Super-Resolution

Planned Experiments

Vivianne Tanner Florian Jörg Adrian Wälchli

Our Proposed Solution

X: Low resolution input

Y: Intermediate upscaling result

Z: High resolution output

Hyperparameters

- Learning rate
- Depth of upscale network
- Depth of recurrent block
- Number of recursions

Dataset

• **Urban100** (Buildings)

• **BSD100** (Natural images, mostly with animals/humans)

Dataset

SunHays80 (Mostly buildings and landscapes)

Set5, Set14 (Random images)

Ablation Study

- Remove residual connection
- Remove recurrent block

Experiments with Training

- Pre-train upscale network
- Fix parameters
- Train recurrent block

Possible Modifications

Comparison to Prior Work

Comparison similar to the one in "Deeply-Recursive Convolutional Network for Image Super-Resolution" by Kim et al.

Comparison datasets: Set5, Set14, BSD100, Urban100

Comparison metrics: PSNR, SSIM

Dataset	Scale	Bicubic PSNR/SSIM	A+ [29] PSNR/SSIM	SRCNN [5] PSNR/SSIM	RFL [23] PSNR/SSIM		DRCN (Ours) PSNR/SSIM
Set5	×2 ×3 ×4	30.39/0.8682	32.58/0.9088	32.75/0.9090	32.43/0.9057	32.58/0.9093	37.63/0.9588 33.82/0.9226 31.53/0.8854
Set14	×2 ×3 ×4	27.55/0.7742	29.13/0.8188	29.28/0.8209	29.05/0.8164	29.16/0.8196	33.04/0.9118 29.76/0.8311 28.02/0.7670
B100	×2 ×3 ×4	27.21/0.7385	28.29/0.7835	28.41/0.7863	28.22/0.7806	28.29/0.7840	31.85/0.8942 28.80/0.7963 27.23/0.7233
Urban100	10000	24.46/0.7349	26.03/0.7973	26.24/0.7989	25.86/0.7900	26.44/0.8088	30.75/0.9133 27.15/0.8276 25.14/0.7510

Fun Experiments

- Try upscale factor 1
- Add noise to input

Questions

