```
In [1]:
         %autosave 7200
        Autosaving every 7200 seconds
In [2]:
         from datascience import *
         import numpy as np
         %matplotlib inline
         import matplotlib.pyplot as plots
         plots.style.use('fivethirtyeight')
In [3]:
         def r scatter(r):
             plots.figure(figsize=(5,5))
             "Generate a scatter plot with a correlation approximately r"
             x = np.random.normal(0, 1, 1000)
             z = np.random.normal(0, 1, 1000)
             y = r*x + (np.sqrt(1-r**2))*z
             plots.scatter(x, y)
             plots.xlim(-4, 4)
             plots.ylim(-4, 4)
In [4]:
         def standard units(arr):
              "Convert any array of numbers to standard units."
             return (arr - np.mean(arr))/np.std(arr)
In [5]:
         def correlation(t, label x, label y):
             x standard = standard units(t.column(label x))
             y standard = standard units(t.column(label y))
             return np.mean(x standard * y standard)
In [6]:
         x = np.arange(1, 7, 1)
         y = make_array(2, 3, 1, 5, 2, 7)
         t = Table().with columns(
                   'x', x,
                   'y', y
         t
```

```
In [7]: t.scatter('x', 'y', s=30, color='red')
```



```
t = t.with_columns(
    'x (std units)', standard_units(x),
    'y (std units)', standard_units(y))
t
```

Out[8]:

X	У	x (std units)	y (std units)
1	2	-1.46385	-0.648886
2	3	-0.87831	-0.162221
3	1	-0.29277	-1.13555
4	5	0.29277	0.811107
5	2	0.87831	-0.648886
6	7	1.46385	1.78444

```
In [9]:
    t.scatter('x (std units)', 'y (std units)', s=30, color='red')
    plots.xlim(-2.5, 2.5)
    plots.ylim(-2.5, 2.5);
```



```
In [10]: x_standard = t.column('x (std units)')
y_standard = t.column('y (std units)')
t = t.with_column(
```

```
'product in standard units', x_standard * y_standard)
           t
Out[10]: x y x (std units) y (std units) product in standard units
          1 2
                   -1.46385
                               -0.648886
                                                       0.949871
          2 3
                   -0.87831
                                                       0.142481
                               -0.162221
          3 1
                   -0.29277
                                -1.13555
                                                       0.332455
          4 5
                                                       0.237468
                    0.29277
                               0.811107
          5 2
                    0.87831
                               -0.648886
                                                       -0.569923
          6 7
                    1.46385
                                1.78444
                                                        2.61215
In [11]:
           r = np.mean(t.column('product in standard units'))
Out[11]: 0.6174163971897709
In [12]:
           correlation(t, 'x', 'y')
Out[12]: 0.6174163971897709
In [13]:
           hybrid = Table.read table('hybrid.csv').drop('year')
           hvbrid
                           msrp acceleration mpg
Out[13]:
                 vehicle
                                                         class
           Prius (1st Gen) 24509.7
                                        7.46 41.26
                                                     Compact
                                              54.1
                   Tino
                          35355
                                         8.2
                                                     Compact
          Prius (2nd Gen) 26832.2
                                        7.97 45.23
                                                     Compact
                 Insight 18936.4
                                        9.52
                                                53 Two Seater
           Civic (1st Gen) 25833.4
                                        7.04 47.04
                                                     Compact
```

53 Two Seater

9.52

Insight 19036.7

class	mpg	acceleration	msrp	vehicle
Two Seater	53	9.71	19137	Insight
Minivan	40.46	8.33	38084.8	Alphard
Two Seater	53	9.52	19137	Insight
Compact	41	8.62	14071.9	Civic

... (143 rows omitted)

In [14]:

hybrid.scatter('mpg', 'msrp')

In [15]:

hybrid.scatter('acceleration', 'msrp')

Out[17]:	vehicle	msrp	acceleration	mpg	class	mpg (standard units)	msrp (standard units)	acceleration (standard units)
	Escape	36676.1	10.32	31.99	SUV	1.31784	-0.60884	-1.16157
	Lexus RX400h	58521.1	12.76	28.23	SUV	0.48955	0.605991	-0.0718039
	Highlander	29186.2	12.76	29.4	SUV	0.747288	-1.02536	-0.0718039
	Escape 2WD	19322.6	9.52	29	SUV	0.659172	-1.57389	-1.51888
	Mercury Mariner	34772.4	8.98	32.93	SUV	1.52491	-0.714707	-1.76005
	Chevrolet Tahoe	42924.3	10.91	22.35	SUV	-0.805749	-0.261367	-0.898064

vehicle	msrp	acceleration	mpg	class	mpg (standard units)	msrp (standard units)	acceleration (standard units)
Kluger	46229.5	12.76	25.87	SUV	-0.0303321	-0.0775641	-0.0718039
Tribute	24823.8	11.28	31.75	SUV	1.26497	-1.26796	-0.732812
GMC Yukon	57094.8	12.28	21.78	SUV	-0.931314	0.526671	-0.286185
Vue	22938.3	10.75	26	SUV	-0.00169453	-1.37281	-0.969524

... (29 rows omitted)

```
suv.scatter('mpg (standard units)', 'msrp (standard units)')
plots.xlim(-3, 3)
plots.ylim(-3, 3);
```



```
In [19]: correlation(suv, 'mpg', 'msrp')
```

Out[19]: -0.6667143635709919

```
correlation(suv, 'msrp', 'mpg')
In [20]:
Out[20]: -0.6667143635709919
In [21]:
           correlation(suv, 'mpg (standard units)', 'msrp (standard units)')
          -0.6667143635709918
Out[21]:
In [22]:
           suv.scatter('acceleration (standard units)', 'msrp (standard units)')
           plots.xlim(-3, 3)
           plots.ylim(-3, 3);
               3
          msrp (standard units)
               1
             -2
             -3<sub>-3</sub>
                       acceleration (standard units)
In [23]:
           correlation(suv, 'acceleration', 'msrp')
          0.48699799279959155
Out[23]:
In [24]:
           r_scatter(0.3)
```



```
In [26]: r_scatter(0.2)
```



```
In [32]: correlation(outlier, 'x', 'y')
```

Out[32]: 0.0

sat2014 = Table.read_table('sat2014.csv').sort('State').drop('Participation Rate', 'Writing','Combined')
sat2014

Out[33]:	State	Critical Reading	Math
	Alabama	547	538
	Alaska	507	503
	Arizona	522	525
	Arkansas	573	571
	California	498	510
	Colorado	582	586
	Connecticut	507	510

Math	Critical Reading	State
459	456	Delaware
438	440	District of Columbia
485	491	Florida

... (41 rows omitted)

In [34]:

sat2014.scatter('Critical Reading', 'Math')

In [35]: correlation(sat2014, 'Critical Reading', 'Math')

Out[35]: 0.9847558411067434

In []: