

Wyższa Szkoła Oficerska Sił Powietrznych

Katedra Nauk Ogólnokształcących

Laboratoriu	m elektroniki
Grupa nr C9D	Data wykonania ćwiczenia
Zespół w składzie	07.06.2010
1. Jakub Kurpas	Ćwiczenie prowadził
2. Łukasz Kusek	ppłk rez. Bogdan Makarewicz
3. Karol Mazur	Ocena
	Podpis
Sprawozdanie ćwiczenia nr 4	
Temat ćwiczenia: Badanie wzmacniaczy elek	tronicznych

Spis treści

1	Opis ćwiczenia	2
2	Parametry badanych wzmacniaczy	2
3	Badanie wpływu rezystancji obciążenia na kształt charakterystyki amplitudowej wzmacniacza W2 3.1 Tabele pomiarowe	3
4	Badanie wpływu pojemności sprzęgającej i emiterowej na kształt charakterystyki amplitudwoej wzmacniacza W2 4.1 Tabele pomiarowe	5
5	Badanie wpływu sprzężenia zwrotnego na kształt charakterystyki amplitudowej wzmacniacza jednostopniowego W1 5.1 Tabele pomiarowe	6

5.2	Charakterystyka		 			 								 							7
5.3	Wnioski		 			 								 							7

1 Opis ćwiczenia

Celem ćwiczenia jest pomiar charakterystyk amplitudowych oraz podstawowych parametrów wzmacniacza tranzystorowego dla różnych wartości elementów układu i różnych typów ujemnego sprzężenia zwrotnego.

Wzmacniacz jest to urządzenie służące do zwiększenia mocy sygnału elektrycznego wejściowego kosztem energii źródła zasilania.

Do zasadniczych parametrów badanego wzmacniacza należą

- wielkości wejściowe i wyjściowe,
- wzmocnienie,
- pasmo przenoszenia,
- poziom szumów,
- współczynnik zniekształceń.

Podstawowe charakterystyki to

- amplitudowo-częstotliwościowa,
- fazowo-częstotliwościowa
- i przejściowa.

2 Parametry badanych wzmacniaczy

Napięcie sygnału wejściowego dla wzmacniacza

- W1 $E_g = 10mV$
- W2 $E_g = 5mV$

3 Badanie wpływu rezystancji obciążenia na kształt charakterystyki amplitudowej wzmacniacza W2

3.1 Tabele pomiarowe

Dla
$$R_{ob}=1k\Omega$$

,	f_g	Hz	40	50	60	80	100	200	500	5k	50k	80k	100k	200k	300k	400k	500k
	U_{wy}	mV	20	24	30	35	39	45	47	48	47	45	44	37	30	25	22
-	K_U	V/V	4	4,8	6	7	7,8	9	9, 4	9,6	9,4	9	8,8	7, 4	6	5	4,4

Dla
$$R_{ob} = 10k\Omega$$

f_g	Hz	30	50	70	100	150	300	500	5k	10k	20k	40k	50k	70k	100k	200k
U_{wy}	mV	90	132	151	171	180	189	192	192	192	186	174	165	147	126	78
K_U	V/V	18	26, 4	30,6	34, 2	36	37,8	38, 4	38, 4	38, 4	37, 2	34,8	33	29,4	25, 2	15, 6

3.2 Charakterystyka

3.3 Wnioski

Badanie wypływu rezystancji obciążenia na kształt charakterystyki amplitudowej wzmacniacza W2 wykazało, że wzmocnienie napięciowe jest tym większe, im większa jest rezystancja.

Zwiększenie rezystancji obciążenia powoduje również zmniejszenie górnej częstotliwości granicznej.

4 Badanie wpływu pojemności sprzęgającej i emiterowej na kształt charakterystyki amplitudwoej wzmacniacza W2

4.1 Tabele pomiarowe

Tabela 2.2.

f_g	Hz	200	250	300	400	500	1k	2k	5k	10k	20k	40k	50k	70k	100k	200k
U_{wy}	mV	87	105	120	138	153	177	186	189	189	186	174	168	147	126	78
K_U	V/V	17, 4	21	24	27,6	30,6	35, 4	37, 2	37,8	37,8	37, 2	34,8	33,6	29, 4	25, 2	15,6

Tabela 2.3.

f_g	Hz	70	100	200	300	400	600	1k	2k	5k	20k	40k	60k	80k	120k	180k
U_{wy}	mV	90	114	153	168	174	180	183	186	186	180	168	153	138	111	84
K_U	V/V	18	22,8	30,6	33, 6	34,8	36	36,6	37, 2	37, 2	36	33,6	30,6	27,6	22, 2	16,8

