ост 1 7 2003

Piereby certify that this correspondence is being deposited with the United States Postal Service as First Class Mail in an envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date indicated below.

By: Notate: October 15, 2003

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applic. No.

: 10/657,370

Applicant

: Bertram Gunzelmann, et al.

Filed

: September 8, 2003

Docket No.

: L&L-I0177

Customer No.

: 24131

CLAIM FOR PRIORITY

Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

Sir:

Claim is hereby made for a right of priority under Title 35, U.S. Code, Section 119, based upon the German Patent Applications 101 11 204.1, filed March 8, 2001 and 101 12 481.3, filed March 15, 2001.

Certified copies of the above-mentioned foreign patent applications are being submitted herewith.

Respectfully submitted,

MARKUS NOLFF REG. NO. 37,008

For Applicant

Date: October 15, 2003

Lerner and Greenberg, P.A. Post Office Box 2480

Hollywood, FL 33022-2480

Tel: (954) 925-1100 Fax: (954) 925-1101

/av

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 11 204.1

Anmeldetag:

08. März 2001

Anmelder/Inhaber:

Infineon Technologies AG, München/DE

Bezeichnung:

Anordnung zur Zeitsteuerung für mobile

Kommunikationssysteme

IPC:

H 04 L, H 04 Q

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 17. September 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Zusammenfassung

Anordnung zur Zeitsteuerung für mobile Kommunikationssysteme

Eine Anordnung zur Zeitsteuerung einer Sende/Empfangseinrichtung einer Mobilstation umfasst ein Systemtakt-Erzeugungsmittel zum Erzeugen eines einheitlichen Systemtakts (T1) für differierende Zeitraster zu unterschiedlichen Mobilfunkstandards. Der einheitliche Systemtakt wird einem programmierbaren Taktteilermittel (TT) zugeführt, welches einen Ausgangstakt (T2) entsprechend einem auswählbaren Zeitraster erzeugt. Ein Mittel zur Ereignissteuerung (ES) übernimmt auf der Grundlage des Ausgangstaktes (T2) und von Ereignisinformation die zeitliche Steuerung von Ereignissen.

15

(Fig. 2)

Fig.2

Fig.4

Beschreibung

15

Anordnung zur Zeitsteuerung für mobile Kommunikationssysteme

Die Erfindung betrifft eine Anordnung sowie ein Verfahren zur Zeitsteuerung einer Sende- und/oder Empfangseinrichtung in einer Mobilstation eines Kommunikationssystems, wobei die Sende- und/oder Empfangseinrichtung zum Senden/Empfangen von Signalen unterschiedlicher Mobilfunkstandards mit differierenden Zeitrastern ausgelegt ist.

In Sende- und Empfangseinrichtungen von Mobilstationen sind eine Vielzahl von Aktionen auszulösen und Steuersignale zu erzeugen, die zeitlich mit einem speziellen, Mobilfunkstandard-spezifischen Zeitraster korreliert sind.

In den letzten Jahren haben sich in dem Mobilfunkbereich eine Reihe unterschiedlicher Standards etabliert, die fortentwikkelt oder in Zukunft durch neue Standards ersetzt werden. Bekannte Beispiele für Mobilfunkstandards sind GSM (Global System for Mobile Communications), die als EDGE-(Enhanced Data Services for GSM Evolution-)Standard bezeichnete 8PSK-(8-Phase Shift Keying-)Weiterentwicklung von GSM, sowie verschiedene auf CDMA (Code Division Multiple Access) basierende Standards der dritten Mobilfunkgeneration wie beispielsweise UMTS (Universal Mobile Telecommunication System). Mit MBS (Mobile Broadband System) ist derzeit bereits ein Mobilfunkstandard der vierten Generation in der Entwicklung.

Mit dem Vorhandensein von unterschiedlichen beziehungsweise konkurrierenden Standards wachsen die Anforderung an Mobilstationen für den Mobilfunk. Gewünscht werden Mobilstationen, die mehrere Mobilfunksysteme- beziehungsweise Standards gleichzeitig unterstützen können. Dies setzt voraus, dass die Mobilstation die unterschiedlichen Zeitraster der einzelnen Standards erzeugen und darauf basierend geeignete Ereignissteuerungsprozesse durchzuführen vermag.

Dabei tritt die Schwierigkeit auf, dass unterschiedliche Mobilfunkstandards in der Regel inkommensurable Zeitraster verwenden, d.h. die Zeitraster können in der Regel nicht durch eine einfache Taktteilung ineinander übergeführt werden. Folglich werden bisher in Mobilstationen, die unterschiedliche Mobilfunkstandards unterstützen, für jeden Standard eine separate Anordnung zur Zeitsteuerung der Mobilstation verwendet und mit einem auf den Standard genau angestimmten Systemtakt versorgt. Diese Lösung erfüllt die funktionstechnischen Anforderungen, weist jedoch den Nachteil eines hohen Bedarfs an Chipfläche beziehungsweise Bauelementen auf, weil für die unterschiedlichen Systemtaktquellen und Zeitsteuerungen stets eine Vielzahl von Schaltungsblöcken benötigt werden.

Unterschiedliche Systemtaktfrequenzen in einem Chip erschweren darüber hinaus die gesamte Funktionalität des Bauelements, weil neben der Steuerung von Ereignissen auch Signalverarbeitungsprozesse wie beispielsweise die D/A-Umsetzung von der Systemtaktfrequenz abhängig sind. Ein weiterer Nachteil einer derartigen Lösung besteht darin, dass der Aufwand für den Entwurf einer integrierten Schaltung mit unterschiedlichen Systemtakt-Domänen insbesondere im Hinblick auf die Synthese und die Testbarkeit des Entwurfs deutlich erhöht ist.

