Zadatak br.6

Grupa 4

November 2024

1 Generatorne funkcije

Ako je brojni niz moguće svesti na rekurentnu relaciju, za rešavanje možemo koristiti generatorne funkcije. Generatorna funkcija je formalni stepeni red čiji su koeficijenti članovi tog brojnog niza.

Definicija 1

Neka je $\{a_k\}_{k=0}^{\infty}=(a_0,a_1,a_2,\dots)$ niz realnih brojeva. Formalni niz

$$\sum_{k=0}^{\infty} a_k z^k = a_0 + a_1 z + a_2 z^2 + \dots$$

naziva se generatornom funkcijom niza $\{a_k\}$.

Kažemo da je stepeni red formalni, jer se ne razmatraju vrednosti argumenta i funkcije, već samo operacije na stepenim redovima, koje se definišu pomoću operacija na njihovim koeficijentima. U tom smislu, konvergencija ovih redova nije bitna. Ako niz (a_0, a_1, a_2, \dots) sadrži konačan broj elemenata različitih od nule, tada je generatorna funkcija polinom.

Primer 1

brojni niz	generatorna funkcija	zatvorena forma
$(0,0,0,\dots)$	0	0
$(1,0,0,\dots)$	1	1
$(3,2,1,0,\dots)$	$3 + 2z + z^2$	$3 + 2z + z^2$
$(1,1,1,\dots)$	$1+z+z^2+\dots$	$\frac{1}{1-z}$
$(1,-1,1,-1,\dots)$	$1 - z + z^2 - z^3 + \dots$	$\frac{1}{1+z}$

Zatvorenu formu za niz $(1, 1, 1, \dots)$ možemo izvesti na sledeći način:

$$(1-z)(1+z+z^2+\dots) = 1 + z + z^2 + z^3 + \dots$$
$$-z - z^2 - z^3 - \dots$$
$$= 1$$

Odatle je $1 + z + z^2 + \dots = \frac{1}{1-z}$.

Vidimo da je ovo geometrijski niz koji konvergira za |z|<1i njegova suma je u tom slučaju $\frac{1}{1-z}.$

Vrednosti argumenta z se ne razmatraju, a odatle ni konvergencija reda.

2 Operacije nad generatornim funkcijama

2.1 Uvod

Neka su A(z) i B(z) redom generatorne funkcije nizova (a_0,a_1,a_2,\dots) i (b_0,b_1,b_2,\dots) . Njihove operacije su:

• skaliranje

$$cA(z) = (ca_0, ca_1, \dots)$$

• desno pomeranje

$$z^k A(z) = (\underbrace{0, \dots, 0}_{k}, a_0, a_1)$$

• sabiranje

$$A(z) + B(z) = \sum_{n \ge 0} (a_n + b_n) z^n$$

• mnozenje

$$A(z) \cdot B(z) = \sum_{n>0} (\sum_{j=0}^{n} a_{j}b_{n} - j)z^{n}$$

• diferenciranje

$$(A(z))' = (\sum_{n \ge 0} a_n z^n)' = \sum_{n \ge 0} (n+1)a_{n+1}z^n = \sum_{n \ge 1} na_n z^{n-1}$$

2.2 Definicija

Neka je k nenegativan ceo broj, a u proizvoljan realan broj. Uopsteni binomni koeficijent, u oznaci $\binom{u}{k}$ definisan je sa:

$$\binom{u}{n} = \begin{cases} \frac{u(u-1)\dots(u-k+1)}{k!} & \text{ako je k} > 0\\ 1 & \text{ako je k} = 0 \end{cases}$$

Definicija nam omogucava da pokazemo da vazi uopstena binomna formula. Funkcija $(1+z)^u$ je generatorna funkcija niza $(\binom{u}{0},\binom{u}{1},\binom{u}{2},\ldots,\binom{u}{n})$

2.3 Uopstena binomna formula

Neka je u proizvoljan realan broj. Tada je:

$$(1+z)^u = \sum_{n>0} \binom{u}{n} z^n$$

2.4 Primeri

Zadatak 1. Odrediti niz cija je zatvorena forma generatorne funkcije

$$A(z) = \frac{1}{(1-z)^2}$$

Resenje. Primenicemo mnozenje generatornih funkcija.

