Technická analýza

Technická analýza z vývoje ceny a obchodovaných objemů akcie odvozuje odhad budoucího vývoje ceny. Dalšími metodami odhadu vývoje cen akcií jsou např. fundamentální analýza (zkoumá podrobně účetnictví firmy, z něj se snaží odhadnout vývoj cen jejích akcií), psychologická analýza (odhaduje chování ostatních investorů), statistické modely časových dat atd. Principy technické analýzy:

- Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c_t tedy platí $c_t = c_t + \varepsilon_t$.
- Ceny se pohybují v trendech a trendy vytrvávají.
- Dění na trhu se opakují.

Technická analýza zkoumá jednak grafické formace vznikající na grafu ceny akcie, jednak posuzuje vývoj ceny pomocí technických indikátorů.

Analýza grafických formací

Grafické formace jsou obrazce vzniklé na grafu ceny akcie. Analýza grafických formací spočívá v jejich rozpoznání a vyvození závěrů z jejich existence. Veškerá takováto analýza je ale založena na pozorování grafu ceny akcie, a proto je do značné míry subjektivní.

V následujících grafech je silnou čarou zobrazena cena, přerušovanou čarou objem akcií. (Omluvte sníženou kvalitu obrázků – porucha není na vašem přijímači)

Reversní grafické formace

Rozlišují se reversní formace (signalizující změnu trendu) a kosolidační formace (signalizující pokračování trendu).

Vrchol. Během dvou dnů cena vyroste a klesne na původní úroveň. Obchodované objemy jsou stále vysoké. Často je součástí složitějších formací. Po dokončení formace bude cena ještě nějaký čas klesat.

Dno. Opačná formace k vrcholu. Vývoj objemů je stejný. Po dokončení formace bude cena ještě nějaký čas růst.

Hlava a ramena – vrchol. Velké objemy obchodů doprovázejí levé rameno a hlavu. Klesne-li na konci cena pod linii krku (spojnice dna levého a pravého ramene), bude dál klesat alespoň o vzdálenost mezi vrcholem hlavy a linií krku. Opačnou formací je hlava a ramena – dno.

Hlava a ramena – dno.

Zaoblený vrchol (talířek). Podobně jako obyčejný vrchol signalizuje změnu trendu, ale změna ceny je pozvolnější a vývoj objemů odlišný. Opačný vývoj ceny má zaoblené dno.

Vzestupný trojúhelník. Poptávka roste, až se setká s nabídkou na stejné ceně. Když je nabídka vyčerpána, cena začne růst. Měla by růst alespoň o počáteční výšku trojúhelníka. Opačnou formací je sestupný trojúhelník.

Obdélník. Nabídka a poptávka se vyvíjejí shodně, nakonec převáží růst či pokles podle vývoje objemů (objemy rostou při růstu ceny \Rightarrow cena bude nakonec růst, a naopak).

Dvojitý a trojitý vrchol a dno. Od okamžiku utvoření formace bude cena pokračovat ve změněném trendu minimálně o vzdálenost mezi vrcholy a dny.

Konsolidační grafické formace

Klesající vlajka. nastává v rostoucím trendu. Objemy jsou zpočátku vysoké. Očekává se, že po skončení vlajky bude pokračovat původní rostoucí trend. Opakem je rostoucí vlajka.

Praporek v rostoucím trendu. Podobný jako vlajka. Opakem je **praporek v klesajícím trendu**.

Konsolidační hlava a ramena – vrchol. Opakem je konsolidační hlava a ramena – dno.

Trendy a trendové linie

Rostoucí, klesající, postranní trend:

Rozlišují se podle toho, zda maxima a minima rostou či klesají. Pokud cena prolomí spojnici maxim či spojnici minim (trendový kanál) alespoň o 3%, bude se dál cena pohybovat ve směru prolomení.

Trendový kanál (vzestupný).

Technické indikátory kapitálového trhu

Funkce technický indikátor přiřadí pro každý obchodní den t akcii reálné číslo vypovídající o vývoji její ceny.

