Inhalt Eigenwerte von Matrizen, Diagonalisierbarkeit von Matrizen, Beispiele

Seien K ein Körper mit unendlich vielen Elementen, $n \in \mathbb{N}$ und $A \in \operatorname{Mat}_n(K)$.

Eigenwerte von Matrizen

Definition $\lambda \in K$ heißt Eigenwert von $A :\iff$ Es gibt ein $v \in K^n$, $v \neq 0$ mit $Av = \lambda v$. Jedes solche v heißt Eigenvektor von A zum Eigenwert λ .

Anschaulich: Ist v Eigenvektor zum Eigenwert λ , so gilt $A(av) = a\lambda v$ für alle $a \in K$, also $A(\operatorname{Lin}(v)) \subset \operatorname{Lin}(v)$, die Gerade Lin(v) wird also von A in sich abgebildet.

Definition $\operatorname{Eig}_A(\lambda) := \{ v \in K^n \mid Av = \lambda v \} = \{ v \in K^n \mid (\lambda \mathbf{1}_n - A)v = 0 \} = \operatorname{Kern}(\lambda \mathbf{1}_n - A)$ ist ein Untervektorraum von K^n .

 λ ist Eigenwert von $A \iff \operatorname{Eig}_A(\lambda) \neq \{0\}$. In diesem Fall heißt $\operatorname{Eig}_A(\lambda)$ Eigenraum von A zum Eigenwert λ .

Satz 1 λ Eigenwert von $A \iff \det(\lambda \mathbf{1}_n - A) = 0$.

Beweis:
$$\lambda$$
 ist Eigenwert von $A \iff \operatorname{Eig}_A(\lambda) = \operatorname{Kern}(\lambda \mathbf{1}_n - A) \neq \{0\}$
 $\iff (\lambda \mathbf{1}_n - A)v = 0 \text{ hat eine Lösung } v \neq 0$
 $\iff \lambda \mathbf{1}_n - A \text{ ist nicht invertierbar } \iff \det(\lambda \mathbf{1}_n - A) = 0.$

Definition Die Abbildung $\chi_A: K \to K, x \mapsto \det(x\mathbf{1}_n - A)$ heißt *charakteristisches* Polynom von A.

 χ_A ist ein Polynom vom Grad n, es gilt

$$\chi_A(x) = x^n - (\operatorname{spur} A)x^{n-1} + \dots + (-1)^n \det A,$$

für $A = (a_{ij})$ ist dabei spur $A := \sum_{i=1}^{n} a_{ii}$ die Summe der Diagonalelemente von A.

Satz 1 besagt also: λ ist Eigenwert von $A \iff \lambda$ ist Nullstelle von χ_A .

Da jedes Polynom $f \neq 0$ vom Grad n höchstens n Nullstellen hat, folgt: Jedes $A \in \operatorname{Mat}_n(K)$ hat höchstens n Eigenwerte.

Beispiele a) $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \operatorname{Mat}_2(\mathbb{R})$ hat überhaupt keinen Eigenwert, denn es gilt: $\chi_A(x) = \det(x\mathbf{1}_2 - A) = \det\begin{pmatrix} x & -1 \\ 1 & x \end{pmatrix} = x^2 + 1$ hat in \mathbb{R} keine Nullstelle. Über $K = \mathbb{C}$ hat jedes nicht-konstante Polynom eine Nullstelle, also hat über $K=\mathbb{C}$ jede Matrix $A\in$ $\mathrm{Mat}_n(\mathbb{C})$ Eigenwerte.

b) Sei
$$A = \begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$
 eine obere Dreiecksmatrix. Dann ist

$$\chi_A(x) = \det \begin{pmatrix} x - \lambda_1 & * \\ & \ddots & \\ 0 & x - \lambda_n \end{pmatrix} = (x - \lambda_1) \cdot \dots \cdot (x - \lambda_n).$$

 χ_A hat genau die Nullstellen $\lambda_1, \ldots, \lambda_n$, also hat A genau die Eigenwerte $\lambda_1, \ldots, \lambda_n$.

Einsetzen von Matrizen in Polynome

Für $r \in \mathbb{N}^0$ wird A^r definiert durch $A^0 := \mathbf{1}_n$, $A^r = A \cdot \ldots \cdot A$ (r-mal) für $r \in \mathbb{N}$.

Für ein Polynom $f = \sum_{i=0}^{m} a_i x^i$ mit $a_0, \dots, a_m \in K$, $m \in \mathbb{N}^0$ sei $f(A) := \sum_{i=0}^{m} a_i A^i \in \operatorname{Mat}_n(K)$.

Satz 2 (Satz von Hamilton-Cayley) Für jedes $A \in Mat_n(K)$ gilt $\chi_A(A) = 0$.

2 Diagonalisierbarkeit von Matrizen

Problem Sei $A \in \operatorname{Mat}_n(K)$. Gesucht ist eine Basis \mathcal{B} von K^n , so dass $M_{\mathcal{B}}(l_A)$ eine "einfache" Gestalt hat. Dem Basiswechsel von \mathcal{E} zu \mathcal{B} entspricht der Übergang von A zu $P^{-1}AP$ für ein geeignetes $P \in \operatorname{GL}_n(K)$. (Es ist $\operatorname{GL}_n(K) := \{M \in \operatorname{Mat}_n(K) \mid M \text{ invertierbar}\}$.) Also: Gesucht ist ein $P \in \operatorname{GL}_n(K)$, so dass $P^{-1}AP$ eine "einfache" Gestalt hat.

Definition Eine Matrix der Form $\begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$ mit $\lambda_1, \dots, \lambda_n \in K$ heißt *Diagonal*-

matrix. A heißt diagonalisierbar, falls ein $P \in \operatorname{GL}_n(K)$ existiert, so dass $P^{-1}AP$ eine Diagonalmatrix ist.