$$\frac{1}{(1-z)^2} = \frac{1}{1-z} \cdot \frac{1}{1-z} = \sum_{n \ge 0} z^n \cdot \sum_{n \ge 0} z^n = \sum_{n \ge 0} (\sum_{j=0} 1 \cdot 1) z^n = \sum_{n \ge 0} (n+1) z^n$$

Zakljucujemo da je $a_n = n+1$ opsti clan niza generatorne funkcije $\frac{1}{(1-z)^2}$

Zadatak 2. Resiti rekurentnu relaciju

$$a_0 = -3$$

$$a_n = a_{n-1} + n, n \ge 1$$

Resenje. Neka je

$$A(z) = \sum_{n>0} a_n z^n$$

Mnozenjem jednakosti $a_n = a_{n-1} + n$ sa z^n dobijamo:

$$a_n z^n = a_{n-1} z^n + n z^n, n \ge 1$$

Sumiranjem svih levih i desnih strana dobijamo:

$$\sum_{n\geq 1} a_n z^n = \sum_{n\geq 1} a_{n-1} z^n + \sum_{n\geq 1} n z^n$$

$$\sum_{n\geq 0} a_n z^n - a_0 = z \cdot \sum_{n\geq 1} a_{n-1} z^{n-1} + z \cdot \sum_{n\geq 1} n z^{n-1}$$

$$A(z) - a_0 = z \cdot \sum_{n\geq 0} a_n z^n + z \cdot \left(\sum_{n\geq 1} n z^{n-1}\right)$$

$$A(z) + 3 = z A(z) + z \cdot \frac{\frac{z}{1-z}}{1-z}$$

$$A(z) + 3 = z A(z) + \frac{z}{(1-z)^2}$$

$$(1-z)A(z) = \frac{z}{(1-z)^2} - 3$$

$$A(z) = \frac{\frac{z}{(1-z)^2} - 3}{1-z}$$

$$A(z) = \sum_{n\geq 0} \frac{(n+2)(n+1)}{2} z^n - \sum_{n\geq 0} 3z^n$$

$$A(z) = \sum_{n\geq 0} \frac{(n+2)(n+1) - 6}{2} z^n$$

$$A(z) = \sum_{n\geq 0} \frac{(n+2)(n+3)}{2} z^n$$

$$A(z) = \sum_{n\geq 0} \frac{(n-2)(n+3)}{2} z^n$$

$$A(z) = \sum_{n\geq 0} \frac{(n-2)(n+3)}{2} z^n$$

Zadatak 3. Odrediti broj resenja jednacine

$$x_1 + x_2 + x_3 = 19$$

ako je
$$x_1, x_2, x_3 \in N_0$$
 i $3 \le x_1 \le 6$ i $4 \le x_2 \le 7$ i $5 \le x_3 \le 8$

Resenje. Posmatrajmo proizvod tri polinoma

$$p(x) = (x^3 + x^4 + x^5 + x^6)(x^4 + x^5 + x^6 + x^7)(x^5 + x^6 + x^7 + x^8)$$

u kojima su eksponenti od x redom dozvoljene vrednosti za x_1, x_2 i x_3 . Dati proizvod je jednak:

$$p(x) = \frac{x^3(1-x^4)}{1-x} \cdot \frac{x^4(1-x^4)}{1-x} \cdot \frac{x^5(x-x^4)}{1-x}$$

$$= x^{12}(1-x^4)^3 \cdot \frac{1}{(1-x)^3}$$

$$= x^{12}(1-3x^4+3x^8-x^{12}) \cdot \sum_{n\geq 0} \binom{n+2}{2} x^n$$

$$= (x^{12}-3x^{16}+3x^{20}-x^{24}) \cdot \sum_{n\geq 0} \binom{n+2}{2} x^n$$

Koeficijent uz x^{19} dobijamo mnozenjem x^{12} sa $\binom{n+2}{2}x^n$ za n=7 i mnozenjem $-3x^{16}$ sa $\binom{n+2}{2}x^n$ za n=3, sto je:

$$\binom{9}{2} - 3\binom{5}{2} = 36 - 30 = 6$$

Zadatak 4. Koristeći generatorne funkcije, odrediti broj neuređenih izbora od m elemenata iz skupa $A = \{a_1, ..., a_n\}$ ako se elementi ne mogu ponavljati (broj

