STATISTICAL MECHANICS: A COMPLETE GUIDE

PHYS 449

September 5, 2021

ELIJAH THOMPSON, PHYSICS AND MATH HONORS

Solo Pursuit of Learning

Contents

I	Thermodynamics	3
1	Energy in Thermal Physics 1.1 Basic Notation and Work Boyle-Mariotte's Experiment Work Conservative Forces 1.2 Heat and the 1st Law of Thermodynamics	5
2	Thermodynamical Systems	10
3	Thermodynamical Potentials and Equilibrium	11
II	Statistical Mechanics	12
4	Microstates and Entropy	13
5	Ensemble Theory and Free Energy	14
6	Boltzmann Statistics and the Canonical Ensemble	15
7	Breakdown of Classical Statistical Mechanics	16
III	Probability Theory	17
8	Characteristics of Probability Theory	18
9	Continuous Random Variables and the Gaussian Distribution	19
10	Information and Entropy	20
IV	Real Gases and Phase Transitions	21
11	Kinetic Theory of Gases	22
12	2 Classification of Phase Transitions	23

V Quantum Statistics	24
13 Quantum States	25
14 Ideal Quantum Gases	26
Appendices	27

CONTENTS

Part I

Thermodynamics

Energy in Thermal Physics

1.1.0 Basic Notation and Work

Definition 1.1.1. Thermodynamics is a <u>phenomenological</u> description of properties of <u>macroscopic systems</u> in thermal equilibrium.

By a phenomenological description we mean a discription based on observations and direct experience of the experimenter with the system, considered as a "black box" (a system whose internal structure is unknown, or is just not considered).

Definition 1.1.2 (Systems). There are a number of different thermodynamic systems. We summarize them as follows:

- Thermodynamic or Macroscopic System: A system consisting of a large number of constituents. For example, a mole of gas (approximately 10²³ particles) can be considered as a macroscopic system.
- **Isolated Thermodynamic System:** A system which exhibits no exchange of any type with the surroundings; no exchange of work, heat, matter, etc.
- Closed Theormodynamic System: A system which exhibits no exchange of matter with its surroundings.
- Open Thermodynamic System: A system for which it is possible for exchange of any type with the surroundings (work, heat, matter, etc.)

Definition 1.1.3 (Equilibrium). Two thermodynamic systems are in **equilibrium** if and only if they are in contact such that they can exchange a given conserved quantity (for example particles) and they are relaxed to a state in which there is no average net transfer of that quantity between them anymore. A thermodynamic system *S* is in equilibrium with itself, if and only if, all its subsystems are in equilibrium with each other. In this case, *S* is called an **equilibrium** system.

From this definition we find that different types of exchanged quanitities can lead to different types of equilibria:

Exchanged Quantity	Type of Equilibrium
Particles/Matter	Diffusive Equilibrium
Work	Mechanical Equilibrium
Heat	Thermal Equilibrium

Definition 1.1.4. Complete Thermodynamic Equilibrium corresponds to a state where all the conserved fluxes between two coupled thermodynamic systems vanish.

A way of testing if a given system is in a complete thermodynamic equilibrium is if the properties of the system do not change appreciably over the observation time, which is to say the properties reflect the true asymptotic long-term properties after any initial relaxation time is over.

The state of thermodynamic systems in complete thermodynamic equilibrium can be described by a set of independent *thermodynamic coordinates* or *state variables*; this fact is based on empirical observations.

Boyle-Mariotte's Experiment

Law. For a given mass of gas at a constant temperature T, the volume V is inversely proportional to the pressure $P: V \propto P^{-1}$.

We consider Robert Boyle's (1627-1691) experiment, conducted at room temperature, which should remain constant during the time of the experiment. We use a vertical tube with markings to indicate the volume of gas, and oil at the bottom. By applying pressure on the oil, we also exert a pressure on the air in the tube above the oil, causing the volume to decrease. Drawing the graph of volume versus P^{-1} we obtain a straight line, so $V \cdot P = C$ for some constant C, given a fixed temperature. As further measurements show, the constant is proportional to the temperature T, so $V \cdot P \propto T$. More precisely, the full equation of a state of simple low-density gase is given by

$$PV = Nk_BT \tag{1.1.1}$$

where N is the number of gas particles and $k_B \approx 1.381 \times 10^{-23} \ J/K$ is a natural constant called the <u>Boltzmann's constant</u>. The above equation is called the <u>ideal gas law</u> or the <u>equation of state for an ideal gas</u> since it relates the three state variables, or thermodynamic coordinates, \overline{P} , \overline{V} , and \overline{T} at equilibrium.

