#### IERA-RS-BR-SR-2001-0003



# UNITED STATES AIR FORCE IERA

Medical Waste Incinerator
Emissions Test
Malcolm Grow Medical Center,
Building 1056,
Andrews Air Force Base, Maryland

Pacific Environmental Services, Inc. 560 Herndon Parkway, Suite 200 Herndon, VA 20170-5240

**April 2001** 

20010921 086

Approved for public release; distribution is unlimited.

Air Force Institute for Environment, Safety and Occupational Health Risk Analysis Risk Analysis Directorate Environmental Analysis Division 2513 Kennedy Circle Brooks Air Force Base TX 78235-5123

#### **NOTICES**

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United State Air Force.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

Government agencies and their contractors registered with Defense Technical Information Center (DTIC) should direct requests for copies to: Defense Technical Information Center, 8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060-6218.

Non-Government agencies may purchase copies of this report from: National Technical Information Services (NTIS), 5285 Port Royal Road, Springfield, VA 22161-2103.

S. JEANETTE HOWARD, Maj, USAF, BSC, CIH

Chief, Air Quality Branch

Cray B. Dyell

CRAIG B. DEZELL, Maj, USAF, BSC Chief, Environmental Analysis Division

#### REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

| the collection of information. Send comments regarding the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | stimated to average 1 hour per response, including the time for re<br>his burden estimate or any other aspect of this collection of inl<br>ite 1204, Arlington, VA 22202-4302, and to the Office of Manaq | ormation, including suggestions for reducing this bur | gathering and mainteining the data needed, and completing and reviewing<br>den, to Washington Headquarters Services, Directorate for Information<br>34-0188), Washington, DC 20503. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. REPORT DATE                                                                                                                                                                                            | 3. REPORT TYPE AND DATE                               | S COVERED                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 April 2001                                                                                                                                                                                              |                                                       | Special Report                                                                                                                                                                      |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                       | 5. FUNDING NUMBERS                                                                                                                                                                  |
| Medical Waste Incinerator En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |                                                       | - 12                                                                                                                                                                                |
| Malcolm Grow Medical Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er, Building 1056                                                                                                                                                                                         |                                                       | F41624-95-D-9017                                                                                                                                                                    |
| Andrews AFB, Maryland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
| 7. PERFORMING ORGANIZATION NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (S) AND ADDRESS(ES)                                                                                                                                                                                       |                                                       | 8. PERFORMING ORGANIZATION<br>Report number                                                                                                                                         |
| Pacific Environmental Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es, Inc.                                                                                                                                                                                                  |                                                       |                                                                                                                                                                                     |
| 560 Herndon Parkway, Suite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200                                                                                                                                                                                                       |                                                       |                                                                                                                                                                                     |
| Herndon, VA 20170-5240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
| 9. SPONSORING/MONITORING AGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NAME(C) AND ADDDECC(EC)                                                                                                                                                                                   |                                                       | A COOKCONING MACHINED NICE                                                                                                                                                          |
| 5. SPONSURING/MUNITURING AGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NAME(S) AND ADDRESS(ES)                                                                                                                                                                                   | 1                                                     | O. SPONSORING/MONITORING AGENCY REPORT NUMBER                                                                                                                                       |
| AFIERA/RSFO 2513 Kenner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dy Circle, Brooks AFB, TX 782                                                                                                                                                                             | 35_5123                                               |                                                                                                                                                                                     |
| THE ISTANCE OF THE IS | if chee, blooks M B, 12 702.                                                                                                                                                                              | 33-3123                                               | IERA-RS-BR-SR-2001-0003                                                                                                                                                             |
| 89 CES/CEVO 3479 Fetchet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Avenue, Andrews AFB, MD 20                                                                                                                                                                                | 762-4803                                              |                                                                                                                                                                                     |
| 05 020, 021 Q, 51, 51 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tivolido, Tildiows III B, 1415 20                                                                                                                                                                         | 702-4003                                              |                                                                                                                                                                                     |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
| 12a. DISTRIBUTION AVAILABILITY STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EMENT                                                                                                                                                                                                     | .   1                                                 | 2b. DISTRIBUTION CODE                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           | ĺ                                                     |                                                                                                                                                                                     |
| Approved for public release; of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | distribution is unlimited                                                                                                                                                                                 |                                                       |                                                                                                                                                                                     |
| ripproved for public release, t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | istribution is uniffinited.                                                                                                                                                                               |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
| 13. ABSTRACT (Maximum 200 words)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
| The Malcolm Grow Medical C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Center operates a medical waste                                                                                                                                                                           | incinerator at Andrews AF                             | B under Maryland Department of                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ermit No. 16-00655. This repor                                                                                                                                                                            | t presents the results of the                         | initial performance testing as                                                                                                                                                      |
| required by the operating pern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nit.                                                                                                                                                                                                      |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                     |
| 14. SUBJECT TERMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                           |                                                       | 14E MUNICIPAL OF DA CES                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nagement plan, COMAR, toxic                                                                                                                                                                               | Collutant emissions mercu                             | 15. NUMBER OF PAGES                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oride, infectious, hospital, opaci                                                                                                                                                                        |                                                       | 1FY, 388                                                                                                                                                                            |
| , Loud, njurogon, em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oraci, missious, nospitai, opaci                                                                                                                                                                          | ij, padiologicai                                      | TV. THISE GUDE                                                                                                                                                                      |
| 17. SECURITY CLASSIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18. SECURITY CLASSIFICATION                                                                                                                                                                               | 19. SECURITY CLASSIFICATION                           | 20. LIMITATION OF                                                                                                                                                                   |
| OF REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OF THIS PAGE                                                                                                                                                                                              | OF ABSTRACT                                           | ABSTRACT                                                                                                                                                                            |
| Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Unclassified                                                                                                                                                                                              | Unclassified                                          | UL                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           |                                                       | Standard Form 209 (Poy. 2.90) (EC)                                                                                                                                                  |

THIS PAGE INTENTIONALLY LEFT BLANK

#### **TABLE OF CONTENTS**

|                                                        | Page Page                                                            |
|--------------------------------------------------------|----------------------------------------------------------------------|
| SECTION 1.0                                            | INTRODUCTION 1-1                                                     |
| SECTION 2.0                                            | RESULTS SUMMARY2-1                                                   |
| SECTION 3.0                                            | SOURCE DESCRIPTION                                                   |
| SECTION 4.0                                            | SAMPLING LOCATION 4-1                                                |
| SECTION 5.0                                            | SAMPLING AND ANALYTICAL PROCEDURES 5-1                               |
|                                                        | 5.1 Location of Measurement Site and Sample/Velocity Traverse Points |
| SECTION 6.0                                            | QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES                         |
|                                                        | 6.2 On-site QA/QC 6-4<br>6.3 Analysis 6-7                            |
| APPENDIX A APPENDIX B APPENDIX C APPENDIX D APPENDIX E | PROCESS DATA RAW FIELD DATA ANALYTICAL DATA CALCULATIONS QA/QC DATA  |

# LIST OF TABLES

|                                        | <u>Pag</u>                                                                            | <u>16</u> |
|----------------------------------------|---------------------------------------------------------------------------------------|-----------|
| Table 2.1                              | Emissions Results Summary2-1                                                          | l         |
| Table 5.1                              | Test Parameters and Test Methods Summary5-2                                           |           |
| Table 6.1                              | Summary of Temperature Calibrations6-3                                                |           |
|                                        |                                                                                       |           |
|                                        |                                                                                       |           |
|                                        |                                                                                       |           |
|                                        | LIST OF FIGURES                                                                       |           |
|                                        | Page                                                                                  | <u>e</u>  |
| Figure 4.1                             | MWI Sample Traverse Point Locations4-2                                                |           |
| Figure 5.1<br>Figure 5.2<br>Figure 5.3 | EPA Method 23 Sampling Apparatus                                                      |           |
| Figure 5.4                             | EPA Methods 6C, 7E, and 10 Instrumental Methods Extractive Sampling/Monitoring System |           |

#### ACRONYM AND ABBREVIATION LIST

AFB Air Force Base

AFIERA Air Force Institute for Environmental Safety and Occupational Health

Risk Analysis

Alta Analytical Perspectives

ASTM American Society of Testing Materials

BSM Base Surveillance Monitor

Cd cadmium

CEMs continuous emission monitors

CO carbon monoxide CO<sub>2</sub> carbon dioxide

COMAR Code of Maryland Air Regulations

°F degrees Fahrenheit

EPA United States Environmental Protection Agency

FAL First Analytical Laboratories

GC/MS gas chromatography/mass spectrometry

GFC Gas Filter Correlation HCl hydrogen chloride

Hg mercury
ID inner diameter
lb/hr pounds per hour

MDE Maryland Department of the Environment

MWI medical waste incinerator

N2 nitrogen

NO nitrogen oxide NO, oxides of nitrogen

 $O_2$  oxygen

OSHA Occupational Safety and Health Administration

% percent Pb lead

PCDD/PCDF dioxins/dibenzofurans

PES Pacific Environmental Services, Inc.

PM particulate matter

ppmv parts per million by volume QA/QC quality assurance/quality control

SO<sub>2</sub> sulfur dioxide

TPM Technical Project Manager

THIS PAGE INTENTIONALLY LEFT BLANK

#### 1.0 INTRODUCTION

The Malcolm Grow Medical Center operates a medical waste incinerator (MWI) at Andrews Air Force Base (AFB), Maryland. The MWI is permitted to burn Type O and infectious/pathological wastes and has a design (rated) capacity of 385 pounds per hour (lb/hr) for this type waste.

The MWI is operated under authority of Maryland Department of the Environment (MDE) Operating Permit No. 16-00655. The MWI is subject to the new MDE standards for medium size incinerators, "Requirements for the Control of Emissions from Hospital Medical Infectious Waste Incinerators," Code of Maryland Air Regulations (COMAR) 26.11.08. These standards are derived from emission guidelines and compliance schedules published by the United States Environmental Protection Agency (EPA) on 15 September 1997 and implement sections 111(d) and 129 of the Clean Air Act and established emission limits for particulate matter (PM), carbon monoxide (CO), dioxins/dibenzofurans (PCDD/PCDF), hydrogen chloride (HCI), sulfur dioxide (SO<sub>2</sub>), oxides of nitrogen (NO<sub>x</sub>), lead (Pb), cadmium (Cd), and mercury (Hg). Initial performance testing was required for PM, CO, PCDD/PCDF, HCI, Pb, Cd, Hg, and opacity. In addition, the MDE required tests for SO<sub>2</sub> and NO<sub>x</sub>.

Under contract to the United States Air Force Institute for Environmental Safety and Occupational Health Risk Analysis (AFIERA), Pacific Environmental Services, Inc. (PES) conducted the required testing during the period 31 January through 2 February 2001. The AFIERA point of contact and Technical Project Manager (TPM) for this delivery order was:

Major Jeanette Howard USAF, AFIERA/RSEQ 2513 Kennedy Circle Brooks AFB, TX 78235-5123

Telephone: (210) 536-4991

Facsimile: (210) 536-3945

E-mail jeanette.howard@brooks.af.mil

The Andrews AFB point of contact and Base Surveillance Monitor (BSM) for this delivery order was:

Mr. Allan Holtzman Air Quality Program Manager 89 CES/CEV 3479 Fetchet Avenue Andrews AFB, Maryland 20762-4803 Telephone: (301) 981-2337

Facsimile:

(301) 981-7125

E-mail

allan.holtzman@andrews.af.mil

# The PES point of contact was:

Mr. Franklin Meadows Pacific Environmental Services, Inc. Post Office Box 12077 Research Triangle Park, NC 27709-2077

Telephone: (919) 941-0333

Facsimile: E-mail:

(919) 941-0234 frank.meadows@pes.com

# 2.0 RESULTS SUMMARY

The emissions results summary is shown in Table 2.1.

TABLE 2.1
EMISSIONS RESULTS SUMMARY

| Run No./Date                               | 1    | 2    | 3    | Average | Standard* |
|--------------------------------------------|------|------|------|---------|-----------|
| Particulate Matter                         | 2/2  | 2/2  | 2/2  |         |           |
| mg/dscm@7% O <sub>2</sub>                  | 8    | 104  | 93   | 68      | 69        |
| Carbon Monoxide                            | 2/1  | 2/1  | 2/2  |         | •         |
| ppmvd@7% O <sub>2</sub>                    | < 2  | < 2  | < 2  | < 2     | 40        |
| Dioxins/Furans                             | 1/31 | 1/31 | 2/1  |         |           |
| ng/dscm total<br>CDD/CDF@7% O <sub>2</sub> | 1    | 1    | < 1  | < 1     | 125       |
| Hydrogen Chloride                          | 1/31 | 2/1  | 2/2  |         |           |
| ppmvd@7% O <sub>2</sub>                    | 23   | 3    | 9    | 12      | 100       |
| Sulfur Dioxide                             | 2/1  | 2/1  | 2/2  |         |           |
| ppmvd@7% O <sub>2</sub>                    | < 2  | 3    | < 2  | < 2     | 55        |
| Nitrogen Oxides                            | 2/1  | 2/1  | 2/2  |         |           |
| ppmvd@7% O <sub>2</sub>                    | 102  | 100  | 96   | 99      | 250       |
| Lead                                       | 2/2  | 2/2  | 2/2  |         |           |
| mg/dscm@7% O <sub>2</sub>                  | 0.6  | 0.8  | 0.6  | 0.7     | 1.2       |
| Cadmium                                    | 2/2  | 2/2  | 2/2  |         |           |
| mg/dscm@7% O <sub>2</sub>                  | 0    | 0.01 | 0.01 | 0.01    | .16       |
| Mercury                                    | 2/2  | 2/2  | 2/2  |         |           |
| mg/dscm@7% O <sub>2</sub>                  | 0.09 | 0.01 | 0.00 | 0.03    | 0.55      |
| Visual Opacity, %                          | 2/2  | 2/2  | 2/2  |         |           |
|                                            | 0-5  | 0-5  | 0-5  | 0-5     | 10        |

<sup>\*</sup> MDE COMAR 26.11.08

#### 3.0 SOURCE DESCRIPTION

The MWI is a Joy Energy Systems Model 480-E incinerator consisting of both a primary (lower) and a secondary (upper) combustion chamber. The primary chamber is equipped with an on/off natural gas burner and a manually adjusted underfife air blower. The secondary chamber is equipped with a modulating high/low natural gas burner. Additional combustion air is supplied by a modulating blower, located between the primary and secondary chambers. The primary and secondary combustion chambers operate at temperatures of approximately 1665°F and 1695°F, respectively.

The incinerator is utilized to burn Type O and infectious/pathological waste generated at the hospital. The rated capacity is 385 lb/hr. Loading of waste is accomplished with the use of a hopper/hydraulic ram mechanical waste feed system. Continuous monitoring instrumentation for the incinerator includes thermocouples and a circular chart recorder for recording primary and secondary combustion chamber temperature.

Particulate air emissions are controlled with an Airpol high energy venturi scrubber. Caustic sodium hydroxide is added to the scrubber to enhance removal of acid gases. The scrubber liquid is recirculated through the venturi system with a specified amount bled off and replaced with fresh make-up liquid. A stainless steel impact mist eliminator, located downstream of the venturi, helps control the amount of entrained water droplets carried over to the fan and stack. Continuous monitoring instrumentation for the scrubber includes a draft gage for measuring the pressure drop across the venturi, a thermocouple for measuring the venturi inlet gas temperature, a flow meter for measuring the scrubber liquid flow rate, and a meter for measuring the pH of the scrubber liquid.

#### 4.0 SAMPLING LOCATION

The MWI is located in a single-story building. The stack extends vertically through the roof and to a height of about 10 feet above the roof. The sampling site for the manual sampling was located inside the MWI building in a 15-3/8 inch inner diameter (ID) round vertical stack, 170 inches (11.1 stack diameters) downstream of the nearest flow disturbance (fan outlet) and 175 inches (11.4 stack diameters) upstream of the nearest flow disturbance (atmosphere). According to EPA Method 1 criteria, this location requires 12 sample traverse points, 6 along each of 2 perpendicular diameters. Sampling was accomplished through two existing 3-inch ID test ports. The sample traverse point locations are shown in Figure 4.1. A separate test port for the portable continuous emission monitor (CEMs), which were used for the instrumental methods, was installed about 48 inches upstream of the manual methods sampling site. Access to the manual sampling location was provided by scaffold and staging, approved by the Occupational Safety and Health Administration (OSHA), erected by PES.

Although cyclonic flow conditions were not expected at the sampling locations, PES performed a check to verify the absence of cyclonic or nonparallel flow in accordance with the procedure specified in Section 2.4 of EPA Method 1. The results indicated an average angle of rotation of 0 degrees to obtain a null velocity reading.

# **Circular Stack Method 1 Calculation Results**

Date: 03/23/01

Time: 10:23:10

Facility: Malcolm Grow Med. Center MWI

Source ID: C2 (MWI)

Source Name: Joy Energy Systems MWI

Date: 01/31/01

Calculated By: F. Meadows

#### Input Values

Traverse Point Type: Sample - M5

Inside of far wall to outside of nipple: 17 3/8 (inches)

Nipple Length: 2 even (inches)

Distance from Upstream Disturbance: 170 even (inches)
Distance from Downstream Disturbance: 175 even (inches)

Number of ports: 2 ports at 90 degrees

#### Calculated Values

Inside Diameter: 15.3750 (inches)

Upstream Duct Diameters: 11.05
Downstream Duct Diameters: 11.38
Mininum Traverse Points: 12

| Traverse        | Fraction     |                    | Product of       | Nipple             | Traverse 26/m                 |
|-----------------|--------------|--------------------|------------------|--------------------|-------------------------------|
| Point<br>Number | of<br>Length | Length<br>(inches) | Columns<br>2 & 3 | Length<br>(inches) | Location<br>Sum of Col. 4 & 5 |
| 1               | 0.044        | 15 3/8             | 0 11/16          | 2 even             | 2 11/16                       |
| 2               | 0.146        | 15 3/8             | 2 1/4            | 2 even             | 4 1/4                         |
| 3               | 0.296        | 15 3/8             | 4 9/16           | 2 even             | 6 9/16                        |
| 4               | 0.704        | 15 3/8             | 10 13/16         | 2 even             | 12 13/16                      |
| 5               | 0.854        | 15 3/8             | 13 1/8           | 2 even             | 15 1/8                        |
| 6               | 0.956        | 15 3/8             | 14 11/16         | 2 even             | 16 11/16                      |

Figure 4.1 MWI Sample Traverse Point Locations

#### 5.0 SAMPLING AND ANALYTICAL PROCEDURES

Table 5.1 summarizes the test parameters, test methods, number of tests, and duration of each sampling event. Brief descriptions of the methods conducted are provided below.

# 5.1 LOCATION OF MEASUREMENT SITES AND SAMPLE /VELOCITY TRAVERSE POINTS

EPA Method 1, "Sample and Velocity Traverses for Stationary Sources," was used to select the measurement site and to establish velocity and sample traverse point locations. The measurement site is discussed in Section 4.0.

#### 5.2 DETERMINATION OF STACK GAS VOLUMETRIC FLOW RATE

EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)," was used to determine stack gas volumetric flow rate. A Type S pitot tube, constructed according to Method 2 criteria and having an assigned coefficient of 0.84, connected to an inclined-vertical manometer, was used to measure velocity pressure. A calibrated Type K thermocouple attached directly to the pitot tube was used to measure stack gas temperature. The average stack gas velocity was calculated from the average square roots of the velocity pressure, average stack gas temperature, stack gas molecular weight, and absolute stack pressure. The volumetric flow rate is the product of stack gas velocity and the stack cross-sectional area.

TABLE 5.1
TEST PARAMETERS AND TEST METHODS SUMMARY

| Parameter                                        | EPA Test<br>Methods | No. of<br>Tests | Time per Test<br>(minutes)  |
|--------------------------------------------------|---------------------|-----------------|-----------------------------|
| Volumetric Flow Rate                             | 1 & 2               | 3               | 240                         |
| Molecular Weight, Emission<br>Correction Factors | 3A                  | _8              | _8                          |
| Moisture                                         | 4                   | 6 <sup>b</sup>  | 3 @ 60 each<br>3 @ 240 each |
| Sulfur Dioxide                                   | 6C                  | 3               | 60                          |
| Nitrogen Oxides                                  | 7E                  | 3               | 60                          |
| Carbon Monoxide                                  | 10                  | 3               | 60                          |
| Dioxin/Furan (PCDD/PCDF)                         | 23                  | 3               | 240                         |
| Particulate Matter/Metals                        | 5/29                | 3               | 60                          |
| Hydrogen Chloride                                | 26                  | 3               | 60                          |

Continuous with all manual and CEM pollutant measurement runs.

<sup>&</sup>lt;sup>b</sup> Moisture content was determined using both the M23 and M5/29 sample trains.

# 5.3 DETERMINATION OF DRY MOLECULAR WEIGHT AND EMISSION CORRECTION FACTORS

EPA Method 3A, "Determination of Oxygen and Carbon Dioxide Concentration in Emissions From Stationary Sources (Instrumental Analyzer Procedure)," was used to determine oxygen (O<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>) content of the stack gas. This procedure was part of the extractive continuous emission monitoring apparatus described in Section 5.8.

#### 5.4 DETERMINATION OF STACK GAS MOISTURE CONTENT

EPA Method 4, "Determination of Moisture Content in Stack Gases," was used to determine stack gas moisture content. Moisture was determined using both the EPA Method 23 and EPA Method 29 sample trains. The quantity of condensed water was determined gravimetrically and then compared to the dry volume of gas sampled to determine the volume % moisture content. The moisture values obtained from the Method 23 and Method 29 sample trains were also used to adjust the  $SO_2$ ,  $NO_x$ , and CO concentrations to  $7\% O_2$ .

# 5.5 DETERMINATION OF POLYCHLORINATED DIBENZO-P-DIOXINS AND POLYCHLORINATED DIBENZOFURANS

EPA Method 23, "Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans From Stationary Sources," was used to determine total PCDD/PCDF. Samples were withdrawn from the gas stream isokinetically and collected via the sample probe onto a glass fiber filter, followed by a packed column of XAD-2 adsorbent material. The PCDD/PCDF were extracted from the samples and analyzed using high resolution gas chromatography/mass spectrometry (GC/MS). PES selected Alta Analytical Perspectives (Alta),

Wilmington, North Carolina, to prepare the filters and adsorbent traps and to perform the required analyses.

A schematic of the Method 23 sampling apparatus is shown in Figure 5.1. Each measurement run was 4 hours in duration, as required by 40 CFR, Part 60, Subpart Ec, Paragraph 60.56c(b)(9).

# 5.6 DETERMINATION OF HYDROGEN CHLORIDE

EPA Method 26, "Determination of Hydrogen Chloride Emissions From Stationary Sources," was used to determine HCl emissions. An integrated sample was withdrawn from the stack and passed through a prepurged heated probe and filter into a series of midget impingers containing dilute sulfuric acid and dilute sodium hydroxide solutions, which collected gaseous hydrogen halides and halogens. A schematic of the Method 26 sampling train is shown in Figure 5.2. Each measurement run was 1 hour in duration. PES selected First Analytical Laboratories (FAL), Chapel Hill, North Carolina, to perform the required analyses.

# 5.7 DETERMINATION OF PARTICULATE MATTER AND METALS

EPA Method 29, "Determination of Metals Emissions From Stationary Sources," was used to determine filterable particulate matter and metals. The target metals included Cd, Pb, and Hg. Samples were withdrawn from the gas stream isokinetically and collected via the sample probe onto a tared quartz-fiber filter, followed by a series of impingers containing aqueous acidic solutions of hydrogen perioxide (analyzed for Cd and Pb) and an aqueous acidic solution of potassium permanganete (analyzed for Hg). The probe filter fractions were analyzed

Figure 5.1 EPA Method 23 Sampling Apparatus

Figure 5.2 EPA Method 26 Hydrogen Chloride Sampling Apparatus

gravimetrically in the PES laboratory in Research Triangle Park, North Carolina, to determine filterable particulate matter. Upon completion of the particulate matter analyses, the particulate fractions and aqueous fractions were submitted to FAL for the metals analyses.

A schematic of the Method 29 sampling train is shown in Figure 5.3. Each measurement run was 1 hour in duration.

#### 5.8 SULFUR DIOXIDE, OXIDES OF NITROGEN, AND CARBON MONOXIDE

SO<sub>2</sub>, NO<sub>x</sub>, and CO concentrations were measured using instrumental analyzers in accordance with EPA Methods 6C, 7E, and 10. An extractive sampling system was setup as shown in Figure 5.4. Although EPA Methods 6C, 7E, and 10 require a heated sample probe, Bill Reamy of the MDE approved the use of an unheated sample probe. This deviation from the method eliminated the need to install costly additional test ports in the stack. The sampling system consisted of a short sample probe about 8 inches in length, a heated out-of-stack filter, a calibration valve assembly, a short heated Teflon sample line, a sample gas conditioner (chiller), an unheated Teflon sample transport line, and a sample gas manifold to direct the sample gas to the analyzers.

The SO<sub>2</sub> analyzer was a Western Research Model 721 ATM unit that uses the analytical technique of ultraviolet fluorescence. The instrument had user-defined ranges of 50 to 5000 parts per million by volume (ppmv). The instrument was calibrated using SO<sub>2</sub>-in-nitrogen (N<sub>2</sub>) calibration gases prepared in accordance with EPA Protocol. Two upscale calibration gases corresponding to 40-60 and 80-100% of span and zero gas (ambient air) were used. The instrument was operated on a 0-100 ppmv range.

Figure 5.3 EPA Method 5/29 Particulate Matter/Metals Sampling Apparatus

5-8



Figure 5.4 EPA Methods 3A, 6C, 7E, and 10 Instrumental Methods Extractive Sampling/Monitoring System

The NO<sub>x</sub> analyzer was an API unit that uses the principle of chemiluminescence to determine the NO<sub>x</sub> concentration continuously. The instrument was operated on the range of 0-500 ppmv as nitrogen oxide (NO). The instrument was calibrated using NO-in-N<sub>2</sub> calibration gases prepared in accordance with EPA Protocol. Two upscale calibration gases corresponding to 40-60 and 80-100% of span, and zero gas (ambient air) were used. Prior to testing, the NO<sub>2</sub> to NO conversion efficiency was checked in accordance with the procedures in Section 5.6.1 of EPA Method 20.

The CO analyzer was a Thermo Environmental Instruments Model 48C Gas Filter Correlation (GFC) unit that uses the principle of infrared absorption. The GFC system responds specifically to CO, so it was not necessary to make a  $CO_2$  correction as specified in Section 9 of Method 10. The instrument was operated on the range of 0-100 ppmv. The instrument was calibrated using three upscale CO-in- $N_2$  calibration gases corresponding to approximately 30, 60, and 90% of span. Prepurified  $N_2$  was used for the zero gas. The gases were certified by the manufacturer to be within  $\pm 2\%$  of the specified concentration.

Pretest preparations included calibration error checks, sampling system bias checks, and response time checks for the respective analyzers. Post-test checks included zero and calibration drift tests. The output signal from each instrument was continuously recorded using a strip chart recorder and data logger.

#### 5.9 DETERMINATION OF VISUAL OPACITY

EPA Method 9, "Visual Determination of the Opacity of Emissions From Stationary Sources," was used to determine visual opacity. PES provided a certified observer to observe and record opacity of the plume where condensed water was not present.

#### 6.0 QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

This section describes the specific quality assurance/quality control (QA/QC) procedures employed by PES in performing this series of tests. The goals of the QA/QC activities for this project were intended to ensure, to the highest degree possible, the accuracy of the data collected. The procedures contained in the "Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods," EPA-600/R-94/038C, served as the basis for the performance of all testing and related work activities on this project. All calibration requirements were met by the sampling equipment used to conduct this test program.

#### 6.1 CALIBRATION OF APPARATUS

The preparation and calibration of source sampling equipment is essential in maintaining data quality. Brief descriptions of the calibration procedures used by PES are presented below.

#### 6.1.1 Barometers

PES uses aneroid barometers that are calibrated against a station pressure value reported by a nearby National Weather Service Station, corrected for elevation.

#### **6.1.2 Temperature Sensors**

Bimetallic dial thermometers and Type K thermocouples are calibrated using the procedure described in Section 3.4.2 of EPA's Quality Assurance Handbook.

Each temperature sensor was calibrated over the expected range of use against an American Society for Testing Materials (ASTM) 3C or 3F thermometer. Table 6.1 summarizes the types of calibrations performed and the acceptable levels of variance. Potentiometers were calibrated using a thermocouple simulator having a range of 0-2400°F.

#### 6.1.3 Pitot Tubes

PES used Type S pitot tubes that were constructed to EPA Method 2 specifications. Pitot tubes meeting these criteria are assigned a baseline coefficient of 0.84 and need not be calibrated.

#### 6.1.4 <u>Differential Pressure Gages</u>

PES used Dwyer inclined and inclined/vertical manometers to measure differential pressures. These parameters included velocity pressure, static pressure, and meter orifice pressure. Manometers were selected with sufficient sensitivity to accurately measure pressures over the entire range of expected values. Manometers are primary standards and require no calibration.

#### 6.1.5 Dry Gas Meters and Orifices

Dry gas meters and orifices were calibrated in accordance with Section 3.3.2 of EPA's Quality Assurance Handbook. This procedure involved direct comparison of the dry gas meter to a reference dry test meter. The reference dry test meter was calibrated using a wet test meter or a liquid displacement technique. Before its initial use in the field, the metering system was calibrated over the entire range of operation. After each field use, the metering system was calibrated at a single intermediate setting based on the previous field test.

TABLE 6.1

# SUMMARY OF TEMPERATURE CALIBRATIONS

|                                 |                                    |                      | /C                          | CALIBRATION MEDIA         | IEDIA                       | ·                                |                                 |
|---------------------------------|------------------------------------|----------------------|-----------------------------|---------------------------|-----------------------------|----------------------------------|---------------------------------|
| Temperature Sensor              | Number of<br>Calibration<br>Points | lce<br>Bath<br>(0°C) | Ambient<br>Air<br>(20-25°C) | Hot<br>Water<br>(40-50°C) | Boiling<br>Water<br>(100°C) | Heated<br>Oil<br>(150-<br>200°C) | Tolerances                      |
| Impinger Outlet<br>Thermocouple | 2                                  | *                    | *                           |                           |                             |                                  | ±1°C                            |
| Dry Gas Meter<br>Thermometer    | 2                                  |                      | *                           | *                         |                             |                                  | ±3°C                            |
| Stack Temperature<br>Sensor     | ဇ                                  | *                    |                             |                           | *                           | *                                | ±1.5°C of reference temperature |

\*: designates calibration point.

Acceptable tolerances for the initial and final dry gas meter factors and orifice calibration factors are  $\pm$  0.02 and  $\pm$  0.20 from average, respectively.

#### 6.2 ON-SITE QA/QC

The on-site QA/QC activities are discussed below.

#### 6.2.1 Measurement Sites

Prior to sampling, all stack dimensions were checked to verify measurement site locations, location of test ports, and inside stack dimensions. Inside dimensions were checked through all available test ports to verify uniformity of the stack cross-sectional area, and the sample test ports were checked to verify that they did not extend beyond the inside wall. The inside stack dimensions, wall thickness, and sample port depths were measured to the nearest 1/16 inch.

### 6.2.2 Velocity Measurements

All velocity measurement apparatus was assembled, leveled, zeroed, and leak-checked prior to use and at the end of each determination. The static pressure was determined at a single point near the center of the stack cross section.

# 6.2.3 Integrated Flue Gas Sampling

Integrated multipoint flue gas samples were collected in Tedlar<sup>®</sup> gas bags by traversing the stack cross-sectional area simultaneously with each PM/metals and PCDD/PCDF measurement run. The sample train was assembled and

leak-checked before and after each test run. Prior to each test run, the gas bags were leak-checked and purged with nitrogen to ensure that no contamination of the sample occurred.

During sampling, Fyrite combustion gas analyzers were used to determine concentrations of CO<sub>2</sub> and O<sub>2</sub>. These instruments were used as a confirmatory technique for the Orsat analysis.

#### 6.2.4 Moisture

Stack gas moisture content was determined simultaneously using both the PM/metals and the PCDD/PCDF sample trains. During sampling, the exit gas of the last impinger was maintained below 68°F to ensure complete condensation of the stack gas water vapor. The total moisture was determined gravimetrically and included the condensate collected in the Method 23 adsorbent trap.

# 6.2.5 <u>Sulfur Dioxide, Oxides of Nitrogen, and Carbon Monoxide Instrumental</u> <u>Methods</u>

The on-site QC requirements for EPA Methods 6C, 7E, and 10 included the following:

Analyzer Calibration Error – Less than  $\pm 2\%$  of the span for the zero, mid-range, and high-range calibration gases.

Sampling System Bias – Less than ±5% of the span for the zero and mid- or high-range calibration gases.

<u>Calibration Drift</u> - Less than  $\pm 3\%$  of the span over the period of each run.

EPA Methods 6C and 7E required the use of calibration gases prepared according to EPA Protocol and certified to be within  $\pm 1\%$  of the specified concentrations. EPA Method 10 required the use of calibration gases that were certified to be within  $\pm 2\%$  of the specified concentrations. Additional QC checks included upand down-scale response time checks.

#### 6.2.6 Dioxin/Furan (PCDD/PCDF)

The field sampling QA/QC procedures were similar to those for PM/metals. The adsorbent cartridges were spiked with surrogate standards in the laboratory prior to collecting the field samples.

# 6.2.7 Particulate Matter/Metals and Hydrogen Chloride

The field sampling QA/QC procedures included the cleaning and preparation of all sampling train glassware and sample containers, use of prescribed reagents and filters, pre- and post-test leak checks of the sampling apparatus, sample recovery as prescribed in the proposed method, and retention of unused filters and reagents for use as blanks.

## 6.2.8 Sample Handling and Chain-of-Custody

All samples not analyzed on site (PCDD/PCDF, HCI, PM/metals) were logged into a master logbook and given an alpha-numeric identification code. The samples were clearly labeled and sealed. Samples were stored in an area of limited access. Upon completion of the particulate analyses in the PES laboratory in Research

Triangle Park, North Carolina, the PCDD/PCDF, HCI, and metals samples were hand-delivered to PES' contract laboratories for analyses. A chain-of-custody report form accompanied all samples delivered to each laboratory and documented all handling through final disposition.

