

Decision Tree

Mahdi Roozbahani Georgia Tech

Visual Introduction to Decision Tree

Building a tree to distinguish homes in New York from homes in San Francisco

Decision Tree: Example (2)

	0	Т	Н	W	Play?
1	S	Н	Н	W	-
2	S	Н	Н	S	-
3	0	Н	Н	W	+
4	R	M	Н	W	+
5	R	С	N	W	+
6	R	С	N	S	-
7	0	С	N	S	+
8	S	M	Н	W	-
9	S	С	N	W	+
10	R	M	N	W	+
11	S	M	N	S	+
12	0	M	Н	S	+
13	0	Н	N	W	+
14	R	M	Н	S	-

Outlook: Sunny,

Overcast,

Rainy

Temperature: Hot,

Medium,

Cool

Humidity: High,

<u>N</u>ormal,

Low

Wind: Strong,

Weak

Will I play tennis today?

Decision trees (DT)

Dependent variable: PLAY

The classifier:

 $f_T(x)$: majority class in the leaf in the tree T containing x

Model parameters: The tree structure and size

Decision trees

> Jeature, dimension, Variable

Pieces:

- 1. Find the best attribute to split on
- 2. Find the best split on the chosen attribute
- 3. Decide on when to stop splitting

Categorical or Discrete attributes

Continuous attributes

Test data

General Decision Tree (Continuous Attributes) $X_1 < t_1$? Output class $Y = y_1$ $X_i < t_i$? Output class Y = y_c

Basic Questions

- How to choose the attribute/value to split on at each level of the tree?
- When to stop splitting? When should a node be declared a leaf?
- If a leaf node is impure, how should the class label be assigned?
- If the tree is too large, how can it be pruned?

How to choose the attribute/value to split on at each level of the tree?

- Two classes (red circles/green crosses)
- Two attributes: X₁ and X₂
- 11 points in training data
- Idea

 Construct a decision tree such that the leaf nodes predict correctly the class for all the training examples

surprised information

IW = log2 Pa)

Information Content

Coin flip

C_{1H}	0
C_{1T}	6

$$P(C_{1H}) = 0/6 = 0$$

$$P(C_{1T}) = 6/6 = 1$$

C_{2H}	1
C_{2T}	5

$$P(C_{2H}) = 1/6$$

$$P(C_{2T}) = 5/6$$

C_{3H}	2
C_{3T}	4

$$P(C_{3H}) = 2/6$$

$$P(C_{3T}) = 4/6$$

Which coin will give us the purest information? Entropy ~ Uncertainty

Lower uncertainty, higher information gain

$$H(X) = -\sum_{i=1}^{N} P(x=i) \log_2 P(x=i)$$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Entropy

 In general, the average number of bits necessary to encode n values is the entropy:

$$H = \sum_{i=1}^{n} P_i \log_2 P_i$$

- P_i = probability of occurrence of value i
 - High entropy -> All the classes are (nearly) equally likely
 - Low entropy -> A few classes are likely; most of the classes are rarely observed

$$\sum p(x) \log_2 \frac{1}{P(x)} = -\sum p(x) \log_2 p(x)$$

Example Entropy Calculation

$$N_A = 1$$

 $N_B = 6$

$$p_A = N_A/(N_A + N_B) = 1/7$$

 $p_B = N_B/(N_A + N_B) = 6/7$

$$N_A = 3$$

 $N_B = 2$

$$p_A = N_A/(N_A + N_B) = 3/5$$

 $p_B = N_B/(N_A + N_B) = 2/5$

$$H_1 = -p_A \log_2 p_A - p_B \log_2 p_B$$
 $H_2 = -p_A \log_2 p_A - p_B \log_2 p_B$
= 0.59 = 0.97

$$H_1 < H_2 => (2)$$
 less pure than (1)

Conditional Entropy

Entropy before splitting: H

After splitting, a fraction P_L of the data goes to the left node, which has entropy H_L

After splitting, a fraction P_R of the data goes to the left node, which has entropy H_R

The average entropy after splitting is:

Entropy of left node

$$H_L \times P_L + H_R \times P_R$$

"Conditional Entropy"

Probability that a random input is directed to the left node

Information Gain

We want nodes as pure as possible

- → We want to reduce the entropy as much as possible
- → We want to maximize the difference between the entropy of the parent node and the expected entropy of

the children

Information Gain (IG) = Amount by which the ambiguity is decreased by splitting the node

Maximize:

$$IG = H - (H_L \times P_L + H_R \times P_R)$$

Notations

- Entropy: H(Y) = Entropy of the distribution of classes at a node
- Conditional Entropy:
 - Discrete: $H(Y|X_j)$ = Entropy after splitting with respect to variable j
 - Continuous: $H(Y|X_j,t)$ = Entropy after splitting with respect to variable j with threshold t
- Information gain:
 - Discrete: $IG(Y|X_j) = H(Y) H(Y|X_j) = Entropy$ after splitting with respect to variable j
 - Continuous: $IG(Y|X_j,t) = H(Y) H(Y|X_j,t) =$ Entropy after splitting with respect to variable j with threshold t

