Contents

Un	nsupervised Learning
Din	nensionality Reduction
1.1	Unsupervised Learning
1.2	Principal Components Analysis
1.3	Principal Components
	Notations and Procedure
	First Principal Component (PC ₁): Y_1
	Second Principal Component (PC_2): Y_2
	i^{th} Principal Component (PC _i): Y_i
1.4	How do we find the coefficients?
	Why It May Be Possible to Reduce Dimensions
	Procedure
1.5	Standardization of the features
1.6	Projection of the data
	Scores
	Visualization
	Extra
1.7	Case study
1.,	Employement in European countries in the late 70s
	Dim 1.1 1.2 1.3

2 CONTENTS

Part I Unsupervised Learning

Chapter 1

Dimensionality Reduction

1.1 Unsupervised Learning

Previously we considered supervised learning methods such as regression and classification, where we typically have access to a set of p features X_1, X_2, \ldots, X_p , measured on n observations, and a response Y also measured on those same n observations (what we call **labels**). The goal was then to predict Y using X_1, X_2, \ldots, X_p . From now on we will instead focus on **unsupervised** learning, a set of statistical tools where we have only a set of features X_1, X_2, \ldots, X_p measured on n observations. We are not interested in prediction, because we do not have an associated response variable Y. Rather, the goal is to discover interesting things about the measurements on X_1, X_2, \ldots, X_p . Is there an informative way to visualize the data? Can we discover subgroups among the variables or among the observations? Unsupervised learning refers to a diverse set of techniques for answering questions such as these. In this chapter, we will focus on a particular type of unsupervised learning: Principal Components Analysis (PCA), a tool used for data visualization or data pre-processing before supervised techniques are applied. In the next chapters, we will talk about clustering, another particular type of unsupervised learning. Clustering is a broad class of methods for discovering unknown subgroups in data.

Unsupervised learning is often much more challenging than supervised learning. The exercise tends to be more subjective, and there is no simple goal for the analysis, such as prediction of a response. Unsupervised learning is often performed as part of an *exploratory data analysis*. It is hard to assess the results obtained from unsupervised learning methods. If we fit a predictive model using a supervised learning technique, then it is possible to check our work by seeing how well our model predicts the response Y on observations not used in fitting the model. But in unsupervised learning, there is no way to check our work because we don't know the true answer: the problem is *unsupervised*.

1.2 Principal Components Analysis

The central idea of principal component analysis (PCA) is to reduce the dimensionality of a data set consisting of a large number of interrelated variables, while retaining as much as possible of the *variation* present in the data set. This is achieved by *transforming* to a new set of variables, the principal components (PCs), which are uncorrelated, and which are ordered so that the first few retain most of the variation present in all of the original variables.

Suppose that we wish to visualize n observations with measurements on a set of p features, X_1, X_2, \ldots, X_p , as part of an exploratory data analysis. We could do this by examining two-dimensional scatterplots of the data, each of which contains the n observations' measurements on two of the features. However, there are $C_p^2 = p(p1)/2$ such scatterplots. For example, with p = 10 there are 45 plots! If p is large, then it will

certainly not be possible to look at all of them; moreover, most likely none of them will be informative since they each contain just a small fraction of the total information present in the data set. Clearly, a better method is required to visualize the n observations when p is large. In particular, we would like to find a low-dimensional representation of the data that captures as much of the information as possible. PCA provides a tool to do just this.

PCA finds a low-dimensional representation of a data set that contains as much as possible of the variation. The idea is that each of the n observations lives in p-dimensional space, but not all of these dimensions are equally interesting. PCA seeks a small number of dimensions that are as interesting as possible, where the concept of interesting is measured by the amount that the observations vary along each dimension. Each of the dimensions found by PCA is a **linear combination of the** p **features**. We now explain the manner in which these dimensions, or principal components, are found.

1.3 Principal Components

Notations and Procedure

Suppose that we have a random vector of the features X.

$$\mathbf{X} = \left(\begin{array}{c} X_1 \\ X_2 \\ \vdots \\ X_p \end{array}\right)$$

with population variance-covariance matrix

$$\operatorname{var}(\mathbf{X}) = \Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \dots & \sigma_p^2 \end{pmatrix}$$

Consider the linear combinations

$$Y_1 = a_{11}X_1 + a_{12}X_2 + \dots + a_{1p}X_p$$

$$Y_2 = a_{21}X_1 + a_{22}X_2 + \dots + a_{2p}X_p$$

$$\vdots$$

$$Y_p = a_{p1}X_1 + a_{p2}X_2 + \dots + a_{pp}X_p$$

Note that Y_i is a function of our random data, and so is also random. Therefore it has a population variance

$$var(Y_i) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{ik} a_{il} \sigma_{kl} = \mathbf{a}_i^T \Sigma \mathbf{a}_i$$

