NINTENDO NITRO-System G3D Binary File Format

Version 1.0.1

The contents of this document are strictly confidential and the document should be handled accordingly.

© 2005 Nintendo NTR-06-0256-001-A3

Confidential

These coded instructions, statements, and computer programs contain proprietary information of Nintendo of America Inc. and/or Nintendo Company Ltd. and are protected by Federal copyright law. They may not be disclosed to third parties or copied or duplicated in any form, in whole or in part, without the prior written consent of Nintendo.

Table of Contents

	Revision	on History	6
1	Over	rview	7
2	Char	racteristics of G3D Binary Format	8
3	Expl	lanation of G3D Binary File Format	9
	3.1	Data Structure Used by all Binary Files	9
	3.1.1	1 File Headers	9
	3.1.2	2 Data Block Header	10
	3.1.3	3 Dictionary	11
	3.1.4	4 Animation Header	13
	3.2	Model Data File (.nsbmd) Structure	14
	3.2.1	1 Model Block	15
	3.2.	2.1.1 Model Set	15
	3.2.	2.1.2 Model	15
	3.2.	2.1.3 Basic Information about Models	17
	3.2.	2.1.4 Node Information	19
	3.2.	2.1.5 Material Information	
	3.2.	2.1.6 Shape Set and Shape	24
	3.2.	2.1.7 Information for Associating Node, Material, and Shape	25
	3.2.	2.1.8 Matrix Storage Region for Envelope Calculation	32
	3.2.2	2 Texture and Palette Block	32
	3.2.	2.2.1 Texture and Palette Sets	32
	3.3	Structure of Joint Animation Data File (.nsbca)	36
	3.4	Structure of Texture Pattern Animation Data File (.nsbtp)	45
	3.5	Structure of Material Color Animation Data File (.nsbma)	48
	3.6	Structure of Visibility Animation Data File (.nsbva)	50
	3.7	Structure of Texture SRT Animation Data File (.nsbta)	52

Tables

10
10
12
13
14
15
16
18
18
18
20
20
21
23
24
25
25
26
32
34
34
34
34 35
35
35 35
35 35
35 35 36
35 35 36 38
35 36 38 42
35 36 38 42 42
35 36 38 42 42 42
35 36 42 42 42 43
35 36 42 42 42 43
35 36 42 42 43 43
35 36 42 42 43 43 43
35 36 42 42 43 43 44 44
35 36 38 42 42 43 43 43 44 44
35 36 42 42 43 43 44 44 45 47

Fable 3-41: DictMatColAnmData Data Members	50
Fable 3-42: tagDiffuse/tagAmbient/tagSpecular/tagEmission/tagPolygonAlpha Values	
Table 3-43: VisAnmSet Data Members	51
Table 3-44: VisAnm Data Members	52
Table 3-45: TexSRTAnmSet Data Members	53
Table 3-46: TexSRTAnm Data Members	53
Table 3-47: TexSRTAnm: : flag Values	53
Table 3-48: DictTexSRTAnmData Data Members	54
Table 3-49: scaleS/scaleT/rot/transS/transT Values	55

Revision History

Version	Revision Date	Details of Revision
1.0.1	05/11/2005	Revised description of XXX_LAST_INTERP_MASK.
1.0.0	01/19/2005	Added support for the environmental mapping and projection mapping expansions.
0.5.0	12/06/2004	Introduced pseudo-structure notation, etc.
0.0.3	08/19/2004	Inserted table numbers.
0.0.2	08/09/2004	Created beta version.
0.0.1	07/23/2004	Initial version.

1 Overview

In order to display models and play animation using the G3D library, you must use <code>g3dcvtr</code> to convert NITRO intermediate files into binary files. This document explains the format of binary files converted with <code>g3dcvtr</code>. Note that the binary format specifications are subject to change without notice.

2 Characteristics of G3D Binary Format

The binary format used by G3D has the following characteristics:

- Multiple model or animation data sets can be stored in one binary file.
- The G3D library can directly process binary files loaded in memory. The G3D internal data structure and the binary file format match so it is not necessary to convert from binary file format to an object in memory during initialization. This minimizes the memory and processing overhead during initialization—there is no need to allocate additional memory.
- There are no internal pointers. All links in binary format are expressed as offsets based on the start of individual blocks in the files.
- There are dictionaries to allow searches by resource name. The name dictionary allows compact and fast search, and the resource search by name is performed efficiently.
- In order to reduce the calculation cost during drawing, various types of data that are calculated and aligned by g3dcvtr are kept.

NTR-06-0256-001-A3 8 © 2005 Nintendo

3 Explanation of G3D Binary File Format

3.1 Data Structure Used by all Binary Files

The pseudo_struct pseudo-structure can change the data members of a structure and arrange them in variable length depending on the condition. The actual structure name defined in G3D appears in parentheses next to the name of the pseudo-structure.

3.1.1 File Headers

Data structures that show file types like the following example are stored at the beginning of the binary file.

```
pseudo_struct FileHeader {
    pseudo_struct HeaderInfo(NNSG3dResFileHeader) {
        u32 signature;
        u16 byteOrder = 0xfeff
        u16 version;
        u32 fileSize;
        u16 headerSize = 16;
        u16 dataBlocks;
    } info;
    u32 offset[dataBlocks];
};
```


Table 3-1: FileHeader Data Members

Name	Description
signature	Constant for determining binary file type (four characters).
byteOrder	Number for determining endianity
	0xfeff when little-endian
version	Binary file version
	(0x0102 if version 1.2)
fileSize	File size
headerSize	Size of HeaderInfo
	Fixed at 16 when G3D.
dataBlocks	Number of data blocks
	1 or 2 for .nsbmd file
	1 for other files.
offset	Stores offset from start of file to each block

3.1.2 Data Block Header

The data that shows the type and size of the data block like the following is stored at the beginning of each data block in the binary file.

```
pseudo_struct DataBlockHeader(NNSG3dResDataBlockHeader) {
    u32 kind;
    u32 size;
};
```

Table 3-2: DataBlockHeader Data Members

Name	Description
kind	Stores the symbol that represents the
	type of data block
size	Size of the entire data block

3.1.3 **Dictionary**

With G3D, it is possible to give names of up to 16 characters to various resources such as texture and material and access them by name. Name searches are performed using the same data structure. This section explains the data structure of the dictionary.

Expressed with a pseudo-structure, the dictionary will be as follows.

```
pseudo struct Dictionary(NNSG3dResDict) {
   u8 revision = 0;
   u8 numEntry;
   u16 sizeDictBlk;
   PADDING(2 bytes);
   u16 ofsEntry;
   pseudo_struct PtreeNode(NNSG3dResDictTreeNode) {
      u8 refBit;
      u8 idxLeft;
      u8 idxRight;
      u8 idxEntry;
   } node[numEntry + 1];
   pseudo struct DictEntry(NNSG3dResDictEntryHeader) {
      u16 sizeUnit;
      u16 ofsName;
      u8 data[numEntry][sizeUnit];
   } entry;
   pseudo_struct DictName(NNSG3dResName) {
      u8 name[16];
   } names[numEntry];
};
```


Table 3-3: Dictionary Data Members

Name	Description	
revision	Version of dictionary structure (zero only).	
numOfEntry	Number of entries registered in dictionary.	
sizeDictBlk Size of dictionary (in bytes).		y (in bytes).
ofsEntry	ofsEntry Offset from start of Dictionary to DictEntry.	
	refBit	Referenced from the start of the input string to the rebBit bit
Pt.reeNode	idxLeft	Index of node to reference next when referenced bit is 0
rcreenode	idxRight	Index of node to reference next when referenced bit is 1
	idxEntry	Index of DictEntry and DictName corresponding to node
	sizeUnit	Size per data entry. When equal to or greater than four bytes,
DietEnter		in units of four bytes.
DictEntry	ofsName	Offset from start of DictEntry to DictName
	data	Data storage section
		Resource name string
DictName	name	For names, zeros must be entered to fill any unused spaces
		within 16 characters. Cannot be treated as C string when all 16
		characters are used up.

Normally, the offset to resource is stored in the data storage section (DictEntry::data), but data may be entered directly. When offset is stored, the function using the dictionary must request the pointer for the correct reference point.

