

20D

NASA TH X/3030

(NASA-TM-X-3030) EFFECT OF RATIO OF (NASA-TM-X-3030) EFFECT OF RATIO OF WALL BOUNDARY LAYER THICKNESS TO JET WALL BOUNDARY LAYER THICKNESS TO JET IN A SUPERSONIC STREAM (NASA)4542 PLOSCE STREAM (NASA)45442 PLOSCE STREAM (NASA)45444 PLOSCE STREAM (NASA)454444 PLOSCE STREAM (NASA)454444 PLOSCE STREAM (NASA)45444 PLOSCE STREAM (NASA)45444 PLOSCE STREAM (NASA)45444 PLOSCE STREAM (NASA)45444 PLOSCE STREAM (NASA)454444 PLOSCE STREAM (NASA)45444 PLOSCE STREAM (NASA)454444 PLOSCE STREAM (NASA)454444 PLOSCE STREAM (NASA)454444 PLOSCE STREAM (NASA)44444 PLOSCE STREAM (NASA)44444 PLOSCE STREAM (NASA)44444 PLOSCE STREAM (NASA)444444 PLOSCE STREAM (NASA)4444444 PLOSCE STREAM

Unclas H1/12 42013

m74-26826

EFFECT OF RATIO OF
WALE BOUNDARY-LAYER THICKNESS
TO JET DIAMETER ON MIXING
OF A NORMAL HYDROGEN JET
EN A SUPERSONIC STREAM

by Charles R. McClinton Langley Research Center Hampton, Va. 23665

	2. Government Accession No.	3. Recipient's Catalog No.
NASA TM X-3030 4. Title and Subtitle	<u> </u>	5, Report Date
EFFECT OF RATIO OF WA	ALL BOUNDARY-LAYER	June 1974
THICKNESS TO JET DIAM		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
Charles R. McClinton		L-9455
		10. Work Unit No.
9. Performing Organization Name and Address		501-04-03-03
NASA Langley Research Ce	enter	11, Contract or Grant No.
Hampton, Va. 23665		
		13. Type of Report and Period Covered
2. Sponsoring Agency Name and Address		Technical Memorandum
National Aeronautics and Sp	pace Administration	14. Sponsoring Agency Code
Washington, D.C. 20546		. In opening righting code
5. Supplementary Notes		
= -	mental program was conducted to	determine the effect of the
penetration and mixing rate airflow with sonic injection underexpanded injectors. I from 1.25 to 6.5. Previous	undary-layer thickness to jet diar e. Tests were conducted on a flat of hydrogen normal to the free-s The ratio of boundary-layer thicks correlations of mixing performa f boundary-layer thickness to jet of	plate in a Mach number 4.05 stream direction from circular ness to jet diameter ranged ance were modified to account
penetration and mixing rate airflow with sonic injection underexpanded injectors. I from 1.25 to 6.5. Previous	e. Tests were conducted on a flat of hydrogen normal to the free-s The ratio of boundary-layer thicks correlations of mixing performa	plate in a Mach number 4.05 stream direction from circular ness to jet diameter ranged ance were modified to account
penetration and mixing rate airflow with sonic injection underexpanded injectors. I from 1.25 to 6.5. Previous	e. Tests were conducted on a flat of hydrogen normal to the free-s The ratio of boundary-layer thicks correlations of mixing performa	plate in a Mach number 4.05 stream direction from circular ness to jet diameter ranged ance were modified to account
penetration and mixing rate airflow with sonic injection underexpanded injectors. I from 1.25 to 6.5. Previous for the effect of the ratio of	e. Tests were conducted on a flat of hydrogen normal to the free-s The ratio of boundary-layer thicks correlations of mixing performa	plate in a Mach number 4.05 stream direction from circular ness to jet diameter ranged unce were modified to account diameter.
penetration and mixing rate airflow with sonic injection underexpanded injectors. I from 1.25 to 6.5. Previous for the effect of the ratio of the ra	e. Tests were conducted on a flat of hydrogen normal to the free-s. The ratio of boundary-layer thicks correlations of mixing performate boundary-layer thickness to jet of the following the following the following the following states that the following states in the following states are the following states as a first state of the following states are the following states as a first state of the following states are	plate in a Mach number 4.05 stream direction from circular ness to jet diameter ranged unce were modified to account diameter.
penetration and mixing rate airflow with sonic injection underexpanded injectors. I from 1.25 to 6.5. Previous for the effect of the ratio of the ra	e. Tests were conducted on a flat of hydrogen normal to the free-s. The ratio of boundary-layer thicks correlations of mixing performate boundary-layer thickness to jet of the following the following the following the following states that the following states in the following states are the following states as a first state of the following states are the following states as a first state of the following states are	tream direction from circular ness to jet diameter ranged unce were modified to account diameter.
penetration and mixing rate airflow with sonic injection underexpanded injectors. I from 1.25 to 6.5. Previous for the effect of the ratio of the ra	e. Tests were conducted on a flat of hydrogen normal to the free-s. The ratio of boundary-layer thicks correlations of mixing performate boundary-layer thickness to jet of the following the following the following the following states that the following states in the following states are the following states as a first state of the following states are the following states as a first state of the following states are	tream direction from circular ness to jet diameter ranged unce were modified to account diameter.
penetration and mixing rate airflow with sonic injection underexpanded injectors. I from 1.25 to 6.5. Previous for the effect of the ratio of the ra	e. Tests were conducted on a flat of hydrogen normal to the free-s. The ratio of boundary-layer thicks correlations of mixing performate boundary-layer thickness to jet of the following the following the following the following states that the following states in the following states are the following states as a first state of the following states are the following states as a first state of the following states are	tream direction from circular ness to jet diameter ranged unce were modified to account diameter.
penetration and mixing rate airflow with sonic injection underexpanded injectors. I from 1.25 to 6.5. Previous for the effect of the ratio of the effect of the ratio of the ratio of the ratio of the effect of the ratio of the ratio of the effect of the ratio of the	e. Tests were conducted on a flat of hydrogen normal to the free-s. The ratio of boundary-layer thicks correlations of mixing performate boundary-layer thickness to jet of the following the following the following the following states that the following states in the following states are the following states as a first state of the following states are the following states as a first state of the following states are	tream direction from circular ness to jet diameter ranged unce were modified to account diameter.

EFFECT OF RATIO OF WALL BOUNDARY-LAYER THICKNESS TO JET DIAMETER ON MIXING OF A NORMAL HYDROGEN JET IN A SUPERSONIC STREAM

By Charles R. McClinton Langley Research Center

SUMMARY

This report contains results from a preliminary experimental investigation conducted to study the effect of the ratio of boundary-layer thickness to jet diameter δ/D on the mixing of hydrogen injected sonically from a flat plate into a supersonic air free stream. Several values of jet diameter D and free-stream total pressure were used to vary δ/D over the range $1.25 \leq \frac{\delta}{D} \leq 6.25$. For all tests the undisturbed boundary layer at the injection station was fully turbulent. Vertical nondimensional pressure, velocity, concentration profiles, and total-pressure recovery results are presented. Results of this investigation illustrate a distinct increase in both the secondary jet penetration and the mixing rate with increasing δ/D .

INTRODUCTION

One type of fuel-injector design for scramjet combustors is the flush wall-mounted jet. This type of fuel injector normally is designed by empirical relation based on the data of numerous investigators. (For example, see refs. 1 to 15.) The investigations reported in the literature have not evaluated the effect on the mixing of the thickness of the boundary layer on the wall. In view of the complex interactions between the jet and boundary layer which are illustrated in the literature, the ratio of boundary-layer thickness to jet diameter is expected to be an important parameter. For instance, several investigations (see refs. 16 and 17) have shown that the properties of the boundary layer at the injection location have a measurable effect on this type of jet interaction.

The present preliminary investigation was designed to evaluate the effect of the magnitude of the ratio of boundary-layer thickness to jet diameter on the mixing performance. Tests were performed on a flat-plate model with sonic injection of hydrogen from a single normal jet into a fully developed turbulent boundary layer. Mixing region surveys were made at a station 120 injector diameters downstream of the jet for three separate configurations and compared with results from references 9 and 12. The effects of the ratio of boundary-layer thickness to jet diameter on jet penetration and mixing rate were measured and methods of correlating the data were determined.

SYMBOLS

Α area profile shape factor (fig. 11) b $C_{\mathbf{D}}$ discharge coefficient jet diameter, cm D ď* effective jet diameter, $D\sqrt{C_D}$, cm H_2 hydrogen gas l location of injector from leading edge, cm M Mach number \mathbf{p} jet penetration, maximum height of $x_{H_2} = 0.005$ contour, cm pressure, N/m2 p effective back pressure, N/m^2 p_{eb} $p_{\mathbf{R}}$ pressure recovery dynamic pressure, N/m2 q $R_{\mathbf{X}}$ Reynolds number based on X from plate leading edge temperature, K \mathbf{T} V velocity, m/sec X longitudinal coordinate, cm hydrogen mole fraction XH2 Y lateral coordinate, measured across plate from center line, cm

Subscripts:

A	mass-averaged undisturbed airflow of	condition
---	--------------------------------------	-----------

j secondary jet condition

M location of yH2,max

max maximum value in mixing region

point on vertical survey where $x_{H_2} = 0.005$

t total condition

∞ free-stream condition

A bar over a symbol denotes a mass-averaged value.

MODEL AND FACILITY

Wind Tunnel and Model

The experiments were conducted in a Mach number 4.05, 22.84-cm-square wind tunnel with injection of hydrogen from a flat plate which spanned the test section. A sketch of the plate, locating the injection stations and defining the coordinate system, is presented in figure 1(a). Figure 1(b) presents details and the measured discharge

coefficients C_D of the circular injectors used in this study. Fuel was injected at the 18.6-cm upstream station for the test in reference 9 and at the 24-cm station for the present tests and the test in reference 12.

Instrumentation

<u>Probes.</u>- The pitot and static survey probes used in all these experiments are illustrated in figure 2. Probe actuator limitations required yawing the probes for lateral surveys; however, the maximum yaw angle was held to a relatively small angle (about 10°). The diameters of the probe static orifices were 0.203 mm; and the orifices were located 14 probe diameters from the probe tips. The pitot probe, a flattened hypodermic needle, was used to collect gas samples from the hydrogen-air mixing region for analysis by a gas chromatograph.

Gas sampling system. A schematic of the gas sampling system is presented in figure 3. The heart of this system was a Control Data on-line process gas chromatograph which measures only hydrogen volume fraction. The chromatograph was tied into the hydrogen supply line and the pitot probe by a system of electrically operated valves. Pure hydrogen from the supply line was used to check the full-scale reading during each test. Other instrumentation used in these tests is also illustrated in this sketch (fig. 3).

Test Conditions
The test conditions are presented in the following table:

Test	D, em	$^{ m p}_{ m t, \infty}, \ m MN/m^2$	$rac{ ext{p}_{ ext{t,j}},}{ ext{MN/m}2}$	qj/q∞	l, cm	δ/D
1	0.25	1.72	0.328	0.978	24.0	1.25
2	.05	1.72	.325	.973	24.0	6.25
3	.10	1.38	.271	1.006	24.0	3.16
4 (ref. 9)	.10	1.38	.270	1.005	18.6	2.51
5 (ref. 12)	.12	1.72	.335	1.001	24.0	2.58

All tests were run at a tunnel total pressure of either 1.38 or 1.72 MN/m² and a corresponding jet total pressure to produce a ratio of jet to free-stream dynamic pressure of unity. For each test the jet was sonic and underexpanded. Injector diameter, injector position, and free-stream total-pressure variations combine to produce different ratios of boundary-layer thickness to jet diameter δ/D as listed in the table. A theoretical boundary-layer thickness was used for this parameter; the theoretical solution is discussed in detail in a later section.

Test Procedure

The experimental results were reduced from survey data taken in the hydrogen-air mixing region 120 injector diameters downstream of the injection station. Surveys consisted of one vertical center-line survey and three horizontal surveys of hydrogen mole fraction, pitot pressure, and static pressure. Since pitot- and static-pressure measurements were made during separate tests, both measurements were nondimensionalized by free-stream total pressure before being included in the data-reduction program. (See appendix A.)

THEORETICAL BOUNDARY LAYER

Theoretically determined boundary-layer parameters were used in this study because it is difficult to obtain accurate measurements of very small boundary layers ($\delta \approx 0.3$ cm) and the development of the turbulent boundary layer in this facility had been predicted accurately in other investigations. The theoretical boundary layer was determined by using an integral transition and turbulent boundary-layer program developed by Pinckney. (See ref. 18.) The laminar boundary layer was predicted by an ordinary flat-plate solution with friction coefficient determined by Eckert's flat-plate reference temperature method. (See ref. 19.) Transition was assumed to start at the point where $R_{\rm X} = 2.9 \times 10^6$, a value which was based on extensive boundary-layer tests performed in the facility on other flat-plate models.