Der Erfindung liegt die Aufgabe zugrunde, eine Anordnung zur Zeitsteuerung einer Sende- und Empfangseinrichtung in einer Mobilstation zu schaffen, welche günstige Implementierungs-voraussetzungen bietet und insbesondere einen kleinen Chipflächenbedarf aufweist. Darüber hinaus zielt die Erfindung darauf ab, ein Verfahren zur Zeitsteuerung einer Sende- und Empfangseinrichtung in einer Mobilstation anzugeben, welches die Unterstützung mehrerer Mobilfunkstandards ermöglicht und dabei einen geringen Implementierungsaufwand erforderlich macht.

10

15

20

. 30

35

Die der Erfindung zugrunde liegende Aufgabenstellung wird durch die Merkmale der unabhängigen Ansprüche gelöst.

Demnach weist die Anordnung zur Zeitsteuerung ein SystemtaktErzeugungsmittel zum Erzeugen eines für unterschiedliche Mobilfunkstandards mit differierenden Zeitrastern einheitlichen
Systemtaktes auf. Ein wesentlicher Gesichtspunkt der Erfindung besteht darin, dass dieser standardübergreifende Systemtakt mittels eines Taktteilermittels in einen Ausgangstakt
gewandelt wird, welcher einem bestimmten, ausgewählten
Zeitraster unter den differierenden Zeitrastern entspricht.
Auf der Grundlage des von dem Taktteilermittel erhaltenen
standardspezifischen Ausgangstaktes sowie von in der Regel
ebenfalls standardabhängiger Ereignisinformation wird von einem Mittel zur Ereignissteuerung die zeitliche Steuerung von
Ereignissen in der Sende- und Empfangseinrichtung übernommen.

Insbesondere ermöglicht die Erfindung die Verwendung eines Systemtakt-Erzeugungsmittels, dessen Taktfrequenz (Systemtakt) kein gemeinsames Vielfaches der Taktfrequenzen der differierenden Zeitraster ist.

Eine weitere vorteilhafte Ausgestaltung der Erfindung kennzeichnet sich dadurch, dass das vorzugsweise digitale Taktteilermittel derart ausgelegt ist, dass die Taktfrequenzen der differierenden Zeitraster gemäß einem Teilerfaktor der Form K/L, wobei L eine ganze Zahl ist, die insbesondere keine Potenz zur Basis 2 ist, insbesondere also gemäß einem beliebigen rationalen Teilerfaktor, aus der Taktfrequenz des Systemtaktes ableitbar ist. Dies ermöglicht die Unterstützung praktisch beliebiger Mobilfunkstandards, d.h. auch von solchen Standards, deren Zeitraster in keinem besonders "einfachen" Verhältnis zueinander stehen, durch die erfindungsgemäße Anordnung.

Eine weitere vorteilhafte Ausgestaltung der erfindungsgemäßen Anordnung kennzeichnet sich dadurch, dass das Taktteilermit-

tel einen vollständig digitalen Taktteiler einsetzt. Analoge Schaltungsteile, wie z.B. PLLs (Phase Locked Loop), mit denen ebenfalls praktisch beliebige rationale Teilerverhältnisse erreichbar sind, jedoch im allgemeinen nur mit verhältnismäßig hohem Aufwand, werden also nicht benötigt. Aufgrund der ausschließlich digitalen Realisierung des Taktteilers ist dessen Genauigkeit in Abhängigkeit einer Wortbreite der zu verarbeitenden Digitalwerte sowie des Systemtakts nach Wunsch wählbar und frei von Toleranzen einstellbar.

10

5

Ein erstes bevorzugtes Ausführungsbeispiel des erfindungsgemäßen Taktteilermittels kennzeichnet sich dadurch, dass der digitale Taktteiler einen Phasenakkumulator umfasst, welcher mit dem Systemtakt oder einem von dem Systemtakt abgeleiteten 15 Takt ein Phaseninkrement aufaddiert, dessen Wert durch Programmierung variabel vorgebbar ist. Obgleich bei der Akkumulation des Phaseninkrements eine mit der Zeit anwachsende Abweichung zwischen dem Ausgangstakt und dem gewünschten Zeitraster auftreten kann, kann diese Abweichung durch Wahl einer entsprechenden Wortbreite des Phasenakkumulators so gering 20 gehalten werden, dass sie unter praktischen Gesichtspunkten akzeptabel bleibt. Der wesentliche Vorteil dieser Anordnung besteht darin, dass sie einen ausgesprochen einfachen Aufbau aufweist.

Db

30

Ein alternatives, ebenfalls bevorzugtes zweites Ausführungsbeispiel der erfindungsgemäßen Anordnung kennzeichnet sich dadurch, dass das Taktteilermittel einen fraktionalen Taktteiler verwendet, der im zeitlichen Mittel eine exakte Taktteilung ermöglicht. Bei einem derartigen digitalen Taktteiler tritt im zeitlichen Mittel keine Abweichung zwischen den Phasen des Ausgangstaktes und des Taktes des zu reproduzierenden Zeitrasters auf.

35

Eine bevorzugte Ausführungsvariante eines solchen fraktionalen Taktteilers kennzeichnet sich dadurch, dass der fraktionale Taktteiler ein sowohl inkrementierbares als auch dekrementierbares Register umfasst, dass bei einem Teilerfaktor von K/L das Register mit dem Systemtakt oder einem aus dem Systemtakt abgeleiteten Takt mit dem Wert $\Delta INC = 2K$ inkrementiert wird, sofern der im Register gehaltene Wert kleiner 0 ist, und andernfalls mit dem Wert $\Delta DEC = 2 \cdot (K-L)$ dekrementiert wird, wobei K und L ganze positive Zahlen sind und K < L ist, und dass der Ausgangstakt durch einen Vorzeichenwechsel des in dem Register gehaltenen Werts bestimmt wird.

Die Genauigkeit der Taktteilung beim ersten Ausführungsbeispiel beziehungsweise der Schaltungsaufwand des zweiten Ausführungsbeispiels können dadurch vermindert werden, dass dem
Taktteiler ein Vorteiler mit einem ganzzahligen Teiler, insbesondere einem Teiler welcher keine Potenz zur Basis 2 ist,
vorgeordnet ist.

