# Tarea 09

**David Gomez** 



VIGILADA MINEDUCACIÓN

# **UNIVERSIDAD**





# Índice

| 1.         | Sección 4.6    | 2  |
|------------|----------------|----|
|            | 1.1. Punto 4   | 2  |
|            | 1.2. Punto 5   |    |
|            | 1.3. Punto 6   |    |
|            | 1.4. Punto 8   |    |
|            |                |    |
|            | 1.5. Punto 9   |    |
|            | 1.6. Punto 11  |    |
|            | 1.7. punto 12  |    |
|            | 1.8. Punto 16  | 7  |
|            | 1.9. Punto 17  | 7  |
|            |                |    |
| <b>2</b> . | Sección 4.7    | 8  |
|            | 2.1. Punto 3   | 8  |
|            | 2.2. punto 7   | 8  |
|            | 2.3. punto 10  | 8  |
|            | 2.4. Punto 17  |    |
|            | 2.5. Punto 18  |    |
|            | 2.6. Punto 23  | _  |
|            | 2.7. Punto 24  |    |
|            |                |    |
|            | 2.8. Punto 35  |    |
|            | 2.9. Punto 38  |    |
|            | 2.10. Punto 40 |    |
|            | 2.10.1. a      | 12 |
|            | 2.10.2. b      | 12 |
|            | 2.11. Punto 43 | 12 |
|            | 2.12. Punto 44 | 13 |
|            |                |    |
| 3.         | Sección 5.1    | 13 |
|            | 3.1. Punto 1   | 13 |
|            | 3.1.1. a       | 13 |
|            | 3.1.2. f       | 13 |
|            | 3.1.3. m       |    |
|            | 3.1.4. t       |    |
|            | 3.1.5. w       |    |
|            | 3.1.6. x       |    |
|            |                |    |
|            | 3.1.7. z       |    |
|            | 3.2. Punto 2   |    |
|            | 3.2.1. a       |    |
|            | 3.2.2. b       | 14 |
|            | 3.2.3. c       | 14 |
|            | 3.2.4. d       | 14 |
|            | 3.2.5. e       | 14 |
|            | 3.3. Punto 3   |    |

Página 1 Tarea 09

# 1. Sección 4.6

# 1.1. Punto 4

```
Teo 4.24.3  (\phi \wedge true) 
\equiv \langle \operatorname{Def.}(\wedge) \rangle 
(\phi \equiv (true \equiv (\phi \vee true))) 
\equiv \langle \operatorname{Teo 4.19.2, Leibniz}(\phi = (\phi \equiv (true \equiv p))) \rangle 
(\phi \equiv (true \equiv true)) 
\equiv \langle \operatorname{Teo 4.6.2, Leibniz}(\phi = (\phi \equiv p)) \rangle 
(\phi \equiv true) 
\equiv \langle \operatorname{Identidad}(\equiv) \rangle 
\phi 
Por MT 4.21 se demuestra que \vdash_{\operatorname{DS}} ((\phi \wedge true) \equiv \phi)
```

### 1.2. Punto 5

```
Teo 4.24.4  (\phi \wedge false) 
\equiv \langle \operatorname{Def.}(\wedge) \rangle 
 (\phi \equiv (false \equiv (\phi \vee false))) 
\equiv \langle \operatorname{Identidad}(\vee), \operatorname{Conmutativa}(\equiv), \operatorname{Leibniz}(\phi = (\phi \equiv (false \equiv p))) \rangle 
 (\phi \equiv (false \equiv \phi)) 
\equiv \langle \operatorname{Def.}(\neg), \operatorname{Conmutativa}(\equiv), \operatorname{Leibniz}(\phi = (\phi \equiv p))) \rangle 
 (\phi \equiv (\neg \phi)) 
\equiv \langle \operatorname{Teo} 4.15.7 \rangle 
 false 
Por MT 4.21 se demuestra que
 \vdash_{\operatorname{DS}} ((\phi \wedge false) \equiv false)
```

Página 2 Tarea 09

# 1.3. Punto 6

```
Teo 4.24.5  (\phi \land \phi) \\ \equiv \langle \operatorname{Def.}(\land) \rangle \\ (\phi \equiv (\phi \equiv (\phi \lor \phi))) \\ \equiv \langle \operatorname{Asociativa}(\equiv) \rangle \\ ((\phi \equiv \phi) \equiv (\phi \lor \phi)) \\ \equiv \langle \operatorname{Idempotencia}(\lor), \operatorname{Leibniz}(\phi = ((\phi \equiv \phi) \equiv p)) \rangle \\ ((\phi \equiv \phi) \equiv \phi) \\ \equiv \langle \operatorname{Teo 4.6.3, Conmutativa}(\equiv) \rangle \\ (\phi \equiv true) \\ \equiv \langle \operatorname{Identidad} \rangle \\ \phi \\  Por MT 4.21 se demuestra que \vdash_{\operatorname{DS}} ((\phi \land \phi) \equiv \phi)
```

