

Breast Cancer Receptors

- Hormone receptor (HR)
- HR+ means that tumor cells have receptors for estrogen or progesterone. Certain therapies can target HR+ tumors.
- Human epidermal growth factor receptor (HER2)
- HER2+ means that tumor cells overexpress the protein HER2 which is associated with aggressive breast cancers. Certain therapies can target HER2+ tumors.

Image courtesy of Herceptin.com

Breast Cancer Subtypes

- Luminal A = HR+/HER2-73% of breast cancers
 Best prognosis
- Triple negative = HR-/HER2-13% of breast cancers Worst prognosis
- Luminal B = HR+/HER2+ 10% of breast cancers
- HER2 enriched = HR-/HER2+
 5% of breast cancers

BREAST CANCER IN WOMEN: KNOW THE SUBTYPE

It's important for guiding treatment and predicting survival.

KNOW THE SCIENCE

-

HE + news term cells have reciptors for the harmons estroyer or proportenine, which are promote fine provided HE+ turners. Homeon fractions that becomes one to could be heart HE+ becomes.

EEE v Raman apidemid grands butte exceptor.

EEE v remain tone statis processorie links high tents off a prosen, called
MEETime, which has been obsert to be associated with certian approxim
types of breed coorse. Destunents and horse other therepen can begin odds.

aka Tuminal A

73% of all breast cancer cases

- Best proghesis
- . Most common subtype for every race, age, and poverty level

HR-/HER2-

13% of all breast cancer cases

- Worst prognesis
- Non-Hispanic blacks have highest rate of this subtype at every age and poverty level.

HR+/HER2+

------ aka "Luminol B"

zka "Intele Negative"

10% of all breast cancer cases

. Little geographic variation by state.

HR-/HER2+ aka "WER2-enriched"

5% of all breast cancer cases

· Lowest rates for all races and ethnicities

Relevance to Algorithm Development

- Quantitative Feature effectiveness measure
 - False positive rate and false negative rate
 - How well the feature distinguish two classes
- Facilitate feature selection process
 - Improve detection performance
 - Reduce run-time complexity

Machine Learning Processing Paradigm

- Sensor: phenomenology
- Image Acquisition: sampling, coding, compression
- Data Conditioning: contrast enhancement, object segmentation
- Feature Extraction: attributes representing various object types
- Modeling: distribution of the feature data
- Classification: binary, multi-class

Feature Extraction

- Perform calculations of the attributes of the segmented object
 - Size, shape, texture, etc.
- Features represent the characteristics of the object
 - Effective features to distinguish various object types
- Features needs to be stable
 - Insensitive to slight spatial translation and rotation

Data Conditioning

- Speckle (noise) filtering
 - Remove any system noise for further processing
- Object Segmentation
 - Separate object of interest from the background clutter

Algorithm Training

- Data Conditioning
 Object relevant information, e.g., object segmentation
- Feature Extraction
 A multi-dimensional feature space
- Modeling Training parameters

Algorithm Test

- Data Conditioning
 Object relevant information, e.g., object segmentation
- Feature Extraction
 A multi-dimensional feature space
- Classification
 Training parameters is an input; decision can be either binary or multi-class

Training and Test - Revisit

- The processes, highlighted in yellow, are identical
- Input data are different
 - Training data labeled with classification types
 - Test data are unknown, not labeled
- Time requirements
 - Offline training is less critical than run-time test (in general).

Classification - Bayes' Theorem

$$P(D|\vec{x}) = \frac{P(\vec{x}|D) P(D)}{P(\vec{x})} = \frac{P(\vec{x}|D) P(D)}{P(\vec{x}|D)P(D) + P(\vec{x}|ND)P(ND)}$$

$$P(ND|\vec{x}) = \frac{P(\vec{x}|ND) P(ND)}{P(\vec{x})} = \frac{P(\vec{x}|ND) P(ND)}{P(\vec{x}|D)P(D) + P(\vec{x}|ND)P(ND)}$$

- D: Diseased; ND: Not Diseased
- \vec{x} : Data measurement
- $P(D|\vec{x})$: a posteriori probability of D, given a measurement of \vec{x}
- $P(\vec{x}|D)$: Probability of a measurement of \vec{x} , given classification type D
- $P(\vec{x}|ND)$: Probability of a measurement of \vec{x} , given classification type ND
- P(D): a priori probability of Classification type D
- P(ND): a priori probability of Classification type ND

Data Distribution & Decision

 Based on the data distributions and Bayes' theorem

$$P(D|\vec{x}_2) > P(ND|\vec{x}_2)$$
 Sensitivity

$$P(D|\vec{x}_1) < P(ND|\vec{x}_1)$$
 Specificity

Confusion Matrix

- Table layout to visualize the algorithm performance
 - · Row: instances of predicted class
 - Column: instances of actual class
- Sensitivity: 2350/2382 = 98.66%
- Specificity: 2063/2103 = 98.10%
- False positive rate: 40/2103 = 1.90%
- False negative rate: 32/2382 = 1.34%
- Accuracy: (2350+2063)/4485 = 98.39%

ROC Curve

- Employed for a binary classifier, i.e., D or ND
- Plot the sensitivity against the false positive rate (FPR) at various threshold settings.
- Relate to cost/benefit analysis of diagnostic decision making
- Area under the curve (AUC) a single metric

Cross-Validation

- Gain statistical confidence of the performance results
 - More indicative to the performance estimate on a blind test data
 - Minimize the effect due to inadvertent bias occurred in training and test data selection
 - The processing paradigm of each fold is the same
- Not to design the optimal modeling approach
 - Exclusively relevant to performance assessment

Approach

- n-fold cross-validation
 - Randomly partitioned into n equal-sized subsets.
 - One subset is used as the validation / test data, and the remaining n 1 subsets are used as training data.
 - The cross-validation process is then repeated n times
 - The size of the subset determines the confidence of the training model and test results
 - n = 10 commonly used
- Collect statistics of Confusion matrices, ROC curves, AUC's, etc. of multiple runs
- Other folds can be used to accommodate sample data volume

Summary

- Six key elements of Machine Learning Processing
 - Modeling for algorithm training
 - Classification for algorithm test
- Input labeled data for training and unknown data for test
- Identical processes in both algorithm training and test
 - Image Acquisition, Data Conditioning, and Feature Extraction

THANKYOU