Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi WSN Menggunakan Confusion Matrix

Banu Putri Pratiwi¹, Ade Silvia Handayani² dan Sarjana³

1,2,3 Jurusan TEKNIK ELEKTRO, Politeknik Negeri Sriwijaya Jl. Srijaya Negara, Bukit Besar, Kec Ilir Barat I, Kota Palembang E-mail: banuputrip97@gmail.com¹, ade silvia@polsri.ac.id², sarjana@polsri.ac.id³

Abstract— Air quality is very important in an industrial environment that is mandatory for monitoring. Especially in urban areas, as it would have a direct effect on both the public health and the comfort of cities. The air quality comes from both natural activities and human activity. To do air quality measurements one of the USES of communication technology and information in air quality measurements is a wireless network of network sensors (WSN). from the results of these air quality measurements, the method has been a confusion matrix. The purpose is to know value levels of accuracy, precision, and recall in an air-quality monitoring device. Based on the comparative confusion matrix calculations of 96%, node 2 is 99% and node 3 is 99%.

Keywords — Air Quality; Confusion Matrix; Wireless Sensor Network

Abstrak— Kualitas udara sangatlah penting dalam lingkungan industri yang wajib untuk monitor. Terutama di daerah perkotaan, karena akan berpengaruh langsung terhadap kesehatan masyarakat maupun kenyamanan kota. Timbulnya kualitas udara ini berasal dari aktivitas alam maupun dari aktivitas manusia. Untuk melakukan pengukuran kualitas udara maka salah satu pemanfaatan teknologi komunikasi dan informasi dalam pengukuran kualitas udara yaitu dengan jaringan wireless sensor network (WSN). Dari hasil pengukuran kualitas udara ini menggunakan metode confusion matrix. Tujuan mengetahui tingkat nilai akurasi, presisi dan recall dalam suatu alat monitoring kualitas udara. Berdasarkan perhitungan confusion matrix secara keseluruhan node 1 sebesar 96%, node 2 sebesar 99% dan node 3 sebesar 99%.

Kata kunci — Confusion Matrix; Kualitas Udara; Wireless Sensor Network

I. PENDAHULUAN

Kualitas udara merupakan faktor penting bagi kesehatan manusia dan merupakan perhatian jangka panjang. Terutama di daerah perkotaan, karena akan berpengaruh langsung terhadap kesehatan masyarakat maupun kenyamanan kota. Timbulnya kualitas udara ini berasal dari aktivitas alam maupun dari aktivitas manusia. Kualitas udara cukup memprihatinkan dalam kondisi sekarang ini. Banyak sekali kegiatan manusia yang dibuat sehingga menghasilkan pencemaran udara. Berbagai pencemaran udara dapat dibilang berasal dari kegiatan antara lain, transportasi, pabrik industri, perkantoran, dan perumahan. Sehingga polusi udara dapat berakibat asap buangan transportasi meningkat dua kali lipat pada 2000 berdasarkan kondisi 1999 dan

diperkirakan 10 kali pada 2020[1]. Kualitas udara merupakan salah satu elemen dalam lingkungan industri yang wajib di monitor. Pada umumnya, pengukur kualitas udara dilakukan per 3 bulan sekali kualitas udara guna mengetahui adanya perubahan atau tingkat pencemaran udara baik oleh gas-gas tertentu dan suspen particulate (TSP)/debu di udara[2]. Negara Indonesia menggunakan Indek yang diatur adalah Indek Standar Pencemar Udara (ISPU), adapun sesuai dengan Keputusan Menteri Negara Lingkungan Hidup Nomor: **KEP** 45/MENLH/1997 Tentang Indeks Standar Pencemar Udara. [3].

