MITx:

Statistics, Computation & Applications

Genomics and High-Dimensional Data Module

Lecture 3: Clustering with Hig-Dimensional Data

DBSCAN

max min average

k-means

min max aveag distance between clustus

MITx:

Statistics, Computation & Applications

Genomics and High-Dimensional Data Module

Lecture 3: Clustering with Hig-Dimensional Data

Clustering

 Find groups, so that elements within cluster are very similar and elements between clusters are very different

Examples:

- Find customer groups to adjust advertisement
- Find subtypes of diseases to fine-tune treatment
- N samples, k clusters: k^N possible assignments
 - E.g., N = 100, k = 3: $3^{100} = 5 * 10^{47}$!! ⇒ impossible to search through all assignments

We will discuss:

- k-means clustering
- Gaussian mixture models
- Hierarchical clustering
- DBSCAN

K-means clustering

- K (fixed!) Clusters are obtained by minimizing some loss function
- Natural loss function given by within-groups sum of squares (WGSS):

$$W(C) = \sum_{k=1}^{K} \sum_{C(x^{(i)})=k} \sum_{C(x^{(j)})=k} d(x^{(i)}, x^{(j)})^{2}$$

• W(C) characterizes the extent to which observations assigned to the same cluster tend to be close to one another

K-means clustering

- K (fixed!) Clusters are obtained by minimizing some loss function
- Natural loss function given by within-groups sum of squares (WGSS):

$$W(C) = \sum_{k=1}^{K} \sum_{C(x^{(i)})=k} \sum_{C(x^{(j)})=k} d(x^{(i)}, x^{(j)})^{2}$$

- W(C) characterizes the extent to which observations assigned to the same cluster tend to be close to one another
- K-means clustering: $d(x^{(i)}, x^{(j)})^2 = ||x^{(i)} x^{(j)}||_2^2$
- Then WGSS becomes: $W(C) = \sum_{k=1}^K 2N_k \sum_{C(x^{(i)})=k} \|x^{(i)} \mu_k\|_2^2$

$$\frac{Claim}{C(x^{(i)})} = \frac{\sum_{\substack{(x^{(i)})=L\\ x^{(i)}}=L}}{|x^{(i)}-x^{(i)}||_{L^{2}}} = \frac{2n_{i}}{\sum_{\substack{(x^{(i)})=L\\ x^{(i)}}=L}} \frac{|x^{(i)}-x^{(i)}||_{L^{2}}}{|x^{(i)}-x^{(i)}||_{L^{2}}}$$

$$= \frac{\sum_{\substack{(x^{(i)})=L\\ x^{(i)}}=L}}{|x^{(i)}-x^{(i)}||_{L^{2}}} + \frac{|x^{(j)}-x^{(i)}||_{L^{2}}}{|x^{(i)}-x^{(i)}||_{L^{2}}} + \frac{2}{\sum_{\substack{(x^{(i)})=L\\ (x^{(i)})=L}}} \frac{|x^{(i)}-x^{(i)}||_{L^{2}}}{|x^{(i)}-x^{(i)}||_{L^{2}}}$$

$$= \frac{2}{\sum_{\substack{(x^{(i)})=L\\ (x^{(i)})=L}}} \frac{|x^{(i)}-x^{(i)}||_{L^{2}}}{|x^{(i)}-x^{(i)}||_{L^{2}}} = 0$$

$$= \frac{2}{\sum_{\substack{(x^{(i)})=L\\ (x^{(i)})=L}}} \frac{|x^{(i)}-x^{(i)}||_{L^{2}}}{|x^{(i)}-x^{(i)}||_{L^{2}}} = 0$$

K-means clustering

- K (fixed!) Clusters are obtained by minimizing some loss function
- Natural loss function given by within-groups sum of squares (WGSS):

$$W(C) = \sum_{k=1}^{K} \sum_{C(x^{(i)})=k} \sum_{C(x^{(j)})=k} d(x^{(i)}, x^{(j)})^{2}$$

