Lec 9: Weighted Non-Bipartite Matching

Prof. Peng-Jun Wan

Outline

- Reduction to Min-Cost Perfect Matching
- · Collective Bidding for Perfect Matching
- · Blossom Algorithm
- Applications

O. Reduction to Min-Cost Perfect Matching

Recap: Weighted matching

- Input: an edge-weighted graph G = (V, E; w)
- Objective: find a matching M with maximum weight w(M).
 - we may assume all weights are positive

Minimum-cost perfect matching

- Input: G = (V, E; c) with edge costs and having a perfect matching
- Objective: find a perfect matching M with minimum cost c(M).
 - we may, and shall, assume all costs are positive

Max-Weight Perfect Matching ⇒ Min-Cost Perfect Matching flipping the weights

Reduction to perfect matching

Max-Weight Matching ⇒ Max-Weight Perfect Matching

replication:

- \rightarrow take two copies of G
- > connect each node with its copy by an edge of zero weight

1. Collective Bidding for Perfect Matching

Odd-set cuts

- $\delta(v)$: edges incident to v
- $\delta(U)$: edges with exactly one end in U (i.e. leaving U), U-cut

For any perfect matching M

- · $|M \cap \delta(v)| = 1$, for any $v \in V$;
- · $|M \cap \delta(U)| \ge 1$, for any odd subset $U \subset V$ with $|U| \ge 3$.

Frugal bidding

 (Ω,π)

- Ω : all singletons and a nested family of odd subsets (groups) $U \subset V$
- π : bids (payments) offered by members of Ω s.t.
 - for any non-singleton $U \in \Omega$, $\pi(U) \ge 0$
- frugalness: $\sum_{U \in \Omega: e \in \delta(U)} \pi(U) \le c(e)$ for each edge e
 - e can only collect the bids by groups to which it creates outside connection.

Participation in matching

Residual edge cost c_{π} : $c_{\pi}(e) = c(e) - \sum_{U \in \Omega: e \in \delta(U)} \pi(U) \ge 0$

- · e is tight w.r.t. (Ω,π) if $c_{\pi}(e)=0$ // collected payment covers cost
- · only tight edges are willing to join the matching M

Selection of M: M is tight and has no competing for bids i.e.

 $|M \cap \delta(U)| \leq 1$ for each $U \in \Omega$

Weak duality

between a frugal bidding (Ω, π) and an arbitrary perfect matching M

Thm.
$$c(M) \ge \sum_{U \in \Omega} \pi(U)$$
.

Lemma. $c(M) - c_{\pi}(M) \ge \sum_{U \in \Omega} \pi(U)$ and equality holds iff $|M \cap \delta(U)| = 1$ for each non-singleton $U \in \Omega$ with $\pi(U) > 0$

Pf.

$$c(M) - c_{\pi}(M) = \sum_{e \in M} [c(e) - c_{\pi}(e)]$$

$$= \sum_{e \in M} \sum_{U \in \Omega: e \in \delta(U)} \pi(U)$$

$$= \sum_{U \in \Omega} \pi(U) |M \cap \delta(U)|$$

$$= \sum_{v \in V} \pi(\{v\}) + \sum_{U \in \Omega: |U| \ge 3} \pi(U) |M \cap \delta(U)|$$

$$\geq \sum_{v \in V} \pi(\{v\}) + \sum_{U \in \Omega: |U| \ge 3} \pi(U)$$

$$= \sum_{U \in \Omega} \pi(U)$$

Achieving a min-cost perfect matching

Theorem. If a frugal bidding (Ω, π) admits a perfect matching M which is tight and competing-free, them M is a min-cost perfect matching.

Pf.
$$c_{\pi}(M) = 0$$
 and $c(M) = \sum_{U \in \Omega} \pi(U)$.

The general bidding process

- Initially Ω consists of all singletons offering 0 payment, and $M = \emptyset$
- Iterative bidding process:
 - Raise a frugal bidding in net amount to attract more edges
 - Grow a tight and competing-free matching (via swapping)
- In the end, the matching is perfect

3. Blossom Algorithm

Overview of the bidding evolution

- · At any time, only maximal (outermost) members of Ω reset bids
 - Ω^{\max} : the collection of maximal members // a partition of V
 - G/Ω^{\max} : a multigraph with each vertex being a member of Ω^{\max}
- New members of Ω are generated from tight blossoms on maximal members
 - keeps a tight Hamiltonian circuit on its children
 - initially offers 0 payment
- · Maximal members of Ω may be dismantled after their bids drop to 0
 - effectively deshrinkg the outermost blossoms

Overview of the matching evolution

- Only a tight and competing-free matching M on G/Ω^{\max} is maintained.
- · A tight M-alternating forest F on G/Ω^{\max} is maintained for finding a tight M-augmenting path
 - Pool of candidates for joining M
- M is always augmented along a tight M-augmenting path
- After dismantling a maximal member of Ω^{\max} , both M and F are lifted by using the inner Hamiltonian chain
 - . Blossoms may appear at odd level
- After a perfect matching M on G/Ω^{\max} is discovered, M is lifted to a perfect matching and stops.

