

ICNT86 系列多点触控电容屏解决方案

文档版本: V1.0

发布日期: 2015/03/16

目录

-,	概述	3
	1.1 功能简介	3
	1.2 产品选型	5
<u>_</u> ,	功能结构与工作模式	7
	2.1 功能模块	7
	2.2 工作模式	8
	2.3 自动跳频	9
	2.3.1 跳频模式与跳频参数	9
	2.3.2 跳频配置方法	9
三、	CTPM 应用	.10
	3.1 CTPM 与 HOST 的连接	. 10
	3.1.1 CTPM 与主机通信方式	10
	3.2 I ² C 接口	11
	3.4 主要寄存器信息	.13
	3.5 上电、断电与复位	16
	3.6 中断、休眠与唤醒	17
	3.7 I ² C 工作流程	
四、	主控端平台要求及编程	19
	4.1 主控端平台要求	
	4.2 睡眠、唤醒设定	.19
	4.3 I ² C 工作模式设定	20
	4.4 中断方式设定	.20
	4.5 开机及触摸信息上报协议	20
	4.6 软件升级	.20
Ŧ	重 再 声 阳	21

一、概述

ICNT86 系列为内置 MCU 的互电容式触摸屏的电容检测芯片,支持多点触摸功能,结合互电容或自电容触摸屏,可以组成电容式触摸屏模组(Capacitive Touch Panel Module, CTPM),用户界面友好,便于输入。本文档叙述如何在系统中应用 ICNT86 系列芯片及 CTPM,并介绍 Host 如何操作 CTPM 以实现多点触控。

1.1 功能简介

ICNT86 系列芯片属于单芯片解决方案,主要包含如下功能:

- A. 真实多点触摸
 - 支持真实 5 点触摸,最大可支持 10 点触摸
- B. 支持 DITO, SITO, 单层多点, OGS, 全 ITO
- C. 抗干扰能力 内置高性能抗干扰模块,有效抑制 RF,LCD 干扰; 支持自动跳频
- D. 支持被动笔,手套触摸,待机手势等功能
- E. 报点率 推荐报点率 80Hz, 最高可达 200Hz
- 推荐报点率 80Hz, 最高可达 200Hz F. 功耗
 - 与触摸屏屏体、报点率、扫描频率、触点数等因素有关,见表 1。
- **G**. 电源
 - 电源电压 2.8V~3.3V
- I/O 电压 1.8V /VCC (可软件配置)
- H. 应用领域
 - 移动通讯终端、便携多媒体播放器 家电、家庭娱乐设备
- I. 移动上网设备
 - 便携式/平板电脑
 - GPS/数码相机/游戏机/导航系统/信息亭等
- J. 接口标准
 - I²C接口:标准接口,最高速率可达 400kps 兼容 Slave
- K. 支持 I2C 与待机手势唤醒
- L. 用户编程可扫描序列,较大 ADC 动态范围
- M. 具有环境与触摸变化良好适应性
- N. 自动校准

表 1 不同模式下电流参数

Da	Description	ICNT8658		ICNT86L8		ICNT8688		ICNT8698						
Parameter	Description	Min	Тур	Min	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I_{OPR}	Normal operation mode current		6.7			9.9			15.1			15.9		mA
I_{MON}	Monitor mode current		2.8			3.5			4.9			5.2		mA
I_{SUS}	Suspend mode current		167			167			167			167		μA
I_{SLP}	Sleep mode current		91			91			91			91		μΑ
I _{GES}	Gesture mode current		700			700			700			700		μA

注意:

- 1. suspend mode 与 sleep mode 电流参数均在室温下测得, VCC 电压为 3.3V;
- 2. 通过软件(固件)配置,可由 suspend mode 进入 sleep mode。默认为 suspend mode。

1.2 产品选型

表 2 ICNT86 平板系列产品选型表

Model Name	Chan	nels		Packag	е	Touch Panel Size	
woder Name	TX	RX	Туре	Pin	Size	Touch Panel Size	
	28TX*	19RX					
ICNT8672	672 29TX*18RX 30TX*17RX	18RX	QFN	68	8*8	7" ~ 9"	
		17RX					
	32TX*	24RX			8*8	7" ~ 10.1"	
	33TX*	23RX					
ICNT8682	34TX*	22RX	QFN	68			
	35TX*	21RX					
	36TX*	20RX					
ICNT8692	42TX*30RX		QFN	88	10*10	8" ~ 12.1"	