Proses pengukuran kualitas udara dapat menjadi salah satu solusi untuk mengetahui kondisi pada suatu wilayah. Pengukuran pada

alat monitoring kualitas udara dengan jaringan berbasis multi sensor menggunakan kabel akan memakan biaya yang cukup mahal pada wilayah yang luas. Di era digitalisasi ini, teknologi komunikasi berkembang semakin Manfaat vang dirasakan pesat. perkembangan tersebut menjadikan teknologi komunikasi semakin penting dan dibutuhkan oleh banyak kalangan. Salah satu manfaat teknologi komunikasi dan informasi dalam pengukuran kualitas udara yaitu dengan jaringan wireless sensor network (WSN). Wireless Sensor Network merupakan suatu sistem jaringan nirkabel yang terdiri dari beberapa sensor node[4] Wireless Sensor merupakan Network (WSN) perangkat otonom vang secara khusus didistribusikan menggunakan sensor dalam memantau kondisi fisik atau lingkungan seperti suhu, suara, getaran, tekanan, pergerakan di lokasi yang berbeda [5]. Sehingga pengukuran ini dapat dilakukan secara real time.

Dalam penelitian ini, hasil pengukuran menggunakan kualitas udara metode confusion matrix. Confusion Matrix adalah metode yang digunakan untuk melakukan perhitungan akurasi pada konsep data mining[6]. Sehingga untuk mengetahui tingkat nilai akurasi, presisi dan recall dalam suatu alat monitoring kualitas udara. Kinerja dari node adalah sensor tersebut mengumpulkan pegukuran data dari parameter-parameter kualitas udara yang meliputi CO, CO2, HC, PM10 serta suhu dan kelembaban.

II. METODE PENELITIAN

A. Perancangan Penelitian

Perancangan dalam penelitian menunjukkan kerangka penelitian yang tertera pada blok diagram sistem secara keseluruhan. Blok diagram pada gambar 1 merupakan salah satu bagian terpenting dalam perancangan suatu penelitian, karena dari blok diagram rangkaian

ini lah dapat diketahui keseluruhan blok diagram rangkaian tersebut akan menghasilkan suatu sistem kerja pada penelitian.

B. Pelaksanaan Pengukuran

Pelaksanaan penelitian ini dilakukan di tiga lokasi yang berbeda. Perangkat keras yang mendukung pelaksanaan pengukuran berupa alat node dengan teknologi *Wireless Sensor Network* pada gambar 2. Pengukuran dilaksanakan pada tanggal 13 Juli 2020 sampai 22 Juli 2020. Pada waktu pagi, siang dan sore hari dengan rentang waktu 09.00-16.00 WIB.

Gambar 1 *Flowchart* Perancangan Sistem Keseluruhan Penelitian

Gambar 2 Alat Ukur Node 1, Node 2 dan Node

C. Model Metode Confusion Matrix

		Obse	erved
		True	False
Predicted Class	True	True Positive (TP)	False Positive (FP)
	False	False Negative (FN)	True Negative (TN)

Gambar 3 Confussion Matrix[7]

Dimana:

- 1. TP adalah *True Positif*, yaitu jumlah data positif yang terklasifikasi dengan benar oleh sistem.
- 2. TN adalah *True Negatif*, yaitu jumlah data negatif yang terklasifikasi dengan benar oleh sistem.
- 3. FN adalah *False Negatif*, yaitu jumlah data negatif namun terklasifikasi salah oleh sistem.
- 4. FP adalah *False Positif*, yaitu jumlah data positif namun terklasifikasi salah oleh sistem.

Dengan kata lain, nilai akurasi merupakan perbandingan antara data yang terklasifikasi benar dengan keseluruhan data. Nilai akurasi dapat diperoleh dengan persamaan[8]:

Akurasi =
$$\frac{TP + TN}{TP + TN + FP + FN} \times 100\%$$
 (1)

Nilai presisi menggambarkan jumlah data kategori positif yang diklasifikasi secara benar dibagi dengan total data yang diklasifikasi positif, Presisi dapat diperoleh dengan persamaan:

$$Presisi = \frac{TP}{TP + FP} X 100\%$$
 (2)

Sementara itu, *recall* menunjukkan beberapa persen data kategori positif yang terklasifikasi dengan benar oleh sistem

$$Recall = \frac{TP}{TP + FN} \times 100\%$$
 (3)

