Collaborators

I worked with Aren Martinian, Andrew Binder and Adarsh Iyer to complete this assignment.

Problem 1

A bob of mass m is suspended by a massless rigid rod of length l that is hinged to a sled of mass M. THe sled slides without friction on a horizontal rail, as shown in the figure.

(a) Write down the Lagrangian for the system and derive the equations of motion.

Solution: We can first express the coordinates of the mass bob in cartesian coordinates:

$$X = x + l\sin\theta \ Y = -l\cos\theta$$

so this leads to the equations:

$$\dot{X} = \dot{x} + l\dot{\theta}\cos\theta \ \dot{Y} = l\dot{\theta}\sin\theta$$

Therefore, the kinetic energy term is (skipping the intermediate algebra):

$$T = \frac{1}{2}M(\dot{X}^2 + \dot{Y}^2) + \frac{1}{2}M\dot{x}^2$$
$$= \frac{\dot{x}^2}{2}(m+M) + \frac{m}{2}\left(2\dot{x}l\dot{\theta}\cos\theta + l^2\dot{\theta}^2\right)$$

Now, let the sled have zero potential energy. Therefore:

$$U = mgl(1 - \cos\theta)$$

And so therefore, the Lagrangian is:

$$\mathcal{L} = T - U = \frac{\dot{x}^2}{2}(m+M) + \frac{m}{2}\left(2\dot{x}l\dot{\theta}\cos\theta + l^2\dot{\theta}^2\right) - mgl(1-\cos\theta)$$

With this now, we recognize that x and θ are our coordinates, so there are two Euler-Lagrange equations.

$$\frac{\partial \mathcal{L}}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{x}} = 0 = -\frac{\mathrm{d}}{\mathrm{d}t} \left(\dot{x}(m+M) + ml\dot{\theta}\cos\theta \right)$$
$$0 = \ddot{x}(m+M) + ml\ddot{\theta}\cos\theta - ml\dot{\theta}^2\sin\theta$$

and likewise for the θ direction:

$$\frac{\partial \mathcal{L}}{\partial \theta} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} = 0 = -m\dot{x}l\dot{\theta}\sin\theta - mgl\dot{\theta}\sin\theta - \frac{\mathrm{d}}{\mathrm{d}t} \left(m\dot{x}l\cos\theta - ml^2\dot{\theta}\right)$$
$$0 = ml^2\ddot{\theta} + m\ddot{x}l\cos\theta + mgl\sin\theta$$

(b) Suppose, for all t < 0, the masses are at rest with $\theta = 0$. Then, at t = 0, an impulse $\Delta P = F\Delta t$ is applied to the bob over a small timespan Δt from a sharp horizontal tap. Find \dot{x} and $\dot{\theta}$ immediately after the tap. (Hint: Consider both linear and angular momentum)

Solution: Based on the principles of linear and angular momentum, we know that

$$\Delta p = \frac{\partial \mathcal{L}}{\partial \dot{x}} \qquad l\Delta p = \frac{\partial \mathcal{L}}{\partial \dot{\theta}}$$

And so therefore we get the following system of equations:

$$\Delta p = \dot{x}(m+M) + ml\dot{\theta}\cos\theta,$$

$$l\Delta p = m\dot{x}l\cos\theta + ml^2\dot{\theta}$$

Multiplying the top equation by l and subtracting the second, we get:

$$\dot{x}l(m+M) + ml^2\dot{\theta} = m\dot{x}l + ml^2\dot{\theta}$$
$$Ml\dot{x} = 0$$
$$\therefore \dot{x} = 0$$

Then, since $\dot{x} = 0$, then we also have $\Delta p = ml\dot{\theta}$ so $\dot{\theta} = \frac{\Delta p}{ml}$

(c) Suppose the impulse ΔP in (b) is also small, so that the θ stays small for all t. Use the small angle approximation to simplify your equations of motion from (a), and sovle for x(t) and $\theta(t)$ in this approximation.

