# Část I

# Struktura pevných látek

# 1 Krystalografické soustavy

AAAAAAA

# 2 Deformace

- typy:
  - tahem/tlakem
  - kroucením
  - ohybem
  - smykem



# 3 Deformace tahem/tlakem

• Normálové nápětí:

$$\sigma = F/S; [N/m^2] = [Pa]$$



• Změna délky:

$$\Delta l = l - l_0; \ [m]$$

užitečnější většinou relativní prodloužení:

$$\varepsilon = \Delta l/l_0$$
; [bezrozm.]

### 3.1 Deformační křivka



• lineární úsek (0 - A)

- pružná deformace
- vratná
- platí Hookův zákon:

$$\varepsilon \propto \sigma$$

tedy slovy: relativní prodloužení je přímo úměrné napětí (ano, to je symbol pro přímou úměrnost, zapamatujte si ho)

$$\sigma = E \cdot \varepsilon$$

- E Youngův modul pružnosti (např. ocel = 220 GPa, cín = 55 GPa, tj. tlak potřebný, abychom objekt roztáhli na dvojnásobnou délku)
- nelineární deformace (A B)
  - plastická deformace
  - protažení bylo dost velké, aby přesunulo atomy v krystalické mřížce na jiné místo
  - materiál tedy ztráci schopnost se po deformaci vrátit do původního tvaru
  - při překročení meze pevnosti se materiál prostě trhá na dva kusy

#### 3.1.1 Příklady

1. O kolik se protáhne ocelový drát když na něj zavěsíme závaží:

$$d = 1mm; l = 5m; m = 30kg; E = 220GPa$$

$$\sigma = \frac{F}{S} = \frac{300}{\pi \cdot 0,0005^2}$$
 
$$\varepsilon = \frac{\sigma}{E}$$
 
$$\varepsilon = \frac{F}{S \cdot E} = \frac{\Delta l}{l_0}$$
 
$$\Delta l = \frac{F \cdot l \cdot 0}{S \cdot E} = 8,7 \cdot 10^{-3} m = 8,7 mm$$

2. Na ocelové lanko zavěsíme závaží. Jak těžké může být, aby se lanko nepřetrhlo:

$$d = 1mm; \sigma_p = 1, 3GPa; K = 5$$

- (a) závaží je v klidu
- (b) závaží se hýbe nahoru

$$a = 1m/s^2$$

(c) jako kyvadlo OBRAZEKOBRAZEK

### Část II

# Změny skupenství

Př.: OBRAZEKOBRAZEK m=0,2kg a) teplota varu: 50 stupnu b) c(kap.)  $c=Q(m\cdot\Delta t)=200/(0,2\cdot40)=25\ Jkg^{-1}K^{-1}$  c) c(plyn)  $c=Q(m\cdot\Delta t)=200/(0,2\cdot20)=50\ Jkg^{-1}K^{-1}$  d) $L_v$  – skupenské teplo varu [J]  $L_v=300J\ l_v=$  měrné skupenské teplo varu  $l_v=L_v/m\ [Jkg^{-1}]\ l_v=300/0,2=1500Jkg^{-1}$ 

Pozn.: pro vodu:  $l_t$  (tání) =  $332Jkg^{-1} l_v = 2257Jkg^{-1}$ 

Př.: 1 kg vody z teploty -20 stupnu - $\dot{z}$  pára 100 stupnu, P=1kW led -20 stupnu - $\dot{z}$  led 0 stupnu:  $(c_{ledu}=2100Jkg^{-1})~Q=m\cdot c\cdot \Delta t=42kJ$ -; 42 s led 0 stupnu -; voda 0 stupnu:  $L_t=m\cdot l_t=332kJ$ -; 5 min 32 s voda 0 stupnu -<br/>į voda 100 stupnu ( $c_{vody}=4180Jkg^{-1}$ )  $Q=m\cdot c\cdot \Delta t=418kJ$ -<br/>į 6 min 58 s voda 100 stupnu -<br/>į pára 100 stupnu:  $L_v = m \cdot l_v = 2257kJ$  -<br/>į 37 min 37 s (to je šílený)

