Can we implement good quantum LDPC codes on near-term devices?

Maxime Tremblay¹, Michael Beverland², Nicolas Delfosse²

Arute et al. Nature 574, 505-510 (2019)

The IBM Quantum heavy hex lattice

As of August 8, 2021, the topology of all active IBM Quantum devices will use the heavy-hex lattice, including the IBM Quantum System One's Falcon processors installed in Germany and Japan.

Near-term quantum computers will be locally connected.

Can we achieve large scale fault-tolerant quantum computing on locally connected devices?

Tradeoffs for reliable quantum information storage in 2D systems

Sergey Bravyi, ¹ David Poulin, ² and Barbara Terhal ¹

¹IBM Watson Research Center, Yorktown Heights NY 10598, USA

²Département de Physique, Université de Sherbrooke, Québec, Canada

(Dated: September 11, 2018)

1

7

8

Main results

Theorem

Let C be a Clifford circuit measuring computing Pauli operators S_1, \ldots, S_r . Then, for any subset of qubits L, we have

$$depth(C) \geq \frac{n_{cut}}{64|\partial L|}.$$

Main results

Theorem

Let C be a Clifford circuit measuring computing Pauli operators S_1, \ldots, S_r . Then, for any subset of qubits L, we have

$$depth(C) \geq \frac{n_{cut}}{64|\partial L|}.$$

Corollary

For families of local-expander quantum LDPC codes of length n, a syndrome extraction circuit C implemented as a local Clifford circuit on a $\sqrt{N} \times \sqrt{N}$ grid of qubits satisfies

$$depth(C) \geq \Omega\left(\frac{n}{\sqrt{N}}\right).$$

References

- Bounds on stabilizer measurement circuits and obstructions to local implementations of quantum LDPC codes arXiv 2109.14599
- Constant-overhead quantum error correction with thin planar connectivity arXiv 2109.14609

Outline

- 1. Background and definitions
- 2. Proof of the main theorem
- 3. Circuit implementations
- 4. Numerical experiments

Background and definitions

• Preparations of $|0\rangle$ and $|+\rangle$ and classical bits.

- Preparations of $|0\rangle$ and $|+\rangle$ and classical bits.
- Single-qubit and two-qubit Pauli measurements.

- Preparations of $|0\rangle$ and $|+\rangle$ and classical bits.
- Single-qubit and two-qubit Pauli measurements.
- Single-qubit and two-qubit unitary Clifford gates.

- Preparations of $|0\rangle$ and $|+\rangle$ and classical bits.
- Single-qubit and two-qubit Pauli measurements.
- Single-qubit and two-qubit unitary Clifford gates.
- Classically-controlled Pauli operators.

- Preparations of $|0\rangle$ and $|+\rangle$ and classical bits.
- Single-qubit and two-qubit Pauli measurements.
- Single-qubit and two-qubit unitary Clifford gates.
- Classically-controlled Pauli operators.
- Ouput the parity of some subsets of measurement outcomes.

Local circuit

A b-local circuit is a circuit with qubits placed on a subset of the $\mathbb{Z} \times \mathbb{Z}$ grid such that any two-qubit operation acts on qubits at distance at most b from each other.

Local circuit

A b-local circuit is a circuit with qubits placed on a subset of the $\mathbb{Z} \times \mathbb{Z}$ grid such that any two-qubit operation acts on qubits at distance at most b from each other.

Connectivity graph

Connectivity graph

Stabilizer code

Stabilizer group

$$\mathcal{S} = \langle S_1, S_2, \dots, S_r \rangle \subset \mathcal{P}_n \setminus \{-I\}$$
 such that $S_i S_j = S_j S_i$

Stabilizer code

Stabilizer group

$$\mathcal{S} = \langle S_1, S_2, \dots, S_r \rangle \subset \mathcal{P}_n \setminus \{-I\}$$
 such that $S_i S_j = S_j S_i$

Stabilizer code

common +1 eigenspace of ${\mathcal S}$

$$C(S) = \{ |\psi\rangle : S |\psi\rangle = \psi \, \forall S \in \mathcal{S} \}$$

Stabilizer code

Stabilizer group

$$\mathcal{S} = \langle S_1, S_2, \dots, S_r \rangle \subset \mathcal{P}_n \setminus \{-I\}$$
 such that $S_i S_j = S_j S_i$

Stabilizer code

common +1 eigenspace of $\mathcal S$

$$C(S) = \{ |\psi\rangle : S |\psi\rangle = \psi \, \forall S \in \mathcal{S} \}$$

Example

The five qubits code

$$S = \langle XXZIZ, ZXXZI, IZXXZ, ZIZXX \rangle$$

Consider *n*-qubit independent commuting Pauli operators S_1, \ldots, S_r .

