Laboratorium identyfikacji systemów

Instytut Automatyki i Robotyki (IAR) Politechnika Poznańska (PP) opracowanie: Maciej M. Michałek

C4 Rekursywna parametryczna identyfikacja systemów

Ćwiczenie poświęcone jest rekursywnym wersjom metod LS oraz IV identyfikacji parametrycznej. Zastosowanie algorytmów rekursywnych: (a) pozwala na ograniczenie objętości wymaganej pamięci do składowania danych, (b) upraszcza obliczenia numeryczne w procesie estymacji parametrycznej (brak konieczności odwracania macierzy danych pomiarowych), (c) umożliwia wykorzystanie aktualnego modelu systemu w czasie rzeczywistym (tj. na bieżąco), co ma szczególne znaczenie np. w realizacji algorytmów sterowania adaptacyjnego lub w zastosowaniach służących diagnostyce uszkodzeń/awarii systemu. Podczas ćwiczenia przyjęte zostanie założenie o znajomości struktury identyfikowanego systemu przy nieznajomości wartości jego parametrów (model i identyfikacja typu GREY-BOX).

1 Identyfikacja bezpośrednia systemu dynamicznego czasu dyskretnego metodami RLS oraz RIV

Rekursywne algorytmy identyfikacji RLS oraz RIV (Recursive LS/IV) wynikają z przekształcenia estymatorów wsadowych zdefiniowanych dla danych spróbkowanych. Stanowią one zatem rekursywne odpowiedniki metod wsadowych (LS lub IV) i asymptotycznie (tj. dla liczby danych $N \to \infty$) charakteryzują się tymi samymi właściwościami statystycznymi co oryginalne metody wsadowe, odpowiednio, LS oraz IV.

W dalszej części rozważań zakładamy, że strukturę rzeczywistego systemu dynamicznego czasu dyskretnego *generującego* dane pomiarowe można zapisać w postaci regresyjnej, tzn.:

$$y(n) = G_{o}(q^{-1}, \boldsymbol{p}_{o})u(n) + v^{*}(n) \qquad \Rightarrow \qquad y(n) = \boldsymbol{\varphi}^{\top}(n)\,\boldsymbol{p}_{o} + v(n),$$
 (1)

gdzie $v^*(n)$ i v(n) są zakłóceniami stochastycznymi (białymi lub kolorowymi), a p_0 reprezentuje wektor rzeczywistych parametrów systemu.

Charakterystyczną cechą metod rekursywnych jest iteracyjny sposób realizacji obliczeń estymat parametrów, gdzie w każdym kroku iteracji aktualizacja estymat jest wyznaczana na podstawie bieżącej pary pomiarów wejścia i wyjścia identyfikowanego systemu. Estymata parametrów $\hat{p}(n)$ w dyskretnej chwili n-tej jest zatem uaktualniana według następującego ogólnego schematu:

$$\hat{\boldsymbol{p}}(n) = \hat{\boldsymbol{p}}(n-1) + \boldsymbol{k}(n)\,\varepsilon(n),\tag{2}$$

gdzie $k(n) \varepsilon(n)$ jest poprawką, którą określa się na podstawie nowej pary pomiarów $\{y(n), u(n)\}$. Wielkość $\varepsilon(n) = y(n) - \varphi^{\top}(n) \hat{p}(n-1)$ jest bieżącą wartością błędu predykcji (obliczaną na podstawie estymaty parametrów z poprzedniej iteracji), natomiast $k(n) \in \mathbb{R}^d$ jest wektorowym wzmocnieniem zależnym od aktualnej macierzy kowariancyjnej. Należy zaznaczyć, że pomimo zapisu równania aktualizacji (2) w dziedzinie czasu dyskretnego, symbol n może alternatywnie oznaczać po prostu numer iteracji, jeżeli obliczenia nie są wykonywane w czasie rzeczywistym a raczej jako szeregowe przetwarzanie wsadu danych pomiarowych $\mathbf{Z}^N = \{y(n), u(n)\}_{n=0}^{N-1}$.

Pełny schemat obliczeń rekursywnej metody LS (czyli metody RLS) w dziedzinie czasu

dyskretnego jest następujący:

$$\hat{\boldsymbol{p}}^{LS}(n) = \hat{\boldsymbol{p}}^{LS}(n-1) + \boldsymbol{k}(n)\,\varepsilon(n),\tag{3}$$

$$\varepsilon(n) = y(n) - \boldsymbol{\varphi}^{\mathsf{T}}(n)\,\hat{\boldsymbol{p}}^{\mathsf{LS}}(n-1),\tag{4}$$

