Lista 7

Questão 6

Sejam $f, g: X \to \mathbb{R}$ contínuas no ponto a. Suponha que em cada vizinhança de a, existam pontos x, y tais que f(x) < g(x) e f(y) > g(y). Demonstre que f(a) = g(a).

Prova:

Dado $n \in \mathbb{N}$, na vizinhança $(a - \frac{1}{n}, a + \frac{1}{n})$ contém x_n e y_n tal que $f(x_n) < g(x_n)$ e $f(y_n) > g(y_n)$. Isto equivale dizer que

$$|x_n - a| < \frac{1}{n} e |y_n - a| < \frac{1}{n}$$

e quando $n \to +\infty$ obtemos duas sequências (x_n) e (y_n) que convergem ao ponto a. Pela continuidade de f e g, temos

$$f(x_n) \longrightarrow f(a) \in f(y_n) \longrightarrow f(a)$$

$$g(x_n) \longrightarrow g(a) \in g(y_n) \longrightarrow g(a).$$

Como $f(x_n) < g(x_n)$ e $f(y_n) > g(y_n)$, então $f(a) \le g(a)$ e $f(a) \ge g(a)$. Portanto f(a) = g(a).