Math 239 Formula/Theorem Sheet

Enumeration

Sets	Cartesian Product
Unordered: $\{1,1,3\} = \{1,3,1\}$ Ordered: $\{1,1,3\} \neq \{1,3,1\}$ $ A \cup B = A + B - A \cap B $	$egin{aligned} A imes B &= \{(a,b), a\in A, b\in B\} \ A imes B &= A B \ A^k &= A ^k \end{aligned}$
Binomial Coefficient Sets	Binomial Theorem
$egin{aligned} S_{k,n} &= \{\Omega \subseteq \{1,2,\ldots,n\}: \Omega = k\} \ S_{k,n} &= inom{n!}{k!(n-k)!} \ A_{k,n} &= \{(z_1,z_2,\ldots,z_n): z_1+z_2+\ldots+z_n = k\} \ Ak,n &= inom{n}{k!} \end{aligned}$	$egin{aligned} inom{n}{k} &= inom{n}{n-k} \ (1+x)^n &= \sum\limits_{k=0}^n inom{n}{k} x^k \ \sum\limits_{k=0}^n inom{n}{k} &= 2^n \ inom{n+k}{n} &= \sum\limits_{i=0}^k inom{n+i-1}{n-1} \ -$ Hockey Stick Identity
Bijection	Bijection Theorems
$S o T$ 1. $f(x_1)=f(x_2)\Rightarrow x_1=x_2$ - 1-1/injective 2. $orall y\in T, \exists x\in S, f(x)=y$ - onto/surjective	Suppose S,T are finite sets and $f:S\to T$ (i) If f is 1-1 \Rightarrow $ S \leq T $ (ii) If f is onto \Rightarrow $ S \geq T $ (iii) if f is bijection \Rightarrow $ S = T $ f has inverse if and only if f is a bijection
Generating Series	Generating Series Theorems
S is a set with weight function $w:S o\{0,1,2,\dots\}$ $\Phi_s(x)=\sum_{\sigma\in S}x^{w(s)}$	$egin{aligned} \Phi_s(x) &= \sum_{k\geq 0} a_k x^k \ S &= \Phi_s(1) \ \sum_{\sigma \in S} w(\sigma) &= rac{d\Phi_S}{dx}ig _{x=1} \ \end{aligned}$ Average Weight = $rac{d\Phi_S}{\Phi_s(1)}$
Formal Power Series	FPS Operations
$C(x)=c_0+c_1x+c_2x^2+\ldots+\sum\limits_{k\geq 0}^\infty c_kx^k$ where (c_0,c_1,\ldots) are rational numbers. $[x^n]C(x)=c_n$ - Coefficient of x^n	$A(x)=\sum\limits_{k=0}^{\infty}a_kx^k$, $B(x)=\sum\limits_{k=0}^{\infty}b_kx^k$ Addition: $A(x)+B(x)=\sum\limits_{k=0}^{\infty}(a_k+b_k)x^k$ Equality: $A(x)=B(x)\iff a_k=b_k$ Multiplication: $A(x)B(x)=\sum\limits_{n=0}^{\infty}(\sum\limits_{j=0}^{n}a_jb_{n-j})x^n$
Inverse/Composition of FPS (not all FPS have inverses)	Inverse/Recurrence Theorems
$A(x),B(x)$ are fps satisfying $A(x)B(x)=1$ $\Rightarrow rac{1}{(1-x)^k}=\sum\limits_{k=0}^{\infty}x^k$ $\Rightarrow [x^0]A(x)B(x)=1$ - Inverse	$rac{1}{(1-x)^k}=\sum_{n=0}^\infty {n+k-1\choose k-1}x^n$ - Negative Binomial Theorem Let $A(x)=\sum_{j=0}^\infty a_jx^j.$ $A(x)$ has inverse $\iff [x^0]A(x)=a_0 eq 0$ Let $A(x),C(x)$ be fps.

