Sample Solution

Solution 1. i) let $A_1, \ldots, A_n \in \mathscr{A}$, and then by definition $\bigcup_{1 \leq i \leq n} A_n \in \mathscr{A}$, since $A_i^c \in \mathscr{A}$ for all i. Hence,

$$\bigcup A_i^c = (\bigcap A_i)^c \in \mathscr{A}$$

implies

$$\bigcap A_i \in \mathscr{A}$$

where $i \in \{1, \dots, n\}$

- ii) Just use the complement axiom twice
- iii) Notice that $A\backslash B=A\cap B^c$ and $A\triangle B=(A\backslash B)\cup (B\backslash A)$