Третье домашнее задание СПБ, Академический Университет, 16 сентября 2014

Содержание

Pa	азминка		2
1	Задача А.	А квадрат плюс Б квадрат [0.5 секунд, 256 mb]	2
2	Задача В.	Обратная перестановка [0.5 секунд, 256 mb]	3
3	Задача С.	Лишние пробелы [0.5 секунд, 256 mb]	4
За	адачи		5
4	Задача D.	Plus minus [0.5 секунд, 64 mb]	5
5	Задача Е.	Поиск [1 секунда, 256 mb]	6
6	Задача F.	Тестирующая система [1 секунда, 256 mb]	7
7	Задача G .	Уставший профессор [1.5 секунд, 256 mb]	8
8	Задача Н.	Быстрое прибавление [4 секунды, 256 mb]	9
9	Задача I.	Линейная сумма [3 секунды, 256 mb]	10
10	Задача J .	Длинное выражение [2 секунды, 256 mb]	11
Б	онус		12
11	Задача К.	Дерево [3 секунды, 256 mb]	12
12	2 Задача L.	Все минимумы [0.5 секунд, 256 mb]	13
13	Задача М.	Интересный разбор выражений [1 секунда, 256 mb]	14

Разминка

1 Задача А. А квадрат плюс Б квадрат [0.5 секунд, 256 mb]

Найдите количество решений уравнения вида $a^2 + b^2 = n$ в натуральных числах.

Формат входных данных

На первой строке число тестов t ($1 \le t \le 1000$). Далее на каждой строке очередное число n_i ($1 \le n_i \le 10^9$).

Формат выходных данных

Для каждого теста выведите на отдельной строке число решений.

Примеры

sqrtab.in	sqrtab.out
4	0
1	1
2	2
5	4
1000	

Замечание

$$\begin{aligned} 2 &= 1^2 + 1^2 \\ 5 &= 1^2 + 2^2 = 2^2 + 1^2 \\ 1000 &= 10^2 + 30^2 = 30^2 + 10^2 = 18^2 + 26^2 = 26^2 + 18^2 \end{aligned}$$

2 Задача В. Обратная перестановка [0.5 секунд, 256 mb]

Обратной перестановкой к перестановке p_1, p_2, \ldots, p_n называется перестановка q_1, q_2, \ldots, q_n , в которой q_i — это номер места, на котором стоит число i в перестановке p. К примеру, обратной к перестановке 1 4 2 3 является перестановка 1 3 4 2.

По данной перестановке длины n найдите обратную к ней перестановку.

Формат входных данных

В первой строке входного файла задано целое число n ($1 \le n \le 10$). Во второй строке заданы n целых чисел p_1, p_2, \ldots, p_n через пробел. Гарантируется, что эти числа образуют перестановку чисел $1, 2, \ldots, n$.

Формат выходных данных

В первой строке выходного файла выведите n чисел через пробел — перестановку, обратную данной.

inverse.in	inverse.out
1	1
1	
2	1 2
1 2	
4	1 3 4 2
1 4 2 3	

3 Задача С. Лишние пробелы [0.5 секунд, 256 mb]

Дана строка. Напишите программу, которая удалит из этой строки все лишние пробелы. Пробел будем считать лишним, если:

- 1. он находится в самом начале строки, до самого первого слова;
- 2. он находится в конце строки, после самого последнего слова;
- 3. несколько пробелов расположены между двумя словами (проще говоря, если слова разделены более чем одним пробелом, тогда все пробелы кроме одного — лишние).

Формат входных данных

Во входном файле записана строка, длина которой не превышает 200 символов. Строка содержит только маленькие латинские буквы и пробелы.

Формат выходных данных

Выведите в выходной файл эту строку без лишних пробелов.

spaces.in	spaces.out
first test	first test

Задачи

4 Задача D. Plus minus [0.5 секунд, 64 mb]

В каждой клетке поля $M \times N$ стоит либо плюс, либо минус. За один ход разрешается поменять знаки на противоположные в любом квадрате 2×2 . Можно ли с помощью таких операций получить во всех клетках поля знаки плюс?

Формат входных данных

В первой строке числа M и N ($1\leqslant N,M\leqslant 1000$). В следующих M строках содержится по N символов +, либо -.

Формат выходных данных

Ответ на вопрос задачи: слово Yes или No

plusminus.in	plusminus.out
3 3	No
+	
+	
++-	
3 3	Yes
+	
+++	
-+-	

5 Задача Е. Поиск [1 секунда, 256 mb]

В этой задаче нужно уметь выяснять, содержится ли число в последовательности.

