

主讲教师: 王玉兰

一、函数的单调性

定理1(函数单调性的判别法)

若函数 f(x) 在 [a,b]上连续, 在(a,b)内可导,

- (1) 若在 (a,b) 内有 f'(x)>0 ,则函数在 [a,b] 上 单调递增;
- (2) 若在 (a,b) 内有 f'(x) < 0 ,则函数在 [a,b] 上单调递减;

确定函数的单调性的一般步骤:

- 1、确定函数的定义域;
- 2、求出使函数 f'(x) = 0和 f'(x)不存在的点,并以这些点为分界点,将定义域分成若干个子区间;
- 3、确定 f'(x) 在各个子区间的符号,从而判断出 f(x) 的单调性。

例1 (1) 讨论函数 $f(x) = x - \sin x$ 在[0,2 π] 上的单调性.

解:

$$f(x) = x - \sin x$$

$$f'(x) = (x - \sin x)' = 1 - \cos x$$

 $在(0,2\pi)$ 上,有

$$f'(x) = 1 - \cos x > 0$$

则 $f(x) = x - \sin x$ 在 $[0, 2\pi]$ 上单调递增.

(2) 讨论函数 $f(x) = e^x - x - 1$ 的单调性.

解:
$$D:(-\infty,+\infty)$$

$$f'(x) = (e^x - x - 1)' = e^x - 1$$

当
$$x > 0$$
 时, $f'(x) = e^x - 1 > 0$ 单调递增;

当
$$x < 0$$
 时, $f'(x) = e^x - 1 < 0$ 单调递减;

当
$$x = 0$$
 时, $f'(x) = e^x - 1 = 0$ 驻点

二、函数的极值及其求法

定义1(极值)设函数 f(x) 在 x_0 的某邻域内有定义,如果对于该邻域内任何异于 x_0 的 x 都有

- (1) $f(x) \le f(x_0)$ 成立,则称 $f(x_0)$ 为f(x) 的极大值,称 x_0 为f(x) 的极大值点;
- (2) $f(x) \ge f(x_0)$ 成立,则称 $f(x_0)$ 为 f(x) 的极小值,称 x_0 为 f(x) 的极小值点.

极大值、极小值统称为<mark>极值</mark>. 极大值点、极小值 点统称为<mark>极值点</mark>. 注意: 极值是局部性的。因而,函数可以有许多个极大值和极小值,并且极大值不一定大于极小值。

 x_1, x_3 为极大值点

 X_2, X_4 为极小值点

极值点左右两侧单调性相反。

定理2(极值的必要条件)

如果函数 f(x) 在点 x_0 处可导,且在 x_0 处取得极值,则必有 $f'(x_0) = 0$.

使 $f'(x_0) = 0$ 的点 x_0 称为函数 f(x) 的驻点。

注意:可导函数的极值点必定是它的驻点.但是函数的驻点并不一定是函数的极值点.

例如 $y = x^3, x = 0$ 为其驻点,但是 x = 0 不是函数的极值点.

定理3(极值第一充分条件)

设函数 f(x) 在点 x_0 处连续,在 x_0 处的某去心 邻域内可导,且 $f'(x_0) = 0$ (或 $f'(x_0)$ 不存在),

- (1) f'(x) "左正右负",则 f(x) "先增后减", x_0 是极大值点;
- (2) f'(x) "左负右正",则 f(x) "先减后增", x_0 是极小值点.

由定理3判定函数极值的一般步骤为:

- (1) 求函数的定义域;
- (2) 求导函数 f'(x);
- (3) 求出所有驻点及 f'(x) 不存在的点;
- (4)判定(3)中每个点左右两侧的单调性,单调性 相反的是极值点,单调性相同的不是。

例2(1) 求函数 $f(x) = 2x^3 - 9x^2 + 12x - 3$ 的极值

解
$$f(x)$$
 的定义域是 $(-\infty, +\infty)$
 $f'(x) = 6x^2 - 18x + 12$
 $= 6(x^2 - 3x + 2)$
 $= 6(x-1)(x-2)$

\$	f'((x)	=	0	•	得	\boldsymbol{x}	=	1,	$\boldsymbol{\mathcal{X}}$	=	2
-----------	-----	-----	---	---	---	---	------------------	---	----	----------------------------	---	---

