Colors vs Real-World Objects

Basic Setup ## -- Attaching packages ---------## v ggplot2 3.3.2 v purrr 0.3.4 ## v tibble 3.0.3 v dplyr 1.0.2 ## v tidyr 1.1.2 v stringr 1.4.0 ## v readr 1.3.1 v forcats 0.5.0 ## -- Conflicts ------## x dplyr::filter() masks stats::filter() ## x dplyr::lag() masks stats::lag() ## Loading required package: lattice ## Loading required package: ggformula ## Loading required package: ggstance ## Attaching package: 'ggstance' ## The following objects are masked from 'package:ggplot2': ## ## geom_errorbarh, GeomErrorbarh ## ## New to ggformula? Try the tutorials: ## learnr::run_tutorial("introduction", package = "ggformula") ## learnr::run_tutorial("refining", package = "ggformula") ## Loading required package: mosaicData ## Loading required package: Matrix ## ## Attaching package: 'Matrix' ## The following objects are masked from 'package:tidyr': expand, pack, unpack ## ## Registered S3 method overwritten by 'mosaic': fortify.SpatialPolygonsDataFrame ggplot2 ## ## The 'mosaic' package masks several functions from core packages in order to add ## additional features. The original behavior of these functions should not be affected by this. ## Note: If you use the Matrix package, be sure to load it BEFORE loading mosaic.

