

Srinivasan Kannan <shrinivas.kannan@gmail.com>

Dictatorship Vs Democracy

Shrinivas Kannan <shrinivas.kannan@gmail.com>

Fri, May 26, 2006 at 2:22 PM

To: gstars@googlegroups.com

I was thinking last night on the relative merits of dicatorship vis-a-vis democracy in terms of probabilistic methods and the results were interesting:

1) Democracy:

Let us assume there are 2n people in a country and they need to elect a ruler in an election. A candidate getting majority (n + 1 votes) will be winner.

Question: What is the probability that people have made a good choice? (i.e elected a good ruler) Answer: Probability of each voter making a good decision is p and bad decision is 1 - p ($0 \le p \le 1$). So the for an elected candidate to be a good choice, atleast n + 1 people should have made a good decision. So.

probability of a good choice = $p^{(n+1)}(1-p)^{(n-1)} + p^{(n+2)}(1-p)^{(n-2)} + + p^{(2n)} <= due to "atleast"$ n+1" clause

```
= p^{(n+1)*(1-p)^{(n-1)}}[1 + p/(1-p) + p^{2}/(1-p)^{2} + .....+p^{(n-1)}/(1-p)^{(n-1)}]
= p^{(n+1)*(1-p)^{(n-1)}}[1 + r + r^2 + r^3 + ... + r^{(n-1)}] where r = p/(1-p)
```

Assuming p = 1/2 (most likely in a bipartisan democracy), r becomes 1, so, $= (1/2)^{(2n)} [n]$

```
= n / 2^{(2n)}
```

=> As n tends to infinity (i.e population grows as in India), the probability of good choice tends to zero. Even for minimum value of n = 1 (i.e population of two), we get 25% chance of electing a good candidate which is less than the probability of a good dictator (below). (I have ignored n = 1/2 which will give you value of population 1, but that would mean there is only one voter which is a monopoly)

2) Dictatorship: the probability is fixed at 50% (He/She can be either good or bad irrespective of the population)

So is democracy mathematically inferior to dictatorship?

regards

Shrinivas Kannan

It is not worth an intelligent man's time to be in the majority. By definition, there are already enough people to do that.

-G. H. Hardy

Shrinivas Kannan <shrinivas.kannan@gmail.com>

Mon, May 29, 2006 at 10:06 AM

To: gstars@googlegroups.com

Just a small correction in this calculation:

I did a mistake by not selecting the population (i.e if n+k people make good choice, I have to select n+k people out of 2n people using combinations, which I did not do).

```
Skipping the calculations, the revised probability of good choice is:
P(good) = \{(2n)! / 4^n \} * \{ 1/[(n+1)!(n-1)!] + 1/[(n+2)!(n-2)!] + \dots + 1/[(n+n)!(n-n)!] \}
```

```
For n = 1, P(good) = \{2!/4\} * \{1/2\} = 1/4 = 25\%
```

I could not sum the above series to get a closed form..It will be interesting to see what percentage this converges to (if it does).

regards Shrinivas Kannan [Quoted text hidden]