Linear searches by name can be performed within DictName, but a tree (node[]) is provided for use with the Patricia algorithm. By using Patricia, it is possible to prevent the increase of search time when the number of entries increases. For the details of about this algorithm, refer to **Algorithms in** $C++^1$.

DictEntry can also be scanned for references by index.

NTR-06-0256-001-A3 Released: November 15, 2005

Sedgwick, Robert. Algorithms in C++ ISBN: 0201510596 Reading, MA; Addison Wesley Professional Publishing 30 Apr 1992

Patricia tree is a type of radix search tree. The following information is stored in each node of the tree: "which bit of the search key to look up", "pointer to node (right) to proceed on to when searched bit is ON and to node (left) to proceed on to when searched bit is OFF", and "the key having the node". Patricia tree uses these data to perform the

To search the Patricia tree, first look up the "which bit to look up" information written in the node by applying it in the given key (in this case, the resource name) and determine whether to proceed right or left node. If the destination node is a normal child node, then the same process is repeated. If the destination node a node that is "upstream" (i.e., closer to the root in terms of links) of the node from which the search commenced, then the node movement is halted and a comparison of the key held by the node is performed.

As a result of the comparison, the process ends as found if it is the same key, and the process ends as failure if not.

Therefore, this algorithm allows greater search speeds because the comparison of entire keys is performed only at the end, and the comparison on each node uses only one bit.

3.1.4 **Animation Header**

Each animation resource has a header for classifying the animation type. The data structure is as follows.

```
pseudo struct AnmHeader(NNSG3dResAnmHeader) {
   u8 category0;
   u8 revision;
   u16 category1;
};
```

Table 3-4: AnmHeader Data Members

Name	Description	
	Specifies animation category:	
category0	• <i>M</i> - material animation	
	 σ - joint animation 	
	v - visibility animation	
revision	Animation file format revision	
	Specifies animation type:	
	• CA - joint animation	
category1	va - visibility animation	
	MA - material color animation	
	TP - texture pattern animation	
	TA - texture SRT animation	

© 2005 Nintendo 13 NTR-06-0256-001-A3

3.2 Model Data File (.nsbmd) Structure

An .nsbmd file can be divided roughly into the model section, and the texture and palette section. In the model block, the sets of models are stored, and joint structure, material, and shape are stored for each model. Sets of texture and palette are stored, and associated with each model loaded to VRAM during execution. Each model and texture and palette can be associated by a name of up to 16 characters.

The following shows the .nsbmd file using pseudo-structure.

```
pseudo_struct NSBMD {
   FileHeader fileHeader = {
      dataBlocks = 1 or 2,
      signature = 'ODMB'
   };
   ModelSet modelSet;
   IF (there are textures) {
      TexPlttSet texPlttSet;
   }
};
```

Table 3-5: NSBMD Data Members

Name	Description	
fileHeader	File header region	
modelSet	Model block	
texPlttSet	Texture and palette block	

NTR-06-0256-001-A3 14 © 2005 Nintendo

3.2.1 **Model Block**

The model block can contain multiple models. Each model can be accessed by its name of up to 16 characters.

3.2.1.1 **Model Set**

The sets of models are expressed with the pseudo-structure as shown below.

```
pseudo_struct ModelSet(NNSG3dResMdlSet) {
   DataBlockHeader header = {
      kind = 'OLDM',
      size = SIZEOF(ModelSet)
   };
                  dict = {sizeUnit = 4 bytes};
   Dictionary
                   models[# of models];
   Model
};
```

The data part of the dictionary is 32 bits, and stores the offset (in bytes) from the start of ModelSet.

Table 3-6: ModelSet Data Members

Name	Description
header	Model block header region
dict	Dictionary region for accessing each model
models	Model sets in model block

3.2.1.2 Model

Expressing a model as pseudo-structure will be as follows.

```
pseudo_struct Model(NNSG3dResMdl) {
   u32
              size = SIZE OF(Model);
   u32
               ofsSbc;
   u32
               ofsMat;
   u32
               ofsShp;
   u32
              ofsEvpMtx;
   ModelInfo
              info;
   NodeSet
             nodes;
   u8
              sbc[ofsMat - ofsSbc];
   MaterialSet materials;
   ShapeSet shapes;
   EvpMatrices evpMatrices;
};
```

© 2005 Nintendo 15 NTR-06-0256-001-A3

In this instance, each offset is stored as number of bytes from beginning part of Model. One model is divided into the following: basic information regarding model; information on each node; information on each material; information on each shape; information for associating node, material and shape; and matrix storage region for envelope calculation.

Table 3-7: Model Data Members

Name	Description
size	Model size
ofsSbc	Offset from start of Model to SBC line
ofsMat	Offset from start of Model to material set
ofsShape	Offset from start of Model to shape set
ofsEvpMtx	Offset from start of Model to matrix storage region for envelope matrix
	calculation
info	Basic information about model
nodes	Location and position information of each node
sbc	Information for associating node, material, and shape
materials	Information on each material
shapes	Information on each shape
evoMatrices	Matrix storage region for envelope calculation

Basic Information about Models 3.2.1.3

Following is the basic information regarding models shown with the pseudo-structure.

```
pseudo struct ModelInfo(NNSG3dResMdlInfo) {
   u8
        sbcType;
   u8
      scalingRule;
        texMtxMode;
   u8
   u8
        numNode;
      numMat;
   u8
      numShp;
   u8
   u8
      firstUnusedMtxStackID;
   PADDING(1 byte);
   fx32 posScale;
   fx32 invPosScale;
   u16 numVertex;
   u16 numPolygon;
   u16 numTriangle;
   u16 numQuad;
   fx16 boxX, boxY, boxZ;
   fx16 boxW, boxH, boxD;
   fx32 boxPosScale;
   fx32 boxInvPosScale;
};
```


Table 3-8: ModelInfo Data Members

Name	Description
sbcType	SBC type. Zero is entered.
scalingRule	Scaling calculation method
texMtxMode	Texture matrix calculation method
numNode	Number of joints
numMat	Number of materials
numShp	Number of shapes
firstUnusedMtxStackID	Start of empty region in matrix stack (stack index)
posScale, invPosScale	Scale value applied to vertex position coordinate and its inverse number
vertexSize	Number of vertices
polygonSize	Number of polygons
triangleSize	Number of triangle polygons among polygons counted by polygonSize
quadSize	Number of quadrilateral polygons among polygons counted by polygonSize
boxX, boxY, boxZ	For box test (parameter that should be passed to G3_BoxTest)
boxW, boxH, boxD	Same as above
boxPosScale, boxInvPosScale	Scale value to apply before box test, and its inverse number

Table 3-9: Values Taken by scalingRule

Value	Description
0	Normal model
1	A model having a joint with Maya's segment scale compensate applied
2	A model with Softimage 3D and Softimage XSI "classic scale off" specified

Table 3-10: Values Taken by texMtxMode

Value	Description
0	Use texture matrix calculation that supports Maya
1	Use texture matrix calculation that supports Softimage 3D
2	Use texture matrix calculation that supports 3dsmax
3	Use texture matrix calculation that supports Softimage XSI

3.2.1.4 Node Information

Following is the collection of information regarding the location of each node and posture, shown with the pseudo-structure.

```
pseudo_struct NodeSet(NNSG3dResNodeInfo) {
   Dictionary dict = {sizeUnit = 4 bytes};
   pseudo struct NodeData(NNSG3dResNodeData) {
   u16 flag;
   u16 00;
   IF (!(flag & NNS_G3D_SRT_FLAG_TRANS_ZERO)) {
      fx32 Tx, Ty, Tz;
   }
   IF (!(flag & NNS G3D SRT FLAG ROT ZERO) &&
   !(flag & NNS_G3D_SRT_FLAG_PIVOT_EXIST)) {
      fx16 _01, _02;
      fx16 _10, _11, _12;
      fx16 20, 21, 22;
   IF (!(flag & NNS_G3D_SRT_FLAG_ROT_ZERO) &&
   (flag & NNS_G3D_SRT_FLAG_PIVOT_EXIST)) {
      fx16 A, B;
   IF (!(flag & NNS_G3D_SCALE_ONE)) {
      fx32 Sx, Sy, Sz;
      fx32 InvSx, InvSy, InvSz;
} data[# of nodes];
};
```

The 32-bit data section of <code>Dictionary</code> stores the offset (in bytes) from the start part of <code>NodeInfo</code>. The size of <code>NodeData</code> differs depending on the flag value. Data is omitted if the identity matrix or zero vector. (See Table 3-11 on the next page.)

