

Programme Name	:BCS HONS				
	Course Code:	CSC 2330			
Course Name: So f	tware Project Manager	ment			
Internal Examination					
Da	ate of Submission:	1/18/2020			

Submitted By: Submitted To:

Student Name: Dipesh Tha Shrestha Faculty Name: Satyam Paudel

IUKL ID: 041902900028 Department: LMS

Semester: Third Semester

Intake: September 2019

1. Perform a financial analysis of a project assuming that the projected costs and benefits for this project are spread over four years as follows:

Estimated costs and benefits are given below.

Use an 8 percentage discount rate, round the discount factors to two decimal places.

Discount	8%			
rate				
	Year 0	Year 1	Year 2	Year 3
Costs	1,40,000	40,000	40,000	40,000
Benefits	0	2,00,000	2,00,000	2,00,000

- a. Create a financial template on the paper to calculate Discount Factor, Discounted Cost and Discounted Benefits for each year.
- b. Calculate Net present Value.
- c. Calculate Return on Investment (ROI).

(2 marks)

d. Calculate the year in which the payback occurs.

(2 marks)

e. Suggest whether you would recommend investing in this project with the justification

Answer:

0	No1			
Discount Ro	at = 8%			
	Year O	Year 1	Year 2	Year 3
Costs	140000	40000	40000	40000
Benefits	0	200000	200000	200000
Discount Factor	t	0.93	0.86	0.79
Discounted Cost	1400000	37,200	3 7,400 34400	31600
Discounted Benefits	0	186000	172000	15800
Discounted Benefit-Cost	(140000)	148800	137600	15640
Cumulative	(140000)	8800	146400	27280

QNOI CSC-Dipesh-Tha Shrestha

NPV= Total discounted benefit - total discountcost = \$16000 - 243200 = 272800.

Return on Investment (ROI) = $\frac{NPV}{Dis} \times 1009$. = $\frac{272800}{243200} \times 1009$. = 112.17%

The Payback occurs in year 1(140000+8800) as shown in financial template above.

Ye's, I would definitely recommend investing in this project as the return on investment is 112.17% and the payback period is year 1 too.

	2.	Assume that you have completed three months of the project. The BAC was \$200,000 for the sixmonth project. You can also make the following assumptions:		
		PV= \$120,000		
		EV= \$100,000		
		AC= \$90,000		
a.	Cal	culate Cost variance.	(2 marks)	
b.	Cal	culate Schedule variance for the project.	(2 marks)	
c.	Cal	culate the Cost Performance Index.	(2 marks)	
d.	Cal	culate the Schedule Performance Index.	(2 marks)	
e.	Cal	culate the Estimate at Completion.	(2 marks)	
f.	Est	imate how long it will take to complete the project.	(2 marks)	
		the project performing better or worse than planned? Is it behind or ahead of schedule?		
	buo	dget or over budget?	(3 marks)	
		Answer:		

```
CSC 2330_
                                    Dipesh_Tha_Shroth
                 QNO2
Solution
   Given,
   PV = $120,000
     EU = $100,000
      AC = $90,000
     BAC = $200,000
    Original estimated time or length for the project = 6 months
No w,
 Cost variance (cv) = EV-AC
                    = 100000 - 90000
                     = $10,000
Schedule variance(sv) = EV-PV
                      =100000-120000
                      = -$20000
Cost performance index (EPI)= EV AC
                              = taccoo 100000
                                 49000 9000 D
                               - 0-83 1.11
Schedule performance index (SPI) = EV
                                    - 1000000
                                      120000
                                    - 0.83
```

CSC2330_ Oipesh_Thash Estimate at completion (EAC) = EAC CPJ = 200000 = \$180180,180 (Estimated length for project = Orginal length SPI - 6month 0.83 = 7.22 = 7 month 22 days (approximately) (8) The project is performing better from cost perspective and worse from the side of schedule. It is ahead of schedule and under budget.