Lebesgue Theory

Ikhan Choi

July 10, 2022

Contents

Ι	Measure theory	3		
1	Measures and σ -algebras1.1 Measures1.2 Carathéodory extension	4 4		
2	Measures on the real line			
3	Measurable functions3.1 Extended real numbers3.2 Simple functions3.3			
II	Lebesgue integral	10		
4	Convergence theorems 4.1 Definition of Lebesgue integral 4.2 Convergence theorems 4.3 Radon-Nikodym theorem 4.4 Modes of convergence	11 11		
5	Product measures5.1 Fubini-Tonelli theorem5.2 Lebesgue measure on Euclidean spaces	12 12 12		
6	Measures on metric spaces 6.1 Compact metric spaces	13		
II	I Linear operators	14		
7	Lebesgue spaces7.1 L^p spaces7.2 L^1 spaces7.3 L^2 spaces7.4 L^{∞} spaces	15 15		
8	Bounded linear operators 8.1 Continuity	16 16 16		

9	Convergence of linear operators				
	9.1	Translation and multiplication operators	17		
	9.2	Convolution type operators	17		
	9.3	Computation of integral transforms	17		
IV	V Fundamental theorem of calculus 1				
10	0 Weak derivatives 19				
11	1 Absolutely continuity 20				
12	2 Lebesgue differentiation theorem 2				

Part I Measure theory

Measures and σ -algebras

1.1 Measures

1.1 (Definition of measures). Let (Ω, \mathcal{M}) be a measurable space. A *measure* on \mathcal{M} is a set function $\mu : \mathcal{M} \to [0, \infty]$ with $\mu(\emptyset) = 0$ that is *countably additive*:

$$\mu\left(\bigsqcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu(E_i)$$
 in \mathcal{M} .

Here the squared cup notation reads the disjoint union.

1.2 (Continuity of measures).

1.2 Carathéodory extension

1.3 (Outer measures). Let Ω be a set. An *outer measure* on Ω is a set function $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ with $\mu^*(\emptyset) = 0$ such that

(i)
$$E_1 \subset E_2 \Rightarrow \mu^*(E_1) \leq \mu^*(E_2)$$
 in $\mathcal{P}(\Omega)$, (monotonicity)

(ii)
$$\mu^*(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} \mu^*(E_i)$$
 in $\mathcal{P}(\Omega)$. (countable subadditivity)

Compairing the definition of measures, we can see the outer measures extend the domain to the power set, but loosen the countable additivity to monotone countable subadditivity.

- (a) A set function $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ with $\mu^*(\emptyset) = 0$ is an outer measure if and only if μ^* is monotonically countably subadditive, that is, $E \subset \bigcup_{i=1}^{\infty} E_i \Rightarrow \mu^*(E) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$ in $\mathcal{P}(\Omega)$.
- (b) For a set function $\rho: \mathcal{A} \to [0, \infty]$ with $\rho(\emptyset) = 0$, where $\emptyset \in \mathcal{A} \subset \mathcal{P}(\Omega)$, we can associate an outer measure $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ by defining as

$$\mu^*(E) := \inf \left\{ \sum_{i=1}^{\infty} \rho(A_i) : E \subset \bigcup_{i=1}^{\infty} A_i, A_i \in \mathcal{A} \right\},$$

where we use the convention $\inf \emptyset = \infty$.

Proof. (a)

(b)

1.4 (Carathéodory measurable sets). Let μ^* be an outer measure on a set Ω . We want to construct a measure by restriction of μ^* on a properly defined σ -algebra. A subset $A \subset \Omega$ is called *Carathéodory measurable* relative to μ^* if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A)$$

for every subset $E \subset \Omega$. Let \mathcal{M} be the collection of all Carathéodory measurable subsets relative to μ^* .

- (a) \mathcal{M} is an algebra and μ^* is finitely additive on \mathcal{M} .
- (b) \mathcal{M} is a σ -algebra and μ^* is countably additive on \mathcal{M} .
- (c) The measure $\mu := \mu^*|_{\mathcal{M}} : \mathcal{M} \to [0, \infty]$ is complete.

Proof.
$$\Box$$

- **1.5** (Carathéodory extension theorem). Let $\rho: \mathcal{A} \to [0, \infty]$ with $\rho(\emptyset) = 0$, where $\emptyset \in \mathcal{A} \subset \mathcal{P}(\Omega)$. Consider two conditions
 - (i) $A \subset \bigcup_{i=1}^{\infty} A_i \Rightarrow \rho(A) \leq \sum_{i=1}^{\infty} \rho(A_i)$ in A, (monotonically countably subadditive)
 - (ii) For every $B, A \in \mathcal{A}$, and for any $\varepsilon > 0$, there are $\{B_i'\}_{i=1}^{\infty}$ and $\{B_i''\}_{i=1}^{\infty} \subset \mathcal{A}$ such that

$$B \cap A \subset \bigcup_{j=1}^{\infty} B'_j$$
 and $B \setminus A \subset \bigcup_{j=1}^{\infty} B''_j$,

and

$$\rho(B) + \varepsilon > \sum_{j=1}^{\infty} \rho(B'_j) + \sum_{j=1}^{\infty} \rho(B''_j).$$

Let $\mu^* : \mathcal{P}(\Omega) \to [0, \infty]$ be the associated outer measure of ρ , and $\mu : \mathcal{M} \to [0, \infty]$ the measure defined by the restriction of μ^* on Carathéodory measurable subsets. The above two conditions give a sufficient condition for μ to be a measure on a σ -algebra containing \mathcal{A} .

