计算理论作业 3

颜俊梁 MF21330103

2022年6月5日

题目 5.1. 构造机器计算函数 f(x, y, z) = y.

解答.

	0	1
1	0R2	0R1
2	0R3	1R2
3	0L4	0R3
4	0L4	1L5
5	0R6	1L5

表 1: 解答 5.1

对于该机器, 定义见表1, 输入 $1:01^{x+1}01^{y+1}01^{z+1}0\cdots$, 输出 $6:0^{x+3}1^{y+1}0\cdots$.

题目 5.2. 构造机器
$$\boxed{\operatorname{copy}_1}$$
 使得 $\boxed{\operatorname{copy}_1}$ $\mid 01^x0 \cdots \twoheadrightarrow 01^x01^x0 \cdots$

解答.

	0	1
1	0R6	0R2
2	0R3	1R2
3	1L4	1R3
4	0L5	1L4
5	1R1	1L5

表 2: 解答 5.2

对于该机器, 定义见表2, 输入 $1:01^{x+1}0\cdots$, 输出 $6:01^{x+1}01^{x+1}0\cdots$.

题目 5.3. 构造机器计算函数 $f(x,y) = x \times y$.

解答. 对于该机器, 定义见表3, 输入 $1:01^{x+1}_{\uparrow}01^{y+1}0\cdots$, 在 y=0 时, 输出 $18:0^{x+6}_{\uparrow}10\cdots$, 在 $y\neq 0$ 时输出 $18:0^{x+y+4}1^{x\times y+1}0\cdots$.

	0	1
	U	
1		0R2
2	0R14	0R3
3	0R4	1R3
4	0R5	0R5
5	0R16	0R6
6	0R7	1R6
7	1L8	1R7
8	0L9	1L8
9	1R5	1L9
10	0L11	1L10
11	0L12	
12	0R14	1L13
13	0R2	1L13
14	0R14	0R15
15	1018	0R15
16	1L17	1L17
17	0L10	0L10

表 3: 解答 5.3

题目 5.4. 构造机器计算函数 $f(x) = 2^x$.

解答. 对于该机器, 定义见表4, 输入 $1:01^{x+1}0\cdots$, 输出 $27:0^{x+3}1^{2^x+1}0\cdots$.

	0	1
1	0R2	1R1
2	1R3	
3	1L4	
4		1L5
5	0L6	
6	0R7	1L6
7		0R8
8	0R27	1R9
9	0R10	1R9
10		1R11
11	0R12	1R11
12	1R13	1R12
13	1R14	
14	0L15	
15	0L16	1L15
16	0R17	1L16
17	0R18	1010
18		0R19
19		1L20
20	1L21	0R25
21	0R22	1R20
22	0L23	1R22
23		0L24
24	0R19	1L24
25	0L26	1L25
26	0R7	1L26

表 4: 解答 5.4

ii $\wedge x$,求输出.
Ħ	$\mathbf{n} \wedge x$

	0	1
1	0L3	1R2
2	0L3	0R1
3	0L3	1L3

表 5: 题目 5.5

解答. 输入
$$\overline{x}$$
, 输出 $\underbrace{\overline{(0,0,\ldots,0)}}_{\sharp \lceil \frac{x+1}{2} \rceil \uparrow}$.

题目 5.6. 设机器 M_2 定义如下表6, 对于输入 $(2,1):01^n01^m01^k00\cdots$, 其中 $n,m,k\in\mathbb{N}^+$, 求输出.

	0	1
1	0R2	0R1
2	1R3	0R1
3	1R4	
4	1R5	
5	1L6	
6	0R7	1L6

表 6: 题目 5.6

解答. 输入 $(2,1):01^n01^m01^k00\cdots$,其中 $n,m,k\in\mathbb{N}^+$,输出 $7:0^{n+m+k+3}11110\cdots$,即计算函数 f(x,y,z)=3.

题目 5.7. 构造机器计算函数 $f(x) = \lfloor \sqrt{x} \rfloor$.

