G12 Chemistry: Class 15 Homework

1. Determine the oxidation number of the specified number of the specific element in each of the following. **[6 marks]**

- a) N in NF₃
- b) Cr in CrO₄²-
- c) C in C₁₂H₂₂O₁₁

d) S in S₈

e) P in P₂O₅

f) C in CHCl₃

2. Determine the oxidation number of each element in each of the following. [9 marks]

- a) H₂SO₃
- b) OH-

c) HPO₄²⁻

- d) AsO_3^{3-}
- e) $S_4O_6^{2-}$
- f) $(NH_4)_2C_2O_4$

- g) XeO₃F⁻
- h) BaH₂
- i) LiNO₂

3. As stated in rule 4, oxygen does not always have its usual oxidation number of -2. Determine the oxidation number of oxygen in each of the following. [2 marks]

- a. The compound OF₂
- b. The peroxide ion O_2^{2-}

4. Determine the oxidation number of each element in each of the following ionic compounds by considering the ions separately. Hint: one formula unit of the compound in part (c) contains two identical monatomic ions and one polyatomic ion. [3 marks]

- a) Al(HCO₃)₃
- b) (NH₄)₃PO₄
- c) K₂H₃IO₆

- 5. Determine whether each reaction is a redox reaction. For redox reactions, identify the oxidizing agent and the reducing agent. [7 marks]
 - a) $H_2O_2 + 2Fe(OH)_2 \rightarrow 2Fe(OH)_3$
 - b) $PCI_3 + 3H_2O \rightarrow H_3PO_3 + 3HCI$
 - c) $Br_2 + 2ClO_2^- \rightarrow 2Br^- + 2ClO_2$
 - d) $2NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$
 - e) $2HBr + Ca(OH)_2 \rightarrow CaBr_2 + 2H_2O$
- 6. Balance each of the following half-reactions under acidic conditions. [3 marks]
 - a) $ClO_3^- \rightarrow Cl^-$
 - b) NO \rightarrow NO₃
 - c) $O_2 \rightarrow H_2O_2$

- 7. Balance each of the following half-reactions under basic conditions. [3 marks]
 - a) $MnO_4^- \rightarrow MnO_2$
 - b) $CN_- \rightarrow CNO_-$
 - c) $CO_3^{2-} \rightarrow C_2O_4^{2-}$
- 8. Balance each of the following ionic equations for acidic conditions. Identify the oxidizing agent and the reducing agent in each case. [6 marks]
 - a) $MnO_4^- + Ag \rightarrow Mn^{2+} + Ag^+$

b) $Hg + NO_3^- + Cl^- \rightarrow HgCl_4^{2-} + NO_2$

- 9. Balance the following ionic equations for basic conditions. Identify the oxidizing agent and the reducing agent in each case. **[6 marks]**
 - a) $CN^{-} + MnO_4^{-} \rightarrow CNO^{-} + MnO_2$

b) $CIO^{-} + CrO_{2}^{-} \rightarrow CrO_{4}^{2-} + Cl_{2}$

- 10. Use the oxidation-number method to balance the following equations. [5 marks]
 - a) $S^{2-}(aq) + I_2(s) \rightarrow SO_4^{2-}(aq) + I^{-}(aq)$ (basic solution)

b) $IO_3^-(aq) + HSO_3^-(aq) \rightarrow SO_4^{2-}(aq) + I_2(s)$ (acidic solution)