Praca domowa 3

Termin oddania: 20.12.2023

1 Wstęp

W tej pracy domowej przyjrzymy się modelowi k najbliższych sąsiadów. Celem pracy jest implementacja metody oraz jej przetestowanie.

2 Część 1

Przygotuj implementację algorytmu k – najbliższych sąsiadów (funkcję \mathtt{knn} ()), który przyjmuje jako argumenty kolejno:

- 1. macierz rzeczywistą \mathbb{X} typu $n \times p$, reprezentującą n punktów w \mathbb{R}^p (zbiór treningowy),
- 2. n elementowy obiekt \mathbf{y} , gdzie y_i reprezentuje etykietę odpowiadającą obserwacji $\mathbb{X}[i,]$,
- 3. macierz rzeczywistą \mathbb{Z} typu $m \times p$, reprezentującą m punktów w \mathbb{R}^p (zbiór testowy),
- 4. liczbę całkowitą $1 \le k \le n$, oznaczającą liczbę najbliższych sąsiadów biorących udział w poszukiwaniu etykiety odpowiadającej punktom ze zbioru testowego,
- 5. wartość rzeczywistą $p \ge 1$, domyślnie równą 2, określającą, która metryka Minkowskiego L_p będzie używana do poszukiwania najbliższych sąsiadów. Uwaga, możliwe jest, by $p = \infty$.

Funkcja ma zwracać m – elementowy obiekt \mathbf{w} , gdzie w_i reprezentuje etykietę odpowiadającą obserwacji $\mathbb{Z}[i,]$.

Dla i = 1, ..., m, etykieta w_i wyznaczana jest w następujący sposób:

- 1. Niech d_j oznacza odległość L_p między Z[i, j] a X[j, j], tj. $d_j = ||Z[i, j]||_p$, $j = 1, \ldots, n$.
- 2. Niech (j_1,\ldots,j_k) oznaczają indeksy k najbliższych $\mathbf{Z}[\mathbf{i},]$ punktów z \mathbf{X} , tj. $d_{j_1}\leqslant d_{j_2}\leqslant\cdots\leqslant d_{j_k}\leqslant d_j$ dla każdego $j\not\in\{j_1,\ldots,j_k\}$.
- 3. Wyznacz modę (dominantę) z ciągu etykiet $(y_{j_1}, \ldots, y_{j_k})$ i przypisz jako wartość w_i . Jeśli moda nie jest określona w jednoznaczny sposób, zwróć losową najczęściej występującą wartość (rozkład jednostajny każda z tą samą miarą prawdopodobieństwa).

3 Część 2

W tej części przeprowadź test poprawności implementacji funkcji knn() na przynajmniej dwóch zbiorach danych z \mathbb{R}^2 . W szczególności należy sprawdzić, czy 1 – nn w przypadku, gdy próba ucząca i testowa są tożsame, odtwarza idealnie wektor prawdziwych etykiet.

Przetestuj algoryt
mk – najbliższych sąsiadów z metryk
ą $L_1,\,L_2$ oraz L_∞ dla różnych
 k.

4 Część 3*

Wykorzystując gotowe implementacje metody k – nn porównaj otrzymane wyniki ze swoją implementacją. W tym celu możesz wykorzystać na przykład Annoy (https://github.com/spotify/annoy), Scann (https://github.com/google-research/google-research/tree/master/scann) lub inną.

5 Szczegóły rozwiązania

Rozwiązanie powinno zawierać pliki:

- folder Kody zawierający wszystkie potrzebne kody do przygotowania rozwiązania zadania domowego,
- plik NUMERINDEKSU_raport.pdf opisujący wyniki testów (maksymalnie 4 strony).

6 Ocena

Łączna liczba punktów do zdobycia jest równa 10 + 3, w tym:

Część 1 (6 punktów)

- implementacja metody 5 punktów,
- jakość kodu (porządek, czytelność) 1 punkt.

Część 2 (4 punkty)

- testy metody 2 punkty,
- raport 2 punkty.

Część 3* (3 punkty)

- testy metody 2 punkty,
- raport 1 punkt.

7 Oddanie pracy domowej

Wszystkie punkty z sekcji *Szczególy rozwiązania* należy umieścić w katalogu ZIP o nazwie NUMERINDEKSU_GR_PD3, gdzie

$$\mathtt{GR} = \left\{ \begin{array}{ll} 1 & \mathrm{dla\ \acute{s}roda},\ 12{:}15, \\ 2 & \mathrm{dla\ \acute{s}roda},\ 16{:}15. \end{array} \right.$$

Tak przygotowany katalog należy przesłać na adres anna.kozak@pw.edu.pl do dnia 20.12.2023 do godziny 23:59. Tytuł wiadomości: [WUM][PD3] Nazwisko Imię, Numer grupy: GR.