解答. 根据 \sqrt{x} 的定义, 使用 μ 算子可以作出 $f(x) = \mu y.[S(x) - sq(S(y))]$, 其中 $sq(x) = x^2$.

	0	1
1		0R2
2	0L3	0R5
3	0L3	1L4
4	0Ru	1L4
5	0L6	0R5
6	0L6	1L6
7	0Rv	1L6

表 7: 题目 5.7 - 1

从而对于输入 $1:0\overline{x}0\overline{y}0\overline{0}0\cdots$, M_1 输出 $u:0\overline{x}0\overline{y}0\cdots$; 对于输入 $1:0\overline{x}0\overline{y}0\overline{n}0\cdots$ (n>0), M_1 输出 $v:0\overline{x}0\overline{y}0\cdots$.

令机器 M2 为

$$M_1 \Rightarrow \boxed{\mathbf{S}} + (v - 1) \Rightarrow \boxed{\mathbf{shiftl}} \Rightarrow \boxed{\mathbf{copy}_2}^2 \Rightarrow \boxed{\mathbf{g}} \Rightarrow \boxed{\mathbf{compress}}$$

其中 v=8, \boxed{S} 为后继函数的机器, $\boxed{\text{mul}}$ 为题目 5.3 定义的乘法函数, $\boxed{\text{sub}}$ 为题目 5.11 定义的减法函数. 机器 g 为

$$\boxed{\text{shiftr}} \Rightarrow \boxed{\textbf{S}} \Rightarrow \boxed{\text{copy}_1} \Rightarrow \boxed{\text{shiftl}} \Rightarrow \boxed{\text{mul}} \Rightarrow \boxed{\text{compress}} \Rightarrow \boxed{\text{shiftl}} \Rightarrow \boxed{\text{sub}}$$

有 $M_2|0\overline{x}0\overline{y}0\overline{0}0\cdots \rightarrow 0\overline{x}0\overline{y}000\cdots; M_2|0\overline{x}0\overline{y}0\overline{1}0\cdots \rightarrow 0\overline{x}0\overline{(y+1)}0\overline{g(x,y+1)}0\cdots$ 令机器 M_3 为表 8.

	0	1
1	1R2	1R1
2	0R2	
3	1L4	
4	0L4	
5	0R5	1L4

表 8: 题目 5.7 - 2

令机器 f 为

$$M_3 \Rightarrow \boxed{\operatorname{copy}_2}^2 \Rightarrow \boxed{\operatorname{g}} \Rightarrow \boxed{\operatorname{compress}} \Rightarrow \operatorname{repeat} M_2 \Rightarrow \boxed{\operatorname{shiftl}} \Rightarrow \boxed{\operatorname{erase}}$$

其中 repeat M_2 为 $M_2[u:=1]$, 机器 f 计算了函数 $f(x) = \lfloor \sqrt{x} \rfloor$.

题目 5.8. 设机器 f_1 计算函数 f_1 , 机器 f_2 计算函数 f_2 , 这里 f_1 , f_2 为一元数论全函数. 构造机器 f 计算函数 $f(x) = f_1(x) + f_2(x)$.

解答.
$$f = copy_1 \Rightarrow f_1 \Rightarrow compress \Rightarrow shiftl \Rightarrow copy_2 \Rightarrow shiftr \Rightarrow f_2 \Rightarrow compress \Rightarrow shiftl \Rightarrow copy_2 \Rightarrow shiftr \Rightarrow f_2 \Rightarrow compress \Rightarrow shiftl \Rightarrow copy_2 \Rightarrow compress \Rightarrow shiftl \Rightarrow copy_2 \Rightarrow compress \Rightarrow compres \Rightarrow compress \Rightarrow compress \Rightarrow compres \Rightarrow compres \Rightarrow compres \Rightarrow compres \Rightarrow compres \Rightarrow compres \Rightarrow$$

题目 5.9. 设
$$f(x) = h(g_1(x), g_2(x), g_3(x))$$
, 试由机器 $\boxed{g_1}$, $\boxed{g_2}$, $\boxed{g_3}$ 和 \boxed{h} 构造机器 \boxed{f} .