Theoretical nondimensional boundary-layer velocity and total-pressure profiles at the injection station are presented in figure 4. These profiles represent a fully turbulent boundary layer for each case. Also included are values of the theoretically determined boundary-layer and momentum thicknesses. All boundary-layer parameters have been nondimensionalized by the jet diameter D. For this study, boundary-layer thickness δ corresponds to the point where the theoretical velocity is 99 percent of the free-stream value.

RESULTS AND DISCUSSION

Reduced survey data (appendix A) were used to construct flow contours (appendix B) of the mixing region. These contours are used to define three mixing parameters: jet penetration, mixing rate, and jet-induced interference. These mixing parameters are analyzed in the remaining discussion.

Penetration

Penetration has been correlated in this study by two characteristics of the hydrogen volume fraction contour. These characteristics are denoted by $\rm\,P/D\,$ and $\rm\,(Z/D)_{M},$ corresponding to

P/D vertical height from the plate to the highest point on the $x_{H_2} = 0.005$ contour (outer edge of mixing region, see appendix B)

(Z/D)_M vertical height from the plate to the point of maximum hydrogen concentration

Both penetration parameters are presented in figure 5 as a function of the ratio of boundary-layer thickness to jet diameter δ/D . On this and subsequent figures, the data points used from references 9 and 12 are flagged or designated. The trends of the data indicate that both P/D and $(Z/D)_M$ increase as δ/D becomes larger. The parameter P/D is a weak function of δ/D :

$$\frac{P}{D} \simeq \left(\frac{\delta}{D}\right)^{0.0574} \tag{1}$$

However, the value of $(Z/D)_M$ increases by nearly 75 percent in the range $1.25 \le \frac{\delta}{D} \le 6.25$. The magnitude of these increases warrants inclusion of δ/D dependence in any jet-penetration correlation.

The penetration correlation of equation (1) agrees with results presented in reference 17. These results were obtained over a smaller range of δ/D and most of the penetration measurements were made relatively close to the injector. The data presented in reference 17, which include results from references 9 and 12, are correlated by

$$\frac{P}{D} = 2.96 \left(\frac{p_{t,j}}{p_{eb}}\right)^{0.405} M_j^{0.163} \left(\frac{X}{d^*} + 0.5\right)^{0.204} \left(\frac{\theta}{d^*}\right)^{0.141}$$
(2)

Since these results were all obtained with fully turbulent boundary layers, the boundary-layer thickness is proportional to the boundary-layer momentum thickness or

$$\frac{P}{D} \propto \left(\frac{\delta}{D}\right)^{0.141}$$
 (3)

This proportionality is nearly the same as that shown by the present data (eq. (1)) as illustrated by the dashed curve in figure 5. The absolute values from equation (2) were not plotted because of the uncertainty of extrapolating equation (2) to $\frac{X}{D} = 120$.

Several of the earlier wall injection and mixing investigations studied the effect of dynamic-pressure ratio on penetration. For instance, the results of reference 9 were correlated by

$$\frac{P}{D} = 3.87 \left(\frac{q_{j}}{q_{\infty}}\right)^{0.30} \left(\frac{X}{D}\right)^{0.143} = 3.87 \left[\frac{q_{j}}{q_{\infty}}\right)^{2.1} \frac{X}{D}\right]^{0.143}$$
(4)

The dependence of jet penetration on δ/D , as shown by equation (1), can be included in equation (4) as shown by figure 6. This figure correlates the present data with the data from reference 9 by the following equation:

$$\frac{P}{D} = 4.20 \left(\frac{q_j}{q_{\infty}}\right)^{0.30} \left(\frac{\delta}{D}\right)^{0.0574} \left(\frac{X}{D}\right)^{0.143} = 4.20 \left[\left(\frac{q_j}{q_{\infty}}\right)^{2.1} \left(\frac{\delta}{D}\right)^{0.4} \frac{X}{D}\right]^{0.143}$$
(5)

Equation (5) corresponds to the solid line in figure 6. Present data points are solid symbols and data points from reference 9 are open symbols. All reference 9 data were at constant δ/D , and values of X/D and q_j/q_∞ ranged from 7 to 200 and 0.5 to 2.0, respectively. The dashed curve represents equation (4) simply expanded to account for δ/D . Equation (5) has the same slope as the dashed curve, but it correlates the present data points. This plot shows that the present data point from reference 9 has the largest deviation from the trends of the present data. This deviation is believed to be associated with the different jet geometry used for the reference 9 test. (See fig. 1(b).)

No satisfactory correlation for the maximum hydrogen concentration trajectory was presented in reference 9 because the trajectory tends to decrease in the near field (from $\frac{X}{D}$ = 7 to about 20 to 30), and then increase with downstream distance. However, at $\frac{X}{D}$ = 120, the height of the point of maximum hydrogen concentration in reference 9 can be correlated by

$$\left(\frac{Z}{\overline{D}}\right)_{\mathbf{M}} = 3.19 \left(\frac{q_{\mathbf{j}}}{q_{\infty}}\right)^{0.214} \tag{6}$$

The straight-line correlation of the maximum concentration trajectory in figure 5 is likewise represented by

$$\left(\frac{Z}{D}\right)_{M} \propto \left(\frac{\delta}{D}\right)^{0.214}$$
 (7)

Equations (6) and (7) are combined and used to plot the present data and the data at $\frac{X}{D} = 120$ from reference 9 in figure 7. The results are correlated by

$$\left(\frac{Z}{D}\right)_{\mathbf{M}} = 2.62 \left(\frac{q_{\mathbf{j}}}{q_{\infty}}\right)^{0.214} \left(\frac{\delta}{D}\right)^{0.214} \tag{8}$$

Because of the complex nature of $(Z/D)_M$ as mentioned previously, the effect of δ/D on the maximum concentration trajectory cannot be predicted over the entire mixing region without additional tests.

One indication of the extent of mixing between the jet and the free stream is the decay of the maximum hydrogen mass fraction, $y_{H_2,max}$. Values of $y_{H_2,max}$ for each test are presented in figure 8 as a function of the ratio of boundary-layer thickness to jet diameter δ/D . Data trends indicate that $y_{H_2,max}$ is proportional to $(\delta/D)^{-0.345}$ at $\frac{X}{D} = 120$. Reference 9 data replotted in reference 8 showed $y_{H_2,max}$ is proportional to $\left(\frac{X}{D}\right)^{-0.69} \left(\frac{q_j}{q_\infty}\right)^{0.345}$ in the downstream mixing region $\left(\frac{X}{D}\right)^{0.69}$. Combining these correlations yields

$$y_{H_2, max} = 1.031 \left(\frac{q_j}{q_{\infty}}\right)^{0.345} \left(\frac{\delta}{D}\right)^{-0.345} \left(\frac{X}{D}\right)^{-0.690}$$
 (9)

The data from both reference 9 and the present test are presented in figure 9 to illustrate this correlation. Reference 9 data are represented by open symbols and the present cases, all at $\frac{X}{D} = 120$, are represented by solid symbols. Equation (9) which is simply an extension of the correlation used in reference 9 closely correlates the present data.

Pressure Recovery

The efficiency of each component of a ramjet engine is normally related directly or indirectly to the loss in total pressure or momentum of the airflow as it passes through that component. The interaction between a normal secondary jet and the combustor airflow produces significant total-pressure losses as a result of induced shocks in the airstream combined with the lack of jet streamwise (X) momentum. However, the jet-induced total-pressure losses would be partially compensated for by reduced-combustion total-pressure losses in the wake regions behind the jets. The pressure losses have been evaluated for the present data by calculating the total-pressure recovery defined by

$$p_{\mathbf{R}} = \frac{\overline{p}_{t} \left(\text{at } \frac{X}{D} = 120 \right)}{\overline{p}_{t} \left(\text{at } \frac{X}{D} = 0 \right)}$$
 (10)

where \overline{p}_t is the mass-weighted total pressure calculated by

$$\frac{\overline{p}_{t}}{p_{t,\infty}} = \frac{\int \rho V \frac{p_{t}}{p_{t,\infty}} d\left(\frac{A}{A_{0}}\right)}{\int \rho V d\left(\frac{A}{A_{0}}\right)}$$
(11)

at each station. The mass-weighted total pressure at station $\frac{X}{D} = 0$ was obtained by use of a stream tube area with the same shape and total airflow rate as the mixing region. The no-injection theoretical boundary layer at $\frac{X}{D} = 0$ was used for these calculations.

The pressure recovery results are presented in figure 10 along with the nondimensionalized mass-weighted total pressure at the injector and survey station. The recovery (circle symbol in fig. 10) is a constant value of 43 percent with the exception of the data for $\frac{\delta}{D}$ = 1.25, which drops to 35 percent. A recovery of 43 percent is equivalent to the recovery across a two-dimensional shock with a turning of 28° in a Mach 4.05 airstream. It should be noted that the theoretical total-pressure losses associated with mixing of the normal H₂ jet with the air would be small compared with the shock losses since the weight flow of H₂ is less than 3 percent of the airflow.

CONCLUDING REMARKS

This investigation has shown that for normal sonic injection of hydrogen from a flat plate into a supersonic airflow, the mixing performance is dependent on the ratio of plate boundary-layer thickness to jet diameter δ/D and the magnitude of this dependence necessitates its inclusion in any empirical mixing models. The experimental results show that increasing δ/D increases penetration, both of the outer edge of the mixing region and of the point of maximum concentration, and the extent of mixing as measured by the maximum hydrogen concentration. The results also show that the normal jet mixing regions have relatively low pressure recoveries as a result, evidently, of the strong induced shock wave. In these relatively thick boundary-layer cases $\left(1.25 \le \frac{\delta}{D} \le 6.25\right)$, only the smallest value of δ/D had a noticeably different (lower) pressure recovery than the other cases. Nondimensional boundary-layer correlating parameters presented extend previous flat-plate mixing performance correlations of jet penetration and maximum concentration decay.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., March 25, 1974.

APPENDIX A

SURVEY DATA

One vertical and three horizontal surveys of the mixing region at an X/D station of 120 were performed for each case with measurements of hydrogen concentration, pitot pressure, and static pressure taken along each survey. A computer program was used to reduce the raw data to the desired results presented in table I. These tabulated results are in U.S. Customary Units, and the applicable nomenclature follows:

X longitudinal coordinate, in.

Y lateral coordinate, in.

Z vertical coordinate, in.

D jet orifice diameter, in.

QJ/QI ratio of jet pressure to free-stream dynamic pressure

LAMDA ratio of jet mass flux to free-stream mass flux

GAMMA ratio of specific heats

RHOVJ jet mass flow per unit area, slugs/ft2-sec

K mole fraction of injected gas

PT2X survey pitot pressure, psia

PIX static pressure, psia

MWX molecular weight of survey gas sample

MX Mach number

TTX total temperature, OR

TX static temperature, OR

APPENDIX A - Concluded

VX velocity, ft/sec

RHOVX mass flow per unit area, slugs/ft2-sec

XI ratio of injected gas mass flow per unit area at survey point to jet mass flow

GX mass fraction of injected gas

RHOVX*(1-GX) survey-point air mass flow per unit area

XIM maximum XI

GXM maximum GX

AIRMFM maximum RHOVX*(1-GX)

AKXM maximum K

Hydrogen concentration and total-pressure profile results from the vertical surveys are presented in figures 11 and 12, respectively. The hydrogen concentration profiles in figure 11 are divided into two regions, separated by the point of maximum nydrogen concentration. In the upper region the profile shape resembles coaxial mixing profiles; whereas in the lower region it is more uniform, since the plate restricts the mixing. Previous investigations have shown that, in the upper region, the profile shape is dependent on the downstream station but independent of dynamic-pressure ratio (refs. 9 and 12) or injection angle (ref. 7). On the other hand, the profile shape in the lower region is dependent on downstream distance, dynamic pressure, and injection angle. Although there is some variation in the profile shapes presented in figure 11, there is no evidence of a systematic effect of δ/D .

Nondimensional vertical total-pressure profiles are presented in figure 12 for each test and for a representative boundary-layer profile at the injector station. In figure 12 the height dimension is expressed as a ratio to the height of the outer edge of the mixing region or for the boundary-layer profile, to the boundary-layer thickness. Each mixing region profile exhibits a marked reduction in pressure recovery over the boundary-layer profile. Of course, the mixing region is considerably thicker than the boundary layer so the boundary-layer curve does not show the true extent of the pressure deficiency that is shown by the integrated pressure recovery. (See fig. 10.)

APPENDIX B

FLOW CONTOUR

Mixing region flow contours were constructed by cross plotting the vertical and horizontal survey data. Contours of hydrogen mass fraction, hydrogen flow rate, airflow rate, and mass-weighted total pressure $\left({}_{0}V\frac{p_{t}}{p_{t,\infty}} \right)$ are presented in figures 13 to 16, respectively. The mixing region edge corresponds to the $x_{H2}=0.005$ contour, denoted $y_{H2}=0$ in figure 13.