Table 3-11: NodeData flag field values

Definition Name	Value	Description
NNS_G3D_SRTFLAG_TRANS_ZERO	0x0001	If this bit is ON, translation component is zero
NNS_G3D_SRTFLAG_ROT_ZERO	0x0002	If this bit is ON, rotation matrix is identity matrix
NNS_G3D_SRTFLAG_SCALE_ONE	0x0004	If this bit is ON, scale is 1
NNS_G3D_SRTFLAG_PIVOT_EXIST	0x0008	If this bit is ON, rotation matrix is compressed form
NNS G3D SRTFLAG PIVOT MASK	0×00f0	When rotation matrix is compressed form, indicates location
NNS_G3D_SKIFLAG_FIVOI_MASK	000010	(0-8) of pivot element (element with absolute value of 1).
NNS_G3D_SRTFLAG_PIVOT_MINUS	0x0100	If this bit is ON, pivot element is negative (-1).
NNS_G3D_SRTFLAG_SIGN_REVC	0x0200	If this bit is ON, C has the opposite sign of B.
NNS_G3D_SRTFLAG_SIGN_REVD	0x0400	If this bit is ON, D has the opposite size of A.
NNS_G3D_SRTFLAG_IDXPIVOT_MASK	0x00f0	Specifies location of pivot element with the logical product of
		this value and info

Table 3-12: NodeData Data Members

Name	Description
flag	Flag
	Refer to the NodeData flag field value in Table 3-11.
Tx, Ty, Tz	Translation component set in node.
	Omitted when all zeros.
_00, _01, _02,	Rotation matrix set in node.
_10, _11, _12	Omitted when identity matrix. Also, when any one of these elements is 1 or -1, data
_20, _21, _22	described below is used as rotation matrix.
	Data format of rotation matrix used when the rotation matrix set in node is not an
А, В	identity matrix and any element is 1 or -1. The details are explained outside the
	table.
Sx, Sy, Sz,	The scale value set in node and its inverse number
InvSx, InvSy, InvSz	Omitted when all ones.

The ABCD in the chart indicate the four elements in the matrix (elements in the small matrix relating to pivot element) that result when erasing the line and column that include the pivot element. C will be +B or -B, and D will be +A or -A. Specifically, writing the positional relationship of the pivot element and ABCD in the original matrix will be as follows.

Pivot is
$$4 \rightarrow \begin{pmatrix} A & 0 & B \\ 0 & 1 & 0 \\ C & 0 & D \end{pmatrix}$$
, pivot is $0 \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & A & B \\ 0 & C & D \end{pmatrix}$, pivot is $8 \rightarrow \begin{pmatrix} A & B & 0 \\ C & D & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Here, the rotation matrix is an orthogonal matrix. Therefore, with the elements of rows and columns including pivot elements, elements other than pivot elements are 0, and C is +B or -B, D is +A or -A.

3.2.1.5 **Material Information**

The section that arranges the sets of material is shown below using the pseudo-structure.

```
pseudo struct MaterialSet(NNSG3dResMat) {
   u16
              ofsDictTexToMatList;
   u16
              ofsDictPlttToMatList;
   Dictionary dict = {sizeUnit = 4 bytes};
   Dictionary dictTexToMatList = {sizeUnit = 4 bytes};
   Dictionary dictPlttToMatList = {sizeUnit = 4 bytes};
   118
              matIdxData[];
   PADDING(4 bytes alignment);
   Material materials[# of materials];
};
```

Table 3-13: Material Set Data Members

Name	Description
ofsDictTexToMatList	Offset from start of MaterialSet to dictTexToMatList
ofsDictPlttToMatList	Offset from start of MaterialSet to dictPlttToMatList
dict	Dictionary that references each material from material name or material ID
dictTexToMatList	Dictionary that references material ID list from texture name
dictPlttToMatList	Dictionary that references material ID list from palette name
matIdxData	Series of Material IDs. Accessed from dictTexToMatList and
	dictPlttToMatList.
materials	Series of each material

MaterialSet has three types of dictionaries. The dictionary dict is for referencing each material by material name. The dictionaries dictTexToMatList and dictPlttToMatList are for getting, from texture name and palette name, a list of materials IDs using that texture and palette. These two dictionaries can be used when associating textures and palettes with models.

The data storage section of the dictionary dict is 32 bits and stores the offset from the start of MaterialSet. Also, the data storage section of the dictionaries dictTexToMatList and

© 2005 Nintendo 21 NTR-06-0256-001-A3

dictPlttToMatList is 32 bits, and stores the offset from the start of MaterialSet in the lower 16 bits, and references the start of the material ID arrangement stored in matIdxData. The number of material ID is stored in bits 16 through 23. 1 is entered in bits 24 to 31 when texture is bound, and 0 when not.

The data structure of each material shown in pseudo-structure is as follows.

```
pseudo struct Material(NNSG3dResMatData) {
   u16 itemTag = 0;
   u16 size;
   u32 diffAmb, specEmi;
   u32 polyAttr, polyAttrMask;
   u32 texImageParam, texImageParamMask;
   u16 texPlttBase;
   u16 flag;
   u16 origWidth, origHeight;
   fx32 magW, magH;
   IF (!(flag & NNS G3D_MATFLAG_TEXMTX_SCALEONE)) {
   fx32 scaleS, scaleT;
   IF (!(flag & NNS_G3D_MATFLAG_TEXMTX_ROTZERO)) {
      fx32 rotSin, rotCos;
   IF (!(flag & NNS G3D MATFLAG TEXMTX TRANSZERO)) {
      fx32 transS, transT;
   IF (flag & NNS G3D MATFLAG EFFECTMTX) {
      fx32 effectMtx[16];
};
```


Table 3-14: Material Data Members

Name	Description
itemTag	Shows material data type (at present, zero only)
size	Appropriate material size
diffAmb	Diffuse and ambient specification
	Same bit pattern as the parameter of the geometry command MaterialColor0
specEmi	Specular and emission specification
	Same bit pattern as parameter of the geometry command MaterialColor1
polygonAttr	Polygon attribute value specification
	Same bit pattern as parameter of the geometry command PolygonAttr
polygonAttrMask	Mask that takes 1 for the bit valid as data in polygonAttr
	Invalid bits are set by combining with default settings.
texImageParam	Texture image parameter setting
	Same bit pattern as parameter of the geometry command TexImageParam
	Texture's VRAM start address, texture size, texture format, and palette's color 0
	setting value enable flag are not set. Uses the texture settings to be bound
	during bind.
texImageParamMask	Mask that takes 1 for the bit valid as data in TexImageParam
	Invalid bits are set by combining with default settings.
texPlttBase	Texture palette base address setting
	Same bit pattern as lower 16 bits of the parameter for the geometry command
	TexPlttBase.
flag	Various flags regarding texture (described later)
origWidth,	Width and height of texture allocated to material during tool creation.
origHeight	
magW, magH	Region that stores the width and height of texture bound during execution divided
	by origWidth and origHeight.
scaleS, scaleT	Texture scale components
rotSin, rotCos	Sine and cosine of texture rotation angle
transS, transT	Texture translation components

Name	Value	Description
NNS_G3D_MATFLAG_TEXMTX_USE	0x0001	Determines use of texture matrix
NNS_G3D_MATFLAG_TEXMTX_SCALEONE	0x0002	ON if all texture scale components are 1.0
NNS_G3D_MATFLAG_TEXMTX_ROTZERO	0x0004	ON if texture does not rotate
NNS_G3D_MATFLAG_TEXMTX_TRANSZERO	0x0008	ON if texture does not translate
NNS_G3D_MATFLAG_ORIGWH_SAME	0x0010	Set when texture Width/Height is same as system (This bit is set during execution and initialization)
NNS_G3D_MATFLAG_WIREFRAME	0x0020	ON if wire frame display
NNS_G3D_MATFLAG_DIFFUSE	0x0040	ON if diffuse is specified for material
NNS_G3D_MATFLAG_AMBIENT	0x0080	ON if ambient is specified for material
NNS_G3D_MATFLAG_VTXCOLOR	0x0100	ON if vtxcolor flag is specified for material
NNS_G3D_MATFLAG_SPECULAR	0x0200	ON if specular is specified for material
NNS_G3D_MATFLAG_EMISSION	0x0400	ON if emission is specified for material
NNS_G3D_MATFLAG_SHININESS	0x0800	ON if shininess is specified for material
NNS_G3D_MATFLAG_TEXPLTTBASE	0x1000	ON if texture palette base address is specified
NNS_G3D_MATFLAG_ EFFECTMTX	0x2000	ON if effect matrix used in environment map and projection map exists

Table 3-15: Material flag member values

Material has parameters related to material color, polygon attribute, and texture. TexImageParam, texPlttBase, magW, and magH must reflect the texture settings to be bound during texture binding.

