Examen de Mathématiques tronc commun

Jeudi 12 décembre 2019, durée 2h30

Téléphones interdits. Calculatrices interdites. Deux feuilles de notes A4 recto-verso et les formulaires primitives et développements limités de fonctions usuelles sont autorisés. Il sera particulièrement tenu compte du soin apporté à la rédaction. Le barème est indicatif, et pourra être légèrement modifié.

Exercice 1. (5 points)

- 1. Calculer l'intégrale $\int_{1}^{2} \frac{\ln(x)}{x^{3}} dx$.

 On choisit $u'(x) = \frac{1}{x^{3}}$ et donc $u(x) = -\frac{1}{2x^{2}}$ et $v(x) = \ln(x)$ et donc $v'(x) = \frac{1}{x}$.

 On a alors $\int_{1}^{2} \frac{\ln(x)}{x^{3}} dx = \left[-\frac{\ln(x)}{2x^{2}} \right]_{1}^{2} + \frac{1}{2} \int_{1}^{2} \frac{1}{x^{3}} dx = \left[-\frac{\ln(x)}{2x^{2}} \frac{1}{4x^{2}} \right]_{1}^{2}$ et donc $\int_{1}^{2} \frac{\ln(x)}{x^{3}} dx = \frac{3}{16} \frac{\ln(2)}{8}$
- 2. (a) Déterminer la décomposition en éléments simples de $\frac{1}{t^2-1}$ On commence par factoriser le dénominateur. On a $t^2-1=(t-1)(t-1)$ et donc : $\frac{1}{t^2-1}=\frac{a}{t-1}+\frac{b}{t+1}=\frac{1}{2}\left(\frac{1}{t-1}-\frac{1}{t+1}\right).$

Pour trouver a et b, il suffit de mettre au même dénominateur $\frac{a}{t-1} + \frac{b}{t+1}$ et de faire une identification.

- (b) En effectuant le changement de variable $t = \sqrt{1 + e^x}$, calculer $\int_{\ln 3}^{3 \ln 2} \frac{1}{\sqrt{1 + e^x}} dx$ $t = \sqrt{1 + e^x}$ donc $dt = \frac{e^x}{2\sqrt{1 + e^x}} dx = \frac{t^2 1}{2t} dx$ donc $dx = \frac{2t}{t^2 1} dt$. On a donc : $\int_{\ln 3}^{3 \ln 2} \frac{1}{\sqrt{1 + e^x}} dx = \int_{2}^{3} \frac{1}{t} \frac{2t}{t^2 1} dt = \int_{2}^{3} \frac{2}{t^2 1} dt = \int_{2}^{3} \frac{1}{t 1} \frac{1}{t + 1} dt = \left[\ln\left(\frac{t 1}{t + 1}\right)\right]_{2}^{3} = \ln(\frac{3}{2})$
- 3. Étudier la convergence des intégrales suivantes :

$$\int_0^{+\infty} \frac{1 + \cos(2t)}{t^2 + 1} dt; \qquad \int_0^1 \frac{1}{t^3} dt$$

La fonction $t\mapsto \frac{1+\cos{(2t)}}{t^2+1}$ est continue sur $[0,+\infty[$. Ensuite $\forall t\geq 0$ on a $\left|\frac{1+\cos{(2t)}}{t^2+1}\right|\leq \frac{2}{1+t^2}$ et l'intégrale $\int_0^1 \frac{2}{1+t^2}$ converge (Il suffit de voir qu'une primitive de $t\mapsto \frac{1}{1+t^2}$ est \arctan ou comparer pour $t\geq 1$ à une intégrale de Riemmann.

La deuxième intégrale est divergente, c'est du cours.

Exercice 2. (4 points)

Résoudre les équations différentielles suivantes :

1.
$$y' + 2y = x^2 - 2x + 3$$
, pour $x \in \mathbb{R}$. On commence d'abord par la résolution de l'équation homogène $y' + 2y = 0$. Les solutions sont les fonctions $x \mapsto \lambda e^{-2x}$ où $\lambda \in \mathbb{R}$.

