Análisis de presencias con procesos de puntos

Tutorial intermedio de spatstat

Gerardo Martín 2022-06-29

Simulación de presencias

Especificación de un centroide

Código - generando favorabilidad "verdadera"

```
centroide <- cellStats(r, mean)
r.df <- data.frame(rasterToPoints(r))
covar <- cov(r.df[, 3:5])
md <- mahalanobis(r.df[, 3:5], center = centroide, cov = coval
head(md)
## [1] 5.846738 6.383437 6.443874 7.296541 6.475630 6.066614</pre>
```

Código - viendo la favorabilidad

```
md.r <- rasterFromXYZ(data.frame(r.df[, 1:2], md))
md.exp <- exp(-0.5*md.r)
plot(md.exp)</pre>
```


4

Código - simulando los puntos

```
set.seed(182)
puntos.2 <- dismo::randomPoints(mask = md.exp,</pre>
                                    n = 200.
                                    prob = T)
## Warning in .couldBeLonLat(x, warnings = warnings): CRS is NA.
## longitude/latitude
puntos.2 <- data.frame(puntos.2)</pre>
puntos.2x \leftarrow puntos.2x + rnorm(200, 0, 0.05)
puntos.2$v \leftarrow puntos.2$v + rnorm(200, 0, 0.05)
```

Código - favorabilidad y puntos

plot(md.exp); points(puntos.2)

Formateo para spatstat

Cargando las funciones

```
source("Funciones-spatstat/imFromStack.R")
source("Funciones-spatstat/winFromRaster.R")
source("Funciones-spatstat/plotQuantIntens.R")
```

Formateo rápido

Análisis exploratorio

Autocorrelación

```
K <- envelope(puntos.2.ppp, fun = Kest, nsim = 39)
## Generating 39 simulations of CSR ...
## 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
##
## Done.</pre>
```

K

10

Autocorrelación - notas

- 1. Pareciera que el proceso está levemente autocorrelacionado
- 2. No sabemos de momento si afectará al modelo
- 3. Debemos poner atención al modelo ajustado

Respuestas a variables

Ver archivo de gráficas

```
plotQuantIntens(imList = r.im,
                noCuts = 5,
                Quad = Q,
                p.pp = puntos.2.ppp,
                dir = "",
                name = "Respuestas-centroide")
## pdf
## 2
```

12

Consideraciones para proponer modelos

Curvas con forma de campana ightarrow fórmula cuadrática

Consideraciones para proponer modelos

Ecuación lineal:

$$y = \alpha + \beta_1 x_1 + \dots + \beta_n x_n$$

Ecuación polinomial de 2^o grado

$$y = \alpha + \beta_1 x_1 + \beta_1' x_1^2 + \dots + \beta_n x_n + \beta_n' x_n^2$$

Recordemos que $y = \log \lambda$

¿Qué variables podemos incluir en el mismo modelo?

Regla de oro: Aquellas que no estén correlacionadas

- \cdot Que x_1 no sea predictor de x_2
- · No se puede atribuir efecto de x_1 ó x_2 sobre λ
- · Necesitamos medir correlación entre pares de variables (pairs)

Medición de correlación entre covariables

pairs(r)