3.2.1.6 Shape Set and Shape

Shape set and shape shown in the pseudo-structure is as follows.

```
pseudo_struct ShapeSet(NNSG3dResShp) {
   Dictionary dict = {sizeUnit = 4 bytes};

   pseudo_struct Shape(NNSG3dResShpData) {
      u16 itemTag = 0;
      u16 size;
      u32 flag;
      u32 ofsDL;
      u32 sizeDL;
} shape[# of shapes];

u32 DL[SUM(Shape::sizeDL)];
};
```


Table 3-16: ShapeSet Data Members

Name	Description		
dict	Dictionary region for accessing each shape		
	itemTag	Shows types of shape data (at present, zero only)	
	size	Appropriate shape size (size of Shape)	
shape	flag	Flag showing characteristics of display list.	
Shape		Refer to Table 3-17.	
	ofsDL	Offset from the start of Shape to display list	
	sizeDL	Size of display list	
DL	Array storing the display list of the shape belonging to ShapeSet		

Table 3-17: ShapeSet::Shape::flag member values

Name	Value	Description
NNS_G3D_SHPFLAG_USE_NORMAL	0x00000001	If ON, Normal command is on display list
NNS_G3D_SHPFLAG_USE_COLOR	0x00000002	If ON, Color command is on display list
NNS_G3D_SHPFLAG_USE_TEXCOORD	0x0000004	If ON, TexCoord command is on display list
NNS_G3D_SHPFLAG_USE_RESTOREMTX	0x00000008	If ON, RestoreMtx command is on display list

When converting .imd files with g3dcvtr, the first RestoreMtx command on the display list is encoded in the SBC mentioned later. Therefore, when not using envelope there is no RestoreMtx command on the display list.

3.2.1.7 Information for Associating Node, Material, and Shape

Information that associates each node, material, and shape is encoded as variable length byte code. This byte code is referred to as SBC (Structured Byte Code).

SBC stores parent/child relationship among nodes, association of nodes and matrix stack index, material and shape combination specification, and information that is a blend of association to node, billboard conversion, and modeling matrix. Each of these pieces of information is defined as a separate command. If processed in order, it is arranged so that the model is drawn.

Table 3-18: SBC Commands

Command Name (Symbol)	NOP (NNS_G3D_SBC_NOP)		
Encoding	7 0		
Operand	None		
Process Details	No operation.		

Command Name (Symbol)	RET (NNS_G3D_SBC_RET)		
Encoding	7 0		
	0 0 0 0 0 0 1		
Operand	None		
Process Details	Exists at the end of the SBC line.		

Command Name (Symbol)	NODE (NNS_G3D_SBC_NODE)		
Encoding	7 0		
	NodeID		
	V		
Operand	NodeID - Specifies node corresponding to node ID.		
	\emph{v} - 1 when shape belonging to NodeID is visible. 0 when it is invisible.		
Process Details	All MAT and SHP commands before the next NODE command appears are regarded		
	as belonging to the node that has the <code>NodeID</code> specified by the <code>NODE</code> command.		

Command Name (Symbol)	MTX (NNS_G3D_SBC_MTX)								
Encoding	7	7 0							
	0	0	0	0	0	0	1	1	
	0	0	0			Idx			
Operand	Idx -	- matı	ix sta	ick in	dex				
Process Details	Issue	Issues RestoreMtx command. Reads matrix from specified location of matrix							
	stack	stack of location coordinate matrix to current matrix.							

Command Name (Symbol)	MAT (NNS_G3D_SBC_MAT)				
Encoding	7 5 0 OPT 0 0 1 0 0				
	MatID				
Operand	MatID: Material ID				
Process Details	Sets the settings of the specified material to geometry engine. The OPT value is used				
	as a hint for speeding up operation.				
	When <i>OPT</i> =000:				
	When the MatID specified by operand is the only one in this SBC.				
	When <i>opt</i> =001:				
	The MatID specified by operand may be specified by subsequent MAT commands.				
	When <i>OPT</i> =010:				
	The MatID specified by operand may have been specified by previous MAT				
	command, but won't be specified later.				

Command Name (Symbol)	SHP(NNS_G3D_SBC_SHP)			
Encoding	7 0			
	ShpID			
Operand	ShpID - Shape ID			
Process Details	Draws specified shape.			

Command Name	NODEDESC (NNS_G3D_SBC_NODEDESC)					
(Symbol)						
Encoding	7 5 4 3 2 1 0					
	OPT 0 0 1 1 0					
	NodeID					
	ParentNodeID					
	0 0 0 0 0 P S					
	Exists when <i>OPT</i> =001,011					
	0 0 0 DestIdx					
	Exists when <i>OPT</i> =010,011					
	0 0 0 SrcIdx					
Operand	Wada TD. Specifies pede ID that requires modeling matrix					
Operand	NodeID - Specifies node ID that requires modeling matrix.					
	ParentNodeID - Specifies ID of parent node.					
	s - Maya's Segment Scale Compensate is applied to this node.					
	P - This node is the parent node of the node with Maya's Segment Scale					
	Compensate applied.					
	DestIdx - Matrix stack index is specified when storing calculation results in matrix stack. Specified when it is necessary to store calculation results in matrix stack. SrcIdx - Matrix stack index is specified when restoring matrix from matrix stack before calculation. Specified when extracting matrix corresponding to parent node					
	from matrix stack.					
Process Details	Calculates modeling matrix corresponding to node ID.					

Command Name (Symbol)	BB (NNS_G3D_SBC_BB)					
Encoding	7 0					
	NodeID					
	Exists when <i>OPT</i> =001,011					
	0 0 0 DestIdx					
	Exists when <i>OPT</i> =010,011					
	0 0 0 SrcIdx					
Operand	NodeID Node ID of matrix that applies billboard conversion.					
	DestIdx - Matrix stack index is specified when storing calculation results in matrix					
	stack. SrcIdx - Matrix stack index is specified when restoring matrix from matrix stack before calculation.					
Process Details	Applies billboard conversion to matrix.					

Command Name (Symbol)	BBY (NNS_G3D_SBC_BBY)				
Encoding	7 0 0 0 0 0 1 0 0 0 NodeID Exists when <i>OPT</i> =001,011 0 0 0 DestIdx Exists when <i>OPT</i> =010,011 0 0 0 SrcIdx				
Operand	NodeID - Node ID of matrix that applies Y axis billboard conversion. DestIdx - Matrix stack index is specified when storing calculation results in matrix stack. SxcIdx - Matrix stack is specified when restoring matrix from matrix stack before calculation.				
Process Details	Applies Y axis billboard conversion to matrix.				

© 2005 Nintendo 29 NTR-06-0256-001-A3

Command Name (Symbol)	CALLDL (NNS_G3D_SBC_CALLDL)			
Encoding	7 0			
	31 0			
	RelAddr			
	31 0			
	Size			
Operand	RelAddr - Relative address from start address of CALLDL instruction to display list			
	Size - Size of display list (in bytes)			
Process Details	Sends display list specified with operand to geometry engine.			

Command Name (Symbol)	POSSCALE (NNS_G3D_SBC_POSSCALE)
Encoding	7 5 4 3 2 1 0
	OPT 0 1 0 1 1
Operand	None
Process details	When opt=000, applies scaling matrix (see posScale and invPosScale of
	ModelInfo) set for each model data in current matrix.
	When <i>OPT</i> =001, applies the inverse matrix.

Command Name (Symbol)	ENVMAP (NNS_G3D_SBC_ENVMAP)
Encoding	7 0
	OPT=0 0 1 1 0 0
	MatID
	Flag
Operand	Matid: Material ID
	Flag: Flag for expansion (Currently always 0)
Process Details	Calculates the texture matrix for environmental mapping. It is placed immediately after the MAT command, and the OPT value is always 0.