Im Hinblick auf die Ansteuerung der Ereignissteuerung auf der Grundlage des von dem Taktteilermittel erzeugten Ausgangstaktes kennzeichnet sich eine vorteilhafte Ausgestaltung der Erfindung dadurch, dass ein rücksetzbarer Zähler den Ausgangstakt zählt, und dass das Mittel zur Ereignissteuerung einen Tabellenspeicher umfasst, in welchem Ereignissen Zählerstände zugeordnet sind, die von dem gewählten Zeitraster beziehungsweise Mobilfunkstandard abhängen, und wobei das Mittel zur Ereignissteuerung ein Ereignis auslöst, wenn der Zähler den dem Ereignis zugeordneten Zählerstand erreicht hat. Das Rücksetzen des Zählers bei Erreichen eines bestimmten Zählerstands bewirkt die Reproduktion der Rahmenstruktur im Empfänger und ermöglicht, dass die Ereignisse in ständiger Wiederholung mit stets gleicher zeitlicher Lage innerhalb eines (Daten-)Rahmens ausgelöst werden.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.

30

20

35

Die Erfindung wird nachfolgend anhand von zwei Ausführungsbeispielen unter Bezugnahme auf die Zeichnung erläutert; in dieser zeigt:

- 5 Fig. 1 eine schematische Darstellung verschiedener charakteristischer Zeitdauern in den Standards GSM bzw.
 EDGE und TIA/EIA-136;
- Fig. 2 eine schematische Darstellung eines Blockschalt-10 bilds einer erfindungsgemäßen Anordnung;
 - Fig. 3 ein erstes Ausführungsbeispiel der Erfindung;
- Fig. 4 eine schematische Darstellung des in Fig. 3 darge-15 stellten Akkumulator-Registers;
 - Fig. 5 ein Ablaufdiagramm zur Erläuterung der erfindungsgemäßen Ereignissteuerung;
- 20 Fig. 6 ein zweites Ausführungsbeispiel der Erfindung; und
 - Fig. 7 ein Diagramm zur Erläuterung der Funktionsweise des zweiten Ausführungsbeispiels.

Fig. 1 zeigt für den GSM/EDGE-Standard (oberer Teil der Fig. 1) und für den TIA/EIA-136-Standard (unterer Teil der Fig. 1)

Darstellungen zur Veranschaulichung der standardspezifischen Zeitvorgaben sowie einen einheitlichen Systemtakt, wie er in der Erfindung beispielsweise verwendet werden kann.

Bei Mobilfunksystemen ist die Datenübertragung in einer vorgegebenen, standardspezifischen Zeitstruktur organisiert. Die kleinste Zeitstruktur ist das Zeitraster, das sämtlichen Datenverarbeitungsabläufen in dem System zugrunde liegt. Eine Einheit des Zeitrasters wird als "Tick" bezeichnet und bildet die kleinste zu realisierende Zeiteinheit in dem System.

30

35

Basierend auf dem Zeitraster werden die im Standard festgelegten Zeitdauern generiert. Dies sind die Symbolzeitdauer T_S sowie gegebenenfalls (je nach betrachtetem Mobilfunkstandard) die Zeitdauer für einen Zeitschlitz T_{SL} und die Zeitdauer für einen Rahmen T_R .

GSM- und EDGE-Systeme weisen dieselbe Zeitstruktur auf. Die Rahmenzeitdauer beträgt $T_R=4,615$ ms und umfasst acht Zeitschlitze. Die Dauer eines Zeitschlitzes beträgt $T_{\rm SL}=576,9$ $\mu {\rm S}$ und umfasst 156,25 Datensymbole. Ein Datensymbol wiederum weist eine Dauer $T_S=3,692$ $\mu {\rm S}$ auf und dauert 8 Ticks. Die Zeitdauer eines GSM-Ticks beträgt somit $T_2=0,4615$ $\mu {\rm S}$.

Im TIA/EIA-136-Standard weist ein Rahmen die Dauer $T_R=40.0$ ms auf und enthält sechs Zeitschlitze. Ein Zeitschlitz dauert $T_{\rm SL}=6.66$ ms und umfasst 162 Datensymbole. Einem einzelnen Datensymbol ist eine Datensymboldauer von $T_{\rm S}=41.15~\mu{\rm s}$ zugeordnet. Wie beim GSM-Standard dauert ein Datensymbol 8 Ticks, d.h. das Zeitraster des TIA/EIA-136-Standard wird durch Ticks der Zeitdauer $T_2=5.144~\mu{\rm s}$ gebildet.

Gemäß der Erfindung ist vorgesehen, dass diese beiden Zeitraster aus ein und demselben Systemtakt abgeleitet werden. Als Beispiel wird ein Systemtakt von 104 MHz angenommen. Die Dauer eines Systemtakts T_1 beträgt dann T_1 = 1/104 μs = 9,615 ns.

Im Fall von GSM gilt T_2 = 48· T_1 , d.h. 48 Systemtakte bilden einen Tick des GSM-Zeitrasters. Für TIA/EIA-136 gilt T_2 = (130000/243)· T_1 \approx 534,98· T_1 .

Fig. 2 zeigt eine schematische Darstellung der Struktur einer erfindungsgemäßen Anordnung zur Zeitsteuerung einer Sendeund Empfangseinrichtung in einer Mobilstation. Die Anordnung umfasst einen digitalen Taktteiler TT und eine Ereignissteuerung ES. Der digitale Taktteiler TT wird mit dem einheitlichen Systemtakt T_1 (z.B. 104 MHz) versorgt. An einem Ausgang des digitalen Taktteilers steht ein Ausgangstaktsignal A zur Verfügung, dessen mittlere Periodendauer der Dauer T_2 eines Ticks entspricht. Dem digitalen Taktteiler TT wird mindestens ein Parameter P_1 beziehungsweise P_2 zugeführt, mittels welchem die mittlere Periodendauer des Ausgangssignals A bzw. Tick-Zeitdauer T_2 gemäß dem gewünschten Standard einstellbar beziehungsweise programmierbar ist.

