

GARNET

Graphical Attack graph and Reachability Network Evaluation Tool*

Leevar Williams, Richard Lippmann, Kyle Ingols

MIT Lincoln Laboratory

15 September 2008

A Defender's Primary Advantage is Detailed Network Knowledge – This Needs to Be Used Effectively!

Specify Asset Values and Adversary

Define Network
Topology
and Filtering Rules

Discover Vulnerabilities

Define Vulnerability Requirements/Effects

MIT Lincoln Laboratory

A Tool Named NetSPA Integrates This Data and Supports "What If" Experiments

GARNET Uses NetSPA to Provide Rapid Interactive Response

- GARNET is implemented in Java using Swing
- NetSPA loads binary network model and produces C objects for data access
- Java and C code communicate using SWIG Toolkit

A Heuristic Evaluation Greatly Improved GARNET's Ease of Use

 Five participants evaluated 9 networks with the initial GUI and provided recommendations using protocols developed by (Nielsen and Molich, 1990; Nielsen 1994)

Original

Revised

- 20 Major Changes
- All "What-If" controls unified in Attack Graph Panel
- All network details placed in Network Map Panel

Security Compared by Determining Adversary Cost to Achieve Goals

- Emulate MORDA (Mission Oriented Risk and Design Analysis) procedures
- Need to model
 - System (Network)

Adversary goal

Defenses

Adversary

We Currently Assess Adversary Cost Using Three Different Metrics

- Number of hops to reach assets
- Number of unique exploits that are required
- Cumulative CVSS attack complexity

Analyze Network Security Using Escalating Adversary Models

1. Script User

Has an exploit for all known vulnerabilities

2. Single Zero-Day

 Able to create a zero-day exploit for the one application server on this network that provides the most access

3. Comprehensive-Zero Day

- Able to create a zero-day exploit for all application servers on this network
- Any host that can be reached can be compromised

Example Network

Anonymized data from real, field test network

MIT Lincoln Laboratory

Demonstration: Loaded Network

Demonstration: Rearranged Network

Demonstration: Attacker Start Select

Demonstration: Attack Result

Demonstration: Attack, Step One

Demonstration: Attack, Step Two

Demonstration: Stepping-Stone

Demonstration: Reachability Trace

Demonstration: Recommendation Used

Demonstration: Recommendation Used

Demonstration: Zero-Day Adversary

Demonstration: Zero-Day Adversary Select Worst-Case Zero-Day Application

Demonstration: Zero-Day Adversary Using Port 22/tcp

Demonstration: Assets Capture Versus Hops

Demonstration: Assets Captures Versus Unique Exploits Required

GARNET Summary

- Rapid Interactive response
- Easy to use and intuitive GUI
- Supports "What-If" experiments
- Computes and displays ...
 - Recommendations
 - Security metrics (attacker effort)
 - Host-to-host reachability
 - Attack graphs

Future Work

- Adversary model
 - Visualize client-side attacks
 - Import and use data on trust relationships
- Extend Countermeasure Models
 - Intrusion prevention systems
 - Proxy firewalls
- Efficiently model endpoint or host-based firewalls
- Display physical/logical network topology including firewalls, routers, and switches