Proof. Kada govorimo o neuređenim izborima bez ponavljanja, tj. o kombinacijama bez ponavljanja, svaki od n elemenata skupa A može biti izabran ili tačno jednom ili nijednom. Shodno tome, eksponenti polinoma (1+x) govore da li je neki element izabran ili nije, posmatraćemo proizvod n takvih polinoma: (1+x)(1+x)...(1+x). Broj izbora od k elemenata onda odgovara koeficijentu koji stoji uz x^k . Koristeći binomnu formulu koja je uvedena u Teoremi 51, posmatrani proizvod polinoma jednak je:

kombinacija bez ponavljanja od n elemenata klase m).

$$(1+x)^n = \sum_{0 \le m \le n} \binom{n}{m} x^m$$

Na osnovu prethodne formule je broj kombinacija bez ponavljanja od n
 elemenata klase m jednak $\binom{n}{m}.$

Zadatak 5. Koristeći generatorne funkcije, odrediti broj neuređenih izbora od m elemenata iz skupa $A = \{a_1, ..., a_n\}$ ako se elementi mogu ponavljati (broj kombinacija sa ponavljanjem od n elemenata klase m).

Proof. Ukoliko govorimo o neuređenim izborima sa ponavljanjem, tj. o kombinacijama sa ponavljanjem, onda se svaki element može izabrati (ponavljati) 0, 1, 2, ili više puta, te u ovom slučaju imamo eksponente polinoma $(1+x+x^2+...)$. Posmatrajmo proizvod n takvih polinoma:

$$p(x) = (1 + x + x^{2} + \dots)(1 + x + x^{2} + \dots) \dots (1 + x + x^{2} + \dots)$$

$$= (1 + x + x^{2} + \dots)^{n}$$

$$= \frac{1}{(1 - x)^{n}}$$

$$= (1 - x)^{-n}$$

$$= \sum_{m \ge 0} {\binom{-n}{m}} (-1)^{m} x^{m}$$

$$= \sum_{m \ge 0} {\binom{n + m - 1}{m}} x^{m}$$

Za svako $0 \le m \le n$ koeficijent uz x^m odgovara broju kombinacija sa ponavljanjem od n elemenata klase m.

Zadatak 6. Neka je $1 \le n \le m$. Koristeci generatorne funckije, odrediti broj izbora m elemenata iz skupa $A = \{a_1, ..., a_n\}$, ako se elementi mogu ponavljati i od svake vrste je izabran bar jedan element.

Resenje.

Posmatrajmo proizvod n polinoma

$$p(x) = (x + x^2 + x^3 + \dots)(x + x^2 + x^3 + \dots) \dots (x + x^2 + x^3 + \dots)$$

u kojima eksponenti od x u i-toj zagradi $(1 \le i \le n)$ odgovaraju broju mogućih kopija elementa a_i u izboru. Sada je

$$p(x) = \left(\frac{x}{1-x}\right)^n = x^n \cdot \frac{1}{(1-x)^n} = x^n (1-x)^{-n}$$
$$= x^n \sum_{l \ge 0} \binom{n+l-1}{l} x^l$$
$$= \sum_{l \ge 0} \binom{n+l-1}{l} x^{n+l}$$

Ako uvedemo smenu m = n + l, onda je

$$p(x) = \sum_{m \ge n} \binom{m-1}{m-n} x^m$$

odakle je koeficijent uz x^m jednak $\binom{m-1}{m-n}$.

• Primer Java algoritma :

```
import java.math.BigInteger;
class GeneratorneFunkcije {
   public static void main(String[] args) {
       int n = 3;
       int m = 5;
       BigInteger coefficient = getCoefficient(n, m);
       System.out.println("Coefficient of x^" + m + " is: " +
           coefficient);
   }
   public static BigInteger getCoefficient(int n, int m) {
       if (m < n) {
          return BigInteger.ZERO;
       int k = m - n;
       return binomialCoefficient(m - 1, k);
   }
   public static BigInteger binomialCoefficient(int n, int k) {
       BigInteger result = BigInteger.ONE;
       for (int i = 0; i < k; i++) {</pre>
          result = result.multiply(BigInteger.valueOf(n - i))
                         .divide(BigInteger.valueOf(i + 1));
       }
       return result;
   }
}
```

Zadatak 7. Koristeći generatorne funkcije, dokazati identitet

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}$$

 $za \ svako \ n \in \mathbb{N}.$

Resenje. Posmatrajmo identitet

$$(1+x)^n \cdot (1+x)^n = (1+x)^{2n}$$
.

