Forelesning 2: Relevant risiko: Porteføljeteori to objekter

Læringsmål:

- Forklare gjennom et eksempel hvorfor et prosjekt som er risikabelt vurdert alene kan ha lav risiko når prosjektet inngår i en portefølje.
- Tallfeste risiko i en portefølje ved å beregne standardavvik.
- Forklare hvorfor porteføljens risiko avhenger av samvariasjonen mellom prosjektene som inngår i porteføljen og de andelene som er investert i hvert prosjekt.

Prosjektrisiko for eierne vs. bedriften

Grunnleggende forutsetning: Ledelsen i bedriften har som oppgave å treffe beslutninger som maksimerer verdien av egenkapitalen til eierne.

Vi tar utgangspunkt i følgende tabell

	Sannsynl.	Tilstandsb.	Tilstand	Nytt prosjekt	Bedriftens portefølje	Eierens portefølje (ikke div.)	Eierens portefølje (div.)
1	0.2	Nedgangstid	1	-60	30	-60	10
2	30	Trend	2	5	2.5	5	5
3	50	Oppgangstid	3	60	-30	60	-10

Risiko for bedriften

De nye prosjektets bidrag til bedriftens kontantstrøm

Risiko for eierne

- Udeversifiserte eiere:
 - 。 Ser forventet kontantstrøm fra det nye prosjektet i sammenheng med bedriftens allerede eksisterende kontantstrøm

- Veldiversifiserte eiere:
 - 。 Ser forventet kontantstrøm fra det nye prosjektet i sammenheng med porteføljens eksisterende kontantstrøm

Måling av risiko

Metode 1 for måling av risiko (1-n investeringsobjekter)

Varians

$$Var(X) = \sum_{s=1}^{S} Pr(s)[X(s) - E(X)]^{2} =$$

$$Pr(1)[X(1) - E(X)]^{2} + Pr(2)[X(2) - E(X)]^{2} + \dots +$$

$$Pr(S)[X(S) - E(X)]^{2}$$
(11)

Standardavvik

$$Std(X) = \sqrt{Var(X)}$$
 (12)

Merk: Mens standardavviket gir oss samme benevning som forventet verdi, er benevningen til variansen vanskeligere å forholde seg til ("tolkning: Det kvadrerte til benevningen av standardavviket")

Metode 2 for måling av risiko (2 investeringsobjekter)

Varians

$$Var(r_p) = w_1^2 Var(r_1) w_2^2 Var(r_2) + 2w_1 w_2 Kov(r_1, r_2)$$
(13)

Hvor samvariasjonen er gitt ved

$$Kov(r_{1}, r_{2}) = \sum_{s=1}^{S} Pr(s)[r_{1}(s) - E(r_{1})][r_{2}(s) - E(r_{1})]$$

$$Pr(1)[r_{1}(1) - E(r_{1})][r_{2}(1) - E(r_{1})] +$$

$$Pr(2)[r_{1}(2) - E(r_{1})][r_{2}(2) - E(r_{1})] + \dots +$$

$$Pr(S)[r_{1}(S) - E(r_{1})][r_{2}(S) - E(r_{1})]$$
(14)

• Standardavviket

$$Std(r_p) = \sqrt{Var(r_p)}$$
 (15)

Måling av risiko

Enkelobjekter

Eksempel 2.1

	Tilstand	Sansynlighet	A	В
1	1	0.2	0.16	0.05
2	2	0.5	0.12	0.2
3	3	0.3	0.06	0.4

Fra Metode 1 oppgitt under første forelesning har vi at

$$E(r_a) = 0.2 \cdot 0.16 + 0.5 \cdot 0.12 + 0.3 \cdot 0.06 = 0.11$$

$$E(r_b) = 0.2 \cdot 0.05 + 0.5 \cdot 0.20 + 0.3 \cdot 0.40 = 0.23$$

Fond **A**

$$Var(r_a) = 0.2[0.16 - 0.11]^2 + 0.5[0.12 - 0.11]^2 + 0.3[0.06 - 0.11]^2 = 0.0013$$
 $Std(r_a) = \sqrt{0.0013} = 0.03605551$

Fond **B**

$$Var(r_b) = 0.2[0.05 - 0.23]^2 + 0.5[0.20 - 0.23]^2 + 0.3[0.40 - 0.23]^2 = 0.0156$$

$$Std(r_b) = \sqrt{0.0156} = 0.1249$$

Måling av risiko

Sammensatt fond

Vi antar nå at investeringsbeløpet er likt fordelt mellom de to fondene, dvs $w_1 = 1/2, w_2 = 1 - w_2 = 1/2$.

	Tilstand	Sansynlighet	Avk. A	Avk. B	w_a	w_b	Avk. C
1	1	0.2	0.16	0.05	0.5	0.5	0.105
2	2	0.5	0.12	0.2	0.5	0.5	0.16
3	3	0.3	0.06	0.4	0.5	0.5	0.23

Risikoen til det sammensatte fondet C kan måles ved bruk av både metode 1 og 2.

