Query enumeration and nowhere dense graphs

Alexandre Vigny

February 15, 2019

Outline

Introduction

Databases and queries Beyond query evaluation

Query enumeration

Definition

Examples

Existing results

On nowhere dense graphs

Definition and examples Splitter game

Splitter gain

The algorithms

Results and tools

Examples

What's next?

Conclusion

Outline

Introduction

Databases and queries Beyond query evaluation

Databases and Queries

Input:

Introduction

- Database D (contains informations)
- Query q (asks a question)

Goal:

Compute $q(\mathbf{D})$

Formalization part 1: Databases as relational structures

Schema : $\sigma := \{P_{(1)}, R_{(2)}, S_{(3)}\}$

A relational structure **D**:

Introduction

P		
France		
Poland		
Germany		
Italy		

<i>R</i>		
Paris	France	
Bourg-la-Reine	France	
Warsaw	Poland	
Meudon	France	
Rome	Italy	

Alexandre	Bourg-la-Reine	Poland	
Sophie	Bourg-la-Reine	Meudon	
Tim	Bourg-la-Reine	Bourg-la-Reine	
Jack	Warsaw	Paris	
Julie	Paris	Paris	

Formalization part 2: Queries written in first-order logic

What are all of the countries?

$$q(x) := P(x)$$

Introduction

Is there someone who works and lives in the same city?

$$q() := \exists x \exists y \ S(x, y, y)$$

What are the pairs of cities that are in the same country?

$$q(x,y) := \exists z \ R(x,z) \land R(y,z)$$

Who are the people who do not work where they live?

$$q(x) := \exists y \exists z \ S(x, y, z) \land y \neq z$$

Which cities satisfy: everybody who lives there works there too?

$$q(x) := \forall y \forall z \ S(y,x,z) \implies z = x$$

Formalization part 3: Databases as graphs

Introduction

P(x) becomes $\exists w$, $Blue(w) \land B(x, w)$

R(x,y) becomes $\exists w$, $Red(w) \land B(x,w) \land G(y,w)$

S(x,y,z) becomes $\exists w$, $Purple(w) \land B(x,w) \land G(y,w) \land V(z,w)$

 $\exists x \cdots \text{becomes } \exists x, \text{Orange}(x) \land \cdots$

 $\forall x \cdots \text{ becomes } \forall x, \text{ Orange}(x) \Longrightarrow \cdots$

Computing the whole set of solutions?

In general:

Introduction

Database: ||D|| the size of the database.

Query: k the arity of the query.

Solutions: Up to $||D||^k$ solutions!

Practical problem:

A set of 50^{10} solutions is not easy to store / display!

Theoretical problem:

The time needed to compute the answer does not reflect the hardness of the problem.

Can we do anything else instead?

Introduction
OOO

Inspiration from real world

Flight Warsaw-Paris

Q

Inspiration from real world

Flight Warsaw-Paris

Q

around 200.000 results in 0,5 seconds

- > Here is a first solution
- > Here is a second one
- 2

Introduction
OOO

- >
- >

Other problems

Model-Checking: Is this true?

Input: Goal: Ideally:

D,q Yes or NO? $D \models q$? $O(\|D\|)$

Testing: Is this tuple a solution?

Counting: How many solutions?

Enumeration: Enumerate the solutions

Ideally:

 $O(1) \circ O(\|\mathbf{D}\|)$

Other problems

Model-Checking: Is this true?

Testing: Is this tuple a solution?

Input: Goal:

 D,q, \overline{a} Test whether $\overline{a} \in q(D)$.

Counting: How many solutions?

Enumeration: Enumerate the solutions

Other problems

Model-Checking: Is this true?

Testing: Is this tuple a solution?

Counting: How many solutions?

Input: Goal: Ideally:

D,q Compute |q(D)| $O(\|D\|)$

Enumeration: Enumerate the solutions

Other problems

Model-Checking: Is this true?

Testing: Is this tuple a solution?

Counting: How many solutions?

Enumeration : Enumerate the solutions

Input: Goal : Ideally:

 \mathbf{D}, \mathbf{q} Compute 1^{st} sol, 2^{nd} sol, ... $O(1) \circ O(\|\mathbf{D}\|)$

Comparing the problems

For FO queries over a class \mathscr{C} of databases.

