ALZR/ Prylitaly Wielomany rozhtadu MoTa (cyllotomicsne)  $W_{m}(X) = X^{m} - 1 \in \mathbb{Q}[X]$ a previousshi jednohrotne (m punlitour a ohrzen) · um (C) cylchiana, É generator = Et generije um (C) NWD(h,m)=1 Noech y (m) = | Ek & M; O< k< m i (h, m) = 1} | funlija Eulera μm (C) ma φ(m) generatorow:  $\mathcal{E}_{\uparrow}^{m_{\lambda}}, \mathcal{E}_{3'''}, \mathcal{E}_{\uparrow}^{m_{\varphi(m)}}$ Niech  $F_m(X) = (X - \varepsilon^{m_1})(X - \varepsilon^{m_2})...(X - \varepsilon^{m_{\varphi(m)}})$ m-ty vielandan cyhlotomiany Uwaga 5,3 (1)  $W_m(x) = F_m(x) \cdot \left( \prod_{\substack{x \in \mathbb{Z} \\ x \in \mathbb{Z}}} F_a(x) \right)$  $^{(2)}F_{m}(X) \in \mathbb{Z}[X]$ 

| D-d nue aprost,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AZRA      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vælda-    |
| Zative is $Z[X]$ : $F_m = G_1 \cdot G_2$ , $G_1$ : $f_1$ and $f_2$ deg $f_3$ : $G_4$ : $G_4$ : $G_4$ : $G_5$ : $G_6$ : $G_7$ : $G_7$ : $G_8$ : | r.<br>Pfm |
| 60:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| Niech E : jalux premiastek G1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
| Noeth T: 71- Gz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>\</b>  |
| To $\mu_m(C) = \sum_{i=1}^{n} T = \epsilon^i dle persuago l'tire (de prevolting stopnise m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (m)=1     |
| ilough liub prenusus ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| $\mathcal{E}$ $\mathcal{E}^{1}$ , $\mathcal{E}^{p_{1}p_{2}}$ ,, $\mathcal{E}^{p_{1}\dots p_{k}}$<br>previous tek $\mathcal{G}_{2}$ .  The strate $\mathcal{G}_{3}$ is the previous tek $\mathcal{G}_{2}$ .  The strate $\mathcal{G}_{3}$ is the previous tek $\mathcal{G}_{3}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| $E^{12}$ previo. $G_{1}$ $E^{12} \cdot = (E^{1})^{12} \cdot \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | zw. Gz.   |

ARR/4 Tzn, E'spærmiestek wielomiender G(X) i Gz(XP) w Q[X] nverozitadahy \( \mathfrak{G}\_{1}(X) \) \( G\_{2}(XP) \widetilde{Q}(X) \) (†)  $G_2(X^p) = G_1(X) \cdot H(X)$ the pewnego  $H(X) \in \mathbb{Z}[X]$ iwZ[X] Noch j: Z > Z/pZ = Zp ilorazowe.  $j(F_m) = j(G_1) \cdot j(G_2)$  $[j(G_2(X))]^P = [j(a_u)X^u + ... + j(a_n)X + j(a_n)]^P =$ Gz(X)= au X" +... + a, X+a, ai &Z  $= j(a_{u})^{p}(X^{p})^{u} + ... + j(a_{i})^{p}X^{p} + j(a_{o})^{p} = j(G_{2}(X^{p})) =$ w Z/X) char=p  $dla a \in \mathbb{Z}_{p} al = a$   $j(a_{i})^{p} = j(a_{i})$  $= j(G(X)) \cdot j(H(X))$ w prevsuenia  $\mathbb{Z}_p[X]$ :  $j(G_1)$   $ij(G_2)$  nue se unglischnik previore, 00: j(G1)/(j(G2))P.