The hydrogen mass fraction contours (fig. 13) were used to determine the penetration and hydrogen mixing rate as discussed in the test. In addition, these contours show the effect of δ/D on hydrogen lateral spreading. One method of measuring the lateral spreading is to measure the width of the 10 percent of maximum hydrogen concentration contour at the vertical position (Z/D) of maximum concentration. Lateral locations of 10 percent of $y_{H_2,max}$ are noted in figure 13 by the vertical dashes on either side of $y_{H_2,max}$. By using this 10-percent procedure, these contours show a significant decrease in spreading from the largest δ/D case, $\frac{\delta}{D}$ = 6.25, to the 3.16 case, and then a continued, but modest, decrease in spreading to the smaller δ/D conditions.

Hydrogen flow contours (fig. 14) were integrated to determine the accuracy of the sampling procedures by comparing the total hydrogen flow rate in the contours with the hydrogen flow rate measured by the orifice meter in the hydrogen supply line. Results of this integration show that 80 to 90 percent of the injected hydrogen was accounted for in the mixing region. This result is typical of this type of flat-plate mixing study.

Airflow contours (fig. 15) and mass-weighted total-pressure contours (fig. 16) were used to determine the total-pressure recovery, as discussed in the text. The airflow contours were used to determine the total airflow in the mixing region and to define the undisturbed airstream tube at the injector station which supplies air to the mixing region. The airflow contours also give an indication of the effect of the jet on the airflow. All mixing regions have relatively low airflow in the center (at the point of maximum concentration) and return toward a typical (but thick) boundary-layer distribution near the sides. The contours for the larger δ/D cases tend to simply decrease from the center outward, but the smaller δ/D cases show more flow distortion as indicated by the sharp dip from the center.

REFERENCES

- 1. Billig, F. S.; Orth, R. C.; and Lasky, M.: A Unified Approach to the Problem of Gaseous Jet Penetration Into a Supersonic Stream. AIAA Paper No. 70-93, Jan. 1970.
- 2. Chrans, Larry J.; and Collins, David J.: Stagnation Temperature and Molecular Weight Effects in Jet Interaction. AIAA J., vol. 8, no. 2, Feb. 1970, pp. 287-293.
- 3. Cohen, Leonard S.; Coulter, Lawrence J.; and Chiappetta, Louis: Hydrocarbon-Fueled Scramjet. Vol. VII Fuel Distribution Investigation. AFAPL-TR-68-146, Vol. VII, U.S. Air Force, Apr. 1970.
- 4. Collins, D. J.; Koch, L. N.; and Chambers, R. A.: An Investigation of Jet-Interaction. NPS-57C09101A, U.S. Naval Postgraduate School, Oct. 1, 1969. (Available from DDC as AD 864 693.)
- 5. Hersch, Martin, Povinelli, Louis S.; and Povinelli, Frederick P.: Optical Study of Sonic and Supersonic Jet Penetration From a Flat Plate Into a Mach 2 Airstream. NASA TN D-5717, 1970.
- 6. McClinton, Charles R.: The Effect of Injection Angle on the Interaction Between Sonic Secondary Jets and a Supersonic Free Stream. NASA TN D-6669, 1972.
- 7. Orth, R. C.; Schetz, J. A.; and Billig, F. S.: The Interaction and Penetration of Gaseous Jets in Supersonic Flow. NASA CR-1386, 1969.
- 8. Rogers, R. Clayton: Mixing of Hydrogen Injected From Multiple Injectors Normal to a Supersonic Airstream. NASA TN D-6476, 1971.
- 9. Rogers R. Clayton: A Study of the Mixing of Hydrogen Injected Normal to a Supersonic Airstream. NASA TN D-6114, 1971.
- 10. Schetz, Joseph A.; Hawkins, Paul F.; and Lehman, Harry: Structure of Highly Under-expanded Transverse Jets in a Supersonic Stream. AIAA J., vol. 5, no. 5, May 1967, pp. 882-884.
- 11. Spaid, F. W.; Zukoski, E. E.; and Rosen, R.: A Study of Secondary Injection of Gases Into a Supersonic Flow. Tech. Rep. No. 32-834, Jet Propulsion Lab., California Inst. Technol., Aug. 1, 1966.
- 12. Torrence, Marvin G.: Concentration Measurements of an Injected Gas in a Supersonic Stream. NASA TN D-3860, 1967.
- 13. Torrence, Marvin G.: Effect of Injectant Molecular Weight on Mixing of a Normal Jet in a Mach 4 Airstream. NASA TN D-6061, 1971.
- 14. Vranos, A.; and Nolan, J. J.: Supersonic Mixing of a Light Gas and Air. Pratt & Whitney Aircraft, United Aircraft Corp., [1964].

- 15. Zukoski, Edward E.; and Spaid, Frank W.: Secondary Injection of Gases Into a Supersonic Flow. Jet Propulsion Center, California Inst. Technol., Oct. 1963.
- 16. Goldstein, R. J.; Eckert, E. R. G.; Eriksen, V. L.; and Ramsey, J. W.: Film Cooling Following Injection Through Inclined Circular Tubes. HTL TR No. 91, Heat Transfer Lab., Univ. of Minn., Nov. 1969. (Available as NASA CR-72612.)
- 17. Povinelli, Frederick P.; and Povinelli, Louis A.: Correlation of Secondary Sonic and Supersonic Gaseous Jet Penetration Into Supersonic Crossflows. NASA TN D-6370, 1971.
- 18. Pinckney, S. Z.: Method for Predicting Compressible Turbulent Boundary Layers in Adverse Pressure Gradients. NASA TM X-2302, 1971.
- 19. Eckert E. R. G.: Engineering Relations for Friction and Heat Transfer to Surfaces in High Velocity Flow. J. Aeronaut. Sci., vol. 22, no. 8, Aug. 1955, pp. 585-587.

TABLE I.- TABULATED DATA

Test 1 SURVEY 1-1-120V QJ/Q1 * .9781 LAMDA = __5585 AVG.TOTAL TEMP. (DEG.R) 521 531 TOTAL PRESS. (PSIA) 47.52 249.72 MOL.W1. 2.016 29.000 SPECIFIC HEAT GAMMA JET CAS 1.407 3.4060

.2400

	RHCVJ =	1.3096	E+00	XIN =	1.8906E-	-02	ĠXH	4 3,	31936-02	A IRMFh	- 2.2894E+0	O AKXH =	3-30608-01	
Ý/ο	2/D	К	212X	PIX	KWh.	MX	TTX	TX	٧x	KHOVX	ΧI	, GX	RHOVX+fE-GX)	PRM
COORD	INATES	PCL FR.	PSIA	PSIA	HOL HT	HACH	-0E6	.R	FT/SEC	\$LG/SUFT	SEC	MASS FR.	AIR MASS FLUN	
0.00	0.000	.2457	3.000	1.685	22.37	. 946	529	44B	1117,49	.2724	4.6041E-03	2,21386-02	2.66345-01	.0170
0.00	. 6 Lua	. 2906	3.960	1.684	21.16	1.180	528	413	1375.39	.3440	7.2733E-03	2.7691E-02	3.3446E-01	.0194
0.00	1.0950	-1145	6.420	1,652	20.51	1.619	528	346	1754.61	+4982	1.1758E-02	3.0909E-02	4.8278E-01	0591
0.00	1,5900	. 3256	7.650	1.642	20.22	1.797	528	320	1887.36	•5670	1.40566-02	3.2466E-02	5,4457F-01	.0376
0.00	5*0000	.3306	8.660	1.643	20.08	1.925	52B	305	1972,48	+6234	1.57996-02	3.31936-02	6.0267E-01	.0459
0.30	2.5900	. 330¢	5.820	1.645	20.06	2.062	528	285	2049.27	.6892	1.7467E-02	3.3193E-02	6.662At-01	9940
0.00	3.0900	.2165	11.510	1.636	20.46	2.223	52B	265	2111.31	.7728	1.0404E-02	3.1188€-02	7.4873E-01	0726
0,00	3.5900	.3015	12.450	1.430	50.86	2.357	528	250	2151,48	.8492	1-8892E-02	2.9136E-02	B.2441E-01	01/92
0.00	4 0 900	. 2867	13.420	1.625	21.26	2.457	520	239	2172.99	49110	1.8906E-02	2.7178E-02	8.86276-01	1040
0.00	4.5 100	• 20 7 1	14. 350	1,620	21.90	2,550	920	229	2177.49	.9/64	1,00568=02	.2.4222F=02	U. 52701-01	41190
0.00	5.0900	.2351	15-170	1.619	22.66	2.627	529	222	2160.90	1.0396	1.6602E-02	2.0916E-02	1.01786+00	1349
0.00 0.00	5.6100 6.0990	•1951 •1496	16.320	1.620	23.73 24.96	2.730	529 530	212	2153.68	1.1306	1.43100-02	1.6576E-02 1.2005E-02	1.11118+00	. 1581 . 1693
0.00	6.5900	. LO25	19,960	1.620	26.23	3.033	530	187	2133.97	1.4083	8.47378-03	7.9798E-03	1.39726+00	2505
0.00	7.0 200	(619	23,000	1.620	27.33	3.265	530	169	2144.14	1.6230	5.65806-03	4.5633E-03	1.61645+00	3530
0.00	7.5900	.0324	26.380	1.620	28.13	3.505	531	154	2160.50	1.8545	3.2904E-03	.2.3211E-03	1.85226+00	4988
0.00	A. n 900	6113.	29.220	1.634	28.63	3.672	531	144	2169.96	2.0528	1.4968E-03	9.54916-04	2.0504[+00	4386
0.00	8.5990	.042	30.860	1.685	20.09	3.724	531	141	2168.78	2.1707	4.890LE-04	2.95036-04	2.17015+00	7050
0.00	9. 0.200	0008	31.810	1.700	20.98	3.765	531	134	2171.75	2.2357	1.00326-04	5.87646-05	2,23546+00	7529
0.00	9.5300	0.0000	32.600	1.723	27.00	3.786	531	137	2174.14	2.2894	0.	0.	7.28948+00	7860
0.00	1.8900	3286	U.330	1.641	20.13	1.086	520	308	1946.13	46051	1.52028-02	3.2901E-02	5.85216-01	0431
0.00	2.3950	. 3306	5,260	1.647	20.08	1.996	528	293	2012.66	.6578	1.6671E-02	3.31936-02	6.35935-01	0513
- •	•					•	•	-						
-0.00	2.0900	. 2326	8.600	1.642	20.02	1.919	527	303	1969.22	.6196	1.58616-02	3.3486E-02	5.98890-01	.0454
-9.35	S - D 20C	•C1C2	17.230		28.73	3.0B1	530	183	2050.78	1.2664	6.9042E-04	7.13216-04		.2255
-10.60	2.0900	C.C000	17.610		29.00	3.255	530	170	2079.19	1.2817	0.	0.	1.28176+00	2682
-9-26	2.0900	.C042	17.720		28.89	3.201	530	174	2071.89	1.2928	2.9155E-04	2.9503E-04		.2575
-7.86	2.0900	.0102	17.800		28.73	3.093	530	182	2053.66	1.3068	7-12485-04	7.13216-04		2355
-6.45	2.0933	•C178	15.510		28.52	2.803	530	206	1987.82	1.1667	1.1237E-03	1.2599E-03		1600
-5.14	2.0900	.0136	21.420		28.63	3.339	530	164	2108.93	1.5397	1.1239E-03	9.54916-04		3508
-1.92	2.0700	.C247	23.200	1.534	28.33	3.374	530	162	2126.49	1.6550	2.2196E-03	1.7545E-03		.3915
-2.64	2.0903	.¢436	18.190	1.621	26.47	2.889	529	198	2085.22	1.3081	7.1287E-03	7.1289E~03	1.29886+00	.2017
-1.37	2.0900	. 2044	13.970	1.645	23.38	2.444	528	235	2086.40	.9894	1.35096+02	1.79646-02	9.71600-01	.1115
-0.00	5.0.000	3165	9.640		20.46	2.044	527	201	2018.51	•6857	1.6348E-02	3-11896-02		0551
• 90	2.0900	. 1245	9.200		20.24	1.993	527	293	2001.36	.6570	1.62346-02	3.23226-02		•0500
1.84	5-0300	.2612	11.920		21.95	2.293	527	25 7	2068.90	.8422	1.5442E-02	2.39856-02		• O II [3
2.88	2.0900	.1588	15.840		24.71	2.462	528	218	2087.84	1.1290	1.1182E-02	1.2956E-02		. 1450
4.N1	5.0000	.(566	20,440		27.47	3.078	529	183	2095.27	1.4704	4.6708E-03	4-15556-03		. 256B
5.05	2.0900	.0212	22.390		28,43	3,274	530	167	2103.34	1.0116	1.8555E-03	1.50626-03		• 3465
A. 55	2.0000	·C119	20.320		28.68	3.223	530	172	2083,70	1.4747	9.399BE-04	8.3381E-04		30.38
7.99	5•3300	-0144	14-820		28.61	2.734	530	213	1965.22	1.1250	8.7341E-04	1.01576-03		1447
9.02	2.0980	-0102	16.210		28.73	2.906	530	197	2008.29	1.2109	6.6015E-04	7.1321E-04		. 1825
19.05	2.0000	.051	16.750		28.86	3.063	5 3 0	184	2041.92	1.2359	3.34816-04	3.5440E-04		- 2159
10.97	2.0103	-C034	15.810		28.91	3.002	530	189	2025.85	1.1739	2.1158E-04	2+35788-04		.1933
12.03	2.0900	.0017	15.820		28.95	3.027	530	187	2030.31	1.1728	1.05486-04	1.17650-04		.1976
12.54	5+0323	C.cono	16.000	1.279	29.00	3.058	530	185	2036.14	1.1837	0.	0 -	1.18376+00	.2054