解答.

$$f = copy_1 \Rightarrow g_1 \Rightarrow compress \Rightarrow shift1$$

$$\Rightarrow copy_2 \Rightarrow shiftr \Rightarrow g_2 \Rightarrow compress \Rightarrow shift1^2$$

$$\Rightarrow copy_3 \Rightarrow shiftr^2 \Rightarrow g_3 \Rightarrow compress \Rightarrow shift1^3$$

$$\Rightarrow erase \Rightarrow h$$

题目 5.10. 设 $f: \mathbb{N} \to \mathbb{N}$ 定义如下:

$$f(0) = 0$$
$$f(x+1) = g(f(x))$$

证明: 若 g 为 Turing-可计算, 则 f 为 Turing-可计算.

解答. 因为 g 为 Turing-可计算, 因此存在机器 g 计算函数 g. 构造机器 M_1 如表 9.

	0	1
1		0R2
2	0Rv	1R3
3	1R4	1R3

表 9: 解答 5.10 M1

所以,若 x = 0 则 $M_1 | 1 : 0\overline{x}0\overline{y}0 \cdots \rightarrow v : 000\overline{y}0 \cdots;$ 若 x > 0 则 $M_1 | 1 : 0\overline{x}0\overline{y}0 \cdots \rightarrow 4 : 001^x 0\overline{y}0 \cdots.$ 令 M_2 为 M_1 \Rightarrow $\boxed{g} + 3 \Rightarrow \boxed{\text{compress}} \Rightarrow \boxed{\text{shift1}}$, 从而: 若 x = 0 则 $M_2 | 1 : 0\overline{x}0\overline{y}0 \cdots \rightarrow v : 000\overline{y}0 \cdots;$ 者 x > 0 则 $M_1 | 1 : 0\overline{x}0\overline{y}0 \cdots \rightarrow w : 001^x 0\overline{g}(\overline{y})0 \cdots$, 其中 w 为 M_2 的输出状态. 最后,构造机器 M_3 如表 10,为输入后添加一个 $\overline{0}$.

	0	1
1	0R2	1R1
2	1L3	
3	0L4	
3	0R5	1L4

表 10: 解答 5.10 M3

令机器 f 为 $M_3 \mapsto \text{repeat } M_2$, 即 $M_3 \mapsto M[w := 1]$ 计算函数 f, 因此 f 为 Turing-可计算的.

题目 5.11. 构造机器计算函数 f(x,y) = x - y.

解答. 对于该机器, 定义见表11, 输入 $1:01^{x+1}01^{y+1}0\cdots$, 在 $x \leq y$ 时, 输出 $13:0^{x+y+4}10\cdots$, 在 x > y 时输出 $13:0^{y+2}1^{x-y+1}0\cdots$.

	0	1
1		0R2
2	0R8	1R3
3	0R4	1R3
4	0R4	0R5
5	0L10	1L6
6	0L6	1L7
7	0R1	1L7
8	0R8	0R9
9	1013	0R9
10	0L10	1R11
11	1L12	
12	0R13	1L12

表 11: 解答 5.11

题目 5.12. 证明: Even = $\{2x \mid x \in \mathbb{N}\}$ 是 Turing-可计算的.

解答. 只需要构造机器 E , 见表 12, 满足:

输入偶数
$$E|1:01^{2x+1}_{\uparrow}0\cdots \twoheadrightarrow u:0\cdots01_{\uparrow}0\cdots;$$
 输入奇数 $E|1:01^{2x+2}_{\uparrow}0\cdots \twoheadrightarrow u:0\cdots01_{\uparrow}10\cdots.$

	0	1
1	1L3	0R2
2	0O3	0R1
3	103	

表 12: 解答 5.12

因此 Even 是 Turing-可计算的.

