Handling of the cluster 3D Fortran90-code

Instructions and status reprot

Started 23 April 2010; status 4. December 2012

Contents

1	Inst	allation and usage	2
	1.1	Installation	2
	1.2	Basic input structure	2
	1.3	Some practical advices	2
2	Inpu	at files	4
\mathbf{A}	On	the initialization of the electronic wavefunctions	11
В	Ope	en ends and to-be-dones	11

1 Installation and usage

1.1 Installation

The following steps assume that you have successfully unpacked the code and that you are now in the sub-directory 'source_f90'.

Before compilation, one should update some settings (for detailed explanations of the parameters see section 2):

- Edit 'define.h' to choose the wanted code options.
- Edit 'params. F90' if you need to change some limiting values (rarely required).
- Edit 'makefile' and insert your compiler with its appropriate options. Some lines for that are provided and presently commented out. Fill the lines and remove the comments if needed.
- Finally execute 'make'. The executable will be copied to the working directory which is one level below the sub-directory 'source_f90'. Go back to the working directory. The last file called 'tdks*' is the new executable.

1.2 Basic input structure

The cluster 3D code has six entries for options:

compile time			
define.h	variants of the code		
	run time		
for005. <name></name>	general input for settings, static and dynamics		
for005ion. <name></name>	ionic configuration of cluster		
for005surf. <name></name>	atomic configuration of substrate (optional)		
for005	defines the qualifier <name> for the other for005 files</name>		

The first two entries have to be set before compilation. The other four are read in for an actual run and can be varied from run to run. The input structure for these files is summarized in section 2.

1.3 Some practical advices

Important compile-time settings:

You have to chose the wnated options in 'define.h'.

Save and restart:

The parameters 'isave', 'istat', and 'irest' allow to switch saving wavefunctions and restarting from them.

For ismax>0 and isave>1, the static wavefunctions are saved on rsave after the static iterations. These can be used in two ways. Setting istat=1 and ismax>0 continues static iteration from rsave. Setting ismax=0, istat=1, irest=0, and, of course, itmax>0 starts a dynamical run at time zero with the static wavefunctions from rsave.

Dynamical configurations are saved on save. <name> after every isave time steps. Setting irest=1 will continue the dynamical calculation from the stage saved in save. <name>.

Diagonalization amongst occupied states:

The run time option ifhamdiag=1 activates the diagonalization of the mean-field Hamiltonian amongst the active wavefunctions in each static iteration step. This option can accelerate the convergence of the static solution significantly. *However:* At present, this method works safely only if the number of active states nstate equals the actual number of electrons. This has to be checked by the user. It may work in other cases, but may also induce oscillating iteration which nevers converges.

2 Input files

Compile time settings in define.h				
version control:				
IVERSION define your own version number				
grid representation of kinetic energy:				
gridfft	FFT			
findiff	finite diffences 3. order (yet unsafe)			
numerov	finite diffences 5. order (yet unsafe)			
Variants of	f the Coulomb solver (for gridfft=1):			
coufou	FALR (standard)			
coudoub	exact boundary conditions			
parallele v	ersion:			
parayes	use parallelization for wavefunctions			
parano	produce serial code			
simpara	pseudo-parallel code, runs different inputs simultaneously			
versions of SIC for electrons:				
fullsic	old full SIC			
symmcond	old full SIC with double set technique			
twostsic	new full SIC from PhD Messud (obsolete)			
Compile time settings in define.h – part 2				
options for substrate:				
raregas	enables substrates			

