数学物理方法笔记 Notes of Mathematical Physics Methods

丁毅

中国科学院大学,北京 100049

Yi Ding

University of Chinese Academy of Sciences, Beijing 100049, China

2024.8 - 2025.1

序言

本文为笔者本科时的"数学物理方法"课程笔记(Notes of Mathematical Physics Methods, 2024.9 - 2025.1)。 读者可在笔者的个人网站 https://yidingg.github.io/YiDingg/#/Notes/Math/MathematicalPhysicsMathods 上找到课程信息、教材、教辅和作业答案等相关资料。

由于个人学识浅陋,认识有限,文中难免有不妥甚至错误之处,望读者不吝指正。读者可以将错误发送到我的邮箱 dingyi233@mails.ucas.ac.cn,也可以到笔者的 GitHub (https://github.com/YiDingg/LatexNotes) 上提 issue,衷心感谢。

目录

目:	录		IV
1	复数	: 与复数运算	1
	1.1	预备知识	1
	1.2	复数序列	1
	1.3	复变函数	2
	1.4	无穷远点	2
	1.5	复变函数可视化	3
2	解析	· · · · · · · · · · · · · · · · · · ·	4
	2.1	复变函数的极限和连续	4
	2.2	可导与可微	4
	2.3	解析函数	4
		2.3.1 解析的概念与判定	4
		2.3.2 已知实虚部求原函数	5
		2.3.3 实虚部关系可视化	5
	2.4	初等函数	6
	2.5	解析函数的保角性(略)	7
	2.6	多值函数	7
		2.6.1 基本概念	7
		2.6.2 "有理"函数的分支点	8
		2.6.3 单值分支	8
		2.6.4 常见多值函数	8
	2.7	部分复变函数可视化	9
	2.8	常见函数总结	10
•	Æ ak	estri /\	10
3			12
	3.1	复变积分的概念	
	3.2	Cauchy 定理	12
		3.2.1 Cauchy-Goursat 定理	12
		3.2.2 Cauchy 定理的推广	12
		3.2.3 Cauchy 定理推论	13
	3.3	圆弧定理	13
	3.4	Cauchy 积分公式	14
	3.5	Cauchy 型积分与含参量积分的解析性	14
	3.6	Poisson 公式	15
4	无穷	· <mark>级数</mark>	16
	4.1	复变函数项级数	16
		411 复数证绍数	16

		4.1.2	实变级数的判别法	16
		4.1.3	复变级数的判别法	18
		4.1.4	复变函数项级数	18
	4.2	二重级	及数	19
	4.3	幂级数	女	20
	4.4	含参量	量反常积分的解析性	20
	4.5	发散级	及数与渐近级数(略)	20
5	解析	函数的		21
	5.1	解析函	函数的 Talor 展开	21
	5.2	解析函	函数的零点	21
	5.3	解析函	函数的 Laurent 展开	22
	5.4	单值函	函数的孤立奇点	22
	5.5	解析延	延拓	22
	5.6	Bernou	ulli 数和 Euler 数(略)	23
6	留数	定理		24
	6.1		E理及其求法	
		6.1.1	留数定理	
		6.1.2	求有界点的留数	
		6.1.3	求无穷点的留数	
	6.2	数物期	用中复习	25
	6.3	留数定	 E理的应用	
		6.3.1	有理三角函数积分	25
		6.3.2	无穷积分	26
		6.3.3	含三角函数的无穷积分	26
		6.3.4	积分路径上有奇点的情况	26
		6.3.5	涉及多值函数的复变积分	27
		6.3.6	特殊积分围道(略)	27
		6.3.7	计算无穷级数的和(略)	27
7	积分	变换		28
	7.1	傅里叶	十变换	28
		7.1.1	定义及性质	28
		7.1.2	常见的傅里叶变换	29
	7.2	拉普拉	立斯变换	29
		7.2.1	定义及性质	29
		7.2.2	常见的拉普拉斯变换	31
8	常微	分方程	! (ODE) 基础	32
	8.1	分离变	と量法	32
	8.2		线性 ODE	
	8.3	全微分	}方程	32
	84	一阶线	b性 ODE	33

	8.5	常数变易法	34
	8.6	n 阶齐次线性 ODE	34
	8.7	常点邻域的幂级数解法	34
	8.8	正则奇点邻域的幂级数解法	35
9	数学		36
	9.1		36
	9.2	定解条件	36
10	分离	变量法	37
			37
			37
			38
	10.0		
11	积分	变换法	39
			39
	11.2	Fourier 变换法	39
*	岑文 南	45	41
9	力人用		4,1
附表	対录 A 数物方法 Q & A		
	A. 1	第一章	42
			42
		A.1.2 问题 2	42
	A.2	第二章	42
		A.2.1 如何快速而准确地判断一个函数是否解析?	42
		A.2.2 解析域一定是开集,为什么会说"在有界闭域 \overline{G} 上解析"?	42
		A.2.3 分支点一定不解析吗?	42
		A.2.4 如何求出(或判断)多值函数的分支点?	42
		A.2.5 已知多值函数的分支点,作割线的意义是什么?	43
	A.3	第三章	43
		A.3.1 为什么解析函数的积分与路径无关?	43
		A.3.2 如何使用 (n 阶) Cauchy 积分公式?	43
		A.3.3 如何理解 Cauchy 型积分揭示的"解析函数在(分段)光滑曲线上的值决定了它在整	
		个复平面上的值"?	44
	A.4	第五章	44
		A.4.1 如何求一个函数在某点的 Laurent 展开式,是否有通法?	44
		A.4.2 $ln(z+i)$ 在点 $z_0 = 0$ 有级数展开(对 $ z < 1$ 成立),那么在 $ z > 1$ 上是否可展开为	
			44
		A.4.3 $\ln z$ 在点 $z_0 = 0$ 是否可展开为幂级数?	44
ᄣᆂ	₽ D	Matlab 代码	45
		Mattab 1 (4号)	45

第1章 复数与复数运算

§1.1 预备知识

复数定义:

一个有序实数对 (x,y) 称为复数如果其满足如下运算:

加法
$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

乘法 $(x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + y_1x_2)$ (1.1)

记作 z = x + iy, 其中 $x = \mathbb{R}z$, $y = \mathscr{I}z$, $i^2 = 1$ 。

相关概念:

下面是一些相关概念:

- ① 复数的三种表示: $z = x + iy = r(\cos \theta + i \sin \theta) = re^{i\theta} = e^{\ln r + i\theta}$
- ② 模: $|z| = r = \sqrt{x^2 + y^2}$
- ③ 幅角: $\arg z = \theta \in [0, 2\pi)$ 称为幅角主值(或 $[-\pi, \pi)$), $\operatorname{Arg} z = \theta + 2k\pi$ 称为幅角补值, $k \in \mathbb{Z}$ 。
- ④ $0 \to \infty$: 是两个特殊的复数,分别表示复平面中模为 0 和无穷大而幅角任意的"一个点"。在复平面的球表示中,0 对应南极, ∞ 对应北极。
- ⑤ 扩充复平面: 称包含无穷远点 ∞ 的复平面 $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ 为扩充复平面。
- **⑥** 共轭复数: $z = x + iy, z^* = x iy$
- ⑦ 复数除法: 设 $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$, 则:

$$\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1 + iy_1)(x_2 - iy_2)}{(x_2 + iy_2)(x_2 - iy_2)} = \frac{1}{|z_2|^2} \left[(x_1x_2 + y_1y_2) + i(y_1x_2 - x_1y_2) \right]$$
(1.2)

用棣莫弗定理更易理解复数除法:设 $z_1=r_1e^{i\theta_1}, z_2=r_2e^{i\theta_2}$,则:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)} \tag{1.3}$$

8 复数乘法: $z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$

§1.2 复数序列

相关概念:

- 一个复数序列 $\{z_n\}$ 完全等价于两个实数序列 $\{x_n\}$ 和 $\{y_n\}$
- ① 聚点: 给点复序列 $\{z_n\}$,若存在 $z \in \mathbb{C}$,使 $\forall \varepsilon > 0$,恒有无穷多个 n 使得 $|z_n z| < \varepsilon$ 则称 z 为序列 $\{z_n\}$ 的一个聚点。

例如序列 $\{(-1)^{n+1}\frac{n}{n+1}\mid n\in\mathbb{N}_+\}=\{\frac{1}{2},-\frac{2}{3},\frac{3}{4},-\frac{4}{5},\frac{5}{6},-\frac{6}{7},\cdots,(-1)^{n+1}\frac{n}{n+1},\cdots\}$ 有两个聚点 1,-1.

- ② 有界 / 无界序列: 序列 $\{z_n\}$ 称为有界的如果 $\exists M > 0$ s.t. $|z_n| < M, \forall n \in \mathbb{N}_+$, 否则称为无界的。
- ③ 极限: 称序列 $\{z_n\}$ 收敛于 $z \in \mathbb{C}$ 如果 $\forall \varepsilon > 0$, $\exists N > 0$ s.t. $|z z_n| < \varepsilon, \forall n > N$,记作 $\lim_{n \to \infty} z_n = z$, 否则称为发散序列。极限的必要条件是唯一聚点,无界序列不可能收敛

Theorem. 1 (Bolzano - Weierstrass 定理): 任意有界序列至少有一个聚点。^①

Theorem. 2 (Cauchy 判别法): 序列收敛的等价条件是: $\forall \varepsilon > 0, \exists N = N(\varepsilon)$ s.t. $|z_{N+p} - z_N| < \varepsilon, \forall p \in \mathbb{N}_+$ 。

[®]Theorem.1 告诉我们有界序列必有聚点,事实上,在扩充复数域 ℂ中,这对无界序列也成立(∞ 必为聚点),也即任意序列都必有聚点。

§1.3 复变函数

相关概念:

如下:

- ① 点集: 复平面内点的集合
- ② 区域: 复点集称为区域如果全部由内点组成,且具有连通性 ②
- ③ 单连通/多联通区域:区域称为单连通的如果在其内作任何简单闭合围道(自身不相交的闭合曲线), 围道内的点都属于该区域,否则称为多联通区域(也称复联通区域)

例如,图 1.1 中的 (a) 区域就属于单连通区域,而图 1.1 中的 (b) 区域则为多连通区域。区域定义的条件之一就是仅包含内点,因此区域必是开集, $\overline{G}=G\cup\partial G$ 表示区域并上边界,称为闭域。

- (4) 边界: 区域 G 的全体边界点构成其边界,记为 ∂G
- (5) 边界方向:沿着区域的边界前进,区域恒保持在边界的左侧,则此走向称为边界的正向

图 1.1: (a) (b) 构成区域, (c) 不构成区域

复变函数:

复变函数 f 是复数域子域 $G \subseteq \mathbb{C}$ 到复数域的映射,记作 $f: z \mapsto \mathbb{C}$,或者 $f(z) = w, z \in G$ 。区域 G 称为函数 f 的定义域。事实上,复变函数等价于两个实变函数的有序组合。特别地,多值函数允许一个自变量对应多个函数值,我们在第二章会讨论。

§1.4 无穷远点

Riemann 球面:

如图 1.2,过扩充的复平面 $\overline{\mathbb{C}}$ 中的原点 (0,0) 作直径为 1 的球面,使之与 $\overline{\mathbb{C}}$ 相切,切点称为南极 S,南极直径另一端称为北极 N。 $\forall z \in \overline{\mathbb{C}}$,将它和复数球面的北极 N 相连,连线和球面有且仅有一个交点,因此存在一一对应关系。容易理解,0 对应南极 S 而 ∞ 对应北极 N。

图 1.2: Riemann 球面(复数球面)

②连通性:集合中任意两点都可以用一条折线连接起来,且折线上的点全部属于此点集

§1.5 复变函数可视化

图 1.3 (a) 是函数 $f(z)=z^2$ 的可视化,图 1.3 (b) 是 $f(z)=z\cdot \mathrm{Re}\,z$ 的可视化。其中坐标 (x,y) 对应 z=x+iy,箭头的长度代表 |f(z)|,方向代表 $\arg f(z)$ 。等高线表示模长相等。

图 1.3: 复变函数可视化

图 1.4 (a) 是 $f(z) = e^{iz}$,图 1.4 (b) 是 f(z) = cos(z)。

图 1.4: 复变函数可视化

第2章 解析函数

§2.1 复变函数的极限和连续

极限:

设复变函数 f(z) 在 z_0 的空心邻域 $U_\delta^\circ(z_0)$ 中有定义[®],若 $\exists A \in \mathbb{C}$ 满足 $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$ s.t. $|f(z) - A| < \varphi$, $\forall 0 < |z - z_0| < \delta$,则称 $z \to z_0$ 时 f(z) 存在极限 A,记作:

$$\lim_{z \to z_0} f(z) = A \tag{2.1}$$

并且,设 f(z) = u(z) + iv(z), $u, v \in \mathbb{C}$ 到 \mathbb{R} 的函数,可以证明:

$$\lim_{z \to z_0} f(z) = \lim_{z \to z_0} u(z) + i \lim_{z \to z_0} v(z)$$
 (2.2)

连续:

设复变函数 f(z) 在 z_0 的邻域 $U_{\delta}(z_0)$ 中有定义,且 $\lim_{z\to z_0} f(z) = f(z_0)$,则称 f(z) 在 z_0 处连续。 在有界必域 \overline{G} 中连续的函数 f(z) 具有两个重要性质:

- ① |f(z)| 在 \overline{G} 中有界,并且上下界可取到
- ② f(x) 在 \overline{G} 中一致连续,即 $|f(z_1) f(z_2)| < \varepsilon, \forall |z_1 z_2| < \delta$

§2.2 可导与可微

单值复变函数 f(z) 在 z_0 处可导如果 $\lim \frac{f(z+\Delta z)-f(z)}{\Delta z}=C\in\mathbb{R}^2$,记为 f'(z)。容易证明,高等数学中的各种求导公式都可以直接搬用到复变函数。

Cauchy-Riemann 条件是函数可导的必要条件:

$$\boxed{\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}}$$
(2.3)

极坐标中的 C-R 条件:

$$\boxed{\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \phi}, \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \phi}}$$
 (2.4)

若存在 $A=A(z)\in\mathbb{C}$ s.t. $\Delta f(z)=A(z)\cdot\Delta z+O(\Delta z)$,则称 f(z) 在 z_0 处可微,记作 $\mathrm{d} f=A\mathrm{d} z$,或 $\mathrm{d} f=A(\mathrm{d} x+i\mathrm{d} y)$

注意,与实变函数不同,在复变函数中,可导与可微是完全等价的:

$$f$$
 可导 \iff f 可微 \iff u, v 可导且满足 C-R 条件 (2.5)

§ 2.3 解析函数

2.3.1 解析的概念与判定

函数 f 称为 G 上的解析函数如果 f 在区域 G 内每一点都可导,又称为 f 在 G 上解析。

 $^{^{\}circ}z_{0}$ 的空心邻域是指以 z_{0} 为圆心的环域 $0<|z-z_{0}|<arepsilon$

 $^{^{\}circ}$ 这要求 Δz 以任意方式趋于零,此极限都存在,类似二元函数的导数。

可以证明,函数 f 在任意一点解析的充要条件是:

$$f$$
 在点 $z \in \mathbb{C}$ 解析 $\iff f$ 在点 z 可微且满足 Cauchy-Riemann 方程 (2.6)

在实际的操作中,我们常用下面定理来判断函数的解析性:

Theorem.3 (解析函数判别法):

设 f(z) = u(x,y) + iv(x,y) 是区域 G 上的单值复变函数,则:

$$u$$
 和 v 在 G 上可微, 且处处满足 C - R 条件 \iff f 在 G 上可导 \iff f 在 G 内解析 (2.7)

$$u$$
 和 v 在 G 上有连续一阶导,且处处满足 C -R 条件 \Longrightarrow f 在 G 上可导 \Longleftrightarrow f 在 G 内解析 (2.8)

