Sta 440 Case 3

Srika Gopal, Olivia Fu, Steph Reinke

2025-10-01

1. Background

Emergency medical service (EMS) response times can drastically impact patient outcomes. Vance County, North Carolina is a growing county that is interested in evaluating their current EMS ambulance placements. The county has three major regions, the North, Central, and the South. The population is mostly concentrated in the city of Henderson, located in the Central region. There are currently 2 EMS stations, 1 in the South, and 1 in Central. The southern station has 1 ambulance, and the central station has 3. The north does not currently have a station. Thus Vance County is interested in exploring if moving an ambulance to the North would be beneficial. Finding the optimal locations for ambulances is vital because in the medical world EMS arriving seconds earlier can be the difference between life and death.

Research question: Where should the ambulances be stationed to best serve Vance county?

2. Data and Model Fit

EMS calls with HIPAA protected details Each row is a call including: Arrival, dispatch, and enroute times Region and modified date Google Maps travel times from proposed and existing stations

A tibble: 4 x 4 Estimator MAE RMSE Bias <chr> <dbl> <dbl> <dbl> -1.74 1 est_BG 192. 116. 2 est_Op 186. 16.3 112. 214. -41.7 3 est_Pe 134. $4 \, {\it est_UA}$ 116. 192. -9.14

Actual vs. Estimated Travel Times

Shortest Travel Time Distributions by Scenario

Average Dispatch ETT per Scenario

Histogram of Dispatch ETT by Scenario

A tibble: 20 x 3

Scenario	${\tt DelayGroup}$	N
<chr></chr>	<fct></fct>	<int></int>
1 SO_ETT_DISPATCH	0-6 min	244
2 SO_ETT_DISPATCH	7-9 min	166
3 SO_ETT_DISPATCH	10-15 min	63
4 SO_ETT_DISPATCH	>15 min	19
5 S1_ETT_DISPATCH	0-6 min	228
6 S1_ETT_DISPATCH	7-9 min	154
7 S1_ETT_DISPATCH	10-15 min	84
8 S1_ETT_DISPATCH	>15 min	26

9	S2_ETT_DISPATCH	0-6 min	212
10	S2_ETT_DISPATCH	7-9 min	158
11	S2_ETT_DISPATCH	10-15 min	95
12	S2_ETT_DISPATCH	>15 min	27
13	S3_ETT_DISPATCH	0-6 min	253
14	S3_ETT_DISPATCH	7-9 min	166
15	S3_ETT_DISPATCH	10-15 min	61
16	S3_ETT_DISPATCH	>15 min	12
17	S4_ETT_DISPATCH	0-6 min	236
18	${\tt S4_ETT_DISPATCH}$	7-9 min	169
19	S4_ETT_DISPATCH	10-15 min	74
20	${\tt S4_ETT_DISPATCH}$	>15 min	13

Counts of Dispatch Delays by Scenario

Emergency/Non-Emergency EMS Calls by Region

Linear mixed model fit by REML ['lmerMod']

Formula: obsTTmodified ~ (1 | REF.GRID) + DISPATCH.PRIORITY.NAME

Data: x

REML criterion at convergence: 2560.9

Scaled residuals:

Min 1Q Median 3Q Max -2.9133 -0.5399 -0.2182 0.3473 7.6984

Random effects:

Groups Name Variance Std.Dev.
REF.GRID (Intercept) 5.617 2.370
Residual 12.509 3.537
Number of obs: 476, groups: REF.GRID, 3

Fixed effects:

(Intercept) Estimate Std. Error t value (Intercept) 8.377 1.388 6.037 DISPATCH.PRIORITY.NAMENon Emergency 1.138 0.393 2.896

Correlation of Fixed Effects:

(Intr)

DISPATCH.PE -0.059

Generalized least squares fit by REML

Model: obsTTmodified ~ DISPATCH.PRIORITY.NAME

Data: x

AIC BIC logLik

2568.907 2585.552 -1280.454 Correlation Structure: Compound symmetry Formula: ~1 | region_category Parameter estimate(s): Rho 0.3098952 Coefficients: Value Std.Error t-value p-value 8.377225 1.387607 6.037175 (Intercept) DISPATCH.PRIORITY.NAMENon Emergency 1.137910 0.392978 2.895608 Correlation: (Intr) DISPATCH.PRIORITY.NAMENon Emergency -0.059 Standardized residuals: Min Q1 Med QЗ Max -2.2348794 -1.0281062 -0.5583537 0.1138833 5.7833057 Residual standard error: 4.257561 Degrees of freedom: 476 total; 474 residual Call: glm(formula = change_flag ~ region_category + DISPATCH.PRIORITY.NAME, family = binomial, data = model_df) Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) -1.84130 0.07694 -23.933 < 2e-16 *** region_categoryNorth 1.86199 0.14458 12.878 < 2e-16 *** 0.12819 23.942 < 2e-16 *** region_categorySouth 3.06905 DISPATCH.PRIORITY.NAMENon Emergency -0.46880 0.13877 -3.378 0.000729 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