	Namelist GLOBAL	in for005. <name></name>
	choice of system	
kxbox	nr. of grid points in x direction	
kybox	nr. of grid points in y direction	
kzbox	nr. of grid points in z direction	
	box sizes must fulfill kxbox≥kybox≥ kzbox	
numspin	number of spin components (2=full spin treatment)	
	(1=spin averaged, possible problem for ADSIC)	
kstate	maximum nr. of s.p. states	
nclust	number of QM electrons	
nion	number of cluster ions	
nspdw	number of spin down electrons	
nion2	selects type of ionic background	
	$0 \rightarrow \text{jellium background}$	
	$1 \rightarrow \text{background from ionic pseudo-potentials}$	
	$2 \rightarrow \text{background read in from potion.dat}$	
radjel	Wigner-Seitz radius of jellium background	
surjel	surface thickness of jellium background	
bbeta	quadrupole deformation of jellium background	
gamma		
dx,dy,dz,	grid spacing (in Bohr) for the 3D numerical grid	
	the grid size is defined before compilation in params.	F90
imob	global switch to allow ionic motion (if set to 1)	
isurf	switch for Ar or MgO surface (isurf=1 activates surface	
nc	number of O cores in MgO(001)	
nk	number of Mg cations in MgO(001)	
rotclustx,y,z	vector fo angle of initial rotation of ions	
•	initialization of wave functions	
b2occ	deformation for initial harmonic oscillator wf's	
gamocc	triaxiality for initial harmonic oscillator wf's	
deocc	shift of inital Fermi energy (determines nr. of states)	
shiftWFx	shift of initial wavefunctions in x direction	
ishiftCMtoOrigin	switch to shift center of mass of cluster to origin	
ispinsep	initialize wavefunctions with some spin asymmetry	
init_lcao	switches the basis functions to start from	
	$=0 \Longrightarrow$ harmonic oscillator functions (center can be n	moved by shiftWFx)
	$=1 \Longrightarrow$ atomic orbitals = WFs centered at ionic sites	· · · · · · · · · · · · · · · · · · ·
	convergence issues	
e0dmp	damping paramter for static solution of Kohn-Shahm	equations
1	(typically about the energy of the lowest bound state	_
epswf	step size for static solution of Kohn-Shahm equations	,
· r · · · ·	(of order of 0.5)	
epsoro	required variance to terminate static iteration	
	(order of 10^{-5})	

Namelist DYNAMIC	in for005. <name></name>

dt1	time step for propagating electronic wavefunctions
ismax	maximum number of static iterations
idyniter	switch to s.p. energy as E0DMP for 'iter>idyniter'
ifhamdiag	diagonalization of m.f. Hamiltonian in static step
	(presently limited to fully occupied configurations)
itmax	number of time steps for electronic propagation
ifexpevol	exponential evolution 4. order instead of TV splitting
iffastpropag	accelerated time step in TV splitting
	(for pure electron dynamics, interplay with absorbing b.c. ??)
irest	switch to restart dynamics from file 'save'
istat	switch to read wavefunctions from file 'rsave'
	it continues static iteration for 'ismax>0'
	it starts dynamics from these wf's for 'ismax=0'
idenfunc	choice of density functional for LDA
	$1 \to \text{Perdew \& Wang 1992 (default setting)}$
	$2 \to \text{Gunnarson } \& \text{ Lundquist}$
	$3 \rightarrow \text{only exchange in LDA}$
isave	saves results after every 'isave' steps
	on file 'rsave' in and after static iteration
	on file 'save' in dynamic propagation
ipseudo	switch for using pseudo-densities to represent substrate
	atoms
ipsptype	type of pseudopotentials: $0 = \text{soft local (errf)};$
	1 = full Goedecker; 2 = local Goedecker
directenergy	.true. = direct computation of energy
	(only for LDA, Slater, KLI)
ifsicp	selects type of self-interaction correction
	0 = pure LDA, 1 = SIC-GAM, 2 = ADSIC; 3 = SIC-Slater;
	4 = SIC-KLI; 5 = exact exchange; 6 = old SIC (?);
	7 = GSlat; 8 = full SIC.
	for activation see switches kli, exchange, fullsic, twostsic.
icooltyp	type of cooling (0=none, 1=pseudo-dynamics,
	2=steepest descent, 3=Monte Carlo)
ifredmas	switch to use reduced mass for ions in dynamics
ionmdtyp	ionic propagation (0=none, 1=leap-frog, 2=velocity Verlet)
ntref	nr. time step after which absorbing bounds are deactivated
nabsorb	number of absorbing points on boundary (0 switches off)
powabso	power of absorbing boundary conditions
ispherabso	switch to spherical mask in absorbing bounds