_	\mathcal{X}	$(-\infty,1)$	1	(1, 2)	2	$(2,+\infty)$
Ĵ	f'(x)	+	0		0	+
J	f(x)		极大值 2		极小值	

(2) 求函数
$$f(x) = x - \frac{3}{2}x^{\frac{2}{3}} + 1$$
 的极值。

解 f(x) 的定义域是 $(-\infty, +\infty)$

$$f'(x) = 1 - x^{-\frac{1}{3}} = \frac{\sqrt[3]{x} - 1}{\sqrt[3]{x}}$$
 $\Rightarrow f'(x) = 0$,

得驻点 x=1; 当 x=0 时, f'(x) 不存在

因此函数只可能在这两点取得极值,列表讨论如下:

	X	$(-\infty,0)$	0	(0,1)	1	(1,+∞)
	f'(x)	+	不存在		0	+
1	f(x)	/	极大值 1		极小值 $\frac{1}{2}$	1

定理4(判定极值的第二充分条件)

设函数 f(x) 在点 x_0 处具有二阶导数,并且 $f'(x_0) = 0$, $f''(x_0) \neq 0$, 则

- (1) 当 $f''(x_0) < 0$ 时, x_0 为极大值点;
- (2) 当 $f''(x_0) > 0$ 时, x_0 为极小值点;

由定理4判定函数极值一般步骤为:

- 1、确定定义域,并求出所给函数的全部驻点;
- 2、求驻点的二阶导数符号,确定极值点;
- 3、求出极值点处的函数值,得到极值。

(3) 求函数 $f(x) = x^3 - 3x^2 - 9x + 5$ 的极值.

解:第一充分条件

$$f(x)$$
 的定义域是 $\left(-\infty, +\infty\right)$

$$f'(x) = (x^3 - 3x^2 - 9x + 5)' = 3x^2 - 6x - 9$$
$$= 3(x^2 - 2x - 3) = 3(x + 1)(x - 3) = 0$$

得到驻点: $x_1 = -1, x_2 = 3$

X	$(-\infty,-1)$	-1	(-1,3)	3	$(3,+\infty)$
f'(x)	+	0	_	0	+
f(x)	/	极大值10		极小值-22	

第二充分条件

$$f(x)$$
 的定义域是 $\left(-\infty, +\infty\right)$

$$f'(x) = (x^3 - 3x^2 - 9x + 5)' = 3x^2 - 6x - 9$$
$$= 3(x^2 - 2x - 3) = 3(x + 1)(x - 3) = 0$$

得到驻点: $x_1 = -1, x_2 = 3$

$$f''(x) = (3x^2 - 6x - 9)' = 6x - 6 = 6(x - 1)$$

$$f''(-1) = 6 \cdot (-1-1) < 0$$
 极大值: $f(-1) = 10$

$$f''(3) = 6 \cdot (3-1) > 0$$
 极小值: $f(3) = -22$

(4) 求函数 $f(x) = (x^2 - 1)^3 + 1$ 的极值.

解: 第二充分条件

$$f(x)$$
 的定义域是 $\left(-\infty, +\infty\right)$

$$f'(x) = \left[\left(x^2 - 1 \right)^3 + 1 \right]' = 3\left(x^2 - 1 \right)^2 \cdot \left(x^2 - 1 \right)' = 6x \cdot \left(x^2 - 1 \right)^2$$

得到3个驻点:
$$x_1 = 0, x_2 = 1, x_3 = -1$$

$$f''(x) = \left\lceil 6x \cdot (x^2 - 1)^2 \right\rceil' = 6(x^2 - 1)(5x^2 - 1)$$

$$f''(0) = 6(0-1)(0-1) = 6 > 0$$
 $f(0)$ 为极小值

$$f''(1) = 6 \cdot (1-1) \cdot (5-1) = 0$$

$$f''(1) = 6 \cdot (1-1) \cdot (5-1) = 0$$

 $f''(-1) = 6 \cdot (1-1) \cdot (5-1) = 0$
不能判断

第一充分条件

f(x) 的定义域是 $(-\infty, +\infty)$

$$f'(x) = \left[\left(x^2 - 1 \right)^3 + 1 \right]' = 3\left(x^2 - 1 \right)^2 \cdot \left(x^2 - 1 \right)' = 6x \cdot \left(x^2 - 1 \right)^2$$

