Formal Methods and Functional Programming

Spring 2021

Jean-Claude Graf

September 20, 2021

Contents

I.	Fu	nctional Programming	3
1.	Intro	oduction	4
	1.1.	Functional Programming	4
	1.2.		4
		1.2.1. Syntax	4
		1.2.2. Types	5
		1.2.3. Input/Output	6
2.	Nat	ural Deduction	7
	2.1.	Natural Deduction	7
	2.2.	Propositional Logic	7
		2.2.1. Syntax	7
		2.2.2. Semantics	7
		2.2.3. Requirements for Deductive System	7
		2.2.4. Natural Deduction	8
	2.3.	First-Order Logic	9
		2.3.1. Syntax	9
		2.3.2. Semantics	9
		2.3.3. Substitution	10
		2.3.4. Natural Deduction	10
	2.4.	Equality	10
3.	Cori	rectness	11
	3.1.	Termination	11
	3.2.	Behaviour	11
4.	Lists	s	13
	4.1.	Introduction	13
	4.2.	Sorting Algorithms	13
	4.3.	List Comprehension	14
	4.4.		14

FMFP

5.	Abst	traction 15
	5.1.	Higher-Order Functions
		5.1.1. Examples
	5.2.	λ -Expression
	5.3.	Function as Values
		5.3.1. Examples
	5.4.	Function Arguments
_		
6.	Тур	
		Mini-Haskell
	6.2.	Type Classes
		6.2.1. Type Class
		6.2.2. Derived Classes and Class Hierarchies
	6.3.	Overloading
7.	Alge	ebraic Data Types 21
	_	Data Types
	7.2.	Integration with Classes
		Recursive Types
	7.4.	Algebraic Types and Type Classes
	7.5.	Correctness
8.		v Evaluation 24
	8.1.	Application
	8.2.	Correctness
n	Case	e Study 20
9.		Overview Interpreter
		Overview Parser
		Arithmetic Interpretation
	J.J.	Titionincole interpretation
II.	Fo	rmal Methods 32
10	. Intro	oduction 33
	10.1	. IMP
	10.2	. Properties
		. Free Variables
	_	
11	-	rational Semantics 39
		Big-Step Semantics
		Small-Step Semantics
	11.3	Equivalence
12	. Axio	omatic Semantics 44
		Soundness and Completeness
1 2	N 4	La Charling
13		Iel Checking 47 . Promela:
		. Promela:
	$_{10.2}$. muear remporar nogic (nrn)

${\rm FMFP}$

III. Appendix	55
14. Prelude	56
15. Data.List	59

Part I. Functional Programming

1. Introduction

1.1. Functional Programming

- Like mathematical expressions
- Consists of functions and values
- Functions are actually values themselves
- There is no state
- Referential Transparency: Not state \implies expression always evaluate to the same value
- No global variables
- Recursion instead of iteration
- + Easy to parallelize
- + Easy to analyze
- + Flexible type system

1.2. Haskell

- Lazy Evaluation: expression evaluates always outermost and leftmost expression
 - ♦ But pattern matching and some other functions force evaluation

1.2.1. Syntax

- Function
 - ♦ Function name and arguments start with lower-case
 - ♦ Expression after the equal sign is the return value
 - ⋄ Pattern Matching
 - * Is used for:
 - Check if argument has proper type
 - Bind values to variables
 - * Pattern
 - o Inductively defined
 - o Pattern are
 - ▷ Constants
 - ▶ Variables
 - ▶ Wild Card (_)
 - \triangleright Tuples $(p_1, p_2, ..., p_k)$ where p_i is a pattern
 - \triangleright Non-Empty Lists $(p_1:p_2)$ where p_i is a pattern
 - Must be linear
 - ▶ I.e. each variable cannot occur more than once
 - ▷ Does not count for wild card

* Pattern Matching

- Pattern matching is used to determine right definition
- Pattern p matches term a by the following recursion on p:
 - \triangleright Constant: p = c if c = a
 - ∇ariable: p = x always succeeds with binding x = a
 - ▶ Wild Card: p = _ always success but without binding
 - **Tuple:** $p = (p_1, ..., p_k)$ succeeds if $a = (a_1, ..., a_k)$ and p_i matches a_i ∀ $i ∈ \{1, ..., k\}$
 - ▶ Non-Empty List: $p = (p_1 : p_2)$ succeeds if $a = (a_1 : a_2)$ and p_i matches $a_i \quad \forall i \in \{1, 2\}$

FMFP 1 INTRODUCTION

- Forces evaluation (no longer lazy evaluation)
- Can define the same function multiple times but with different patterns
- ♦ May Contain several cases (guards)
 - * Boolean expression
 - * otherwise is the default case

♦ Scope

- * Functions have a global scope
- * Order of declaration does not matter
- * let <local func, var, const decl.> in <expr. using these defs>
 - More powerful than where
- * where <local func, var, const decl.>
 - o Follows guard or function return
 - Top-Down development (use and then declare)
- Constants can be defined outside of functions
- Program consists of multiple function definitions

• Indentations

- Determines separation of definitions
- ♦ All function definitions start at the same indentation
- The body of a function definition needs to be indented
- ♦ If line is split into two, indent new line again
 - * Can be done recursively
- ♦ Spaces have to be used, not tabs

1.2.2. Types

- Strongly typed
- Can explicitly define function definition or let Haskell do that
- Integral
 - ♦ Int: Bound
 - ♦ Integer: Arbitrary precision
- Double
- Char
 - Surrounded by '
- String
 - List of characters
 - ♦ Surrounded by "
 - ♦ Concatenate using ++
- Bool
- Function/Operator
 - ♦ **Operator:** Binary function which is used infix
 - 'func' makes function infix
 - ♦ (op) makes operator prefix
- Tuple
 - Compose multiple values of different type
 - \diamond Composed by a Type Constructor
 - \diamond If T_1, \ldots, T_n are Types, then (T_1, \ldots, T_n) is a tuple type
 - \diamond If $v_1 :: T_1, \ldots, v_n :: T_n$ are values of matching type, then $(v_1, \ldots, v_n) :: (T_1, \ldots, T_n)$ is a valid tuple
 - ♦ Can be nested

1.2.3. Input/Output

- I/O is not referential transparent (has side effects)
- Wrap by I0 to capture side effects
- getLine :: IO String reads a string
- putStrLn :: String -> IO () prints a string.
- do blocks sequences side effects
- \bullet <- extract values from IO
- return wraps values in IO

2. Natural Deduction

• Allows formal reasoning (proofs) about systems

2.1. Natural Deduction

- Rules allow to derive from assumptions $A_1, \ldots, A_n \vdash A$
- Derivations model trees
- Can construct derivation bottom-up or top-down
- **Proof** is a derivation without assumptions in the root
- Can be read as:
 - ♦ **Top-Down:** From the upper statement, the lower follows according to some rule
 - ♦ Bottom-Up: To proof the lower statement, it is sufficient to show the upper statement.

2.2. Propositional Logic

2.2.1. Syntax

- Language of Propositional Logic \mathcal{L}_p : For set of variables \mathcal{V} , \mathcal{L}_p is the minimal set with:
 - $\diamond X \in \mathcal{L}_p \text{ if } X \in \mathcal{V}$
 - $\diamond \perp \in \mathcal{L}_p$
 - $\diamond A \land B \in \mathcal{L}_p \text{ if } A \in \mathcal{L}_p \text{ and } B \in \mathcal{L}_p$
 - $\diamond A \lor B \in \mathcal{L}_p \text{ if } A \in \mathcal{L}_p \text{ and } B \in \mathcal{L}_p$
 - $\diamond A \to B \in \mathcal{L}_p \text{ if } A \in \mathcal{L}_p \text{ and } L_p \text{ and } B \in \mathcal{L}_p$
- Convention: X stands for variables, A, B for formulae

2.2.2. Semantics

- Valuation σ : Mapping assigning truth values to all variables
 - $\diamond \ \sigma : \mathcal{V} \to \{True, False\}$
 - ♦ Valuations: set of valuations
- Satisfiability \models : Smallest relation \subseteq Valuations $\times \mathcal{L}_p$ such that:
 - $\diamond \ \sigma \models X \ \text{if} \ \sigma(X) = \text{True}$
 - $\diamond \ \sigma \models A \land B \text{ if } \sigma \models A \text{ and } \sigma \models B$
 - $\diamond \ \sigma \models A \lor B \text{ if } \sigma \models A \text{ or } \sigma \models B$
 - $\diamond \ \sigma \models A \to B \text{ if whenever } \sigma \models A \text{ then } \sigma \models B$
- Satisfiable: is formula $A \in \mathcal{L}_p$ if $\exists \sigma, \sigma \models A$
- Valid/Tautology: is formula $A \in \mathcal{L}_p$ if $\forall \sigma, \sigma \models A$
- Semantic Entailment: $A_1, \ldots, A_n \models A$ if $\forall \sigma$ for which $\sigma \models A_i, \forall i \in [1, n]$ then $\sigma \models A$

2.2.3. Requirements for Deductive System

- Syntactic (⊢) and semantic (⊨) entailment should agree:
 - \diamond Soundness: If $H \vdash A$ can be derived, then $H \models A$
 - \diamond Completeness: If $H \models A$ then $H \vdash A$ can be derived
- Decidability is also a desired property
 - ♦ I.e. is some formula satisfiable, tautology, satisfied by a valuation etc.

2.2.4. Natural Deduction

- **Sequent:** Assertion of the form $A_1, \ldots, A_n \vdash A$, where A, A_i are propositional formulae \diamond If deduction system is sound, this is a semantic entailment
- Axiom: Leaves of a derivation tree
 - ♦ Starting point for derivation trees

 \Diamond

$$\frac{}{\ldots A, \ldots \vdash A}$$
 (axiom)

- Proof of A if root is $\vdash A$
 - \diamond If deduction system is sound, then A is a tautology
- Rules:
 - ♦ Each rule must be sound
 - * I.e. is must preserve semantic entailment
 - ♦ If each rule is sound, then the logic is sound
 - \diamond Safe is rule if we only enlarge Γ or we can get back the conclusion
 - ♦ And:

$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B} \ (\land \text{-I}) \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \ (\land \text{-EL}) \quad \frac{\Gamma \vdash A \land B}{\Gamma \vdash B} \ (\land \text{-ER})$$

♦ Or:

$$\frac{\Gamma \vdash A}{\Gamma \vdash A \vee B} \, (\forall \text{-IL}) \quad \frac{\Gamma \vdash B}{\Gamma \vdash A \vee B} \, (\forall \text{-IR}) \quad \frac{\Gamma \vdash A \vee B \quad \Gamma, A \vdash C \quad \Gamma, B \vdash C}{\Gamma \vdash C} \, (\forall \text{-E})$$

♦ Implies:

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \to B} (\to -I) \quad \frac{\Gamma \vdash A \to B \quad \Gamma \vdash A}{\Gamma \vdash B} (\to -E)$$

 \diamond **Negation:** Define $\neg A$ as $A \to \bot$

$$\frac{\Gamma \vdash \neg A \quad \Gamma \vdash A}{\Gamma \vdash B} \ (\neg \text{-E})$$

♦ Falsity:

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash A} (\bot - E)$$

♦ tertium non datur:

$$\frac{}{\Gamma \vdash A \vee \neg A} \text{ (TND)}$$

reductio ad adsurdum:

$$\frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} (RAA)$$

TODO: Make safe/unsafe

• Proof Strategy: Apply safe rules first

2.3. First-Order Logic

2.3.1. Syntax

- Signature: Set of function symbols $\mathcal F$ and set of predicate symbols $\mathcal P$
 - $\diamond f^i/p^i$ indicate the arity of function f/predicate p
- Term: For set of variables \mathcal{V} , the smallest set where:
 - $\diamond x \in \text{Term if } x \in \mathcal{V}$
 - $\diamond f^n(t_1,\ldots,t_n) \in \text{Term if } f^n \in \mathcal{F} \text{ and } t_j \in \text{Term } \forall 1 \leq j \leq n$
- Formulae: Smallest set where:
 - $\diamond \perp \in Form$
 - $\diamond p^n(t_1,\ldots,t_n) \in \text{Form if } p^n \in \mathcal{P} \text{ and } t_j \in \text{Term } \forall 1 \leq j \leq n$
 - $\diamond A \circ B \in \text{Form if } A \in \text{Form, } B \in \text{Form, and } \circ \in \{\land, \lor, \rightarrow\}$
 - $\diamond Qx.A \in \text{Form if } A \in \text{Form, } x \in \mathcal{V}, \text{ and } Q \in \{\forall, \exists\}$
- Quantifier extend as far as possible (EOL or closing outer bracket)
- Occurrence of a variable is either free or bound
 - \diamond Variable x is bound in formula A if it occurs within a subformula B of A of the form $Qx.B,\ Q\in\{\exists,\forall\}$
 - ♦ Names of bound variables are irrelevant
 - $\diamond \alpha$ -Conversion: Rename bound variables
 - * Keep binding structure (association between quantifier and variables)
 - * Prevent capture (renaming to the name of a free variable)
 - $\diamond x \text{ not free} \implies x \text{ bound}$
 - * x could also just not occur
- Binding
 - $1) \neg$
 - $2) \wedge$
 - 3) \vee
 - $4) \rightarrow$
- Associativity
 - \diamond Right: \rightarrow
 - \diamond Left: \land, \lor

