SAGAN

(Self-attention GANS)

Problems with Convolutional Based Gans

- Difficult to train on multi-class dataset like imagenet
- They learn to generate simple images like ocean, sky
- Often fails to generate complex images like dog(only able to generate furs but fails on details like seperate legs)

Why is this problem arising?

- Because convolutions have local receptive field
- Can't capture long range dependency

How to solve?

Traditional approaches using convolution

- Let's increase the spatial size of the kernel?
- : (Will reduce efficiency

- To have large receptive field we can increase number of layers it takes large amount of layers for which training becomes unstable
- Unable to converge

Solution: SAGAN(Self- attention GANS)

- Idea derived from Vaswani et. al (AIAYN)
- Creates a balance b/w efficiency and long term dependency
- A few more tricks
 - Spectral Norm(on weights)
 - TTUR(update rule)
- It does not replace convolution but is complementary
- Captures fine details from distant locations in the image

Scaled Dot-Product Attention

What is Attention?

gure 2: The proposed self-attention mechanism. The \otimes denotes matrix multiplication. The softmax peration is performed on each row.

The image features from the previous hidden layer $x \in \mathbb{R}^{C \times N}$ are first transformed into two feature spaces f,g to calculate the attention, where $f(x) = W_f x$, $g(x) = W_g x$

$$\beta_{j,i} = \frac{\exp(s_{ij})}{\sum_{i=1}^{N} \exp(s_{ij})}, \text{ where } s_{ij} = \boldsymbol{f}(\boldsymbol{x_i})^T \boldsymbol{g}(\boldsymbol{x_j}),$$
(1)

and $\beta_{j,i}$ indicates the extent to which the model attends to the i^{th} location when synthesizing the j^{th} region. Then the output of the attention layer is $o = (o_1, o_2, ..., o_j, ..., o_N) \in \mathbb{R}^{C \times N}$, where,

$$o_j = \sum_{i=1}^N \beta_{j,i} h(x_i)$$
, where $h(x_i) = W_h x_i$. (2)

In the above formulation, $W_g \in \mathbb{R}^{\bar{C} \times C}$, $W_f \in \mathbb{R}^{\bar{C} \times C}$, $W_h \in \mathbb{R}^{C \times C}$ are the learned weight matrices, which are implemented as 1×1 convolutions. We use $\bar{C} = C/8$ in all our experiments.

In addition, we further multiply the output of the attention layer by a scale parameter and add back the input feature map. Therefore, the final output is given by,

$$y_i = \gamma o_i + x_i, \tag{3}$$

where γ is initialized as 0. This allows the network to first rely on the cues in the local neighborhood – since this is easier – and then gradually learn to assign more weight to the non-local evidence. The intuition for why we do this is straightforward: we want to learn the easy task first and then

Techniques to improve training

Spectral Normalisation on Weights

Constraints the Lipschitz constant of the weights (controls gradients)

Applied to both G & D (in previous paper it is applied only to D)

TTUR:

Two time sclae update rule

Different learning rate for G and D

Metrics

IS - Incepttion score (Higher the better)

FID - (Frechet Inception Distance)

Wasserstein 2 distance of feature layer Inception-V3 network

Effect of SN and TTUR (From paper)

Results and State of the art

Model	Inception Score	FID
AC-GAN [31]	28.5	1
SNGAN-projection [17]	36.8	27.62*
SAGAN	52.52	18.65

