

Método Monte Carlo Cinético para o cálculo do Equilíbrio de Adsorção Langmuiriana de espécies gasosas em superfícies cristalinas

Ana Luísa A. Alves 1* (Graduação - IC), Luis Vinicius C. Silva 2* (Pós-graduando -PG)

^{1 2} Universidade Federal de Catalão.

* araujoana@discente.ufcat.edu.br *luisvinicius@ufcat.edu.br

Palavras-chave: Adsorção Langmuir, Monte Carlo Cinético, Simulação, Físico-Química.

INTRODUÇÃO

- A simulação de adsorção é fundamental para diversas aplicações como desenvolvimento de catalisadores, técnicas para tratamento de efluentes, etc.[3];
- Este estudo apresenta um Método Monte Carlo Cinético (MMCC) para calcular a evolução temporal da taxa de ocupação dos sítios de uma superfície cristalina adsorvendo um gás, de acordo com o modelo de Langmuir, assim como determina a taxa de ocupação no equilíbrio dinâmico.
- Uma melhoria no algoritmo proposto por [1] é realizada, aplicando uma malha adaptiva para minimizar a variância da solução numérica;
- Suposições do modelo:
 - As moléculas adsorvidas não interagem significativamente entre si;
 - Cada molécula ocupa um único sítio de adsorção em uma superfície cristalina homogênea;
 - O equilíbrio de adsorção e desorção é atingido quando as taxas de adsorção (rA) e desorção (rD) se igualam.

METODOLOGIA

Testes foram realizados com uma malha de resolução inicial 32x32 e máxima de 256x256, o tempo real t máximo estabelecido foi t=10. Na fig. 1, tem-se o fluxograma de uma versão simplificada do algoritmo implementado:

Figura 1: Algoritmo simplificado do MMCC para obtenção do equilíbrio de adsorção de Langmuir

A equação cinética do sistema é dada por:

$$\frac{d\theta}{dt} = r_A(1 - \theta) - r_D\theta$$

Em uma situação de equilíbrio, i.e: $\frac{d\theta}{dt} = 0$

Têm-se:

$$r_A(1-\theta) = r_D\theta \implies \theta = \frac{r_A}{r_A + r_D}$$

RESULTADOS E DISCUSSÕES

- Erros permanecerem abaixo de 3% para todas as simulações;
- Resolução necessária para convergência (erro < 3%), res. máx. de 128x128, exceto p/ os últimos dois cenários (res. máx. de 256x256).

Cenários simulados para Ta e Td encontram-se na Tabela 1:

	T _A (sítios/tempo)	T _D (sítios/tempo)	Erro Relativo (algoritmo original)	Erro Relativo (algoritmo modificado)	• Diferença de tempo de convergência entre original e novo (s)
Cenário 1	0.5	1.0	1.88%	1.92%	-1.2
Cenário 2	0.5	2.0	1.85%	1.81%	-0.5
Cenário 3	2	1.0	2.58%	2.49%	-1.8
Cenário 4	1.0	1.0	0.86%	0.80%	-1.9
Cenário 5	10-5	1	2.86%	2.83%	1.6
Cenário 6	1.0	10-5	1.92%	1.92%	-0.4

Tabela 1: Cenários simulados e taxas de adsorção e dessorção, assim como erro relativo e diferença de tempo entre algoritmos.

Figura 2: Estado final do Lattice e solução obtida pelo MMCC em comparação com solução analítica no cenário 1.

CONCLUSÕES

- Dinâmicas de adsorção e desorção podem ser modeladas como um processo de Poisson e simuladas através de um MMCC, apresentando resultados consistentes com as equações de equilíbrio de Langmuir;
- Malha adaptativa permite uma convergência mais rápida assim como uma maior acurácia;
- Estudos futuros podem:
- obter taxas de adsorção/dessorção específicas a um sistema utilizando técnicas experimentais e/ou DFT e MD[2];
- Simular sistemas complexos como filmes finos, materiais porosos e/ou catalisadores com geometria complexa.

AGRADECIMENTOS

O autor 2 agradece o suporte financeiro fornecido pela FAPEG por meio da bolsa FAPEG de doutorado, que tem sido essencial para o avanço desta pesquisa.

³ ABahamon, D.; Vega, L. F. Pharmaceutical Removal from Water Effluents by Adsorption on Activated Carbons: A Monte Carlo Simulation Study. Langmuir 2017, 33 (42), 11146-11155.

¹ E Fichthom, K. A. Weinberg, W. H. Theoretical Foundations of Dynamical Monte Carlo Simulations. J. Chem. Phys. 1991, 95, 1090-1096.

² Daigle, A. D.; BelBruno, J. J. Density Functional Theory Study of the Adsorption of Nitrogen and Sulfur Atoms on Gold (111), (100), and (211) Surfaces. J. Phys. Chem. C 2011, 115 (46), 22987-22997.