1. Fill in the following chart.

1.1 III III tile Tollowing Chart.									
Isotope	Symbol	Mass Number	# of Protons	# of Neutrons	#of Electrons				
Copper-65									
	³⁰ Si								
		184	74						

- 2. Describe the relationship between wavelength, frequency and energy of an electromagnetic wave.
- 3. What is a photon/quantum?
- 4. Rank the following waves from shortest to longest wavelengths? Show your work.
 - a) $8.5 \times 10^{-6} \text{ km}$
- b) $4.7 \times 10^{-1} \text{ cm}$
- c) 4250 nm
- 5. A source produces green light of wavelength 5.11 x 10^3 Å . What is this wavelength meters?
- 6. KFOR broadcasts at a frequency of 1240 kHz (kilohertz).
 - a. What is the wavelength for this wave?
 - b. What is the energy per photon of this wave?
- 7. What is the energy in kJ for light with wavelength 250 nm?
- 8. For the electronic transition (movement of electrons) of $n_i = 5$ to $n_f = 1$ in a hydrogen atom, the energy released in the released photon is -2.09 x 10⁻¹⁸ J. Calculate the frequency and the of this photon, and identify the type of wave this is.
- 9. For n = 4 in an atom, what are the possible values of ℓ ? For $\ell = 2$, what are the possible values of m?

10. Which	of the following	are sets of quantum	m numbers ar	re acceptable fo	or an electron	in a hydrogen
atom						

a.
$$n = 2$$
, $\ell = 1$, $m = 1$, $s = +\frac{1}{2}$ b. $n = 1$, $\ell = 0$, $m = -1$, $s = -\frac{1}{2}$ c. $n = 4$, $\ell = 2$, $m = -2$, $s = +\frac{1}{2}$

5.
$$n = 1$$
, $\ell = 0$, $m = -1$, $s = -\frac{1}{2}$

c.
$$n = 4$$
, $\ell = 2$, $m = -2$, $s = +\frac{1}{2}$

For any set of quantum numbers that are not acceptable, explain why.

11. Write the correct electron configurations for the following elements

- a. Rb
- b. Se
- c. Ag

12. Draw an orbital diagram for the following elements

- a. Ca
- b. Cu
- c. Kr

13. Calculate the number of aluminum atoms in a piece of aluminum wire weighing 1.000 g. (1 amu =
$$1.661 \times 10^{-24} \text{ g}$$
)

14. The Kentucky derby is a 10.0 furlong race. The record time for winning this race is 1 minute and 59 2/5 seconds set by Secretariat in 1973. Convert this to miles per hour.