MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZADAŃ III ETAPU KONKURSU CHEMICZNEGO

Zadania zamknięte: 1 pkt poprawnie zaznaczona odpowiedź

0 pkt błędnie zaznaczona odpowiedź

Zad.	1	2	3	4	5
Odp.	D	D	C	A	В

Zadania otwarte

Zadanie 6. (2 pkt)

UWAGA:

Narysowanie schematu doświadczenia H₂O + Zn nie jest wymagane! Zdający może wybrać dowolny mocny kwas i dowolną mocną zasadę. Zdający może odwrócić kolejność dodawania składników oraz numerację probówek.

Za poprawny wybór wszystkich odczynników i prawidłowy schemat doświadczenia – 2 pkt.

Za poprawny wybór odczynników i narysowanie jednego z dwóch elementów schematu doświadczenia – 1 pkt.

Za niepoprawny wybór odczynników lub nieprawidłowy schemat doświadczenia — 0 pkt. Brak rozwiązania

Zadanie 7. (2 pkt)

Reakcja z kwasem:

$$Zn + 2H^+ \rightarrow Zn^{2+} + H_2(\uparrow)$$

Za prawidłowe równanie reakcji w formie jonowej skróconej

− 1 pkt.

Za prawidłowe równanie reakcji w formie cząsteczkowej

-0 pkt.

Za nieprawidłowe równanie reakcji lub jego brak

-0 pkt.

Reakcja z mocną zasadą:

$$Zn + 20H^{-} + 2H_{2}O \rightarrow [Zn(OH)_{4}]^{2-} + H_{2}(\uparrow)$$

Za prawidłowe równanie reakcji w formie jonowej skróconej

– 1 pkt.

Za prawidłowe równanie reakcji w formie cząsteczkowej

-0 pkt.

Za nieprawidłowe równanie reakcji lub jego brak

-0 pkt.

UWAGA:

Za poprawne należy uznać równanie:

$$Zn + 20H^{-} \rightarrow ZnO_{2}^{2-} + H_{2}(\uparrow)$$

Uczeń może zapisać reakcję w formie jonowej skróconej przez "skreślenie" jonów nie biorących udziału w reakcji.

Zadanie 8. (3 pkt)

a)
$$x = 57$$
 $y = 6$

Za poprawne obliczenie indeksów x i y

- 1 pkt.

Za poprawne obliczenie jednego z indeksów (x lub y)

-0 pkt.

Za niepoprawne wartości indeksów x i y

-0 pkt.

Przykładowe rozwiązanie:

y = 6 (triglicerydy kwasów monokarboksylowych zawierają 6 atomów tlenu – 3 atomy tlenu z cząsteczki glicerolu i 3 atomy tlenu z trzech reszt kwasu tłuszczowego)

$$878 \text{ g} - (98 \times 1 \text{ g} + 6 \times 16 \text{ g}) = 684 \text{ g C}$$

$$684 g = 12x g$$
 $x = 57$

b) C₁₇H₃₁COOH

Za poprawne obliczenie indeksów x i y i wynikające z obliczeń podanie poprawnego wzoru – 2 pkt.

Za niepoprawne obliczenie indeksów x i y i wynikające z obliczeń podanie niepoprawnego wzoru, ale poprawną metodę rozwiązywania zadania z podpunktu b — 1 pkt.

Za poprawne obliczenie liczby atomów węgla w jednej cząsteczce kwasu – 1 pkt.

Za niepoprawny wzór kwasu wynikający z zastosowania niepoprawnej metody lub brak rozwiązania $-0~{\rm pkt.}$

Za podanie poprawnego wzoru kwasu bez obliczeń – 1 pkt.

Przykładowe rozwiązanie:

$$878 \text{ g} - [3 \times 12 \text{ g} (C) + 5 \times 1 \text{ g} (H)] = 837 \text{ g} \text{ (trzech grup RCOO-)}$$

837 g / 3 (grupy kwasu RCOO-) = 279 g dla jednej grupy RCOO-

$$279 g + 1 g (H) = 280 g za 1 mol kwasu$$

[57 atomów C (gliceryd) – 3 atomy C (reszta glicerolu)] / 3 = 18 atomów C w 1 cząsteczce kwasu

 $280 \text{ g} - 18 \times 12 \text{ g C} - 2 \times 16 \text{ g O} = 32 \text{ g H} = 32 \text{ mol H w 1 mol kwasu} = 32 \text{ atomy H w 1 cząsteczce kwasu}$.