10

15

20

35

5

Ferner leitet der Taktteiler TT aus dem Ausgangstaktsignal A ein Steuersignal ab, welches die augenblickliche Phase ϕ des Ausgangstaktsignals angibt. Dieses Steuersignal wird der Ereignissteuerung ES zugeleitet und versetzt diese in die Lage, vorgegebene Ereignisse E zu definierten Zeitpunkten beziehungsweise Phasenlagen durch einfachen Vergleich einer dem Ereignis zugeordneten Referenzphase mit der augenblicklichen Phase ϕ auszulösen. Über ein Rücksetzsignal R kann nach einer bestimmten, insbesondere Mobilfunkstandard-abhängigen Phase bzw. Zeitdauer ein Rücksetzen des Taktteilers TT erfolgen, um die Zyklizität (üblicherweise Rahmenzyklizität) des Gesamtablaufs zu gewährleisten.

Fig. 3 zeigt ein erstes Ausführungsbeispiel der erfindungsgemäßen Anordnung. Der Taktteiler TT umfasst einen Vorteiler
VT, dem der Systemtakt T₁ eingegeben wird. Der Vorteiler
weist ein einstellbares Teilungsverhältnis M auf, d.h. die am
Ausgang des Vorteilers VT auftretende Taktzeitdauer beträgt
M·T₁, wobei M eine ganze positive Zahl ist. Der Vorteiler VT
ist optional, er bietet jedoch für bestimmte Anwendungsfälle
Vorteile, auf die später noch näher eingegangen wird.

Der Ausgang des Vorteilers VT wird dem Takteingang eines Phasenakkumulator-Registers AR zugeleitet. Der Eingang des Phasenakkumulator-Registers AR steht mit dem Ausgang eines Addierers AD in Verbindung. Dem einen Addierereingang des Addierers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Takt verzögerte Ausgang des Phasenakkumulator-Registers AD wird der um einen Registers AD wird der um

10

30

35

senakkumulator-Registers AR zugeführt, während dem zweiten Addierereingang ein Phaseninkrement $\Delta \phi$ zugeleitet wird.

Der Ausgang des Phasenakkumulator-Registers AR bildet das Eingangssignal für einen Phasendekoder PD, dessen Arbeitsweise im folgenden noch näher erläutert wird. Der Phasendekoder PD erzeugt einerseits das gewünschte Ausgangstaktsignal A (mit der mittleren Periodendauer T_2) und andererseits das Phasensignal ϕ , welches gemäß der Darstellung in Fig. 2 der Ereigissteuerung ES mitgeteilt wird. Die Ereignissteuerung ES erzeugt hier zwei Rücksetzsignale r_1 und r_2 für das Phasenakkumulator-Register AR.

Im folgenden wird unter Bezugnahme auf die Fig. 4 die Arbeitsweise des in Fig. 3 gezeigten ersten Ausführungsbeispiels der Erfindung erläutert. Fig. 4 zeigt die Struktur des Phasenakkumulator-Registers AR und verdeutlicht darüber hinaus, wie der Inhalt des Registers AR in dem Phasendekoder PD dekodiert wird. Das Phasenakkumulator-Register AR hat in dem Ausführungsbeispiel eine Wortbreite w₁ Bits, die mit 0, 1, ..., w₁-1 durchnumeriert sind. Hiervon werden die w₂ niederwertigeren Bits der Stellen 0, 1, ..., w₂-1 als fraktionaler Teil interpretiert, während die verbleibenden höherwertigen Bits die Phase – gemessen in Ticks – des gewünschten Zeitrasters repräsentieren. Beispielsweise kann w₁ = 40 und w₂ = 25 gewählt werden.

Zunächst werden je nach dem Mobilfunkstandard, dessen Zeitraster reproduziert werden soll, die Werte für den Vorteilerfaktor M und das Phaseninkrement $\Delta \phi$ eingegeben. Mit N wird im folgenden das zu realisierende Teilungsverhältnis N = T_2/T_1 bezeichnet. Bei (optionaler) Wahl eines geeigneten Vorteilerfaktors M wird das Phaseninkrement $\Delta \phi$ nach der folgenden Gleichung eingestellt:

$$\Delta \varphi = \operatorname{rnd}\left(\frac{2^{w_2}}{N / M}\right) \tag{1}$$

Dabei bezeichnet "rnd" die Rundung des in der Klammer stehenden Ausdrucks (sofern erforderlich) auf eine ganze Zahl. Zu Beginn eines Zeitrahmens wird der Inhalt des Phasenakkumulator-Registers AR, im folgenden auch als Zählerstand $\phi(n)$ bezeichnet, zurückgesetzt. Das erstmalige Zurücksetzen des Phasenakkumulator-Registers AR erfolgt mit Hilfe des Rücksetzsignals r_1 und bewirkt das Zurücksetzen aller w_1 Bits des Registers AR. Die anschließend im Phasenakkumulator-Register AR stattfindende Phasenakkumulation lässt sich mit der Gleichung

$$\varphi(n) = \varphi(n-1) + \Delta \varphi \tag{2}$$

beschreiben, wobei n die Taktung durch den von dem Vorteiler VT ausgegebenen Takt $T_1 \cdot M$, sofern M=1 durch den Systemtakt T_1 , bezeichnet.

Üblicherweise enthält ein Zeitrahmen eine für den jeweiligen Mobilfunkstandard charakteristische Anzahl von Ticks. Für die GSM/EDGE-Standards ergeben sich 10000 Ticks pro Rahmen (10000 = 8 Zeitschlitze/Rahmen × 156,25 Symbole/Zeitschlitz × 8 Ticks/Symbol) und für den TIA/EIA-136-Standard ergeben sich 7776 Ticks pro Rahmen (7776 = 6 Zeitschlitze/Rahmen × 162 Symbole/Zeitschlitz × 8 Ticks/Symbol).

