UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA IV: Introducción a las Matemáticas Discretas (525412)

Tarea 2

(Fecha de entrega: 24 de septiembre de 2004 hasta las 12:00 PM.)

- 1. Sea (G, *) un grupo con e elemento neutro.
 - i) Pruebe que si $\forall a \in G, \ a * a = e, \text{ entonces } (G, *) \text{ es grupo Abeliano.}$
 - ii) Pruebe que si $\forall g \in G, \exists n \in \mathbb{N}, g^n = e$, entonces el único homeomorfismo $F: (G, \Delta) \longrightarrow (\mathbb{Z}, +)$ es la función constante $F(g) = 0, \forall g \in G$.
 - iii) Pruebe que si a * a = a, entonces a = -a, $\forall a \in G$, donde -a es el inverso de a.
 - iv) Suponga que (G,*) es grupo Abeliano y $H,K\subseteq G$ subgrupos de G. Se define el conjunto, $H*K=\{h*k/h\in H,\ k\in K\}$. Pruebe que H*K es un subgrupo de G.
- 2. Sea el triángulo equilátero ABC dado por la figura.

- i) Pruebe que el conjunto de las rotaciones en torno al centro O, en el sentido de los punteros del reloj, en 0, 120 y 240 grados; y las reflexiones en torno a los ejes: AD, BE y CF del triángulo ABC forman un grupo (G,*). Construya la tabla de Pitágoras del grupo.
- ii) Construya un isomorfismo entre (G, *) y (S_3, \circ) , donde S_3 es el grupo de todas las permutaciones de tres elementos y la operación \circ es la composición de funciones.
- iii) Demuestre que todo subgrupo de (G,*) de orden dos y tres es un grupo cíclico Abeliano.
- 3. Considere en \mathbb{R}^2 las siguientes operaciones:

 $(a,b)\oplus(c,d)=(a+c,b+d), \quad (a,b)\odot(c,d)=(ac,bd) \quad \text{y} \quad (a,b)*(c,d)=(ac-bd,ad+bc),$ con la suma y producto habituales en $\mathbb R$.

- i) Pruebe que $(\mathbb{R}^2, \oplus, \odot)$ es un anillo conmutativo con unidad. Es un cuerpo?.
- ii) Pruebe que $(\mathbb{R}^2, \oplus, *)$ es cuerpo.