Gli algoritmi di visita dei grafi

Gianpiero Cabodi e Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Algoritmi di visita

Visita di un grafo G=(V, E):

 a partire da un vertice dato, seguendo gli archi con una certa strategia, elencare i vertici incontrati, eventualmente aggiungendo altre informazioni.

Algoritmi:

- in profondità (depth-first search, DFS)
- in ampiezza (breadth-first search, BFS).

Visita in profondità

Dato un grafo (connesso o non connesso), a partire da un vertice s:

- visita **tutti** i vertici del grafo (raggiungibili da s e non)
- etichetta ogni vertice v con tempo di scoperta/ tempo di fine elaborazione pre[v]/post[v]
- etichetta ogni arco:
 - grafi orientati: T(tree), B(backward), F(forward), C(cross)
 - grafi non orientati: T(tree), B(backward)
- genera una foresta di alberi della visita in profondità, memorizzata in un vettore st.

Principi base

Profondità: espande l'ultimo vertice scoperto che ha ancora vertici non ancora scoperti adiacenti.

Scoperta di un vertice: prima volta che si incontra nella visita (discesa ricorsiva, visita in pre-order).

Completamento: fine dell'elaborazione del vertice (uscita dalla ricorsione, visita in post-order).

Scoperta/Completamento: tempo discreto che avanza mediante contatore time.

I vertici si distinguono (concettualmente) in:

- bianchi: non ancora scoperti
- grigi: scoperti, ma non completati
- neri: scoperti e completati.

Per ogni vertice si memorizza:

- il tempo di scoperta pre[i] e il tempo di fine elaborazione post[i]
- il padre nella visita in profondità st[i].

$$time = -1$$
 st

$$time = 0$$

st

0

pre[i]/post[i]

Classificazione degli archi

Grafo orientato:

- T: archi dell'albero della visita in profondità
- B: connettono un vertice j ad un suo antenato i nell'albero:

tempo di fine elaborazione di i sarà > tempo di fine elaborazione di j.

Equivale a testare se, pre[i]/post[i] =1/-1 quando scopro l'arco (j, i),

post[i] == -1

$$pre[j]/post[j] = 3/4$$

F: connettono un vertice i ad un suo discendente j nell'albero:

tempo di scoperta di i è < tempo di scoperta di j quando scopro l'arco (i, j)

 archi rimanenti, per cui tempo di scoperta di i è > tempo di scoperta di j quando scopro l'arco (i, j)

Grafo non orientato: solo archi T e B.

time = -1 st

$$time = 0$$

st

0

0 -1 -1 -1 -1 -1 0 1 2 3 4 5

14 Gli algoritmi di visita dei grafi

A.A. 2016/17

14 Gli algoritmi di visita dei grafi

14 Gli algoritmi di visita dei grafi

14 Gli algoritmi di visita dei grafi

14 Gli algoritmi di visita dei grafi

Algoritmo

wrapper

- GRAPHdfs: funzione che visita tutti i vertici di un grafo, richiamando la procedura ricorsiva dfsR. Termina quando tutti i vertici sono neri.
- dfsR: funzione che visita in profondità a partire da un vertice v identificato fittiziamente come EDGEcreate(v,v).

Termina quando ha visitato in profondità tutti i nodi raggiungibili da v.

NB: alcuni autori chiamano visita in profondità la sola dfsR.

Strutture dati

- grafo non pesato come lista delle adiacenze
- vettori dove per ciascun vertice:
 - si registra il tempo di scoperta (numerazione in preordine dei vertici) pre [i]
 - si registra il tempo di completamento (numerazione in postordine dei vertici) post [i]
 - si registra il padre per la costruzione della foresta degli alberi della visita in profondità: st[i]
- contatore time per tempi di scoperta/completamento
- time, *pre, *post e *st sono locali alla funzione GRAPHdfs e passati by reference alla funzione ricorsiva dfsR.

```
void GRAPHdfs(Graph G) {
  int v. time=0, *pre, *post, *st;
  pre = malloc(G->V * sizeof(int));
  post = malloc(G->V * sizeof(int));
  st = malloc(G->V * sizeof(int));
  for (v=0; v<G->v; v++) {pre[v]=-1; post[v]=-1; st[v]=-1; }
  for (v=0; v < G->V; v++)
    if (pre[v]==-1)
      dfsR(G,EDGEcreate(v,v),&time,pre,post,st);
  printf("discovery/endprocessing time labels \n");
  for (v=0; v < G->V; v++)
    printf("%s:%d/%d\n",STretrieve(G->tab,v),pre[v],post[v]);
  printf("resulting DFS tree \n");
  for (v=0: v < G->V: v++)
     printf("%s's parent: %s \n", STretrieve(G->tab, v),
             STretrieve(G->tab, st[v]));
```

```
void dfsR(Graph G, Edge e, int *time,
          int *pre, int *post, int *st){
 link t;
                                                    condizione di
  int \vee, w = e.w;
                                                    terminazione
  Edge x;
                                                    implicita della
  if (e.v != e.w)
                                                    ricorsione
    printf("(%s, %s): T\n",STretrieve(G->*
            STretrieve(G->tab, e.w)) ;
  st[e.w] = e.v;
  pre[w] = (*time)++:
  for (t = G->adj[w]; t != G->z; t = t->next)
    if (pre[t->v] == -1)
      dfsR(G, EDGEcreate(w, t->v), time, pre, post, st);
    else {
      V = t \rightarrow V;
      x = EDGEcreate(w, v);
```

grafi non orientati

```
if (pre[w] < pre[v])</pre>
      printf("(%s, %s): B \setminus n", STretrieve(G->tab, x.v),
                STretrieve(G->tab,x.w)) ;
    if (post[v] == -1)
      printf("(%s, %s): B\n", STretrieve(G->tab, x.v),
              STretrieve(G->tab, x.w));
    else
      if (pre[v] > pre[w])
        printf("(%s, %s): F\n", STretrieve(G->tab, x.v),
                 STretrieve(G->tab, x.w));
      else
        printf("(%s, %s): C\n", STretrieve(G->tab, x.v),
                 STretrieve(G->tab, x.w));
post[w] = (*time)++;
                                        grafi orientati
```


