Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2008/2009

AL1 - Algebra 1: Fondamenti Prof. F. Pappalardi

Tutorato 6 - 20 Novembre 2008

Elisa Di Gloria, Luca Dell'Anna

www.matematica3.com

Esercizio 1.

Siano $z, w \in \mathbb{C}, n \in \mathbb{N}$, mostrare che

- $|\overline{z}| = |z|$;
- $\frac{1}{i} = -i$;
- $\bullet |z^n| = |z|^n;$
- $|\overline{z}^n| = |z|^n$;
- $\overline{z+w} = \overline{z} + \overline{w}$;
- $\overline{\overline{z}} = z$;
- $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$;
- $z = \overline{z} \iff z \in \mathbb{R};$
- $\arg \overline{z} = -\arg z$;
- $\arg z^n = n \arg z$;
- $\bullet |z \cdot w| = |z| \cdot |w|;$
- $z \cdot \overline{z} \in \mathbb{R}_{>0}$.

Esercizio 2.

Calcolare norma, modulo e argomento dei seguenti numeri complessi

- *i*;
- 1 i;
- $\frac{i}{2}$;
- $\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$;
- $1+i+i^2+i^3+i^4+i^5$;
- $(1+i)^2$;

- (1+i)(1-i);
- $e^{i\theta}$ con $\theta \in \mathbb{R}$;
- 2-3i.

Esercizio 3.

Svolgere i seguenti calcoli, calcolare poi inverso e scrittura in forma trigonometrica del risultato

- (2+i)(4+2i)+4i;
- $(1+i)^2$;
- $-i(\frac{1}{2} + \frac{3i}{2});$
- $(\frac{\sqrt{3}}{2} + \frac{i}{2})^{3600}$.

Esercizio 4.

Esprimere in forma trigonometrica i seguenti numeri complessi: $5, -1 + 3i, -6, -3 + i\sqrt{3}, \frac{1}{2i}, \frac{-1}{1+2i}$.

Esercizio 5.

Calcolare:

- $(1-2i)(2+3i)^{-1}$;
- $(i)^{49}, (-i)^{58};$
- $\bullet \ \frac{(21-3i)+(5-6i)}{(1+i)-(8i+3)};$
- $\bullet \ (\frac{\sqrt{3i}}{2} + \frac{2i}{6}).$

Esercizio 6.

Dimostrare che la somma tra numeri complessi definita come:

$$(a+ib) + (c+id) := (a+c) + i(b+d)$$

è ben definita, commutativa e associativa. Verificare inoltre la proprietà distributiva rispetto al prodotto.

Di quali proprietà gode il prodotto? Ricordiamo la definizione di prodotto tra numeri complessi,

$$(a+ib)(c+id) := (ac-bd) + i(ad+bc).$$