基于双目系统的目标跟踪与预测

行人检测

背景

• 2015全球道路安全报告

http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/

大纲

- 背景
- 计划+分工:
 - Particle Filter
 - Stixel World, HOG+SVM
 - 双目信息的效果
 - faster-rcnn
 - Rich feature 效果
- 总结遇到的问题
- 成果
- 规划
 - 双目/尺度/遮挡
- 参考文献

分工

- 增辉:
 - Particle Filter
 - OpenCV
 - Computer Vision(cs4495)
- 启睿
 - Stereo Camera
 - Machine Learning(cs229)
 - Stixel World, HOG+SVM
- 兴路
 - Faster-rcnn
 - ConvNet(cs231n)

Particle Filter

以追踪人脸patch为例

Stixel World, Idea

- 如何利用双目信息?
 - •一般思路:

Stixel World, Idea

- 利用双目优点:
 - 适用于室外场景

- 避开缺点:
 - 匹配速度慢
 - 视差图质量差

Stixel World, Objectness Estimation

原理:是行人+脚下是地面 (详见Supplementary Material)

Figure 3: The object and ground costs are computed by matching pixels in the left and right images. White dots on the image indicates object-ground boundary candidates, based on horizontal gradient maxima.

Stixel World, Hog + SVM

效果:

利用先验

• 先验=人和地面的位置关系+人的身高

Stixel World, Hog + SVM

问题出在哪里?

Stixel World, Hog + SVM

Hog特征 饱和

person 0.999

Faster-rcnn

详见Supplementary Material

选取数据集

- KITTI's page(car,pedestrian, etc.):
 http://www.cvlibs.net/datasets/kitti/eval_object.php/
 - 数据量大
 - 场景单一

- Caltech-USA:
 - http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
 - 场景单一

制作数据集

- INRIA: http://pascal.inrialpes.fr/data/human/
 - 数据量不足
 - 场景丰富


```
nexus_video5_img41.png
                                   nexus_video5_img42.png
nexus_video5_img43.png
                                                                                                                                                                                                     /home/luzat/luzat/faster-rcnn-drone/output/videos/nexus/videos/ing42.png
/home/luzat/luzat/faster-rcnn-drone/output/videos/nexus/videos/ing43.png
/home/luzat/luzat/faster-rcnn-drone/output/videos/nexus/videos/ing44.png
                                   nexus_videos_ing44.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing45.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing45.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing45.pg = nexus_videos_ing47.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing47.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing47.pg = nexus_videos_ing48.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing49.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing49.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing49.pg = nexus_videos_ing49.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing49.pg = nexus_videos_ing49.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing49.pg = nexus_videos_ing49.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing49.pg = nexus_videos_ing40.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing49.pg = nexus_videos_ing40.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing49.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ng49.pg = /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ng49.pg = /hone/
                                                                                                                                                                                    -> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/video5/img51.png
-> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/video5/img52.png
                                       nexus video5 ima52.png
                                     nexus_video5_img54.png -> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/video5/img54.png
nexus_video5_img55.png -> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/video5/img55.png
                                       nexus_video5_img56.png
                                     nexus_video5_img57.png
                                                                                                                                                                                    -> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/video5/img57.png
-> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/video5/img58.png
                                       nexus_video5_img58.png
                                     nexus_video5_img59.png
nexus_video5_img5.png
                                                                                                                                                                              -> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/video5/img59.png
-> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/video5/img5.png
                                     nexus_video5_img60.png
nexus_video5_img61.png
nexus_video5_img62.png
                                                                                                                                                                                      > /none/tozat/tozat/sister-rcnn-ulong/output/videos/nexus/videos/tigs-ping
> /hone/tuzat/tuzat/faster-rcnn-drone/output/videos/nexus/videos/tigs0.ping60.ping
> /hone/tuzat/tuzat/faster-rcnn-drone/output/videos/nexus/videos/tigs0.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping60.ping
                                     nexus_video5_img63.png
nexus_video5_img64.png

    -> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing63.png
    -> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing63.png
    -> /home/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/ing65.png

                                   nexus_video5_ing66.pig > /hone/luzal/luzal/faster-rcnn-drone/output/videos/nexus/video5/ing66.pig nexus_video5_ing67.pig > /hone/luzal/luzal/faster-rcnn-drone/output/videos/nexus/video5/ing66.pig nexus_video5_ing69.pig > /hone/luzal/luzal/faster-rcnn-drone/output/videos/nexus/videos/ing69.pig nexus_video5_ing69.pig > /hone/luzal/luzal/faster-rcnn-drone/output/videos/nexus/videos/ing69.pig nexus_video5_ing69.pig > /hone/luzal/luzal/faster-rcnn-drone/output/videos/nexus/videos/ing6.pig nexus_video5_ing6.pig > /hone/luzal/luzal/faster-rcnn-drone/output/videos/nexus/videos/ing6.pig nexus_video5_ing6.pig > /hone/luzal/luzal/faster-rcnn-drone/output/videos/nexus/videos/ing6.pig nexus_video5.pig6.pig > /hone/luzal/luzal/faster-rcnn-drone/output/videos/nexus/videos/ing6.pig nexus_videos
                               nexus_videos_ing70.png -> /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/lng70.png
nexus_videos_ing70.png -> /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/lng70.png
nexus_videos_ing8.png -> /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/fng7.png
nexus_videos_ing8.png -> /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/fng9.png
nexus_videos_ing8.png -> /hone/luzai/luzai/faster-rcnn-drone/output/videos/nexus/videos/fng9.png
directories, 338 files
       stanford_campus_dataset_ln ls
```

