# Parallel and Distributed Computing CS3006

Lecture 16

**MPI-III** 

23rd May 2022

Dr. Rana Asif Rehman

# Sorting in Parallel Era

# Sorting: Overview

- One of the most commonly used and well-studied Algorithms.
- Sorting can be comparison-based or non-comparisonbased.
- The fundamental operation of comparison-based sorting is compare-exchange.
- The lower bound on any comparison-based sort of n numbers is  $\Theta(n \log n)$ .
- Let's explore a comparison-based sorting algorithm.

# Sorting: Basics

- → What is a parallel sorted sequence?
- → Where are the input and output lists stored?

#### **Answers:**

- We assume that the input and output lists are distributed.
- The sorted list is partitioned with the property that each partitioned list is sorted and each element in processor  $P_i$ 's list is less than that in  $P_i$ 's list if i < j.

# Sorting: Parallel Compare Exchange Operation



A parallel compare-exchange operation. Processes  $P_i$  and  $P_j$  send their elements to each other. Process  $P_i$  keeps min $\{a_i, a_i\}$ , and  $P_j$  keeps max $\{a_i, a_i\}$ .

# Sorting: Parallel Compare Exchange Operation [cost estimation]

- If each processor has one element, the compare exchange operation stores the smaller element at the processor with smaller id. This can be done in  $t_s + t_w$  time.
- If we have more than one element per processor, we call this operation a compare split. Assume each of two processors have n/p elements.
- After the compare-split operation, the smaller n/p elements are at processor  $P_i$  and the larger n/p elements at  $P_i$ , where i < j.
- The time for a compare-split operation is  $(t_s + t_w n/p)$ , assuming that the two partial lists were initially sorted.
  - Note that this time is only accounting communication costs. Computation and memory complexities are separate things.

## Sorting: Parallel Compare Exchange



A compare-split operation. Each process sends its block of size n/p to the other process. Each process merges the received block with its own block and retains only the appropriate half of the merged block. In this example, process  $P_i$  retains the smaller elements and process  $P_i$  retains the larger elements.

#### **Bubble Sort and its Variant**

The sequential bubble sort algorithm compares and exchanges adjacent elements in the sequence to be sorted:

```
1. procedure BUBBLE_SORT(n)
2. begin
3. for i := n - 1 downto 1 do
4. for j := 1 to i do
5. compare-exchange(a_j, a_{j+1});
6. end BUBBLE_SORT
```

Sequential bubble sort algorithm.

| F.4 | 00 | 00 | 47 |    | 0.1 | 44 |    | 00 |                                 |  |  |
|-----|----|----|----|----|-----|----|----|----|---------------------------------|--|--|
| 54  | 26 | 93 | 17 | 77 | 31  | 44 | 55 | 20 | Exchange                        |  |  |
| 26  | 54 | 93 | 17 | 77 | 31  | 44 | 55 | 20 | No Exchange                     |  |  |
| 26  | 54 | 93 | 17 | 77 | 31  | 44 | 55 | 20 | Exchange                        |  |  |
| 26  | 54 | 17 | 93 | 77 | 31  | 44 | 55 | 20 | Exchange                        |  |  |
| 26  | 54 | 17 | 77 | 93 | 31  | 44 | 55 | 20 | Exchange                        |  |  |
| 26  | 54 | 17 | 77 | 31 | 93  | 44 | 55 | 20 | Exchange                        |  |  |
| 26  | 54 | 17 | 77 | 31 | 44  | 93 | 55 | 20 | Exchange                        |  |  |
| 26  | 54 | 17 | 77 | 31 | 44  | 55 | 93 | 20 | Exchange                        |  |  |
| 26  | 54 | 17 | 77 | 31 | 44  | 55 | 20 | 93 | 93 in place<br>after first pass |  |  |

#### **Bubble Sort and its Variant**

- The complexity of bubble sort is  $\Theta(n^2)$ .
- Bubble sort is difficult to parallelize since the algorithm has no concurrency.
- A simple variant, though, uncovers the concurrency.

## **Bubble Sort** [Odd-Even Transposition]



Sorting n = 8 elements, using the odd-even transposition sort algorithm. During each phase, at most 8 elements are compared. [This according to sequential algorithm] CS3006 - Spring 2022

## **Bubble Sort** [Odd-Even Transposition]

```
procedure ODD-EVEN(n)
2.
         begin
3.
              for i := 1 to n do
4.
              begin
5.
                   if i is odd then
6.
                        for j := 0 to n/2 - 1 do
7.
                             compare-exchange(a_{2i+1}, a_{2i+2});
8.
                   if i is even then
                        for j := 1 to n/2 - 1 do
10.
                             compare-exchange(a_{2i}, a_{2i+1});
11.
              end for
12.
         end ODD-EVEN
```

Sequential odd-even sort algorithm.

# Odd-Even Sort (Seq. Complexity)

- After n phases of odd-even exchanges, the sequence is sorted.
- Each phase of the algorithm (either odd or even) requires  $\Theta(n)$  comparisons.
- Serial complexity is  $\Theta(n^2)$ .

|      | Step<br>0 | P <sub>0</sub> | P <sub>1</sub> | $P_2$      | P <sub>3</sub> | $P_4$      | $P_5$          | P <sub>6</sub> | P7            |
|------|-----------|----------------|----------------|------------|----------------|------------|----------------|----------------|---------------|
|      |           | 4 -            | <del>-</del> 2 | 7 🕶        | <b>→</b> 8     | 5 -        | <del>-</del> 1 | 3 -            | <b>-</b> 6    |
| Time | 1         | 2              | 4 -            | <b>→</b> 7 | 8 🕶            | <b>→</b> 1 | 5 -            | <b>→</b> 3     | 6             |
|      | 2         | 2 -            | <del></del> 4  | 7 -        | <b>→</b> 1     | 8 -        | <b>→</b> 3     | 5              | <del></del> 6 |
|      | 3         | 2              | 4 -            | <b>→</b> 1 | 7 -            | - 3        | 8 -            | <b></b> 5      | 6             |
|      | 4         | 2 -            | <del>-</del> 1 | 4 -        | 3              | 7 -        | - 5            | 8              | - 6           |
|      | 5         | 1              | 2 -            | - 3        | 4 -            | - 5        | 7 -            | - 6            | 8             |
|      | 6         | 1 -            | → 2            | 3 🕶        | <b>→</b> 4     | 5 🕶        | <b>→</b> 6     | 7 🕶            | <b>→</b> 8    |
|      | 7         | 1              | 2 -            | <b>→</b> 3 | 4 -            | <b>-</b> 5 | 6 -            | <b>→</b> 7     | 8             |

Parallel time complexity:  $T_{par} = O(n)$  (for P=n)

#### Algorithm Through Observations:

1. There are total **P** phases/steps. Where P is number of processes

#### 2. For even phases

- i. If 'myrank' is even → Communication partner is ('myrank'+1)
- ii. If 'myrank' is odd → Communication partner is ('myrank' 1)

#### 3. For odd phases:

- i. If 'myrank' is even → Communication partner is ('myrank' 1)
- ii. If 'myrank' is odd → Communication partner is ('myrank'+1)
- 4. Communication partners remain constant
- If 'myrank' is less-than the partner, then keep lower values in compare-split-operation

#### Complexity when n==P

- Consider the one item per processor case.
- There are P iterations, in each iteration, each processor does one compare-exchange.
- The parallel run time of this formulation is  $\Theta(n)$ .
- Parallel run time means computation performed by each of the processors in parallel.

#### Complexity when n > P

- ightharpoonup Consider a block of n/p elements per processor.
- The first step is a local sort.
- In each subsequent step, the compare exchange operation is replaced by the compare split operation.
- The parallel run time of the formulation is:

$$T_P = \Theta\left(\frac{n}{p}\log\frac{n}{p}\right) + \Theta(n) + \Theta(n).$$

comm. steps for a single process

- 1. #include <stdlib.h>
- 2. #include <mpi.h> /\* Include MPI's header file \*/
- 3. main(int argc, char \*argv[])
- 4.
- 5. int n; /\* The total number of elements to be sorted \*/
- 6. int npes; /\* The total number of processes \*/
- 7. int myrank; /\* The rank of the calling process \*/
- 8. int nlocal; /\* The local number of elements, and the array that stores them \*/
- int \*elmnts; /\* The array that stores the local elements \*/
- 10. int \*relmnts; /\* The array that stores the received elements \*/
- 11. int oddrank; /\* The rank of the partner during odd-phase communication \*/
- 12. int evenrank; /\* The rank of the partner during even-phase communication \*/
- 13. int \*wspace; /\* Working space during the compare-split operation \*/

```
18
      /* Initialize MPI and get system information */
19
      MPI Init (&argc, &argv);
      MPI Comm size (MPI COMM WORLD, &npes);
20
21
      MPI Comm rank (MPI COMM WORLD, &myrank);
22
23
      n = atoi(argv[1]);
24
      nlocal = n/npes; /* Compute the number of elements to be stored locally. */
25
      /* Allocate memory for the various arrays */
26
27
      elmnts = (int *)malloc(nlocal*sizeof(int));
28
      relmnts = (int *)malloc(nlocal*sizeof(int));
29
      wspace = (int *)malloc(nlocal*sizeof(int));
30
31
      /* Fill-in the elmnts array with random elements */
32
      srandom (myrank);
33
      for (i=0; i<nlocal; i++)
34
        elmnts[i] = random();
35
     /* Sort the local elements using the built-in quicksort routine */
36
37
      gsort(elmnts, nlocal, sizeof(int), IncOrder);
```

Determining communication partner during Even and odd steps of the algorithm.

■ If my partner is out of bounds, then set it to NULL process.

```
if (myrank 2 == 0) {
41
42
        oddrank = myrank-1;
43
        evenrank = myrank+1;
44
45 else {
46
        oddrank = myrank+1;
47
        evenrank = myrank-1;
48
49
50
     /* Set the ranks of the processors at the end of the linear */
51
     if (oddrank == -1 || oddrank == npes)
52
        oddrank = MPI PROC NULL;
      if (evenrank == -1 || evenrank == npes)
53
54
        evenrank = MPI PROC NULL;
```

#### P Steps for actual algorithm

```
/* Get into the main loop of the odd-even sorting algorithm */
56
57
      for (i=0; i<npes-1; i++) {
        if (i%2 == 1) /* Odd phase */
58
59
           MPI Sendrecv(elmnts, nlocal, MPI INT, oddrank, 1, relmnts,
               nlocal, MPI INT, oddrank, 1, MPI COMM WORLD, &status);
60
        else /* Even phase */
61
62
           MPI Sendrecv(elmnts, nlocal, MPI INT, evenrank, 1, relmnts,
               nlocal, MPI INT, evenrank, 1, MPI COMM WORLD, &status);
63
64
65
         CompareSplit (nlocal, elmnts, relmnts, wspace,
66
                     myrank < status.MPI SOURCE);
67
     }
68
69
      free (elmnts); free (relmnts); free (wspace);
70
      MPI Finalize();
71 }
```

#### Compare-Split function

```
CompareSplit(int nlocal, int *elmnts, int *relmnts, int *wspace,
74
75
                  int keepsmall)
76
      int i, j, k;
77
78
79
     for (i=0; i<nlocal; i++)
80
        wspace[i] = elmnts[i]; /* Copy the elmnts array into the wspace array */
81
82
      if (keepsmall) { /* Keep the nlocal smaller elements */
83
        for (i=j=k=0; k < nlocal; k++) {
84
          if (j == nlocal || (i < nlocal && wspace[i] < relmnts[j]))
             elmnts[k] = wspace[i++];
85
86
          else
87
            elmnts[k] = relmnts[j++];
88
89
      else { /* Keep the nlocal larger elements */
90
91
        for (i=k=nlocal-1, j=nlocal-1; k>=0; k--) {
          if (j == 0 \mid | (i \ge 0 \&\& wspace[i] \ge relmnts[j]))
92
93
             elmnts[k] = wspace[i--];
94
          else
95
            elmnts[k] = relmnts[j--];
96
97
98
```

#### IncOrder function

```
/* The IncOrder function that is called by qsort is defined as follows */
int IncOrder(const void *e1, const void *e2)
{
  return (*((int *)e1) - *((int *)e2));
}
```

# Questions



## References

1. Kumar, V., Grama, A., Gupta, A., & Karypis, G. (2017). *Introduction to parallel computing*. Redwood City, CA: Benjamin/Cummings.