

TFT LCD Approval Specification

MODEL NO.: G070Y3-T01

Customer:	
Approved by:	
Note:	

記錄	工作	審核	角色	投票
2008-03-10 16:44:39 CST		cs_lee(李志聖 /17564/44926)	Director	Accept

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 6
3. ELECTRICAL CHARACTERISTICS 3.1 RECOMMENDED OPERATIN CONDITION 3.2 CURRENT CONSUMPTION 3.3 BACKLIGHT UNIT	 8
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	 10
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 FPC I/O PIN ASSIGNMENT 5.2 BACKLIGHT FPC PIN ASSIGNMENT 5.3 SCANNING DIRECTION 5.4 COLOR DATA INPUT ASSIGNMENT	 11
6. INTERFACE TIMING 6.1 AC ELECTRICAL CHARACTERISTICS 6.2 POWER ON/OFF SEQUENCE	 15
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 18
8. PACKAGING	 21
9. DEFINTION OF LABELS	 23
10. PRECATIONS	 24
11. APPLICATION NOTES 11.1 GAMMA CIRCUIT	 25
12. MECHANICAL CHARACTERISTICS	 26

REVISION HISTORY

Version	Date	Section	Description
Ver 2.0	Feb. 15, '08	All	G070Y3-T01 Approval specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G070Y3-T01 is a 6.95inch TFT Liquid Crystal Display module with a LED backlight unit and a-50-pin-and-1ch-TTL interface. This module supports 800 (R.G.B)x 480 WVGA mode which main application is the automotive Monitor and industrial field.

1.2 FEATURES

- Wide viewing angle.
- Fast response time
- WVGA (800 x 480 pixels) resolution
- Wide operating temperature
- Reversible scan function
- Digital interface
- LED light bar replaceable

1.3 APPLICATION

- Automotive Monitor
- Industry Application

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	6.95 Inches	mm	
Active Area	156 x 82.8	mm	(1)
Bezel Opening Area	159.3 x 86	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	800 x R.G.B. x 480	pixel	-
Pixel Pitch	0.1950 x 0.1725	mm	-
Pixel Arrangement	RGB vertical stripe	-	(2)
Display Colors	262.144 (6 bits)	color	-
Display Mode	Normal White	-	-
Surface Treatment	Hard Coating (3H), AG (Haze 25 %)	-	-
Weight	180(Typ)	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2)

1.5 MECHANICAL SPECIFICATIONS

It	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	167.7	168	168.3	mm	(1)
Module Size	Vertical(V)	93.7	94	94.3	mm	(1)
	Depth(D)	6.05	6.35	6.65	mm	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

No.	Test Item	Test Condition	Note		
1	High Temperature Storage	90 , 240 hours			
2	Low Temperature Storage	-40 , 240 hours			
3	Thermal Shock Storage	{(-40 , 0.5 hour) (85 , 0.5 hour)}, 100 cycles	(1) (2)		
4	High Temperature Operating	gh Temperature Operating 85 , 240 hours			
5	Low Temperature Operating	-30 , 240 hours			
6	High Temperature & High Humidity Operating	60 , 90% RH, 240hours			
7	Shock (Non-Operating)	100G, 6ms, +/-XYZ 3 times	(3)(5)		
8	Vibration (Non-Operating)	3G, 10 to 200 Hz, sine wave	(4)(5)		

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) The temperature of panel display surface area should be 90 Max.
- Note (3) 6ms, half sine wave, 3 times for +/-X, +/-Y, +/-Z.
- Note (4) 3 directions: X, Y and Z axes, 60min per each direction; 6 cycles; sweep time = 5 minutes; peak acceleration = 3G; frequency = 10 to 200 Hz; sine wave.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (6) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before the reliability test.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter	Symbol Value			Unit	Note	
Farameter	Syllibol	Min.	Тур.	Max.	5	Note
	VCC	-0.3	-	5	٧	-
Power Supply Voltage	AVDD	-0.3	-	13.5	V	-
	VGH	-0.3	-	42	٧	
	VGL	VGH-42	-	0.3	V	-
Digital Input Voltage	V_{l}	-0.5	-	Vcc+0.5	V	(1)
Gamma Supply Voltage	V1~V5	0.4AVDD	-	AVDD+0.3	V	-
	V6~V10	-0.3	-	0.6AVDD	V	-

Note (1) V_I means all input logic signal.

