Einführung in die Algebra

BLATT 4

Jendrik Stelzner

14. November 2013

Aufgabe 4.1.

Sei G eine Gruppe der Ordnung 8. Gibt es ein $g \in G$ mit ord g = 8, so ist $\langle g \rangle = G$, also G zyklisch, und daher $G \cong \mathbb{Z}/8\mathbb{Z}$. Es wird im Folgenden davon ausgegangen, dass kein solches Element in G existiert.

Zunächst wird der Fall untersucht, dass G abelsch ist (G wird hierfür additiv geschrieben): Durch eine Reihe von Fallunterscheidungen finden wir eine Untergruppe $H\subseteq G$ der Ordnung 4 und ein Element $g\in G-H$ der Ordnung 2:

Da G eine 2-Gruppe der Ordnung 8 ist, gibt es, wie aus der Vorlesung bekannt, eine Untergruppe $H'\subseteq G$ mit ord H'=4. Sei $g'\in G-H$. Ist ord g'=2, so sei H=H' und g:=g'. Ist ord g'=4, so wird zwischen zwei Fällen unterschieden: Ist $2g'\not\in H'$, so sei H:=H' und g:=2g'. Ist ord g=4, so wird erneut zwischen zwei Fällen unterschieden: Bekanntermaßen ist entweder $H'\cong \mathbb{Z}/4\mathbb{Z}$ oder $H'\cong \mathbb{Z}/2\mathbb{Z}$. Ist $H'\cong \mathbb{Z}/4\mathbb{Z}$, so ist $H'=\langle a\rangle$ für ein $a\in H'$. Da $2g'\in H$ mit ord 2g'=2 muss 2g'=2a. Es sei in diesem Fall H:=H' und g:=a+g'. Ist $H'\cong \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$, so gibt es neben 2g' noch ein weiteres $a\in H'$ mit ord a=2. Es sei dann $H:=\langle g'\rangle$ und g:=a.

Es ist nun ord $G=\operatorname{ord} H\cdot\operatorname{ord}\langle g\rangle$ sowie $H\cap\langle g\rangle=1$, wobei 1 die triviale Gruppe bezeichnet. Da G kommutativ ist, sind H und $\langle g\rangle$ beide normal in G. Es ist daher (wie bereits letzte Woche gezeigt), dass

$$G \cong H \times \langle g \rangle \cong H \times \mathbb{Z}/2\mathbb{Z}.$$

Da ord H=4 ist $H\cong \mathbb{Z}/4\mathbb{Z}$ oder $H\cong \mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}$, und folgt daraus, dass

$$G \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
 oder $G \cong (\mathbb{Z}/2\mathbb{Z})^3$.

Es wird nun der Fall untersucht, dass G nicht abelsch ist: Da G nicht abelsch ist, gibt es ein $a \in G$ mit $a^2 \neq 1$. Da ord a ein Teiler von ord G=8 ist, muss dabei ord a=4. Es ist also $\langle a \rangle = \{1, a, a^2, a^3\}$. Da $(G:\langle a \rangle) = 2$ ist $\langle a \rangle$ normal in G. Sei $b \in G - \langle a \rangle$. Da $\langle a \rangle \subsetneq \langle a, b \rangle \subseteq G$ muss $G=\langle a, b \rangle$, da ord $\langle a, b \rangle >$ ord $\langle a \rangle = 4$, also ord $\langle a, b \rangle = 8$. Es ist also

$$G = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}.$$

Insbesondere kommutieren a und b nicht miteinander, da G sonst abelsch wäre. Da $\langle a \rangle$ normal in G ist, ist $bab^{-1} \in \langle a \rangle$. Da ord $bab^{-1} = \text{ord } a$ muss $bab^{-1} = a$ oder $bab^{-1} = a^3$. Da aber $bab^{-1} = a \Leftrightarrow ba = ab$ muss $bab^{-1} = a^3$, also $ba = a^3b$. Für $b + \langle a \rangle \in G/\langle a \rangle$ ist $b + \langle a \rangle \neq 1 + \langle a \rangle$, da $b \notin \langle a \rangle$, wegen ord $G/\langle a \rangle = 2$ jedoch

