Case studies of probe speed data

	ation · August 2019 10/RG.2.2.36566.98887						
CITATIONS		READS					
0		8					
1 author	:						
8	Chris Jurewicz						
	SafeMobility						
	61 PUBLICATIONS 198 CITATIONS						
	SEE PROFILE						
Some of the authors of this publication are also working on these related projects:							
Project	Feasibility of using floating car speed data in road safety management View project						
Project	Understanding and Improving Safe System Intersection Performanc	te View project					

Case studies of probe speed data

Based on presentations & projects by Chris Jurewicz using 2015-2017 HERE and TomTom data

2021 UPDATE: Probe (aka. floating car) data improved significantly since 2017. It continues to be evaluated by transport agencies for a wide range of applications, including safety.

TAC investigations

Primary Strategic Objectives:

- 1. Monitor trends in speeds across the network to assist in managing the State Road Safety Strategy.
- 2. Provide input into speed management programs such as speed limit setting.
- 3. Evaluate the effectiveness of broad programs and local deployments of speed management programs and speed enforcement.

Secondary Strategic Objectives:

- 4. Provide relevant data to assist police in improving driver compliance with speed limits.
- 5. Provide information on speeds related to crash and incident patterns.
- 6. Understand driver speed behaviour.

Early probe data use case 1

Travel speed on the Pacific Mwy segment, before and after the off-ramp widening project (Qld)

Source: Espada and Inglis (2015)

Demonstrates ability to measure before/after changes in speeds due to an intervention.

Early probe data use case 2

Speed and congestion relationship of the Pacific Mwy segment, before and after the off-ramp widening project (Qld)

Source: Espada and Inglis (2015)

Early probe data use case 3

Preliminary validation of probe speeds vs. point-speeds (2017)

Comparison of hourly mean speeds averaged across all 80 km/h locations Systemic difference observed

Additional analysis of probe speed data

Time analysis of speed KPIs

Maroondah Hwy, west of Bonnie Doon 1 July 2016 - 23 March 2017

Potential probe speeds use cases – enforcement

Mean and 85th percentile hourly speeds for the Bonie Doon link

Percentiles

Note:

Rather free-flowing

Could be used as a test!

Additional analysis of probe speed data

Seasonal speed changes – a holiday period problem?

Potential probe speeds use cases – evaluation 1

Potential probe speeds use cases – evaluation 2

Albion St, Brunswick East, speed limit reduction from 60 to 40 km/h in geometrically constrained conditions

Additional analysis of distribution

Albion St, Brunswick East, speed limit reduction from 60 to 40 km/h in geometrically constrained conditions

Demonstration of the effect of probe collection period – Paynesville Rd rural road site

1 month

3 months

5 months

9 months

With longer probe data collection period, it gradually converges towards the mean measured with tube counters (AADT est. 800 vpd, probe data from 2017)

Future potential – speed effects of geometric changes at a roundabout

- Urban roundabout was upgraded resulting in geometric changes
- Roundabout was segmented into very short TomTom links (15-45 m), high traffic volumes
- Geometry of some links was tightened (more curved), some become less tight, other remained the same after the upgrade
- Probe data showed speeds dropped when geometry became tighter, and increased when straightened
- Probe data algorithms excluded stopping vehicles, only flowing traffic
- Might be useful in evaluating designs before crash data is available

	Avg speed			Geometry	
Link name	difference	t-value	p-value	change	
Mickleham North approach	0.32	-0.57032	0.57	Same	
Mickleham North departure	-1.63		0.00	Same	
Melrose South approach	-5.38	10.60621	0.00	Tighter	
LT from Melrose south	-7.43	3.603235	0.00	Tighter	
Melrose South departure	0.68	-1.79773	0.07	Same	
Broadmeadows South approach	-5.41	5.543378	0.00	Tighter	
Broadmeadows South departure	-0.05	0.049004	0.96	Same	
Melrose North approach	-0.52	0.671085	0.50	Tighter	
Melrose North departure	3.67	-4.95292	0.00	Less tight	
N quadrant circ lane	-3.47	5.566984	0.00	Tighter	
NE quadrant circ lane	1.19	-3.25161	0.00	Same	
SE quadrant circ lane	0.73	-1.10272	0.27	Less tight	
S quadrant circ lane	-0.82	2.332733	0.02	Less tight	
SW circulating lane	-1.18	3.838971	0.00	Less tight	
	AvgSpeed ch	ango			
	Tighter		km/h		
	Same		km/h		
	Less tight*		km/h		
	* most were circulating lanes where it is				
	hard to tell - used by multiple movements				
	One departure was made less tight with				
	noticeable increase in speeds				

Future steps

- Understand and document probe speed uses & limitations in specific use cases.
- Develop new practice, e.g.: probe speeds calibration, technical guidance.
- Create user-friendly system for speed monitoring and evaluations anywhere.
- Work with data providers to include pedestrian and cyclist data.
- Potential to develop new generation of speed-safety performance models.

View nublication stat