Total No. of Questions : 8]	80	SEAT No.:	
P3941		[Total	No. of Pages : 2

[5462] - 664

M.E. (E & T/C) (VLSI & Embedded Systems) ANALOG CMOS DESIGN

(2017 Course) (Semester - II) (504207)

		(2017 Course) (Semester - 11) (304207)	
Time	e:3	3 Hours] [Max. Mark	ks :50
Instr	ucti	tions to the candidates:	
	1)	Attempt any five questions.	
	<i>2)</i>	Figures to the right side indicate full marks.	
	<i>3)</i>	Assume suitable data.	
Q 1)	a)	How does MOSFET behave as PN diode? What are its application	ons?
L 1)	u)	Give the expressions for its DC current and dynamic resistance.	[4]
	b)		[4]
	c)		
	<i>\(\)</i>	transistor.	[2]
		didibilition.	[-]
Q2)	a)	Explain in short "Implementation of current sink and current source u	ısino
۷-)	u)	MOSFET". What are the voltage compliances? How to improve the	_
			[4]
	b)) Explain in detail the concept of BGR with its necessity.	[4]
	c)		.[2]
	,		
Q3)	a)	What do you mean by large signal, small signal analysis? Draw	the 7
ر د	,	schematic of CMOS difference amplifier with current mirror load give	
		the expression for GMD, ICMR, CMRR and 3dB frequency.	[5]
	b)		[3]
	c)	1	
		reduce this noise.	[2]
Q4)	a)	Compare Active load, Current source load and Push-pull inverter	with
		respect to important performance parameters.	[4]
	b)) What is the use of micro power op-amp? Explain in short the techni-	ques
		used in micro power op-amp.	[4]
	c)	What are constraints/ limitations due to output offset voltage of CN	MOS
		Op amp?	[2]

P.T.O.

Q 5)	a)	Explain need of frequency compensation. State various techniques frequency compensation.		
	b)	Explain Miller Compensation in two stage CMOS Op amp.	[5]	
Q6)	a)	Draw and Explain Following Analog Circuits (Any Two)	[5]	
		i) Cascode Current Source		
		ii) Common source amplifier with NMOS diode connected load.		
		iii) Common source amplifier with current mirror source load.		
		iv) CMOS Comparator.		
	b)	Write a note on stability of Op amp and its effect on slew rate.	[5]	
Q 7)	a)	What are the types of mixer? Explain any one with the help of mathematic analysis in detail.	cal	
	b)	With the help of schematic in detail, explore the design steps of sing ended LNA.	gle [4]	
	c)	Explain Spurs in Mixer.	[2]	
Q8)	a)	How to use zeros as bandwidth enhancer? Explain shunt peaking amplifier. Give the expression for extended band width.	in ₍	
	b)	What is power constrained noise optimization? Explore with necessal expressions.	ry [4]	
	c)	What are the techniques to improve the bandwidth?	[2]	