

Design Space Exploration/Identification In Elegant System Design and Operation

Michael D. Watson

NASA Marshall Space Flight Center

Michael D. Griffin

Chief Executive Officer, Schafer Corporation

Principles of Elegance

- Elegant Systems are
 - Effective
 - Efficient
 - Robust
- Elegant Systems Manage and Minimize
 - Unintended Consequences

System Engineering Framework

- Elegant Systems are achieved through
 - Understanding the Mission Context
 - Managing the Physical and Logical System Interactions among the system components and with the system environment
 - Physics (Structural, Thermal, Fluid, Electrical)
 - Logical (Data and Information)
 - Managing the Organizational Structure and Information Flow
 - Understanding the Policy and Law Constraints
 - Federal Aviation Administration (FAA) Regulations

Properties of Elegance

- Simplicity in Function and Operations
- Espalier: Seamless integration of secondary functions
- Efficient Configuration within the Mission Context
- Robust in Operation and Application
 - Evolve in a graceful manner
- Minimize Unintended Consequences

Design Space Exploration/Identification

- Design Space Exploration/Identification is:
 - Defined by the Mission Context
 - Defined by the System Physics
 - Constrained by schedule, budget, policy, and law
 - Influenced by organizational dynamics
- Focus is on finding the most efficient system configuration

Design Space Exploration/Identification

- Mission Context
 - How is the system to be used?
 - Loiter time
 - What are the operational constraints?
 - Deployment location
 - What is the operational environment?
 - Dedicated operator or field soldier
 - Remote operations center or field operated
 - What is the maintenance philosophy?
 - Single flight
 - Field maintenance, depot maintenance
 - What is the post mission assessment approach?
 - Local field assessment, strategic assessment

Design Space Exploration/Identification

- System Physics
 - Aerodynamics
 - Propulsion System
 - Launch System
 - Recovery Systems

- System Efficiency defined by System Physics
 - System Exergy provides a complete thermodynamic efficiency of the integrated system to examine all possible system configuration options
 - Provides an integrated analysis of all system interactions within the system and with the environment
 - Has been shown to identify discontinuous design solution spaces with improved system characteristics

Design Space Exploration/Identification

- Design Space is constrained by Budget, Schedule, Policy, and Law
 - Budget limits configuration options
 - Development
 - Production and Operations (includes sustainment)
 - Schedule limits configuration options
 - Development
 - » How soon does the system need to be to market or fielded?
 - Production and Operations
 - » Production pipeline
 - » Operations support
 - Team size
 - » Maintenance Approach
 - Field maintenance or depot maintenance

Design Space Exploration/Identification

- Design Space is constrained by Budget, Schedule, Policy, and Law
 - Organizational Dynamics
 - Defines the efficiency with which a specific organizational structure can achieve a specific configuration
 - Policy and Law constrains configuration options
 - Federal Aviation Administration (FAA) Regulations

Design Space Exploration/Identification

- Be Aware of Unintended Consequences
 - Error (Mistakes)
 - Ignorance (Not Knowing or Not Understanding)
 - Bias
 - Cultural
 - Historical
 - Short Sightedness (Imperial Immediacy of Interest)
 - Self Defeating Prophecy
- Early design space exploration needs to have assumptions well grounded

Summary

- System Elegance starts in Design Space Exploration/Identification
 - Design Space Exploration/Identification is defined by Mission Context and System Physics
 - Identify the most efficient configuration for the system
 - System exergy analysis potentially allows broader design space exploration
 - Design Space is constrained by Budget, Schedule, Policy, and Law
 - Sets the local conditions within which to find the most efficient option
 - Design Space is influenced by the organizational dynamics
 - Sets the efficiency with which the organization may achieve the most efficient option

Acknowledgement

- Information on UAV/UAS provided by
 - U.S. Army Program Executive Office (PEO) Aviation
 - Lars Ericsson
 - James Springer

