Association rule mining

Luciano Serafini

Fondazione Bruno Kessler

May 6, 2019

Association rules

- Transaction data
- Market basket analysis
- Produce

$$\{\mathit{Cheese}, \mathit{Milk}\} \rightarrow \{\mathit{Bread}\}[\mathit{sup} = 5\%, \mathit{conf} = 80\%]$$

 Association rule: 80% of customers who buy cheese and milk also buy bread. This is supported by 5% of customers who buy all these products together

Association rule mining

- Proposed by Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. "Mining association rules between sets of items in large databases". In: Acm sigmod record. Vol. 22. 2. ACM. 1993, pp. 207–216
- It is an important data mining model studied extensively by the database and data mining community.
- Assume all data are categorical.
- Initially used for Market Basket Analysis to find how items purchased by customers are related.

Example (Association rule)

Looking at the fidelity cards, we notice that 95% of the people who buy milk and caffe, also buy biscuits, and this is supported by 5% of the entries of our database. In symbols:

milk, caffee \rightarrow biscuits confidence = 98%, support = 5%

Association Rules

- let Ω be a finite non empty set of items, denoted by $\{a, b, c, \dots\}$;
- An itemset X over Ω , is a subset of Ω
- A transaction database \mathcal{D} is a sequence $X_1, \dots, X_{|\mathcal{D}|}$ of itemsets, called transactions of \mathcal{D} ;
- The cover of and itemset X in \mathcal{D} , denoted by $C(X, \mathcal{D})$

$$\{i \in \mathbb{N} \mid X \subseteq X_i \in \mathcal{D}\}$$

• The support of X in \mathcal{D} , denoted $S(X, \mathcal{D})$, is the cardinality of $C(X, \mathcal{D})$,

Tid			Ite	emse	ets		
1	а	b	С	d			
2	а	b			e	f	
3	а	b	С				
4	а		С	d		f	
5							g
6				d			
7				d			g

- $C({a,b}, \mathcal{D}) = {1,2,3};$
- $S({a,b}, \mathcal{D}) = 3$;

Association Rule

Definition

An association rule is a pattern of the form

$$X \rightarrow Y$$

where X (called the antecedent) and Y (called the consequent) are two disjoint itemsets.

• The support of an association rule $X \to Y$ in a transaction database $\mathcal D$ is equal to

$$S(X \to Y, \mathcal{D}) = \frac{S(X \cup Y, \mathcal{D})}{|\mathcal{D}|}$$

• The confidence of $X \to Y$ in \mathcal{D} is equal to

$$Conf(X \to Y, \mathcal{D}) = \frac{S(X \cup Y, \mathcal{D})}{S(X, \mathcal{D})}$$

Association Rule Mining

Definition

Given a transaction database \mathcal{D} , a minimum support threshold $0<\alpha\leq 1$ and a minimum confidence threshold $0<\beta\leq 1$, the problem of mining association rules consists in computing the the $MAR(\mathcal{D},\alpha,\beta)$ equal to:

$$\{X \to Y \mid S(X \to Y, D) \ge \alpha \text{ and } Conf(X \to Y, D) \ge \beta\}$$

An example

	Beef, Chicken, Milk
2	Beef, Cheese
3	Cheese. Boots
4	Beef, Chicken, Cheese
5	Beef, Chicken, Cheese Beef, Chicken, Clothes, Cheese, Milk Chicken, Clothes, Milk
6	Chicken, Clothes, Milk
7	Chicken, Clothes, Milk

	Beef	Chicken	Clothes	Cheese	Milk	Boots
1	1	1	0	0	1	0
2	1	0	0	1	0	0
3	0	0	0	1	0	1
4	1	1	0	1	0	0
5	1	1	1	1	1	0
6	0	1	1	0	1	0
7	0	1	1	0	1	0

- Assume:
 - minsup = 30%
 - minconf = 80%

1 Beef, Chicken, Mil

- 2 Beef, Cheese
- Cheese, BootsBeef, Chicken, Cheese
- 5 Beef, Chicken, Clothes, Cheese, Milk
- 6 Chicken, Clothes, Milk
- 7 Chicken, Clothes, Milk