- Consider *n*-qubit independent commuting Pauli operators S_1, \ldots, S_r .
- For $\mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}_2^r$, denote $\Pi_{\mathbf{m}}$ the projector onto the common eigenspace of S_i with value $(-1)^{m_i}$.

- Consider *n*-qubit independent commuting Pauli operators S_1, \ldots, S_r .
- For $\mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}_2^r$, denote $\Pi_{\mathbf{m}}$ the projector onto the common eigenspace of S_i with value $(-1)^{m_i}$.
- ▶ A Pauli measurement circuit maps a n-qubit state ρ to $\Pi_{\mathbf{m}}\rho\Pi_{\mathbf{m}}$ with probability $\mathrm{Tr}(\Pi_{\mathbf{m}}\rho)$ and output \mathbf{m} .

- Consider *n*-qubit independent commuting Pauli operators S_1, \ldots, S_r .
- For $\mathbf{m} = (m_1, \dots, m_r) \in \mathbb{Z}_2^r$, denote $\Pi_{\mathbf{m}}$ the projector onto the common eigenspace of S_i with value $(-1)^{m_i}$.
- ▶ A Pauli measurement circuit maps a n-qubit state ρ to $\Pi_{\mathbf{m}}\rho\Pi_{\mathbf{m}}$ with probability $\operatorname{Tr}(\Pi_{\mathbf{m}}\rho)$ and output \mathbf{m} .
- The circuit use N = n + a qubits where a is the number of ancilla qubits.

Tanner graph

$$S = \{XXIII, ZXIZI, IIYZZ\}$$

Tanner graph

$$S = \{XXIII, ZXIZI, IIYZZ\}$$

$$T(S) = (V_Q \cup S, E)$$

 $\{q_i, S_j\} \in E \text{ iff } S_j \text{ acts}$
non-trivially on q_i

Tanner graph

$$S = \{XXIII, ZXIZI, IIYZZ\}$$

 $T(S) = (V_Q \cup S, E)$ $\{q_i, S_j\} \in E \text{ iff } S_j \text{ acts}$ non-trivially on q_i

Contracted Tanner graph

$$S = \{XXIII, ZXIZI, IIYZZ\}$$

Contracted Tanner graph

$$S = \{XXIII, ZXIZI, IIYZZ\}$$

$$ar{T}(S) = (V_Q, ar{E}) \ \{q_i, q_j\} \in ar{E} ext{ iff } \exists S_k ext{ actings} \ ext{non-trivially on } q_i$$

Contracted Tanner graph

$$S = \{XXIII, ZXIZI, IIYZZ\}$$

$$ar{T}(S) = (V_Q, ar{E}) \ \{q_i, q_j\} \in ar{E} ext{ iff } \exists S_k ext{ actings} \ ext{non-trivially on } q_i$$

Quantum LDPC codes

A family of quantum LDPC codes $(Q_i)_i$ is a family of stabilizer codes such that the degree of the Tanner graph T_i are bounded by some constant independent of i.

Local-expansion

The Cheeger constant of a graph G = (V, E) is defined as

$$h_{arepsilon}(\mathsf{G}) = \min_{\substack{L \subseteq \mathsf{V} \ |L| \leq arepsilon |\mathsf{V}|/2}} rac{|\partial L|}{|L|}.$$

Local-expansion

The Cheeger constant of a graph G = (V, E) is defined as

$$h_{arepsilon}(\mathsf{G}) = \min_{\substack{L \subseteq V \ |L| \le arepsilon |V|/2}} rac{|\partial L|}{|L|}.$$

A family of graphs $(G_i)_{i\in\mathbb{N}}$ is an (α, ε) -expander graph family if $h_{\varepsilon}(G_i) \geq \alpha$ for all i.

Local-expansion

The Cheeger constant of a graph G = (V, E) is defined as

$$h_{arepsilon}(\mathit{G}) = \min_{\substack{L \subseteq V \ |L| \leq arepsilon |V|/2}} rac{|\partial L|}{|L|}.$$

A family of graphs $(G_i)_{i\in\mathbb{N}}$ is an (α, ε) -expander graph family if $h_{\varepsilon}(G_i) \geq \alpha$ for all i.