#### 6.3 ANALYSIS

#### 6.3.1 Particulate Matter/Metals

Analysis for particulate matter was performed in the PES laboratory. Field blanks of acetone were taken directly from the wash bottle used in recovering the samples. Three (3) blank filters were also exposed and handled at the sample recovery site. The acetone blank and filter blanks were submitted to the laboratory and analyzed with the samples.

Upon receipt of the samples at the PES laboratory, the samples and blanks were analyzed in strict accordance with Section 4.3 of EPA Method 5. Prior to any weighings, PES' analytical balance was checked for calibration with known weights.

The sample and blank filters were placed in a tared glass weighing dish and desiccated for 24 hours in a desiccator containing anhydrous calcium sulfate. The filters were weighed to a constant weight and the results reported to the nearest 0.1 mg. The term "constant weight" means a difference of no more than 0.5 mg or 1% of total weight less tare weight, whichever is greater, between two consecutive weighings, with no less than 6 hours of desiccation time between weighings. The sample and blank acetone solutions were checked to confirm the level of liquid in the containers in order to determine whether or not leakage occurred during transport. If a noticeable amount of leakage had occurred, the

sample was voided, or other methods were used such as adjusting the final analysis for the amount of spillage. The liquid in each sample container was measured gravimetrically to  $\pm$  0.5 g. The contents were transferred to a tared 250-ml beaker and evaporated to dryness at ambient temperature and pressure. The beakers were then desiccated for 24 hours and weighed to a constant weight. The results were reported to the nearest 0.1 mg. Filterable particulate matter was the sum of the particulate matter in the acetone rinse (blank corrected) and that caught on the filter.

Upon completion of the particulate analyses, these samples, along with the metals train aqueous samples, were hand-delivered to FAL for determination of the target metals following the analytical and quality control procedures prescribed in Method 29. The samples were delivered to FAL within 6 working days after the completion of the field tests. The analyses were performed within 21 working days after receipt of the samples by FAL.

## 6.3.2 Dioxin/Furan (PCDD/PCDF)

The PCDD/PCDF samples were submitted to Alta for analysis following the procedures prescribed in Section 5 of Method 23 and proposed revisions. GC/MS system checks included initial calibration and daily performance checks. Specific QC checks included the determination of internal standard recovery efficiencies and the determination of surrogate recoveries. Recoveries of internal standards must be between 40 to 130% for the tetra-through hexachlorinated compounds, while the range is 25 to 130% for the higher hepta- and octachlorinated homologues. Surrogate recovery efficiencies were required to be between 70 and 130%.

. .

PPENDIX A
OCESS DATA

|                       | BOXES     | 0        | ) ,     | 1 6      |            | 7       |                 |            |           | 10        | ,               | 1                 | 1                | 7      | 7        | 7       |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 34   |
|-----------------------|-----------|----------|---------|----------|------------|---------|-----------------|------------|-----------|-----------|-----------------|-------------------|------------------|--------|----------|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
|                       | SECODNARY | 1296     | 100     | 1707     | 1261       | 1763    | 1000            | 1282       | 1202      | 70/5/     | 0000            | 11.               | 19/              | 1240   | 1166     | 726     | 1001        | 707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 1 .  |
| 7                     | PRIMARY   | 1881     | 1.20    | 1860     | 698.1      | 1855    | 7//             | 7/7        | 1,0,1     | 0/5/      | 1.1.52          |                   | 962              | 1342   | 1499     | 1.863   | 28.91       | 17/0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |      |
| INCINERATOR OPERATION | WEIGHT    | 34       | 57      | K        | 2%         | 1       | 5               | 15         | 60        | 53        | (3              | 2 6               | 3 6              | 36     | S. S.    | 1.5     | 25          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : h>      | 950  |
| CINERATOR             | TIME      | 15       | 125     | 135      | 9,5/       | 159     | 5/2             | 227        | 246       | 250       | 30%             | 50.0              | 11 2 11          | # C #  | 555      | 120     | 436         | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202       |      |
| INC                   | DATE      | 10-18-1  | 1-3(-0) | 1-31-01  | 1-31-01    | 10-15-1 | 1-31-01         | 10-15-1    | 1-3/-01   | 10-15-1   | 1-31-01         | 10-18-1           | 1 2 1            | 1-21-0 | 10-15-01 | 1-31-01 | 1-3/10/     | 1-71-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-31-01   |      |
| ERATOR                | \         | The same |         | / mark & | - Canon to | why the | The same of the | The Manney | The Manne | John John | a month testing | Thomp Not Acstore | Jumes hat to it. |        |          | Vance - | James James | The state of the s | of Thomas | • 10 |

|              |          |          |                     |         |           | -     |
|--------------|----------|----------|---------------------|---------|-----------|-------|
| -            | INC      | INERATOR | CINERATOR OPERATION |         |           |       |
| ERATOR       | DATE     | TIME     | WEIGHT              | PRIMARY | SECODNARY | BOXES |
| Grand Sharm  | 1-31.61  | 5/2      | 75                  | 2000    | 5561      |       |
| had shin     | 1-3/-0/  | 573      | 54                  | 1960    | 150 ×     | ,     |
| and then     | 1-3/-01  | 55       | 50                  | 1661    | 190       | 1     |
| If Home      | 10-16-1  | 550      | 3                   | 12861   | 1800      | , ,   |
| my The       | 1- 3/-0/ | 5        | 52                  | 7521    | 5821      | )     |
| and then     | 10-18-1  | 7/2      | 54                  | 9581    | 1797      |       |
| with from    | 1-31-01  | 624      | 3/5                 | 7881    | 6361      | )     |
| and from     | 1-31-01  | 638      | 52                  | (94)    | 1779      | 7     |
| June John    | 10-18-1  | 617      | 80                  | 1957    | 100/      | . (.  |
| the flower   | 1.31-01  | 500      |                     | 205 7   | アンン       | 1     |
| many for     | 1-31-01  | 112      | 49                  | 1891    | 1500      |       |
| and the same | 1-31-01  | 723      | 62                  | 1962    | 1802      | ( )   |
| Jac Hom      | 131-01   | 733      | 77                  | 1281    | 334       | 2     |
| many for     | 12/10/   | 24.6     | 4/6                 | 15/20.  | P81       | لے    |
| and then     | 1-31-01  | 756      | 15                  |         | 1001      | )     |
| is human     | 1.31-01  | 200      | 63                  | 1. 195  | 829       | 2     |
|              | 1-31.01  | 5/6      | 3,                  | 1873    | 1896      | . 2   |
| • • •        |          |          | 90                  |         |           |       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INC      | INCINERATOR OPERATION | DPERATION |         |           |       |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-----------|---------|-----------|-------|-----|
| ERATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE     | TIME                  | WEIGHT    | PRIMARY | SECODNARY | BOXES |     |
| the state of the s | 1-3/-6   | 826                   | 5.3       | 1886    | 1804      | 7     |     |
| ashi many baca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10-12-01 | 839                   | 20        | 1890    | 16951     | 1     | 2/2 |
| In force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 701/2    | 505                   | 755       | 1162    | 12.51     | 1     | 2   |
| I with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-1-01   | 9/5                   | 5         | 1600    | 1250      | 7     |     |
| Link the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-1-01   | 525                   | 49        | 16.02   | 125-9     | 2     |     |
| man the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-1-6   | 9 39                  | 47        | 1480    | 1.746     |       |     |
| The street of th | 7-1-01   | 200                   | 20        | 1657    | 1760      | 7     |     |
| In Themselve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-1-01   | 1526                  | 81        | 7281    | 1750      | 7     |     |
| of Han                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-1-01   | 15/8                  | 46        | 0/3/    | 1.2 8.8   | 2     |     |
| my June                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-1-6   | 1791                  | 1, 57     | 598/18/ | 1789      |       |     |
| hant for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7-1-01   | 1032                  | 65        | 120     | 1770      | . 1   |     |
| -knoch for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70-1-6   | 1042                  | 6,6       | 183x    | 1785      | 4     |     |
| my from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70-1-0   | 1057                  | 47        | 1820    | 1796      |       | ,   |
| I find the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10-1-2   | 1102                  | 1/2/      | 1.090   | 13861     | 1     |     |
| and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70-1-6   | 11 11                 | 43        | 1772    | 1801      | 7     | -   |
| my face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-1-6   | 125                   | (9        | 167.9   | 17.79     | 7     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-1-0    | 1 4 1                 | 7/2       | 1011    | 1960      | 1     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                       | ) ASS     | ) ) )   | 17        |       |     |

|                       |           | ·        |        |                   |         |           |            |            |                 |                       |         |          | •       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |            |                     | • |
|-----------------------|-----------|----------|--------|-------------------|---------|-----------|------------|------------|-----------------|-----------------------|---------|----------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|---------------------|---|
|                       | BOXES     | $\sim$   | ,      | 1                 | 2       | ,         | 7          | d          | 1 de Santa      | 2                     | 7       |          | 17      | 2       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -         | 17         | ~                   |   |
|                       | SECODNARY | 1785     | 1767   | 1790              | 1 20 /  | 1763      | 1, 265     | 1500       | 1738            | 1761                  | 1200    | 1757     | 1766    | 170     | 1763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1769      | 0561       | 1795                |   |
|                       | PRIMARY   | 1851     | 1602   | 1800              | 1001    | 1641      | 125/       | 1970       | 1 65/           | 1527                  | 11 83   | 1502     | 95/1    | 1641    | 1.596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1597      | 14/10      | 6641                |   |
| INCINERATOR OPERATION | WEIGHT    | 3%       | ήS     | 15/               | 11      | 7,7       | 81         | 63         | 36              | 38                    | 30      | てか       | 49      | 137     | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7       | 39         | 37                  |   |
| INERATOR              | TIME      | 157      | 1204   | 12/6              | 1226    | 1237      | 1255       | 103        | 138             | 151                   | 126     | 231      | 242     | 7.83    | 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/6       | 334        | 3.44                |   |
| INC                   | DATE      | 1-12     | 7-1-01 | 2-1-01            | 7-1-01  | 2-1-01    | 7-1-01     | 7-1-01     | ) 0-9-          | 7-1-0                 | 2-1001  | 10-1-01  | 2-1-01  | 2-1-26  | 7-1-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10-128    | 7-1-01     | ) - (-0 (           |   |
|                       | ERATOR    | In Thomp |        | The Street of the | many to | John John | John March | Thomas 2 2 | ent Type a test | and floring in a test | and how | and from | me from | at from | The training of training of the training of th | not testy | hat tested | and Mary hot tester |   |

783

在34

S S S

| س <b>مع</b><br>ا نه . | 2                 |           | <del>,</del>          |                         |       | ·          | ,                        |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |          |          |        |   |
|-----------------------|-------------------|-----------|-----------------------|-------------------------|-------|------------|--------------------------|-------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|--------|---|
| not printer           |                   | BOXES     | 7                     | ~                       | 1     | 1          | 7                        | 7           | ٦               | \ \ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                      | 7        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      | 2        |          | C      | 1 |
|                       |                   | SECODNARY | 1750                  | 1930                    | 1767  | 2117       | 7501                     | 17/2        | 1752            | 1767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1261                                                   | 1777     | 1787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1760   | 1777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q EL/  | 1501     | 1782     | 12861  |   |
| sculble chart         |                   | PRIMARY   | 137.6                 | 1042                    | 14.2  | 16/2       | 1.5/0                    | 1/1/        | 1462            | 9891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1850                                                   | 128      | 1856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 296,   | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1357   | 9591     | 663      | 703    |   |
| 7.2-0                 | NERATOR OPERATION | WEIGHT    | .37                   | 5                       | 25    | 4.9        | 30                       | 85          |                 | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60                                                     | 1 64     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ()     | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , 61   | 48       | 50       | 50 1   |   |
| Care on               | CINERATOR         | TIME      | 90) (                 | 8000                    | 653   | 116        | 626                      | 500         | 954             | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1015                                                   | 1625     | 10 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1048   | (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1229   | 140      | 051      | 200    |   |
| 1516 Ch               | INCI              | DATE      | 2-1-01                | 1-2-01                  | 7-2-0 | 1-1-0      | 2-2-0                    | 10-2-2      | 2-2-5           | 7-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-20                                                   | 2-1-01   | 7-7-0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-1-0( | 7.2.0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | プローマース | 102-2    | 2-2-0(   | 7-2-01 |   |
|                       | RRATIOD           |           | and Home took testing | The front of the second |       | - American | Many 10 1 10 5 5+1, 11 3 | - Committee | Married Married | 1 Thomas of the state of the st | June June June July July July July July July July July | June Man | The same of the sa | - Cart | The man of the same of the sam | demo   | James J. | Marman - | - Land |   |

728

÷ 13

|                     | BOXES     | 1           | 4             | 7           |                | 17         | 2             | (A)       | 7         | 2         | 1                          | 1       | 7        | $\lambda$ | 7      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2       | -                        |       |
|---------------------|-----------|-------------|---------------|-------------|----------------|------------|---------------|-----------|-----------|-----------|----------------------------|---------|----------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------|-------|
|                     | SECODNARY | 5901        | 1797          | 9081.       | 184            | 1382       | 1.361         | 170       | 1773      | 178.2     | 1726                       | 1502    | 19130    | 1708      | 1161,  | 7/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/4     | 1765                     |       |
|                     | PRIMARY   | .9691       | 508.1         | 1.881       | 1863           | 1 70ö      | 158.1         | 1570      | 2021      | 1750      | 1.74                       | 1850    | 144      | 12116     | 7 66 2 | 14/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31/11   | 7420                     |       |
| CINERATOR OPERATION | WEIGHT    | × 2         | 155           | 43          | , S            | 20         | 93            | 14.       | do        | hh        | $\mathcal{L},\mathcal{O},$ | Q 1/2   | カカ       | 47        | ή¢     | 41,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38      | <b>4</b> З <sub>ї.</sub> | 717   |
| INERATOR            | TIME      | ///         | 124           | 13,8        | 851            | 282        | 210           | 228       | 228       | 2 12      | 782                        | 3/2     | 75%      | 01.8.     | 570    | 929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 839     | 8.49                     | <br>د |
| INC                 | DATE      | 102.2       | 7-7-6         | 2-7-0       | 2.7.0          | 7.7.0      | 7-2.01        | 7 - 2.0 ( | 7-20      | 1-2-0     | しゃくしん                      | アント・3   | 70-5-6   | 1-5-01    | 10-5-4 | 2-5-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-5-07  | 10-5-4                   |       |
|                     | EKATOR    | Jack Thomas | Joseph Thomas | week Thomas | which thousand | June Mount | the summer of | may home  | many John | of Thomas | of from                    | many pt | may show | my strong | my him | Some Service of the s | of from | w then                   |       |

















| Project No. | Page |   | of |
|-------------|------|---|----|
| F181.001    | J    | 3 | 3  |
| Client      |      |   |    |
| AAFB        |      |   |    |
| Location    |      |   |    |
| 1.100       |      |   |    |

PACIFIC ENVIRONMENTAL SERVICES, INC.

4AFB

| 7.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prepared By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date Check | ed By Date Sheet Title |              |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|--------------|---------|
| 2:16 $4:3$ $1673$ $58.7$ $93.7$ $2:15$ $5.0$ $1773$ $56.1$ $97.2$ $2:20$ $6.16$ $1697$ $55.8$ $92.2$ $2:25$ $16.5$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$ $1675$                                                                                                                                                                                                                                                                    | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PH         | inket temp             | Prossure Dop | Flow ro |
| 2!16 $4:3$ $1473$ $58.7$ $93.7$ $2!15$ $5.0$ $1773$ $56.1$ $91.2$ $2:20$ $6.6$ $1697$ $55.8$ $92.$ $2:25$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.5$ $6.7$ $6.5$ $6.7$ $6.5$ $6.7$ $6.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.9        | 1715                   | 55.9         | 92 1    |
| 2:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3        |                        |              | 72.6    |
| 2:20 6.4 $1697$ 55.8 $92.$ $2:25$ 6.5 $1675$ 55.8 $92.$ $2:30$ 6.5 $1694$ 55.8 $93.$ $2:35$ 6.6 $1618$ 55.5 $92.$ $2:45$ 6.7 $1845$ 55.6 $91.4$ $1.45$ 6.7 $1697$ 55.6 $91.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0        | 1772                   |              | 75.7    |
| 2:35 6.6 1618 55.5 93.<br>1:40 5.7 1845 55.6 91.4<br>1:45 6.7 1697 55.6 93.3<br>1:50 6.7 1652 56.7 92.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2: 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.6        | 1697                   | 558          | 6       |
| 2:35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5        |                        | SS.3         | 72.8    |
| 1.35 (e.6 1678 55.5 972.<br>1.40 5.7 1845 55.6 91.4<br>1.45 6.7 1697 55.6 93.3<br>1.50 6.7 1652 56.7 97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0.5       |                        | 55.8         | 12.     |
| .40     5.7     1845     55.6     91.4       .95     6.7     1691     55.6     93.3       .56     6.6     1652     56.7     92.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2: 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | le.6       | 1 , , , 1              | 55.5         |         |
| : 45 6.7 1697 55.6 73.3<br>:50 6.6 1652 56.7 92.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.7        | 1845                   |              | 72.1    |
| :50 6.6 165Z 56.7 97.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                        | 55 /2        | 92 2    |
| 55 4.6 1817 55.1 96.9<br>100 6.7 1683 56.1 93.1<br>55 5.7 1834 55.4 92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.6        |                        | 54.7         | 13.3    |
| 100   6-1   1683   56.1   73.1   72.9   72.9   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1   73.1 | : <i>5</i> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.6        |                        | 55.1         | 148     |
| 1834 55.4 92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1683                   | 5/2          | 921     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.7        |                        | 5< 4         | 020     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              | 121     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum and the second |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                        |              |         |







| 0,    |
|-------|
| 744   |
| 1451c |
| 5     |
| 7 7   |
| 5.7.  |
| · _   |
| ٥     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |           |         |                                         |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|---------|-----------------------------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TNEDATOR            |           |         | 1. d 4 mt 64. in                        | + bunin ch, 1.29.0, |
| ERATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATION OF SKALLON  | OFEKATION |         | Set 44 (                                | - 105ting 16 Stack  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIME                | WEIGHT    | PRIMARY | SECODINARY                              | NOVEC               |
| fund He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-26-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105 y               | 28        | ne)!    | 10.                                     | Cawoa               |
| i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 496201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4: //               |           | 13      | 600                                     |                     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0///                | 11        | 1681    | 722)                                    |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-92-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1124                | 38        | 1619    | 7 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                     |
| The state of the s | 10-91-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113/                | 0/1       | 1000    | 1000                                    |                     |
| + 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-26-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 63               | 00        | 1/0/    | 1                                       |                     |
| of ship                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-76-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( ( / .             | 11.11     | 10/1    | 163                                     | 7                   |
| yol floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-7 da/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                 | 1111      |         | 6//0                                    | 7                   |
| of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 137                 | 2         | 1.200   | 1761                                    | 7                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-92-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 89                | 2         | 57//    | とってく                                    | 2                   |
| Johnson Ja                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-26-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 159                 | 10        | 1001    |                                         |                     |
| to home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10-92-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200                 | 4         | 100     | 1751                                    | 1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |           | 18 23   | 783                                     | 2                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-31-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                   | (2)       | ころし     | 100/                                    | <i>C</i> .          |
| 2 Many                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-31-01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200                 | 35        |         | 1)701                                   | 0                   |
| spel yh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-31.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 828                 | 1         |         | 1,40,                                   |                     |
| A Johnson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-31.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,40                | 27        | 100     |                                         |                     |
| "Thomas of the state of the sta | 1-3/col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 920                 | 3         | 250     | 7,00                                    | 12                  |
| Juan .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.18-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 932                 | 4/2       | 24      | 120                                     |                     |
| N Their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-31-0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 950                 | 38        | 121     | 1726                                    | 4                   |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 20%       |         |                                         |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A CONTRACTOR OF THE CONTRACTOR | Processed Branching |           |         |                                         | · · · b / / Lund    |

### APPENDIX B RAW FIELD DATA

### Appendix B.1 Raw Field Data Particulate Matter/Metals (M29)



### TRAVERSE POINT LOCATION FOR CIRCULAR DUCTS

| Plant: Andrews AFB                                                             | _   | 1                     | I |
|--------------------------------------------------------------------------------|-----|-----------------------|---|
| Date: 01-31-01                                                                 | T   |                       |   |
| Sampling Location: steek                                                       | 55" |                       |   |
| Inside of Far Wall to Outside of Nipple:                                       |     |                       |   |
| Inside of Near Wall to Outside of Nipple (Nipple Length): 3"  Stack I.D.: 15 8 | シロケ | <b>©</b>              | ב |
| Distance Downstream from Flow Disturbance (Distance B):                        |     |                       |   |
|                                                                                | 60  |                       |   |
| Distance Upstream from Flow Disturbance (Distance A):                          |     | ·                     |   |
| Calculated By: Dennis D. Holzschuh                                             | 1   | Schemat<br>Sampling L |   |

| Traverse | Fraction | Length   | Product of        | Nipple   | Traverse Point      |
|----------|----------|----------|-------------------|----------|---------------------|
| Point    | of       | (inches) | Columns 2 & 3     | Length   | Location            |
| Number   | Length   |          | (To nearest 1/8") | (inches) | (Sum of Col. 4 & 5) |
| A /      | .044     | 1538"    | 5011              | 3        | 7) 25811633         |
| 3        | 146      | 1538"    | 24"!              | ə        | 44" 54"             |
| 3        | . 296    | 15 18"   | 45"               | 4        | 6 3" 75             |
| 4        | . 704    | 153      | 10 38"            | J        | 13 7 13 8           |
| 5        | . 854    | 15 8"    | 138"              | ٦        | 15 3 168            |
| 6        | . 956    | 153811   | 430               | ગ્ર      | 16 3" 17%           |
|          |          |          |                   |          |                     |
|          |          |          |                   |          |                     |
|          |          |          |                   |          |                     |
|          |          |          |                   |          |                     |
|          |          |          |                   |          |                     |
|          |          |          |                   |          |                     |



Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX: (919) 941-0234

### YAW ANGLE CHECK (EPA Method 1) & GAS VELOCITY (EPA Method 2)

| Facility: Andrews Air Force Ruse               | Project No.: F181-001                      |
|------------------------------------------------|--------------------------------------------|
| Sampling Location: Stock                       | Date: 01/31/01                             |
| Run # ₩2 -\                                    | Clock Time: 0815-0830                      |
| Barometric Pressure, (in. Hg): 29.9            | Operators: DDH                             |
| Moisture, (%): 35 %                            | Static Pressure, in H <sub>2</sub> O: + iS |
| Dry Molecular weight, (g/g-mol):               | Pitot Tube, Cp:84/                         |
| Stack Diameter or Side 1 Dimension, (in.): 153 | Side 2:                                    |

| Velocity Head In. H₂O  •3.5 .3.6 .3.2 .43 .43 .45 .35 .40 .49 .48 .40 | Stack Temp (°F)  170  170  170  170  170  170  170  17      |
|-----------------------------------------------------------------------|-------------------------------------------------------------|
| 1n. H <sub>2</sub> 0  •35  •36  •32  •43  •45  •35  •40  •49  •48     | (°F) 170 170 170 170 170 170 170 170 170 170                |
| •35<br>•36<br>•32<br>•43<br>•44<br>•45<br>•42<br>•44<br>•49           | 170<br>170<br>170<br>170<br>170<br>171<br>170<br>170<br>170 |
| .36<br>.32<br>.43<br>.44<br>.45<br>.35<br>.42<br>.44<br>.49           | 170<br>170<br>170<br>170<br>171<br>170<br>170<br>170        |
| .36<br>.32<br>.43<br>.44<br>.45<br>.35<br>.42<br>.44<br>.49           | 170<br>170<br>170<br>170<br>171<br>170<br>170<br>170        |
| .32<br>.43<br>.44<br>.45<br>.35<br>.42<br>.44<br>.49                  | 170<br>170<br>171<br>171<br>170<br>170<br>170               |
| .43<br>.44<br>.45<br>.35<br>.42<br>.44<br>.49                         | 170<br>170<br>171<br>170<br>170<br>170<br>170               |
| .45<br>.35<br>.40<br>.44<br>.49                                       | 170<br>171<br>170<br>170<br>170<br>170                      |
| .45<br>.35<br>.42<br>.44<br>.49                                       | 171<br>170<br>170<br>170<br>170                             |
| .35<br>.40<br>.44<br>.49                                              | 171<br>170<br>170<br>170<br>170                             |
| .42<br>.44<br>.49                                                     | 170<br>170<br>170                                           |
| .44<br>.49<br>.48                                                     | 170<br>170<br>170                                           |
| .49<br>.48                                                            | 071<br>071                                                  |
| •48                                                                   | 170                                                         |
|                                                                       |                                                             |
| .40                                                                   | טרו                                                         |
|                                                                       |                                                             |
|                                                                       |                                                             |
|                                                                       |                                                             |
|                                                                       |                                                             |
|                                                                       |                                                             |
|                                                                       |                                                             |
|                                                                       |                                                             |
|                                                                       |                                                             |
|                                                                       |                                                             |
|                                                                       |                                                             |
|                                                                       |                                                             |
|                                                                       |                                                             |
| 1                                                                     |                                                             |
|                                                                       |                                                             |

### FIELD DATA SHEET

Sampling Location Street

Run Number: NJG-1 Date: D2-03-01

Pretest Leak Rate: 001 cfm @ 15 in. Hg.

Pretest Leak Check: Pitot: 0013at: N/A

Sample Type: N.24 Operator: DDK
Pbar: JA.94 Ps: 4.15
CO2: 5 O2: 13
Probe Length/Type: 3'-6125 Pitot #: 9.8-4
Stack Diameter: 15.20

Nozzle ID: 31〇 Thermocouple #: 紀七人 Assumed Bws: <u>い</u> Filter #: 10公 - 00 2 Meter Box #: 4wg-15 Y: 0.9公ら ΔH@: 1.8○ Post-Test Leak Rate: D.∞(cfm @ 15in. Hg. Post-Test Leak Check: Pitot: 人 Orsat: 244

| Traverse | Semolina | Traverse Semoling Cook Time | Can Halas   | Mathematical |             |                              |             |       |             |          |           |                         |        |
|----------|----------|-----------------------------|-------------|--------------|-------------|------------------------------|-------------|-------|-------------|----------|-----------|-------------------------|--------|
| 1        |          | -                           | Tellar maio | Verocity     | Cince Hessu | Critice Hessure Differential | Stack       | Temp  | Temperature | Impinger | Dry Gas M | Dry Gas Meter Temp.     | Pump   |
|          |          | (24-hour                    | Reading     | (d∇) peeH    | (HQ)        | (AH) in H2O                  | Temp.       | 0     | 9.          | Temp.    | Flet      | Outer                   | Vacuum |
| Manage   | (UE)     | <del>300</del>              | Vm) #3      | h H20        | Desired     | Actual                       | (Js)        | Probe | Filter      | 9        | (Tm in P) | (Tm out <sup>o</sup> F) | 5      |
| T A      | q        | 045                         | 805,550     |              |             |                              |             |       |             |          |           |                         |        |
| 3        | 'n       | 0550                        | 804.100     | . 34         | 1.70        | 1.70                         | <u>6</u> (1 | 150   | 252         | 48       | 30/       | , , ,                   | r      |
| 3        | ó        | 0155                        | 813.469     | .35          | 1.75        | 1.75                         | 173         | 250   | 150         | 48       | 000       | 707                     | 1      |
| 4        | /5       | 000/                        | 817.210     | 45           | 02.1        | 1.70                         | 173         | 283   | 281         | 78       | 00,       | 00/                     | ~      |
| 5        | ၁၀       | 2007                        | 870.908     | 3.3          | 50,1        | 1.78                         | וארו        | 6200  | 25.0        | 6/4      | ò         | Ç                       | ~      |
| 9        | 35       | 10,0                        | 824,606     | .35          | 24.15       | 2r.1                         | 641         | 255   | 25.4        | 4.4      | 3         |                         | 1.     |
| 9        | 300      | 10/5                        | 828,210     | . 360        | 1.70        | 28.                          | 171         | 150   | 150         | 5.7      | 600       | 0                       | 1      |
| જ        | 35       | 850)                        | 831.840     | .35          | 1.75        | 1.75                         | 121         | 454   | 252         | 49       | 70        |                         | 1      |
| 8        | 40       | 1030                        | 835.530     | .30          | 09.7        | 09.7                         | 121         | 75/   | ý           | 40       |           | 1                       | 7      |
| 4        | 45       | 1035                        | 838.105     | 32           | ١٠.         | 0 9                          | 173         | 253   | 120         | 707      | 90,       | 601                     | 1      |
| 5        | 50       | 0401                        | 843.610     | 42           | 07:1        | 02.7                         |             | 200   | 100         |          | 2         | 20                      | M      |
| 9        | 55       |                             | 845.812     | 377          | 36          | 100                          | . !         | 25.   |             | 7 7      | 10%       | 70                      | M      |
|          | (20)     | ۲                           | 346 //PC    | 776          | 3 .         | 2                            |             | 100   | 050         | 9,6      | (03       | 103                     | M      |
|          | 73       | Т                           | 200         | 70.          | 0, :        | 0, 10                        | 777         | 150   | 050         | 9%       | 103       | 701                     | ~      |
| 1        |          |                             |             |              |             |                              |             |       |             |          |           |                         |        |
|          |          |                             |             |              |             |                              |             |       |             |          |           |                         |        |
|          |          |                             |             |              |             |                              |             |       |             |          | İ         |                         |        |
|          |          |                             |             |              |             |                              |             |       |             |          |           |                         |        |
|          |          |                             |             |              |             |                              |             |       |             | İ        |           |                         |        |
|          |          |                             |             |              |             |                              |             |       |             |          |           |                         |        |
|          |          |                             |             |              |             |                              |             |       |             |          |           |                         | j      |
|          |          |                             |             |              |             |                              |             |       |             |          |           |                         |        |
|          |          |                             |             |              |             |                              |             |       |             |          |           |                         | T      |
|          |          |                             |             |              |             |                              |             |       |             |          |           |                         |        |
|          |          |                             |             |              |             |                              |             |       |             |          | 1         |                         |        |
|          |          |                             |             |              |             |                              |             |       |             |          | 1         |                         |        |
| 1        |          |                             |             |              |             |                              |             |       |             | T        | +         | -                       |        |
|          |          |                             |             |              |             |                              |             |       |             |          |           |                         |        |
|          |          |                             |             |              |             |                              |             |       |             |          |           |                         |        |

E

### MULTI-METALS SAMPLE RECOVERY DATA

|             |                      |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DPACETIC ENVIRONMENTAL BERVICES, INC            |
|-------------|----------------------|--------------|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Plant: ANN  | ous AFB MND          |              |             |         | Run N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.: M79-L                                      |
| Date: 02/   | 07/01                | Sample Box N | 10.:        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.: F181_CUL                                    |
| Sample Loca | ation: We were to    | - Outlet     |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| Sample Type | e: WZ9               |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| Sample Rec  | overy Person: W      | NIM          |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| Container   | Description          |              |             | Volume, | ml Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed/Level Marked                                 |
| Front Half  |                      |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CULEVELIVIAIRED                                 |
| 1           | Filter No.(s)        | 4.007        |             |         | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                 |
| 2           | Acetone Rinse        |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| 3           | Nitric Rinse         |              | ,           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| Back Half   |                      |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| 4           | Nitric Rinse - Imp.  |              |             |         | 5, 158.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | essential the literal parameter (Astuate the Mo |
| 5A          | Nitric Rinse - Impin |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| 5B          | KMNO4/H2O Rinse      |              | & 6         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| 5C          | HCI Rinse - Imping   | ers 5 & 6    | ,           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| Moisture Da | ta                   |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| Impinger    | Contents             | Initial      |             | V       | Veight, gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ams                                             |
| No.         |                      | Volume, ml   | lni         | tial    | Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Net                                             |
| 1           | Y.O.                 | 0            | 616         | 8.8     | 878. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 711.3                                           |
| 2           | 14203                | lw           | 751         | .1      | 355.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (03.9                                           |
| 3           | 14003                | lω           | <b>G</b> 34 |         | 658.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.0                                            |
| 4           | TM                   | 0            | 629.        |         | 633.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3. 6                                            |
| 5           | KMnC4                | lw           | 728         |         | 30.B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.3                                             |
| 6           | KMnC4                | IW           | 721.        |         | 721.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8                                             |
| 7           | Su Gel               | -            | 913.        | 1 (     | 222. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                               |
|             |                      |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
|             |                      |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| Total       |                      |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000                                            |
| Comments:   |                      |              |             |         | <del>"</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 354.9                                           |
|             |                      |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
|             |                      |              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |

### **FIELD DATA SHEET**

Sampling Location Steeler Cost of the Run Number: Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost of the Cost

 Sample Type:
 Νλ3ς
 Operator:
 DD&L

 Pbar:
 25.5c
 Ps:
 + . 1 q

 CO2:
 .
 .
 .

 CD2:
 .
 .
 .