题目 5.13. 证明: $S = \{a_1, a_2, \dots, a_k\}$ 是 Turing-可计算的.

解答. 记 $K = \max S$, 构造一个拥有 K + 4 个状态的机器. 对于 $0 \le i \le K$, 状态 i + 2 表示已经连续读到了 i + 1 个 1, 若此时被读项为 0 则输入结束, 读取到了输入数字为 i, 如果 $i \in S$ 那么进入成功分支, 否则进入失败分支; 若此时被读项为 1 则继续向右扫描, 直到扫描 到 K + 1 进入失败分支. 下表 13 为机器示例.

	0	1
1		0R2
i+2	$1R(K+5) (i \in S)$	0R(i+3)
j+2	$0R(K+3) (j \notin S)$	0R(j+3)
K+3	1R(K+4)	0R(K+3)
K+4	1R(K+5)	

表 13: 解答 5.13

题目 5.14. 设 $f: \mathbb{N} \to \mathbb{N}$ 是 Turing-可计算的, 构造机器 M 使其输出 f 的最小零点.

解答. 构造机器 M_1 , 如下表 14.

	0	1
1		0R2
2	0L3	0R5
3	0L3	1L4
4	0Ru	1L4
5	0L6	0R5
6	0L6	1R7
7	1L8	
8	0Rv	1L8

表 14: 解答 5.14 M1

从而输入 $1:0\overline{x}0\cdots0\overline{y}0\cdots$,若 y=0, M_1 输出 $u:01^{x+1}0\cdots$;若 y>0,输出 $v:01^{x+2}0\cdots$.

令 $M_2 = \boxed{\text{copy}_1} \mapsto \boxed{f} \mapsto M_1$, 则 $M = \text{repeat } M_2$ 为所求机器,即 $M = M_2[v:=1]$,且 输出状态为 u.

题目 5.15. 证明定理 5.21 中的函数 g 为一般递归函数.

解答.

引理 1. 设 $n \in \mathbb{N}$,构造机器 M_n 使得输入 \overline{x} 输出 \overline{n} , 即 $M_n | 10 \overline{x} 0 \cdots \rightarrow 0 \cdots 0 \overline{n} 0 \cdots$,即 M_n 计算常函数 C(x) = n.

证明. 构造 n+2 个状态的机器 M_n 先清空输入, 然后写入 n+1 个 1. 示例机器如表 15.

0	1
1R2	0R1
1R3	
1R4	
1L(n+2)	
0R(n+3)	1L(n+2)
	$1R2$ $1R3$ $1R4$ \dots $1L(n+2)$

表 15: 解答 5.15 M_n

设 M_n 的第 i 行为 r_i . 于是 $\sharp r_1 = \langle 1, 1, 4, 2, 0, 4, 1 \rangle$; 对于 $2 \le i \le n$, $\sharp r_i = \langle i, 1, 4, i + 1, 4, 4, 4 \rangle$; $\sharp r_{n+1} = \langle n+1, 1, 2, n+2, 4, 4, 4 \rangle$, $\sharp r_{n+2} = \langle n+2, 0, 4, n+3, 1, 2, n+2 \rangle$.

所以
$$\sharp M_n = \langle \sharp r_1, \dots, \sharp r_{n+2} \rangle \in \mathcal{EF}.$$

引理 2. 存在一般递归函数 h(n,l) 使得对于任何机器 M, 有 $h(\sharp M,l) = \sharp (M+l)$.

证明. 设 M 为机器, 令 $n=\sharp M$, 设 M 有 k+1 行, 从而 $k=(\max x \leq n.P_x(n))+1$ 为对于 n 的初等函数. 设它为 k(n), 对于 $1 \leq i \leq k(n)$ 第 i 行的编码为 $\sharp r_i = \operatorname{ep}_{i-1}(n)$ 对于 i,n 为 初等函数.