Der nicht fraktionale Anteil des Zählstands $\phi(n)$ des Phasenakkumulator-Registers AR wird der Ereignissteuerung ES über das Phasensignal ϕ ständig mitgeteilt. Die weitere Arbeitsweise des erfindungsgemäßen Taktteilers TT ist nun derart, dass bei allen folgenden Rahmen zu deren Beginn immer nur die Bits w_2 bis w_1 -1 mit Hilfe des zweiten Rücksetzsignals r_2 zurückgesetzt werden, d.h. für das Beispiel des GSM/EDGE-Standard nach Erreichen des Werts 10000 und für das Beispiel des Tia/EIA-136-Standard nach Erreichen des Werts 7776. Durch das Zurücksetzen dieser höherwertigen Bits wird gewährleistet, dass der integrale Fehler allein durch die Wortbreite w_2 des "fraktionalen Ticks" bestimmt wird. Darüber hinaus

wird durch das periodische Zurücksetzen des Phasenakkumulator-Registers AR ein Überlaufen desselben verhindert.

Das gemäß den vorgegebenen Parametern $\Delta \phi$ und (optional) M geteilte Ausgangstaktsignal A kann an dem Bit der Stelle w_2 -1 abgegriffen werden und hat näherungsweise ein Tastverhältnis von 50%.

Die zeitliche Steuerung von Ereignissen im Mobilfunksender/Empfänger wird anhand der Tabelle 1 in Verbindung mit dem
in Fig. 5 gezeigten Ablaufdiagramm erläutert.

Tabelle 1

Nr.	Zählerstand	Ereignis		
11	10	Ereignis 1		
2	345	Ereignis 2		
3	1200	Ereignis 3		
	• • •	• • •		
		• • •		
		• • •		
K	7768	Ereignis K		

auf den Wert 0 zurückgesetzt.

15

20

25

Tabelle 1 zeigt beispielhaft eine Liste der für einen aktuellen Rahmen gültigen Ereignisse für den Mobilfunkstandard TIA/EIA-136, wobei jedem Ereignis sein entsprechender Tick-Zählerstand (das heißt seine Phase ϕ) im Zeitrahmen zugeordnet ist. Das erste Ereignis soll bei 10 Ticks nach Rahmenanfang, d.h. beim Zählerstand 10 ausgelöst werden, die Auslösung des zweiten Ereignisses ist für den Zählerstand 345 vorgesehen und so weiter, und ein letztes Ereignis K ist für den Zählerstand 7768 vermerkt. Beim Zählerstand 7776 ist wie bereits erwähnt das Rahmenende erreicht und die Phase ϕ wird

Gemäß Fig. 5 erfolgt nach einer Initialisierung des Senders/Empfängers ("Start") zunächst das Aktivieren des ersten

15

30

Rücksetzsignals r₁. Im gleichen Schritt wird das erste Ereignis (das heisst das Ereignis 1) aus der Liste gelesen. Daraufhin wird in einem Vergleichsschritt ständig der Tick-Zählerstand ϕ des Phasenakkumulator-Registers AR mit dem in der Liste notierten Zählerstand des Ereignisses 1 verglichen. Wird Übereinstimmung festgestellt, wird die zum Ereignis gehörige Aktion veranlasst und in einem darauffolgenden Schritt das nächste Ereignis aus der Liste ausgelesen. In jedem Fall (das heisst auch dann, wenn bei den vorhergehenden Zählerstand keine Übereinstimmung mit einem in der Liste notierten Zählerstand festgestellt wurde) wird eine nochmalige Überprüfung des Zählerstands in Bezug auf die Gesamtlänge des Rahmens durchgeführt. Sofern der Zählerstand angibt, dass das Ende des Rahmens erreicht ist, wird das zweite Rücksetzsignal r_2 aktiviert. In jedem Fall, d.h. auch dann, wenn das Rahmenende noch nicht erreicht ist, kehrt der Prozess anschließend für den nächsten Zählerstand zum ersten Vergleichsschritt zurück.

20 Bei dem ersten Ausführungsbeispiel können grundsätzlich zwei unterschiedliche Fehlerarten auftreten:

Ein erster Fehler wird durch die Endlichkeit der Taktfrequenz des Systemtakts T_1 bewirkt. Dadurch sind die Auslösezeitpunkte der Ereignisse mit einem Jitter behaftet. Ein Auslösezeitpunkt eines Ereignisses kann maximal um eine halbe Taktperiode von T_1 von seinem Sollzeitpunkt abweichen. Gemäß dem Ausführungsbeispiel ergibt sich für die halbe Taktperiode von T_1 ein Wert von $0.5\cdot1/(104 \text{ MHz}) = 4.808 \text{ ns.}$ Für den Jitter-Fehler kann eine Gleichverteilung angenommen werden. Der RMS-Jitter beträgt in diesem Fall 1/3 des maximalen Jitters, d.h. ca. 1.6 ns.

Bezieht man diesen Jitter-Zeitfehler auf das zu erzeugende 35 Zeitraster (d.h. auf T_2) beziehungsweise auf die Symbolzeitdauer, so erhält man für die im Ausführungsbeispiel gewählte

Systemtaktfrequenz $T_1^{-1} = 104$ MHz für den TIA/EIA-136-Standard die in Tabelle 2 angegebenen relativen Werte.

Tabelle 2

5

15

20

25

Standard	rel. RMS-Jitter (Tick)	rel. RMS-Jitter (Symbol)		
TIA/EIA-136		39 ppm		

Der Jitter wird also vom Systemtakt T_1 bestimmt. Je höher die Systemtaktfrequenz, desto kleiner ist der Jitter.

Es wird darauf hingewiesen, dass der Jitter-Fehler nur dann auftritt, wenn das gewünschte Teilerverhältnis N nicht exakt durch das Phaseninkrement $\Delta \phi$ eingestellt werden kann. Eine exakte Einstellung ist immer dann möglich, wenn N eine ganze Zahl ist, die als endliche Summe von Potenzen zur Basis 2 darstellbar ist.