Tabela 2.4.

f_g	Hz	250	300	400	600	800	1k	2k	5k	20k	30k	40k	60k	80k	120k	180k
U_{wy}	mV	93	126	144	150	162	168	180	183	180	174	168	150	135	114	84
K_U	V/V	18,6	25, 2	28,8	30	32, 4	33,6	36	36, 6	36	34,8	33,6	30	27	22,8	16,8

4.2 Charakterystyka

4.3 Wnioski

Badanie wartości pojemności sprzęgającej wzmacniacza W2 wykazało, że w zakresie małych częstotliwości pojemność ta ma wpływ na kształt charakterystyki amplitudowej, ponieważ przy zmianie przełącznika P7, odpowiadającego za zmianę wartości tej pojemności, przy stałych pozostałych elementach (Tabela 2.3. i Tabela 2.4.) charakterystyka ta uległa zmianie w zakresie małych częstotliwości.

Wnioskujemy, że pojemność sprzęgająca nie ma znaczenia w zakresie dużych częstotliwości, ponieważ badania nie wykazały znacznych rozbieżności w pomiarach tego zakresu (a przynajmniej dokładność naszych pomiarów nie pozwala nam tego stwierdzić).

Nasze badania nie wykazały wpływu pojemności emiterowej na kształt charakterystyki amplitudowej, ponieważ przy zmianie przełącznika P8, odpowiadającego za zmianę wartości tej pojemności, przy stałych pozostałych elementach (Tabela 2.2. i Tabela 2.4.) pomiary nie różniły się znacząco od siebie. Różnicą była niewielka zmiana wzmocnienia maksymalnego.

5 Badanie wpływu sprzężenia zwrotnego na kształt charakterystyki amplitudowej wzmacniacza jednostopniowego W1

5.1 Tabele pomiarowe

Tabele zawierają pomiary dla wzmacniacza z różną konfiguracją sprzężenia zwrotnego

- $\bullet\,$ Tabela 3.2. wzmacniacz bez sprzężenia zwrotnego
- $\bullet\,$ Tabela 3.3. wzmacniacz z ujemnym sprzężeniem zwrotnym prądowym szeregowym
- Tabela 3.4. wzmacniacz z ujemnym sprzężeniem zwrotnym napięciowym równoległym

Tabela 3.2.

f_g	Hz	40	60	80	120	200	400	1k	5k	50k	100k	150k	200k	300k	400k	600k
U_{wy}	mV	57	78	90	100	110	115	118	119	118	110	106	91	86	75	60
K_U	V/V	5,7	7,8	9	10	11	11,5	11,8	11,8	11,8	11	10,6	9, 1	8,6	7, 5	6

Tabela 3.3.

f_g	Hz	30	40	60	80	100	200	1k	5k	50k	150k	200k	400k	600k	800k	1M
U_{wy}	mV	15	16	20	22	23	24	24	24	22	21	21	17	14	12	10
K_U	V/V	1,5	1,6	2	2,2	2,3	2, 4	2, 4	2, 4	2, 2	2, 1	2, 1	1,7	1,4	1, 2	1

Tabela 3.4.

f_g	Hz	150	200	300	400	600	1k	2k	5k	100k	200k	300k	400k	600k	800k	1M
U_{wy}	mV	37	46	56	64	70	74	76	76	76	71	66	61	52	45	38
K_U	V/V	3, 7	4,6	5,6	6,4	7	7, 4	7,6	7,6	7,6	7, 1	6,6	6, 1	5, 2	4, 5	3,8

5.2 Charakterystyka

5.3 Wnioski

Badanie sprzężenia zwrotnego wykazało, że włączenie sprzężenia zwrotnego w układ wzmacniacza powoduje zmniejszenie jego wzmocnienia. Powoduje też zwiększenie górnej częstotliwości granicznej.

Badanie wykazało, że ujemne sprzężenie zwrotne prądowe szeregowe powoduje poszerzenie pasma przenoszenia zarówno w kierunku małych częstotliwości jak i w kierunku dużych częstotliwości w stosunku do wzmacniacza bez sprzężenia zwrotnego.

Natomiast ujemne sprzężenie zwrotne napięciowe szeregowe ma większe wzmocnienie od sprzężenia zwrotnego prądowego szeregowego, ale jego dolna częstotliwość graniczna jest przesunięta w kierunku większych częstotliwości w stosunku do wzmacniacza bez sprzężenia zwrotnego.