I Accertamento del 21 Dicembre 2000 / A

cognome e nome

Risolvi i seguenti esercizi, riporta le soluzioni in modo chiaro negli appositi riquadri e giustifica sinteticamente le risposte utilizzando i fogli protocollo.

1. Procedure in Scheme

Cosa calcola la procedura f? Calcola i risultati della valutazione delle espressioni Scheme:

e ipotizza il risultato della generica valutazione (f n).

```
(define f
  (lambda (x)  ; x naturale
    (if (< x 2)
          x
          (+ (f (- x 2)) (* 4 (- x 1)))
          )
     ))</pre>
```

2. Procedure in Scheme

Completa il programma in Scheme a fianco per calcolare il minimo comune multiplo (mcm) di due numeri naturali positivi.

3. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Dato un numero naturale n, calcolare il numero di divisori distinti (diversi da I e n).

4. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Data una funzione f definita sull'insieme dei naturali e a valori naturali, e dati due naturali a, b, si vuole verificare se la funzione si annulla nell'intervallo [a, b].

5. Dimostrazioni per induzione

Considera la procedura f e dimostra per induzione che il risultato della valutazione dall'espressione Scheme (fn) è dato da: (define formation) (lambda (if formation))

$$(n-1)\cdot 2^n$$

In particolare:

- Scrivi formalmente la proprietà che esprime il caso base.
- Scrivi formalmente l'ipotesi induttiva.
- Scrivi formalmente la proprietà che si deve dimostrare come passo induttivo.
- Dimostra formalmente il caso base.
- Dimostra formalmente il passo induttivo.

6. Ricorsione di coda

I Accertamento del 21 Dicembre 2000 / B

cognome e nome

Risolvi i seguenti esercizi, riporta le soluzioni in modo chiaro negli appositi riquadri e giustifica sinteticamente le risposte utilizzando i fogli protocollo.

1. Procedure in Scheme

Cosa calcola la procedura f? Calcola i risultati della valutazione delle espressioni Scheme:

e ipotizza il risultato della generica valutazione (f n).

2. Procedure in Scheme

Completa il programma in Scheme a fianco per calcolare il minimo comune multiplo (mcm) di due numeri naturali positivi.

3. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Dato un numero naturale n, calcolare il più grande divisore di n, diverso da l e n.

4. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Data una funzione f definita sull'insieme dei naturali e a valori naturali, e dati due naturali a, b, si vuole verificare se nell'intervallo [a, b] esistono soluzioni dell'equazione f(x) = x.

5. Dimostrazioni per induzione

Considera la procedura f e dimostra per induzione che il risultato della valutazione dall'espressione Scheme (if n) è dato da: (define foliambda (lambda (if n))

$$2+(n-2)\cdot 2^n$$

In particolare:

- Scrivi formalmente la proprietà che esprime il caso base.
- Scrivi formalmente l'ipotesi induttiva.
- Scrivi formalmente la proprietà che si deve dimostrare come passo induttivo.
- Dimostra formalmente il caso base.
- Dimostra formalmente il passo induttivo.

6. Ricorsione di coda

I Accertamento del 21 Dicembre 2000 / C

cognome e nome

Risolvi i seguenti esercizi, riporta le soluzioni in modo chiaro negli appositi riquadri e giustifica sinteticamente le risposte utilizzando i fogli protocollo.

1. Procedure in Scheme

Cosa calcola la procedura f? Calcola i risultati della valutazione delle espressioni Scheme:

e ipotizza il risultato della generica valutazione (f n).

2. Procedure in Scheme

3. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Dato un numero naturale n, verificare se n è un fattoriale (n = k!).

4. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Data una funzione f definita sull'insieme dei naturali e a valori naturali, e dati due numeri naturali a, b, si vuole conoscere il punto dell'intervallo [a, b] in cui la funzione assume il valore massimo.

5. Dimostrazioni per induzione

Considera la procedura f e dimostra per induzione che il risultato della valutazione dall'espressione Scheme (fn) è dato da: (define formula di l'ambda (if formula di l'ambda)

$$\frac{(2n+1)(n+1)n}{6}$$

In particolare:

- Scrivi formalmente la proprietà che esprime il caso base.
- Scrivi formalmente l'ipotesi induttiva.
- Scrivi formalmente la proprietà che si deve dimostrare come passo induttivo.
- Dimostra formalmente il caso base.
- Dimostra formalmente il passo induttivo.

6. Ricorsione di coda

I Accertamento del 21 Dicembre 2000 / D

cognome e nome

Risolvi i seguenti esercizi, riporta le soluzioni in modo chiaro negli appositi riquadri e giustifica sinteticamente le risposte utilizzando i fogli protocollo.

1. Procedure in Scheme

Cosa calcola la procedura f? Calcola i risultati della valutazione delle espressioni Scheme:

e ipotizza il risultato della generica valutazione (f n).

