Networked Robotics Systems, Cooperative Control and Swarming (ROB-GY 6333 Section A)

- Week 1:
 - Syllabus
 - Calendar and Office Hours
 - Introduction to Swarm Robotics
 - Graph Theory
- Join the course Slack channel. Go to NYU Brightspace > Content > Welcome to Swarm Robotics: Getting Started

Photography Courtesy: Tom Fayle

Plague of Locusts, By Jan Luyken and Pieter Mortier

Collective Behavior

- How does each animal know what to do/where to go?
- What does it mean to *know*?
- Global vs. local
 - Consensus: agree together
 - Coordination: act together

Collective Behavior

- How does each animal know what to do/where to go?
- What does it mean to know?
- Global vs. local
 - Consensus: agree together
 - Coordination: act together
- As roboticists, what can we learn? How can collective behavior/multi-agent systems be helpful to us?

Why network robots at all?

Cooperative Benefits

- Cost:
 - Single expensive robot with precise, complete functionality vs. many cheaper robots
- Scale
 - Coverage
- Robustness
 - Adaptable
 - Redundant
 - Efficient (Parallel)

Challenges and Constraints

- Consensus: agree together
- Coordination: act together
- Communication and Control:
 - Centralization vs. Complexity
 - Composition: Heterogeneous vs. Homogeneous
 - Communication: Synchronous vs. Asynchronous

All-to-All or Neighbors-Only

- What minimum connectivity is necessary?
- How to design "local" control law

Common Challenges and Constraints

- No access to a centralized computer
- Locality in communication (limited by environment/hardware)
- Locality in sensing (limited by environment/hardware)
- Each agent has limited power and computational resources
- Design should scale to any number of agents (>1000!)

References

- Kilobots: A Thousand-Robot Swarm
 - https://wyss.harvard.edu/media-post/kilobots-a-thousand-robot-swarm/
- SMORES-EP
 - https://www.grasp.upenn.edu/projects/smores-ep/
- Crazyswarm ()
 - https://www.youtube.com/watch?v=D0CrjoYDt9w&t=0s
- Multi-Robot Manipulation without Communication
 - https://www.youtube.com/watch?v=emZVxcl3Zg4
 - https://web.stanford.edu/~schwager/MyPapers/WangSchwagerDARS14Manip ulation.pdf

HARVARD

An End-to-End System for Accomplishing Tasks with Modular Robots

Gangyuan Jing, Tarik Tosun, Mark Yim and Hadas Kress-Gazit

RSS 2016

ModQuad: Assembling Structures in Midair

UPenn GRASP Lab

Simulation 2

Target: A Steinway K-52 Piano

Weight: 273kg, Length: 1.54m, Width: 0.67m, Height: 1.32m

We only draw 40 robots for visualization considerations

Multi-Robot System

Euler and the Seven Bridges of Königsberg

Königsberg, Prussia (modern day Kaliningrad)

- Can you walk across each bridge only once?
- Foundational problem of graph theory (and to a lesser degree, topology)

Graph

Graph

- Each vertex or node is a robot
- Each edge models the interaction between two robots
- The graph describes the connectivity properties of the system
- Many properties about the dynamics of the system can be inferred from the graph (without looking at differential equation)

Meaning of Connectivity

Control Graph (Follow the leader)

Communication Graph (Nearest neighbors)

Sensing Graph

Undirected Graph

- An undirected graph $G = (V, \mathcal{I})$ is composed of:
- 1. A finite set of vertices

$$\mathcal{V} = \{v_1, v_2, \dots, v_n\}$$

$$\mathcal{E} \subset \mathcal{V} \times \mathcal{V} = \{(v_i, v_j)\}, i = 1, ..., n, j = 1, ..., n, i \neq j$$
$$(v_i, v_j) \in \mathcal{E} \Longrightarrow (v_j, v_i) \in \mathcal{E}$$

subset of unordered pairs of vertices $\mathcal{V} \times \mathcal{V}$

Undirected Graph

- An undirected graph $G = (V, \mathcal{I})$ is composed of:
- 1. A finite set of vertices

$$\mathcal{V} = \{v_1, v_2, \dots, v_n\}$$

$$\mathcal{E} \subset \mathcal{V} \times \mathcal{V} = \{(v_i, v_j)\}, i = 1, ..., n, j = 1, ..., n, i \neq j$$
$$(v_i, v_j) \in \mathcal{E} \Longrightarrow (v_j, v_i) \in \mathcal{E}$$

 v_2 e_2 v_3 e_3

subset of unordered

pairs of vertices $\mathcal{V} \times \mathcal{V}$

For our graph:
$$\mathcal{V} = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathcal{E} = \{e_1, e_2, e_3, e_4, e_5\}$$

$$= \{(v_1, v_2), (v_2, v_3), (v_3, v_4), (v_4, v_5), (v_3, v_5)\}$$

Directed Graph

- An <u>directed</u> graph $\mathcal{D} = (\mathcal{V}, \mathcal{E})$ is composed of:
- 1. A finite set of vertices

