

Exercise Sheet 4 Intelligent Systems - WS 23/24

Exercise 1: Local Search - Special Cases

(Pkt.)

Give the name of the algorithm resulting from the following special cases:

- a. Local Beam Search with k=1
- b. Local Beam Search with exactly one initial state and no restriction on the number of maintained states
- c. Simulated Annealing with always T=0
- d. Simulated Annealing with always $T = \infty$

Exercise 2: Archetypal Analysis

(Pkt.)

- a. What is the constraint on minimizing the residual sum of squares with respect to the assignment of an observation to the archetypes?
- b. What is the constraint for minimizing the residual sum of squares in terms of assigning an archetype to observations?
- c. Explain the structure of the Scree plot and how the elbow criterion works.

- d. In Archetypal Analysis, the number k of archetypes must be known before execution. Give three ways how k can be determined.
- e. Given is the following 2D point cloud in *Abbildung 1*. Use the templates in *Abbildung 2* and draw k archetypes each with k=1,3,4,5 where you reasonably expect them to be (an estimate is enough).
- f. Then draw the approximated convex hull in each case (only for k = 3, 4, 5). Which number of archetypes k seems to be best suited for the data set at hand and why?

Exercise 3: Metaheuristics

(Pkt.)

Which of the following statements are true?

- a. Simulated Annealing maintains multiple solution candidates at the same time
- b. Evolutionary algorithms maintain multiple solution candidates at the same time
- c. Simulated Annealing guarantees to find the global optimum at infinite runtime
- d. The temperature T in SA controls the tradeoff between exploration and exploitation

Exercise 4: Game Theory 1

(Pkt.)

Let the following game be given:

	Player B, Move 1	Player B, Move 2
Player A, Move 1	5, 6	7, 2
Player A, Move 2	4, 5	9, 1

Decide whether the following statements are true or false:

- a. Player A has a dominant strategy
- b. Player B has a dominant strategy

Exercise 5: Game Theory 2

(Pkt.)

a. Calculate the expected reward for the following game with the mixed strategies:

$$A = \{0.4, 0.6\}$$
$$B = \{0.9, 0.1\}$$

	A1	A2
B1	A:5, B:3	A:4, B:6
B2	A:0, B:4	A:2, B:2

b. Calculate the Nash equilibrium in mixed strategies for the following game:

	B1	B2
A1	A:4, B:4	A:1, B:0
A2	A:2, B:2	A:6, B:9

Exercise 6: Game Theory 3

(Pkt.)

Let the following game be given (the values represent earnings in million €):

	Mercedes, Ads	Mercedes, no Ads
BMW, Ads	2, 4	4, 2
BMW, no Ads	0.5, 9	3, 6

- a. What is the Nash equilibrium (in pure strategies) of the above game?
- b. If both companies could commit not to advertise by entering into a binding contract, should they do so? If so, why?
- c. Implement a program in Python which finds a Nash Eq assuming pure strategies.
- d. Find a game with 3 players and 2 actions with no Nash Eq. Verify your solution using the program from (c).

Exercise 7: Genetic Algorithms

(Pkt.)

The four most important components of an Evolutionary Algorithm are:

- Evaluation
- Selection
- Recombination
- Mutation

Consider the Maximum Clique Problem. How would you implement these four components for this problem?

Abbildung 2