Solution: To simplify our equations of motion, we use the simplifications that $\cos \theta \approx 1$ and $\sin \theta \approx \theta$. Doing so, we get the equations:

$$\ddot{x}(m+M) + ml\ddot{\theta} - ml\dot{\theta}^2\theta = 0$$
$$ml^2\ddot{\theta} + m\ddot{x}l + mgl\theta = 0$$

From the second equation, we get that $\ddot{x} = -g\theta - l\ddot{\theta}$, which we can then plug into the first equation:

$$(-g\theta - l\ddot{\theta})(m+M) + ml\ddot{\theta} = 0$$
$$Ml\ddot{\theta} + g(m+M) = 0$$
$$\therefore \ddot{\theta} + \frac{g(m+M)}{Ml}\theta = 0$$

This equation just simple harmonic motion, with $\omega^2 = \frac{g(m+M)}{Ml}$, so we can conclude:

$$\theta(t) = A\cos(\omega t) + B\sin(\omega t)$$

And since we know that $\theta(0) = 0$, then we choose $\theta(t) = B\sin(\omega t)$ to simplify our calculations. We can solve for B by finding $\dot{\theta}(0) = \frac{\Delta P}{ml}$, so we get:

$$\dot{\theta}(0) = B\omega \cos(\omega t) = \frac{\Delta P}{ml}$$

$$\therefore B = \frac{\Delta P}{ml\omega}$$

Now we can proceed to find x(t). To do so, we first need to find $\ddot{x}(t)$, which requires $\ddot{\theta}(t)$. So taking two time derivatives, we get:

$$\ddot{\theta}(t) = -\frac{\Delta P}{ml\omega}\omega^2 \sin(\omega t)$$

And so now we can plug:

$$0 = \ddot{x}(m+M) + ml \cdot -\frac{\Delta P}{ml}\omega \sin(\omega t)$$
$$\ddot{x} = \frac{\Delta P\omega}{m+M}\sin(\omega t)$$

which we can now integrate:

$$\dot{x} = -\frac{\Delta P\omega}{m+M} \frac{1}{\omega} \cos(\omega t) + C_1$$

 C_1 can be determined by using the condition that $\dot{x}(0) = 0$ from part (b), so therefore:

$$C_1 = \frac{\Delta P}{m+M}$$

Now we can integrate again to get x(t):

$$x(t) = -\frac{\Delta P}{\omega(m+M)}\sin(\omega t) + \frac{\Delta Pt}{m+M} + C_2$$

Then we can set $x(0) = x_0$, some arbitrary position, which gives:

$$C_2 = x_0$$

And so therefore our full equation for x(t) is:

$$x(t) = -\frac{\Delta P}{\omega(m+M)}\sin(\omega t) + \frac{\Delta Pt}{m+M} + x_0$$

Problem 2

Consider a particle moving in three dimensions, described by the Lagrangian

$$L = \frac{1}{2}m|\dot{r}|^2 - V(r)$$

Using Cartesian coordinates, where r = (x, y, z) we can rewrite this as

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - V(x, y, z)$$

It's often useful to use a different choice of coordinates, such as cylindrical coordinates or spherical coordinates. For example, in problems where there's symmetry, we can more easily deal with constraints in a symmetry-appropriate coordinate system. For this problem, re-express the kinetic term of the Lagrangian in

(a) Cylinderical coordinates (ρ, ϕ, z)

Solution: In cylindrical coordinates, we have the equations

$$x = \rho \cos \phi$$
$$y = \rho \sin \phi$$
$$z = z$$

and so therefore our kinetic term is

$$\begin{split} T &= \frac{m}{2} \left[\left(\dot{\rho} \cos \phi - \rho \sin \phi \dot{\phi} \right)^2 + \left(\dot{\rho} \sin \phi + \rho \cos \phi \dot{\phi} \right)^2 + \dot{z}^2 \right] \\ &= \frac{m}{2} \left[\dot{\rho}^2 \cos^2 \phi - 2 \dot{\rho} \cos \phi \rho \sin \phi \dot{\phi} + \rho^2 \sin^2 \phi \dot{\phi}^2 + \dot{\rho} \sin^2 \phi + 2 \dot{\rho} \sin \phi \rho \cos \phi \dot{\phi} + \rho^2 \cos^2 \phi \dot{\phi}^2 + \dot{z}^2 \right] \\ &= \frac{m}{2} \left[\dot{\rho}^2 (\cos^2 \phi + \sin^2 \phi) + \rho \dot{\phi}^2 \left(\cos^2 \phi + \sin^2 \phi \right) + \dot{z}^2 \right] \\ &= \frac{m}{2} \left[\dot{\rho}^2 + \rho \dot{\phi}^2 + \dot{z}^2 \right] \end{split}$$

