Predicting NHL Goal Scoring

Capstone Sprint 1

Taylor Gallivan 20 Oct. 2023

"When I started [in the NHL in 2015], it was, 'Oh, if they have one person in analytics, they're so innovative.' Now if you don't have more than one person, you're behind."

- Alexandra Mandrycky, Assistant GM, Seattle Kraken, 2022

As of Oct. 2022:

'Analytical' hires in NHL front offices Vice-President of Hockey Operations Statistical Analyst Director of Hockey Strategy/Scouting and Developer, Hockey Research and tant Director of Amateur Scouting Hockey Analyst Director of Hockey Analytics Data Scientisi Vice President of Hockey Strategy 8 Head Video Analyst SGL Developer & Stats Analys

Source: The Athletic, Oct. 2022

- → 23 teams w/ 3 or more analytical hires (72% of league)
- → 9 teams w/ 5 of more analytical hires (28% of league)
- → Most? Maple Leafs with 8 ... but still no Cup

Project Overview

- The sports analytics industry has been growing consistently since the early 2000's → first widely adopted in the MLB, but now a prominent feature in every major North American league (MLB, NBA, NFL, NHL, MLS)
- Have been a hockey fan as long as I can remember: fond memories attending games, cheering on Team Canada, watching Hockey Night in Canada
- With the bevy of NHL data available, merging my hockey fandom with data science was a perfect fit for a capstone project

Problem Question:

Can an ML model (or models) be trained to accurately predict a player's goal output for a season, based on their individual characteristics (a mix of statistical and categorical features)

Project Vision

Though not well documented, the NHL makes large portions of their API (Application Programming Interface) open to public access:

- 1. Retrieve statistical data directly from the NHL API, for all seasons between 1990-1991 and 2022-2023
- 2. Perform EDA on the cleaned dataset to identify preliminary trends within predictive variables → currently 47 features in dataset
- 3. Fit and test models for accuracy current candidates include:
 - a. Generalized Linear Model (GLM)
 - b. Gaussian Process Regression (GPR)
 - c. Support Vector Machine (SVM) Regression
- 4. Target variable: total goals scored (in an 82 game season)

Potential Impact

Sports betting is big business:

- → USD 83.6 billion market value in 2022 (global)
- → ~10% CAGR expected growth

Pipedream: sell my model to a Vegas sportsbook & retire at 35

Realistic Outcome: use it for my fantasy hockey draft and still finish third place

Source: GrandView Research

The Data...

30,000 player ID's:

- Returns a DataFrame with season-by-season statistics (goals, shots, shooting percentage, etc.)
- Irrelevant positions excluded (goalies) as well as fringe players (less than 3 seasons or 200 total games played)
- Concerns: ability to account for external/untracked factors like contract status, injury history, player conditioning

```
# Call 1: 8477246 - 8482246
main df test = pd.DataFrame()
base_url = 'https://statsapi.web.nhl.com/api/vl/people/
range1 = range(8477246, 8482246)
for num in rangel:
    people_url = f'{base_url}{num}'
    response = requests.get(people url)
    if response.status code != 404:
        suggestions = json.loads(response.content)['people']
        player = (pd.json normalize(suggestions))
        if player['primaryPosition.code'][0] != 'G':
            stats url = f'{base url}{num}/stats/?stats=yearByYear'
            response = requests.get(stats url)
            content = json.loads(response.content)['stats']
            splits = content[0]['splits']
            df_splits = (pd.json_normalize(splits, sep = "_" )
                         .query('league name == "National Hockey League"')
            if df splits.shape[0] >= 3:
                df_splits['player_id'] = player['id'][0]
                df_splits['first_name'] = player['firstName'][0]
                df_splits['last_name'] = player['lastName'][0]
               df_splits['position_code'] = player['primaryPosition.code'][0]
               df_splits['stat_games'] = df_splits['stat_games'].astype(int)
                total games = df splits.groupby(['player id', 'first name', 'last name', 'position code'])['stat games'].sum().reset index()
                filtered_total_games = total_games[total_games['stat_games'] > 200]
                if not filtered total games.empty:
                    df_splits['season_start_yr'] = [x[0:4] for x in df_splits['season']]
                    df_splits['season_start_dt'] = [datetime.strptime(x + '0930', "%V%m%d") for x in df_splits['season_start_yr']]
                    df splits['season end'] = [x[4:8] for x in df splits['season']]
                    df_splits['weight'] = player['weight'][0]
                    df_splits['height'] = player['height'][0]
                    df splits['shot dir'] = player['shootsCatches'][0]
                    df_splits['birth_date'] = pd.to_datetime(player['birthDate'][0])
                    df_splits['age'] = (np.floor((df_splits['season_start_dt'] - df_splits['birth_date'])/ np.timedelta64(1,'Y') ))
                    df_splits['age'] = df_splits['age'].astype(int)
                    df_splits['position_name'] = player['primaryPosition.name'][0]
                    df_splits['position_type'] = player['primaryPosition.type'][0]
                    df_splits['birth_country'] = player['birthCountry'][0]
                    df_splits['nationality'] = player['nationality'][0]
                    main df test = pd.concat([main df test, df splits], sort=False).reset index(drop=True)
                else:
            else:
        else:
    else:
        pass
```

Next Steps

- 1. Finish compiling data set
 - a. Check for duplicates, remove unnecessary columns
 - b. Convert 'time on ice' values from string to datetime data types
 - c. Make franchise names consistent
 - d. Adjust scoring totals for era
 - e. Adjust scoring for shortened seasons
 - f. Feature selection
 - Evaluate applicability of aggregated values (for instance, 3-yr weighted averages vs. most recent season's stats)
 - ii. Evaluate the difficulty/practicality of including additional external variables