LABORATORIO DE FUNDAMENTOS CIRCUITOS ELÉCTRICOS PRÁCTICA No. 05 AMPLIFICADORES OPERACIONALES INTEGRANTES PROFESOR GRUPO: INSTRUCTOR:

OBJETIVOS

- 1. Verificar la funcionalidad de un amplificador operacional mediante un experimento práctico.
- 2. Realizar algunas mediciones básicas por medio del DVM y un osciloscopio.

REQUISITOS

- Estudio de los manuales de operación de los equipos solicitados en esta guía (DVM, fuente de alimentación, generador y osciloscopio). En particular: principios de funcionamiento, modos de operación y precauciones para su uso.
- Conocer las normas de seguridad en el laboratorio.
- Fundamentos de amplificadores operacionales.

EQUIPO Y COMPONENTES NECESARIOS

- 1 Fuente de Voltaje.
- 1 Multímetro Digital.
- 1 Osciloscopio Digital
- 2 Puntas de osciloscopio
- 1 Generador de funciones
- 1 Cable BNC-Caimán
- 1 Protoboard.*
- 2 Amplificadores operacionales LM324 o LF347 (14-Pin PDIP / CDIP / SOIC)*
- 6 interruptores (o 1 dip switch de al menos 3 posiciones). *

Resistencias de 33 k Ω , 56 k Ω 3.9 k Ω , 15 k Ω , 10 k Ω , 82 k Ω , (dos de cada una a ¼ W)*

EQUIPOS UTILIZADOS

Registro de equipo.

Antes de iniciar la práctica, tome nota de esta información.

Nombre del Equipo	Marca	Modelo	No. de inventario
DVM			
Fuente de Voltaje			
Osciloscopio			
Generador de funciones			

¡En caso de duda consulte a su instructor!

^{*}A adquirir por el grupo de trabajo.

PROCEDIMIENTO

I. MONTAJE

- Utilice el generador de funciones para obtener una señal sinusoidal de valor pico de 3 V y frecuencia
 1 kHz. Visualice en el osciloscopio esta señal. Mida con el DVM su valor RMS.
- 2. Realice el montaje del circuito mostrado en la ¡Error! No se encuentra el origen de la referencia. en un protoboard. Utilice fuentes de ± 12V para polarizar los amplificadores. Verifique en la hoja de especificaciones de los amplificadores el pin-out o distribución de entradas y salidas del integrado. Antes de encender fuentes y generador solicite que el instructor de laboratorio verifique las conexiones del circuito.

Figura 1. Primer circuito a montar práctica No. 3

3. Visualice en el osciloscopio las señales obtenidas en los puntos V_{in} , V_1 , V_2 , V_3 y V_{out} , según las diferentes combinaciones de cada uno de los interruptores. Complete estos valores en la Tabla 1:

TT 11 4 3 5 1 1 1 1	14 * * 1*	4 11	4 14 1/ 1
Tabla I Mediciones de vo	ilfaje nico en divers	as niintas del circilita na	1 y obtención de ganancia
Tubia 1. Miculciones ac ve	maje pieo en arver	os puntos del circuito no.	i y obtención de gandifeia

S1	S2	S3	V1p	V2p	V3p	Voutp	Vout/Vin	20*log(Vout/Vin)
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

4. Realice el montaje del circuito mostrado en la Figura 2 en un protoboard. Utilice fuentes de ± 12V para polarizar los amplificadores. Antes de encender fuentes y generador solicite que el instructor de laboratorio verifique las conexiones del circuito.

Figura 2. Segundo circuito a montar práctica No. 3

5. Visualice en el osciloscopio las señales obtenidas en los puntos V_{in} , V_1 , V_2 y V_{out} , según las diferentes combinaciones de cada uno de los interruptores. Complete estos valores en la Tabla 2:

Tabla 2. Mediciones de voltaje pico en diversos puntos del circuito no. 2 y obtención de ganancia

S1	S2	S3	V1p	V2p	Voutp	Vout/Vin	20*log(Vout/Vin)
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito	No. 1?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito) No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito	o No. 2?	
¿Qué puede obse	ervar y concluir c	del funcionamie	ento del circuito	o No. 2?	