Error adalah kasus yang diidentifikasi salah dalam sejumlah data, sehingga dapat dilihat seberapa besar tingkat kesalahan pada sistem yang digunakan. Persentase error dapat dilakukan perhitungan menggunakan persamaan 4 di bawah ini:

$$Error = \frac{FP}{TP} \times 100\% \tag{4}$$

III. HASIL DAN PEMBAHASAN

B. Hasil Data Pengukuran Node

Hasil pengukuran kualitas udara ini dilakukan pada area parkiran kampus Politeknik Negeri Sriwijaya. Pengukuran menggunakan sistem monitoring berupa Node 1, Node 2 dan Node 3. Data ditampilkan di dalam database pada web *sever*. Hasil pengukuran Node 1 terdapat 2049 data, sedangkan Node 2 terdapat 2062 data dan Node 3 terdapat 2091 data. Berikut ini beberapa sampel data dalam pengukuran seminggu.

1. Hasil Pengukuran Node 1

Node 1 dilakukan pengukuran pada lokasi Lapangan Parkiran KPA Politeknik Negeri Sriwijaya, dimana pada Gambar 4 adalah titik penempatan pengukuran dari node 1.

Gambar 4 Lokasi Pengukuran Node 1 di Lapangan Parkiran KPA

Tabel 1 Sampel Data Node 1

No	CO (ppm)	CO2 (ppm)	HC (ppm)	Dust (µg/m3)	Temperature (°C)	Humidity (%)	Tanggal/Jam	Kualitas Udara
1	14.8538087 94289254	394.724753 9484679	486.484806 2624751	18.758842 9313417	33.0	75.0	2020-07-13 08:02:31	Normal
2	14.9483359 95306236	397.143530 11511463	461.239417 0949106	17.929370 284717745	33.0	68.0	2020-07-13 09:02:05	Normal
3	15.0396036 3766746	329.486438 45012714	360.927801 00985215	24.288660 575501382	26.0	95.0	2020-07-14 11:51:33	Normal
4	14.9907102 5783109	328.567561 6811299	358.296252 53338816	24.990522 04572165	26.0	95.0	2020-07-14 12:06:01	Normal
5	33.5082629 81192345	314.373804 8580214	378.687971 81237596	35.943814 68703795	32.0	69.0	2020-07-15 16:04:42	Normal
6	28.8503536 6211415	293.942193 5886474	387.820364 02008373	43.579216 74185844	32.0	69.0	2020-07-15 16:05:16	Normal
7	60.7907689 29886895	303.323874 6269625	311.670690 971459	23.289039 69367252	36.0	55.0	2020-07-17 15:35:02	Normal
8	59.0729815 1830242	308.934195 4839559	311.144811 373232	51.193350 26727831	36.0	55.0	2020-07-17 15:35:36	Normal
9	48.2023534 01349455	385.330559 8952433	429.295105 9091435	16.100276 75626493	32.0	71.0	2020-07-20 09:08:47	Normal
10	51.9638840 90094204	420.103480 77095324	302.679971 95787393	16.036471 168063084	32.0	71.0	2020-07-20 09:12:18	Normal
11	45.0666579 7451025	332.953788 1608631	380.957292 21987534	13.058877 051977099	31.0	75.0	2020-07-21 09:10:08	Normal
12	52.9319730 1085433	355.966848 92871116	351.879196 58751395	12.229404 405353149	31.0	75.0	2020-07-21 09:10:35	Normal
13	40.5097949 73760556	403.000584 5686159	445.024034 35302136	27.925579 10300641	30.0	71.0	2020-07-22 10:20:01	Normal
14	40.6564751 13269664	450.332511 2581139	438.480341 2389818	28.499829 39682299	31.0	70.0	2020-07-22 10:25:00	Normal
15	41.5137390 3973402	498.266654 74342786	438.653584 67792856	27.946847 63240702	31.0	70.0	2020-07-22 10:25:13	Normal

2. Hasil Pengukuran Node 2 Selanjutnya Node 2 pengukuran dilakukan pada lokasi Lapangan Parkiran Gedung Teknik Elektro. Pada Gambar 5 menunjukkan posisi penempatan pengukuran dari node 2.