Prema binomnoj formuli, koeficijent uz x^n u razvoju stepena binoma $(1+x)^{2n}$ jednak je $\binom{2n}{n}$. Levu stranu možemo posmatrati kao polinom i možemo primeniti

binomnu formulu, dobijamo

$$p(x) = \left(1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n\right) \cdot \left(1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n\right).$$

Primetimo da je

$$p(x) = \sum_{i \ge 0} a_i x^i \cdot \sum_{j \ge 0} b_j x^j, \quad \text{gde je } a_i = b_i = \begin{cases} \binom{n}{i}, & i \in \{0, \dots, n\} \\ 0, & \text{inače} \end{cases}$$

Prema definiciji proizvoda, dobijamo

$$p(x) = \sum_{m=0}^{2n} \left(\sum_{j=0}^{m} a_j b_{m-j} \right) x^m$$

$$= \sum_{m=0}^{n} \left(\sum_{j=0}^{m} \binom{n}{j} \binom{n}{m-j} \right) x^m + \sum_{m=n+1}^{2n} \left(\sum_{j=0}^{m} \binom{n}{j} \binom{n}{m-j} \right) x^m$$

$$= \sum_{m=0}^{n} \binom{n}{m} x^m + \sum_{m=n+1}^{2n} \binom{n}{m-j} x^m + \sum_{m=n+1}^{2n} \left(\sum_{j=0}^{m} a_j b_{m-j} \right) x^m$$

Koeficijent uz x^m dobijamo kada u prvoj sumi posmatramo član za koji je $m=n,\,$ a to je

$$\sum_{j=0}^{n} \binom{n}{j} \binom{n}{n-j} = \sum_{j=0}^{n} \binom{n}{j}^2 = \binom{2n}{n}.$$

• Primer Java algoritma:

```
} else {
           System.out.println("The identity does not hold for n
   }
   public static BigInteger calculateSumOfSquares(int n) {
       BigInteger sum = BigInteger.ZERO;
       for (int j = 0; j <= n; j++) {</pre>
           BigInteger binom = binomialCoefficient(n, j);
           sum = sum.add(binom.multiply(binom));
       }
       return sum;
   }
   public static BigInteger binomialCoefficient(int n, int k) {
       BigInteger result = BigInteger.ONE;
       for (int i = 0; i < k; i++) {</pre>
          result = result.multiply(BigInteger.valueOf(n - i))
                         .divide(BigInteger.valueOf(i + 1));
       return result;
   }
}
```

2.5 Zadatak 58

Zadatak 8. Napisati otvoreni oblik za

$$\frac{1}{1+2z} \cdot \frac{1}{1-3z}$$

Resenje. Na početku treba primjetiti:

$$\frac{1}{1+2z} \cdot \frac{1}{1-3z} = \frac{2}{5} \cdot \frac{1}{1+2z} + \frac{3}{5} \cdot \frac{1}{1-3z}$$

Sada razvijamo svaki razlomak u geometrijski red:

$$=\frac{2}{5}\sum_{n\geq 0}(-1)^n2^nz^n+\frac{3}{5}\sum_{n\geq 0}3^nz^n$$

Grupisanjem članova sa istim stepenom od z dobijamo:

$$= \sum_{n>0} \frac{2}{5} (-1)^n 2^n z^n + \sum_{n>0} \frac{3}{5} 3^n z^n$$

Konačno, kombinovanjem sličnih članova:

$$=\sum_{n>0} \frac{3^{n+1} + (-1)^n 2^{n+1}}{5} z^n.$$

2.6 Zadatak 59

Zadatak 9. Rešiti rekurentnu relaciju:

$$a_0 = 1$$
, $a_1 = 9$, $a_n - 6a_{n-1} + 9a_{n-2} = 0$, $n \ge 2$

Resenje.~Neka je $A(z)=\sum_{n\geq 0}a_nz^n$ generatirička funkcija datog niza. Množimo rekurentnu relaciju sa z^n i sumiramo za $n\geq 2$:

$$\sum_{n\geq 0} a_n z^n - 6 \sum_{n\geq 0} a_{n-1} z^n + 9 \sum_{n\geq 0} a_{n-2} z^n = 0$$

$$\sum_{n\geq 2} a_n z^n = A(z) - a_0 - a_1 z = A(z) - 1 - 9z$$

$$\sum_{n\geq 2} a_n z^n = \sum_{n\geq 0} a_n z^$$

$$\sum_{n\geq 2} a_{n-1} z^n = z \sum_{n\geq 2} a_{n-1} z^{n-1} = z \sum_{n\geq 1} a_n z^n = z (A(z) - a_0) = z (A(z) - 1)$$

$$\sum_{n\geq 2} a_{n-2} z^n = z^2 \sum_{n\geq 2} a_{n-2} z^{n-2} = z^2 \sum_{n\geq 0} a_n z^n = z^2 A(z)$$