Example

- Assume:
 - minsup = 30%
 - minconf = 80%

 $\mathcal{D} =$

ı	1	Beef, Chicken, Milk
ı	2	Beef, Cheese
ı	3	Cheese, Boots
ı	4	Beef, Chicken, Cheese
ı	5	Beef, Chicken, Clothes, Cheese, Milk
ı	6	Chicken, Clothes, Milk
ı	7	Chicken, Clothes, Milk

• An example frequent itemset:

$$[sup = 3/7]$$

Example

Assume:

An example frequent itemset:

Chicken, Clothes, Milk
$$[sup = 3/7]$$

Chicken, Milk $[sup = 4/7]$

Example

Assume:

An example frequent itemset:

Chicken, Clothes, Milk
$$[sup = 3/7]$$

Chicken, Milk $[sup = 4/7]$

Association rules from the itemsets:

Clothes
$$\rightarrow$$
 Milk, Chicken [sup = 3/7, conf = 3/3]
Clothes, Chicken \rightarrow Milk [sup = 3/7, conf = 3/3]
Chicken \rightarrow Milk [sup = 4/7, conf = 4/5]
Milk \rightarrow Chicken [sup = 4/7, conf = 5/5]

Itemset Lattice

The Downward Closure Property

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {chicken, clothes, milk} is frequent, so is {chicken, milk}
 - every transaction having {chicken, clothes, milk} also contains {chicken, milk}.

Pruning Itemset Lattice

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not be generated/tested!
- Method:
 - Initially, scan DB once to get frequent 1-itemset

 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

```
Example (Supp = 0.5)
                                  AC
                                       3
                                  AD
            A B C D E F G
ACDFG
                                  ΑE
               1 A
5 C
6 ⇒ D
3 E
5 F
                     5

0 6 ⇒

E 3

□ 5
                                  AF
 ABCDF
 CDE
                                  CD
                                       5
                                  CE
 ADF
               3
 ACDEF
                                  CF
                                  DE
                                       3
 BCDEFG
                                  DF
                                  EF
```

```
Example (Supp = 0.5)
                                AC
                                     3
                                AD
                                            AC
                                                 3
            A B C D E F G
ACDFG
                                ΑE
                                            AD
                                                 4
                      A
C
D
E
F
                                AF
ABCDF
                                     4
                                            AF
                        5
6 ⇒
3
               5
                                     5
3
CDE
                                CD
                                            CD
               6 ⇒
                                                 3
                                CE
                                            CE
ADF
               3
                                     4
ACDEF
                                CF
                                            CF
                                DE
 BCDEFG
                                            DE
                                                 3
                                DF
                                            DF
                                EF
```

```
Example (Supp = 0.5)
                                 AC
                                      3
                                 AD
                                             AC
                                                  3
            A B C D E F G
ACDFG
                                 ΑE
                                             AD
                                                         ACD
                                                               3
                      A
C
D
E
                                 AF
ABCDF
                                      4
                                             AF
                                                  4
5
3
4
                         5
6 ⇒
3
               5
                                                         ACF
                                      5
3
CDE
                                 CD
                                             CD
               6 ⇒
                                                         ADF
                                 CE
                                             CE
ADF
               3
                                                         CDE
                                      4
ACDEF
                                 CF
                                             CF
                                                         CDF
                                                  3
                                 DE
                                             DE
 BCDEFG
                                 DF
                                             DF
                                 EF
```

```
Example (Supp = 0.5)
                               AC
                                    3
                               AD
                                          AC
                                               3
           A B C D E F G
ACDFG
                               ΑE
                                          AD
                                                      ACD
                               AF
ABCDF
                                    4
                                          AF
                                               4
5
3
                        5
6 ⇒
3
              5
                                                      ACF
                                                            3
                                    5
3
CDE
                               CD
                                          CD
              6 ⇒
                     D
                                                      ADF
                                                                  ACDF
                               CE
                                          CE
ADF
                     Ε
              3
                                                      CDE
                                    4
                                               4
ACDEF
                               CF
                                          CF
                                                      CDF
                                               3
                               DE
                                          DE
 BCDEFG
                               DF
                                          DF
                               EF
```

The Apriori Algorithm (Pseudo-Code)

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

Algorithm 1 Apriori(\mathcal{D} ,min-support)