Gambar 5 Lokasi Pengukuran Node 2 di Lapangan Parkiran Gedung Teknik Elektro

Tabel 2 Sampel Data Node 2

No	CO (ppm)	CO2 (ppm)	HC (ppm)	Dust (μg/m3)	Temperature (°C)	Humidity (%)	Tanggal/Jam	Kualitas Udara
1	44.5614263 8286776	442.455884 80770755	368.105991 9229278	10.417549 463802603	33.0	71.0	2020-07-13 08:05:58	Normal
2	14.3616154 37269794	384.591439 2745927	452.156297 74078366	18.673768 813739244	33.0	72.0	2020-07-13 09:04:09	Normal
3	40.9172398 05730304	405.054357 65833613	506.987035 3041377	35.907298 15183025	26.0	95.0	2020-07-14 11:51:02	Normal
4	42.2601779 7190261	397.351542 1635146	398.887089 0617445	29.396329 736953618	26.0	95.0	2020-07-14 12:02:12	Normal
5	35.4346621 4674533	374.652866 2507169	335.399279 05443983	15.099905 472798984	31.0	73.0	2020-07-15 16:03:02	Normal
6	47.7720916 587894	390.271756 33536484	342.284145 7650501	18.036767 821636953	30.0	73.0	2020-07-15 17:00:28	Normal
7	35.3107989 17826524	346.714672 8692023	333.196225 68474364	8.0348120 86443495	28.0	67.0	2020-07-17 10:03:58	Normal
8	35.3988070 0153199	408.034667 95214416	385.016820 2472836	4.8762997 49013984	36.0	57.0	2020-07-17 16:03:55	Normal
9	42.6480654 5193781	404.559759 95364673	385.681694 70800035	38.456273 020633006	31.0	71.0	2020-07-20 09:21:58	Normal
10	42.4524919 32592324	406.683725 77020676	375.439164 78902645	2.9368623 48837968	32.0	72.0	2020-07-20 09:24:09	Normal
11	28.0810978 1935526	297.244184 8128983	419.634283 34615503	4.0728185 40369634	31.0	78.0	2020-07-21 09:10:58	Normal
12	29.1241565 89197824	298.752586 52165815	417.539842 3709368	5.6243684 60510448	30.0	78.0	2020-07-21 09:11:12	Normal
13	36.0604974 0865087	323.559354 37346454	386.747882 82714167	26.126992 405228336	31.0	71.0	2020-07-22 10:21:08	Normal
14	24.2511163 98839596	325.258062 63944776	384.552090 215507	28.953029 75977053	31.0	71.0	2020-07-22 10:24:37	Normal
15	53.1731803 51380424	360.520051 70144423	318.343075 30817244	17.163703 226295638	31.0	71.0	2020-07-22 11:00:18	Normal

3. Hasil Pengukuran Node 3

Dan untuk Node 3 pengukuran dilakukan pada lokasi Lapangan Parkiran Gedung MI (Manajemen Informatika). Dimana gambar 6 menunjukkan posisi penempatan pengukuran dari node 3.