Ensuite, on cherche une solution particulière y_p . Comme il s'agit d'une équation à coefficients constants et que le second membre est un polynôme de degré, on cherche alors une solution particulière sous la forme $y_p(x) = ax^2 + bx + c$. En injectant dans l'équation on trouve : $2ax^2 + (2a + 2b)x + b + 2c = x^2 - 2x + 3$. On obtient par identification $a = \frac{1}{2}, b = -\frac{3}{2}$ et $c = \frac{9}{4}$. Les solutions générales de l'équation sont donc $x \mapsto \lambda e^{-2x} + \frac{1}{2}x^2 - \frac{3}{2}x + \frac{9}{4}$.

2.
$$y'' + 2y' + 4y = xe^x$$
, pour $x \in \mathbb{R}$.

On résout d'abord l'équation homogène. L'équation caractéristique associée est $r^2+2r+4=0$, qui admet pour solution $-1-i\sqrt{3}$ et $-1+i\sqrt{3}$. Les solutions de l'équations homogènes sont donc $x\mapsto \left(A\cos(x\sqrt{3})+B\sin(x\sqrt{3})\right)e^{-x}$ où $A,B\in\mathbb{R}$.

on cherche ensuite une solution particulière sous la forme $y_p(x)=(ax+b)e^x$. En injectant dans l'équation, on trouve $y_p(x)=\left(\frac{1}{7}x-\frac{4}{49}\right)e^x$

Exercice 3. (6 points)

1. Calculer le déterminant suivant :
$$\begin{vmatrix} 1 & -2 & 0 \\ -2 & 1 & -1 \\ 1 & 7 & 0 \end{vmatrix}$$

En développant par rapport à la troisième colonne on trouve $\begin{vmatrix} 1 & -2 & 0 \\ -2 & 1 & -1 \\ 1 & 7 & 0 \end{vmatrix} = -(-1) \begin{vmatrix} 1 & -2 \\ 1 & 7 \end{vmatrix} = 9.$

2. Effectuer les produits matriciels suivants quand ils sont bien définis :
$$AB$$
 et CB où

$$A = \begin{pmatrix} 0 & 1 \\ -2 & 1 \end{pmatrix}; \qquad B = \begin{pmatrix} 3 & 0 \\ -2 & -1 \end{pmatrix}; \qquad C = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

CB n'est pas défini et $AB = \begin{pmatrix} -2 & -1 \\ -8 & -1 \end{pmatrix}$

$$\begin{cases} x + 2y - 4z = -4 \\ 2x + 5y - 9z = -10 \\ 3x - 2y + 3z = 11 \end{cases}$$

La matrice augmentée est :

$$\left[\begin{array}{ccc|ccc|c}
1 & 2 & -4 & -4 \\
2 & 5 & -9 & -10 \\
3 & -2 & 3 & 11
\end{array}\right]$$

On effectue d'abord les opérations $L_2 \leftarrow L_2 - 2L_1$ et $L_3 \leftarrow L_3 - 3L_1$, on obtient donc

$$\left[\begin{array}{ccc|c}
1 & 2 & -4 & -4 \\
0 & 1 & -1 & -2 \\
0 & -8 & 15 & 23
\end{array}\right]$$

On fait ensuite, $L_3 \leftarrow L_3 + 8L_2$:

$$\left[\begin{array}{ccc|c}
1 & 2 & -4 & -4 \\
0 & 1 & -1 & -2 \\
0 & 0 & 7 & 7
\end{array}\right]$$

On obtient alors une unique solution

$$\left[\begin{array}{c}2\\-1\\1\end{array}\right]$$

4. Calculer l'inverse de la matrice suivante :

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & 2 \\ 1 & -2 & 0 \end{pmatrix}$$