Have you tried the ggformula package for your plots?

```
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
##
       mean
## The following objects are masked from 'package:dplyr':
##
##
       count, do, tally
## The following object is masked from 'package:purrr':
##
##
       cross
## The following object is masked from 'package:ggplot2':
##
##
       stat
## The following objects are masked from 'package:stats':
##
       binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
##
       quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
##
       max, mean, min, prod, range, sample, sum
##
## Attaching package: 'scales'
## The following object is masked from 'package:mosaic':
##
##
       rescale
## The following object is masked from 'package:purrr':
##
##
       discard
## The following object is masked from 'package:readr':
##
       col_factor
## Loading required package: knitr
Import Colors
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
     block = col_double(),
##
##
     trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
##
     responses = col_double(),
##
     time = col_double(),
##
     prev_condition = col_double(),
    prev_change = col_double(),
##
##
     color = col double()
## )
```

```
## Parsed with column specification:
## cols(
##
     `#subject` = col double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col double(),
##
     change = col double(),
     responses = col_double(),
##
##
     time = col double(),
##
     prev_condition = col_double(),
    prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
     block = col_double(),
     trial = col double(),
##
##
     condition = col_double(),
     change = col_double(),
##
##
     responses = col_double(),
##
     time = col double(),
##
     prev_condition = col_double(),
##
    prev_change = col_double(),
##
     color = col double()
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
##
     change = col_double(),
##
     responses = col_double(),
     time = col double(),
##
##
    prev_condition = col_double(),
##
     prev change = col double(),
##
     color = col_double()
## )
## Parsed with column specification:
     `#subject` = col double(),
##
     block = col double(),
##
##
     trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
##
     responses = col_double(),
##
     time = col_double(),
     prev_condition = col_double(),
##
     prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
```

```
`#subject` = col_double(),
##
##
     block = col_double(),
##
     trial = col double(),
##
     condition = col_double(),
##
     change = col_double(),
##
     responses = col double(),
##
     time = col double(),
##
     prev condition = col double(),
##
     prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
     block = col_double(),
     trial = col_double(),
##
##
     condition = col_double(),
     change = col double(),
##
##
     responses = col_double(),
     time = col double(),
##
##
    prev_condition = col_double(),
##
     prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
     change = col_double(),
##
##
     responses = col_double(),
##
     time = col_double(),
##
     prev_condition = col_double(),
##
     prev change = col double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
     block = col double(),
     trial = col_double(),
##
##
     condition = col_double(),
##
     change = col_double(),
##
     responses = col_double(),
     time = col_double(),
##
##
     prev_condition = col_double(),
##
     prev_change = col_double(),
     color = col_double()
##
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
     block = col double(),
##
```

```
trial = col_double(),
##
##
     condition = col_double(),
##
     change = col_double(),
##
    responses = col_double(),
     time = col double(),
##
##
    prev condition = col double(),
##
    prev change = col double(),
     color = col_double()
##
## )
## Parsed with column specification:
##
     `#subject` = col_double(),
    block = col_double(),
##
##
    trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
##
    responses = col_double(),
##
    time = col double(),
##
    prev_condition = col_double(),
##
    prev change = col double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
    block = col double(),
##
    trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
##
    responses = col_double(),
     time = col_double(),
##
##
    prev_condition = col_double(),
##
    prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
    block = col_double(),
##
##
    trial = col_double(),
##
     condition = col double(),
##
     change = col_double(),
##
     responses = col double(),
##
    time = col_double(),
##
    prev_condition = col_double(),
##
    prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
## block = col_double(),
##
    trial = col_double(),
     condition = col_double(),
##
```

```
change = col_double(),
##
##
    responses = col_double(),
##
    time = col double(),
##
    prev_condition = col_double(),
##
    prev_change = col_double(),
##
     color = col double()
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
    block = col_double(),
##
    trial = col_double(),
     condition = col_double(),
##
##
     change = col_double(),
##
     responses = col_double(),
     time = col_double(),
##
##
    prev_condition = col_double(),
##
    prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
     `#subject` = col_double(),
##
##
    block = col double(),
##
    trial = col_double(),
     condition = col double(),
##
     change = col_double(),
##
     responses = col_double(),
##
     time = col_double(),
    prev_condition = col_double(),
##
    prev_change = col_double(),
     color = col_double()
##
## )
## Parsed with column specification:
     `#subject` = col_double(),
##
##
    block = col double(),
##
    trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
##
    responses = col double(),
    time = col_double(),
##
    prev condition = col double(),
##
    prev_change = col_double(),
     color = col_double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
    block = col_double(),
##
##
    trial = col_double(),
##
     condition = col double(),
##
     change = col_double(),
    responses = col_double(),
```

```
time = col double(),
##
##
    prev_condition = col_double(),
    prev change = col double(),
##
##
     color = col_double()
## )
## Parsed with column specification:
     `#subject` = col_double(),
##
##
     block = col double(),
##
    trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
    responses = col_double(),
##
##
    time = col_double(),
##
    prev_condition = col_double(),
##
    prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
    block = col double(),
    trial = col_double(),
##
##
     condition = col double(),
##
     change = col_double(),
    responses = col double(),
##
    time = col_double(),
    prev_condition = col_double(),
##
    prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
    block = col double(),
##
##
    trial = col_double(),
##
     condition = col double(),
##
     change = col_double(),
##
    responses = col_double(),
##
    time = col_double(),
##
    prev condition = col double(),
##
    prev_change = col_double(),
##
     color = col double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
    block = col_double(),
##
    trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
##
    responses = col_double(),
##
    time = col_double(),
    prev_condition = col_double(),
```

```
##
     prev_change = col_double(),
##
     color = col double()
## )
## Parsed with column specification:
##
     `#subject` = col double(),
    block = col double(),
##
     trial = col_double(),
##
     condition = col double(),
##
     change = col_double(),
     responses = col_double(),
##
     time = col_double(),
##
    prev_condition = col_double(),
##
     prev_change = col_double(),
     color = col_double()
##
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
    block = col_double(),
##
    trial = col_double(),
##
     condition = col double(),
     change = col_double(),
##
##
     responses = col double(),
##
     time = col_double(),
     prev_condition = col_double(),
##
     prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
##
     responses = col double(),
##
     time = col_double(),
##
     prev_condition = col_double(),
##
     prev_change = col_double(),
     color = col double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
##
     responses = col_double(),
##
    time = col_double(),
##
    prev condition = col double(),
##
    prev_change = col_double(),
##
     color = col_double()
```

```
## )
## Parsed with column specification:
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col double(),
     change = col_double(),
##
##
     responses = col_double(),
##
     time = col_double(),
##
     prev_condition = col_double(),
##
     prev_change = col_double(),
     color = col_double()
##
## )
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
     block = col double(),
##
##
     trial = col_double(),
     condition = col_double(),
##
##
     change = col_double(),
##
     responses = col_double(),
##
     time = col_double(),
##
     prev condition = col double(),
##
     prev_change = col_double(),
     color = col_double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
     block = col_double(),
##
     trial = col_double(),
##
##
     condition = col_double(),
##
     change = col_double(),
     responses = col_double(),
##
##
     time = col_double(),
##
     prev condition = col double(),
##
    prev_change = col_double(),
     color = col_double()
##
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