Durch Verwendung des Vorteilers VT lässt sich der Jitter-Fehler in dem Fall eliminieren, dass N als Produkt einer ganzen Zahl und einer Summe von Potenzen zur Basis 2 geschrieben werden kann. Beispielsweise ist diese Bedingung für den hier betrachteten Systemtakt von 104 MHz für den GSM/EDGE-Standard mit N = $48 = 3 \cdot 2^4$ erfüllt. In diesem Fall wird der Vorteilerfaktor N = 3 gesetzt und der verbleibende Teilerfaktor 2^4 durch geeignete Wahl des Phaseninkrements $\Delta \phi$ bei der Phasenakkumulation eingestellt. Bei w_2 =25 ergibt sich in diesem Fall:

$$\Delta \varphi = \text{rnd}\left(\frac{2^{w_2}}{N/M}\right) = 2^{w_2}/16 \stackrel{w_2=25}{=} 2^{21}$$
 (3)

Die zweite Fehlerart beruht auf der endlichen Wortbreite w_2 des "fraktionalen Ticks" im Phasenakkumulator-Register AR und führt aufgrund der Quantisierung zu einem integralen Fehler, der sich von Rahmen zu Rahmen akkumuliert.

Bei GSM/EDGE tritt auch der integrale Fehler nicht auf, da bei Verwendung des Vorteilerfaktors (M = 3) in Gleichung 1 keine Rundung erforderlich ist, siehe Gleichung 3. Für den TIA/EIA-136-Standard gilt für eine Systemtaktfrequenz von 104 MHz, M = 1 und w_2 = 25:

$$\Delta \varphi = \text{rnd}\left(\frac{2^{w_2}}{N/M}\right) = \text{rnd}\left(\frac{2^{w^2}}{130000/243}\right)^{w_2=25} = 62721$$
 (4)

Der relative Rundungsfehler ϵ beträgt daher:

10

5

$$\varepsilon = \frac{\text{rnd}\left(\frac{2^{w_2}}{N / M}\right)}{\frac{2^{w_2}}{N / M}} - 1 \approx 0,371 \text{ ppm}$$
 (5)

und liegt somit weit unterhalb der Einstellungenauigkeit von bekannten Systemtakt-Oszillatoren.

15

Der Rundungsfehler ϵ bewirkt in jedem Tick eine Abweichung der berechneten Phase im Sinne einer Stauchung (bei positivem ϵ) oder einer Dehnung (bei negativem ϵ) der Zeitachse, die eine anwachsende Abweichung der Auslösezeitpunkte der Ereignisse vom Sollzeitpunkt mit größer werdender Rahmenzeit zur Folge hat. Der integrale Fehler am Ende des ersten Rahmens mit der Dauer $T_R = 40$ ms beträgt demnach beim TIA/EIA-136-Standard:

25
$$\varepsilon_{int} = \varepsilon \cdot T_R = 0.371 \text{ ppm} \cdot 7776 \cdot 10 / 1944 \text{ ms} = 14.84 \text{ ns}$$
 (6)

Fig. 6 zeigt ein zweites Ausführungsbeispiel der erfindungsgemäßen Anordnung zur Ereignissteuerung in einem Mobilfunkempfänger/sender. Die Schaltung umfasst einen ersten Zähler,
der aus einem ersten Register R1 und einem ersten Addierer
AD1 aufgebaut ist. Das erste Register R1 weist eine Wortbreite von w₁ Bits auf, wobei das höchstwertige Bit MSB (Most Significant Bit) an der Stelle w₁-1 des ersten Registers R1 ein

10

Vorzeichenbit ist. Dieses Vorzeichenbit MSB steht über einen Inverter INV mit einem Eingang eines UND-Gatters G in Verbindung und realisiert an diesem Eingang ein Freigabesignal En. Der andere Eingang des UND-Gatters G wird von dem Systemtakt T_1 versorgt, welcher darüber hinaus dem Taktteingang des ersten Registers R1 zugeführt ist.

Am Ausgang des UND-Gatters G steht das Ausgangstaktsignal A mit der mittleren Taktperiode T_2 zur Verfügung, welche das gewünschte Zeitraster reproduziert.

Das Ausgangstaktsignal A wird zur Ansteuerung eines zweiten Zählers eingesetzt, welcher aus einem zweiten Register R2 und einem zweiten Addierer AD2 aufgebaut ist. Der zweite Zähler zählt die Takte des Ausgangssignals A und stellt den Zählwert in Form des Phasensignals φ der Ereignissteuerung ES zur Verfügung. Die Ereignissteuerung ES führt in der bereits beschriebenen Weise eine Steuerung von diversen Ereignissen auf der Basis von Ereignisinformation durch und ist über ein einziges Rücksetzsignal r mit einem Rücksetzeingang des zweiten Registers R2 verbunden.

Der wesentliche Unterschied des zweiten Ausführungsbeispiels besteht darin, dass der erste Zähler AD1, R1 nicht nur inkrementierbar sondern auch durch einen zweiten einstellbaren Wert dekrementierbar ist. Wie im folgenden noch näher erläutert, wird dadurch ermöglicht, dass Teilerverhältnisse nicht nur durch Summen von Zweierpotenzen angenähert werden können (wie dies beim ersten Ausführungsbeispiel durch Aufsummieren des Phaseninkrements Δφ erfolgt), sondern dass beliebige rationale Teilerverhältnisse, insbesondere auch solche mit sehr großen Zählern und Nennern, im Mittel exakt, d.h. ohne einen integralen Fehler, zu verwirklichen sind.

35 Ein gewünschtes rationales Teilerverhältnis T_1/T_2 betrage

$$\frac{T_1}{T_2} = \frac{K}{L}, \qquad (7)$$

wobei K und L ganze positive Zahlen mit K < L sind.

5 Ein Dekrementwert ΔDEC und ein Inkrementwert ΔINC werden dann folgendermaßen initialisiert:

$$\Delta INC = 2K$$

$$\Delta DEC = 2 \cdot (K - L)$$
(8)

10 Ferner kann ein Vorgabewert INIT = 2·K-L gesetzt werden.

Der nicht mit dem Ausgang des ersten Registers R1 verbundene zweite Eingang des ersten Addierers AD1 ist mit einem ersten Schalter S1 verbunden, über welchen dem ersten Addierer AD1 entweder der Wert ADEC (welcher kleiner als 0 ist) oder der Wert AINC (welcher größer als 0 ist) zugeführt wird. Ein eingangsseitig des ersten Registers R1 angeordneter zweiter Schalter S2 ermöglicht wahlweise die Initialisierung des ersten Registers R1 mit dem Initialisierungswert INIT oder die Verbindung des Registereingangs mit dem Ausgang des ersten Addierers AD1.

