Using ecological momentary assessment for temporally precise lapse prediction in alcohol use disorder

Kendra Wyant Sarah Sant'Ana Gaylen E. Fronk John J. Curtin

Addiction Research Center University of Wisconsin-Madison

Photo credit: liza summer (pexels.com)

Substance Use Disorders

- In 2022, 46 million U.S. adults with a past year SUD
- Few receive treatment
- Patients often leave treatment without proper supports in place
- Lapse = instance of goal-inconsistent substance use

Precision Mental Health

 A precision mental health paradigm for adaptive, continuous lapse risk monitoring could be an important step toward preventing relapse and improving continuity of care for SUDs

Ecological Momentary Assessment

- Direct and frequent insight into subjective feelings and experiences
- Constructs easily map onto well-studied risk factors for lapse
- Appears to be well-tolerated
- Predicting lapses and interpreting clinically relevant features over a sustained period

Participants

Study Design

- 3-month longitudinal study
- Participants provided 4x daily EMA

Alcohol use	Craving	Stressful events	Future risky situation
	Arousal	Pleasant events	Future stressful event
	Valence	Risky situations	Future efficacy

Modeling Decisions

- Next week, next day, and next hour lapse predictions
- Grouped Nested Cross Validation (3 x 10 outer; 1 x 10 inner)
- 286 features engineered from EMA items, day and time of label, missing surveys, and demographics
- True prediction
- Area under the ROC curve (auROC)
- XGBoost

Photo credit: Kelvin Valerio

- We can predict hour by hour probabilities of lapse at varying levels of temporal precision with excellent performance
- We can characterize the relative importance of features contributing to these risk probabilities for specific individuals at specific moments in time
- These models that predict and characterize immediate risk of lapse are well-suited for just in time personalized interventions

Thank you! kpaquette2@wisc.edu

Priors

- residual standard deviation ~ normal(location=0, scale=exp(2))
- intercept (after centering predictors) ~ normal(location=2.3, scale=1.3)
- the two coefficients for window width contrasts ~ normal (location=0, scale=2.69)
- covariance ~ decov(regularization=1, concentration=1, shape=1, scale=1).

Lapse Probabilities

Class Prediction

Dichotomize lapse probability based on a decision threshold

Lapse vs No lapse

		Truth			
		Lapse	No Lapse		
ction	Lapse	TP 17496	FA 40912		
Prediction	No Lapse	Misses 3611	TN 212160		

Sensitivity	.83
Specificity	.85
Positive Predictive Value	.30
Negative Predictive Value	.99

1 day model

Lapse Probabilities

Treatments can be selected based on severity of risk

EMA completion percentage is high

- 81% completion for 4x EMA
- 95% completion for 1x EMA