0.000

0.004

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2965.4 on 2459 degrees of freedom Residual deviance: 2188.6 on 2456 degrees of freedom

AIC: 2196.6

Number of Fisher Scoring iterations: 4

Linear mixed model fit by REML. t-tests use Satterthwaite's method [lmerModLmerTest]

Formula: log(ETT_sec) ~ Scenario + region_category + DISPATCH.PRIORITY.NAME +

(1 | row_val)
Data: model_df

REML criterion at convergence: 2109.5

Scaled residuals:

Min 1Q Median 3Q Max -7.4455 -0.1945 0.0088 0.1643 6.1492

Random effects:

Groups Name Variance Std.Dev.
row_val (Intercept) 0.23670 0.4865
Residual 0.07798 0.2793
Number of obs: 2460, groups: row_val, 492

Fixed effects:

	Estimate	Std. Error	df	t value
(Intercept)	5.70728	0.03208	631.72338	177.925
ScenarioS1	0.04018	0.01780	1964.00002	2.257
ScenarioS2	0.08253	0.01780	1964.00002	4.636
ScenarioS3	-0.04064	0.01780	1964.00002	-2.283
ScenarioS4	0.00551	0.01780	1964.00002	0.309
region_categoryNorth	0.37144	0.07479	487.99996	4.967
region_categorySouth	0.44788	0.05744	487.99996	7.798
DISPATCH.PRIORITY.NAMENon Emergency	0.04280	0.05498	487.99996	0.778

Pr(>|t|)

< 2e-16 *** (Intercept) ScenarioS1 0.0241 * ScenarioS2 3.79e-06 *** ScenarioS3 0.0226 * ScenarioS4 0.7570 region_categoryNorth 9.43e-07 *** 3.85e-14 *** region_categorySouth DISPATCH.PRIORITY.NAMENon Emergency 0.4367

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) ScnrS1 ScnrS2 ScnrS3 ScnrS4 rgn_cN rgn_cS

ScenarioS1 -0.278

ScenarioS2 -0.278 0.500

ScenarioS3 -0.278 0.500 0.500

ScenarioS4 -0.278 0.500 0.500 0.500

rgn_ctgryNr -0.314 0.000 0.000 0.000 0.000

rgn_ctgrySt -0.424 0.000 0.000 0.000 0.000 0.173

DISPATCH.PE -0.397 0.000 0.000 0.000 0.000 0.015 0.057

Residuals vs Fitted

Residuals by Scenario

Residuals by Region

Histogram of model_df\$ETT_sec

Histogram of log(model_df\$ETT_sec)

Random Effects

Linear mixed model fit by REML. t-tests use Satterthwaite's method [lmerModLmerTest]

Formula: ETT_sec ~ Scenario + region_category + DISPATCH.PRIORITY.NAME +

(1 | row_val)
Data: changed_df

REML criterion at convergence: 9613

Scaled residuals:

Min 1Q Median 3Q Max -2.4866 -0.5641 -0.0985 0.5039 3.4132

Random effects:

Groups Name Variance Std.Dev.
row_val (Intercept) 17449 132.1
Residual 34793 186.5
Number of obs: 715, groups: row_val, 143

Fixed effects:

	Estimate	Std. Error	df	t value
(Intercept)	426.613	28.211	237.481	15.122
ScenarioS1	79.252	22.059	568.000	3.593
ScenarioS2	134.245	22.059	568.000	6.086
ScenarioS3	-56.573	22.059	568.000	-2.565
ScenarioS4	6.196	22.059	568.000	0.281
region_categoryNorth	-5.336	39.322	139.000	-0.136
region_categorySouth	72.876	29.886	139.000	2.438
DISPATCH.PRIORITY.NAMENon Emergency	46.085	35.611	139.000	1.294
	Pr(> t)			