对于第一行,u 和 v 在 G 上可微并不能直接得到 f 可微,例如 u=2x,v=-y,还有加上 C-R 条件才能得到可微。对于第二行,u 有一阶连续偏导 $\Longrightarrow u$ 可微(多元实变函数的结论),后面同理

2.3.2 已知实虚部求原函数

在 G 内解析的函数必满足 Cauchy-Riemann 方程(因为处处可导),因此只要知道实虚部其中之一,例如 f(x,y) = u(x,y) + iv(x,y) 的实部 u(x,y),就可以唯一地确定其虚部(可加减实常数),这是因为:

$$dv = \frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy = -\frac{\partial u}{\partial y}dx + \frac{\partial u}{\partial x}dy$$
 (2.9)

$$\Longrightarrow v(x,y) = \int \left(-\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy \right)$$
 (2.10)

为求此原函数,设 $v(x,y) = g_1(x,y) + g_2(y)$,则:

$$\frac{\partial v}{\partial x} = \frac{\partial g_1}{\partial x} \Longrightarrow g_1(x, y) = \int \frac{\partial v}{\partial x} dx = \int (-\frac{\partial u}{\partial y}) dx \tag{2.11}$$

$$\frac{\partial v}{\partial y} = \frac{\partial g_1}{\partial y} + \frac{\partial g_2}{\partial y} \Longrightarrow g_2(y) = \int (\frac{\partial v}{\partial y} - \frac{\partial g_1}{\partial y}) dy = \int (\frac{\partial u}{\partial x} - \frac{\partial g_1}{\partial y}) dy$$
 (2.12)

最后相加即得 v(x,y)。

这也就是说,先考虑 $\frac{\partial v}{\partial x}$ 对 x 的积分,得到 $g_1(x,y)$,然后考虑 $\frac{\partial v}{\partial y}$,<mark>将其含 x 的项全部舍弃</mark>(因为它们属于 g_1),再对 y 作积分。两积分结果相加即得 v(x,y)。

特别地,当已知 u(x,y) 和 v(x,y) 时,欲求 f(z) 的表达式(而不是 f(x,y)),只需直接令表达式 u+iv 的 (x,y)=(z,0),也即:

$$f(z) = [u(x,y) + iv(x,y)]_{x=z,y=0} = u(z,0) + iv(z,0)$$
(2.13)

具体原因我们会在第五章"解析延拓"处讨论。

2.3.3 实虚部关系可视化

解析函数实部与虚部之间的这种依赖关系,还可以形象地表现出来。在 x-y 平面中,分别作出 u(x,y) 和 v(x,y) 的等高线图,在任意一点 (x,y),由 Cauchy-Reimann 方程,两者方向矢量的内积为零:

$$\begin{bmatrix} \frac{\partial u}{\partial y} & -\frac{\partial u}{\partial x} \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial v}{\partial y} \\ -\frac{\partial v}{\partial x} \end{bmatrix} = \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} = 0$$
 (2.14)

因此两者的等高线图处处正交 (表现为曲线处处正交)。

例如 $f(z) = z^2$, 则:

$$f(z) = z^2 = (x^2 - y^2) + (2xy)i \Longrightarrow u(x,y) = x^2 - y^2, \ v(x,y) = 2xy$$

它们的等高线图如图 2.1 所示:

图 2.1: 解析函数 $f(z) = z^2$ 实虚部示意图

之后我们会证明,解析函数 f 的实部 u(x,y) 和虚部 v(x,y) 的二阶偏导一定存在且连续,并且满足二维 Laplace 方程[®],这表明解析函数的实部和虚部构成一对共轭的调和函数[®]。

$$\Delta u = \Delta v = 0 \Longleftrightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$
 (2.15)

函数的解析性总是和给点区域联系在一起,有时也称函数在 z_0 点解析,也即在邻域 $U_{\delta}(z_0)$ 内解析。讨论解析函数的各种特殊性质,就是复变函数论的中心课题。

§ 2.4 初等函数

一些实初等函数推广到复数域时会有比较的特殊性质,下面进行讨论。

幂函数 z^n :

当 $n \in \mathbb{N}$ 时, z^n 在 \mathbb{C} 内解析,并且当 $n \in \mathbb{N}^*$ 时, z^n 在 ∞ 不解析;当 $n \in -\mathbb{N}^*$ 时, z^n 在 z = 0 不解析,在 $\overline{\mathbb{C}} \setminus \{0\}$ 内解析。

指数函数 e^z :

复指数函数在 \mathbb{C} 内解析,但在 ∞ 无意义,因为极限 $\lim_{z\to\infty}e^z$ 不存在

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y)$$
 (2.16)

三角函数 $\sin z$, $\cos z$, ...:

复三角函数是用复指数函数定义的,如下:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \sin x \cosh y + i \cos x \sinh y = \frac{1}{2i} \cdot \left[\left(e^y - \frac{1}{e^y} \right) \cos x + i \left(e^y + \frac{1}{e^y} \right) \sin x \right] \\
\cos z = \frac{e^{iz} + e^{-iz}}{2} = \cos x \cosh y - i \sin x \sinh y = \frac{1}{2} \cdot \left[\left(e^y + \frac{1}{e^y} \right) \cos x - i \left(e^y - \frac{1}{e^y} \right) \sin x \right]$$
(2.17)

 $\sin z$, $\cos z$ 在 \mathbb{C} 内解析,唯一奇点是 $z=\infty$ 。可以证明,实三角函数的各种恒等式对复三角函数仍成立(包括和差化积、万能公式等)。

 $^{^{3}}$ 这样的函数 f 称为调和函数

[®]共轭是因为满足 Cauchy-Riemann 方程

双曲函数 $\sinh z$, $\cosh z$, ...:

双曲函数也是通过复指数函数来定义的,如下

$$\begin{vmatrix}
\sinh z = \frac{e^z - e^{-z}}{2} = \sinh x \cos y + i \cosh x \sin y = \frac{1}{2} \cdot \left[\left(\frac{1}{e^x} - e^x \right) \cos y + \left(\frac{1}{e^x} + e^x \right) \sin y \right] \\
\cosh z = \frac{e^z + e^{-z}}{2} = \cosh x \cos y + i \sinh x \sin y = \frac{1}{2} \cdot \left[\left(\frac{1}{e^x} + e^x \right) \cos y + \left(\frac{1}{e^x} - e^x \right) \sin y \right]
\end{vmatrix}$$
(2.18)

$$\operatorname{sech} z = \frac{1}{\cosh z}, \quad \cosh z = \frac{1}{\sinh z}, \quad \tanh z = \frac{\sinh z}{\cosh z}, \quad \coth z = \frac{\cosh z}{\sinh z}$$
 (2.19)

由定义可知,双曲函数和三角函数能够互化:

$$\sinh z = -i \sin iz$$
, $\cosh z = \cos iz$, $\tanh z = -i \tan iz$. (2.20)

通过上面的式子,我们也能很容易知道,在复数域上,三角函数不再是有界的函数了。另外注意导数公式:

$$(\sinh z)' = \cosh z, \quad (\cosh z)' = \sinh z, \quad (\tanh z)' = \operatorname{sech}^2 z \tag{2.21}$$

其它结论:

$$\cosh^2 z - \sinh^2 z = 1, \quad 1 - \tanh^2 z = \operatorname{sech}^2 z$$
(2.22)

$$\sinh(z_1 \pm z_2) = \sinh z_1 \cosh z_2 \pm \cosh z_1 \sinh z_2 \tag{2.23}$$

$$\cosh(z_1 \pm z_2) = \cosh z_1 \cosh z_2 \pm \sinh z_1 \sinh z_2 \tag{2.24}$$

§2.5 解析函数的保角性(略)

§ 2.6 多值函数

2.6.1 基本概念

多值函数的概念:

f 称为区域 $G \subseteq \mathbb{C}$ 上的多值函数如果 $\forall z \in G$ 存在多个 $w \in \mathbb{C}$ 使得 $f(z) = w_1 = w_2 = \cdots$ 。许多函数的逆运算都是多值函数。

宗量、分支点:

考虑 z-a 的开方 $w=\sqrt{z-a}$, 设 $w=\rho_1e^{\alpha}$ 而 $z-a=\rho_2e^{\theta}$, 代入解得:

$$w = \sqrt{|z - a|} e^{\frac{\theta}{2} + n\pi}, \quad n \in \mathbb{Z} \Longleftrightarrow |w| = \sqrt{|z - a|}, \quad \arg w = \frac{1}{2} \arg(z - a) \tag{2.25}$$

 ω 的多值性来源于 z-a 幅角的多样性,我们把这样的量称为宗量^⑤ (而不是自变量)。

为了进一步揭示多值函数 $w=\sqrt{z-a}$ 的性质,我们讨论"还原"与"不还原"。在 z 复平面上依次画两个圆,如图 2.2 左侧,第一个圆在点 a 外,第二个圆包含了点 a。

对第一种情况,z 沿路径 C_1 逆时针旋转一圈后,由于 a 在圆外,因此旋转前后的 $\arg(z-a)$ 不变, $\arg w = \frac{1}{2}\arg(z-a)$ 也不变,从而使得旋转前后 w 也不变,称为 w 值 "还原"。对第二种情况,z 沿路径 C_2 逆时针旋转一圈后,由于 a 在圆内, $\arg(z-a)$ 增加了 2π 但 $\arg w = \frac{1}{2}\arg(z-a)$ 使得 $\arg w$ 仅增加 π ,从而使得旋转前后 w 未回到原点,称为 w 值 "不还原"。

[®]宗量通常不同于自变量. 例如,多值函数 $\sqrt{z-a}$ 的宗量就是 z-a,多值函数号 $\sqrt[3]{(z-a)(z-b)}$ 的宗量就是 (z-a)(z-b)。当然,也有宗量就是自变量的情形. 例如多值函数 \sqrt{z} 的宗量就是自变量 z。

因此,点 a 对多值函数 $w=\sqrt{z-a}$ 有特殊意义,它是否位于简单闭合路径内就决定了当 z 沿这个路径行进一周回到原处时,相应的 w 值是否能还原。对于无法还原的点,我们称为**分支点**®。也即,如果 $\exists r>0$,当 z 沿圆周 $|z-z_0|=r$ 绕一圈回到原处时,w 不还原,且当 $r\mapsto 0$ 时,w 始终不还原,这样的点 z_0 就称为多值函数 w(z) 的分支点。

例如, $z=a,\infty$ 是 $f(z)=\sqrt{z-a}$ 的分支点, $z=a,b,c,\infty$ 是 $f(z)=\sqrt{(z-a)(z-b)(z-c)}$ 的分支点, $z=0,\infty$ 是 $f(z)=\operatorname{Ln} z=\operatorname{ln}|z|+i\operatorname{Arg} z$ 的分支点。

图 2.2: z 沿闭合曲线一周回到原处时, $w=\sqrt{z-a}$ 值的不同变化

2.6.2 "有理"函数的分支点

"有理"函数 f(z):

$$f(z) = \sqrt[k]{\frac{(z - z_{i_1})^{r_1}(z - z_{i_2})^{r_2} \cdot (z - z_{i_m})^{r_m}}{(z - z_{j_1})^{s_1}(z - z_{j_2})^{s_2} \cdot (z - z_{j_n})^{s_n}}}$$
(2.26)

- (1) 对 a: 若因式 $(z-a)^b$ 的幂指数 b 不能被根指数 k 整除,即 $b \neq 0 \pmod{k}$,则 a 为分支点,否则不是分支点。
- (2) 对 ∞ : 若 $(\sum r_i \sum s_i) \neq 0 \pmod{k}$, 则 ∞ 为分支点, 否则不是分支点。

2.6.3 单值分支

为了得到多值函数的单值分支,我们可以限制宗量的幅角范围(常通过"割线"来实现)。这样,宗量幅角范围的各个周期,给出多值函数的各个单值分支。另一种自然的方法是规定初始值和连续变化路线(移动路线)。

2.6.4 常见多值函数

最常见的多值函数是开根,在实际做题中,如果遇到开根 $\sqrt[r]{z}$,便是默认取 $z\in[0,2\pi]$ 的单值分支。这里之所以取闭区间,是因为 2π 可以取到,并且其值与 0 不同。特别地,令 $z=x+iy=re^{i\theta},\,\theta\in[0,2\pi]$,则

[®]分支点描述的是函数的多值性质,与函数的解析性无关

 \sqrt{z} 可以写为:

$$\sqrt{z} = \frac{1}{\sqrt{2}} \left(\operatorname{sgn} \left(\pi - \theta \right) \sqrt{|z| + x} + i \sqrt{|z| - x} \right)$$
 (2.27)

对数函数和幂函数也是一种常见的多值函数:

$$\ln z = \ln |z| + i \arg z, \quad \operatorname{Ln} z = \ln |z| + i \operatorname{Arg} z \tag{2.28}$$

包括幂函数®、三角函数在内的很多常见的多值函数都可以通过 Lnz 和根号来定义:

Arcsin
$$z = \frac{1}{i} \operatorname{Ln} (iz + \sqrt{1 - z^2}), \quad \operatorname{Arccos} z = \frac{1}{i} \operatorname{Ln} (z + \sqrt{z^2 - 1})$$
 (2.29)

$$\operatorname{Arctan} z = \frac{1}{2i} \operatorname{Ln}\left(\frac{1+iz}{1-iz}\right), \quad z^{\alpha} = e^{\alpha \operatorname{Ln} z} = |z|^{a} \cdot e^{i(a \operatorname{Arg} z)}, \ \alpha \in \mathbb{C} \tag{2.30}$$

§2.7 部分复变函数可视化

图 2.3 是 $f(z) = e^z$ 与 $f(z) = \cos(z)$ 的可视化,图 2.4® 是多值函数 $f(z) = \sqrt{z}$ 和 $f(z) = \operatorname{Ln} z$ 的单值分支的可视化,图中等高线表示模长相等。

图 2.3: 单值复变函数可视化

 $^{^{\}circ}$ 在后文,除非特殊说明,都默认 z^{a} 是取 $z\in[0,2\pi]$ 时的单值分支,即 $z^{a}\mid_{z=1}=1$

[®]图 2.3 和图 2.4 源码见附录 B.1

图 2.4: 多值复变函数可视化

§2.8 常见函数总结

三角函数及其反函数:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i} = \sin x \cosh y + i \cos x \sinh y$$
 (2.31)

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \cos x \cosh y - i \sin x \sinh y$$
 (2.32)

$$\tan z = \frac{\sin z}{\cos z} = -i \cdot \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} = -i \cdot \frac{e^{2iz} - 1}{e^{2iz} + 1}$$
 (2.33)

$$\arcsin z = -i \cdot \ln \left(iz + \sqrt{1 - z^2} \right) \tag{2.34}$$

$$\arccos z = -i \cdot \ln \left(z + \sqrt{z^2 - 1} \right) \tag{2.35}$$

$$\arctan z = -\frac{i}{2} \ln \left(\frac{1+iz}{1-iz} \right) \tag{2.36}$$

双曲函数及其反函数:

$$\sinh z = \frac{e^z - e^{-z}}{2} = \sinh x \cos y + i \cosh x \sin y \tag{2.37}$$

$$cosh z = \frac{e^z + e^{-z}}{2} = cosh x cos y + i sinh x sin y$$
(2.38)

$$\tanh z = \frac{\sinh z}{\cosh z} = \frac{e^z - e^{-z}}{e^z + e^{-z}} = \frac{e^{2z} - 1}{e^{2z} + 1}$$
(2.39)

$$\operatorname{arcsinh} z = \ln\left(z + \sqrt{z^2 + 1}\right) \tag{2.40}$$

$$\operatorname{arccosh} z = \ln\left(z + \sqrt{z^2 - 1}\right) \tag{2.41}$$

$$\operatorname{arctanh} z = \frac{1}{2} \cdot \ln \left(\frac{1+z}{1-z} \right) \tag{2.42}$$

