Grafų teorija

Keli uždavinys. Šteinerio uždavinys grafe.

Andrius Karužas

Keli uždavinys

Plokštumoje duota n taškų. Keliais skirtingais būdais juos galima sujungti, kad gautasis grafas būtų medis?

Medžio kodas

Rasti kabančią briauną, kurios kabančios viršūnės numeris yra pats mažiausias.

Užrašyti šią briauną. Rašant briauną, pirmiausia rašyti kabančios viršūnės numerj.

Ištrinti kabančią briauną drauge su kabančia viršūne.

Medžio kodas

Laikantis tasyklių, surašę medžio G = (V, U) briaunas iš eilės, gausime tokią briaunų seką:

$$(a_1,b_1)$$
, (a_2,b_2) , ..., (a_{n-2},b_{n-2}) , (a_{n-1},b_{n-1}) .

Remdamiesi šia seka, sudarykime aibę:

$$B = \{b_1, b_2, ..., b_{n-2}\}.$$

Būtent šią aibę ir vadinsime medžio kodu.

Medžio kodas

- Kaip rasti briaunas žinant medžio kodą?
 - Sudarome aibę $A = \{1, 2, 3, ..., n\}$
 - Aibėje A ieškome pirmo elemento, nepriklausančio aibei B. Tarkime, tas elementas yra a1. Tada (a1, b1) yra medžio briauna, čia b1 yra pirmasis aibės B elementas.
 - A1 šaliname iš aibės A, o b1 šaliname iš aibės B.

Keli uždavinys

Plokštumoje duota n taškų. Keliais skirtingais būdais juos galima sujungti, kad gautasis grafas būtų medis?

Išvada

Medžio kodas yra (n-2)-jų elementų iš aibės A = {1, 2, 3, ..., n} rinkinys su pasikartojančiais elementais.

Rinkinys nuo rinkinio skiriasi arba pačiais elementais arba jų tvarka.

T.y. turime gretinius iš n elementų po n – 2 su pasikartojimais:

Šių junginių skaičius lygus

 n^{n-2}

Būtent tiek skirtinigų keli medžių yra.

Šteinerio uždavinys

Duotas jungusis svorinis grafas G = (V, U) ir viršūnių aibės V poaibis A. Rasti jungujį pografį T, tenkinantį salygas:

- Poaibis A yra pografio T viršūnių poaibis
- Pografio T briaunų suma turi būti mažiausia tarp visų pografių tenkinančių 1) sąlygą.

Artimiausio kaimyno metodas

begin

Visos grafo G viršūnės – nenudažytos. Išrenkame Šteinerio viršūnę, nuo kurios atstumų iki likusių Šteinerio viršūnių suma yra mažiausia. Šteinerio viršūnę a nudažome.

while "yra nenudažytų Šteinerio viršūnių" do

begin

Tarp nenudažytų Šteinerio viršūnių randame tokią viršūnę, nuo kurios atstumas iki nudažytų grafo G viršūnių yra mažiausias. Tarkime, kad tai Šteinerio viršūnė "next", o jai artimiausia nudažyta grafo viršūnė yra v. (Aišku, kad nudažytos grafo viršūnės priklauso Šteinerio tinklui).

Tada į Šteinerio tinklą įtraukiame trumpiausią grandinę, jungiančią viršūnę "next" su viršūne v.

Visas nenudažytas šios grandinės viršūnes nudažome.

end; end; A = {1, 2, 3} (Šteinerio viršūnės)

C =		1	2	3
	1	0	5	3
	2	5	0	4
	3	3	4	O