Let $A(x), B(x)$ be fps. If $b_0=0\Rightarrow A(B(x))=\sum\limits_{j=0}^{\infty}a_j(B(x))^j$ - Composition	If $[x^0]A(x) eq 0 \Rightarrow$ there exists fps $B(x)$ where $A(x)B(x) = C(x)$ Let $A(x), C(x)$ be fps with $a_0 eq 0$. Let $B(x) = \frac{C(x)}{A(x)}$. $\Rightarrow [x^n]B(X) = b_n = \frac{1}{a_0}(c_n - \sum_{j=0}^{n-1}a_{n-j}b_j)$ Let $A(x), B(x)$ be fps s.t. $[x^0]A(x) eq 0$ and $[x^0]B(x) = 0$ $\Rightarrow (A(B(x)))^{-1} = A^{-1}(B(x))$
Sum and Product Lemmas for Generating Series	Geometric Series
Let $S=A\cup B, A\cap B=\varnothing, w:S\to \{0,1,\dots\}$ $\Phi_S(x)=\Phi_A(x)+\Phi_B(x)\text{ - Sum lemma}$ Let A,B be sets with weight functions: $\alpha:A\to \{0,1,\dots\}$ $\beta:B\to \{0,1,\dots\}$ $w:A\times B\to \{0,1,\dots\}: w((a,b))=\alpha(a)+\beta(b)$ $\Rightarrow \Phi_{A\times B}(x)=\Phi_A(x)\Phi_B(x)\text{ - Product Lemma}$	Geometric Series: $\sum_{j=0}^\infty x^j=\frac{1}{1-x}\ -$ Composition of Geometric Series: $[x^0]A(x)=0\Rightarrow \sum_{j=0}^\infty (A(x))^j=\frac{1}{1-A(x)}$
Integer Composition	Ambiguous/Unambiguous Binary Strings
A composition of n is a <i>tuple</i> of positive integers (a_1,a_2,\ldots,a_k) s.t. $a_1+a_2+\ldots+a_k=n$ k is the number of parts of the composition.	Let A,B be sets of binary strings. AB is ambiguous if: There exist $a_1,a_2\in A$ and $b_1,b_2\in B$ s.t. $a_1b_1=a_2b_2$ $A\cup B$ is unambiguous if $A\cap B\neq \varnothing$ Expression with several concatenation/union operations is unambiguous if 1 of the concatenations or unions is.
Unambiguous/Ambiguous Binary Strings Expressions	Unambiguous Binary String Operations
A^k is ambiguous if there are distinct k-tuples and the concatenations are equal. $A^* \text{ is unambiguous} \iff 1.\ A^k \cap A^j = \varnothing \\ 2.\ A^k \text{ is unambiguous for each } k \geq 0$ Unambiguous Expressions for set of all binary strings: $1.\ S = \{0,1\}^* \\ 2.\ S = \{0\}^*(\{1\}\{0\}^*)^* \\ 3.\ S = \{0\}^*(\{1\}\{1\}^*\{0\}\{0\}^*)^*\{1\}^*$	Theorem 2.6.1: $A,B \text{ are sets of unambiguous binary strings.}$ (i) $\Phi_{AB}(x)=\Phi_A(x)\Phi_B(x)$ (ii) $\Phi_{A\cup B}(x)=\Phi_A(x)+\Phi_B(x)$ (iii) $\Phi_{A*}(x)=\frac{1}{1-\Phi_A(x)}$
Partial Fractions Theorems	Homogeneous Linear Recurrences
f,g are polynomials where $deg(f) < deg(g)$ and $g(x) = (1-r_1x)^{e_1}\dots(1-r_kx)^{e_k}$ where $r_1,\dots,r_k\in\mathbb{C},e_1,\dots,e_k\in\mathbb{Z}^+$	Theorem 3.2.1: Let $\{c_n\}_{n\geq 0}$ satisfy the linear recurrence: $c_n+q_1c_{n-1}+\ldots+q_kc_{n-k}=0$ Define $g(x)=1+q_1x+\ldots+q_kx^k$, $C(x)=\sum\limits_{n=0}^{\infty}c_nx^n$ \Rightarrow There exists polynomial $f(x)$ s.t. $deg(f)< k$ $C(x)=\frac{f(x)}{g(x)}$

