MATH 131 Homework 8 Jesse Cai 304634445

- 1. Let f and g be real-valued functions show $\min(f,g) = \frac{1}{2}(f+g) \frac{1}{2}(f+g)$. Show $\max(f,g) = -\min(-f,-g)$ Prove if f and g are continuous at $x_0 \in \mathbb{R}$ then $\min(f,g)$ is as well.
- 2. Let $S \subset \mathbb{R}$ and suppose there exists a sequence (x_n) in S converging to a number $x_0 \notin S$. Show there is an unbounded continuout function on S.
- 3. Let f and g be real-valued functions show $\min(f,g) = \frac{1}{2}(f+g) \frac{1}{2}(f+g)$.
- 4. **Prove** $x = \cos(x)$ **for** $x \in (0, \frac{\pi}{2})$.
- 5. Suppose f is continuous on $[0,2] \wedge f(0) = f(2)$. Prove $\exists x,y \in [0,2] \text{ s.t. } |y-x| = 1 \wedge f(x) = f(y)$.
- 6. Which of the following functions are uniformly continous?
 - (a) $\tan x \text{ on } (0, \frac{\pi}{4}].$
 - (b) $\tan x \text{ on } (0, \frac{\pi}{2}).$
 - (c) $\frac{1}{2}\sin^2 x$ on $(0, \pi]$.
 - (d) $\frac{1}{x-3}$ on (0,3).
 - (e) $\frac{1}{x-3}$ on $(3, \infty)$.
 - (f) $\frac{1}{x-3}$ on $(4, \infty)$.
- 7. Let f be continuous on [a,b]. Show that $f*=\sup\{f(y):a\leq y\leq x\}$ for $x\in[a,b]$ is an increasing continuous function.
- 8. Find the following limits
 - (a) $\frac{1}{x-3}$ on (0,3).
 - (b) $\frac{1}{x-3}$ on $(3, \infty)$.
 - (c) $\frac{1}{x-3}$ on $(4, \infty)$.
- 9. Let $f(x) = \frac{\sqrt{1+3x^2}-1}{x^2}$. Find $\lim_{x\to 0} f(x)$.