BOLSISTA 2

Dados do Plano de Trabalho								
Título do Plano de	Biogeoquímica de metais traço em estuário sob clim-							
Trabalho:	semiárido: contribuição para monitoramento das mudanças							
	ambientais no Delta do rio Parnaíba							
Modalidade de bolsa	PIBIC							
solicitada:								
Projeto de Pesquisa	Quantificação metais-traços sedimentos do estuário do							
vinculado:	Delta do Parnaíba.							

1. OBJETIVOS:

Quantificar a concentração de metais no sedimento e identificar os principais mecanismos atuantes na exportação de metais traço para a costa do Delta do rio Parnaíba.

2. MÉTODO:

2.1 Amostragem

Estes serão obtidos através de campanhas semestrais durante ciclos anuais com coleta de amostras de sedimento. Pretende-se realizar a amostragem de acordo com a sazonalidade dos períodos de chuvas e de seca na região, sendo uma campanha de amostragem no período de seca, que vai de maio a dezembro e uma no período chuvoso, entre janeiro e abril. Através desta estratégia procuraremos verificar a hipótese de que há variabilidade das concentrações de metais-traço correspondentes aos períodos de contrastes em relação a sazonalidade climatológica. As amostragens de sedimentos serão realizadas nos principais canais do Delta do Parnaíba, seguindo o gradiente fluvio-marinho. As amostras de sedimentos serão coletadas em duplicata para cada ponto. Pretende-se realizar a amostragem em 10 (dez) pontos.

2.2 Análise de amostras sólidas

Granulometria

As amostras de sedimento serão secas em estufa a 60° C, maceradas, homogeneizadas, preservadas em frascos plásticos hermeticamente fechados e armazenadas em ambiente climatizado a 20 °C para posterior caracterização granulométrica e determinação de metais pelo método da pipeta (EMBRAPA, 1997).

Matéria orgânica nos sedimentos

Para determinação do conteúdo de matéria orgânica nos sedimentos as amostras serão secas em estufa a aproximadamente 60 °C e maceradas. Em seguida, os cadinhos utilizados na pesagem dos sedimentos serão colocados em mufla a aproximadamente 300 °C para retirar a umidade, pesados e suas respectivas massas anotadas. Aproximadamente 2 g de sedimento serão queimados em mufla a uma temperatura de aproximadamente 450 °C por 12H. Posteriormente, as amostras serão

pesadas para determinação da quantidade de massa queimada, correspondente à matéria orgânica presente (BEAUDOIN, 2003).

Metais no sedimento

Após a caracterização granulométrica será pesado em duplicata 0,5 g do sedimento com tamanho granulométrico <63µm que será levado a digestão ácida em água-régia 50% para posterior determinação das concentrações de metais (AGUIAR et al., 2007;2014). A quantificação dos teores totais de metais será realizada a partir das leituras dos extratos, por espectrofotometria de absorção atômica de chama Varian Spectra A-50B, disponível na Central Analítica da Universidade Federal do Cariri.

A eficiência da extração (grau de recobrimento) ser testada, pela comparação das concentrações dos metais extraídos em cada etapa da extração sequencial com as concentrações obtidas na extração pseudototal (Equação 1).

$$\operatorname{Re} \operatorname{cuperação}(\%) = \frac{\sum M_{\text{frações}}}{M_{\text{extração}(pseudotoid)}} * 100$$
 (equação 1)

Para a extração pseudototal dos metais no padrão certificado 1646A, serão testados o método USEPA 3051A que recomenda a adição de 9,0 mL de HNO₃ + 3 mL de HCl, com programação do microondas semelhante a utilizada na extração parcial, e o método 3051A modificado.

Análise da deposição pretérita de metais-traço

Os perfis de testemunhos sedimentares amostrados ao longo do gradiente fluvio-marinho, serão analisados com vistas a inferir sobre a evolução da qualidade e quantidade da deposição de contaminantes em sedimentos fluviais e estuarinos. No laboratório da Central Analítica da Universidade Federal do Cariri, serão abertos, descritos e fatiados para análises do teor de agua, densidade *in situ*, matéria orgânica (LOI), granulometria, mineralogia e geoquímica dos metais-traço. Esses parâmetros permitirão caracterizar os ambientes de deposição passados e as alterações destes ambientes poderão ser interpretadas em termos de mudanças hidrológicas.

Análise mineralógica por MEV/EDS

Outra ferramenta analítica que irá auxiliar na identificação da composição mineralógica e na distinção entre fontes naturais e antrópicas de contaminantes para os sedimentos é a Microscopia Eletrônica de Varredura associada com Espectrometria de Energia Dispersiva (MEV/EDS). A característica principal dessa ferramenta é associar a imagem de uma partícula sólida com a sua composição química específica. É possível, a partir deste tipo de análise, caracterizar períodos de elevado deflúvio e dominância da exportação continental, geralmente associada a períodos chuvosos, e períodos secos, dominados por deposições marinhas.

Análise mineralógica por Difração de Raios X e Fluorescência de Raios X

O objetivo da análise mineralógica será determinar a possível origem dos metais presentes nos sedimentos (AGUIAR *et al.*, 2014). Para tal, será utilizada a análise de Difração de Raios X. As amostras serão previamente preparadas concentrando a fração fina pelo método de decantação, usando a glicolação e aquecimento para separar esmectitas, montmorilonitas e cloritas. De acordo com Förstner e Wittmann, (1979), esta fração corresponde à região na qual os poluentes potencialmente biodisponíveis se agregam.

Para avaliar a composição química mineral do sedimento será realizada a análise por Fluorescência de Raios X. As amostras serão preparadas por fusão com Li₂B₄O₇, na proporção de 1:10. As curvas de quantificação serão preparadas com padrões de referências internacionais, de forma que todos os valores obtidos estejam dentro do intervalo de calibração.

3. CRONOGRAMA:

AT1: Levantamento Bibliográfico.

AT2: Participar de treinamento de coleta e técnica de extração.

AT3: Coleta das amostras e análise

AT4: Análise das amostras

AT5: Tratamento de dados, elaboração do relatório final e artigo científico

AT6: Participação na divulgação científica.

		2019					2020						
N°	08	09	10	11	12	01	02	03	04	05	06	07	
AT1	X	X											
AT2			X										
AT3				X									
AT4					X	X	X						
AT5								X	X	X			
AT6											X	X	