根号函数:

$$\sqrt{z} = \frac{1}{\sqrt{2}} \left(\operatorname{sgn}(\pi - \theta) \sqrt{|z| + x} + i \sqrt{|z| - x} \right), \quad \operatorname{sgn} x = \begin{cases} -1, & x < 0 \\ 1, & x > 0 \\ 0, & x = 0 \end{cases}$$
 (2.43)

第3章 复变积分

§3.1 复变积分的概念

复变积分是 ℂ上的线积分,沿某条路径,由点 A 至点 B 的复变积分定义为:

$$I = \lim_{\max |\Delta z_i \to 0|} \sum_{i=1}^n f(\xi_i) \Delta z_i = \int_{C_{AB}} f(z) dz$$
(3.1)

如果路径是闭合的,也常称为积分围道。一个复变积分实际上是两个实变线积分的线性组合,因此,若 C 是分段光滑曲线,且 f(z) 在路径 C 上连续,则复变积分一定存在。

$$\int_{C} f(z)dz = \int_{C} (udx - vdy) + i \int_{C} (vdx + udy)$$
(3.2)

§3.2 Cauchy 定理

3.2.1 Cauchy-Goursat 定理

Theorem. 4 (Cauchy 定理¹):

若 f(z) 在有界开域 G 上单值解析, 在 ∂G 上连续², 则:

$$\oint_{\partial G} f(z) dz = 0 \tag{3.3}$$

对单连通区域, ∂G 即为外围边界线(沿逆时针);对多连通区域,外围边界线沿逆时针积分,内部边界线沿顺时针积分 3 。

3.2.2 Cauchy 定理的推广

Theorem. 5 (Cauchy 定理推广 1):

连续函数 f 在有界复连通区域 G 上单值解析,则:

$$\oint_{C_0} f(z) dz = \sum_{i=1}^{i=n} \oint_{C_i^{(-)}} f(z) dz$$
(3.4)

路径上的负号表示路径沿反相,在这里即沿逆时针。也就是所有路径(包括 C_0)都沿逆时针。

Theorem. 6 (Cauchy 定理推广 2):

连续函数 f 在有界单连通区域 G 上单值解析,则:

$$\oint_C f(z)dz, C \subset G 与路径无关, 也即 f(z) 存在原函数$$
 (3.5)

Theorem. 7 (Cauchy 定理推广 3):

C为G的边界,任取简单闭合曲线 $C' \subset G$,若连续函数f(z)在构成的新有界复连通区域上解析,则:

$$\oint_C f(z) dz = \oint_{C'} f(z) dz$$
(3.6)

[®]也称 Cauchy-Goursat 定理

 $^{^{\}circ}$ 有的教材称上述两个条件是"在闭域 \overline{G} 中解析",详见附录A.2.2

³始终保持区域在自身左侧的走向称为正向。

3.2.3 Cauchy 定理推论

Theorem. 8 (Morera 定理):

设 f 在闭域 \overline{G} 中连续, 且对 G 中任意闭合围道 C, 都有 $\oint_C f(z) dz = 0$, 则 f 在 G 中解析。结合 Cauchy 定理的正表述, 也即:

$$f(z)$$
 在 \overline{G} 内解析 \iff $\oint_C f(z) \mathrm{d}z = 0, \ \forall \ C \subset \overline{G} \iff$ 积分 $\int_{z_1}^{z_2} f(z) \mathrm{d}z$ 与路径无关, $z_1, z_2 \in \overline{G}$ (3.7)

Morera 定理可以理解为 Cauchy 定理的逆定理, 用于判别函数在某区域上的解析性。

Theorem.9 (最大模原理): 设 f(z) 在 \overline{G} 中解析,则模 |f(z)| 的最大值一定在边界 ∂G 上。

Theorem. 10 (Cauchy 不等式):

设函数 f 在 \overline{G} 中解析,则有不等式:

$$|f^{(n)}(z)| \le \frac{n!}{2\pi d^{n+1}} \cdot Ml, \quad n = 0, 1, 2, \dots$$
 (3.8)

其中 $M=\sup\{|f(z)|,\,z\in\partial G\}$ 是 |f(z)| 在边界取值的上界, $l=\int_{\partial G}\mathrm{d}s$ 是边界 ∂G 的长度, $d=\inf\{\rho(z,\partial G)\}$ 是 z 点到边界 ∂G 的距离(距离即为下界)。事实上,由于 \overline{G} 是闭域,这里的上界、下界均可取到,因此分别是最大值、最小值。

特别地, 当边界是以z为圆心, R为半径的圆时, 不等式变为:

$$|f^{(n)}(z)| \le \frac{n!M}{R^n}, \quad n = 0, 1, 2, \dots$$
 (3.9)

Theorem. 11 (Liouville 定理): 若 f(z) 在全平面上解析,且 $\lim_{z \to \infty} |f(z)| < \infty$,则 f(z) 是常数函数。更优雅的说法是:"在全平面上解析的有界复变函数都是常数函数"。

Theorem.12 (均值定理):

设 f(z) 在 \overline{G} 内解析,则 f 在 G 内任意一点 z_0 的函数值是它在圆周上取值的算术平均:

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + Re^{i\theta}) d\theta$$
 (3.10)

其中 R 是以 z_0 为圆心, 位于 \overline{G} 内的任一圆周的半径。注意积分前的系数是 $\frac{1}{2\pi}$ 而不是 $\frac{1}{2\pi i}$ 。

§3.3 圆弧定理

Theorem. 13 (小圆弧定理):

若 f(z) 在 a 的空心邻域 $U_\delta^\circ(a)$ 上连续,且在 $\arg(z-a)\in [\theta_1,\ \theta_2]$ 时,(z-a)f(z) 一致收敛于 k ($|z-a|\to 0$),则:

$$\lim_{\delta \to 0} \int_{C} f(z) dz = ik(\theta_2 - \theta_1)$$
(3.11)

其中 C_{δ} 是以 a 为圆心, δ 为半径, 张角为 $\theta_2 - \theta_1$ 的小圆弧。

Theorem. 14 (大圆弧定理):

若 f(z) 在 ∞ 的空心邻域 $U^\circ_\delta(\infty)$ 上连续,且在 $\arg(z-a)\in [\theta_1,\ \theta_2]$ 时,(z-a)f(z) 一致收敛于 k ($|z-a|\to\infty$),则:

$$\lim_{R \to \infty} \int_{C_R} f(z) dz = ik(\theta_2 - \theta_1)$$
(3.12)

其中 C_R 是以 a 为圆心, R 为半径, 张角为 $\theta_2 - \theta_1$ 的大圆弧。

§3.4 Cauchy 积分公式

Theorem. 15 (Cauchy 积分公式):

若 f(z) 在 \overline{G} 中解析⁴ ,则 f(z) 在 G 上有任意阶导数,且它们都是 \overline{G} 上的解析函数。

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\partial G} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta, \quad \forall z \in G$$
(3.13)

特别地, 当 n=0 时, 得到 Cauchy 积分公式⁵:

$$f(z) = \frac{1}{2\pi i} \oint_{\partial G} \frac{f(\zeta)}{(\zeta - z)} d\zeta, \quad \forall \ z \in G$$
 (3.14)

闭域 \overline{G} 可以是复联通区域,积分路径仍沿正向,即内部顺时针,最外围逆时针。

Theorem. 16 (Cauchy 定理的推广):

在计算回路积分时, Theorem.15 使用起来不太方便, 由小圆弧定理和 Cauchy 定理, 我们可以证明下面命题, 方便我们使用。

若 f(z) 在 \overline{G} 上有唯一奇点 z=a, 且 $(z-a)^n f(z)$ 在 \overline{G} 上解析,则:

$$I = \oint_{\partial G} f(z) dz = 2\pi i \cdot \frac{1}{(n-1)!} \left[(z-a)^n f(z) \right]_{z=a}^{(n-1)}$$
(3.15)

特别地,当 n=1 时,得到 Cauchy 积分公式。当 n=1 时,z=a 可能是可去奇点,此时 z=a 是指 $\lim_{z\to a}$ 。

Theorem. 17 (无界区域上的 Cauchy 积分公式):

若 f(z) 在 $\mathbb{C}\setminus\overline{G}$ 中解析,则 f(z) 在 $\mathbb{C}\setminus\overline{G}$ 上有任意阶导数,且它们都是 $\mathbb{C}\setminus\overline{G}$ 上的解析函数。

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\partial G} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta, \quad \forall \ z \in \mathbb{C} \setminus \overline{G}, \ n = 0, 1, 2, \dots$$
 (3.16)

§3.5 Cauchy 型积分与含参量积分的解析性

Theorem. 18 (Cauchy 型积分):

设函数 ϕ 在分段光滑曲线 $L \in \mathbb{C}$ 上连续(L 可闭合或不闭合),则下面函数在 $\mathbb{C} \setminus L$ 上解析,在全平面上连续:

$$f(z) = \begin{cases} \phi(z) &, z \in L \\ \frac{1}{2\pi i} \oint_{L} \frac{\phi(\zeta)}{\zeta - z} d\zeta &, z \in \mathbb{C} \setminus L \end{cases}$$
(3.17)

且它在 $\mathbb{C}\setminus L$ 上的导数可由 Cauchy 积分公式得到:

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_L \frac{\phi(\zeta)}{(\zeta - z)^{n+1}} d\zeta, \quad \forall z \in \mathbb{C} \setminus L, n = 1, 2, 3, \dots$$
 (3.18)

Theorem.19 (含参量积分的解析性):

设含参函数 f=f(t,z) 分别对 $t\in L$ 和 $z\in \overline{G}$ 连续®(对两个变量都连续),其中 \overline{G} 是有界闭域。且 $\forall\,t\in L,\,f(t,z)$ 是 \overline{G} 上的单值解析函数,则函数 $F(z)=\int_L f(t,z)\mathrm{d}t$ 在 G 内解析,且 $F'(z)=\int_L \frac{\partial f(t,z)}{\partial z}\mathrm{d}t$ 。

[®]解析域一定是开集,为什么这里会说在闭域上解析?详见附录 A.2.2

 $^{^{\}circ}$ 事实上是由 n=0 和归纳法证明的 n 阶导数 Cauchy 积分公式

[®]这与在 $L \times \overline{G}$ 上连续不同。

§3.6 Poisson 公式

Cauchy 积分公式告诉我们,对于在 \overline{G} 上解析的函数 f(z),函数在 \overline{G} 内任意一条曲线上的值(可以是 边界 ∂G)就完全唯一地决定了 f 在 G 内任意一点的值。特别地,当 $G=\mathbb{C}$ 时,若已知 f 在 \mathbb{C} 内任意一条(分段光滑)曲线 L 上的值,都可求出 f 在全平面的值。

Theorem. 20 (上半平面 Poisson 公式):

如果 f(z) 在上半平面解析,且 $\lim_{z\to\infty} f(z)=0$,则可依据它(或者它的实部或虚部)在实轴上的值, 求出它在整个上半平面的值:

己知
$$f(z), z \in \mathbb{R}$$
:
$$f(z) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{f(\xi)}{\xi - z} d\xi$$

$$= \frac{y}{\pi} \int_{-\infty}^{+\infty} \frac{f(\xi)}{(\xi - x)^2 + y^2} d\xi \qquad = \frac{1}{\pi i} \int_{-\infty}^{+\infty} \frac{(\xi - x)f(\xi)}{(\xi - x)^2 + y^2} d\xi \quad , \quad \forall z \in \mathbb{C} \setminus \mathbb{R}$$
已知 $u \not \otimes v$:
$$f(z) = \frac{1}{\pi i} \int_{-\infty}^{+\infty} \frac{u(\xi, 0)}{\xi - (x + iy)} d\xi \qquad = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{v(\xi, 0)}{\xi - (x + iy)} d\xi \quad , \quad \forall z \in \mathbb{C} \setminus \mathbb{R}$$

$$u(x, y) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{yu(\xi, 0)}{(\xi - x)^2 + y^2} d\xi \qquad = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{(\xi - x)v(\xi, 0)}{(\xi - x)^2 + y^2} d\xi \quad , \quad \forall z \in \mathbb{C} \setminus \mathbb{R}$$

$$v(x, y) = -\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{(\xi - x)u(\xi, 0)}{(\xi - x)^2 + y^2} d\xi \quad , \quad \forall z \in \mathbb{C} \setminus \mathbb{R}$$

Theorem. 21 (圆内 Poisson 公式):

取G为半径是a的圆,可以得到圆内Poisson公式:

$$f(r,\phi) = \frac{a^2 - r^2}{2\pi} \int_0^{2\pi} \frac{f(ae^{i\theta})}{a^2 + r^2 - 2ar\cos(\phi - \theta)} d\theta, \quad \forall r \leqslant a, \ \phi \in [0, 2\pi)$$
 (3.20)

$$u(r,\phi) = \frac{a^2 - r^2}{2\pi} \int_0^{2\pi} \frac{u(a,\theta)}{a^2 + r^2 - 2ar\cos(\phi - \theta)} d\theta, \quad \forall r \leqslant a, \ \phi \in [0, 2\pi)$$
(3.21)

$$v(r,\phi) = \frac{a^2 - r^2}{2\pi} \int_0^{2\pi} \frac{v(a,\theta)}{a^2 + r^2 - 2ar\cos(\phi - \theta)} d\theta, \quad \forall r \leqslant a, \ \phi \in [0, 2\pi)$$
 (3.22)

第4章 无穷级数

§ 4.1 复变函数项级数

4.1.1 复数项级数

收敛:

复数级数 $S = \sum_{n=1}^{\infty} u_n$ 称为收敛的如果它的部分和 $S_n = \sum_{k=1}^{n} u_k$ 是收敛的,否则称其发散。特别地,由于 $\sum u_n = \sum a_n + i \sum b_n$ (不涉及交换求和次序),因此,一个复数级数完全等价于两个实数级数的有序组合。 收敛的级数满足加法结合律,即可以任意添加括号(但不能随意去掉括号)

Theorem. 22 (Cauchy 判别法):

级数 $S = \sum_{n=1}^{\infty} u_n$ 收敛的等价条件是:

$$\forall \varepsilon > 0, \ \exists \ N = N(\varepsilon) \ \text{s.t.} \ \forall \ n > m > N, \ |S_n - S_m| = \left| \sum_{k=m+1}^n u_k \right| < \varepsilon$$
 (4.1)

$$\forall \varepsilon > 0, \ \exists \ N = N(\varepsilon) \ \text{ s.t. } \forall \ n > N, \ p \in N^*, \ |S_{n+p} - S_n| = \left| \sum_{k=n+1}^{n+p} u_k \right| < \varepsilon \tag{4.2}$$

绝对收敛:

复数级数 $S = \sum_{n=1}^{\infty} u_n$ 称为绝对收敛的如果级数 $\sum_{n=1}^{\infty} |u_n|$ 收敛。绝对收敛 \Longrightarrow 收敛,反之不然。绝对收敛的级数具有下列性质:

- (1) 结合律: 可以任意加括号(只要收敛即可),组成新的求和项
- (2) 交换律: 可以任意改换求和次序
- (3) 子级数收敛: 把绝对收敛级数拆成多个子级数, 每个子级数仍然收敛
- (4) 积收敛:两个绝对收敛级数之积(是一个二重级数)仍然绝对收敛

4.1.2 实变级数的判别法

复变级数的收敛性等价于实虚部对应两个实变级数的收敛性,考察一个复变函数的(绝对)收敛性时,常常会转化为实变级数的收敛性,因此重新温习实变级数判别法是十分必要的。本小节中所有数列均为实变数列。

实变数列可以分为正项级数和交错级数(一般级数)。正项级数有三种最常见的判别方法:比较判别法、比式判别法 (d'Alembert 判别法) 和根式判别法 (Cauchy 根值判别法)。

Theorem. 23 (正项级数的比较判别法):