 Probe Length/Type:
 3' - (-bss/Pitot #: RQ-ις Reported to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of

Nozzle ID: 310 Thermocouple #: RT-C. Assumed Bws: 52 Filter #: 108-02 & Meter Box #: AMB-ISY: 945 AH@: 1.20 Post-Test Leak Rate: 0.00, cfm @ 15 in. Hg. Post-Test Leak Check: Pitot: 1001

|          |          |                             | 1.3       |             |                |                               | X = 5.0 | 0     |             |          |           |                    |        |
|----------|----------|-----------------------------|-----------|-------------|----------------|-------------------------------|---------|-------|-------------|----------|-----------|--------------------|--------|
| Traverse | Sempling | Traverse Sampling Gock Time | Gas Meter | Velocity    | Orifice Pressu | Orifice Pressure Differential | Stack   | Temp  | Temperature | Impinger | Dry Gas M | Dry Gas Meter Temo | Pumo   |
| <u>F</u> | Ĕ        | (24-hour                    | Reading   | Head (Ap)   | (HQ)           | (AH) in H2O                   | Temp.   | -     | 0 F         | Temp.    | hiet      | Oute               | Vecuum |
| P P      |          | gock                        | (Vm) ft 3 | h H2O       | Desired        | Actual                        | (s)     | Probe | Filter      | 4        | Cla In P. | Cm out P.          | 5      |
| A        | Q        | 1230                        | 849.500   |             |                |                               |         |       |             |          |           |                    |        |
| 4        | 8        | /335                        | 852.210   | . 34        | 1.70           | 1.30                          | 173     | 050   | 150         | 49       | 104       | 10%                | 1      |
| 3        | 0/       | 1240                        | 855.900   | . 35        | 1.75           | 1.75                          | G L J   | 253   | 155         | 50       | 104       | 10%                | 1      |
| 4        | /5       | 5421                        | 854.480   | . 35        | 1.75           | 1.75                          | 171     | 250   | 25.1        | SCO      | 104       | 401                | 0      |
| 5        | 20       | 1350                        | 863.030   | .33         | 1.65           | 1.65                          | 172     | 253   | 751         | 50       | 104       | 201                | 1      |
| 9        | 95       | 1355                        | 812.0.018 | .36         | 1.80           | 08.1                          | 122     | 95a   | 35(         | 20       | 10%       | 100                |        |
| 4        | 30/0     | 1300                        | 870.200   | .36         | 1.80           | 7.80                          | (1)     | 252   | 185         | 15       | 707       | 20                 | n      |
| `        | 35       | 1310                        | 873.961   | ß           | 1.75           | 7.75                          | 171     | 250   | 252         | 52       | 10%       | 10                 | 1      |
| 7        | 07       | 1315                        | 877.300   | 35          | 1.75           | 1.75                          | 121     | 252   | 156         | 12       | 104       | 104                |        |
| 4        | 45       | 1320                        | 880.750   | <b>گ</b> د. | 07:            | 1.40                          | 121     | 252   | 152         | 52       | 707       | 103                | 1      |
| 5        | 20       | 1325                        | 884.010   | 800         | 1,40           | 1.40                          | 27      | 253   | 250         | Sp       | 100       | (0.3               |        |
| ٥        | 55       | 1330                        | 887.720   | . 34        | 1.70           | 1.70                          | 173     | 232   | 150         | 50       | 70        | 4                  | 1 0    |
|          | (80      | 1335                        | 891.530   | . 37        | 1.85           | 1.85                          | aci     | 28.   | 250         | 0        | 2         | 13                 | 3      |
|          |          |                             |           | ٠           |                |                               |         |       |             |          | 3         | 2                  | 1      |
|          |          |                             |           |             |                |                               |         |       |             | İ        |           |                    |        |
|          |          |                             |           |             |                |                               |         |       |             |          |           |                    |        |
|          |          |                             |           |             |                |                               |         |       |             |          |           |                    | ĺ      |
|          |          |                             |           |             |                |                               |         |       |             |          |           |                    |        |
|          |          |                             |           |             |                |                               |         |       |             |          |           |                    |        |
|          |          |                             |           |             | •              |                               |         |       |             |          |           |                    |        |
|          |          |                             |           |             |                |                               |         |       |             |          |           |                    |        |
|          |          |                             |           |             |                |                               |         |       |             |          |           |                    |        |
|          |          |                             |           |             |                |                               |         |       |             |          |           |                    |        |
|          |          |                             |           |             |                |                               |         |       |             |          |           |                    |        |
|          |          |                             |           |             |                |                               |         |       |             |          |           |                    | T      |
|          |          |                             |           |             |                |                               |         |       |             |          | 1         |                    |        |
|          |          | -                           |           |             |                |                               |         |       |             |          |           |                    | T      |
|          |          |                             |           |             |                |                               |         |       |             | 1        |           |                    |        |

### MULTI-METALS SAMPLE RECOVERY DATA

354

|                  | WKOUS ATTS W                   | <b>V</b>                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Run No                                          | : M79-2                                              |
|------------------|--------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------|
| Date: 02         | la lost                        | Sample Box N             | lo.:                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Job No.                                         | : F181 .au                                           |
| Sample Loc       | ation: Incharter               | Outlet                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                      |
| Sample Typ       | e: Wethod 29                   |                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                      |
| Sample Rec       | covery Person: \               | NM                       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                      |
| Container        | Description                    |                          | Vol                                                | lume, ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sealed                                          | I/Level Marke                                        |
| Front Half       |                                |                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments Ann                                    | "LOVE MAINE                                          |
| 1                | Filter No.(s)                  | 04-003                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ericani este este esta esta esta esta esta esta | estal de la session de la filipa                     |
| 2                | Acetone Rinse                  |                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                      |
| 3                | Nitric Rinse                   |                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                      |
| Back Half        |                                |                          |                                                    | and the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of th |                                                 |                                                      |
| 4                | Nitric Rinse - Imp.            | 1,2,3, + Back 1/         | 2 Filter                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | en en merke en ekselytigen til et klikiskings en fle |
| 5A               | Nitric Rinse - Impir           | nger No. 4               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                      |
| 5B               | KMNO4/H2O Rins                 | e - Impingers 5          | & 6                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                      |
| 5C               | HCI Rinse - Imping             | ers 5 & 6                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                      |
| Moisture Da      | ita:                           | Contraction              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | #Microscopic Control                                 |
| Impinger         | Contents                       | Initial                  |                                                    | Weig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ht, gran                                        | ns                                                   |
|                  |                                | \/olumna                 | 1-14:-1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | no!                                             |                                                      |
| No.              | × 0                            | Volume, ml               | Initial                                            | Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | Net                                                  |
| ľ                | K-0                            | 0                        | 643.2                                              | 776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .5                                              | 133.3                                                |
| 2                | 14403                          | 0<br>(w                  | 643.2                                              | 773.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 878.6                                           | 133.3<br>115.6                                       |
| 3                | 14NO3                          | 0<br>(w                  | 643.2<br>621.8<br>759.5                            | 776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 878.6<br>7                                      | 133.3<br>115.6<br>57.2                               |
| 2                | 14NO3<br>14NOS<br>UMT          | 0<br>(w<br>(w)           | 643.2<br>621.8<br>759.5<br>523.8                   | 7713.0 1<br>816.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 878.6<br>7                                      | 133.3<br>115.6<br>57.2<br>12.3                       |
| 2<br>3<br>4      | 14NU3<br>14NUS<br>UMT<br>KMNO4 | 0<br>(w)<br>(w)<br>0     | 643.2<br>621.8<br>759.5<br>523.8<br>760.6          | 776<br>713.0<br>816.<br>536.<br>768.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 878.6<br>7                                      | 133.3<br>115.6<br>57.2<br>12.3<br>8.1                |
| 2<br>3<br>4<br>4 | 14NU3<br>14NUS<br>MT<br>KMNO4  | 0<br>(w<br>(w)           | 643.2<br>621.8<br>759.5<br>523.8<br>760.6<br>737.8 | 776.<br>713.0<br>816.<br>536.<br>768.<br>734.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 878.6<br>7<br>1                                 | 133.3<br>115.6<br>57.2<br>12.3<br>8.1<br>1-3         |
| 2<br>3<br>4      | 14NU3<br>14NUS<br>UMT<br>KMNO4 | 0<br>1w<br>1w<br>0<br>1w | 643.2<br>621.8<br>759.5<br>523.8<br>760.6          | 776<br>713.0<br>816.<br>536.<br>768.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 878.6<br>7<br>1                                 | 133.3<br>115.6<br>57.2<br>12.3<br>8.1                |
| 2<br>3<br>4<br>4 | 14NU3<br>14NUS<br>MT<br>KMNO4  | 0<br>1w<br>1w<br>0<br>1w | 643.2<br>621.8<br>759.5<br>523.8<br>760.6<br>737.8 | 776.<br>713.0<br>816.<br>536.<br>768.<br>734.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 878.6<br>7<br>1                                 | 133.3<br>115.6<br>57.2<br>12.3<br>8.1<br>1-3         |
| 2<br>3<br>4<br>4 | 14NU3<br>14NUS<br>MT<br>KMNO4  | 0<br>1w<br>1w<br>0<br>1w | 643.2<br>621.8<br>759.5<br>523.8<br>760.6<br>737.8 | 776.<br>713.0<br>816.<br>536.<br>768.<br>734.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 878.6<br>7<br>1                                 | 133.3<br>115.6<br>57.2<br>12.3<br>8.1<br>1-3         |
| 2<br>3<br>4<br>4 | 14NU3<br>14NUS<br>MT<br>KMNO4  | 0<br>1w<br>1w<br>0<br>1w | 643.2<br>621.8<br>759.5<br>523.8<br>760.6<br>737.8 | 776.<br>713.0<br>816.<br>536.<br>768.<br>734.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 878.6<br>7<br>1                                 | 133.3<br>115.6<br>57.2<br>12.3<br>8.1<br>1-3         |

### FIELD DATA SHEET

Sampling Location Stock

Run Number: MAR-3 Date: 03-02-01

Pretest Leak Rate: 603 cfm @ 15 in. Hg.

Pretest Leak Check: Pitot: //A

| Operator: | | | Operator: | | Operator: | | Operator: | | Operator: | | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Operator: | Ope

6

| 0 000  | 100       | 4                |           | 4         | 0.000                        |                  |       |       |             |            |         |                       | 1      |
|--------|-----------|------------------|-----------|-----------|------------------------------|------------------|-------|-------|-------------|------------|---------|-----------------------|--------|
| R      | Burdin    | Sample Cock into | Gas Meler | Velocity  | Orlice Pressure Differential | ire Differential | Stack | Temp  | Temperature | Imminoses  | L       |                       |        |
|        | - E       | (24-hour         | Reading   | Head (Ap) | 1 (HV)                       | (AH) in H20      | Temp. |       | 96          | Territoria |         | Lity that Meter Temp. | d :    |
| Number | (min)     | clock)           | (Vm) R3   | h H20     | Desired                      | Actual           | (Js)  | Probe | Filher      | 9          | Tales   | 200                   | Vacuum |
| A 1    | ٥         | 1405             | 891.600   |           |                              |                  |       |       | Milli       |            | (Imm r) | (I'm out'F)           | F. Hg) |
| ~      | S         | 1410             | 854. 800  | 30        | .50                          | 180              | 25    | 350   | 15.         | 1          | 11111   |                       | 7777   |
| 7      | Ø         | 1415             | 899.150   | . 36.     | 0                            | 0                | 1     |       | 100         | 70         | 10/     | 10/                   | d      |
| *      | 15        | 1420             | 903.860   | 3.5       | 1.75                         | ٠٠٠ ا            | 17    | 252   | 7           | 57         | 103     | 701                   | 7      |
| 2      | 20        | 1425             | 907.640   | 3.5       | 1.75                         | 75               | 17.00 | 20.2  | 250         | 57         | 103     | (00)                  | M      |
| 9      | 25        | 1430             | 911.305   | 48        | 170                          | 200              |       | 252   | 60          | 77         | 50      | 601                   | M      |
| 7      | 30/0      | 1435             | 915.160   | . 34      | 0,1                          | 0 1              |       | CV    | 150         | 48         | 10%     | 601                   | M      |
| 7      | 35        | 1445             | 918.650   | . 35      | 75.                          | 7                | ( ;   | Т     | 000         | 40         | ð.      | (0)                   | M      |
| 3 9    | 40        | 1450             | 922.322   | .35       | 7.                           | 1                | 9     | T     | 5           | 70         | 10%     | (03                   | 4      |
| 84 H   | 5         | _                | 936. 617  | 8         | 000                          | 2                | 12/   | 050   | 250         | 53         | 103     | /03                   | 3      |
|        |           | +-               | 0 00 00   | 20        | 1:10                         | ر.بره            | 173   | 254   | 150         | 15         | 103     | 501                   | ~7     |
| +      | 2         | - 1              | 701.77    | .37       | 1.85                         | 7. gs            | 173   | 253   | 252         | 5.5        | 104     | 201                   | ~      |
| 55     | N         | 505              | 934.000   | . 34      | 1.70                         | 07.1             | 401   | 252   | 150         | i          | 70      | 7 .                   | 1      |
| 09     | 0         | 0161             | 938.050   | 34        | 1.70                         | 1.70             | 27.0  | , 30  | , iv        | 1          |         | ^ 0                   | 7      |
|        |           |                  |           |           |                              |                  | 8     | 2     | 6           | 8          | 707     | /0/                   | 2      |
|        |           |                  |           |           |                              |                  |       |       |             |            |         |                       |        |
| -      | -         |                  |           |           |                              |                  |       |       |             |            |         |                       |        |
| +      | $\dagger$ |                  |           |           |                              |                  |       |       |             |            |         |                       |        |
| +      | $\dagger$ |                  |           |           |                              |                  |       |       |             |            |         |                       |        |
| +      | $\dagger$ |                  |           |           |                              |                  |       |       |             |            | İ       |                       |        |
| +      | 1         |                  |           |           |                              |                  |       |       |             |            |         |                       |        |
| -      |           |                  |           |           | •                            |                  |       |       |             |            |         | T                     |        |
|        |           |                  |           |           |                              |                  |       |       |             |            |         |                       |        |
|        | _         |                  |           |           |                              |                  |       |       |             |            |         |                       |        |
|        |           |                  |           |           |                              |                  |       |       |             | $\dagger$  |         |                       |        |
|        |           |                  |           |           |                              |                  |       |       |             | +          |         |                       |        |
| _      | _         |                  |           |           |                              |                  |       |       |             | +          | +       |                       |        |
|        |           |                  |           |           |                              |                  |       |       |             |            | 1       |                       |        |
|        |           |                  |           |           |                              |                  |       |       |             | +          | +       |                       |        |
|        |           |                  |           |           |                              |                  |       | -     |             |            |         | -                     | -      |

Ē

DH-

### MULTI-METALS SAMPLE RECOVERY DATA

| Plant: ANY  | news AFB            |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Run No                         | : M29-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|---------------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:       |                     | Sample Box N    | No.:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Job No.:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Loca | ation:              |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000 110.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Type | e:                  |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Rec  | overy Person:       |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Container   | Description         |                 |                 | Volume ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sealed                         | /Level Marked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Front Half  |                     | •               | - Springers new |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calcu                          | /Level Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1           | Filter No.(s)       | 104-005         |                 | Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro | The man The Section (Section ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2           | Acetone Rinse       |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3           | Nitric Rinse        |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Back Half   |                     |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4           | Nitric Rinse - Imp. | 1,2,3, + Back 1 | /2 Filter       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | A TO SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE SECTION OF THE S |
| 5A          | Nitric Rinse - Impi |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5B          | KMNO4/H2O Rins      | e - Impingers 5 | & 6             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5C          | HCI Rinse - Imping  | jers 5 & 6      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Moisture:Da | tax                 |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Impinger    | Contents            | Initial         |                 | Wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ght, gran                      | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| No.         |                     | Volume, ml      | Init            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inal                           | Net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2           | k.o.                | 0               | 619.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                            | 103.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | HNO3                | 100             | 747             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.4                            | 111.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3           | HNO3                | lw              | 638             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 74.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4           | Y.a                 | 0               | 630.7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 70.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5           | KWh-O4              | ιω              | 779.5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6           | K.Wh. O4            | lu              | 719.1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7           | S. Gel              | -               | Q22.V           | 947.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                              | 70.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |                     |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                     |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total       |                     |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 356.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Comments:   |                     |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | 330-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                     |                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Appendix B.2
Raw Field Data
Dioxins/Furans (M23)



Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX: (919) 941-0234 Central Park Ives 5001 South Miami Boulevard, P.O. Box 12077

## US EPA M23 FIELD DATA SHEET

Orsat: Pretest Leak Rate: 200 cfm @ 151 in. Hg Date: 01/31 Sampling Location: Stock BEB Run Number: 1-5-1 Plant: Andrews

Probe Length/Type: 3' 6625 Pitot #: RP-19 Sample Type: \_\_\_\_\_ Operator(s): \_\_\_\_ 185,78 100 Ps: + .15 Stack Diameter: 1538" As: \_ .. 0 Pbar: 29.90 500

Posttest Leak Check Rate: Pitot: 12-24 Orsat: Nozzle ID: XXIV - - 3/5/Thermocouple No.: ATC. Meter Box No.: RAB-15 7: 1945 AH@: 1-80 Assumed Bws: ~35% Filter No.: ひを

|                                          | 1      |             |                      |                  |                                |                                                  | ×             | 7.886         | (B4.745        | 145              |             |                |                                      | ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------|--------|-------------|----------------------|------------------|--------------------------------|--------------------------------------------------|---------------|---------------|----------------|------------------|-------------|----------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling Clock G.<br>Time Time F (24-hr) |        | <u>о</u> п. | Gas Meter<br>Reading | Velocity<br>Head | Orifice F<br>Differ<br>(∆H, ir | rifice Pressure.<br>Differential<br>(∆H, in H₂O) | Stack<br>Temp | Probe<br>Temp | Filter<br>Temp | Impinger<br>Temp | XAD<br>Temp | Dry Ga<br>Temp | Dry Gas Meter<br>Temperature<br>(*F) | Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                          | -      |             |                      | ( ) ( ) ( ) ( )  | Desired                        | Actual                                           |               |               |                |                  |             | Inlet          | Outlet                               | (in. Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0 102C 33                                |        | 3           | 320.090              |                  |                                |                                                  |               |               |                |                  |             |                |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 1031 23                                |        | 5           | 235.850              | 45.              | 1,43                           | 1.43                                             | 071           | 250           | 250            | 8/7              | 86          | 4              | 15                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0501 01                                  |        | J           | ₩C.98€               | -35              | 1.47                           | 1.47                                             | 170           | 247           | 150            | 48               | No.         | 88             | 24                                   | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1801 31                                  |        | 3           | 743.5ch              | , 34             | 1.43                           | 1.43                                             | 170           | 248           | 250            | 44               | 44          | 80             | 00                                   | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3010 1046 =                              |        | '1          | 246.133              | .35              | 147                            | 1.47                                             | 071           | 249           | 251            | 48               | 4.9         | 88             | 88                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |        | 7           | 145.564              | . 35             | 1.47                           | 147                                              | 170           | 242           | 282            | 50               | 2(          | &<br>&         | /XI                                  | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          |        |             | 253.010              | .30              | 1.5.1                          | 1.51                                             | 170           | 750           | 250            | \$0              | ST          | Q1<br>A0       | æ                                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1101                                     |        | - 4         | 255 5ch              | .36              | 1.51                           | 1.5.1                                            | 170           | 231           | 3              | 51               | 51          | 200            | 20 00                                | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2011 0/04                                |        | _           | 258.900              | .39              | 1.004                          | 1.04                                             | 170           | 252           | 250            | 48               | 80          | Co<br>Co       | 00                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1111 54                                  | $\neg$ |             | 261.815              | .33              | 1.34                           | 1.34                                             | וכו           | 150           | 150            | 49               | 49          | හ              | 00                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 50 11 16                                 |        |             | 265,200              | .35              | 147                            | 1.47                                             | 121           | 250           | 150            | 49               | 54          | 60             | d                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1511 25                                  |        |             | OS0.800              | .36              | 1.51                           | 1.51                                             | 121           | 252           | 75/            | 44               | a           | Q A            | 36                                   | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 60/0 1126                                | $\neg$ |             | 272000               | 36               | 1.5.1                          | 181                                              | 121           | 252           | 254            | 2(               | 51          | 80             | 00                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1131                                     |        |             | 275.343              | 36               | 1/2/                           | 1.51                                             | 121           | 252           | 251            | 52               | 5/          | 8 8            | 8                                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1136                                     |        |             | 278.400              | 'n.              | 1.55                           | 121                                              | 121           | 150           | 553            | Į.               | 51          | 80             | ø.                                   | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1411 52                                  | 141    |             | 982.400              | ८ हे             | 1.55                           | 1.55                                             | 121           | 252           | 354            | 74               | 50          | 8              | 000                                  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1416                                     |        |             | 000 ogg              | .36              | 1.5.1                          | 1.51                                             | 121           | 252           | 253            | 5(               | 15          | 90             | 000                                  | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11511                                    |        | ·u          | 290.043              | .360             | )5')                           | 1.5.1                                            | 121           | 283           | 186            | \$(              | 3 (         | 8              | 8                                    | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1186                                     |        | N           | 394.000              | 35               | 1.72                           | 4.73                                             | 121           | 25.2          | 251            | 1 4              | /5          | 200            | 88                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1001                                     |        |             | 248 000              | 7%.              | 1.02                           | <b>583</b> ·                                     | 121           | 253           | 150            | 2 (              | 15          | 00             | 68                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 906,                                     |        |             | 304.165              | 36               | 1.63                           | 1.63                                             | 121           | 152           | 150            | 5.2              | 2,4         | 88             | 00                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1211                                     |        |             | 305.675              | ¥                | 1.54                           | 1.54                                             | 121           | 757           | 787            | 3 (              | 21          | 00             | 00                                   | مو                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 110 1016 3                               |        | MI          | 30A.000              | .33              | 1.49                           | 1:45                                             | 201           | گر            | 150            | 121              | 53          | 88             |                                      | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
|                                          |        |             |                      |                  |                                |                                                  |               |               |                |                  |             |                | 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page / of 3 Pages

ÄΉ



Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX: (919) 941-0234

## US EPA M23 FIELD DATA SHEET

Plant: Archeus AFG.
Sampling Location: Stack
Run Number: AS-1 Date: Olsst. Hg
Pretest Leak Rate: O.O.O. cfm @ 15 in. Hg
Pretest Leak Check: Pitot: AA

Nozzle ID: 310 Thermocouple No.: RTLA Assumed Bws: ~32 Filter No.: D F Meter Box No.: RMB-57: 0.845 AH@: 480 Posttest Leak Rate: 0-510 cfm @ 13 in. Hg Posttest Leak Check Rate: Pitot: Corsat: ピカ

|                                                                 |               | 300     | इज्ञाह    |         |         |         |         |         |         |         |             |         |         |         |        |         |         |         |         |         |         |         |          |
|-----------------------------------------------------------------|---------------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|-------------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|---------|----------|
| Pump<br>Vacuum                                                  | (B))          | 7       | 2         | ^       | 7       | 7       | 7       | ~       | 7       | 2       | 7           | 7       | 7       | 7       | _      | 7       | 7       | 7       | 7       | 77      | 7       | 7       | ۲        |
| s Meter<br>rature<br>7)                                         | Outlet        | 20      | <b>80</b> | 4       | 90      | 90      | 30      | 90      | 91      | 90      | 11          | 91      | 42      | 52      | \$ 2   | 48      | 93      | 50      | 92      | 43      | 43      | 93      | 80       |
| Dry Gas Meter<br>Temperature<br>(°F)                            | Inlet         | 88      | 88        | Q       | 16      | 90      | 90      | 15      | 91      | 90      | 10          | 93      | 92      | 93      | 4.3    | 93      | 93      | 93      | 93      | 93      | 43      | 42      | 32       |
| XAD<br>Temp                                                     | (;)           | 50      | 50        | 20      | 50      | 15      | 15      | 52      | 55      | 2/      | S.          | 52      | 52      | 5.5     | 52     | 'n      | Sa      | 5       | , 6     | જ       | 53      | 15      | 25       |
| Impinger<br>Temp                                                |               | 50      | 21        | 52      | 51      | 5.2     | 7,5     | 52      | 55      | 15      | 21          | 52      | 53      | 53      | 27     | 4       | 502     | S       | 50      | 5.2     | 52      | 51      | 5.2      |
| Filter<br>Temp                                                  |               | <br>750 | 253       | 254     | 251     | 250     | 754     | 250     | 25      | 450     | <b>∂</b> 8⁄ | 351     | 250     | 18      | 156    | 251     | 250     | 121     | 253     | 120     | 252     | 750     | 246      |
| Probe<br>Temp                                                   |               | 781     | 25.2      | 452     | 150     | 253     | 253     | 353     | >54     | 254 ·   | 756         | 252     | 253     | 153     | 454    | 727     | 553     | 950     | 650     | 252     | 25.5    | 252     | 250      |
| Stack<br>Temp                                                   | 5             | 280     | 121       | 121     | 173     | 621     | 121     | 172     | ادح/    | 173     | 173         | 173     | 123     | 671     | 120    | 172     | 121     | /2/     | 1 ( )   | 121     | 172     | 721     | 172      |
| Orifice Pressure<br>Differential ·<br>(ΔH, in H <sub>2</sub> O) | Actual        | 18.7    | 96.1      | 1.41    | 1.45    | 1.64    | 1.27    | £8.7    | 78·/    | 1.45    | 1.51        | 1.59    | 1.041   | 1.59    | 1.59   | 1.55    | 1.5%    | 1.60    | 1.65    | 091     | ·.      | 1.65    | 1.65     |
| Orifice F<br>Differ<br>(∆H, ir                                  | Desired       | 1.8.1   | 34.1      | 14.1    | 1.45    | 1.64    | 1.22    | 68./    | 1.83    | 1.45    | 1.59        | 1.55    | 1.64    | 1.59    | 1.59   | 1.55    | 1.56    | 1.60    | 1.65    | 09.1    | 1.60    | 1,65    | 165      |
| Velocity<br>Head                                                | (∆r, in ri₂O) | 40      | .34       | 15.     | 65.     | .36     | 39      | 04.     | .40     | .32     | .35         | 35      | 36      | .35     | 35     | 34      | ,34     | .35     | 136     | . 35    | .35     | 98.     | . 36     |
| Gas Meter<br>Reading                                            | (Vm, ff.)     | 3/3.042 | 37.480    | 325.730 | 376.340 | 329.595 | 333.450 | 337,453 | 240.980 | 343.453 | 142.341     | 351.078 | 354.456 | 357.950 | 361.30 | 364,500 | 368.340 | 373.042 | 375.786 | 379.453 | 382.900 | 386.100 | 3399.560 |
| Clock                                                           | (24-hr)       | 1771    | ١,        |         |         | 16      |         | .,      | Т       | T       |             |         |         |         |        | 1355    |         |         |         |         | 1490    | 1435    |          |
| Sampling                                                        | (min)         |         | 2007      | 105     | 0       |         | 140     | 54,     | 180     | 155     | 160         | 16.5    |         | 175     | 50     | 28/     | 960     | 145     | 200     | 305     | 016     | 2/6     |          |
| Traverse<br>Point                                               | Number        |         | 4         |         |         |         | 7       |         |         |         | 2           |         |         |         | 7      |         |         |         | un.     |         |         |         | 3        |

Q.

Page 2 of 3 Pages



US EPA M23 FIELD DATA SHEET

5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX: (919) 941-0234

Cr. ' | Par' ' 'st

Plant: איייי איייי איייי איייי איייי איייי איייי איייי אייייי איייי ייי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי איי

Nozzle ID: 3 (C) Thermocouple No.: 9T-C.
Assumed Bws: 3 Eilter No.: 2 F

Meter Box No.: 2 F Filter No.: 2 F

Meter Box No.: 2 A Filter No.: 2 F

Posttest Leak Rate: 2 on 2 Cfm 2 Cfm 4 Cfm 1 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cfm 2 Cf

|                             |                  |               |                      |                  |         |                                                               |               | K=4.75        | 25.5           |                  |             |                 |                                      |          |
|-----------------------------|------------------|---------------|----------------------|------------------|---------|---------------------------------------------------------------|---------------|---------------|----------------|------------------|-------------|-----------------|--------------------------------------|----------|
| Traverse<br>Point<br>Number | Sampling<br>Time | Clock<br>Time | Gas Meter<br>Reading | Velocity<br>Head |         | Orifice Pressure<br>Differential<br>(AH, in H <sub>2</sub> O) | Stack<br>Temp | Probe<br>Temp | Filter<br>Temp | Impinger<br>Temp | XAD<br>Temp | Dry Ga<br>Tempe | Dry Gas Meter<br>Temperature<br>(°F) | Pump     |
|                             | -                |               | ( a. iw. )           | (~7              | Desired | Actual                                                        |               | Ē             | E .            |                  | <u>.</u>    | Inlet           | Outlet                               | (in. Hg) |
|                             |                  |               | 018.545              |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             | 225              | 1935          | H4.000               | .36              | 1,005   | 100                                                           | 47.2          | 251           | 248            | 48               | 48          | NO              | 40                                   | 1        |
|                             | 230              | 0,60          | 392.740              | . 36             | 7.06    | 1,605                                                         | 121           | 252           | 340            | 48               | 54          | N               | 6                                    | ı        |
|                             | 035              | 1945          | 401.342              | . 33             | (,5)    | 151                                                           | 1 < 1         | 150           | 787            | 7.5              | 3 %         | 2               |                                      | 1        |
|                             | 240              | 1850          | 405.61               | .34              | 1.56    | 1.56                                                          | 172           | 250           | 250            | 3%               | 8%          | 4               | 0                                    | 1        |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             | 2               | 1                                    |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               | •             |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               | -             |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               | -             |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  |               |                      |                  |         |                                                               |               |               |                |                  |             |                 |                                      |          |
|                             |                  | -             | _                    |                  |         |                                                               |               |               |                |                  |             | 1               | -                                    |          |

Page 3 of 3 Pages

ΔH:

Δp:

 $\Delta V_{m}$ 



Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX: (919) 941-0234

### Sample Train Recovery Data EPA Method 23

| Date: 1 30 01             |                     | Run No.:              | <u></u>         |  |  |  |  |  |  |
|---------------------------|---------------------|-----------------------|-----------------|--|--|--|--|--|--|
|                           |                     | Sampling Location: 12 | waretr Outlet   |  |  |  |  |  |  |
| Field Team Leader: _      | MN)M                | Samplers: PA V)0      | H, JF, MDM      |  |  |  |  |  |  |
| Comments:                 |                     |                       |                 |  |  |  |  |  |  |
|                           |                     |                       |                 |  |  |  |  |  |  |
| Filter No.: un-underd     |                     |                       | ):              |  |  |  |  |  |  |
| Filter No.:               | Filter Media:       | Tate Wt (mg           | ):              |  |  |  |  |  |  |
|                           | David II            | WD 4                  |                 |  |  |  |  |  |  |
|                           | Back-H              | alf Data              | -               |  |  |  |  |  |  |
| •                         |                     | Knock-out Impinger    | Impinger No. 1  |  |  |  |  |  |  |
| Contents:                 | XAD-2 Sorbent Resin | , TM 14               | 100 ml HPLC H₂O |  |  |  |  |  |  |
| Final mass (g):           | 326.5               |                       | 583.2           |  |  |  |  |  |  |
| Initial mass (g):         | 308.8               | 495.7                 | 584.3           |  |  |  |  |  |  |
| Net Mass (g)              | 17.7                | 795.8                 | (1.1)           |  |  |  |  |  |  |
|                           |                     |                       |                 |  |  |  |  |  |  |
|                           | Impinger No. 2      | Impinger No. 3        | Impinger No. 4  |  |  |  |  |  |  |
| Contonto                  |                     |                       |                 |  |  |  |  |  |  |
|                           |                     |                       |                 |  |  |  |  |  |  |
|                           |                     |                       |                 |  |  |  |  |  |  |
|                           |                     |                       |                 |  |  |  |  |  |  |
| Net Mass (g)              |                     | 7.6                   | USIT            |  |  |  |  |  |  |
| tal Moisture Collected: ( | g): 1,390.2         |                       |                 |  |  |  |  |  |  |
| escription of Impinger Ca | tch: F 800.7        | t F 787               | 1.1             |  |  |  |  |  |  |
| Dankers #2+ 461.          |                     | Nu 4 I 461            | -2              |  |  |  |  |  |  |
| Net. 380.                 |                     | 375                   | .9              |  |  |  |  |  |  |

MANUEL SERVICES, INC.