Command Name (Symbol)	PRJMAP (NNS_G3D_SBC_PRJMAP)				
Encoding	7 0				
	OPT=0 0 1 1 0 1				
	MatID				
	Flag				
Operand	MatID: Material ID				
	Flag: Flag for expansion (Currently always 0)				
Process Details	Calculates the texture matrix for projection mapping. It is placed immediately after the MAT command, and the OPT value is always 0.				

© 2005 Nintendo 31 NTR-06-0256-001-A3

3.2.1.8 Matrix Storage Region for Envelope Calculation

This region exists only for models with weighted envelope. The reverse matrix of the location coordinates matrix and direction vector matrix which convert the joint coordinate system of the still pose to the object coordinate system (in other words, the transformation matrix to the object coordinate system to the coordinate system of each joint) is stored. This is used for omitting inverse matrix calculation in NODEMIX command process of SBC.

```
pseudo_struct EvpMatrices {
    IF (Weighted envelope model) {
        pseudo_struct {
            MtxFx43 invM;
            MtxFx33 invN;
        } m[# of nodes];
    }
};
```

Table 3-19: EvpMatrices Data Members

Name	Description
invM	Inverse matrix of location coordinate matrix
invN	Inverse matrix of direction vector matrix

3.2.2 Texture and Palette Block

The texture and palette block can store multiple textures and palettes and can access each texture and palette by name of up to 16 characters.

3.2.2.1 Texture and Palette Sets

Texture and palette sets shown with pseudo-structure is as follows.

```
pseudo_struct TexPlttSet(NNSG3dResTex) {
    DataBlockHeader header = {
        kind = '0XET',
        size = SIZE_OF(TexPlttSet)
    };
    pseudo_struct TexInfo(NNSG3dResTexInfo) {
        u32 vramKey;
        u16 sizeTex;
        u16 ofsDict;
        u16 flag;
        PADDING(2 bytes);
        u32 ofsTex;
```

NTR-06-0256-001-A3 32 © 2005 Nintendo


```
} texInfo;
   pseudo struct Tex4x4Info(NNSG3dResTex4x4Info) {
       u32 vramKey;
      u16 sizeTex;
      u16 ofsDict;
      u16 flag;
      PADDING(2 bytes);
      u32 ofsTex;
      u32 ofsTexPlttIdx;
   } tex4x4Info;
   pseudo_struct PlttInfo(NNSG3dResPlttInfo) {
      u32 vramKey;
      u16 sizePltt;
      u16 flag;
      u16 ofsDict;
      PADDING(2 bytes);
      u32 ofsPlttData;
   } plttInfo;
   Dictionary dictTex = {sizeUnit = 8 bytes};
   Dictionary dictPltt = {sizeUnit = 4 bytes};
   u8 texData[texInfo.sizeTex << 3];
   u8 tex4x4Data[tex4x4Info.sizeTex << 3];</pre>
   u8 tex4x4IdxData[tex4x4Info.sizeTex << 2];</pre>
   u8 plttData[plttInfo.sizePltt << 3];</pre>
};
```


Table 3-20: TexPlttSet Data Members

Name	Description					
header	Header region of texture and header blocks					
	vramKey	VRAM key storage location for texture data other than 4x4				
	sizeTex	Numerical value with size of texData shifted three bits to the right				
texInfo	ofsDict	Offset from start of TexPlttSet to dictTex				
	flag	Flag related to texture data other than 4x4				
	ofsTex	Offset from start of TexPlttSet to texData				
	vramKey	VRAM key storage location for 4x4 texel compressed texture data				
	sizeTex	Numerical value with size of tex4x4 shifted three bits to the right				
t.ex4x4Info	ofsDict	Offset from start of TexPlttSet to dictTex				
CCX 1X 111110	flag	Flag related to 4x4 texel compressed texture data				
	ofsTex	Offset from start of TexPlttSet to tex4x4Data				
	ofsTexPlttIdx	Offset from start of TexPlttSet to tex4x4IdxData				
plttInfo	vramKey	VRAM key storage location for palette				
	sizePltt	Numerical value with size of plttData shifted three bits to the right				
	flag	Flag related to palette data				
	ofsDict	Offset from start of TexPlttSet to dictPltt				
	ofsPlttData	Offset from start of TexPlttSet to plttData				
dictTex	Dictionary that accesses attribute value of each texture from texture name					
dictPltt	Dictionary that accesses attribute value of each palette from palette name					
texData	Array for texture data other than 4x4 texel compressed texture					
tex4x4Data	Array for texture data of 4x4 texel compressed texture					
tex4x4IdxData	Array for palette index data for 4x4 texel compressed texture					
plttData	Array for palette data					

Table 3-21: TexPlttSet::TexInfo::flag member value

Name	Value	Description
NNS_G3D_RESTEX_LOADED	0x0001	This is set when texture data other than 4x4 is loaded to VRAM.

Table 3-22: TexPlttSet::Tex4x4Info::flag member value

Name	Value	Description
NNS_G3D_RESTEX4x4_LOADED	0x0001	This is set when 4x4 texel compressed texture data is loaded to
		VRAM.

Table 3-23: TexPlttSet::PlttInfo::flag member values

Name	Value	Description
NNS_G3D_RESPLTT_LOADED	0x0001	This is set when Palette data loaded to VRAM.
NNS_G3D_RESPLTT_USEPLTT4 0x80		Set when there is a four-color palette.

For the data in the dictionary dictTex, the data shown with the following pseudo-structure is stored, not the offset to the data.

```
pseudo_struct DictTexData(NNSG3dResDictTexData) {
       u32 texImageParam;
       u32 extraParam;
};
```

Table 3-24: Data stored in dictionary dictTex

Name	Description							
texImageParam	31 30 29	28 26	25 23	22 20	19	16	15	0
	Р	Fmt	Т	S			OFS	
	Same layout as the parameters of the geometry command TexImageParam. However,							
	the bits for flip, repeat and texture coordinates conversion mode are not set.							
	<pre>OFS - Offset for TexPlttSet::texData or TexPlttSet::tex4x4Data shifted three</pre>							
	bits to the right.							
	s - Texture width							
	r - Texture height							
	Fmt - Texture format							
	P - Palette color setting value enable flag							
extraParam	31 30 22 21 11 10 0							
	S		Oı	rigH			OrigW	
	Origw - Texture width on tool							
	OrigH - Texture height on tool							
	s - 1 when OrigW and OrigH are the same as the width and height specified with							
	TexImagePa	aram.						

Also, for data in the dictionary dictPltt, the data shown with the following pseudo-structure is stored, not the offset to the data.

© 2005 Nintendo 35 NTR-06-0256-001-A3


```
pseudo_struct DictPlttData(NNSG3dResDictPlttData) {
    u16 offset;
    u16 flag;
};
```

Table 3-25: Data stored in dictionary dictPltt

Name	Description					
offset	Offset for TexPlttSet::plttData shifted three bits to the right					
flag	1 when 4-color palette. 0 when something other than 4-color palette.					

3.3 Structure of Joint Animation Data File (.nsbca)

The .nsbca file stores joint animation sets. Each joint animation is associated with the first 16 characters of the character string with the file extension removed (filled with NULL characters when there are less than 16 characters) from file name of .ica file. The .nsbca file format is explained below using pseudo-structure.

```
pseudo_struct NSBCA {
   FileHeader file header = {
      dataBlocks = 1,
       signature = 'OACB'
   };
   JointAnmSet jntAnmSet;
pseudo struct JointAnmSet(NNSG3dResJntAnmSet) {
   DataBlockHeader header = {
      kind = 'OTNJ',
       size = SIZEOF(JointAnmSet)
   };
   Dictionary dict = {sizeUnit = 4 bytes};
   JointAnm jntAnm[dict.numEntry];
   pseudo_struct JointAnmRot3 {
      u16 info;
       fx16 A;
       fx16 B;
   } rot3[];
   PADDING(4 bytes alignment);
```

(continued on next page...)

