Uncertainty on Asynchronous Time Event Prediction

Marin Biloš*, Bertrand Charpentier*, Stephan Günnemann

tl;dr

- ☐ Complex evolution of prediction for the next event
- ☐ Real time **uncertainty estimation** in asynchronous event prediction

Asynchronous events

- ☐ Discrete events occurring irregularly over time
- ☐ At a given time, the most probable event can change

Research questions

- (1) Prediction: At a given time, what event is likely to occur?
- (2) Uncertainty estimation: How sure are we in our prediction?

(2) Uncertainty estimation

Model overview

- 1. For each class c, generate M pseudo points $(w_j^{(c)}, \tau_j^{(c)}, y_j^{(c)})$ based on a hidden state of an RNN whose input is a sequence.
- 2. Fit a complex evolution of the predicted categorical distribution $p(\tau) \sim P(\theta(\tau))$. The distribution over the simplex $P(\theta(\tau))$ gives certainty localized around pseudo points.

^{*}Equal contribution

Model 1: Logistic Normal via Weighted Gaussian Process

The pseudo points $(\tau_j^{(c)}, y_j^{(c)})$ weighted with $w_j^{(c)}$ are used to generate a Weighted Gaussian Process in the logit-space. The weights $w_j^{(c)}$ allow to discard unnecessary training points in Gaussian Process.

(Kernel)
$$k'(\tau_1,\tau_2)=min(w_1,w_2)k(\tau_1,\tau_2)$$

Model 2: Dirichlet via Function Decomposition

The pseudo points $(w_j^{(c)}, \tau_j^{(c)}, \sigma_j^{(c)})$ are used to describe the evolution of the Dirichlet parameters over time via basis function decomposition.

$$\log \alpha_c(\tau) = \sum_{j=1}^{M} w_j^{(c)} \cdot N(\tau | \tau_j^{(c)}, \sigma_j^{(c)}) + \vartheta$$
 Prior

Effective number of observations of class c at time au

Basis function decomposition

The distribution $p(\tau) \sim Dir(\alpha_c(\tau))$ follows a Dirichlet dsitribution.

Uncertainty Cross Entropy

 \Box The classic Cross Entropy loss looks only at the mean of the distribution $P(\theta(\tau))$:

$$\mathcal{L}_i^{\textit{UCE}} = \mathrm{H}[m{p}_i^*, \overline{m{p}}_i]$$
 where $\overline{m{p}}_i(au) = \mathbb{E}_{m{p}_i \sim P_i(heta(au_i))}[m{p}_i]$

Not suited for uncertainty estimation

 \Box The Uncertainty Cross entropy loss looks at the distribution $P(\theta(\tau))$:

$$\mathcal{L}_{i}^{UCE} = \mathbb{E}_{\boldsymbol{p}_{i} \sim P_{i}(\theta(\tau_{i}^{*}))}[H[\boldsymbol{p}_{i}^{*}, \boldsymbol{p}_{i}]]$$

Take care of uncertainty estimation

☐ Regularizer adjust uncertainty estimation of out-of-distribution data:

$$r_c = \alpha \int_0^T (\mu_c)^2 d\tau + \beta \int_0^T (\vartheta - \sigma_c^2) d\tau$$
 Computed by sampling Pushes mean to 0 Pushes variance to ϑ

Experiment: Visualization

Experiment: Prediction

Experiment: Uncertainty

