Data Mining & Machine Learning

CS37300 Purdue University

Sept 18, 2017

Decision trees

Tree models

- Easy to understand knowledge representation
- Can handle mixed variables
- Recursive, divide and conquer learning method
- Efficient inference

Tree learning

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature
 - Partition examples by selected attribute
 - Recurse and repeat
- Other issues:
 - How to construct features
 - When to stop growing
 - Pruning irrelevant parts of the tree

Fraud	Age	Degree	StartYr	Series7
+	22	Υ	2005	N
•	25	N	2003	Υ
-	31	Υ	1995	Υ
-	27	Υ	1999	Υ
+	24	A	2006	Ν
•	29	N	2003	N

choose split on Series7

Score each attribute split for these instances: Age, Degree, StartYr, Series7

StartYr **Degree** Series7 Υ Ν 2003 Υ 1995 Υ

Υ

1999

Fraud

Age

25

31

27

Υ

Fraud	Age	Degree	StartYr	Series7
+	22	Υ	2005	N
+	24	N	2006	N
-/	29	N	2003	N

choose split on Age>28 Score each attribute split for these instances: Age Degree, StartYr

Fraud	Age	Degree	StartYr	Series7
-	29	N	2003	N

Fraud	Age	Degree	StartYr	Series7
+	22	Υ	2005	N
+	24	N	2006	N

```
DecisionTree(examples, classLabel, attributes)
    features <- {}</pre>
    for each attribute
        for each attribute value
            create feature f
            features \leq features + f
     create root node of tree
    growTree(root, examples, features)
growTree(node, examples, features)
    maxScore <- 0
    maxFeature <- null</pre>
    for each feature in features
       calculate score of feature on examples
            if score > maxScore & stopping criteria not met
            maxFeature <- feature; maxScore <- score</pre>
     if maxFeature is null
       nodeClassDist <- distribution of classLabel in examples</pre>
                                                                    //to make predictions
       return //stop growing
     else
        nodeFeature <- maxFeature
       create nodes leftChild and rightChild
       1ChildExamples <- examples that pass nodeFeatureTest</pre>
       rChildExamples <- examples that fail nodeFeatureTest
       //recurse on partitioned data
       growTree(leftChild, leftChildExamples, features)
       growTree(rightChild, rightChildExamples, features)
```

Tree models

- Most well-known systems
 - CART: Breiman, Friedman, Olshen and Stone
 - ID3, C4.5: Quinlan
- How do they differ?
 - Split scoring function
 - Stopping criterion
 - Pruning mechanism
 - Predictions in leaf nodes

Scoring functions: Local split value

Choosing an attribute/feature

 Idea: a good feature splits the examples into subsets that distinguish among the class labels as much as possible... ideally into pure sets of "all positive" or "all negative"

Burger

Association between attribute and class label

Data

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Contingency table

Class label value

Attribute value

_	J 1011010		
		Buy	No buy
	High	2	2
	Med	4	2
	Low	3	1

Information gain

How much does a feature split decrease the entropy?

$$Gain(S, A) = \underbrace{Entropy(S)}_{v \in values(A)} - \underbrace{\sum_{v \in values(A)} \frac{|S_A|}{|S|}}_{Entropy(S_A)}$$

000	incomo	otudont	orodit roting	huve computer
age	income	student		buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Entropy

- Used to quantify the amount of randomness of a probability distribution.
- Definition: The entropy H(X) of a discrete random variable X is defined by:

$$H(X) = -\sum_{x} p(x) \log_2 p(x)$$

Entropy of a random variable

A completely random binary variable with X=[0.5,0.5] has entropy: $H(X) = -(0.5 \log 0.5 + 0.5 \log 0.5) = -(-.05 + -0.5) = 1$

A deterministic variable with X=[1,0] has entropy: $H(X) = -(1 \log 1 + 0 \log 0) = -(0+0) = 0$

A biased variable with X=[0.75,0.25] has entropy: H(X) = 0.8113

The entropy of a probability distribution *p* expresses the *amount of uncertainty* that we have about the values of X

Information gain

$$Gain(S, A) = Entropy(S) - \sum_{v \in values(A)} \frac{|S_A|}{|S|} Entropy(S_A)$$

Entropy(Income=high) = $-2/4 \log 2/4 - 2/4 \log 2/4 = 1$

Entropy(Income=med) = -4/6 log 4/6 -2/6 log 2/6 = 0.9183

Entropy(Income=low) = -3/4 log 3/4 - 1/4 log 1/4 = 0.8113

Gain(D,Income) = 0.9400 - (4/14 [1] + 6/14 [0.9183] + 4/14 [0.8113]) = 0.029

Gini gain

- Similar to information gain
- Uses gini index instead of entropy

$$Gini(X) = 1 - \sum_x p(x)^2$$

Measures decrease in gini index after split:

$$Gain(S, A) = Gini(S) - \sum_{v \in values(A)} \frac{|S_A|}{|S|} Gini(S_A)$$

Comparing information gain to gini gain

$$IG = 0$$

$$GG = 0$$

Comparing information gain to gini gain

$$IG = 1.0 - \left[\frac{2}{12} \ 0\right] - \left[\frac{4}{12} \ 0\right] - \left[\frac{6}{12} \ 0.919\right] = 0.541$$

$$GG = 0.5 - \left[\frac{2}{12} \ 0\right] - \left[\frac{4}{12} \ 0\right] - \left[\frac{6}{12} \ 0.444\right] = 0.278$$

How does score function affect feature selection?

