Review: We have two hypotheses about how P bodies control circadian clocks

In early activation phase,
 P-body represses per mRNA translation.

In repression phase,P-body induces per mRNA decay.

Through the estimated decay rate of per and translation rate, we can validate our hypothesis

Through the estimated decay rate of per and translation rate, we can validate our hypothesis

Through the estimated decay rate of per and translation rate, we can validate our hypothesis

We will fit models to four time-series (per mRNA & nucleic PER of WT & pcm KD)

Two models (9,13 parameters each) will be fitted with time series data.

Wild Type

$$egin{aligned} \dot{M} &= ext{tranBSD}(R) - ext{rhythm}_D(t,b_1) \cdot M \ \dot{R}_c &= ext{rhythm}_{TL}(t,1) \cdot M - b_2 \cdot R_c - a_3 \cdot R_c \ \dot{R} &= a_3 \cdot R_c - b_3 \cdot R \end{aligned}$$

pcm-Mutant

$$egin{aligned} \dot{M} &= ext{tranBSD}(R) - b_1 \cdot M \ \dot{R}_c &= M - b_2 \cdot R_c - a_3 \cdot R_c \ \dot{R} &= a_3 \cdot R_c - b_3 \cdot R \end{aligned}$$

Kim-Forger Model (2012)

Two models (9,13 parameters each) will be fitted with time series data.

Wild Type

$$egin{aligned} \dot{M} &= ext{tranBSD}(R) - ext{rhythm}_D(t,b_1) \cdot M \ \dot{R}_c &= ext{rhythm}_{TL}(t,1) \cdot M - b_2 \cdot R_c - a_3 \cdot R_c \ \dot{R} &= a_3 \cdot R_c - b_3 \cdot R \end{aligned}$$

pcm-Mutant

$$egin{aligned} \dot{M} &= ext{tranBSD}(R) - b_1 \cdot M \ \dot{R}_c &= M - b_2 \cdot R_c - a_3 \cdot R_c \ \dot{R} &= a_3 \cdot R_c - b_3 \cdot R \end{aligned}$$

 $(1, a_3, b_1, b_2, b_3, A_T, K_a, K_s, K_b, K_d, amp_D, ph_D, amp_T, ph_T)$

 $(1, a_3, b_1, b_2, b_3, A_T, K_a, K_s, K_b, K_d)$

Total: 13 Parameters

Total: 9 Parameters

Kim-Forger Model (2012) Pc \rightarrow P \uparrow + $\stackrel{\mathcal{K}_{d}}{\longleftarrow}$ P (Inactive)

Two models (9,13 parameters each) will be fitted with time series data.

Wild Type

$$egin{aligned} \dot{M} &= ext{tranBSD}(R) - ext{rhythm}_D(t,b_1) \cdot M \ \dot{R}_c &= ext{rhythm}_{TL}(t,1) \cdot M - b_2 \cdot R_c - a_3 \cdot R_c \ \dot{R} &= a_3 \cdot R_c - b_3 \cdot R \end{aligned}$$

 $(1, a_3, b_1, b_2, b_3, A_T, K_a, K_s, K_b, K_d, \operatorname{amp}_D, \operatorname{ph}_D, \operatorname{amp}_T, \operatorname{ph}_T)$

Total: 13 Parameters

pcm-Mutant

$$egin{aligned} \dot{M} &= ext{tranBSD}(R) - b_1 \cdot M \ \dot{R}_c &= M - b_2 \cdot R_c - a_3 \cdot R_c \ \dot{R} &= a_3 \cdot R_c - b_3 \cdot R \end{aligned}$$

 $(1, a_3, b_1, b_2, b_3, A_T, K_a, K_s, K_b, K_d)$

Total: 9 Parameters

Kim-Forger Model (2012)

$$\operatorname{rhythm}_{T_L}(t) = \left(\frac{\operatorname{amp}_T}{2}\right) \cos\left(\frac{2\pi(t - \operatorname{ph}_T)}{24}\right) + 1$$

$$0 - \frac{\operatorname{ph}_T +}{6} + \frac{1}{12} - \frac{1}{18} + \frac{1}{24} - \frac{\operatorname{amp}_T}{2} + y = 1$$

$$ext{rhythm}_D(t) = \left(rac{ ext{amp}_D}{2}
ight) \cos\!\left(rac{2\pi(t- ext{ph}_D)}{24}
ight) + b_1$$

Simulated Annealing (SA) with appropriate cost function is needed to generate good model fit with stable, consistent oscillations in decay/translation rate for WT.

Simulated Annealing (SA) with appropriate cost function is needed to generate good model fit with stable, consistent oscillations in decay/translation rate for WT.

Simulated Annealing (SA)

Simulated Annealing (SA) with appropriate cost function is needed to generate good model fit with stable, consistent oscillations in decay/translation rate for WT.