Ideal running time

Model-Checking Is this true? O(n)

Enumeration Enumerate the solutions $O(1) \circ O(n)$

Evaluation O(n+m)Compute the entire set

O(n)Counting How many solutions?

Testing Is this tuple a solution? $O(1) \circ O(n)$

Outline

Introduction

Databases and queries Beyond query evaluation

Query enumeration

Definition

Examples

Existing results

On nowhere dense graph:

Definition and examples Splitter game

The algorithms

Results and tools

M/hatic novt

Conclusion

Query enumeration

Input : $\|\mathbf{D}\| := n \ \& \ |\mathbf{q}| := k$ (computation with RAM)

Goal: output solutions one by one (no repetition)

STEP 1: Preprocessing

Prepare the enumeration : Database $D \longrightarrow \operatorname{Index} I$

Preprocessing time : $f(k) \cdot n \rightsquigarrow O(n)$

STEP 2: Enumeration

The enumerate : Index $I \longrightarrow \overline{x_1}$, $\overline{x_2}$, $\overline{x_3}$, $\overline{x_4}$, ...

Delay: $O(f(k)) \rightsquigarrow O(1)$

Constant delay enumeration after linear preprocessing $O(1) \circ O(n)$

Properties of efficient enumeration algorithms

Mandatory:

- \rightarrow First solution computed in time $O(\|\mathbf{D}\|)$.
- → Last solution computed in time $O(\|\mathbf{D}\| + |q(\mathbf{D})|)$.
- → No repetition!

Optional:

- → Enumeration in lexicographical order.
- → Use a constant amount of memory.

```
\rightarrow Database \mathbf{D} := \langle \{1, \cdots, n\}; E \rangle
                                                           \|\mathbf{D}\| = |E|
\rightarrow Query q_1(x,y) := E(x,y)
                Ε
             (1,1)
             (1,2)
             (1,6)
              (4,5)
              (4,7)
              (4,8)
              (n,n)
```

```
\rightarrow Database \mathbf{D} := \langle \{1, \dots, n\}; E \rangle
                                                                         \|D\| = |E|
```

 \rightarrow Query $q_1(x,y) := E(x,y)$

Ε

- (1,1)(1,2)
- (1,6)
- (4,5)
- (4,7)
- (4,8)

(n,n)

For the enumeration problem

Preprocessing: nothing

Enumeration: read the list.

For the counting problem

Computation: go through the list Answering: output the result.

For the testing problem

Harder than it looks!

Dichotomous research? $O(\log(\|\mathbf{D}\|))$.

```
→ Database D := \langle \{1, \dots, n\}; E \rangle \|\mathbf{D}\| = |E|
```

$$\rightarrow$$
 Query $q_2(x,y) := \neg E(x,y)$

Ε

- (1,1)
- (1,2)
- (1,6)
 - :
- (2,3)
- :
- (i,j)
- (i,j+1)(i,j+3)
 - :
- (n,n)

0000

Example 2

```
\rightarrow Database D := \langle \{1, \dots, n\}; E \rangle
                                               \|D\| = |E|
\rightarrow Query q_2(x,y) := \neg E(x,y)
       Ε
     (1,1)
                          For counting problem
    (1,2)
                                Computation: Do the same algorithm!
     (1,6)
                                Answering: |q_2(\mathbf{D})| = n^2 - |q_1(\mathbf{D})|
    (2,3)
                          For the testing problem
                                Same difficulty!
     (i,j)
                                \overline{a} \in q_2(D) \iff \overline{a} \notin q_1(D)
   (i,j+1)
                          For the enumeration problem
   (i, i+3)
                                We need something else!
     (n,n)
```

```
→ Database D := \langle \{1, \dots, n\}; E \rangle \|\mathbf{D}\| = |E|
```

$$\rightarrow$$
 Query $q_2(x,y) := \neg E(x,y)$

Ε

- (1,1)
- (1,2)
- (1,6)
 - :
- :
- (i,j)
- (i,j+1)
- (i,j+3)
- (n,n)