Gambar 6 Lokasi Pengukuran Node 3 di Lapangan Parkiran Gedung Teknik Elektro

Tabel 3 Sampel Data Node 3

No	CO (ppm)	CO2 (ppm)	HC (ppm)	Dust (µg/m3)	Temperature (°C)	Humidity (%)	Tanggal/Jam	Kualitas Udara
1	65.0542716	389.786449	477.691810	32.455775	33.0	66.0	2020-07-13 08:04:37	Normal
2	5161836 63.9427621	53558114 342.612396	1185048 474.285496	86533722 30.669219	33.0	39.0	2020-07-13	Normal
3	5000489 47.8307637	68414873 532.728420	45179424 418.201305	395685634 23.374113	25.0	94.0	09:05:51 2020-07-14	Normal
	1459305 62.7758401	2553196 324.099008	2595029 369.826889	811274977 24.203586			11:57:18 2020-07-14	Normal
4	5124352 10.0003259	5016504 413.074405	103317 323.879591	457898925 21.970390	25.0	94.0	12:04:07 2020-07-15	Normal
5	55865575 62.5378923	6847205 307.327678	38866114 323.354428	87083444 20.609204	31.0	78.0	16:04:10 2020-07-15	Normal
6	6937319	6891383	5370919	989195135	30.0	76.0	16:30:08	
7	60.3442093 9404804	211.200446 63506545	295.684390 27498175	22.821132 046859006	35.0	51.0	2020-07-17 15:36:01	Normal
8	58.6036050 7187327	338.300443 9283978	294.069376 72034405	23.459187 928877434	37.0	47.0	2020-07-17 16:00:01	Normal
9	53.3361582 8416832	408.314926 5586298	341.281225 1030584	25.160670 280926563	30.0	77.0	2020-07-20 09:16:49	Normal
10	53.9131001 6623749	474.223102 1922908	331.725556 94902366	23.544262 046479886	31.0	75.0	2020-07-20 09:18:36	Normal
11	34.2188467 6814759	375.989010 5769455	350.756220 1815724	13.782007 051597985	29.0	82.0	2020-07-21 09:05:31	Normal
12	34.8055673 2618403	403.877454 8086282	349.265236 947794	14.760359 404026236	30.0	82.0	2020-07-21 09:05:44	Normal
13	37.0318458 88066755	377.308230 5181677	321.001713 5826201	17.057360 579292567	30.0	77.0	2020-07-22 10:23:37	Normal
14	36.6439584 0803155	370.572628 61574526	321.914617 2901568	17.312582 932099936	31.0	73.0	2020-07-22 10:23:51	Normal
15	37.0318458 88066755	377.308230 5181677	321.001713 5826201	17.057360 579292567	30.0	77.0	2020-07-22 10:23:37	Normal

A. Hasil Perhitungan

1. Node 1

Tabel 4 Hasil Perhitungan *Confusion Matrix* Node 1

1.200.00						
Air Quality	Akurasi	Presisi	Recall			
Normal	95 %	95%	100%			
Moderate	100%	100%	100%			
Hazardous	100%	100%	100%			

merupakan Pada tabel hasil perhitungan perbandingan metode confusion untuk matrix Node Perhitungan ini dilakukan secara manual. Data terbagi 3 kategori yaitu normal, hazardous. moderate dan Hasil perhitungan nilai akurasi dapat dilihat dari persamaan 1 merupakan untuk perhitungan hasil akurasi. Nilai akurasi mencari kedekatan antara nilai prediksi dengan nilai sebenarnya. Maka kategori normal hasil nilai akurasi sebesar 95%. Dari data TP (True Positif) kategori normal terdapat 1568 data sedangkan FN (False Negatif) 81 data. Untuk kategori moderate hasil nilai akurasi sebesar 100%, dengan data TP 386 dan data FN 0 dikarenakan data tidak ada yang salah dalam pembacaan sensor pada saat pengukuran. Dan kategori hazardous hasil nilai akurasi sebesar 100%. Data TP hanya 14 data dan data FN 0.

Perhitungan nilai presisi dapat dilihat dari persamaan 2 merupakan perhitungan hasil presisi. Dari kategori normal nilai presisi yaitu 95%, moderate 100% dan hazardous 100%. Dimana nilai presisi mencari kesesuaian data nilai sebenarnya dengan data prediksi.

Sedangkan hasil perhitungan nilai recall pada node 1 dilihat dari persamaan 3 merupakan perhitungan hasil recall. Fungsi nilai recall mencari berapa persen data prediksi yang terklasifikasi dengan data benar oleh sistem. Hasil nilai recall pada node 1 dari kategori normal sebesar 100%, kategori moderate sebesar 100% dan hazardous sebesar 100%.

Dari hasil data pembacaan sensor node 1 tiap kategori terdapat persentase akurasi di atas 50% maka alat monitoring tersebut masih dalam efektif. Sedangkan persentase presisi dan recall untuk sistem informasi lebih baik untuk pengukuran kualitas udara.