- 1: $L_1 \leftarrow$ frequent items;
- 2: for $(k = 1; L_k \neq \emptyset)$ do
- 3: $C_{k+1} \leftarrow \text{candidates generated from } L_k, L_{k-1}, \dots, L_1;$
- 4: **for** $t \in \mathcal{D}$ **do**
- 5: increment the count of all candidates in C_{k+1} that are contained in t
- 6: $L_{k+1} \leftarrow \text{candidates in } C_{k+1} \text{ with min-support}$
- 7: end for
- 8: end for
- 9: **return** $\bigcup_k L_k$

Candidate generation methods

- Brute-force: examine all possible itemsets candidates and then delete useless. weakness: too many candidates
- Get C_k from $L_{k-1} \times L_1$: extend frequent (k-1)-itemsets found from previous step with the frequent 1-itemsets. **weakness:** it is possible to create copies of candidate itemsets, e.g.

$$\{a,b\} \cup \{c\} \rightarrow \{a,b,c\}$$

 $\{b,c\} \cup \{a\} \rightarrow \{a,b,c\}$

A possible solution: ordering of items

- The items are sorted in lexicographic order (which is a total order).
- $\{w_1, w_2, ..., w_k\}$: a k-itemset w, where $w_1 < w_2 < \cdots < w_k$ according to the total lexicographic order.
- Then, (k-1)-itemsets can be extended only to items which are lexicographically higher than its own, e.g.

$$\{a,b\} \cup c \to \{a,b,c\}$$
 is allowed $\{a,c\} \cup b \to \{a,b,c\}$ is not allowed

• weakness: numerous of possible useless candidates itemsets, e.g. merge $\{a,b\}$ and $\{c\}$ is useless if the itemset $\{a,c\}$ is not frequent.

A possible solution

- A-priori candidate generation based on $L_{k-1} \times L_{k-1}$ method:
- Examines all possible pairs of k-1-itemsets in L_{k-1} and keeps only those having k-2 common items.

$$\{w_1, \dots, w_{k-1}\} \cup \{w_2, \dots, w_k\} \rightarrow \{w_1, \dots, w_k\}$$

Example (assume lexicographic order):

$$L_2 = \{\{a,c\},\{b,c\},\{b,d\},\{c,d\}\}$$

then candidate

$$C_3 \subseteq \{\{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$$

however, $\{a, b, c\}$ and $\{a, c, d\}$ can be discarded since $\{a, b\} \not\in L_2$ and $\{a, d\} \not\in L_2$, respectively. Therefore

$$C_3 \subseteq \{\{b,c,d\}\}$$

A-priori candidate generation

Two steps:

Join step: Generate all possible candidate itemsets C_k of length

k from L_{k-1}

prune step: Remove those candidates from C_k that cannot be

frequent because some subset is not in L_{k-1} .

Mining association rules

Frequent itemsets \neq association rules

• Every *k*-itemset *Y* generates $2 \cdot k - 2$ possible rules.

For every non empty proper subset of
$$Y$$
 (i.e., $X \neq Y$ and $X \neq \emptyset$)

• Important: every possible rule satisfies the minsup threshold.

$$\frac{|\{Y \in T\}|}{|\{X \in T\}|} \ge minconf$$

A SAT-Based Approach for Mining Association Rules

Abdelhamid Boudane et al. "A SAT-based approach for mining association rules". In: *Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence*. AAAI Press. 2016, pp. 2472–2478

Logic Based Approach

- in the following we describe a SAT encoding for the problem of mining a generic association rule $X \to Y$
- our objective is to define a theory (= set of formulas) $\mathcal{E}(\mathcal{D}, \alpha, \beta)$ for every \mathcal{D} , α and β , such that,
- if $\mathcal{E}(\mathcal{D}, \alpha, \beta)$ is satisfied by an interpretation \mathcal{I} then from \mathcal{I} we can extract an association rule $X \to Y$ that belongs to $MAR(\mathcal{D}, \alpha, \beta)$.

In other words, the problem of searching for an association rule $X \to Y$ in a database $\mathcal D$ with minimum support α and minimum confidence threshold β is translated in the problem of checking the satisfiability of $\mathcal E(\mathcal D,\alpha,\beta)$.

