Class 13 OLS Regression Advanced

Dr Wei Miao

UCL School of Management

November 15, 2023

Section 1

Categorical Variables

Categorical variables

- So far, the independent variables we have used are Income and Kidhome, which are continuous variables.
- Some variables are intrinsically not countable; we need to treat them as categorical variables
 - e.g., gender, education group, city.

Handling Categorical Variables using factor()

- In R, we need to use a function factor() to inform R that this variable is a categorical variable, such that statistical models will treat them differently from continuous variables.
 - Refer to this link for more examples in datacamp.
- We can use factor(Education) to indicate that, Education is a categorical variable.

```
data_full <- data_full %>%
mutate(Education_factor = factor(Education))
```

 We can use levels() to check how many categories are there in the factor variable.

```
# check levels of a factor
levels(data_full$Education_factor)
```

```
[1] "2n Cycle" "Basic" "Graduation" "Master" "PhD"
```

Handling Categorical Variables using factor()

• We can also change the baseline group to another group using relevel().

```
[1] "Basic" "2n Cycle" "Graduation" "Master" "PhD"
```

Running Regression with Factor Variables

1

2

3

4

```
pacman::p_load(fixest,modelsummary)
feols_categorical <- feols(data = data_full,
fml = total_spending - Income + Kidhome + Education_factor_2)
modelsummary(feols_categorical,
stars = T)
```

	(1)
(Intercept)	-180.297**
	(56.305)
Income	0.020*** (0.000)
Kidhome	-227.761***
	(16.961)
Education_factor_22n Cycle	-164.044**
	(60.448)
Education_factor_2Graduation	-119.695*
	(56.176)
Education_factor_2Master	-143.015*
	(58.443)
Education_factor_2PhD	-153.190**
	(57.751)
Num.Obs.	2000
R2	0.662
R2 Adj.	0.661
AIC	29128.2
BIC	29167.4
RMSE	350.59
Std.Errors	IID

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Interpretation of Coefficients for Categorical Variables

- Internally, R uses one-hot encoding to encode factor variables with K levels into K-1 binary variables.
 - Because we have the intercept, we can only have K-1 binary variables.
 - The intercept stands for the effects of the baseline group.
 - In the regression result table, Basic group is suppressed if we use Education_factor_2, because this group is chosen as the baseline group.
- The interpretation template of coefficients for factor variables: Ceteris
 paribus, compared with the [baseline group], the [outcome variable] of
 [group XXX] is higher/lower by [coefficient], and the coefficient is
 statistically [significant/insignificant].
 - Ceteris paribus, compared with the basic education group, the total spending of PhD group is lower by 153.190 dollars. The coefficient is statistically significant at the 1% level.

After-class exercise: change the baseline group to Master, rerun the regression, and interpret the coefficients.

Section 2

Non-linear Effects

Quadratic Terms

 If we believe the relationship between the outcome variable and explanatory variable is a quadratic function, we can include an additional quadratic term in the regression to model such non-linear relationship.

$$Spending = \beta_0 + \beta_1 Income + \beta_2 Income^2 + \epsilon$$

Quadratic Terms

• If after estimation, the coefficient for $Income^2$, β_2 , is negative, then we have an down open parabola.

 That is, as income increases, total spending first increases and then decreases, i.e., a non-linear effect.

Quadratic Terms in Linear Regression

• Let's run two regressions, with and without the quadratic term.

```
data_full <- data_full %>%
mutate(Income_quadartic = Income^2)

# model 1: without quadratic term
feols_noquadratic <- feols(data = data_full,
fml = total_spending ~ Income)

# model 2: with quadratic term
feols_quadratic <- feols(data = data_full,
fml = total_spending ~ Income + Income_quadartic)</pre>
```

Quadratic Terms in Linear Regression

	(1)	(2)	
(Intercept)	-556.823***	-627.040 ***	
	(21.654)	(36.522)	
Income	0.022***	0.025***	
	(0.000)	(0.001)	
Income_quadartic		0.000*	
		(0.000)	
Num.Obs.	2000	2000	
R2	0.629	0.630	
R2 Adj.	0.629	0.630	
AIC	29306.1	29302.4	
BIC	29317.3	29319.2	
RMSE	367.45	366.92	
Std.Errors	IID	IID	
+ p < 0.1 * p < 0.05 ** p < 0.01 *** p < 0.001			

Quadratic Terms: Compute the Vertex

 We can compute the vertex point where total spending is maximized by income

```
# extract the coeffcient vector
feols_coefficient <- feols_quadratic$coefficients
feols_coefficient
```

```
(Intercept) Income Income_quadartic
-6.270403e+02  2.533276e-02  -2.663682e-08

# Use b / (-2a) to get the vertex
- feols_coefficient[2]/
(2 * feols_coefficient[3])
```

Income 475521.5

Section 3

Linear Probability Model

Linear Probability Model

- In Predictive Analytics, we learned how to use decision tree and random forest to make predictions. In fact, linear regression can also be used as another supervised learning model.
- ullet On the one hand, regression predicts the expectation of response Y conditional on X; that is

$$E[Y|X] = X\beta$$

ullet On the other hand, for a binary outcome variable, if the probability of outcome occurring is p, then we can write the expectation of Y is

$$E[Y|X]=1*p+0*(1-p)=p$$

As a result, we have the following equation

Probability
$$[Y = 1|X] = E[Y|X] = X\beta$$

• Interpretation of LPM: Everything else equal, a unit change in x will change the probability of the outcome occurring by β units.

Pros and Cons of LPM

- The procedures of training LPM is similar to training a decision tree rpart()/random forest ranger(): we use linear regression function feols() to train the LPM on the training data and make predictions on the test data.
- Advantages
 - Easy and fast to run
 - High interpretability: coefficients have clear economic meanings
- Disadvantages
 - Predicted probabilities of occurring may fall out of the [0,1] range
 - Accuracy tends to be low