数据智能与应用

Deta AI and its Application

DETA 开源 2018~2020

Deta AI 明确 目的/ Goals

Deta AI 有了目的就开始 规划/ Visionary

Deta AI 规划了愿景开始实现/ Dreams

Deta AI 实现组件后包装作品/ Dreams Come True

Deta AI 作品论证的价值 贡献/ Contribution

Deta AI 作品的部分 展示/Landscape

Deta AI 当前的计划 进度/ Pending ...

Deta AI 目的/ Goals

1:解放生产力, 创造新的生产力.

Emancipate the productive forces, Create new productivity 医学教育领域实践

2: 优化已有的生产工具更好的适应生产环境.

Optimize existing production tools to better adapt to the production environment. 商品与API需求分解

3: 更好的辅助智慧生物理解,适应和改造环境.

Better assists Human-oid in where understanding, adaptation and transformation of the environment. ONA与神经元函数 肽展编码, 类人与进化系统设计

Deta AI 规划/ Visionary 2018~2019

- 1: 智能数据的AOPM基础组件研发/Deta Open Source
- 2: 智能组件的VPCS 具体商业应用/Deta Business
- 3: 商业论证与归纳细节用于研发类人DNA智能生态系统/Deta Science

Deta AI 规划/ Visionary AOPM 工程架构

DETA AOPM 执行逻辑

DETA AOPM 架构逻辑

Deta AI 规划/ Visionary AOPM 后端架构

> CONCURRENT LOGIC

のETA AOPM 芝维逻辑 DEVOPS LOGIC

Deta AI 规划/ Visionary VPCS 工程架构

DETA VPCS 执行逻辑 EXECUTE LOGIC

KERNEL DETA VPCS 核心中枢

Deta AI 规划/Visionary AOPM INITONS ~2018

数据分析基础元基

隐塔数据分析开源 Deta ETC 隐塔开源图灵分词 隐塔开源人工智能 隐塔开源 Unicorn 界面设计 Analysis initons
DETA ETL
DETA Parser
DETA AI NLP
DETA Unicorn UI

数据操作基础元基 Operations initons

GIT 滤塔 的 端于源项目 GIT 滤塔后端于源项目 GIT 滤塔缓存于源项目 Operations initons
DETA Frontend
DETA Backend
DETA Cache

Deta AI 规划/ Visionary AOPM INITONS 2018~2019

数据处理基础元基 Process initons

德堪数据处理开源 DETA 肽展编码 Deta Data Processor API

DETA OSS DATAlet DETA PDE Initons DETA Processor API

数据管理基础元基 Management initons

DETA Database **德塔数据库** 渡塔 PLSQL DETA PLSQL DETA Devops 應塔逕錐

湾塔测试 DETA Test **德塔数据变换引擎 DETA Swap**

Deta AI 机划/Visionary VPCS -AOPM INITONS 2019~2020

VPCS 编码 Initons 六元 肽展 VPCS 后端进化与分析 隐塔六元微分催化项目 隐塔数据预测 隐塔读化术

**

VPCS & PDE Encoder Catalytic Computing DETA DATA Prediction DETA dnn Mind Reader

Deta AI 规划/ Visionary DNA-PDE-IDUQ-VECS-AOPM INITONS 肽展2020

类人DNA VPCS 元基解码

微分催化计算在分词与排序上的应用 應塔极速排序 應塔家契分词 DNA与神经元映射催化算子编码规范

Hum anoid DNA VPCS Decoder

Catalytic Word Segment Catalytic TOP Sort Catalytic Pictographic -wedge Index

Deta AI 实现/ Dreams

软著

- 1: 德塔象契分词
- 2: **遠塔 DNN 读**心术
- 3: 湾塔 Socket 流 PLSQL 数据库
- 4: 德塔数据变换引擎
- 5: 德塔极速排序
- 6: 德塔数据预测
- 7: 湾塔 Unicorn ETL 数据分析引擎
- 8: 德塔数据处理引擎

论文

- 1: AOPM 的进化逻辑
- 2: VPCS 的后端计算应用
- 3: DETA PLSQL 数据库语法规范
- 4: 微分催化计算在分词与排序上的应用
- 5: DNA 与神经元映射催化算子编码规范

Deta AI 作品/ Dreams Come True

开源作品

德塔华瑞集 医学大数据学习软件

600 本医学教材.

2200 万字古籍医学经典.

每秒double 数组排序1100万 开源小高峰过滤排序算法。

性能每秒1700 万 DETA 开源分词解析器.

线性, 图片, 宏格, 三维, 向量, 音频, 视频, 综合医学数据索引查询满足医学养生领域学习需求.

