

NuQleoSim

Laetitia Bourgeade Hadrien Mary Florence Maurier Jean-Paul Navailles

Universités Bordeaux 1 & 2

Jeudi 17 Février 2011

Introduction

Le nucléole

- Localisation nucléaire
- Encore mal connu
- Responsable de certaines pathologies
- Peu d'outils pour l'étude in silico

NuQleoSim

- Interface graphique pour l'étude du nucléole
- Base de données : moléculaires et expérimentales
- Modélisation de l'activité nucléolaire
- Gestion des résultats

Plan

- Analyse
 - Contexte biologique : le nucléole
 - Besoins fonctionnels et non fonctionnels
- 2 Conception
 - Base de données nucléolaires
 - Modélisation du nucléole
 - Prototypage de l'interface
- Réalisation
 - Technologies utilisées
 - Architecture de l'application
 - Structuration de la base de données
 - Implémentation de la modélisation
- A Résultats
 - Interface avec la base de données
 - Paramétrage d'une simulation
 - Visualisation de la modélisation

Rappel du plan

- Analyse
 - Contexte biologique : le nucléole
 - Besoins fonctionnels et non fonctionnels
- Conception
 - Base de données nucléolaires
 - Modélisation du nucléole
 - Prototypage de l'interface
- Réalisation
 - Technologies utilisées
 - Architecture de l'application
 - Structuration de la base de données
 - Implémentation de la modélisation
- 4 Résultats
 - Interface avec la base de données
 - Paramétrage d'une simulation
 - Visualisation de la modélisation

Contexte biologique : le nucléole

Structure du nucléole en microscopie électronique

Ivan Raska, Peter J Shaw, and Dusan Cmarko. *Structure and function of the nucleolus in the spotlight.* Curr Opin Cell Biol, Jun 2006.

Contexte biologique : le nucléole

Besoins fonctionnels et non fonctionnels

Stockage de données

- Deux types de données : moléculaires et expérimentales
- Création, consultation, modification et suppression
- Interopérabilité avec différents formats biologiques

Besoins fonctionnels et non fonctionnels

Modélisation de l'activité nucléolaire

- Interface de paramétrage de la simulation
- Communication avec la base de données
- Visualisation 3D en temps réel
- Génération de résultats

Rappel du plan

- 1 Analyse
 - Contexte biologique : le nucléole
 - Besoins fonctionnels et non fonctionnels
- 2 Conception
 - Base de données nucléolaires
 - Modélisation du nucléole
 - Prototypage de l'interface
- Réalisation
 - Technologies utilisées
 - Architecture de l'application
 - Structuration de la base de données
 - Implémentation de la modélisation
- 4 Résultats
 - Interface avec la base de données
 - Paramétrage d'une simulation
 - Visualisation de la modélisation

Base de données nucléolaires

Modélisation du nucléole

Utilisation d'un système multi-agents

Environnement

- nucléole
- subdivision en trois composants
 - FC
 - DFC
 - GC

Agents

- protéine
- " transcriptor "
- ARN

Modélisation du nucléole

Prototypage de l'interface

Premier modèle envisagé

Rappel du plan

- Analyse
 - Contexte biologique : le nucléole
 - Besoins fonctionnels et non fonctionnels
- Conception
 - Base de données nucléolaires
 - Modélisation du nucléole
 - Prototypage de l'interface
- Réalisation
 - Technologies utilisées
 - Architecture de l'application
 - Structuration de la base de données
 - Implémentation de la modélisation
- 4 Résultats
 - Interface avec la base de données
 - Paramétrage d'une simulation
 - Visualisation de la modélisation

Technologies utilisées

Qt / C++

- Performances de calcul
- Qt en tant que framework :
 - Multiplateforme
 - Rapidité de développement

Architecture modulable

Possibilité d'ajouter des interfaces à des SGBD

Pourquoi XML comme SGBD?

- Léger : ne nécessite pas de serveur
- Format répandu : nombreuses bibliothèques
- Inconvénients :
 - cas de la gestion de grandes BD
 - droits d'accès

Structuration de la base de données

```
Arborescence du fichier XML
                 <nucleolus_db>
                       <experiments>
                            <experiment>
                                 <images>
                                      
                                 </images>
                            </experiment>
                       </experiments>
                       <molecules>
                            <molecule>
                           </molecule>
                      </molecules>
                 </nucleolus db>
```


Rappel du plan

- Analyse
 - Contexte biologique : le nucléole
 - Besoins fonctionnels et non fonctionnels
- Conception
 - Base de données nucléolaires
 - Modélisation du nucléole
 - Prototypage de l'interface
- Réalisation
 - Technologies utilisées
 - Architecture de l'application
 - Structuration de la base de données
 - Implémentation de la modélisation
- A Résultats
 - Interface avec la base de données
 - Paramétrage d'une simulation
 - Visualisation de la modélisation

Interface avec la base de données

Paramétrage d'une simulatio

Visualisation de la modélisation

Exemple de génération de résultats

Conclusion

Fonctionalités de NuQleoSim

- Construction, exploitation et gestion d'une BD
- Simulation paramétrable en liaison avec la BD
- Visualisation de la simulation en temps réel
- Présentation paramétrable des résultats

Perspectives d'amélioration

- Base de données interchangeable
- Simulation remplaçable
- Exploitation des résultats maléable

pour votre attention