CS & IT ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE

Instruction & Addressing Modes

Lecture No.- 06

Topic Instruction Cycle

Topic Fetch & Execution Cycle

Topic Branch Instruction

Topic Addressing Modes

Topics to be Covered

Topic

Addressing Modes

Topic

PC Relative Mode

Topic

Questions on Addressing Modes

Topic: Implied Mode

The opcode definition itself defines the operand

Opcode	Mode	Address		

Topic: Immediate Mode

The address field of instruction specifies the operand value

Opcode Mode Address

The address field of instruction specifies the effective address

Opcode	Mode	Address			Memory
			<u></u>	Operand	

Topic: Indirect Mode

The address field of instruction specifies the address of effective address

Topic: Register Mode

The address field of instruction specifies a register which holds operand

Topic: Register Indirect Mode

The address field of instruction specifies a register which holds effective address

Topic: Autoincrement/Autodecrement Mode

Eff. add.

Variant of register indirect mode, in which content of register is automatically incremented or decremented to access a table of content sequentially.

Autoborement => Post increment old architecture

Autoborement => Pre decrement ones

Amount of increment, decrement depends on size of data item accessed.

Address part of instruction (base address) is added to index register value to get the effective address

Effective add. = address part + index Reg. Whe of instr

200 A[0] 0

201 A[1] 1

202 A[2] 2

203 A[3] 3

204 A[4] 4

Char A[5]

address of A[i] index value

= Base + Size of * i
element

Implementation of Indexed mode

Special purpose Reg. for Index Reg.

opcode mode add.

Index Reg.

no any special purpose index
Reg.

one of general purpose Reg. used
as index Reg.

opcode	mode	Index	Address
		Identifier	

=) called as position independent mode because the instⁿ remains same even program location is whatever.

Effective add = PC-value + address part of instⁿ offset

relative locations

CPU is executing I2. 200 H PC = 204 202 12 204 **T**3 Assume CPU decodes I2 as branch inst 206 and IZ gives infon => Tonget is 8 location 208 IST Logiam 210 16 for II as tanget insth away Target add. = PC + 8 relative add. (Effective add.) = 204 + 8 offset relative location to skip

for forward jumping +ve

for backward jumping -ve

Topic: Base Register Mode > used for branching (inter_segment)

Address part of instruction (offset) is added to Base register value to get the offset effective address

Opcode	Mode	Address	
		(H)	Effective add.
Base Reg	ister		

Memory

Effective add = Base Register + Address part
of instr

1. Implied mode 2. Immediate mode 3. Direct computation type instas 4. Indirect 5. Reg. mode 6. Reg. Indirect provide either operand or effective add of operand 7. Autoinc./Autorec. 8. Indexed mode => Provide target address for brynch inst? 9. PC - Relative 7 used for 10. Base Reg. Mode branch type grist"s

Non-Computable No any computation needed for eff. add. -> Implied -> Imm. mode -> Direct -> Indirect -> Reg. mode -> Reg. Intirect

Computable

compulation reeded to calculate EFF. add.

1

-> Autoinc./ Autodec.

-> Indexed mode

-> PC - Relative

-> Base Reg. Mode

-> pc relation and base Reg. mode supports runtime relocation of program.

Inst"

add of memory

200	Memory					
200	Opcode Mode					
207	Addre	ss = 500				
202	Next In	Next Instruction				
399	4	50				
400	700					
500	8	800				
600	600 900					
702						
800	300					

202 PC =200

Register R500 R500 = 400 399

Tridex Reg.

AC

Tree			
Mode	Effective Address	Operand	
1. Immediate Mode	201	500	
2. Direct Mode	500	800	
3. Indirect Mode	800	300	
4. Register Mode		400	
5. Register Indirect Mode	400	700	
6. Autodecrement Mode(b	299	450	
7. Indexed Mode	500 +100=600	900	
8. PC- Relative Mode	202+500=702	-	

[MCQ]

#Q. An instruction is stored at Location 300 with its address field at location 301. The address field has the value 400. A processor register contains the number 150. Evaluate the effective address, if addressing mode is:

- 1. Direct ⇒ 400
- 2. Immediate ⇒ 301
- 3. Relative $\Rightarrow 302 + 400 = 702$
- 4. Register Indirect => 150

[MCQ]

#Q. In case the code is position independent, the most suitable addressing mode is

A Direct mode

B Indirect mode

C Relative mode

D Indexed mode

#Q. The addressing mode that permits relocation, without any change whatsoever in the code, is

A Indirect addressing

Base register addressing

C Indexed addressing

PC relative addressing

- #Q. A relative branch mode type instruction is stored in memory at address 300. The branch is made to an address 450.
 - 1. What should be the value of relative address field of the instruction? > 149
 - 2. Determine the value of PC before instruction fetch, after the fetch and after execution phase?

Before fetch 300

After fetch 301

After execution 450

Ques) Consider a prog. which has 200 instrs II to I200.

Branch instr I4 has target instr I37. Each instr

takes 4 locations in memory. The branch instr I4

uses pc-relative mode. The offset ______?

Ans:offset = 128

no of instry skipped = 36-5+1 no of locations to skipped = 32 *4

Ques) Pc relative mode instⁿ I9 jumps to I4. each instⁿ size => 2 locations in memory. of [set = -?

Ans.

1000	II	
1002	I2	
1004	I3	
1006	I4	no of instas
1008	IS	skipped
1010	16	I9-±4+1
1012	17	
1014	I8	= 6
1016	I9	no of beatro
1018	Ilo	Skipped = 6 * 2
		5kgpc = -12

[MCQ]

#Q. Consider a hypothetical processor with an instruction of type LW R1, 20(R2); which during execution reads a 32-bit word from memory and stores it in a 32-bit register R1. The effective address of the memory location is obtained by the addition of a constant 20 and the contents of register R2. Which of the following best reflects the addressing mode implemented by this instruction for operand in memory?

A Immediate Addressing

B Register Addressing

Register indirect scaled addressing D Base indexed addressing

#Q. Consider a three-word machine instruction

ADD A[R0], @B

The first operand (destination) "A[R0]" uses indexed addressing mode with R0 as the index register. The second operand (Source) "@B" uses indirect addressing mode. A and B are memory addresses residing at the second and the third words, respectively. The first word of the instruction specifies the opcode, the index register designation and the source and destination addressing modes. During execution of ADD instruction, the two operands are added and stored in the destination (first operand).

The number of memory cycles needed during the execution cycle of the instruction is____.

#Q. Consider a 6-words instruction, which is of the following type:

Opcode	Mode1	Mode2	Address1	Address2

The first operand (destination) uses register indirect mode and second operand uses indirect mode. Assume each operand is of size 2 words, each address is of 2 words and main memory takes 50ns for 1 byte access. Further assume that the opcode denotes addition operation which copies result of addition of 2 operands. One word size is 4 bytes. Total time required in:

- 1. Fetch cycle of instruction
- 2. Execution cycle of instruction
- 3. Instruction cycle of instruction

2 mins Summary

Topic

Addressing Modes

Topic

PC Relative Mode

Topic

Questions on Addressing Modes

Happy Learning THANK - YOU