Klouzavé průměry

Jednoduchý klouzavý průměr

Je-li c_t cena akcie v čase $t,\,n$ délka klouzavého průměru, pak klou
uavý průměr je definován jako

$$S_t(n) = \frac{1}{n} \sum_{i=0}^{n-1} c_{t-i}$$

Doporučení z hlediska krátkodobého horizontu:

 $c_{t-1} \leq S_{t-1}(n)$ a $c_t > S_t(n) \Rightarrow$ nákup akcie (její cena začala růst oproti minulému vývoji)

 $c_{t-1} \geq S_{t-1}(n)$ a $c_t < S_t(n) \Rightarrow$ prodej

Z hlediska dlouhodobého horizontu: $n_1 < n_2$, srovnání dlouhodobého a krátkodobého vývoje $S_{t-1}(n_1) \le S_{t-1}(n_2)$ a $S_t(n_1) > S_t(n_2) \Rightarrow$ nákup $S_{t-1}(n_1) \ge S_{t-1}(n_2)$ a $S_t(n_1) < S_t(n_2) \Rightarrow$ prodej Obdobné použití mají i následující klouzavé průměry.

Triangulární klouzavý průměr

Je to vlastně klouzavý průměr provedený dvakrát za sebou, největší váhu mají data ležící uprostřed periody délky n.

Pro n = 2k - 1 (n sudé):

$$T_t(n) = \frac{1}{k^2} (c_t + 2c_{t-1} + \dots + (k-1)c_{t-k+2} + kc_{t-k+1} + (k-1)c_{t-k} + \dots + c_{t-2k+2})$$
$$= \frac{1}{k^2} (\sum_{i=0}^{k-1} (i+1)c_{t-i} + \sum_{i=0}^{k-2} (k-i-1)c_{t-k-i})$$

Pro n = 2k (n liché):

$$T_t(n) = \frac{1}{k(k+1)} \left(\sum_{i=0}^{k-1} (i+1)c_{t-i} + \sum_{i=0}^{k-1} (k-i)c_{t-k-i} \right)$$

Vážený klouzavý průměr

Směrem do minulosti váhy klesají.

$$W_t(n) = \frac{2}{n(n+1)} \sum_{i=0}^{n-1} (n-i)c_{t-i}$$

Exponenciální klouzavý průměr

Oproti váženému průměru jsou váhy exponenciální, navíc bere v úvahu všechna minulá data (ne jen periodu délky n).

$$E_t = \sum_{i=0}^{t-2} \alpha (1-\alpha)^i c_{t-i} + (1-\alpha)^{t-1} c_1$$
, kde $\alpha = \frac{2}{n+1}$

Klouzavá regrese

Klouzavá regrese využívá prokládání přímky posledními n pozorováními metodou nejmenších čtverců. Jde tedy o regresní model $y=X\beta+\varepsilon$, kde

$$X = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ \vdots & \vdots \\ 1 & n-1 \\ 1 & n \end{pmatrix}, \quad y = \begin{pmatrix} c_{t-n+1} \\ c_{t-n+2} \\ \vdots \\ c_{t-1} \\ c_t \end{pmatrix}, \quad \beta = \begin{pmatrix} \beta_t^{(0)} \\ \beta_t^{(1)} \end{pmatrix}$$

odhad parametrů β má tvar $b = (X^T X)^{-1} X^T y$, tedy

$$b_t^{(0)} = \frac{1}{n(n-1)} (2(2n+1) \sum_{i=0}^{n-1} c_{t-i} - 6 \sum_{i=0}^{n-1} (n-i)c_{t-i})$$

$$b_t^{(1)} = \frac{1}{n(n^2 - 1)} \left(12 \sum_{i=0}^{n-1} (n - i)c_{t-i} - 6(n + 1) \sum_{i=0}^{n-1} c_{t-i}\right)$$

potom se definuje klouzavá regrese jako

$$TS_t(n) = b_t^{(0)} + b_t^{(1)}(n+1)$$

Pásmová analýza

Procentní pásma

Sestrojíme grafy ceny c_t , horní hranice pásma $f_t^h = (1+k)MA_t(n)$, dolní hranice pásma $f_t^d = (1-k)MA_t(n)$, kde $k \in (0,1)$ je konstanta určující šířku pásma a MA je nějaký typ klouzavého průměru.

