

Vortrag zur Bachelorarbeit

Ein kombiniertes Verfahren aus Column Generation und Lagrangian Relaxation zur dezentralen Koordinierung von Heizsystemen

27.03.2015

Claus Meschede

Motivation

- Trend zu lokal erzeugtem Strom (z.B. BHKWs und Photovoltaik-Anlagen)
- Herausforderung für Netzstabilität
- → Energie Management Konzepte auf Verbraucherseite
 - Entkopplung der Wärmeerzeugung vom Bedarf
 - Ausgleich von Stromerzeugung und -verbrauch

1. Optimierungsmodell -Struktur des MILP-Problems

Objective function / Overall cost Resource / Energy balance CHP CHP **CHP** HP HP HP

1. Optimierungsmodell - Warum Dekomposition?

- Warum nicht einfach so als MILP-Problem lösen?
 - Rechenzeit steigt exponentiell mit Anzahl der Gebäude
 - Äußert ineffizient für größere Probleme
 - Zentraler Koordinator sammelt Gebäudeinformationen
 - Austausch sensibler Daten (z.B. genauer Stromverbrauch)
 - → **Dekomposition** des Problems in Teilprobleme, die lokal gelöst werden
 - = Dantzig-Wolfe Dekomposition
 - = Lagrange Relaxation

2. Column Generation Methode - Dantzig-Wolfe Dekomposition

2. Column Generation Methode – Iterativer Algorithmus

3. Lagrange Relaxation – Dekomposition in Teilprobleme

3. Lagrange Relaxation – Lösung, Formulierung des Lagrange Dualproblems

3. Lagrange Relaxation - Subgradienten Methode

- Wie lässt sich das Langrangian dual problem lösen?
 - **Nicht-differenzierbare**, konvexe Kostenfunktion
 - → Methoden der linearen Optimierung nicht anwendbar

$$z_{LD} = \max_{\pi} \left(z_{LR}(\pi) \right)$$

- → Optimierung mit Hilfe der Subgradienten Methode:
 - **Time State 1** Iteratives Verfahren: $\pi^{k+1} = \left[\pi^k + s^k g^k\right]^+$
 - \equiv Subgradient g wird aus $z_{LR}(\pi)$ berechnet

4. Beziehung der Verfahren - Dualität

- Lagranges Dualproblem (LD) und lineares DW-Masterproblem (LDW) sind duale Optimierungsprobleme:
 - = Column-Generation-Preise ↔ Lagrange-Dual-Preise
- Teilprobleme bis auf konstanten Faktor identisch.
 - → Lagrange Relaxation kann zum Generieren von Proposals verwendet werden.

5. Kombiniertes Verfahren - Idee

Idee: 2 geschachtelte Schleifen:

- Innere Schleife:
 - Subgradienten Optimierung
 - Proposals als "Nebenprodukt"
- Äußere Schleife:
 - Lösung des Masterproblems
 - "Feinjustierung" der Subgradienten Update Formel
- Integering Step löst das Masterproblem zum Schluss als MILP

6. Ergebnisse -Konvergenz der Verfahren

- CG: Konventionelles Column Generation Verfahren
- CGLR: Kombiniertes Verfahren mit Lagrange Relaxation

6. Ergebnisse -Primärlösungen des DW-Masterproblems

6. Ergebnisse -Abbruchzeiten der Methoden

Zusammenfassung

- Verfahren kombiniert Column Generation und Lagrange Relaxation
- Preissignale werden von der **Dualseite** aus optimiert, anstatt indirekt über Lösung des Masterproblems
- Konvergenz verbessert sich deutlich, insbesondere für Tage mit hohem Regelbedarf
- Lineare Lösungen nah am Optimum
- Gute Näherungslösungen des Convex-Hull Preises

Vielen Dank für Ihre Aufmerksamkeit!

6. Ergebnisse -Konvergenz der Preissignale

6. Ergebnisse - Duallösungen

Figure 6.4: Dual solutions (CG: Conventional column generation algorithm; LR: Combined algorithm)

6. Ergebnisse -Austausch elektrischer Energie mit Makrogrid

Figure 6.8: Electricity exchange with macrogrid for a day in January; (a) Integering step with final proposals; (b) Integering step with pricing proposals

6. Ergebnisse – Lineare Lösung als Benchmark

Figure 6.1: Best found lower bound z_{LRDW} from the combined algorithm over a whole year

6. Ergebnisse - Vergleich der Integer Lösungen

Figure 6.5: Primal solutions with unique shadow prices (CG: Conventional column generation algorithm; LR: Combined algorithm)

1. Optimierungsmodell - CHP Heizsysteme

1. Optimierungsmodell - Struktur des Problems

Kostenfunktion:

$$\begin{split} z_{MILP} &= \min_{P_{hp}, P_{chp}, P_{im}, P_{ex}} \left(\sum_{t=t_0}^{t_{end}} \left(P_{import}(t) \cdot c_{backup} - P_{export}(t) \cdot c_{grid} \right) \cdot \Delta t \\ &+ \sum_{t=t_0}^{t_{end}} \sum_{i=1}^{n_{chp}} \left(\frac{P_{el,i}^{chp}(t) + \dot{Q}_i^{chp}(t)}{\omega_i} + \frac{\dot{Q}_i^{boiler}(t)}{\eta_i^{boiler}} \right) \cdot c_{gas} \Delta t \right) \end{split}$$

1. Optimierungsmodell - Struktur des Problems

Energie-Bilanz:

$$\begin{aligned} P_{import}(t) + P_{RES}(t) + \sum_{i=1}^{n_{chp}} P_{el,i}^{chp}(t) = \\ P_{export}(t) + P_{d}(t) + \sum_{i=1}^{n_{hp}} \left(P_{el,j}^{hp}(t) + P_{el,j}^{heater}(t) \right) & \forall t \end{aligned}$$

2. Column Generation Methode - Beziehung der Lösungen

$$z_{LR}(\pi) \le z_{LD} = z_{LDW} \le z_{DW} = z_{MILP}$$

$$z_{LDW} \le z_{LRDW}$$

$$z_{DW} \le z_{RDW}$$

Kombiniertes Verfahren -Berechnen von Integer Lösungen 1

1. Möglichkeit:

- Lineare Relaxation entfernen und Masterproblem als MILP lösen
 - Anstatt mehrere Proposals zu gewichten wird für jedes Gebäude ein einzelnes Proposal ausgewählt.
 - Als Basis dienen weiterhin alle bisher generierten Proposals.

Problem:

- Proposals sind nicht bei einheitlichen Preissignalen entstanden
- = "Unfaire" Behandlung der einzelnen Gebäude

5. Kombiniertes Verfahren -Berechnen von Integer Lösungen 2

Neue Methode:

- Preissignal wird am Ende des Column Generation Verfahrens festgesetzt.
- Methode versucht die "basic" Proposals zu finden aus denen sich die lineare, näherungsweise optimale Lösung des Problems zusammensetzt.
- Basis des finalen MILP Problems nur aus den finalen Proposals bestehend.