$$\mathbf{k}(n) = \mathbf{P}^{LS}(n)\,\boldsymbol{\varphi}(n),\tag{5}$$

$$\mathbf{P}^{\mathrm{LS}}(n) = \mathbf{P}^{\mathrm{LS}}(n-1) - \frac{\mathbf{P}^{\mathrm{LS}}(n-1)\boldsymbol{\varphi}(n)\boldsymbol{\varphi}^{\mathsf{T}}(n)\mathbf{P}^{\mathrm{LS}}(n-1)}{1 + \boldsymbol{\varphi}^{\mathsf{T}}(n)\mathbf{P}^{\mathrm{LS}}(n-1)\boldsymbol{\varphi}(n)},\tag{6}$$

przy czym ze względu na ciąg przyczynowy obliczenia wykonuje się w każdym kroku w kolejności $(6) \rightarrow (5) \rightarrow (4) \rightarrow (3)$. Warto zwrócić uwagę, iż (w odróżnieniu od metody wsadowej) równanie (3) definiuje pewien proces obliczeniowy, którego wynik poczynając od warunków początkowych $\hat{\boldsymbol{p}}^{\mathrm{LS}}(0)$, $\boldsymbol{P}^{\mathrm{LS}}(0)$ będzie ewoluował w czasie dyskretnym poprzez stany przejściowe aż do stanu ustalonego (teoretycznie osiąganego dla $n \rightarrow \infty$). Po zaniknięciu stanów przejściowych (w praktyce przyjmujemy, że nastąpi to w przybliżeniu w czasie skończonym $n \rightarrow N-1$ dla dostatecznie dużej wartości N) estymata $\hat{\boldsymbol{p}}^{\mathrm{LS}}(N-1)$ winna odpowiadać (przynajmniej w sensie statystycznym) wartości etymatora LS metody wsadowej uzyskanej dla zbioru N pomiarów. Warunki początkowe $\hat{\boldsymbol{p}}^{\mathrm{LS}}(0)$ oraz $\boldsymbol{P}^{\mathrm{LS}}(0)$ dla rekursji (3)-(6) można wybrać na różne sposoby, np.:

- ulletwybór na podstawie wiedzy wstępnej o możliwym zakresie wartości parametrów $oldsymbol{p}_{\mathrm{o}},$
- wybór arbitralny np.: $\hat{\boldsymbol{p}}^{\mathrm{LS}}(0) := \boldsymbol{0}, \ \boldsymbol{P}^{\mathrm{LS}}(0) := \rho \cdot \boldsymbol{I}, \ \mathrm{gdzie} \ \rho \gg 0, \ \mathrm{a} \ \boldsymbol{I} \in \mathbb{R}^{d_p \times d_P} \ \mathrm{jest}$ macierzą jednostkową, natomiast $d_p = \dim(\hat{\boldsymbol{p}}^{\mathrm{LS}}).$

W interpretacji statystycznej odwrotność macierzy $\mathbf{P}^{\mathrm{LS}}(0)$ reprezentuje stopień wiarygodności jakim obdarzamy początkową estymatę $\hat{\mathbf{p}}^{\mathrm{LS}}(0)$. Ponadto przy zgodności struktury modelu ze strukturą systemu oraz jeżeli zakłócenie v(n) w (1) jest szumem białym o wariancji σ_{o}^2 , wówczas

$$Cov[\hat{\boldsymbol{p}}^{LS}] = \sigma_o^2 \boldsymbol{P}^{LS}. \tag{7}$$

Zwróćmy uwagę na ważną właściwość macierzy kowariancyjnej obliczanej na podstawie równania (6), a mianowicie:

$$\mathbf{P}^{\mathrm{LS}}(n) \stackrel{n \to \infty}{\longrightarrow} \mathbf{0},\tag{8}$$

co oznacza, że przy założeniu nieustannego pobudzania systemu estymata $\hat{p}^{\mathrm{LS}}(n)$ będzie dla $n \to \infty$ zmierzała do pewnej stałej wartości granicznej $\hat{p}^{\mathrm{LS}}_{\mathrm{lim}}$ (zbieżność wg prawdopodobieństwa). Wartość graniczna $\hat{p}^{\mathrm{LS}}_{\mathrm{lim}}$ będzie odpowiadała prawdziwym parametrom p_{o} , jeżeli spełnione będą założenia dotyczące białości zakłócenia v(n) w strukturze (1) oraz zgodności struktury modelu ze strukturą identyfikowanego systemu, a sygnał wejściowy u(n) będzie nieustannie pobudzający.

