Calcul différentiel et intégral II

R. Petit

année académique 2016 - 2017

Table des matières

1	Suites et séries de fonctions			1
	1.1	Rappe	els	1
		1.1.1	Topologie métrique	1
			1.1.1.1 Espaces métriques	1
			1.1.1.2 Espaces vectoriels	2
			1.1.1.3 Ouverts, fermés, compacts	3
			1.1.1.4 Suites de Cauchy	4
			1.1.1.5 Continuité	4
	1.2	Conve	ergence de suites de fonctions	5
		1.2.1	Convergence simple	5
		1.2.2	Convergence uniforme	6
		1.2.3	L'espace $B(X, E)$	7
		1.2.4	Convergence uniforme sur tout compact	8
	1.3	Suites	de fonctions et opérations d'intégration et de dérivation	9
		1.3.1	Passage à la limite dans une intégrale de Riemann	9
		1.3.2	Passage à la limite dans une dérivation ordinaire ou partielle	10
	1.4	Séries de fonctions		13
		1.4.1	Retranscription des résultats sur les suites	13
		1.4.2	Convergence normale	14
		1.4.3	Transformation d'Abel	15
		1.4.4	Exemple d'une fonction continue sur $\mathbb R$ nulle part dérivable $\dots \dots \dots \dots$	16
*		Séries	de puissances	17
		1.5.1		17
		1.5.2	Étude sur le cercle de convergence	19
		1.5.3	Fonctions réelles analytiques	21
2	Intégration			24
	2.1	Intégr	ales absolument convergentes	24
		2.1.1		24
		2.1.2		25
		2.1.3		27
		2.1.4		29

Chapitre 1

Suites et séries de fonctions

1.1 Rappels

1.1.1 Topologie métrique

1.1.1.1 Espaces métriques

Définition 1.1. Soit X un ensemble. Une *distance* sur X est une application $d: X \times X \to \mathbb{R}^+$ telle que :

- 1. $\forall x, y \in X : d(x, y) = d(y, x)$ (symétrie);
- 2. $\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$ (inégalité triangulaire);
- 3. $\forall x, y \in X : (d(x,y) = 0 \iff x = y)$ (séparation ¹).

Définition 1.2. On appelle *espace métrique* (X, d) un espace X muni d'une distance d sur X.

Définition 1.3. Soient (X, d) un espace métrique, $(x_n)_{n \in \mathbb{N}}$ et $x \in X$ La suite (x_n) converge vers x dans (X, d) lorsque :

$$\forall \epsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant \mathbb{N} : d(x_n, x) < \epsilon.$$

Cela se note:

$$x_n \xrightarrow[n \to +\infty]{d} x$$
.

 $\textbf{Proposition 1.4. } \textit{Soit} \ (x_n)_{n \in \mathbb{N}} \ \textit{une suite dans} \ (X,d), \textit{un espace métrique. Soient } x,y \in X. \ \textit{Si}:$

$$x_n \xrightarrow[n \to +\infty]{d} x \qquad \qquad \textit{et} \qquad \qquad x_n \xrightarrow[n \to +\infty]{d} y,$$

alors x = y.

 $\textit{D\'{e}monstration}. \ \ Soit \ \epsilon>0. \ Puisque \ x_n \to x \ et \ x_n \to y, \ on \ sait \ qu'il \ existe \ N_1, N_2 \in \mathbb{N} \ tels \ que :$

$$\forall n\geqslant N_1: d(x_n,x)<\frac{\epsilon}{2} \qquad \qquad \text{et} \qquad \qquad \forall n\geqslant N_2: d(x_n,y)<\frac{\epsilon}{2}.$$

Dès lors, soit $N := max\{N_1, N_2\}$. On peut dire :

$$\forall n\geqslant N: d(x,y)\leqslant d(x,x_n)+d(x_n,y)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon.$$

On en déduit d(x, y) = 0 et donc x = y par séparation.

^{1.} Également appelé principe d'identité des indiscernables.

1.1.1.2 Espaces vectoriels

Définition 1.5. Soit \mathbb{K} , un sous-corps de \mathbb{C} . On appelle *norme* sur le \mathbb{K} -e.v. \mathbb{E} toute application $\mathfrak{n}: \mathbb{E} \to \mathbb{R}^+$ telle que :

- 1. $\forall x \in E : (n(x) = 02 \iff x = 0);$
- 2. $\forall x \in E : \forall \lambda \in \mathbb{K} : n(\lambda x) = |\lambda| n(x)$;
- 3. $\forall x, y \in E : n(x + y) \leq n(x) + n(y)$.

Proposition 1.6. *Soit* (E, n) *un* \mathbb{K} -espace vectoriel normé. L'application d suivante est une distance sur E (on l'appelle la distance associée à la norme n):

$$d: E \times E \rightarrow \mathbb{R}^+ : (x,y) \mapsto n(y-x).$$

Démonstration. EXERCICE.

Remarque. Si (E,n) est un espace vectoriel normé, $(x_n)_{n\in\mathbb{N}}$ est une suite de E, et si $x\in E$, alors on dit :

$$x_n\xrightarrow[n\to+\infty]{n} x$$

lorsque:

$$\chi_n \xrightarrow[n \to +\infty]{} \chi$$

au sens de la distance associée à la norme n.

Exemple 1.1. \mathbb{R} est un \mathbb{R} -e.v. normé avec pour norme $n: x \mapsto |x|$.

Exemple 1.2. Soient $d \in \mathbb{N}^*$, $p \in [1, +\infty)$. Pour $x = (x_i)_{1 \le i \le d} \in \mathbb{C}^d$, on définit :

$$n(x) = ||x||_p := \left(\sum_{k=0}^d |x_i|^p\right)^{\frac{1}{p}}.$$

On a alors $(\mathbb{C}^d, \mathfrak{n})$ est un \mathbb{C} -espace vectoriel normé. Également $(\mathbb{C}^d, \mathfrak{n})$ et $(\mathbb{R}^d, \mathfrak{n})$ sont des \mathbb{R} -espaces vectoriels normés.

Définition 1.7. Soit $x \in \mathbb{C}^d$. On définit la *norme infinie* de x dans \mathbb{C}^d par :

$$\|\mathbf{x}\|_{\infty} \coloneqq \max_{1 \leqslant i \leqslant d} |\mathbf{x}_i|.$$

 $\textit{Exemple 1.3. Soit } d \in \mathbb{N}^*. (\mathbb{C}^d, \|\cdot\|_{\infty}) \text{ est un } \mathbb{C}\text{-espace vectoriel norm\'e}. \text{\'e} \text{galement, } (\mathbb{R}^d, \|\cdot\|_{\infty}) \text{ et } (\mathbb{C}^d, \|\cdot\|_{\infty}) \text{ sont des } \mathbb{R}\text{-espaces vectoriels norm\'es}.$

Démonstration. EXERCICE. □

Définition 1.8. Soit $(x_n)_{n\in\mathbb{N}}$ une suite. On dit que la suite (x_n) est *presque nulle* s'il existe $N\in\mathbb{N}$ tel que $\forall n\geqslant N: x_n=0$.

Exemple 1.4. Soient $P \in \mathbb{C}[x]$ et $(a_k)_{k \in \mathbb{N}}$ la suite presque nulle des coefficients de P. On pose :

$$\|P\|_{\infty} \coloneqq \sup_{k \in \mathbb{N}} |a_k| = \max_{k \in \mathbb{N}} |a_k|.$$

Alors $\|\cdot\|_{\infty}$ est une norme sur $\mathbb{C}[x]$.

Démonstration. EXERCICE. □

1.1.1.3 Ouverts, fermés, compacts

Définition 1.9. Soit (X, d) un espace métrique. On appelle *boule ouverte* de centre $x \in X$ et de rayon $r \ngeq 0$ l'ensemble :

$$B(x, r := \{y \in X \text{ t.q. } d(x, y) \leq r\}.$$

On définit également la boule fermée de centre x et de rayon r l'ensemble :

$$B(x, r] := \{y \in X \text{ t.q. } d(x, y) \leq r\}.$$

Définition 1.10. Soit (X, d) un espace métrique et soit $O \subset X$. On dit que O est une partie *ouvert* dans X lorsque :

$$\forall x \in O : \exists r \geq 0 \text{ t.q. } B(x, r) \subset O.$$

Remarque. Pour tout X, les ensembles Ø et X sont tous deux des ouverts de X.

Définition 1.11. Soit (X, d) un espace métrique. Une partie $F \subset X$ de X est dite *fermée* dans X lorsque $X \setminus F$ est ouvert.

Proposition 1.12. Dans un espace métrique (X, d), soit $(O_i)_{i \in I}$ une famille d'ouverts de X indicés par un ensemble $I \neq \emptyset$. Alors $(\bigcup_{i \in I} O_i)$ est un ouvert de X. Si de plus I est fini, alors $(\bigcap_{i \in I})$ est un ouvert de X.

Exemple 1.5. Prenons $X = \mathbb{R}$ et $O_i = (-1 - \frac{1}{i}, 1 + \frac{1}{i})$. Alors $\left(\bigcap_{i \in \mathbb{N}^*} O_i\right) = [-1, 1]$ qui n'est pas un ouvert de X.

Démonstration. EXERCICE. □

Définition 1.13 (Compacts par Borel-Lebesgue). Soit (X, d) un espace métrique. Une partie $K \subset X$ est dite *compacte* si $K \neq \emptyset$ et si, de tout recouvrement de K par des ouverts de X, on peut extraire un sous-recouvrement fini.

C'est-à-dire lorsque:

- 1. $K \neq \emptyset$;
- 2. $\forall I \neq \emptyset : \forall (O_i)_{i \in I}$ ouverts de X t.q. $K \subset \left(\bigcup_{i \in I} O_i\right) : \exists J \subset I$ fini t.q. $K \subset \left(\bigcup_{j \in J} O_j\right)$.

Proposition 1.14 (Compacts par Bolzano-Weierstrass). *Soit* (X, d) un espace métrique. Une partie K de X est compacte si et seulement si :

- 1. $K \neq \emptyset$;
- 2. de toute suite de points de K, on peut extraire une sous-suite convergente dans K.

Démonstration. Admis.

Exemple 1.6. L'ensemble [0,1] est un compact de \mathbb{R} .

Proposition 1.15. *Soit* (X, d), *un espace métrique et* $K \subset X$, *une partie compacte. Alors* K *est fermé et borné.*

Démonstration. EXERCICE. (Absurde) □

Proposition 1.16. Soit (E,n) un \mathbb{K} -e.v. normé de dimension finie. Alors les parties compactes de E sont les parties fermées bornées non nulles.

Démonstration. Admis. □

1.1.1.4 Suites de Cauchy

Définition 1.17. Soit (X, d), un espace métrique. On dit que $(x_n)_{n \in \mathbb{N}}$ est *de Cauchy* dans X lorsque :

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall m, n \geqslant N : d(x_n, x_m) < \varepsilon.$$

Proposition 1.18. $Si(x_n)_{n\in\mathbb{N}}$ est convergente dans l'espace métrique (X, d), alors elle est de Cauchy.

Démonstration. Si x est la limite de la suite (x_n) , on pose $\epsilon > 0$. Il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant \mathbb{N} : d(x, x_n) < \frac{\varepsilon}{2}.$$

Donc $\forall m, n \geqslant N : d(x_m, x_n) \leqslant d(x_m, x) + d(x, x_n) < \varepsilon$.

Définition 1.19. Un espace métrique (M, d) est dit *complet* quand toute suite de Cauchy de points de X converge dans X.

Définition 1.20. Un espace vectoriel E est dit *de Banach* lorsque toute suite de Cauchy de vecteurs de E converge dans E.

Remarque. On remarque que dans un espace métrique complet, une suite converge si et seulement si elle est de Cauchy (ce qui est entre autres le cas de \mathbb{R}).

De plus, les suites de Cauchy permettent, dans des espaces complets, de montrer que des suites convergent sans connaître leur limite.

Exemple 1.7. Les espaces métriques $(\mathbb{R},|\cdot|)$ et $(\mathbb{C},|\cdot|)$ sont des espaces de Banach. Et pour tout $\mathfrak{p} \in [1,+\infty)$ et $\mathfrak{q} \in \mathbb{N}$, les espaces métriques $(\mathbb{R}^q,\|\cdot\|_{\mathfrak{p}})$ et $(\mathbb{C}^q,\|\cdot\|_{\mathfrak{p}})$ sont des espaces de Banach.

1.1.1.5 Continuité

Définition 1.21. Soient (X, d_X) et (Y, d_Y) deux espaces métriques. Une application $f: X \to Y$ est dite continue en $x_0 \in X$ lorsque :

$$\forall \varepsilon > 0 : \exists \delta \geq 0 \text{ t.q. } \forall x \in X : (d_X(x, x_0) < \delta \Rightarrow d_X(f(x), f(x_0)) < \varepsilon).$$

On dit que f est continue sur $A \subset X$ lorsque f est continue en tout $a \in A$.

