Inverzné Kyvadlo

Marek Mikloš, Ondřej Kureš, Ladislav Trnka

Charles University, Czech Republic

April 15, 2021

Úvod

Cart and pole apparatus, tiltmeter, Kapitza's pendulum.

Newtonovský pohľad, Lagrangeov pohľad.

Mathieuho rovnica.

Perturbačná metóda určenia hraníc, $\alpha(\beta)$

$$\begin{split} \mathcal{L} =_{def} T - V &= \frac{1}{2} m (I^2 (\frac{d\theta}{dt})^2 + (\frac{d\xi}{dt})^2 + 2I \sin\theta (\frac{d\xi}{dt}) (\frac{d\theta}{dt})) - mg(\xi - l\cos\theta) \\ &- \frac{d}{dt} (\frac{\partial \mathcal{L}}{\partial \dot{q}_i}) + \frac{\partial \mathcal{L}}{\partial q_i} = 0 \\ &\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2} + (\frac{g}{I} - \frac{A\Omega^2}{I} \cos\Omega t)\theta = 0 \end{split}$$

Záver

Ak sú hodnoty parametrov α a β z tmavej oblasti so stredom v bode $\alpha=\frac{1}{4}$, potom môže byť kyvadlo destabilizované osciláciou pivotu. Pre vhodne zvolené hodnoty parametrov α , β dosiahneme stabilizáciu kyvadla v hornej časti, teda hodnoty týchto parametrov sa nachádzajú na grafe v bielej oblasti. Nutnou podmienkou stability je vhodne zvolená frekvencia kmitov pivotu:

$$\frac{A}{I}\frac{\Omega}{\omega_0} \ge \sqrt{2}$$