Moreover, Y_i and Y_j will have a population covariance

$$cov(Y_i, Y_j) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{ik} a_{jl} \sigma_{kl} = \mathbf{a}_i^T \Sigma \mathbf{a}_j$$

and a correlation

$$cor(Y_i, Y_j) = \frac{cov(Y_i, Y_j)}{\sigma_i^2 \sigma_j^2}$$

Here the coefficients a_{ij} are collected into the vector

$$\mathbf{a}_i = \left(\begin{array}{c} a_{i1} \\ a_{i2} \\ \vdots \\ a_{ip} \end{array}\right)$$

The coefficients a_{ij} are also called *loadings* of the principal component i and \mathbf{a}_i is a principal component loading vector.

- The total variation of X is the trace of the variance-covariance matrix Σ .
- The trace of Σ is the sum of the variances of the individual variables. $trace(\Sigma) = \sigma_1^2 + \sigma_2^2 + \cdots + \sigma_p^2$

First Principal Component (PC₁): Y_1

The first principal component is the normalized linear combination of the features X_1, X_2, \ldots, X_p that has maximum variance (among all linear combinations), so it accounts for as much variation in the data as possible.

Specifically we will define coefficients $a_{11}, a_{12}, \ldots, a_{1p}$ for that component in such a way that its variance is maximized, subject to the constraint that the sum of the squared coefficients is equal to one (that is what we mean by normalized). This constraint is required so that a unique answer may be obtained.

More formally, select $a_{11}, a_{12}, \ldots, a_{1p}$ that maximizes

$$\operatorname{var}(Y_1) = \mathbf{a}_1^T \Sigma \mathbf{a}_1 = \sum_{k=1}^p \sum_{l=1}^p a_{1k} a_{1l} \sigma_{kl}$$

subject to the constraint that

$$\sum_{j=1}^{p} a_{1j}^2 = \mathbf{a}_1^T \mathbf{a}_1 = 1$$

Second Principal Component (PC₂): Y_2

The second principal component is the linear combination of the features X_1, X_2, \ldots, X_p that accounts for as much of the remaining variation as possible, with the constraint that the correlation between the first and second component is 0. So the second principal component has maximal variance out of all linear combinations that are uncorrelated with Y_1 .

To compute the coefficients of the second principal component, we select $a_{21}, a_{22}, \ldots, a_{2p}$ that maximizes the variance of this new component

$$\operatorname{var}(Y_2) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{2k} a_{2l} \sigma_{kl} = \mathbf{a}_2^T \Sigma \mathbf{a}_2$$

subject to:

- The constraint that the sums of squared coefficients add up to one, $\sum_{j=1}^{p} a_{2j}^2 = \mathbf{a}_2^T \mathbf{a}_2 = 1$.
- Along with the additional constraint that these two components will be uncorrelated with one another:

$$cov(Y_1, Y_2) = \mathbf{a}_1^T \Sigma \mathbf{a}_2 = \sum_{k=1}^p \sum_{l=1}^p a_{1k} a_{2l} \sigma_{kl} = 0$$

All subsequent principal components have this same property: they are linear combinations that account for as much of the remaining variation as possible and they are not correlated with the other principal components.

We will do this in the same way with each additional component. For instance:

i^{th} Principal Component (PC_i): Y_i

We select $a_{i1}, a_{i2}, \ldots, a_{ip}$ that maximizes

$$var(Y_i) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{ik} a_{il} \sigma_{kl} = \mathbf{a}_i^T \Sigma \mathbf{a}_i$$

subject to the constraint that the sums of squared coefficients add up to one, along with the additional constraint that this new component will be uncorrelated with all the previously defined components:

$$\sum_{j=1}^{p} a_{ij}^{2} \mathbf{a}_{i}^{T} \mathbf{a}_{i} = \mathbf{a}_{i}^{T} \mathbf{a}_{i} = 1$$

$$\operatorname{cov}(Y_{1}, Y_{i}) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{1k} a_{il} \sigma_{kl} = \mathbf{a}_{1}^{T} \Sigma \mathbf{a}_{i} = 0$$

$$\operatorname{cov}(Y_{2}, Y_{i}) = \sum_{k=1}^{p} \sum_{l=1}^{p} a_{2k} a_{il} \sigma_{kl} = \mathbf{a}_{2}^{T} \Sigma \mathbf{a}_{i} = 0$$

$$\vdots$$

$$\operatorname{cov}(Y_{i-1}, Y_{i}) = \sum_{l=1}^{p} \sum_{l=1}^{p} a_{i-1,k} a_{il} \sigma_{kl} = \mathbf{a}_{i-1}^{T} \Sigma \mathbf{a}_{i} = 0$$

Therefore all principal components are uncorrelated with one another.

