获得的答案

а

The proof that an infinite regular language, say A, can be split into two infinite disjoint regular subsets is as follows:

- Let there be a string, say 's', such that $s \in A$ and s = xyz, where x, y and, z, represent the sub-strings of the string s.
- Since s belongs to the language A, and the language A is regular, xy^iz must belong to A, where $i \ge 0$. (As per the condition 1 of pumping lemma).
- Let A_1 be a language such that $A_1 = \{xy^{2i}z, where i \ge 0\}$.
- \bullet Since all the strings of the form xy^iz belong to A, the strings of the form xy^2iz must also belong to A.
- Hence, the language A₁ is a subset of the language A, i.e:

$A_1 \subset A$

 \bullet The strings of the language A_1 can be represented by the following regular expression:

 $x(yy)^*z$

Hence, the language A₁ is a regular language

- Since in the expression, $A_1 = \{xy^{2i}z, where i \ge 0\}$, there is no upper limit for the value of i, the language A_1 is infinite.
- ullet Since the regular languages are closed under the operation of complement, the language $\overline{A_1}$ is a regular language.
- Let A_2 be a language such that, $A_2 = \overline{A_1} \cap A$.
- Since the regular languages are closed under the operation of intersection, the language A2 is a regular language.
- \bullet Since the languages, A_1 and A are infinite, the language A2 is also infinite
- \bullet Clearly A_2 and A_1 are two disjoint sets.
- Also, $A = A_1 \cup A_2$

Thus, the language A can be split into two infinite disjoint regular subsets.

Hence, proved.

b.

The steps required to prove the given statement are as follows:

- Divide the regular language D into two regular disjoint subsets and let one of those subsets be B.
- Let the other subset be A, such that A = D B.
- Since D contains infinitely many strings that are not in B, A also contains infinitely many strings that are not in B.
- Further divide the language A into two disjoint subsets, A₁ and A₂, such that A₂ contains infinitely many strings that are not in A₁ and vice versa.
- Since A contains infinitely many strings that are not present in B, A₁ also contains infinitely many strings that are not in B.
- \bullet Create a set C such that $\,C = A_{_{1}} \cup B\,$.
- Since A₁ contains infinitely many strings that are not in B, C also contains infinitely many strings that are not in B.
- Clearly, B is a subset of C.
- Hence, the following statement is true:

$B \subseteq C$

- \bullet Since A_2 contains infinitely many strings that are not in A_1 , D contains infinitely many strings that are not present in A_1 .
- Since D contains infinitely many strings that are not present in A₁, D contains infinitely many strings that are not present in C.
- Hence, the following statement is true:

$C \subseteq D$

浙ICP备16034203号-2

 \bullet Since $\,B \,{\Subset}\, C\,$ and $\,C \,{\Subset}\, D$, the following statement is true:

$B \! \Subset \! C \! \Subset \! D$

Hence, proved.