

28 mai 2016

Équipe pedagogique : Florent Benaych-Georges
Martin Bompaire
Stefano De Marco
Gersende Fort
Emmanuel Gobet
Igor Kortchemski

Auteur : Felipe García

TABLE DES MATIÈRES

1	Présentation du sujet			
	1.1	Simula	ation des trajectoires	3
2	Le	$\mathbf{point} \ \mathbf{s}$	ur nos résultats	4
	2.1	Estima	ation de la probabilité de conflit	4
		2.1.1	Estimation via Monte Carlo	4
		2.1.2	Estimation via la méthode de Splitting	4
		2.1.3	Estimation via Importance Sampling	4
	2.2	Loi co	nditionnelle	4
	2.3	Optim	isation de plan de vols	4
3	Cor	nclusio	n	5
4	Réf	érence	s bibliographiques	6

PRÉSENTATION DU SUJET

1.1 SIMULATION DES TRAJECTOIRES

LE POINT SUR NOS RÉSULTATS

- 2.1 Estimation de la probabilité de conflit
- 2.1.1 Estimation via Monte Carlo
- 2.1.2 Estimation via la méthode de Splitting
- 2.1.3 Estimation via Importance Sampling
- 2.2 Loi conditionnelle
- 2.3 Optimisation de plan de vols

3	
CONCLUSION	

FIN

4

RÉFÉRENCES BIBLIOGRAPHIQUES

- [1] William Glover and John Lygeros. A multi-aircraft model for conflict detection and resolution algorithm evaluation. *HYBRIDGE Deliverable D*, 1:3, 2004.
- [2] Jianghai Hu, Maria Prandini, and Shankar Sastry. Aircraft conflict prediction in the presence of a spatially correlated wind field. *Intelligent Transportation Systems, IEEE Transactions on*, 6(3):326–340, 2005.
- [3] Damien Jacquemart and Jérôme Morio. Conflict probability estimation between aircraft with dynamic importance splitting. Safety science, 51(1):94–100, 2013.
- [4] J. Morio and M. Balesdent. Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach. Elsevier Science, 2015.
- [5] Jérôme Morio, Rudy Pastel, and François Le Gland. An overview of importance splitting for rare event simulation. *European Journal of Physics*, 31(5):1295, 2010.
- [6] Russell A Paielli. Empirical test of conflict probability estimation. In USA/Europe Air Traffic Management R&D Seminar, Orlando, 1998.
- [7] Russell A Paielli and Heinz Erzberger. Conflict probability for free flight. *Journal of Guidance, Control, and Dynamics*, 20(3):588–596, 1997.
- [8] Maria Prandini and Oliver J Watkins. Probabilistic aircraft conflict detection. *HYBRIDGE*, *IST-2001*, 32460 :116–119, 2005.