The set of propositional variables

the set \mathcal{P} of propositional variables with the respective informal interpretations are the following:

- for all $a \in \Omega$, x_a and y_a
 - x_a means a appears in X (the premise of $X \to Y$)
 - ullet y_a means a appears in Y (the consequent of X o Y)
- ullet for $i \in \{1, \ldots, |\mathcal{D}|\}$ p_i and q_i
 - p_i means $i \in C(X, \mathcal{D})$, i.e., the *i*-th translation is in the cover set of X;
 - q_i means $i \in C(X \cup Y, \mathcal{D})$, i.e., the *i*-th translation is in the cover set of $X \cup Y$;

Encoding definitions and constraints in propositional formulas

• X and Y are disjoint

$$\bigwedge_{a \in \Omega} x_a \to \neg y_a \tag{1}$$

Encoding definitions and constraints in propositional formulas

X and Y are disjoint

$$\bigwedge_{a \in \Omega} x_a \to \neg y_a \tag{1}$$

• the *i*-th transaction is in the cover of X;

$$\bigwedge_{i=1}^{|\mathcal{D}|} \left(p_i \equiv \bigwedge_{a \notin X_i} \neg x_a \right) \tag{2}$$

Encoding definitions and constraints in propositional formulas

• X and Y are disjoint

$$\bigwedge_{a \in \Omega} x_a \to \neg y_a \tag{1}$$

• the *i*-th transaction is in the cover of X;

$$\bigwedge_{i=1}^{|\mathcal{D}|} \left(p_i \equiv \bigwedge_{a \notin X_i} \neg x_a \right) \tag{2}$$

• the *i*-th transaction is in the cover of $X \cup Y$;

$$\bigwedge_{i=1}^{|\mathcal{D}|} \left(q_i \equiv p_i \wedge \bigwedge_{a \notin X_i} \neg y_a \right) \tag{3}$$

Tid	Itemsets	$ p_i \equiv \dots q_i \equiv p_i \wedge \dots$
1	abcd	
2	ab ef	
3	abc	
4	a cd f	
5	g	
6	d	
7	d g	

Tid	Itemsets	$p_i \equiv \dots$	$ q_i \equiv p_i \wedge \dots$
1	a b c d	$\neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_e \wedge \neg y_f \wedge \neg y_g$
	ab ef		
3	a b c		
4	acd f		
5	g		
6	d		
7	d g		

Tid	Itemsets	$p_i \equiv \dots$	$q_i \equiv p_i \wedge \dots$
1	a b c d	$\neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_e \wedge \neg y_f \wedge \neg y_g$
2	ab ef	$\neg x_c \wedge \neg x_d \wedge \neg x_g$	$\neg y_c \wedge \neg y_d \wedge \neg y_g$
3	abc	_	
4	a cd f		
5	g		
6	d		
7	d g		

Tid	Itemsets	$p_i \equiv \dots$	$q_i \equiv p_i \wedge \dots$
1	a b c d	$\neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_e \wedge \neg y_f \wedge \neg y_g$
2	ab ef	$\neg x_c \wedge \neg x_d \wedge \neg x_g$	$\neg y_c \wedge \neg y_d \wedge \neg y_g$
3	a b c	$\neg x_d \wedge \neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_d \wedge \neg y_e \wedge \neg y_f \wedge \neg y_g$
4	acd f	_	
5	g		
6	d		
7	d g		

Tid	Itemsets	$p_i \equiv \dots$	$q_i \equiv p_i \wedge \dots$
1	a b c d	$\neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_e \wedge \neg y_f \wedge \neg y_g$
2	ab ef	$\neg x_c \wedge \neg x_d \wedge \neg x_g$	$\neg y_c \wedge \neg y_d \wedge \neg y_g$
3	a b c	$\neg x_d \wedge \neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_d \wedge \neg y_e \wedge \neg y_f \wedge \neg y_g$
4	acd f	$\neg x_b \wedge \neg x_e \wedge \neg x_g$	$\neg y_b \wedge \neg y_e \wedge \neg y_g$
5	g		
6	d		
7	d g		

