PC

- Diagrammes isobares d'équilibre liquide-vapeur (miscibilité totale, nulle, partielle à l'état liquide)
- Diagrammes isobares d'équilibre solide-liquide (miscibilité totale, nulle, partielle à l'état solide)

PSI

- Changement d'état des alliages métalliques solide-liquide (miscibilité totale, nulle, partielle à l'état solide)

Description d'un système binaire en équilibre sous plusieurs phases

Système binaire: 2 constituants chimiques A₁ et A₂

1 phase en présence

Plusieurs phases en présence

Micrographie optique suite à une attaque acide qui creuse les joints de grain

Diagramme isobare solide-liquide ou liquide-vapeur

C'est une représentation graphique qui permet de prévoir, pour un mélange binaire évoluant à p constante, la nature et la composition des phases présentes en fonction de T et x_i (composition globale)

Variance et nombre de phase

Phases	Paramètres intensifs	Relations	V	Csq à p=cte
1	4	1	3	
2	6	4	2	
3	8	7	1	

Diagramme isobare solide-liquide ou liquide-vapeur

C'est une représentation graphique qui permet de prévoir, pour un mélange binaire évoluant à p constante, la nature et la composition des phases présentes en fonction de T et x_i (composition globale)

Variance et nombre de phase

Phases	Paramètres intensifs	Relations	V	Csq à p=cte
1	4	1	3	T et x _i peuvent varier
2	6	4	2	À T donnée , x _i ^{ψi} est imposée
3	8	7	1	Tous les paramètres intensifs sont imposés

L'allure des diagrammes ne dépend que des propriétés de miscibilité des phases et non de leur nature

Changement d'état isobare des mélange binaires solide-liquide

VRAI ou FAUX?

Si la température varie au cours de la fusion d'un solide alors le solide n'est pas pur

Si la température est constante au cours de la fusion d'un solide alors le solide est pur

La présence d'une impureté abaisse le point de fusion

Pour faire fondre le verglas, on répand du sel sur la chaussée

La présence de sel abaisse la température de fusion de la glace

Principe de construction des diagrammes isobares

Analyse thermique : courbes de refroidissement

dQ/dt = cte

A: fremier cristal; solidification commencante B: dernière goutte soliolification dinissante

Principe de construction des diagrammes isobares

Analyse thermique : courbes de refroidissement

dQ/dt = cte

A: fremuer cristal; solidification commencante Bi dernière goulte solidification finisante

Miscibilité totale à l'état solide

Conditions de miscibilité totale à l'état solide

Allure des diagrammes obtenus

peut-on avoir des diagrammes où *I* est un maximum ?

I: point indifférent

Lecture des diagrammes

Théorème de l'horizontale

Lecture des diagrammes

Théorème de l'horizontale

Lors du chgt d'état,

- température et composition des phases varient
- la phase liquide s'enrichit en le composé le plus fusible

« la présence d'une impureté abaisse le point de fusion » ????

Théorème des moments chimiques ou des segments inverses

Démo : cf livre de prépa

Caractéristique du mélange indifférent

Caractéristique du mélange indifférent

Le chgt d'état du mélange indifférent a les mêmes caractéristiques que celui du corps pur : changement d'état à T et composition de chaque phase constante

Applications

Evolution de la composition dans un grain

Cristallisation fractionnée

Miscibilité nulle à l'état solide

Exemples de diagrammes

E: point eutectique

E : point eutectique

Solidus / liquidus

E : point eutectique

Solidus / liquidus

E: point eutectique

Solidus / liquidus

Micrographie d'un mélange solide eutectique

Micrographie d'un mélange solide non eutectique

ou

Applications

Salage des routes

EI:A

Ajout de NaCl(s)

Evolution isotherme

Obs: le verglas fond

Mélanges réfrigérants

EI: C

Ajout de NaCl(s) Evolution adiabatique vers B

Obs: le milieu se refroidit

Diagramme avec composé défini (à point de fusion congruente) Ni-Mg

Cas d'un mélange racémique : conglomérat/racémate

Diagramme avec composé défini (à point de fusion congruente) Ni-Mg

A, B: composés définis

Diagramme avec composé défini (à point de fusion congruente) Ni-Mg

Cas d'un mélange racémique : conglomérat/racémate

Miscibilité partielle à l'état solide

Exemple de diagrammes obtenus

VRAI ou FAUX?

Si la température varie au cours de la fusion d'un solide alors le solide n'est pas pur

Si la température est constante au cours de la fusion d'un solide alors le solide est pur

La présence d'une impureté abaisse le point de fusion

Pour faire fondre le verglas, on répand du sel sur la chaussée

La présence de sel abaisse la température de fusion de la glace

VRAI ou FAUX?

Si la température varie au cours de la fusion d'un solide alors le solide n'est pas pur **VRAI**

Si la température est constante au cours de la fusion d'un solide alors le solide est pur **FAUX**

La présence d'une impureté abaisse le point de fusion **FAUX**

Pour faire fondre le verglas, on répand du sel sur la chaussée **VRAI**

La présence de sel abaisse la température de fusion de la glace

FAUX