Metoda zmiennych instrumentalnych (IV) wykazuje odporność na niespełnienie założenia o białości zakłócenia v(n) w równaniu (1). Rekursywna wersja metody IV (tj. metoda RIV) jest opisana następującym zestawem równań:

$$\hat{\boldsymbol{p}}^{\text{IV}}(n) = \hat{\boldsymbol{p}}^{\text{IV}}(n-1) + \boldsymbol{k}(n)\,\varepsilon(n),\tag{9}$$

$$\varepsilon(n) = y(n) - \boldsymbol{\varphi}^{\top}(n)\,\hat{\boldsymbol{p}}^{\text{IV}}(n-1),\tag{10}$$

$$\mathbf{k}(n) = \mathbf{P}^{\text{IV}}(n) \, \mathbf{z}(n), \tag{11}$$

$$\mathbf{P}^{\mathrm{IV}}(n) = \mathbf{P}^{\mathrm{IV}}(n-1) - \frac{\mathbf{P}^{\mathrm{IV}}(n-1)\mathbf{z}(n)\boldsymbol{\varphi}^{\top}(n)\mathbf{P}^{\mathrm{IV}}(n-1)}{1 + \boldsymbol{\varphi}^{\top}(n)\mathbf{P}^{\mathrm{IV}}(n-1)\mathbf{z}(n)},$$
(12)

gdzie z(n) jest wektorem zmiennych instrumentalnych obliczanych tak, aby zapewnić ich (silne) skorelowanie ze elementami wektora regresji $\varphi(n)$ oraz nieskorelowanie z zakłóceniem v(n) z równania (1). Także tutaj kolejność obliczeń jest następująca: $(12) \rightarrow (11) \rightarrow (10) \rightarrow (9)$. Zastosowanie metody zmiennych instrumentalnych umożliwia uzyskanie zgodnego estymatora parametrów (tj. $\hat{p}^{\text{IV}}(n) \stackrel{n \to \infty}{\longrightarrow} p_0$ wg prawdopodobieństwa) pomimo, iż zakłócenie v(n) w równaniu

(1) nie jest szumem białym. Jakość estymacji metodą RIV zależy, między innymi, od sposobu generowania zmiennych w wektorze z(n). Jednym ze sposobów wyznaczania zmiennych instrumentalnych jest przyjęcie następującej definicji

$$\boldsymbol{z}(n) \stackrel{\Delta}{=} \left[-x(n-1) - x(n-2) \dots - x(n-n_a) \quad u(n-1) \ u(n-2) \dots u(n-n_b) \right]^{\top}, \tag{13}$$

gdzie x(k), $k = n - 1, ..., n - n_a$, jest próbką odpowiedzi <u>modelu symulowanego</u> w chwili k-tej, obliczaną z wykorzystaniem estymaty parametrów z poprzedniej iteracji algorytmu RIV:

$$x(n) := G(q^{-1}, \hat{\mathbf{p}}^{\text{IV}}(n-1))u(n)$$

$$\downarrow \downarrow$$

$$A(q^{-1}, \hat{\mathbf{p}}^{\text{IV}}(n-1))x(n) = B(q^{-1}, \hat{\mathbf{p}}^{\text{IV}}(n-1))u(n).$$
(14)

Należy zwrócić uwagę, że model symulowany (14) jest uaktualniany w każdej chwili n (w każdej iteracji algorytmu RIV) poprzez wykorzystanie do obliczeń najbardziej aktualnej estymaty wektora parametrów, tj. $\hat{\boldsymbol{p}}^{\text{IV}}(n-1)$. Wybór warunków początkowych $\hat{\boldsymbol{p}}^{\text{IV}}(0)$ i $\boldsymbol{P}^{\text{IV}}(0)$ dla rekursji (9)-(12) wynika z analogicznych przesłanek jak dla metody RLS (patrz wyżej).

1.1 Identyfikacja systemu dynamicznego czasu dyskretnego metodą RLS.

• Plik SystemARMAX.mdl zawiera blok reprezentujący system dynamiczny czasu dyskretnego o następującej strukturze:

$$y(n) = \underbrace{\frac{b_{20}q^{-2}}{1 + a_{10}q^{-1} + a_{20}q^{-2}}}_{G_0(q^{-1}, \mathbf{p}_0)} u(n) + \underbrace{\frac{1 + c_{10}q^{-1}}{1 + a_{10}q^{-1} + a_{20}q^{-2}}}_{H_0(q^{-1}, \mathbf{p}_0)} e(n), \tag{15}$$

gdzie a_{10}, a_{20}, b_{20} i c_{10} reprezentują rzeczywiste parametry systemu, a e(n) jest szumem białym. Model systemu (15) należy do rodziny ARMAX o postaci ogólnej: $Ay(n) = Bu(n) + Ce(n) \Rightarrow y(n) = Gu(n) + He(n), \quad G = B/A, \quad H = C/A.$ Jeżeli w systemie $c_{10} = 0$, wówczas struktura modelu odpowiadająca systemowi (15) redukuje się do typu ARX. Dla $c_{10} \neq 0$ zakłócenie $(1 + c_{10}q^{-1})e(n)$ jest już kolorowe z wszelkimi konsekwencjami tego faktu.

