Machine Learning: Advanced

Introduction to Time-series modeling, forecasting

SUVRIT SRA

Massachusetts Institute of Technology

ml.mit.edu

What is a time series?

• Collection of observations x_1, \ldots, x_n indexed by time

What is a time series?

- Collection of observations x_1, \ldots, x_n indexed by time
- Come up in
 - economics, finance
 - social sciences
 - epidemiology
 - fMRI/neuroscience
 - environmental measurements
 - speech analysis ...

What is a time series?

- Collection of observations x_1, \ldots, x_n indexed by time
- Come up in
 - economics, finance
 - social sciences
 - epidemiology
 - fMRI/neuroscience
 - environmental measurements
 - speech analysis ...
- What do time series look like?

Johnson & Johnson quarterly earnings per share

Global Airline Passengers

source: S. M. Iacus, F. Natale, C. Santamaria, S. Spyratos, M. Vespe. Estimating and projecting air passenger traffic during the COVID-19 coronavirus outbreak and its socio-economic impact. *Safety Science* vol 129, 2020.

Exchange Rate GBP to \$NZ

Air Pressure & Fish Population

Southern Oscillation Index

Recruitment

Price-index USA

source: Roberto Rigobon

Objective of TS analysis

Time series: collection of random variables X_0, \ldots, X_n indexed by time

- Descriptive analysis (visualization, components, dependencies)
- Modeling
- Forecasting
- Time Series Regression
- Control
- ...

usually: local models, e.g. Autoregressive of order p, AR(p)

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$

"linear regression in time"

usually: local models, e.g. Autoregressive of order p, AR(p)

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$
 noise

"linear regression in time"

usually: local models, e.g. Autoregressive of order p, AR(p)

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$
 noise

"linear regression in time"

AR(1) examples

$$X_t = 0.9X_{t-1} + W_t$$

usually: local models, e.g. Autoregressive of order p, AR(p)

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$
 noise

"linear regression in time"

AR(1) examples

$$X_t = 0.9X_{t-1} + W_t$$

$$X_t = -0.9X_{t-1} + W_t$$

• usually: local models, e.g. Autoregressive of order p

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$
 noise

"linear regression in time"

assume the same model applies everywhere in time

usually: local models, e.g. Autoregressive of order p

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$
 noise

"linear regression in time"

assume the same model applies everywhere in time

usually: local models, e.g. Autoregressive of order p:

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$

assume the same model applies everywhere

→ need series to be "locally invariant": same average value & local relationships, independent of time

(weak stationarity: same mean and covariances)

first transform to be weakly stationary

More uniform variation: nonlinear transformation, e.g. log

Decompose time series:

Decompose time series:

$$X_t = T_t + S_t + Z_t$$

 Linear trend: linear regression with time as the feature, subtract linear trend

Decompose time series:

$$X_t = T_t + S_t + Z_t$$

Linear trend: linear regression with time as the feature,

subtract linear trend

detrended

Stationarity remarks

- remove trends and seasonal components: $X_t = T_t + S_t + Z_t$
 - \blacksquare deterministic trend T_t : linear regression
 - \blacksquare deterministic seasonal component S_t
 - remainder: stationary, mean zero
- differentiation

$$Y_t = \nabla X_t = X_t - X_{t-1}$$
 removes linear trend
$$\nabla^2 X_t = \nabla X_t - \nabla X_{t-1}$$

$$= X_t - 2X_{t-1} + X_{t-2}$$
 removes quadratic trend

Autoregressive of order p

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$

Autoregressive of order p

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$

Moving average of order q

$$X_t = W_t + \theta_1 W_{t-1} + \theta_2 W_{t-2} + \ldots + \theta_q W_{t-q}$$

Autoregressive of order p

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$

Moving average of order q

$$X_t = W_t + \theta_1 W_{t-1} + \theta_2 W_{t-2} + \ldots + \theta_q W_{t-q}$$

ARMA(p,q): autoregressive plus moving average

Autoregressive of order p

$$X_t = \theta_1 X_{t-1} + \theta_2 X_{t-2} + \ldots + \theta_p X_{t-p} + W_t$$

Moving average of order q

$$X_t = W_t + \theta_1 W_{t-1} + \theta_2 W_{t-2} + \ldots + \theta_q W_{t-q}$$

- ARMA(p,q): autoregressive plus moving average
- good for predicting short horizons, not long ones

Time Series Models

- Decompose & transform for local invariance (weak stationarity)
- Linear Models: AR, MA, ARMA: short horizons
- More advanced models: "State space models", neural network models (next)
- Caution about cross-validation in time series: data points are not independent!
 Need to separate train and test/validation

A few remarks about direct supervised learning approach....

Temporal/sequence problems

How to cast as a supervised learning problem?

Output y

Likelihood of mortality?

Temporal/sequence problems

How to cast as a supervised learning problem?

Output y

Likelihood of mortality?

 Historical data can be broken down into feature vectors and target values (sliding window)

$$\langle 155, 160, 165, 167 \rangle \qquad 0.35 \\ x^{(t)} \qquad y^{(t)}$$

Temporal/sequence problems

- How to cast as a supervised learning problem?

Output y

Likelihood of mortality?

 Historical data can be broken down into feature vectors and target values (sliding window)

$$\langle 170, 160, 155, 160 \rangle \qquad 0.24 \\ x^{(t)} \qquad y^{(t)}$$