2.3.2. Semantics

- Structure: Pair $S = \langle U_S, I_S \rangle$
 - $\diamond U_S$ is a non-empty universe
 - $\diamond I_S$ is a mapping which assigns each predicate $p^n \in P$ /formulae $f^n \in \mathcal{F}$ its truth value/definition
- Interpretation: Pair $\mathcal{I} = \langle S, v \rangle$
 - $\diamond S = \langle U_S, I_S \rangle$ is a structure
 - $\diamond v: \mathcal{V} \to U_S$ is a valuation
- Value: of a term t under the interpretation \mathcal{I} is written as $\mathcal{I}(t)$ with
 - $\diamond \mathcal{I}(x) = v(x), x \in \mathcal{V}$
 - $\diamond \mathcal{I}(f(t_1, \dots t_n)) = f^S(\mathcal{I}(t_1), \dots, \mathcal{I}(t_n))$
- Satisfiability \models : Smallest relation \subseteq Interpretations \times Form such that:
 - $\diamond \langle S, v \rangle \models p(t_1, \dots, t_n) \text{ if } (\mathcal{I}(t_1), \dots, \mathcal{I}(t_n)) \in p^S$
 - $\diamond \langle S, v \rangle \models \forall x.A \text{ if } \langle S, v[x \mapsto a] \rangle \models A, \forall a \in U_S$
 - $\diamond \langle S, v \rangle \models \exists x. A \text{ if } \langle S, v[x \mapsto a] \rangle \models A, \exists a \in U_S$
 - \diamond etc
 - ♦ Where

- * $\mathcal{I} = \langle S, v \rangle$
- * $v[x \mapsto a]$ is valuation v' identical to v except that v'(x) = a
- If $\langle S, v \rangle \models A$ and A has no free variables, then $S \models A$
- Valid: is A if every suitable interpretation is a model
 - \diamond Notation: $\models A$
- Satisfiable: if \exists a model for A
- Contradictory: if $\not\exists$ model for A

2.3.3. Substitution

- Replace in A all occurrences of a free variable x with some term t
- Notation: A[x/t]
- Must avoid capture
 - \diamond Free variables of t must still be free in A[x/t]
 - \diamond May need to α -convert first
 - ♦ It is ok if it clashes with another free variable

2.3.4. Natural Deduction

- In addition to the propositional logic rules we have
- Universal Quantifier:

$$\frac{\Gamma \vdash A}{\Gamma \vdash \forall x.A} \ (\forall \text{-I})^x \text{ not free in any formula in } \Gamma \quad \frac{\Gamma \vdash \forall x.A}{\Gamma \vdash A[x/t]} \ (\forall \text{-E})$$

• Existential Quantifier:

$$\frac{\Gamma \vdash A[x/t]}{\Gamma \vdash \exists x.A} \; (\exists \text{-I}) \quad \frac{\Gamma \vdash \exists x.A \quad \Gamma, A \vdash B}{\Gamma \vdash B} \; (\exists \text{-E})^x \; \text{not free in any formula in } \Gamma \; \text{or } B$$

2.4. Equality

- Is a logical symbol and not just a predicate
- Extend language
- Rules
 - ♦ Equivalence Relation:

$$\frac{\Gamma \vdash t = t}{\Gamma \vdash t = t} \text{ (ref)} \quad \frac{\Gamma \vdash t = s}{\Gamma \vdash s = t} \text{ (sym)} \quad \frac{\Gamma \vdash t = s}{\Gamma \vdash t = r} \text{ (trans)}$$

⋄ Congruence Relation:

$$\frac{\Gamma \vdash t_1 = s_1 \quad \dots \quad \Gamma \vdash t_n = s_n}{\Gamma \vdash f(t_1, \dots, t_n) = f(s_1, \dots, s_n)} (\operatorname{cong}_1)$$

$$\frac{\Gamma \vdash t_1 = s_1 \quad \dots \quad \Gamma \vdash t_n = s_n \quad \Gamma \vdash p(t_1, \dots, t_n)}{\Gamma \vdash p(s_1, \dots, s_n)} (\operatorname{cong}_2)$$

• Equality proofs are easier in linear way than using natural deduction trees

FMFP 3 CORRECTNESS

3. Correctness

- Properties of a correct program:
 - ♦ **Termination:** Does not count for all, but most programs
 - ♦ Functional Behaviour: Function should return "correct" value
- Must be proven

3.1. Termination

- If f is composed of functions g_1, \ldots, g_k and $g_i \neq f$ and each g_i terminates then f terminates
- Recursive function terminates if the arguments are smaller along a well-founded order on the function's domain
 - ♦ Is a sufficient condition
 - \diamond Well-Founded: is the order > on set S iff there is no infinite decreasing sequence in S
 - * **Relation composition** of two binary relation R_1, R_2 on set S is $R_2 \circ R_1 \equiv \{(a, c) \in S \times S \mid \exists b \in S.aR_1b \land bR_2c\}$
 - \circ For $R \subset S \times S$:
 - $\triangleright R^1 \equiv R$
 - $ightharpoonup R^{n+1} \equiv R \circ R^n, n \ge 1$
 - $\triangleright R^+ \equiv \bigcup_{n>1} R^n$
 - * For $R \subseteq S \times S$, $s_0, s_i \in S$ and $i \ge 1$. Then $s_0 R^i s_i$ iff $\exists s_1, \ldots s_{i-1} \in S$ such that $s_0 R s_1 R \ldots R s_{i-1} R s_i$
 - * If > is well-founded order on S then so is $>^+$.

3.2. Behaviour

- Equality Reasoning
 - ♦ Goal: Show function return is equal to some value
 - ♦ **Idea:** Function are equations
 - Apply equational reasoning
 - ♦ Proof using FOL with equality
- Reasoning by Cases
 - ♦ For predicate functions
 - ♦ Often use
 - * Excluded Middle (TND): For all prepositions $P, P \vee \neg P$
 - * Case Split (\vee -E): Prove $P = Q \vee R$ by proving $Q \implies P$ and $R \implies P$
- Induction
 - ♦ Dual of recursion
 - \diamond Prove $P(n) \forall n \in Nat$.
 - * Base Case: Proof P[n/0]
 - * Step Case: Proof P[n/m+1] by assuming P[n/m] for some arbitrary but fixed m
 - \circ m must not be free in P
 - \circ Can also take P[n/n] to remove side condition
 - ♦ Natural Deduction

*

$$\frac{\Gamma \vdash P[n/0] \quad \Gamma \vdash \forall m \in \text{Nat.} P[n/m] \to P[n/m+1]}{\Gamma \vdash \forall n \in \text{NAT.} P} \text{ (NAT-IND)}^{m \text{ not free in } P}$$

FMFP 3 CORRECTNESS

- Well-Founded Induction/Notherian Induction (not exam relevant)
 - \diamond Well-Founded Step: Prove P[n/m] by assuming $P[n/l] \forall l < m$
 - * m and l not free in P
 - $\diamond\,$ Stronger than normal induction

FMFP 4 LISTS

4. Lists

4.1. Introduction

4.2. Sorting Algorithms

• Insertion Sort

• Quick Sort (long form)

• Quick Sort (short form)

```
q :: [Int] -> [Int]
q [] = []
q (p:xs) = q [x | x <- xs, x <= p] ++ [p] ++ q [x | x <- xs, x > p]
```

FMFP 4 LISTS

4.3. List Comprehension

- Notation for sequential processing of list elements
- Analogous to set comprehension in set theory
- General form: [func x | <gen_1>, ..., <gen_n>, <pred_1, ..., <pred_m>]
- Generators can depend on each other

```
\diamond E.g. [x | n <- [1..10], x <- [1..n]]
```

• Generators can depend on if then else

$$\diamond$$
 E.g. [x | n <- [1..10], if even x then x <- [1,2] else x <- [1]]

• TODO: Add more handy dandy examples

4.4. Induction Over Lists

- Prove P for all xs in [T]
 - \diamond Base Case: prove P[xs/[]]
 - \diamond Step Case: prove $\forall y :: T, ys :: [T].P[xs/ys] \rightarrow P[xs/y:ys]$
 - * **Fix** arbitrary but non-free y :: T, ys :: [T]
 - * Induction Hypothesis: Assume P[xs/ys]
- Sometimes hard to pick right induction variable
 - ♦ Proof may fail depending on the variable
- Generalisation
 - ♦ Proof a stronger statement as a subproof
 - ♦ Required for some proofs

FMFP 5 ABSTRACTION

5. Abstraction

- Polymorphic Type t: A set of types
- Parametric Polymorphism: Function works for type t iff it works for all types contained in t
- A type w for function f is a most general (/principal) type iff for all types s for f, s is an instance of w.
- Given a function, Haskell always computes the most general type
 - ♦ If we give a type, it must be an instance of the most general type
- Type variables start with lower-case

5.1. Higher-Order Functions

- Types
 - ♦ First Order: Arguments are base types or constructor types
 - * Int -> [Int]
 - ♦ **Second Order:** Arguments are themselves functions
 - * (Int -> Int) -> [Int]
 - ♦ Third Order: Arguments are functions, whose arguments are functions
 - * ((Int -> Int) -> Int) -> [Int]
 - ♦ **Higher-Order:** Functions of arbitrary order
- Advantages
- + Definition is easier to understand
- + Parts are easier to modify
- + Pars are easier to reuse
- + Correctness is simpler to understand and show

5.1.1. Examples

- Map
 - ♦ Apply function to each argument in a list

```
  map :: (a -> b) -> [a] -> [b]
  map f [] = []
  map f (x:xs) = f x : map f xs
```

- Folding
 - ♦ Aggregate all elements of a list
 - ⋄ foldr
 - * Written as (f x_1 (f x_2 (f ... (f x_k e))) for list x, function f and default value e
 - st When seen as a tree, the con is replaced by f and the empty list by e
 - * Can operate on infinite list

```
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
foldr f e [] = e
foldr f e (x: xs) = f x (foldr f e xs)
```

- * **Recipe:** Implement some (suitable) function with folder
 - Identify the following arguments:
 - ▶ **Recursive Arguments:** The list which shrinks in each iteration
 - ▶ Static Arguments: The ones which do not change
 - ▶ **Dynamic Arguments:** The ones which change arbitrarily
 - Write a helper function aux with all recursive and then dynamic arguments

FMFP 5 ABSTRACTION

- o Move the dynamic arguments to the right of the equals
 - ▶ I.e. form a lambda function
 - \triangleright I.e. η -expansion
- Rewrite the helper function using foldr and replace aux xs with local variable rec
- Inline the helper function

♦ foldl

- * Written as $f(f(f(f e x_1) x_2) ...) x_k$ for list x, function f and default value e
- * Runs infinitely on infinite lists

```
* foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f e [] = e
foldl f e (x: xs) = foldl f ( f e x) xs
```

♦ foldr and foldl are equivalent for associative functions

5.2. λ -Expression

- Allows in-line function definitions
- Constructed as (\v_1 -> ... -> \v_k -> <someExpression>)
 - ♦ Syntactic sugar (\v_1 ... v_k -> <someExpression>)
- Adoption of Church's λ -notation
- η -Conversion: x -> f x and f are equivalent
 - $\diamond \eta$ -Contraction: From left to right
 - $\diamond \eta$ -Expansion: From Right to left
 - ♦ Useful to simplify expression

5.3. Function as Values

- Function itself can be returned from function
- Returned function cannot be displayed, but only evaluated

5.3.1. Examples

- Function Composition
 - ♦ Takes two functions as arguments and returned the composite function
 - ♦ Application associates to the left

$$\Diamond$$
 (.) :: (b -> c) -> (a -> b) -> (a -> c) (f . g) x = f (g x)

- Iteration
 - \diamond Apply a function **a** -> **a** *n* times to a input *x*

```
  iter :: Int -> (a -> a) -> a -> a
  iter 0 f x = x
  iter n f x = f (iter (n - 1) f x)
```

- Difference Lists
 - ♦ **Problem:** Appending to list is expensive
 - ♦ Idea: Construct list as a higher order (first) function
 - \$ type DList a = [a] -> [a]

```
empty :: DLists a
empty = \xs -> xs
```

FMFP 5 ABSTRACTION

```
sngl :: a -> DList a
sngl x = \xs -> x : xs

app :: DList a -> DList a -> DList a
ys 'app' zs = \xs -> ys (zs xs)

fromList :: [a] -> DList a
fromList ys = \xs -> ys ++ xs

toList :: DList a -> [a]
toList ys = ys []
```

5.4. Function Arguments

• Partial Application

- ♦ One applies only some but not all arguments
- ♦ A new function, still requiring some arguments, is returned
- ♦ Useful for map, filter etc.
- \diamond If $f:: t_1 \to t_2 \to \cdots \to f_n \to t$ and $e_1:: t_1, \ldots, e_k:: t_k$ then the partial application has type $fe_1 \ldots e_k:: t_{k+1} \to \cdots \to t_n \to t$
- $\diamond\,$ Partial application is consistent with the view that function takes multiple arguments
 - * But a function takes exactly one arguments
- \diamond For infix operator \oplus :
 - $* (a \oplus) \equiv \lambda x.a \oplus x$
 - $* (\oplus a) \equiv \lambda x.x \oplus a$
 - * Importend to consider when operator is not commutative o (a 'func') != ('func' a)