比较判别法有常规形式、极限形式和上下极限形式,这里只介绍极限形式。后续的几种判别法也只给 出极限形式。

设正项数列 v_n 和 u_n 满足 $\lim_{n\to\infty}\frac{u_n}{v_n}=\rho\in\overline{R}$ 。若 $\rho\in(0,+\infty)$,则 $\sum u_n$ 与 $\sum v_n$ 同敛散;若 $\rho=0$ 且 $\sum v_n$ 收敛,则 $\sum u_n$ 收敛;若 $\rho=+\infty$ 且 $\sum v_n$ 发散,则 $\sum u_n$ 发散。

Theorem. 24 (正项级数的 d'Alembert 比式判别法): 设正项级数 $\sum u_n$ 满足 $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \rho$ 。若 $\rho \in [0, 1)$ 则 $\sum u_n$ 收敛;若 $\rho > 1$ 则 $\sum u_n$ 发散; $\rho = 1$ 时无法判断。

Theorem. 25 (正项级数的 Cauchy 根式判别法^①): 设正项级数 u_n 满足 $\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$ 。若 $\rho \in [0, 1)$ 则 $\sum u_n$ 收敛;若 $\rho > 1$ 则 $\sum u_n$ 发散; $\rho = 1$ 时无法判断。

交错级数有三种常见的判别方法: Leibniz 判别法、Abel 判别法和 Dirichlet 判别法,其中 Abel 判别法最常用(尽管 Dirichlet 的适用范围比它广)。

Theorem. 26 (交错级数的 Leibniz 判别法):

设正项数列 a_n 构成交错级数 $\sum (-1)^{n-1}a_n$,若 a_n 严格单调递减且 $\lim_{n\to\infty}a_n=0$,则:

级数
$$S = \sum_{n=1}^{\infty} (-1)^{n-1} a_n \in [0, a_1] \subset \mathbb{R}$$
 收敛,且 $0 \leqslant (-1)^n (S - S_n) \leqslant a_{n+1}, \ \forall \ n \in \mathbb{N}^*$ (4.3)

后面的不等式给出了 $S = S_n$ 之间的误差估计。

Theorem. 27 (一般级数的 Abel 判别法):

设有界数列 $\{v_n\}$ 从某项开始单调,且 $\sum u_n$ 收敛,则级数 $\sum u_n v_n$ 收敛。用公式表示为:

$$\begin{cases}
\sup_{n} |v_{n}| < \infty, \ v_{n} \neq i, \\
\lim_{n \to \infty} \sum_{k=1}^{\infty} u_{k} = S_{u} \in \mathbb{R}
\end{cases} \implies \lim_{n \to \infty} \sum_{k=1}^{n} u_{k} v_{k} \in \mathbb{R}$$
(4.4)

Theorem. 28 (一般级数的 Dirichlet 判别法):

设极限为 0 的数列 $\{v_n\}$ 从某项开始单调,且 $\sum u_n$ 有界,则级数 $\sum u_n v_n$ 收敛。用公式表示为:

$$\begin{cases}
\lim_{n \to \infty} v_n = 0, \ v_n \neq i, \\
\sup_{n} \left| \sum_{k=1}^n u_k \right| < \infty
\end{cases} \implies \lim_{n \to \infty} \sum_{k=1}^n u_k v_k \in \mathbb{R}$$
(4.5)

另外,还有一些其他的定理,如下:

Theorem. 29 (正项级数的 Raabe 判别法): 设正项数列 $\{a_n\}$ 满足 $\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right)=r\in\mathbb{R}$ 。 若 r>1,则级数 $\sum a_n$ 收敛;若 r<1,则级数 $\sum a_n$ 发散。

Theorem. 30 (正项级数的 Bertrand 判别法): 设正项数列 $\{a_n\}$ 满足 $\lim_{n\to\infty} \ln n \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] = r \in \mathbb{R}$ 。 若 r > 1,则级数 $\sum a_n$ 收敛;若 r < 1,则级数 $\sum a_n$ 发散。

Theorem. 31 (正项级数的 Gauss 判别法): 设正项数列 $\{a_n\}$ 满足 $\frac{a_n}{a_{n+1}} = 1 + \frac{\mu}{n} + O(\frac{1}{n^p})$, 其中 p > 1。若 $\mu > 1$,则级数 $\sum a_n$ 收敛;若 $\mu < 1$,则级数 $\sum a_n$ 收敛;若 $\mu < 1$,则级数 $\sum a_n$ 发散。

Theorem. 32 (特殊级数的 Kronecker 定理):

设极限为0的正项数列 v_n 从某项开始严格单调递增,且 $\sum u_n$ 收敛,则极限 $\lim_{n o\infty}rac{1}{v_n}\sum_{k=1}^nu_kv_k$ 收

 $^{^{\}circ}$ 相比于比式判别法,根式判别法的适用范围更广。这是因为 $\lim rac{c_{n+1}}{c_n} = A \Longrightarrow \lim \sqrt[n]{c_n} = A$,因此,比式可以使用的场合,根式一定可以使用。

敛。用公式表示为:

$$\begin{cases} v_n > 0, \ v_n \uparrow, \ \lim_{n \to \infty} v_n = 0 \\ \sup_{n} \left| \sum_{k=1}^n u_k \right| < \infty \end{cases} \implies \lim_{n \to \infty} \frac{1}{v_n} \sum_{k=1}^n u_k v_k \in \mathbb{R}$$
 (4.6)

Theorem. 33 (实变级数与反常积分的收敛关系):

若非负函数 f(x) 在 $[1,+\infty)$ 上单调 (递减),则:

级数
$$\sum_{n=1}^{\infty} f(n)$$
 与反常积分 $\int_{1}^{+\infty} f(x) dx$ 同敛散 (4.7)

4.1.3 复变级数的判别法

判断复数级数是否绝对收敛,由于取模后皆为正实数,因此与正项级数的收敛判别完全等价,常见的方法有比较判别法、比式判别法、根式判别法和 Gauss 判别法。只用于判断绝对收敛性的判别法等价于实变级数判别法,我们不再重复叙述,这里只给出其它几种判别法。

Theorem. 34 (复变级数的 Gauss 判别法): 假设存在 $\zeta \in \mathbb{C}$, p > 1 使得序列 u_n 满足:

$$\frac{u_n}{u_{n+1}} = 1 + \frac{\zeta}{n} + O\left(\frac{1}{n^p}\right), \quad \zeta \in \mathbb{C}, \ p > 1$$

$$\tag{4.8}$$

若 $\operatorname{Re} \zeta > 1$, 则 $\sum |u_n|$ 收敛;若 $\operatorname{Re} \zeta \leqslant 1$,则 $\sum |u_n|$ 发散。

Theorem. 35 (复变级数的 Dirichlet 判别法): 设级数 $\sum c_n$ 有界, $\sum (z_{n+1}-z_n)$ 绝对收敛且 $\lim z_n=0$, 则级数 $\sum c_n z_n$ 收敛。

Theorem. 36 (复变级数的 Weierstrass 判别法²):

假设存在 $\zeta \in \mathbb{C}, p > 1$ 使得序列 u_n 满足:

$$\frac{z_n}{z_{n+1}} = 1 + \frac{\zeta}{n} + O\left(\frac{1}{n^p}\right), \quad \zeta \in \mathbb{C}, \ p > 1$$

$$\tag{4.9}$$

设 $\zeta = \alpha + i\beta$, 则:

- (1) 若 $\alpha > 1$, 则 $\sum z_n$ 收敛;
- (2) 若 $\alpha = 1$ 且 $\beta = \neq 0$, 则 $\sum z_n$ 振荡 (发散的一种)。
- (3) 若 $\alpha \in (0,1)$, 则 $\sum z_n$ 发散。
- (4) 若 $\alpha \leq 0$ 则 z_n 不趋于 0, 于是 $\sum z_n$ 必发散。

4.1.4 复变函数项级数

收敛与一致收敛:

复变函数项级数的(逐点)收敛、发散与实变函数项级数完全一致,这里不提。

一致收敛定义为: 若存在函数 S(z) 使得复变函数项 $S_n(z)$ 满足 $\forall \varepsilon > 0$, $\exists N = N(\varepsilon)$ s.t. $\forall n > N$, $z \in G$, $|S_n(z) - S(z)| < \varepsilon$, 则称其在 G 上一致收敛于 S(z), 记作 $S_n(z) \Rightarrow S(z)$ 。

²Theorem.34 (Gauss 判别法) 是 Theorem.36 (Weierstrass 判别法) 的特殊情形。

在 G 上逐点收敛与在 G 上一致收敛的区别如下:

逐点收敛:
$$\forall z \in G$$
, $\lim_{n \to \infty} |S(z) - S_n(z)| = 0$ (4.10)

一致收敛:
$$\lim_{n \to \infty} \sup_{z \in G} |S(z) - S_n(z)| = 0$$
 (4.11)

一致收敛的性质:

- 一致收敛函数列具有很好的性质(只需内闭一致收敛即可):
- (1) 极限换序定理:设 $f_n(z)$ 在 z_0 的空心邻域 $U_\delta^\circ(z_0)$ 上内闭一致收敛,则有:

$$\lim_{n \to \infty} \lim_{z \to z_0} f_n(z) = \lim_{z \to z_0} \lim_{n \to \infty} f_n(z) \tag{4.12}$$

(2) 极限微分换序 $I: \mathcal{Q} \forall n \in \mathbb{N}^*, f_n(z)$ 是单值解析函数,且 f_n 在 G 上一致收敛,则:

$$\lim_{n \to \infty} \left(\frac{\mathrm{d}}{\mathrm{d}z} f_n(z) \right) = \frac{\mathrm{d}}{\mathrm{d}z} \left(\lim_{n \to \infty} f_n(z) \right) \tag{4.13}$$

(3) 极限微分换序 II: 设函数列 $\{f_n(z)\}$ 在 G 上单值解析,且 f'_n 在 G 上内闭一致收敛,则 $f_n(z)$ 在 G 上内闭一致收敛,且:

$$\lim_{n \to \infty} \left(\frac{\mathrm{d}}{\mathrm{d}z} f_n(z) \right) = \frac{\mathrm{d}}{\mathrm{d}z} \left(\lim_{n \to \infty} f_n(z) \right) \tag{4.14}$$

(4) 极限积分换序:

若函数列 $\{f_n\}$ 在 G 上内闭一致收敛,则:

$$\lim_{n \to \infty} \int_{L} f_n(z) dz = \int_{L} \lim_{n \to \infty} f_n(z) dz$$
 (4.15)

将极限换序定理运用到级数上,即得到逐项求极限;将极限微分换序 I、II 运用到级数上,即得到逐项 微分;将极限积分换序运用到级数上,即得到逐项积分。

§ 4.2 二重级数

二重级数,指的是排列成下面形式的方阵:

$$a_{11} + a_{12} + a_{13} + a_{14} + \dots + a_{1n} + \dots + a_{21} + a_{22} + a_{23} + a_{24} + \dots + a_{2n} + \dots + \dots + a_{m1} + a_{m2} + a_{m3} + a_{m4} + \dots + a_{mn} + \dots + \dots$$

$$(4.16)$$

方阵的右端和下端都是无限的,记 S_{mn} 为 $m \times n$ 方阵的和,称为部分和序列,并定义二重级数收敛的条件:

$$S_{mn} = \sum_{\substack{1 \le k \le m \\ 1 \le l \le n}} a_{kl}, \quad S = \lim_{\substack{n \to \infty \\ m \to \infty}} S_{mn}$$

$$\tag{4.17}$$

上式中并没有规定求和顺序,常见的求和顺序有次对角线求和、累次求和(先行后列或先列后行)。需要注意,即使二重级数收敛,某些行或列的和也不一定存在,因此累次求和的结果也不一定存在。二重积分的和是否依赖于求和方式,原则上与级数是否绝对收敛有关,若绝对收敛,则所有求和方式结果相同。

§4.3 幂级数

幂级数是指通项为幂函数的函数项级数,即:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - a)^n$$
 (4.18)

Theorem. 37 (Abel 第一定理):

若级数 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 在点 z_0 收敛,则其在圆 $|z-a|<|z_0-a|$ 内绝对收敛且内闭一致收敛³。圆内区域称为幂级数的收敛圆,收敛圆的半径称为收敛半径。

推论: 若级数 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 在点 z_0 发散,则在圆外(即 $|z-a| > |z_0-a|$)处处发散。

求幂级数的收敛半径有两个常用方法:

$$\frac{1}{R} = \overline{\lim}_{n \to \infty} |c_n|^{\frac{1}{n}}, \quad \frac{1}{R} = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| \tag{4.19}$$

前者称为 Cauchy-Hadamard 公式,是普遍成立的,后者称为 d'Alembert 公式,在极限存在时成立,但通常计算更简单。

Theorem. 38 (Abel 第二定理):

设幂级数 $\sum_{n=0}^{\infty} c_n(z-a)^n$ 在收敛圆内收敛到 f(z),且在收敛圆周上某点 z_0 也收敛,和为 $S(z_0)$ 则当由收敛圆内趋于 z_0 时,只要保持在以 z_0 为顶点、张角为 $2\phi < \pi$ 的范围内(见图 4.1),f(z) 就一定趋于 $S(z_0)$,也即:

$$\lim_{\substack{z \to z_0 \\ 2\phi < \pi}} f(z) = S(z_0) \tag{4.20}$$

§4.4 含参量反常积分的解析性

Theorem. 39 (含参量反常积分的解析性):

设含参函数 f = f(t,z) 满足:

- (1) f(t,z) 分别对 $t \in [a,\infty) \subset \mathbb{R}$ 和 $z \in \overline{G} \subset \mathbb{C}$ 连续⁴
- (2) $\forall t \in [a, \infty)$, f(t, z) 在 \overline{G} 上单值解析

$$F'(z) = \int_{a}^{+\infty} \frac{\partial f(t, z)}{\partial z} dt$$
 (4.21)

§4.5 发散级数与渐近级数(略)

③在圆上的收敛性未知,需要依据级数来具体判断。

[®]这与在 $[a, \infty) \times \overline{G}$ 上连续不同。

第5章 解析函数的局域性展开

§5.1 解析函数的 Talor 展开

Theorem. 40 (Talor Expansion):

设 $G = \{z \mid |z - z_0| < r\}$ 是以 z_0 为圆心的圆盘开域, 若f在 \overline{G} 上解析, 则f可在 $z_0 \in G$ 点展开为:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad \forall z \in G$$
(5.1)

$$a_n = a_n(z) = \frac{1}{2\pi i} \oint_{\partial G} \frac{f(\zeta)}{\zeta - z} \, d\zeta = \frac{f^{(n)}(z_0)}{n!}$$
 (5.2)

一个解析函数在给定点有唯一的 Talor 展开式,即展开系数是唯一确定的。

由于公式的形式与实变函数中完全相同,因此可以将实变函数的结果直接搬用到复变函数中。求函数的 Talor 级数时,除了直接搬用,还可以利用级数乘法和待定系数法^①。

§5.2 解析函数的零点

设 f(z) 在 z_0 的邻域内解析,且不恒为 0,若 $f(z_0) = 0$,则称 $z = z_0$ 为 f 的零点。由于 f 的解析性,考虑 Talor 展开 $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$,则 $f(z_0) = a_0 = 0$,因此 z_0 为 f 的零点等价于 $a_0 = 0$ 。由此引出 m 阶零点的定义: $z = z_0$ 称为 f 的 m 阶零点如果

$$f^{(0)}(z_0) = f^{(1)}(z_0) = \dots = f^{(m-1)}(z_0) = 0, \quad f^{(m)}(z_0) \neq 0$$
 (5.3)

$$\iff a_0 = a_1 = \dots = a_{m-1} = 0, \quad a_m \neq 0 \tag{5.4}$$

Theorem. 41 (解析函数的零点孤立性):

下面是零点孤立性的几条推论:

- (1) 设 f(z) 在 $G = \{z \mid |z-a| < r\}$ 内解析。若在 G 内存在 f(z) 的无穷多个互不相等的零点 $\{z_n\}$,且 $\lim_{n\to\infty} z_n = a$ 但 $z_n \neq a$,则在 G 内 $f(z) \equiv 0$ 。
- (2) 设 f(z) 在 $G = \{z \mid |z-a| < r\}$ 内解析。若在 G 内存在过 a 点的一段弧或含有 a 的一个子区域 g,在其上 $f(z) \equiv 0$,则在 G 内 $f(z) \equiv 0$ 。
- (3) 设 f(z) 在区域 G 内解析。若在 G 内存在过 a 点的一段弧或含有 a 的一个子区域 g, 在其上 $f(z) \equiv 0$,则在 G 内 $f(z) \equiv 0$ 。
- (4) 设 f_1 和 f_2 在 G 内解析,且在 G 内的一段弧或一个子区域上相等,则在 G 内 $f_1(z) \equiv f_2(z)$ 。

上面的推论(1)也可改写为解析函数的唯一性定理:

Theorem. 42 (解析函数的唯一性定理):

设 f_1 和 f_2 是区域 G 上的两个解析函数,且在 G 内存在序列 $\{z_n\}$ 使得 $f_1(z_n)=f_2(z_n), \forall n$ 。若 $\lim_{n\to\infty}z_n=a\in G$,则在 G 内有 $f_1(z)\equiv f_2(z)$ 。

[®]详见参考文献 [1] Page 66

§5.3 解析函数的 Laurent 展开

Theorem. 43 (Laurent Expansion):

若 f 在以 z_0 为圆心的环形区域 $G: R_1 \leq |z-z_0| \leq R_2$ 中单值解析,则 f 可在环域内(不包含边界)展开为:

$$f(z) = \sum_{n=-m}^{+\infty} a_n (z - z_0)^n, \quad \forall R_1 \le |z - z_0| \le R_2$$
 (5.5)

$$a_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - b)^{n+1}} \,\mathrm{d}\zeta, \quad n \in [-m, +\infty)$$
 (5.6)

其中m可以是0、正整数或正无穷,C是圆环内绕点 z_0 一周的任意一条闭合曲线。Laurent Expansion中的正幂项在大圆以内收敛,称为正则部分;负幂项在小圆以外收敛,称为主要部分, a_n 称为Laurent 系数。Laurent 级数在环形区域内绝对且内闭一致收敛。

需要注意,对于 Laurent Expansion,幂级数的系数(即使是正则部分的系数) $a_n \neq \frac{f^{(n)}(z_0)}{n!}$ 。与 Talor Expansion 类似,Laurent Expansion 也具有唯一性。

§5.4 单值函数的孤立奇点

设单值函数 f(z) 在 z_0 点不解析,则称 z_0 为 f 的奇点。如果 f 在 z_0 的任意空心邻域 $U_\delta^\circ(b)$: $0 < |z-z_0| < r$ 上解析,则称 z_0 为孤立奇点,否则称为非孤立奇点。

孤立奇点意味着 f 可在环域 $G: 0 < |z-z_0| < R$ 内展开为 Laurent 级数。孤立奇点又分为三种^②:可去奇点、极点和本性奇点。下面是一些等价的条件:

- (1) 可去奇点: 若 f 在 z_0 的邻域内有界且不恒为零,则称 z_0 为可去奇点。这等价于 Laurent Expansion 中没有负幂项,即 m=0。
- (2) 极点: 若 f 在 z_0 的邻域内无界,则称 z_0 为极点。这等价于 Laurent Expansion 中含有限个负幂项,即 $m \in \mathbb{N}^* = \{1, 2, 3, ...\}$,称 z_0 为 m 阶极点。
- (3) 本性奇点: 若 f 在 z_0 的邻域内无界,则称 z_0 为本性奇点。本性奇点的 Laurent 展开中有无限项。

特别地,考虑无穷远点 ∞ 是否为函数 f(z) 的奇点(或者是什么奇点),等价于考虑 $g(z)=f(\frac{1}{z})$ 在 z=0 处的奇点性质。例如 $z=\infty$ 是 e^z , $\sin z$, $\cos z$ 的本性奇点。

§ 5.5 解析延拓

设函数 $f_1(z)$ 和 $f_2(z)$ 分别在 G_1 和 G_2 上解析,且 $G_1 \cap G_2 \neq \emptyset$ 。若在 $G_1 \cap G_2$ 上 $f_1(z) \equiv f_2(z)$,则称 $f_1(z)$ 是 $f_2(z)$ 在 G_1 上的解析延拓,反之称 $f_2(z)$ 是 $f_1(z)$ 在 G_2 上的解析延拓。

解析延拓的目的是为了使得函数在更大的区域内解析,从而更好地研究函数的性质。

[©]在本书,我们也称可去奇点为"0阶极点",称本性奇点为"无穷阶极点"。

§5.6 Bernoulli 数和 Euler 数(略)

第6章 留数定理

§ 6.1 留数定理及其求法

6.1.1 留数定理

Theorem. 44 (留数定理):

设游街区域 G 的边界 ∂G 为分段光滑的简单闭合曲线。若除有限个孤立奇点 $\{b_1,b_2,...,b_n\}\subset G$ 外,函数 f 在 \overline{G} 上单值解析,则:

$$\oint_{\partial G} f(z) \, \mathrm{d}z = 2\pi i \sum_{k=1}^{n} \operatorname{res} f(b_k) \tag{6.1}$$

其中 res $f(b_k)$ 称为 f 在 b_k 处的留数,也常记作 Res $[f(z),b_k]$,本书采用后一种记法(后者方便表示变换)。它等价于 f(z) 在 b_k 点的 Laurent Expansion 中的系数 a_{-1} (即原形式),也等价于 $(z-b)^m f(z)$ 的 Talor Expansion 中的系数 a_{m-1} :

Res
$$[f(z), b_k] = a_{-1} = \frac{1}{(m-1)!} \cdot [(z-b)^m f(z)]_{z=b}^{(m)}$$
 (6.2)

特别地, 当奇点为一阶极点时 (m=1), 无需求导:

Res
$$[f(z), b_k] = \lim_{z \to b} [(z - b)f(z)]$$
 (6.3)

常见的情况列在下表1:

表 6.1: 常见的留数计算方法

函数	给定条件	极点阶数	留数 Res $[f(z), z_0]$
f(z)	$\lim_{z \to z_0} (z - z_0) f(z) = 0$	0 (或 1, 待定)	0
f(z)	$\lim_{z \to z_0} (z - z_0) f(z) \neq 0$	1	$\lim_{z \to z} (z - z_0) f(z)$
f(z)	$\lim_{z \to z_0} (z - z_0)^{k-1} f(z) = \infty$ $\lim_{z \to z_0} (z - z_0)^k f(z) \neq 0$	k	$\frac{1}{(k-1)!} \cdot \left\{ \frac{\mathrm{d}^{k-1}}{\mathrm{d}z^{k-1}} \left[(z-b)^k f(z) \right] \right\}_{z=b}$
$\frac{f(z)}{g(z)}$	$f(z_0) \neq 0$ $g(z_0) = 0, \ g'(z_0) = 0$	1 (特殊)	$\lim_{z \to z} \left[(z - z_0) \frac{f(z)}{g(z)} \right] = \frac{f(z_0)}{g'(z_0)}$
$\frac{f(z)}{g(z)}$	z_0 是 $f(z)$, $g(z)$ 的同阶零点	0	0
$\frac{f(z)}{g(z)}$	z_0 是 $f(z)$ 的 m 阶零点 是 $g(z)$ 的 $m+n$ 阶零点	n	$\frac{1}{(k-1)!} \cdot \left\{ \frac{\mathrm{d}^{k-1}}{\mathrm{d}z^{k-1}} \left[(z-b)^k \frac{f(z)}{g(z)} \right] \right\}_{z=b}$

另外,留数还可用于讨论有理函数的部分分式展开,例如函数 $f(z) = \frac{1}{(z-1)(z-2)(z-3)} = \frac{A}{z-1} + \frac{B}{z-2} + \frac{C}{z-3}$ 的常数 A,B,C 正好就是 f(z) 在一阶极点 z=1,2,3 处的留数,即:

$$A = \text{Res } [f(z), 1] = \frac{1}{2}, \quad B = \text{Res } [f(z), 2] = -1, \quad C = \text{Res } [f(z), 3] = \frac{1}{2} \tag{6.4}$$

^①详见参考文献 [1] Page 86

6.1.2 求有界点的留数

设 z_0 是n阶极点,常用的两种:

Res
$$[f(z), z_0] = c_{-1}$$
 (Laurent 中 $\frac{1}{z}$ 项的系数,与极点阶数无关)
$$= [(z - z_0)^n f(z)]_{z=z_0}^{(n)}$$
 (常规法, 最常用)

6.1.3 求无穷点的留数

求无穷原点 ∞ 处的留数有多种方法,常用的有以下几种:

$$\operatorname{Res} \left[f(z), \infty \right] = \frac{1}{2\pi i} \oint_{C(\infty)} f(z) \, \mathrm{d}z \qquad (定义)$$

$$= -\frac{1}{2\pi i} \lim_{R \to \infty} \oint_{C_R} f(z) \, \mathrm{d}z \quad (直接法)$$

$$= -\sum_{i=1}^n \operatorname{Res} \left[f(z), z_i \right] \qquad (间接法)$$

$$= -K \qquad (大圆弧, 需要 $zf(z) \to K$)$$

$$= -\operatorname{Res} \left[\frac{1}{z^2} f(\frac{1}{z}), 0 \right] \qquad (换元)$$

其中,最常用的是大圆弧和计算换元后的留数 – Res $\left[\frac{1}{z^2}f\left(\frac{1}{z}\right),0\right]$ 。

§6.2 数物期中复习

"数物期中典题复习 (2024 秋)"详见网址 https://www.123865.com/s/0y0pTd-4lKj3,介绍了第三章至第六章中的一些可能有困难的题目,更基本的题目翻阅参考文献 [2] 上的例题即可。

§ 6.3 留数定理的应用

6.3.1 有理三角函数积分

关键在于做换元 $z = e^{i\theta}$, 此时有:

$$\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right) = \frac{1}{2i} \left(z - \frac{1}{z} \right) = \frac{z^2 - 1}{2iz} \tag{6.7}$$

$$\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right) = \frac{1}{2} \left(z + \frac{1}{z} \right) = \frac{z^2 + 1}{2z}$$
 (6.8)

$$dz = ie^{i\theta} d\theta = iz d\theta \Longrightarrow d\theta = \frac{1}{iz} dz$$
(6.9)

然后按照正常的复变函数积分计算即可。

特别地,记 $R(\sin\theta,\cos\theta)$ 是有理三角函数,我们有定理:

Theorem. 45 (有理三角函数积分):

设 $R(\sin\theta,\cos\theta)$ 是有理三角函数,对 $R(\sin\theta,\cos\theta)$ 作变换 $z=e^{i\theta}$,得到函数 f(z)。若 $R(\sin\theta,\cos\theta)$ 在 $\theta\in[0,2\pi]$ 中存在瑕点(奇点),在单位圆 |z|=1 上有奇点。记单位圆内部的孤立奇点为 a_k (k=1,2,...,n),

圆边界上的奇点为 b_k (k = 1, 2, ..., m), 则有:

$$\int_0^{2\pi} R(\sin \theta, \, \cos \theta) \, d\theta = \frac{2\pi}{z} \cdot \sum_{|z| < 1} \operatorname{Res} \left[\frac{f(z)}{z}, \, a_k \right] + \frac{\pi}{z} \cdot \sum_{|z| = 1} \operatorname{Res} \left[\frac{f(z)}{z}, \, b_k \right]$$
(6.10)

式中的 π 是用小圆弧定理绕过奇点时产生的,我们在后面会再次见到这样的处理方法。特别地,当原积分范围没有瑕点时,圆边界上也没有奇点,此时有:

$$\int_0^{2\pi} R(\sin \theta, \cos \theta) \, d\theta = \frac{2\pi}{z} \cdot \sum_{|z| < 1} \text{Res} \left[\frac{f(z)}{z}, \, a_k \right]$$
 (6.11)

6.3.2 无穷积分

求无穷积分时,可综合考奇偶性质、作圆弧轨道、大圆弧定理、留数定理等方法,常常会将多种方法结合使用。

6.3.3 含三角函数的无穷积分

对于含三角函数的无穷积分:

$$I = \int_{-\infty}^{+\infty} f(x) \cos px \, dx \quad \vec{\mathbf{g}} \quad I = \int_{-\infty}^{+\infty} f(x) \sin px \, dx \tag{6.12}$$

仍可延续上一节的思路,但是取被积函数为 $f(z)e^{ipz}$ 。作为一个例子,取积分围道是半圆并上实轴直径,此时有:

$$\oint_C f(z)e^{ipz} dz = \int_{-R}^R f(x)e^{ipx} dx + \int_L^R f(z)e^{ipz} dz$$
(6.13)

只要能求出 $\int_{L}^{R} f(z)e^{ipz} dz$ 和总积分值,就比较实虚部得到所需答案。

Theorem. 46 (Jordan 引理):

设在 $\arg z \in [0,\pi]$ 范围内, f(z) 在 $z \to \infty$ 时一致趋于 0 , 则:

$$\lim_{R \to \infty} \int_{L_R} f(z)e^{ipz} dz = 0, \quad \forall p > 0$$

$$\tag{6.14}$$

其中 $L_R = \left\{z \in \mathbb{C} \mid |z| = R, \ y > 0 \right\}$ 是以原点为圆心,R 为半径的上半圆弧(不包括实轴,不闭合)。

Theorem. 47 (Jordan 引理的增强):

设 θ_1 , θ_2 , $\in [0, 2\pi]$ 且 $\theta_1 < \theta_2$, 若在 $\arg z \in [\theta_1, \theta_2]$ 范围内, f(z) 在 $z \to \infty$ 时一致趋于 0 , 则:

$$\lim_{R \to \infty} \int_{L_R} f(z)e^{ipz} \, \mathrm{d}z = 0, \quad \forall \, p > 0$$

$$\tag{6.15}$$

其中 $L_R = \left\{z \in \mathbb{C} \;\middle|\; |z| = R, \; \arg z \in [\theta_1, \theta_2] \right\}$ 是以原点为圆心,R 为半径的圆弧,所张角度大小为 $(\theta_2 - \theta_1)$ 。

6.3.4 积分路径上有奇点的情况

设定合适的积分围道,然后绕过即可,具体还是要在例题中体会。

6.3.5 涉及多值函数的复变积分

根据多值函数的性质,选择割线与单值分支,然后选择不跨过割线的、合适的积分围道。之后与前面相同,便是结合留数定理、大小圆弧定理、Jordan 引理等方法来求解积分。

特别地,计算 $\int_0^\infty f(x)\ln x$ 型积分时,应考虑函数 $f(z)\ln^2 z$ 的闭合积分,否则得不到所需答案,只能得到 $\int_0^\infty f(x)$ 的积分结果。

6.3.6 特殊积分围道(略)

6.3.7 计算无穷级数的和(略)

(7.5)

第7章 积分变换

§7.1 傅里叶变换

7.1.1 定义及性质

Theorem. 48 (Fourier Transformation):

Fourier Transformation 把定义在时间域的函数 f(t) 变换到频域,定义为:设 f(t) 是 $(-\infty, +\infty)$ 上的函数,如果在任意区间上其仅有有限个极值和有限个第一类间断点,且积分 $\int_{\infty}^{+\infty} f(t) dt$ 绝对收敛,则 f(t) 的傅里叶变换存在,定义为:

$$F = F(\omega) = \mathscr{F}\{f(t), \omega\} = \int_{-\infty}^{+\infty} e^{-i\omega t} f(t) \, \mathrm{d}t, \quad \forall \, \omega \in \mathbb{R}$$
 (7.1)

而逆变换(反演)是:

$$f(t) = \mathscr{F}^{-1}\left\{F(\omega), t\right\} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i\omega t} F(\omega) \, d\omega, \quad \forall \, t \in \mathbb{R}$$
 (7.2)

