Методы оптимизации. Семинар 4. Условия оптимальности.

Александр Катруца

Московский физико-технический институт Факультет инноваций и высоких технологий

25 сентября 2018 г.

<u>Напоминание</u>

- Выпуклые функции
- Неравенство Йенсена

Мотивация

Вопрос 0

Когда существует решение оптимизационной задачи?

Вопрос 1

Как проверить, что точка является решением оптимизационной задачи?

Вопрос 2

Из каких условий можно найти решение оптимизационной задачи?

Существование решения

Теорема Вейерштрасса

Пусть $X \subset R^n$ компактное множество и пусть f(x) непрерывная функция на X. Тогда точка глобального минимума функции f(x) на X существует.

Эта теорема гарантирует, что решение подавляющего большинства разумных задач существует.

Условия оптимальности

Определение

Условием оптимальности будем называть некоторое выражение, выполнимость которого даёт необходимое и (или) достаточное условие экстремума.

Классы задач:

- Задача безусловной минимизации
- Задача минимизации с ограничениями типа равенств
- Задача минимизации с ограничениями типа равенств и неравенств

Задача безусловной минимизации

Задача: $f(x) \to \min_{x \in \mathbb{R}^n}$.

Критерий для выпуклой гладкой функции

Если f(x) выпукла и дифференцируема на \mathbb{R}^n . Тогда точка x^* решение задачи безусловной минимизации \Leftrightarrow $\nabla f(x^*) = 0$.

Достаточное условие для невыпуклых функций

Пусть f дважды дифференцируема на \mathbb{R}^n и x^* такая что $\nabla f(x^*)=0$. Тогда если $\nabla^2 f(x^*)\succ 0$, то x^* точка строгого локального минимума f(x) на \mathbb{R}^n .

Примеры

- $x_1e^{x_1} (1 + e^{x_1})\cos x_2 \to \min$
- Функция Розенброка:

$$(1-x_1)^2 + \alpha \sum_{i=2}^{n} (x_i - x_{i-1}^2)^2 \to \min, \ \alpha > 0$$

 $\bullet \min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2$

Задача минимизации с ограничениями типа равенств

Задача

$$f(x) o \min_{x \in \mathbb{R}^n}$$

s.t. $g_i(x) = 0, \ i = 1, \dots, m$

Лагранжиан

$$L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$

Возможные варианты

Рисунок взят из блога

http://www.offconvex.org/2016/03/22/saddlepoints/

Примеры

• Задача наименьших квадратов с линейными ограничениями

$$\min \frac{1}{2} ||Ax - b||_2^2$$

s.t. $Gx = h$

Задача

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) = 0, i = 1, ..., m$

$$h_j(x) \le 0, j = 1, ..., p$$

Лагранжиан

$$L(x, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

Условия оптимальности

Необходимое условие (Каруша-Куна-Такера)

Пусть x^* решение задачи математического программирования, и функции f,h_j,g_i дифференцируемы. Тогда найдутся такие μ^* и λ^* , что выполнены следующие условия:

- $g_i(x^*) = 0, i = 1, ..., m$
- $h_j(x^*) \leq 0, j = 1, \ldots, p$
- $\mu_j^* \geq 0$, $j = 1, \dots, p$
- $\mu_i^* h_j(x^*) = 0$, j = 1, ..., p

Если задача выпуклая, то это же условие является достаточным.

Примеры

•

$$\min_{x} \sum_{i=1}^{n} x_{i} \log x_{i}$$
s.t. $x_{i} \ge 0$

$$\sum_{i=1}^{n} x_{i} = 1$$

$$\max_{x_{1}, x_{2}} 4x_{1} + 3x_{2}$$
s.t. $2x_{1} + x_{2} \le 10$

$$x_{1,2} \ge 0$$

$$\min_{x_{1}, x_{2}} (x_{1} - 4)^{2} + (x_{2} - 4)^{2}$$
s.t. $x_{1} + x_{2} \le 4$

$$x_{1} + 3x_{2} < 9$$

Резюме

- Существование решения оптимизационной задачи
- Условия оптимальности для
 - задачи безусловной оптимизации
 - задачи оптимизации с ограничениями типа равенств
 - задачи оптимизации с ограничениями типа равенств и неравенств