Question Paper

Exam Date & Time: 27-Apr-2023 (09:30 AM - 12:30 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

FIRST SEMESTER B.TECH. (MAKEUP) EXAMINATIONS - APRIL 2023 SUBJECT: ELE-1071 / ELE -1051 - BASIC ELECTRICAL TECHNOLOGY (REGULARS - LATE ADMISSION BATCH)

Marks: 50 Duration: 180 mins.

Answer all the questions.

1A) Determine the value of resistor 'R' in the circuit shown with a supply current of **0.8** A. (3)

1B) Find the voltage across and power consumed by the 2Ω resistor in the circuit. (3)

1C) In the network shown, find the power supplied by the **2 A** source using node voltage analysis. (4)

2A) For the network shown, the switch is closed on to position 1 at t = 0 and then moved to position 2 at (3) t = 1.4 ms. Determine the current in the inductor when t = 2.5 ms.

- Por the magnetic circuit shown, the reluctance of the central limb (AB) is 10 x 10⁵ AT/Wb and the reluctance of the outer limbs (ACB and ADB) are same and equal to 15 x 10⁵ AT/Wb. The number of turns in the coil is 1000. Central limb AB has flux density of 1.25 Tesla and a mean length of 10 cm. Assuming uniform area of cross section, determine
 - i) the current to be flowing in the coil to produce **0.5 mWb** in limb ADB.
 - ii) The relative permeability of the magnetic material.

Determine the equivalent inductance seen at terminals $\bf A$ & $\bf B$ in the given network. Also compute (3) the coupling coefficients $\bf k_{12}$, $\bf k_{23}$ and $\bf k_{13}$.

3A)

3B) An $\mathbf{8}\ \Omega$ resistor is connected in series with a coil of resistance \mathbf{R}_{L} and inductance \mathbf{L} and the whole combination is supplied with a $\mathbf{120}\ V$, $\mathbf{50}\ Hz$, $\mathbf{1}$ -phase AC source. If the voltage across $\mathbf{8}\ \Omega$ resistor is $\mathbf{32}\ V$ and $\mathbf{104}\ V$ across the coil, determine the impedance of the coil.

3C) For the circuit shown, evaluate the current through and voltage across each element. (4)

A coil of resistance 50 Ω and inductance 0.318 H is connected in parallel with a circuit comprising a (4) 75 Ω resistor in series with a159 μ F capacitor. The resulting circuit is connected to a230 V, 50 Hz, AC supply. Calculate: (a) the supply current (b) the circuit impedance, resistance, and reactance.

4B) A **3-phase**, **400** V, Y-connected, **ABC** system supplies an unbalanced Y-connected load of impedances $Z_A = 25 \angle 0^\circ$, $Z_B = 11 \angle -20^\circ$ and $Z_C = 15 \angle 10^\circ$. Assuming

V_{AB} as reference voltage, determine line currents, total power consumed and current in the neutral of the system.

- 5A) Three similar choke coils are connected in star to a three-phase supply. If the line current is 15 A, the total power consumed is 11 kW and the volt-ampere input is 15 kVA, find the line and phase voltages, the VAR input and the reactance and resistance of each coil.
- 5B) Sketch a one-line diagram of a power system network architecture indicating voltage levels at various stages. (3)
- 5C) How are transformers classified? Elaborate. (3)

----End-----