南京航空航天大学

第1页 (共8页)

二〇二〇~二〇二一学年	第2学期	《机械原理》	考试试题
-------------	------	--------	------

	-	=0:	=O~=	〇二一学	年 第	2 学期	《为七木	代/尔 ち	王川为	可证证	八型	
		考证	式日期:	2021年	10月15日	∃ i	式卷类型	В	试剂	卷代号:	05004)
			班	号		学号			姓名			
题号		_	_	Ξ	四四	五	六	七	八	九	+	总分
得分												
本	题分	数	15分									
1	导	分		-	、选择	圣题(名	每题 1	分, 井	է 15 分	•)		
(B. C. D. 2. 度 A. C.	虚约 中 虚 在 瞬 N, (N-1)(N-1)(N-1)(N-1)(N-1)(N-1)(N-1)(N-1)	是由于流约束实 的束实 能对实 个构件: (N-2)/2 N-2)/2,	端足某些 际上不満 际机构I 组成的 ² N-1	些几何条 起作用, 的运动, 机构中, B. D.	所以的 起到放力 有 N(N-2) (N-1)(1	及有存在 大或缩/ 个相对 //2, N N-2)/2,	E的必要 小的作用 対速度瞬 N	是 自 幸心,有_		
()		用标准的分度[斩开线:	直齿圆	柱外齿:	轮时,	刀具的]中线与
			A.相切		B.相	割	(C.相离	1	D.重合		
) 4.	作	虑摩擦的 用线	15.000	_ 切于	摩擦圆	•			戈减速 转	专动,	其总反
			在等速只有在				I			速速状:	态下	
()		当									点"位置

) 15. 偶不平衡的转子, 其回转轴线与中心惯性主轴的位置关系是___

A. 平行 中分B. 交错共享 C. 和交主质心a.sD.re相交,交点不在质心

A. 瞬时动能相等 B. 合力相等

C. 瞬时功率相等 D. 力矩相等

F	本题分数 15分
1.	在平面机构中具有一个约束的运动副是副。在平面机构中若引入一个低
	副将引入个约束。
2.	对于原动件作匀速定轴转动,从动件相对机架作往复运动的连杆机构,其是否具
	有急回特性,取决于机构的
	压力角等于。
3.	定块机构是曲柄滑块机构通过演化而成的。
4.	在铰链四杆机构中,能作整周连续回转的连架杆称为。在铰链四杆
	机构中,与连架杆相连的活动构件称为。
5.	已知某锥齿轮的齿数为 Z , 分锥角为 δ ,则其当量齿数为。
6.	在设计滚子从动件盘形凸轮机构的凸轮实际廓线时,若凸轮实际轮廓曲线出现尖
	点或交叉,可通过(填增大或减小)滚子半径以改善设计。
7.	在定轴轮系中,有一种不影响传动比大小,只起改变转向作用的齿轮,称为
	。自由度为1的周转轮系称为。
8.	已知一对啮合的渐开线标准直齿圆柱齿轮的中心距大于标准中心距,其啮合角
	(填大于、小干或等干) 20°。

一对平行轴外啮合斜齿圆柱齿轮的正确啮合条件是: $m_{\rm nl}=m_{\rm n2}$, $\alpha_{\rm nl}=\alpha_{\rm n2}$,

9.

三、简答题 (每题 5 分, 共 20 分)

1. 铰链四杆机构满足什么条件才能成为双曲柄机构?

2. 图示一偏置滚子直动从动件盘形凸轮机构,已知凸轮实际轮廓线为半径 R 的圆,滚子半径为 r。绘制出凸轮理论轮廓线、基圆,标识出该位置的压力角 α ,推程运动角 δ_t 以及从动件的工作行程 h。

3. 为什么渐开线齿廓能满足定传比要求?集网站 nuaa.store

4. 简述飞轮调节机器的周期性速度波动的原理。

本题分	数	50分
得	分	

四、计算题(共50分)

(10分)(1)计算下图所示机构的自由度,指出虚约束、局部自由度或复合铰链;

(2) 在高副低代后,分析组成该机构的基本杆组,并确定该机构的级别。

2. (10分)设计一个如图所示的曲柄摇杆机构。已知摇杆的长 $L_{CD}=50$ mm,摆角 $\psi=45$

,行程速比系数 K=1.2,机架长度 $L_{AD}=L_{BC}-L_{AB}$ 。

速度 ω_1 =10rad/s 回转,试用图解法求机构在 φ_1 =45°位置时,构件 2 的角速度和角加速度。

齿项圆的直径;(2)齿项圆的压力角和曲率半径。 试水: (1) 分茂國、基國、 5. (10 分) 在图示轮系中, 已知各轮齿数为 Zi=15, Zi=25, Zi=20, Zi=60, Zi=10, Zs=30, n₁=200 r/min, n₅=-52r/min, 试求: n₅=?

本资源免费共享收集网站 huna.store

- 三1.两种情况: 1.最短杆与最长杆大于其余两杆之和。
- 2.最短杆与最长杆小于等于其余两杆之和,且最短杆对边为机架。
- 三2 见下图

三 3.任意瞬间主、被动轮的角速度比是恒定的,都等于 2 轮分度圆直径之比。 这是由齿轮的渐开线特性决定的

三 4.飞轮在机械中的作用实际上相当于一个能量储存器。由于其转动惯量很大,当机器出现 盈功时,飞轮的转速略增,以动能的形式将多余的能量储存起来,而使主轴角速度上升的幅 值减小。

当机械出现亏功时,飞轮转速略下降,将储存的能量放出来,以弥补能量的不足,从而使得主轴角速度下降幅值减小。

四3 见下图

33.

32. (1)
$$d=mZ=3\times30=90 \text{ mm}$$
 $db=d0Sd=90\times60520^0=84.57mm$
 $da=d+2h0^{*}m=90+2\times1\times3=96mm$
(2) $da=arcos \frac{do}{da}=28.24mm$

$$\rho=\sqrt{ra^2-rb^2}=22.72$$

34.
$$\frac{1}{713} = \frac{11-11+1}{113-11+1} = \frac{23}{212}$$
 $= -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = 200$
 $13 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = 200$
 $13 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = 200$
 $13 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = 200$
 $13 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = -\frac{5}{3} \times 3 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = -\frac{5}{3} \times 3 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = -\frac{5}{3} \times 3 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = -\frac{5}{3} \times 3 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = -\frac{5}{3} \times 3 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = -\frac{5}{3} \times 3 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = -\frac{5}{3} \times 3 = -\frac{5}{3} \times 3 = -\frac{5}{3}$
 $11 = -\frac{5}{3} \times 3 = -\frac$