Interactions and Subset Models

Dave Armstrong

09/07/2021

First, let's load the data

use 0705_Result.dta, clear

I think you might be better off using the Inverse Hyperbolic Sine transformation for the aid_gdp variable. So, let's look at the first model.

gen aid_trans = asinh(aid_gdp)
logit q179_china c.aid_trans##i.ethnic_chinese
Logistic regression

Number of obs = 9,043 LR chi2(3) = 257.79 Prob > chi2 = 0.0000 Pseudo R2 = 0.0206

Log likelihood = -6113.7169

q179_china	Coefficient			P> z	[95% conf.	interval]
	0866912	.00639	-13.57 5.89	0.000	0992154 .4670228	074167 .9324768
ethnic_chinese#c.aid_trans 1 	.1476459	.119794	1.23	0.218	0871461	.3824379
_cons	.0250886	.0263287	0.95	0.341	0265147	.0766919

In this case, the interaction term is insignificant, though what we're really interested in is the second difference (see Carlisle Rainey's article in PSRM). You could get this with a combination of margins and mlincom from the SPost package.

margins, at(aid_trans =(0 12.8) ethnic_chinese=(0 1)) post

Adjusted predictions

Number of obs = 9,043

Model VCE: OIM

Expression: Pr(q179_china), predict()

1._at: aid_trans = 0
ethnic_chinese = 0

2._at: aid_trans = 0
ethnic_chinese = 1

3._at: aid_trans = 12.8
ethnic_chinese = 0

4._at: aid_trans = 12.8

ethnic_chinese =

	Margin	Delta-method std. err.	z	P> z	[95% conf.	interval]
_at						
1	.5062718	.0065811	76.93	0.000	.493373	.5191706
2	.6736716	.0254539	26.47	0.000	.6237829	.7235603
3	.2526443	.0132997	19.00	0.000	.2265774	.2787112
4	.8183278	.2263146	3.62	0.000	.3747593	1.261896

mlincom (4-3) - (2-1)

The output of mlincom shows

$$\begin{split} \Delta\Delta &= (Pr(y=1|\text{Aid=High,Chinese}) - Pr(y=1|\text{Aid=High, Not Chinese})) \\ &- (Pr(y=1|\text{Aid=Low,Chinese}) - Pr(y=1|\text{Aid=Low, Not Chinese})) \end{split}$$

If the second difference is significant, then there is a significant interaction regardless of the significance of the product regressor in the model.

An alternative would be to consider the difference in first derivatives:

$$\delta \delta = \frac{\partial Pr(y=1|\text{Chinese})}{\partial \text{Aid}} - \frac{\partial Pr(y=1|\text{Not Chinese})}{\partial \text{Aid}}$$

This result is substantively similar:

. margins, dydx(aid_trans) at(ethnic_chinese = (0 1)) post

Average marginal effects

Number of obs = 9,043

Model VCE: OIM

Expression: Pr(q179_china), predict()

dy/dx wrt: aid_trans
1._at: ethnic_chinese = 0
2._at: ethnic_chinese = 1

	dy/dx	Delta-method std. err.	z	P> z		interval]
aid_trans	0210482		-14.13	0.000	023967	0181293
2	.0126185	.0231892	0.54	0.586	0328315	.0580685

. mlincom 2-1

	lincom	pvalue	11	ul
 + 1	0.034	0.147	-0.012	0.079

It is difficult to derive the same test from the subset models. What Stata is doing is generating four predicted probabilities and the full variance-covariance matrix of those predicted probabilities.

$$b = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$

and

$$V = \begin{bmatrix} v(p_1) \\ cov(p_2, p_1) & v(p_2) \\ cov(p_3, p_1) & cov(p_3, p_2) & v(p_3) \\ cov(p_4, p_1) & cov(p_4, p_2) & cov(p_4, p_3) & v(p_4) \end{bmatrix}$$

Then, the mlincom function is calculating $(p_4 - p_3) - (p_2 - p_1) = p_1 - p_2 - p_3 + p_4$. We could generate this difference and its standard error by making:

$$A = \left[\begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \end{array} \right]$$

and then calculating:

$$\Delta \Delta = Ab$$

and its standard error:

$$SE(\Delta\Delta) = \sqrt{A'VA}$$

The problem that you run into using the subset models is that you have to assume that the lower-left and upper right 2×2 sub-matrices of V are $\mathbf{0}$ because you can generate the terms to create a first difference and its standard error. Here's how it would work out.

```
quietly logit q179_china c.aid_trans##i.ethnic_chinese
quietly margins, at(aid_trans = (0 12.8) ethnic_chinese=(0 1)) post
matrix b_full = e(b)
matrix v_full = e(V)

quietly logit q179_china aid_trans if ethnic_chinese == 0
quietly margins, at(aid_trans = (0 12.8)) post
matrix b0 = e(b)
matrix v0 = e(V)

quietly logit q179_china aid_trans if ethnic_chinese == 1
quietly margins, at(aid_trans = (0 12.8)) post
matrix b1 = e(b)
matrix v1 = e(V)
```

```
matrix z = J(2,2,0)
Then, we could move over into Mata
v_full = st_matrix("v_full")
b full = st matrix("b full")'
v_sub = st_matrix("v0"), st_matrix("z")\st_matrix("z"), st_matrix("v1")
b_sub = st_matrix("b0")'\st_matrix("b1")'
A = (1 - 1 - 1 \setminus 1)
DD_full = A'*b_full
se_DD_full = sqrt(A'*v_full*A)
z_DD_full = DD_full/se_DD_full
DD_sub = A'*b_sub
se_DD_sub = sqrt(A'*v_sub*A)
z_DD_sub = DD_sub/se_DD_sub
The results, then are:
: DD full
  .3982837076
: z_DD_full
  1.736854039
: DD_sub
  .3982859389
: z_DD_sub
  1.736874446
```

The two results here are nearly identical. So, even though the coefficients appear to be different in the two subset models:

The second difference from the two subset models suggests that the effect of aid_trans is not significantly different for Chinese and non-Chinese respondents.