日本国特許庁 JAPAN PATENT OFFICE

04.09.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 6月27日

出 願 番 号 Application Number:

特願2003-185241

[ST. 10/C]:

[JP2003-185241]

REC'D 2 3 OCT 2003

WIPO POT

出 願 人
Applicant(s):

武田薬品工業株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner,

Japan Patent Office

2003年10月10日

【書類名】

特許願

【整理番号】

B03157

【提出日】

平成15年 6月27日

【あて先】

特許庁長官 殿

【国際特許分類】

C07D307/34

C07D333/04

【発明者】

【住所又は居所】

兵庫県川西市萩原台東1丁目25

【氏名】

▲はま▼村 和雅

【発明者】

【住所又は居所】 奈良県生駒市北新町3-3-501

【氏名】

佐々木 茂和

【発明者】

【住所又は居所】 大阪府大阪市東淀川区菅原7丁目1-19-802

【氏名】

天野 雄一郎

【発明者】

【住所又は居所】 大阪府豊中市上新田1丁目14-30-103

【氏名】

坂本 潤一

【発明者】

【住所又は居所】 兵庫県神戸市北区筑紫が丘5丁目8-4

【氏名】

深津 考司

【特許出願人】

【識別番号】

000002934

【氏名又は名称】 武田薬品工業株式会社

【代理人】

【識別番号】

100114041

【弁理士】

【氏名又は名称】 高橋 秀一

【選任した代理人】

【識別番号】 100106323

【弁理士】

【氏名又は名称】 関口 陽

【先の出願に基づく優先権主張】

【出願番号】

特願2002-261873

【出願日】

平成14年 9月 6日

【整理番号】

B02297

【手数料の表示】

【予納台帳番号】 005142

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】 要約書 1

【包括委任状番号】 9909276

【包括委任状番号】 0203423

【プルーフの要否】 要

【発明の名称】 フランまたはチオフェン誘導体およびその医薬用途

【特許請求の範囲】

【請求項1】 式(I)

【化1】

$$R^{2} \xrightarrow{M^{1}} Y \xrightarrow{M^{2}} A \xrightarrow{M^{3}} X^{2} \xrightarrow{M^{4}} O \xrightarrow{R^{1}} (I)$$

[式中、Rは置換されていてもよい炭化水素基または置換されていてもよい複素 環基を示し、pは0、1または2を示し、pが2である場合、各Rは同一または 異なっていてもよく、R¹は水素原子または置換されていてもよい炭化水素基を 示し、R²は置換されていてもよい芳香族基を示し、環Aは置換されていてもよ い単環性芳香環または置換されていてもよい2環性芳香族縮合環を示し、X¹は 酸素原子または硫黄原子を示し、 X^2 は結合手、酸素原子または-S(O)n-(ここで、nは0、1または2を示す)を示し、Yは結合手、酸素原子、-S(O) m-, -C (=0) -N (R³) - $\pm t$ $\pm t$ -N (R³) -C (=0) - (R 3は、水素原子、置換されていてもよい炭化水素基または置換されていてもよい 複素環基を示し、 m は、 $\mathrm{0}$ 、 $\mathrm{1}$ または $\mathrm{2}$ を示し、 M $\mathrm{1}$ 、 M $\mathrm{2}$ および M $\mathrm{3}$ は、それぞれ独立して、同一または異なっていてもよく、結合手または置換され ていてもよい 2 価の脂肪族炭化水素基を示し、M 4 は置換されていてもよい 2 価 の脂肪族炭化水素基を示す。(但し、(1)Yが酸素原子または-S(O)m-である時、 M^1 は結合手ではなく、(2)Yが結合手であり、かつ M^1 およびM 2 のどちらか一方が結合手である時、 $\mathrm{M}^{\,1}$ および $\mathrm{M}^{\,2}$ の他方は結合手でも、メチ レンでもなく、(3) 3-[3-[(2-メチルー5-フェニルー3-フラニ.ル) カルボニル] アミノ] フェニル] -2-プロペン酸、4-[[(2-メチル -5-フェニル-3-フラニル)カルボニル]アミノ]ベンゼン酢酸、5-[[- 3 - フェニルー 2 - チオフェンカルボン酸、3 - [3 - [「(2 - メチルー5 ーフェニルー3ーフラニル)カルボニル]アミノ]フェニル]ー2ープロペン酸

および4-[[(2-メチル-5-フェニル-3-フラニル) カルボニル] アミノ] ベンゼン酢酸を含まない。)] で表わされる化合物またはその薬理学的に許容され得る塩。

【請求項2】 Rが置換されていてもよいアルキル、置換されていてもよいアラルキル、置換されていてもよいシクロアルキルまたは置換されていてもよいアリールである請求項1記載の化合物。

【請求項3】 pが1である請求項1記載の化合物。

【請求項4】 R¹が水素原子である請求項1記載の化合物。

【請求項 5 】 R 2 が置換されていてもよいフェニルである請求項 1 記載の化合物。

【請求項6】 環Aが置換されていてもよい単環性芳香環である請求項1記載の 化合物。

【請求項7】 単環性芳香環が単環性芳香族複素環である請求項6記載の化合物

【請求項8】 単環性芳香環がベンゼン環またはチアゾール環である請求項6記載の化合物。

【請求項9】 式

【化2】

が、式

[11:3]

(式中、環A'はさらに置換されていてもよいベンゼン環を示す)である請求項1記載の化合物。

【請求項10】 X¹が酸素原子である請求項1記載の化合物。

【請求項11】 X²が結合手、酸素原子または硫黄原子である請求項1記載の

化合物。

【請求項12】 Yが酸素原子または硫黄原子である請求項1記載の化合物。

【請求項13】 Yが-C(=O)-N(R^3)-(R^3 は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、炭素原子は M^1 と、窒素原子は M^2 と結合する)である請求項1記載の化合物。

【請求項14】 R³が水素原子、置換されていてもよいアルキル、置換されていてもよいアラルキル、置換されていてもよいシクロアルキルまたは置換されていてもよいアリールである請求項13記載の化合物。

【請求項15】 M¹が炭素数3以上のアルキレンである請求項1記載の化合物

【請求項16】 M^1 、 M^2 および M^3 が、それぞれ独立して、同一または異なっていてもよく、結合手、アルキレン、アルケニレンまたはアルキニレンであり、 M^4 がアルキレン、アルケニレンまたはアルキニレンである請求項1記載の化合物。

【請求項18】 式(I)が

【化4】

$$R^{2} \xrightarrow{M^{1}} Y \xrightarrow{M^{2}} A \xrightarrow{M^{3}} X^{2} \xrightarrow{M^{4}} O \xrightarrow{R^{1}} (I')$$

(式中、各記号は請求項1と同意義を示す)である請求項1記載の化合物。

【請求項19】 式(I')が

【化5】

$$R^{2} \xrightarrow{M^{1}} Y \xrightarrow{M^{2}} X^{2} \xrightarrow{M^{4}} O \xrightarrow{R^{1}} (I'')$$

(式中の記号は請求項1および9と同意義を示す)である請求項18記載の化合

物。

【請求項20】 X^1 が酸素原子であり、 X^2 が酸素原子または-S(O) n-(ここで、nは0、1または2を示す)であり、Yが酸素原子であり、 M^1 が置換されていてもよい C_{1-3} アルキレンであり、 M^2 が結合手であり、 M^3 が結合手または置換されていてもよいメチレンであり、 M^4 が置換されていてもよいメチレンである請求項19記載の化合物。

【請求項21】 M^1 および M^3 が、それぞれ独立して、同一または異なっていてもよく、置換されていてもよいメチレンである請求項20記載の化合物。

【請求項22】 X^1 が酸素原子であり、 X^2 が結合手であり、Yが酸素原子であり、 M^1 が置換されていてもよいn-プロピレンであり、 M^2 および M^3 が結合手であり、 M^4 が置換されていてもよいメチレンである請求項19記載の化合物。

【請求項23】 環Aが置換されていてもよい単環性芳香族複素環である請求項18記載の化合物。

【請求項24】 環Aが置換されていてもよいチアゾール環または置換されていてもよいオキサゾール環であり、 X^1 が酸素原子であり、 X^2 が結合手であり、Yが酸素原子または-S(O)n-(ここで、nは0、1または2を示す)であり、 M^1 が置換されていてもよい C_{1-3} アルキレンであり、 M^2 および M^3 が結合手であり、 M^4 が置換されていてもよいメチレンである請求項18記載の化合物。

【請求項25】 環Aが置換されていてもよいチアゾール環であり、 X^1 が酸素原子であり、 X^2 が結合手であり、Yが-S-であり、 M^1 が置換されていてもよいメチレンまたは置換されていてもよいn-プロピレンであり、 M^2 および M^3 が結合手であり、 M^4 が置換されていてもよいメチレンである請求項18記載の化合物。

【請求項26】 式(I')が

【化6】

$$R^{2} \xrightarrow{X^{1}}_{R} \qquad \qquad (I''')$$

(式中、 M^{1} は炭素数 3 以上のアルキレンを示し、他の記号は請求項 1 および 9 と同意義を示す)である請求項 1 8 記載の化合物。

【請求項27】 Rが置換されていてもよいアルキル、アリールまたはシクロアルキルであり、pが0または1であり、 R^1 が水素原子であり、 R^2 が置換されていてもよいフェニルであり、環Aが置換されていてもよいベンゼン環または置換されていてもよいチアゾール環であり、 X^1 が酸素原子であり、 X^2 が結合手または酸素原子であり、Yが酸素原子または-C(=O) -N(R^3) -(C) で、 R^3 は水素原子、アルキルまたはアラルキルを示し、炭素原子は M^1 と、窒素原子は M^2 と結合する)であり、 M^1 、 M^2 および M^3 が、それぞれ独立して、同一または異なっていてもよく、結合手またはアルキレンであり、 M^4 がアルキレンである請求項1記載の化合物。

【請求項28】 Rが置換されていてもよいアルキル、アリールまたはシクロアルキルであり、pが0または1であり、 R^1 が水素原子であり、 R^2 が置換されていてもよいフェニルであり、環Aが置換されていてもよいベンゼン環または置換されていてもよいチアゾール環であり、 X^1 が酸素原子であり、 X^2 が結合手または-S(O)n-(ここで、nは0、1または2を示す)であり、Yが酸素原子または-C(=O)-N(R^3)-(ここで、 R^3 は水素原子、アルキルまたはアラルキルを示し、炭素原子は M^1 と、窒素原子は M^2 と結合する)であり、 M^1 、 M^2 および M^3 が、それぞれ独立して、同一または異なっていてもよく、結合手またはアルキレンであり、 M^4 がアルキレンである請求項1記載の化合物。

【請求項29】 請求項1記載の化合物のプロドラッグ。

【請求項30】 請求項1記載の化合物またはそのプロドラッグを含有してなる 医薬組成物。 【請求項31】 請求項1記載の化合物またはそのプロドラッグを含有してなる 核内受容体PPAR制御剤。

【請求項32】 請求項1記載の化合物またはそのプロドラッグを含有してなる 核内受容体PPARに関連する疾患の予防または治療剤。

【請求項3.3】 核内受容体PPARに関連する疾患が脂質代謝異常症もしくはその続発症、動脈硬化性疾患もしくはその続発症、糖尿病、または耐糖能不全である請求項32記載の予防または治療剤。

【請求項34】 請求項1記載の化合物またはそのプロドラッグを含有してなる 高密度リポタンパクーコレステロール上昇剤。

【請求項35】 請求項1記載の化合物またはそのプロドラッグを含有してなる トリグリセリド低下剤。

【請求項36】 請求項1記載の化合物またはそのプロドラッグを含有してなる 低密度リポタンパクーコレステロール低下剤。

【請求項37】 請求項1記載の化合物またはそのプロドラッグを含有してなる動脈硬化巣の進展抑制剤。

【請求項38】 請求項1記載の化合物またはそのプロドラッグを含有してなるGPR40受容体機能調節剤。

【請求項39】 インスリン分泌調節剤、血糖低下剤または膵β細胞保護剤である請求項38記載の剤。

【請求項40】 糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良、記憶学習障害、肥満、低血糖症、高血圧、浮腫、インスリン抵抗性症候群、不安定糖尿病、脂肪萎縮、インスリンアレルギー、インスリノーマ、脂肪毒性または癌の予防治療剤である請求項38記載の剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、優れた血中脂質代謝改善作用および血糖低下作用を有し、脂質代謝

異常症、動脈硬化性疾患およびそれらの続発症(例えば、虚血性心疾患、脳疾患や末梢動脈閉塞症など)、糖尿病、耐糖能不全などの予防・治療剤として有用な新規フランまたはチオフェン誘導体などに関する。

[0002]

【従来の技術】

ペルオキシソーム増殖剤応答性受容体(Peroxisome Proliferator Activated Receptor: PPAR)は1990年に、脂肪分解に関与する細胞内小器官であるペルオキシソームを増加させる作用を仲介するタンパク質としてクローニングされた受容体であり(非特許文献1参照)、エストロゲン、甲状腺ホルモンおよび脂溶性ビタミンなどをリガンドとする核内受容体と同族の転写因子である。PPARにおいてはこれまでにPPAR α 、PPAR β およびPPAR β 03種のサブタイプが同定されている。PPAR β 1は肝臓、心臓、腎臓、副腎、消化管、骨格筋に、PPAR β 1は免疫系臓器、大腸、小腸、副腎、脂肪細胞に主に発現しており、PPAR β 1は組織特異性なく普遍的に発現していることが知られている。いずれのPPAR β 1とずとなるに発現しており、PPAR β 1とを定なヘテロ二量体を形成して標的遺伝子の特異的DNA認識配列(PPRE)に結合し制御を行う。

[0003]

PPAR α 作動薬はリポタンパク質リパーゼの増加(非特許文献 2 参照)とアポC-IIIの発現を抑制(非特許文献 3 参照)してトリグリセリドーリッチリポタンパク質の異化を促進させる。また、肝臓、筋肉、脂肪、小腸などで各組織に特異的な脂肪酸転送タンパクと結合タンパクが誘導され(非特許文献 4 参照)、遊離脂肪酸の取り込みを促進させる。さらに、ミトコンドリアおよびペルオキシソームに局在する脂肪酸 β 酸化酵素を強力に亢進させる(非特許文献 5 参照)。また、PPAR α はヒトにおいてアポA-I遺伝子を正に調節することが報告されている(非特許文献 6 参照)。これらの結果としてPPAR α 作動薬は、血中からのトリグリセリド消失を促進することに加え、トリグリセリド合成および超低密度リポタンパク質の分泌を抑制して血清トリグリセリドを低下させるとともに、血中高密度リポタンパク質を増加させて、血中脂質組成を改善させる。P

PΑR α 作動薬としてはフィブラート系薬剤として知られている脂質低下薬がす でに臨床で用いられており、PPAR α作動薬が高脂血症等の予防および/また は治療薬として有用であることを明らかにしている。また、PPARα作動薬が 有する生理作用としては、肝臓と小腸でATP産生系の最終段階である酸化的リ ン酸化を阻害する脱共役タンパクのひとつUCP2 (uncoupling p rotein-2)を誘導する作用が判明しており(非特許文献7および8参照)、骨格筋においてもUCP-3(uncoupling protein-3)を誘導する事が知られていることから(非特許文献9参照)、エネルギー消費 の亢進による抗肥満作用やインスリン抵抗性改善作用(非特許文献10参照)が 期待される。さらに、PPARαはヒト大動脈平滑筋細胞において発現し、PP $AR\alpha$ 作動薬は $IL-1\beta$ 刺激によるIL-6の誘導を抑制すること(非特許文 献11参照)や、TNF- $_lpha$ やIL-1 $_eta$ による血管内皮細胞のVCAM-1発 現を抑制すること(非特許文献12参照)が報告されており、炎症過程を伴うア テローム性動脈硬化の形成を抑制することが示唆されている。また、PPAR α 作動薬はSR-BI (scavenger receptor B class I) およびABCA1 (ATP binding cassette tra nsporter A1)の発現を上昇させることが見出されており(非特許文 献13および14参照)、コレステロール逆転送系を亢進させて抗動脈硬化的に 働くことが示唆されている。また、小腸でのABCA1発現増強は遊離コレステ ロールの腸管排泄を促進することから(非特許文献15参照)、血清コレステロ ール低下作用も期待できる。一方、PPARα作動薬によりマウスのフィブリノ ーゲンの血清レベルが低下するという報告がなされ(非特許文献16参照)、血 栓形成を抑制することによってプラーク形成後の心血管イベントを抑制する可能 性を示している。

[0004]

PPARδ (PPARβあるいはヒトの場合NUCIとも称される)の内因性 リガンド候補として長鎖脂肪酸やカルパプロスタサイクリンが挙げられる。PP ARδは普遍的に発現しているが、特に発現が強いのは腸、腎臓、心臓である。 PPARδ選択的作動薬はマクロファージ、線維芽細胞、腸管細胞においてアポ

A-I依存的なコレステロール搬出を促進し、肥満アカゲザルにおいて血中の高 密度リポタンパクを上昇させ、低密度リポタンパク、空腹時トリグリセリドおよ び空腹時インスリンを低下させることが(非特許文献17参照)、db/dbマ ウスにおいてHDL-C増加作用を示すこと(非特許文献18参照)が報告され ている。したがって、PPARδの作動薬は、血中脂質組成改善薬となり得ると 考えられ、動脈硬化進展抑制あるいは治療薬となる可能性があり、さらに、シン ドロームXのリスク要因を軽減し虚血性心疾患等の発症を予防する薬剤となる可 能性がある。また、PPARSの作動薬はグリア細胞の分化・増殖を誘導するこ とが知られている(非特許文献19および20参照)。さらに、PPARa作動 薬は、マウス前駆脂肪細胞の分化促進作用を示すこと(非特許文献21~23参 照);ラットおよびヒト骨格筋細胞のUCP-2およびUCP-3発現促進作用 を示すこと(非特許文献24および25参照);高浸透圧ストレスによる腎髄質 細胞死を抑制すること(非特許文献26参照)が報告されている。さらに、PP AR δが、大腸癌(非特許文献 27 および 28 参照)、妊娠時の着床(非特許文 献29参照)、破骨細胞における骨吸収作用(非特許文献30参照)、炎症にお けるアポプトーシス(非特許文献31参照)、脳における2型アシルーCoA合 成酵素の制御(非特許文献32参照)と関連することが報告されている。またP PARδ作動薬について、特許文献1にアテローム硬化症の予防、治療薬として の使用が、特許文献 2 に糖尿病治療薬、抗肥満薬としての使用が開示されている

[0005]

 γ リガンドの添加によってその増殖が停止すること(非特許文献 3.6 参照)、② インドメタシン、フェノプロフェンに代表されるノンステロイド抗炎症薬が PP AR γ リガンド活性を持つこと(非特許文献 3.7 参照)、③活性化されたマクロファージで $PPAR\gamma$ が高発現し、そのリガンド添加によって炎症に関与する遺伝子の転写が阻害されること(非特許文献 3.8 参照)、④ $PPAR\gamma$ リガンドが、単球による炎症性サイトカイン($TNF-\alpha$ 、 $IL-1\beta$ 、 IL-6)の産生を抑制すること(非特許文献 3.9 参照)などが判明している。

[0006]

PPAR受容体結合剤としては、例えば特許文献 3 ~ 2 2 等に開示されている

[0007]

最近、膵臓に発現するG蛋白共役型受容体GPR40に遊離脂肪酸が作用することにより、膵臓 β 細胞からのインスリン分泌が促進されることが明らかにされた(非特許文献40)。

[0008]

一方、フランまたはチオフェン構造を有する化合物としては、下記文献に記載 の化合物等が知られている。

特許文献6には、PPARリガンド受容体結合剤として、式

【化7】

0

$$(R^{21}) q$$
 $(CH_2)_r$ Z^{20} $(CH_2)_r$ Z^{20} $(CH_2)_r$ $(CH_2)_r$

[式中、R 21 はそれぞれ独立して、水素原子、C 1 ~8アルキル、ハロゲン原子、C 1 ~4アルコキシ、C 1 ~4アルキルチオ、ニトロ、NR 24 R 25 (基中、R 24 およびR 25 はそれぞれ独立して、C 1 ~4アルキルを表わす。)、シアノ、トリフルオロメチル、トリフルオロメチルオキシ、炭素環またはヘテロ環(炭素環およびヘテロ環は、C 1 ~4アルキル、C 1 ~4アルコキシ、ハロゲン原子またはトリフルオロメチルから選ばれる基で置換されていてもよい。)を表わし、

 R^{22} は水素原子、 C^{1} ~8アルキル、ハロゲン原子、 C^{1} ~4アルコキシ、 C^{1} ~4アルキルチオ、ニトロ、 $N^{24}R^{25}$ (基中、 R^{24} および R^{25} はそれぞれ独立して、 C^{1} ~4アルキルを表わす。)、シアノ、トリフルオロメチルまたはトリフルオロメチルオキシを表わし、

 R^{23} は水素原子または $C1\sim4$ アルキルを表わし、

 X^{2} 1は-N-または-CH-を表わし、

 X^2 2および Y^2 0はそれぞれ独立して、-O-、-S-または $-NR^2$ 6-(基中、 R^2 6は水素原子またはC1~4アルキルを表わす。)を表わし、

 Z^{20} はO-またはS(O) p'O-(基中、p'はO、1またはOを表わす。)を表わし、

 R^{27} および R^{28} は、それぞれ独立して、水素原子または $C^{1\sim4}$ アルキルを表わすか、あるいはそれらが結合する炭素原子と一緒になって、 $C^{3\sim7}$ シクロアルキレンを表わし、

【化8】

は炭素環またはヘテロ環を表わし、

【化9】

は二重結合または三重結合を表わし、

q および r はそれぞれ独立して、 $1 \sim 3$ を表わす。]

で示される化合物、それらの非毒性塩及びそれらの水和物が記載されている。

[0009]

特許文献23には

【化10】

[式中、 X^{30} は $-C(R^{34})$ =または-N=、

 Y^{30} & C (R 3 4) = N - , -N = C (R 3 4) - , -C (R 3 4) = C (R 3 4) - , -O - , -S - \pm & C (R 3 4) - ,

 Z^{30} $tt-(CH_2)$ n'O-, -(CH₂) n'-S-, -(CH₂) n'-N (R³⁴) -, -C (=0) -N (R³⁴) -, -(CH₂) n'S (O) -, -(CH₂) n'SO₂-, -C (R³⁴) = C (R³⁴) - tt-C = C

 $R^{31}k - (CHR^{37})_n COOR^{34}$

n'は、各々、独立して0~5、

 R^{32} は、各々、独立して水素、低級アルキル、低級アルコキシ、低級アルコキシカルボニル、トリフルオロメチル、ニトロ、シアノまたはハロゲン、 R^{33} は、

【化11】

Wは結合であるかまたは-O-、-S-、-N(R³⁴)-、

m'は1~15、

R34は、各々、独立して水素または低級アルキル、

R ³⁷ は水素またはメチルを意味する] (式中の説明は必要な部分を抜粋した) で示される化合物、およびその医薬上許容される塩が、抗アレルギーおよび抗炎 症剤として開示されている。

[0010]

特許文献24には

【化12】

[式中、ACは

【化13】

はであり; n C は 0 または 1 であり;

は結合を表わすかまたは結合を表わさず;

R c は C 1 ないし C 8 アルキル、C 3 ないし C 7 シクロアルキル、C 3 ないし C 8 アルケニル、C 3 ないし C 8 アルキニルフェニル、C 7 ないし C 8 フェニルアルキル、C 2 ないし C 8 アルカノイル、または、C 1 ないし C 3 アルキル、トリフルオロメチル、ヒドロキシ、C 1 ないし C 3 アルコキシ、フッ素または塩素でモノーまたはジ置換された前記の基の一つであり;

 R^{2} cは、水素、C1ないしC3アルキル、フェニルまたはベンジルであり; YcはCHまたはNであり;

Z c は水素、C 1 ないしC 7 アルキル、C 3 ないしC 7 シクロアルキル、フェニル、またはC 1 ないしC 3 アルキル、トリフルオロメチル、C 1 ないしC 3 アルコキシ、フェニル、フェノキシ、ベンジル、ベンジルオキシ、フッ素または塩素でモノージ置換されたフェニルであり;

X 'c to S, S o z c to S c to S o S c c S o S c c S o S c S o S c S o S c S o S c S o S c S o S c S c S o S c

Y 'c はヒドロキシ、C1ないしC3アルコキシ等であり;

Z 'C は水素またはC1ないしC3アルキルである] で示される化合物が血糖低下作用および血中脂質低下作用を有していることが記載されている。

[0011]

特許文献25には

【化14】

がインテグリン受容体リガンドとして記載されている。

[0012]

特許文献26には

【化15】

がインテグリン受容体リガンドとして記載されている。

[0013]

特許文献27には

【化16】

がインテグリン受容体リガンドとして記載されている。

[0014]

特許文献28には

【化17】

がホスホジエステラーゼ阻害剤として記載されている。

[0015]

特許文献29には

【化18】

が抗癌剤、転位抑制剤として記載されている。

[0016]

特許文献30には

【化19】

が、バゾプレッシン受容体に親和性を有する化合物の原料として記載されている

[0017]

非特許文献41には

【化20】

が、分泌型ホスホリパーゼA2阻害剤として記載されている。

[0018]

特許文献31には

【化21】

が、トロンボポエチン受容体アゴニストの原料として記載されている。

[0019]

特許文献32には

【化22】

が、プロスタグランジンアゴニストとして記載されている。

[0020]

非特許文献42に

【化23】

が掲載されている。

[0021]

特許文献33には、PPAR作動薬としてフラン誘導体が記載されている。

[0022]

【特許文献1】

国際公開第92/10468号パンフレット

【特許文献2】

国際公開第97/28115号パンフレット

【特許文献3】

国際公開第00/64876号パンフレット

【特許文献4】

国際公開第02/144291号パンフレット

【特許文献5】

国際公開第01/79197号パンフレット

【特許文献6】

国際公開第00/23442号パンフレット

【特許文献7】

国際公開第99/46232号パンフレット

【特許文献8】

特開2001-261612号公報

【特許文献9】

国際公開第01/92201号パンフレット

【特許文献10】

国際公開第00/75103号パンフレット

【特許文献11】

国際公開第01/60807号パンフレット

【特許文献12】

米国特許出願公開第2002/0037911号明細書

【特許文献13】

米国特許第6369055号明細書

【特許文献14】

米国特許出願公開第2002/0022656号明細書

【特許文献15】

国際公開第97/28149号パンフレット

【特許文献16】

米国特許出願公開第US2002/0042441号明細書

【特許文献17】

国際公開第01/00603号パンフレット

【特許文献18】

国際公開第02/18355号パンフレット

【特許文献19】

国際公開第02/16331号パンフレット

【特許文献20】

国際公開第02/16332号パンフレット

【特許文献21】

国際公開第01/16120号パンフレット

【特許文献22】

国際公開第97/36579号パンフレット

【特許文献23】

特開平01-143856号公報

【特許文献24】

特表平05-507920号公報

【特許文献25】

国際公開第01/93840号パンフレット

【特許文献26】

国際公開第01/10847号パンフレット

【特許文献27】

国際公開第01/23357号パンフレット

【特許文献28】

国際公開第01/87038号パンフレット

【特許文献29】

国際公開第99/6393号パンフレット

【特許文献30】

特開平09-221476号公報

【特許文献31】

国際公開第01/53267号パンフレット

【特許文献32】

国際公開第99/19300号パンフレット

【特許文献33】

国際公開第02/092590号パンフレット

【非特許文献1】

「Nature」、1990年、347、p.645

【非特許文献2】

「EMBO Journal」、1996年、15、p. 5336

【非特許文献3】

「Journal of Clinical Investigation」、1995年、95、p.

705

【非特許文献4】

「Journal of Biological Chemistry」、1998年、273、p.

16710

【非特許文献5】

「Journal of Biological Chemistry」、1998年、273、p.

5 6 7 8

【非特許文献6】

「Journal of Biological Chemistry」、1994年、269、p.

3 1 0 1 2

【非特許文献7】

「Biochemical and Biophysical Research Communications」、199年、257、p. 879

【非特許文献8】

「Biochimica et Biophysica Acta」、2001年、1530、p.

1 5

【非特許文献9】

「FASEB Journal」、2001年、15、p. 833

【非特許文献10】

「Diabetes」、2001年、50、p. 411

【非特許文献11】

「Nature」、1998年、393、p. 790

【非特許文献12】

「Circulation」、1999年、99、p. 3125

【非特許文献13】

「Circulation」、2000年、101、p. 2411

【非特許文献14】

「Nature Medicine」、2001年、7、p. 53

【非特許文献15】

「Journal of Clinical Investigation」、2001年、108、p . 303

【非特許文献16】

「Blood」、93、1999年、p. 2991

【非特許文献17】

「Proceedings of the National Academy of Sciences of the Unite d States of America」、2001年、98、p. 5306

【非特許文献18】

「FEBS letters」、2000年、473、p. 333、

【非特許文献19】

「Molecular and Cellular Biology」、2000年、20、p. 51

19

【非特許文献20】

「Glia」、2001年、33. p. 191

【非特許文献21】

[Journal of Biological Chemistry]、1999年、274、p.

2 1 9 2 0

【非特許文献22】

「Journal of Biological Chemistry」、2000年、275、p.

38768

【非特許文献23】

[Journal of Biological Chemistry]、2001年、276、p.

3 1 7 5

【非特許文献24】

「Journal of Biological Chemistry」2001年、276、p. 10853

【非特許文献25】

「Endocrinology」、2001年、142、p. 418

9

【非特許文献26】

「Journal of Biological Chemistry」、2002年、277、p.

2 1 3 4 1

【非特許文献27】

「Cell」、1999年、99、p. 335

【非特許文献28】

Proceedings of the National Academy of Sciences of the Unite

d States of America」、2001年、98、p. 2598

【非特許文献29】

「Genes and Development」、1999年、13、p. 1561

【非特許文献30】

「Journal of Biological Chemistry」、2000年、275、p.

8 1 2 6

【非特許文献31】

「Genes and Development.」、2001年、15、p. 3263

【非特許文献32】

「Journal of Biological Chemistry」、1999年、274、p.

35881

【非特許文献33】

「Cell」、1995年、83、p. 803

【非特許文献34】

「Journal of Biological Chemistry」、1995年、270、p.

1 2 9 5 3

5

【非特許文献35】

「Journal of Medicinal Chemistry」、1996年、39、p.65

【非特許文献36】

「Proceedings of the National Academy of Sciences of the Unite d States of America」、1997年、94、p. 237

【非特許文献37】

「Journal of Biological Chemistry」、1997年、272、p. 3406

【非特許文献38】

「Nature」、1998年、391、p. 79

【非特許文献39】

「Nature」、1998年、391、p. 82

【非特許文献40】

「Nature (advance online publication)」、2003年2月 23日、doi:10.1038/nature01478

【非特許文献41】

「Journal of Medicinal Chemistry」、1996年、39、p. 36

【非特許文献42】

[CHEMCATS] [online]

[0023]

【発明が解決しようとする課題】

PPARに関連する疾患(例えば、脂質代謝異常症、動脈硬化性疾患およびそれらの続発症(例えば、虚血性心疾患、脳疾患や末梢動脈閉塞症など)、糖尿病、耐糖能不全など)の予防・治療剤として有用であり、かつ、副作用が少ない等、医薬として優れた性質を有する新規化合物の開発が望まれている。

また、これまでGPR40受容体に対する非ペプチド性低分子アゴニストあるいはアンタゴニストは知られておらず、インスリン分泌促進剤や糖尿病などの予防・治療剤として有用なGPR40受容体機能調節作用を有する新規化合物の開発が望まれている。

[0024]

【課題を解決するための手段】

本発明者らは、上記事情に鑑み鋭意研究を重ねた結果、下記の特異な構造を有するフラン誘導体およびチオフェン誘導体を初めて合成し、これらの化合物が予想外にも、PPARを制御しPPARに関連する病態または疾患に対する優れた予防・治療作用を発揮すること、および優れたGPR40受容体アゴニスト活性を有しGPR40受容体に関連する病態または疾患に対する優れた予防・治療作用を発揮することを見出し、これらの知見に基づいて本発明を完成した。

すなわち、本発明は、

(1) 式(I)

[124]

$$R^{2} \xrightarrow{M^{1}} Y \xrightarrow{M^{2}} A \xrightarrow{M^{3}} X^{2} \xrightarrow{M^{4}} O \xrightarrow{R^{1}} (I)$$

[式中、Rは置換されていてもよい炭化水素基または置換されていてもよい複素 環基を示し、pは0、1または2を示し、pが2である場合、各Rは同一または 異なっていてもよく、R¹は水素原子または置換されていてもよい炭化水素基を 示し、R²は置換されていてもよい芳香族基を示し、環Aは置換されていてもよ い単環性芳香環または置換されていてもよい2環性芳香族縮合環を示し、X1は 酸素原子または硫黄原子を示し、 X^2 は結合手、酸素原子または-S(O)n-(ここで、nは0、1または2を示す)を示し、Yは結合手、酸素原子、-S(O) m-, -C (=0) -N (R³) - $\pm cti-N$ (R³) -C (=0) - (R 3は、水素原子、置換されていてもよい炭化水素基または置換されていてもよい 複素環基を示し、mは、0、1または2を示す)を示し、 M^1 、 M^2 および M^3 は、それぞれ独立して、同一または異なっていてもよく、結合手または置換され ていてもよい2価の脂肪族炭化水素基を示し、M4は置換されていてもよい2価 の脂肪族炭化水素基を示す。(但し、(1)Yが酸素原子または-S (O) m-である時、 M^1 は結合手ではなく、(2) Y が結合手であり、かつ M^1 およびM 2 のどちらか一方が結合手である時、 $\mathrm{M}^{\,1}$ および $\mathrm{M}^{\,2}$ の他方は結合手でも、メチ レンでもなく、(3) 3-[3-[[(2-メチル-5-フェニル-3-フラニル) カルボニル] アミノ] フェニル] -2-プロペン酸、4-「「(2-メチル -5-フェニル-3-フラニル)カルボニル]アミノ]ベンゼン酢酸、5-「「 ーフェニルー3ーフラニル)カルボニル]アミノ]フェニル]ー2ープロペン酸 および4-[[(2-メチル-5-フェニル-3-フラニル)カルボニル]アミ ノ」ベンゼン酢酸を含まない。)] で表わされる化合物またはその薬理学的に許 容され得る塩;

(2) Rが置換されていてもよいアルキル、置換されていてもよいアラルキル

- 、置換されていてもよいシクロアルキルまたは置換されていてもよいアリールである前記(1)記載の化合物;
- (3) pが1である前記(1)記載の化合物;
- (4) R¹が水素原子である前記 (1) 記載の化合物;
- (5) R^2 が置換されていてもよいフェニルである前記(1)記載の化合物;
- (6) 環Aが置換されていてもよい単環性芳香環である前記(1)記載の化合物;
 - (7) 単環性芳香環が単環性芳香族複素環である前記(6)記載の化合物;
- (8) 単環性芳香環がベンゼン環またはチアゾール環である前記(6)記載の 化合物;
 - (9) 式

【化25】

が、式

【化26】

(式中、環A'はさらに置換されていてもよいベンゼン環を示す)である前記(1)記載の化合物:

- (10) X¹が酸素原子である前記(1)記載の化合物;
- (11) X^2 が結合手、酸素原子または硫黄原子である前記(1)記載の化合物;
 - (12) Yが酸素原子または硫黄原子である前記(1)記載の化合物;
- (13) Yが-C (=0) -N (R 3) (R 3 は水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、炭素原子はM 1 と、窒素原子はM 2 と結合する)である前記(1)記載の化合物;
- (14) R³が水素原子、置換されていてもよいアルキル、置換されていても

よいアラルキル、置換されていてもよいシクロアルキルまたは置換されていてもよいアリールである前記(13)記載の化合物:

- (15) M¹が炭素数3以上のアルキレンである前記(1)記載の化合物;
- (16) M^1 、 M^2 および M^3 が、それぞれ独立して、同一または異なっていてもよく、結合手、アルキレン、アルケニレンまたはアルキニレンであり、 M^4 がアルキレン、アルケニレンまたはアルキニレンである前記(1)記載の化合物:
- (17) X^2 が酸素原子または-S(O)n-(ここで、nは0、1または2を示す)であり、 M^3 が置換されていてもよい2価の脂肪族炭化水素基である前記(1)記載の化合物;
- (18) 式(I)が

【化27】

(式中、各記号は前記(1)と同意義を示す)である前記(1)記載の化合物;

(19) 式(I')が

【化28】

$$R^{2} \xrightarrow{M^{1}}_{X} Y \xrightarrow{M^{2}}_{R} X^{2} \xrightarrow{M^{4}}_{Q} Q_{R^{1}} \qquad (I'')$$

(式中の記号は前記(1)および(9)と同意義を示す)である前記(18)記載の化合物;

- (20) X^1 が酸素原子であり、 X^2 が酸素原子または-S (0) n- (ここで、nは0、1または2を示す)であり、<math>Yが酸素原子であり、 M^1 が置換されていてもよい C_{1-3} アルキレンであり、 M^2 が結合手であり、 M^3 が結合手または置換されていてもよいメチレンであり、 M^4 が置換されていてもよいメチレンである前記(19)記載の化合物;
- (21) M^1 および M^3 が、それぞれ独立して、同一または異なっていてもよ

く、置換されていてもよいメチレンである前記(20)記載の化合物;

- (22) X^1 が酸素原子であり、 X^2 が結合手であり、Yが酸素原子であり、 M^1 が置換されていてもよい M^2 であり、 M^2 および M^3 が結合手であり、 M^4 が置換されていてもよいメチレンである前記(19)記載の化合物;
- (23) 環Aが置換されていてもよい単環性芳香族複素環である前記 (18) 記載の化合物;
- (24) 環Aが置換されていてもよいチアゾール環または置換されていてもよいオキサゾール環であり、 X^1 が酸素原子であり、 X^2 が結合手であり、Yが酸素原子または-S(O)n-(ここで、nは0、1または2を示す)であり、 M^1 が置換されていてもよい C_{1-3} アルキレンであり、 M^2 および M^3 が結合手であり、 M^4 が置換されていてもよいメチレンである前記(18)記載の化合物;
- (25) 環Aが置換されていてもよいチアゾール環であり、 X^1 が酸素原子であり、 X^2 が結合手であり、Yが-S-であり、 M^1 が置換されていてもよいメチレンまたは置換されていてもよいn-プロピレンであり、 M^2 および M^3 が結合手であり、 M^4 が置換されていてもよいメチレンである前記(18)記載の化合物;

(26) 式(I')が

[化29]

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{1}} \mathbb{R}^{1}$$

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{1}} \mathbb{R}^{2}$$

$$(I''')$$

(式中、 M^{1} は炭素数 3 以上のアルキレンを示し、他の記号は前記(1) および (9) と同意義を示す)である前記 (18) 記載の化合物;

(27) Rが置換されていてもよいアルキル、アリールまたはシクロアルキルであり、pが0または1であり、R 1が水素原子であり、R 2 が置換されていてもよいフェニルであり、 \mathfrak{P} A が置換されていてもよいベンゼン環または置換されていてもよいチアゾール環であり、X 1 が酸素原子であり、X 2 が結合手または

酸素原子であり、Yが酸素原子または-C (=O) -N (R^3) - (C) (R^3) - (C) R^3 (C) $R^$

- (28) Rが置換されていてもよいアルキル、アリールまたはシクロアルキルであり、pが0または1であり、 R^1 が水素原子であり、 R^2 が置換されていてもよいフェニルであり、環Aが置換されていてもよいベンゼン環または置換されていてもよいチアゾール環であり、 X^1 が酸素原子であり、 X^2 が結合手または-S(O)n-(ここで、nは0、1または2を示す)であり、Yが酸素原子または-C(=O)-N(R^3)-(ここで、 R^3 は水素原子、アルキルまたはアラルキルを示し、炭素原子は M^1 と、窒素原子は M^2 と結合する)であり、 M^1 、 M^2 および M^3 が、それぞれ独立して、同一または異なっていてもよく、結合手またはアルキレンであり、 M^4 がアルキレンである前記(1)記載の化合物;
 - (29) 前記(1)記載の化合物のプロドラッグ;
- (30) 前記(1)記載の化合物またはそのプロドラッグを含有してなる医薬組成物:
- (31) 前記(1)記載の化合物またはそのプロドラッグを含有してなる核内 受容体PPAR制御剤;
- (32) 前記(1)記載の化合物またはそのプロドラッグを含有してなる核内 受容体PPARに関連する疾患の予防または治療剤;
- (33) 核内受容体PPARに関連する疾患が脂質代謝異常症もしくはその続発症、動脈硬化性疾患もしくはその続発症、糖尿病、または耐糖能不全である前記(32)記載の予防または治療剤;
- (34) 前記(1)記載の化合物またはそのプロドラッグを含有してなる高密 度リポタンパクーコレステロール上昇剤;
- (35) 前記(1)記載の化合物またはそのプロドラッグを含有してなるトリグリセリド低下剤;
- (36) 前記(1)記載の化合物またはそのプロドラッグを含有してなる低密

度リポタンパクーコレステロール低下剤;

- (37) 前記(1)記載の化合物またはそのプロドラッグを含有してなる動脈 硬化巣の進展抑制剤;
- (38) 前記(1)記載の化合物またはそのプロドラッグを含有してなるGP R40受容体機能調節剤;
- (39) インスリン分泌調節剤、血糖低下剤または膵 β 細胞保護剤である前記(38)記載の剤;
- (40) 糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病性神経障害、糖尿病性腎症、糖尿病性網膜症、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良、記憶学習障害、肥満、低血糖症、高血圧、浮腫、インスリン抵抗性症候群、不安定糖尿病、脂肪萎縮、インスリンアレルギー、インスリノーマ、脂肪毒性または癌の予防・治療剤である前記(38)記載の剤;などに関する。

[0025]

以下、各記号の定義を説明する。

Rは置換されていてもよい炭化水素基または置換されていてもよい複素環基を示す。

Rで示される「置換されていてもよい炭化水素基」における炭化水素基としては、例えば脂肪族炭化水素基、脂環式炭化水素基、脂環式一脂肪族炭化水素基、芳香脂肪族炭化水素基、芳香族炭化水素基などが挙げられる。これらの炭化水素基の炭素数は、好ましくは1ないし15である。

脂肪族炭化水素基としては、炭素数1ないし15の直鎖状または分枝状の脂肪 族炭化水素基、例えばアルキル、アルケニル、アルキニル等が挙げられる。

プロピル、ブチル)が好ましい。

アルケニルの好適な例としては、炭素数 2 ないし 1 0 のアルケニル、例えばエテニル、1 ープロペニル、2 ープロペニル、2 ーメチルー1 ープロペニル、1 ーブテニル、2 ーブテニル、3 ーブテニル、3 ーメチルー2 ーブテニル、1 ーペンテニル、4 ーペンテニル、4 ーメチルー3 ーペンテニル、1 ーヘキセニル、1 ーヘキセニル、1 ーヘナテニル、1 ーオクテニルなどが挙げられる。

アルキニルの好適な例としては、炭素数 2 ないし 1 0 のアルキニル、例えばエチニル、1 - プロピニル、2 - プロピニル、1 - ブチニル、2 - ブチニル、2 - ペンチニル、3 - ペンチニル、4 - ペンチニル、4 - ペンチニル、5 - ペンチンニル、1 - ペンチニル、1 - ペンチニルなどが挙げられる。

[0026]

脂環式炭化水素基としては、炭素数3ないし12の飽和または不飽和の脂環式 炭化水素基、例えばシクロアルキル、シクロアルケニル、シクロアルカジエニル などが挙げられる。

シクロアルキルの好適な例としては、炭素数 3 ないし 1 0 のシクロアルキル、 例えばシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロペプチル、シクロオクチル、ビシクロ [2.2.1] ペプチル、ビシクロ [2.2.1] ペプチル、ビシクロ [3.2.2] [3.2.1] オクチル、ビシクロ [3.2.2] [3.3.1]

シクロアルケニルの好適な例としては、炭素数3ないし10のシクロアルケニル、例えば2-シクロペンテン-1-イル、3-シクロペンテン-1-イル、2-シクロヘキセン-1-イルなどが挙げられる

シクロアルカジエニルの好適な例としては、炭素数 4 ないし 1 0 のシクロアルカジエニル、例えば 2, 4 - シクロペンタジエン-1-イル、2, 4 - シクロヘ

キサジエン-1-イル、2, 5-シクロヘキサジエン-1-イルなどが挙げられる。

[0027]

脂環式一脂肪族炭化水素基としては、例えば前記脂環式炭化水素基と脂肪族炭化水素基とが結合したもの(例、シクロアルキルーアルキル、シクロアルケニルーアルキル等)が挙げられ、なかでも炭素数4ないし9の脂環式一脂肪族炭化水素基が好ましい。脂環式一脂肪族炭化水素基の好適な例としては、シクロプロピルメチル、シクロプロピルエチル、シクロブチルメチル、シクロペンチルメチル、2ーシクロペンテニルメチル、3ーシクロペンテニルメチル、シクロヘキシルメチル、2ーシクロヘキセニルメチル、3ーシクロヘキセニルメチル、シクロヘキシルエチル、シクロヘキシルプロピル、シクロヘプチルメチル、シクロヘプチルエチル、シクロヘキシルプロピル、シクロヘプチルメチル、シクロヘプチルエチルなどが挙げられる。

[0028]

芳香脂肪族炭化水素基としては、例えば炭素数7ないし13の芳香脂肪族炭化水素基(例、炭素数7ないし13のアラルキル、炭素数8ないし13のアリールアルケニル等)などが挙げられる。芳香脂肪族炭化水素基の好適な例としては、ベンジル、フェネチル、1ーフェニルエチル、1ーフェニルプロピル、2ーフェニルプロピル、3ーフェニルプロピルなどの炭素数7ないし9のフェニルアルキル;1ーナフチルメチル、1ーナフチルエチル、2ーナフチルメチル、2ーナフチルエチルなどの炭素数11ないし13のナフチルアルキル;スチリルなどの炭素数8ないし10のフェニルアルケニル;2ー(2ーナフチルビニル)などの炭素数12ないし13のナフチルアルケニルなどが挙げられる。

[0029]

芳香族炭化水素基(アリール)としては、炭素数6ないし14の芳香族炭化水素基、例えばフェニル、ナフチル、アントリル、フェナントリル、アセナフチレニル、ビフェニリルなどが挙げられる。なかでもフェニル、1ーナフチル、2ーナフチルなどが好ましい。該芳香族炭化水素基は、部分的に水素化されていてもよく、部分的に水素化された芳香族炭化水素基としては、例えばテトラヒドロナフタレニルなどが挙げられる。

Rで示される「炭化水素基」は、好ましくは、炭素数1ないし10のアルキル、炭素数3ないし10のシクロアルキル、炭素数7ないし13のアラルキル、炭素数6ないし14のアリールなどである。

[0030]

Rで示される「置換されていてもよい複素環基」における複素環としては、例 えば芳香族複素環および非芳香族複素環が挙げられる。

芳香族複素環としては、例えば環構成原子として炭素原子以外に酸素原子、硫 黄原子および窒素原子から選ばれるヘテロ原子を1ないし4個含有する5~7員 の単環式芳香族複素環または縮合芳香族複素環が挙げられる。該縮合芳香族複素 環としては、例えばこれら5~7員の単環式芳香族複素環と、1ないし2個の窒 素原子を含む6員環、ベンゼン環または1個の硫黄原子を含む5員環とが縮合し た環等が挙げられる。芳香族複素環の好適な例としては、フラン、チオフェン、 ピリジン、ピリミジン、ピリダジン、ピラジン、ピロール、イミダゾール、ピラ ゾール、イソオキサゾール、イソチアゾール、オキサゾール、チアゾール、オキ サジアゾール、チアジアゾール、トリアゾール、テトラゾール、キノリン、キナ ゾリン、キノキサリン、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール 、ベンゾチアゾール、ベンズイミダゾール、インドール、1H-インダゾール、 1H-ピロロ[2, 3-b] ピラジン、1H-ピロロピリジン、1H-イミダゾ ピリジン、1H-イミダゾピラジン、トリアジン、イソキノリン、ベンゾチアジ アゾールなどが挙げられる。芳香族複素環は、好ましくは5または6員芳香族複 素環、さらに好ましくはフラン、チオフェン、ピリジン、ピリミジン、ピラゾー ル、オキサゾール、チアゾールなどである。

非芳香族複素環としては、例えば環構成原子として炭素原子以外に酸素原子、硫黄原子および窒素原子から選ばれるヘテロ原子を1ないし4個含有する5~7員の単環式非芳香族複素環または縮合非芳香族複素環が挙げられる。該非芳香族縮合複素環としては、例えばこれら5~7員の単環式非芳香族複素環と、1ないし2個の窒素原子を含む6員環、ベンゼン環または1個の硫黄原子を含む5員環とが縮合した環等が挙げられる。非芳香族複素環の好適な例としては、ピロリジン、ピロリン、ピラゾリジン、ピペリジン、ピペラジン、モルホリン、チオモル

ホリン、ヘキサメチレンイミン、オキサゾリジン、チアゾリジン、イミダゾリジン、イミダゾリン、テトラヒドロフラン、アゼパン、テトラヒドロピリジンなどが挙げられる。

[0031]

Rで示される炭化水素基および複素環基は、置換可能な位置に1ないし3個の 置換基を有していてもよい。このような置換基としては、例えばハロゲン原子(例、フッ素、塩素、臭素、ヨウ素);スルホ;シアノ;アジド;ニトロ;ニトロ ソ;1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置 換されていてもよい炭素数1ないし6のアルキル(例、メチル、エチル、プロピ ル、イソプロピル、トリフルオロメチルなど);1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数2ないし 6のアルケニル (例、エテニル、1-プロペニル、2-プロペニルなど);1な いし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されて いてもよい炭素数1ないし6のアルキニル(例、エチニル、1ープロピニルなど);1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置 換されていてもよい炭素数3ないし10のシクロアルキル(例、シクロプロピル 、シクロブチル、シクロペンチル、シクロヘキシルなど);1ないし3個のハロ ゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素 数6ないし14のアリール(例、フェニル、ナフチルなど);1ないし3個のハ ロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい芳 香族複素環基(例、チエニル、フリル、ピリジル、オキサゾリル、チアゾリルな ど);1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で 置換されていてもよい非芳香族複素環基(例、テトラヒドロフリル、モルホリニ ル、チオモルホリニル、ピペリジニル、ピロリジニル、ピペラジニルなど);1 ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換され ていてもよい炭素数7ないし13のアラルキル(例、ベンジル、フェネチル、ナ フチルメチルなど); 1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、 ヨウ素など)で置換されていてもよい炭素数1ないし4のアルキル(例、メチル 、エチル、プロピル、イソプロピルなど)、ホルミル、1ないし3個のハロゲン

原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数2 ないし8のアシル、および1ないし3個のハロゲン原子(例、フッ素、塩素、臭 素、ヨウ素など)で置換されていてもよい炭素数1ないし8のスルホニルから選 ばれる置換基でモノまたはジ置換されていてもよいアミノ;アミジノ;ホルミル ; 1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換 されていてもよい炭素数2ないし8のアシル;1ないし3個のハロゲン原子(例 、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1ないし8 のスルホニル;1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素 など)で置換されていてもよい炭素数1ないし8のスルフィニル;1ないし3個 のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよ い炭素数1ないし4のアルキル(例、メチル、エチル、プロピル、イソプロピル など)でモノあるいはジ置換されていてもよいホスホノ;1ないし3個のハロゲ ン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数 1ないし4のアルキル(例、メチル、エチル、プロピル、イソプロピルなど)で モノあるいはジ置換されていてもよいカルバモイル;1ないし3個のハロゲン原 子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1な いし4のアルキル (例、メチル、エチル、プロピル、イソプロピルなど)でモノ あるいはジ置換されていてもよいスルファモイル;カルボキシ;1ないし3個の ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい 炭素数2ないし8のアルコキシカルボニル (例、メトキシカルボニル、エトキシ カルボニル、プロポキシカルボニル、tert-ブトキシカルボニルなど);ヒドロ キシ;1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で 置換されていてもよい炭素数1ないし6のアルコキシ (例、メトキシ、エトキシ 、プロポキシ、イソプロポキシ、トリフルオロメトキシなど);1ないし3個の ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい 炭素数2ないし5のアルケニルオキシ(例、アリル(allyl)オキシ、クロチル オキシ、2-ペンテニルオキシなど);1ないし3個のハロゲン原子(例、フッ 素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数7ないし13のア ラルキルオキシ(例、ベンジルオキシ、フェネチルオキシなど);1ないし3個

のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数6ないし14のアリールオキシ(例、フェニルオキシ、ナフチルオキシなど);メルカプト;1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1ないし6のアルキルチオ(例、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、トリフルオロメチルチオなど);1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数7ないし13のアラルキルチオ(例、ベンジルチオ、フェネチルチオなど);1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数6ないし14のアリールチオ(例、フェニルチオ、ナフチルチオなど);オキソ;チオキソなどが挙げられ、好ましくはハロゲン原子(特にフッ素)、1ないし3個のハロゲン原子で置換されていてもよい炭素数1ないし6のアルコキシなどが挙げられる。

[0032]

アシルの好適な例としては、例えば1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数2ないし8のアシル(例、アセチル、プロピオニル、ブチリル、イソブチリル、バレリル、イソバレリル、ピバロイル、ヘキサノイル、シクロブタンカルボニル、シクロペンタンカルボニル、シクロヘキサンカルボニル、クロトニル、ベンゾイル、ニコチノイル、イソニコチノイル、トリフルオロアセチルなど)などが挙げられる。

スルホニルの好適な例としては、例えば1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1ないし8のスルホニル(例、メタンスルホニル、エタンスルノニル、ベンゼンスルホニル、pートルエンスルホニル、トリフルオロメタンスルホニルなど)などが挙げられる

スルフィニルの好適な例としては、例えば1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1ないし8のスルフィニル(例、メタンスルフィニル、エタンスルフィニル、ベンゼンスルフィニル、pートルエンスルフィニル、トリフルオロメタンスルフィニルなど)などが挙げられる。

ホスホノの好適な例としては、例えば環を形成していてもよい (モノーもしくはジー炭素数1~4のアルキル) ホスホノ (例、ジメチルホスホノ;ジエチルホスホノ;ジイソプロピルホスホノ;ジブチルホスホノ;2ーオキシドー1,3,2ージオキサホスフィナンー2ーイルなど) などが挙げられる。

[0033]

このうち、Rとしては、置換されていてもよいアルキル、置換されていてもよいアリール、置換されていてもよいアラルキルおよび置換されていてもよいシクロアルキルが好ましい。

[0034]

pは0、1、2を示す。すなわち、置換基Rは存在しないか、1個または2個存在する。Rが2個存在する場合(pは2)、各Rは同一でも、異なっていてもよい。

好ましくは、Rは1個存在する(pは1)。

[0035]

R¹は水素原子または置換されていてもよい炭化水素基を示す。

R¹における「炭化水素基」は、Rにおける「炭化水素基」と同義であり、中でもエチルなどのアルキルが好ましい。該炭化水素基は、Rにおける「炭化水素基」が有していてもよい置換基として例示された置換基などで置換されていてもよい。置換基の位置は、置換可能な位置であればいずれでもよく、1またはそれ以上であってもよく、2以上置換する場合、置換基は同一でも異なっていてもよい。

 R^{1} としては、水素原子が好ましい。

[0036]

R²は置換されていてもよい芳香族基を示す。

R²における「芳香族基」としては、芳香族炭化水素基および芳香族複素環基が挙げられ、「芳香族炭化水素基」とは、Rにおける「炭化水素基」の1つとして例示された「芳香族炭化水素基」と同義であり、Rにおける「炭化水素基」が有していてもよい置換基として例示された置換基などで置換されていてもよい。置換基の位置は、置換可能な位置であればいずれでもよく、1またはそれ以上で

あってもよく、2以上置換する場合、置換基は同一でも異なっていてもよい。

R²における「芳香族複素環基」とは、Rにおける「複素環基」の1つとして例示された「芳香族複素環基」と同義であり、Rにおける「複素環基」が有していてもよい置換基として例示された置換基などで置換されていてもよい。置換基の位置は、置換可能な位置であればいずれでもよく、1またはそれ以上であってもよく、2以上置換する場合、置換基は同一でも異なっていてもよい。

[0037]

R²としては、置換されていてもよい、炭素数6ないし14の芳香族炭化水素 基(好ましくはフェニル)および5または6員芳香族複素環基(好ましくはピリジル、フリル、チエニル)が好ましく、中でも置換されていてもよいフェニルが好ましい。好ましい置換基としては、1)ハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など);2)1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1ないし6のアルキル(例、メチル、エチル、プロピル、イソプロピル、トリフルオロメチルなど);3)炭素数6ないし14のアリール(例、フェニルなど);4)1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1ないし6のアルコキシ(例、メトキシ、エトキシ、トリフルオロメトキシなど);5)1ないし3個のハロゲン原子(例、フッ素、塩素、臭素、ヨウ素など)で置換されていてもよい炭素数1ないし6のアルキルチオ(例、メチルチオなど)などが挙げられる。

 R^2 としては、上記1) ~5) から選ばれる1ないし3個の置換基をそれぞれ有していてもよい炭素数6ないし14の芳香族炭化水素基(好ましくはフェニル)または5または6員芳香族複素環基(好ましくはピリジル、フリル、チエニル)がより好ましく、中でも上記1)、2) および4) から選ばれる1ないし3個の置換基を有していてもよいフェニルが特に好ましい。

[0038]

- X¹は酸素原子または硫黄原子を示す。
- X^1 は酸素原子が好ましい。

[0039]

 X^2 は結合手、酸素原子または-S(O)n-(ここで、nは0、1または2を示す)を示す。

X²は結合手、酸素原子または硫黄原子(nが0)が好ましい。

[0040]

Yは結合手、酸素原子、-S(O)m-、-C(=O)-N(R 3)-または-N(R 3)-C(=O)-(R 3 は、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、mは、0、1または2を示す)を示す。

YとしてはO-、-S-、または-C(=O) -N(R^3) -(R^3 は前記と同意義を示す)が好ましい。

[0041]

R³における「炭化水素基」は、Rにおける「炭化水素基」と同義であり、メチル、プロピル、ヘプチルなどの脂肪族炭化水素基、ベンジル基などの芳香脂肪族炭化水素基が好ましい。該炭化水素基は、Rにおける「炭化水素基」が有していてもよい置換基として例示された置換基などで置換されていてもよい。置換基の位置は、置換可能な位置であればいずれでもよく、1またはそれ以上であってもよく、2以上置換する場合、置換基は同一でも異なっていてもよい。

R3における「複素環基」は、Rにおける「複素環基」と同義であり、Rにおける「複素環基」が有していてもよい置換基として例示された置換基などで置換されていてもよい。置換基の位置は、置換可能な位置であればいずれでもよく、1またはそれ以上であってもよく、2以上置換する場合、置換基は同一でも異なっていてもよい。

R³としては、好ましくは水素原子、置換されていてもよいアルキル、置換されていてもよいアラルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリールが挙げられる。

[0042]

環Aは置換されていてもよい単環性芳香環または置換されていてもよい2環性 芳香族縮合環を示し、置換されていてもよい単環性芳香環が好ましい。

環Aにおける「単環性芳香環」とは、環を構成する原子としては炭素原子以外

にヘテロ原子(例えば酸素原子、窒素原子、硫黄原子など)を含んでいてもよく、しかも芳香族性である環のことであり、ベンゼンおよび、例えばフラン、チオフェン、ピリジン、ピリミジン、ピリダジン、ピラジン、ピロール、イミダゾール、ピラゾール、イソオキサゾール、イソチアゾール、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、トリアゾール、テトラゾールなどの単環性芳香族複素環が挙げられ、中でもベンゼン、チアゾールおよびオキサゾールなどが好ましい。当該単環性芳香環はRにおける「炭化水素基」および「複素環基」が有していてもよい置換基として例示された置換基など、好ましくは炭素数1~6のアルキル、炭素数1~6のアルコキシで置換されていてもよい。環Aにおける芳香環は、これら置換基で1または2以上置換されていてもよい。置換基はもちろん、芳香環の置換可能な位置と結合する。

[0043]

環Aにおける「2環性芳香族縮合環」とは、芳香族性を示す2環が縮合して得られる環であり、各環を構成する原子としては炭素原子以外に、ヘテロ原子(例えば酸素原子、窒素原子、硫黄原子など)を含んでいてもよい。当該縮合環としては例えばナフタレン、キノリン、キナゾリン、キノキサリン、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、ベンズイミダゾール、インドール、1Hーインダゾール、1Hーピロロ[2,3-b]ピラジン、1Hーピロロピリジン、1Hーイミダゾピリジン、1Hーイミダゾピラジン、トリアジン、イソキノリン、ベンゾチアジアゾールなどが挙げられ、中でもナフタレン、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾールなどが好ましい。当該縮合環は、Rにおける「炭化水素基」および「複素環基」が有していてもよい置換基として例示された置換基などで置換されていてもよい。環Aにおける2環性芳香族縮合環は、これら置換基で1または2以上置換されていてもよい。置換基はもちろん、2環性芳香族縮合環の置換可能な位置と結合する。

[0044]

夕置換、すなわち、式(I)における式

【化30】

が、式

【化31】

(式中、環A'はさらに置換されていてもよいベンゼン環を示す)であることが 特に好ましい。

[0045]

 M^1 、 M^2 および M^3 は、それぞれ独立して、同一または異なっていてもよく、結合手または置換されていてもよい2 価の脂肪族炭化水素基を示し、 M^4 は置換されていてもよい2 価の脂肪族炭化水素基を示す。

 M^1 、 M^2 、 M^3 および M^4 で示される「2 価の脂肪族炭化水素基」としては、例えばアルキレン、アルケニレン、アルキニレンなどが挙げられる。好ましくは炭素数1ないし20、より好ましくは1ないし6の2 価の脂肪族炭化水素基であり、さらに好ましくは

- (1) C_{1-20} アルキレン(好ましくは C_{1-6} アルキレン、例えば、 $-CH_2-CH_2$)。 $-(CH_2)_2-$ 、 $-(CH_2)_3-$ 、 $-(CH_2)_4-$ 、 $-(CH_2)_5-$ 、 $-(CH_2)_6-$ 、 $-(CH_2)_6 -(CH_2)_6 -(CH_2$
- (2) C_{2-20} アルケニレン (好ましくは C_{2-6} アルケニレン 、例えば、 $-C_{1}$ H=CH-、 $-C_{1}$ -CH=CH-、 $-C_{1}$ -CH=CH-、 $-C_{1}$ -CH=CH-、 $-C_{1}$ -CH=CH-CH₂-、 $-C_{1}$ -CH=CH-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-など);
- (3) C_{2-20} アルキニレン(好ましくは C_{2-6} アルキニレン、例えば、-C $\equiv C-$ 、 $-CH_2-C\equiv C-$ 、 $-CH_2-C\equiv C-$ (分とである。

なかでも、 C_{1-6} アルキレンおよび C_{2-6} アルケニレンが好ましい。・

該「脂肪族炭化水素基」は置換基を有していてもよく、置換基としては、例えば、Rにおける「炭化水素基」が有していてもよい置換基として例示された置換基などが挙げられる。 M^1 、 M^2 、 M^3 および M^4 における「2 価の脂肪族炭化水素基」は、これら置換基で1または2以上置換されていてもよい。置換基はもちろん、「脂肪族炭化水素基」の置換可能な位置と結合する。

[0046]