### 1.4. Punto 8

```
Teo 4.25.1  (\phi \wedge (\neg \phi)) 
\equiv \langle \operatorname{Def.}(\wedge) \rangle 
 (\phi \equiv ((\neg \phi) \equiv (\phi \vee (\neg \phi)))) 
\equiv \langle \operatorname{Asociativa}(\equiv) \rangle 
 ((\phi \equiv (\neg \phi)) \equiv (\phi \vee (\neg \phi))) 
\equiv \langle \operatorname{Teo 4.19.1, Identidad, Leibniz}(\phi = ((\phi \equiv (\neg \phi)) \equiv p)) \rangle 
 ((\phi \equiv (\neg \phi)) \equiv true) 
\equiv \langle \operatorname{Teo 4.15.7, Commutativa}(\equiv), \operatorname{Leibniz}(\phi = (p \equiv true)) \rangle 
 (false \equiv true) 
\equiv \langle \operatorname{Identidad} \rangle 
 false 
Por MT 4.21 se demuestra que
 \vdash_{\operatorname{DS}} ((\phi \wedge (\neg \phi)) \equiv false)
```

Página 3 Tarea 09

#### 1.5. Punto 9

```
Teo 4.25.2
```

```
(\neg(\phi \wedge \psi))
\equiv \langle \text{ Def.}(\wedge), \text{ Leibniz}(\phi = (\neg p)) \rangle
   (\neg(\phi \equiv (\psi \equiv (\phi \lor \psi))))
\equiv \langle \text{Conmutativa}(\vee), \text{Leibniz}(\phi = (\neg(\phi \equiv p))) \rangle
   (\neg(\phi \equiv (\psi \equiv (\psi \lor \phi))))
\equiv \langle \text{Conmutativa}(\equiv), \text{Leibniz}(\phi = (\neg(\phi \equiv p))) \rangle
   (\neg(\phi \equiv ((\psi \lor \phi) \equiv \psi)))
\equiv \  \  \langle \mbox{ Teo 4.15.6, Leibniz}(\phi = (\neg(\phi \equiv ((\psi \vee p) \equiv \psi)))) \ \rangle
   (\neg(\phi \equiv ((\psi \lor (\neg(\neg\phi))) \equiv \psi)))
\equiv \langle \text{Teo } 4.19.4, \text{Leibniz}(\phi = (\neg(\phi \equiv p))) \rangle
   (\neg(\phi \equiv (\psi \lor (\neg \phi))))
\equiv \langle Conmutativa 4.15.4 \rangle
   ((\neg \phi) \equiv (\psi \lor (\neg \phi)))
\equiv \langle \text{Conmutativa}(\vee), \text{Leibniz}(\phi = ((\neg \phi) \equiv p)) \rangle
   ((\neg \phi) \equiv ((\neg \phi) \lor \psi))
\equiv \langle \text{Conmutativa}(\equiv) \rangle
   (((\neg \phi) \lor \psi) \equiv (\neg \phi))
\equiv \langle \text{Teo } 4.15.6, \text{Leibniz}(\phi = (((\neg \phi) \lor p) \equiv (\neg \phi))) \rangle
   (((\neg \phi) \lor (\neg (\neg \psi))) \equiv (\neg \phi))
\equiv \langle Teo 4.19.4 \rangle
   ((\neg \phi) \lor (\neg \psi))
```

Por MT 4.21 se demuestra que  $\vdash_{\text{DS}} ((\neg(\phi \land \psi)) \equiv ((\neg\phi) \lor (\neg\psi)))$ 