Pozn.: Hranaty graf plati u krystalickych latek, u amorfnich latek (kvuli nedokonalostem v uskupeni) je graf obly OBRAZEKOBRAZEK AAAAAAAA REALNE TOHLE NEMAM SANCI DODELAT

# Část III

# Kmitání

Oscilátor: cokoliv co kmitá, např. kyvadlo, pravítko (lol)

#### Kinematika oscilátoru 4

Zjednodušení: uvažujeme tzv. harmonický oscilátor – nemá ztráty, kmitá stále stejně (grafem je sinusoida) Značení: y – okamžitá výchylka  $y_m$  – maximální výchylka (max. amplituda), y je z  $[-y_m;y_m]$  AAAAAA T – perioda [s] f – frekvence [ $s^{-1}$ =Hz],  $f \cdot T = 1$   $\omega$  – úhlová frekvence (ekviv. úhlová rychlost),  $\omega = \frac{\alpha}{t} = \frac{2\pi}{T}$  $2\pi f[s^{-1}]$  v – obvodová rychlost,  $v=\frac{s}{t}=\frac{2\pi r}{T}=2\pi r f[ms^{-1}]$  Pozn.: Průmět přímoč. pohybu po kružnici na jedné ose je sinusoida – kmitání je točení v jedné ose Poloha: OBRAZEKOBRAZEK  $y=y_m\cdot\sin(\alpha)$ , přejmenujeme  $\to y_m, \ \alpha = \omega t \Rightarrow y = y_m \cdot \sin(\omega t), \ \text{popř.} \ y = y_m \cdot \sin(\omega t + \phi_0), \ \phi_0$  – počáteční fáze (případný offset na začátku od nul. úhlu) Př.: pružinový oscilátor:  $y_m = 10cm, T = 1, 2s$  a) rovnice:  $\omega = \frac{2\pi}{T} = \frac{5\pi}{3}s^{-1}$   $y = 0, 1 \cdot \sin(\frac{5\pi t}{3})$  b) poloha v čase t = 0, 5 s:  $y = 0, 1 \cdot \sin(\frac{5\pi t}{6})$  POZOR RAD!!! y = 5cm Př.: Rychlost oscilátoru  $\cos(\alpha) = v/v_0$   $v = v_0 \cdot \cos(\alpha)$  1)  $\alpha = \omega \cdot t$  2)  $v_0 = \omega \cdot r$  3)  $r = y_m \Rightarrow v = \omega \cdot y_m \cdot \cos(\omega t + \phi_0)$   $v = \frac{2\pi}{1,1} \cdot \cos(t)$ 

Zrychlení: OBRAZEKOBRAZEK  $v_1 = \omega \cdot r \ a_d = \frac{{v_1}^2}{r} = \omega^2 \cdot r = \omega^2 \cdot y_m$   $a = a_d \cdot \sin(\omega t + \phi_0) \ a = \omega^2 \cdot y_m \cdot \sin(\omega t + \phi_0) = \omega^2 \cdot y \Rightarrow$  velikost zrychlení je přímo úměrná okamžité odchylce  $a_{max} = \omega^2 \cdot y_m$ 

AAAAAA hrozně moc pomooc

Př.: Závisí tuhost pružiny na počtu závitů ANO, k vlnovka  $\frac{1}{n}$  AAAAAA progresivní pružina (damn liberals)

#### 4.1 Fyzikální kyvadlo

- cokoliv zavěšeného mimo těžiště, tj. v rovnovážné poloze nad těžištěm
- mám těleso, jeho těžiště T, osu otáčení o a délku d mezi nimil

#### Tlumené kmitání 5

- kromě síly, která je  $F \propto -y$  působí i odporová síla,  $F_{ODP} \propto -v, F_{ODP} \propto -b \cdot v$ ; b součinitel linearního odporu [kg/s] OBRAZEKOBRAZEK
- $y = y_m \cdot e^{-\frac{bt}{2m}} \cdot \sin(\omega' t + \phi_0)$
- důsledky
  - 1. je-li b malé  $(b^2 \ll 4mk)$ ; AAAA Př.: tlumí se to velmi pomalu
  - 2. Je-li b velké  $(b^2 > 4mk)$ , kmitání je ztlumeno tak moc, že ani nekmitá, nemá to dost velkou sílu  $-\omega = \operatorname{sgrtz}$ áporné číslo OBRAZEKOBRAZEK

