Ch1-2. '비건' 키워드 연관어 분석

4 조

2022. 5. 13

트위터 '비건' 연관어 분석

'비건' 하면 함께 언급되는 단어들을 가지고, 단어간 관계를 나타나는 규칙을 찾아보겠습니다.

가장 관계가 높은 규칙을 가진 연관어들을 시각화하여, 비건 트렌드를 확인하고자 합니다.

1. 트위터 추출한 raw data 전처리 (1)

```
#트위터 추출한 raw data 전처리 (줄단위 데이터 구조 유지)
#트위터에서 추출한 raw data
load("C:/Rstudy/miniprj/textmining/vegan raw.RData")
head(vegan, 2)
## [[1]]
## [1] "cute_aram: RT @donghaemul_kr: 오늘 저녁엔 참치 없는 '비건 참치' 먹고, 탈
육식 함께해요!\n\n#세계참치의날 #참치 #참치마요 #비건참치 #식물성참치 #대체육 #탈육
식 #비건세상만들기 #동물해방물결 #느끼는모두에게자유를 https://t.co/r..."
##
## [[2]]
## [1] "poorhungryant: RT @MX rang: 나 이 mbb 알아 비건하고 불독티 좋아하고 해장
을 런닝으로 하는 몽베베자나 https://t.co/zqYr4kVOVV"
#qetText() : 텍스트추출, sapply() : 함수 적용하여 벡터로 변환
vegan_word <- sapply(vegan, function(t) t$getText())</pre>
library(stringr)
#str_replace_all() : 해당 하는 문자를 치환(특수문자를 공백으로 바꿈)
vegan_word <- str_replace_all(vegan_word, "\\W", " ")</pre>
```

```
#불용어 제거를 위해 vegan_gsub.txt 파일에 있는 텍스트 읽어들임

txt <- readLines("vegan_gsub.txt", encoding="UTF-8")

cnt_txt <- length(txt) #텍스트 라인 개수 확인

#i <- 1

for(i in 1:cnt_txt){
   vegan_word <- gsub((txt[i]), "", vegan_word)
}

# cnt_txt 개수만큼 반복문 실행.

# gsub("바꾸고자하는 대상의 text 또는 패턴","대체할 text",text 객체)

# vegan_word 에서 txt 를 ""으로 치환하여, 다시 vegan_word 에 할당.

head(vegan_word,2) #불용어 제거된 줄 단위 텍스트.

## [1] "RT donghaemul_kr 저녁엔 참치 없는 비건 참치 먹고 탈육식 함께해요

세계참치의날 참치 참치마요 비건참치 식물성참치 대체육 탈육식 비건세상만들기

동물해방물결 느끼는모두에게자유 https t co r "

## [2] "RT MX_rang 나 이 mbb 알아 비건하고 불독티 좋아하고 을 하는 나 https
t co zqYr4kVOVV"
```

2. 줄단위 단어 전처리 (2)

```
library(KoNLP)
# 줄 단위 단어 추출
lword <- Map(extractNoun, vegan_word) #Map(extractNoun, 변수) : 변수에서 명사단 위로 추출
length(lword) #Length() 함수 : 데이터 개수 확인 / 출력값 : [1] 1000
## [1] 1000
lword <- unique(lword) #unique() 함수 : 빈 block 필터링
length(lword) # 중복제거 후 출력값 : [1] 441
## [1] 441
##str(Lword) #List of 441
head(lword, 1)
```

```
## [[1]]
  [1] "RT"
                                           "kr"
                         "donghaemul"
  [4] "저녁"
                        "참치"
                                          "참치"
  [7] "육식"
                        "세계참치의날"
                                         "참치"
                        "비건"
                                          "참치"
## [10] "참치"
## [13] "식물성"
                                          "대체"
                        "참치"
## [16] "육"
                        "육식"
                                          "비건"
                                          "동물"
## [19] "세상"
                        "만들기"
## [22] "해방"
                        "물결"
                                          "느끼는모두에게자유"
                         "t"
                                          "co"
## [25] "https"
## [28] "r"
# 단어 필터링 함수 정의
# : 길이가 2 개 이상 4 개 이하 사이의 문자 길이로 구성된 단어
  is.hangul() 함수 : 영어 단어 필터링
filter1 <- function(x){</pre>
 nchar(x) >= 2 \& nchar(x) <= 4 \& is.hangul(x)
filter2 <- function(x){</pre>
 Filter(filter1,x)
}
# 줄 단위로 추출된 단어 전처리
lword <- sapply(lword, filter2) # 단어 길이 1 이하 또는 5 이상인 단어 제거
head(lword,1) # 단어길이 2~4 사이의 단어 출력 (1 이하 또는 5 이상 제거, 한글외 언
어 제거)
## [[1]]
## [1] "저녁"
             "참치"
                     "참치"
                             "육식"
                                    "참치"
                                            "참치"
                                                   "비건"
                                                          "참치"
  [9] "식물성" "참치"
                     "대체"
                             "육식"
                                    "비건"
                                           "세상"
                                                   "만들기" "동물"
## [17] "해방"
              "물결"
```

3. 연관분석

• 연관분석을 위해서는 추출된 단어를 대상으로 **트랜잭션 형식**으로 자료구조 변환이 필요함.

