Chapitre 15 : Champs de vecteurs sur \mathbb{R}^3

Définition, rappels :

Soit Ω un ouvert de \mathbb{R}^3 .

Un champ de vecteurs sur Ω est une application de Ω dans \mathbb{R}^3 .

C'est donc une application $\vec{F}: \Omega \to \mathbb{R}^3$ où X, Y, Z (applications $(x,y,z) \mapsto (X(x,y,z),Y(x,y,z),Z(x,y,z))$

coordonnées) sont des applications de Ω dans \mathbb{R} .

On dira que \vec{F} est de classe C^k lorsque chaque application coordonnée est de classe C^k .

Si \vec{F} est de classe C^k $(k \ge 1)$, on définit :

$$\frac{\partial \vec{F}}{\partial x}(x,y,z) = \left(\frac{\partial X}{\partial x}(x,y,z), \frac{\partial Y}{\partial x}(x,y,z), \frac{\partial Z}{\partial x}(x,y,z)\right), \text{ et de même pour les dérivées partielles}$$

par rapport à y et z, et pour les dérivées partielles d'ordre supérieur.

On conserve les notations dans la suite du chapitre.

I Divergence d'un champ de classe $^{C^1}$.

Si $\vec{F}: \Omega \to \mathbb{R}^3$ est un champ de classe C^1 , et si $M = (x, y, z) \in \Omega$, on appelle divergence de \vec{F} en M, et on note $\mathrm{Div}_M(\vec{F})$ le réel défini par :

$$\operatorname{Div}_{M}(\vec{F}) = \frac{\partial X}{\partial x}(M) + \frac{\partial Y}{\partial v}(M) + \frac{\partial Z}{\partial z}(M)$$

Et on note aussi $\operatorname{Div}(\vec{F})$ l'application de Ω dans $\mathbb R$ qui à M associe $\operatorname{Div}_M(\vec{F})$.

II Rotationnel d'un champ de classe C^1 .

Soit $\vec{F}: \Omega \to \mathbb{R}^3$ un champ de classe C^1 , et soit $M = (x, y, z) \in \Omega$.

Le rotationnel de \vec{F} en M, noté $\overrightarrow{Rot}_M(\vec{F})$, est l'unique vecteur de \mathbb{R}^3 tel que :

 $\forall \vec{u} \in \mathbb{R}^3$, $\mathrm{Div}_M(\vec{F} \wedge \vec{u}) = \overline{\mathrm{Rot}}_M(\vec{F}) \cdot \vec{u}$, \mathbb{R}^3 étant muni de sa structure euclidienne naturelle.

Cette définition a bien un sens, puisqu'on vérifie immédiatement que l'application $\vec{u} \mapsto \text{Div}_M(\vec{F} \wedge \vec{u})$ est une forme linéaire sur \mathbb{R}^3 .

Expression du rotationnel:

Posons $\vec{u} = (a, b, c)$.

Alors $(\vec{F} \wedge \vec{u}) = (cY - bZ, aZ - cX, bX - aY)$.

Dono

$$\operatorname{Div}_{M}(\vec{F} \wedge \vec{u}) = c \frac{\partial Y}{\partial x}(M) - b \frac{\partial Z}{\partial x}(M) + a \frac{\partial Z}{\partial y}(M) - c \frac{\partial X}{\partial y}(M) + b \frac{\partial X}{\partial z}(M) - a \frac{\partial Y}{\partial z}(M)$$
$$= a \left[\frac{\partial Z}{\partial y}(M) - \frac{\partial Y}{\partial z}(M) \right] + b \left[\frac{\partial X}{\partial z}(M) - \frac{\partial Z}{\partial x}(M) \right] + c \left[\frac{\partial Y}{\partial x}(M) - \frac{\partial X}{\partial y}(M) \right]$$

Chapitre 15 : Champs de vecteurs sur R3 Analyse

Donc
$$\overrightarrow{Rot}_{M}(\vec{F}) = \left(\frac{\partial Z}{\partial y}(M) - \frac{\partial Y}{\partial z}(M), \frac{\partial X}{\partial z}(M) - \frac{\partial Z}{\partial x}(M), \frac{\partial Y}{\partial x}(M) - \frac{\partial X}{\partial y}(M)\right)$$

On note $Rot(\vec{F})$ l'application de Ω dans \mathbb{R} qui à M associe $Rot_M(\vec{F})$.