一个常见的例子是, f = f(t) 表示随时间变化的信号, $F = F(\omega)$ 是信号的频谱。

另外,有的教材中也将傅里叶变换定义为:

$$F = F(\omega) = \mathscr{F}\{f(t), \omega\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t)e^{-i\omega t} \, \mathrm{d}t, \quad \forall \, \omega \in \mathbb{R}$$
 (7.3)

$$f(t) = \mathscr{F}^{-1}\left\{F(\omega), t\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} F(\omega) e^{i\omega t} \, d\omega, \quad \forall \, t \in \mathbb{R}$$
 (7.4)

在本书,我们采用 Theorem.48 中的定义。式中的 $F=F(\omega)$ 也常记作 $\tilde{f}=\tilde{f}(\omega)$ 。

傅里叶变换具有一些不错的性质,如下:

线性定理:
$$\begin{cases} \mathscr{F}\left\{a_{1}f_{1}+a_{2}f_{2}\right\}=a_{1}\mathscr{F}\left\{f_{1}\right\}+a_{2}\mathscr{F}\left\{f_{2}\right\}\\ \mathscr{F}^{-1}\left\{a_{1}f_{1}+a_{2}f_{2}\right\}=a_{1}\mathscr{F}^{-1}\left\{f_{1}\right\}+a_{2}\mathscr{F}^{-1}\left\{f_{2}\right\} \end{cases}$$
延迟定理:
$$\mathscr{F}\left\{f(t)\right\}=\mathscr{F}\left\{e^{i\omega t_{0}}f(t-t_{0})\right\}$$
位移定理:
$$\mathscr{F}\left\{f(\omega)\right\}=\mathscr{F}\left\{e^{-i\omega t}f,\omega-\omega_{0}\right\}$$
相似定理:
$$\mathscr{F}\left\{f(at),\omega\right\}=\mathscr{F}\left\{\frac{f(t)}{|a|},\frac{\omega}{a}\right\}$$
微分定理:
$$\mathscr{F}\left\{f(t),\omega\right\}=\mathscr{F}\left\{\frac{1}{i\omega}f'(t),\omega\right\} \quad \text{(需要 } \lim_{|x|\to\infty}f'(t)=0\text{)}, \quad \mathscr{F}\left\{f(t),\omega\right\}=\mathscr{F}\left\{\frac{1}{(i\omega)^{n}}f^{(n)}(t),\omega\right\}$$
积分定理:
$$\mathscr{F}\left\{f(t),\omega\right\}=\mathscr{F}\left\{i\omega\int_{-\infty}^{t}f(\tau)\,\mathrm{d}\tau,\omega\right\}$$
卷积定理:
$$\begin{cases} \mathscr{F}\left\{f_{1}*f_{2}\right\}=\mathscr{F}\left\{f_{1}\right\}*\mathscr{F}\left\{f_{2}\right\} \\ \mathscr{F}\left\{f_{1}*f_{2}\right\}=\frac{1}{2\pi}\mathscr{F}\left\{f_{1}\right\}*\mathscr{F}\left\{f_{2}\right\} \end{cases}$$
乘积定理:
$$\int_{-\infty}^{+\infty}f_{1}(t)f_{2}(t)\,\mathrm{d}t=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F_{1}^{*}(\omega)*F_{2}(\omega)\,\mathrm{d}\omega=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F_{1}(\omega)*F_{2}^{*}(\omega)\,\mathrm{d}\omega$$
帕塞瓦尔等式:
$$\begin{cases} \int_{-\infty}^{+\infty}|F(\omega)|^{2}\,\mathrm{d}\omega=2\pi\int_{-\infty}^{+\infty}|f(t)|^{2}\,\mathrm{d}t\\ \int_{-\infty}^{+\infty}F_{1}(t)F_{2}^{*}(t)\,\mathrm{d}t=\frac{1}{2\pi}\int_{-\infty}^{+\infty}f_{1}(\omega)f_{2}^{*}(\omega)\,\mathrm{d}\omega \end{cases}$$

其中, 卷积运算*定义为:

$$f_1 * f_2 = \int_{-\infty}^{+\infty} f_1(\tau) f_2(t - \tau) \, d\tau \tag{7.6}$$

7.1.2 常见的傅里叶变换

常见函数的傅里叶变换如下:

$$f(t) \longrightarrow F(\omega) = \mathscr{F} \{ f(t), \omega \}$$

$$1 \longrightarrow 2\pi \delta(\omega)$$

$$e^{i\omega_0 t} \longrightarrow 2\pi \delta(\omega - \omega_0)$$

$$\delta(t - t_0) \longrightarrow e^{-i\omega t_0}$$

$$(7.7)$$

傅里叶对函数性质的要求还是比较严格,比如 x, $\sin x$, $\cos x$ 和阶跃函数 $\eta(x)$,由于积分不绝对收敛,它们都不存在傅里叶变换(但存在广义傅里叶变换,例如 $\sin t$ 与 $\delta(\omega)$)。

§7.2 拉普拉斯变换

7.2.1 定义及性质

Theorem. 49 (Laplace Transformation):

Laplace Transform 是一种积分变换,它把定义在正实轴 $(0,+\infty)$ 上的函数 f(t) 变换到复平面上的函数 F(z),定义为:

$$L(z) = \mathcal{L}\left\{f(t), z\right\} = \int_0^{+\infty} e^{-zt} f(t) \, \mathrm{d}t, \quad \forall \, z \in \mathbb{C}$$
 (7.8)

$$f(t) = \mathcal{L}^{-1}\left\{L(z), t\right\} = \frac{1}{2\pi i} \int_{s-i\infty}^{s+i\infty} e^{zt} L(z) dz \tag{7.9}$$

上式的 e^{-zt} 称为 Laplace 变换的核,而 $s\in\mathbb{R}$ 在收敛区域内即可(不影响积分结果),f(t) 称为原函数而 L(z) 称为相函数。通常把拉氏变换及其逆变换简写为:

$$L(z) = \mathcal{L}\left\{f(t), z\right\}, \quad f(t) = \mathcal{L}^{-1}\left\{L(z), t\right\} \tag{7.10}$$

另外, 在本书中约定, 当 f(t) 在 t < 0 使应理解为 $f(t) \equiv 0$, 也即将 f(t) 看作 $\eta(t)f(t)$, 其中 $\eta(t)$ 是 Heaviside 单位阶跃函数, 在本书, 我们常将 $\eta(t-t_0)$ 记作 η_{t_0} 。相应地, $f(t-t_0)$ 则理解为 $\eta_{t_0}f(t-t_0)$ 。

对函数 $\eta_0 f(t)$ 积分,可以看出 Fourier 变换和 Laplace 变换的关系:

$$\mathscr{F}\left\{\eta_0 f(t), \omega\right\} = \int_{-\infty}^{+\infty} e^{-i\omega t} \,\eta_0 f(t) dt = \int_0^{+\infty} e^{-(i\omega)t} f(t) dt = \mathscr{L}\left\{f(t), i\omega\right\} \tag{7.11}$$

也就是说,对于一个 t<0 时为 0 的函数,Fourier 变换得到的结果 $F(\omega)=\mathscr{F}\left\{\eta_0f,\omega\right\}$ 其实是 Laplace 变换 $L(z)=\mathscr{L}\left\{\eta_0f,z\right\}$ 在虚轴上的值,即 $L(i\omega)=F(\omega)$ 。

我们指出,Laplace 变换得到的复变函数 L(z) 不一定在全平面收敛(存在)。一个例子是 $\mathcal{L}\left\{1,z\right\}=\int_0^{+\infty}e^{-zt}\,\mathrm{d}t=-\frac{1}{z}e^{-zt}\mid_0^{+\infty}=\frac{1}{p},\quad\forall\,\mathrm{Re}\,z>0$ 仅在右半平面收敛。下面是一个常用的充分条件:

Theorem. 50 (拉氏变换存在定理):

若函数 f(t) 满足下列条件:

(7.12)

- (1) $\forall t < 0, f(t) = 0$
- (2) $\forall t > 0$, f(t) 在任一有限区间上分段连续
- (3) t > 0 时,f(t) 的增长不超过指数函数,即存在 M > 0, $s_0 > 0$ 使得 $|f(t)| < Me^{s_0t}$, $\forall t > 0$ 则 f(t) 的拉氏变换在右半平面 $\text{Re } z > s_0 > 0$ 上存在且解析。

由于 Laplace 变换是 Fourier 变换的推广,后者的性质与前者非常类似,列举如下:

线性定理:
$$\begin{cases} \mathscr{L}\{a_1f_1 + a_2f_2\} = a_1\mathscr{L}\{f_1\} + a_2\mathscr{L}\{f_2\} \\ \mathscr{L}^{-1}\{a_1f_1 + a_2f_2\} = a_1\mathscr{L}^{-1}\{f_1\} + a_2\mathscr{L}^{-1}\{f_2\} \end{cases}$$
延迟定理:
$$\mathscr{L}\{f(t), z\} = \mathscr{L}\{e^{zt_0}f(t - t_0), z\}, \quad \mathscr{L}\{f(t + t_0), z\} = \mathscr{L}\{e^{zt_0}f(t), z\} \quad t_0 > 0$$
位移定理:
$$\mathscr{L}\{f(t), z\} = \mathscr{L}\{e^{\alpha t}f(t), z + \alpha\}, \quad \mathscr{L}\{e^{\alpha t}f(t), z\} = \mathscr{L}\{f(t), z - \alpha\}, \quad \text{Re}(z - \alpha) > s_0$$
相似定理:
$$\mathscr{L}\{f(at), z\} = \mathscr{L}\{f\} - f(0) \quad (\overline{\text{msg}} f'(t) \text{ 分段连续})$$

$$\mathscr{L}\{f'\} = z\mathscr{L}\{f\} - z^{n-1}f(0) - z^{n-2}f^{(1)}(0) - \cdots - z^0f^{(n-1)}(0)$$
积分定理:
$$\mathscr{L}\{f\} = \mathscr{L}\{z\}_0^t f(\tau) d\tau\}$$
卷积定理:
$$\begin{cases} \mathscr{L}\{f_1 * f_2\} = \mathscr{L}\{f_1\} * \mathscr{L}\{f_2\} \\ \mathscr{L}\{f_1 \cdot f_2\} = \frac{1}{2\pi}\mathscr{L}\{f_1\} * \mathscr{L}\{f_2\} \end{cases}$$

另外,Laplace 变换还有像函数的相关性质,简记 $L(z) = \mathcal{L}\{f(t), z\}$,则:

像函数微分定理:
$$L^{(n)}(z) = \mathcal{L}\{(-t)^n f(t), z\}$$
 像函数积分定理:
$$\int_z^{+\infty} L(\zeta) d\zeta = \mathcal{L}\left\{\frac{f(t)}{t}\right\}$$
 (7.13)

给定函数 f(t) 的 Laplace 变换 L(z), 作反演求 f(t), 除了用定义外, 还常用下面的展开定理:

Theorem. 51 (Laplace 展开定理):

若 L(z) 在 ∞ 处一致趋于零,且 L(z) 仅有有限个有界孤立奇点 $b_k, k=1,2,...,n$ (不包括无穷远点),则:

$$f(t) = \mathcal{L}^{-1} \{ L(z), t \} = \sum_{k=1}^{n} \text{Res } \left[e^{zt} L(z), b_k \right], \quad \forall t > 0$$
 (7.14)

7.2.2 常见的拉普拉斯变换

表 7.1: 常见的拉普拉斯变换

原函数 $f(t)$	像函数 $L(z)$	收敛区域
$e^{\alpha t}, \ \alpha \in \mathbb{R}$	$\frac{1}{z-\alpha}$	$\operatorname{Re} z > \operatorname{Re} \alpha$
$\sin(at), \ a \in \mathbb{R}$	$\frac{a}{z^2 + a^2}$	$\operatorname{Re} z > 0$
$\cos(at), \ a \in \mathbb{R}$	$\frac{z}{z^2 + a^2}$	$\operatorname{Re} z > 0$
$t^{\alpha}, \operatorname{Re} \alpha > -1$	$\frac{\Gamma(\alpha+1)}{z^{\alpha+1}}$	$\operatorname{Re} z > 0$
$t^n, n \in \mathbb{N}$	$\frac{\Gamma(n+1)}{z^{n+1}}$	$\operatorname{Re} z > 0$
1	$\frac{1}{z}$	$\operatorname{Re} z > 0$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{z}}$	$\operatorname{Re} z > 0$

第8章 常微分方程 (ODE) 基础

§8.1 分离变量法

一些 ODE 可以写成如下形式:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x)g(y) \tag{8.1}$$

称为可分离变量的微分方程,对上述方程进行求解,得到:

$$\frac{1}{g(y)}dy = f(x)dx \Longrightarrow \int \frac{1}{g(y)}dy = \int f(x)dx \tag{8.2}$$

44 特别地,有两类较特殊的方程也可以分离变量,其一是满足 $\frac{dy}{dx} = f(ax + by + c)$ 的方程,此时令 u = ax + by + c,可以得到:

$$\frac{1}{a+bf(u)}du = dx \Longrightarrow x = \int \frac{1}{a+bf(u)}du$$
 (8.3)

其二是"齐次"方程,即可写为 $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$ 的方程,令 $u = \frac{y}{x}$ 则 y = ux, $\frac{dy}{dx} = \frac{du}{dx} \cdot x + u$,可以得到:

$$\frac{1}{f(u) - u} du = \frac{1}{x} dx \Longrightarrow \ln|x| = \int \frac{1}{f(u) - u} du, \quad x = \pm \exp\left(\int \frac{1}{f(u) - u} du\right)$$
(8.4)

§ 8.2 一阶线性 ODE

我们一般说某某微分方程,指的是:

一阶线性常微分方程具有如下形式:

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x) \tag{8.7}$$

从齐次、非齐次到变系数,复杂程度逐渐增加。对于常系数的情况,通常考虑齐次解和特解构成全解;对于变系数的情况,先通过常系数得到常系数全解,然后用常数变易法代入求解变系数(是x的函数)。为了方便参考,我们给出上述方程的通解:

$$y = \exp\left(-\int p(x) \, \mathrm{d}x\right) \cdot \left[\int \left(q \, e^{\int p(x) \, \mathrm{d}x}\right) + C\right] = C \exp\left(-\int p(x) \, \mathrm{d}x\right) + e^{-\int p(x) \, \mathrm{d}x} \cdot \int p(x) \, \mathrm{d}x \quad (8.8)$$

上面的定积分中,积分常量已默认取0,仅留C一个待定常量。

§8.3 全微分方程

若微分方程 u(x,y) dx + v(x,y) dy = 0 的左端恰好为某个二元函数 f(x,y) 的全微分,那么方程便等价于 f(x,y) = C,称这样的方程为全微分方程(或恰当方程)。

Theorem. 52 (全微分方程等价条件):

设二元实变函数 u(x,y), v(x,y) 在单连通区域 D 内有连续一阶偏导,则一阶微分方程:

$$u(x,y) dx + v(x,y) dx = 0$$
 (8.9)

是全微分方程的充要条件是:

$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}, \quad \forall (x, y) \in D$$
 (8.10)

对于可化为全微分方程的情况,直接沿用以前的方法求原函数 f 即可。

§ 8.4 二阶线性 ODE

二阶线性 ODE 的形式如下:

$$y'' + p(x)y' + q(x)y = f(x)$$
(8.11)

常系数时,齐次解由两个独立的函数构成 $y_h = C_1 y_1(x) + C_2 y_2(x)$ (二阶对应二维 dim = 2),其中 C_1 和 C_2 是待定常量, y_1 和 y_2 是两个线性无关的特解,若又求得特解 y_s ,则全解即为 $y = y_s + y_h$ 。变系数时,齐次解的形式为 $y = v_1(x)y_1(x) + v_2(x)y_2(x)$,可用常数变易法求解。