表 3 ICNT86 手机系列产品选型表

Model Name	Chan	nels		Packag	Touch Panel Size		
woder name	TX	RX	Туре	Pin	Size	Touch Panel Size	
21TX*13RX		13RX					
ICNT8636	22TX*	12RX	QFN 48	48	6*6	4.0" ~ 5.0"	
	23TX*	11RX					
	23TX*	17RX				4.5" ~ 6.0"	
	24TX*	16RX					
ICNT8656	25TX*	15RX	QFN	52	6*6		
	26TX*	14RX					
	27TX*	13RX					

表 4 | CNT86 on-cel | 系列产品选型表

Model Name	Cha	nnels		Packa	ge	Touch Panel Size
	тх	RX	Туре	Pin	Size	
	23TX	23TX*17RX				
	24TX	(*16RX				4.5"~6.0" (Phone)
ICNT8658	25TX	(*15RX	QFN	52	6*6	
	26TX	(*14RX				7.0" ~ 8.0" (Tablet)
	27TX	(*13RX				
	15TX*30RX					
	16TX*29F	(*29RX				4.5" ~6.5"(Phone)
ICNT86L8	17TX	(*28RX	QFN	56	6*6	
	18TX	(*27RX				7.0" ~ 9.0"(Tablet)
	19TX	(*26RX				
	32TX	(*24RX				
	33TX	(*23RX				
ICNT8688	34TX	(*22RX	QFN	68	8*8	7.0" ~ 10.1"(Tablet)
	35TX	(*21RX				
	36TX	(*20RX				
ICNT8698	42TX	(*30RX	QFN	88	10*10	8.0" ~ 12.1"(Tablet)

二、功能结构与工作模式

2.1 功能模块

图 1 ICNT86 系列内部框图

ICNT86 系列芯片內建 32bit MCU 与 DSP,用于处理触摸信息数据及实现复杂软件算法,并统筹控制全局各个模块的工作。

SRAM 用于存储触摸与算法处理信息等。

AFE 含有 ADC 等模块构成模拟信息通道,能够有效抑制 RF、LCD 等引入的噪声,保证高信噪比。该模块通过灵活可配的 TX、RX 端口与屏体相接,将捕获的触控信息转化为数字信号后存入 SRAM,供 MCU 与 DSP 运算。

接口控制器模块包含 400kbps I²C 接口。此外,该模块提供中断接口、唤醒接口、外部 复位接口等端口的管理控制。

ICNT86xx 内建 FLASH,用于存储系统固件以及系统关键参数。

2.2 工作模式

1. Normal Mode:

即正常工作模式。在该模式下,芯片通过 TX、RX 持续扫描屏体触摸信息,与扫描、处理触摸信息的各个功能模块均处于正常应用状态。默认扫描报点率为 80Hz,Host 可以根据需要通过端口提高或降低报点率。

2. Monitor Mode:

IC 检测无触摸动作时,一定时间后可自动进入 Monitor 模式,时间可由软件配置,默认为 1s。在该模式下,芯片以极低频率对屏体触摸信息进行扫描,算法简化为仅检测屏体上是否有触摸发生,以降低功耗。当屏体有触摸发生时,芯片自动从 Monitor 模式切换到 Active 模式,正常对触摸信息进行检测和处理;

3. Hibernate Mode:

可由主控发命令进入该模式。在该模式下,芯片以极低功耗运行,所有功能模块处于休眠或掉电状态,仅对唤醒信号与外部复位信号进行检测与响应。

4. Gesture Mode:

在触控设备待机情况下做特定手势,触摸屏识别到正确的手势后触发中断,通知总 控让主控来读取相应手势报码,由主控实现客户所需功能。下图简要介绍四种工作 模式间的转换:

图 2 工作模式转换

2.3 自动跳频

ICNT86 具有很好的硬件抗干扰特性。可以实时监测各个频段的噪声,当发现当前工作频率噪声超过阈值后,自动切换工作频率到另一个干净频率,从而避开干扰。

2.3.1 跳频模式与跳频参数

跳频模式: DEFAULT_FREQ_HOP_MODE。

目前支持的跳频模式有:

