Interactive Bayesian Optimization for Game Mechanics

Abstract

fill me

text

Related Work

(Yu and Trawick 2011) uses SVM, hard to AL on this (Hunicke and Chapman 2004) ad hoc

Gaussian Processes

Gaussian Process Regression

(Rasmussen and Williams 2006)

Gaussian Process Preference Learning

(Chu and Ghahramani 2005) (Brochu 2010)

Active Learning

(Settles 2012)

Experiment

Game Domain Methods Results

Discussion

Acknowledgments

References

Brochu, E. 2010. *Interactive Bayesian optimization: learning user preferences for graphics and animation*. Ph.D. Dissertation, University of British Columbia.

Chu, W., and Ghahramani, Z. 2005. Preference learning with gaussian processes. In *Proceedings of the 22nd International Conference on Machine learning*, 137–144. ACM.

Hunicke, R., and Chapman, V. 2004. AI for dynamic difficulty adjustment in games. In *Proceedings of the AAAI Workshop on Challenges in Game Artificial Intelligence*.

Copyright © 2013, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Rasmussen, C. E., and Williams, C. K. 2006. *Gaussian processes for machine learning*, volume 1. MIT press Cambridge, MA.

Settles, B. 2012. *Active learning*, volume 6. Morgan & Claypool Publishers.

Yu, H., and Trawick, T. 2011. Personalized procedural content generation to minimize frustration and boredom based on ranking algorithm. In *Seventh Artificial Intelligence and Interactive Digital Entertainment Conference*.