• Tupling

- ♦ Wrapping multiple arguments into tuple lets us apply them as one argument
- ♦ Function is one of:
 - * Curry Func: Takes multiple arguments
 - * Uncury Func: Takes a tuple as argument
- ♦ We want convert one representation to the other using:
 - * Curry: Uncurry \rightarrow curry

```
curry :: ((a,b) -> c) -> a -> b -> c
curry f = f' where f' x1 x2 = f (x1,x2)
```

* Uncurry: Curry → uncurry

```
uncurry :: (a \rightarrow b \rightarrow c) \rightarrow (a,b) \rightarrow c
uncurry f' = f where f (x1,x2) = f' x1 x2
```

• Uncluttering Notation

- ♦ Right associative operator \$ for arguments
- Avoids parentheses

FMFP 6 TYPES

6. Types

- Should prevent dangerous expressions
 - ♦ Which cause a runtime error
- Classification (good/bad) of expressions is undecidable
 - ♦ Type systems are conservative and only allow what they are sure is good
- Type checker should offer:
 - quick, decidable, static analysis
 - ⋄ permit generality/re-usability
 - ⋄ prevent runtime-errors

6.1. Mini-Haskell

- Typing system
- Subset of Haskell
- Syntax
 - ♦ Programs are terms

 \Diamond

$$t ::= \underbrace{\mathcal{V}}_{\text{Variables lambda abstraction functions}} | \underbrace{(t_1 \ t_2)}_{\text{Integers}} | \text{True} | \text{False} |$$

$$(\text{iszero } t) | \underbrace{\mathcal{Z}}_{\text{Integers}} | (t_1 + t_2) | (t_1 * t_2) |$$

$$\text{if } t_0 \text{ then } t_1 \text{ else } t_2 | \underbrace{(t_1, t_2)}_{\text{Pairing}} | (\text{fst } t) | (\text{snd } t)$$

- ♦ Can easily be extended
- ♦ Add syntactic sugar: Can leave out parenthesis when not necessary
- Typing

$$\diamond \text{ Set of types } \tau ::= \underbrace{\mathcal{V}_{\tau}}_{\text{Set of Type Variables } (a,b,\dots)} | \text{ Bool } | \text{ Int } | \underbrace{(\tau,\tau)}_{\text{Pair Constructor}} | \underbrace{(\tau \to \tau)}_{\text{Function Constructor}}$$

- \diamond Typing Judgement: $\Gamma \vdash t :: \tau$
 - * Γ : Set of bindings mappings from variables to types
 - * *t*: Term
 - * τ : Type
 - * "Given assignments Γ , term t is of type τ "
- ⋄ Rules
 - * Basic:

$$\frac{\Gamma, x : \sigma \vdash t :: \tau}{\Gamma \vdash (\lambda x.t) :: \sigma \to \tau} \text{ (Abs)} \quad \frac{\Gamma \vdash t_1 :: \sigma \to \tau \quad \Gamma \vdash t_2 :: \sigma}{\Gamma \vdash (\lambda x.t) :: \sigma \to \tau} \text{ (Abs)} \quad \frac{\Gamma \vdash t_1 :: \sigma \to \tau \quad \Gamma \vdash t_2 :: \sigma}{\Gamma \vdash (t_1 \ t_2) :: \tau} \text{ (App)}$$

* Base Types:

$$\frac{}{\Gamma \vdash n :: \operatorname{Int}} \text{ (int)} \quad \frac{}{\Gamma \vdash \operatorname{True} :: \operatorname{Bool}} \text{ (True)} \quad \frac{}{\Gamma \vdash \operatorname{False} :: \operatorname{Bool}} \text{ (False)}$$

* Operations op $\in \{+, *\}$

$$\frac{\Gamma \vdash t :: \operatorname{Int}}{\Gamma \vdash (\operatorname{iszero} t) :: \operatorname{Bool}} \text{ (iszero)} \quad \frac{\Gamma \vdash t_1 :: \operatorname{Int}}{\Gamma \vdash (t_1 \text{ op } t_2) :: \operatorname{Int}} \text{ (BinOp)}$$

FMFP 6 TYPES

* Conditional:

$$\frac{\Gamma \vdash t_0 :: \text{Bool} \quad \Gamma \vdash t_1 :: \tau \quad \Gamma \vdash t_2 :: \tau}{\Gamma \vdash (\text{if } t_0 \text{ then } t_1 \text{ else } t_2) :: \tau} \text{ (if)}$$

* Tuples:

$$\frac{\Gamma \vdash t_1 :: \tau_1 \quad \Gamma \vdash t_2 :: \tau_2}{\Gamma \vdash (t_1, t_2) :: (\tau_1, \tau_2)} \text{ (Tuple)} \quad \frac{\Gamma \vdash t :: (\tau_1, \tau_2)}{\Gamma \vdash (\text{fst } t) :: \tau_1} \text{ (fst)} \quad \frac{\Gamma \vdash t :: (\tau_1, \tau_2)}{\Gamma \vdash (\text{snd } t) :: \tau_2} \text{ (snd)}$$

• Type Inference

- \diamond Given term t what is its type?
- ♦ Algorithms:
 - 1. Start with judgement $\vdash t :: \tau_0$ where τ_0 is the type variable and t is the expression whose type we want to determine
 - 2. Build derivation tree bottom-up by applying rules and collect constraints. Introduce fresh type variables if need
 - 3. Solve constraints to get possible types
- ♦ Some terms are untypeable
 - * Type inference fails to build inference tree or constraints are unsolvable
- Type Proof
 - \diamond Given term t and type τ . Prove that $t :: \tau$

TODO: Add Type Proof section

- Self Application
 - \diamond Apply function f to itself: $\lambda f.ff$
 - ♦ Is not typeable
- Curry-Howard Isomorphism (not examrelevant)
 - \diamond Type constructor ' \rightarrow ' corresponds to propositional logic connectivity ' \rightarrow '
 - Atomic types correspond to propositional variables
 - ♦ Rules correspond to those minimal propositional logic

6.2. Type Classes

- Defines
 - ♦ Set of types
 - Set of allowed functions on these types
- Allow restricted for of type generalisation
- Monomorphic: Restricted to a single type (base type)
- Polymorphic: Restricted by the type set (a type class)

6.2.1. Type Class

- Definition
 - ♦ Name: upper-case
 - ♦ **Signature:** Function names with their type
 - * Required to be implemented by instances of this type
 - ♦ **Default Definition:** Definition based on other signatures
 - * Optional
 - * Can be overwritten

FMFP 6 TYPES

```
(/=) :: a → a → Bool → Signature

x /= y = not (x == y) → Default definition

◊ To indicate that a certain type t if of type class Eq we write Eq t => t
```

• Instance

- ♦ Application of a type class to a certain type
- Elements of a class are instances
- ♦ Interprets signature functions
 - * Requires defining all signatures and optionally, overwrite default definitions
- Done using keyword instance
- ♦ instance Eq Bool where

```
True == True = True
False == False = True
== = False
```

- ♦ Can be recursive
 - * If t is of type Eq then so is [Eq]
 - * I.e. membership depends on membership of other type
 - * instance Eq t => Eq [t] where

```
[] == [] = True
(x:xs) == (y:ys) = x == y && xs == ys
_ == _ = False
```

6.2.2. Derived Classes and Class Hierarchies

- Type classes can build on top of other type classes
- If a belongs to the child type, is must also belong to the parent type
- All function of the parent type are inherited and some new ones (may be) added
- class Eq a => Ord a where...
- Arbitrarily nested classes can be created

6.3. Overloading

- Execution of parametric polymorphic functions independent of type of arguments
- Classes implements ad hoc polymorphism
- Selection of function definition is either
 - At compile time if types are knows
 - ♦ else, at runtime

TODO: I am not sure what this all means

7. Algebraic Data Types

- Declare new data types suitable for the object being modeled
- Algebraic means it is the smallest set
- + Less error prone

7.1. Data Types

• Enumeration Types

- ♦ Set of possible types
 - * Each element is a type constructor
- Initiated by keyword data
- ♦ Constructors must have unique names
- ♦ First letter of each constructor must be upper-case
- ♦ data TypeName = Const1 | Const2 | Const3
- ♦ Function can use this type for pattern matching
 - * func :: TypeName -> SomeOtherType
- ♦ Type class can have type variables as arguments
 - * For polymorphism
 - * data TypeName a = ...

• Product Type

- Consists of a type name and a set of "attributes"
 - * Attribute must be a certain type
 - Giving an alias using type adds a layer of abstraction
- data TypeName = Name Attr1 Attr2
 - * type Attr1 = Sometype
 - * TypeName and Name are often the same
- ♦ Constructor is a function Name :: Attr1 -> Attr2 -> TypeName
- ♦ Functions can use this type for pattern matching

```
* func :: TypeName -> SomeOtherType
func (Name Attr1 Attr2) = ...
```

- ♦ Could use tuples instead of product types
 - * data TypeName = (Attr1, Attr2)
 - Makes arguments ambiguous
 - + Allows application of polymorphic functions like fst, zip...
 - + Shorter definition

• Enumeration and Product Types

- ♦ Enumeration and product types can be combined
- ♦ data TypeName = Name1 Attr1 | Name2 Attr1 Attr2
- ♦ Functions can use this type for pattern matching

```
* func :: TypeName -> SomeOtherType
func (Name1 Attr1) = ...
func (Name2 Attr1 Attr2) = ...
```

7.2. Integration with Classes

- Default function are not applicable to our custom data types
- Have to be explicitly created

```
♦ data TypeName = Name1 Attr1 | Name2 Attr1 Attr2
instance TypeClass TypeName where
```

• In some cases class instances can be automatically derived

7.3. Recursive Types

- Defined using recursive data types
 - ♦ data Expr = Lit Int | Add Expr Expr
- Are evaluated recursively

- Example: Trees
 - ♦ Are a prime example
 - ♦ Can describe many data structures

7.4. Algebraic Types and Type Classes

- Algebraic types are *fist class* citizens
 - ♦ Fully compatible with polymorphism and type classes
- Standard types are algebraic data types defined in the prelude
- + Make program simpler to read and understand
- + Allow reusability

7.5. Correctness

- Natural Number
 - ♦ data Nat = Zero | Succ Nat deriving (Eq, Ord, Show)
 - ♦ Isomorphic to {Zero, Succ Zero, Succ (Succ Zero), ...}
 - ♦ Build step by step
 - Allows structural induction proofs
- Lists

```
♦ data L t = Nil | Cons t (L t)
```

- \diamond Elements in L t are build in steps
 - * {Nil}
 - * {Cons a Nil $\in L$ $t \mid a \in t$ }
 - * {Cons b(Cons a Nil) $\in L$ $t \mid a, b \in t$ }

*

- $\diamond l \in L \ t \ \text{iff} \ l \ \text{appears in some of the construction step}$
- ♦ Rule

$$\frac{\Gamma \vdash P[xs/\mathrm{Nil}] \quad \Gamma, P[xs/ys] \vdash P[xs/\mathrm{Cons}\ y\ ys]}{\Gamma \vdash \forall xs \in L\ t.P} \ (\mathrm{IND\ on\ List})^{y,ys\ \mathrm{not\ free\ in}\ \Gamma,P}$$

• Trees

- ♦ data Tree t = Leaf | Node t (Tree t) (Tree t)
- \diamond Elements in $Tree\ t$ are build in steps
 - * {Leaf}
 - $* \ \{ \text{Node} \ a \ \text{Leaf Leaf} \in Tree \ t \mid a \in t \}$
 - *
 - * Trees in step i are of form Node a l r where $a \in t$, and l and r were constructed in the previous step
- \diamond $s \in Tree\ t$ iff s appears in some of the construction step
- ⋄ Rule

$$\frac{\Gamma \vdash P[x/\text{Leaf}] \quad \Gamma, P[x/l], P[x/r] \vdash P[x/\text{Node } a \ l \ r]}{\Gamma \vdash \forall x \in \text{Tree } t.P} \, (\text{IND on Tree})^{a,l,r \text{ not free in } \Gamma, P[x/r]} \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text{for the end } \Gamma, P[x/r] \, (\text{IND on Tree})^{a,l,r} \, \text$$

• General Idea

- ♦ Adopt induction to the structure of the algebraic data type
- \diamond Proof non-recursively step 0
- \diamond Proof recursively how to get from step i-1 to i

8. Lazy Evaluation

- Only evaluate arguments when needed
- Substitute arguments without argument evaluation
- Some expressions are never evaluated
 - ♦ Can save arbitrary amount of work

• Duplicate Evaluation:

- One argument may be used multiple times
- Haskell avoids duplicate evaluation of the same arguments
- \diamond **Sharing:** Pointer graph of arguments indicated if an argument was already executed
 - * If it was, we can directly take the result
- Arguments are evaluated only when needed and at most once

• Pattern Matching

- ♦ Arguments evaluate as far as needed to determine pattern match
- ♦ Start matching the top most pattern and on failure go to the next

• Guards

- ♦ Evaluate only what is required to check if guard is true
- ♦ Start matching the top most guard and on failure go to the next

• Local Definitions

where and let are lazily evaluated

• Functions

- ♦ Outermost operator is first evaluated
 - * Top-down evaluation in a syntax tree
- ♦ If on same level, evaluate from left to right or according to operator precedence
- Recipe: Evaluate t1 t2 lazily
 - ♦ Evaluate t1
 - ♦ The argument t2 is substituted in t1 without being evaluated
 - ♦ No evaluation inside lambda abstractions
 - * I.e. in an abstraction (\t -> f t), (where f is some arbitrary term), then f t is not evaluated
- Recipe: Evaluate t1 t2 eagerly
 - ♦ Evaluate t1
 - ♦ t2 is evaluated prior to substitution in t1
 - ♦ Evaluation is carried out inside lambda abstractions