TABLE I. - TABULATED DATA - Continued

Test 1 - Concluded

Y /D	2/0	ĸ	PT2X	PIX	мых	ХM	TTX	ΤX	٧x	RHOVX	Χį	GX	RHOYX#(L-GX)	PRM
	INATES	MOL FR.	PSTA	PSIA	MOL WT	MACH	-DEG		FT/SEC	SLG/SUFT		MASS FR.	AIR MASS FLOW	
-0.00	1.0900	.3175	6.450	1.640	20.43	1.630	527	343	1764.37	.4987	1-19645-02	3.1328E-02	4.83126-01	.0292
-12.90	1.0200	0.000	10.190	1.344	29.00	2.349	530	252	1826.63	.0178	0.	0.	8.1783E-01	.0726
-11.52	1.0900	.C008	LC. 200	1.345	28.48	2.349	530	252	1827.44	.8183	3.6757E-05	5.8764E-05	B.1824E-01	0721
-10.05	1.0900	-C025	10.400	1.365	28.93	2.355	530	252	1831.01	.8330	1.12486-04	1.7665E-04	8.3283E-01	0745
-8.70	1.0900	.(043	10.310	1.417	28.75	2.297	530	258	1814.97	. #303	4-14516-04	6.5310E-04	8.2974E-01	.0707
-7.39	1.0900	.6170	10.640	1.478	28.54	2.284	530	259	1816.28	.0556	7.8392E-04	1.1986E-03	8.54546-01	.0722
-5.94	1.0900	.C255	10.220	1.479	28.31	2.234	530	265	1803.68	.8250	1.145BE-03	L-8170E-03	8.23476-01	.0668
-4.58	1.0900	. (2>5	14.600	1.533	28.31	2.651	530	220	1950.69	1.1131	1.5460E-03	1.81706-03	1.11116+00	1324
-3.02	1.0900	.0558	12,150	1.600	27.50	2.350	529	252	1875.38	a9900	2.96866-03	4.00UPE~03	9,44090=01	0.067
-1.70	1.0000	-146C	10.290	1.620	25.06	2.134	524	276	1830.05	.7957	7.14185-03	1.17426-02	7.8631E-0t	40526
-0.00	1.0900	· 2408	7.780	1.640	21.42	1.815	527	317	1843.87	.5916	1.1947E-02	2.6419E-02	5.7593E-01	0187
1.65	1.0900	.2700	8.220	1.640	21.72	1.072	527	310	1865.65	. 6219	l.1915E-02	2.50635-02	6.06376-01	0.55
3.02	1 • 0 000)	.1551	10.470	1.622	24.41	2.153	528	214	1047.75	"B031	7.73066-03	1.26056-02	7.93008-01	.0045
4.39	1.0000	.Ca10	15.050	1,605	27.35	2.333	529	254	1873.43	9397	3.22946-01	4,4950E-03	9,35636-01	, QH 4 6
5. A9	1.0900	.C∠81	13.200	1.571	24,24	2.481	530	238	1897-82	1.026#	1.5737E-03	2,00508-03	1.02476+00	0 LN 44
7.25	1.0900	.¢229	12.000	1.504	28.38	2.412	530	245	1069.08	-9445	1.17696-03	1.630LE-03	9.429/6-01	บถาส
8.74	1.0900	. €204	9.390	1.496	28,45	2.121	530	279	1751.85	.7741	8.5464E-04	1.444E-03	7.12975-01	0.55
10.14	1.0900	•(119	10.300	1.641	28.68	2.275	530	201	1808.62	.8313	5.29046-04	B.3381E-04	8.30565-01	6,500
11.00	1.0900	.0034	9.300	1.400	28.91	2.187	530	271	1766.27	.7641	1.37726-04	2.35700-04	7.63948-01	. 3588
13.18	1.0900	0.000	10.290	1.379	29.00	2.329	530	254	1819.19	.0283	0.	0.	8.28286-01	10125
-0.00	5.8900	.1718	16.920	1-617	24.36	2.785	534	209	2153.32	1.1745	1.28376-02	1.4214E-02	1.1578E+00	.1722
-5.00	5.8200	0.0000	32.390	1.414	29.00	4.176	536	120	2236.41	2.2212	0.	0.	2.22125+00	1.0886
-3.82	5.4 Jug	.0085	30.170	1.498	28.77	3.910	534	132	2210.57	2.0871	9.51825-04	5.9311E-04	2.08596+00	8102
-3.B2	5.893A	.0307	26.540	1.565	28.17	3.579	536	151	2181.10	1.8517	3.1242E-03	2.1943E-03	L.8476E+00	.5365
~ l _ R4	5.8900	•(990	20.680	1.609	26.33	3.101	535	183	2156.61	1-4463	8.42646-03	7.57746-03	1.4353E+00	.2759
~.99	5.6900	. 1469	16.250	1.618	25.04	2.897	535	149	2157.08	1.2691	1.1542E-02	1.18286-05	1.25418+00	.2042
-0.nn	5. 8900	. 1681	17.450	1-617	24.46	2.830	534	205	2162.53	1.2080	1.28646-02	1.38508-02	1.19126+00	e 1845
1.09	5.8900	.1460	18.050	1.615	25.06	2.683	535	201	2152.18	1.2579	1,13540-02	1.1742E-02	1.24286+00	. 1996
2:03	5. 8900	*CAOF	20.600	1.620	26.57	3.084	535	184	2143.00	1.4492	7.6144E-03	6.8334E-03	1.43936+00	.2/OB
3.02	5.8900	.C350	25.000	1.617	28.06	3.413	536	161	2156.20	1.7601	3.40016-03	2.51246-03	1.7556E+00	• 4374
3.96	54 8 900	. CC59	29.600	1.545	28.84	3,811	536	137	2193.84	2.0607	6.55826-04	4.1384E-04	2.0599E+00	.7306
4,40	5 • B 903	0.000	31.000	1.462	29,00	4.014	536	127	22169	2.1416	0.	0.	2.14146+00	.9097

	Test	2 surv	EV 2-1-1	20 V							10/60	• •9730	LAMDA =	.5547
	-	FT GAS EL GAS	MOL.W 2.0 29.0	16		C HEAT 4130 2400		GAMMA 1.406 1.399		•	TEMP.(DEG.R) 36 45	41	ESS.(PSIA) -12 -92	
	₽H[V]] =	1.2799	E+00	X1M =	1,0337	7E-02	С×	K = '	1.91776-0	12 ATRMF	H = 2.21016	+CC AKXP	= 2.1952E-01	
Y/0	270	ĸ	PT2X	Plx	PWX	,M.X	TTX	ΤX	VX	RHOVX	1X	GX	RHOVX+(1-GX)	PRM
ÇOQRD	[NRTFS	HAL FR.	PSIA	PSIA	MCL WT		-080	R	FT/SEC	5LG/SCF1	SEC	MASS FR.	AIR MASS FLOY	W
1,00	40000	#1679	3.050	1,535	24.47	1.041	544	447	1173.06	.2858	-3.0886E-Q3	1.3831E-02		.0123
2.00	1:4-100	.1688	3.100	1.535	24.44	1.054	543	445	1186.21	.2901	3.15596-03	1.39256-02		.0125
ባ•ሳበ	2.5200	-18B2	A.050	1.386	23.92	1.732	543	3 39	1721.26	.4872	6.0357E-03	1.5857E-02		.0289
3,00	3#4H00	2057	7,750	1.648	23.45	1.807	543	32R	1784.08	.6082	8.4058E-03	1.76896-02		.0385
0.00	4.6000	.2195	8,250	1,989	23.08	1.682	543	347	1719.85	.6599	9.88726-03	1.9177E-02		. 03 ถ4
1,01	6,0090	•1989	9,760	2.006	23.63	1.842	543	373	1797.76	,7634	1.01196-02	1.6966E-02		0494
ი"იი	7,5900	.1195	14,250	1.706	25.78	2.473	544	245	2009.70	1.0465	7.64246-03	9.3474E-C3		.1122
ኅ 30	н <u>, алдо</u>	-0510	20.150	1.655	27.46	2.978	544	196	2100.45	1.4422	4.71C5E-03	4.1807E-03		. 2420
).07	9-4000	.0336	23.950	1.680	20.09	3.272	545	174	2144.93	1.6904	3.18395-03	2.4108E-03		•371Z
	14-0005	.0176	27.250	1.662	20.53	3.518	545	157	2176.17	1.9043	1.85096-03	1.2440E-03		.5226
	12,6000	.0053	30,150	1.645	26,86	3,725	545	145	2198.46	2.0522	6.0051E-04	3,67636-04		6918
	11.5000	9400.	31.400	1.640	2R.93	3.810	545	140	2208.71	2.1713	3.1002E-04	1.8322E-C4	2.17096+00 2.21816+00	.7746 .8749
	11,3000	0.0000	32.120 8.209	1.438	29.00 23.21	7.856 1.719	545 543	137 341	2212.95 1738.62	2.2181 .6525	0. 9.5014E-03	0. 1.8639E-02		0388
0,00	4,2000 5,2000	.2146 .2166	8.800	2.076	23.16	1.703	543	343	1730,63	.7018	1.0337E-02	1.8853E-02		0414
(1.417.)	5.5000	** 100	0.00	**0.0	53414		273	24.4	E_1 30,8 03	•,70,0	1,40,315 05	11	0100000	
-0.00	4.4000	.2145	8.180	1.972	23.10	1,682	545	348	1721.07	.6538	9.7403E-03	1.90696-02	6.4131E-01	.0381
-10.13	4.4000	0.0000	15.160	1.604	29.00	2,641	547	229	1955.43	1.1525	Č.	0.	1.15256+00	.1371
-9.01	4.4000	.0035	14 990	1.620	28.91	2,611	547	232	1949.33	1.1418	2.1816E-04	2.4456E-04		1323
-8.16	4.4000	.0070	15,000	1.644	28.81	2,592	547	234	1946.29	1.1434	4.3881E-04	4.9122E-04		1303
-7.04	4.4000	0158	15,160	1.656	28.57	2,564	547	236	1945.05	1.1545	1.0C81E-03	1.11726-03		.1287
-5.91	4.4000	.0318	15.200	1.892	20.14	2.422	547	252	1910.51	1.1711	2.08516-03	2.27896-03		.1152
-4.79	4,4000	.0542	14.830	2.060	27.54	2.284	546	268	1877-69	1.1535	3.57896-03	3.9711F-C3		.1011
-3.52	4.4000	.0926	13.620	2,071	26.50	2.175	546	281	1866.78	1.0580	5.8206E-03	7.0414E-03		.0857
-2.25	4,4000	.1478	11,240	1.940	25.01	2.030	545	299	1851.06	. 2705	8-1025E-03	1.19146-02	8.6012E-01	.0639
99	4.4000	.1989	0.920	1.923	23.63	1.793	545	331	1771.48	.7038	9.32866-03	1.69668+02	6.9184E-C1	.0440
-0.00	4,4000	.2185	8.190	1.963	23.10	1.688	545	347	1725.06	.6537	9.73906-03	1.90696-02	6.4123E-01	.0383
1.13	4.4010	1999	8.450	2.020	23.61	1.736	545	340	1737.36	.7064	5.42C2E-03	1.70688-02	6.94366-01	.0423
2.39	4.4000	.1459	11.070	2.029	25.06	1.959	545	309	1812.87	.8657	7,93766-03	1.1736E-02	8.5549E-01	.0599
3.52	4,4000	-1046	12.610	1.881	26.18	2.198	546	278	1088.04	.9701	6.10538-03	8.05516-03	9.6230E-01	.0006
4.50	4.4000	.0678	13,970	1.779	27.17	2.393	546	255	1932.56	1.0624	4.1781E-03	5.03346-03		.1035
5.77	4,4000	-0145	15,130	1.722	28.07	2,540	547	239	1954.19	1.1461	2.2180E-03	2.4770E-03		.1260
6,9)	ፋ • ፋባርበ	.0176	15,610	1.705	28.53	7,597	547	223	1957.26	1.1025	1.15C3E-03	1.2440E-03		.1361
7.88	4.4900	.0070	15.700	1.693	28.8t	2.014	547	231	1953.41	1.1935	4.5804E-04	4.91226-04		·13B9
8.72	4.4000	•0035	15,600	1.692	28.91	2.614	547	23 i	1950.35	1.1678	2.2695E-04	2.4456E-C4		.13B1
9.57	4.4900	-0009	15.720	1.679	28.98	2.583	547	235	1938.02	1.1647	5.5456E-05	6.0945E-0		.1313
10.55	4.4000	0.0000	15.040	1.675	29.00	2.570	547	236	1933.06	1.1532	0.	0.	1.1532E+00	1284