1.4 How do we find the coefficients?

How do we find the coefficients a_{ij} for a principal component? The solution involves the **eigenvalues** and **eigenvectors** of the variance-covariance matrix Σ .

Let $\lambda_1, \ldots, \lambda_p$ denote the eigenvalues of the variance-covariance matrix Σ . These are ordered so that λ_1 has the largest eigenvalue and λ_p is the smallest.

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p$$

We are also going to let the vectors $\mathbf{a}_1, \dots, \mathbf{a}_p$ denote the corresponding eigenvectors.

It turns out that the elements for these eigenvectors will be the coefficients of the principal components.

The elements for the eigenvectors of Σ are the coefficients of the principal components.

The variance for the *i*th principal component is equal to the *i*th eigenvalue.

$$\mathbf{var}(Y_i) = \operatorname{var}(a_{i1}X_1 + a_{i2}X_2 + \dots a_{ip}X_p) = \lambda_i$$

Moreover, the principal components are uncorrelated with one another.

$$cov(Y_i, Y_i) = 0$$

The variance-covariance matrix may be written as a function of the eigenvalues and their corresponding eigenvectors. In fact, the variance-covariance matrix can be written as the sum over the p eigenvalues, multiplied by the product of the corresponding eigenvector times its transpose as shown in the following expression

$$\Sigma = \sum_{i=1}^{p} \lambda_i \mathbf{a}_i \mathbf{a}_i^T$$

If $\lambda_{k+1}, \lambda_{k+2}, \dots, \lambda_p$ are small, we might approximate Σ by

$$\Sigma \cong \sum_{i=1}^k \lambda_i \mathbf{a}_i \mathbf{a}_i^T$$

Earlier in the chapter we defined the total variation of X as the trace of the variance-covariance matrix. This is also equal to the sum of the eigenvalues as shown below:

$$trace(\Sigma) = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_p^2$$

= $\lambda_1 + \lambda_2 + \dots + \lambda_p$

This will give us an interpretation of the components in terms of the amount of the full variation explained by each component. The proportion of variation explained by the *i*th principal component is then going to be defined to be the eigenvalue for that component divided by the sum of the eigenvalues. In other words, the *i*th principal component explains the following proportion of the total variation:

$$\frac{\lambda_i}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$$

A related quantity is the proportion of variation explained by the first k principal component. This would be the sum of the first k eigenvalues divided by its total variation.

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_n}$$

In practice, these proportions are often expressed as percentages.

Naturally, if the proportion of variation explained by the first k principal components is large, then not much information is lost by considering only the first k principal components.

Why It May Be Possible to Reduce Dimensions

When we have correlations (multicollinarity) between the features, the data may more or less fall on a line or plane in a lower number of dimensions. For instance, imagine a plot of two features that have a nearly perfect correlation. The data points will fall close to a straight line. That line could be used as a new (one-dimensional) axis to represent the variation among data points.

All of this is defined in terms of the population variance-covariance matrix Σ which is *unknown*. However, we may estimate Σ by the sample variance-covariance matrix which is given in the standard formula here:

$$\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{X}_i - \bar{\mathbf{x}}) (\mathbf{X}_i - \bar{\mathbf{x}})^T$$

Procedure

Compute the eigenvalues $\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_p$ of the sample variance-covariance matrix **S**, and the corresponding eigenvectors $\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \dots, \hat{\mathbf{a}}_p$.

Then we will define our estimated principal components using the eigenvectors as our coefficients:

$$\begin{array}{rcl} \hat{Y}_1 & = & \hat{a}_{11}X_1 + \hat{a}_{12}X_2 + \dots + \hat{a}_{1p}X_p \\ \hat{Y}_2 & = & \hat{a}_{21}X_1 + \hat{a}_{22}X_2 + \dots + \hat{a}_{2p}X_p \\ & & \vdots \\ \hat{Y}_p & = & \hat{a}_{p1}X_1 + \hat{a}_{p2}X_2 + \dots + \hat{a}_{pp}X_p \end{array}$$

Generally, we only retain the first k principal component. There are a number of criteria that may be used to decide how many components should be retained:

- 1. To obtain the simplest possible interpretation, we want k to be as small as possible. If we can explain most of the variation just by **two** principal components then this would give us a much simpler description of the data.
- 2. Retain the first k components which explain a "large" proportion of the total variation, say 70 80%.
- 3. Examine a scree plot. This is a plot of the eigenvalues versus the component number. The idea is to look for the "elbow" which corresponds to the point after which the eigenvalues decrease more slowly. Adding components after this point explains relatively little more of the variance. See the next figure for an example of a scree plot.

