Distributed Information Systems: Spring Semester 2016 Quiz 3 Student Name: ______ Date: 7 Apr 2016 Student ID: ______ Date: 11:15AM to 11:30AM Total number of questions: 8 Each question has a single answer!

1.	Which	of following	is	wrong	about	${\rm data}$	guide?
----	-------	--------------	----	-------	-------	--------------	--------

- \square a) The data guide summarizes the data in a concise way (i.e., every path occurs only once)
- \Box b) The nodes in a data guide define classes of nodes in the data graph
- \Box c) The data guide is a deterministic schema graph
- $\boxtimes d$) The dataguide can never have cycles
- 2. Given the transactions in the following table, which of the following statements is **true**?

Transaction ID	Purchased Items
1	A,B,C
2	A,C
3	A,D
4	B.E

$\Box a$	A	\Longrightarrow	C with	unknown	support and	1 ≈	66 67%	confidence

- \Box b) $C \implies A$ with 100% support and 50% confidence
- $\boxtimes c$) $A \implies C$ with 50% support and $\approx 66.67\%$ confidence
- $\Box d$) $C \implies A$ with unknown support and 50% confidence
- 3. Given a frequent itemset T of size $k \geq 2$, computed from a database of shopping transaction with a given minimum support, which of the following is **true**:
 - $\boxtimes a$) There exist at least k frequent itemsets of size k-1.
 - \Box b) Using the apriori algorithm, the database has been scanned k+1 times to find T.
 - \Box c) We can build at least k-1 association rules with confidence 100%.
 - \square d) If another frequent itemset T' differs from T by exactly one element, then $T \cup T'$ is a k+1 frequent itemset. need last item as well
- 4. For schema integration we constructed a Naive Bayes classifier that determines with which probability a data instance i with features T_i belongs to a class A.

Which of the following probabilities is **not** used to train the classifier

- \square a) P(A), the probability that an instance belongs to class A
- \Box b) P(t|A), the probability that a feature $t \in T_i$ occurs for an instance of class A
- $\boxtimes c$) $P(A|T_i)$, the probability that an instance belongs to class A given its features
- \square d) all the three probabilities are used
- 5. When integrating heterogeneous databases (e.g. in healthcare environments), the constituents of different schemas need to be related to each other according to semantic similarity. This activity is called:
 - $\square a$) Schema analysis
 - $\square b$) Schema extraction
 - $\boxtimes c$) Schema matching
 - \Box d) Schema subsumption

6. Which of the following is false in the context of the Apriori algorithm for association rule	mining:
\square a) The PRUNE step removes all k-itemsets that contain a non frequent $(k-1)$ -itemset.	true
	false, because there is
\square c) The Apriori algorithm reduces the number of database accesses compared to a brute-	LEVAN TURTNAR
\square d) Identifying frequent itemsets in partitions of the database can improve the algorithm' large datasets.	s performance in
7. Given sets $A = \{a, b, c, d, f\}$ and $B = \{a, b, c, d, e\}$, the Jaccard similarity between A and A	B is:
$\Box a)$ 5	
\Box b) 4 / 25	
$\boxtimes c) \ 2 \ / \ 3$	
$\square d) \ 4 \ / \ 5$	
8. Given an association rule $I \implies J$. Confidence is the probability	
$\square \ a) \ P(I,J)$	
$\boxtimes b) \ {P(J I) \over P(J I)}$	
$\square \ c) \ P(I J)$	
$\Box d) P(I J) - P(J)$	