- W(C) characterizes the extent to which observations assigned to the same cluster tend to be close to one another
- K-means clustering: $d(x^{(i)}, x^{(j)})^2 = ||x^{(i)} x^{(j)}||_2^2$
- Then WGSS becomes: $W(C) = \sum_{k=1}^K 2N_k \sum_{C(x^{(i)})=k} \|x^{(i)} \mu_k\|_2^2$
- Exact solution computationally infeasible
 - Use greedy algorithm
 - Use random restarts to avoid local optima
- Leads to spherical shaped clusters of similar radii

Choosing the number of clusters

- Run K-means clustering for several number of groups K
- Plot WGSS versus the number of groups
- Choose number of groups after the last big drop of the curve

Example:

Partitioning around medoids (PAM)

- K-Means: Cluster centers μ_k can be arbitrary points in space
 - ⇒ very sensitive to outliers!

Partitioning around medoids (PAM)

- K-Means: Cluster centers μ_k can be arbitrary points in space
 ⇒ very sensitive to outliers!
- Robust alternative: Partitioning around medoids (PAM)
 - Cluster center must be an observation ("medoid")
 - More robust against outliers
 - Also gives a representative object for each cluster (e.g., for easy interpretation)

Gaussian mixture model

Assume underlying statistical model:

$$P(x) = \sum_{k=1}^{K} P(\text{cluster } k) P(x \mid \text{cluster } k),$$
where $X \mid \text{cluster } k \sim \mathcal{N}(\mu_k, \Sigma_k)$

• Sample x is assigned to cluster k that maximizes $P(\text{cluster } k \mid x)$

Gaussian mixture model

Assume underlying statistical model:

$$P(x) = \sum_{k=1}^{K} \underbrace{P(\text{cluster } k)} P(x \mid \text{cluster } k),$$
 where $X \mid \text{cluster } k \sim \mathcal{N}(\mu_k, \Sigma_k)$
$$\sum_{k=1}^{K} \underbrace{P(\text{cluster } k)} P(x \mid \text{cluster } k),$$

- Sample x is assigned to cluster k that maximizes $P(\text{cluster } k \mid x)$
- Estimating P(cluster k), μ_k and Σ_k by maximum likelihood estimation is difficult (leads to a non-convex optimization problem)
- Parameter estimates are usually found using the Expectation-Maximization (EM) algorithm E-step: P(duste h | x(i)) = $\frac{A_i P(x^{(i)} | duste h)}{P(x^{(i)} | duste h)}$ $P_i = \frac{1}{A_i} \sum_{i=1}^{n} P(Cluste h | x^{(i)}) P(A|x^{(i)}) P(A|x^{(i)})$ $A_i = \sum_{i=1}^{n} x^{(i)} \frac{P(Cluste h | x^{(i)})}{\sum_{i=1}^{n} P(Cluste h | x^{(i)})} P(A|x^{(i)}) P(A|x^{(i)})$ Caroline Ublac (MIT)

Gaussian mixture model

Assume underlying statistical model:

$$P(x) = \sum_{k=1}^{K} P(\text{cluster } k) P(x \mid \text{cluster } k),$$

where $X \mid \text{cluster } k \sim \mathcal{N}(\mu_k, \Sigma_k)$

- Sample x is assigned to cluster k that maximizes $P(\text{cluster } k \mid x)$
- Estimating P(cluster k), μ_k and Σ_k by maximum likelihood estimation is difficult (leads to a non-convex optimization problem)
- Parameter estimates are usually found using the Expectation-Maximization (EM) algorithm
- Number of clusters is found for example by maximizing the Bayesian information criterion

BIC =
$$\log$$
-likelihood - $\frac{\log(n)}{2}$ · (# of parameters)

Clustering

 Find groups, so that elements within cluster are very similar and elements between clusters are very different

Examples:

- Find customer groups to adjust advertisement
- Find subtypes of diseases to fine-tune treatment
- N samples, k clusters: k^N possible assignments
 - E.g., N = 100, k = 3: $3^{100} = 5 * 10^{47}$!!
 - ⇒ impossible to search through all assignments