M+l 为由在 M 中将所有的状态加上 l 得到的新机器, 设新机器 M+l 的第 i 行为 r_i' , 以下证明: $\sharp r_i'$ 可以由 $\sharp r_i$ 来表示, 从而 $\sharp r_i'$ 为对于 (i,n,l) 的初等函数. 从而 $\sharp (M+l) = \langle \sharp r_0', \ldots, \sharp r_k' \rangle = \prod_{i=0}^{k(n)} P_i^{\sharp r_i'}$ 为对于 n,l 的初等函数.

情况 1. r_i 呈形 (i, xyz, uvw) 从而 r_i' 呈形 (i + l, xy(z + l), uv(w + l)). 因为 $\sharp r_i = \langle i, \sharp x, \sharp y, z, \sharp u, \sharp v, w \rangle$, 所以有

$$\sharp r_i' = \langle i + l, ep_1(\sharp r_i), ep_2(\sharp r_i), ep_3(\sharp r_i) + l, ep_4(\sharp r_i), ep_5(\sharp r_i), ep_6(\sharp r_i) + l \rangle
= (\sharp r_i) \cdot 2^l \cdot 7^l \cdot 17^l
= ep_{i-1}(n) \cdot (2 \cdot 7 \cdot 17)^l$$

因此 $\sharp r'_i$ 为对于 i, n, l 的初等函数, 设为 $f_1(i, n, l)$.

情况 2. r_i 呈形为 (i, xyz, RRR), r_i' 呈形 (i+l, xy(i+l), RRR). 因为 $\sharp r_i = \langle i, \sharp x, \sharp y, z, 4, 4, 4 \rangle$, 所以 $\sharp r_i' = \langle i+l, \sharp x, \sharp y, z+l, 4, 4, 4 \rangle = \operatorname{ep}_{i-1}(n) \cdot (2 \cdot 7)^l$ 为对于 i, n, l 的初等函数,设为 $f_2(i, n, l)$.

情况 3. r_i 呈形为 (i, LLL, uvw), r'_i 呈形 (i+l, LLL, uv(w+l)). 类似情况 2, 可以知道 $\sharp r'_i = \operatorname{ep}_{i-1}(n) \cdot (2 \cdot 17)^l$ 为对于 i, n, l 的初等函数, 设为 $f_3(i, n, l)$.

所以

$$\sharp r_i' = \begin{cases} f_3(i, n, l) & \text{if } ep_1(\sharp r_i) = 2\\ f_2(i, n, l) & \text{if } ep_4(\sharp r_i) = 4\\ f_1(i, n, l) & \text{o.w.} \end{cases}$$

易见, $\sharp r'_i$ 为对于 i, n, l 的初等函数, 设为 f(i, n, l).

因为 $\sharp(M+l) = \prod_{i=0}^{k(n)} P_i^{f(i,n,l)}$,所以令 $h(n,l) = \prod_{i=0}^{k(n)} P_i^{f(i,n,l)}$.易见 $h(\sharp M,l) = \sharp(M+l) \in \mathcal{EF}$.

引理 3. 设 $n=\sharp M, M_n$ 为引理 1 定义的机器, 令 $\hat{M}=M_n \mapsto M, j(n)=\sharp \hat{M} \in \mathcal{EF}.$

证明. $\hat{M}=M_n\mapsto M$ 即为 $M_n+(M+(n+2))$,从而由以上引理可知: M_n 有 n+3 行 r_0,r_1,\ldots,r_n+2 ; M+(n+2) 有 k(n)+1 行 $r'_0,r'_1,\ldots,r'_{k(n)}$.

