Accessorize to a Crime: Real and Stealthy Attacks on State-Of-The-Art Face Recognition

Keshav Yerra (2670843)

Monish Prasad (2671587)

Machine Learning is Everywhere

Cancer Diagnosis

Surveillance and access-control

Self Driving Cars

What do we see here?

What do we see here now?

DIFFERENCE $Amplify\!\times\!10$

Main Aim

 The main aim is to find out whether an attacker will be able to successfully impersonate a victim in the real world by using some accessories to change his appearance.

Physical Realizability:

- Attacker can only change his own appearance
- Robust to changes in different imaging conditions

Inconspicuousness:

- Do not raise too much of suspicion
- Avoid physical appearances like

What are the adversary's capabilities?

There are two types of settings:

White-Box setting

Black-Box setting

To generate attacks the attacker needs to know how changing input

changes the output

White-Box setting

What is a Deep Neural Network (DNN)?

- The basic idea is to stimulate how the brain cells work
- The basic building block is Neuron (A simple Computational Unit)

How to mislead this DNN?

 Given a DNN and input, we have to find a minimal change that causes a specific misclassification

Face Recognition

- Applications : surveillance, access control, ...
- Detection and Recognition are usually pipelined:
 - 1. Detect the face
 - 2. Recognize the person

Albert Einstein

Face Recognition Attacks

- Impersonation
- Dodging

Impersonation

- Targeting a specific subject
- To access a specific resources or cause blame to be laid on the victim

Face Recognition Attacks

Dodging

- Being recognized incorrectly
- To Hide your Identity (or) If you don't care who the victim is

Deep Face Recognition

Here the DNN is built based on Parkhi et al. from [BMVC '15]:

- The DNN built is trained to recognize 2622 celebrities
- About 13233 face images collected in the wild which are uncontrolled images
- And it outperforms humans:

Accuracy of	Accuracy of Parkhi
humans	et al.'s DNN
97.53%	98.95%

Example of impersonation:

abs(perturbation)

10 x abs(perturbation)

The only problem for the attacker is controlling the background

PHASE #1: APPLY CHANGS TO THE FACE ONLY

- Image segmentation to find the face.
- Only change pixels that overlay the face.

- Every impersonation attempt works.
- CAVEATS:
- 1. May be hard to realize the perturbations.
- 2. Perturbations are smaller than the camera's sampling error.

PHASE #2: APPLY CHANGES TO THE EYEGLASSES

- Easier to realize(2D or 3D printing)
- Wearing eyeglasses isn't associated with adversarial intent.

Impersonation Attempts success rate: 92%

PHASE #3: SMOOTH TRANSITIONS

Natural images tend to be smooth.

■ We achieve this by minimizing the total variations:

$$TV(r) = \sum_{i,j} \sqrt{(r_{i,j+1} - r_{i,j})^2 + (r_{i+1,j} - r_{i,j})^2}$$
Sum of differences of neighboring pixels

PHASE #4: PRINTABLE EYEGALSSES

- Challenge: Cannot print all the colors.
- Find the printable colors by printing color pallets.

- Define Non-Printability Score(NPS)
- 1. NPS is high if color is not printable
- 2. Generate printable eyeglasses by minimizing NPS

PHASE #5: ROBUST PERTURBATIONS

- Two samples of the same face are almost never the same.
- Attack should be generalized beyond one image.
- This is achieved by finding one attack accessory that leads any image in a set of images to be misclassified.

$$\underset{r}{\operatorname{argmin}} \left(\sum_{x \in X} \operatorname{distance}(f(x+r), c_t) \right)$$

 X is a set of images, e.g., $X = -$

PUTTING IT ALL TOGETHER

Physically realizable impersonation.

TESTING THE APPROACH:

- 1. People to play role of the attacker.
- 2. Realize the eyeglasses.
- 3. DNN that recognizes the attackers.

DNN that Recognizes the Us

- It is hard to train DNN from scratch → Use standard technique (transfer learning) to retrain DNN from Parkhi et al.'s
- New DNN recognizes 143 subjects:
 (3 authors + 140 Celebs from PubFig dataset)
- Accuracy achieved: 96.75%

EXPERIMENT: REALIZED IMPERSONATIONS

PROCEDURE

- 1. Collect images of attacker.
- 2. Chose random target.
- 3. Generate and print eyeglasses.

- 4. Collect 30 to 50 images of attacker wearing the eyeglasses.
- 5. Classify the collected images.

- Success Metric: Fraction of collected images misclassified as target.
- Limitation: Small set of variations in lighting

IMPERSONATION ATTACKS POSE A HUGE RISK:

100% SUCCESS

• 16% SUCCESS:

• 88% SUCCESS:

CONCLUSION

- 1. Dodging and impersonation attacks can mislead state-of-the-art face recognition.
- 2. Attacks can be inconspicuous and physically realized.
- 3. Extensions to:
- Black-Box Models
- Invisibility against face detection.

THANK-YOU!!