

# Off-Policy Deep Reinforcement Learning without Exploration

ICML 2019

#### Outline

- Introduction
- Problem definition
- · Batch-Constrained Reinforcement Learning
- Experiment
- Conclusion

#### Introduction

- Batch reinforcement learning :
  - Learning from a fixed dataset without interactions with the environment
  - without restrictions on the quality of the data
  - May occur problem that we call "Extrapolation Error" :
    - Absent Data
    - Model bias
    - Training Mismatch

#### Introduction

- Batch-constrained reinforcement learning :
  - Agents are trained to
    - maximize reward
    - minimizing the mismatch between the state-action contained in the batch and in the policy.

Algorithm in paper: Batch-Constrained deep Q-learning (BCQ)

#### Problem definition

- Extrapolation Error
  - "Introduced by the mismatch between the dataset and true state-action visitation of the current policy"
  - The target policy selects an unfamiliar action a' at the next state s'
    - (s', a') is unlikely, or not contained, in the dataset



#### Problem definition

- Absent Data
  - The estimate of  $Q_{\theta}(s',\pi(s'))$  may be arbitrarily bad without sufficient data near  $(s',\pi(s'))$
- Model Bias
  - For a stochastic MDP, without infinite state-action visitation, this produces a biased estimate of the transition dynamics
    - We cannot accurately determine the true transition dynamics

$$\mathcal{T}^{\pi}Q(s,a) \approx \mathbb{E}_{s' \sim \mathcal{B}}[r + \gamma Q(s', \pi(s'))]$$

#### Problem definition

- Model Bias
  - The expectation is with respect to transitions in the batch  ${\cal B}$ , rather than the true MDP
- Training Mismatch
  - If the distribution of data in the batch does not correspond with the distribution under the current policy
    - Even with sufficient data, the value function may be a poor estimate

$$\approx \frac{1}{|\mathcal{B}|} \sum_{(s,a,r,s') \in \mathcal{B}} \left| \left| r + \gamma Q_{\theta'}(s',\pi(s')) - Q_{\theta}(s,a) \right| \right|^2$$

- Motivation
  - Current off-policy reinforcement algorithms fail to address extrapolation error
    - Without consideration of the accuracy of the learned value estimate
    - Certain out-of-distribution actions can be extrapolated to higher values
- Idea
  - A policy should induce a similar state-action visitation to the batch
    - Minimize the distance of selected actions to the data in the batch

· Minimize the distance of selected actions to the data in the batch



Choose the nearest action Ex.  $(s_4, a_4)$ ,  $(s_5, a_5)$ 

- Definition
  - Experience replay buffer B
  - The MDP  $M_{\mathcal{B}}$ 
    - The value function Q learned with the batch  $\mathcal{B}$
    - the same action and state space as the true MDP M
    - An additional terminal state  $s_{init}$
  - The transition probabilities  $p_{\mathcal{B}}$

$$p_{\mathcal{B}}(s'|s,a) = \frac{N(s,a,s')}{\sum_{\tilde{s}} N(s,a,\tilde{s})}$$

• Where N(s, a, s') is the number of times the tuple (s, a, s') is observed in  $\mathcal{B}$ 

- Definition
  - The tabular extrapolation error  $\epsilon_{\text{MDP}}$

$$\epsilon_{MDP}(s,a) = Q^{\pi}(s,a) - Q^{\pi}_{\mathcal{B}}(s,a)$$

Goal

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r+\gamma \max_{a's.t.(s',a') \in \mathcal{B}} Q(s',a'))$$