从而

$$\begin{split} &\sharp \hat{M} = \left\langle \sharp r_1, \dots, \sharp r_{n+2}, \sharp r'_1, \dots, \sharp r'_{k(n)} \right\rangle \\ &= P_0^{\sharp r_1} \cdot \prod_{i=2}^n P_{i-1}^{\langle i, 1, 4, i+1, 4, 4, 4 \rangle} \cdot P_n^{\sharp r_{n+1}} \cdot P_{n+1}^{\sharp r_{n+2}} \cdot \prod_{j=1}^{k(n)} P_{n+1+i}^{\sharp r'_j} \\ &= P_0^{\langle 1, 1, 4, 2, 0, 4, 1 \rangle} \cdot \prod_{i=2}^n P_{i-1}^{\langle i, 1, 4, i+1, 4, 4, 4 \rangle} \cdot P_n^{\langle n+1, 1, 2, n+2, 4, 4, 4 \rangle} \cdot P_{n+1}^{\langle n+2, 0, 4, n+3, 1, 2, n+2 \rangle} \cdot \prod_{j=1}^{k(n)} P_{n+1+j}^{f(i, n, l)} \in \mathcal{EF} \end{split}$$

引理 4. $S = \{ \sharp M \mid M \text{ 为机器} \}$ 是可判定的.

证明. $n \in S \Leftrightarrow$ 有机器 M 使得 $n = \sharp M$.

 \Leftrightarrow 有机器 M 有 k(n) 行 $r_0, r_1, \ldots, r_{k(n)}$ 且 $n = \langle \sharp r_1, \ldots, \sharp r_{k(n)} \rangle$, 其中 r_i 为机器 M 的第 i 行,而 $\mathrm{ep}_{i-1}(n)$ 为机器第 i 行的编码.

又因为 m 为某机器行的编码 (记为 codel(m, n))

$$\Leftrightarrow m = \sharp r_i \perp \exists i \leq k(n).$$

$$\Leftrightarrow m = \sharp \boxed{i \mid xyz \mid uvw} \ \underline{\exists} \ i \leq k(n).$$

 \Leftrightarrow

$$\{[(\mathrm{ep}_{0}(m) \leq k(n)) \land (\mathrm{ep}_{1}(m) \in \{0,1\}) \land (\mathrm{ep}_{2}(m) \in \{\sharp L, \sharp O, \sharp R\}) \land (\mathrm{ep}_{4}(m) \in \{0,1\}) \land (\mathrm{ep}_{5}(m) \in \{\sharp L, \sharp O, \sharp R\})]\}$$

$$\vee \{[(\mathrm{ep}_{0}(m) \leq k(n)) \land (\mathrm{ep}_{1}(m) \in \{0,1\}) \land (\mathrm{ep}_{2}(m) \in \{\sharp L, \sharp O, \sharp R\}) \land (\mathrm{ep}_{4}(m) = \mathrm{ep}_{5}(m) = \mathrm{ep}_{6}(m) = \sharp R)]\}$$

$$\vee \{[(\mathrm{ep}_{0}(m) \leq k(n)) \land (\mathrm{ep}_{4}(m) \in \{0,1\}) \land (\mathrm{ep}_{5}(m) \in \{\sharp L, \sharp O, \sharp R\}) \land (\mathrm{ep}_{1}(m) = \mathrm{ep}_{2}(m) = \mathrm{ep}_{3}(m) = \sharp R)]\}$$

所以 codel(m,n) 为初等数论谓词, 从而

$$n \in S \Leftrightarrow (\forall i \le k(n)).[\operatorname{codel}(ep_{i-1}(n), n)] \land k(n) = (\max x \le n.P_x|n) + 1$$

所以 $n \in S$ 为初等数论谓词, 所以 $\chi_S \in \mathcal{EF}$, 从而 χ_S 为 recursive, 故 S 可判定.

回到原命题.

因为 $j(n) = \sharp \hat{M} \in \mathcal{EF}$ (引理 3), $\chi_S(n) \in \mathcal{EF}$ (引理 4).

所以
$$g(n) = \begin{cases} j(n) & \text{if } n = \sharp M \\ 0 & \text{o.w.} \end{cases} = \begin{cases} j(n) & \text{if } n \in S \\ 0 & \text{o.w.} \end{cases} = j(n) \cdot N(\chi_S(n)) \in \mathcal{EF}.$$

题目 5.16. 证明引理 5.25 中的函数 e(m, l) 为一般递归函数.