2.2.2 BACKLIGHT UNIT

 $Ta = 25 \pm 2 \, ^{\circ}C$

Item	Symbol Value					Note	
iteiii	Symbol	Min.	Тур.	Max.	Unit	Note	
LED Light Bar Power Supply Voltage	V_L	-45	-	31.5	>	(1)	
LED Light Bar Power Supply Current	IL	-	-	90	mA	(1)	

Note (1) Permanent damage to the device may occur if maximum or minimum values are exceeded.

Function operation should be restricted to the conditions described under Normal Operating Conditions.

3. ELECTRICAL CHARACTERISTICS

3.1 RECOMMENDED OPERATION CONDITION (GND = AVSS = 0V)

Ta = 25 ± 2 °C

Parameter		Symbol	Symbol Value			Unit	Note
		Syllibol	Min.	Тур.	Max.	Offic	NOLE
		VCC	3.0	3.3	3.6	V	
Dower Supply Voltag	0	AVDD	10.29	10.5	10.71	V	
Tower Supply Voltag	Power Supply Voltage		17.5	18	18.5	٧	
		VGL	-7.5	-7	-6.5	V	
			0.4AVDD	-	AVDD+0.3	V	(1)
Input Signal Voltage		V6~V10	-0.3	-	0.6AVDD	V	(1)
		VCOM	-	4.035	-	V	
Digital Input Voltage	High Level	V _{IH}	0.7VCC	-	VCC	V	
	Low Level	V _{IL}	0	-	0.3VCC	V	

Note (1) Please refer to 11.1 application notes.

3.2 CURRENT CONSUMPTION (GND = AVSS = 0V)

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note
Supply Current for Source/Gate Driver (Digital)	I _{cc}	ı	2.86	3.5	mA	(1)
Supply Current for Source Driver (Analog)	I _{DD}	ı	21	25	mA	(1)
Supply Current for Gate Driver (High Level)	I _{GG}	ı	0.13	0.2	mA	(1)
Supply Current for Gate Driver (Low Level)	I _{EE}	-	0.13	0.2	mA	(1)

Note (1) The specified power supply current is under the conditions at VCC = 3.3 V, Ta = 25 ± 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

Black Pattern

Active Area

3.3 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Cymbol		Value		Linit	Note	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
LED Quantity			27		PCs	(1)	
LED Light Bar Power Supply Voltage	V_L	26.1	27.9	29.7	V	(1),(2)	
LED Light Bar Power Supply Current	ΙL	-	60	-	mA	(Duty 100%)	
Power Consumption	P_L	-	1.674	-	W	(3), (Duty 100%)	
LED Life Time	L _{BL}	10000	-	-	Hrs	(4)	

Note (1) LED light bar configuration is shown as below.

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3) $P_L = I_L \times V_L$

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = 20 mA(Per EA) until the brightness becomes 50% of its original value.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 FPC I/O PIN ASSIGNMENT