FREQ_HOP_MODE_OFF: 跳频关闭

FREQ_HOP_MODE_ON: 跳频开启,每次跳频,更新 base,推荐模式

FREQ_HOP_MODE_SEEMLESS: 无缝跳频模式,使用于屏幕阻抗,容抗较小情况。

相关参数还有:

表 5 跳频参数表

Parameter	Description
DEFAULT_NOISE_BIT_FREQ	噪声检测使用的 BitFreq, 无需修改。
	目前使用与正常扫描相同的值。
DEFAULT_FREQ_HOP_START_CYCLE_N	跳频范围的起始 CycleNum,
UM	由此参数可以推出跳频起始频率:
	DEFAULT_FREQ_HOP_START_CYCLE_NU
	M* DEFAULT_BIT_FREQ
DEFAULT_FREQ_HOP_STOP_CYCLE_NU	跳频范围的终止 CycleNum,
M	由此参数可以推出跳频终止频率:
	DEFAULT_FREQ_HOP_START_CYCLE_NU
	M * DEFAULT_BIT_FREQ
DEFAULT_FREQ_HOP_NORMOLIZE	归一参数,该参数由上位机提供的工具自动计
	算出来。
DEFAULT_FREQ_HOP_CYCLE_NUM	频段中心频率对应的 CycleNum,
	该参数由上位机提供的工具自动计算出来。
DEFAULT_FREQ_HOP_NOISE_TH	跳频阈值,可以通过上位机工具观察到系统的
	噪声水平,根据实际系统的噪声水平设置合理
	阈值。
DEFAULT_FREQ_HOP_CONFIRM_TIMES	噪声重复确认次数,确认次数越多,得到
	的噪声情况越接近实际噪声情况,跳频的滞后
	时间约长。

2.3.2 跳频配置方法

- 1) 将跳频参数修改成 FREQ_HOP_MODE_OFF, 选择好对应的 DEFAULT_BIT_FREQ, DEFAULT_F1_CYCLE_NUM(简写为 DF1CN) 调试出最佳触摸性能。
- 2) 将跳频参数修改成 FREQ_HOP_MODE_ON,填写以下两个参数:

DEFAULT_FREQ_HOP_START_CYCLE_NUM(简写为 DFHCN_STA), DEFAULT_FREQ_HOP_STOP_CYCLE_NUM (简写为 DFHSCN_STO)。

操作之前必须保证触摸性能已达最佳状态。

DF1CN 满足以下条件: DFHCN_STA<DF1CN<DFHSCN_STO。

- 3) 启动上位机,切换到 FAE 模式。
- 4) 计算跳频参数。

三、CTPM 应用

CTP Module 为互电容式多点感应触摸屏模组。包含 2 个部分: 互电容式触摸屏 CTP 与触摸屏传感芯片(ICNT86xx)。

3.1 CTPM 与 HOST 的连接

3.1.1 CTPM 与主机通信方式

当 CTPM 和主机进行通信时,主要有以下四种形式:

- A、主机通过 I²C 与 CPTM 进行数据通信。
- B、CTPM 有效触摸发生时通过输出中断信号通知主机,如图 3,中断信号通过 INT 端口输出,中断信号有效电平可编程配置;
- C、主机通过写命令使 CTPM 休眠(在寄存器信息中详述),通过 INT\WAKE、GPIO4 脚或者 IIC 唤醒 CTPM,唤醒信号的方式由固件决定;
 - D、主机通过复位端口 RST 使 CTPM 复位, 低电平有效。

REV: V1.0

2015-03-16

图 3 CTPM 与 HOST 连接示意图

3.2 I²C接口

ICNT86 系列提供标准 I²C 通讯接口,由 SCL 和 SDA 与主控芯片进行通讯。系统中始终作为从设备,最高通讯速度为 400kbps,支持 7bit 设备地址,为 0x48(0b1001000)。当主控芯片寻址 CPTM 时,同时需要发送读写控制位。读写控制位在从设备地址字段后,"0"表示写操作,"1"表示读操作,如: 0x90表示写操作地址,0x91表示读操作地址。

I²C 通信总是由主机发起,有效的起始信号为:在 SCL 保持为"1"时,SDA 上发生由"1"到"0"的跳变。地址信息与数据流均在起始信号之后传输。在收到与自身相匹配的地址信息时,CPTM 在第 9 个时钟周期,将 SDA 改为输出口,并置"0",作为应答信号。若收到不与自己匹配的地址信息,CPTM 将保持闲置状态。

