MATS132 Lineaariset Lien ryhmät demo 2 malliratkaisut

1. Kvaternioiden kompleksinen matriisiesitys $\mathbb{H} \hookrightarrow \mathcal{M}_2(\mathbb{C})$ saatiin matriiseilla

$$\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{i} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{j} = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} \quad \text{ja} \quad \mathbf{k} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}.$$

- (a) Tarkista kvaternioiden matriisiesitykselle relaatiot $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$.
- (b) Osoita kvaternion $0 \neq q \in \mathbb{H}$ käänteisalkion kaava $q^{-1} = \bar{q}/|q|^2$.

Ratkaisu. (a)

$$\mathbf{i}^{2} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{2} = \begin{bmatrix} -1 \cdot 1 & 0 \\ 0 & 1 \cdot (-1) \end{bmatrix} = -\mathbf{1}$$

$$\mathbf{j}^{2} = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}^{2} = \begin{bmatrix} (-i)^{2} & 0 \\ 0 & (-i)^{2} \end{bmatrix} = -\mathbf{1}$$

$$\mathbf{k}^{2} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}^{2} = \begin{bmatrix} i^{2} & 0 \\ 0 & (-i)^{2} \end{bmatrix} = -\mathbf{1}$$

$$\mathbf{ijk} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & (-i)^{2} \\ -i^{2} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = -\mathbf{1}.$$

(b) Kirjoitetaan $q=\begin{bmatrix} x & -\bar{y} \\ y & \bar{x} \end{bmatrix},\, x,y\in\mathbb{C}.$ Tällöin

$$\begin{split} q\bar{q} &= \begin{bmatrix} x & -\bar{y} \\ y & \bar{x} \end{bmatrix} \begin{bmatrix} x & -\bar{y} \\ y & \bar{x} \end{bmatrix}^* = \begin{bmatrix} x & -\bar{y} \\ y & \bar{x} \end{bmatrix} \begin{bmatrix} \bar{x} & \bar{y} \\ -y & x \end{bmatrix} \\ &= \begin{bmatrix} x\bar{x} + \bar{y}y & x\bar{y} - \bar{y}x \\ y\bar{x} - y\bar{x} & y\bar{y} + \bar{x}x \end{bmatrix} = \begin{bmatrix} |x|^2 + |y|^2 & 0 \\ 0 & |x|^2 + |y|^2 \end{bmatrix} = |q|^2, \end{split}$$

joten $q \cdot \bar{q}/|q|^2 = \mathbf{1}$.

2. Olkoon $\Psi: \mathrm{GL}(n,\mathbb{C}) \hookrightarrow \mathrm{GL}(2n,\mathbb{R})$ Lauseen 2.15 blokkimatriisiupotus.

- (a) Osoita, että kaikille $A \in GL(n, \mathbb{C}), \Psi(A^*) = \Psi(A)^T$.
- (b) Osoita, että $\Psi(U(n)) \subset O(2n)$.
- (c) Onko $\Psi(U(n)) = O(2n)$?

Ratkaisu. (a) Kompleksilukujen upotukselle $\rho: \mathbb{C} \hookrightarrow \mathcal{M}_2(\mathbb{R})$, mille tahansa $z=a+bi\in \mathbb{C}$

$$\rho(z)^T = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}^T = \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \rho(a - bi) = \rho(\bar{z}).$$

Blokkimatriisin transpoosi saadaan blokkien transpoosina, joten ylläolevasta seuraa, että

$$\Psi(A)^T = [\rho(A_{rs})]_{rs}^T = [\rho(A_{sr})^T]_{rs} = [\rho(\bar{A}_{sr})]_{rs} = \Psi(A^*).$$

(b) Olkoon $A \in \mathrm{U}(n)$. Koska Ψ on homomorfismi, (a)-kohdan nojalla

$$\Psi(A)^T \Psi(A) = \Psi(A^*) \Psi(A) = \Psi(A^*A) = \Psi(I) = I,$$

joten $\Psi(A) \in \mathcal{O}(2n)$.

(c) Ei, vastaesimerkiksi kelpaa diagonaalimatriisi

$$A = \begin{bmatrix} -1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}.$$

Tälle $A^TA=I$ joten $A\in \mathrm{O}(2n)$, mutta se ei voi olla minkään kompleksisen matriisin kuva, sillä ensimmäinen 2×2 -blokki on $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, joka ei ole minkään kompleksiluvun kuva.

