Groupes et Anneaux II — TDs

Ιv	an	Leje	eune
28	ian	vier	2025

Table des matières												
TD1 — qqch												2

TD1 — qqch

Exercice 1.1.

1. Soit Ω un ensemble muni d'une tribu \mathscr{F} et $x \in \Omega$. Montrer que

$$\delta_x(A) = \mathbb{1}_A(x)$$

définit une probabilité sur (Ω, \mathcal{F}) .

2. Soit $(\mathbb{P}_n)_{n\geq 1}$ une suite de mesures de probabilité sur un espace mesurable (Ω, \mathscr{F}) et $(a_n)_{n\geq 1}$ une suite de réels dans [0,1] telle que

$$\sum_{n=1}^{\infty} a_n = 1.$$

Montrer que

$$\sum_{n=1}^{\infty} a_n \mathbb{P}_n$$

est une probabilité sur (Ω, \mathcal{F}) .

3. Soit I un intervalle de $\mathbb R$ de mesure de Lebesgue $\lambda(I)$ finie et strictement positive. Montrer que

$$\mathbb{P}(A) = \frac{\lambda(A)}{\lambda(I)}$$

définit une probabilité sur $(I, \mathcal{B}(I))$.

4. Soit $(\Omega, \mathscr{F}, \mu)$ un espace mesuré (pas forcément de probabilité) et $f:\Omega \to [0, \infty[$ une fonction mesurable telle que

$$\int_{\Omega} f(\omega) \, d\mu(\omega) = 1.$$

Montrer que l'application

$$\mathbb{P}: \mathscr{F} \to \mathbb{R}$$
$$A \mapsto \int_{\Omega} f(\omega) \mathbb{1}_{A}(\omega) \, d\mu(\omega)$$

est une probabilité sur (Ω, \mathcal{F}) .

Solution. test