HOMEWORK 4

Section 3-9 13, 22, 38

Section 3-10 14, 16, 40

Problem Plus 7, 10, 11, 15, 27, 28

Section 4-1 42, 59

Section 4-3 2, 14, 26, 31, 43, 46, 47, 48, 54, 56, 72, 93

3-9 13.

- (a.) Given: a plane ying horizontally at an altitude of 2 km and a speed of 800 km/h passes directly over a radar station. If we let t be time(in hours) and x be the horizontal distance traveled by the plane(in km), then we are given that dx/dt = 800 km/h.
- (b.) Unknown: the rate at which the distance from the plane to the station is increasing when it is 3 km from the station. If we let y be the distance from the plane to the station, then we want to nd dy/dt when y=3 km.

(c.)

- (d.) By the Pythagorean Theorem, $y^2 = x^2 + 2^2 \Rightarrow 2y(dy/dt) = 2x(dy/dt)$.
- (e.) $\frac{dy}{dt} = \frac{x}{y} \frac{dx}{dt} = \frac{x}{y} (800)$. Since $y^2 = x^2 + 4^2$, when y = 3, $x = \sqrt{5}$, so $\frac{dy}{dt} = \frac{\sqrt{5}}{3} (800) \approx 596 \text{ km/h}$.
- **3-9 22.** Given $\frac{dy}{dt} = 1$ m/s, find $\frac{dx}{dt}$ when x = 8 m.

$$y^2 = x^2 + 1 \Rightarrow 2y \frac{dy}{dt} = 2x \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = \frac{y}{x} \frac{dy}{dx} = -\frac{y}{x}$$
.

When
$$x = 8$$
, $y = \sqrt{65}$, so $\frac{dx}{dt} = -\frac{\sqrt{65}}{8}$.

Thus, the boat approaches the dock at $\frac{\sqrt{65}}{8} \approx 1.01$ m/s.

3-9 38. $PV^{1.4} = C \Rightarrow P \cdot 1.4V^{0.4} \frac{dV}{dt} + V^{1.4} \frac{dP}{dt} = 0 \Rightarrow \frac{dV}{dt} = -\frac{V^{1.4}}{P \cdot 1.4V^{0.4}} \frac{dP}{dt} = -\frac{V}{1.4P} \frac{dP}{dt}.$ When V = 400, P = 80 and $\frac{dP}{dt} = -10$, so we have $\frac{dV}{dt} = -\frac{400}{1.4(80)}(-10) = \frac{250}{7}.$

Thus, the volume is increasing at a rate of $\frac{250}{7} \approx 36 \text{ cm}^3/\text{min}$.

3-10 14.

Date: November 21, 2017.

(a.) For
$$y = f(\theta) = \ln(\sin \theta)$$
, $f'(\theta) = \frac{1}{\sin \theta} \cos \theta = \cot \theta$, so $dy = \cot \theta d\theta$.
(b.) For $y = f(x) = \frac{e^x}{1 - e^x}$, $f'(x) = \frac{(1 - e^x)e^x - e^x(-e^x)}{(1 - e^x)^2} = \frac{e^x[(1 - e^x) - (-e^x)]}{(1 - e^x)^2} = \frac{e^x}{(1 - e^x)^2}$, so $dy = \frac{e^x}{(1 - e^x)^2} dx$.

3-10 16.

- (a) $y = \cos \pi x \Rightarrow dy = -\sin \pi x \cdot \pi dx = -\pi \sin \pi x dx$
- (b) $x = \frac{1}{3}$ and $dx = -0.02 \Rightarrow dy = -\pi \sin \frac{\pi}{3}(-0.02) = \pi(\sqrt{3}/2)(0.02) = 0.01\pi\sqrt{3} \approx 0.054$.