8.1. Application

• Data-Driven Programming

- ♦ Data can be generate on demand
 - * Improved runtime complexity
- Due to lazy evaluation, only required data is constructed

• Infinite Data

- ♦ Finite representation of infinite data
 - * E.g. from n = n : ones (n+1) generates an infinite list
- ♦ We can calculate with infinite data in finite time
 - * E.g. head from 1
- ♦ I.e. we describe an infinite stream and compute with arbitrarily large finite prefixes of it

8.2. Correctness

- Complicated analysis of correctness and complexity
- Type like [Int] include finite and infinite lists
- Proof by induction is sound only for finite lists
 - \diamond We always assume finite lists for this course

9. Case Study

9.1. Overview Interpreter

- Has three basic steps:
- Read
 - ♦ Input: Text
 - ♦ Phases:
 - * Lexical Analysis
 - Convert source code to tokens
 - ▶ I.e. tell for each groups of symbols what they are
 - Tokens: Identifier (variables), arithmetic symbols, assignment symbol, numbers, etc.
 - White-spaces and comments are removed
 - * Parsing
 - Build abstract syntax tree
 - o Syntax is specified by a given grammar
 - ▶ I.e. a data type in Haskell
 - * Outer Phases
 - o Depending on the applications, further phases may come now
 - Things like type conversion, type checking, dependency analysis, etc.
 - ♦ Output: Abstract Syntax Tree
 - Lexical analysis and parsing is required for all systems
- Evaluate
 - ♦ Input: Abstract Syntax Tree
 - ⋄ Semantic Interpretation
 - ♦ Output: Abstract Syntax Tree
- Print
 - ♦ Input: Abstract Syntax Tree
 - ⋄ Pretty Print Output
 - ♦ Output: Text

9.2. Overview Parser

- Parser is a function
- Input: String
- Output: Element of type a
 - ♦ Typically a is some data type
- A parser may not necessarily parse the whole input
 - Combinatory Parsing
 - ♦ There is a remainder

 - Remainder may be parsed by a different parser
- A parser may try to produce different results for the same input
 - ♦ Store (res_i, rem_i) in a list
 - ♦ If rem_i = "" the parse is complete
 - ♦ data Parser a = Prs (String -> [(a, String)]
- Application
 - oparse :: Parser a -> String -> [(a, String)]
 parse (Prs p) inp = p inp

```
• Result of (first) Complete Parse
    ♦ completeParse :: Parser a → String → a
      completeParse p inp
      | result == [] = error "Parse unsuccessful"
      | otherwise
                     = head results
      where results = [res | (res, "") <- parse p inp]
• Primitive Parsers
    ♦ Server as a basic building block
    ♦ Failure:
        * Fails trivially
        * [] signifies a unsuccessful parse
        * failure :: Parser a
          failure = Prs (\inp -> [])
        * Ex.
          $ parse failure "3+5"
          [] :: [(a, String)]
    ⋄ Return:
        * Succeeds trivially
        * Without progress
        * return :: a -> Parser a
          return x = Prs ( inp -> [(x, inp)]
        * Ex.
          $ parse (return "foo") "3+5"
          [("foo", "3+5")] :: [([Char], String)]
    ♦ Item:
        * Succeeds trivially
        * With progress
        * item :: Parser Char
          item = Prs (\inpt -> case inp of
                               "" -> []
                                (x:xs) \rightarrow [(x, xs)])
        * Ex.
          $ parse item "3+5"
          [('3', "+5")] :: [(Char, String)]
    ♦ Sat:
        * Parse single char with property p
        * sat :: (Char -> Bool) -> Parser Char
          sat p = Prs (\inp -> case inp of
                               "" -> []
                                (x:xs) \rightarrow if p x then [(x,xs)] else [])
        * Alternatively
          sat :: (Char -> Bool) -> Parser Char
          sat p = item >>= \x -> if p x then return x else failure
        * Ex. isDigit
          $ parse (sat (\x -> '0' <= x \&\& x <= '9')) "3+5"
          [('3', "+5")] :: [(Char, String)]
        * Ex. isArithOp
          parse (sat (\x -> x == '+' || x == '-')) "3+5"
```

```
[] :: [(Char, String)]
    ♦ Char:
        * char :: Char -> Parser Char
          char x = sat (==x)
    ♦ String:
        * string :: String -> Parser Strin
          string "" = return ""
          string (x:xs) = char x >> string xs >> return (x:xs)
    ♦ Many:
        * 0 or more repetitions of p
        * many :: Parser a -> Parser [a]
          many p = many1 p ||| return []
    ♦ Many1:
        * 1 or more repetitions of p
        * many1 :: Parser a -> Parser [a]
          many1 p = p >>= \t -> many p >>= \ts -> return (t:ts)
    ⋄ numPos:
        * numPos :: Parser Int
          numPos = do ts <- many1 (sat isDigit)</pre>
              return (read ts)
    ⋄ numNeg
        * numNeg :: Parser Int
          numNeg = do char '-'
              t <- numPos
              return (-t)
    ♦ num
        * num :: Parser Int
          num = numPos ||| numNeg
        * $ parse num "123"
          [(123, ""), (12, "3"), (1, "23")]
          $ parse num "-123"
          [(-123, ""), (-12, "3"), (-1, "23")]
• Combining Parsers
    ♦ Mutual Selection: Apply both parser and concatenate result
        * (|||) :: Parser a -> Parser a -> Parser a
          p \mid \mid \mid q = Prs (\s -> Parser p s ++ parser q s)
        * Ex
          $ parse (return '!' ||| sat isDigit) "3+5"
          [('!', "3+5"), ('3', "+5")]
    ♦ Alternative Selection: Apply second parser only of first fail
        * (+++) :: Parser a -> Parser a -> Parser a
          p +++ q = Prs (\s -> case parser p s of
                           [] -> parser q s
                           res -> res)
        * Ex
          $ parse (return '!' +++ sat isDigit) "3+5"
          [('!', "3+5")]
    ♦ Sequencing: Apply second parser on remainder of first parser. Return result and
```

remainder of second parser on remainder of first parser. Return result and remainder of second parser

```
* Result of first parser is lost
   * (>>) :: Parser a -> Parser b -> Parser b
     p >> q = Prs (\s -> [(u, s'') | (t, s') <- parse p s,
                               (u, s'') <- parse q s'])
   * Ex
      $ parse (sat isDigit >> sat (== '+')) "3+5"
      [('+', "5")]
♦ Sequencing 2: Apply second parser on result of first parser. Return combined result
 and remainder of second parser
   * Second parser is a parser generator
   * (>>=) :: Parser a -> (a -> Parser b) -> Parser b
     p >>= g = Prs (\s -> [(u, s'') | (t, s') <- parser p s
                               (u, s'') <- parser (g t) s'])
   * Can improve readability by using syntactic sugar
       o do t1 <- p1
         t2 <- p2
         . . .
         tn <- pn
         return (f t1 t2 ... tn)
         p1 >>= \t1 ->
         p2 >>= \t2 ->
         pn >>= \tn ->
         return (f t1 t2 ... tn)
       o Parser must be an instance of Monad
   * Ex
      $ parse (sat isDigit >>=
              \t -> sat isDigit >>=
              \u -> return (t:u:[])) "31+5"
      [("31", "+5")]
      $ parse (sat isDigit >>=
              \t -> sat isDigit >>=
              \u -> return (t:u:[])) "3+5"
```

9.3. Arithmetic Interpretation

- Read
 - \diamond Grammar: Expr ::= Int | Expr '+' Expr | Expr '-' Expr
 - * Resp. data Expr n Lit Int | Add Expr Expr | Sub Expr Expr
 - ♦ Lexical Analysis: Recognize integers, '+', '-', parentheses and white space
 - ♦ Parsing: Convert to abstract syntax tree
- Evaluation

```
    eval :: Expr -> Int
    eval (Lit n) = n
    eval (Add e1 e2) = (eval e1) + (eval e2)
    eval (Sub e1 e2) = (eval e1) - (eval e2)
```

• Print

```
♦ Instance of type class show
    ♦ instance Show Expr where
          show (Lit n) = show n
          show (Add e1 e2) = "(" ++ show e1 ++ "+" ++ show e2 ++ ")"
          show (Sub e1 e2) = "(" ++ show e1 ++ "-" ++ show e2 ++ ")"
• Parser
    ♦ Given grammar is ambiguous
        * Provide user a way to get rid of ambiguity
        * Expr ::= Int | Expr '+' Expr | Expr '-' Expr | '(' Expr ')'
    ♦ Given grammar is left-recursive
        * Parsing Expr requires to first parse Expr
        * We can get an infinitely non-terminating recursion
        * Atom ::= Int | '(' Expr ')'
          Expr ::= Atom | Atom '+' Expr | Atom '-' Expr/
    ♦ Parser
        * data Expr = Lit Int | Add Expr Expr | Sub Expr Expr
              deriving (Show, Eq)
          atom lit ||| pexpr
          expr = atom ||| add ||| sub
          lit = do x <- num
                  return (Lit x)
          pexpr = do string "("
                      e <- expr
                      string ")"
                      return e
          add = do a <- atom
                  string "+"
                  e <- expr
                  return (Add a e)
          sub = do a <- atom
                  string "-"
                  e <- expr
                  return (Sub a e)
    ♦ Evaluator
        * str2expr :: String -> Expr
          str2expr s = completeParse expr s
          eval :: Expr -> Int
          eval (Lit n) = n
          eval (Add x y) = eval x + eval y
          eval (Sub x y) = eval x - eval y
          calculate :: String -> Int
          calculate = eval . str2expr
```

TODO: Example 2

Part II. Formal Methods

10. Introduction

- Transitional SE
 - ♦ Documentation is incomplete
 - ♦ Testing is good, but
 - They are insufficient
 - Detect concurrency issues is e.g. very difficult
 - Impossible to cover all instances
- Formal Methods: Mathematical approaches to software and system development which support the rigorous specification, design, and verification of computer systems
 - Programs, programming languages, designs etc. are mathematical objects and can be treated by mathematical methods
 - Used for
 - * Proving program properties
 - * Formalizing language semantics
 - * Proving language properties
 - ♦ Steps:
 - * Specification:
 - **System Design:** What does the system look like?
 - **Requirements:** What should the system do?
 - **Assumptions:** What do we assume?
 - ▷ E.g. an attacker cannot break a encryption
 - Described in mathematical notation
 - * Verification:
 - Validate Specifications: Do the specifications make sense?
 - **Proof:** Requirements are fulfilled under the specifications and requirements
 - ▷ Often simple but tedious
 - Done using format logic
 - ▶ Deduction: Proof system
 - ▶ **Algorithmic:** State space exploration or model checking
 - ♦ State Space Exploration: Enumerate all possible states
 - * Done very efficiently
 - * Check for deadlocks
 - Problem space may be very large
 - Limit to important properties
 - Gives weaker correctness guarantees than proofs
 - ♦ Pro/cons
 - + Strong guarantees
 - + Proof for all possible constellations
 - + Unambiguous documentation
 - Writing (correct) specifications is hard
 - Many properties are undecidable
 - Tools are limited
 - Give often false positive or false negative
 - FM specialist required
 - FM application is expensive
 - * FM complements testing
 - We need tests for
 - ▶ Validate specifications

- \triangleright Test properties not proven
- > Detect errors in environment
- o FM aids tests
 - ▷ Derive test cases and test data from specifications
 - $\, \triangleright \,$ Increase test coverage
 - \triangleright Replaces tests

• Used For

- ♦ Verification of design
- ♦ Analysis of safety-crucial software
- $\diamond\,$ Detection of security vulnerabilities
- ♦ Enforce usage of API and/or protocols
- ♦ Analysis of security protocols
- \diamond Verification of system implementations
- ♦ Design of programming languages
- ♦ Implementation of programming languages
- ♦ Reasoning about programs

10.1. IMP

- Has boolean and arithmetic expressions
- Expressions have no side effects
- All variables range over integers
- All variables are initialized
- Does not include
 - ♦ Heap allocation and coiners
 - ♦ Variable declaration
 - ♦ Procedures
 - Concurrency
- Is very extensible
- Syntax
 - ♦ Characters:

```
* Letter = 'A' | ... | 'Z' | 'a' | ... | 'z'
Digit = '0' | '1' | ... | '9'
```

♦ Tokens:

```
* Ident = Letter { Letter | Digit}*
Numeral = Digit | Numeral Digit
Var = Ident
```

♦ Arithmetic Expressions:

$$Op = '+' | '-' | '*'$$

♦ Boolean Expressions:

♦ Statement:

* Parentheses are omitted of possible

♦ Abbreviations:

```
* "if b then s end" for "if b then s else skip end" * "true" for "1=1"
```

- * "false" for 0 = 1"
- Variables
 - ♦ Program Variables:
 - * Are concrete variables in a program
 - * Written in typewriter font
 - ♦ Meta Variables:
 - * Stand for arbitrary program variables

