Optimization Methods. Seminar 4. Conjugate sets. Farkas' lemma

Alexandr Katrutsa

Moscow Institute of Physics and Technology, Department of Control and Applied Mathematics

October 1, 2017

Reminder

- Interior and relative interior of convex set
- Projection onto set
- Separation of convex sets
- Support hyperplane

Conjugate set

Conjugate set

Let X^* be a conjugate (dual) set to the set $X \subseteq \mathbb{R}^n$ such that $X^* = \{ \mathbf{p} \in \mathbb{R}^n | \langle \mathbf{p}, \mathbf{x} \rangle \ge -1, \ \forall \mathbf{x} \in X \}.$

Conjugate cone

If $X \subseteq \mathbb{R}^n$ is a cone, then

$$X^* = \{ \mathbf{p} \in \mathbb{R}^n | \langle \mathbf{p}, \mathbf{x} \rangle \ge 0, \ \forall \mathbf{x} \in X \}.$$

Conjugate subspace

If X is a linear subspace of \mathbb{R}^n , then

$$X^* = \{ \mathbf{p} \in \mathbb{R}^n | \langle \mathbf{p}, \mathbf{x} \rangle = 0, \ \forall \mathbf{x} \in X \}.$$

Alexandr Katrutsa

Claims about conjugate sets

Theorem

Let X be an arbitrary subset of \mathbb{R}^n . Then

$$X^{**} = \overline{conv(X \cup \{0\})}.$$

Theorem

Let X be a closed convex set with zero. Then $X^{**} = X$.

Theorem

If $X_1 \subset X_2$, then $X_2^* \subset X_1^*$.

Examples

Find conjugate sets for the following sets:

- 1. Nonnegative orthant: \mathbb{R}^n_+
- 2. Cone of positive semidefinite matrices: S_{+}^{n}
- 3. $\{(x_1,x_2)||x_1| \leq x_2\}$
- **4**. $\{\mathbf{x} \in \mathbb{R}^n | ||x|| \le r\}$
- 5. $\{(\mathbf{x},t)\in\mathbb{R}^{n+1}|||\mathbf{x}||\leq t\}$

Farkas' lemma

Lemma (Farkas)

Assume $\mathbf{A} \in \mathbb{R}^{m \times n}$ u $\mathbf{b} \in \mathbb{R}^m$. Then exactly one of the following system is feasible:

1)
$$Ax = b, x \ge 0$$

2)
$$\mathbf{p}^{\mathsf{T}} \mathbf{A} \ge 0$$
, $\langle \mathbf{p}, \mathbf{b} \rangle < 0$

Important corollary

Assume $\mathbf{A} \in \mathbb{R}^{m \times n}$ u $\mathbf{b} \in \mathbb{R}^m$. Then exactly one of the following systems is feasible:

1)
$$Ax \leq b$$

2)
$$\mathbf{p}^{\mathsf{T}} \mathbf{A} = 0, \ \langle \mathbf{p}, \mathbf{b} \rangle < 0, \ \mathbf{p} \ge 0$$

Application

If the feasible set in linear programming problem is nonempty and objective function is bounded below, then the problem is feasible.

Geometric interpretation

Farkas' lemma from geometric perspective

- Ax = b with $x \ge 0$ means that b lies in cone generated by the columns of matrix A
- $\mathbf{p}^{\mathsf{T}} \mathbf{A} \geq 0$, $\langle \mathbf{p}, \mathbf{b} \rangle < 0$ means that there exists separation hyperplane between vector \mathbf{b} and cone generated by the columns of matrix \mathbf{A}

Recap

- Conjugate sets
- Properties of conjugate sets
- Farkas' lemma