得到3个驻点:
$$x_1 = 0, x_2 = 1, x_3 = -1$$

X	$(-\infty,-1)$	-1	$\left(-1,0\right)$	0	(0,1)	1	$(1,+\infty)$
f'(x)		0		0	+	0	+
f(x)		不是 极值点	Į J	极小值 $f(0) = 0$	1	不是 及值点	

练习题

3、求函数 $f(x) = 2x^3 - 3x^2$ 的极值.

$$\mathbf{M}$$
 $D: (-\infty, +\infty)$

$$f'(x) = (2x^3 - 3x^2)' = 6x^2 - 6x = 6x(x-1)$$

驻点:
$$x_1 = 0$$
 , $x_2 = 1$

X	$(-\infty,0)$	0	(0,1)	1	$(1,+\infty)$
f'(x)	+	0		0	+
$\int f(x)$	1	极大值0		极小值-1	

三、函数在闭区间上的最值

- f(x) 在闭区间 [a,b] 上连续,
- 确定 f(x)在 [a,b]上最值的方法:
 - (1) 求导数 f'(x);
 - (2) 求出 *f*(*x*) 在区间内的全部驻点及使 *f*'(*x*) 没有意义的点;

- (3) 计算(2) 中所有点及端点 a, b 的函数值;
- (4) 比较(3) 中所有函数值,选出最大值及最小值.

例3(1)求函数 $f(x) = 2x^3 + 3x^2 - 12x + 4$ 在区间 [-3,4]上的最大值与最小值.

解
$$f'(x) = 6x^2 + 6x - 12 = 6(x^2 + x - 2) = 6(x + 2)(x - 1)$$

令 $f'(x) = 0$ 得驻点 : $x_1 = -2, x_2 = 1$.
 $f(-2) = 2 \cdot (-2)^3 + 3 \cdot (-2)^2 - 12 \cdot (-2) + 4 = 24$

最小值
$$f(1) = 2 \cdot (1)^3 + 3 \cdot (1)^2 - 12 \cdot 1 + 4 = -3$$

$$f(-3) = 2 \cdot (-3)^3 + 3 \cdot (-3)^2 - 12 \cdot (-3) + 4 = \boxed{13}$$

最大值 $f(4) = 2 \cdot (4)^3 + 3 \cdot (4)^2 - 12 \cdot 4 + 4 = 132$

(2) 求函数 $f(x) = \frac{x}{1+x^2}$ 在 [0,2]上的最值.

解

$$f'(x) = \left(\frac{x}{1+x^2}\right)' = \frac{x' \cdot (1+x^2) - x \cdot (1+x^2)'}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2}$$

令 f'(x) = 0 得驻点 : $x_1 \leftarrow -1, x_2 = 1$.

$$f(1) = \frac{1}{1+1^2} = \frac{1}{2};$$
 $f(0) = \frac{0}{1+0^2} = 0;$ $f(2) = \frac{2}{1+2^2} = \frac{2}{5};$

经过比较得到 f(x) 在 [0,2]上的最大值是 $f(1) = \frac{1}{2}$,最小值是 f(0) = 0.

练习题

4、求函数 $f(x) = x^4 - 8x^2 + 2$, $(-1 \le x \le 4)$ 的最值.

$$\mathbf{f}'(x) = (x^4 - 8x^2 + 2)' = 4x^3 - 16x = 4x(x^2 - 4)$$

驻点:
$$x_1 = 0$$
 , $x_2 = 2$, $x_3 \leftarrow 2$

$$f(0) = 0^4 - 8 \cdot 0^2 + 2 = 2$$

最小值
$$f(2) = 2^4 - 8 \cdot 2^2 + 2 = -14$$

$$f(-1) = (-1)^4 - 8 \cdot (-1)^2 + 2 = -5$$

最大值
$$f(4) = 4^4 - 8 \cdot 4^2 + 2 = 130$$

若函数在所讨论的区间内只有一个可能的极值点,则该点处的函数值一定是最大值或最小值。

6、拓展练习(海报设计问题)

现在要求设计一张单栏的 竖向张贴的海报,它的印刷 面积为128平方分米,上下空 白2分米,两边空白1分米, 如何确定海报尺寸可使四周 空白面积为最小?