	Nome		Description
Pin	Name	I/O	Description
1	VCOM	I	VCOM Voltage
2	DIO1	I/O	Start Pulse Signal Input/Output (Horizontal)
3	CLK	I	Source Driver Shift Clock Input
4	SHL	 	Source Driver Shift Direction Control Input
5	D00	 	Red Data(R0)
6	D01	-	Red Data(R1)
7	D02	l	Red Data(R2)
8	D03	l	Red Data(R3)
9	D04	I	Red Data(R4)
10	D05	I	Red Data(R5)
11	D10	I	Green Data(G0)
12	D11	I	Green Data(G1)
13	D12	I	Green Data(G2)
14	D13	I	Green Data(G3)
15	D14	I	Green Data(G4)
16	D15	I	Green Data(G5)
17	V1	I	Gamma Voltage 1
18	V2	I	Gamma Voltage 2
19	V3	I	Gamma Voltage 3
20	V4	I	Gamma Voltage 4
21	V5	I	Gamma Voltage 5
22	V6	I	Gamma Voltage 6
23	V7	I	Gamma Voltage 7
24	V8	I	Gamma Voltage 8
25	V9	I	Gamma Voltage 9
26	V10	I	Gamma Voltage 10
27	D20	I	Blue Data(B0)
28	D21	I	Blue Data(B1)
29	D22	I	Blue Data(B2)
30	D23	I	Blue Data(B3)
31	D24	I	Blue Data(B4)
32	D25	I	Blue Data(B5)
33	LD	I	Latching and Data Switching Input
34	REV	I	Data Inverting Input
35	POL	I	Polarity Inverting Input
36	VCC	I	Digital Supply Voltage
37	GND	I	Ground
38	AVDD	I	Source Driver Analog Supply Voltage
39	DIO2	I/O	Start Pulse Signal Input/Output (Horizontal)
40	GND	I	Ground

41	XAO	I	Output All-on Control			
42	OE	I	Gate Driver Output Enable Control			
43	UD_RL	I	Up/Down Scan Selection			
44	CKV	I	Gate Driver Shift Clock input			
45	STVU	I/O	Start Pulse Signal Input/Output (Vertical)			
46	STVD	I/O	Start Pulse Signal Input/Output (Vertical)			
47	VCC	I	Digital Supply Voltage			
48	VGL	I	TFT Low Voltage			
49	VGH	Ī	TFT High Voltage			
50	GND	Ī	Ground			

Note (1) User's connector Part No: 089H50-000000-G2-C (Starconn) or equivalent

5.2 BACKLIGHT FPC PIN ASSIGNMENT

Pin	Name	I/O	Description
1	V_L	ı	LED Light-bar Input Power
2	CH1	0	Light-bar Feedback Channel
3	CH2	0	Light-bar Feedback Channel
4	CH3	0	Light-bar Feedback Channel

Note (1) User's connector Part No: EZ24004G213 (UNE) or equivalent

5.3 SCANNING DIRECTION

The following figures are seen from a front view and the arrow shows the direction of scan.

Figure 1. Normal scan

Figure 2. Reverse scan

Note: (1) Normal Scan

SHL	U/D	DIO1	DIO2	STVU	STVD	Shift
1	0	Input	Output	Input	Output	Up to down Left to right

(2) Reverse Scan

١	SHL	U/D	DIO1	DIO2	STVU	STVD	Shift
	0	1	Output	Input	Output	Input	Down to Up Right to left

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input. (0: Low Level Voltage, 1: High Level Voltage)

									Da	ata S	Sign	al							
Color		Red				Green				Blue									
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	В5	B4	ВЗ	B2	В1	В0
Basic Colors	Black Red Green Blue Cyan Magenta Yellow White	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0
Gray Scale Of Red	Red(0) / Dark Red(1) Red(2) : : Red(61) Red(62) Red(63)	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : 0 1	0 1 0 : : 1 0 1	0 0 0 : : 0 0	0 0 0 0 0										
Gray Scale Of Green	Green(0) / Dark Green(1) Green(2) : : : : : : : : : : : : : : : : : : :	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : : 0 1	0 1 0 : : 1 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 0 0
Gray Scale Of Blue	Blue(0) / Dark Blue(1) Blue(2) : : : Blue(61) Blue(62) Blue(63)	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : : 0 1	0 1 0 : : 1 0 1