3-10 40. $F = kR^4 \Rightarrow dF = 4kR^3dR \Rightarrow \frac{dF}{F} = \frac{4kR^3dR}{kR^4} = 4(\frac{dR}{R})$. Thus, the relative change in Fis about 4 times the relative change in R. So a 5% increase in the radius corresponds to a 20% increase in blood flow.

plus.7

Let $y = \tan^{-1} x$. Then $\tan y = x$, so from the triangle we see that $\sin(\tan^{-1} x) = \sin y = \frac{x}{\sqrt{1+x^2}}$. Using this fact we have that $\sin(\tan^{-1}(\sinh x)) = \frac{\sinh x}{\sqrt{1+\sinh^2 x}} = \frac{\sinh x}{\cosh x} = \tanh x$. Hence, $\sin^{-1}(\tanh x) = \sin^{-1}(\sin(\tan^{-1}(\sinh x))) = \tan^{-1}(\sinh x).$

plus.10

$$\lim_{x \to a} \frac{f(x) - f(a)}{\sqrt{x} - \sqrt{a}} = \lim_{x \to a} \left[\frac{f(x) - f(a)}{\sqrt{x} - \sqrt{a}} \cdot \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}} \right] = \lim_{x \to a} \left[\frac{f(x) - f(a)}{\sqrt{x} - \sqrt{a}} \cdot \left(\sqrt{x} + \sqrt{a} \right) \right] = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} \left(\sqrt{x} + \sqrt{a} \right) = f'(a) \cdot \left(\sqrt{a} + \sqrt{a} \right) = 2\sqrt{a}f'(a)$$

plus.11

We must find a value x_0 such that the normal lines to the parabola $y=x^2$ at $x=\pm x_0$ intersect at a point one unit from the point $(\pm x_0, x_0^2)$. The normals to $y=x^2$ at $x=\pm x_0$ have slopes $-\frac{1}{\pm 2x_0}$ and pass through $(\pm x_0, x_0^2)$ respectively, so the normals have the equations $y-x_0^2=-\frac{1}{2x_0}(x-x_0)$ and $y-x_0^2=\frac{1}{2x_0}(x+x_0)$. The common y-intercept is $x_0^2+\frac{1}{2}$. We want to find the value of x_0 for which the distance from $(0,x_0^2+\frac{1}{2})$ to (x_0,x_0^2) equals 1. The square of the distance is $(x_0-0)^2+[x_0^2-(x_0^2+\frac{1}{2})]^2=x_0^2+\frac{1}{4}=1\Leftrightarrow x_0=\pm\frac{\sqrt{3}}{2}$. For these values of x_0 , the y-intercept is $x_0^2+\frac{1}{2}=\frac{5}{4}$, so the center of the circle is at $(0,\frac{5}{4})$. Another solution: Let the center of the circle be (0,a). Then the equation of the circle is $x^2+(y-a)^2=1$. Solving with the equation of the parabola, $y=x^2$, we get $x^2+(x^2-a)^2=1\Leftrightarrow x^2+x^4-2ax^2+a^2=1\Leftrightarrow x^4+(1-2a)x^2+a^2-1=0$. The parabola and the circle will be tangent to each other when this quadratic in x^2 has equal roots; that is, when the discriminant is 0. Thus, $(1-2a^2)-4(a^2-1)=0\Leftrightarrow 1-4a+4a^2-4a^2+4=0\Leftrightarrow 4a=5$, so $a=\frac{5}{4}$. The center of the circle is $(0,\frac{5}{4})$.

plus.15

We can assume without loss of generality that $\theta=0$ at time t=0, so that $\theta=12\pi t$ rad. [The angular velocity of the wheel is $360 \text{ rpm} = 360 \cdot (2\pi \text{ rad})/(60s) = 12\pi \text{ rad}/s$.] Then the position of A as a function of time is $A=(40\cos\theta, 4\sin\theta=(40\cos12\pi t, 40\sin12\pi t), so\sin\alpha=\frac{y}{1.2m}=\frac{40\sin\theta}{120}=\frac{\sin\theta}{3}=\frac{1}{3}\sin12\pi t$.

