

FALCON 9 FIRST STAGE LANDING PREDICTION

EXECUTIVE SUMMARY

This is an applied data science capstone project of IBM data science professional certificate. The aim of this project is to perform predictive analysis on SpaceX's Falcon 9 launches' first stage landing. Data collection, EDA, interactive visualization, & predictive analysis will be performed using machine learning models.

TABLE OF CONTENTS

- Introduction
- Methodologies
- Results
- Conclusion

INTRODUCTION

- To predict if the Falcon 9 first stage will land successfully.
- SpaceX advertises Falcon 9 rocket launches cost 62 million dollars.
- Other providers cost upward of 165 million dollars each.
- Much of the savings is because SpaceX can reuse the first stage.
- If we can determine if the first stage will land, we can determine the cost of a launch.

FALCON 9 & FALCON HEAVY LAUNCHES

METHODOLOGIES

- Data collection
- Data wrangling

- EDA
- Interactive visual analytics

Predictive analysis

DATA COLLECTION & DATA WRANGLING

Methods Utilized:

- RESTful API
- Web scrapping

EDA & INTERACTIVE VISUAL ANALYTICS

Exploratory Data Analysis Libraries:

- SQLite
- Pandas
- Matplotlib
- Seaborn

Interactive Visual Analytics Libraries:

- Folium
- Plotly

SUCCESS RATE OF FIRST STAGE LANDING OVER YEARS

EDA VISUALISATION RESULTS

FLIGHT NUMBER VS LAUNCH SITE

FLIGHT NUMBER VS PAYLOAD MASS(KG)

SUCCESS RATE VS ORBIT TYPE

SQL ANALYTICS RESULTS

Unique Launch Sites

Total Payload Mass (KG)

First Successful Landing

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

total_payload_mass

45596

MIN("Date")

2015-12-22

SQL ANALYTICS RESULTS

Successful Drone Ship Landings

Booster_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Successful Missions

Mission_Outcome total_count

Success 98

LAUNCH SITE LOCATIONS IN USA

NEAREST COASTAL LINE FROM A SELECTED LAUNCH SITE

TOTAL LAUNCHES FOR ALL SITES

BOOSTER VERSIONS, PAYLOAD MASS & THEIR SUCCESS RATE

PREDICTIVE ANALYSIS

Machine Learning Models:

- Logistic regression
- Support Vector Machine (SVM)
- Decision Tree Classifier
- K-Nearest Neighbours (KNN)

Hyperparameters Tuning:

Grid Search CV

Evaluation Method:

Confusion Matrix

PREDICTIVE ANALYSIS (CLASSIFICATION) RESULTS

Model No.	Machine Learning Models	Accuracy on Test data
1	Logistic Regression	0.9444
2	Support Vector Machine (SVM)	0.8888
3	Decision Tree Classifier	0.9444
4	K-Nearest Neighbours (KNN)	0.9444

CONFUSION MATRICES

Logistic Regression

Support Vector Machine

CONFUSION MATRICES

Decision Tree Classifier

Confusion Matrix Pull 10 14 - 12 - 10 - 8 - 6 - 4 - 2 did not land Predicted labels

K-Nearest Neighbours

CONCLUSION

Main Factors that contributed successful landings:

- Location
- Payload Mass
- Orbit Type

"To revolutionize space technology, with the ultimate goal of enabling people to live on other planets." ~ SpaceX

APPLIED DATA SCIENCE CAPSTONE PROJECT (IBM DATA SCIENCE PROFESSIONAL CERTIFICATE)
BY KAUNG HTET HEIN