TMA4180 Optimisation I

Spring 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Solutions to exercise set 5

Observe first that exact line search implies that $\nabla f_{k+1}^{\top} p_k = 0$ (and $\nabla f_{k+1}^{\top} s_k = 0$ because $s_k = \alpha_k p_k$). Indeed, minimising f at the current iterate x_k in the direction p_k , that is, finding an optimal step length α_k satisfying

$$\alpha_k \in \operatorname*{arg\,min}_{\alpha>0} f(x_k + \alpha p_k),$$

means that α_k is a stationary point of $\phi: \alpha \mapsto f(x_k + \alpha p_k)$. Differentiating ϕ yields

$$0 = \phi'(\alpha_k) = \nabla f(x_k + \alpha_k p_k)^{\top} p_k = \nabla f_{k+1}^{\top} p_k,$$

as desired.

Note next that both this variant of the BFGS method and the Hestenes–Stiefel method iterate on the form

$$x_{k+1} = x_k + \alpha_k p_k.$$

Therefore, assuming exact line search and $p_0 = -\nabla f_0$, it suffices to show that the search directions for the two methods coincide. With

$$s_k = x_{k+1} - x_k = \alpha_k p_k$$
 and $y_k = \nabla f_{k+1} - \nabla f_k$,

we calculate search directions in the BFGS variant as

$$p_{k+1} = -H_{k+1} \nabla f_{k+1}$$

$$= -\left(\operatorname{Id} - \frac{s_k y_k^{\top}}{y_k^{\top} s_k}\right) \left(\nabla f_{k+1} - \frac{y_k}{y_k^{\top} s_k} \left(s_k^{\top} \nabla f_{k+1}\right)\right) + \frac{s_k}{y_k^{\top} s_k} \left(s_k^{\top} \nabla f_{k+1}\right)$$

$$= -\left(\operatorname{Id} - \frac{s_k y_k^{\top}}{y_k^{\top} s_k}\right) \nabla f_{k+1}$$

$$= -\nabla f_{k+1} + \frac{\nabla f_{k+1}^{\top} y_k}{y_k^{\top} s_k} s_k$$

$$= -\nabla f_{k+1} + \frac{\nabla f_{k+1}^{\top} y_k}{y_k^{\top} p_k} p_k$$

$$= -\nabla f_{k+1} + \frac{\nabla f_{k+1}^{\top} (\nabla f_{k+1} - \nabla f_k)}{(\nabla f_{k+1} - \nabla f_k)^{\top} p_k} p_k$$

$$= -\nabla f_{k+1} + \beta_{k+1} p_k.$$

Since β_{k+1} equals that of the Hestenes–Stiefel method, we are done.

2 We invoke Theorem 4.1 in Nocedal & Wright, which says that p_0 is a global minimizer to the trust-region subproblem

$$\min_{\|p\| \le \Delta} m(p),$$

with $\Delta = 1$, if and only if there exists a $\lambda \geq 0$ such that

$$(B + \lambda \operatorname{Id})p_0 = -g, \tag{1}$$

$$\lambda(\Delta - ||p_0||) = 0, \text{ and}$$
 (2)

$$B + \lambda \operatorname{Id}$$
 is positive semi-definite. (3)

Routine calculations yield that

$$g = \nabla f(x_0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, and $B = \nabla^2 f(x_0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Since B has eigenvalues ± 1 , any $\lambda \geq 1$ makes $B + \lambda$ Id positive semi-definite. In particular, we must have $||p_0|| = 1$ from complementarity condition (2), so p_0 lies on the trust-region boundary.

Solution of (1) equals

$$p_0 = \frac{1}{1 - \lambda} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

provided $\lambda \neq 1$ (there is no solution for $\lambda = 1$), and from the conditions $||p_0|| = 1$ and $\lambda > 1$, we thus end up with

$$\lambda = 1 + \sqrt{2}$$
, and $p_0 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1 \end{bmatrix}$.

Next step is therefore $x_1 = x_0 + p_0 = p_0$.