解 设海报的高为 x , 底为 y .

墙的面积=
$$(y+2) \cdot (x+4)$$

空白面积
$$S = (y+2) \cdot (x+4) - 128$$

$$= xy + 4y + 2x + 8 - 128$$

$$= x \cdot \frac{128}{x} + 4 \cdot \frac{128}{x} + 2x + 8 - 128$$

$$=\frac{512}{x}+2x+8$$
 $(x>0)$

求
$$S = \frac{512}{x} + 2x + 8, (x > 0)$$
 的最小值

$$S' = \left(\frac{512}{x} + 2x + 8\right)' = 512 \cdot \left(-\frac{1}{x^2}\right) + 2 = -\frac{512}{x^2} + 2$$

驻点:
$$x_1 = 16$$
 , $x_2 \leftarrow 16$

$$x=16$$
是极小值点.

结论: x=16, y=8 时空白处面积最小.

四、函数的凹凸性与拐点

- 定义2 设曲线 y = f(x) 在区间 (a,b)内各点都有切线,
 - (1) 若曲线总在切线上方,则称曲线 f(x) 在 (a,b) 上是凹的或称为凹弧,也称 (a,b) 为凹区间;
 - (2) 若曲线总在切线下方,则称曲线 f(x) 在 (a,b) 上是凸的或称为凸弧,也称 (a,b) 为凸区间;

定理5(函数凹凸性的判别法)

设函数 f(x) 在 (a,b) 上具有二阶导数,

- (1) 若在 (a,b) 内有 f''(x) > 0 ,则函数在(a,b) 上 是凹的;
- (2) 若在 (a,b) 内有 f''(x) < 0 ,则函数在(a,b) 上 是凸的;

例4 (1) 判断曲线 $y = x^4 + 2x^2$ 的凹凸性.

$$P : (-\infty, +\infty)$$

$$y' = (x^4 + 2x^2)' = 4x^3 + 4x$$

$$y'' = (4x^3 + 4x)' = 12x^2 + 4 > 0$$

曲线 $y = x^4 + 2x^2$ 在定义域 $(-\infty, +\infty)$ 上是凹的.

(2) 判断曲线 $y = \ln x$ 的凹凸性.

$$P : (0, +\infty)$$

$$y' = (\ln x)' = \frac{1}{x}$$

$$y'' = \left(\frac{1}{x}\right)' = -\frac{1}{x^2} < 0$$

曲线 $y = \ln x$ 在定义域 $(0, +\infty)$ 上是凸的.

(3) 判断曲线 $y=x^3$ 的凹凸性.

$$P' = (-\infty, +\infty)$$

$$y' = (x^3)' = 3x^2$$

$$y'' = (3x^2)' = 6x$$

当
$$x < 0$$
 时, $y'' = 6x < 0$, 凸的;

当
$$x > 0$$
 时, $y'' = 6x > 0$, 凹的;

当
$$x = 0$$
 时, $y'' = 6x = 0$,拐点.

拐点: 左右两侧凹凸性相反的点。

求函数拐点的一般步骤为:

- (1) 求函数的定义域;
- (2) 求二阶导数 f''(x);
- (3)找出所有 f''(x) = 0 的点及f''(x) 不存在的点;
- (4)判定(3)中每个点左右两侧的凹凸性,凹凸性 相反的是拐点,凹凸性相同的不是。

(4) 判断曲线 $f(x) = x^4 - 4x^3 - 18x^2 + 4x + 10$ 的 凹凸性并求出拐点.