 M^1 が炭素数 3以上のアルキレン(特に好ましくはプロピレン)である場合も好ましい態様として挙げられる。また、 M^1 、 M^2 および M^3 が、それぞれ独立して、同一または異なっていてもよく、結合手、アルキレン、アルケニレンまたはアルキニレンであり、 M^4 がアルキレン、アルケニレンまたはアルキニレンである場合も好ましい。

 X^2 と M^3 の組み合わせとしては、 X^2 が酸素原子または-S(O) n-(ここで、nは0、1または2を示す)であり、 M^3 が置換されていてもよい2価の脂肪族炭化水素基であることが好ましい。

[0047]

R、 R^2 および

【化32】

(式中、記号は前記と同意義を示す) は、環

【化33】

(式中、記号は前記と同意義を示す)の置換可能ないずれの位置に置換していて もよく、なかでも

【化34】

$$R^{2} \xrightarrow{M^{1}} Y \xrightarrow{M^{2}} A \xrightarrow{M^{3}} X^{2} \xrightarrow{M^{4}} O_{R^{1}}$$

$$(I')$$

(式中、記号は前記と同意義を示す)で表される置換位置が好ましい。

[0048]

式(I')は、式(I'')

【化35】

$$R^{2} \xrightarrow{X^{1}} R$$

$$R^{2} \xrightarrow{X^{1}} R$$

$$(I'')$$

(式中の記号は前記と同意義を示す)であることが好ましく、なかでも式(I')において、 X^1 が酸素原子であり、 X^2 が酸素原子または-S(O) n-(ここで、nは0、1または2を示す)であり、Yが酸素原子であり、 M^1 が置換されていてもよい C_{1-3} アルキレンであり(M^1 としては置換されていてもよいメチレンが好ましい)、 M^2 が結合手であり、 M^3 が結合手または置換されていてもよいメチレンであり(M^3 としては置換されていてもよいメチレンが好ましい)、 M^4 が置換されていてもよいメチレンである化合物が特に好ましい。

式(I')において、 X^1 が酸素原子であり、 X^2 が結合手であり、Yが酸素原子であり、 M^1 が置換されていてもよいn-プロピレンであり、 M^2 および M^3 が結合手であり、 M^4 が置換されていてもよいメチレンである化合物も好ましい態様として挙げられる。

[0049]

式(I')において、環Aが置換されていてもよい単環性芳香族複素環である化合物も好ましい態様として挙げられる。なかでも、式(I')において、環Aが置換されていてもよいチアゾール環または置換されていてもよいオキサゾール環であり、 X^1 が酸素原子であり、 X^2 が結合手であり、Yが酸素原子またはS(O) n-(C) C) n はO(C) n はO(C) n はO(C) n はO(C) n がであり、 M^2 がお合手であり、 M^4 が置換されていてもよいM0 が M2 およびM3 が結合手であり、 M^4 が置換されていてもよいメチレンであることが好ましく、そのなかでも、環Aが置換されていてもよいチアゾール環であり、 M^4 が M2 が M3 が M4 が M5 であり、M6 が M6 が M7 が M8 が M9 が M7 が M8 が M9 が M

置換されていてもよいメチレンであることが特に好ましい。

[0050]

本発明における式(I)で表される化合物(以下、化合物(I)ともいう)の 好適な態様としては、Rが置換されていてもよいアルキル、アリールまたはシクロアルキルであり、pが0または1であり、R¹が水素原子であり、R²が置換 されていてもよいフェニルであり、環Aが置換されていてもよいベンゼン環また は置換されていてもよいチアゾール環であり、 X^1 が酸素原子であり、 X^2 が結 合手、酸素原子または X^2 0) X^3 1が酸素原子であり、 X^3 2が結 の、Yが酸素原子または X^3 1の、 X^3 2の、 X^3 3の、 X^3 3のの、 X^3 3のの。 X^3 3のの。 X^3 3のの。 X^3 3のの。 X^3 3ののの。 X^3 3のの。 $X^$

[0051]

化合物(I)の塩としては、薬理学的に許容される塩が好ましく、例えば無機塩基との塩、有機塩基との塩、無機酸との塩、有機酸との塩、塩基性または酸性アミノ酸との塩などが挙げられる。

無機塩基との塩の好適な例としては、例えばナトリウム塩、カリウム塩、リチウム塩などのアルカリ金属塩;カルシウム塩、マグネシウム塩などのアルカリ土類金属塩;アルミニウム塩、アンモニウム塩などが挙げられる。

有機塩基との塩の好適な例としては、例えばトリメチルアミン、トリエチルアミン、ピリジン、ピコリン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、N, Nージベンジルエチレンジアミンなどとの塩が挙げられる。

無機酸との塩の好適な例としては、例えば塩酸、臭化水素酸、硝酸、硫酸、リン酸などとの塩が挙げられる。

有機酸との塩の好適な例としては、例えばギ酸、酢酸、トリフルオロ酢酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、pートルエンスルホン酸などとの塩が挙げ

られる。

塩基性アミノ酸との塩の好適な例としては、例えばアルギニン、リジン、オルニチンなどとの塩が挙げられる。

酸性アミノ酸との塩の好適な例としては、例えばアスパラギン酸、グルタミン酸などとの塩が挙げられる。

[0052]

化合物(I)のプロドラッグは、生体内における生理条件下で酵素や胃酸等に よる反応により化合物(I)に変換する化合物、すなわち酵素的に酸化、還元、 加水分解等を起こして化合物(I)に変化する化合物、胃酸等により加水分解な どを起こして化合物(I)に変化する化合物をいう。化合物(I)のプロドラッ グとしては、化合物(I)のアミノがアシル化、アルキル化、りん酸化された化 合物(例、化合物(I)のアミノがエイコサノイル化、アラニル化、ペンチルア ミノカルボニル化、(5-メチル-2-オキソ-1,3-ジオキソレン-4-イ ル)メトキシカルボニル化、テトラヒドロフラニル化、テトラヒドロピラニル化 、ピロリジルメチル化、ピバロイルオキシメチル化、tert-ブチル化された 化合物など);化合物(Ⅰ)の水酸基がアシル化、アルキル化、りん酸化、ほう 酸化された化合物(例、化合物(Ⅰ)の水酸基がアセチル化、パルミトイル化、 プロパノイル化、ピバロイル化、サクシニル化、フマリル化、アラニル化、ジメ チルアミノメチルカルボニル化、テトラヒドロピラニル化された化合物など); 化合物(I)のカルボキシルがエステル化、アミド化された化合物(例、化合物 (I) のカルボキシルがエチルエステル化、フェニルエステル化、カルボキシメ チルエステル化、ジメチルアミノメチルエステル化、ピバロイルオキシメチルエ ステル化、エトキシカルボニルオキシエチルエステル化、フタリジルエステル化 、(5-メチル-2-オキソ-1,3-ジオキソレン-4-イル)メチルエステ ル化、シクロヘキシルオキシカルボニルエチルエステル化、メチルアミド化され た化合物など);等が挙げられる。これらの化合物は自体公知の方法によって化 合物(I)から製造することができる。

また、化合物 (I) のプロドラッグは、広川書店1990年刊「医薬品の開発 」第7巻分子設計163頁から198頁に記載されているような、生理的条件で 化合物(I)に変化するものであってもよい。

また、化合物(I)は、同位元素(例、 $3_{\rm H,~}14_{\rm C,~}35_{\rm S,}125_{\rm I}$ など)などで標識されていてもよい。

さらに、化合物(I)は、無水物であっても、水和物であってもよい。

[0053]

化合物(I)またはその塩(以下、単に本発明化合物と略記することがある)は、毒性が低く、そのまま、または薬理学的に許容し得る担体などと混合して医薬組成物とすることにより、哺乳動物(例、ヒト、マウス、ラット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ、サル等)に対して、後述する各種疾患の予防・治療剤として用いることができる。

ここにおいて、薬理学的に許容し得る担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が用いられ、固形製剤における賦形剤、滑沢剤、結合剤、崩壊剤;液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤などとして配合される。また必要に応じて、防腐剤、抗酸化剤、着色剤、甘味剤などの製剤添加物を用いることもできる。

賦形剤の好適な例としては、例えば乳糖、白糖、Dーマンニトール、Dーソルビトール、デンプン、α化デンプン、デキストリン、結晶セルロース、低置換度ヒドロキシプロピルセルロース、カルボキシメチルセルロースナトリウム、アラビアゴム、デキストリン、プルラン、軽質無水ケイ酸、合成ケイ酸アルミニウム、メタケイ酸アルミン酸マグネシウムなどが挙げられる。

滑沢剤の好適な例としては、例えばステアリン酸マグネシウム、ステアリン酸カルシウム、タルク、コロイドシリカなどが挙げられる。

結合剤の好適な例としては、例えば α 化デンプン、ショ糖、ゼラチン、アラビアゴム、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、結晶セルロース、白糖、D-マンニトール、トレハロース、デキストリン、プルラン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドンなどが挙げられる。

崩壊剤の好適な例としては、例えば乳糖、白糖、デンプン、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム、クロスカルメロースナト

リウム、カルボキシメチルスターチナトリウム、軽質無水ケイ酸、低置換度ヒドロキシプロピルセルロースなどが挙げられる。

[0054]

溶剤の好適な例としては、例えば注射用水、生理的食塩水、リンゲル液、アルコール、プロピレングリコール、ポリエチレングリコール、ゴマ油、トウモロコシ油、オリーブ油、綿実油などが挙げられる。

溶解補助剤の好適な例としては、例えばポリエチレングリコール、プロピレングリコール、Dーマンニトール、トレハロース、安息香酸ベンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム、サリチル酸ナトリウム、酢酸ナトリウムなどが挙げられる。

懸濁化剤の好適な例としては、例えばステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ベンゼトニウム、モノステアリン酸グリセリンなどの界面活性剤;例えばポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどの親水性高分子;ポリソルベート類、ポリオキシエチレン硬化ヒマシ油などが挙げられる。

[0055]

等張化剤の好適な例としては、例えば塩化ナトリウム、グリセリン、D-マンニトール、D-ソルビトール、ブドウ糖などが挙げられる。

緩衝剤の好適な例としては、例えばリン酸塩、酢酸塩、炭酸塩、クエン酸塩などの緩衝液などが挙げられる。

無痛化剤の好適な例としては、例えばベンジルアルコールなどが挙げられる。 防腐剤の好適な例としては、例えばパラオキシ安息香酸エステル類、クロロブタノール、ベンジルアルコール、フェネチルアルコール、デヒドロ酢酸、ソルビン酸などが挙げられる。

抗酸化剤の好適な例としては、例えば亜硫酸塩、アスコルビン酸塩などが挙げられる。

着色剤の好適な例としては、例えば水溶性食用タール色素(例、食用赤色 2号および 3号、食用黄色 4号および 5号、食用青色 1号および 2号などの食用色素)、水不溶性レーキ色素(例、前記水溶性食用タール色素のアルミニウム塩など)、天然色素(例、 β ーカロチン、クロロフィル、ベンガラなど)などが挙げられる。

甘味剤の好適な例としては、例えばサッカリンナトリウム、グリチルリチン酸ニカリウム、アスパルテーム、ステビアなどが挙げられる。

[0056]

前記医薬組成物の剤形としては、例えば錠剤、カプセル剤(ソフトカプセル、マイクロカプセルを含む)、顆粒剤、散剤、シロップ剤、乳剤、懸濁剤などの経口剤;および注射剤(例、皮下注射剤、静脈内注射剤、筋肉内注射剤、腹腔内注射剤など)、外用剤(例、経鼻投与製剤、経皮製剤、軟膏剤など)、坐剤(例、直腸坐剤、膣坐剤など)、ペレット、点滴剤、徐放性製剤(例、徐放性マイクロカプセルなど)、点眼剤等の非経口剤が挙げられ、これらはそれぞれ経口的あるいは非経口的に安全に投与できる。

[0057]

医薬組成物は、製剤技術分野において慣用の方法、例えば日本薬局方に記載の 方法等により製造することができる。以下に、製剤の具体的な製造法について詳 述する。

[0058]

例えば、経口剤は、有効成分に、例えば賦形剤(例、乳糖、白糖、デンプン、D-マンニトールなど)、崩壊剤(例、カルボキシメチルセルロースカルシウムなど)、結合剤(例、α化デンプン、アラビアゴム、カルボキシメチルセルロース、ピドロキシプロピルセルロース、ポリビニルピロリドンなど)または滑沢剤(例、タルク、ステアリン酸マグネシウム、ポリエチレングリコール6000など)などを添加して圧縮成形し、次いで必要により、味のマスキング、腸溶性あるいは持続性を目的として、コーティング基剤を用いて自体公知の方法でコーティングすることにより製造される。

該コーティング基剤としては、例えば糖衣基剤、水溶性フィルムコーティング

基剤、腸溶性フィルムコーティング基剤、徐放性フィルムコーティング基剤などが挙げられる。

糖衣基剤としては、白糖が用いられ、さらに、タルク、沈降炭酸カルシウム、ゼラチン、アラビアゴム、プルラン、カルナバロウなどから選ばれる1種または2種以上を併用してもよい。

水溶性フィルムコーティング基剤としては、例えばヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、メチルヒドロキシエチルセルロースなどのセルロース系高分子;ポリビニルアセタールジエチルアミノアセテート、アミノアルキルメタアクリレートコポリマーE [オイドラギットE(商品名)、ロームファルマ社]、ポリビニルピロリドンなどの合成高分子;プルランなどの多糖類などが挙げられる。

[0059]

腸溶性フィルムコーティング基剤としては、例えばヒドロキシプロピルメチルセルロース フタレート、ヒドロキシプロピルメチルセルロース アセテートサクシネート、カルボキシメチルエチルセルロース、酢酸フタル酸セルロースなどのセルロース系高分子;メタアクリル酸コポリマーL [オイドラギットL (商品名)、ロームファルマ社]、メタアクリル酸コポリマーLD [オイドラギットL 30D55(商品名)、ロームファルマ社]、メタアクリル酸コポリマーS [オイドラギットS(商品名)、ロームファルマ社]などのアクリル酸系高分子;セラックなどの天然物などが挙げられる。

徐放性フィルムコーティング基剤としては、例えばエチルセルロースなどのセルロース系高分子;アミノアルキルメタアクリレートコポリマーRS〔オイドラギットRS(商品名)、ロームファルマ社〕、アクリル酸エチル・メタアクリル酸メチル共重合体懸濁液〔オイドラギットNE(商品名)、ロームファルマ社〕などのアクリル酸系高分子などが挙げられる。

上記したコーティング基剤は、2種以上を適宜の割合で混合して用いてもよい。また、コーティングの際に、例えば酸化チタン、三酸化二鉄等のような遮光剤を用いてもよい。

[0060]

注射剤は、有効成分を分散剤(例、ポリソルベート80、ポリオキシエチレン硬化ヒマシ油60など、ポリエチレングリコール、カルボキシメチルセルロース、アルギン酸ナトリウムなど)、保存剤(例、メチルパラベン、プロピルパラベン、ベンジルアルコール、クロロブタノール、フェノールなど)、等張化剤(例、塩化ナトリウム、グリセリン、Dーマンニトール、Dーソルビトール、ブドウ糖など)などと共に水性溶剤(例、蒸留水、生理的食塩水、リンゲル液等)あるいは油性溶剤(例、オリーブ油、ゴマ油、綿実油、トウモロコシ油などの植物油、プロピレングリコール等)などに溶解、懸濁あるいは乳化することにより製造される。この際、所望により溶解補助剤(例、サリチル酸ナトリウム、酢酸ナトリウム等)、安定剤(例、ヒト血清アルブミン等)、無痛化剤(例、ベンジルアルコール等)等の添加物を用いてもよい。

[0061]

本発明の化合物は、血中脂質代謝改善作用、血漿脂質組成改善作用、血糖低下作用、血中インスリン低下作用、インスリン抵抗性改善作用、インスリン感受性 増強作用およびレチノイド関連受容体制御作用を有する。

ここでいう制御作用は、アゴニスト作用およびアンタゴニスト作用の両方を意味する。

また、レチノイド関連受容体とは、核内レセプターに含まれ、脂溶性ビタミンなどのシグナル分子をリガンドとするDNA結合性の転写因子であり、これらは単量体型受容体、ホモ二量体型受容体およびヘテロ二量体型受容体のいずれであってもよい。

ここで、単量体型受容体としては、例えばレチノイド〇受容体(以下、RORと略記することがある) α (GenBank Accession No. L14611)、ROR β (GenBank Accession No. L14160)、ROR γ (GenBank Accession No. U16997);Reverb α (GenBank Accession No. M24898)、Reverb β (GenBank Accession No. L31785);ERR α (GenBank Accession No. X51416)、ERR β (GenBank Accession No. X51417);Ftz-FI α (GenBank Accession No. S65876)、Ftz-FI β (GenBank Accession No. M81385);TI α (GenBank Accession No. S77482);GCNF(GenBank Accession No. U1

4666) などが挙げられる。

ホモ二量体型受容体としては、例えばレチノイドX受容体(以下、RXRと略記することがある) α (GenBank Accession No. X52773)、RXR β (GenBank Accession No. M84820)、RXR γ (GenBank Accession No. U38480);COUP α (GenBank Accession No. X12795)、COUP β (GenBank Accession No. M64497)、COUP γ (GenBank Accession No. X12794);TR2 α (GenBank Accession No. M29960)、TR2 β (GenBank Accession No. L27586);またはHNF4 α (GenBank Accession No. X76930)、HNF4 γ (GenBank Accession No. Z49826)などが形成するホモ二量体が挙げられる。

[0062]

ヘテロ二量体型受容体としては、例えば上記したレチノイドX受容体(RXR α 、RXR β またはRXR γ)と、レチノイドA受容体(以下、RARと略記することがある) α (GenBank Accession No. X06614)、RAR β (GenBank Accession No. Y00291)、RAR γ (GenBank Accession No. M24857);甲状腺ホルモン受容体(以下、TRと略記することがある) α (GenBank Accession No. M24748)、TR β (GenBank Accession No. M26747);ビタミンD受容体(VDR)(GenBank Accession No. J03258);ペルオキシソーム増殖剤応答性受容体(以下、PPARと略記することがある) α (GenBank Accession No. L02932)、PPAR β (PPAR δ)(GenBank Accession No. U10375)、PPAR γ (GenBank Accession No. L40904);LXR α (GenBank Accession No. U22662)、LXR β (GenBank Accession No. U14534);FXR(GenBank Accession No. U18374);MB 6 7(GenBank Accession No. L29263);ONR(GenBank Accession No. X75163);およびNUR α (GenBank Accession No. L13740)、NUR β (GenBank Accession No. X75918)、NUR γ (GenBank Accession No. U12767)から選ばれる1種の受容体とが形成するヘテロ二量体が挙げられる。

[0063]

本発明の化合物は、上記したレチノイド関連受容体の中でも、ペルオキシソーム増殖剤応答性受容体($PPAR\alpha$ 、 $PPAR\beta$ ($PPAR\delta$)、 $PPAR\gamma$)に対して優れたリガンド活性を有し、これら受容体に対するアゴニスト、部分ア

ゴニスト (パーシャルアゴニスト)、アンタゴニストまたは部分アンタゴニスト (パーシャルアンタゴニスト)として有用である。

さらに、本発明の化合物は、レチノイドX受容体とペルオキシソーム増殖剤応答性受容体とが形成するヘテロ二量体型受容体(例、RXR α とPPAR δ とが形成するヘテロ二量体型受容体、RXR α とPPAR γ とが形成するヘテロ二量体型受容体など)におけるペルオキシソーム増殖剤応答性受容体に対して優れたリガンド活性を有する。

よって、本発明の化合物は、ペルオキシソーム増殖剤応答性受容体リガンドと して好適に用いられる。

そのため、本発明の化合物はPPARに関連する疾患(例えば、脂質代謝異常症およびその続発症、動脈硬化性疾患およびその続発症、糖尿病、耐糖能不全など)に対する予防および治療剤として有用である。

[0064]

本発明の化合物は、高密度リポタンパク(HDL)-コレステロール増加作用 を有する一方、低密度リポタンパク(LDL)-コレステロール低下作用を有す ることから、血漿抗動脈硬化指数[(HDL-コレステロール/総コレステロー ル)×100]を上昇させる事に加え、血漿中トリグリセリド低下作用も有する。 それゆえ、本発明の化合物は、高密度リポタンパク(HDL)-コレステロール 上昇剤、低密度リポタンパク(LDL)-コレステロール低下剤、トリグリセリ ド低下剤として有用である。本発明の剤は、この薬理作用に基づく疾患の予防治 療薬として有用である。すなわち、哺乳動物(例、マウス、ラット、ハムスター 、ウサギ、ネコ、イヌ、ウシ、ウマ、ヒツジ、サル、ヒト等)の高脂血症、特に 高LDL-コレステロール血症、高リポタンパク血症および高トリグリセリド血 症、低HDL-コレステロール血症、並びにそれから生じる動脈硬化性疾患およ びそれらの続発症、例えば、アテローム性動脈硬化症、末梢動脈閉塞症、急性心 筋梗塞、不安定狭心症等の急性冠動脈症候群、経皮的冠動脈形成術(PTCA) 後の再狭搾、心筋梗塞、狭心症等の虚血性心疾患、血管石灰化等を含む動脈硬化 症、間歇性跛行、脳卒中(脳梗塞、脳塞栓、脳出血など)、ラクネ梗塞、脳血管 性痴呆、壊疽、糸球体硬化症、腎症、Tangier病等の治療および予防に特

に適している。

本発明の化合物は、LDL-コレステロール低下作用を有するがHDL-コレステロール上昇作用を示さない薬剤と比較すると、LDL-コレステロール低下作用のみでは治療効果がない原発性低HDL血症などの予防・治療に有用である。高脂血症治療薬の最終目的は心筋梗塞等の致死的な疾患の発症を予防することであり、LDL低下作用を有するが、HDL上昇作用を示さない薬剤でも心筋梗塞などに対してある程度の発症予防効果が認められるが、HDL-コレステロール上昇剤は心筋梗塞等の発症をより強力に予防することが可能である。更に、LDL低下作用を有するが、HDL上昇作用を示さない薬剤では治療効果が認められない患者や疾患・症状(例えば、難治性の高脂血症など)にも有効であり、血清脂質が正常レベルであるヒトにおいても、心筋梗塞等の致死的な疾患の発症率を抑制し、治療効果を改善することが可能である。

[0065]

さらに本発明の化合物は、細胞の過剰増殖と関連する疾患の治療に適している。細胞の過剰増殖と関連する疾患の主要な例は腫瘍である。血清総コレステロール低下またはLDL-コレステロールまたはVLDL-コレステロール低下により腫瘍増殖が抑えられることが報告されている(Lancet, 339, p1154(1992))。したがって、本発明の化合物はLDL-コレステロールまたはVLDL-コレステロール低下作用を有するので腫瘍の治療が可能であり、単独で、または既知の治療法と組み合わせて腫瘍の治療に使用し得る。他の適用可能な疾患としては、過剰増殖性皮膚疾患、例えば乾癬、基底細胞癌、扁平上皮癌、角化症および角質化疾患が挙げられる。

また過剰増殖性血管疾患、例えば、PTCA(経皮的血管形成術)あるいはバイパス手術の様な外科的手段により引き起こされる血管狭窄および閉塞は、平滑筋細胞の増殖に基づくものであり、本発明の化合物はLDL-コレステロールおよびVLDL-コレステロール低下作用から考えて、これらの疾患の治療および予防にも適している。その際それらは単独、または既知活性化合物、例えば静脈内投与されるヘパリンなどと組み合わせて、好ましくは経口投与で使用し得る。

[0066]

本発明の化合物は血中HDL-コレステロール上昇作用を有する。血中HDL-コレステロール上昇により、コレステロールが余剰となった細胞からのコレステロールが搬出が促進される(Current Opinion in Lipidology 4:392-400)ので、アテローム性動脈硬化症の治療および予防に適する。その生物学的性質を考えると、アテローム性動脈硬化血管病変およびそれらの続発症、例えば、冠動脈疾患(CHD)、脳虚血、間欠性跛行、壊疽等の治療および予防に特に適している。

本発明の化合物の別の用途としてHDLの抗酸化作用に基づくものがある。血中の脂質過酸化物はLDLよりもはるかにHDLに高濃度になっており、またHDLには、例えばLDLの酸化など生体で生じる脂質過酸化を防御する役割がある (Current Opinion in Lipidology 4:392-400, Current Opinion in Lipidology 5:354-364)。

[0067]

本発明の化合物のさらに別の用途として高血圧症およびその続発症がある。高 脂血症は動脈硬化症を増悪させ、高血圧症を引き起こす。一方、HDLは、酸化 LDLによるEDRF(内皮由来弛緩因子)の生合成と遊離阻害を防ぎ、また、 マクロファージにおいては血管弛緩因子のプロスタサイクリンを増加させること が知られている(Current Opinion in Lipidology 5:354-364)。本発 明の化合物の脂質低下作用および血中HDL-コレステロール上昇作用から考え ると、高血圧症およびその続発症、例えば、冠動脈疾患(CHD)、脳虚血など の治療および予防に適している。その際、本発明の化合物またはその塩は単独、 あるいは以下に例示する薬剤と組合わせて投与することができる。この場合の可 能な組合わせは、例えばアンジオテンシンII拮抗薬〔例、ロサルタンカリウム (ニュウロタン)、カンデサルタンレキセチル (プロブレス) 等]、ACE阻害 薬〔例、マレイン酸エナラプリル(レニベース)、リシノプリル(ゼストリル、 ロンゲス)、塩酸デラプリル(アテカット)、カプトプリル等〕、カルシウム拮 抗薬〔例、トシル酸アムロジピン(アムロジン、ノルバスク)、塩酸マニジピン (カルスロット) 等〕、降圧利尿剤、α受容体遮断薬、β受容体遮断薬などが挙 げられる。

[0068]

本発明の化合物の可能な用途として胃液・膵液や胆汁など細胞傷害性分泌液からの細胞保護作用に基づくものがある。体液ー組織間細胞は主にapoJを発現しており、また胃液・膵液や胆汁など細胞傷害性分泌液に対する自然のバリアとなっており、HDLはapoJ(clusterin)のキャリアである(Current Opini on in Lipidology 4:392-400)。本発明の化合物の血中HDL-コレステロール上昇作用から考えて、本発明の化合物は胃潰瘍、膵炎および肝炎等の治療および予防に適している。

[0069]

本発明の化合物のさらに可能な用途として細胞増殖活性に基づくものがある。 HDLは、単独であるいは増殖因子と共に血管内皮細胞(EC)や角膜内皮など 細胞の増殖を促進し、またHDLはヒトリンパ球の増殖を促進する(Current Opinion in Lipidology 3:222-226)。本発明の化合物は血中HDL-コレステロール上昇作用を有する。これらの細胞増殖活性から考えて、アテローム性動脈硬化血管病変およびそれらの続発症、例えば冠動脈疾患、角膜損傷等の治療および予防に適している。また、免疫能低下に基づく疾患、例えば感染症や悪性腫瘍等の治療および予防にも適している。さらに、HDLはヒト胎盤移植組織に特異的に作用しラクトゲンを分泌させ、また、マクロファージからのapoE分泌を促進する(Current Opinion in Lipidology 3:222-226)。その分泌促進活性を考えると、胎児発育不全等の治療および予防にも適している。

[0070]

本発明の化合物の更に注目に値する適用例として、続発性高脂血症が挙げられる。これには、糖尿病、インスリン抵抗性(シンドローム X)、甲状腺機能低下症、ネフローゼ症候群あるいは慢性腎不全等が含まれ、これらの疾患によって高脂血症が発症するが多くの場合、高脂血症がこれらの疾患を増悪させ、いわゆる悪循環を形成しているといわれている。脂質低下作用から考えて、本発明の化合物はこれらの疾患の治療及び進展予防にも適しており、その際本発明の化合物は単独で、又は既知の活性化合物、つまり糖尿病治療薬との併用では、例えば、(1)利尿薬(例えば、フロセミド、スピロノラクトン等)、(2)交感神経抑制

薬(例えば、アテノロール等)、(3)アンジオテンシンII拮抗薬(例えば、ロサルタン、カンデサルタン等)、(4)アンジオテンシンI変換酵素阻害薬(例えば、マレイン酸エナラプリル、塩酸デラプリル等)、(5)カルシウム拮抗薬(例えば、ニフェジピン、塩酸マニジピン等)等が挙げられ、また、甲状腺機能低下症の治療薬との併用では、乾燥サイロイド、レボチロキシンナトリウム、リオチロニンナトリウム等と、また腎疾患治療薬との併用では、プレドニゾロン、コハク酸メチルプレドニゾロンナトリウムフロセミド、ブメタニド、アゾセミド等と組み合わせて、好ましくは経口投与で使用し得る。

[0071]

本発明の化合物はアルツハイマー病の予防、治療にも有用である。血中コレテロールの上昇は、アルツハイマー病の危険因子であることが知られている。本発明の化合物は、その優れたHDL-コレステロール上昇及び脂質低下作用により、アルツハイマー病の予防、治療に用いることができ、その際、本発明の化合物は、単独あるいは以下に例示する薬剤と組み合わせて投与することができる。この場合の可能な組み合わせは、例えば、アセチルコリンエステラーゼ阻害薬(例えば、アリセプト、エクセロンなど)、アミロイド β 産生・分泌阻害薬(例えば、T1-52やL1-374973などの γ あるいは β セクレターゼ阻害剤、あるいはS1B-1848など)、アミロイド β 凝集阻害薬(例えば、T1-00703やT1-00703やT2-1792)など)などとの組み合わせが挙げられる。

[0072]

本発明の化合物のさらに注目すべき適応症は、血中コレステロールの上昇に伴う骨粗鬆症である。本発明の化合物の優れた脂質低下作用により、血中コレステロールの上昇に伴う骨粗鬆症の治療・予防に用いることができ、その際本発明の化合物は単独あるいは以下に例示する薬剤と組合わせて投与することができる。この場合の可能な組合わせとしては、例えば性ホルモンおよび関連薬剤〔例、エストロゲン製剤、イプリフラボン(オステン)、ラロキシフェン、オサテロン、チボロン等〕、カルシトニン類、ビタミンD製剤(例、アルファカルシドール、カルシトリオール等)、ビスホスホン酸類(例、エチドロネート、クロドロネート等)などの骨吸収抑制剤、フッ素化合物、PTHなどの骨形成促進剤などが挙

げられる。

[0073]

加えて、本発明の化合物は、高カイロミクロン血症に関連する疾患、例えば、急性膵炎の治療に適している。膵炎発症の機序については、カイロミクロンによって膵毛細血管に微小塞栓がおこる、あるいは高カイロミクロン血症のため膵リパーゼによってトリグリセライドが分解されて生成する遊離脂肪酸が増加し局所を強く刺激するためにおこるともいわれている。したがって、本発明の化合物はトリグリセライド低下作用を有するので膵炎の治療が可能であり、単独で、または既知の治療法と組み合わせて膵炎の治療に使用し得る。本疾患の治療のために、本発明の化合物は経口投与または局所投与でき、またはそれらは単独であるいは既知の活性化合物と組み合わせて使用し得る。この場合の可能な組み合わせ成分は、例えば抗酵素療用にアプロチニン(トラジロール)、メシル酸ガベキサート(エフオーワイFOY)、メシル酸ナファモスタット(フサン)、シチコリン(ニコリン)、ウリナスタチン(ミラクリッド)等があげられる。又、疼痛の除去の目的で、抗コリン作動薬、非麻薬性鎮痛薬、麻薬も組み合わせて使用される

[0074]

本発明の化合物の更に可能な用途は、血栓形成の抑制である。血中トリグリセライド値と血液凝固に関与する第VII因子とは正相関し、ω-3系脂肪酸の摂取によりトリグリセライドが低下すると共に、凝固は抑制されることから、高トリグリセライド血症が血栓形成を促進する。また、正脂血症者よりも高脂血症患者のVLDLが血管内皮細胞からのプラスミノーゲンアクチベータインヒビター分泌を強く増加させたことから、トリグリセライドが線溶能を低下させるとも考えられる。それゆえ、トリグリセライド低下作用から考えて、本発明の化合物は血栓形成の予防および治療に適している。その際それらは単独で、または既知の下記治療薬と組み合わせて、好ましくは経口投与で使用し得る。

血栓形成予防治療薬:血液凝固阻止薬〔例、ヘパリンナトリウム, ヘパリンカルシウム, ワルファリンカルシウム (ワーファリン), Xa阻害薬〕, 血栓溶解薬〔例、tPA, ウロキナーゼ〕, 抗血小板薬〔例、アスピリン, スルフィンピ

ラゾロ(アンツーラン),ジピリダモール(ペルサンチン),アクロピジン(パナルジン),シロスタゾール(プレタール),GPIIb/IIIa拮抗薬(レオプロ)〕;冠血管拡張薬:ニフェジピン,ジルチアゼム,ニコラジル,唖硝酸剤;心筋保護薬:心臓ATP-K用口薬、エンドセリン拮抗薬、ウロテンシン拮抗薬など。

本発明の化合物のさらに可能な用途としてABCA1mまたはLXR(liver X receptor) a の発現亢進に基づくものがある。ペルオキシソーム増殖剤応答性 受容体作動薬はABCA1mまたはLXR a の発現を亢進することが知られている(Nat. Med., 7, p53(2001), Proc. Natl. Acad. Sci. U. S. A., 98, p5306(2001), Mol. Cell, 7, p161(2001), Mol. Endocrinol., 14, p741(2000))。ABCA1は、生体内に存在するアポ蛋白(例、apoAI、apoAIIなど)やアポリポ蛋白(例、高密度リポタンパク、HDL)と結合することにより、細胞内コレステロールを細胞外へ搬出することができる。また、このように細胞外へ搬出されたコレステロールは、コレステロール含量の低い組織へと運搬される。すなわち、本発明の化合物は、体内コレステロール分布の調節に有用である

したがって、本発明の化合物は、細胞内コレステロール搬出作用に基づいて、例えば低HDL血症;タンジール(Tangier)病;冠動脈疾患(例、心筋梗塞、狭心症、無症候性心筋虚血など);頚動脈硬化;脳血管障害(例、脳卒中、脳梗塞など);閉塞性動脈硬化症;脂肪肝;肝硬変;糖尿病合併症;皮膚疾患;黄色腫;関節疾患;増殖性疾患;末梢動脈閉塞症;虚血性末梢循環障害;肥満;脳腱黄色腫(cerebrotendinous xanthomatosis:CTX);糸球体腎炎;血管肥厚;インターベンション(経皮的冠動脈形成術、経皮的冠動脈血行再開術、ステント留置、冠動脈内視鏡、血管内超音波、冠注血栓溶解療法など)後の血管肥厚;バイパス手術後の血管再閉塞・再狭窄;高脂血症に関連の強い腎症・腎炎や膵炎;高脂血症(例、食後高脂血症);間欠性跛行;深部静脈血栓症;マラリア脳症などの疾患の予防・治療剤あるいは進展抑制剤(2型糖尿病などにおける動脈硬化巣進展抑制を含む)として有用である。

さらに、本発明化合物は、コレステロール低含量組織へのコレステロール運搬 作用に基づいて、例えばアルツハイマー病、創傷、発育不全に伴う疾患などの予 防・治療剤;事故や臓器移植を含めた手術後の治癒促進剤として有用である。

さらに本発明化合物はのLXR α 発現亢進作用に基づいて、LXR α の細胞内含量を増加させることができる。該LXR α は、ABCA1mRNAを発現させることができるため、前記したABCA1発現亢進に伴う有用な疾患として例示した各種疾患の予防・治療剤として有用である。

本発明化合物は、例えば糖尿病(例、1型糖尿病、2型糖尿病、妊娠糖尿病等)の予防・治療剤;高脂血症(例、高トリグリセリド血症、高コレステロール血症、低HDL血症、食後高脂血症等)の予防・治療剤;インスリン抵抗性改善剤;インスリン感受性増強剤;耐糖能不全[IGT (Impaired Glucose Tolerance)]の予防・治療剤;および耐糖能不全から糖尿病への移行抑制剤として用いることができる。

[0075]

糖尿病の判定基準については、1999年に日本糖尿病学会から新たな判定基 準が報告されている。

この報告によれば、糖尿病とは、空腹時血糖値(静脈血漿におけるグルコース 濃度)が126mg/dl以上、75g経口ブドウ糖負荷試験(75gOGTT)2時間値(静脈血漿におけるグルコース濃度)が200mg/dl以上、随時血糖値(静脈血漿におけるグルコース濃度)が200mg/dl以上のいずれかを示す状態である。また、上記糖尿病に該当せず、かつ、「空腹時血糖値(静脈血漿におけるグルコース濃度)が110mg/dl未満または75g経口ブドウ糖負荷試験(75gOGTT)2時間値(静脈血漿におけるグルコース濃度)が140mg/dl未満を示す状態」(正常型)でない状態を、「境界型」と呼ぶ

[0076]

また、糖尿病の判定基準については、1997年にADA(米国糖尿病学会)から、1998年にWHOから、新たな判定基準が報告されている。

これらの報告によれば、糖尿病とは、空腹時血糖値(静脈血漿におけるグルコ

ース濃度)が126mg/dl以上であり、かつ、75g経口ブドウ糖負荷試験2時間値(静脈血漿におけるグルコース濃度)が200mg/dl以上を示す状態である。

また、上記報告によれば、耐糖能不全とは、空腹時血糖値(静脈血漿におけるグルコース濃度)が126mg/dl未満であり、かつ、75g経口ブドウ糖負荷試験2時間値(静脈血漿におけるグルコース濃度)が140mg/dl以上200mg/dl未満を示す状態である。さらに、ADAの報告によれば、空腹時血糖値(静脈血漿におけるグルコース濃度)が110mg/dl以上126mg/dl未満の状態をIFG(Impaired Fasting Glucose)と呼ぶ。一方、WHOの報告によれば、該IFG(Impaired Fasting Glucose)のうち、75g経口ブドウ糖負荷試験2時間値(静脈血漿におけるグルコース濃度)が140mg/dl未満である状態をIFG(Impaired Fasting Glycemia)と呼ぶ。

本発明化合物は、上記した新たな判定基準により決定される糖尿病、境界型、耐糖能異常、IFG (Impaired Fasting Glucose) およびIFG (Impaired Fasting Glycemia) の予防・治療剤としても用いられる。さらに、本発明化合物は、境界型、耐糖能異常、IFG (Impaired Fasting Glucose) またはIFG (Impaired Fasting Glycemia) から糖尿病への進展を防止することもできる。

[0077]

本発明化合物は、血糖低下作用と血漿脂質組成改善作用を併せ持つため、糖尿病患者における動脈硬化症の予防・治療剤として極めて有用である。

本発明化合物は、例えば糖尿病性合併症[例、神経障害、腎症、網膜症、白内障、大血管障害、骨減少症、糖尿病性高浸透圧昏睡、感染症(例、呼吸器感染症、尿路感染症、消化器感染症、皮膚軟部組織感染症、下肢感染症等)、糖尿病性壊疽、口腔乾燥症、聴覚の低下、脳血管障害、末梢血行障害等]、肥満、骨粗鬆症、悪液質(例、癌性悪液質、結核性悪液質、糖尿病性悪液質、血液疾患性悪液質、内分泌疾患性悪液質、感染症性悪液質または後天性免疫不全症候群による悪液質)、脂肪肝、高血圧、多嚢胞性卵巣症候群、腎臓疾患(例、糖尿病性ネフロパシー、糸球体腎炎、糸球体硬化症、ネフローゼ症候群、高血圧性腎硬化症、末

期腎臓疾患等)、筋ジストロフィー、心筋梗塞、狭心症、脳血管障害(例、脳梗塞、脳卒中)、インスリン抵抗性症候群、シンドロームX、高インスリン血症、高インスリン血症における知覚障害、腫瘍(例、白血病、乳癌、前立腺癌、皮膚癌等)、過敏性腸症候群、急性または慢性下痢、炎症性疾患(例、アルツハイマー病、慢性関節リウマチ、変形性脊椎炎、変形性関節炎、腰痛、痛風、手術外傷後の炎症、腫脹の緩解、神経痛、咽喉頭炎、膀胱炎、肝炎(非アルコール性脂肪性肝炎を含む)、肺炎、膵炎、炎症性大腸疾患、潰瘍性大腸炎等)、内臓肥満症候群などの予防・治療剤としても用いることができる。

本発明化合物は、消化性潰瘍、急性または慢性胃炎、胆道ジスキネジアー、胆のう炎等に伴う腹痛、悪心、嘔吐、上腹部不快感などの症状の改善などにも用いることができる。

本発明化合物は、食欲を調整(亢進または抑制)するため、例えば痩身、虚食症の治療剤(痩身または虚食症の投与対象における体重増加)または肥満の治療剤として用いることもできる。

[0078]

本発明化合物は、 $TNF-\alpha$ 抑制効果(生体組織における $TNF-\alpha$ 産生量の低下効果および $TNF-\alpha$ 活性低下効果)を有し、 $TNF-\alpha$ が関与する炎症性疾患の予防・治療薬としても用いられる。このような炎症性疾患としては、例えば糖尿病性合併症(例、網膜症、腎症、神経障害、大血管障害など)、慢性関節リウマチ、変形性脊椎症、変形性関節炎、腰痛、痛風、手術・外傷後の炎症、腫脹の緩解、神経痛、咽喉頭炎、膀胱炎、肝炎、肺炎、胃粘膜損傷(アスピリンにより引き起こされた胃粘膜損傷を含む)などが挙げられる。

本発明化合物は、アポトーシス抑制作用を有し、アポトーシスの促進が関わる疾患の予防・治療薬としても用いられる。ここで、アポトーシスの促進が関わる疾患疾患としては、例えばウイルス疾患(例、エイズ、劇症肝炎など)、神経変性疾患(例、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症、色素性網膜炎、小脳変性など)、脊髄異形成疾患(例、再生不良性貧血など)、虚血性疾患(例、心筋梗塞、脳卒中など)、肝疾患(例、アルコール性肝炎、B型肝炎、C型肝炎など)、関節疾患(例、変形性関節症など)、アテローム性動脈硬化

症などが挙げられる。

本発明化合物は、内臓脂肪の減少、内臓脂肪蓄積の抑制、糖代謝改善、脂質代謝改善、インスリン抵抗性改善、酸化LDL産生抑制、リポタンパク代謝改善、冠動脈代謝改善、心血管合併症の予防・治療、心不全合併症の予防・治療、血中レムナント低下、無排卵症の予防・治療、多毛症の予防・治療、高アンドロゲン血症の予防・治療などにも用いられる。

本発明化合物は、上記した各種疾患(例、心筋梗塞などの心血管イベント)の 予後改善、2次予防および進展抑制にも用いられる。

[0079]

本発明化合物は、GPR40受容体のリガンドである脂肪酸とGPR40受容体との結合性を変化させる作用、特にGPR40受容体アゴニスト活性を有しており、また毒性が低く、かつ副作用も少ないため、安全なGPR40受容体機能調節剤、好ましくはGPR40作動剤として有用である。

本発明化合物は、哺乳動物(例えば、マウス、ラット、ハムスター、ウサギ、ネコ、イヌ、ウシ、ヒツジ、サル、ヒト等)に対して、優れたGPR40受容体機能調節作用を有しているので、GPR40受容体が関与する生理機能の調節剤またはGPR40受容体が関与する病態または疾患の予防・治療剤として有用である。

具体的には、本発明の化合物を含有してなる医薬組成物は、インスリン分泌調 節剤(好ましくはインスリン分泌促進剤)、膵β細胞保護剤として有用である。

さらに、本発明の化合物を含有してなる医薬組成物は、例えば、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良、記憶学習障害、肥満、低血糖症、高血圧、浮腫、インスリン抵抗性、不安定糖尿病、脂肪萎縮、インスリンアレルギー、インスリノーマ、脂肪毒性、癌などの疾患、特に、糖尿病、耐糖能障害、ケトーシス、アシドーシス、糖尿病神経障害、糖尿病腎症、糖尿病網膜症、高脂血症、性機能障害、皮膚疾患、関節症、骨減少症、動脈硬化、血栓性疾患、消化不良、記憶学習障害などの疾患に対する予防・治療剤として有用である。糖尿病には、インスリン依存型(Ⅰ型

)糖尿病、インスリン非依存型(II型)糖尿病が含まれる。

[0080]

本発明の医薬組成物中の、本発明の化合物(I)またはその薬理学的に許容され得る塩の含有量は、組成物全体の約0.1重量%~90重量%、通常0.5重量%~50重量%である。該投与量は、投与対象、投与ルート、疾患等によっても異なるが、例えば、例えば、動脈硬化治療剤、血糖低下剤あるいは糖尿病合併症治療剤として、成人(60kg)に対し経口的に投与する場合、有効成分として約0.1~1000mg/日、好ましくは約0.5~200mg/日である。本発明の化合物(I)またはその薬理学的に許容され得る塩は、1日1回または2~3回に分けて投与してもよい。

[0081]

本発明化合物は、糖尿病治療剤、糖尿病性合併症治療剤、高脂血症治療剤、降 圧剤、抗肥満剤、利尿剤、化学療法剤、免疫療法剤、抗血栓剤、悪液質改善薬剤 などの薬剤(以下、併用薬剤と略記する)と組み合わせて用いることができる。 該併用薬剤は、低分子化合物であってもよく、また高分子の蛋白、ポリペプチド 、抗体であるか、あるいはワクチン等であってもよい。この際、本発明の医薬組 成物と併用薬の投与形態は、特に限定されず、投与時に、本発明の医薬組成物と 併用薬とが組み合わされていればよい。このような投与形態としては、例えば、 (1) 本発明の医薬組成物と併用薬とを同時に製剤化して得られる単一の製剤の 投与、(2)本発明の医薬組成物と併用薬とを別々に製剤化して得られる2種の 製剤の同一投与経路での同時投与、(3)本発明の医薬組成物と併用薬とを別々 に製剤化して得られる2種の製剤の同一投与経路での時間差をおいての投与、(4) 本発明の医薬組成物と併用薬とを別々に製剤化して得られる2種の製剤の異 なる投与経路での同時投与、(5)本発明の医薬組成物と併用薬とを別々に製剤 化して得られる2種の製剤の異なる投与経路での時間差をおいての投与 (例えば 、本発明の医薬組成物→併用薬の順序での投与、あるいは逆の順序での投与) な どが挙げられる。併用薬剤の投与量は、臨床上用いられている用量を基準として 適宜選択することができる。また、本発明化合物と併用薬剤の配合比は、投与対 象、投与ルート、対象疾患、症状、組み合わせなどにより適宜選択することがで

きる。例えば投与対象がヒトである場合、本発明化合物1重量部に対し、併用薬剤を0.01ないし100重量部用いればよい。

[0082]

なお、糖尿病治療剤としては、インスリン製剤(例、ウシ、ブタの膵臓から抽 出された動物インスリン製剤;大腸菌、イーストを用い遺伝子工学的に合成した ヒトインスリン製剤;インスリン亜鉛;プロタミンインスリン亜鉛:インスリン のフラグメントまたは誘導体(例、INS-1等)など)、インスリン抵抗性改 善剤(例、塩酸ピオグリタゾン、トログリタゾン、ロシグリタゾンまたはそのマ レイン酸塩、GI-262570、JTT-501、MCC-555、YM-4 40, KRP-297, CS-011, FK-614, WO99/58510記載の化合物(例えば(E)-4-[4-(5-メチル-2-フェニル-4-オ グルコシダーゼ阻害剤(例、ボグリボース、アカルボース、ミグリトール、エミ グリテート等)、ビグアナイド剤(例、フェンホルミン、メトホルミン、ブホル ミン等)、インスリン分泌促進剤[スルホニルウレア剤(例、トルブタミド、グ リベンクラミド、グリクラジド、クロルプロパミド、トラザミド、アセトヘキサ ミド、グリクロピラミド、グリメピリド、グリピザイド、グリブゾール等)、レ パグリニド、ナテグリニド、ミチグリニドまたはそのカルシウム塩水和物、GL P-1等]、ジペプチジルペプチダーゼIV阻害剤(例、NVP-DPP-27 8、PT-100等)、β3アゴニスト(例、CL-316243、SR-58 6 1 1 - A, UL-TG-3 0 7, SB-2 2 6 5 5 2, AJ-9 6 7 7, BM S-196085、AZ-40140等)、アミリンアゴニスト (例、プラムリ ンチド等)、ホスホチロシンホスファターゼ阻害剤(例、バナジン酸等)、糖新 生阻害剤(例、グリコーゲンホスホリラーゼ阻害剤、グルコースー6ーホスファ ターゼ阻害剤、グルカゴン拮抗剤等)、SGLUT(sodium-glucose cotranspo rter) 阻害剤(例、T-1095等)等が挙げられる。

[0083]

糖尿病性合併症治療剤としては、アルドース還元酵素阻害剤(例、トルレスタット、エパルレスタット、ゼナレスタット、ゾポルレスタット、ミナルレスタッ

ト、フィダレスタット(SNK-860)、CT-112等)、神経栄養因子(例、NGF、NT-3、BDNF等)、神経栄養因子産生・分泌促進剤[例、WO01/14372に記載のニューロトロフィン産生・分泌促進剤(例えば4ー(4ークロロフェニル)-2-(2-メチル-1-イミダゾール)-5-(3-(2-メチルフェノキシ)プロピル)オキサゾールなど)]、PKC阻害剤(例、LY-333531等)、AGE阻害剤(例、ALT946、ピマゲジン、ピラトキサチン、N-フェナシルチアゾリウム ブロマイド(ALT766)、EXO-226等)、活性酸素消去薬(例、チオクト酸等)、脳血管拡張剤(例、チアプリド、メキシレチン等)が挙げられる。

高脂血症治療剤としては、例えばHMG-CoA還元酵素阻害薬(例、プラバ スタチン、シンバスタチン、ロバスタチン、アトルバスタチン、フルバスタチン 、リパンチル、セリバスタチン、イタバスタチン、ZD-4522またはそれら の塩(例、ナトリウム塩等)など)やスクアレン合成酵素阻害剤(例、WO97 /10224に記載の化合物、例えばN-[[(3R,5S)-1-(3-アセトキシ-2,2-ジ メチルプロピル)-7-クロロ-5-(2,3-ジメトキシフェニル)-2-オキソ-1,2,3,5-テ トラヒドロ-4,1-ベンゾオキサゼピン-3-イル] アセチル] ピペリジン-4-酢酸な ど)、オキシドスクアレンシクラーゼ阻害剤(例、WO96/11201)、ス クアレンエポキシダーゼ阻害剤(例、NB-598など)などのコレステロール合成阻 害薬、フィブラート系化合物(例、ベザフィブラート、ベクロブラート、ビニフ イブラート、シプロフィブラート、クリノフィブラート、クロフィブラート、ク ロフィブリン酸、エトフィブラート、フェノフィブラート、ゲムフィブロジル、 ニコフィブラート、ピリフィブラート、ロニフィブラート、シムフィブラート、 テオフィブラートなど)、ACAT阻害剤(例、アバシマイブ(Avasimibe)、 エフルシマイブ(Eflucimibe)など)、陰イオン交換樹脂(例、コレスチラミン など)、コレステロール吸収阻害薬(例、Ezet imibe、植物ステロール(例、ソ イステロール(soysterol)、ガンマオリザノール(γ -oryzanol)など) など)、 プロブコール、ニコチン酸系薬剤(例、ニコモール(nicomol)、ニセリトロール(niceritrol)など)、イコサペント酸エチル、などが挙げられる。

降圧剤としては、アンジオテンシン変換酵素阻害剤(例、カプトプリル、エナ

ラプリル、デラプリル等)、アンジオテンシン I I 拮抗剤 (例、カンデサルタン シレキセチル、ロサルタン、エプロサルタン、バルサンタン、テルミサルタン 、イルベサルタン、タソサルタン等)、カルシウム拮抗剤 (例、マニジピン、ニ フェジピン、ニカルジピン、アムロジピン、エホニジピン等)、カリウムチャン ネル開口薬 (例、レブクロマカリム、L-27152、AL 0671、NIP-121など)、クロ ニジン等が挙げられる。

[0084]

抗肥満剤としては、例えば中枢性抗肥満薬(例、デキスフェンフルラミン、フェンフルラミン、フェンテルミン、シブトラミン、アンフェプラモン、デキサンフェタミン、マジンドール、フェニルプロパノールアミン、クロベンゾレックス等)、膵リパーゼ阻害薬(例、オルリスタット等)、β3アゴニスト(例、CL-316243、SR-58611-A、UL-TG-307、SB-226552, AJ-9677、BMS-196085、AZ-40140等)、ペプチド性食欲抑制薬(例、レプチン、CNTF(毛様体神経栄養因子)等)、コレシストキニンアゴニスト(例、リンチトリプト、FPL-15849等)等が挙げられる。

利尿剤としては、例えばキサンチン誘導体(例、サリチル酸ナトリウムテオブロミン、サリチル酸カルシウムテオブロミン等)、チアジド系製剤(例、エチアジド、シクロペンチアジド、トリクロルメチアジド、ヒドロクロロチアジド、ヒドロフロチアジド、ヒドロフロチアジド、ペンフルチジド、ポリチアジド、メチクロチアジド等)、抗アルドステロン製剤(例、スピロノラクトン、トリアムテレン等)、炭酸脱水酵素阻害剤(例、アセタゾラミド等)、クロルベンゼンスルホンアミド系製剤(例、クロルタリドン、メフルシド、インダパミド等)、アゾセミド、イソソルビド、エタクリン酸、ピレタニド、ブメタニド、フロセミド等が挙げられる。

[0085]

化学療法剤としては、例えばアルキル化剤(例、サイクロフォスファミド、イフォスファミド等)、代謝拮抗剤(例、メソトレキセート、5-フルオロウラシルおよびその誘導体等)、抗癌性抗生物質(例、マイトマイシン、アドリアマイ

シン等)、植物由来抗癌剤(例、ビンクリスチン、ビンデシン、タキソール等) 、シスプラチン、カルボプラチン、エトポキシドなどが挙げられる。なかでも5 ーフルオロウラシル誘導体であるフルツロンあるいはネオフルツロンなどが好ま しい。

免疫療法剤としては、例えば微生物または細菌成分(例、ムラミルジペプチド誘導体、ピシバニール等)、免疫増強活性のある多糖類(例、レンチナン、シゾフィラン、クレスチン等)、遺伝子工学的手法で得られるサイトカイン(例、インターフェロン、インターロイキン(IL)等)、コロニー刺激因子(例、顆粒球コロニー刺激因子、エリスロポエチン等)などが挙げられ、なかでもIL-1、IL-2、IL-12などのインターロイキンなどが好ましい。

抗血栓剤としては、例えばヘパリン(例、ヘパリンナトリウム、ヘパリンカルシウム、ダルテパリンナトリウム(dalteparin sodium)など)、ワルファリン(例、ワルファリンカリウムなど)、抗トロンビン薬(例、アルガトロバン(argat roban)など)、血栓溶解薬(例、ウロキナーゼ(urokinase)、チソキナーゼ(tiso kinase)、アルテプラーゼ(alteplase)、ナテプラーゼ(nateplase)、モンテプラーゼ(monteplase)、パミテプラーゼ(pamiteplase)など)、血小板凝集抑制薬(例、塩酸チクロピジン(ticlopidine hydrochloride)、シロスタゾール(cilostaz ol)、イコサペント酸エチル、ベラプロストナトリウム(beraprost sodium)、塩酸サルポグレラート(sarpogrelate hydrochloride)など)などが挙げられる。

[0086]

悪液質改善薬剤としては、例えばシクロオキシゲナーゼ阻害剤(例、インドメタシン等)〔キャンサー・リサーチ(Cancer Research)、第49巻、5935~5939頁、1989年〕、プロゲステロン誘導体(例、メゲステロールアセテート)〔ジャーナル・オブ・クリニカル・オンコロジー(Journal of Clinical Oncology)、第12巻、213~225頁、1994年〕、糖質ステロイド(例、デキサメサゾン等)、メトクロプラミド系薬剤、テトラヒドロカンナビノール系薬剤(文献はいずれも上記と同様)、脂肪代謝改善剤(例、エイコサペンタエン酸等)〔ブリティシュ・ジャーナル・オブ・キャンサー(British Journal of Cancer)、第68巻、314~318頁、1993年〕、成長ホルモン、I

GF-1、あるいは悪液質を誘導する因子であるTNF-α、LIF、IL-6、オンコスタチンMに対する抗体などが挙げられる。

[0087]

さらに、併用薬剤としては、神経再生促進薬(例、Y-128、VX-853 、prosaptide等)、抗うつ薬(例、デシプラミン、アミトリプチリン、イミプラ ミン等)、抗てんかん薬(例、ラモトリジン等)、抗不整脈薬(例、メキシレチ ン等)、アセチルコリン受容体リガンド(例、ABT-594等)、エンドセリン受容 体拮抗薬(例、ABT-627等)、モノアミン取り込み阻害薬(例、トラマドル等) 、麻薬性鎮痛薬(例、モルヒネ等)、GABA受容体作動薬(例、ギャバペンチン等)、α2受容体作動薬(例、クロニジン等)、局所鎮痛薬(例、カプサイシン等)、プロテインキナーゼC阻害薬(例、LY-333531等)、抗不安薬(例、ベンゾジ アゼピン等)、ホスホジエステラーゼ阻害薬(例、(クエン酸)シルデナフィル 等)、ドーパミン作動薬(例、アポモルフィン等)、骨粗鬆症治療剤(例、アル ファカルシドール、カルシトリオール、エルカトニン、サケカルシトニン、エス トリオール、イプリフラボン、パミドロン酸二ナトリウム、アレンドロン酸ナト リウム水和物、インカドロン酸二ナトリウム等)、抗痴呆剤(例、タクリン、ド ネペジル、リバスチグミン、ガランタミン等)、尿失禁・頻尿治療剤(例、塩酸 フラボキサート、塩酸オキシブチニン、塩酸プロピベリン)等)、ミダゾラム、 ケトコナゾール等も挙げられる。

さらに、本発明の化合物を上記各疾患に適用する際に、生物製剤(例:抗体、ワクチン製剤など)と併用することも可能であり、また、遺伝子治療法などと組み合わせて、併用療法として適用することも可能である。抗体およびワクチン製剤としては、例えば、アンジオテンシンIIに対するワクチン製剤、CETPに対するワクチン製剤、CETP抗体、TNF α 抗体や他のサイトカインに対する抗体、アミロイドβワクチン製剤、1型糖尿病ワクチン(Peptor社のDIAPEP-277など)などの他、サイトカイン、レニン・アンジオテンシン系酵素およびその産物に対する抗体あるいはワクチン製剤、血中脂質代謝に関与する酵素や蛋白に対する抗体あるいはワクチン製剤、血中の凝固・線溶系に関与する酵素や蛋白に関する抗体あるいはワクチン、糖代謝やインスリン抵抗性に関与する蛋白に対する抗体あるいは

ワクチン製剤などが挙げられる。また、遺伝子治療法としては、例えば、サイトカイン、レニン・アンジオテンシン系酵素およびその産物に関連する遺伝子を用いた治療法、NFκBデコイなどのDNAデコイを用いる治療方法、アンチセンスを用いる治療方法、血中脂質代謝に関与する酵素や蛋白に関連する遺伝子(例えば、コレステロール又はトリグリセリド又はHDL-コレステロール又は血中リン脂質の代謝、排泄、吸収に関連する遺伝子など)を用いた治療法、末梢血管閉塞症などを対象とした血管新生療法に関与する酵素や蛋白(例えば、HGF, VEGFなどの増殖因子など)に関連する遺伝子を用いた治療法、糖代謝やインスリン抵抗性に関与する蛋白に関連する遺伝子を用いた治療法、TNFなどのサイトカインに対するアンチセンスなどが挙げられる。また、心臓再生、腎再生、膵再生、血管再生など各種臓器再生法や骨髄細胞(骨髄単核細胞、骨髄幹細胞など)の移植を利用した血管新生療法と併用することも可能である。

[0088]

以下、化合物(I)の製造方法について詳述する。

化合物(I)は、自体公知の方法、例えば以下に示すA法~Bb法あるいはこれらに準ずる方法により製造することができる。製造時に使用する溶媒は、混合物が撹拌できる量であれば特に限定はない。なお、以下の各製造法において、原料化合物は塩として用いてもよく、このような塩としては、前記化合物(I)の塩として例示したものなどが用いられる。

[0089]

[A法]

本発明の化合物(I)において、 R^1 が水素原子である化合物(I-1)は、例えば、次の方法などによって合成することができる。

【化36】

[式中、 R^{1} は置換されていてもよい炭化水素基を、その他の記号は前記と同意義を示す。]

 R^{1} , における「置換されていてもよい炭化水素基」は、前記 R^{1} における「置換されていてもよい炭化水素基」と同義であり、好ましくは炭素数 1 ないし 6 のアルキル基であり、さらに好ましくはメチル、エチルなどである。

本法では、化合物 (I-2) を加水分解することにより、化合物 (I-1) を製造する。本反応は、常法に従い、酸または塩基の存在下、適当な溶媒中で行われる。

[0090]

酸としては、例えば塩酸、硫酸、臭化水素酸などの無機酸;酢酸などの有機酸などが挙げられる。塩基としては、例えば炭酸カリウム、炭酸ナトリウムなどのアルカリ金属炭酸塩;ナトリウムメトキシドなどのアルカリ金属アルコキシド;水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどのアルカリ金属水酸化物などが挙げられる。酸および塩基の使用量は、通常、化合物(I-2)に対して過剰量である。好ましくは、酸の使用量は、化合物(I-2)に対し、約2~約50当量、塩基の使用量は、化合物(I-2)に対し、約1.2~約5当量である。

適当な溶媒としては、例えばメタノール、エタノールなどのアルコール類;テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類;ジメチルスルホキシド;アセトンおよび水などが挙げられ挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

反応温度は、通常、約-20~約150 \mathbb{C} 、好ましくは約-10~約100 \mathbb{C} である。反応時間は、通常、約0.1~約20時間である。

[0091]

[B法]

本発明の化合物(I)において、Yが $-SO_m-$ (mは1または2を示す)である化合物(I-3)は、例えば、次の方法などによって合成することができる

[式中の記号は前記と同意義を示す。]

本法では、化合物 (I-4)を酸化することにより化合物 (I-3)を製造する。本反応は、通常、酸化剤を用いて、反応に悪影響を及ぼさない溶媒中で行われる。

酸化剤としては、例えば、3-クロロフェニル過安息香酸、過ヨウ素酸ナトリウム、過酸化水素水、過酢酸などが挙げられる。酸化剤の使用量は、化合物(I-4)に対して、約1当量~過剰量、好ましくは約1~約10当量である。

反応に悪影響を及ぼさない溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類;クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;N,Nージメチルホルムアミドなどのアミド類;エタノール、メタノールなどのアルコール類などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

反応温度は、通常、約-50~約150℃、好ましくは約-10~約100℃である。反応時間は、通常、約0.5~約20時間である。

[0092]

[C法]

本発明の化合物(I)において、 X^2 が $-SO_n-(n$ は1または2を示す)である化合物(I-5)は、例えば、次の方法などによって合成することができる。

【化38】

[式中の記号は前記と同意義を示す。]

本法では、化合物(I-6)を酸化することにより化合物(I-5)を製造する。本法は、例えば前記B法における化合物(I-4)から化合物(I-3)への変換と同様の反応条件下で行われる。

[0093]

[D法]

本発明の化合物(I)において、Yが-O-または-S-であり、 M^2 が結合手でない化合物(I-7)は、例えば次の方法などによって合成することができる。

【化39】

$$X^{1} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{1} Y, \mathbb{R}^{2a} \xrightarrow{\mathbb{R}^{3}} X^{2} \xrightarrow{\mathbb{R}^{4}} \mathbb{O}\mathbb{R}^{1}$$

$$(\mathbb{R}) p \qquad (T-7)$$

[式中、Y'は-O-または-S-を示し、 M^2 aは置換されていてもよい 2 価の脂肪族炭化水素基を示し、E は塩素原子、臭素原子、ヨウ素原子等のハロゲン、メタンスルホニルオキシ、p-トルエンスルホニルオキシ等の脱離基を示し、その他の記号は前記と同意義を示す。]

