

#### **International Olympiad in Informatics 2014**

13-20th July 2014 Taipei, Taiwan Day-2 tasks

gondola

Language: en-KOR

# 곤돌라

마오공 곤돌라는 타이페이의 명소 중 하나이다. 곤돌라 시스템은 원형의 레일과, 하나의 정류장이 있고, 1 부터 n 까지 순서대로 번호가 붙은 n 개의 곤돌라가 모두 단일한 방향으로 레일을 따라 움직이는 형태이다. i 번 곤돌라가 정류장을 지난 직후에는 i+1 번 곤돌라가 정류장을 지나가게 된다. (단, i=n 번 곤돌라가 지나간 직후에 1 번 곤돌라가 지나가게 된다.)

곤돌라들은 고장이 나기도 한다. 다행히 무제한으로 많은 곤돌라의 여분이 있고, 여분 곤돌라들은 n+1, n+2 과 같이 순차적으로 번호가 붙어 있다. 특정한 곤돌라가 고장이 나면 고장난 곤돌라는 빼고, 동일한 위치에 여분 곤돌라를 배치한다. 여분 곤돌라는 작은 번호부터 사용된다. 예를 들어, 사용하는 곤돌라 수가 총 5 개이고, 1 번 곤돌라가 고장난다면, 그 곤돌라는 6번으로 교체된다.

당신은 정류장에 서서 곤돌라들이 지나가는 것을 즐겨 본다. **곤돌라 수열**이라는 것은 임의의 시점에서 시작해서 정류장을 지나가는 **n** 개의 곤돌라들의 번호를 순서대로 적은 것이다. 곤돌라 수열을 적기 시작하는 시점 이전에 이미 몇개의 곤돌라가 고장나서 교체되었을 수 있다. 하지만, 곤돌라 수열을 적는 도중에는 아무 곤돌라도 고장이 나지 않는다.

전체적으로 곤돌라들의 배치가 동일하더라도 어떤 시점에 곤돌라 수열을 적기 시작하느냐에 따라서로 다른 곤돌라 수열이 나올수 있다는 점에 주의하자. 예를 들어, 총 5개의 곤돌라들 중 고장난 곤돌라가 없는 경우에 (2, 3, 4, 5, 1) 과 (4, 5, 1, 2, 3) 은 모두 가능한 곤돌라 수열들이다. 하지만, 이경우 (4, 3, 2, 5, 1) 은 가능한 곤돌라 수열이 아니다. (곤돌라 번호의 순서가 잘못되어 있다.)

만약 곤돌라 1번 만이 고장난 상황이라면, (4, 5, 6, 2, 3) 의 곤돌라 수열을 만들 수 있다. 만약 이후 4번 곤돌라가 고장난다면, 7번 곤돌라가 그 자리에 있게 되고, (6, 2, 3, 7, 5) 가 가능한 곤돌라 수열이 된다. 만약 7번 곤돌라가 이후에 고장이 난다면, 8번이 그 자리를 차지할 것이고 (3, 8, 5, 6, 2) 가 가능한 곤돌라 수열들 중 하나가 된다.

| 고장난 곤돌라 | 새 곤돌라 | 가능한 곤돌라 수열 중 하나 |
|---------|-------|-----------------|
| 1       | 6     | (4, 5, 6, 2, 3) |
| 4       | 7     | (6, 2, 3, 7, 5) |
| 7       | 8     | (3, 8, 5, 6, 2) |

교체 수열이라는 것은 고장난 곤돌라들의 번호를 고장난 순서에 따라 쓴 것이다. 직전의 예에서 교체 수열은 (1,4,7) 이다. 교체 수열 r 이 곤돌라 수열 g 를 만든다고 말을 할 수 있는데, 그것은 초기 상황에서 시작해서 r 에 해당하는 방법으로 곤돌라들이 고장난 직후에, g 가 가능한 곤돌라 수열들 중 하나인 경우를 의미한다.

