Sampling and Inference for Beta Neutral-to-the-Left Models of Sparse Networks

Benjamin Bloem-Reddy, Adam Foster, Emile Mathieu, Yee Whye Teh

Department of Statistics, University of Oxford

Contents

Background

Sampling and inference

Experiments

Examples

- ► Messages between people (email, WhatsApp, ...)
- ► Posts + replies on StackOverflow

Power law degree distribution

Power law distribution of exponent η

$$p(d) \propto d^{-\eta}$$

where $\eta > 1$

Power law degree distribution

Sparity and power law

Empirical study

SNAP datasets [2]

Dataset	# of vertices	# of edges
Ask Ubuntu	159,316	964,437
UCI social network	1,899	20,296
EU email	986	332,334
Math Overflow	24,818	506,550
Stack Overflow	2,601,977	63,497,050
Super User	194,085	1,443,339
Wikipedia talk pages	1,140,149	7,833,140

Ask Ubuntu

UCI social network

Ask Ubuntu degree distribution

 $\hat{\eta}=2.14$ estimated using technique of [3]

Models

Yule-Simon Process

Yule-Simon Process

Yule-Simon Process

Asymptotic power law degree distribution with

$$\eta = 1 + \frac{1}{1-\beta} > 2$$

Pitman-Yor Process

Pitman-Yor Process

Asymptotic power law degree distribution with

$$\eta = 1 + \tau \in (1, 2)$$

and
$$K_n = o(n)$$

Edge exchangeable models [9], [8]

"The probability of all orderings of edge arrivals is the same"

- ► Sublinear sparsity
- ▶ $\eta \in (1,2)$

Beta Neutral-to-the-left Process [10]

Hierarchical representation of BNTL process

Recursive scaling of BNTL latents

BNTL properties

- Collapsed sampler
- ▶ Latent representation **not** from de Finetti

Sampling and inference

Three observation cases

- ► Entire history
- ▶ Vertex order
- ► Snapshot

Entire history

Vertex order

Snapshot

Observation cases

Observation	Unobserved variables
Entire history	α, ϕ, Ψ_{K_n}
Vertex order	$lpha,\phi,\mathbf{\Psi}_{K_n},\mathbf{T}_{K_n}$
Snapshot	$\alpha, \phi, \Psi_{K_n}, T_{K_n}, \sigma[K_n]$

Sampling Ψ

Beta prior on Ψ_j , plus recursive scaling –

$$\Psi_j \mid \mathbf{Z}_n, \mathbf{\Psi}_{\setminus j} \sim \mathsf{Beta} (d_{j,n} - lpha, ar{d}_{j-1,n} - (j-1)lpha) \; ,$$

- \blacktriangleright For fixed α , we have our posterior
- ▶ Learning other variables, we have a Gibbs update

Sampling α, ϕ

- \blacktriangleright For α , one-dimensional unnormalized density
- \blacktriangleright For ϕ , depends on family. Our experiments used conjugacy or slice sampling.

Sampling **T**

Sampling $\sigma[K_n]$

▶ Use Metropolis-Hastings with swap proposal $\sigma_j \leftrightarrow \sigma_{j+1}$

Point estimation

 \blacktriangleright MLE/MAP estimation for α,ϕ by optimizing unnormalized density

Experiments

- ► Synthetic data parameter recovery
- ► Scaling in *n*
- ▶ Point estimation with massive graphs

Synthetic data

- \blacktriangleright Simulate 500 edges from the prior with fixed α
- ightharpoonup Arrivals either \mathcal{PYP} or Geom
- Observe final snapshot of the graph only

Gibbs sampler results

Gen. arrival distn.	Inference model	$ \hat{\alpha} - \alpha^* $	Pred. log-lik.
$\mathcal{PYP}(1.0, 0.75)$	$(au, \mathcal{PYP}(heta, au))$	0.046 ± 0.002	$\textbf{-2637.0}\pm\textbf{0.1}$
$\mathcal{PYP}(1.0, 0.75)$	$(\alpha,Geom(eta))$	0.049 ± 0.004	-2660.5 ± 0.7
Geom(0.25)	$(\tau, \mathcal{PYP}(\theta, \tau))$	0.086 ± 0.002	-2386.8 ± 0.1
Geom(0.25)	$(\alpha,Geom(eta))$	0.043 ± 0.003	$\textbf{-2382.6}\pm0.2$

Scalability of Gibbs sampler

- ▶ Do we learn from all data?
- ▶ How does performance scale?