 M^2 a における「置換されていてもよい 2 価の脂肪族炭化水素基」は、前記 M^2 における「置換されていてもよい 2 価の脂肪族炭化水素基」と同義である。

[0094]

本法では、化合物(II)と化合物(III)との反応により化合物(I-7)を製造する。本反応は、常法に従い、塩基の存在下、反応に悪影響を及ぼさない溶媒中で行われる。

塩基としては、例えば炭酸カリウム、炭酸ナトリウムなどのアルカリ金属炭酸塩;炭酸水素カリウム、炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩;水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどのアルカリ金属水酸化物;ピリジン、トリエチルアミン、N,Nージメチルアニリン、1,8ージアザビシクロ[5.4.0]ウンデカー7ーエンなどのアミン類;水素化カリウム、水素化ナトリウムなどの金属水素化物;ナトリウムメトキシド、ナトリウムエトキシド、カリウムtertーブトキシドなどのアルカリ金属アルコキシドが挙げられる。これら塩基の使用量は、化合物(II)に対し、好ましくは約1~約5モル当量である。

[0095]

反応に悪影響を及ぼさない溶媒としては、例えばベンゼン、トルエン、キシレンなどの芳香族炭化水素類;テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類;アセトン、2ーブタノンなどのケトン類;クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類;N,Nージメチルホルムアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

反応温度は、通常、約-50~約150℃、好ましくは約-10~約100℃である。反応時間は、通常、約0.5~約20時間である。

[0096]

[E法]

本発明の化合物(I)において、Yが-O-または-S-であり、 M^1 が置換されていてもよい 2 価の脂肪族炭化水素基である化合物(I-9)は、例えば次の方法などによって合成することができる。

$$X^{1} \longrightarrow (R) p$$

$$(T-9)$$

[式中、 M^{1} a は置換されていてもよい 2 価の脂肪族炭化水素基を示し、その他の記号は前記と同意義を示す。]

 M^{1} a における「置換されていてもよい 2 価の脂肪族炭化水素基」は、前記 M^{1} における「置換されていてもよい 2 価の脂肪族炭化水素基」と同義である。

本法では、化合物(V)と化合物(IV)との反応により化合物(I-9)を製造する。本製造法は、例えば前記D法における化合物(II)と化合物(III)との反応により(I-7)を製造する方法と同様の反応条件下で行われる。

[0097]

[F法]

本発明の化合物(I)において、Yが-O-または-S-であり、かつ M^2 が結合手である化合物(I-8)は、例えば次の方法などによって合成することができる。

【化41】

[式中の記号は前記と同意義を示す。]

本法では、化合物(II-1)と化合物(IV-1)との反応により化合物(I-8)を製造する。本反応は、いわゆる光延反応として知られる自体公知の方法、例えば、Synthesis、p1(1981)に記載の方法、あるいはそれに準じた方法により行われる。すなわち、本反応は、通常、有機リン化合物および親電子剤の存在下、反応に悪影響を及ぼさない溶媒中で行われる。

[0098]

有機リン化合物としては、例えばトリフェニルホスフィン、トリブチルホスフィンなどが挙げられる。親電子剤としては、例えばアゾジカルボン酸ジエチル、アゾジカルボン酸ジイソプロピル、アゾジカルボニルジピペラジン、1,1'ー(アゾジカルボニル)ジピペリジンなどが挙げられる。有機リン化合物および親電子剤の使用量は、化合物(II-1)に対し、それぞれ、好ましくは約1~約5モル当量である。

反応に悪影響を及ぼさない溶媒としては、例えばジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類;クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;N, Nージメチルホルムアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

反応温度は、通常、約-50~約150℃、好ましくは約-10~約100℃である。反応時間は、通常、約0.5~約20時間である。

[0099]

[G法]

本発明の化合物(I)において、Yが-CON(R 3)-(但し、カルボニル 炭素原子は M^1 に結合する)である化合物(I-10)は、例えば次の方法など によって合成することができる。

【化42】

$$(VI) \qquad (VII) \qquad (VII)$$

「式中の記号は前記と同意義を示す。〕

本方法は化合物(VI)と化合物(VII)を縮合(アミド化)して化合物(I-10)を得る方法である。本反応は、自体公知の方法、例えば、

- (1) 化合物 (VI) と化合物 (VII) とを縮合剤を用いて直接縮合させる方法、あるいは
- (2) 化合物 (VI) の反応性誘導体と、化合物 (VII) とを適宜反応させる方法 等を用いて行われる。

まず、方法(1)を説明する。

前記縮合剤としては、例えばジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド及びその塩酸塩などのカルボジイミド系縮合試薬;シアノりん酸ジエチル、アジ化ジフェニルホスホリルなどのりん酸系縮合試薬;カルボニルジイミダゾール、2-クロロ-1,3-ジメチルイミダゾリウムテトラフルオロボレートなど一般に知られている縮合剤が挙げられる。

方法(1)は通常溶媒中で行い、当該溶媒としては、例えば、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミドなどのアミド類;クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類;ベンゼン、トルエンなどの芳香族炭化水素類;テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類;酢酸エチル、水などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

化合物 (VII) の使用量は、化合物 (VI) に対して、0.1~10モル当量、

好ましくは0.3~3モル当量である。

縮合剤の使用量は、化合物 (VI) に対して、 $0.1 \sim 10$ モル当量、好ましくは $0.3 \sim 3$ モル当量である。

縮合剤として、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド及びその塩酸塩などのカルボジイミド系縮合試薬を用いる場合、必要に応じて適当な縮合促進剤(例、1ーヒドロキシー7ーアザベンゾトリアゾール、1ーヒドロキシベンゾトリアゾール、Nーヒドロキシこはく酸イミド、Nーヒドロキシフタルイミドなど)を用いてもよい。また、縮合剤として、シアノりん酸ジエチル、アジ化ジフェニルホスホリルなどのりん酸系縮合試薬を用いる場合、トリエチルアミンなどの有機アミン性塩基を添加してもよい。

上記した縮合促進剤や有機アミン性塩基の使用量は、化合物 (VI) に対して、 $0.1 \sim 10$ モル当量、好ましくは $0.3 \sim 3$ モル当量である。

反応温度は、通常、-30℃~100℃である。反応時間は、通常、0.5~60時間である。

[0100]

次に、方法(2)を説明する。

化合物 (VI) の反応性誘導体としては、例えば、酸無水物、酸ハライド (例、酸クロリド、酸ブロミド)、酸イミダゾリド、活性エステル (例えばフェニルエステル、ニトロまたはハロゲン置換フェニルエステル (例えば、4-ニトロフェニルエステル、ペンタフルオロフェニルエステルなど)、1ーヒドロキシー7ーアザベンゾトリアゾールエステル、1ーヒドロキシベンゾトリアゾールエステル、Nーヒドロキシこはく酸イミドエステル、Nーヒドロキシフタルイミドエステルなど)、あるいは混合酸無水物 (例えばメチル炭酸、エチル炭酸、イソブチル炭酸との無水物など)などが挙げられる。

上記反応性誘導体中、例えば酸無水物、酸ハライド、酸イミダゾリド、活性エステルを用いる場合、反応は、塩基の存在下または非存在下で、反応に悪影響を及ぼさない溶媒中で行われる。

塩基としては、例えばトリエチルアミン、N-メチルモルホリン、N,N-ジ

メチルアニリンなどのアミン類;炭酸カリウム、炭酸ナトリウムなどのアルカリ 金属炭酸塩;炭酸水素カリウム、炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩;水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどのアルカリ金属 水酸化物;等が挙げられる。塩基の使用量は、化合物(VI)又はその反応性誘導体に対し0.1~10モル当量、好ましくは0.3~3モル当量である。

反応に悪影響を及ぼさない溶媒としては、例えば、クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類;ベンゼン、トルエンなどの芳香族炭化水素類;テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類;酢酸エチル、水、N, Nージメチルホルムアミドなどが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

化合物 (VII) の使用量は、化合物 (VI) 又はその反応性誘導体に対し0.1 ~ 10 モル当量、好ましくは $0.3 \sim 3$ モル当量である。

反応温度は、通常、-30℃~100℃である。反応時間は、通常、0.5~ 20時間である。

[0101]

また、混合酸無水物を用いる場合、化合物(VI)とクロロ炭酸エステル(例、クロロ炭酸メチル、クロロ炭酸エチル、クロロ炭酸イソブチルなど)を塩基(例、トリエチルアミン、Nーメチルモルホリン、N, Nージメチルアニリンなどのアミン類;炭酸カリウム、炭酸ナトリウムなどのアルカリ金属炭酸塩;炭酸水素カリウム、炭酸水素ナトリウムなどのアルカリ金属炭酸水素塩;水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどのアルカリ金属水酸化物等)の存在下に反応させ、さらに化合物(VII)と反応させる。

化合物 (VII) の使用量は、化合物 (VI) 又はその混合酸無水物に対して、通常 $0.1 \sim 10$ モル当量、好ましくは $0.3 \sim 3$ モル当量である。

反応温度は、通常、-30℃~100℃である。反応時間は、通常、0.5~20時間である。

[0102]

[H法]

本発明の化合物 (I) において、Yが-N (R3) CO- (但し、カルボニル

炭素は M^2 と結合する)である化合物(I-11)は、例えば次の方法などによって合成することができる。

【化43】

[式中の記号は前記と同意義を示す。]

本方法は化合物(VIII)と化合物(IX)を縮合(アミド化)して化合物(I-1)を得る方法である。本製造法は、例えば前記G法における化合物(VI)と化合物(VII)との反応により(I-10)を製造する方法と同様の反応条件下で行われる。

[I-1法] [I-2法]

本発明の化合物(I)において、Yが結合手であり、かつ、 M^1 が置換されていてもよい炭素数 2 以上の 2 価の脂肪族炭化水素基である化合物(I-12a)、(I-12b)、(I-12a)および(I-12b)は、例えば次の方法(I-1)、(I-2)などによって合成することができる。

【化44】

[式中、QはP(O)(OR 7) $_2$ またはPR 7 $_3$ (式中、R 7 は炭素数 1 ~4 のアルキル(例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチルなど)または炭素数 1 ~4 のアルキルで置換されていてもよい炭素数 6 ~10 のアリール(例えばフェニル、ナフチルなど)を示し、好ましくはメチル、エチル、フェニルなどを示す。)を示し、M 1 b は結合手または置換されていてもよい 2 6 価の脂肪族炭化水素基を示し、R 8 a、R 8 b、R 9 a および R 9 b は、それぞれ独立して、同一または異なってい

てもよく、水素原子、アルキル基または前記M¹における「2価の脂肪族炭化水素基」が有していても良い置換基から適宜選択される置換基を示し、その他の記号は前記と同意義を示す。]

 M^1 b における「置換されていてもよい 2 価の脂肪族炭化水素基」は、前記M 1 における「置換されていてもよい 2 価の脂肪族炭化水素基」と同義であり、R 8 a、R 8 b、R 9 a および R 9 b における「アルキル基」は、直鎖状または分枝状のアルキル基であり、炭素数に特に限定はなく、好ましくは 1 8 以下であり、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、se c 1 c 1

[0103]

[工程 1 a] 化合物 (I-1 2 a') の製造

化合物 (I-12a') は、化合物 (XI) を、

- (1)ホスホニウム塩(X)($Q=PR_3$)から誘導されるホスホニウムイリドと反応させてオレフィンを得るいわゆるWittig反応、あるいは
- (2)アルキル亜リン酸ジエステル(X)(Q=P(O)(OR 7) $_2$)から誘導されるホスホナートカルボアニオンと反応させてオレフィンを得るいわゆるWi ttig-Horner-Emmons反応、

によって得られる。

[0104]

[工程1b] 化合物 (I-12b') の製造

化合物 (I-12b') は、化合物 (XII) を、

- (1) ホスホニウム塩(XIII)(Q=PR 7 3) から誘導されるホスホニウムイリドと反応させてオレフィンを得るいわゆる $^{
 m Wittig}$ 反応、あるいは
- (2)アルキル亜リン酸ジエステル(XIII)(Q=P(O)(OR 7) $_2$)から誘導されるホスホナートカルボアニオンと反応させてオレフィンを得るいわゆるWittig-Horner-Emmons反応、

によって得られる。

これらの反応は、自体公知の反応であり、例えば第4版実験化学講座(丸善) 第19巻有機合成I、57-78頁などに記載あるいは引用されている条件に準

ページ: 81/

じて、或いは参考にして行うことができる。

[0105]

[工程 2 a] 化合物 (I-1 2 a) の製造

工程 1 a で得られた化合物 (I-12 a') の二重結合を還元して化合物 (I-12 a) を得る。

[工程2b] 化合物 (I-12b) の製造

工程 1 b で得られた化合物 (I-12b') の二重結合を還元して化合物 (I-12b) を得る。

これらの還元反応では触媒存在下における接触水素添加などを用いることができる。

接触水素添加において用いる触媒としてはパラジウム、白金、ニッケル、ロジウムなど金属あるいはこれらの酸化物、塩、錯体などが挙げられ、これらの触媒は炭素など種々の担持物に担持させて用いることもできる。また水素添加は常圧ないし加圧下で行うことができる。

[0106]

用いる溶媒は、適宜選択することができ、例えばアルコール類(例えば、メタノールやエタノールなど)、エーテル類(例えば、テトラヒドロフラン、ジオキサン、ジエチルエーテルなど)、炭化水素類(例えばヘキサン、ペンタンなど)、芳香族炭化水素類(例えばベンゼン、トルエンなど)、ハロゲン化炭化水素(例えば、塩化メチレン、クロロホルムなど)、エステル類(例えば酢酸エチルなど)、非プロトン性極性溶媒(例えば、N, N-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなど)などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

反応時間は0.5ないし72時間、好ましくは1ないし24時間である。反応温度は-100から100℃(好ましくは-70から50℃)で行うことができる。

[0107]

A法で原料化合物として用いられる化合物(I-2)は、例えば上記B法 $\sim I$ 法により製造される。

B法で原料化合物として用いられる化合物(I-4)は、例えば上記A法、C法、F法により製造される。

C法で原料化合物として用いられる化合物(I-6)は、例えば上記A法、B法、D法~I法により製造される。

[0108]

D法で原料化合物として用いられる化合物(II)中、Yが-O-であり、 M^1 のY'に隣接する部分が無置換のメチレンである化合物(II-1')(F法で原料化合物として用いられる化合物(II-1)中、 M^1 aのOH基に隣接する部分が無置換のメチレンである化合物も含まれ、後記するP法で原料化合物として用いられる化合物(II-1")中、 R^8 が水素原子である化合物も含まれる)は、例えば下記 I 法により製造される。

[J法]

【化45】

$$\begin{array}{c|c}
R^{2} & M^{1} & OR^{10} \\
X^{1} - | & | & \\
(R) p & OR^{10}
\end{array}$$

$$\begin{array}{c|c}
R^{2} & M^{1} & OH \\
X^{1} - | & | & \\
(R) p & OR^{10}
\end{array}$$

(XIV) (II-1')

[式中、 R^{10} は水素原子または置換されていてもよい炭化水素基を、その他の記号は前記と同意義を示す。]

ここで、上記 R 1 0 で示される「置換されていてもよい炭化水素基」としては、前記 R 1 として例示したものが挙げられる。

本法では、化合物(XIV)を還元することにより、化合物(II-1')を製造する。

本還元反応では、化合物 (XIV) に対して還元剤を1当量ないし大過剰 (好ましくは1~10当量) 使用する。還元剤としては、例えば、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム、水素化アルミニウムリチウム、水素化ジイソブチルアルミニウムなどの金属水素錯化合物やジボランなどが挙げられる。

[0109]

J法は通常溶媒中で行い、この際用いる溶媒は、還元剤の種類によって適宜選

択することができ、例えばアルコール類(例えば、メタノールやエタノールなど)、エーテル類(例えば、テトラヒドロフラン、ジオキサン、ジエチルエーテルなど)、炭化水素類(例えば、ヘキサン、ペンタンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエンなど)、ハロゲン化炭化水素(例えば、塩化メチレン、クロロホルムなど)、非プロトン性極性溶媒(例えば、N, Nージメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなど)などが挙げられる。

反応時間は0.5ないし72時間、好ましくは1ないし24時間である。反応温度は-30から100で行うことができる。

[0110]

D法で原料化合物として用いられる化合物(II)中、Y'がーSーである化合物(II-2)は、例えば下記K法により製造される。

[K法]

【化46】

$$R^{2}$$
 M^{1} OH $+$ R^{11} SH IH^{1} SH IH^{2} I

[式中、 R^{11} は置換されていてもよい炭化水素基を示し、その他の記号は前記と同意義を示す。]

R¹¹における「置換されていてもよい炭化水素基」は、前記R¹における「置換されていてもよい炭化水素基」と同義であり、好ましくは炭素数1ないし4のアルキル、炭素数1ないし4のアルキル若しくは1ないし3個のハロゲン原子で置換されていてもよいフェニルなどである。

[工程1]

本法では、化合物(II-1)と化合物(XV)との反応により、化合物(II-2))を製造する。本反応は前記F法における化合物(II-1)と化合物(IV-1)との反応と同様にして行われる。

化合物(XV)は、自体公知の方法で製造することができ、市販品としても入手 しうる。

「工程2]

本法では、工程1で得た化合物(II-2')を加水分解することにより、化合物(II-2)を製造する。本反応は前記A法における化合物(I-2)の加水分解による化合物(I-1)の製造と同様にして行われる。

なお、化合物(II-2)はチオールとして単離および精製してもよく、また上記加水分解を塩基存在下で行った場合、アルキル金属チオラートとして単離および精製してもよく、あるいはアルキル金属チオラートを単離することなくD法で示した化合物(I-7)の製造に用いてもよい。

[0111]

E法で原料化合物として用いられる化合物(V)は、例えば下記L法により製造される。

[L法]

【化47】

[式中の記号は前記と同意義を示す。]

化合物(II-1)の水酸基を脱離基Eへ変換する反応は、例えばEがハロゲンの場合は、化合物(II-1)とハロゲン化剤との反応により行い、ハロゲン化剤としては、例えば、三塩化リン、オキシ塩化リン、五塩化リン、三臭化リンなどのリンハロゲン化物、赤リンとハロゲンあるいは塩化チオニルなどが挙げられる。当該ハロゲン化剤の使用量は、化合物(II-1)1当量に対して、1ないし5当量である。

Eがトルエンスルホニルオキシまたはメタンスルホニルオキシなどのスルホニルオキシである場合、化合物(II-1) とスルホニル化剤との反応により行い、スルホニル化剤としては、例えば対応するスルホニルクロリドあるいはスルホン酸無水物(例えばトルエンスルホニルクロリド、メタンスルホニルクロリド、メタンスルホン酸無水物など)などが挙げられる。当該スルホニル化剤の使用量は

、化合物(II-1) 1 当量に対して、1 ないし5 当量である。この際、炭酸カリウム、炭酸水素ナトリウムなどの無機塩基、4 - (N, N-ジメチルアミノ) ピリジン、トリエチルアミン、ピリジン、ジメチルアニリン、1, 4 - ジアザビシクロ〔2. 2. 2〕オクタン(DABCO)などの有機塩基を1ないし10当量用いてもよい。

[0112]

E法は通常溶媒中で行い、この際便用される溶媒としては、例えばハロゲン化炭化水素類(例えば塩化メチレン、クロロホルム、ジクロエタンなど)、炭化水素類(例えばヘキサン、ペンタンなど)、芳香族炭化水素類(例えばベンゼン、トルエンなど)、エーテル類(例えばジエチルエーテル、テトラヒドロフランなど)、エステル類(例えば酢酸メチル、酢酸エチルなど)、非プロトン性極性溶媒(例えばN, N-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなど)などが挙げられる。

反応温度は-30 \mathbb{C} \sim 100 \mathbb{C} 、好ましくは-10 \mathbb{C} \sim 50 \mathbb{C} で行うことができる。反応時間は、通常10 分間ないし100 時間、好ましくは3 ないし24 時間である。

[0113]

G法で原料化合物として用いられる化合物 (VI) は、例えば下記M法により製造される。

[M法]

【化48】

$$\begin{array}{c|cccc}
R^{2} & M^{1} & OR^{10} \\
X^{1} & & & & & & & & \\
(R) p & & & & & & & & \\
(XIV') & & & & & & & & \\
\end{array}$$
(VI)

[式中、 R^{10} ,は置換されていてもよい炭化水素基を、その他の記号は前記と同意義を示す。]

 R^{10} , における「置換されていてもよい炭化水素基」は、前記 R^{1} における「置換されていてもよい炭化水素基」と同義である。

本法では、化合物(XIV')を加水分解することにより、化合物(VI)を製造する。本反応は前記 A 法における化合物(I-2)の加水分解による化合物(I-1)の製造と同様にして行われる。

[0114]

H法で原料化合物として用いられる化合物 (VIII) は、例えば、下記N-1法、または、N-2法により製造される。

[N-1法]

【化49】

[式中の記号は前記と同意義を示す。]

本法では、化合物(V)と化合物(XVI)との反応により、化合物(VIII)を製造する。本反応は前記D法における化合物(II)と化合物(III)との反応と同様にして行われる。

[N-2法]

【化50】

[式中の記号は前記と同意義を示す。]

本法は化合物(XII)とアンモニアまたは1級アミン(XVI)を反応させ、生成するイミンまたはイミニウムイオンを還元してアミン類を合成する、いわゆる還元的アミノ化反応によって化合物(VIII')を得る方法である。

該反応では化合物(XII)に対して、アンモニアまたは1級アミン(XVI)を1当量ないし大過剰(好ましくは $1\sim1$ 0当量)使用する。

この際、酸(例えば、塩酸、リン酸、硫酸などの鉱酸やトルエンスルホン酸、

メタンスルホン酸、酢酸などの有機酸)を 0. 1 ないし 2 当量添加してもよい。 還元方法としては、水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム 、水素化アルミニウムリチウムなどの金属水素錯化合物、ジボランなどの還元剤 で還元する方法や、パラジウムやラネーニッケル等の触媒存在下の接触還元、鉛 、白金を陰極とした電解還元などが挙げられ、還元剤は 1 当量ないし大過剰(好 ましくは 1 ~ 1 0 当量)使用する。

[0115]

N-2法は通常溶媒中で行い、この際用いる溶媒は、還元する方法によって適宜選択することができ、例えばアルコール類(例えば、メタノールやエタノールなど)、エーテル類(例えば、テトラヒドロフラン、ジオキサン、ジエチルエーテルなど)、ハロゲン化炭化水素(例えば、塩化メチレン、クロロホルムなど)、炭化水素類(例えばヘキサン、ペンタンなど)、芳香族炭化水素類(例えばベンゼン、トルエンなど)、非プロトン性極性溶媒(例えば、N, N-ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなど)などが挙げられる。

反応時間は0.5ないし72時間、好ましくは1ないし24時間である。反応温度は-30 $\mathbb{C}\sim100$ \mathbb{C} 、好ましくは0 $\mathbb{C}\sim60$ \mathbb{C} で行うことができる。

化合物(XVI)は、自体公知の方法で製造することができ、市販品としても入手しうる。

[0116]

I-1法で原料化合物として用いられる化合物(X)は、例えば下記○法により製造される。

[0法]

【化51】

[式中の記号は前記と同意義を示す。]

本反応は化合物(X)のQがP(O)(O R 7) $_2$ の場合には化合物(V')

と化合物(XVII)との反応により、化合物(X)のQが $PR7_3$ の場合には化合物(V')と化合物(XVIII)との反応により製造する方法である。

該反応では化合物 (V') に対して、化合物 (XVII) または化合物 (XVIII) を 1 当量ないし大過剰 (好ましくは $1\sim1$ 0 当量) 使用する。

[0117]

当該反応は無溶媒、もしくは、例えばエーテル類(例えば、テトラヒドロフラン、ジオキサン、ジエチルエーテルなど)、ハロゲン化炭化水素(例えば、塩化メチレン、クロロホルムなど)、炭化水素類(例えばヘキサン、ペンタンなど)、芳香族炭化水素類(例えばベンゼン、トルエンなど)、非プロトン性極性溶媒(例えば、N,Nージメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなど)などから適宜選択した溶媒中で行うことができる。

反応時間は0.5ないし72時間、好ましくは1ないし24時間である。反応温度は0 \mathbb{C} ~ 200 \mathbb{C} で行うことができる。

化合物(XVII)および(XVIII)は、自体公知の方法で製造することができ、 市販品としても入手しうる。また、化合物(V')は、上記L法により製造される。

[0118]

I-2法で原料化合物として用いられる化合物(XII)は、例えば下記P法により製造される。

[P法]

【化52】

[式中の記号は前記と同意義を示す。]

本法では、化合物(II-1")を酸化することにより化合物(XII)を製造する

該酸化反応は、例えば化合物 (II-1") に対して酸化剤を1当量ないし20

当量使用する。かかる酸化剤としては、活性二酸化マンガン、クロロクロム酸ピリジニウム(PCC)、二クロム酸ピリジニウム(PDC)、ジメチルスルホキシドー酸無水物(無水酢酸、無水トリフルオロ酢酸など)、ジメチルスルホキシドー塩化チオニル、ジメチルスルホキシドー塩化スルフリル、ジメチルスルホキシドー塩化オキサリル、ジメチルスルホキシドー塩素、および酸(リン酸、トリフルオロ酢酸、ジクロロ酢酸など)存在下のジメチルスルホキシドージシクロヘキシルカルボジイミド(DCC)などが挙げられる。

[0119]

該酸化反応は通常溶媒中で行い、この際用いる溶媒は、酸化剤の種類によって 適宜選択することができ、例えばエーテル類(例えば、テトラヒドロフラン、ジ オキサン、ジエチルエーテルなど)、ハロゲン化炭化水素(例えば、塩化メチレ ン、クロロホルムなど)、ケトン類(例えば、アセトン、メチルエチルケトンな ど)、非プロトン性極性溶媒(例えば、N, Nージメチルホルムアミド、ジメチ ルスルホキシド、アセトニトリルなど)などが挙げられる。

反応時間は0.5ないし48時間、好ましくは1ないし24時間である。反応 温度は酸化剤の種類によって適宜選択し、-80から100℃で行うことができ る。

[0120]

P法で原料化合物として用いられる化合物 (II-1") 中、R 8 が水素原子でない化合物 (II-2) は、例えば下記P'法により製造される。

[P'法]

【化53】

$$R^{2}$$
 M^{1b}
 H
 R^{8a}
 M^{1b}
 R^{8a}
 R^{2}
 M^{1b}
 R^{8a}
 R^{2}
 M^{1b}
 R^{8a}
 R^{1a}
 R^{1a}

[式中、R⁸aは置換されていてもよい炭化水素基を、Mは水素原子またはナトリウム、リチウム、マグネシウムなどの金属原子(2価の金属の場合、残りの1価はハロゲン原子などで占有されていてもよい)を、その他の記号は前記と同意

義を示す。〕

 R^{8} a における「置換されていてもよい炭化水素基」は、前記 R^{1} における「置換されていてもよい炭化水素基」と同義である。

本法では、化合物(XII-1)とR8a-Mとを反応させて、化合物(II-2)を製造する。本反応は、常法に従い、反応に悪影響を及ぼさない溶媒中で、化合物(XII-1)に対して、R8a-Mを1当量ないし大過剰、好ましくは約1~約5 モル当量使用する。Mが水素原子の場合、該反応は塩基性化合物存在下で行われる。用いる塩基性化合物としては、水酸化ナトリウム、炭酸カリウムのような無機塩基化合物類、ナトリウムメトキシド、カリウム tertーブトキシドのようなアルコキシド類、nーブチルリチウム、フェニルリチウムのような有機リチウム試薬類、リチウムジイソプロピルアミド、ナトリウムアミドのようなアルキル金属アミド類などが挙げられる。

反応に悪影響を及ぼさない溶媒としては、例えばペンタン、ヘキサンなどの炭化水素類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;テトラヒドロフラン、ジオキサン、ジエチルエーテルなどのエーテル類;アセトン、2ーブタノンなどのケトン類;クロロホルム、ジクロロメタンなどのハロゲン化炭化水素類;N, Nージメチルホルムアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

なお、化合物(XII-1)は、上記P法により化合物(II-1')を酸化することにより製造される。

[0121]

G法で原料化合物として用いられる化合物(VI)において M^1 が置換されていてもよい 2 価の脂肪族炭化水素基である化合物(VI')、または、J 法で原料化合物として用いられる化合物(XIV)において M^1 が置換されていてもよい 2 価の脂肪族炭化水素基であり、かつ R^{10} が水素である化合物(VI')は、例えば下記 Q 法により製造される。

[Q法]

【化54】

[式中の記号は前記と同意義を示す。]

[工程 1-a]

本法では、化合物(V)と無機シアン化物を反応させて化合物(XIX)を製造する。本反応は、常法に従い反応に悪影響を及ぼさない溶媒中で行われる。

用いる無機シアン化物としては例えばシアン化ナトリウム、シアン化カリウム、シアン化銅(I)などが挙げられる。これら無機シアン化物の使用量は、化合物(V)に対し、好ましくは1当量ないし大過剰(好ましくは $1\sim1$ 0当量)である。

また、該反応は、反応促進剤としてヨウ化ナトリウムなどのヨウ化アルカリ金属を1当量ないし大過剰(好ましくは1~10当量)加えてもよい。

[0122]

反応に悪影響を及ぼさない溶媒としては、例えば水、アルコール類(例えば、メタノールやエタノールなど)、エーテル類(例えば、テトラヒドロフラン、ジオキサン、ジエチルエーテルなど)、ハロゲン化炭化水素(例えば、塩化メチレン、クロロホルムなど)、炭化水素類(例えばヘキサン、ペンタンなど)、芳香族炭化水素類(例えばベンゼン、トルエンなど)、非プロトン性極性溶媒(例えば、N,Nージメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなど)などが挙げられる。これらの溶媒は、適宜の割合で混合して用いてもよい。

反応温度は、通常、約0 \mathbb{C} ~約200 \mathbb{C} で行うことができる。反応時間は、通常、約0.5~約20時間である。

[0123]

[工程1-b]

本法では、化合物(II-1)とシアン化水素をいわゆる光延反応により反応させて化合物(XIX)を製造する。本反応は前記F法における化合物(II-1)と化合物(IV-1)を反応させることによる化合物(I-8)の製造と同様にして行われる。

なお、上記反応はシアン化水素のかわりにシアン化水素源としてシアノヒドリン (例えばアセトンシアノヒドリンなど)を用いてもよい。

[工程2]

本法では、工程 1-a または工程 1-b で得た化合物(XIX)を加水分解することにより、化合物(VI')を製造する。本反応は前記 A 法における化合物(I-2)の加水分解による化合物(I-1)の製造と同様にして行われる。

[0124]

」法における化合物(XIV)(M法で原料化合物として用いられる化合物(XIV) も含む)として、 M^1 が置換されていてもよい炭素数 2 以上の 2 価の脂肪族炭化水素基である化合物(XXI)および化合物(XIV")は、例えば下記 R 法により製造される。

[R法]

【化55】

$$R^{2}$$
 M^{1b}
 R^{0}
 X^{1}
 X^{1}
 X^{1}
 X^{1}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{2}
 X^{2}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{4}
 X^{4}
 X^{5}
 X^{5}
 X^{1}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{4}
 X^{4}
 X^{5}
 X^{5}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{5}
 X^{1}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 $X^{$

[式中、 R^{12} は水素原子、アルキル基または前記した M^1 における「2 価の脂肪族炭化水素基」が有していても良い置換基から適宜選択される置換基を示し、

その他の記号は前記と同意義を示す。]

 R^{12} におけるアルキル基は、直鎖状または分枝状のアルキル基であり、炭素数に特に限定はなく、好ましくは18以下であり、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチルなどが挙げられる。

[0125]

「工程1] 化合物 (XXI) の製造

化合物(XII)を、

- (1)ホスホニウム塩(XX)($Q=PR_3$)から誘導されるホスホニウムイリドと反応させてオレフィンを得るいわゆるWittig反応、あるいは
- (2)アルキル亜リン酸ジエステル(XX)(Q=P(O)(OR 7) $_2$)から誘導されるホスホナートカルボアニオンと反応させてオレフィンを得るいわゆるWi ttig-Horner-Emmons反応

により、化合物(XXI)が得られる。本反応は前記 I — 1 法の [工程 1 a] におけるWittig反応あるいはWittig-Horner-Emmons反応による化合物 (I-12 a') の製造と同様にして行われる。

化合物(XX)は、自体公知の方法またはそれに準ずる方法により製造することができ、市販品としても入手しうる。

[0126]

[工程 2] 化合物 (XIV") の製造

工程 1 で得られた化合物(XXI)の二重結合を還元して化合物(XIV")を得る方法である。本反応は前記 I 法の [工程 2 a] における化合物(I-1 2 a) の水素添加による化合物(I-1 2 a) の製造と同様にして行われる。

[0127]

D法における化合物(III)は、例えば下記S法により製造される。 [S法] 【化56】

HO
$$M^{2a}$$
 X^2 M^4 OR^1 E^{M^2a} X^2 M^4 OR^1 (III)

[式中の記号は前記と同意義を示す。]

本法では、化合物(IV-2)の水酸基を脱離基Eへ変換することにより、化合物(III)を製造する。本反応は前記L法における化合物(II-1)の水酸基を脱離基Eへ変換することによる化合物(V)の製造と同様にして行われる。

[0128]

I-1法における化合物 (XI) は、例えば下記T法により製造される。

[T法]

【化57】

[式中の記号は前記と同意義を示す。]

本法では、化合物(IV-3)を酸化することにより化合物(XI)を製造する。 本反応は前記P法における化合物(II-1")の酸化による化合物(XII)の製造 と同様にして行われる。

[0129]

I-2法における化合物(XIII)は、例えば下記U法により製造される。 [U法]

【化58】

[式中の記号は前記と同意義を示す。]

本反応は化合物(XIII)のQがP(O)(OR 7) $_2$ の場合には化合物(III-1)と化合物(XVII)との反応により、化合物(XIII)のQがPR 7 $_3$ の場合には化合物(III-1)と化合物(XVIII)との反応により製造する方法である。本反応は前記O法における化合物(7)を化合物(XVII)または化合物(XVIII)と反応させることによる化合物(8 0、の製造と同様にして行われる。

なお、本工程における化合物(III-1)は、化合物(III)に包含され、前記 S法に示した方法などにより製造される。

[0130]

E法における化合物(IV)、F法における化合物(IV-1)、G法における化合物(VII)、H法における化合物(IX)、S法における化合物(IV-2)、および、T法における化合物(IV-3)(これらの化合物は全て下式 V 法における化合物(XXII)に包含されうる)は、例えば下記 V 法により製造される。

[V法]

【化59】

[式中、2はアミノの保護基、カルボキシの保護基、ヒドロキシの保護基、メルカプトの保護基を、- Y" -は-O-、-S-、-N (R 3) -または-C (=O) -O- (但し、カルボニル炭素は M^2 と結合する) を、その他の記号は前記と同意義を示す。]

Zで示される「保護基」は、後述する保護基と同様のものなどが用いられる。本法では、化合物(XXIII)の保護基を脱保護することにより、化合物(XXII)を製造する。保護基を脱保護する反応は、それ自体公知またはそれに準じる方法が用いられるが、例えば「PROTECTIVE GROUPS IN ORGANIC SYNTHESIS」Second Edition(JOHN WILEY & SONS, INC.)などに記載あるいは引用されている条件に準じてあるいは参考にして行うことができる。

[0131]

V法における化合物(XXIII)として、 X^2 が-O-または-S-であり、 M^3 が結合手でない化合物(XXIII-1)は、例えば下記W法により製造される。

[W法]

【化60】

[式中、 X^3 は-O-または-S-を、 M^3 aは置換されていてもよい 2 価の脂肪族炭化水素基を示し、その他の記号は前記と同意義を示す。]

 M^3 aにおける「置換されていてもよい 2 価の脂肪族炭化水素基」は、前記 M^1 における「置換されていてもよい 2 価の脂肪族炭化水素基」と同義である。

[工程1]

本法では、化合物(XXIV)の水酸基を脱離基Eへ変換することにより、化合物(XXV)を製造する。本反応は前記L法における化合物(II-1)の水酸基を脱離基Eへ変換することによる化合物(V)の製造と同様にして行われる。

[工程2]

本法では、工程1で得られた化合物(XXV)と化合物(XXVI)との反応により 化合物(XXIII-1)を製造する。本製造法は、例えば前記D法における化合物(II)と化合物(III)との反応により(I-7)を製造する方法と同様の反応条件下で行われる。

W法 [工程 2] における化合物(XXVI)は、自体公知の方法で製造することができ、市販品としても入手しうる。

[0132]

V法における化合物(XXIII)として、 X^2 が-O-または-S-である化合物(XXIII-2)は、例えば下記 X法により製造される。

[X法]

【化61】

$$Z = M^{2} M^{3} M^{3} M^{3} M^{4} OR^{1}$$

$$(XXVII) \qquad \qquad (XXIII-2) \qquad (XXIII-2)$$

[式中の記号は前記と同意義を示す。]

本法では、化合物(XXVII)と化合物(XXVIII)との反応により化合物(XXIII -2)を製造する。本製造法は、例えば前記D法における化合物(II)と化合物(III)との反応により(I-7)を製造する方法と同様の反応条件下で行われる

なお、上記X法における化合物(XXVIII)は、自体公知の方法で製造することができ、市販品としても入手しうる。

[0133]

V法で原料化合物として用いられる化合物(XXIII)において、 X^2 が-O-または-S-であり、 M^3 が結合手である化合物(XXIII-3)は、例えば下記 Y法により製造される。

[Y法]

【化62】

[式中の記号は前記と同意義を示す。]

本法では、化合物(XXIX)と化合物(XXX)をいわゆる光延反応により反応させて化合物(XXIII-3)を製造する。本反応は前記F法における化合物(II-1)と化合物(IV-1)を反応させることによる化合物(I-8)の製造と同様にして行われる。

なお、上記 Y 法における化合物(XXX)は、自体公知の方法で製造することができ、市販品としても入手しうる。

[0134]

V法における化合物(XXIII)として X^2 および M^4 がともに結合手であり、 M^3 が置換されていてもよい炭素数 2 以上の 2 価の脂肪族炭化水素基である化合物(XXIII-4)または化合物(XXIII-5)は、例えば下記 2 法により製造される

[Z法]

【化63】

[式中、 M^3 b は結合手または置換されていてもよい 2 価の脂肪族炭化水素基を示し、 R^{13} は水素原子、アルキル基または前記した M^1 における「2 価の脂肪族炭化水素基」が有していても良い置換基から適宜選択される置換基を示し、その他の記号は前記と同意義を示す。]

M³bにおける「置換されていてもよい2価の脂肪族炭化水素基」は、前記M¹における「置換されていてもよい2価の脂肪族炭化水素基」と同義であり、R¹³におけるアルキル基は、直鎖状または分枝状のアルキル基であり、炭素数に特に限定はなく、好ましくは18以下であり、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secーブチル、tertーブチルなど

などが挙げられる。

[0135]

[工程1] 化合物(XXIII-4)の製造

化合物(XXXI)を、

- (1)ホスホニウム塩(XX-1)($Q=PR^{7}_{3}$)から誘導されるホスホニウム イリドと反応させてオレフィンを得るいわゆるWittig反応、あるいは
- (2)アルキル亜リン酸ジエステル(XX-1)(Q=P(O)(Q=P0))2)から誘導されるホスホナートカルボアニオンと反応させてオレフィンを得るいわゆるWittig-Horner-Emmons反応、

によって、化合物(XXIII-4)を得る。本反応は前記 I 法の [工程 1 a] におけるWittig反応あるいはWittig-Horner-Emmons反応による化合物(I-1 2 a')の製造と同様にして行われる。

化合物(XX-1)は、自体公知の方法で製造することができ、市販品としても 入手しうる。

[工程2] 化合物(XXIII-5)の製造

工程1で得られた化合物(XXIII-4)の二重結合を還元して化合物(XXIII-5)を得る方法である。本反応は前記 I 法の [工程2a] における化合物 (I-12a) の製造と同様にして行われる。

[0136]

V法における化合物(XXIII)として X^2 および M^4 がともに結合手であり、 R^1 が水素原子であり、かつ、 M^3 が置換されていてもよい2 価の脂肪族炭化水素基である化合物(XXIII-6)、および、化合物(XXIII)として X^2 および M^4 がともに結合手であり、 M^3 が置換されていてもよい2 価の脂肪族炭化水素基であり、かつ、 R^1 が水素原子でない化合物(XXIII-7)は、例えば下記Aa法により製造される。

[A a 法]

【化64】

[式中の記号は前記と同意義を示す。]

[工程 1 - a]

本法では、化合物(XXV)と無機シアン化物を反応させて化合物(XXXII)を製造する。本反応は前記Q法の[工程1-a]における化合物(V)を無機シアン化物と反応させることによる化合物(XIX)の製造と同様にして行われる。

「工程 1 - b]

本法では、化合物(XXIV)とシアン化水素をいわゆる光延反応により反応させて化合物(XXXII)を製造する。本反応は前記F法における化合物(II-1)と化合物(IV-1)を反応させることによる化合物(I-8)の製造と同様にして行われる。

なお、上記反応はシアン化水素のかわりにシアン化水素源としてシアノヒドリン (例えばアセトンシアノヒドリンなど)を用いてもよい。

[工程2]

本法では、工程 1-a または工程 1-b で得た化合物(XXXII)を加水分解することにより、化合物(XXIII-6)を製造する。本反応は前記 A 法における化合物(I-2)の加水分解による化合物(I-1)の製造と同様にして行われる。

[工程3]

本法では、工程2で得た化合物(XXIII-6)をエステル化することにより、化合物(XXIII-7)を製造する。本反応は、自体公知の反応であり、例えば第4版実験化学講座(丸善)第22巻有機合成 IV、43-51頁などに記載あるいは引用されている条件に準じてあるいは参考にして行うことができる。

[0137]

W法 [工程1] における化合物(XXIV)、および Z 法における化合物(XXXI)は、公知化合物、自体公知の方法で製造することができ、市販品としても入手しうる。また、化合物(XXIV)(下記 B b 法での化合物(XXIV-1)、化合物(XXIV-2))および化合物(XXXI)(下記 B b 法での化合物(XXXII-1)、化合物(XXXII-2))は、たとえば下記 B b 法によって、化合物(XXIII-8)(A a 法で製造される化合物(XXIII-6)、化合物(XXIII-7)、 Z 法で製造される化合物(XXIII-4)、化合物(XXIII-5)をあわせた化合物を示す)から製造される。

[Bb法]

【化65】

[式中、 R^{13} a は置換されていてもよい炭化水素基を、その他の記号は前記と同意義を示す。]

ここで、上記 R 13 a における「置換されていてもよい炭化水素基」は、前記 R 1 における「置換されていてもよい炭化水素基」と同義である。

「工程1]

化合物(XXIV-1)は、J法における化合物(XIV)の還元による化合物(II-1)の製造と同様の条件下で、化合物(XXIII-8)を還元することにより製造される。

[工程2]

化合物(XXXI-1)は、前記したP法における化合物(II-1")の酸化による化合物(XII)の製造と同様の条件下で、化合物(XXIV-1)を酸化することで製造される。

[工程3]

化合物(XXIV-2)は、前記したP'法における化合物(XII-1)と R^{8a-M} との反応による化合物(II-2)の製造と同様の条件下で、化合物(XXXI-1)を R^{13a-M} と反応させることで製造される。

[工程4]

化合物(XXXI-2)は、前記したP法における化合物(II-1")の酸化による化合物(XII)の製造と同様の条件下で、化合物(XXIV-2)を酸化することで製造される。

[0138]

J法における化合物(XIV)として、 M^1 が結合手であり、 R^{10} が置換されていてもよい炭化水素基である化合物、または、M法における化合物(XIV')として M^1 が結合手である化合物は、自体公知の方法により製造することができる。 X^1 が酸素原子であるフランカルボン酸エステルについては、例えば第4版実験化学講座(丸善)第24巻有機合成VI、500-504 頁、特開平11-605 1000 10

[0139]

また、上記目的化合物および原料化合物を合成する各反応において、使用される原料化合物は、置換基としてアミノ、カルボキシ、ヒドロキシ、メルカプトを有する場合、これらの基にペプチド化学などで一般的に用いられるような保護基が導入されたものであってもよく、反応後に必要に応じて保護基を除去することにより目的とする化合物を得ることができる。

[0140]

アミノの保護基としては、例えば置換されていてもよい C_{1-6} アルキルーカルボニル(例えば、アセチル、エチルカルボニルなど)、フェニルカルボニル、 C_{1-6} アルキルオキシーカルボニル(例えば、メトキシカルボニル、エトキシカルボニルなど)、 C_{6-10} アリールオキシーカルボニル(例えば、フェノキ

シカルボニルなど)、 C_{7-10} アラルキルオキシーカルボニル(例えば、ベンジルオキシカルボニルなど)、ホルミル、トリチル、フタロイルなどが用いられる。これらの保護基は、1ないし4個程度のハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、 C_{1-6} アルキルーカルボニル(例えば、アセチル、エチルカルボニル、ブチルカルボニルなど)、ニトロなどで置換されていてもよい。

カルボキシの保護基としては、例えば置換されていてもよい C_{1-6} アルキル(例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチルなど)、フェニル、トリチル、シリルなどが用いられる。これらの保護基は、1ないし4個程度のハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、 C_{1-6} アルキルカルボニル(例えば、アセチル、エチルカルボニル、ブチルカルボニルなど)、ホルミル、ニトロなどで置換されていてもい。

[0141]

ヒドロキシの保護基としては、例えば置換されていてもよい C_{1-6} アルキル(例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチルなど)、フェニル、 C_{7-10} アラルキル(例えば、ベンジルなど)、 C_{1-6} アルキルーカルボニル(例えば、アセチル、エチルカルボニルなど)、 C_{6-10} アリールオキシーカルボニル(例えば、フェノキシカルボニルなど)、 C_{7-10} アラルキルオキシーカルボニル(例えば、ベンジルオキシカルボニルなど)、ホルミル、ピラニル、フラニル、シリルなどが用いられる。これらの保護基は、1ないし4個程度のハロゲン原子(例えば、フルオロ、塩素原子、臭素原子、ヨウ素原子など)、 C_{1-6} アルキル(例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、n-ブチル、n-ブラルキル(例えば、ベンジルなど)、フェニル、n-ブロピル、イソプロピル、n-ブチル、n-ブチルなど)、フェニル、n-ブラルキル(例えば、ベンジルなど)、ニトロなどで置換されていてもよい。メルカプトの保護基としては、例えばヒドロキシの保護基として用いられる保

[0142]

護基と同様のものなどが用いられる。

また、保護基の除去方法としては、それ自体公知またはそれに準じる方法が用

いられるが、例えば酸、塩基、還元、紫外光、ヒドラジン、フェニルヒドラジン、Nーメチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウムなどで処理する方法が用いられる。

[0143]

反応混合物からの化合物 (I) およびその原料の分別精製は、通常の分別精製 手段 (例、抽出、濃縮、ろ過、再結晶、蒸留、カラムクロマトグラフィー、薄層 クロマトグラフィー) に従って行われる。

かくして得られる化合物(I)が遊離体で得られた場合には、自体公知の方法 あるいはそれに準じる方法(例えば、中和等)によって塩に変換することができ 、逆に塩で得られた場合には自体公知の方法あるいはそれに準じる方法により、 遊離体または他の塩に変換することができる。

化合物(I)が、光学異性体、立体異性体、位置異性体、回転異性体となり得る場合には、これらの異性体も本発明の化合物(I)として包含されるとともに、自体公知の合成手法、分離手法によりそれぞれを単品として得ることができる。例えば、化合物(I)に光学異性体が存在する場合には、該化合物から分割された光学異性体も化合物(I)に包含される。

光学異性体は自体公知の方法により製造することができる。具体的には、光学活性な合成中間体を用いる、または、最終物のラセミ体を常法に従って光学分割することにより光学異性体を得る。

[0144]

光学分割法としては、自体公知の方法、例えば、分別再結晶法、キラルカラム 法、ジアステレオマー法等が用いられる。

1)分別再結晶法

ラセミ体と光学活性な化合物(例えば、()ーマンデル酸、(ー)ーマンデル酸、()ー酒石酸、(ー)ー酒石酸、()ー1ーフェネチルアミン、(ー)ー1ーフェネチルアミン、シンコニン、(ー)ーシンコニジン、ブルシンなど)と塩を形成させ、これを分別再結晶法によって分離し、所望により、中和工程を経てフリーの光学異性体を得る方法。

2) キラルカラム法

ラセミ体またはその塩を光学異性体分離用カラム(キラルカラム)にかけて分離する方法。例えば液体クロマトグラフィーの場合、ENANTIO一OVM(トーソー社製)あるいは、ダイセル社製 CHIRALシリーズなどのキラルカラムに光学異性体の混合物を添加し、水、種々の緩衝液(例、リン酸緩衝液)、有機溶媒(例、エタノール、メタノール、イソプロパノール、アセトニトリル、トリフルオロ酢酸、ジエチルアミンなど)を単独あるいは混合した溶液として展開させることにより、光学異性体を分離する。また、例えばガスクロマトグラフィーの場合、CP-Chirasil-DeX CB(ジーエルサイエンス社製)などのキラルカラムを使用して分離する。

[0145]

3) ジアステレオマー法

ラセミ体の混合物を光学活性な試薬と化学反応によってジアステレオマーの混合物とし、これを通常の分離手段(例えば、分別再結晶、クロマトグラフィー法等)などを経て単一物質とした後、加水分解反応などの化学的な処理により光学活性な試薬部位を切り離すことにより光学異性体を得る方法。例えば、化合物(I)が分子内にヒドロキシまたは1、2級アミノを有する場合、該化合物と光学活性な有機酸(例えば、MTPA [αーメトキシーαー(トリフルオロメチル)フェニル酢酸]、(ー)ーメントキシ酢酸等)などとを縮合することにより、それぞれエステル体またはアミド体のジアステレオマーが得られる。一方、化合物(I)がカルボキシを有する場合、該化合物と光学活性アミンまたはアルコール試薬とを縮合することにより、それぞれアミド体またはエステル体のジアステレオマーが得られる。分離されたジアステレオマーは、酸加水分解あるいは塩基性加水分解することにより、元の化合物の光学異性体に変換される。

[0146]

【発明の実施の形態】

【試験例】

以下に、試験例を挙げて本発明をさらに詳細に説明するが、本発明はこれらにより限定されるものではない。

本明細書において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IUB Co

mmission on Biochemical Nomenclatureによる略号あるいは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければし体を示すものとする。

[0147]

本願明細書の配列表の配列番号は、以下の配列を示す。

〔配列番号:1〕

参考例1aで用いられるプライマーPARD-Uの塩基配列を示す。

〔配列番号:2〕

参考例1aで用いられるプライマーPARD-Lの塩基配列を示す。

〔配列番号:3〕

参考例2aで用いられるプライマーXRA-Uの塩基配列を示す。

〔配列番号:4〕

参考例2aで用いられるプライマーXRA-Lの塩基配列を示す。

〔配列番号:5〕

参考例5aで用いられるPPRE-Uの塩基配列を示す。

〔配列番号:6〕

参考例5aで用いられるPPRE-Lの塩基配列を示す。

〔配列番号:7〕

参考例5aで用いられるプライマーTK-Uの塩基配列を示す。

〔配列番号:8〕

参考例5aで用いられるプライマーTK-Lの塩基配列を示す。

〔配列番号:9〕

参考例6aで用いられるプライマーPAG-Uの塩基配列を示す。

[配列番号:10]

参考例6aで用いられるプライマーPAG-Lの塩基配列を示す。

[配列番号:11]

参考例10aで用いられるプライマーPAA-Uの塩基配列を示す。

[配列番号:12]

参考例10aで用いられるプライマーPAA-Lの塩基配列を示す。

[0148]

試験例1 ($PPAR_{\gamma}-RXR_{\alpha}$ ヘテロ二量体リガンド活性)

参考例 8 a で得られた PPAR γ : RXR α : 4 ERPP/CHO-K1細胞を 10% ウシ胎児血清 [ライフテクノロジー社 (Life Technologies, Inc.) 製、米国]を含むハム F 12 培地 [ライフテクノロジー社 (Life Technologies, Inc.) 製、米国] で培養した後、96 ウェルホワイトプレート [コーニング コースター社 (Corning Coster Corporation) 製、米国] 2 へ 2 となるように播種し、37 2 の炭酸ガスインキュベーター中で一晩培養した。

一晩培養した96ウェルホワイトプレートより培地を除去後、80 μ 1の0.1%脂肪酸不含ウシ血清アルブミン(BSA)を含むハムF12培地と被検化合物20 μ 1とを添加し、37 $\mathbb C$ の炭酸ガスインキュベーター中で18 $\mathbb C$ 24時間培養した。培地を除去後、HBSS(HANKS'BALANCED SALT SOLUTION)(BIO WHITTAK ER社)で2倍希釈したビッカジーン7.5(和光純薬製)を40 μ 1添加し、撹拌後、1420 ARVOマルチラベルカウンター(Multilabel Counter)(ワラック(Wallac)社)を用いて、ルシフェラーゼ活性を測定した。

被検化合物非投与群のルシフェラーゼ活性を1としたときの、各被検化合物100nM添加時のルシフェラーゼ活性から誘導倍率を算出した。結果を[表1]に示す。

[0149]

〔表1〕

実施例番号	誘導倍率	
1 (3)	2. 8	
5 (2)	2. 3	

[0150]

このように、本発明化合物は、優れた $PPAR_{\gamma}-RXR_{\alpha}$ ヘテロ二量体リガンド活性を有することが分かった。

[0151]

試験例 2 ($PPAR\delta-RXR\alpha$ ヘテロ二量体リガンド活性)

参考例 9 a で実施したトランスフェクションから $18 \sim 24$ 時間後のCOS-1 細胞を回収し、0.1%脂肪酸不含ウシ血清アルブミン(BSA)(和光純薬製)を含む DME M培地 [ライフテクノロジー社(Life Technologies,Inc.)製、米国] に懸濁後、96 ウェルホワイトプレート(コーニング社製、米国)の各ウェルへ 1×10^4 c e11 s / wellとなるように $80\mu1$ づつ播種した。続いて、被験化合物を $20\mu1$ 添加し、37%、 $5\%CO_2$ 条件下 $36\sim48$ 時間培養した。96 ウェルホワイトプレートより培地を除去後、HBSS(HANKS'BALANCED SALT SOLUTION)(<math>BIO WHITTAKER社)で2倍希釈したピッカジーンL T7.5(和光純薬)を $40\mu1$ 添加し、撹拌後、1420 AR VO マルチラベルカウンター(Multilabel Counter)(<math>VO で VO を用いて、VO の VO で VO で VO で VO で VO の VO で VO で VO の VO で VO VO で VO

被検化合物非投与群のルシフェラーゼ活性を1としたときの、各被検化合物10nM添加時のルシフェラーゼ活性から誘導倍率を算出した。結果を[表2]に示す。

[0152]

〔表2〕

実施例番号	誘導倍率
5 (9) 6 (4) 6 (6)	6. 7 7. 4 6. 6
6 (24) 6 (26)	6.8 5.6
6 (26)	5. 6

[0153]

このように、本発明化合物は、優れたΡΡΑΚδ-ΚΧΚα ヘテロ二量体リ

ページ: 109/

ガンド活性を有することが分かった。

[0154]

試験例3(PPARα-RXRα ヘテロ二量体リガンド活性)

参考例 12a で実施したトランスフェクションから 18~24 時間後のCOS-1 細胞を回収し、0.1%のBSA(脂肪酸不含)(和光)を含むDME M培地[ライフテクノロジー社(Life Technologies, Inc.)製、米国]に懸濁後、96 ウェルホワイトプレート(コーニング社製、米国)の各ウェルへ 1×10^4 cells個の細胞を 80μ 1づつ播種した。続いて、化合物を 20μ 1添加し、36-48 時間、37 でで炭酸ガスインキュベーターで培養した。96 ウェルホワイトプレートより培地を除去後、HBSS(HANKS'BALANCED SALT SOLUTION)(BIO WHITTAKER社)で2倍希釈したピッカジーンLT7.5(和光純薬)を 40μ 1添加し、撹拌後、1420AR V Oマルチラベルカウンター(Multilabel Counter)(ワラック(Wallac)社)を用いて、ルシフェラーゼ活性を測定した。

化合物 1 0 n M を添加したウェルのルシフェラーゼ活性より、化合物を添加していないコントロールのルシフェラーゼ活性を 1 としたときの誘導倍率を算出した。結果を [表 3] に示す。

[0155]

〔表3〕

実施例番号	誘導倍率	
1	10.2	
2 (1)	10.9	
5 (5)	10.1	
6	9.3	
6 (1)	8.9	
6 (2)	9. 2	

[0156]

このように、本発明化合物は、優れた $PPAR_{\alpha}-RXR_{\alpha}$ へテロ二量体リガンド活性を有することが分かった。

[0157]

試験例4 (GPR40に対する受容体機能調節作用(アゴニスト作用))

ヒトGPR40を発現させたCHO細胞株 (No. 104) を3×104個/ 100μLの細胞が含まれるように希釈し、Black walled 96well plate (Costar) に1穴あたり100 μ L ずつ分注後、C O2培養器にて一晩培養した。細胞内カルシウム濃度の変動をFLIPR (Mo lecular Device)を用いて測定した。方法を以下に記載した。F $luo-3AM (DOJIN) 50 \mu g \approx 21 \mu L DMSO (DOJIN)$ に溶解し、さらに等量の20%プルロン酸(Molecular Probes)を加え混合後、105μLの牛胎児血清を添加した10.6mLのアッセイバ ッファー [HBSS (Invitrogen) 1Lに 1M HEPES (pH 7. 4) (DOJIN) を20mL添加し、プロベネシド (Sigma) 710 mgを1N NaOH 5mLに溶解後さらに上記のHBSS/HEPES溶液 5 m L を加え混合した溶液 1 0 m L を添加し調製する。] に加え、蛍光色素溶液 を調製した。細胞プレートの培地を除き、直ちに蛍光色素溶液を1穴あたり10 0 μ L ずつ分注後、СО 2 培養器にて 1 時間培養し、細胞に蛍光色素を取り込ま せた。培養後の細胞は上記のアッセイバッファーを用いて洗浄した。細胞に添加 する化合物はアッセイバッファーを用いて各々の濃度に希釈し、試験サンプル用 プレートに分注した。以上の前処置を施した後、FLIPRにて化合物添加後の 細胞内カルシウム濃度の変動を測定しアゴニスト作用を調べた。反応開始30秒 後の蛍光強度値の変化を用いた用量反応曲線より、EC50値を算出した。

〔表4〕

GPR40に対する受容体機能調節作用

実施例番号	EC 5 0, μM
5 (8)	0.10

) 0.	8 7
) 0.	5 8
0.	1 8
0.	1 6
0.	2 9
• • • • • • • • • • • • • • • • • • • •	
酸 2.	0
	0. 0. 0.

