الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

كىيوان الوغيى تارىتخانات والمشابقات دورة: 2016

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة:الرياضيات المدة: 04 سا و30د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأوّل

يحتوي الموضوع الأول على 03 صفحات (من الصفحة 1 من 6 إلى الصفحة 3 من 6)

التمرين الأوّل: (40نقاط)

في كل سؤال توجد إجابة واحدة صحيحة من بين الاقتراحات الثلاثة ، حدّدها مع التعليل.

الإجابة ج)	الإجابة ب)	الإجابة أ)		
(AC)	(AB)	(Δ)	المستوي (P) يحوي المستقيم	1
متطابقان	متقاطعان	متوازيان تماما	ig(ABCig) و $ig(Pig)$	2
С	В	A	المسقط العمودي للنقطة O على المستقيم (Δ) هي النقطة	3
ليسا من نفس المستوي	متوازيان	متقاطعان	(AC) المستقيمان (Δ) و	4
مجموعة خالية	سطح كرة	مستو	مجموعة النقط M من الفضاء حيث $BM^2 - 9CM^2 = 0$ هي	5

التمرين الثاني: (04 نقاط)

- . $9z^2-6\sqrt{3}z+4=0$ حلّ في مجموعة الأعداد المركبة $\mathbb C$ المعادلة: 1
- 2) في المستوي المنسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$ ، لتكن النقطتين A و B لاحقتاهما على الترتيب:

$$z_{B} = \overline{z_{A}}$$
 $z_{A} = \frac{\sqrt{3}}{3} + \frac{1}{3}i$

أ- اكتب كلا من z_A و z_B على الشكل الأسى.

$$\left(\frac{z_A}{z_B}\right)^{2016} + \left(\frac{z_A}{z_B}\right)^{1437} = 0$$
 بــــ بين أنّ: $0 = 0$

ج- عيّن قيم العدد الطبيعي n بحيث يكون $\left(\frac{z_A}{z_B}\right)^n$ عددا حقيقيا.

- . $z' = \left(\frac{z_A}{z_B}\right)z$:حيث: z' حيث النقطي الذي يرفق بكل نقطة M لاحقتها z النحويل النقطي الذي يرفق بكل نقطة M
 - أ- عيّن طبيعة التحويل النقطي f و عناصره المميّزة.

. f بالتحويل A سورة النقطة C بالتحويل \mathcal{Z}_{C}

ABCD جـ عيّن z_D لاحقة النقطة D حتى تكون D مركز ثقل الرباعي

التمرين الثالث: (05 نقاط)

. نعتبر المعادلة (E) ذات المجهول (x;y) نعتبر المعادلة و(E) عددان صحيحان

- . (E) المعادلة $(x_0;y_0)$ بحيث $(x_0=y_0)$ بحيث ((E) بحيث المعادلة ($(x_0;y_0)$
- . 42 هيم العدد الصحيح λ و التي تُحقّق: $\lambda = 24[7]$ من عين باقي قسمة العدد λ على 42. $\lambda = 5[6]$
 - . $|x+y-1| \le 13$:حيث (E) عين جميع الثنائيات (x;y) حلول المعادلة (x;y) عين جميع الثنائيات
 - .7 على n أ- ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد 5^n على 4

التمرين الرابع: (07 نقاط)

- . $g(x) = \frac{x-1}{x+1} + \ln(x+1)$: كما يلي: $g(x) = \frac{x-1}{x+1} + \ln(x+1)$ كما يلي: $g(x) = \frac{x-1}{x+1} + \ln(x+1)$
 - $\lim_{x\to +\infty} g(x)$ أ- احسب $\lim_{x\to -1} g(x)$ و أ

ب- ادرس اتجاه تغیّر الدالة g على المجال $g = -1; +\infty$ ثم شكّل جدول تغیّراتها.

. $0,4 < \alpha < 0,5$: حيث α حيث g(x) = 0 تقبل حلاً وحيدا α حيث (2

. $]-1;+\infty[$ على المجال g(x) ب- استنتج إشارة

- . $f(x)=1+(x-1)\ln(x+1)$ یلي: $f(x)=1+(x-1)\ln(x+1)$ کما یلي: $f(x)=1+(x-1)\ln(x+1)$ الدالة العددیة المعرّفة علی المجال
 - . $\lim_{x\to +\infty} f(x)$ احسب النتیجة هندسیا ثم احسب ا $\lim_{x\to -1} f(x)$ احسب (1
 - 2) أ- ادرس اتجاه تغيّر الدالة f على المجال $-1;+\infty$ ، ثم شكّل جدول تغيّراتها .