# 6 Energie pružinového oscilátoru

- kinetická:  $E_k=\frac{1}{2}mv^2=\frac{1}{2}m\cdot y_m{}^2\cdot\omega^2\cdot\cos^2(\omega t)=\frac{1}{2}k\cdot y_m{}^2\cdot\cos^2(\omega t)$
- $cos(2x) = 2\cos^2(x) 1$ ;  $\cos^2(x) = \frac{1 + cos(2x)}{2}$  OBRAZEKOBRAZEK y a Ek
- potenciální:  $E_p = W = \frac{1}{2}F \cdot y$

#### 7 Vlnění

•  $y(x,t) = y_m \sin\left(\frac{2\pi}{\lambda}x - 2\pi ft + \phi\right)$ 

#### 7.1 Interference vlnění

- skládání vlnění, když se vlny potkají, tak se jednoduše sečtou  $y=y_1+y_2$  OBRAZEKOBRAZEK
- $\bullet$ pro jednoduchost budeme skládat vlnění se stejnou  $\lambda,$ f a s různou fází
- vlny můžeme jednoduše sčítat pomocí fázorů a kosinové věty
- speciální případy
  - fázory jsou identické konstruktivní interference, dvakrát větší amplituda, stejná frekvence, vln. délka
  - fázory jsou protilehlé destruktivní interference, nulová amplituda

#### 7.2 Stojaté vlnění

- interference postupné a odražené vlny
- $y_1 = y_m sin(\omega t kx)$
- $y_2 = y_m sin(\omega t + kx)$
- $y = y_1 + y_2 = y_m(sin(\omega t kx) + sin(\omega t + kx)) = 2y_mcos(kx)sin(\omega t) = Y_msin(\omega t)$  OBRAZEKOBRAZEK
- najdeme tady uzly (vždy 0, čili  $\cos(kx)=0$  čili v každém lichém násobku  $\frac{\pi}{2}$ ) a kmitny (kmitají nejvíc, čili  $\cos(kx)=\max$ . čili v každém násobku  $\pi$ )
- odraz vlnění
  - pevný konec: po odrazu se otočí fáze, interferují tedy destruktivně a pevný konec je uzel (logicky)
  - volný konec: neotáčí se fáze, vznikne tedy kmitna
- Př.: stojaté vlnění na struně g

# Část IV

# Elektrostatika

• eletkrický náboj – Q [C – Coulomb] (analogie hmotnosti)

# 8 Elektrické pole

- $\bullet\,$ intensita elektrického pole  $\overrightarrow{E} = \frac{\overrightarrow{F_e}}{Q}$  [N/C]
- $\bullet\,$ směr  $\overrightarrow{E}=$ směr síly na kladný náboj OBRAZEKOBRAZEK

# 8.1 Typy elektrického pole

#### 8.1.1 Homogenní pole

•  $\overrightarrow{E} = \text{konst. OBRAZEKOBRAZEK}$ 

#### 8.1.2 Radiální pole

• E = 
$$\frac{k \cdot \frac{Q_1 Q_2}{r^2}}{Q_2} = k \cdot \frac{Q_1}{r^2}$$
 OBRAZEKOBRAZEK

#### 8.1.3 Dipólové pole

 $\bullet\,$ dva náboje opačného znaménka –  $Q_1=Q_2$ OBRAZEKOBRAZEK

# 8.2 Potenciál elektrického pole

- $\phi = \frac{E_p}{Q}$  [J/C];  $E_p$  potenciální energie
- ekvipotenciální plochy místa se stejným potenciálem vždy kolmé na siločary