(b) spherical coordinates (r, ϕ, θ)

Solution: In spherical coordinates, we have:

$$x = r \sin \theta \cos \phi$$
$$y = r \sin \theta \sin \phi$$
$$z = r \cos \theta$$

So our process to do this is to find \dot{x} , \dot{y} and \dot{z} then take

$$T = \frac{m}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right)$$

This process involves doing triple product rule and gets us many many terms. There are too many terms in this expansion so I won't write it out, but in replacement here's an image of our work on the blackboard:

In any case, we get many cancellations and nice combinations of terms, all of them using the nice identity that $\sin^2 \phi + \cos^2 \phi = 1$, which eventually (albeit after a lot of struggle) gets us:

$$T = \frac{m}{2}\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\phi}^2$$

Problem 3

Consider a ring of wire of radius R, mounted vertically as in the figure below. A frictionless bead of mass m is threaded on this wire. The ring is forced to rotate around the indicated axis at constant angular velocity Ω . The position of the bead is specified by θ . Gravity acts downwards and has magnitude g.

(a) Write down the Lagrangian (Hint: use the result of the previous problem)

Solution: We have symmetry along the \hat{z} axis, so we will choose cylindrical coordinates. The kinetic energy is:

$$T = \frac{m}{2}(\dot{\rho}^2 + \rho^2 \dot{\phi}^2 + \dot{z}^2)$$

Note here that in our problem, we have $\dot{\phi} = \Omega$, so therefore we have:

$$T = \frac{m}{2} \left[(R\dot{\theta}\cos\theta)^2 + (R\sin\theta)^2\Omega^2 + R^2\dot{\theta}^2\sin^2\theta \right] = \frac{m}{2}R^2 \left[\dot{\theta}^2 + \sin^2\theta\Omega^2 \right]$$

The potential energy term is just $U = mgz = mgR(1 - \cos\theta)$ so therefore:

$$\mathcal{L} = \frac{m}{2}R^2 \left[\dot{\theta}^2 + \sin^2 \theta \Omega^2 \right] - mgR(1 - \cos \theta)$$

(b) Derive the equation of motion

Solution: θ is the only coordinate here, so we derive the equation of motion:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \theta} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}} &= 0 = mR^2 \Omega^2 \sin \theta \cos \theta - mgR \sin \theta - mR^2 \ddot{\theta} \\ R \ddot{\theta} &= R\Omega^2 \sin \theta \cos \theta - g \sin \theta \\ \ddot{\theta} &= \Omega^2 \sin \theta \cos \theta - \frac{g}{R} \sin \theta \end{split}$$

(c) Use your equation from (c) to determine which angles are equilibria. For what values of Ω are these stable? (Hint 1: do all of your equilibria exist for all values of Ω ? Hint 2: to investigate stability, write $\theta = \theta_{eq} + \epsilon$, where ϵ is a small deviation from equilibrium, and find the equation of motion for ϵ .)

Solution: A point is only at equilibrium if $\ddot{\theta} = 0$. Therefore, from our equations of motion, we can derive:

$$\Omega^2 \sin \theta \cos \theta = \frac{g}{R} \sin \theta$$

So we can get:

$$\Omega^2 \cos \theta = \frac{g}{R}$$

In order for this equation to have a real solution for θ , we require that

$$\frac{g}{R\Omega^2} \leq 1$$

or equivalently:

$$\Omega \geq \sqrt{\frac{g}{R}}$$

This will admit solutions $0 \le \theta < \pi/2$. The upper bound is not an equality since $\theta = \pi/2$ is clearly not a stable equilibrium. Now we ask, what happens when $\Omega < \sqrt{\frac{g}{R}}$? In this case, we need to look back at our original equation:

 $\Omega^2 \sin \theta \cos \theta = \frac{g}{R} \sin \theta$

If $\Omega^2 < \frac{g}{R}$ in this equation, then we'd require that $\cos \theta > 1$, which is impossible. However, $\theta = 0$ is a solution here, since $\sin \theta = 0$. Therefore, we have the solutions:

$$\theta = \begin{cases} \cos^{-1}\left(\frac{g}{R\Omega^2}\right) & \left(\Omega^2 \ge \frac{g}{R}\right) \\ 0 & \left(\Omega^2 < \frac{g}{R}\right) \end{cases}$$

