Embeddings

DMIA

Зачем это нужно?

- 1) Классификация текстов
- 2) Кластеризация текстов
- 3) Машинный перевод

Нужно как-то представить вектора слов Ваши идеи?

Нужно как-то представить вектора слов Ваши идеи?

One hot encoding

Хочу домашку по трендам

	Хочу	домашку	по	трендам
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1

Нужно как-то представить вектора слов Ваши идеи?

One hot encoding

Хочу домашку по трендам

	Хочу	домашку	по	трендам
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1

- 1) Не учитывается близость между словами
- 2) Опечатки-ошибки игнорируются
- 3) Слишком много признаков

Bag of words

Что такое близкие слова?

Скажи мне, кто твой сосед и я скажу тебе, кто ты

Будем смотреть не только на слова, но и на их контексты!

Нужна большая общность!

Матрица слово-контекст

	И		машинное	обучение	рудн	иностранец
И		1000	40	50	2	3
машинное			100	45	0	0
обучение				150	3	5
рудн					5	10
иностранец						30

Нужна большая общность!

Матрица слово-контекст

	И	машинное	обучение	рудн	иностранец
И	1000	40	50	2	3
машинное		100	45	0	0
обучение			150	3	5
рудн				5	10
иностранец	-				30

Использовать не количество а что-то похитрей

$$PMI(w_1, w_2) = \log_2 \frac{P(w_1 w_2)}{P(w_1)P(w_2)}$$

SVD- разложение

$$\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$$

U- матрица слов

V - матрица контекстов

Следующий уровень - нейронные сети

Word2vec

Идея - давайте учить сеть предсказывать вероятности встречаемость слова в контексте и надеятся, что признаки, полученные при обучении окажутся хорошими представлениями для слов

CBOW

$$J_{\theta} = \frac{1}{T} \sum_{t=1}^{T} \log p(w_t \mid w_{t-n}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+n}).$$

Skip-gram

$$J_{\theta} = \frac{1}{T} \sum_{t=1}^{T} \sum_{-n \le j \le n, \neq 0} \log p(w_{t+j} \mid w_t).$$

Свойства

Линейность

Неинтерпретируемость

компонент

FastText

Идея - давайте расматривать не слова, а n- граммы!

В чем плюсы FastText:

- 1) Экономно
- 2) Хорошо работает на редких словах (идеально для опечаток)
- 3) Работает на словах, которых не было в обучении

Кросс-эмбединги

В чем смысл?

- 1) Отобразить слова из разных языков в одно пространство
- 2) Эффективно решать задачу машинного перевода
- 3) Использовать информацию из одного языка в другом

Когда есть учитель

- 1) Берем 2 набора embeddings, обученных на двух разных языках независимо, и перевод слов с одного языка на другой
- 2) Найдем отображение одного пространства эмбеддингов в другое так, чтобы расстояние между парами было наименьшим

Процесс отображения

$$W^* = \underset{W \in M_d(\mathbb{R})}{\operatorname{argmin}} \|WX - Y\|_{\mathcal{F}} \tag{1}$$

d - dimension of the embeddings

 $M_d(R)$ - space of d × d matrices of real numbers

X and Y - two aligned matrices of size d × n containing the embeddings of the words in the parallel vocabulary.

W - линейное отображение между языковыми пространствами

Обучение без учителя

Делаем то же самое без обучающей выборки

- 1) Применяем advertising learning
- 2) Уточняем матрицу перехода по самым лучшим переводам
- 3) Ищем ближайших соседей
- 4) Превосходим по качеству supervised алгоритмы

Флэшбек

Флэшбек

GAN - та же идея!

$$\mathcal{X}=\{x_1,...,x_n\}$$
 and $\mathcal{Y}=\{y_1,...,y_m\}$ - два набора эмбеддингов $heta_D$ - параметры дискриминатора W - отображение

Discriminator loss

$$\mathcal{L}_D(\theta_D|W) = -\frac{1}{n} \sum_{i=1}^n \log P_{\theta_D} \left(\text{source} = 1 \middle| Wx_i \right) - \frac{1}{m} \sum_{i=1}^m \log P_{\theta_D} \left(\text{source} = 0 \middle| y_i \right). \tag{3}$$

Mapper loss

$$\mathcal{L}_{W}(W|\theta_{D}) = -\frac{1}{n} \sum_{i=1}^{n} \log P_{\theta_{D}} \left(\text{source} = 0 \middle| Wx_{i} \right) - \frac{1}{m} \sum_{i=1}^{m} \log P_{\theta_{D}} \left(\text{source} = 1 \middle| y_{i} \right). \tag{4}$$

Результаты

	English to italian			Italian to english		
	P@1	P@5	P@10	P@	1 P@5	P@10
Methods with cross-lingua	al super	vision				
Mikolov et al. (2013b) †	10.5	18.7	22.8	12.	0 22.1	26.7
Dinu et al. (2015) †	45.3	72.4	80.7	48.	9 71.3	78.3
Smith et al. (2017) †	54.6	72.7	78.2	42.	9 62.2	69.2
Procrustes - NN	42.6	54.7	59.0	53.	5 65.5	69.5
Procrustes - CSLS	66.1	77.1	80.7	69.	5 79.6	83.5
Methods without cross-lin	gual su	pervis	ion			
Adv - CSLS	42.5	57.6	63.6	47.	0 62.1	67.8
Adv - Refine - CSLS	65.9	79.7	83.1	69.	0 79.7	83.1

Table 3: English-Italian sentence translation retrieval. We report the average P@k from 2,000 source queries using 200,000 target sentences. We use the same embeddings as in Smith et al. (2017). Their results are marked with the symbol †.

Вывод

Эмбеддинги - это здорово!