Scalability of Gibbs sampler

- ▶ Do we learn from all data?
- ► How does performance scale?

	n = 200	n = 20000			
$\frac{ \hat{\alpha} - \alpha^* }{ \hat{\alpha} - \alpha^* }$	0.12 ± 0.01	0.01 ± 0.00			
$ \hat{\beta} - \beta^* $	0.02 ± 0.00	0.00 ± 0.00			
ESS	0.90 ± 0.04	0.75 ± 0.08			
Runtime (s)	21 ± 0	2267 ± 2			

► Most expensive Gibss update is for **T**

Fitted point estimates

Dataset	Coupled $PYP(\theta, \alpha)$				Uncoupled $PYP(\theta, \tau)$		$Geom(\beta)$		
	$(\hat{\theta}, \hat{\alpha})$		Pred. I-I.	$\hat{\alpha}$	$(\hat{\theta}, \hat{\tau})$	Pred. I-I.	β		Pred. I-I.
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7

$\mathcal{P}\mathcal{Y}\mathcal{P}$ parameter estimates vary coupled and uncoupled

Dataset	Coupled $PYP(\theta, \alpha)$			Uncoupled $\mathcal{PYP}(\theta, \tau)$			$Geom(\beta)$		
	$(\hat{\theta}, \hat{\alpha})$		Pred. I-I.	â	$(\hat{\theta}, \hat{\tau})$	Pred. I-I.			Pred. I-I.
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7

Edge exchangeable models likely misspecified

Dataset	Coupled $\mathcal{PYP}(\theta, \alpha)$				Uncoupled $\mathcal{PYP}(\theta, au)$			$Geom(\beta)$			
			Pred. I-I.	â		Pred. I-I.		$\hat{\eta}$	Pred. I-I.		
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6		
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5		
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5		
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6		
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8		
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6		
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7		

Though better than Geom for some datasets

Dataset	Coupled $PYP(\theta, \alpha)$				Uncoupled $\mathcal{PYP}(\theta, \tau)$			$Geom(\beta)$		
Dataset			Pred. I-I.	â		Pred. I-I.			Pred. I-I.	
Ask Ubuntu	(18080, 0.25)	1.25	-3.707e6	-2.54	(-0.99, 0.99)	-3.678e6	0.083	2.32	-3.678e6	
UCI social network	(320.4, 4.4e-11)		-1.600e5	-4.98	(5.50, 0.52)	-1.595e6	0.016	2.10	-1.596e5	
EU email	(113.6, 2.5e-14)		-8.06e5	-1.86	(113.6, 9.2e-10)	-8.06e5	0.001	2.00	-8.07e5	
Math Overflow	(2575, 0.15)	1.15	-1.685e6	-6.62	(-0.97, 0.997)	-1.670e6	0.025	2.19	-1.670e6	
Stack Overflow	(297600, 0.11)	1.11	-3.358e8	-8.94	(-1.0, 1.0)	-3.333e8		2.21	-3.333e8	
Super User	(20640, 0.24)	1.24	-5.855e6	-4.19	(-0.996, 1.0)	-5.775e6	0.067	2.37	-5.775e6	
Wikipedia talk pages	(14870, 0.54)	1.54	-3.074e7	-0.25	(-1.0, 1.0)	-3.066e7	0.073	2.10	-3.066e7	

Conclusion

- ▶ BNTL models are *flexible*
- ▶ BNTL models are tractable

Future work

- ► Scalability of inference
 - ▶ Metropolis-Hastings to update T altogether
- ► Recency-weighted preferential attachment

References

- Nicholas H Bingham, Charles M Goldie, and Jef L Teugels. Regular variation, volume 27. Cambridge University Press, 1989.
- [2] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
- [3] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51(4):661–703, 2009.
- [4] David J Aldous. Representations for partially exchangeable arrays of random variables. *Journal of Multivariate Analysis*, 11(4):581–598, 1981.
- [5] Douglas N Hoover. Relations on probability spaces and arrays of random variables. Preprint, Institute for Advanced Study, Princeton, NJ, 2, 1979.
- [6] François Caron and Emily B Fox. Sparse graphs using exchangeable random measures. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(5):1295–1366, 2017.
- [7] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):509–512, 1999.
- [8] Harry Crane and Walter Dempsey. Edge exchangeable models for interaction networks. Journal of the American Statistical Association, (just-accepted), 2017.
- [9] Diana Cai, Trevor Campbell, and Tamara Broderick. Edge-exchangeable graphs and sparsity. In Advances in Neural Information Processing Systems, pages 4249–4257, 2016.
- [10] Benjamin Bloem-Reddy and Peter Orbanz. Preferential attachment and vertex arrival times. arXiv preprint arXiv:1710.02159, 2017.
- [11] Scott W Linderman, Gonzalo E Mena, Hal Cooper, Liam Paninski, and John P Cunningham. Reparameterizing the birkhoff polytope for variational permutation inference. arXiv preprint arXiv:1710.09508, 2017.

Theorem Under exchangeable models, $K_n = o(n)$. *Proof*

$$\mathbb{P}(K_n/n \to 0) = \mathbb{E}[\mathbb{P}(K_n/n \to 0 \mid \text{paintbox})]$$
 by Paintbox / de Finetti

Enough to show $\mathbb{E}[K_n|\text{paintbox}]/n \to 0$. We have

$$\mathbb{E}[K_n] = \mathbb{E}\left[\sum_{j} \mathbf{1}(\text{visited } j \text{ by } n)\right]$$

$$= \sum_{j} \mathbb{P}(\text{visited } j \text{ by } n) \text{ by Monotone Convergence}$$

$$\leq \sum_{j:P_j > 1/\sqrt{n}} 1 + \sum_{j:P_j \leq 1/\sqrt{n}} nP_j \text{ by Bonferroni}$$

$$\leq \sqrt{n} + n \sum_{j:P_j \leq 1/\sqrt{n}} P_j$$

$$= o(n)$$