Simulated Annealing (SA)

Pcm model ODE solution fits pcm mutant time trace data.

$$\begin{aligned} & \cos t = \cos t_{amp}(\text{mRNAs}) + \cos t_{amp}(\text{proteins}) \\ & + \sqrt{\left(1 - \frac{\text{relamp(mRNAs)}}{1 - \text{min(pcmMper)}}\right)^2 + \left(1 - \frac{\text{relamp(proteins)}}{1 - \text{min(pcmPER)}}\right)^2 + \left(1 - \frac{\text{period(proteins)}}{24}\right)^2} \end{aligned}$$

 $cost_{relamp}(PER)$

 $cost_{period}(PER)$

```
Best value: 0.22608254311121734
Cost components at best state:
ddmeasure(mRNAs)[1]: 0.0
ddmeasure(proteins)[1]: 0.0
(1 - ddmeasure(mRNAs)[5] / (1 - minimum(pcmMper)))^2: 0.013170807449025554
(1 - ddmeasure(proteins)[5] / (1 - minimum(pcmPER)))^2: 0.037941814406165446
(1 - ddmeasure(proteins)[3] / 24)^2: 6.944444444442915e-7
```

 $cost_{relamp}(mRNAs)$

```
Iteration 45200: Best value = 0.22608254311121734, Temperature = 1.522264525982424e-10  
Iteration 45400: Best value = 0.22608254311121734, Temperature = 1.3773674571581714e-10  
Iteration 45600: Best value = 0.22608254311121734, Temperature = 1.2462624462814756e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10
```

Pcm model ODE solution fits pcm mutant time trace data.

$$\begin{aligned} & \operatorname{cost} = \operatorname{cost}_{amp}(\operatorname{mRNAs}) + \operatorname{cost}_{amp}(\operatorname{proteins}) \\ & + \sqrt{\left(1 - \frac{\operatorname{relamp}(\operatorname{mRNAs})}{1 - \min(\operatorname{pcmMper})}\right)^2} + \underbrace{\left(1 - \frac{\operatorname{relamp}(\operatorname{proteins})}{1 - \min(\operatorname{pcmPER})}\right)^2}_{\operatorname{cost}_{\operatorname{relamp}}(\operatorname{PER})} + \underbrace{\left(1 - \frac{\operatorname{period}(\operatorname{proteins})}{24}\right)^2}_{\operatorname{cost}_{\operatorname{period}}(\operatorname{PER})} \end{aligned}$$

```
Best value: 0.22608254311121734
Cost components at best state:
ddmeasure(mRNAs)[1]: 0.0
ddmeasure(proteins)[1]: 0.0
(1 - ddmeasure(mRNAs)[5] / (1 - minimum(pcmMper)))^2: 0.013170807449025554
(1 - ddmeasure(proteins)[5] / (1 - minimum(pcmPER)))^2: 0.037941814406165446
(1 - ddmeasure(proteins)[3] / 24)^2: 6.944444444442915e-7
```

```
Iteration 45400: Best value = 0.22608254311121734, Temperature = 1.3773674571581714e-10  
Iteration 45600: Best value = 0.22608254311121734, Temperature = 1.2462624462814756e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.22608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.12608254311121734, Temperature = 1.1276366934180646e-10  
Iteration 45800: Best value = 0.12608254311121734, Temperature =
```

Pcm model ODE solution fits pcm mutant time trace data.

Cost function needs to be modified for WT for better data fit / consistent circadian oscillation.

pcm cost function

$$\begin{aligned} & \operatorname{cost} = \operatorname{cost}_{amp}(\operatorname{mRNAs}) + \operatorname{cost}_{amp}(\operatorname{proteins}) \\ & + \sqrt{\underbrace{\left(1 - \frac{\operatorname{relamp}(\operatorname{mRNAs})}{1 - \operatorname{min}(\operatorname{pcmMper})}\right)^2}_{\operatorname{cost}_{\operatorname{relamp}}(\operatorname{mRNAs})} + \underbrace{\left(1 - \frac{\operatorname{relamp}(\operatorname{proteins})}{1 - \operatorname{min}(\operatorname{pcmPER})}\right)^2}_{\operatorname{cost}_{\operatorname{relamp}}(\operatorname{PER})} + \underbrace{\left(1 - \frac{\operatorname{period}(\operatorname{proteins})}{24}\right)^2}_{\operatorname{cost}_{\operatorname{period}}(\operatorname{PER})} \end{aligned}}$$

Modify... (i.e. Add Extra Cost Terms (WT))

Future Direction: Cost function must be modified to fit data's amplitude/period and to reduce variance in period, amplitude.

	Cycle 1	Cycle 2	Cycle 3	[]	Cycle N
Amplitude	0.35	0.15	0.1		0.08
Period	27	21	23		25

Reduce Variance..

Future Direction: Cost function must be modified to fit data's amplitude/period and to reduce variance in period, amplitude.

	Cycle 1	Cycle 2	Cycle 3	[]	Cycle N
Amplitude	0.35	0.15	0.1		0.08
Period	27	21	23		25

Reduce Variance...