NTR-06-0256-001-A3 36 © 2005 Nintendo

(... continued from previous page.)

```
pseudo_struct JointAnmRot5 {
      fx16 data[5];
   } rot5[];
   PADDING(4 bytes alignment);
   u16 rotIdx[];
   PADDING(4 bytes alignment);
   pseudo_struct JointAnmScaleFx16 {
      fx16 scale, invScale;
   } scaleFx16[];
   PADDING(4 bytes alignment);
   fx16 transFx16[];
   PADDING(4 bytes alignment);
   pseudo_struct JointAnmScaleFx32 {
      fx32 scale, invScale;
   } scaleFx32[];
   fx32 transFx32[];
};
```


Table 3-26: JointAnmSet Data Members

Name	Description		
header	Header region of joint animation block		
dict	Dictionary region for accessing each joint animation		
jntAnm	Main data of each joint animation		
rot3	Rotation matrix data (6 bytes) array. Index referenced from rotId	х.	
	15 6 5 4 3	0	
	- SD SC M Idx:	Pivot	
	A		
	В		
	Meaning of data is same as that of NodeData.		
	idxPivot - Shows location (0-8) of rotation matrix pivot element ((element with absolute	
	value of 1).		
	м- When this bit is ON, pivot element is negative (-1)		
	sc - If this bit is ON, C has opposite sign of B		
	SD - If this bit is ON, D has opposite sign of A		
	A, B - Rotation matrix elements		

rot5	Rotation matrix data (10 bytes) array. Index referenced from rotIdx. The absolute value of each element value decreases by one.	
	15 2	2 0
		12 (9-11)
	_01	_12 (6-8)
	_02	_12 (3-5)
	_10	_12(0-2)
	_11	_12(sign)
	_00, _01, _02, _10, _11 - The rotation matrix element. Does 3 bit a right, and uses as fx16-type value12 () - The element in the 2 nd row, third column of the rotation mastored.	
	The third row can be obtained using the cross product.	
rotIdx	Array storing index to rotation matrix data The lower 15 bits are index, and rot3 or rot5 is selected with the h rot3 when 1. References rot5 when 0. References using the offset	
scaleFx16	Data string storing scale component (fx16) Referenced using the offset from jntAnm.	
transFx16	Array storing translation component (fx16) Referenced using the offset from jntAnm.	
scaleFx32	Data string storing scale component (fx32) Referenced using the offset from jntAnm.	
transFx32	Array storing translation component (fx32) Referenced using the offset from jntAnm.	

The format of individual joint animation expressed as pseudo-structure is as follows. Internally holds the offsets for actual data string for scale, rotation and translation component.


```
pseudo struct JointAnm(NNSG3dResJntAnm) {
   AnmHeader anmHeader = {
      category0 = 'J',
      category1 = 'CA'
   };
   u16 numFrame;
   u16 numNode;
   u32 annFlag;
   u32 ofsRot3;
   u32 ofsRot5;
   u16 ofsTag[numNode];
   PADDING(4 bytes alignment);
   pseudo_struct TagData(NNSG3dJntAnmSRTTag) {
      u32 flag;
      IF (!(flag & NNS_G3D_JNTANM_SRTINFO_IDENTITY)) {
          IF (!(flag & NNS_G3D_JNTANM_SRTINFO_IDENTITY_T) &&
          !(flag & NNS G3D JNTANM SRTINFO BASE T)) {
             JointAnmTrans<flag & NNS_G3D_JNTANM_SRTINFO_CONST_TX> tx;
             JointAnmTrans<flag & NNS G3D JNTANM SRTINFO CONST TY> ty;
             JointAnmTrans<flag & NNS G3D JNTANM SRTINFO CONST TZ> tz;
          IF (!(flag & NNS G3D JNTANM SRTINFO IDENTITY R) &&
          !(flag & NNS G3D JNTANM SRTINFO BASE R)) {
             JointAnmRot<flag & NNS G3D JNTANM SRTINFO CONST R> r;
          IF (!(flag & NNS G3D JNTANM SRTINFO IDENTITY S) &&
          !(flag & NNS G3D JNTANM SRTINFO BASE S)) {
             JointAnmScale<flag & NNS G3D JNTANM SRTINFO CONST SX> sx;
             JointAnmScale<flag & NNS_G3D_JNTANM_SRTINFO_CONST_SY> sy;
             JointAnmScale<flag & NNS G3D JNTANM SRTINFO CONST SZ> sz;
   } tagData[numNode];
};
```

(continued on next page...)

(... continued from previous page)

```
pseudo_struct JointAnmTrans<isConst> {
   IF (isConst) {
      fx32 const_trans;
   } ELSE {
      u32 info;
      u32 offset;
   }
};
pseudo struct JointAnmRot<isConst> {
   IF (isConst) {
      u32 const_offset
   } ELSE {
      u32 info;
      u32 offset;
   }
};
pseudo_struct JointAnmScale<isConst> {
   IF (isConst) {
      fx32 const_scale;
      fx32 const_invScale;
   } ELSE {
      u32 info;
      u32 offset;
   }
};
```


Table 3-27: JointAnm Data Members

Name	Description		
anmHeader	Animation header		
numFrame	Number of	animation frames	
numNode	Number of	nodes in the model targeted for the joint animation	
anmFlag	Flag that sp	pecifies the joint animation option	
ofsRot3	Offset from	start of JointAnm to rotation matrix data (6 bytes) array	
ofsRot5	Offset from the start of JointAnm to the rotation matrix data (10 bytes) array		
ofsTag	Offset from the start of JointAnm to tagData element corresponding to node		
	flag Flag group that determines data in each tagData		
	tx	Data relating to x component of joint translation vector	
	ty	Data relating to y component of joint translation vector	
tagData	tz	Data relating to z component of joint translation vector	
cagbaca	r	Data related to the rotation matrix of the joint	
	sx	Data relating to joint x direction scale	
	sy	Data relating to joint y direction scale	
Sz Data relating to joint z direction scale		Data relating to joint z direction scale	

Table 3-28: JointAnmTrans Data Members

Name	Description	
const_trans	Value of constant translation component	
info	Flag describing characteristics of Translation data string	
offset	Offset from start of JointAnm to Translation data string	

Table 3-29: JointAnmRot Data Members

Name	Description	
const_offset	ndex value to constant rotation matrix	
info	Flag describing characteristics of Rotation data string	
offset	Offset from start of JointAnm to Rotation data index string	

42 © 2005 Nintendo

Table 3-30: JointAnmScale Data Members

Name	Description	
const_scale	Constant scale value	
const_invScale	nverse of constant scale value	
info	Flag describing characteristics of Scale data string	
offset		

Table 3-31: Valid JointAnm:: TagData::flag Values

Name	Value	Description
NNS_G3D_JNTANM_SRTINFO_IDENTITY	0x00000001	ON when there's no change in SRT
NNS_G3D_JNTANM_SRTINFO_IDENTITY_T	0x00000002	ON when no translation
NNS_G3D_JNTANM_SRTINFO_BASE_T	0x00000004	ON when using model value in Trans
NNS_G3D_JNTANM_SRTINFO_CONST_TX	0x00000008	ON when Tx is constant
NNS_G3D_JNTANM_SRTINFO_CONST_TY	0x00000010	ON when Ty is constant
NNS_G3D_JNTANM_SRTINFO_CONST_TZ	0x00000020	ON when Tz is constant
NNS_G3D_JNTANM_SRTINFO_IDENTITY_R	0x00000040	ON when there is no rotation
NNS_G3D_JNTANM_SRTINFO_BASE_R	0x00000080	On when using model value in Rot
NNS_G3D_JNTANM_SRTINFO_CONST_R	0x00000100	ON when Rot is constant
NNS_G3D_JNTANM_SRTINFO_IDENTITY_S	0x00000200	ON when Scale not applied
NNS_G3D_JNTANM_SRTINFO_BASE_S	0x00000400	ON when using model value in Scale
NNS_G3D_JNTANM_SRTINFO_CONST_SX	0x00000800	ON when Sx is constant
NNS_G3D_JNTANM_SRTINFO_CONST_SY	0x00001000	ON when Sy is constant
NNS_G3D_JNTANM_SRTINFO_CONST_SZ	0x00002000	ON when Sz is constant
NNS_G3D_JNTANM_SRTINFO_NODE_MASK	0xFF000000	Mask the location where the node ID targeting the animation is entered