There exist polynomials P_1,\dots,P_k s.t. $deg(P_i) < e_i$ $\Rightarrow [x^n] rac{f(x)}{g(x)} = P_1(n)r_1^n + P_2(n)r_2^n + \dots + P_k(n)r_k^n$	
Characteristic Polynomial	
$h(x)=q_k+q_{k-1}x+\ldots+q_1x^{k-1}+x^k$ for recurrence: $c_n+q_1c_{n-1}+\ldots+q_kc_{n-k}=0$	
Theorem:	
Roots: $r_1, r_2, \ldots, r_L \in \mathbb{C}$	
Multiplicities: $e_1, e_2, \dots, e_L \geq 1$	
\Rightarrow Then there exists polynomials P_1,\ldots,P_L s.t.	
$deg(f_j) = e_j - 1$ and $c_n = P_1(n)r_1^n + \ldots + P_L(n)r_L^n$	

Graph Theory

Handshaking Lemma	Corollary 4.3.2 (# of odd degrees)
$\sum\limits_{v \in v(G)} deg(v) = 2 E(G) $	Number of vertices of odd degree is even.
Corollary 4.3.3 (Average Vertex Degree)	Isomorphic
Avg vertex degree = $\frac{2 E(G) }{ V(G) }$	2 graphs G_1,G_2 are isomorphic if there exists a bijection $f:V(G_1) o V(G_2)$ s.t. $uv\in E(G)\iff f(u)f(v)\in E(G_2)$
Isomorphic Equivalence Relation	Complete Graphs (K_n)
1. A graph is isomorphic to itself (reflexive) 2. If $G_1\cong G_2\Rightarrow G_2\cong G_1$ (symmetric) 3. If $G_1\cong G_2$ and $G_2\cong G_3\Rightarrow G_1\cong G_3$ (transitive)	Every pair of vertices is an edge. # of edges = $\binom{n}{2}$
Regular Graphs (k-regular)	Bipartite Graphs
Graph where every vertex has degree k . # of edges = $\frac{nk}{2}$	Graph where there exists partition of vertices (A, B) s.t. each edge of G joins 1 vertex of B with a vertex in A .
Complete Bipartite Graphs $(K_{m,n})$	N-cube
Graph with partition (A,B) where all possible edges joining vertex in A with vertex in B. $ A =m, B =n \text{ where } m,n>0$ # of edges = mn	Graph where $V(G)=\{0,1\}^n$, and 2 strings are adjacent \iff they differ in 1 position. # of vertices = 2^n # of edges = $n2^{n-1}$ - Regular, bipartite
Theorem 4.5.2 (Walk, Path)	Corollary 4.6.3 (Path Transitive)
THEOTEHI 4.5.2 (Walk, Fath)	
If there is a u,v -walk in $G\Rightarrow$ there is a u,v -path in G .	If there exists u,v -path and v,w -path \Rightarrow there exists u,w -path.