Página 4 Tarea 09

#### 1.6. Punto 11

Teo 4.25.4

```
(((\phi \wedge \psi)) \equiv ((\phi \wedge \tau)) \equiv \phi)
                                                 \equiv \langle \operatorname{Def.}(\wedge) \rangle
                                                     (((\phi \equiv (\psi \equiv (\phi \lor \psi))) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))) \equiv \phi)
                                                 \equiv \langle \text{Conmutativa}(\equiv) \rangle
                                                     (\phi \equiv ((\phi \equiv (\psi \equiv (\phi \lor \psi))) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))
                                                 \equiv \langle \operatorname{Asociativa}(\equiv), \operatorname{Leibniz}(\phi = (\phi \equiv p)) \rangle
                                                     (\phi \equiv (\phi \equiv ((\psi \equiv (\phi \lor \psi))) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))
                                                 \equiv \langle \operatorname{Asociativa}(\equiv) \rangle
                                                     ((\phi \equiv \phi) \equiv ((\psi \equiv (\phi \lor \psi)) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))
                                                 \equiv \langle \text{ Teo 4.6.2, Leibniz}(\phi = (p \equiv ((\psi \equiv (\phi \lor \psi)) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))) \rangle
                                                     (true \equiv ((\psi \equiv (\phi \lor \psi)) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))
                                                 \equiv \langle \text{Conmutativa}(\equiv), \text{Identidad}(\equiv) \rangle
                                                     ((\psi \equiv (\phi \lor \psi)) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau))))
                                                 \equiv \langle \text{Conmutativa}(\equiv), \text{Leibniz}(\phi = ((\psi \equiv (\phi \lor \psi)) \equiv p)) \rangle
                                                     ((\psi \equiv (\phi \lor \psi)) \equiv ((\tau \equiv (\phi \lor \psi)) \equiv \phi))
                                                 \equiv \langle Asociativa(\equiv) \rangle
                                                     (((\psi \equiv (\phi \lor \psi)) \equiv (\tau \equiv (\phi \lor \psi))) \equiv \phi)
                                                 \equiv \langle \text{Conmutativa}(\equiv) \rangle
                                                     (\phi \equiv ((\psi \equiv (\phi \lor \psi)) \equiv (\tau \equiv (\phi \lor \psi))))
                                                 \equiv \langle \operatorname{Asociativa}(\equiv), \operatorname{Leibniz}(\phi = (\phi \equiv (\phi \equiv p))) \rangle
                                                     (\phi \equiv (\psi \equiv ((\phi \lor \psi) \equiv (\tau \equiv (\phi \lor \psi)))))
                                                 \equiv \langle \text{Conmutativa}(\equiv), \text{Leibniz}(\phi = (\phi \equiv (\psi \equiv p))) \rangle
                                                     (\phi \equiv (\psi \equiv ((\tau \equiv (\phi \lor \psi)) \equiv (\phi \lor \psi))))
                                                 \equiv \langle \operatorname{Asociativa}(\equiv), \operatorname{Leibniz}(\phi = (\phi \equiv p)) \rangle
                                                     (\phi \equiv ((\phi \equiv \tau) \equiv ((\phi \lor \tau) \equiv (\phi \lor \psi))))
                                                 \equiv \langle \operatorname{Distribución}(\vee, \equiv), \operatorname{Leibniz}(\phi = (\phi \equiv ((\psi \equiv \tau) \equiv p))) \rangle
                                                     (\phi \equiv ((\psi \equiv \tau) \equiv (\phi \lor (\tau \equiv \psi))))
                                                 \equiv \langle \text{Conmutativa}(\vee), \text{Leibniz}(\phi = (\phi \equiv ((\psi \equiv \tau) \equiv (\phi \vee p)))) \rangle
                                                     (\phi \equiv ((\psi \equiv \tau) \equiv (\phi \lor (\psi \equiv \tau))))
                                                 \equiv \langle \operatorname{Def.}(\wedge) \rangle
                                                     (\phi \wedge (\psi \equiv \tau))
Por MT 4.21 y Conmutativa(≡) se demuestra que
\vdash_{\mathrm{DS}} ((\phi \land (\psi \equiv \tau)) \equiv (((\phi \land \psi) \equiv (\phi \land \psi)) \equiv \phi))
```

Tarea 09 Página 5

UNIVERSIDAD David Gomez

# 1.7. punto 12

```
Teo 4.25.5
```

$$((\phi \land \psi) \not\equiv (\wedge \land \tau))$$

$$\equiv \langle \operatorname{Def.}(\land) \rangle$$

$$((\phi \equiv (\psi \equiv (\phi \lor \psi))) \not\equiv (\phi \equiv (\tau \equiv (\phi \lor \tau))))$$

$$\equiv \langle \operatorname{Def.}(\not\equiv) \rangle$$

$$((\neg(\phi \equiv (\psi \equiv (\phi \lor \psi)))) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau))))$$