We will discuss:

- k-means clustering
- Gaussian mixture models
- Hierarchical clustering
- DBSCAN

Hierarchical clustering

- Agglomerative clustering: Build up clusters from individual observations
- Divisive clustering: Start with whole group of observations and split off clusters

Advantage of hierarchical clustering:

- Solve clustering for all possible numbers of cluster 1, 2, ..., n at once
- Choose desired number of clusters later

Examples of dissimilarity measures between samples

• Euclidean distance (i.e., ℓ_2 - norm)

$$d(x^{(i)}, x^{(j)}) = \sqrt{(x_1^{(i)} - x_1^{(j)})^2 + (x_2^{(i)} - x_2^{(j)})^2 + \dots + (x_p^{(i)} - x_p^{(j)})^2}$$

• Manhattan distance (i.e., ℓ_1 - norm)

$$d(x^{(i)}, x^{(j)}) = |x_1^{(i)} - x_1^{(j)}| + |x_2^{(i)} - x_2^{(j)}| + \dots + |x_p^{(i)} - x_p^{(j)}|$$

• Maximum distance (i.e., ℓ_{∞} - norm)

$$d(x^{(i)}, x^{(j)}) = \max_{k=1,\dots,p} |x_k^{(i)} - x_k^{(j)}|$$

• or more flexible dissimilarity satisfying

$$d(x^{(i)}, x^{(j)}) \ge 0, \ d(x^{(i)}, x^{(i)}) = 0, \ d(x^{(i)}, x^{(j)}) = d(x^{(j)}, x^{(i)})$$

Examples of dissimilarity measures between clusters

• single linkage (i.e., minimum distance)

$$d(C_r, C_s) = \min_{x^{(i)} \in C_r, x^{(j)} \in C_s} d(x^{(i)}, x^{(j)})$$

• complete linkage (i.e., maximum distance)

$$d(C_r, C_s) = \max_{x^{(i)} \in C_r, x^{(i)} \in C_s} d(x^{(i)}, x^{(j)})$$

• average linkage (i.e., average distance)

$$d(C_r, C_s) = \frac{1}{n_r} \frac{1}{n_s} \sum_{x^{(i)} \in C_r} \sum_{x^{(j)} \in C_s} d(x^{(i)}, x^{(j)})$$

How do the resulting clusters look like? Which one is which?

Choosing the number of clusters

- No strict rule
- Find the largest vertical "drop" in the tree

Example:

DBSCAN

E. distance between points to so corrected

K: core sharyth

Quality of clustering: Silhouette plot

Compute for each sample $x^{(i)}$:

- $a(x^{(i)})$ = average dissimilarity between $x^{(i)}$ and all other points in its cluster
- $b(x^{(i)})$ = average dissimilarity between $x^{(i)}$ and the closest cluster it does not belong to
- $S(x^{(i)}) \in [-1, 1]$ with

$$S(x^{(i)}) = \frac{(b(x^{(i)}) - a(x^{(i)}))}{\max(a(x^{(i)}), b(x^{(i)}))}$$

Quality of clustering: Silhouette plot

Compute for each sample $x^{(i)}$:

- $a(x^{(i)})$ = average dissimilarity between $x^{(i)}$ and all other points in its cluster
- $b(x^{(i)})$ = average dissimilarity between $x^{(i)}$ and the closest cluster it does not belong to
- $S(x^{(i)}) \in [-1, 1]$ with

$$S(x^{(i)}) = \frac{(b(x^{(i)}) - a(x^{(i)}))}{\max(a(x^{(i)}), b(x^{(i)}))}$$

Note: $S(x^{(i)})$ large: well clustered; $S(x^{(i)})$ small: badly clustered; $S(x^{(i)}) < 0$: assigned to wrong cluster

References

Chapter 14 in

 T. Hastie, R. Tibshirani, & J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2009.