- * Convention:
 - o n: for numerals (Numeral)
 - x,y,z: for variables (Var)
 - \circ e, e', e₁, e₂: for arithmetic expressions (Aexp)
 - \circ b, b', b₁, b₂: for boolean expressions (Bexp)
 - \circ s, s', s₁, s₂: for statements (Stm)
 - \circ σ : for states
- * Meta variables stand for arbitrary program variables
- * Written in math font
- \diamond Syntactic Equality \equiv :
 - * $x \equiv y$ (meta variables) may be true
 - I.e. both denote the same program variable
 - * $x \equiv y$ (program variables) is always false
 - \circ But two program variables by have the same value x = y
- Semantics
 - ♦ States
 - * An expression depends on the value bound to the variables that occur in it
 - * State : Var \rightarrow Val
 - Assigns each variable a value
 - Total function
 - * Sigma State σ_{zero} : All variables have the value 0
 - * Updating States $\sigma[\mathbf{y} \mapsto \mathbf{v}]$: Assign v to y in the state σ

 $(\sigma[y \mapsto v])(x) = \begin{cases} v & \text{if } x \equiv y \\ \sigma(x) & \text{otherwise} \end{cases}$

- * **Equality** of states σ_1, σ_2 if they are equal as functions $\sigma_1 = \sigma_2 \iff \forall x. (\sigma_1(x) = \sigma_2(x))$
- ♦ **Semantic Functions** map elements of syntactic categories to elements of semantic categories
 - *
 - * Syntactic Category: E.g. Numeral
 - o Some ascii symbol
 - * Semantic Category: E.g. \mathbb{Z}
 - Actual value
- ♦ Numerals: Syntactic Category Numeral
 - $* \ \mathcal{N} : \mathrm{Numeral} \to \mathrm{Val}$
 - * Maps numeral n to integer value $\mathcal{N}[[n]]$
 - Convention to use double brackets
 - Same as with single bracket

*

$$\mathcal{N}[[0]] = 0$$
 $\qquad \qquad \mathcal{N}[[n0]] = \mathcal{N}[[n]] \times 10 + 0$ $\qquad \qquad \mathcal{N}[[1]] = 1$ $\qquad \qquad \mathcal{N}[[n1]] = \mathcal{N}[[n]] \times 10 + 1$ $\qquad \qquad \dots$ $\qquad \qquad \dots$ $\qquad \qquad \mathcal{N}[[9]] = 9$ $\qquad \qquad \mathcal{N}[[n9]] = \mathcal{N}[[n]] \times 10 + 9$

- ♦ Arithmetic Expressions: Syntactic Category Aexp
 - * $\mathcal{A}: Aexp \rightarrow State \rightarrow Val$

* Maps arithmetic expression e and a state σ to a value $\mathcal{A}[[e]]\sigma$

*

$$\begin{split} &\mathcal{A}[[x]]\sigma = \sigma(x) \\ &\mathcal{A}[[n]]\sigma = \mathcal{N}[[n]] \\ &\mathcal{A}[[e_1 \text{ op } e_2]]\sigma = \mathcal{A}[[e_1]]\sigma \text{ } \overline{\text{op}} \text{ } \mathcal{A}[[e_2]]\sigma \quad \text{, where op } \in \text{Op} \end{split}$$

- \circ \overline{op} is the operation Val \times Val \rightarrow Val corresponding to op
- \circ E.g. op = '+' and \overline{op} = mathematical addition
- ♦ **Arithmetic Operators:** Syntactic Category Op
- ♦ Boolean Expressions: Syntactic Category Bexp
 - * $\mathcal{B}: \text{Bexp} \to \text{State} \to \text{Bool} = \{tt, ff\}$
 - * Maps boolean expression b and state σ to a truth value $\mathcal{B}[[b]]\sigma$

*

$$\mathcal{B}[[e_1 \text{ op } e_2]]\sigma = \begin{cases} \text{tt} & \text{if } \mathcal{A}[[e_1]]\sigma \text{ } \overline{\text{op}} \text{ } \mathcal{A}[[e_2]]\sigma \\ \text{ff} & \text{otherwise} \end{cases}, \text{ where op } \in \text{Rop}$$

 \circ \overline{op} is the operation Val \times Val corresponding to op

*

$$\mathcal{B}[[e_1 \text{ or } e_2]]\sigma = \begin{cases} \text{tt} & \text{if } \mathcal{B}[[e_1]]\sigma = \text{ tt or} \mathcal{B}[[e_2]]\sigma = \text{ tt} \\ \text{ff} & \text{otherwise} \end{cases}$$

$$\mathcal{B}[[e_1 \text{ and } e_2]]\sigma = \begin{cases} \text{tt} & \text{if } \mathcal{B}[[e_1]]\sigma = \text{ tt and} \mathcal{B}[[e_2]]\sigma = \text{ tt} \\ \text{ff} & \text{otherwise} \end{cases}$$

$$\mathcal{B}[[\text{not } e]]\sigma = \begin{cases} \text{tt} & \text{if } \mathcal{B}[[e]]\sigma = \text{ff} \\ \text{ff} & \text{otherwise} \end{cases}$$

- ♦ Relational Operators: Syntactic Category Rop
- ♦ Statements: Syntactic Category Stm

10.2. Properties

- \mathcal{A}, \mathcal{B} are defined recursively
- Base elements are defined directly
- Composite elements are defined inductively in terms of immediate constitutes
- Definition suggests proof by structural induction
- Structural Induction over Programs

 \Diamond

10.3. Free Variables

- Free Variables
 - ♦ All variables occurring in an expression
 - ♦ The naming may be confusing since we do not mean "free" in terms of "bound or free" but rather if there were replaced by a concrete value
 - **⋄** Arithmetic Expressions:

*

$$FV(e_1 \text{ op } e_2) = FV(e_1) \cup FV(e_2)$$

 $FV(n) = \emptyset$
 $FV(x) = \{x\}$

♦ Boolean Expressions:

*

$$FV(e_1 \text{ op } e_2 = FV(e_1) \cup FV(e_2)$$

$$FV(\text{not } b) = FV(b)$$

$$FV(b_1 \text{ or } b_2) = FV(b_1) \cup FV(b_2)$$

$$FV(b_1 \text{ and } b_2) = FV(b_1) \cup FV(b_2)$$

⋄ Statements:

*

$$FV(\text{skip}) = \emptyset$$

$$FV(x := e) = \{x\} \cup FV(e)$$

$$FV(s_1; s_2) = FV(s_1) \cup FV(s_2)$$

$$FV(\text{if } b \text{ then } s_1 \text{ else } s_2 \text{ end } = FV(b) \cup FV(s_1) \cup FV(s_2)$$

$$FV(\text{while } b \text{ do } s \text{ end } = FV(b) \cup FV(s)$$

- Substitution
 - $\diamond \ [x \mapsto e]$
 - * Replace free variable x by e in some expression
 - ♦ Arithmetic Expressions:

*

$$(e_1 \text{ op } e_2)[x \mapsto e] \equiv (e_1[x \mapsto e] \text{ op } e_2[x \mapsto e])$$

 $n[x \mapsto e] \equiv n$
 $y[x \mapsto e] \equiv \begin{cases} e & \text{if } x \equiv y \\ y & \text{otherwise} \end{cases}$

♦ Boolean Expressions:

*

$$(e_1 \text{ op } e_2)[x \mapsto e] \equiv (e_1[x \mapsto e] \text{ op } e_2[x \mapsto e]$$

 $(\text{not } b)[x \mapsto e] \equiv \text{not } (b[x \mapsto e])$
 $(b_1 \text{ or } b_2)[x \mapsto e] \equiv (b_1[x \mapsto e] \text{ or } b_2[x \mapsto e]$
 $(b_1 \text{ and } b_2)[x \mapsto e] \equiv (b_1[x \mapsto e] \text{ and } b_2[x \mapsto e]$

TODO: Move lemma to right location

 $\diamond \text{ Lemma } \mathcal{B}[[b[x \mapsto e]]]\sigma \iff \mathcal{B}[[b]]\sigma[x \mapsto \mathcal{A}[[e]]\sigma]$

11. Operational Semantics

- Describes execution on a abstract machine
- Describes how to effect is achieved
- Describes how the state is modified during the execution of a statement
- Useful for proofs about language design and implementations

11.1. Big-Step Semantics

- Describes how the overall result of the execution are obtained
- Natural Semantics (NS): The system we use
 - Configuration:
 - * Two types
 - * Normal Configuration $\langle s, \sigma \rangle$: Statement s is to be executed in state σ
 - * Terminal Configuration σ : Final state
 - \diamond Transition System: Tuple (Γ, T, \rightarrow)
 - * Γ : Set of configurations
 - $\circ \Gamma = \{\langle s, \sigma \rangle \mid s \in \text{Stm}, \sigma \in \text{State}\} \cup \text{State}\}$
 - * T: Set of terminal configurations
 - $\circ T = \text{State} \subseteq \Gamma$
 - $* \rightarrow$: Transition relation
 - $\circ \to \subseteq \{\langle s, \sigma \rangle \mid s \in \text{Stm}, \sigma \in \text{State}\} \times \text{State} \subseteq \Gamma \times \Gamma$
 - Described how execution takes place
 - $\circ \langle s, \sigma \rangle \to \sigma'$

♦ Inference Rules:

- * Rule Schemas: Contain meta-variables
- * Rule Instance: Replacing all meta-variables with syntactic elements
 - Only rule instances can be applied
- * Meta-variables are written using underline
- * Rules
 - o Skip
 - ▷ Does not modify the state

$$ho \frac{1}{\langle \mathtt{skip}, \underline{\sigma} \rangle \to \underline{\sigma}} \overset{\text{(SKIP}_{\mathrm{NS}})}{}$$

- Assignment
 - ▶ Assigns some value to a variable

Sequential composition

Assigns some value to a variable
$$\langle \underline{x} := \underline{e}, \underline{\sigma} \rangle \to \underline{\sigma}[\underline{x} \mapsto \mathcal{A}[[\underline{e}]]\underline{\sigma}]$$

Sequential composition

- - Execute the first statement in the initial state, then the second statement

in the intermediate state, resulting to some new final state
$$\Rightarrow \frac{\langle \underline{s},\underline{\sigma}\rangle \to \underline{\sigma}' \quad \langle \underline{s}',\underline{\sigma}'\rangle \to \underline{\sigma}''}{\langle \underline{s};\underline{s}',\underline{\sigma}\rangle \to \underline{\sigma}''} \, (\mathrm{SEQ_{NS}})$$

o If

▶ If the conditional is true, execute the first statement, else the second

$$| \mathbf{b} | \mathbf{f} | \mathbf{b} | \mathbf{b}$$

o While

- ▶ If the condition hold, execute the body once, leading in a new state
- $\vdash \text{ if } \mathcal{B}[[\underline{b}]]\underline{\sigma} = \text{tt: } \frac{\langle \underline{s},\underline{\sigma} \rangle \to \underline{\sigma}' \quad \langle \text{while } \underline{b} \text{ do } \underline{s} \text{ end},\underline{\sigma}' \rangle \to \underline{\sigma}''}{\langle \text{while } \underline{b} \text{ to } \underline{s} \text{ end},\underline{\sigma} \rangle \to \underline{\sigma}''} \text{ (WHT}_{NS})$ $\vdash \text{ If the condition does not hold, the state is not modified}$
- $\, \triangleright \, \text{ if } \, \mathcal{B}[[\underline{b}]]\underline{\sigma} = \text{ff: } \, \overline{\langle \mathtt{while } \, \underline{b} \, \, \mathtt{to } \, \underline{s} \, \, \mathtt{end}, \underline{\sigma} \rangle \to \underline{\sigma}}$
- * Derivation Tree T:
 - Combination of rule instances
 - \circ **Root** of T is root(T)
 - Leaves are axiom rule instances
 - o Internal nodes are conclusion rule instances, having the premises are immediate children
 - Side condition of all instances must be satisfied
 - $\circ \vdash \langle s, \sigma \rangle \to \sigma' \iff \exists T. \operatorname{root}(T) \equiv \langle s, \sigma \rangle \to \sigma'$
 - \triangleright I.e. if there exists a valid tree with $\langle s, \sigma \rangle \to \sigma'$ in its root
- ⋄ Termination:
 - * Execution of statement s in σ :
 - **Termination Successful:** Iff there exists a state σ' such that $\vdash \langle s, \sigma \rangle \to \sigma'$
 - **Termination Fails:** Iff there is not state σ' such that $\vdash \langle s, \sigma \rangle \to \sigma'$

• Properties

- ♦ Semantic Equivalence
 - * Semantically equivalent are two statements s_1, s_2 iff $\forall \sigma, \sigma' . (\vdash \langle s_1, \sigma \rangle \to \sigma' \iff$ $\vdash \langle s_2, \sigma \rangle \to \sigma'$
 - Notation: $s_1 \simeq s_2$
 - * Loop unrolling is semantically equivalent in IMP
 - $\circ \ \forall b, s. (\text{while } b \text{ do } s \text{ end } \simeq \text{if } b \text{ then } s; \text{while } b \text{ do } s \text{ end end } s$
 - Does not hold for imperative languages
 - Proof Idea:
 - ▶ Show statement in both directions
 - ▶ For each direction, use structural induction
- ⋄ Deterministic Semantics
 - * Lemma: Big-step semantics of IMP is deterministic

$$\circ \ \forall s, \sigma, \sigma', \sigma''. (\vdash \langle s, \sigma \rangle \to \sigma' \land \vdash \langle s, \sigma \rangle \to \sigma'' \implies \sigma' = \sigma'')$$

