

HEART FAILURE PREDICTION USING PYSPARK

Pham Thuy Dung - 20521214

AGENDA

- Introduction
- Heart Failure Pediction
- Process Flow Diagram
- PySpark Overview
- Machine Learning
- Data analysis and visualization
- Results

INTRODUCTION

Heart failure prediction is an essential area of medical research and healthcare, aiming to identify individuals who are at risk of developing heart failure before they experience any symptoms.

HEART FAILURE

- a medical condition related to the cardiovascular system
- no longer functions efficiently to pump enough blood to meet the body's needs

SAMPLE FOOTER TEXT

HEART FAILURE PREDICTION

 process of using various medical, clinical, and lifestyle data to assess an individual's risk of developing heart failure

SAMPLE FOOTER TEXT

PROCESS FLOW **DIAGRAM**

Evaluating Model

Classiffiers

- Logistic Regression
- Support Vector Machines
- Random Forest Classifier
- Multilayer Perceptron Classifier
- Decision Tree

20XX SAMPLE FOOTER TEXT

OVERVIEW OF PYSPARK

Spark SQL and DataFrames

Pandas API on Spark Structured Streaming

Machine Learning (MLlib)

Spark Core and RDDs

DATASET

Features	Description	
Age	age	
Sex	Sex(M, F)	
ChestPainType	Chest pain type (ASY, NAP, Other)	
RestingBP	Resting blood pressure	
Cholesterol	Serum cholesrol	
FastingBS	Fasting blood sugar	
RestingECG	Resting electrocardiogram results	
	(Normal, LVH, Others)	
MaxHR	Maximum heart rate achieved	
ExerciseAngina	Exercise induced angina	
Oldpeak	Oldpeak = ST	
ST_Slope	The slope of the peak exercise ST	
	segment	
HeartDisease	Target to predict	

MACHINE LEARNING

LOGISTICS REGRESSION

$$p(x) = \frac{1}{1 + e^{-(x-\mu)/s}}$$

SUPPORT VECTOR MACHINE (SVM)

SUPPORT VECTOR MACHINE (SVM)

A hyperplane in R2 is a line

A hyperplane in \mathbb{R}^3 is a plane

SAMPLE FOOTER TEXT

DECISION TREE

RANDOM FOREST

MULTI-LAYER PERCEPTION

DATA ANALYSIS & DATA VISUALIZATION

A PIE CHART FOR TYPE OF DATA

A BAR PLOT FOR CORRELATION WITH HEART

Correlation Analysis

HEATMAP FOR CORRELATION ANALYSIS

HISTOGRAMS FOR THREE NUMERICAL COLUMNS

Subtitle

VISUALIZATION OF SEX

VISUALIZATION OF RESTINGECG

	Total	Percentage
RestingECG		
Normal	551	60.09
LVH	188	20.50
ST	178	19.41

VISUALIZATION OF ST SLOPE

	Value	Total	Percentage
0	Υ	371	40.460000
1	N	546	59.540000

VISUALIZATION OF EXERCISEANGINA

	Value	count	Percentage
0	Flat	459	50.050000
1	Up	395	43.080000
2	Down	63	6.870000

RESULT OF ACCURACY SCORE

Model	Train Accuracy Score	Average Accuracy Score
Logistic Regression Model	84.45	91.35
Support Vector Machines Model	84.46	85.19
Random Forest Classifier Model	83.78	85.14
Multilayer Perceptron Classifier Model	81.08	79.48
Decision Tree Model	81.08	81.16

THANKS FOR LISTENING