Table 3-32: Valid JointAnmTrans::info Values

Name	Value	Description
NNS_G3D_JNTANM_TINFO_STEP_1	0x00000000	When there is data every frame
NNS_G3D_JNTANM_TINFO_STEP_2	0x40000000	ON when frame step is 2
NNS_G3D_JNTANM_TINFO_STEP_4	0x80000000	ON when frame step is 4
NNS_G3D_JNTANM_TINFO_FX16ARRAY	0x20000000	ON when animation data is fx16 array
NNS_G3D_JNTANM_TINFO_LAST_INTERP_MASK	0x1FFF0000	When frameStep=2,4: (numFrame - 1) & ~(frameStep - 1) When frameStep=1: numFrame

43 © 2005 Nintendo

Table 3-33: Valid JointAnmRot::info Values

Name	Value	Description
NNS_G3D_JNTANM_RINFO_STEP_1	0x00000000	When there is data every frame
NNS_G3D_JNTANM_RINFO_STEP_2	0x40000000	ON when frame step is 2
NNS_G3D_JNTANM_RINFO_STEP_4	0x80000000	ON when frame step is 4
NNS_G3D_JNTANM_RINFO_LAST_INTERP_MASK	0x1FFF0000	When frameStep=2,4: (numFrame - 1) & ~(frameStep - 1) When frameStep=1: numFrame

Table 3-34: Valid JointAnmScale::info Values

Name	Value	Description
NNS_G3D_JNTANM_SINFO_STEP_1	0x00000000	When there is data every frame
NNS_G3D_JNTANM_SINFO_STEP_2	0x40000000	ON when frame step is 2
NNS_G3D_JNTANM_SINFO_STEP_4	0x80000000	ON when frame step is 4
NNS_G3D_JNTANM_SINFO_FX16ARRAY	0x20000000	ON when animation data is fx16
		array
NNS_G3D_JNTANM_SINFO_LAST_INTERP_MASK	0x1FFF0000	When frameStep=2,4:
		(numFrame − 1) & ~(frameStep − 1)
		When frameStep=1: numFrame

3.4 Structure of Texture Pattern Animation Data File (.nsbtp)

The .nsbtp file stores sets of texture pattern animation data. Each texture animation is associated with the first 16 characters (filled with NULL characters when there are fewer than 16 characters) of the character string with the file extension removed from the file name of the .itp file.

Below is an explanation of .nsbtp file format using pseudo-structure.

```
pseudo_struct NSBTP {
    FileHeader file_header = {
        dataBlocks = 1,
        signature = 'OPTB'
    };
    TexPatAnmSet texPatAnmSet;
};

pseudo_struct TexPatAnmSet(NNSG3dResTexPatAnmSet) {
    DataBlockHeader header = {
        kind = 'OTAP',
        size = SIZEOF(TexPatAnmSet)
    };
    Dictionary dict = {sizeUnit = 4 bytes};
    TexPatAnm texPatAnm[dict.numEntry];
};
```

Table 3-35: TexPatAnmSet Data Members

Name	Description	
header	Header region of texture pattern animation block	
dict	Dictionary region for access to each texture pattern animation	
texPatAnm	Main data of each texture pattern animation	

© 2005 Nintendo 45 NTR-06-0256-001-A3


```
pseudo_struct TexPatAnm(NNSG3dResTexPatAnm) {
  AnmHeader anmHeader = {
      category0 = 'M',
     category1 = 'TP'
   };
  u16
            numFrame;
   u8
            numTex;
   u8
            numPltt;
            ofsTexName;
   u16
   u16
            ofsPlttName;
   Dictionary dict(sizeUnit = 8 bytes);
  pseudo_struct TexPatFV(NNSG3dResTexPatAnmFV) {
      u16 idxFrame;
      u8 idTex;
      u8 idPltt;
   } texPatFV[];
  pseudo_struct DictName(NNSG3dResName) {
      u8 name[16];
   } texName[numTex];
   pseudo_struct DictName(NNSG3dResName) {
      u8 name[16];
   } plttName[numPltt];
};
```


Table 3-36: TexPatAnm Data Members

Name	Description		
anmHeader	Animation header		
numFrame	Number of anima	ation frames	
numTex	Total number of t	textures to animate	
numPltt	Total number of	palettes to animate	
ofsTexName	Offset from start	of TexPatAnm to texName	
ofsPlttName	Offset from start of TexPatAnm to plttName		
dict	Dictionary for accessing animation data from material name		
texPatFV	idxFrame Frame number that switches to the following texture		
	and palette		
	idTex	Index for texName	
	idPltt Index for plttName		
texName	Array of texture names displayed by animation		
plttName	Array of palette names displayed by animation		

```
pseudo_struct DictTexPatAnmData(NNSG3dResDictTexPatAnmData) {
   u16 numFV;
   u16 flag;
   fx16 ratioDataFrame;
   u16 offset;
} ;
```

Table 3-37: Data stored in dictionary TexPatAnm::dict

Name	Description			
numFV	Number of FV data			
flag	15	1	0	
			Р	
	P: If 1, palette animation does not exist.			
ratioDataFrame	Number of FV data divided by number of frames			
	Can be used as hint for looking up FV data from current frame.			
offset	Offset to FV data arrangement (in TexPatAnm::texPatFV) using			
	TexPatAnm as origin.			

© 2005 Nintendo 47 NTR-06-0256-001-A3

Texture pattern animation is a type of material animation, and switches the textures and palettes that belong to the specified material depending on the recorded FV (Frame-Value) data. Actual texture data does not exist in <code>.nsbtp</code> file, and only texture and palette name and information regarding the timing for switching are recorded.

3.5 Structure of Material Color Animation Data File (.nsbma)

The .nsbma file stores sets of material color animation. Each material color animation is associated with the first 16 characters (filled with NULL characters when there are fewer than 16 characters) of the character string with the file extension removed from the file name of the .ima file. Below is an explanation of .nsbma file format using pseudo-structure.

```
pseudo_struct NSBMA {
   FileHeader
                    file header = {
      dataBlocks = 1,
      signature = 'OAMB'
   };
   MatColAnmSet matColAnmSet;
};
pseudo struct MatColAnmSet(NNSG3dResMatCAnmSet) {
   DataBlockHeader header = {
      kind = 'OTAM',
      size = SIZEOF(MatColAnmSet)
   };
   Dictionary
                   dict = {sizeUnit = 4 bytes};
   MatColAnm
                    matColAnm[dict.numEntry];
};
```

Table 3-38: MatColAnmSet Data Members

Name	Description		
header	Header region of material color animation block		
dict	Dictionary region for access to each material color animation		
matColAnm	Main data of each material color animation		

NTR-06-0256-001-A3 48 © 2005 Nintendo


```
pseudo_struct MatColAnm(NNSG3dResMatCAnm) {
   AnmHeader anmHeader = {
      category0 = 'M',
      category1 = 'MA'
   };
   u16 numFrame;
   u16 flag;
   Dictionary dict(sizeUnit = 20 bytes);
   u16 rgbData[];
   PADDING(4 bytes alignment);
   u8 alphaData[];
   PADDING(4 bytes alignment);
};
```

Table 3-39: MatColAnm Data Members

Name	Description	
anmHeader	Animation header	
numFrame	Number of animation frames	
flag	Flag that specifies the material color animation option	
dict	Dictionary for accessing animation data from material name	
rgbData	RGB animation data	
alphaData	Alpha animation data	

Table 3-40: MatColAnm::flag Values

Name	Value	Description
NNS_G3D_MATCANM_OPTION_INTERPOLATION	0x0001	Interpolates color
NNS_G3D_MATCANM_OPTION_END_TO_START_INTERPOLATION	0x0002	Interpolates color from end frame
		to start frame (for loop)

The DictMatColAnmData pseudo-structure holds management information relating to color and alpha animation and is stored as a dictionary entry in MatColAnm. Definitions are shown below and explain the values which each data member takes using Table 3-41.