- (a) Differentiating the expression for $\sin \alpha$, we get $\cos \alpha \cdot \frac{d\alpha}{dt} = \frac{1}{3} \cdot 12\pi \cdot \cos 12\pi t = 4\pi \cos \theta$. When $\theta = \frac{\pi}{3}$, we have $\sin \alpha = \frac{1}{3} \sin \theta = \frac{\sqrt{3}}{6}$, so $\cos \alpha = \sqrt{1 (\frac{\sqrt{3}}{6})^2} = \sqrt{\frac{11}{12}}$ and $\frac{d\alpha}{dt} = \frac{4\pi \cos \frac{\pi}{3}}{\cos \alpha} = \frac{2\pi}{\sqrt{11/12}} = \frac{4\pi\sqrt{3}}{\sqrt{11}} \approx 6.56 \text{ rad/s}$.
- (b) By the law of Cosines, $|AP|^2 = |OA|^2 + |OP|^2 2|OA||OP|\cos\theta \Rightarrow 120^2 = 40^2 + |OP|^2 2 \cdot 40|OP|\cos\theta \Rightarrow |OP|^2 (80\cos\theta)|OP| 12800 = 0 \Rightarrow |OP| = \frac{1}{2}(80\cos\theta \pm \sqrt{6400\cos^2\theta + 51,200}) = 40\cos\theta \pm 40\sqrt{\cos^2\theta + 8} = 40(\cos\theta + \sqrt{8 + \cos^2\theta})$ cm [since |OP| > 0.] As a check, note that |OP| = 160 cm when $\theta = 0$ and $|OP| = 80\sqrt{2}$ cm when $\theta = \frac{\pi}{2}$.
- (c) By part (b), the x-coordinate of P is given by $x=40(\cos\theta+\sqrt{8+\cos^2\theta})$, so $\frac{dx}{dt}=\frac{dx}{d\theta}\frac{d\theta}{dt}=40(-\sin\theta-\frac{2\cos\theta\sin\theta}{2\sqrt{8+\cos^2\theta}})\cdot 12\pi=-480\pi\sin\theta(1+\frac{\cos\theta}{\sqrt{8+\cos^2\theta}})$ cm/s. In particular, dx/dt=0 cm/s when $\theta=0$ and $dx/dt=-480\pi$ cm/s when $\theta=\frac{\pi}{2}$.

plus.27

Let $f(x) = e^{2x}$ and $g(x) = k\sqrt{x}[k > 0]$. From the graphs of f and g, we see that f will intersect g exactly once when f and g share a tangent line. Thus, we must have f = g and f' = g' at x = a.

$$f(a) = g(a) \Rightarrow e^{2a} = 5\sqrt{a} - (*)$$

and

$$f'(a) = g'(a) \Rightarrow 2e^{2a} = \frac{k}{2\sqrt{a}} \Rightarrow e^{2a} = \frac{k}{4\sqrt{a}}.$$

So we must have $k\sqrt{a} = \frac{k}{4\sqrt{a}} \Rightarrow (\sqrt{a})^2 = \frac{k}{4k} \Rightarrow a = \frac{1}{4}$.

From (*), $e^{2(1/4)} = k\sqrt{1/4} \Rightarrow k = 2e^{1/2} = 2\sqrt{e} \approx 3.297$.

plus.28

We see that at x = 0, $f(x) = a^x = 1 + x = 1$, so if $y = a^x$ is to lie above y = 1 + x, the two curves must just touch at (0,1), that is, we must have f'(0) = 1. [To see this analytically,

note that $a^{x} \ge 1 + x \Rightarrow a^{x} - 1 \ge x \Rightarrow \frac{a^{x} - 1}{x} \ge a$ for x > 0, so $f'(0) = \lim_{x \to 0^{+}} \frac{a^{x} - 1}{x} \ge 1$. Similarly, for x < 0, $a^{x} - 1 \ge x \Rightarrow \frac{a^{x} - 1}{x} \le 1$, so $f'(0) = \lim_{x \to 0^{-}} \frac{a^{x} - 1}{x} \le 1$. Since $1 \le f'(0) \le 1$,

we must have f'(0) = 1.