 $b^2+\langle a \rangle=(b+\langle a \rangle)^2=1+\langle a \rangle$, also $b^2\in\langle a \rangle$. Da ord b=2 oder ord b=4 ist ord $b^2=1$ oder ord $b^2=2$. Also muss $b^2=1$ oder $b^2=a^2$. Es wird nun zwischen diesen beiden Fällen unterschieden:

Ist $b^2 = 1$, so ist die G durch die Eigenschaften

ord
$$a = 4$$
, ord $b = 2$, $G = \langle a, b \rangle$, $ba = a^3b$ (1)

bereits eindeutig charakterisiert: Aus diesen Bedingungen ergibt sich für G durch direktes Ausrechnen die Verknüpfüngstabelle

	1	b	a	ab	a^2	a^2b	a^3	a^3b
1	1	b	a	ab	a^2	a^2b	a^3	a^3b
b	b	1	a^3b	a^3	a^2b	a^2	ab	a
a	a	ab	a^2	a^2b	a^3	a^3b	1	b
ab	ab	a	b	1	a^3b	a^3	a^2b	a^2
a^2	a^2	a^2b	a^3	a^3b	1	b	a	ab
a^2b	a^2b	a^2	ab	a	b	1	a^3b	a^3
a^3	a^3	a^3b	1	b	a	ab	a^2	a^2b
a^3b	a^3b	a^3	a^2b	a^2	ab	a	b	1

Insbesondere ist G durch diese Bedingungen bis auf Isomorphie eindeutig bestimmt, d.h. für jede Gruppe H, in der es Element g,h gibt, die (1) erfüllen, ist zu G isomorph. Daraus ergibt sich, dass $G\cong D_4$: Für $\sigma,\tau\in\mathfrak{S}_4$ mit

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix} \text{ und } \tau = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix}$$

ist $\sigma^4=\tau^2=$ id, $G=\langle\sigma,\tau\rangle$ sowie $\tau\sigma=\sigma^3\tau$. Also ist $G\cong D_4$. Im Fall $b^2=a^2$ geht man analog vor: Durch die Bedingungen

ord
$$a = 4$$
, $b^2 = a^2$, $G = \langle a, b \rangle$, $ba = a^3b$ (2)

ergibt sich die Verknüpfungstabelle

	1	b	a	ab	a^2	a^2b	a^3	a^3b
1	1	b	a	ab	a^2	a^2b	a^3	a^3b
b	b	a^2	a^3b	a	a^2b	1	ab	a^3
a	a	ab	a^2	a^2b	a^3	a^3b	1	b
ab	ab	a^3	b	a^2	a^3b	a	a^2b	1
a^2	a^2	a^2b	a^3	a^3b	1	b	a	ab
a^2b	a^2b	1	ab	a^3	b	a^2	a^3b	a
a^3	a^3	a^3b	1	b	a	ab	a^2	a^2b
a^3b	a^3b	a	a^2b	1	ab	a^3	b	a^2

In diesem Fall ergibt sich, dass $G\cong Q_8$, wobei Q_8 die Quaternionengruppe bezeichnet (in der Form in der sie auf dem ersten Übungszettel angegeben war), da Q_8 die Bedingungen (2) erfüllt: Für $I,J\in Q_8$ ist ord I=4, $I^2=-E=J^2$ sowie $JI=-IJ=I^3J$.

Aufgabe 4.2.

(i)

Es ist nach Definition

$$\operatorname{ord} \pi = \min\{n \in \mathbb{N}, n \ge 1 : \pi^n = \operatorname{id}\}. \tag{3}$$

Die x_i paarweise verschieden, und $\pi(x_i) = x_{i+1}$ für $i = 1, \ldots, r-1$ und $\pi(x_r) = x_1$. Daher ist für $n = 1, \ldots, r-1$

$$\pi^n(x_1) = x_{1+n} \neq x_1,$$

also $\pi^n \neq id$. Da allerdings für $i = 1, \ldots, n$

$$\pi^r(x_i) = x_i$$

ist ord $\pi = r$ nach (3). Analog ergibt sich, dass ord $\tau = s$.

