Математическая статистика

- 1. Теория статистического оценивания неизвестных параметров распределения
 - MMΠ
 - 2. MM
 - 3. Байевское оценивание
 - 4. Доверительные интервалы
- 2. Проверка статистических гипотез о параметрах модели, о виде распределения

Генеральная совокупность, выборука, статистическая оценка

 $\{\Omega, \mathbb{A}, P\} =$ "случайная величина" = "закон распределения" = "генеральная совокупность"

<u>Опр</u> Генеральной совокупностью называется совокупность всех мыслимых наблюдений, которые могла быть получены при данном реальном комплексе условий.

<u>Опр</u> Выборка из данной генеральной совокупности ξ - это результаты ограниченного ряда наблюдений случайной величины ξ . Выборка - это эмпирический аналог генеральной совокупности

$$ec{x_n} = \{x_1, x_2, \dots, x_n\}$$
 x_i - i -ое наблюдение/измерение случайной величины $\mathcal E$

Св-ва выборки:

- 1. x_i случайная величина
- 2. условия стохастического эксперимента не меня. тся от наблюдения к наблюдению
- 3. все наблюдения в выборке взаимно независимы

$$\implies F_{x_i}(z) = P(x_i < z) = P(\xi < z) = F_{\xi}(z)$$
 $F_{ec{x_i}}(z) = P(x_1 < z, \dots, x_n < z) = \prod_{i=1}^n P(x_i < z_i) = \prod_{i=1}^n P(x_i < z_i) = \prod_{i=1}^n P(x_i < z_i) = \prod_{i=1}^n F_{x_i}(z_i)$

Статистическое оценивание параметров

<u>Опр</u> \forall функции $f(\vec{x_n})$ называется статистикой.

Опр Статистическая оценка - это статистика

 $\hat{ heta}(ec{x_n})$, использующая в качестве неизвестного значения параметра heta

- 1. $\hat{\theta}(\vec{x_n})$ это случайная величина
- 2. $\hat{\theta}(\vec{x_n})$ не зависит от θ

1. Эмпирическая функция распределения

$$\hat{F_n}(z) = rac{
u(z)}{n} = rac{1}{n} \sum_{i=1}^n I(x_i < z)$$

$$I(x_i < z) = egin{cases} 1, x_i < z \ 0, x_i \geq z \end{cases}$$

u(z) - число компонентов в выборке $< z \ (x_i < z)$

2. Эмпирическая плотность распределения

$$\hat{p_n}(z) = rac{
u_k}{n\Delta_k(z)}$$

k(z) - порядковый номер интервала группирования, который $\ni z$

 $\Delta_k(z)$ - ширина интервала

 $u_k(z)$ - число наблюдений \in в k(z) - ый интервал группирования

$$p(x) = rac{dF(x)}{dx}$$

Функция Стерджесса: $k = k(n) = 1 + [\log_2(n)]$ (предполагает кол-во интервалов, которое следует выбрать)

Характеристика по определению	Её возможная оценка
$ u_k = M \xi^k$ - начальный момент k -го порядка, $a = M \xi$	$\hat{ u_k}(ec{x_n})=rac{1}{n}\sum_{i=1}^n x_i^k,ar{x}=rac{1}{n}sum_{i=1}^nx_i$ - выборочное среднее
$\mu_k = M(\xi - M\xi)^k$ - центральный момент k -го порядка, $D\xi = \mu_2 = M(\xi - M\xi)^2$	$\hat{\mu_k}(ec{x_n}) = rac{1}{n} \sum_{i=1}^n (x_i - ar{x})^k, \ S^2 = rac{1}{n} \sum_{i=1}^n (x_i - ar{x})^2, \ S_0^2 = rac{1}{n-1} \sum_{i=1}^n (x_i - ar{x})^2$

Свойства надежных статистических оценок:

- 1. Состоятельность
- 2. Несмещенность
- 3. Эффективность

1. Состоятельность

<u>Опр.</u> Оценка $\hat{\theta}(\vec{x_n})$ для параметра θ называется состоятельной, если $\hat{\theta}(\vec{x_n}) \longrightarrow \theta$, $n \longrightarrow \infty$

Если
$$ec{ heta}=\{ heta_1,\ldots, heta_r\}$$
, то $\hat{ec{ heta}}(ec{x_n})\longrightarrowec{ heta};$ $(\hat{ heta_i}(ec{x_n})\longrightarrow heta_i,\,i=1,\ldots,r)$

<u>Теорема</u> (достаточные условия состоятельности оценки)

Если
$$M\hat{ heta}(ec{x_n})\longrightarrow heta, n\longrightarrow \infty \wedge D\hat{ heta}(ec{x_n})\longrightarrow heta, n\longrightarrow \infty$$
, то $\hat{ heta}(ec{x_n})$ состоятельна.