Wzór kwasu C₁₇H₃₁COOH

Zadanie 9. (1 pkt)

C₁₈H₃₂O₁₆

Za poprawny wzór sumaryczny trisacharydu -1 pkt.

Brak poprawnego wzoru sumarycznego trisacharydu – 0 pkt. Brak odpowiedzi – 0 pkt.

•

<u>Uwaga:</u> Wzór ze zmienioną kolejnością pierwiastków (np. COH) należy uznać za niepoprawny.

Zadanie 10. (3 pkt)

a) $Cu_2O + H_2 \rightarrow 2Cu + H_2O$

Za prawidłowe równanie reakcji w formie cząsteczkowej

− 1 pkt.

Za nieprawidłowe równanie reakcji lub jego brak

-0 pkt.

b)Masa wody:

1,125 g H₂O

Za podanie prawidłowego wyniku wraz z jednostką i poprawną metodę

-2 pkt.

Za błąd rachunkowy, nieprawidłowe podanie wyniku (bez jednostki) i poprawną metodę – 1 pkt.

Za prawidłowy wynik, ale nieprawidłową metodę obliczeniową

-0 pkt.

Za niepoprawny wynik i niepoprawną metodę obliczeniową

-0 pkt.

Brak rozwiązania lub obliczeń prowadzących do prawidłowego wyniku

-0 pkt.

Przykładowe rozwiązanie:

1. Ilość O, który uległ reakcji:

$$15g - 14g = 1g$$

2. Liczba g Cu₂O, który uległ reakcji

$$xg Cu2O - 1g O$$

$$x = 8,9375g Cu_2O$$

3. Masa wydzielonej wody

$$143 \text{ g Cu}_2\text{O} - 18\text{ g H}_2\text{O}$$

$$8,9375g Cu2O - y g H2O y = 1,125 g H2O$$

UWAGA:

Obliczenie masy wydzielonej wody w poniższy sposób należy uznać za poprawne.

3. Masa wydzielonej wody:

$$O^{2-} + H_2 \rightarrow H_2O + 2e^{-}$$

$$16g O^{2} - 18g H_2O$$

$$1g O^{2} - g H_2O$$

$$x = 1,125g H_2O$$

Zadanie 11. (1 pkt)

$HCN + 2H_2O \rightarrow HCOONH_4$

Za prawidłowe równanie reakcji w formie cząsteczkowej	– 1 pkt.
Za nieprawidłowe równanie reakcji lub jego brak	– 0 pkt.
Zadanie 12. (1 pkt)	
Polimer o mniejszej gęstości przedstawiony jest na rysunku numer jeden (1)	
Za prawidłowy numer rysunku	– 1 pkt.
Za nieprawidłowy numer rysunku lub brak odpowiedzi	– 0 pkt.
Zadanie 13. (2 pkt)	
I. Ester reprezentowany przez plamkę 1 oznaczony jest literą C Za wakazania prawidłowai litery akraélającai agter	1 nlet
Za wskazanie prawidłowej litery określającej ester	– 1 pkt.
Za nieprawidłowe wskazanie litery określającej ester lub brak odpowiedzi	– 0 pkt.
II. Estry nie rozdzielone na chromatogramie zawarte są w plamce num	ner 3
Za wskazanie prawidłowego numeru plamki	– 1 pkt.
Za nieprawidłowe wskazanie numeru plamki lub brak odpowiedzi	− 0 pkt.

Zadanie 14. (2 pkt)

a)
$$2FeCl_3 + Fe \xrightarrow{H+} 3FeCl_2$$

Za prawidłowe podanie równania reakcji w formie cząsteczkowej

-1 pkt.

Brak równania reakcji lub brak odpowiedzi

-0 pkt.

b) Związki zawierające jony żelaza(II) łatwo utleniają się do jonów żelaza(III) pod wpływem tlenu w powietrzu, a parafina <u>blokuje dostęp powietrza / tlenu</u> do roztworu soli zawierającej jony żelaza(III).

Za poprawne uzasadnienie

- 1 pkt.

Brak poprawnego uzasadnienia lub brak odpowiedzi

-0 pkt

Zadanie 15. (1 pkt)

	Właściwości		Symbole pierwiastków trzeciego okresu Na, Mg, Al, Si, P, S, Cl
1	Zmniejszenie	promienia atomu	
2	Wzrost	elektroujemności	

Za wskazanie dwóch poprawnych zmian

– 1 pkt.

Za wskazanie jednej poprawnej zmiany lub brak odpowiedzi

-0 pkt.