Proposition 1.22. *Une fonction* $f:(X,d) \to (Y,d)$ *est continue sur* X *lorsque l'image réciproque par* f *de* (Y,d) *est un ouvert de* (X,d).

Démonstration. Admis. □

Proposition 1.23. *Une fonction* $f:(X,d) \to (Y,d)$ *est continue en* $x_0 \in X$ *si et seulement si l'image par* f *de toute suite de points de* X *convergente en* x_0 *est une suite convergente en* $f(x_0)$.

Démonstration. Admis. □

Définition 1.24. Soit $f:(X,d) \to (Y,d)$. f est dite *lipschitzienne* de constante $K \ge 0$ lorsque

$$\forall (x,y) \in X^2 : d(f(x),f(y)) \leq d(x,y).$$

Proposition 1.25. Si $f: (X, d) \rightarrow (Y, d)$ est lipschitzienne, alors elle est continue sur X.

Démonstration. EXERCICE. □

Définition 1.26. Soit $(a_k)_{k \in \mathbb{N}}$, une suite dans un espace métrique (X, d). On dit que (a_k) est *presque nulle* lorsqu'il existe $N \in \mathbb{N}$ tel que $\forall n \geqslant N : a_n = 0$.

Exemple 1.8.

— Pour tout $i \in \mathbb{N}$, l'application $c_i : \mathbb{C}[x] \to \mathbb{C} : P = \sum_{k=0}^{+\infty} a_k x^k \mapsto a_i$ est continue de $(\mathbb{C}[x], \|\cdot\|_{\infty})$ dans $(\mathbb{C}, |\cdot|)$. En effet, pour $i \in \mathbb{N}$, $P = \sum_{k=0}^{+\infty} a_k x^k$, et $Q = \sum_{k=0}^{+\infty} b_k x^k$, on a :

$$\left|c_{\mathfrak{i}}(P)-c_{\mathfrak{i}}(Q)\right|=\left|\mathfrak{a}_{\mathfrak{i}}-\mathfrak{b}_{\mathfrak{i}}\right|\leqslant \|P-Q\|_{\infty}=\max_{k\in\mathbb{N}}\left|\mathfrak{a}_{k}-\mathfrak{b}_{k}\right|.$$

On en déduit que c_i est lipschitzienne sur $\mathbb{C}[x]$ et donc continue sur $\mathbb{C}[x]$.

— Soit $n \in \mathbb{N}$. Posons :

$$P_n = \sum_{k=0}^n \frac{1}{k!} x^k \in \mathbb{C}[x].$$

On observe que $(P_n)_{n\in\mathbb{N}}$ est de Cauchy dans $(\mathbb{C}[x],\|\cdot\|_{\infty})$ car :

$$\|P_n - P_m\|_{\infty} = \left\| \sum_{k=0}^n \frac{1}{k!} x^k - \sum_{k=0}^m \frac{1}{k!} x^k \right\|_{\infty}.$$

On a alors:

$$\|P_n - P_m\|_{\infty} = \left\| \sum_{k=\min\{m,n\}+1}^{\max\{m,n\}} \frac{1}{k!} x^k \right\|_{\infty} = \max_{\min\{m,n\}+1 \leqslant k \leqslant \max\{m,n\}} \frac{1}{k!} = \frac{1}{(\min\{m,n\}+1)!}.$$

Montrons que $(P_n)_{n\in\mathbb{N}}$ est de Cauchy. Supposons (par l'absurde) que $(P_n)_{n\in\mathbb{N}}$ converge vers $P\in (\mathbb{C}[x],\|\cdot\|_{\infty})$. Notons $(\alpha_k)\subset\mathbb{C}$, la suite presque nulle des coefficients de P. Pour $i\in\mathbb{N}$, on a $c_i(P)=\frac{1}{i!}$ quand $n\geqslant i$. Or par la propriété de Lipschitz, on sait que $c_i(P_n)\xrightarrow[n\to+\infty]{}c_i(P)=a_i$. Or (a_k) est presque nulle et $a_i=\frac{1}{i!}$. Il y a donc contradiction. Donc (P_n) ne converge pas dans $(\mathbb{C}[x],\|\cdot\|_{\infty})$. Dès lors, $(\mathbb{C}[x],\|\cdot\|_{\infty})$ n'est pas complet.

1.2 Convergence de suites de fonctions

1.2.1 Convergence simple ²

Définition 1.27. Soit X un ensemble et (Y,d) un espace métrique. On dit que la suite $(f_n(x))_{n\in\mathbb{N}}$ où $f_n:X\to (Y,d)$ converge simplement sur X lorsque :

$$\forall x \in X: \left(f_{n}\left(x\right)\right)_{n \in \mathbb{N}} converge \ dans \ (Y,d).$$

Définition 1.28. Dans ce cas, la suite a pour limite simple la fonction :

$$f:X\to (Y,d):x\mapsto \lim_{n\to +\infty}f_n(x)$$

et est bien définie. Cela se note :

$$f_n \xrightarrow[n \to +\infty]{\text{CVS}} f \qquad \qquad \text{ou} \qquad \qquad f_n \xrightarrow[n \to +\infty]{\text{CVS}} \xrightarrow[n \to +\infty]{\text{CVS}} f.$$

Exemple 1.9. Soient X = [0,1] et $Y = \mathbb{R}$. On pose $f_n(x) = x^n$ pour tout $n \in \mathbb{N}$.

— Si $x \in [0,1)$, alors la suite $(f_n(x))_{n \in \mathbb{N}}$ est une suite géométrique de raison x avec|x| < 1 donc la suite converge vers 0;

^{2.} La convergence simple est la notion de convergence « minimale » que l'on va exiger. Il existe des convergences encore plus élémentaires (voir théorie de l'intégration de Lebesgue), mais qui se trouvent en dehors des objectifs du cours.

— si x = 1,a lors $f_n(x) = 1$ pour tout $n \in \mathbb{N}$. Donc la suite $(f_n(x))_{n \in \mathbb{N}}$ converge simplement sur [0,1]vers la fonction:

$$f: [0,1] \to \mathbb{R}: x \mapsto \begin{cases} 0 & \text{si } x < 1 \\ 1 & \text{si } x = 1 \end{cases}.$$

Remarque.

- On a « perdu » la continuité des fonctions f_n par passage à la limite;
- ici, la convergence simple peut s'écrire ainsi, à l'aide de quantificateurs :

$$\forall \varepsilon > 0 : \forall x \in X : \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : d(f_n(x), f(x)) < \varepsilon.$$

On remarque donc que N dépend de x (ordre des quantificateurs).

Convergence uniforme

Définition 1.29. Soient X un ensemble, (Y, d) un espace métrique, et $f_n : X \to (Y, d)$. On dit que (f_n) *converge uniformément* sur X vers $f: X \rightarrow (Y, d)$ lorsque :

$$\forall \epsilon > 0: \exists N \in \mathbb{N} \text{ t.q.} \forall n \geqslant N: \forall x \in X: d(f_n(x), f(x)) < \epsilon.$$

Cela se note:

$$f_n \xrightarrow[n \to +\infty]{\text{CVU sur } X} f.$$

Remarque. La définition est très proche de la convergence simple. La différence étant que pour une convergence uniforme, il faut que $N \in \mathbb{N}$ ne dépende pas de la valeur de x.

Proposition 1.30. Soient X un ensemble, (Y, d) un espace métrique, $(f_n(x))_{n \in \mathbb{N}}$ une suite de fonctions de X dans (Y, d) et $f: X \to (Y, d)$. Si (f_n) converge uniformément sur X vers f, alors (f_n) converge simplement sur X vers f.

Démonstration. EXERCICE.

 $\textit{Exemple 1.10. Prenons } X = \mathbb{R} = Y \text{ et pour tout } n \geqslant 1, \text{ définissons } f_n(x) = \sqrt{x^2 + \frac{1}{n}}. \text{ Fixons } x \in \mathbb{R}. \text{ On trouve tout } n \geqslant 1, \text{ definissons } f_n(x) = \sqrt{x^2 + \frac{1}{n}}.$ alors:

$$(f_n(x))_{n\in\mathbb{N}} = \left(\sqrt{x^2 + \frac{1}{n}}_n\right)_{n\in\mathbb{N}} \to \sqrt{x^2} = |x|.$$

Donc:

$$f_n \xrightarrow[n \to +\infty]{\text{CVS sur } X} |\cdot|$$
.

Théorème 1.31. Soient (X, d), (Y, d) deux espaces métriques. Soient $f_n : X \to Y$, $\alpha \in X$. On suppose : $- \exists f \text{ t.q. } f_n \xrightarrow{CVU \text{ sur } X} f; \\ - \forall n \in \mathbb{N} : f_n \text{ est continue en } \alpha.$

Alors f est continue en a.

Démonstration. Soit ε > 0. Par convergence uniforme des f_n , on sait :

$$\exists N \in \mathbb{N} \, t.q. \, \forall n \geqslant N : \forall x \in X : d(f_n(x), f(x)) < \frac{\epsilon}{3}.$$

De plus, la fonction f_N est continue en α par hypothèse. Dès lors, on sait qu'il existe δ tel que :

$$\forall x \in X : d(x, \alpha) < \delta \Rightarrow d(f_N(x), f_N(\alpha)) < \frac{\varepsilon}{3}.$$

Ainsi, prenons $x \in X$ tel que $d(x, a) < \delta$. On a alors :

$$d(f(x),f(\alpha))\leqslant d(f(x),f_N(x))+d(f_N(x),f(\alpha))\leqslant d(f(x),f_N(x))+d(f_N(x),f_N(\alpha))+d(f_N(\alpha),f(\alpha))\leqslant 3\frac{\epsilon}{3}=\epsilon.$$

Corollaire 1.32. Si $f_n \in C^0(X,Y)$ et $f_n \xrightarrow[n \to +\infty]{} alors f \in C^0(X,Y)$.

Démonstration. Les fonctions f_n sont continues en tout point et $f_n \xrightarrow[n \to +\infty]{\text{CVU sur } X}$ par hypothèse. Dès lors, pour tout point $a \in X$, par le théorème précédent, on peut dire f continue en a. Dès lors $f \in C^0(X, Y)$. □

1.2.3 L'espace B(X, E)

Définition 1.33. Soient $X \neq \emptyset$ et $(E, \|\cdot\|_E)$ un espace vectoriel normé. On note :

$$B(X, E) := \{f : X \to E \text{ t.q. } f \text{ est born\'ee sur } X\}.$$

Pour $f \in B(X, E)$, on définit :

$$\|f\|_{\infty} := \sup_{x \in X} \|f(x)\|_{E}.$$

Proposition 1.34. $(B(X, E), ||\cdot||_{\infty})$ *est un espace vectoriel normé.*

Démonstration. EXERCICE. □

Théorème 1.35. $(B(X, E), ||\cdot||_{\infty})$ est complet si et seulement si $(E, ||\cdot||_{E})$ est complet.

Démonstration. Supposons d'abord $(B(X, E), \|\cdot\|_{\infty})$ complet et montrons que $(E, \|\cdot\|_{E})$ est complet.

Soit $(x_n)_n$ une suite de Cauchy d'éléments de E. Soit (f_n) une suite de fonctions de B(X, E) telle que :

$$\forall n \in \mathbb{N} : \forall x \in X : f_n(x) = x_n$$
.

Puisque (x_n) est de Cauchy, on sait que :

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall m, n \geqslant N : d(x_m, x_n) < \varepsilon.$$

Or, avec $\alpha \in X$ fixé, on peut alors dire $\forall m, n \geqslant N : d(f_m(\alpha), f_n(\alpha)) < \epsilon$, et ce peu importe le α choisi (car les f_n sont constantes). On a donc (f_n) une suite de Cauchy dans B(X, E) car $d(f_m(\alpha), f_n(\alpha)) = \|f_m - f_n\|_{\infty}$. Or, par complétude de B(X, E), on sait qu'il existe $f \in B(X, E)$ telle que $f_n \to f$. La fonction f est également constante. Posons L la seule image de f. Soit f on sait qu'il existe f existence f existe f existence f

Or:

$$\varepsilon > \|f_n - f\|_{\infty} = \sup_{x \in X} \|f_n(x) - f(x)\|_{E} = \|f_n(a) - f(a)\|_{E} = \|x_n - L\|.$$

Dès lors, on sait que (x_n) converge dans E.

Montrons maintenant que si $(E, ||\cdot||_F)$ est complet, alors $(B(X, E), ||\cdot||_{\infty})$ est complet également.

Soit $(f_n)_n$ une suite de Cauchy de fonctions de $(B(X, E), \|\cdot\|_{\infty})$. Fixons $\varepsilon > 0$. Il existe alors $N \in \mathbb{N}$ tel que :

$$\forall m, n \geqslant N : ||f_m - f_n||_{\infty} < \varepsilon.$$

Soit $x \in X$. On observe que :

$$\forall m, n \geqslant N : \|f_n(x) - f_m(x)\|_F \leqslant \|f_n - f_m\|_\infty < \varepsilon.$$

La suite $(f_n(x))_n$ est donc une suite de Cauchy dans $(E, \|\cdot\|_E)$. Par complétude de E, on sait qu'il existe $f(x) \in E$ tel que $f_n(x) \to f(x)$. Montrons maintenant que $f \in B(X, E)$.

