(*): Assigned to weekly problem set.

Change of Variable

- 1. (*) Find the PDF of $Y = e^{-X}$ for $X \sim \text{Exp}(1)$.
- 2. Find the PDF of |Z| where $Z \sim N(0, 1)$.
- 3. (*) Suppose U and $V \stackrel{\text{iid}}{\sim} \text{Exp}(\lambda)$. We will find the joint distribution of X = U + V and $Y = \frac{U}{U+V}$, as well as the marginal distribution of Y alone.
 - (a) Define the function $g: \mathbb{R}^2 \to \mathbb{R}$ by $(x,y) = g(u,v) = (u+v, \frac{u}{u+v})$. Find a formula for the inverse transformation $(u,v) = g^{-1}(x,y)$.
 - (b) Calculate the Jacobian of the transformation and its determinant.
 - (c) Use the change-of-variables formula to express the joint PDF $f_{X,Y}(x,y)$ in terms of the joint PDF $f_{U,V}(u,v)$. Don't forget the support!
 - (d) Based on your previous answer, are X and Y independent?
 - (e) Find a formula for the marginal PDF of Y. What named distribution is this?