CSE - - - -: Network-On-chip

Programme: B.Tech (CSE) Year: Semester: 4/5/6

Course: Program Elective Credits: 3 Hours: 40

Course Context and Overview (100 words):

In the field of interconnection networks, there is a growing interest and amount of research in the on-chip domain. The integrated circuit technology has evolved to accommodate a multiprocessing device capable of high-performance computation. As a result of the high integration scale in the deep sub-micron domain and the increasing number of connecting elements, on -chip interconnection has become a need and will influence the performance of the final system. Therefore, any gain in the efficiency of the on-chip interconnection layer will be highly beneficial.

Prerequisites Courses:

Basics of computer networks

Course outcomes (COs):

On completion of this course, the students will have the ability to:

CO1: Understanding of basic principles of on-chip interconnection networks.

CO2: Understanding of various techniques of on-chip interconnection topologies.

CO3 Understanding of switching, flow control, routing techniques and router microarchitecture.

CO4 Ability to valuate future technologies for implementing the on-chip interconnection network

Course Topics:

	Contents	Lecture Hours	Unit Hours
UNIT – 1: Introduction to Network-On-chip (NoC)			
1.	Introduction of Interconnection Networks (Off-Chip and On-Chip)	1	
2.	Network Basics (Topology, routing, flow control, switching),	2	6
	Network Design Considerations.		O
3.	Classification of Interconnection Networks (Topology, Properties of	2	
	various topologies)		

4. Performance Parameters	1			
UNIT - 2: Topology Exploration				
1. Topology basics: Channels and Nodes, Direct and Indirect networks,	1			
Cuts and Bisections, Paths, Symmetry				
2. Topology parameters: Node Degree, Diameter, Link Complexity,	1	7		
Bisection Width, Path Diversity		,		
3. Direct Networks: Characterization, Popular Topologies	2			
4. Indirect Networks: Characterization, Popular Topologies	2			
5. Case Study on various topologies	1			
UNIT-3: Switching and Flow Control				
1. Network and Router Model, Basic concepts: Switching, flow control	2			
2. Circuit Switching	1			
3. Packet Switching	1	10		
4. Virtual Cut Through (VCT) Switching	1	10		
5. Wormhole Switching	1			
6. Virtual channels	1			
7. Flow control and Arbitration	3			
UNIT-4: Routing Algorithms and Implementation Mechanisms				
1. Routing Basics, Taxonomy of Routing Algorithms	2			
2. Deadlock, Livelock and Starvation				
3. Deterministic Routing Algorithms	2			
4. Adaptive Routing Algorithms	2	12		
5. Topology Agnostic Routing Algorithms	1			
6. Table-Based Routing: Source Routing, Node-Table Routing	2			
7. Algorithmic Routing	1			
8. Logic-Based Distributed Routing	2			
UNIT-5: Application Mapping and Performance Analysis				

1.	Application Mapping Strategies for NoC	2	
2.	Measures of On-Chip Interconnection Network Performance	1	
3.	Network workloads	1	
4.	Case Study: Comparison of Routing Techniques/ Switching Techniques	1	

Text Books:

- 1. Principles and Practices of Interconnection Networks by William Dally and Brian Towles.
- 2. Interconnection Networks: An Engineering Approach by Jose Duato, Sudhakar Yalamanchili, Lionel M. N

Reference Books:

- 1. Networks on Chip by Axel Jantsch, and Hannu Tenhunen.
- 2. Designing Network On-Chip Architectures in the Nanoscale Era by Jose Flich, Davide Bertozzi.

Additional Resources (Video Lectures, Web resources etc.):

Evaluation Methods:

Component	Weightage (%)
Quiz-1	10%
Quiz-2	10%
Mid-Term	30%
End Term	50%

Prepared By: Rimpy Bishnoi

Last Update: / /