- Zapisać model rzeczywistego systemu (15) w postaci regresji liniowej przyjmując $v(n) := (1 + c_{10}q^{-1})e(n)$.
- Zainicjować następujące zmienne globalne: Tp=0.1, Tend=1000, Td=1500, które oznaczają (w sekundach), odpowiednio: okres próbkowania, horyzont czasowy symulacji oraz czas, po którym nastąpi zmiana wartości parametru b₂₀ (tutaj Tend<Td, więc zmiana nie nastąpi wcale identyfikowany system będzie miał stałe parametry w całym horyzoncie symulacji). Uwaga: Wszystkie bloki obliczeniowe należy synchronizować tym samym okresem próbkowania Tp, a w ustawieniach symulacji wymusić: Type: Fixed-step, Solver: discrete (no continuous states). Wewnątrz bloku ARMAX w pliku SystemARMAX.mdl przełącznik wyboru rodzaju zmiany parametru b₂₀ należy ustawić w pozycję 'skokowe zmiany parametru'.
- Zainicjować wartość parametru $c_{1o}=0$ (utworzyć w tym celu zmienną globalną c1o w środowisku Matlab) w celu wymuszenia zakłócenia $v(n)\equiv e(n)$ w równaniu regresji. Przeprowadzić identyfikację parametryczną toru sterowania systemu (15) metodą RLS przyjmując jako wejście pobudzające u(n) sygnał prostokątny (symetryczny względem zera) o amplitudzie jednostkowej i częstotliwości $f_u=0.025\,\mathrm{Hz}$. Przyjąć zerowy warunek początkowy dla estymat.
- Przeanalizować przebiegi estymat $\hat{p}^{LS}(n)$ dla wartości $\rho \in \{10, 1, 0.1\}$ używanych do inicjalizacji macierzy $P^{LS}(0)$.

- Sprawdzić przebieg śladu macierzy ${m P}^{ ext{LS}}(n)$ podczas estymacji (funkcja $ext{trace()}$).
- Zaimplementować bloki wyznaczające odpowiedź <u>modelu symulowanego</u> oraz odpowiedź <u>predyktora jednokrokowego</u> dla systemu (15) tak, aby oba bloki wykorzystywały do obliczeń aktualne estymaty parametrów. Sprawdzić jakość identyfikacji porównując (w czasie rzeczywistym podczas estymacji i przy tym samym pobudzeniu u(n)):
 - odpowiedź modelu symulowanego $y_m(n)$ z odpowiedzią niezakłóconą $y_o(n)$ systemu (oznaczenie 'yo(n)' w bloku z pliku SystemARMAX.mdl),
 - odpowied
ź predyktora jednokrokowego $\hat{y}(n|n-1)$ z zakłóconą odpowiedzi
ąy(n)systemu,
 - odpowiedź modelu symulowanego $y_m(n)$ z odpowiedzią y(n) systemu.

Które z powyższych porównań sygnałów jest najbardziej miarodajne z punktu widzenia oceny jakości identyfikacji? Czy wszystkie powyższe porównania można wykonać w praktyce?

• Zainicjować wartość parametru $c_{1o} = 0.7$ w celu wymuszenia zakłócenia kolorowego $v(n) = (1 + c_{1o}q^{-1})e(n)$ w równaniu regresji. Ponownie przeprowadzić identyfikację parametryczną metodą RLS i przeanalizować zbieżność estymat $\hat{p}^{LS}(n)$.

1.2 Identyfikacja systemu dynamicznego czasu dyskretnego metodą RIV.

- Zainicjować wartość parametru $c_{1o} = 0.7$ w celu wymuszenia zakłócenia kolorowego w równaniu regresji. Przeprowadzić identyfikację parametryczną toru sterowania systemu (15) stosując metodę RIV ze zmiennymi instrumentalnymi z(n) obliczanymi zgodnie z regułą (13)-(14). Przeanalizować zbieżność estymat $\hat{p}^{IV}(n)$.
- Sprawdzić jakość identyfikacji porównując (w czasie rzeczywistym podczas estymacji i przy tym samym pobudzeniu u(n)):
 - odpowiedź modelu symulowanego $y_m(n)$ z odpowiedzią niezakłóconą $y_o(n)$ systemu (oznaczenie 'yo(n)' w bloku identyfikowanego systemu z pliku SystemARMAX.mdl),
 - odpowiedź modelu symulowanego $y_m(n)$ z odpowiedzią y(n) systemu.

Czy oba powyższe porównania umożliwiają podobną ocenę jakości identyfikacji i czy oba porównania można wykonać w praktyce?

 \bullet Sprawdzić przebieg śladu macierzy kowariancyjnej $\boldsymbol{P}^{\mathrm{IV}}(n)$ podczas identyfikacji.