Doporučení:

cena poblíž spodní hranice pásma $(f_t^h \doteq c_t) \Rightarrow$ nákup cena poblíž horní hranice pásma $(f_t^d \doteq c_t) \Rightarrow$ prodej

Bollingerova pásma

Oproti procentnímu pásmu není jeho šířka konstantní, ale mění se v závislosti na volatilitě akcie. Jako MA se užívá jednoduchý klouzavý průměr.

$$f_t^h = \frac{1}{n} \sum_{i=0}^{n-1} c_{t-i} + k \sqrt{\frac{1}{n} \sum_{i=0}^{n-1} (c_{t-i} - \frac{1}{n} \sum_{j=0}^{n-1} c_{t-j})^2}$$

$$f_t^d = \frac{1}{n} \sum_{i=0}^{n-1} c_{t-i} - k \sqrt{\frac{1}{n} \sum_{i=0}^{n-1} (c_{t-i} - \frac{1}{n} \sum_{j=0}^{n-1} c_{t-j})^2}$$

Doporučují se hodnoty n=20, k=2, jinak se používá stejně jako procentní pásmo.

Oscilátory

Oscilátory jsou indikátory měřící změnu ceny za zvolené časové období.

Momentum

• absolutní: $MOM_t(n) = c_t - c_{t-n}$

• relativní: $MOM_t(n) = \frac{c_t}{c_{t-n}} 100$

Použití absolutního momenta:

 $c_t>c_{t-1},\,MOM_{t-1}(n)\leq 0,\,MOM_t(n)>0$ \Rightarrow nákup

 $c_t < c_{t-1}, MOM_{t-1}(n) \ge 0, MOM_t(n) < 0 \Rightarrow \text{prodej}$

U relativního momenta je situace obdobná (jen osciluje kolem 100).

Rate of change

$$ROC_t(n) = \frac{c_t - c_{t-n}}{c_{t-n}} 100$$

Nákup se doporučuje, pokud $ROC_t(n)$ klesá do výrazně záporných hodnot (očekává se růst ceny), prodej, pokud $ROC_t(n)$ roste a nabývá kladných hodnot.

Index relativní síly

Oproti předchozím oscilátorům nebývají jeho hodnoty chybně ovlivňovány vývojem minulých dat, eliminuje případné nesmyslné hodnoty vznikající např. u momenta v případě, že chybí některá vstupní data.

$$RSI_t(n) = 100(1 - \frac{1}{1 + \frac{U(n)}{D(n)}}), \quad U(n) = \frac{1}{n} \sum_{i=0}^{n-1} (c_{t-i} - c_{t-i-1})^+, \quad D(n) = \frac{1}{n} \sum_{i=0}^{n-1} (c_{t-i} - c_{t-i-1})^-$$

 $RSI_t(n) \in (0, 100)$, zvolí se dolní a horní hranice $h \in (50, 100)$ a $d \in (0, 50)$ (např. 80 a 20). Pro $RSI_t(n) < d$ se doporučuje nákup, pro $RSI_t(n) > h$ prodej.

Cenově-objemové a objemové indikátory

Cenově objemové a objemové indikátory jsou skupinou indikátorů pracujících s objemem obchodů s akcií V_t .

Bilance objemu

$$OBV_t = \sum_{t; c_t > c_{t-1}} V_t - \sum_{t; c_t < c_{t-1}} V_t$$

Průběh křivky OBV_t je většinou podobný průběhu křivky ceny c_t . Pokud se tedy trend OBV_t změní z klesajícího na rostoucí, doporučuje se nákup, při změně trendu na klesající naopak prodej.

Cenově-objemový trend

$$PVT_t = \sum_{t; c_t > c_{t-1}} \frac{c_t - c_{t-1}}{c_{t-1}} V_t - \sum_{t; c_t < c_{t-1}} \frac{c_{t-1} - c_t}{c_{t-1}} V_t$$

Oproti OBV_t zohledňuje PVT_t také relativní změnu ceny a je proto přesnější. Jinak se používá stejným způsobem.