我们说一组函数(在区域 I 上)是否线性相关,指的是:若存在不全为 0 的常数 $k_1, k_2, ..., k_n$ 使得:

$$k_1 y_1(x) + k_2 y_2(x) + \dots + k_n y_n(x) = 0, \quad \forall x \in I$$
 (8.12)

则称 $y_1, y_2, ..., y_n$ 线性相关; 否则线性无关。并且,对于可导函数,我们有定理:

Theorem. 53 (Wronski Theorem):

可导函数组 $\{y_1, y_2, ..., y_n\}$ 在 I 上线性相关的充要条件是:

$$W(y_{1}, y_{2}, ..., y_{n})(x) = 0, \quad \forall x \in I, \quad W(y_{1}, y_{2}, ..., y_{n})(x) = \begin{vmatrix} y_{1}(x) & y_{2}(x) & \cdots & y_{n}(x) \\ y_{1}^{(1)}(x) & y_{2}^{(1)}(x) & \cdots & y_{n}^{(1)}(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_{1}^{(n-1)}(x) & y_{2}^{(n-1)}(x) & \cdots & y_{n}^{(n-1)}(x) \end{vmatrix}$$
(8.13)

行列式 $W(y_1, y_2, ..., y_n)(x)$ 称为 Wronski 行列式。

二阶常系数齐次线性 ODE 可以由特征法快速求解。特征方程为 $r^2 + pr + q = 0$,解得两个根 r_1 和 r_2 (可以是复根),则齐次解为:

$$y_h = \begin{cases} C_1 e^{r_1 x} + C_2 e^{r_2 x}, & r_1 \neq r_2 \\ C_1 e^{r_2 x} + C_2 x e^{r_2 x}, & r_1 = r_2 = r \end{cases}$$

$$(8.14)$$

特别地,当 $r_1, r_2 \in \mathbb{C} \setminus \mathbb{R}$ 时,是一对共轭复根,此时齐次解空间为 $V = \operatorname{Span} \{e^{(\alpha+i\beta)x}, e^{(\alpha-i\beta)x}\} = \operatorname{Span} \{e^{\alpha} \cos \beta x, e^{\alpha} \sin \beta x\}$,一般我们用后一种基础解系,而不是前一种。

下面讨论几种特殊非齐次情况的特解。 $f(x)=P_m(x)e^{rx}$,其中 $P_m(x)$ 为 m 阶多项式时,设 $y_s=Q_n(x)e^{rx}$,代入得到:

$$Q'' + (2r+p)Q' + (r^2 + pr + q)Q = P_m(x)$$
(8.15)

于是特解 $y_s = x^k Q_m(x) e^{rx}$, $k \in \{0, 1, 2\}$, $Q_m(x) = x^m + a_{m-1} x^{m-1} + \cdots + a_1 x_1 + a_0$, Q_m 的系数需要代入公式 (8.15) 求解线性方程组得到,具体而言:

$$y_{s} = \begin{cases} x^{0}Q_{m}(x)e^{rx}, & r \text{ π-$} \text{$\mathbb{R}$} \\ x^{1}Q_{m}(x)e^{rx}, & r \text{ \mathbb{R}} \text{\mathbb{R}} \\ x^{2}Q_{m}(x)e^{rx}, & r \text{ \mathbb{R}} \text{\mathbb{R}} \end{cases}$$
(8.16)

第二种情况是 $f(x) = [P_1(x)\cos(\omega x) + P_2(x)\sin(\omega x)]e^{rx}$, 此时特解为:

$$y_s = x^k [Q_1(x)\cos(\omega x) + Q_2(x)\sin(\omega x)]e^{rx}, \quad k \in \{0,1\}, \quad \deg Q = \max\{\deg P_1, \deg P_2\}$$
 (8.17)

 $(r+\omega i)$ 不是特征方程的根时,k=0,否则 k=1。类似地,多项式 Q_1 和 Q_2 的系数需要代入公式 (8.17) 求解线性方程组得到。

对于 y'' + py' + q = f(x) + ig(x) 的情况, 我们有定理:

Theorem. 54 (复数非齐次): 若 $y = y_1 + iy_2$ 是方程 y'' + py' + q = f(x) + ig(x) 的解,那么 y_1 和 y_2 分别 是方程 y'' + py' + q = f(x) 和 y'' + py' + q = g(x) 的解。

§8.5 常数变易法

对常系数非齐次二阶线性 ODE 如下:

$$u'' + pu' + qu = f(t) (8.18)$$

设方程齐次解的两个独立解为 $u_1(t)$ 和 $u_2(t)$,则原方程的解为:

$$u = C_1 u_1(t) + C_2 u_2(t) + u_2 \int_0^t \frac{u_1(t)f(t)}{W(t)} dt - u_1 \int_0^t \frac{u_2(t)f(t)}{W(t)} dt$$
(8.19)

其中 C_1, C_2 为待定常量, W(t) 为 Wrondski 行列式:

$$W(t) = \begin{vmatrix} u_1(t) & u_2(t) \\ u'_1(t) & u'_2(t) \end{vmatrix} = u_1(t)u'_2(t) - u_2(t)u'_1(t)$$
(8.20)

§ 8.6 n 阶齐次线性 ODE

讲义 Page 91 和

§8.7 常点邻域的幂级数解法

在复变域中,由于微分方程系数的解析性就决定了解的解析性,用幂级数法求解微分方程是较普适的,适用范围比较广。

Theorem. 55 (常点领域内的幂级数解):

若复变函数 p(z) 和 q(z) 在圆 $|z-z_0| < R$ 内单值解析,则在此圆中二阶线性齐次 ODE 初值问题:

$$\begin{cases} w'' + p(z)w' + q(z)w = 0, & |z - z_0| < R \\ w(z_0) = c_0, & w'(z_0) = c_1 \end{cases}$$
(8.21)

的解w(z)存在且唯一。w在该圆内也单值解析,因而具有 Talor 级数形式:

$$w(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
 (8.22)

注意级数中的 c_0 和 c_1 就是初始条件中的 c_0 和 c_1 。

§8.8 正则奇点邻域的幂级数解法

Theorem. 56 (正则奇点邻域的幂级数解):

设 $z=z_0$ 是二阶常微分方程 w''+p(z)w'+q(z)w=0 的正则奇点,即 z_0 最多是 p 的一阶极点,最多是 q 的二阶极点,则方程的两个独立解具有如下形式:

$$\omega_1 = (z - z_0)^{r_1} \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad \omega_2 = (z - z_0)^{r_2} \sum_{n=0}^{\infty} b_n (z - z_0)^n$$
 (8.23)

$$\mathring{\mathfrak{Z}} \omega_1 = (z - z_0)^{r_1} \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad \omega_2 = A\omega_1 \ln(z - z_0) + \sum_{n=0}^{\infty} b_n (z - z_0)^n$$
(8.24)

一组解 $\{\omega_1,\omega_2\}$ 最多有两个待定的常数。

为了判断解的形式,我们先设 ω_1 代入方程,得到最低次幂(可能是多项)构成的指标方程,令系数为零,将它们的解记为 $r=r_1,r_2,...,r_n$ (在二阶的情况下 $n\leqslant 3$)。然后,根据 r 的情况,判断解的形式。

我们指出,差值为 1 的两个根,所代表的是线性相关的两个解(相当于只有一个独立解)。本质上是因为差值为 1 的两个根,最后留有的待定系数是同一个(例如都是 c_0)。分别令 r 为独立的根,即可求得独立解,特别地,当根已经"用完",却只得到一个独立解,这时便要设 $\omega_2 = A\omega_2 \ln z + \sum c_n (z-z_0)^n$,代入求系数 A 以及 c_n 。下面给出几个例子:

- (1) r=0: 仅有一个根, 先令 r=0 进行求解, 若可以得到两根独立解, 则结束, 否则再设 ω_2 代入求解;
- (2) r = 0,1: 有两个相关的根,先令 r = 0 进行求解,若可以得到两根独立解,则结束,否则再设 ω_2 代入求解。不用再令 r = 1,因为只会得到与 r = 0 相同的结果;
- (3) r = 0, 1, 2: 有两个独立根 0 和 2,分别令 r = 0, 2,可以得到两个独立解 ω_1, ω_2 ;
- (4) $r=\frac{1}{2},\frac{7}{3}$: 先令 $r=\frac{1}{3}$, 也许会得到两个独立解^①,若只得到一个独立解,则再设 ω_2 代入求解;

[®]例如 Homework 12.1.(3)

第9章 数学物理方程与定解条件

- §9.1 数学物理方程
- §9.2 定解条件

第10章 分离变量法

各方法的运用情景如下:

§10.1 分离变量法

定解问题(齐次方程且齐次边界条件)的本征值及其对应的本征函数:

波动方程:
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} \Longrightarrow \frac{1}{a^2} \cdot \frac{T''}{T} = \frac{X''}{X} = -\lambda$$

$$\begin{cases} u|_{x=0} = u|_{x=l} = 0: & l\sqrt{\lambda} = n\pi, & u = \sum_{n=1}^{\infty} \left[A_n \cos\left(a\sqrt{\lambda_n}t\right) + B_n \sin\left(a\sqrt{\lambda_n}t\right) \right] \sin\left(\sqrt{\lambda_n}x\right) \\ u|_{x=0} = \frac{u'_x|_{x=l}}{u'_x|_{x=l}} = 0: & l\sqrt{\lambda} = n\pi - \frac{\pi}{2}, & u = \sum_{n=1}^{\infty} \left[A_n \cos\left(a\sqrt{\lambda_n}t\right) + B_n \sin\left(a\sqrt{\lambda_n}t\right) \right] \sin\left(\sqrt{\lambda_n}x\right) \\ \frac{u'_x|_{x=0}}{u'_x|_{x=l}} = 0: & l\sqrt{\lambda} = 0, \ n\pi, & u = (Ct + D) + \sum_{n=1}^{\infty} \left[A_n \cos\left(a\sqrt{\lambda_n}t\right) + B_n \sin\left(a\sqrt{\lambda_n}t\right) \right] \cos\left(\sqrt{\lambda_n}x\right) \end{cases}$$

步散方程:
$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} \Longrightarrow \frac{1}{a^2} \cdot \frac{T'}{T} = \frac{X''}{X} = -\lambda$$

$$\begin{cases} u|_{x=0} = u|_{x=l} = 0: & l\sqrt{\lambda} = n\pi, & u = \sum_{n=1}^{\infty} A_n \exp\left(-a^2\lambda_n t\right) \sin\left(\sqrt{\lambda_n} x\right) \\ u|_{x=0} = \frac{u'_x}{|x=l|} = 0: & l\sqrt{\lambda} = n\pi - \frac{\pi}{2}, & u = \sum_{n=1}^{\infty} A_n \exp\left(-a^2\lambda_n t\right) \sin\left(\sqrt{\lambda_n} x\right) \\ \frac{u'_x}{|x=0|} = \frac{u'_x}{|x=l|} = 0: & l\sqrt{\lambda} = 0, \ n\pi, & u = \frac{C}{2} + \sum_{n=1}^{\infty} A_n \exp\left(-a^2\lambda_n t\right) \cos\left(\sqrt{\lambda_n} x\right) \end{cases}$$

稳定方程 (将 Y 看作原 T):
$$\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial x^2} = 0 \Longrightarrow -\frac{Y''}{Y} = \frac{X''}{X} = -\lambda$$

$$\begin{cases} u|_{x=0} = u|_{x=l} = 0: & l\sqrt{-\lambda} = n\pi, & u = A_n \sum_{n=1}^{\infty} \left(A_n e^{\sqrt{-\lambda}y} + B_n e^{-\sqrt{-\lambda}y}\right) \sin\left(\sqrt{-\lambda_n}x\right) \\ u|_{x=0} = u'_{x}|_{x=l} = 0: & l\sqrt{-\lambda} = n\pi - \frac{\pi}{2}, & u = A_n \sum_{n=1}^{\infty} \left(A_n e^{\sqrt{-\lambda}y} + B_n e^{-\sqrt{-\lambda}y}\right) \sin\left(\sqrt{-\lambda_n}x\right) \\ u'_{x}|_{x=0} = u'_{x}|_{x=l} = 0: & l\sqrt{-\lambda} = 0, \ n\pi, & u = Cy + D + A_n \sum_{n=1}^{\infty} \left(A_n e^{\sqrt{-\lambda}y} + B_n e^{-\sqrt{-\lambda}y}\right) \sin\left(\sqrt{-\lambda_n}x\right) \end{cases}$$

§10.2 辅助函数法

对方程齐次,但是边界项非齐次的情况,设 $u = v + \omega$,其中 $v(x,t) = f(x)\varphi(t)$ 满足方程和非齐次边界条件。这样, $\omega(x,t)$ 就满足齐次方程且齐次边界条件,可以利用分离变量法求解。v(x,t) 可以设为为:

$$u|_{x=0} = \varphi(t), \ u|_{x=l} = \psi(t) \Longrightarrow v = f(x)\varphi(t) + g(x)\psi(t)$$
 (10.1)

上面的 u 换为 u'_x 也是一样的。

方程非齐次时,边界条件一般是齐次的。这时设 $u = v(x) + \omega(x,t)$,其中v(x)满足非齐次方程和边界条件,解出v(x)即可。这样, $\omega(x,t)$ 就满足齐次方程且齐次边界条件,可以利用分离变量法求解。

§10.3 本征函数展开法

此方法适用于非齐次方程 + 齐次边界的情况。将方程右端的非齐次项 f(x,t) 展开为:

$$f(x,t) = \sum_{n=1}^{\infty} g_n(t) X_n(x), \quad g_n(t) = \frac{2}{l} \int_0^l f(x,t) X_n(x) dx$$
 (10.2)

其中 X_n 是齐次情形下的本征函数族,由正交性可知 $g_n(t)=\frac{2}{l}\int_0^l f(x,t)X_n(x)\mathrm{d}x$,这样 $g_n(t)$ 便是已知的了。再将要求的 u(x,t) 也展开为 $u=\sum_{n=1}^\infty T_n(t)X_n(x)$,其中 T_n 待定。将 u 代入原方程(非齐次),用齐次形式下分离变量法得到的 $X''=-\lambda X$ 消去 X'',由系数的一致性得到 T_n 满足常的微分方程,由此求得 T_n ,也 便求出了 $u(x,t)==\sum_{n=1}^\infty T_n(t)X_n(x)$

对于非齐次边界的情况,如果想使用本征函数法,只需设u = v + w,其中v满足非齐次边界条件即可。特别地,选取v为如下边界条件可以使方程更容易求解:

$$u|_{x=0} = \varphi_0(t), \ u|_{x=l} = \varphi_l(t) \Longrightarrow \qquad v = \varphi_0 \left(1 - \frac{x}{l}\right)^2 + \varphi_l \left(\frac{x}{l}\right)^2$$

$$u|_{x=0} = \varphi_0(t), \ u'_x|_{x=l} = \varphi_l(t) \Longrightarrow \qquad v = \varphi_0 + \varphi_l x$$

$$u'_x|_{x=0} = \varphi_0(t), \ u'_x|_{x=l} = \varphi_l(t) \Longrightarrow \qquad v = \varphi_0 + \varphi_l (x-l) x$$

$$u'_x|_{x=0} = \varphi_0(t), \ u|_{x=l} = \varphi_l(t) \Longrightarrow \qquad v = \frac{\varphi_l - \varphi_0}{2l} x^2 + \varphi_0 x$$

$$(10.3)$$

第11章 积分变换法

§11.1 Laplace 变换法

Laplace 变换可用于求解含时间的微分方程定解问题(包括 ODE 和 PDE)。对于系数与 t 无关的微分方程,变换后自变量的个数比原来减少一个,从而化为常微分方程或普通常量方程。例如,原来是 x 和 t 两个自变量的 PDE 问题,变换后成为变量 x 的 ODE,求此 ODE 后作反演,即可得到原始问题的解。

