Assignment 3

Problem 56 UGC Math 2018

Vishnu G

Indian Institute of Technology Hyderabad

Question

Consider a linear model $Y_i = \theta_1 + \theta_2 + \epsilon_i$ for i = 1, 2 and $Y_i = \theta_1 - \theta_3 + \epsilon_i$ for i = 3, 4, where ϵ_i are independent with $R(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2 > 0$ for $i = 1, \ldots 4$, and $\theta_1, \ldots \theta_3 \in R$. Which of the following parametric function is estimable?

- (A) $\theta_1 + \theta_3$
- (B) $\theta_2 \theta_3$
- (C) $\theta_2 + \theta_3$
- (D) $\theta_1 + \theta_2 + \theta_3$

Answer: C, $\theta_2 + \theta_3$

Solution

Given,

$$Y_1 = \theta_1 + \theta_2 + \epsilon_1$$

$$Y_2 = \theta_1 + \theta_2 + \epsilon_2$$

$$Y_3 = \theta_1 - \theta_3 + \epsilon_3$$

$$Y_4 = \theta_1 - \theta_3 + \epsilon_4$$

Matrix Notation

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{bmatrix} = \begin{bmatrix} & 1 & 1 & 0 \\ & 1 & 1 & 0 \\ & 1 & 0 & -1 \\ & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} & \theta_1 \\ & \theta_2 \\ & \theta_3 \end{bmatrix} + \begin{bmatrix} & e_1 \\ & e_2 \\ & e_3 \\ & e_4 \end{bmatrix}$$

Which can be represented as

$$Y = X\beta + \epsilon_i$$

Given,
$$R(\epsilon_i) = 0$$
, ϵ_i is In dependant, $Var(\epsilon_i) = \sigma^2 > 0$ for all $i = 1, 2, 3, 4$

- 1. In dependence of ϵ_i implies that all of them un-correlated.
- 2. $Var(\epsilon_i) = \sigma^2$. So co-variance matrix is of form σ^2 I.
- 3. Which means the co-variance is spherical.

Estimable parametric function

Gauss-Markov property of estimable parameters Whenever

$$X\beta_1 = X\beta_2 \quad \beta_1, \beta_2 \in R^k$$

Then If,

$$\varphi(\beta_1) = \varphi(\beta_2)$$

 $\varphi(\beta)$ is estimable

Evaluating Options

For
$$\beta_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 and $\beta_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$X\beta_{1} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
$$X\beta_{2} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Option A $\theta_1 + \theta_3$

$$\varphi(\beta_1) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 0$$

$$\varphi(\beta_2) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 2$$

$$\varphi(\beta_1) \neq \varphi(\beta_2)$$

Option B $\theta_2 - \theta_3$

$$\varphi(\beta_1) = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 1$$

$$\varphi(\beta_2) = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = -1$$

$$\varphi(\beta_1) \neq \varphi(\beta_2)$$

Option D
$$\theta_1 + \theta_2 + \theta_3$$

$$\varphi(\beta_1) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = 1$$

$$\varphi(\beta_2) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 2$$

$$\varphi(\beta_1) \neq \varphi(\beta_2)$$

Let
$$\beta_1 = \begin{bmatrix} i_1 \\ j_1 \\ k_1 \end{bmatrix} \beta_2 = \begin{bmatrix} i_2 \\ j_2 \\ k_2 \end{bmatrix}$$

$$X\beta_{1} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} i_{1} \\ j_{1} \\ k_{1} \end{bmatrix} = \begin{bmatrix} i_{1} + j_{1} \\ i_{1} + j_{1} \\ i_{1} - k_{1} \\ i_{1} - k_{1} \end{bmatrix}$$

$$X\beta_{2} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} i_{2} \\ j_{2} \\ k_{2} \end{bmatrix} = \begin{bmatrix} i_{2} + j_{2} \\ i_{2} + j_{2} \\ i_{2} - k_{2} \\ i_{2} - k_{2} \end{bmatrix}$$

If
$$\beta_1,\beta_2$$
 satisfy $X\beta_1=X\beta_2$ then, $i_1+j_1=i_2+j_2,\quad i_1-k_1=i_2-k_2\implies j_1+k_1=j_2+k_2$

$$\varphi(\beta_1) = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} i_1 \\ j_1 \\ k_1 \end{bmatrix} = j_1 + k_1$$

$$\varphi(\beta_1) = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} i_2 \\ j_2 \\ k_3 \end{bmatrix} = j_2 + k_2$$

 $\varphi(\beta_1) = \varphi(\beta_2)$ for any β_1, β_2 so **Option C** is correct answer