实验 1 信号的基本操作与处理

1.实验目的:

- (1) 熟悉 MATLAB 软件应用环境,学习常用窗口的功能和使用方法。
- (2) 掌握基本的 MATLAB 函数操作及其使用。
- (3) 掌握简单的计算及其绘图操作。

2.实验原理

(1) MATLAB 简介

MATLAB 是美国 MathWorks 公司开发的高性能的科学与工程计算软件。它在数值计算、自动控制、信号处理、神经网络、优化计算、小波分析、图像处理等领域有着广泛的用途。近年来,MATLAB 在国内高等院校、科研院所的应用逐渐普及,成为广大科研、工程技术人员必备的工具之一。MATLAB 具有矩阵和数组运算方便、编程效率极高、易学易用、可扩充性强和移植性好等优点,俗称为"草稿纸式的科学计算语言"。它把工程技术人员从烦琐的程序代码中解放出来,可以快速地验证自己的模型和算法。

MATLAB 作为一种面向科学与工程计算的高级语言,它是一套功能强大的工程计算及数据处理软件,广泛应用于工通讯、信号处理、生物医学、控制等众多领域。它是一种面向对象的,交互式程序设计语言,其结构完整又优良的可移植性。MATLAB 的主要特点就是其强大的矩阵计算能力及仿真能力。学习软件的基本操作及其编程方法,体会和逐步掌握它在矩阵运算、信号处理等方面的功能及其具体应用。另外,MATLAB 提供了方便的绘图功能,便于用户直观地输出处理结果。

通过本课程实验的学习,要求学生运用 MATLAB 编程完成一些数字信号处理的基本功能,加深对信号处理理论课程内容的理解。循序渐进地培养学生运用所学知识分析和解决问题的能力。

(2) MATLAB 软件的安装与启动

安装 MATLAB 软件成功之后,并启动,就可以直接进行相关的操作了。

3.实验内容及其步骤

理解 MATLAB 的基本原理,学习并掌握基本的运算与操作。了解和掌握基本的数据表示与计算,掌握常用的绘图命令,熟悉学习 M 文件的编写与调试,为信号的处理等做好准备。

常用线性代数函数

III/II/AITI/AITI				
B=A'	矩阵转置	A=[1 2;3 4]	矩阵赋值	
C=A+B	矩阵相加	A(n)	查看矩阵 A 的第 n 个元素	
C=A*B	矩阵相乘	A	查看矩阵 A 的内容	
C=A^k	矩阵幂	conv(p1,p2)	两个多项式相乘	
C=A.*B	矩阵点乘,即两维数相同	[X,D]=eig(A)	矩阵的特征向量 X 和以	
	的矩阵各对应元素相乘		特征值为元素的对角阵 D	
expm(A)	指数矩阵,也就是 eA	C=A(1,:)	C 的内容为矩阵 A 的第一行	
int(A)	矩阵的逆矩阵	C=A(:,1)	C 的内容为矩阵 A 的第一列	
det(A)	矩阵的行列式的值	C=A(:,n)	C 的内容为矩阵 A 的第 n 列	
rank(A)	计算矩阵的秩	p=ploy(A)	矩阵的特征多项式	
eig(A)	矩阵的特征值	r=roots(p)	特征多项式方程的根	

(1) 基本的数据表示与常见的基本运算

输入简单的矩阵:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$, 并计算 A*B, A.*B, A.AB, 比较各自结果有何不同。

参考: A=[1,2;3,4]; B=[1,3;2,4];

A*B; A.*B; $A.^{A}B$

计算下列表达式的结果:

$$a = [12 \div 3 \times 5 + 8 - 4 \times (6 - 3)] \div 2^3$$

参考: a=[(12/3)*5+8-4*(6-3)]/2.^3

复数运算及其表示:

已知
$$z_1=1+2i$$
 , $z_2=3+4i$, $z_3=5e^{\frac{\pi}{6}i}$,利用 MATLAB 计算 $z=\frac{z_1z_2}{z_3}$ 。

参考: z1=1+2i z2=3+3i z3=5*exp(i*pi/6) z=z1*z2/z3

(2) 基本的绘图操作

常用的绘图函数有:针状图('stem'函数)函数绘图;常采用的'plot'绘图函数, 其函数功能比较强大;函数图形的注释(常用'subplot'函数来实现),等等。