## **US EPA M23 FIELD DATA SHEET**

Sample Type: トゥン Operator(s): トゥント Pber: こうちら Ps: ナ・1 ら CO2: こう CO2: こう CO2: こう CO2: こう CO2: こう CO2: スターパ Stack Diameter: 15 元 As: 18 5・スターパ

Nozzle ID:スマル・3 io Thermocouple No.: <u>Q.T.C.</u>
Assumed Bws: こままままます。 System Box No.: <u>& Me ら</u>で: <u>System Box No.: & Me ら</u>で of m @ <u>As</u> in. Hg Posttest Leak Rate: <u>o. e.o.g.</u> cfm @ <u>As</u> in. Hg Posttest Leak Check Rate: Pitot: <u>+ 3</u> Orsat: AA

| Dry Gas Meter    |
|------------------|
|                  |
|                  |
| i                |
|                  |
|                  |
| Orifice Pressure |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |

| Pump<br>Vacuum                                   | (BL .iii)      |         | 9       | 9       | 7)      | ل ا     | 3      | 9       | ی       | 9       | و      | و       | 2       | 6       | \$        | 9       | 6       | 6       | 2       | ی       | 0       | v       | 7       | ,       |
|--------------------------------------------------|----------------|---------|---------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| s Meter<br>rature<br>=)                          | Outlet         |         | 48      | 30      | 89      | . 5 &   | (00)   | 100     | (00)    | 100     | 401    | (0)     | 100     | 101     | 407       | 100     | 1001    | 107     | 401     | 104     | 401     | \$2/    | 103     | 301     |
| Dry Gas Meter<br>Temperature<br>(°F)             | Inlet          |         | 3%      | 83      | 58      | 50      | 400    | 1001    | 101     | 103     | 102    | 100     | 103     | 164     | 100       | 103     | E 0/    | 103     | 108     | 901     | 108     | 801     | 891     | 801     |
| XAD                                              | ( )            |         | 47      | 47      | 97      | イン      | 48     | 48      | 84      | 50      | 50     | 15      | 52      | 20      | 15        | 50      | 12      | 128     | 51      | 50      | 22      | 53      | 0 k     | 51      |
| Impinger<br>Temp                                 | ()             |         | 49      | 49      | 44      | 44      | 24     | 48      | 49      | 50      | 50     | 5       | 52      | 5       | 5.2       | 5/      | 5/      | 50      | 5 (     | 52      | 50      | 53      | 50      | 21      |
| Filter<br>Temp                                   | ()             |         | 150     | 250     | 150     | 150     | 35     | 251     | 181     | 251     | 150    | 252     | 250     | 250     | 150       | 150     | 252     | 190     | 251     | 150     | 351     | Ē       | 950     | 250     |
| Probe<br>Temp                                    | ()             |         | 254     | 95¢     | 030     | 250     | 253    | 253     | 252     | 252     | 250    | 253     | 550     | 757     | 45c       | 253     | 25 3    | 25.5    | 252     | 250     | 250     | 950     | 150     | 252     |
| Stack<br>Temp                                    |                |         | 10,     | 121     | 121     | 121     | 661    | 172     | 461     | 172     | (72    | 172     | 123     | 52      | 172       | (73     | (22     | 173     | 173     | 173     | 123     | 1231    | 173     | 172     |
| Orifice Pressure<br>Differential<br>(∆H, in H₂O) | Actual         |         | 1:63    | و       | 1.5.1   | 1.56    | 10/21  | 1.20    | 1.56    | 1.61    | 1.00   | 797     | 1.101   | 1.61    | 7.6       | lital   | 1.70    | Litela  | 1,90    | 1.64    | 25.     | 10.0    | 0.01    | 1.96    |
| Orifice Pr<br>Differei<br>(∆H, in I              | Desired        |         | 1.63    | 19.     | 1.6     | 1.61    | 1.61   | 02.1    | 1.56    | 1.61    | .6     | 1.00    | 1.61    | 101     | 1.61      | 1.50/   | 1.20    | 1.66    | 1.40    | 1.64    | 1.90    | 2.01    | 2.01    | 1.76    |
| Velocity<br>Head                                 | (25, 111, 120) |         | 1361    | .34     | 78      | . 34    | .3M    | . 36    | . 33    | .34     | . 34   | . 35    | .34     | *       | . 34      | .34     | . 36    | .35     | .35     | .30     | 3E ·    | .37     | .37     | .36     |
| Gas Meter<br>Reading                             | ( Am, 11. )    | 400.115 | 410,102 | 414.101 | 418.109 | 421.096 | 09HKCh | 423,250 | 431.325 | 434.250 | 438.40 | 141.009 | 445 300 | 449.017 | 45 S. 240 | 457.140 | 460.690 | 464.250 | UC8.876 | 473.171 | 476.410 | 480.130 | 484.140 | 487.703 |
| Clock<br>Time                                    | (24-111)       | 0191    | 51011   | _       |         |         | 5491   | _       |         | 7200    | 5051   |         |         |         |           | 1740    | 1745    | 1750    | 1755    | 1800    | 1805    | 1810    | 18/5    | 180     |
| Sampling<br>Time                                 | ÎIIII          | ۵       | 1       | 01      | 15      | 20      | 25     | 30      | 35      | C/2     | 5.5    | 50      | 55      | 09      | 36        | 8       | 75      | 8       | 25      | 30      | 55      | 001     | 105     | 011     |
| Traverse<br>Point                                | lagilina.      | 1 4     |         |         |         | ~       |        |         |         | ٤       |        |         |         | 17      |           |         |         | 5       |         |         |         | و       | -       |         |

ØÓ

Page of Pages



Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX: (919) 941-0234

# **US EPA M23 FIELD DATA SHEET**

Plant: Andraws NF.C.
Sampling Location: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K.
Run Number: Str. K

Sample Type: A&3 Operator(s): DAA

Par: 24.4 Ps: t.v5

CO2: 5 O2: 18

Probe Length/Type: 3'-6455 Pitot #: 89-19

Stack Diameter: 15 3'8 As: 185.78

Nozzle ID: 5xxt -. \$10Thermocouple No.: 27-C.
Assumed Bws: 3.2. Filter No.: Dr.
Meter Box No.: 2xx Filter No.: Dr.
Meter Box No.: 2xx Filter No.: Dr.
Posttest Leak Rate: 2.010 cfm @ 15 in. Hg
Posttest Leak Check Rate: Pitot: 14

|             | Pump<br>Vacuum                                  | (III. mg)             |  | 1       | 7       | 7       | 7      | 2       | 7       | ι      | 7       | 7       | 1        | ۲        | ~       | ~       | 7       | 7       | 7       | 7      | W.      | Q       | 8       | 10      | B       |
|-------------|-------------------------------------------------|-----------------------|--|---------|---------|---------|--------|---------|---------|--------|---------|---------|----------|----------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|
|             | Meter<br>rature<br>)                            | Outlet                |  | 107     | 101     | 107     | 107    | 80%     | 80%     | 801    | 901     | 107     | 108      | 801      | 201     | 801     | 107     | 108     | 801     | 691    | 109     | 0//     | 110     | us      | 101     |
|             | Dry Gas Meter<br>Temperature<br>(*F)            | Inlet                 |  | 801     | 801     | 108     | 108    | 801     | (0)     | 101    | 107     | 107     | 401      | 108      | 108     | 89/     | 10B     | 801     | 601     | 501    | 109     | 101     | 109     | 101     | 104     |
|             | XAD<br>Temp                                     | ( )                   |  | 45      | 45      | 45      | 46     | 46      | 42      | 47     | 47      | 47      | 47       | 47       | 48      | 47      | 47      | 48      | 48      | 34     | 48      | 48      | 4.9     | 6/5     | 79      |
| Q           | Impinger<br>Temp                                | ()                    |  | 46      | 46      | 46      | 47     | 47      | 47      | 46     | 26      | 47      | 48       | 48       | 48      | 400     | 48      | *8      | 48      | 48     | 48      | 48      | 48      | 48      | 48      |
| V=5.80      | Filter<br>Temp<br>(*F)                          |                       |  | 35      | 251     | 751     | 750    | 750     | 250     | 150    | 250     | 250     | 150      | 252      | 250     | 150     | 150     | 25.2    | 251     | 75/    | 252     | 350     | 750     | 150     | 150     |
| 15675       | Probe<br>Temp                                   | Probe<br>Temp<br>(*F) |  | 150     | 255     | 18.0    | 32.    | 2007    | H       | 252    | 150     | 252     | 150      | 250      | 250     | 253     | 253     | 253     | 252     | 350    | 252     | 750     | 350     | 250     | 150     |
| K= 5.456 75 | Stack<br>Temp                                   |                       |  | 174     | 171     | 133     | 172    | 121     | 122     | 120    | 172     | 123     | 113      | 172      | 451     | 120     | 173     | 173     | 121     | 121    | 121     | 171     | (1)     | 173     | 123     |
|             | ressure<br>ential<br>H <sub>2</sub> O)          | Actual                |  | 2.12    | 1.960   | 1.74    | 1.74   | 1.24    | 1.86    | 7.86   | 2.05    | 2.14    | 3.03     | 2.03     | 1.91    | 1.51    | 2.20    | 3.0€    | 3.20    | 1.79   | 1.79    | 1.50    | 7.50    | 7.50    | 1.56    |
|             | Orlfice Pressur<br>Differential<br>(∆H, in H₂O) | Desired               |  | 2.10    | 1.96    | 1.74    | 1.74   | 1.74    | 7       | 7.86   | 2.05    | 2.14    | 2.0.2    | 3.03     | 1.91    | 1.51    | 2.20    | 3.08    | 220     | 1.79   | 1.79    | 7.50    | 1.50    | 1.50    | 1.561   |
|             | Velocity<br>Head                                | (51, 111, 120)        |  |         | i.      | 38      | .32    | .32     | .34     | .34    | .35     | .37     | .35.     | . 35     | .33     | .33     | .38     | 38      | 2       | . 3/   | , 31    | .26     | . 26    | 26      | ٠٤.     |
|             | Gas Meter<br>Reading                            | ( Au II )             |  | OLD.184 | 495.550 | 489.430 | 50.910 | 506.400 | 510.150 | 54.000 | 518.100 | 521.900 | 5.26.217 | 524. 740 | 533,680 | 537.520 | 541.630 | 545.80> | 549.510 | 553210 | 556.500 | 540.017 | 503:105 | 567.013 | 570.380 |
|             | Clock<br>Time                                   | (=+-111)              |  | 1825    | 1850    | 1880    |        |         | 1855    |        | 1905    | 01 64   |          |          |         | 19.30   |         | 3445    | 1950    | 1985   | 2000    | 2005    | 2010    | 2016    |         |
|             | Sampling<br>Time                                | (mmi)                 |  | 115     | 120/0   | 125     | 1.50   | 135     | 140     | 145    | 251     | 58/     | 160      | 165      | 120     | 561     | 180     | 185     | 961     | 145    | 300     | 305     | ale     | 215     | ace     |
|             | Traverse<br>Point                               | Muliper               |  |         | 10 E    |         |        |         | 3       |        |         |         | 3        |          |         |         | 7       |         |         |        | 5       |         |         |         | *       |

Page of Pages

ΔVm:

PACIFIC ENVIRONMENTAL SERVICES, INC.

Central Park Misst 5001 South Mismi Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX; (919) 941-0234

# **US EPA M23 FIELD DATA SHEET**

Plant: Andrews AFB
Sampling Location: 子もん
Run Number: ANDRE: Otal 31 Pterest Leak Rate: との cfm @ 12 in. Hg
Pretest Leak Check: Pitot: イも "Orsat: A)A

|                                                  |               | 125.53 |         |         | _       | _       | , _ | <br> |      |      |  |      |   | <br> |      |       |                   |
|--------------------------------------------------|---------------|--------|---------|---------|---------|---------|-----|------|------|------|--|------|---|------|------|-------|-------------------|
| Pump<br>Vacuum                                   | (in. Hg)      |        | 10      | 3       | 0       | 2       |     |      |      |      |  |      |   |      |      |       |                   |
| Meter<br>rature<br>)                             | Outlet        |        | 60/     | 301     | 801     | 201     |     |      |      |      |  |      |   |      |      |       |                   |
| Dry Gas Meter<br>Temperature<br>(°F)             | Inlet         |        | 501     | 301     | 501     | 603     |     |      |      |      |  |      |   |      |      |       |                   |
| XAD<br>Temp                                      | ()            |        | 48      | 48      | 49      | 44      |     |      |      |      |  |      |   |      |      |       | T <sub>m</sub> ;  |
| Impinger<br>Temp                                 | ()            | 7.     | 44      | 44      | 44      | 79      |     |      |      |      |  |      |   |      |      |       |                   |
| Filter<br>Temp                                   | ()            |        | 150     | 250     | 251     | 231     |     |      |      |      |  |      | - |      |      |       |                   |
| Probe<br>Temp                                    | ()            | - 200  | 28.0    | 150     | 752     | 250     |     |      |      |      |  |      |   |      |      |       |                   |
| Stack<br>Temp                                    |               |        | 172     | 121     | 171     | 172     |     | <br> | <br> | <br> |  | <br> |   | <br> | <br> | <br>- |                   |
| Orifice Pressure<br>Differential<br>(∆H, in H₂O) | Actual        |        | 1.74    | 1.74    | 1.79    | 1.29    |     |      |      |      |  |      |   |      |      |       |                   |
| Orifice Pressur<br>Differential<br>(∆H, in H₂O)  | Desired       |        | 44.1    | 1.74    | 1.79    | 1.79    |     |      |      |      |  |      |   |      |      |       | ΔH:               |
| Velocity<br>Head                                 | (21, 111, 12) |        | .30     | 30      | .31     | . 3.    |     |      |      |      |  |      |   |      |      |       | 0:                |
| Gas Meter<br>Reading                             |               |        | 574.010 | 577.210 | 580.800 | 584.155 |     |      |      |      |  |      |   |      |      |       | Δρ:               |
| Clock<br>Time                                    | (=)           | `      | 2025    | 2050    |         |         |     |      |      |      |  |      |   |      |      |       | ΔV <sub>m</sub> : |
| Sampling<br>Time                                 | (mm)          |        | 205     | 250     | 235     | 975     |     |      |      |      |  |      |   |      |      |       |                   |
| Traverse<br>Point                                |               |        |         |         |         |         |     |      |      |      |  |      |   |      |      |       |                   |

Page of Pages



Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX: (919) 941-0234

### Sample Train Recovery Data EPA Method 23

| Facility: Annus             | AFB - MD                    | Project No.: F181.0 | υ <u>†</u>      |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------|-----------------------------|---------------------|-----------------|--|--|--|--|--|--|--|--|--|--|--|
| 1 /                         |                             | Run No.:            |                 |  |  |  |  |  |  |  |  |  |  |  |
| Clean-up person:            |                             | Sampling Location:  |                 |  |  |  |  |  |  |  |  |  |  |  |
|                             | MOW                         |                     |                 |  |  |  |  |  |  |  |  |  |  |  |
| Comments:                   |                             |                     |                 |  |  |  |  |  |  |  |  |  |  |  |
|                             |                             |                     |                 |  |  |  |  |  |  |  |  |  |  |  |
|                             | Front-H                     | alf Data            |                 |  |  |  |  |  |  |  |  |  |  |  |
| Filter No.: un-number       | Filter Media: C             | Tare Wt (mg)        | :               |  |  |  |  |  |  |  |  |  |  |  |
| Filter No.:                 | Filter Media:               | Tate Wt (mg)        | :               |  |  |  |  |  |  |  |  |  |  |  |
|                             |                             |                     |                 |  |  |  |  |  |  |  |  |  |  |  |
| Back-Half Data              |                             |                     |                 |  |  |  |  |  |  |  |  |  |  |  |
| :                           |                             |                     | ,               |  |  |  |  |  |  |  |  |  |  |  |
|                             | XAD-2 Sorbent Resin<br>Trap | Knock-out Impinger  | Impinger No. 1  |  |  |  |  |  |  |  |  |  |  |  |
| Contents:                   | XAD-2 Sorbent Resin         | MT                  | 100 ml HPLC H₂O |  |  |  |  |  |  |  |  |  |  |  |
| Final mass (g):             | -                           | 654.3               | 671.8 ·         |  |  |  |  |  |  |  |  |  |  |  |
| Initial mass (g):           | 276.5                       | 464.2               | 619.8           |  |  |  |  |  |  |  |  |  |  |  |
| Net Mass (g)                | ~                           | 190.1               | 7.0             |  |  |  |  |  |  |  |  |  |  |  |
|                             |                             |                     |                 |  |  |  |  |  |  |  |  |  |  |  |
|                             |                             |                     |                 |  |  |  |  |  |  |  |  |  |  |  |
|                             | Impinger No. 2              | Impinger No. 3      | Impinger No. 4  |  |  |  |  |  |  |  |  |  |  |  |
| Contents:                   | 100 ml HPLC H₂O             | MT                  | Silica Gel      |  |  |  |  |  |  |  |  |  |  |  |
| Final mass (g):             | 743.7                       | \$12.0              | 943.3           |  |  |  |  |  |  |  |  |  |  |  |
| Initial mass (g):           | 743.6                       | 507-5-              | 883.9           |  |  |  |  |  |  |  |  |  |  |  |
| Net Mass (g)                | 01                          | 4.5 +3.5            | 59.4            |  |  |  |  |  |  |  |  |  |  |  |
| Total Moisture Collected: ( | (a): 4198.9                 | 1.256.9             |                 |  |  |  |  |  |  |  |  |  |  |  |
|                             | 3/                          | (12 32)             |                 |  |  |  |  |  |  |  |  |  |  |  |
| Description of Impinger Ca  |                             |                     | ÷               |  |  |  |  |  |  |  |  |  |  |  |
| Nu 2 F 782                  | .3 No.3 F 8                 | 19.0 No.4 F         | 787.1           |  |  |  |  |  |  |  |  |  |  |  |
| 1 46                        | 1 46                        | 17 1                | 461.4           |  |  |  |  |  |  |  |  |  |  |  |

Central Park vvest 500 i South ivitatif Boutevard, r.o. Box izell Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX: (919) 941-0334

# **US EPA M23 FIELD DATA SHEET**

Plant: Advenus AFG
Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Location: Sampling Loca

Sample Type: A35 Operator(s): DDH

Par: 29.90 Ps: 4.14

CO2: 5.02: 4.14

Probe Length/Type: 3.4666 Pitot #: 0.0-1.1

Stack Diameter: 4.76.78

Nozzle ID: ・3つ Thermocouple No.: <u>gt--</u>
Assumed Bws: -3つ Filter No.: <u>DF</u>
Meter Box No.: <u>& & もっちゃらいでいます。 これでいます。 Cfm @ 15</u> in. Hg
Posttest Leak Check Rate: Pitot: -0rsat: <u>ルル</u>

|           | Pum                |
|-----------|--------------------|
|           | Dry Gas Meter      |
|           | XAD                |
|           | Impinger           |
|           | Filter             |
|           | Probe              |
| >         | Stack              |
| (K= 5.00) | Orifice Pressure   |
|           |                    |
|           | Velocity           |
|           | Gas Meter Velocity |
|           | ۶                  |
|           | Clock Gas Meter    |
|           | Gas Meter          |

|                                               |                |         |        |         |         |         |         |         |           |         |         |         |         |         |         |         |             |          | _       |          | _       |             |            |         |
|-----------------------------------------------|----------------|---------|--------|---------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|-------------|----------|---------|----------|---------|-------------|------------|---------|
| Pump<br>Vacuum                                | (III. ng)      |         | ق      | 9       | و       | 9       | ૭       | ૭       | و         | ૭       | و       | ૭       | 9       | 9       | J       | و٠      | 9           | 0        | و       | 9        | و       | 9           | و          | 9       |
| Meter<br>rature<br>7)                         | Outlet         |         | 36     | 95      | 47      | 45      | 25      | 27      | 47        | 26      | 36      | 67      | 98      | 48      | 92      | 96      | 56          | ৫১       | 48      | 92       | 96      | <b>≥</b> 55 | 66         | 6.0     |
| Dry Gas Meter<br>Temperature<br>(*F)          | Infet          |         | 3      | 47      | 47      | 47      | 52      | 22      | 47        | 85      | 80      | 85      | 96      | 56      | 46      | 44      | 94          | 99       | 49      | 66       | 98      | 46          | 96         | 96      |
| XAD<br>Temp                                   | =              |         | 44     | 46      | 48      | 48      | 42      | 000     | 50        | 50      | 21      | 31      | S       | 51      | 36      | 'n      | 52          | S        | 52      | 15       | 50      | 57          | 51         | 51      |
| Impinger<br>Temp                              | 3              |         | 49     | 419     | 120     | 48      | 44      | 05      | 20        | 51      | 3.      | S       | SA      | 52      | 5       | 52      | S           | S        | B       | 3,5      | 22      | \$4         | 25         | 5.      |
| Filter<br>Temp                                |                |         | 249    | 186     | 120     | 727     | 252     | -25-    | 154       | 155     | 125     | 751     | 252     | 252     | 150     | 120     | 750         | 150      | 233     | 150      | 130     | 150         | 251        | 155     |
| Probe<br>Temp<br>(°F)                         |                | ******  | 251    | 757     | 252     | 252     | 252     | 250     | 252       | 250     | 950     | JS 3    | 253     | 953     | 250     | 250     | <b>35</b> 2 | 751      | 252     | 150      | 250     | 959         | 751        | 150     |
| Stack<br>Temp                                 | 3              |         | 12,00  | 171     | 121     | 121     | 121     | 170     | (7.2      | יר,     | 121     | 121     | 121     | 121     | 121     | (74     | 170         | 173      | 172     | 172      | 172     | 122         | 172        | 671     |
| ressure<br>ential<br>n H <sub>2</sub> O)      | Actual         |         | 1.75   | 08./    | 1.80    | 2.3     | 1.90    | 1.75    | 1.75      | 1.60    | 1.60    | 1.25    | 08.7    | 287     | 1.80    | O4.1    | 1.80        | 1.75     | 1.75    | 1.65     | 02.7    | 1.70        | 1.35       | - 7     |
| Orffice Press≀<br>Differential<br>(△H, in H₂O | Desired        |         | 1.75   | 1.80    | 1.80    | 1.75    | l Ro    | 1.75    | 1.75      | 1.60    | 7.60    | 1.75    | (, 80   | %.7     | 08.)    | 1.80    | (.80        | 1.75     | 1.75    | 1.65     | 1.70    | 1.70        | . X        | 34.1    |
| Velocity<br>Head                              | (Or, III 1/2O) |         | . 35   | . 36    | . 3(-   | .35     | .38     | .35     | .35       | . 3.A   | £.      | . 35    | .36     | .36     | . 360   | .36     | 3           | . 35     | . 3.5   | .33      | . 34    | 34          | . 35       | 35      |
| Gas Meter<br>Reading                          | ( n 'm' )      | 584.300 | 567.78 | 591.343 | 595.020 | 598.750 | 105.600 | 606,013 | (009.902) | 013.820 | 251.619 | 620.705 | 586.480 | 072.520 | C31,370 | 635.300 | 638.810     | 1640.400 | 646.035 | 649 .830 | C53.550 | 050.030     | (dec). 317 | 664.135 |
| Clock                                         | (z4-nr)        | 0110    | 2150   |         |         |         |         |         |           |         |         |         |         | 0101    | 050/    | 1025    | 0201        |          | ^       | 1045 6   |         | 1055        |            |         |
| Sampling<br>Time                              | (LIE)          | ۵       | W      | ó       | c,      | 0/00    |         |         |           | 0       |         |         | 59      | 0       |         | عد      | 15          | 9/08     | 85      | 40       | 45      | 001         | 501        | 0//     |
| Traverse                                      | Number         | -<br>4  |        |         |         | B       |         | ÷       |           | 61      |         |         |         | 17      |         |         |             | S        |         |          |         | ૭           |            |         |

Page L of 3 Pag

Ë

∆V<sub>m</sub>:



Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX: (919) 941-0234

# US EPA M23 FIELD DATA SHEET

| Plant: Archaus AFB                     | ဟ  |
|----------------------------------------|----|
| 74,                                    | α. |
| Run Number. A-5-3 Date: 03-01-01       | O  |
| Pretest Leak Rate: See Cfm @ 15 in. Hg | σ. |
| Pretest Leak Check: Pitot: Orsat: AM   | ဟ  |

| erator(s): DDM                  | 4 . 14     | 7    | Probe Length/Type: 3' colos Pitot #: RP-19 | 185,78                   |
|---------------------------------|------------|------|--------------------------------------------|--------------------------|
| Ö                               | ۳.         | ő    |                                            | Ϋ́,                      |
| M                               |            |      | N                                          | 40                       |
| Sample Type: 🛂 Operator(s): DDM | Phar: 24.9 | 502: | Probe Length/Type:                         | Stack Diameter. 15 3 As: |

[Kx=5.00|]

B

| Nozzle ID: 315 Thermocouple No.: ロエーC. Assumed Bws: こまり Filter No.: Dピ | Meter Box No.: 248-15 γ: 0.995 ΔΗ@: 1.80 | Posttest Leak Rate: .cos cfm @ .s in. Hg | Posttest Leak Check Rate: Pitot: Orsat: |
|------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|
|------------------------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|

| Pump                                 | (in. Hg)                                |       | 7      | ı          | 1       | 7     | 1       | 7       | 7       | 7       | 1       | 7       | 7       |         | 7       | 7      | 7       | 7       | 7       | 7       | 7       | Г       | 7    | ct   |                    |
|--------------------------------------|-----------------------------------------|-------|--------|------------|---------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|---------|------|------|--------------------|
| s Meter<br>rature<br>F)              | Outlet                                  |       | 10).   | 101        | 0       | 707   | 101     | 103     | 707     | 103     | 9       | 0)      | 101     | 101     | 30/     | 107    | 401     | 101     | (03     | 1001    | 601     | 183     | 3    | 201  |                    |
| Dry Gas Meter<br>Temperature<br>(*F) | Inlet                                   |       | 101    | 101        | 10)     | 101   | 101     | 707     | 104     | 101     | õ       | õ       | /0/     | 102     | 103     | 100/   | 100     | 103     | 103     | 103     | 103     | 103     | 5 01 | (03  | T <sub>m</sub> .   |
| XAD<br>Temp                          | î.                                      |       | 8*     | 47         | 26      | 8 4   | 84      | 47      | 47      | 47      | 84      | 48      | 42      | 47      | 47      | 47     | 47      | 48      | 47      | 47      | 18      | 400     | 44   | 49   | _                  |
| Impinger<br>Temp                     | ( 7 )                                   |       | 49     | 4/Ce       | 26      | 47    | 47      | 147     | 47      | 47      | 47      | 47      | 47      | 47      | 47      | 8/2    | 84      | 38      | 84      | 8/2     | 49      | 49      | 49   | \$0  |                    |
| Filter<br>Temp                       | (1)                                     |       | 751    | 452        | 786     | 250   | 252     | 250     | 181     | 187     | 150     | 251     | 155     | 120     | 150     | 120    | 150     | 350     | 720     | 150     | 252     | 150     | 150  | 152  |                    |
| Probe<br>Temp                        | (1)                                     |       | 253    | 252        | 38.     | 950   | 251     | 252     | 356     | 18 %    | 782     | 250     | 150     | 253     | 150     | 250    | 150     | .est    | 400     | 25.5    | 250     | 35.0    | 350  | 1221 |                    |
| Stack<br>Temp                        | (1)                                     |       | 172    | 172        | 173     | 172   | 172     | (72     | 172     | 172     | 2       | (73)    | 401     | 173     | 172     | 72     | (1)     | 7.72    | 7 7     | 17      | 123     | 172     | 172  | 74   | <br>L*             |
| Differential<br>(ΔH, in H₂O)         | Actual                                  |       | 1.85   | 1.85       | 7.85    | 7.80  | 08.1    | 1.3     | 1.75    | 1.75    | 1.70    | 2.70    | 1.33    | K,      | 1.75    | 1.80   | 50.1    | 1.80    | 08.7    | 7.80    | 1.60    | 1,600   | 1,60 | 1.60 |                    |
| Orifice  <br>Diffe<br>(∆H, i         | Desired                                 | - AL- | 1.85   | 1.85       | 7.85    | 1.80  | 7.80    | 1.75    | 1.75    | £ .     | 1.70    | 01.1    | 1.75    | 1.75    | 1.75    | (.RD   | 1,75    | √.80    | 1.80    | 08.1    | 1.60    | 1,60    | 1.00 | 1.60 | ΔH:                |
| Velocity<br>Head                     | (22111111111111111111111111111111111111 |       | .37    | .37        | .37     | .36   | 36      | .35     | . 25    | . 25    | .34     | .34     | 35      | . 35    | .35     | .36    | . 35    | . 36    | 360     | . 36    | . 32    | . 33    | 5    | 25.0 | Δp:                |
| Gas Meter<br>Reading                 | ( 11 ºE A)                              |       | 66.870 | c. 71.54Ca | GT5.520 | ₩.₽٢9 | 683.145 | 687.019 | 690.730 | 164.101 | 617.940 | 361.133 | 716.205 | 708.860 | 712,406 | 316.00 | 219.630 | 7081017 | 737.317 | 730.501 | 100.HEC | 737.615 | ı    | 1    |                    |
| Clock<br>Time                        | (64-1111)                               |       | 0111   | 5/11       | 11.35   | 1140  | 1145    | 1050    | 1155    | 1000    | 1305    | 1910    | 12/5    | 1000    | 255     | 9861   | 1335    | 0501    | 13/65   | 1250    | 1255    | 1800    | 5051 | 0/21 | ΔV <sub>m</sub> :_ |
| Sampling<br>Time                     | (mm)                                    |       | 115    | 120/0      | 195     | 130   | /35     | 041     | 145     | 150     | 551     | 100     | 765     | 00      | 561     | /80    | 185     | 190     | 795     | 280     | 305     | 210     | 215  | 320  |                    |
| Traverse<br>Point                    |                                         |       |        | -          |         |       |         | P       |         |         |         | 3       |         |         |         | 4      |         |         |         | 2       |         |         |      | 9    |                    |

Pages Page 2 of

# FIELD DATA SHEET

Plant: August AFB
Sampling Location Victority (1) kt P
Run Number: W33-3 Date: 2 / 1 / 1 C
Pretest Leak Rate: 6.008 cfm@ (5 in. Hg. P
Pretest Leak Check: Pitot: Orsal: W/A
S

Sample Type: 1Mthults Operator: 0Mt/mmm Pbar: 29.9 Ps: + 0.10 CO2: ~5 O2: ~17 Probe Length/Type: 3'-9655 Pitot #: 49-A Stack Diameter: 15 3/e As:

Ageuraed Bws: ~75 Filter #: UN-Numberd Meter Box #: 6-66 Y: LEQ AH@: L.B.)
Post-Test Leak Rate: 0.35 cfm @ 12-in. Hg.
Post-Test Leak Check; Pitot: \_\_Orsat: N/M

| Travers   | Sempling | Traverse Sampling Gook Time | Gas Meler | Velent       | 2                            |                  |       |          |             |           | XPD.      |                     |         |
|-----------|----------|-----------------------------|-----------|--------------|------------------------------|------------------|-------|----------|-------------|-----------|-----------|---------------------|---------|
| Popular   | T eff    | 124-hour                    | Banding   | The state of | Office riessure Differential | ire Differential | Stack | <b>T</b> | Temperature | Impinger  | Dry Gas W | Dry Gas Meter Temp. | Pump    |
| Number    |          | docto                       | Se land   | (do) park    | (HØ)                         | 07H              | Temp. | ٥        | 0 F         | Temp.     | Filet 1   | Oute                | Vacuum  |
|           | 1_       |                             | n (ma)    | m F20        | Desired                      | Actual           | E     | Probe    | Filter      | 4         | Ca hor    | (Tm out P           | (g. 14) |
| 1         | 4        | i                           | - 1       | 11111111     |                              |                  |       |          |             |           |           |                     |         |
| 9         | 200      | शेंट ट्रं                   | 451.0     | 6.37         | 1.6                          | 1.6              | (73   | 250      | 241         | S         | 13        | 11.5 1.00           | 100     |
|           | 35,5     | 1520                        | +55.6     | 0.32         | ر                            | ر                | 751   | 750      | 252         | \$        | 49        | _                   | 5 5     |
|           | 123      | (578-                       | 754.8     | 6.33         | <u>لا</u>                    | 1.68             | 241   | 249      | 752         | •         |           | 7                   | +       |
|           | 240      | 1330                        | 764.302   | 25.0         | رد                           | 3                | 7     | 74.      | 300         | 7 7       |           | _                   | rt      |
|           |          |                             |           |              |                              | ,                |       | 3        | 227         | \$        | 2         | (cd   lo3           | rt      |
|           |          |                             |           |              |                              | 1                |       |          |             |           |           |                     |         |
|           |          |                             |           |              |                              |                  |       |          |             |           |           |                     |         |
|           |          |                             |           |              |                              |                  |       |          |             |           |           |                     |         |
|           |          |                             |           |              |                              |                  |       |          |             |           | Ì         |                     |         |
|           |          |                             |           |              |                              |                  |       |          | 1           |           |           |                     |         |
|           |          |                             |           |              |                              |                  |       |          |             |           |           |                     |         |
|           | 1        | +                           |           |              |                              |                  |       |          |             |           |           |                     |         |
|           |          |                             |           |              |                              |                  |       |          |             |           | Ì         |                     |         |
|           |          |                             |           |              |                              |                  |       |          |             |           |           |                     |         |
|           |          |                             |           |              |                              |                  |       |          |             |           |           |                     |         |
|           | $\mid$   |                             |           |              |                              |                  |       |          |             |           |           |                     |         |
|           | 1        |                             |           |              |                              |                  |       |          |             | <u> </u>  |           |                     | Ī       |
|           | 1        |                             |           |              |                              |                  |       |          |             | $\dagger$ | İ         |                     |         |
|           | 1        |                             |           |              |                              |                  |       | +        |             | 1         | 1         |                     |         |
|           |          |                             |           |              |                              |                  |       | -        |             | +         | 1         | <u> </u>            |         |
|           |          |                             |           |              |                              |                  | 1     | +        | +           | +         |           |                     |         |
|           |          |                             |           |              |                              |                  | 1     |          | +           |           | 1         |                     |         |
|           |          |                             |           |              |                              |                  | 1     | 1        | +           |           |           |                     |         |
|           |          |                             |           |              |                              |                  |       |          | 1           |           |           |                     |         |
|           | +        |                             |           |              |                              |                  |       |          |             |           |           |                     |         |
| $\dagger$ | +        |                             |           |              |                              |                  |       |          |             |           |           |                     | T       |
| +         | +        | 1                           |           |              |                              |                  |       | -        |             | _         | 1         | +                   |         |
| +         | +        |                             |           |              |                              |                  | -     | -        |             |           |           |                     | T       |
| +         | +        |                             |           |              |                              | -                | -     | +        | +           | +         | 1         | +                   |         |
|           |          |                             |           |              |                              |                  | +     |          | +           | +         | +         |                     |         |
|           |          |                             |           |              | -                            |                  |       |          |             | _         | _         | -                   | _       |



Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709 (919) 941-0333 FAX: (919) 941-0234

# Sample Train Recovery Data EPA Method 23

| Facility: Hallows      | S AAB- MM                   | Project No.: FIBI . OL |                 |  |  |  |  |  |
|------------------------|-----------------------------|------------------------|-----------------|--|--|--|--|--|
|                        |                             | Run No.: W23-3         |                 |  |  |  |  |  |
| Clean-up person:       | mom                         | Sampling Location:     |                 |  |  |  |  |  |
|                        | MAM                         | A4.                    |                 |  |  |  |  |  |
| Comments:              |                             |                        |                 |  |  |  |  |  |
|                        |                             |                        |                 |  |  |  |  |  |
|                        | Front-H                     | alf Data               |                 |  |  |  |  |  |
| ilter No.: UN - Nunktu | Filter Media: 6             | F Tare Wt (mg)         | *               |  |  |  |  |  |
| ilter No.:             | Filter Media:               | Tate Wt (mg)           | •               |  |  |  |  |  |
|                        |                             | ·                      |                 |  |  |  |  |  |
|                        | Back-H                      | alf Data               |                 |  |  |  |  |  |
|                        |                             |                        |                 |  |  |  |  |  |
|                        | XAD-2 Sorbent Resin<br>Trap | Knock-out Impinger     | Impinger No. 1  |  |  |  |  |  |
| Contents:              | XAD-2 Sorbent Resin         | МТ                     | 100 ml HPLC H₂O |  |  |  |  |  |
| Final mass (g):        | 320.0                       | £74.8                  | 5 70.8 ·        |  |  |  |  |  |
| Initial mass (g):      | 305.4                       | 4956                   | 582.8           |  |  |  |  |  |
| Net Mass (g)           |                             | 379.2                  |                 |  |  |  |  |  |
|                        |                             |                        |                 |  |  |  |  |  |
|                        |                             | ٨                      |                 |  |  |  |  |  |
| ·                      | Impinger No. 2              | Impinger No. 3         | Impinger No. 4  |  |  |  |  |  |
| Contents:              | 100 ml HPLC H₂O             | MT                     | Silica Gel      |  |  |  |  |  |
| Final mass (g):        | 739.8                       | 633.4                  | 1083.2          |  |  |  |  |  |
|                        |                             | 678.7                  | 1674.0          |  |  |  |  |  |
| Initial mass (g):      | 740.9                       |                        | (64.6           |  |  |  |  |  |