Theorem 4.6.4 (Cycle, degree)	Girth
If every vertex in G has $deg \geq 2 \Rightarrow G$ has a cycle.	Length of graph's shortest cycle. If G has no cycles \Rightarrow girth = ∞
	- Measure of graph density- High girth = lower average degree (usually)
Spanning Cycle/Hamiltonian Cycle	Connectedness
Cycle that uses every vertex in the graph	Connected if there is a u,v -path for any pair of vertices u,v .
Theorem 4.8.2 (Connectedness)	Cuts
Let $u \in V(G)$ If u,v -path exists for each $v \in V(G) \Rightarrow G$ is connected.	Let $x \subseteq V(G)$. Cut induced by x in G is the set of all edges in G with exactly 1 end in x.
Theorem 4.8.5 (Disconnectedness)	Eulerian Circuit/Tour
G is disconnected \iff There exists a nonempty proper subset x of $V(G)$ s.t. the cut induced by x is \emptyset .	
Theorem 4.9.2 (Eulerian Circuit Vertices)	Bridge
G is connected. G has an Eulerian circuit \iff every vertex in G has even degree.	An edge $_{\it e}$ (or cut-edge) in $_{\it G}$ if $_{\it G}{\it e}$ has more components than $_{\it G}$.
Lemma 4.10.2 (Bridge Component)	Theorem 4.10.3 (Bridge, Cycle)
If $e=uv$ is a bridge in G and H is the component containing e $\Rightarrow H-e$ has exactly 2 components (hence $G-e$ has 1 more component than G) Moreover, u and v are in different components of $H-e$. (hence in $G-e$)	An edge e is a bridge of $G \iff e$ is not in any cyce of G .
Tree	Forest
Connected graph with no cycles # of edges = $n-1$ by Theorem 5.1.5 - Bipartite by Lemma 5.1.4	Graph with no cycles. # of edges = $n-k$, with n vertices and k components
Lemma 5.1.4 (Tree, Bridge)	Leaf
Every edge in a tree/forest is a bridge.	Tree with vertex degree 1.
Theorem 5.1.8 (Tree Leaves)	Lemma 5.1.3 (Unique Path Tree)
Every tree with ≥ 2 vertices has ≥ 2 leaves.	There is a unique path between any 2 vertices in a tree.

Theorem 5.2.1 (Connectedness, Spanning tree)	Corollary 5.2.2 (Connected, tree)
G is connected \iff G has a spanning tree.	If G is connected with n vertices and $n-1$ edges $\Rightarrow G$ is a tree.
Corollary (Tree-Graph equivalence)	Corollary 5.2.3 (Spanning Tree, Cycle)
If any of 2 the following 3 conditions hold $\Rightarrow G$ is a tree: 1. G is connected 2. G has no cycles. 3. G has $n-1$ edges.	If T is a spanning tree of G and e is an edge in G that is not in T $\Rightarrow T+e \text{ has exactly 1 cycle.}$ Moreover, if e' is an edge in C $\Rightarrow T+e-e' \text{ is a spanning tree of } G.$
Corollary 5.2.4 (Spanning Tree, Component)	Bipartite Characterization Theorem
If T is a spanning tree of G and e is an edge in T $\Rightarrow T-e$ has 2 components (e is a bridge in T). If e' is an edge in the cut induced by the vertices of 1 component $\Rightarrow T-e+e'$ is a spanning tree of G .	G is bipartite $\iff G$ has no odd cycles.
Minimum Spanning Tree (MST) Problem	Prim's Algorithm Theorem
Given connected graph G and weight function on edges $w:E(G)\to\mathbb{R}$, find minimum spanning tree in G whose total edge weight in minimized.	Prim's algorithm produces a MST.
Complement	Planar
If 2 vertices are adjacent in $G \iff$ The same 2 vertices are not adjacent in \bar{G} .	A graph is planar \iff Each component is planar
Face	Boundary
A face of a planar embedding is a connected region on the plane. 2 faces are adjacent ← The faces share ≥ 1 edge in their boundaries.	Subgraph of all vertices and edges that touch a face.
Boundary Walk	Handshaking Lemma for Faces
Closed walk once around the perimeter of the face boundary. Degree of face = length of boundary walk	Let G be a planar graph with planar embedding where F is the set of all faces. $\sum_{f \in F} deg(f) = 2 E(G) $
Lemma L7-1	Jordan Curve Theorem
In a planar embedding, an edge e is a bridge \iff The 2 sides of e are in the same face	Every planar embedding of a cycle separates the plane into 2 parts: 1 on the inside, 1 on the outside

