SCALLOP-HD: group action from 2-dimensional isogenies

Mingjie Chen, Antonin Leroux, Lorenz Panny

Université Libre de Bruxelles

March 13, 2024

izogeny club

Game Goal

Construct a scalable quantum safe effective group action (EGA).

- **EGA**: a group action $G \curvearrowright S$ that is **effective**
 - $g^n \star s$ can be computed efficiently where $g \in G$ is a generator, $n \in \mathbb{Z}_{\geq 0}$ and $s \in S$.
- scalable: we can scale the EGA to bigger parameters

Mingjie Chen SCALLOP-HD March 13, 2024 2/24

What has been achieved so far $(Cl(\mathfrak{O}) \curvearrowright \mathcal{S}_{\mathfrak{O}}(p))$

CSIDH [Castryck-Lange-Martindale-Panny-Renes 2018]

- $\mathfrak{O}=\mathbb{Z}[\sqrt{-p}]$, set elements are j-invariants of E/\mathbb{F}_p
- REGA: ∏ l_i^{e_i}

CSI-FiSh [Beullens-Kleinjung-Vercauteren 2019]

- D and set elements are same as in CSIDH
- EGA: ge
- REGA \rightarrow EGA

Offline:

- Cl(D);
- \mathcal{L} lattice of relations $(r_i's \text{ such that } [\mathfrak{l}_i] = [\mathfrak{g}^{r_i}])$
- lattice reduction

Online:

- approximate-CVP $\Rightarrow \mathfrak{g}^e = \prod_{i=1}^{i=n} \mathfrak{t}_i^{e_i}$
- class group action evaluation

SCALLOP [De Feo-Fouotsa-Kutas-Leroux-Merz-Panny-Wesolowski 2023]

- $\mathfrak{O} = \mathbb{Z}[f\sqrt{-d}]$, set elements are $(E,\iota) \in \mathcal{S}_{\mathfrak{O}}(p)$
- EGA (same strategy as CSI-FiSh)

Scalability

Problem

(Vectorization) Given $x, y \in S$, find $g \in G$ such that $y = g \star x$.

- Since 2019, a series of papers studied the quantum security of CSIDH, leaving whether CSIDH-512 and CSIDH-1024 achieve NIST level 1 security under debate.
- It is desirable to have an efficient isogeny-based EGA at higher security level.
- In terms of scalability, CSI-FiSh was able to scale to CSIDH-512, and SCALLOP managed to scale to achieve the security level of CSIDH-512 and CSIDH-1024.

Mingjie Chen SCALLOP-HD March 13, 2024 4 / 24

SCALLOP revisit

- The quadratic order: $\mathbb{Z}[f\sqrt{-d}]$

$$\#\mathsf{Cl}(\mathfrak{O}) = (f - \left(\frac{-d}{f}\right)) \frac{1}{|\mathbb{Z}[-d]^*|/2} \text{ when } \#\mathsf{Cl}(\mathbb{Z}[\sqrt{-d}]) = 1.$$

It's easy to find a generator of such class groups!

- The set element: (E, P, Q)P, Q give rise to the kernel of a generator α of Ω of norm $L_1^2L_2$ where L_1 and L_2 are two smooth coprime integers.
- The group action computation: involved
- Scaling bottleneck: Solving discrete logarithm in Cl(D).

The "HD" Rush

Let φ, φ' be a-isogenies and ψ, ψ' be b-isogenies for integers a, b that satisfy the commutative diagram:

$$E'_{1} \xrightarrow{\varphi'} E'_{2}$$

$$\psi \downarrow \qquad \qquad \downarrow \psi'$$

$$E_{1} \xrightarrow{\varphi} E_{2}.$$

Define $F: E_2 \times E_1' \longrightarrow E_1 \times E_2'$ by the matrix form $\begin{pmatrix} \hat{\varphi} & -\hat{\psi} \\ \psi' & \psi' \end{pmatrix}$. F is a d-isogeny between abelian surfaces with d = a + b.

If
$$\ker \varphi \cap \ker \psi = \{0\}$$
,

$$\ker(F) = \{ (\varphi(x), \psi(x)) \mid x \in E_1[d] \}.$$
 [Kani97']

Mingjie Chen

SCALLOP-HD???

Can we come up with a "better" representation of orientations than that in SCALLOP using the idea of high dimension representation?