- (a) $\mu^*|_A = \rho$ if (i) is satisfied.
- (b) $A \subset M$ if (ii) is satisfied.

Proof. (a) Clearly $\mu^*(A) \le \rho(A)$ for $A \in \mathcal{A}$. We may assume $\mu^*(A) < \infty$. For arbitrary $\varepsilon > 0$ there is $\{A_i\}_{i=1}^{\infty}$ such that $A \subset \bigcup_{i=1}^{\infty} A_i$ and

$$\mu^*(A) + \varepsilon > \sum_{i=1}^{\infty} \rho(A_i) \ge \rho(A).$$

(b) Let $E \in \mathcal{P}(\Omega)$ and $A \in \mathcal{A}$. Since it is enough to check the inequality $\mu^*(E) \ge \mu^*(E \cap A) + \mu^*(E \setminus A)$ for E with finite $\mu^*(E)$, we may assume there is a countable family $\{B_i\}_{i=1}^{\infty} \subset \mathcal{A}$ such that $E \subset \bigcup_{i=1}^{\infty} B_i$. Then, we have $B_i \cap A \subset \bigcup_{j=1}^{\infty} B'_{i,j}$ and $B_i \setminus A \subset \bigcup_{j=1}^{\infty} B'_{i,j}$ satisfying

$$\mu^*(E) + \varepsilon > \sum_{i=1}^{\infty} (\rho(B_i) + \frac{\varepsilon}{2^{i+1}}) > \sum_{i,j=1}^{\infty} \rho(B'_{i,j}) + \sum_{i,j=1}^{\infty} \rho(B''_{i,j}) \ge \mu^*(E \cap A) + \mu^*(E \setminus A).$$

1.6 (Uniqueness of Carathéodory extensions). The Carathéodory extension theorem provides with a uniqueness theorem for measures.

Proof.
$$\Box$$

Exercises

1.7 (Semi-rings and semi-algebras). We will prove a simplified Carathéodory extension with respect to *semi-rings* and *semi-algebras*. Let \mathcal{A} be a collection of subsets of a set Ω such that $\emptyset \in \mathcal{A}$. We say \mathcal{A} is a semi-ring if it is closed under finite intersection, and the complement is a finite union of elements of \mathcal{A} . We say \mathcal{A} is a semi-algebra

Let \mathcal{A} be a semi-ring of sets over Ω . Suppose a set function $\rho: \mathcal{A} \to [0, \infty]$ with $\rho(\emptyset) = 0$ satisfies

(i)
$$\rho(\bigsqcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \rho(A_i)$$
 in \mathcal{A} , (disjoint countable subadditivity)

(ii)
$$\rho(A_1 \sqcup A_2) = \rho(A_1) + \rho(A_2)$$
 in A . (finite additivity)

A set function satisfying the above conditions are occasionally called a pre-measure.

- (a)
- (b)
- 1.8 (Monotone class lemma). alternative direct proof method without using Carathéodory extension.

Measures on the real line

distribution functions helly's selection non-measurable set

Exercises

- **2.1** (Steinhaus theorem). Let $\mathbb{E} \subset \mathbb{R}$ be Lebesgue measurable with $\lambda(E) > 0$.
 - (a) For any $\alpha < 1$, there is an interval I = [a, b] such that $\lambda(E \cap I)/\lambda(I) > \alpha$.
 - (b) E E contains an open interval containing zero.

Proof. (a) \Box

Problems

- 1.
- *2. Every Lebesgue measurable set in \mathbb{R} of positive measure contains an arbitrarily long arithmetic progression.

Measurable functions

3.1 Extended real numbers

3.2 Simple functions

Pointwise limit of simple functions is measurable.

Proof. Let $f(x) = \lim_{n \to \infty} s_n(x)$.

Every measurable extended real-valued function is a pointwise limit of simple functions.

3.3

3.1 (Egorov theorem). Let $f_n : \Omega \to \mathbb{R}$ be a sequence of measurable functions on a finite measure space (Ω, μ) that converges almost everywhere.

(a) For each $k \in \mathbb{N}$,

$$\bigcap_{n\geq n_0} \{\,x: |f_n(x)|<\frac{1}{k}\,\} \uparrow \text{ a full set} \quad \text{ as } \quad n_0\to\infty.$$

(b) For $\varepsilon > 0$, there is a measurable $E_{\varepsilon} \subset \Omega$ such that $\mu(\Omega \setminus E_{\varepsilon}) < \varepsilon$ and f_n is uniformly convergent on E_{ε} .