=) w pewrym vorszeneniu ciała Zp, Wm(x)
ma previostki melohrotny i p/m yz
vwcsa3.3(2)

| Wm. 5,5.                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zat, i $\varepsilon \in \mathbb{C}$ pierwastell pierwatny z 1 stepnie m<br>Whedy [Q[ $\varepsilon$ ]: Q] = $\varphi(m)$ , $F_m(x)$ : wielowian          |
| Whenly [Q[E]: Q] = $\varphi(m)$ , $F_m(x)$ : wielonian maintimetry $\varepsilon/Q$ ,                                                                    |
| manusky E/Q,                                                                                                                                            |
| Liuby preste pue L'oville à à                                                                                                                           |
| Lemat 5,6 (Liouville) Jesti a 6 R algebraiana,                                                                                                          |
| Lemat 5,6 (Liouville) Jeshi a & Ralgebraiana, Mopmia N>1 (nad Q), to FC = C(a)>0 +r=f=Q=Q                                                               |
| $\left  \begin{array}{c} a - \frac{1}{9} \\ \end{array} \right  > \frac{C}{a^n}$                                                                        |
| $D-d N>1 \Rightarrow a \neq Q$                                                                                                                          |
| Nuech F(X) & Z[X], f(a)=0, deg(f)=deg(a/Q).                                                                                                             |
| COUR 3                                                                                                                                                  |
| $f(x) = \hat{f}(x) - \hat{f}(a) = \hat{f}'(t)(x-a)$ de pewnego                                                                                          |
| $\hat{f}(x) = \hat{f}(x) - \hat{f}(a) = \hat{f}'(t)(x-a) dla pervnego t misdry x i a. (tw. o wartosw snedwej) Noech \epsilon \geq 0 t. \epsilon = 0.66$ |
| Noeth E >0 t. re a f (a-fatE) to                                                                                                                        |
| Judy pour wisself was turn and a solo Rsoc                                                                                                              |
| $C=C(a):=min \{ \mathcal{E}_{d} \}, gaie d=sup l'no pin l'$                                                                                             |
| $C=C(a):=min \{E, \frac{1}{d}\}, gaine d = sup f! na preducte  C:=dobra I:=(a-E,a+E),$                                                                  |
|                                                                                                                                                         |

Niech  $r = \frac{\rho}{q}$ ,  $\rho, \hat{q} \in \mathbb{Z}$   $f(x) = \sum_{k=0}^{N} a_k x^k$ 1.  $r \notin I \Rightarrow |a - \frac{\rho}{q}| > \varepsilon \Rightarrow \frac{\varepsilon}{q^n} > \frac{c}{q^N}$ 2°, res =>  $|a-(\frac{r}{q})| = \frac{|f(\frac{r}{q})|}{|f'(t)|} > \frac{|f(\frac{r}{q})|}{d} > \frac{C}{q^n}$ I a dela permago

La (a-s-1c)  $\geq 1$  $t \in (\alpha - \xi_{\alpha + \epsilon})$   $\geq 1$   $bo: 0 \neq |f(\frac{\rho}{q})| = |\sum_{k=0}^{N} a_k \frac{\rho^k}{q^k}| = \frac{|\sum_{\alpha_k} \rho^k_{q^k} N^{-k}|}{q^N} > \frac{1}{q^N}$ i B 1>C

Def. 5.7. L > K jest algebraianym domknissen Giata K, gdy:

(1) L jest algebraierne domkniste i

(2) Rozsrenense KCL jest algebraianne (VaeL a algebraianny nad K).

Lornaciamy prez K, Kalq.

Wn. 5.8. Kistnieje.

D-d Niech Kook auto algebrouirnie A2R/4 donutiriste, \* vozsrenemée wata K(tw. 2.3) R = Kaly (Kx) = {a & Kx; a algebraiany/k} (a)  $\hat{K}$  algebraianie domkniste (b):  $f(X) \in \hat{K}[X] \Rightarrow f$  ma previoustell or  $K_{o}$ deg 20 => a & k) 5.2 6) K C k algebraienne vorsrenense viat : 2 definisje TW.5,9, Algebraiane domknissie ciata Kjest jedyne 2 dolt. do ≅ . Ten: L1, L2 > K => algebr, domhniqua K ∃f: L, ≅ Lz D-d. Niech  $K = \{(K',f'): K \subseteq K' \subseteq L_1 i\}$ f!: K! -> Lz monomorfiem tive f'[k=idk] Poregdel na  $K: (K',f') \leq (K'',f'') \in ) K \leq K'' &$ K spetnia zatorenia lematu Zorna, f'Ef". Niech (K, fr) & K: element makeymakry. Phaiemy, de K,= L1.