Scree plot showing eigenvalue by number of principal component.

1.5 Standardization of the features

If we use the raw data, the principal component analysis will tend to give more emphasis to the variables that have higher variances than to those variables that have very low variances.

In effect the results of the analysis will depend on what units of measurement are used to measure each variable. That would imply that a principal component analysis should only be used with the raw data if all variables have the same units of measure. And even in this case, only if you wish to give those variables which have higher variances more weight in the analysis.

- The results of principal component analysis depend on the scales at which the variables are measured.
- Variables with the highest sample variances will tend to be emphasized in the first few principal components.
- Principal component analysis using the covariance function should only be considered if all
 of the variables have the same units of measurement.

If the variables either have different units of measurement, or if we wish each variable to receive equal weight in the analysis, then the variables should be **standardized** (*scaled*) before a principal components analysis is carried out. Standardize the variables by subtracting its mean from that variable and dividing it by its standard deviation:

$$Z_{ij} = \frac{X_{ij} - \bar{x}_j}{\sigma_j}$$

where

- $X_{ij} = \text{Data for variable } j \text{ in sample unit } i$
- \bar{x}_j = Sample mean for variable j
- σ_j = Sample standard deviation for variable j

Note: Z_j has mean = 0 and variance = 1.

The variance-covariance matrix of the standardized data is equal to the correlation matrix for the unstandardized data. Therefore, principal component analysis using the standardized data is equivalent to principal component analysis using the correlation matrix.

1.6 Projection of the data

Scores

Using the coefficients (loadings) of every principal component, we can project the observations on the axis of the principal component, those projections are called *scores*. For example, the scores of the first principal component are

$$\forall 1 \le i \le n \quad \hat{Y}_1^i = \hat{a}_{11} X_1^i + \hat{a}_{12} X_2^i + \dots + \hat{a}_{1p} X_p^i$$

 (X_1^i) is the value of feature 1 for the observation i)

This can be written for all observations and all the principal components using the matrix formulation

$$\hat{\mathbf{Y}} = \hat{\mathbf{A}}X$$

where $\hat{\mathbf{A}}$ is the matrix of the coefficients \hat{a}_{ij} .

Visualization

Once we have computed the principal components, we can plot them against each other in order to produce low-dimensional views of the data.

We can plot the score vector Y_1 against Y_2 , Y_1 against Y_3 , Y_2 against Y_3 , and so forth. Geometrically, this amounts to projecting the original data down onto the subspace spanned by \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 , and plotting the projected points.

To interpret the results obtained by PCA, we plot on the same figure both the principal component scores and the loading vectors. This figure is called a *biplot*. An example is given later in this chapter.

Extra

- You can read this tutorial ☒ . In the document, there is an introduction about the mathematical concepts used in PCA. Plus a detailed example of PCA.
- You can watch these videos for a nice explanation of PCA 1 2.

1.7 Case study

Employement in European countries in the late 70s

The purpose of this case study is to reveal the structure of the job market and economy in different developed countries. The final aim is to have a meaningful and rigorous plot that is able to show the most important features of the countries in a concise form.

The dataset eurojob (download) contains the data employed in this case study. It contains the percentage of workforce employed in 1979 in 9 industries for 26 European countries. The industries measured are:

- Agriculture (Agr)
- Mining (Min)
- Manufacturing (Man)
- Power supply industries (Pow)
- Construction (Con)
- Service industries (Ser)
- Finance (Fin)
- Social and personal services (Soc)
- Transport and communications (Tra)

If the dataset is imported into R and the case names are set as Country (important in order to have only numerical variables), then the data should look like this:

Country	Agr	Min	Man	Pow	Con	Ser	Fin	Soc	Tra
Belgium	3.3	0.9	27.6	0.9	8.2	19.1	6.2	26.6	7.2
Denmark	9.2	0.1	21.8	0.6	8.3	14.6	6.5	32.2	7.1
France	10.8	0.8	27.5	0.9	8.9	16.8	6.0	22.6	5.7
WGerm	6.7	1.3	35.8	0.9	7.3	14.4	5.0	22.3	6.1
Ireland	23.2	1.0	20.7	1.3	7.5	16.8	2.8	20.8	6.1
Italy	15.9	0.6	27.6	0.5	10.0	18.1	1.6	20.1	5.7
Luxem	7.7	3.1	30.8	0.8	9.2	18.5	4.6	19.2	6.2

Table 1.1: The 'eurojob' dataset.