La suite $(f_n)_n$ est de Cauchy et donc bornée. Soit $M \ngeq 0$ tel que $\forall n \in \mathbb{N} : \|f_n\|_{\infty} < M$. Passons à la limite dans (B(X, E). On a alors :

$$\forall n \in \mathbb{N} : \forall x \in X : ||f(x)||_{F} < M.$$

Ainsi, $f \in B(X, E)$ par définition.

Soit alors $\varepsilon > 0$. Pour tout $m, n \in \mathbb{N}$ et pour tout $x \in X$, on a :

$$\|f_n(x) - f_m(x)\|_F \le \|f_n - f_m\|_\infty \le \varepsilon.$$

Passons alors à la limite e m, ce qui donne :

$$\|f_n(x) - f(x)\|_{E} \le \|f_n - f\|_{\infty} \le \varepsilon.$$

Dès lors:

$$\forall n \geqslant N : ||f_n - f||_{\infty} \leqslant \varepsilon.$$

Remarque. Quand $X \neq \emptyset$ et Y = E est un espace vectoriel normé, on a :

 $f_n \xrightarrow[n \to +\infty]{CVU \operatorname{sur} X} f \iff \left\{ \begin{array}{c} \exists N \in \mathbb{N} \operatorname{t.q.} \forall n \geqslant N : f_n - f \in B(X, E) \\ f_n - f \xrightarrow[n \to +\infty]{\| \cdot \|_{\infty}} 0 \end{array} \right..$

1.2.4 Convergence uniforme sur tout compact

Définition 1.36. Soit X, une partie non-vide d'un espace vectoriel norméde dimension finie $(E, \|\cdot\|_E)$. Soit (Y, d) un espace métrique. Une suite $f_n : X \to Y$ converge uniformément vers $f : X \to Y$ sur tout compact lorsque :

$$\forall \ compact \ K \subset X \colon \left. f_n \right|_K \xrightarrow[n \to +\infty]{CVU \ sur \ K} f \right|_K.$$

Cela se note:

$$f_n \xrightarrow[n \to +\infty]{\text{CVU sur tout cpct de } X} f.$$

Proposition 1.37. Si la suite f_n converge uniformément sur tout compact de X et si toutes les fonctions f_n sont continues en $a \in X$, alors f est continue en a.

Démonstration. EXERCICE. □

Exemple 1.11. Prenons $X = Y = \mathbb{R}$. On définit $f_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$. On a alors $f_n \xrightarrow[n \to +\infty]{\text{CVS sur } X} \exp$.

De plus:

$$\|f_n - \exp\|_{\infty} = \sup_{x \in \mathbb{R}} \left| \sum_{k=0}^n \frac{x^k}{k!} - \exp(x) \right| = +\infty.$$

Donc f_n ne converge pas uniformément vers exp. Montrons maintenant que f_n converge uniformément vers exp sur tout compact de \mathbb{R} . Soit $K \subset \mathbb{R}$ un compact. On sait qu'il existe $a,b \in \mathbb{R}$, a < b tels que $K \subset [a, b]$. Pour $x \in [a, b]$, par Lagrange, on a :

$$\exp(x) - \sum_{k=0}^{n} \frac{x^k}{k!} = \frac{x^{n+1}}{(n+1)!} \exp(c_x),$$

avec $c_x \in [a, b]$.

Ainsi:

$$\left| exp(x) - \sum_{k=0}^{n} \frac{x^k}{k!} \right| \leqslant \frac{(b-a)^{n+1}}{(n+1)!} \sup_{x \in [a,b]} exp(x) \xrightarrow[n \to +\infty]{} 0.$$

D'où $f_n \xrightarrow[n \to +\infty]{[a,b]} f$ et donc la convergence uniforme sur tout compact de f_n vers f.

Suites de fonctions et opérations d'intégration et de dérivation 1.3

Passage à la limite dans une intégrale de Riemann

Soit X un pavé de \mathbb{R}^d (donc $X=\prod_{i=1}^d [\alpha_i,b_i]$ avec $\alpha_i < b_i \forall i \in \{1,\dots,d\}$).

Théorème 1.38. Soit $f_n: X \to \mathbb{R}$ intégrables au sens de Riemann sur X. Supposons $f_n \xrightarrow{\text{CVU sur } X} f$. Alors:

- $\begin{array}{ll} -- & f \ est \ intégrable \ au \ sens \ de \ Riemann \ ; \\ -- & la \ \left(\int_X f_n(x) \ dx\right)_n \ converge \ vers \ \int_X f(x) \ dx.^3 \end{array}$

Démonstration. On note $\mathcal{E}(X,\mathbb{R}) := \{f : X \to \mathbb{R} \text{ t.q. } f \text{ est élémentaire} \}$.

Soit $\varepsilon > 0$. Par la convergence uniforme, on sait qu'il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant N : \|f_n - f\|_{\infty} \leqslant \frac{\varepsilon}{4|X|}$$

 $où |X| = \prod_{i=1}^{d} (b_i - a_i).$

Par intégrabilité de f_N , on sait qu'il existe $\varphi, \psi \in \mathcal{E}(X, \mathbb{R})$ telles que :

$$\psi\leqslant f_N\leqslant \phi \qquad \qquad \text{et} \qquad \qquad \int_X (\phi-\psi)<\frac{\epsilon}{2}.$$

On a alors:

$$\psi - f_N \leqslant f \leqslant \varphi + f_N$$

ou encore:

$$\psi - \frac{\epsilon}{4|X|} \leqslant f \leqslant \phi + \frac{\epsilon}{4|X|}.$$

$$\lim_{n \to +\infty} \int_X f_n(x) \, dx = \int_X \lim_{n \to +\infty} f_n(x) \, dx.$$

^{3.} Cela veut dire que:

En posant $\overline{\psi} \coloneqq \psi - \frac{\epsilon}{4X}$ et $\overline{\phi} \coloneqq \phi + \frac{\epsilon}{4X}$, on a $\overline{\psi}$, $\overline{\phi} \in \mathcal{E}(X,\mathbb{R})$. De plus :

$$\int_X (\psi - \phi) = \int_X \left(\psi + \frac{\epsilon}{4|X|} - \left(\phi - \frac{\epsilon}{4|X|} \right) \right) = \frac{\epsilon}{2|X|} |X| + \int_X \psi - \phi < 2\frac{\epsilon}{2} = \epsilon.$$

Dès lors, on en déduit f intégrable au sens de Riemann.

Fixons $\varepsilon > 0$. Par convergence uniforme de f_n vers f sur X, on sait que :

$$\exists N \in \mathbb{N} \text{ t.q.} \forall n \geqslant N : \left\| f_n - f \right\|_{\infty} < \frac{\epsilon}{|X|}$$

Et donc:

$$\left| \int_{X} f_{n}(x) dx - \int_{X} f(x) dx \right| = \left| \int_{X} (f_{n} - f)(x) dx \right| \leq \left| \int_{X} \|f_{n} - f\|_{\infty} dx \right| = |X| \|f_{n} - f\|_{\infty} \leq |X| \frac{\varepsilon}{|X|} = \varepsilon.$$

Finalement, la suite $(\int_X f_n(x) dx)_n$ converge dans \mathbb{R} vers $\int_X f(x) dx$. *Remarque.*

1. Il est possible d'avoir les résultats sans vérifier les hypothèses. Par exemple, $X = [0,1] \subset \mathbb{R} = Y$, avec $f_n(x) = x^n$. On sait que $f_n \xrightarrow[n \to +\infty]{CVS \text{ sur } X} 1_{\{x=1\}}$ et que la convergence n'est pas uniforme sur [0,1]. On remarque alors :

$$\lim_{n \to +\infty} \int_0^1 f_n(x) \, dx = \lim_{n \to +\infty} \frac{1}{n+1} = 0 = \int_0^1 \mathbf{1}_{\{x=1\}}(x) \, dx = \int_0^1 \lim_{n \to +\infty} f_n(x) \, dx \; ;$$

2. si les hypothèses ne sont pas vérifiées, la conclusion peut être fausse. Par exemple, $X = [0, 1] \subset \mathbb{R} = Y$. On définit $(n \ge 1)$:

$$f_n(x) = \begin{cases} 2n\alpha_n x & \text{si } 0 \leqslant x < \frac{1}{2n} \\ 2\alpha_n - 2n\alpha_n x & \text{si } \frac{1}{2n} \leqslant x < \frac{1}{n} \text{ ,} \\ 0 & \text{sinon} \end{cases}$$

où $\alpha_n \in \mathbb{R}^+_0$ t.q. $\forall n \in \mathbb{N}^* : \int_0^1 f_n(x) dx = 1$, donc $\alpha_n = 2n$.

On a alors $f_n \xrightarrow[n \to +\infty]{\text{CVS sur X}} 0 = f$. La fonction nulle 0(x) est intégrable au sens de Riemann sur [0,1]. Finalement, on a :

$$\int_0^1 \lim_{n \to +\infty} f_n(x) \, dx = \int_0^1 f(x) \, dx = 0 \qquad \text{ et } \qquad \lim_{n \to +\infty} \int_0^1 f_n(x) \, dx = 1.$$

Dans ce cas précis, on ne peut pas passer à la limite.

1.3.2 Passage à la limite dans une dérivation ordinaire ou partielle

Théorème 1.39. Soit $\emptyset \neq \Omega \subset \mathbb{R}^d$, un ouvert. Soient $f_n:\Omega \to \mathbb{R}$, toutes de classe C^1 sur Ω . Supposons :

$$- f_{n} \xrightarrow{\text{CVS sur tout cpct } de \ \Omega} f;$$

$$- \forall i \in [1, d] : \frac{\partial f_{n}}{\partial x_{i}} \xrightarrow{\text{CVU sur } \Omega} g_{i}.$$

Alors:

1. $f \in C^1(\Omega, \mathbb{R})$;

2.
$$\forall i \in [\![1,d]\!]: \frac{\partial \, f}{\partial x_i} = lim_{n \to +\infty} \, \frac{\partial \, f_n}{\partial x_i} \, \textit{dans} \; \Omega;$$

3.
$$f_n \xrightarrow[n \to +\infty]{\text{CVU sur tout cpct de }\Omega} f$$
.

Démonstration. Soit $x \in \Omega$. Par ouverture de Ω , on sait qu'il existe $\delta \ngeq 0$ tel que $B(x, \delta[\subset \Omega)$. On en déduit que $B(x, \frac{\delta}{2}]$ est incluse dans $B(x, \delta[C, \frac{\delta}{2}])$ est fermé et borné par définition. $B(x, \frac{\delta}{2}]$ est donc un compact de Ω .

Soient $i \in [\![1,d]\!]$ et $h \in [\pm \frac{\delta}{2}].$ On a alors :

$$\forall n \in \mathbb{N} : f_n(x + he_i) = f_n(x) + \int_0^h \frac{\partial f}{\partial x_i}(x + se_i) \, ds.$$

Or comme $f_n \xrightarrow[n \to +\infty]{\text{CVS sur tout cpct de }\Omega} f \text{ et pour tout i, } \frac{\partial f_n}{\partial x_i} \text{ converge uniformément vers } g_i \text{ sur } B(x, \frac{\delta}{2}], \text{ il vient : }$

$$f_n(x + he_i) = f_n(x) + \int_0^h g_i(x + se_i) ds,$$

où $\{e_1, \dots e_d\}$ est la base canonique de \mathbb{R}^d .

On en déduit alors que f admet une dérivée partielle par rapport à x_i en x:

$$\frac{\partial f}{\partial x_i}(x) = g_i(x).$$

De plus, les f_n sont $C^1(\Omega, \mathbb{R})$, et donc les dérivées partielles $\frac{\partial f_n}{\partial x_i}$ sont $C^0(\Omega, \mathbb{R})$ pour tout i et par convergence uniforme sur les compacts, $g_i \in C^0(\Omega, \mathbb{R})$ (Proposition 1.37).

On en déduit alors $f\in C^1(\Omega,\mathbb{R})$ avec $\frac{\partial\,f}{\partial x_i}=g_i$ pour tout i dans Ω (points 1 et 2 à montrer).

Il reste donc à montrer le point 3.