Work

Definition 1.1.5. Given a vector force field \vec{F} defined along a path γ , the <u>work</u> W is of \vec{F} along γ is defined to be:

$$W = \int_{\gamma} \vec{F} \cdot d\vec{r} \tag{1.1.2}$$

Recall 1.1.1. Recall that pressure is force per unit area, so we have that

$$P = \frac{F}{A}$$

where F is the normal component of the force to the area A. More precisely, pressure is the proportionality constant that relates the force and normal vectors:

$$d\vec{F}_n = -pd\vec{A}$$

where \vec{F}_n denotes the normal component of the force vector \vec{F} .

Example 1.1.1. Consider the compression of a gas by a piston with a constant force of magnitude F.

so the work is

$$W = \int_{\gamma} \vec{F} \cdot d\vec{r} = F \int_{\gamma} dr = F \Delta x = PA \Delta x = -P \Delta V$$

where P is the pressure and ΔV is the change in volume. Since the change in volume is negative, the work W done on the system (here the gas) is positive: Energy is added to the system by a force (macroscopic) process (here the piston). W < 0 if energy is removed from the system.

Definition 1.1.6. The generalized differential form for work is given by

$$\delta W = \sum_{i=1}^{m} J_i dq_i \tag{1.1.3}$$

where q_i are the generalized coordinates and the J_i are the conjugate generalized forces such that $J_i dq_i$ has units of energy.

Here are a few examples of generalized coordinates and their corresponding generalized conjugate forces:

	Generalized Force J_i	Generalized Coordinate dq_i
Pressure	-P	dV (change in volume)
Surface tension	σ	dS (change in surface area)
Magnetic field	$ec{B}_0$	$d\vec{m}$ (change in magnetic moment)
Electric field	$ec{E}$	$d\vec{P}$ (change in electric dipole moment)

Definition 1.1.7. Differential changes in a systems property are said to be **quasi-statis** if the changes occur on time scales much longer than the relaxation time such that the system remains in equilibrium at all times.

To ensure thermodynamics is a self-consistent description of macroscopic systems in thermal equilibrium we must assume that the differential changes δW are quasi-static. This also ensures that we can describe the state of such a thermodynamic system by a set of thermodynamic coordinates at all times.

Depending on the macroscopic generalized force, the work necessary to transfer a thermodynamic system in complete thermodynamic equilibrium from state A to state B might or might not depend on the path taken. For example, if γ_1 and γ_2 are two paths from state A to state B, it is possible that $\int_{\gamma_1} \delta W \neq \int_{\gamma_2} \delta W$. (Note that this justifies the use of the notation δW over dW, which would denote an exact differential)

Conservative Forces

Recall 1.1.2. Recall that a conservative force is a force \vec{F} with an associated potential energy function E such that $\vec{F} = \nabla E$.

Proposition 1.1.1. If the macroscopic generalized force \vec{J} , depending on m generalized coordinates q_i , is conservative with potential energy E_{pot} which is twice continuously differentiable and the domain of integration is simply connected, then the following are equivalent:

- $\vec{J}(\vec{q}) = -\nabla E_{pot}(\vec{q})$
- dW is an exact differential form, so

$$\int_{\gamma} dW = \int_{\gamma} \vec{J} \cdot d\vec{r}$$

depends only on the endpoints of γ .

