SOAL KEL 1 DAN 2 METODE NUMERIK

NAMA: VIDI JOSHUBZKY SAVIOLA

KELAS: 2F

NO. ABSEN: 30

NIM: 2341720112

PROGRAM STUDI TEKNIK INFORMATIKA JURUSAN TEKNOLOGI INFORMASI POLITEKNIK NEGERI MALANG 2024

Metode Iterasi Titik Tetap

1. $f(x) = x^3 - 4x + 1$ Tebakan = 1.5

Toleransi dengan Selisih = |Xn - Xn - 1| < 0.001

Excel:

Iterasi	tebakan	(x)	selisih	
1	1.5	1.0938	0.4063	
2	1.0938	0.5771	0.5166	
3	0.5771	0.2981	0.2791	
4	0.2981	0.2566	0.0414	
5	0.2566	0.2542	0.0024	
6	0.2542	0.2541	0.0001	

Code Java:

```
public class iterasi {

public static double g(double x) {
    return (Math.pow(x, b:3) + 1) / 4;
}

Run|Debug

public static void main(String[] args) {
    double x0 - 1.5;
    double telerance = 0.00;
    double telerance = 0.00;
    double x1;

int maxIterations = 100;

int iterations = 0;

System.out.printf(format: "Tebakan awal: x0 = %.4f%n", x0);
System.out.printf(format: "Toleransi: %.4f%n", tolerance);
System.out.println(x: "Menghitung...");

do {
    x1 = g(x0);
    iterations++;

System.out.printf(format: "Iterasi %d: x1 = %.4f%n", iterations, x1);

if (Math.abs(x1 - x0) < tolerance) {
    break;
}

x0 = x1;
} while (iterations < maxIterations);

System.out.printf(format: "Akar yang ditemukan: %.4f%n", x1);
System.out.printf(format: "Jumlah iterasi: %d%n", iterations);

system.out.printf(format: "Jumlah
```

Hasil:

```
PS C:\xampp\htdocs\pertemuan> java iterasi.java
Tebakan awal: x0 = 1.5000
Toleransi: 0.0010
Menghitung...
Iterasi 1: x1 = 1.0938
Iterasi 2: x1 = 0.5771
Iterasi 3: x1 = 0.2981
Iterasi 4: x1 = 0.2566
Iterasi 5: x1 = 0.2542
Iterasi 6: x1 = 0.2541
Akar yang ditemukan: 0.2541
Jumlah iterasi: 6
PS C:\xampp\htdocs\pertemuan> -
```

PENJELASAN:

Kita menggunakan iterasi sampai 6, untuk rumus x iterasi pertama yaitu ((1.5 3 + 1) / 4) dan untuk selisih hasil dari x - tebakan dan memiliki hasil 0.4063, dan untuk iterasi selanjutnya rumus x mengikuti tebakan dan selisih selalu hasil dari tebakan - x

Metode Newton Raphson

2.
$$f(x) = 5x^3 + 2x^2 + 8x + 2$$

Toleransi = 0.0001

Excel:

2.001.							
iterasi	Х	f(x)	f'(x)	x baru	error		
1	2	66	76	1.13158	0.86842		
2	1.13158	20.8583	31.7334	0.47428	0.6573		
3	0.47428	6.77754	13.2712	-0.03641	0.51069		
4	-0.03641	1.71109	7.87423	-0.25372	0.2173		
5	-0.25372	0.01734	7.95072	-0.2559	0.00218		

Code Java:

```
public class newton {

public static double f(double x) {
    return 5 * Math.pow(x, b:3) + 2 * Math.pow(x, b:2) + 8 * x + 2;
}

public static double fDerivative(double x) {
    return 15 * Math.pow(x, b:2) + 4 * x + 8;
}

Run| Debug

public static void main(String[] args) {
    double x0 = -1;
    double x0 = -1;
    double x1;
    int maxIterations = 100;
    int iterations = 0.0001;
    double x1;
    int maxIterations = 100;
    int iterations = 0;

    System.out.printf(format:"Tebakan awal: x0 = %.4f%n", x0);
    if (Math.abs(x1 - x0) < tolerance);
    if (Math.abs(x1 - x0) < tolerance) {
        break;
    }
    x0 = x1;
    ) while (iterations < maxIterations);
    System.out.printf(format:"Akar yang ditemukan: %.4f%n", x1);
    System.out.printf(format:"Jumlah iterasi: %d%n", iterations);
}
</pre>
```

Hasil:

```
PS C:\xampp\htdocs\pertemuan> java newton.java
Tebakan awal: x0 = -1.0000
Toleransi: 0.0001
Menghitung...
Iterasi 1: x1 = -0.5263, f(x1) = -2.3855
Iterasi 2: x1 = -0.2890, f(x1) = -0.2653
Iterasi 3: x1 = -0.2562, f(x1) = -0.0023
Iterasi 4: x1 = -0.2559, f(x1) = -0.0000
Iterasi 5: x1 = -0.2559, f(x1) = -0.0000
Akar yang ditemukan: -0.2559
Jumlah iterasi: 5
PS C:\xampp\htdocs\pertemuan>
```

PENJELASAN:

Kita menggunakan iterasi hingga 5 iterasi, untuk yang pertama kami menggunakan rumus $5*2^3 + 2*2^2 + 8*2 + 2$ dan untuk f'(x) adalah $15*2^2 + 4*2 + 8$ dan untuk f'(x) baru 2-f(x)/f'(x) dan untuk error absolute nya |x(baru)-2| dan untuk iterasi selanjutnya mengikuti x(baru).