	Namelist DYNAMIC	in for005. <name></name>
	way of excitation	
centfx	initial boost of electronic wavefuncfti	ions in x-direction
centfy	initial boost of electronic wavefunctions in x-direction	
centfz	initial boost of electronic wavefunctions in x-direction	
tempion	initial temperature of cluster ions	
ekmat	initial kinetic energy of substrate ato	om (boost in x , in eV)
itft	choice of shape of laser pulse	
	1 = ramp laser pulse, sine switching	on/off
	2 = gaussian laser pulse	
	$3 = \cos^2 \text{ pulse}$	
tnode	time (in fs) at which pulse computate	ion starts
deltat	length of ramp pulse (itft = 1), in	fs
tpeak	time (in fs, relative to tnode) at which peak is reached	
	(for itft $= 1$ and 2, pulse length be	comes 2*tpeak)
omega	laser frequency (in Ry)	
e0	laser field strength in Ry/Bohr	
e1x,e1y,e1z	orientation of pulse	
iexcit	modus of excitation (0=shifts, 1=rot	ation)
iangmo	switch to compute angular momentu	m
irotat	axis of rotation for excitation (x=1,y	z=2,z=2,xyz=4)
phirot	angle of rotation for excitation (in ur	nits of degree)
phangle	angle of "rotation" into a $1ph$ state	
phphase	phase of "rotation" into a $1ph$ state	
nhstate, npstate	nr. of hole and particle state for $1ph$	excitation
	this $1ph$ option can only be run from	istat=1
eproj	energy of incoming projectile (= last	ion in the list)
vpx,vpy,vpz	direction of the incoming projectile	
taccel	time span over which the projectile is	s accelerated to eproj
	for taccel=0 one has to use init_lc	ao=1

	Namelist DYNAMIC	in for005. <name></name>	
flags for observables			
iemomsRel	calculates multipole momentes of electron density		
	relative to origin (0) or c.m. of cluster (1)		
istinf	modulus for printing information in static iterat	tion	
ifspemoms	switch to compute and print spatial s.p. momen	nts	
iftransme	switch to compute and print transition m.eleme	ents	
$ifrhoint_time$	switch to slices of integrated densities for all time	nes	
jstinf	modulus for printing information in dynamic		
jinfo	modulus for printing dynamical information on	infosp. <name></name>	
jdip	modulus for printing dipole moments on pdip.	<name></name>	
jquad	modulus for printing quadrupole moments on p	quad. <name></name>	
jesc	modulus for printing ionization pescel. <name></name>		
jenergy	modulus for printing energy information on pen	ergies. <name></name>	
iflocaliz	activates computation of Becke's localization		
jelf	modulus for analyzing and printing electron loc	alization in dynamics	
	various files are written of the form pelf*. <nam< td=""><td>ne></td></nam<>	ne>	
iflocaliz	modulus for analyzing and printing electron loc	alization in statics	
jstinf	modulus for printing s.p. energies and variances	8	
jpos	modulus for printing ionic positions on pposior	n. <name></name>	
jvel	modulus for printing ionic velocities on pvelion	n. <name></name>	
jstateoverlap	switch to compute overlap of static state with		
	the state directly after dynamical initialization		