Appendix B.3
Raw Field Data
Hydrogen Chloride



Pre-test:

Post-test:

# VOLATILE ORGANIC SAMPLING TRAIN (VOST) SAMPLING DATA

| COMPANY: Awrens AFR               | CITY: 12- shine to a DC |
|-----------------------------------|-------------------------|
| DATE: 01/31/01                    | LOCATION: Stenck        |
| 11ME:1145                         | RIIN # - Maco - L       |
| METER #: VB-6                     | Y-FACTOR: 1.004         |
| BAROMETRIC PRESSURE, in. Hg: 29.9 | OPERATOR: DDH           |
| AMBIENT TEMPERATURE, °F:          | PURGE TIME:             |

### LEAK CHECK DATA

Vacuum

Initial, (in. Hg) Final, (in. Hg) Time, (min.)

| Sample<br>Time<br>(min) | Clock<br>Time,<br>(24-hr) | Meter<br>Volume,<br>(liter) | Rotometer<br>Setting | Dry Gas<br>Meter Temp.,<br>(°F) | Vacuum,<br>(in. Hg) |
|-------------------------|---------------------------|-----------------------------|----------------------|---------------------------------|---------------------|
| D                       | 10:45                     | 1323.00                     | ۵.0                  | 87                              | 2                   |
| 5                       | 10:50                     | 1333.35                     | ۵.۵                  | 44                              | Q                   |
| 10                      | 10:55                     | 1343.12                     | ٥.٥                  | <b>P</b> 7                      | 3                   |
| 15                      | 11:00                     | 1353. 21                    | a. 0                 | 88                              | 3                   |
| 20                      | 11:05                     | 1363.19                     | 2.0                  | 88                              | ے                   |
| 25                      | 11:10                     | 1373.31                     | 3.0                  | 88                              | 3                   |
| 30                      | 11:15                     | 1383.10                     | 2.0                  | 91                              | 3                   |
| 35                      | 11:20                     | 1393.70                     | ٥.٥                  | 91                              | - 3                 |
| 40                      | 11:25                     | 1403:10                     | ٥.0                  | 90                              | 3                   |
| 45                      | 11:30                     | 1413.21                     | 2.0                  | 92                              | 3                   |
| 50                      | 11. 35                    | 1423.10                     | 2.0                  | 92                              | 3                   |
| 55                      | 11:40                     | 1433.61                     | 2.0                  | 92                              | 3                   |

wc

2.2

3.3

<u>ಎ.ಎ</u>

<u>2.2</u>

<u>ව`ට</u>

<u>2.2</u>

حيد

2.2

حيع

Nitrogen purge/activated carbon packing in sample holding container:\_\_\_\_\_

$$V_{\text{std}} = V_{\text{m}} \text{(liters)} \times Y \times 17.647 \times \frac{P_{\text{b}} \text{(in. Hg)}}{T_{\text{m}} (^{\circ}\text{R})}$$

Pre-test:

Post-test:

### VOLATILE ORGANIC SAMPLING TRAIN (VOST) SAMPLING DATA

| COMPANY: Andrews AFB              | CITY: DC     |
|-----------------------------------|--------------|
| DATE: 01/31/01                    |              |
| TIME: 1610                        | RUN #: M26-2 |
| METER #: VB-6                     |              |
| BAROMETRIC PRESSURE, in. Hg: 29.9 |              |
| AMBIENT TEMPERATURE. °F:          |              |

### LEAK CHECK DATA

15

15

| Va   | - |    |  |
|------|---|----|--|
| 1/24 |   | 11 |  |
|      |   |    |  |

Initial, (in. Hg) Final, (in. Hg)

15

15

Time, (min.) ABORTED RUN

Run Aborteo

| Sample<br>Time<br>(min) | Clock<br>Time,<br>(24-hr) | Meter<br>Volume,<br>(liter) | Rotometer<br>Setting | Dry Gas<br>Meter Temp.,<br>(°F) | Vacuum,<br>(in. Hg) |
|-------------------------|---------------------------|-----------------------------|----------------------|---------------------------------|---------------------|
| 0                       | 1610                      | 14 <b>35.</b> 90            | J.O LPM              | 89                              | 3                   |
| 5                       | 1615                      | 1453.87                     |                      | 80                              | 5                   |
| 10                      | 1620                      | 1463.81                     |                      | <b>₹</b> O                      | 3                   |
| 15                      | 1625                      | 1473.73                     |                      | 90                              | 3                   |
| 20                      | 1630                      | 1483.81                     |                      | 91                              | . 3                 |
| 25                      | 1635                      | 1493.21                     |                      | 91                              | 3                   |
|                         | 1640                      | 1503.17                     |                      | 91                              | 3                   |
|                         | 1645                      | 1513.21                     |                      | 91                              | 3                   |
|                         | 1650                      | 1523.20                     |                      | 91                              | 3                   |
|                         | 1655                      | 1533.17                     |                      | 91                              | 3                   |
|                         | 1700                      | 1543.22                     |                      | 91                              | 3                   |
|                         | 1705                      | 1553.17                     | V                    | 91                              | ব                   |

Nitrogen purge/activated carbon packing in sample holding container:

$$V_{\text{std}} = V_{\text{m}} \text{(liters)} \times Y \times 17.647 \times \frac{P_{\text{b}} \text{(in. Hg)}}{T_{\text{m}} (^{\circ}\text{R})}$$

$$V_{\text{std}} =$$



## VOLATILE ORGANIC SAMPLING TRAIN (VOST) SAMPLING DATA

| COMPANY: Andrews AFB               | CITY: washington De |
|------------------------------------|---------------------|
| DATE: 03/01/01                     | LOCATION: Stark     |
| TIME: 0910 - 1010                  | BIN #: mac = 1 2 1  |
|                                    | Y-FACTOR: 1.004     |
| BAROMETRIC PRESSURE, in. Hg: 39.90 | OPERATOR: 204       |
| AMBIENT TEMPERATURE, °F: (90)      | PLIBGE TIME:        |

### LEAK CHECK DATA

### Vacuum

Initial, (in. Hg) Final, (in. Hg) Time, (min.) Pre-test: 15" 15" Post-test:

|                | Sample<br>Time<br>(min) | Clock<br>Time,<br>(24-hr) | Meter<br>Volume,<br>(liter) | Rotometer<br>Setting | Dry Gas<br>Meter Temp.,<br>(°F) | Vacuum,<br>(in. Hg) |   |
|----------------|-------------------------|---------------------------|-----------------------------|----------------------|---------------------------------|---------------------|---|
|                | 0                       | 0910                      | 1565.55                     | 2.0(LPM)             |                                 | 3                   | ٥ |
|                | 5                       | 0915                      | 1575.60                     | 3.0                  | 108                             | <u>ع</u>            | د |
| 7              | 10                      | 0920                      | 1585.41                     | ٥.د                  | 108                             | 3                   | ء |
| 45             | 15                      | 0925                      | 1595. 23                    | 3.0                  | 109                             | 3                   |   |
| \$             | 20                      | 0930                      | 1605.17                     | 2.0                  | 169                             | 3                   |   |
|                | 25                      | 0935                      | 1615.29                     | 2.0                  | 109                             | 3                   |   |
| . 34           | 30                      | 0940                      | 1625. 42                    | 2.0                  | 110.                            | 3                   |   |
|                | 35                      | 0945                      | 1635. 50                    | ۵.٥                  | 110                             | 3                   |   |
| - <del>L</del> | 40                      | 0950                      | 1645.40                     | 2.0                  | 110                             | 3                   |   |
| - 7            | 45                      | 0955                      | 1655.32                     | 3.0                  | 110                             | 3                   |   |
|                | 50                      | 1000                      | 1665.19                     | 2.0                  | 110                             | 3                   |   |
|                | 55                      | 1005                      | 1675.29                     | 2.0                  | //0                             | 3                   | - |
|                | GO<br>Jitrogen purae    | 1010                      | 1685.36                     | 2:0-                 | 110-                            | 3                   | _ |

Nitrogen purge/activated carbon packing in sample holding container:\_\_\_\_

$$V_{\text{std}} = V_{\text{m}} \text{(liters)} \times Y \times 17.647 \times \frac{P_{\text{b}} \text{(in. Hg)}}{T_{\text{m}} (^{\circ}\text{R})}$$

 $V_{\text{std}} =$ 



### **VOLATILE ORGANIC SAMPLING TRAIN (VOST) SAMPLING DATA**

| COMPANY: Andrews AFB              | CITY: Washington DC |
|-----------------------------------|---------------------|
| DATE: 02-02-01                    | LOCATION: Stack     |
| TIME:                             | RUN #: Mac - # 3    |
| METER #: VB -6                    | Y-FACTOR: 1:004     |
| BAROMETRIC PRESSURE, in. Hg: 29.9 |                     |
| AMBIENT TEMPERATURE. °F: 89       |                     |

### LEAK CHECK DATA

Vacuum

|            | Initial, (in. Hg) | Final, (in. Hg) | Time, (min.) |  |
|------------|-------------------|-----------------|--------------|--|
| Pre-test:  |                   |                 |              |  |
| Post-test: |                   |                 |              |  |

| Sample<br>Time<br>(min) | Clock<br>Time,<br>(24-hr) | Meter<br>Volume,<br>(liter) | Rotometer<br>Setting | Dry Gas<br>Meter Temp.,<br>(°F) | Vacuum,<br>(in. Hg) |
|-------------------------|---------------------------|-----------------------------|----------------------|---------------------------------|---------------------|
| 0                       | 0945                      | ۵.٥                         | 1707,00              | 88                              | 3                   |
| 5                       | 0950                      | 2.0                         | 1717.12              | 88                              | 3                   |
| 10                      | 0955                      | 2.0                         | 1727.09              | 82                              | M                   |
| 15                      | 1000                      | 2.0                         | 1737. 10             | 88                              | M                   |
| 90                      | 1005                      | 2.0                         | 1747.21              | ያነ                              | 3                   |
| 25                      | 1010                      | 2.0                         | 1757.19              | 40                              | 3                   |
| 30                      | 1015                      | 2.0                         | 1767.23              | 40                              | N                   |
| 35                      | 1025                      | 2.0                         | 1787.19              | 90                              | 3                   |
| 40                      | 1030                      | a.o                         | 1787.26              | Ç                               | 3                   |
| 45                      | 1035                      | 2.0                         | 1797. 31             | 91                              | 3                   |
| 50                      | 1040                      | 2.0                         | 1807.21              | 91                              | 3                   |
| 55                      | 1045                      | ن.ي                         | 1817.32              | 91                              | 3                   |

Nitrogen purge/activated carbon packing in sample holding container:

$$V_{std} = V_{m} (liters) \times Y \times 17.647 \times \frac{P_{b} (in. Hg)}{T_{m} (^{\circ}R)}$$

Appendix B.4

Raw Field Data

CO<sub>2</sub>, O<sub>2</sub>, SO<sub>2</sub>, NO<sub>x</sub>, CO CEMS (M3A, M6C, 7E, 10)

# Medical Waste Incinerator CEM Responses

| Date      | Time     | O2     | CO2   |
|-----------|----------|--------|-------|
| 31-Jan-01 | 11:13:15 | 10.055 | 5.659 |
| 31-Jan-01 | 11:14:15 | 10.784 | 5.529 |
| 31-Jan-01 | 11:15:15 | 10.336 | 5.245 |
| 31-Jan-01 | 11:16:15 | 10.981 | 5.02  |
| 31-Jan-01 | 11:17:15 | 12.067 | 4.993 |
| 31-Jan-01 | 11:18:15 | 12.374 | 5.198 |
| 31-Jan-01 | 11:19:15 | 12.5   | 5.507 |
| 31-Jan-01 | 11:20:15 | 12.865 | 5.801 |
| 31-Jan-01 | 11:21:15 | 13.414 | 6.02  |
| 31-Jan-01 | 11:22:15 | 13.929 | 6.115 |
| 31-Jan-01 | 11:23:15 | 9.623  | 6.085 |
| 31-Jan-01 | 11:24:15 | 8.689  | 6.001 |
| 31-Jan-01 | 11:25:15 | 10.295 | 5.856 |
| 31-Jan-01 | 11:26:15 | 9.827  | 5.673 |
| 31-Jan-01 | 11:27:15 | 10.649 | 5.545 |
| 31-Jan-01 | 11:28:15 | 11.78  | 5.621 |
| 31-Jan-01 | 11:29:00 | · 11   | 6     |
| 31-Jan-01 | 11:30:00 | 11.75  | - 6   |
| 31-Jan-01 | 11:31:00 | 12.25  | 6.4   |
| 31-Jan-01 | 11:32:00 | 12.5   | 6.4   |
| 31-Jan-01 | 11:33:00 | 13     | 6.4   |
| 31-Jan-01 | 11:34:00 | 13.75  | 6.4   |
| 31-Jan-01 | 11:35:00 | 13.5   | 6.4   |
| 31-Jan-01 | 11:36:00 | 9.25   | 6.4   |
| 31-Jan-01 | 11:37:00 | 10     | 6.4   |
| 31-Jan-01 | 11:38:00 | 9.5    | 6     |
| 31-Jan-01 | 11:39:00 | 10.5   | 6.4   |
| 31-Jan-01 | 11:40:00 | 12     | 6.4   |
| 31-Jan-01 | 11:41:45 | 13.415 | 6.409 |
| 31-Jan-01 | 11:42:45 | 13.613 | 6.541 |
| 31-Jan-01 | 11:43:45 | 10.964 | 6.566 |
| 31-Jan-01 | 11:44:45 | 9.35   | 6.505 |
| 31-Jan-01 | 11:45:45 | 10.111 | 6.359 |
| 31-Jan-01 | 11:46:45 | 10.108 | 6.168 |
| 31-Jan-01 | 11:47:45 | 10.864 | 5.954 |
| 31-Jan-01 | 11:48:45 | 11.596 | 5.818 |
| 31-Jan-01 | 11:49:45 | 12.179 | 5.81  |
| 31-Jan-01 | 11:50:45 | 12.615 | 5.94  |
| 31-Jan-01 | 11:51:45 | 12.534 | 6.132 |
| 31-Jan-01 | 11:52:45 | 12.736 | 6.301 |
| 31-Jan-01 | 11:53:45 | 13.047 | 6.403 |

### Medical Waste Incinerator CEM Responses

| Date      | Time     | O2     | CO2   |
|-----------|----------|--------|-------|
| 31-Jan-01 | 11:54:45 | 13.338 | 6.433 |
| 31-Jan-01 | 11:55:45 | 10.8   | 6.388 |
| 31-Jan-01 | 11:56:45 | 8.601  | 6.28  |
| 31-Jan-01 | 11:57:45 | 7.645  | 6.134 |
| 31-Jan-01 | 11:58:45 | 8.61   | 5.967 |
| 31-Jan-01 | 11:59:45 | 9.654  | 5.805 |
| 31-Jan-01 | 12:00:45 | 10.38  | 5.718 |
| 31-Jan-01 | 12:01:45 | 10.679 | 5.768 |
| 31-Jan-01 | 12:02:45 | 11.02  | 6.021 |
| 31-Jan-01 | 12:03:45 | 11.119 | 6.388 |
| 31-Jan-01 | 12:04:45 | 11.522 | 6.76  |
| 31-Jan-01 | 12:05:45 | 11.932 | 6.779 |
| 31-Jan-01 | 12:06:45 | 8.933  | 8.359 |
| 31-Jan-01 | 12:07:45 | 8.012  | 9.079 |
| 31-Jan-01 | 12:08:45 | 9.739  | 8.005 |
| 31-Jan-01 | 12:09:45 | 11.224 | 6.74  |
| 31-Jan-01 | 12:10:45 | 11.445 | 6.448 |
| 31-Jan-01 | 12:11:45 | 11.565 | 6.301 |
| 31-Jan-01 | 12:12:45 | 11.925 | 5.998 |
| 31-Jan-01 | 12:13:45 | 12.256 | 5.73  |
| 31-Jan-01 | 12:14:45 | 12.547 | 5.517 |
| 31-Jan-01 | 12:15:45 | 10.502 | 7.305 |
| 31-Jan-01 | 12:16:45 | 9.121  | 8.283 |
| 31-Jan-01 | 12:17:45 | 9.61   | 7.726 |
| 31-Jan-01 | 12:18:45 | 9.988  | 7.513 |
| 31-Jan-01 | 12:19:45 | 10.988 | 6.74  |
| 31-Jan-01 | 12:20:45 | 11.583 | 6.253 |
| 31-Jan-01 | 12:21:45 | 11.924 | 5.946 |
| 31-Jan-01 | 12:22:45 | 12.01  | 5.871 |
| 31-Jan-01 | 12:23:45 | 12.073 | 5.767 |
| 31-Jan-01 | 12:24:45 | 12.134 | 5.719 |
| 31-Jan-01 | 12:25:45 | 12.145 | 5.738 |
| 31-Jan-01 |          |        |       |
| 31-Jan-01 | 12:27:48 | 12.242 | 5.641 |
| 31-Jan-01 | 12:28:48 | 12.423 | 5.557 |
| 31-Jan-01 | 12:29:48 | 12.76  | 5.277 |
| 31-Jan-01 | 12:30:48 | 12.007 | 5.786 |
| 31-Jan-01 | 12:31:48 | 6.936  | 10.28 |
| 31-Jan-01 | 12:32:48 | 7.837  | 9.129 |
| 31-Jan-01 | 12:33:48 | 9.992  | 7.577 |
| 31-Jan-01 | 12:34:48 | 11.469 | 6.464 |

# Medical Waste Incinerator CEM Responses

| Date      | Time     | O2     | CO2   |
|-----------|----------|--------|-------|
| 31-Jan-01 | 12:35:48 | 11.682 | 6.202 |
| 31-Jan-01 | 12:36:48 | 11.73  | 6.079 |
| 31-Jan-01 | 12:37:48 | 11.967 | 5.846 |
| 31-Jan-01 | 12:38:48 | 12.083 | 5.728 |
| 31-Jan-01 | 12:39:48 | 12.353 | 5.545 |
| 31-Jan-01 | 12:40:48 | 12.815 | 5.239 |
| 31-Jan-01 | 12:41:48 | 8.464  | 9.2   |
| 31-Jan-01 | 12:42:48 | 7.617  | 9.285 |
| 31-Jan-01 | 12:43:48 | 8.816  | 8.44  |
| 31-Jan-01 | 12:44:48 | 11.097 | 6.856 |
| 31-Jan-01 | 12:45:48 | 11.683 | 6.518 |
| 31-Jan-01 | 12:46:48 | 11.833 | 6.536 |
| 31-Jan-01 | 12:47:48 | 12.445 | 6.529 |
| 31-Jan-01 | 12:48:48 | 12.839 | 6.495 |
| 31-Jan-01 | 12:49:48 | 13.121 | 6.4   |
| 31-Jan-01 | 12:50:48 | 12.778 | 6.238 |
| 31-Jan-01 | 12:51:48 | 8.399  | 6.026 |
| 31-Jan-01 | 12:52:48 | 8.944  | 5.809 |
| 31-Jan-01 | 12:53:48 | 10.595 | 5.629 |
| 31-Jan-01 | 12:54:48 | 11.406 | 5.591 |
| 31-Jan-01 | 12:55:48 | 12.046 | 5.871 |
| 31-Jan-01 | 12:56:48 | 12.483 | 6.343 |
| 31-Jan-01 | 12:57:48 | 12.66  | 6.73  |
| 31-Jan-01 | 12:58:48 | 12.849 | 6.906 |
| 31-Jan-01 | 12:59:48 | 12.907 | 6.893 |
| 31-Jan-01 | 13:00:48 | 13.156 | 6.722 |
| 31-Jan-01 | 13:01:48 | 13.396 | 6.487 |
| 31-Jan-01 | 13:02:48 | 13.774 | 6.236 |
| 31-Jan-01 | 13:03:48 | 9.86   | 6.002 |
| 31-Jan-01 | 13:04:48 | 10.645 | 5.796 |
| 31-Jan-01 | 13:05:48 | 11.49  | 5.625 |
| 31-Jan-01 | 13:06:48 | 11.997 | 5.473 |
| 31-Jan-01 | 13:07:48 | 12.523 | 5.411 |
| 31-Jan-01 | 13:08:48 | 13.028 | 5.502 |
| 31-Jan-01 | 13:09:48 | 13.311 | 5.705 |
| 31-Jan-01 | 13:10:48 | 13.266 | 5.884 |
| 31-Jan-01 | 13:11:48 | 13.717 | 6.012 |
| 31-Jan-01 | 13:12:48 | 13.691 | 6.021 |
| 31-Jan-01 | 13:13:48 | 7.006  | 5.962 |
| 31-Jan-01 | 13:14:48 | 7.752  | 5.84  |
| 31-Jan-01 | 13:21:28 | 13.122 | 6.398 |

# Medical Waste Incinerator CEM Responses

| Date      | Time     | O2     | CO2   |           |
|-----------|----------|--------|-------|-----------|
| 31-Jan-01 | 13:22:28 | 13.458 | 6.662 |           |
| 31-Jan-01 | 13:23:28 | 13.545 | 6.782 |           |
| 31-Jan-01 | 13:24:28 | 13.678 | 6.76  |           |
| 31-Jan-01 | 13:25:28 | 13.818 | 6.627 |           |
| 31-Jan-01 | 13:26:28 | 13.498 | 6.448 |           |
| 31-Jan-01 | 13:27:28 | 8.847  | 6.252 |           |
| 31-Jan-01 | 13:28:28 | 10.286 | 6.042 |           |
| 31-Jan-01 | 13:29:28 | 11.133 | 5.823 |           |
| 31-Jan-01 | 13:30:28 | 12.002 | 5.646 |           |
| 31-Jan-01 | 13:31:28 | 12.883 | 5.498 |           |
| 31-Jan-01 | 13:32:28 | 13.114 | 5.388 |           |
| 31-Jan-01 | 13:33:28 | 13.604 | 5.395 |           |
| 31-Jan-01 | 13:34:28 | 13.621 | 5.488 |           |
| 31-Jan-01 | 13:35:28 | 14.023 | 5.645 |           |
| 31-Jan-01 | 13:36:28 | 11.906 | 5.788 |           |
| 31-Jan-01 | 13:37:28 | 7.151  | 5.875 |           |
| 31-Jan-01 | 13:38:28 | 8.413  | 5.902 |           |
| 31-Jan-01 | 13:39:28 | 10.824 | 5.858 |           |
| 31-Jan-01 | 13:40:28 | 12.032 | 5.772 |           |
| 31-Jan-01 | 13:41:28 | 12.002 | 0.772 |           |
| 31-Jan-01 | 13:42:28 |        |       |           |
| 31-Jan-01 | 13:43:28 |        |       |           |
| 31-Jan-01 | 13:44:28 |        |       |           |
| 31-Jan-01 | 13:45:28 |        |       |           |
| 31-Jan-01 | 13:46:28 |        |       | Cal Check |
| 31-Jan-01 | 13:47:28 |        |       |           |
| 31-Jan-01 | 13:48:28 |        |       |           |
| 31-Jan-01 | 13:49:28 |        |       |           |
| 31-Jan-01 | 13:50:28 |        |       |           |
| 31-Jan-01 | 13:51:28 |        |       |           |
| 31-Jan-01 | 13:52:28 |        |       |           |
| 31-Jan-01 | 13:53:28 | 12.621 | 5.473 |           |
| 31-Jan-01 | 13:54:28 | 12.871 | 5.265 |           |
| 31-Jan-01 | 13:55:28 | 13.048 | 5.089 |           |
| 31-Jan-01 | 13:56:28 | 13.23  | 4.976 |           |
| 31-Jan-01 | 13:57:28 | 13.713 | 4.601 |           |
| 31-Jan-01 | 13:58:28 | 14.062 | 4.329 |           |
| 31-Jan-01 | 13:59:28 | 14.146 | 4.326 |           |
| 31-Jan-01 | 14:00:28 | 9.544  | 8.492 |           |
| 31-Jan-01 | 14:01:28 | 10.043 | 7.492 |           |
| 31-Jan-01 | 14:02:28 | 10.03  | 7.423 |           |

### Medical Waste Incinerator CEM Responses

| Date      | Time     | 02     | CO2   |
|-----------|----------|--------|-------|
| 31-Jan-01 | 14:03:28 | 11.203 | 6.543 |
| 31-Jan-01 | 14:04:28 | 11.992 | 5.932 |
| 31-Jan-01 | 14:05:28 | 12.75  | 5.32  |
| 31-Jan-01 | 14:06:28 | 13.009 | 5.089 |
| 31-Jan-01 | 14:07:28 | 13.187 | 4.976 |
| 31-Jan-01 | 14:08:28 | 13.815 | 4.542 |
| 31-Jan-01 | 14:09:28 | 14.248 | 4.216 |
| 31-Jan-01 | 14:10:28 | 14.24  | 4.178 |
| 31-Jan-01 | 14:11:28 | 14.347 | 4.097 |
| 31-Jan-01 | 14:12:28 | 14.618 | 3.894 |
| 31-Jan-01 | 14:13:28 | 14.697 | 3.828 |
| 31-Jan-01 | 14:14:28 | 14.873 | 3.768 |
| 31-Jan-01 | 14:15:28 | 10.243 | 7.832 |
| 31-Jan-01 | 14:16:28 | 9.986  | 7.5   |
| 31-Jan-01 | 14:17:28 | 9.246  | 7.792 |
| 31-Jan-01 | 14:18:28 | 9.805  | 7.58  |
| 31-Jan-01 | 14:19:28 | 11.121 | 6.548 |
| 31-Jan-01 | 14:20:28 | 12.251 | 5.755 |
| 31-Jan-01 | 14:21:28 | 13.267 | 4.976 |
| 31-Jan-01 | 14:22:28 | 13.933 | 4.482 |
| 31-Jan-01 | 14:23:28 | 14.08  | 4.295 |
| 31-Jan-01 | 14:24:28 | 14.354 | 4.122 |
| 31-Jan-01 | 14:25:28 | 14.684 | 3.864 |
| 31-Jan-01 | 14:26:28 | 14.592 | 3.888 |
| 31-Jan-01 | 14:27:28 | 14.781 | 3.763 |
| 31-Jan-01 | 14:28:28 | 15.141 | 3.581 |
| 31-Jan-01 | 14:29:28 | 10.97  | 7.203 |
| 31-Jan-01 | 14:30:28 | 10.477 | 7.225 |
| 31-Jan-01 | 14:31:28 | 9.971  | 7.284 |
| 31-Jan-01 | 14:32:28 | 10.297 | 7.242 |
| 31-Jan-01 | 14:33:28 | 12.03  | 5.878 |
| 31-Jan-01 | 14:34:28 | 13.047 | 5.137 |
| 31-Jan-01 | 14:35:28 | 13.439 | 4.792 |
| 31-Jan-01 | 14:36:28 | 13.944 | 4.455 |
| 31-Jan-01 | 14:37:28 | 14.03  | 4.358 |
| 31-Jan-01 | 14:38:28 | 14.324 | 4.145 |
| 31-Jan-01 | 14:39:28 | 14.53  | 3.97  |
| 31-Jan-01 | 14:40:28 | 14.803 | 3.825 |
| 31-Jan-01 | 14:41:28 | 11.39  | 6.654 |
| 31-Jan-01 | 14:42:28 | 8.339  | 8.695 |
| 31-Jan-01 | 14:43:28 | 8.546  | 8.532 |

### Medical Waste Incinerator CEM Responses

| D - 1 -   | August   |        |       |
|-----------|----------|--------|-------|
| Date      | Time     | O2     | CO2   |
| 31-Jan-01 | 14:44:28 | 9.154  | 8.18  |
| 31-Jan-01 | 14:45:28 | 10.339 | 7.289 |
| 31-Jan-01 | 14:46:28 | 11.113 | 6.65  |
| 31-Jan-01 | 14:47:28 | 11.122 | 6.624 |
| 31-Jan-01 | 14:48:28 | 11.325 | 6.423 |
| 31-Jan-01 | 14:49:28 | 11.308 | 6.383 |
|           |          |        |       |
| Average   | M23-1    | 11.7   | 6.1   |

# Medical Waste Incinerator CEM Responses

| Date      | Time     | O2     | CO2   |           |
|-----------|----------|--------|-------|-----------|
| 31-Jan-01 | 16:10:42 | 13.981 | 4.38  |           |
| 31-Jan-01 | 16:11:42 | 14.323 | 4.125 |           |
| 31-Jan-01 | 16:12:42 | 14.511 | 3.97  |           |
| 31-Jan-01 | 16:13:42 | 14.717 | 3.81  |           |
| 31-Jan-01 | 16:14:42 | 15.139 | 3.565 |           |
| 31-Jan-01 | 16:15:42 | 11.357 | 6.914 |           |
| 31-Jan-01 | 16:16:42 | 8.068  | 8.967 |           |
| 31-Jan-01 | 16:17:42 | 9.252  | 8.032 |           |
| 31-Jan-01 | 16:18:42 | 10.875 | 6.827 |           |
| 31-Jan-01 | 16:19:42 | 12.376 | 5.693 |           |
| 31-Jan-01 | 16:20:42 | 12.874 | 5.242 |           |
| 31-Jan-01 | 16:21:42 | 13.247 | 4.908 |           |
| 31-Jan-01 | 16:22:42 | 13.504 | 4.713 |           |
| 31-Jan-01 | 16:23:42 | 13.887 | 4.435 |           |
| 31-Jan-01 | 16:24:42 | 14.188 | 4.208 |           |
| 31-Jan-01 | 16:25:42 | 14.625 | 3.936 |           |
| 31-Jan-01 | 16:26:42 | 10.514 | 7.581 |           |
| 31-Jan-01 | 16:27:42 | 9.016  | 8.377 |           |
| 31-Jan-01 | 16:28:42 | 9.451  | 7.862 |           |
| 31-Jan-01 | 16:29:42 | 10.719 | 6.888 |           |
| 31-Jan-01 | 16:30:42 | 11.758 | 6.1   |           |
| 31-Jan-01 | 16:31:42 | 12.387 | 5.596 |           |
| 31-Jan-01 | 16:32:42 | 12.623 | 5.362 |           |
| 31-Jan-01 | 16:33:42 | 12.948 | 5.121 |           |
| 31-Jan-01 | 16:34:42 | 13.485 | 4.691 |           |
| 31-Jan-01 | 16:35:42 | 13.512 | 4.661 |           |
| 31-Jan-01 | 16:36:42 | 13.858 | 4.409 |           |
| 31-Jan-01 | 16:37:42 |        |       |           |
| 31-Jan-01 | 16:38:42 |        |       |           |
| 31-Jan-01 | 16:39:42 |        | 1     |           |
| 31-Jan-01 | 16:40:42 |        |       | Cal Check |
| 31-Jan-01 | 16:41:42 |        |       |           |
| 31-Jan-01 | 16:42:42 |        |       |           |
| 31-Jan-01 | 16:43:42 |        |       |           |
| 31-Jan-01 | 16:44:42 |        |       |           |
| 31-Jan-01 | 16:45:42 |        |       |           |
| 31-Jan-01 | 16:46:42 | 12.411 | 5.565 |           |
| 31-Jan-01 | 16:47:42 | 12.782 | 5.275 |           |
| 31-Jan-01 | 16:48:42 | 13.028 | 5.042 |           |
| 31-Jan-01 | 16:49:42 | 13.404 | 4.776 |           |
| 31-Jan-01 | 16:50:42 | 13.798 | 4.484 |           |

Medical Waste Incinerator CEM Responses

| Date      | Time     | O2     | CO2   |
|-----------|----------|--------|-------|
| 31-Jan-01 | 16:51:42 | 14.074 | 4.255 |
| 31-Jan-01 | 16:52:42 | 14.391 | 4.062 |
| 31-Jan-01 | 16:53:42 | 9.81   | 8.222 |
| 31-Jan-01 | 16:54:42 | 9.805  | 7.702 |
| 31-Jan-01 | 16:55:42 | 9.801  | 7.648 |
| 31-Jan-01 | 16:56:42 | 10.562 | 7.084 |
| 31-Jan-01 | 16:57:42 | 11.329 | 6.505 |
| 31-Jan-01 | 16:58:42 | 11.938 | 6.049 |
| 31-Jan-01 | 16:59:42 | 12.236 | 5.793 |
| 31-Jan-01 | 17:00:42 | 12.407 | 5.653 |
| 31-Jan-01 |          |        |       |
| 31-Jan-01 | 17:02:21 | 11.124 | 7.005 |
| 31-Jan-01 | 17:03:21 | 8.432  | 9.16  |
| 31-Jan-01 | 17:04:21 | 9.374  | 8.09  |
| 31-Jan-01 | 17:05:21 | 9.956  | 7.591 |
| 31-Jan-01 | 17:06:21 | 10.945 | 6.774 |
| 31-Jan-01 | 17:07:21 | 11.587 | 6.287 |
| 31-Jan-01 | 17:08:21 | 12.097 | 5.852 |
| 31-Jan-01 | 17:09:21 | 12.248 | 5.719 |
| 31-Jan-01 | 17:10:21 | 12.336 | 5.642 |
| 31-Jan-01 | 17:11:21 | 12.782 | 5.282 |
| 31-Jan-01 | 17:12:21 | 13.096 | 5.036 |
| 31-Jan-01 | 17:13:21 | 13.166 | 4.967 |
| 31-Jan-01 | 17:14:21 | 10.991 | 7.269 |
| 31-Jan-01 | 17:15:21 | 7.328  | 9.699 |
| 31-Jan-01 | 17:16:21 | 8.221  | 8.861 |
| 31-Jan-01 | 17:17:21 | 10.311 | 7.37  |
| 31-Jan-01 | 17:18:21 | 12.459 | 5.77  |
| 31-Jan-01 | 17:19:21 | 12.763 | 5.363 |
| 31-Jan-01 | 17:20:21 | 13.015 | 5.123 |
| 31-Jan-01 | 17:21:21 | 13.23  | 4.945 |
| 31-Jan-01 | 17:22:21 | 13.551 | 4.705 |
| 31-Jan-01 | 17:23:21 | 14.065 | 4.342 |
| 31-Jan-01 | 17:24:21 | 10.662 | 7.475 |
| 31-Jan-01 | 17:25:21 | 10.297 | 7.304 |
| 31-Jan-01 | 17:26:21 | 11.009 | 6.606 |
| 31-Jan-01 | 17:27:21 | 10.867 | 6.711 |
| 31-Jan-01 | 17:28:21 | 11.458 | 6.26  |
| 31-Jan-01 | 17:29:21 | 11.976 | 5.867 |
| 31-Jan-01 | 17:30:21 | 13.084 | 5.053 |
| 31-Jan-01 | 17:31:21 | 13.52  | 4.713 |

