问题与反馈

2015.5.15

Exercise 4.2.1.4. Change the greedy strategy of the algorithm GMS to an arbitrary choice, i.e., without sorting p_1, p_2, \ldots, p_n (removing Step 1 of GMS), assign the jobs in the on-line manner² as described in Step 2 and 3 of GMS. Prove that this simple algorithm, called GRAHAM'S ALGORITHM, is a 2-approximation algorithm for MS, too.

Exercise 4.2.1.5. Find, for every integer $m \geq 2$, an input instance I_m of MS such that $R_{\text{GMS}}(I) = \frac{cost(\text{GMS}(I))}{Opt_{\text{MS}}(I)}$ is as large as possible.

Exercise 4.2.3.3. Prove that the functions dist, $dist_k$, and distance (defined in Example 4.2.3.2) are distance functions for TSP according to L_{\triangle} .

$$\begin{aligned} dist(G,c) &= \max \left\{ 0, \max \left\{ \frac{c(\{u,v\})}{c(\{u,p\}) + c(\{p,v\})} - 1 \,\middle|\, u,v,p \in V(G), \right. \right. \\ &\left. u \neq v, u \neq p, v \neq p \right\} \right\}, \\ dist_k(G,c) &= \max \left\{ 0, \max \left\{ \frac{c(\{u,v\})}{\sum_{i=1}^m c(\{p_i,p_{i+1}\})} - 1 \,\middle|\, u,v \in V(G) \right. \right. \end{aligned}$$

$$u=p_1,p_2,\ldots,p_m=v$$
 is a simple path between u and v of length at most k (i.e., $m+1\leq k$)

for every integer $k \geq 2$, and

$$distance(G,c) = \max\{dist_k(G,c) | 2 \le k \le |V(G)| - 1\}.$$

Definition 4.2.3.1. Let $U = (\Sigma_I, \Sigma_O, L, L_I, \mathcal{M}, cost, goal)$ and $\overline{U} = (\Sigma_I, \Sigma_O, L, L, \mathcal{M}, cost, goal)$ be two optimization problems with $L_I \subset L$. A distance function for \overline{U} according to L_I is any function $h_L : L \to \mathbb{R}^{\geq 0}$ satisfying the properties

- (i) $h_L(x) = 0$ for every $x \in L_I$, and
- (ii) h is polynomial-time computable.

Let h be a distance function for \overline{U} according to L_I . We define, for any $r \in \mathbb{R}^+$,

$$Ball_{r,h}(L_I) = \{w \in L \mid h(w) \le r\}.^6$$

Let A be a consistent algorithm for \overline{U} , and let A be an ε -approximation algorithm for U for some $\varepsilon \in \mathbb{R}^{>1}$. Let p be a positive real. We say that A is **p-stable according to** h if, for every real $0 < r \le p$, there exists a $\delta_{r,\varepsilon} \in \mathbb{R}^{>1}$ such that A is a $\delta_{r,\varepsilon}$ -approximation algorithm for $U_r = (\Sigma_I, \Sigma_O, L, Ball_{r,h}(L_I), \mathcal{M}, cost, goal)$.

A is stable according to h if A is p-stable according to h for every $p \in \mathbb{R}^+$. We say that A is unstable according to h if A is not p-stable for any $p \in \mathbb{R}^+$.

For every positive integer r, and every function $f_r : \mathbb{N} \to \mathbb{R}^{>1}$ we say that A is $(r, f_r(n))$ -quasistable according to h if A is an $f_r(n)$ -approximation algorithm for $U_r = (\Sigma_I, \Sigma_O, L, Ball_{r,h}(L_I), \mathcal{M}, cost, goal)$.

Exercise 4.2.3.4. Let $U = (\Sigma_I, \Sigma_O, L, L_I, \mathcal{M}, cost, goal)$ and $\overline{U} = (\Sigma_I, \Sigma_O, L, L, \mathcal{M}, cost, goal) \in NPO$. Let h_{index} be defined as follows:

- (i) $h_{index}(w) = 0$ for every $w \in L_I$, and
- (ii) $h_{index}(u)$ is equal to the order of u according to the canonical order of words in Σ_I^* .

Prove that

- a) h_{index} is a distance function of \overline{U} according to L_I .
- b) For every δ -approximation algorithm A for U, if A is consistent for \overline{U} , then A is stable according to h_{index} .

An algorithm A is consistent for U if, for every $x \in L_I$, the output $A(x) \in \mathcal{M}(x)$. We say that an algorithm B solves the optimization problem U if

Exercise 4.2.3.3 shows that it is not interesting to consider a distance function h with the property

$$|Ball_{r,h}(L_I)| - |Ball_{q,h}(L_I)|$$
 is finite

for every r > q. The distance function h' investigated later has the following additional property (called the **property of infinite jumps**):

"If
$$Ball_{q,h'}(L_I) \subset Ball_{r,h'}(L_I)$$
 for some $q < r$, then $|Ball_{r,h'}(L_I)| - |Ball_{q,h'}(L_I)|$ is infinite."

Exercise 4.2.3.5. Define two optimization problems $U = (\Sigma_I, \Sigma_O, L, L_I, \mathcal{M}, cost, goal)$ and $\overline{U} = (\Sigma_I, \Sigma_O, L, L, \mathcal{M}, cost, goal)$ from NPO with infinite $|L| - |L_I|$, and a distance function h for \overline{U} according to L_I such that:

- (i) h has the property of infinite jumps, and
- (ii) for every δ -approximation algorithm A for U, if A is consistent for \overline{U} , then A is stable according to h.

Lemma 4.3.5.9. Christofides algorithm is stable according to distance.