2. *Node* 2

Tabel 5 Hasil Perhitungan *confusion Matrix* Node 2

Air	Akurasi	Presisi	Recall	
Quality				
Normal	99 %	99%	100%	
Moderate	100%	100%	100%	
Hazardous	0%	0%	0%	

Hasil dari perhitungan node 2 terdapat pada tabel 5. Sama hal nya dengan node 1 perhitungan ini dilakukan secara manual. Dapat dilihat dari kategori normal nilai akurasi sebesar 99%. Pada data TP (True Positif) kategori normal node 2 terdapat 1989 data sedangkan FN (False Negatif) 5 data yang terbaca oleh alat. Adapun kategori moderate nilai akurasi sebesar 100%, dengan data TP 68 dan data FN 0 dikarenakan data tidak ada yang salah dalam pembacaan sensor dari kategori moderate pada saat pengukuran. Sedangkan dalam kategori hazardous nilai akurasi sebesar 0%, dikarenakan saat pengukuran tidak ditemukan nilai kualitas udara yang berbahaya pada area lingkungan tersebut.

Adapun dari persamaan 2 dapat dihitung nilai presisi dari tiap kategori node 2. Dimana nilai presisi menghasilkan nilai yang sama dengan nilai akurasi. Maka perhitungan kategori normal terdapat nilai presisi 99%, kategori moderate 100% dan kategori hazardous 0%.

Dan hasil nilai recall pada node 2 untuk perhitungan dapat dilihat dari persamaan 3, yakni hasil nilai recall pada node 2 dari kategori normal sebesar 100%, kategori moderate 100% dan hazardous 0%.

Hasil data pembacaan tiap sensor untuk seluruh kategori kualitas udara terdapat persentase akurasi di atas 50% maka alat monitoring pembacaan sensor masih dalam efektif sehingga nilai persentase dari presisi dan recall untuk sistem informasi sangat baik dalam pengkuran pada node 2.

3. Node 3

Tabel 6 Hasil Perhitungan *Confusion Matrix* Node 3

Man ix Node 3						
Air	Akurasi	Presisi	Recall			
Quality						
Normal	99 %	99%	100%			
Moderate	100%	100%	100%			
Hazardous	0%	0%	0%			

Pada node 3 dalam perhitungan sama dengan node sebelumnya. Hasil perhitungan node 3 terdapat pada tabel 6. Hasil akurasi dari kategori normal sebesar 99%. Dengan data TP (True Positif) kategori normal node 3 terdapat 2087 data sedangkan FN (False Negatif) 4 data. Untuk kategori moderate sebesar

100%, kategori hazardous sebesar 0% hal ini sama seperti pada node 2.

Nilai presisi yang di hasilkan node 3 dengan kategori normal terdapat 99%, lalu kategori moderate 100% dan kategori hazardous 0%.

Sehingga nilai recall pada node 3 dari perhitungan persamaan 3 terdapat nilai recall dari kategori normal adalah 100%, demikian kategori moderate adalah 100% dan hazardous adalah 0%.

Dari hasil node 3 bahwa data pembacaan tiap sensor untuk seluruh kategori kualitas udara terdapat persentase sama dengan node 2 sebelumnya. Dimana saat pengukuran berlangsung node 2 dan node 3 hasil baca dari alat hanya terdapat kategori normal dan moderate saja.

C. Evaluasi Node

Pada tahan pengukuran ini, penulis melakukan evaluasi keseluruhan data pada tiap node. Dari perhitungan ini dilakukan untuk mengetahui tingkat akurasi dan nilai error saat pengukuran kualitas udara. Dari hasil evaluasi tingkat akurasi node 1 dalam keseluruhan sebesar 96% sehingga menunjukkan data yang dikeluarkan dari alat monitoring sesuai dengan data dari yang diharapkan. Untuk mendapat nilai error maka dapat dilihat dari persamaan 4 untuk mengetahui hasil kesalahan. Hasil dari node 1 nilai error sebesar 4% hal ini disebabkan dari hasil pengamatan kesalahan pembacaan sensor pada node 1 terjadi pada waktu pagi dan siang. Banyaknya aktivitas pada lokasi tersebut. Dengan rentang waktu pada jam sibuk untuk operator Telkomsel, dimana proses pengiriman ke database dilakukan menggunakan modem Wi-Fi dengan operator Kemungkinan Telkomsel. tingginya pengguna bandwidth sehingga dapat terjadi kesalahan pembacaan sensor pada Node 1.