Volume rate of change

$$VROC_t(n) = \frac{V_t - V_{t-n}}{V_{t-n}} 100$$

Používá se opět obdobně jako předchozí indikátory.

Volatilita

Volatilita vyjadřuje míru proměnnosti ceny akcie v čase.

Směrodatná odchylka

$$Std_t(n) = \sqrt{\frac{1}{n} \sum_{i=0}^{n-1} (c_{t-i} - \frac{1}{n} \sum_{i=0}^{n-1} c_{t-i})^2}$$

Hlavní cenové vrcholy bývají doprovázeny vysokou volatilitou, hlavní cenová dna nízkou volatilitou. Proto lze při nízkých hodnotách $Std_t(n)$ očekávat změnu cenového trendu na rostoucí, doporučuje se tedy nákup, naopak při nízkých hodnotách $Std_t(n)$ se doporučuje prodej.

Chaikinova volatilita

$$ChV_{t}(n, m, k) = \frac{E_{t}(Max_{i} - Min_{i}, n) - E_{t-m}(Max_{i} - Min_{i}, n)}{E_{t-m}(Max_{i} - Min_{i}, n)} 100\%$$

kde $Max_i = max_{i=0,...,k-1}c_{t-i}$, $Min_i = min_{i=0,...,k-1}c_{t-i}$, a $E_t(Max_i - Min_i, n)$ je exponenciální klouzavý průměr v čase t délky n počítaný z cenového rozpětí za období délky k, m udává vzdálenost mezi dnešním a srovnávaným klouzavým průměrem. Díky definici nepracující s vlastní velikostí ceny, ale jen s jejím průběhem, je možné porovnávat Chaikinovu volatilitu i u dvou akcií podobného typu. Jinak se s ní pracuje podobně jako se směrodatnou odchylkou.

Indikátory celkového trhu

Ceny jednotlivých akcií se většinou pohybují v souladu s celkovým trendem trhu, proto se celkový pohyb cen na trhu zkoumá pomocí indikátorů celkového trhu.

Označíme M zvolenou množinu akcií, |M|=p její velikost, $c_t^{(j)}$ cena j-té akcie, $TI_t \leq p$ počet akcií obchodovaných v den t, $AI_t = \sum_{j;c_t^{(j)} > c_{t-1}^{(j)}} 1$ = počet akcií, jejichž cena minulý den vzrostla, $DI_t = \sum_{j;c_t^{(j)} < c_{t-1}^{(j)}} 1$ = počet akcií, jejichž cena předchozí den klesla, $FI_t = \sum_{j;c_t^{(j)} = c_{t-1}^{(j)}} 1$ = počet akcií, jejichž cena se minulý den neměnila. $AI_t + DI_t + FI_t = TI_t$.

Advance-decline-ratio

$$ADR_t = \frac{AI_t}{DI_t}$$
 pro $DI_t \neq 0$, $ADR_t = AI_t$ jinak

Použití: $ADR_{t-1} \leq h$ a $ADR_t > h \Rightarrow$ nákup

 $ADR_{t-1} \ge d$ a $ADR_t < d \Rightarrow$ prodej

h > d > 0 jsou zvolené konstanty.

Advance-all-ratio

$$AAR_t = \frac{AI_t}{p}$$

Používá se jako ADR_t , ale $h, d \in (0, 1)$

McCleellanův součtový index

$$MSI_{t}(m, n_{1}, n_{2}) = \sum_{i=0}^{m-1} (MA_{t-i}(n_{1}, AI_{t-i} - DI_{t-i}) - MA_{t-i}(n_{2}, AI_{t-i} - DI_{t-i}))$$

 $MA_t(n,AI_t-DI_t)$ je klouzavý průměr délky n počítaný z rozdílu AI_t-DI_t , m je parametr udávající délku sledovaného období, $n_1 < n_2 < m$. MSI_t zkoumá rozdíly mezi krátkodobým a dlouhodobým klouzavým průměrem v časech $t-m+1,\ldots t$.

 $MSI_{t-1} \leq 0$ a $MSI_{t} > 0 \Rightarrow$ nákup

 $MSI_{t-1} \geq 0$ a $MSI_t < 0 \Rightarrow$ prodej.