Nakon sređivanja i korišćenja početnih uslova dobijamo:

$$A(z) - 1 - 9z = 6z(A(z) - 1) - 9z^{2}A(z)$$

Grupisanjem članova uz A(z):

$$(1 - 6z + 9z^2)A(z) = 1 + 3z$$

Odakle je:

$$A(z) = \frac{1+3z}{1-6z+9z^2} = \frac{1+3z}{(1-3z)^2}$$

Razlažemo na jednostavnije razlomke:

$$= \frac{1}{(1-3z)^2} + 3z \frac{1}{(1-3z)^2}$$

Koristeći razvoj $\frac{1}{(1-3z)^2}=\sum_{n\geq 0}n+1(3z)^n=\sum_{n\geq 0}(n+1)3^nz^n$:

$$= \sum_{n\geq 0} (n+1)3^n z^n + 3z \sum_{n\geq 0} (n+1)3^n z^n$$

$$= \sum_{n \ge 0} (n+1)3^n z^n + \sum_{n \ge 1} n3^n z^n$$

$$= \sum_{n \ge 0} (n+1)3^n z^n + \sum_{n \ge 0} n3^n z^n$$

Konačno, nakon kombinovanja sličnih članova:

$$= \sum_{n\geq 0} ((n+1)3^n + n3^n)z^n = \sum_{n\geq 0} (2n+1)3^n z^n$$

Dakle, $a_n = (2n + 1)3^n$, za $n \ge 0$.

Zadatak 10. Problem: Validna lozinka je niz cifara dužine n koji sadrži paran broj nula. Potrebno je konstruisati i rešiti rekurentnu relaciju koja definiše niz $\{a_n\}_{n\in\mathbb{N}_0}$, gde a_n predstavlja broj validnih lozinki dužine n.

Razumevanje problema: Validna lozinka se sastoji samo od cifara 0 i 1, a broj nula mora biti paran da bi lozinka bila validna. Drugim rečima, ako imamo niz cifara koji sadrži paran broj nula, smatramo ga validnom lozinkom.

Zadatak 11. Analiza niza i postavljanje rekurentnih relacija

Da bismo rešili ovaj zadatak, uvešćemo sledeće oznake:

- \bullet a_n : broj validnih lozinki dužine n sa parnim brojem nula,
- b_n : broj lozinki dužine n sa neparnim brojem nula.

Lozinka dužine n može biti dobijena dodavanjem cifre na kraju lozinke dužine n-1:

- Ako na kraju lozinke dužine n-1 sa parnim brojem nula (validna lozinka) dodamo cifru 1, broj nula ostaje nepromenjen, što znači da lozinka dužine n i dalje ima paran broj nula.
- Ako na kraju lozinke dužine n-1 sa neparnim brojem nula dodamo cifru 0, dobijamo lozinku dužine n koja sada ima paran broj nula.

Iz ovog možemo postaviti rekurentne relacije:

$$a_n = a_{n-1} + b_{n-1},$$

gde je a_{n-1} broj lozinki dužine n-1 sa parnim brojem nula i b_{n-1} broj lozinki sa neparnim brojem nula.

Za broj lozinki sa neparnim brojem nula:

$$b_n = a_{n-1} + b_{n-1}$$
.

Generatorna funkcija

Generatorna funkcija za niz $\{a_n\}$ je definisana kao:

$$A(z) = \sum_{n=0}^{\infty} a_n z^n.$$

Generatorna funkcija B(z) za niz $\{b_n\}$ biće definisana kao:

$$B(z) = \sum_{n=0}^{\infty} b_n z^n.$$

Prema rekurentnim relacijama koje smo postavili, imamo:

$$A(z) = 1 + zB(z),$$

dodajemo jedinicu za inicijalni uslov $a_0 = 1$.

$$B(z) = zA(z) + zB(z).$$

Rešavajući sistem ovih jednačina dobijamo:

$$A(z) = \frac{1}{2} \left(\frac{1}{1 - 8z} + \frac{1}{1 - 10z} \right).$$

Ekspanzijom generatorne funkcije možemo odrediti formulu za a_n :

$$a_n = \frac{8^n + 10^n}{2}.$$

Zaključak: Dobijeni izraz $a_n=\frac{8^n+10^n}{2}$ nam omogućava da za svaki n brzo izračunamo broj validnih lozinki dužine n sa parnim brojem nula.