Zadanie 16. (3 pkt)

Właściwości		Nazwa węglowodoru <u>lub</u> węglowodorów	
1	W warunkach normalnych (1013hPa, 0°C) jest gazem.	propan, propen	
2	Ulega polimeryzacji.	propen	
3	Reaguje z bromem.	propan, propen <u>lub</u> propen	
4	Ma większą zawartość procentową węgla.	propen	
5	W warunkach normalnych (1013hPa, 0°C) ma większą gęstość.	propan	
6	W temperaturze (-184°C) jest ciałem stałym.	żaden z nich	

Za poprawne uzupełnienie sześciu wierszy tabeli	− 3 pkt.	
Za poprawne uzupełnienie pięciu wierszy tabeli Za poprawne uzupełnienie czterech wierszy tabeli	2 pkt.1 pkt.	
Za poprawne uzupełnienie mniej niż czterech wierszy tabeli	− 0 pkt.	

Zadanie 17. (2 pkt)

Silniejsze oddziaływania van der Waalsa między łańcuchami bocznymi występują w walinie ponieważ oddziaływania te rosną ze wzrostem masy łańcucha bocznego / jego wielkości.

Za poprawną nazwę aminokwasu i poprawne uzasadnienie – 2 pkt.
 Za poprawną nazwę aminokwasu i niepoprawne uzasadnienie – 1 pkt.
 Za niepoprawną nazwę aminokwasu (niezależnie od uzasadnienia) – 0 pkt.

Zadanie 18. (3 pkt)

a)
$$FeSO_4 + Fe_2(SO_4)_3 + 8NH_3(aq) + 8H_2O \rightarrow Fe_3O_4 \cdot 4H_2O + 4(NH_4)_2SO_4$$

Za prawidłowe podanie równania reakcji w formie cząsteczkowej – 1 pkt.

Brak równania reakcji lub brak odpowiedzi

-0 pkt.

b) odczyn wodnego roztworu powstającej soli: **kwasowy**

Za prawidłowe określenie odczynu powstającej soli

-1 pkt.

Za nieprawidłowe określenie odczynu powstającej soli lub brak odpowiedzi

-0 pkt.

$$2NH_4^+ + 2H_2O = 2(NH_3 \cdot H_2O) + 2H^+c$$

<u>lub</u>

$$2NH_4^+ + 2H_2O \leftrightarrows 2NH_3 + 2H_2O + 2H^+$$

 $2NH_4^+ + 2H_2O \leftrightarrows 2NH_3 + 2H_3O^+$

Za prawidłowe równanie reakcji w formie jonowej skróconej

− 1 pkt.

Za prawidłowe równanie reakcji w formie cząsteczkowej

-0 pkt.

Za nieprawidłowe równanie reakcji lub jego brak

-0 pkt.

Zadanie 19. (2 pkt)

a)
$$NO_2^- + H_2O \rightleftharpoons HNO_2 + OH^-$$

Za prawidłowe równanie reakcji w formie jonowej skróconej - 1 pkt.

Za prawidłowe równanie reakcji w formie cząsteczkowej -0 pkt. -0 pkt.

Za nieprawidłowe równanie reakcji lub jego brak

UWAGA:

Uczeń może zapisać reakcję w formie jonowej skróconej przez "skreślenie" jonów nie biorących udziału w reakcji.

Równanie reakcji bez stanu równowagi (pominięcie dwóch strzałek) należy uznać za poprawne.

b) wzrośnie

Za prawidłowe określenie zmiany pH − 1 pkt.

Za nieprawidłowe określenie zmiany pH lub brak odpowiedzi -0 pkt.

Zadanie 20. (3 pkt)

Numer doświadczenia	Barwa roztworu <u>przed</u> wykonaniem doświadczenia	Barwa roztworu <u>po</u> wykonaniu doświadczenia	Wzór sumaryczny związku manganu <u>po</u> wykonaniu doświadczenia
I.	Fioletowa	Brak (różowa/bladoróżowa)	MnSO ₄
II.	Fioletowa	Żółta / Brunatna <u>lub</u> Bezbarwna	MnO ₂
III.	Fioletowa	Zielona	KNaMnO ₄ (K ₂ MnO ₄ / Na ₂ MnO ₄)

Za poprawne uzupełnienie trzech wierszy tabeli -3 pkt.

Za poprawne uzupełnienie dwóch wierszy tabeli -2 pkt.

Za poprawne uzupełnienie jednego wiersza tabeli -1 pkt.

Zadanie 21. (3 pkt)

masa sacharozy/masa maltozy $\approx 5/4$

Za podanie prawidłowego wyniku wraz z jednostką i poprawną metodę — 3 pkt.

