Aufgabe 1

• Es gilt

$$\begin{pmatrix}
0 & 6 & -2 & -1 & 2 \\
-1 & -1 & 0 & -1 & 11 \\
-2 & 3 & -1 & -2 & 15 \\
1 & 0 & 0 & 1 & -10
\end{pmatrix}
\longleftrightarrow
\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 1 & -10 \\
-1 & -1 & 0 & -1 & 11 \\
-2 & 3 & -1 & -2 & 15 \\
0 & 6 & -2 & -1 & 2
\end{pmatrix}
| \cdot (-1)$$

$$\longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 1 & -10 \\
1 & 1 & 0 & 1 & -11 \\
-2 & 3 & -1 & -2 & 15 \\
0 & 6 & -2 & -1 & 2
\end{pmatrix}
| III + 2 \cdot II \longrightarrow
\begin{pmatrix}
1 & 0 & 0 & 1 & -10 \\
1 & 1 & 0 & 1 & -11 \\
0 & 5 & -1 & 0 & -7 \\
0 & 6 & -2 & -1 & 2
\end{pmatrix}
| III - I$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & -10 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 5 & -1 & 0 & -7 \\ 0 & 6 & -2 & -1 & 2 \end{pmatrix} \mid III - 5 \cdot II \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & -10 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & -2 \\ 0 & 6 & -2 & -1 & 2 \end{pmatrix} \mid IV - 6 \cdot II$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & -10 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & -2 \\ 0 & 0 & -2 & -1 & 8 \end{pmatrix} \begin{vmatrix} \cdot & (-1) \\ \mid V - 2 \cdot \text{III} \end{vmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & -10 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & -1 & 12 \end{pmatrix} \begin{vmatrix} \mid I + \text{IV} \end{vmatrix}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -12 \end{pmatrix}$$

Da der Rang der Matrix 4 ist, hat das LGS die Lösungsmenge L = $\left\{\begin{pmatrix}2\\-1\\2\\-12\end{pmatrix}\right\}.$

• Es gilt

$$\begin{pmatrix} 2 & 2 & 1 & 2 & 4 \\ 1 & 0 & 1 & 1 & 4 \\ 1 & 1 & 1 & 2 & 4 \\ 2 & 1 & 1 & 1 & 4 \end{pmatrix} \longleftrightarrow \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 4 \\ 2 & 2 & 1 & 2 & 4 \\ 1 & 1 & 1 & 2 & 4 \\ 2 & 1 & 1 & 1 & 4 \end{pmatrix} \mid \text{II} - \text{III}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 4 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 2 & 4 \\ 2 & 1 & 1 & 1 & 4 \end{pmatrix} \mid IV - I \qquad \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 4 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 2 & 4 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix} \mid II - I \\ \mid III - I \\ \mid IV - II$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 4 \\ 0 & 1 & -1 & -1 & -4 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{|\text{II}-\text{III}}{\longleftarrow} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 4 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -2 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{|\text{I}+\text{III}}{\mid \cdot -1 \mid}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Die Matrix hat also den Rang 3. Daher hat die Lösungsmenge Dimension 1. Als Partikulärlösung erhalten wir

$$\begin{pmatrix} 0 \\ 0 \\ 4 \\ 0 \end{pmatrix}$$

Außerdem ist

$$\operatorname{Lin}\left(\begin{pmatrix}1\\-1\\-2\\1\end{pmatrix}\right)$$

die Lösungsmenge des homogenen Systems.

Also lautet die Lösungsmenge des inhomogenen Systems $L = \left\{ \begin{pmatrix} 0 \\ 0 \\ 4 \\ 0 \end{pmatrix} + \operatorname{Lin} \begin{pmatrix} 1 \\ -1 \\ -2 \\ 1 \end{pmatrix} \right\}.$

• Es gilt

$$\begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 2 & 2 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 & 3 \\ 2 & 1 & 1 & 1 & 4 \end{pmatrix} \xleftarrow{|\text{III} - \text{I}} \longrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 \\ 2 & 2 & 1 & 2 & 2 \\ 2 & 1 & 1 & 1 & 4 \end{pmatrix} |\text{III} - \text{IV}$$

$$\longrightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 & -2 \\ 2 & 1 & 1 & 1 & 4 \end{pmatrix}$$