### Medical Waste Incinerator CEM Responses

| Date                   | Time                 | O2               | CO2   |
|------------------------|----------------------|------------------|-------|
|                        |                      | 02               | CO2   |
| 31-Jan-01              | 17:32:21             | 14.007           | 4.373 |
| 31-Jan-01              | 17:33:21             | 13.843           | 4.447 |
| 31-Jan-01              | 17:34:21             | 14.216           | 4.173 |
| 31-Jan-01              | 17:35:21             | 14.486           | 3.963 |
| 31-Jan-01              | 17:36:21             | 14.658           | 3.826 |
| 31-Jan-01              | 17:37:21             | 14.75            | 3.759 |
| 31-Jan-01              | 17:38:21             | 14.852           | 3.67  |
| 31-Jan-01              | 17:39:21             | 14.928           | 3.613 |
| 31-Jan-01              | 17:40:21             | 14.975           | 3.585 |
| 31-Jan-01              | 17:41:21             | 14.94            | 3.617 |
| 31-Jan-01              | 17:42:21             | 12.031           | 6.471 |
| 31-Jan-01              | 17:43:21             | 8.693            | 8.513 |
| 31-Jan-01              | 17:44:21             | 9.304            | 7.907 |
| 31-Jan-01              | 17:45:21             | 11.288           | 6.432 |
| 31-Jan-01              | 17:46:21             | 12.6             | 5.468 |
| 31-Jan-01              | 17:47:21             | 13.098           | 5.039 |
| 31-Jan-01              | 17:48:21             | 13.464           | 4.744 |
| 31-Jan-01              | 17:49:21             | 13.682           | 4.542 |
| 31-Jan-01              | 17:50:21             | 14.071           | 4.275 |
| 31-Jan-01              | 17:51:21             | 14.689           | 3.862 |
| 31-Jan-01              | 17:52:21             | 9.804            | 8.31  |
| 31-Jan-01              | 17:53:21             | 10.491           | 7.174 |
| 31-Jan-01              | 17:54:21             | 11.466           | 6.392 |
| 31-Jan-01              | 17:55:21             | 11.768           | 6.168 |
| 31-Jan-01              | 17:56:21             | 12.659           | 5.469 |
| 31-Jan-01              | 17:57:21             | 12.742           | 5.345 |
| 31-Jan-01              | 17:58:21             | 13.144           | 5.038 |
| 31-Jan-01              | 17:59:21             | 13.244           | 4.925 |
| 31-Jan-01              | 18:00:21             | 13.456           | 4.748 |
| 31-Jan-01              | 18:01:21             | 13.84            | 4.471 |
| 31-Jan-01              | 18:02:21             | 14.093           | 4.292 |
| 31-Jan-01<br>31-Jan-01 | 18:03:21             | 14.473           | 4.045 |
| 31-Jan-01              | 18:04:21             | 10.853           | 7.466 |
| 31-Jan-01              | 18:05:21<br>18:06:21 | 10.612           | 7.12  |
| 31-Jan-01              | 18:07:21             | 11.108           | 6.613 |
| 31-Jan-01              | 18:08:21             | 11.366           | 6.408 |
| 31-Jan-01              | 18:09:21             | 12.341           | 5.642 |
| 31-Jan-01              | 18:10:21             | 12.864<br>12.804 | 5.208 |
| 31-Jan-01              | 18:11:21             |                  | 5.187 |
| 31-Jan-01              | 18:12:21             | 13.256           | 4.841 |
| Juli-01                | 10.12.21             | 13.732           | 4.505 |

# Malcolm Grow Medical Center - Andrews AFB, MD Medical Waste Incinerator CEM Responses

| Date      | Time     | O2     | CO2    |
|-----------|----------|--------|--------|
| 31-Jan-01 | 18:13:21 | 14.112 | 4.237  |
| 31-Jan-01 | 18:14:21 | 11.466 | 6.834  |
| 31-Jan-01 | 18:15:21 | 7.967  | 9.059  |
| 31-Jan-01 | 18:16:21 | 8.954  | 8.206  |
| 31-Jan-01 | 18:17:21 | 10.433 | 7.106  |
| 31-Jan-01 | 18:18:21 | 11.703 | 6.15   |
| 31-Jan-01 | 18:19:21 | 12.274 | 5.681  |
| 31-Jan-01 | 18:20:21 | 12.514 | 5.458  |
| 31-Jan-01 | 18:21:21 | 12.944 | 5.144  |
| 31-Jan-01 | 18:22:21 | 13.316 | 4.857  |
| 31-Jan-01 | 18:23:21 | 13.795 | 4.496  |
| 31-Jan-01 | 18:24:21 | 13.879 | 4.411  |
| 31-Jan-01 | 18:25:21 | 11.887 | 6.416  |
| 31-Jan-01 | 18:26:21 | 8.705  | 8.851  |
| 31-Jan-01 | 18:27:21 | 9.937  | 7.551  |
| 31-Jan-01 | 18:28:21 | 10.581 | 6.997  |
| 31-Jan-01 | 18:29:21 | 11.57  | 6.21   |
| 31-Jan-01 | 18:30:21 | 12.434 | 5.607  |
| 31-Jan-01 | 18:31:21 | 12.947 | 5.195  |
| 31-Jan-01 | 18:32:21 | 13.364 | 4.846  |
| 31-Jan-01 | 18:33:21 | 13.671 | 4.581  |
| 31-Jan-01 | 18:34:21 | 14.1   | 4.265  |
| 31-Jan-01 | 18:35:21 | 14.164 | 4.193  |
| 31-Jan-01 | 18:36:21 | 14.485 | 3.965  |
| 31-Jan-01 | 18:37:21 | 14.694 | 3.797  |
| 31-Jan-01 | 18:38:21 | 14.84  | 3.693  |
| 31-Jan-01 | 18:39:21 | 14.978 | 3.636  |
| 31-Jan-01 | 18:40:21 | 9.458  | 8.634  |
| 31-Jan-01 | 18:41:21 | 9.4    | 8.097  |
| 31-Jan-01 | 18:42:21 | 9.748  | 7.732  |
| 31-Jan-01 | 18:43:21 | 10.776 | 6.868  |
| 31-Jan-01 | 18:44:21 | 11.989 | 5.951  |
| 31-Jan-01 | 18:45:21 | 12.714 | 5.406  |
| 31-Jan-01 | 18:46:21 | 13.014 | 5.148  |
| 31-Jan-01 | 18:47:21 | 13.229 | 4.964  |
| 31-Jan-01 | 18:48:21 | 13.152 | 4.989  |
| 31-Jan-01 | 18:49:21 | 12.136 | 6.112  |
| 31-Jan-01 | 18:50:21 | 7.219  | 10.038 |
| 31-Jan-01 | 18:51:21 | 7.664  | 9.392  |
| 31-Jan-01 | 18:52:21 | 9.429  | 8.28   |
| 31-Jan-01 | 18:53:21 | 11.403 | 6.834  |

# Medical Waste Incinerator CEM Responses

| Date                   | Time                 | O2               | CO2   |
|------------------------|----------------------|------------------|-------|
| 31-Jan-01              | 18:54:21             | 11.882           | 6.371 |
| 31-Jan-01              | 18:55:21             | 11.692           | 6.383 |
| 31-Jan-01              | 18:56:21             | 11.826           | 6.239 |
| 31-Jan-01              | 18:57:21             | 12.156           | 5.929 |
| 31-Jan-01              | 18:58:21             | 12.321           | 5.787 |
| 31-Jan-01              | 18:59:21             | 12.45            | 5.666 |
| 31-Jan-01              | 19:00:21             | 12.816           | 5.37  |
| 31-Jan-01              | 19:01:21             | 13.087           | 5.209 |
| 31-Jan-01              | 19:02:21             | 8.274            | 9.598 |
| 31-Jan-01              | 19:03:21             | 9.977            | 7.787 |
| 31-Jan-01              | 19:04:21             | 11.253           | 6.646 |
| 31-Jan-01              | 19:05:21             | 11.716           | 6.28  |
| 31-Jan-01              | 19:06:21             | 12.394           | 5.753 |
| 31-Jan-01              | 19:07:21             | 12.829           | 5.391 |
| 31-Jan-01              | 19:08:21             | 13.214           | 5.079 |
| 31-Jan-01              | 19:09:21             | 13.553           | 4.805 |
| 31-Jan-01              | 19:10:21             | 13.663           | 4.695 |
| 31-Jan-01              | 19:11:21             | 13.823           | 4.565 |
| 31-Jan-01              | 19:12:21             | 14.309           | 4.224 |
| 31-Jan-01              | 19:13:21             | 10.581           | 7.677 |
| 31-Jan-01              | 19:14:21             | 9.505            | 8.089 |
| 31-Jan-01              | 19:15:21             | 10.174           | 7.499 |
| 31-Jan-01              | 19:16:21             | 10.977           | 6.83  |
| 31-Jan-01              | 19:17:21             | 11.736           | 6.203 |
| 31-Jan-01              | 19:18:21             | 12.291           | 5.763 |
| 31-Jan-01              | 19:19:21             | 12.589           | 5.501 |
| 31-Jan-01              | 19:20:21             | 13.08            | 5.102 |
| 31-Jan-01              | 19:21:21             | 13.241           | 4.949 |
| 31-Jan-01              | 19:22:21             | 13.502           | 4.761 |
| 31-Jan-01              | 19:23:21             | 13.908           | 4.452 |
| 31-Jan-01<br>31-Jan-01 | 19:24:21<br>19:25:21 | 11.564           | 6.722 |
| 31-Jan-01              | 19:25:21             | 8.584            | 8.748 |
| 31-Jan-01              | 19:20:21             | 9.973<br>11.184  | 7.439 |
| 31-Jan-01              | 19.21.21             | 11.104           | 6.522 |
| 31-Jan-01              | 19:29:31             | 13.399           | 4 000 |
| 31-Jan-01              | 19:30:31             |                  | 4.836 |
| 31-Jan-01              | 19:30:31             | 13.686           | 4.603 |
| 31-Jan-01              | 19:31:31             | 14.023<br>14.344 | 4.335 |
| 31-Jan-01              | 19:32:31             | 14.344<br>14.811 | 4.098 |
| 31-Jan-01              | 19:33:31             |                  | 3.774 |
| 0 1-Jaii-U I           | 13.34.31             | 9.996            | 8.011 |

# Malcolm Grow Medical Center - Andrews AFB, MD Medical Waste Incinerator CEM Responses

| Date                   | Time                 | O2               | CO2            |
|------------------------|----------------------|------------------|----------------|
| 31-Jan-01              | 19:35:31             | 8.861            | 8.328          |
| 31-Jan-01              | 19:36:31             | 10.395           | 7.09           |
| 31-Jan-01              | 19:37:31             | 11.673           | 6.136          |
| 31-Jan-01              | 19:38:31             | 12.531           | 5.494          |
| 31-Jan-01              | 19:39:31             | 13.025           | 5.123          |
| 31-Jan-01              | 19:40:31             | 13.637           | 4.646          |
| 31-Jan-01              | 19:41:31             | 14.154           | 4.229          |
| 31-Jan-01              | 19:42:31             | 14.488           | 3.958          |
| 31-Jan-01              | 19:43:31             | 14.681           | 3.827          |
| 31-Jan-01              | 19:44:31             | 14.482           | 3.929          |
| 31-Jan-01              | 19:45:31             | 14.65            | 3.818          |
| 31-Jan-01              | 19:46:31             | 14.763           | 3.725          |
| 31-Jan-01              | 19:47:31             | 13.48            | 5.136          |
| 31-Jan-01              | 19:48:31             | 10.616           | 7.368          |
| 31-Jan-01              | 19:49:31             | 9.963            | 7.554          |
| 31-Jan-01              | 19:50:31             | 9.083            | 8.168          |
| 31-Jan-01              | 19:51:31             | 10.554           | 7.018          |
| 31-Jan-01              | 19:52:31             | 11.621           | 6.196          |
| 31-Jan-01              | 19:53:31             | 12.34            | 5.642          |
| 31-Jan-01              | 19:54:31             | 12.604           | 5.438          |
| 31-Jan-01              | 19:55:31             | 12.937           | 5.156          |
| 31-Jan-01              | 19:56:31             | 13.312           | 4.863          |
| 31-Jan-01              | 19:57:31             | 11.965           | 6.191          |
| 31-Jan-01              | 19:58:31             | 9.017            | 8.68           |
| 31-Jan-01              | 19:59:31             | 10.349           | 7.241          |
| 31-Jan-01              | 20:00:31             | 10.987           | 6.671          |
| 31-Jan-01<br>31-Jan-01 | 20:01:31             | 11.524           | 6.265          |
| 31-Jan-01<br>31-Jan-01 | 20:02:31<br>20:03:31 | 11.797<br>12.178 | 6.051          |
| 31-Jan-01              | 20:03:31             | 12.176           | 5.749          |
| 31-Jan-01              | 20:04:31             | 12.3             | 5.646<br>5.474 |
| 31-Jan-01              | 20:05:31             | 12.499           | 5.508          |
| 31-Jan-01              | 20:07:31             | 9.349            | 8.619          |
| 31-Jan-01              | 20:08:31             | 10.128           | 7.439          |
| 31-Jan-01              | 20:09:31             | 10.879           | 6.711          |
| 31-Jan-01              | 20:10:31             | 11.749           | 6.062          |
| 31-Jan-01              | 20:11:31             | 12.654           | 5.395          |
| 31-Jan-01              | 20:12:31             | 13.087           | 5.03           |
| 31-Jan-01              | 20:13:31             | 13.271           | 4.88           |
| 31-Jan-01              | 20:14:31             | 13.468           | 4.719          |
| 31-Jan-01              | 20:15:31             | 13.586           | 4.615          |

# Malcolm Grow Medical Center - Andrews AFB, MD Medical Waste Incinerator CEM Responses

### M23-2

|           | _        |        |       |           |
|-----------|----------|--------|-------|-----------|
| Date      | Time     | O2     | CO2   |           |
| 31-Jan-01 | 20:16:31 | 11.945 | 6.43  |           |
| 31-Jan-01 | 20:17:31 | 9.95   | 7.911 |           |
| 31-Jan-01 | 20:18:31 | 10.619 | 7.092 |           |
| 31-Jan-01 | 20:19:31 | 10.632 | 7.096 |           |
| 31-Jan-01 | 20:20:31 | 11.807 | 6.171 |           |
| 31-Jan-01 | 20:21:31 | 12.609 | 5.507 |           |
| 31-Jan-01 | 20:22:31 | 12.945 | 5.209 |           |
| 31-Jan-01 | 20:23:31 | 13.196 | 5.008 |           |
| 31-Jan-01 | 20:24:31 | 13.467 | 4.789 |           |
| 31-Jan-01 | 20:25:31 | 13.365 | 4.856 |           |
| 31-Jan-01 | 20:26:31 | 14.008 | 4.406 |           |
| 31-Jan-01 | 20:27:31 | 10.33  | 7.846 |           |
| 31-Jan-01 | 20:28:31 | 10.006 | 7.474 |           |
| 31-Jan-01 | 20:29:31 | 11.794 | 7.05  |           |
| 31-Jan-01 | 20:30:31 |        |       |           |
| 31-Jan-01 | 20:31:31 |        |       |           |
| 31-Jan-01 | 20:32:31 |        |       |           |
| 31-Jan-01 | 20:34:00 |        |       |           |
| 31-Jan-01 | 20:35:00 |        |       | Cal Check |
| 31-Jan-01 | 20:36:00 |        |       |           |
| 31-Jan-01 | 20:37:00 |        |       |           |
| 31-Jan-01 | 20:38:00 |        |       |           |
| 31-Jan-01 | 20:39:00 |        |       |           |
| 31-Jan-01 | 20:40:00 |        |       |           |
|           |          |        |       |           |
|           |          |        |       |           |

Average M23-2

12.2

5.9

Medical Waste Incinerator CEM Responses

| Date                 | Time               | O2               | CO2            |
|----------------------|--------------------|------------------|----------------|
| 2/ 1/101             | 9:10:00            | 12.832           | 5.33           |
| 2/ 1/101             | 9:11:00            | 13.373           | 4.869          |
| 2/ 1/101             | 9:12:00            | 13.966           | 4.419          |
| 2/ 1/101             | 9:13:00            | 14.29            | 4.17           |
| 2/ 1/101             | 9:14:00            | 14.513           | 3.989          |
| 2/ 1/101             | 9:15:00            | 13.408           | 4.554          |
| 2/ 1/101             | 9:16:00            | 13.451           | 4.574          |
| 2/ 1/101             | 9:17:00            | 10.678           | 7.566          |
| 2/ 1/101             | 9:18:00            | 9.866            | 7.777          |
| 2/ 1/101             | 9:19:00            | 9.84             | 7.612          |
| 2/ 1/101             | 9:20:00            | 10.2             | 7.443          |
| 2/ 1/101             | 9:21:00            | 12.279           | 5.749          |
| 2/ 1/101             | 9:22:00            | 12.997           | 5.158          |
| 2/ 1/101             | 9:23:00            | 13.609           | 4.676          |
| 2/ 1/101             | 9:24:00            | 13.882           | 4.425          |
| 2/ 1/101             | 9:25:00            | 13.991           | 4.314          |
| 2/ 1/101             | 9:26:00            | 14.214           | 4.142          |
| 2/ 1/101             | 9:27:00            | 14.517           | 3.902          |
| 2/ 1/101             | 9:28:00            | 13.94            | 4.221          |
| 2/ 1/101             | 9:29:00            | 13.846           | 4.275          |
| 2/ 1/101             | 9:30:00            | 14.453           | 3.941          |
| 2/ 1/101             | 9:31:00            | 10.26            | 7.872          |
| 2/ 1/101             | 9:32:00            | 9.142            | 8.036          |
| 2/ 1/101             | 9:33:00            | 8.592            | 8.282          |
| 2/ 1/101             | 9:34:00            | 10.308           | 7.231          |
| 2/ 1/101             | 9:35:00            | 12.22            | 5.866          |
| 2/ 1/101             | 9:36:00            | 12.845           | 5.333          |
| 2/ 1/101             | 9:37:00            | 13.379           | 4.882          |
| 2/ 1/101<br>2/ 1/101 | 9:38:00            | 13.968           | 4.387          |
| 2/ 1/101             | 9:39:00            | 14.439           | 4.032          |
| 2/ 1/101             | 9:40:00<br>9:41:00 | 14.248<br>10.234 | 4.416<br>7.878 |
| 2/ 1/101             | 9:42:00            | 11.043           |                |
| 2/ 1/101             | 9:43:00            | 9.472            | 6.824<br>7.999 |
| 2/ 1/101             | 9:44:00            | 10.376           | 7.322          |
| 2/ 1/101             | 9:45:00            | 11.534           | 6.376          |
| 2/ 1/101             | 9:46:00            | 12.437           | 5.668          |
| 2/ 1/101             | 9:47:00            | 13.16            | 5.079          |
| 2/ 1/101             | 9:48:00            | 13.625           | 4.721          |
| 2/ 1/101             | 9:49:00            | 14.316           | 4.246          |
| 2/ 1/101             | 9:50:00            | 10.638           | 7.819          |
|                      |                    |                  | 0 10           |

# Medical Waste Incinerator CEM Responses

| Date                 | Time                 | O2     | CO2   |               |      |
|----------------------|----------------------|--------|-------|---------------|------|
| 2/ 1/101             | 9:51:00              | 10.535 | 7.33  |               |      |
| 2/ 1/101             | 9:52:00              | 8.936  | 8.458 |               |      |
| 2/ 1/101             | 9:53:00              | 8.673  | 8.738 |               |      |
| 2/ 1/101             | 9:54:00              | 10.017 | 7.619 |               |      |
| 2/ 1/101             | 9:55:00              | 10.574 | 7.152 |               |      |
| 2/ 1/101             | 9:56:00              | 10.951 | 6.871 |               |      |
| 2/ 1/101             | 9:57:00              | 11.449 | 6.484 |               |      |
| 2/ 1/101             | 9:58:00              | 11.642 | 6.299 |               |      |
| 2/ 1/101             | 9:59:00              | 12.154 | 5.916 |               |      |
| 2/ 1/101             | 10:00:00             | 12.566 | 5.554 |               |      |
| 2/ 1/101             | 10:01:00             | 10.903 | 7.365 |               |      |
| 2/ 1/101             | 10:02:00             | 8.964  | 8.744 |               |      |
| 2/ 1/101             | 10:03:00             | 9.559  | 8.092 |               |      |
| 2/ 1/101             | 10:04:00             | 9.668  | 7.908 |               |      |
| 2/ 1/101             | 10:05:00             | 10.545 | 7.141 |               |      |
| 2/ 1/101             | 10:06:00             | 11.244 | 6.566 |               |      |
| 2/ 1/101             | 10:07:00             | 11.936 | 6.043 |               |      |
| 2/ 1/101             | 10:08:00             | 12.305 | 5.788 |               |      |
| 2/ 1/101             | 10:09:00             | 12.52  | 5.593 |               |      |
| 2/ 1/101             | 10:10:00             | 12.909 |       | M26-3 Average | 11.9 |
| 2/ 1/101             | 10:11:00             | 13.475 | 4.902 |               |      |
| 2/ 1/101             | 10:12:00             | 9.177  | 8.761 |               |      |
| 2/ 1/101             | 10:13:00             | 8.577  | 8.649 |               |      |
| 2/ 1/101             | 10:14:00             | 9.085  | 8.282 |               |      |
| 2/ 1/101             | 10:15:00             | 10.279 | 7.375 |               |      |
| 2/ 1/101             | 10:16:00             |        |       | Cal Check     |      |
| 2/ 1/101<br>2/ 1/101 | 10:17:00             |        |       |               |      |
| 2/ 1/101             | 10:18:00             |        |       |               |      |
| 2/ 1/101             | 10:19:00<br>10:20:00 |        |       |               |      |
| 2/ 1/101             | 10:20:00             |        |       |               |      |
| 2/ 1/101             | 10:21:00             |        |       |               |      |
| 2/ 1/101             | 10:23:00             |        |       |               |      |
| 2/ 1/101             | 10:24:00             |        |       |               |      |
| 2/ 1/101             | 10:25:00             |        |       |               |      |
| 2/ 1/101             | 10:26:00             |        |       |               |      |
| 2/ 1/101             | 10:27:00             |        |       |               |      |
| 2/ 1/101             | 10:28:00             |        |       |               |      |
| 2/ 1/101             | 10:29:00             |        |       |               |      |
| 2/ 1/101             | 10:30:00             |        |       |               |      |
| 2/ 1/101             | 10:31:00             |        |       |               |      |
|                      | •                    |        | ı     |               |      |

Medical Waste Incinerator CEM Responses

| Date     | Time     | O2     | CO2    |
|----------|----------|--------|--------|
| 2/ 1/101 | 10:32:00 |        |        |
| 2/ 1/101 | 10:33:00 |        |        |
| 2/ 1/101 | 10:34:00 |        |        |
| 2/ 1/101 | 10:35:00 |        |        |
| 2/ 1/101 | 10:36:00 |        |        |
| 2/ 1/101 | 10:37:00 | 12.878 | 10.19  |
| 2/ 1/101 | 10:38:00 | 15.437 | 8.115  |
| 2/ 1/101 | 10:39:00 | 11.785 | 6.203  |
| 2/ 1/101 | 10:40:00 | 12.042 | 6.019  |
| 2/ 1/101 | 10:41:00 | 12.564 | 5.612  |
| 2/ 1/101 | 10:42:00 | 12.63  | 5.56   |
| 2/ 1/101 | 10:43:00 | 13.289 | 5.076  |
| 2/ 1/101 | 10:44:00 | 10.305 | 7.95   |
| 2/ 1/101 | 10:45:00 | 8.945  | 8.683  |
| 2/ 1/101 | 10:46:00 | 9.727  | 7.897  |
| 2/ 1/101 | 10:47:00 | 10.6   | 7.177  |
| 2/ 1/101 | 10:48:00 | 11.646 | 6.379  |
| 2/ 1/101 | 10:49:00 | 12.215 | 5.94   |
| 2/ 1/101 | 10:50:00 | 12.597 | 5.642  |
| 2/ 1/101 | 10:51:00 | 12.665 | 5.577  |
| 2/ 1/101 | 10:52:00 | 12.924 | 5.355  |
| 2/ 1/101 | 10:53:00 | 13.463 | 4.988  |
| 2/ 1/101 | 10:54:00 | 9.969  | 8.326  |
| 2/ 1/101 | 10:55:00 | 9.096  | 8.671  |
| 2/ 1/101 | 10:56:00 | 10.469 | 7.507  |
| 2/ 1/101 | 10:57:00 | 11.319 | 6.751  |
| 2/ 1/101 | 10:58:00 | 12.158 | 6.073  |
| 2/ 1/101 | 10:59:00 | 12.506 | 5.768  |
| 2/ 1/101 | 11:00:00 | 12.869 | 5.43   |
| 2/ 1/101 | 11:01:00 | 13.481 | 4.946  |
| 2/ 1/101 | 11:02:00 | 13.759 | 4.688  |
| 2/ 1/101 | 11:03:00 | 13.836 | 4.641  |
| 2/ 1/101 | 11:04:00 | 10.62  | 7.743  |
| 2/ 1/101 | 11:05:00 | 6.191  | 10.729 |
| 2/ 1/101 | 11:06:00 | 10.01  | 7.683  |
| 2/ 1/101 | 11:07:00 | 11.518 | 6.523  |
| 2/ 1/101 | 11:08:00 | 12.299 | 5.897  |
| 2/ 1/101 | 11:09:00 | 12.537 | 5.683  |
| 2/ 1/101 | 11:10:00 | 12.884 | 5.396  |
| 2/ 1/101 | 11:11:00 | 13.218 | 5.137  |
| 2/ 1/101 | 11:12:00 | 13.494 | 4.911  |

Medical Waste Incinerator CEM Responses

| Date                 | Time                 | O2     | CO2   |          |
|----------------------|----------------------|--------|-------|----------|
| 2/ 1/101             | 11:13:00             | 13.805 | 4.689 |          |
| 2/ 1/101             | 11:14:00             | 14.098 | 4.486 |          |
| 2/ 1/101             | 11:15:00             | 13.186 | 5.444 |          |
| 2/ 1/101             | 11:16:00             | 9.176  | 8.904 |          |
| 2/ 1/101             | 11:17:00             | 11.267 | 6.771 |          |
| 2/ 1/101             | 11:18:00             | 11.588 | 6.419 |          |
| 2/ 1/101             | 11:19:00             | 12.523 | 5.703 |          |
| 2/ 1/101             | 11:20:00             | 12.933 | 5.366 |          |
| 2/ 1/101             | 11:21:00             | 13.341 | 5.052 |          |
| 2/ 1/101             | 11:22:00             | 13.693 | 4.788 |          |
| 2/ 1/101             | 11:23:00             | 13.854 | 4.649 |          |
| 2/ 1/101             | 11:24:00             | 14.074 | 4.477 |          |
| 2/ 1/101             | 11:25:00             | 14.241 | 4.344 |          |
| 2/ 1/101             | 11:26:00             | 14.573 | 4.173 |          |
| 2/ 1/101             | 11:27:00             | 9.687  | 8.461 |          |
| 2/ 1/101             | 11:28:00             | 8.1    | 9.214 |          |
| 2/ 1/101             | 11:29:00             | 9.455  | 8.134 |          |
| 2/ 1/101             | 11:30:00             | 10.169 | 7.642 |          |
| 2/ 1/101             | 11:31:00             | 11.088 | 6.935 |          |
| 2/ 1/101             | 11:32:00             | 11.505 | 6.614 |          |
| 2/ 1/101             | 11:33:00             | 11.613 | 6.505 |          |
| 2/ 1/101             | 11:34:00             | 11.614 | 6.492 |          |
| 2/ 1/101             | 11:35:00             | 11.974 | 6.215 |          |
| 2/ 1/101             | 11:36:00             | 12.005 | 6.178 |          |
| 2/ 1/101             | 11:37:00             | 12.393 | 5.877 |          |
| 2/ 1/101             | 11:38:00             | 12.308 | 5.9   |          |
| 2/ 1/101             | 11:39:00             | 12.506 | 5.751 |          |
| 2/ 1/101             | 11:40:00             | 12.946 | 5.407 |          |
| 2/ 1/101             | 11:41:00             | 13.334 | 5.102 |          |
| 2/ 1/101             | 11:42:00             | 13.596 | 4.895 |          |
| 2/ 1/101             | 11:43:00             |        | C     | al check |
| 2/ 1/101             | 11:44:00             |        | 1     |          |
| 2/ 1/101             | 11:45:00             |        | .     |          |
| 2/ 1/101<br>2/ 1/101 | 11:46:00             |        |       |          |
| 2/ 1/101             | 11:47:00             |        | l     |          |
| 2/ 1/101             | 11:48:00             |        |       |          |
| 2/ 1/101             | 11:49:00<br>11:50:00 |        |       |          |
| 2/ 1/101             | 11:50:00             |        |       |          |
| 2/ 1/101             | 11:51:00             |        |       |          |
| 2/ 1/101             | 11:52:00             |        |       |          |
| 2 1/101              | 11.55.00             |        |       |          |

### Medical Waste Incinerator CEM Responses

| Date                 | Time     | O2     | CO2    |
|----------------------|----------|--------|--------|
| 2/ 1/101             | 11:54:00 |        | 9      |
| 2/ 1/101             | 11:55:00 |        |        |
| 2/ 1/101             | 11:56:00 |        |        |
| 2/ 1/101             | 11:57:00 | •      |        |
| 2/ 1/101             | 11:58:00 |        |        |
| 2/ 1/101             | 11:59:00 |        |        |
| 2/ 1/101             | 12:00:00 | 12.137 | 9.942  |
| 2/ 1/101             | 12:01:00 | 12.143 | 9.954  |
| 2/ 1/101             | 12:02:00 | 12.146 | 9.963  |
| 2/ 1/101             | 12:03:00 | 12.15  | 9.978  |
| 2/ 1/101             | 12:04:00 | 12.154 | 9.983  |
| 2/ 1/101             | 12:05:00 | 12.159 | 9.989  |
| 2/ 1/101             | 12:06:00 | 12.16  | 10.002 |
| 2/ 1/101             | 12:07:00 | 11.257 | 8.915  |
| 2/ 1/101             | 12:08:00 | 10.168 | 7.656  |
| 2/ 1/101             | 12:09:00 | 10.95  | 7.008  |
| 2/ 1/101             | 12:10:00 | 11.835 | 6.326  |
| 2/ 1/101             | 12:11:00 | 12.539 | 5.76   |
| 2/ 1/101             | 12:12:00 | 12.933 | 5.435  |
| 2/ 1/101             | 12:13:00 | 13.227 | 5.167  |
| 2/ 1/101             | 12:14:00 | 13.667 | 4.81   |
| 2/ 1/101             | 12:15:00 | 13.788 | 4.706  |
| 2/ 1/101             | 12:16:00 | 14.031 | 4.536  |
| 2/ 1/101             | 12:17:00 | 11.588 | 7.121  |
| 2/ 1/101             | 12:18:00 | 10.083 | 7.839  |
| 2/ 1/101             | 12:19:29 | 11.206 | 6.727  |
| 2/ 1/101             | 12:20:29 | 12.101 | 6.049  |
| 2/ 1/101             | 12:21:29 | 13.215 | 5.192  |
| 2/ 1/101             | 12:22:29 | 13.592 | 4.891  |
| 2/ 1/101             | 12:23:29 | 14.004 | 4.546  |
| 2/ 1/101             | 12:24:29 | 14.23  | 4.381  |
| 2/ 1/101             | 12:25:29 | 14.516 | 4.178  |
| 2/ 1/101             | 12:26:29 | 14.943 | 3.923  |
| 2/ 1/101             | 12:27:29 | 10.235 | 8.31   |
| 2/ 1/101             | 12:28:29 | 11.381 | 6.825  |
| 2/ 1/101<br>2/ 1/101 | 12:29:29 | 11.542 | 6.538  |
|                      | 12:30:29 | 11.738 | 6.358  |
| 2/ 1/101<br>2/ 1/101 | 12:31:29 | 12.576 | 5.688  |
|                      | 12:32:29 | 13.078 | 5.288  |
| 2/ 1/101             | 12:33:29 | 13.652 | 4.834  |