### 8.3 Práce, energie

• 
$$W = F \cdot s = F \cdot s \cdot \cos \alpha$$

#### 8.3.1 V homogenním poli

- $E = \frac{F}{Q} = konst.$
- F = EQ
- $W = E \cdot Q \cdot s = E \cdot Q \cdot s \cdot \cos \alpha = E \cdot Q \cdot d$ ; d je vzdálenost kolmá na siločary OBRAZEKOBRAZEK elektricka\_prace
- $W = \Delta E_p$
- $\bullet\,$ volba 0 u  $E_p$ : na záporné nebo uzemněné desce OBRAZEKOBRAZEK volt\_deska
- Potenciál:  $\phi = \frac{E_p}{Q} = \frac{W}{Q} = \frac{EQd}{Q} = E \cdot d$
- Rozdíl potenciálů = napětí  $U = \Delta \phi ~[\mathrm{J/C}] {=} [\mathrm{V}]$
- Intenzita:  $E = \frac{U}{d}$  [V/m]
- Pozn: elektron urychlený napětím 1 V získá energii:  $E=W=U\cdot e=1\cdot 1, 6\cdot 10^{-19}J=1eV$  elektronvolt

5

#### 8.3.2 V radiálním poli

- OBRAZEKOBRAZEK z A do B:  $W=F\cdot s$ , ale F v bodě A je jiná než v B  $\Rightarrow$  sílu nahradíme "průměrnou" (geometrický průměrnou) silou mezi A a B
- $F_A = k \cdot \frac{Q}{r_A^2}$ ;  $F_B = k \cdot \frac{Q}{r_B^2} \Rightarrow F_{\text{prům}} = \sqrt{F_A \cdot F_B} = \frac{kQ}{r_A r_B}$
- $W = F_{\text{prům}} \cdot s = k \cdot \frac{Q_1 Q_2}{r_A r_B} \cdot (r_B r_A) = -kQ_1 Q_2 \cdot \frac{1}{r} = E_p$

Pozn.:  $F = k \cdot \frac{Q_1 Q_2}{r^2}$ ;  $k = \frac{1}{4\pi\epsilon} \epsilon$  – permitivita prostředí – "prostupnost prostředí pro el. pole"  $\epsilon_0 = 8,85 \cdot 10^{-12} C^2 N^{-1} m^{-2} \epsilon >= \epsilon_0 \epsilon_r$  – relativní permitivita vzduch –  $\epsilon_r = 1,0006$  olivový olej –  $\epsilon_r = 3,1$  sklo –  $\epsilon_r = 5 - 16$  voda –  $\epsilon_r = 82$ 

### 8.4 Látky v elektrickém poli

- A) vodiče: náboje se mohou pohybovat OBRAZEKOBRAZEK vodic.png
  - elektrostatická indukce rozdělím vodič, zůstává trvale nabitý OBRAZEKOBRAZEK skin\_effect.png
  - plošná hustota náboje  $\sigma = \frac{Q}{S}$ ; z předch. vzorce:  $E = \frac{Q}{S \cdot \epsilon} \Rightarrow \sigma = E \cdot \epsilon$
- B) nevodiče: OBRAZEKOBRAZEK nevodic.png  $\Rightarrow$  polarisuje se
  - některé molekuly jsou už "z výroby" polární, např.  $H_2O$

#### 8.5 Kapacita vodiče

• při nabíjení vodiče nábojem Q se zvyšuje jeho napětí U přímo úměrně

 $Q \propto U \ Q = C \cdot U$ 

 $\bullet\,$  C - kapacita vodiče [C/V]=[F] - farad

Př.: Určete kapacitu koule r = 10 cm  $C=\frac{Q}{U}=\frac{Q}{k\cdot\frac{Q}{r}}=\frac{r}{k}=4\pi\epsilon r=4\pi\cdot 8,85\cdot 10^{-12}\cdot 0,1=11pF$ 

- koule s kapacitou 1 F by měla 9 · 10<sup>9</sup> m, proto používáme pF, nF, mkF
- samostatný vodič má kapacitu malou ⇒ vhodným tvarem ji můžeme zvětšit
- ⇒ KONDENSÁTOR

#### 8.5.1 Kondensátor

- deskový
- válcový OBRAZEKOBRAZEK kondensator.png

Př.: Deskový kondensátor: S =  $20cm^2$ , d = 5 cm, C = ?  $C = \frac{Q}{U} = \frac{Q}{E \cdot d} = \frac{Q}{E \cdot d} = \epsilon_{pr.mezideskami} \cdot \frac{S}{d}$ 