##
     responses = col_double(),
     time = col_double(),
##
##
     prev_condition = col_double(),
##
     prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
```

```
## cols(
     `#subject` = col_double(),
##
    block = col double(),
##
##
    trial = col_double(),
##
     condition = col_double(),
##
    change = col double(),
##
    responses = col double(),
    time = col double(),
##
##
    prev condition = col double(),
##
    prev_change = col_double(),
##
    color = col_double()
## )
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
     block = col_double(),
##
##
    trial = col_double(),
    condition = col double(),
##
##
    change = col_double(),
    responses = col_double(),
##
##
    time = col_double(),
##
    prev_condition = col_double(),
##
    prev_change = col_double(),
##
     color = col double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
    block = col_double(),
    trial = col_double(),
##
     condition = col_double(),
##
##
     change = col_double(),
##
    responses = col_double(),
##
    time = col_double(),
    prev condition = col double(),
##
##
    prev_change = col_double(),
##
     color = col double()
## )
## Parsed with column specification:
## cols(
##
     `#subject` = col double(),
    block = col_double(),
##
    trial = col double(),
##
     condition = col_double(),
##
     change = col_double(),
##
     responses = col_double(),
##
    time = col_double(),
##
    prev_condition = col_double(),
    prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
## `#subject` = col_double(),
```

```
block = col_double(),
##
##
    trial = col_double(),
     condition = col double(),
##
##
     change = col_double(),
##
    responses = col_double(),
##
    time = col double(),
##
    prev condition = col double(),
    prev_change = col_double(),
##
##
     color = col double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
    block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     change = col_double(),
##
    responses = col double(),
##
    time = col_double(),
    prev condition = col double(),
##
##
    prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
     `#subject` = col double(),
##
    block = col_double(),
##
    trial = col_double(),
##
     condition = col_double(),
     change = col_double(),
##
     responses = col_double(),
##
    time = col_double(),
##
    prev_condition = col_double(),
##
    prev_change = col_double(),
     color = col_double()
##
## )
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
    block = col_double(),
    trial = col double(),
     condition = col double(),
##
##
     change = col_double(),
##
     responses = col_double(),
##
     time = col_double(),
##
     prev_condition = col_double(),
##
    prev_change = col_double(),
##
     color = col_double()
## )
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
    block = col_double(),
##
    trial = col_double(),
##
```

```
##
     condition = col_double(),
##
     change = col_double(),
##
    responses = col double(),
     time = col_double(),
##
##
     prev_condition = col_double(),
##
     prev_change = col_double(),
     color = col double()
## )
## Parsed with column specification:
     `#subject` = col_double(),
##
     block = col_double(),
     trial = col_double(),
##
##
     condition = col_double(),
##
     change = col_double(),
     responses = col_double(),
##
##
     time = col_double(),
##
     prev condition = col double(),
##
    prev_change = col_double(),
     color = col double()
##
## )
## `summarise()` regrouping output by 'subject', 'age' (override with `.groups` argument)
Import Objects
## Warning in rm(objectList): object 'objectList' not found
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
    time = col_double(),
    responses = col_double(),
     time_1 = col_double(),
##
##
    Pic = col_character(),
    prev condition = col double(),
##
##
    prev_setsize = col_double(),
##
     prev change = col double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
##
     `#subject` = col_double(),
##
     block = col_double(),
##
    trial = col_double(),
     condition = col double(),
     setsize = col_double(),
##
```

```
##
     change = col_double(),
##
     time = col_double(),
##
    responses = col_double(),
     time_1 = col_double(),
##
##
    Pic = col_character(),
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
##
     prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
     time = col_double(),
    responses = col_double(),
##
     time_1 = col_double(),
##
    Pic = col_character(),
##
##
    prev_condition = col_double(),
    prev_setsize = col_double(),
##
     prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
     time = col_double(),
    responses = col double(),
##
     time_1 = col_double(),
    Pic = col_character(),
##
##
     prev_condition = col_double(),
     prev_setsize = col_double(),
##
     prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
    block = col_double(),
```

```
##
     trial = col_double(),
##
     condition = col_double(),
     setsize = col double(),
##
     change = col_double(),
##
##
     time = col_double(),
##
     responses = col double(),
     time 1 = col double(),
##
##
     Pic = col_character(),
##
     prev_condition = col_double(),
##
     prev_setsize = col_double(),
    prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
     time = col_double(),
##
##
    responses = col_double(),
##
     time_1 = col_double(),
##
    Pic = col_character(),
##
     prev_condition = col_double(),
##
     prev_setsize = col_double(),
     prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col double(),
##
    block = col_double(),
     trial = col_double(),
##
##
     condition = col_double(),
     setsize = col_double(),
##
     change = col_double(),
##
     time = col_double(),
##
     responses = col_double(),
     time_1 = col_double(),
##
     Pic = col_character(),
##
     prev_condition = col_double(),
##
     prev_setsize = col_double(),
##
     prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
```

```
## cols(
##
     `#subject` = col_double(),
     block = col double(),
##
     trial = col_double(),
##
##
     condition = col_double(),
##
     setsize = col double(),
     change = col double(),
     time = col_double(),
##
##
    responses = col_double(),
##
    time_1 = col_double(),
    Pic = col_character(),
##
     prev_condition = col_double(),
    prev_setsize = col_double(),
##
##
     prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
    block = col_double(),
     trial = col_double(),
##
##
     condition = col_double(),
##
     setsize = col_double(),
     change = col_double(),
##
    time = col_double(),
    responses = col_double(),
##
    time_1 = col_double(),
    Pic = col_character(),
##
##
     prev_condition = col_double(),
##
    prev_setsize = col_double(),
##
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
     block = col double(),
     trial = col_double(),
##
     condition = col_double(),
##
##
     setsize = col_double(),
     change = col_double(),
##
     time = col_double(),
    responses = col_double(),
##
##
    time_1 = col_double(),
##
    Pic = col_character(),
     prev_condition = col_double(),
##
##
    prev_setsize = col_double(),
##
    prev_change = col_double(),
##
    prev_time = col_double()
## )
```

```
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
     block = col_double(),
##
     trial = col double(),
##
     condition = col_double(),
##
     setsize = col_double(),
     change = col_double(),
##
##
    time = col_double(),
##
    responses = col_double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col double(),
##
    block = col_double(),
    trial = col double(),
##
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
    time = col double(),
##
    responses = col_double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
     prev_setsize = col_double(),
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col double(),
##
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
     time = col_double(),
##
     responses = col_double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
```

```
prev change = col double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
##
     `#subject` = col_double(),
##
     block = col_double(),
##
    trial = col_double(),
     condition = col_double(),
     setsize = col_double(),
##
     change = col_double(),
##
##
    time = col_double(),
##
    responses = col_double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev condition = col double(),
    prev_setsize = col_double(),
##
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
    block = col_double(),
##
##
    trial = col_double(),
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
    time = col_double(),
##
    responses = col_double(),
##
    time 1 = col double(),
##
    Pic = col_character(),
##
    prev condition = col double(),
##
    prev_setsize = col_double(),
##
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time 1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
    block = col_double(),
##
    trial = col_double(),
##
     condition = col_double(),
     setsize = col_double(),
##
##
    change = col_double(),
    time = col double(),
##
##
    responses = col_double(),
##
    time 1 = col double(),
```

```
##
     Pic = col_character(),
##
    prev_condition = col_double(),
##
    prev setsize = col double(),
    prev_change = col_double(),
##
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
    time = col_double(),
##
    responses = col double(),
##
    time_1 = col_double(),
##
    Pic = col character(),
##
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