 $f(\alpha) = -\alpha + 4 - \frac{4}{\alpha + 1}$ بيّن أنّ: $f(\alpha) = -\alpha + 4 - \frac{4}{\alpha + 1}$ ثمّ أعط حصرا لـ $f(\alpha) = -\alpha + 4 - \frac{4}{\alpha + 1}$

ليكن a عدد حقيقي من المجال a المستوي ، a المستوي ، a المستوي المستوي المستوي عند المنسوب إلى المعلم المتعامد والمتجانس a عند النقطة ذات الفاصلة a

h(x) = f(x) - [f'(a)(x-a) + f(a)] : $]-1;+\infty[$ من المجال x من المجال عدد حقيقي من أجل كل عدد عقيقي

 $.h'(x) = f'(x) - f'(a) :]-1;+\infty$ ر من أجل كل x من أجل كل أ-1

.] $-1;+\infty[$ على g عين إشارة h'(x) حسب قيم x واستنتج اتجاه تغيّر الدالة g عين إشارة h'(x) حسب قيم h'(x) والمستقيم h'(x) والمستقيم h'(x) والمستقيم h'(x)

. بيّن أنّه يوجد مماسان $\left(T_{a}\right)$ يشملان النقطة A(1;0) يطلب تعيين معادلتيهما (4

 $\cdot(C)$ ب- ارسم المماسين والمنحنى

 $H(x) = \frac{1}{2}(x^2 - 2x - 3)\ln(x + 1) - \frac{1}{4}x^2 + \frac{3}{2}x$:ب $-1;+\infty$ المعرّفة على المجال $H(x) = \frac{1}{2}(x^2 - 2x - 3)\ln(x + 1) - \frac{1}{4}x^2 + \frac{3}{2}x$ على المجال $H(x) = \frac{1}{2}(x^2 - 2x - 3)\ln(x + 1) - \frac{1}{4}x^2 + \frac{3}{2}x$ على المجال $H(x) = \frac{1}{2}(x^2 - 2x - 3)\ln(x + 1) - \frac{1}{4}x^2 + \frac{3}{2}x$ على المجال $H(x) = \frac{1}{2}(x^2 - 2x - 3)\ln(x + 1) - \frac{1}{4}x^2 + \frac{3}{2}x$

x=2 و x=1، y=0 التي معادلاتها: x=1 و المستقيمات التي معادلاتها: x=1 و x=1

الموضوع الثاني

يحتوي الموضوع الثاني على 03 صفحات (من الصفحة 4 من 6 إلى الصفحة 6 من 6)

التمرين الأوّل: (05 نقاط)

$$f(x) = \frac{x^2}{2x-1}$$
 :-- [1;+ ∞ [المعرّفة على المجال f المعرّفة المعرّفة على المجال المعرّفة المحرّفة على المجال المحرّفة المحرّفة على المجال المحرّفة المحرّفة

.
$$[1;+\infty[$$
 بيّن أنّ الدالة f متزايدة تماما على المجال $(1$

ب:
$$\mathbb N$$
 المعرّفة على المعتدية (u_n) المعرّفة على (2

$$u_{n+1} = f(u_n)$$
 ، $u_0 = 6$ و من أجل كل عدد طبيعي $u_0 = 6$ أ- انقل المنحنى المقابل ثم مثّل الحدود الأربعة الأولى المتتالية (u_n) على حامل محور الفواصل (دون حسابها)

للمتتالية (u_n) على حامل محور الفواصل (دون حسابها) أم وضّحا خطوط الانشاء.

ب- أعط تخمينا حول اتجاه تغير المتتالية
$$(u_n)$$
 و تقاربها.

$$1 \le u_n \le 6$$
: n ج- برهن أنّه من أجل كل عدد طبيعي

$$(u_n)$$
د- ادرس اتجاه تغیّر المتتالیة

$$(u_n)$$
 هـ- برّر تقارب المتتالية

$$w_n = \ln(v_n)$$
 و $v_n = \frac{u_n - 1}{u_n}$: بعتبر المنتاليتين العدديتين (w_n) و (v_n) المعرّفتين على (3

أ- برهن أنّ
$$(w_n)$$
 متتالية هندسية أساسها 2 ، يطلب تعيين حدّها الأوّل.

$$n$$
 بدلالة n ثم v_n بدلالة v_n بدلالة

$$\lim_{n\to +\infty} u_n$$
 بيّن أنّ: $u_n = \frac{1}{1-\left(\frac{5}{6}\right)^{2^n}}$ ثم أحسب $1-\left(\frac{5}{6}\right)^{2^n}$

$$S_n = \frac{1}{w_0} + \frac{1}{w_1} + \dots + \frac{1}{w_n}$$
 احسب بدلالة n المجموع التالي: (4

التمرين الثاني: (04,5 نقطة)

المعادلة ذات المجهول
$$z$$
 الأتية: \mathbb{C} المعادلة ذات المجهول z الآتية:

$$(z^2 - 2\sqrt{2}z + 4)(2z - \sqrt{2}) = 0$$

المستوي منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ نعتبر النقط B ، A و D من المستوي التي لواحقها (II

$$c = \sqrt{2} - i\sqrt{2}$$
 و $b = \sqrt{2} + i\sqrt{2}$ ، $a = \frac{\sqrt{2}}{2}$ على الترتيب:

- علّم النقط A و C في المعلم السابق. (1
- π نعتبر النقطة D صورة النقطة C بالتشابه S الذي مركزه A و نسبته D نعتبر (2

$$-rac{\pi}{2}$$
و النقطة C صورة النقطة C بالدوران R الذي مركزه C و زاويته

الترتيب. E و D للنقطتين e و d على الترتيب.