	Namelist SURFACE	in for005. <name></name>	
ivdw	handling of Van-der-Waals with	h substrate atoms	
	$0 \Longrightarrow \text{no VdW}$		
	$1 \Longrightarrow \text{enables full computation of VdW}$		
	$2 \Longrightarrow$ enables effective VdW th	rough PsP parameters	
ifadiadip	switch to adiabatic treatment of substrate dipoles		
shiftx	global shift in x for all substrate atoms		
shifty,shiftz	as shiftx for y and z direction		
mion	mass of surface anion (16 for O in MgO(001))		
mkat	mass of surface kation (24.3 for	Mg in MgO(001)	
me	mass of valence shell		
cspr	spring constant for interaction	between core and valence shell	
chgc0	charge of (anion) core		
chge0	charge of valence shell		
chgk0	charge of cation		
sigmak	gauss width of cation		
sigmac	gauss width of core		
sigmav	gauss width of valence shell		
iUseCell	switch for reading/building late	tice of substrate atoms	
	$0 \Longrightarrow \text{lattice atoms are read in}$	from input file 'for005surf.*'	
	$1 \Longrightarrow \text{lattice is built from repli}$	cating unit cell and	
	lattice parameters rlattve	ec are read in (see md.F)	
iPotFixed	switch for Madelung summation	n of substrate atoms	
	read/write electrostatic potential from particles with imob=0,		
	so that their run-time calculati	on can be skipped	
	$0 \Longrightarrow do not read; calculate full$	ll potential at each iteration	
	$1 \Longrightarrow \text{read in potFixedIon}() \text{ from}$	om previously prepared file	
	$-1 \Longrightarrow \text{calculate potFixedIon}()$	write result to a file which can	
	be later read in by option	1, stop after that	
	$2 \Longrightarrow \text{calculate potFixedIon()}$	at the beginning, do not write	
ifmdshort	includes short range interaction	n electron—substrate	
isrtyp(i,j)	type of interaction between the	e different kinds of particles	
	$0 \rightarrow \text{no short range interaction}$		
	$1 \to GSM$ core		
	$2 \to \text{GSM}$ valence shell =1 \Longrightarrow	Born-Mayer type	
	$3 \to \text{GSM kation} = 2 \Longrightarrow \text{Argo}$	n case	
	$4 \to \text{Na core}$		
	$5 \to \mathrm{DFT}$ electron		
unfixCLateralRadx	radius of cylinder with mobile	cores	
unfixELateralRadx	radius of cylinder with mobile		
fixCBelowx	fixes cores which lay below give		
iDielec switch to dielectic support			
xDielec	x below which dielectric zone is	s activated	
epsDi	dielectric constant in the dielec		

Namelist PERIO in for009		
ch	effective charge of ion	
amu	mass of ion in units of hydrogen mas	SS
dr1,dr2	radii of soft local PsP	
prho1,prho2	strenghts of soft local PsP	
crloc	radius for local part of Goedecker Ps	sP
cc1,cc2	strengths for local part of Goedecker	PsP
r0g,r1g,r2g	radii for non-local parts of Goedecke	er PsP
h0_11g,h0_22g,h0_33g	strenghts for non-local parts of Goed	lecker PsP
h1_11g,h1_22g,h2_11g	strenghts for non-local parts of Goed	lecker PsP
radiong	carrier radius for projecteor in non-le	ocal Goedecker PsP

	Namelist FSIC	in for005. <name></name>
step step size in iteration of localizing or symmetry condi-		
precis	precision in iteration of localizing or	symmetry condition
SymUtBegin nr. iteration where symmetry condi		tion starts
	for pure localizing step set SymUtBeg	ginį ismax
radmaxsym	limiting value in radius division for a	actucal step

Ionic structure and e^- -initialization in for005ion.<name>

This initialization does not use NAMELIST but reads input in fixed order. Each line stands for one ion. Each column has a definite meaning.

- Col. 1 x-coordinate
- Col. 2 y-coordinate
- Col. 3 z-coordinate
- Col. 4 number of element in periodic system (e.g.: Na↔11)
- Col. 5 only init_lcao=1: ordering of nodes in repeated initialization at this ion
- Col. 6 only init_lcao=1: radius of initial Gaussian at this ion
- Col. 7 only init_lcao=1: starting spin for initalization at this ion

The handling of the initialization of electronic wavefunctions is rather involved. A more detailed explanation is given in appendix A.