### Medical Waste Incinerator CEM Responses

| Date     | Time     | O2     | CO2    |
|----------|----------|--------|--------|
| 2/ 1/101 | 12:34:29 | 13.947 | 4.603  |
| 2/ 1/101 | 12:35:29 | 14.347 | 4.323  |
| 2/ 1/101 | 12:36:29 | 14.64  | 4.091  |
| 2/ 1/101 | 12:37:29 | 14.511 | 4.325  |
| 2/ 1/101 | 12:38:29 | 9.614  | 8.613  |
| 2/ 1/101 | 12:39:29 | 9.201  | 8.442  |
| 2/ 1/101 | 12:40:29 | 9.453  | 8.197  |
| 2/ 1/101 | 12:41:29 | 10.643 | 7.267  |
| 2/ 1/101 | 12:42:29 | 11.428 | 6.624  |
| 2/ 1/101 | 12:43:29 | 11.791 | 6.321  |
| 2/ 1/101 | 12:44:29 | 12.191 | 6.02   |
| 2/ 1/101 | 12:45:29 | 12.961 | 5.435  |
| 2/ 1/101 | 12:46:29 | 13.6   | 4.94   |
| 2/ 1/101 | 12:47:29 | 13.781 | 4.746  |
| 2/ 1/101 | 12:48:29 | 14.249 | 4.423  |
| 2/ 1/101 | 12:49:29 | 14.535 | 4.212  |
| 2/ 1/101 | 12:50:29 | 14.724 | 4.071  |
| 2/ 1/101 | 12:51:29 | 14.934 | 3.898  |
| 2/ 1/101 | 12:52:29 | 14.969 | 3.842  |
| 2/ 1/101 | 12:53:29 | 14.979 | 3.871  |
| 2/ 1/101 | 12:54:29 | 12.102 | 6.74   |
| 2/ 1/101 | 12:55:29 | 7.532  | 9.453  |
| 2/ 1/101 | 12:56:29 | 6.595  | 10.288 |
| 2/ 1/101 | 12:57:29 | 9.149  | 8.485  |
| 2/ 1/101 | 12:58:29 | 11.267 | 6.889  |
| 2/ 1/101 | 12:59:29 | 11.513 | 6.646  |
| 2/ 1/101 | 13:00:29 | 11.824 | 6.325  |
| 2/ 1/101 | 13:01:29 | 11.852 | 6.281  |
| 2/ 1/101 | 13:02:29 | 12.271 | 5.962  |
| 2/ 1/101 | 13:03:29 | 12.545 | 5.801  |
| 2/ 1/101 | 13:04:29 | 7.915  | 9.943  |
| 2/ 1/101 | 13:05:29 | 7.933  | 9.476  |
| 2/ 1/101 | 13:06:29 | 10.095 | 7.887  |
| 2/ 1/101 | 13:07:29 | 11.466 | 6.831  |
| 2/ 1/101 | 13:08:29 | 12.128 | 6.236  |
| 2/ 1/101 | 13:09:29 | 12.243 | 6.052  |
| 2/ 1/101 | 13:10:29 | 12.46  | 5.851  |
| 2/ 1/101 | 13:11:29 | 12.75  | 5.625  |
| 2/ 1/101 | 13:12:29 | 13.198 | 5.272  |
| 2/ 1/101 | 13:13:29 | 13.126 | 5.316  |
| 2/ 1/101 | 13:14:29 | 13.437 | 5.067  |

# Medical Waste Incinerator CEM Responses

| Date     | Time     | O2     | CO2   |
|----------|----------|--------|-------|
| 2/ 1/101 | 13:15:29 | 13.82  | 4.778 |
| 2/ 1/101 | 13:16:29 | 14.073 | 4.581 |
| 2/ 1/101 | 13:17:29 | 14.328 | 4.386 |
| 2/ 1/101 | 13:18:29 | 14.566 | 4.204 |
| 2/ 1/101 | 13:19:29 | 14.35  | 4.334 |
| 2/ 1/101 | 13:20:29 | 14.645 | 4.135 |
| 2/ 1/101 | 13:21:29 | 14.811 | 3.993 |
| 2/ 1/101 | 13:22:29 | 14.913 | 3.933 |
| 2/ 1/101 | 13:23:29 | 15.023 | 3.85  |
| 2/ 1/101 | 13:24:29 | 15.111 | 3.781 |
| 2/ 1/101 | 13:25:29 | 15.172 | 3.739 |
| 2/ 1/101 | 13:26:29 | 15.246 | 3.676 |
| 2/ 1/101 | 13:27:29 | 15.318 | 3.633 |
| 2/ 1/101 | 13:28:29 | 15.34  | 3.603 |
| 2/ 1/101 | 13:29:29 | 14.024 | 4.357 |
| 2/ 1/101 | 13:30:29 | 13.709 | 4.563 |
| Average  | M23-3    | 12.2   | 6.2   |

### Medical Waste Incinerator CEM Responses

| Date                   | Time                 | O2     | CO2   |
|------------------------|----------------------|--------|-------|
| 31-Jan-01              | 10:45                | 12.0   | 5.6   |
| 31-Jan-01              | 10:46                | 12.5   | 5.6   |
| 31-Jan-01              | 10:47                | 12.5   | 4.8   |
| 31-Jan-01              | 10:48                | 13.0   | 4.8   |
| 31-Jan-01              | 10:49                | 13.3   | 4.0   |
| 31-Jan-01              | 10:50                | 13.5   | 8.8   |
| 31-Jan-01              | 10:51                | 9.3    | 8.0   |
| 31-Jan-01              | 10:52                | 9.5    | 8.0   |
| 31-Jan-01              | 10:53                | 10.0   | 7.2   |
| 31-Jan-01              | 10:54                | 11.3   | 5.2   |
| 31-Jan-01              | 10:55                | 12.8   | 4.8   |
| 31-Jan-01              | 10:56                | 13.0   | 4.8   |
| 31-Jan-01              | 10:57                | 8.8    | 8.0   |
| 31-Jan-01              | 10:58                | 9.8    | 8.4   |
| 31-Jan-01              | 10:59                | 10.8   | 8.8   |
| 31-Jan-01              | 11:00                | 10.8   | 8.8   |
| 31-Jan-01              | 11:01                | 12.0   | 8.4   |
| 31-Jan-01              | 11:02                | 12.8   | 8.0   |
| 31-Jan-01              | 11:03                | 13.3   | 8.0   |
| 31-Jan-01              | 11:04                | 13.5   | 7.2   |
| 31-Jan-01              | 11:05                | 13.8   | 6.8   |
| 31-Jan-01              | 11:06                | 14.0   | 6.4   |
| 31-Jan-01              | 11:07                | 14.0   | 6.0   |
| 31-Jan-01              | 11:08                | 15.0   | 5.6   |
| 31-Jan-01              | 11:09                | 10.3   | 5.2   |
| 31-Jan-01              | 11:10                | 11.0   | 4.8   |
| 31-Jan-01              | 11:11                | 9.3    | 5.2   |
| 31-Jan-01              | 11:12                | 11.8   | 5.6   |
| 31-Jan-01<br>31-Jan-01 | 11:13:15             | 10.055 | 5.659 |
| 31-Jan-01              | 11:14:15             | 10.784 | 5.529 |
|                        | 11:15:15             | 10.336 | 5.245 |
| 31-Jan-01<br>31-Jan-01 | 11:16:15             | 10.981 | 5.02  |
| 31-Jan-01              | 11:17:15<br>11:18:15 | 12.067 | 4.993 |
| 31-Jan-01              | 11:10:15             | 12.374 | 5.198 |
| 31-Jan-01              | 11:20:15             | 12.5   | 5.507 |
| 31-Jan-01              |                      | 12.865 | 5.801 |
| 31-Jan-01              | 11:21:15             | 13.414 | 6.02  |
| 31-Jan-01              | 11:22:15<br>11:23:15 | 13.929 | 6.115 |
| 31-Jan-01              | 11:23:15             | 9.623  | 6.085 |
| 31-Jan-01              | 11:24:15             | 8.689  | 6.001 |
| J I-Jail-U I           | 11.25.15             | 10.295 | 5.856 |

# Medical Waste Incinerator CEM Responses

| Date      | Time     | 02     | CO2   |
|-----------|----------|--------|-------|
| 31-Jan-01 | 11:26:15 | 9.827  | 5.673 |
| 31-Jan-01 | 11:27:15 | 10.649 | 5.545 |
| 31-Jan-01 | 11:28:15 | 11.78  | 5.621 |
| 31-Jan-01 | 11:29:00 | 11     | 6     |
| 31-Jan-01 | 11:30:00 | 11.75  | 6     |
| 31-Jan-01 | 11:31:00 | 12.25  | 6.4   |
| 31-Jan-01 | 11:32:00 | 12.5   | 6.4   |
| 31-Jan-01 | 11:33:00 | 13     | 6.4   |
| 31-Jan-01 | 11:34:00 | 13.75  | 6.4   |
| 31-Jan-01 | 11:35:00 | 13.5   | 6.4   |
| 31-Jan-01 | 11:36:00 | 9.25   | 6.4   |
| 31-Jan-01 | 11:37:00 | 10     | 6.4   |
| 31-Jan-01 | 11:38:00 | 9.5    | 6     |
| 31-Jan-01 | 11:39:00 | 10.5   | 6.4   |
| 31-Jan-01 | 11:40:00 | 12     | 6.4   |
| 31-Jan-01 | 11:41:45 | 13.415 | 6.409 |
| 31-Jan-01 | 11:42:45 | 13.613 | 6.541 |
| 31-Jan-01 | 11:43:45 | 10.964 | 6.566 |
| 31-Jan-01 | 11:44:45 | 9.35   | 6.505 |
|           |          |        |       |
| Average(  |          | 11.7   | 6.2   |
|           |          |        |       |

### Medical Waste Incinerator CEM Responses

| Date                 | Time               | 02              | CO2   |
|----------------------|--------------------|-----------------|-------|
| 2/ 1/101             | 9:10:00            | 12.832          | 5.33  |
| 2/ 1/101             | 9:11:00            | 13.373          | 4.869 |
| 2/ 1/101             | 9:12:00            | 13.966          | 4.419 |
| 2/ 1/101             | 9:13:00            | 14.29           | 4.17  |
| 2/ 1/101             | 9:14:00            | 14.513          | 3.989 |
| 2/ 1/101             | 9:15:00            | 13.408          | 4.554 |
| 2/ 1/101             | 9:16:00            | 13.451          | 4.574 |
| 2/ 1/101             | 9:17:00            | 10.678          | 7.566 |
| 2/ 1/101             | 9:18:00            | 9.866           | 7.777 |
| 2/ 1/101             | 9:19:00            | 9.84            | 7.612 |
| 2/ 1/101             | 9:20:00            | 10.2            | 7.443 |
| 2/ 1/101             | 9:21:00            | 12.279          | 5.749 |
| 2/ 1/101             | 9:22:00            | 12.997          | 5.158 |
| 2/ 1/101             | 9:23:00            | 13.609          | 4.676 |
| 2/ 1/101             | 9:24:00            | 13.882          | 4.425 |
| 2/ 1/101             | 9:25:00            | 13.991          | 4.314 |
| 2/ 1/101             | 9:26:00            | 14.214          | 4.142 |
| 2/ 1/101             | 9:27:00            | 14.517          | 3.902 |
| 2/ 1/101             | 9:28:00            | 13.94           | 4.221 |
| 2/ 1/101             | 9:29:00            | 13.846          | 4.275 |
| 2/ 1/101             | 9:30:00            | 14.453          | 3.941 |
| 2/ 1/101             | 9:31:00            | 10.26           | 7.872 |
| 2/ 1/101             | 9:32:00            | 9.142           | 8.036 |
| 2/ 1/101             | 9:33:00            | 8.592           | 8.282 |
| 2/ 1/101             | 9:34:00            | 10.308          | 7.231 |
| 2/ 1/101             | 9:35:00            | 12.22           | 5.866 |
| 2/ 1/101             | 9:36:00            | 12.845          | 5.333 |
| 2/ 1/101             | 9:37:00            | 13.379          | 4.882 |
| 2/ 1/101<br>2/ 1/101 | 9:38:00            | 13.968          | 4.387 |
| 2/ 1/101             | 9:39:00            | 14.439          | 4.032 |
| 2/ 1/101             | 9:40:00            | 14.248          | 4.416 |
| 2/ 1/101             | 9:41:00            | 10.234          | 7.878 |
| 2/ 1/101             | 9:42:00            | 11.043          | 6.824 |
| 2/ 1/101             | 9:43:00<br>9:44:00 | 9.472           | 7.999 |
| 2/ 1/101             | 9:44:00<br>9:45:00 | 10.376          | 7.322 |
| 2/ 1/101             | 9:46:00            | 11.534          | 6.376 |
| 2/ 1/101             | 9:47:00            | 12.437<br>13.16 | 5.668 |
| 2/ 1/101             | 9:48:00            | 13.16           | 5.079 |
| 2/ 1/101             | 9:49:00            | 14.316          | 4.721 |
|                      | 3.75.00            | 14.010          | 4.246 |

### Medical Waste Incinerator CEM Responses

| Date     | Time     | O2     | CO2   |
|----------|----------|--------|-------|
| 2/ 1/101 | 9:50:00  | 10.638 | 7.819 |
| 2/ 1/101 | 9:51:00  | 10.535 | 7.33  |
| 2/ 1/101 | 9:52:00  | 8.936  | 8.458 |
| 2/ 1/101 | 9:53:00  | 8.673  | 8.738 |
| 2/ 1/101 | 9:54:00  | 10.017 | 7.619 |
| 2/ 1/101 | 9:55:00  | 10.574 | 7.152 |
| 2/ 1/101 | 9:56:00  | 10.951 | 6.871 |
| 2/ 1/101 | 9:57:00  | 11.449 | 6.484 |
| 2/ 1/101 | 9:58:00  | 11.642 | 6.299 |
| 2/ 1/101 | 9:59:00  | 12.154 | 5.916 |
| 2/ 1/101 | 10:00:00 | 12.566 | 5.554 |
| 2/ 1/101 | 10:01:00 | 10.903 | 7.365 |
| 2/ 1/101 | 10:02:00 | 8.964  | 8.744 |
| 2/ 1/101 | 10:03:00 | 9.559  | 8.092 |
| 2/ 1/101 | 10:04:00 | 9.668  | 7.908 |
| 2/ 1/101 | 10:05:00 | 10.545 | 7.141 |
| 2/ 1/101 | 10:06:00 | 11.244 | 6.566 |
| 2/ 1/101 | 10:07:00 | 11.936 | 6.043 |
| 2/ 1/101 | 10:08:00 | 12.305 | 5.788 |
| 2/ 1/101 | 10:09:00 | 12.52  | 5.593 |
| Average  |          | 11.93  | 6.08  |

# Medical Waste Incinerator CEM Responses

|                      | _        |        |       |
|----------------------|----------|--------|-------|
| Date                 | Time     | 02     | CO2   |
| 2-Feb-01             | 9:45:00  | 13.314 | 5.328 |
| 2-Feb-01             | 9:46:00  | 10.023 | 7.636 |
| 2-Feb-01             | 9:47:00  | 9.985  | 7.295 |
| 2-Feb-01             | 9:48:00  | 7.953  | 9.017 |
| 2-Feb-01             | 9:49:00  | 11.025 | 6.729 |
| 2-Feb-01             | 9:50:00  | 12.542 | 5.567 |
| 2-Feb-01             | 9:51:00  | 13.149 | 5.055 |
| 2-Feb-01             | 9:52:00  | 13.659 | 4.666 |
| 2-Feb-01             | 9:53:00  | 13.887 | 4.462 |
| 2-Feb-01             | 9:54:00  | 14.0   | 4.8   |
| 2-Feb-01             | 9:55:00  | 14.3   | 4.8   |
| 2-Feb-01             | 9:56:00  | 14.4   | 4.4   |
| 2-Feb-01             | 9:57:00  | 13.8   | 7.6   |
| 2-Feb-01             | 9:58:00  | 13.8   | 9.6   |
| 2-Feb-01             | 9:59:00  | 10.0   | 8.0   |
| 2-Feb-01             | 10:00:00 | 10.0   | 6.4   |
| 2-Feb-01             | 10:01:00 | 10.3   | 5.2   |
| 2-Feb-01             | 10:02:00 | 10.5   | 4.8   |
| 2-Feb-01             | 10:03:00 | 12.0   | 4.4   |
| 2-Feb-01             | 10:04:00 | 12.8   | 6.0   |
| 2-Feb-01             | 10:05:00 | 13.5   | 10.4  |
| 2-Feb-01             | 10:06:00 | 14.0   | 8.4   |
| 2-Feb-01             | 10:07:00 | 13.8   | 6.4   |
| 2-Feb-01             | 10:08:00 | 6.5    | 6.4   |
| 2-Feb-01             | 10:09:00 | 10.8   | 6.0   |
| 2-Feb-01             | 10:10:00 | 11.8   | 5.6   |
| 2-Feb-01             | 10:11:00 | 12.0   | 5.2   |
| 2-Feb-01             | 10:12:00 | 12.0   | 8.0   |
| 2-Feb-01             | 10:13:00 | 12.3   | 8.0   |
| 2-Feb-01             | 10:14:00 | 13.0   | 7.6   |
| 2-Feb-01             | 10:15:00 | 13.5   | 8.4   |
| 2-Feb-01             | 10:16:00 | 13.3   | 6.8   |
| 2-Feb-01             | 10:17:00 | 10.0   | 6.8   |
| 2-Feb-01             | 10:18:00 | 10.3   | 6.4   |
| 2-Feb-01             | 10:19:00 | 8.3    | 6.4   |
| 2-Feb-01             | 10:20:00 | 10.8   | 6.0   |
| 2-Feb-01             | 10:21:00 | 11.0   | 6.0   |
| 2-Feb-01             | 10:22:00 | 11.5   | 5.6   |
| 2-Feb-01<br>2-Feb-01 | 10:23:00 | 11.5   | 4.8   |
| 2-Feb-01             | 10:24:00 | 12.0   | 9.2   |

### Medical Waste Incinerator CEM Responses

| Date     | Time     | O2     | CO2   |
|----------|----------|--------|-------|
| 2-Feb-01 | 10:25:00 | 12.3   | 7.2   |
| 2-Feb-01 | 10:26:00 | 12.5   | 8.0   |
| 2-Feb-01 | 10:27:00 | 8.3    | 7.2   |
| 2-Feb-01 | 10:28:00 | 9.8    | 5.2   |
| 2-Feb-01 | 10:29:00 | 9.5    | 4.8   |
| 2-Feb-01 | 10:30:00 | 10.3   | 8.8   |
| 2-Feb-01 | 10:31:00 | 11.0   | 9.6   |
| 2-Feb-01 | 10:32:00 | 12.5   | 8.8   |
| 2-Feb-01 | 10:33:00 | 8.5    | 8.0   |
| 2-Feb-01 | 10:34:00 | 6.8    | 6.8   |
| 2-Feb-01 | 10:35:00 | 9.0    | 6.0   |
| 2-Feb-01 | 10:36:00 | 10.0   | 5.6   |
| 2-Feb-01 | 10:37:00 | 11.0   | 5.2   |
| 2-Feb-01 | 10:38:50 | 9.142  | 8.334 |
| 2-Feb-01 | 10:39:50 | 10.356 | 7.383 |
| 2-Feb-01 | 10:40:50 | 11.154 | 6.732 |
| 2-Feb-01 | 10:41:50 | 11.859 | 6.201 |
| 2-Feb-01 | 10:42:50 | 12.379 | 5.83  |
| 2-Feb-01 | 10:43:50 | 12.548 | 5.689 |
| 2-Feb-01 | 10:44:50 | 12.721 | 5.542 |
| 2-Feb-01 | 10:45:50 | 12.999 | 5.308 |
| 2-Feb-01 | 10:46:50 | 13.341 | 5.033 |
| 2-Feb-01 | 10:47:50 | 13.797 | 4.686 |
| 2-Feb-01 | 10:48:50 | 13.441 | 5.162 |
| 2-Feb-01 | 10:49:50 | 9.002  | 8.805 |
| 2-Feb-01 | 10:50:50 | 7.876  | 9.207 |
| Averge   |          | 11.43  | 6.59  |

# Medical Waste Incinerator CEM Responses

### M29-1

| Date                 | Time                 | O2     | CO2   |
|----------------------|----------------------|--------|-------|
| 2-Feb-01             | 9:45:00              | 13.314 | 5.328 |
| 2-Feb-01             | 9:46:00              | 10.023 | 7.636 |
| 2-Feb-01             | 9:47:00              | 9.985  | 7.030 |
| 2-Feb-01             | 9:48:00              | 7.953  | 9.017 |
| 2-Feb-01             | 9:49:00              | 11.025 | 6.729 |
| 2-Feb-01             | 9:50:00              | 12.542 | 5.567 |
| 2-Feb-01             | 9:51:00              | 13.149 | 5.055 |
| 2-Feb-01             | 9:52:00              | 13.659 | 4.666 |
| 2-Feb-01             | 9:53:00              | 13.887 | 4.462 |
| 2-Feb-01             | 9:54:00              | 14.0   | 4.8   |
| 2-Feb-01             | 9:55:00              | 14.3   | 4.8   |
| 2-Feb-01             | 9:56:00              | 14.4   | 4.4   |
| 2-Feb-01             | 9:57:00              | 13.8   | 7.6   |
| 2-Feb-01             | 9:58:00              | 13.8   | 9.6   |
| 2-Feb-01             | 9:59:00              | 10.0   | 8.0   |
| 2-Feb-01             | 10:00:00             | - 10.0 | 6.4   |
| 2-Feb-01             | 10:01:00             | 10.3   | 5.2   |
| 2-Feb-01             | 10:02:00             | 10.5   | 4.8   |
| 2-Feb-01             | 10:03:00             | 12.0   | 4.4   |
| 2-Feb-01             | 10:04:00             | 12.8   | 6.0   |
| 2-Feb-01             | 10:05:00             | 13.5   | 10.4  |
| 2-Feb-01             | 10:06:00             | 14.0   | 8.4   |
| 2-Feb-01             | 10:07:00             | 13.8   | 6.4   |
| 2-Feb-01             | 10:08:00             | 6.5    | 6.4   |
| 2-Feb-01             | 10:09:00             | 10.8   | 6.0   |
| 2-Feb-01             | 10:10:00             | 11.8   | 5.6   |
| 2-Feb-01             | 10:11:00             | 12.0   | 5.2   |
| 2-Feb-01             | 10:12:00             | 12.0   | 8.0   |
| 2-Feb-01<br>2-Feb-01 | 10:13:00             | 12.3   | 8.0   |
| _                    | 10:14:00             | 13.0   | 7.6   |
| 2-Feb-01             | 10:15:00             | 13.5   | 8.4   |
| 2-Feb-01             | 10:16:00             | 13.3   | 6.8   |
| 2-Feb-01             | 10:17:00             | 10.0   | 6.8   |
| 2-Feb-01<br>2-Feb-01 | 10:18:00             | 10.3   | 6.4   |
| 2-Feb-01             | 10:19:00             | 8.3    | 6.4   |
| 2-Feb-01<br>2-Feb-01 | 10:20:00<br>10:21:00 | 10.8   | 6.0   |
| 2-Feb-01<br>2-Feb-01 | 10:21:00             | 11.0   | 6.0   |
| 2-Feb-01             | 10:22:00             | 11.5   | 5.6   |
| 2-Feb-01             | 10:23:00             | 11.5   | 4.8   |
| 2-1 60-01            | 10.24.00             | 12.0   | 9.2   |

# Medical Waste Incinerator CEM Responses

| Date     | Time     | O2     | CO2   |
|----------|----------|--------|-------|
| 2-Feb-01 | 10:25:00 | 12.3   | 7.2   |
| 2-Feb-01 | 10:26:00 | 12.5   | 8.0   |
| 2-Feb-01 | 10:27:00 | 8.3    | 7.2   |
| 2-Feb-01 | 10:28:00 | 9.8    | 5.2   |
| 2-Feb-01 | 10:29:00 | 9.5    | 4.8   |
| 2-Feb-01 | 10:30:00 | 10.3   | 8.8   |
| 2-Feb-01 | 10:31:00 | 11.0   | 9.6   |
| 2-Feb-01 | 10:32:00 | 12.5   | 8.8   |
| 2-Feb-01 | 10:33:00 | 8.5    | 8.0   |
| 2-Feb-01 | 10:34:00 | 6.8    | 6.8   |
| 2-Feb-01 | 10:35:00 | 9.0    | 6.0   |
| 2-Feb-01 | 10:36:00 | 10.0   | 5.6   |
| 2-Feb-01 | 10:37:00 | 11.0   | 5.2   |
| 2-Feb-01 | 10:38:50 | 9.142  | 8.334 |
| 2-Feb-01 | 10:39:50 | 10.356 | 7.383 |
| 2-Feb-01 | 10:40:50 | 11.154 | 6.732 |
| 2-Feb-01 | 10:41:50 | 11.859 | 6.201 |
| 2-Feb-01 | 10:42:50 | 12.379 | 5.83  |
| 2-Feb-01 | 10:43:50 | 12.548 | 5.689 |
| 2-Feb-01 | 10:44:50 | 12.721 | 5.542 |
| 2-Feb-01 | 10:45:50 | 12.999 | 5.308 |
| 2-Feb-01 | 10:46:50 | 13.341 | 5.033 |
| 2-Feb-01 | 10:47:50 | 13.797 | 4.686 |
| 2-Feb-01 | 10:48:50 | 13.441 | 5.162 |
| 2-Feb-01 | 10:49:50 | 9.002  | 8.805 |
| 2-Feb-01 | 10:50:50 | 7.876  | 9.207 |
| Average  |          | 11.4   | 6.6   |

# Medical Waste Incinerator CEM Responses

| Date     | Time     | O2     | CO2    |
|----------|----------|--------|--------|
| 2/ 2/101 | 13:10:40 | 12.234 | 10.311 |
| 2/ 2/101 | 13:11:40 | 12.206 | 10.314 |
| 2/2/101  | 13:12:40 | 12.756 | 10.317 |
| 2/2/101  | 13:13:40 | 14.074 | 10.309 |
| 2/ 2/101 | 13:14:40 | 13.328 | 9.972  |
| 2/ 2/101 | 13:15:40 | 10.234 | 7.67   |
| 2/ 2/101 | 13:16:40 | 11.05  | 7.004  |
| 2/2/101  | 13:17:40 | 11.536 | 6.625  |
| 2/ 2/101 | 13:18:40 | 11.618 | 6.53   |
| 2/ 2/101 | 13:19:40 | 11.92  | 6.294  |
| 2/ 2/101 | 13:20:40 | 12.272 | 5.982  |
| 2/ 2/101 | 13:21:40 | 12.518 | 5.758  |
| 2/ 2/101 | 13:22:40 | 12.732 | 5.584  |
| 2/ 2/101 | 13:23:40 | 13.156 | 5.244  |
| 2/ 2/101 | 13:24:40 | 13.666 | 4.887  |
| 2/ 2/101 | 13:25:40 | 9.666  | 8.662  |
| 2/ 2/101 | 13:26:40 | 9.954  | 7.847  |
| 2/ 2/101 | 13:27:40 | 10.525 | 7.298  |
| 2/ 2/101 | 13:28:40 | 10.578 | 7.215  |
| 2/ 2/101 | 13:29:40 | 10.941 | 6.885  |
| 2/ 2/101 | 13:30:40 | 11.39  | 6.555  |
| 2/ 2/101 | 13:31:40 | 11.845 | 6.212  |
| 2/ 2/101 | 13:32:40 | 12.062 | 6.027  |
| 2/ 2/101 | 13:33:40 | 12.517 | 5.692  |
| 2/ 2/101 | 13:34:40 | 12.331 | 5.808  |
| 2/ 2/101 | 13:35:40 | 12.425 | 5.735  |
| Average  |          | 11.9   | 7.2    |

# Malcolm Grow Medical Center - Andrews AFB, MD Medical Waste Incinerator

**CEM Responses** 

| Date     | Time     | O2     | CO2   |
|----------|----------|--------|-------|
| 2/ 2/101 | 14:05:40 | 11.067 | 6.854 |
| 2/2/101  | 14:06:40 | 12.001 | 6.139 |
| 2/ 2/101 | 14:07:40 | 12.618 | 5.666 |
| 2/2/101  | 14:08:40 | 12.799 | 5.49  |
| 2/2/101  | 14:09:40 | 12.477 | 5.712 |
| 2/2/101  | 14:10:40 | 13.105 | 5.259 |
| 2/2/101  | 14:11:40 | 13.592 | 4.935 |
| 2/2/101  | 14:12:40 | 9.819  | 8.358 |
| 2/2/101  | 14:13:40 | 8.463  | 9.02  |
| 2/2/101  | 14:14:40 | 9.677  | 8.046 |
| 2/2/101  | 14:15:40 | 10.817 | 7.177 |
| 2/2/101  | 14:16:40 | 12.037 | 6.247 |
| 2/2/101  | 14:17:40 | 12.796 | 5.649 |
| 2/2/101  | 14:18:40 | 13.024 | 5.44  |
| 2/2/101  | 14:19:40 | 13.155 | 5.3   |
| 2/2/101  | 14:20:40 | 13.629 | 4.916 |
| 2/ 2/101 | 14:21:40 | 14.112 | 4.56  |
| 2/ 2/101 | 14:22:40 | 14.351 | 4.379 |
| 2/2/101  | 14:23:40 | 14.475 | 4.27  |
| 2/2/101  | 14:24:40 | 14.376 | 4.313 |
| 2/2/101  | 14:25:40 | 14.53  | 4.196 |
| 2/ 2/101 | 14:26:40 | 14.627 | 4.109 |
| 2/2/101  | 14:27:40 | 14.71  | 4.045 |
| 2/2/101  | 14:28:40 | 14.759 | 4.007 |
| 2/2/101  | 14:29:40 | 14.893 | 3.932 |
| 2/ 2/101 | 14:30:40 | 10.106 | 8.306 |
| 2/2/101  | 14:31:40 | 8.54   | 9.271 |
| 2/ 2/101 | 14:32:40 | 11.493 | 6.733 |
| 2/ 2/101 | 14:33:40 | 12.352 | 5.993 |
| 2/ 2/101 | 14:34:40 | 12.726 | 5.615 |
| 2/ 2/101 | 14:35:40 | 13.453 | 5.064 |
| 2/ 2/101 | 14:36:40 | 13.989 | 4.628 |
| 2/ 2/101 | 14:37:40 | 14.408 | 4.314 |
| 2/ 2/101 | 14:38:40 | 14.506 | 4.2   |
| 2/ 2/101 | 14:39:40 | 14.414 | 4.437 |
| 2/ 2/101 | 14:40:40 | 9.517  | 8.583 |
| 2/ 2/101 | 14:41:40 | 9.219  | 8.215 |
| 2/ 2/101 | 14:42:40 | 9.438  | 7.957 |
| 2/ 2/101 | 14:43:40 | 11.199 | 6.607 |
| 2/ 2/101 | 14:44:40 | 12.119 | 5.929 |

#### Medical Waste Incinerator CEM Responses

| Date     | Time     | O2     | CO2   |
|----------|----------|--------|-------|
| 2/ 2/101 | 14:45:40 | 12.499 | 5.637 |
| 2/2/101  | 14:46:40 | 12.631 | 5.51  |
| 2/2/101  | 14:47:40 | 13.095 | 5.183 |
| 2/2/101  | 14:48:40 | 13.289 | 5.01  |
| 2/2/101  | 14:49:40 | 13.679 | 4.731 |
| 2/2/101  | 14:50:40 | 14.163 | 4.4   |
| 2/2/101  | 14:51:40 | 13.954 | 4.725 |
| 2/2/101  | 14:52:40 | 7.934  | 9.962 |
| 2/2/101  | 14:53:40 | 8.355  | 8.839 |
| 2/ 2/101 | 14:54:40 | 8.583  | 8.571 |
| 2/ 2/101 | 14:55:40 | 10.17  | 7.502 |
| 2/ 2/101 | 14:56:40 | 11.624 | 6.438 |
| 2/ 2/101 | 14:57:40 | 12.475 | 5.779 |
| Average  |          | 12.3   | 6.0   |

# Medical Waste Incinerator CEM Responses

|          |         |      |     |       | (A)_ |     |
|----------|---------|------|-----|-------|------|-----|
| Date     | Time    | O2   | CO2 | NOx   | СО   | SO2 |
| 1-Feb-01 | 9:11:00 | 13.4 | 4.9 | 42.0  | 1.4  | 1.8 |
| 1-Feb-01 | 9:12:00 | 14.0 | 4.4 | 42.3  | 1.4  | 1.4 |
| 1-Feb-01 | 9:13:00 | 14.3 | 4.2 | 41.7  | 1.3  | 1.1 |
| 1-Feb-01 | 9:14:00 | 14.5 | 4.0 | 39.9  | 1.3  | 0.8 |
| 1-Feb-01 | 9:15:00 | 13.4 | 4.6 | 39.3  | 1.4  | 0.7 |
| 1-Feb-01 | 9:16:00 | 13.5 | 4.6 | 41.1  | 1.3  | 0.6 |
| 1-Feb-01 | 9:17:00 | 10.7 | 7.6 | 46.2  | 1.3  | 0.4 |
| 1-Feb-01 | 9:18:00 | 9.9  | 7.8 | 65.4  | 1.3  | 0.8 |
| 1-Feb-01 | 9:19:00 | 9.8  | 7.6 | 49.5  | 1.6  | 3.4 |
| 1-Feb-01 | 9:20:00 | 10.2 | 7.4 | 43.6  | 1.8  | 3.4 |
| 1-Feb-01 | 9:21:00 | 12.3 | 5.7 | 30.5  | 1.7  | 3.1 |
| 1-Feb-01 | 9:22:00 | 13.0 | 5.2 | 30.6  | 1.6  | 2.5 |
| 1-Feb-01 | 9:23:00 | 13.6 | 4.7 | 33.4  | 1.2  | 1.8 |
| 1-Feb-01 | 9:24:00 | 13.9 | 4.4 | 34.3  | 0.9  | 1.3 |
| 1-Feb-01 | 9:25:00 | 14.0 | 4.3 | 35.3  | 0.6  | 1.0 |
| 1-Feb-01 | 9:26:00 | 14.2 | 4.1 | 35.2  | 0.4  | 0.7 |
| 1-Feb-01 | 9:27:00 | 14.5 | 3.9 | 34.2  | 0.3  | 0.6 |
| 1-Feb-01 | 9:28:00 | 13.9 | 4.2 | 34.1  | 0.1  | 0.4 |
| 1-Feb-01 | 9:29:00 | 13.8 | 4.3 | 36.0  | 0.2  | 0.3 |
| 1-Feb-01 | 9:30:00 | 14.5 | 3.9 | 34.4  | 0.3  | 0.5 |
| 1-Feb-01 | 9:31:00 | 10.3 | 7.9 | 143.0 | 0.3  | 0.5 |
| 1-Feb-01 | 9:32:00 | 9.1  | 8.0 | 203.9 | 0.3  | 0.5 |
| 1-Feb-01 | 9:33:00 | 8.6  | 8.3 | 162.6 | 0.4  | 0.4 |
| 1-Feb-01 | 9:34:00 | 10.3 | 7.2 | 117.7 | 0.4  | 0.9 |
| 1-Feb-01 | 9:35:00 | 12.2 | 5.9 | 51.4  | 0.4  | 2.1 |
| 1-Feb-01 | 9:36:00 | 12.8 | 5.3 | 40.8  | 0.6  | 2.6 |
| 1-Feb-01 | 9:37:00 | 13.4 | 4.9 | 42.3  | 0.7  | 2.2 |
| 1-Feb-01 | 9:38:00 | 14.0 | 4.4 | 43.6  | 0.6  | 1.8 |
| 1-Feb-01 | 9:39:00 | 14.4 | 4.0 | 40.9  | 0.5  | 1.4 |
| 1-Feb-01 | 9:40:00 | 14.2 | 4.4 | 34.8  | 0.6  | 1.1 |
| 1-Feb-01 | 9:41:00 | 10.2 | 7.9 | 66.6  | 0.6  | 1.1 |
| 1-Feb-01 | 9:42:00 | 11.0 | 6.8 | 78.1  | 0.6  | 0.7 |
| 1-Feb-01 | 9:43:00 | 9.5  | 8.0 | 67.4  | 0.5  | 1.1 |
| 1-Feb-01 | 9:44:00 | 10.4 | 7.3 | 43.6  | 0.6  | 1.6 |
| 1-Feb-01 | 9:45:00 | 11.5 | 6.4 | 36.9  | 0.3  | 2.3 |
| 1-Feb-01 | 9:46:00 | 12.4 | 5.7 | 37.5  | 0.3  | 2.2 |
| 1-Feb-01 | 9:47:00 | 13.2 | 5.1 | 37.4  | 0.2  | 1.7 |
| 1-Feb-01 | 9:48:00 | 13.6 | 4.7 |       | 0.1  | 1.3 |
| 1-Feb-01 | 9:49:00 | 14.3 | 4.2 |       | -0.1 | 1.1 |
| 1-Feb-01 | 9:50:00 | 10.6 | 7.8 |       | -0.2 | 0.9 |
| 1-Feb-01 | 9:51:00 | 10.5 | 7.3 | 109.1 | -0.3 | 8.0 |