Nether	6.3	0.1	22.5	1.0	9.9	18.0	6.8	28.5	6.8
UK	2.7	1.4	30.2	1.4	6.9	16.9	5.7	28.3	6.4
Austria	12.7	1.1	30.2	1.4	9.0	16.8	4.9	16.8	7.0
Finland	13.0	0.4	25.9	1.3	7.4	14.7	5.5	24.3	7.6
Greece	41.4	0.6	17.6	0.6	8.1	11.5	2.4	11.0	6.7
Norway	9.0	0.5	22.4	0.8	8.6	16.9	4.7	27.6	9.4
Portugal	27.8	0.3	24.5	0.6	8.4	13.3	2.7	16.7	5.7
Spain	22.9	0.8	28.5	0.7	11.5	9.7	8.5	11.8	5.5
Sweden	6.1	0.4	25.9	0.8	7.2	14.4	6.0	32.4	6.8
Switz	7.7	0.2	37.8	0.8	9.5	17.5	5.3	15.4	5.7
Turkey	66.8	0.7	7.9	0.1	2.8	5.2	1.1	11.9	3.2
Bulgaria	23.6	1.9	32.3	0.6	7.9	8.0	0.7	18.2	6.7
Czech	16.5	2.9	35.5	1.2	8.7	9.2	0.9	17.9	7.0
EGerm	4.2	2.9	41.2	1.3	7.6	11.2	1.2	22.1	8.4
Hungary	21.7	3.1	29.6	1.9	8.2	9.4	0.9	17.2	8.0
Poland	31.1	2.5	25.7	0.9	8.4	7.5	0.9	16.1	6.9
Romania	34.7	2.1	30.1	0.6	8.7	5.9	1.3	11.7	5.0
USSR	23.7	1.4	25.8	0.6	9.2	6.1	0.5	23.6	9.3
Yugoslavia	48.7	1.5	16.8	1.1	4.9	6.4	11.3	5.3	4.0

Note: To set the case names as Country, we do

```
row.names(eurojob) <- eurojob$Country
eurojob$Country <- NULL</pre>
```