Proof. (a) We may assume $f_n \to 0$. The set of convergence is given by

$$\bigcap_{k>0} \bigcup_{n_0>0} \bigcap_{n\geq n_0} \{x: |f_n(x)| < \frac{1}{k}\},\$$

which is a full set. We want to get rid of the dependence on the point x of n_0 in the union $\bigcup_{n_0>0}$. Since

$$\bigcap_{n>n_0} \{x: |f_n(x)| < \frac{1}{k}\}$$

is increasing as $n_0 \to \infty$ to a full set.

(b) We can find $n_0 = n_0(k, \varepsilon)$ such that

$$\mu(\bigcap_{n\geq n_0}\{x:|f_n(x)|<\frac{1}{k}\})>\mu(\Omega)-\frac{\varepsilon}{2^k}.$$

Then,

$$\mu(\bigcap_{k>0}\bigcap_{n\geq n_0}\{x:|f_n(x)|<\frac{1}{k}\})>\mu(\Omega)-\varepsilon.$$

If we define

$$E_{\varepsilon}:=\bigcap_{k>0}\bigcap_{n\geq n_0}\{\,x:|f_n(x)|<\tfrac{1}{k}\,\},$$

then for any k>0 and $x\in E_{\varepsilon}$, and with the $n_0(k,\varepsilon)$ we have chosen, we have

$$n \ge n_0 \quad \Rightarrow \quad |f_n(x)| < \frac{1}{k}.$$

Exercises

- **3.2** (Cauchy's functional equation). Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Cauchy's functional equation refers to the equation f(x+y) = f(x) + f(y), satisfied for all $x, y \in \mathbb{R}$. Suppose f satisfies the Cauchy functional equation. We ask if f is linear, that is f(x) = ax for all $x \in \mathbb{R}$, where a := f(1).
 - (a) f(x) = ax for all $x \in \mathbb{Q}$, but there is a nonlinear solution of Cauchy's functional equation.
 - (b) If f is conitnuous at a point, then f is linear.
 - (c) If f is Lebesgue measurable, then f is linear.

Part II Lebesgue integral

Convergence theorems

4.1 Definition of Lebesgue integral

4.2 Convergence theorems

4.1 (Monotone convergence theorem).

4.3 Radon-Nikodym theorem

4.4 Modes of convergence

4.2 (Borel-Cantelli lemma).

4.3 (Convergence in measure). Let (X, μ) be a measure space. Let f_n and f be measurable. We say f_n converges to f in measure if for each $\varepsilon > 0$ we have

$$\lim_{n\to\infty}\mu(\{x:|f_n(x)-f(x)|>\varepsilon\})=0.$$

- (a) If $f_n \to f$ in L^1 , then $f_n \to f$ in measure.
- (b) If $f_n \to f$ in measure, then f_n has a subsequence that converges to f μ -a.e.

Proof. (b) We can extract a subsequence f_{n_k} such that

$$\mu(\{x:|f_{n_k}-f|>\frac{1}{k}\})>\frac{1}{2^k}.$$

Since

$$\sum_{k=1}^{\infty} \mu(\{x: |f_{n_k} - f| > \frac{1}{k}\}) < \infty,$$

by the Borel-Cantelli lemma, we get

$$\mu(\limsup_{k} \{x : |f_{n_k} - f| > \frac{1}{k}\}) = 0.$$

Therefore, f_{n_k} converges μ -a.e.

Product measures

- 5.1 Fubini-Tonelli theorem
- 5.2 Lebesgue measure on Euclidean spaces

Measures on metric spaces

6.1 Compact metric spaces

Part III Linear operators

Lebesgue spaces

- 7.1 L^p spaces
- 7.2 L^1 spaces
- 7.3 L^2 spaces
- 7.4 L^{∞} spaces

Bounded linear operators

8.1 Continuity

Schur test

8.2 Density arguments

extension of operators

8.3 Interpolation

weak Lp, marcinkiewicz

Convergence of linear operators

- 9.1 Translation and multiplication operators
- 9.2 Convolution type operators

approximation of identity

9.3 Computation of integral transforms

Part IV Fundamental theorem of calculus

Weak derivatives

The space of weakly differentiable functions with respect to all variables = $W_{loc}^{1,1}$.

10.1 (Product rule for weakly differentiable functions). We want to show that if u, v, and uv are weakly differentiable with respect to x_i , then $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$.

(a) If u is weakly differentiable with respect to x_i and $v \in C^1$, then $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$.

10.2 (Interchange of differentiation and integration). Let $f:\Omega_x\times\Omega_y\to\mathbb{R}$ be such that $\partial_{x_i}f$ is well-defined. Suppose f and $\partial_{x_i}f$ are locally integrable in x and integrable y. Then,

$$\partial_{x_i} \int f(x,y) dy = \int \partial_{x_i} f(x,y) dy.$$

Absolutely continuity

- (a) f is Lip_{loc} iff f' is L_{loc}^{∞}
- (b) f is AC_{loc} iff f' is L^1_{loc}
- (a) f is Lip iff f' is L^{∞}
- (b) f is AC iff f' is L^1
- (c) f is BV iff f' is a finite regular Borel measure

Lebesgue differentiation theorem