3. Todista Lause 3.8: Olkoot $x_1, \ldots, x_n \in \mathbb{K}^n$ lineaarisesti riippumattomia vektoreita ja $A = \begin{bmatrix} x_1 & \ldots & x_n \end{bmatrix} \in \operatorname{GL}(n, \mathbb{K})$ niistä muodostettu matriisi. Osoita, että

$$A \in \begin{cases} \mathcal{O}(n), & \text{jos } \mathbb{K} = \mathbb{R} \\ \mathcal{U}(n), & \text{jos } \mathbb{K} = \mathbb{C} \end{cases} \iff \text{vektorit } x_1, \dots, x_n \in \mathbb{K}^n \text{ muodostavat ortonormaalin kannan}$$

Ratkaisu. Tarkastellaan matriisituloa A^*A blokkimatriisien tulona. Lemman 2.16 nojalla

$$A^*A = \begin{bmatrix} x_1^* \\ \vdots \\ x_n^* \end{bmatrix} \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} = \begin{bmatrix} x_1^*x_1 & \cdots & x_1^*x_n \\ \vdots & & \vdots \\ x_n^*x_1 & \cdots & x_n^*x_n \end{bmatrix} = \begin{bmatrix} x_1 \cdot x_1 & \cdots & x_1 \cdot x_n \\ \vdots & & \vdots \\ x_n \cdot x_1 & \cdots & x_n \cdot x_n \end{bmatrix}.$$

Näin ollen

$$A^*A = I \iff x_r \cdot x_s = \begin{cases} 1, & r = s \\ 0, & r \neq s \end{cases} \iff x_1, \dots, x_n \text{ ortonormaali kanta}$$

4. Olkoot $G,\ N \triangleleft G,\ H < G$ ja K < G ryhmiä. Osoita, että jos $G = N \rtimes H$ ja $K = (N \cap K)(H \cap K),$ niin

$$K = (N \cap K) \rtimes (H \cap K).$$

Ratkaisu. (i) Puolisuoran tulon ensimmäinen ehto $K=(N\cap K)(H\cap K)$ on suoraan oletuksessa.

(ii) Koska $N \triangleleft G$, $gNg^{-1} \subset N$ kaikilla $g \in G$. Erityisesti sama pätee myös kun $g \in K$. Näin ollen kaikilla $k \in K$,

$$k(N \cap K)k^{-1} \subset kNk^{-1} \subset N$$

ja toisaalta myös

$$k(N \cap K)k^{-1} \subset kKk^{-1} = K,$$

joten $N \cap K \triangleleft K$.

(iii) Koska $N \cap H = \{e_G\},\$

$$(N \cap K) \cap (H \cap K) \subset N \cap H = \{e_G\} = \{e_K\}.$$

- **5.** Tulkitaan O(1) < O(n) blokkiupotuksen $GL(1, \mathbb{R}) \hookrightarrow GL(n, \mathbb{R})$ kautta.
- (a) Osoita, että $O(n) = SO(n) \times O(1)$
- (b) Osoita, että O(1) ei ole normaali aliryhmä O(n):lle.

Ratkaisu. (a) Ryhmä O(1) on kahden alkion ryhmä

$$O(1) = {\pm 1} \simeq \left\{ \begin{bmatrix} \pm 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix} \right\} < O(n).$$

Tarkastellaan hajoitelman $\mathrm{GL}(n,\mathbb{R}) = \mathrm{SL}(n,\mathbb{R}) \rtimes \mathrm{GL}(1,\mathbb{R})$ leikkausta joukon $\mathrm{O}(n)$ kanssa. Suoraan määritelmästä nähdään, että

$$SO(n) = SL(n, \mathbb{R}) \cap O(n).$$

Toisaalta myös

$$O(1) = GL(1, \mathbb{R}) \cap O(n),$$

sillä 1×1 -matriisille $A = [a], A^T A = [a^2].$

Ortogonaaliselle matriisille $A \in O(n)$, ehdosta

$$1 = \det(I) = \det(A^T A) = \det(A)^2$$

seuraa, että $\det(A) = \pm 1$. Näin ollen jokainen $A \in O(n)$ voidaan kirjoittaa matriisitulona

$$A = A \begin{bmatrix} \det(A) & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix} \cdot \underbrace{\begin{bmatrix} \det(A) & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}}_{\in SO(n)} \cdot \underbrace{\begin{bmatrix} \det(A) & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}}_{\in O(1)}$$

Tällöin tehtävän 4 nojalla

$$O(n) = SO(n) \times O(1)$$
.

