TRIGONOMETRIA

Il sistema **sessagesimale** è il sistema che ha come unità di misura il **grado.** Il sistema **circolare** è il sistema che si basa **sulla misura in radicali** (l'unità di misura è il **radiante**).

Per trasformare un angolo in radianti si usa la seguente proporzione:

$$180^{\circ} : \pi = x^{\circ} : x_{rad}$$

Le formule derivate sono:

$$x^{\circ} = x_{\text{rad}} \cdot \frac{180^{\circ}}{\pi}$$
 $x_{\text{rad}} = x^{\circ} \cdot \frac{\pi}{180^{\circ}}$

La seguite tabella raffigura le principali conversioni

$$360^{\circ} = 2\pi$$
 $270^{\circ} = \frac{3}{2}\pi$ $180^{\circ} = \pi$

$$90^{\circ} = \frac{\pi}{2}$$
 $60^{\circ} = \frac{\pi}{3}$ $45^{\circ} = \frac{\pi}{4}$

$$36^{\circ} = \frac{\pi}{5}$$
 $30^{\circ} = \frac{\pi}{6}$ $18^{\circ} = \frac{\pi}{10}$

$$15^{\circ} = \frac{\pi}{12}$$
 $10^{\circ} = \frac{\pi}{18}$ $5^{\circ} = \frac{\pi}{36}$

Una circonferenza è detta orientata quando si fissa su essa il verso antiorario come positivo

Viene detta circonferenza geometrica una qualsiasi circonferenza orientata. La circonferenza geometrica ha un raggio unitario e centro nell'origine del sistema di riferimento.

Si consideri la seguente circonferenza geometria

Il seno dell'angolo orientato a l'ordinata del punto P

$$sen\alpha \stackrel{\text{def}}{=} y_p = \frac{PH}{OP}$$

Il coseno dell'angolo orientato a l'ascissa del punto P

$$\cos \alpha \stackrel{\text{def}}{=} x_p = \frac{OH}{OP}$$

La tangente dell'angolo orientato a il rapporto (se esiste) fra l'ordinata (seno) e l'ascissa (coseno) del punto P.

$$tg\alpha \stackrel{\text{def}}{=} \frac{y_p}{x_p} = \frac{\text{sen}\alpha}{\cos\alpha} = \frac{PH}{OH}$$

Il seno, coseno e la tangente di un'angolo orientato sono:

- adimensionali
- Numeri reali relativi
- Funzioni dell'angolo

Valore delle funzioni geometriche per angoli particolari

Angolo (in gradi)	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360
Angolo (in radianti)	O _{rad}	$\frac{\pi}{6}$	$\frac{\pi}{4}$	<u>π</u> 3	$\frac{\pi}{2}$	$\frac{2}{3}\pi$	$\frac{3}{4}\pi$	$\frac{5}{6}\pi$	π	$\frac{3}{2}\pi$	2π
sen	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
tg	0	<u>√3</u> 3	1	√3	non esiste	-√3	-1	$-\frac{\sqrt{3}}{3}$	0	non esiste	0

Formule per ricavare i valori delle funzioni geometriche in corrispondenza degli angoli qui sopra riportati

- Angoli complementari a; (90° a)
- Angoli supplementari a; (180° a)
- a; (180° + a)
- Angoli opposti a; (- a)

Una funzione si dice periodica quando il suo grafico si ripete periodicamente

Sinusoidale (sen x)

Proprietà: funzione dispari, limitata tra -1 e 1 e periodica con periodo $T = 2\pi$

Cosinusoide (cos x)

Proprietà: funzione pari, limitata tra -1 e 1 e periodica con periodo $T = 2\pi$

Tangentoide (tg x)

Proprietà: funzione dispari, non limitata e periodica con periodo $T = \pi$. Hanno infiniti asintoti verticali.

Per la **somme e sottrazione di archi** si utilizzano le seguenti formule

$$sen(\alpha \pm \beta) = sen\alpha cos \beta \pm cos \alpha sen \beta$$

$$cos(\alpha \pm \beta) = cos \alpha cos \beta \mp sen \alpha sen \beta$$

$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}$$

$$sen 2\alpha = 2sen\alpha cos \alpha$$

$$cos 2\alpha = cos^2 \alpha - sen^2 \alpha$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2 \alpha}$$

Un'equazione geometrica è un'equazione in cui l'incognita compare nell'argomento di una frazione algebrica

Le equazioni elementari **ammettano infinite soluzioni** a causa della periodicità delle funzioni geometriche

Una **disequazione geometrica** è una disequazione in cui l'incognita compare nell'argomento di una funzione goniometrica

Quadrante		11	III	IV
Funzione			itlov	sesiti s
seno	+	+	-	-
coseno	+	-	Tologge	or the one of
tangente	+	_ 1000	+	_