III Expressions symboliques

Si on note $\vec{\nabla}$ (Nabla) le « vecteur » $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial v}, \frac{\partial}{\partial z}\right)$, on a symboliquement :

$$\operatorname{Div}(\vec{F}) = \vec{\nabla} \cdot \vec{F}$$
 et $\operatorname{Rot}(\vec{F}) = \vec{\nabla} \wedge \vec{F}$

Et aussi, si $f: \Omega \to \mathbb{R}$ est de classe C^1 , on a, toujours symboliquement : $\overrightarrow{\operatorname{grad}} f = \overrightarrow{\nabla} f$.

IV Potentiels scalaires

Soit \vec{F} un champ de vecteurs sur Ω , et soit $f:\Omega \to \mathbb{R}$ de classe C^1 .

On dit que \vec{F} dérive du potentiel scalaire f, ou encore que f est un potentiel scalaire de \vec{F} lorsque $\vec{F} = \overrightarrow{\text{grad}} f$.

C'est-à-dire :
$$\forall M \in \Omega, \vec{F}(M) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$
.

Si $\vec{F}: \Omega \to \mathbb{R}^3$ est de classe C^1 et dérive d'un potentiel, alors le rotationnel de \vec{F} est nul. Autrement dit, si $f: \Omega \to \mathbb{R}$ est de classe C^1 , alors $\forall M \in \Omega, \overrightarrow{Rot}_M(\overrightarrow{grad}f) = \overrightarrow{0}$

Démonstration:

$$\overrightarrow{\operatorname{grad}} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

Donc
$$\overrightarrow{Rot}_{M}(\overrightarrow{grad}f) = \left(\frac{\partial^{2} f}{\partial y \partial z} - \frac{\partial^{2} f}{\partial z \partial y}, \frac{\partial^{2} f}{\partial z \partial x} - \frac{\partial^{2} f}{\partial x \partial z}, \frac{\partial^{2} f}{\partial x \partial y} - \frac{\partial^{2} f}{\partial y \partial x}\right) = \overrightarrow{0}$$
 d'après le

théorème de Schwarz.

Réciproque (admise) sur un ouvert étoilé :

Soit Ω un ouvert étoilé de \mathbb{R}^3 , c'est-à-dire tel qu'il existe $M_0 \in \Omega$ tel que $\forall M \in \Omega, [M_0, M] \subset \Omega$:

Soit $\vec{F}: \Omega \to \mathbb{R}^3$ un champ de classe C^1 dont le rotationnel est nul. Alors \vec{F} dérive d'un potentiel scalaire.

V Formules

- (1) Linéarité : les opérateurs grad, Div et Rot sont linéaires.
- (2) Composition:

Si f est de classe C^2 :

$$\overrightarrow{\text{Rot}}(\overrightarrow{\text{grad}}f) = \overrightarrow{0}$$
, $\overrightarrow{\text{Div}}(\overrightarrow{\text{grad}}f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \Delta f$ (Laplacien de f)

- Si \vec{F} est de classe C^2 : Div $(\overrightarrow{RotF}) = 0$ (démonstration avec Schwarz)
- (3) Produits : démonstrations par simple calcul...
- Si f, g sont de classe C^1 , $\overrightarrow{\text{grad}}(fg) = f \cdot \overrightarrow{\text{grad}} g + g \cdot \overrightarrow{\text{grad}} f$

Si f est de classe C^1 , et \vec{F} de classe C^1 , on a :

$$\operatorname{Div}(f.\vec{F}) = f\operatorname{Div}(\vec{F}) + (\overrightarrow{\operatorname{grad}}f) \cdot \vec{F}$$

$$\overrightarrow{Rot}(f.\overrightarrow{F}) = f \overrightarrow{Rot}(\overrightarrow{F}) + (\overrightarrow{grad}f) \wedge \overrightarrow{F}$$

Symboliquement, les formules donnent :

$$\vec{\nabla} \wedge (\vec{\nabla} f) = \vec{0}$$

$$\vec{\nabla} \cdot (\vec{\nabla} f) = \vec{\nabla}^2 f = \Delta f$$

$$\vec{\nabla} \cdot (\vec{\nabla} \wedge \vec{F}) = 0$$

$$\vec{\nabla}(fg) = f.(\vec{\nabla}g) + (\vec{\nabla}f)g$$

$$(\vec{\nabla}f.\vec{F}) = f(\vec{\nabla}\cdot\vec{F}) + (\vec{\nabla}f)\cdot\vec{F}$$

$$\vec{\nabla} \wedge (f \cdot \vec{F}) = f(\vec{\nabla} \wedge \vec{F}) + (\vec{\nabla} f) \wedge \vec{F}$$