CLEMSON UNIVERSITY, SCHOOL OF COMPUTING CPSC 3500 FOUNDATIONS OF COMPUTER SCIENCE

Assignment 5: Regular Expressions

Return by 10/9/2018

Problem 1 10%

In each case below, find a string of minimum length in $\{a,b\}^*$ not in the language corresponding to the given regular expression.

- (a) $b^*(ab)^*a^*$
- (b) $(a^* + b^*)(a^* + b^*)(a^* + b^*)$
- (c) $a^*(baa^*)^*b^*$
- (d) $b^*(a+ba)^*b^*$

Problem 2 10%

Consider the two regular expressions

$$r = a^* + b^*$$
 and $s = ab^* + ba^* + b^*a + (a^*b)^*$

- (a) Find a string corresponding to r but not to s.
- (b) Find a string corresponding to s but not to r.
- (c) Find a string corresponding to both r and s.
- (d) Find a string in $\{a, b\}^*$ corresponding to neither r nor s.

Problem 3 10%

Let r and s be arbitrary regular expressions over the alphabet Σ . In each case below, find a simpler equivalent regular expression.

- (a) $r(r^*r + r^*) + r^*$
- (b) $(r + \Lambda)^*$
- (c) $(r+s)^*rs(r+s)^*+s^*r^*$

Problem 4 10%

It is not difficult to show using mathematical induction that for every integer $n \ge 2$, there are nonnegative integers i and j such that n = 2i + 3j. With this in mind, simplify the regular expression $(aa + aaa)(aa + aaa)^*$.

Problem 5 10%

Suppose w and z are strings in $\{a,b\}^*$. Find regular expressions corresponding to each of the languages defined recursively below.

- (a) $\Lambda \in L$; $\forall x \in L$, wx and xz are elements of L.
- (b) $a \in L$; $\forall x \in L$; wx, xw, and xz are elements of L.
- (c) $\Lambda \in L$; $a \in L$; $\forall x \in L$, wx and zx are in L.

Problem 6 30%

Find a regular expression corresponding to each of the following subsets of $\{a, b\}^*$.

- (a) The language of all strings containing exactly two *a*'s.
- (b) The language of all strings containing at least two a's.
- (c) The language of all strings that do not end with *ab*.
- (d) The language of all strings that begin or end with *aa* or *bb*.
- (e) The language of all strings not containing the substring aa.
- (f) The language of all strings in which the number of *a*'s is even.
- (g) The language of all strings containing no more than one occurrence of the string *aa*. (The string *aaa* should be viewed as containing two occurrences of *aa*.)
- (h) The language of all strings in which every a is followed immediately by bb.
- (i) The language of all strings containing both bb and aba as substrings.
- (j) The language of all strings not containing the substring *aaa*.

Problem 7 10%

- (a) The regular expression $(b + ab)^*(a + ab)^*$ describes the set of all strings in $\{a, b\}^*$ not containing the substring $\underline{\hspace{1cm}} x\underline{\hspace{1cm}}$ for any x. (Fill in the blanks appropriately.)
- (b) The regular expression $(a+b)^*(aa^*bb^*aa^*+bb^*aa^*bb^*)(a+b)^*$ describes the set of all strings in $\{a,b\}^*$ containing both the substrings ___ and ___. (Fill in the blanks appropriately.)

Problem 8 10%

Prove that every finite language is regular. Hint: use induction.

Problem 9 10%

Given an FA $M = (Q, \Sigma, q_0, A, \delta)$ that accepts language L(M). Describe two algorithms for construction of (not necessarily optimal) FA's that accept $\overline{L(M)}$.

Solutions to Assignment 5

Solution to Problem 1

- (a) aab or abb
- (b) abab or baba
- (c) bba
- (d) abba

Solution to Problem 2

- (a) aa
- (b) ba
- (c) a
- (d) aba

Solution to Problem 3

- (a) r^*
- (b) r^*
- (c) $(r+s)^*$

Solution to Problem 4

Answer: aaa^* . This regular expression corresponds to the representations of all integers as sum 2i + 3j. The number of a's equals this integer.

Solution to Problem 5

- (a) w^*z^*
- (b) $w^* a(w+z)*$
- (c) $(w+z)^*(a+\Lambda)$

Solution to Problem 6

- (a) $b^* a b^* a b^*$
- (b) Every expression of the form AaBaC, where each of A, B, C is either b^* or $(a+b)^*$, and at least one of the three is $(a+b)^*$, is a solution.
- (c) $\Lambda + b + (a+b)^* a + (a+b)^* bb$
- (d) $(aa+bb)(a+b)^* + (a+b)^*(aa+bb)$
- (e) $(b+ab)^*(\Lambda+a)$ or $(\Lambda+a)(b+ba)^*$.
- (f) $b^*(ab^*ab^*)^*$.

- (g) The regular expression $r = (b + ab)^*$ corresponds to the set of strings that don't end with a and don't contain aa, and $s = (b + ba)^*$ to the set of strings that don't begin with a and don't contain aa. In a string with exactly one occurrence of aa, the strings before and after aa correspond to aa and aa are respectively. Therefore, one answer is $(b + ab)^*(a + \Lambda) + (b + ab)^*aa(b + ba)^*$. A more concise answer is $(b + ab)^*(\Lambda + a + aa)(b + ba)^*$.
- (h) $(b + abb)^*$
- (i) $(a+b)^*(bb(a+b)^*aba+aba(a+b)^*bb)(a+b)^*$
- (j) $(\Lambda + a + aa)(b + ba + baa)^*$.

Solution to Problem 7

- (a) not containing the substring *aaxbb*
- (b) both the substrings *ab*, and *ba*

Solution to Problem 8

Use induction on the length of string x, and definition of regular languages.