6. INTERFACE TIMING

6.1 AC ELECTRICAL CHARACTERISTICS (VCC = 3.3V, AVDD = 8.4V, AVSS = GND = 0V, Ta = 25)

Darameter	Cumbal	Value			Unit	Condition			
Parameter	Symbol	Min.	Тур.	Max.	5	Condition			
CLK frequency	Fclk	-	40	45	MHz	-			
CLK Pulse width	Tcw	40%	-	60%	T_{CLK}	-			
Data setup time	Tsu	4	-	-	ns	D00~D25, REV and DIO1/2 to CLK			
Data hold time	Thd	2	-	-	ns	D00~D25, REV and DIO1/2 to CLK			
Propagation delay of DIO2/1	Tphl	6	10	15	ns	CL = 25pF (Output)			
Time that the last data to LD	Tld	1	-	-	T_{CLK}	-			
Pulse width of LD	Twld	2	-	-	T_{CLK}	-			
Time that LD to DIO1/2	Tlds	5	-	-	T_{CLK}	-			
POL setup time	Tpsu	6	-	-	ns	POL to LD			
POL hold time	Tphd	6	-	-	ns	POL to LD			
Output stable time	Tst	-	-	12	us	10% or 90% target voltage, CL = 60 pF, R = 2 KΩ			
CKV period	t _{CPV}	5	-	-	us	-			
CKV pulse width	t_{CPVH}, t_{CPVL}	2.5	-	-	us	50% duty cycle			
OE pulse width	t _{WOE}	1	-	-	us	-			
XAO pulse width	t _{WXAO}	10	-	-	us				
Data setup time	t _{su}	700	-	-	ns	-			
Data hold time	t _{hd}	700	-	-	ns	-			
Output delay time (1)	t _{Pd1}	-	-	1000	ns	CL = 300pF			
Output delay time (2)	t _{Pd2}	-	-	800	ns	CL = 30pF			
Output delay time (3)	t _{Pd3}	-	-	800	ns	CL = 300pF			
Output delay time (4)	t _{Pd4}	-	-	10000	ns	CL = 300pF			

■Timing Diagram 1

■Timing Diagram 2

■Timing Diagram 3

6.2 POWER ON/OFF SEQUENCE

To prevent the device from damage due to latch up, the power ON/OFF sequence shown below must be followed.

Power on sequence: Vcc→VGL→VGH
Power off sequence: VGH→VGL→Vcc

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{CC}	3.3	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
Current	I _f	20	mA				

Note (1) I_f means the forward current of each channel

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx			0.619				
	Reu	Ry			0.364				
	Green	Gx			0.342				
Color	Gleen	Gy		Тур –	0.595	Typ +		(1), (6)	
Chromaticity	Blue	Bx		0.03	0.147	0.03		(1), (0)	
	Blue	Ву			0.085				
	\\/bita	Wx	$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$		0.313				
	White	Wy	Viewing Normal Angle		0.329				
Center Luminan	ce of White	L _C		500	600	-	cd/m ²	(4), (6)	
Contrast Ratio		CR		500	650	-	-	(2), (6)	
Response Time		T _R		-	5	10	Ms	(3)	
response fille		T_F		-	11	16	Ms	(5)	
White Variation		δW		-	1.25	1.4	ı	(5), (6)	
	Horizontal	θ_x +		65	70	-			
Viousing Angle	Honzoniai	θ_{x} -	CR 10	65	70	-	Dog	(1), (6)	
Viewing Angle	Vertical	θ _Y +	ON IU	55	60	-	Deg.		
	Vertical	θ _Y -		55	60	-			

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

Note (3) Definition of Response Time (T_R, T_F) and measurement method:

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 63 at center point

$$L_{C} = L (5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (5).

Note (5) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

8. PACKAGING

- (1) 40 LCM Modules/1 box
- (2) Carton dimensions : 435(L)x350(W)x265(H)mm
- (3) Weight :approximately 15.5 kg(40 modules per Carton).

Sea and Land Transportation

Air Transportation

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: G070Y1 T01
- (b) Revision: Rev. XX, for example: A1, ..., C1, C2 ...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

Serial No.: Manufacturing sequence of product

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

10.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

11. APPLICATION NOTES 11.1 GAMMA CIRCUIT

AVDD	10.5
V1	10.02
V2	8.27
V3	7.79
V4	7.45
V5	6.57
V6	5.43
V7	3.37
V8	2.86
V9	2.24
V10	0.17
VCOM	4.035

