$9_6 (K9a_{23})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{12} - 2u^{10} - u^9 + 4u^8 + u^7 - 3u^6 - 3u^5 + 3u^4 + u^3 - u^2 - 2u + 1 \rangle$$

$$I_2^u = \langle u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 13 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{12} - 2u^{10} - u^9 + 4u^8 + u^7 - 3u^6 - 3u^5 + 3u^4 + u^3 - u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{9} + 2u^{7} - 3u^{5} + 2u^{3} - u \\ -u^{9} + u^{7} - u^{5} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{6} + u^{4} - 2u^{2} + 1 \\ u^{8} - 2u^{6} + 2u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{11} + 2u^{9} - 4u^{7} + 4u^{5} - 3u^{3} + 2u \\ -u^{11} + u^{10} + u^{9} - u^{8} - 3u^{7} + 3u^{6} + u^{5} - u^{4} - 2u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{11} + u^{10} + u^{9} - u^{8} - 3u^{7} + 3u^{6} + u^{5} - u^{4} - 2u^{3} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{11} + u^{10} + u^{9} - u^{8} - 3u^{7} + 3u^{6} + u^{5} - u^{4} - 2u^{3} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{11} 8u^9 4u^8 + 12u^7 + 4u^6 8u^5 8u^4 + 4u^3 + 4u^2 4u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_8, c_9	$u^{12} + 2u^{11} + \dots + 4u + 1$
c_2, c_4	$u^{12} + 4u^{11} + \dots + 6u + 1$
c_3, c_7	$u^{12} - 2u^{10} + u^9 + 4u^8 - u^7 - 3u^6 + 3u^5 + 3u^4 - u^3 - u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_5, c_6 \ c_8, c_9$	$y^{12} - 16y^{11} + \dots - 6y + 1$
c_2, c_4	$y^{12} + 8y^{11} + \dots - 14y + 1$
c_3, c_7	$y^{12} - 4y^{11} + \dots - 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.511432 + 0.812623I	-8.67410 - 1.70959I	-11.87181 + 0.16720I
u = -0.511432 - 0.812623I	-8.67410 + 1.70959I	-11.87181 - 0.16720I
u = -0.850204 + 0.630914I	1.76919 + 2.46907I	-6.47747 - 3.95252I
u = -0.850204 - 0.630914I	1.76919 - 2.46907I	-6.47747 + 3.95252I
u = 0.635020 + 0.640255I	-0.207771 + 0.498503I	-10.63137 - 1.38008I
u = 0.635020 - 0.640255I	-0.207771 - 0.498503I	-10.63137 + 1.38008I
u = 1.16193	-14.5896	-17.6670
u = 0.985497 + 0.634576I	-1.23208 - 5.52285I	-12.56374 + 6.48307I
u = 0.985497 - 0.634576I	-1.23208 + 5.52285I	-12.56374 - 6.48307I
u = -1.075030 + 0.655125I	-10.34900 + 7.20360I	-14.0875 - 4.7166I
u = -1.075030 - 0.655125I	-10.34900 - 7.20360I	-14.0875 + 4.7166I
u = 0.470358	-0.660692	-15.0690

II.
$$I_2^u = \langle u+1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5 c_6, c_7, c_8 c_9	u-1
c_2, c_4	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9	y-1

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000	-4.93480	-18.0000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_8, c_9	$(u-1)(u^{12} + 2u^{11} + \dots + 4u + 1)$
c_2, c_4	$(u+1)(u^{12}+4u^{11}+\cdots+6u+1)$
c_{3}, c_{7}	$(u-1)(u^{12}-2u^{10}+\cdots+2u+1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6 c_8, c_9	$(y-1)(y^{12}-16y^{11}+\cdots-6y+1)$
c_2, c_4	$(y-1)(y^{12}+8y^{11}+\cdots-14y+1)$
c_{3}, c_{7}	$(y-1)(y^{12}-4y^{11}+\cdots-6y+1)$