Integrace integrálů podle parametrů - záměnnost integračního pořadí 1

Věta 106

Buď $M \subset \mathbb{R}^n$ měřitelná, X metrický prostor, α_0 hromadný bod X, $f(x, \alpha)$ komplexní funkce na $M \times X$ a platí:

1). Pro s.v.
$$x \in M$$
 existuje $\lim_{\alpha \to \alpha_0} f(x, \alpha) = g(x)$

2). Pro každé
$$\alpha \in X - \{\alpha_0\}$$
 je $f(x, \alpha)$ měřitelná v M

3).
$$\exists \varphi(x) \in L(M)$$
 tak, že pro $\alpha \in X - \{\alpha_0\}$ je $|f(x, \alpha)| \leq \varphi(x)$ s.v. $v M$

Potom

$$\lim_{\alpha \to \alpha_0} \int\limits_M f(x, \, \alpha) \, \mathrm{d}x = \int\limits_M \lim_{\alpha \to \alpha_0} f(x, \, \alpha) \, \mathrm{d}x = \int\limits_M g(x) \, \mathrm{d}x.$$

Příklad

$$I = \int_{0}^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x$$

Pro
$$x > 0$$
 jest $\int_{0}^{+\infty} e^{-xy} dy = \frac{1}{x}$, a tedy

$$I = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} e^{-xy} \sin x \, dy \right) dx$$

Položme

$$K = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} e^{-xy} \sin x \, dx \right) dy = \int_{0}^{+\infty} \frac{dy}{1 + y^2} = \frac{\pi}{2}$$

Jde o to zda I=K. Jest $|\mathrm{e}^{-xy}\sin x|\leq x\mathrm{e}^{-xy}$ pro x>0; užitím Fubiniovy věty na tuto nezápornou funkci máme pro konečné a>0

$$\iint_{\substack{0 \le x \le a \\ y > 0}} x e^{-xy} dx dy = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} x e^{-xy} dy \right) dx = \int_{0}^{a} dx < +\infty.$$

Tedy pro konečné a > 0 jest

$$\int_{0}^{a} \left(\int_{0}^{+\infty} e^{-xy} \sin x \, dy \right) dx = \int_{0}^{+\infty} \left(\int_{0}^{a} e^{-xy} \sin x \, dx \right) dy.$$
 (1)

Položíme-li zde

$$F(a, y) = \int_{0}^{a} e^{-xy} \sin x \, dx,$$

je

$$\lim_{a \to +\infty} F(a, y) = \int_{0}^{+\infty} e^{-xy} \sin x \, dx$$

¹J-IP II, str. 360

a dále

$$F(a, y) = \frac{1 - e^{-ay}(y \sin x + \cos x)}{y^2 + 1}$$

Pro a>0. Pro $a>0,\,y>0$ je však

$$|e^{-ay}\cos a| < 1$$
, $|e^{-ay}\sin a| < e^{ay}ay < C$,

kde C je jistá konstanta (neboť funkce $u\mathrm{e}^{-u}$ je v $<0,\,+\infty$) spojitá a má pro $u\to+\infty$ limitu 0; tedy je tato funkce omezená v $<0,\,+\infty$), tj. $u\mathrm{e}^{-u}< C$ pro všechna $u\geq 0$). Tedy funkce $F(a,\,y)$ mají společnou integrabilní majorantu $\frac{2+C}{y^2+1}$. Podle věty 106 je tedy

$$\lim_{a \to +\infty} \int_{0}^{+\infty} F(a, y) \, \mathrm{d}y = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} \mathrm{e}^{-xy} \sin x \, \mathrm{d}x \right) \, \mathrm{d}y;$$

tj. pravá strana v (1) má limitu $K=\frac{\pi}{2}$, a touž limitu má tedy i levá strana, tj. I konverguje a jest $I=\frac{\pi}{2}$.