$$\equiv \langle \operatorname{Teo 4.15.4} \rangle$$

$$(\neg((\phi \equiv (\psi \equiv (\phi \lor \psi)))) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau)))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\psi \equiv (\phi \lor \psi))) \equiv \phi) \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau))))))$$

$$\equiv \langle \operatorname{Asociativa}(\equiv) \rangle$$

$$(\neg((\psi \equiv (\phi \lor \psi))) \equiv (\phi \equiv (\phi \equiv (\tau \equiv (\phi \lor \tau))))))$$

$$\equiv \langle \operatorname{Asociativa}(\equiv) \rangle$$

$$(\neg(((\psi \equiv (\phi \lor \psi))) \equiv ((\phi \equiv \phi) \equiv (\tau \equiv (\phi \lor \tau))))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv \psi) \equiv (\tau \equiv (\phi \lor \tau)))))$$

$$\equiv \langle \operatorname{Asociativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv (\psi \equiv \tau) \equiv (\phi \lor \tau)))))$$

$$\equiv \langle \operatorname{Asociativa}(\equiv) \rangle$$

$$(\neg((\phi \lor \psi) \equiv ((\psi \equiv \tau) \equiv (\phi \lor \tau)))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv ((\phi \lor \tau) \equiv (\psi \equiv \tau)))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv (\phi \lor \tau) \equiv (\psi \equiv \tau)))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv (\phi \lor \tau)) \equiv (\psi \equiv \tau))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv (\phi \lor \tau)) \equiv (\psi \equiv \tau))))$$

$$\equiv \langle \operatorname{Commutativa}(\equiv) \rangle$$

$$(\neg(((\phi \lor \psi) \equiv (\phi \lor \tau)) \equiv (\psi \equiv \tau))))$$

$$\equiv \langle \operatorname{Teo 4.19.4} \rangle$$

$$(\neg((((\phi \lor \psi \equiv \tau))))$$

$$\equiv \langle \operatorname{Teo 4.15.4}, \operatorname{Def.}(\not\equiv) \rangle$$

$$(\phi \land (\neg(\psi \equiv \tau)))$$

$$\equiv \langle \operatorname{Teo 4.15.4}, \operatorname{Def.}(\not\equiv) \rangle$$

$$(\phi \land (\psi \not\equiv \tau)))$$

Por MT 4.21 y Conmutativa( $\equiv$ ) se demuestra que  $\vdash_{\mathrm{DS}} ((\phi \land (\psi \neq \psi)) \equiv ((\phi \land \psi) \neq (\phi \land \tau)))$ 

Página 6 Tarea 09

#### 1.8. Punto 16

#### Debilitamiento 0. $(\phi \wedge \psi)$ Hipótesis (Debilitamiento) 1. $(\phi \equiv (\psi \equiv (\phi \lor \psi)))$ $Def.(\equiv)$ , Ecuanimidad(p0) 2. $((\phi \lor \phi) \equiv (\phi \lor (\psi \equiv (\phi \lor \psi))))$ $Leibniz(\phi = (p \lor \phi))$ 3. $((\phi \lor (\psi \equiv (\phi \lor \psi))) \equiv ((\phi \lor \psi) \equiv (\phi \lor (\phi \lor \psi))))$ $Dist.(\vee, \equiv)$ 4. $(((\phi \lor \psi) \equiv (\phi \lor (\phi \lor \psi))) \equiv ((\phi \lor \psi) \equiv ((\phi \lor \phi) \lor \psi)))$ Asociativa( $\vee$ ), Leibniz( $\phi = ((\phi \vee \psi) \equiv p)$ ) 5. $(((\phi \lor \psi) \equiv ((\phi \lor \phi) \lor \psi)) \equiv ((\phi \lor \psi) \equiv (\phi \lor \psi)))$ Idempotencia( $\vee$ ), Leibniz( $\phi = ((\phi \vee \psi) \equiv p)$ ) 6. $(((\phi \lor \psi) \equiv (\phi \lor \psi)) \equiv true)$ Teo 4.6.27. $((\phi \lor \phi) \equiv true)$ Transitividad(p6, p5, p4, p3, p2) 8. $(\phi \lor \phi)$ $Identidad(\equiv)(p7)$ 9. $\phi$ Idempotencia( $\vee$ )(p8)

Debilitamiento permite quitar información de una conjunción. Puesto que esta es verdad únicamente cuando sus dos partes son verdaderas, se puede concluir cualquiera de ellas.