##
     prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
    time = col_double(),
##
    responses = col double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
##
     prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col_double(),
##
    trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
```

```
##
     time = col double(),
##
     responses = col_double(),
##
    time 1 = col double(),
    Pic = col_character(),
##
##
     prev_condition = col_double(),
##
     prev setsize = col double(),
    prev change = col double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col double(),
##
     change = col_double(),
##
     time = col_double(),
##
    responses = col_double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
    prev_condition = col_double(),
##
##
    prev_setsize = col_double(),
    prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col double(),
##
     change = col_double(),
##
     time = col_double(),
##
    responses = col_double(),
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
     prev_setsize = col_double(),
    prev_change = col_double(),
##
     prev_time = col_double()
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
    block = col_double(),
##
    trial = col_double(),
```

```
##
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
     time = col_double(),
##
     responses = col_double(),
     time_1 = col_double(),
##
    Pic = col character(),
     prev_condition = col_double(),
##
##
    prev_setsize = col_double(),
##
     prev_change = col_double(),
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
     change = col_double(),
     time = col_double(),
##
     responses = col_double(),
##
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
     prev_condition = col_double(),
     prev_setsize = col_double(),
##
     prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
##
     `#subject` = col_double(),
##
    block = col double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
     change = col_double(),
##
     time = col_double(),
     responses = col_double(),
##
     time_1 = col_double(),
##
    Pic = col_character(),
##
     prev_condition = col_double(),
    prev_setsize = col_double(),
##
     prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
```

```
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col double(),
     condition = col_double(),
##
##
     setsize = col_double(),
##
     change = col double(),
##
     time = col double(),
     responses = col_double(),
##
##
     time_1 = col_double(),
##
    Pic = col_character(),
    prev_condition = col_double(),
     prev_setsize = col_double(),
##
##
    prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
    block = col_double(),
     trial = col_double(),
     condition = col_double(),
##
##
     setsize = col_double(),
##
     change = col_double(),
     time = col double(),
##
     responses = col_double(),
     time_1 = col_double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
##
     prev_setsize = col_double(),
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time 1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
    block = col_double(),
     trial = col double(),
##
     condition = col_double(),
     setsize = col_double(),
##
##
     change = col_double(),
     time = col_double(),
##
     responses = col_double(),
     time_1 = col_double(),
##
##
     Pic = col_character(),
##
     prev_condition = col_double(),
##
     prev_setsize = col_double(),
##
    prev_change = col_double(),
##
    prev_time = col_double()
## )
```

```
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
    block = col_double(),
##
    trial = col double(),
##
     condition = col_double(),
##
     setsize = col_double(),
     change = col_double(),
##
##
    time = col_double(),
##
    responses = col_double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col double(),
##
    block = col_double(),
    trial = col double(),
     condition = col_double(),
##
##
     setsize = col_double(),
##
    change = col_double(),
##
    time = col double(),
##
    responses = col_double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col double(),
##
##
    block = col_double(),
##
    trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
    time = col_double(),
##
     responses = col_double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
```

```
prev change = col double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
##
     `#subject` = col_double(),
##
     block = col_double(),
##
    trial = col_double(),
     condition = col_double(),
     setsize = col_double(),
##
     change = col_double(),
##
##
    time = col_double(),
##
    responses = col_double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev condition = col double(),
##
    prev_setsize = col_double(),
##
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
    block = col_double(),
##
##
    trial = col_double(),
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
    time = col_double(),
##
    responses = col_double(),
##
    time 1 = col double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
##
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time 1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
    block = col_double(),
##
    trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
##
    change = col_double(),
##
    time = col double(),
##
    responses = col_double(),
##
    time 1 = col double(),
```

```
##
     Pic = col_character(),
##
    prev_condition = col_double(),
##
    prev setsize = col double(),
    prev_change = col_double(),
##
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
    time = col_double(),
##
    responses = col double(),
##
    time_1 = col_double(),
##
    Pic = col character(),
##
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
##
     prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
##
    time = col_double(),
##
    responses = col double(),
##
    time_1 = col_double(),
##
    Pic = col_character(),
##
    prev_condition = col_double(),
##
    prev_setsize = col_double(),
##
     prev_change = col_double(),
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col_double(),
##
    trial = col_double(),
##
    condition = col_double(),
##
     setsize = col_double(),
##
     change = col_double(),
```

```
##
     time = col double(),
##
     responses = col_double(),
##
    time 1 = col double(),
    Pic = col_character(),
##
##
     prev_condition = col_double(),
##
     prev setsize = col double(),
    prev change = col double(),
     prev_time = col_double()
##
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col double(),
##
     change = col_double(),
##
     time = col_double(),
##
    responses = col_double(),
    time_1 = col_double(),
##
    Pic = col_character(),
    prev_condition = col_double(),
##
##
    prev_setsize = col_double(),
    prev_change = col_double(),
##
     prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
     block = col_double(),
##
     trial = col_double(),
##
     condition = col_double(),
##
     setsize = col double(),
##
     change = col_double(),
##
     time = col_double(),
##
    responses = col_double(),
    time_1 = col_double(),
##
    Pic = col_character(),
    prev_condition = col_double(),
##
##
     prev_setsize = col_double(),
    prev_change = col_double(),
##
     prev_time = col_double()
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
     `#subject` = col_double(),
##
##
    block = col_double(),
##
    trial = col_double(),
```

```
##
     condition = col_double(),
##
    setsize = col_double(),
##
     change = col_double(),
##
    time = col_double(),
##
    responses = col_double(),
    time 1 = col double(),
##
    Pic = col character(),
##
     prev_condition = col_double(),
##
##
    prev_setsize = col_double(),
##
    prev_change = col_double(),
    prev_time = col_double()
## )
## Warning: Duplicated column names deduplicated: 'time' => 'time_1' [9]
## Parsed with column specification:
## cols(
##
     `#subject` = col_double(),
##
     block = col double(),
    trial = col_double(),
##
##
     condition = col_double(),
##
     setsize = col_double(),
     change = col_double(),
##
    time = col_double(),
##
    responses = col_double(),
##
    time_1 = col_double(),
##
##
    Pic = col_character(),
##
    prev_condition = col_double(),
    prev_setsize = col_double(),
##
    prev_change = col_double(),
##
    prev_time = col_double()
## )
## Warning: Problem with `mutate()` input `pic_num`.
## i NAs introduced by coercion
## i Input `pic_num` is `as.numeric(Pic)`.
## Warning in mask$eval_all_mutate(dots[[i]]): NAs introduced by coercion
## `summarise()` regrouping output by 'subject', 'age' (override with `.groups` argument)
## `summarise()` regrouping output by 'subject', 'age', 'setsize' (override with `.groups` argument)
## `summarise()` regrouping output by 'subject' (override with `.groups` argument)
## `summarise()` ungrouping output (override with `.groups` argument)
## `summarise()` ungrouping output (override with `.groups` argument)
## `summarise()` ungrouping output (override with `.groups` argument)
join color & objects
colorListResult %>%ungroup() %>% select(age,condition,mean_answer_correct,mean_response_time,kPashler,
names(ColorJoin) <- c("age_c", "condition_c", "mean_answer_correct_c", "mean_response_time_c", "kPashler_c"</pre>
objectResult %>% inner_join(ColorJoin,by = "joinKey") %>%
 mutate(diffAnswerRate = mean_answer_correct-mean_answer_correct_c)%>%
  mutate(diffK = k-k_c)-> testsJoined
objectResultCondition %>% inner_join(ColorJoin,by = "joinKey") -> testConditionJoined
colorListResult %>% ungroup() %>% select(subject,age,condition,mean_answer_correct,mean_response_time,k
```