A family of quantum local-expander codes is a family of stabilizer codes with (α, ε) -expander contracted Tanner graphs.

Lemma

Let T be the Tanner graph of a stabilizer code with length n and with r stabilizer generators. Let \bar{T} be its contracted Tanner graph. Then, for all $\varepsilon \in [0,1]$, we have

$$h_{\varepsilon'}(\bar{T}) \geq \frac{h_{\varepsilon}(T)}{\deg(T)}$$

where

$$\varepsilon' = \left(1 + \frac{r}{n}\right) \frac{\varepsilon}{1 + \deg(T)}.$$

Show that

$$|\partial_{\bar{\tau}}L| \geq \frac{|\partial_T(L \cup N_T(L))|}{\deg(T)}.$$

Show that

$$|\partial_{\bar{\tau}}L| \geq \frac{|\partial_{\tau}(L \cup N_{\tau}(L))|}{\deg(T)}.$$

If

$$|L \cup N_T(L)| \leq \varepsilon \frac{V(T)}{2},$$

then

$$|\partial_T(L \cup N_T(L))| \geq h_{\varepsilon}(T) |L \cup N_T(L)| \geq h_{\varepsilon}(T) |L|$$
.

Show that

$$|\partial_{\bar{\tau}}L| \geq \frac{|\partial_{T}(L \cup N_{T}(L))|}{\deg(T)}.$$

> If

$$|L \cup N_T(L)| \leq \varepsilon \frac{V(T)}{2},$$

then

$$|\partial_T(L \cup N_T(L))| \geq h_{\varepsilon}(T) |L \cup N_T(L)| \geq h_{\varepsilon}(T) |L|$$
.

Combine the two

$$\frac{\partial_{\overline{T}}L|}{|L|} \geq \frac{h_{\varepsilon}(T)}{\deg(T)}$$

$$|\partial_{\bar{\tau}}L|\deg(T) \geq |\partial_{T}(L \cup N_{T}(L))|$$

Review

- (Local) Clifford circuits
- Connectivity graphs
- Stabilizer codes and LDPC codes
- Pauli measurement circuits
- (Contracted) Tanner graphs
- Expander codes

Proof of the main theorem

Theorem

Let C be a Clifford circuit measuring computing Pauli operators S_1, \ldots, S_r . Then, for any subset of qubits L, we have

$$depth(C) \geq \frac{n_{cut}}{64|\partial L|}.$$

Corollary

For families of local-expander quantum LDPC codes of length n, a syndrome extraction circuit C implemented as a local Clifford circuit on a $\sqrt{N} \times \sqrt{N}$ grid of qubits satisfies

$$depth(C) \geq \Omega\left(\frac{n}{\sqrt{N}}\right)$$
.

Partition the circuit's qubits into two subsets *L* and *R*.

- Partition the circuit's qubits into two subsets L and R.
- Lower bound the amount of correlation required between *L* and *R* to measure the Pauli operators.

- Partition the circuit's qubits into two subsets L and R.
- Lower bound the amount of correlation required between L and R to measure the Pauli operators.
- Upper bound the amount of correlation introduced per operation.

- Partition the circuit's qubits into two subsets L and R.
- Lower bound the amount of correlation required between L and R to measure the Pauli operators.
- Upper bound the amount of correlation introduced per operation.
- Combine both arguments to derive a lower bound for the depth of the circuit.

Mutual information

$$I(b_1;b_2)=0$$

Mutual information

$$I(b_1;b_2)=0$$

$$I(b_1';b_2')=1$$

Mutual information

$$I(b_1', b_2', E_1; E_2) = 1$$

Classical operations can artificially boost mutual information.

▶ Build a circuit C' with the same action and similar depth as C by pushing all measurements and classical operations at the end.

- ▶ Build a circuit C' with the same action and similar depth as C by pushing all measurements and classical operations at the end.
- **Consider the circuit** $C' \circ E \circ C'$.

- ▶ Build a circuit C' with the same action and similar depth as C by pushing all measurements and classical operations at the end.
- Consider the circuit $C' \circ E \circ C'$.
- Compute the mutual information

$$I(O_L^{(2)}, E_L; O_R^{(2)}, E_R | O^{(1)}).$$

$$depth(C') \le 4 \cdot depth(C) + 2$$

Both ancillas are the same node in the connectivity graph and in the same partition.

$$depth(U) \le 4 \cdot depth(C)$$

$$depth(U) \le 4 \cdot depth(C)$$

$$|\partial L| = |\partial L'|$$

The double measurement circuit

