Übung 1

Max Wisniewski, Alexander Steen

Aufgabe 1.

Im Folgenden werden zwei Vorhergehensweisen angeben, wie man den Algorithmus von Strassen zur Multiplikation zweier $n \times n$ Matrizen verwenden kann, falls n nicht unbedingt eine Zweierpotenz ist.

Bestimmen Sie die jeweilige Laufzeit einschließlich der Konstante im signifikantesten Term genau und berechnen Sie, für welche n diese Algorithmen weniger Operationen als die klassische Methode benötigen.

(primitive Methode)

Es bezeichne $M_p(n)$ die Anzahl der Operationen bei Multiplikation zweier $n \times n$ -Matrizen mit der primitiven Methode. Pro Eintrag in der Ergebnismatrix werden n Multiplikationen und n-1 Additionen benötigt. Es gilt also $M_p(n) = n^2 \cdot (2n-1) = 2n^3 - n^2$.

(a)

Die Matrizen werden bis zur nächsten Zweierpotenz geeignet aufgefüllt.

Lösung:

Sei $M_1(n)$ die Kosten dieser Methode bei Eingabe einer $n \times n$ -Matrix. $2^n \le m \le 2^{n+1}$. $M(n) = 7 * M(n/2) + 18 \frac{n}{2} = \frac{23}{5} n^{\log 7} - \frac{18}{5} n$ $-> \frac{23}{5} m^{\log 7} - \frac{18}{5} m = \frac{23 \cdot 2^{\log 7}}{5} n^{\log 7} - \frac{39}{5} n$ BENENNUNG MACHT NOCH KEINEN SINN.

(b)

Ist n gerade so führt man einen Rekursionsschritt nach Strassen aus. Andernfalls zerlegt man

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix},$$

wobei A_{11} und B_{11} $(n-1) \times (n-1)$ -, A_{12} und B_{12} $(n-1) \times 1$ -, A_{21} und B_{21} $1 \times (n-1)$ - und A_{22} und B_{22} 1×1 - Matrizen sind.

Dann berechnet man AB in der Aufteilung, wie bei der klassischen Multiplikation von 2×2 Matrizen, wobei $A_{11}B_{11}$ rekursiv, die übrigen Produkte klassisch berechnet werden.

Lösung:

Sei $M_2(n)$ die Laufzeit für dieses Verfahren. Dann untersuchen wir nun zwei Fälle:

n **gerade:** Hier wird ein Rekursionsschritt nach Strassen ausgeführt, wir erhalten also in diesem Fall eine Laufzeit von $M_2(n) = 7M_2(\frac{n}{2}) + 18\left(\frac{n}{2}\right)^2$, für n gerade.

n ungerade: Hier betrachten wir die folgenden Produkte:

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

und damit die folgenden Operationen:

Produkt	Operationen	Kosten
$A_{11}B_{11}$	Rekursiver Berechnung	$M_2(n-1)$
$A_{12}B_{21}$	$(n-1)^2$ Mult.	$(n-1)^2$
$A_{11}B_{12}$	(n-1) mal: $(n-1)$ Mult., $(n-2)$ Add.	$(n-1)^2(n-2)$
$A_{12}B_{22}$	(n-1) Mult.	(n-1)
$A_{21}B_{11}$	(n-1) mal: $(n-1)$ Mult., $(n-2)$ Add.	$(n-1)^2(n-2)$
$A_{22}B_{21}$	(n-1) Mult.	(n-1)
$A_{21}B_{12}$	(n-1) Mult., $(n-2)$ Add.	(n-1)(n-2)
$A_{22}B_{22}$	1 Mult.	1
	Zusammensetzen (Additionen)	n^2

Als Summe ergibt sich dann $M_2(n) = M_2(n-1) + 2n^3 - 5n^2 + 7n - 2$, für n ungerade.

Also ergibt sich also Rekursionsgleichung für diese Methode:

$$M_2(1) = 1$$

$$M_2(n) = \begin{cases} 7M_2(\frac{n}{2}) + 18\left(\frac{n}{2}\right)^2 & \text{, falls } n \text{ gerade} \\ M_2(n-1) + 2n^3 - 5n^2 + 7n - 2 & \text{, falls } n \text{ ungerade} \end{cases}$$

Aufgabe 2.

(a)

Zeigen Sie, dass die Multiplikation von $n \times n$ - Matrizen mit O(I(n)) Operationen durchführbar ist, falls man mit I(n) Operationen Matrizen invertieren kann.

