Generalized Pareto distribution

Generalized Pareto distribution

Generalized Pareto

parameters:	$\mu \in (-\infty, \infty)$ location
	(real)
	$\sigma \in (0, \infty)$ scale (real)
	$\xi \in (-\infty, \infty)$ shape (real)
support:	$x \geqslant \mu \ (\xi \geqslant 0)$
	$\mu \leqslant x \leqslant \mu - \sigma/\xi \ (\xi < 0)$
pdf:	$\frac{1}{\sigma}(1+\xi z)^{-(1/\xi+1)}$
	where $z = \frac{x - \mu}{\sigma}$
cdf:	$1-(1+\xi z)^{-1/\xi}$
mean:	$\mu + \frac{\sigma}{1 - \xi} \ (\xi < 1)$
median:	$\mu + \frac{\sigma(2^\xi - 1)}{\xi}$
variance:	$\frac{\sigma^2}{(1-\xi)^2(1-2\xi)} \ (\xi < 1/2)$

The family of **generalized Pareto distributions** (**GPD**) has three parameters μ , σ and ξ .

The cumulative distribution function is

$$F_{(\xi,\mu,\sigma)}(x) = \begin{cases} 1 - \left(1 + \frac{\xi(x-\mu)}{\sigma}\right)^{-1/\xi} & \text{for } \xi \neq 0, \\ 1 - \exp\left(-\frac{x-\mu}{\sigma}\right) & \text{for } \xi = 0. \end{cases}$$

for $x\geqslant \mu$ when $\xi\geqslant 0$, and $\mu\leqslant x\leqslant \mu-\sigma/\xi$ when $\xi<0$, where $\mu\in\mathbb{R}$ is the location parameter, $\sigma>0$ the scale parameter and $\xi\in\mathbb{R}$ the shape parameter. Note that some references give the "shape parameter" as $\kappa=-\xi$.

The probability density function is:

$$f_{(\xi,\mu,\sigma)}(x) = rac{1}{\sigma} \left(1 + rac{\xi(x-\mu)}{\sigma}
ight)^{\left(-rac{1}{\xi}-1
ight)}.$$

or

$$f_{(\xi,\mu,\sigma)}(x)=rac{\sigma^{rac{1}{\xi}}}{(\sigma+\xi(x-\mu))^{rac{1}{\xi}+1}}.$$

again, for $x \geqslant \mu$, and $x \leqslant \mu - \sigma/\xi$ when $\xi < 0$.

Generalized Pareto distribution 2

Generating generalized Pareto random variables

If U is uniformly distributed on (0, 1], then

$$X = \mu + rac{\sigma(U^{-\xi}-1)}{\xi} \sim \mathrm{GPD}(\mu,\sigma,\xi).$$

In Matlab Statistics Toolbox, you can easily use "gprnd" command to generate generalized Pareto random numbers.

With GNU R you can use the packages POT or evd with the "rgpd" command (see for exact usage: http://rss.acs. unt.edu/Rdoc/library/POT/html/simGPD.html)

References

- Balkema, A., and Laurens de Haan (1974). "Residual life time at great age", Annals of Probability, 2, 792–804.
- Pickands, J. (1975). "Statistical inference using extreme order statistics", Annals of Statistics, 3, 119–131.

Article Sources and Contributors

 $\textbf{Generalized Pareto distribution} \ \ \textit{Source}: \ \text{http://en.wikipedia.org/w/index.php?oldid=441567816} \ \ \textit{Contributors}: \ \ \text{Melcombe}, \ \ \text{Michael Hardy}, \ 1 \ \ \text{anonymous edits} \ \ \text{Melcombe}, \ \ \text{Michael Hardy}, \ 1 \ \ \text{anonymous edits} \ \ \text{Melcombe}, \ \ \text{Michael Hardy}, \ 1 \ \ \text{Melcombe}, \ \ \text{Michael Hardy}, \ 1 \ \ \text{Melcombe}, \ \ \text{Melcombe}, \ \ \text{Michael Hardy}, \ 1 \ \ \text{Melcombe}, \ \ \text{$

License

Creative Commons Attribution-Share Alike 3.0 Unported //creativecommons.org/licenses/by-sa/3.0/