- arules::apriori() 함수를 사용해 연관규칙을 찾음. 파라미터 값으로 적정한 지지도와 신뢰도를 입력함. -> 20~40 개 사이의 연관 규칙이 나오도록 파라미터 조정함)
- **support**: 지지도. 좋은 규칙(빈도가 많은, 구성비가 높은)을 찾거나 불필요한 연산 줄일 때 기준 사용.
- conf: 신뢰도. 신뢰도가 높을 수록 유용한 규칙일 가능성이 높다고 할수있음.
- lift: 향상도. 향상도가 1 보다 크거나 작으면 우연적 기회보다 우수함 의미.
 (list=1 이면 서로 독립관계)

```
library(arules) #arules 연관분석 패키지 로드
#트랜잭션 생성
wordtran <- as(lword, "transactions") #as(data, "transactions") : 트랜잭션으로
 변화
wordtran # 출력값: 441 transactions (rows) and 1943 items (columns)
## transactions in sparse format with
## 441 transactions (rows) and
## 1943 items (columns)
#교차표 작성
wordtable <- crossTable(wordtran) #crossTable() : 교차테이블 생성
#head(wordtable) #유사단어들이 함께 있는 형태로 출력
#단어간 연관 규칙 산출
transrules <- apriori(wordtran,
                    parameter = list(support=0.015, conf=0.08))
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
                       1 none FALSE
                                                           0.015
##
         0.08
                0.1
                                             TRUE
## maxlen target ext
       10 rules TRUE
##
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
```

```
0.1 TRUE TRUE FALSE TRUE 2
##
                                      TRUE
##
## Absolute minimum support count: 6
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[1943 item(s), 441 transaction(s)] done [0.00s].
## sorting and recoding items ... [40 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [27 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
# 출력값 : writing ... [27 rule(s)] done [0.00s]. (27 개 규칙을 찾음)
#apriori() : 연관분석 기능 적용하여 규칙성을 찾는 함수. (transaction 자료 구조에
서 실행)
#연관규칙 생성 결과 보기
head(inspect(transrules))
##
       1hs
                          rhs
                                   support
                                              confidence coverage
                                                                   lift
                       => {논비건}
                                   0.08390023 0.08390023 1.00000000
## [1] {}
1.0000000
                      => {비건}
## [2] {}
                                    0.4444444 0.4444444 1.00000000
1.0000000
## [3] {지향}
                      => {비건}
                                   0.01587302 0.77777778 0.02040816
1.7500000
## [4] {출장}
                      => {카페}
                                   0.02267574 1.00000000 0.02267574
13.7812500
## [5] {카페}
                      => {출장}
                                   0.02267574 0.31250000 0.07256236
13.7812500
## [6] {출장}
                      => {비건}
                                   0.02267574 1.00000000 0.02267574
2.2500000
## [7] {친구}
                      => {비건}
                                   0.01587302 0.63636364 0.02494331
1.4318182
## [8] {메뉴}
                      => {비건}
                                   0.01814059 0.80000000 0.02267574
1.8000000
## [9] {크림}
                      => {비건}
                                   0.01587302 0.43750000 0.03628118
0.9843750
                      => {비건}
## [10] {식당}
                                   0.02494331 0.57894737 0.04308390
1.3026316
## [11] {음식}
                     => {비건}
                                   0.02721088 0.66666667 0.04081633
```

```
1.5000000
                 => {나의} 0.05215420 1.00000000 0.05215420
## [12] {일기}
17.6400000
                 => {일기} 0.05215420 0.92000000 0.05668934
## [13] {나의}
17.6400000
## [14] {일기}
                => {비거니즘} 0.05215420 1.00000000 0.05215420
16.9615385
## [15] {비거니즘} => {일기} 0.05215420 0.88461538 0.05895692
16.9615385
## [16] {논비건} => {비건} 0.02721088 0.32432432 0.08390023
0.7297297
## [17] {나의}
                 => {비거니즘} 0.05668934 1.00000000 0.05668934
16.9615385
## [18] {비거니즘} => {나의} 0.05668934 0.96153846 0.05895692
16.9615385
## [19] {비거니즘} => {비건} 0.01587302 0.26923077 0.05895692
0.6057692
                 => {비건}
## [20] {카페}
                               0.06122449 0.84375000 0.07256236
1.8984375
## [21] {비건}
                => {카페} 0.06122449 0.13775510 0.44444444
1.8984375
## [22] {출장, 카페} => {비건} 0.02267574 1.00000000 0.02267574
2.2500000
## [23] {비건, 출장} => {카페} 0.02267574 1.00000000 0.02267574
13.7812500
## [24] {비건, 카페} => {출장} 0.02267574 0.37037037 0.06122449
16.3333333
## [25] {나의, 일기} => {비거니즘} 0.05215420 1.00000000 0.05215420
16.9615385
## [26] {비거니즘, 일기} => {나의} 0.05215420 1.00000000 0.05215420
17.6400000
## [27] {나의, 비거니즘} => {일기} 0.05215420 0.92000000 0.05668934
17,6400000
##
      count
## [1]
      37
## [2] 196
## [3]
       7
## [4]
      10
## [5]
      10
## [6]
       10
## [7]
       7
```

```
## [8]
## [9]
         7
## [10]
       11
## [11]
        12
## [12]
        23
## [13]
        23
## [14]
        23
## [15]
        23
## [16]
        12
## [17]
        25
## [18]
        25
## [19]
        7
## [20]
        27
## [21]
        27
## [22]
        10
## [23]
        10
## [24]
       10
## [25]
        23
## [26]
       23
## [27] 23
                                                            lift count
##
         lhs
                     rhs
                            support confidence
                                               coverage
      {} => {논비건} 0.08390023 0.08390023 1.00000000 1.00000
## [1]
                                                                    37
                {비건} 0.44444444 0.44444444 1.00000000 1.00000
## [2] {} =>
                                                                   196
## [3] {지향} => {비건} 0.01587302 0.77777778 0.02040816 1.75000
                                                                   7
## [4] {출장} => {카페} 0.02267574 1.00000000 0.02267574 13.78125
                                                                   10
## [5] {카페} => {출장} 0.02267574 0.31250000 0.07256236 13.78125
                                                                   10
## [6] {출장} => {비건} 0.02267574 1.00000000 0.02267574 2.25000
                                                                   10
```

