SHOW ALL YOUR WORK! Make sure you give reasons to support your answers. If you have any questions, do not hesitate to ask!

1. You are asked to distribute 6 balls into 3 boxes. Compute the number of ways to do this for each of the twelve cases below.

Balls	Boxes	Arbitrarily	With at most 1 ball/box	With at least 1 ball/box
dist.	dist.			
dist.	indist.			
indist.	dist.			
indist.	indist.			

- 2. Where the order of purchasing is considered, let a_n be the number of ways to spend n dollars if for \$1 we can buy either a red ball or a white ball, and for \$2 we can buy either a blue, green, or black ball.
 - (a) Show that a_n satisfies the recursion $a_n = 2a_{n-1} + 3a_{n-2}$ for n > 1, with $a_0 = 1$ and $a_1 = 2$.
 - (b) Show that the ordinary generating function for a_n is $\frac{1}{1-2x-3x^2}$.
 - (c) Decompose the above generating function into partial fractions to derive an explicit formula for a_n .
- 3. How many compositions of 19 use only the parts 2 and 3?
- 4. How many functions $f:[5] \to [5]$ are at most two-to-one (i.e., no more than two elts of [5] map to the same elt under f)?
- 5. Prove the following identity:

$$\binom{n+m}{r} = \binom{n}{0} \binom{m}{r} + \binom{n}{1} \binom{m}{r-1} + \binom{n}{2} \binom{m}{r-2} + \dots + \binom{n}{r} \binom{m}{0}.$$

6. Let $S_l(n, k)$ denote the number of partitions of [n] into k blocks, each of which contains at least ℓ elements. Show that

$$S_{\ell}(n+1,k) = \binom{n}{\ell-1} S_{\ell}(n-\ell+1,k-1) + k S_{\ell}(n,k)$$
.

- 7. Prove that every set of ten (distinct) numbers from [100] contains two distinct nonempty subsets with the same sum. For extra credit, replace "distinct" with "disjoint".
- 8. Prove that if n is odd, then a partition of n whose third part is 2 cannot be self-conjugate.