Función de distribución radial

Mide "el número promedio de partículas que se encuentran a una distancia (r,r+dr) de cada partícula".

Figure: Función de distribución radial.

Uso de g(r)

(a) Nos da una idea del estado del sistema (solido, líquido o gas).

(b) Permite obtener información termodinámica a partir de magnitudes microscópicas.

(c) Sirve para determinar el tiempo de termalización

(d) Si un sistema tiene distintos tipos de partículas, permite estudiar como se agrupa cada tipo entre sí.

Cáculo de g(r)

Cuento la cantidad de partículas $\delta N(r)$ que "caen" en el casquete esférico $(r,r+\delta r)$. Si divido $\delta N(r)$ por el volumen del casquete $4\pi r^2 \delta r$, puede definir la función g(r) como

$$g(r) = \frac{1}{\rho} \frac{\langle \delta N \rangle}{4\pi r^2 \delta r} \tag{1}$$

donde la densidad media $\rho=N/V$ es un factor de normalización para que $g(\infty)=1$ (en un sistema homogéneo).

La cantidad $\langle N \rangle$ se obtiene por conteo de la cantidad de pares de partículas. La probabilidad de hallar partículas en $(r,r+\delta r)$ es

$$p(r) = \left\langle \frac{1}{(N-1)N/2} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \delta(r - r_{ij}) \right\rangle$$
 (2)

Cálculo de g(r)

La cantidad media de partículas a la distancia $(r,r+\delta r)$ es entonces

$$\langle \delta N \rangle(r) = (N-1) p(r) = \left\langle \frac{1}{N/2} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \delta(r - r_{ij}) \right\rangle$$
 (3)

Si promediamos sobre ${\cal M}$ pasos temporales (para aumentar la estadística) resulta

$$g(r) = \frac{1}{4\pi\rho r^2 \delta r} \frac{1}{M} \sum_{k=1}^{M} \left[\frac{1}{N/2} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \delta(r - r_{ij}) \right]$$
(4)

Interpretación de g(r)

Figure: Estados de un sistema.

Figure: Función de distribución radial.

Energía de interacción

La cantidad media de partículas a una distancia $(r,r+\delta r)$ es $\langle \delta N \rangle$. Como la cantidad de pares de interacción es N/2. Entonces, la contribución a la energía de interacción es

$$\delta V(r) = 4\pi r^2 \rho g(r) \frac{N}{2} V(r) \delta r$$
 (5)

La energía total de interacción es

$$V = \frac{N}{2} \int_0^\infty 4\pi r^2 \,\rho \,g(r) \,V(r) \,dr \tag{6}$$

Interacción y truncamiento

La energía de un gas "real" es la energía del "ideal" más la energía de interacción

$$E = \frac{3}{2} NKT + 2\pi N \rho \int_0^\infty g(r) V(r) r^2 dr$$
 (7)

Observamos que podemos hallar cuánto es la pérdida de energía debido al truncamiento del potencial

$$E - E_{\text{trunc.}} = 2\pi \rho N \int_{r_c}^{\infty} g(r) V(r) r^2 dr$$
 (8)

Obtención de g(r) con VMD

Figure: Menú de VMD.

Obtención de g(r) con VMD

	Radial Pair Distribution Function g(r) $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
<u>U</u> tilities	Help
Settings:	
Use Molecule:	0:lammps_rho05_x05_star.lammpstrj
Selection 1: all	Selection 2: all
Frames: Firs	t: 350 Last: -1 Step: 1
Histogram Parameters:	delta r: 0.1 max. r: 10.0
▼Use PBC Tupdate Selections ▼Display g(r) Thisplay Int(g(r)) Save to File Tuse GPU code	
Compute g(r)	

Figure: Menú de VMD.

Obtención de g(r) con VMD

Figure: Menú de VMD.