Spectrum: Set of eigenvalues of A Spectral Theorem: A real Symmetric matrix AERnxn has the following properties:

(i) The number of real eigenvalues

= n (Counting the AM) (ii) Dimension of the eigenspace for each eigenvalue λ = Algebraic multiplicity of λ

(iii) the eigenvectors corresponding to distinct eigenvalue are mutually orthogonal.

(iv) A is ORTHOGONALLY DIAGONALLZABLE

For RSM A, with distinct eigenval, $A x = (\lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \dots + \lambda_n u_n u_n^T) x$ Quadratic forms: For a pair of numbers (χ, χ_2) where $u_i \in \mathbb{R}^n = u_i = u_{i}$ we define $H(\chi_1,\chi_2) = a\chi_1^2 + 2b\chi_1\chi_2 + c\chi_2^2$ $A = \sum_{i=1}^{n} \lambda_i u_i u_i^T$ H(x1, x2): Quadratic form. → Spectral decomposition
of A.

$$H(\chi_{1},\chi_{2}) = \alpha \chi_{1}^{2} + \lambda b \chi_{1} \chi_{2} + C \chi_{2}^{2}$$

$$= \alpha \chi_{1} + b \chi_{2} \qquad \chi_{1}$$

$$= b \chi_{1} + C \chi_{2} \qquad \chi_{2}$$

$$= (\chi_{1} \quad \chi_{2}) (\alpha \chi_{1} + b \chi_{2})$$

$$= (\chi_{1} \quad \chi_{2}) (\alpha \chi_{1} + b \chi_{2})$$

$$= (\chi_{1} \quad \chi_{2}) (\alpha \quad b \quad \chi_{1})$$

$$= (\chi_{1} \quad \chi_{2}) (\alpha \quad b \quad \chi_{1})$$

$$= (\chi_{1} \quad \chi_{2}) (\alpha \quad b \quad \chi_{1})$$

$$= (\chi_{1} \quad \chi_{2}) (\alpha \quad b \quad \chi_{2}).$$

The quadratic form $H(x_1, x_2) = x^T A x$ $\chi: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad A = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$

A: The matrix of the quadratic form.

Suppose we have	The new matrix of	the quadratic
$\chi = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = Py = P \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}.$	form is PTAP.	l
$\chi = \langle \chi_i \rangle = Py = P(y_i)$	Parall:	
$\langle \chi_2 \rangle$ $\langle y_2 \rangle$	A: Symmetric	
$y = P^{-1}x.$	\Rightarrow	
$Q(\chi_1,\chi_2) = \chi^T A \chi$	we have an outhog	oual matrix P
$ \mathcal{G}(\chi_1, \chi_2) = \chi^T A \chi $ $ = (Py)^T A Ry $	8.t	
	$P^{T}AP = D$.	Recall For RSMA,
$= y^{T} P^{T} A P y.$		$A = PDP^T$
		D = PTAP.
		1

=> yT PTAPy = yT Dy	with no cross-term.	Y ^T D Y
Principal Axes Theorem:		$(y, y_2)(d, 0)(y_1)$ $(y, y_2)(d, 0)$
		0 dz/ 42/
Let AER ^{nxn} be a Symmetric		$= (y_1 \ y_2) \left(\frac{dy_1}{d_2 y_2} \right)$
		d242/
matrix,		$\Rightarrow d_1 y_1^2 + d_2 y_2^2$
Then, we have an orthogonal		XT Ax
Change of variable		$= \alpha \chi_1^2 + 2b \chi_1 \chi_2 + C \chi_2^2$
Charge of variable X = Py, that transforms		
the quadratic form 2 Ax to yTDy;		

A quadratic form Q is called (iii) Indefinite: $Q(\vec{z})$ assumes both positive and negative values.

(i) Positive definite if $Q(\vec{z}) > 0$ for all $\vec{z} \neq \vec{0}$ (iv) Positive Semidefinite: $Q(\vec{z}) > 0$ for all \vec{z} (v) Negative Semidefinite: $Q(\vec{z}) < 0$ for all \vec{z} (ii) Negative Definite if $Q(\vec{z}) < 0$ for all $\vec{z} \neq \vec{0}$

det A be any real Symmetric let $\vec{x} \in \mathbb{R}^n$ matrix. Then the quadratic $\|\mathbf{x}\| = \mathbf{x}^T \mathbf{x} = \mathbf{x}_1^2 + \mathbf{x}_2^2 + \cdots + \mathbf{x}_n^2$ form $\mathbf{x}^T A \mathbf{x}$ is = 0 if $\vec{x} = \vec{0}$ > 0 if $\vec{z} \neq \vec{0}$ (i) Positive definite if the eigenval of \mathbf{x} are all positive

(ii) Negative definite if the eigenval of \mathbf{x} are all negative

(iii) Indefinite if A has both positive and negative eigen val

Froof:

For a seal Symmetric matrix A, by the principal axes theorem, we have an Orthogonal change of variable $\vec{x} = P\vec{y} + 3 \cdot t$ $\vec{x} = P\vec{y} + 3 \cdot t$ $\vec{x} = x^T Ax = y^T Dy$ $\vec{x} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2$

where $\lambda_1 \dots \lambda_n$ are the eigenval of the RSM A.