闭源作品 **宽塔**养疗经 医学辅助诊疗软件

1.6亿字医学资料, 1800万字教材加节点无阻扩展. 可2次开发平合 涉及:养生, 声珍, 处方,推拿等88个 医学专科领域.

函数全局有机肽展编码开辟类人智慧新纪元. 集成 DETA 所有最新版本科技成果.

Deta AI 贡献/ Contribution

- 1: 单机 每秒排序 1100 万 Double 线性数组.
- 2: 单机 Sonar lint 高级认证下 每秒分词 1300 万+象形文字混合字符串.
- 3: 单机 象契混合 按拼音与笔画排序每秒 600 万字 +.
- 4: 人类史首次 类人软件 肽链组 染色体化 和 DNA initon元基规范编码.
- 5: 软件工程瀑布模型维度优化与AOPM 真实环境应用.
- 6: MVC 后端逻辑维度优化与 VPCS 真实环境应用.
- 7: 这些精华已经全部融入 养疗经 15727+ 版本. (支持罗种渠道下载).
- 8: 养疗经作品索引功能已持续13个月的真实医学临床测试.
- 9: 德塔已经开源了18个 互联网数据领域工程, 一直通过实体应用优化他们.

医学中药数据检索

医学文字处理

西医文献搜索

影像数据处理

神经网络处理医学任务

声学数据处理

DNN 读心术在医学跨专科集群搜索中的应用

一键处方生成 与综合三维筛选 观测打印

Initons 遗传肽链生成 与 养疗经染色体分类

疾病辩证与深度筛选

五行术数 与 中医观测

亮点: 该公式的 ANN -SEME 和 RNN -PCE 子核同样适用于 AOPM 与VPCS 子核替换 用于其他工业智能场景

```
private int partition(int[] a, int lp, int rp) {
    int x = a[lp] < a[rp]? a[lp]: a[rp]; //reduce the compute values, reduce the recursion peak
    int lp1 = lp;
    while(lp1++< rp){
        while(!(a[lp1++]>x|| lp1>rp)) {// reduce the condition differential check, reduce the recursion loops
    }
    while(a[rp++]>x){
        if(- lp1<-rp){
            int temp=a[rp]; a[rp]=a[lp1]; a[lp1]=temp;
        }
    a[lp]=a[rp]; a[rp]=x;
    return rp;
}
```

遠塔 极速催化排序内核 版权源码

更罗资源:

感谢如下媒体为作者提供了大量 第三方存储与发布 协助:

溦信视频,新浪视频,抖音视频,快手视频,优酷视频...

QQ群下载,百度下载 ...

Github, Gitee, Linkedin...

1: 商业计划:智能项目融资与实体经济应用: 兼疗经系统函数名,接口名,变量名,插件名已经开始肽展应用.

2: 科研计划: 按 DNA 编码规范 对 人类语言词汇 进行AOPM VECS IDUQ initon 元编码. 如:

X-> A分析, O操作, P处理, M管理,

Y-> V 感知, E执行, C控制, S静态,

Z-> I增加, D删除, U改变, Q查找...

带写->...OVQ.OEQ.MVQ.OSU...

物体->...AVQ.ASQ...

桌子->...OVQ.OEQ.MVQ.OSU...AVQ.ASQ.....

教育->...AVQ.OEQ.PVU.PSU.MSU.MSQ...OVQ.OEQ.MVQ.OSU....

3: 开源计划: 类人染色体配对 遗传实现.

*新建文本文档 (3) - 记事本	De la companya de la		
AOPM元基 AV AE AC AS	OV OE OC OS OI OD OU OQ EA EO EP EM EI ED EU EQ DA DO DP DM DV DE DC DS	PV PE PC PS PI PD PU PQ CA CO CP CM CI CD CU CQ UA UO UP UM UV UE UC US	MV ME MC MS MI MD MU MQ SA SO SP SM SI SD SU SQ QA QO QP QM QV QE QC QS
96个 2元基肽团除以维度层 4个解码 = 24个染色体相似聚类功能区.诺贝尔级染色体配对条件完美解决. 24个染色体可以实现反向组合配对如OCCO,CDDC			

A O I

P M 祭色体中的 I A枝叶 将 养疗经 关于处理 IA>增加分析 的 函数 如 IAV>增加分析感知 IAE>增加分析执行 IAC>增加分析控制 IAS>增加分析静态数据 的函数 按 PDE> 肽层 编码变换 保存成单链 INITONS DNA LINK>

下一步单链的遗传配 繁殖 对实现...

AOPM 体现了养疗经的智慧形态 VECS 体现了养疗经的多样化特征 IDUQ 体现了养疗经的生物应激活性

Deta AI 感谢/ Thanks~

AMD

Microsoft

中国科学院

