Exemple

Le tableau suivant donne, dans une population féminine, la moyenne de la tension artérielle en fonction de l'âge :

Âge en années : x_i	36	42	48	54	60	66
Tension maximale : y_i	11,8	13,2	14	14,4	15,5	15,1

- La moyenne des abscisses est : $\bar{x} = 51$;
- La moyenne des ordonnées est : $\bar{y} = 14$
- Les coordonnées du point moyen G sont donc : (51; 14).

Exemple

Le tableau suivant donne, dans une population féminine, la moyenne de la tension artérielle en fonction de l'âge :

Âge en années : x_i	36	42	48	54	60	66
Tension maximale : y_i	11,8	13,2	14	14,4	15,5	15,1

- La moyenne des abscisses est : $\bar{x} = 51$;
- La moyenne des ordonnées est : $\bar{y} = 14$
- Les coordonnées du point moyen G sont donc : (51; 14).

Exemple

La droite d'ajustement obtenue grâce au tableur passe par le point moyen G dont nous avons calculé les coordonnées.

Exemple

En prolongeant la droite d'ajustement obtenue on peut tenter d'estimer la tension artérielle à un âge plus avancé.

Activite Adhérents d'un club de sport

Parmi les 360 adhérents d'un club de sport, une enquête à donné les résultats suivants :

- 5 % des adhérents sont fumeurs et pratiquent la compétition;
- 54 sont des fumeurs;
- Les non-fumeurs ne pratiquant pas la compétition sont cinq fois plus nombreux que les fumeurs qui pratiquent la compétition.
- 1 Compléter le tableau suivant :

	Compétition (C)	Pas compétition (\bar{C})	Total
Fumeurs (F)			
Non fumeurs (\bar{F})			
Total			

- a) Quelle est la proportion, notée f(C) de personnes pratiquant la compétition?
 - b) Déterminer la proportion f(F) de fumeurs.
 - c) Quelle est la proportion, notée $f(F \cap C)$ de personnes qui fument et pratiquent la compétition? (On l'appelle fréquence conjointe de F et C)
 - d) Déterminer la proportion, notée $f_c(F)$ de fumeurs parmi les personnes pratiquant la compétition? (On l'appelle fréquence conditionnelle de F sachant C).
 - e) Quelle est la proportion, notée $f(F \cup C)$, des personnes qui fument ou qui pratiquent la compétition? (On l'appelle fréquence de la réunion de F et C).

Objectifs

Être capable:

- 1 de calculer une moyenne, un écart type;
- 2 de calculer une médiane, une étendue, un interquartile;
- 3 de calculer une fréquence conditionnelle;
- 4 de réaliser un ajustement affine par méthode graphique;
- 5 d'utiliser l'équation d'une droite d'ajustement fournie par un tableur.

Objectifs

Être capable:

- 1 de calculer une moyenne, un écart type;
- 2 de calculer une médiane, une étendue, un interquartile;
- 3 de calculer une fréquence conditionnelle;
- 4 de réaliser un ajustement affine par méthode graphique;
- 5 d'utiliser l'équation d'une droite d'ajustement fournie par un tableur.

Objectifs

Être capable:

- 1 de calculer une moyenne, un écart type;
- 2 de calculer une médiane, une étendue, un interquartile;
- 3 de calculer une fréquence conditionnelle;
- 4 de réaliser un ajustement affine par méthode graphique;
- d'utiliser l'équation d'une droite d'ajustement fournie par un tableur.

Objectifs

Être capable:

- 1 de calculer une moyenne, un écart type;
- 2 de calculer une médiane, une étendue, un interquartile;
- 3 de calculer une fréquence conditionnelle;
- 4 de réaliser un ajustement affine par méthode graphique;
- d'utiliser l'équation d'une droite d'ajustement fournie par un tableur.