$$\mathcal{V} = \{v_1, v_2, \dots, v_n\}$$

2. A finite set of **edges**

$$\mathcal{E} \subset \mathcal{V} \times \mathcal{V} = \{(v_i, v_j)\}, i = 1, ..., n, j = 1, ..., n, i \neq j$$
$$(v_i, v_j) \in \mathcal{E} \Rightarrow (v_j, v_i) \in \mathcal{E}$$

subset of <u>ordered</u> pairs of vertices $\mathcal{V} \times \mathcal{V}$

For our graph:
$$\mathcal{V} = \{v_1, v_2, v_3, v_4, v_5\}$$

$$\mathcal{E} = \{e_1, e_2, e_3, e_4, e_5\}$$

$$= \{(v_2, v_1), (v_2, v_3), (v_4, v_3), (v_5, v_4), (v_3, v_5)\}$$

Definitions: Neighbor

- A node v_i is a **neighbor** of (or **adjacent** to) v_i if $(v_i, v_j) \in \mathcal{E}$
- The **neighborhood** \mathcal{N}_i is the set of all neighbors of v_i

 v_2 is adjacent to v_1 and v_3 . v_3 is a neighbor of v_2, v_4 and v_5 the neighborhood of v_2 is $\{v_1, v_3\}$

 v_2 is adjacent to v_1 and v_3 . v_3 is a neighbor of v_5 but is NOT adjacent to v_4 and v_2

Definitions: Degree

Undirected graphs:

• The **degree** d_i of a node counts the neighbors $|\mathcal{N}_i|$ of the node

Directed graphs:

- The **in-degree** d_i^{in} of a node counts its neighbors $|\mathcal{N}_i|$ (number of edges coming *in* the node)
- The **out-degree** d_i^{out} counts the number of edges coming *out* of the node

 v_1 has degree 1 and v_3 has degree 3

 v_1 has in-degree $d_1^{in}=1$ and out-degree $d_1^{out}=0$, v_2 has $d_2^{in}=0$ and $d_2^{out}=2$ and v_3 has $d_3^{in}=2$ and $d_3^{out}=1$

Definitions: Path, Cycle

- A path* is a sequence of distinct vertices $v_{i_0}v_{i_1}...v_{i_m}$ such that the vertex v_{i_k} is adjacent to $v_{i_{k+1}}$
- A cycle** is a sequence of vertices, such that only the first and last vertex are equal.

^{*}Walk, Trail, vs. Path: Walks can repeat both vertices and edges. Trails can repeat vertices but not edges.

^{**}Circuit vs Cycle. A circuit is any walk where the first and last vertex are equal. Note that a cycle is a trail, but not a path!

Definition: Connectedness

 An undirected graph is connected if there exists a path from any vertex to any other vertex (i.e., all vertices can be reached from any vertex)

Definition: Connectedness

- A directed graph is strongly connected if there exists a directed path from any vertex to any other vertex
- A directed graph is weakly connected if there exists a path from any vertex to any other vertex when the graph is viewed as undirected

Special graphs

• A tree is a connected graph without any cycles

- A forest is a graph without any cycles
 - Not necessarily connected!

Special graphs

• The **complete graph** over n vertices K_n is the graph where every vertex is adjacent to every other vertex

• The cycle graph C_4

 K_4

• The path graph P_6

• The star graph S_5

Special graphs

• A *k*-regular graph is a graph where each vertex has degree *k*

 K_n is (n-1)-regular and C_n is 2-regular

Algebraic Graph Theory

- Describe graphs with matrices
 - Matrix properties are associated to graph properties

Adjacency matrix *A*

$$A \in \mathbb{R}^{n \times n} = A_{ij} \begin{cases} 1 \text{ if } (v_j, v_i) \in \mathcal{E} \\ 0 \text{ if } (v_j, v_i) \notin \mathcal{E} \end{cases}$$

Properties:

- $A_{ii}=0$
- For undirected graphs, A is symmetric : $A_{ij} = A_{ji}$, $A = A^T$
- For directed graphs, in general: $A \neq A^T$

Adjacency matrix *A*

$$A \in \mathbb{R}^{n \times n} = A_{ij} \begin{cases} 1 \text{ if } (v_j, v_i) \in \mathcal{E} \\ 0 \text{ if } (v_j, v_i) \notin \mathcal{E} \end{cases}$$

Properties:

- $A_{ii} = 0$
- For undirected graphs, A is symmetric : $A_{ij} = A_{ji}$, $A = A^T$
- For directed graphs, in general: $A \neq A^T$

Note: we use the convention described in the book (Mesbahi and Egerstedt "Graph theoretic methods in multi-agent systems") to define the adjacency matrix. Be aware that some books use other conventions. The chosen convention will be useful to define control laws later

Adjacency Matrix: Example

Adjacency Matrix: Example

• The **degree matrix** $\Delta \in \mathbb{R}^{n \times n}$ is a diagonal matrix with the node degrees d_i as diagonal elements

$$\Delta = \operatorname{diag}(d_i) = \operatorname{diag}\left(\sum_{j=1}^{N} A_{ij}\right)$$

