Základy složitosti a vyčíslitelnosti NTIN090

Petr Kučera

2022/23 (8. přednáška)

NP-úplnost a důkaz Cookovy-Levinovy věty

NP-úplnost

Definice

Jazyk B je

NP-<mark>těžký</mark> pokud každý jazyk *A* v NP je polynomiálně převoditelný na *B*

NP-úplný pokud

- 1 patří do třídy NP a
- 2 současně je NP-těžký

Jak ukazovat NP-úplnost

Věta

Je-li jazyk B NP-úplný a $B \leq_m^P C$ pro nějaký jazyk C v NP, pak jazyk C je také NP-úplný.

Důkaz.

- Z NP-úplnosti B platí pro každý jazyk $A \in NP$, že $A \leq_m^P B \leq_m^P C$.
- Z tranzitivity \leq_m^P plyne NP-těžkost C
- C je v NP dle předpokladu, je tedy NP-úplný

Pro použití této věty potřebujeme již mít nějaký NP-úplný problém.

První NP-úplný problém

SPLNITELNOST (SAT)

Instance: Formule φ v KNF.

Otázka: Je formule φ splnitelná?

Věta

SAT je NP-úplný problém.

Jako důsledek dostáváme Cookovu-Levinovu větu

Věta (Cookova-Levinova věta)

SAT patří do P, právě když P = NP.

SAT patří do NP

Lemma

SAT patří do NP

Důkaz.

Polynomiální verifikátor $V(\varphi, \mathbf{a})$ pro SAT:

- ullet Pro danou KNF arphi a ohodnocení a
- ověří, zda a splňuje φ

Zbývá ukázat, že SAT je NP-těžký.

NP-těžkost SAT

• Nechť $A \subseteq \Sigma^*$ je jazyk v NP

$$w \in A \iff \varphi$$
 je splnitelná

Idea

- A je přijímán nějakým NTS M v polynomiálním čase
- Modely φ popisují přijímající výpočty M nad w

Přijímající výpočet

- Nechť $M = (Q, \Sigma, \delta, q_0, F)$ je nedeterministický TS, který
 - přijímá A (tedy A = L(M))
 - pracuje v čase n^k pro nějaké $k \in \mathbb{N}$
- Vstup w je přijat M, pokud existuje posloupnost konfigurací

$$C_0^w \xrightarrow{\delta} C_1 \xrightarrow{\delta} C_2 \xrightarrow{\delta} \cdots \xrightarrow{\delta} C_{n^k}$$

- C_0^w je počáteční konfigurace výpočtu M(w)
- Jedna z konfigurací v posloupnosti je přijímající

Technické detaily

- Pro konstrukci bychom měli předpokládat, že M pracuje v čase n^k - 3
- Předpokládáme, že přijímající konfigurace může být pomocí δ ponechána beze změny

Tableau

tableau T pro M(w) je matice typu $n^k \times n^k$

- Řádky popisují konfigurace
- Konfigurace začínají a koncí znakem #
- ullet Stav je zapsán před políčkem, které je pod hlavou M
- Konfigurace na řádku i > 1 následuje z konfigurace na řádku i 1 pomocí přechodové funkce δ

přijímající tableau na nějakém řádku je přijímající konfigurace buňka jedno políčko tableau T[i,j] buňka na indexech $i,j\in\{1,\ldots,n^k\}$

M přijímá w, právě když existuje přijímající tableau pro M(w).

Tableau

Proměnné

- $S = Q \cup \Sigma \cup \{\#\}$
 - Množina symbolů použitých v buňkách tableau
- φ má proměnné $x_{i,j,s}$ pro $i,j=1,\ldots,n^k$ a $s\in S$

 $x_{i,j,s} = 1$ znamená, že T[i,j] obsahuje symbol s

Struktura φ

arphi je konjunkcí čtyř podformulí

Každá řádka následuje Každé buňce je přiřazen z předchozí podle přechodové funkce δ právě jeden symbol $\varphi = \varphi_{\text{cell}} \wedge \varphi_{\text{start}} \wedge \varphi_{\text{move}} \wedge \varphi_{\text{accept}}$ První řádek obsahuje Jeden z řádků obsahuje počáteční konfiguraci C_0^w přijímající konfiguraci

Každé buňce je přiřazen právě jeden symbol z S

První řádek obsahuje počáteční konfiguraci se vstupem w

$$\varphi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \\ \wedge x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \\ \wedge x_{1,n+3,\lambda} \wedge \dots \wedge x_{1,n^k-1,\lambda} \\ \wedge x_{1,n^k,\#}$$