Test 2 - Concluded

Y/9	. 270	ĸ	PT2X	Plx	MEX	НK	TTX	T.C	٧ĸ	AHQVX	Хſ	6x	RHOVX+(1-GX)	PRM
	INATES	HOL FR.	PSTA	PS LA	MOL WY	MACH	-DEG	, R	FT/SEC	SLG/SOFT		MASS FR.	AIR MASS FLOW	FAR
-0.00	7.3000	*1872	5,600	1,449	23.95	1.614	543	357	1643.78	.4633	5.6443E-03	1.575RE-02	4.56C2E-01	.0253
-10.59	2.3000	0.0000	B . 800	1.677	29.0C	1.927	547	315	1669.99	.7474	0.	0.	7.4745E-C1	.0467
-9.29	,2 , 3000	,0053	9,550	1.719	28.06	1.866	547	321	1645.31	.7326	7.0420E-04	3.6763E-04	7.3233E-01	.0439
-7.88	2.3000	.0158	8.590	1.773	20.57	1,838	547	32a	1639,41	.7367	6.3629E-04	1.11726-03	7.3590E-01	.0434
-6.76	2,3000	• 0 10 9	8.400,	1.811	20.17	1.8.1	546	224	1651.25	.7451	1.28176-03	2.21316-03	7.4747E-01	.0445
-5	000F.S	.0524	9.000	1.782	27.59	1.881	546	3.20	1689.25	.7525	2,2292E-03	3.8322E-03	7.4958E-01	.0466
-4	2.3000	-080A	9.120	1.521	26.42	2.068	545	290	1805.78	7264	3.4C22E-03	6.05870-03	7.2197E-01	.0532
-3.21	2.3000	.1120	8.790	1.180	25.98	2.138	545	285	1866.07	-6012	4.57916-03	8.69496-03	6.7531E-01	.0538
-2,25	2.3000	.1374	B_060	1.476	25.29	1.964	544	30"	1805.30	.6362	5.3852E-03	1.0950E-02	6.2920E-01	.0439
-1.13	2.3000	.1650	4.600	1.540	24.55	1.714	543	342	1688.18	5404	5.66138-03	1.35508-02	5.3311E-01	.0312
-0.	2,3000	-1872	5.600	1.460	23.95	1,607	543	35₽	1639.00	-4641	5.65346-03	1.57585-02	4.5676E-C1	.0252
1	2.3000	.1679	6.400	1.574	24.47	1,663	543	350	1658.44	.5292	5.6584E-03	1.3831E-02	5.2188E-C1	.0295
2.	2.3000	1383	7.590	1.775	25.27	1.712	544	343	1661.59	6105	5.3791E-03	1.1037E-02	6.2350E-C1	.0350
3 4.1	5 F 30 L 0	.1074	8.250	1.466	26.10	1.7.5	545	339	1657.57	.6911	4.43C7E-03	8.2936F-03	6.8532E-01	.0396
4.10	2-3000	.07,51	A.680	1.860	26.97	1,799	545	331	1662.81	.7301	3.16926-03	5.6152E-C3	7.2598E-01	.0429
5.49	2,3000	.0457	9,090	1.814	27.66	1,862	546	323	1676.70	.7640	2.1409E-03	3.6250E-03	7.6119E-01	.C465
6.33	2.3000	0110	9.370	1.804	28.l4	1.911	546	316	1680.51	,7863	1.38525-03	2.2789E-C3	7.8447E-01	.0494
7.46	2-3 000	-0176	9,590	1.745	28.53	1,959	547	309	1701.84	.8024	7.71686-04	1.24408-03	8.C130E-01	0521
8.44	2.3000	•опив	9.360	1.742	20.76	1.947	547	311	1689.18	.7680	3.7488E-04	6.1534E-04	7.87568-01	.0505
9.57	2,3000	.0035	8.940	1.727	28.91	1.907	547	317	1665.30	.7603	1.4375E-04	2.4456E-C4	7.6C13E-01	.0470
10.41	2.3000	•0009	8.740	1.719	28.98	1.888	547	320	1653.68	.7470	3.5193E-05	6.09458-05	7.4693E-01	0454
11.39	5.3000	0.r000	R.750	1.709	59~00	. 896	547	3,18	1656.80	.747C	c.	0.	7.4703E-01	.0457
													107.002, 02	
-0.03	8,2000	40870	16.800	1 +6 92	76 465	2.710	946	152	3000 CH	1 0147				
-7.46	8.2000	0.0000	27.430	1.575	29.00	3.624	548	151	2059.05	1.2162	6.1044E-01	6.5841E-03	1.2082E+00	1608
-6.62	0.002	.0018	27.210	1.506	28,45	3.601	54A		2182491	1.9141	.0.	0.	1.9141E+CO	•5774
-5.91	8.2000	10044	261840	1.615	28 A 8	3,542	548	153	2180.71	1.4000	1.7905E-04	1.2202E-04	1.49986+00	,5614
-4.93	F-2000	0105	26.310	1.640	28.12	3,478		156	2171.t9	1.8790	4 - 44 OBE-04	3.0603E-04	E.8784E+00	.5264
-3.94	8.2000	40220	25.000	1.640	28.41		548	160	2161.69	1.4446	1.05426-03	7.4000E-04	1.84326+00	-4802
-2.96	A . 2000	104C7	22.540	1.641		3.38A	947	166	2161.78	1.7547	Z.1108E-03	1:56356-03	1.7520E+00	·4288
~2.11	9.2000	3500	20.450			3.210	547	179	2143.48	1.5899	1.6153F-03	2.9444E-03	1.50520+CO	.3312
-1.27	4.2000	6760	18.250	1.646	27.49 26.95	3:047	547	151	2120.91	1.4522	4.6102E-03	4.1107E-03	1.44626+00	.2609
~ . 47	1 2000	4 GHOT	14.080	1.049		2.961	546	207	2092.42	8306.1	5-74128-03	5.6887E-D3	1.29936+00	. 1985
. 28	A 2000	. 6нно	16.760	1.667	26.63	2.739 2.779	446 946	216	2067124	1.2145	6.124HE-03	6. 40826→04	1.21066400	.1656
1.13	8.2000	40404	17.440	1.667				219	2065,95	1.2116	6+23176-03	6:6559E-03	1.2035E+00	.1612
1.97	9.2000	.0006	19:440	1.667	26,82 27.37	2.785 2.145	546	214	2075,31	1.256d	5.8769E-03	6:0587E-03	1.24B4E+CO	.1778
2.96	n zono	0434	21:580	1.680		3.000	547	200	2099.62	1.3878	4.70265-03	4.46236-03	1.38166+00	.2266
3.80	9 2000	0.100	23.000	1 6 9 9		3:196	547 547	187	2121,29	1.5342	3472878-03	3:1470E-C3	1.52948+00	.2883
4.93	8.2000	.0141	24,000	1:499		3:123	548	100	2127.91	1,46321	2.7C69E-03	2.1475E-03		• 3338
6.19	8.2000	0044	26,400	1.616				171	2141430		1:34326-03	9.9093E-04	1.75346+00	.4021
7.46	8.2000	0.0000	27.550	1,640		3.435 3.518	548	163 158	2153 413	1.0614	4.3992E~04	3:0603F-04	1.0408E+00	.4719
		0.0000	21.0130	1 7 7 1		3,318	5.8	124	2164,73	1:9354	6. / () () () () () () ()	0.		-5291
				•	•		•	, ,				19. TO 11. 18.		

	Test 3	3 <u>"</u> s.urv	EY 3-1-1	204							10/01	1.0063	LAMOA .	5689
		ET GAS EL GAS	29.0 29.0	15		C_HEAT 4160 2400		GAMMA 1.405 1.399		5	TEMP.(DEG.R) 41 41		ESS.(PSTA) .32 .84	
	KHUAN *	1.0610	E+00	XIM =	1463370	:-02	GXM	. 2	,7061E-02	АТВИЕМ	■ 1.8666E+0	DO. JAKXH	2.8577E-01	
Y/0,	2/D	ĸ	PT 2x	PlX	мых	"нх		, тх	٧x	RHOVX	Хī	ĢХ	RHOVX+(1-GX)	PRM
	INATES	MOL FR.	PSTA	P\$ [A		MACH	- DEG	-	FT/SEC	SLG/SOFT		MASS ER.	AIR MASS FLOW	
0.00	2250	2002	4.087	1.330	23,38	1,407	541	387	1510.57	.3513	5.93036-03	1.79466-02	·	.0213
0.00	1.4750	2609	6.906	1.330	21.96	1.895	541	315	1892.18	.5089	1.14648-02	2.3947E-02		0440
0.00	2.2250	. 2778	9.459	1.325	21.50	2.299	541	263	2120.04	.6662.	1.6320E-02		6.4887E-01	■ 0 B2 3
0.00	2.7250	28.38	8.367	1,,325	21.34	2.127	54 L	284	2046.24	.5910	1.49026-02	2.68036-02		0629
0.30	3,2250	.2858	9,791	1,300	21.29	2,208	541	274	2088.42	.6120	1.55805+02	2.70616-02		.0740
0.00	3.9750 5.2250	2788	9.563	1,360	21.48	2.255	541	26H	2101.30	.6637	1.63378-02		6.4632E-01	6789
0.00	6.2250	.1237	11.730 15.038	1.365	23,04 25.49	2.516	541 541	237 206	2135.61	.8158 1.0540	1.44196-02 1.01986-02	1.0275E-02		119:
0.00	7.2250	.0479	20.687	1.355	27.71	3. 190	541	164	2176.17	1.4425	4.72446-03	3.4015F=03		.2001 .4402
0.00	8 2750	.0177	25.555	1.345	20.77	3.795	54 L	140	2204.62		1.00456-03	6.0301F-04		7721
0.00	9,2250	0.0000	26.972	1,355	29.00	3.886		135	2209,06	1,8666	0.	0.	1.86665+00	8805
-6.00	3.2290	2858	8.781	280	21.29	4.897	546	94	2716.44	.4987	1.2768E-02	2.70616-02	4.85215-01	. •6533
-11.29	3.2250	0.0000	17.101	1.175	29.00	3.308		171	2121.09	1.2214	0.	0.	1.22146+00	3398
10.69	3.2250	0309	17.063	1.100	28.98	3.297.		172	2119.70	1.2192		5.97366-05		3358
-9.29	1.2750	.0317	16.928	1.225	28,95	3.220	544	179.	2134.64	1.2163	1.37616-04	1.1960E-04		3117
-6,94	3.2250	0069	18.084	1.285	28.81	3.251		176	.2116.16	1.2931	5.8892E-04	4.8140E-04		3419
-5.06	3.2250	0237	18,856	1.470	28.37	3,098	546		2098.79	1.3548	2.12486-03	1.65786-03		3172
-3.71	3.2250	0.700	16,995	1.405	27.11	3.004	546	195	2123.77	1.2031	5.9278E-03	5.20786-03		2592
-2.70	3.2250	1373	12.281	1.345	25.29	2.572	546	215		.8803	9,1152F-03	1-0945F-02		1302
-1.69	3,2250	.2120	11.334	1.370	23,28	2.467	546	246	2116.55	7943	1.3797E-02	1.83606-02		-1110
67	3.2250	. 273 B	9.293	1.400	21.61	2.186	546	219.		.6509	1.57268-02	2.5537F-02		0771
-0.00	3. 2750	·235B	8.791	1.280	21.29	2,225	546	274	2106.94	6066	1.5530E-02	3.70615-02		0.710
94	3.2250	.2638	9.640	1,295	21.88	2.325	546	.262	2123.63	.654B	1.52988-02	2.4308E-02		0840
1.62	3.2250	+2091.	11.626	1 380.	23.36	2,484	546	244	2117.54	.8100	1,3832F-02	1.8049E-02		1145
2.97	3.2250	1097	15.366	1.530	26.04	2,726	546	,220	2088.57	1.0973	8.42116-03	.0.4970E=03		1851
3.84	3.2250	. 0576	17.776	1.435	.27,45	3.042	546	192	3150.50	.1.2625	5.05148-03	.4.2292E-03		2804
6.07	3.2250	•93B6	19.508	1.382	20.77	3.263	546	175.	2120.37	1.3982	7,97676-04	.6.0301F-04	1.39745+20	3742
7, 61	1,2250	.0034	19.048	1.340	24.91	3,269	546	174	2116.29	1.3624	3.0895E-04		1.36216+00	3655
9.75	1.2250	.+0017	18,239	1.325	20.95	3.214	546		2103.26	1,3111	1,48156-04	I.1960F-04	1.3110F+00	.3340
ā H.	3.2250	0009	17.429	1.315	28.98	3.151	546		18.8865	1.2598	7.1195H-05	5.9736F-05		-3023
11.29	3.2250	0.0000	17.487	1.265	29.00	3.221	546	174	2133.09	1.2574	∙0.	0.	1.25746+00	.3222