Il suffit d'appliquer l'algorithme de Gauss-Jordan. La matrice augmentée est :

$$\left[\begin{array}{ccc|c} 0 & -1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 2 & 0 & 1 & 0 \\ 1 & -2 & 0 & 0 & 0 & 1 \end{array}\right].$$

 $\begin{array}{l} \textbf{On permute les lignes 1 et 2, on obtient}: \begin{bmatrix} 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & -1 & 1 & 1 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 1 \end{bmatrix}. \\ \textbf{Ensuite, on fait } L_3 \leftarrow L_3 - L_1: \begin{bmatrix} 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & -1 & 1 & 1 & 0 & 0 \\ 0 & -2 & -2 & 0 & -1 & 1 \end{bmatrix}. \\ \textbf{Puis } L_3 \leftarrow L_3 - 2L_2: \begin{bmatrix} 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & -4 & -2 & -1 & 1 \end{bmatrix}. \\ \textbf{Puis } L_3 \leftarrow -\frac{1}{4}L_3: \begin{bmatrix} 1 & 0 & 2 & 0 & 1 & 0 \\ 0 & -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & \frac{1}{4} & -\frac{1}{4} \end{bmatrix}. \end{array}$

Ensuite, $L_1 \leftarrow L_1 - 2L_3$ et $L_2 \leftarrow L_2 - L_3$ on obtient : $\begin{bmatrix} 1 & 0 & 0 & -1 & \frac{1}{2} & \frac{1}{2} \\ 0 & -1 & 0 & \frac{1}{2} & -\frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{4} \end{bmatrix}.$

Enfin, on fait $L_2 \leftarrow -L_2: \left[\begin{array}{cc|cc|c} 1 & 0 & 0 & -1 & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{2} & \frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 1 & \frac{1}{2} & \frac{1}{4} & -\frac{1}{4} \end{array} \right].$

l'inverse de A est la matrice : $\begin{bmatrix} -1 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -4 & 2 & 2 \\ -2 & 1 & -1 \\ 2 & 1 & -1 \end{bmatrix}$. Il suffit de vérifier!

5. Soit

$$E = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \text{ et } y - z = 0\}$$

Trouver une base et la dimension de E.

$$E = vect((-2, 1, 1))$$
 et $dim(E) = 1$.

Exercice 4. (5 points)

Pour chaque matrice M_j ci-dessous (j = 1, 2) déterminer si M_j est diagonalisable ou non en justifiant votre réponse.

Si M_j est diagonalisable, donner une matrice diagonale D_j et une matrice inversible P_j telles que M_j $P_j D_j P_i^{-1}$

$$M_1 = \begin{pmatrix} 0 & 3 & 2 \\ -2 & 5 & 2 \\ 2 & -3 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}.$$

Le polynôme caractéristique de M_1 est $\chi_{M_1}(x) = \begin{vmatrix} -x & 3 & 2 \\ -2 & 5-x & 2 \\ 2 & -3 & -x \end{vmatrix}$. En effectuant $L_3 \leftarrow L_3 + L_2$, on obtient : $\chi_{M_1}(x) = \begin{vmatrix} -x & 3 & 2 \\ -2 & 5-x & 2 \\ 0 & 2-x & 2-x \end{vmatrix} = (2-x) \begin{vmatrix} -x & 3 & 2 \\ -2 & 5-x & 2 \\ 0 & 1 & 1 \end{vmatrix}$. Puis $C_2 \leftarrow C_2 - C_3$ donne :

on obtient:
$$\chi_{M_1}(x) = \begin{vmatrix} -x & 3 & 2 \\ -2 & 5-x & 2 \\ 0 & 2-x & 2-x \end{vmatrix} = (2-x) \begin{vmatrix} -x & 3 & 2 \\ -2 & 5-x & 2 \\ 0 & 1 & 1 \end{vmatrix}$$
.

$$\chi_{M_1}(x) = (2-x) \begin{vmatrix} -x & 1 & 2 \\ -2 & 3-x & 2 \\ 0 & 0 & 1 \end{vmatrix}$$

Enfin, en développant par rapport à la dernière ligne on trouve : $\chi_{M_1}(x) = (2-x)(x^2-3x+2) =$ $-(x-1)(x-2)^2$ (on peut aussi faire en première étape $C_1 \leftarrow C_1 + C_2 - C_3$).

