JEGYZŐKÖNYV MODERN FIZIKA LABORATÓRIUM

06. MÉRÉS - ZEEMAN-EFFEKTUS MÉRÉSE

• Mérést végezte : Brindza Mátyás és Szűcs Máté

• Mérés időpontja : 2021.11.23.

A mérés célja

A mérés során a Zeeman-effektussal foglalkozunk - a jelenségről bővebben az elméleti ismertetőben. Mivel a jelenség magnitúduma nagyon kicsi, nagy felbontású spektroszkópiai módszert kell alkalmaznunk - például egy Fábry-Perot-interferométert. A mérés célja, hogy meghatározzuk Hg kék (435.84nm-es) vonalának Zeeman-spektrumát.

A mérés elméleti háttere

Elektronok legerjesztődésekor nagy eséllyel egy foton lép ki a rendszerből (atomból). A kisugárzott foton energiája karakterisztikus, egy jellegzetes vonal egy molekula spektrumában. Átmenetkor az elektron egy magasabb energiájú állapotból egy alacsonyabb energiájú állapotba kerül - e két állapothoz tartozó mágneses momuntum (esetenként kicsit, esetenként nagyon) befolyásolja a színképvonalat, ha az atomot egy külső mágneses térbe helyezzük. A mágneses momentum kölcsönhatása a színképvonal felhasadását eredményezi - ezt nevezzük Zeeman-effektusnak.

Egészen konkrétan a spin-pálya kölcsönhatásból adódó mágneses momentum hat kölcsön a külső mágneses térrel. Ezt a kvantummechanika értelmében az alábbi képlettel írhatjuk le:

$$E = E_0(n, l, j) + \mu_B \cdot B \cdot q_J \cdot m_J$$

ahol E_0 az alapállapoti energia, μ_B a Bohr-magneton ($\mu_B = e \cdot \hbar/(2 \cdot m)$), B a külső mágneses tér, g_J a Landé-faktor és m_J a mágneses kvantumszám. A Landé-faktort az alábbi módon definiáljuk.

$$g_J = 1 + \frac{J \cdot (J+1) + S \cdot (S+1) - L \cdot (L+1)}{2 \cdot J \cdot (J+1)}$$

Fontos megjegyezni, hogy nem minden átmenet valósulhat meg. Az erre vonatkozó megkötéseket a kiválasztási szabályok foglalják össze.

$$\Delta S=0$$

$$\Delta L=0,\pm 1$$

$$\Delta J=0,\pm 1$$

$$\mathrm{A}\ J=0\to J=0\ \mathrm{atmenet\ tiltott}$$

$$\Delta m_J=0,\pm 1$$

$$\mathrm{Az}\ m_J=0\to m_J=0\ \mathrm{atmenet}\ J=0\ \mathrm{eset\acute{e}n\ tiltott}$$

A $\Delta m_J = 0$ komponenseket π -komponensnek nevezik és a mágneses térrel párhuzamosan polarizáltak. A $\Delta m_J = \pm 1$ komponenseket σ -komponenseknek nevezik és a mágneses térre merőlegesen polarizáltak. A mérés során a mágneses térre merőleges megfigyelési irányt választjuk, ekkor minden komponens mérhető.

Å mágneses térre merőleges megfigyelési irány esetén a $J \to J$ átmenetekre a Zeeman-vonalak relatív intenzitásai:

$$m_J \to m_J \pm 1 : I = b \cdot (J \pm m_J + 1) \cdot (J \mp m_J)$$

 $m_J \to m_J : I = 4 \cdot b \cdot m_J^2$

ahol b egy határozatlan állandó.

A mérés összeállítása

A méréshez célszerű egy optikai padot használni, melynek egyik végén a Hg spektrállámpa és az elektromágnes, illetve másik végén (vagy közelebb) az objektív és a webkamera található. A kettő között elhelyezett eszközök sorban (a spektrállámpától a kamera felé haladva):

- Gyűjtőlencse : A spektrállámpa fényéből egy kissé széttartó nyalábot hoz létre
- Interferenciaszűrő: ennek segítségével választjuk ki a vizsgálandó spektrálvonalakat
- Polarizátor : ezzel választjuk szét a merőleges és a párhuzamos komponenseket
- Fábry-Perot-interferométer : erről bővebben lejjebb

A Fábry-Perot-interferométer két, párhuzamosan és egymáshoz közel elhelyezett, erősen reflektív lemez. A lemezek nem teljesen reflektívek, gyengén áteresztőek. Az interferométeren kilépő nyalábok így nem feltétlen ugyananyiszor pattogtak faltól falig az interferométerben, ezért az interferencia feltételében megjelenik a lemezek távolsága - ez azért kritikus, mert a nem ugyanannyiszor visszaverődött nyalábok közti úthosszkülönbség direkt módon függ ettől a távolságtól. Továbbá az interferométer felépítéséből adódóan kapott gyűrűk átmérőnégyzetei egyenesen arányosak az interferencia-maximum rendjével, így a szomszédos átmérőnégyzetek különbsége konstans:

$$D_{m-1}^2 - D_m^2 = 8 \cdot f^2 \cdot \frac{\lambda}{2 \cdot d} = const.$$

ahol f a lencse fókusztávolsága. A felhasadás jelensége optikai szempontból annyit jelent, hogy az optikai rendszerbe λ és $\lambda + \Delta \lambda$ hullámhosszú fény jut. A gyűrűk átmérőiből megkapható ez a $\Delta \lambda$ hullámhosszbeli különbség:

$$\Delta \lambda = \frac{\lambda}{8 \cdot f^2} \cdot (D_m^2 - D_m'^2)$$

Ez a névleges formula módosítandó, mivel az objektív és a kamera torzít ezen. A $8 \cdot f^2$ -et és a torzítási tényezőt egy kalap alá vehetjük - illesztés szempontjából nem releváns, esetleg a fókusztávolság hibája számíthat nagyon pontos mérések esetén. Tehát:

$$D_{m-1}^2 - D_m^2 = N \cdot \frac{\lambda}{2 \cdot d}$$

$$\Delta \lambda = \frac{\lambda}{N} \cdot (D_m^2 - D_m'^2)$$

Ez a két képlet és az elméleti ismertetőben leírtak önmagukban elegek a mérési eredmények értelmezéséhez és kiértékeléséhez.

A mérési feladatok és a mérés menete

1. feladat

Határozzuk meg a Hg kék (435,84nm-es) vonalának Zeeman-spektrumát! Ez a vonal az A függelékben megtalálható 1. táblázat szerint egy ${}^3S_1 \rightarrow {}^3P_1$ átmenet. A spektrum meghatározásához az alábbi lépésekben lehet eljutni:

- \bullet L, S, J, m_J kvantumszámok értékeinek meghatározása mindkét energiaszintre
- $\bullet \ g_J$ Landé-faktorok kiszámítása
- a kiválasztási szabályok alkalmazása
- a lehetséges vonalak polarizációjának megálapítása
- a felhasadási energiák meghatározása
- a relatív intenzitások kiszámolása

Ezen számolások ismeretében egy pálcika spektrum rajzolható fel, aminek a vízszintes tengelyén a felhasadási energia van ($\mu_B \cdot B$ egységekben), függőlegesen a számolt intenzitások.

2. feladat

A szimulált képek feldolgozása. Csak a π -átmenetekkel foglalkozunk. A szimulált kék vonal a 435.84nm-es felhasítatlan hullámhosszhoz tartozik, a Fabry-Perot lemezek távolsága 4mm.

- \bullet Kalibráláshoz az I=0áramnál készült képet használjuk.
- Átlagoljuk az összetartozó képsorozatokat a zaj csökkentésére!
- Határozzuk meg a gyűrűk átmérőjét (egy átmérő mentén vett intenzitás profilban lehet az összetartozó maximumhelyek különbségeként)!
- Készítsünk ábrát a Zeeman-felhasadás mágneses tér függésétől!
- Adjuk meg a Bohr-magneton értékét!

Kiértékelés

1. feladat

Esetünkben ${}^3S_1 \rightarrow {}^3P_1$ átmenetről van szó:

$$^{3}S_{1}: L = 0; S = 1; J = 1 \rightarrow g_{J} = 1 + \frac{1 \cdot (1+1) + 1 \cdot (1+1) - 0 \cdot (0+1)}{2 \cdot 1 \cdot (1+1)} = 2$$
 $^{3}P_{1}: L = 1; S = 1; J = 1 \rightarrow g_{J} = 1 + \frac{1 \cdot (1+1) + 1 \cdot (1+1) - 1 \cdot (1+1)}{2 \cdot 1 \cdot (1+1)} = \frac{3}{2}$

$$^{3}P_{1}: L = 1; S = 1; J = 1 \rightarrow g_{J} = 1 + \frac{1 \cdot (1+1) + 1 \cdot (1+1) - 1 \cdot (1+1)}{2 \cdot 1 \cdot (1+1)} = \frac{3}{2}$$

A kiválasztási szabályok közül az első négy - melyek ΔS -re, ΔL -re és ΔJ -re vonatkoznak - automatikusan teljesülnek. A $\Delta m_J = 0, \pm 1$ feltétellel kell foglalkoznunk a továbbiakban, illetve a hatodik feltétellel. Előszöris nézzük meg m_J lehetséges értékeit.

A mágneses kvantumszám lehetséges értékei 3S_1 és 3P_1 esetén

Az ötödik feltétel azt mondja ki, hogy maximum 1 különbség lehet a két állapotban vett mágneses kvantumszámok között. A hatodik feltétel megtiltja az $m_J=0$ $m_J = 0$ átmenetet. Az ötödik feltétel által megengedett átmenetek száma 7db, melyekből egyet megtilt a hatodik feltétel. Az alábbi táblázat foglalja össze az összes megengedett átmenetet.

ĺ			m_J					
ĺ	${}^{3}S_{1}$	-1	-1	0	0	1	1	
Ì	$^{3}P_{1}$	-1	0	-1	1	0	1	

Az összes megengedett átmenet

Ezen átmenetek között jelen vannak a π - és a σ -komponensek is.

	m_{\cdot}	J
$3S_1$	-1	1
$^{3}P_{1}$	-1	1

A π -átmenetek - a mágneses térrel párhuzamosan polarizáltak

		m_J		
$^{3}S_{1}$	-1	0	0	1
$^{3}P_{1}$	0	-1	1	0

A σ -átmenetek - a mágneses térre merőlegesen polarizáltak

Az energiakülönbségek előállnak, mint

$$\Delta E = \mu_B \cdot B \cdot \left(g_J \cdot m_J - g_J' \cdot m_J' \right) = \mu_B \cdot B \cdot \left(2 \cdot m_J[^3S_1] - \frac{3}{2} \cdot m_J[^3P_1] \right)$$

átmenet	$-1 \rightarrow -1$	$-1 \rightarrow 0$	$0 \rightarrow -1$	$0 \rightarrow 1$	$1 \rightarrow 0$	$1 \rightarrow 1$
$\Delta E \left[\mu_B \cdot B \right]$	-0.5	-2.0	1.5	-1.5	2.0	0.5

Az átmetekhez tartozó energiák

ĺ	átmenet	$-1 \rightarrow -1$	$-1 \rightarrow 0$	$0 \rightarrow -1$	$0 \rightarrow 1$	$1 \rightarrow 0$	$1 \rightarrow 1$
	I_r	4	2	2	2	2	4

A relatív intenzitások

A Hall szonda adatainak kiértékelése

I[A]	0.31	0.6	0.9	1.2	1.5	1.8	2.1	2.4	2.7	3.0	3.3
$B [10^{-3}T]$	191	381	509	645	788	923	1060	1184	1305	1415	1508

A mágneses tér és az áramerősség közti kapcsolat

Az adatokra egyenes illeszthető: $B = k \cdot I$.

Az illesztés eredménye:

$$k = 438.760074 \frac{10^{-3}T}{A}$$
$$b = 110.651175 \cdot 10^{-3}T$$
$$B = k \cdot I + b$$

A b paraméter itt a szisztematikus hibát jelöli.

Alkalmazzuk az illesztés eredményeként kapott függvényt a gyűrűk mérésekor beállított áramerősségekre:

	I[A]	0.5	0.55	0.6	0.65	0.7	0.75
В	$B [10^{-3}T]$	219.380037	241.318040	263.256044	285.194048	307.132051	329.070055

A gyűrűk átmérőinek mérésekor beállított áramerősségekhez tartozó mágneses terek

2. feladat

A gyűrűk átmérőjének meghatározását numerikusan végeztem. Az eredmény:

D_1	D_2	D_3
532	423	274

A gyűrűk átmérője pixelben megadva I=0Aesetén

$\frac{\Delta D_1}{D_1}$	$\frac{\Delta D_2}{D_2}$	$\frac{\Delta D_3}{D_3}$
1.368	2.172	5.148

A gyűrűk átmérőjinek relatív hibái %-ban megadva I=0Aesetén

I[A]	0.5	0.55	0.6	0.65	0.7	0.75
D_1'	556	557	560	562	564	567
D_1''	506	503	500	497	494	493
D_2'	451	454	459	460	463	467
$D_2^{\prime\prime}$	390	387	382	380	376	372
D_3'	316	322	324	331	334	336
D_3''	220	215	208	204	196	191