TABLE I.- TABULATED DATA - Continued

Test 3 - Concluded

Y/0.	2/0	K	PT2X	Plx	MWX	чх	TTX.	ΥX	.VX	RHOVX	ХI	P. W	BUDWALL SALE	
COOR	DINATES	MOL FR.	PSIA	PSIA	HOL WT	MACH		R	ET/SEC	SLG/SOFT		.GX	RHOVX+(1-5X)	PRM
-0.00	1.7250	2578	.7.307	1.325	21.77	1, 275	543	305	1950.37	5344		MASS ER.	AIR HASS FLOW	
-13.36	1.7250	0.0000	10.594	1.230	29.00	2,513	544	241	1938.84	8197	1.2479E-02	2.4795E::02	5.2119E-01	.0498
-12.03	1.7256	.6017	10.353	1.260	20.95	2.452	544	247	1989.44		0.	0.	B.1973E-91	.1070
-11.16	1.7250	.0334	10.449	1.278	28.91	2.445	544	248	1980,67	.8C77	9.0962E-05	1.1960E-04	0.07616-01	0997
-9.22	1.7250	. 0077	10.257	1.310	28.79	2.382	544	255		. 8153	.1.8421E-04	2.3969E-04	A.1507E+31	*1001
-7.54	1.7250	0190	10.546	1.355	28,49	2.382	544	255	1959.53	.0058	4.11376-04	5.4214E-04	8.0536F-01	20935
~5.39	1.7290	0457	11.664	1.350	27.76	2.508	544		1979,42	.8242	.1.04276-03	.1.3436F-03	8.2306E-01	0961
-3.04	1.7250	1272	11.626	1.300	25.57	2.564	544	241	1744,40	.8849	.2.73376-03	3.2 HO 7F-03	8.8199F-31	+1175
67	1.7250	2480	8.020	1.350	22.31	2.057	544	235	2049.98	. 8405	7.9359F-03	_1.0027F=02	8.3207E-01	1225
~0.00	1.7250	. 2678	7.307	1.320	21.77	1.979	543	294	1971.04	• 5 A 4 A	1.2344F-02	2.2416F-n2	5.71670-01	.0577
1.55	1.7250	1900	10.141	1.310	23.87	2.174	544	304	1952.65	5340	1.2469E-02	2.4795E-02	5.2079F-01	0499
3.37	1.7250	*0444	12.010	1.412	26.33	2.499	544	255	2048,71	+.7269	1.0979F-02	1.60406-02	7.15216-01	1918
5.31	1.7250	.0417	11,780	1,390	27.88	2.492	544	242	1997.61	.8899	6.3400E-03	7.56616-03	8.03136-01	.1203
6.87	1.7250	.0109	11.433	1.360	28,46	2.482	544		1939,63	. 4971	2,5469F=03	3,01516+03	H • 9436F • 51	.1171
А. ВЧ	1.7250	.0046	10.739	1,332	28.77		544	244	1915.95	8809	1.16656-03	1.40626-03	8.7969E-01	.1127
10.69	1.7250	.0034	10.488	1.305	24.91	2.427		250.	1884.75	. B360	4.7583F-04	6.0301F-04	A_374AF+31	. 1014
12.15	1.7250	0017	10.316	1.205	28.45	2.423	544	250	1840.77	· 820 A	1.8526F-04	.2.3969E=04	8.2062F-31	0987
13.36	1.7250	0.0010				2.483	544	244	L900.41	· 4403	9.46286-05	1.1960E-04.	B.4016F-01	. LOAB
	*****	P.0030	10.237	1,260	29.00	2.429	544	250	,1879,88	. # O L H	Q.	0+.	8.01796-31	60968
-0.00	6.7.500	1330	16 116											
-6.40	1.1000		15,115	1.360	25.49		546	206	2154.93	1.0514	1.02216-02	.1.02756-02	.1.0406F+30	.2064
-5.39	1.1000	9.0000	26.972	1.210	29.00	4.119	546	124	2250,29	1,8386	.0.	0.		1.0759
-4.25	1:1000	. 1004	26.490	1.230	28.95	.4.046	546	128	2241.86	1.0098	1.02285-04	5.97363-05	1 8096E+33	9927
-1.29	1,1000	.0121	25.199	1.277	28.67	3.869	546	137	2229.25	1.7277	1.38586-03	8.4779E-04	1.72635+30	8174
-2.56	1.1500	.0112	22.719	1.305	28.16	3.634	546	150	2212.70	1.5692	3,3133E-03	.2.2319E-03	1.56546+00	6002
~1.82		.(549	20.321		27.52	3.399	544	146	.2193.61	1.4057	5.35046-03	4.0235E-03	1.40006+33	4330
-1.21	1,000	. 3844	17.814	1.343	26.72	3.146	546	183	2173.60	1.2374	7.4511F-03	6.3651E-03	1.22955+30	3074
67	1. 300	.1370	16.271	1.350	20.11	3.0D1	546	195	2163.09	1.1330	8.4555E-03	8.2618F-03	1.1236E+00	2479
-0.00	i,• 1000	.+1326	15,385	1.360	25.69	2.901	546	204	2153.97	1.0715	9.74916-03	9.61746-03	1.0612F+30	2149
. 818	0.01.7	:1299	15.115	1.360	25,49	2.875	546	206	,2154.83	1.0514	1.0221F-02	1.0275F-02	1.04065+33	2064
1.42	1,1000	.1152	15.366	1.355	25.39	7.905	546	203	2146,77	1.0739	9.11568-03	8.9725F-03	1.0642F+30	.2154
2.23	1.3000	.0925	17.159	1.350	26.50	3.083	546	188	2167.56	1.1934	7.942HE-03	7.0352F-03	1.18508+70	2803
3.04	1.13000	0629	19.569	1.345	27,30	3.307	546	171	2165,61	1.3565	5.9607E-03	4.544RF-03	1,35026+00	3883
3.91	1+1000	.40397	22.075	1.337	27,97	3,530	546	156	2202.22	1.5248	3.9694F-03	2.7517E-03	1.5206F+30	5317
4.99	1.1000	.0173	24.736	1.325	28.53	3.760	546	143	2218.48	1.7018	1.9624E-03	1.2189F-03	1.69988+33	726R
6.07	1.4000	.0043	26.490	1.325	28.88	3.895	546	136	2224.91	1.8204	5-16536-04	7-99936-04	1.81986+30	9733
0.54.1	1.1000	0.0300	27.127	1.322	29.70	3.947	546	133	2227.11	1.8629	0	0	1.86298+20	49350
										-				4.7.70

Test 4 SURVEY 3-1-120V 1.0051 JAMDÁ = .5689 HOL.WY. SPECIFIC HEAT GAMMA AVG. TOTAL TEMP. (DFG.R) TOTAL PRESS. (PSIA) 1.406 JET GAS 2.016 3.4100 529 39.09 TUNNEL GAS 25.000 .2400 530 199.91

	RHDVJ =	1.0650	+00	XIM =	1.56446	-02	GXM	≠ 2.	3554E-C2	AIRMEM	= 1.9312E+0)O - AKXH =	2,57616-01	
Y/D	7.70	к	PT2X	PfX	PWX	μX	ŤTX	Ŧ X	υχ	RHOVX	ΥŢ	Gх	RHCVX+11-GX1	PRM
	INATES	MOL FR.	PSIA	PSTA	MOL HT	FALH		.R	FT/SEC	SLG/SQFT		MASS FR.	AIR MASS FLOW	
0.00	.6000	.1837	4.158	1.369	24.04	1.402	530	380	1470.88	.3666	5,2819E-03	1,5403E-02	3.6092€-01	.0217
0.00	1.10 10	. 2019	6.990	1.372	23.55	1.890	530	309	1805.64	.5474	8.8502E-03	1.7283E-02	5.1795F-01	0453
0.00	1.6000	.2182	8.382	1.372	23.11	2.089	530	283	1927.57	.6266	1.11598-02	1.90376-02	6.1468E-01	.0617
0.00	2.1000	.2347	8.746	1.375	22.67	2.130	530	276	1970.27	•6436	1.25698-02	2.0876E-C2	6.3016E-01	. 066B
0.00	2.6000	2487	9,294	1.352	22.33	2.227	530	266	2028-12.	.6671	1.40026-02	2.24368-02	6.5214E-01	.0755
0.00	3.1000	. 2566	9.592	1.342	22.08	2.273	530	260	2059.18	.6794	1.4891F-02	2,3428E-02	6.6351E-01	0805
0.00	3.6000	2555	10.014	1.342	22.11	2.328	530	254	2011.64	7047	1.53616-02	2.33036-02	6.8825E-01	0876
0.00	4.1000	.2477	10.734	1.347	22.33	2.418	530	244	21 CH . 43	7494	1.5644E-02	242314E-02	7.32716~01	1007
0 • 00	4.6500	• 2244	11.742	1.345	22,94	2.531	530	232	2123.40	.8185	1.5096E-02	1.9716E-C2	8.0234E~01	.1206
0.00	5.10.10	1938	12.942	1.352	23.77	2,657	530	219	2130,19	, 9040	1.38998-02	_1+6435F=02	8.89136-01	.1474
0.00	5,6500	.1478	14.814	1,360	25,01	2.844	530	702	21 33, 96	1.0396	1.15875-02	1,1914E-02		.1975
0.00	6.1000	.1078	17.022	1.357	26.09	3.062	530	184	2146.59	1.1948	9.3083E-03	B.1278F-03	L+18495+00	2735
0.00	6.4000	.0696	19.230	1.342	27.12	3.201	5 3 0	168	2154.65	1.3514	6.535RE-03	5-1697E-03	1.34456+00	.3737
0.00	7.1000	.0349	22.590	1.322	28.06	3,593	5 30	148	2176,97	1.5800	3.70665-03	2.5077F-03	1.57616+00	.5757
0.00	7.6000	0164	25.422	1.315	28,56	3.620	5 3 0	135	2194.93	1.7694	1.9219E-03	1.1611F-03	1.7673E+00	.7934
0.00	A. 1000	.0044	27.006	1.307	28,88	3.961	530	128	2201.39	1.8771	5.5820E-04	3.1788E-C4	1.8765E+00	.9439
0.00	8.6500	1.0000	27.822	1,300	50.00	4.033	530	125	2206.22	1.9312	0.	0_•	1,9312E+00	1,0335
_0.co	2.3500	-2420	9.294	1.365	22.47	2.216	520	267	,2015.31	.6708	1.3623E-0Z	2.1709E-02	6.56266-01	.0748
0.00	2.9500	2576	9,390	1.342	22.05	2.249	530	263	2049.43	.6679	1.4717E-02	2.35546-02	6.5220E-01	.0774
1.00	3.3530	.2576	9.774	1.342	22.05	2.297	530	257	2071.23	.6900	1.52048-02	2.35546-02	6.7375E~01	• 0836
0.00	3.9500	. 2534	10.266	1.341	22.16	2.352	530	251	20,89.52	.7165	1.54526-02	2,3053E-02	6.9997E-01	.0910
B.95	3.1000	0.0000	18.462	1.345	29.00	3.209	533	174	2075.42	1.3448	0.	0.	1.34488+00	.3357
7.61	3.1000	+0CL9	18.702	1 345	28.95	3.231	533	173	2081-74	1.3588	1.4533E-04	1.3023E-04	1.3586E+00	.3465
6.13	3.1000	-0037	19.662	1.340	28,90	3.322	533	166	2102.06	1.4174	3.4571E-04	2.61065-04	1.4170E+00	.3943
5.46	3.1000	.0056	20.286	1.335	28.85	3.382	533	162	2115.63	1.4547	5.33435-04	3.92486-04	1.4541E+00	•4288
4.72	3.1000	.0131	20.718	1.337	28.65	3,417	533	160	2129.47	1.4770	1.2754E-03	9,2423F-04	1.4756E+00	.4511
4.18	3.1000	0226	20.718	1,338	26.39	3.415	533	160	2138.60	1.4707	2.2024F-03	1.6029E-03	1.4683E+00	4505
3,37.	3.100C	0493	19.470	1 342	27.67	3.302	533	168	2143.53	1.3760	4.6152E-03	3,590(E-01	1.3710E+00	3836
2.77	3.100C	0764	16.574	1.342	26.94	3.C75	533	184	2121.57	1.2059	6.4400E-03	5.7160E-03	1.19908+00	· 2746
2.02	3.1000	.1419	13.750	1.342	25.17	2.755	532	211	2106.21	•9754	1.0359E-02	1.1368E-02	9.6427F-01	.1693
1.35	3.1000	1574	11.022	1.342	23.67	2.450	5 3 2	242	2065.30	.7869	1.2355E-02	1.68056-02	7.73636-01	+1C56
.67	3.1000	.2416	9.102	1.342	22.48	2.211	532	269	2017-10	. 6562	1.3285E-02	2.1669E-02	6,41966-01	0727
-0.00	3.100C	. 2631	8.574	1.342	21.90	2.141	532	277	2009.62	•6173	1.3967E-02	2.4217E-02	6.0236E-01	• 0651
-,67	3.1000	2545	9.150	1.342	22.13	2.217	532	268	2035.58	.6539	1.41626-02	2.3179E-C2		+0734
-1.42	3.1000	.2099	11.166	1,338	23,34	2.471	532	239	2088.05	. 7893	1.3371F-02	1.81335-02	7.7496E-01	• 10AB
-2.02	3.1000	.1684	13.086	1.338	24.46	2.688	532	210	2115.15	•9216	1.1953E-02	1.3882E-02		.1521
-2.63	3.1000	.1178	15,246	1.333	25.E2	2.518	533	197	2126.08	1.0743	9.25025-03	9.1988E-03		.2156
-3.37	3.100C	.0744	16.830	1.320	26.99	3.CB8	533	183	2122.58	1.1955	6.2092E-03	5,5593E-03		2754
-4.05,	3.1000	•041 <u>6</u>	17.838	1.323	27.88	3.183	533	176	2110.50	1.2771	3.5900E-03	3.0087E-03	1.2733E+00	.3169
-4.72	3.1000	.0264	18.126	1.323	28.29	3.210	573	174	2-101-08	1.3043	Z.2895E-03	1.8788E-C3		.3296
-5.39	3.1000	.0160	18.078	1.320	28.57	3.205	533	175	2089.95	1.3076	1.3758€-03	1.1262E-03		· 3276
-6.07	3.1000	.0094	17.694	1.325	26.75	3.164	533	178	2074.58	1.2801	7.9084E-04	6,5713E-04		•3093
-6.74	3.1000	-0056	17.43C	1.325	28.85	3.139	533	180	2065.59	1.2737	4.67C5E-04	3.9248F <u>~</u> 04		.2902
-7.43	3.1009	•9047	17.070	1.325	20.07	3.105	523	182	2057.12	1.2515	3.8199E-04	3.2669E-04		• 2836
-9.15	3.1000	*005B	16.638	1.327	28.92	3.C62	533	186	2045.36	1.2255	2.2393F-04	_1.•9557E-04		.2663
- 4.75	3.1000	0.0000	16.307	1.327	29,00	3.029	533	188	2035.14	1.2058	0.	0.	1.2058F+00	.2537
-3.42	3.1900	0.0000	16.206	1.327	29.00	3.020	233	109	2032.93	1.1997	0.	0.	1.1997E+00	•250 <i>2</i>

