	17
2	0.93	1.00	0.97	14
3	0.79	1.00	0.88	15
4	1.00	1.00	1.00	10
accuracy			0.81	75
macro avg	0.88	0.84	0.80	75
weighted avg	0.86	0.81	0.77	75

```
[52]: metrics = ['Accuracy', 'Precision', 'Recall', 'F1-Score'] values = [accuracy, 0.86, 0.81, 0.77]
```

```
plt.figure(figsize=(10, 5))

# Plotting the metrics
plt.bar(metrics, values, color='skyblue')

# Adding labels and title
plt.xlabel('Metrics')
plt.ylabel('Score')
plt.title('Performance Metrics of KNN Classifier')

# Display the plot
plt.show()
```


0.1.5 Confusion Matrix

