Inter-rater reliability

How to measure it reliably

Dr. Gordon McDonald

	Alice	Bob
Student 1	Pass	Fail
Student 2	Pass	Pass
Student 3	Fail	Pass
Student 4	Pass	Pass
· ·		

Two raters - all of th	em rated every item
Ratings can be bir	nary or categorical
% agree Pass Cohen's k	Pass
FaiFleiss' ka	
Scott's Krippendorf	

Convert to a contingency table of proportions

Alice's Ratings

Studer	Fail = 0	Pass = 1	Bob's marginal	Fail
Fail = 0	а	b	p_b	Pass
Pass = 1	С	d	$q_b = 1 - p_b$	Pass
Alice's Marginal	p_a	$q_a = 1 - p_a$		Pass

Convert to a contingency table of proportions

Alice's Ratings

Studer	Fail = 0	Pass = 1	Bob's marginal	Fail
Fail = 0	а	b	p_b	Pass
Pass = 1	С	d	$q_b = 1 - p_b$	Pass
Alice's Marginal	p_a	$q_a = 1 - p_a$		

fraction of agreement =
$$1 - \frac{b+c}{1}$$

(no measure of what you expect by chance)

Convert to a contingency table of proportions

Alice's Ratings

Stude	Fail = 0	Pass = 1	Bob's marginal	Fail
Fail = 0	а	b	p_b	Pass
Pass = 1	С	d	$q_b = 1 - p_b$	Pass
Alice's Marginal	p_a	$q_a = 1 - p_a$		Pass

Cohen's
$$\kappa = 1 - \frac{b+c}{p_a q_b + p_b q_a}$$

Convert to a contingency table of proportions

Alice's Ratings

Studei	Fail = 0	Pass = 1	Bob's marginal
Fail = 0	а	b	p_b
Pass = 1	С	d	$q_b = 1 - p_b$
Alice's Marginal	p_a	$q_a = 1 - p_a$	

$$p_0 = \frac{p_a + p_b}{2} = \frac{a + b + a + c}{2}$$

Fraction of 0's
$$p_{0} = \frac{p_{a} + p_{b}}{2} = \frac{a + b + a + c}{2}$$
Fraction of 1's
$$q_{1} = \frac{q_{a} + q_{b}}{2} = \frac{c + d + b + d}{2} = 1 - p_{0}$$

Scott's
$$\pi = 1 - \frac{b+c}{2 \cdot p_0 \cdot q_1}$$

Convert to a contingency table of proportions

Alice's Ratings

Studer	Fail = 0	Pass = 1	Bob's marginal
Fail = 0	а	b	p_b
Pass = 1	С	d	$q_b = 1 - p_b$
Alice's Marginal	p_a	$q_a = 1 - p_a$	

Fraction of 0's

$$p_0 = \frac{p_a + p_b}{2} = \frac{a + b + a + c}{2}$$

Fraction of 1's

$$q_1 = \frac{q_a + q_b}{2} = \frac{c + d + b + d}{2} = 1 - p_0$$

Krippendorff's
$$\alpha = 1 - \frac{b+c}{2 \cdot p_0 \cdot q_1} \cdot \frac{n-1}{n}$$

	Alice	Bob
Student 1	Pass	Fail
Student 2	Pass	Pass
Student 3	Fail	Pass
Student 4	Pass	Pass
· ·		

	Alice	Bob
Student 1	Pass	Fail
Student 2	N/A	Pass
Student 3	Fail	Pass
Student 4	Pass	Pass
· ·		

	Alice	Bob	Cathy		
Student 1	Pass	Fail	Pass		
Student 2	N/A	Pass	Pass		
Student 3	Fail	Pass	Fail		
Student 4	Pass	Pass	N/A		

Mult	iple raters - not all	of them rated every	item
Student 1 Ratings ca	Pass an be binary, numer	Fail ric, ordinal, interval,	Pass circular
	N/A	Pass	Pass
	Krippendo	rff's alpha!	Fail
	-	ses and simplifies to the appropriate lim	

So how to calculate in general?

$$\alpha = 1 - \frac{\text{Observed Disagreement between raters within units}}{\text{Expected Disagreement between raters within units}}$$

$$= 1 - \frac{D_o}{D_e}$$

Distance between this pair of marks

$$D_o = \frac{1}{n} \sum_{\text{assignments all pairs of marks}} \delta \cdot m \cdot p$$

 $\delta =$ Some appropriate distance metric between pairs of ratings

So how to calculate in general?

$$\alpha = 1 - \frac{\text{Observed Disagreement between raters within units}}{\text{Expected Disagreement between raters within units}}$$

$$= 1 - \frac{D_o}{D_e}$$

Distance between this pair of marks

No. of markers for this assignment $D_o = \frac{1}{n} \sum_{\text{assignments all pairs of marks}} \delta \cdot m \cdot p$

Something to do with permutations

 D_e = Same thing averaged over how you expect it to come out randomly...