• For any simple closed path γ ,

$$\oint_{\gamma} dW = \oint_{\gamma} \vec{J} \cdot d\vec{r} = 0$$

• The curl of \vec{J} is trivial over the domain of integration

$$\nabla imes \vec{J} = 0$$

provided that m = 3

• For all $i, j \in \{1, 2, ..., m\}$, we have that

$$\frac{\partial J_i}{\partial q_i} - \frac{\partial J_j}{\partial q_i} = 0$$

• The differential dW is exact, and we have that

$$dW = -\nabla E_{pot} \cdot d\vec{r} = -\sum_{i=1}^{m} \frac{\partial E_{pot}}{\partial q_i} dq_i = -dE_{pot}$$

Definition 1.1.8. For a function $A(q_1, q_2, ..., q_m)$ the <u>total differential</u> or <u>exact differential</u> of A is given by

$$dA = \sum_{i=1}^{m} \frac{\partial A}{\partial q_i} dq_i$$

This corresponds to a generalized chain rule:

$$\frac{dA}{dt} = \nabla A \cdot \frac{d}{dt}\vec{q} = \sum_{i=1}^{m} \frac{\partial A}{\partial q_i} \frac{dq_i}{dt}$$

called the **total derivative** of A with respect to t. An exact differential corresponds to an **integrable differential form**:

$$\int_{\gamma} \sum_{i=1}^{m} rac{\partial A}{\partial q_i} dq_i = \int_{\gamma} dA = A(ec{q}_f) - A(ec{q}_i)$$

where \vec{q}_i and \vec{q}_f are the initial and final point of the path γ , respectively.

Consequently, an integrable, or exact, differential form does not depend on the path taken and in physics we would consider A to be a potential function.

Note 1.1.3. For non-conservative forces, δW is an *inexact differential form*.

Theorem 1.1.2. A differential form

$$\delta A \equiv \sum_{i=1}^{m} a_i(q_1, q_2, ..., q_m) dq_i$$

for functions $a_i:D\subseteq\mathbb{R}^m\to\mathbb{R}$ is exact if and only if

$$\frac{\partial a_i}{\partial q_j} = \frac{\partial a_j}{\partial q_i}$$

for all $i, j \in \{1, 2, ..., m\}$.

Definition 1.1.9. An integrating factor μ is a factor that makes an inexact differential form exact upon multiplication.

Theorem 1.1.3. For m=2, an integrating factor always exists. Specifically, for $\delta A=a_1dx_1+a_2dx_2$, we can define $df:=\mu\delta A=(\mu a_1)dx_1+(\mu a_2)dx_2$, with μ determined non-uniquely by the equation

$$\frac{\partial(\mu a_1)}{\partial x_2} = \frac{\partial(\mu a_2)}{\partial x_1}$$

1.2.0 Heat and the 1st Law of Thermodynamics

Definition 1.2.1. Recall that work corresponds to the change in energy of a thermodynamic system by a <u>macroscopically forced process</u>. On the other hand the <u>heat</u> Q is the energy added to or removed from a thermodynamic system by a **spontaneous process**.

For example, consider the energy transfer between a cooking plate and a pot of water. The origin of this type of process lies in the underlying microscopic dynamics, which we will explore using Statistical Mechanics.

Law (First Law of Thermodynamics). For an isolated thermodynamic system, the total <u>internal energy</u> U is a constant and dU = 0. By the definition of internal energy, dU is an exact differential; consequently, U should be unique for a given state. For various systems we have the following:

- For a closed system, $dU = \delta Q + \delta W$.
- For an open system, $dU = \delta Q + \delta W + \delta E_c$, with

$$\delta E_c := \sum_{i=1}^{\alpha} \mu_i dN_i$$

where N_i is the number of particles of type i and μ_i is the **chemical potential** associated with particles of type i for all $1 \le i \le \alpha$ with α being the number of different particle types. The chemical potential corresponds to the energy needed to add a particle of type i to a given thermodynamic system while no other type of energy is exchanged, which is to say $\delta W = 0$ and $\delta Q = 0$.

In summary, the empirical first law is a reformulation of the conservation of energy and requires the inclusion of heat.

Thermodynamical Systems

Thermodynamical Potentials and Equilibrium

Part II Statistical Mechanics

Microstates and Entropy

Ensemble Theory and Free Energy

Boltzmann Statistics and the Canonical Ensemble

Breakdown of Classical Statistical Mechanics

Part III Probability Theory

Characteristics of Probability Theory

Continuous Random Variables and the Gaussian Distribution

Information and Entropy

Part IV

Real Gases and Phase Transitions

Kinetic Theory of Gases

Classification of Phase Transitions

Part V Quantum Statistics

Quantum States

Ideal Quantum Gases

Appendices