- Spojování kondensátorů
  - a) paralelně:
    - $\ast\,$ shodné napětí  $U=U_1=U_2$
    - \* náboj se rozdělí  $Q=Q_1+Q_2; \frac{Q}{U}=\frac{Q_1}{U_1}+\frac{Q_2}{U_2}; C=C_1+C_2$
  - b) seriově:
    - $\ast\,$ shodný náboj $Q=Q_1+Q_2$

\* napětí se rozdělí 
$$U=U_1+U_2; \frac{U}{Q}=\frac{U_1}{Q_1}+\frac{U_2}{Q_2}; \frac{1}{C}=\frac{1}{C_1}+\frac{1}{C_2}$$

- $E = W! = Q \cdot U$  platí jen je-li U = konst.
- v kondensátoru je napětí přímo úměrné náboji, tedy v grafu "trojúhelník", tedy  $E=W=\frac{Q\cdot U}{2}=\frac{C\cdot U^2}{2}$

### Část V

# Elektrodynamika

# 9 Elektrický proud

- usměrněný pohyb nosičů náboje (elektrony, ionty)
- $I = \frac{Q}{t}$ ; [C/s] = [A]

Př.: Rychlost elektronu ve vodiči způsobená tepelným pohybem je asi milion m/s (neuspoř. pohyb). Určete unášivou rychlost elektronu (driftová rychlost) při průtoku proudu 1 A měděným vodičem s průřezem 1  $mm^2$ .  $\rho$  (Cu) = 8300 kg/  $m^3$ ,  $A_r$  (Cu) = 63,5 a 1 elektronu z každého atomu mědi vede el. proud.

Za 1 s projde průřezem 1C (protože vedeme 1 A), což je  $\frac{1}{e} = \frac{1}{1,6\cdot 10^{-19}} = 6\cdot 10^{18}$  ks elektronů Hmotnost  $6\cdot 10^{18}$  atomů mědi:

```
1 atom: A_r \cdot u = 63, 5 \cdot 1, 66 \cdot 10^{-27} = 10^{-25} \text{ kg}

6 \cdot 10^{18} \text{ atomů: } 6 \cdot 10^{-7} \text{ kg ... objem: } V = \frac{m}{\rho} \Rightarrow h = \frac{m}{\rho \cdot S} = 7 \cdot 10^{-5} m

\Rightarrow v = 10^{-4} \text{ m/s}
```

Pozn.: I je skalár, ale má def. směr (a ten je proti směru toku elektronů, tedy z kladného na záporný) Pozn.: Proud měříme ampérmetrem, který se zapojuje sériově

# Část VI

# Elektrodynamika?

- $R_i 10^{-1} 10^1 \omega$  (baterie) měkké zdroje
- $R_i 10^{-3}\omega$  (olověný akumulátor) tvrdé zdroje

achjo mi toho tak moc chybí

katodové záření – proud elektronů ve vakuu OBRAZEKOBRAZEK katodove\_zareni.png, když tento
obvod zapojíme v opačném směru elektrony se nám nahromadí a nebudou proudit – máme elektronku
(diodu), využití katodového záření jako CRT monitorů, elektronek, jako jeden z typů elektronového
mikroskopu, jako způsob výroby rentgenového záření

# Část VII

# Magnetismus

Magnetická indukce:  $B = \frac{F_n}{I \cdot l} [T]$  – Tesla Magnetická síla:  $\overrightarrow{F_n} = I \cdot (\overrightarrow{l} \times \overrightarrow{B})$   $\Rightarrow F_n$  kolmé na l;  $F_n$  kolmé na B; B, l svírají lib. úhel  $\Rightarrow \overrightarrow{l} \parallel \overrightarrow{B} \Rightarrow \overrightarrow{F_n} = 0$  jinak  $F_n = B \cdot I \cdot l \cdot \sin \alpha$  OBRAZEKOBRAZEK indukce\_1.png

směr  $F_n$ : Flemingovo pravidlo LEVÉ ruky: prsty – směr proudu; do dlaně – vstupující siločary; palec – směr  $F_n$ 