2. Procedure in Scheme

Completa il programma in Gerine rad (lar Scheme a fianco per (define max-rad calcolare la parte intera della radice k-ima (rad) di un numero naturale n. (if (> p n)

3. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Dato un numero naturale n, verificare se n è esprimibile come potenza intera di base intera $n = k^k$.

4. Definizione di procedure in Scheme

Definisci formalmente una procedura in Scheme per risolvere il seguente problema. Data una funzione f definita sull'insieme dei naturali e a valori naturali, e dati due naturali a, b, si vuole conoscere il numero di zeri della funzione (cioè quante volte si annulla) nell'intervallo [a, b].

5. Dimostrazioni per induzione

Considera la procedura f e dimostra per induzione che il risultato della valutazione dall'espressione Scheme (f n) è dato da:

$$\frac{n(n^2-1)}{3}$$

In particolare:

- Scrivi formalmente la proprietà che esprime il caso base.
- Scrivi formalmente l'ipotesi induttiva.
- Scrivi formalmente la proprietà che si deve dimostrare come passo induttivo.
- Dimostra formalmente il caso base.
- Dimostra formalmente il passo induttivo.

6. Ricorsione di coda

I Accertamento del Corso di Programmazione - Soluzioni degli esercizi: A

1. Procedure in Scheme

 $(f0) \rightarrow 0$ $(f 1) \rightarrow 1$ $(f 2) \rightarrow 4$

 $(f n) \rightarrow n^2$

caso generale:

 $(f3) \rightarrow 9$ $(f4) \rightarrow 16$ $(f5) \rightarrow 25$

2. Procedure in Scheme

Definizione completa:

```
(define mcm (lambda (x y) (min-multiplo x x y)))
(define min-multiplo
  (lambda (m x y))
     (if (= (remainder m y) 0)
          (\underline{\text{min-multiplo}} (+ m x) \underline{x} \underline{y})
    ))))
```

3. Definizione di procedure in Scheme

```
(define num-divisori
  (lambda (n) ; n > 1 naturale
    (num-divisori-da 2 n)
   ))
(define num-divisori-da
  (lambda (d n)
    (cond ((= d n) 0)
          ((= (remainder n d) 0)
          (+ 1 (num-divisori-da (+ d 1) n)))
          (else (num-divisori-da (+ d 1) n))
   ))))
```

Definizione:

5. Dimostrazioni per induzione

Dimostrazioni del caso base e del passo induttivo su foglio allegato.

Proprietà dimostrata nel caso base:

$$(f\ 1) \rightarrow (1-1)\cdot 2^1$$

Proprietà dimostrata nel passo induttivo: per n > 1

$$(f \ n) \rightarrow (n-1) \cdot 2^n$$

Dimostrazione:

Ipotesi induttiva: $per \ n > 1$

$$(f \ n-1) \rightarrow (n-2) \cdot 2^{n-1}$$

 $(f \ n) \rightarrow (+ (f \ n-1) \ (* n (expt 2 (-n 1))))$ $\rightarrow (+ (n-2) \cdot 2^{n-1} \ n \cdot 2^{n-1})$ $\rightarrow (n-2) \cdot 2^{n-1} + n \cdot 2^{n-1} = (n-1) \cdot 2^{n}$

6. Ricorsione di coda

I Accertamento del Corso di Programmazione - Soluzioni degli esercizi: B

1. Procedure in Scheme

 $(f1) \rightarrow 1$ $(f2) \rightarrow 8$ $(f0) \rightarrow 0$

 $(f n) \rightarrow n^3$

caso generale:

 $(f3) \rightarrow 27$ $(f4) \rightarrow 64$ $(f5) \rightarrow 125$

2. Procedure in Scheme

Definizione completa:

```
(define mcm (lambda (x y) (min-multiplo x y 1)))
(define min-multiplo
  (lambda (x y k))
     (if (= <u>(remainder (* k y) x)</u> 0)
(* k y)
           (\underline{\text{min-multiplo}} \underline{x} \underline{y} (+ k 1))
     ))))
```

3. Definizione di procedure in Scheme

```
(define max-divisore
  (lambda (n) ; n > 1 naturale
    (max-divisore-da (- n 1) n)
   ))
(define max-divisore-da
  (lambda (d n)
    (cond ((= d 1) "indefinito") ; nessuna soluzione
          ((= (remainder n d) 0) d)
          (else (max-divisore-da (- d 1) n))
   )))
```

Definizione:

5. Dimostrazioni per induzione

Dimostrazioni del caso base e del passo induttivo su foglio allegato.