objectResult %>% ungroup() %>% select(subject,age,setsize,mean_answer_correct,mean_response_time,kPash joinedTestList = rbind(ObjectJoinLong,ColorJoinLong)

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

Erster Schritt Überblick der Gesamtanzahl der falschen und richtigen Antworten

```
## Warning: `count_()` is deprecated as of dplyr 0.7.0.
```

- ## Please use `count()` instead.
- ## See vignette('programming') for more help
- ## This warning is displayed once every 8 hours.
- ## Call `lifecycle::last_warnings()` to see where this warning was generated.

Add a new chunk by clicking the *Insert Chunk* button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike *Knit*, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

Gib eine Tabelle mit den zusammenfassenden Daten für Color & Objects aus

```
colorList %>% group_by(condition,age) %>% summarise(Gesamt = n(),Richtig = sum(answer_correct == 1),Fal
```

`summarise()` regrouping output by 'condition' (override with `.groups` argument)

Gesamt	Richtig	Falsch	ProzentRichtig	Prozen

$\mathbf{SetSize}$	age	Gesamt	Richtig	Falsch	ProzentRichtig	${\bf ProzentFalsch}$
2	old	1297	1226	71	95%	5%
2	young	1298	1268	30	98%	2%
4	old	1297	945	352	73%	27%
4	young	1303	1139	164	87%	13%
6	old	1291	863	428	67%	33%
6	young	1295	946	349	73%	27%
8	old	1315	782	533	59%	41%
8	young	1304	838	466	64%	36%

Table 1: Überblick Versuchsreihe Color

```
objectList %>% group_by(setsize,age) %>% summarise(Gesamt = n(),Richtig = sum(answer_correct == 1),Fals
```

`summarise()` regrouping output by 'setsize' (override with `.groups` argument)

Table 2: Überblick Versuchsreihe Real world objects

setsize	age	Gesamt	Richtig	Falsch	ProzentRichtig	ProzentFalsch
2	old	3840	3539	301	92%	8%
2	young	3840	3607	233	94%	6%
4	old	3840	3066	774	80%	20%
4	young	3840	3249	591	85%	15%
6	old	3840	2678	1162	70%	30%

setsize	age	Gesamt	Richtig	Falsch	ProzentRichtig	ProzentFalsch
6	young	3840	2911	929	76%	24%

 $\textit{\#colorListResult \%>\% ungroup() \%>\% group_by(age,condition) \%>\% summarise(mean(hitRate),mean(falseAlarmResult)) \text{ } \textit{\#colorListResult \%>\% ungroup() \%>\% group_by(age,condition) \%>\% summarise(mean(hitRate),mean(falseAlarmResult)) \text{ } \textit{\#colorListResult \%>\% ungroup() \%>\% group_by(age,condition) \%>\% summarise(mean(hitRate),mean(falseAlarmResult)) \text{ } \textit{\#colorListResult \%>\% ungroup() \%>\% group_by(age,condition) \%>\% summarise(mean(hitRate),mean(falseAlarmResult)) \text{ } \textit{\#colorListResult \%>\% ungroup() \%>\% group_by(age,condition) \%>\% summarise(mean(hitRate),mean(falseAlarmResult)) \text{ } \textit{\#colorListResult} \text{ } \text{ } \textit{\#colorListResult} \text{ } \textit{\#colorListResult} \text{ } \textit{\#colorListResult} \text{ } \textit{\#colorListResult} \text{ } \text{ } \textit{\#colorListResult$

colorResultGroupAge %>% select(age,SetSizeTotal,SetSize2,SetSize4,SetSize6,K_Total_mean,K_2_mean,K_6_mean
df_Color_Compress[2,-1] - df_Color_Compress[1,-1] -> df_Color_diff

colorResultGroupAge %>% select(age,SetSizeTotal,SetSize2,SetSize4,SetSize6,K_Total_mean,K_2_mean,K_6_me

Table 3: Überblick Color Objekte Mittelwerte korrekte Antworten und K-Werte

age	SetSizeTo	ota\$etSize2	SetSize4	SetSize6	K_Total_	_mKe <u>an</u> 2_	_me l kn_6_	_me k n_PTotal_	_r K ea F 2_	_me k n_P4mea	ın
$\overline{\text{old}}$	0.73	0.95	0.73	0.67	1.78	1.78	2.02	3.15	1.88	2.85	
young	0.81	0.98	0.87	0.73	2.48	1.91	2.76	4.00	1.97	3.77	

objectResultGroupAge %>% select(age,SetSizeTotal,SetSize2,SetSize4,SetSize6,K_Total_mean,K_2_mean,K_6_m

Table 4: Überblick Real World Objekte Mittelwerte korrekte Antworten und K-Werte

age	SetSizeTo	ota\$etSize2	SetSize4	SetSize6	K_Total_	_m k e <u>ar</u> 2_	_me ł śn_6_	_me k n_PTotal_	_nkealP2_	_mekn_P4mean
old	0.81	0.92	0.80	0.70	2.15	1.69	2.37	2.80	1.74	2.89
young	0.85	0.94	0.85	0.76	2.54	1.76	3.10	3.17	1.82	3.22

objectResultGroupAge %>% select(age,SetSizeTotal,SetSize2,SetSize4,SetSize6,K_Total_mean,K_2_mean,K_6_m
df_Object_Compress[2,-1] - df_Object_Compress[1,-1] -> df_Object_diff

df_Color_diff %>% round(2) %>% kable(caption = "Abstand der Ergebnisse bei Color Objekten zwischen älte

Table 5. Abstand der Ersehnisse hei Coler Obielten zwischen

Table 5: Abstand der Ergebnisse bei Color Objekten zwischen älteren Erwachsenen und jüngeren Erwachsenen

SetSizeTe	ota\$etSize2	SetSize4	SetSize6	K_Total_	_m& <u>n</u> 2	mea k _6_mea k	_PTotal_	_mKanP2_r	mekn_P4_ mean
0.07	0.03	0.15	0.06	0.7	0.13	0.74	0.85	0.09	0.92

df_Object_diff %>% round(2) %>% kable(caption = "Abstand der Ergebnisse bei Real World Objekten zwischen