表4の結果から、本発明の化合物は、優れたGPR40受容体機能調節作用を 有することが分かった。

[0158]

以下の参考例 $1 \text{ a} \sim 1 \text{ 2} \text{ a}$ に記載の遺伝子操作法は、成書(Maniatisら、モレキュラー・クローニング、ColdSpring Harbor Laboratory、1 9 8 9 年)に記載されている方法もしくは試薬の添付プロトコールに記載されている方法に従った

[0159]

参考例 1 a (ヒトPPARδ遺伝子のクローニング)

ヒトPPAR & 遺伝子のクローニングは、膵臓 c D N A (東洋紡、QUICK-Clone cDNA)を鋳型とし、Schmidt, A. らが報告 (Mol. Endocrinol, 6, p 1634-1641 (1992)) しているPPAR & 遺伝子の塩基配列を参考に作製したプライマーセット

PARD-U; 5'-AAC GGT ACC TCA GCC ATG GAG CAG CCT CAG GAG G-3'(配列番号:
1)

PARD_L; 5'-TAA GTC GAC CCG TTA GTA CAT GTC CTT GTA GAT C-3'(配列番号: 2)

を用いたPCR法により行った。

P C R 反応はAmpliWax PCR Gem 100 (宝酒造) を用いたホット・スタート (Ho t Start) 法で行った。下層混液として、10 x LA PCR Buffer 2 μ 1、2.5 m M dNTP 溶液 3 μ 1、12.5 μ Mプライマー溶液各 2.5 μ 1、滅菌蒸留水 1

 0μ 1を混合した。上層混液としては、鋳型としてヒト心臓 c DNA (1 n g/m 1) を 1μ 1、10 x LA PCR Buffer 3μ 1、2.5 mM dNTP 溶液 1μ 1、Ta KaRa LA Taq DNA polymerase (宝酒造) 0.5μ 1、滅菌蒸留水 24.5μ 1を混合した。調製した下層混液に AmpliWax PCR Gem 100 (宝酒造) を 1 個添加し、70 で 5 分間、氷中で 5 分間処理後、上層混液を加え PCRの反応液を調製した。反応液の入ったチューブをサーマルサイクラー(パーキンエルマー社、米国)にセットした後、95 で 2 分間処理した。さらに、95 で 15 秒間、68 で 2 分間のサイクルを 15 のは、15 のサイクルを 15 のは、15 の

[0160]

参考例 2 a (ヒトRXR α 遺伝子のクローニング)

ヒトRXRα遺伝子のクローニングは、腎臓 cDNA(東洋紡、商品名:QUIC K-Clone cDNA)を鋳型とし、Mangelsdorf, D. J.らが報告(Nature, 345(6272)、p224-229(1990))しているRXRα遺伝子の塩基配列を参考に作製したプライマーセット

XRA-U:5'-TTA GAA TTC GAC ATG GAC ACC AAA CAT TTC CTG-3'(配列番号:3)
XRA-L:5'-CCC CTC GAG CTA AGT CAT TTG GTG CGG CGC CTC-3'(配列番号:4)
を用いたPCR法により行った。

PCR反応は、AmpliWax PCR Gem 100(宝酒造)を用いたホット・スタート(Hot Start)法で行った。まず、 $10 \times \text{LA PCR Buffer } 2 \mu \text{l}$ 、2.5 mM dNTP溶液 $3 \mu \text{l}$ 、 $12.5 \mu \text{Mプライマー溶液各} 2.5 \mu \text{l}$ 、滅菌蒸留水 $10 \mu \text{l}$ を混合して下層混液とした。また、鋳型としてヒト腎臓 cDNA(1 n g/m l)を $1 \mu \text{l}$ 、 $10 \times \text{LA PCR Buffer } 3 \mu \text{l}$ 、2.5 mM dNTP溶液 $1 \mu \text{l}$ 、TaKaRa LA Taq DNA polymerase(宝酒造) $0.5 \mu \text{l}$ 、滅菌蒸留水 $24.5 \mu \text{l}$ を混合して上層混液とした。

上記した下層混液にAmpliWax PCR Gem 100 (宝酒造)を1個添加し、70℃で5分間、氷中で5分間処理後、上層混液を加えPCRの反応液を調製した。反応

液の入ったチューブをサーマルサイクラー (パーキンエルマー社、米国) にセットした後、95 \mathbb{C} で2 分間処理した。さらに、95 \mathbb{C} で15 秒間、68 \mathbb{C} で2 分間のサイクルを35 回繰り返した後、72 \mathbb{C} で8 分間処理した。

得られたPCR産物をアガロースゲル(1%)電気泳動し、RXR α 遺伝子を含む 1. 4kbのDNA断片をゲルから回収した後、pT7 Blue-T vector(宝酒造製)に挿入し、プラスミドpTBT-hRXR α を得た。

[0161]

参考例3a(ヒトPPARδ、RXRα発現用プラスミドの作製)

プラスミドpMCMVneoの5.6 K b KpnI-SalI断片と参考例1 a 記載のプラスミドpTBT-hPPAR&のhPPAR&遺伝子を含む1.3k b KpnI-SalI断片を連結し、プラスミドpMCMVneo-hPPAR&を作製した。

[0162]

参考例4a(ヒトPPARA、RXRα発現用プラスミドの作製)

プラスミドpMCMVneoの 5. 6 K b EcoRI-SalI断片と参考例 2 a 記載のプラスミドpTBT-hRXRαのhRXRα遺伝子を含む 1. 4 k b EcoRI-XhoI断片を連結し、プラスミドpMCMVneo-hRXRαを作製した。

[0163]

参考例5a(レポータープラスミドの作製)

アシルCoAオキシダーゼのPPAR応答性エレメント (PPRE) を含むDNA断片は、以下の5'末端リン酸化合成DNAを用いて作製した。

PPRE-U:5'-pTCGACAGGGGACCAGGACAAAGGTCACGTTCGGGAG-3'(配列番号:5)

PPRE-L:5'-pTCGACTCCCGAACGTGACCTTTGTCCTGGTCCCCTG-3'(配列番号:6)

まず、PPRE-U、PPRE-Lをアニーリングした後、プラスミド pBlue Script SKの SalI 部位に挿入した。挿入断片の塩基配列を決定することにより、PPREが4個タンデムに連結したプラスミドpBSS-PPRE4を選択した。

HSV チミジン・キナーゼ・ミニマム・プロモーター (Thymidine kinase mi nimum promoter) (TKプロモーター) 領域のクローニングは、pRL-TK v ector [プロメガ (Promega) 社製、米国] を鋳型とし、Luckow, Bらが報告 (N

ページ: 114/

ucleic Acids Res., 15 (13), p5490 (1987) しているチミジン・キナーゼ (Thymidine kinase) 遺伝子のプロモーター領域の 塩基配列を参考に作製したプライマーセット

TK-U:5'-CCCAGATCTCCCCAGCGTCTTGTCATTG-3'(配列番号:7)

TK-L:5'-TCACCATGGTCAAGCTTTTAAGCGGGTC-3'(配列番号:8)

を用いたPCR法により行った。

P C R 反応は、Ampl i Wax PCR Gem 100 (宝酒造製)を用いたホット・スタート (Hot Start) 法で行った。まず、10 x LA PCR Buffer 2μ l、2.5 mM dNTP溶液 3μ l、 12.5μ Mプライマー溶液各 2.5μ l、滅菌蒸留水 10μ lを混合して下層混液とした。また、鋳型として p R L - T K vector [プロメガ (Promega) 社製、米国]を 1μ l、10 x LA PCR Buffer 3μ l、2.5 mM dNTP溶液 1μ l、TaKaRa LA Taq DNA polymerase (宝酒造製) 0.5μ l、滅菌蒸留水 24.5μ lを混合して上層混液とした。

上記した下層混液にAmpliWax PCR Gem 100(宝酒造製)を1個添加し、70 で 5 分間、氷中で5 分間処理後、上層混液を加えP C R の反応液を調製した。反応液の入ったチューブをサーマルサイクラー(パーキンエルマー社製、米国)にセットした後、95 ℃で2 分間処理した。さらに、95 ℃で15 秒間、68 ℃で2 分間のサイクルを35 回繰り返した後、72 ℃で8 分間処理した。

得られたプラスミドpGL3-TKのNheI-XhoI断片4.9kbとプラスミドpBSS-PPRE4のNheI-XhoI断片200bpを連結することにより、プラスミドpGL3-4ERPP-TKを作製した。このプラスミドpGL3-4ERPP-TKをBamHI(宝酒造製)で切断した後、T4DNAポリメラーゼ(宝酒造製)処理により末端平滑化してDNA断片を得た。一方、pGFP-C1(東洋

紡製)をBsu 3 6 I(NEB)で切断した後、T4DNAポリメラーゼ(宝酒造製)処理により末端平滑化し、1.6 k bのDNA断片を得た。両DNA断片を連結することにより、レポータープラスミドpGL3-4ERPP-TK neoを構築した。

続いて、レポータープラスミドpGL3-4ERPP-TK neoのPPAR応答性エレメント(PPRE)の向きを逆向きにしたレポータープラスミドを作製した。すなわち、プラスミドpGL3-TKのKpnI-NheI断片4.9kbとプラスミドpBSS-PPRE4のKpnI-XbaI断片200bpを連結することによりプラスミドpGL3-PPRE4-TKを作製した。プラスミドpGL3-PPRE4-TKをBamHI(宝酒造)で切断した後、T4 DNA ポリメラーゼ(宝酒造)処理により末端平滑化した。その一方で、pGFP-C1(東洋紡)をBsu36I (NEB) で切断した後、T4 DNA ポリメラーゼ(宝酒造)処理により末端平滑化し、1.6kbのDNA断片を得た。両者を連結することによりレポータープラスミドpGL3-PPRE4-TK neoを構築した。

[0164]

参考例6a(ヒトPPARy遺伝子のクローニング)

ヒトPPAR γ 遺伝子のクローニングは、心臓 c D N A (東洋紡製、商品名:QUICK-Clone cDNA)を鋳型とし、Greeneらが報告(Gene Expr., 4 (4-5), p281-299 (1995))しているPPAR γ 遺伝子の塩基配列を参考に作製したプライマーセット

PAG-U:5'-GTG GGT ACC GAA ATG ACC ATG GTT GAC ACA GAG-3'(配列番号:9)
PAG-L:5'-GGG GTC GAC CAG GAC TCT CTG CTA GTA CAA GTC-3'(配列番号:10)

を用いたPCR法により行った。

P C R 反応は、Ampli Wax PCR Gem 100(宝酒造製)を用いたホット・スタート (Hot Start) 法で行った。まず、 $10 \times LA$ PCR Buffer $2\mu l$ 、2.5 mM dNTP 溶液 $3\mu l$ 、 $12.5\mu M$ プライマー溶液各 $2.5\mu l$ 、滅菌蒸留水 $10\mu l$ を混合して下層混液とした。また、鋳型としてヒト心臓 cDNA(1 n g/m l)を $1\mu l$ 、 $10\times LA$ PCR Buffer $3\mu l$ 、2.5 mM dNTP溶液 $1\mu l$ 、TaKaRa LA Taq DNA polymerase(宝酒造製) $0.5\mu l$ 、滅菌蒸留水 $24.5\mu l$ を混合して上層混液と

ページ: 116/

した。

上記した下層混液にAmpliWax PCR Gem 100(宝酒造製)を1個添加し、70℃で5分間、氷中で5分間処理後、上層混液を加えPCRの反応液を調製した。反応液の入ったチューブをサーマルサイクラー(パーキンエルマー社製、米国)にセットした後、95℃で2分間処理した。さらに、95℃で15秒間、68℃で2分間のサイクルを35回繰り返した後、72℃で8分間処理した。

得られたPCR産物をアガロースゲル (1%) 電気泳動し、PPAR γ 遺伝子を含む 1.4 kbのDNA断片をゲルから回収した後、pT7 Blue-T vector (宝酒造製) に挿入し、プラスミド pTBT-hPPAR γ を得た。

[0165]

参考例 7 a (ヒトPPARγ、RXRα発現用プラスミドの作製)

プラスミドp V g R X R [インビトロジェン (Invitrogen) 社製、米国] の7.8 k b FspI-NotI断片と参考例2 a で得られたプラスミドp T B T - h R X R αのR X R α遺伝子を含む0.9 k b FspI-NotI断片を連結し、プラスミドp V g R X R 2 を作製した。次に、p V g R X R 2 をBstXIで切断した後、T 4 D N Aポリメラーゼ(宝酒造製)処理により末端平滑化した。ついで、KpnIで切断することにより、6.5 k b の D N A 断片を得た。

両DNA断片を連結することにより、プラスミドpVgRXR2-hPPAR γ を構築した。

[0166]

参考例 8 a (ヒトPPAR γ 、RXR α 発現用プラスミドおよびレポータープラスミドのCHO-K1細胞への導入と発現細胞の取得)

10%ウシ胎児血清 [ライフテクノロジー社 (Life Technologies, Inc.) 製、米国] を含むハムF12培地 [ライフテクノロジー社 (Life Technologies, Inc.) 製、米国] を用いて150cm 2 セルカルチャーフラスコ [コーニング コース

ター社(Corning Costar Corporation)製、米国]で生育させたCHO-K1細胞を0.5g/Lトリプシン-0.2g/L EDTA(エチレンジアミン四酢酸)[ライフテクノロジー社(Life Technologies, Inc.)製、米国]処理により剥がした後、細胞をPBS(Phosphate-buffered saline)[ライフテクノロジー社(Life Technologies, Inc.)製、米国]で洗浄して遠心分離(1000rpm,5分)し、PBSで懸濁した。次に、ジーンパルサー[バイオラッド社(Bio-Rad Laboratories)製、米国]を用いて、下記の条件に従って、DNAを細胞に導入した。

次に、得られた形質転換株を 24 ウェルプレート [コーニング コースター社 (Corning Costar Corporation) 製、米国] で培養した後、 10μ M塩酸ピオグリタゾンの添加により、ルシフェラーゼが発現誘導される株、 $PPAR\gamma:RX$ R $\alpha:4$ ERPP/CHO-K1 細胞を選択した。

[0167]

参考例 9 a (ヒトPPARδ、RXRα発現用プラスミドおよびレポータープラスミドのCOS-1細胞への導入)

COS-1細胞を $150cm^2$ セルカルチャーフラスコ (コーニング社製、米

国)に 5×10 6 cells/50m l 播種し、37℃、5% CO2条件下24時間培養した。トランスフェクションはリポフェクトアミン(インビトロジェン(Invitrogen)社製、米国)を用いて行った。トランスフェクション混合液は、125μlのリポフェクトアミン、100μlのPLUS Reagent、2.5μgのpMCMVneo-h PPARδ(参考例3aで得たもの)、2.5μgのpMCMVneo-h RXRα(参考例4aで得たもの)、5μgのレポータープラスミドpGL3-4ERPP-TKneo(参考例5aで得たもの)、5μgのpRL-tk[プロメガ(Promega)社製、米国]を5mlのopti-MEM(インビトロジェン(Invitrogen)社製、米国)に混合して作製した。opti-MEMで洗浄したCOS-1細胞に上記トランスフェクション混合液と20mlのopti-MEMを添加し、37℃、5% CO2条件下、3時間培養した。次いで、0.1% 脂肪酸不含ウシ血清アルブミン(BSA)(和光純薬)を含むDMEM培地[ライフテクノロジー社(Life Technologies, Inc.)製、米国]を25ml添加し、37℃、5% CO2条件下18~24時間培養した。

[0168]

参考例10a(ヒトPPARα遺伝子のクローニング)

ヒトPPAR α 遺伝子のクローニングは、肝臓 c D N A (東洋紡, QUICK-Clone cDNA)を 鋳型とし、Sher, T. らが報告(Biochemistry, 32, p5 598-5604(1993))しているPPAR α 遺伝子の塩基配列を参考に作製したプライマーセット

PAA-U:5'-AAA GGA TCC CGC GAT GGT GGA CAC AGA AAG CCC-3' (配列番号:11)

PAA-L:5'-CCC GTC GAC TCA GTA CAT GTC CCT GTA GAT CTC-3' (配列番号: 1 2)

を用いたPCR法により行った。

PCR 反応は AmpliWax PCR Gem 100 (宝酒造) を用いた ホット・スタート (Hot Start) 法で行った。下層混液として、10 x native pfu Buffer 2μ 1、 $2.5\,\mathrm{mM}$ dNTP溶液 3μ 1、 $12.5\,\mu$ M プライマー溶液各 $2.5\,\mu$ 1、滅菌蒸留水 $10\,\mu$ 1 を混合した。上層混液としては、鋳型としてヒト肝臓 c DNA

(1 n g/m 1) を $1 \mu 1$ 、 $10 \text{ x native pfu Buffer } 3 \mu 1$ 、2.5 mM dNTP 溶液 $1 \mu 1$ 、native pfu DNA polymerase (STRATAGENE社、米国) $0.5 \mu 1$ 、滅菌蒸留水 $24.5 \mu 1$ を混合した。調製した下層混液にAmpliWax PCR Gem 100 (宝酒造)を 1 個添加し、70 ℃で 5 分間、氷中で 5 分間処理後、上層混液を加え PCRの反応液を調製した。反応液の入ったチューブをサーマルサイクラー(パーキンエルマー社)にセットした後、95 ℃で 2 分間処理した。さらに、95 ℃で 15 秒間、68 ℃で 2 分間のサイクルを 45 回繰り返した後、12 ℃で 15 秒間、12 ~ 12 ~ 13 ~ 14 ~ 15 ~ 1

[0169]

参考例11a (ヒトPPARα発現用プラスミドの作製)

プラスミドpMCMVneoの 5. 6 K b KpnI-SalI断片と参考例 1 0 a 記載のプラスミドpTBB-hPPAR a のヒトPPAR a 遺伝子を含む 1. 4 k b KpnI-Sal I断片を連結し、プラスミドpMCMVneo-hPPAR a を作製した。

[0170]

参考例 $1 \ 2 \ a$ (ヒトPPAR α 、RXR α 発現用プラスミドおよびレポータープラスミドのCOS 1 細胞への共導入)

COS-1細胞を150 c m 2 セルカルチャーフラスコ(コーニング社製、米国)に 5×10^6 cells/50m l 播種し、37%、5% CO $_2$ 条件下 $_2$ 4時間培養した。トランスフェクションはリポフェクトアミン(インビトロジェン(Invitrogen)社製、米国)を用いて行った。トランスフェクション混合液は、 125μ 1のリポフェクトアミン、 100μ 1のPLUS Reagent、 $_2$. 5μ 3のpMCMV neo-hPPAR $_4$ (参考例 $_1$ 1 aで得たもの)、 $_2$ 2. 5μ 3のpMCMV neo-hRXR $_4$ (参考例 $_4$ 1 aで得たもの)、 $_4$ 2 のレポータープラスミドpGL $_4$ 3 ーPPRE4ーTK neo(参考例 $_4$ 5 aで得たもの)、 $_4$ 7 ののpRL-tk[プロメガ(Promega)社製、米国)を $_4$ 7 ののpti-MEM(インビトロジェン(Invitrogen)社製、米国)に混合して作製した。 $_4$ 8 のpti-MEMで洗浄したCOS-1細胞に上記

ページ: 120/

トランスフェクション混合液と $20 \,\mathrm{ml}$ のopt $\mathrm{i-MEM}$ を添加し、 $37 \,\mathrm{C}$ 、 $5\% \,\mathrm{CO}$ 2 条件下、 3 時間培養した。次いで、 0.1% 脂肪酸不含ウシ血清アルブミン(BSA)(和光純薬)を含むDMEM培地[ライフテクノロジー社(Life Technolog ies, Inc.)製、米国]を $25 \,\mathrm{ml}$ 添加し、 $37 \,\mathrm{C}$ 、 $5\% \,\mathrm{CO}_2$ 条件下 $18 \,\mathrm{CO}_2$ 4 時間培養した。

[0171]

【実施例】

本発明は、さらに下記の実施例および参考例で詳しく説明されるが、これらの 例は単なる実例であって本発明を限定するものではなく、また本発明の範囲を逸 脱しない範囲で変化させてもよい。

 1 H-NMRスペクトルは、内部標準としてテトラメチルシランを用いてバリアンジェミニ 2 0 0 (200M Hz) またはマーキュリー 3 0 0 (300MHz) で測定し、全 δ 値をppmで示した。混合溶媒において示した数値は、特に断らない限り各溶媒の容積混合比である。%は特に断らない限り重量%を意味する。また、シリカゲルクロマトグラフィーにおける溶出溶媒は、特に断らない限り容量比を示す。本明細書中における室温(常温)とは、約 2 0 $\mathbb C$ から約 3 0 $\mathbb C$ の温度を表す。

なお、実施例、参考例中の各記号は次の意味を表す。 s:シングレット、d:ダブレット、t:トリプレット、q:クアルテット、br:幅広い、dd:ダブルダブレット、d:グブルトリプレット、d:トリプルダブレット、dq:ダブルクアルテット、d:トリプルトリプレット、dd:グブルダブレット、d:アルテット、d:アルトリプレット、d:アルダブルダブレット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:アルテット、d:00:d

[0172]

参考例1

1-フルオロー4-(2-ニトロー1-プロペニル)ベンゼン

【化66】

4-フルオロベンズアルデヒド(17.0g)、酢酸(11.5g)、メチル

アミン・塩酸塩(3.70g)、酢酸ナトリウム(4.50g)およびニトロメタン(41.2g)の混合物を100℃で1.5時間撹拌した。反応液を水で希釈した後、酢酸エチルで3回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をジエチルエーテルーへキサンより結晶化して、目的物(18.4g)を結晶として得た。

融点59-61°C; 1 H-NMR (CDC1₃) δ 2.45 (3H, s), 7.16 (2H, d), 7.44 (2H, dd), 8.06 (1H, s).

[0173]

参考例 2

4- (4-フルオロフェニル)-2, 5-ジメチル-3-フロ酸メチル

【化67】

1-7ルオロー4ー(2-ニトロー1-プロペニル)ベンゼン(2.49g)のメタノール(20m1)溶液にピペリジン(1.36m1)とアセト酢酸メチル(1.60g)を室温で加えそのまま一晩撹拌した。反応液を減圧下濃縮した後、水(10m1)および濃塩酸(3m1)を加えて、室温で1時間撹拌した。反応液を酢酸エチルで20抽出し、集めた有機層を硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(酢酸エチル:ヘキサン=1:9)、目的物(1.59g)を固体として得た。冷メタノールより再結晶して、結晶を得た。

融点34-35°C; 1 H-NMR (CDC13) & 2.18 (3H, s), 2.56 (3H, s), 3.66 (3H, s), 7.05 (2H, t), 7.21 (2H, dd).

[0174]

参考例 2 (1) ~参考例 2 (3)

1-フルオロー4-(2-ニトロー1-プロペニル)ベンゼンと対応する $\beta-$ ケトエステルより、参考例2に示す方法と同様にして、以下に示す化合物を得た

٥

[0175]

参考例 2 (1)

2-シクロヘキシル-4- (4-フルオロフェニル) -5-メチル-3-フロ酸 エチル

【化68】

融点71-72°C; 1 H-NMR (CDC1₃) δ 1.09 (3H, t), 1.24-1.93 (10H, m), 2.17 (3 H, s), 3.78 (1H, tt), 4.10 (2H, q), 7.04 (2H, t), 7.21 (2H, dd).

[0176]

参考例 2 (2)

4-(4-7)ルオロフェニル) -2-7プロピル-5-メチル-3-フロ酸エチル

【化69】

融点27-28°C; 1 H-NMR (CDC1₃) δ 1.09 (3H, t), 1.30 (6H, d), 2.18 (3H, s), 3.65-3.79 (1H, m), 4.11 (2H, q), 7.04 (2H, t), 7.21 (2H, dd).

[0177]

参考例 2 (3)

4- (4-フルオロフェニル) -5-メチル-2-フェニル-3-フロ酸エチル

【化70】

融点78-79°C; 1 H-NMR (CDC1₃) δ 1.02 (3H, t), 2.30 (3H, s), 4.10 (2H, q), 7.09 (2H, t), 7.19-7.48 (5H, m), 7.82 (2H, dd).

[0178]

参考例3

5-(4-フルオロフェニル)-2-メチル-3-フロ酸メチル

【化71】

1,8-アザビシクロ [5.4.0] - 7-ウンデセン (44.5 g)のトルエン (100 m 1)溶液に、氷冷下、アセト酢酸メチル (33.9 g)のトルエン (50 m 1)溶液を氷冷下で滴下した。反応液をそのまま 10分間撹拌した後、これに 2-クロロー4'、フルオロアセトフェノン (50.4 g)のトルエン (100 m 1)溶液を氷冷下で滴下し、さらに室温で 2時間撹拌した。生じた沈殿をろ過し、トルエンで洗浄した。得られたトルエン溶液をシリカゲルに通し、シリカゲルを酢酸エチルーへキサン (1:1)で洗浄した。集めた溶液を減圧濃縮して酢酸エチルーへキサンを除き、トルエン溶液を得、このトルエン溶液に 4ートルエンスルホン酸・1水和物 (5.55g)を加えて、100℃で 2時間撹拌した。反応液を炭酸水素ナトリウム水溶液で洗浄し、水層を酢酸エチルで抽出した。有機層を集め、硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗生成物を冷メタノールから結晶化して、目的物 (37.6 g)を結晶として得た。

融点96-97℃; ¹H-NMR (CDC1₃) & 2.64 (3H, s), 3.85 (3H, s), 6.81 (1H, s), 7.08 (2H, t), 7.60 (2H, dd).

[0179]

参考例3(1)~参考例3(9)

対応するフェナシルハライドと対応する β ーケトエステルより、参考例 3 に示す方法と同様にして、以下に示す化合物を得た。

[0180]

参考例3 (1)

2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フロ酸メチル 【化72】

融点91-92°C; 1 H-NMR (CDCl₃) δ 2.67 (3H, s), 3.87 (3H, s), 7.00 (1H, s), 7.63 (2H, d), 7.73 (2H, d).

[0181]

参考例3 (2)

2-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フロ酸メチル【化73】

融点81-82°C; 1 H-NMR(CDC1₃) δ 1.33(3H, t), 3.09(2H, q), 3.86(3H, s), 6.99(1H, s), 7.62(2H, d), 7.72(2H, d).

[0182]

参考例3 (3)

2-イソプロピル-5- [4-(トリフルオロメチル)フェニル]-3-フロ酸 メチル

【化74】

融点61-62°C; 1 H-NMR(CDC1₃) δ 1.35(6H, d), 3.77-3.87(1H, m), 3.85(3H, s), 6.98(1H, s), 7.62(2H, d), 7.72(2H, d).

[0183]

参考例3(4)

2-ブチルー5- [4-(トリフルオロメチル)フェニル]-3-フロ酸メチル 【化75】

融点172-174°C; 1 H-NMR (CDC1₃) δ 0.98 (3H, t), 1.38-1.50 (2H, m), 1.71-1 .82 (2H, m), 3.11 (2H, t), 7.04 (1H, s), 7.64 (2H, d), 7.74 (2H, d).

[0184]

参考例3 (5)

2-メチル-5- [4-(トリフルオロメトキシ)フェニル]-3-フロ酸メチル

【化76】

融点66-67°C; 1 H-NMR (CDC1 $_{3}$) δ 2.65 (3H, s), 3.85 (3H, s), 6.87 (1H, s), 7.23 (2H, d), 7.64 (2H, d).

[0185]

参考例3 (6)

5-(3-メトキシフェニル)-2-メチル-3-フロ酸メチル

【化77】

融点67-68°C; 1 H-NMR (CDCl₃) δ 2.65 (3H, s), 3.85 (6H, s), 6.83 (1H, ddd), 6.88 (1H, s), 7.16-7.34 (3H, m).

[0186]

参考例3 (7)

2-メチル-5-[3-(トリフルオロメチル)フェニル]-3-フロ酸メチル

【化78】

融点74-75°C; 1 H-NMR (CDCl₃) δ 2.67 (3H, s), 3.86 (3H, s), 6.97 (1H, s), 7.49-7.51 (2H, m), 7.77-7.80 (1H, m), 7.87 (1H, s).

[0187]

参考例3 (8)

2-エチル-5-(3-メトキシフェニル)-3-フロ酸メチル

【化79】

油状物; 1 H-NMR (CDC1₃) δ 1.32 (3H, t), 3.07 (2H, q), 3.85 (3H, s), 3.85 (3H, s), 6.82 (1H, ddd), 6.86 (1H, s), 7.16-7.32 (3H, m).

[0188]

参考例3 (9)

5- (4-クロロフェニル) -2-メチル-3-フロ酸メチル

【化80】

融点105-106°C; 1 H-NMR (CDC 1_{3}) δ 2.64 (3H, s), 3.85 (3H, s), 6.87 (1H, s), 7.35 (2H, d), 7.56 (2H, d).

ページ: 127/

[0189]

参考例4

5-フェニルー2-(トリフルオロメチル)-3-フロ酸エチル

【化81】

60%水素化ナトリウムの流動パラフィン懸濁物(5.51g)の1,2ージメトキシエタン(100m1)懸濁液に4,4,4ートルフルオロアセト酢酸エチル(23.1g)の1,2ージメトキシエタン(50m1)溶液を室温で滴下した。反応液をそのまま0.5時間撹拌した後、これに2ーブロモアセトフェノン(24.9g)を室温で滴下し、さらに80℃で一晩撹拌した。反応液を水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、油状物を得た。得られた油状物をトルエン(200m1)に溶解し、4ートルエンスルホン酸・1水和物(4.77g)を加え、Dean の一Stark トリウム水溶液で洗浄し、水層を酢酸エチルで抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた地上なった。反応液を炭酸水素ナトリウム水溶液で洗浄し、水層を酢酸エチルで抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた地上成物をシリカゲルカラムクロマトグラフィーにて精製し(10.50m)ので結晶として得た。

融点44-45°C; 1 H-NMR (CDCl₃) δ 1.39 (3H, t), 4.38 (2H, q), 7.05 (1H, s), 7.38-7.49 (3H, m), 7.68-7.74 (2H, m).

[0190]

参考例 5

5-(4-フルオロフェニル)-2-メチル-3-フロ酸

ページ: 128/

【化82】

5-(4-7)ルオロフェニル)-2-メチル-3-フロ酸メチル(15.36g)、水酸化ナトリウム(5.25g)、メタノール(100m1)、水(50m1)およびテトラヒドロフラン(50m1)の混合物を室温で一晩撹拌した。反応液を濃縮、水で希釈し、希塩酸で反応液を酸性にした後、酢酸エチルで 2m 抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をジイソプロピルエーテル-ヘキサンより結晶化して、目的物(13.4g)を結晶として得た。

融点217-218°C; 1 H-NMR(CDC1 $_{3}$ -DMS0-d $_{6}$) δ 2.65 (3H, s), 6.83 (1H, s), 7.0 7 (2H, t), 7.60 (2H, dd).

[0191]

参考例 5 (1) ~参考例 5 (6)

参考例3(1)~参考例3(5)、参考例4で得た3-フランカルボン酸エステル誘導体より、参考例5に示す方法と同様にして、以下に示す化合物を得た。

[0192]

参考例 5 (1)

2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フロ酸

【化83】

融点199-200°C; 1 H-NMR(CDC1₃) δ 2.67(3H, s), 7.02(1H, s), 7.61(2H, d), 7.72(2H, d).

[0193]

参考例 5 (2)

2-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フロ酸

【化84】

融点186-187°C; 1 H-NMR(CDC1₃) δ 1.36(3H, t), 3.14(2H, q), 7.05(1H, s), 7.65(2H, d), 7.75(2H, d).

[0194]

参考例 5 (3)

2- 1 インプロピルー5- [4- (トリフルオロメチル) フェニル]-3-フロ酸【化85】

融点187-188℃; ¹H-NMR(CDCl₃) δ 1.38(6H, d), 3.80-3.94(1H, m), 7.04(1H, s), 7.65(2H, d), 7.75(2H, d).

[0195]

参考例 5 (4)

2ーブチルー5ー [4ー(トリフルオロメチル)フェニル] -3-フロ酸

【化86】

CH₃ 融点172-174℃; ¹H-NMR(CDC1₃) δ 0.98(3H, t), 1.38-1.50(2H, m), 1.71-1 .82(2H, m), 3.11(2H, t), 7.04(1H, s), 7.64(2H, d), 7.74(2H, d).

[0196]

参考例5 (5)

2-メチル-5-[4-(トリフルオロメトキシ)フェニル]-3-フロ酸

【化87】

融点145-146°C; 1 H-NMR(CDC1₃) δ 2.70(3H, s), 6.93(1H, s), 7.24(2H, d), 7.67(2H, d).

[0197]

参考例5 (6)

5-フェニル-2-(トリフルオロメチル)-3-フロ酸

【化88】

融点171-173°C; 1 H-NMR(CDCl₃) δ 7.09(1H, s), 7.37-77.48(3H, m), 7.72(2H, d).

[0198]

参考例6

[5-(4-フルオロフェニル)-2-メチル-3-フリル] メタノール

【化89】

水素化リチウムアルミニウム(3.67g)のテトラヒドロフラン(200m l)懸濁液に、氷冷下、5-(4-7)ルオロフェニル)-2-3 チルー3ーフロ酸メチル(15.1g)のテトラヒドロフラン(50 m l)溶液を滴下し、0 で 1 時間撹拌した。反応液を氷冷して、水(3.5 m l)、15 %水酸化ナトリウム水溶液(3.5 m l)、水(8 m l)を順次滴下して、過剰の水素化リチウムアルミニウムを分解し、そのまま室温で 2 時間撹拌した。生じた沈殿をろ過して除き、沈殿を酢酸エチルで洗浄した。集めた濾液の溶媒を減圧留去した。得ち

れた粗生成物をヘキサンより結晶化して、目的物(11.9g)を結晶として得た。

融点80-82°C; 1 H-NMR (CDC1₃) δ 1.61 (1H, br s), 2.35 (3H, s), 4.50 (2H, s), 6.56 (1H, s), 7.05 (2H, t), 7.58 (2H, dd).

[0199]

参考例6(1)~参考例6(14)

参考例 2 、参考例 2 (1) ~参考例 2 (3) 、参考例 3 (1) ~参考例 3 (9) 、参考例 4 で得た 3 -フランカルボン酸エステル誘導体より、参考例 6 に示す方法と同様にして、以下に示す化合物を得た。

[0200]

参考例6(1)

[4-(4-7) + (4-7) +

【化90】

パラフィン状固体; $^1\text{H-NMR}$ (CDC13) δ 2.26 (3H, s), 2.33 (3H, s), 4.41 (2H, s), 7.10 (2H, t), 7.36 (2H, dd).

[0201]

参考例 6 (2)

【化91】

融点72-73°C; 1 H-NMR(CDC1₃) δ 1.31(6H, d), 2.27(3H, s), 3.02-3.23(1H, m), 4.41(2H, s), 7.09(2H, t), 7.36(2H, dd).

[0202]

参考例 6 (3)

[2-シクロヘキシルー4-(4-フルオロフェニル)-5-メチルフラン-3 -イル] メタノール

【化92】

融点137-138°C; 1 H-NMR(CDC1₃) δ 1.22-1.94(10H, m), 2.26(3H, s), 2.75(1H, tt), 4.41(2H, s), 7.09(2H, t), 7.36(2H, dd).

[0203]

参考例 6 (4)

[4-(4-7) + (4-7) +

【化93】

融点153-154°C; 1 H-NMR(CDC1₃) δ 2.37(3H, s), 4.57(2H, s), 7.14(2H, t), 7.29-7.49(5H, m), 7.76(2H, d).

[0204]

参考例 6 (5)

 $\{2-$ メチルー5- [4-(トリフルオロメチル)フェニル]-3-フリル $\}$ メタノール

【化94】

融点90-91°C; 1 H-NMR (CDC13) δ 2.37 (3H, s), 4.52 (2H, s), 6.74 (1H, s),

ページ: 133/

7.59 (2H, d), 7.68 (2H, d).

[0205]

参考例 6 (6)

|2-x+y-5-[4-(トリフルオロメチル) フェニル] -3-フリル メタノール

【化95】

融点52-53°C; 1 H-NMR (CDCl₃) δ 1.30 (3H, t), 1.41 (1H, br s), 2.74 (2H, q), 4.53 (2H, s), 6.75 (1H, s), 7.59 (2H, d), 7.70 (2H, d).

[0206]

参考例 6 (7)

【化96】

融点100-101°C; 1 H-NMR (CDCl₃) δ 1.33 (6H, d), 1.39 (1H, br s), 3.10-3.1 9 (1H, m), 4.54 (2H, s), 6.74 (1H, s), 7.59 (2H, d), 7.69 (2H, d).

[0207]

参考例 6 (8)

 $\{2- \vec{\jmath} \ne \nu - 5 - [4- (\gamma - 1) - 1) \}$ メタノール

【化97】

融点74-75℃; ¹H-NMR (CDC1₃) δ 0.95 (3H, t), 1.33-1.45 (3H, m), 1.63-1.7

3 (2H, m), 2.71 (2H, t), 4.52 (2H, s), 6.76 (1H, s), 7.59 (2H, d), 7.69 (2H, d).

[0208]

参考例 6 (9)

 $\{2-x+v-5-[4-(-1)] + (-1) +$

【化98】

融点53-55°C; 1 H-NMR(CDCl₃) δ 1.41(1H, br t), 2.37(3H, s), 4.52(2H, d), 6.64(1H, s), 7.20(2H, d), 7.63(2H, d).

[0209]

参考例6 (10)

[5-フェニルー2-(トリフルオロメチル)-3-フリル] メタノール 【化99】

融点57-58°C; 1 H-NMR(CDCl₃) δ 1.71(1H, t), 4.73(2H, d), 6.82(1H, s), 7.32-7.44(3H, m), 7.69(2H, d).

[0210]

参考例6 (11)

[5-(3-メトキシフェニル) -2-メチル-3-フリル] メタノール 【化<math>100】

融点61-62°C; 1 H-NMR (CDC1 $_{3}$) δ 1.43 (1H, t), 2.37 (3H, s), 3.85 (3H, s), 4.51 (2H, d), 6.64 (1H, s), 6.79 (1H, ddd), 7.15-7.32 (3H, m).

ページ: 135/

[0211]

参考例6(12)

 $\{2-$ メチル-5-[3-(トリフルオロメチル)フェニル]-3-フリル $\}$ メタノール

【化101】

融点39-41°C; 1 H-NMR(CDC1₃) δ 1.43(1H, t), 2.38(3H, s), 4.53(2H, d), 6.73(1H, s), 7.46(2H, d), 7.77(1H, t), 7.86(1H, s).

[0212]

参考例6(13)

融点66-67°C; 1 H-NMR (CDCl₃) δ 1.29 (3H, t), 1.38 (1H, t), 2.73 (2H, q), 3.85 (3H, s), 4.52 (2H, d), 6.63 (1H, s), 6.79 (1H, ddd), 7.17-7.32 (3H, m).

[0213]

参考例 6 (14)

[5-(4-クロロフェニル)-2-メチル-3-フリル]メタノール

【化103】

融点129-130°C; 1 H-NMR (CDCl₃) δ 2.35 (3H, s), 4.50 (2H, s), 6.62 (1H, s), 7.31 (2H, d), 7.53 (2H, d).

[0214]

参考例7

2-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フルアルデヒ

ド

【化104】

 $\{2-x+v-5-[4-(トリフルオロメチル) フェニル] -3-フリル\}$ メタノール (4.77g) および活性二酸化マンガン (25g) をヘキサン (50m1) およびジエチルエーテル (10m1) 中で室温にて一晩撹拌した。不溶物を濾過し、酢酸エチルで洗浄した。集めた濾液の溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=6:1)、目的物 (3.21g) を固体として得た。ヘキサンより再結晶して結晶を得た。

融点95-96°C; 1 H-NMR (CDCl₃) δ 1.42 (3H, t), 3.07 (2H, q), 7.03 (1H, s), 7.65 (2H, d), 7.75 (2H, d), 9.98 (1H, s).

[0215]

参考例7(1)~参考例7(3)

参考例6(5)、参考例6(8)、参考例6で得た3ーフリルメタノール誘導体より、参考例7に示す方法と同様にして、以下に示す化合物を得た。

[0216]

参考例7(1)

2-メチルー5-[4-(トリフルオロメチル)フェニル]<math>-3-フルアルデヒド

【化105】

融点106-107℃; ¹H-NMR (CDC1₃) δ 2.69 (3H, s), 7.02 (1H, s), 7.63 (2H, d), 7.74 (2H, d), 9.96 (1H, s).

[0217]

参考例7(2)

2-プチルー5-[4-(トリフルオロメチル)フェニル]-3-フルアルデヒド

【化106】

油状物; 1 H-NMR (CDCl₃) δ 0.98 (3H, t), 1.38-1.51 (2H, m), 1.75-1.85 (2H, m), 3.04 (2H, t), 7.03 (1H, s), 7.65 (2H, d), 7.75 (2H, d), 9.97 (1H, s).

[0218]

参考例7(3)

5-(4-フルオロフェニル)-2-メチル-3-フルアルデヒド

【化107】

融点60-61°C; 1 H-NMR (CDC1₃) δ 2.66 (3H, s), 6.84 (1H, s), 7.09 (2H, t), 7.62 (2H, dd), 9.96 (1H, s).

[0219]

参考例8

 $(2E) - 3 - \{2 - x + y - 5 - [4 - (トリフルオロメチル) フェニル] - 3 - フリル アクリル酸エチル$

【化108】

ジエチルホスホノ酢酸エチル (3.02g) のトルエン (30ml) 溶液に、 氷冷下、60%水素化ナトリウムの流動パラフィン懸濁物 (0.54g) を加え 、さらに 0.5 時間撹拌した。これに 2-x チルー 5-[4-(トリフルオロメチル)フェニル]-3- フルアルデヒド(3.01g)のトルエン(30m1)溶液を加え、室温で一晩撹拌した。反応液を水に注ぎ、ジエチルエーテルで 2 回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し((キサン:酢酸エチル=15:1から 9:1)、目的物(3.48g)を固体として得た。

融点82-83°C; 1 H-NMR (CDC13) δ 1.33 (3H, t), 1.34 (3H, t), 2.85 (2H, q), 4.26 (2H, q), 6.14 (1H, d), 6.85 (1H, s), 7.57 (1H, d), 7.62 (2H, d), 7.73 (2H, d).

[0220]

参考例8(1)、参考例8(2)

参考例 7 (1)、参考例 7 (2) で得た 3 ーフルアルデヒド誘導体より、参考 例 8 に示す方法と同様にして、以下に示す化合物を得た。

[0221]

参考例8(1)

(2E) $-3-\{2-メチル-5-[4-(トリフルオロメチル) フェニル] -3-フリル アクリル酸エチル$

【化109】

融点78-79°C; 1 H-NMR(CDCl₃) δ 1.33(3H, t), 2.48(3H, s), 4.26(2H, q), 6.14(1H, d), 6.84(1H, s), 7.55(1H, d), 7.62(2H, d), 7.73(2H, d).

[0222]

参考例8(2)

ページ: 139/

【化110】

油状物; ¹H-NMR (CDC1₃) る 0.96 (3H, t), 1.28-1.50 (2H, m), 1.34 (3H, t), 1.64-1.79 (2H, m), 2.82 (2H, t), 4.26 (2H, q), 6.15 (1H, d), 6.86 (1H, s), 7.57 (1H, d), 7.63 (2H, d), 7.74 (2H, d).

[0223]

参考例9

3-{2-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フリルプロピオン酸エチル

【化111]

(2E) $-3-\{2-x+\nu-5-[4-(トリフルオロメチル) フェニル]$ $-3-フリル\}$ アクリル酸エチル(3.30g)のトルエン(30ml)、エタノール(5ml)溶液をクロロトリス(トリフェニルホスフィン)ロジウム(I)(0.45g)を触媒として、室温、常圧で一晩水素添加した。反応液の溶媒を減圧留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=9:1)、目的物(3.31g)を油状物として得た。

¹H-NMR (CDCl₃) δ 1.25 (3H, t), 1.27 (3H, t), 2.50-2.76 (6H, m), 4.14 (2 H, q), 6.59 (1H, s), 7.58 (2H, d), 7.68 (2H, d).

[0224]

参考例9(1)、参考例9(2)

参考例8(1)、参考例8(2)で得たアクリル酸エチル誘導体より、参考例9に示す方法と同様にして、以下に示す化合物を得た。

[0225]

参考例9 (1)

3- {2-メチル-5- [4-(トリフルオロメチル) フェニル] -3-フリルプロピオン酸エチル

【化112】

¹H-NMR (CDC1₃) δ 1.26 (3H, t), 2.31 (3H, s), 2.53 (2H, t), 2.69 (2H, t), 4.13 (2H, q), 6.57 (1H, s), 7.56 (2H, d), 7.65 (2H, d).

[0226]

参考例9(2)

3- {2-ブチル-5- [4-(トリフルオロメチル) フェニル] -3-フリル } プロピオン酸エチル

【化113】

油状物; ¹H-NMR (CDCl₃) る 0.95 (3H, t), 1.25 (3H, t), 1.32-1.45 (2H, m), 1.60-1.70 (2H, m), 2.54 (2H, t), 2.65 (2H, t), 2.71 (2H, t), 4.14 (2H, q), 6.58 (1H, s), 7.57 (2H, d), 7.66 (2H, d).

[0227]

参考例 1 0

3- {2-エチル-5- [4-(トリフルオロメチル) フェニル] -3-フリル } プロピオン酸 【化114】

3- {2-エチルー5- [4-(トリフルオロメチル)フェニル] -3-フリル プロピオン酸エチル(0.540g)のメタノール(3ml)、テトラヒドロフラン(5ml)溶液に、1規定水酸化ナトリウム水溶液(3.2ml)を加え、室温で一晩撹拌した。反応液を濃縮、水で希釈し、希塩酸で反応液を酸性にした後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をヘキサンより結晶化して、目的物(0.413g)を結晶として得た。

融点94-95°C; 1 H-NMR(CDC1₃) 3 1.26(3H, t), 2.59-2.75(6H, m), 6.59(1H, s), 7.57(2H, d), 7.67(2H, d).

[0228]

参考例10(1)、参考例10(2)

参考例9(1)、参考例9(2)で得たプロピオン酸エチル誘導体より、参考例10に示す方法と同様にして、以下に示す化合物を得た。

[0229]

参考例10(1)

 $3-\{2-メチル-5-[4-(トリフルオロメチル) フェニル] -3-フリル プロピオン酸$

【化115】

融点112-113°C; 1 H-NMR (CDC1₃) δ 2.31 (3H, s), 2.58-2.63 (2H, m), 2.69-2 .74 (2H, m), 6.58 (1H, s), 7.57 (2H, d), 7.66 (2H, d).

[0230]

参考例10(2)

3- {2-プチル-5-[4-(トリフルオロメチル)フェニル] -3-フリル } プロピオン酸

【化116】

融点79-80°C; 1 H-NMR(CDC1₃) δ 0.94(3H, t), 1.32-1.44(2H, m), 1.60-1.7 0(2H, m), 2.59-2.75(6H, m), 6.59(1H, s), 7.57(2H, d), 7.67(2H, d).

[0231]

参考例11

【化117】

水素化リチウムアルミニウム (0.46g) のテトラヒドロフラン (50ml) 懸濁液に、氷冷下、 $3-\{2-x+v-5-[4-(トリフルオロメチル)$ フェニル $]-3-7リル\}$ プロピオン酸エチル (2.76g) のテトラヒドロフラン (30ml) 溶液を滴下し、室温で1時間撹拌した。反応液を氷冷して、水 (0.5ml)、15%水酸化ナトリウム水溶液 (0.5ml)、水 (1.5ml) を順次滴下して、過剰の水素化リチウムアルミニウムを分解し、そのまま室温で2時間撹拌した。生じた沈殿をろ過して除き、沈殿を酢酸エチルで洗浄した。集めた濾液の溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し (0.5ml) に作数エチル (0.5ml) に (0.5ml) に

¹H-NMR (CDC1₃) δ 1.27 (3H, t), 1.31 (1H, br s), 1.76-1.89 (2H, m), 2.48 (2H, t), 2.67 (2H, q), 3.70 (2H, t), 6.60 (1H, s), 7.58 (2H, d), 7.69 (2H, d).

[0232]

参考例11(1)、参考例11(2)

参考例9(1)、参考例9(2)で得たプロピオン酸エチル誘導体より、参考例11に示す方法と同様にして、以下に示す化合物を得た。

[0233]

参考例11(1)

【化118】

油状物; ¹H-NMR (CDCl₃) δ 1.77-1.86 (2H, m), 2.30 (3H, s), 2.47 (2H, t), 3.68 (2H, t), 6.57 (1H, s), 7.57 (2H, d), 7.67 (2H, d).

[0234]

参考例 1 1 (2)

3 - $\{2-ブチル-5-[4-(トリフルオロメチル) フェニル] <math>-3-フリル$ $\}$ プロパン-1-オール

【化119】

油状物; ¹H-NMR (CDCl₃) δ 0.95 (3H, t), 1.27 (1H, br,s), 1.32-1.45 (2H, m), 1.61-1.71 (2H, m), 1.78-1.87 (2H, m), 2.48 (2H, t), 2.64 (2H, t), 3.69 (2H, br t), 6.59 (1H, s), 7.57 (2H, d), 7.67 (2H, d).

[0235]

参考例 1 2

【2-メチルー5- [4-(トリフルオロメチル)フェニル] -3-フリル] 酢 酸 【化120】

 1 H-NMR (CDC1₃) δ 2.37 (3H, s), 3.50 (2H, s), 6.70 (1H, s), 7.61 (2H, d), 7.70 (2H, d).

2) $\{2-x+\nu-5-[4-(h)]$ $(2-x+\nu)$ $(2-x+\nu)$

融点123-125°C; 1 H-NMR (CDC1₃) δ 2.34 (3H, s), 3.45 (2H, s), 6.70 (1H, s), 7.58 (2H, d), 7.68 (2H, d).

[0236]

参考例 1 2 (1)

[5-(4-フルオロフェニル)-2-メチル-3-フリル] 酢酸

【化121】

参考例6で得た[5-(4-フルオロフェニル)-2-メチル-3-フリル] メタノールより、参考例12に示す方法と同様にして、目的物を得た。

融点107-108℃; ¹H-NMR (CDC1₃) δ 2.31 (3H, s), 3.43 (2H, s), 6.50 (1H, s), 7.03 (2H, t), 7.56 (2H, dd).

[0237]

参考例13

【化122】

水素化リチウムアルミニウム (0.10g) のテトラヒドロフラン懸濁液 (5m1) を氷冷し、 $\{2-メチル-5-[4-(トリフルオロメチル) フェニル]$ 一3ーフリル 酢酸 (0.43g) のテトラヒドロフラン溶液 (5m1) を滴下して氷冷下で30分、室温で1時間攪拌した。反応終了後、水 (0.1m1)、15%水酸化ナトリウム (0.1m1)、水 (0.3m1) を順に加え、室温で30分攪拌した。析出した結晶をろ過し、テトラヒドロフランでよく洗浄した。ろ液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸エチル=5:1から1:1) で精製し、目的物 (0.28g) を油状物として得た。

¹H-NMR (CDC1₃) δ 2.33 (3H, s), 2.64 (2H, t), 3.81 (2H, t), 6.63 (1H, s), 7.58 (2H, d), 7.68 (2H, d).

[0238]

参考例13(1)

2- [5-(4-フルオロフェニル) -2-メチル-3-フリル] エタノール

【化123】

[0239]

参考例14

1- [5-(4-フルオロフェニル) -2-メチル-3-フリル] エタノール 【化124】

5-(4-7)ルオロフェニル)-2-メチル-3-7ルアルデヒド(2.54g)のテトラヒドロフラン(40m1)溶液に1規定メチルマグネシウムブロミドのテトラヒドロフラン溶液(18.7m1)を-78℃で滴下し、反応液を室温で一晩撹拌した。反応液を塩化アンモニウム水溶液に注ぎ酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(-2.43 のキサン:酢酸エチル-3:1)、-2.43 のキサン:酢酸エチル-3:1)、-2.43 のキサン・

融点50-52°C; 1 H-NMR (CDC1 $_{3}$) δ 1.48 (3H, d), 1.60 (1H, d), 2.35 (3H, s), 4.85 (1H, dq), 6.57 (1H, s), 7.04 (2H, t), 7.57 (2H, dd).

[0240]

参考例14(1)

ページ: 147/

【化125】

5-(4-フルオロフェニル)-2-メチル-3-フルアルデヒドとプロピルマグネシウムブロミドを用いて、参考例14と同様の操作で処理して目的物を得た。

融点73-74°C; 1 H-NMR (CDC1₃) δ 0.94 (3H, t), 1.26-1.47 (2H, m), 1.59 (1H, d), 1.62-1.72 (1H, m), 1.77-1.87 (1H, m), 2.34 (3H, s), 4.62 (1H, dt), 6.54 (1H, s), 7.04 (2H, t), 7.57 (2H, dd).

[0241]

参考例15

3 - { [5 - (4 - フルオロフェニル) - 2 - メチル - 3 - フロイル] アミノ 安息香酸エチル

【化126】

5-(4-7)ルオロフェニル)-2-メチル-3-フロ酸(4.47g)とN , N-ジメチルホルムアミド(2滴)のテトラヒドロフラン(50m1)溶液に、塩化オキザリル(3.54m1)を室温で滴下し、0.5時間撹拌した。反応液の溶媒を減圧留去し、酸クロリドの粗生成物を固体として得た。3-アミノ安息香酸エチル(3.69g)と炭酸水素ナトリウム(3.41g)をテトラヒドロフラン(50m1)中で撹拌し、上で得た固体をテトラヒドロフラン(50m1)中で撹拌し、上で得た固体をテトラヒドロフラン(50m1)に溶解したものを室温で滴下し、そのまま一晩撹拌した。反応液を酢酸エチルで希釈し、水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた残留物をジエチルエーテルーへキサンより結晶化して、目的物(7.39g)を結晶として得た。

融点171-172 \mathbb{C} ; 1 H-NMR(CDC1 $_3$) δ 1.40(3H, t), 2.70(3H, s), 4.38(2H, q

ページ: 148/

), 6.72 (1H, s), 7.10 (2H, t), 7.44 (1H, t), 7.59-7.66 (3H, m), 7.81 (1H, td), 8.02-8.06 (2H, m).

[0242]

参考例 15 (1)

3-({2-メチル-5-[4-(トリフルオロメチル) フェニル] -3-フロイル アミノ) 安息香酸エチル

【化127】

参考例 5 (1) で得た 2-メチルー 5- [4-(トリフルオロメチル) フェニル] -3-フロ酸より、参考例 1 5 に示す方法と同様にして目的物を得た。 融点 161-162 \mathbb{C} ; 1 H-NMR (CDCl $_{3}$) δ 1.39 (3H, t), 2.73 (3H, s), 4.38 (2H, q), 6.92 (1H, s), 7.40-7.48 (1H, m), 7.64-7.72 (3H, m), 7.77-7.84 (3H, m)

[0243]

, 8.02-8.07 (2H, m).

参考例16

 $3-\{N-[5-(4-7) + 2-3$

【化128】

 $3-\{N-[5-(4-7)(4-7)(3-7)]$ アミノ 安息香酸エチル(1.07g)をN, N-3(3-7)(5-1) 安息香酸エチル(1.07g)をN, N-3(3-7)(5-1) に溶かし、室温で60%水素化ナトリウムの流動パラフィン懸濁物(0.13g)を加え、そのまま0.5時間撹拌した。混合物にヨウ化メチル(0.36ml)を室温で加え、そのまま一晩撹拌した。反応液を水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグ

ネシウムで乾燥、溶媒を減圧留去した。得られた残留物をシリカゲルカラムクロマトグラフィーにて精製して(ヘキサン:酢酸エチル=6:1から2:1)、目的物(1.18g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.39 (3H, t), 2.47 (3H, s), 3.47 (3H, s), 4.38 (2H, q), 5.69 (1H, s), 6.98 (2H, t), 7.26-7.44 (4H, m), 7.89-7.97 (2H, m).

[0244]

参考例16(1)~参考例16(3)

[0245]

参考例16(1)

 $3-\{N-[5-(4-7) + 2-3] - 2-3 + 2-3$

【化129】

融点119-120°C; 1 H-NMR(CDC1₃) δ 0.94(3H, t), 1.39(3H, t), 1.55-1.70(2H, m), 2.47(3H, s), 3.86(2H, t), 4.38(2H, q), 5.63(1H, s), 6.97(2H, t), 7.27-7.34(3H, m), 7.40(1H, t), 7.87(1H, t), 7.95(1H, td).

[0246]

参考例16(2)

 $3-\{N-[5-(4-7) + 2-3+7) - 2-3+7 + 2-3+7 - 3-7 + 2-3+7 + 2-3$

【化130】

油状物; 1 H-NMR (CDC1₃) δ 0.86 (3H, t), 1.22-1.35 (8H, m), 1.39 (3H, t), 1,53-1.66 (2H, m), 2.47 (3H, s), 3.87 (2H, t), 4.38 (2H, q), 5.63 (1H, s), 6.97 (2H, t), 7.27-7.34 (3H, m), 7.40 (1H, t), 7.87 (1H, t), 7.95 (1H, td).

[0247]

参考例16(3)

 $3-\{N-ベンジル-N-[5-(4-フルオロフェニル)-2-メチル-3-フロイル] アミノ 安息香酸エチル$

【化131】

油状物; 1 H-NMR (CDCl₃) δ 1.36 (3H, t), 2.52 (3H, s), 4.34 (2H, q), 5.11 (2H, s), 5.63 (1H, s), 6.97 (2H, t), 7.10-7.16 (1H, m), 7.23-7.37 (8H, m), 7.81 (1H, t), 7.90 (1H, td).

[0248]

参考例17

5-(4-7)ルオロフェニル) -N-[3-(ヒドロキシメチル) フェニル] - 2-メチル<math>-3-7ルアミド

【化132】

融点163-164°C; 1 H-NMR (CDC1 $_{3}$ -DMS0-d $_{6}$) δ 2.70 (3H, s), 3.51 (1H, t), 4.6 8 (2H, d), 7.01-7.14 (4H, m), 7.32 (1H, t), 7.60-7.69 (4H, m), 8.56 (1H, br s).

[0249]

参考例17(1)~参考例17(5)

参考例16、参考例16(1)~参考例16(3)、参考例15(1)で得た エステルを、参考例17に示す方法と同様にして還元して、以下に示す化合物を 得た。

[0250]

参考例17(1)

【化133】

油状物; 1 H-NMR (CDCl₃) δ 1.76 (1H, t), 2.49 (3H, s), 3.45 (3H, s), 4.69 (2H, d), 5.64 (1H, s), 6.97 (2H, t), 7.09 (1H, td), 7.21 (1H, s), 7.24-7.38 (4H, m).

[0251]

参考例17(2)

5-(4-7)ルオロフェニル) -N-[3-(ヒドロキシメチル) フェニル] - 2-メチル<math>-N-プロピル-3-フルアミド

【化134】

融点116-117°C; 1 H-NMR (CDC $_{13}$) δ 0.93 (3H, t), 1.56-1.77 (3H, m), 2.49 (3H, s), 3.82 (2H, t), 4.69 (2H, d), 5.58 (1H, s), 6.97 (2H, t), 7.08 (1H, td), 7.18 (1H, s), 7.26-7.38 (4H, m).

[0252]

参考例17(3)

5-(4-7)ルオロフェニル)-N-ヘプチル-N-[3-(ヒドロキシメチル) フェニル]-2-メチル-3-フルアミド

【化135】

融点89-91°C; 1 H-NMR (CDCl₃) δ 0.86 (3H, t), 1.21-1.33 (10H, m), 1.55-1. 70 (3H, m), 2.49 (3H, s), 3.85 (2H, t), 4.69 (2H, d), 5.58 (1H, s), 6.97 (2H, t), 7.07 (1H, d), 7.18 (1H, s), 7.26-7.38 (4H, m).

[0253]

参考例17(4)

N-ベンジルー5-(4-フルオロフェニル)-N-[3-(ヒドロキシメチル) フェニル]-2-メチルー3-フルアミド

【化136】

油状物; ¹H-NMR (CDCl₃) & 1.65 (1H, t), 2.53 (3H, s), 4.61 (2H, d), 5.08 (2H, s), 5.59 (1H, s), 6.92-7.02 (3H, m), 7.06 (1H, s), 7.23-7.34 (9H, m).

[0254]

参考例17(5)

N-[3-(ヒドロキシメチル) フェニル] -2-メチル-5-[4-(トリフルオロメチル) フェニル] -3-フルアミド

【化137】

融点173-174°C; 1 H-NMR (CDCl $_{3}$) δ 2.72 (3H, s), 4.71 (2H, d), 6.89 (1H, s), 7.14 (1H, d), 7.31-7.39 (1H, m), 7.50 (2H, d), 7.62-7.66 (3H, m), 7.75 (2H, d).

[0255]

参考例18

N-(3- ホルミルフェニル)-2- メチル-5-[4-(トリフルオロメチル) フェニル]-3- フルアミド

【化138】

N- [3-(ヒドロキシメチル) フェニル]-2-メチル-5-[4-(トリフルオロメチル) フェニル]-3-フルアミド(0.98g) のテトラヒドロフラン溶液 (10m1) に二酸化マンガン (3.0g) を加え、室温で2時間攪拌

ページ: 154/

した。さらに二酸化マンガン(1.0g)を加え、1時間攪拌した。不溶物をろ過後、減圧濃縮した。残渣を再結晶(ヘキサンー酢酸エチル)で精製し、目的物(0.76g)を結晶として得た。

融点183-184°C; 1 H-NMR (CDC $_{13}$) δ 2.75 (3H, s), 6.93 (1H, s), 7.50-7.68 (5H, m), 7.77 (2H, d), 7.98 (1H, d), 8.11 (1H, s), 10.02 (1H, s).

[0256]

参考例 1 9

3- (ヒドロキシメチル) フェニルカルバミン酸 t e r t - ブチル

【化139】

3-アミノベンジルアルコール(10.9g)、トリエチルアミン(24.6 m 1)、二炭酸ジー t e r t - ブチル(21.2g)をテトラヒドロフラン(100m 1)中で3時間加熱還流した。反応液を室温に冷却した後、溶媒を減圧留去した。得られた残留物をシリカゲルカラムクロマトグラフィーにて精製して(n キサン:酢酸エチル=6:1から3:1)、目的物(15.0g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.51 (9H, s), 1.96 (1H, br t), 4.65 (2H, d), 6.55 (1H, br s), 7.01-7.05 (1H, m), 7.18-7.31 (2H, m), 7.43 (1H, s).

[0257]

参考例 2 0

(${3-[(tert-ブトキシカルボニル) アミノ] ベンジル} チオ) 酢酸エチル$

【化140】

3-(ヒドロキシメチル) フェニルカルバミン酸 tert-ブチル(4.94g)、トリエチルアミン(4.63ml)の酢酸エチル(50ml)溶液に、氷

冷下、メタンスルホン酸クロリド(3.04g)の酢酸エチル(20ml)溶液を滴下し、そのまま0.5時間撹拌した。生じた沈殿を濾過し、酢酸エチルで洗浄した。得られた濾液の溶媒を減圧留去し、メタンスルホン酸エステルの粗生成物を油状物として得た。この油状物をテトラヒドロフラン(30ml)に溶かし、これにチオグリコール酸エチル(2.93g)と1,8ージアザビシクロ[5.4.0]-7ーウンデセン(3.71ml)をテトラヒドロフラン(30ml)中で0.5時間撹拌した溶液を、室温にて加え、そのまま一晩撹拌した。反応液を酢酸エチルで希釈後、炭酸水素ナトリウム水溶液で2回洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた残留物をシリカゲルカラムクロマトグラフィーにて精製して(ヘキサン:酢酸エチル=15:1から6:1)、目的物(6.75g)を固体として得た。

融点75-76°C; 1 H-NMR (CDC1₃) δ 1.29 (3H, t), 1.51 (9H, s), 3.07 (2H, s), 3.79 (2H, s), 4.18 (2H, q), 6.47 (1H, br s), 6.97-7.03 (1H, m), 7.23-7. 30 (2H, m), 7.36 (1H, s).

[0258]

参考例 2 1

[(3-アミノベンジル)チオ]酢酸エチル・塩酸塩

【化141】

($\{3-[(tert-ブトキシカルボニル) アミノ] ベンジル チオ) 酢酸 エチル(6.57g) のエタノール(30ml) 溶液に、塩化水素の4規定酢酸 エチル溶液(30ml) を室温で加え、60℃で0.5時間撹拌した。混合物の溶媒を減圧留去し、得られた残留物をジエチルエーテルより結晶化して、目的物 (4.94g) を結晶として得た。$

融点112-114°C; 1 H-NMR(CD₃OD) δ 1.27(3H, t), 3.13(2H, s), 3.90(2H, s), 4.14(2H, q), 7.28-7.34(1H, m), 7.42-7.52(3H, m).

[0259]

参考例 2 2

3- (メトキシメトキシ) ベンズアルデヒド

【化142】

3-ビドロキシベンズアルデヒド(13.0g)のテトラヒドロフラン(150m1)溶液に、氷冷下、60%水素化ナトリウムの流動パラフィン懸濁物(4.68g)を加え、15分間撹拌した。これにクロロメチルメチルエーテル(10.3g)を氷冷下加え、室温で一晩撹拌した。反応液を水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(15.0691)、目的物(15.0691)、目的物(15.0691)、目的物(15.0691)、目的物(15.0691)、日で得た。

¹H-NMR (CDC1₃) δ 3.49 (3H, s), 5.23 (2H, s), 7.27-7.31 (1H, m), 7.45 (1 H, t), 7.50-7.54 (2H, m), 9.97 (1H, s).

[0260]

参考例 2 3

3-(メトキシメトキシ) ベンジルアルコール

【化143】

3-(メトキシメトキシ) ベンズアルデヒド (16.4g) のメタノール (100m1) 溶液に、氷冷下、水素化ホウ素ナトリウム (3.74g) を徐々に加え、室温で一晩撹拌した。反応液を減圧濃縮した後、水に注ぎ、酢酸エチルで 20mm 回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、シリカゲルを通した後、溶媒を減圧留去して、目的物 (15.7g) を油状物として得た。

¹H-NMR (CDC1₃) δ 1.75 (1H, br s), 3.48 (3H, s), 4.67 (2H, s), 5.18 (2H, s), 6.94-7.06 (3H, m), 7.28 (1H, t).

[0261]

参考例24

【[3-(メトキシメトキシ) ベンジル] チオ ▮ 酢酸エチル

【化144】

3-(メトキシメトキシ) ベンジルアルコール(15.7g)、トリエチルアミン(19.5m1)の酢酸エチル(150m1)溶液に、氷冷下、メタンスルホン酸クロリド(12.8g)の酢酸エチル(50m1)溶液を滴下し、そのまま 0.5時間撹拌した。生じた沈殿を濾過し、酢酸エチルで洗浄した。得られた濾液の溶媒を減圧留去し、メタンスルホン酸エステルの粗生成物を油状物として得た。この油状物をテトラヒドロフラン(50m1)に溶かし、これにチオグリコール酸エチル(12.3g)と 1,8-ジアザビシクロ[5.4.0] -7-ウンデセン(15.3m1)をテトラヒドロフラン(30m1)中で 0.5時間撹拌した溶液を、室温にて加え、そのまま一晩撹拌した。反応液を酢酸エチルで希釈後、炭酸水素ナトリウム水溶液で 2m2 回洗浄、無水硫酸マグネシウムで乾燥、シリカゲルを通し、溶媒を減圧留去して、目的物(25.3g)を油状物として得た。

¹H-NMR (CDCl₃) δ 1.29 (3H, t), 3.09 (2H, s), 3.48 (3H, s), 3.80 (2H, s), 4.19 (2H, q), 5.18 (2H, s), 6.91-7.02 (3H, m), 7.24 (1H, t).

