Handout for Assignment #1 M624

Problem 33.

Let us call denote by

$$I = \int f dx$$
 $a_n = \int f_n dx$ and $A = \liminf \int f_n dx$

We wish to prove that

$$I \leq A$$

By assumption we know

- (1) $f_n \ge 0$ (in particular $a_n \ge 0$ also)
- (2) $f_n \to f$ in measure.

Now since A is the smallest of all limit points, there must exist a subsequence of a_{n_k} of a_n that converges to A; i.e.

$$\lim_{k \to \infty} a_{n_k} = A.$$

In particular note that

$$A = \lim_{k \to \infty} \int f_{n_k} dx$$
 and that $f_{n_k} \to f$ in measure as well

Then for every subsequence $a_{n_{k_i}}$ of a_{n_k} we also have that

$$A = \lim_{j \to \infty} a_{n_{k_j}} = \lim_{j \to \infty} \int f_{n_{k_j}} dx$$

and $f_{n_{k_i}} \to f$ in measure as well .

In particular then, there exists one such sub(sub)sequence for which we have a.e. convergence to f. By abuse of notation let us refer to this particular sub(sub)sequence as $f_{n_{k_i}}$ once again. Now, by Fatou's lemma we have that

$$I = \int f = \int \lim f_{n_{k_j}} = \int \liminf f_{n_{k_j}} \le \liminf a_{n_{k_j}} = \lim_{j \to \infty} a_{n_{k_j}} = A$$

as desired.

Problem 38 Part b).

First note that:

$$f_n g_n - f g = (f_n - f)(g_n - g) + f(g_n - g) + g(f_n - f)$$

Then **prove** that if a function is finite a.e. and $\mu(X) < \infty$ then the function is almost bounded: i.e.

$$\forall \varepsilon > 0 \text{ there exists} M = M(\varepsilon) > 0 \ \mu(\{x \in X : f(x) > M\}) < \varepsilon$$

To see this look at the sequence of sets $E_n = \{x \in X : f(x) > n\}$ and use the continuity from above of the measure μ . Note $\mu(E_1) \leq \mu(X) < \infty$.

To find a counterexample in the case $\mu(X) = \infty$ consider $X = \mathbb{R}$ and μ Lebesgue measure. Define a sequence of functions $f_n(x) = a_n$ for all x in \mathbb{R} where $\{a_n\}$ is any sequence of positive real numbers you care to **choose** such that $a_n \to 0$ as $n \to \infty$. And define $g_n(x) = g(x)$ for all $n \ge 1$ where g(x) is any function you care to **choose** over \mathbb{R} such that $g(x) \to \pm \infty$ as $x \to \pm \infty$. Show f_n converges in measure to zero, g_n converges in measure to g but g_n does not converge in measure to zero.

Problem 41.

The argument below might need some fine tuning: check it carefully.

Since X is σ -finite we can write

$$X = \bigcup_{i=1}^{\infty} X_i$$
 $\mu(X_i) < \infty$ $X_i \cap X_{i'} = \emptyset$, $i \neq i'$

Since $f_m \to f$ a.e. in X then $f_m \to f$ a.e. in X_i , $\forall i$.

Let $\varepsilon > 0$ be given and fixed. For each $i \geq 1$ we will apply Egoroff's theorem with $\frac{\varepsilon}{2^i}$.

Then there exists $F_i \subset X_i$, $\mu(F_i) < \frac{\varepsilon}{2^i}$ such that

$$f_m \to f$$
 uniformly on $X_i \setminus F_i$

Note that $F_i \cap F_{i'} = \emptyset$ $i \neq i'$.

Let us denote by $G_i = X_i \setminus F_i$ then since

$$G_i^c = X \setminus G_i = \bigcup_{j \neq i} X_j \cup F_i$$

where all unions are disjoints one can prove (homework: prove it!) that

$$\bigcap_{i=1}^{\infty} G_i^c \subseteq \bigcup_{i=1}^{\infty} F_i$$

(again last union is disjoint union). Hence

$$\mu((\bigcup_{i=1}^{\infty} G_i)^c) = \mu(\bigcap_{i=1}^{\infty} G_i^c) \le \sum_{i=1}^{\infty} \mu(F_i) \le \varepsilon$$

For later use we now denote by

$$H_1 = \left(\bigcup_{i=1}^{\infty} G_i\right)^c = X \setminus \left(\bigcup_{i=1}^{\infty} G_i\right) \text{ and } \mathcal{E}_1 = \left(\bigcup_{i=1}^{\infty} G_i\right)$$

Now consider the sequence $\varepsilon_n = 2^{-n}, n \ge 1$.

Let n = 1 and run the argument above with $\varepsilon = \varepsilon_1 = 1/2$. We get \mathcal{E}_1 and H_1 such that

- (1) $X = \mathcal{E}_1 \cup H_1$ where the union is disjoint and $\mu(X \setminus \mathcal{E}_1) = \mu(H_1) < 1/2$
- (2) $f_m \to f$ uniformly on each set G_i in \mathcal{E}_1
- (3) $f_m \to f$ a.e in X; hence in particular, $f_m \to f$ a.e in H_1

For n=2 we now consider as full space $X=H_1$ and apply Egoroff's theorem with $\varepsilon_2=1/4$. Then there exists a set \mathcal{E}_2 such that

- (1) $X = \mathcal{E}_2 \cup H_2$, where the union is disjoint, $H_2 = H_1 \setminus \mathcal{E}_2$ and $\mu(H_1 \setminus \mathcal{E}_2) = \mu(H_2) < 1/4$
- (2) $f_m \to f$ uniformly in \mathcal{E}_2
- (3) $f_m \to f$ a.e in H_1 ; hence in particular, $f_m \to f$ a.e in H_2

Repeat the step n=2 above inductively for all $n\geq 3$ applying Egoroff to $X=H_{n-1}$ and $\varepsilon=\varepsilon_n=2^{-n}$ to get sets \mathcal{E}_n and H_n such that

- (1) $X = \mathcal{E}_n \cup H_n$, where the union is disjoint, $H_n = H_{n-1} \setminus \mathcal{E}_n$ and $\mu(H_{n-1} \setminus \mathcal{E}_n) = \mu(H_n) < 2^{-n}$
- (2) $f_m \to f$ uniformly in \mathcal{E}_n
- (3) $f_m \to f$ a.e in H_{n-1} ; hence in particular, $f_m \to f$ a.e in H_n Note that $\mu(H_1) < \infty$ and $\ldots \subseteq H_n \subseteq H_{n-1} \subseteq H_2 \subseteq H_1$. Then

$$X = \bigcup_{n=1}^{\infty} \mathcal{E}_n \cup H$$
 where $H = \left(\bigcup_{n=1}^{\infty} \mathcal{E}_n\right)^c$ and

$$\mu(H) = \mu(X \setminus \bigcup_{n=1}^{\infty} \mathcal{E}_n) = \mu(\bigcap_{n=1}^{\infty} H_n) = \lim_{n \to \infty} \mu(H_n) = 0$$

On the other hand by relabeling all the G_i in \mathcal{E}_1 and all the \mathcal{E}_n , $n \geq 2$ as E_m , $m \geq 1$ (note that the union of two countable families of sets is countable) for example by sending G_i , $i \geq 1$ to E_{2k} , $k \geq 1$ and \mathcal{E}_n , $n \geq 2$ to E_{2k+1} , $k \geq 0$ we obtained the desired conslusion.