Table 6: Abstand der Ergebnisse bei Real World Objekten zwischen älteren Erwachsenen und jüngeren Erwachsenen

SetSizeTe	ota\$etSize2	SetSize4	SetSize6	K_Total_	_m& <u>n</u> 2_	_mea k 6_	_mea k _PTotal	mKanP2	mekn_P4_ mean
0.04	0.02	0.05	0.06	0.39	0.07	0.73	0.37	0.08	0.33

```
df_Object_diff - df_Color_diff -> df_AltvsJung

df_AltvsJung %>% round(2) %>% kable(caption = "Abstand der Ergebnisse bei Color vs. Real World Objekten
```

Table 7: Abstand der Ergebnisse bei Color vs. Real World Objekten zwischen älteren Erwachsenen und jüngeren Erwachsenen

SetSizeT	TotaSetSize2	SetSize4	SetSize6	K_Total_	_m & i <u>n</u> 2_	_mea K 6_	mea K _PTotal	_mKanP2_	mekn_P4_ mean
-0.03	-0.01	-0.1	0	-0.31	-0.06	-0.02	-0.48	-0.01	-0.59

Plotte einen Überblick der Gesamtmenge

```
## `summarise()` regrouping output by 'age', 'condition' (override with `.groups` argument)
#Plot
ggplot(SumsColors,aes(x=age,y=N,fill=answer_correct))+
    geom_bar(stat='identity',position = position_stack())+
    facet_wrap(.~condition,scales = 'free')+
    geom_text(aes(label=Lab),position = position_stack(vjust = .5),size=3)+
    geom_text(aes(y=Total,label=Total),vjust=-0.25,size=3)+
    labs(title="Colors",subtitle = "per setsize grouped by age", x="age", y="# answer correct", fill="Ansylim(0, 1400)
```

Colors per setsize grouped by age

Real world objects per setsize grouped by age

Plotte die Streuung von Colors und real objects

colorListResult %>% ggplot(mapping=aes(x=age, y=mean_answer_correct,fill=age)) + geom_violin() + geom_

Colors distribution test persons mean value of correct answers

objectResult %>% ggplot(mapping=aes(x=age, y=mean_answer_correct,fill=age)) + geom_violin() + geom_jit

Real world objects distribution test persons mean value of correct answers

colorListResult %>% ggplot(mapping=aes(x=age, y=mean_answer_correct,fill=age))+ geom_violin() + geom_j

Colors distribution test persons mean value of correct answers

objectResult %>% ggplot(mapping=aes(x=age, y=mean_answer_correct,fill=age))+ geom_violin() + geom_jitt

Real world objects distribution test persons mean value of correct answers

colorListResult %>% ggplot(mapping=aes(x=age, y=mean_answer_correct,fill=age)) + geom_boxplot() + geom

Colors distribution test persons mean value of correct answers

objectResult %>% ggplot(mapping=aes(x=age, y=mean_answer_correct,fill=age)) + geom_boxplot() + geom_ji

Real world objects distribution test persons mean value of correct answers

colorListResult %>% ggplot(mapping=aes(x=age, y=mean_answer_correct,fill=age))+ geom_boxplot() + geom_

Colors distribution test persons mean value of correct answers

objectResult %>% ggplot(mapping=aes(x=age, y=mean_answer_correct,fill=age))+ geom_boxplot() + geom_jit

Real world objects distribution test persons mean value of correct answers

Häufigkeitsverteilung

colorListResult %>% ggplot(mapping=aes(x=mean_answer_correct, fill=age))+ geom_histogram(bins = 20)+lage

Colors Häufigkeiten korrekter Antworten

colorListResult %>% ggplot(mapping=aes(x=mean_answer_correct, fill=age))+ geom_histogram(bins=20)+face

Colors Häufigkeiten korrekter Antworten

objectResult %>% ggplot(mapping=aes(x=mean_answer_correct, fill=age))+ geom_histogram(bins=20)+labs(ti

Real world objects Häufigkeiten korrekter Antworten

objectResult %>% ggplot(mapping=aes(x=mean_answer_correct, fill=age))+ geom_histogram(bins=20)+facet_w

Real world objects Häufigkeiten korrekter Antworten

colorListResult %>% ggplot(mapping=aes(x=mean_answer_correct, fill=age))+ geom_density (alpha=0.2)+lab

Colors Häufigkeiten korrekter Antworten

colorListResult %>% ggplot(mapping=aes(x=mean_answer_correct, fill=age))+ geom_density(alpha=0.2)+fac

Colors Häufigkeiten korrekter Antworten

objectResult %>% ggplot(mapping=aes(x=mean_answer_correct, fill=age))+ geom_density(alpha=0.2)+labs(ti

Real world objects

Häufigkeiten korrekter Antworten

objectResult %>% ggplot(mapping=aes(x=mean_answer_correct, fill=age))+ geom_density(alpha=0.2)+facet_w

Real world objects Häufigkeiten korrekter Antworten

Vergleich Color vs. Objects gleiche Altersgruppen

joinedTestList %>% ggplot(mapping=aes(x=mean_answer_correct, fill=test))+ geom_density (alpha=0.2)+lab

Colors vs Object Häufigkeiten korrekter Antworten

joinedTestList %>% ggplot(mapping=aes(x=mean_answer_correct, fill=test))+ geom_density (alpha=0.2)+fac

Colors vs Object Häufigkeiten korrekter Antworten per Set Größe

Korrelation

colorListResult %>% ggplot(aes(x=mean_answer_correct, y=mean_response_time,color = age))+geom_point()+g
`geom_smooth()` using formula 'y ~ x'

colorListResult %>% ggplot(aes(x=mean_answer_correct, y=mean_response_time,color = age))+geom_point()+g

$geom_smooth()$ using formula 'y ~ x'

colorListResult %>% ggplot(aes(x=mean_answer_correct, y=mean_response_time,color = age))+geom_point()+g
`geom_smooth()` using formula 'y ~ x'