绘图函数简介: Matlab 的简单应用与运算已有一定的基础,现介绍 Matlab 下的二维绘制,具体的函数名以及功能简介如下。

函数名称	函数功能简介	函数名称	函数功能简介
bar	长条图	errorbar	图形加上误差范围
fplot	较精确的函数图形	Polar	极坐标图
Hist	累计图	Rose	极坐标累计图
Stairs	阶梯图	Stem	针状图
Fill	实心图	Feather	羽毛图
Compass	罗盘图	Quiver	向量场图
Contour	在 x-y 平面绘制等位线图	Gplot	绘拓扑图
Loglog	双对数坐标曲线	Pcolor	伪彩图
Semilogx	x 轴对数坐标曲线	Semilogy	y轴对数坐标曲线

绘制正弦函数的图形,可以通过以下参考代码来实现: 绘制简单的针状图:

x = -pi : . 1 : pi;

 $y=\sin(x)$;

stem(y)

绘制曲线图:

plot(x, y);

plot(x, sin(x), x, cos(x));

图形的注释:

x = -pi : .1 : 2*pi: axis([0, 6, -1.2, 1.2]);

xlabel('Input singal'); ylabel('Out signal');

title('Two trigonometric functions'); legend('y=sin(x)','y=cos(x)'); grid on; 绘制视窗小图:利用该命令同时画出多个小图形在同一个视窗之中,:

 $\begin{aligned} & \text{subplot}(2,2,1); \, \text{plot}(x,\sin(x)); & \text{subplot}(2,2,2); \, \text{plot}(x,\cos(x)); \\ & \text{subplot}(2,2,3); \, \text{plot}(x,\sin(x)); & \text{subplot}(2,2,4); \, \text{plot}(x,\cos(x)); \end{aligned}$

(3) M 文件及 M 文本编辑器

一般,MATLAB 在命令窗口编写命令进行操作。另外 MATLAB 程序代码所编写的文件常以".m"为扩展名,即称之为 M 文件。它可以在 MATLAB 的菜单中打开,也可以直接在 MATLAB 界面图标直接进行 M 文件的编辑,创立自己的 M 文档。

Matlab 中自定义函数

在 matlab 中一个函数需要定义一个 M 文件, 文件名与函数名称一致。

例如:定义一个函数完成两个矩阵的加法与乘法运算,函数名称为"matplus",则对应编写一个名称为"matplus.m"的M文件。

function[C,D]=matplus(A,B)

%计算矩阵加法与乘法

C=A+B;

D=A*B;

在 "Command Window" 中输入如下命令:

- >> A=[1,2,3;4,5,6;7,8,9];
- >> [C,D]=matplus(A,A')

4. 实验用 MATLAB 函数介绍

其中在实验过程中常用到的 MATLAB 指令(函数名)有:

plot, figure, stem, subplot, axis, grid on, xlabel, ylabel, title, clc, exp, real, imag, abs, angle, who, whos, help, 命令等,具体调用格式参看"help"或者查阅相关书籍。另外,在具体的实验过程中也可以根据实际需要自己定义函数。

5.思考题

- (1) MATLAB 在处理数据运算过程中与其他高级语言有何不同。
- (2) 熟悉 MATLAB 的常用数学运算符号,比较几种乘法的运算符号有何不同。
- (3) 绘制振荡曲线 $y=e^{-\frac{t}{4}}\sin 3t$ 及其包络线 $y_0=e^{-\frac{t}{4}}$ 的图形,其中 t 的取值范围是 $[0,5\pi]$,并进行相应的标注。

(4) 已知
$$A = \begin{bmatrix} 1-2i & 3-4i \\ 5-6i & 7-8i \end{bmatrix}$$
, $B = \begin{bmatrix} 1+2i & 5+6i \\ 3+4i & 7+8i \end{bmatrix}$, 计算 $C = A*B$,以及其实部,虚部,模

和相角。(real, imag, abs, angle)

6.实验报告要求

- (1) 明确实验目的及其意义。
- (2) 总结实验过程中所得到的主要结论,并能进行简单的分析处理。
- (3) 对思考题所列问题进行简要回答, 试编写相应的程序, 调试并绘制图形, 得出最终结果, 并对实验报告进行整理分析。