$9_{24} (K9a_7)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 2u^{16} + 2u^{15} + \dots + 4b - 2, -2u^{16} - 3u^{15} + \dots + 4a - 2, u^{17} + 2u^{16} + \dots - 2u - 2 \rangle$$

$$I_2^u = \langle a^2u - a^2 + b + 2a - 2, a^3 - 2a^2u + 3au - u, u^2 - u + 1 \rangle$$

$$I_1^v = \langle a, b - 1, v - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 24 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{c} \text{I. } I_1^u = \\ \langle 2u^{16} + 2u^{15} + \dots + 4b - 2, \ -2u^{16} - 3u^{15} + \dots + 4a - 2, \ u^{17} + 2u^{16} + \dots - 2u - 2 \rangle \end{array}$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{2}u^{16} + \frac{3}{4}u^{15} + \dots - \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{2}u^{16} - \frac{1}{2}u^{15} + \dots + u + \frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{4}u^{15} + \frac{1}{2}u^{13} + \dots + \frac{1}{2}u + 1 \\ -\frac{1}{2}u^{16} - \frac{1}{2}u^{15} + \dots + u + \frac{1}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{16} + u^{15} + \dots - u - \frac{1}{2} \\ \frac{1}{4}u^{15} + \frac{1}{4}u^{14} + \dots - \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{4}u^{12} - \frac{1}{2}u^{10} + \dots + \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{2}u^{7} + \frac{1}{2}u^{5} + \frac{3}{2}u^{3} + \frac{1}{2}u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{4}u^{12} - \frac{1}{2}u^{10} + \dots + \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{2}u^{7} + \frac{1}{2}u^{5} + \frac{3}{2}u^{3} + \frac{1}{2}u^{2} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^{16} + 4u^{15} + 6u^{14} + 8u^{13} + 8u^{12} + 14u^{11} + 10u^{10} + 12u^9 + 4u^8 + 10u^7 + 20u^6 + 26u^5 + 16u^4 - 4u^3 - 10u^2 - 8u - 4$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^{17} - 2u^{16} + \dots - 2u + 2$
c_2	$u^{17} + 8u^{16} + \dots + 3u + 1$
c_3,c_9	$u^{17} - 2u^{16} + \dots - u + 1$
c_4, c_5, c_8	$u^{17} + 2u^{16} + \dots + 3u + 1$
c ₇	$u^{17} - 6u^{16} + \dots + 8u + 4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y^{17} + 6y^{16} + \dots + 8y - 4$
c_2	$y^{17} + 4y^{16} + \dots - 13y - 1$
c_3, c_9	$y^{17} - 8y^{16} + \dots + 3y - 1$
c_4, c_5, c_8	$y^{17} - 16y^{16} + \dots + 19y - 1$
<i>C</i> ₇	$y^{17} + 6y^{16} + \dots + 376y - 16$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.742615 + 0.650908I		
a = 0.456798 - 0.077068I	-3.65923 - 1.22724I	-6.14847 + 0.85505I
b = 1.128570 + 0.359117I		
u = -0.742615 - 0.650908I		
a = 0.456798 + 0.077068I	-3.65923 + 1.22724I	-6.14847 - 0.85505I
b = 1.128570 - 0.359117I		
u = -0.834865 + 0.265014I		
a = 0.636187 + 0.240948I	2.61956 - 0.43387I	2.56834 - 0.87540I
b = 0.374678 - 0.520641I		
u = -0.834865 - 0.265014I		
a = 0.636187 - 0.240948I	2.61956 + 0.43387I	2.56834 + 0.87540I
b = 0.374678 + 0.520641I		
u = 0.976738 + 0.562668I		
a = 0.456039 + 0.109653I	0.61043 + 4.64771I	-0.43915 - 4.11695I
b = 1.072950 - 0.498433I		
u = 0.976738 - 0.562668I		
a = 0.456039 - 0.109653I	0.61043 - 4.64771I	-0.43915 + 4.11695I
b = 1.072950 + 0.498433I		
u = -0.003992 + 0.842342I		
a = 1.18580 + 1.31498I	1.30982 - 1.46955I	3.63583 + 4.66528I
b = -0.621791 - 0.419413I		
u = -0.003992 - 0.842342I		
a = 1.18580 - 1.31498I	1.30982 + 1.46955I	3.63583 - 4.66528I
b = -0.621791 + 0.419413I		
u = -0.656745 + 1.004700I		
a = -0.46618 - 1.83030I	-2.57978 + 6.57063I	-3.26005 - 6.43452I
b = -1.130680 + 0.513073I		
u = -0.656745 - 1.004700I		
a = -0.46618 + 1.83030I	-2.57978 - 6.57063I	-3.26005 + 6.43452I
b = -1.130680 - 0.513073I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.110097 + 1.246510I		
a = 0.360483 - 1.280850I	8.03468 + 2.71165I	5.84242 - 3.13710I
b = -0.796399 + 0.723427I		
u = -0.110097 - 1.246510I		
a = 0.360483 + 1.280850I	8.03468 - 2.71165I	5.84242 + 3.13710I
b = -0.796399 - 0.723427I		
u = -0.578864 + 1.116300I		
a = 0.568056 + 0.689908I	5.04981 + 5.51158I	4.25126 - 3.84490I
b = -0.288739 - 0.863831I		
u = -0.578864 - 1.116300I		
a = 0.568056 - 0.689908I	5.04981 - 5.51158I	4.25126 + 3.84490I
b = -0.288739 + 0.863831I		
u = 0.718492 + 1.129370I		
a = -0.46497 + 1.57649I	2.40324 - 10.83370I	0.89378 + 7.41261I
b = -1.172120 - 0.583556I		
u = 0.718492 - 1.129370I		
a = -0.46497 - 1.57649I	2.40324 + 10.83370I	0.89378 - 7.41261I
b = -1.172120 + 0.583556I		
u = 0.463897		
a = 0.535599	-1.25812	-8.68790
b = 0.867068		