→ Database
$$D := \langle \{1, \dots, n\}; E \rangle$$
 $\|D\| = |E|$

→ Query $q_2(x,y) := \neg E(x,y)$
 E Index

$$\begin{array}{ccc}
(1,1) & (1,1) & (1,3) \\
(1,2) & (1,2) & (1,3)
\end{array}$$

$$\begin{array}{cccc}
(1,6) & (1,6) & \vdots & \vdots & \vdots \\
(2,3) & (2,4) & \vdots & \vdots & \vdots \\
(i,j) & (i,j+1) & (i,j+1) & (i,j+2) \\
(i,j+3) & (i,j+3) & (k,l)
\end{array}$$

$$\vdots & \vdots & \vdots & \vdots & \vdots \\
(n,n) & (n,n) & \rightarrow \text{NULL}$$

(n,n)

→ Database
$$D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$$
 $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

→ Database
$$D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$$
 $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

0000

B: Adiacency matrix of E₂

A: Adiacency matrix of E_1

C : Result matrix

→ Database
$$D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$$
 $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, \ E_1(x,z) \land E_2(z,y)$

Compute the set of solutions

=

Boolean matrix multiplication

$$\rightarrow$$
 Database $D := \langle \{1, \dots, n\}; \overline{E_1}; \overline{E_2} \rangle$ $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

- \rightarrow Linear preprocessing: $O(n^2)$
- \rightarrow Number of solutions: $O(n^2)$
- \rightarrow Total time: $O(n^2) + O(1) \times O(n^2)$
- \rightarrow Boolean matrix multiplication in $O(n^2)$

Conjecture: "There are no algorithm for the boolean matrix multiplication working in time $O(n^2)$."

$$\rightarrow$$
 Database $D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$ $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

This query cannot be enumerated with constant delay¹

We need to put restrictions on queries and/or databases.

 $^{^{1}}$ Unless there is a breakthrough with the boolean matrix multiplication.

Example 3 bis

→ Database
$$D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$$
 $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$

$$\rightarrow$$
 Query $q(x,y) := \exists z, \ E_1(x,z) \land E_2(z,y)$

and D is a tree!

Example 3 bis

- → Database $D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$ $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$
- \rightarrow Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

and D is a tree!

Given a node x, every solutions y must be amongst:

It's "grandparent", "grandchildren", or "siblings"

What kind of restrictions?

No restriction on the database part

Highly expressive queries (MSO queries)

FO queries

 \bigcup

 $\downarrow \downarrow$

Only works for a **strict** subset of ACQ

Only works for trees (graphs with bounded tree width)

This talk!

Bagan, Durand, Grandjean

Courcelle, Bagan, Segoufin, Kazana

Comparing the problems

For FO queries over a class $\mathscr C$ of databases.

Ideal running time

Model-Checking : Is this true ? O(n)

Enumeration : Enumerate the solutions $O(1) \circ O(n)$

Evaluation : Compute the entire set O(n+m)

Counting : How many solutions ? O(n)

Testing : Is this tuple a solution ? $O(1) \circ O(n)$

Comparing the problems

For FO queries over a class \mathscr{C} of databases.

Ideal running time

Is this true? Model-Checking O(n)

Enumeration Enumerate the solutions $O(1) \circ O(n)$

Evaluation O(n+m)Compute the entire set

Counting How many solutions? O(n)

Testing Is this tuple a solution ? $O(1) \circ O(n)$

DENSITY

Classes of graphs and FO queries

DENSITY

Classes of graphs and FO queries

DENSITY

Classes of graphs and FO queries

DENSITY

Classes of graphs and FO queries

Outline

Introduction

Databases and queries
Beyond query evaluation

Query enumeration

Examples

Existing res

On nowhere dense graphs
Definition and examples
Splitter game

The algorithms

Results and tools

What's next

Conclusion

Nowhere dense graphs

Defined by Nešetřil and Ossona de Mendez.¹

Examples:

- → Graphs with bounded degree
- → Graphs with bounded tree-width
- → Planar graphs
- → Graphs that exclude a minor

Can be defined using:

- → An ordering of vertices with good properties
- → A winning strategy for some two player game

¹On nowhere dense graphs '11

Definition with a game

Definition : (ℓ, r) -Splitter game¹

A graph G and two players, Splitter and Connector.