3 a) Note first that

$$g = \nabla f(x_0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $B = \nabla^2 f(x_0) = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$,

and that the unconstrained minimizer of m equals $p_0^{\rm B}=-B^{-1}g=-(1,1)$ (why?). When $\Delta=2$, this direction is feasible—indeed, $\|p_0^{\rm B}\|=\sqrt{2}<2$ —and hence, we compute the next step with $p_0=p_0^{\rm B}$ as $x_1=x_0+p_0=(0,0)$, which turns out to be the global minimizer of f.

If, however, $\Delta = 5/6$, then (1) from Theorem 4.1 in N&W implies that

$$p_0 = -\begin{bmatrix} 1/(1+\lambda) \\ 2/(2+\lambda) \end{bmatrix}$$

for some $\lambda \geq 0$. We cannot have $\lambda = 0$, because then $p_0 = p_0^{\rm B}$, which is infeasible. Thus $\lambda > 0$ and $||p_0|| = \Delta = 5/6$ by complementarity condition (2). Written out and simplifying, the latter equation becomes

$$0 = 25\lambda^4 + 150\lambda^3 + 145\lambda^2 - 132\lambda - 188$$
$$= (\lambda - 1)(25\lambda^3 + 175\lambda^2 + 300\lambda + 188).$$

Since the second factor in the last expression is positive for all $\lambda \geq 0$, we infer that $\lambda = 1$ is the only possibility. This gives

$$p_0 = (-1/2, -2/3)$$
 and $x_1 = x_0 + p_0 = (1/2, 1/3)$.

(Note that condition (3) is automatically satisfied because B is positive definite.)

b) If $\Delta \geq 2$, the full step $p_0 = p_0^{\rm B}$ is feasible, yielding $x_1 = x_0 + p_0 = (0, 0)$. Next, the steepest descent step equals

$$p_0^{\mathrm{U}} = -\frac{g^{\mathrm{T}}g}{g^{\mathrm{T}}Bg}g = -\begin{bmatrix} 5/9\\10/9 \end{bmatrix}$$

and satisfies $||p_0^{\text{U}}|| = 5\sqrt{5}/9 \approx 1.24$. If $\Delta \leq ||p_0^{\text{U}}||$, the dogleg method chooses p_0 to lie on the "steepest descent trajectory", scaled to lie on the boundary of the trust-region, so that

$$p_0 = \frac{\Delta}{\|p_0^{\text{U}}\|} p_0^{\text{U}} = -\frac{\Delta}{\sqrt{5}} \begin{bmatrix} 1\\2 \end{bmatrix}.$$

This yields a new step $x_1 = \left(1 - \frac{\Delta}{\sqrt{5}}, 1 - \frac{2\Delta}{\sqrt{5}}\right)$. Observe that for $\Delta = 5/6$, this gives $x_1 \approx (0.63, 0.25)$, which is not too far from the optimal x_1 found in the previous problem.

For the remaining case $5\sqrt{5}/9 < \Delta < 2$, we follow the dogleg path

$$p(\tau) = p_0^{\mathrm{U}} + \tau (p_0^{\mathrm{B}} - p_0^{\mathrm{U}}), \qquad \tau \in (0, 1)$$

until it hits the boundary of the trust-region, that is, when

$$\Delta^{2} = \|p(\tau)\|^{2} = \|p_{0}^{\mathrm{U}}\|^{2} + 2\tau (p_{0}^{\mathrm{B}} - p_{0}^{\mathrm{U}})^{\top} p_{0}^{\mathrm{U}} + \tau^{2} \|p_{0}^{\mathrm{B}} - p_{0}^{\mathrm{U}}\|^{2}.$$

Solving this quadratic equation with respect to τ gives

$$\tau = -\frac{1}{17} \left(10 + \sqrt{1377 \Delta^2 - 2025} \right),$$

where the other solution has been discarded since it results in $\tau < 0$. Next step is therefore $x_1 = x_0 + p(\tau)$, with τ as above.