Different need for blossom deshrinking

- Needed when dismantling a maximal member of Ω .
- No augmenting path lift, and hence no deshrinking in augmenting a matching
- Needed in the final matching lift

Blossom Algorithm

```
initialization: M \leftarrow \emptyset, F \leftarrow \emptyset, \Omega \leftarrow \{\{v\}: v \in V\}, \text{ and } \pi(\{v\}) \leftarrow 0 \ \forall v \in V.
```

while M is not a perfect matching on G/Ω^{\max}

Reset bids;

Case 0: Deshrink a blossom;

Case 1: Extend the forest;

Case 2: Shrink a blossom;

Case 3: Augment the matching;

lift M to a perfect matching in G, and return M.

Resetting bids

- Unmatched vertices need to pay more to get matched.
- \Box To preserve tightness of F,
 - for each $U \in even(F)$, $\pi(U) \leftarrow \pi(U) + \varepsilon$
 - for each $U \in odd(F)$, $\pi(U) \leftarrow \pi(U) \varepsilon$

Greedy resetting amount

Maintain non-negativity of bids by blossoms and frugalness

```
\begin{split} & \varepsilon_0 \leftarrow \min\{\pi(U) \colon U \in odd(F), |U| \geq 3\} \\ & \varepsilon_1 \leftarrow \min\{c_\pi(e) \colon e \text{ is between } even(F) \text{ and } free(F)\} \\ & \varepsilon_2 \leftarrow (1/2) \min\{c_\pi(e) \colon \text{both ends of } e \text{ belong to } even(F)\} \\ & \varepsilon \leftarrow \min\{\varepsilon_0, \varepsilon_1, \varepsilon_2\} \text{ // could be } 0 \end{split}
```

After resetting,

- * either some blossom $U \in odd(F)$ with $|U| \ge 3$ drops its bid to 0
- * or some edge e between even(F) and $even(F) \cup free(F)$ is tight

Case 0: deshrink a blossom

Case 0: 0-bid blossom $U \in odd(F)$ with $|U| \ge 3$.

Case 0: deshrink a blossom

$$\Omega \leftarrow \Omega - \{U\};$$

 $N \leftarrow$ the matching in C_U covering all vertices in U missed by M;

 $M \leftarrow M \cup N$;

 $P \leftarrow$ the even path in C_U connecting the two edges in F incident to U;

 $F \leftarrow F \cup N \cup P$;

F is tight.

M is competing-free.

Case 1: extend the forest

Case 1: new tight e between even(F) and free(F)

$$F \leftarrow F \cup \{e\};$$

F is tight.

Case 2: shrink a blossom

Case 2: new tight e with both ends in even(F), and in the same tree

 $B \leftarrow \text{the blossom in } F \cup \{e\};$ $U \leftarrow \text{the vertex set of } B; C_U \leftarrow B;$

$$\Omega \leftarrow \Omega \cup \{U\}; \pi(U) \leftarrow 0;$$

 $F \leftarrow F/U; M \leftarrow M/U;$

The new $U \in even(F)$.

 C_U and F are tight.

M is competing-free.

Case 3. augmenting the matching

Case 3: new tight e with both ends in even(F) but in different trees

P ← the M-augmenting path in $F \cup \{e\}$;

$$M \leftarrow M \oplus P$$
$$F \leftarrow M$$

Analysis

Correctness: M is perfect, tight, and competing-free

```
# of iterations: O(n^2):
```

- # of augmenting iterations $\leq n/2$
- \blacksquare # of iterations between two successive augmenting iterations $\leq 2n$

Implementation:

- With simple data structure, the running time is $O(n^3)$
- □ Fastest-known time [Gabow 1990]: $O(n(m + n \log n))$

Number of augmentations (Case 3)

Lemma. The number of augmenting iterations $\leq n/2$

Pf. evolution of the potential $|\Omega^{\max}| - 2|M|$ (# of vertices missed by M):

- \rightarrow initially n;
- decreases by 2 in each augmenting iteration;
- no change in each of the other three iterations.

Number of iterations between successive augmentations

Lemma. $\leq 2n$ iterations between two successive augmenting iterations

Pf. evolution of the potential
$$2|V_{even}| + |odd(F)| + |free(F)|$$
 where $V_{even} \coloneqq \{ \text{nodes } v \in V \text{ shrunk to a vertex of } G/\Omega^{\max} \text{ in } even(F) \}$

 \rightarrow at most 2n

$$\begin{aligned} &2|V_{even}| + |odd(F)| + |free(F)| \\ &\leq 2|V_{even}| + |V| - |V_{even}| \leq |V_{even}| + |V| \leq 2n \end{aligned}$$

- > strictly increases with iterations between augmenting iterations
 - > straightforward exercise.

