1.27 Theorem. (The Division Algorithm) (continued from 1.26)...Moreover (uniqueness part), if q, q' and r, r' are any integers that satisfy

$$m = nq + r$$
$$= nq' + r'$$

with $0 \le r, r' < n$, then q = q' and r = r'.

Proof. Let

$$m = nq + r$$
$$= nq' + r'$$

with $0 \le r, r' < n$ be given.

$$nq + r = nq' + r',$$

$$nq - nq' = r' - r,$$

$$n(q - q') = r' - r.$$

Since $0 \le r, r' < n$, this implies -n < r' - r < n. Substituting,

$$-n < n(q - q') < n,$$

 $-1 < q - q' < 1.$

Therefore q - q' = 0, and q = q'. From here its easy to see, using substitution

$$nq' + r = nq' + r',$$

$$nq' - nq' + r = r',$$

$$r = r'.$$

Since q = q' and r = r', there is uniqueness.