Proposition Für $A \in Mat_n(K)$, $P \in GL_n(K)$ gilt:

- a) A und $P^{-1}AP$ haben dieselben Eigenwerte.
- b) Ist $P^{-1}AP$ eine Diagonalmatrix, so stehen in der Diagonale (von $P^{-1}AP$) genau die Eigenwerte von A.

Beweis: a) Es gilt $\chi_{P^{-1}AP}(x) = \det(x\mathbf{1}_n - P^{-1}AP) = \det(P^{-1}(x\mathbf{1}_n - A)P) = \det(P^{-1}) \cdot \det(x\mathbf{1}_n - A) \cdot \det P = \det(x\mathbf{1}_n - A) = \chi_A(x).$

Also haben $A, P^{-1}AP$ dasselbe charakteristische Polynom, also dieselben Eigenwerte.

b) Ist $P^{-1}AP$ eine Diagonalmatrix, so sind die Eigenwerte von $P^{-1}AP$ (und A) genau die Diagonalelemente.

Ist $A \in \operatorname{Mat}_n(K)$ diagonalisierbar, so existiert ein $P \in \operatorname{GL}_n(K)$ mit

$$P^{-1}AP = D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix},$$

dies ist äquivalent zu AP = PD. Sind v_1, \ldots, v_n die Spalten von P, so gilt

$$AP = (Av_1, \dots, Av_n) = PD = (\lambda_1 v_1, \dots, \lambda_n v_n), \text{ also } Av_j = \lambda_j v_j \text{ für alle } j \in \{1, \dots, n\},$$

jede Spalte v_i von P ist also Eigenvektor von A zum Eigenwert λ_i . Damit erhält man:

Satz 3 Es seien $A \in \operatorname{Mat}_n(K)$, (v_1, \ldots, v_n) eine geordnete Basis von K^n und $P := (v_1, \ldots, v_n) \in \operatorname{Mat}_n(K)$. Dann ist P invertierbar, und es sind äquivalent:

(i)
$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$
.

(ii) Für alle $j \in \{1, ..., n\}$ ist v_j Eigenvektor von A zum Eigenwert λ_j .

Korollar $A \in \operatorname{Mat}_n(K)$ ist diagonalisierbar \iff Es gibt eine geordnete Basis des K^n , die aus Eigenvektoren von A besteht.

Ist (v_1, \ldots, v_n) eine geordnete Basis des K^n , die aus Eigenvektoren von A besteht, so ist $P = (v_1, \ldots, v_n) \in \operatorname{Mat}_n(K)$ invertierbar und $P^{-1}AP$ eine Diagonalmatrix.

3 Beispiele

a) $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \operatorname{Mat}_2(\mathbb{R})$ ist über \mathbb{R} nicht diagonalisierbar, da $\chi_A = x^2 + 1$ keine reelle Nullstelle besitzt

b) $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \operatorname{Mat}_2(K)$ ist nicht diagonalisierbar.

0 ist der einzige Eigenwert von A. Wäre A diagonalisierbar, so wäre $P^{-1}AP = 0$ für ein $P \in GL_n(K)$, also wäre A = 0, Widerspruch!

c) Sei
$$A = \begin{pmatrix} -2 & 6 \\ -2 & 5 \end{pmatrix} \in \operatorname{Mat}_2(\mathbb{R}).$$

1. Berechnung von
$$\chi_A$$
: $\chi_A(x) = \det(x\mathbf{1}_2 - A) = \det\begin{pmatrix} x+2 & -6\\ 2 & x-5 \end{pmatrix} = (x+2)(x-5) + 12 = x^2 - 3x - 10 + 12 = x^2 - 3x + 2$.

2. Bestimmung der Eigenwerte: Wegen $\chi_A(x) = x^2 - 3x + 2 = (x-1)(x-2)$ sind 1 und 2 die Nullstellen von χ_A , also die Eigenwerte von A (nach Satz 1).

3. Bestimmung einer Basis der jeweiligen Eigenräume:

Für
$$\lambda_1 = 1$$
 gilt: $\operatorname{Eig}_A(1) = \operatorname{Kern}(\mathbf{1}_2 - A) = \operatorname{Kern}\begin{pmatrix} 3 & -6 \\ 2 & -4 \end{pmatrix} = \operatorname{Kern}\begin{pmatrix} 3 & -6 \\ 0 & 0 \end{pmatrix}$

$$= \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid 3x_1 - 6x_2 = 0 \right\} = \operatorname{Lin}(\begin{pmatrix} 2 \\ 1 \end{pmatrix}), \text{ eine Basis von } \operatorname{Eig}_A(1) \text{ ist also } \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$
Für $\lambda_2 = 2$ gilt: $\operatorname{Eig}_A(2) = \operatorname{Kern}(2\mathbf{1}_2 - A) = \operatorname{Kern}\begin{pmatrix} 4 & -6 \\ 2 & -3 \end{pmatrix} = \operatorname{Kern}\begin{pmatrix} 0 & 0 \\ 2 & -3 \end{pmatrix}$

$$= \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid 2x_1 - 3x_2 = 0 \right\} = \operatorname{Lin}(\begin{pmatrix} 3 \\ 2 \end{pmatrix}), \text{ eine Basis von } \operatorname{Eig}_A(2) \text{ ist also } \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$
Wir setzen $P := \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$. Wegen $\det P = 1 \neq 0$ ist P invertierbar. Dann folgt

$$P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

Zur Probe können wir diese Gleichung in der Form $AP = P \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ verifizieren:

$$AP = \begin{pmatrix} -2 & 6 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 1 & 4 \end{pmatrix}, \ P \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 1 & 4 \end{pmatrix}.$$

3