Exercice 1

Les berges d'un fleuve sont parallèles et la distance qui les sépare est d = 400 m. On suppose que la vitesse de l'eau est constante et vaut $V_0 = 2,0$ m.s⁻¹. Un bateau part d'un point A sur une berge et veut atteindre le point B situé sur l'autre rive, exactement en face de A, selon une trajectoire rectiligne.

Pour ce faire, il part de A avec une vitesse par rapport à l'eau constante, notée \vec{V}_1 et faisant un angle ϕ avec AB. Il atteint B au bout d'un temps $\tau = 25$ min. Déterminer V_1 et ϕ .

Exercice 2 (Oscillations d'un pendule dans un train)

Un passager dans un wagon en translation horizontale d'accélération constante $\vec{a} = -a \vec{u}_x$ étudie les petites oscillations planes d'un pendule simple formé par une masse m et un fil de longueur L accroché au plafond du wagon.

- 1) Déterminer l'équation différentielle (du second ordre) vérifiée par l'angle θ . (Il y a 2 méthodes différentes)
- 2) Déterminer la position d'équilibre θ_0 du pendule.
- 3) Expliciter la période T_0 des petites oscillations autour de cette position d'équilibre.