Each turn:

Connector picks a node c

Splitter picks a node s

$$G := N_r^G(c) \setminus s$$

If in less than ℓ rounds the graph is empty, Splitter wins.

Definition with a game

Definition : (ℓ, r) -Splitter game¹

A graph G and two players, Splitter and Connector.

Each turn:

Connector picks a node c

Splitter picks a node s

$$G := N_r^G(c) \setminus s$$

If in less than ℓ rounds the graph is empty, Splitter wins.

Theorem¹

 \mathscr{C} nowhere dense $\iff \exists f_{\mathscr{C}}, \ \forall G \in \mathscr{C}, \ \forall r \in \mathbb{N}$:

Splitter has a wining strategy for the $(f_{\mathscr{C}}(r), r)$ -splitter game on G.

¹Grohe, Kreutzer, Siebertz STOC '14

Every edge goes to 1 We are playing with r > 1

Connector picks 4

Splitter picks 1

Here is the graph after one round.

Connector picks 6

Splitter picks 6

For every $r \in \mathbb{N}$ and every star GSplitter wins the (2,r)-splitter game on G

Here is the graph after one round.

(Sevral trees of depth bounded by r-1)

Connector picks 11 (One of the tree of depth r-1)

Splitter picks 5

Here is the graph after two rounds. (Sevral trees of depth bounded by r-2)

For every $r \in \mathbb{N}$ and tree G: Splitter wins the (r+1,r)-splitter game on G.

Splitter game on other classes

For every $r \in \mathbb{N}$ and every path G:

Splitter wins the $(\log(r) + 1, r)$ -splitter game on G.

For every $r \in \mathbb{N}$, $d \in \mathbb{N}$ and graph G with degree bounded by d: Splitter wins the $(d^r + 1, r)$ -splitter game on G.

Every pair of nodes is an edge

Splitter picks 12

We have a clique of size n-1.

If the number of rounds < size of the clique, Splitter looses. For $r=1,\ \forall \ell\in\mathbb{N}$ there is a clique G:

Connector wins the $(\ell,1)$ -splitter game on G.

Outline

The algorithms

Results and tools

Examples

Results

Theorem: Schweikardt, Segoufin, Vigny

Over *nowhere dense* classes of graphs, for every FO query, after a *pseudo-linear* preprocessing, we can:

- → enumerate every solution with constant delay.
- → test whether a given tuple is a solution in constant time.

Theorem: Grohe, Schweikardt (alternative proof, Vigny)

Over *nowhere dense* classes of graphs, for every FO query, we can count the number of solutions in *pseudo-linear* time

Pseudo-linear?

Definition

An algorithm is pseudo linear if:

$$\forall \epsilon > 0, \quad \exists N_{\epsilon} : \quad \left\{ \begin{array}{l} \|G\| \leq N_{\epsilon} \implies \text{Brut force: } O(1) \\ \|G\| > N_{\epsilon} \implies O(\|G\|^{1+\epsilon}) \end{array} \right.$$

Examples: O(n), $O(n\log(n))$, $O(n\log^{i}(n))$

Counter examples: $O(n^{1,0001})$, $O(n\sqrt{n})$

Scheme of proof

We use:

- → A new Hanf normal form for FO queries.¹
 To shape every query into local queries.
- → The algorithm for the model checking.²
 For the base case of the induction.
- → Game characterization of nowhere dense classes.² Gives us an inductive parameter.
- → Neighbourhood cover.²
- → Short-cut pointers dedicated to the enumeration.³

¹Grohe, Schweikardt '18

²Grohe, Kreutzer, Siebertz '14

³Segoufin, Vigny '17

Neighborhood cover

A neighborhood cover is a set of "representative" neighborhoods.

