

IT-Security Cryptography and Secure Communications

Excercise: Finite Fields

Lecturer: Prof. Dr. Michael Eichberg

Version: 2023-10-12

1. Fill in the missing values $(GF(2^m))$

Polynomial	Binary	Decimal
$x^7 + x^6 + x^4 + x + 1$		
	11001001	
		133
$x^4 + x^2 + x$		
	00011001	
		10

2. In $GF(2^5)$ with irreducible polynom p(x) = x5 + x2 + 1

• Calculate: $(x^3 + x^2 + x + 1) - (x + 1)$

• Calculate: $(x^4 + x) \times (x^3 + x^2)$

• Calculate: $(x^3) \times (x^2 + x^1 + 1)$

• Calculate: $(x^4 + x)/(x^3 + x^2)$ given $(x^3 + x^2)^{-1} = (x^2 + x + 1)$

Recall: Division can be defined in terms of multiplication: if $a, b \in F$ then $a/b = a \times (b^{-1})$, where b^{-1} is called the inverse of b.

• Verify: $(x^3 + x^2)^{-1} = (x^2 + x + 1)$

3. In *GF*(2⁸)

Let's assume that 7 and 3 are representatives of the bit patterns of the coefficients of the polynomial.

Calculate: 7d − 3d

• Calculate: 7d + 3d

• Calculate: $(0x03 \times 0x46)$ (use both approaches)