Offensichtlich liefern Zeile II und III einen Widerspruch. Somit gilt $L=\emptyset$

Aufgabe 2

(a) Euklidischer Algorithmus:

$$\underbrace{x^2 + x + 1}_{f_1} = 1 \cdot \underbrace{(x^2 + 1)}_{f_2} + \underbrace{x}_{f_3}$$

$$x^2 + 1 = x \cdot x + \underbrace{1}_{f_4}$$

$$x = x \cdot 1 + 0$$

Es ist also $f_4 = 1 = ggT(f_1, f_2)$). Folglich sind die beiden teilerfremd.

(b) Vorgehensweise laut Vorlesung:

$$f_3 = 1 \cdot f_1 - 1 \cdot f_2$$

$$f_4 = 1 \cdot f_2 - x \cdot f_3$$

$$f_4 = f_2 - x \cdot (f_1 - f_2)$$

$$1 = -1 \cdot f_1 + (1 + x) \cdot f_2$$

- (c) Sei $h = f \cdot g \in f \cdot K[x]$. Dann ist auch $-h = -f \cdot g = f \cdot -g \in f \cdot K[x]$. Sei außerdem $e = f \cdot d \in f \cdot K[x]$. Dann ist auch die Summe $h + e = f \cdot g + f \cdot d = f \cdot (g + d) \in f \cdot K[x]$. Sei zusätzlich $\lambda \in K$. Dann ist $\lambda \cdot h = \lambda \cdot f \cdot g = f \cdot \lambda \cdot g \in f \cdot K[x]$.
- (d) Es bezeichne $p:K[x]\to K[x]/fK[x]$ die kanonische Projektion. Dann existiert nach Satz 4.6 zu jedem $g\in K[x]$ ein eindeutig bestimmtes $r\in\{s\in K[x]|\deg(s)<\deg(f)\}$ mit $g=r+f\cdot q$, $q\in K[x]$. Daher ist p(g)=r+fK[x]. Offensichtlich ist also K[x]/fK[x] isomorph zu $S:=\{s\in K[x]|\deg(s)<\deg(f)\}=\operatorname{Lin}(x^0,x^1,\ldots,x^{\deg(f)-1})$. Diese $\deg(f)$ Vektoren sind linear unabhängig und daher eine Basis von S. Folglich ist $\deg(f)=\dim_K(S)=\dim_K(K[x]/fK[x])$.

Aufgabe 3

Sei K ein Körper, $A \in M_{n,n}(K)$ und $\lambda \in K$.

(a) **ZZ:** $\det(\lambda A) = \lambda^n \det(A)$.

Beweis. DIe Abbildung

$$\det: M_{n,n}(K) \longrightarrow K$$
, wobei $M_{n,n}(K) \iff (K^n)^n$

ist nach VL eine alternierende n-Form, weshalb sie insbesondere multilinear, also in jeder Komponente linear ist.

Für die i-te Zeile von $\lambda A \in M_{n,n}(K)$ gilt:

$$(\lambda a_{i,1}, \cdots, \lambda a_{i,n}) = \lambda (a_{i,1}, \cdots, a_{i,n}).$$

Es gilt also

$$\det (\lambda A) = \det (\lambda (a_{1,1}, \cdots, a_{1,n}), \cdots, \lambda (a_{n,1}, \cdots, a_{n,n}))$$

$$\stackrel{\text{det ist multilinear}}{=} \lambda \cdot \ldots \cdot \lambda \det ((a_{1,1}, \cdots, a_{1,n}), \cdots, (a_{n,1}, \cdots, a_{n,n}))$$

$$= \lambda^n \det (A)$$

(b) **ZZ:** Ist $K = \mathbb{R}, n = 3$ und A antisymmetrisch, so ist A nicht invertierbar.

Beweis. Nach Probeklausur haben alle antisymmetrischen 3×3 -Matrizen die Form

$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} \quad (a, b, c \in K)$$

Nach Korollar 3.26 gilt für $A \in M_{n,n}(K)$:

A invertierbar \iff Spalten von A bilden eine Basis des K^n .