2 Adaptacyjna identyfikacja niestacjonarnego systemu dynamicznego czasu dyskretnego

Można podać wiele przykładów systemów, których parametry ulegają zmianie bądź w sposób gwałtowny (np. co pewien interwał czasowy), bądź powolny lecz ustawiczny¹ (mówi się wtedy o tzw. dryfie parametrów); opis regresyjny systemu niestacjonarnego przyjmuje postać:

$$y(n) = \boldsymbol{\varphi}^{\top}(n)\boldsymbol{p}_{0}(n) + v(n). \tag{16}$$

W przypadku systemu niestacjonarnego algorytmy identyfikacji powinny mieć zdolność do śledzenia (w czasie rzeczywistym) zmian wartości parametrów systemu tak, aby wyznaczany

¹Rozważamy zmiany wyłącznie parametrów zakładając, że struktura systemu nie ulega zmianie.

model był w danym momencie jak najbardziej aktualny – mówimy w tym przypadku o *identyfikacji adaptacyjnej*. Podstawowe metody RLS i RIV rozważane w poprzednim punkcie nie mają zdolności adaptacyjnych, ponieważ ślad macierzy kowariancyjnej zbiega z upływem czasu asymptotycznie do zera i tym samym zdolność do korekty wektora estymat parametrów jest z biegiem czasu coraz mniejsza.

Aby zagwarantować gotowość algorytmu identyfikacyjnego do śledzenia zmiennych w czasie parametrów systemu należy zapewnić, by ślad macierzy kowariancyjnej P(n) nie zbiegał do zera. Właściwość tę można uzyskać stosując jeden z trzech klasycznych mechanizmów:

• wprowadzenie do równania aktualizacji macierzy P(n) tzw. współczynnika zapominania $\lambda \in (0;1)$ (zwykle w celu śledzenia parametrów wolnozmiennych); równania estymacji rekursywnej przyjmują w tym przypadku następującą postać:

$$\hat{\boldsymbol{p}}(n) = \hat{\boldsymbol{p}}(n-1) + \boldsymbol{k}(n)\,\varepsilon(n),\tag{17}$$

$$\varepsilon(n) = y(n) - \varphi^{\top}(n)\,\hat{\boldsymbol{p}}(n-1),\tag{18}$$

$$\mathbf{k}(n) = \mathbf{P}(n)\,\boldsymbol{\zeta}(n),\tag{19}$$

$$\mathbf{P}(n) = \frac{1}{\lambda} \left[\mathbf{P}(n-1) - \frac{\mathbf{P}(n-1)\boldsymbol{\zeta}(n)\boldsymbol{\varphi}^{\top}(n)\mathbf{P}(n-1)}{\lambda + \boldsymbol{\varphi}^{\top}(n)\mathbf{P}(n-1)\boldsymbol{\zeta}(n)} \right], \tag{20}$$

przy czym dla $\zeta(n):=\varphi(n)$ otrzymamy metodę RLS_{λ}, natomiast dla $\zeta(n):=z(n)$ możemy mówić o algorytmie RIV_{λ},

- poprzez resetowanie macierzy kowariancyjnej w celu śledzenia gwałtownych lecz sporadycznych zmian parametrów systemu; resetowanie polega na przypisywaniu do macierzy P założonej macierzy nieujemnie określonej, gdy spełniony zostanie odpowiedni warunek resetowania:
 - R1. resetowanie okresowe (z okresem T > 0)

$$P(n) := diag\{\rho_1, ..., \rho_{d_p}\}, \quad gdy \quad n = kT, \ k = 1, 2, ...$$

R2. resetowanie z warunkiem na wartość błędu predykcji ε lub błędu wyjściowego ε_{OE}

$$P(n) := \operatorname{diag}\{\rho_1, \dots, \rho_{d_n}\}, \quad \operatorname{gdy} \quad |\varepsilon(n)| > \varepsilon_{\max} \quad \text{lub} \quad |\varepsilon_{\text{OE}}(n)| > \varepsilon_{\max}$$

R3. resetowanie z warunkiem na wartość śladu macierzy kowariancyjnej

$$P(n) := \operatorname{diag}\{\rho_1, \dots, \rho_{d_n}\}, \quad \operatorname{gdy} \quad \operatorname{tr}(P(n)) < P_{\min}$$

przy czym $d_p = \dim(\hat{\boldsymbol{p}})$, natomiast $\rho_i \geqslant 0, T > 0, \varepsilon_{\max} > 0$ oraz $P_{\min} > 0$ są parametrami projektowymi; powyższe warunki resetowania można łączyć (np. stosując koniunkcję warunków) lub modyfikować w zależności od zastosowania i warunków identyfikacji systemu,