- * Proof Idea:
 - Structural induction fails if the state does not change
 - ▶ I.e. be have no proper sub-statements
 - Use induction on the shape of derivation tree
 - \triangleright To prove property P(T) for all derivation trees T, prove that P(T) holds for an arbitrary derivation tree T under the assumption that P(T') holds for all sub-trees T' of T
 - $\triangleright T' \sqsubset T$
 - \triangleright Often we do a case distinction on the rule applied at the root of the tree T
- IMP Extension TODO: IMP Extension

• Limitation

- ♦ Properties of non-terminating programs cannot be expressed
- ♦ Non distinction between aborting and non-termination
- ♦ Non-determinism suppresses non-termination
- Parallelism cannot be modeled
- ♦ Definition of semantic equivalence is coarse

FMFP

11.2. Small-Step Semantics

- Describes how the individual steps of the computation take place
- Allows to express the order of individual steps
- Structural Operational Semantics (SOS): The system we use
 - Configuration:
 - * Same as for NS
 - * Use γ as meta-variables
 - ⋄ Transition System:
 - * Γ : Set of configurations
 - $\circ \Gamma = \{\langle s, \sigma \rangle \mid s \in Stm, \sigma \in State\} \cup State$
 - o Same as for NS
 - Stuck is non-terminal configuration $\langle s, \sigma \rangle$ if $\not\exists \gamma$ such that $\langle s, \sigma \rangle \rightarrow_1 \gamma$ ▶ Terminal configurations are never stuck
 - * T: Set of terminal configurations
 - $\circ T = \text{State} \subseteq \Gamma$
 - Same as for NS
 - $* \rightarrow_1$: Transition relation
 - $\circ \to_1 \subseteq \{\langle s, \sigma \rangle \mid s \in \text{Stm}, \sigma \in \text{State}\} \times \Gamma$
 - $\circ \langle s, \sigma \rangle \to_1 \gamma$ describes the **first step** of executing s in σ
 - $\circ \gamma$ can have to forms
 - $\circ \ \gamma = \langle \mathbf{s}', \sigma' \rangle$: Execution is **not complete** and we get the configuration $\langle s', \sigma' \rangle$
 - $\circ \gamma = \sigma'$: Execution has **terminate** and the final state is σ'
 - \circ k-step Execution: $\gamma \rightarrow_1^k \gamma'$
 - \triangleright I.e. there \exists execution from γ to γ' in exactly k steps
 - \triangleright Defined inductively over k
 - $\triangleright \gamma \to_1^* \gamma' \text{ means } \exists k. \gamma \to_1^5 \gamma'$
 - · I.e. there is some finite execution

♦ Inference Rules:

- * Rules
 - \circ Skip
 - ▷ Same as for NS
 - Same as for NS
 - Assignment

$$\triangleright \text{ Same as for NS} \\ \triangleright \frac{\langle \underline{x} := \underline{e}, \underline{\sigma} \rangle \to_1 \underline{\sigma}[\underline{x} \mapsto \mathcal{A}[[\underline{e}]]\underline{\sigma}]}{\langle \underline{x} := \underline{e}, \underline{\sigma} \rangle \to_1 \underline{\sigma}[\underline{x} \mapsto \mathcal{A}[[\underline{e}]]\underline{\sigma}]}$$
(ASS_{SOS})

- Sequential composition
 - > First step of executing the composition is executing the first step of the first statement
 - ▶ If the first statement is done after one step

$$\triangleright \frac{\langle \underline{s}, \underline{\sigma} \rangle \to_1 \underline{\sigma'}}{\langle \underline{s}; \underline{s'}, \underline{\sigma} \rangle \to_1 \langle \underline{s'}, \underline{\sigma'} \rangle} (SEQ1_{SOS})$$

▶ If the first statement is not done after one step

$$\triangleright \frac{\langle \underline{s}, \underline{\sigma} \rangle \to_1 \langle \underline{s}'', \underline{\sigma}' \rangle}{\langle \underline{s}; \underline{s}', \underline{\sigma} \rangle \to_1 \langle \underline{s}''; \underline{s}', \underline{\sigma}' \rangle} (\text{SEQ2}_{\text{SOS}})$$

> The first step of executing an if statement is determine the boolean value of the condition

$$\hspace{0.1in} \hspace{0.1in} \hspace{0.1in}$$

- o While
 - ▶ The first step is to unroll the loop
- * Derivation Sequence
 - Sequence of transitions which cannot be extended with further transitions
 - Non-empty
 - Finite or infinite
 - \circ Sequence of configuration $\gamma_0, \gamma_1, \ldots$ for which
 - $\triangleright \gamma_i \to_1^1 \gamma_{i+1}$ for each $0 \le i$ such that i+1 is in the range of sequence
 - ▶ If the derivation sequence is finite, then the last configuration is either a terminal or a stuck configuration
 - Length: Number of transitions
- * Derivation Tree T:
 - o Justify a single step in a derivation sequence
 - Combination of rule instances
 - $\circ \vdash \langle s, \sigma \rangle \to_1 \sigma' \iff \exists T. \text{root}(T) \equiv \langle s, \sigma \rangle \to_1 \sigma'$
- ⋄ Termination:
 - * Execution of statement s in σ :
 - **Terminates:** Iff there exists a finite derivation sequence starting with $\langle s, \sigma \rangle$
 - Runs Forever: Iff there exists a infinite derivation sequence starting with $\langle s, \sigma \rangle$

• Properties

- \diamond Proofs over a multi-step execution $\gamma \to_1^k \gamma'$ are done using strong induction on the number of steps k
 - * Proof the 0-step execution
 - * Proof all other steps using strong mathematical induction
 - \circ Define P(k)
 - Prove P(k) for arbitrary k with IH. $\forall k' < k.P(k')$
- ♦ Semantic Equivalence
 - * Semantically Equivalent are two statements s_1, s_2 iff $\forall \sigma$ both:
 - o for all stuck or terminal configurations γ we have $\langle s_1, \sigma \rangle \to_1^* \gamma \iff \langle s_2, \sigma \rangle \to_1^*$
 - γ
 - ▶ The length may be different
 - > The intermediate configurations may be different
 - \circ there is an infinite derivation sequence starting in $\langle s_1, \sigma \rangle$ iff there is one starting in $\langle s_2, \sigma \rangle$
 - Notation: $s_1 \simeq s_2$
- ⋄ Determinism
 - * Lemma: Small-step semantics of IMP is deterministic

$$\circ \ \forall s, \sigma, \gamma, \gamma' . \vdash \langle s, \sigma \rangle \to_1 \gamma \ \land \ \vdash \langle s, \sigma \rangle \to_1 \gamma' \implies \gamma = \gamma'$$

- * Corollary: There is exactly one derivation sequence starting in a configuration $\langle s, \sigma \rangle$
- * Proof Idea:
 - Induction on the spae of the derivation tree for the transition $\langle s, \sigma \rangle \to_1 \gamma$
- IMP Extension TODO: Imp Extension

\rightarrow

11.3. Equivalence

- **Theorem:** For every statement s in IMP, $\vdash \langle s, \sigma \rangle \to \sigma' \iff \langle s, \sigma \rangle \to_1^* \sigma'$
 - ♦ If a statement terminates successfully in one semantic, then it also does so in the other, and the finial state is equivalent
 - ♦ The termination fails to terminate in the big-step semantics iff if gets stuck of runs forever in the small-step semantic

• Proof Idea:

- $\diamond \Rightarrow$: Induction in the shape of the derivation tree for $\langle s,\sigma \rangle \to \sigma'$
- $\diamond \Leftarrow$: Induction on the number of steps k

12. Axiomatic Semantics

- Expresses specific properties of the effect of executing a program
- Some aspects of the computation may be ignored
- Useful for program verification
- Partial Correctness: Expresses that if a program terminates then there will be a certain relationship between the initial and the final state
- Total Correctness: Expresses that a program will terminate and there will be a certain relationship between the initial and the final state
 - ♦ Total Correctness = Partial Correctness + Termination
- Proofs are too detailed when using operational semantics
- Hoare Triples: The system we use
 - $\diamond \{P\}s\{Q\}$
 - * **P:** Precondition (Assertion)
 - * Q: Postcondition (Assertion)
 - * s: Statement
 - \diamond If P evaluates to true in an initial state σ , and if the execution of s from σ terminates in an state σ' then Q will evaluate to true in σ'
 - * Describes parietal correctness

♦ Local Variables

- * Can be used to save a value in the inital state so that it can be referenced later
- * Occur only in assertions
- * Are never assigned to and are not used by the program

♦ Assertions

- * Consists of boolean expression with local variables (optional)
 - Can be extended with other expressions like quantifiers, new operators etc.
- * Pre- and postcondition are assertions
- * We use some convenience notations like \wedge for and etc.

⋄ Derivation System

* Rules

$$\triangleright \frac{\text{SKIP}}{\{\underline{P}\}\text{skip}\{\underline{P}\}} \text{(SKIP}_{Ax})$$
• Assignment

• Sequential Composition

sequential Composition
$$\triangleright \frac{\{\underline{P}\}\underline{s}\{\underline{Q}\} \quad \{\underline{Q}\}\underline{s'}\{\underline{R}\}}{\{\underline{P}\}\underline{s};\underline{s'}\{\underline{R}\}} \text{ (SEQ}_{AX})$$

o Loop

Consequence

$$\triangleright \frac{\{\underline{P}'\}\underline{s}\{\underline{Q}'\}}{\{\underline{P}\}\underline{s}\{Q\}} (CONS_{Ax})^{\text{if } \underline{P} \models \underline{P}' \text{ and } \underline{Q}' \models \underline{Q}}$$

 \triangleright Semantic Entailment $\models: P \models Q \iff \forall \sigma, \mathcal{B}[[P]]\sigma = \text{tt} \implies \mathcal{B}[[Q]]\sigma =$

- > Strengen precondition
- ▶ Weaken postcondition
- * Derivation Tree
 - As we are used to
 - $\circ \vdash \{P\}s\{Q\} \iff \exists T.\text{root}(T) \equiv \{P\}s\{Q\}$
- * Proof
 - o Two main methods
 - ▶ Proof Trees:
 - · Write as derivation trees
 - Tend to get very long
 - · Start from the bottom (/end)
 - ▶ Proof Outlines:
 - · Write proof vertically
 - · Not a proof since there is no unique interpretation
 - · But most of the time it is ok since we want to show that there exists a derivation tree
 - Loop-invariant is determined by looking how the value changes in consecutive iterations
 - \triangleright Could use a table with iteration 0, 1, 2, i, N-1 on the x-axis and the variables we care about on the y-axis
 - ▶ Loop invariant is often very similar to the post condition we have

• Properties

- Properties are typically proven by induction on the shape of derivation tree
 - * Structural induction does often not work due to the rule of consequence
- ⋄ Semantic Equivalence
 - * Semantically equivalent are two statements s_1, s_2 if $\forall P, Q, \vdash \{P\}s_1\{Q\} \iff$ $\vdash \{P\}s_2\{Q\}$
- Total Correctness (Termination)
 - \diamond Total Correctness: If P evaluates to true in the initial state σ then the execution of s from σ terminates and Q will evaluate to true in the final statement
 - \diamond Notation: $\{P\}s\{\Downarrow Q\}$
 - ♦ Loop Variant:
 - * Expression that evaluates to a value in a well-founded set before each iteration Normally we use N
 - * Each loop iteration must decrease the value of the invariant
 - * Loop has to terminate once the minimal value of the well-founded set is reached
 - * Used to prove termination
 - ♦ This is a separate axiomatic semantic and is not mixed with the previous one
 - ♦ Rules
 - * Loop $\circ \frac{\{\underline{b} \wedge \underline{P} \wedge \underline{e} = Z\}\underline{s}\{ \Downarrow \underline{P} \wedge \underline{e} < Z\}}{\{\underline{P}\} \text{while } \underline{b} \text{ do } \underline{s} \text{ end}\{ \Downarrow \neg \underline{b} \wedge \underline{P}\}} \text{ (WHTOT_{Ax})^{if } } \underline{b} \wedge \underline{P} \models 0 \leq \underline{e} \text{ and } Z \notin \underline{P} } \\ * \text{ All other rules are equivalent to before except that we add } \Downarrow \text{ to the postcondition}$
 - ♦ In proof schemas asserts are often pre- and postcondition. Therefore, we do not write an arrow there. For asserts which are only postcondition, we write an arrow

12.1. Soundness and Completeness

• Soundness: If a property can be prove then it does indeed hold

$$\diamond \vdash \{P\}s\{Q\} \implies \models \{P\}s\{Q\}$$

- Completeness: If a property does hold then it can be proved $\diamond \models \{P\}s\{Q\} \implies \vdash \{P\}s\{Q\}$
- Hard to create an axiomatic semantic which is sound and complete
- Soundness and completeness can be proved with respect to an operational semantics
 - $\diamond \{P\}s\{Q\} \text{ is valid, written as } \models \{P\}s\{Q\} \text{ iff:}$ $\forall \sigma, \sigma'. \mathcal{B}[[P]]\sigma = \operatorname{tt} \wedge \vdash \langle s, \sigma \rangle \to \sigma' \implies \mathcal{B}[[Q]]\sigma' = \operatorname{tt}$
 - \diamond I.e. $\models \{P\}s\{Q\}$ is ture if, whenever we start execution of s from a state where P holds, if the execution terminates, then Q will hold in the final state
- Theorem: For all partial correctness triplets $\{P\}s\{Q\}$ of IMP we have $\vdash \{P\}s\{Q\} \iff \{P\}s\{Q\}$
 - ♦ Proof Idea:
 - $* \Rightarrow$: Induction on the shape of the derivation tree for $\{P\}s\{Q\}$
 - * ←: Induction but using some weakest precondition stuff