[0262]

参考例 2 5

[(3-ヒドロキシベンジル)チオ]酢酸エチル

【化145】

 $\{[3-(メトキシメトキシ) ベンジル]$ チオ $\}$ 酢酸エチル(14.5g)のエタノール(100m1)溶液に、濃塩酸(10m1)を室温で加え、そのまま 1 日間撹拌した。混合物の溶媒を減圧留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=3:1)、目的物

(12.3g) を油状物として得た。

¹H-NMR (CDC1₃) δ 1.29 (3H, t), 3.08 (2H, s), 3.78 (2H, s), 4.18 (2H, q), 5.12 (1H, br s), 6.74 (1H, dd), 6.84 (1H, s), 6.89 (1H, d), 7.19 (1H, t).

[0263]

参考例 2 6

チオ酢酸S- {3- [(ベンジルオキシ)メトキシ] ベンジル{

【化146】

3-ヒドロキシベンジルアルコール(23.8g)のテトラヒドロフラン(100m1)溶液に、氷冷下、1,8-ジアザビシクロ [5.4.0]-7-ウンデセン(29.2g)を加え、0.5時間撹拌した。これにベンジルクロロメチルエーテル(30.0g)のテトラヒドロフラン(50m1)溶液を氷冷下加え、室温で一晩撹拌した。反応液を希塩酸に注ぎ、酢酸エチルで20m 回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、油状物を得た。

上で得た油状物、トリエチルアミン(32.0ml)の酢酸エチル(150ml)溶液に、氷冷下、メタンスルホン酸クロリド(24.1g)の酢酸エチル(50ml)溶液を滴下し、そのまま0.5時間撹拌した。生じた沈殿を濾過し、酢酸エチルで洗浄した。得られた濾液の溶媒を減圧留去し、メタンスルホン酸エステルの粗生成物を油状物として得た。この油状物をN,Nージメチルホルムアミド(100ml)に溶かし、これにチオ酢酸カリウム(26.3g)を、室温にて加え、そのまま一晩撹拌した。反応液を水注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=15:1)、目的物(25.8g)を油状物として得た。

¹H-NMR (CDCl₃) δ 2.34 (3H, s), 4.10 (2H, s), 4.71 (2H, s), 5.28 (2H, s)

, 6.92-7.01 (3H, m), 7.22 (1H, t), 7.33 (5H, s).

[0264]

参考例27

2-({3-[(ベンジルオキシ)メトキシ]ベンジル}チオ)-2-メチルプロピオン酸エチル

【化147】

チオ酢酸 $S-\{3-[(ベンジルオキシ)メトキシ]ベンジル\}(6.46g)$ のメタノール(30m1)溶液に、水酸化ナトリウム(0.85g)をメタノール(20m1)および水(2m1)に溶解したものを室温で加え、そのまま1時間撹拌した。混合物の溶媒を減圧留去して固体を得た。得られた固体をN, N-ジメチルホルムアミド(<math>25m1)に溶かし、これに2-プロモー2-メチルプロピオン酸エチル(5.00g)を室温にて加え、60℃で一晩撹拌した。反応液を水注ぎ、酢酸エチルで 2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(∞ +サン:酢酸エチル=15:1)、目的物(∞ -67g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.27 (3H, t), 1.54 (6H, s), 3.82 (2H, s), 4.13 (2H, q), 4.71 (2H, s), 5.28 (2H, s), 6.94-7.05 (3H, m), 7.21 (1H, t), 7.33 (5H, s).

[0265]

参考例 2 8

2-[(3-ヒドロキシベンジル)チオ]-2-メチルプロピオン酸エチル 【化148】

2-(|3-[(ベンジルオキシ)メトキシ] ベンジル チオ) -2-メチル

プロピオン酸エチル(7.67g)のエタノール(50ml)溶液に、濃塩酸(5ml)を室温で加え、60℃で2時間撹拌した。混合物の溶媒を減圧留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=6:1)、目的物(3.81g)を油状物として得た。 1 H-NMR(CDCl₃) δ 1.27(3H, t), 1.53(6H, s), 3.78(2H, s), 4.11(2H, q), 4.96(1H, s), 6.69(1H, dd), 6.79(1H, t), 6.86(1H, d), 7.14(1H, t).

[0266]

参考例 2 9

【 [3-(メトキシメトキシ) ベンジル] オキシ 酢酸エチル

【化149】

H₂CO O CO₂Et

¹H-NMR (CDCl₃) δ 1.29 (3H, t), 3.48 (3H, s), 4.10 (2H, s), 4.23 (2H, q), 4.61 (2H, s), 5.18 (2H, s), 6.96-7.05 (3H, m), 7.27 (1H, t).

[0 2 6 7]

参考例 3 0

[(3-ヒドロキシベンジル)オキシ]酢酸エチル

【化150】

↓[3−(メトキシメトキシ)ベンジル] オキシ∤酢酸エチル(4.62g)

のエタノール(50m1)溶液に、濃塩酸(3m1)を室温で加え、室温で一晩 撹拌した。混合物の溶媒を減圧留去し、得られた粗生成物をシリカゲルカラムク ロマトグラフィーにて精製し((n+y):酢酸エチル=3:1)、目的物(2.36g)を油状物として得た。

 1 H-NMR (CDC1₃) δ 1.29 (3H, t), 4.10 (2H, s), 4.24 (2H, q), 4.59 (2H, s), 5.18 (1H, s), 6.75-6.81 (1H, m), 6.88-6.92 (2H, m), 7.22 (1H, t).

[0268]

参考例31

[3-(メトキシメトキシ)フェニル] 酢酸メトキシメチル

【化151】

(3ーヒドロキシフェニル) 酢酸(10.5g)のテトラヒドロフラン(150m1)溶液に、氷冷下、N-エチルジイソプロピルアミン(<math>26.3m1)を加え、0.5時間撹拌した。これにクロロメチルメチルエーテル(<math>13.8g)を氷冷下加え、60で一晩撹拌した。反応液を水に注ぎ、酢酸エチルで20m1 出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(14.8g)を油状物として得た。 作の 14.8g)を油状物として得た。 14-NMR(14.8g)を油状物として得た。 14-NMR(14.8g)を14.8g)を15.17(14.8g)の 14.8g)の 14.8g)の 14.8g0)の 14.

[0269]

参考例32

[3-(メトキシメトキシ) フェニル] 酢酸

【化152】

[3-(メトキシメトキシ)フェニル]酢酸メトキシメチル(14.8g)、

水酸化ナトリウム(4.93g)、メタノール(50ml)、水(100ml)、水(100ml)、、テトラヒドロフラン(50ml)の混合物を室温で一晩撹拌した。反応液を濃縮、水で希釈し、希塩酸で反応液を酸性にした後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=3:1から1:1)、目的物(11.2g)を油状物として得た。 1 H-NMR(CDC13) δ 3.48 (3H, s), 3.63 (2H, s), 5.17 (2H, s), 6.91-6.99 (3

[0270]

H, m), 7.26 (1H, t).

参考例33

4-[3-(メトキシメトキシ) フェニル] -3-オキソブタン酸エチル 【化153】

「[3-(メトキシメトキシ) フェニル] 酢酸(11.2g)のテトラヒドロフラン(150m1)溶液に1,1' -カルボニルジイミダゾール(10.2g)を室温で加え、そのまま 3 時間撹拌した。この混合物にマロン酸モノエチルエステルモノカリウム塩(10.7g)および塩化マグネシウム(3.00g)を室温で加え、60℃で一晩撹拌した。反応液を酢酸エチルと水で希釈し、濃塩酸で反応液を酸性にした後、酢酸エチル層を分離し、水層を酢酸エチルで抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製して((キサン:酢酸エチル=6:1から3:1)、目的物(10.7g)を液体として得た。1H-NMR(CDC13) δ 1.27(3H, t), 3.45 (2H, s), 3.47 (3H, s), 3.80 (2H, s)

[0271]

参考例 3 4

4-[3-(メトキシメトキシ) フェニル] ブタン酸エチル

, 4.17 (2H, q), 5.16 (2H, s), 6.83-6.98 (3H, m), 7.25 (1H, t).

【化154】

4-[3-(メトキシメトキシ)フェニル]-3-オキソブタン酸エチル(6. 28g)のエタノール(40m1)溶液に、氷冷下、水素化ホウ素ナトリウム(0.89g)を徐々に加え、そのまま 0.5時間撹拌した。反応液に塩化アンモニウム水溶液を加え、酢酸エチルで 2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、3-ヒドロキシ-4-[3-(メトキシメトキシ)フェニル] ブタン酸エチルを油状物として得た。

上で得た油状物とトリエチルアミン(4.93ml)の酢酸エチル(100ml)溶液に、氷冷下、メタンスルホン酸クロリド(3.24g)の酢酸エチル(30ml)溶液を滴下し、そのまま0.5時間撹拌した。生じた沈殿を濾過し、酢酸エチルで洗浄した。得られた濾液の溶媒を減圧留去し、メタンスルホン酸エステルの粗生成物を油状物として得た。この油状物をテトラヒドロフラン(60ml)に溶かし、1,8ージアザビシクロ [5.4.0] -7-ウンデセン(3.95g)を室温にて加え、そのまま1時間撹拌した。反応液の溶媒を減圧留去し、得られた残留物をシリカゲルカラムクロマトグラフィーに通し(ヘキサン:酢酸エチル=6:1)、粗4-[3-(メトキシメトキシ)フェニル] -2-ブテン酸エチルを油状物として得た。

上で得た油状物のトルエン(30m1)-エタノール(5m1)溶液をクロロトリス(トリフェニルホスフィン)ロジウム(I)(0.65g)を触媒として、室温、常圧で一晩水素添加した。反応液の溶媒を減圧留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=6:1)、目的物(3.67g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.26 (3H, t), 1.87-2.03 (2H, m), 2.32 (2H, t), 2.63 (2 H, t), 3.48 (3H, s), 4.13 (2H, q), 5.17 (2H, s), 6.81-6.91 (3H, m), 7.20 (1H, dd).

[0272]

参考例 3 5

ページ: 164/

4-(3-ヒドロキシフェニル) ブタン酸エチル

【化155】

4-[3-(メトキシメトキシ) フェニル] ブタン酸エチル (3.67g) のエタノール (50m1) 溶液に、濃塩酸 (3m1) を室温で加え、室温で一晩撹拌した。混合物の溶媒を減圧留去し、得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=3:1)、目的物(2.72g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.26 (3H, t), 1.89-1.99 (2H, m), 2.32 (2H, t), 2.60 (2 H, t), 4.12 (2H, q), 4.97 (1H, s), 6.65-6.68 (2H, m), 6.74 (1H, d), 7.14 (1H, dd).

[0273]

参考例36

3- (4-ヒドロキシ-2-メチルフェニル)プロピオン酸エチル

【化156】

水素化ナトリウム(1.33g)のテトラヒドロフラン懸濁液(100ml)にジエチルホスホノ酢酸エチル(4.16ml)を氷冷下で滴下し、30分攪拌した。この反応液に2-メチル4-ベンジルオキシベンズアルデヒド(5.0g)のテトラヒドロフラン溶液(25ml)を滴下し、0℃で2時間、室温で1時間攪拌した。1規定塩酸を加え、酢酸エチルで希釈後、有機層を分離し、飽和重曹水、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、ろ過、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)に通し、得られた化合物をエタノール(60ml)に溶解させ、10%パラジウムー炭素(2g)を窒素気流下で加えた後、水素置換し、室温で5時間攪拌した。不溶物をろ過後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)で精製し、目的物(4.43g)を油

状物として得た。

 1 H-NMR (CDCl₃) δ 1.24 (3H, t), 2.25 (3H, s), 2.50-2.56 (2H, m), 2.85 (2 H, dd), 4.13 (2H, q), 5.21 (1H, d), 6.57 (1H, dd), 6.62 (1H, d), 6.97 (1 H, d).

[0274]

参考例 3 7

[4-(ベンジルオキシ)-2-メチルフェニル]アセトニトリル

【化157】

カリウム t e r t - 7トキシド (4.94g) のジメトキシエタン懸濁液 (100m1) を-78 \mathbb{C} に冷却し、トルエンスルホニルメチルイソシアニド (4.73g) を加え、5 分間攪拌した。次いで、2 - メチル4 - ベンジルオキシベンズアルデヒド (4.99g) のジメトキシエタン溶液 (50m1) を加え、-78 \mathbb{C} で1時間、室温で1時間攪拌した。メタノールを加え、1 時間加熱還流した。放冷後、反応溶液を飽和塩化アンモニウム水溶液に流しこみ水層を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、50 、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1 から3:1)で精製し、目的物 (3.04g) を結晶として得た。

融点51-52°C; 1 H-NMR (CDCl₃) δ 2.30 (3H, s), 3.58 (2H, s), 5.04 (2H, s), 6.77-6.79 (1H, m), 6.83 (1H, s), 7.22 (1H, d), 7.31-7.43 (5H, m).

[0275]

参考例38

[4-(ベンジルオキシ)-2-メチルフェニル] 酢酸メチル

ページ: 166/

【化158】

[4-(ベンジルオキシ)-2-メチルフェニル] アセトニトリル(2.97g)のテトラヒドロフラン(30ml)-エタノール(30ml)溶液に8規定水酸化ナトリウム(30ml)を加え、終夜、加熱環流した。6規定塩酸で酸性にした後、酢酸エチルで抽出した。飽和食塩水で有機層を洗浄後、無水硫酸マグネシウムで乾燥、ろ過、減圧濃縮した。残渣をN, N-ジメチルホルムアミド(50ml)に溶解させ、炭酸カリウム(3.46g)、ヨードメタン(1.8ml)を加え、室温で終夜攪拌した。酢酸エチルで希釈し、水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥、ろ過、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサンー酢酸エチル=5:1)で精製し、目的物(1.13g)を油状物として得た。

¹H-NMR (CDC1₃) δ 2.27 (3H, s), 3.57 (2H, s), 3.67 (3H, s), 5.03 (2H, s), 6.74-6.83 (2H, m), 7.10 (1H, d), 7.30-7.45 (5H, m).

[0276]

参考例39

(4-ヒドロキシ-2-メチルフェニル) 酢酸メチル

【化159】

[4-(ベンジルオキシ)-2-メチルフェニル] 酢酸メチル(1.13g)のメタノール溶液(20m1)に10%パラジウムー炭素(0.6g)を窒素気流下で加えた後、水素置換し、室温で2日間攪拌した。不溶物をろ過し、溶媒を減圧留去して、目的物(0.71g)を油状物として得た。

¹H-NMR (CDC1₃) δ 2.24 (3H, s), 3.56 (2H, s), 3.69 (3H, s), 6.61-6.62 (2 H, m), 7.02 (1H, d).

[0277]

ページ: 167/

参考例40

[2-メトキシー4-(メトキシメトキシ)フェニル]アセトニトリル

【化160】

カリウム t e r t - 7トキシド (4.69g) のジメトキシエタン懸濁液 (30m1) を-78 \mathbb{C} に冷却し、トルエンスルホニルメチルイソシアニド (4.49g) を加え、5 分間攪拌した。次いで、2 - メトキシー4 - (メトキシメトキシ)ベンズアルデヒド (4.10g) のジメトキシエタン溶液 (30m1) を加え、-78 \mathbb{C} で1時間、室温で1時間攪拌した。メタノールを加え、1時間加熱 還流した。放冷後、反応溶液を飽和塩化アンモニウム水溶液に流しこみ水層を酢酸エチルで抽出した。飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、ろ過、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1から2:1)で精製し、目的物(2.13g)を油状物として得た。

¹H-NMR (CDC1₃) δ 3.48 (3H, s), 3.61 (2H, s), 3.84 (3H, s), 5.17 (2H, s), 6.58-6.66 (2H, m), 7.22 (1H, d).

[0278]

参考例41

(4-ヒドロキシ-2-メトキシフェニル) 酢酸メチル

【化161】

[2-メトキシー4-(メトキシメトキシ)フェニル]アセトニトリル(2.13g)のエタノール溶液(10m1)に8規定水酸化ナトリウム(10m1)を加え、終夜、加熱還流した。反応終了後、6規定塩酸で酸性とし、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、5過、減圧濃縮した。残渣をN, N-ジメチルホルムアミド(<math>50m1)に溶解させ、炭酸カリウム(2.14g)、3-ドメタン(1.75g)を加え、室温で3

日間攪拌した。酢酸エチルで希釈後、有機層を水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥、ろ過、減圧濃縮した。残渣をメタノール(10m1)に溶解させ、濃塩酸を1m1加え、終夜加熱還流した。減圧濃縮し、トルエンで共沸して、水分を除去した後、シリカゲルカラムクロマトグラフィー(n+サン:酢酸エチル=5:1から2:1)で精製し、目的物(1.32g)を油状物として得た。

¹H-NMR (CDC1₃) δ 3.55 (2H, s), 3.70 (3H, s), 3.71 (3H, s), 5.95 (1H, br s), 6.24-6.32 (2H, m), 6.94 (1H, d).

[0279]

参考例 4 2

(4-メチル-2-メルカプト-1, 3-チアゾール-5-イル) 酢酸メチル 【化162】

(4-メチルー2-メルカプトー1, 3-チアゾールー5-イル)酢酸(10 g)のメタノール溶液(200m1)に濃硫酸(0.5m1)を加え、終夜、加熱還流した。メタノールを減圧留去した後、酢酸エチルで希釈し、水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥、ろ過、減圧濃縮した。残渣を再結晶(ヘキサン-酢酸エチル)で精製し、目的物(7.18g)を結晶として得た。

融点139-140°C; 1 H-NMR(CDC1₃) δ 2.18(3H, s), 3.51(2H, s), 3.74(3H, s), 12.15(1H, br s).

[0280]

参考例 4 3

6-(ベンジルオキシ)-2-ナフトエ酸ベンジル

【化163】

6-ヒドロキシー2ーナフト工酸(17.9g)のN, Nージメチルホルムアミド溶液(200 m l)に炭酸カリウム(32.9g)、臭化ベンジル(22.6 m l)を加え、室温で終夜攪拌した。酢酸エチルで希釈し、水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥、ろ過、減圧濃縮した。残渣を再結晶(ヘキサンー酢酸エチル)で精製し、目的物(26.1g)を結晶として得た。融点97-98℃; ¹H-NMR(CDCl₃)δ 5.18(2H, s), 5.40(2H, s), 7.21-7.27(2H, m), 7.31-7.49(10H, m), 7.72(1H, d), 7.84(1H, d), 8.04(1H, dd), 8.5 4(1H, s).

[0281]

参考例44

[6-(ベンジルオキシ)-2-ナフチル] メタノール

【化164】

水素化リチウムアルミニウム(2.32g)のテトラヒドロフラン懸濁液(100ml)に氷冷下で6-(ベンジルオキシ)-2-ナフトエ酸ベンジル(15g)のテトラヒドロフラン溶液(50ml)を滴下し、0で1時間攪拌した。水(2.4ml)、15%水酸化ナトリウム(2.4ml)、水(7.2ml)を加えて反応を終了させ、室温で30分間攪拌した。不溶物をろ過し、テトラヒドロフランで洗浄した。ろ液を減圧濃縮し、残渣を再結晶(0.100、0.100 を結晶として得た。

融点141-142°C; 1 H-NMR (CDC1₃) δ 4.79 (2H, s), 5.16 (2H, s), 7.21-25 (2H, m), 7.33-7.51 (6H, m), 7.69-7.75 (3H, m).

[0282]

参考例 4 5

6-(ベンジルオキシ)-2-ナフトアルデヒド

【化165】

[6-(ベンジルオキシ)-2-ナフチル] メタノール (5g) のテトラヒドロフラン溶液 (60m1) に二酸化マンガン (15g) を加え、室温で終夜攪拌した。不溶物をセライトでろ過し、酢酸エチルで洗浄した。ろ液を減圧濃縮し、残渣を再結晶 (へキサンー酢酸エチル) で精製し、目的物 (4.08g) を結晶として得た。

融点107-108℃; ¹H-NMR (CDCl₃) δ 5.21 (2H, s), 7.24-7.50 (7H, m), 7.78 (1H, d), 7.88-7.92 (2H, m), 8.24 (1H, s), 10.08 (1H, s).

[0283]

参考例 4 6

(E) -3-[6-(ベンジルオキシ) -2-ナフチル] アクリル酸エチル【化166】

水素化ナトリウム (0.46g) のテトラヒドロフラン懸濁液 (20m1) にジエチルホスホノ酢酸エチル (4.16m1) を氷冷下で滴下し、30分攪拌した。この反応液に<math>6-(ベンジルオキシ)-2-ナフトアルデヒド (2.0g) のテトラヒドロフラン溶液 (15m1) を滴下し、0 ℃で 2 時間攪拌した。 1 規定塩酸を加え、酢酸エチルで希釈後、有機層を分離し、飽和重曹水、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、 5 過、減圧濃縮した。 得られた残渣を再結晶 (へキサンー酢酸エチル)で精製し、目的物 (2.09g) を結晶として得た。

融点110-112°C; 1 H-NMR (CDCl $_{3}$) δ 1.35 (3H, t), 4.28 (2H, q), 5.19 (2H, s), 6.48 (1H, d), 7.22-7.27 (2H, m), 7.34-7.50 (5H, m), 7.60-7.85 (5H, m)

[0284]

参考例 4 7

3-(6-ヒドロキシ-2-ナフチル)プロピオン酸エチル

【化167】

(E) -3-[6-(ベンジルオキシ)-2-ナフチル] アクリル酸エチル(1.67g)をエタノール(15ml)に溶解させ、10%パラジウムー炭素(0.5g)を窒素気流下で加えた後、水素置換し、室温で終夜攪拌した。不溶物をろ過後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1から2:1)で精製し、目的物(0.86g)を結晶として得た。融点90-91℃; 1 H-NMR(CDCl₃) δ 1.32 (3H, t), 2.70 (2H, t), 3.07 (2H, t), 4.14 (2H, q), 5.54 (1H, s), 7.03-7.08 (2H, m), 7.24-7.29 (1H, m), 7.55-

[0285]

参考例 4 8

7.65 (3H. m).

2-[5-(4-フルオロフェニル)-2-メチル-3-フリル] ペンタン酸【化<math>168】

融点96-97°C; 1 H-NMR(CDC1₃) δ 0.92(3H, t), 1.23-1.42(2H, m), 1.62-1.8 0(1H, m), 1.89-2.07(1H, m), 2.32(3H, s), 3.45(1H, t), 6.54(1H, s), 7.03(2H, t), 7.57(2H, dd).

[0286]

参考例 4 9

【化169】

参考例12(2)で得た2-[5-(4-フルオロフェニル)-2-メチルー3-フリル]ペンタン酸より、参考例13に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDC1₃) δ 0.89 (3H, t), 1.19-1.62 (5H, m), 2.32 (3H, s), 2.66-2.76 (1H, m), 3.58 (1H, dd), 3.71 (1H, dd), 6.40 (1H, s), 7.04 (2H, t), 7.57 (2H, dd).

[0287]

参考例 5 0

 $3-(\{2-x+n-5-[4-(\}]))$ フェニル] -3-7リル メトキシ) ベンズアルデヒド

【化170】

 $\{2-$ メチルー5- [4-(トリフルオロメチル)フェニル] -3-フリル $\}$ メタノール(4. 12g)、3-ヒドロキシベンズアルデヒド(2. 4g)およびトリブチルホスフィン(4. 9g)のテトラヒドロフラン(250m1)溶液に1, 1' -(アゾジカルボニル)ジピペリジン(6. 1g)を室温で加えた後、一晩撹拌した。反応液の溶媒を減圧留去し、ジイソプロピルエーテルを加え、沈殿を濾別し、ジイソプロピルエーテルで洗浄した。濾液の溶媒を減圧留去して、得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し($^+$ + $^+$ ン:酢酸エチル=15: 1 から9: 1)、目的物(4. 30g)を固体として得た。

融点85-86°C; 1 H-NMR (CDC1₃) δ 2.44 (3H, s), 4.95 (2H, s), 6.80 (1H, s), 7.22-7.28 (1H, m), 7.47-7.52 (3H, m), 7.60 (2H, d), 7.72 (2H, d), 10.00 (1H, s).

ページ: 173/

[0288]

参考例 5 1

チオ酢酸 $S-[3-({2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル}メトキシ)ベンジル]$

【化171】

 $3-(\{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル \}$ メトキシ)ベンズアルデヒド(2.52g)のメタノール(20m1)ーテトラヒドロフラン(10ml)溶液に、氷冷下、水素化ホウ素ナトリウム(0.26g)を加え、室温で0.5時間撹拌した。反応液を減圧濃縮した後、水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、シリカゲルを通した後、溶媒を減圧留去して、油状物を得た。

上で得た油状物、トリエチルアミン(1.5 m 1)の酢酸エチル(30 m 1)溶液に、氷冷下、メタンスルホン酸クロリド(0.65 m 1)を滴下し、そのまま 0.5 時間撹拌した。生じた沈殿を濾過し、酢酸エチルで洗浄した。得られた濾液の溶媒を減圧留去し、油状物を得た。この油状物を N,Nージメチルホルムアミド(20 m 1)に溶かし、チオ酢酸カリウム(1.2 g)を、室温にて加え、そのまま 3 日間撹拌した。反応液を水注ぎ、酢酸エチルで 2 回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=6:1)、ヘキサンより結晶化して、目的物(2.50g)を結晶として得た。融点90-91℃; 1 H-NMR(CDC13) δ 2.35 (3H, s), 2.41 (3H, s), 4.10 (2H, s), 4.85 (2H, s), 6.78 (1H, s), 6.83-6.91 (3H, m), 7.22 (1H, t), 7.59 (2H, d), 7.70 (2H, d).

[0289]

参考例 5 2

[4-フルオロー3- (メトキシメトキシ) フェニル] メタノール

【化172】

4-7ルオロー3-ヒドロキシ安息香酸(9.81g)のテトラヒドロフラン(100m1)溶液に、室温でN-エチルジイソプロピルアミン(17.9g)を加え、0.5時間撹拌した。これにクロロメチルメチルエーテル(12.6g)を室温で加え、60で一晩撹拌した。反応液を水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、油状物を得た。

水素化リチウムアルミニウム(3.6g)のテトラヒドロフラン(100ml) 懸濁液に氷冷下で上で得た油状物のテトラヒドロフラン(100ml)溶液を滴下し、室温で一晩撹拌した。反応液を氷冷して、水(3.5ml)、15%水酸化ナトリウム水溶液(3.5ml)、水(9ml)を順次滴下して、過剰の水素化リチウムアルミニウムを分解し、そのまま室温で2時間撹拌した。生じた沈殿をろ過して除き、沈殿を酢酸エチルで洗浄した。集めた濾液の溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(酢酸エチル)、目的物(11.3g)を油状物として得た。

 1 H-NMR (CDC1₃) δ 1.75 (1H, t), 3.53 (3H, s), 4.63 (2H, d), 5.22 (2H, s), 6.95 (1H, ddd), 7.06 (1H, dd), 7.20 (1H, dd).

[0290]

参考例 5 3

{[4-フルオロ-3-(メトキシメトキシ) ベンジル] チオ} 酢酸エチル 【化173】

[4-フルオロー3-(メトキシメトキシ)フェニル]メタノールより、参考 例24に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDCl₃) δ 1.29 (3H, t), 3.07 (2H, s), 3.52 (3H, s), 3.78 (2H, s), 4.18 (2H, q), 5.21 (2H, s), 6.92 (1H, ddd), 7.02 (1H, dd), 7.1

8 (1H, dd).

[0291]

参考例 5 4

[(4-フルオロ-3-ヒドロキシベンジル)チオ]酢酸エチル

【化174】

[4-フルオロー3-(メトキシメトキシ) ベンジル] チオ 酢酸エチルより、参考例25に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDC1₃) δ 1.30 (3H, t), 3.06 (2H, s), 3.75 (2H, s), 4.18 (2H, q), 5.22 (1H, d), 6.81 (1H, ddd), 6.97-7.03 (2H, m).

[0292]

参考例 5 5

(2-フルオロー5-メトキシフェニル) メタノール

【化175】

2-フルオロー5-メトキシベンズアルデヒドより、参考例23に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDC1₃) & 1.83 (1H, t), 3.79 (3H, s), 4.73 (2H, d), 6.76 (1H, td), 6.93-6.99 (2H, m).

[0293]

参考例 5 6

[(2-フルオロー5-メトキシベンジル)チオ]酢酸エチル

【化176】

(2-フルオロー5-メトキシフェニル)メタノールより、参考例24に示す 方法と同様にして、目的物を得た。

ページ: 176/

油状物; ¹H-NMR (CDCl₃) δ 1.30 (3H, t), 3.16 (2H, s), 3.79 (3H, s), 3.83 (2H, s), 4.19 (2H, q), 6.71-6.79 (1H, m), 6.89 (1H, dd), 6.98 (1H, t).

[0294]

参考例 5 7

[(2-フルオロー5-ヒドロキシベンジル)チオ]酢酸エチル

【化177】

塩化アルミニウム(3.6g)のトルエン(20m1)懸濁液に、室温で1ーオクタンチオール(12.7g)を加え、0.5時間撹拌した。これに [(2ーフルオロー5ーメトキシベンジル)チオ] 酢酸エチル(2.81g)のトルエン(20m1)溶液を室温で加え、室温で2時間撹拌した。反応液を氷水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサンからヘキサン:酢酸エチル=3:1)、目的物(1.97g)を油状物として得た。

 1 H-NMR (CDC1₃) δ 1.29 (3H, t), 3.15 (2H, s), 3.80 (2H, d), 4.18 (2H, q), 5.04 (1H, s), 6.69 (1H, td), 6.83 (1H, dd), 6.91 (1H, t).

[0295]

参考例 5 8

1 − {2 − メチル−5 − [4 − (トリフルオロメチル) フェニル] −3 − フリル エタノン

【化178】

1,8-アザビシクロ [5.4.0] -7-ウンデセン (18.8g) のトルエン (50ml) 溶液に、氷冷下、アセチルアセトン (1.24g) のトルエン (30ml) 溶液を氷冷下で滴下した。反応液をそのまま10分間撹拌した後、

これに2ーブロモー4'ー(トリフルオロメチル)アセトフェノン(33.1g)のトルエン(80ml)溶液を氷冷下で滴下し、さらに室温で2時間撹拌した。生じた沈殿をろ過し、トルエンで洗浄した。得られたトルエン溶液をシリカゲルに通し、シリカゲルを酢酸エチルーへキサン(1:1)で洗浄した。集めた溶液を減圧濃縮して酢酸エチルーへキサンを除き、トルエン溶液を得、このトルエン溶液に4ートルエンスルホン酸・1水和物(2.4g)を加えて、100℃で1.5時間撹拌した。反応液を炭酸水素ナトリウム水溶液で洗浄し、水層を酢酸エチルで抽出した。有機層を集め、硫酸マグネシウムで乾燥し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=15:1)、冷メタノールから結晶化して、目的物(10.7g)を結晶として得た。

融点87-88°C; 1 H-NMR (CDC1₃) δ 2.48 (3H, s), 2.69 (3H, s), 6.98 (1H, s), 7.64 (2H, d), 7.75 (2H, d).

[0296]

参考例 5 9

[4-フルオロー3-(メトキシメトキシ) フェニル] アセトニトリル【化179】

[4-7)ルオロー3ー(メトキシメトキシ)フェニル] メタノール(2.35g)、アセトンシアンヒドリン(1.61g)およびトリブチルホスフィン(3.83g)のテトラヒドロフラン(70ml)溶液に40%アゾジカルボン酸ジエチルのトルエン溶液(8.30g)を室温で加えた後、一晩撹拌した。反応液の溶媒を減圧留去し、ジイソプロピルエーテルを加え、沈殿を濾別し、ジイソプロピルエーテルで洗浄した。濾液の溶媒を減圧留去して、得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=9:1から6:1)、目的物(2.27g)を油状物として得た。

¹H-NMR (CDCl₃) δ 3.53 (3H, s), 3.71 (2H, s), 5.23 (2H, s), 6.91-6.99 (1 H, m), 7.05-7.18 (2H, m).

ページ: 178/

[0297]

参考例60

(4-フルオロ-3-ヒドロキシフェニル) 酢酸エチル

【化180】

[4-7)ルオロ-3-(メトキシメトキシ) フェニル] アセトニトリル(2.27g)、水酸化ナトリウム(2.3g)、水(8 m 1)およびエタノール(30 m 1)の混合物を80℃で一晩撹拌した。反応液の溶媒を減圧留去し、水で希釈後、希塩酸で反応液を酸性にし、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去して、油状物を得た。得られた油状物をエタノール(40 m 1)に溶かし、濃塩酸(0.5 m 1)を加え、80℃で一晩撹拌した。反応液を水で希釈後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=6:1から3:1)、目的物(1.50g)を油状物として得た。

¹H-NMR (CDCl₃) δ 1.26 (3H, t), 3.53 (2H, s), 4.15 (2H, q), 5.17 (1H, d), 6.76 (1H, ddd), 6.94 (1H, dd), 7.01 (1H, dd).

[0298]

参考例 6 1

(2-フルオロー5-メトキシフェニル) アセトニトリル

【化181】

参考例 5 5 で得た (2 ーフルオロー5 ーメトキシフェニル)メタノールより、参考例 5 9 に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDCl₃) る 3.74 (2H, s), 3.80 (3H, s), 6.82 (1H, td), 6.9 4 (1H, dd), 7.01 (1H, t).

[0299]

参考例 6 2

(2-フルオロ-5-ヒドロキシフェニル) 酢酸エチル

【化182】

(2-7)ルオロー5-3トキシフェニル)アセトニトリル(1.91g)、水酸化ナトリウム(2.3g)、水(7m1)およびエタノール(30m1)の混合物を80℃で一晩撹拌した。反応液の溶媒を減圧留去し、水で希釈後、希塩酸で反応液を酸性にし、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去して、油状物を得た。得られた油状物をエタノール(40m1)に溶かし、濃塩酸(0.5m1)を加え、80℃で一晩撹拌した。反応液を水で希釈後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去して、油状物を得た。

塩化アルミニウム (3.9g) のトルエン (30m1) 懸濁液に、室温で1-4 オクタンチオール (13.5g) を加え、0.5 時間撹拌した。これに上で得た油状物のトルエン (20m1) 溶液を室温で加え、室温で2 時間撹拌した。反応液を氷水に注ぎ、酢酸エチルで2 回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサンからヘキサン:酢酸エチル=3:1)、目的物 (1.84g) を固体として得た。

融点85-87°C; 1 H-NMR(CDCl₃) δ 1.27(3H, t), 3.61(2H, d), 4.19(2H, q), 5.00(1H, s), 6.65-6.73(2H, m), 6.91(1H, t).

[0300]

参考例63

[3-(メトキシメトキシ)-2-メチルフェニル] メタノール

【化183】

ページ: 180/

3-ヒドロキシー2-メチル安息香酸より、参考例52に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDC1₃) δ 1.58 (1H, t), 2.26 (3H, s), 3.49 (3H, s), 4.69 (2H, d), 5.20 (2H, s), 7.03 (2H, d), 7.14 (1H, dd).

[0301]

参考例 6 4

[(3-ヒドロキシ-2-メチルベンジル)チオ]酢酸エチル

【化184】

[3-(メトキシメトキシ)-2-メチルフェニル] メタノールより、参考例 24 に示す方法と同様にして、 $\{[3-(メトキシメトキシ)-2-メチルベンジル]$ チオ $\}$ 酢酸エチルを得、これをさらに参考例 25 に示す方法で処理して、目的物を得た。

油状物; 1 H-NMR (CDC1₃) δ 1.31 (3H, t), 2.27 (3H, s), 3.12 (2H, s), 3.85 (2H, s), 4.20 (2H, q), 4.80 (1H, s), 6.71 (1H, d), 6.83 (1H, d), 7.00 (1H, t).

[0302]

参考例 6 5

[2-エトキシー5-(テトラヒドロー2H-ピラン-2-イルオキシ)フェニル]メタノール

【化185】

60%水素化ナトリウムの流動パラフィン懸濁物 (2.98g)をヘキサンで2度洗浄後、テトラヒドロフラン (30ml) に懸濁し、これに2-ヒドロキシ-5-(テトラヒドロ-2H-ピラン-2-イルオキシ) 安息香酸メチル (10.9g) のテトラヒドロフラン (80ml) 溶液を、氷冷下で加え、30分間撹

拌した。これにヨウ化エチル (4.16 ml)を氷冷下加え、60℃で2日間撹拌した。反応液を水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、油状物を得た。

水素化リチウムアルミニウム(2.5g)のテトラヒドロフラン(100ml) 懸濁液に氷冷下で上で得た油状物のテトラヒドロフラン(100ml)溶液を 滴下し、室温で一晩撹拌した。反応液を氷冷して、水(2.5ml)、15%水 酸化ナトリウム水溶液(2.5ml)、水(6ml)を順次滴下して、過剰の水 素化リチウムアルミニウムを分解し、そのまま室温で2時間撹拌した。生じた沈 殿をろ過して除き、沈殿を酢酸エチルで洗浄した。集めた濾液の溶媒を減圧留去 した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘ キサン:酢酸エチル=6:1から2:1)、目的物(6.64g)を油状物とし て得た。

¹H-NMR (CDC1₃) δ 1.42 (3H, t), 1.53-2.05 (6H, m), 2.49 (1H, t), 3.53-3. 64 (1H, m), 3.87-4.00 (1H, m), 4.04 (2H, q), 4.65 (2H, d), 5.31 (1H, t), 6.78 (1H, d), 6.91-7.10 (2H, m).

[0303]

参考例 6 6

「(2-エトキシ-5-ヒドロキシベンジル)チオ]酢酸エチル

【化186】

[2ーエトキシー5ー(テトラヒドロー2Hーピランー2ーイルオキシ)フェニル] メタノールより、参考例24に示す方法と同様にして、 $\{[2-エトキシー5-(テトラヒドロー2H-ピランー2-イルオキシ)ベンジル]チオ \}$ 酢酸エチルを得、これをさらに参考例25に示す方法で処理して、目的物を得た。油状物; 1 H-NMR(CDCl₃) δ 1.29(3H, t), 1.40(3H, t), 3.17(2H, s), 3.80(2H, s), 4.00(2H, q), 4.19(2H, q), 4.69(1H, s), 6.66-6.81(3H, m).

[0304]

参考例 6 7

ページ: 182/

(3-ヒドロキシ-2-メチルフェニル) 酢酸エチル 【化187】

[3-(メトキシメトキシ)-2-メチルフェニル] メタノールより、参考例 59に示す方法と同様にして、[3-(メトキシメトキシ))-2-メチルフェニル] アセトニトリルを得、これをさらに参考例 60に示す方法で処理して、目的物を得た。

油状物; ¹H-NMR (CDCl₃) δ 1.25 (3H, t), 2.19 (3H, s), 3.64 (2H, s), 4.16 (2H, q), 4.85 (1H, s), 6.69 (1H, d), 6.79 (1H, d), 7.02 (1H, t).

[0305]

参考例 6 8

[3-(メトキシメトキシ)-4-メチルフェニル]メタノール

【化188】

3-ヒドロキシー4-メチル安息香酸より、参考例52に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDCl₃) & 1.65 (1H, t), 2.24 (3H, s), 3.49 (3H, s), 4.64 (2H, d), 5.22 (2H, s), 6.91 (1H, dd), 7.06 (1H, s), 7.14 (1H, d).

[0306]

参考例 6 9

[(3-ヒドロキシー4-メチルベンジル)チオ]酢酸エチル

【化189】

[3-(メトキシメトキシ)-4-メチルフェニル] メタノールより、参考例 24に示す方法と同様にして、 { [3-(メトキシメトキシ) -4-メチルベ ンジル]チオ|酢酸エチルを得、これをさらに参考例25に示す方法で処理して、目的物を得た。

油状物; 1 H-NMR (CDC1₃) δ 1.29 (3H, t), 2.23 (3H, s), 3.07 (2H, s), 3.75 (2H, s), 4.18 (2H, q), 4.79 (1H, s), 6.78 (1H, s), 6.80 (1H, d), 7.06 (1H, d).

[0307]

参考例 7 0

1-(3-メトキシフェニル)ブタン-1-オール

【化190】

3-メトキシベンズアルデヒド(13.1g)のテトラヒドロフラン(100 m 1)溶液に2規定プロピルマグネシウムブロミドのテトラヒドロフラン溶液(72m1)を-78℃で滴下し、反応液を-50℃で1時間撹拌した。反応液を塩化アンモニウム水溶液に注ぎ酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製して($^+$ サン:酢酸エチル=6:1)、目的物(14.8g)を油状物として得た。

 1 H-NMR (CDC1₃) δ 0.93 (3H, t), 1.21-1.53 (2H, m), 1.61-1.83 (2H, m), 1.82 (1H, d), 3.82 (3H, s), 4.62-4.71 (1H, m), 6.79-6.84 (1H, m), 6.91-6.9 4 (2H, m), 7.26 (1H, t).

[0308]

参考例71

チオ酢酸S- [1-(3-メトキシフェニル) ブチル]

【化191】

1-(3-メトキシフェニル) ブタンー1-オール (3.89g)、トリエチルアミン (4.5 m 1) の酢酸エチル (30 m 1) 溶液に、氷冷下、メタンスルホン酸クロリド (2.0 m 1) を滴下し、そのまま 0.5 時間撹拌した。生じた沈殿を濾過し、酢酸エチルで洗浄した。得られた濾液の溶媒を減圧留去し、油状物を得た。この油状物を N, N-ジメチルホルムアミド (15 m 1) に溶かし、チオ酢酸カリウム (3.7g) を、室温で加え、50で一晩撹拌した。反応液を水注ぎ、酢酸エチルで 2 回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製して(ヘキサン:酢酸エチル=15:1)、目的物(4.41g)を油状物として得た。

¹H-NMR (CDC1₃) δ 0.90 (3H, t), 1.17-1.46 (2H, m), 1.89 (2H, q), 2.29 (3 H, s), 3.80 (3H, s), 4.55 (1H, t), 6.74-6.90 (3H, m), 7.22 (1H, t).

[0309]

参考例 7 2

【[1-(3-メトキシフェニル) ブチル] チオ 酢酸エチル

【化192】

チオ酢酸 S-[1-(3-メトキシフェニル) ブチル] (1.89g)のメタノール(50 m l)溶液に、水酸化ナトリウム(0.32g)を室温で加え、そのまま1時間撹拌した。混合物の溶媒を減圧留去して固体を得た。得られた固体をN,N-ジメチルホルムアミド(20 m l) に溶かし、ブロモ酢酸エチル(1.1 m l)を室温にて加え、60 で1時間撹拌した。反応液を水注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製して(ヘキサン:酢酸エチル=9:1)、目的物(1.60g)を油状物として得た。

 $^{1}\text{H-NMR}$ (CDC1₃) δ 0.88 (3H, t), 1.22-1.39 (2H, m), 1.26 (3H, t), 1.73-1.

89 (2H, m), 2.90 (1H, d), 3.00 (1H, d), 3.81 (3H, s), 3.96 (1H, dd), 4.1 3 (2H, dq), 6.76-6.80 (1H, m), 6.87-6.90 (2H, m), 7.22 (1H, t).

[0310]

参考例73

↓[1-(3-ヒドロキシフェニル)ブチル]チオ 酢酸エチル

【化193】

【 [1-(3-メトキシフェニル)ブチル]チオ】酢酸エチルより、参考例 57に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDCl₃) δ 0.88 (3H, t), 1.21-1.40 (2H, m), 1.26 (3H, t), 1.75-1.88 (2H, m), 2.91 (1H, d), 3.02 (1H, d), 3.94 (1H, t), 4.13 (2H, q), 4.90 (1H, s), 6.69-6.75 (1H, m), 6.82 (1H, t), 6.87 (1H, d), 7.18 (1H, t).

[0311]

参考例74

酢酸4-クロロ-3-(メトキシメトキシ)ベンジル

【化194】

 $2-\rho$ ロロー4ーメチルフェノール(5. 19g)のテトラヒドロフラン(50 m l)溶液に、室温でNーエチルジイソプロピルアミン(8. 3 m l)を加え、0. 5 時間撹拌した。これにクロロメチルメチルエーテル(3. 8g)を室温で加え、60で一晩撹拌した。反応液を水に注ぎ、酢酸エチルで 2 回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、シリカゲルを通した後、溶媒を減圧留去して、油状物を得た。

上で得た油状物、N-プロモスクシンイミド (6.5g)、2,2'-アゾビス (4ソプチロニトリル) (0.5g) の四塩化炭素 (30m1) 溶液を 3 時間

¹H-NMR (CDC1₃) δ 2.11 (3H, s), 3.53 (3H, s), 5.04 (2H, s), 5.26 (2H, s), 6.95 (1H, dd), 7.16 (1H, d), 7.35 (1H, d).

[0312]

参考例 7 5

[4-クロロー3-(メトキシメトキシ)フェニル]メタノール

【化195】

酢酸4ークロロー3ー(メトキシメトキシ)ベンジル(2.29g)、1規定水酸化ナトリウム水溶液(14ml)、メタノール(20ml)、テトラヒドロフラン(20ml)の混合物を室温で一晩撹拌した。反応液を濃縮、水で希釈し、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、シリカゲルを通した後、溶媒を減圧留去、目的物(1.92g)を油状物として得た

¹H-NMR (CDCl₃) δ 1.82 (1H, br t), 3.52 (3H, s), 4.65 (2H, d), 5.26 (2H, s), 6.95 (1H, tdd), 7.18 (1H, d), 7.34 (1H, d).

[0313]

参考例 7 6

[(4-クロロ-3-ヒドロキシベンジル)チオ]酢酸エチル

【化196】

[4-クロロ-3-(メトキシメトキシ)フェニル]メタノールより、参考例24に示す方法と同様にして、 | [4-クロロ-3-(メトキシメトキシ)ベンジル]チオ| 酢酸エチルを得、これをさらに参考例25に示す方法で処理して、目的物を得た。

油状物; 1 H-NMR (CDC1₃) δ 1.29 (3H, t), 3.06 (2H, s), 3.76 (2H, s), 4.18 (2H, q), 5.53 (1H, s), 6.85 (1H, dd), 7.01 (1H, d), 7.25 (1H, d).

[0314]

参考例77

酢酸3-(アセチルオキシ)-5-メチルベンジル

【化197】

3,5ージメチルフェノール(10.1g)のピリジン(50ml)溶液に、 水冷下で塩化アセチル(7.8g)を加え、室温で一晩撹拌した。反応液を水に 注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥 、溶媒を減圧留去した。得られた残留物をシリカゲルカラムクロマトグラフィー に通し(ヘキサン:酢酸エチル=6:1)、油状物を得た。

上で得た油状物、N-プロモスクシンイミド(14.8g)、2,2'-アゾビス(イソブチロニトリル)(0.3g)の四塩化炭素(50m1)溶液を1時間加熱還流した。反応液を室温に冷却した後、沈殿を濾過して除き、沈殿をジエチルエーテルで洗浄した。集めた濾液の溶媒を減圧留去して、油状物を得た。この油状物をN,N-ジメチルホルムアミド(50m1)に溶かし、酢酸ナトリウム(13.6g)を室温で加え、60℃で6時間撹拌した。反応液を水注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精

製して(ヘキサン:酢酸エチル=6:1から3:1)、目的物(9.87g)を油状物として得た。

¹H-NMR (CDC1₃) δ 2.10 (3H, s), 2.29 (3H, s), 2.36 (3H, s), 5.05 (2H, s), 6.86 (1H, s), 6.88 (1H, d), 7.02 (1H, d).

[0315]

参考例78

[3-(メトキシメトキシ)-5-メチルフェニル] メタノール

【化198】

酢酸3-(アセチルオキシ)-5-メチルベンジル(9.87g)をメタノール(20ml)とテトラヒドロフラン(30ml)に溶かし、0.5規定水酸化ナトリウム水溶液(89ml)を氷冷下で滴下し、そのまま1時間撹拌した。反応液を濃縮、水で希釈し、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、シリカゲルを通した後、溶媒を減圧留去して、油状物を得た。

上で得た油状物のテトラヒドロフラン(50m1)溶液に、氷冷下でN-x+ルジイソプロピルアミン(4.4m1)を加え、0.5時間撹拌した。これにクロロメチルメチルエーテル(1.9m1)を0℃で加え、60℃で一晩撹拌した。反応液を水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、シリカゲルを通した後、溶媒を減圧留去して、油状物を得た。

上で得た油状物、1規定水酸化ナトリウム水溶液(40ml)、メタノール(30ml)、テトラヒドロフラン(30ml)の混合物を室温で一晩撹拌した。 反応液を濃縮、水で希釈し、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製して(ヘキサン:酢酸エチル=3:1から2:1)、目的物(2.11g)を油状物として得た。

 1 H-NMR (CDC1₃) δ 1.64 (1H, t), 2.33 (3H, s), 3.47 (3H, s), 4.63 (2H, d)

, 5.16 (2H, s), 6.78 (1H, s), 6.83 (1H, s), 6.84 (1H, s).

[0316]

参考例 7 9

[(3-ヒドロキシ-5-メチルベンジル)チオ]酢酸エチル

【化199】

[3-(メトキシメトキシ)-5-メチルフェニル] メタノールより、参考例 24 に示す方法と同様にして、 $\{[3-(メトキシメトキシ)-5-メチルベンジル]$ チオ $\}$ 酢酸エチルを得、これをさらに参考例 25 に示す方法で処理して、目的物を得た。

油状物; ¹H-NMR (CDCl₃) δ 1.29 (3H, t), 2.29 (3H, s), 3.09 (2H, s), 3.73 (2H, s), 4.18 (2H, q), 4.79 (1H, s), 6.55 (1H, s), 6.62 (1H, s), 6.71 (1H, s).

参考例 8 0

(3-ヒドロキシ-5-メチルフェニル) 酢酸エチル

【化200】

[3-(メトキシメトキシ)-5-メチルフェニル] メタノールより、参考例 59に示す方法と同様にして、[3-(メトキシメトキシ))-5-メチルフェニル] アセトニトリルを得、これをさらに参考例 60に示す方法で処理して、目的物を得た。

油状物; ¹H-NMR (CDCl₃) δ 1.26 (3H, t), 2.28 (3H, s), 3.51 (2H, s), 4.15 (2H, q), 4.88 (1H, s), 6.55-6.58 (2H, m), 6.65 (1H, s).

[0318]

参考例 8 1

(2E) - 3 - [2 - エチル - 5 - (3 - メトキシフェニル) - 3 - フリル] アクリル酸エチル

【化201】

参考例 6 (13) で得た [2-xチル-5-(3-xトキシフェニル) -3-フリル] メタノールより、参考例 7 に示す方法と同様にして、2-xチル-5-(3-xトキシフェニル) -3-フルアルデヒドを得、これをさらに参考例 8 に示す方法で処理して、目的物を得た。

油状物; ¹H-NMR (CDC1₃) & 1.32 (3H, t), 1.33 (3H, t), 2.84 (2H, q), 3.86 (3H s), 4.25 (2H, q), 6.13 (1H, d), 6.73 (1H, s), 6.83 (1H, ddd), 7.18-7.35 (3H, m), 7.58 (1H, d).

[0319]

参考例82

3-[2-エチルー5-(3-メトキシフェニル)-3-フリル] プロパン酸エチル

【化202】

(2E) $-3-[2-x+\nu-5-(3-x++)2-x-\nu)-3-7$ リル酸エチルより、参考例 9に示す方法と同様にして、目的物を得た。油状物; 1 H-NMR(CDCl $_{3}$) δ 1.25(3H, t), 1.25(3H, t), 2.49-2.75(6H, m), 3.85(3H, s), 4.14(2H, q), 6.46(1H, s), 6.76(1H, ddd), 7.14-7.30(3H, m).

[0320]

参考例83

3-[2-エチル-5-(3-メトキシフェニル) -3-フリル] プロパン-1 -オール

【化203】

3-[2-エチル-5-(3-メトキシフェニル)-3-フリル]プロパン酸エチルより、参考例11に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDC1₃) & 1.26 (3H, t), 1.75-1.89 (2H, m), 2.47 (2H, t), 2.65 (2H, q), 3.69 (2H, q), 3.85 (3H, s), 6.48 (1H, s), 6.73-6.79 (1H, m), 7.15-7.30 (3H, m).

[0321]

参考例 8 4

1-[3-(メトキシメトキシ)フェニル]エタノール

【化204】

3-(メトキシメトキシ) ベンズアルデヒド (13.3g) のテトラヒドロフラン (100m1) 溶液に1 規定メチルマグネシウムブロミドのテトラヒドロフラン溶液 (120m1) を-78 $\mathbb C$ で滴下し、反応液を-78 $\mathbb C$ で1時間撹拌した。反応液を塩化アンモニウム水溶液に注ぎ酢酸エチルで2 回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製して(ヘキサン:酢酸エチル=6:1 から2:1)、目的物 (11.4g) を油状物として得た。

 1 H-NMR (CDCl₃) δ 1.49 (3H, d), 1.79 (1H, d), 3.49 (3H, s), 4.82-4.93 (1 H, m), 5.19 (2H, s), 6.92-7.06 (3H, m), 7.27 (1H, t).

[0322]

参考例 8 5

ページ: 192/

チオ酢酸S- {1- [3- (メトキシメトキシ) フェニル] エチル} 【化205】

1-[3-(メトキシメトキシ)フェニル]エタノールより、参考例71に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDC1₃) δ 1.64 (3H, d), 2.30 (3H, s), 3.48 (3H, s), 4.71 (1H, q), 5.17 (2H, s), 6.90-7.00 (3H, m), 7.23 (1H, t).

[0323]

参考例 8 6

 $2-(\{1-[3-(メトキシメトキシ) フェニル] エチル<math>\}$ チオ)-2-メチルプロパン酸エチル

【化206】

チオ酢酸S- {1- [3- (メトキシメトキシ) フェニル] エチル} より、参 考例27に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR (CDC1₃) δ 1.20 (3H, t), 1.40 (3H, s), 1.52 (3H, s), 1.53 (3H, d), 3.48 (3H, s), 3.96 (1H, q), 3.97 (1H, q), 4.09 (1H, q), 5.17 (2H, s), 6.88 (1H, ddd), 6.97 (1H, d), 6.99 (1H, s), 7.20 (1H, t).

[0324]

参考例87

 $2-\{[1-(3-ヒドロキシフェニル) エチル] チオ<math>\}-2-$ メチルプロパン酸エチル

【化207】

 $2-(\{1-[3-(メトキシメトキシ) フェニル] エチル<math>\}$ チオ) -2-メチルプロパン酸エチルより、参考例 28 に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDCl₃) & 1.19 (3H, t), 1.40 (3H, s), 1.51 (3H, d), 1.52 (3H, s), 3.92 (1H, q), 3.93 (1H, q), 4.06 (1H, q), 4.90 (1H, s), 6.67 (1H, ddd), 6.82 (1H, t), 6.87 (1H, d), 7.14 (1H, t).

[0325]

参考例88

2-[3-(メトキシメトキシ)フェニル]プロピオニトリル

【化208】

1-[3-(メトキシメトキシ)フェニル] エタノール(1.59g)、アセトンシアンヒドリン(1.1g)およびトリブチルホスフィン(3.3m1)のテトラヒドロフラン(70m1)溶液に1,1'-(アゾジカルボニル)ジピペリジン(3.3g)を室温で加えた後、一晩撹拌した。反応液の溶媒を減圧留去し、ジイソプロピルエーテルを加え、沈殿を濾別し、ジイソプロピルエーテルで洗浄した。濾液の溶媒を減圧留去して、得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し((、キサン:酢酸エチル=15:1 から6:1)、目的物(0.88g)を油状物として得た。

油状物; ¹H-NMR (CDCl₃) δ 1.64 (3H, d), 3.49 (3H, s), 3.87 (1H, q), 5.19 (2H, s), 6.99-7.02 (3H, m), 7.30 (1H, t).

[0326]

参考例89

ページ: 194/

2-(3-ヒドロキシフェニル)プロパン酸エチル

【化209】

2-[3-(メトキシメトキシ)フェニル]プロピオニトリルより、参考例 6 0に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDC1₃) & 1.21 (3H, t), 1.47 (3H, d), 3.65 (1H, q), 4.06 -4.38 (2H, m), 4.88 (1H, s), 6.72 (1H, ddd), 6.79 (1H, dd), 6.85 (1H, d), 7.17 (1H, t).

[0327]

参考例 9 0

2-(2-7)ルオロ-4-3トキシフェノキシ) -2-3チルプロパン酸エチル 【化 2 1 0】

2-フルオロ-4-メトキシフェノール(5.29g)と2-ブロモー2-メチルプロピオン酸エチル(8.7g)のN,Nージメチルホルムアミド(30m1)溶液に炭酸カリウム(10.3g)を加え、90℃で一晩撹拌した。反応液を水注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製して(ヘキサン:酢酸エチル=15:1)、目的物(5.86g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.31 (3H, t), 1.53 (6H, s), 3.75 (3H, s), 4.24 (2H, q), 6.54 (1H, ddd), 6.63 (1H, dd), 6.98 (1H, t).

[0328]

参考例 9 1

2-(2-フルオロー4-ヒドロキシフェノキシ)-2-メチルプロパン酸エチ

ページ: 195/

ル

【化211】

2-(2-フルオロー4-メトキシフェノキシ)-2-メチルプロパン酸エチルより、参考例57に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDCl₃) δ 1.31 (3H, t), 1.52 (6H, d), 4.24 (2H, q), 4.89 (1H, s), 6.46 (1H, ddd), 6.58 (1H, dd), 6.92 (1H, t).

[0329]

参考例 9 2

 $2-\{[3-(メトキシメトキシ) ベンジル] オキシ<math>\}-2-$ メチルプロパン酸エチル

【化212】

3-(メトキシメトキシ) ベンジルアルコール (8.26g) 、トリエチルアミン (10.6m1) の酢酸エチル (100m1) 溶液に、氷冷下、メタンスルホン酸クロリド (7.0g) の酢酸エチル (30m1) 溶液を滴下し、そのまま0.5時間撹拌した。生じた沈殿を濾過し、酢酸エチルで洗浄した。得られた濾液の溶媒を減圧留去し、油状物を得た。

2-ヒドロキシイソ酪酸エチル(13.4g)のテトラヒドロフラン(100 m1)溶液に、室温で60%水素化ナトリウムの流動パラフィン懸濁物(4.1g)を加え、<math>15分間撹拌した。これに上で得た油状物のテトラヒドロフラン(50m1)溶液を室温で加え、65℃で3日間撹拌した。反応液を水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=15:1)、目的物(5.55g)を油状物とし

て得た。

¹H-NMR (CDC1₃) δ 1.31 (3H, t), 1.51 (6H, s), 3.48 (3H, s), 4.22 (2H, q), 4.44 (2H, s), 5.18 (2H, s), 6.92-6.97 (1H, m), 7.02-7.08 (2H, m), 7.25 (1H, t).

[0330]

参考例 9 3

2-[(3-ヒドロキシベンジル)オキシ]-2-メチルプロパン酸エチル 【化213】

2- [3-(メトキシメトキシ) ベンジル] オキシ - 2-メチルプロパン酸エチルより、参考例 2 5 に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR (CDC1₃) δ 1.30 (3H, t), 1.51 (6H, s), 4.22 (2H, q), 4.43 (2H, s), 4.86 (1H, s), 6.71-6.76 (1H, m), 6.90-6.93 (2H, m), 7.19 (1H, t).

[0331]

参考例 9 4

2-[(アセチルオキシ) メチル] -5-[4-(トリフルオロメチル) フェニル] <math>-3-フロ酸メチル

【化214】

2-メチルー5- [4-(トリフルオロメチル)フェニル]-3-フロ酸メチル (13.53g)の酢酸エチル溶液 (300m1)に2,2'ーアゾビス (4ソブチロトニトリル) (0.39g)、N-ブロモスクシンイミド (8.48g)を加え、2時間加熱還流した。溶媒を減圧留去して固体と油状物の混合物を得た。得られた混合物をN,N-ジメチルホルムアミド (100m1)に溶解させ、

酢酸ナトリウム (7.81g) を加え、室温で一晩攪拌した。水を加え、酢酸エ チルで希釈後、有機層を水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、 溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン: 酢酸エチル=5:1から2:1)で精製し、目的物(12.47g)を固体とし て得た。

融点 $60-61^{\circ}$; 1 H-NMR(CDCl₃) δ 2.14(3H, s), 3.89(3H, s), 5.46(2H, s), 7.08 (1H, s), 7.66 (2H, d), 7.78 (2H, d).

[0332]

参考例 9 5

2-(x) (エトキシメチル) -5-[4-() (トリフルオロメチル) フェニル] -3-フロ酸エチル

【化215】

2-[(アセチルオキシ)メチル]-5-[4-(トリフルオロメチル)フェニ $[\mu]$ [-3-7] [-ノール(60m1)の混合溶媒に溶解させ、1規定水酸化ナトリウム(32m1)を加え、室温で一晩攪拌した。さらに1規定水酸化ナトリウム(20m1)を 追加し、室温で5時間攪拌した。濃塩酸で酸性とし、酢酸エチルで希釈後、有機 層を水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去して 油状物を得た。得られた油状物をN、N-ジメチルホルムアミド(50ml)に 溶解させ、水素化ナトリウム (1.76g)、ヨウ化エチル (4.68ml)を 氷冷下で加え、3時間攪拌した。1規定塩酸を加え、酢酸エチルで希釈後、有機 層を水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した 。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10: 1から5:1)で精製し、目的物(3.65g)を油状物として得た。 ¹H-NMR (CDC1₃) δ 1.26 (3H, t), 1.39 (3H, t), 3.63 (2H, q), 4.34 (2H, q

), 4.85 (2H, s), 7.04 (1H, s), 7.64 (2H, d), 7.78 (2H, d).

[0333]

ページ: 198/

参考例 9 6

【化216】

参考例95で得た2-(エトキシメチル)-5-[4-(トリフルオロメチル)フェニル]-3-フロ酸エチルより、参考例6に示す方法と同様にして、目的物を得た。

融点103-105°C; ¹H-NMR (CDC1₃) δ 1.26 (3H, dt), 3.60 (2H, dq), 4.57 (2 H, s), 4.59 (2H, s), 6.77 (1H, s), 7.60 (2H, d), 7.73 (2H, d).

[0334]

参考例 9 7

2-(4-ヒドロキシ-2-メチルベンジル) ブタン酸エチル

【化217】

 H, s), 2.47-2.72 (2H, m), 2.84 (1H, dd), 4.07 (2H, q), 4.83-5.05 (1H, br), 6.52-6.62 (2H, m), 6.94 (1H, d).

[0335]

参考例97(1)~参考例97(2)

4 - (ベンジルオキシ) - 2 - メチルベンズアルデヒドと対応するホスホネートより、参考例 9 7 に示す方法と同様にして、以下に示す化合物を得た。

[0336]

参考例 9 7 (1)

3-(4-ヒドロキシー2-メチルフェニル)-2-メチルプロパン酸エチル 【化218】

油状物; 1 H-NMR(CDC1₃) δ 1.16(3H, d), 1.19(3H, t), 2.25(3H, s), 2.5 3-2.72(2H, m), 2.90-2.99(1H, m), 4.19(2H, q), 5.25(1H, s), 6.54-6.63(2H, m), 6.94(1H, d).

[0337]

参考例 9 7 (2)

3-(4-ヒドロキシー2-メチルフェニル)-2-メトキシプロパン酸エチル 【化219】

油状物; ¹H-NMR (CDC1₃) る 1.32 (3H, t), 2.28 (3H, s), 2.95 (2H, d), 3.3 2 (3H, s), 3.86-3.93 (1H, m), 4.18 (2H, q), 5.10 (1H, s), 6.56-6.64 (2H, m), 7.00 (1H, dd).