## 곤돌라 수열 확인

처음 세 개의 부분 문제에서는 입력 수열이 곤돌라 수열로서 가능한 것인지 확인하여야 한다. 몇 개의 곤돌라가 고장나서 교체된 상태일 수도 있다. 아래 표에는 곤돌라 수열인 예들과 곤돌라 수열이 아닌 예들이 나와 있다. 아래와 같이 선언된 valid 함수를 구현하여야 한다.

- valid(n, inputSeq)
  - n: 입력 수열의 길이.
  - inputSeq: 크기 n 인 배열; inputSeq[i] 는 입력의 i 번 원소이다  $(0 \le i \le n-1)$ .
  - 함수는 입력이 곤돌라 수열로서 가능한 경우 1을, 아닌 경우 0을 리턴해야 한다.

### 부분 문제 1, 2, 3

| 부분 문제 | 점수 | $\boldsymbol{n}$ | inputSeq                          |
|-------|----|------------------|-----------------------------------|
| 1     | 5  | $n \leq 100$     | 1 부터 <i>n</i> 까지의 수들이 정확히 한번씩 나온다 |
| 2     | 5  | $n \leq 100,000$ | $1 \le \text{inputSeq[i]} \le n$  |
| 3     | 10 | $n \leq 100,000$ | $1 \le inputSeq[i] \le 250,000$   |

#### 예제

| 부분 문제 | inputSeq              | 리턴 값 | 비고                     |
|-------|-----------------------|------|------------------------|
| 1     | (1, 2, 3, 4, 5, 6, 7) | 1    |                        |
| 1     | (3, 4, 5, 6, 1, 2)    | 1    |                        |
| 1     | (1, 5, 3, 4, 2, 7, 6) | 0    | 1 이 5 의 직전에 나오는 것은 불가능 |
| 1     | (4, 3, 2, 1)          | 0    | 4 가 3 의 직전에 나오는 것은 불가능 |
| 2     | (1, 2, 3, 4, 5, 6, 5) | 0    | 5 번 곤돌라가 두개            |
| 3     | (2, 3, 4, 9, 6, 7, 1) | 1    | 교체 수열 (5, 8) 로 가능      |
| 3     | (10, 4, 3, 11, 12)    | 0    | 4 가 3 의 직전에 나오는 것은 불가능 |

# 교체 수열

다음 세 개의 부분 문제들에서는 주어진 곤돌라 수열을 만들 수 있는 교체 수열을 생성하여야 한다. 여러 개의 교체 수열이 가능한 경우 그 중 하나를 생성하면 된다. 다음과 같이 선언된 함수 replacement 를 구현해야 한다.

- replacement(n, gondolaSeg, replacementSeg)
  - n: 입력 곤돌라 수열의 길이이다.
  - gondolaSeq: 크기 n 인 배열; gondolaSeq 는 항상 가능한 곤돌라 수열이며, gondolaSeq[i] 는 i 번 원소이다 ( $0 \le i \le n-1$ ).
  - 함수는 교체 수열의 길이 1을 리턴해야 한다.
  - replacementSeq: 교체 수열을 저장하기에 충분한 크기의 배열; replacementSeq[i] 에는 계산된 교체 수열의 i 번 원소가 저장되어야 한다 (  $0 \le i \le l-1$ ).

### 부분 문제 4, 5, 6

| 부분 문제 | 점수 | n                | gondolaSeq                           |
|-------|----|------------------|--------------------------------------|
| 4     | 5  | $n \leq 100$     | $1 \le \text{gondolaSeq[i]} \le n+1$ |
| 5     | 10 | $n \leq 1,000$   | $1 \le gondolaSeq[i] \le 5,000$      |
| 6     | 20 | $n \leq 100,000$ | $1 \le gondolaSeq[i] \le 250,000$    |

#### 예제

| 부분 문제 | gondolaSeq            | 리턴 값 | replacementSeq |
|-------|-----------------------|------|----------------|
| 4     | (3, 1, 4)             | 1    | (2)            |
| 4     | (5, 1, 2, 3, 4)       | 0    | ()             |
| 5     | (2, 3, 4, 9, 6, 7, 1) | 2    | (5, 8)         |

### 교체 수열의 개수 세기

다음 네 개의 부분 문제들에서는 주어진 수열(가능한 곤돌라 수열일 수도 아닐 수도 있음)을 만들수 있는 교체 수열의 수를 세어서 그 값을 1,000,000,009 로 나눈 나머지를 계산해야 한다. 다음과 같이 선언된 함수 countReplacement 를 구현해야 한다.