制作数据集

Positive sample

Negative sample


```
# print 'Loading: {}'.format(filename)
with open(filename) as f: f: <closed file '/home/luzai/luzai/py-faster-rcnn/data/INRIA Person devkit/data/Annotati
   data = f.read() data: '# PASCAL Annotation Version 1.00\n\nImage filename : "Train/pos/crop 000010.png"\nImage
import re 0: '(194, 127) - (413, 647)' len : 1 re: <module 're' from '/usr/lib/python2.7/re.pyc'>
objs = re.findall('\(\d+, \d+\)[\s\-]+\(\d+, \d+\)', data) objs: \langle type 'list' \rangle: ['(194, 127) - (413, 647)']
num objs = len(objs) num objs: 1
boxes = np.zeros((num objs, 4), dtype=np.uint16) boxes: [[194 127 413 647]]
overlaps = np.zeros((num objs, self.num classes), dtype=np.float32) overlaps: [[ 0. 1.]]
# "Seg" area here is just the box area
seq areas = np.zeros((num objs), dtype=np.float32) seg areas: [ 114620.]
# Load object bounding boxes into a data frame.
for ix, obj in enumerate(objs): ix: 0
   # Make pixel indexes 0-based
   coor = re.findall('\d+', obj) coor: <type 'list'>: ['194', '127', '413', '647']
   x1 = float(coor[0]) x1: 194.0
   v1 = float(coor[1]) v1: 127.0
```