Lösung:

Zur Multiplikation den Matrizen A,B betrachten wir das folgende Inverse einer $3n \times 3n$ -Matrix M:

$$M^{-1} = \begin{pmatrix} 1_n & A & 0_n \\ 0_n & 1_n & B \\ 0_n & 0_n & 1_n \end{pmatrix}^{-1} = \begin{pmatrix} 1_n & -A & AB \\ 0_n & 1_n & -B \\ 0_n & 0_n & 1_n \end{pmatrix}$$
(1)

Wir sehen also in Gleichung (1), dass durch Invertierung der Matrix M das Produkt AB in der oberen rechte Ecke enthalten ist. Damit gilt M(n) = I(3n), wobei M(n) die Kosten der Multiplikation darstellt. Eine Abschätzung erhalten wir durch Nutzung der Abschätzung (*): $I(n) = O(n^3)$. Dann gilt:

$$M(n) = I(3n) \stackrel{(*)}{\leq} 9c \cdot I(n) = O(I(n))$$
 (2)

(b)

Zeigen Sie, dass die Multiplikation von $n \times n$ - Matrizen mit O(S(n)) Operationen durchführtbar ist, falls man mit S(n) Operationen Matrizen quadrieren kann.

Lösung:

Zur Multiplikation den Matrizen A, B betrachten wir die gleiche $3n \times 3n$ -Matrix M wie in a):

$$M^{2} = \begin{pmatrix} 1_{n} & A & 0_{n} \\ 0_{n} & 1_{n} & B \\ 0_{n} & 0_{n} & 1_{n} \end{pmatrix}^{2} = \begin{pmatrix} 1_{n} & 2A & AB \\ 0_{n} & 1_{n} & 2B \\ 0_{n} & 0_{n} & 1_{n} \end{pmatrix}$$
(3)

Wieder steht das Produkt AB oben rechts. Es gilt also wieder M(n) = S(3n). Auch für Quadrieren gilt die Abschätzung $S(n) = O(n^3)$, also:

$$M(n) = S(3n) \le 9c \cdot S(n) = O(S(n)) \tag{4}$$

Aufgabe 3.

Bei der Multiplikation Boolescher Matrizen wird + durch \vee und \cdot durch \wedge ersetzt. Strassens Algorithmus ist nicht direkt anwendbar, da $(\{0,1\},\vee,\wedge)$ kein Ring ist. Zeigen Sie, dass die Boolsche Matrizenmultiplikation mit $O(n^{\omega+\varepsilon})$ Operationen aus $\{\vee,\wedge,\neg\}$ für jedes $\varepsilon>0$ möglich ist, wenn die Matrizenmultiplikation für ganze Zahlen mit $O(n^{\omega})$ arithmetischen Operationen möglich ist.

Lösung:

Eine Boolesche Matrix ist eine Matrix $A=(a_{ij})_{1\leq i,j\leq n}$ mit $a_{ij}\in\{0,1\}$. Das Boolesche Matrixprodukt zweier Boolescher Matrizen AB ist eine Boolesche Matrix $C=(c_{ij})_{1\leq i,j\leq n}$ mit $c_{ij}=\bigvee_{k=1}^n a_{ik}\wedge b_{kj}$. Um die Multiplikation zweier Boolescher Matrizen A,B zu lösen, definieren wir eine $n\times n$ -Hilfsmatrix $H=(h_{ij})_{1\leq i,j\leq n}$ durch $h_{ij}=\sum_{k=1}^n a_{ik}\cdot b_{kj}$. Es gilt nun $0\leq h_{ij}\leq n$, damit können wir diese Berechnungen in \mathbb{Z}_{n+1} durchführen. Da \mathbb{Z}_{n+1} ein Ring ist, können wir den Algorithmus für Matrizenmultiplikation für ganze Zahlen (mit $O(n^\omega)$ Operationen) nutzen.

Nun definieren wir die Ergebnismatrix $C = (c_{ij})_{1 \leq i,j \leq n}$ durch

$$c_{ij} = \begin{cases} 0 & \text{, if } h_{ij} = 0\\ 1 & \text{otherwise} \end{cases}$$

Die hierdurch erhaltene Produktmatrix C ist offensichtlich richtig $\ddot{\smile}$

Laufzeit: Wie bekannt ist, können wir die Multiplikation von zwei m-stelligen Binärzahlen durch $O(m^2)$ Operationen berechnen. Addition benötigt O(m) Operationen. Da jede Zahl aus \mathbb{Z}_{n+1} mit maximal $O(\log n)$ Bits dargestellt werden kann, benötigen wir also pro arithmetischer Operation im Algorithmus $O(\log^2 n)$ Operationen. Damit ist die Gesamtlaufzeit $O(n^{\omega} \cdot \log^2 n) = O(n^{\omega+\varepsilon})$, da $\log^2 n = O(n^{\varepsilon})$, für jedes $\varepsilon > 0$.