Module: Analyse1

TD N°1

01/10/2023

(L.E) = Laisser aux étudiants.

Exercice 1:

- 1) Pour $p,q\in\mathbb{Q}$, montrer que $p+q\in\mathbb{Q}$. (i.e. la somme de deux rationnels est un rationnel)
- 2) Est-ce que la somme de deux nombres irrationnels est un nombre irrationnel ? Donner un contre-exemple.
- 3) Montrer que $\sqrt{2} \notin \mathbb{Q}$, puis montrer que $2 3\sqrt{2} \notin \mathbb{Q}$ et $1 \frac{1}{\sqrt{2}} \notin \mathbb{Q}$. (*L. E*)
- **4)** Montrer par récurrence l'inégalité suivante, pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} < \sqrt{n} + \sqrt{n+1} - 1$$

<u>fxercice 2:</u>

- 1) Soit le nombre rationnel : x = 0.234234234... Comparer les nombres 1000x et x, puis écrire x sous frome d'une fraction.
- 2) Ecrire les nombres suivants sous forme d'une fraction : (L. E)

$$a = 0.1212$$
 ; $b = 0.12\overrightarrow{12}$... ; $c = 78.33\overrightarrow{456}$...

3) Montrer que l'écriture décimale d'un nombre rationnel est équivalente à l'écriture fractionnaire.

Fxetcice 3: (Rattrapage 2022/2023)

Pour $x \in \mathbb{R}$, on note par $\overline{E}(x)$ (où [x]) la partie entière supérieure de x définie par:

 $\bar{E}(x) = \min\{k \in \mathbb{Z} \text{ , } k \ge x\} \text{ , dans ce cas on a : } \bar{E}(x) - 1 < x \le \bar{E}(x) \text{ .}$

- 1) Calculer $E(\pi)$, $E(-\frac{1}{2})$ et $\bar{E}(\pi)$, $\bar{E}(-\frac{1}{2})$.
- **2)** Pour tout entier naturel n pair, calculer : $E\left(\frac{n}{2}\right)$ et $\bar{E}\left(\frac{n}{2}\right)$.
- **3)** Pour tout entier naturel m, calculer : $E\left(m+\frac{1}{2}\right)$ et $\bar{E}\left(m+\frac{1}{2}\right)$.
- 4) En traitant les cas pair et impair, déduire que :

$$E\left(\frac{n}{2}\right) + \bar{E}\left(\frac{n}{2}\right) = n$$
 , $\forall n \in \mathbb{N}$

<u>fxetcice 4:</u> (L.E)

Soient $n \in \mathbb{N}^*$, $\alpha \in \mathbb{Z}$, $\beta \in \mathbb{R} \setminus \mathbb{Z}$, $x \in \mathbb{R}$. Montrer les formules suivantes :

$$E(\alpha) + E(-\alpha) = 0$$
 ; $E(\beta) + E(-\beta) = -1$; $E\left(\frac{x}{2}\right) + E\left(\frac{x+1}{2}\right) = E(x)$

<u>fxetcice 5: (L.E)</u>

Soient $x, y \in \mathbb{R}$. Montrer les inégalités suivantes:

1)
$$||x| - |y|| \le |x + y| \le |x| + |y| \le |x + y| + |x - y|$$
.

2)
$$1 + |xy - 1| \le (1 + |x - 1|)(1 + |y - 1|)$$
.

Exercice 6: Dans chacun des cas suivants, préciser si la partie A de \mathbb{R} admet une borne supérieure, une borne inférieure, un plus grand, un plus petit élément et déterminer s'il y a lieu :

1)
$$A = [0,1[$$

$$2) \quad A = \left\{ \frac{1}{2n} \quad , \quad n \in \mathbb{N}^* \right\}$$

3)
$$A = \left\{2 + \frac{(-1)^n}{n} , n \in \mathbb{N}^*\right\}$$
 (*L. E*)

4)
$$A = \bigcup_{n \in \mathbb{N}^*} \left[0, 1 - \frac{1}{n^2} \right]$$

5)
$$A = \left\{\sin\frac{n\pi}{3}, n \in \mathbb{N}\right\}$$
 (L. E)

fxetcice 7: Pour les ensembles suivants :

$$\left\{ \frac{(-1)^n}{n} , \quad n \in \mathbb{N}^* \right\} \quad ; \quad \left\{ \frac{1}{x} , 1 \le x \le 2 \right\} \quad (\textbf{\textit{L}}.\textbf{\textit{E}}) \quad ; \quad [0,1[\, \cup \,]2\, ,3]$$

- 1) Est-ce qu'il est majoré ? minoré ?
- 2) Déterminer l'ensemble des majorants et l'ensemble des minorants.
- 3) Existe-il: le max, le sup, le min, l'inf?

Fxetcice 8: (Examen 2022/2023)

Soit l'ensemble définie par :

$$E = \left\{ (-1)^n + \frac{1}{n^2} \quad , \qquad n \in \mathbb{N}^* \right\}$$

- 1) Montrer que E est la réunion de deux ensembles E_1 , E_2 .
- 2) Montrer que E_1 et E_2 sont bornés, et déterminer (s'ils existent) la borne supérieure, la borne inférieure, le maximum et le minimum de chaque ensemble.
- 3) Déduire que E est borné, et déterminer (s'ils existent) la borne supérieure, la borne inférieure, le maximum et le minimum.

Indication: $\sup(A \cup B) = \max(\sup A, \sup B)$, $\inf(A \cup B) = \min(\inf A, \inf B)$