II. Sinyal

Oleh:

Dr. Eng. Bima Sena Bayu Dewantara, S.ST., MT.

Politeknik Elektronika Negeri Surabaya

Sub Bahasan

- 1. Pendahuluan
- 2. Pengertian Sinyal
- 3. Klasifikasi Sinyal
- 4. Dekomposisi Sinyal
- 5. Power Sinyal Waktu Kontinyu
- 6. Operasi Dasar Sinyal Waktu Kontinyu
- 7. Sinyal Waktu Kontinyu Periodik
- 8. Sinyal Waktu Kontinyu Sinusoidal
- 9. Representasi Sinyal Waktu Diskrit
- 10. Bentuk Sinyal Waktu Diskrit
- 11. Power Sinyal Waktu Diskrit
- 12. Operasi Dasar Sinyal Waktu Diskrit
- 13. Konsep Dasar Sinyal Waktu Kontinyu dan Sinyal Waktu Diskrit
- 14. Soal/Tugas

1. Pendahuluan Amplitude Signals

2. Pengertian Sinyal

 Fungsi dari variabel bebas yang menyatakan informasi tentang keadaan atau kondisi lingkungan secara fisik.

3. Klasifikasi Sinyal

- Berdasarkan jumlah variabel bebas
 - 1-D, 2-D dan 3-D

- Kontinyu dan diskrit
- Berdasarkan sifat
 - Deterministik dan acak

3.a Klasifikasi Sinyal berdasarkan jumlah variabel bebas

• Sinyal 1-D

Sinyal 2-D

• Sinyal 3-D

3.b Klasifikasi Sinyal berdasarkan nilai variabel bebas

Sinyal Waktu
 Kontinyu

Sinyal yang nilainya muncul pada setiap nilai variabel bebas yang mungkin pada range finite maupun infinite ($\Delta t => \lim 0$)

Sinyal Waktu Diskrit

Sinyal yang nilainya muncul pada kelipatan nilai tertentu dari variabel bebas pada range finite (Δt)

3.c Klasifikasi Sinyal berdasarkan Sifat

4. Dekomposisi Sinyal

Sinyal dapat didekomposisi dalam dua komponen sederhana:

Titik

Untuk mendapatkan titik-titik dari sinyal, diperlukan proses sampling.

Sinyal penyusun dengan frekuensi berbeda-beda

Untuk mendapatkan sinyal penyusun dengan frekuensi berbeda-beda, dapat dilakukan dengan *Transformasi Fourier*.

4. Dekomposisi Sinyal

Sinyal → titik sampling

FIGURE 5-16 Sinval - sinval berfrekuensi Illustration of Fourier decomposition. An N point signal is decomposed into N+2 signals, each having N points. Half of these signals are cosine waves, and half are sine waves. The frequencies of the sinusoids are fixed; only the amplitudes can change.

5. Power Sinyal Waktu Kontinyu

$$Px = \lim_{T \to \infty} \frac{1}{T} \int_{t0}^{t0+T} x^{2}(t) \cdot dt$$

Dimana : t = waktu kontinyu

T = periode sinyal

Px = power sinyal waktu kontinyu

x(t) = data pada waktu ke-t

6. Operasi Dasar Sinyal Waktu Kontinyu

```
    Time Shifting ==> y(t) = x(t-T)

• Time Reversal ==> y(t) = x(-t)
            ==> z(t) = x(t) + y(t)

    Addition

• Time Scaling ==> y(t) = x(\Omega t)
• Multiplication with a constant ==> y(t) = \alpha x(t)

    Multiplication of two signal ==> z(t) = x(t) * y(t)

                     ==> y(t) = dx(t)/dt

    Differentiation

• Integration ==> y(t) = \int x(t)^* dt

    Convolution ==> kombinasi dari beberapa operasi

 sinyal (ada proses yang tidak bisa diformulasikan dengan
```

satu operator)

6.a Time Shifting

6.b Time Reversal

$$y(t) = x(-t)$$

6.c Addition

$$z(t) = x(t) + y(t)$$

6.d Time Scaling

$$y(t) = x(\Omega t)$$

(c)

 $\Omega > 1 =$ rapat

 Ω <1 => lebar

6.e Multiplication with a Constant

$$y(t) = \alpha x(t)$$

α= - Rf/Rin = - 5k/1k = - 5 kali

7. Sinyal Waktu Kontinyu Periodik

8. Sinyal Waktu Kontinyu Sinusoidal

9. Representasi Sinyal Waktu Diskrit

Representasi Fungsi

$$x(n) = \begin{cases} 1 & \text{untuk n} = 1,3 \\ 4 & \text{untuk n} = 2 \\ 0 & \text{selain itu} \end{cases}$$

