99% de acurácia... tá, mas e aí?

By Rodrigo C. Moraes

https://github.com/rodrigocmoraes

rdcmdev@gmail.com

kaggle https://www.kaggle.com/rdcmdev

Quem sou eu?

Engenheiro de Machine Learning

Graduando em Engenharia de Computação

Ex Maratonista de Programação

•••

Como validar um modelo de Machine Learning?

Programação do Minicurso

1. Apresentação

2. Código/Hands-on

Acesso ao material do minicurso

https://github.com/RodrigoCMoraes/pydata2019

Conceitos

- 1. Feature Engineering
- 2. Split do Dataset
- 3. PCA
- 4. Métricas de validação
- 5. Modelo

2. Split do Dataset: Holdout

Fonte: https://bit.ly/2JnwjHJ

2. Split do Dataset: K-Fold+Validação Cruzada

Fonte: https://bit.ly/2JnwjHJ

2. Split do Dataset: K-Fold+Validação Cruzada

Fonte: https://bit.ly/2JnwjHJ

2. Split do Dataset: RSKF+Validação Cruzada

Randomize Dataset

3. PCA - Principal Component Analysis

Fonte: https://bit.ly/2J0PVSi

Fonte: https://bit.ly/2Y5ytj1

4. Métricas de Validação

$$\operatorname{Acur\'{e}cia} = \frac{tp+tn}{tp+tn+fp+fn}$$

$$Precisão = \frac{tp}{tp + fp}$$

$$\operatorname{Revocaç\,\tilde{a}\,o} = \frac{tp}{tp+fn}$$

$$F = 2 \cdot \frac{\text{precis} \cdot \text{revoc}}{\text{precis} + \text{revoc}}$$

True Positive (TP)

True Negative (TF)

False Positive (FP)

False Negative (FN)

5. Modelo

Fonte: https://bit.ly/2jnSH5w