### 1.9. Punto 17

| Unión $0. \phi$                                                                         | Hipótesis(Unión)                                                                                                   |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| $1.  \psi$                                                                              | Hipótesis(Unión)                                                                                                   |
| 2. $(\phi \equiv true)$                                                                 | $Identidad(\equiv)(p0)$                                                                                            |
| 3. $(\phi \lor (\phi \equiv \psi))$                                                     | $Debilitamiento(\lor)(p0)$                                                                                         |
| 4. $((\phi \lor (\phi \equiv \psi)) \equiv ((\phi \lor \phi) \equiv (\phi \lor \psi)))$ | $\mathrm{Dist.}(\vee,\equiv)$                                                                                      |
| 5. $(((\phi \lor \phi) \equiv (\phi \lor \psi)) \equiv (\phi \equiv (\phi \lor \psi)))$ | $Idempotencia(\vee), Leibniz(\phi = (\phi \vee p))$                                                                |
| 6. $((\phi \lor (\phi \equiv \psi)) \equiv (\phi \equiv (\phi \lor \psi)))$             | Transitividad(p5, p4, p3)                                                                                          |
| 7. $(\phi \equiv (\phi \lor \psi))$                                                     | Ecuanimidad(p6, p3)                                                                                                |
| 8. $(\psi \equiv true)$                                                                 | $Identidad(\equiv)(p1)$                                                                                            |
| 9. $((\phi \equiv (\phi \lor \psi)) \equiv true)$                                       | $Identidad(\equiv)(p7)$                                                                                            |
| 10. $((\phi \equiv (\phi \lor \psi)) \equiv \psi)$                                      | Transitividad(p9, p8)                                                                                              |
| 11. $(\psi \equiv (\phi \equiv (\phi \lor \psi)))$                                      | Conmutativa( $\equiv$ ), Ecuanimidad(p10)                                                                          |
| 12. $(\phi \wedge \psi)$                                                                | $\mathrm{Def.}(\wedge),\mathrm{Conmutativa}(\vee),\mathrm{Conmutativa}(\wedge),\mathrm{Ecuanimidad}(\mathrm{p}11)$ |

Unión permite juntar varias proposiciones las cuales se tienen como verdaderas. Puesto que la conjunción es verdadera cuando sus dos partes son verdaderas, es posible conectar dos proposiciones verdaderas mediante una conjunción.

Página 7 Tarea 09

# 2. Sección 4.7

# 2.1. Punto 3

```
Teo 4.28.2  ((\phi \land \psi) \equiv \phi)   \equiv \langle \operatorname{Def.}(\land), \operatorname{Leibniz}(\phi = (p \equiv \phi)) \rangle   ((\phi \equiv (\psi \equiv (\phi \lor \psi))) \equiv \phi)   \equiv \langle \operatorname{Commutativa}(\equiv), \operatorname{Asociativa}(\equiv), \operatorname{Identidad}(\equiv) \rangle   (\psi \equiv (\phi \lor \psi))   \equiv \langle \operatorname{Commutativa}(\equiv), \operatorname{Def.}(\rightarrow) \rangle   (\phi \to \psi)  Por MT 4.21 y Commutativa(\equiv) se demuestra que  \vdash_{\operatorname{DS}} ((\phi \to \psi) \equiv ((\phi \land \psi) \equiv \phi))
```

# 2.2. punto 7

Teo 4.29.4 
$$\begin{array}{c} (\phi \to \mathit{false}) \\ \equiv & \langle \text{ Teo 4.28.1 } \rangle \\ & ((\neg \phi) \lor \mathit{false}) \\ \equiv & \langle \text{ Identidad}(\lor) \: \rangle \\ & (\neg \phi) \\ \end{array}$$
 Por MT 4.21 se demuestra que 
$$\vdash_{\mathrm{DS}} ((\phi \to \mathit{false}) \equiv (\neg \phi))$$

# 2.3. punto 10

```
Teo 4.30.3  (\phi \to (\psi \land \tau))  \equiv \langle \text{ Teo 4.28.1} \rangle   ((\neg \phi) \lor (\psi \land \tau))  \equiv \langle \text{ Dist.}(\lor, \land) \rangle   (((\neg \phi) \lor \psi) \land ((\neg \phi) \lor \tau))  \equiv \langle \text{ Def.}(\to) \rangle   ((\phi \to \psi) \land (\phi \to \tau))  Por MT 4.21 se demuestra que  \vdash_{\text{DS}} ((\phi \to (\psi \to \tau)) \equiv ((\phi \to \psi) \land (\phi \to \tau)))
```