[0338]

参考例98

2-[(4-メトキシフェニル)スルファニル]-2-メチルプロパン酸エチル

【化220】

4-メトキシベンゼンチオール(3.7 m l)のN,N-ジメチルホルムアミド溶液(100 m l)に炭酸カリウム(5.1 g)、2-プロモイソ酪酸エチル(5.96 g)を加え、50 $\mathbb C$ で一晩、攪拌した。放冷後、酢酸エチルで希釈、有機層を水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=30:1 から5:1)で精製し、目的物(7.11 g)を油状物として得た。1 H-NMR(CDC13) δ 1.22(3 H, t),1.45(6 H, s),3.80(3 H, s),4.10(2 H, q),6.84(2 H, d),7.38(2 H, d).

[0339]

参考例 9 9

2-[(4-ヒドロキシフェニル)スルファニル]ー2ーメチルプロパン酸エチル

【化221】

塩化アルミニウム(0.88g)をトルエン(5 m l)に懸濁させ、オクタンチオール(3.5 m l)を滴下し、均一になるまで攪拌した。その後、2 ー [(4ーメトキシフェニル)スルファニル]ー2ーメチルプロパン酸エチル(7.06g)のトルエン溶液(5 m l)を加え、室温で3時間攪拌した。反応混合液に水を加え、酢酸エチルで希釈し、水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1から5:1)、さらに再結晶(ヘキサンージイソプロピルエーテル)で精製し、目的物(6.23g)を結晶として得た。

融点68-69°C; 1 H-NMR (CDC13) δ 1.26 (3H, t), 1.47 (6H, s), 4.14 (2H, q)

, 6.17 (1H, s), 6.68 (2H, d), 7.29 (2H, d).

[0340]

参考例 100

3-(5-メトキシー1-ベンゾフランー2ーイル) プロパン酸エチル<math>3-(5-メトキシー2, 3-ジヒドロー1-ベンゾフランー2ーイル) プロパン酸エチル

【化222】

(E) -3-(5-x)キシー1-xンゾフランー2-xル) -2-xロペン酸 エチル(0.81g)の酢酸エチル溶液(10m1)に窒素気流下で10%パラジウムー炭素(0.20g)を加え、水素雰囲気下、室温で1時間攪拌した。触 媒をセライトでろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(x+サン:酢酸エチル=x0:x1からx5:x7)で精製し、x80分には、x80分には、x9)の混合物を油状物として得た。

¹H-NMR (CDC1₃) δ 1.25, 1.26 (3H, t), 1.98-2.09 (0.86H, m), 2.47-2.55 (0.86H, m), 2.69-2.90 (1.58H, m), 3.08 (1.14H, t), 3.28 (0.42H, ddd), 3.7 4 (1.26H, s), 3.82 (1.74H, s), 4.09-4.21 (2H, m), 4.70-4.85 (0.42H, m), 6.35 (0.58H, d), 6.63-6.64 (0.86H, m), 6.73-6.74 (0.42H, m), 6.80 (0.58H, dd), 6.94 (0.58H, d), 7.27 (0.58H, d).

[0341]

参考例 1 0 1

3- (5-ヒドロキシ-1-ベンゾフラン-2-イル) プロパン酸エチル 3- (5-ヒドロキシ-2, 3-ジヒドロ-1-ベンゾフラン-2-イル) プロパン酸エチル

【化223】

塩化アルミニウム (0.88g)をトルエン (5ml)に懸濁させ、オクタンチオール (3.5ml)を滴下し、均一になるまで攪拌した。その後、3-(5-メトキシー1-ベンゾフランー2ーイル)プロパン酸エチルと3-(5-メトキシー2,3-ジヒドロー1-ベンゾフランー2ーイル)プロパン酸エチルの混合物 (0.80g)のトルエン溶液 (5ml)を加え、室温で3時間攪拌した。反応混合液に水を加え、酢酸エチルで希釈し、水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=30:1から2:1)で精製し、3-(5-ヒドロキシー1-ベンゾフランー2ーイル)プロパン酸エチルと3-(5ーヒドロキシー2,3-ジヒドロー1-ベンゾフランー2ーイル)プロパン酸エチルの混合物 (0.56g)を油状物として得た。

¹H-NMR (CDCl₃) δ 1.25, 1.26 (3H, t), 1.97-2.08 (0.84H, m), 2.47-2.55 (0.84H, m), 2.70-2.85 (1.56H, m), 3.07 (1.16H, t), 3.24 (0.42H, dd), 4.07 -4.21 (2H, m), 4.69-4.83 (0.42H, m), 4.97 (0.42H, s), 5.23 (0.58H, s), 6.30 (0.58H, d), 6.57 (0.86H, s), 6.65-6.67 (0.42H, m), 6.72 (0.58H, dd), 6.88 (0.58H, d), 7.22 (0.58H, d).

[0342]

参考例102

(5-メトキシー1-ベンゾフラン-2-イル) 酢酸エチル

【化224】

(5-メトキシー1-ベンゾフランー2-イル) メタノール (2.40g) のテトラヒドロフラン溶液 (100m1) にアセトンシアンヒドリン (1.85m1) 、トリブチルホスフィン (6.71m1) 、1,1' ー (アゾジカルボニル) ジピペリジン (26.80g) を順に加え、0 \mathbb{C} で 2 時間、室温で 2 時間攪拌し

た。反応液の溶媒を減圧留去し、ジイソプロピルエーテルを加え、沈殿を濾別し、ジイソプロピルエーテルで洗浄した。濾液の溶媒を減圧留去して、得られた粗生成物をシリカゲルカラムクロマトグラフィーに通し(ヘキサン:酢酸エチル=30:1から10:1)、油状物を得た。得られた油状物をエタノール(10m1)に溶解させ、8規定の水酸化ナトリウム水溶液(10m1)を加えて一晩加熱還流した。水で希釈後、エーテルで水層を洗浄した後、濃塩酸で酸性とし、酢酸エチルで抽出。有機層を合わせ、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して粗生成物を得た。これをエタノール(10m1)に溶解させ、濃硫酸(0.1m1)を加え、一晩加熱還流した。放冷後、酢酸エチルで希釈し、有機層を水、飽和重曹水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1から5:1)で精製し、目的物(0.46g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.28 (3H, t), 3.79 (2H, s), 3.82 (3H, s), 4.20 (2H, q), 6.55-6.56 (1H, m), 6.83 (1H, dd), 6.97 (1H, d), 7.31 (1H, dd).

[0343]

参考例103

(5-ヒドロキシー1-ベンゾフラン-2-イル) 酢酸エチル

【化225】

塩化アルミニウム (0.53g)をトルエン (4m1)に懸濁させ、オクタンチオール (1.65ml)を滴下し、均一になるまで攪拌した。その後、(5ーメトキシー1ーベンゾフランー2ーイル)酢酸エチルの (0.37g)のトルエン溶液 (4ml)を加え、室温で3時間攪拌した。反応混合液に水を加え、酢酸エチルで希釈し、水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1から5:1)で精製し、目的物 (0.29g)を油状物として得た

 1 H-NMR (CDC1₃) δ 1.28 (3H, t), 3.78 (2H, s), 4.21 (2H, q), 5.10 (1H, s), 6.48 (1H, d), 6.73 (1H, dd), 6.88 (1H, d), 7.24 (1H, d).

参考例104

トリフルオロメタンスルホン酸2-ホルミル-5-メトキシフェニル

【化226】

2-ビドロキシー4-メトキシベンズアルデヒド(10.0g)をテトラヒドロフラン(200m1)に溶解させ、氷冷下でピリジン(39m1)、トリフルオロメタンスルホン酸無水物(12.2m1)を順に加え、室温で一晩攪拌した。飽和重曹水を加え、酢酸エチルで希釈し、1規定塩酸、水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1から5:1)で精製し、目的物(13.07g)を油状物として得た。

 $^{1}\text{H-NMR}$ (CDC1₃) δ 3.92 (3H, s), 6.87 (1H, d), 7.03 (1H, dd), 7.94 (1H, d), 10.12 (1H, s).

[0345]

参考例105

(E) $-3-(4-メトキシー2-\{[(トリフルオロメチル)スルホニル]オ$ $キシ\フェニル) <math>-2-プロペン酸エチル$

【化227】

ジエチルホスホノ酢酸エチル(6.1ml)のテトラヒドロフラン(100ml)溶液に、氷冷下、60%水素化ナトリウムの流動パラフィン懸濁物(2.2g)を加え、さらに0.5時間撹拌した。これにトリフルオロメタンスルホン酸2

ページ: 205/

ーホルミルー5ーメトキシフェニル(10.0g)のテトラヒドロフラン溶液(50m1)を加え、0℃で2時間攪拌した。反応液に1規定塩酸を加え、酢酸エチルで希釈した。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーでにて精製し(0キサン:酢酸エチル=20:1から10:1)、目的物(0.07g)を油状物として得た。

 1 H-NMR (CDC1₃) δ 1.33 (3H, t), 3.86 (3H, s), 4.27 (2H, q), 6.38 (1H, d), 6.86 (1H, d), 6.95 (1H, dd), 7.63 (1H, d), 7.80 (1H, d).

[0346]

参考例106

(E) -3-(2-アリルー4-メトキシフェニル) -2-プロペン酸エチル【化228】

 1 H-NMR (CDCl₃) δ 1.32 (3H, t), 3.50 (2H, d), 3.81 (3H, s), 4.24 (2H, q), 4.98-5.11 (2H, m), 5.87-6.00 (1H, m), 6.25 (1H, d), 6.73-6.79 (2H, m), 7.55 (1H, d), 7.91 (1H, d).

[0347]

参考例107

3-(4-メトキシー2-プロピルフェニル)プロパン酸エチル

【化229】

(E) -3-(2-r)ルー4ーメトキシフェニル)-2-rロペン酸エチル(5.23g)の酢酸エチル溶液(50m1)に10%パラジウムー炭素(1.0g)を加え、室温で一晩攪拌した。触媒をろ過し、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーでにて精製し(ヘキサン:酢酸エチル=30:1から5:1)、目的物(5.35g)を油状物として得た。 1 H-NMR(CDC13) δ 0.98(3H,t),1.25(3H,t),1.57-1.65(2H,m),2.51-2.58(4H,m),2.86-2.91(2H,m),3.77(3H,m),4.13(2H,q),6.65-6.70(2H,m),7.04(1H,d).

[0348]

参考例108

3-(4-ヒドロキシ-2-プロピルフェニル)プロパン酸エチル

【化230】

塩化アルミニウム(4.02g)をトルエン(30m1)に懸濁させ、オクタンチオール(13m1)を滴下し、均一になるまで攪拌した。その後、3-(4-メトキシ-2-プロピルフェニル)プロパン酸エチル(3.02g)のトルエン溶液(10m1)を加え、室温で3時間攪拌した。反応混合液に水を加え、酢酸エチルで希釈し、水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1から2:1)で精製し、目的物(2.52g)を油状物として得た。

¹H-NMR (CDC1₃) δ 0.97 (3H, t), 1.24 (3H, t), 1.52-1.65 (2H, m), 2.50-2 .56 (4H, m), 2.85-2.90 (2H, m), 4.13 (2H, q), 6.59 (1H, dd), 6.63 (1H, d

), 6.97 (1H, d).

[0349]

参考例109

2- (2-クロロー4-メトキシフェノキシ) -2-メチルプロパン酸エチル 【化231】

[0350]

参考例 1 1 0

2-(2-クロロ-4-ヒドロキシフェノキシ)-2-メチルプロパン酸エチル 【化232】

参考例 109 で得た $2-(2-\rho \Box \Box -4- \lambda \Gamma + 2)$ $-2-\lambda F$ ルプロパン酸エチルより、参考例 108 に示す方法と同様にして、目的物を得た。油状物; 1 H-NMR(CDC13) δ 1.30(3H, t), 1.56(6H, s), 4.26(2H, q), 4.8 4(1H, s), 6.61(1H, dd), 6.88(1H, d), 6.90(1H, d).

ページ: 208/

[0351]

参考例111

エタンチオ酸S- [4-フルオロ-3-(メトキシメトキシ)ベンジル]

【化233】

[4-フルオロー3-(メトキシメトキシ)フェニル]メタノール(5.28g)の酢酸エチル溶液(60ml)に、氷冷下で、トリエチルアミン(4.8ml)、メタンスルホニルクロライド(2.31ml)を滴下し、30分攪拌した。不溶物をセライトでろ過し、溶媒を減圧留去して油状物を得た。これをN,Nージメチルホルムアミド(100ml)に溶解させ、チオ酢酸カリウム(3.90g)を加え室温で2時間攪拌した。酢酸エチルで希釈し、水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1から5:1)で精製し、目的物(5.60g)を油状物として得た。

¹H-NMR (CDC1₃) δ 2.34 (3H, s), 3.52 (3H, s), 4.05 (2H, s), 5.19 (2H, s), 6.85-7.04 (2H, m), 7.12 (1H, dd).

[0352]

参考例112

【化234】

 、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。これをN, N-ジメチルホルムアミド(30m1)に溶解させ、炭酸カリウム(2.11g)、2-ブロモイソ酪酸エチル(1.80m1)を加え、室温で一晩攪拌した。酢酸エチルで希釈後、水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー((キサン:酢酸エチル=30:1から10:1)で精製し、目的物(1.95g)を油状物として得た。

¹H-NMR (CDCl₃) δ 1.27 (3H, t), 1.52 (6H, s), 3.51 (3H, s), 3.78 (2H, s), 4.13 (2H, q), 5.20 (2H, s), 6.86-7.04 (2H, m), 7.12 (1H, dd).

[0353]

参考例113

2- [(4-フルオロ-3-ヒドロキシベンジル)スルファニル]-2-メチル プロパン酸エチル

【化235】

¹H-NMR (CDCl₃) δ 1.27 (3H, t), 1.53 (6H, s), 3.75 (2H, s), 4.13 (2H, q), 5.25 (1H, br), 6.74-6.79 (1H, m), 6.93-7.00 (2H, m).

[0354]

参考例114

エタンチオ酸S-(2-フルオロ-5-メトキシベンジル)

【化236】

参考例55で得た (2-フルオロー5-メトキシフェニル)メタノールより、

参考例111に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR (CDC1₃) δ 2.35 (3H, s), 3.76 (3H, s), 4.11 (2H, s), 6.6 8-6.76 (1H, m), 6.85-6.98 (2H, m).

[0355]

参考例115

2- [(2-フルオロ-5-メトキシベンジル) スルファニル] -2-メチルプロパン酸エチル

【化237】

参考例114で得たエタンチオ酸S-(2-フルオロ-5-メトキシベンジル) より、参考例112に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDC1₃) δ 1.27(3H, t), 1.55(6H, s), 3.76(3H, s), 3.8 4(2H, s), 4.11(2H, q), 6.67-6.77(1H, m), 6.85(1H, dd), 6.92(1H, t).

[0356]

参考例116

2- [(2-フルオロー5-ヒドロキシベンジル)スルファニル] -2-メチル プロパン酸エチル

【化238】

参考例115で得た2-[(2-7)ルオロ-5-メトキシベンジル)スルファニル]-2-メチルプロパン酸エチルより、参考例108に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDC1₃) δ 1.25(3H, t), 1.55(6H, s), 3.81(2H, s), 4.1 0(2H, q), 5.40(1H, s), 6.64-6.69(1H, m), 6.80-6.93(2H, m).

[0357]

参考例117

(2-フルオロー3-メトキシフェニル) メタノール

【化239】

2-フルオロー3-メトキシ安息香酸より、参考例6に示す方法と同様にして、 目的物を得た。

融点59-60°C; 1 H-NMR (CDC13) δ 1.87 (1H, t), 3.88 (3H, s), 4.75 (2H, d), 6.88-7.09 (3H, m).

[0358]

参考例118

エタンチオ酸S- (2-フルオロ-3-メトキシベンジル)

【化240】

参考例117で得た(2-フルオロー3-メトキシフェニル)メタノールより、

参考例111に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDC1₃) δ 2.38(3H, s), 3.86(3H, s), 4.16(2H, d), 6.8 2-7.01(3H, m).

[0359]

参考例 1 1 9

2- [(2-フルオロ-3-メトキシベンジル)スルファニル] -2-メチルプロパン酸エチル

【化241】

$$\mathsf{MeO} \overset{\mathsf{S}}{\underset{\mathsf{F}}{\bigvee}} \mathsf{S} \underset{\mathsf{CO}_2\mathsf{Et}}{\bigvee} \mathsf{CO}_2\mathsf{Et}$$

参考例118で得たエタンチオ酸S-(2-フルオロ-3-メトキシベンジル) より、参考例112に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDCl₃) δ 1.28(3H, t), 1.55(6H, s), 3.86(2H, s), 3.8 8(3H, s), 4.14(2H, q), 6.81-7.02(3H, m).

[0360]

参考例120

2-[(2-フルオロ-3-ヒドロキシベンジル)スルファニル]-2-メチル プロパン酸エチル

【化242】

参考例119で得た2-[(2-7)ルオロ-3-3 トキシベンジル)スルファニル]-2-3 チルプロパン酸エチルより、参考例108 に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDCl₃) δ 1.27(3H, t), 1.55(6H, s), 3.86(2H, s), 4.1 3(2H, q), 5.29(1H, d), 6.80-6.99(3H, m).

[0361]

参考例 1 2 1

(2-フルオロ-3-メトキシフェニル) アセトニトリル

【1k243】

参考例117で得た(2-フルオロー3-メトキシフェニル)メタノールより、

参考例88に示す方法と同様にして、目的物を得た。

油状物; lH-NMR (CDCl₃) る 3.76 (2H, s), 3.89 (3H, s), 6.91-7.15 (3H, m)

[0362]

参考例122

(2-フルオロー3-メトキシフェニル) 酢酸エチル

【化244】

(2-7)ルオロ-3-メトキシフェニル)アセトニトリル(0.77g)、8規定水酸化ナトリウム(10m1)およびエタノール(10m1)の混合物を一晩加熱還流した。反応液の溶媒を減圧留去し、濃塩酸で反応液を酸性にし、酢酸エチルで2回抽出した。集めた有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、油状物を得た。得られた油状物をエタノール(10m1)に溶かし、濃硫酸(0.1m1)を加え、一晩加熱還流した。反応液を酢酸エチルで希釈し、水、飽和重曹水、飽和食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1)にて精製し、目的物(0.79g)を油状物として得た。

 $^{1}\text{H-NMR}$ (CDC1₃) δ 1.25 (3H, t), 3.65 (3H, s), 3.87 (2H, s), 4.16 (2H, q), 6.79-6.90 (2H, m), 6.98-7.04 (1H, m).

[0363]

参考例123

(2-フルオロ-3-ヒドロキシフェニル) 酢酸エチル

【化245】

参考例122で得た(2-フルオロー3-メトキシフェニル)酢酸エチルより、

参考例108に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDC1₃) δ 1.26(3H, t), 3.65(2H, s), 4.17(2H, q), 5.5 1(1H, s), 6.73-6.86(1H, m), 6.88-6.98(2H, m).

[0364]

参考例124

4-クロロー3-(メトキシメトキシ)安息香酸メトキシメチル

【化246】

4-クロロ-3-ビドロキシ安息香酸(3. 11g)のテトラヒドロフラン溶液(50m1)にN-エチルジイソプロピルアミン(9.4m1)とクロロメチルメチルエーテル(3.5m1)を加え、一晩、加熱還流した。酢酸エチルで希釈し、水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー(0.4+サン:酢酸エチル=0.1+ 0.

 1 H-NMR (CDC1₃) δ 3.53 (3H, s), 3.54 (3H, s), 5.31 (2H, s), 5.47 (2H, s), 7.45 (1H, d), 7.68 (1H, dd), 7.84 (1H, d).

[0365]

参考例 1 2 5

[4-クロロー3-(メトキシメトキシ)フェニル]メタノール

【化247】

参考例124で得た4-クロロ-3-(メトキシメトキシ)安息香酸メトキシメ チルより、参考例6に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDC1₃) δ 3.52(3H, s), 4.64(2H, d), 5.25(2H, s), 6.9 1-6.96(1H, m), 7.17(1H, d), 7.34(1H, d).

[0366]

参考例126

(4-クロロー3-ヒドロキシフェニル) 酢酸メチル

【化248】

[4-クロロー3ー(メトキシメトキシ)フェニル] メタノール(2.01g)、アセトンシアンヒドリン(1.4 ml)およびトリブチルホスフィン(5.0 ml)のテトラヒドロフラン(100 ml)溶液に1,1'ー(アゾジカルボニル)ジピペリジン(5.05g)を室温で加えた後、一晩撹拌した。反応液の溶媒を減圧留去し、ジイソプロピルエーテルを加え、沈殿を濾別し、ジイソプロピルエーテルで洗浄した。濾液の溶媒を減圧留去して、得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=30:1から5:1)、油状物を得た。得られた油状物をエタノール(10 ml)に溶解させ、8規定水酸化ナトリウム(5 ml)を加え、一晩加熱還流した。反応液の溶媒を減圧留去し、濃塩酸で反応液を酸性にし、酢酸エチルで2回抽出した。集めた有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、油状物を得た。得られた油状物を10%塩酸ーメタノール(10 ml)に溶解させ、室温で一晩攪拌した。溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1から5:1)にて精製し、目的物(0.55g)を油状物として得た。

 $^{1}\text{H-NMR}$ (CDC1₃) δ 3.56 (2H, s), 3.69 (3H, s), 5.68 (1H, s), 6.79 (1H, d d), 6.94 (1H, d), 7.25 (1H, d).

[0367]

参考例127

エタンチオ酸S- [4-クロロ-3-(メトキシメトキシ) ベンジル]

【化249】

参考例125で得た[4-クロロ-3-(メトキシメトキシ)フェニル]メタノールより、参考例111に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDC1₃) δ 2.34(3H, s), 3.52(3H, s), 4.05(2H, s), 5.2 3(2H, s), 6.88(1H, dd), 7.09(1H, d), 7.27(1H, d).

[0368]

参考例128

2-[(4-クロロー3-ヒドロキシベンジル)スルファニル]ー2ーメチルプロパン酸エチル

【化250】

エタンチオ酸S- $[4-\rho \Box \Box -3-($ メトキシメトキシ)ベンジル] (1.72g)のエタノールーテトラヒドロフラン溶液(10m1-10m1)に1規定水酸化ナトリウム(10m1)を加え、室温で3日間攪拌した。1規定塩酸で酸性とし、酢酸エチルで希釈後、水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。これをN,Nージメチルホルムアミド(30m1)に溶解させ、炭酸カリウム(1.37g)、2-プロモイソ酪酸エチル(1.2m1)を加え、50℃で一晩攪拌した。酢酸エチルで希釈後、水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=30:1から10:1)で精製し、油状物を得た。得られた油状物をエタノール(10m1)に溶解させ、濃塩酸(0.1m1)を加え、60℃で一晩攪拌した。溶媒を減圧留去し、酢酸エチルで希釈し、水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去し、水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1から5:1)で精製し、目的物(0.45g)を油状物として得た。

¹H-NMR (CDCl₃) δ 1.27 (3H, t), 1.52 (6H, s), 3.76 (2H, s), 4.12 (2H, q), 5.58 (1H, s), 6.82 (1H, dd), 6.98 (1H, d), 7.22 (1H, d).

[0369]

参考例 1 2 9

(3-ヒドロキシ-1H-インダゾール-1-イル) 酢酸エチル

【化251】

3-4ンダゾリノン(5.0g)のN, N-ジメチルホルムアミド溶液(150 m l)に炭酸カリウム(5.14g)、プロモ酢酸エチル(4.13 m l)を加え、室温で一晩攪拌した。酢酸エチルで希釈後、水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣を再結晶(ヘキサンー酢酸エチル)で精製し、目的物(1.47g)を結晶として得た。融点181-182 \mathbb{C} ; 1 H-NMR(CDCl3) δ 1.25(3H, t), 4.22(2H, q), 4.84(2H, s), 7.09-7.20(2H, m), 7.41-7.49(1H, m), 7.77(1H, d).

[0370]

参考例 1 3 0

5- (メトキシメトキシ) -2-ニトロベンズアルデヒド

【化252】

5-ヒドロキシ-2-ニトロベンズアルデヒド(25g)のN,Nージメチルホルムアミド溶液(300ml)にクロロメチルメチルエーテル(13.7ml)を加え、氷冷下で60%水素化ナトリウムの流動パラフィン懸濁物(7.2g)を加え、室温で一晩攪拌した。1規定塩酸を氷冷下で滴下し、酢酸エチルで希釈後、水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去して粗結晶を得た。これを再結晶(ヘキサンー酢酸エチル)で精製し、目的物(23.37g)を結晶として得た。

融点68-69°C; 1 H-NMR (CDC1₃) δ 3.49 (3H, s), 5.29 (2H, s), 7.29 (1H, dd), 7.46 (1H, d), 8.15 (1H, d), 10.45 (1H, s).

[0371]

参考例 1 3 1

5- (メトキシメトキシ) -1-ベンゾチオフェン-2-カルボン酸エチル

【化253】

5-(メトキシメトキシ)-2-ニトロベンズアルデヒド(20g)のN,N-ジメチルホルムアミド溶液(<math>300m1)にチオグリコール酸エチル(12.5m1)と炭酸カリウム(16.36g)を加え、60で一晩攪拌した。水を加え、酢酸エチルで抽出し、合わせた有機層を水、飽和食塩水で洗浄。無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=30:1から5:1)で精製し、目的物(6.60g)を油状物として得た。

 1 H-NMR (CDC1₃) δ 1.40 (3H, t), 3.50 (3H, s), 4.39 (2H, q), 5.22 (2H, s), 7.18 (1H, dd), 7.49 (1H, d), 7.72 (1H, d), 7.95 (1H, s).

[0372]

参考例132

「5-(メトキシメトキシ)-1-ベンゾチエン-2-イル」メタノール

【化254】

参考例131で得た5-(メトキシメトキシ)-1-ベンゾチオフェン-2-カルボン酸エチルより、参考例6に示す方法と同様にして、目的物を得た。

融点74-75°C; 1 H-NMR (CDC1₃) δ 2.03 (1H, t), 3.50 (3H, s), 4.89 (2H, d), 5.21 (2H, s), 7.05 (1H, dd), 7.12 (1H, d), 7.38 (1H, d), 7.67 (1H, d).

[0373]

参考例 1 3 3

「5-(メトキシメトキシ)-1-ベンゾチエン-2-イル]アセトニトリル

ページ: 219/

【化255】

参考例132で得た [5-(メトキシメトキシ)-1-ベンゾチエン-2-イル] メタノールより、参考例88に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDC1₃) δ 3.51 (3H, s), 3.97 (2H, d), 5.22 (2H, s), 7.0 8 (1H, dd), 7.23 (1H, s), 7.40 (1H, d), 7.65 (1H, d).

[0374]

参考例134

(5-ヒドロキシー1-ベンゾチエン-2-イル) 酢酸メチル

【化256】

[5-(メトキシメトキシ)-1-ベンゾチエン-2-イル] アセトニトリル(1.03g)をエタノール(10ml)に溶解させ、8規定水酸化ナトリウム(10ml)を加え、一晩加熱還流した。反応液の溶媒を減圧留去し、濃塩酸で反応液を酸性にし、酢酸エチルで2回抽出した。集めた有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、油状物を得た。得られた油状物を10%塩酸-メタノール(10ml)に溶解させ、室温で一晩攪拌した。溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1から2:1)にて精製し、目的物(0.43g)を油状物として得た。

融点136-137°C; 1 H-NMR(CDC1₃) δ 3.75 (3H, s), 3.89 (2H, s), 5.09 (1H, s), 6.86 (1H, dd), 7.03 (1H, s), 7.10 (1H, d), 7.59 (1H, d).

[0375]

参考例135

5-(メトキシメトキシ)-1-ベンゾチオフェン-2-カルバルデヒド

ページ: 220/

【化257】

参考例 1 3 2 で得た [5-(メトキシメトキシ)-1-ベンゾチエン-2-イル] メタノールより、参考例 <math>7 に示す方法と同様にして、目的物を得た。 1 H-NMR(CDC1 $_{3}$) δ 3.51 (3H, s), 5.25 (2H, s), 7.25 (1H, dd), 7.58 (1H, d), 7.78 (1H, d), 7.94 (1H, s), 10.07 (1H, s).

[0376]

参考例136

(E) -3-[5-(メトキシメトキシ)-1-ベンゾチエン-2-イル]-2-プロペン酸エチル

【化258】

参考例135で得た5-(メトキシメトキシ)-1-ベンゾチオフェン-2-カルバルデヒドより、参考例8に示す方法と同様にして、目的物を得た。

融点81-82°C; 1 H-NMR(CDCl₃) δ 1.34(3H, t), 3.50(3H, s), 4.27(2H, q), 5.22(2H, s), 6.27(1H, d), 7.11(1H, dd), 7.37(1H, s), 7.41(1H, d), 7.66(1H, d), 7.84(1H, d).

[0377]

参考例 1 3 7

3-[5-(メトキシメトキシ)-1-ベンゾチエン-2-イル] プロパン酸エチル

【化259】

(E) -3-[5-(メトキシメトキシ)-1-ベンゾチエン-2-イル]-2-プロペン酸エチル (1.46g) の酢酸エチル溶液 (20ml) に10%パラ

ジウムー炭素(1.0g)を加え、水素雰囲気下、室温で一晩攪拌した。触媒をセライトでろ過し、ろ液を減圧留去。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1から5:1)にて精製し、目的物(1.20g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.25 (3H, t), 2.73 (2H, t), 3.21 (2H, t), 3.50 (3H, s), 4.16 (2H, q), 5.20 (2H, s), 6.96 (1H, s), 7.00 (1H, dd), 7.33 (1H, d), 7.62 (1H, d).

[0378]

参考例138

3-(5-ヒドロキシ-1-ベンゾチエン-2-イル) プロパン酸エチル 【化260】

3-[5-(メトキシメトキシ)-1-ベンゾチエン-2-イル]プロパン酸エチル(1.20g)をエタノール(20m1)に溶解させ、濃塩酸(1m1)を加え、60℃で3時間攪拌した。溶媒を減圧留去し、酢酸エチルで希釈し、水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1から1:1)で精製し、目的物(0.87g)を結晶として得た。融点111-113℃; 1 H-NMR(CDCl3) δ 1.25 (3H, t), 2.73 (2H, t), 3.20 (2H, t), 4.16 (2H, q), 5.19 (1H, s), 6.82 (1H, dd), 6.89 (1H, s), 7.06 (1H, d), 7.56 (1H, d).

[0379]

参考例139

(E) $-4-\{2-メチルー5-[4-(トリフルオロメチル) フェニル] -3$ -フリル $\}$ -3-プテン-1-オール

【化261】

(3ーヒドロキシプロピル)トリフェニルホスホニウムブロミド(12.41g)のテトラヒドロフラン懸濁液(60ml)に氷冷下でnーブチルリチウム(1.6M へキサン溶液,36ml)を滴下し、30分攪拌後、2ーメチルー5ー[4ー(トリフルオロメチル)フェニル]ー3ーフルアルデヒド(6.41g)のテトラヒドロフラン溶液(50ml)を滴下し、氷冷下で1.5時間攪拌した。1規定塩酸を加え、酢酸エチルで希釈後、有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=10:1から1:1)で精製し、目的物(4.77g)を油状物として得た。

¹H-NMR (CDC1₃) δ 2.37 (3H, s), 2.47 (2H, q), 3.75 (2H, t), 5.90 (1H, d t), 6.30 (1H, d), 6.82 (1H, s), 7.60 (2H, d), 7.70 (2H, d).

[0380]

参考例140

 $4-\{2-メチルー5-[4-(トリフルオロメチル) フェニル] -3-フリル <math>\}-1-$ ブタノール

【化262】

参考例 139 で得た (E) $-4-\{2-メチル-5-[4-(トリフルオロメチル) フェニル] <math>-3-$ フリル $\}$ -3- ブテンー1- オールより、参考例 9 に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDC1₃) δ 1.59-1.65(5H, m), 2.29(3H, s), 2.36-2.43(2 H, m), 3.64-3.70(2H, m), 6.58(1H, s), 7.57(2H, d), 7.67(2H, d).

[0381]

参考例141

エタンチオ酸S- | [5-(メトキシメトキシ)-1-ベンゾチエン-2-イル

ページ: 223/

] メチル

【化263】

参考例132で得た[5-(メトキシメトキシ)-1-ベンゾチエン-2-イル] メタノールより、参考例111に示す方法と同様にして、目的物を得た。油状物; 1 H-NMR(CDC1 $_{3}$) δ 2.37(3H, s), 3.49(3H, s), 4.35(2H, s), 5.2

0 (2H, s), 7.02 (1H, dd), 7.11 (1H, d), 7.34 (1H, d), 7.60-7.63 (1H, m).

[0382]

参考例142

【化264】

参考例 141で得たエタンチオ酸 $S-\{[5-(メトキシメトキシ)-1-ベンゾチエン-2-イル]メチル より、参考例 <math>112$ に示す方法と同様にして、目的物を得た。

¹H-NMR (CDC1₃) δ 1.26 (3H, t), 1.55 (6H, s), 3.49 (3H, s), 4.10 (2H, s), 4.11 (2H, q), 5.20 (2H, s), 7.00 (1H, dd), 7.08 (1H, s), 7.32 (1H, d), 7.60 (1H, d).

[0383]

参考例143

 $2-\left\{ \left[\left(5-\text{ヒドロキシ}-1-\text{ベンゾチエン}-2-\text{イル} \right) \right. \right. \right.$ スルファニル $\left\{ -2-\text{メチルプロパン酸エチル} \right.$

【化265】

参考例 142 で得た $2-(\{5-(メトキシメトキシ)-1-ベンゾチエン-2-イル] メチル スルファニル) <math>-2-$ メチルプロパン酸エチルより、参考例 138 に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDCl₃) & 1.25 (3H, t), 1.56 (6H, s), 4.05-4.16 (4H, m), 4.93 (1H, s), 6.85 (1H, dd), 7.04 (1H, d), 7.08 (1H, d), 7.57 (1H, d).

[0384]

*参考例144

tert-ブチル (ジメチル) [(2-メチル<math>-3-フリル) メトキシ] シラン【化266】

水素化リチウムアルミニウム(9.2g)のテトラヒドロフラン(200m1)懸濁液に、氷冷下、2-メチル-3-フロ酸エチル(31.1g)のテトラヒドロフラン(100m1)溶液を滴下し、0℃で1時間撹拌した。反応液を氷冷して、水(9m1)、15%水酸化ナトリウム水溶液(9m1)、水(23m1)を順次滴下して、過剰の水素化リチウムアルミニウムを分解し、そのまま室温で2時間撹拌した。生じた沈殿をろ過して除き、沈殿を酢酸エチルで洗浄した。集めた濾液の溶媒を減圧留去して油状物を得た。

上で得た油状物、4-N, N-ジメチルアミノピリジン(1.2g)、トリエチルアミン(33.8ml)のテトラヒドロフラン(250ml)溶液に、室温でtertーブチルクロロジメチルシラン(33.5g)を加え、そのまま一晩撹拌した。反応液を水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=15:1)、目的物(38.2g)を油状物として得た。

¹H-NMR (CDC1₃) δ 0.08 (6H, s), 0.91 (9H, s), 2.26 (3H, s), 4.51 (2H, s), 6.31 (1H, d), 7.22 (1H, d).

[0385]

参考例 1 4 5

t e r t - ブチル + [5 - (5, 5 - ジメチル - 1, 3, 2 - ジオキサボリナン - 2 - イル) - 2 - メチル - 3 - フリル] メトキシ ジメチルシラン

【化267】

2, 2, 6, 6ーテトラメチルピペリジン(27.9 ml)のテトラヒドロフラン(150 ml)溶液に、氷冷下で1.6規定nーブチルリチウムのヘキサン溶液(100 ml)を滴下し、10分間撹拌した。反応混合物を-78 $\mathbb C$ に冷却した後、ホウ酸トリイソプロピル(40.2 g)および t er t ーブチル(ジメチル) [(2-x+y-3-y+y)] シラン(24.2 g)を加えた。これを-78 $\mathbb C$ で2時間撹拌した後、4時間かけて徐々に室温に昇温し、室温で一晩撹拌した。反応液を塩化アンモニウム水溶液に注ぎ、酢酸エチルで3回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、油状物を得た。

上で得た油状物と 2 、 2 ージメチルー 1 、 3 ー プロパンジオール(1 3 . 3 g)のトルエン(2 0 0 m 1)溶液を室温で一晩撹拌した。反応液を水で洗浄し、水層は酢酸エチルで抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(α +サン:酢酸エチル= α 3 0 : 1 から 9 : 1)、目的物(α 2 . 9 g)を油状物として得た。

¹H-NMR (CDCl₃) δ 0.07 (6H, s), 0.90 (9H, s), 1.01 (6H, s), 2.31 (3H, s), 3.74 (4H, s), 4.50 (2H, s), 6.91 (1H, s).

[0386]

参考例 1 4 6

[5-(4-メトキシフェニル)-2-メチル-3-フリル]メタノール

【化268】

t e r t - ブチル | [5 - (5, 5 - ジメチル - 1, 3, 2 - ジオキサボリナン- 2 - イル) - 2 - メチル - 3 - フリル | メトキシ | ジメチルシラン(4.06 g)のトルエン-水混合溶媒(30ml-30ml)に炭酸ナトリウム(2.5 4g)、4ーブロモアニソール(1.8ml)を加え、反応容器を窒素置換した 後に、テトラキス(トリフェニルホスフィン)パラジウム(0.70g)を加え て、80℃で一晩攪拌した。酢酸エチルで希釈後、有機層を水、飽和食塩水で洗 净後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣を シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=40:1から1 0:1)に通し、油状物を得た。これをテトラヒドロフラン(20ml)に溶解 させ、テトラーnーブチルアンモニウムフロリド(1Mテトラヒドロフラン溶液 、15ml)を滴下し、室温で1時間攪拌した。酢酸エチルで希釈後、有機層を 水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油 状物を得た。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチ $\nu = 10:1$ から1:1)で精製し、目的物(0.78g)を結晶として得た。 融点62-64℃; ¹H-NMR (CDC1₃) δ 2.34 (3H, s), 3.82 (3H, s), 4.49 (2H, s) , 6.49 (1H, s), 6.90 (2H, d), 7.55 (2H, d).

[0387]

参考例146(1)~参考例146(4)

[0388]

参考例146(1)

[5-(3-フルオロフェニル)-2-メチル-3-フリル]メタノール

【化269】

油状物; 1 H-NMR (CDC1₃) δ 2.36 (3H, s), 4.50 (2H, s), 6.65 (1H, s), 6.8 5-6.96 (1H, m), 7.25-7.40 (3H, m).

[0389]

参考例146(2)

 $\{2-x+v-5-[2-(-1)] + (-1) +$

【化270】

油状物; 1 H-NMR(CDC1₃) δ 2.37(3H, s), 4.52(2H, s), 6.69(1H, s), 7.34-7.39(1H, m), 7.51-7.56(1H, m), 7.70-7.73(2H, m).

[0390]

参考例146(3)

(2-メチル-5-フェニル-3-フリル) メタノール

【化271】

油状物; ¹H-NMR (CDC1₃) δ 2.35 (3H, s), 4.49 (2H, s), 6.61 (1H, s), 7.1 8-7.24 (1H, m), 7.31-7.37 (2H, m), 7.60 (2H, d).

[0391]

参考例146(4)

[2-メチル-5-(4-メチルフェニル)-3-フリル] メタノール

【化272】

融点79-80°C; 1 H-NMR (CDC1₃) δ 2.34 (6H, s), 4.49 (2H, s), 6.55 (1H, s), 7.14 (2H, dd), 7.49 (2H, dd).

[0392]

参考例147

2-[(3-メトキシフェニル) スルファニル] <math>-2-メチルプロパン酸エチル 【化273】

3-メトキシベンゼンチオールより、参考例98に示す方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDC1₃) る 1.21 (3H, t), 1.49 (6H, s), 3.78 (3H, s), 4.1 1 (2H, q), 6.88-6.91 (1H, m), 7.00-7.05 (2H, m), 7.18-7.25 (1H, m).

[0393]

参考例148

2-[(3-ヒドロキシフェニル)スルファニル]-2-メチルプロパン酸エチル

【化274】

参考例 147で得た 2-[(3-メトキシフェニル) スルファニル] <math>-2-メチルプロパン酸エチルより、参考例 <math>99に示す方法と同様にして、目的物を得た。油状物; 1 H-NMR(CDC1 $_{3}$) δ 1.21(3H, t), 1.49(6H, s), 4.12(2H, q), 5.8 7 (1H, s), 6.81-6.85 (1H, m), 6.95-7.02(2H, m), 7.13-7.18 (1H, m).

[0394]

参考例 1 4 9

 $4-[(3-\{2-メチル-5-[4-(トリフルオロメチル) フェニル]-3$ -フリル $\}$ プロパノイル)アミノ]-3-オキソブタン酸エチル

【化275】

3- {2-メチルー5- [4-(トリフルオロメチル)フェニル] -3-フリル } プロピオン酸(0.80g)のアセトニトリル溶液(20ml)に氷冷下でトリエチルアミン(0.23ml)、塩化ピバロイル(0.21g)を滴下した。30分攪拌後、4-アミノー3-オキソブタン酸エチル塩酸塩(0.33g)、トリエチルアミン(0.23ml)を順に加え、室温で1.5時間攪拌した。酢酸エチルで希釈後、有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1から1:1)で精製し、目的物(0.41g)を結晶として得た。

融点131-133°C; 1 H-NMR (CDC13) δ 1.26 (3H, t), 2.31 (3H, s), 2.48 (2H, t), 2.73 (2H, t), 3.47 (2H, s), 4.18 (2H, q), 4.26 (2H, d), 6.15 (1H, s), 6.58 (1H, s), 7.57 (2H, d), 7.66 (2H, d).

[0395]

参考例149(1)、参考例149(2)

3- {2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル } プロピオン酸と対応するケトアミノ体より、参考例149に示す方法と同様に して、以下に示す化合物を得た。

[0396]

参考例149(1)

 $4-[(3-\{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3$ -フリル $\}$ プロパノイル)アミノ]-3-オキソペンタン酸エチル

【化276】

融点133-136℃; 1 H-NMR(CDC1₃) δ 1.24(3H, t), 1.34(3H, d), 2.30(3H, s), 2.44(2H, t), 2.72(2H, t), 3.50(2H, s), 4.15(2H, q), 4.68(1H, qu intet), 6.17(1H, d), 6.57(1H, s), 7.57(2H, d), 7.66(2H, d).

[0397]

参考例149(2)

5-メチル-4-[(3- $\{2-$ メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル $\}$ プロパノイル)アミノ]-3-オキソヘキサン酸エチル【化277】

油状物; 1 H-NMR(CDC1₃) δ 0.72(3H, d), 0.92(3H, d), 1.24(3H, t), 2.1 7-2.27(1H, m), 2.31(3H, s), 2.49(2H, t), 2.74(2H, t), 3.50(2H, s), 4.16(2H, q), 4.73(1H, dd), 6.10(1H, d), 6.60(1H, s), 7.57(2H, d), 7.67(2H, d).

[0398]

参考例150

4- {2-メチル-5- [4-(トリフルオロメチル) フェニル] -3-フリルブタン酸

【化278】

 $4-\{2-x+v-5-[4-(トリフルオロメチル) フェニル] -3-フリル <math>\{1,18g\}$ のジクロロメタン溶液(20m1)にトリエ

チルアミン(2.21ml)を加え、氷冷下で3酸化硫黄ピリジン錯体(2.53g)のジメチルスルホキシド溶液(20ml)を加え、室温で30分攪拌した。ジエチルエーテルで希釈し、有機層を1規定塩酸、水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。これをtertーブタノール(32ml)に溶解させ、水(8ml)、リン酸2水素ナトリウム(0.72g)、2ーメチルー2ーブテン(2.1ml)を加え、最後に亜塩素酸ナトリウム(0.54g)を加え、室温で1時間攪拌した。酢酸エチルで希釈後、有機層を1規定塩酸、水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1から2:1、1:1)で精製し、目的物(0.36g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.87-1.94 (2H, m), 2.29 (3H, s), 2.38 (2H, t), 2.43 (2H, t), 6.57 (1H, s), 7.57 (2H, d), 7.66 (2H, d).

[0399]

参考例151

 $4-[(4-\{2-x+y-5-[4-(トリフルオロメチル) フェニル] -3$ -7リル | ブタノイル) アミノ] -3-オキソペンタン酸エチル

【化279】

参考例 150 で得た $4-\{2-メチル-5-[4-(トリフルオロメチル) フェニル] <math>-3-$ フリル アタン酸より、参考例 149 に示す方法と同様にして、目的物を得た。

アモルファス; 1 H-NMR (CDCl₃) δ 1.27 (3H, t), 1.38 (3H, d), 1.85-1.94 (2H, m), 2.24 (2H, t), 2.29 (3H, s), 2.41 (2H, d), 3.55 (2H, s), 4.19 (2H, q), 4.70 (1H, quintet), 6.17 (1H, d), 6.58 (1H, s), 7.57 (2H, d), 7.67 (2H, d).

[0400]

参考例152

2ーメチルー5ー [4ー(トリフルオロメチル)フェニル]ー3ーフロ酸2ー(トリメチルシリル)エチル

【化280】

2-メチルー5- [4-(トリフルオロメチル)フェニル] -3-フロ酸メチル (4.86g)のテトラヒドロフランーメタノール(50m1-50m1)混合 溶媒に1規定水酸化ナトリウム(26m1)を加え、60で4時間攪拌した。 放冷後、1規定塩酸で酸性とし、酢酸エチルで希釈。有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。これをテトラヒドロフラン(100m1)に溶解させ、4-ジメチルアミノピリジン(0.21g)、1-エチルー3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩(4.92g)、2-(トリメチルシリル)エタノール(2.95m1)を順に加え、室温で一晩攪拌した。酢酸エチルで希釈後、有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1から10:1)で精製し、目的物(4.52g)を結晶として得た。融点80-81で、1H-NMR(CDC13)30.086(9H, s)、1.07-1.16(2H, m),2.67(3H, s),4.31-4.40(2H, m),6.99(1H, s),7.62(2H, d),7.72(2H, d)

[0401]

参考例 1 5 3

2-メチル-2-(4-メチルフェノキシ)プロパン酸エチル

【化281】

pークレゾールより、参考例98に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDC1₃) δ 1.25(3H, t), 1.56(6H, s), 2.27(3H, s), 4.2 3(2H, q), 6.73(2H, d), 7.01(2H, d).

[0402]

参考例154

2-[4-(ブロモメチル) フェノキシ] -2-メチルプロパン酸エチル 【化282】

2-メチルー2-(4-メチルフェノキシ)プロパン酸エチル(8.89g)の酢酸エチル溶液(100m1)に2, 2'-アゾビス(イソブチロトニトリル)(0.33g)にN-プロモスクシンイミド(7.12g)を加え、一晩、加熱還流した。溶媒を減圧留去し、ヘキサンで希釈。不溶物をセライトろ過し、ヘキサンで洗浄。ろ液を減圧留去し、目的物(12.13g)を油状物として得た。油状物; 1 H-NMR(CDCl₃) δ 1.23(3H, t), 1.60(6H, s), 4.22(2H, q), 4.46(2H, s), 6.78(2H, d), 7.26(2H, d).

[0403]

参考例 1 5 5

【化283】

2-[4-(プロモメチル) フェノキシ] -2-メチルプロパン酸エチル(12.13g)のトルエン溶液(<math>100m1)にトリフェニルホスフィン(10.5g)を加え、一晩、加熱還流した。溶媒を減圧留去した後、残渣にジイソプロピルエーテルを加えて結晶化させ、トルエンで洗浄し、目的物(17.37g)を固体として得た。

融点185-186°C; 1 H-NMR (CDCl₃) δ 1.07 (3H, t), 1.48 (6H, s), 4.10 (2H, q), 5.10 (2H, d), 6.62 (2H, d), 6.85 (2H, dd), 7.60-7.76 (12H, m), 7.87-7.92 (3H, m).

[0404]

参考例 1 5 6

3-{2-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル-3-オキソプロパン酸エチル

【化284】

2-xチルー5-[4-(トリフルオロメチル)フェニル]-3-フロ酸(13.0g)のテトラヒドロフラン(150ml)溶液に1,1'-カルボニルジイミダゾール(8.2g)を室温で加え、そのまま2時間撹拌した。この混合物にマロン酸モノエチルエステルモノカリウム塩(8.6g)および塩化マグネシウム(2.4g)を室温で加え、60℃で一晩撹拌した。反応液を水で希釈し、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製して(ヘキサン:酢酸エチル=15:1から6:1)、目的物(13.3g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.26-1.36 (6H, m), 3.05 (0.4H, q), 3.11 (1.6H, q), 3.7 9 (1.6H, s), 4.23 (2H, q), 5.34 (0.2H, s), 6.81 (0.2H, s), 6.95 (0.8H, s), 7.62 (0.4H, d), 7.64 (1.6H, d), 7.72 (0.4H, d), 7.74 (1.6H, d).

[0405]

参考例 1 5 7

3- { [tertーブチル(ジメチル)シリル]オキシ}ー1- {2ーエチルー 5- [4-(トリフルオロメチル)フェニル]ー3-フリル}プロパンー1ーオール 【化285】

水素化リチウムアルミニウム(1.1g)のテトラヒドロフラン(100ml) 懸濁液に、氷冷下、 $3-\{2-x+\nu-5-[4-(トリフルオロメチル)フェニル]-3-フリル\}-3-オキソプロパン酸エチル(7.13g)のテトラヒドロフラン(50ml)溶液を滴下し、<math>0$ で 1時間撹拌した。反応液を氷冷して、水(1 ml)、1 5 %水酸化ナトリウム水溶液(1 ml)、水(2.5 ml)を順次滴下して、過剰の水素化リチウムアルミニウムを分解し、そのまま室温で 2時間撹拌した。生じた沈殿をろ過して除き、沈殿を酢酸エチルで洗浄した。集めた濾液の溶媒を減圧留去して油状物を得た。

上で得た油状物、4-N, N-ジメチルアミノピリジン(0.25g)、トリエチルアミン(3.4 m l) のテトラヒドロフラン(100ml) 溶液に、室温で tert-ブチルクロロジメチルシラン(3.0g) を加え、そのまま一晩撹拌した。反応液を水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(n+b): 酢酸エチル=15:1から9:1)、目的物(n+b) を油状物として得た。

¹H-NMR (CDC1₃) δ 0.11 (6H, s), 0.93 (9H, s), 1.29 (3H, t), 1.76-1.86 (1 H, m), 1.98-2.12 (1H, m), 2.74 (2H, q), 3.44 (1H, d), 3.80-3.96 (2H, m), 4.89-4.96 (1H, m), 6.77 (1H, s), 7.59 (2H, d), 7.70 (2H, d).

[0406]

参考例 1 5 8

tert- = T+1 = T+1

【化286】

 $3-\{[tert-ブチル(ジメチル)シリル]オキシ\}-1-\{2-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル\}プロパン-1-オール(1.31g)を1,2-ジメトキシエタン(40ml)に溶かし、室温で60%水素化ナトリウムの流動パラフィン懸濁物(0.15g)を加え、そのまま0.5時間撹拌した。混合物にヨウ化メチル(0.57ml)を室温で加え、室温で一晩、60℃で8時間撹拌した。反応液を水に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた残留物をシリカゲルカラムクロマトグラフィーにて精製して(ヘキサンからヘキサン:酢酸エチル=15:1)、目的物(0.87g)を油状物として得た。$

¹H-NMR (CDC1₃) δ 0.04 (3H, s), 0.06 (3H, s), 0.90 (9H, s), 1.29 (3H, t), 1.74-1.83 (1H, m), 2.01-2.12 (1H, m), 2.72 (2H, dq), 3.21 (3H, s), 3.5 4-3.61 (1H, m), 3.71-3.78 (1H, m), 4.33 (1H, dd), 6.66 (1H, s), 7.59 (2H, d), 7.70 (2H, d).

[0407]

参考例 1 5 9

【化287】

 $tert-ブチル (3-\{2-エチル-5-[4-(トリフルオロメチル) フェニル] -3-フリル <math>-3-$ メトキシプロポキシ) ジメチルシラン (0.86g) のテトラヒドロフラン溶液 (5 m 1) にテトラ-n-ブチルアンモニウムフロ

リド (1Mテトラヒドロフラン溶液、3ml)を滴下し、室温で1時間攪拌した。酢酸エチルで希釈後、有機層を水、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して油状物を得た。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1から1:1)で精製し、目的物(0.54g)を油状物として得た。

 1 H-NMR (CDC1₃) δ 1.29 (3H, t), 1.79-1.91 (1H, m), 2.07-2.22 (1H, m), 2 .46 (1H, br), 2.73 (2H, q), 3.24 (3H, s), 3.79-3.81 (2H, m), 4.39 (1H, d d), 6.70 (1H, s), 7.60 (2H, d), 7.72 (2H, d).

[0408]

参考例160

ジ(4-ヒドロキシフェニル)ジスルフィド

【作288】

4-ビドロキシチオフェノール(5g)をアセトン(50m1)に溶かし、硝酸銅(II)三水和物(1.9g)を加え、室温で30分間撹拌した。溶媒を留去し、酢酸エチルを加え、不溶物をろ去した。ろ液の溶媒を留去、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン)で精製し、目的物(3.7g)をアモルファスとして得た。

 $^{1}\text{H-NMR}$ (CDC1₃) δ 4.98 (2H, s), 6.75 (4H, d), 7.35 (4H, d).

[0409]

参考例 1 6 1

arphi (4 - (1 - (エトキシカルボニル) - 1 - arphi チルエトキシ) フェニル) ジスルフィド

【化289】

ジ(4-ヒドロキシフェニル)ジスルフィド(3.7g)、2-ブロモイソ酪酸

エチル(6.5 m 1)、炭酸カリウム(12.2 g)をN, Nージメチルホルム アミド(50 m 1)中50 $\mathbb C$ 、一晩加熱した。2 ープロモイソ酪酸エチル(3 m 1)を追加し、さらに一晩加熱した。水中に注ぎ、酢酸エチルで抽出した。有機 層を水、食塩水で洗浄後、硫酸マグネシウムで乾燥し、溶媒を留去した。残渣を シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン)で精製し、目的 物(4.4 g)を油状物として得た。

 $^{1}\text{H-NMR}$ (CDC13) δ 1.23 (6H, t), 1.59 (12H, s), 4.22 (4H, q), 6.75 (4H, d), 7.33 (4H, d).

[0410]

参考例 1 6 2

N-(3-EFD+2VV)-N-FFD

【化290】

3-ヒドロキシベンズアルデヒド(2.5g)、N-メチルサルコシンメチルエステル塩酸塩(2.9g)、トリエチルアミン(3.5m1)、トリアセトキシ水素化ほう素ナトリウム(8.7g)を1,2-ジクロロエタン(100m1)中、室温で6時間撹拌した。溶媒を留去し、炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を水、食塩水で洗浄、硫酸マグネシウムで乾燥、溶媒を留去し、目的物(4.3g)を油状物として得た。

 $^{1}\text{H-NMR}$ (CDC1₃) 3 2.39 (3H, s), 3.27 (2H, s), 3.62 (2H, s), 3.71 (3H, s), 6.72-6.77 (1H, m), 6.84-6.87 (2H, m), 7.14-7.22 (1H, m).

[0411]

参考例 1 6 3

3'-(ベンジルオキシ)-1,1'-ビフェニル-3-カルボン酸エチル

ページ: 239/

【化291】

¹H-NMR (CDC1₃) δ 1.41 (3H, t), 4.40 (2H, q), 5.13 (2H, s), 6.97-7.01 (1 H, m), 7.20-7.25 (1H, m), 7.33-7.51 (1H, m), 7.73-7.77 (1H, m), 8.00-8.0 3 (1H, m), 8.25-8.26 (1H, m).

[0412]

参考例 1 6 4

3'ーヒドロキシー1,1'ービフェニルー3ーカルボン酸エチル

【化292】

3'ー(ベンジルオキシ)ー1, 1'ービフェニルー3ーカルボン酸エチル(0.65g)をエタノール(50ml)に溶かし、10%パラジウムー炭素(50%含水、0.1g)を用いて一晩接触還元した。触媒をろ去し、ろ液の溶媒を留去し、目的物(0.4g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.42 (3H, t), 4.41 (2H, q), 5.00 (1H, br), 6.85 (1H, d d), 7.09-7.11 (1H, m), 7.17-7.22 (1H, m), 7.30-7.38 (1H, m), 7.46-7.54 (1 H, m), 7.73-7.79 (1H, m), 8.00-8.06 (1H, m), 8.25-8.26 (1H, m).

[0413]

参考例165

[3'-(ベンジルオキシ)-1,1'-ビフェニル-3-イル] 酢酸メチル 【化293】

mーヒドロキシフェニル酢酸メチル(1.7g)、トリエチルアミン(2.9m 1)をジクロロメタン(50m1)に溶かし、氷冷下、トリフルオロメタンスルホン酸無水物(1.8m1)を滴下した。15分間撹拌し、反応液を水洗後、乾燥、溶媒を留去した。残渣の半量をトルエン(50m1)に溶かし、3-ベンジルオキシフェニルほう酸(0.5g)、1M炭酸カリウム水溶液(6m1)、エタノール(6m1)を加え、アルゴン雰囲気下、室温で30分間撹拌した。テトラキストリフェニルホスフィンパラジウム(100mg)を加え、一晩還流した。酢酸エチルで抽出し、有機層を水、食塩水で洗浄後、硫酸マグネシウムを用いて乾燥、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン)で精製し、目的物(0.69g)を油状物として得た。 1_{H-NMR} (CDC13) δ 3.67-3.71 (5H, m), 5.12 (2H, s), 6.94-6.98 (1H, m), 7. 16-7.49 (12H, m).

[0414]

参考例 1 6 6

(3'-ヒドロキシー1, 1'-ビフェニルー3ーイル) 酢酸メチル

【化294】

3'-(ベンジルオキシ)-1, 1'-ビフェニル-3-イル] 酢酸メチル(0. 69g) をエタノール(50m1)、酢酸エチル(10m1)に溶かし、10%パラジウムー炭素(50%含水、0.8g)を用いて6時間接触還元した。触媒を3去し、5液の溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィ

- (酢酸エチル/ヘキサン)で精製し、目的物 (0.27g) を油状物として得た。

¹H-NMR (CDC1₃) δ 3.69-3.71 (5H, m), 4.81 (1H, s), 6.81 (1H, d), 7.04 (1 H, s), 7.15 (1H, d), 7.25-7.32 (2H, m), 7.35-7.41 (1H, m), 7.45-7.48 (2H, m).

参考例 1 6 7

2-メチル-2-[(4-ニトロベンジル)チオ]プロピオン酸メチル

【化295】

4-ニトロベンジルブロミド(1.8g)、2-メルカプトイソ酪酸メチル(1.16g)、炭酸カリウム(2.4g)をDMF(1.0ml)中、室温で1時間 撹拌した。水中に注ぎ、酢酸エチルで抽出した。有機層を水、食塩水で洗浄後、硫酸マグネシウムで乾燥した。溶媒を留去し、目的物(2.2g)を油状物として得た。

 1 H-NMR (CDC1₃) δ 1.54 (6H, s), 3.63 (3H, s), 3.90 (2H, s), 7.48 (2H, d), 8.15 (2H, d).

[0416]

参考例168

2-[(4-アミノベンジル)チオ]-2-メチルプロピオン酸メチル

【化296】

2-メチル-2- [(4-二トロベンジル)チオ] プロピオン酸メチル(2.2 g)、還元鉄(2.3 g)を酢酸(5 0 m l)中、室温で一晩撹拌した。溶媒を留去し、酢酸エチルを加え、セライトを用いてろ過、ろ液を炭酸水素ナトリウム

水溶液、水、食塩水で洗浄後、硫酸マグネシウムで乾燥、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/へキサン)で精製し、目的物(1.4g)を油状物として得た。

¹H-NMR (CDC1₃) δ 1.53 (6H, s), 3.63 (2H, br), 3.67 (3H, s), 3.73 (2H, s), 6.60 (2H, d), 7.07 (2H, d).

[0417]

実施例1

[(3- | [5-(4-フルオロフェニル)-2-メチル-3-フロイル] アミノトベンジル)チオ]酢酸

【化297】

5-(4-7)ルオロフェニル)-N-[3-(ヒドロキシメチル)] フェニル] -2-メチル-3-フランカルボキサミド (0.26g)、トリエチルアミン (0.33m1) のテトラヒドロフラン (10m1) 溶液に、室温でメタンスルホン酸クロリド $(68\mu1)$ を滴下し、そのまま 0.5 時間撹拌した。得られた混合物にチオグリコール酸エチル (0.10m1) を、室温にて加え、そのまま一晩撹拌した。反応液の溶媒を減圧留去して、得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=9:1から 3:1)、固体を得た。得られた固体をメタノール (3m1) とテトラヒドロフラン (5m1) に溶かし、1規定水酸化ナトリウム水溶液 (1.6m1) を加え、室温で一晩撹拌した。反応液を濃縮、水で希釈し、希塩酸で反応液を酸性にした後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をヘキサンより結晶化して、目的物 (0.11g) を粉末として得た。

融点198-199℃; ¹H-NMR (CDC1₃-CD₃OD) *3* 2.70 (3H, s), 3.11 (2H, s), 3.85 (2H, s), 7.06-7.14 (4H, m), 7.29 (1H, t), 7.61-7.70 (4H, m), 8.88 (1H, s).

[0418]

実施例1(1)~実施例1(5)

参考例17(1)~参考例17(5)で得た化合物より、実施例1に示す方法 と同様にして、以下に示す化合物を得た。

[0419]

実施例1(1)

[(3- | [5-(4-フルオロフェニル)-2-メチル-3-フロイル] (メチル) アミノ ベンジル)チオ] 酢酸

【化298】

融点155-156°C; 1 H-NMR (CDC1₃) δ 2.49 (3H, s), 2.81 (2H, s), 3.45 (3H, s), 3.78 (2H, s), 5.68 (1H, s), 6.97 (2H, t), 7.12-7.15 (2H, m), 7.22-7.3 9 (4H, m).

[0420]

実施例1 (2)

[(3- { [5-(4-フルオロフェニル) -2-メチル-3-フロイル] (プロピル) アミノ ベンジル)チオ]酢酸

【化299】

融点140-141°C; 1 H-NMR (CDC $_{13}$) δ 0.94 (3H, t), 1.55-1.74 (2H, m), 2.49 (3H, s), 2.78 (2H, s), 3.78 (2H, s), 3.83 (2H, t), 5.63 (1H, s), 6.96 (2H, t), 7.10-7.25 (2H, m), 7.23-7.39 (4H, m).

[0421]

実施例1(3)

[(3-|[5-(4-フルオロフェニル)-2-メチル-3-フロイル] (ヘプチル

) アミノ ベンジル) チオ] 酢酸

【化300】

融点94-96°C; 1 H-NMR (CDC1₃) δ 0.86 (3H, t), 1.25-1.34 (10H, m), 1.56-1. 65 (2H, m), 2.48 (3H, s), 2.78 (2H, s), 3.77 (2H, s), 3.84 (2H, t), 5.62 (1H, s), 6.96 (2H, t), 7.08-7.13 (2H, m), 7.23-7.36 (4H, m).

[0422]

実施例1(4)

[(3- |ベンジル [5-(4-フルオロフェニル)-2-メチル-3-フロイル] ア ミノ | ベンジル) チオ] 酢酸

【化301】

油状物; 1 H-NMR (CD₃OD) δ 2.53 (3H, s), 2.69 (2H, s), 3.69 (2H, s), 5.08 (2H, s), 5.63 (1H, s), 6.91-7.03 (4H, m), 7.17-7.31 (9H, m).