SDA 口上的数据按 9 个时钟周期串行发送 9 位数据: 8 位有效数据+1 位接收方发送的 应答信号 ACK 或非应答信号 NACK。数据传输在 SCL 为 "1"时有效。当通信完成时,由 主机发送停止信号: 当 SCL 为 "1"时,SDA 状态由 "0"向 "1"跳变。

图 4 列出了上述 I2C 通信的格式与时序,其中各个时序参数的说明与数值约束见表 6。

图 4 1°C 通信格式与时序

表 6 1°C 时序参数

说明	符号	最小值	最大值	数值单位
SCL 时钟频率	F _{SCL}		400	kHz
起始信号(START/RESTART)保持时间	T _{HD_STA}	0.6		μs
SCL 时钟低电平时间	T_{LOW}	1.3		μs
SCL 时钟高电平时间	$T_{ m HIGH}$	0.6		μs
重复起始信号(RESTART)建立时间	T_{SU_STA}	0.6		μs
数据建立时间	T_{SU_DAT}	0.1		μs
数据保持时间	T_{HD_DAT}	0.6	0.9	μs
SCL 与 SDA 上升时间	T_R		0.3	μs

SCL 与 SDA 下降时间	T_{F}		0.3	μs
结束信号(STOP)建立时间	T_{SU_STO}	0.6		μs
传输间隔时间	T_{BUF}	1.3		μs

一次写操作由一次传输完成,包括 I²C 器件地址、写标志、寄存器地址(16bits)与数据以及相应的 ACK 位,如图 5 所示。一次读操作由两次传输完成,第一次传输写寄存器地址,包括 I²C 器件地址、写标志、寄存器地址以及相应的 ACK 位;第二次传输读出数据,包括 I²C 器件地址、读标志、数据以及相应的 ACK 位,如图 6 所示。其中,只读取 1 字节数据时,第一次传输的 STOP 信号可省略;HOST 应在最后一字节数据接收完毕后发送NACK,使 SLAVE 释放总线。

图 5 HOST 写操作

图 6 HOST 读操作

REV: V1.0

2015-03-16

3.4 主要寄存器信息

根据不同工作模式,CTPM 提供不同的寄存器信息,主机通过这些寄存器信息可以读取触摸点坐标或对 CTPM 进行设置。寄存器区根据功能划分为头信息区、坐标信息区、配置寄存器区、Debug 区,分别存储不同的信息,如表 7 所示。

表 7 寄存器功能区划分

功能区名称 地址范围		说明				
Common Header 0x0000-0x001F		Different Mode have the same Header				
Points info	0x1000-0x1FFF	Points info Area				
Config Area	0x8000-0x8FFF	Configuration info				

表 8 列出了头信息区主要的寄存器地址及其说明。

表 8 头信息区主要寄存器

寄存器名称	地址	读写	寄存器数据及其说明
337d-3 4 - 4 -	00000	D/W	0:Normal mode; 1:FactoryMode;2:ConfigMode
WorkMode	0x0000	R/W	Different WorkMode, Different Memory Map
CtDEl	00001	DO.	0:idle(can receive another command),
SystemBusyFlag	0x0001 RO		1:busy(doing last command)
			0x01: CMD_MCU_RESET
			0x02: CMD_ENTER_HIBERNATE
			0x03: CMD_ENTER_WRITE_PARA_TO_FLASH_MODE
			0x04: CMD_WRITE_PARA_TO_FLASH
			0x10: CMD_RECOVERY_TX_VOL
			0x11: CMD_DEC_TX_VOL_1
			0x12: CMD_DEC_TX_VOL_2
			0x13: CMD_DEC_TX_VOL_3
			0x14: CMD_DEC_TX_VOL_4
			0x15: CMD_DEC_TX_VOL_5
Cmd	0x0004	R/W	0x16: CMD_DEC_TX_VOL_6
			0x20: CMD_READ_RAWDATA_AND_CFG_NORMAL
			0x21: CMD_END_READ_RAWDATA_AND_CFG_NORMAL
			0x30: CMD_UPDATE_BASELINE
			0x40:CMD_ENTER_GESTURE_MONITOR
			0x41:CMD_QUIT_GESTURE_MONITOR
			0x42:CMD_SET_GESTURE_ENABLE_FLAG
			0x55: CMD_CHARGER_PLUG_IN
			0x66: CMD_CHARGER_PLUG_OUT
			0x70: CMD_WRITE_RAWDATA_TO_FLASH
			0x80: CMD_AUTO_CLIB_FREQ,