Zadatak 12. Načini plaćanja

Problem: Na koliko načina se može platiti iznos od 210 dinara ako imamo na raspolaganju:

- 6 novčanica od 10 dinara,
- 5 novčanica od 20 dinara,
- 4 novčanice od 50 dinara?

Pristup problemu pomoću kombinatorike

Označimo:

- x_1 : broj novčanica od 10 dinara (maksimalno 6),
- x_2 : broj novčanica od 20 dinara (maksimalno 5),
- x_3 : broj novčanica od 50 dinara (maksimalno 4).

Onda treba da važi:

$$10x_1 + 20x_2 + 50x_3 = 210,$$

gde su ograničenja:

$$x_1 \in \{0, 1, 2, 3, 4, 5, 6\},\$$

 $x_2 \in \{0, 1, 2, 3, 4, 5\},\$
 $x_3 \in \{0, 1, 2, 3, 4\}.$

Generatorne funkcije

Za novčanice od 10 dinara, generatorna funkcija je:

$$(1+x+x^2+x^3+x^4+x^5+x^6),$$

koja obuhvata sve moguće količine novčanica (od 0 do 6). Za novčanice od 20 dinara, generatorna funkcija je:

$$(1+x^2+x^4+x^6+x^8+x^{10}).$$

Za novčanice od 50 dinara, generatorna funkcija je:

$$(1 + x^5 + x^{10} + x^{15} + x^{20}).$$

Kombinovana generatorna funkcija je:

$$P(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6) \cdot (1 + x^2 + x^4 + x^6 + x^8 + x^{10}) \cdot (1 + x^5 + x^{10} + x^{15} + x^{20}) \cdot (1 + x^5 + x^{10} +$$

Ekspanzija generatorne funkcije

Ekspanzija ove funkcije omogućava pronalaženje koeficijenta uz x^{21} , koji predstavlja broj načina za kombinovanje novčanica tako da ukupno daju 210 dinara.

Zaključak: Koeficijent uz x^{21} u ekspanziji generatorne funkcije P(x) daje broj mogućih kombinacija korišćenja dostupnih novčanica kako bi se platio iznos od 210 dinara.

Zadatak 13. Izračunati

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i}^{2}$$

Resenje. Rešenje. Razmotrimo sledeći identitet:

$$(1-x)^n \cdot (1+x)^n = (1-x^2)^n$$
.

Primenom binomne formule za oba proizvoda, dobijamo:

$$\sum_{i=0}^{n} \binom{n}{i} (-1)^{i} x^{i} \cdot \sum_{j=0}^{n} \binom{n}{j} x^{j} = \sum_{m=0}^{n} (-1)^{m} \binom{n}{m} x^{2m}.$$

Sledeće možemo napisati kao:

$$\sum_{l=0}^{2n} \left(\sum_{i=0}^{l} (-1)^i \binom{n}{i} \binom{n}{l-i} \right) x^l = \sum_{m=0}^{n} (-1)^m \binom{n}{m} x^{2m}.$$

Fokusiraćemo se na član u kojem je l = n.

- Ako je n neparan, koeficijent uz x^n sa desne strane je 0, pa možemo zaključiti:

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \binom{n}{n-i} = 0.$$

- Ako je n paran, sa desne strane dobijamo član koji sadrži x^n kada uzimamo $m=\frac{n}{2}$, a tada je:

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} \binom{n}{i} = (-1)^{\frac{n}{2}} \binom{n}{\frac{n}{2}}.$$

[2]

[2]

1. Dokaz za broj podskupova parne i neparne kardinalnosti:

Posmatrajmo generatorku funkciju za podskupove skupa A sa |A| = n+1, odnosno:

$$(1+z)^{n+1}$$

Ova generatorka funkcija kodira sve podskupove skupa A, gde članovi sa parnim eksponentima z označavaju podskupove parne kardinalnosti, a članovi sa neparnim eksponentima z označavaju podskupove neparne kardinalnosti.