Measure CVs

```
function ddmeasure(ts):
  ts_{smooth} \leftarrow \text{movingAverage}(ts, 100)
  peaks, troughs \leftarrow \text{findExtrema}(ts_{smooth})
  if \min(|peaks|, |troughs|) \geq 5:
      amps \leftarrow |peaks_{1:n} - troughs_{1:n}|
      periods \leftarrow 0.01 \times diff(peakIndices)
      // Original metrics
      costf \leftarrow \max(0, 5(2
      amp, period \leftarrow amps_{-1}, periods_{-1}
      level \leftarrow (peaks_{-1} + troughs_{-1})/2
      relamp \leftarrow amps_{-1}/peaks_{-1}
      // New metrics
     \mu_{amp}, \sigma_{amp} \leftarrow \text{mean}(amps), \text{std}(amps)
     \mu_{period}, \sigma_{period} \leftarrow \text{mean}(periods), \text{std}(periods)
      c_{amp\_var} \leftarrow \sigma_{amp}/\mu_{amp}
                                               + CV (amplitude)
     c_{period\_var} \leftarrow \sigma_{period}/\mu_{period}
      c_{period\_24h} \leftarrow |\mu_{period} - 24|/24
             + GV (period)
     \textbf{return } costf, amp, period, level, relamp, c_{amp\_var}, c_{period\_var}, c_{period\_24h}, \mu_{amp}
  else:
      return 10, 0, 0, ts_{-1}, 0, 10, 10, 10, 0
```

Future Direction: Cost function must be modified to fit data's amplitude/period and to reduce variance in period, amplitude.

	Cycle 1	Cycle 2	Cycle 3	[]	Cycle N
Amplitude	0.35	0.15	0.1		0.08
Period	27	21	23		25

Reduce Variance..

Measure CVs

 \rightarrow

Include in New_Cost

```
function ddmeasure(ts):
  ts_{smooth} \leftarrow \text{movingAverage}(ts, 100)
  peaks, troughs \leftarrow \text{findExtrema}(ts_{smooth})
  if \min(|peaks|, |troughs|) \geq 5:
     amps \leftarrow |peaks_{1:n} - troughs_{1:n}|
      periods \leftarrow 0.01 \times \text{diff}(peakIndices)
      // Original metrics
      costf \leftarrow \max(0, 5(2
      amp, period \leftarrow amps_{-1}, periods_{-1}
      level \leftarrow (peaks_{-1} + troughs_{-1})/2
      relamp \leftarrow amps_{-1}/peaks_{-1}
      // New metrics
      \mu_{amp}, \sigma_{amp} \leftarrow \text{mean}(amps), \text{std}(amps)
     \mu_{period}, \sigma_{period} \leftarrow \text{mean}(periods), \text{std}(periods)
      c_{amp\_var} \leftarrow \sigma_{amp}/\mu_{amp}
                                               + CV (amplitude)
      c_{period\_var} \leftarrow \sigma_{period}/\mu_{period}
      c_{period\_24h} \leftarrow |\mu_{period} - 24|/24
    + CV (period)
      return cost f, amp, period, level, relamp, c_{amp\ var}, c_{period\ var}, c_{period\ 24h}, \mu_{amp}
  else:
      return 10, 0, 0, ts_{-1}, 0, 10, 10, 10, 0
```

```
function ddsa(params):
  a_3, b_1, b_2, b_3, AT, K_a, K_s, K_b, K_d, amp_D, ph_D, amp_T, ph_T \leftarrow params
  amp_{fixed\_1}, amp_{fixed\_3} \leftarrow amp\_mRNA, amp\_PER
  mRNAs, proteins \leftarrow solveODE(modelWT, params, (0, 300))
  mRNA_{metrics}, protein_{metrics} \leftarrow \text{ddmeasure}(mRNAs), \text{ddmeasure}(proteins)
   // Original costs
  c_{mRNA}, c_{protein} \leftarrow mRNA_{metrics_1}, protein_{metrics_1}
  c_{mRNA~amp} \leftarrow (1 - mRNA_{metrics_5}/(1 - \min(wtMper)))^2
  c_{protein\ amp} \leftarrow (1 - protein_{metrics_5} / (1 - \min(wtPER)))^2
  c_{protein\_period} \leftarrow (1 - protein_{metrics_2}/24)^2
                                                          + New Cost
  c_{mRNA\_amp\_var}, c_{mRNA\_period\_var}, c_{mRNA\_period\_24h} \leftarrow mRNA_{metrics_{6\cdot8}}
   c_{protein\_amp\_var}, c_{protein\_period\_var}, c_{protein\_period\_24h} \leftarrow protein_{metrics_{6:8}}
  c_{mRNA\_amp\_fixed} \leftarrow |mRNA_{metrics_9} - amp_{fixed\_1}|/amp_{fixed\_1}|
  c_{protein\_amp\_fixed} \leftarrow |protein_{metrics_q} - amp_{fixed\_3}|/amp_{fixed\_3}|
  cost_{original} \leftarrow c_{mRNA} + c_{protein} + \sqrt{c_{mRNA\_amp} + c_{protein\_amp} + c_{protein\_period}}
  cost_{new} \leftarrow \sum of all new costs
  cost_{total} \leftarrow cost_{original} + cost_{new}
   return cost_{total}, (all cost components)
```