Náboj v mag. poli: 
$$\overrightarrow{F_n} = I \cdot (\overrightarrow{l} \times \overrightarrow{B}) = \frac{Q}{t} \cdot (\overrightarrow{l} \times \overrightarrow{B}) = Q(\overrightarrow{l} \times B)$$

$$\overrightarrow{F_n} = Q \cdot (\overrightarrow{v} \times \overrightarrow{B})$$

Př.: částice vlétne rychlostí v do mag. pole

- a) ve směru siločar  $F_n = 0$  ( $\overrightarrow{v}$  a  $\overrightarrow{B}$  rovnob.)
- b) kolmo na siločáry udělá půlkroužek a poletí ven OBRAZEKOBRAZEK urychlovac\_castic.png

využití

- vychylování el. svazku v CRT
- kruhové urychlovače částic (cyklotrony) OBRAZEKOBRAZEK cyklotron.png

Př.: 2 rovnoběžné vodiče se stejným směrem proudu – budou se přitahovat velikost síly prvního na druhý:  $F_{12}=B_1\cdot I_2\cdot l=\frac{\mu I_1}{2\pi d}\cdot I_2\cdot l$  velikost síly druhého na první:  $F_{21}=\frac{\mu I_2}{2\pi d}\cdot I_1\cdot l\Rightarrow F_{12}=F_{21}=\frac{\mu}{2\pi}\cdot \frac{I_1I_2l}{d}$  Př.: Smyčka s proudem v magnetickém poli OBRAZEKOBRAZEK civecka\_1.png, civecka\_2.png magne-

Př.: Smyčka s proudem v magnetickém poli OBRAZEKOBRAZEK civecka\_1.png, civecka\_2.png magnetické pole cívky se natočí tak, aby bylo souhlasné s polem magnetů – když ale potom cíku přeopoluju bude se točit dál – mám motor!

# 10 Látky v magnetickém poli

- každá látka složená z atomů, které v sobě mají pohybující se elektrony, o kterých můžeme uvažovat
  jako o hýbajících se nosičích náboje každá látka tak bude mít nějakou reakci na magnetické pole
  (většina ale velmi slabou), podle reakcí se látky dělí do skupin:
  - diamagnetické nátačí své pole opačně, tedy mag. pole trochu zeslabuje (tj. snižují permeabilitu
     realtivní permeabilita jako kladný násobek permeability vakua), těmito látkami je asi polovina látek v periodické tabulce (např. zlato, rtuť)
  - paramagnetické natáčí své pole shodně, tedy mag. pole lehce zesilují (tj. zvyšují permeabilitu),
     druhá polovina periodické tabulky (např. chrom)
  - feromagnetické realtivní permeabilita v řádech 10<sup>5</sup> drasticky zesilují magnetické pole, těmito jsou železo, kobalt a nikl, zesilují pole tak moc, protože se v nich nenatáčejí do vnějšího magnetického pole jednotlivé atomy, ale tzv. domény skupiny atomů se shodně natočeným magnetickým polem
- využití paramagnetických látek podle hysterezní křívky materiály dělíme na mag. tvrdé a mag. měkké látky OBRAZEKOBRAZEK hysterezni\_krivka.png
  - magneticky tvrdé látky permanentní magnety, HDD zápis pomocí magnetace disku

### 11 Nestacionární pole

zase toho hrozne moc chybi hilfe kdyz mame nestacionární magnetické pole ve vodiči tak se mi indukuje proud – tedy naopak než elektromagnet nějaká veličina  $\Phi$  – magnetický indukční tok  $\Phi = B \cdot S \cdot \cos \alpha$ , kde  $\alpha$  je úhel, který svírá normálový vektor plochy s vektorem magnetické indukce, S je plocha smyčky a B je magnetické pole

