The t distribution Peter Ralph 1 October 2020 - Advanced Biological Statistics	
Stochastic minute: the t distribution	
The $oldsymbol{t}$ statistic	
The t statistic computed from a collection of n numbers is the sample mean divided by the estimated standard error of the mean, which is the sample SD divided by \sqrt{n} .	
2.2	

The t statistic

The t statistic computed from a collection of n numbers is the sample mean divided by the estimated standard error of the mean, which is the sample SD divided by \sqrt{n} .

If x_1, \ldots, x_n are numbers, then

$$egin{aligned} ext{(sample mean)} & ar{x} = rac{1}{n} \sum_{i=1}^n x_i \ & ext{(sample SD)} & s = \sqrt{rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2} \end{aligned}$$

SO

$$t(x) = rac{ar{x}}{s/\sqrt{n}}.$$

2 . 2

2 . 3

2 . 4

Consistency check

n <- 20
x <- rnorm(n)
c(t.test(x)\$statistic,
 mean(x) / (sd(x) / sqrt(n)))</pre>

t ## 1.318919 1.318919

The t approximation

Fact: If X_1, \ldots, X_n are independent random samples from a distribution with mean μ , then

$$t(X-\mu) = rac{ar{x}-\mu}{s/\sqrt{n}} pprox ext{StudentsT}(n-2),$$

as long as \boldsymbol{n} is not too small and the distribution isn't too wierd.

A demonstration

Let's check this, by doing:

find the sample t score of 100 random draws from some distribution

2 . 5

lots of times, and looking at the distribution of those t scores.

A demonstration

Let's check this, by doing:

find the sample t score of 100 random draws from some distribution

lots of times, and looking at the distribution of those t scores.

Claim: no matter* the distribution we sample from, the *sampling* distribution of the t statistics should look close to the t distribution.

One sample

```
n <- 20

x <- 2 * runif(n) - 1

hist(x, xlab='value', col=grey(0.5),

main=sprintf("t=%f", mean(x)*sqrt(n)/sd(x)))

abline(v=0, lwd=2, lty=3)

abline(v=mean(x), col='red', lwd=2)
```


2 . 8

10	
_	
	10