`geom_smooth()` using formula 'y ~ x'

objectResult %>% ggplot(aes(x=mean_answer_correct, y=mean_response_time,color = age))+geom_point()+geom_

$geom_smooth()$ using formula 'y ~ x'

Normalverteilung:

```
colorListResult %>% filter(condition==2,age=="old") -> df_means_o2
fromTo <- round(range(df_means_o2$mean_answer_correct),2)+c(-0.08,0.08)
limits <- seq(from=fromTo[1], to=fromTo[2], by=0.02)
hist(df_means_o2$mean_answer_correct,freq=FALSE,xlim = fromTo ,xlab = "Mittelwert korrekte Antworten",y
rug(jitter(df_means_o2$mean_answer_correct))
curve(dnorm(x,mean(df_means_o2$mean_answer_correct),sd(df_means_o2$mean_answer_correct)),lwd=2,col="blue"</pre>
```



```
colorListResult %>% filter(condition==4,age=="old") -> df_means_o4
fromTo <- round(range(df_means_o4$mean_answer_correct),2)+c(-0.08,0.08)
limits <- seq(from=fromTo[1], to=fromTo[2], by=0.02)
hist(df_means_o4$mean_answer_correct,freq=FALSE,xlim = fromTo ,xlab = "Mittelwert korrekte Antworten",y
rug(jitter(df_means_o4$mean_answer_correct))
curve(dnorm(x,mean(df_means_o4$mean_answer_correct),sd(df_means_o4$mean_answer_correct)),lwd=2,col="blue"</pre>
```



```
colorListResult %>% filter(condition==6,age=="old") -> df_means_o6
fromTo <- round(range(df_means_o6$mean_answer_correct),2)+c(-0.08,0.08)
limits <- seq(from=fromTo[1], to=fromTo[2], by=0.02)
hist(df_means_o6$mean_answer_correct,freq=FALSE,xlim = fromTo ,xlab = "Mittelwert korrekte Antworten",y
rug(jitter(df_means_o6$mean_answer_correct))
curve(dnorm(x,mean(df_means_o6$mean_answer_correct),sd(df_means_o6$mean_answer_correct)),lwd=2,col="blue"</pre>
```



```
colorListResult %>% filter(condition==8,age=="old") -> df_means_o8
fromTo <- round(range(df_means_o8$mean_answer_correct),2)+c(-0.08,0.08)
limits <- seq(from=fromTo[1], to=fromTo[2], by=0.02)
hist(df_means_o8$mean_answer_correct,freq=FALSE,xlim = fromTo ,xlab = "Mittelwert korrekte Antworten",y
rug(jitter(df_means_o8$mean_answer_correct))
curve(dnorm(x,mean(df_means_o8$mean_answer_correct),sd(df_means_o8$mean_answer_correct)),lwd=2,col="blue"</pre>
```



```
colorListResult %>% filter(condition==2,age=="young") -> df_means_y2
fromTo <- round(range(df_means_y2$mean_answer_correct),2)+c(-0.08,0.08)
limits <- seq(from=fromTo[1], to=fromTo[2], by=0.02)
hist(df_means_y2$mean_answer_correct,freq=FALSE,xlim = fromTo ,xlab = "Mittelwert korrekte Antworten",y
rug(jitter(df_means_y2$mean_answer_correct))
curve(dnorm(x,mean(df_means_y2$mean_answer_correct),sd(df_means_y2$mean_answer_correct)),lwd=2,col="blue"</pre>
```



```
colorListResult %>% filter(condition==4,age=="young") -> df_means_y4
fromTo <- round(range(df_means_y4$mean_answer_correct),2)+c(-0.08,0.08)
limits <- seq(from=fromTo[1], to=fromTo[2], by=0.02)
hist(df_means_y4$mean_answer_correct,freq=FALSE,xlim = fromTo ,xlab = "Mittelwert korrekte Antworten",y
rug(jitter(df_means_y4$mean_answer_correct))
curve(dnorm(x,mean(df_means_y4$mean_answer_correct),sd(df_means_y4$mean_answer_correct)),lwd=2,col="blue"</pre>
```



```
colorListResult %>% filter(condition==6,age=="young") -> df_means_y6
fromTo <- round(range(df_means_y6$mean_answer_correct),2)+c(-0.08,0.08)
limits <- seq(from=fromTo[1], to=fromTo[2], by=0.02)
hist(df_means_y6$mean_answer_correct,freq=FALSE,xlim = fromTo ,xlab = "Mittelwert korrekte Antworten",y
rug(jitter(df_means_y6$mean_answer_correct))
curve(dnorm(x,mean(df_means_y6$mean_answer_correct)),sd(df_means_y6$mean_answer_correct)),lwd=2,col="blue"</pre>
```



```
colorListResult %>% filter(condition==8,age=="young") -> df_means_y8
fromTo <- round(range(df_means_08$mean_answer_correct),2)+c(-0.08,0.08)
limits <- seq(from=fromTo[1], to=fromTo[2], by=0.02)
hist(df_means_y8$mean_answer_correct,freq=FALSE,xlim = fromTo ,xlab = "Mittelwert korrekte Antworten",y
rug(jitter(df_means_y8$mean_answer_correct))
curve(dnorm(x,mean(df_means_y8$mean_answer_correct),sd(df_means_y8$mean_answer_correct)),lwd=2,col="blue"</pre>
```


colorListResult %>% ungroup() %>% group_by(age,condition) %>%summarise(paste(round(mean(hitRate),2),"/"

names(df_KStat) <- c("age", "Set Size", "HitRate Mean/SD", "False Alarm Mean/SD", "k Mean (SD)", "kPashler M</pre>

Table 8: Überblick Versuchsreihe Color objects K

df_KStat %>% kable(caption = "Überblick Versuchsreihe Color objects K",align = "lcccccr")