Euler's Formula	Platonic
Let G be a connected planar graph. Let n = # of vertices in G . Let m = # of edges in G . Let s = # of faces in a planar embedding of G . $\Rightarrow n - m + s = 2$ Note : If G has G components $\Rightarrow n - m + s = 1 + C$ Result: All planar embeddings of a graph have the same number of faces.	A connected planar graph is platonic if it has a planar embedding where every vertex has same degree (\geq 3) AND every face has same degree (\geq 3)
Lemma 7.5.2	Lemma 7.5.1
Let G be a planar graph with n vertices and m edges. If there is a planar embedding of G where every face has degree ≥ 3 $\Rightarrow m \leq \frac{d(n-2)}{d-2}$	If G contains a cycle \Rightarrow In any planar embedding of G , every face boundary contains a cycle.
Theorem 7.5.3	Corollary 7.5.4
Let G be a planar graph with $n \geq 3$ vertices $\Rightarrow m \leq 3n-6$	K_{5} is not planar.
Theorem 7.5.6	Corollary 7.5.7
Let G be a bipartite planar graph with \geq 3 vertices and m edges. $\Rightarrow m \leq 2n-4$	$K_{3,3}$ is not planar.
Edge Subdivision	Kuratowski's Theorem
Edge subdivision of G is obtained by replacing each edge of G with a new path of length ≥ 1	A graph is planar \iff Graph does not have an edge subdivision of K_5 or $K_{3,3}$ as a subgraph.
K-colouring	Theorem 7.7.2
If C is a set of size k ("colours") $\Rightarrow f: V(G) \to C \text{ s.t. } f(u) \neq f(v) \ \forall uv \in E(G)$ Note : A k-colouring does not need to use all k colours.	G is 2-colourable $\iff G$ is bipartite
Theorem 7.7.3	6-Colour Theorem
K_n (complete graph) is n-colourable, and not k-colourable for any $k < n$	Every planar graph is 6-colourable.
Corollary 7.5.4	5-Colour Theorem
Every planar graph has a vertex of degree < 5	Every planar graph is 5-colourable.
<u> </u>	

If G is planar $\Rightarrow G/e$ is planar.	Every planar graph is 4-colourable.
Dual Graph Results L7-8(G^*)	Lemma 8.2.1
Key: Colouring faces is equivalent to colouring vertices of dual graph. The dual graph is planar. 1. If G is connected \Rightarrow $(G^*)^* = G$ 2. A vertex in G corresponds to a face in G^* of the same degree. 3. A face in G corresponds to a vertex in G^* of the same degree. 4. The dual of a platonic graph is platonic. 5. If we draw a closed curve on the plane \Rightarrow the faces are 2-colourable.	If M is any matching of G and C is any cover in $G \Rightarrow M \leq C $
Lemma 8.2.2	Konig's Theorem
If M is a matching of G and C is a cover of G where $ M = C $ $\Rightarrow M$ is a maximum matching of G and C is a minimum cover of G .	In a bipartite graph, the size of a maximum matching = size of a minimum cover.
Augmenting Path Results L8-2	Lemma 8.1.1
Let M be a matching. Let P be an augmenting path. Let M' be a new matching from P. $\Rightarrow M' = [M \cup (E(P) \setminus M)] \setminus (E(P) \cap M)$ Notes: - P is always odd length (L8-2 for proof) - P always starts and ends in different parts of the bipartition.	If a matching M has an augmenting path $\Rightarrow M$ is a maximum.
Bipartite Matching Algorithm	Corollary L8-4
Minimum cover = $Y \cup (A \setminus X)$	A bipartite graph G with m edges and maximum degree d has a matching of size $\geq \frac{m}{d}$
Neighbour Set $(N_G(D) \text{ or } N(D))$	Hall's Theorem
Let $D \subseteq V(G)$. Neighbour set of D is set of all vertices adjacent to at least 1 vertex in D .	A bipartite graph G with bipartition (A,B) has a matching that saturates all vertices in A $\iff \forall \ D\subseteq A, N(D) \geq D $ (Aka Hall's Condition)
	Cavallam I O C
Corollary 8.6.2	Corollary L8-6

