□ 교육 커리큘럼

o AWS AI/ML 엔지니어링, 160시간

교육 내용	주요 내용	교육시간
머신러닝을 위한 파이썬 프로그래밍	 파이썬 프로그래밍 기초: 변수, 데이터 타입, 리스트, 딕셔너리, 함수, 클래스 데이터 분석을 위한 라이브러리 활용: NumPy, Pandas, Matplotlib, Seaborn 데이터 전처리 및 피처 엔지니어링: 결측값 처리, 스케일링, 데이터 정규화 기본 머신러닝 개념과 모델 구축: 지도학습과 비지도학습, Scikit-learn 활용 모델 평가 및 성능 최적화: Precision, Recall, F1-score, 하이퍼파라미터 튜닝 딥러닝 개요 및 TensorFlow 기본 활용 	30H
AWS 클라우드 서비스 활용	 AWS 클라우드 개요 및 IAM을 활용한 권한 관리 AWS S3를 활용한 데이터 저장 및 관리 AWS EC2 및 Lambda를 활용한 컴퓨팅 리소스 관리 VPC와 보안 그룹 설정 데이터베이스 관리: RDS, DynamoDB AWS API Gateway 및 클라우드 환경에서의 데이터 처리 AWS 비용 최적화 및 보안 고려사항 CloudFormation 자동화 서비스 	30H
머신러닝을 위한 AWS 빅데이터 처리 및 분석	 Data Lake와 Warehouse 활용 AWS Glue를 활용한 데이터 ETL(추출, 변환, 적재) AWS Redshift 및 DynamoDB를 활용한 데이터 저장 및 분석 AWS Kinesis를 활용한 실시간 데이터 스트리밍 AWS EMR을 활용하여 Spark, Hadoop, Hive, Presto 기반의 대규모 데이터 처리, 분석, 머신러닝 모델 훈련 및 최적화된 클러스터 운영 AWS Athena를 이용한 서버리스 데이터 분석 	40H
AWS 머신러닝 모델 개발 및 관리	 데이터 파이프라인 설계 및 구축 AWS Bedrock 생성형 AI 소개 SageMaker의 주요 기능과 활용 사례 모델 개발: 내장 알고리즘 및 Scikit-learn, TensorFlow, PyTorch 활용 모델 훈련 및 튜닝: SageMaker Training 	40H

	Job 및 하이퍼파라미터 최적화	
	● 모델 성능 평가 : 평가 지표 분석 및 모델	
	모니터링	
	● SageMaker Clarify 활용 : 모델 해석 및	
	편향 탐지	
	SageMaker Model Debugger : 학습 과정	
	디버깅 및 성능 최적화	
	● 모델 배포 및 실습 프로젝트 : 실시간	
	배포, API 서비스화, MLOps 구축	
	● 프로젝트 팀 편성 및 팀별 주제 선정	
	• 팀원 역할 분담 및 일정 계획 수립	
	● 프로젝트 설계 및 데이터 수집	
	● 모델 개발 및 모델 평가	
	┃ ┃ ● 모델 배포 및 API 서비스 구축	
	● 프로젝트 발표 문서 작성 및 제출	
	● 프로젝트 결과 발표 및 피드백	
	○ · · · · · · · · · · · · · · · · · · ·	
	▼ 0月 でっ ᆾ 0丁 2년 00 12	
	[파크레드 에시]	
	[프로젝트 예시] (4) ADE 그리드 사사가 보는 에초 모델	
	(1) 스마트 그리드 실시간 부하 예측 모델	
	구축 및 API 서비스화	
	- 스마트 미터 데이터를 기반으로 짧은 시간	
	간격의 전력 부하를 실시간으로 예측하는	
	모델 개발, API 형태로 서비스 제공	
	(2) 유통상품 수요 예측 모델 구축 및 API	
	서비스화	
AWS 머신러닝 프로젝트	- 공개된 유통 매장 판매 데이터를 활용하여	20H
	상품별 수요를 예측하는 회귀 모델 개발	
	및 API로 제공	
	(3) 관광지 만족도 감성 분석 모델 구축 및	
	API 서비스화	
	- 온라인 관광지 리뷰 데이터를 활용하여	
	감성 분석 모델을 개발하고, 관광지별	
	만족도 지표를 API 형태로 제공	
	(4) 기후 데이터 기반 농작물 생산량 예측 API	
	서비스	
	- 기온, 강수량 등의 기후 데이터를	
	활용하여 주요 작물의 연간 생산량을	
	예측하는 모델 및 API 구현	
	(5) 농산물 이미지 분류 모델 개발 및 웹	
	기반 예측 API 구현	
	- 농작물 이미지 데이터를 활용하여 품종	
	또는 병해 여부를 분류하는 모델을	
	만들고 S3 및 SageMaker를 활용하여 웹	
	API 형태로 구현	