Формат входных данных

В первой строке входного файла заданы через пробел два целых числа n и k ($1 \le n \le 300\,000$, $1 \le k \le 300\,000$). Во второй строке задана последовательность из n отсортированных целых чисел a_1, a_2, \ldots, a_n , записанных через пробел ($1 \le a_i \le 10^9$). В третьей строке записаны запросы — k целых чисел b_1, b_2, \ldots, b_k записанных через пробел, в порядке возрастания ($1 \le b_i \le 10^9$).

Формат выходных данных

В выходной файл выведите k строк. В j-ой строке выведите "YES", если число b_j содержится в последовательности $\{a_i\}$, и "NO" в противном случае.

find2.in	find2.out
3 3	NO
2 3 5	YES
1 2 3	YES
3 4	YES
1 2 2	YES
1 2 4 5	NO
	NO

6 Задача F. Тестирующая система [1 секунда, 256 mb]

Юный программист Саша написал свою первую тестирующую систему. Он так обрадовался тому, что она скомпилировалась, что решил пригласить школьных друзей на свой собственный контест.

Но в конце тура выяснилось, что система не умеет сортировать команды в таблице результатов. Помогите Саше реализовать эту сортировку.

Команды упорядочиваются по правилам АСМ:

- по количеству решённых задач в порядке убывания;
- при равенстве количества решённых задач по штрафному времени в порядке возрастания;
- при прочих равных по номеру команды в порядке возрастания.

Формат входных данных

Первая строка содержит натуральное число n ($1 \le n \le 100\,000$) — количество команд, участвующих в контесте. В i-й из следующих n строк записано количество решенных задач S ($0 \le S \le 100$) и штрафное время T ($0 \le T \le 100\,000$) команды с номером i.

Формат выходных данных

В выходной файл выведите n чисел — номера команд в отсортированном порядке.

ejudge.in	ejudge.out
5	5 2 1 3 4
3 50	
5 720	
1 7	
0 0	
8 500	

7 Задача G. Уставший профессор [1.5 секунд, 256 mb]

Уставший профессор вечером играет в увлекательную игру.

Изначально на доске слева направо записаны целые числа a_1, a_2, \ldots, a_n . Пока не уснет, профессор каждую секунду смотрит на числа, видит, что самое левое равно x, а самое правое равно y. Если x меньше, то профессор радуется, стирает слева x, а справа дописывает $(x+y) \mod 2^{30}$. Иначе профессор очень расстаивается, стирает y, а слева дописывает $(y-x) \mod 2^{30}$. Студенты подсчитали, что перед сном профессор успел сделать ровно k операций. Что было написано на доске, когда он наконец заснул? Для простоты можно считать, что доска в обе стороны бесконечна.

Формат входных данных

На первой строке $n\ (1 \le n \le 30\,000)$ и $k\ (1 \le k \le 10^8)$. На второй строке числа a_1, a_2, \ldots, a_n $(0 \le a_i < 10^9)$ в порядке слева направо.

Формат выходных данных

На первой строке выведите все числа на доске после k операций. Выводить числа нужно в порядке слева направо.

sleepgame.in	sleepgame.out
4 1	2 3 4 5
1 2 3 4	
4 1000	1062488873 1072033429 1060433235
1 2 3 4	57573251
4 1	1073741821 4 3 2
4 3 2 1	
4 2	5 1073741821 4 3
4 3 2 1	

8 Задача Н. Быстрое прибавление [4 секунды, 256 mb]

Есть массив целых чисел длины $n=2^{24}$, изначально заполненных нулями. Вам нужно сперва обработать m случайных запросов вида "прибавление на отрезке" по модулю 2^{32} . Затем обработать q случайных запросов вида "сумма на отрезке" по модулю 2^{32} .

