Misurare Processi di Business

R.Bruni A.Corradini G.Ferrari T.Flagella R.Guanciale G.O.Spagnolo

10 novembre 2011 Conferenza AICA 2011 - Torino

Business Process Management

- BPM affronta la modellazione, l'organizzazione, l'applicazione e l'ottimizzazione delle attività necessarie per raggiungere un determinato obiettivo (es. offrire un determinato servizio, oppure produrre un certo manufatto).
- In BPM, i processi vengono rappresentati attraverso formalismi grafici, permettendo di comunicare in modo non ambiguo le regole di business, e quindi discuterle o modificarle, tra gli svariati ruoli coinvolti che vanno dagli esperti del dominio di business o del settore, agli architetti software e sviluppatori.

Obiettivi

 In questo contributo ci focalizziamo su una specifica fase del BPM, che comprende il monitoraggio e la valutazione. L'obiettivo di questa fase consiste nel verificare la corretta esecuzione dei processi e misurarne le prestazioni dopo il loro deployment.

Strategia

- Adottare ed estendere esistenti metodi formali (Petri Nets)
- Integrare ed estendere esistenti infrastutture software (ProM)
- Metodologia dei work-flow
 - I processi sono descritti con BPMN diagrams
 - 2 II BPMN diagram viene trasformato in una Petri Net
 - I log delle istanze di processo sono processati usando tecniche disponibili per le Petri Net
 - I risultati delle analisi sono proiettati indietro sul modello di partenza BPMN.

Esempio di modello BPMN

 Permette di modellare i processi ad un alto livello di astrazione, questo modello può essere compreso o creato anche dai non addetti ai lavori.

From BPMN to Petri Net

- Sfruttiamo una metodologia di trasformazione esistente (Dijkman, R.M., Dumas, M., Ouyang, C.) estesa
- Successivamente affrontiamo il problema di riportare i risultati di queste analisi sul modello BPMN di partenza.

Analisi basata su Petri Nets

- Gli eventi delle istanze di processo del log sono ordinati (e.s. timestamp)
- Gli eventi sono mappati sulle transizioni della rete
- Log Replay: replay delle istanze di processo del log (non-blocking way)
 - L'algoritmo parte con un token nella piazza iniziale delle rete
 - 2 Estrae dalla testa del log l'evento
 - Viene effettuato il fire della corrispondente transizione
 - Se la transizione non è abilitata i token mancanti vengono creati artificialmente e chiamati missing token
- Metriche
 - Il numero di missing/remaining token per ogni piazza/transizione
 - Il numero di archi attraversati
 - Il tempo di soggiorno/attesa/sincronizzazione per ogni piazza.

Analisi di Performance

- L'idea è di calcolare l'intervallo di tempo tra produzione e consumo di token in ogni piazza della rete.
- Fruttando il log-replay si possono calcolare le metriche di performance.
 - Si parte dall'algoritmo standard di log replay che produce la lista delle transizioni
 - Si trasforma la lista di transizioni in una sequenza "eager" $R = [tr_1, ..., tr_n]$ per ogni tr_i transizione invisibile
 - Sia tr_p l'ultima (p < i) transizione visibile
 - • $tr_i \cap tr_p \bullet \neq \emptyset$
 - Per ogni transizione invisibile tri
 - **(a)** sposto a sinistra la transizione fino a quando non trovo una transizione visibile $\bullet tr_i \cap tr_p \bullet \neq \emptyset$

Dall'analisi al BPMN (Conformance)

- Missing tokens: Log replay produce missing tokens solo per il fire delle transizioni visibili ⇒ pre-set di una transizione visibile
- Remaining tokens Le transizioni invisibili sono fired solo se richiesto da una successiva transizione visibile ⇒ nei place post-set di una transizione visibile o di una transizione invisibile che generano più di un token.

Immigration	Immigration	Emigration	Emigration	Data collection	Change Residence	Change Residence
#1 start	#2 complete	#3 start	#4 complete	#5 start	#6 start	#7 complete
01 06 2011 17:14:56	01 06 2011 17:31:19	01 06 2011 18:24:33	01 06 2011 18:37:10	01 06 2011 18:25:27	01 06 2011 18:35:21	01 06 2011 18:42:41

Dall'analisi al BPMN (Performance)

- Tempo di Attesa: transizione invisibile è fired immediatamente ⇒ nei place pre-set delle transizioni visibili
- Tempo di Sincronizzazione nei place che hanno almeno una transizione nel loro post-set che dipende da un altro place.

Risultati teorici

- Affinate le tecniche per gestire le transizioni invisibili sulle Petri Net
- Proiezioni delle misure sul BPMN

Risultati di sviluppo

- Nuovi plug-ins per ProM
 - Transformazione del modello BPMN in una Petri Net
 - Analisi di Performance e Conformance su Petri Net
 - Proiezioni delle misure di analisi sul modello BPMN di partenza.