Die Arbeitsweise des fraktionalen Taktteilers wird unter Bezugnahme auf die Fig. 7 näher erläutert. Als Beispiel wird K = 25 = 2 und L = 7 betrachtet. Somit ergibt sich Δ INC = 4, Δ DEC = -10 und INIT ist -3. Z_1 bezeichnet den Zählerstand des ersten Registers R1.

Zunächst wird das erste Register R1 zum Zeitpunkt t = 0 mit dem Wert INIT = -3 durch Umlegen des zweiten Schalters S2 auf die Stellung 1 initialisiert. Durch den Wert INIT wird die Nullphase des Ausgangstaktsignals A festgelegt. Nach dem Initialisierungsvorgang wird der zweite Schalter S2 wieder in die Stellung 0 zurückgelegt.

15

20

30

Die Steuerung des ersten Schalters S1 erfolgt in Abhängigkeit von dem Wert des Vorzeichenbits MSB. Solange das Vorzeichenbit MSB gleich 1 ist, d.h. der Zählerstand Z_1 des ersten Registers R1 negativ ist, steht der erste Schalter S_1 in Stellung 1. Wird der Zählerstand Z_1 Null oder positiv, nimmt das Vorzeichenbit MSB den Wert 0 an. Dies bewirkt, dass der erste Schalter S1 in die Stellung 0 wechselt.

Diese Vorschrift hat zur Folge, dass das erste Register R1

10 bei einem negativen Zählerstand Z_1 inkrementiert wird, hingegen bei positivem Zählerstand Z_1 (oder bei Z_1 = 0) dekrementiert wird. Im Ergebnis schwankt der Zählerstand Z_1 ständig zwischen positiven und negativen Werten, wodurch ein periodischer Wechsel des Vorzeichenbits MSB an der w_1 -1-ten Stelle des ersten Registers R1 erreicht wird.

Im oberen Teil der Fig. 7 ist der Zählerstand Z_1 über der Taktfolge t/T_1 des Systemtaktes T_1 dargestellt. Der Zählerstand Z_1 nimmt die Werte -3, 1, -9, -5, -1, 3, -7, -3, 1, -9, -5, -1, 2, -7, -3, 1, -9, ... an.

Im unteren Teil der Fig. 7 ist das Systemtaktsignal T_1 , das Freigabesignal En und das aus T_1 und En abgeleitete Ausgabetaktsignal A bzw. T_2 dargestellt. Ferner ist die Taktfolge t/T_2 des erzeugten Zeitrasters dargestellt. Im zeitlichen Mittel gilt $T_2/T_1 = 3,5$ exakt.

Fig. 7 macht deutlich, dass der Takt T_2 des Ausgangstaktsignals kein Tastverhältnis von 50% aufweist. Dies ist bei den meisten Anwendungen jedoch kein Nachteil und außerdem kann durch eine weitere Teilung um den Faktor 2 dennoch ein näherungsweise symmetrisches Tastverhältnis erreicht werden.

Es wird darauf hingewiesen, dass bei diesem Ausführungsbeispiel Zähler und Nenner des Teilerverhältnisses frei wählbar sind, und es in der Regel nicht erforderlich ist, das Teilerverhältnis zu runden beziehungsweise zu quantisieren. Daher tritt (wie bereits erwähnt) kein integraler Fehler auf, wobei jedoch für bestimmte Verhältnisse relativ große Wortbreiten erforderlich werden. Die Wortbreite w_1 richtet sich dabei nach dem betragsmäßig größten darzustellenden Wert ΔDEC beziehungsweise ΔINC , wobei zur Darstellung als negative Zweierkomplementzahl bei ΔDEC ein weiteres Bit benötigt wird. Oftmals ist der Inkrementwert ΔINC betragsmäßig wesentlich kleiner als ΔDEC , so dass in der Regel für ΔINC eine Wortbreite $w_1 < w_D$ zur Darstellung ausreicht, siehe Fig. 6.

10

15

5

In Tabelle 3 sind für das Beispiel eines einheitlichen Systemtakts von 104 MHz und der Standards TIA/EIA-136 beziehungsweise GSM/EDGE die verschiedenen Werte für K, L, INIT, Δ INC, Δ DEC für den fraktionalen Teiler gemäß dem zweiten Ausführungsbeispiel angegeben. Für die Wortbreiten ergeben sich aus Tabelle 3 die Mindestwerte $w_D = w_1 = 19$ Bit, $w_I = 9$ Bit und $w_2 = 15$ Bit.

Der Jitter-Fehler entspricht dem beim ersten Ausführungsbei-20 spiel auftretenden Jitter-Fehler.

Tabelle 3

Standard	K	L	INIT	ΔINC	ΔDEC
TIA/EIA-136	243	130000	-126514	486	-259514
GSM/EDGE	1	48	-46	2	-94

Zusammenfassend ist festzustellen, dass beide Ausführungsbeispiele die Verwendung eines einzigen Systemtaktes für
Mehrstandard-Sender/Empfänger bei Teilungsverhältnissen ermöglichen, die weder einer Potenzzahl zur Basis 2 noch eine
Summe von Potenzzahlen zur Basis 2 und auch nicht eines
"einfachen" rationalen Teilungsverhältnisses T₁/T₂ = 1/(ganze
Zahl) entsprechen müssen. Somit wird die Verwendung eines
einheitlichen, standardübergreifenden Systemtakts (der in Abhängigkeit von den zu unterstützenden Standards natürlich
möglichst günstig gewählt werden sollte) möglich, wodurch

Entwurf und Implementierung eines solchen Mobilfunkempfängers/senders wesentlich vereinfacht werden.

