- 1. Co to znaczy, że metoda ma wykładnik zbieżności p. Co znaczy, że jest liniowa, a co, że kwadratowa. Zaproponuj efektywny algorytm obliczania pierwiastka z liczby w postaci $sm2^c$
- 2. Uzasadnić, że błąd interpolacji $\sin x + \cos x$ w $[-\pi/2,\pi/2]$ w jakiś zadanych węzłach o których wiemy, że P=0.12, jest mniejszy od $2\cdot 10^3$
- 3. KWadratury:
 - Jak wyrażają się kwadratury:

$$Q_n = \sum_{k=0}^n A_k^{(n)} x_k^{(n)}, k \in N$$

która dla dowlonego wielomianu $w \in \prod_{2n+1}$ spełnia dokładniej ...

$$Q_n = \int_{-1}^{1} \frac{w(x)}{\sqrt{1 - x^2}}$$

- Obliczyć współczynniki $A_k^{(2)} \ (k=0,1,2)$
- 4. Jaka jest ogólna postać wielomianu w (bez ograniczenia jego stopnia), interpolującego funkcję f w różnych punktach x_0, x_1, \ldots, x_n ?
- 5. Była podana jakaś funkcja i napisać, czy jest to NFSI3, z uzasadnieniem dla wszystkich warunków.
- 6. Co to są wielomiany ortogonalne, w jaki sposób można je wyznaczyć, do czego są używane w aproksymacji i do czego w całkowaniu numerycznym.
- 7. Uzasadnić, że $w=\frac{1}{2}$ jest pierwszym wielomianem optymalnym dla $\cos x$ w $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$.
- 8. Opisać konstrukcje tablicy Romberga i uzupełnić podaną tablicę.

$$T_{00} = 28.8112$$
 $T_{01} = \dots$
 $T_{10} = \dots$
 $T_{02} = 24.2328$
 $T_{11} = 23.9181$
 $T_{20} = \dots$
 $T_{13} = \dots$
 $T_{12} = \dots$
 $T_{21} = 23.9147$
 $T_{30} = \dots$

9. Niech f będzie funkcją podaną wzorem:

$$f(x) = 1410T_1(x) + 1525T_2(x) + 1683T_3(x) \ (x \in [-1, 1])$$

gdzie T_1, T_2, T_3 są wielomianami Czebyszewa. Dla jakich stałych rzeczywistych a, b, c wielkość

$$E(a, b, c) = \max_{-1 \le x \le 1} |f(x) - c - bx - ax^{2}|$$

przyjmuje najmniejszą wartość?

- 10. Wyznaczyć pierwszy wielomian opytmalny dla funkcji $f(x) = \frac{1}{x+3}$ w sensie aproksymacji jednostajnej w przedziale [-1,1].
- 11. Dla jakich wartości A, B, C równość

$$\int_{-1}^{1} f(x)dx = Af(-1) + Bf(0) + Cf(1)$$

zachodzi dla dowolnego wielomianu f stopnia co najwyżej piątego?

12. Funkcja sklejana 3 stopnia:

- Jak definujemy NFSI3,
- Ile działań wymaga obliczenie NFSI3 interpolującej funkcje w n+1 punktach,
- Jaki jest koszt obliczenia wartośći w 100 puntach,
- Jakie są zalety NFSI3 w porównaniu z wielomianem interpolacyjnym.
- 13. Uzasadnić, że $w(x) = x^2 \frac{1}{8}$ jest drugim wielomianem optymalnym dla funkcji $f(x) = x^4$ w sensie aproksymacji jednostajnej na przedziale [-1,1]
- 14. Niech f będzie taka, że istnieje całka z $\int_{-1}^{1} f(x)^2 dx$. Opisać sposób wyznaczania dla danej liczby dodatniej ϵ wielomianu w możliwie niskiego stopnia, spełniającego niewówność:

$$\int_{-1}^{1} [f(x) - w(x)]^2 < \epsilon$$

- 15. Kwadratury
 - Dobrać n tak, żeby złożony wzór Simpsona przylbiżał wartość całki $\int_0^\pi \sin x dx$ z błędem mnieszym niż $\epsilon=2\cdot 10^{-5}$
 - \bullet Jaka wartość ngwarantuje, że z błąd przybliżenia tej całki dawanego przez złożony wzór Trapezów jest mnijszy niż ϵ
- 16. Sparawdzić czy istnieje NFSI3 interpolujca $f(x) = \sin \frac{\pi x}{2}$ w punktach $x_0 = 0, x_1 = 1, x_2 = 2$ postaci :

$$s(x) = u(x) \text{ dla } (0 \le x \le 1)$$

 $s(x) = (x - 2)^2 \text{ dla } (1 \le x \le 2)$

17. $w_n \in \prod_{n=1}$. Pokazać, że dla parami różnych $x_0, x_1, ..., x_n$ zachodzi $f[x_0 * x_1 ... x_n] = 0$

- 18. w_n^* n-ty wielomian w sensie aporksymacji średnio kwadratowej wzgledem funkcji f (jest w przestrzeni funkcji całkowalnych 2). Pokazać ze: $f w_n^*, u_n >= 0$ dla każdego $u_n \in \prod_n$, jeśli $f(x) = \int_a^b p(x) f(x) g(x)$ gdzie f(x) jest funkcja wagową.
- 19. Pokazać,
ze $w_n(x) = \sum_{k=0}^n a_k T_k(x)$ jest n-tym wielomianem optymalnym dla $f(x) = \sum_{k=0}^{n+1} a_k T_k(x)$ w sensie aproksymacji jednostajnej na przedziale [-1,1] gdzie $T_n(x)$ jest n-tym wielomianem Czebyszewa, a $a_n \in R$.
- $20.\int_0^1 e^{x^2}$. Podać możliwie jak najmniejsze n, dla którego $|I-T_n|<10^{-3}$, gdzie T_n jest złożonym wzorem trapezów.
- 21. Czy istnieją P, Q, R takie że dla dowolnego $z \in \prod_5$

$$\int_{-1}^{1} \frac{z(x)}{\sqrt{1-x^2}} dx = Pz(-1) + Qz(0) + Rz(1)$$

- 22. Udowodnić, źe jeżeli α jest podwójnym zerem funkcji f to zbieżność metody Newtona zastosowanej do znalezienia zera funkcji f jest liniowa.
- 23. Mamy funkcje sklejaną s na trzech węzłach -1,0,1 dla przedziału [-1,0] stosowany jest wielomian $p_1(x) = 1 + c(x+1)^3$. Dla przedziału [0,1] stosowany jest jakiś wielomian $p_2(x)$. Znajdź ten wielomian i odpowiedz na pytanie: Jakie musi być c, aby zachodziło s(1) = -1