Da π und τ fremd sind, kommutieren sie miteinander (aus der Vorlesung bekannt). Es kommutieren daher π^n und τ^m ist daher für alle $n, m \in \mathbb{N}$, da

$$\pi^{n} \tau^{m} = \prod_{i=1}^{n} \pi \cdot \prod_{i=1}^{m} \tau = \tau \cdot \prod_{i=1}^{n} \pi \cdot \prod_{i=1}^{m-1} \tau = \tau^{2} \cdot \prod_{i=1}^{n} \pi \cdot \prod_{i=1}^{m-2} \tau$$
$$= \dots = \prod_{i=1}^{m-1} \tau \cdot \prod_{i=1}^{n} \pi \cdot \tau = \prod_{i=1}^{m} \tau \cdot \prod_{i=1}^{n} \pi = \tau^{m} \pi^{n}.$$

Auch folgt aus der Fremdheit von π und τ , dass $\langle \pi \rangle \cap \langle \tau \rangle = 1$: Für $\sigma \in \langle \pi \rangle \cap \langle \tau \rangle$ ist $\pi^n = \sigma = \tau^m$ für passende $n, m \in \mathbb{N}$ mit $0 \le n \le r-1$ und $0 \le m \le s-1$. Es ist dann für $i=1,\ldots,r$

$$x_i = \pi^r(x_i) = \pi^{r-n}(\pi^n(x_i)) = \pi^{r-n}(\tau^m(x_i)) = \pi^{r-n}(x_i),$$

weshalb r-n ein Teiler von r sein muss; wegen $r-n \le r$ muss also r-n=r und daher n=0 und $\sigma=\pi^n=\mathrm{id}$.

Für alle $t \in \mathbb{N}, t \geq 1$ mit $(\pi \tau)^t = \mathrm{id}$ ist

$$\pi^t \tau^t = (\pi \tau)^t = \mathrm{id},$$

also $\pi^t=(\tau^t)^{-1}=\tau^{s-t}\in\langle\tau\rangle$. Wie oben bemerkt ist daher $\pi^t=\operatorname{id}$, also t ein Vielfaches von ord $\pi=r$. Analog ergibt sich, dass t auch ein Vielfaches von ord $\tau=s$ ist. Also ist $t\geq \operatorname{kgV}(r,s)$. Andererseits ist

$$(\pi\tau)^{\mathrm{kgV}(r,s)} = \pi^{\mathrm{kgV}(r,s)} \tau^{\mathrm{kgV}(r,s)} = \mathrm{id}^2 = \mathrm{id}$$
.

Also ist ord $\pi \tau = \text{kgV}(r, s)$.

(ii)

Es ist

$$\sigma := \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 4 & 1 & 10 & 11 & 8 & 9 & 7 & 2 & 3 & 6 & 5 \end{pmatrix}$$
$$= \underbrace{\begin{pmatrix} 1 & 4 & 11 & 5 & 8 & 2 \end{pmatrix}}_{=:\pi} \underbrace{\begin{pmatrix} 3 & 10 & 6 & 9 \end{pmatrix}}_{=:\tau}.$$

Nach Aufgabenteil (i) ist ord $\pi=6$ und ord $\tau=4$. Da π und τ fremde Zykeln sind ist daher

$$\begin{split} \sigma^{2013} &= (\pi\tau)^{2013} = \pi^{2013} \; \tau^{2013} = \pi^3 \tau \\ &= \begin{pmatrix} 1 & 4 & 11 & 5 & 8 & 2 \end{pmatrix}^3 \begin{pmatrix} 3 & 10 & 6 & 9 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 2 & 11 \end{pmatrix} \begin{pmatrix} 4 & 8 \end{pmatrix} \begin{pmatrix} 3 & 10 & 6 & 9 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 5 & 11 & 10 & 8 & 1 & 9 & 7 & 4 & 3 & 6 & 2 \end{pmatrix}. \end{split}$$

Aufgabe 4.3.