Complessità (lista adiacenze)

Θ(|V|)

- Inizializzazione
- visita ricorsiva da u
- $\blacksquare T(n) = \Theta(|V| + |E|).$
- Con la matrice delle adiacenze: $T(n) = \Theta(|V|^2)$.

Esempio

in.txt

Applicazione: flood fill

- Scopo: colorare un'intera area di pixel connessi con lo stesso colore (Bucket Tool)
- DFS a partire dal pixel sorgente (seed), terminazione quando si incontra una frontiera (boundary):

http://en.wikipedia.org

Sedgewick, Wayne, Algorithms Part I & II, www.coursera.org

Visita in ampiezza

A partire da un vertice s:

- determina tutti i vertici raggiungibili da s, quindi non visita necessariamente tutti i vertici a differenza della DFS
- calcola la distanza minima da s di tutti i vertici da esso raggiungibili.
- genera un albero della visita in ampiezza.

Ampiezza: espande tutta la frontiera tra vertici già scoperti/non ancora scoperti.

Principi base

Scoperta di un vertice: prima volta che si incontra nella visita.

Vertici:

- bianchi: non ancora scoperti
- grigi: scoperti, ma non completati
- neri: scoperti e completati.

Dato un vertice u, il vettore st[u] registra il padre di u nell'albero della visita.

- grafo non pesato come matrice delle adiacenze
- coda Q dei vertici grigi (esterna al grafo)
- vettore st dei padri nell'albero di visita in ampiezza
- vettore pre dei tempi di scoperta dei vertici
- contatore time del tempo
- time, *pre e *st sono locali alla funzione GRAPHbfs e passati by reference alla funzione bfs.

Algoritmo:

- estrai un vertice dalla coda
- metti in coda tutti i vertici bianchi ad esso adiacenti (metti in coda tutti gli archi che puntano ai vertici ancora bianchi ad esso adiacenti)
- ripeti finché la coda si svuota

bfs: funzione che visita in ampiezza a partire da un vertice di partenza.

14 Gli algoritmi di visita dei grafi

Nella coda Q sono riportati i vertici bianchi, non gli archi

Q 0

A.A. 2016/17

A.A. 2016/17 14 Gli algoritmi di visita dei grafi

A.A. 2016/17 14 Gli algoritmi di visita dei grafi

A.A. 2016/17 14 Gli algoritmi di visita dei grafi

A.A. 2016/17 14 Gli algoritmi di visita dei grafi

56

14 Gli algoritmi di visita dei grafi

```
void GRAPHbfs(Graph G) {
 int v, time=0, *pre, *st;
 pre = malloc(G->V*sizeof(int));
 st = malloc(G->V*sizeof(int));
  for (v=0; v < G->V; v++) {
   pre[v] = -1:
   st[v] = -1:
 bfs(G, EDGEcreate(0,0), &time, pre, st);
  printf("\n Resulting BFS tree \n");
 for (v=0; v < G->V; v++)
   if (st[v] != -1)
      printf("%s's parent is: %s\n", STretrieve(G->tab, v),
              STretrieve(G->tab, st[v]));
```



```
void bfs(Graph G, Edge e, int *time, int *pre, int *st) {
 int ∨;
 Q q = Qinit();
 Qput(q, e);
 while (!Qempty(q))
    if (pre[(e = Qget(q)).w] == -1) {
                                         Matrice delle
      pre[e.w] = (*time)++;
                                         adiacenze
      st[e.w] = e.v:
      for (V = 0; V < G->V; V++)
        if (G->adi[e.w][v] == 1)
          if (pre[v] == -1)
            Qput(q, EDGEcreate(e.w, v));
```

Complessità

- Operazioni sulla coda
- Scansione della matrice delle adiacenze $T(n) = \Theta(|V|^2)$.
- Con la lista delle adiacenze: T(n) = O(|V|+|E|).

Cammini minimi: la visita in ampiezza determina la minima distanza tra s e ogni vertice raggiungibile da esso.

Cammino minimo da 0 a 3: 0, 5, 2, 3 lunghezza = 3

Applicazione: i numeri di Erdős

- Paul Erdős (1913-1996): matematico ungherese «itinerante»: pubblicazioni con moltissimi coautori
- Grafo non orientato:
 - vertici: matematici
 - arco: unisce 2 matematici che hanno una pubblicazione in comune
- numero di Erdős: distanza minima di ogni matematico da Erdős
- BFS

http://www.oakland.edu/upload/images/Erdos%20Number%20Project/cgraph.jpg

Sedgewick, Wayne, Algorithms Part I & II, www.coursera.org
A.A. 2016/17

14 Gli algoritmi di visita dei grafi

Riferimenti

- Visita in profondità:
 - Sedgewick Part 5 18.2, 18.3, 18.4
 - Cormen 23.3
- Visita in ampiezza:
 - Sedgewick Part 5 18.7
 - Cormen 23.2
- Numero di Erdős:
 - Bertossi 9.5.2