Waveform Inversion via Source Extension

William W. Symes ¹

¹Rice University

Workshop in honor of Jean Virieux June 2025

Agenda

Inversion

Extension

Triplication

FWI: adjust model parameters to make modeled data close to observed data

u= modeled wavefield in space-time, m= model parameters, R= sampling operator, L[m]= wave operator, s= energy source, wave equation

$$L[m]u = s$$

Predicted data: $Ru = RL[m]^{-1}s = F[m]s$, $F[m] = R : L[m]^{-1} = modeling$ operator

Least squares ("FWI"): minimize

$$J_{\text{FWI}}[m] = \sum (F[m]s - d)^2$$

 \sum = sum over all sources, receivers, times

How to do it?

- Modeling (computing u etc.): many methods e.g. time-domain staggered grid finite difference (Virieux, 84)
- lterative descent update using ∇J_{FWI} efficient computation via adjoint state method (Chavent-Lemmonier 74,...), first multi-D demo by Gauthier-Virieux-Tarantola 86

So what happens?

A simple example: acoustic lens with isotropic point source @ \mathbf{x}_s : $f = w(t)\delta(\mathbf{x} - \mathbf{x}_s)$, $\mathbf{x}_s =$ source position

Left: target bulk modulus κ , source at $x_s=3500$ m, $z_s=3000$ m, receivers at $x_r=2000-6000$ m, $z_r=1000$ m. Right: synthetic data, source pulse = [1.0, 2.0, 7.5, 12.5] Hz trapzoidal bandpass filter]

Left: target model; Right: FWI estimate of m= bulk modulus: initial model $\kappa_0\equiv 4.0$ GPa, 450 steps steepest descent with smoothing preconditioner. Right: data residual (Ru-d) - energy (norm) $\approx 25\%$ of data norm.

Failure mechanism: "cycle skipping", first documented in Gauthier-Virieux-Tarantola 86 - half-wavelength criterion, (Virieux-Operto 09)

Agenda

Inversion

Extension

Triplication

Many proposed cures for cycle skipping:

- ▶ acquire lower frequency data (Dellinger et al SEG 2016,...)
- combine with traveltime tomography (Luo-Schuster 91, Prieux-...-Virieux 13)
- ▶ use a different objective, e.g. transport metric (Yang-Engquist 18, Métivier-...-Virieux 18)
- ▶ use a different model enlarge search space, easier data fit ("model extension")

Many extension methods - Operto et al. 23, Farshad-Chauris 23, Huang et al 19, S. 08. Common theme: maintain data fit while suppressing additional degrees of freedom

Example: Adaptive Waveform Inversion (AWI, Warner-Guasch 14): acoustic model, *known* isotropic point source $s = w(t)\delta(\mathbf{x} - \mathbf{x}_s)$,

Idea: if events in predicted data F[m]s are in wrong place, use a filter f to put them in the right place: extended modeling op $\bar{F}[m, f] = f * F[m]$.

Left: Predicted data $F[m_0]s$, m_0 = homogenous model; Center: adaptive filter f; Right: adapted data $f * F[m_0]s \approx d$ = lens data

f = d deconvolved (trace-by-trace) by F[m]s ("easy"), so can make F[m, f]s fit data for any m (common feature of extension methods)

but $F[m, f] \neq F[m]$ unless $f(\mathbf{x}_s, \mathbf{x}_t, t) = \delta(t)$ - to test, find an operator vanishing on $\delta(t)$ ("annihilator" - another common feature), update m to reduce its output

 $t\delta(t)=0$, so minimize

$$J_{ ext{AWI}}[m] = \sum rac{\sum_t |tf[m](\mathbf{x}_s, \mathbf{x}_r, t)|^2}{\sum_t |f[m](\mathbf{x}_s, \mathbf{x}_r, t)|^2}$$

Good News: suppose

- \blacktriangleright transmission data dominated by single arrivals unique travel time τ between source and receiver,
- ▶ $d \approx F[m_*]s$
- ▶ RMS wavelength of $w \rightarrow 0$.