 $\begin{bmatrix} \mathbf{4} \end{bmatrix}$ a) The gradient and Hessian of f equal

$$\nabla f(x,y) = J^{\top} r = \begin{bmatrix} 1 & 1 & y \\ 1 & -1 & x \end{bmatrix} \begin{bmatrix} x+y-1 \\ x-y \\ xy-2 \end{bmatrix} = \begin{bmatrix} 2(x-y) + xy^2 - 1 \\ 2(y-x) + yx^2 - 1 \end{bmatrix}$$

and

$$\begin{split} \nabla^2 f(x,y) &= J^\top J + r_1 \nabla^2 r_1 + r_2 \nabla^2 r_2 + r_3 \nabla^2 r_3 \\ &= \begin{bmatrix} 2 + y^2 & xy \\ xy & 2 + x^2 \end{bmatrix} + 0 + 0 + r_3 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 2 + y^2 & 2(xy - 1) \\ 2(xy - 1) & 2 + x^2 \end{bmatrix}. \end{split}$$

Since, for example, $\nabla^2 f(-1,1)$ has eigenvalues -1 and 7, it follows that f is non-convex. However, f does have a unique minimiser: it is smooth and coercive, and thus we infer that there is a global minimiser, which must also be a stationary point. Coercivity can be seen this way: if $||(x,y)|| \to \infty$, then either $|x| \to \infty$ or $|y| \to \infty$. In either case, it is impossible for all three of r_1, r_2 , and r_3 to stay bounded. As such, $f(x,y) \to \infty$.

By adding and equating (since both equal 0) the two components of ∇f , we find that stationary points must satisfy

$$xy(x+y) = 2$$
 and $xy(x-y) = 4(x-y)$.

If $x \neq y$, then xy = 4 from the second equation, so that $y = \frac{1}{2} - x$ from the first. But as $4 = xy = x(\frac{1}{2} - x)$ has complex solutions in x, we reject this case. Therefore x = y, which gives solutions $x = y = \pm 1$ from the first equation. Evaluating f(1,1) = 1 and f(-1,-1) = 5, we conclude that $(x^*, y^*) = (1,1)$ is the unique minimiser.

b) Remember first that any matrix of the form $J^{\top}J$ is symmetric positive semi-definite (SPSD), which follows from

$$v^{\top}(J^{\top}J)v = (Jv)^{\top}(Jv) = ||Jv||^2 \ge 0.$$
 (*)

Moreover, SPSD matrices are characterised by having nonnegative eigenvalues, while a matrix is symmetric positive definite (SPD) if and only if it has strictly positive eigenvalues.

Computing det $J^{\top}J = 2(x^2 + y^2 + 2) > 0$, we see that $J^{\top}J$ is invertible. In particular, all eigenvalues are nonzero, and hence, strictly positive (being nonnegative). Therefore, $J^{\top}J$ is positive definite.

Another way to argue is to show that the inequality in (\star) is strict for all nonzero v unless $v \in \ker J$. By the rank–nullity theorem,

$$\dim \ker J = 2 - \operatorname{rank} J = 0.$$

Thus Jv = 0 only if v = 0, and $J^{\top}J$ is SPD.

c) We show that J(x,y) satisfies the "full-rank condition"

$$||J(x,y)v|| \ge \gamma ||v||$$

for all $(x,y) \in \mathbb{R}^2$, where $\gamma > 0$ is a constant. Theorem 10.1 in N&W then implies that the Gauß–Newton method with Wolfe line search converges for all initial values.

Now,

$$||J(x,y)v||^2 = (v_1 + v_2)^2 + (v_1 - v_2)^2 + (ys_1 + xs_2)^2$$

$$\geq 2(v_1^2 + v_2^2) = 2||v||^2,$$

and so we may put $\gamma = \sqrt{2}$ to get the desired inequality.

d) With $(x_0, y_0) = (0, 0)$, we have

$$J^{\top}J = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \quad \text{and} \quad J^{\top}r = \begin{bmatrix} -1 \\ -1 \end{bmatrix}.$$

Solving the linear system $J^{\top}Jp = -J^{\top}r$ gives p = (1/2, 1/2), so that

$$(x_1, y_1) = (x_0, y_0) + p = (1/2, 1/2).$$