解 f(x) 的定义域是 $\left(-\infty, +\infty\right)$

$$f'(x) = (x^4 - 4x^3 - 18x^2 + 4x + 10)'$$
$$= 4x^3 - 12x^2 - 36x + 4$$

$$f''(x) = (4x^3 - 12x^2 - 36x + 4)' = 12x^2 - 24x - 36$$
$$= 12(x^2 - 2x - 3) = 12(x - 3)(x + 1)$$

令
$$f''(x) = 0$$
,得 $x_1 = -1, x_2 = 3$

$$f''(x) = 12(x-3)(x+1)$$

X	$(-\infty,-1)$	-1	(-1,3)	3	$(3,+\infty)$
f''(x)	+	0	_	0	+
f(x)	U	拐点 (-1,-7)		拐点 (3,-167)	\mathcal{I}

$$f(x) = x^{4} - 4x^{3} - 18x^{2} + 4x + 10$$

$$f(-1) = (-1)^{4} - 4 \cdot (-1)^{3} - 18 \cdot (-1)^{2} + 4 \cdot (-1) + 10 = -7$$

$$f(3) = (3)^{4} - 4 \cdot (3)^{3} - 18 \cdot (3)^{2} + 4 \cdot (3) + 10 = -167$$

练习

5、求函数 $f(x) = \frac{1}{3}x^3 - x$ 的凹凸性与拐点.

X	$(-\infty,0)$	0	$(0,+\infty)$
f''(x)		0	+
f(x)		拐点 (0,0)	\setminus

五、渐近线(水平、垂直)

1、水平渐近线

$$x \to +\infty, f(x) \to A$$

$$x \to -\infty, f(x) \to A$$

若 $\lim_{x \to \infty} f(x) = A$, 则曲线 y = f(x) 有水平渐近线 y = A.

2、垂直渐近线

若
$$\lim_{x \to x_0} f(x) = \infty$$
, 则曲线 $y = f(x)$ 有垂直渐近线 $x = x_0$.

例5(1)求曲线
$$y = \frac{1}{x-1} + 2$$
 的水平和垂直渐近线.

解: 水平渐近线

$$\lim_{x\to\infty} \left(\frac{1}{x-1} + 2\right) = 2$$

y=2 为水平渐近线;

垂直渐近线

$$\lim_{x\to 1} \left(\frac{1}{x-1} + 2\right) = \infty,$$

x=1 为垂直渐近线.

(2) 求曲线 $y = \frac{e^x}{x^2 - 1}$ 的水平和垂直渐近线.

解: 水平渐近线

$$\lim_{x \to +\infty} \frac{e^x}{x^2 - 1} \xrightarrow{\infty} \lim_{x \to +\infty} \frac{e^x}{2x} \xrightarrow{\infty} \lim_{x \to +\infty} \frac{e^x}{2} = +\infty$$

$$\lim_{x \to -\infty} \frac{e^x}{x^2 - 1} = \lim_{x \to -\infty} e^x \cdot \frac{1}{x^2 - 1} = 0 \cdot 0 = 0$$

y = 0 为水平渐近线;

垂直渐近线

$$\lim_{x\to \pm 1} \frac{e^x}{x^2 - 1} = \infty,$$

x=1和 x=-1为垂直渐近线.

六、函数图形的描绘

步骤:

- 1. 确定函数 y = f(x) 的定义域,并考察其对称性及周期性;
- 2. 求 f'(x), f''(x), 并求出 f'(x) 及 f''(x) 为 0 和不存在的点;
- 3. 列表判别增减及凹凸区间,求出极值和拐点;
- 4. 求渐近线;
- 5. 确定某些特殊点,描绘函数图形.

例6 描绘 $y = \frac{1}{3}x^3 - x^2 + 2$ 的图形.

解: 1) 定义域为 $(-\infty, +\infty)$,

2)
$$y' = x^2 - 2x = x(x-2)$$
,
 $y'' = 2x - 2 = 2(x-1)$,
 $\Leftrightarrow y' = 0$, $\Leftrightarrow x_1 = 0$, $x_2 = 2$
 $\Leftrightarrow y'' = 0$, $\Leftrightarrow x_3 = 1$

3)	<u>x</u>	$(-\infty,0)$	0	(0,1)	1	(1,2)	2	$(2,+\infty)$
	<i>y</i> '	+ /	0	- \		- \	0	+ /
		-			0	+ \(\)		+ U
	\mathcal{Y}	_	2	\	$\frac{4}{3}$	<u></u>	$\frac{2}{3}$	
		-		•	拐点	·	极小	值

4) 无渐近线