Then

$$J_{\mathrm{AWI}}[m] \rightarrow \sum |\tau[m] - \tau[m_*]|^2$$

For single-arrival data, AWI is asymptotic to travel time tomography \Rightarrow no cycle-skipping

Xc.Xr

Agenda

Inversion

Extension

Triplication

Conclusion does not apply to acoustic lens example - multiple arrivals.

Asymptotic analysis, numerical examples \Rightarrow

Significant energy in d at multiple arrival times \Rightarrow approach based on source-receiver extension (e. g. AWI) behaves like FWI (S. 94, Plessix et al. 00, Huang et al. 17, Yong et al. 23.)

Adaptive filters for lens data. Left: f[m], m=initial model. Right: f[m], m updated to reduce J_{MSWI} (similar to J_{AWI}).

Remedy: localize inversion around individual events

- ► localize in time Yong-Brossier-Métivier-Virieux 23: Local Adaptive Waveform Inversion (LAWI) via Gabor filter
- localize in phase space surface source extension (SSE) Huang et al. 19

SSE extended source: $\bar{s} = \bar{w}(\mathbf{x}, t; \mathbf{x}_s) \delta_{\mathcal{S}}(\mathbf{x})$, $\mathcal{S}=$ surface containing source locations - spread source energy over a surface, acts as antennae, controls full 2D phase spectrum

For any m, determine $\bar{w} = \bar{w}[m]$ so that $F\bar{s} \approx d$. Update m to drive $\bar{w}(\mathbf{x}, t; \mathbf{x}_s) \to w(t)\delta(\mathbf{x} - \mathbf{x}_s)$ by minimizing

$$J_{\text{SSE}}[m] = \sum \sum ||(\mathbf{x} - \mathbf{x}_s)| \bar{w}[m](\mathbf{x}, t; \mathbf{x}_s)|^2$$

Penalty method: minimize

$$J_{\alpha}[m, \bar{w}] = \frac{1}{2} \sum |F[m]\bar{w} - d|^2 + \alpha^2 ||\mathbf{x} - \mathbf{x}_{s}|\bar{w}|^2$$

over m

- time-domain FD, gradient via adjoint state
- ► Variable Projection:
 - ightharpoonup update \bar{w} using Conjugate Gradient Iteration (inner loop)
 - ▶ update *m* using steepest descent, line search (outer loop) plus smoothing regularization
- ▶ update α using Discrepancy Principle (keep data residual \in (e_- , e_+)) can always choose \bar{w} to fit data \Rightarrow can start with $\alpha = 0$ (Fu & S. 17)

SSE for 1 shot lens data, source surface $S = \{z = 3000m\}$

Start at
$$\kappa_0=4.0$$
 GPa, use $e_-=0.05\|d\|, e_+=0.1\|d\|.$ Left: Iteration 1 ($\alpha=2.9e-6$) Right: Iteration 41 ($\alpha=1.99e-5$)

 $m = [\kappa]$ converges $\leftrightarrow \alpha$ increases, extended source \bar{f} (initially spread over $z = z_s = 3000$ m) focuses at $x = x_s = 3500$ m.

Left to right: \bar{f} at Iterations 1 ($\alpha=2.9e-6$), 9 ($\alpha=5.2e-6$ m) 19 ($\alpha=1.32e-5$) and 41 ($\alpha=1.99e-5$).

Left: "Jump to $\alpha=\infty$ ": bulk modulus estimated by FWI, 200 steepest descent steps starting with iteration 41 of SSE., final RMS residual reduction = 0.05; Right: FWI data residual

Why it works - a hint:

provided that

 $ightharpoonup d = F[m_*]s$,

$$ightharpoonup$$
 RMS wavelength of w (hence d) $ightharpoonup$ 0,

 $abla
abla J_{ ext{SSE}}[m_*]
ightarrow \sum$