• wykorzystanie koncepcji filtracji Kalmana w celu **śledzenia ustawicznych zmian parametrów** $p_{o}(n)$ o charakterze tzw. *błądzenia losowego*, które można opisać za pomocą następującego równania różnicowego

$$\boldsymbol{p}_{o}(n) = \boldsymbol{p}_{o}(n-1) + \boldsymbol{w}(n-1), \quad \operatorname{Cov}[\boldsymbol{w}(n)] = \boldsymbol{V}_{o} = \operatorname{diag}\{v_{1o}, \dots, v_{d_{no}}\},$$
 (21)

gdzie w(n) jest wektorem (pomiarowo niedostępnych) nieskorelowanych zaburzeń losowych o jednakowym rozkładzie normalnym i diagonalnej macierzy kowariancji V_0 ; w takim przypadku równania rekursywnej estymacji parametrów przyjmują postać:

$$\hat{\boldsymbol{p}}(n) = \hat{\boldsymbol{p}}(n-1) + \boldsymbol{k}(n)\,\varepsilon(n),\tag{22}$$

$$\varepsilon(n) = y(n) - \varphi^{\top}(n)\,\hat{\boldsymbol{p}}(n-1),\tag{23}$$

$$\boldsymbol{k}(n) = \boldsymbol{P}(n|n-1)\boldsymbol{\varphi}(n)[1+\boldsymbol{\varphi}^{\top}(n)\boldsymbol{P}(n|n-1)\boldsymbol{\varphi}(n)]^{-1}, \tag{24}$$

$$\mathbf{P}(n) = \mathbf{P}(n|n-1) - \mathbf{k}(n)\boldsymbol{\varphi}^{\top}(n)\mathbf{P}(n|n-1), \tag{25}$$

$$P(n|n-1) = P(n-1) + \hat{V}^*, \tag{26}$$

gdzie dobierana doświadczalnie macierz $\hat{\boldsymbol{V}}^* := \mathrm{diag}\{\hat{\mathbf{v}}_1^*, \dots, \hat{\mathbf{v}}_{d_p}^*\}, \ \hat{\mathbf{v}}_i^* \geqslant 0, \ i=1,\dots,d_p$ posiada niezerowe elementy na tych pozycjach diagonali, które odpowiadają zmiennym w czasie parametrom modelu. Macierz $\hat{\boldsymbol{V}}^*$ jest oszacowaniem ilorazu $\boldsymbol{V}_{\mathrm{o}}/\sigma_{\mathrm{o}}^2$, gdzie σ_{o}^2 reprezentuje wariancję białego zakłócenia $v(n) \equiv e(n)$ z równania systemu (16) (w ujęciu Kalmana jest to jednocześnie równanie wyjścia stowarzyszone z równaniem stanu (21), gdzie $\boldsymbol{p}_{\mathrm{o}}$ pełni rolę wektora stanu).

Koszt wprowadzenia jakiegokolwiek z powyższych mechanizmów jest zwykle związany ze zwiększoną fluktuacją estymat parametrów podczas procesu estymacji. Zatem stopień modyfikacji wprowadzany przez powyższe mechanizmy (wynikający z doboru wartości parametrów λ , \hat{v}_i^* , ρ_i , T, $\varepsilon_{\rm max}$, $P_{\rm min}$) powinien wynikać z kompromisu między zdolnością estymatora do śledzenia zmian parametrów systemu a poziomem fluktuacji estymat parametrów.

2.1 Adaptacyjna identyfikacja systemu dynamicznego czasu dyskretnego.

- Dostosować schemat obliczeń z punktu 1 poprzez zainicjowanie parametrów Tend = 1500, Td = 500 skokowa zmiana wartości parametru b_{20} systemu (16) nastąpi dla chwilach $t_1 = n_1 T_p = 500\,\mathrm{s}$ oraz $t_2 = n_2 T_p = 1000\,\mathrm{s}$. Wewnątrz bloku ARMAX w pliku SystemARMAX.mdl przełącznik wyboru rodzaju zmiany parametru b_{20} należy ustawić w pozycję 'skokowe zmiany parametru'.
- Przyjąć parametr $c_{1o} = 0$ (zakładamy zakłócanie szumem białym w równaniu regresyjnym).
- Stosując metodę RLS $_{\lambda}$ wg wzorów (17)-(20) przeprowadzić identyfikację parametryczną toru sterowania systemu (16) przyjmując współczynnik λ z zakresu [0.98; 0.999]. Szczególną uwagę zwrócić na zdolność estymatora do śledzenia zmian parametru $b_{20}(n)$ systemu (zmianę wartości $b_{20}(n)$ można obserwować wyświetlając wyjście 'b2o' bloku identyfikowanego systemu w pliku SystemARMAX.mdl). Sprawdzić przebieg śladu macierzy kowariancyjnej P(n) podczas identyfikacji.
- Sprawdzić wpływ wartości współczynnika $\lambda \in (0;1)$ na jakość identyfikacji i fluktuacje estymat parametrów.
- Przeanalizować jakość identyfikacji adaptacyjnej stosując mechanizm resetowania macierzy kowariancyjnej P(n) zastosować połączone kryteria R2 do R3, tj.:

IF
$$[|\varepsilon_{\text{OE}}| > \varepsilon_{\text{max}}] \wedge [\text{tr}(\boldsymbol{P}) < P_{\text{min}}]$$
 THEN $\boldsymbol{P} := \text{diag}\{\rho_1, \dots, \rho_{d_p}\}$ END.