Strong duality

 $\min c(M)$

s.t. M is a perfect matching

 Ω : the family of all odd subsets of V

 $\max \sum_{U \in \Omega} \pi(U)$

s.t. $\pi(U) \geq 0$, for all non-singleton $U \in \Omega$ $\sum_{U \in \Omega: e \in \delta(U)} \pi(U) \leq c(e)$, for all edge e

Thm. The two problems have the same value.

4. Applications

Seven Bridges of Königsberg

The Chinese Postman Problem

 $G = (V, E; \ell)$: A graph with non-negative length function ℓ

Chinese postman tour: A closed walk C visiting each edge of G at least

once.

The Chinese postman problem: find a shortest Chinese postman tour C. first studied by Guan [1960], and named by Edmonds [1965]

T-join

Def. Given G = (V, E) and $T \subseteq V$, a subset $J \subseteq E$ is a T-join if T is the set of nodes with odd degree in the graph (V, J), i.e.,

$$T = \{v \in V : |\delta(v) \cap J| \text{ is odd}\}.$$

Remark: |T| must be even.

Lemma. J is a T-join iff J can be decomposed into |T|/2 paths connecting disjoint pairs of nodes in T and some circuits.

Examples: \emptyset -join is a cycle; $\{s, t\}$ -join is an s-t path + circuits

Symmetric difference of T-joins

Lemma. J_1 is a T_1 -join and J_2 is a T_2 -join $\Rightarrow J_1 \oplus J_2$ is a $T_1 \oplus T_2$ -join.

Pf. For any $v \in V$:

 $|\delta(v) \cap (J_1 \oplus J_2)| = |(\delta(v) \cap J_1) \oplus (\delta(v) \cap J_2)|$ is odd $\Leftrightarrow |\delta(v) \cap J_1|$ and $|\delta(v) \cap J_2|$ have different parity $\Leftrightarrow v \in T_1 \oplus T_2$

Shortest T-join

Def. Given $G = (V, E; \ell)$ with edge length ℓ and $T \subseteq V$, find a T-join with minimum total length

[Edmonds 1965]: Reduction to min-cost perfect matching

Non-negative edge-length

 P_{st} : a shortest s-t path in G for each pair $\{s,t\}$ in T; its length is c(st)

 K_T : the complete graph on T with edge cost c

M: a min-cost perfect matching in K_T

Claim: The symmetric difference of the paths P_{st} for $st \in M$ is a shortest T-join in G.

Remark: Simply take union if all edges have positive length [as disjoint]

Arbitrary edge-length

N: the set of edges in E with negative length U: the set of vertices incident to an odd number of edges in N

Then, N is a U-join.

Lem. If J is a $T \oplus U$ -join, then $J \oplus N$ is a T-join and $\ell(J \oplus N) = |\ell|(J) + \ell(N)$.

Pf.
$$(T \oplus U) \oplus U = T$$
 and $\ell(J \oplus N) = \ell(J \setminus N) - \ell(N \cap J) + \ell(N)$
= $|\ell|(J \setminus N) + |\ell|(N \cap J) + \ell(N) = |\ell|(J) + c(N)$

Arbitrary edge-length

Thm. If J is a shortest $T \oplus U$ -join w.r.t. $|\ell|$, then $J \oplus N$ is a shortest T-join w.r.t. ℓ .

Pf. For any T-join J', $J' \oplus N$ is a $T \oplus U$ -join and $\ell(J') = \ell(J' \oplus N \oplus N) = |\ell|(J' \oplus N) + \ell(N) \ge |\ell|(J) + \ell(N) = \ell(J \oplus N)$

Shortest path in undirected graphs

 $G = (V, E; \ell)$: a graph with length function ℓ $s, t \in V$

Thm. G has a negative circuit iff G has a negative \emptyset -join.

Thm. Suppose G has no negative circuit, and J is a shortest $\{s,t\}$ -join. Partition J into an s-t path P and circuits. Then, P is a shortest s-t path.

Minimum-mean circuit in undirected graphs

Fact. MMCs are invariant with uniform length changes Assumption. G has a negative circuit

```
repeat  \begin{array}{l} \text{find a shortest } \emptyset\text{-join }J; \\ \text{if } \ell(J) < 0 \text{ add } -\ell(J)/|J| \text{ to all edge-lengths;} \\ \text{if } \ell(J) = 0, \text{ return a circuit in }J. \end{array}
```

Claim. |J| strictly decreases in all but the last iterations.

Pf. Two subsequent iterations: $\ell, J; \ell', J'$ with $\ell'(J') < 0$

$$0 > \ell'(J') = \ell(J') - \frac{\ell(J)}{|J|}|J'| \ge \ell(J) - \frac{\ell(J)}{|J|}|J'| = \frac{\ell(J)}{|J|}(|J| - |J'|)$$