Da es in \mathfrak{S}_1 keine Transpositionen gibt, wird im Folgenden der Fall $n \geq 2$ betrachtet. Wie aus der Vorlesung bekannt bilden die Transpositionen ein Erzeugendensystem von \mathfrak{S}_n . Es sind hierfür jedoch schon die Transpositionen τ_m der Form $\tau_m := \begin{pmatrix} 1 & m \end{pmatrix}$ mit $m \in \{2, \dots, n\}$ ausreichend, da sich jede Transposition $(a, b) \in \mathfrak{S}_n$ als

$$(a \quad b) = \tau_a \tau_b \tau_a$$

schreiben lässt. φ ist also durch die Bilder dieser n-1 Transpositionen bereits eindeutig bestimmt.

Die τ_m kommutieren nicht miteinander, da für $m, m' \in \{2, \dots, n\}$ mit $m \neq m'$

$$\tau_{m'}\tau_m = \begin{pmatrix} m & m' & 1 \end{pmatrix} \neq \begin{pmatrix} m' & m & 1 \end{pmatrix} = \tau_m \tau_{m'}.$$

Daraus folgt, dass auch die Transpositionen der Form $\varphi(\tau_m)$ nicht miteinander kommutieren, also insbesondere nicht fremd zueinander sind: Gibt es $m,m'\in\{2,\ldots,n\}$ mit

$$\varphi(\tau_m)\varphi(\tau_{m'}) = \varphi(\tau_{m'})\varphi(\tau_m),$$

so ist

$$\varphi(\tau_m \tau_{m'}) = \varphi(\tau_m) \varphi(\tau_{m'}) = \varphi(\tau_{m'}) \varphi(\tau_m) = \varphi(\tau_{m'} \tau_m),$$

wegen der Injektivität von φ also $\tau_m \tau_{m'} = \tau_{m'} \tau_m$ und daher m = m'.

Für $m \in \mathbb{N}$ seien $a_m, b_m \in \{1, \ldots, n\}$ so dass $\varphi(\tau_m) = \begin{pmatrix} a_m & b_m \end{pmatrix}$. Da die τ_m paarweise verschieden sowie nicht fremd sind, gibt es wegen der Injektivität von φ für alle $m, m' \in \{2, \ldots, m\}$ genau ein $i \in \{a_m, b_m\}$ genau ein $j \in \{a_{m'}, b_{m'}\}$ mit i = j.

Behauptung 1. Es ist $\bigcap_{m=2}^{n} \{a_m, b_m\} \neq \emptyset$.

Beweis. Für $n\in\{2,3\}$ ist nichts zu zeigen. Sei daher $n\geq 4$. Angenommen, die Behauptung gilt nicht. Sei $m_0:=\min\{k\in\{2,\dots,n\}:\bigcap_{m=2}^k\{a_m,b_m\}\}$. Da τ_2 und τ_3 nicht fremd sind, ist $m_0\geq 4$. Wegen der Minimalität von m_0 gibt ein $a\in\{1,\dots,n\}$

 $\{1,\ldots,n\}$, so dass $a\in\{a_m,b_m\}$ für alle $m\in\{2,\ldots,m_0-1\}$. Da die τ_m paarweise verschieden sind gibt es auch $c_2,\ldots,c_{m_0-1}\in\{1,\ldots,n\}$ mit $\{a_m,b_m\}=\{a,c_m\}$ für alle $m\in\{2,\ldots,m_0-1\}$. Nach Definition von m_0 muss $a\not\in\{a_{m_0},b_{m_0}\}$. Da jedoch τ_{m_0} nicht fremd zu t_2 und τ_3 ist, muss $c_2,c_3\in\{a_{m_0},b_{m_0}\}$, da c_2 und c_3 verschieden sind also $\{a_{m_0},b_{m_0}\}=\{c_2,c_3\}$. Es ist also

$$\varphi(\tau_{m_0}) = \begin{pmatrix} a_{m_0} & b_{m_0} \end{pmatrix} = \begin{pmatrix} c_2 & c_3 \end{pmatrix} = \begin{pmatrix} a & c_2 \end{pmatrix} \begin{pmatrix} a & c_3 \end{pmatrix} \begin{pmatrix} a & c_2 \end{pmatrix}$$
$$= \varphi(\tau_2)\varphi(\tau_3)\varphi(\tau_2) = \varphi(\tau_2\tau_3\tau_2),$$

wegen der Injektivität von φ deshalb

$$(1 m_0) = \tau_{m_0} = \tau_2 \tau_3 \tau_2 = (1 2) (1 3) (1 2) = (2 3).$$

Dies ist offenbar ein Widerspruch, was die Behauptung zeigt.