- countReplacement(n, inputSeq)
  - n: 입력 수열의 길이.
  - inputSeq: 크기 n 인 배열; inputSeq[i]는 입력 수열의 i 번 원소이다 (  $0 \le i \le n-1$ ).
  - 입력이 곤돌라 수열인 경우, 입력의 곤돌라 수열을 만들 수 있는 모든 교체 수열의 수를 센 다음에 (그 수는 매우 클수 있음) 그 결과를 1,000,000,009 로 나눈 나머지를 리턴해야 한다. 만약 입력이 곤돌라 수열이 아닌 경우 0을 리턴해야 한다. 입력이 곤돌라수열이고 고장난 곤돌라가 하나도 없는 경우는 1을 리턴해야 한다.

### 부분 문제 7, 8, 9, 10

| 부분 문제 | 점수 | n                | inputSeq                                                                        |
|-------|----|------------------|---------------------------------------------------------------------------------|
| 7     | 5  | $4 \le n \le 50$ | $1 \leq \text{inputSeq[i]} \leq n+3$                                            |
| 8     | 15 | $4 \le n \le 50$ | 1 ≤ inputSeq[i] ≤ 100 이고<br>초기 곤돌라들 중 (즉, 1,,n 번 중)<br>최소한 n – 3 개는 고장이 나지 않았다. |
| 9     | 15 | $n \leq 100,000$ | $1 \le \text{inputSeq[i]} \le 250,000$                                          |
| 10    | 10 | $n \leq 100,000$ | $1 \le \text{inputSeq[i]} \le 1,000,000,000$                                    |

### 예제

| 부분 문제 | inputSeq               | 리턴값 | 교체 수열                  |
|-------|------------------------|-----|------------------------|
| 7     | (1, 2, 7, 6)           | 2   | (3, 4, 5) or (4, 5, 3) |
| 8     | (2, 3, 4, 12, 6, 7, 1) | 1   | (5, 8, 9, 10, 11)      |
| 9     | (4, 7, 4, 7)           | 0   | inputSeq 가 곤돌라 수열이 아님  |
| 10    | (3, 4)                 | 2   | (1, 2) or (2, 1)       |

# 구현 주의 사항

단 하나의 파일을 제출해야 한다. 이름은 gondola.c, gondola.cpp, 혹은 gondola.pas 이다. 이 파일에는 위에서 말한 세가지 함수가 다 존재해야 한다. (부분 문제들 중 일부만 풀려고 하는 경우도 마찬가지이다.) 다음의 함수 선언을 이용해야 한다. C/C++ 구현에서는 gondola.h 를 #include해야 한다.

#### C/C++ programs

```
int valid(int n, int inputSeq[]);
int replacement(int n, int gondolaSeq[], int replacementSeq[]);
int countReplacement(int n, int inputSeq[]);
```

### Pascal programs

```
function valid(n: longint; inputSeq: array of longint): integer;
function replacement(n: longint; gondolaSeq: array of longint;
var replacementSeq: array of longint): longint;
function countReplacement(n: longint; inputSeq: array of longint):
longint;
```

### Sample grader

Sample grader의 입력 양식은 다음과 같다.

- line 1: T, 풀려고 하는 부분 문제의 번호  $(1 \le T \le 10)$ .
- line 2: n, 입력 수열의 길이.
- line 3: T 가 4, 5, 6 인 경우, 이 줄에는 gondolaSeq[0], ..., gondolaSeq[n-1] 가 있고, 그렇지 않은 경우 inputSeq[0], ..., inputSeq[n-1] 가 있다.