



## **Calcolo Differenziale**

**Eugenio Montefusco** 

05. Il calcolo dei limiti

#### La definizione di limite



#### Promemoria.

Data una successione  $\{a_n\} \subseteq \mathbb{R}$  diremo che  $a_n \longrightarrow l$  se

per ogni  $J_l$  intorno di l  $\exists \overline{n} \in \mathbb{N}$  tale che

$$a_n \in J_l \quad \forall n \geq \overline{n}$$

#### La definizione di limite



#### Promemoria.

Data una successione  $\{a_n\} \subseteq \mathbb{R}$  diremo che  $a_n \longrightarrow l$  se

per ogni  $J_l$  intorno di l  $\exists \overline{n} \in \mathbb{N}$  tale che

$$a_n \in J_l \quad \forall n \geq \overline{n}$$

#### Formulazione "classica".

Oppure diremo che  $\lim_{n\to +\infty} a_n = l$  se

$$\forall \varepsilon > 0$$
  $\exists n_{\varepsilon} \in \mathbb{N}$  tale che

$$|a_n - l| < \varepsilon \quad \forall n \ge n_{\varepsilon}$$





Consideriamo la successione  $a_n = x^n$  e discutiamo il suo comportamento asintotico al variare di  $x \in \mathbb{R}$ :

i. se  $x \in (-1, 1)$  abbiamo che  $a_n \longrightarrow 0$ 



- i. se  $x \in (-1, 1)$  abbiamo che  $a_n \longrightarrow 0$
- ii. se x = 1 abbiamo che  $a_n = 1 \longrightarrow 1$



- i. se  $x \in (-1, 1)$  abbiamo che  $a_n \longrightarrow 0$
- ii. se x = 1 abbiamo che  $a_n = 1 \longrightarrow 1$
- iii. se x = -1,  $a_n = (-1)^n$  e non ammette limite



- i. se  $x \in (-1, 1)$  abbiamo che  $a_n \longrightarrow 0$
- ii. se x = 1 abbiamo che  $a_n = 1 \longrightarrow 1$
- iii. se x = -1,  $a_n = (-1)^n$  e non ammette limite
- iv. se x > 1 abbiamo che  $a_n \longrightarrow +\infty$



- i. se  $x \in (-1, 1)$  abbiamo che  $a_n \longrightarrow 0$
- ii. se x = 1 abbiamo che  $a_n = 1 \longrightarrow 1$
- iii. se x = -1,  $a_n = (-1)^n$  e non ammette limite
- iv. se x > 1 abbiamo che  $a_n \longrightarrow +\infty$
- v. se x < -1,  $a_n$  non ha limite

## Un risultato generale



Sia  $\{a_n\}$  una successione a termini positivi tale che

$$\frac{a_{n+1}}{a_n} \longrightarrow h \in [0,1)$$

allora  $a_n \longrightarrow 0^+$ .



$$o_n = \sqrt{n+1} - \sqrt{n}$$



$$a_n = \sqrt{n+1} - \sqrt{n} = \left(\sqrt{n+1} - \sqrt{n}\right) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$



$$a_n = \sqrt{n+1} - \sqrt{n} = \left(\sqrt{n+1} - \sqrt{n}\right) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$

$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$



$$o_n = \sqrt{n+1} - \sqrt{n} = \left(\sqrt{n+1} - \sqrt{n}\right) \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{1}{\sqrt{n+1} + \sqrt{n}} \longrightarrow 0$$



$$a_n = \frac{n^\rho}{x^n} \longrightarrow 0$$

$$a_n = \frac{x^n}{n!}$$



$$a_n = \frac{x^n}{n!} \longrightarrow 0$$

$$a_n = \frac{x^n}{n!} \longrightarrow 0$$

$$\frac{a_{n+1}}{a_n}$$

$$a_n = \frac{x^n}{n!} \longrightarrow 0$$

$$\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n}$$



$$a_n = \frac{x^n}{n!} \longrightarrow 0$$

$$\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} = \frac{x}{n+1}$$



$$a_n = \frac{x^n}{n!} \longrightarrow 0$$

$$\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} = \frac{x}{n+1} \longrightarrow 0$$



$$a_n = \frac{x^n}{n!} \longrightarrow 0$$

$$\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} = \frac{x}{n+1} \longrightarrow 0$$

quindi segue che

$$a_n = \frac{x^n}{n!}$$



$$a_n = \frac{x^n}{n!} \longrightarrow 0$$

$$\frac{a_{n+1}}{a_n} = \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} = \frac{x}{n+1} \longrightarrow 0$$

quindi segue che

$$a_n = \frac{x^n}{n!} \longrightarrow 0$$



$$a_n = \frac{n!}{n^n} \longrightarrow 0$$





$$\left(1+\frac{1}{n}\right)^n\longrightarrow e\in(2,3)$$

# **Protagonisti**





#### Bernard Placidus Johann Nepomuk Bolzano

1781 - 1848