Za błąd rachunkowy lub nieprawidłowe podanie wyniku (w postaci innej niż stosunek liczb całkowitych) i poprawną metodę – 2 pkt.

Za prawidłowy wynik, ale nieprawidłową metodę obliczeniową - 0 pkt. Za niepoprawny wynik i niepoprawną metodę obliczeniową - 0 pkt. Brak rozwiązania lub obliczeń prowadzących do prawidłowego wyniku - 0 pkt.

UWAGA:

Za pomyłkę w rozwiązaniu poprawnego układu równań prowadzące do nieprawidłowego wyniku wyrażonego stosunkiem liczb całkowitych – 2 pkt.

Przykładowe rozwiązanie:

Sposób I

M sacharozy lub maltozy = 342u; M glukozy = 180u

ms – masa sacharozy;

mm – masa maltozy

gs – masa glukozy powstała z sacharozy

gm – masa glukozy powstała z maltozy

$$ms + mm = 15,39$$

 $gs + gm = 11,7$

 $gs = ms \times 180/342 = 0.53 \text{ ms gramów}$

 $gm = mm \times 360/342 = 1,05 \text{ mm gramów}$

$$ms + mm = 15,39$$

$$0,53 ms + 1,05 mm = 11,7$$

mm = 6.81

ms = 8.58

masa sacharozy/masa maltozy = $8,58/6,81 = 1,26/1 \approx 5/4$

Sposób II

 $maltoza + sacharoza + 2H_2O \rightarrow 3glukoza + fruktoza$

1. masa wody.

684 g (ms + mm) - 36 g wody

$$15,39 \text{ g(ms + mm)} - x \text{ g wody}$$
 $x = 0.81 \text{ g wody}$

$$\kappa = 0.81 \text{ g wody}$$

2. masa fruktozy.

$$15,39 g + 0,81 g - 11,7 g = 4,5 g fruktozy$$

3. masa sacharozy.

342 g (ms) - 180 g fruktozy

$$x g (ms) - 4.5 g fruktozy$$
 $x = 8.55 g sacharozy$

$$x = 8,55$$
 g sacharozy

4. masa maltozy.

$$15,39 \text{ g} - 855 \text{ g} = 6,84 \text{ g maltozy}$$

5. stosunek masowy

$$8,55/6,84 = 1,25/1 = 5/4$$

Zadanie 22. (1 pkt)

1	Metan ma niską temperaturę wrzenia, ponieważ między cząsteczkami metanu występują silne siły przyciągania.	P	F
2	Po dodaniu roztworu chlorku sodu do roztworu białka z jaja kurzego zachodzi denaturacja białka.	P	F

Za poprawne ocenę dwóch wierszy tabeli − 1 pkt.

Za poprawną ocenę jednego wiersza tabeli -0 pkt.

Brak poprawnej oceny -0 pkt.

Maksymalna liczba punktów do uzyskania: 40

Tytuł laureata uzyskuje uczeń, który otrzymał minimum 90% maksymalnej liczby punktów, to jest 36 punktów.

Tytuł finalisty uzyskuje uczeń, który otrzymał minimum 30% maksymalnej liczby punktów, to jest 12 punktów.

OGÓLNE ZASADY OCENIANIA PRAC KONKURSOWYCH

- 1) Każdy poprawny sposób rozwiązania przez ucznia zadań powinien być uznawany za prawidłowy i oceniany maksymalną liczbą punktów.
- 2) Treść i zakres odpowiedzi ucznia powinny wynikać z polecenia i być poprawne pod względem merytorycznym.
- 3) Do zredagowania odpowiedzi uczeń używa poprawnej i powszechnie stosowanej terminologii naukowej. Nie punktuje się odpowiedzi niejednoznacznych i niepełnych udzielona odpowiedź musi wyraźnie wskazywać pokonanie trudności zadania i być w pełni poprawna merytorycznie.
- 4) Jeżeli w jakiejkolwiek części rozwiązania zadania uczeń przedstawia więcej niż jedną metodę i zawiera ona błąd, nie uznaje się wówczas rozwiązania zadania w tej części, a w przypadku zadań za 1 punkt nie przyznaje się punktu.
- 5) Za odpowiedzi w zadaniach przyznaje się wyłącznie punkty całkowite. Nie stosuje się punktów ułamkowych.
- 6) Wykonywanie obliczeń na wielkościach fizycznych powinno odbywać się z zastosowaniem rachunku jednostek. Brak jednostki przy wyniku końcowym i udzielonej odpowiedzi oznacza utratę 1 punktu.