Grade 11 Chemistry

Chemical Reactions
Class 4

Chemical Reactions

Big Ideas

- Analyze chemical reactions used in a variety of applications, and assess their impact on society and the environment
- Investigate different types of chemical reactions
- Demonstrate an understanding of the different types of chemical reactions

Nomenclature

- Chemical Formula tells you:
 - The elements that make up the compound
 - The number of atoms of each element
 - The order tells you which element is more electronegative
 - The first element is less electronegative
 - The second element is more electronegative
- Ex: CaBr₂

Summary

Checkpoint

- Write the chemical formula for each of the following:
 - a) Aluminum oxide
 - b) Silicon dioxide
 - c) Manganese (II) iodide
- Write the chemical name for each of the following:
 - a) Mg_3N_2
 - b) Cu₂S
 - c) N₂O

Polyatomic Ions

- Polyatomic "more than one atom"
 - Charged particles
 - Remains unchanged in simple chemical reactions
 - Treat as a single unit
- Ex: CaCO₃
 - CO₃²⁻ is carbonate
- NH₄Cl
 - $-NH_4^{1+}$ is ammonium, a polyatomic cation

Valence = −1					
lon	Name	lon	Name		
CN-	cyanide	H ₂ PO ₃ -	dihydrogen phosphite		
CH ₃ COO-	acetate	H ₂ PO ₄ -	dihydrogen phosphate		
ClO-	hypochlorite	MnO ₄ -	permanganate		
ClO ₂ -	chlorite	NO ₂ -	nitrite		
ClO ₃ -	chlorate	NO ₃ -	nitrate		
ClO ₄ -	perchlorate	OCN-	cyanate		
HCO ₃ -	hydrogen carbonate	HS-	hydrogen sulfide		
HSO ₃ -	hydrogen sulfite	OH-	hydroxide		
HSO ₄ -	hydrogen sulfate		thiocyanate		

Valence = -2					
lon	Name	lon	Name		
CO ₃ ²⁻	carbonate	O ₂ ²⁻	peroxide		
$C_2O_4^{2-}$	oxalate	SiO ₃ ²⁻	silicate		
CrO ₄ ²⁻	chromate	SO ₃ ²⁻	sulfite		
Cr ₂ O ₇ ²⁻	dichromate	SO ₄ ²⁻	sulfate		
HPO ₃ ²⁻	hydrogen phosphite	S ₂ O ₃ ²⁻	thiosulfate		
HPO ₄ ²⁻	hydrogen phosphate				

Valence = -3					
lon	Name	lon	Name		
AsO ₃ ³⁻	arsenite	PO ₃ ³⁻	phosphite		
AsO ₄ ³⁻	arsenate	PO ₄ 3-	phosphate		

Checkpoint

- Write the chemical formula for each of the following:
 - a) Sodium acetate
 - b) Potassium permanganate
 - c) Ammonium phosphate
- Write the chemical name for each of the following:
 - a) $AI(NO_2)_3$
 - b) Li₂CO₃
 - c) Cu(CH₃COO)₂

Additional Naming Systems

- Before the Stock system (Roman Numerals),
 -ic and -ous endings were used
 - ic = larger valence number
 - ous = smaller valence number
- Ex: Tin (Sn)
 - $-Sn^{2+}$ = stannous Sn^{4+} = stannic
 - $-Cu^+ = cuprous$ $Cu^{2+} = cupric$
 - $Pb^{2+} = plumbous$ $Pb^{4+} = plumbic$

Naming Compounds with Hydrogen

- Usually hydrogen is the less electronegative element
 - HCl = hydrogen chloride
 - $-H_2S$ = hydrogen sulfide
- If hydrogen is the more electronegative anion, its ending also changes to –ide
 - NaH = sodium hydride
 - LiH = lithium hydride

Naming for Oxoanions

- Base polyatomic ion ends with -ate
 ex: ClO₃- chlorate
- Remove an oxygen and ending changes to -ite
 ex: ClO₂- chlorite
- Remove two oxygens and add a prefix of -hypo ex: ClO- hypochlorite
- Add an oxygen (to base ion) and add a prefix of -per

ex: ClO₄ perchlorate

Checkpoint

• Write the chemical name for the following:

 SO_4^{2-} sulfate SO_3^{2-} ? SO_2^{2-} ?

SO₅²⁻

Naming Acids

Naming Binary and Oxoacids

- Binary acids change the ending to ic acid
 - Hydrochloric acid, hydrofluoric acid
- Oxoacids acid formed from a polyatomic ion
 - For anions that end in –ate, the suffix of the acid is –
 ic. Ex: chlorate ion ClO₃⁻ is chloric acid HClO₃
 - For anions that end in –ite, the suffix of the acid is ous. Ex: chlorite ion ClO₂⁻ is chlorous acid HClO₂
 - Prefixes –hypo and –per remain a part of the acid name

Checkpoint

Write the chemical formulas for the following acids:

- a) Nitric acid
- b) Periodic acid
- c) Phosphoric acid
- d) Phosphorous acid

Thio- Compounds

 When an oxygen atom in an ion is replaced by a sulfur atom, the prefix thio- is added to the name

• Ex: OCN⁻ cyanate SCN⁻ thiocyanate

• Ex: SO_4^{2-} sulfate $S_2O_3^{2-}$ thiosulfate

Hydrates

- Hydrates have water molecules chemically bound to another compound
- Ex: Calcium chloride dihydrate = CaCl₂•2H₂O

Hydrates and Binary Covalent Compounds		
Number	Prefix	
1	mono-	
2	di-	
3	tri-	
4	tetra-	
5	penta-	
6	hexa-	
7	hepta-	
8	octa-	
9	nona-	
10	deca-	

Table 2.6 Numerical Prefixes for

Chemical Equations

Reactant → Product

- Forms:
 - Word Equation
 Sodium + Chlorine → Sodium chloride
 - Skeleton Equation
 Na(s) + Cl₂(g) → NaCl(s)
 - Balanced Equation
 2Na(s) + Cl₂(g) → 2NaCl(s)

Symbol	Meaning	
+	reacts with	
	(reactant side)	
+	and (product side)	
\rightarrow	to form	
(s)	solid or precipitate	
(ℓ)	liquid	
(g)	gas	
(aq)	in aqueous (water) solution	

Law of Conservation of Mass

- In any given reaction, the total mass of the reactants equals the total mass of the products
- Atoms cannot be created or destroyed in ordinary chemical reactions

Balancing Equations

Skeleton Question: $H_2 + Cl_2 \rightarrow HCl$

Number of Atoms: 2H + 2CI + 1H + 1CI

Add Coefficients: $H_2 + Cl_2 \rightarrow 2HCl$

*Coefficients vs. Subscripts

- Coefficients give the ratio of reactants and products in a reaction
- Subscripts give the ratio of elements in a chemical formula and cannot change in a reaction

Checkpoint

- Balance the following reactions:
- a) $P_4(s) + O_2(g) \rightarrow P_4O_{10}(s)$
- b) $HCI(aq) + Na_2SO_3(aq) \rightarrow NaCI(aq) + H_2O(I) + SO_2(g)$
- c) Aqueous lead (II) nitrate and solid magnesium react to form aqueous magnesium nitrate and solid lead
- d) Solid barium reacts with solid sulfur to produce solid barium sulfide