But $f'(x) = a^x lna \Rightarrow f'(0) = lna$, so we must have $lna = 1 \Leftrightarrow a = e$.

Another method: The inequality certainly holds for $x \leq -1$, so consider $x > -1, x \neq 0$.

Then $a^x \ge 1 + x \Rightarrow a \ge (1 + x)^{1/x}$ for $x > 0 \Rightarrow$ $a \ge \lim_{x \to 0^+} (1 + x)^{1/x} = e$, by Equation 3.6.5. Also, $a^x \ge 1 + x \Rightarrow$

 $a \le (1+x)^{1/x}$ for $x < 0 \Rightarrow a \le \lim_{x \to 0^{-}} (1+x)^{1/x} = e$.

So since $e \le a \le e$, we must have a = e.

4-1 42.

 $h(t) = 3t = \arcsin t \Rightarrow h'(t) = 3 - \frac{1}{\sqrt{1-t^2}}$. $h'(t) = 0 \Rightarrow 3 = \frac{1}{\sqrt{1-t^2}} \Rightarrow \sqrt{1-t^2} = \frac{1}{3} \Rightarrow 1-t^2 = \frac{1}{3}$ $\frac{1}{9} \Rightarrow t^2 = \frac{8}{9} \Rightarrow t = \pm \frac{2}{3}\sqrt{2} \approx \pm 0.94$, both in the domain of h, which is [-1,1].

4-1 59.

$$f(x) = x^{-2} \ln x$$
, $\left[\frac{1}{2}, 4\right]$.

$$f'(x) = x^{-2} \cdot \frac{1}{x} + (\ln x)(-2x^{-3}) = x^{-3} - 2x^{-3} \ln x = x^{-3}(1 - 2\ln x) = \frac{1 - 2\ln x}{x^3}.$$

$$f'(x) = 0 \Leftrightarrow 1 - 2 \ln x = 0 \Leftrightarrow 2 \ln x = \frac{1}{2} \Leftrightarrow x = e^{1/2} \approx 1.65.$$

f'(x) does not exist when x=0, which is not in the given interval, $\left[\frac{1}{2},4\right]$.

$$f(\frac{1}{2}) = \frac{\ln 1/2}{(1/2)^2} = \frac{\ln 1 - \ln 2}{1/4} = -4 \ln 2 \approx -2.773$$

$$f(\frac{1}{2}) = \frac{\ln 1/2}{(1/2)^2} = \frac{\ln 1 - \ln 2}{1/4} = -4 \ln 2 \approx -2.773,$$

$$f(e^{1/2}) = \frac{\ln e^{1/2}}{(e^{1/2})^2} = \frac{1/2}{e} = \frac{1}{2e} \approx 0.184, \text{ and } f(4) = \frac{\ln 4}{4^2} = \frac{\ln 4}{16} \approx 0.087.$$

So $f(e^{1/2}) = \frac{1}{2e}$ is the absolute maximum value and $f(\frac{1}{2}) = -4 \ln 2$ is the absolute minimum value.

4-3 2.

- (a) f is increasing on (0,1) and (3,7).
- (b) f is decreasing on (1,3).
- (c) f is concave upward on (2,4) and (5,7).
- (d) f is concave downward on (0,2) and (4,5).
- (e) The points of inflection are (2, 2), (4, 3) and (5, 4).

4-3 14.

(a) $f(x) = \cos^2 x - 2\sin x, 0 \le x \le 2\pi$. $f'(x) = -2\cos x \sin x - 2\cos x = -2\cos x(1+\sin x)$. Note that $1 + \sin x \ge 0$ [since $\sin x \ge -1$], with equality $\Leftrightarrow \sin x = -1 \Leftrightarrow x = \frac{3\pi}{2}$ [since $0 \le x \le 2\pi$] $\cos x = 0$. Thus, $f'(x) > 0 \Leftrightarrow \cos x < 0 \Leftrightarrow \frac{\pi}{2} < x < \frac{3\pi}{2}$ and $f'(x) < 0 \Leftrightarrow \cos x > 0 \Leftrightarrow 0 < x < \frac{\pi}{2} \text{ or } \frac{3\pi}{2} < x < 2\pi. \text{ Thus, } f \text{ is increasing on } (\frac{\pi}{2}, \frac{3\pi}{2})$ and f is decreasing on $(0, \frac{\pi}{2})$ and $(\frac{3\pi}{2}, 2\pi)$.

(b) f changes from decreasing to increasing at $x = \frac{\pi}{2}$ and from increasing to decreasing at $x = \frac{3\pi}{2}$. Thus, $f(\frac{\pi}{2}) = -2$ is a local minimum value and $f(\frac{3\pi}{2}) = 2$ is a local maximum value.

(c)

$$f''(x) = 2\sin x(1+\sin x) - 2\cos^2 x = 2\sin x + 2\sin^2 x - 2(1-\sin^2 x)$$
$$= 4\sin^2 x + 2\sin x - 2 = 2(2\sin x - 1)(\sin x + 1)$$

so $f''(x) > 0 \Leftrightarrow \sin x > \frac{1}{2} \Leftrightarrow \frac{\pi}{6} < x < \frac{5\pi}{6}$, and $f''(x) < 0 \Leftrightarrow \sin x < \frac{1}{2}$ and $\sin x \neq -1 \Leftrightarrow 0 < x < \frac{\pi}{6}$ or $\frac{5\pi}{6} < x < \frac{3\pi}{2}$ or $\frac{3\pi}{2} < x < 2\pi$. Thus, f is concave upward on $(\frac{\pi}{6}, \frac{5\pi}{6})$ and concave downward on $(0, \frac{\pi}{6}), (\frac{5\pi}{6}, \frac{3\pi}{2})$ and $(\frac{3\pi}{2}, 2\pi)$. There are inflection points at $(\frac{\pi}{6}, -\frac{1}{4})$ and $(\frac{5\pi}{6}, -\frac{1}{4})$

4-3 26.

 $f'(1) = f'(-1) = 0 \Rightarrow \text{horizontal tangents at } x = \pm 1.$

f'(x) < 0 if $|x| < 1 \Rightarrow f$ is decreasing on (-1, 1).

f'(x) > 0 if $1 < |x| < 2 \Rightarrow f$ is increasing on (-2, 1) and (1, 2).

f'(x) = -1 if $|x| > 2 \Rightarrow$ the graph of f has constant slope -1 on $(-\infty, -2)$ and (2, infty). f''(x) < 0 if $-2 < x < 0 \Rightarrow f$ is concave downward on (-2, 0). The point (0, 1) is an inflection point.

4-3 31.

f'(x) > 0 if $x \neq 2 \Rightarrow f$ is increasing on $(-\infty, 2)$ and $(2, \infty)$.

f''(x) > 0 if $x < 2 \Rightarrow f$ is concave upward on $(-\infty, 2)$.

f''(x) < 0 if $x > 2 \Rightarrow f$ is concave downward on $(2, \infty)$.

f has inflection point $(2,5) \Rightarrow f$ changes concavity at the point (2,5).

 $\lim_{x\to\infty} f(x) = 8 \Rightarrow f$ has a horizontal asymptote of y = 8 as $x\to\infty$.

 $\lim_{x \to -\infty} f(x) = 0 \Rightarrow f \text{ has a horizontal asymptote of } y = 0 \text{ as } x \to -\infty.$

4-3 43.

(a)

$$F'(x) = x \cdot \frac{1}{2} (6 - x)^{-\frac{1}{2}} (-1) + (6 - x)^{-\frac{1}{2}} (1) = \frac{1}{2} (6 - x)^{-\frac{1}{2}} [-x + 2(6 - x)]$$
$$= \frac{-3x + 12}{2\sqrt{6 - x}}$$

 $F'(x) > 0 \Leftrightarrow -3x + 12 > 0 \Leftrightarrow x < 4 \text{ and } F'(x) < 0 \Leftrightarrow 4 < x < 6.$

So F is increasing on $(-\infty, 4)$ and F is decreasing on (4, 6).

(b) F changes from increasing to decreasing at x=4, so $F(4)=4\sqrt{2}$ is a local maximum value. There is no local minimum value.

(c) $F'(x) = -\frac{3}{2}(x-4)(6-x)^{-\frac{1}{2}}$

$$F''(x) = -\frac{3}{2} \left[(x-4) \left(-\frac{1}{2} (6-x)^{-\frac{3}{2}} (-1) \right) + (6-x)^{-\frac{1}{2}} (1) \right]$$
$$= -\frac{3}{2} \cdot \frac{1}{2} (6-x)^{-\frac{3}{2}} [(x-4) + 2(6-x)] = \frac{3(x-8)}{4(6-x)^{\frac{3}{2}}}$$

F''(x) < 0 on $(-\infty, 6)$, so F is CD on $(-\infty, 6)$. There is no inflection point.

4-3 46.

(a) $f(x) = \ln(x^2 + 9) \Rightarrow f'(x) = \frac{1}{x^2 + 9} \dot{2}x = \frac{2x}{x^2 + 9}$. $f'(x) > 0 \Leftrightarrow 2x > 0 \Leftrightarrow x > 0$ and $f'(x) < 0 \Leftrightarrow x < 0$. So f is increasing on $(0, \infty)$ and f is decreasing on $(-\infty, 0)$.

(b) f changes from decreasing to increasing at x=0, so $f(0)=\ln 9$ is a local minimum value. There is no local maximum value.

(c) $f''(x) = \frac{(x^2+9)\dot{-}2x(2x)}{(x^2+9)^2} = \frac{18-2x^2}{(x^2+9)^2} = \frac{-2(x+3)(x-3)}{(x^2+9)^2}$. $f''(x) = 0 \Leftrightarrow x = \pm 3$. f''(x) > 0 on (-3,3) and f is CD on $(-\infty,-3)$ and $(3,\infty)$. There are inflection points at $(\pm 3,\ln 18)$

(d)

4-3 47.

(a) $f(\theta) = 2\cos\theta + \cos^2\theta$, $0 \le \theta \le 2\pi \Rightarrow f'(\theta) = -2\sin\theta + 2\cos\theta(-\sin\theta) = -2\sin\theta(1+\cos\theta)$.

 $f'(\theta) = 0 \Leftrightarrow \theta = 0$, π and $2\pi \cdot f'(\theta) > 0 \Rightarrow \pi < \theta < 2\pi$ and $f'(\theta) < 0 \Leftrightarrow 0 < \theta < \pi$. So f is increasing on $(\pi, 2\pi)$ and f is decreasing on $(0, \pi)$.

(b) $f(\pi) = -1$ is a local minimum value.

(c) $f'(\theta) = -2\sin\theta(1+\cos\theta) \Rightarrow$

 $f''(\theta) = -2\sin\theta(-\sin\theta) + (1+\cos\theta)(-2\cos\theta) = 2\sin^2\theta - 2\cos\theta - 2\cos^2\theta$

 $= 2(1 - \cos^2 \theta) - 2\cos \theta - 2\cos^2 \theta = -4\cos^2 \theta - 2\cos \theta + 2$

 $= -2(2\cos^2\theta + \cos\theta - 1) = -2(\cos\theta - 1)(\cos\theta + 1)$

since $-2(\cos\theta+1) < 0[for\theta \neq \pi].f''(\theta) > 0 \Rightarrow 2\cos\theta-1 < 0 \Rightarrow \cos\theta < \frac{1}{2} \Rightarrow \frac{\pi}{3} < \theta < \frac{5\pi}{3}$ and $f''(\theta) < 0 \Rightarrow \cos\theta > \frac{1}{2} \Rightarrow 0 < \theta < 2\pi$. So f is CU on $(\frac{\pi}{3}, \frac{5\pi}{3})$ and f is CD on $(0, \frac{\pi}{3})$ and $(\frac{5\pi}{3}, 2\pi)$. There are points of inflection at $(\frac{\pi}{3}, f(\frac{\pi}{3})) = (\frac{\pi}{3}, \frac{5}{4})$ and $(\frac{5\pi}{3}, f(\frac{5\pi}{3})) = (\frac{5\pi}{3}, \frac{5}{4})$

4-3 48.