Формат входных данных

На первой строке числа $m, q. (1 \le m, q \le 2^{24})$. На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
1. unsigned int cur = 0; // беззнаковое 32-битное число
2. unsigned int nextRand() {
3.
       cur = cur * a + b; // вычисляется с переполнениями
       return cur » 8; // число от 0 до 2^{24}-1.
4.
5. }
  Каждый запрос первого вида генерируется следующим образом:
1. add = nextRand(); // число, которое нужно прибавить
2. l = nextRand();
3. r = nextRand();
4. if (1 > r) swap(1, r); // получили отрезок [1..r]
   Каждый запрос второго вида генерируется следующим образом:
1. l = nextRand();
2. r = nextRand();
3. if (1 > r) swap(1, r); // получили отрезок [1..r]
   Сперва генерируются запросы первого вида, затем второго.
```

Формат выходных данных

Выведите сумму ответов на все запросы по модулю 2^{32} .

fastadd.in	fastadd.out
5 5	811747796
13 239	

9 Задача І. Линейная сумма [3 секунды, 256 mb]

Есть n случайных точек на прямой с координатами от 0 до $2^{32}-1$. У каждой точки есть значение от 0 до $2^{32}-1$. Вам нужно обработать q случайных запросов вида "сумма значений точек, с координатами от l до r включительно".

Формат входных данных

На первой строке числа n, q. $(1 \le n \le 2^{20}, 1 \le q \le 2^{23})$. На второй строке пара целых чисел a, b от 1 до 10^9 , используемая в генераторе случайных чисел.

```
1. unsigned int cur = 0; // беззнаковое 32-битное число
2. unsigned int nextRand24() {
3.
       cur = cur * a + b; // вычисляется с переполнениями
4.
       return cur » 8; // число от 0 до 2^{24}-1.
5. }
6. unsigned int nextRand32() {
       unsigned int a = nextRand24(), b = nextRand24();
       return (a « 8) \hat{} b; // число от 0 до 2^{32}-1.
8.
9. }
   Каждая точка генерируется следующим образом:
1. value = nextRand32(); // значение точки
2. x = nextRand32(); // координата точки
  Каждый запрос генерируется следующим образом:
1. l = nextRand32();
2. r = nextRand32();
3. if (1 > r) swap(1, r); // получили отрезок [1..r]
   Сперва генерируются точки, затем запросы.
```

Формат выходных данных

Выведите сумму ответов на все запросы по модулю 2^{32} .

Примеры

linesum.in	linesum.out
5 5	3950632748
13 239	

Замечание