4. 연관어 시각화

생성한 연관규칙 27 개를 그래프로 시각화하였으며, **거리가 가까울수록 높은 연관성**을 가지고 있음을 보여준다.

```
#연관 단어 시각화 위해 자료 구조 변경
rules <- labels(transrules, ruleSep = " ") #연관규칙 레이블을 " "으로 분리리
head(rules,4)
## [1] "{} {논비건}" "{ 지향} {비건}" "{출장} {카페}"
```

```
#문자열로 묶인 연관 단어를 행렬 구조 변경
rules <- sapply(rules, strsplit, " ", USE.NAMES = F)</pre>
# class(rules) # 查 력 값 : [1] "list"
# 행 단위로 묶어서 matrix 로 반환 (do.call)
rulemat <- do.call("rbind", rules)</pre>
# class(rulemat) #출력값 : [1] "matrix" "array"
# 연관어 시각화를 위한 igraph 패키지 설치
library(igraph)
# edgelist 보기 - 연관 단어를 정점(vertex) 형태의 목록 제공(matrix 형태의 자료형
을 전달 받게 되어 있음)
relueg <- graph.edgelist(rulemat[c(3:27),], directed = F) \#[c(1:2)] - \#[f(1:2)]
외
relueg
## IGRAPH d7227eb UN-- 19 25 --
## + attr: name (v/c)
## + edges from d7227eb (vertex names):
## [1] {지향}
              --{비건}
                             {출장}
                                      --{카페}
## [3] {출장}
             --{카페}
                             {비건}
                                      --{출장}
## [5] {비건} --{친구}
                            {비건}
                                      --{메뉴}
## [7] {비건} --{크림}
                                      --{식당}
                           {비건}
## [9] {비건} --{음식}
                             {일기}
                                      --{나의}
## [11] {일기}
              --{나의}
                             {일기}
                                     --{비거니즘}
## [13] {일기} --{비거니즘} {비건}
                                     --{논비건}
## [15] {나의} --{비거니즘}
                            {나의}
                                     --{비거니즘}
## + ... omitted several edges
# edgelist 시각화
plot.igraph(relueg)
```