#### 11.1 Vlastní indukce

- když cívkou poteče proud, bude indukovat magnetické pole, ale toto magnetické pole bude nazpět indukovat napětí v této cívce, toto bude opačné
- $\Phi \propto I$  mag. indukční tok je přímo úměrný proudu v cívce
- $\Phi = L \cdot I L$  indukčnost cívky (schopnost cívky samotné v sobě indukovat napětí), spolu s odporem a kapacitou je indukčnost důležitou vlastností obvodu
- Jednotka  $[\frac{T \cdot m^2}{A}] = [H]$  henry
- Elmag. indukce:  $U_i=-\frac{\Delta\Phi}{t}=-\frac{L\cdot\Delta I}{t}=-L\cdot\frac{\Delta I}{t}$  cívka má indukčnost 1H, pokus se při změně proudu o 1A za 1s naindukuje napětí 1V
- Indukčnost cívky:  $L = \frac{\Phi}{I} = \frac{B \cdot S \cdot N}{I}$ , N počet závitů, u solenoidu  $B = \frac{\mu \cdot N \cdot I}{l} \Rightarrow L = \mu \cdot \frac{N^2 \cdot S}{l}$ , vzorec podobný vzorcům pro výpočet kapacity deskvého kondenzátoru a odporu drátu

Př.: Vypočtěte indukčnost cívky:

$$\mu = 4\pi \cdot 10^{-7} H/m, N = 1200, S = 10cm^2, l = 5cm$$

L = 36mH

Př.: Zapojme paralelně žárovky, jednu přes cívku a jednu přes resistor:

Ta, která je zapojená přes cívku se rozžhne později – cívka "brzdí" napětí tím, jak si generuje vlastní mag. pole

#### 11.2 Přechodové jevy

když obvod zapínám/vypínám a mám tam cívku, tak jsou tam čachry s napětím kvůli indukci, toto napětí může být mnohonásobně větší než napětí zdroje, třeba elektrické ohradníky OBRAZEKOBRAZEK



Obrázek 1

• ZZE platí, to co ztratíme po sepnutí získame po vypnutí – je to uložené v energii magnetického pole:  $E = W = U \cdot I \cdot t = L \cdot \frac{\Delta I}{t} \cdot I \cdot t = L \cdot I \cdot \Delta I = \Phi \cdot \Delta I - \text{mag. tok je přímo úměrný proudu, grafem je zřejmý, energie je plocha pod křivkou, takže energie mag. pole je plocha trojúhelníku <math>\Rightarrow \Phi \cdot \Delta I = \frac{\Phi \cdot I}{2} = \frac{LI^2}{2}$ 

### 11.3 Střídavý proud

• vzniká např. otáčením cívkou v mag. poli (alternátor)

• 
$$\Phi = \overrightarrow{B} \cdot \overrightarrow{S} = B \cdot S \cdot \cos \alpha$$

• 
$$U_i = -\frac{\Delta\Phi}{t} (= -\frac{d\Phi}{dt})$$

• Okamžitá hodnota:  $U = U_m \cdot \sin \omega t$ 

#### Obvody:

A) rezistor zapojený na střídavé napětí:

– platí Ohmův zákon: 
$$i \propto u$$

- střední hodnota napětí a proudu:  $\langle u \rangle = \langle i \rangle = 0$ 

– výkon: 
$$p = u \cdot i = U_m \cdot \sin \omega t \cdot I_m \cdot \sin \omega t = U_m \cdot I_m \cdot \sin^2 \omega t = P_m \sin^2 \omega t$$

– střední hodnota výkonu:  $\langle p \rangle = \frac{P_m}{2}$ 

 Efektivní hodnota: hodnoty takové stejnosměrného proudu/napětí, které kdybychom zapojili tak máme stejný výkon jako střídavý

$$\langle p \rangle = P_{STEJNOSM}.$$

$$\frac{P_m}{2} = P$$

$$\frac{U_m \cdot I_m}{2} = U \cdot I$$

$$\frac{RI_m^2}{2} = RI^2$$

$$\frac{I_m^2}{2} = I^2$$

$$\frac{\sqrt{2}}{2}I_m = I, \ \frac{\sqrt{2}}{2}U_m = U$$

– takže když se řekne, že je v zásuvce 230V tak to je efektivní napětí – takže peak napětí je  $\sqrt{2}\cdot 230=325V$  CHYBI TADY VSUDE OBRAZKY