Soit $K \subset \Omega$, un compact. Par ouverture de Ω , on sait que pour tout $\alpha \in K$, on a :

$$\exists r_{\alpha} \geq 0 \text{ t.q. } B(\alpha, r_{\alpha}[\subset \Omega.$$

Dès lors, on sait que :

$$K \subset \bigcup_{\alpha \in K} B\left(\alpha, \frac{r_{\alpha}}{2}\right[.$$

Par complétude, on sait qu'il existe un sous-recouvrement fini de K, c'est-à-dire $\mathfrak{p}\in\mathbb{N}^*$ et $(\mathfrak{a}_i)_{i\in\llbracket 1,\mathfrak{p}\rrbracket}\in K^p$ tel que :

$$K \subset \bigcup_{i=1}^p B\left(\alpha_i, \frac{r_{\alpha_i}}{2}\right[.$$

Par convergence simple de f_n vers f, et puisque les a_i sont en nombre fini, on peut alors exprimer :

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} \text{ t.q. } \forall n \geqslant N : \forall k \in [1, p] | f_n(\alpha_i) - f(\alpha_i) | < \varepsilon.$$

Fixons donc $\varepsilon > 0$, soit N correspondant et soit $x \in K$. Il existe $k \in [1, p]$ tel que $x \in B(a_k, \frac{r_{a_k}}{2})$ car les boules ouvertes forment un recouvrement de K. On a alors :

$$f_n(x) = f_n(a_k) + \int_0^1 \langle \nabla f_n(a_k + t(x - a_k)), (x - a_k) \rangle dt,$$

et:

$$f(x) = f(\alpha_k) + \int_0^1 \left\langle \nabla f(\alpha_k + t(x - \alpha_k)), (x - \alpha_k) \right\rangle dt.$$

Par différence, on a :

$$\left|f_n(x) - f(x)\right| \leq \left|f_n(\alpha_k) - f(\alpha_k)\right| + \int_0^1 \left\|\nabla f_n(\alpha_k + t(x - \alpha_k)) - \nabla f(\alpha_k + t(x - \alpha_k))\right\| dt \cdot \|x - \alpha_k\|.$$

Par convergence uniforme sur $\left(\bigcup_{i=1}^p B(a_i, \frac{r_{a_i}}{2}]\right)$ de ∇f_n vers ∇f , on sait que :

$$\exists N \in \mathbb{N} \, t.q. \, \forall n \geqslant N : \left\| \nabla f_n - \nabla f \right\|_{\infty, \bigcup_{i=1}^p B\left(\alpha_i, \frac{r_{\alpha_i}}{2}\right]} < \frac{2\epsilon}{\underset{i \in [\![1,p]\!]}{max} r_{\alpha_i}}.$$

Finalement, on a:

$$\forall x \in K : \forall n \geqslant N : \left\| f_n(x) - f(x) \right\| \leqslant \epsilon + \frac{r_{\alpha_k}}{2} \cdot \frac{2\epsilon}{\underset{i \in [\![1,d]\!]}{\max}} r_{\alpha_i} \leqslant 2\epsilon.$$

Ainsi, pour $n \ge N$, on a :

$$\|f_n - f\|_{\infty,K} \leqslant 2\epsilon.$$

Remarque. Ce théorème est vrai en particulier pour d = 1, et Ω un segment de \mathbb{R} .

Exemple 1.12 (Contre-exemples ne vérifiant pas les hypothèses donc ne pouvant faire passer la limite dans la dérivation).
$$f_n(x) = \frac{\sin(n^2x)}{n}, n \geqslant 1, x \in X = \mathbb{R}. \text{ On a donc } f_n \xrightarrow[n \to +\infty]{CVU \text{ sur } \mathbb{R}} 0 = f \text{ car} \left| f_n(x) - f(x) \right| \leqslant \frac{1}{n} \to 0 \text{ avec } \frac{1}{n}$$
 ne dépendant pas de x . Les f^n sont $C^\infty(\mathbb{R})$ et sont donc dérivables :

$$\frac{df_n}{dx} = n\cos(n^2x),$$

et donc:

$$\left.\frac{df_n}{dx}\right|_{x=0}=n\to+\infty.$$

On en déduit :

$$\neg \left(\frac{\mathrm{d} f_n}{\mathrm{d} x} \xrightarrow[n \to +\infty]{} \frac{\mathrm{d} f}{\mathrm{d} x} \right).$$

2. $f_n(x) = \frac{x^n}{n}$, $n \geqslant 1$, $x \in X = [0,1]$. On a $f_n \xrightarrow[n \to +\infty]{CVU \text{ sur } X} 0$. Puisque les f_n sont $C^\infty(X,\mathbb{R})$, on a :

$$\frac{\mathrm{d}f_n}{\mathrm{d}x} = x^{n-1} \xrightarrow[n \to +\infty]{} 1_{\{x=1\}},$$

qui n'est pas une dérivée. À nouveau, la suite des dérivées des f_n ne tend pas vers la dérivée de f. **Corollaire 1.40.** Soient $p \in \mathbb{N}^*$, $\Omega \subset \mathbb{R}^d$, un ouvert non-vide. Soit $f_n : \Omega \to \mathbb{R}$ de classe $C^p(\Omega, \mathbb{R})$. Supposons :

$$\begin{split} & - \ \forall q \in [\![0,p-1]\!] : \forall (i_1,\ldots,i_q) \in [\![1,d]\!]^q : \frac{\partial^q f_n}{\partial x_{i_1}\ldots\partial x_{i_q}} \xrightarrow[n \to +\infty]{\text{CVU sur }\Omega} g_{i_1,\ldots,i_q}; \\ & - \ \forall (i_1,\ldots i_p) \in [\![1,d]\!]^p : \frac{\partial^p f_n}{\partial x_{i_1}\ldots\partial x_{i_p}} \xrightarrow[n \to +\infty]{\text{CVU sur }\Omega} g_{i_1,\ldots i_q}. \end{split}$$

Alors:

1.
$$f = g_{\emptyset} \in C^{p}(\Omega, \mathbb{R})$$
;

$$2. \ \forall q \in \llbracket 1, p \rrbracket : \forall (i_1, \ldots, i_q) \in \llbracket 1, d \rrbracket^q : \frac{ \eth^q f}{ \eth x_{i_1} \ldots \eth x_{i_q}} = g_{i_1, \ldots, i_q} \, ;$$

$$3. \ \forall q \in [\![0,p-1]\!]: \forall (i_1,\ldots,i_q) \in [\![1,d]\!]^q: \tfrac{\mathfrak{d}^q f_n}{\mathfrak{d} x_{i_1} \ldots \mathfrak{d} x_{i_q}} \xrightarrow{CVU \textit{ sur tout cpct de } \Omega} g_{i_1,\ldots,i_q}.$$

Démonstration. EXERCICE. (Récurrence sur p par le résultat précédent)

1.4 Séries de fonctions

1.4.1 Retranscription des résultats sur les suites

Définition 1.41. Soit $u_n : X \to Y$ où $X \neq \emptyset$ et Y est un espace vectoriel normé. On appelle *somme partielle d'ordre* n *de la série de terme général* u_n la fonction suivante :

$$S_n:X\to Y:x\mapsto \sum_{k=0}^n u_k(x).$$

On dit que la série de terme général u_n converge simplement sur X lorsque S_n converge simplement sur X. De même pour la convergence uniforme sur X et la convergence uniforme sur tout compact de X.

Théorème 1.42. Soient (X, d) un espace métrique et Y un espace vectoriel normé. Soit $u_n : X \to Y$. Si $\forall n \in \mathbb{N} : u_n$ est continue en $a \in X$ et si la série de terme général u_n converge uniformément sur X, alors :

$$S := \lim_{n \to +\infty} S_n$$
 est continue en a .

Démonstration. EXERCICE.

Théorème 1.43. Soit $X \neq \emptyset$, un pavé de \mathbb{R}^d et soit $u_n: X \to Y$ t.q. $\sum_{n \geqslant 0} u_n \xrightarrow[n \to +\infty]{\text{CVU sur } X} S$ avec u_n intégrable au sens de Riemann pour tout n. Alors :

- 1. S est intégrable au sens de Riemann sur X;
- 2. la suite $\int_X S_n(x) dx$ converge vers $\int_X S(x) dx$.

Démonstration. EXERCICE.

Théorème 1.44. Soit $\Omega \subset \mathbb{R}^d$, un ouvert non-nul et soit $\mathfrak{u}_{\mathfrak{n}}: \Omega \to \mathbb{R}$ de classe $C^{\mathfrak{p}}(\Omega,\mathbb{R})$ avec $\mathfrak{p} \in \mathbb{N}^*$. Supposons :

$$\begin{split} & - \sum_{n \geqslant 0} u_n \xrightarrow[n \to +\infty]{\text{CVS sur } \Omega} S \,; \\ & - \forall \alpha \in \mathbb{N}^d \, \text{t.q.} |\alpha| \coloneqq \sum_{i=1}^d \alpha_i \leqslant p : \sum_{n \geqslant 0} \frac{\vartheta^{|\alpha|}}{\vartheta x_1^{\alpha_1} \dots \vartheta x_d^{\alpha_d}} u_n \xrightarrow[n \to +\infty]{\text{CVS sur } \Omega} s_\alpha \,; \end{split}$$

 $n \ge 0$ — $n \ge$

Alors:

1. $S \in C^p(\Omega, \mathbb{R})$;

$$2. \ \forall \alpha \in \mathbb{N}^d: \frac{\vartheta^{|\alpha|}}{\vartheta x_1^{\alpha_1} \ldots \vartheta x_d^{\alpha_d}} S = \sum_{n \geq 0} \frac{\vartheta^{|\alpha|}}{\vartheta x_1^{\alpha_1} \ldots \vartheta x_d^{\alpha_d}} u_n \,;$$

3. Il y a convergence uniforme sur les compacts de Ω des séries de dérivées partielles d'ordre 0 à p-1.

1.4.2 Convergence normale

Définition 1.45. Soient $X \neq \emptyset$ et Y un espace vectoriel normé. On dit que la série de terme général $u_n : X \to Y$ converge normalement sur X lorsque :

$$\sum_{n\geq 0} \|u_n\|_{\infty,X} < +\infty.$$

Définition 1.46. On dit que la série de terme général $u_n : X \to Y$ vérifie le critère de Weierstrass lorsqu'il existe $(M_n)_{n \in \mathbb{N}}$ telle que :

$$\begin{array}{l} \text{existe } \left(M_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbb{N}} \text{ telle que :} \\ & - \left. \forall \mathfrak{n} \in \mathbb{N} : \forall x \in X : \left\|\mathfrak{u}_{\mathfrak{n}}(x)\right\|_{E} \leqslant M_{\mathfrak{n}} \text{ ;} \end{array}$$

$$-\sum_{n\geqslant 0}M_n<+\infty.$$

Remarque. $\sum_{n\geqslant 0} u_n$ converge normalement sur X si et seulement si elle vérifie le critère de Weierstrass. **Proposition 1.47.** Si $(E,\|\cdot\|_E)$ est un espace vectoriel normé complet, et si $\sum_{n\geqslant 0} u_n$ converge normalement sur X alors $\sum_{n\geqslant 0}$ converge uniformément sur X.

Démonstration. Écrivons $S_n = \sum_{k=0}^n u_k \in B(X,E)$. Par convergence normale, la suite $\sigma_n = \sum_{k\geqslant 0} \|u_k\|_{\infty,X}$ converge. De plus, (σ_n) est de Cauchy dans \mathbb{R}^+ . Donc :

$$\forall \epsilon > 0: \exists N \in \mathbb{N} \text{ t.q. } \forall n,m \geqslant N: |\sigma_n - \sigma_m| < \epsilon.$$

Ainsi:

$$\begin{split} \|S_n - S_m\|_{\infty,X} &= \left\| \sum_{k=\min(m,n)+1}^{\max(m,n)} u_k \right\|_{\infty,X} \leqslant \sum_{k=\min(m,n)+1}^{\max(m,n)} \|u_k\|_{\infty,X} \\ &\leqslant |\sigma_n - \sigma_m| < \epsilon. \end{split}$$

Donc $(S_n)_n$ est de Cauchy dans $(B(X,E),\|\cdot\|_{\infty,X})$. Cet espace est complet car $(E,\|\cdot\|_E)$ l'est (Théorème 1.35). Et donc, $(S_n)_n$ converge uniformément sur X.

Remarque. On peut écrire :

$$CVN \underset{complet}{\Rightarrow} CVU \Rightarrow CVS$$

mais les réciproques sont habituellement fausses.

Corollaire 1.48. Si $f_n: X \to Y$ (avec Y un espace vectoriel normé complet) est t.q. :

$$\begin{cases} \forall n \in \mathbb{N} : \exists M_n \geqslant 0 \, t.q. \| f_{n+1} - f_n \|_{\infty, X} \leqslant M_n \\ \sum_{m > 0} M_m < +\infty, \end{cases}$$

alors $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur X.

Démonstration. La série de terme général $u_n = f_{n+1} - f_n$ converge normalement sur X car elle vérifie le critère de Weierstrass sur X. Par complétude de Y, la série $\sum u_n$ converge uniformément sur X.

Pour $n \in \mathbb{N}$, on calcule :

$$S_n = \sum_{k=0}^n u_k = f_{n+1} - f_0.$$

Donc la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur X.

1.4.3 Transformation d'Abel

Théorème 1.49. Soient Y un espace vectoriel normé complet, $(g_n)_{n\in\mathbb{N}}\in Y^{\mathbb{N}}$, et $(f_n)_{n\in\mathbb{N}}\in (\mathbb{R}^+)^{\mathbb{N}}$. Supposons :

$$\begin{cases} \exists M \ngeq 0 \, t.q. \, \forall n \in \mathbb{N} : \left\| \sum_{k=0}^{n} g_k \right\|_{Y} \leqslant M \\ f_n \xrightarrow[n \to +\infty]{} 0 \, en \, d\'{e}croissant. \end{cases}$$

Alors f_ng_n est le terme général d'une série convergente.