(a) $S(x) = x - \sin x$, $0 \le x \le 4\pi \Rightarrow S'(x) = 1 - \cos x$. $S'(x) = 0 \Leftrightarrow \cos x = 1 \Leftrightarrow x = 0$. 2π , and 4π .

 $S'(x) > 0 \Leftrightarrow \cos x < 1$, which is true for all x except integer multiples of 2π , so S is increasing on $(0,4\pi)$ since $S'(2\pi) = 0$

(b) There is no local maximum or minimum

(c)

(d) $S''(x) = \sin x.S''(x) > 0$ if $0 < x < \pi$ or $2\pi < x < 3\pi$, and S''(x) < 0 if $\pi < x < 2\pi$ or $3\pi < x < 4\pi$. So S is CU on $(0,\pi)$ and $(2\pi,3\pi)$, and S is CD on $(\pi,2\pi)$ and $(3\pi,4\pi)$. There are inflection points at $(\pi,\pi),(2\pi,2\pi)$, and $(3\pi,3\pi)$.

4-3 54.

 $f(x) = x - \frac{1}{6}x^2 - \frac{2}{3}\ln x$ has domain $(0,\infty)$.

- (a) $\lim_{x\to 0^+}(x-\frac{1}{6}x^2-\frac{2}{3}\ln x)=\infty$ since $\ln x\to -\infty$ as $x\to 0^+$, so x=0 is a VA. There is no HA.
- $(b)f'(x) = 1 \frac{1}{3}x \frac{2}{3x} = \frac{3x x^2 2}{3x} = -\frac{(x 1)(x 2)}{3x}.f'(x) > 0 \Leftrightarrow (x 1)(x 2) < 0 \Leftrightarrow 1 < x < 2$ and $f'(x) < 0 \Leftrightarrow 0 < x < 1$ or x > 2. So f is increasing on (1,2) and f is decreasing on (0,1) and $(2, \infty)$.
- (c) f changes from defreasing to increasing at x=1, so $f(1)=\frac{5}{6}$ is a local minimum value. f changes from increasing to decreasing at x=2, so $f(2)=\frac{4}{3}-\frac{2}{3}\ln 2\approx 0.87$ is a local maximum value.
- (d) $f''(x) = -\frac{1}{3} + \frac{2}{3x^2} = \frac{2-x^2}{3x^2} \cdot f''(x) > 0 \Leftrightarrow 0 < x < \sqrt{2} \text{ and } f''(x) < 0 \Leftrightarrow x > \sqrt{2}.$ So f is CU on $(0,\sqrt{2})$ and f is CD on $(\sqrt{2},\infty)$. There is an inflection point at $(\sqrt{2},\sqrt{2}-\frac{1}{3}-\frac{1}{3}\ln 2)$. (e)

4-3 56.

(a) $\lim_{x \to \infty} arc \tan x = \frac{\pi}{2}$, so $\lim_{x \to \infty} e^{arc \tan x} = e^{\frac{\pi}{2}} [\approx 4.81]$, so $y = e^{\frac{\pi}{2}}$ is a HA. $\lim_{x \to -\infty} e^{arc \tan x} = e^{\frac{-\pi}{2}} [\approx 0.21]$, so $y = e^{\frac{-\pi}{2}}$ is a HA. No VA.

