Authors:

Erick Rosete Beas — er165@uni-freiburg.de Jessica Lizeth Borja Diaz — jb986@uni-freiburg.de

Principles of AI Planning

Exercise Sheet 2

6.11.2019

Exercise 2.1 - Effect Normal Form

a) Transform the operator into ENF

$$\langle \neg e \lor f, \\ (a \rhd (b \rhd c)) \land \\ (\neg d \rhd c) \land \\ (\neg (\neg c \land \neg a) \rhd (d \land \neg e)) \land \\ (d \rhd \neg e) \rangle$$

(8)

De Morgan's Law

 $(\neg e \lor f,$ $(a \rhd (b \rhd c)) \land$ $(\neg d \rhd c) \land$ $((c \lor a) \rhd (d \land \neg e)) \land$ $(d \rhd \neg e))$

 $\langle \neg e \lor f,$ $((a \land b \lor \neg d) \triangleright c) \land$ $((c \lor a) \triangleright d) \land$ $((c \lor a) \triangleright \neg e) \land$ $(d \triangleright \neg e) \land$

(7)

 $\langle \neg e \lor f,$ $((a \land b) \triangleright c)) \land$ $(\neg d \triangleright c) \land$ $((c \lor a) \triangleright (d \land \neg e)) \land$ $(d \triangleright \neg e) \rangle$

(9) $\langle \neg e \lor f, \\ ((a \land b \lor \neg d) \rhd c) \land \\ ((c \lor a) \rhd d) \land \\ ((c \lor a \lor d) \rhd \neg e) \rangle$

(9)

 $\langle \neg e \vee f,$ $((a \wedge b \vee \neg d) \triangleright c) \wedge$ $((c \vee a) \triangleright (d \wedge \neg e)) \wedge$ $(d \triangleright \neg e) \rangle$

b) Transform the operator into positive normal form

$$\langle \neg e \lor f,$$
$$((a \land b \lor \neg d) \rhd c) \land$$
$$((c \lor a) \rhd d) \land$$
$$((c \lor a \lor d) \rhd \neg e) \rangle$$

(8)

(8)

First we identify the negative atom $\neg e$ and we change it for \hat{e}

$$\langle \hat{e} \vee f,$$

$$((a \wedge b \vee \neg d) \triangleright c) \wedge$$

$$((c \vee a) \triangleright d) \wedge$$

$$((c \vee a \vee d) \triangleright \neg e) \rangle$$

We change effect $\neg e$ for $\neg e \wedge \hat{e}$

$$\langle \hat{e} \vee f, \\ ((a \wedge b \vee \neg d) \triangleright c) \wedge \\ ((c \vee a) \triangleright d) \wedge \\ ((c \vee a \vee d) \triangleright (\neg e \wedge \hat{e})) \rangle$$

We identify the negative atom $\neg d$ and we change it for \hat{d} .

$$\langle \hat{e} \vee f,$$

$$((a \wedge b \vee \hat{d}) \triangleright c) \wedge$$

$$((c \vee a) \triangleright d) \wedge$$

$$((c \vee a \vee d) \triangleright (\neg e \wedge \hat{e})) \rangle$$

We change effect d for $d \wedge \neg \hat{d}$

$$\langle \hat{e} \vee f,$$

$$((a \wedge b \vee \hat{d}) \triangleright c) \wedge$$

$$((c \vee a) \triangleright (d \wedge \neg \hat{d})) \wedge$$

$$((c \vee a \vee d) \triangleright (\neg e \wedge \hat{e})) \rangle$$

 $\langle \hat{e} \vee f,$ $((a \wedge b \vee \hat{d}) \triangleright c) \wedge$ $((c \vee a) \triangleright d) \wedge$ $((c \vee a) \triangleright \neg \hat{d}) \wedge$

 $((c \lor a) \lor \neg a) \land ((c \lor a \lor d) \lor (\neg e \land \hat{e}))$

$$\langle \hat{e} \vee f,$$

$$((a \wedge b \vee \hat{d}) \triangleright c) \wedge$$

$$((c \vee a) \triangleright d) \wedge$$

$$((c \vee a) \triangleright \neg \hat{d}) \wedge$$

$$((c \vee a \vee d) \triangleright \neg e) \wedge$$

$$((c \vee a \vee d) \triangleright \hat{e}) \rangle$$