Démonstration. On pose :

$$\forall k \in \mathbb{N}^* : G_k = \sum_{m=0}^k g_m$$

Calculons, pour $n, p \in \mathbb{N}^*$:

$$\begin{split} S_{n+p} - S_n &= \sum_{k=n+1}^{n+p} f_k g_k = \sum_{k=n+1}^{n+p} f_k (G_k - G_{k-1}) = \sum_{k=n+1}^{n+p} f_k G_k - \sum_{k=n+1}^{n+p} f_k G_{k-1} = \sum_{k=n+1}^{n+p} f_k G_k - \sum_{k=n+1}^{n+p-1} f_k G_k - \sum_{$$

Ainsi:

$$||S_{n+p} - S_n||_{Y} \le M \sum_{k=n+1}^{n+p} (f_k - f_{k+1}) + Mf_{n+p} + Mf_{n+1} = M(f_{n+1} - f_{n+p}) + M(f_{n+p} + f_{n+1})$$

$$= 2Mf_{n+1} \xrightarrow{n \to +\infty} 0,$$

et la convergence de dépend pas de p. On a alors que la suite $(S_n)_{n\in\mathbb{N}}$ est de Cauchy, et par complétude de Y, S_n converge, ce qui implique que la série de terme général f_ng_n converge.

Théorème 1.50. *Soient* X *un espace vectoriel normé completet* $X \neq 0$. *Soient* :

$$g_n: X \to Y$$
,
 $f_n: X \to \mathbb{R}^+$.

Supposons:

— qu'il existe
$$M \ge 0$$
 tel que $\forall n \in \mathbb{N} : \left\| \sum_{k=1}^{n} g_k \right\|_{\infty, X} \le M$;

— que
$$f_n \xrightarrow[n \to +\infty]{\text{CVU sur X}} 0$$
 en décroissant.

Alors f_ng_n est le terme général d'une série qui converge uniformément sur X.

Démonstration. Par la preuve précédente, on a :

$$||S_{n+p} - S_n||_{Y} \le 2Mf_{n+1}(x) \le 2M||f_{n+1}||_{\infty,X}$$
.

On déduit donc :

$$\left\|S_{n+p}-S_{n}\right\|_{\infty,X} \leqslant 2M\left\|f_{n+1}\right\|_{\infty,X}$$
.

On sait donc que $(S_n)_{n\in\mathbb{N}}$ est de Cauchy dans B(X,Y). Par complétude de Y, la série de terme général f_ng_n converge uniformément sur X.

On remarque en effet que les S_n sont bornés car $f_n \xrightarrow[n \to +\infty]{\text{CVU sur } X} 0$, ce qui implique $\|f_n\|_{\infty,X}$ bornée, au moins à partir d'un certain $n \in \mathbb{N}$. De plus, $\left\|\sum_k g_k\right\| < M$ assure que g_k est uniformément bornée.

Exemple d'une fonction continue sur \mathbb{R} nulle part dérivable

Considérons la fonction $\varphi : \mathbb{R} \to \mathbb{R} : x \mapsto |x|$ sur [-1,1] et 2-périodique. La fonction φ est continue sur \mathbb{R} .

$$\forall k \in \mathbb{N} : u_k : \mathbb{R} \to \mathbb{R} : x \mapsto \left(\frac{3}{4}\right)^k \phi(4^k x).$$

On sait que $\forall k \in \mathbb{N} : \|u_k\|_{\infty} = \left(\frac{3}{4}\right)^k \in [0,1]$. Ainsi, la série de terme général u_k converge normalement sur \mathbb{R} par le critère de Weierstrass. Par le Théorème 1.42, la fonction :

$$f:\mathbb{R}\to\mathbb{R}:x\mapsto \sum_{k\geqslant 0}u_k(x)$$

est continue sur \mathbb{R} .

Montrons maintenant la fonction f n'est jamais dérivable.

Construisons α_n et β_n tels que :

$$\left\{ \begin{array}{l} \forall n \in \mathbb{N} : \alpha_n \leqslant x \leqslant \beta_n, \\ \beta_n - \alpha_n \to 0, \\ \forall n \in \mathbb{N} : \left| \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} \right| \geqslant \frac{1}{2} 3^n. \end{array} \right.$$

Soit $n \in \mathbb{N}^*$. Choisissez $p \in \mathbb{Z}$ tel que $p = \lfloor 4^n x \rfloor$ (et donc $p \leqslant 4^n x < p+1$). Posons $\alpha_n = \frac{p}{4^n}$ et $\beta_n = \frac{p+1}{4^n}$. On a alors:

$$\mathsf{f}(\beta_{\mathfrak{n}}) - \mathsf{f}(\alpha_{\mathfrak{n}}) = \sum_{k \geqslant 0} \left(\phi(4^k \beta_{\mathfrak{n}}) \left(\frac{3}{4} \right)^k - \phi(4^k \alpha_{\mathfrak{n}}) \left(\frac{3}{4} \right)^k \right) = \sum_{k \geqslant 0} \left(\frac{3}{4} \right)^k \left(\phi(4^k \beta_{\mathfrak{n}}) - \phi(4^k \alpha_{\mathfrak{n}}) \right)$$

— si $k \lessgtr n$, alors $4^k \beta_n = 4^{k-n} (p+1)$ et $4^k \alpha_n = 4^{k-n} p$. Puisque ϕ est lipschitzienne de constante 1, on

$$\phi(4^k\beta_n)-\phi(4^k\alpha_n)\leqslant 4^{k-n}(p+1-p)=4^{k-n}$$
 ;

 $\begin{array}{l} -- \text{ si } k=n \text{, alors } \left|\phi(4^k\beta_n)-\phi(4^k\alpha_n)\right|=1 \text{;} \\ -- \text{ si } k\supsetneqq n \text{, alors } 4^k\alpha_n=4^{k-n}p\in 4\,\mathbb{Z}\subset 2\,\mathbb{Z} \text{ donc } \phi(4^k\alpha_n)=0. \text{ De même, on a } \phi(4^k\beta_n)=0. \end{array}$

Ainsi:

$$\mathsf{f}(\beta_n) - \mathsf{f}(\alpha_n) = \sum_{k=0}^{n-1} \left(\frac{3}{4}\right)^k \left(\phi(4^k\beta_n) - \phi(4^k\alpha_n)\right) + \left(\frac{3}{4}\right)^n \left(\phi(4^n\beta_n) - \phi(4^n\alpha_n)\right).$$

Or, par inégalité triangulaire inversée, on a :

$$\left|f(\beta_n)-f(\alpha_n)\right|\geqslant \left(\frac{3}{4}\right)^n\left|\phi(4^n\beta_n)-\phi(4^k\alpha_n)\right|-\sum_{k=0}^{n-1}\left(\frac{3}{4}\right)^k4^{k-n}\geqslant \frac{1}{2}\left(\frac{3}{4}\right)^n.$$

Et puisque $\beta_n - \alpha_n = 4^{-n}$, il vient :

$$\left|\frac{f(\beta_n)-f(\alpha_n)}{\beta_n-\alpha_n}\right|\geqslant \frac{1}{2}3^n,$$

ce qui contredit la dérivabilité en x.

Séries de puissances 1.5

1.5.1 Théorie du rayon

On se donne $(Y, \|\cdot\|)$, un \mathbb{C} -ev complet.

Définition 1.51. On appelle série de puissance toute série de fonctions :

$$u_n: \mathbb{C} \to Y$$
,

dont le terme général est sous la forme $u_n(z) = a_n(z-z_0)^n$, avec $z_0 \in \mathbb{C}$ fixé et $(a_n) \subset Y$. Remarque. $Y = Mat_{n \times n}(\mathbb{C})$.

Définition 1.52. Définissons $\overline{\mathbb{R}^+} := \mathbb{R}^+ \cup \{+\infty\}$.

Théorème 1.53. Soit $R := \left(\limsup_{n \to +\infty} \|\alpha_n\|_{Y}^{\frac{1}{n}}\right)^{-1}$. Quelque soit $z \in \mathbb{C}$: $- si|z - z_0| \nleq R, alors \sum_{n \geqslant 0} \mathfrak{u}_n(z) \text{ converge absolument };$ $- si|z - z_0| \ngeq R, alors \sum_{n \geqslant 0} \mathfrak{u}_n(z) \text{ diverge grossièrement (le terme général ne tend pas vers 0 pour } \mathfrak{n} \to +\infty$

- en norme dans Y).

Démonstration. Soit $z \in \mathbb{C}$ tel que $|z-z_0| < R$. Alors il existe $R' \ngeq 0$ t.q. $|z-z_0| < R' < R$ et :

$$\frac{1}{R} + \frac{1}{R'} < \frac{1}{|z - z_0|}.$$

Puisque $R^{-1} = \limsup_{n \to +\infty} \|a_n\|_Y^{\frac{1}{n}}$, il existe $N \in \mathbb{N}$ t.q. :

$$\forall n\geqslant N: \|\alpha_n\|_Y^{\frac{1}{n}}\leqslant \underset{n\rightarrow +\infty}{lim}\underset{n\rightarrow +\infty}{sup}\|\alpha_n\|_Y^{\frac{1}{n}}=\frac{1}{R}\leqslant \frac{1}{R'}.$$

Dès lors : $\|\alpha_n\|_Y\leqslant \frac{1}{(R')^n}$, ou encore $|z-z_0|\|\alpha_n\|_Y\leqslant \frac{|z-z_0|^n}{(R')^n}$. On a donc :

$$\|(z-z_0)^n a_n\|_Y \leqslant \left(\frac{|z-z_0|}{R'}\right)^n.$$

Et comme $\left|\frac{|z-z_0|}{R'}\right| < 1$, on sait que la série de terme général $\frac{|z-z_0|}{R'}$ converge et donc de terme général $\left\|(z-z_0)^n\alpha_n\right\|_Y$ converge aussi.

Soit maintenant $z \in \mathbb{C}$ t.q. $|z-z_0| > R$. Il existe R' > 0 tel que $|z-z_0| > R' > R$ et $|z-z_0|^{-1} < (R')^{-1} + R^{-1}$. Soit $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que :

$$\forall n \in \mathbb{N} : \frac{1}{R'} \leqslant \left\| \alpha_{\phi(n)} \right\|_{\Upsilon}^{\frac{1}{\phi(n)}}.$$

On en déduit :

$$\left\|a_{\varphi(\mathfrak{n})}(z-z_0)^{\varphi(\mathfrak{n})}\right\|_{Y}=|z-z_0|^{\varphi(\mathfrak{n})}\left\|a_{\varphi(\mathfrak{n})}\right\|_{Y}\geqslant \left(\frac{|z-z_0|}{R'}\right)^{\varphi(\mathfrak{n})}\xrightarrow[\mathfrak{n}\to+\infty]{}+\infty.$$

Dès lors, $\sum_{n\geqslant 0} a_n (z-z_0)^n$ diverge grossièrement.

Théorème 1.54. Soit $a_n(z-z_0)^n$, le terme général d'une série de puissance. Alors :

— lorsque $0 < R < +\infty$, $\forall r \in (0, R)$: la série de série de terme général : $z \mapsto a_n(z-z_0)^n$ converge normalement sur $B(z_0, r]$;

— lorsque $R = +\infty$, la série de fonctions de terme général $z \mapsto a_n(z - z_0)^n$ converge normalement sur $B(z_0, r]$ pour tout r.

Démonstration. Si $0 < r < R < +\infty$, observons que $|z_0 + r - z_0| < R$. Ainsi, avec le Théorème 1.53, la série de terme général $a_n(z_0 + r)$ converge absolument. Or :

$$\|a_n(z_0+r)\|_Y = \|a_n\|_Y |z_0+r-z_0|^n = \|a_n\|_Y r^n.$$

Donc la série de terme général $\|a_n\|_Y$ r^n converge. Observons que :

$$\forall n \in \mathbb{N} : \forall z \in B(z_0, r] : ||u_n(z)||_Y = ||a_n||_Y |z - z_0|^n \le ||a_n||_Y r^n.$$

Ainsi $\|u_n\|_{\infty,B(z_0,r]} \le \|a_n\|_Y r^n$. Or $\|a_n\|_Y r^n$ est le terme général d'une série qui converge. Par le critère de Weierstrass, la série de terme général u_n converge normalement $B(z_0,r]$.

Si maintenant $R = +\infty$, on prend $r \in \mathbb{R}^+_0$, $|z_0 + r - z_0| = r < R = +\infty$. Avec le Théorème 1.53, on a : que $\sum_{n \geqslant 0} \mathfrak{u}_n(z_0 + r)$ converge absolument. Or $\|\mathfrak{u}_n(z_0 + r)\|_Y = \|\mathfrak{a}_n\|_R r^n$. Donc la série de terme général $\|\mathfrak{a}_n\|_Y r^n$ converge. Puisque l'on a toujours :

$$\|u_n\|_{\infty,B(z_0,r]}\leqslant \|\alpha_n\|_{\Upsilon}\,r^n,$$

on a donc $\sum_{n\geq 0} u_n$ converge normalement sur B(z_0 , r] par le critère de Weierstrass.