Jeden z řádků obsahuje přijímající konfiguraci

- Předpokládejme, že M má jediný přijímající stav q₁
- Požadujeme, aby nějaká buňka v T obsahovala q₁

$$\varphi_{\text{accept}} = \bigvee_{1 \le i, j \le n^k} x_{i, j, q_1}$$

Okno

Přípustné okno

okno podmatice T typu 2×3

(i,j)-okno má v levém horním rohu buňku T[i,j]

přípustné okno je takové, které se může vyskytnout jako část přechodu z jedné konfigurace do další přechodovou funkcí δ

Uvažme následující přechodovou funkci

$$\delta(q_2, a) = \{(q_4, c, L), (q_3, b, R)\}\$$

 $\delta(q_4, b) = \{(q_2, a, L)\}\$

podle ní je následující přechod přípustný

	λ									
#	λ	λ	q_4	b	U	U	λ	λ	λ	#

			b					λ	λ	#
#	λ	λ	q_4	b	U	С	λ	λ	λ	#

#	λ	λ	b	q_2	a	С	λ	λ	λ	#
#	λ	λ	q_4	b	U	С	λ	λ	λ	#

7	\	λ	b
7	\	λ	q_4

#	λ	λ	b	q_2	а	С	λ	λ	λ	#
#	λ	λ	q_4	b	С	С	λ	λ	λ	#

λ	b	q_2
λ	q_4	b

#	λ	λ	b	q_2	a	С	λ	λ	λ	#
#	λ	λ	q_4	b	С	С	λ	λ	λ	#

λ	b	q_2
λ	q_4	b

$$\begin{array}{c|cccc} b & q_2 & a \\ \hline q_4 & b & c \\ \end{array}$$

#	λ	λ	b	q_2	а	С	λ	λ	λ	#
#	λ	λ	q_4	b	C	С	λ	λ	λ	#

b	q_2	a
q_4	b	С

_			
	λ	λ	b
	λ	λ	q_4

q_2	a	С
b	С	С

λ	b	q_2	
λ	q_4	b	

#	λ	λ	b	q_2	а	С	λ	λ	λ	#
#	λ	λ	q_4	b	С	С	λ	λ	λ	#

b	q_2	a
q_4	b	С

	_	h
	^	Ω
λ	λ	q_4

$ q_2 $	2	a	С
b		С	С

$$\lambda$$
 b q_2 λ q_4 b

#	λ	λ	b	q_2	a	С	λ	λ	λ	#
#	λ	λ	q_4	b	С	С	λ	λ	λ	#

b	q_2	a
q_4	b	С

λ	λ	b
λ	λ	q_4

q_2	a	С
b	С	С

λ	b	q_2
λ	q_4	b

a	С	λ
С	С	λ

#	λ	λ	b	q_2	a	С	λ	λ	λ	#
#	λ	λ	q_4	b	С	С	λ	λ	λ	#

b	q_2	а
q_4	b	O

λ	λ	b
λ	λ	q_4

q_2	a	С
b	С	С

λ	λ	λ
λ	λ	λ

$$\lambda$$
 b q_2 λ q_4 b

#	λ	λ	b	q_2	a	С	λ	λ	λ	#
#	λ	λ	q_4	b	С	С	λ	λ	λ	#

$$egin{array}{c|ccc} b & q_2 & a \\ q_4 & b & c \\ \hline \end{array}$$

$$\begin{array}{c|cc}
c & \lambda & \lambda \\
c & \lambda & \lambda
\end{array}$$

$$\begin{array}{|c|c|c|c|c|c|} \hline \lambda & \lambda & b \\ \hline \lambda & \lambda & q_4 \\ \hline \end{array}$$

λ	λ	λ
λ	λ	λ

$$\lambda$$
 b q_2 λ q_4 b

a	С	λ
С	С	λ

Další přípustná okna

Uvažme následující přechodovou funkci

$$\delta(q_2, \mathbf{a}) = \{(q_4, \mathbf{c}, L), (q_3, \mathbf{b}, R)\}$$

$$\delta(q_4, \mathbf{b}) = \{(q_2, \mathbf{a}, L)\}$$

Podle ní jsou též následující okna přípustná

a	b	a
q_3	b	а

λ	λ	q_4
λ	q_2	λ

b	С	С
b	С	C

$$\begin{array}{|c|c|c|c|c|} \lambda & b & c \\ \hline \lambda & b & q_4 \\ \hline \end{array}$$

Nepřípustná okna

Uvažme následující přechodovou funkci

$$\delta(q_2, \mathbf{a}) = \{(q_4, \mathbf{c}, L), (q_3, \mathbf{b}, R)\}\$$

 $\delta(q_4, \mathbf{b}) = \{(q_2, \mathbf{a}, L)\}\$

Podle ní následující okna přípustná nejsou

#	q_2	a
#	q_2	а

b	a	a
q_2	b	a

q_3	λ	q_4
λ	q_2	λ

q_3	С	С
b	С	C

Hlavní vlastnost přípustných oken

Lemma

Předpokládejme, že

- první řada tableau obsahuje počáteční konfiguraci se vstupem w a
- všechna okna v tableau jsou přípustná.