Tid	Itemsets	$p_i \equiv \dots$	$ q_i \equiv p_i \wedge \dots$
1	a b c d	$\neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_e \wedge \neg y_f \wedge \neg y_g$
2	ab ef	$\neg x_c \wedge \neg x_d \wedge \neg x_g$	$\neg y_c \wedge \neg y_d \wedge \neg y_g$
3	a b c	$\neg x_d \wedge \neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_d \wedge \neg y_e \wedge \neg y_f \wedge \neg y_g$
4	acd f	$\neg x_b \wedge \neg x_e \wedge \neg x_g$	$\neg y_b \wedge \neg y_e \wedge \neg y_g$
5	g	$\neg x_b \wedge \neg x_c \wedge \neg x_d \wedge \neg x_e \wedge x_f$	$\neg x_a \wedge \neg x_b \wedge \neg x_c \wedge \neg x_d \wedge \neg x_e \wedge x_f$
6	d		
7	d g		

Tid	Itemsets	$p_i \equiv \dots$	$q_i \equiv p_i \wedge \dots$
1	a b c d	$\neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_e \wedge \neg y_f \wedge \neg y_g$
2	ab ef	$\neg x_c \wedge \neg x_d \wedge \neg x_g$	$\neg y_c \wedge \neg y_d \wedge \neg y_g$
3	a b c	$\neg x_d \wedge \neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_d \wedge \neg y_e \wedge \neg y_f \wedge \neg y_g$
4	acd f	$\neg x_b \wedge \neg x_e \wedge \neg x_g$	$\neg y_b \wedge \neg y_e \wedge \neg y_g$
5	g	$\neg x_b \wedge \neg x_c \wedge \neg x_d \wedge \neg x_e \wedge x_f$	$\neg x_a \wedge \neg x_b \wedge \neg x_c \wedge \neg x_d \wedge \neg x_e \wedge x_f$
6	d	$\neg x_b \wedge \neg x_c \wedge \neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_a \wedge \neg y_b \wedge \neg y_c \wedge \neg y_e \wedge \neg y_f \wedge \neg \neg y_g$
7	d g		

Tid	Itemsets	$p_i \equiv \dots$	$q_i \equiv p_i \wedge \dots$
1	a b c d	$\neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_e \wedge \neg y_f \wedge \neg y_g$
2	ab ef	$\neg x_c \wedge \neg x_d \wedge \neg x_g$	$\neg y_c \wedge \neg y_d \wedge \neg y_g$
3	a b c	$\neg x_d \wedge \neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_d \wedge \neg y_e \wedge \neg y_f \wedge \neg y_g$
4	acd f	$\neg x_b \wedge \neg x_e \wedge \neg x_g$	$\neg y_b \wedge \neg y_e \wedge \neg y_g$
5	g	$\neg x_b \wedge \neg x_c \wedge \neg x_d \wedge \neg x_e \wedge x_f$	$\neg x_a \wedge \neg x_b \wedge \neg x_c \wedge \neg x_d \wedge \neg x_e \wedge x_f$
6	d	$\neg x_b \wedge \neg x_c \wedge \neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_a \wedge \neg y_b \wedge \neg y_c \wedge \neg y_e \wedge \neg y_f \wedge \neg \neg y_g$
7	d g	$\neg x_a \wedge \neg x_b \wedge \neg x_c \wedge \neg x_e \wedge \neg x_f$	$\neg y_a \wedge \neg y_b \wedge \neg y_c \wedge \neg y_e \wedge \neg y_f$

Tid	Itemsets	$p_i \equiv \dots$	$q_i \equiv p_i \wedge \dots$
1	a b c d	$\neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_e \wedge \neg y_f \wedge \neg y_g$
2	abef	$\neg x_c \wedge \neg x_d \wedge \neg x_g$	$\neg y_c \wedge \neg y_d \wedge \neg y_g$
3	a b c	$\neg x_d \wedge \neg x_e \wedge \neg x_f \wedge \neg x_g$	$\neg y_d \wedge \neg y_e \wedge \neg y_f \wedge \neg y_g$
4	acd f	$\neg x_b \wedge \neg x_e \wedge \neg x_g$	$\neg y_b \wedge \neg y_e \wedge \neg y_g$
5	g	$\neg x_b \wedge \neg x_c \wedge \neg x_d \wedge \neg x_e \wedge x_f$	$\neg x_a \wedge \neg x_b \wedge \neg x_c \wedge \neg x_d \wedge \neg x_e \wedge x_f$
6	d	$\neg x_b \wedge \neg x_c \wedge \neg x_e \wedge \neg x_f \wedge \neg x_g$	$ \neg y_a \wedge \neg y_b \wedge \neg y_c \wedge \neg y_e \wedge \neg y_f \wedge \neg \neg y_g $
7	d g	$\neg x_a \wedge \neg x_b \wedge \neg x_c \wedge \neg x_e \wedge \neg x_f$	$\neg y_a \wedge \neg y_b \wedge \neg y_c \wedge \neg y_e \wedge \neg y_f$