Yes, and this leads to several improvements over SCALLOP.

Tiny remarks

Representing an $\mathfrak D$ -orientation ι on E \Leftrightarrow representing an endomorphism $\theta \in \iota(\mathfrak D)$ such that $\mathbb Z[\theta] \cong \mathfrak D$

Representing an endomorphism $\theta \in \operatorname{End}(E)$ \Leftrightarrow representing the $\mathbb{Z}[\theta]$ -orientation on E induced by θ

◆□▶ ◆御▶ ◆差▶ ◆差▶ ○差 ○夕@@

2dim-representation of orientations and endomorphisms

Definition

Let $\mathfrak D$ be an imaginary quadratic order with discriminant $D_{\mathfrak D}$. Given an $\mathfrak D$ -oriented supersingular elliptic curve (E,ι) , take any $\omega \in \mathfrak D$ such that $\mathfrak D = \mathbb Z[\omega]$ and define $\omega_E := \iota(\omega)$. Let $\beta \in \mathfrak D$ such that $n(\omega) + n(\beta) = 2^e$ and $\gcd(n(\beta), n(\omega)) = 1$. Let P, Q be a basis of $E[2^e]$. Then the tuple $(E, \omega, \beta, P, Q, \omega_E(P), \omega_E(Q))$ is called a $2\dim$ -representation of (E,ι) .

Mingjie Chen SCALLOP-HD March 13, 2024 9/24

An automatic isogeny diamond

Given a 2dim-representation $(E, \omega, \beta, P, Q, \omega_E(P), \omega_E(Q))$ of (E, ι) , we immediately have the following isogeny diamond.

$$\begin{array}{c|c}
E & \xrightarrow{\omega_E} & E \\
\beta_E & & \beta_E \\
E & \xrightarrow{\omega_E} & E
\end{array}$$

This defines an isogeny $F: E^2 \to E^2$ given by the matrix form

$$F := \begin{pmatrix} \hat{\omega}_E & -\hat{\beta}_E \\ \beta_E & \omega_E \end{pmatrix}$$

If $\ker \omega_E \cap \ker \beta_E = \{0\}$, then

$$\ker(F) = \{ (\omega_E(x), \beta_E(x)) \mid x \in E[2^e] \}.$$

Finding 2dim-representations

Proposition

Let $\mathfrak D$ be an imaginary quadratic order of discriminant $D_{\mathfrak D} \equiv 5 \mod 8$, then any $(E,\iota) \in \mathcal S_{\mathfrak D}(p)$ admits a 2dim-representation.

– It suffices to show that when e is big enough, we can always find $\omega, \beta \in \mathfrak{O}$ such that

$$\mathfrak{O} = \mathbb{Z}[\omega], \gcd(n(\omega), n(\beta)) = 1, n(\omega) + n(\beta) = 2^{e}.$$

 $-\omega = x + \frac{D_{\mathfrak{D}} + \sqrt{D_{\mathfrak{D}}}}{2}$ and $\beta = y + z \frac{D_{\mathfrak{D}} + \sqrt{D_{\mathfrak{D}}}}{2}$ for some integers x, y, z. Therefore, it suffices to finding an integer solution of the following equation:

$$(2x + D_{\Omega})^2 + (2y + D_{\Omega}z)^2 = 2^{e+2} + D_{\Omega}(z^2 + 1).$$

- We ensure that $gcd(n(\omega), n(\beta)) = 1$ since $n(\omega) = x^2 + D_{\mathfrak{D}}x + \frac{D_{\mathfrak{D}}(D_{\mathfrak{D}} - 1)}{4}$ is **odd** when $D_{\mathfrak{D}} \equiv 5 \mod 8$.

Proof continued

$$(2x + D_{\mathfrak{D}})^{2} + (2y + D_{\mathfrak{D}}z)^{2} = 2^{e+2} + D_{\mathfrak{D}}(z^{2} + 1).$$

Heuristic

Let e, $D_{\mathfrak{D}}$ be as above. If z is sampled as random integers, then the integers $2^{e+2} + D_{\mathfrak{D}}(1+z^2)$ behave like random integers of the same size that are either congruent to $1 \mod 4$ or equal to 2 times an integer that is equal to $1 \mod 4$.