TABLE I.- TABULATED DATA - Continued

Test 4 - Concluded

4/0	2/0	K	PTZX	PIX	MWX	МX	TYX	Y)	٧x	RHOVX	X I	GX		***
COORE	INATES	HOL FR.	PSIA	PSIA	MOL WT	MACH		.R	FT/SEC	SLG/SOFT		MASS FR.	RHOVX*(1-GX)	PR M
13.49	1.6000	0.0000	10.556	1.365	29.00	2.421	534	246	1859.60	.0666	C.	On TRO	ASR MASS FLOW	
12.8	1.0000	.0018	10.054	1.365	28.95	2,409	534	247	1857,07	.8597	9.85776-05	1.22858-04	8.6662E-01 8.5958E-01	+1023
12.16	1.6000	.0018	10.806	1.365	28.95	2.404	534	248	1855.03	8566	9.8219E-05	1.72856-04	8.5646E-01	.1005
11.43	1.6000	.0018	10.710	1.365	26.95	2.392	534	249	1850.92	8503	9.7503F-05	1.2285F-04		.0996
10.76	1.6000	.0018	10.494	1.365	28.95	2.366	534	252	1841.48	8363	9.5891E-05	1.22856-04	0.5022E-01	.0979
10.09	1.6000	.0035	10.230	1.365	28.90	2.334	534	254	1831.04	.B184	1.88C8E-04	2.46236-04	8.36166-01	10940
9.42	1.4010	•0062	10.062	1.365	28.83	2.313	534	258	1825.45	8064	3.2539F-04	4.32296-04	8-18186-01	• C894
8.6#	1.6000	.005	10.062	1.367	28.74	2.312	534	258	1827,73	8053	5.1285F-04	6.8226E-C4	8.0480E-01	.0866
7.75	1.4000	.0142	10.158	1.367	28.62	2.323	534	257	1836.00	B099	7.5430E-04	9.97776-04	8.0913E-01	.0864 .0040
6.51	1.6000	.0213	10.782	1.374	20.43	2.392	534	249	1867.74	8464	1.1955E-C3	1.5058E+03	8+47CBE-01	0465
5.80	1.6000	0302	11.558	372	28.18	2.439	534	239	1909,85	8968	1.81036-03	2.16265-03	8-94896-01	.1144
4.72	1.6000	.0446	12,462	1.368	27.80	2,589	534	228	1956.53	.9449	2.8557F-03	3.2379E-01	9.4185F-01	.1334
3.71	1.6000	.0674	12.678	1.369	27.LB	2.613	534	226	1985.75	.9481	4.4230F-03	4.59811-03	9.43366-01	.1363
2.70	1.6000	.1100	11.958	1.3?2	26.C3	2,529	533	234	2000.18	.8847	7.034BE-03	8.51946-01	8.77136-01	1218
1.62	1.6000	1662	9.966	1.375	24.52	2.292	533	5 90	1968,29	• 7400	9.43A0E-03	1.3664E-02	7.2989F-01	0843
6]	1.6000	.2311	7.422	1,375	22.76	1.952	5:3	302	1875.69	.5632	1.075HE-02	2.0464F-02	5.5167E+01	0496
-0,00	1.6000	.2502	7.134	1.375	22.25	1.909	533	308	1873,29	5397	1.1420E-02	2.26715-02	5.2744E-01	0464
-1.01	1.6000	2052	8.502	1.380	23,46	2.099	533	283	1923,25	.6375	1.0494E-02	1.7636F-G2	6.2626E-01	0625
-1.96	1.6000	.1517	9.518	1.375	24.51	2.286	533	261	1950.59	-7428	8.5154E-03	1.22828-02	7.3371E-01	.0835
-2.97	1.6000	.1007	10.638	1.370	26.28	2.378	533	250	1935.91	8071	5.81576-03	7.72C5E-03	8.0082E-01	0962
-4.05	1.6000	0573	10.662	1.358	27.45	2.393	534	249	1900.20	8247	3.2414E-03	4.2111F-03	8.2118E-01	.0975
-5.06	1.4000	.0338	10.158	1.350	28.C9	2.339	534	255	1858.92	• BOO7	1.8145E-03	2.4279E-03	7.9876E-01	0891
-6.13	1.6000	0177	9.774	1.355	28,52	2.287	534	261	1824.84	·7824	9.14756-04	1.2527E-03	7.8138E-01	. C824
-7.67	1.6000	•0088	9.630	1.357	28.76	2.267	534	264	1009.56	.7764	4.4899E-04	5.1956E-C4	7.7594F-01	0080
-0.15	1.6000	0035	9.390	1.360	28.90	2.233	534	268	1791.91	7629	1.7533E-C4	2.4623E-04	7.6269E-01	.0761
-8.82	1.6000	0018	9.438	1.352	28.95	2,278	534	267	1792.22	.7669	8.7933E-05	1.2285F-04	7.6677E-01	.0767
-9.22	1.6000	0.0000	9.678	1.362	29.00	2.268	534	263	1802.65	.7833	0.	0.	7.P326E-01	
												~ •	141.1504.01	.+OBO5
5.39	5.8500	0.0000	27.774	1.320	29.CQ	3,998	534	127	2209.97	1.9238	0.	^	1 02305.00	
4.65	5.8500	.0009	27.534	1.325	28.98	3.973	534	129	2207.49	1.9088	1.0955E-04	0.	1.9238E+00	.9953
4.05	5,8500	•0053	27.102	1.335	28.86	3.926	534	131	2205.54	1.8795	6.5070E-04	6-1429E-05	1.90876+00	9656
3.31	5.9500	.0177	25.662	1.360	28.52	3.781	534	139	2197.35	1.7830	2.0892E-03	3.70566-04	1.8788E+00	.9131
2.70	5.8500	0330	23.466	1.367	28.11	3.597	534	149	21.83.52	1.6323	3.6054E=03	1.254lE-03	1.78080+00	.7641
1.96	5.850C	.0620	19.998	1.345	27.33	3.319	534	167	2162.04	1.4017	5.9873E-03	2,36416-03	1.6284F+00	- 5546
1.21	5.8500	0915	16.574	1.340	26.53	3.054	534	186	2134.22	1.1981	7.7792F-03	4.5719E-03	1.39538+00	.3991
.6l	5.9500	.1186	15.246	1.360	25.80	2.888	533	200	120.41	1.0782	9.33596-03	9.26776-03	1+18985+00	2692
13	5.0500	.1404	14.166	1.363	25.21	2.778	533	210	2113.19	1.0018	1.05106-02	1.12296-02	1.0-82E+00 9.9051E-01	. 2095
41	5,3500	1423	14.286	1.360	25,16	2.791	533	208	2118.99	1.0079	1.07406-02	1.1405F-02	9.9641E-01	• 1775
-1.55	5.9500	.1214	15.534	1.352	25.72	2.925	533	197	1133.68	1.0929	9.7183F-03	9.5171E-03	1.0825F+00	.180a
~2.29	5,9500	.0915	17.838	1.312	26.53	3.193	534	176	.166.62	1.2444	B.0796E-03	6.9455E-03	1.2357E+00	.2204 .3190
-3.10	5.0500	.0556	21.198	1.282	27.50	3.533	534	153	196.01	1.4684	5.5909E-03	4.07516-03	1.46246+00	5093
-3.98	5.8500	.0267	24.542	1.280	28.28	3.844	534	135	.215.87	1.7199	3.05648-03	1.90208-03	1.71678+00	. X835
-4.65	5.3500	0115	26.670	1.278	28,69	3.98L	534	128	219.43	1.8392	1.3901E-03	8.0858E-04	1.8377E+00	9419
-5,60	5.8500	.0018	27.566	1.278	28.55	4.079	534	124	2222.20	1.9282	2.2157E-04	1.22998-04		1.0729
-6.07	5.850C	0.0000	28.302	1.283	25.00	4.101	534	123	7223.13	1.9510	0.	0.		1.1059
-6.67	5.8500	0.0000	28.734	1.278	29.CO	4.136	534	121	2227.46	1.9776	0.	ů.	•	1.1563

TABLE I.- TABULATED DATA - Continued

1.399

2.016

29.000

3.4300

-24CC

JEI GAS

THRISEL GAS

LAMOA = .5772 CJ/QI = 1.0012Test 5 SURVEY35 9590,.239 TOTAL PRESS.(PSIA) AVG.TOTAL TEMP. (DEG.R) SPECIFIC HEAT GAMMA MCL.WT. 1.403 505

