Week-12-user defined functions

Question 1
Correct
Marked out of 1.00

P Flag question

A binary number is a combination of 1s and 0s. Its nth least significant digit is the nth digit starting from the right starting with 1. Given a decimal number, convert it to binary and determine the value of the the 4th least significant digit.

Example

number = 23

- · Convert the decimal number 23 to binary number: $23^{10} = 2^4 + 2^2 + 2^1 + 2^0 = (10111)_2$.
- \cdot The value of the 4th index from the right in the binary representation is 0.

Function Description

Complete the function fourthBit in the editor below.

fourthBit has the following parameter(s):

int number: a decimal integer

Returns:

int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number.

Source code

```
2
     * Complete the 'fourthBit' function below.
 3
     \ensuremath{^{*}} The function is expected to return an INTEGER.
 4
     * The function accepts INTEGER number as parameter.
 5
 6
    int fourthBit(int number)
 8
 9
         int binary[32];
10
11
         int i=0;
        while(number>0)
12
13 ,
14
            binary[i]=number%2;
15
             number/=2;
16
            i++;
17
         if(i>=4)
18
19
20
            return binary[3];
21
22
         else
23
        return 0;
24
25 }
```

Result

	Test	Expected	Got	
~	<pre>printf("%d", fourthBit(32))</pre>	0	0	~
~	printf("%d", fourthBit(77))	1	1	~
Passe	d all tests! 🗸			

Question 2
Correct
Marked out of 1.00
F Flag question

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the pth element of the list, sorted ascending. If there is no pth element, return 0.

Example

n = 20

p = 3

The factors of 20 in ascending order are {1, 2, 4, 5, 10, 20}. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

Function Description

Complete the function pthFactor in the editor below.

pthFactor has the following parameter(s):

int n: the integer whose factors are to be found

int p: the index of the factor to be returned

Source code

```
1 • /*
 2
      * Complete the 'pthFactor' function below.
 3
     * The function is expected to return a LONG_INTEGER.
 4
 5
     \ensuremath{^{*}} The function accepts following parameters:
 6
     * 1. LONG_INTEGER n
     * 2. LONG_INTEGER p
 7
 8
 9
    long pthFactor(long n, long p)
10
11 🔻 {
12
         int count=0;
13
         for(long i=1;i<=n;++i)</pre>
14 •
15
             if(n%i==0)
16 ,
17
                 count++;
                 if(count == p)
18
19 ,
                 {
20
                      return i;
21
22
23
24
         return 0;
25
26
```

Result

	Test	Expected	Got	
~	<pre>printf("%ld", pthFactor(10, 3))</pre>	5	5	~
~	printf("%ld", pthFactor(10, 5))	0	0	~
~	printf("%ld", pthFactor(1, 1))	1	1	~

Passed all tests! 🗸