So far, we know how to compute summaries for *each variable*, and how to quantify and visualize relations between variables with the correlation matrix and the scatterplot matrix. But even for a moderate number of variables like this, their results are hard to process.

```
# Summary of the data - marginal
summary(eurojob)
#ans>
                                                        Pow
           Aqr
                          Min
                                         Man
                                           : 7.9
#ans>
      Min. : 2.7
                     Min.
                            :0.100
                                    Min.
                                                   Min.
                                                          :0.100
#ans> 1st Qu.: 7.7
                     1st Qu.:0.525
                                    1st Qu.:23.0
                                                   1st Qu.:0.600
                                                   Median :0.850
#ans> Median :14.4
                     Median :0.950
                                    Median :27.6
                                          :27.0
#ans> Mean
             :19.1
                     Mean
                            :1.254
                                    Mean
                                                   Mean
                                                          :0.908
#ans>
      3rd Qu.:23.7
                     3rd Qu.:1.800
                                     3rd Qu.:30.2
                                                   3rd Qu.:1.175
           :66.8
                          :3.100
                                           :41.2
                                                   Max. :1.900
\#ans > Max.
                     Max.
                                    Max.
#ans>
           Con
                           Ser
                                          Fin
                                                          Soc
                                                            : 5.3
#ans> Min.
             : 2.80
                      Min.
                           : 5.20
                                     Min. : 0.50
                                                     Min.
#ans> 1st Qu.: 7.53
                      1st Qu.: 9.25
                                     1st Qu.: 1.23
                                                     1st Qu.:16.2
                                     Median : 4.65
                                                     Median:19.6
#ans> Median : 8.35
                      Median :14.40
                           :12.96
#ans> Mean
            : 8.17
                      Mean
                                     Mean : 4.00
                                                     Mean :20.0
                                      3rd Qu.: 5.92
#ans> 3rd Qu.: 8.97
                      3rd Qu.:16.88
                                                     3rd Qu.:24.1
#ans> Max.
             :11.50
                      Max.
                            :19.10
                                     Max.
                                           :11.30
                                                     Max.
                                                           :32.4
#ans>
           Tra
#ans> Min.
             :3.20
#ans> 1st Qu.:5.70
#ans> Median :6.70
#ans> Mean
            :6.55
#ans> 3rd Qu.:7.08
#ans> Max.
             :9.40
```

```
# Correlation matrix
cor(eurojob)
#ans>
                    Min
                           Man
                                   Pow
                                           Con
                                                 Ser
                                                         Fin
                                                                Soc
                                                                       Tra
             Agr
#ans> Agr 1.0000 0.0358 -0.671 -0.4001 -0.5383 -0.737 -0.2198 -0.747 -0.565
#ans> Min 0.0358
                 1.0000
                         #ans> Man -0.6711
                 0.4452
                         1.000
                                0.3853
                                        0.4945
                                               0.204 -0.1558
#ans> Pow -0.4001 0.4055
                         0.385
                                1.0000
                                        0.0599
                                               0.202
                                                      0.1099
                                                              0.132
                                                                    0.375
                         0.494
                                               0.356
#ans> Con -0.5383 -0.0256
                                0.0599
                                        1.0000
                                                      0.0163
                                                              0.158
                                                                    0.388
#ans> Ser -0.7370 -0.3966 0.204
                                0.2019
                                        0.3560
                                               1.000
                                                              0.572
                                                      0.3656
                                                                    0.188
#ans> Fin -0.2198 -0.4427 -0.156
                                0.1099
                                        0.0163
                                               0.366
                                                      1.0000
                                                              0.108 - 0.246
#ans> Soc -0.7468 -0.2810 0.154 0.1324
                                        0.1582
                                               0.572
                                                      0.1076
                                                             1.000 0.568
#ans> Tra -0.5649 0.1566 0.351 0.3752 0.3877 0.188 -0.2459
# Scatterplot matrix
library(car)
scatterplotMatrix(eurojob, reg.line = lm, smooth = FALSE, spread = FALSE,
                 span = 0.5, ellipse = FALSE, levels = c(.5, .9), id.n = 0,
                 diagonal = 'histogram')
```


We definitely need a way of visualizing and quantifying the relations between variables for a moderate to large amount of variables. PCA will be a handy way. Recall what PCA does:

- 1. Takes the data for the variables X_1, \ldots, X_p .
- 2. Using this data, looks for new variables $PC_1, \dots PC_p$ such that:
 - PC_j is a linear combination of $X_1, \ldots, X_k, 1 \le j \le p$. This is, PC_j = $a_{1j}X_1 + a_{2j}X_2 + \ldots + a_{pj}X_p$.

- $PC_1, \dots PC_p$ are sorted decreasingly in terms of variance. Hence PC_j has more variance than PC_{j+1} , $1 \le j \le p-1$,
- PC_{j_1} and PC_{j_2} are **uncorrelated**, for $j_1 \neq j_2$.
- $PC_1, \dots PC_p$ have the **same information**, measured in terms of **total variance**, as X_1, \dots, X_p . 3. Produces three key objects:
 - Variances of the PCs. They are sorted decreasingly and give an idea of which PCs are contain most of the information of the data (the ones with more variance).
 - Weights of the variables in the PCs. They give the interpretation of the PCs in terms of the original variables, as they are the coefficients of the linear combination. The weights of the variables X_1, \ldots, X_p on the PC_j, a_{1j}, \ldots, a_{pj} , are normalized: $a_{1j}^2 + \ldots + a_{pj}^2 = 1$, $j = 1, \ldots, p$. In R, they are called loadings.
 - Scores of the data in the PCs: this is the data with $PC_1, \dots PC_p$ variables instead of X_1, \dots, X_p . The scores are uncorrelated. Useful for knowing which PCs have more effect on a certain observation.

Hence, PCA rearranges our variables in an information-equivalent, but more convenient, layout where the variables are **sorted according to the ammount of information they are able to explain**. From this position, the next step is clear: **stick only with a limited number of PCs such that they explain most of the information** (e.g., 70% of the total variance) and do *dimension reduction*. The effectiveness of PCA in practice varies from the structure present in the dataset. For example, in the case of highly dependent data, it could explain more than the 90% of variability of a dataset with tens of variables with just two PCs.