53C

249.75

	TÜNN	EL GAS	29.0	00	-	2466		1.377		•		# 17		
	RHOVJ .	1.35520	E+00											
	KINDAD -	4.53322												
Y / 1)	170	к	(* f 2 X	Ptx,	MEX	МX	TTX	1 X	VΧ	RRCAX	Хl	GX	REGYX+(1=GX)	PHM
	INALLS	801 174	P 1 1 A	111, 17	MIL WI	MAGIL	-01.6	. H .~	P17516	\$1.675411	54:C	MASS FOR	ATH PASS CITA	
9.40	ስልተ	1/0/1	14000	14/17	11.73	1.077	526	427	1209,41	1151	4.29011-011	4.73716:07	4,64491:501	•(I144
9,99	1.0103	1001	5 400	1 . / 44	23.60	1,574	576	1/1	1448.66	14775	6 - 0 / 2 11 - D 3	3.71961 07	դ _Ե րասիլի () ի	40231
0.119	1.4221	.2176	0.100	1.70g	21.13	1.803	525	318	1164.49	.6423	0.99116-03	1.09696-02	6.10160-01	*0460
0.00	1.4351	.2.335	F 850	1.720	22.70	1.901	525	305	1837.20	6610	1-04346-02	2.07371-02	6.67/01-01	.0467
0.00	2.2474	2415	9.500	1.723	22.48	1.977	525	295	1887.67	7100	1.14716-02	2.1652E-C2	7.02416-01	. Q520
0.00	2.0594	2504	10 100	1.720	27.24	2.045	525	266	1933.19	7499	1.25596-02	2-2694t-02	7.32536-01	-0578
1.00	1.0772	.25/1	10.600	1.720	22.06	2.108	525	270	1572.92	.7611	1.35436-02	2.3494E-C2	7.6278E-01	. 0638
0.00	3.4845	.2589	11.350	1.740	22,01	2.165	525	271	2002.88	.0213	1.4369E-02	2.3711E-C2	e.Clece-Cl	.0766
0,00	9,8969	.2603	11.850	1.745	21.58	2.213	525	265	2026,50	.B5C1	1.4976E-02	2.38736-02	8.2583E-C1	.0762
1.00	4.3353	.7513	12,500	1.735	22,22	2.285	525	257	2048.41	8914	1.4558E-02	2.28CCE-C2	0.71C8E-C1	.C848
0.00	4.7216	.2393	13.150	1.725	22.54	2,355	525	249	2064.04	9345	1.4754E-02	2.1396E-C2	9.1452E-C1	.0541
0.00	5.1340	.2247	13.950	1.725	22.94	2.431	525	241	2077.21	.9851	1.44116-02	1.97456-02	9.4954E-01	.1059
0.00	6.5464	.2001	14.900	1.720	23.60	2.521	526	232	2002.91	1.0581	1.33496-02	1.70966-02		.1216
0.10	5.9588	.1759	16.150	1.715	24.25	2.635	526	2 20	2095.11	1.1458	1.2364F-02	1.4623E-02		.1447
บ.กา	6.3711	.13d5	18.280	1.720	25.26	2.808	527	205	2107.69	1.2571	1.0580E-02	1.1053E-C2		.1893
0.00	6.7835	.1043	20.700	1.723	26.15	2.994	528	189	2122.05	1.4671	8.6947E-03	0.0313E-03	1.4553E+CO	.2513
1,00	1.1959	.0659	23.680	1.725	27.22	3,221	529	172	2136.10	1.6907	6.C886F-03	4.8803E-03	1.6824E+00	3534
J ion	1.4082	.0414	26 850	1.720	27.88	3.430	529	158	2153.04	1.8536	4.10276-03	2.9933E-C3		.4755
1.00	8.0206	.0227	29.500	1.718	28.39	3,602	530	147	2165.18	2.0748	2.47366-03	1.6156E-03		•6068
0.00	e.4333	.0179	71.430	1.715	20.65	3.725	530	141	2175.28	2.2042	1.4772E-C3	5.CH20E-C4		.7186
0.00	F.8454	, û û 5 Z	32.530	1.710	28.86	3.797	530	137	2178.64	2.2801	6.05476-04	3.55866-04		.7513
a.gr	5.0515	.6017	22.950	1.710	28.95	3.822	530	135	2174.58	7.3055	2.0361E-04	1.1945E-04	2.3C96F+C0	មារព្រ
11.31	.2 . 24 74	.0317	14.130	1.620	28.55	2,531	530	233	1891.54	1.1053	9.7428E-05	1.19456-04		1163
-9.46	2.2414	.0034	13.939	1.630	28.91	2.504	530	235	1883.95	1.0527	1.53636-04	2.3940E-C4		1121
-1.91	2.2474	.0043	13.750	1.653	28.88	2.468	530	239	1872.59	1.0832	2.39466-04	_2.9957E-¢4		- 1076
-5.36	2.2474	.6844	14,180	1.668	28.75	2.497	530	236	1686.62	1.1103	5.30E6E-04	6.5766E-04		.1135
-4.73	2.2474	.0149	15.730	1.675	28.60	2.632	530	222	1534.9C	1.2081	9.34546-04	1.0483E-C3		.1466
-3.26	2.2474	-12 5 7 H	16,450	1.680	27.58	2.690	529	216	1973.14	1.2417	2.49646-03	2.7245E-G3		. 1543
-1,71	2.2474	0054	15.710	1.680	24.70	2.627	523		1598.34	1.1656	5.5671E-G3		1.1620E+00	1400
- 15	212414	.1318	14.500	1.688	25.44	2.510	527	233	2005.00	1.0491	8.2379E-03		1.C58CE+C0	.1173
). 00	2.2474	.1958	12.200		23.77	2.289	576	258	1502.95	.8584	1.10336-02	1.6647E-02		· 025
. 25	2.2414	.2335	ኒር " 3ሰብ	1.706	27.7C	2.075	525	202	1929.50	-7682	1.1755F-02	2.0737E-02		*04C1
1.43	2.2474	# 2 5 HG	e con	1. 104	27.04	1,931	525	3.09	1990.97	•6833	1.19001-02	2.36021-02		.0481
1,11	2.24	. 2414	ባ - ፋነ፣ስ	1.70%	22,50	1.984	43 1 14	2004	1081-01	.1124	1.14071-02	7-16011 - 07	1. cc1at-a1	.0521

TABLE I.- TABULATED DATA - Concluded

Test 5 - Concluded

Y/D	2/0	k	P7 2 X	Plx	мил	××	Ť T-H	Υ)	VX	RHOVX	яĪ	6 11	SUGAR-II AAI	***
COURDINATES		MOL FR.	PSIA	PSTA	MOL WY	PACH	-DEG.R		FT/SEC	SLG/SOFTSEC			RHOVX®(1-GX) AIR MASS FLOW	PRM
* - 72	3.2414	.2040	16-930	4 - 455	23.48.4	4.440	926	20.5	1424.81		- -			
A.50	2.2474	DAUL	15.500	1.713	26.14	2.58/)	52.8	225	2003.11	1.1475	1.09716-02	1./5096-02		.0140
9.12	2.7474	-D402	16.900	1.769	27.92	2.704	52.9	215	1979.51	1.2722	6.9202E-03 2.7258E-03	8.17258-03	1.13816+00	.1327
7.52	7,2474	0172	16.500	1,690	26,54	2.684	530	211	1953.49	1.2570	1.12596-03	2.9034E-03	1.2685E+CC	.16C4
7.19	2.2674	• ភូព១ន	15.050	1.640	24.74	2,567	530	229	1910.08	1.1677	5.40588-04	1.2174E-03	1.25636+00	, 1543
4.92	2.2474	.0016	14.000	1.680	28.77	2,478	530	231	1879.58	1.1051	4.914CE-04		1.1669E+QC	,1275
10.70	2.2474	0060	13-400	1.573	28.24	2.419	. 530	240	1855.88	1.0620	3,2935E-04	4.0228E+04	1.1C5CE+C0	1110
11.40	2.2474	on034	13.400	1.065	28.91	2.425	530	240	1856 94	1.0623	1.87666-04	4.2027E-04		.10C8
12.25	2.2474	.6017	13.950	1.660	28,95	2.481	530	538	1675.02		9.681CE-05	2.3540E=C4		.1C13
•							230		1013.02	100363	4.0c1rt-02	1.1945E-04	1.05826+00	.1103
-6.36	1.4969	.0009	25,900	1.568	28,98	3.531	530	152	2131.97	1.8479	8.1356E-C5	5.9664E-05	1.64776+00	.5011
-4.73	3.8949	.0034	27.300	1.585	26,91	3.608	530	147	2147.43	1.9361	3.4203E-04	2 3940E-C4		.5644
-1,26	3.8969	.0227	25.080	1.610	2B.35	3.482	530	155	2144.25	1.0343	2.1069E-03	1.61566-63		4797
-1.71	3.6969	.0903	20.050	1.658	26.56	3,004	528	1.811	2110.17	1.4294	7.23116-03	6.8554E-C3		-2456
0.00	2,8969	.2150	13.700	1.770	23.20	2,411	526	243	2050.23	9753	1.35CCE-02	1.8682E-C2		1024
.62	3.8969	.2495	12.230	1.735	22.27	2,258	525	260	2034.50	.6767	1.46146-02	2.25896-02		.C013
1,43	3.8969	.2675	11,450	1.733	21.78	2,190	524	269	2020.29	9223	1.50196-02	2.4753E-C2		.0720
2,17	3.8969	,7621	11.730	1.740	21.92	2.204	525	266	2025.01	8416	1.4965E-02	2.4051E-C2		.0750
1.02	3.8969	.2335	12.510	1,740	22.70	2.323	525	255	2043.81	9263	1.41746-02	2.0737F-02	5.C7C6E-01	0503
4.65	1.8969	.1159	14.000	1.740	25.87	2.040	528	201	2095.34	1.3580	9.05166-03	5.03266-03	1.3457E+CC	2036
6.12	1.8569	.0235	26.530	1.712	28.36	3.416	530	159	2132.90	1.8082	2.3311E-03	1.67306-03		.4643
7.60	7.8569	.0326	28.000	1.66C	26.93	3.569	530	150	2140.15	1.9913	2.6356E-04	1.79366-04	1.99096+00	.5559
9.15	3.8569	.0017	25.550	1.638	28.95	3,428	530	156	2114.42	1.8346	1.61738-04	1.1945E-C4	1.8345E+00	4522
						· · · · ·		•••			1.01.12 04	1017475-64	1.62436400	4322
73	6.3711	0.0000	32,300	1.571	25.00	4.013	530	126	2203.66	2.3136	c.			
-1.26	6.3711	.0000	11.950	1.593	28.84	3.901	530	131	2194.45		6.9C42E-04	0. 4.2027E-04	2,31366+00	.5737
-1.71	6.3711	.0315	27.730	1.630	28.15	3,585	529	148	2170.88		3.2325E-03	2.2526E-03		«8495
-,23	4.3711	.1010	20.830	1.680	26.27	3.044	528	165	2131.01		8.4153E-03	7.75CUE~03		.5619
1.40	6.3711	.1402	17.830	1.710	25.22	2,780	527	207	210:.48		1.0486E-02	1.12C8E-C2		.2639
3.10	6.3711	.1186	15.4CC	1.727	25.75	2.891	528	150	2110.19		9.44E8E-03	5.2878E-C3		.1803 .2155
4.50	6.3711	0554	25.350	1.727	27.50	3.322	529	165	2140.20		5.36496-03	4.0418E-C3		.4090
6.12	6.3711	.0086	31.600	1.705	26.77	3.742	530	140	2173.71		9.05896-04	6.G228E+C4		.7332
•		•			• • •							2.32.202 9		

(a) Flat-plate detail. Dimensions are in cm.

Injectors at 18.6 cm

Injectors at 24.0 cm

Test	l	a	b	С	D	cD
1	24. 0	0. 635	0. 578	1. 41	0, 254	0. 830
2	24. 0	. 152	. 680	1. 41	. 0508	. 754
3	24. 0	. 305	. 654	1. 41	. 1016	. 784
4 (ref. 9)	18. 6	. 3175	. 397	. 1524	. 1016	. 760
5 (ref. 12)	24. 0	. 369	. 510	1. 41	. 123	. 830

(b) Injector detail. Dimensions are in cm.

Figure 1.- Experimental model.

Figure 2.- Survey-probe design. Dimensions are in mm.

Figure 3.- Schematic of gas sampling system.

Figure 4.- Undisturbed theoretical plate boundary layer at injector station.

Figure 5.- Jet penetration.

Figure 6.- Correlation of jet penetration.

Figure 7.- Correlation of penetration of maximum concentration. $\frac{X}{D} = 120$.

Figure 8.- Maximum hydrogen mass fraction.

Figure 9.- Correlation of maximum concentration decay.

Figure 10.- Mass average total pressure and total-pressure recovery.

Figure 11. Vertical hydrogen concentration profile.

Figure 12.- Vertical total-pressure profile.

Figure 13.- Hydrogen concentration contour.

Figure 13.- Concluded.

Figure 14.- Hydrogen flow rate contours in $kg/\mathrm{m}^2\text{-sec.}$

Figure 14.- Concluded.

Figure 15.- Airflow rate contours in $\mbox{kg}/\mbox{m}^2\mbox{-sec}.$

Figure 15.- Concluded.

Figure 16. Mass-weighted total-pressure profiles in kg/m^2 -sec.

Figure 16.- Concluded.