- 1. A box in a supply room contains four 60W bulbs, six 75W bulbs, and five 100W bulbs. Suppose that three bulbs are randomly selected (without replacement).
 - (a) Find the probability that all three bulbs have the same wattage. Define the events A = the event that all 3 bulbs are 60W, B = the event that all 3 bulbs are 100W. Then

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) = \frac{\binom{4}{3}}{\binom{15}{3}} + \frac{\binom{6}{3}}{\binom{15}{3}} + \frac{\binom{5}{3}}{\binom{15}{3}} = \frac{\binom{4}{3} + \binom{6}{3} + \binom{5}{3}}{\binom{15}{3}} = \frac{34}{455}$$

(b) Conditional on all three bulbs having the same wattage, obtain the probability that all three bulbs are 100W bulbs.

$$P(C|A \cup B \cup C) = \frac{\frac{\binom{5}{3}}{\binom{15}{3}}}{\frac{\binom{4}{3} + \binom{6}{3} + \binom{5}{3}}{\binom{15}{3}}} = \frac{\binom{5}{3}}{\binom{4}{3} + \binom{6}{3} + \binom{5}{3}} = \frac{10}{34}$$

2. Suppose that X is a random variable with cumulative distribution function

$$F_X(x) = \begin{cases} 0, & x \le 0 \\ x^2, & 0 < x < 0.4 \\ x, & 0.4 \le x < 1 \\ 1, & 1 \le x. \end{cases}$$

Compute each of the following:

(a)
$$P(X = 0.5)$$

 $P(X = 0.5) = F_X(0.5) - F_X(0.5-) = 0.5 - 0.5 = 0$

(b)
$$P(X = 0.4)$$

 $P(X = 0.4) = F_X(0.4) - F_X(0.4-) = 0.4 - 0.4^2 = 0.24$

(c)
$$P(0.3 \le X \le 0.6)$$

 $P(0.3 \le X \le 0.6) = F_X(0.6) - F_X(0.3-) = 0.6 - 0.3^2 = 0.51$

(d)
$$P(0.4 \le X \le 0.6)$$

 $P(0.4 \le X \le 0.6) = F_X(0.6) - F_X(0.4-) = 0.6 - 0.4^2 = 0.44$

3. Suppose that V is a random variable with the cumulative distribution function

$$F_V(v) = \begin{cases} 0 & v \le -1\\ \frac{(1+v)^2}{4}, & -1 < v < 1\\ 1, & v \ge 1 \end{cases}$$

Obtain the probability density function of $W = V^2$.

Let 0 < w < 1. Then

$$P[W \le w] = P[-\sqrt{w} \le V \le \sqrt{w}] = F_V(\sqrt{w}) - F_V(\sqrt{-w})$$
$$= \frac{1 + 2\sqrt{w} + \sqrt{w}^2}{4} - \frac{1 + 2(-\sqrt{w}) + (-\sqrt{w})^2}{4} = \sqrt{w}$$

Since $\frac{d\sqrt{w}}{dw} = \frac{1}{2\sqrt{w}}$,

$$f_W(w) = \begin{cases} \frac{1}{2\sqrt{w}}, & 0 < w < 1\\ 0, & \text{otherwise.} \end{cases}$$

- 4. Consider rolling a fair six-sided die and independently tossing two fair two-sided coins. Let Z = the number showing on the die, and let W = the number of heads showing in the two tosses. Find the probability distributions of (i) W and (ii) U = WZ.
 - (i) The sample space is $\{HH, HT, TH, TT\}$ with probability 1/4 for each outcome. Thus, $P(W=0) = P[\{TT\}] = 1/4$, $P(W=1) = P[\{HT, TH\}] = 1/2$, and $P(W=2) = P[\{HH\}] = 1/4$.
 - (ii) Enumerate the possible values of wz where w=0,1,2 and z=1,2,...,6. Then compute the probabilities. $P[U=0]=P[W=0]=1/4,\ P[U=1]=P[W=1,Z=1]=P[W=1]\times P[Z=1]=1/2\times 1/6=1/12,\ P[U=2]=P(W=1,Z=2)+P(W=2,Z=1)=1/2\times 1/6+1/4\times 1/6=1/8,$ etc. The pmf of U is

5. Suppose that (X,Y) have the joint probability density function

$$f_{X,Y}(x,y) = \begin{cases} x + Cy & 0 \le x \le 1, \ 0 \le y \le 1 \\ 0 & \text{otherwise.} \end{cases}$$

Find the value of C that makes $f_{X,Y}(x,y)$ a valid probability density function. Then determine whether X and Y are independent. Justify your answer.

$$\int_0^1 \int_0^1 (x + Cy) dx dy = \int_0^1 (1/2 + Cy) dy = 1/2 + C/2 = 1.$$

Thus, C=1. The marginal pdfs are $f_X(x)=1/2+x,\ 0\leq x\leq 1$ and $f_Y(y)=1/2+y,\ 0\leq y\leq 1$. Since $(1/2+x)\times (1/2+y)\neq x+y$ for $0\leq x\leq 1,\ 0\leq y\leq 1,\ X$ and Y are not independent.