Standard Regression

Getting things started

```
> library(knitr) ## have to call this before setting global knit options
> data(mtcars)
> library(xtable)
> fit<-lm(mpg~wt,data=mtcars) ## fir is "lm" class</pre>
> summary(fit)
                        ## Returns the regression coefficients,
Call:
lm(formula = mpg ~ wt, data = mtcars)
Residuals:
   Min
            1Q Median
                            3Q
                                   Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
                     0.5591 -9.559 1.29e-10 ***
            -5.3445
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528,
                                  Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
>
                         ##
```

Outputs hypothesis tests and some residual analysis

Getting Prettier Results

Use xtable package

> print(xtable(summary(fit))) ## Returns a nicer looking table

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	37.2851	1.8776	19.86	0.0000
wt	-5.3445	0.5591	-9.56	0.0000

You can also subset the summary to get at more specfic results

- > coef<-summary(fit)\$coefficients</pre>
- > residuals<-summary(fit)\$coefficents</pre>
- > names(summary(fit))

Full list of names

[1]	"call"	"terms"	"residuals"	"coefficients"
[5]	"aliased"	"sigma"	"df"	"r.squared"
[9]	"adj.r.squared"	"fstatistic"	"cov.unscaled"	

Behaviour of Dummy Variables

Factor variables will automatically be treated as dummys. The lowest "factor" variable will automatically be the base case. Example cyl is a factor variable

- > fit2<-lm(mpg~factor(cyl),data=mtcars)
 > print(xtable(summary(fit2)),comment=F)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	26.6636	0.9718	27.44	0.0000
factor(cyl)6	-6.9208	1.5583	-4.44	0.0001
factor(cyl)8	-11.5636	1.2986	-8.90	0.0000

Regressions on Functions of Variables

- > fit3<-lm(mpg~I(3+wt*5),data=mtcars) ## notice the capital I
- > print(xtable(summary(fit3)),comment=F)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	40.4918	2.2011	18.40	0.0000
I(3 + wt * 5)	-1.0689	0.1118	-9.56	0.0000

 \mathbf{or}

- > fit4<-lm(I(mpg*2)~wt,data=mtcars)</pre>
- > print(xtable(summary(fit4)),comment=F)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	74.5703	3.7553	19.86	0.0000
wt	-10.6889	1.1182	-9.56	0.0000

Anova

> print(xtable(anova(fit)),comment=F)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
wt	1	847.73	847.73	91.38	0.0000
Residuals	30	278.32	9.28		

Confidence Intervals about Estimators

```
> sumCoef <- summary(fit)$coefficients
> ## for the intercept
> sumCoef[1,1] + c(-1, 1) * qt(.975, df = fit$df) * sumCoef[1, 2]

[1] 33.45050 41.11975
> ## for the slope
> sumCoef[2,1] + c(-1, 1) * qt(.975, df = fit$df) * sumCoef[2, 2]

[1] -6.486308 -4.202635
>
```