Corollaire 1.55. Soit $a_n(z-z_0)^n$ une série de puissance dans Y complet et R le rayon associé. Lorsque $R \ngeq 0$, la série converge normalement sur tout compact de B(0, r[.

Démonstration. Si $0 < R < +\infty$, soit K ⊂ B(z_0 , R[un compact. Il existe $r \in (0,R)$ tel que K ⊂ B(z_0 , r] ⊂ B(z_0 , R[. La convergence normale sur B(z_0 , r] implique la convergence normale sur K.

Si $R = +\infty$, on a $B(z_0, R[= \mathbb{C} \text{ Soit } K, \text{ un compact de } \mathbb{C}. \text{ Il existe } r > 0 \text{ tel que } K \subset B(z_0, r], \text{ et donc la convergence normale sur } K. <math>\square$

Corollaire 1.56. Lorsque R > 0, la fonction $S(z) = \sum_{k \ge 0} a_k (z - z_0)^k$ est une fonction continue sur $B(z_0, R[$.

Démonstration. Les fonctions $u_n : B(z_0, R[\to Y : z \mapsto a_n(z-z_0)^n \text{ sont continues sur l'ouvert } B(z_0, R[⊂ ℂ, et il y a convergence normale (et donc uniforme) de <math>\sum_{n\geqslant 0} u_n$ sur les compacts de $B(z_0, R[$. Par le Théorème 1.54, on sait que $S \in C^0(B(z_0, R[, Y))$.

Étude sur le cercle de convergence

Définition 1.57. On définit le cercle centré en $z_0 \in \mathbb{C}$ et de rayon R > 0 par :

$$C(z_0, R] = \{z \in \mathbb{C} \text{ t.q.} |z - z_0| = R\}.$$

Théorème 1.58. Lorsque $0 < R < +\infty$, s'il existe $z \in \mathcal{C}(z_0,R]$ tel que $\sum_{n\geqslant 0} \alpha_n (z-z_0)^n$ converge absolument, alors la série de fonctions : $u_n(z) = a_n(z-z_0)^n$ converge normalement sur $B(z_0, R]$.

Démonstration. Soit $z \in \mathcal{C}(z_0, R]$ tel que $\sum_{n \ge 0} a_n (z - z_0)^n$ converge absolument. On a :

$$\|a_n(z-z_0)^n\|_Y = |z-z_0|^n \|a_n\|_Y = R^n \|a_n\|_Y.$$

Puisque $\forall z \in B(z_0,R]: \forall n \in \mathbb{N}: \left\|u_n(z)\right\|_Y = |z-z_0| \|a_n\|_Y \leqslant R^n \|a_n\|_Y$, il vient que :

$$\forall n \geqslant 0 : \|u_n\|_{\infty, B(z_n, R)} \leqslant R^n \|a_n\|_{Y}.$$

Et donc $\sum_{n\geqslant 0} u_n$ converge normalement sur $B(z_0,R]$ par le critère de Weierstrass.

Exemple 1.13. $Y = \mathbb{C}, \sum_{n \ge 1} \frac{z^n}{n^2}$. On a alors $a_n = \frac{1}{n^2}$, donc:

$$|a_n|^{\frac{1}{n}} = n^{\frac{-2}{n}} = \exp\left(-2\frac{\ln n}{n}\right) \xrightarrow[n \to +\infty]{} 1,$$

d'où R = 1, et il y a convergence en z = 1, donc il y a convergence absolue de la série :

$$\sum_{n\geq 1} \frac{\exp(in\theta)}{n^2} \ \forall \theta \in \mathbb{R},$$

et la convergence de $\sum_{n\geqslant 1}\frac{z^n}{n^2}$ est normale sur B(0,1]. **Théorème 1.59** (Théorème d'Abel). *Si* $R\in (0,+\infty)$ *et* $\exists z\in \mathcal{C}(z_0,R]$ *t.q.* $\sum_{n\geqslant 0}\mathfrak{a}_n(z-z_0)^n$ *converge, alors la* série de fonctions de terme général $z\mapsto a_n(z-z_0)^n$ converge uniformément sur le segment reliant z_0 à z.

Démonstration. Prenons $z_0 = 0$ et $z \in \mathbb{R}^+_0$. Prenons $x \in [0, z]$, $n, p \in \mathbb{N}^*$. Écrivons :

$$\sum_{k=n}^{n+p} a_k x^k = \sum_{n=0}^{n+p} a_k z^k \left(\frac{x}{z}\right)^k.$$

Notons alors $S_m := \sum_{k=0}^m a_k z^k$, pour tout m. On obtient alors :

$$\begin{split} \sum_{k=n}^{n+p} \alpha_k x^k &= \sum_{k=n}^{n+p} (S_k - S_{k-1}) \left(\frac{x}{z}\right)^k = \sum_{k=n}^{n+p} (S_k - S_{n-1}) \left(\frac{x}{z}\right)^k - \sum_{k=n}^{n+p} (S_{k-1} - S_{n-1}) \left(\frac{x}{z}\right)^k \\ &= \sum_{k=n}^{n+p} (S_k - S_{n-1}) \left(\frac{x}{z}\right)^k - \sum_{k=n-1}^{n+p-1} (S_k - S_{n-1}) \left(\frac{x}{z}\right)^{k+1} \\ &= -(S_{n-1} - S_{n-1}) \left(\frac{x}{z}\right)^n + \sum_{k=n}^{n+p-1} (S_k - S_{n-1}) \left(\left(\frac{x}{z}\right)^k - \left(\frac{x}{z}\right)^{k+1}\right) + (S_{n+p} - S_{n-1}) \left(\frac{x}{z}\right)^{n+p}. \end{split}$$

Puisque la série de terme général $z \mapsto a_k |z-z_0|^k$ converge, la suite $(S_m)_n$ est de Cauchy dans Y. Soit $\varepsilon > 0$. On sait qu'il existe $N \in \mathbb{N}$ t.q. :

$$\forall k, n > N : ||S_k - S_{n-1}||_{V} \leq \varepsilon.$$

Soit un $n \ge N$, et $p \in \mathbb{N}^*$. Prenons $x \in [0, z]$. On a :

$$\begin{split} \left\| \sum_{k=n}^{n+p} a_k x^k \right\|_Y &\leqslant \sum_{k=n}^{n+p-1} \left\| (S_k - S_{n-1}) \left(\left(\frac{x}{z} \right)^{k+1} - \left(\frac{x}{z} \right)^k \right) \right\|_Y + \left\| (S_{n+p} - S_{n-1} \left(\frac{x}{z} \right)^{n+p} \right\| \\ &\leqslant \sum_{k=n}^{n+p-1} \left\| S_k - S_{n-1} \right\| \left(\left(\frac{x}{z} \right)^k - \left(\frac{x}{z} \right)^{k+1} \right) + \left\| S_{n+p} - S_{n-1} \right\| \left(\frac{x}{z} \right)^{n+p} \\ &\leqslant \epsilon \sum_{k=n}^{n+p-1} \left(\left(\frac{x}{z} \right)^k - \left(\frac{x}{z} \right)^{k+1} \right) + \epsilon \left(\frac{x}{z} \right)^{n+p} \\ &\leqslant \epsilon \left(\left(\frac{x}{z} \right)^n - \left(\frac{x}{z} \right)^{n+p} \right) + \epsilon \left(\frac{x}{z} \right)^{n+p} \\ &\leqslant \epsilon \left(\frac{x}{z} \right)^n \,. \end{split}$$

Par la suite, on peut dire que pour $n \ge N, p \in \mathbb{N}^*$:

$$\left\| \sum_{k=n}^{n+p} a_k \cdot ^k \right\|_{\infty,[0,z]} \leqslant \varepsilon.$$

On en déduit que la série de terme général $x\mapsto a_kx^k$ est de Cauchy dans B([0,z],Y), et donc, par complétude de Y, convergente. \Box

 $\textit{Remarque. Soient } (a_n), (b_n) \subset \mathbb{C}. \ \text{On appelle la } \textit{suite de Cauchy} \ de \ (a_n) \ et \ (b_n) \ la \ suite \ de \ terme \ général :$

$$c_n \coloneqq \sum_{k=0}^n a_k b_{n-k}.$$

Théorème 1.60 (Théorème de Cauchy, version CDI1). Si $\sum_{n\geqslant 0} a_n$ et $\sum_{n\geqslant 0} b_n$ convergent absolument, alors $\sum_{n\geqslant 0} c_n$ converge absolument, et on a :

$$\left(\sum_{n\geqslant 0}a_n\right)\left(\sum_{n\geqslant 0}b_n\right)=\sum_{n\geqslant 0}c_n.$$

Théorème 1.61 (Théorème de Cauchy, version CDI2). $Si \sum_{n\geqslant 0} a_n$, $\sum_{n\geqslant 0} b_n$, $et \sum_{n\geqslant 0} c_n$ convergent, alors :

$$\left(\sum_{n\geqslant 0}a_n\right)\left(\sum_{n\geqslant 0}b_n\right)=\sum_{n\geqslant 0}c_n.$$

Démonstration. Par hypothèse de convergence des séries, on a :

$$R_{a} := R\left(\sum_{n \geqslant 0} a_{n} z^{n}\right), R_{b} := R\left(\sum_{n \geqslant 0} b_{n} z^{n}\right), R_{c} := R\left(\sum_{n \geqslant 0} c_{n} z^{n}\right) \geqslant 1.$$

Posons:

$$\begin{split} &A:[0,1]\to\mathbb{R}:x\mapsto\sum_{n\geqslant 0}a_nx^n,\\ &B:[0,1]\to\mathbb{R}:x\mapsto\sum_{n\geqslant 0}b_nx^n,\\ &C:[0,1]\to\mathbb{R}:x\mapsto\sum_{n\geqslant 0}c_nx^n. \end{split}$$

Si les R. sont > 1, alors [0,1] est un compact de B(0,R[et donc la somme de la série de terme général $\cdot_n z^n$ est C^0 sur [0,1], et si R=1, alors la série de puissance converge en $1 \in \mathcal{C}(0,1]$ et donc la série de terme général $\cdot_n z^n$ converge uniformément sur [0,1].

Puisque $z \mapsto a_n z^n$ (pareil pour b_n , c_n) est C^0 sur [0,1], il vient que A, B, $C \in C^0([0,1],\mathbb{C})$.

Pour $x \in [0,1),$ les séries $\sum_{n \geqslant 0} \cdot_n$ convergent absolument. De plus :

$$\sum_{k=0}^{n} a_k x^k \cdot b_{n-k} x^{n-k} = x^n \sum_{n=0}^{n} a_k b_{n-k} = x^n c_n.$$

Par le Théorème 1.60, on a :

$$\forall x \in [0,1) : A(x)B(x) = C(x).$$

De même, en passant à la limite (continuité) $x \to 1$, il vient :

$$\left(\sum_{n\geqslant 0}a_n\right)\left(\sum_{n\geqslant 0}b_n\right)=A(1)B(1)=C(1)=\sum_{n\geqslant 0}c_n.$$

1.5.3 Fonctions réelles analytiques

On considère la série de puissances $u_n(x) = a_n(x - x_0)^n$, avec $x, x_0 \in \mathbb{R}$ et x_0 fixé. **Définition 1.62.** On appelle *série dérivée formelle* de u_n la série de terme général :

$$u'_n(x) = na_n(x-x_0)^{n-1}, \quad n \geqslant 1$$

Remarque. La série dérivée formelle est toujours une série de puissances. **Proposition 1.63.** *Soient :*

$$R_{1} := R \left(\sum_{n \geqslant 0} a_{n} (x - x_{0})^{n} \right),$$

$$R_{2} := R \left(\sum_{n \geqslant 1} n a_{n} (x - x_{0})^{n-1} \right).$$

Alors $R_1 = R_2$.

Démonstration. On observe aisément que :

$$R_1^{-1} = \limsup_{n \to +\infty} \|a_n\|_Y^{\frac{1}{n}},$$

et donc:

$$R_2^{-1}=\limsup_{n\to +\infty}\lVert n\alpha_n\rVert_Y^{\frac{1}{n}}=\limsup_{n\to +\infty}n^{\frac{1}{n}}\lVert \alpha_n\rVert_Y^{\frac{1}{n}}=\limsup_{n\to +\infty}\lVert \alpha_n\rVert_Y^{\frac{1}{n}}=R_1^{-1},$$

$$\operatorname{car} n^{\frac{1}{n}} \xrightarrow[n \to +\infty]{} 1.$$

Proposition 1.64. *Soit* $x_0 \in \mathbb{R}$. *Supposons* $R \geq 0$, *et notons* :

$$f:(x_0-R,x_0+R)\to Y:x\mapsto \sum_{n\geqslant 0}a_n(x-x_0)^n.$$

Alors la fonction f est continue sur $(x_0 \pm R)$, et on a :

$$\forall p \in \mathbb{N}: \forall x \in (x_0 \pm R): f^{(p)}(x) = \sum_{n \geqslant p} \left(n(n-1)(n-2)\dots(n-p+1)\right) \alpha_n(x-x_0)^{n-p} = \sum_{n \geqslant p} \frac{n!}{(n-p)!} \alpha_n(x-x_0)^{n-p}.$$

Démonstration. On observe que le terme général $u_n(x) = a_n(x-x_0)^n$ est de classe C^∞ sur $(x_0 \pm R)$. La série $u_n'(x) = na_n(x-x_0)^{n-1}$ converge normalement sur les compacts de $(x_0 \pm R)$ par l'égalité des rayons. Donc $f \in C^1\left((x_0 \pm R)\right)$ et $f'(x) = \sum_{n \ge 1} na_n(x-x_0)^{-1}$.