Let's see how to compute a full PCA in R.

```
# The main function - use cor = TRUE to avoid scale distortions
pca <- princomp(eurojob, cor = TRUE)</pre>
# What is inside?
str(pca)
#ans> List of 7
              : Named num [1:9] 1.867 1.46 1.048 0.997 0.737 ...
#ans> $ sdev
       ..- attr(*, "names")= chr [1:9] "Comp.1" "Comp.2" "Comp.3" "Comp.4" ...
#ans> $ loadings: loadings [1:9, 1:9] -0.52379 -0.00132 0.3475 0.25572 0.32518 ...
      ..- attr(*, "dimnames")=List of 2
       ....$ : chr [1:9] "Agr" "Min" "Man" "Pow" ...
#ans>
       ....$ : chr [1:9] "Comp.1" "Comp.2" "Comp.3" "Comp.4" ...
#ans>
#ans> $ center : Named num [1:9] 19.131 1.254 27.008 0.908 8.165 ...
      ..- attr(*, "names")= chr [1:9] "Agr" "Min" "Man" "Pow" ...
      $ scale : Named num [1:9] 15.245 0.951 6.872 0.369 1.614 ...
#ans>
      ..- attr(*, "names")= chr [1:9] "Agr" "Min" "Man" "Pow" ...
#a.n.s>
#ans> $ n.obs : int 26
#ans> $ scores : num [1:26, 1:9] 1.71 0.953 0.755 0.853 -0.104 ...
#ans>
       ..- attr(*, "dimnames")=List of 2
#ans>
       ....$ : chr [1:26] "Belgium" "Denmark" "France" "WGerm" ...
      ....$ : chr [1:9] "Comp.1" "Comp.2" "Comp.3" "Comp.4" ...
                : language princomp(x = eurojob, cor = TRUE)
#ans> $ call
      - attr(*, "class")= chr "princomp"
# The standard deviation of each PC
pca$sdev
      Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
#ans> 1.86739 1.45951 1.04831 0.99724 0.73703 0.61922 0.47514 0.36985 0.00675
# Weights: the expression of the original variables in the PCs
```

```
\# E.q. Aqr = -0.524 * PC1 + 0.213 * PC5 - 0.152 * PC6 + 0.806 * PC9
# And also: PC1 = -0.524 * Agr + 0.347 * Man + 0256 * Pow + 0.325 * Con + ...
# (Because the matrix is orthogonal, so the transpose is the inverse)
pca$loadings
#ans>
#ans> Loadings:
       Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9
#ans> Agr -0.524
                                   0.213 - 0.153
#ans> Min -0.618 -0.201
                                   -0.164 0.101 0.726
#ans> Man 0.347 -0.355 -0.150 0.346 -0.385 0.288 -0.479 0.126 0.366
#ans> Pow 0.256 -0.261 -0.561 -0.393 0.295 -0.357 -0.256 -0.341
#ans> Con 0.325 0.153 0.668 0.472 -0.130 0.221 -0.356
#ans> Ser 0.379 0.350 -0.115
                                  -0.284 -0.615 0.229 0.388 0.238
                                   0.280 0.526 0.187 0.174 0.145
#ans> Fin
                0.454 -0.587
#ans> Soc 0.387 0.222 0.312 -0.412 -0.220 0.263 0.191 -0.506 0.351
#ans> Tra 0.367 -0.203 0.375 -0.314 0.513 0.124
                                                       0.545
#ans>
#ans>
                  Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
#ans> SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000
#ans> Proportion Var 0.111 0.111 0.111 0.111 0.111 0.111 0.111
#ans> Cumulative Var 0.111 0.222 0.333 0.444 0.556 0.667 0.778 0.889
#ans>
                  Comp.9
#ans> SS loadings
                   1.000
#ans> Proportion Var 0.111
#ans> Cumulative Var 1.000
# Scores of the data on the PCs: how is the data reexpressed into PCs
head(pca$scores, 10)
            Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
#ans> Belgium 1.710 1.2218 -0.1148 -0.3395 -0.3245 0.0473 0.3401 0.403
#ans> Denmark 0.953 2.1278 0.9507 -0.5939 0.1027 0.8273 0.3029 -0.352
#ans> France 0.755 1.1212 -0.4980 0.5003 -0.2997 -0.1158 0.1855 -0.266
#ans> WGerm 0.853 0.0114 -0.5795 0.1105 -1.1652 0.6181 -0.4446 0.194
#ans> Ireland -0.104 0.4140 -0.3840 -0.9267 0.0152 -1.4242 0.0370 -0.334
#ans> Italy 0.375 0.7695 1.0606 1.4772 -0.6452 -1.0021 0.1418 -0.130
#ans> Luxem 1.059 -0.7558 -0.6515 0.8352 -0.8659 -0.2188 1.6942 0.547
#ans> Nether 1.688 2.0048 0.0637 0.0235 0.6352 -0.2120 0.3034 -0.591
#ans> UK 1.630 0.3731 -1.1409 -1.2669 -0.8129 0.0361 -0.0413 -0.349
#ans> Austria 1.176 -0.1431 -1.0434 0.1577 0.5210 -0.8019 -0.4150 0.215
#ans>
             Comp.9
#ans> Belgium -0.001090
#ans> Denmark 0.015619
#ans> France -0.000507
#ans> WGerm -0.006539
#ans> Ireland 0.010879
#ans> Italy 0.005602
#ans> Luxem 0.003453
#ans> Nether -0.010931
#ans> UK -0.005478
#ans> Austria -0.002816
# Scatterplot matrix of the scores - they are uncorrelated!
scatterplotMatrix(pca$scores, reg.line = lm, smooth = FALSE, spread = FALSE,
```

```
span = 0.5, ellipse = FALSE, levels = c(.5, .9), id.n = 0,
diagonal = 'histogram')
```

```
# Means of the variables - before PCA the variables are centered
pca$center
             Min Man
                                         Ser
#ans>
        Agr
                          Pow
                                 Con
                                              Fin
                                                      Soc
#ans> 19.131 1.254 27.008 0.908 8.165 12.958 4.000 20.023 6.546
# Rescalation done to each variable
# - if cor = FALSE (default), a vector of ones
# - if cor = TRUE, a vector with the standard deviations of the variables
pca$scale
#ans> Aqr
             Min
                   Man
                            Pow
                                   Con
                                         Ser
                                                Fin
                                                       Soc
#ans> 15.245 0.951 6.872 0.369 1.614 4.486 2.752 6.697 1.364
# Summary of the importance of components - the third row is key
summary(pca)
#ans> Importance of components:
                           Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
#ans>
#ans> Standard deviation
                           1.867 1.460 1.048 0.997 0.7370 0.6192 0.4751
#ans> Proportion of Variance 0.387 0.237 0.122 0.110 0.0604 0.0426 0.0251
#ans> Cumulative Proportion 0.387 0.624 0.746 0.857 0.9171 0.9597 0.9848
#ans>
                          Comp.8 Comp.9
#ans> Standard deviation 0.3699 6.75e-03
#ans> Proportion of Variance 0.0152 5.07e-06
```

```
#ans> Cumulative Proportion 1.0000 1.00e+00

# Scree plot - the variance of each component
plot(pca)
```


