MATHS 315 Assignment 4

Jason Cairns - 8092261

October 7, 2018

1

(a)

1.	$(\forall x \neg Ax \to \neg Ax)$	K4
2.	$((\forall x \neg Ax \rightarrow \neg Ax) \rightarrow (Ax \rightarrow \neg \forall x \neg Ax))$	Tautology Instance
3.	Ax	Hypothesis
4.	$(Ax \to \neg \forall x \neg Ax)$	1,2 Modus Ponens
5.	$\neg \forall x \neg Ax$	3,4 Modus Ponens
6.	$\exists x A x$	5, Abbreviation

(b)

We have shown that $\{Ax\} \vdash_{K_L} \exists xAx$. Therefore we may add a hypothesis Bx such that $\{Ax, Bx\} \vdash_{K_L} \exists xAx$. As x was not generalised over as a free variable (no generalisation was used at all in the derivation), we have by the deduction theorem that $\{Ax\} \vdash_{K_L} (Bx \to \exists xAx)$

$\mathbf{2}$

As $\Sigma \cup \{(A \vee (B \wedge C))\}$ is a consistent set of closed wffs, by theorem 4.20, there is some model \mathcal{I} such that $\mathcal{I} \models D$ for every $D \in \Sigma \cup \{(A \vee (B \wedge C))\}$, by definition 4.10.

Therefore the model $\mathcal{I} \vDash (A \lor (B \land C))$, this being an abbreviation for $\mathcal{I} \vDash_v (\neg A \to (B \land C))$ for every \mathcal{I} -assignment v. By Definition 3.10, 5, we have that $\mathcal{I} \nvDash_v \neg A$ or $\mathcal{I} \vDash_v (B \land C)$

iff $\mathcal{I} \vDash_v A$, due to A being derived from a closed, consistent set of wffs, or $\mathcal{I} \vDash_v B$ and $\mathcal{I} \vDash_v C$.

So either \mathcal{I} is a model for $\Sigma \cup \{A\}$ or $\Sigma \cup \{B\}$.

As $\Sigma \cup \{A\}$ has a model, and is a closed set of wffs, it is consistent, by proposition 4.18. Conversely, the same is true of $\Sigma \cup \{B\}$. So either $\Sigma \cup \{A\}$ or $\Sigma \cup \{B\}$ is consistent.

3

G1.
$$\forall x (Px \lor Lx)$$

G2.
$$\neg \exists x (Px \land Lx)$$

(b)

G3.
$$\exists x P x$$

G4.
$$\exists yLy$$

(c)

(d)

G6.
$$(((Pp_1 \wedge Ll_2) \wedge \neg Ep_1p_2) \rightarrow \exists l((Ll \wedge Ilp_1) \wedge Ilp_2))$$

(e)

If \mathcal{I} is a normal model of S with domain D and p_1 and p_2 are points of \mathcal{I} (in other words, $p_1, p_2 \in D$ and $P^{\mathcal{I}}p_1, P^{\mathcal{I}}p_2$ both hold and $p_1 \neq p_2$) then there is a unique $l \in D$ such that $L^{\mathcal{I}}, I^{\mathcal{I}}lp_1$ and $I^{\mathcal{I}}lp_2$ all hold.

As \mathcal{I} is a normal model, it must satisfy axioms G1 - G6, as well as K1 - K5 and E1 - E3, with E interpreted as equality.

Given two unique points p_1 and p_2 , by axiom G6 we must have under the normal model at least one line l incident with both points, such that $L^{\mathcal{I}}, I^{\mathcal{I}}lp_1$ and $I^{\mathcal{I}}lp_2$ all hold.