(b) Voidaan rajoittua tapaukseen n=2. Yleinen tapaus $n\geq 2$ saadaan upotuksen $O(2)\hookrightarrow O(n)$ kautta. Olkoon $A=\begin{bmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{bmatrix}\in O(2)$. Tarkastellaan O(1):n

epätriviaalin alkion konjugaatiota A:lla:

$$\begin{split} A \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} A^{-1} &= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \\ &= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} -\cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \\ &= \begin{bmatrix} -\cos^2 \theta + \sin^2 \theta & -2\sin \theta \cos \theta \\ -2\sin \theta \cos \theta & -\sin^2 \theta + \cos^2 \theta \end{bmatrix} \\ &= \begin{bmatrix} -\cos 2\theta & -\sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix} \notin \mathcal{O}(1). \end{split}$$

Tarkastellaan ortogonaaliryhmän toimintoa $\varphi: O(n) \times \mathbb{R}^n \to \mathbb{R}^n, \varphi(A, x) = Ax$ (katso 1. demojen tehtävät 5-8).

6. Määritä kaikkien vektorien $x \in \mathbb{R}^n$ radat $Orb(x) = \varphi(O(n), x)$.

Ratkaisu. Lauseen 3.7 nojalla kaikille $A \in O(n)$, ||Ax|| = ||x||. Näin ollen jokainen rata sisältyy pallonpinnalle

$$\operatorname{Orb}(x) \subset S^{n-1}(0, ||x||) = \{ y \in \mathbb{R}^n : ||y|| = ||x|| \}.$$

Toisaalta, jos $x \in \mathbb{R}^n \setminus \{0\}$ on mikä tahansa vektori, voidaan löytää ortonormaali kanta $x_1, \ldots, x_n \in \mathbb{R}^n$, missä $x_1 = x/\|x\|$. Näitä vektoreita sarakkeina käyttäen saadaan Lauseen 3.8 nojalla matriisi $A = \begin{bmatrix} x_1 & \ldots & x_n \end{bmatrix} \in O(n)$. Tälle matriisille

$$A(||x||e_1) = ||x||x_1 = x,$$

joten sen käänteismatriisille $A^{-1}x = ||x||e_1$. Erityisesti $||x||e_1 \in \text{Orb}(x)$.

Koska radat ovat joko täysin erillisiä tai identtisiä, tästä seuraa, että $\mathrm{Orb}(x)=\mathrm{Orb}(y)$ jos $\|x\|=\|y\|$, joten kaikille $y\in S^{n-1}(0,\|x\|)$

$$y \in \operatorname{Orb}(y) = \operatorname{Orb}(x),$$

joten $Orb(x) = S^{n-1}(0, ||x||).$

7. Olkoon $x \in \mathbb{R}^n \setminus \{0\}$. Osoita topologisten ryhmien isomorfismi $\operatorname{Stab}(x) \simeq \operatorname{O}(n-1)$.

Ratkaisu. Matriisitulon lineaarisuuden nojalla Stab(x) = Stab(x/||x||). Toisaalta, laajentamalla x/||x|| ortonormaaliksi kannaksi $x_1, x_2, \ldots, x/||x||$ ja käyttämällä kannanvaihtomatriisia $U = \begin{bmatrix} x_1 & \ldots & x_{n-1} & x/||x|| \end{bmatrix}$ nähdään (kuten 1. demojen 8 tehtävässä), että

$$\operatorname{Stab}(x) = \operatorname{Stab}(x/\|x\|) = U \cdot \operatorname{Stab}(e_n) \cdot U^{-1}.$$

Koska konjugaatio $A\mapsto UAU^{-1}$ on topologisten ryhmien isomorfismi, riittää osoittaa, että $\operatorname{Stab}(e_n)\simeq O(n-1).$

Olkoon $A \in \text{Stab}(e_n)$. Tällöin $Ae_n = e_n$ on matriisin A viimeinen sarake, eli matriisin A^T viimeinen rivi. Matriisitulon A^TA viimeinen rivi on tällöin sama kuin matriisin A viimeinen rivi. Ehdosta $A^TA = I$ seuraa siis, että

$$A = \begin{bmatrix} B & 0 \\ 0 & 1 \end{bmatrix}$$

jollekin matriisille $B \in \mathrm{GL}(n-1,\mathbb{R})$. Toisaalta

$$I = A^T A = \begin{bmatrix} B^T & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} B & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} B^T B & 0 \\ 0 & 1 \end{bmatrix},$$

joten itse asiassa $B \in O(n-1)$. Kääntäen, mille tahansa blokkimatriisille $A = \begin{bmatrix} B & 0 \\ 0 & 1 \end{bmatrix}$, $B \in O(n-1)$, $Ae_n = e_n$, eli $A \in \operatorname{Stab}(e_n)$.