Par récurrence, on obtient le résultat désiré.

Corollaire 1.65. Si f est une somme d'une série de puissances $\sum_{n\geqslant 0} a_n (x-x_0)^n$ de rayon $R \not \ge 0$ sur $(x_0 \pm R)$, alors :

$$\forall n \in \mathbb{N} : a_n = \frac{f^{(n)}(x_0)}{n!}.$$

Démonstration. Si f est somme de la série de puissance de terme général $a_n(x-x_0)^n$, alors $f \in C^{\infty}$ sur $(x_0 \pm R)$. Par la Proposition 1.64, on trouve :

$$\forall p \in \mathbb{N}: f^{(p)}(x_0) = \sum_{n \geq p} \frac{n!}{(n-)!} a_n (x_0 - x_0)^{n-p} = \frac{p!}{0!} a_p (x_0 - x_0)^{p-p} + 0 = p! a_p 1 = p! a_p,$$

et donc
$$a_p = \frac{f^{(p)}(x_0)}{p!}$$
.

Remarque. Les notations suivantes sont dues à Landau :

$$\begin{array}{ll} u_n \sim \nu_n \iff \forall \epsilon > 0: \exists N \in \mathbb{N} \ t.q. \ \forall n \geqslant N: |u_n - \nu_n| < \epsilon |u_n| \\ u_n = o(\nu_n) \iff \forall \epsilon > 0: \exists N \in \mathbb{N} \ t.q. \ \forall n \geqslant N: |u_n| < \epsilon |\nu_n| \\ u_n = O(\nu_n) \iff \exists N \in \mathbb{N} \ t.q. \ \forall M \gneqq 0: \forall n \geqslant N: u_n < M |\nu_n| \end{array}$$

Définition 1.66. Soit $U \subset \mathbb{R}$, un ouvert. Une fonction $f: U \to \mathbb{R}$ est dite *réelle analytique* lorsque :

$$\forall x_0 \in U: \exists \epsilon > 0, (\alpha_n) \subset \mathbb{R} \text{ t.q.} (x_0 \pm \epsilon) \subset U \text{ et } \sum_{k=0}^n \alpha_k (x-x_0)^k \text{ converge simplement sur } (x_0 \pm \epsilon).$$

Définition 1.67 (Définition équivalente). $f: U \subset U \to \mathbb{R}$ est dite *réelle analytique* lorsque f est somme de sa série de Taylor sur un voisinage de chaque point de U.

Définition 1.68. Pour $\emptyset \neq U \subset \mathbb{R}$, on pose $\mathcal{A}(U) := \{f : U \to \mathbb{R} \text{ t.q. } f \text{ est réelle analytique sur } U\}$.

Proposition 1.69. Soit $\emptyset \neq U \subset \mathbb{R}$. Alors $A(U) \subsetneq C^{\infty}(U, \mathbb{R})$.

Démonstration. Montrons d'abord l'inclusion. Soit $x_0 \in U$ et soit $\epsilon > 0$ tel que :

$$f(x) = \sum_{k \ge 0} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \text{ sur } (x_0 \pm \varepsilon).$$

On a donc $f\Big|_{(x_0\pm\epsilon)}\in C^\infty\left((x_0\pm\epsilon),\mathbb{R}\right)$.

Pour montrer l'inclusion stricte, soit :

$$f: \mathbb{R} \to \mathbb{R}: x \mapsto \begin{cases} exp(-x^{-1}) & \text{ si } x > 0 \\ 0 & \text{ sinon } \end{cases}.$$

On sait que $f \in C^{\infty}(\mathbb{R},\mathbb{R})$, et $\forall k \in \mathbb{N}: f^{(k)}(0) = 0$. Donc f n'est somme de sa série de Taylor sur aucun voisinage de 0. On a donc $f \notin \mathcal{A}(\mathbb{R})$.

Remarque. $f \in \mathcal{A}(\mathbb{R})$ peut avoir, en certains points, un rayon fini. Par exemple $f(x) = \frac{1}{1+x^2}$. Pour |x| < 1, on a :

$$f(x) = \frac{1}{1 - (-x^2)} = \sum_{k \ge 0} (-1)^k x^{2k},$$

$$\text{et R}\left(\textstyle\sum_{k\geqslant 0}(-1)^kx^{2k}\right)=\left(\limsup_{n\to+\infty}((-1)^n)^{\frac{1}{n}}\right)^{-1}=1.$$

Chapitre 2

Intégration

2.1 Intégrales absolument convergentes

2.1.1 Rappels concernant l'intégrale de Riemann

Définition 2.1. On se place sur un segment $[a,b] \subset \mathbb{R}$. On note :

$$\boldsymbol{\xi}\big([a,b],\mathbb{R}\big)\coloneqq \big\{\phi:[a,b]\to \mathbb{R} \text{ t.q. } \phi \text{ est en escaliers sur}[a,b]\big\}\,.$$

Remarque. \int est bien définie sur $\mathcal{E}([a,b],\mathbb{R})$.

Définition 2.2. La fonction $f : [a, b] \to \mathbb{R}$ est *R-int* (*Riemann intégrable*, ou encore *intégrable au sens de Riemann*) lorsque :

$$\begin{split} \forall \epsilon > 0 : & \exists \phi, \psi \in \mathcal{E} \big([\mathfrak{a}, \mathfrak{b}], \mathbb{R} \big) \, t.q. \\ & (\mathfrak{i}) \quad \phi \leqslant f \leqslant \psi \\ & (\mathfrak{i}\mathfrak{i}) \quad \int (\psi - \phi) < \epsilon \end{split}$$

Proposition 2.3. *De manière équivalente,* $f : [a,b] \to \mathbb{R}$ *est R-int sur* [a,b] *lorsque :*

$$\overline{\int} f \coloneqq \inf_{f \leqslant \psi \in \mathcal{E}\left([\alpha,b],\mathbb{R}\right)} \int \psi = \sup_{f \geqslant \phi \in \mathcal{E}\left([\alpha,b],\mathbb{R}\right)} \int \phi \eqqcolon \underline{\int} f.$$

Définition 2.4. On note dans ce cas :

$$\int_{a}^{b} f(x) dx = \overline{\int_{a}^{b}} f(x) dx = \int_{\underline{a}}^{b} f(x) dx.$$

Proposition 2.5. Si $f : [a, b] \to \mathbb{R}$ est R-int sur [a, b], alors f est bornée sur [a, b].

Proposition 2.6. *Soient* f, g *R-int*, et $\lambda, \mu \in \mathbb{R}$. *Alors les fonctions suivantes sont R-int* :

$$\lambda f + \mu g$$
 $min(f, g)$
 $max(f, g)$
 $|f|$

Et on a:

$$\left|\int_a^b f(x)\,dx\right|\leqslant \int_a^b \left|f(x)\right|dx\;;$$
 (ii)
$$\int_a^b \left(\lambda f+\mu g\right)(x)\,dx=\lambda \int_a^b f(x)\,dx+\mu \int_a^b g(x)\,dx.$$

Démonstration. montrons que min(f, g) est R-int sur [a, b].

Fixons $\epsilon > 0$. Soient $\phi_f, \phi_g, \psi_f, \psi_g \in \mathcal{E}([\mathfrak{a}, \mathfrak{b}], \mathbb{R})$ tels que :

$$\begin{split} \phi_f \leqslant f \leqslant \psi_f, & \int_a^b (\psi_f - \phi_f) < \epsilon \\ \phi_g \leqslant g \leqslant \psi_g, & \int_a^b (\psi_g - \phi_g) < \epsilon. \end{split}$$

Prenons $x \in [a, b]$, et remarquons que :

$$min(\phi_f,\phi_g)\leqslant f \qquad \qquad min(\phi_f,\phi_g)\leqslant g,$$

et donc $min(\varphi_f, \varphi_g) \leq min(f, g)$.

Posons $\mathcal{E}([\mathfrak{a},\mathfrak{b}],\mathbb{R})\ni\widetilde{\phi}\coloneqq min(\phi_f,\phi_g),\widetilde{\psi}\coloneq min(\psi_f,\psi_g).$ On remarque alors :

$$\widetilde{\varphi} \leqslant \min(f, g) \leqslant \widetilde{\psi}.$$

Prenons $x \in [a, b]$. On remarque :

— si
$$\varphi_f(x) \leqslant \varphi_g(x)$$
, on a:

$$\widetilde{\psi}(x) - \widetilde{\varphi}(x) \leqslant \psi_f(x) - \varphi_f(x)$$
;

— si
$$\varphi_q(x) < \varphi_f(x)$$
, on a:

$$\widetilde{\psi}(x) - \widetilde{\phi}(x) \leqslant \psi_g(x) - \phi_g(x).$$

Ainsi, en séparant les intégrales en un nombre fini où on a soit (i), soit (ii), on a :

$$\int_{a}^{b} (\widetilde{\psi} - \widetilde{\phi}) \leqslant \int_{a}^{b} (\psi_{f} - \phi_{f}) + \int_{a}^{b} (\psi_{g} - \phi_{g}) \leqslant 2\epsilon.$$

Corollaire 2.7. $\left|\int_a^b (\lambda f + \mu g)(x) \, dx\right| \le |\lambda| \int_a^b |f(x)| \, dx + |\mu| \int_a^b |g(x)| \, dx.$

2.1.2 Fonctions absolument intégrables sur un intervalle

Définition 2.8. Soit $I \neq \emptyset$, un intervalle de \mathbb{R} , et $f: I \to \mathbb{R}$. On dit que f est *abs-int* (*absolument intégrable*) sur I lorsque :

(i)
$$\forall [a,b] \subset U : f \Big|_{[a,b]}$$
 est R-int sur $[a,b]$;

(ii)
$$\sup_{[\mathfrak{a},\mathfrak{b}]\subset I}\int_{\mathfrak{a}}^{\mathfrak{b}}|f|\leqslant +\infty.$$

Remarque. La condition (ii) revient à dire que $\exists M > 0$ t.q. $\forall [a,b] \subset U : \int_a^b |f| \leq M$.

Définition 2.9. Soit $I \subset \mathbb{R}$, un intervalle. On appelle *suite exhaustive de segments de* I toute suite $([a_n, b_n])_{n \in \mathbb{N}}$ de segments de I tels que :

- (i) la suite est croissante (c-à-d $\forall n \in \mathbb{N} : [a_{n+1}, b_{n+1}] \supseteq [a_n, b_n]$);
- (ii) $\bigcup_{n\in\mathbb{N}}[a_n,b_n]=I$.

Proposition 2.10. *Soit* $I \neq \emptyset$, *un intervalle de* \mathbb{R} . I *admet une suite exhaustive.*

Démonstration. Si I est un fermé, prenons $a,b \in \mathbb{R}$ tels que I = [a,b]. La suite $([a_n,b_n])_n = ([a,b])_n$ est exhaustive.

Si I est un ouvert, prenons $a,b\in\mathbb{R}$ tels que I=(a,b). La suite $([a_n,b_n])_n=([a+\frac{1}{n},b-\frac{1}{n}])_n$ est exhaustive.

Si I est ouvert d'un côté, et fermé de l'autre, les suites exhaustives $([a,b-\frac{1}{n}])_n$ et $([a+\frac{1}{n},b])_n$ sont exhaustives.

Proposition 2.11. Soit $I \neq \emptyset$ un intervalle de \mathbb{R} . Soit $f: I \to \mathbb{R}$ abs-int sur I. Soit $([\mathfrak{a}_n, \mathfrak{b}_n])_n$ une suite exhaustive de segments de I. Alors :

(i) la suite définie par :

$$\left(\int_{a_n}^{b_n} f(x) \, dx\right)_n \subset \mathbb{R}$$

est convergente;

(ii) la limite de cette suite ne dépend pas de la suite exhaustive de segments de I choisie.

