Representation des nombres: Norme IEEE 754

$$-2^{31} \le N \le 2^{31}$$
$$-10^9 \le N \le 10^9$$

1 Representation des decimaux

Un decimal s'ecrit sous la forme $m10^e\ m$ mantisse , e exposant exemple Nb Avogadro = $6.0221407610^{23}mol^{-1}$ En machine le decimal s'ecrit $M2^E$

2 decimaux representes sur 4 byte

31	30	23	22	0
signe	exposant biaise 8 bits		mantisse	
1 bit			23 bits	

Table 1: Representation d'un flottant sur 4 octets (IEEE 754)

$$(-1)**signe*(1+mantisse)*2**(exposantbiaise-127)$$

$$\max = 2^{2^7} = 2^{128} \approx 2^{3^{40}} \approx 10^{40}$$

$$\min = 2^{-2^7} \approx 10^{-40}$$

3 Zero machine et precision machine

Zero machine

Definition 3.1 Le plus grand x tel que x soit represente par θ en machine.

depend de l'exposant

Precision machine

Definition 3.2 Le plus grand x tel que 1 + x soit represente par 1 en machine.

depend de la mantisse $2^{23} \approx 10^7$ 7 chiffres significatifs precision machine 10^{-7}

exemples

- $1. + 0.000\ 000\ 1 = 1.000\ 000\ 1$
- $1. + 0.000\ 000\ 01 = 1.000\ 000\ 0 = 1$

equation du second degre

$$x^{2} - x + 10^{-20} = 0$$
$$x = \frac{1 \pm \sqrt{1 - 4 \cdot 10^{-20}}}{2}$$

Une racine pose probleme, laquelle?

4 decimaux representes sur 8 byte

63	62	52	51	0
signe	exposant biaise		mantisse	
1 bit	11 bits		52 bits	

Table 2: Representation d'un flottant sur 8 octets =64 bits (IEEE 754)

$$(-1)**{\rm signe}*(1+{\rm mantisse})*2**({\rm exposant biaise}-1023)$$

zero machine 10^{-308} precision machine 10^{-14}

5 Complexes

En **Fortran** les complexes sont par defaut representes sur 8 bytes 4 byte partie reelle, 4 byte partie imaginaire

Les complexes sur 16 bytes sont declares double precision complex

En Matlab et Python les flottants sont par defaut sur 8 octets

6 Arithmetique etendue Norme IEEE 754

Probleme d'Ariane 5 ! Le depassement de capacite doit etre bien gere

La norme introduit

Inf $+\infty$ Overflow

-Inf $-\infty$ Underflow

NaN not a number, Invalid operation, operation illegale (ex $\sqrt{-1}$)

Ces quantites obeissent a des regles d'operation bien precises

 $\mathrm{Inf} \pm x = \mathrm{Inf}$

 $\mathrm{Inf} \times x = \mathrm{Inf}$

 $\mathrm{Inf} - \mathrm{Inf} = \mathrm{NaN}$

Inf * 0 = NaN

N'importe quelle operation sur un NaN donne un NaN

```
program tst4
     parameter(n=39)
     \operatorname{real} x , y , z
     y=0.
     x = 1. / y
     write(*,*)'1/0 = ', x
     x = 10.**n
     write(*,*)'10**n =', x
     y = -10.**n
     write(*,*)'-10**n =', y
     z= x + y
     write(*,*)'10**n-10**n =',z
     x = 10.**(-2*n)
     write(*,*)'10**(-2*n) = ', x
     stop
     end
-----execution-----
tst4
1/0 = INF
10**n = INF
-10**n = -INF
10**n-10**n = NAN
10**(-2*n) = 0.
```