Po binomnoj teoremi, imamo:

$$(1+z)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} z^k$$

Kada zamenimo z = 1 i z = -1:

$$(1+1)^{n+1} = 2^{n+1},$$

 $(1-1)^{n+1} = 0.$

Suma parne kardinalnosti je:

$$\frac{2^{n+1}+0}{2}=2^n$$

Isto važi za sumu neparne kardinalnosti. Dakle, broj podskupova parne i neparne kardinalnosti je 2^n .

2. Otvoreni oblik za $\frac{1}{1+2z}\cdot\frac{1}{1-3z}$: Koristimo formulu za produkt dve geometrijske serije:

$$\frac{1}{1+2z} \cdot \frac{1}{1-3z} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} (-2)^k \cdot 3^{n-k} \right) z^n$$

- 3. Razvoj zatvorenih formi koristeći Njutnovu binomnu formulu:

(a) $(1 + \frac{1}{2}z)^{-5}$: Primenićemo Njutnovu binomnu formulu:

$$\left(1 + \frac{1}{2}z\right)^{-5} = \sum_{k=0}^{\infty} {\binom{-5}{k}} \left(\frac{1}{2}z\right)^k = \sum_{k=0}^{\infty} (-1)^k {\binom{4+k}{k}} \frac{z^k}{2^k}$$

(b) $\frac{1}{(1-2z)^4}$: Ovo razvijamo koristeći formulu za eksponentne generatorke funkcije:

$$\frac{1}{(1-2z)^4} = \sum_{k=0}^{\infty} \binom{3+k}{k} (2z)^k = \sum_{k=0}^{\infty} \binom{3+k}{k} 2^k z^k$$

- 4. Rešavanje rekurentnih relacija koristeći generatorke funkcije:
 - (a) $a_0=1,\ a_n=3a_{n-1},\ n\geq 1$: Generatorka funkcija $A(z)=\sum_{n=0}^\infty a_nz^n$. Koristeći rekurenciju, do-

$$A(z) = a_0 + \sum_{n=1}^{\infty} 3a_{n-1}z^n = 1 + 3zA(z)$$

Rešavanjem za A(z):

$$A(z) = \frac{1}{1 - 3z}$$

što daje $a_n = 3^n$.

(b) $a_0=3,\ a_1=-12,\ a_n=-5a_{n-1}+36a_{n-2},\ n\geq 2$: Generatorka funkcija $A(z)=\sum_{n=0}^\infty a_nz^n$. Postavljamo rekurenciju u

$$A(z) = 3 - 12z + \sum_{n=2}^{\infty} (-5a_{n-1} + 36a_{n-2})z^n$$

Rešavanjem dobijamo eksplicitnu formu za a_n .

- 5. Rešavanje rekurentnih relacija koristeći generatorke funkcije:
 - (a) $a_0 = 1$, $a_n = 3a_{n-1} + 7$, $n \ge 1$: Generatorka funkcija $A(z) = \sum_{n=0}^{\infty} a_n z^n$:

$$A(z) = 1 + \sum_{n=1}^{\infty} (3a_{n-1} + 7)z^n$$

Rešavanjem za A(z), dobijamo rešenje niza.

(b) $a_0 = 8$, $a_n = 24a_{n-1} - 144$, $n \ge 1$: Koristeći generatorku funkciju A(z), rešavamo slično kao iznad.

15

6. Zatvorena forma za niz $(-2,2,-2,2,-2,\dots)$: Niz $\{a_n\}=(-2,2,-2,2,\dots)$ ima periodičnost 2, pa generatorka funkcija postaje:

$$A(z) = -2 + 2z - 2z^2 + 2z^3 + \dots = \frac{-2}{1+z}$$

Reference

- [1] Kenneth H. Rosen, Discrete mathemathics and its applications Seventh Edition, McGraw-Hill, 2012
- [2] Dragan Stevanović i Miroslav Ćirić i Slobodan Simić i Vladimir Baltić, DISKRETNA MATEMATIKA OSNOVE KOMBINATORIKE I TEORIJE GRAFOVA, Matematički institut u Beogradu, 2007
- [3] Sussana S. Epp, $Discrete\ Mathematics\ with\ Applications,$ Cengage Learning, Inc. 2019