Versus

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r + \gamma Q(s',\pi(s')))$$

• We then use the following 4 theorem to prove the feasibility of BCQL

$$\epsilon_{MDP}(s,a) = Q^{\pi}(s,a) - Q^{\pi}_{\mathcal{B}}(s,a)$$

- Theorem 1.
  - Performing Q-learning by sampling from a batch  $\mathcal B$  converges to the optimal value function under the MDP  $M_{\mathcal B}$ 
    - By the definition of  $\epsilon_{MDP}^{\pi}$  and  $\epsilon_{MDP}^{\pi} = \sum_{s} \mu_{\pi}(s) \sum_{a} \pi(a|s) |\epsilon_{MDP}(s,a)|$
    - Only  $\epsilon_{MDP}^{\pi}=0$  is required to evaluate a policy  $\pi$  exactly at relevant state-action pairs
    - Denote a policy  $\pi \in \Pi_{\mathcal{B}}$  as batch-constrained if for all (s,a) where  $\mu_{\pi}(s) > 0$  and  $\pi(a|s) > 0$  then  $(s,a) \in B$
    - Denote a batch  $\mathcal{B}$  as coherent if for all  $(s, a, s') \in \mathcal{B}$  then  $s' \in \mathcal{B}$

- Theorem 2.
  - For a deterministic MDP and all reward functions,  $\epsilon_{MDP}^{\pi}=0$  if and only if the policy  $\pi$  is batch-constrained
  - Furthermore, if  $\mathcal{B}$  is coherent, then such a policy must exist if the start state  $s_0 \in \mathcal{B}$ 
    - Reach our goal with the condition that  $(s, a) \in \mathcal{B}$

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha(r + \gamma \max_{a's.t.(s',a') \in \mathcal{B}} Q(s',a'))$$

- Only  $\epsilon_{MDP}^{\pi}=0$  is required to evaluate a policy  $\pi$  exactly at relevant state-action pairs
- Denote a policy  $\pi \in \Pi_{\mathcal{B}}$  as batch-constrained if for all (s,a) where  $\mu_{\pi}(s) > 0$  and  $\pi(a|s) > 0$  then  $(s,a) \in B$
- Denote a batch  $\mathcal{B}$  as coherent if for all  $(s, a, s') \in \mathcal{B}$  then  $s' \in \mathcal{B}$

- Theorem 3.
  - Given the Robbins-Monro stochastic convergence conditions on the learning rate  $\alpha$ , and standard sampling requirements from the environment
  - BCQL converges to the optimal value function  $Q^*$ 
    - BCQL converges to the optimal batch-constrained policy  $\pi^* \in \Pi_{\mathcal{B}}$  such that  $Q^{\pi^*}(s,a) \geq Q^{\pi}(s,a)$  for all  $\pi \in \Pi_{\mathcal{B}}$  and  $(s,a) \in \mathcal{B}$

- Theorem 4.
  - Given a deterministic MDP and coherent batch  $\mathcal{B}$ , along with the Robbins-Monro stochastic convergence conditions on the learning rate  $\alpha$  and standard sampling requirements on the batch  $\mathcal{B}$
  - BCQL converges to  $Q^\pi_{\mathcal{B}}(s,a)$  where  $\pi^*(s) = argmax_{as.t.(s,a) \in \mathcal{B}} Q^\pi_{\mathcal{B}}(s,a)$  is the optimal batch-constrained policy
    - Versus Q-Learning:  $\pi(s') = argmax_{a'}Q(s', a')$

- Practical
  - Introduce a conditional variational auto-encoder (VAE)
    - Form a generative model  $G_{\omega}$  and sample actions from model
  - Introduce a perturbation model  $\xi_{\phi}(s, a, \Phi)$ 
    - An adjustment to an action a in the range  $[-\Phi, \Phi]$
    - Increase the diversity of seen actions
  - Introduce a Clipped Double Q-learning
    - Estimate the value by taking the minimum between two Q-networks  $\{Q_{\theta_1}, Q_{\theta_2}\}$
    - penalize uncertainty over future states

- Practical
  - Can view generative model  $G_{\omega}$  and perturbation model  $\xi_{\varphi}$  as policy network
    - Generated actions should not deviate too far from those in the dataset
    - The other part is responsible for maximizing the cumulative reward

$$\pi(s) = argmax_{a_i + \xi_{\phi}(s, a_i, \Phi)} Q_{\theta}\left(s, a_i + \xi_{\phi}(s, a_i, \Phi)\right), \{a_i \sim G_{\omega}(s)\}_{i=1}^n$$