[0423]

実施例1(5)

{ [3-({2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フロイル} アミノ) ベンジル] チオ} 酢酸

【化302】

融点188-189°C; 1 H-NMR(CDC1₃) δ 2.72(3H, s), 3.10(2H, s), 3.85(2H, s), 7.08-7.18(2H, m), 7.26-7.34(1H, m), 7.59-7,70(3H, m), 7.77(2H, d)

ページ: 245/

, 8.42 (1H, s).

[0424]

実施例2

【[3-(|2-エチル-5-[4-(トリフルオロメチル) フェニル] -3-フロイル アミノ) ベンジル] チオ 酢酸

【化303】

[(3-アミノベンジル)チオ]酢酸エチル・塩酸塩(0.41g)を水に溶かし、炭酸カリウムで塩基性とした後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、[(3-アミノベンジル)チオ]酢酸エチルを油状物として得た。

2-エチル-5- [4-(トリフルオロメチル)フェニル] -3-フランカルボン酸 (0.45g) とN, N-ジメチルホルムアミド (1滴)のテトラヒドロフラン (10ml)溶液に、塩化オキザリル (0.28ml)を室温で滴下し、0.5時間撹拌した。反応液の溶媒を減圧留去し、酸クロリドの粗生成物を固体として得た。上で得た [(3-アミノベンジル)チオ]酢酸エチルと炭酸水素ナトリウム (0.27g)をテトラヒドロフラン (20ml)中で撹拌し、上で得た酸クロリドをテトラヒドロフラン (10ml)に溶解したものを室温で滴下し、そのまま一晩撹拌した。反応液を酢酸エチルで希釈し、水で洗浄、無水硫酸マグネシウムで乾燥、溶媒を減圧留去して、油状物を得た。得られた油状物をメタノール (5ml)とテトラヒドロフラン (5ml)に溶かし、1規定水酸化ナトリウム水溶液 (3ml)を加え、室温で一晩撹拌した。反応液を濃縮、水で希釈し、希塩酸で反応液を酸性にした後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をジイソプロピルエーテル-ヘキサンより結晶化して、目的物 (0.62g)を結晶として得た

融点199-200℃; ¹H-NMR (CDCl₃-DMSO-d₆) δ 1.36 (3H, t), 3.10 (2H, s), 3.1

6 (2H, q), 3.85 (2H, s), 7.10 (1H, d), 7.15 (1H, s), 7.29 (1H, t), 7.58 (1H, s), 7.64 (2H, d), 7.67 (1H, d), 7.77 (2H, d), 8.33 (1H, s).

[0425]

実施例2(1)~実施例2(5)

[(3-アミノベンジル)チオ]酢酸エチル・塩酸塩を、対応するカルボン酸 (参考例で合成あるいは市販)と、実施例2に示す方法により縮合、加水分解し て、以下に示す化合物を得た。

[0426]

実施例 2 (1)

| [3-(|2-イソプロピル-5-[4-(トリフルオロメチル)フェニル]-3-フロイル| アミノ) ベンジル] チオ| 酢酸

【化304】

融点173-174°C; 1 H-NMR(CDC1₃-DMSO-d₆) δ 1.38(6H, d), 3.10(2H, s), 3.8 5(2H, s), 3.89-3.98(1H, m), 7.10(1H, d), 7.11(1H, s), 7.29(1H, t), 7.58(1H, s), 7.64(2H, d), 7.67(1H, d), 7.76(2H, d), 8.26(1H, s).

[0427]

実施例2 (2)

| [3-(| 2-ブチル-5- [4-(トリフルオロメチル) フェニル] -3-フロイル| アミノ) ベンジル] チオ| 酢酸

【化305】

融点195~196°C; 1 H~NMR(CDC1 $_{3}$ ~DMSO~d $_{6}$) δ 0.96(3H, t), 1.38~1.50(2H, m), 1.72~1.82(2H, m), 3.10(2H, s), 3.14(2H, t), 3.85(2H, s), 7.09~7.17

(2H, m), 7.29 (1H, t), 7.56 (1H, s), 7.64 (2H, d), 7.67 (1H, d), 7.76 (2H, d), 8.31 (1H, s).

[0428]

実施例2 (3)

[(3- | [5-(4-クロロフェニル)-2-フロイル] アミノ ベンジル) チオ] 酢酸

【化306】

融点173-174°C; 1 H-NMR(CDC1 ${}_{3}$ -DMSO-d ${}_{6}$) δ 3.11(2H, s), 3.86(2H, s), 6.7 9(1H, d), 7.12(1H, d), 7.29-7.34(2H, m), 7.42(2H, d), 7.61(1H, t), 7.73-7.78(3H, m), 8.65(1H, s).

[0429]

実施例2 (4)

({3 − [(3 − {2 −メチル−5 − [4 −(トリフルオロメチル)フェニル]−3 − フリル}プロピオニル)アミノ]ベンジル}チオ)酢酸

【化307】

 1 H-NMR (CDC1₃) δ 2.33 (3H, s), 2.59 (2H, t), 2.80 (2H, t), 3.07 (2H, s), 3.80 (2H, s), 6.65 (1H, s), 7.04 (1H, d), 7.24 (1H, t), 7.46 (1H, s), 7.56 (3H, m), 7.67 (2H, d), 8.57 (1H, br s).

[0430]

実施例2 (5)

({3- [(3- {2-ブチル-5- [4-(トリフルオロメチル) フェニル] -3-フリル プロピオニル) アミノ] ベンジル チオ) 酢酸

【化308】

融点137-138°C; 1 H-NMR (CDC1 $_{3}$ -DMSO-d $_{6}$) δ 0.93 (3H, t), 1.32-1.42 (2H, m), 1.59-1.69 (2H, m), 2.59 (2H, t), 2.66 (2H, t), 2.81 (2H, t), 3.07 (2H, s), 3.80 (2H, s), 6.65 (1H, s), 7.04 (2H, d), 7.24 (1H, t), 7.44 (1H, s), 7.56 (3H, d), 7.66 (2H, d), 8.39 (1H, s).

[0431]

実施例3

[(3- { [5-フェニル-2-(トリフルオロメチル) -3-フロイル] アミノ ベンジル) チオ] 酢酸

【化309】

[(3-アミノベンジル)チオ]酢酸エチル・塩酸塩(0.21g)、5-フェニル-2-(トリフルオロメチル)-3-フランカルボン酸(0.21g)およびトリエチルアミン(0.28ml)をテトラヒドロフラン(10ml)とN,N-ジメチルホルムアミド(2ml)中で撹拌しながら、シアノりん酸ジエチル(0.14ml)を室温で滴下し、そのまま一晩撹拌した。反応液を炭酸水素ナトリウム水溶液に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーに通し(ヘキサン:酢酸エチル=3:1から1:1)、油状物を得た。得られた油状物をメタノール(3ml)とテトラヒドロフラン(3ml)に溶かし、1規定水酸化ナトリウム水溶液(1ml)を加え、室温で一晩撹拌した。反応液を濃縮、水で希釈し、希塩酸で反応液を酸性にした後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をジイソプロピルエーテル-ヘキサンより結晶化して、目的物(60mg)を粉末として得た。

融点178-182℃; ¹H-NMR(CDC1₃-DMSO-d₆) δ 3.10 (2H, s), 3.85 (2H, s), 7.1 2 (1H, d), 7.21 (1H, s), 7.30 (1H, t), 7.39-7.51 (3H, m), 7.67-7.77 (4H, m), 9.50 (1H, s).

[0432]

実施例 4

(\{3 - [(3 - \{2 - エチル - 5 - [4 - (トリフルオロメチル) フェニル] - 3 - フリル プロパノイル) アミノ] ベンジル チオ) 酢酸

【化310】

 $[(3-アミノベンジル)チオ] 酢酸エチル・塩酸塩(0.20g)、3-{2}-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロピオン酸 (0.24g)、1-ヒドロキシベンゾトリアゾール水和物(0.14g)およびトリエチルアミン(0.16 m l)をN,N-ジメチルホルムアミド(5 m l)中で撹拌しながら、<math>1-$ エチル-3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩(0.18g)を室温で加え、そのまま一晩撹拌した。反応液を炭酸水素ナトリウム水溶液に注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた残留物をメタノール(3 m l)とテトラヒドロフラン(3 m l)に溶かし、1規定水酸化ナトリウム水溶液(2 m l)を加え、室温で一晩撹拌した。反応液を濃縮、水で希釈し、希塩酸で反応液を酸性にした後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をジイソプロピルエーテルより結晶化して、目的物(0.12g)を粉末として得た。

融点139-141°C; 1 H-NMR(CDC1 ${}_{3}$ -DMS0-d ${}_{6}$) δ 1.26(3H, t), 2.58(2H, t), 2.7 0(2H, q), 2.82(2H, t), 3.07(2H, s), 3.80(2H, s), 6.64(1H, s), 7.07(1H, d), 7.26(1H, t), 7.41(1H, s), 7.53(1H, d), 7.57(2H, d), 7.68(2H, d), 7.90(1H, s).

[0433]

実施例4(1)、実施例4(2)

[(3-アミノベンジル)チオ]酢酸エチル・塩酸塩を、対応するカルボン酸 (参考例で合成)と、実施例4に示す方法により縮合、加水分解して、以下に示す化合物を得た。

[0434]

実施例4(1)

({3-[({2-メチル-5-[4-(トリフルオロメチル) フェニル] -3-フリル アセチル) アミノ] ベンジル チオ) 酢酸

【化311】

融点173-174°C; 1 H-NMR (CDCl₃) δ 2.40 (3H, s), 3.07 (2H, s), 3.49 (2H, s), 3.80 (2H, s), 6.78 (1H, s), 7.06 (1H, d), 7.24 (1H, t), 7.45 (1H, s), 7.54-7.61 (3H, m), 7.71 (2H, d), 8.50 (1H, s).

[0435]

実施例4(2)

【[3-(【2-メチル-5-[4-(トリフルオロメトキシ)フェニル]-3-フロイル アミノ) ベンジル]チオ 酢酸

【化312】

融点200-202℃; ¹H-NMR(CDC1₃-DMSO-d₆) δ 2.71(3H, s), 3.10(2H, s), 3.8 5 (2H, s), 7.97-7.10(1H, m), 7.19-7.31(4H, m), 7.64-7.72(4H, m), 8.94 (1H, s).

[0436]

実施例5

[(3-{[4-(4-フルオロフェニル)-2, 5-ジメチル-3-フリル] メトキシ ベンジル)チオ] 酢酸

【化313】

¹H-NMR (CDC1₃) δ 2.28 (3H, s), 2.33 (3H, s), 3.12 (2H, s), 3.81 (2H, s), 4.69 (2H, s), 6.79-6.95 (3H, m), 7.03 (2H, t), 7.23 (1H, t), 7.30 (2H, dd).

[0437]

実施例5(1)~実施例5(12)

対応するフランアルカノール(参考例で合成)を、対応するフェノール(参考 例で合成または既知化合物)と、実施例5に示す方法により縮合後、加水分解し て、以下に示す化合物を得た。

[0438]

実施例5(1)

[(3- | [4-(4-フルオロフェニル) -2-イソプロピル-5-メチル-3-フリ

ル] メトキシ ベンジル)チオ]酢酸

【化314】

油状物; ¹H-NMR (CDC1₃) δ 1.29 (6H, d), 2.29 (3H, s), 3.04-3.18 (1H, m), 3.12 (2H, s), 3.81 (2H, s), 4.70 (2H, s), 6.79-6.94 (3H, m), 7.03 (2H, t), 7.22 (1H, t), 7.31 (2H, dd).

[0439]

実施例5 (2)

[(3- | [2-シクロヘキシル-4-(4-フルオロフェニル)-5-メチル-3-フリル] メトキシ ベンジル)チオ] 酢酸

【化315】

油状物; ¹H-NMR (CDCl₃) δ 1.20-1.45 (2H, m), 1.55-1.85 (8H, m), 2.28 (3H, s), 2.65-2.80 (1H, m), 3.13 (2H, s), 3.81 (2H, s), 4.70 (2H, s), 6.80-6.95 (3H, m), 7.02 (2H, t), 7.23 (1H, t), 7.31 (2H, dd).

[0440]

実施例5 (3)

[(3-{[4-(4-フルオロフェニル)-5-メチル-2-フェニル-3-フリル] メトキシ ベンジル)チオ] 酢酸

【化316】

油状物; ¹H-NMR (CDC1₃) & 2.41 (3H, s), 3.14 (2H, s), 3.82 (2H, s), 4.80 (2H, s), 6.86-6.98 (3H, m), 7.06 (2H, t), 7.22-7.44 (6H, m), 7.66-7.70 (2H, m).

[0441]

実施例5 (4)

[(3- { [5-フェニル-2-(トリフルオロメチル)-3-フリル] メトキシ ベンジル)チオ] 酢酸

【化317】

融点84-85°C; 1 H-NMR (CDC1₃) δ 3.11 (2H, s), 3.84 (2H, s), 5.09 (2H, s), 6.85 (1H, s), 6.87-6.99 (3H, m), 7.27 (1H, t), 7.34-7.46 (3H, m), 7.67-7.73 (2H, m).

[0442]

実施例5 (5)

【化318】

融点93-94°C; 1 H-NMR (CDC1₃) δ 1.31 (3H, t), 2.77 (2H, q), 3.12 (2H, s), 3.83 (2H, s), 4.88 (2H, s), 6.78 (1H, s), 6.86-6.97 (3H, m), 7.25 (1H,

t), 7.59 (2H, d), 7.70 (2H, d).

[0443]

実施例5 (6)

{ [3-({2-イソプロピル-5- [4-(トリフルオロメチル) フェニル] -3-フリル メトキシ) ベンジル] チオ 酢酸

【化319】

融点84-85°C; 1 H-NMR (CDC1₃) δ 1.34 (6H, d), 3.12 (2H, s), 3.12-3.21 (1H, m), 3.83 (2H, s), 4.89 (2H, s), 6.77 (1H, s), 6.88 (1H, dd), 6.93-6.97 (2H, m), 7.25 (1H, t), 7.59 (2H, d), 7.70 (2H, d).

[0444]

実施例5 (7)

{ [3-({2-ブチル-5-[4-(トリフルオロメチル) フェニル] -3-フリル } メトキシ) ベンジル] チオ} 酢酸

【化320】

融点77-78°C; 1 H-NMR (CDCl₃) δ 0.94 (3H, t), 1.34-1.46 (2H, m), 1.64-1.7 4 (2H, m), 2.73 (2H, t), 3.12 (2H, s), 3.83 (2H, s), 4.87 (2H, s), 6.79 (1H, s), 6.87-6.97 (3H, m), 7.26 (1H, t), 7.59 (2H, d), 7.70 (2H, d).

[0445]

実施例5 (8)

3-(4-{[5-(4-フルオロフェニル)-2-メチル-3-フリル]メトキシ}-2-メチルフェニル)プロピオン酸

【化321】

融点123-125°C; 1 H-NMR (CDC1₃) δ 2.31 (3H, s), 2.37 (3H, s), 2.62 (2H, t), 2.91 (2H, t), 4.82 (2H, s), 6.58 (1H, s), 6.74-6.80 (2H, m), 7.04 (2H, t), 7.07 (1H, d), 7.57 (2H, dd).

[0446]

実施例5 (9)

3-[4-(|2-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル | メトキシ)-2-メチルフェニル]プロピオン酸

【化322】

融点95-97°C; 1 H-NMR(CDC1₃) δ 1.30(3H, t), 2.31(3H, s), 2.62(2H, t), 2.76(2H, q), 2.91(2H, t), 4.84(2H, s), 6.74-6.79(3H, m), 7.08(1H, d), 7.59(2H, d), 7.70(2H, d).

[0447]

実施例5(10)

【化323】

融点108-109°C; 1 H-NMR (CDCl₃) δ 1.33 (6H, d), 2.31 (3H, s), 2.62 (2H, t), 2.91 (2H, t), 3.10-3.20 (1H, m), 4.85 (2H, s), 6.74-6.79 (3H, m), 7.0 8 (1H, d), 7.59 (2H, d), 7.70 (2H, d).

[0448]

実施例5 (11)

3- [4-(|2-ブチル-5- [4-(トリフルオロメチル) フェニル] -3-フリル | メトキシ) -2-メチルフェニル] プロピオン酸

【化324】

融点118-119°C; 1 H-NMR (CDC1₃) δ 0.94 (3H, t), 1.36-1.45 (2H, m), 1.63-1.73 (2H, m), 2.31 (3H, s), 2.62 (2H, t), 2.72 (2H, t), 2.91 (2H, t), 4.8 3 (2H, s), 6.74-6.79 (3H, m), 7.08 (1H, d), 7.59 (2H, d), 7.70 (2H, d).

[0449]

実施例5 (12)

3-(2-メチル-4- { [5-フェニル-2-(トリフルオロメチル) -3-フリル] メトキシ} フェニル) プロピオン酸

【化325】

融点151-152°C; 1 H-NMR (CDC1₃) δ 2.31 (3H, s), 2.61 (2H, t), 2.90 (2H, t), 5.05 (2H, s), 6.73-6.82 (3H, m), 7.08 (1H, d), 7.31-7.44 (3H, m), 7.68-7.71 (2H, m).

[0450]

実施例 6

2-[(3-{[5-(4-フルオロフェニル)-2-メチル-3-フリル] メトキシ ベンジル)チオ]-2-メチルプロピオン酸 【化326】

[5-(4-フルオロフェニル)-2-メチル-3-フリル]メタノール(1.05g)、2-[(3-ヒドロキシベンジル)チオ]-2-メチルプロピオン酸エチル(1.29g)およびトリブチルホスフィン(2.05g)のテトラヒドロフラン(100m1)溶液に1,1'-(アゾジカルボニル)ジピペリジン(2.56g)を室温で加えた後、一晩撹拌した。反応液の溶媒を減圧留去し、ジイソプロピルエーテルを加え、沈殿を濾別し、ジイソプロピルエーテルで洗浄した。濾液の溶媒を減圧留去して、得られた粗生成物をシリカゲルカラムクロマトグラフィーに通し(ヘキサン:酢酸エチル=30:1から9:1)、油状物を得た。得られた油状物をメタノール(30m1)とテトラヒドロフラン(30m1)に溶かし、1規定水酸化ナトリウム水溶液(10m1)を加え、室温で一晩撹拌した。反応液を濃縮、水で希釈し、希塩酸で反応液を酸性にした後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をジイソプロピルエーテル-ヘキサンより結晶化して、目的物(1.49g)を結晶として得た。

融点134-135°C; 1 H-NMR (CDC1 $_{3}$) δ 1.56 (6H, s), 2.37 (3H, s), 3.88 (2H, s), 4.84 (2H, s), 6.58 (1H, s), 6.84 (1H, dd), 6.91-6.96 (2H, m), 7.04 (2 H, t), 7.21 (1H, t), 7.58 (2H, dd).

[0451]

実施例6(1)~実施例6(126)

対応するフランアルカノール(参考例で合成)を、対応するフェノールまたは メルカプタン(参考例で合成または既知化合物)と、実施例 6 に示す方法により 縮合後、加水分解して、以下に示す化合物を得た。

[0452]

実施例6(1)

[(3-{[5-(4-フルオロフェニル)-2-メチル-3-フリル] メトキシ〉 ベ

ンジル)チオ]酢酸

【化327】

融点120-122°C; 1 H-NMR (CDC1 $_{3}$) δ 2.39 (3H, s), 3.12 (2H, s), 3.84 (2H, s), 4.87 (2H, s), 6.60 (1H, s), 6.86-6.97 (3H, m), 7.05 (2H, t), 7.26 (1H, t), 7.59 (2H, dd).

[0453]

実施例6 (2)

【[3-({2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル 】メトキシ) ベンジル] チオ↓酢酸

【化328】

アモルファス; 1 H-NMR (CDCl₃) δ 2.41 (3H, s), 3.11 (2H, s), 3.83 (2H, s), 4.97 (2H, s), 6.78 (1H, s), 6.86-6.89 (1H, m), 6.93-6.97 (2H, m), 7.22 -7.27 (1H, m), 7.58 (2H, d), 7.69 (2H, d).

[0454]

実施例6 (3)

[2-メチル-4-({2-メチル-5-[4-(トリフルオロメチル) フェニル] -3 -フリル メトキシ フェニル] 酢酸

【化329】

融点147-149°C; 1 H-NMR (CDC1₃) δ 2.30 (3H, s), 2.39 (3H, s), 3.61 (2H, s), 4.83 (2H, s), 6.76-6.82 (3H, m), 7.12 (1H, d), 7.59 (2H, d), 7.70 (2H

, d).

[0455]

実施例6(4)

3- [2-メチル-4-(|2-メチル-5- [4-(トリフルオロメチル) フェニル] -3-フリル メトキシ) フェニル] プロピオン酸

【化330】

融点140-141°C; 1 H-NMR (CDC1 $_{3}$) δ 2.31 (3H, s), 2.40 (3H, s), 2.61 (2H, t), 2.90 (2H, t), 4.83 (2H, s), 6.73-6.79 (3H, m), 7.08 (1H, d), 7.58 (2H, d), 7.69 (2H, d).

[0456]

実施例6 (5)

2-メチル-2- $[4-({2-}$ メチル-5- [4-(トリフルオロメチル) フェニル] <math>-3-フリル $\{2-$ メトキシ $\}$ フェノキシ $\}$ プロピオン酸

【化331】

融点134-135°C; 1 H-NMR (CDC1₃) δ 1.54 (6H, s), 2.39 (3H, s), 4.83 (2H, s), 6.76 (1H, s), 6.86-6.95 (4H, m), 7.59 (2H, d) 7.70 (2H, d).

[0457]

実施例6(6)

3-[2-メトキシ-4-(| 2-メチル-5-[4-(トリフルオロメチル) フェニル] <math>-3-フリル $\}$ メトキシ) フェニル] プロピオン酸

【化332】

融点159-160°C; 1 H-NMR(CDC1₃) δ 2.40(3H, s), 2.63(2H, t), 2.88(2H, t), 3.78(3H, s), 4.83(2H, s), 6.46-6.49(2H, m), 6.77(1H, s), 7.07(1H, d), 7.59(2H, d), 7.70(2H, d).

[0458]

実施例6 (7)

[4-({2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル メトキシ)フェノキシ] 酢酸

【化333】

融点168-169°C; 1 H-NMR (CDC1₃) δ 2.38 (3H, s), 4.55 (2H, s), 4.81 (2H, s), 6.77 (1H, s) 6.88 (4H, s), 7.59 (2H, d), 7.70 (2H, d).

[0459]

実施例6(8)

[4-(3-{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロポキシ)フェニル]酢酸

【化334】

融点113-114°C; 1 H-NMR (CDC1₃) δ 1.98-2.05 (2H, m), 2.27 (3H, s), 2.57 (2H, t), 3.59 (2H, s), 3.94 (2H, t), 6.59 (1H, s), 6.86 (2H, d), 7.19 (2H, d), 7.57 (2H, t), 7.67 (2H, d).

[0460]

ページ: 261/

実施例6 (9)

(4-((2-メチル-5-(4-(トリフルオロメチル) フェニル) -3-フリル) メトキシ) フェニル) 酢酸

【化335】

融点147-149°C; 1 H-NMR (CDC1₃) δ 2.39 (3H, s), 3.60 (2H, s), 4.85 (2H, s), 6.77 (1H, s), 6.92 (2H, d), 7.20 (2H, d), 7.59 (2H, d), 7.70 (2H, d).

実施例6(10)

 $[2-メトキシ-4-({2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル}メトキシ)フェニル]酢酸$

【化336】

融点168-169°C; 1 H-NMR (CDC1 $_{3}$) δ 2.41 (3H, s), 3.61 (2H, s), 3.80 (3H, s), 4.85 (2H, s), 6.53-6.55 (2H, m), 6.79 (1H, s), 7.11 (1H, d), 7.60 (2H, d), 7.71 (2H, d).

[046.2]

実施例6(11)

[(3- | [5-(4-フルオロフェニル)-2-メチル-3-フリル] メトキシ ベンジル) オキシ 酢酸

【化337】

融点109-110℃; ¹H-NMR(CDC1₃) δ 2.38 (3H, s), 4.14 (2H, s), 4.64 (2H, s

), 4.86 (2H, s), 6.59 (1H, s), 6.92-6.98 (3H, m), 7.04 (2H, t), 7.30 (1H, t), 7.58 (2H, dd).

[0463]

実施例6 (12)

| [3-(3-{2-ブチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル| プロポキシ)ベンジル]チオ| 酢酸

【化338】

融点106-107°C; 1 H-NMR(CDC1₃) δ 0.89(3H, t), 1.27-1.39(2H, m), 1.56-1.66(2H, m), 1.98-2.07(2H, m), 2.58(2H, t), 2.61(2H, t), 3.11(2H, s), 3.81(2H, s), 3.96(2H, t), 6.60(1H, s), 6.79-6.82(1H, m), 6.89-6.91(2H, m), 7.22(1H, t), 7.57(2H, d), 7.66(2H, d).

[0464]

実施例6(13)

[4-(2-|2-メチル-5-[4-(トリフルオロメチル) フェニル] -3-フリル | エトキシ) フェニル] 酢酸

【化339】

融点115-116°C; 1 H-NMR (CDC13) δ 2.34 (3H, s), 2.84 (2H, t), 3.58 (2H, s), 4.08 (2H, t), 6.66 (1H, s), 6.86 (2H, d), 7.18 (2H, d), 7.57 (2H, d), 7.68 (2H, d).

[0465]

実施例6 (14)

 $\{4-メチル-2-[(\{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル<math>\}$ メチル) チオ $\}$ チオ $\}$ -1, 3-チアゾール-5-イル $\}$ 酢酸

【化340】

融点175-176°C; 1 H-NMR (CDC1₃) δ 2.32 (3H, s), 2.34 (3H, s), 3.67 (2H, s), 4.15 (2H, s), 6.70 (1H, s), 7.57 (2H, d), 7.67 (2H, d).

[0466]

実施例6(15)

[3-(3-{2-ブチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロポキシ)フェニル] 酢酸

【化341】

融点80-82°C; 1 H-NMR (CDC1₃) δ 0.89 (3H, t), 1.26-1.39 (2H, m), 1.56-1.6 6 (2H, m), 1.97-2.06 (2H, m), 2.57 (2H, t), 2.60 (2H, t), 3.61 (2H, s), 3.95 (2H, t), 6.59 (1H, s), 6.79-6.87 (3H, m), 7.23 (1H, t), 7.56 (2H, d), 7.66 (2H, d).

[0467]

実施例6(16)

[4-(3-{2-ブチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロポキシ)フェニル] 酢酸

【化342】

融点96-97°C; 1 H-NMR (CDCl₃) δ 0.89 (3H, t), 1.27-1.39 (2H, m), 1.56-1.6 6 (2H, m), 1.97-2.06 (2H, m), 2.57 (2H, t), 2.60 (2H, t), 3.59 (2H, s), 3.94 (2H, t), 6.59 (1H, s), 6.85 (2H, d), 7.18 (2H, d), 7.57 (2H, d), 7.

66 (2H, d).

[0468]

実施例6(17)

 $\{2-[(3-\{2-ブチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル\}プロピル)チオ]-4-メチル-1,3-チアゾール-5-イル 酢酸$

【化343】

融点93-94°C; 1 H-NMR (CDC1₃) δ 0.93 (3H, t), 1.31-1.43 (2H, m), 1.59-1.6 9 (2H, m), 1.95-2.04 (2H, m), 2.32 (3H, s), 2.53 (2H, t), 2.62 (2H, t), 3.14 (2H, t), 3.73 (2H, s), 6.57 (1H, s), 7.57 (2H, d), 7.66 (2H, d).

[0469]

実施例6(18)

【化344】

融点202-205°C; 1 H-NMR(CDC1 $_{3}$ -DMS0-d $_{6}$) δ 2.30(3H, s), 2.34(3H, s), 3.6 7(2H, s), 4.15(2H, s), 6.52(1H, s), 7.03(2H, t), 7.55(2H, dd).

[0470]

実施例6(19)

4-(3-{[5-(4-フルオロフェニル)-2-メチル-3-フリル]メトキシ}フェニル)ブタン酸

【化345】

融点98-99°C; 1 H-NMR (CDC1 $_{3}$) δ 1.89-2.04 (2H, m), 2.38 (2H, t), 2.66 (2H, t), 4.84 (2H, s), 6.60 (1H, s), 6.79-6.84 (3H, m), 7.05 (2H, t), 7.22 (1H, t), 7.59 (2H, dd).

[0471]

実施例6 (20)

【[3-(3-{2-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル】プロポキシ)ベンジル]チオ】酢酸

【化346】

融点106-107°C; 1 H-NMR (CDC1₃) δ 1.22 (3H, t), 1.98-2.07 (2H, m), 2.58 (2H, t), 2.64 (2H, q), 3.11 (2H, s), 3.81 (2H, s), 3.96 (2H, t), 6.59 (1H, s), 6.78-6.81 (1H, m), 6.89 (1H, s), 6.90 (1H, d), 7.22 (1H, t), 7.57 (2H, d), 7.67 (2H, d).

[0472]

実施例6(21)

【[3-({2-メチル-5-[4-(トリフルオロメトキシ) フェニル] -3-フリル メトキシ) ベンジル] チオ↓酢酸

【化347】

融点84-85°C; 1 H-NMR (CDC1₃) δ 2.39 (3H, s), 3.11 (2H, s), 3.83 (2H, s), 4.86 (2H, s), 6.66 (1H, s), 6.86-6.97 (3H, m), 7.19 (2H, d), 7.25 (1H,

t), 7.62 (2H, d).

[0473]

実施例6(22)

3- [2-メチル-4-(2-|2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル エトキシ)フェニル]プロピオン酸

【化348】

融点118-120°C; 1 H-NMR(CDC1₃) δ 2.28(3H, s), 2.34(3H, s), 2.59(2H, t), 2.81-2.90(4H, m), 4.06(2H, t), 6.61-6.71(3H, m), 7.04(1H, d), 7.57(2H, d), 7.67(2H, d).

[0474]

実施例6 (23)

【化349】

融点132-133°C; 1 H-NMR (CDC $_{13}$) δ 2.34 (3H, s), 2.83 (2H, d), 4.05 (2H, d), 4.62 (2H, s), 6.65 (1H, s), 6.81-6.85 (4H, m), 7.57 (2H, d), 7.67 (2H, d).

[0475]

実施例6 (24)

3-[2-メチル-4-(3-{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロポキシ)フェニル]プロピオン酸

【化350】

融点125-126℃; 1 H-NMR (CDC1₃) δ 1.95-2.04 (2H, m), 2.27 (3H, s), 2.28 (3H, m), 2.53-2.63 (4H, m), 2.88 (2H, t), 3.92 (2H, d), 6.59 (1H, s), 6.4 8-6.71 (2H, m), 7.02 (1H, d), 7.56 (2H, d), 7.66 (2H, d).

[0476]

実施例6 (25)

[4-(3-{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロポキシ)フェノキシ] 酢酸

【化351】

融点134-135°C; 1 H-NMR (CDC1₃) δ 1.98-2.04 (2H, m), 2.26 (3H, s), 2.56 (2H, t), 3.90 (2H, t), 4.62 (2H, s), 6.58 (1H, s), 6.81-6.88 (4H, m), 7.5 6 (2H, d), 7.66 (2H, d).

[0477]

実施例6 (26)

[3-(3-{2-エチル-5-[4-(トリフルオロメチル) フェニル]-3-フリル - プロポキシ) フェニル] 酢酸

【化352】

融点113-114°C; 1 H-NMR (CDC13) δ 1.22 (3H, t), 1.97-2.06 (2H, m), 2.58 (2H, t), 2.64 (2H, q), 3.61 (2H, s), 3.96 (2H, t), 6.59 (1H, s), 6.79-6.8 6 (3H, m), 7.23 (1H, t), 7.57 (2H, d), 7.66 (2H, d).

[0478]

実施例6 (27)

[4-(3-{2-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル } プロポキシ)フェニル] 酢酸

【化353】

融点121-122°C; 1 H-NMR (CDC1 $_{3}$) δ 1.22 (3H, t), 1.97-2.06 (2H, m), 2.57 (2H, t), 2.64 (2H, q), 3.59 (2H, s), 3.95 (2H, t), 6.59 (1H, s), 6.85 (2H, d), 7.18 (2H, d), 7.57 (2H, d), 7.66 (2H, d).

[0479]

実施例6(28)

 $\{2-[(3-\{2-x+v-5-[4-(トリフルオロメチル) フェニル]-3-フリル プロピル)チオ]-4-メチル-1, 3-チアゾール-5-イル 酢酸$

【化354】

融点99-100°C; 1 H-NMR(CDC1₃) δ 1.25(3H, t), 1.94-2.05(2H, m), 2.31(3 H, s), 2.53(2H, t), 2.66(2H, q), 3.14(2H, t), 3.73(2H, s), 6.57(1H, s), 7.57(2H, d), 7.67(2H, d).

[0480]

実施例6(29)

[(3-{1-[-5-(4-フルオロフェニル)-2-メチル-3-フリル] エトキシ | ベンジル)チオ] 酢酸

【化355】

アモルファス粉末; 1 H-NMR(CDC1₃) δ 1.62(3H, d), 2.34(3H, s), 3.02(2H, s), 3.78(2H, s), 5.26(1H, q), 6.55(1H, s), 6.77-6.90(3H, m), 7.02(2H, t), 7.19(1H, t), 7.55(2H, dd).

[0481]

実施例6 (30)

[(3- {1- [5- (4-フルオロフェニル) -2-メチル-3-フリル] ブトキシ ベンジル) チオ] 酢酸

【化356】

油状物; 1 H-NMR (CDCl₃) δ 0.96 (3H, t), 1.33-1.58 (2H, m), 1.70-1.87 (1H, m), 1.94-2.09 (1H, m), 2.34 (3H, s), 3.00 (2H, s), 3.77 (2H, s), 5.04 (1H, t), 6.51 (1H, s), 6.75-6.88 (3H, m), 7.02 (2H, t), 7.17 (1H, t), 7.54 (2H, dd).

[0482]

実施例6 (31)

2-メチル-2- $[4-(3-{2-}メチル<math>-5-[4-($ トリフルオロメチル) フェニル] -3-フリル プロポキシ) フェノキシ] プロピオン酸

【化357】

融点123-124°C; 1 H-NMR (CDCl₃) δ 1.54 (6H, s), 1.97-2.04 (2H, m), 2.26 (3H, s), 2.57 (2H, t), 3.92 (2H, t), 6.59 (1H, s), 6.76-6.94 (4H, m), 7.5 7 (2H, d), 7.66 (2H, d).

[0483]

実施例6 (32)

 $\{4-x+v-2-[(2-\{2-x+v-5-[4-(トリフルオロメチル) フェニル]-3-フリル エチル) チオ]-1, 3-チアゾール-5-イル 酢酸$

【化358】

$$F_3C$$
 O Me N Me CO_2H

融点130-132°C; 1 H-NMR(CDCl₃) δ 2.31, 2.32 (6H, each s), 2.81 (2H, t), 3.31 (2H, t), 3.71 (2H, s), 6.60 (1H, s), 7.57 (2H, t), 7.66 (2H, d).

[0484]

実施例6 (33)

 $\{4-x+v-2-[(3-\{2-x+v-5-[4-(トリフルオロメチル) フェニル]-3-フリル プロピル) チオ]-1, 3-チアゾール-5-イル 酢酸$

【化359】

融点110-112℃; 1 H-NMR(CDC1₃) δ 1.82-1.95(2H, m), 2.24(6H, s), 2.41-2 .45(2H, m), 3.07(2H, t), 3.59(2H, s), 6.53(1H, s), 7.53(2H, d), 7.6 2(2H, d).

[0485]

実施例6 (34)

3- [6-({2-メチル-5- [4-(トリフルオロメチル) フェニル] -3-フリル | メトキシ) -2-ナフチル] プロピオン酸

【化360】

融点191-192°C; 1 H-NMR (CDC $_{13}$) δ 2.44 (3H, s), 2.76 (2H, t), 3.09 (2H, t), 4.97 (2H, s), 6.82 (1H, s), 7.15-7.20 (2H, m), 7.31 (1H, dd) 7.57-7.6 0 (3H, m), 7.66-7.72 (4H, m).

[0486]

実施例6 (35)

【化361】

融点78-81°C; 1 H-NMR (CDCl₃) δ 1.55 (6H, s), 3.31 (3H, s), 2.82 (2H, t), 3.86 (2H, s), 4.07 (2H, t), 6.46 (1H, s), 6.76 (1H, dd), 6.87 (1H, s), 6.90 (1H, d), 7.02 (2H, t), 7.18 (1H, t), 7.55 (2H, dd).

[0487]

実施例6 (36)

 $\{4-メチル-2-[(|2-メチル-5-[4-(トリフルオロメトキシ)フェニル]-3-フリル メチル)チオ]-1,3-チアゾール-5-イル 酢酸 【化362】$

融点163-165°C; 1 H-NMR(CDC 1_{3} -DMSO- d_{6}) δ 2.31(3H, s), 2.34(3H, s), 3,6 7(2H, s), 4.15(2H, s), 6.58(1H, s), 7.18(2H, d), 7.59(2H, d).

[0488]

実施例6 (37)

【化363】

油状物; ¹H-NMR (CDCl₃) る 0.90 (3H, t), 1.19-1.62 (3H, m), 1.56 (6H, s),

1.71-1.88 (1H, m), 2.31 (3H, s), 2.89-3.00 (1H, m), 3.85 (2H, s), 3.95 (2H, d), 6.45 (1H, s), 6.73-6.77 (1H, m), 6.86 (1H, s), 6.89 (1H, d), 7.03 (2H, t), 7.18 (1H, t), 7.57 (2H, dd).

[0489]

実施例6 (38)

 $[2-({2-[2-エチルー5-(4-フルオロフェニル)-3-フリル]$ エチル] チオ] チオ] チオ] チャ

【化364】

融点124-126°C; 1 H-NMR (CDC1₃) δ 2.29 (3H, s), 2.32 (3H, s), 2.80 (2H, t), 3.31 (2H, t), 3.72 (2H, s), 6.42 (1H, s), 7.03 (2H, t), 7.55 (2H, dd)

[0490]

実施例6 (39)

 $[5-(3-\{2-x+\nu-5-[4-(トリフルオロメチル) フェニル] -3$ -フリル プロポキシ) -2-メトキシフェニル] 酢酸

【化365】

融点138-139°C; 1 H-NMR (CDCl₃) δ 1.22 (3H, t), 1.95-2.05 (2H, m), 2.56 (2H, t), 2.64 (2H, q), 3.64 (2H, s), 3.79 (3H, s), 3.91 (2H, t), 6.59 (1H, s), 6.78 (3H, s), 7.57 (2H, d), 7.67 (2H, d).

[0491]

実施例6 (40)

[3-(3-(3-(2-x+y-5-(4-(トリフルオロメチル)) フェニル] -3 -フリル プロポキシ) -4-xトキシフェニル 酢酸

【化366】

融点137-138°C; 1 H-NMR (CDC13) δ 1.22 (3H, t), 2.03-2.12 (2H, m), 2.58 (2H, t), 2.64 (2H, q), 3.55 (2H, s), 3.85 (3H, s), 4.01 (2H, t), 6.60 (1H, s), 6.78-6.82 (3H, m), 7.56 (2H, d), 7.66 (2H, d).

[0492]

実施例6(41)

2-[(3-|[5-(3-x)++)2-x-2-x]-2-x+x-3-y-x]メトキシ ベンジル チオ [-2-x+x-y-y-x-x-x]

【化367】

油状物; ¹H-NMR (CDC1₃) & 1.56 (6H, s), 2.38 (3H, s), 3.84 (3H, s), 3.88 (2H, s), 4.83 (2H, s), 6.65 (1H, s), 6.77 (1H, ddd), 6.82-6.85 (1H, m), 6.91-6.97 (2H, m), 7.15-7.28 (4H, m).

[0493]

実施例6(42)

 $\{[4-7)(1) - 3-(1)$

【化368】

融点110-111°C; 1 H-NMR (CDCl₃) δ 2.41 (3H, s), 3.08 (2H, s), 3.80 (2H, s), 4.96 (2H, s), 6.80 (1H, s), 6.86-6.92 (1H, m), 6.99-7.08 (2H, m), 7.5 9 (2H, d), 7.70 (2H, d).

[0494]

実施例6(43)

 $\{[2-7)(1)\}$ $\{[2-3)$ $\{[2-7)(1)\}$

【化369】

融点105-106°C; 1 H-NMR (CDC1₃) δ 2.40 (3H, s), 3.19 (2H, s), 3.86 (2H, s), 4.84 (2H, s), 6.78 (1H, s), 6.82-6.88 (1H, m), 6.92-7.05 (2H, m), 7.6 0 (2H, d), 7.71 (2H, d).

[0495]

実施例6 (44)

 $2-[4-(3-\{2-エチルー5-[4-(トリフルオロメチル)フェニル] -3-フリル<math>\}$ プロポキシ)フェニル]-2-メチルプロピオン酸

【化370】

融点102-103°C; 1 H-NMR (CDC1 $_3$) δ 1.22 (3H, t), 1.58 (6H, s), 1.97-2.06 (1H, m), 2.57 (2H, t), 2.64 (2H, q), 3.95 (2H, t), 6.59 (1H, s), 6.85 (2H, d), 7.30 (2H, d), 7.57 (2H, d), 7.66 (2H, d).

[0496]

実施例6 (45)

2-[3-(3-(3-(2-x+y-5-[4-(トリフルオロメチル) フェニル] -3-フリル プロポキシ) フェニル] <math>-2-x+yプロピオン酸

【化371】

融点94-95°C; 1 H-NMR(CDC1₃) δ 1.22(3H, t), 1.58(6H, s), 1.98-2.07(1H, m), 2.58(2H, t), 2.64(2H, q), 3.96(2H, t), 6.59(1H, s), 6.77(1H, ddd), 6.94-6.98(2H, m), 7.24(1H, t), 7.57(2H, d), 7.66(2H, d).

[0497]

実施例6(46)

[3-(3-42-x+y-5-[4-(トリフルオロメチル)フェニル]-3-フリル]プロポキシ] [3-(3-42-x+y-5-(4-2))] 酢酸

【化372】

融点91-93°C; 1 H-NMR (CDC1₃) δ 1.21 (3H, t), 2.01-2.10 (2H, m), 2.60 (2H, t), 2.64 (2H, q), 3.57 (2H, s), 4.02 (2H, t), 6.60 (1H, s), 6.78 (1H, ddd), 6.85 (1H, dd), 7.02 (1H, dd), 7.57 (2H, d), 7.67 (2H, d).

[0498]

実施例6(47)

 $[5-(3-\{2-x+y-5-[4-(トリフルオロメチル) フェニル] -3$ -7リル プロポキシ) -2-フルオロフェニル] 酢酸

【化373】

融点128-129°C; 1 H-NMR (CDCl₃) δ 1.22 (3H, t), 1.96-2.05 (2H, m), 2.57 (2H, t), 2.63 (2H, q), 3.67 (2H, d), 3.91 (2H, t), 6.58 (1H, s), 6.73-6.7 8 (2H, m), 6.97 (1H, t), 7.57 (2H, d), 7.67 (2H, d).

ページ: 276/

[0499]

実施例6 (48)

| [2-メチル-3-(|2-メチル-5-[4-(トリフルオロメチル) フェ ニル] -3-フリル | メトキシ) ベンジル] チオ | 酢酸

【化374】

融点151-152°C; 1 H-NMR (CDC1₃) δ 2.27 (3H, s), 2.40 (3H, s), 3.16 (2H, s), 3.88 (2H, s), 4.86 (2H, s), 6.78 (1H, s), 6.88 (1H, d), 6.89 (1H, d), 7.12 (1H, t), 7.59 (2H, d), 7.71 (2H, d).

[0500]

実施例6 (49)

 $\{[2-x++2-5-(\{2-x+n-5-[4-(+1)] - 3-1)] + 1\}$ 作酸

【化375】

融点85-87°C; 1 H-NMR (CDC1₃) δ 1.41 (3H, t), 2.39 (3H, s), 3.21 (2H, s), 3.84 (2H, s), 4.02 (2H, q), 4.82 (2H, s), 6.78 (1H, s), 6.82 (1H, s), 6.82 (1H, d), 7.58 (2H, d), 7.69 (2H, d).

[0501]

実施例6 (50)

【化376】

融点109-110°C; 1 H-NMR(CDC1₃) δ 1.22(3H, t), 2.00-2.09(2H, m), 2.22(3H, s), 2.60(2H, t), 2.63(2H, q), 3.69(2H, s), 3.96(2H, t), 6.59(1H, s), 6.75(1H, d), 6.81(1H, d), 7.10(1H, t), 7.57(2H, d), 7.66(2H, d).

[0502]

実施例6 (51)

 $\{[4-x+n-3-(\{2-x+n-5-[4-(トリフルオロメチル)] フェニル] -3-フリル メトキシ ベンジル チオ 酢酸$

【化377】

融点120-121°C; 1 H-NMR (CDC $_{13}$) δ 2.21 (3H, s), 2.42 (3H, s), 3.11 (2H, s), 3.83 (2H, s), 4.89 (2H, s), 6.78 (1H, s), 6.83 (1H, dd), 6.91 (1H, d), 7.09 (1H, d), 7.59 (2H, d), 7.70 (2H, d).

[0503]

実施例6 (52)

(1-[3-(12-x+n-5-[4-(トリフルオロメチル)フェニル] -3-フリル メトキシ)フェニル] ブチル チオ) 酢酸

【化378】

油状物; ¹H-NMR (CDC1₃) & 0.88 (3H, t), 1.21-1.42 (2H, m), 1.77-1.91 (2H, m), 2.41 (3H, s), 2.93 (1H, d), 3.04 (1H, d), 3.97 (1H, dd), 4.87 (2H,

s), 6.79 (1H, s), 6.85-6.95 (3H, m), 7.24 (1H, t), 7.59 (2H, d), 7.70 (2H, d).

[0504]

実施例6 (53)

【化379】

融点174-176℃; 1 H-NMR(CDC1 $_{3}$ -DMSO-d $_{6}$) δ 2.31(3H, s), 2.34(3H, s), 3.6 7(2H, s), 3.84(3H, s), 4.15(2H, s), 6.60(1H, s), 6.75-6.79(1H, m), 7.13(1H, s), 7.18(1H, d), 7.26(1H, t).

[0505]

実施例6 (54)

【化380】

融点99-101°C; 1 H-NMR (CDC1₃) δ 2.43 (3H, s), 3.08 (2H, s), 3.82 (2H, s), 4.98 (2H, s), 6.82 (1H, s), 6.89 (1H, dd), 7.03 (1H, d), 7.32 (1H, d), 7.60 (2H, d), 7.71 (2H, d).

[0506]

実施例6 (55)

 $\{[3-x+n-5-(12-x+n-5-[4-(トリフルオロメチル)] フェニル] -3-フリル メトキシ ベンジル チオ 酢酸$

【化381】

融点123-124°C; 1 H-NMR (CDC1₃) δ 2.32 (3H, s), 2.41 (3H, s), 3.13 (2H, s), 3.79 (2H, s), 4.85 (2H, s), 6.70 (1H, s), 6.76 (2H, s), 6.77 (1H, s), 7.58 (2H, d), 7.69 (2H, d).

[0507]

実施例6 (56)

[3-(3-(3-(2-x+y-5-(4-(トリフルオロメチル) フェニル] -3 -フリル プロポキシ) -5-x+yフェニル] 酢酸

【化382】

融点100-101°C; 1 H-NMR (CDC1 $_{3}$) δ 1.22 (3H, t), 1.96-2.04 (2H, m), 2.30 (3H, s), 2.57 (2H, t), 2.64 (2H, q), 3.56 (2H, s), 3.94 (2H, t), 6.59 (1H, s), 6.63 (2H, s), 6.67 (1H, s), 7.56 (2H, d), 7.66 (2H, d).

[0508]

実施例6 (57)

 $2-[4-(3-\{2-エチルー5-[4-(トリフルオロメチル) フェニル] -3-フリル プロポキシ) フェノキシ] -2-メチルプロパン酸$

【化383】

融点70-71°C; 1 H-NMR(CDC1₃) 3 1.22(3H, t), 1.53(6H, s), 1.95-2.09(2H, m), 2.58(2H, t), 2.64(2H, q), 3.93(2H, t), 6.60(1H, s), 6.81(2H,

d), 6.92 (2H, d), 7.58 (2H, d), 7.68 (2H, d).

[0509]

実施例6 (58)

 $2-[2-クロロー4-(3-{2-x+\nu-5-[4-(トリフルオロメチル) フェニル] -3-フリル プロポキシ) フェノキシ] <math>-2-$ メチルプロパン酸【化384】

油状物; ¹H-NMR (CDC1₃) δ 1.22 (3H, t), 1.58 (6H, s), 1.97-2.06 (2H, m), 2.57 (2H, t), 2.63 (2H, q), 3.92 (2H, t), 6.58 (1H, s), 6.73 (1H, dd), 6.94 (1H, d), 7.04 (1H, d), 7.57 (2H, d), 7.67 (2H, d).

[0510]

実施例6 (59)

2-メチルー2- + [3-(+2-メチルー5-[3-(トリフルオロメチル) フェニル] -3-フリル+ メトキシ) ベンジル] チオ+ プロパン酸

【化385】

融点81-82°C; 1 H-NMR (CDC1₃) δ 1.57 (6H, s), 2.40 (3H, s), 3.88 (2H, s), 4.86 (2H, s), 6.75 (1H, s), 6.82-6.87 (1H, m), 6.92-6.96 (2H, m), 7.22 (1H, t), 7.46 (2H, d), 7.75-7.79 (1H, m), 7.86 (1H, s).

[0511]

実施例6 (60)

【化386】

融点111-112°C; 1 H-NMR (CDCl3) δ 1.54 (6H, s), 2.38 (3H, s), 3.84 (3H, s), 4.82 (2H, s), 6.64 (1H, s), 6.76-6.80 (1H, m), 6.88 (2H, d), 6.93 (2H, d), 7.15-7.29 (3H, m).

[0512]

実施例6 (61)

 $(3-\{3-[2-x+n-5-(3-x++) 2x-n)-3-y 2y-1 2x-n)$ 酢酸

【化387】

油状物; ¹H-NMR (CDCl₃) δ 1.21 (3H, t), 1.96-2.05 (2H, m), 2.56 (2H, t), 2.62 (2H, q), 3.61 (2H, s), 3.84 (3H, s), 3.95 (2H, t), 6.47 (1H, s), 6.73-6.76 (1H, m), 6.79-6.86 (3H, m), 7.13-7.27 (4H, m).

[0513]

実施例6 (62)

 $2-(4-\{3-[2-エチルー5-(3-メトキシフェニル)-3-フリル]$ プロポキシ $\}$ フェノキシ)-2-メチルプロパン酸

【化388】

油状物; ¹H-NMR (CDC1₃) δ 1.20 (3H, t), 1.53 (6H, s), 1.96-2.05 (2H, m), 2.56 (2H, t), 2.61 (2H, q), 3.84 (3H, s), 3.92 (2H, t), 6.46 (1H, s), 6.72-6.77 (1H, m), 6.79 (2H, d), 6.90 (2H, d), 7.12-7.27 (3H, m).

[0514]

実施例6 (63)

2-メチルー2- [4-(| 2-メチルー5- [3-(トリフルオロメチル) フェニル]-3-フリル] メトキシ] プロパン酸

【化389】

融点83-84°C; 1 H-NMR (CDCl₃) δ 1.55 (6H, s), 2.40 (3H, s), 4.84 (2H, s), 6.75 (1H, s), 6.86-6.97 (4H, m), 7.47 (2H, d), 7.75-7.79 (1H, m), 7.86 (1H, s).

[0515]

実施例6 (64)

融点193-194°C; 1 H-NMR(CDC1 $_{3}$ -DMS0-d $_{6}$) δ 2.33(3H, s), 2.34(3H, s), 3.6 7(2H, s), 4.16(2H, s), 6.70(1H, s), 7.45-7.48(2H, m), 7.72-7.77(1H, m), 7.83(1H, s).

[0516]

実施例6 (65)

 $2-\{[1-(3-\{[5-(4-7)] -2-x+n-3-7] -2-x+n-3-7]$ ル] メトキシ $\{[3-\{[5-(4-7)] +2-x+n-3-7] -2-x+n-3-7]$ では、 アル $\{[3-(4-7)] +2-x+n-3-7]$ では、 アル $\{[3-(4-7)] +2-x+n-3-7] +2-x+n-3-7]$ では、 アル $\{[3-(4-7)] +2-x+n-3-7] +2-x+n-3-7]$ では、 アル $\{[3-(4-7)] +2-x+n-3-$

【化391】

融点89-90°C; 1 H-NMR (CDC1₃) δ 1.39 (3H, s), 1.53 (3H, s), 1.56 (3H, d), 2.38 (3H, s), 4.13 (1H, q), 4.85 (2H, s), 6.59 (1H, s), 6.81 (1H, dd), 6.93 (1H, d), 6.97 (1H, t), 7.04 (2H, t), 7.20 (1H, t), 7.57 (2H, dd).

[0517]

実施例6 (66)

2-メチル-2-($\{1-[3-(\{2-$ メチル-5-[4-(トリフルオロメチル) フェニル]-3-フリル $\}$ メトキシ) フェニル] エチル $\}$ チオ) プロパン酸

【化392】

融点75-77°C; 1 H-NMR (CDCl₃) δ 1.40 (3H, s), 1.53 (3H, s), 1.56 (3H, d), 2.42 (3H, s), 4.14 (1H, q), 4.87 (2H, s), 6.79 (1H, s), 6.79-6.84 (1H, m), 6.92-6.99 (2H, m), 7.21 (1H, t), 7.59 (2H, d), 7.71 (2H, d).

[0518]

実施例6 (67)

2-[3-(3-42-x+n-5-[4-(トリフルオロメチル)フェニル] -3-フリル プロポキシ フェニル プロパン酸

【化393】

油状物; ¹H-NMR (CDC1₃) δ 1.22 (3H, t), 1.50 (3H, d), 1.97-2.06 (2H, m), 2.58 (2H, t), 2.64 (2H, q), 3.71 (1H, q), 3.96 (2H, t)6.59 (1H, s), 6.7

9 (1H, ddd), 6.86-6.91 (2H, m), 7.23 (1H, t), 7.56 (2H, d), 7.66 (2H, d)

[0519]

実施例6 (68)

 $2-[2-フルオロ-4-({2-メチル-5-[4-(トリフルオロメチル) フェニル]-3-フリル メトキシ)フェノキシ]-2-メチルプロパン酸 【化394】$

融点82-83°C; 1 H-NMR (CDC1₃) δ 1.55 (6H, d), 2.41 (3H, s), 4.83 (2H, s), 6.65-6.80 (2H, m), 6.77 (1H, s), 7.05 (1H, t), 7.60 (2H, d), 7.71 (2H, d).

[0520]

実施例6 (69)

 $2-[4-(3-\{2-x+y-5-[4-(トリフルオロメチル) フェニル] -3-フリル プロポキシ) -2-フルオロフェノキシ] -2-メチルプロパン酸$

【化395】

油状物; ¹H-NMR (CDCl₃) る 1.22 (3H, t), 1.54 (6H, s), 1.95-2.09 (2H, m), 2.54-2.69 (4H, m), 3.92 (2H, t), 6.56-6.71 (2H, m), 6.59 (1H, s), 7.03 (1H, t), 7.58 (2H, d), 7.68 (2H, d).

[0521]

実施例6 (70)

2-メチル-2- + [3-(+2-メチル-5- [4-(トリフルオロメチル)

フェニル] -3-フリル メトキシ) ベンジル] オキシ プロパン酸 【化396】

融点95-96°C; 1 H-NMR (CDC1₃) δ 1.57 (6H, s), 2.42 (3H, s), 4.52 (2H, s), 4.89 (2H, s), 6.79 (1H, s), 6.89-7.01 (3H, m), 7.30 (1H, t), 7.60 (2H, d), 7.71 (2H, d).

[0522]

実施例6 (71)

2-[(3-[5-(4-7) + 1) - 2-3 + 1) - 2-3 + 1] メトキシ[(3-[5-(4-7) + 1) - 2-3 + 1) - 2-3 + 1] ペンジル[(3-[5-(4-7) + 1) - 2-3 + 1) - 2-3 + 1]

【化397】

アモルファス粉末; 1 H-NMR(CDCl $_{3}$) $_{\delta}$ 1.57(6H, s), 2.39(3H, s), 4.52(2H, s), 4.87(2H, s), 6.60(1H, s), 6.90-7.09(5H, m), 7.29(1H, t), 7.59(2H, dd).

[0523]

実施例6 (72)

【化398】

融点104-106℃; ¹H-NMR (CDCl₃) & 1.23 (3H, t), 2.34 (3H, s), 3.56 (2H, q

), 3.73 (2H, s), 4.26 (2H, s), 4.51 (2H, s), 6.75 (1H, s), 7.59 (2H, d), 7.72 (2H, d).

[0524]

実施例6 (73)

【化399】

油状物; ¹H-NMR (CDC1₃) & 0.92 (3H, t), 1.32-1.39 (2H, m), 1.59-1.66 (2H, m), 2.30 (3H, s), 2.62 (2H, t), 2.80 (2H, t), 3.28 (2H, t), 3.67 (2H, s), 6.60 (1H, s), 7.56 (2H, d), 7.65 (2H, d).

[0525]

実施例6 (74)

【化400】

油状物; ¹H-NMR (CDC1₃) & 1.23 (3H, t), 1.55 (6H, s), 3.60 (2H, q), 3.88 (2H, s), 4.58 (2H, s), 4.97 (2H, s), 6.83-6.87 (2H, m), 6.92-6.98 (2H, m), 7.19 (1H, d), 7.60 (2H, d), 7.75 (2H, d).

[0526]

実施例6 (75)

 $2-[2-メチル-4-({2-メチル-5-[4-(トリフルオロメチル) フ$

ェニル] -3-フリル メトキシ) ベンジル] ブタン酸

【化401】

融点118-119°C; 1 H-NMR (CDC1₃) δ 0.97 (3H, t), 1.58-1.72 (2H, m), 2.30 (3H, s), 2.39 (3H, s), 2.54-2.58 (1H, m), 2.72 (1H, dd), 2.92 (1H, dd), 4.82 (2H, s), 6.71-6.79 (3H, m), 7.06 (1H, d), 7.58 (2H, d), 7.70 (2H, d)

[0527]

実施例6 (76)

2-メチル-3- [2-メチル-4-({2-メチル-5- [4-(トリフルオロメチル) フェニル] -3-フリル メトキシ) フェニル] プロパン酸

【化402】

融点96-97°C; 1 H-NMR (CDC1₃) δ 1.20 (3H, d), 2.30 (3H, s), 2.39 (3H, s), 2.57-2.75 (2H, m), 3.04 (1H, dd), 4.82 (2H, s), 6.72-6.78 (3H, m), 7.04 (1H, d), 7.57 (2H, d), 7.69 (2H, d).

[0528]

実施例6 (77)

2-メトキシ-3- [2-メチル-4-(|2-メチル-5- [4-(トリフル オロメチル)フェニル] -3-フリル メトキシ)フェニル] プロパン酸

【化403】

融点125-126℃; ¹H-NMR (CDC1₃) & 2.34 (3H, s), 2.40 (3H, s), 2.97 (1H, d

d), 3.13 (1H, dd), 3.35 (3H, s), 3.95 (1H, dd), 4.83 (2H, s), 6.74-6.79 (3H, m), 7.12 (1H, d), 7.58 (2H, d), 7.69 (2H, d).

[0529]

実施例6 (78)

2, 2-ジメチル-3-[4-(12-メチル-5-[4-(トリフルオロメチル)フェニル] <math>-3-フリル メトキシ)フェニル] プロパン酸

【化404】

融点125-127°C; 1 H-NMR(CDC1₃) 3 1.20(6H, s)2.38(3H, s), 2.48(2H, s), 4.82(2H, s), 6.75(1H, s), 6.88(2H, d), 7.10(2H, d), 7.57(2H, d), 7.68(2H, d).

[0530]

実施例6 (79)

2, $2-ジメチル-3-[4-(2-{2-メチル-5-[4-(トリフルオロメチル) フェニル] <math>-3-フリル$ エトキシ) フェニル] プロパン酸

【化405】

油状物; ¹H-NMR (CDCl₃) δ 1.18 (6H, s), 2.33 (3H, s), 2.78-2.86 (4H, m), 4.06 (2H, t), 6.65 (1H, s), 6.81 (2H, d), 7.07 (2H, d), 7.56 (2H, d), 7.66 (2H, d).

[0531]

実施例6(80)

2, $2-ジメチル-3-[4-(3-\{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロポキシ)フェニル]プロパン酸$

【化406】

非結晶性粉末; ¹H-NMR (CDCl₃) δ 1.18 (6H, s), 2.00 (2H, t), 2.26 (3H, s), 2.56 (2H, t), 2.82 (2H, s), 3.93 (2H, t), 6.59 (1H, s), 6.80 (2H, d), 7.07 (2H, d), 7.56 (2H, d), 7.65 (2H, d).

[0532]

実施例6 (81)

 $[3-メトキシー4-({2-メチルー5-[4-(トリフルオロメチル)フェニル]-3-フリル メトキシ)フェニル]酢酸$

【化407】

融点139-140°C; 1 H-NMR (CDC1₃) δ 2.38 (3H, s), 3.59 (2H, s), 3.86 (3H, s), 4.91 (2H, s), 6.78-6.82 (3H, m), 7.58 (2H, d), 7.69 (2H, d).

[0533]

実施例6 (82)

3-[4-メトキシー3-(+2-メチルー5-[4-(トリフルオロメチル)]フェニル]-3-フリル メトキシ)フェニル]プロパン酸

【化408】

融点128-129°C; 1 H-NMR (CDCl₃) δ 2.38 (3H, s), 2.60-2.68 (2H, m), 2.89 (2H, t), 3.84 (3H, s), 4.91 (2H, s), 6.81 (4H, s), 7.58 (2H, d), 7.69 (2H, d).

[0534]

実施例6 (83)

[3-(2-{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル エトキシ)フェニル]酢酸

【化409】

融点92-94°C; 1 H-NMR (CDCl₃) δ 2.34 (3H, s), 2.84 (2H, t), 3.61 (2H, s), 4.08 2H, t), 6.66 (1H, s), 6.81-6.88 (3H, m), 7.19-7.27 (1H, m), 7.57 (2H, d), 7.68 (2H, d).

[0535]

実施例6 (84)

[3-(3-(2-)3+)-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロポキシ)フェニル] 酢酸

【化410】

融点111-113°C; 1 H-NMR (CDC $_{13}$) δ 2.01 (2H, t), 2.26 (3H, s), 2.56 (2H, t), 3.61 (2H, s), 3.95 (2H, t), 6.59 (1H, s), 6.80-6.87 (3H, m), 7.19-7.2 7 (1H, m), 7.56 (2H, d), 7.66 (2H, d).

[0536]

実施例6 (85)

2-メチルー2-[3-(${2-}$ メチルー5-[4-(トリフルオロメチル)フェニル]-3-フリル ${1}$ メトキシ ${1}$ フェニル]プロパン酸

【化411】

融点127-128℃; ¹H-NMR (CDC1₃) & 1.59 (6H, s), 2.40 (3H, s), 4.85 (2H, s), 6.78 (1H, s), 6.85-6.89 (1H, m), 7.00-7.02 (2H, m), 7.24-7.30 (1H, m), 7.59 (2H, d), 7.70 (2H, d).