Finetune

ImageNet训练

· Inria Finetune

- RPN
- FC layer

```
From Caffe Model Zoo
```

```
# print 'Loading: {}'.format(filename)
with open(filename) as f: f: <closed file '/home/luzai/luzai/py-faster-rcnn/data/INRIA Person devkit/data/Annotati
   data = f.read() data: '# PASCAL Annotation Version 1.00\n\nImage filename : "Train/pos/crop 000010.png"\nImage
import re 0: '(194, 127) - (413, 647)' len : 1 re: <module 're' from '/usr/lib/python2.7/re.pyc'>
objs = re.findall('\(\d+, \d+\)[\s\-]+\(\d+, \d+\)', data) objs: \langle type 'list' \rangle: ['(194, 127) - (413, 647)']
num objs = len(objs) num objs: 1
boxes = np.zeros((num objs, 4), dtype=np.uint16) boxes: [[194 127 413 647]]
overlaps = np.zeros((num objs, self.num classes), dtype=np.float32) overlaps: [[ 0. 1.]]
# "Seg" area here is just the box area
seq areas = np.zeros((num objs), dtype=np.float32) seg areas: [ 114620.]
# Load object bounding boxes into a data frame.
for ix, obj in enumerate(objs): ix: 0
   # Make pixel indexes 0-based
   coor = re.findall('\d+', obj) coor: <type 'list'>: ['194', '127', '413', '647']
   x1 = float(coor[0])  x1: 194.0
   v1 = float(coor[1]) v1: 127.0
```

改进

交替训练结果

改进效果

大纲

- 背景
- 计划+分工:
 - Particle Filter
 - Stixel World, HOG+SVM
 - 双目信息的效果
 - faster-rcnn
 - Rich feature 效果
- 总结遇到的问题
- 成果
- 规划
 - 双目/尺度/遮挡
- 参考文献

仍存在问题

时序建模

应用于实际监控场景

泛目标->具体目标

规划

- 已有模型
 - Stixel World
 - 简洁的模型
 - **合理**利用深度信息
 - Faster-rcnn
 - 泛目标检测框架
 - 更好的特征提取

- 理论上突破
 - 深度信息
 - 用于提取候选区
 - 建立自己的优化方程
 - 设计Rgb-d输入的RCNN
 - 视差信息输入
 - 能否End-to-End?
 - 干预CNN学习过程
 - 设计Loss 函数
 - 可视化CNN,观察(抑制) 一些激活值
 - 时序建模
 - GRU-RCN(LSTM)

规划

- 已有模型
 - Stixel World
 - 简洁的模型
 - <u>合理</u>利用深度信息
 - Faster-rcnn
 - 泛目标检测框架
 - 更好的特征提取

- 应用上突破
 - 行人再识别
 - Siamese Instant Search 思路
 - 模型压缩
 - 人脸超分辨重建
 - 行人性格分析

Reference

- Benenson, R., et al., Pedestrian detection at 100 frames per second.
 2012, IEEE. p. 2903 2910.
- Benenson, R., R. Timofte and L. Van Gool, Stixels estimation without depth map computation, in 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). 2011. p. 2010 - 2017.
- Opitz, M., et al., Grid Loss: Detecting Occluded Faces. 2016
- Tao, R., E. Gavves and A.W.M. Smeulders, Siamese Instance Search for Tracking. 2016
- Reed, S., et al., Learning Deep Representations of Fine-grained Visual Descriptions. 2016.
- INRIA: http://pascal.inrialpes.fr/data/human/
- KITTI's page(car,pedestrian, etc.):
 http://www.cvlibs.net/datasets/kitti/eval_object.php/
- https://bitbucket.org/rodrigob/doppia/overview
- http://vision.ucsd.edu/~pdollar/index.html
- https://github.com/ShaogingRen/faster_rcnn/

Reference

- He, K., et al., Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans Pattern Anal Mach Intell, 2015. 37(9): p. 1904-16.
- Ren, S., et al., Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell, 2016.
- Xu, J., et al., 2D/3D Sensor Exploitation and Fusion for Enhanced Object Detection. 2014, IEEE. p. 778 784.
- Im, D.J., et al., Generating images with recurrent adversarial networks.
 2016.
- Reed, S., et al., Generative Adversarial Text to Image Synthesis. 2016.
- Mahendran, A. and A. Vedaldi, Understanding Deep Image Representations by Inverting Them. 2014.
- Denton, E., et al., Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks. 2015.
- Larsen, A.B.L., et al., Autoencoding beyond pixels using a learned similarity metric. 2015.

成果

Thank You!