Pak každá řádka tableau je konfigurací, jež následuje předchozí konfiguraci dle přechodové funkce.

Důkaz

- Indukcí dle pořadí řádku
- Řádka 1 je konfigurací z předpokladu
- Předpokládejme dvě následující řady i a i+1
- Předpokládejme, že řádek i je konfigurací
- Ukážeme, že i řádek i + 1 je konfigurací

Přípustná okna tableau (důkaz)

Ověříme všechny symboly a konfigurace na řádku i

- a = #
 - Přípustné okno okopíruje # z horní řady do dolní
 - Symboly # se vyskytují na okrajích každého řádku
- $a \in \Sigma$ v buňce, která nesousedí se symbolem stavu
 - a je uprostřed horní řady okna, jež neobsahuje symbol stavu
 - Z přípustnosti okna plyne, že a je též uprostřed spodní řady okna
 - a je v témž sloupci i v řadě i + 1
- $a = q \in Q$
 - q je uprostřed horní řady nějakého okna
 - Z přípustnosti okna plyne, že stav i okolní symboly jsou upraveny dle přechodové funkce δ

Je-li na řádce i konfigurace, pak na řádce i+1 je konfigurace, která následuje i-tou konfiguraci dle přechodové funkce.

Množina přípustných oken

- Úprava dle přechodové funkce je lokální
 - Změna se týká jen 5 oken
- Zbylá okna jen kopírují horní řadu do spodní
 - má tedy spodní řadu shodnou s horní
- Množinu W přípustných oken lze zkonstruovat se znalostí přechodové funkce δ
 - Pro dané okno je možné zkontrolovat, je-li přípustné
 - $|W| \le |S|^6$ což je konstanta, je-li M pevně daný

Zakódování přípustných oken

Následující formule reprezentuje fakt, že (i,j)-okno je přípustné

$$\begin{split} \operatorname{legal}_{i,j} &= \bigvee_{\substack{s_1,\dots,s_6\\ \text{je přípustné okno}}} (x_{i,j,s_1} \wedge x_{i,j+1,s_2} \wedge x_{i,j+2,s_3} \\ & \wedge x_{i+1,j,s_4} \wedge x_{i+1,j+1,s_5} \wedge x_{i+1,j+2,s_6}) \end{split}$$

- $\operatorname{legal}_{i,j}$ má konstantní velikost
- legal_{i,j} má ekvivalentní KNF konstantní velikosti
 - Lze zkonstruovat s použitím distributivity ∨ a ∧

Každý řádek následuje předchozí dle přechodové funkce

$$\varphi_{\text{move}} = \bigwedge_{1 \le i, j \le n^k} \operatorname{legal}_{i, j}$$

- Použijeme-li KNF ekvivalentní formuli $\operatorname{legal}_{i,j}$, pak $\varphi_{\operatorname{move}}$ je KNF

Velikost φ

- Počet proměnných je $(n^k)^2 \cdot |S|$
- |S| je konstantní, tedy počet proměnných je $O(n^{2k})$
- Konstrukci φ lze provést v polynomiálním čase

Velikost φ je polynomiální v n.

Z konstrukce plyne, že

 φ je splnitelná, právě když $w \in A$.

-SAT

SAT (připomenutí)

SPLNITELNOST (SAT)

Instance: Formule φ v KNF.

Otázka: Je formule φ splnitelná?

Věta

SAT je NP-úplný problém.

3-SAT

3-KNF formule φ je v 3-KNF, pokud je v KNF a každá klauzule obsahuje právě 3 literály

3-SAT

Instance: Formule φ v 3-KNF.

Otázka: Je φ splnitelná?

Věta

Problém 3-SAT je NP-úplný.