49 NTR-06-0256-001-A3 © 2005 Nintendo


```
pseudo_struct DictMatColAnmData(NNSG3dResDictMatCAnmData) {
    u32 tagDiffuse;
    u32 tagAmbient;
    u32 tagSpecular;
    u32 tagEmission;
    u32 tagPolygonAlpha;
};
```

Table 3-41: DictMatColAnmData Data Members

Name	Description
tagDiffuse	Diffuse animation management information
tagAmbient	Ambient animation management information
tagSpecular	Specular animation management information
tagEmission	Emission animation management information
tagPolygonAlpha	Polygon Alpha animation management information

Table 3-42: tagDiffuse/tagAmbient/tagSpecular/tagEmission/tagPolygonAlpha Values

Name	Value	Description
NNS_G3D_MATCANM_ELEM_STEP_1	0x00000000	When there is data in every frame
NNS_G3D_MATCANM_ELEM_STEP_2	0x40000000	ON when frame step is 2
NNS_G3D_MATCANM_ELEM_STEP_4	0x80000000	ON when frame step is 4
NNS_G3D_MATCANM_ELEM_CONST	0x20000000	If ON, lower 16 bits are treated as
		constant data
NNS_G3D_MATCANM_ELEM_LAST_INTERP_MASK	0x1FFF0000	When frameStep=2,4:
		(numFrame - 1) & ~(frameStep - 1)
		When frameStep=1: numFrame
NNS_G3D_MATCANM_ELEM_OFFSET_CONSTANT_MASK	0x0000FFFF	Offset to string using MatColAnm as
		origin, or constant value

3.6 Structure of Visibility Animation Data File (.nsbva)

The .nsbva file stores sets of visibility animation data. Each visibility animation is associated with the first 16 characters (filled with NULL characters when there are less than 16 characters) of the character string with the file extension removed from the file name of the .iva file. Following is an explanation of .nsbva file format using pseudo-structure.

NTR-06-0256-001-A3 50 © 2005 Nintendo


```
pseudo_struct NSBVA {
  FileHeader file_header = {
    dataBlocks = 1,
    signature = '0AVB'
  };
  VisAnmSet visAnmSet;
};
pseudo_struct VisAnmSet(NNSG3dResVisAnmSet) {
  DataBlockHeader header = {
    kind = 'OSIV',
    size = SIZEOF(MatColAnmSet)
  };
  VisAnm
               visAnm[dict.numEntry];
};
```

Table 3-43: VisAnmSet Data Members

Name	Description	
header	Header region of visibility animation block	
dict	Dictionary region for accessing each visibility animation	
visAnm	Main data of each visibility animation	

```
pseudo_struct VisAnm(NNSG3dResVisAnm) {
  AnmHeader anmHeader = {
     category0 = 'V',
      category1 = 'VA'
   } ;
   u16 numFrame;
   u16 numNode;
   u16 size = SIZEOF(VisAnm);
   PADDING(2 bytes);
   u32 visData[1 + (numFrame * numNode >> 5)];
};
```


Table :	3-44: ¹	VisAnm	Data	Mem	bers

Name	Description
anmHeader	Animation header
numFrame	Number of animation frames
numNode	Number of nodes in the model to be animated
size	Size of VisAnm pseudo-structure
visData	Visibility animation data Each bit corresponds to the information about whether the node is visible or not. When little-endian, visibility information of CurFrame frame's nodeID node is stored in the bit at the position CurFrame * numNode + nodeID.

3.7 Structure of Texture SRT Animation Data File (.nsbta)

The .nsbta file stores sets of texture SRT animation data. Each texture SRT animation is associated with the first 16 characters (filled with NULL characters when there are less than 16 characters) of the character string with the file extension removed from the file name of the .ita file. Below is an explanation of .nsbta file format using pseudo-structure.

```
pseudo_struct NSBTA {
                 file_header = {
   FileHeader
      dataBlocks = 1,
      signature = 'OATB'
   };
   TexSRTAnmSet texSRTAnmSet;
};
pseudo_struct TexSRTAnmSet(NNSG3dResTexSRTAnmSet) {
   DataBlockHeader header = {
      kind = 'OTRS',
      size = SIZEOF(TexSRTAnmSet)
                  dict = {sizeUnit = 4 bytes};
   Dictionary
   TexSRTAnm
                  texSRTAnm[dict.numEntry];
};
```

NTR-06-0256-001-A3 52 © 2005 Nintendo

Table 3-45: TexSRTAnmSet Data Members

Name	Description	
header	Header region of visibility animation block	
dict	Dictionary region for accessing each texture SRT animation	
texSRTAnm	Main data of each texture SRT animation	

```
pseudo_struct TexSRTAnm(NNSG3dResTexSRTAnm) {
    AnmHeader anmHeader = {
        category0 = 'M',
        category1 = 'TA'
    };
    u16     numFrame;
    u8     flag;
    u8     texMtxMode;
    Dictionary dict(sizeUnit = 40 bytes);
    u32     anmData[];
};
```

Table 3-46: TexSRTAnm Data Members

Name	Description	
anmHeader	Animation header	
numFrame	Number of animation frames	
flag	Flag that specifies texture SRT animation option	
texMtxNode	Texture matrix calculation method	
	Refer to Table 3-10: Values Taken by texMtxMode	
dict	Dictionary for accessing animation data from material name	
anmData	Various numerical data strings referenced from DictTexSRTAnmData	

Table 3-47: TexSRTAnm::flag Values

Name	Value	Description
NNS_G3D_TEXSRTANM_OPTION_INTERPOLATION	0x0001	Interpolation play specification
NNS_G3D_TEXSRTANM_OPTION_END_TO_START_INTERPOLATION	0x0002	Interpolates from end frame to
		start frame (for loop)

© 2005 Nintendo 53 NTR-06-0256-001-A3


```
pseudo_struct DictTexSRTAnmData(NNSG3dResDictTexSRTAnmData) {
    u32 scaleS;
    u32 scaleSEx;
    u32 scaleT;
    u32 scaleTex;
    u32 rot;
    u32 rotEx;
    u32 transS;
    u32 transSEx;
    u32 transTex;
};
```

Table 3-48: DictTexSRTAnmData Data Members

Name	Description		
scaleS	Texture scale animation management information (vertical direction)		
scaleSEx	Constant value (immediate) when NNS_G3D_TEXSRTANM_ELEM_CONST is set in scaleS		
	Otherwise, the offset from the start of TexsrtAnm to data string.		
scaleT	Texture scale animation management information (vertical direction)		
scaleTEx	Constant value (immediate) when NNS_G3D_TEXSRTANM_ELEM_CONST is set in ScaleT		
	Otherwise, the offset from the start of TexsrtAnm to data string.		
rot	Texture rotation animation management information		
rotEx	Constant value (immediate) with sin and cos packed when NNS_G3D_TEXSRTANM_ELEM_CONST is		
	set in rot (upper 16 bits are fx16 cos value, lower 16 bits are fx16 sin value)		
	Otherwise, the offset from the start of TexSRTAnm to the data string.		
transS	Texture translation animation management information (horizontal direction)		
transSEx	Constant value (immediate) when NNS_G3D_TEXSRTANM_ELEM_CONST is set in transS		
	Otherwise, the offset from the start of TexSRTAnm to the data string.		
transT	Texture translation animation management information (vertical direction)		
transTEx	Constant value (immediate) when NNS_G3D_TEXSRTANM_ELEM_CONST is set in transT		
	Otherwise, the offset from the start of TexSRTAnm to the data string.		

Table 3-49: scaleS/scaleT/rot/transS/transT Values

Name	Value	Description
NNS_G3D_TEXSRTANM_ELEM_STEP_1	0x00000000	ON when there is data in every frame
NNS_G3D_TEXSRTANM_ELEM_STEP_2	0x40000000	ON when frame step is 2
NNS_G3D_TEXSRTANM_ELEM_STEP_4	0x80000000	ON when frame step is 4
NNS_G3D_TEXSRTANM_ELEM_CONST	0x2000000	If ON, lower 16 bits are treated as
		constant data
NNS_G3D_TEXSRTANM_ELEM_FX16	0x10000000	If ON, holds data in fx16 array
NNS_G3D_TEXSRTANM_ELEM_LAST_INTERP_MASK	0x0000FFFF	When frameStep=2,4:
		(numFrame − 1) & ~(frameStep − 1)
		When frameStep=1: numFrame

Maya is a registered trademark or trademark of the Alias Systems Corporation.

Avid, Softimage, SOFTIMAGE|3D, and SOFTIMAGE|XSI are a registered trademark or trademark of Avid Technology, Inc.

Discreet and 3dsmax are a registered trademark or trademark of Autodesk, Inc./Autodesk Canada, Inc.

Other company names, product names, etc. are the registered trademarks or trademarks of each company.

© 2004, 2005 Nintendo

The contents of this document cannot be duplicated, copied, reprinted, transferred, distributed or loaned in whole or in part without the prior approval of Nintendo Co. Ltd.