66% split :Entropy = 0.919

 $Gini \times 2 = 0.889$

85% split :Entropy = 0.610

 $Gini \times 2 = 0.510$

Lower scores produce larger gains

Chi-Square score

- Widely used to test independence between two categorical attributes (e.g., feature and class label)
- Considers counts in a contingency table and calculates the normalized squared deviation of observed (predicted) values from expected (actual) values

$$\chi^2 = \sum_{i=1}^k \frac{\left(o_i - e_i\right)^2}{e_i}$$

 Sampling distribution is known to be chi-square distributed, given that cell counts are above minimum thresholds

Contingency tables

	Buy	No buy	
High	2	2	4
Med	4	2	6
Low	3	I	4
	9	5	14

Calculating expected values for a cell

$$\chi^2 = \sum_{i=1}^k \frac{\left(o_i - e_i\right)^2}{e_i}$$

$$\frac{1}{\sqrt{2}}$$
O
a
b
c
d

$$o_{(0,+)} = a$$

$$e_{(0,+)} = p(A = 0, C = +) \cdot N$$

$$= p(A = 0)p(C = +|A = 0) \cdot N$$

$$= p(A = 0)p(C = +) \cdot N \qquad \text{(assuming independence)}$$

$$= \left\lceil \frac{a+b}{N} \right\rceil \cdot \left\lceil \frac{a+c}{N} \right\rceil \cdot N$$

Example calculation

Observed

	Buy	No buy
High	2	2
Med	4	2
Low	3	I

Expected

	Buy	No buy
High	2.57	1.43
Med	3.86	2.14
Low	2.57	1.43

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(o_{i} - e_{i}\right)^{2}}{e_{i}} = \left(\frac{(2 - 2.57)^{2}}{2.57}\right) + \left(\frac{(4 - 3.86)^{2}}{3.86}\right) + \left(\frac{(3 - 2.57)^{2}}{2.57}\right) + \left(\frac{(2 - 1.43)^{2}}{1.43}\right) + \left(\frac{(2 - 2.14)^{2}}{2.14}\right) + \left(\frac{(1 - 1.43)^{2}}{1.43}\right) = 0.57$$

Tree learning

- Top-down recursive divide and conquer algorithm
 - Start with all examples at root
 - Select best attribute/feature
 - Partition examples by selected attribute
 - Recurse and repeat
- Other issues:
 - How to construct features
 - · When to stop growing
 - Pruning irrelevant parts of the tree

When to stop growing

- Full growth methods
 - All samples for at a node belong to the same class
 - There are no attributes left for further splits
 - There are no samples left
- What impact does this have on the quality of the learned trees?
 - Trees overfit the data and accuracy decreases
 - Pruning is used to avoid overfitting

Pruning

- Postpruning
 - Use a separate set of examples to evaluate the utility of pruning nodes from the tree (after tree is fully grown)
- Prepruning
 - Apply a statistical test to decide whether to expand a node
 - Use an explicit measure of complexity to penalize large trees (e.g., Minimum Description Length)

Algorithm comparison

- CART
 - Evaluation criterion:Gini index
 - Search algorithm:
 Simple to complex,
 hill-climbing search
 - Stopping criterion:
 When leaves are pure
 - Pruning mechanism:
 Cross-validation to select gini threshold

- C4.5
 - Evaluation criterion:Information gain
 - Search algorithm:
 Simple to complex,
 hill-climbing search
 - Stopping criterion:
 When leaves are pure
 - Pruning mechanism:Reduce error pruning

Example: reduced error pruning

- Use pruning set to estimate accuracy in sub-trees and for individual nodes
- Let T be a sub-tree rooted at node v

Define:

Gain from prunning at v = # misclassification in T - # misclassification at v

- Repeat: Prune at node with largest gain until until only negative gain nodes remain
- "Bottom-up restriction": T can only be pruned if it does not contain a sub-tree with lower error than T

Pre-pruning methods

- Stop growing tree at some point during top-down construction when there is no longer sufficient data to make reliable decisions
- Approach:
 - Choose threshold on feature score
 - Stop splitting if the best feature score is below threshold

Determine chi-square threshold analytically

- Stop growing when chi-square feature score is not statistically significant
- Chi-square has known sampling distribution, can look up significance threshold
 - Degrees of freedom= (#rows-1)(#cols-1)
 - 2X2 table:3.84 is 95% critical value

$$\chi^2 = \sum_{i=1}^k \frac{\left(o_i - e_i\right)^2}{e_i}$$

How do these pruning approaches change the search procedure?