Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Simulazione d'esame n. 3

NOME: **COGNOME: MATRICOLA:**

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Scrivere cognome e nome su entrambi i testi, il formulario e tutti i fogli protocollo
- 2) Bisogna consegnare entrambi i testi del compito anche in caso di ritiro
- 3) Le risposte sbagliate <u>saranno penalizzate</u>
- 4) Saranno considerate solo le risposte riportate nella tabella soprastante, che deve essere compilata usando una penna nera o blu e in STAMPATELLO MAIUSCOLO. Se la lettera non è comprensibile la risposta sarò considerata come non data
- 5) Il tempo a disposizione è di 35 minuti
- 1) Se il numero di portatori intrinseci è $n_i = 10^{10} \text{cm}^{-3}$, e si inseriscono 10^{16}cm^{-3} atomi donatori, in equilibrio si ha che:
 - a) il numero di lacune finale è circa 10¹⁶cm⁻³
 - b) il numero di lacune finale è 10⁴cm⁻³
 - c) il numero di lacune rimane 10¹⁰cm⁻³
- 2) La caratteristica tensione-corrente di un diodo zener è caratterizzata da:
 - a) Due regioni di funzionamento denominate: diretta e inversa
 - b) Tre regioni di funzionamento denominate: diretta, inversa e zener
 - c) Tre regioni di funzionamento denominate: interdizione, lineare e saturazione
- 3) Un MOSFET a canale N ha:
 - a) Un substrato di tipo n in cui è indotto un canale conduttivo di elettroni
 - b) Un substrato di tipo p in cui è indotto un canale conduttivo di elettroni
 - c) Un substrato di tipo p in cui è indotto un canale conduttivo di lacune
- 4) Dato un MOSFET a svuotamento polarizzato con $V_{GS} = 0$.
 - a) È sempre acceso indipendentemente dal tipo di canale (n o p)
 - b) È sempre spento indipendentemente dal tipo di canale (n o p)
 - c) È sempre acceso ma solo se è a canale n
- 5) Dato il circuito in figura in cui il diodo ha tensione di accensione V_{ON} = 1V. Quanto vale la corrente I?
 - a) 0A
 - b) 1mA
 - c) -1mA

- $4k\Omega$
- 6) Dato il circuito in figura in cui il MOSFET ha tensione di soglia 1V. In che regione lavora il MOSFET?
 - a) Sempre in lineare
 - b) Sempre in saturazione
 - c) Dipende dal valore di R.

- 7) Se una sorgente è accoppiata in DC all'ingresso dell'amplificatore, significa che:
 - a) è collegata direttamente all'ingresso dell'amplificatore
 - b) tra sorgente e amplificatore è presente un condensatore in serie
 - c) tra sorgente e amplificatore è presente un condensatore in parallelo

- 8) In uno stadio elementare a source comune, il guadagno è sempre negativo?
 - a) Si.
 - b) Si, ma solo se si inserisce una resistenza in serie al source
 - c) No. Dipende dal valore della resistenza al drain
- 9) Dato il circuito in figura, che rappresenta un amplificatore elementare a MOSFET. Che configurazione è?
 - a) Source comune
 - b) Gate comune
 - c) Drain comune

- 10) Un amplificatore differenziale ideale:
 - a) La tensione di uscita è direttamente proporzionale alla differenza dei segnali di ingresso
 - b) La tensione di uscita è inversamente proporzionale alla differenza dei segnali di ingresso
 - c) La tensione di uscita è proporzionale alla derivata del segnale di ingresso
- 11) Dato il circuito in figura realizzato con un operazionale ideale e una resistenza di $2k\Omega$. Se $I_S = 4mA$, la tensione di uscita vale:

b) -8V

c) -2V

12) Dato il circuito in figura realizzato con un operazionale reale con CMRR = 100 e resistenze R_1 = $1k\Omega$ e R_2 = $10k\Omega$. Se v_1 = 4.9V e v_2 = 5.1V, la tensione di uscita è circa

b) 2.05V

c) 2.5V

- 13) Per realizzare correttamente un amplificatore per strumentazione è necessario che gli operazionali siano identici (cioè abbiano gli stessi parametri)?
 - a) Assolutamente no! È sufficiente che abbiano un guadagno differenziale elevato.
 - b) Si. In particolare la tensione di offset e il CMRR
 - c) No. È sufficiente che abbiano tutti la stessa resistenza di uscita.
- 14) Sia data la funzione di trasferimento il cui diagramma di bode della fase è rappresentato in figura. Essa ha:

- a) Un polo nell'origine e un polo a 10³ rad/s
- b) Uno zero nell'origine e uno zero a 10³ rad/s
- c) Un polo nell'origine e uno zero a 10³ rad/s
- 15) Sia dato un filtro la cui funzione di trasferimento ha il diagramma di bode del modulo mostrato in figura. Quale tra i seguenti è compatibile con il diagramma di Bode mostrato?

- b) Filtro passa-basso del secondo ordine
- c) Nessuno dei precedenti

Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Simulazione d'esame n. 3

COGNOME: NOME: MATRICOLA:

DA LEGGERE CON ATTENZIONE PRIMA DI INIZIARE LA PROVA

- 1) Scrivere cognome e nome su entrambi i testi, il formulario e tutti i fogli protocollo
- 2) Bisogna consegnare entrambi i testi del compito anche in caso di ritiro
- 3) Risposte non chiare o non adequatamente giustificate saranno penalizzate
- 4) Nei conti e nei risultati, i valori numerici **<u>DEVONO</u>** essere accompagnati dalla <u>**relativa unità di misura**</u>. I risultati senza unità di misura saranno considerati sbagliati.
- 5) L'elaborato deve essere scritto e consegnato in forma ORDINATA e COMPRENSIBILE.
- 6) Il tempo a disposizione è di 2 ore

Problema 1

$$\begin{split} \text{DATI: } V_{\text{DD}} = 5\text{V, } V_{\text{SS}} = -5\text{V, } V_{\text{REF}} = -3\text{V, } R_{D} = 8k\Omega \\ M_{1} e \ M_{2} : \ k_{\text{n1}} = k_{\text{n2}} = 4\text{mA/V}^{2}, \ V_{\text{TN1}} = V_{\text{TN2}} = 1\text{V, } \lambda_{\text{n1}} = \lambda_{\text{n2}} = 0 \\ M_{3} : \ k_{\text{n3}} = 2\text{mA/V}^{2}; \ V_{\text{TN3}} = 1\text{V; } \lambda_{\text{n3}} = 0.01\text{V}^{-1} \end{split}$$

Dato il circuito in figura, calcolare:

- 1. Il punto di polarizzazione dei MOSFET con $v_1 = v_2 = 0V$
- 2. Il guadagno di modo differenziale dell'uscita v_0 relativo al segnale differenziale $v_1 v_2$
- 3. Il guadagno di modo comune dell'uscita vo rispetto agli ingressi v1 e v2
- 4. II CMRR
- 5. La resistenza di uscita

Problema 2

DATI: $R_1 = 10k\Omega$, $C_1 = 3.9nF$, $C_2 = 6.8nF$

Dato il circuito in figura, realizzato con amplificatori operazionali ideali:

- 6. Ricavare l'espressione della funzione di trasferimento in funzione di ω
- 7. Tracciare il diagramma di Bode asintotico del modulo e della fase

Problema 3

Dato il circuito in figura realizzato con un operazionale ideale e un diodo con $V_{ON}=0.5V$, tracciare la transcaratteristica $v_O(v_S)$ del circuito in figura.

Problema 4

DATI: $R_1 = 10k\Omega$, $R_2 = 90k\Omega$, $R_B = 10k\Omega$.

Dato il circuito in figura realizzato con un operazionale reale con tensione di offset V_{OS} =0V, correnti di bias I_{BP} = I_{BN} = 110nA, e CMRR = 10, calcolare:

- 1. La tensione di uscita v_0 con $v_s = 0$.
- 2. Il valore che deve assumere la tensione di ingresso per avere $v_0 = 0$.