Sprawdzić wpływ wartości parametrów ρ_i na jakość identyfikacji i fluktuacje estymat parametrów biorąc do operacji resetowania następujące macierze:

$$P := diag\{10, 10, 10\}, \quad P := diag\{0, 0, 10\}, \quad P := diag\{0, 0, 1\}.$$

- Sprawdzić jakość identyfikacji stosując metodę RIV $_{\lambda}$ oraz RIV z resetowaniem macierzy kowariancyjnej dla $c_{1o}=0.7$ (zakłócenie kolorowe w równaniu regresyjnym systemu).
- Wewnątrz bloku ARMAX w pliku Systemarmax.mdl przełącznik wyboru rodzaju zmiany parametru b_{20} należy ustawić w pozycję 'błądzenie losowe parametru'. Stosując metodę filtracji Kalmana przeprowadzić identyfikację parametryczną toru sterowania systemu (16) z wykorzystaniem aktualizacji (22)-(26) biorąc:

$$\hat{\mathbf{V}}^* := \operatorname{diag}\{1, 1, 1\} \cdot 10^{-4}, \quad \hat{\mathbf{V}}^* := \operatorname{diag}\{0, 0, 0.001\}, \quad \hat{\mathbf{V}}^* := \operatorname{diag}\{0, 0, 0.01\}.$$

Zwrócić uwagę na zdolność estymatora do śledzenia zmiennego parametru $b_{2o}(n)$ oraz na zbieżność i poziom fluktuacji estymat wszystkich parametrów.

3 Identyfikacja bezpośrednia systemu dynamicznego czasu ciągłego metodą RIV

Bezpośrednia rekursywna identyfikacja systemu czasu ciągłego

$$[y(t)] = G_{o}(s, \mathbf{p}_{o})[u(t)] + [v(t)] = \frac{B_{o}(s, \mathbf{p}_{o})}{A_{o}(s, \mathbf{p}_{o})}[u(t)] + [v(t)],$$
(27)

gdzie $[v(t)] = H_0(s)[e(t)]$ reprezentuje (jako filtrowany szum biały) zakłócenie stochastyczne o nieznanej charakterystyce, wymaga zapisu modelu systemu

$$[y(t)] = G(s, \mathbf{p})[u(t)] + [v(t)] = \frac{B(s, \mathbf{p})}{A(s, \mathbf{p})}[u(t)] + [v(t)].$$
(28)

Model (28) można zapisać, z wykorzystaniem filtracji SVF, w postaci regresyjnej np. jako

$$\mathcal{Y}(nT_p) = \underbrace{\left[-y_F^{(n_a-1)}(nT_p) \dots - y_F(nT_p) \quad u_F^{(n_b)}(nT_p) \dots u_F(nT_p)\right]}_{\boldsymbol{\varphi}^{\top}(nT_p)} \boldsymbol{p} + \xi_F(nT_p), \tag{29}$$

przy czym

$$\mathcal{Y}(nT_p) \stackrel{\Delta}{=} y_F^{(n_a)}(nT_p) \tag{30}$$

jest umownym wyjściem w modelu regresyjnym (29), $\xi_F(nT_p)$ jest wypadkowym zakłóceniem w równaniu regresji (29), $[\xi(t)] = A(s, \mathbf{p})[v(t)]$, n_b i $n_a \ge n_b$ są stopniami wielomianów $B(s, \mathbf{p})$ i $A(s, \mathbf{p})$ modelu, natomiast indeks 'F' oznacza sygnały filtrowane wg następującej reguły:

$$\chi_F^{(i)}(nT_p) = \mathcal{L}^{-1} \left\{ F_{SVF}^i(s)[\chi(t)] \right\} \Big|_{t=nT_p}, \qquad \chi \in \{y, u, \xi\},$$
 (31)

z wykorzystaniem filtrów SVF postaci

$$F_{\text{SVF}}^{i}(s) \stackrel{\Delta}{=} \frac{s^{i}}{(1+sT_{F})^{n}}, \quad n \geqslant n_{a}, \quad T_{F} > 0.$$
 (32)

Przy odpowiednio dobranej wartości stałej czasowej T_F filtry SVF mogą jednocześnie pełnić rolę filtrów antyaliasingowych.