$$z = \frac{d-b}{e-b}$$
: نضع (III)

- 1) اكتب العدد المركب على الشكل المثلثي.
- I نعتبر النقطة I منتصف القطعة المستقيمة I نظيرة النقطة I نظيرة النقطة I نطيعة الرباعي I ما طبيعة الرباعي I

التمرين الثالث: (04 نقاط)

في الفضاء المزوّد بالمعلم المتعامد و المتجانس $(O;\vec{i},\vec{j},\vec{k})$ ، نعتبر النقط C، B، C و C حيث:

. D(0;1;1) و C(6;-2;-1)، B(6;1;5)، A(3;-2;2)

- ABC بيّن أنّABC مثلث قائم في
- . (AB) على الذي يشمل A و العمودي على (P)
 - ليكن (P') المستوي حيث: x-z-1=0 بيكن (3)

أ- هل المستويان (P) و (P') متعامدان؟ برّر إجابتك.

.(P') و (P) و الذي يشمل النقطة A و u(1;-2;1) شعاع توجيه له هو تقاطع المستويين Δ الذي يشمل النقطة Δ

لتكن النقطة $H\left(\frac{4}{3}; \frac{4}{3}; \frac{1}{3}\right)$ من الفضاء. (4

 (Δ) على المسقط العمودي لـ D على أن المسقط العمودي الح

 (Δ) و (Δ) و بين D

. (Δ) أ- بيّن أنّ النقطة $E\left(0;4;-1
ight)$ تنتمى إلى المستقيم (5

ب- احسب حجم رباعي الوجوه ABCE

التمرين الرابع: (06,5 نقطة)

- . $g(x) = x x \ln x$: بعتبر الدالة العددية g المعرّفة على المجال $g(x) = x x \ln x$ بعتبر الدالة العددية والمعرّفة على المجال المعرّفة على المعرفة ع
 - $\lim_{x\to +\infty} g(x)$ ا احسب $\lim_{x\to +\infty} g(x)$ و احسب (1

ب- ادرس اتجاه تغيّر الدالة g على المجال $]0;+\infty[$ ثم شكّل جدول تغيّراتها.

 $3.5 < \alpha < 3.6$: حيث α حيث g(x) = -1 تقبل حلاً وحيدا (2

.]0;+ ∞ استنتج إشارة العبارة g(x)+1 على المجال (3

 $f(x) = \frac{\ln x}{x+1}$:ب(11) بعتبر الدالة العددية f المعرّفة على المجال f

. $\|\vec{j}\| = 4cm$ و $\|\vec{i}\| = 2cm$: حيث مثيلها البياني في المستوي المنسوب إلى المعلم المتعامد $\left(O;\vec{i},\vec{j}\right)$ ميثالها البياني في المستوي المنسوب إلى المعلم المتعامد المتع

 $\cdot \, y = 0$ و x = 0 بیّن أنّ $\left(C_f \,
ight)$ يقبل مستقيمين مقاربين معادلتيهما (1

 $f'(x) = \frac{g(x)+1}{x(x+1)^2}$:]0;+∞[من المجال x من المجال عدد حقيقي x من المجال (2

ب- بيّن أنّ الدالة f متزايدة تماما على المجال $[\alpha;+\infty[$ و متناقصة تماما على $[\alpha;+\infty[$ ثم شكّل جدول تغيّراتها.

.1 عند النقطة ذات الفاصلة $\left(C_{f}\right)$ عند النقطة ذات الفاصلة

د- احسب $\lim_{x \to \alpha} \frac{f(x) - f(\alpha)}{x - \alpha}$ ، فسّر النتیجة هندسیا.

. $f(\alpha) = \frac{1}{\alpha}$:أ- بيّن أنّ

.(10^{-2} إلى أدوّر النتائج إلى $f\left(\alpha\right)$ ب- استنتج حصرا للعدد

 $\cdot (C_f)$ ج- ارسم

4) نعتبر المعادلة ذات المجهول الحقيقى الموجب تماما x و m وسيط حقيقى:

$$x^2 + x - 2m(x+1) = \ln(x^2) \dots (E)$$

. $f(x) = \frac{1}{2}x - m$: أ- تحقّق أنّ المعادلة (E) يؤول حلها إلى حل المعادلة

ب- عيّن بيانيا قيم m التي من أجلها تقبل المعادلة (E) حلّين متمايزين.

وري. الدالة المعرّفة على \mathbb{R}^* كما يلي: $\frac{\ln|x|}{-|x|-1}$ و $h(x) = \frac{\ln|x|}{-|x|-1}$ كما يلي: \mathbb{R}^* كما يلي: $h(x) = \frac{\ln|x|}{-|x|-1}$

أ- بيّن أنّ الدالة h زوجية.

 $\cdot (C_f)$ مستعينا بالمنحنى المعلم المنحنى المنحنى بنا المنحنى المعلم المنحنى .