Simulations in Systems Biology

Poorvi H C

November 7, 2023

Simulation 1	Grade:
Construct a phase plane for mutually inhibiting circuit (X inhibits Y and Y inhibits X). Show that it is bistable.	Faculty Comments

Mutually inhibiting circuit, in our example we take X inhibits Y and Y inhibits X simultaneously.

$$A \longrightarrow B$$
 and $B \longrightarrow A$

Assuming there is some remnants of X and Y in the cell already, giving rate as γ_1 and γ_2 initially. Then we add the repression term $\beta_1 * ((K^n)/(Y^n + K^n))$ and $\beta_2 * ((K^n)/(X^n + K^n))$. As Y represses X, Y's repression term is included in the rate law for X and vice versa.

Finally we add the standard degradation term, $\alpha_1 * X$ and $\alpha_2 * Y$. As the degradation of X and Y only depends on their own concentration the above terms are used to compress the degradation and dissolution effect.

$$dX/dt = \gamma_1 + \beta_1((K^n)/(Y^n + K^n)) + \alpha_1 X$$

$$dY/dt = \gamma_2 + \beta_2((K^n)/(X^n + K^n)) + \alpha_2 Y$$

The nullclines can be obtained by equating, dX/dt = 0 and dY/dt = 0. The graph obtained for the interaction: 2 Poorvi H C

(a) Stable Equilibria: Y is high, X is low

Figure 1: Double feedback loop phase plane for n = 3

To obtain the above phase portrait, we have taken up a few constants for $\alpha_1 = \alpha_2 = 1$ and $\beta_1 = \beta_2 = 3$ and $\gamma_1 = \gamma_2 = 0.2$ and n = 3 and K = 1

The red spots show the equilibrium points. For this regulation, there are 2 stable equilibria and 1 unstable equilibria.

The 2 stable ones, when X is high in conc, Y is low and vice versa. We therefore get the stable points at the top left and bottom right of the graph.

The stable ones are: As shown, the direction of the lines point towards the equilibria showing stability. The unstable one, point in the middle, where X and Y are considerably high. It will move either to states

where X is high and Y is low and vice versa. The arrows move away from equilibria showing unstability,

Figure 3: Unstable equilibria: X and Y are comparable

For different values of n: For n = 1 there is an intersection with X and Y positive. For n > 1, the system may admit multiple, typically three, positive equilibria For large values of n, The nullclines are very sharp, replicating a toggle-switch operation.

Simulation 2	Grade:
Simulate fold change detection by incoherent feedforward loop.	$Faculty\ Comments$

Sensory and cellular systems feature exact adaptation and the perception of relative changes. Weber's law characterizes this perception by relating the just-noticeable difference (Δx_{min}) to the background

Poorvi H C

signal (x_0) , represented as $\Delta x_{min} = kx_0$. Such relative change perception is critical in distinguishing true input signals from noise.

Fold-change detection (FCD) is a key concept, with the I1-FFL circuit as a prime example. The I1-FFL achieves FCD through weak input binding (X) and strong repressor binding (Y).

The system follows these equations:

$$dY/dt = \beta_1 X - \alpha_1 Y$$
$$dZ/dt = \beta_2 (X/Y) - \alpha_2 Z$$

When dY/dt = 0, $Y_{st} = (\beta_1 X_0)/alpha_1$, while when dZ/dt = 0, $Z_{st} = (\beta_2 \alpha_1)/(\beta_1 \alpha_2)$. This shows that when X signal changes by n-fold, we can expect no change in the final steady state value of Z. Exact adaptation is observed, where Y is proportional to the background input X_0 , while Z adapts exactly. This adaptability and sensitivity to relative changes are vital for robust signal discrimination in both biological and psychological contexts.

The simulation is demonstrated in 3 graphs:

The 3 graphs are placed one below each other, as shown, When the X signal changes γ fold, the production of Y, or the Y_{st} , i.e. the standard state of Y, will also increase γ fold. Z, however will only increase to a constant value, as mentioned in the above explanation.

Figure 5: As shown, the Z value is constant and shows exact adaptation

Figure 6: for time interval of upto t = 1500

Simulation 3	Grade:
Simulate incoherent feedforward loop, with X changing linearly.	Faculty Comments

When X changes linearly, Y increases rapidly. But Z shows a decrement slowly with time. As X production does not keep up with the repression of Y. It no longer shows exact adaptation.

Figure 7: As shown, the Z value is decreasing and does not shows exact adaptation

6 Poorvi H C

Figure 8: for time interval of upto t=1500