13. Model Checking

- With operational/axiomatic semantics:
 - Hard to specify properties of sequences of states
 - ♦ Hard to proof interleaving of concurrent systems
 - ♦ Hard to prove programs with infinite derivation sequences
- Modelling: Automated technique that, given a finite-state model of a system and a formal property systematically check whether this property holds for (a given state in) that model
- Abstraction of the real world
- Enumerates all possible states of a system
- Mainly used to analyse system designs
 - ♦ And not implementations
- Explicit State Model Checking: Represent states explicitly through concrete values
 - ♦ Our focus
- Symbolic Model Checking: Represent state through (boolean) formulas
- Model Checking Process
 - ⋄ Modelling Phase
 - * Model the system under consideration using the description language of the model checker
 - * Formalize the properties to be checked
 - ♦ Running Phase
 - * Run the model checker to check the validity of the property in the system model
 - ♦ Analysis Phase
 - * If property the property is violated, analyse the counter example
 - * If we run out of memory we have to reduce the model
- Modeling Concurrent Systems
 - ♦ Systems are modelled as finite transition systems
 - ♦ Systems are modelled as communication sequential processes
 - ♦ Processes can communicate via
 - * Shared variables
 - * Synchronous message passing
 - * Asynchronous message passing

13.1. Promela:

Model checking language we use

- Input language of the Spin model checker
- Main objects are processes, channels and variables
- C-like
- Syntax:
 - ♦ Constant declaration
 - * #define N 5

```
mytype = {ack, req};
```

- ♦ Variable declaration
 - * byte a, b = 5, c; int d[3], e[4] = 3;
 - * Initialized to zero-equivalent values
 - * Are either local to a process or global
- ♦ Structure declaration

- * typedef verctor {int x; int y};
- ♦ Channel declaration
 - * chan c1 = [2] of {mytype, bit, chan};
 chan c2 = [0] of {int};
 chan c3;
 - * c1 can store up to two messages and messages sent via c1 consists of three parts
 - * c2 models rendez-vous communication as it has no buffer
 - * c3 is uninitialized and must be assigned an initialized channel before usage
 - * Are either local to a process or global
- ♦ Process declaration
 - * proctype myProc(int p) {...}
 - * Body contains of a sequence of variable declarations, channel declarations and statements
- ♦ Activate process
 - * active [N] proctype myProc(...) {...}
 - * Start N instances of myProc in the initial state
 - * The init process is started in the initial state
- ♦ Types

	Type	Value range
	bit or bool	
* Primitive types	byte	$0 \dots 255$
	short	$0 \dots 255 \\ -2^{15} \dots 2^{15} - 1 \\ -2^{31} \dots 2^{31} - 1$
	int	$-2^{31}\dots 2^{31}-1$

- * User-defined types
 - o Arrays: int name[4]
 - o Structures
 - o Type of symbolic contents: mtype
- * Channel type: chan

• State Space:

⋄ Sequential Programs

- * #states = #program locations $\times \Pi_{\text{variable } x} | \underbrace{\text{dom}(x)}_{\text{#possible values of } x} |$
- * Exponential growth of states in number of variables
- * State space explosion

⋄ Concurrent Programs

- * Upper bound for # states of $P \equiv P_1 \parallel \cdots \parallel P_N$
- * #states of $P_1 \times \cdots \times$ #states of $P_N = \prod_{i=n}^N (\text{\#program locations}_i \times \prod_{\text{variable } x_i} |\text{dom}(x_i)|)$
- * Exponential growth of states in number of processes
- * State space explosion

⋄ Promela Model

* Number of states of a system with N processes and K channels is bounded by

$$\Pi_{i=1}^{N}(\# \text{program locations}_{i} \times \Pi_{\text{variable } x_{i}} | \text{dom}(x_{i}) |) \times \\ \Pi_{j=1}^{K} | \underbrace{\text{dom}(c_{j})}_{\# \text{possible messages of channel } c} |$$

- * Exponential growth of states in number of channels and the capacity of channels
- * State space explosion

• State Transitions:

- ♦ Statement can be **executable** or **blocked**
 - * Send is blocked if channel is full
 - * s1;s2 is blocked if s1 is blocked
 - * timeout is executable if all other statements are blocked
- \diamond Transitions is made in three steps
 - * Determine all executable statements of all active processes
 - If there are none, transition system gets stuck
 - * Choose non-deterministically one of the executable statements
 - * Change the state according to the chosen statement

• Expressions

- ♦ Variables, constants and literals
- Structure and array accesses
- ♦ Unary and binary expression with operators

```
* + - * / % > >= < <= == != ! & || && | ~ >> << ^ ++ --
```

- ♦ Function applications
 - * len() empty() nempty() nfull() full() run eval() enable() pcvalue()
- ♦ Conditional expressions (E1 -> E2 : E3)

• Statements

- ⋄ skip
 - * Does not change the state
 - * Always executable
- ⋄ timeout
 - * Does not change the state
 - * Executable if all other statements in the system are blocked
- \diamond assert(E)
 - * Aborts execution if expression E evaluates to zero and otherwise equivalent to skip
 - * Always executable
- ♦ Assignment
 - * x = E assigns the value of E to variable x
 - * a[n] = E assigns the value of E to array element a[n]
 - * Always executable
- ⋄ Sequential composition
 - * s1;s2 is executable if s1 is executable
- ♦ Expression statement
 - * Evaluates expression E
 - $\ast\,$ Executable if E evaluates to a value different form zero
 - * E must not change state

⋄ Selection

- * if
 - :: s1
 - :: ...
 - :: s=
 - fi
- * Executable if at least one of its options is executable
- * Chooses an option non-deterministically and executes it
- * Optional statement else is executed if non of the other options is

⋄ Repetition

* do :: s1 :: ...

οd

- * Executable if at least on of its options is executable
- * Chooses repeatedly an option non-deterministically and executed it
- * Terminates when a break or goto is executed

♦ Atomic

- * Basic statements are executed atomically
 - o Includes skip, timeout, assert, assignment, expression statement
- * atomic{s} executes s atomically
- * Executable if the first statement of s is executable
- * If any other statement within s blocks once the execution of s has started, atomicity is lost

• Macros

- ♦ Does not contain procedures
 - * Can most of the time be achieved with macros
- ♦ String replacement as in C

• Channels

- ♦ Declare chan ch = [d] of {t1, ..., tn}
- \diamond Buffer up to d messages
 - * $\mathbf{d} > \mathbf{0}$: FIFO buffer channel
 - * $\mathbf{d} = \mathbf{0}$: Rendez-vous unbuffered channel
- ♦ Each message is a tuple whose elements are of type t1, ..., tn

♦ Buffered Channel:

- * Send Message
 - \circ ch ! e1, ..., en
 - o Type of ei musts match type ti of channel declaration
 - Executable iff buffer is not full

* Receive Message

- o ch ? a1, ..., an
- o ai is a variable or constant of type ti
- Executable iff buffer is not empty and oldest message in the buffer matches the constants ai
- o Variables ai are assigned values of the message

⋄ Unbuffered Channel:

- * Models synchronous communication
- * Send Message
 - o ch ! e1, ..., en
 - Executable is there is a receive operation that can be executed simultaneously
- * Receive Message
 - o ch ? a1, ..., an
 - Executable if there is a send operation that can be executed simultaneously

13.2. Linear Temporal Logic (LTL)

- Many interesting properties relate several states
- Transition System
 - ♦ Slightly different from what we are used to

- \diamond Tuple $(\Gamma, \sigma_I, \rightarrow)$
 - * Γ : Finite set of configurations
 - o Different is that now it is finite
 - * $\sigma_{\mathbf{I}}$: Internal configuration
 - $\circ \ \sigma_I \in \Gamma$
 - o Different is that we only consider the initial configuration
 - Terminal configuration can be modelled by introducing a special **sink state** which cannot be left again
 - $* \rightarrow$: transition relation
 - $\circ \to \subseteq \Gamma \times \Gamma$

⋄ Promela Model

- * Configurations are just states
 - We no not need statement since this is appointed by the location counter
- * The initial configuration is the initial state
 - Init process is active
 - Everything is initialized to zero-equivalent
- * Transition relation is defined by OS statements
- * Promela model has a finite number of states
 - o Still very large, but finite

Computations

- $\diamond S^{\omega}$ is a infinite sequence of elements of the set S
 - * $s_{[i]}$ is the i-th element is this sequence
 - * Opposed to S^* which is a finite sequence
- \diamond Computation: Infinite sequence $\gamma \in \Gamma^{\omega}$ of states for which:
 - * $\gamma_{[0]} = \sigma_I$
 - * $\gamma_{[i]} \rightarrow \gamma_{[i+1]}, i \geq 0$
- $\diamond \mathcal{C}(TS)$ is the set of all computations of a transition system TS

• Linear-Time Properties (LT-Properties)

- ♦ Limits the permitted computations of a transition system
- $\diamond P \subset \Gamma^{\omega}$
- \diamond TS $\models P \iff \mathcal{C}(TS) \subseteq P$
 - * All computations of TS belong to the set P
- LT-properties express properties of computations
 - * Non-termination is handled by infinite sequences
 - * Non-determinism is handled by considering each computation separately
- ♦ Try to simplify it more
- ♦ Atomic Propositions (AP): Set of properties we care about
 - * Called atomic since they contain no logical connectives
- ♦ Labeling Function: Maps configurations to sets of atomic propositions from AP
 - $* L : \Gamma \to \mathcal{P}(AP)$
 - * \mathcal{P} is the powerset. Once configuration can be part of multiple APs
 - * **Abstract State:** $L(\sigma)$ labeled state
- ♦ We consider AP and L as part of the system
 - * We have a 5-tuple instead of tripple
- ♦ Trace
 - * Abstraction of a computation
 - * Infinite sequence of abstract states
 - $\circ \mathcal{P}(AP)^{\omega}$
 - * $t \in \mathcal{P}(AP)^{\omega}$ is a trace of transition system TS if $t = L(\gamma_{[0]})L_{\gamma_{[1]}}\ldots$ and γ is a

computation of TS

* $\mathcal{T}(TS)$ set of all traces of transition system TS

♦ Safety Properties

- * I.e. something bad is never allowed to happen
 - And once it happened, it cannot be fixed
- * LT-property P is a safety property if for all infinite sequences $t \in \mathcal{P}(AP)^{\omega}$: if $t \notin P$, then there is a finite prefix \hat{t} of t such that every infinite sequence t' with prefix $\hat{t}, t' \notin P$
- * Bad Prefix \hat{t} : Finite sequence which already violates the property
 - Even if the violation only happens after the sequence
- * Safety properties are violated in finite time
 - Even if the sequence is infinite
 - Can be tested

⋄ Liveness Properties

- * I.e. something good will happen eventually
- * LT-property P is a liveness property if all finite sequences $\hat{t} \in \mathcal{P}(AP)^*$ are a prefix of an infinite sequence $t \in P$
 - \circ Every finite prefix can be extended to an infinite sequence which is in P
- * Liveness properties are violated in infinite time
 - o Cannot be tested

• Linear Temporal Logic (LTL)

- ♦ Logic which makes it easy to reason about LT-properties
- ♦ Fully blown logic
- + Whether or not a trace of a finite transition system satisfies an LTL formula is decidable
- ♦ Reasons about traces and not single states
- ♦ Syntax:

$$* \phi = p \mid \neg \phi \mid \phi \land \phi \mid \underbrace{\phi U \phi}_{\text{until}} \mid \underbrace{\bigcirc \phi}_{\text{next}}$$

- Where p is a proposition from a chosen set of atomic propositions AT $\neq \emptyset$
- ♦ Semantics:
 - * Trace $t \in \mathcal{P}(AP)^{\omega}$ satisfies LTL formula ϕ : $t \models \phi$
 - * $t_{(\geq i)}$ is the suffix of t starting at t_i

*

$$\begin{array}{ll} t \models p & \text{iff } p \in t_{[0]} \\ t \models \neg \phi & \text{iff not } t \models \phi \\ t \models \phi \land \psi & \text{iff } t \models \phi \text{ and } t \models \phi \\ t \models \phi \mathbf{U} \psi & \text{iff } \exists k \geq 0, t_{(\geq k)} \models \psi \text{ and } t_{(\geq j)} \models \phi \ \forall j, 0 \leq j < k \\ t \models \bigcirc \phi & \text{iff } t_{(\geq 1)} \models \phi \end{array}$$

⋄ Derived Operators:

- * true, false, \vee , \Longrightarrow , \iff are defined as usual
- * Eventually: $\Diamond \phi \equiv (\text{true } U \phi)$
- * Always from now: $\Box \phi \equiv \neg \Diamond \neg \phi$
- * Precedence: Unary over binary
- * Specification Patterns:
 - \circ Strong Invariant: $\square \psi$
 - $\triangleright \psi$ always holds