NP-úplnost 3-SATu

3-SAT patří do třídy NP

- Týž polynomiální verifikátor jako pro SAT
- Ověřuje, jestli je daná formule φ splněna daným ohodnocením a

3-SAT je NP-těžký

SAT je polynomiálně převoditelný na 3-SAT

 φ je splnitelná \longleftrightarrow ψ je splnitelná

Převod SAT na 3-SAT

- Mějme KNF φ, jež má
 - n proměnných x₁,...,x_n
 - m klauzulí C_1, \ldots, C_m
- Popíšeme konstrukci 3-KNF ψ, pro kterou platí

$$\varphi$$
 je splnitelná $\iff \psi$ je splnitelná

- Pro každou klauzuli C_j , j = 1, ..., m
 - Podle potřeby přidáme nové proměnné
 - Sestrojíme konjunkci nových klauzulí α_j
 - Ohodnocení splňující C_j může být rozšířeno na model α_j
 - Ohodnocení splňující α_j splňuje C_j
- Definujeme $\psi = \bigwedge_{j=1}^{m} \alpha_j$
- Rozlišíme několik případů dle velikosti klauzule C_i

Prázdná klauzule

$$C_j = \bot$$
 je prázdná klauzule

- C_j není splnitelná $\Longrightarrow \varphi$ je nesplnitelná
- α_j je konjunkcí všech klauzulí délky 3 na nových proměnných y₁,
 y₂ a y₃

$$\alpha_{j} = (y_{1} \lor y_{2} \lor y_{3}) \land (y_{1} \lor y_{2} \lor \neg y_{3})$$

$$\land (y_{1} \lor \neg y_{2} \lor y_{3}) \land (y_{1} \lor \neg y_{2} \lor \neg y_{3})$$

$$\land (\neg y_{1} \lor y_{2} \lor y_{3}) \land (\neg y_{1} \lor y_{2} \lor \neg y_{3})$$

$$\land (\neg y_{1} \lor \neg y_{2} \lor y_{3}) \land (\neg y_{1} \lor \neg y_{2} \lor \neg y_{3})$$

 C_i ani α_i nemají model.

Klauzule délky 1

$$C_i = l$$
 pro nějaký literál l

Přidáme dvě nové proměnné y₁ a y₂

$$\alpha_j = (l \lor y_1 \lor y_2) \land (l \lor y_1 \lor \neg y_2)$$
$$\land (l \lor \neg y_1 \lor y_2) \land (l \lor \neg y_1 \lor \neg y_2)$$

Nechť a je ohodnocení, které přiřazuje hodnotu l, y_1 a y_2 .

 \mathbf{a} splňuje $C_j \iff \mathbf{a}$ splňuje α_j

Klauzule délky 2

$$C_j = l_1 \vee l_2$$
 pro nějaké literály l_1 a l_2

Přidáme novou proměnnou y

$$\alpha_j = (l_1 \vee l_2 \vee y) \wedge (l_1 \vee l_2 \vee \neg y)$$

Nechť a je ohodnocení, které přiřazuje hodnotu l_1 , l_2 a y.

a splňuje
$$C_i \iff$$
 a splňuje α_i

Klauzule délky 3

$$C_i = l_1 \vee l_2 \vee l_3$$
 pro nějaké literály l_1 , l_2 a l_3

Ponecháme C_i beze změny

$$\alpha_j = C_j$$

Nechť a je ohodnocení, které přiřazuje hodnotu $l_1,\,l_2$ a $l_3.$

 \mathbf{a} splňuje $C_j \iff \mathbf{a}$ splňuje α_j

Klauzule velikosti k > 3 (myšlenka)

$$C_j = l_1 \vee \cdots \vee l_k$$
 pro $k > 3$ a nějaké literály l_1, \ldots, l_k

Myšlenka:

Přidáme novou proměnnou y a položíme

$$\beta = (l_1 \lor l_2 \lor y) \land (\neg y \lor l_3 \lor \cdots \lor l_k)$$

- Ohodnocení a', které splňuje β, splňuje také C_i
- Pokud a splňuje C_j
 - Můžeme rozšířit a na ohodnocení a', které splňuje β
 - Stačí zvolit vhodnou hodnotu y
- Dělení opakujeme, dokud nemáme jen klauzule velikosti 3

Klauzule velikosti k > 3

$$C_j = l_1 \vee \cdots \vee l_k$$
 pro $k > 3$ a nějaké literály l_1, \ldots, l_k

• Přidáme nové proměnné y_1, \ldots, y_{k-3}

$$\alpha_j = (l_1 \lor l_2 \lor y_1) \land (\neg y_1 \lor l_3 \lor y_2) \land \dots \land (\neg y_{i-2} \lor l_i \lor y_{i-1})$$

$$\land \dots \land (\neg y_{k-4} \lor l_{k-2} \lor y_{k-3}) \land (\neg y_{k-3} \lor l_{k-1} \lor l_k)$$

