Imperial College London

DEPARTMENT OF MATHEMATICS
IMPERIAL COLLEGE LONDON
Academic Year 2019-2020

Introduction to University Mathematics

MATH40001/MATH40009

Problem Sheet 3: Functions

- 1. Say X, Y and Z are sets, and $f: X \to Y$ and $g: Y \to Z$ are functions. In lectures we proved that if f and g are injective, then $g \circ f$ is also injective, and we will prove on Monday that if f and g are surjective, then $g \circ f$ is surjective. But what about the other way?
 - (a) If $g \circ f$ is injective, then is f injective? Give a proof or a counterexample.
 - (b) If $g \circ f$ is injective, then is g injective? Give a proof or a counterexample.
 - (c) If $g \circ f$ is surjective, then is f surjective? Give a proof or a counterexample.
 - (d) If $g \circ f$ is surjective, then is g surjective? Give a proof or a counterexample.
- 2. For each of the following functions, decide whether or not they are injective, surjective, bijective. Proofs required!
 - (a) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 1/x if $x \neq 0$ and f(0) = 0.
 - (b) $f : \mathbb{R} \to \mathbb{R}, f(x) = 2x + 1.$
 - (c) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 1.
 - (d) $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3 x if the Riemann hypothesis is true, and f(x) = 2 + x if not. [NB the Riemann Hypothesis is a hard unsolved problem in mathematics; nobody currently knows if it is true or false.]
 - (e) $f: \mathbb{Z} \to \mathbb{Z}$, $f(n) = n^3 2n^2 + 2n 1$.
- 3. For each of the following "functions", explain why I just lost a mark.
 - (a) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 1/x.
 - (b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x}$.
 - (c) $f: \mathbb{Z} \to \mathbb{Z}, f(n) = (n+1)^2/2.$
 - (d) $f: \mathbb{R} \to \mathbb{R}$, f(x) is a solution to $y^3 y = x$.
 - (e) $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $f(x) = 1 + x + x^2 + x^3 + \cdots$.
- 4. Prove the claim I will make in lecture on Monday, saying that if $f:X\to Y$ is a function, and $g:Y\to X$ is a two-sided inverse of f, then f is a two-sided inverse for g. Deduce that if X and Y are sets, and there exists a bijection from X to Y, then there exists a bijection from Y to X.
- 5. Let Z be a set. If $f: X \to Z$ and $g: Y \to Z$ are injective functions, let's say that f is friends with g if there is a bijection $h: X \to Y$ such that $f = g \circ h$. Prove that f is friends with g if and only if the image of f equals the image of g. NB: by the image of $f: X \to Z$ I mean the subset of Z consisting of things "hit" by f, in other words the set $\{z \in Z: \exists x \in X, f(x) = z\}$. Some people call this the "range" of f, although other people use "range" to mean the same thing as "codomain":-/