Aprendizado por Reforço

AULA - 2

Processos de Decisão de Markov (MDP)

Retrospectiva do último episódio

Retrospectiva do último episódio

- Agente
 - Processa observações, escolhe ações, e aprende
- Ambiente
 - Elemento com o qual o agente interage (tudo que não é o agente)
- Observação
 - Descrição do estado do ambiente (pode ser parcial)
- Ação
 - o Forma do agente interagir com o ambiente
- Recompensa
 - Diz o quão bom é o estado do ambiente (guia o aprendizado)

Relação Agente e Ambiente

- Passo/timestep
- Transições
- Episódios (tamanho T)

Notações Importantes

- Ação $a \in \mathcal{A}$
 - \circ ação no timestep t: a_t
 - \circ Espaço de Ações: \mathcal{A} ex: [cima, baixo, esq., dir.]
- Estado $s \in \mathcal{S}$
 - \circ estado no timestep t: s_t
 - \circ Espaço de Estados: ${\cal S}$ ex: (leituras de um array de sensores)
- ullet Recompensa $r\in \mathcal{R}$
 - \circ recompensa no timestep t: r_t
 - \circ Domínio da função de Recompensa: ${\mathcal R}$

Definindo Matematicamente o Ambiente

- Probabilidade de transição
- ullet Probabilidade do próximo estado sers e a recompensa r dado que o estado anterior fois e a ação a

- Dinâmicas do ambiente
- O próximo estado depende APENAS do estado anterior e da ação tomada

	a1	a2	аЗ
A	P(A) = 1.0	P(A) = 0.0	P(A) = 0.0
	P(B) = 0.0	P(B) = 1.0	P(B) = 0.0
	P(C) = 0.0	P(C) = 0.0	P(C) = 1.0
В	P(A) = 0.0	P(A) = 1.0	P(A) = 1.0
	P(B) = 1.0	P(B) = 0.0	P(B) = 0.0
	P(C) = 0.0	P(C) = 0.0	P(C) = 0.0
С	P(A) = 0.0	P(A) = 0.5	P(A) = 1.0
	P(B) = 0.0	P(B) = 0.5	P(B) = 0.0
	P(C) = 1.0	P(C) = 0.0	P(C) = 0.0

Propriedade Markoviana

O passado é irrelevante dado o presente

A informação necessária para tomar uma decisão está completamente presente na representação do estado

Definindo Matematicamente o Agente

- Política de decisão estocástica
- ullet Distribuição de probabilidade de ações a dado o estado s

$$\pi(a|s)$$

Função de valor seguindo a política pi

$$V_{\pi}(s)$$
 $Q_{\pi}(s,a)$

Qual o objetivo do Aprendizado por Reforço?

Maximizar o sinal de recompensa ao longo do tempo

O que é Recompensa Atrasada?

Quando há relação de causalidade entre uma ação em um passo t e uma recompensa em um passo t+n

O que é Recompensa ao longo do tempo?

Retorno

$$R_t = r_{t+1} + r_{t+2} + \dots + r_T$$

$$R_t = r_{t+1} + R_{t+1}$$

T é o passo final de um MDP finito

E se o MDP for infinito?

Fator de Desconto

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

para: $0 \le \gamma < 1$

$$\sum_{k=0}^{\infty} \gamma^k = \frac{1}{1-\gamma}$$

Usando o Fator de Desconto... Sempre

- Noção temporal na recompensa
- "Punir" ao demorar para adquirir uma recompensa boa

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$$

$$R_t = r_{t+1} + \gamma R_{t+1}$$

Função de Valor

Função de valor estima a expectativa do Retorno

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_t|s_t = s]$$

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_t|s_t = s, a_t = a]$$

 Estando subordinada à política, ela pode ser uma forma de avaliar a política

Equação de Bellman

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t}|s_{t} = s]$$

$$V_{\pi}(s) = \mathbb{E}_{\pi}[r_{t+1} + \gamma R_{t+1}|s_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)[r_{t+1} + \gamma \mathbb{E}_{\pi}[R_{t+1}|s_{t} = s]]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a)[r_{t+1} + \gamma V_{\pi}(s')]$$

Função de Valor Ótima

 A melhor função de valor estima o retorno dos estados perfeitamente, inclusive com as dinâmicas do ambiente consideradas.

• State value function

$$V_*(s)$$

State-action value function

$$Q_*(s,a)$$

Política Ótima

• A melhor política sempre escolhe os estados com maior retorno.

Premissa dos Algoritmos Value-Based

- A melhor política segue e resulta na melhor função de valor.
- Tendo a melhor função de valor, tem-se a melhor política.

$$V_*(s) = \max_{a \in \mathcal{A}} Q_{\pi_*}(s, a)$$

A melhor política segue a melhor função de valor

Equação de Bellman para V ótimo

$$V_*(s) = \max_{a \in \mathcal{A}} Q_{\pi_*}(s, a)$$

$$= \max_{a} \mathbb{E}_{\pi_*}[r_{t+1} + \gamma R_{t+1} | s_t = s, a_t = a]$$

$$= \max_{a} \mathbb{E}_{\pi_*}[r_{t+1} + \gamma V_*(s_{t+1}) | s_t = s, a_t = a]$$

$$= \max_{a} \sum_{s',r} p(s', r | s, a)[r_{t+1} + \gamma V_*(s')]$$

Equação de Bellman para Q ótimo

$$Q_*(s,a) = \mathbb{E}[r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1},a') | s_t = s, a_t = a]$$

$$Q_*(s,a) = \sum_{s} p(s',r|s,a)[r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1},a')]$$

Como a equação de Bellman ajuda no aprendizado se nós não temos as dinâmicas do ambiente?

Equação de Bellman

 Se não temos Q* nem p, mas temos uma estimativa de Q calculada a partir da média dos retornos experienciados, eventualmente Q->Q*

$$Q_*(s, a) = \sum_{s' r} p(s', r|s, a) [r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1}, a')]$$

Para atualizar uma estimativa de Q

Leiam:

Richard S. Sutton and Andrew G. Barto - Reinforcement Learning: An Introduction - Second Edition

Capítulo 3