```
p = {value, x}
p[0] = {13, 41645}
p[1] = {7695587, 1253435649}
p[2] = {749170640, 2683600557}
p[3] = {2444595881, 1270561959}
p[4] = {3436107648, 486388002}
```

10 Задача J. Длинное выражение [2 секунды, 256 mb]

Выведите значение заданного арифметического выражения.

Формат входных данных

В первой строке входного файла задано выражение, состоящее из чисел, скобок и знаков бинарных операций. Каждое число в выражении это — целое неотрицательное число в промежутке от 0 до 10 000, включительно, записанное без ведущих нулей. Скобки бывают открывающие ('(') и закрывающие (')'). Операции задаются символами '+', '-', '*' и '/'; знак умножения не может быть опущен. Гарантируется, что заданное выражение математически корректно, и результаты всех промежуточных операций — целые числа, не превышающие по модулю 10⁹. Выражение не содержит каких-либо других символов, в частности, пробелов. Длина выражения не меньше 1 и не больше 1 000 000 символов.

Учтите, что операции с одинаковым приоритетом при отсутствии скобок выполняются слева направо. Например, выражение a+b+c вычисляется как (a+b)+c.

Формат выходных данных

В первой строке выходного файла выведите одно число — значение заданного выражения.

evalhard.in	evalhard.out
40-8/1*3	16
(5+50)/(2+3)	11

Бонус

11 Задача К. Дерево [3 секунды, 256 mb]

Задано подвешенное дерево, содержащее n ($1 \le n \le 1~000~000$) вершин. Каждая вершина покрашена в один из n цветов. Требуется для каждой вершины v вычислить количество различных цветов, встречающихся в поддереве с корнем v.

Формат входных данных

В первой строке входного файла задано число n. Последующие n строк описывают вершины, по одной в строке. Описание очередной вершины i имеет вид p_i c_i , где p_i — номер родителя вершины i, а c_i — цвет вершины i ($1 \le c_i \le n$). Для корня дерева $p_i = 0$.

Формат выходных данных

Выведите n чисел, обозначающих количества различных цветов в поддеревьях с корнями в вершинах $1, \ldots, n$.

tree.in	tree.out
5	1 2 3 1 1
2 1	
3 2	
0 3	
3 3	
2 1	

12 Задача L. Все минимумы [0.5 секунд, 256 mb]

Внимание: в данной задаче принимаются только решения за $\mathcal{O}(n)$.

Дан массивы целых чисел a_1, a_2, \ldots, a_n .

Для каждого его подинтервала $[a_L \dots a_R]$ определим $F(L,R) := min\{a_L,\dots,a_R\}$. Найдите

$$\sum_{1 \leqslant L \leqslant R \leqslant n} F(L, R)$$

то есть сумму минимумов всех подотрезков.

Внимание. Ваше решение должно иметь асимптотику O(n).

Формат входных данных

Первая строка входных данных содержит натуральное число n ($1 \le n \le 100\,000$) — размер массива. Во второй строке через пробел заданы элементы массива, все числа целые от -10^6 до 10^6 .

Формат выходных данных

Выведите единственное число — сумму минимумов всех подотрезков массива а.

minsum.in	minsum.out
1	5
5	
2	-19
-10 1	
4	20
1 2 3 4	
5	-52
-3 2 -4 1 -5	

13 Задача М. Интересный разбор выражений [1 секунда, 256 mb]

Задача: дано арифметическое выражение, посчитайте значение.

В выражении присутствуют:

- Целые числа из диапазона $[-2^{31}, 2^{31})$.
- Операции:
 - +, -, * (сложение, вычитание, умножение),
 - % (остаток по модулю, не отрицателен),
 - / (целочисленное деление, остаток неотрицателен),
 - ^ (возведение в степень).
- Унарный минус.
- Скобки трех типов: { } [] ().
- Переменные с целочисленными значениями. Имена переменных—строки из букв латинского алфавита. Регистр важен.
- Функции sqr (квадрат числа), cube (куб числа), sign (знак числа).

Правила разбора выражения:

- Минус: после числа/имени или закрывающей скобки идет бинарный минус. Иначе минус унарный.
- Приоритеты операций: (+, -) затем (*, %, /) затем (^).
- Операции +, -, *, / левоассоциативны: 2-3+4 = (2-3)+4.
- Операция возведения в степень ^ правоассоциативна: 3^3^3 = 3^27.
- Если после имени идет открывающая скобка это функция, иначе переменная.

Вычисление выражения: сперва происходит разбиение на лексемы и построение дерева вычислений, затем вычисляется значение выражения с помощью обхода дерево разбора слева направо. Сперва вычисляются значения аргументов операции в порядке слева направо, а когда все аргументы посчитаны, вычисляется значение оператора. Унарные операторы и функции в дереве имеют степень один, бинарные операторы имеют степень два.

Формат входных данных

Первые несколько строк содержат значения переменных в формате $\langle \mathtt{name} \rangle = \langle \mathtt{value} \rangle$. Эти строки точно корректны. Имена переменных в присваиваниях могут совпадать, используется последнее значение. Последняя строка содержит арифметическое выражение, значение которого нужно посчитать. Арифметическое выражение может содержать синтаксические ошибки, и ошибки, непозволяющие вычислить его значение. Подробнее читайте ниже. Суммарная длина всех строк входного не более 10^6 . Во входном файлы используются только допустимые символы.

Формат выходных данных

Если арифметическое выражение некорректно, выведите Error: (ошибка). Если произошло несколько ошибок, нужно выводить только первую.

Ошибки на этапе разбора выражения на лексемы в порядке приоритета:

- unmatched bracket лишние или не парные скобки.
- parsing expression численные значения и операции не чередуются.
- undefined name имя, которое не соответствует ни переменной, ни функции.
- too long integer используется число не из диапазона $[-2^{31}, 2^{31})$.

Третье домашнее задание СПБ, Академический Университет, 16 сентября 2014

Ошибки на этапе вычисления значения выражения, выражение вычисляется обходом дерева слева направо, нас интересует первая ошибка именно в этом порядке:

- integer overflow конечное, или одно из промежуточных значений лежат за пределами диапазона $[-2^{31}, 2^{31})$.
- dividing by zero деление на ноль.
- negative power is not allowed возведение в отрицательную степень.

Если арифметическое выражение задано корректно и может быть корректно вычислено, выведите целое число—значение выражения.

exprf.in	exprf.out
x = 2	-117
value = 3	
x^value - cube(2+3)	
-2+3-(-2+3)+[-100]-{-100}100+	71
sqr(-2)+sign(-1)+-2 ⁵	
x = 2	Error: integer overflow
x^100	
()	Error: parsing expression
(2 2 / 0 + 100000000000	Error: unmatched bracket
(2 2) / 0 + 100000000000	Error: parsing expression
(2 + x) / 0 + 1000000000000	Error: undefined name
(2 + 2) / 0 + 100000000000	Error: too long integer
(2 + 2) / 0	Error: dividing by zero
2^(2 - sqr(2))	Error: negative power is not
	allowed
sqr = 8	10042
sqr = 10	
sqr + (sqr + 2 + sqr) +	
sqr(sqr(sqr)) + sqr	
<u> </u>	