 Δ :

$$egin{aligned} &lpha_n = M(\hat{ heta}(ec{x_n}) - heta \ &1. \ orall h > 0 \exists n \geq n_0 \ |lpha_n| = |M(\hat{ heta}(ec{x_n})) - heta| < h \ &2. \ |\hat{ heta}(ec{x_n}) - heta| = |\hat{ heta}(ec{x_n}) - heta - lpha_n + lpha_n| \leq |\hat{ heta}(ec{x_n}) - heta - lpha_n| + |lpha_n| \ &P(|\hat{ heta}(ec{x_n}) - heta| < h) \geq P(|\hat{ heta}(ec{x_n}) - heta - lpha_n| + |lpha_n| < h) \ &\text{По неравенству Чебышева:} \ &P(|\hat{ heta}(ec{x_n}) - heta| < h) \geq P(|\hat{ heta}(ec{x_n}) - (heta + lpha_n)| < h + |lpha_n|) \geq 1 - rac{D(\hat{ heta}(ec{x_n})}{h - |lpha_n|)^2} \longrightarrow 1, \ n \longrightarrow \infty \ &\implies P(|\hat{ heta}(ec{x_n}) - heta) \longrightarrow 1, \ n \longrightarrow \infty \ &\implies \hat{ heta}(ec{x_n}) \longrightarrow \theta, \ n \longrightarrow \infty \end{aligned}$$

2. Несмещенность

Опр. Оценка $\hat{\theta}(\vec{x_n})$ неизвестного параметра θ называется несмещенной, если $\forall n$ $M\hat{\theta}(\vec{x_n}) = \theta$, где $M\hat{\theta}(\vec{x_n})$ считается по всем возможным выборкам объема n.

Ассимптотическая несмещенность: $M(\hat{\theta(x_n)}) \longrightarrow 0, \, n \longrightarrow \infty$

Теорема Если $\hat{\theta_1}(\vec{x_n})$ и $\hat{\theta_2}(\vec{x_n})$ - две несмещенные оценки одного параметра с минимальной дисперсией, то $P(\hat{\theta_1}(\vec{x_n}) = \hat{\theta_2}(\vec{x_n})) = 1$

 Δ :

Пусть
$$D(\hat{\theta}_1(\vec{x_n})) = D(\hat{\theta}_2(\vec{x_n})) = d \leq D(\hat{\theta}_3(\vec{x_n}))$$
 Возьмем $\hat{\theta}_3(\vec{x_n}) = \frac{1}{2}(\hat{\theta}_1(\vec{x_n}) + \hat{\theta}_2(\vec{x_n}))$ $M\hat{\theta}_3 = \frac{1}{2}(M\hat{\theta}_1 + M\hat{\theta}_2) = \theta^2 \implies \hat{\theta}_3$ - несмещенная $D\hat{\theta}_3 = D(\frac{1}{2}(\theta_1 + \theta_2)) = \frac{1}{4}(D\hat{\theta}_1 + D\hat{\theta}_2 + 2r\sqrt{D\hat{\theta}_1D\hat{\theta}_2}) = (1)$ $r(\xi,\eta) = \frac{cov(\xi,\eta)}{\sqrt{D\xi D\eta}}$ $(1) = \frac{1}{4}(2d + 2rd) = \frac{d}{2}(1+r) \geq d$ Т.К. $|r| \leq 1 \implies$ выполняется "=" при $r=1$ $r=r(\hat{\theta}_1,\hat{\theta}_2) = 1 \implies \hat{\theta}_2 = A\hat{\theta}_1 + B$
$$\begin{cases} M\hat{\theta}_2 = AM\hat{\theta}_1 + B \\ D\hat{\theta}_2 = A^2D\hat{\theta}_1 \end{cases} \iff \begin{cases} \theta = A\theta + B \\ d = A^2d \end{cases} \implies \begin{cases} A=1 \\ B=0 \implies P(\hat{\theta}_1 = \hat{\theta}_2) = 1 \end{cases}$$