Proprietà dimostrata nel caso base:

$$(f \ 1) \rightarrow 2 + (1-2) \cdot 2^1$$

Proprietà dimostrata nel passo induttivo: per n > 1

$$(f n) \rightarrow 2 + (n-2) \cdot 2^n$$

Dimostrazione:

Ipotesi induttiva: $per \ n > 1$

$$(f \ n-1) \rightarrow 2 + (n-3) \cdot 2^{n-1}$$

 $(fn) \rightarrow (+ (fn-1) (* (-n 1) (expt 2 (-n 1))))$ $\rightarrow (+ 2 + (n-3) \cdot 2^{n-1} (n-1) \cdot 2^{n-1})$ $\rightarrow 2 + (n-3) \cdot 2^{n-1} + (n-1) \cdot 2^{n-1} = 2 + (n-2) \cdot 2^{n}$

6. Ricorsione di coda

I Accertamento del Corso di Programmazione - Soluzioni degli esercizi: C

1. Procedure in Scheme

 $(f0) \rightarrow 1$ $(f1) \rightarrow 2$ $(f2) \rightarrow 4$

 $(fn) \rightarrow 2^n$

caso generale:

 $(f3) \rightarrow 8$ $(f4) \rightarrow 16$ $(f5) \rightarrow 32$

2. Procedure in Scheme

Definizione completa:

```
(define rad (lambda (k n) (max-rad k n 1)))
(define max-rad
   (lambda (k n r)
     (if (> <u>(expt r k)</u> n)
           (-r1)
            (\underline{\text{max-rad}} \underline{\text{k}} \underline{\text{n}} (+ \text{r 1}))
     ))))
```

3. Definizione di procedure in Scheme

```
(define fattoriale?
  (lambda (n) ; n > 0 naturale
    (tutti-i-divisori-da? 1 n)
   ) )
(define tutti-i-divisori-da?
  (lambda (d n)
    (cond ((= d n) #t)
          ((> (remainder n d) 0) #f)
          (else
           (tutti-i-divisori-da? (+ d 1) (quotient n d)))
   ))))
```

Definizione:

5. Dimostrazioni per induzione

Dimostrazioni del caso base e del passo induttivo su foglio allegato.

Proprietà dimostrata nel caso base:

$$(f\ 1)\ \to \frac{(2+1)(1+1)1}{6}$$

Proprietà dimostrata nel passo induttivo: per n > 1

$$(f\ n)\ \to \frac{(2n+1)(n+1)n}{6}$$

Ipotesi induttiva: $per \ n > 1$

$$(f n-1) \rightarrow \frac{(2n-1)n(n-1)}{6}$$

Dimostrazione:

 $(f n) \rightarrow (+ (f n-1) (*n n))$

6. Ricorsione di coda

I Accertamento del Corso di Programmazione - Soluzioni degli esercizi: D

1. Procedure in Scheme

 $(f0) \rightarrow 1$

 $(f1) \to 1 \qquad (f2) \to 1$

 $(f n) \rightarrow n!$

caso generale:

 $(f3) \rightarrow 6$

 $(f4) \rightarrow 24 \qquad (f5) \rightarrow 120$

2. Procedure in Scheme

Definizione completa:

```
(define rad (lambda (k n) (max-rad k n 0 1)))
(define max-rad
   (lambda (k n y p)
      (if (> p n)
            (\underline{\text{max-rad}} \text{ k n } \underline{\text{(+ y 1)}} \text{ (expt (+ y 2) } \underline{\text{k}} \text{))}
     )))
```

3. Definizione di procedure in Scheme

```
(define potenza-k-k?
  (lambda (n) ; n > 0 naturale
    (tutti-i-casi-da? 1 n)
   ) )
(define tutti-i-casi-da?
  (lambda (k n)
    (cond ((> k n) #f)
          ((= (expt k k) n) #t)
          (else (tutti-i-casi-da? (+ k 1) n))
   )))
```

Definizione:

5. Dimostrazioni per induzione

Dimostrazioni del caso base e del passo induttivo su foglio allegato.

Proprietà dimostrata nel caso base:

$$(f 1) \rightarrow \frac{1(1-1)}{3}$$

Proprietà dimostrata nel passo induttivo: $per \ n > 1$

$$(f \ n) \ \to \frac{n(n^2-1)}{3}$$

Ipotesi induttiva: $per \ n > 1$

$$(f \ n-1) \rightarrow \frac{(n-1)((n-1)^2-1)}{3}$$

Dimostrazione:

$$(f \ n) \rightarrow (+ \ (f \ n-1) \ (* \ n \ (-n \ 1)))$$

$$\rightarrow (+ \ \frac{(n-1)((n-1)^2 - 1)}{3} \ n(n-1))$$

$$\rightarrow \frac{(n-1)((n-1)^2 - 1)}{3} + n(n-1) = \frac{n(n^2 - 1)}{3}$$

6. Ricorsione di coda