Regression tables with

{gtsummary}

On to Table 2!

Univariate regressions

Fit a series of univariate regressions of income on other variables.

```
1 tbl_uvregression(
2 nlsy,
3 y = income,
4 include = c(sex_cat,
5 eyesight
6 method = lm)
```

95% CI	
1	p-value
_	
-844, 128	0.15
_	
-2,507, -988	<0.001
3,195, 4,530	<0.001
_	
-1,319, 162	0.13
	-1,319, 162

Characteristic	N	Beta	95% CI	p-value
Good		-1,863	-2,719, -1,006	<0.001
Fair		-4,674	-5,910, -3,439	<0.001
Poor		-6,647	-9,154, -4,140	<0.001
age_bir	4,773	595	538, 652	<0.001
¹ CI = Confidence Int	terval			

Can also do logistic regression

```
1 tbl_uvregression(
2 nlsy,
3 y = glasses,
4 include = c(sex_cat,
5 eyesight
6 method = glm,
7 method.args = list(form)
8 exponentiate = TRUE)
```

Characteristic	N	OR 1	95% CI	p-value
sex_cat	8,450			
Male		_	_	
Female		1.97	1.81, 2.15	<0.001
race_eth_cat	8,450			
Hispanic		_	<u> </u>	
Black		0.76	0.67, 0.86	<0.001
Non-Black, Non-Hispanic		1.34	1.19, 1.50	<0.001
eyesight_cat	8,444			
Excellent		_	_	
Very good		0.93	0.84, 1.03	0.2
Good		0.95	0.84, 1.07	0.4
Fair		0.81	0.68, 0.96	0.016
Poor		1.15	0.81, 1.63	0.4
age_bir	5,813	1.02	1.01, 1.03	<0.001
OR = Odds Ratio, C	CI = Confiden	ce Interval		

We probably want to do some multivariable regressions

gtsummary::tbl_regression()

```
1 tbl_regression(
2 linear_model,
3 intercept = TRUE,
4 label = list(
5 sex_cat ~ "Sex",
6 race_eth_cat ~ "Race/ethnicity",
7 age_bir ~ "Age at first birth"
8 ))
```

		95% CI	
Characteristic	Beta	1	p-value
(Intercept)	2,147	493, 3,802	0.011
Sex			
Male	_	_	
Female	25	-654, 705	>0.9
Age at first birth	438	381, 495	<0.001
Race/ethnicity			
Hispanic	_	_	
Black	-772	-1,714, 171	0.11
Non-Black, Non-Hispanic	7,559	6,676, 8,442	<0.001
CI = Confidence Inte	erval		

gtsummary::tbl_regression()

```
1 tbl_regression(
    logistic_model,
   exponentiate = TRUE,
   label = list(
      sex cat ~ "Sex",
      eyesight_cat ~ "Eyesight",
  income ~ "Income"
```

Characteristic	OR 1	95% CI	p-value
Eyesight			
Excellent	_	_	
Very good	0.92	0.82, 1.03	0.2
Good	0.92	0.80, 1.05	0.2
Fair	0.80	0.66, 0.98	0.028
Poor	1.03	0.69, 1.53	0.9
Sex			
Male	_	_	
Female	2.04	1.85, 2.25	<0.001
Income	1.00	1.00, 1.00	<0.001
OR = Odds Ratio, CI	= Confidence	Interval	

Arguments

Argument	Description
label=	modify variable labels in table
exponentiate=	exponentiate model coefficients
include=	names of variables to include in output. Default is all variables
show_single_row=	By default, categorical variables are printed on multiple rows. If a variable is dichotomous and you wish to print the regression coefficient on a single row, include the variable name(s) here.
conf.level=	confidence level of confidence interval
intercept=	indicates whether to include the intercept
estimate_fun=	function to round and format coefficient estimates
pvalue_fun=	function to round and format p-values
tidy_fun=	function to specify/customize tidier function

You could put several together

```
tbl no int <- tbl regression(
     linear_model,
    intercept = TRUE,
    label = list(
       sex cat ~ "Sex",
      race eth cat ~ "Race/ethnicity",
       age bir ~ "Age at first birth"
 8
     ))
   tbl_int <- tbl_regression(
11
   linear model int,
12 intercept = TRUE,
13 label = list(
```

You could put several together

```
1 tbl_merge(list(tbl_no_int, tbl_int),
2 tab_spanner = c("**Model 1**", "**Model 2**"))
```

	Model 1			Model 2	
	95% CI			95% CI	
Beta	1	p-value	Beta	1	p-value
2,147	493, 3,802	0.011	4,064	1,884, 6,245	<0.001
_	_		_	_	
25	-654, 705	>0.9	-3,635	-6,432, -838	0.011
438	381, 495	<0.001	364	285, 443	<0.001
_	_		_	_	
-772	-1,714, 171	0.11	-759	-1,701, 183	0.11
7,559	6,676, 8,442	<0.001	7,550	6,668, 8,433	<0.001
	2,147 — 25 438 — -772	Beta 2,147 493, 3,802 — — — 25 -654, 705 438 381, 495 — — — -772 -1,714, 171	Beta 1 p-value 2,147 493, 3,802 0.011 — — 25 -654, 705 >0.9 438 381, 495 <0.001	Beta 1 p-value Beta 2,147 493, 3,802 0.011 4,064 — — — 25 -654, 705 >0.9 -3,635 438 381, 495 <0.001	Beta 1 p-value Beta 1 2,147 493, 3,802 0.011 4,064 1,884, 6,245 — — — — 25 -654, 705 >0.9 -3,635 -6,432, -838 438 381, 495 <0.001

_			Model 1		Model 2		
Characteristic	Beta	95% CI	p-value	Beta	95% CI	p-value	
Female * Age at first birth				149	39, 260	0.008	
ı CI = Confidence Interval							

Exercises

- 1. Open the script with some examples.
- 2. Run the examples.
- 3-6. You're on your own again!

Extra time? Start a table using the data you downloaded for your final project! Make sure you switch to that R project!