10

35

Patentansprüche

- 1. Anordnung zur Zeitsteuerung einer Sende- und/oder Empfangseinrichtung in einer Mobilstation eines Kommunikationssystems, wobei die Sende- und/oder Empfangseinrichtung zum Senden/Empfangen von Signalen unterschiedlicher Mobilfunkstandards mit differierenden Zeitrastern ausgelegt ist, mit
- einem Systemtakt-Erzeugungsmittel zum Erzeugen eines einheitlichen Systemtaktes (T_1) für die differierenden Zeitraster,
- einem Taktteilermittel (TT), welchem der einheitliche Systemtakt (T_1) zugeführt wird, und welcher einen Ausgangstakt (T_2) entsprechend einem unter den differierenden Zeitrastern auswählbaren Zeitraster erzeugt, und
- 15 einem Mittel zur Ereignissteuerung (ES), welches auf der Grundlage des von dem Taktteilermittel (TT) erzeugten Ausgangstaktes und von Ereignisinformation die zeitliche Steuerung von Ereignissen übernimmt.
- 20 2. Anordnung nach Anspruch 1,
 - dadurch gekennzeichnet,
 - dass die Taktfrequenz des Systemtaktes kein gemeinsames Vielfaches der Taktfrequenzen der differierenden Zeitraster ist.
 - 3. Anordnung nach Anspruch 1 oder 2,
 - dadurch gekennzeichnet,
- dass das Taktteilermittel (TT) derart ausgelegt ist, dass die Taktfrequenzen der differierenden Zeitraster gemäß einem Teilerfaktor der Form K/L, wobei K und L positive ganze Zahlen mit K < L sind, und wobei L keine Potenz zur Basis 2 ist, insbesondere gemäß einem beliebigen rationalen Teilerfaktor K/L, aus der Taktfrequenz des Systemtaktes ableitbar ist.
 - 4. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,

- dass das Taktteilermittel (TT) einen vollständig digitalen Taktteiler (AR, AD; R1, AD1) einsetzt.
- 5. Anordnung nach Anspruch 4,
- 5 dadurch gekennzeichnet,
 - dass der digitale Taktteiler einen Phasenakkumulator (AR, AD) umfasst, welcher mit dem Systemtakt (T_1) oder einem von dem Systemtakt abgeleiteten Takt ein Phaseninkrement ($\Delta \phi$) aufaddiert, dessen Wert durch Programmierung variabel vorgebbar ist.
 - 6. Anordnung nach Anspruch 4,
 - dadurch gekennzeichnet,
- dass der digitale Taktteiler (TT) einen fraktionalen Takt-15 teiler (R1, AD1) verwendet, der im zeitlichen Mittel eine exakte Taktteilung ermöglicht.
 - 7. Anordnung nach Anspruch 6,
 - dadurch gekennzeichnet,
- 20 dass der fraktionale Taktteiler (R1, AD1) ein sowohl inkrementierbares als auch dekrementierbares Register (R1) umfasst,
 - dass bei einem Teilerfaktor von K/L das Register (R1) mit dem Systemtakt (T_1) oder einem aus dem Systemtakt abgeleiteten Takt mit dem Wert $\Delta INC = 2K$ inkrementiert wird, sofern der im Register gehaltene Wert < 0 ist, und andernfalls mit dem Wert $\Delta DEC = 2 \cdot (K-L)$ dekrementiert wird, wobei K und L ganze positive Zahlen sind und K < L ist, und
- dass der Ausgangstakt (T_2) durch einen Vorzeichenwechsel des im Register (R1) gehaltenen Werts (Z_1) bestimmt wird.
 - 8. Anordnung nach einem der Ansprüche 4 bis 7,
 - dadurch gekennzeichnet,
- dass dem Taktteiler (AR, AD; R1, AD1) ein Vorteiler (VT)

 mit einem ganzzahligen Teiler, insbesondere einem Teiler
 welcher keine Potenz zur Basis 2 ist, vorgeordnet ist.

- 9. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
- dass ein rücksetzbarer Zähler (AR, R2) den Ausgangstakt zählt, und
- dass das Mittel zur Ereignissteuerung (ES) einen Tabellenspeicher umfasst, in welchem Ereignissen Zählerstände zugeordnet sind, die von dem gewählten Zeitraster abhängig sind, wobei das Mittel zur Ereignissteuerung (ES) ein Ereignis auslöst, wenn der rücksetzbare Zähler (AR, R2) den dem Ereignis zugeordneten Zählerstand erreicht hat.
 - 10. Anordnung nach Anspruch 9,
 - dadurch gekennzeichnet,
- dass das Mittel zur Ereignissteuerung (ES) ein Rücksetzsig- nal (R; r_1 , r_2 , r) erzeugt, welches den rücksetzbaren Zähler (AR, R2) gemäß dem ausgewählten Zeitraster zurücksetzt.
 - 11. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
- 20 dass das Taktteilermittel (TT) ausgelegt ist, Zeitraster gemäß zumindest zwei der Standards GSM oder EDGE und TIA/EIA-136 und UMTS zu erzeugen.
- 12. Verfahren zur Zeitsteuerung einer Sende- und/oder Empfangseinrichtung in einer Mobilstationen eines Kommunikationssystems, wobei die Sende- und/oder Empfangseinrichtung zum
 Senden/Empfangen von Signalen unterschiedlicher Mobilfunkstandards mit differierenden Zeitrastern ausgelegt ist, mit
 den Schritten:
- 30 Erzeugen eines einheitlichen Systemtaktes (T_1) für die differierenden Zeitraster;
 - Erzeugen eines Ausgangstaktes (T_2) entsprechend einem unter den differierenden Zeitrastern auswählbaren Zeitraster auf der Basis des einheitlichen Systemtaktes (T_1) ; und
- $\,$ zeitliches Steuern von Ereignissen auf der Grundlage des erzeugten Ausgangstaktes (T_2) und von Ereignisinformation.

Fig. 2

Žį

Fig. 4

Fig. 5

Fig. 6

Fig. 7