Selanjutnya hasil evaluasi alat node 2 untuk nilai tingkat akurasi sebesar 99% sedangkan nilai error node 2 sebesar 1%. Nilai akurasi node 2 lebih besar daripada node 1 disebabkan alat dalam pembacaan sensor tidak terlalu banyak kesalahan pada saat pengukuran berlangsung. Pada lokasi node 2 pun tidak terlalu banyak aktivitas kendaraan yang datang dan pergi. Sehingga data yang terbaca oleh alat sesuai dengan data dari sistem.

Dan untuk node 3 hasil evaluasi yang didapat nilai tingkat akurasi sebesar 99% dan nilai errornya sebesar 1%. Sama hal nya dengan node 2, node 3 memiliki kesalahan pembacaan sensor yang sangat minim. Data yang terbaca oleh alat node sama dengan data dari sistem tersebut.

(b)

Gambar 3 (a), (b), (c) grafik hasil evaluasi node 1, node 2 dan node 3

IV. KESIMPULAN DAN SARAN

Kesimpulan dari hasil data pembacaan sensor dari setiap alat monitoring kualitas udara dari kategori normal, moderate dan hazardous. Nilai yang diberikan untuk akurasi, presisi dan recall jika nilai diatas 50% hasil alat monitoring tersebut masih dalam efektif. Sedangkan nilai didapatkan dibawah 50% dapat dikatakan alat monitoring tidak efektif. Dari hasil keseluruhan data dari masing-masing node, Node 1 memiliki nilai akurasi 96% dengan nilai error 4%, sedangkan Node 2 memiliki nilai akurasi 99% dengan nilai error 1% dan Node 3 memiliki nilai akurasi 99% dengan error Berdasarkan kesimpulan penelitian, maka penulis merekomendasikan berupa saran seperti untuk menambahan waktu lebih lama dan mencoba ditempat keramaian saat melakukan pengukuran kualitas udara.

V. UCAPAN TERIMAKASIH

Penulis mengucapkan terima kasih kepada Politeknik Negeri Sriwijaya atas dukungannya dalam penelitian ini. Ucapan terima kasih yang sebesarbesarnya juga kami sampaikan kepada seluruh peneliti Teknik Elektro, Teknik

Telekomunikasi, Politeknik Negeri Sriwijaya yang telah memberikan pembinaan dan berbagi ilmunya.

DAFTAR PUSTAKA

- [1] M. Amar, "Analisis Faktor Risiko Pencemaran Udara di Kota Palembang Tahun 2012," Palembang, 2012
- [2] F. L. Lewis. 2004. Jaringan sensor nirkabels. Smart Environments: Technologies, Protocols, and Applications ed. D.J. Cook and S.K. Das, John Wiley, New York.
- [3] Kementrian Lingkungan Hidup Dan Kehutanan Ditjen Pengendalian Pencemaran Dan Kerusakan Lingkungan Direktorat Pengendalian Pencemaran Udara. [online]. Available:http://iku.menlhk.go.id/aq ms/uploads/docs/ispu.pdf
- [4] Culler, David; Estrin, Deborah; Srivastava, Mani, Overview of Sensor Network, IEEE, 2004.
- [5] A. S. Handayani et al., "Robustness of Sensors Network in Environmental Monitoring," 2018, 515-520.
- [6] M. Paramita and R. Ely, "Prediksi Nilai Proyek Akhir Mahasiswa Menggunakan Algoritma Klasifikasi Data Mining," *Semin. Nas. Sist. Inf. Indones. 2015*, 2015.
- [7] Hamel L. 2008. Model Assessment with ROC Curves. The Encyclopedia of Data Warehousing and Mining. 2nd Edition. Idea Group Publisher.
- [8] E. Prasetyo, *Data Mining: Konsep dan Aplikasi menggunakan Matlab*, 1 ed. Yogyakarta: Andi Offset-2.