• The **degree matrix** $\Delta \in \mathbb{R}^{n \times n}$ is a diagonal matrix with the node degrees d_i as diagonal elements

$$\Delta = \operatorname{diag}(d_i) = \operatorname{diag}\left(\sum_{j=1}^{N} A_{ij}\right)$$

• The **degree matrix** $\Delta \in \mathbb{R}^{n \times n}$ is a diagonal matrix with the node degrees d_i as diagonal elements

$$\Delta = \operatorname{diag}(d_i) = \operatorname{diag}\left(\sum_{j=1}^{N} A_{ij}\right)$$

$$\Delta = \left[egin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 & 0 \ 0 & 0 & 3 & 0 & 0 \ 0 & 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 0 & 2 \end{array}
ight]$$

• The degree matrix $\Delta \in \mathbb{R}^{n \times n}$ is a diagonal matrix with the node degrees d_i as diagonal elements

$$\Delta = \operatorname{diag}(d_i) = \operatorname{diag}\left(\sum_{j=1}^{N} A_{ij}\right)$$

$$\Delta = egin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 & 0 \ 0 & 0 & 3 & 0 & 0 \ 0 & 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

For directed graphs, we will use the in-degree for the diagonal elements

• The incidence matrix $E \in \mathbb{R}^{N \times |\mathcal{E}|}$ encodes the incidence relationship between edges and vertices

• The incidence matrix $E \in \mathbb{R}^{N \times |\mathcal{E}|}$ encodes the incidence relationship between edges and vertices

- The incidence matrix $E \in \mathbb{R}^{N \times |\mathcal{F}|}$ encodes the incidence relationship between edges and vertices
- Assign arbitrary orientation (direction) to all edges and an arbitrary labeling

- The incidence matrix $E \in \mathbb{R}^{N \times |\mathcal{F}|}$ encodes the incidence relationship between edges and vertices
- Assign arbitrary orientation (direction) to all edges and an arbitrary labeling

$$E_{ij} \begin{cases} -1 \text{ if vertex } v_i \text{ is the tail of edge } e_j \\ 1 \text{ if vertex } v_i \text{ is the head of edge } e_j \\ 0 \text{ otherwise} \end{cases}$$

- The incidence matrix $E \in \mathbb{R}^{N \times |\mathcal{F}|}$ encodes the incidence relationship between edges and vertices
- Assign arbitrary orientation (direction) to all edges and an arbitrary labeling

$$E_{ij} \begin{cases} -1 \text{ if vertex } v_i \text{ is the tail of edge } e_j \\ 1 \text{ if vertex } v_i \text{ is the head of edge } e_j \\ 0 \text{ otherwise} \end{cases}$$

$$E = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{array} \right]$$

• We will only use this for undirected graphs!

- We will only use this for undirected graphs!
- Why are we doing this?

Laplacian matrix

- The Laplacian matrix L is the difference between the degree matrix and the adjacency matrix
 - For undirected graphs:

$$L \in \mathbb{R}^{n \times n} = \Delta - A = EE^T$$

For directed graphs:

$$L \in \mathbb{R}^{n \times n} = \Delta - A$$

The incidence matrix is not used for directed graphs and the equality would not hold!

Laplacian matrix: Example

$$L \in \mathbb{R}^{n \times n} = \Delta - A = EE^T$$

Laplacian matrix: Example

$$L \in \mathbb{R}^{n \times n} = \Delta - A = EE^T$$

$$\Delta = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} E = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$E = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Laplacian matrix: Example

$$L \in \mathbb{R}^{n \times n} = \Delta - A = EE^T$$

$$L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2 \end{bmatrix}$$

Properties of Laplacian matrix (Undirected Graphs)

- The Laplacian matrix L is **symmetric** and **positive semi-definite**
 - all the eigenvalues of L are **real** and **non-negative**
- The sum of the columns and rows of L are 0
 - The vector of ones $\mathbf{1} = [1 \ 1 \ ... \ 1]^T$ is an eigenvector of L and its associated eigenvalue is $\lambda = 0$.

$$L1 = 0$$
 (sum of columns is zero)

- Similarly, $\mathbf{1}^T$ is a left eigenvector of L
 - $\mathbf{1}^T L = \mathbf{0}^T$ (sum of rows is zero)

Properties of Laplacian matrix (Undirected Graphs)

- Number of 0 eigenvalues of L = number of connected components of the graph
 - Graph is connected if and only if it has only one 0 eigenvalue
- For connected graphs:
 - $\operatorname{rank}(L) = n 1$
 - Null space is spanned by the vector of ones 1

Properties of Laplacian matrix (Directed Graphs)

- The Laplacian matrix L is **NEITHER necessarily symmetric NOR positive semi-**
 - eigenvalues of L can be complex and/or have non-negative real parts
- The sum of the **columns** of L are 0 (but not the sum of the **rows**)
 - The vector of ones $\mathbf{1} = [1 \ 1 \ \dots \ 1]^T$ is an eigenvector of L and its associated eigenvalue is $\lambda = 0$.

$$L1 = 0$$

Why?