

Kalmar Växjö

Assignment

# Performance Engineering



Author: Rashed Qazizada Supervisor: Diego Perez Semester: Spring 2020

Course name: Software Enginering

Design

### Contents

| 1 Introduction                                      | 3   |
|-----------------------------------------------------|-----|
| 1.1 Calculations                                    |     |
| 2 Model                                             | I   |
| 3 Service Time                                      | I   |
| 4 Simulation Results                                | III |
| 4.1 System response time before upgrading the model | III |
| 4.2 System response time before upgrading the model | IV  |
| 5 Activity Diagram                                  | V   |

Kalmar Växjö

### 1 Introduction

This report uses the operational laws to calculate the Service Time  $D_k$  of each of the four service centers.

#### 1.1 Calculations

| Server                   | Service demand time (D) | Service rate (μ) |
|--------------------------|-------------------------|------------------|
| WebServer                | 0.05                    | 20               |
| ContentDeliveryServer    | 0.38                    | 1.85             |
| ContentUpdoadServer      | 0.9                     | 3.3              |
| SecurityAndLoggingServer | 0.6                     | 1.66             |

Calculations:

Observation time=200 minutes=12000seconds=T

Completion time=18000 requests.=C

X=C/T=X=18000/12000=

 $\lambda k = Ak/T$ , the arrival rate=90 req/minutes=90/60=1.5req/s

WebServer

 $B_k = 900s$ 

Service Demand Law: D<sub>k</sub>=B<sub>k</sub>/C=900/1800=0.05

 $U = B_k/T = 0.075$ 

ContentDeliveryServer

 $B_{k=}6840$ 

U=0.57

Utilization law

 $U=X.D_k$ 

 $D_k = U/X = 0.57/1.5 = 3.8$ 

 $M=1/ServiceTime(S_k)$ 

C<sub>k</sub>=70/100\*18000=12600

 $Sk=B_k/C_K$ 

 $U=B_k/T=0.075$ 

Bk=U\*T=0.57

Content Updoad Server

 $D_k=U/X=1.35/1.5=0.9$ 

SecurityAndLoggingServer

 $D_k = U/X = 0.09//1.5 = 0.6$ 

### 2 Model



### 3 Service Time

#### WebServer





Routing the incoming requests to *ContentDeliveryServer* 70% which is 0.7 probability and 30% which is 0.3 probability to *ContentUpdoadServer*.

Kalmar Växjö

#### ContentDeliveryServer



The request executed in the *ContentDeliveryServer* iterating 11 times its execution in this server (so, an average page has 11 images). And there are two resources for executing the *ContentDeliveryServer* 

#### Routing for ContentDeliveryServer 11 times.



#### ContentUploadServer



#### SecurityAndLoggingServer



The updated SecurityAndLoggingServer by adding 2 more resources to it. Therefore, the total is 3 resourse.

Note: *ContentDeliveryServer* had 2 resources and SecurityAndLoggingServer had one resource. After the upgrade of the system, the power of SecurityAndLoggingServer has been incremented by adding 2 extra resources. The total resources in SecurityAndLoggingServer are now 3.

Kalmar Växjö

- 4 Simulation Results
- 4.1 System response time before upgrading the model

The simulation results before upgrading the Model SecurityAndLoggingServer



Kalmar Växjö

### 4.2 System response time before upgrading the model

The simulation results after upgrading the SecurityAndLoggingServer.



Kalmar Växjö

### 5 Activity Diagram