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Finding 2dim-representations

Proposition

Let $\mathfrak D$ be an imaginary quadratic order of discriminant $D_{\mathfrak D} \equiv 5 \mod 8$, then any $(E,\iota) \in \mathcal S_{\mathfrak D}(p)$ admits a 2dim-representation.

– It suffices to show that when e is big enough, we can always find $\omega, \beta \in \mathfrak{O}$ such that

$$\mathfrak{O}=\mathbb{Z}[\omega],\ \gcd(\mathit{n}(\omega),\mathit{n}(\beta))=1,\ \mathit{n}(\omega)+\mathit{n}(\beta)=2^{\mathscr{E}}\mathbf{N}.$$

 $-\omega = x + \frac{D_{\mathfrak{D}} + \sqrt{D_{\mathfrak{D}}}}{2}$ and $\beta = y + z \frac{D_{\mathfrak{D}} + \sqrt{D_{\mathfrak{D}}}}{2}$ for some integers x, y, z. Therefore, it suffices to finding an integer solution of the following equation:

$$(2x + D_{\mathfrak{D}})^2 + (2y + D_{\mathfrak{D}}z)^2 = 2^{e+2}4N + D_{\mathfrak{D}}(z^2 + 1).$$

- We ensure that $gcd(n(\omega), n(\beta)) = 1$ since $n(\omega) = x^2 + D_{\mathfrak{D}}x + \frac{D_{\mathfrak{D}}(D_{\mathfrak{D}}-1)}{4}$ is **odd** when $D_{\mathfrak{D}} \equiv 5 \mod 8$.

Applications

- It's recently used in [Leroux 2023] to provide a new algorithm to perform the Deuring correspondence using isogenies in dimension 2.
- It can be used in the endomorphism division algorithm ([Robert 2022],[Merdy-Wesolowski 2023]) to replace isogeny computations in dimension 4/8 to computations in dimension 2.

Mingjie Chen SCALLOP-HD March 13, 2024 14 / 24

Group action computation

Let

- $(E, \omega, \beta, P, Q, \omega_E(P), \omega_E(Q))$ be a 2dim-representation of (E, ι)
- a an invertible 𝔾-ideal such that 2 ∤ Norm(a)

Let $\phi_{\mathfrak{a}}$ be the isogeny with kernel $E[\mathfrak{a}]$. To calculate a 2dim-representation for $\mathfrak{a}\star(E,\iota)=(E_{\mathfrak{a}},\iota_{\mathfrak{a}})$, we can keep the same ω and β . Since $\gcd(n(\mathfrak{a}),2)=1$, $\{\phi_{\mathfrak{a}}(P),\phi_{\mathfrak{a}}(Q)\}$ form a basis of $E_{\mathfrak{a}}[2^e]$. By definition,

$$\iota_{\mathfrak{a}}(\omega)(\phi_{\mathfrak{a}}(P,Q)) = \frac{1}{n(\mathfrak{a})}\phi_{\mathfrak{a}}\circ\omega_{E}\circ\hat{\phi}_{\mathfrak{a}}(\phi_{\mathfrak{a}}(P,Q)) = \phi_{\mathfrak{a}}(\omega_{E}(P,Q)).$$

Let $\{R,S\}$ be an arbitrary basis of $E_{\mathfrak{a}}[2^{e}]$, then $\iota_{\mathfrak{a}}(\omega)(R,S)$ can be recovered from $\iota_{\mathfrak{a}}(\omega)(\phi_{\mathfrak{a}}(P,Q))$ efficiently.

Mingjie Chen SCALLOP-HD March 13, 2024 15 / 24

SCALLOP-HD!!!

- Quadratic orders $\mathfrak{O}=\mathbb{Z}[f\sqrt{-d}]$ such that $D_{\mathfrak{O}}\equiv 5$ mod 8
- $(E, \iota) \in \mathcal{S}_{\mathfrak{O}}(p)$ is represented by 2dim-representation $(E, \omega, \beta, P, Q, \omega_E(P), \omega_E(Q))$
 - We fix ω, β in $(E, \omega, \beta, P, Q, \omega_E(P), \omega_E(Q))$. Moreover, if we use a deterministic algorithm to compute a basis of $E[2^e]$, then the representation can be given by $(E, \omega_E(P), \omega_E(Q))$.

