BF28W_M7: FINAL MODEL

Final bluefish model with NAA transitions modeled as random effects correlated by age and year

DATA PLOTS

Age Comps for Catch for Fleet 1

Age Comps for Catch for Fleet 2

Annual Weight-at-Age for January 1 Biomass

Annual Weight-at-Age for Total Catch

Maturity

BF28W_M7: FINAL MODEL

Final bluefish model with NAA transitions modeled as random effects correlated by age and year

DIAGNOSTIC PLOTS

Model years: 1985-2021

Projection years: none

Number of fleets: 2

Fleet Age Comp Models: Multinomial, Multinomial

Number of indices: 9

o Models: Multinomial, Multinom

Recruitment model: Random about mean

No Environmental covariates.

Number of Selectivity blocks: 14

Age-specific, Age-specific, Age-specific, Age-specific, Age-specific, Logistic(+), Age-specific, Age

Fleet 1 Selectivity Blocks: c(1, 2)

Fleet 2 Selectivity Blocks: c(3, 4, 5)

Index 1 Selectivity Blocks: 6

Index 2 Selectivity Blocks: 7

Index 3 Selectivity Blocks: 8

Index 4 Selectivity Blocks: 9

Index 5 Selectivity Blocks: 10

Conditional log-likelihood components Model: m7 2022-10-21 17:35:10

Fleet 1 Catch

Catch for Fleet 1 Observed

Catch for Fleet 1 Predicted

Catch for Fleet 2 Observed

Catch for Fleet 2 Predicted

Index 1 Observed

Index 1 Predicted

Index 2 Observed

Index 2 Predicted

Index 3 Observed

Index 3 Predicted

Index 4 Observed

Index 4 Predicted

Index 6 Observed

Index 6 Predicted

Index 8 Observed

Index 8 Predicted

-1.0

Year Class

Conditional Expected and Posterior Estimates of Age 1 Abundance

Conditional Expected and Posterior Estimates of Age 2 Abundance

Conditional Expected and Posterior Estimates of Age 3 Abundance

Conditional Expected and Posterior Estimates of Age 4 Abundance

Conditional Expected and Posterior Estimates of Age 5 Abundance

Conditional Expected and Posterior Estimates of Age 6 Abundance

Conditional Expected and Posterior Estimates of Age 7 Abundance

Age Comp Residuals (Observed-Predicted) for Fleet 1

Age Comp Residuals (Observed-Predicted) for Fleet 2

BF28W_M7: FINAL MODEL

Final bluefish model with NAA transitions modeled as random effects correlated by age and year

RESULTS PLOTS

Fleet 1

Fleet 2

Index 1

Index 2

Index 3

Index 4

Index 5

Index 6

Index 7

Index 9

BF28W_M7: FINAL MODEL

Final bluefish model with NAA transitions modeled as random effects correlated by age and year

REFERENCE POINT PLOTS

SPR Target Reference Points (Years Avg = 5)

% SPR	F(%SPR)	YPR	
0.2	0.4182	0.1617	
0.25	0.3471	0.1611	
0.3	0.2924	0.1584	
0.35	0.2485	0.1537	
0.4	0.2121	0.1475	
0.45	0.1813	0.14	
0.5	0.1546	0.1312	
0.55	0.1312	0.1215	
0.6	0.1104	0.1107	
0.65	0.0918	0.0992	
0.7	0.0751	0.0868	
0.75	0.0598	0.0738	
0.8	0.0459	0.0601	

APR(F**SPR)

1985 1990 1995 2000 2005 2010 2015 2020

Years

Frequencies of Annual F_{MSPR} Reference Points

Frequencies of Annual YPR(F_{NSPR}) Reference Points

YPR-SPR Reference Points (Years Avg = 5)

YPR-SPR Reference Points (Years Avg = 5)

F	YPR	SPR	F	YPR	SPR	F	YPR	SPR
0	0	1	0.35	0.1612	0.2476	0.7	0.1522	0.0938
0.01	0.0154	0.951	0.36	0.1614	0.2398	0.71	0.1518	0.0916
0.02	0.0295	0.9053	0.37	0.1616	0.2322	0.72	0.1514	0.0895
0.03	0.0422	0.8625	0.38	0.1617	0.225	0.73	0.151	0.0874
0.04	0.0538	0.8224	0.39	0.1618	0.2181	0.74	0.1506	0.0854
0.05	0.0644	0.7847	0.4	0.1618	0.2114	0.75	0.1503	0.0835
0.06	0.074	0.7493	0.41	0.1617	0.205	0.76	0.1499	0.0816
0.07	0.0827	0.7161	0.42	0.1616	0.1989	0.77	0.1495	0.0798
0.08	0.0907	0.6847	0.43	0.1615	0.193	0.78	0.1491	0.078
0.09	0.0979	0.6552	0.44	0.1614	0.1873	0.79	0.1487	0.0763
0.1	0.1045	0.6273	0.45	0.1612	0.1818	0.8	0.1483	0.0747
0.11	0.1105	0.601	0.46	0.161	0.1766	0.81	0.148	0.0731
0.12	0.116	0.5762	0.47	0.1607	0.1715	0.82	0.1476	0.0715
0.13	0.1209	0.5526	0.48	0.1605	0.1666	0.83	0.1472	0.07
0.14	0.1254	0.5304	0.49	0.1602	0.162	0.84	0.1469	0.0685
0.15	0.1295	0.5093	0.5	0.1599	0.1574	0.85	0.1465	0.0671
0.16	0.1332	0.4892	0.51	0.1596	0.1531	0.86	0.1462	0.0657
0.17	0.1366	0.4702	0.52	0.1593	0.1489	0.87	0.1458	0.0643
0.18	0.1396	0.4522	0.53	0.1589	0.1448	0.88	0.1455	0.063
0.19	0.1424	0.435	0.54	0.1586	0.1409	0.89	0.1451	0.0617
0.2	0.1449	0.4187	0.55	0.1582	0.1372	0.9	0.1448	0.0605
0.21	0.1471	0.4032	0.56	0.1579	0.1335	0.91	0.1445	0.0593
0.22	0.1491	0.3885	0.57	0.1575	0.13	0.92	0.1441	0.0581
0.23	0.1509	0.3744	0.58	0.1571	0.1266	0.93	0.1438	0.0569
0.24	0.1525	0.361	0.59	0.1567	0.1234	0.94	0.1435	0.0558
0.25	0.1539	0.3482	0.6	0.1563	0.1202	0.95	0.1432	0.0547
0.26	0.1552	0.336	0.61	0.1559	0.1172	0.96	0.1429	0.0537
0.27	0.1563	0.3243	0.62	0.1555	0.1142	0.97	0.1426	0.0527
0.28	0.1573	0.3132	0.63	0.1551	0.1114	0.98	0.1423	0.0517
0.29	0.1582	0.3025	0.64	0.1547	0.1086	0.99	0.142	0.0507
0.3	0.1589	0.2923	0.65	0.1543	0.1059	1	0.1417	0.0497
0.31	0.1596	0.2826	0.66	0.1539	0.1033	1.01	0.1414	0.0488
0.32	0.1601	0.2733	0.67	0.1535	0.1009	1.02	0.1411	0.0479
0.33	0.1606	0.2644	0.68	0.1531	0.0984	1.03	0.1408	0.047
0.34	0.1609	0.2558	0.69	0.1527	0.0961	1.04	0.1405	0.0462