EE5609: Matrix Theory Assignment-11

Major Saurabh Joshi MTech Artificial Intelligence AI20MTECH13002

Abstract—This document solves problem on Eigen values and properties .

Download the latex code from

https://github.com/saurabh13002/EE5609/tree/master/Assignment11

1 Problem

Let **A** be a real symmetric matrix and $\mathbf{B} = \mathbf{I} + i\mathbf{A}$, where $i^2 = -1$. Then

- 1. **B** is invertible if and only if **A** is invertible.
- 2. All eigenvalues of **B** are necessarily real.
- 3. $\mathbf{B} \mathbf{I}$ is necessarily invertible.
- 4. **B** is necessarily invertible.

2 Solution

Given, **A** is a symmetric matrix, Let us assume λ be the eigen value of **A**

- $\Longrightarrow \lambda \epsilon \mathbb{R}$
- \Longrightarrow i λ is eigen value of iA
- \implies 1+i λ is eigen value of **I** + i**A**

Given $\mathbf{B} = \mathbf{I} + i\mathbf{A}$

Therefore, $1 + i\lambda$ is eigen value of **B**

We know that, $\det \mathbf{B}$ is equals to product of eigen values of \mathbf{B}

Hence 0, can not be the eigen value of **B**

 $\Longrightarrow \det \mathbf{B} \neq 0$

Therefore, **B** is necessarily invertible.

Hence 4. is the correct answer.