...whatever, just use the R package irr

What does it mean?

 $\alpha = 1 - \frac{\text{Observed Disagreement between raters within units}}{\text{Expected Disagreement between raters within units}}$

$$=1-\frac{D_o}{D_e}$$

They all disagree on purpose

 $\alpha < 0$

Everybody's guessing and it's all random

 $\alpha = 0$

It all perfectly agrees

 $\alpha = 1$

Ratings by the patient and a variable number of doctors to say whether they thought there was a delay

	V1	V2	V 3	V 4	V 5	V6	V 7	V 8	V9	V 10	V11	V12	V13	V14	V15	V 16	V17	V 18	V 19	V20	V21	V22	V23	V24
Patient_perceived_delay	0	1	1	1	0	0	1	1	0	0	0	1	0	0	1	0	1	1	1	0	1	0	0	0
Clinician_1_perc_delay	NA	NA	0	1	1	0	NA	0	1	NA	0	NA	0	1	1	NA	NA	NA	1	1	NA	1	0	0
Clinician_2_perc_delay	1	1	NA	1	1	NA	1	1	NA	1	1	1	1	0	NA	0	0	0	1	0	0	1	1	0
Clinician_3_perc_delay	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	1	NA	0	NA	NA	NA	NA

Ratings by the patient and a variable number of doctors to say whether they thought there was a delay

	V1	V2	V 3	V4	V 5	V 6	V7	V 8	V 9	V 10	V11	V12	V 13	V14	V 15	V 16	V17	V 18	V 19	V20	V21	V22	V23	V24
Patient_perceived_delay	0	1	1	1	0	0	1	1	0	0	0	1	0	0	1	0	1	1	1	0	1	0	0	0
Clinician_1_perc_delay	NA	NA	0	1	1	0	NA	0	1	NA	0	NA	0	1	1	NA	NA	NA	1	1	NA	1	0	0
Clinician_2_perc_delay	1	1	NA	1	1	NA	1	1	NA	1	1	1	1	0	NA	0	0	0	1	0	0	1	1	0
Clinician_3_perc_delay	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	1	NA	0	NA	NA	NA	NA

Histogram of randomSamplesOfKrippendorffsAlpha

Ratings by the patient and a variable number of doctors to say whether they thought there was a delay

	V1	V2	V 3	V 4	V 5	V 6	V 7	V 8	V9	V10	V11	V12	V 13	V14	V 15	V 16	V17	V 18	V 19	V20	V21	V22	V23	V24
Patient_perceived_delay	0	1	1	1	0	0	1	1	0	0	0	1	0	0	1	0	1	1	1	0	1	0	0	0
Clinician_1_perc_delay	NA	NA	0	1	1	0	NA	0	1	NA	0	NA	0	1	1	NA	NA	NA	1	1	NA	1	0	0
Clinician_2_perc_delay	1	1	NA	1	1	NA	1	1	NA	1	1	1	1	0	NA	0	0	0	1	0	0	1	1	0
Clinician_3_perc_delay	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	1	NA	NA	NA	NA	NA	NA	1	NA	0	NA	NA	NA	NA

Histogram of randomSamplesOfKrippendorffsAlpha

Histogram of randomSamplesOfKrippendorffsAlpha

Histogram of video_scores

Naive resampling

samples.of.kripp.alpha

Less naive resampling

Histogram of samples.of.kripp.alpha

Sampling from ideal distributions

Histogram of video_scores

Sampling from ideal distributions

Histogram of samples.of.kripp.alpha

So in summary, use Krippendorff's alpha

Pick the right distance metric

Choose an appropriate null hypothesis

Bootstrap if you have enough data to work out confidence intervals or p-values

Otherwise use ideal distributions to sample from

Some references...

https://en.wikipedia.org/wiki/Krippendorff's_alpha

Reliability in Content Analysis: Some Common Misconceptions and Recommendations.

-K. Krippendorff, 2004 University of Pennsylvania Departmental papers,

https://repository.upenn.edu/cgi/viewcontent.cgi?article=1250&context=asc_papers

https://cran.r-project.org/web/packages/irr/index.html