Introduction To Machine Learning

Waleed Alsarhani

Eyad Alqaysi

Agenda

1

Αl

Definition of AI, examples and false information about it

2

Machine Learning

Definition, examples, idea, disadvantages and advantages 3

Machine Learning Algorithms

Types, definitions, models and examples 4

Linear Regression

Definition, types, examples, equations, concept of Optimization and Gradient Descent

What is Al?

Al is the Systems or devices that simulate human intelligence to perform tasks.

Examples Of Al

mail

Message classification process

Social media

View content based on interests

False Information

1

Artificial intelligence delivers magical results instantly

Al needs time, money, goal and planning in order to output the excellent results

2

the more data the better

Enterprise AI needs smart data

3

Artificial intelligence does not need humans

Al is not about bots taking over

Machine Learning

What is Machine Learning?

Machine learning is a branch of AI that is concerned with the design and development of algorithms and techniques that allow computers to have the "learning" advantage.

Examples Of ML

Healthcare

Detection of cancerous tumors

Retail sales

Stock management and sales increase

Idea Of Machine Learning

Child and Machine

Advantages

1

Work without human intervention after setup

2

More accurate results

3

Dealing with different data of different sizes

Disadvantages

1

Expensive and time consuming

2

It requires a large initial investment if the devices are set up on premises 3

It is difficult to correctly interpret the results without the help of experts

Machine Learning Algorithms

What is Machine Learning Algorithms?

A machine learning algorithm is the method by which the AI system performs its task

Types of machine learning algorithms

1

Supervised Learning

Give the machine the inputs and outputs

2

Unsupervised Learning

Give the machine the inputs

3

Reinforcement learning

principle of reward and punishment

Types of machine learning algorithms

Determining whether the tumor is benign based on the medical image

Forecasting your company's revenue next year, based on many performance metric

Identifying topics in a set of blog posts

Linear Regression

Linear regression equation

values of Y predicted ↑/↓ for Y scores for each unit increase in X

level of Y when X is 0

Slope

Slope

Linear regression

Hours	Grade on
Studied	Exam
2.00	69.00
9.00	98.00
5.00	82.00
5.00	77.00
3.00	71.00
7.00	84.00
1.00	55.00
8.00	94.00
6.00	84.00
2.00	64.00

Input X	Inputs
Output Y	Outputs
Rows m	Rows
Features n	Elements
h(X)	Predicted Value
Cost J	error value
Theta	X Transactions

Cost Function

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

Theta 0 =5 Theta 1 =2
$$h(x) = 5+2x$$

Х	Y	h(X)	h(X)-y	(h(X)-y)^2
1	7			
2	8			
2	7			

Best Fit Line

Optimization

aims to search for the best choices according to (constraints) to get the best results

(maximization) or (minimization).

It is an optimization algorithm that aims to reach the lowest point in theta so that the cost function is the lowest

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

repeat until convergence {
$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$
}

Correct: Simultaneous update

$$\rightarrow$$
 temp0 := $\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$

$$\rightarrow$$
 temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$\rightarrow \theta_0 := \text{temp0}$$

$$\rightarrow \theta_1 := temp1$$

Incorrect:

$$\Rightarrow$$
 templ := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$\rightarrow \theta_1 := \text{temp1}$$

In the Gradient Descent algorithm, the direction will be directed downward, so if the differential value is positive, then the direction will be to the left (as in the figure), if it is negative, then the direction will be to the right, and it will stop when zero is reached, which means that the bottom will be reached Because there is no change

Cost

Model Parameters

 $heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x_i) - y_i)$

Theta 0 = 1 Theta 1 = 3

Alpha=0.002

h(x) = 1 + 3x

Home	Price	h(X)	h(X)-y
100	300		
95	285		
90	270		