Les valeurs propres de M_1 sont donc 1 et 2. On commence d'abord par déterminer E_2 comme 2 est racine double du polynôme caractéristique. On résout alors $M_1X = 2X$. Ce qui aboutit à la résolution du système :

$$\begin{cases}
-2x + 3y + 2z = 0 \\
-2x + 3y + 2z = 0 \\
2x - 3y - 2z = 0
\end{cases}$$

c'est équivalent à 2x - 3y - 2z = 0. C'est l'équation d'un plan et $E_2 = vect((1,0,1),(3,2,0))$ donc $dim(E_2) = 2$. A ce stade, on peut conclure que M_1 est diagonalisable. Pour déterminer E_1 on résout $M_1X = X$.

$$\begin{cases} -x & + & 3y & + & 2z & = & 0 \\ -2x & + & 4y & + & 2z & = & 0 \\ 2x & - & 3y & - & z & = & 0 \end{cases}$$

On résout ce système en effectuant les opérations $L_2 \leftarrow L_2 - 2L_1$ et $L_3 \leftarrow L_3 + 2L_1$:

$$\begin{cases} -x + 3y + 2z = 0 \\ 0 - 2y - 2z = 0 \\ 0 + 3y + 3z = 0 \end{cases}$$

Ce qui est équivalent à

$$\begin{cases} -x & + & 3y & + & 2z & = & 0 \\ 0 & - & 2y & - & 2z & = & 0 \end{cases}$$

On montre alors que $E_1 = vect((-1, -1, 1))$. On a $D_1 = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $P_1 = \begin{pmatrix} 1 & 3 & -1 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$. Le polynôme caractéristique de M_2 est $\chi_{M_2}(x) = \begin{vmatrix} 2 - x & -1 & -1 \\ 2 & 1 - x & -2 \\ 3 & -1 & -2 - x \end{vmatrix}$. En effectuant l'opération

$$C_1 \leftarrow C_1 + C_3, \text{ on obtient : } \chi_{M_2}(x) = \begin{vmatrix} 1-x & -1 & -1 \\ 0 & 1-x & -2 \\ 1-x & -1 & -2-x \end{vmatrix} = (1-x) \begin{vmatrix} 1 & -1 & -1 \\ 0 & 1-x & -2 \\ 1 & -1 & -2-x \end{vmatrix}. \text{ Ensuite, on }$$

peut faire
$$L_3 \leftarrow L_3 - L_1$$
. On obtient donc : $\chi_{M_2}(x) = (1-x) \begin{vmatrix} 1 & -1 & -1 \\ 0 & 1-x & -2 \\ 0 & 0 & -1-x \end{vmatrix} = -(1+x)(x-1)^2$.

On commence d'abord par déterminer E_1 en résolvant $M_2\overset{1}{X}=\overset{1}{X}.$ Cela donne le système :

$$\begin{cases} x & - y & - z & = 0 \\ 2x & - 2z & = 0 \\ 3x & - y & - 3z & = 0 \end{cases}$$

Ce qui est équivalent à :

$$\begin{cases} x & - & y & - & z & = & 0 \\ 2x & & - & 2z & = & 0 \end{cases}$$

ce qui donne x=z et y=0 et donc $E_1=vect((1,0,1))$. $dim(E_1)=1<2$ qui est l'ordre de multiplicité de 1 dans le polynôme caractéristique, la matrice M_2 n'est pas diagonalisable.