解答. 令 $m = \sharp M$, $l = \sharp_t A$, 从而先定义 3 个关于 l 的函数, $j = j(l) = (l)_0$, $k = k(l) = (l)_1$, $a_j = a_j(l) = \begin{cases} 1 & \text{if } (l)_{j+1} = 1 \\ 0 & \text{if } (l)_{j+1} = 2 \end{cases} = 2 \div (l)_{j+1}.$

易见 $j(l), k(l), a_j(l)$ 皆为初等函数.

令 M 的第 i 行为 $\boxed{j \mid xyz \mid uvw}$, 从而 $\sharp x = \sharp x(m,l)$, $\sharp y = \sharp y(m,l), \ldots, \sharp w = \sharp w(m,l)$ 皆为关于 m,l 的初等函数.

因为 M(A) 有定义 \Leftrightarrow (j,k): A 关于 M 有后继 \Leftrightarrow $(a_i,k) \in \text{Dom}(M)$ 且 $j+p(a_i,k) \geq 1$

 \Leftrightarrow

$$[a_j = 0 \to ((x, y, z 不皆为L) \land (y = L \to j - 1 \ge 1))]$$
$$\vee [a_j = 1 \to ((u, v, w 不皆为R) \land (v = L \to j - 1 \ge 1))]$$

所以, M(A) 有定义为 (m,l) 的初等谓词. 故其特征函数 $\chi(m,l)\in\mathcal{EF}$. 函数 $d(m,l)=N(\chi(m,l))$ 为初等的, 下面作 e(m,l): 因为

$$\sharp d(a_j, k) = \begin{cases}
\sharp x & a_j = 0 \\
\sharp u & a_j = 1
\end{cases} = \sharp x \cdot N(a_j) + \sharp u \cdot N^2(a_j)$$

$$\sharp p(a_j, k) = \sharp y \cdot N(a_j) + \sharp v \cdot N^2(a_j)$$

$$\sharp s(a_j, k) = \sharp z \cdot N(a_j) + \sharp w \cdot N^2(a_j)$$

所以令 $e(m,l) = d(m,e) \times \langle \sharp d(a_j,k), \sharp p(a_j,k), \sharp s(a_j,k) \rangle \in \mathcal{EF}.$

题目 5.17. 令 $S = \{ \sharp M \mid M \text{ 为 Turing } \Pi \}$, 证明 S 为 Turing-可计算.

解答. 见题目 5.15 中的引理 4.

题目 5.18. 由 CT 证明函数 g(n) 可计算, 这里

g(n) = 在自然对数之底 e 的十进制展开式中第 n 个数字

题目 5.19.

- 1. 什么是停机问题?
- 2. 什么是可判定问题 (decision problem)?

解答.

- 1. 停机问题是 $\hat{K} = \{ \sharp M \mid M \ \text{对于一切输入皆停机} \}$ 是否可判定.
- 2. 设 A 为 \mathbb{N} 的子集, A 是可判定指 χ_A 是 Turing-可计算的, 即存在机器 M_A , 其对于输入 \overline{x} , 若 $x \in A$, 则输出 $\overline{0}$, 否则输出 $\overline{1}$.

题目 5.20.

- 1. 什么是通用 Turing 机 (universal Turing machine)?
- 2. 通用 Turing 机起什么作用?

解答.

1. 通用 Turing 机 (universal Turing machine) 指的是机器 U 使对任何机器 M 和任何 $(n_1, n_2, \ldots, n_k) \in \mathbb{N}^k$, 满足

$$M|\overline{(n_1,n_2,\ldots,n_k)} \twoheadrightarrow \overline{y} \Leftrightarrow U|\overline{(\sharp M,n_1,n_2,\ldots,n_k)} \twoheadrightarrow \overline{y}$$

2. 通用 Turing 机单凭借自身就可以完成任何 Turing 机可能做到的任何事. 通用性是指这样的机器能模拟任何其它 Turing 机. 通用 Turing 机载早期程序储存式计算机的研制中起到了重要的促进作用.