Página 8 Tarea 09

UNIVERSIDAD David Gomez

# 2.4. Punto 17

```
Teo 4.31.5  (\phi \to (\psi \to \tau)) 
\equiv \langle \text{ Teo 4.18.1 } \rangle 
((\neg \phi) \lor (\psi \to \tau)) 
\equiv \langle \text{ Teo 4.28.1, Leibniz}(\phi = ((\neg \phi) \lor p)) \rangle 
((\neg \phi) \lor ((\neg \psi) \lor \tau)) 
\equiv \langle \text{ Asociativa}(\lor) \rangle 
(((\neg \phi) \lor (\neg \psi)) \lor \tau) 
\equiv \langle \text{ De Morgan, Leibniz}(\phi = (p \lor \tau)) \rangle 
((\neg (\phi \land \psi)) \lor \tau) 
\equiv \langle \text{ Teo 4.28.1 } \rangle 
((\phi \land \psi) \to \tau) 
Por MT 4.21 se demuestra que  (\phi \land \psi) \to \tau
```

### 2.5. Punto 18

```
Teo 4.31.6  (\phi \vee (\phi \to \psi))   \equiv \langle \operatorname{Teo} 4.28.1, \operatorname{Leibniz}(\phi = (\phi \vee p)) \rangle   (\phi \vee ((\neg \phi) \vee \psi))   \equiv \langle \operatorname{Asociativa}(\vee) \rangle   ((\phi \vee (\neg \phi)) \vee \psi)   \equiv \langle \operatorname{Teo} 4.19.1, \operatorname{Identidad}(\equiv) \rangle   (\operatorname{true} \vee \psi)   \equiv \langle \operatorname{Teo} 4.19.2 \rangle   \operatorname{true}  Por MT 4.21 e Identidad(\equiv) se demuestra que  \vdash_{\operatorname{DS}} (\phi \vee (\phi \to \psi))
```

Página 9 Tarea 09

# 2.6. Punto 23

| Teo 4.33.2                                                                                                          | 0. $((\phi \to \psi) \land (\psi \to \tau))$ | Suposición del antecedente         |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------|
|                                                                                                                     | 1. $(\phi \to \psi)$                         | Debilitamiento(p0)                 |
|                                                                                                                     | 2. $(\psi \to \tau)$                         | Debilitamiento(p0)                 |
|                                                                                                                     | 3. $((\neg \phi) \lor \psi)$                 | Teo 4.28.1, Ecuanimidad(p1)        |
|                                                                                                                     | 4. $((\neg \psi) \lor \tau)$                 | Teo 4.28.1, Ecuanimidad(p2)        |
|                                                                                                                     | 5. $(\psi \lor (\neg \phi))$                 | $\operatorname{Conmutativa}(\vee)$ |
|                                                                                                                     | 6. $((\neg \phi) \lor \tau)$                 | Corte(p5, p4)                      |
|                                                                                                                     | 7. $(\phi \to \tau)$                         | Teo 4.28.1, Ecuanimidad(p6)        |
| Así, tomando (p7, p0), se demuestra que $\vdash_{DS} (((\phi \to \psi) \land (\psi \to \tau)) \to (\phi \to \tau))$ |                                              |                                    |

