Thoughts on validation

Terry Therneau

Oct 2024

Validation

- ▶ Software validation. This is discussed in the validation vignette.
- ▶ Internal validation: checks that further examine the fit of a model, using the original data set. These form an extension of the familiar trio of functional form, proportional hazards, and undue leverage which have been discussed elsewhere.
- ► External validation. Application of a model to new data set, one which was not used in the model's construction.

What does it mean to validate?

"If you don't know where you are going, you might end up someplace else." – Yogi Berra

Question: Is a chosen model M applicable outside of the data set on which it was developed?

- ► Applicable to what?
 - Korn and Simon (1990), Measures of explained variation for survival data
 - Altman and Royston(2000), What does it mean to validate a model
- Say $(t_i \hat{t}_i)^2$ is the measure. Are the pair (.5, 1) and (5.5, 6) the same size error? Is (5.5, 6) an error at all?
- ▶ We want to use M to select subjects with expected survival of
- < 6 months for referral to supportive care
 - ▶ How well it predicts someone with 1 year vs 2 year is immaterial
- We just need a yes/no wrt 6 monthsUse M for a proposed biologic therapy
- No anticipated effect on deaths within 1 year
 - ► Separation of 2, 3, 4+ important for stratification

Dimensions

- ▶ There are at least 3 possible assessments
 - 1. The expected number of visits to state j, $E(N_j(t))$
 - 2. The probability in state j, $p_i(t)$
 - 3. The expected total sojourn time in state j, $s_j(t)$
- **Each** of these can be assessed at one or more chosen times τ .
- The validation data set is subject to censoring.
- Validation metrics

Censoring methods

- 1. Apply standard censored data methods to the validation data, and compare the results to the target model's predictions. I will sometimes call this the "yhat vs yhat" approach.
- 2. Create uncensored data specific to a chosen assessment time au, then use standard methods for uncensored data. Two approaches are
 - Use the redistribut-to-the-right (RTTR, IPC) algorithm to reassign the case weights of those observations censored prior to τ to others, resulting in a weighted subset who status at τ is known.
 - \triangleright Replace the response with pseudovalues at time τ .
- 3. For assessment type 1, the total number of events, we can compare the observed events to the expected number given per-subject followup.
 - Essentially a standardized mortality ratio (SMR, SIR) approach
 - If the model is correct $N(t) \Lambda(t)$ is a martingale, even if everyone has a different cut off time.
- 4. Ignore censoring.

Validation metrics

- Discrimination: are the predictions in the right order
- ▶ Calibration: are the predictions accurate, on an absolute scale
 - total is correct
 - linear rise of observed and predicted
 - pattern wrt prediction
 - responsive to individual covariates and combinations

Complaint

- We know a lot about assessing binomial data (sensitivity, specificity, PPV, AUROC, ...)
- Good literature on validating binomial data
- Literature on validating time to event data too often forces survival data onto a Procrustean bed.

Data

- Rotterdam: 2982 primary breast cancers recorded in the Rotterdam Tumor Bank
- ► GBSG: 686/720 subjects from a 1984-1989 trial conducted by the German Breast Cancer Study Group.
- Build a model on the Rotterdam data
 - ▶ ignoring GBSG
 - allow imperfection
- Validate it on GBSG

Amyloidosis

Concordance

$$P(y_i > y_j | \hat{y}_i > \hat{y}_j) = P(\hat{y}_i > \hat{y}_j | y_i > y_j)$$

- \hat{y} can be any of (deaths, prob, sojourn, $X\beta$) and get the same answer (for a Cox model)
- $ightharpoonup X\beta$ does not need the intercept (baseline hazard)
- Math
 - $ightharpoonup au_a, au_b, au_b$, Somers' d are [-1, 1], differ in ties
 - C = (d+1)/2
 - ▶ If y is 0/1 then C = AUROC

The numerator of C can be written as

$$\sum_{i} \delta_{i} w(t) (r_{i}(t) - \overline{r}(t))$$

- \triangleright w(t) = 1: log-rank test
- \rightarrow w(t)= n(t): Gehan-Wilcoxon test, Harrell C
 - w(t) = u(t). Genan-vviicoxon test, i
- ▶ w(t)= S(t): Peto-Wilcoxon test
- w(t) = S(t)/G(t): Schemper test, Uno C
- **•** ...

Dichotomized concordance

- ▶ Use $I(t_i \le \tau)$ rather then t_i as the response
- ▶ Does not estimate the same quantity
- lacktriangle Need to replace censored before au using RTTR

SMR

- R code
- data2\$expect <- predict(coxfit1, type="expected", newdata=data2)
- ▶ glm(status ~ offset(log(expect)), poisson, data=data2)
- exp(intercept) = SMR
- valid estimates, std, CI
- add eta to the predictors for regression calibration

	Model 1	Model 2	Model 3
Observed	299.00	299.00	299.00
Expected	269.46	244.70	246.22
O/E	1.11	1.22	1.21

1.22

1.09 0.97

1.37 1.23

1.09

Expected	269.4	16	244.7	70	246.2	22	
0/E	1.1	1.11		1.22		1.21	
	Model	1	Model	2	Model	3	

1.24

1.11

lower CI 0.99

upper CI

SMR

Survival models

- Get predicted survival curve, per subject, from the fitted model
- Overall prediction vs KM (all time, all subjects)
- ightharpoonup Per subject predictions at a given au, vs new per-subject predictions


```
cfit1 <- coxph(Surv(ryear, rfs) ~ eta2, gbsg2)
cfit1</pre>
```

Call:
coxph(formula = Surv(ryear, rfs) ~ eta2, data = gbsg2)

coef exp(coef) se(coef) z p eta2 1.01981 2.77268 0.09966 10.23 <2e-16

Likelihood ratio test=102.8 on 1 df, p=< 2.2e-16 n= 686, number of events= 299

Binomial models

- ightharpoonup Pick a time au
- Dichotomize the data
- $\hat{p}_i(au) = \text{predictions from original model}$
- ► Direct (weighted)
- sensitivity, specificity, PPV, NPC
- AUROC
- ► Fit logistic regression models
- regression slope
- extra variables
- For GBSG
 - same song, third verse
 - larger variance

Multistate models

to be continued...