Metode 1

$$Var(r_c) = 0.2[0.016 - 0.02]^2 + 0.5[0.016 - 0.02]^2 + 0.3[0.016 - 0.02]^2 = 0.001975$$
 $Std(r_c) = \sqrt{0.001975} = 0.044$

Metode 2

$$Var(r_c) = (1/2)^2(0.0013) + (1/2)^2(0.0156) - 2(1/2)(1/2)0.045 = 0.001975$$

$$Std(r_c) = \sqrt{0.001975} = 0.044$$

Hvor vi har benyttet at

$$Kov(r_a,r_b) = 0.2[0.16-0.11][0.05-0.23] + 0.5[0.12-0.11][0.20-0.23] + 0.3[0.06-0.11][0.40-0.23] = -0.0045$$

Øvelse: Ved bruk av Excel, forsøk å replikere resultatene fra følgende tabell

	Tilstand	Pr(s)	r_a(s)	r_b(s)	w1	w2	r_p(s)	Pr(s)r_p(s)	rp(s)-E(r_p)	[rp(s)-E(r_p)]^2
1	1	0.2	0.16	0.05	0.25	0.75	0.0775	0.0155	-0.1225	0.0030013
2	2	0.5	0.12	0.2	0.25	0.75	0.18	0.09	-0.02	2e-04
3	3	0.3	0.06	0.4	0.25	0.75	0.315	0.0945	0.115	0.0039675

Hvor $\mathit{E}(\mathit{r_p}) = 0.2$, $\mathit{Var}(\mathit{r_p}) = 0.0071688$ og $\mathit{Std}(\mathit{r_p}) = 0.0846688$

Risikoholdning og risikokompensasjon

Holdning

Vi kan skille mellom *risiknøytrale* og *risikoaversje* aktører

- Risikonøytral kun opptatt av forventet avkastning (+)
 - Bedre ut: Nordover et diagram med risiko på x-aksen og forventet avkastning på y-aksen
- Risikoaversj opptatt av forholdet mellom forventet avkastning (+) og risiko (-)
 - o Bedre ut: Nordøstover i et diagram med risiko på x-aksen og forventet avkastning på y-aksen

I dette kurset legger vi til grunn at alle aktørene er risikoaversje (ikke villig til å bære usikkerhet gratis), men at graden av risikoaversjon kan variere mellom de ulike aktørene.

FIGUR 2.1 Forventet avkastning og standardavvik for tre porteføljer.

Risikokompenasjon (litt empiri)

Finner man igjen dette i det observerte tallmateriale?

Veldiversifisert portefølje

		Gjennomsnitt	Standardavvik
1	Risikofri rente	0.015	0.01
2	Aksjeindeks	0.068	0.127

Udiversifisert portefølje

		Gjennomsnitt	Standardavvik
1	Yara	0.07	0.29
2	Itera	0.07	0.27
3	Aker Solutions	0.08	0.31
4			
5	Portefølje (3 aksjer)	0.07	0.21

Hovedresultater fra undersøkelsen

- 1. Det er mye å hente ved diversifisering: Risikoen kan reduseres kraftig uten at du taper noe i form av lavere forventet avkastning
- 2. Risikokompensasjonen for en enkeltaksje er ikke knyttet til aksjens standardavvik (totalrisiko). Relevant risiko må derfor måles på andre måter.

Endring av porteføljevekter og samvariasjon

Porteføljevekter

Øvelse: Forsøk å repliker følgende resultater i Excel

Tabell R-kode (ikke pensum) Figur

	Tilstand	Sannsynlighet	Avkastning A	Avkastning B
1	1	0.2	0.16	0.05
2	2	0.5	0.12	0.2
3	3	0.3	0.06	0.4

Korrelasjonskoeffisienten (standardisert mål på samvariasjon)

$$Kor(r_a, r_b) = \frac{Kov(r_a, r_b)}{S(r_a)S(r_b)}$$

$$\tag{16}$$

- $Kor(r_a, r_b) = 1$ (helt avhengige)
- $Kor(r_a, r_b) = 0$ (helt uavhengige)
- $Kor(r_a, r_b) = -1$ (helt motsatt avhengige)

Løser denne for $Kov(r_a, r_b) = Kor(r_a, r_b)S(r_a)S(r_b)$

Som gjør at vi kan skrive

$$Var(r_p) = w_1^2 Var(r_1) w_2^2 Var(r_2) + 2w_1 w_2 Kor(r_a, r_b) S(r_a) S(r_b)$$
(17)

Holder vi oss til eksempel 2.1, innebærer dette at beregningene av porteføljevariansen også kan uttrykkes som

$$Kor(r_a,r_b) = rac{-0.0045}{0.036 \cdot 0.125} = -1$$

Mens variansen til porteføljen kan uttrykkes som

$$Var(r_p) = (1/2)^2 (0.0013) + (1/2)^2 (0.0156) - 2(1/2)(1/2)0.036 \cdot 0.125 \ 0.001975$$

FIGUR 2.2 Punktsvermer for parvis, månedlig avkastning i perioden januar 2011 til desember 2015 for seks utvalgte aksjer.

FIGUR 2.4 Forventet avkastning og standardavvik for en toaksjeportefølje ved varierende vekter og ulike korrelasjonskoeffisienter. Data fra tabell 2.3.

Øvelse: Forsøk å replikere følgende tabell i Excel

Tabell R-kode (ikke pensum) Figur

	Tilstand	Sannsynlighet	Avkastning A	Avkastning B
1	1	0.2	0.16	0.05
2	2	0.5	0.12	0.2
3	3	0.3	0.06	0.4