# 2.7. Punto 24

| Teo 4.33.3                                                                                                              |                                                                                           |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| $0. \ ((\phi \to \psi) \land (\psi \to \phi))$                                                                          | Suposición del antecedente                                                                |  |  |
| 1. $(\phi \to \psi)$                                                                                                    | $Debilitamiento(\land)(p0)$                                                               |  |  |
| $2. \ (\psi \to \phi)$                                                                                                  | $Debilitamiento(\land)(p0)$                                                               |  |  |
| 3. $((\phi \lor \psi) \equiv \psi)$                                                                                     | $\text{Def.}(\rightarrow), \text{Ecuanimidad}(\text{p1})$                                 |  |  |
| 4. $((\psi \land \phi) \equiv \psi)$                                                                                    | Teo 4.28.2, Ecuanimidad(p2)                                                               |  |  |
| 5. $((\phi \lor \psi) \equiv (\phi \land \psi))$                                                                        | Transitividad(p4, p3), Conmutativa( $\land$ )                                             |  |  |
| 6. $((\phi \lor \psi) \equiv (\phi \equiv (\psi \equiv (\phi \lor \psi))))$                                             | Def.( $\wedge$ ), Leibniz( $\phi = ((\phi \vee \psi) \equiv p)$ ), Ecuanimidad(p5)        |  |  |
| 7. $((\phi \lor \psi) \equiv ((\phi \equiv \psi) \equiv (\phi \lor \psi)))$                                             | Asociativa( $\equiv$ ), Leibniz( $\phi = ((\phi \lor \psi) \equiv p)$ ), Ecuanimidad(p6)  |  |  |
| 8. $((\phi \lor \psi) \equiv ((\phi \lor \psi) \equiv (\phi \equiv \psi)))$                                             | Conmutativa( $\equiv$ ), Leibniz( $\phi = ((\phi \lor \psi) \equiv p)$ ), Ecuanimidad(p7) |  |  |
| 9. $(((\phi \lor \psi) \equiv (\phi \lor \psi)) \equiv (\phi \equiv \psi))$                                             | $Asociativa(\equiv)$                                                                      |  |  |
| 10. $(true \equiv (\phi \equiv \psi))$                                                                                  | Teo 4.6.2, Leibniz( $\phi = (p \equiv (\phi \equiv \psi))$ ), Ecuanimidad(p9)             |  |  |
| 11. $(\phi \equiv \psi)$                                                                                                | $Identidad(\equiv), Conmutativa(\equiv)(p10)$                                             |  |  |
| Así, tomando (p0, p11), se demuestra que $\vdash_{DS} (((\phi \to \psi) \land (\psi \to \phi)) \to (\phi \equiv \psi))$ |                                                                                           |  |  |

Página 10 Tarea 09

# 2.8. Punto 35

Teo 4.35.5  $((\phi \to \tau) \land (\psi \to \tau))$   $\equiv \langle \text{ Teo 4.28.1} \rangle$   $(((\neg \phi) \lor \tau) \land ((\neg \psi) \lor \tau))$   $\equiv \langle \text{ Conmutativa}(\lor), \text{ Distribución}(\lor, \land) \rangle$   $(\tau \lor ((\neg \phi) \land (\neg \psi)))$   $\equiv \langle \text{ Conmutativa}(\lor) \rangle$   $(((\neg \phi) \land (\neg \psi)) \lor \tau)$   $\equiv \langle \text{ De Morgan} \rangle$   $((\neg (\phi \lor \psi)) \lor \tau)$   $\equiv \langle \text{ Teo 4.28.1} \rangle$   $((\phi \lor \psi) \to \tau)$ Por MT 4.21 y Conmutativa( $\equiv$ ) se demuestra que  $\vdash_{\text{DS}} (((\phi \lor \psi) \to \tau) \equiv ((\phi \to \tau) \land (\psi \to \tau)))$ 

# 2.9. Punto 38

| Teo 4.36.3                                                                                                | $0. \ ((\phi \to \psi) \land (\psi \equiv \tau))$ | Suposición del antecedente                               |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|
|                                                                                                           | 1. $(\phi \to \psi)$                              | Debilitamiento(p0)                                       |
|                                                                                                           | $2. \ (\psi \equiv \tau)$                         | Debilitamiento(p0)                                       |
|                                                                                                           | 3. $((\phi \to \psi) \equiv (\phi \to \tau))$     | $\operatorname{Leibniz}(\phi = (\phi \to p))(\text{p2})$ |
|                                                                                                           | 4. $(\phi \to \tau)$                              | Ecuanimidad(p3,p1)                                       |
| Así, tomando (p4,p0), se demuestra que $(((\phi \to \psi) \land (\psi \equiv \tau)) \to (\phi \to \tau))$ |                                                   |                                                          |

Página 11 Tarea 09

Punto 40

2.10.1. a

2.10.

