

hod.cse@rvce.edu.in www.rvce.edu.in Tel: 080-68188199

Department of Computer Science and Engineering

Program: BE

)+50	Maximum Marks	July 2024	Date	
0 min	Duration	CD343AI		
	CIE-II	IV		
Legic		IV Design and Analysis	Course Code Sem	

SI. No.	Questions	M	L	СО
	PART A			
1.1	Is it possible to find transitive closure of a digraph using Depth First Search (DFS) or Breadth-first search (BFS)? Justify the answer	2	L3	CO2
1.2	Given a text of length n=30 and a pattern of length m=4, how many shifts will the Horspool algorithm perform in the worst case?	2	L3	CO2
1.3	In a max heap containing n elements, the smallest element can be found in worst time	2	L1	COI
1.4	Why Floyd-Warshall Algorithm better for Dense Graphs and not for Sparse Graphs?	2	L3	CO2
1.5	List any four limitations of Distribution Counting Sort	2	L2	CO
	PART B			
1a	Apply DFS traversal to find the topological order of the graph shown in figure 1a from the vertex p (break the ties by the alphabetical order of the vertices)	06	L3	СО
1b	Compare the brute force approach and Instance simplification variant of transform and conquer approach to solve checking element uniqueness in an array.	04	L1	СО

2a	Show the state of each pass and final array after applying comparison counting sort for the list: 94, 73, 26, 11, 05, 77, 31 to sort the elements in non-decreasing order.	06	L2	CO2
2b	Write the pseudocode of Warshall's algorithm and prove that the time efficiency of warshall's algorithm is cubic.	04	L2	CO2
За	Apply heapsort to arrange the list 8, 12, 15, 3, 5, 1, 43, -7 in ascending order by using array representation of heap.	06	L3	соз
3b	Compute binomial coefficient of ⁵ C ₃ using dynamic programming	04	L2	CO1
4	Apply floyd's algorithm to find all pairs shortest path for the digraph shown in with the weight matrix	10	L3	CO3
5	Use input enhancement technique for the pattern RNARNAKARNA and apply Boyer Moore algorithm to find the occurrence of this pattern in the text RAVANAKARNA_RAMAYANA_EPIC _SEETHA NNARNA_RNARNAKARNA	10	L3	CO3

Course Outcomes

Cou	rse outcomes
COI	Apply knowledge of computing and mathematics to algorithm analysis and design
CO2	Analyze a problem and identify the computing requirements appropriate for a solution
CO3	Apply mathematical foundations, algorithmic principles, and computer science theory to the modeling, and evaluation of computer-based solutions in a way that demonstrates comprehension of the trade-offs involved in design choices.
CO4	Investigate and apply optimal design, development principles, skills and tools in the construction of software solutions of varying complexity.
CO5	Demonstrate critical, innovative thinking, and display competence in oral, written,
CO6	Exhibits positive group communication exchanges in order to accomplish a common goal and engage in continuing professional development.

Blooms' taxonomy

DIOO			3							004	COL	COG
L1		L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4	CO5	006
	-	16		-	-		12				460	100

NBA Accedited (UG - 6Years)

hod.cse@vce.edu.in www.rvce.edu.in Tel: 080-68188199

Department of Computer Science and Engineering

Program: BE

	i iogiani.	DE	
Date	Aug 2024	Maximum Marks	60
Course Code	CD343AI	Duration	90 min
4 th Sem	IV Semester	CIE-I	
·	Design and Analysis	of Algorithms	
	(Common to AIML/C	SE/CD/CY/ISE)	

Sl. No.		M	L	CO			
1	Define spamming tree. Find the compression ratio for the given data $A = 8 = 40\%$, $B = 2 = 10\%$, $C = 4 = 20\%$, $D = 3 = 15\%$, $C = 3 = 15\%$. Using Huffman coding the characters are coded as $A = 0$			2	1	1	
	A = 8 = 40%, $B = 2 = 10$	2	2	3			
		Α	0				
2		В	100	·			
		С	110				
		D	101				
		_	111				
3	Explain how Dijkrasta's	algorithm di	ffer from Pri	m's algorithm	2	2	2
4	Define a state-space tree	e in the conte	xt of the bac	ktracking algorithm	2	1	2
5	What is NP hard probler	ns?			2	1	1 2

SI. No.	Improvement Test Questions							
1	Apply 0/1 Knapsack, find the maximum profit for the given data w= 5 Wi 2 1 3 2 Pi 8 6 16 11	10	3	3				
2	Apply Prim's algorithm to find the Minimum Spanning Tree (MST) for the given graph. Write the spanning tree after finding the MST	10	3	3				

	3 5 6								
3 a	Compare Backtracking and Branch	4	2	2					
3 b	Write the decision tree for finding	minim	um of	three	numbers	6	2	1	1
	Consider an assignment problem versuch a way that the total cost of the assigning each person to each job in Job/Person	for							
		9	2	7	8	10	3	3	
4			4	3	7				
	Person 3		8	1	8				
	Person 4	7	6	9	4				
	(a) Calculate the lower bound for t (b) Find the solution using branch	this as	signm ound	ent pr	oblem.				
5 a	Briefly discuss P and NP problems	used	in prol	olem s	solving	6	2	2	
5 b	Define greedy technique, how it di	iffers f	rom dy	nami	c programming?	4	2	1	

Course Outcomes

Cou	rse Outcomes
CO1	Apply knowledge of computing and mathematics to algorithm analysis and design
CO2	Analyze a problem and identify the computing requirements appropriate for a
	solution
CO3	Apply mathematical foundations, algorithmic principles, and computer science
	theory to the modeling, and evaluation of computer-based solutions in a way that
	demonstrates comprehension of the trade-offs involved in design choices.
CO4	Investigate and apply optimal design, development principles, skills and tools in the
	construction of software solutions of varying complexity.
CO5	Demonstrate critical, innovative thinking, and display competence in oral, written,
	and visual communication.
CO6	Exhibits positive group communication exchanges in order to accomplish a common
	goal and engage in continuing professional development.

Blooms' taxonomy test

L1	L2	L3	L4	L5	L6	CO1	CO2	CO3	CO4	CO5	CO6
6	24	30	-	-	-	12	18	30	-	-	-