1. ALINEAMIENTO DE SECUENCIAS CON DOTPLOT

1.1 DotPlot correspondiente a la comparación de estas secuencias:

```
A = ACTGG
B = ACTAA
```

```
#Strings to compare
s1 <- unlist(strsplit(c('ACTGG'),''))</pre>
s2 <- unlist(strsplit(c('ACTAA'),''))</pre>
#To set up the matrix.
n1 <- length(s1)
n2 <- length(s2)
#Finding matches
a <- ifelse(s1=='A','X','-')
c <- ifelse(s1=='C','X','-')</pre>
g <- ifelse(s1=='G','X','-')
t <- ifelse(s1=='T','X','-')
x <- matrix (data=NA, nrow=n1, ncol=n2)
#s1 vs s2, filling dotplot.
colnames(x) <- s2
rownames(x) <- s1
for(i in 1:n2){
    if(s2[i]=='A'){
        x[,i] <- a
    } else if(s2[i]=='C'){
        x[,i] < -c
    } else if(s2[i]=='G'){
        x[,i] \leftarrow g
    } else {
        x[,i] < -t
}
X
```

	Α	C	Т	A	A
Α	Х	÷	•	Х	X
С	2	Х		2	2
Т	-	7.0	Х	-	7
G	-	-			7
G	-	-		-	-

1.2 Usando la secuencia **ACTGACTG** que tiene **repeticiones tandem perfectas** y analizaremos su respectivo dotplot.

	A	C	T	G	Α	C	T	G	A	C	T	G
Α	Х	2		-	Х		-	_	Х	-	1	
С	17	X		15	76	Х	-	76		Х	700	
T	-	-	Х	-	-	-	Х	•	-		Х	-
G	-	-	-	X	-		-	X	-	-	-	X
Α	Х	_		-	Х	-	-	-	Х	-	-	
С	15	X		-5	7.5	Х	-72	5	: =	Χ	700	
T	-	-	Х	-	-	-	X	-	-	-	X	-
G	-	-	-	X	-	-		X	-		÷	X
Α	X	2			X	-	-	_	X	-	1	
С	7.5	X			7.5	Х	•	5		Χ	700	-
T	-	-	Х	-	-	-	Х	-	-	-	Х	-
G	-			X				X	-		÷	X

Se muestra varias diagonales pequeñas paralelas a la principal que son causadas por las repeticiones directas.

1.3 DotPlot correspondiente a la comparación de estas secuencias:

A = ACTGGTCAACTGGTCA B = ACTAACTGGTCAATCA

	A	C	T	Α	A	C	T	G	G	T	C	A	Α	T	С	A
Α	Х	*	-	Х	Х	-	*		-	7		Х	Х	-	-	Х
С	-	X	-	*	-	X	-		-	*	X	-	-	-	Х	-
T	_	-	Х	-	_	-	Х	-	-	X	-	_	-	Х	_	-
G	-	-	-	2	-	-		X	Х	2	-	-		-	-	
G	-	-	-	7	-	7		X	Х	7)	-	-	-	-	-	
T	-		Х	*			X		-	X	-		-	X	-	
С	-	Х	-	-	-	Х	-	-	-	-	Х	-	-	-	Х	-
Α	X		-	Х	Х			-	-	20	-	Х	Х	-	2	X
A	Х	*	-	Х	Х	7	. *	-	-	5		X	Х	-	-	X
С	-	Х	-	*	-	X			-		X	+	-	-	Х	
T	-	-	Х	-	-	-	Х	-	-	X	-	_	-	Х	_	
G	-		-	20	1	÷		X	Х	20	-			2	2	
G	-		-	7		-		X	Х	7		-		-	-	
T	-		Х	*		+	X		-	X		+	-	X	-	
С	-	Х	-	-	12	Х	-	-	-	_	Х	-	-	-	Х	-
Α	Х		2	Х	Х	-		12	2	23	12	X	Х	1	-	X

El alineamiento correspondiente usando gaps en las dos secuencias sería:

1.4 DotPlot realizado con Gepard a partir de la secuencia P24014 SLIT_DROME

1.5 DotPlot comparando las siguientes secuencias **P78325 MS2_HUMAN y P34179 ADAM_CROAD**

2. REALIZAR ALINEAMIENTOS

2.1 Con el **score** de MATCH(+1), MISMATCH(-1) Y GAP(-2) calcular score:

2.2 Usando el algoritmo BLAST de NCBI con las siguientes secuencias de la proteína L36 en las especies HomoSapiens, Mus Musculus y Chlamydia

L36 HOMOSAPIENS VS L36 MUS MUSCULUS

L36 HOMOSAPIENS VS L36 CHLAMYDIA

L36 MUS MUSCULUS VS L36 CHLAMYDIA