With connected lines - useful for looking for the "elbow"
plot(pca, type = "l")


```
# PC1 and PC2
pca$loadings[, 1:2]
#ans>
            Comp.1 Comp.2
#ans> Agr -0.52379 -0.0536
#ans> Min -0.00132 -0.6178
#ans> Man 0.34750 -0.3551
#ans> Pow
          0.25572 -0.2611
#ans> Con
           0.32518 -0.0513
#ans> Ser
           0.37892 0.3502
#ans> Fin
           0.07437 0.4537
                   0.2215
          0.38741
#ans> Soc
           0.36682 -0.2026
```


PCA produces uncorrelated variables from the original set X_1, \ldots, X_p . This implies that:

- The PCs are uncorrelated, **but not independent** (uncorrelated does not imply independent).
- An uncorrelated or independent variable in X_1, \ldots, X_p will get a PC only associated to it. In the extreme case where all the X_1, \ldots, X_p are uncorrelated, these coincide with the PCs (up to sign flips).

Based on the weights of the variables on the PCs, we can extract the following interpretation:

• PC1 is roughly a linear combination of Agr, with negative weight, and (Man, Pow, Con, Ser, Soc, Tra), with positive weights. So it can be interpreted as an indicator of the kind of economy of the country: agricultural (negative values) or industrial (positive values).

• PC2 has negative weights on (Min, Man, Pow, Tra) and positive weights in (Ser, Fin, Soc). It can be interpreted as the contrast between relatively large or small service sectors. So it tends to be negative in communist countries and positive in capitalist countries.

The interpretation of the PCs involves inspecting the weights and interpreting the linear combination of the original variables, which might be separating between two clear characteristics of the data

To conclude, let's see how we can represent our original data into a plot called *biplot* that summarizes all the analysis for two PCs.

```
# Biplot - plot together the scores for PC1 and PC2 and the
# variables expressed in terms of PC1 and PC2
biplot(pca)
```