 Mingjie Chen
 SCALLOP-HD
 March 13, 2024
 16 / 24

Important parameters

- Choice of f: ensure that $\#Cl(\mathfrak{O}) = \left(f \left(\frac{-d}{f}\right)\right) \frac{1}{|\mathfrak{O}_0^*|/2}$ is as smooth as possible.
- Choice of field characteristic p:
 - To efficiently represent the orientation, we require that 2^e -torsion is defined over \mathbb{F}_{p^2} .
 - For efficient computation of the group action, we also require to have the $\prod_{1 < i < n} \ell_i$ -torsion defined over \mathbb{F}_{p^2} .

$$\implies p = c2^e \prod_{i=1}^n \ell_i \pm 1,$$

where c is a small cofactor.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 990

Mingjie Chen SCALLOP-HD March 13, 2024 17 / 24

Generating a starting curve

We find $(E, \iota) \in \mathcal{S}_{\mathbb{Z}[f\sqrt{-d}]}(p)$ by computing a descending isogeny φ_f of degree f from $(E_0, \iota_0) \in \mathcal{S}_{\mathbb{Z}[\sqrt{-d}]}(p)$. To obtain 2dim-representation of (E, ι) :

- deg γ " = " $f \cdot 2^{e/2} \prod \ell_i \approx p$, so $\gamma \in \mathcal{O}_0$ can be found efficiently with FullRepresentInteger [De Feo-Leroux-Longa-Wesolowski 2023]. (note that the first equality is not exactly true, an exhuastive search step is involved)
- Being able to evaluate γ and ψ allows evaluation of φ_f on a basis of $E_0[2^{e/2}]$.
- This implies evaluation of ω_E on a basis of $E[2^{e/2}]$, which allows one to evaluate ω_F on a basis of E[2^e] [Dartois-Leroux-Robert-Wesolowski 2023].

Remaining steps

- Offline:

- Class group computation is efficient.
- Lattice of relation can be computed in polynomial time since $Cl(\mathfrak{D})$ has powersmooth order.
- Lattice reduction algorithm remains the same.

- Online:

- The CVP step remains the same.
- A new formula to compute the class group action.

A remark on security

A polynomial time quantum algorithm exists to compute $\operatorname{End}(E)$ given the evaluation of φ_f on points of powersmooth order [Chen-Imran-Ivanyos-Kutas-Leroux-Petit 2023].

Therefore, the security of SCALLOP(-HD) boils down to:

Can we use the effective orientation ω_E revealed in SCALLOP(-HD) to evaluate φ_f ?

Another remark on security

Let

- N to be a product of split primes in $\mathfrak{O}_0=\mathbb{Z}[\sqrt{-d}]$
- P, Q be two generators of the eigenspaces of ω_0 in $E_0[N]$
- T, S be two generators of the eigenspaces of ω_E in E[N]

key observation: we know $\varphi_f(P,Q)$ up to scalars as eigenspaces of ω_0 are mapped to eigenspaces of ω_E by φ_f

What about applying FESTA attack in [Castryck-Vercauteren 2023]?

our conclusion: it's hard as we need to find $\sigma \in \operatorname{End}(E_0)$ whose matrix of action on $\{P,Q\}$ is also diagonal

- see our paper for more discussions

Implementation and performance

Scalability We managed to compute the reduced lattice of relation for $D \approx 4096$ bits.

An issue We haven't finished generating a starting curve for 2048 and 4096, due to the lack of sufficiently general genus-2 isogeny libraries.

Performance

D	512	1024	2048	4096
f	254	508	1021	2043
n	74	100	200	300
р	1137	1909	tbf	tbf

Table: Bit-size for D, f, n and p.

	512	1024	2048 & 4096
SCALLOP	42 sec	15 min	_
SCALLOP-HD	88 sec	19 min	tbf

Table: Runtime for a single group action evaluation. Experiments run on an Intel Alder Lake CPU core clocked at 2.1 GHz. C++ implementation of SCALLOP compared with SageMath implementation of SCALLOP_HD.

Conclusion and future work

Conclusion:

- We introduce the notation of 2dim-representation for representing orientations and endomorphisms. This is interesting in its own right.
- We present the SCALLOP-HD group action. Compared with SCALLOP:
 - it has better scalability,
 - the group action formula is simpler,
 - the efficiency of SCALLOP-HD can at least compete.

Future work:

Improve current implementation of the SCALLOP-HD group action.

Thank you!