2.10.2. b

```
\vdash_{\mathrm{DS}} ((\phi \to \psi) \to ((\phi \lor \tau) \to (\psi \lor \tau)))
                                                                     (\phi \to \psi)
                                                                  \equiv \langle Teo 4.28.1 \rangle
                                                                     ((\neg \phi) \lor \psi)
                                                                 \Rightarrow \langle Debilitamiento(\lor) \rangle
                                                                      (((\neg \phi) \lor \psi) \lor \tau)
                                                                  \equiv \langle Asociativa(\lor) \rangle
                                                                      ((\neg \phi) \lor (\psi \lor \tau))
                                                                  \equiv \langle Teo 4.19.4 \rangle
                                                                      ((\phi \lor (\psi \lor \tau)) \equiv (\psi \lor \tau))
                                                                  \equiv \langle \text{Asociativa}(\vee), \text{Leibniz}(\phi = (p \equiv (\psi \vee \tau))) \rangle
                                                                      (((\phi \lor \psi) \lor \tau) \equiv (\phi \lor \tau))
                                                                  \equiv \langle \text{Idempotencia}(\vee), \text{Leibniz}(\phi = (((\phi \vee \psi) \vee p) \equiv (\phi \vee \tau))) \rangle
                                                                      (((\phi \lor \psi) \lor (\tau \lor \tau)) \equiv (\phi \lor \tau))
                                                                  \equiv \langle Asociativa(\lor), Conmutativa(\lor), Asociativa(\lor) \rangle
                                                                      (((\phi \lor \tau) \lor (\psi \lor \tau)) \equiv (\psi \lor \tau))
                                                                 \equiv \langle \operatorname{Def.}(\rightarrow) \rangle
                                                                      ((\phi \lor \tau) \to (\psi \to \tau))
   Por MT 5.5.1 se demuestra que
   \vdash_{\mathrm{DS}} ((\phi \to \psi) \to ((\phi \lor \tau) \to (\psi \lor \tau)))
```

### 2.11. Punto 43

| Modus Tollens | 0. $(\phi \to \psi)$          | Hipótesis MTT                                            |
|---------------|-------------------------------|----------------------------------------------------------|
|               | 1. $(\neg \psi)$              | Hipótesis MTT                                            |
|               | 2. $((\neg \phi) \lor \psi)$  | Teo 4.28.1, Ecuanimidad(p0)                              |
|               | 3. $(\psi \equiv false)$      | Def. $(\neg)$ , Ecuanimidad $(p1)$                       |
|               | 4. $((\neg \phi) \lor false)$ | $\text{Leibniz}(\phi = ((\neg \phi) \lor p))(\text{p3})$ |
|               | 5. $(\neg \phi)$              | $\operatorname{Identidad}(\vee)$                         |
|               |                               |                                                          |

En términos de causas y consecuencias, al tener que a sucede a causa de b, y que es cierto que a no sucede, entonces se puede decir que no ha ocurrido b. Análogamente, decir que en una fila de 2 fichas de dominó, si se sabe en que sentido se van a tirar, y la segunda no ha caído, se puede concluir que no se ha tirado la primera ficha.

Página 12 Tarea 09

### 2.12. Punto 44

Transitividad - Silogísmo disyuntivo

La regla de transitividad, hablando en términos de causas y consecuencias, dice:

Si a sucede debido a b, y b sucede debido a c, entonces a sucede debido a c

Es decir, conecta el principio de una cadena de causa-consecuencia con su final. La demostración y su relación con Corte se puede hallar en el punto 23

# 3. Sección 5.1

### 3.1. Punto 1

#### **3.1.1.** a

$$\begin{array}{c|c}
a \\
\phi \lor \psi \lor \tau \equiv \phi \lor \psi \lor \tau
\end{array}$$

### 3.1.2. f

#### 3.1.3. m

$$\phi \equiv \neg \phi \equiv false$$

#### 3.1.4. t

#### 3.1.5. w

#### 3.1.6. x

$$\begin{array}{c}
x \\
\phi \to \psi \land \tau \equiv (\phi \to \psi) \land (\phi \to \tau)
\end{array}$$

### 3.1.7. z

$$\begin{array}{c} \mathbf{z} \\ \phi \lor \psi \to \phi \land \psi \equiv \phi \equiv \psi \end{array}$$

Página 13 Tarea 09

UNIVERSIDAD  $David\ Gomez$ 

# 3.2. Punto 2

### **3.2.1.** a

Es ambigüa

$$p \lor (q \land r)$$
$$(p \lor q) \land r$$

### 3.2.2. b

Es ambigüa

$$p \wedge (q \vee r) \\ (p \wedge q) \vee r$$

# 3.2.3. c

Es ambigüa

$$p \to (q \to r)$$
$$(p \to q) \to r$$

### 3.2.4. d

Es ambigüa

$$\begin{aligned} p &\to (q \leftarrow r) \\ (p \to q) \leftarrow r \end{aligned}$$

# 3.2.5. e

Es ambigüa

$$\begin{aligned} p &\leftarrow (q \rightarrow r) \\ (p &\leftarrow q) \rightarrow r \end{aligned}$$

# 3.3. Punto 3

No hay ambigüedad entre  $\equiv$  y  $\not\equiv$ 

Debido a la definición de la discrepancia y teoremas del posicionamiento de una negación en una equivalencia.

Página 14 Tarea 09