Now we look for stability. To do so, we consider the hint: for a given θ_{eq} , we consider $\theta = \theta_{eq} + \epsilon$. Doing so, we get:

$$\ddot{\theta}_{eq} + \ddot{\epsilon} = \Omega^2 \sin(\theta_{eq} + \epsilon) \cos(\theta_{eq} + \epsilon) - \frac{g}{R} \sin(\theta_{eq} + \epsilon)$$

Since this is an equilibrium point, we have $\ddot{\theta}_{eq} = 0$. We then use the angle summation formulas and combine them with the fact that ϵ is small to get:

$$\ddot{\epsilon} = \Omega^2 (\sin \theta_{eq} + \epsilon \cos \theta_{eq}) (\cos \theta_{eq} - \epsilon \sin \theta_{eq}) - \frac{g}{R} (\sin \theta_{eq} + \epsilon \cos \theta_{eq})$$

$$= \Omega^2 (\sin \theta_{eq} \cos \theta_{eq} - \epsilon \sin^2 \theta_{eq} + \epsilon \cos^2 \theta_{eq} - \epsilon^2 \sin \theta_{eq} \cos \theta_{eq}) - \frac{g}{R} (\sin \theta_{eq} - \epsilon \cos \theta_{eq})$$

$$= \Omega^2 \sin \theta_{eq} \cos \theta_{eq} + \Omega^2 \epsilon \cos(2\theta_{eq}) - \epsilon^2 \sin \theta_{eq} \cos \theta_{eq} - \frac{g}{R} \sin \theta_{eq} - \epsilon \frac{g}{R} \cos \theta_{eq}$$

First, we neglect the ϵ^2 term since ϵ is small. Then, we have $\Omega^2 \sin \theta_{eq} \cos \theta_{eq} - \frac{g}{R} \sin \theta_{eq} = 0$ from the equilibrium condition so therefore our equation simplifies to:

$$\ddot{\epsilon} = \Omega^2 \epsilon \cos(2\theta_{eq}) - \epsilon \frac{g}{R} \cos \theta_{eq} = -\epsilon \left(-\Omega^2 \cos(2\theta_{eq}) + \frac{g}{R} \cos \theta_{eq} \right)$$

And so we can get the equation:

$$\ddot{\epsilon} + \left(\frac{g}{R}\cos\theta_{eq} - \Omega^2\cos(2\theta_{eq})\right)\epsilon = 0$$

The term in the parentheses here is constant, so this is just the equation for simple harmonic motion. As this is the case, this means that ϵ is a stable equilibrium. In fact, we can calculate the angular frequency of this oscillation about θ_{eq} :

$$\omega = \sqrt{\frac{g}{R}\cos\theta_{eq} - \Omega^2\cos\theta_{eq}}$$

This also shows that $\theta = \pi/2$ is not a stable point, since substituting $\theta_{eq} = \pi/2$ gives $\omega = 0$, which we can interpret as having no simple harmonic motion - in other words, the bead doesn't oscillate, it just falls.

Problem 4

The Lagrangian for a relativistic point particle moving in one dimension is

$$L = -mc^2 \sqrt{1 - \dot{x}^2/c^2} - V(x)$$

where c is the speed of light. Derive the equation of motion and show that it reduces to Newton's equation in the limit $\dot{x} \ll c$.

Solution: We can just compute the equation of motion:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{x}} \right) &= 0 = -\frac{\partial V}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \left(-\frac{mc^2}{2\sqrt{1 - \dot{x}^2/c^2}} \cdot -\frac{2\dot{x}}{c^2} \right) \\ &= -\frac{\partial V}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{m\dot{x}}{\sqrt{1 - \dot{x}^2 \ddot{x}/c^2}} \right) \\ &= -\frac{\partial V}{\partial x} - \left(\frac{m\ddot{x}\gamma - m\dot{x}\frac{1}{2\gamma} \cdot \frac{2\dot{x}}{c^2}}{\gamma^2} \right) \\ &= -\frac{\partial V}{\partial x} - m\ddot{x} \left[\frac{1 - \frac{\dot{x}^2}{\gamma^2 c^2}}{\gamma} \right] \end{split}$$

In the limit where $\dot{x} \ll c$, then we have $\dot{x}^2/c^2 \to 0$ and $\gamma \to 1$, so therefore we get:

$$m\ddot{x} = -\frac{\partial V}{\partial x}$$

which is exactly Newton's equation.