		0x90: CMD_HIGH_SENSE_ENBALE		
		0x91: CMD_HIGH_SENSE_DISABLE		
		0xa0: CMD_PROXIMITY_ENABLE		
		0xa1: CMD_PROXIMITY_DISABLE		
0x0005	R/W	0:Active mode, 1:Monitor mode, 2:Hibernate mode		
0x0007	R/W	Charger status		
0x0009	RO	Lib version		
0x000A	RO	0x:86(ICNT86xx)		
0000 D	DO.	0x00(Test Package),0x01(40QFN),0x02(48QFN),		
UXUUUB	KU	0x03(68QFN),04(xxx)		
0x000C RO	DO.	PΩ	OC RO	Firmware main version
OXOOC	RO	I IIII ware main version		
0**000D	DO.	Firmware sub version		
UXUUUD	KU	Filliwate sub version		
0x000E	RO	Customer Id		
0x000F	RO	Product Id		
	0x0007 0x0009 0x000A 0x000B 0x000C 0x000D 0x000E	0x0007 R/W 0x0009 RO 0x000A RO 0x000B RO 0x000C RO 0x000D RO 0x000E RO		

表9列出了坐标信息区的主要寄存器及其说明。

表 9 坐标信息区主要寄存器

寄存器名称	地址	读写	寄存器数据及其说明
GestureId	0x1000	RO	Gesture and Virtual Key 0bxxxxxxx1:KEY0 0bxxxxxx1x:KEY1 0bxxxxx1xx:KEY2 0bxxxx 1xxx:KEY3 0bx001xxxx:Gesture_ID01 0bx010xxxx:Gesture_ID02 0bx011xxxx:Gesture_ID03 0bx100xxxx:Gesture_ID04 0bx101xxxx:Gesture_ID05 0bx111xxxx:Gesture_ID06 0bx111xxxx:Gesture_ID07 0b1xxxxxxxx:PROXIMITY
NumPointer	0x1001	RO	Number of Pointers(0~10)
Pointer[0].ID	0x1002	RO	0~9
Pointer[0].XL	0x1003	RO	Vaccition of Dointon[0]
Pointer[0].XH	0x1004	RO	XpositionofPointer[0]
Pointer[0].YL	0x1005	RO	Vaccition of Dointon[1]
Pointer[0].YH	er[0].YH 0x1006 RO		YpositionofPointer[1]
Pointer[0].Pressure	0x1007	RO	Pressure Level onPointer[0], 0~255
Pointer[0].EventId	0x1008	RO	0:None 1:Down 2:Move 3:Stay 4:Up

Pointer[1].*	0x1009~0x100F	RO	Information of Pointer[1]
Pointer[2].*	0x1010~0x1016	RO	Information of Pointer[2]
		RO	
Pointer[9].*	0x1041~0x1047	RO	Information of Pointer[9]

表 10 列出了配置寄存器区主要的寄存器及其说明。

表 10 寄存器区主要配置寄存器

寄存器名称	地址	读写	寄存器数据及其说明
u16ResX	0x8000		Resolution of Col
u16ResY	0x8001		Resolution of Row
u8RowNum	0x8004		Row total number (Tp + vk)
u8ColNum	0x8005		Column total number (Tp + vk)
u8TXOrder[PHYSICAL_MAX_NUM _ROW]	0x8006		TX Order, start from zero
u8RXOrder[PHYSICAL_MAX_NUM _COL]	0x8030		TX Order, start from zero
u8NumVKey	0x804E		Virtual Key setting
u8VKeyMode	0x804F		Virtual Key Mode
u8TpVkOrder[PHYSICAL_MAX_VK _NUM]	0x8050		Virtual Key Order
u8VKDownThreshold	0x8054		Virtual Key Touch Down Th
u8VKUpThreshold	0x8055		Virtual Key Touch Up Th
u8MaxTouchNum	0x8056		max touch support
u8ThresholdDyncMode	0x8068		Threshold Mode
u8HighSenseThreshold	0x8069		Threshold of High sensitive
u8TouchUpThresold	0x806B		Threshold of Touch up
u8TouchDownThresold	0x806C		Threshold of Touch Down
u8TouchChargerThresold	0x806D		Charger Thresold
u8XySwap	0x80B7		X Y Resolution swap
u8IntMode	0x80B8		Interrupt line mode0: Low, 1: High
u8IntKeepTime	0x80B9		Interrupt line assert time
u8WakeUpPol	0x80BA		Wake up line Polarity0: Low, 1: High
u8GpioVol	0x80BB		Gpio voltage 0:3.3v, 1:1.8V
u8ReportRate	0x80BC		Report rate (10~200)
u8EnterMonitorCnt	0x80BD		Entering Monitor Mode Max Idle Counter