 $\mathscr{X} := X_1, ..., X_n$ is a *r-neighborhood cover* if it has the following properties:

- $\rightarrow \forall a \in G, \exists X \in \mathcal{X}, N_r(a) \subseteq X$
- $\rightarrow \forall X \in \mathcal{X}, \quad \exists a \in G, \quad X \subseteq N_{2r}(a)$
- \rightarrow the degree of the cover is: $\max_{a \in G} |\{i \mid a \in X_i\}|.$

Theorem: Grohe, Kreutzer, Siebertz '14

Over nowhere dense classes, for every r and ϵ , an r-neighborhood cover of degree $|G|^{\epsilon}$ can be computed in time $O(|G|^{1+\epsilon})$.

$$\rightarrow q_1(x,y) := \exists z \ E(x,z) \land E(z,y)$$

(The distance two query)

$$\rightarrow q_2(x,y) := \neg q_1(x,y)$$

(Nodes that are far apart)

How to use the game 1/2

G is now fixed

Goal : Given a node a we want to enumerate all b such that $q_1(a,b)$. (Here r=4)

- \rightarrow Base case: If Splitter wins the (1, r)-Splitter game on G.
 - Then *G* is edgeless and there is no solution!
- \rightarrow By induction: assume that there is an algorithm for every G' such that Splitter wins the (ℓ, r) -Splitter game on G'.

How to use the game 2/2

Here, Splitter wins the $(\ell+1,r)$ -game on G.

Idea:

- \rightarrow Compute some new graph on which Splitter wins the (ℓ, r) game.
- → Alter the query and apply the algorithm given by induction.

 The solutions for the old query on the old graph and for the new query on the new graph must be the same.
- → Enumerate those solutions.

How to use the game 2/2

Here, Splitter wins the $(\ell + 1, r)$ -game on G.

Idea:

- \rightarrow Compute some new graph on which Splitter wins the (ℓ, r) game.
- → Alter the query and apply the algorithm given by induction.

 The solutions for the old query on the old graph and for the new query on the new graph must be the same.
- → Enumerate those solutions.

The new graph is a bag of the neighborhood cover.

For every $(a, b) \in G^2$ we have:

$$G \models q_1(a,b) \iff \bigvee_{X \in \mathscr{X}} X \models q_1(a,b) \iff \mathscr{X}(a) \models q_1(a,b)$$

How to use the game 2/2

Here, Splitter wins the $(\ell + 1, r)$ -game on G.

Idea:

- \rightarrow Compute some new graph on which Splitter wins the (ℓ, r) game.
- → Alter the query and apply the algorithm given by induction. The solutions for the old query on the old graph and for the new query on the new graph must be the same.
- → Enumerate those solutions.

The new graph is a bag of the neighborhood cover.

For every $(a, b) \in G^2$ we have:

$$G \models q_1(a,b) \iff \bigvee_{X \in \mathcal{X}} X \models q_1(a,b) \iff \mathcal{X}(a) \models q_1(a,b)$$

The new graph is $\mathcal{X}(a)$ Then, Splitter deletes a node!

The new queries

when there is still a 2-path not using s

the new query is: $q_1(x,y)$

when s is on the only short path from a to b

the new query is: $R_1(x) \wedge R_1(y)$

when a = s (similarly for b = s)

the new query is: $R_2(y)$

Without using the cover

- \rightarrow To each a, associate $N_r^G(a) \setminus s_a$.
- → For every such graphs, compute the preprocessing given by induction.

Total running time:
$$\sum_{a \in G} (|N_r^G(a) \setminus s_a|) = O(|G|^2).$$

Using the cover

- \rightarrow To each a, associate an $X \in \mathcal{X}$ such that $N_r^G(a) \subseteq X$.
- \rightarrow To each X, associate the answer s_X of Splitter.
- \rightarrow For every $X \setminus s_X$, compute the preprocessing given by induction.

Total running time:
$$\sum_{X \in \mathcal{X}} (|X \setminus s_X|) = O(|G|^{1+\epsilon})$$

The second query

$$q_2(x,y) := \operatorname{dist}(x,y) > 2$$

Two kinds of solutions:

 $b \in \mathcal{X}(a)$ (similar to the previous example)

 $b \notin \mathcal{X}(a)$ We need something else!

The second query

$$q_2(x,y) := \operatorname{dist}(x,y) > 2$$

Two kinds of solutions:

 $b \in \mathcal{X}(a)$ (similar to the previous example)

 $b \notin \mathcal{X}(a)$ We need something else!

Goal: given a bag X, enumerate all $b \notin X$

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \not\in X\}$$

Given X we want to enumerate all b such that $b \notin X$.