`summarise()` regrouping output by 'age' (override with `.groups` argument)

age	Set Size	HitRate Mean/SD	False Alarm Mean/SD	k Mean (SD)	kPashler MEAN/SD
old	2	0.95 / 0.05	0.06 / 0.05	1.78 / 0.15	1.88 / 0.11
old	4	0.82 / 0.11	0.37 / 0.17	1.83 / 0.69	2.85 / 0.78
old	6	0.8 / 0.16	0.47 / 0.2	2.02 / 0.71	4.09 / 1.28
old	8	0.77 / 0.16	0.58 / 0.18	1.51 / 0.82	3.77 / 2.19
young	2	0.99 / 0.02	0.03 / 0.03	1.91 / 0.07	1.97 / 0.04
young	4	0.95 / 0.03	0.21 / 0.11	2.99 / 0.43	3.77 / 0.17
young	6	0.89 / 0.07	0.43 / 0.16	2.76 / 1	4.72 / 0.9
young	8	0.87 / 0.07	0.58 / 0.12	2.27 / 0.72	5.52 / 0.98

```
# Object List
objectResult %>% ungroup() %>% group_by(age,setsize) %>%summarise(round(mean(hitRate),2),round(sd(hitRate)))
## `summarise()` regrouping output by 'age' (override with `.groups` argument)
```

```
names(df_0_KStat_data) <- c("age", "setsize", "mean_hit_rate", "sd_hit_rate", "mean_false_alarm", "sd_false_a
objectResult %>% ungroup() %>% group_by(age, setsize) %>%summarise(paste(round(mean(hitRate), 2), "/", round
## `summarise()` regrouping output by 'age' (override with `.groups` argument)
names(df_0_KStat) <- c("age", "Set Size", "HitRate Mean/SD", "False Alarm Mean/SD", "k Mean (SD)", "kPashler
df_0_KStat %>% kable(caption = "Überblick Versuchsreihe Real World Objects K", align = "lcccccr")
```

Table 9: Überblick Versuchsreihe Real World Objects K

age	Set Size	${\rm HitRate\ Mean/SD}$	False Alarm Mean/SD	k Mean (SD)	k Pashler MEAN/SD
old	2	0.87 / 0.07	0.03 / 0.03	1.69 / 0.13	1.74 / 0.13
old	4	0.77 / 0.07	0.17 / 0.07	2.39 / 0.27	2.89 / 0.31
old	6	0.75 / 0.12	0.36 / 0.13	2.37 / 0.46	3.76 / 0.85
young	2	0.92 / 0.04	0.04 / 0.03	1.76 / 0.1	1.82 / 0.09
young	4	0.83 / 0.05	0.14 / 0.07	2.77 / 0.31	3.22 / 0.22
young	6	0.82 / 0.07	0.3 / 0.1	3.1 / 0.5	4.47 / 0.52

#colorListResult %>% ungroup %>% group_by(age,condition) %>% summarise(round(max(k),2)) %>% kable(capti #colorListResult %>% ungroup %>% group_by(age,condition) %>% summarise(round(max(kPashler),2)) %>% kable #objectResult %>% ungroup %>% group_by(age,setsize) %>% summarise(round(max(k),2)) %>% kable(caption = #objectResult %>% ungroup %>% group_by(age,setsize) %>% summarise(round(max(kPashler),2)) %>% kable(cap ggplot(df_KStat_data, aes(x=factor(setsize), y=mean_k, fill=factor(age))) + geom_bar(position=position_cap)

Color Test K value results per set size

Real World Objects Test K value results per set size

ggplot(df_KStat_data, aes(x=factor(setsize), y=mean_kPashler, fill=factor(age))) + geom_bar(position=po

Color Test k-Pashler value results per set size

ggplot(df_0_KStat_data, aes(x=factor(setsize), y=mean_kPashler, fill=factor(age))) + geom_bar(position=

Grafiken Für K-Werte

colorListResult %>% ggplot(mapping=aes(x=age, y=k,fill=age)) + geom_violin() + geom_jitter(width = 0.2

Colors distribution test persons mean value of k

objectResult %>% ggplot(mapping=aes(x=age, y=k,fill=age)) + geom_violin() + geom_jitter(width = 0.2, a

Real world objects distribution test persons mean value of k

colorListResult %>% ggplot(mapping=aes(x=age, y=k,fill=age))+ geom_violin() + geom_jitter(width = 0.2,

Colors distribution test persons mean value of k

objectResult %>% ggplot(mapping=aes(x=age, y=k,fill=age))+ geom_violin() + geom_jitter(width = 0.2, al

Real world objects distribution test persons mean value of k

colorListResult %>% ggplot(mapping=aes(x=age, y=k,fill=age)) + geom_boxplot() + geom_jitter(width = 0.

Colors distribution test persons mean value of k

objectResult %>% ggplot(mapping=aes(x=age, y=k,fill=age)) + geom_boxplot() + geom_jitter(width = 0.2,

Real world objects distribution test persons mean value of k

colorListResult %>% ggplot(mapping=aes(x=age, y=k,fill=age))+ geom_boxplot() + geom_jitter(width = 0.2

Colors distribution test persons mean value of k

objectResult %>% ggplot(mapping=aes(x=age, y=k,fill=age))+ geom_boxplot() + geom_jitter(width = 0.2, a

Real world objects distribution test persons mean value of k

####### K Barcharts ########
mkChart <- ggplot(colorListResult, aes(x = condition,y = k, col = factor(age), fill = factor(age)))</pre>

Unterschied zwischen Colors & Objekte H1: Änderungen von Real World Objekten werden von jungen Personen besser erkannt als Änderungen von Farben. H1: Änderungen von Real World Objekten werden von alten Personen besser erkannt als Änderungen von Farben. Notwendige Auswertungen: T-Test abhängige Stichprobe je alt und jung

Voraussetzungen:

Abhängige Variable ist intervallskaliert - ok Es liegen zwei verbundene Stichproben vor aber die Meßwertpaare sind unabhängig - ok Die Unterschiede zwischen den verbundenen Testwerten sind in der Grundgesamtheit normalverteilt.

colorList %>% filter(condition <= 6) %>% summarise(mean(answer_correct)) -> df_mean_color_all