(Intercept) < 2e-16 *** ScenarioS1 0.000356 ***

```
      ScenarioS2
      2.14e-09 ***

      ScenarioS3
      0.010585 *

      ScenarioS4
      0.778913 *

      region_categoryNorth
      0.892265 *

      region_categorySouth
      0.016012 *

      DISPATCH.PRIORITY.NAMENon Emergency
      0.197760 ****
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) ScnrS1 ScnrS2 ScnrS3 ScnrS4 rgn_cN rgn_cS ScenarioS1 -0.391 ScenarioS2 -0.391 0.500 ScenarioS3 -0.391 0.500 0.500 ScenarioS4 -0.391 0.500 0.500 0.500 rgn_ctgryNr -0.520 0.000 0.000 0.000 0.000 0.483

DISPATCH.PE -0.205 0.000 0.000 0.000 0.000 0.039 -0.013

Residuals vs Fitted

Residuals by Scenario

Residuals by Region

Normal Q-Q Plot

Histogram of changed_df\$ETT_sec

Residuals by Region

Normal Q-Q Plot

Theoretical Quantiles

Model df BIC AIC logLik Test L.Ratio p-value 1 9 33214.66 33266.90 -16598.33 gls_model 2 19 32977.35 33087.57 -16469.67 1 vs 2 257.3084 <.0001 gls_model_region Model df AIC BIC logLik Test L.Ratio p-value 1 9 33214.66 33266.90 -16598.33 gls_model 2 18 32954.17 33058.59 -16459.08 1 vs 2 278.4893 <.0001 gls_model_pow Type III Analysis of Variance Table with Satterthwaite's method

Sum Sq Mean Sq NumDF DenDF F value Scenario 4.2186 1.05465 4 1964 13.5242 7.053e-11 *** region_category 5.7932 2.89661 488 37.1447 9.644e-16 *** 2 DISPATCH.PRIORITY.NAME 0.0472 0.04725 1 488 0.6059 0.4367

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         df
                 AIC
lmm model 10 2129.54
gls_model 9 33214.66
         df
                  BIC
lmm model 10 2187.619
gls_model 9 33266.898
Type III Analysis of Variance Table with Satterthwaite's method
                      Sum Sq Mean Sq NumDF DenDF F value
Scenario
                      4.2186 1.05465
                                         4 1964 13.5242 7.053e-11 ***
                                             488 37.1447 9.644e-16 ***
region_category
                      5.7932 2.89661
                                         2
DISPATCH.PRIORITY.NAME 0.0472 0.04725
                                         1
                                             488 0.6059
                                                            0.4367
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
             df
                     AIC
lmm_model
             10
                 2129.54
gls_model_pow 18 32954.17
             df
                      BTC
lmm_model
             10
                 2187.619
gls_model_pow 18 33058.592
Type III Analysis of Variance Table with Satterthwaite's method
                       Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
                      3177443 794361
                                          4
                                              568 22.8310 <2e-16 ***
Scenario
                                              139 4.0953 0.0187 *
                       284976 142488
                                          2
region_category
DISPATCH.PRIORITY.NAME
                        58272
                                58272
                                          1
                                              139 1.6748 0.1978
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                 df
                          AIC
lmm_model_changed 10 9632.967
gls_model
                  9 33214.656
                 df
                         BIC
lmm_model_changed 10 9678.69
                  9 33266.90
gls model
Type III Analysis of Variance Table with Satterthwaite's method
                       Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
Scenario
                      3177443 794361
                                          4
                                              568 22.8310 <2e-16 ***
                       284976 142488
                                          2
                                              139 4.0953 0.0187 *
region_category
DISPATCH.PRIORITY.NAME
                        58272
                                58272
                                          1
                                              139 1.6748 0.1978
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
                 df
                          AIC
lmm_model_changed 10 9632.967
gls_model_pow
                 18 32954.167
```

```
df BIC lmm_model_changed 10 9678.69 gls_model_pow 18 33058.59
```

Residuals

Model df AIC BIC logLik Test L.Ratio p-value lmm_no_weights 1 10 2129.540 2187.586 -1054.770 lmm_model_ext 2 12 1170.544 1240.200 -573.272 1 vs 2 962.9957 <.0001

4. Assumptions and Shortcomings

Normality of residuals was poorly met Large deviances at tails Non-constant variance across fitted values External factors not taken into consideration Traffic / Rush hours/ Road closures Time of year EMT staffing patterns ETT inputs: based on single best-guess estimates (e.g., from Google), lacking nuance or uncertainty Variance modeling: only accounted for regional differences, while

other factors may also influence variability Emergency vs non-emergency Simplicity in Dispatch Rule Better for analysis Doesn't occur in real life

5. Conclusions

Scenario 3 results in the fastest overall response times Marginal mean travel times (ETTs) are reduced by $\sim 16\%$ compared with the baseline (Scenario 0)

 $\exp(-0.173)$ 0.84 \rightarrow travel times in Scenario 3 are about 84% of baseline levels