§ 3.5, Implicit Differentiation, Inverse Tring Application.

If
$$y = \sin^{-1}(x)$$
, what is $y' = \frac{dy}{dx}$?

 $\sin^{-1}(x) \neq \frac{1}{\sin(x)}$

$$y = \sin^{-1}(x) \iff \sin(y) = x$$

$$[\sin(y)]' = [x]'$$

$$\cos(y) \cdot [y]' = 1$$

$$\cos(y) \cdot y' = 1$$

$$y' = \frac{1}{\cos(y)}$$

If
$$y = \sin^{-1}(x)$$
, $y' = \frac{1}{1-x^2}$
If $y = \tan^{-1}(x)$, $y' = \frac{1}{1+x^2}$

$$\sin^2(y) + \cos^2(y) = 1$$
 $\cos^2(y) = |-\sin^2(y)|$
 $\cos(y) = \sqrt{1 - \sin^2(y)}$
 $\cos(y) = \sqrt{1 - x^2}$

$$\left[\chi \cdot \sin^{-1}(x) \right] = \left[\chi \right] ' \sin^{-1}(x) + \chi \left[\sin^{-1}(x) \right] '$$

$$= \sin^{-1}(x) + \chi \cdot \frac{1}{\sqrt{1-\chi^{2}}} = \left[\sin^{-1}(x) + \frac{\chi}{\sqrt{1-\chi^{2}}} \right]$$