_																					
_																					
\rightarrow																					
\dashv																					
\top	\neg																				
					Щ		Щ														
	_																				
\dashv	\dashv																				
\dashv	-																				
+	\dashv																				
+	\dashv																				
\dashv	\dashv																				
	\dashv																				
					Щ		Щ														
\rightarrow	_																				
\dashv	-																				
\dashv	\dashv				\vdash		\vdash						_								
\dashv	_																				
\dashv	\dashv																				
+	\dashv																				
\top																					
\perp																					
_																					
\dashv	_																				
\perp	\dashv																				
- 1		- 1																			

Dipartimento di Scienze Fisiche, Informatiche e Matematiche

8. Secondo Assignment - Dataflow analysis

Compilatori – Middle end [1215-014]

Corso di Laurea in INFORMATICA (D.M.270/04) [16-215] Anno accademico 2024/2025 **Prof. Andrea Marongiu** andrea.marongiu@unimore.it

Dataflow Analysis Assignment

Per ciascuno dei seguenti tre problemi di analisi

 Derivare una formalizzazione per il framework di Dataflow Analysis, riempiendo lo specchietto coi parametri adeguati

	Dataflow Problem X	
Domain	Sets of Uprision	
Direction	BOCHWERD in[b] = Jb(out[b]) out[b]= 1 in(succ[b])	espression dalk inventor
Transfer function	in Cot Geny ((out Co) Kill b)	ogni allegn Willa l'esp -> in wi la
Meet Operation (△)	Λ	é un oper
Boundary Condition	in [dit] = Ø	
Initial interior points	in(b) = U (universal set)	
·		

Dataflow Analysis Assignment

Per ciascuno dei seguenti tre problemi di analisi

 Per il CFG di esempio fornito popolare una tabella con le iterazioni dell'algoritmo iterativo di soluzione del problema

	Iterazior	ne 1	Iterazior	ne 2	Iterazione 3					
	IN[B]	OUT[B]	IN[B]	OUT[B]	IN[B]	OUT[B]				
BB1	<>	<>								
BB2										
BB3										

1) Very Busy Expressions very busy in questo punto?

Quali espressioni sono

- Un'espressione è very busy in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga C definito.
- Un'espressione *a+b* è **very busy** in un punto p se a+b è valutata in tutti i percorsi da p a EXIT e non c'è una definizione di a o b lungo tali percorsi
 - Ci interessa l'insieme di espressioni disponibili (available) all'inizio del blocco B
 - L'insieme dipende dai percorsi che cominciano al punto p prima di B

ENABLES CODE HOISTING

2) Dominator Analysis

- In un CFG diciamo che un nodo X domina un altro nodo Y se il nodo X appare in ogni percorso del grafo che porta dal blocco ENTRY al blocco Y
- Annotiamo ogni basic block Bi con un insieme DOM[Bi]
 - Bi ∈ DOM[Bj] se e solo se Bi domina Bj
- Per definizione un nodo domina sé stesso
 - Bi ∈ DOM[Bi]

 $DOM[F] = \{A, C, F\}$

	Dataflow Problem X
Domain	Sets of BB
Direction	Forward out(b)= fb(in(b)) in(b)= nout[pred(b])
Transfer function	ortcb) = Buincb]
Meet Operation (∧)	Λ
Boundary Condition	out[entry] = ENTRY
Initial interior points	out(b) = universal set

Dobbios agrivagere Entry e Elit Cho & gla SE: LEVILL

3) Constant Propagation

- L'obiettivo della constant propagation è quello di determinare in quali punti del programma le variabili hanno un valore costante.
- L'informazione da calcolare per ogni nodo n del CFG è un insieme di coppie del tipo <variabile, valore costante>.
- Se abbiamo la coppia <x, c> al nodo n, significa che x è garantito avere il valore c ogni volta che n viene raggiunto durante l'esecuzione del programma.

3) Constant Propagation

 NOTA: L'analisi di CP riesce a determinare il valore costante di espressioni binarie in cui uno o entrambi gli operandi siano delle variabili il cui valore costante sia noto:

•
$$w = 5$$

• $x = 12$
• $y = x - 2 \rightarrow y = 10$
• $z = w + x \rightarrow z = 17$

 Tenere conto di questo aspetto nel determinare le equazioni

		,					
	Dataflow Problem X	300 E	31T LECTOR,	quelti S	oro veri		
Domain	(var, valore extaine)	Areny	C)10A01(0	9 K C (olo ge cilin	aho i-	ingry one with
Direction	Forward out(b)= f6(in(b]) in(b)= n out(pred(b))		B3 66	n und			
	in(b) a n out(pred(b))		1 B		\ C { \ \		
Transfer function	OUTCODE GENLU (infy - Milly)		3 0	Ø			
Meet Operation (△)	n		4 (9, Nr2) 5 (X,5)		C\$ h+2		
Boundary Condition	outceniy]= &		6 (a, K*2	1 (c.c) an	C# N X+2		
Initial interior points	ort(b) = universal ret		7 (ins)	(K,C) con	C		
		-	(K,Q)	(Ø) 04 01		
	intels come		10 (b, 2)	7 .	C#2		
<u> </u>	yotre le variabli		11 (x, a+x)	(x,c) can	C=a+K		
BB IN OUT	I ITCAN	21000	12 (y, unt)	(x, c) Or	C1 1(+1)		
	47 /10/0		, 4 Ø	Ø			
2 0 ((1,2))			7 2	Ø			
3 5 (n,2)4 S(u,2)							
4 5(4,2) 4 (0,4) (K.2) 4 5 (0,4) (K.2),(X,5) 4	(\)				111	17.	co see I meria
5 9(a, 4), (4, 2), (4, 2), (4, 2), (4, 2), (4, 2),					VRV.	RIR.	So we werk
4 S(K,2) 4 S(a,4), (H,2) } 2 [(a,4)(K,2) { [(a,4), (4,2)], (+,8) }							
	ln		007		1 1 1	ri a	0/1
(\{\(\alpha\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9 outcuty once)= (4,4)	(0,4)		27 (8) VON!	W3' <u> </u>	
(R, W) (N, W) (R, W) (N, W) (N	(4,n)		(a,h) (b,2), (4,h) (b,2) (a,h) > (b,2) (4,h)				
12 OUTC117 (V. 8) (X. 21. 19. 14) (6	(b) (b, z) 4 12 (b, z), (a) h (b) (b, z) 4 13 07(12)		2/3,7 (914)	(7,8)			
13 4 VK,51, (V, 81, (1,81, (9	(h) (b,z)4 13 047(12)	1	# 1NC13 J	1/17/			
14 orCi)= ((a,4), (u,4)			0VT(9]				
\\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	15 OVT(9)		1 OVT(9]				

Deadline per la consegna

- La deadline per la consegna del secondo assignment è martedì 15 aprile 2025
- Usate preferibilmente lo stesso link già comunicato per il primo assignment, organizzando il vostro repository in cartelle strutturate per assignment