A On the initialization of the electronic wavefunctions

The basic switch is init_lcao. The case init_lcao=0 is the simpler option. This initializes harmonic oscillator wavefunctions about one common center. This center is usually the origin of the coordinte-space grid. It can be moved deliberately by shiftWFx, shiftWFy, and shiftWFz. The initial oscillator may be deformed. Its deformation is given by the dimensionless quadrupole b2occ and triaxiality gamocc (in degree). The oscillator states are filled in order of increasing oscillator energies. A spin asymmtry can be enforced with ispinsep=1. This option is useful when dealing with odd electron number. The upper end of initialization is determined by deocc. A $deocc \approx 0$ typically initializes just as many states as are occupied. If more is required, enhance deocc.

The case init_lcao=1 initializes wavefunctions which are localized at the ions. This option is richer and a bit hard to handle. In a first step, the total number of wavefunctions is estimated and it is computed how many wavefunctions have to be initialized then for each ion. At one given ion, initialization starts with the 1s oscillator state. The first choice of spin is taken from column 7 of tt for005ion.jname;. If more than one state is to be occupied, the next is then the 1s state with opposite spin. Next comes the $1p_i$ state with first spin where i is the direction given as first entry in column 5. For example if column 5 selects 'yzx', the $1p_y$ comes here. Occupation continues in order given by column 5 and 7 until the wanted number of orbitals at this ion site is reached. Column 6 sets the oscillator radius for the initialization at this ion (which allows to deal efficiently with systems consisting of very different ions). Column 7 becomes important for ions associated with an odd number of electrons as, e.g., hydrogen. One ought to distribute an equal collection of +1 and -1 entries to avoid unnaturally polarized molecules.

B Open ends and to-be-dones

Status of Fortran90 code development:

- All common blocks have been replaced by modules and corresponding USE command. The then appearing dependences are mapped in the makefile.
- All code is now genuinly double precision and can be complied without the autodouble option. Only exception if the FFT package fftpack.F90 in connection with NETLIB which still requires the autodouble, as handled explicitely in the Makefile.

 Note that the precision is set at the header of params.F90 and used as a KIND parameter in typical Fortran90 fashion. The name is set to DP.
- The somewhat dangerous practice of reusing workspace has been abandoned. Workspace is now associated dynamically with the ALLOCATE/DEALLOCATE mechanisms.
- The compiled code works now for all box sizes and number of s.p. states as long as memory allows. The box size and maximum number of states is now entered in for005. <name> in namelist GLOBAL.

Next in Fortran90 code development:

- Remove numbered labels and GOTO in favour of CYCLE or EXIT switches.
- Exploit compact vector operations to simplify long (and nested) DO loops.
- The access USE kinetic has been given too generously. Confine that to routines which really need it.
- The module params.F90 collects practically all global variables. It should be disentangled to more specific modules with restricted access.
- There are still problems with running substrates. For example the leap-frog switch does not propagate the substrate electrons. This case has to be tested.

 In future, it may be that the whole subtrate part is trated in a separate program connected to the electronic part by a master routine written in ttt python.
- Full SIC has yet to be implemented.
- The code should be successively moved to IMPLICIT NONE.

Open problems of general nature:

- The implementation of GSlat and full SIC needs to be checked and updated if necessary.
- Check PES and PAD for the option parayes.
- Option iaddCluster is presently questionable. It may be extended to allow for initialization of cluster collisions.
- The computation of pseudo-potentials from the substrates valence electrons should be separated from the slower atomic (ionic) parts. This concerns routine calcpseudo.
- The setting for the valence-electron mass in 'vstep' may be wrong for the case of MgO.
- Check proper setting of 'time' in outputs.
- Exponential propagation should yet be certified to cooperate with ionic motion.
- Subgrids for Gaussian pseudo-densities have fixed grid size of ± 7 points. This should be made more flexible to accommodate mesh size in relation for PsP radius.
- Although not necessary for performance, one may replace DO loops by the Fortran 95 SUM construct. This will make the code more transparent. This also holds for other compact Fortran 95 constructs.
- Present parallele version still needs to specify the number of nodes at compile time. This should be changed to allow dynamical adjustment of number of nodes.
- Spin-averaged code (numspin=1) does not reproduce the results from full spin calculation in case of ADSIC. Check.