II. $I_2^u = \langle a^2u - a^2 + b + 2a - 2, \ a^3 - 2a^2u + 3au - u, \ u^2 - u + 1 \rangle$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -a^{2}u + a^{2} - 2a + 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -a^{2}u + a^{2} - a + 2 \\ -a^{2}u + a^{2} - 2a + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a^{2}u - a^{2} + au + 2a - 2 \\ a^{2}u - a^{2} + au + a - 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a^{2}u + a^{2} - a + 2 \\ -a^{2}u + a^{2} - 2a + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -a^{2}u + a^{2} - a + 2 \\ -a^{2}u + a^{2} - 2a + 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4u 2

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u^2 + u + 1)^3$
c_2	$u^6 + 4u^5 + 6u^4 + 3u^3 - u^2 - u + 1$
c_3, c_4, c_5 c_8, c_9	$u^6 - 2u^4 + u^3 + u^2 - u + 1$
<i>c</i> ₇	$(u^2 - u + 1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_7	$(y^2+y+1)^3$
c_2	$y^6 - 4y^5 + 10y^4 - 11y^3 + 19y^2 - 3y + 1$
$c_3, c_4, c_5 \ c_8, c_9$	$y^6 - 4y^5 + 6y^4 - 3y^3 - y^2 + y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = 0.741145 - 0.632163I	-2.02988I	0. + 3.46410I
b = -0.218964 + 0.666188I		
u = 0.500000 + 0.866025I		
a = 0.439111 + 0.046276I	-2.02988I	0. + 3.46410I
b = 1.252310 - 0.237364I		
u = 0.500000 + 0.866025I		
a = -0.18026 + 2.31794I	-2.02988I	0. + 3.46410I
b = -1.033350 - 0.428825I		
u = 0.500000 - 0.866025I		
a = 0.741145 + 0.632163I	2.02988I	0 3.46410I
b = -0.218964 - 0.666188I		
u = 0.500000 - 0.866025I		
a = 0.439111 - 0.046276I	2.02988I	0 3.46410I
b = 1.252310 + 0.237364I		
u = 0.500000 - 0.866025I		
a = -0.18026 - 2.31794I	2.02988I	0 3.46410I
b = -1.033350 + 0.428825I		

III.
$$I_1^v = \langle a,\ b-1,\ v-1
angle$$

(i) Arc colorings

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6, c_7	u
c_2, c_8, c_9	u-1
c_3, c_4, c_5	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_6, c_7	y
c_2, c_3, c_4 c_5, c_8, c_9	y-1

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0	0
b = 1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u(u^{2} + u + 1)^{3}(u^{17} - 2u^{16} + \dots - 2u + 2)$
c_2	$(u-1)(u^6+4u^5+\cdots-u+1)(u^{17}+8u^{16}+\cdots+3u+1)$
c_3	$(u+1)(u^6 - 2u^4 + \dots - u + 1)(u^{17} - 2u^{16} + \dots - u + 1)$
c_4,c_5	$(u+1)(u^6 - 2u^4 + \dots - u + 1)(u^{17} + 2u^{16} + \dots + 3u + 1)$
c_7	$u(u^{2}-u+1)^{3}(u^{17}-6u^{16}+\cdots+8u+4)$
C ₈	$(u-1)(u^6 - 2u^4 + \dots - u + 1)(u^{17} + 2u^{16} + \dots + 3u + 1)$
<i>c</i> 9	$(u-1)(u^6 - 2u^4 + \dots - u + 1)(u^{17} - 2u^{16} + \dots - u + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_6	$y(y^2 + y + 1)^3(y^{17} + 6y^{16} + \dots + 8y - 4)$
c_2	$(y-1)(y^6 - 4y^5 + 10y^4 - 11y^3 + 19y^2 - 3y + 1)$ $\cdot (y^{17} + 4y^{16} + \dots - 13y - 1)$
c_3, c_9	$(y-1)(y^6-4y^5+\cdots+y+1)(y^{17}-8y^{16}+\cdots+3y-1)$
c_4, c_5, c_8	$(y-1)(y^6-4y^5+\cdots+y+1)(y^{17}-16y^{16}+\cdots+19y-1)$
C ₇	$y(y^2 + y + 1)^3(y^{17} + 6y^{16} + \dots + 376y - 16)$