Es genügt also zu zeigen, dass die Spalten von A linear abhängig sind. Es gilt

$$\begin{pmatrix} b \\ c \\ 0 \end{pmatrix} = -\frac{c}{a} \cdot \begin{pmatrix} 0 \\ -a \\ -b \end{pmatrix} + \frac{b}{a} \cdot \begin{pmatrix} a \\ 0 \\ -c \end{pmatrix}$$

Somit sind die Spalten von A linear abhängig und insbesondere ist A nicht invertierbar.

(c) **Behauptung:** Es existiert eine invertierbare reelle 2×2 -Matrix.

Beweis. Betrachte

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

A ist antisymmetrisch und es gilt

$$A^{-1} \cdot A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(d) **Behauptung:** Es existiert keine invertierbare 3×3 -Matrix über einem anderen Körper als \mathbb{R} .

Beweis. Betrachte eine Matrix der Form

$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{pmatrix} \quad (a, b, c \in K).$$

Dann gibt es folgende Fälle:

Fall 1: $a \neq \operatorname{char} K$. Dann lässt sich der Beweis aus 3b übernehmen.

Fall 2: $a = \operatorname{char} K$. Dann ist

$$A = \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ -b & -c & 0 \end{pmatrix}$$

Dann sind

 $\begin{pmatrix} 0 \\ 0 \\ -c \end{pmatrix}$

und

 $\begin{pmatrix} 0 \\ 0 \\ -b \end{pmatrix}$

linear abhängig.

Insgesamt ist eine antisymmetrische 3×3 -Matrix also nicht invertierbar.

Aufgabe 4

(a) Man zieht zunächst Zeile 1 einmal von jeder anderen Zeile ab. Dadurch erhält man die Einträge

$$a'_{ij} \begin{cases} x & i=j=1\\ x-y & i=j\neq 1\\ y & i=1, j\neq 1. \text{ Nun addiert man die zweite, dritte, } \dots, \text{ n-te Spalte auf die erste. Wegen}\\ y-x & i\neq 1, j=1\\ 0 & \text{sonst} \end{cases}$$

y - x + x - y = 0 erhält man $a''_{i1} = 0 | i > 1$. Für a_{11} erhält man $x + (n-1) \cdot y$. Nun ist die Matrix in oberer Dreiecksform, sodass die Determinante gleich dem Produkt der Diagonaleinträge ist und daher gleich $(x + (n-1)y)(x-y)^{n-1}$.

(b) Wir bezeichnen eine Matrix der Größe $2n \times 2n$ aus der Aufgabenstellung mit M_n . **Behauptung:** $\det(M_n) = (x^2 - y^2)^n$

Beweis. Induktionsanfang:
$$n = 1 : \det\begin{pmatrix} x & y \\ y & x \end{pmatrix} = (x^2 - y^2)^1$$

Induktionsbehauptung: Für ein beliebiges, aber festes $n \in \mathbb{N}$ gelte die Behauptung. Induktionsschritt: $n \to n+1$: Sei $B := M_{n+1}$, $B' := B_{0,0}$ und $B'' := B_{2n+2,0}$. Es gilt $b_{1,1} = x, b_{1,2n+2} = y$ und sonst $b_{1,j} = 0$. Daher ist $\det(B) = x \cdot \det B' - y \cdot B''$. Wegen $b'_{2n+1,2n+1} = x$ und $b'_{2n+1,j} = 0$ sonst ist $\det B' = x \cdot \det B'_{2n+1,2n+1}$. Wegen $b''_{2n+1,1} = y$ und $b''_{2n+1,j} = 0$ sonst ist $\det B'' = y \cdot \det B''_{1,2n+1}$. Da bei $B'_{2n+1,2n+1}$ und $B''_{1,2n+1}$ jeweils die obere und untere Zeile sowie die rechte und linke Spalte entfernt wurden, ist $B'_{2n+1,2n+1} = B''_{1,2n+1} = M_n$. Folglich ist $\det M_{n+1} = x \cdot x \cdot \det M_n - y \cdot y \cdot \det M_n \stackrel{IB}{=} (x^2 - y^2) \cdot (x^2 - y^2)^n = (x^2 - y^2)^{n+1}$.