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \not\in X\}$$

For all $X \in \mathcal{X}$ with $b_{max} \in X$, we have $NEXT(b_{max}, X) = NULL$

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \not\in X\}$$

$$b \in X$$

For all
$$X \in \mathcal{X}$$
 with $b_{max} \in X$, we have $NEXT(b_{max}, X) = NULL$
$$NEXT(b, X) \in \{b+1, NEXT(b+1, X)\}$$

$$NEXT(b,X) := \min\{b' \in G \mid b' \ge b \land b' \not\in X\}$$

For all
$$X \in \mathcal{X}$$
 with $b_{max} \in X$, we have $NEXT(b_{max}, X) = NULL$
$$NEXT(b, X) \in \{b+1, NEXT(b+1, X)\}$$

$$G \qquad b_1 \qquad b_2 \qquad b_3 \qquad \cdots \qquad b_j \qquad b_{j+1} \qquad \cdots \qquad b_{n-1} \qquad b_n$$

$$X \qquad b_1 \qquad b_2 \qquad b_3 \qquad \cdots \qquad b_i \qquad b_{i+1} \qquad \cdots \qquad b_{n-1} \qquad b_n \qquad \text{NULL}$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$Y \qquad b_1 \qquad b_2 \qquad b_3 \qquad \cdots \qquad b_i \qquad b_{i+1} \qquad \cdots \qquad b_{n-1} \qquad b_n \qquad \text{NULL}$$

Outline

Introduction

Databases and queries
Beyond query evaluatio

Query enumeratio

Definition

Examples

EXISTING TESTITES

On nowhere dense graph

Definition and example:

The algorithms

Results and tools

What's next?

Conclusion

Dense classes of graphs

Requirers:

Classes of graphs that are not closed under subgraphs.

Idea: Interpretration of classes of graphs

-
$$G = (V, E) \rightsquigarrow G' = (V, E')$$
 where $E' = \phi(G)$

- dual of graphs
- power of graphs

Results for classes with:

- Bounded degree¹
- Bounded expansion²
- Nowhere dense ?

¹Gajarský, Hlinený, Obdrzálek, Lokshtanov, Ramanujan LICS '16

²Gajarský, Kreutzer, Nešetřil, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk ICALP '18

What's next?

Different restrictions

What about other query languages?

- Beyon FO queries:
 - $FO + Mod^1$
 - $FO + Count^2$
 - FO + ?
- Bellow FO queries:
 - Dichotomy for CQ?³

¹Berkholz, Keppeler, Schweikardt ICDT '17

²Grohe, Schweikardt PODS '18

³Bagan, Durand, Filiot, Gauwin CSL '10

Updates

What happens if a small change occurs after the preprocessing?

Solution 1: Start the preprocessing from scratch.

Solution 2: Be smarter!

• Goal: update in O(1) or $O(\log(n))$.

Existing results for: words, ^{1,2} graphs with bounded degree ³ and ACQ. ⁴

What remains?

nowhere dense classes of graphs classes of graphs with low degree more powerfull updates

¹Losemann, Martens CSL-LICS '14

²Niewerth, Segoufin PODS '18

³Berkholz, Keppeler, Schweikardt ICDT '17

⁴Berkholz, Keppeler, Schweikardt PODS '17 & ICDT '18

Outline

Introduction

Databases and queries
Bevond query evaluatio

Query enumeratio

Definition

Examples

Extracting research

On nowhere dense graph

Definition and example

The algorithms

Results and tools

Examples

What's next?

Conclusion

Recap

Theorem: Schweikardt, Segoufin, Vigny

Over nowhere dense classes of graphs, for every FO query, after a pseudo-linear preprocessing, we can:

- → enumerate every solution with constant delay.
- → test whether a given tuple is a solution in constant time.

Theorem: Grohe, Schweikardt (alternative proof, Vigny)

Over nowhere dense classes of graphs, for every FO query, we can count the number of solutions in *pseudo-linear* time.

Complexity

Pseudo-linear preprocessing: $O(f(|\mathbf{q}|) \times |\mathbf{G}|^{1+\epsilon})$ But $f(\cdot)$ is a non-elementary function.

The end

Thank you!

Any question ?