cuOT

Accelerating Oblivious Transfer on GPUs for Privacy-preserving Computation

Andrew Gan, Setsuna Yuki, Timothy Rogers, Zahra Ghodsi Purdue University

IEEE HOST 2025

Privacy-preserving Computation

- An increasing number of applications work with sensitive user data, requiring privacy guarantees.
- Cryptographic protocols such as homomorphic encryption (HE) and oblivious transfer (OT) enable privacy-preserving applications.
- State-of-the-art frameworks use hybrid protocols:
 - $HE \rightarrow linear operations$
 - $OT \rightarrow non-linear operations$

Is Privacy-preserving Computation Practical?

- Privacy-preserving computation incurs a large overhead:
 - Private inference (based on Cheetah [1]) is ~390x slower than plaintext

 Solution: Use hardware acceleration to bring privacy-preserving computation closer to practicality

Oblivious Transfer (OT) Protocol

- OT relies on expensive public crypto primitives
- More efficient constructions are based on OT extensions
 - use few base OTs (with public crypto)
 - extend them to many OTs (with cheap symmetric crypto)

Less computation					_	More computation
	IKNP	Softspoken	Ferret	Silent		>
More communication \	Yuval Ishai, et al., Crypto 2003	Lawrence Roy, 2022	Kang Yang, et al. CCS 2020	Elette Boyle, et al. Crypto 2019		Less communication

Why Accelerate OT on the GPU?

 GPUs are more common than FPGAs or other customized accelerators

Parallelizable and reprogrammable

Computation pattern of OT better suited on GPU

 Popular applications like ML are executed on the GPU

5/16

System Overview of Silent OT and Ferret

Silent OT and Ferret Computation Steps

cuOT: GPU Acceleration of Seed Expansion

cuOT: GPU Acceleration of Dual LPN

cuOT: Custom GPU Kernels for Dual LPN

cuOT: GPU Acceleration of Primal LPN

cuOT Seed Expansion Speedup

cuOT achieves up to 27x speedup for seed expansion

evaluation results collected on RTX A6000 GPUs

cuOT LPN Speedup

cuOT achieves up to 14x speedup for LPN

cuOT End-to-end Runtime Benefits

cuOT achieves up to 85x speedup on 8 GPUs for Silent OT, 24x for Ferret

Conclusion

- Protocols for privacy-preserving computation can benefit from acceleration on ubiquitous platforms like GPUs
- cuOT achieves an order-of-magnitude speedup in generating millions of OTs compared to CPU baseline

Backup slides

Silent OT and Ferret Communication Overhead Comparison

For generating 2^25 OTs (~33 million), Ferret incurs 200x more communication overhead

	Silent OT	Ferret
Total communication	13.3 kB	3089.3 kB
Delay (300 Mbps bandwidth)	0.4 ms	82.8 ms