A gyűrűk átmérője pixelben megadva $I \neq 0A$ esetén

I[A]	0.5	0.55	0.6	0.65	0.7	0.75
ΔD_1	1.005	0.968	0.763	0.982	1.045	1.126
$\frac{\Delta D_1'}{D_1'}$	1.542	1.465	1.296	1.472	1.596	1.954
$\frac{\Delta D_2}{D_2}$	1.747	1.709	1.567	1.731	1.431	1.25
$\frac{\overline{D_2}}{\frac{\Delta D_2'}{D_2'}}$	2.278	2.272	2.344	2.272	2.719	2.009
$\frac{\Delta \tilde{D_3}}{D_3}$	3.807	3.469	2.891	3.975	3.322	3.724
$ \frac{\overline{D_3}}{\overline{D_3'}} $ $ \frac{\Delta D_3'}{\overline{D_3'}} $	7.611	7.76	6.643	9.27	10.647	14.616

A gyűrűk átmérőjinek relatív hibái %-ban megadva $I \neq 0A$ esetén

A kiátlagolt képI=0.75Aesetén

A képek közepét célszerű volt lenullázni, mert csak nehezítették volna a csúcsok keresését.

A csúcsok I=0.75A esetén

A nagyítás az alábbi képlet alapján számolható ki:

$$N = \frac{2 \cdot d}{\lambda} \cdot \left(D_{m-1}^2 - D_m^2 \right)$$

A számolás eredménye:

$$N = 3.816960 \cdot 10^9 \pm 0.004442 \cdot 10^9$$

Az N-neknévleg $pixel^2$ a mértékegysége. A $\Delta\lambda$ számolásánál ki fog esni, és csak a nm marad.

$$\Delta \lambda = \frac{\lambda}{N} \cdot (D_m^2 - D_m'^2)$$

$B [10^{-8}T]$	219.380037	241.318040	263.256044	285.194048	307.132051	329.070055
$\Delta \lambda_{11}[10^{-3}nm]$	-1.490801	-1.554345	-1.745662	-1.873777	-2.00235	-2.196065
$\Delta \lambda_{12}[10^{-3}nm]$	1.540814	1.713633	1.885424	2.056188	2.225924	2.282275
$\Delta \lambda_{21}[10^{-3}nm]$	-1.397169	-1.552175	-1.812803	-1.865271	-2.02336	-2.235744
$\Delta \lambda_{22}[10^{-3}nm]$	1.531736	1.664819	1.88434	1.971349	2.143997	2.314817
$\Delta \lambda_{31}[10^{-3}nm]$	-1.414753	-1.633304	-1.707067	-1.968837	-2.082736	-2.15924
$\Delta \lambda_{32}[10^{-3}nm]$	1.523001	1.647177	1.816228	1.910317	2.093013	2.203487

A $\Delta\lambda\text{-k}$ különböző mágneses terek esetén

 $\Delta\lambda$ függéseB-től

A π -csúcsokkal foglalkoztunk, melyek energiáját már kifejeztük az első feladatban: $E=E_0\pm 0.5\cdot \mu_B\cdot B,~{\rm azaz}~\Delta E=\pm 0.5\cdot \mu_B\cdot B.$ Az energiakülönbség másképp is kifejezhető, méghozzá:

$$\Delta E = h \cdot c \cdot \frac{1}{\lambda} - h \cdot c \cdot \frac{1}{\lambda + \Delta \lambda}$$

Így a Bohr-magneton is kifejezhető:

$$\mu_B = \frac{h \cdot c}{0.5 \cdot B} \cdot \left(\frac{1}{\lambda} - \frac{1}{\lambda + \Delta \lambda}\right) = \frac{2 \cdot h \cdot c \cdot \Delta \lambda}{B \cdot \lambda \cdot (\lambda + \Delta \lambda)}$$

A Bohr-magnetonra így van 6db számolt adatunk - ezek a $\Delta\lambda$ -kat közösen figyelve készültek.

$\mu_B[10^{-24}J \cdot T^{-1}]$	9.3983	9.6713	10.01164	10.2551	10.4889	10.6158
μ_B/mu_{B0}	1.013405	1.042845	1.090834	1.105792	1.131003	1.144689

A számolási eredmény a Bohr-magnetonra

Diszkusszió

A mérési és számolási eredmények nagyságrendileg megfelelőek, a hibák között sem volt nagy elméleti vagy gyakorlati kiugrás - a hibák hibaterjedés és az empirikus szórás elve alapján lettek számolva. A Bohr-magnetont is kellően pontosan meghatároztuk. A Bohr-magnetonban is megjelenik egy szisztematikus hiba, akárcsak a mágneses térnél - a mágneses ternél említett b paraméter nélkül nagyobb hibák jöttek ki, a kettő össze is függ. A mérés és a számolás sikeresnek mondható.

Felhasznált irodalom

[1] Modern fizika laboratórium - Egyetemi tananyag, szerkesztette: Koltai János, lektorálta: Papp Elemér (2013.)