

# Lecture 10: Layout & Stick Diagrams

### **Inverter Top View**

- Transistors and wires are defined by masks
- Cross-section taken along dashed line



#### **Inverter Cross-section**

- Substrate must be tied to GND and n-well to V<sub>DD</sub>
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps



#### **Gate Layout**

- Layout can be very time consuming
  - Design gates to fit together nicely
  - Build a library of standard cells
- Standard cell design methodology
  - V<sub>DD</sub> and GND should abut (standard height)
  - Adjacent gates should satisfy design rules
  - nMOS at bottom and pMOS at top
  - All gates include well and substrate contacts

## Standard Cell Layout

Standard Height



Bus connects to neighboring cells

Well connects to neighboring cells

Well connects to neighboring cells

Bus connects to neighboring cells

## Simplified Design Rules

Conservative rules to get you started



#### **Source and Drain**

- We will follow the convention: current always flows from top to bottom in an electronic circuit
  - For pMOS transistor:
    - Carrier: holes (+)
    - Top node: Source
    - Bottom node: Drain
  - For nMOS transistor:
    - Carrier: electrons (-)
    - Top node: Drain
    - Bottom node: Source

#### **Example: Inverter**



#### **3-input NAND Gate**

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

#### **Example: NAND3**

- ☐ Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V<sub>DD</sub> rail at top
- Metal1 GND rail at bottom
- $\Box$  32  $\lambda$  by 40  $\lambda$



#### **Example: NAND3**



### **Stick Diagrams**

- Stick diagrams help plan layout quickly
  - Need not be to scale
  - Draw with color pencils or dry-erase markers





## **Wiring Tracks**

- ☐ A wiring track is the space required for a wire
  - $-4 \lambda$  width,  $4 \lambda$  spacing from neighbor =  $8 \lambda$  pitch
- ☐ Transistors also consume one wiring track





## Well spacing

- $\Box$  Wells must surround transistors by 6  $\lambda$ 
  - Implies 12  $\lambda$  between opposite transistor flavors
  - Leaves room for one wire track



#### **Area Estimation**

- ☐ Estimate area by counting wiring tracks
  - Multiply by 8 to express in  $\lambda$



### **Example: 03AI**

$$\square Y = \overline{(A+B+C)} \boxtimes D$$



#### **Example: 03AI**

☐ Sketch a stick diagram for O3AI and estimate area

$$- Y = \overline{(A+B+C)} \boxtimes D$$



### **Example: NOR4**

#### **Example: NOR4**