Representasi Tabular

n	• -2	-1	0	1	2	3	4	5
x(n)	• 0	0	0	1	4	1	0	0

Representasi Deret

$$x(n) = \{...,0,0,1,4,1,0,0,0,0,...\}$$

10. Bentuk Sinyal Waktu Diskrit

- Unit Sample
- Unit Step
- Unit Ramp
- Unit Exponensial

$$\delta(n) = \begin{cases} 1, & \text{untuk n} = 0 \\ 0, & \text{untuk n} \neq 0 \end{cases}$$

$$u_{r}(n) \equiv \begin{cases} n, & untuk & n \ge 0 \\ 0, & untuk & n \le 0 \end{cases}$$

11. Power Sinyal Waktu Diskrit

$$P = \frac{\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|}{\sum_{n=-N}^{N} |x(n)|}$$

Dimana : n = nomor sampel (0,1,2,3,...) N = jumlah sampel data P = power sinyal waktu diskritx(n) = data sampel ke-n

12. Operasi Dasar Sinyal Waktu Diskrit

```
• Sample Shifting ==> y[n] = x[n-N]
```

• Sample Reversal
$$==> y[n] = x[-n]$$

• Addition
$$==> z[n] = x[n] + y[n]$$

- Multiplication with a constant $==> y[n]= \alpha x[n]$
- Multiplication of two signal ==> z[n] = x[n] * y[n]

12.a Pembangkitan Sinyal Sinus Diskrit Dengan menggunakan Matlab 6.1

```
n=40;
n1=1:n;
f=1/(0.5*n);
x1(n1)=sin(2*pi*f*n1);
stem(n1,x1(n1))
```


12.b Sample Shifting

```
n=40;
n1=1:n;
f=1/(0.5*n);
figure(1);
clf;
x1(n1)=\sin(2*pi*f*n1);
subplot(3,1,1);
stem(n1,x1(n1))
x2(n1)=\sin(2*pi*f*(n1-5));
subplot(3,1,2);
stem(n1,x2(n1))
x3(n1)=\sin(2*pi*f*(n1+5));
subplot(3,1,3);
stem(n1,x3(n1))
```


12.c Addition

```
n=40;
n1=1:n;
f=1/(0.5*n);
figure(1);
clf;
x1(n1)=\sin(2*pi*f*n1);
subplot(3,1,1);
stem(n1,x1(n1))
x2(n1)=\sin(2*pi*f*(n1-5));
subplot(3,1,2);
stem(n1,x2(n1))
x(n1)=x1(n1)+x2(n1);
subplot(3,1,3);
stem(n1,x(n1))
```


13. Konsep Dasar Sinyal Waktu Kontinyu dan Sinyal Waktu Diskrit

Sinyal Sinusoidal Waktu Kontinyu

$$x_a(t) = A \bullet \cos(\Omega t + \theta) \dots - \infty < t < \infty$$

Sinyal Sinusoidal Waktu Diskrit

$$x_a(n) = A \bullet \cos(\omega n + \theta) \dots - N < n < N$$

Eksponensial Waktu Kontinyu

$$x_{a}(t) = \sum_{k=-\infty}^{\infty} c_{k} \bullet e^{\frac{j2\pi kt}{T}}$$

Eksponensial Waktu Diskrit

$$x_{a}(n) = \sum_{k=-N}^{N} c_{k} \bullet e^{\frac{j2\pi kn}{N}}$$

14. Soal/Tugas

- 1. Apakah sinyal itu? Berikan penjelasan anda beserta contohnya!
- Sinyal dapat diklasifikasikan menjadi beberapa jenis. Sebutkan dan jelaskan masing-masing!
- Sebutkan dan jelaskan beberapa pembuktian bahwa sinyal sinus dan cosinus adalah sinyal dasar!
- 4. Anggaplah x[n] adalah sinyal dengan x[n]=0 untuk n<-2 dan n>4. Untuk setiap sinyal yang diberikan dibawah ini, tentukan harga n yang pasti berharga nol :
 - x[n-3]
 - x[n+4]
 - x[-n]
 - x[-n+2]
 - x[-n-2]
- 5. Sebuah sinyal disajikan dalam bentuk deret sbb: x[n]={1,-2,6,3,-4,7,-5,6,9,2}. Hitunglah power sinyal tersebut!