为了方便参考,我们再叙述一遍 Laplace 变换的常见性质。设函数 f = f(t),则有:

$$f(t) \xrightarrow{\mathscr{F}} L(s)$$

$$f(at) \xrightarrow{\mathscr{F}} \frac{1}{|\alpha|} L(\frac{s}{a})$$

$$f(t+at_0) \xrightarrow{\mathscr{F}} e^{s(at_0)} L(s)$$

$$e^{t(\alpha s_0)} f(t) \xrightarrow{\mathscr{F}} L(s-\alpha s_0)$$

$$f^{(n)}(t) \xrightarrow{\mathscr{F}} s^n L(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - z^0 f^{(n-1)}(0)$$

$$tf(t) - L(0) \xrightarrow{\mathscr{F}} L'(s)$$

$$\int_0^t f(\xi) d\xi \xrightarrow{\mathscr{F}} \frac{L(s)}{s}$$

$$\frac{f(t)}{t} \xrightarrow{\mathscr{F}} \int_0^s L(\xi) d\xi$$

$$f_1(t) \cdot f_2(t) \xrightarrow{\mathscr{F}} L_1(s) \cdot L_2(s)$$

$$f_1(t) * f_2(t) \xrightarrow{\mathscr{F}} L_1(s) \cdot L_2(s)$$

§11.2 Fourier 变换法

为了方便参考,我们再叙述一遍 Fourier 变换的常见性质。设函数 f=f(t),对于大多数结论,只需将 Laplace 中的 s 替换为 $j\omega$,即可得到:

$$f(t) \xrightarrow{\mathscr{F}} F(\omega)$$

$$f(at) \xrightarrow{\mathscr{F}} \frac{1}{|\alpha|} F(\frac{\omega}{a})$$

$$f(t+at_0) \xrightarrow{\mathscr{F}} e^{i\omega(at_0)} F(\omega)$$

$$e^{it(b\omega_0)} f(t) \xrightarrow{\mathscr{F}} F(\omega - b\omega_0)$$

$$f^{(n)}(t) \xrightarrow{\mathscr{F}} f(\omega)$$

$$(-it)^n f(t) \xrightarrow{\mathscr{F}} F^{(n)}(\omega)$$

$$\int_{-\infty}^t f(\xi) d\xi \xrightarrow{\mathscr{F}} \pi F(0) \delta_0(\omega) + \frac{F(\omega)}{i\omega}$$

$$\pi f(0) \delta_0(t) + \frac{f(t)}{it} \xrightarrow{\mathscr{F}} \int_{-\infty}^\omega F(\xi) d\xi$$

$$f_1(t) \cdot f_2(t) \xrightarrow{\mathscr{F}} F_1(\omega) \cdot F_2(\omega)$$

$$f_1(t) * f_2(t) \xrightarrow{\mathscr{F}} F_1(\omega) \cdot F_2(\omega)$$

对于二元函数 u(x,t),Fourier 变换是对变量 x 作变换,将 u(x,t) 变为 $\hat{u}(\omega,t)=\hat{u}(t)$,化为一元函数,也就是上面的结论应该以 x 作为自变量。

第12章 格林函数法

参考文献

- [1] 吴崇试, 高春媛. 数学物理方法. 北京大学出版社, 北京, 3 edition, 5 2019.
- [2] 吴崇试. 数学物理方法习题指导. 北京大学出版社, 北京, 2 edition, 10 2020.

附录 A 数物方法 Q & A

A.1 第一章

A.1.1 三角反函数或双曲反函数中,开根时为什么只取了正号?

例如 $Arcsinz = -i \ Ln \ (iz + \sqrt{1-z^2})$,可以是 $Arcsinz = -i \ Ln \ (iz \pm \sqrt{1-z^2})$ 吗?

A.1.2 问题 2

A.2 第二章

A.2.1 如何快速而准确地判断一个函数是否解析?

判断一个函数(在某个开集 G 上)是否解析,相当于判断它的可导性。如果一个复变函数是由初等函数构成的,不包括多值函数(包括 \sqrt{z} , $\operatorname{Ln} z$, $\operatorname{Arctan} z$ 等)或 $\operatorname{Re} z$, $\operatorname{Im} z$ 等特殊函数,那么在除去奇点(包括无定义点、不连续点和无穷点等)的开集上,一般都是解析的。例如,函数 $f(z) = \frac{z-1}{z-i}$ 在 $\mathbb{C} \setminus \{i\}$ 上解析,函数 $f(z) = \frac{e^z}{z-i}$ 在 $\mathbb{C} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$ 上解析。

在第三章及之后的章节中,若无特别声明,我们所说的函数都是指单值函数。

A.2.2 解析域一定是开集,为什么会说"在有界闭域 \overline{G} 上解析"?

这个说法是许多教材中的惯用说法 0 ,并且没有给出具体含义。有的教材中,"在闭域 \overline{G} 上解析"是指 "f(z) 在开集 G 上解析,且在 ∂G 上可导"(这等价于在闭域 \overline{G} 上每一点都可导)。

也有的教材称"在闭域 \overline{G} 上解析"是等价于"f(z) 在开集 G 上解析,且在 ∂G 上连续"。

在本书,不引起歧义的情况下,我们认为"在闭域 \overline{G} 上解析"是指" f(z) 在开集 G 上解析,且在 ∂G 上连续"。

A.2.3 分支点一定不解析吗?

首先需要区分,"解析"是单值函数的概念,而"分支点"是多值函数的概念。在讨论一个函数是否(在某点)解析时,要么这个函数本就是单值函数,要么是多值函数的某个单值分支。对于一个多值函数,分支点仅可能出现在奇点,包括无定义点、不连续点、不解析点和无穷点 ∞ 。因此,当约定好多值函数的单值分支时,对前三种情况(也即 $\mathbb C$ 内的情况),分支点一定是不解析的。无穷点的情况可以做变换 $z \to \frac{1}{z}$ 转变为零点来讨论。

例如,函数 $f(z)=\sqrt{z}$ 的分支点为 $0,\infty$,同时也是唯二的不解析点,无穷点不解析是因为函数 $\frac{1}{\sqrt{z}}$ 在 z=0 无定义,零点不解析是因为 $f'(z)=\frac{1}{2\sqrt{z}}$ 在 z=0 无定义。

A.2.4 如何求出(或判断)多值函数的分支点?

分支点仅可能在宗量的零点、奇点处出现,假设现在来判断 z_0 是否为一个分支点,可以按照以下步骤进行:

(1) 选定多值函数的单值分支。

^①例如教材 [1]

- (2) 判断有界点 $z_0 \in \mathbb{C}$ 是否为分支点时,对宗量的幅角(主值)作映射 $\theta \to \theta + 2\pi$,观察函数值是否变化。若发生变化,说明绕一圈后没有回到原点,即 z_0 是分支点,反之则不是分支点。
- (3) 判断无穷点 ∞ 是否为分支点,对所有宗量(通常是多个)同时作映射 $z \to \frac{1}{z}$,观察函数值是否变化。若发生变化,则 ∞ 是分支点,否则不是。

例如,设 $\ln z$ 是 $\ln z$ 是 $\ln z$ | $\ln z$ 是 $\ln z$ | $\ln z$ 目 $\ln z$ $\ln z$ 目 $\ln z$ $\ln z$

$$f(z) = \ln \frac{(z-1)^n}{2-z} = \ln \frac{r_1^n}{r_2} + i \left[(n\theta_1 - \theta_2) + 2\pi \cdot (nk_1 - k_2) \right]$$
(A.1)

其中 $z-1=r_1e^{i(\theta_1+2k_1\pi)}$, $2-z=r_2e^{i(\theta_2+2k_2\pi)}$ 。我们可以选取单值分支:

$$g(z) = \ln \frac{r_1^n}{r_2} + i(n\theta_1 - \theta_2)$$
 (A.2)

也即 $k_1 = k_2 = 0$ 对应的单值分支。

在判断 z=1 是否为分支点时,宗量为 z-1,因此作映射 $\theta_1 \to \theta_1 + 2\pi$,发现 g(z) 的函数值发生了变化,即围绕 z=1 点绕一圈后,函数值没有还原,因此 z=1 是分支点;判断 z=2 是否为分支点,宗量为 z-2,作映射 $\theta_2 \to \theta_2 + 2\pi$,函数值也发生了变化,因此 z=2 也是分支点;最后判断 ∞ ,对两个宗量的幅角同时作映射 $\theta \to \theta + 2\pi$,可知,当 n-1 时,函数值还原, ∞ 不是分支点,否则 ∞ 是分支点。

另外,我们还有结论:

$$\operatorname{Ln} f(z)$$
 的分支点是且仅是方程 $f(z) = 0$ 和 $f(z) = \infty$ 的解 (A.3)

A.2.5 已知多值函数的分支点,作割线的意义是什么?

作割线是为了划定单值分支,这与给定多值函数在某点的函数值(通常)是等价的,更详细的讨论见知乎:复变多值函数的黎曼面 (Riemann surface)、分支点 (branch point) 与割线 (branch cut)。

A.3 第三章

A.3.1 为什么解析函数的积分与路径无关?

这是由 Cauchy 定理所保证的。只要函数在所讨论的区域上是解析的,那么 Cauchy 定理都成立,也就必定有"解析函数的积分与路径无关"。也就是说,积分的结果仅取决于起点和终点,这便自然而然地引出了"原函数"的概念。

回想力学中,重力场中的做功量与路径无关,也就是积分 $\oint \mathbf{F} \cdot \mathrm{d}\mathbf{x}$ 的结果仅取决于起点和终点,而与路径无关,这也自然地引出了重力势能的概念。更严谨地说,在一个无旋的矢量场 A 中,矢量 A 与位矢的积分值与路径无关,仅取决于起点和终点,这是由矢量分析中的 Stokes Theorem(斯托克斯定理)所保证的,也即:

$$\oint_{\partial S} \mathbf{A} \, \mathrm{d}\mathbf{r} = \iint_{S} (\nabla \times \mathbf{A}) \cdot \, \mathrm{d}\mathbf{S} \tag{A.4}$$

当矢量场无旋时,上式右端恒为零。

 $(n \text{ } \ \cap)$ Cauchy 积分公式(Theorem.15)为:若函数 f(z) 在 \overline{G} 上解析,则 f(z) 在G 上有任意 n 阶导数,且它们都是 \overline{G} 上的解析函数。

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_{\partial C} \frac{f(\zeta)}{(\zeta - z)^{n+1}} \zeta, \quad \forall \, n \in \mathbb{N} = \{0, 1, 2, \dots\}$$
 (A.5)

在计算(含奇点的)回路积分时,我们常常会用到上述公式,有时取 n=0,有时又取 n=1 或其它数。事实上,上述公式的本质是:在计算含有唯一奇点的回路积分时,将奇点"挖出来",借助 Cauchy Theorem (Theorem.4)转为绕小圆的回路积分,然后利用小圆弧定理(Theorem.13)得到最终结果。这里面的关键就是"唯一奇点"。

在 f(z) 解析的情况下, $g(z)=\frac{f(z)}{(z-a)}$ 有唯一奇点 a,且 $(z-a)\cdot g(z)$ 在 \overline{G} 上解析,此时的 Cauchy 积分公式便可以写成:

$$\oint_{\partial G} g(z) = \frac{2\pi i}{i} \cdot [(z-a) \cdot g(z)]_{z=a}$$
(A.6)

类似地,若 g(z) 有唯一奇点 a,且 $(z-a)^n \cdot g(z)$ 在 \overline{G} 上解析,便可以得到 n 阶 Cauchy 积分公式的等价形式:

$$\oint_{\partial G} g(z) = \frac{2\pi i}{n!} \cdot \left[(z - a)^{n+1} \cdot g(z) \right]_{z=a}^{(n)}$$
(A.7)

A.3.3 如何理解 Cauchy 型积分揭示的"解析函数在(分段)光滑曲线上的值决定了它在整个 复平面上的值"?

A.4 第五章

- A.4.1 如何求一个函数在某点的 Laurent 展开式,是否有通法?
- **A.4.2** ln(z+i) 在点 $z_0=0$ 有级数展开(对 |z|<1 成立),那么在 |z|>1 上是否可展开为幂级数?
- **A.4.3** $\ln z$ 在点 $z_0 = 0$ 是否可展开为幂级数?

结论: 就目前所学, $\ln z$ 在 $z_0 = 0$ 不可展开为幂级数。因为 0 和 ∞ 是 $\ln z$ 的奇点(非解析点),

附录 B Matlab 代码

B.1 图 2.3 和图 2.4 源码

```
1
    %% 复变函数可视化
2
    clc, clear, close all
3
4
    X_{array} = linspace(-2, 2, 50);
5
    Y_{array} = linspace(-2, 2, 50);
    [GridX, GridY] = meshgrid(X_array, Y_array);
6
7
8
    %% 单值函数 e^z 与 cos z %%
9
    ez = @(x,y) exp(x).*(cos(y) + 1i*sin(y))'; % 1i 即虚数 i, 是增强稳定性的写法, 转置是
10
        必要的
    cosz = @(x,y) \ 0.5 * ( cos(x).*(exp(-y) + exp(y))' + 1i*sin(x).*(exp(-y) - exp(y))' );
12
13
    figure('Color', [1 1 1])
14
    quiver(GridX, GridY, real(ez(X_array, Y_array)), imag(ez(X_array, Y_array)), 'AutoScale
        ', 'on', 'Color', 'b');
15
    hold on, axis equal
    %contourf(GridX, GridY, abs(ez(X_array, Y_array)))
16
17
    contour(GridX, GridY, abs(ez(X_array, Y_array)), LineWidth=0.7)
    hold off, colormap("cool")
18
19
    %MyExport_pdf
20
21
    figure('Color', [1 1 1])
22
    quiver(GridX, GridY, 0.03*real(cosz(X_array, Y_array)), 0.03*imag(cosz(X_array, Y_array))
        )), 'AutoScale', 'on', 'Color', 'b');
23
    hold on, axis equal
24
    %contourf(GridX, GridY, abs(ez(X_array, Y_array)))
25
    contour(GridX, GridY, abs(cosz(X_array, Y_array)), LineWidth=0.7)
    hold off, colormap("cool")
26
27
    %MyExport_pdf
    %% 多值函数 \sqrt{z} 与 Ln z 的单值分支 %%
28
29
30
31
    % \sqrt{z} 取 arg z \in [0, 2*pi] 的单值分支
    % zeta = Ln z 取 arg zeta \in [0, 2*pi] 的单值分支,也即 zeta = \ln z = \ln |z| + i \
32
        arg z
33
34
    sqrtz = @(x, y) \frac{1}{sqrt(2)*} ( sign(pi - MyArcTheta(x, y')).*sqrt(abs(x + 1i*y') + x) +
        1i*sqrt(abs(x + 1i*y') - x));
35
    lnz = @(x, y) log(abs(x + 1i*y')) + 1i* MyArcTheta(x, y');
36
37
    figure('Color', [1 1 1])
38
    quiver(GridX, GridY, real(sqrtz(X_array, Y_array)), imag(sqrtz(X_array, Y_array)), '
       AutoScale', 'on', 'Color', 'b');
```

```
39
    hold on, axis equal
40
    %contourf(GridX, GridY, abs(ez(X_array, Y_array)))
41
    contour(GridX, GridY, abs(sqrtz(X_array, Y_array)), LineWidth=0.7)
42
    hold off, colormap("cool")
43
    %MyExport_pdf
44
45
    figure('Color', [1 1 1])
46
    quiver(GridX, GridY, real(lnz(X_array, Y_array)), imag(lnz(X_array, Y_array)), '
        AutoScale', 'on', 'Color', 'b');
47
    hold on, axis equal
48
    %contourf(GridX, GridY, abs(ez(X_array, Y_array)))
49
    contour(GridX, GridY, abs(lnz(X_array, Y_array)), LineWidth=0.7)
50
    hold off, colormap("cool")
51
    %MyExport_pdf
```