Was ist der Fehler 1. Art?

Angenommen, wir testen statistisch die Hypothese H_0 gegen die Hypothese H_1 . Zum Beispiel: Ein Würfel ist fair (H_0) versus er ist gezinkt (H_1) .

Was ist der Fehler 1. Art?

Angenommen, wir testen statistisch die Hypothese H_0 gegen die Hypothese H_1 . Zum Beispiel: Ein Würfel ist fair (H_0) versus er ist gezinkt (H_1) .

	H_0 annehmen	<i>H</i> ₀ verwerfen
H_0 ist wahr	\checkmark	Fehler 1. Art
H ₀ ist falsch	Fehler 2. Art	\checkmark

Beispiel

Wir testen einen Würfel auf die Frage, ob er fair ist. Wir verwenden die Nullhypothese "Der Würfel ist fair!" und die Gegenhypothese "Der Würfel ist nicht fair!". Bei unserem Test wird davon ausgegangen, dass der Würfel fair ist, wenn bei 50 Würfen mindestens 5 mal und höchstens 12 mal die 6 fällt. Wie groß ist die Wahrscheinlichkeit für den Fehler 1. Art?

Beispiel

Wir testen einen Würfel auf die Frage, ob er fair ist. Wir verwenden die Nullhypothese "Der Würfel ist fair!" und die Gegenhypothese "Der Würfel ist nicht fair!". Bei unserem Test wird davon ausgegangen, dass der Würfel fair ist, wenn bei 50 Würfen mindestens 5 mal und höchstens 12 mal die 6 fällt. Wie groß ist die Wahrscheinlichkeit für den Fehler 1. Art?

- H_0 : Würfel ist fair, H_1 : Würfel ist nicht fair
- Stichprobenumfang n = 50, Testgröße X = Anzahl der 6en
- Annahmebereich {5, ..., 12}
- Ablehnungsbereich {0, ..., 4, 13, ..., 50}

Wie ist X unter H_0 verteilt?

- Binomialverteilung
- n = 50
- $p = \frac{1}{6}$

Wie ist X unter H_0 verteilt?

- Binomialverteilung
- n = 50
- $p = \frac{1}{6}$

Wann begehen wir den Fehler 1. Art?

- H_0 verwerfen obwohl H_0 wahr ist
- die Anzahl der 6en liegt nicht im Annahmebereich, obwohl der Würfel fair ist
- $X \notin \{5, ..., 12\}, X \sim \mathcal{B}(n = 50, p = 1/6)$

• $X \notin \{5, ..., 12\}, X \sim \mathcal{B}(n = 50, p = 1/6)$

- $X \notin \{5, ..., 12\}, X \sim \mathcal{B}(n = 50, p = 1/6)$
- $P(X \notin \{5,...,12\})$

- $X \notin \{5, ..., 12\}, X \sim \mathcal{B}(n = 50, p = 1/6)$
- $P(X \notin \{5, ..., 12\})$ = $P(X \le 4) + P(X \ge 13)$

- $X \notin \{5, ..., 12\}, X \sim \mathcal{B}(n = 50, p = 1/6)$
- $P(X \notin \{5, ..., 12\})$
 - $= P(X \le 4) + P(X \ge 13)$
 - $= P(X \le 4) + 1 P(X \le 12)$

- $X \notin \{5, ..., 12\}, X \sim \mathcal{B}(n = 50, p = 1/6)$
- $P(X \notin \{5,...,12\})$
 - $= P(X \le 4) + P(X \ge 13)$
 - $= P(X \le 4) + 1 P(X \le 12)$
 - = pbinom(4,50,1/6) + 1 pbinom(12,50,1/6)

- $X \notin \{5, ..., 12\}, X \sim \mathcal{B}(n = 50, p = 1/6)$
- $P(X \notin \{5,...,12\})$
 - $= P(X \le 4) + P(X \ge 13)$
 - $= P(X \le 4) + 1 P(X \le 12)$
 - = pbinom(4,50,1/6) + 1 pbinom(12,50,1/6)
 - = 0.0643 + 1 0.9373 = 0.1270

Wie können wir den Fehler 1. Art beschränken?

```
> x <- 0:50
> f <- dbinom(x,50,1/6)
> plot(x,f,type="h")
> reject <- c(0:4,13:50)
> f_reject <- dbinom(reject,50,1/6)
> lines(reject,f_reject,col="red",type="h")
> mtext(round(sum(f_reject),4),side=3,col="red")
```

0.127

Wie können wir den Fehler 1. Art beschränken?

```
> x <- 0:50
> f <- dbinom(x,50,1/6)
> plot(x,f,type="h")
> reject <- c(0:3,14:50)
> f_reject <- dbinom(reject,50,1/6)
> lines(reject,f_reject,col="red",type="h")
> mtext(round(sum(f_reject),4),side=3,col="red")
```

0.0545