Heavest
$$P_{red} = \frac{5}{11} P_{green} = \frac{6}{11} P_{green} = -\frac{5}{11} P_{green} = -\frac{5$$

More Complete Example

- = 20 training examples from class A
- X = 20 training examples from class B Attributes = X₁ and X₂ coordinates

Best split value (max Information Gain) for X_1 attribute: 0.24 with IG = 0.138

Left direction for smaller value, right direction for bigger value

Basic Questions

 How to choose the attribute/value to split on at each level of the tree?

 If the tree is too large, how can it be pruned?

When to stop splitting? Common strategies:

- 1. Pure and impure leave nodes
 - All points belong to the same class; OR
 - All points from one class completely overlap with points from another class (i.e., same attributes)
 - Output majority class as this leaf's label
- Node contains points fewer than some threshold

4. Further splits provide no improvement in training loss ($loss(T) \le loss(T_L) + loss(T_R)$)

Decision Tree Algorithm (Continuous Attributes)

- LearnTree(X, Y)
 - Input:
 - Set X of R training vectors, each containing the values (x₁,...,x_M) of M attributes (X₁,...,X_M)
 - A vector Y of R elements, where y_i = class of the jth datapoint
 - If all the datapoints in X have the same class value y
 - Return a leaf node that predicts y as output
 - If all the datapoints in X have the same attribute value $(x_1,...,x_M)$
 - Return a leaf node that predicts the majority of the class values in Y
 as output
 - Try all the possible attributes X_j and threshold t and choose the one, j^* , for which $IG(Y|X_j,t)$ is maximum
 - X_L, Y_L= set of datapoints for which x_{j*} < t and corresponding classes
 - $-X_H$, Y_H = set of datapoints for which $x_{j^*} >= t$ and corresponding classes
 - Left Child \leftarrow LearnTree (X_L, Y_L)
 - Right Child ← LearnTree(X_H, Y_H)

Decision Tree Algorithm (Discrete Attributes)

- LearnTree(X, Y)
 - Input:
 - Set X of R training vectors, each containing the values $(x_1,...,x_M)$ of M attributes $(X_1,...,X_M)$
 - A vector Y of R elements, where $y_i = \text{class of the } j^{\text{th}}$ datapoint
 - If all the datapoints in X have the same class value y
 - Return a leaf node that predicts y as output
 - If all the datapoints in X have the same attribute value $(x_1,...,x_M)$
 - Return a leaf node that predicts the majority of the class values in Y as output
 - Try all the possible attributes X_j and choose the one, j^* , for which $IG(Y|X_j)$ is maximum
 - For every possible value v of X_{i^*} :
 - X_v , Y_v = set of datapoints for which x_{j^*} = v and corresponding classes
 - Child_v \leftarrow LearnTree(X_v, Y_v)

Decision Trees So Far

- Given N observations from training data, each with D attributes X and a class attribute Y, construct a sequence of tests (decision tree) to predict the class attribute Y from the attributes X
- Basic strategy for defining the tests ("when to split") → maximize the information gain on the training data set at each node of the tree
- Problems (next):
 - Computational issues > How expensive is it to compute the IG
 - The tree will end up being much too big → pruning
 - Evaluating the tree on training data is dangerous
 overfitting

Basic Questions

- How to choose the attribute/value to split on at each level of the tree?
- When to stop splitting? When should a node be declared a leaf?
- If a leaf node is impure, how should the class label be assigned?

 If the tree is too large, how can it be pruned?

What will happen if a tree is too large?

Overfitting

High variance

Instability in predicting test data

How to avoid overfitting?

Acquire more training data

 Remove irrelevant attributes (manual process – not always possible)

Grow full tree, then post-prune

Ensemble learning

Reduced-Error Pruning

Split data into training and validation sets

Grow tree based on training set

Do until further pruning is harmful:

- 1. Evaluate impact on validation set of pruning each possible node (plus those below it)
- 2. Greedily remove the node that most improves validation set accuracy

How to decide to remove it a node using pruning

 Pruning of the decision tree is done by replacing a whole subtree by a leaf node.

 The replacement takes place if a decision rule establishes that the expected error rate in the subtree is greater than in the

single leaf.

Actual Label: 1 positive and 2 negative Predicted Label: 1 positive and 2 negative

3 correct and 0 incorrect

6 validation data points
Actual label:2 positive and 4 negative

Predicted Label: 4 positive and 2 negative

2 correct and 4 incorrect