Seien $c_1,\ldots,c_n\in\{1,\ldots,n\}$ paarweise verschieden, so dass $\{a_m,b_m\}=\{c_1,c_m\}$ für alle $m\in\{2,\ldots,m\}$; die Existenz entsprechender Elemente folgt aus der Behauptung 1 und der Fremdheit der τ_m . $\pi\in\mathfrak{S}_n$ sei definiert als

$$\pi(c_1) := 1 \text{ und } \pi(c_m) := m \text{ für alle } m \in \{2, \dots, n\}.$$

Durch direktes Nachrechen ergibt sich nun, dass $\varphi=\inf_{\pi}$, also $\varphi(x)=\pi^{-1}\cdot x\cdot \pi$ für alle $x\in\mathfrak{S}_n$. Wie zu Beginn bemerkt genügt es dies für die τ_m zu zeigen. Da für alle $m\in\{2,\ldots,n\}$

$$\varphi(\begin{pmatrix} 1 & m \end{pmatrix}) = \begin{pmatrix} c_1 & c_m \end{pmatrix} = \pi^{-1} \begin{pmatrix} 1 & m \end{pmatrix} \pi$$

ist dies der Fall. Es ist also $\varphi = \operatorname{inn}_{\pi}$.

Aufgabe 4.4.

Sei $n \in \mathbb{N}$ beliebig aber fest. Da [G,G] eine Untergruppe von G ist, ist $1 \in [G,G]$, also $1 \in G_n$, da $1^n = 1 \in [G,G]$. Für alle $g \in G_n$ ist wegen $g^n \in [G,G]$ auch $(g^{-1})^n = (g^n)^{-1} \in [G,G]$, also $g^{-1} \in G_n$. Dass für $g,h \in G_n$ auch $gh \in G_n$ ergibt sich mithilfe der folgenden Bemerkung.

Bemerkung 2. Sei G eine Gruppe und seien $g, h \in G$. Dann ist für alle $n \in \mathbb{N}$

$$(gh)^n = g^n h^n c \text{ mit } c \in [G, G].$$

Beweis. Der Beweis verläuft per Induktion über n.

Induktionsanfang. Sei n = 0. Dann ist

$$(gh)^n = (gh)^0 = 1 = 1 \cdot 1 \cdot 1 = g^0 g^0 \cdot 1 = g^n h^n \cdot 1.$$

Induktionsschritt. Sei $n\geq 1$ und gelte die Aussage für n-1. Nach Induktionsvoraussetzung gibt es ein $c\in [G,G]$ mit $(gh)^{n-1}=g^{n-1}h^{n-1}c$. Es ist daher

$$\begin{split} (gh)^n &= gh(gh)^{n-1} = ghg^{n-1}h^{n-1}c \\ &= g^nh\left[h^{-1},g^{1-n}\right]h^{n-1}c = g^nh^n\left[h^{-1},g^{1-n}\right]\left[\left[h^{-1},g^{1-n}\right]^{-1},h^{1-n}\right]c. \end{split}$$

Da $\left[G,G\right]$ eine Untergruppe von G ist, ist

$$\left[h^{-1},g^{1-n}\right] \left[\left[h^{-1},g^{1-n}\right]^{-1},h^{1-n}\right] c \in [G,G]. \eqno \Box$$

Da [G,G] ein Untergruppe von G ist, und $g^n,h^n\in [G,G]$, ist mit $c\in [G,G]$ mit $(gh)^n=g^nh^nc$ auch $(gh)^n=g^nh^nc\in [G,G]$.

Es gilt noch zu zeigen, dass G_n normal in G ist, dass also für $g \in G_n$ und $h \in G$ auch $hgh^{-1} \in G_n$. Da $g^n \in [G,G]$ und [G,G] normal in G ist, gilt

$$(hgh^{-1})^n = h(g^n)h^{-1} \in [G, G],$$

also auch $hqh^{-1} \in G_n$.

