CS 152: Exam-I (May 1, 2020)

Name: Kany Gubta	Name:	Raiiv	Gupta	
------------------	-------	-------	-------	--

30/30

- 1.(30 points) Regular Expressions and Context Free Grammars
 - i. Given the following grammar: $S \rightarrow A B \mid \epsilon A \rightarrow a A \mid \epsilon B \rightarrow b B \mid \epsilon$ Identify the string (if any) that has *multiple leftmost derivations*:
 - a) aaa
 - b) abbb
 - c) ϵ
 - d) None of the above
 - ii. Identify the *regular grammar* (if any) among the following:
 - a) $S \rightarrow (S)S \mid \epsilon$
 - b) $S \rightarrow a S |a| \epsilon$
 - c) $S \rightarrow AB \mid \epsilon$ $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$
 - d) None of the above
 - iii. Identify the grammar (if any) that is LL(1) among the following:
 - a) $E \rightarrow E + T \mid T \rightarrow id \mid (E)$
 - b) $A \rightarrow aB|aC B \rightarrow bB|b C \rightarrow cC|c$
 - c) $S \rightarrow (S)S \mid \epsilon$
 - d) None of the above
 - iv. Consider the regular expression $(x^+ y)$? . x where $\Sigma = \{x,y\}$. Which of the following strings **can be** generated by the regular expression.
 - a) y x
 - b) xxyxx
 - c) xx
 - d) All of the above
 - v. Consider the regular expression [5-7] | [23][0-8]. Which of the following strings **cannot** be generated by the regular expression?
 - a) 6
 - b) 28
 - c) 39
 - d) None of the above
 - vi. Which of the following regular expressions is equivalent to given regular expression: (a | b)? c where $\Sigma = \{a,b,c\}$.
 - a) abc
 - b) ac|bc|c
 - c) ac|bc

25/25

2.(25 points) <u>Top Down Parsing</u>. Given the following grammar:

```
#1 LEXP \rightarrow ATOM #3 ATOM \rightarrow num #5 LIST \rightarrow ( LEXP LSEQ ) #2 LEXP \rightarrow LIST #4 ATOM \rightarrow id #6 LSEQ \rightarrow LEXP LSEQ #7 LSEQ \rightarrow \epsilon
```

- i. TABLE [LEXP, num] = #1
- ii. TABLE [LEXP, (] = #2
- iii. TABLE [ATOM, num] = #3
- iv. TABLE [ATOM, (] = error
- v. TABLE [LIST, (] = #5
- vi. TABLE [LSEQ, num] = #6
- vii. TABLE [LSEQ, id] = #6
- viii. TABLE [LSEQ, (] = #6
- ix. TABLE [LSEQ,)] = #7
- x. TABLE [LSEQ, \$] = error

45/45

3. (45 points) <u>Bottom Up Parsing:</u> Given an incomplete SLR(1) state machine.

- i. Provide items missing from state S_0 R \rightarrow . L & L \rightarrow . a
- ii. Provide *items missing* from state S_1 $R \rightarrow L$
- iii. Provide items missing from state S_3 \searrow $L \rightarrow a$
- iv. Provide action: **ACTION** [S_0 , a] = $\frac{\text{shift}}{S_0}$
- v. Provide action: **ACTION** [S₄, a] = shift, S₃
- vi. Provide action: **ACTION** [S_1 , =] = $\frac{\text{shift}}{\text{shift}}$, S_4
- vii. Provide action: **ACTION** [S₄, \$] = error
- viii. Provide action: **ACTION** [S₂, \$] = reduce, S→R / accept
- ix. Provide action: **ACTION** [S_6 , \$] = reduce, $R \rightarrow L$
- x. Provide action: **ACTION** [**S**₆, =] = error
- xi. Provide action: **ACTION** [S_5 , \$] = reduce, $S \rightarrow L=R$ / accept
- xii. Identify a state, if any, that contain a shift-reduce conflict?

No (shift on = and reduce on \$)

xiii. Identify a state, if any, that contains a reduce-reduce conflict?

Yes, in S_3 -- because \$ is in Follow(R) and Follow(L).

xiv. Will conflicts found, if any, be present in the LR(1) parser? Yes