[0537]

実施例6 (86)

2-メチルー2- $[4-({2-$ メチルー5- [4-(トリフルオロメチル) フェニル]-3-フリル $\}$ メトキシ) フェニル] プロパン酸

【化412】

融点105-107°C; 1 H-NMR (CDC 1 3) δ 1.58 (6H, s), 2.39 (3H, s), 4.85 (2H, s), 6.76 (1H, s), 6.94 (2H, d), 7.34 (2H, d), 7.59 (2H, d), 7.70 (2H, d).

[0538]

実施例6 (87)

 $[3-({2-x+n-5-[4-(トリフルオロメチル)フェニル]-3-フリル メトキシ)フェノキシ] 酢酸$

【化413】

融点118-119°C; 1 H-NMR (CDC1₃) δ 2.40 (3H, s), 4.66 (2H, s), 4.84 (2H, s), 6.51-6.54 (1H, m), 6.56-6.58 (1H, m), 6.62-6.66 (1H, m), 6.77 (1H, s), 7.11 (1H, d), 7.59 (2H, d), 7.69 (2H, d).

[0539]

実施例6(88)

2-メチルー2- $\{[4-(+2-$ メチルー5-[4-(トリフルオロメチル)フェニル]-3-フリル $\}$ メトキシ)フェニル] スルファニル $\}$ プロパン酸

【化414】

融点128-129°C; 1 H-NMR(CDC1₃) δ 1.48(6H, s), 2.38(3H, s), 4.84(2H, s), 6.73(1H, s), 6.93(2H, d), 7.46(2H, d), 7.58(2H, d), 7.68(2H, d).

[0540]

実施例6 (89)

 $3-[5-({2-メチル-5-[4-(トリフルオロメチル)フェニル]-3$ -フリル $\}$ メトキシ) -1-ベンゾフラン-2-イル] プロパン酸

【化415】

融点156-157°C; 1 H-NMR (CDC13) δ 2.39 (3H, s), 2.82 (2H, t), 3.10 (2H, t), 4.88 (2H, s), 6.39 (1H, s), 6.80 (1H, s), 6.88 (1H, dd), 7.04 (1H, d), 7.30 (1H, d), 7.59 (2H, d), 7.70 (2H, d).

[0541]

実施例6 (90)

 $[5-({2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル} メトキシ)-1-ベンゾフラン-2-イル] 酢酸$

【化416】

融点140-142°C; 1 H-NMR (CDC1₃) δ 2.34 (3H, s), 3.75 (2H, s), 4.80 (2H, s), 6.51 (1H, s), 6.74 (1H, s), 6.86 (1H, d), 7.00 (1H, s), 7.25 (1H, s), 7.55 (2H, d), 7.65 (2H, d).

[0542]

実施例6 (91)

【化417】

融点129-131°C; 1 H-NMR (CDC1 $_{3}$) δ 0.99 (3H, t), 1.57-1.68 (2H, m), 2.40 (3H, s), 2.54-2.66 (4H, m), 2.93 (2H, t), 4.84 (2H, s), 6.73-6.79 (3H, m), 7.09 (1H, d), 7.59 (2H, d), 7.70 (2H, d).

[0543]

実施例6 (92)

 $2-[2-クロロ-4-({2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル}メトキシ)フェノキシ]-2-メチルプロパン酸$

【化418】

融点92-93°C; ¹H-NMR (CDCl₃) & 1.59 (6H, s), 2.40 (3H, s), 4.82 (2H, s), 6.75 (1H, s), 6.81 (1H, dd), 7.02 (1H, d), 7.07 (1H, d), 7.59 (2H, d), 7.70 (2H, d).

[0544]

実施例6 (93)

【化419】

融点112-113°C; 1 H-NMR (CDC1 $_{3}$) δ 1.20 (3H, t), 2.04-2.08 (2H, m), 2.64-2.68 (4H, m), 3.57 (2H, s), 4.00 (2H, t), 6.59 (1H, s), 6.82 (1H, d), 7.0 8 (1H, dd), 7.30 (1H, d), 7.57 (2H, d), 7.66 (2H, d).

[0545]

実施例6 (94)

 $2-\left\{ \left[4-7 \nu + 10-3-\left(\left\{ 2-y + 10-5-\left[4-\left(10-10 \right) + 10-10 \right] + 10-10 \right] - 10-10 \right\} \right\}$ $\left[3-7 \right] \left[3-7 \right] \left[10-10 \right] + 10-10 \right]$ $\left[3-7 \right] \left[10-10 \right] + 10-10 \right]$ $\left[3-7 \right] \left[10-10 \right] + 10-10 \right]$ $\left[3-7 \right] \left[10-10 \right]$ $\left[3-7 \right]$ $\left[3-7 \right] \left[10-10 \right]$ $\left[3-7 \right]$

【化420】

融点120-123°C; 1 H-NMR (CDC1 $_3$) δ 1.54 (6H, s), 2.40 (3H, s), 3.83 (2H, s), 4.93 (2H, s), 6.78 (1H, s), 6.88-6.89 (1H, m), 6.93-7.06 (2H, m), 7.5 8 (2H, d), 7.68 (2H, d).

[0546]

実施例6 (95)

【化421】

融点131-132℃; ¹H-NMR (CDC1₃) δ 1.57 (6H, s), 2.39 (3H, s), 3.90 (2H, s

), 4.81 (2H, s), 6.76-6.82 (2H, m), 6.90-6.99 (2H, m), 7.58 (2H, d), 7.6 9 (2H, d).

[0547]

実施例6 (96)

 $2-\{[2-7ルオロ-3-(\{2-メチル-5-[4-(トリフルオロメチル) フェニル] -3-7リル <math>\}$ メトキシ $\}$ ベンジル $\}$ スルファニル $\}$ $\}$ -2-メチルプロパン酸

【化422】

融点106-108°C; 1 H-NMR (CDC1₃) δ 1.57 (6H, s), 2.38 (3H, s), 3.93 (2H, s), 4.91 (2H, s), 6.77 (1H, s), 6.90-6.99 (3H, m), 7.58 (2H, d), 7.68 (2H, d).

[0548]

実施例6 (97)

 $[3-(3-\{2-x+y-5-[4-(トリフルオロメチル) フェニル] -3$ -フリル プロポキシ) -2-フルオロフェニル] 酢酸

【化423】

融点92-93°C; 1 H-NMR(CDC1₃) δ 1.21(3H, t), 1.98-2.12(2H, m), 2.57-2.7 0(4H, m), 3.72(2H, d), 4.02(2H, t), 6.60(1H, s), 6.78-7.04(3H, m), 7.57(2H, d), 7.67(2H, d).

[0549]

実施例6 (98)

 $[4-クロロ-3-(3-\{2-エチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロポキシ)フェニル] 酢酸$

【化424】

融点104-105°C; 1 H-NMR (CDC1₃) δ 1.20 (3H, t), 2.03-2.10 (2H, m), 2.59-2 .70 (4H, m), 3.58 (2H, s), 4.02 (2H, t), 6.60 (1H, s), 6.78-6.81 (2H, m), 7.31 (1H, d), 7.57 (2H, d), 7.67 (2H, d).

[0550]

実施例6 (99)

【化425】

融点140-142°C; 1 H-NMR (CDCl $_{3}$) δ 1.53 (6H, s), 2.41 (3H, s), 3.84 (2H, s), 4.93 (2H, s), 6.79 (1H, s), 6.86 (1H, dd), 6.99 (1H, d), 7.24 (1H, s), 7.58 (2H, d), 7.69 (2H, d).

[0551]

実施例6(100)

[3-(3-(3-(2-x+y-5-[4-(トリフルオロメチル) フェニル] -3 -フリル プロポキシ) -1 H - インダゾール -1 - イル] 酢酸

【化426】

融点139-140°C; 1 H-NMR (CDC1₃) δ 1.22 (3H, t), 2.07-2.12 (2H, m), 2.57-2 .68 (4H, m), 4.37 (2H, t), 4.92 (2H, s), 6.61 (1H, s), 7.06-7.11 (1H, m)

, 7.16 (1H, d), 7.37-7.42 (1H, m), 7.56 (2H, d), 7.64-7.69 (3H, m).

[0552]

実施例6(101)

 $[5-(\{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル<math>\}$ メトキシ)-1-ベングチエン-2-イル] 酢酸

【化427】

融点153-154°C; 1 H-NMR (CDC13) δ 2.41 (3H, s), 3.94 (2H, d), 4.91 (2H, s), 6.79 (1H, s), 7.00 (1H, dd), 7.12 (1H, s), 7.24-7.25 (1H, m), 7.59 (2 H, d), 7.65 (1H, d), 7.70 (2H, d).

[0553]

実施例6(102)

[5-(3-12-x+y-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロポキシ) -1-ベンゾチエン-2-イル] 酢酸

【化428】

融点111-112°C; 1 H-NMR (CDC 1 3) δ 1.21 (3H, t), 2.04 (2H, t), 2.57-2.67 (4H, m), 3.92 (2H, s), 3.99 (2H, t), 6.59 (1H, s), 6.93-6.96 (1H, m), 7.0 8 (1H, s), 7.13 (1H, s), 7.55 (2H, d), 7.60 (1H, s), 7.66 (2H, d).

[0554]

実施例6(103)

3-[5-(|2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル|メトキシ)-1-ベンゾチエン-2-イル]プロパン酸

【化429】

融点187-188°C; 1 H-NMR (CDCl3) δ 2.41 (3H, s), 2.73 (2H, t), 3.21 (2H, t), 4.91 (2H, s), 6.81 (1H, s), 6.93-6.98 (2H, m), 7.21 (1H, d), 7.59 (2H, d), 7.62 (1H, s), 7.71 (2H, d).

[0555]

実施例6(104)

2-メチル-2- $[4-(4-{2-}$ メチル-5-[4-(トリフルオロメチル) フェニル]-3-フリル $\}$ ブトキシ) フェノキシ] プロパン酸

【化430】

融点67-69°C; 1 H-NMR (CDC13) δ 1.53 (6H, s), 1.70-1.83 (4H, m), 2.29 (3H, s), 2.38-2.45 (2H, m), 3.93 (2H, t), 6.58 (1H, s), 6.79 (2H, d), 6.90 (2H, d), 7.56 (2H, d), 7.66 (2H, d).

[0556]

実施例6(105)

【化431】

油状物; ¹H-NMR (CDCl₃) & 1.54 (6H, s), 2.37 (3H, s), 2.63-2.69 (2H, m), 4.02 (2H, t), 5.97 (1H, dt), 6.30 (1H, d), 6.81-6.87 (3H, m), 6.88-6.95

(2H, m), 7.58 (2H, d), 7.69 (2H, d).

[0557]

実施例6(106)

2-メチルー2- + [4-(4-+2-メチルー5-[4-(トリフルオロメチル)フェニル] -3-フリル+ ブトキシ)フェニル+ スルファニル+プロパン酸【化432】

融点155-156°C; 1 H-NMR (CDC1₃) δ 1.46 (6H, s), 1.68-1.83 (4H, m), 2.29 (3H, m), 2.36-2.44 (2H, m), 3.95 (2H, t), 6.58 (1H, s), 6.82 (2H, d), 7.4 0 (2H, d), 7.56 (2H, d), 7.66 (2H, d).

[0558]

実施例6 (107)

2-メチル-2-($\{[5-(\{2-$ メチル-5-[4-(トリフルオロメチル $\}$) フェニル]-3-フリル $\}$ メトキシ)-1-ベンゾチエン-2-イル] メチル $\}$ スルファニル) プロパン酸

【化433】

融点158-159°C; 1 H-NMR (CDCl₃) δ 1.57 (6H, s), 2.40 (3H, s), 4.16 (2H, d), 4.89 (2H, s), 6.78 (1H, s), 6.98 (1H, dd), 7.12 (1H, s), 7.21 (1H, d), 7.59 (2H, d), 7.62 (1H, d), 7.70 (2H, d).

[0559]

実施例6(108)

【化434】

融点108-109°C; 1 H-NMR (CDC1₃) δ 1.48 (6H, s), 2.38 (3H, s), 4.85 (2H, s), 6.71 (1H, s), 6.94 (2H, d), 7.44-7.48 (4H, m), 7.72-7.76 (1H, m), 7.84 (1H, s).

[0560]

実施例6(109)

2-メチルー2- + [3-(+2-メチルー5-[4-(トリフルオロメチル) フェニル] -3-フリル+ メトキシ+ ベンジル] スルファニル+ プロパン酸

【化435】

融点148-149°C; 1 H-NMR (CDC13) δ 1.56 (6H, s), 2.40 (3H, s), 3.88 (2H, s), 4.85 (2H, s), 6.77 (1H, s), 6.81-6.97 (3H, m), 7.20 (1H, d), 7.59 (2H, d), 7.70 (2H, d).

[0561]

実施例6(110)

 $2-[(3-\{[5-(4-メトキシフェニル)-2-メチル-3-フリル] メトキシ ベンジル) スルファニル] <math>-2-メチルプロパン酸$

【化436】

融点96-97°C; 1 H-NMR (CDCl₃) δ 1.56 (6H, s), 2.36 (3H, s), 3.82 (3H, s), 3.87 (2H, s), 4.83 (2H, s), 6.52 (1H, s), 6.81-6.97 (4H, m), 7.19 (1H, d), 7.55 (2H, d).

[0562]

実施例6 (111)

【化437】

融点143-144°C; 1 H-NMR(CDC1₃) δ 1.56(6H, s), 2.37(3H, s), 3.87(2H, s), 4.83(2H, s), 6.64(1H, s), 6.80-6.95(3H, m), 7.19(1H, d), 7.31(2H, d), 7.54(2H, d).

[0563]

実施例6(112)

2-[(3-1[5-(3-7) + 1] - 2-3 + 1] + 1] トキシ ベンジル スルファニル [-2-3 + 1] - 2 スルファニル [-2-3 + 1] - 1 なか

【化438】

融点116-117°C; 1 H-NMR(CDC1₃) δ 1.56 (6H, s), 2.38 (3H, s), 3.88 (2H, s), 4.84 (2H, s), 6.68 (1H, s), 6.82-6.97 (4H, m), 7.18-7.39 (4H, m).

[0564]

実施例6 (113)

 $2-[(4-\{[5-(4-x)++)2-x-2-1)]-2-x+1-3-2-1]$ メトキシ $\{(4-\{[5-(4-x)++)2-x-2-1)\}-2-x+1-2-x+1-2-x+1-3-2-1\}$

【化439】

融点145-146℃; 1 H-NMR(CDC1₃) 3 1.48(6H, s), 2.34(3H, s), 3.81(3H, s), 4.82(2H, s), 6.48(1H, s), 6.86-6.95(4H, m), 7.45(2H, d), 7.53(2H, d).

[0565]

実施例6(114)

【化440】

融点130-131°C; 1 H-NMR (CDC1₃) δ 1.48 (6H, s), 2.36 (3H, s), 4.83 (2H, s), 6.61 (1H, s), 6.93 (2H, d), 7.31 (2H, d), 7.46 (2H, d), 7.53 (2H, d).

[0566]

実施例6(115)

2-[(4-1[5-(3-7) + 2-3] - 2-3] - 2-3 トキシ1-2 フェニル1-2 フェニー1-2 フェニル1-2 フェニル1-2 フェニー1-2 フェニー1-2 フェニー1-2 フェニー1-2 フェニー1

【化441】

融点146-147°C; 1 H-NMR (CDC1₃) δ 1.48 (6H, s), 2.37 (3H, s), 4.84 (2H, s), 6.65 (1H, s), 6.92-6.95 (3H, m), 7.26-7.38 (3H, m), 7.46 (2H, d).

[0567]

実施例6(116)

2-メチル-2- + [3-(+2-メチル-5-[2-(+リフルオロメチル) フェニル] -3-フリル+ メトキシ) ベンジル] スルファニル+ プロパン酸

【化442】

油状物; ¹H-NMR (CDC1₃) & 1.55 (6H, s), 2.38 (3H, s), 3.86 (2H, s), 4.85 (2H, s), 6.71 (1H, s), 6.79-6.96 (3H, m), 7.16-7.24 (1H, m), 7.36 (1H, t), 7.53 (1H, t), 7.69-7.74 (2H, m).

[0568]

実施例6(117)

融点115-116°C; 1 H-NMR (CDC13) δ 1.48 (6H, s), 2.37 (3H, s), 4.86 (2H, s), 6.70 (1H, s), 6.93 (2H, d), 7.36-7.39 (1H, m), 7.45 (2H, d), 7.53 (1H, t), 7.70-7.73 (2H, m).

[0569]

実施例6(118)

2-メチル-2- + [3-(+2-メチル-5-[4-(トリフルオロメチル) フェニル] -3-フリル+ メトキシ+フェニル] スルファニル+プロパン酸

【化444】

融点127-128°C; 1 H-NMR (CDC1₃) δ 1.49 (6H, s), 2.38 (3H, s), 4.83 (2H, s), 6.75 (1H, s), 6.95-6.99 (1H, m), 7.10-7.13 (2H, m), 7.21-7.27 (1H, m), 7.58 (2H, d), 7.68 (2H, d).

[0570]

実施例6 (119)

2-メチルー2-(${3-$ [(2-メチルー5-フェニルー3-フリル)メトキシ] ベンジル $}$ スルファニル)プロパン酸

【化445】

融点113-114°C; 1 H-NMR (CDC13) δ 1.55 (6H, s), 2.37 (3H, s), 3.87 (2H, s), 4.84 (2H, s), 6.64 (1H, s), 6.81-6.85 (1H, m), 6.91-6.97 (2H, m), 7.7-7.24 (2H, m), 7.33-7.36 (2H, m), 7.59-7.62 (2H, m).

[0571]

実施例6(120)

2-メチルー2- [(3- [2-メチルー5- (4-メチルフェニル) -3-フリル] メトキシ ベンジル) スルファニル] プロパン酸

【化446】

融点121-122℃; ¹H-NMR (CDC1₃) & 1.55 (6H, s), 2.34 (3H, s), 2.36 (3H, s), 3.87 (2H, s), 4.83 (2H, s), 6.58 (1H, s), 6.81-6.85 (1H, m), 6.90-6.9 6 (2H, m), 7.13-7.24 (3H, m), 7.50 (2H, d).

[0572]

実施例6(121)

 $[3-(3-\{2-x+y-5-[4-(トリフルオロメチル) フェニル] -3$ -7リル -3-メトキシプロポキシ) フェニル] 酢酸

【化447】

油状物; 1 H-NMR (CDC1₃) δ 1.23 (3H, t), 2.00-2.06 (1H, m), 2.32-2.38 (1H, m), 2.64-2.73 (2H, m), 3.23 (3H, s), 3.60 (2H, s), 3.88-3.93 (1H, m), 4.06-4.13 (1H, m), 4.43 (1H, t), 6.69 (1H, s), 6.77-6.87 (3H, m), 7.19-7.25 (1H, m), 7.60 (2H, d), 7.70 (2H, d).

[0573]

実施例6(122)

2-メチル-2- $\{[4-(3-\{2-$ メチル-5-[4-(トリフルオロメチル) フェニル]-3-フリル $\}$ プロポキシ) フェニル] チオ $\}$ プロピオン酸

【化448】

融点127-128 °C; 1 H-NMR(CDC1₃) δ 1.48 (6H, s), 1.98-2.05 (2H, m), 2.26 (3H, s), 2.57 (2H, t), 3.95 (2H, t), 6.58 (1H, s), 6.85 (2H, d), 7.43 (2 H, d), 7.57 (2H, d), 7.67 (2H, d).

[0574]

実施例6(123)

 $3-[4-({2-メチル-5-[4-(トリフルオロメチル)フェニル]-3$ -フリル ${\gamma}$ メトキシ ${\gamma}$ フェニル ${\gamma}$ プロパン酸

【化449】

融点182-183°C; 1 H-NMR (CDC $_{13}$) δ 2.40 (3H, s), 2.66 (2H, t), 2.92 (2H, t), 4.85 (2H, s), 6.78 (1H, s), 6.91 (2H, d), 7.15 (2H, d), 7.60 (2H, d), 7.71 (2H, d).

[0575]

実施例6(124)

 $N-メチル-N-[3-({2-メチル-5-[4-(トリフルオロメチル)-フェニル]-3-フリル メトキシ ベンジル グリシン$

【化450】

アモルファス; 1 H-NMR (DMSO-d₆) δ 2.34 (3H, s), 2.42 (3H, s), 3.19 (2H, s), 3.75 (2H, s), 4.94 (2H, s), 6.93-6.97 (2H, m), 7.04 (1H, s), 7.20 (1 H, s), 7.28 (1H, t), 7.74 (2H, d), 7.86 (2H, d).

[0576]

実施例6(125)

 $3'-(\{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル<math>\}$ メトキシ)-1, 1'-ビフェニル-3-カルボン酸

【化451】

融点178-179°C; 1 H-NMR (CDC1₃) δ 2.44 (3H, s), 4.96 (2H, s), 6.82 (1H, s), 6.99-7.03 (1H, m), 7.24-7.27 (2H, m), 7.41 (1H, t), 7.52-7.61 (3H, m)

, 7.72 (2H, d), 7.82-7.85 (1H, m), 8.08-8.12 (1H, m), 8.34-8.36 (1H, m).

[0577]

実施例6(126)

【化452】

融点128-129 °C; 1 H-NMR (CDC1₃) 3 2.41 (3H, s), 3.70 (2H, s), 4.92 (2H, s), 6.81 (1H, s), 6.93-6.99 (1H, m), 7.18-7.43 (5H, m), 7.48-7.52 (2H, m), 7.59 (2H, d), 7.71 (2H, d).

[0578]

実施例7

3-[3-({2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フロイル|アミノ)フェニル]プロピオン酸エチル

【化453】

水素化ナトリウム(81mg)のテトラヒドロフラン懸濁液(5ml)にジエチルホスホノ酢酸エチル(0.26ml)を氷冷下で滴下し、30分攪拌した。この反応液にN-(3-ホルミルフェニル)-2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フルアミド(0.50g)のテトラヒドロフラン溶液(5ml)を滴下し、0℃で2時間攪拌した。1規定塩酸を加え、酢酸エチルで希釈後、有機層を分離し、飽和重曹水、水、飽和食塩水で洗浄。有機層を無水硫酸マグネシウムで乾燥後、ろ過、減圧濃縮した。得られた残渣をエタノール-テトラヒドロフラン溶液(5ml-5ml)に溶解させ、10%パラジウムー炭素を窒素気流下で加えた後、水素置換し、室温で3時間攪拌した。不溶物をろ過後、

シリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=8:1から5:1) で精製し、目的物 (0.38g) を結晶として得た。

融点134-135°C; 1 H-NMR (CDC1 $_{3}$) δ 1.24 (3H, t), 2.63 (2H, t), 2.72 (3H, s), 2.96 (2H, t), 4.13 (2H, q), 6.89 (1H, s), 6.99 (1H, d), 7.23-7.31 (1H, m), 7.41-7.50 (3H, m), 7.64 (2H, d), 7.75 (2H, d).

[0579]

実施例8

3-(3-((2-メチル-5-(4-(トリフルオロメチル) フェニル) <math>-3-フロイル) アミノ) フェニル) プロピオン酸

【化454】

 $3-[3-(\{2-x+n-5-[4-(トリフルオロメチル) フェニル]-3-フロイル\}$ アミノ)フェニル] プロピオン酸エチル(0.33g)のテトラヒドロフラン-エタノール溶液(3ml-3ml)に1規定水酸化ナトリウム水溶液(1.5ml)を滴下して室温で1時間攪拌した。1規定塩酸で酸性とし、酢酸エチルで希釈後、有機層を分離し、飽和食塩水で洗浄。有機層を無水硫酸マグネシウムで乾燥後、ろ過、減圧濃縮した。得られた残渣を再結晶(ヘキサンー酢酸エチル)で精製し、目的物(245mg)を結晶として得た。

融点200-201°C; 1 H-NMR (CDC1 $_{3}$) δ 2.62 (2H, t), 2.73 (3H, s), 2.95 (2H, t), 6.97 (1H, d), 7.24 (1H, t), 7.34 (1H, s), 7.54-7.59 (2H, m), 7.64 (2H, d), 7.77 (2H, d), 9.01 (1H, s).

[0580]

実施例9

2- {[3-({2-メチル-5-[4-(トリフルオロメチル) フェニル] - 3-フリル | メトキシ) ベンジル] チオ | ブタン酸

【化455】

チオ酢酸 $S-[3-(\{2-メチル-5-[4-(トリフルオロメチル)]$ フェニル] $-3-フリル\{ メトキシ)$ ベンジル] (0.50g) のメタノール (10m1) 溶液に、1 規定水酸化ナトリウム水溶液(1.2m1)を室温で加え、そのまま1時間撹拌した。混合物の溶媒を減圧留去して固体を得た。得られた固体をN, N-ジメチルホルムアミド(<math>10m1)に溶かし、2- ブロモ酪酸エチル(0.28g)を室温にて加え、60 で一晩撹拌した。反応液を水注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーに通し(ヘキサン:酢酸エチル=15:1から9:1)、油状物を得た。

得られた油状物をメタノール(5 m 1)とテトラヒドロフラン(5 m 1)に溶かし、1 規定水酸化ナトリウム水溶液(3 m 1)を加え、室温で一晩撹拌した。 反応液を濃縮、水で希釈し、希塩酸で反応液を酸性にした後、酢酸エチルで2 回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、シリカゲルを通した後、溶媒を減圧留去した。得られた粗生成物をジイソプロピルエーテルーへキサンより結晶化して、目的物(0.24g)を結晶として得た。

融点78-80°C; 1 H-NMR (CDC13) δ 0.96 (3H, t), 1.59-1.95 (2H, m), 2.42 (3H, s), 3.10 (1H, t), 3.79 (1H, d), 3.88 (1H, d), 4.88 (2H, s), 6.80 (1H, s), 6.85-6.98 (3H, m), 7.25 (1H, t), 7.60 (2H, d), 7.71 (2H, d).

[0581]

実施例9(1)~実施例9(4)

チオ酢酸 $S - [3 - ({2 - x + v - 5 - [4 - (トリフルオロメチル) フェニル] - 3 - フリル | x トキシ) ベンジル] を、対応する <math>\alpha$ - ハロエステルと、実施例 9 に示す方法により縮合後、加水分解して、以下に示す化合物を得た。

[0582]

実施例9 (1)

 $2-\{[3-(\{2-メチルー5-[4-(トリフルオロメチル)フェニル]-3-フリル<math>\}$ メトキシ $\}$ ベンジル] チオ $\}$ プロピオン酸

【化456】

融点82-83°C; 1 H-NMR (CDC1₃) δ 1.40 (3H, d), 2.41 (3H, s), 3.31 (1H, q), 3.80 (1H, d), 3.90 (1H, d), 4.87 (2H, s), 6.79 (1H, s), 6.85-6.89 (1H, m), 6.95-6.99 (2H, m), 7.24 (1H, t), 7.59 (2H, d), 7.70 (2H, d).

[0583]

実施例9 (2)

ジフルオロ $\{[3-(\{2-メチル-5-[4-(\} 1) フェニル] -3-フリル \}$ メトキシ) ベンジル] チオ $\}$ 酢酸

【化457】

アモルファス粉末; 1 H-NMR(CDCl₃-DMSO-d₆) δ 2.36(3H, s), 4.02(2H, s), 4.80(2H, s), 6.74(1H, s), 6.80(1H, dd), 6.90(1H, d), 6.95(1H, s), 7.16(1H, t), 7.56(2H, d), 7.66(2H, d).

[0584]

実施例9 (3)

【化458】

融点121-122℃; ¹H-NMR (CDC1₃) & 1.87-1.99 (1H, m), 2.11-2.25 (3H, m), 2

.41 (3H, s), 2.63-2.73 (2H, m), 3.78 (2H, s), 4.86 (2H, s), 6.78 (1H, s), 6.83-6.86 (1H, m), 6.92-6.96 (2H, m), 7.22 (1H, t), 7.58 (2H, d), 7.69 (2H, d).

[0585]

実施例9(4)

2- {[3-({2-メチル-5-[4-(トリフルオロメチル) フェニル] -3-フリル メトキシ) ベンジル] チオ ペンタン酸

【化459】

融点61-62°C; 1 H-NMR (CDC13) δ 0.83 (3H, t), 1.26-1.45 (2H, m), 1.55-1.6 6 (1H, m), 1.76-1.88 (1H, m), 2.41 (3H, s), 3.18 (1H, t), 3.80 (1H, d), 3.87 (1H, d), 4.88 (2H, s), 6.79 (1H, s), 6.87 (1H, dd), 6.97 (1H, d), 6.99 (1H, s), 7.25 (1H, t), 7.60 (2H, d), 7.71 (2H, d).

[0586]

実施例10

 $\{2-[(2-\{2-x+\nu-5-[4-(トリフルオロメチル) フェニル] -3-フリル\} -2-オキソエチル)チオ<math>]-4-$ メチルー1, 3-チアゾールー5-イル $\}$ 酢酸

【化460】

 $1-\{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル\}$ エタノン (0.48g)、47% 臭化水素酸 (1滴)、酢酸 (2ml) のジエチルエーテル (20ml) 溶液に、臭素 $(91\mu l)$ のジエチルエーテル (5ml) 溶液を 0 で加え、そのまま 15 分間撹拌した。反応液を酢酸エチルで希釈し、水で洗浄、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去して固体を得た

。(2-メルカプトー4-メチルー1, 3-チアゾールー5-イル)酢酸メチル(0. 43g)のテトラヒドロフラン(2m1)溶液に1, 8-ジアザビシクロ[5. 4. 0] -7-ウンデセン(0. 32m1)を室温で加え、10分間撹拌した。得られた混合物を、上で得た固体のテトラヒドロフラン(20m1)溶液に室温で加え、そのまま一晩撹拌した。反応液を水注ぎ、酢酸エチルで2回抽出した。集めた有機層を無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーに通し(∞ キサン:酢酸エチル=3:1から1:1)、固体を得た。

得られた固体をメタノール(5 m 1)とテトラヒドロフラン(5 m 1)に溶かし、1規定水酸化ナトリウム水溶液(2 m 1)を加え、室温で一晩撹拌した。反応液を濃縮、水で希釈し、希塩酸で反応液を酸性にした後、酢酸エチルで2回抽出した。集めた有機層を無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。得られた粗生成物をシリカゲルカラムクロマトグラフィーにて精製し(ヘキサン:酢酸エチル=1:1から酢酸エチル)、ヘキサンより結晶化して、目的物(5 4 mg)を粉末として得た。

融点140-143°C; 1 H-NMR(CDC1₃-DMS0-d₆) δ 2.31(3H, s), 2.70(3H, s), 3.6 6(2H, s), 4.46(2H, s), 7.10(1H, s), 7.64(2H, d), 7.75(2H, d).

[0587]

実施例11

【化461】

 $4-[(3-\{2-メチル-5-[4-(トリフルオロメチル) フェニル]-3$ -フリル $\}$ プロパノイル) アミノ]-3-オキソブタン酸エチル (0.46g)のテトラヒドロフラン溶液 (10m1) にローソン試薬 (0.66g) を加え、70で1時間攪拌した。溶媒を減圧留去し、得られた粗生成物をシリカゲルカ

ラムクロマトグラフィーでにて精製し(ヘキサン:酢酸エチル= 6:1 から 2:1)、目的物(0.41g)を油状物として得た。

 1 H-NMR (CDC1₃) δ 1.26 (3H, t), 2.24 (3H, s), 2.85 (2H, t), 3.20 (2H, t), 3.79 (2H, s), 4.18 (2H, q), 6.58 (1H, s), 7.48 (1H, s), 7.57 (2H, d), 7.67 (2H, d).

[0588]

実施例11(1)~実施例11(3)

対応するケトアミド体とローソン試薬より、実施例11に示す方法により環化を 行い、以下に示す化合物を得た。

[0589]

実施例11(1)

4-メチル-2-(2- |2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル| エチル)-1, 3-チアゾール-5-イル]酢酸エチル

【化462】

油状物; 1 H-NMR(CDCl₃) δ 1.26(3H, t), 2.24(3H, s), 2.34(3H, s), 2.8 2(2H, t), 3.15(2H, t), 3.69(2H, s), 4.17(2H, q), 6.59(1H, s), 7.58(2H, d), 7.66(2H, d).

[0590]

実施例11(2)

【化463】

$$F_3C$$

Me

Me

CO₂Et

油状物; 1 H-NMR (CDC1₃) δ 1.21-1.28 (9H, m), 2.21 (2H, s), 2.83 (2H, t), 2.98-3.05 (1H, m), 3.20 (2H, d), 3.70 (2H, s), 4.16 (2H, q), 6.58 (1H, s), 7.57 (2H, d), 7.66 (2H, d).

[0591]

実施例11(3)

[4-メチル-2-(3-12-メチル-5-[4-(トリフルオロメチル)フェニル] -3-フリル プロピル) -1, 3-チアゾール-5-イル] 酢酸エチル

[11:464]

油状物; 1 H-NMR(CDC1₃) δ 1.27(3H, t), 1.98-2.09(2H, m), 2.28(3H, s), 2.33(3H, s), 2.46(2H, t), 2.94(2H, t), 3.69(2H, s), 4.18(2H, q), 6.59(1H, s), 7.57(2H, d), 7.67(2H, d).

[0592]

実施例12

【化465】

$$F_3C$$
 N CO_2E

 $4-[(3-\{2-x+v-5-[4-(トリフルオロメチル) フェニル]-3$ -フリル $\}$ プロパノイル) アミノ]-3-オキソブタン酸エチル (0.40g)のN, N-ジメチルホルムアミド溶液 (5 m l) にオキシ塩化リン (0.13 m l) を加え、70で1時間攪拌した。放冷後、飽和重曹水を加え、酢酸エチルで希釈し、水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチ

ル=5:1から2:1)で精製し、目的物(0.30g)を油状物として得た。 1 H-NMR(CDCl₃) δ 1.26(3H, t), 2.27(3H, m), 2.83(2H, t), 2.97(2H, t), 3.67(2H, s), 4.16(2H, q), 6.54(1H, s), 6.85(1H, s), 7.56(2H, d), 7.65(2H, d).

[059.3]

実施例12(1)~実施例12(2)

対応するケトアミド体とオキシ塩化リンより、実施例12に示す方法により環化 を行い、以下に示す化合物を得た。

[0594]

実施例12(1)

 $[4-メチル-2-(2-{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル エチル)-1,3-オキサゾール-5-イル] 酢酸エチル$

【化466】

油状物; 1 H-NMR (CDC1₃) δ 1.25 (3H, t), 2.10 (3H, s), 2.27 (3H, s), 2.7 9-2.84 (2H, m), 2.89-2.95 (2H, m), 3.60 (2H, s), 4.16 (2H, q), 6.54 (1H, s), 7.56 (2H, d), 7.66 (2H, d).

[0595]

実施例12(2)

【化467】

油状物; 1 H-NMR(CDC1₃) δ 1.20-1.27(9H, m), 2.25(3H, s), 2.74-2.84(3 H, m), 2.88-2.98(2H, m), 3.61(2H, s), 4.15(2H, q), 6.51(1H, s), 7.56(2H, d), 7.65(2H, d).

[0596]

実施例13(1)~実施例13(7)

実施例11、実施例12で得られたエステル体を、実施例8に示した方法により 加水分解して、以下に示す化合物を得た。

[0597]

実施例13(1)

【化468】

融点143-145°C; 1 H-NMR(CDC1₃) δ 2.22(3H, s), 2.83(2H, t), 3.21(2H, t), 3.83(2H, s), 6.55(1H, s), 7.52(1H, s), 7.56(2H, d), 7.65(2H, d).

[0598]

実施例13(2)

 $[4-メチル-2-(2-{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル エチル)-1,3-チアゾール-5-イル] 酢酸$

【化469】

融点168-169°C; 1 H-NMR (CDC1₃) δ 2.22 (3H, s), 2.34 (3H, s), 2.79 (2H, t), 3.16 (2H, t), 3.72 (2H, s), 6.55 (1H, s), 7.54 (2H, d), 7.64 (2H, d).

[0599]

実施例13(3)

[4- 4 y] ロピルー2ー $(2- \{2- y \})$ ー $[4- (\}]$ ー $[4- (\}]$ で かい フェニル] ー $[4- (\}]$ 一 $[4- (\}]$ 一 [4- (]] — [4-

融点176-177°C; 1 H-NMR(CDC1₃) δ 1.24(3H, s), 1.26(3H, s), 2.20(3H, s), 2.81(2H, t), 2.99(1H, quintet), 3.16(2H, t), 3.75(2H, s), 6.53(1 H, s), 7.56(2H, d), 7.63(2H, d).

[0600]

実施例13(4)

 $[4-メチル-2-(3-\{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル プロピル)-1,3-チアゾール-5-イル]酢酸$

【化471】

融点162-163°C; 1 H-NMR (CDC1 $_{3}$) δ 1.96-2.07 (2H, m), 2.27 (3H, s), 2.33 (3H, s), 2.45 (2H, t), 2.97 (2H, t), 3.72 (2H, s), 6.58 (1H, s), 7.56 (2H, d), 7.66 (2H, d).

[0601]

実施例13(5)

 $[2-(2-\{2-x+v-5-[4-(トリフルオロメチル) フェニル] -3$ -フリル エチル) -1 , 3-オキサゾール-5-イル] 酢酸

【化472】

融点143-144°C; 1 H-NMR(CDC1₃) δ 2.24(3H, s), 2.81(2H, t), 2.99(2H, t), 3.71(2H, d), 6.52(1H, s), 6.90(1H, s), 7.54(2H, d), 7.62(2H, d).

[0602]

実施例13(6)

[4-メチル-2-(2-12-メチル-5-[4-(トリフルオロメチル)フェニル] -3-フリル エチル) -1, 3-オキサゾール-5-イル] 酢酸 【化473】

融点120–121°C; 1 H-NMR (CDC1₃) δ 2.09 (3H, s), 2.24 (3H, s), 2.79 (2H, t), 2.93 (2H, t), 3.63 (2H, s), 6.51 (1H, s), 7.54 (2H, d), 7.62 (2H, d).

[0603]

実施例13(7)

【化474】

融点126-128°C; 1 H-NMR (CDCl₃) δ 1.18 (3H, s), 1.21 (3H, s), 2.26 (3H, s), 2.75-2.82 (3H, m), 2.95 (2H, t), 3.65 (2H, s), 6.47 (1H, s), 7.52 (2H, d), 7.61 (2H, d).

[0604]

実施例14

 $2-\{[4-(3-メトキシ-2, 2-ジメチル-3-オキソプロピル) フェノキシ] メチル<math>\}$ -5-[4-(トリフルオロメチル) フェニル] -3-フロ酸2-(トリメチルシリル) エチル

【化475】

2-メチルー5- [4-(トリフルオロメチル)フェニル]-3-フロ酸2-(トリメチルシリル)エチル(2.5g)の酢酸エチル溶液(50m1)に2.2,一アゾビス(イソブチロトニトリル)(0.11g)、Nーブロモスクシンイミド(1.20g)を加え、5時間、加熱還流した。溶媒を減圧留去し、トルエンで希釈。不溶物をセライトろ過し、トルエンで洗浄。ろ液を減圧留去して油状物を得た。これをN,Nージメチルホルムアミド(50m1)に溶解させ、炭酸カリウム(1.40g)、3-(4-ビドロキシフェニル)-2, 2-ジメチルプロパン酸メチル(1.55g)を加え、室温で2時間、50 $\mathbb C$ で 1 時間攪拌した。酢酸エチルで希釈し、水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(へキサン:酢酸エチル=20:1から10:1)で精製し、目的物(2.68g)を油状物として得た。

¹H-NMR (CDC1₃) δ 0.07 (9H, s), 1.07-1.11 (2H, m), 1.16 (6H, s), 2.79 (2H, s), 3.64 (3H, s), 4.34-4.40 (2H, m), 5.39 (2H, s), 6.92 (2H, d), 7.0 0-7.05 (3H, s), 7.63 (2H, d), 7.75 (2H, d).

[0605]

実施例14(1)

 $2-\{[4-(2-x)+2-1, 1-iyxチルー2-x+yx+2) フェノキシ] メチル<math>\{-5-[4-(yy)+2+yy) -5-(yy) -2-x+yy -2$

【化476】

2-メチルー5- [4-(トリフルオロメチル)フェニル] -3-フロ酸2-(トリメチルシリル)エチルと2-(4-ヒドロキシフェノキシ)-2-メチルプロパン酸エチルより、実施例 1 4 に示す方法と同様にして、目的物を得た。油状物 1 H-NMR (CDC $_{13}$) δ 0.07 (9H, s), 1.05-1.14 (2H, m), 1.26 (3H, dt), 1.54 (6H, s), 4.23 (2H, q), 4.33-4.42 (2H, m), 5.37 (2H, s), 6.81-6.95 (4H, m), 7.05 (1H, s), 7.64 (2H, d), 7.76 (2H, d).

[0606]

実施例 1 5

 $2-\{[4-(3-メトキシ-2, 2-ジメチル-3-オキソプロピル) フェノキシ] メチル<math>\}$ -5-[4-(トリフルオロメチル) フェニル] -3-フロ酸【化477】

融点153-155°C; 1 H-NMR(CDC1₃) 3 1.17(6H, s), 2.80(2H, s), 3.65(3H, s), 5.41(1H, s), 6.94(2H, d), 7.05(2H, d), 7.11(1H, s), 7.65(2H, d), 7.77(2H, d).

[0607]

実施例 1 5 (1)

【化478】

実施例 14 (1) で得た $2-\{[4-(2-x)+2-1, 1-i) \times F N-2-1 \times F N-1, 1-i) \times F N-2-1 \times F N-1 \times F N-1 \times F N-1 \times F N-2-1 \times F N-1 \times F N-2-1 \times F N-2$

融点87-88°C; 1 H-NMR (CDCl₃) δ 1.26 (3H, t), 1.54 (6H, s), 4.22 (2H, q), 5.38 (2H, s), 6.85 (2H, d), 6.92 (2H, d), 7.09 (1H, s), 7.65 (2H, d), 7.77 (2H, d).

[0608]

実施例16

 $3-[4-({3-(ヒドロキシメチル)}-5-[4-(トリフルオロメチル)$ フェニル]-2-フリルメトキシ)フェニル]-2, 2-ジメチルプロパン酸メチル

【化479】

2- { [4-(3-メトキシ-2, 2-ジメチル-3-オキソプロピル)フェノキシ]メチル}-5- [4-(トリフルオロメチル)フェニル]-3-フロ酸(1.60g)のテトラヒドロフラン溶液(40ml)に、氷冷下で、トリエチルアミン(0.58ml)、クロロ炭酸エチル(0.37ml)を順に滴下し、室温で30分攪拌した。-20℃に冷却後、水素化ホウ素ナトリウム(0.33g)を加え、ついで、メタノール(20ml)を滴下し、2時間攪拌した。1規定塩酸で反応を終了させ、酢酸エチルで希釈し、水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=5:1から2:1)で精製し、目的物(

1. 16g) を油状物として得た。

 1 H-NMR (CDC1₃) δ 1.17 (6H, s), 2.80 (2H, s), 3.63 (3H, s), 4.60 (2H, s), 5.08 (2H, s), 6.82 (1H, s), 6.89 (2H, d), 7.04 (2H, d), 7.62 (2H, d), 7.75 (2H, d).

[0609]

実施例16(1)

 $2-[4-({3-(ヒドロキシメチル)}-5-[4-(トリフルオロメチル)$ フェニル]-2-フリルメトキシ)フェノキシ]-2-メチルプロパン酸エチル

【化480】

油状物 1 H-NMR(CDC1₃) δ 1.27(3H, t), 1.54(6H, s), 4.24(2H, q), 4.59(2H, d), 5.05(2H, s), 6.81(1H, s), 6.86(4H, d), 7.62(2H, d), 7.75(2H, d).

[0610]

実施例17

 $3-[4-({3-(ヒドロキシメチル)}-5-[4-(トリフルオロメチル)$ フェニル]-2-フリルメトキシ)フェニル]-2, 2-ジメチルプロパン酸【化481】

実施例16で得られたエステル体を実施例8で示した方法と同様にして、目的物を得た。

融点91-92°C; 1 H-NMR (CDCl₃) δ 1.20 (6H, s), 2.82 (2H, s), 4.56 (2H, s), 5.05 (2H, s), 6.76 (1H, s), 6.89 (2H, d), 7.10 (2H, d), 7.59 (2H, d), 7.70 (2H, d).

[0611]

実施例18

2, 2-iジメチル-3-[4-(-13-12)] (フェノキシカルボチオイル) オキシ] メチル1-5-[4-(-13)] (トリフルオロメチル) フェニル] 1-2-2 (トキシ) フェニル] プロパン酸メチル

【化482】

 $3-[4-({3-(ヒドロキシメチル})-5-[4-(トリフルオロメチル)$ フェニル] -2-フリル メトキシ)フェニル] -2, $2-ジメチルプロパン酸メチル(0.40g)のアセトニトリル溶液(5 m l)に4-(ジメチルアミノ)ピリジン(0.211g)を加え、氷冷下でクロロチオノぎ酸フェニル(0.132 m l)を滴下し、氷冷下で30分、室温で30分攪拌した。酢酸エチルで希釈し、水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=30:1から5:1)で精製し、目的物(0.40g)を油状物として得た。<math>^{1}$ H-NMR(CDC13) δ 1.17(6H,s),2.80(2H,s),3.64(3H,s),5.13(2H,s),5.52(2H,s),6.89-6.92(3H,m),7.02-7.10(3H,m),7.19-7.33(2H,m),7.37-7.47(2H,m),7.62(2H,d),7.76(2H,d).

[0612]

実施例18(1)

2-メチル-2- [4-(| 3- | [(フェノキシカルボチオイル) オキシ] メチル<math>| -5- [4-(トリフルオロメチル)フェノキシ]プロパン酸エチル

【化483】

 $2-[4-({3-(ヒドロキシメチル)}-5-[4-(トリフルオロメチル)$ フェニル]-2-フリルメトキシ)フェノキシ]-2-メチルプロパン酸エチルから、実施例18に示した方法と同様にして、目的物を得た。

油状物; ¹H-NMR (CDC1₃) & 1.26 (3H, t), 1.54 (6H, s), 4.23 (2H, q), 5.1 (2H, s), 5.51 (2H, s), 6.87-6.91 (5H, m), 7.09 (2H, d), 7.31 (1H, d), 7.38-7.45 (2H, m), 7.64 (2H, d), 7.77 (2H, d).

[0613]

実施例19

2, $2-ジメチル-3-[4-({3-メチル-5-[4-(トリフルオロメチル)フェニル]-2-フリル}メトキシ)フェニル]プロパン酸エチル$

【化484】

2, 2-ジメチル-3-[4-({3-{[(フェノキシカルボチオイル) オキシ]メチル}-5-[4-(トリフルオロメチル)フェニル]-2-フリル メトキシ)フェニル]プロパン酸メチル(0.40g)のトルエン溶液(5 m l)に2, 2'-アゾビス(イソブチロトニトリル)(0.022g)、水素化トリブチルチン(0.27 m l)を加え、2時間加熱還流した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=30:1から4:1)で精製し、目的物(0.17g)を油状物として得た。

1H-NMR(CDCl3) & 1.17(6H, s), 2.11(3H, s), 2.80(2H, s), 3.65(3H, s), 4.98(2H, s), 6.62(1H, s), 6.90(2H, d), 7.04(2H, d), 7.59(2H, d), 7.53(2H, d).

[0614]

実施例19(1)

2-メチル-2- $[4-({3-}$ メチル-5- [4-(トリフルオロメチル) フェニル] <math>-2-フリル $\{$ メトキシ $\}$ フェノキシ $\}$ プロパン酸エチル

【化485】

2-メチル-2- [4-(${3-}$ {[(7x)+シカルボチオイル) オキシ] メチル ${}$ -5- [4-(トリフルオロメチル) フェニル ${}$ -2-フリル ${}$ メトキシ) フェノキシ ${}$ プロパン酸エチルから、実施例 19 に示した方法と同様にして、目的物を得た。

油状物; 1 H-NMR (CDCl₃) δ 1.27 (3H, t), 1.54 (6H, s), 2.09 (3H, s), 4.2 3 (2H, q), 4.95 (2H, s), 6.62 (1H, s), 6.86 (4H, d), 7.60 (2H, d), 7.73 (2H, d).

[0615]

実施例20(1)、実施例20(2)

実施例19、実施例19(1)で得られたエステル体を実施例8で示した方法により加水分解して、以下に示す化合物を得た。

[0616]

実施例20(1)

2, $2-ジメチル-3-[4-({3-メチル-5-[4-(トリフルオロメチル)フェニル]-2-フリル メトキシ)フェニル プロパン酸$

【化486】

融点124-126°C; 1 H-NMR (CDC1₃) δ 1.20 (6H, s), 2.09 (3H, s), 2.84 (2H, s), 4.97 (2H, s), 6.60 (1H, s), 6.91 (2H, d), 7.10 (2H, d), 7.58 (2H, d),

7.71 (2H, d).

[0617]

実施例20(2)

2-メチルー2- $[4-({3-}$ メチルー5-[4-(トリフルオロメチル) フェニル] -2-フリル| メトキシ| フェノキシ| プロパン酸

【化487】

融点116-117°C; 1 H-NMR (CDC1₃) δ 1.55 (6H, s), 2.10 (3H, s), 4.97 (2H, s), 6.61 (1H, s), 6.92 (4H, s), 7.59 (2H, d), 7.72 (2H, d).

[0618]

実施例 2 1 - a

2-メチルー2- [4-((E)-2- $\{2-$ メチルー5- [4-(トリフルオロメチル)フェニル]-3-フリル $\}$ エテニル)フェノキシ]プロパン酸エチル 【化488】

実施例 2 1 - b

2-メチルー2- [4-((Z) -2- ${2-$ メチルー5- [4-(トリフルオロメチル)フェニル] -3-フリル ${1}$ エテニル)フェノキシ ${1}$ プロパン酸エチル 【化489】

2-メチル-5- [4-(トリフルオロメチル)フェニル]-3-フルアルデヒド(1.0g)のN,N-ジメチルホルムアミド溶液(20m1)に[4-(2-エトキシ-1、1-ジメチル-2-オキソエトキシ)ベンジル](トリフェニ

ル)ホスホニウム プロミド (2.66g)、炭酸カリウム (0.82g) を加え、室温で一晩攪拌した。酢酸エチルで希釈し、水、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル=30:1から10:1)で精製し、目的物 (E体;0.53g、Z体;0.54g)をそれぞれ、固体として得た。2ーメチルー2ー [4ー((E)ー2ー {2ーメチルー5ー [4ー(トリフルオロメチル)フェニル]ー3ーフリル}エテニル)フェノキシ]′プロパン酸エチル:融点99-100℃; ¹H-NMR (CDC13) δ 1.26 (3H, t), 1.61 (6H, s), 2.45 (3H, s), 4.24 (2H, q), 6.73 (2H, ABq), 6.82 (2H, d), 6.92 (1H, s), 7.34 (2H, d), 7.60 (2H, d), 7.72 (2H, d).
2ーメチルー2ー [4ー((Z)ー2ー {2ーメチルー5ー [4ー(トリフルオロメチル)フェニル]ー3ーフリル エテニル)フェノキシ]プロバン酸エチルコメチル)フェニル 3ーフリル エテニル)フェノキシ プロバン酸エチル:融点84-85℃; ¹H-NMR (CDC13) δ 1.24 (3H, t), 1.61 (6H, s), 2.28 (3H, s), 4.22 (2H, q), 6.23 (1H, d), 6.42 (1H, s), 6.48 (1H, d), 6.78 (2H, d), 7.20 (2H, d), 7.551 (2H, s), 7.558 (2H, s).

[0619]

実施例22(1)、実施例22(2)

実施例21-a、実施例21-bで得られたエステル体を実施例8で示した方法により加水分解して、以下に示す化合物を得た。

[0620]

実施例22(1)

2-メチルー2- [4-((E)-2- $\{2-$ メチルー5- [4-(トリフルオロメチル)フェニル] -3-フリル $\{2-$ メチル)フェノキシ $\{2-\}$ プロパン酸

【化490】

融点140-141°C; 1 H-NMR (CDC1₃) δ 1.63 (6H, s), 2.45 (3H, s), 6.77 (2H, A Bq). 6.92 (1H, s), 6.93 (2H, d), 7.39 (2H, d), 7.60 (2H, d), 7.72 (2H, d

).

[0621]

実施例22(2)

2-メチルー2- $[4-((Z)-2-{2-}メチルー5-[4-(トリフルオロメチル)フェニル]-3-フリル エテニル)フェノキシ]プロパン酸$

【化491】

融点117-118°C; 1 H-NMR(CDC1₃) δ 1.61(6H, s), 2.28(3H, s), 6.27(1H, d), 6.41(1H, s), 6.49(1H, d), 7.87(2H, d), 7.25(2H, d), 7.55(4H, s).

[0622]

実施例 2 3

2-メチル-2- $[4-(2-{2-$ メチル-5-[4-(トリフルオロメチル) フェニル] -3-フリル] エチル] フェノキシ] プロパン酸エチル

【化492】

2-メチルー2- [4-((E)-2- ${2-$ メチルー5-[4-(トリフルオロメチル)フェニル]-3-フリル ${1\over 2}$ エテニル)フェノキシ ${1\over 2}$ プロパン酸エチル (0.34g)のトルエンーエタノール混合溶媒(4m1-1m1)にクロロトリス(トリフェニルホスフィン)ロジウム(1)(0.69mg)を加え、60 ${1\over 2}$ 、水素雰囲気下で一晩攪拌した。溶媒を減圧留去し、ジイソプロピルエーテルで希釈後,不溶物をろ過し、ろ液を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=20:1から5:1)で精製し、目的物 (0.18g)を固体として得た。

融点99-100°C; 1 H-NMR(CDC1₃) δ 1.25(3H, t), 1.58(6H, s), 2.09(3H, s), 2.62(2H, t), 2.77(2H, t), 4.23(2H, q), 6.51(1H, s), 6.77(2H, d), 7.00(2H, d), 7.57(2H, d), 7.66(2H, d).

[0623]

実施例24

2-メチル-2- [4-(2- $\{2-$ メチル-5- [4-(トリフルオロメチル) フェニル]-3-フリル] エチル) フェノキシ] プロパン酸

【化493】

2-メチルー2- [4-(2- ${2-$ メチルー5- [4-(トリフルオロメチル) フェニル]-3-フリル $\}$ エチル) フェノキシ] プロパン酸エチルから、実施 例 8 に示した方法と同様にして、目的物を得た。

融点87-88°C; 1 H-NMR (CDC1₃) δ 1.51 (6H, s), 2.09 (3H, s), 2.60 (2H, t), 2.76 (2H, t), 6.50 (1H, s), 6.84 (2H, d), 7.02 (2H, d), 7.55 (2H, d), 7.62 (2H, d).

[0624]

実施例25

2-メチル-2- $\{4-$ [($\{2-$ メチル-5- [4- (トリフルオロメチル) フェニル] -3-フリル $\}$ -メチル) チオ] フェノキシ $\}$ プロピオン酸

【化494】

1 N水酸化ナトリウム水溶液(10 ml)を加え、室温で一晩撹拌した。濃縮後、1 N塩酸を加え、酢酸エチルで抽出した。有機層を水、食塩水で洗浄後、硫酸マグネシウムで乾燥し、溶媒を留去、粗結晶を得た。酢酸エチルーヘキサンから再結晶し、目的物を結晶として得た。

融点112-113 °C; 1 H-NMR (CDC1₃) 3 1.60 (6H, s), 2.07 (3H, s), 3.80 (2H, s), 6.64 (1H, s), 6.85 (2H, d), 7.28 (2H, d), 7.58 (2H, d), 7.67 (2H, d)

[0625]

実施例26

2-メチル-2- $\{4-$ [(3- $\{2-$ メチル-5- [4- (トリフルオロメチル) フェニル] -3-フリル $\}$ プロピル) チオ] フェノキシ $\}$ プロピオン酸

【化495】

参考例 1 1 (1) で得られた $3-\{2-メチル-5-[4-(トリフルオロメチル)フェニル] -3-フリル プロパン-1-オールより、実施例 <math>2$ 5 に示す方法と同様にして、目的物を得た。

油状物; 1 H-NMR(CDC1₃) δ 1.59(6H, s), 1.82-1.90(2H, m), 2.29(3H, s), 2.50(2H, t), 2.87(2H, t), 6.53(1H, s), 6.86(2H, d), 7.27(2H, d), 7.66(2H, d).

[0626]

実施例27

2-メチル-2-($\{4-$ [($\{2-$ メチル-5-[4-(トリフルオロメチル) フェニル] -3-フリル $\}$ -メチル) アミノ] ベンジル $\}$ チオ) プロピオン酸【化496】

{2-メチル-5-[4-(トリフルオロメチル)フェニル]-3-フリル}メ

タノール(0.7g)を酢酸エチル(7m1)に溶かし、氷冷下、濃塩酸(0.73m1)を加え、室温で1.5時間撹拌した。炭酸水素ナトリウム水溶液中に注ぎ、酢酸エチルで抽出した。有機層を水、食塩水で洗浄後、硫酸マグネシウムで乾燥、溶媒を留去した。残渣をDMF(5m1)に溶かし、2- [(4ーアミノベンジル)チオ] -2-メチルプロピオン酸メチル(0.5g)、炭酸水素ナトリウム(0.5g)を加え、60℃、2時間加熱した。炭酸水素ナトリウム水溶液中に注ぎ、酢酸エチルで抽出した。有機層を水、食塩水で洗浄後、硫酸マグネシウムで乾燥、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル/ヘキサン)で精製、油状物(0.4g)を得た。エタノール(50m1)に溶かし、1 N水酸化ナトリウム水溶液(5m1)を加え、80℃で2.5時間加熱した。濃縮後、1 Nクエン酸水溶液を加え、酢酸エチルで抽出した。有機層を水、食塩水で洗浄後、硫酸マグネシウムで乾燥、溶媒を留去し粗結晶を得た。酢酸エチルーヘキサンから再結晶し、目的物(0.33g)を結晶として得た。

融点139-141 °C; 1 H-NMR (CDC1₃) δ 1.58 (6H, s), 2.37 (3H, s), 3.82 (2H, s), 4.06 (2H, s), 6.60 (2H, d), 6.71 (1H, s), 7.16 (2H, d), 7.58 (2H, d), 7.68 (2H, d).

[0627]

【発明の効果】

本発明の化合物(I)およびその薬理学的に許容され得る塩は、PPARに作用することにより、PPARに関連する疾患(たとえば、脂質代謝異常症およびその続発症、糖尿病、高脂血症、動脈硬化性疾患およびその続発症(例えば、虚血性心疾患、脳疾患や末梢動脈閉塞症など)、耐糖能不全など)に対する優れた予防・治療作用を示す。このため、哺乳動物(例、ヒト、サル、ヒツジ、ウシ、ウマ、イヌ、ネコ、ウサギ、ラット、マウス等)において、PPAR制御剤およびPPARに関連する疾患(たとえば、脂質代謝異常症およびその続発症、糖尿病、高脂血症、動脈硬化性疾患(例えば、虚血性心疾患、脳疾患や末梢動脈閉塞症など)、耐糖能不全など)の予防または治療剤として有用である。さらに、本発明の化合物(I)は、高密度リポタンパクーコレステロール上昇剤、トリグリ

セリド低下剤、低密度リポタンパクーコレステロール低下剤、動脈硬化巣の進展 抑制剤などにも有用である。

[0628]

【配列表】

SEQUENCE LISTING

- <110> Takeda Chemical Industries, Ltd.
- <120> Furan or Thiophene Derivatives and Their Use
- <130> B03157
- <150> JP 2002-261873
- <151> 2002-09-06
- <160> 12
- <210> 1
- <211> 34
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223>
- <400> 1
- aacggtacct cagccatgga gcagcctcag gagg 34
- <210> 2
- <211> 34
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223>
- <400> 2

taagtcgacc cgttagtaca tgtccttgta gatc 34

- <210> 3
- <211> 33

- <212> DNA <213> Artificial Sequence <220> <223> <400> 3 ttagaattcg acatggacac caaacatttc ctg 33 <210> 4 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> <400> 4 cccctcgagc taagtcattt ggtgcggcgc ctc 33 <210> 5 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> <400> 5 tcgacagggg accaggacaa aggtcacgtt cgggag 36 <210> 6 <211> 36 <212> DNA
- <220>

<213> Artificial Sequence

- <223>
- <400> 6


```
tcgactcccg aacgtgacct ttgtcctggt cccctg 36
<210> 7
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223>
<400> 7
cccagatete eccagegtet tgteattg 28
<210> 8
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223>
<400> 8
tcaccatggt caagctttta agcgggtc 28
<210> 9
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223>
<400> 9
gtgggtaccg aaatgaccat ggttgacaca gag 33
<210> 10
<211> 33
<212> DNA
<213> Artificial Sequence
```


- <220>
- <223>
- <400> 10

ggggtcgacc aggactctct gctagtacaa gtc 33

- <210> 11
- <211> 33
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223>
- <400> 11

aaaggatccc gcgatggtgg acacagaaag ccc 33

- <210> 12
- <211> 33
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223>
- <400> 12

cccgtcgact cagtacatgt ccctgtagat ctc 33

【書類名】 要約書

【要約】

【課題】脂質代謝異常症、動脈硬化性疾患およびそれらの続発症、糖尿病などの 予防・治療剤として有用なフラン誘導体およびチオフェン誘導体を提供する。

【解決手段】一般式

【化1】

$$R^{2} \xrightarrow{X^{1}} M^{1} \xrightarrow{Y} M^{2} \xrightarrow{A} X^{2} \xrightarrow{M^{4}} O \xrightarrow{R^{1}} (I)$$

[式中、Rは置換されていてもよい炭化水素基または置換されていてもよい複素 環基を示し、pは0、1または2を示し、pが2である場合、各Rは同一または 異なっていてもよく、R¹は水素原子または置換されていてもよい炭化水素基を 示し、R²は置換されていてもよい芳香族基を示し、環Aは置換されていてもよい単環性芳香環または置換されていてもよい2環性芳香族縮合環を示し、X¹は 酸素原子または硫黄原子を示し、X²は結合手、酸素原子または-S(O) nー (ここで、nは0、1または2を示す)を示し、Yは結合手、酸素原子、-S(O) mー、-C(=O) $-N(R^3)$ - または $-N(R^3)$ -C(=O) $-(R^3)$ は、水素原子、置換されていてもよい炭化水素基または置換されていてもよい複素環基を示し、mは、0、1または2を示す)を示し、- M¹、M²およびM³は、それぞれ独立して、同一または異なっていてもよく、結合手または置換されていてもよい2価の脂肪族炭化水素基を示し、M⁴は置換されていてもよい2価の脂肪族炭化水素基を示し、M⁴は置換されていてもよい2価の脂肪族炭化水素基を示し、M⁴は置換されていてもよい2価の脂肪族炭化水素基を示し、M⁴は置換されていてもよい2価の脂肪族炭化水素基を示し、M⁴は置換されていてもよい2価の脂肪族炭化水素基を示し、M⁴は置換されていてもよい2価の脂肪族炭化水素基を示し、M⁵は置換されていてもよい3に同じまたはその塩。

【選択図】 なし

特願2003-185241

出願人履歴情報

識別番号

[000002934]

1. 変更年月日

1992年 1月22日

[変更理由]

住所変更

住 所

大阪府大阪市中央区道修町四丁目1番1号

氏 名

武田薬品工業株式会社