3.5 上电、断电与复位

图7为电源上升时间示意图。

图 7 电源上升时间

图 8 为上电、断电时序示意图。

图 9 列出了复位时示意图。

图 9 复位时序

表 11 列出了上图中各个参数的数值。

表 11 上电、断电时序约束表

说明	符号	最小值	最大值	单位
电源 VDD3 上升时间	t _{VDD,rise}		10	ms
电源 VDD3 上电到 I ² C 能够通信的等待时间	t _{VDD,I2C}	50		ms
电源 VDD3 上电到第一次报点中断的等待时	$t_{\mathrm{VDD,INT}}$	100		ms
间				
电源 VDD3 断电前复位的有效时间	t _{rst,vdd}	100		μs
复位 RST 到 I ² C 能够通信的等待时间	t _{RST,I2C}	50		ms
复位 RST 到第一次报点中断的等待时间	t _{rst,int}	100		ms

3.6 中断、休眠与唤醒

当有触摸信息,CTPM需要向 HOST 报点时,端口 INT 将会输出中断信号,中断信号的有效电平可以由寄存器配置(u8IntMode)。中断发生后,HOST 读取触摸数据的同时,中断端口 INT 会恢复到空闲状态。如果 HOST 一直未读取数据,则中断端口的后续行为由其类型决定。

中断信号分为同步中断与异步中断两种类型(由固件决定)。中断发生后,如果 HOST 一直未读取数据,对于同步中断,CTPM 会一直处于等待状态,不再有进一步动作;对于异步中断,经过一定的时间(由固件配置,典型值为 1ms)后,中断信号自动恢复为空闲状态,触发中断的触摸数据经过一段时间(例如,报点率为 100Hz 时,该时间为 20ms)后将会被丢弃。

当 HOST 向寄存器 Cmd (地址 0x04) 写数据 0x02 时, CTPM 进入休眠状态。需要唤醒 CTPM 时, HOST 需将 WAKE 端口置为有效电平(其他唤醒方式详见 4.2 节)。WAKE 的有效 唤醒电平由固件决定。图 10 与表 12 列出了唤醒时的时序示意图及其参数。

表 12 唤醒时序约束表

说明	符号	最小值	最大值	单位
唤醒信号 WAKE 有效时间	twake	1		ms
唤醒信号到 I ² C 能够通信的等待时间	twake,	50		ms
	I2C			

3.7 I²C 工作流程

图 11 I2C 从机的工作流程图

从上图可以看出 ICNT86 系列芯片的简要工作流程,在完成初始化后将会按设定的速率 扫屏检测触摸动作,若有触摸则向主机发中断并准备好要发送的触摸信息,若无触摸则在一 段时间(可由软件配置)后进入低功耗 Monitor 模式,软件会控制降低扫描频率检测是否有 触摸动作,若有则进入正常模式。

四、主控端平台要求及编程

在 CTPM 与主控通讯过程中始终作为从设备,主机会发送寻址命令识别当前的触控芯片,对于 ICNT86 系列芯片默认 I²C 的 7 位地址为 0x48(0x1001000),主机进行读写操作时会将地址左移一位在末位插入读写标志未,如写寻址 0x90,读寻址 0x91。为使主从双方能以正常方式通讯,保证 CTPM 工作在正常状态,ICNT86 系列芯片对主控端平台有一定要求:

4.1 主控端平台要求

- 1) 主控端有标准 I²C 硬件接口和 INT、RST 和 WAKE(若采用此方式唤醒 CTMP,可用一具备输出能力的 GPIO 口连至 ICNT86 的 WAKE 引脚)
- 2)供电电压(VCC)要求: 2.6V<=VCC<=3.6V,建议使用 2.8V~3.3V 供电,可保证 IC 正常工作和满足功耗的要求,是 IC 最佳工作的电压区间。
- 3) IO 口电平要求:对于 I²C 通讯线(SDA、SCL)电平保证在 1.8V 或 VCC,接口是 开漏结构需用 4.7k 电阻上拉至电源,为保证驱动能力和防止电流倒灌,选择的上拉电源需 与 IO 口电平匹配。接法如图 12:

图 12 I²C 接口上拉示意图

4.2 睡眠、唤醒设定

1) 睡眠

主机可通过发送 I²C 指令让 CTPM 进入低功耗睡眠模式,如发送(0x04 0x02)睡眠命令,主机端也可通过控制 PMU 断开 CTPM 的电源,如果采用断电方式,建议驱动把与 CTPM 相连的 RST、WAKE、INT 也输出低。

2) 唤醒

- a) RST 唤醒: 主机可用 RST 脚拉一定时间(建议不小于 10ms)的低电平,让从机复位而进入正常工作模式。
- b) GPIO 唤醒: 主机也可与 CTPM 协定给 ICNT86xx 的一个 GPIO 口如: INT\WAKE 或 GPIO4 拉一个脉冲(上升沿、下降沿由固件决定)唤醒。
- c) I²C 唤醒: 开启该功能后,ICNT86xx 在休眠期间如果发现 I²C 总线上有与设定的通讯地址相符的设备地址即唤醒。
- () 待机手势唤醒。具体操作为: 在 wakeup pin 上接 RC 唤醒电路。在手势模式下, TP 自动睡眠, 通过 RC 唤醒电路, 每隔 N*(DEFAULT_SLEEP_WAKEUP_COUNT) ms 唤醒一次, 检测是否有触摸, 没有触摸继续睡眠, 有触摸则检测是否有手势产生; 没有手势继续睡眠, 有手势则退出手势模式, 并产生一个中断信号用于通知主控, 主控收到信

号后醒来亮屏。

唤醒的具体时序与波形可参见本文档 3.4 与 3.5 节。

CTPM 被唤醒后会立即重新校正 CTPM 所处的环境,以适应环境变化。主机可读取从机的寄存器验证 CTPM 是否被唤醒,建议主机对 CTPM 唤醒到验证唤醒的时间不少于 50ms。

4.3 I2C 工作模式设定

ICNT86 系列芯片支持两种 I2C 工作模式,可以主机协商确定:

- 1.Single Byte 模式
- 2. Multi-Byte 模式

4.4 中断方式设定

ICNT86 系列芯片通过向主机发送中断请求读取实时触摸信息,有两种可设的中断方式

- 1) 边沿触发
 - 可与主机端协商采用上升沿或下降沿(大多数平台采用的方式)触发主机中断
- 2) 电平触发 可与主机端协商采用高电平或低电平触发主机中断

4.5 开机及触摸信息上报协议

在主机端的操作系统中挂载有 ICNT86 系列芯片的驱动时,可在驱动中协商开机的时序及验证数据,可设定 ICNT86 系列芯片的触摸信息存放方式和位置,主机可发送相应寻址指令来读取相应信息。

4.6 软件升级

为方便用户进行量产,集创北方一直在从客户角度改进 CTMP 程序升级的方式,主要包括两种:

- 1)通过烧录工具升级,包括与上位机软件配套的测试版(可对 FPC、CTMP 模组进行 检查和升级程序)和量产烧录工具(对芯片批量烧录),详见量产工具使用说明。
- 2) 通过主控端操作系统升级,主控芯片挂载 ICNT86 系列芯片驱动时可用 adb (已在多个平台验证成功)方式升级;或用 apk 方式升级,详见 ICNT86 系列芯片驱动移植指南。

REV: V1.0

2015-03-16

五、重要声明

本出版物中所述的器件应用信息及其他类似内容仅为您提供,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。Chipone 对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。Chipone 对因这些信息及使用这些信息而引起的后果不承担任何责任。未经 Chipone 书面批准,不得将 Chipone 的产品用作生命维持系统中的关键组件。在 Chipone 知识产权保护下,不得暗中或以其他方式转让任何许可证。

REV: V1.0

2015-03-16

Revision History

Version	Revisions	Date	Modified by
V1.0	1. 初始版本	2015-03-16	