CS 4092 Database Design and Development (DDD)

00: Course Overview

Seokki Lee

Slides are adapted from:

Database System Concepts, 7th Ed. ©Silberschatz, Korth and Sudarshan

Who Am I?

Seokki Lee

Assistant Professor

College of Engineering and Applied Science

Department of Computer Science

Research Interest

- Efficient complex query processing and provenance capture over big data
- Generate concise and meaningful explanations
- Database and data provenance applications
 - Explainability of machine learning (ML)
 - Exploring provenance for explainable data sharing
 - Data visualization with enhanced explanations and recommendations

Interested?

Seokki Lee

Assistant Professor

College of Engineering and Applied Science

Department of Computer Science

Office: Rhodes 885

Email: seokki.lee@uc.edu

Phone: 513-556-5795

Homepage: https://researchdirectory.uc.edu/p/lee5sk

Group Webpage: https://shek21.github.io/

What is DBMS?

- Collection of interrelated data and a set of programs to access those data
- Providing a way to store and retrieve database information

Why are Databases important?

What do Databases do?

- Provide persistent storage
- Efficient declarative access to data → Querying
- Protection from hardware/software failures
- Safe concurrent access to data

https://www.cseworldonline.com/dbms-tutorial/dbms-application.php

Enterprise Information

- Sales: customers, products, purchases
- Accounting: payments, receipts, assets
- Human Resources: Information about employees, salaries, payroll taxes.

Manufacturing

Management of production, inventory, orders, supply chain.

Banking and finance

- Customer information, accounts, loans, and banking transactions.
- Credit card transactions
- Finance: sales and purchases of financial instruments (e.g., stocks and bonds; storing real-time market data

Universities

Registration, grades

Airlines

Reservations, schedules

Telecommunication

- Records of calls, texts, and data usage
- Generating monthly bills, maintaining balances on prepaid calling cards

Web-based services

- Online retailers: order tracking, customized recommendations
- Online advertisements
- Document databases
- Navigation systems
 - For maintaining the locations of varies places of interest along with the exact routes of roads, train systems, buses, etc.

Popular Database Systems

Relational Database NoSQL / Distributed Database

Popular Database Systems

Relational Database

NoSQL / Distributed Database

Why are Databases Interesting?

- Pragmatic perspective
 - Background in databases makes you competitive in the job market
- Database research has a strong systems aspect
 - Hacking complex and large systems
 - Low-level optimization
 - Cache-conscious algorithms
 - Exploit modern hardware
- Databases have a strong theoretical foundation
 - Complexity of query answering
 - Expressiveness of query languages

•

Why are Databases Interesting?

- Connection to many CS fields
 - Distributed systems
 - Getting more and more important
 - Al and machine learning
 - Data mining
 - Operating and file systems
 - Hardware
 - Hardware-software co-design

What We Cover

Topics

- Formal relational languages
- Structured query language (SQL)
- Database design
 - ER model
 - Normal forms
- Transaction management

Course Objectives

- Studying query processing techniques by writing SQL queries
- Learning about relational language
- Understanding and solving abstract relational algebra (RA) problems and learning the relationship between SQL and RA.
- Constructing Entity-Relationship (ER) diagrams and performing normalization and normal forms
- Learning fundamental concepts in DBMS for transactions, concurrency control, and recovery from failure including additional topics such as indexing and functional dependencies
- Implementing an application using a commercial or open-source relational database management system (DBMS), e.g., Oracle, Postgresql, etc.

CS5151/6051 Database Theory

Topics

- Intermediate SQL in-depth
- Advanced SQL
 - Window functions
 - OLAP queries
- Datalog (logic-based declarative query language)
- Database architecture
 - Parallel and distributed databases

CS7071 Advanced Database Management

Topics

- Storage and buffer management
- Indexing
- Query optimization and query execution
- Concurrency control and recovery

Functional Components of Database Engine

- The storage manager
- The query processor component
- The transaction management component

Course, TA, and Faculty Information

- Course Webpage: Canvas
 - Syllabus and course materials
 - Announcements and discussions
 - Assignments and project
 - Grades

Course, TA, and Faculty Information

Course Webpage: Canvas

Workload

- Exams (45%)
 - Midterm (20%)
 - Final exam (25%)
- Course Project (25%)
 - ER model (10%)
 - Database design (5%)
 - Implement an application (10%)
- Take-Home Assignments (20%)
 - Four homework (5% each)
- In-class activities (10%)
 - Four activities to participate

Grading

Letter Grade	Score
A	[89,100]
A-	[84,89)
B+	[79,84)
В	[74,79)
В-	[69,74)
C+	[65,69)
С	[61,65)
C-	[57,61)
D+	[53,57)
D	[49,53)
D-	[45,49)
F	[0,45)

Course Project

Forming groups

- In group of 3
- Finding your team members ASAP
 - If you do not, contact me or TA
- Record your team in the discussion board!
 - Under the discussion namely "Forming Groups"
 - Once your team is confirmed, add the group information in the excel sheet provided through the link

Submission through GitLab repositories

- Create an account of GitLab using your UC email
- Once all groups are formed, you will receive an invitation to join the repository for your group.
- All required portions of the project must be submitted to the repository.
- Self-study: https://docs.gitlab.com/ee/tutorials/

Course Project

Important dates for the project

- Project release (Feb 1)
- ER model due (Mar 21)
- Design database and DDL scripts due (Apr 2)
- Implementation and recorded demo due (Apr 18)

Contribution

- Every student MUST contribute to every component of the project!
 The level of contributions should be clearly stated in each submission.
- Don't let others freeload on your hard work!
 - Inform me or TA immediately

Fraud and Late Assignments

• All work MUST be original!

- Cheating = 0 points
- Any behavior defined in <u>Student Code of Conduct</u> is considered academic misconduct
 - All HW, Project, and Exams are included.
 - Your responsibility to have a look at the document

Late policy

- -10% for every 3 days
- Only exception: Health issue with an official proof

PostgreSQL

 PostgreSQL is an open-source object-relational database system that adheres to the client-server model.

Cluster

 A collection of databases that is managed by a single instance of a running database server

Server

- A server process managing the database files, accepting connections to the database from the client, and performing database actions sent from the client
- Client: used to interact with the server
 - GUI: pgAdmin (https://www.pgadmin.org/)
 - CLI: built-in command line interface using psql

In-class Activities and Examples

- Install a working version of PostgreSQL client and server (local)
 - Using a Postgres package
 - Client: https://www.pgadmin.org/download/
 - Server: https://www.postgresql.org/download/
 - Using a source code
 - https://www.postgresql.org/ftp/source/

Get used to it

- Create a cluster
- Start/stop the server
- CLI: run psql to check whether you can connect to the server running

Last But Not Least

- Please contact the instructor or TA immediately
 - Concerning your performance
 - Need any additional support

•

Reading Materials

- Silberschatz, Korth, and Sudarshan, Database System Concepts, 7th Edition, McGraw Hill, 2019
- Garcia-Molina, Ullman, and Widom, Database Systems: The Complete Book, 2nd Edition, Prentice Hall, 2008