- ⊳ Safety property
- \circ Monotone Invariant: $\Box(\psi \implies \Box\psi)$
 - \triangleright Once ψ is true, then ψ is always true
 - Safety property
 Safety property
- \circ Establishing an invariant: $\Diamond \Box \psi$
 - \triangleright Eventually ψ will always hold
 - ▷ Liveness property
- \circ Responsiveness: $\Box(\psi \implies \Diamond \phi)$
 - \triangleright Every time that ψ holds, ϕ will eventually hold
 - ▷ Liveness property
- \circ Fairness: $\Box \Diamond \psi$
 - $\triangleright \psi$ holds infinitely often
 - ▶ Liveness property

♦ Model Checking

- * Given a finite transition system TS and a LTL formula ϕ , decide whether $t \models \phi$ for all $t \in \mathcal{T}(TS)$
 - \circ I.e. $\mathcal{T}(TS) \subseteq P(\phi)$
- * Hard because traces are in general infinite
- * Checking Safety Properties:
 - Violation is observed in an finite prefix
 - o Idea:
 - ▶ Characterize all finite prefixes of the traces of the transition system using a finite automata
 - · In TS labels are on the states where there are on the transittons for the
 - · FA is Tuple $(Q, \sum, \delta, Q_0, F)$
 - \cdot Q: finite set of states
 - $\cdot \sum$: finite alphabet
 - · δ : transition relation

$$\cdot \ \delta \subseteq Q \times \sum \times Q$$

- · $Q_0 \subseteq Q$: initial state
- $\cdot F \subseteq Q$: accepting states
- · Given transition system $TS = (\Gamma, \sigma_I, \rightarrow)$ we define NFA \mathcal{F} \mathcal{A}_{TS} characterizing all finite prefixes $\mathcal{T}_{fin}(TS)$ of the traces of TS
- $\cdot \mathcal{F} \mathcal{A}_{TS} = (Q, \sum, \delta, Q_0, F)$ $\cdot Q = \Gamma \cup \{\sigma_0\}, \sigma_0 \notin \Gamma$

 - $\cdot \sum = \mathcal{P}(AP)$
 - $\delta = \{(\sigma, p, \sigma') \mid \sigma \to \sigma' \text{ and } p = L(\sigma')\} \cup \{(\sigma_0, p, \sigma_I) \mid p = L(\sigma_I)\}$
 - $\cdot Q_0 = \{\sigma_0\}$
 - $\cdot F = Q$
- ▷ Check whether any of them violates the safety property
 - · Manual checking possible for simple FA
 - · Automatic checking not possible

• Regular Safe Properties:

- ▶ Restriction
- Safety property is regular if its bad prefixes are described by a regular language over the alphabet $\mathcal{P}(AP)$
- ▷ Every invariant over AP is a regular safety property
- ▷ Checking Regular Safety Properties:

- · Describe finite prefixes $\mathcal{T}_{fin}(TS)$ by finite automate \mathcal{F} \mathcal{A}_{TS}
- · Describe bad prefixes of regular safety property P by finite automata \mathcal{F} $\mathcal{A}_{\overline{P}}$
- · Construct finite automata for product of \mathcal{F} \mathcal{A}_{TS} and \mathcal{F} $\mathcal{A}_{\overline{P}}$
 - · Product corresponds to the intersection of both FA TODO: describe construction
- · Check if resulting automaton has any reachable accepting states
 - · If not, property P is never violated in traces of TS
 - \cdot If yes, the property P is violated
 - · Counterexample is any accepted word by the automata
- So far we can not check non-regular safety properties and liveness properties

* ω -Regular Languages

- Denote languages of infinite works
- Expression G has the form $G = E_1 F_1^{\omega} + \cdots + E_n F_n^{\omega} \ (1 \le n)$
 - $\triangleright E_i$ and F_i are regular expression
 - \triangleright + means or

o Büchi Automata (NBA)

- ▶ Accept infinite words
- \triangleright Accepted language agrees with the class of ω -regular languages
- \triangleright Non-deterministic
- \triangleright Tuple $(Q, \sum, \delta, Q_0, F)$
 - \cdot Q: finite set of states
 - · \sum : finite alphabet
 - · δ : transition relation
 - $\delta \subseteq Q \times \sum \times Q$
 - · $Q_0 \subseteq Q$: initial state
 - $\cdot F \subseteq Q$: accepting states
- ▶ Accept word if it passes infinitely often through an accepting state

• Checking:

- \triangleright Describe traces $\mathcal{T}(TS)$ by NBA \mathcal{B} \mathcal{A}_{TS}
- \triangleright For an LTL formula ϕ , construct NBA \mathcal{B} $\mathcal{A}_{\neg\phi}$ that accepts the traces (i.e. the bad traces) characterized by $\neg\phi$
- \triangleright Construct NBA for products of \mathcal{B} \mathcal{A}_{TS} and \mathcal{B} $\mathcal{A}_{\neg \phi}$
- ▶ Check whether the language accepted by product NBA is empty
 - · If language is non-empty, property ϕ is violated
 - · Each word in the language is a counterexample

* Complexity

- For a finite transition system TS and an LTL formula ϕ the model checking problem TS $\models \phi$ is solvable in $\mathcal{O}(|\mathrm{TS}| \times 2^{|\phi|})$
 - ▷ |TS|: size of the transition system
 - · Grows exponentially in the number of variables, processes and channels
 - $\triangleright |\phi|$: size of ϕ
 - · Grows exponentially tue to the construction of the \mathcal{B} $\mathcal{A}_{\neg\phi}$

Part III. **Appendix**

FMFP 14 PRELUDE

14. Prelude

```
• curry :: ((a, b) -> c) -> a -> b -> c

    Converts uncurried function to curried function

• uncurry :: (a -> b -> c) -> (a, b) -> c
    ♦ Converts curried function to function on tuple
• fromEnum :: a -> Int
    ♦ Gives ascii value of a char
• toEnum :: Int -> a

    Gives character of a certain ascii value

• abs :: Num => a -> a
    ♦ ABS value of number
• signum :: Num => a -> a
    \diamond Returns -1, 0 or 1
• foldMap :: Monoid m \Rightarrow (a \rightarrow m) \rightarrow t a \rightarrow m
    ♦ Map each element of the passed list to a monoid (array of one element) and apply
      the function on it
    ♦ Example:
        * foldMap (replicate 3) [1,2,3] = [1,1,1,2,2,2,3,3,3]
• foldr :: (a -> b -> b) -> b -> t a -> b
• foldl :: (b -> a -> b) -> b -> t a -> b
• elem :: Eq a => a -> t a -> Bool
    ♦ Does element occur in list
• maximum :: Ord a => t a -> a
    ♦ Largest element of non-empty list
• minimum :: Ord a => t a -> a
    ♦ Least element of non-empty list
• sum :: Num a => t a -> a
    ♦ Sum of list
• product :: Num a => t a -> a

    Product of list

• (.) :: (b -> c) -> (a -> b) -> a -> c
    ♦ Function composition
• flip :: (a -> b -> c) -> b -> a -> c
    ⋄ Takes function with two arguments and applies the arguments in switched order
• ($)
    ♦ Useful to omit parentheses
    \diamond Example: f $ g $ h x = f ( g ( h x))
• until :: (a -> Bool) -> (a -> a) -> a -> a
    ♦ Yields the result of applying the function until the condition hold
• map :: (a -> b) -> [a] -> [b]
• (++) :: [a] -> [a] -> [a]
• filter :: (a -> Bool) -> [a] -> [a]
• head :: [a] -> a
    ♦ First element of the list
• last :: [a] -> a
    ♦ Last element of the list
• tail :: [a] -> [a]
    All except the first element of the list
```

FMFP 14 PRELUDE

```
• init :: [a] -> [a]
    ♦ All expect the last
• (!!) :: [a] -> Int -> a
     \diamond Returns the n-th element of a list
• null :: Foldable t => t a -> Bool
    ♦ Test whether list is empty
• length :: Foldable t => t a -> Int

    Length of list

• reverse :: [a] -> [a]
    ♦ Reverses given list
    ♦ Only works for finite list
• and :: Foldable t => t Bool -> Bool

    Return true iff all elements in the list are true

• or :: Foldable t => t Bool -> Bool
    ♦ Return true iff at least one element of the list is true
• any :: Foldable t \Rightarrow (a \rightarrow Bool) \rightarrow t a \rightarrow Bool
    Check if any element of the list satisfies the predict
• all :: Foldable t \Rightarrow (a \rightarrow Bool) \rightarrow t a \rightarrow Bool
     ♦ Check if all element of the list satisfies the predict
• concat :: foldable t => t [a] -> [a]
     ♦ The concatenation of all the elements of a container of lists
     \diamond Example: concat [[1,2,3],[4,5],[6],[] = [1,2,3,4,5,6]
• concatMap :: Foldable t \Rightarrow (a \Rightarrow [b]) \Rightarrow t a \Rightarrow [b]
     Example: concatMap (take 3) [[1..],[10..],[100..]] = [1,2,3,10,11,12,100,101,102]
• scanl :: (b -> a -> b) -> b -> [a] -> [b]
    ♦ Similar to fold1 but gives intermediate results
     \diamond Example: scan1 (+) 0 [1..4] = [0,1,3,6,10]
     \diamond Example: scanl (-) 100 [1..4] = [100,99,97,94,90]
• scanr :: (a -> b -> b) -> b -> [a] -> [b]
     ♦ Similar to fold1 but gives intermediate results
     \diamond Example: scan1 (+) 0 [1..4] = [10,9,7,4,0]
     \diamond Example: scan1 (-) 100 [1..4] = [98,-97,99,-96,100]
• iterate :: (a -> a) -> a -> [a]
     ♦ Infinitely often apply the function to the value
     ♦ Example: iterate (+3) 42 = [42,45,48,51,54,...]
• repeat :: a -> [a]
     ♦ Repeat the value in an infinite list
     ♦ Example: repeat 0 = [0,0,0...]
• replicate :: Int -> a -> [a]
    \diamond Create list containing x n times
     ♦ Example: replicate 4 True = [True, True, True, True]
• cycle :: [a] -> [a]
    ♦ Create infinite list from given list
     \diamond Example: cycle [1,2] = [1,2,1,2,1,2,...]
• take :: Int -> [a] -> [a]
     \diamond Returns prefix of length n or xs if n is larger than its size
     ♦ Example: take 3 "test" = "tes"
• drop :: Int -> [a] -> [a]
```

 \diamond Returns suffix after the first n elements or [] if n is larger than length of list

FMFP 14 PRELUDE

```
♦ Example: drop 3 "test" = "t"
• takeWhile :: (a -> Bool) -> [a] -> [a]
    ♦ Returns longest prefix of list that all satisfy the predicate
    ♦ Example: takeWhile (<3) [1..5] = [1,2]</p>
• dropWhile :: (a -> Bool) -> [a] -> [a]
    ♦ Returns suffix after applying takewhile
    ♦ Example: dropWhile (<3) [1..5] = [3,4,5]</p>
• span :: (a -> Bool) -> [a] -> ([a], [a])
    ♦ Tuple of takeWhile and dropWhile
    \diamond Example: span (<3) [1..5] = ([1,2],[3,4,5])
• splitAt :: Int -> [a] -> ([a], [a])
    \diamond Split list at n (first element is n long)
    ♦ Example: splitAt 3 "Test" = ("Tes", "t")
• zip :: [a] -> [b] -> [(a, b)]
    ♦ Combines two list into tuple
    ♦ Final length is length of the shorter list
• zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
• zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
    ♦ Example: zipWith (+) [1,2,3] [4,5,6] = [5,7,9]
    ♦ zipWith3 also exists
• unzip :: (a, b) -> [a] -> [b]
• unzip3 :: (a, b, c) -> [a] -> [b] -> [c]
• show :: a -> String
    ♦ Convert anything to string
• read :: Read a => String -> a
    ♦ Convert string to anything
    ♦ Often we need to give the type
```

♦ Example: read "123" :: Int = 123

FMFP 15 DATA.LIST

15. Data.List

```
• intersperse :: a -> [a] -> [a]
    $ Example: intersperse ',', "abcdef" = "a,b,c,d,e,f"
• tranpose :: [[a]] -> [[a]]
    ♦ Can be useful in concussion with infinite list
• subsequences :: [a] -> [[a]]
    ♦ Powerset of given set (/list)
    ♦ Example: subsequences "abc" = ["", "a", "b", "c", "ab" "ac", "cd", "abc"
• permutations :: [a] -> [[a]]
    ♦ Example: permutations "abc" = ["abc, "bac", "cba", "cab", "acb"]
• group :: Eq a => [a] -> [[a]]
    ♦ Split list into sublist where each elements contains only the same element
    ♦ Example: group "Mississippi" = ["M", "i", "ss", "i", "ss", "i", "pp", "i"]
• isPrefixOf :: Eq a => [a] -> [a] -> Bool
• isSuffixOf :: Eq a => [a] -> [a] -> Bool
• isInfixOf :: Eq a => [a] -> [a] -> Bool
• isSubsequenceOf :: Eq a => [a] -> [a] -> Bool
    ♦ If all elements of the first list are present in the second
• nub :: Eq a => [a] -> [a]
    ♦ Convert list into set by removing duplicates
• (\\)) :: Eq a => [a] -> [a] -> [a]
    \diamond Set difference
• union :: Eq a => [a] -> [a] -> [a]
• intersect :: Eq a => [a] -> [a] -> [a]
• sort :: Ord a => [a] -> [a]
```