SPH3U: 2.3 Projectile Motion

1. Projectile motion

Projectile:	part due to gravity (Falling).
projectile motion	horizontal motion (x) and uprtical (y) are
projectile motion vs. river crossing	river crossing: both velocities are constant. projectile: vertical has acrelevation.
range	Dax, how far it goes horizontally.
convention	+ for up and right, - for down and left.

A beambag is thrown from a window $10.0~\mathrm{m}$ above the ground with an initial horizontal velocity of $3.0~\mathrm{m/s}$.

a. How long will it take the beanbag to reach the ground (what is its time of flight)?

b. How far will the beanbag travel horizontally (what is its range)?

2. Launching a projectile at an angle

A soccer player running on a level playing field kicks a soccer ball with a velocity of 9.4 m/s at an angle of 40° above the horizontal. Determine the soccer ball's:

a. time of flight

b. range

c. maximum height

A golfer is trying to improve the range of her shot. To do so she drives a golf ball from the top of a steep cliff, $30.0~\rm m$ above the ground where the ball will land. If the ball has an initial velocity of $25~\rm m/s$ and is launched at an angle of 50° above the horizontal, determine the ball's:

a. time of flight

$$\begin{array}{lll}
(y) & \Delta d = -30 \, \text{m.} & \alpha = -9.8 \, \text{m/s}^{2}, \\
v_{1}y = 25 \, \text{sin} 50^{\frac{1}{2}} = 19.151 \, \text{m/s}, \\
\Delta d = v_{1} \Delta t + \frac{1}{2} \alpha \delta t^{2} & v_{1}y \\
-30 = 19.151 \, \Delta t + \frac{1}{2} (-9.8) \, \delta t^{2} & \Rightarrow 0 = -4.90 \, t^{2} + 19.151 \, \Delta t + 30.$$

$$\Delta t = \frac{1}{2} \frac{t}{\sqrt{3^{2} - 4\alpha c}} = -19.151 \, t \sqrt{19.151^{2} - 4(-4.9)(30)} = -1.197, \\
b. \ \text{range} = 5.1 \, \text{s.} & 7(-4.9) & 5.115 \, \text{s.}
\end{array}$$

$$(x) \Delta d_x = v_x \Delta t$$
 $v_x = 25\cos 50^\circ = 16.076 \text{ m/s}.$
= $(16.070)(5.115) = 82.19 \text{ m}$

c. final velocity (just before it hits the ground)

$$V_{iy} = [9.151 \text{ m/s}; \alpha_{y} = -9.8 \text{ m/s}^{2}, \Delta d_{y} = -30 \text{ m}.$$

$$V_{f}^{2} = V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$

$$V_{f} = \frac{1}{2} V_{i}^{2} + 2 \text{ a} \Delta d$$