## Homework update

## dynafit

前面的作业已用 mcr\_als matlab 工具包将动力学实验数据分解成了光谱矩阵和浓度矩阵。这里使用得到的各浓度矩阵进行动力学建模。各模型基于米氏方程,使用软件为 dynafit。

### 漆酶+底物体系(LAC SUB)

两组分体系, 酶和底物, 机理为:

```
E + S <===> E.S
E.S ----> E + P
```

运行 dynafit 脚本如下:

```
[task]
 task = fit
 data = progress discontinuous
[mechanism]
 E + S \le E.S : k1+.S k1-.S
 E.S ----> E + P : k2+.P
[constants]
 k1+.S = 1?
 k1-.S = 0.01?
 k2+.P = 1?
[concentrations]
 S = 47
 E = 0.5
[responses]
 P = 10?
[data]
 directory D:/Appsetup/DynaFit4/examples/HW1
 sheet LAC_SUB_1.csv
 column 2
 offset auto?
[output]
 XAxisLabel = time, sec
 YAxiaLabel = product, %
[end]
```

### 结果

三个平行实验组模型回归评估 summary 依次如下

### Regression Summary

0.662521

0.813954

5. 73591

0.960442

0.960175

598

5

46

0.224

## Regression Summary

Trust-Region Algorithm

## Regression Summary

### Trust-Region Algorithm

mean square

R<sup>2</sup> ... (a)

R<sup>2</sup>adj ... (a)

data points

iterations

r.m.s. deviation

log(determinant)

optimized parameters

elapsed time (sec)

relative r.m.s. (%)

| unweighted sum of squares | 396. 188 |
|---------------------------|----------|
| weighted sum of squares   | 396. 188 |

unweighted sum of squares 486.783

weighted sum of squares 486. 783 mean square 0.814018 r.m.s. deviation 0.902229 6. 95249

0.949609

0.949269

0

5

39

0.135

598

relative r.m.s. (%) R<sup>2</sup> ... (a)

R<sup>2</sup>adj ... (a) log(determinant) data points

optimized parameters iterations elapsed time (sec)

Trust-Region Algorithm unweighted sum of squares 439.018

weighted sum of squares 439.018 mean square 0.734144 r.m.s. deviation 0.856822

relative r.m.s. (%) 7. 24605 R<sup>2</sup> ... (a) 0.950657 R<sup>2</sup>adi ... (a) 0.950325 log(determinant) 0

598 data points 5 optimized parameters 281 iterations 0.842

组3

elapsed time (sec)

组1

组2

### 三个平行实验组数据和模型可视化依次如下



### 反应速率图



组1 组2 组3

### 初始反应速率:

组 1: 0.0497098 组 2: 0.048394 组 3: 0.0435876

### 模型各参数:

## Parameters

## Trust Region Algorithm

## Optimized Parameters

| No. | Par#Set  | Initial  | Final   | Std. Error | CV (%)    | Note |
|-----|----------|----------|---------|------------|-----------|------|
| #1  | k1+. S   | 1        | 240     | 670000     | 278877.6  |      |
| #2  | k1 S     | 0. 01    | 97      | 270000     | 282183. 8 |      |
| #3  | k2+. P   | 1        | 0. 372  | 0. 0071    | 1. 9      |      |
| #4  | r(P)     | 10       | 0. 2696 | 0. 0035    | 1. 3      |      |
| #5  | offset#1 | 2. 69613 | -0. 776 | 0. 086     | 11. 0     |      |

组1

## Parameters

## Trust Region Algorithm

Optimized Parameters

| No. | Par#Set  | Initial  | Final  | Std. Error | CV (%)   | Note |
|-----|----------|----------|--------|------------|----------|------|
| #1  | k1+. S   | 1        | 4. 7   | 6800       | 144209.6 |      |
| #2  | k1 S     | 0. 01    | 9. 5   | 14000      | 148840.6 |      |
| #3  | k2+. P   | 1        | 0. 336 | 0. 031     | 9. 3     |      |
| #4  | r (P)    | 10       | 0. 301 | 0. 054     | 18. 1    |      |
| #5  | offset#1 | 1. 72302 | -1. 13 | 0. 37      | 32. 5    |      |

组 2

## Parameters

## Trust Region Algorithm

Optimized Parameters

| No. | Par#Set  | Initial  | Final  | Std. Error | CV (%)     | Note |
|-----|----------|----------|--------|------------|------------|------|
| #1  | k1+. S   | 1        | 8      | 81000      | 1008811. 4 |      |
| #2  | k1 S     | 0. 01    | 7. 6   | 27000      | 355758.8   |      |
| #3  | k2+. P   | 1        | 0. 011 | 120        | 1109002. 4 |      |
| #4  | r(P)     | 10       | 8. 1   | 92000      | 1130001. 9 |      |
| #5  | offset#1 | 1. 39777 | -1.2   | 1. 1       | 91. 7      |      |

组3

### 残差分布图:



为了减小数据误差,使用 origin 将曲线进行光滑,使用光滑后的数据再次进行建模。 此处由于篇幅问题,只展示组 2 光滑后的数据





Data&Model Reaction Rate

## Parameters Trust Region Algorithm

Optimized Parameters

| No. | Par#Set  | Initial  | Final  | Std. Error | CV (%)   |
|-----|----------|----------|--------|------------|----------|
| #1  | k1+. S   | 1        | 4. 9   | 5000       | 102917.7 |
| #2  | k1 S     | 0. 01    | 8. 7   | 9300       | 106901.8 |
| #3  | k2+. P   | 1        | 0. 333 | 0. 034     | 10. 3    |
| #4  | r (P)    | 10       | 0. 299 | 0. 041     | 13.8     |
| #5  | offset#1 | 1. 02394 | -1. 08 | 0. 22      | 20. 2    |



Parameters Residual

可见光滑处理后误差有所减小,拟合更优。

● 漆酶+介体 TEMPO+底物体系(LAC\_TEMPO\_SUB)

### 鉴于篇幅,只选取第三组进行展示

1. 若为两组分体系,模型依然为:

E + S <===> E.S E.S ----> E + P 运行脚本与之前相同,只需更改输入文件。





浓度-时间模型图

反应速率图

# Parameters Trust Region Algorithm

Optimized Parameters

| No. | Par#Set  | Initial  | Final  | Std. Error | CV (%)   |
|-----|----------|----------|--------|------------|----------|
| #1  | k1+. S   | 1        | 0. 61  | 93         | 15268. 5 |
| #2  | k1 S     | 0. 01    | 11     | 1700       | 15076. 1 |
| #3  | k2+. P   | 1        | 0. 461 | 0.06       | 12. 9    |
| #4  | r (P)    | 10       | 0. 421 | 0. 095     | 22. 6    |
| #5  | offset#1 | 3. 30555 | 0.6    | 0. 3       | 49. 9    |



### Initial reaction rates

No. Dataset Time Rate
1 ./examples/HW1/LAC\_SUB\_TEMPO2\_1.csv:col(2) 1 0.0700487

初始反应速率

### 2. 若为三组分体系,模型1:

```
E + S <===> ES

ES ----> E + P

E + M <===> EM

EM ----> E + M*

M* + S ----> M + P
```

### Dynafit 运行脚本:

```
[task]
 task = fit
 data = progress discontinuous
[mechanism]
 E + S \le E.S : k1+.S k1-.S
 E.S ----> E + P : k2+.P
[constants]
 k1+.S = 1?
 k1-.S = 0.01?
 k2+.P = 1?
[concentrations]
 S = 47
 E = 0.5
[responses]
 P = 10?
[data]
 directory D:/Appsetup/DynaFit4/examples/HW1
 sheet LAC_SUB_1.csv
 column 2
 offset auto?
[output]
 XAxisLabel = time, sec
 YAxiaLabel = product, %
[end]
```

### 运行结果:





## Parameters Trust Region Algorithm

Optimized Parameters

| No. | Par#Set  | Initial   | Final   | Std. Error | CV (%)        | Note |
|-----|----------|-----------|---------|------------|---------------|------|
| #1  | k1+. S   | 1         | 0.00077 | 720        | 93477810. 7   |      |
| #2  | k1 S     | 0. 01     | 2. 1    | 11000      | 544959. 5     |      |
| #3  | k2+. P   | 1         | 0.05    | 46000      | 91042589. 9   |      |
| #4  | k3+. M   | 1         | 1e-006  | 0. 94      | 93632070. 7   | MIN  |
| #5  | k3 M     | 0. 01     | 2. 3    | 9e+007     | 3907456322. 1 |      |
| #6  | k4+. M*  | 1         | 0. 94   | 7. 4e+007  | 7837796796. 4 |      |
| #7  | k5+. P   | 1         | 1e-006  | 52         | 5241033491. 3 | MIN  |
| #8  | r (P)    | 15        | 6. 2    | 260000     | 4199516. 0    |      |
| #9  | offset#1 | 0. 245479 | 0. 188  | 0. 045     | 24. 1         |      |



### Initial reaction rates

No. Dataset Time Rate
1 ./examples/HW1/LAC\_SUB\_TEMPO\_3.csv:col(3) 1 0.00224822

## Regression Summary

## Trust-Region Algorithm

| unweighted sum of squares | 0.782961   |
|---------------------------|------------|
| weighted sum of squares   | 0. 782961  |
| mean square               | 0.0013093  |
| r.m.s. deviation          | 0. 0361842 |
| relative r.m.s. (%)       | 4. 00497   |
| $R^2 \dots$ (a)           | 0. 973415  |
| R <sup>2</sup> adj (a)    | 0. 973054  |
| log(determinant)          | 0          |
| data points               | 598        |
| optimized parameters      | 9          |
| iterations                | 947        |
| elapsed time (sec)        | 5. 149     |

### 3. 三组分模型 2:

```
E + M <===> EM
EM ----> E + M*
M* + S ----> M + P
```

### Dynafit 运行脚本:

```
[task]
 task = fit
 data = progress discontinuous
[mechanism]
 E + M < = => EM : k1+.M k1-.M
 EM ----> E + M^* : k2.M^*
 M^* + S ----> M + P : k3.P
[constants]
 k1+.M = 1?
 k1-M = 0.01?
 k2.M* = 1?
 k3.P = 1?
[concentrations]; nM
 S = 47
 E = 0.5
 M = 0.5
[responses]
 P = 15?
[data]
 directory ./examples/HW1
 sheet LAC_SUB_TEMPO_3.csv
 column 3
 offset auto?
[settings]
{Output}
 XAxisLabel = time, sec
 YAxisLabel = product, %
[end]
```

由建模结果比较可知,在漆酶+介体 TEMPO+底物体系中,应选二组份模型(只有酶和底物参与了反应过程)

### 建模结果:







### Initial reaction rates

No. Dataset Time Rate  $1 \quad ./examples/HW1/LAC\_SUB\_TEMPO\_3.csv:col(3) \ 1 \quad 0.000113121$ 

## Regression Summary

### Trust-Region Algorithm

unweighted sum of squares 0.778727 weighted sum of squares 0.778727 0.00130222 mean square r.m.s. deviation 0.0360863 relative r.m.s. (%) 3.99412 R<sup>2</sup> ... (a) 0.973559 R<sup>2</sup>adj ... (a) 0.973336log(determinant) data points 598 optimized parameters 117 iterations elapsed time (sec) 0.382

## Parameters Trust Region Algorithm

Optimized Parameters

| No. | Par#Set  | Initial   | Final     | Std. Error | CV (%)         | Note |
|-----|----------|-----------|-----------|------------|----------------|------|
| #1  | k1+. M   | 1         | 0. 75     | 260        | 34993. 0       |      |
| #2  | k1 M     | 0. 01     | 1e-008    | 2. 3       | 23076441404. 1 |      |
| #3  | k2. M*   | 1         | 0. 33     | 94         | 28523. 5       |      |
| #4  | k3. P    | 1         | 8. 6e-006 | 0. 00058   | 6726. 5        |      |
| #5  | r (P)    | 15        | 13        | 840        | 6438. 0        |      |
| #6  | offset#1 | 0. 245479 | 0. 203    | 0.012      | 6. 0           |      |