2nd Semester: Mini-Quiz 3 Solutions

1. Bracketing and Open Methods

• $f(x) = 600x^4 - 550x^3 + 200x^2 - 20x - 1 = 0$

Bisection Method

False-Position Method

Modified False-Position Method

Newton-Raphson Method

Solution: 0.232352964768764

Secant Method

Convergence and Stability

The order of convergence for the above methods is:

False-Position < Modified False-Position < Bisection < Secant < Newton-Raphson Method

The only unstable method for the function is:

False-Position

•
$$f(x) = e^x - x = 0$$

Bisection Method

False-Position Method

Solution: 0.567125605548578

Modified False-Position Method

Newton-Raphson Method

Solution: 0.567143290409781

Secant Method

The order of convergence for the above methods is:

Bisection < Modified False-Position < False-Position < Newton-Raphson Method < Secant

The only unstable method for the function is:

Modified False-Position

2. Muller's and Baistrow's Method

•
$$f(x) = 600x^4 - 550x^3 + 200x^2 - 20x - 1 = 0$$

Muller's Method

Solution: 0.232352964760914

Baistrow's Method

Roots: -0.035839691866268 and 0.232352964749917

Convergence and Stability

Both the methods converge to the right solution and are quite stable.

•
$$f(x) = x^3 + x^2 - 4x - 4 = 0$$

Muller's Method

Baistrow's Method

Both the methods converge to the right solution but the Baistrow method converges faster and is more stable than the Muller's Method