Ukážeme, že

- $oldsymbol{0}$ pokud ohodnocení $oldsymbol{a}'$ splňuje $lpha_j$, pak splňuje i C_j
- 2 pokud a přiřazuje hodnoty literálům l_1, \ldots, l_k a pokud a splňuje C_j , pak jej lze rozšířit na model α_j

Model α_i splňuje C_i

$$\alpha_j = (l_1 \lor l_2 \lor y_1) \land (\neg y_1 \lor l_3 \lor y_2) \land \dots \land (\neg y_{i-2} \lor l_i \lor y_{i-1})$$

$$\land \dots \land (\neg y_{k-4} \lor l_{k-2} \lor y_{k-3}) \land (\neg y_{k-3} \lor l_{k-1} \lor l_k)$$

- Uvažme situaci, kde všechny literály l_i mají hodnotu 0
- Obdržíme formuli

$$\alpha'_{j} = y_{1} \wedge (\neg y_{1} \vee y_{2}) \wedge \dots \wedge (\neg y_{i-2} \vee y_{i-1}) \wedge \dots \wedge (\neg y_{k-4} \vee y_{k-3}) \wedge \neg y_{k-3}$$

• Dostáváme, že $\alpha'_j \models y_1$, tedy

$$\alpha'_{j} \equiv y_{1} \wedge y_{2} \wedge (\neg y_{2} \vee y_{3}) \wedge \dots \wedge (\neg y_{i-2} \vee y_{i-1}) \wedge \dots \wedge (\neg y_{k-4} \vee y_{k-3}) \wedge \neg y_{k-3}$$

Model α_i splňuje C_i

$$\alpha_j' \equiv y_1 \wedge y_2 \wedge (\neg y_2 \vee y_3) \wedge \dots \wedge (\neg y_{i-2} \vee y_{i-1}) \wedge \dots \wedge (\neg y_{k-4} \vee y_{k-3}) \wedge \neg y_{k-3}$$

- Platí $\alpha'_i \models y_2$
- Indukcí odvodíme $\alpha_j' \models y_{k-3}$
- Navíc $\alpha'_{j} \models \neg y_{k-3}$
- Dohromady tedy $\alpha'_{i} \models \bot$
- lacksquare Jinými slovy, $lpha_i'$ je nesplnitelná
- Každý model α_j musí splnit nějaký z literálů l_1,\ldots,l_k

Každý model α_j splňuje C_j

Modely C_j lze rozšířit na modely α_j

- Nechť a je model C_j
 - a splňuje některý z literálů l₁,..., l_k
 - Označme p index některého splněného literálu
 - Tedy $\mathbf{a}(l_p) = 1$
- Popíšeme model \mathbf{a}' formule α_i , který rozšiřuje \mathbf{a}
 - $\mathbf{a}'(x_i) = \mathbf{a}(x_i), i = 1, ..., n$
 - Určíme navíc hodnoty proměnných y_1, \ldots, y_{k-3}

Rozšíření modelu C_j

- Pro i = 1, ..., k 3, položíme $\mathbf{a}'(y_i) = \begin{cases} 1 & i \le p 2 \\ 0 & i > p 2 \end{cases}$
- α_i je potom splněná ohodnocením a'

$$\alpha_{j} = (l_{1} \lor l_{2} \lor y_{1}) \land (\neg y_{1} \lor l_{3} \lor y_{2}) \land \cdots$$

$$\land (\neg y_{p-3} \lor l_{p-1} \lor y_{p-2}) \land (\neg y_{p-2} \lor l_{p} \lor y_{p-1})$$

$$\land (\neg y_{p-1} \lor l_{p+1} \lor y_{p}) \land \cdots$$

$$\land (\neg y_{k-4} \lor l_{k-2} \lor y_{k-3}) \land (\neg y_{k-3} \lor l_{k-1} \lor l_{k})$$

Každý model C_j lze rozšířit na model α_j vhodným ohodnocením proměnných y_1, \ldots, y_{k-3}

Vlastnosti konstrukce

- ullet ψ lze sestrojit v polynomiálním čase pro danou KNF arphi
- Je-li a modelem φ
 - a splňuje všechny klauzule C_i
 - Pro každé j lze a rozšířit na model α_j
 - Rozšíření jsou vzájemně nezávislá
 - Dohromady dostáváme, že a lze rozšířit na model ψ
- Je-li a' model ψ
 - a' splňuje všechny podformule α_j
 - Z toho plyne, že a' splňuje všechny klauzule C_i
 - \mathbf{a}' je tedy modelem φ

 φ je splnitelná $\iff \psi$ je splnitelná.