Notice that every interpretation \mathcal{I} that satisfies (1), (2), and (3) defines:

• a set
$$X = \{\omega \in \Omega \mid \mathcal{I} \models x_{\omega}\}$$

• a set
$$Y = \{\omega \in \Omega \mid \mathcal{I} \models y_{\omega}\}$$

• such that
$$X \cap Y = \emptyset$$
:

•
$$\mathcal{I} \models p_i$$
 iff *i* is in the support of *X*;

•
$$\mathcal{I} \models q_i$$
 iff *i* is in the support of $X \cup Y$.

• we first formalize the general facts that $S(X, \mathcal{D}) \geq n$ and $S(X \cup Y, \mathcal{D}) \geq n$ for any $n \leq |\mathcal{D}|$, by the following two formulas

$$\bigvee_{\substack{N\subseteq\{1,\ldots,|D|\}\\|N|=n}}\bigwedge_{i\in N}p_i \quad \text{ and } \quad \bigvee_{\substack{N\subseteq\{1,\ldots,|D|\}\\|N|=n}}\bigwedge_{i\in N}q_i$$

which can be rewritten in the following two CNF formulas:

$$\bigwedge_{\substack{N\subseteq\{1,\ldots,|D|\}\\|N|=|\mathcal{D}|-n+1}}\bigvee_{i\in N}p_i \quad \text{ and } \quad \bigwedge_{\substack{N\subseteq\{1,\ldots,|D|\}\\|N|=|D|-n+1}}\bigvee_{i\in N}q_i$$

Exercise

Prove that this transformation returns equivalent formulas.

Encoding in propositional logic

• The support of $X \to Y$ is greater or equal to α ; l.e.,

$$\frac{S(X \cup Y, \mathcal{D})}{|\mathcal{D}|} \ge \alpha$$

corresponding to the formula¹

$$S(X \cup Y, \mathcal{D}) \ge \lceil \alpha \cdot |\mathcal{D}| \rceil \tag{4}$$

• The confidence of $X \to Y$ is greater or equal to β ;

$$\frac{S(X \cup Y, \mathcal{D})}{S(X, \mathcal{D})} \ge \beta$$

the last implication can translated in the following conjunction of implications $\!\!\!^2$

$$\bigwedge_{n=1}^{|\mathcal{D}|} (S(X,\mathcal{D}) = n \to S(X \cup Y,\mathcal{D}) \ge \lceil \beta \cdot n \rceil) \tag{5}$$

 $^{^{1}[}x]$ denotes the smallest integer such that $n \ge x$

 $^{^2}S(X,\mathcal{D})=n$ denotes $S(X,\mathcal{D})\geq n \land \neg S(X,\mathcal{D})\geq n+1$ of $x\in \mathbb{R}$ for $x\in \mathbb{R}$ and $x\in \mathbb{R}$

Solving $MAR(\mathcal{D}, \alpha, \beta)$ via Satisfiability

If we are able to find an interpetation \mathcal{I} that satisfies (1)–(5), then we extract the association rule $X \to Y$ in $\mathcal{E}(\mathcal{D}, \alpha, \beta)$, as follows

- $X = \{\omega \in \Omega \mid \mathcal{I} \models x_{\omega}\}$
- $Y = \{\omega \in \Omega \mid \mathcal{I} \models y_{\omega}\}$

 $X \to Y \in \mathcal{E}(\mathcal{D}, \alpha, \beta)$ is guaranteed because:

- $X \cap Y = \emptyset$ since $\mathcal{I} \models (1)$
- $S(X \to Y, \mathcal{D}) \ge \alpha$ since $\mathcal{I} \models (4)$
- $Conf(X \to Y, \mathcal{D}) \ge \beta$ since $\mathcal{I} \models (5)$.

