SP 01 KELINIERAN HASIL PENGUKURAN

A. Tujuan:

Mempelajari kelinieran pengukuran berat.

B. Rangkaian Alat Ukur

- Sensor yang digunakan: FSR406 buatan Interlink Electronics.
- Pengukuran dilakukan pada Vout menggunakan multimeter analog dan digital.

Gambar 1.1. Modul Sensor Force Sensing Resistor (FSR)

Gambar 1.2. Rangkaian Sensor Force Sensing Resistor (FSR)

C. Langkah-langkah

- 1. Rangkai rangkaian sesuai dengan gambar.
- 2. Lakukan pengukuran dengan menggunakan nilai RM = 3k, 10k, 30k, dan 100k.
- 3. Sensor divariasikan menggunakan berat koin yang berbeda.

Tabel 1.1. Daftar Berat Koin

Jumlah Koin	Berat (gram)
Rp. 100,00	1,15
Rp. 200,00	1,5
Rp. 500,00	2
Rp. 500,00 (tembaga)	3,45
Rp. 1000,00	2,9

- 4. Range sensor dari 0 1000 gram.
- 5. Beri jeda waktu 30 60 detik sebelum menambahkan koin pada alat ukur
- 6. Catat dan amati nilai yang tertera pada multimeter analog dan digital.

Tabel 1.2. Nilai Pengukuran V_{out} FSR dengan RM = 3k

No.	Berat (gram)	Multimeter Analog (V)	Mutimeter Digital (V)
1	3,45		
2	6,9		
3	10,35		
4	13,8		
5	17,25		
6	20,7		
7	24,15		
8	27,6		
9	31,5		
10	34,5		

Tabel 1.3. Nilai Pengukuran V_{out} FSR dengan RM = 10k

No.	Berat (gram)	Multimeter Analog (V)	Multimeter Digital (V)
1	3,45		
2	6,9		
3	10,35		
4	13,8		
5	17,25		
6	20,7		
7	24,15		
8	27,6		
9	31,5		
10	34,5		

Tabel 1.4. Nilai Pengukuran V_{out} FSR dengan RM = 30k

No.	Berat (gram)	Multimeter Analog (V)	Multimeter Digital (V)
1	3,45		
2	6,9		
3	10,35		
4	13,8		
5	17,25		
6	20,7		
7	24,15		
8	27,6		
9	31,5		
10	34,5		

Tabel 1.5. Nilai Pengukuran V_{out} FSR dengan RM = 100k

No.	Berat (gram)	Multimeter Analog (V)	Multimeter Digital (V)
1	3,45		
2	6,9		
3	10,35		
4	13,8		
5	17,25		
6	20,7		
7	24,15		
8	27,6		
9	31,5		
10	34,5		

D. Analisis Data (Laporan)

- Buatlah grafik hubungan antara berat dengan tegangan untuk keempat nilai RM.
- Ambil bagian rentang berat di mana kurva yang diperoleh cukup linier, lakukan regresi linier untuk memperoleh hubungan antara berat dan tegangan keluaran.
- Cari berapa nilai Rm yang memiliki hasil yang optimum dan sertakan alasannya.
- Lakukan pembahasan.