noe aprost: an ELI KA Wa (X) EKIKT Wildowian

Minimahy ¥ f1 L22 K2 = f1 [K1] W2 (X) EK2[X] Noch az & Lz previ. Wz.  $K_{\lambda}(\alpha_{\lambda}) = K_{\lambda}[\alpha_{\lambda}] \cong K_{\lambda}[X]/(\omega_{\lambda}) \cong$  $\cong \mathcal{K}_{z}[a_{z}] = \mathcal{K}_{z}(a_{z}).$ Dostajerny cfz; K1(a1) => K2(a2) y
2 M z maksymalnosy  $K_1 = L_1 \Rightarrow K_2 \subseteq K_2 \subseteq L_2$  $(K_1,f_1),$ K, = K K2 Ky i alg. domknight => Kz: alg. dommuste i K2CL2: algebraiene => K2Lz (bo;  $\alpha \in L_z \setminus K_z =)$  wiel. minimally  $f_\alpha(X) \in K_z[X]$   $\alpha/K_z$  migroritadely =  $1 \Rightarrow \alpha \in K_z$ .



Rozszerenia algebraiene.

K ciato K c R alg. domknis at K.

K < L: vorssenemble algebraiane cial.

Def. Gi(L/K) = { f & Aut(L): f|k=idkf < Aut(L) J grupa Galois vorsrene nia KCL

Gal(L/K)

(Aut (L/K)) Idea: badai vorscenence KCL prezbadame G(L/K).

Prystad. (1) K ciato proste => G(L/K)=Aut(L)

(Bo: f & Aut(L) =) flx=adx)

(2)  $G(Q(V_2)/Q) = Aut(Q(V_2)) = \{f_0, f_1\} \cong \mathbb{Z}$ 

fo=id, fi Q[r]-Q[r]

Def.  $G(\hat{K}/K)$  = absolutina grupa Gradois wata K''

Problem. (Odworotmy problem Galais) (inverse Galais problem) AZR/L Cry harda grupa skon nona jest = G(L/Q)? (Otwarty, gtowny problem teens Galois) Uwaga 6.1 (jednovodnosó K), a, bek, I(a/k) = I(b/k) => FREG(R/K) f(a) = bD-d K[a] = K[b]  $\bigcap_{\hat{K}} \bigcap_{\hat{Y}} \bigcap_{\hat{K}} \bigcap$ K: "najurgksze" algebraierne vorsrene nie ciata K; KCL => Ff: L -> R# zome monomatism alg 5.11 (flx=id wat, (\*) Def. Rozszenenve algebraionne KCL pert normalne, gdy w (\*): f[L] E K tosamo Phylitad KCK pert normalne. H.

Uwaga 6.2. (KCLCK). KCL normalne (=) Yf & G(K/K) f[L]=L#. D-d, => z definiqi (=: tei, Wn. K = L, = L, K = L, = L, CL normaline, TW. 6,3, KCL pert normalue (=) alg. V b € L W<sub>b</sub> (X) € K[X] And rorlitada significant wiel, minimalny b/K w L[X] na ilonyn crynnelser linde-wych D-l. Bso KCLCK, => nie wprost, b & L i W<sub>b</sub>(X) ma prenviastek Uwaga 6, 1  $\Rightarrow$   $\exists f \in G(\hat{K}/K)$   $\Rightarrow f[L] \neq L$  y,  $a \in \hat{K} \setminus L$ . Eme wprost. Wiech ffG(K/K) f[L] #L. Niech a & L : f[L] (symetryonie: a & f[L] : L, analogiane rorumavanie)

Niech Wa(X): wiel, minimalay a/K I flx=idx  $W_a(X) = f(W_a(X))$ : wied minimalry b/K (de b=f(a)) KCL normaline = K F[L] KCf[L] normable Wa(X) vertitada sis mad f[L] na crynniki Spreanosé, los: a previous tele Wa(X), a € f[L].