Définition 2.12. On appelle *intégrale de* f *sur* I cette valeur, et on la note :

$$\int_{I} f(x) dx.$$

Démonstration. Soit $([a_n,b_n])$ une suite exhaustive de segments de I. Posons pour $n\in\mathbb{N}$: $\alpha_n=\int_{a_n}^{b_n}|f|$. La suite $(\alpha_n)_n$ est croissante et majorée donc (α_n) converge vers un certain $\ell\in\mathbb{R}^+$. En particulier, (α_n) est de Cauchy dans \mathbb{R} . Considérons maintenant $(\beta_n)_n$, où $\beta_n:=\int_{a_n}^{b_n}f$. Observons que pour $p,n\in\mathbb{N}$:

$$\beta_{n+p} - \beta_n = \int_{a_{n+p}}^{b_{n+p}} f - \int_{a_n}^{b_n} f = \int_{a_{n+p}}^{a_n} f + \int_{a_n}^{b_n} f + \int_{b_n}^{b_{n+p}} f - \int_{a_n}^{b_n} f = \int_{a_{n+p}}^{a_n} f + \int_{b_n}^{b_{n+p}} f.$$

Ainsi:

$$\left|\beta_{n+p}-\beta_n\right|\leqslant \int_{\alpha_{n+p}}^{\alpha_n}|f|+\int_{b_n}^{b_{n+p}}|f|\leqslant \int_{\alpha_{n+p}}^{\alpha_n}|f|+\int_{a_b}^{b_n}|f|+\int_{b_n}^{b_{n+p}}|f|-\int_{a_n}^{b_n}|f|=\alpha_{n+p}-\alpha_n.$$

La suite $(\beta_n)_n$ est donc bornée par une suite de Cauchy (et est donc de Cauchy) dans \mathbb{R} . Par complétude de \mathbb{R} , $(\beta_n)_n$ converge dans \mathbb{R} .

Montrons maintenant que cette limite ne dépend pas de la suite exhaustive. Soit $[\widetilde{a}_n, \widetilde{b}_n]$ une suite exhaustive de I. On sait que $\widetilde{\beta}_n = \int_{\widetilde{a}_n}^{\widetilde{b}_n} f$ converge. On veut montrer que $\widetilde{\beta}_n$ a la même limite que β_n . On construit donc une nouvelle suite exhaustive de I. On choisit $[\bar{a}_0, \bar{b}_0] = [a_0, b_0]$. Il existe $N_1 \ngeq 0$ t.q. $\forall n \geqslant N_1 : [a_0, b_0] \subset [\widetilde{a}_n, \widetilde{b}_n]$. On pose ensuite $[\bar{a}_1, \bar{b}_1] = [\widetilde{a}_{N_1}, \widetilde{b}_{N_1}]$. Il existe $N_2 \trianglerighteq N_1$ t.q. $\forall n \geqslant N_2 : [\bar{a}_1, \bar{b}_1] \subset [a_n, b_n]$. On pose donc $[\bar{a}_2, \bar{b}_2] = [a_{N_2}, b_{N_2}]$.

On construit donc $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que pour tout p:

$$\begin{split} [\bar{a}_{2p},\bar{b}_{2p}] &= [a_{\phi(2p)},b_{\phi(2p)}],\\ [\bar{a}_{2p+1},\bar{b}_{2p+1}] &= [\widetilde{a}_{\phi(2p+1)},\widetilde{b}_{2p+1}]. \end{split}$$

Donc la suite $([\bar{a}_p,\bar{b}_p])_p$ est exhaustive. La suite $\left(\int_{\bar{a}_p}^{\bar{b}_p}f\right)_p$ converge vers $\bar{\beta}$ dans \mathbb{R} .

Puisque:

$$\begin{split} &\int_{\bar{\alpha}_{2p}}^{\bar{b}_{2p}} f = \int_{\alpha_{\phi(2p)}}^{b_{\phi(2p)}} f = \beta_{\phi(2p)} \xrightarrow[p \to +\infty]{} \beta = \bar{\beta} \\ &\int_{\bar{\alpha}_{2p+1}}^{\bar{b}_{2p+1}} f = \int_{\widetilde{\alpha}_{\phi(2p+1)}}^{\widetilde{b}_{\phi(2p+1)}} f = \widetilde{\beta}_{\phi(2p+1)} \xrightarrow[p \to +\infty]{} \widetilde{\beta} = \bar{\beta}, \end{split}$$

on déduit $\beta = \bar{\beta} = \widetilde{\beta}$. Les limites sont donc les mêmes, peu importe les suites exhaustives choisies.

Proposition 2.13. *Soit* $f : [a,b] \to \mathbb{R}$ *R-int sur* [a,b]. *Alors* f *est abs-int sur* [a,b], *et on a* :

$$\int_{[a,b]} f = \int_a^b f.$$

 \Box

Démonstration. f est R-int, et donc est R-int sur tout segment de [a,b]. Soit $([a_n,b_n])_n$, une suit exhaustive de segments de [a,b]. Il existe $N \in \mathbb{N}$ t.q. $\forall n \geqslant N$: $[a_n,b_n]=[a,b]$. Ainsi, pour $n \geqslant N$, on a :

$$\int_{a_n}^{b_n} f = \int_a^b f.$$

En passant à la limite pour $n \to +\infty$, on a :

$$\int_{[a,b]} f = \int_a^b f.$$

Proposition 2.14. L'ensemble $L^1(I) := \{f : I \to \mathbb{R} \text{ t.q. } f \text{ est abs-int sur } I\} \text{ est un } \mathbb{R} - \text{ev. De plus, l'application } :$

$$\int : L^1(I) \to \mathbb{R} : f \mapsto \int_I f$$

est une forme linéaire sur $L^1(I)$.

Démonstration. EXERCICE. □

2.1.3 Fonctions absolument intégrables vues comme fonction des bornes

Proposition 2.15. *Soit* $I \subset \mathbb{R}$, *un intervalle non-vide de* \mathbb{R} . *Si la fonction* $f : I \to \mathbb{R}$ *est abs-int sur* I, *alors elle l'est sur* $I \cap (-\infty, \mathfrak{a}]$ *et* $[\mathfrak{a}, +\infty)$ *pour tout* $\mathfrak{a} \in \mathbb{R}$, *et on a* :

$$\int_I f = \int_{I\cap (-\infty,\alpha]} f + \int_{I\cap [\alpha,+\infty)} f.$$

Démonstration. Soit $[\alpha, \beta] \subset [\alpha, +\infty) \cap I$. $[\alpha, \beta]$ est un segment de I et f est abs-int sur I. f est donc abs-int sur tout segment de I, en particulier sur $[\alpha, \beta]$. De plus, il existe $M \ngeq 0$ tel que pour tout segment [u, v] de I, on a :

$$\int_{\mathfrak{u}}^{\nu} |f| \leqslant M.$$

Ainsi:

$$\int_{\alpha}^{\beta} |f| \leqslant M.$$

f est donc abs-int sur I \cap [α , $+\infty$). On raisonne de manière similaire pour ($-\infty$, α].

Montrons maintenant l'égalité. Soit $[\alpha_n, \beta_n]$, une suite de segments de I. Il existe $N \in \mathbb{N}$ tel que :

$$\forall n \geqslant N : \alpha_n \leqslant \alpha \leqslant \beta_n$$
.

Il vient alors que $([\alpha_n, \mathfrak{a}])_n$ est une suite exhaustive de $I \cap (-\infty, \mathfrak{a}]$, et $([\mathfrak{a}, \beta_n])_n$ est une suite exhaustive de $I \cap [\mathfrak{a}, +\infty)$. Pour $n \geqslant N$, on a alors :

$$\int_{\alpha_n}^{\beta_n} f = \int_{\alpha_n}^{\alpha} f + \int_{\alpha}^{\beta_n} f.$$

En passant à la limite pour $n \to +\infty$, on trouve :

$$\int_I f = \int_{I\cap(-\infty,\alpha]} f + \int_{I\cap[\alpha,+\infty)} f.$$

Proposition 2.16. *Soient* $I \subset \mathbb{R}$, $a \in I$, *et* $f : I \to \mathbb{R}$. *Si* f *est abs-int sur* $I \cap (-\infty, a]$ *et sur* $I \cap [a, +\infty)$, *alors* f *est abs-int sur* I, *et on a* :

$$\int_I f = \int_{I\cap(-\infty,\alpha]} f + \int_{I\cap[\alpha,+\infty)} f.$$

Démonstration. Soit $[\alpha, \beta]$ un segment de I. Si $\alpha < \alpha$, ou $\alpha > \beta$, c'est trivial.

Supposons alors $\alpha \leqslant \alpha \leqslant \beta$. f est R-int sur $[\alpha,\alpha]$ et sur $[\alpha,\beta]$. f est donc R-int sur $[\alpha,\beta]$. De plus, il existe $M^+,M^->0$ tels que :

$$\sum_{[u,\nu]\subset (-\infty,\alpha]\cap I} \int_u^\nu f \leqslant M^- \qquad \quad et \qquad \qquad \sup_{[u,\nu]\subset I\cap [\alpha,+\infty)} \int_u^\nu |f| \leqslant M^+.$$

On peut donc dire que $\int_{\alpha}^{\beta} |f| \leqslant M^+ + M^-$. On a alors f abs-int sur I et on peut appliquer la proposition précédente pour :

$$\int_I f = \int_{I\cap (-\infty,\alpha]} f + \int_{I\cap [\alpha,+\infty)} f.$$

Proposition 2.17. Soient $I \subset \mathbb{R}$, un intervalle non-vide, et $f: I \to \mathbb{R}$ abs-int. La fonction $F: I \to \mathbb{R}: x \to \int_{I \cap (--\infty,x]} f$ est localement lipschitizienne.

Démonstration. Soit $x_0 \in I$. Supposons que x_0 n'est pas un bord de I (sinon EXERCICE). Supposons qu'il existe $\delta > 0$ t.q. $(x_0 \pm \delta) \subset I$. La fonction f est R-int sur $\left[x_0 \pm \frac{\delta}{2}\right]$ et donc sa valeur absolue est bornée sur ce segment par $M(x_0,\delta)$. Pour $x,y \in \left[x_0 \pm \frac{\delta}{2}\right]$, avec x < y, on déduit :

$$F(y)-F(x)=\int_{I\cap(-\infty,x]}f-\int_{I\cap(-\infty,x]}f=\int_{I\cap(-\infty,x]}f+\int_{x}^{y}f-\int_{I\cap(-\infty,x]}f=\int_{x}^{y}f.$$

D'où:

$$\left|F(y)-F(x)\right|=\int_{x}^{y}|f|\leqslant M(x_{0},\delta)(y-x).$$

Corollaire 2.18. *Si* f *est abs-int sur* I*, alors* F *est continue sur* I.

Proposition 2.19. Si f est abs-int sur I, et continue en $x_0 \in I$, alors F est dérivable en x_0 et on a :

$$F'(x_0) = f(x_0).$$

Corollaire 2.20. Si f est abs-int sur I et de classe C^k sur un voisinage de $x_0 \in I$, alors F est de classe C^{k+1} sur un voisinage de x_0 et on a, sur ce voisinage :

$$\forall p \in \{0, \dots, k\} : F^{(p+1)}(x) = f^{(p)}(x).$$

Remarque. Si le voisinage est ouvert pour f, alors on a le même voisinage pour F.

Démonstration.
$$F(x) = F(x_0) + \int_{x_0}^{x} f(t) dt$$
.

Remarque. C'est donc le théorème fondamental du calcul différentiel et intégral qui est revu ici.

2.1.4 Critères d'intégration absolue

Proposition 2.21 (Critère de comparaison). *Soit* $I \subset \mathbb{R}$ *un intervalle non-vide et* $f, g : I \to \mathbb{R}$ *avec :*

- $\forall x \in X : |f(x)| \leq g(x);$
- f, g R-int sur tout segment de I.

Si q est abs-int sur I, alors f l'est aussi, et on a :

$$\int_{I} |f| \leqslant \int_{I} g.$$

Démonstration. Il existe $M_g \ngeq 0$ t.q. :

$$\forall [\mathfrak{u},\mathfrak{v}] \subset I: \int_{\mathfrak{U}}^{\mathfrak{v}} \mathfrak{g} \leqslant M_{\mathfrak{g}}.$$

Ainsi, si $[a, b] \subset I$ est un segment, on a f R-int sur [a, b] et :

$$\int_a^b |f| \leqslant \int_a^b g \leqslant M_g,$$

avec M_q donc indépendant de [a, b]. Ceci montre que f est abs-int sur I et que :

$$\int_{I} |f| \leqslant \int_{I} g.$$

Remarque. Soient f, g : $[a,b) \to \mathbb{R}$. On dit que f est *équivalent* à g en b^- lorsque :

$$\forall \varepsilon > 0 : \exists \eta > 0 \text{ t.q. } \forall x \in [b - \eta, b) : |f(x) - g(x)| \leq \varepsilon |f(x)|.$$

Proposition 2.22. *Soit* I = [a, b), *et soit* $f : I \to \mathbb{R}$, *R-int sur tout segment de* I. *Alors* :

- 1. $si f \sim g(x)$, alors f est abs-int sur I si et seulement si g l'est;
- 2. dans le cas abs-int, on a :

$$\int_{x}^{b} |f| \underset{b-}{\sim} \int_{x}^{b} g.$$

Dans le cas non-abs-int, on a :

$$\int_{a}^{x} |f| \sim \int_{a}^{x} g.$$

29