Aufgabe 4.5.

Da ord[G,G]=2 ist $[G,G]=\{1,\sigma\}$ für ein selbstinverses $\sigma\in G.$ G ist nicht abelsch, denn sonst wäre [G,G]=1. G ist insbesondere nichttrivial.

Für alle $g \in G$ ist $g^2 \in Z$, wobei Z das Zentrum von G bezeichnet: Es ist für alle $h \in G$

$$g^{2}h = ghg \left[g^{-1}, h^{-1}\right] = hg \left[g^{-1}, h^{-1}\right] g \left[g^{-1}, h^{-1}\right]$$
$$= hg \left[g^{-1}, h^{-1}\right] \left[h^{-1}, g\right] g,$$
(4)

da

$$g[g^{-1}, h^{-1}] = gg^{-1}h^{-1}gh = h^{-1}gh = h^{-1}ghg^{-1}g = [h^{-1}, g]g.$$

Es ist nun

$$\left[g^{-1},h^{-1}\right]=1\Leftrightarrow g^{-1}\in Z_{\{h^{-1}\}}\Leftrightarrow g\in Z_{\{h^{-1}\}}\Leftrightarrow \left[h^{-1},g\right]=1,$$

da $Z_{\{h^{-1}\}}$ eine Untergruppe von G ist. Da $\operatorname{ord}[G,G]=2$ und $\left[g^{-1},h^{-1}\right],\left[g,h^{-1}\right]\in [G,G]$ folgt daraus, dass $\left[g^{-1},h^{-1}\right]=\left[g,h^{-1}\right]$, und da jedes Element in [G,G] selbst-invers ist, auch $\left[g^{-1},h^{-1}\right]\left[g,h^{-1}\right]=1$. Aus (4) folgt daher, dass $g^2h=hg^2$. Aus der Beliebigkeit von h folgt damit $g^2\in Z$. Da Z= Ker inn folgt daraus, dass $\operatorname{inn}_g^2=\operatorname{inn}_{g^2}=\operatorname{id}$ für alle $g\in G$, dass also alle

Da Z= Ker inn folgt daraus, dass $\operatorname{inn}_g^2=\operatorname{inn}_{g^2}=\operatorname{id}$ für alle $g\in G$, dass also alle $\varphi\in\operatorname{Inn}(G)$ selbstinvers sind. Dies hat zwei wichtige Konsequenzen: Zum einen folgt aus der folgenden Bemerkung, dass ord $\operatorname{Inn}(G)$ gerade ist.

Bemerkung 3. Sei G eine nichttriviale Gruppe, so dass alle $g \in G$ selbstinvers sind. Dann ist ord G gerade.

Beweis. Da G nichttrivial ist, gibt es ein $g \in G - 1$. Da $g \neq 1$ selbstinvers ist, ist ord g = 2. Da ord g ein Teiler von ord G ist, ist ord G gerade.

Dass Inn(G) nichttrival ist, ergibt sich daraus, dass $\text{Inn}(G) \cong G/Z$. Wäre Inn(G) trivial, so wäre G=Z, also G abelsch.

Zum anderen folgt, da jedes $\varphi \in \operatorname{Inn}(G)$ selbstinvers ist, dass $\operatorname{Inn}(G) \cong G/Z$ abelsch ist. Wegen der entsprechenden Minimalitätseigenschaft von [G,G] folgt daraus, dass $[G,G]\subseteq Z$ eine Untergruppe ist. Da [G,G] normal in G ist, ist [G,G] auch normal Z. (Dies folgt auch aus der Kommutativität von Z.)

Aus dem zweiten Isomorphiesatz folgt nun, dass

$$G/Z \cong (G/[G,G])/(Z/[G,G]).$$

Insbesondere ist

$$\operatorname{ord} G/Z = \frac{\operatorname{ord} G/[G,G]}{\operatorname{ord} Z/[G,G]}.$$

Da ord $G/Z=\operatorname{ord} \operatorname{Inn}(G)$ gerade ist, ist also auch $(G:[G,G])=\operatorname{ord} G/[G,G]$ gerade.