- Q-networks take a convex combination of the two values
  - It can be seen as a transition from behavior cloning to running Q-learning

$$r + \gamma \max_{a_i} [\lambda \min_{j=1,2} Q_{\theta'_j}(s', a_i) + (1 - \lambda) \max_{j=1,2} Q_{\theta'_j}(s', a_i)]$$

Coding

Generative model  $G_{\omega}$ 

Clipped Double Q-learning

#### **Algorithm 1** BCQ

**Input:** Batch  $\mathcal{B}$ , horizon T, target network update rate  $\tau$ , mini-batch size N, max perturbation  $\Phi$ , number of sampled actions n, minimum weighting  $\lambda$ .

Initialize Q-networks  $Q_{\theta_1}, Q_{\theta_2}$ , perturbation network  $\xi_{\phi}$ , and VAE  $G_{\omega} = \{E_{\omega_1}, D_{\omega_2}\}$ , with random parameters  $\theta_1$ ,  $\theta_2$ ,  $\phi$ ,  $\omega$ , and target networks  $Q_{\theta'_1}, Q_{\theta'_2}, \xi_{\phi'}$  with  $\theta'_1 \leftarrow \theta_1, \theta'_2 \leftarrow \theta_2, \phi' \leftarrow \phi$ .

for t = 1 to T do

Sample mini-batch of N transitions (s, a, r, s') from  $\mathcal{B}$   $\mu, \sigma = E_{\omega_1}(s, a), \quad \tilde{a} = D_{\omega_2}(s, z), \quad z \sim \mathcal{N}(\mu, \sigma)$   $\omega \leftarrow \operatorname{argmin}_{\omega} \sum (a - \tilde{a})^2 + D_{\mathrm{KL}}(\mathcal{N}(\mu, \sigma)||\mathcal{N}(0, 1))$  Sample n actions:  $\{a_i \sim G_{\omega}(s')\}_{i=1}^n$ 

Perturb each action:  $\{a_i = a_i + \xi_{\phi}(s', a_i, \Phi)\}_{i=1}^n$ 

Set value target y (Eqn. 13)

 $\theta \leftarrow \operatorname{argmin}_{\theta} \sum (y - Q_{\theta}(s, a))^{2}$   $\phi \leftarrow \operatorname{argmax}_{\phi} \sum Q_{\theta_{1}}(s, a + \xi_{\phi}(s, a, \Phi)), a \sim G_{\omega}(s)$ Update target networks:  $\theta'_{i} \leftarrow \tau\theta + (1 - \tau)\theta'_{i}$   $\phi' \leftarrow \tau\phi + (1 - \tau)\phi'$ 

end for

perturbation model  $\xi_{\Phi}$ 





- MuJoCo environments in OpenAl gym
  - Compare 5 different method in Batch RL:
    - BCQ (Batch-constrained)
    - DDPG
    - DQN
    - a feed-forward behavioral cloning method (BC)
    - a variant with a VAE (VAE-BC)
  - 4 different batch:
    - Final Buffer
    - Concurrent
    - Imitation
    - Imperfect demonstrations

- Final Buffer:
  - Train a DDPG agent for 1 million time steps, adding Gaussian noise to actions for high exploration, and store all experienced transitions.
- Concurrent:
  - Train the off-policy and behavioral DDPG agents, both agents are trained with the identical dataset.
- Imitation:
  - A trained DDPG agent acts as an expert, and is used to collect a dataset of 1
    million transitions
- Imperfect demonstrations:
  - Trained with a batch of 100k transitions collected by an expert policy, with two sources of noise.

· BCQ exhibits a highly stable value function in each task



#### Conclusion

- Demonstrate a problem in off-policy RL with finite batch data
  - Extrapolation Error

- Present algorithm: Batch-Constrained deep Q-learning (BCQ)
  - Capable of learning from arbitrary batch data, without exploration.