#### B) kondenzátor:

- a) stejnosměrný proud: žárovka při supštění blikne a pak se vypne proud teče jen, dokud se nenabije kondenzátor
- b) střídavý proud: kondenzátor se střídavě nabíjí a vybíjí a proud jde přes žárovku svítí

\* napětí: 
$$u = U_m \cdot \sin \omega t$$

\* náboj: 
$$q = C \cdot u = C \cdot U_m \cdot \omega \cdot \cos \omega t = \frac{U_m}{\frac{1}{\omega C}} \cdot \cos \omega t$$

\* odpor:  $\frac{U}{R}$  chybííí

nevim nebyl jsem tu jaderná maturita londýn

- transformátor, když má sekundární cívka větší počet závitů tak se zvětšuje napětí, transf. nahoru (V nahoru) x dolů
- pojistky, jističe

### 12 Elektromagnetické vlnění

elmag oscilátor

### Část VIII

# Optika

pomoc

# Část IX

# Relativita

nevim neco domyslete si to albert einstein atd.

# 13 Relativistická dynamika

2. NZ.:  $F = \frac{\Delta p}{t} = \frac{\Delta(m \cdot v)}{t} = -$  při působení konstatntní síly se zvětšuje hybnost. ale rychlost bude vždy  $< c \implies$  zvyšuje se hmotnost  $= \frac{\Delta m \cdot v + \Delta v \cdot m}{t} = m \cdot a + \frac{\Delta m \cdot v}{t}$  Odvození m = f(v) Předpoklady:

- 1. m = f(v)
- 2. ZZHybnosti
- 3. ZZHmotnosti

Př.: Dokonale nepružná srážka 2 těles se stejnou klidovou hmotností,  $v_2=0$ 

#### 13.1 Kinetická energie

$$\begin{array}{l} E_k = W = \int F dr = \int \frac{dp}{dt} \cdot dr = \int \frac{m \cdot dv + dm \cdot v}{dt} \cdot dr = mc^2 - m_0c^2 \\ \Longrightarrow E = mc^2 - \text{celkov\'a energie}, \ E_0 = m_0c^2 - \text{klidov\'a energie} \\ E_k = E - E_0 = mc^2 - m_0c^2 = m_0\gamma c^2 - m_0c^2 = m_0c^2(\gamma - 1) \ (m = \gamma m_0) \end{array}$$

Původní vzorec pro kinetickou energii nebyl úplně nepravdivý, je to jenom zanedbání miniaturních členů v této rovnici pro  $v \ll c$  (má to smysl asi do 1%c)

Př.: Urychlíme elektron napětím 1000V, jakou bude mít rychlost:

a. klasickým vzorcem: 
$$UQ = \frac{1}{2}mv^2 \implies v = \sqrt{\frac{2Ue}{m}} \doteq 0,0625c = 1,8752 \cdot 10^7 m/s$$

b. spec. teor. rel.: 
$$UQ = m_0 c^2 (\gamma - 1), \gamma = \frac{1}{\sqrt{1 - \beta^2}} \implies v = \sqrt{\frac{(\frac{Ue}{m_0 c^2} + 1)^2 - 1}{(\frac{Ue}{m_0 c^2} + 1)^2}} \cdot c \doteq 1,8725 \cdot 10^7 m/s$$

 $\implies$  výsledky stejné na tři platné číslice – klasický vzorec není naprosto správně, ale je mnohem rychlejší a pro menší rychlosti je úplně dostatečný

Vraťme se k $E_0=m_0c^2$  – klidová energie

- $\bullet$ co to ale znamená?  $c^2$  jako universální konstanta je jen nějaké číslo, závisející na jednotkové soustavě
- hmotnost a energie jsou tedy ekvivalentní, v dobře zvoleném systému jednotek se rovnají
- to mi umožňuje počítat hmotnost v Joulech a energii v kilogramech
- $\implies$ hmotnost elektronu:  $9,1\cdot 10^{-31}kg\iff E=mc^2=8,19\cdot 10^{-14}J=0,511MeV$