- (b) $f(x) = e^{arc \tan x} \Rightarrow f'(x) = e^{arc \tan x}$. $\frac{1}{1+x^2} > 0$ for all x. Thus, f is increasing on \mathbb{R} .
- (c) There is no local maximum or minimum . (d) $f''(x) = e^{arc \tan x} \left[\frac{-2x}{(1+x^2)^2} \right] + \frac{1}{1+x^2} \cdot e^{arc \tan x} \cdot \frac{1}{1+x^2} = \frac{e^{arc \tan x}}{(1+x^2)^2} (-2x+1)$

 $f''(x) > 0 \Leftrightarrow -2x + 1 > 0 \Leftrightarrow x < \frac{1}{2} \text{ and } f''(x) < 0 \Leftrightarrow x > \frac{1}{2}, \text{ so } f \text{ is CU on } (-\infty, \frac{1}{2}) \text{ and } f \text{ is CD on } (\frac{1}{2}, \infty).$ There is an inflection point at $(\frac{1}{2}, f(\frac{1}{2})) \approx (\frac{1}{2}, 1.59)$.

(e)

4-3 72.

(a) As $|x| \to \infty$, $t = -\frac{x^2}{2\sigma^2} \to -\infty$, and $e^t \to 0$. The HA is y=0. Since t takes on its maximum value at x=0, so does e^t . Showing this result using derivatives, we have $f(x)=e^{\frac{-x^2}{2\sigma^2}}\Rightarrow$

 $f'(x) = e^{\frac{-x^2}{2\sigma^2}}(\frac{-x}{\sigma^2}).$ $f'(x) = 0 \Leftrightarrow x = 0. \text{ Because } f' \text{ changes from positive to negative at } x = 0, f(0) = 1 \text{ is a local maximum. For inflection points, we find } f''(x) = \frac{1}{\sigma^2}[e^{\frac{-x^2}{2\sigma^2}}] = \frac{-1}{\sigma^2}e^{\frac{-x^2}{2\sigma^2}}(\frac{-x}{\sigma^2}).$ $f''(x) = 0 \Leftrightarrow x^2 = \sigma^2 \Leftrightarrow x = \pm \sigma. \ f''(x) < 0 \Leftrightarrow x^2 < \sigma^2 \Leftrightarrow -\sigma < x < \sigma.$ So f is CD on $(-\sigma, \sigma)$ and CU on $(-\infty, -\sigma)$ and (σ, ∞) . IP at $(\pm \sigma, e^{-1/2})$.

(b) Since we have IP at $x=\pm\sigma$, the inflection points move away from the y-axis as σ increases.

(c)

From the graph, we see that as σ increases, the graph tends to spread out and there is more area between the curve and the x-axis.

4-3 93.

(a)
$$f(x) = \frac{x^4}{\sin\frac{1}{x}} \Rightarrow f'(x) = x^4 \cos\frac{1}{x} - \frac{1}{x}^2 + \sin\frac{1}{x}(4x^3) = 4x^3 \sin\frac{1}{x} - x^2 \cos\frac{1}{x}.$$

 $g(x) = x^4(2 + \sin\frac{1}{x}) = 2x^4 + f(x) \Rightarrow g'(x) = 8x^3 + f'(x)$
 $h(x) = x^4(-2 + \sin\frac{1}{x}) = 2x^4 + f(x) \Rightarrow g'(x) = -8x^3 + f'(x)$

It is given that f(0)=0, so $f'(0)=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}\frac{x^4\sin\frac{1}{x}-0}{x}=\lim_{x\to 0}x^3\frac{1}{x}$. Since- $|x^3|\leq x^3\sin 1x^3\leq |x^3|$ and $\lim_{x\to 0}|x^3|=0$, we see that f'(0)=0 by the squeeze Theorem. Also, 0 is a critical number of f,g, and h.

(b) f(0) = 0 and since $\sin \frac{1}{x}$ and hence $x^4 \sin \frac{1}{x}$ is both positive and negative infinitely often on both sides of 0. and arbitrarily close to 0, f has neither a local maximum nor a loca minimum at 0.

Since $2 + \sin \frac{1}{x} \ge 1$, $g(x) = x^4(2 + \sin \frac{1}{x}) > 0$ for $x \ne 0$, so g(0) = 0 is a local minimum.

Since $-2 + \sin \frac{1}{x} \le -1$, $h(x) = x^4(-2 + \sin \frac{1}{x}) > 0$ for $x \ne 0$, so h(0) = 0 is a local maximum.