Extract the structure of datasets with Al and graph theory

Content

Graph Theory

- Nearest Neighbor Graph
- Limitation

Al

- Curse of Dimensionnality
- Solutions
- Laplacian Auto-Encoder

Combine AI & Graph Theory

- Overview
- Examples

Nearest Neighbor Graph

- find local patterns
- detect groups
- navigate the dataset
- detect anomalies

Nearest Neighbor Graph

Mapping based on distance measures

... rely on pairwise distances

Limitation

When is nearest neighbour meaningful?

The Curse of Dimensionality

By increasing the number of dimensions

- Euclidean distances are less meaningfull
- Data is more difficult to visualize

Solutions

- Rely on pattern recognition techniques that are robust to high dimensions
- Different data representation
 - Hand-crafted features
 - Extract subset of features
 - Linear projection
 - Non-linear projection

Laplacian Auto-Encoder

Latent Space Graph

Cup Example

Dataset

- 10'000 pictures
- No labels

Setup

- Translation
- Rotation

Encode Translation

Encode Rotation

Detect Anomalies

Complex Structure Example

Cluster Example PANDA 16

PANDA INDUSTRIALAI

Panda GmbH Zeughausmarkt 33 20459 Hamburg

040 524 760 25 www.panda.technology