W przypadku zastosowania metody RIV zmienne instrumentalne dla modelu (29) można generować w następujący (tu: adaptacyjny) sposób:

$$\mathbf{z}(nT_p) = [-x_F^{(n_a-1)}(nT_p) \dots - x_F(nT_p) \quad u_F^{(n_b)}(nT_p) \dots u_F(nT_p)]^\top, \tag{33}$$

gdzie

$$x_F^{(i)}(nT_p) = \mathcal{L}^{-1} \left\{ F_{SVF}^i(s)[x(t)] \right\} \Big|_{t=nT_p},$$
 (34)

natomiast

$$[x(t)] \stackrel{\Delta}{=} G(s, \hat{\boldsymbol{p}}^{\text{IV}}(n-1))[u(t)] \tag{35}$$

jest odpowiedzią modelu symulowanego $G(s, \hat{\boldsymbol{p}}^{\text{IV}}(n-1)) \stackrel{\Delta}{=} X(s)/U(s)$ korzystającego z estymat parametrów $\hat{\boldsymbol{p}}^{\text{IV}}(n-1)$ wziętych z poprzedniej iteracji algorytmu RIV. Należy zauważyć, że przy powyższym zapisie równań (31) i (34) filtracja SVF odbywa się w **klasyczny** sposób, tj. PRZED próbkowaniem sygnałów branych do regresji liniowej (29) i do wektora zmiennych instrumentalnych (33).

Po spróbkowaniu sygnałów filtrowanych można wykorzystać równania (9)-(12) rekursywnej metody IV, zastępując w równaniu (10) pomiar wyjścia y(n) wartością umownego wyjścia $y(nT_p)$ zdefiniowanego w (30). Estymator metody zmiennych instrumentalnych może być zgodny, nawet jeżeli zakłócenie ξ_F w równaniu regresji (29) nie jest szumem białym.

3.1 Bezpośrednia identyfikacja systemu czasu ciągłego metodą RIV.

- Plik SystemSISOC.mdl zawiera blok identyfikowanego systemu czasu ciągłego reprezentowanego równaniem (27), o którym wiadomo, że $n_a = 2$ i $n_b = 0$ (wiedza wstępna o strukturze transmitancji G_o). Zakłada się, że pomiarowo dostępne są sygnały u(t) oraz y(t), przy czym sygnał y(t) zawiera zakłócenie stochastyczne.
- W przestrzeni roboczej środowiska Matlab zainicjować następujące parametry: $Tp=0.05\,\mathrm{s}$ oraz sigma2e=0.1. Do celów pobudzania identyfikowanego systemu wybrać sygnał prostokątny (symetryczny względem zera blok Signal Generator) o jednostkowej amplitudzie i częstotliwości $f_u=0.04\,\mathrm{Hz}$.
- W środowisku Simulink przygotować schemat blokowy eksperymentu identyfikacyjnego z odpowiednimi filtrami SVF minimalnego rzędu (należy użyć bloków transmitancji operatora Laplace'a s, aby uzyskać analogową wersję filtracji) oraz z modelem symulowanym czasu ciągłego z równania (35) działającymi w czasie rzeczywistym (tj. na bieżąco, podczas wykonywania symulacji). Implementację modelu symulowanego wykonać korzystając z metodyki tzw. analogowego modelowania równania różniczkowego z wykorzystaniem bloków całkujących.
- Czas symulacji dobrać tak, aby horyzont symulacji obejmował N=20000 próbek. Przyjąć stałą czasową filtrów SVF: $T_F=8T_p$. W ustawieniach symulacji wymusić: Max step size = 0.01, Solver: ode45 (Dormand-Prince), Type: Variable-step.
- Stosując metodę RIV przeprowadzić w czasie rzeczywistym rekursywną identyfikację parametryczną toru sterowania systemu z pliku SystemSISOC.mdl. Obserwować przebieg estymat $\hat{p}^{\text{IV}}(nT_p)$ przy jednoczesnym wyświetlaniu wartości numerycznych estymat w bloku Display. Bloki obliczeń estymatora RIV należy zsynchronizować okresem próbkowania T_p .
- Na wspólnym wykresie porównać przebiegi sygnałów: y(t), $y_o(t)$ oraz $y_m(t)$, gdzie $y_o(t)$ jest niezakłóconą odpowiedzią systemu (w praktyce niedostępną), natomiast $y_m(t)$ jest odpowiedzią modelu symulowanego na pobudzenie u(t). Uwaga: dla zmiennych instrumentalnych zdefiniowanych w (33) i przy aktualizacji estymat parametrów symulatora w trybie on-line zachodzi $x(t) \equiv y_m(t)$.
- Sprawdzić wpływ stałej czasowej filtrów $T_F \in \{8T_p, 40T_p, 400T_p\}$ na jakość identyfikacji i stan przejściowy estymat parametrów.