# Medical Waste Incinerator CEM Responses

| Date     | Time     | O2   | CO2 | NOx   | СО   | SO2 |
|----------|----------|------|-----|-------|------|-----|
| 1-Feb-01 | 9:52:00  | 8.9  | 8.5 | 137.7 | -0.2 | 1.1 |
| 1-Feb-01 | 9:53:00  | 8.7  | 8.7 | 136.1 | -0.1 | 1.8 |
| 1-Feb-01 | 9:54:00  | 10.0 | 7.6 | 106.0 | -0.3 | 2.5 |
| 1-Feb-01 | 9:55:00  | 10.6 | 7.2 | 88.8  | -0.3 | 2.9 |
| 1-Feb-01 | 9:56:00  | 11.0 | 6.9 | 76.1  | -0.3 | 2.8 |
| 1-Feb-01 | 9:57:00  | 11.4 | 6.5 | 62.4  | -0.1 | 2.4 |
| 1-Feb-01 | 9:58:00  | 11.6 | 6.3 | 52.1  | 0.1  | 2.2 |
| 1-Feb-01 | 9:59:00  | 12.2 | 5.9 | 42.1  | 0.2  | 1.9 |
| 1-Feb-01 | 10:00:00 | 12.6 | 5.6 | 39.8  | 0.4  | 1.6 |
| 1-Feb-01 | 10:01:00 | 10.9 | 7.4 | 55.9  | 0.3  | 1.4 |
| 1-Feb-01 | 10:02:00 | 9.0  | 8.7 | 106.2 | 0.0  | 1.4 |
| 1-Feb-01 | 10:03:00 | 9.6  | 8.1 | 116.8 | -0.5 | 2.1 |
| 1-Feb-01 | 10:04:00 | 9.7  | 7.9 | 129.5 | -0.8 | 3.7 |
| 1-Feb-01 | 10:05:00 | 10.5 | 7.1 | 103.4 | -1.0 | 3.8 |
| 1-Feb-01 | 10:06:00 | 11.2 | 6.6 | 84.3  | -0.9 | 3.3 |
| 1-Feb-01 | 10:07:00 | 11.9 | 6.0 | 57.1  | -1.0 | 2.6 |
| 1-Feb-01 | 10:08:00 | 12.3 | 5.8 | 38.5  | -0.8 | 2.2 |
| 1-Feb-01 | 10:09:00 | 12.5 | 5.6 | 43.0  | -0.5 | 1.8 |
| 1-Feb-01 | 10:10:00 | 12.9 | 5.3 | 49.7  | -0.5 | 1.6 |
| Average  |          | 11.9 | 6.1 | 63.3  | 0.4  | 1.6 |

# Medical Waste Incinerator CEM Responses

Run 2

| Date     | Time     | O2   | CO2  | NOx   | СО   | SO2  |
|----------|----------|------|------|-------|------|------|
| 1-Feb-01 | 10:42:00 | 12.6 | 5.6  | 49.3  | 0.7  | 2.8  |
| 1-Feb-01 | 10:43:00 | 13.3 | 5.1  | 50.1  | 0.0  | 2.6  |
| 1-Feb-01 | 10:44:00 | 10.3 | 8.0  | 67.3  | -0.3 | 2.5  |
| 1-Feb-01 | 10:45:00 | 8.9  | 8.7  | 112.5 | -0.2 | 2.7  |
| 1-Feb-01 | 10:46:00 | 9.7  | 7.9  | 98.7  | -0.2 | 4.7  |
| 1-Feb-01 | 10:47:00 | 10.6 | 7.2  | 90.2  | -0.4 | 4.6  |
| 1-Feb-01 | 10:48:00 | 11.6 | 6.4  | 68.9  | -0.6 | 3.7  |
| 1-Feb-01 | 10:49:00 | 12.2 | 5.9  | 50.4  | -0.6 | 3.2  |
| 1-Feb-01 | 10:50:00 | 12.6 | 5.6  | 36.3  | -0.4 | 2.7  |
| 1-Feb-01 | 10:51:00 | 12.7 | 5.6  | 40.9  | -0.4 | 2.4  |
| 1-Feb-01 | 10:52:00 | 12.9 | 5.4  | 44.4  | -0.5 | 2.1  |
| 1-Feb-01 | 10:53:00 | 13.5 | 5.0  | 48.6  | -0.6 | 2.0  |
| 1-Feb-01 | 10:54:00 | 10.0 | 8.3  | 75.4  | -0.8 | 1.9  |
| 1-Feb-01 | 10:55:00 | 9.1  | 8.7  | 100.2 | -0.9 | 2.0  |
| 1-Feb-01 | 10:56:00 | 10.5 | 7.5  | 89.2  | -1.0 | 5.1  |
| 1-Feb-01 | 10:57:00 | 11.3 | 6.8  | 70.2  | -0.9 | 5.5  |
| 1-Feb-01 | 10:58:00 | 12.2 | 6.1  | 48.1  | -0.9 | 4.6  |
| 1-Feb-01 | 10:59:00 | 12.5 | 5.8  | 38.2  | -0.7 | 3.8  |
| 1-Feb-01 | 11:00:00 | 12.9 | 5.4  | 43.1  | -0.6 | 3.1  |
| 1-Feb-01 | 11:01:00 | 13.5 | 4.9  | 50.8  | -0.7 | 2.7  |
| 1-Feb-01 | 11:02:00 | 13.8 | 4.7  | 50.8  | -0.8 | 2.2  |
| 1-Feb-01 | 11:03:00 | 13.8 | 4.6  | 48.4  | -1.0 | 2.0  |
| 1-Feb-01 | 11:04:00 | 10.6 | 7.7  | 66.6  | -1.0 | 1.7  |
| 1-Feb-01 | 11:05:00 | 6.2  | 10.7 | 126.9 | -0.9 | 2.6  |
| 1-Feb-01 | 11:06:00 | 10.0 | 7.7  | 102.4 | -0.8 | 17.0 |
| 1-Feb-01 | 11:07:00 | 11.5 | 6.5  | 80.2  | -0.8 | 15.1 |
| 1-Feb-01 | 11:08:00 | 12.3 | 5.9  | 51.6  | -0.6 | 12.1 |
| 1-Feb-01 | 11:09:00 | 12.5 | 5.7  | 36.9  | -0.2 | 10.0 |
| 1-Feb-01 | 11:10:00 | 12.9 | 5.4  | 36.1  | 0.2  | 8.3  |
| 1-Feb-01 | 11:11:00 | 13.2 | 5.1  | 39.9  | 0.2  | 6.7  |
| 1-Feb-01 | 11:12:00 | 13.5 | 4.9  | 44.9  | -0.3 | 6.0  |
| 1-Feb-01 | 11:13:00 | 13.8 | 4.7  | 44.3  | -0.8 | 5.1  |
| 1-Feb-01 | 11:14:00 | 14.1 | 4.5  | 43.8  | -1.1 | 4.1  |
| 1-Feb-01 | 11:15:00 | 13.2 | 5.4  | 39.2  | -1.2 | 3.2  |
| 1-Feb-01 | 11:16:00 | 9.2  | 8.9  | 180.0 | -1.1 | 2.7  |
| 1-Feb-01 | 11:17:00 | 11.3 | 6.8  | 96.5  | -1.0 | 2.8  |
| 1-Feb-01 | 11:18:00 | 11.6 | 6.4  | 57.3  | -0.7 | 3.9  |
| 1-Feb-01 | 11:19:00 | 12.5 | 5.7  | 36.6  | -0.4 | 3.9  |
| 1-Feb-01 | 11:20:00 | 12.9 | 5.4  | 38.0  | -0.5 | 3.5  |
| 1-Feb-01 | 11:21:00 | 13.3 | 5.1  | 43.9  | -0.6 | 3.2  |

# Medical Waste Incinerator CEM Responses

| Date     | Time     | O2   | CO2 | NOx   | CO   | SO2 |
|----------|----------|------|-----|-------|------|-----|
| 1-Feb-01 | 11:22:00 | 13.7 | 4.8 | 42.8  | -1.0 | 2.8 |
| 1-Feb-01 | 11:23:00 | 13.9 | 4.6 | 40.6  | -1.0 | 2.4 |
| 1-Feb-01 | 11:24:00 | 14.1 | 4.5 | 40.9  | -1.0 | 2.2 |
| 1-Feb-01 | 11:25:00 | 14.2 | 4.3 | 40.2  | -1.0 | 2.0 |
| 1-Feb-01 | 11:26:00 | 14.6 | 4.2 | 38.7  | -1.0 | 1.8 |
| 1-Feb-01 | 11:27:00 | 9.7  | 8.5 | 59.1  | -1.0 | 1.6 |
| 1-Feb-01 | 11:28:00 | 8.1  | 9.2 | 113.0 | -0.8 | 1.7 |
| 1-Feb-01 | 11:29:00 | 9.5  | 8.1 | 120.7 | -0.9 | 5.6 |
| 1-Feb-01 | 11:30:00 | 10.2 | 7.6 | 114.8 | -1.0 | 7.5 |
| 1-Feb-01 | 11:31:00 | 11.1 | 6.9 | 95.5  | -1.0 | 7.1 |
| 1-Feb-01 | 11:32:00 | 11.5 | 6.6 | 79.9  | -0.7 | 6.0 |
| 1-Feb-01 | 11:33:00 | 11.6 | 6.5 | 69.1  | -0.3 | 4.7 |
| 1-Feb-01 | 11:34:00 | 11.6 | 6.5 | 60.2  | 0.2  | 3.9 |
| 1-Feb-01 | 11:35:00 | 12.0 | 6.2 | 49.3  | 0.8  | 3.6 |
| 1-Feb-01 | 11:36:00 | 12.0 | 6.2 | 41.3  | 1.2  | 3.4 |
| 1-Feb-01 | 11:37:00 | 12.4 | 5.9 | 39.3  | 1.1  | 3.2 |
| 1-Feb-01 | 11:38:00 | 12.3 | 5.9 | 43.5  | 0.6  | 2.9 |
| 1-Feb-01 | 11:39:00 | 12.5 | 5.8 | 45.4  | 0.0  | 2.6 |
| 1-Feb-01 | 11:40:00 | 12.9 | 5.4 | 45.1  | -0.5 | 2.3 |
| 1-Feb-01 | 11:41:00 | 13.3 | 5.1 | 46.6  | -0.8 | 2.0 |
| Average  |          | 11.9 | 6.2 | 62.7  | -0.5 | 4.2 |

# Medical Waste Incinerator CEM Responses

| Date     | Time     | O2     | CO2  | NOx   | СО   | SO2 |
|----------|----------|--------|------|-------|------|-----|
| 2-Feb-01 | 9:48:00  | 8.0    | 9.0  | 90.0  | -0.4 | 1.1 |
| 2-Feb-01 | 9:49:00  | 11.0   | 6.7  | 45.5  | -0.4 | 1.6 |
| 2-Feb-01 | 9:50:00  | 12.5   | 5.6  | 39.6  | -0.5 | 1.6 |
| 2-Feb-01 | 9:51:00  | 13.1   | 5.1  | 38.3  | -0.6 | 1.4 |
| 2-Feb-01 | 9:52:00  | 13.7   | 4.7  | 36.8  | -0.5 | 1.2 |
| 2-Feb-01 | 9:53:00  | 13.9   | 4.5  | 36.2  | -0.5 | 1.0 |
| 2-Feb-01 | 9:54:00  | 14.0   | 4.8  | 40.0  | 0.0  | 1.0 |
| 2-Feb-01 | 9:55:00  | 14.3   | 4.8  | 40.0  | 0.0  | 1.0 |
| 2-Feb-01 | 9:56:00  | 14.4   | 4.4  | 35.0  | 0.0  | 1.0 |
| 2-Feb-01 | 9:57:00  | 13.8   | 7.6  | 55.0  | 0.0  | 2.0 |
| 2-Feb-01 | 9:58:00  | 13.8   | 9.6  | 75.0  | 0.0  | 2.0 |
| 2-Feb-01 | 9:59:00  | 10.0   | 8.0  | 90.0  | 0.0  | 2.0 |
| 2-Feb-01 | 10:00:00 | 10.0   | 6.4  | 70.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:01:00 | 10.3   | 5.2  | 50.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:02:00 | 10.5   | 4.8  | 35.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:03:00 | · 12.0 | 4.4  | 40.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:04:00 | 12.8   | 6.0  | 45.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:05:00 | 13.5   | 10.4 | 40.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:06:00 | 14.0   | 8.4  | 35.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:07:00 | 13.8   | 6.4  | 105.0 | 0.0  | 1.5 |
| 2-Feb-01 | 10:08:00 | 6.5    | 6.4  | 110.0 | 0.0  | 1.5 |
| 2-Feb-01 | 10:09:00 | 10.8   | 6.0  | 100.0 | 0.0  | 1.5 |
| 2-Feb-01 | 10:10:00 | 11.8   | 5.6  | 60.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:11:00 | 12.0   | 5.2  | 55.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:12:00 | 12.0   | 8.0  | 45.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:13:00 | 12.3   | 8.0  | 40.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:14:00 | 13.0   | 7.6  | 40.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:15:00 | 13.5   | 8.4  | 40.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:16:00 | 13.3   | 6.8  | 35.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:17:00 | 10.0   | 6.8  | 100.0 | 0.0  | 1.5 |
| 2-Feb-01 | 10:18:00 | 10.3   | 6.4  | 100.0 | 0.0  | 2.0 |
| 2-Feb-01 | 10:19:00 | 8.3    | 6.4  | 95.0  | 0.0  | 2.0 |
| 2-Feb-01 | 10:20:00 | 10.8   | 6.0  | 95.0  | 0.0  | 2.0 |
| 2-Feb-01 | 10:21:00 | 11.0   | 6.0  | 80.0  | 0.0  | 2.0 |
| 2-Feb-01 | 10:22:00 | 11.5   | 5.6  | 45.0  | 0.0  | 2.0 |
| 2-Feb-01 | 10:23:00 | 11.5   | 4.8  | 40.0  | 0.0  | 2.0 |
| 2-Feb-01 | 10:24:00 | 12.0   | 9.2  | 45.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:25:00 | 12.3   | 7.2  | 50.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:26:00 | 12.5   | 8.0  | 50.0  | 0.0  | 1.5 |
| 2-Feb-01 | 10:27:00 | 8.3    | 7.2  | 150.0 | 0.0  | 1.0 |

# Medical Waste Incinerator CEM Responses

| Date     | Time     | O2   | CO2 | NOx   | СО   | SO2 |
|----------|----------|------|-----|-------|------|-----|
| 2-Feb-01 | 10:28:00 | 9.8  | 5.2 | 200.0 | 0.0  | 2.0 |
| 2-Feb-01 | 10:29:00 | 9.5  | 4.8 | 135.0 | 0.0  | 3.0 |
| 2-Feb-01 | 10:30:00 | 10.3 | 8.8 | 125.0 | 0.0  | 3.0 |
| 2-Feb-01 | 10:31:00 | 11.0 | 9.6 | 85.0  | 0.0  | 2.5 |
| 2-Feb-01 | 10:32:00 | 12.5 | 8.8 | 65.0  | 0.0  | 2.0 |
| 2-Feb-01 | 10:33:00 | 8.5  | 8.0 | 50.0  | 0.5  | 1.5 |
| 2-Feb-01 | 10:34:00 | 6.8  | 6.8 | 35.0  | 1.0  | 1.5 |
| 2-Feb-01 | 10:35:00 | 9.0  | 6.0 | 40.0  | 0.5  | 1.0 |
| 2-Feb-01 | 10:36:00 | 10.0 | 5.6 | 40.0  | 0.0  | 2.0 |
| 2-Feb-01 | 10:37:00 | 11.0 | 5.2 | 145.0 | 0.0  | 2.0 |
| 2-Feb-01 | 10:38:50 | 9.1  | 8.3 | 120.4 | -0.1 | 2.1 |
| 2-Feb-01 | 10:39:50 | 10.4 | 7.4 | 107.6 | 0.0  | 2.2 |
| 2-Feb-01 | 10:40:50 | 11.2 | 6.7 | 84.6  | -0.2 | 2.1 |
| 2-Feb-01 | 10:41:50 | 11.9 | 6.2 | 63.3  | -0.2 | 2.0 |
| 2-Feb-01 | 10:42:50 | 12.4 | 5.8 | 38.9  | 0.0  | 1.8 |
| 2-Feb-01 | 10:43:50 | 12.5 | 5.7 | 32.3  | 0.2  | 1.6 |
| 2-Feb-01 | 10:44:50 | 12.7 | 5.5 | 40.8  | 0.2  | 1.5 |
| 2-Feb-01 | 10:45:50 | 13.0 | 5.3 | 45.7  | 0.1  | 1.3 |
| 2-Feb-01 | 10:46:50 | 13.3 | 5.0 | 48.6  | 0.0  | 1.4 |
| 2-Feb-01 | 10:47:50 | 13.8 | 4.7 | 46.0  | -0.2 | 1.3 |
| Average  |          | 11.5 | 6.5 | 66.1  | 0.0  | 1.7 |

#### Medical Waste Incinerator

## Oxygen Analyzer Drift Calculations and Gas Corrections

#### 1-Feb-01

| Calibration Gases | System Calibration |
|-------------------|--------------------|
| 0.0 %             | 0.1                |
| 12.53 %           | 12.4               |
| 22.4 %            |                    |

| Direct Calibration |
|--------------------|
| 0.0                |
| 12.5               |
| 22.5               |

| Correlation                 | 1.000000 |  |
|-----------------------------|----------|--|
| Slope 0.98164               |          |  |
| Intercept                   | 0.100000 |  |
| Sampling Sy<br>0.40<br>0.40 | )%       |  |

| Correlation 0.99999 |  |  |
|---------------------|--|--|
| Slope 1.004162      |  |  |
| Intercept -0.025126 |  |  |
|                     |  |  |
| Calibration Error   |  |  |
| 0.00%               |  |  |
| 0.12%               |  |  |
| 0.40%               |  |  |

Pre Cal 0.1 12.4

| Run 1    | 11.9  | Corrected | 12.0 % O₂             |
|----------|-------|-----------|-----------------------|
| Post Cal | 0.1   | Drift     | 0.00%                 |
|          | 12.5  |           | 0.40%                 |
| Run 2    | 11.9  | Corrected | 12.2 % O <sub>2</sub> |
| Post Cal | 0.10  | Drift     | 0.00%                 |
|          | 12.10 |           | 1.60%                 |

#### Medical Waste Incinerator

# Oxygen Analyzer Drift Calculations and Gas Corrections

#### 2-Feb-01

| Calibration Gases | System Calibration |
|-------------------|--------------------|
| 0.0 %             | 0.0                |
| 12.53 %           | 12.1               |
| 22.4 %            |                    |

| Direct Calibration |  |
|--------------------|--|
| 0.0                |  |
| 12.5               |  |
| 22.4               |  |

Correlation 1.000000 Slope 0.965682 Intercept 0.000000 Sampling System Bias 0.00% 1.60%

Correlation 0.999999
Slope 0.999894
Intercept -0.008771

Calibration Error 0.00%
0.12%
0.00%

Pre Cal 0.0 12.1

| Run 3    | ·11.5 | Corrected | 11.8 % O <sub>2</sub> |
|----------|-------|-----------|-----------------------|
| Post Cal | 0.1   | Drift     | 0.40%                 |
|          | 12.3  |           | 0.80%                 |

#### Medical Waste Incinerator

Carbon Dioxide Analyzer Drift Calculations and Gas Corrections

| 1-660-01 | 1 | _ | F | e | h. | -0 | 1 |
|----------|---|---|---|---|----|----|---|
|----------|---|---|---|---|----|----|---|

|   | Calibration Gases | System Calibration |
|---|-------------------|--------------------|
|   | 0.0 %             | 1.0                |
|   | 10.04 %           | 10.1               |
| 1 | 22.4 %            |                    |

| Direct Calibration |  |
|--------------------|--|
| 0.0                |  |
| 10.1               |  |
| 22.4               |  |

Correlation 1.000000
Slope 0.906375
Intercept 1.000000
Sampling System Bias
4.00%
0.00%

| Correlation        | 0.999995 |  |  |
|--------------------|----------|--|--|
| Slope 0.99981      |          |  |  |
| Intercept 0.021993 |          |  |  |
|                    |          |  |  |
| Calibration Error  |          |  |  |
| 0.00%              |          |  |  |
| 0.24%              |          |  |  |
| 0.00%              |          |  |  |

Pre Cal 0.0 10.1

| Run 1    | 6.1           | Corrected | 6.0 % CO₂             |
|----------|---------------|-----------|-----------------------|
| Post Cal | 0.1<br>10.2   | Drift     | 0.40%<br>0.40%        |
| Run 2    | 6.2           | Corrected | 6.1 % CO <sub>2</sub> |
| Post Cal | 0.20<br>10.00 | Drift     | 0.40%<br>0.80%        |

Medical Waste Incinerator

# Carbon Dioxide Analyzer Drift Calculations and Gas Corrections

2-Feb-01

| Calibration Gases | System Calibration |
|-------------------|--------------------|
| 0.0 %             | 0.1                |
| 10.04 %           | 9.9                |
| 22.4 %            |                    |

| Γ | Direct Calibration |
|---|--------------------|
|   | 0.0                |
|   | 10.1               |
|   | 22.3               |

| Correlation | 1.000000 |
|-------------|----------|
| Slope       | 0.976096 |
| Intercept   | 0.100000 |
| Sampling Sy |          |
| 0.40        | )%       |
| 0.80        | )%       |
|             |          |

| Correlation       | 0.999985 |  |
|-------------------|----------|--|
| Slope             | 0.995214 |  |
| Intercept         | 0.038422 |  |
|                   |          |  |
| Calibration Error |          |  |
| 0.00%             |          |  |
| 0.24%             |          |  |
| 0.40%             |          |  |

Pre Cal 0.1 9.9

| Run 3    | 6.5         | Corrected | 6.5 % CO <sub>2</sub> |
|----------|-------------|-----------|-----------------------|
| Post Cal | 0.3<br>10.0 | Drift     | 0.80%<br>0.40%        |

#### Medical Waste Incinerator

# Nitrogen Oxides Analyzer Drift Calculations and Gas Corrections 1-Feb-01

| Calibration Gases | System Calibration |
|-------------------|--------------------|
| 0.0 ppm           | -0.5               |
| 254.1 ppm         | 248.2              |
| 472.4 ppm         |                    |

Direct Calibration 0.2 252.7 472.9

Correlation 1.000000 Slope 0.978749 Intercept -0.500000 Sampling System Bias 0.14% 0.90% Correlation 0.999991
Slope 1.000447
Intercept -0.341592

Calibration Error
0.04%
0.28%
0.10%

Pre Cal -0.5 248.2

| Run 1    | 63.3           | Corrected | 65.3 ppm NO <sub>X</sub> |
|----------|----------------|-----------|--------------------------|
| Post Cal | -0.4<br>247.4  | Drift     | 0.02%<br>0.16%           |
| Run 2    | 62.7           | Corrected | 62.4 ppm NO <sub>X</sub> |
| Post Cal | 4.90<br>249 30 | Drift     | 1.06%<br>0.38%           |

# **Medical Waste Incinerator**

Nitrogen Oxides Analyzer Drift Calculations and Gas Corrections 2-Feb-01

| Calibration Gases | System Calibration |
|-------------------|--------------------|
| 0.0 ppm           | -0.1               |
| 254.1 ppm         | 249.9              |
| 472.4 ppm         |                    |

Direct Calibration
-0.4
472.3
253.5

Correlation 1.000000
Slope 0.983865
Intercept -0.100000
Sampling System Bias 0.06%
44.48%

Correlation 0.573006 Slope 0.573348 Intercept 102.9543 Calibration Error 0.08% 43.64% 43.78%

Pre Cal -0.1 249.9

| Run 3    | 66.1          | Corrected | 67.6 ppm NO <sub>X</sub> |
|----------|---------------|-----------|--------------------------|
| Post Cal | -0.4<br>248.5 | Drift     | 0.06%<br>0.28%           |

## Medical Waste Incinerator

# Carbon Monoxide Analyzer Drift Calculations and Gas Corrections 1-Feb-01

| Calibration Gases | System Calibration |
|-------------------|--------------------|
| 0.0 ppm           | 2.1                |
| 30.2 ppm          | 29.1               |
| 59.5 ppm          |                    |
| 89.7 ppm ·        | ·                  |

| Direct Calibration |
|--------------------|
| -0.4               |
| 30.0               |
| 60.0               |
| 90.7               |

| Correlation                | 1.000000 |  |
|----------------------------|----------|--|
| Slope                      | 0.894040 |  |
| Intercept                  | 2.100000 |  |
| Sampling System Bias 2.50% |          |  |
| 0.90%                      |          |  |
|                            |          |  |
|                            |          |  |

| Correlation       | 0.999995  |  |
|-------------------|-----------|--|
| Slope             | 1.016406  |  |
| Intercept         | -0.510816 |  |
| Calibration Error |           |  |
| 0.40%             |           |  |
| 0.20%             |           |  |
| 0.50%             |           |  |
| 1.00%             |           |  |

| Pre Cal | 2.1  |
|---------|------|
|         | 29.1 |

| Run 1    | 0.4           | Corrected | -0.8 ppm CO    |
|----------|---------------|-----------|----------------|
| Post Cal | 0.1<br>26.5   | Drift     | 2.00%<br>2.60% |
| Run 2    | -0.5          | Corrected | -0.7 ppm CO    |
| Post Cal | 0.10<br>26.50 | Drift     | 0.00%<br>0.00% |

# **Medical Waste Incinerator**

Carbon Monoxide Analyzer Drift Calculations and Gas Corrections 2-Feb-01

| Calibration Gases | System Calibration |
|-------------------|--------------------|
| 0.0 ppm           | -0.5               |
| 30.2 ppm          | 29.7               |
| 59.5 ppm          |                    |
| 89.7 ppm          |                    |

| Direct Calibration | _ |
|--------------------|---|
| 0.8                |   |
| 30.7               |   |
| 60.9               |   |
| 90.9               |   |

| Correlation                | 1.000000  |
|----------------------------|-----------|
| Slope                      | 1.000000  |
| Intercept                  | -0.500000 |
| Sampling S<br>1.30<br>1.00 | 0%        |

| 0.99997           |  |  |
|-------------------|--|--|
| 1.006991          |  |  |
| 0.661463          |  |  |
| Calibration Error |  |  |
| 0.80%             |  |  |
| 0.50%             |  |  |
| 1.40%             |  |  |
| 1.20%             |  |  |
|                   |  |  |

Pre Cal -0.5 29.7

| Run 3    | 0.0  | Corrected | 0.0 ppm CO |
|----------|------|-----------|------------|
| Post Cal | 0.4  | Drift     | 0.90%      |
|          | 30.4 |           | 0.70%      |

#### Medical Waste Incinerator

Sulfur Dioxide Analyzer Drift Calculations and Gas Corrections 1-Feb-01

| _ |                   |                    |
|---|-------------------|--------------------|
| I | Calibration Gases | System Calibration |
| 1 | 0.0 ppm           | 2.1                |
| 1 | 45.1 ppm          | 41.2               |
| ١ | 91.7 ppm          |                    |

| Direct Calibration |
|--------------------|
| -0.2               |
| 44.9               |
| 92.1               |

Correlation 1.000000 Slope 0.866962 Intercept 2.100000 Sampling System Bias 2.30% 3.70%

| Correlation       | 0.999993  |  |
|-------------------|-----------|--|
| Slope             | 1.006578  |  |
| Intercept         | -0.299964 |  |
|                   |           |  |
| Calibration Error |           |  |
| 0.20%             |           |  |
| 0.20%             |           |  |
| 0.40%             |           |  |

Pre Cal 2.1 41.2

| Run 1    | 1.6           | Corrected | -0.6 ppm SO <sub>2</sub> |
|----------|---------------|-----------|--------------------------|
| Post Cal | 2.2<br>41.0   | Drift     | 0.10%<br>0.20%           |
| Run 2    | 4.2           | Corrected | 2.1 ppm SO <sub>2</sub>  |
| Post Cal | 2.60<br>41.20 | Drift     | 0.40%<br>0.20%           |

# Medical Waste Incinerator

Sulfur Dioxide Analyzer Drift Calculations and Gas Corrections 2-Feb-01

| Calibration Gases | System Calibration |
|-------------------|--------------------|
| 0.0 ppm           | 3.0                |
| 45.1 ppm          | 41.3               |
| 91.7 ppm          |                    |

| - | D: 10 III          |
|---|--------------------|
|   | Direct Calibration |
|   | 0.1                |
|   | 45.1               |
|   | 91.5               |

| Correlation                 | 1.000000 |
|-----------------------------|----------|
| Slope                       | 0.849224 |
| Intercept                   | 3.000000 |
| Sampling Sy<br>2.90<br>3.80 | )%       |

| Correlation | 1               |
|-------------|-----------------|
| Slope       | 0.996723        |
| Intercept   | 0.116107        |
|             | ion Error<br>0% |
| 0.0         | 0%              |
| 0.2         | 20%             |

Pre Cal 3.0 41.3

| Run 3    | 1.7         | Corrected | -2.0 ppm SO <sub>2</sub> |
|----------|-------------|-----------|--------------------------|
| Post Cal | 3.7<br>41.0 | Drift     | 0.70%<br>0.30%           |

Appendix B.5

Raw Field Data

Visible Emissions (M9)

# VISIBLE EMISSIONS EVALUATOR

This is to certify that

Bill Dunstan, Ir.

met the specifications of Federal Reference Method 9 and qualified as a visible emissions evaluator. Maximum deviation on white and black smoke did not exceed 7.5% opacity and no single error exceeding 15% opacity was incurred during the certification test conducted by Eastern Technical Associates of Raleigh, North Carolina. This certificate is valid for six months from date of issue.

281351

Springfield, Virginia

October 18, 2000

Certificate Number

Location

Date of Issue

President

Director of Training

# 6-MINUTE AVERAGES ANDREWS AFB, MD HOSPITAL INCINERATOR, BUILDING 1055

| 0          | Total Avg. |
|------------|------------|
| 0          | 24-30      |
| 0          | 18-24      |
| 0          | 12-18      |
| 0          | 6-12       |
| 0          | 0-6        |
| average    | interval   |
| six-minute | six-minute |
| 1440-1510  | 2/1/01, 1  |

| Total Avg. | 114-120 | 108-114 | 102-108 | 96-102 | 90-96 | interval | six-minute | 2/1/01, 1610-1640 |
|------------|---------|---------|---------|--------|-------|----------|------------|-------------------|
| 0          | 0       | 0       | 0       | 0      | 0     | average  | six-minute | 310-1640          |

| Total Avg. | 24-30 | 18-24 | 12-18 | 6-12 | 0-6 | interval | six-minute | 2/2/01, 9 |
|------------|-------|-------|-------|------|-----|----------|------------|-----------|
| 0          | 0     | 0     | 0     | 0    | 0   | average  | six-minute | 945-1015  |

Total Avg.

114-120

108-114

96-102 102-108

 $\circ$ 

six-minute six-minute

2/2/01, 1255-1325

interval

average

90-96

| Total Avg. | 54-60 | 48-54 | 42-48 | 36-42 | 30-36 | six-minute interval   | 2/2/01, 10 |
|------------|-------|-------|-------|-------|-------|-----------------------|------------|
| 0          | 0     | 0     | 0     | 0     | 0     | six-minute<br>average | 1015-1045  |

six-minute six-minute

2/1/01, 1510-1540

interval

average

| _ |            |         |         |         |         |         |          |            |            |
|---|------------|---------|---------|---------|---------|---------|----------|------------|------------|
|   | Total Avg. | 144-150 | 138-144 | 132-138 | 126-132 | 120-126 | interval | six-minute | 2/2/01, 14 |
|   | 0          | 0       | 0       | 0       | 0       | 0       | average  | six-minute | 1405-1435  |

| I | -1     |       |       |       |       |       |         | S.         |           |
|---|--------|-------|-------|-------|-------|-------|---------|------------|-----------|
|   | otal A | 84-90 | 78-84 | 72-78 | 66-72 | 60-66 | interva | six-minute | 2/2/01    |
|   | Avg.   |       |       |       |       |       | =       |            | •         |
|   | 0      | 0     | 0     | 0     | 0     | 0     | average | six-minute | 1225-1255 |

six-minute | six-minute

2/1/01, 1540-1610

interval

average

60-66

0

0

Total Avg.

000

66-72 72-78 78-84 84-90 Total Avg.

000

48-54 54-60

30-36 36-42 42-48

00

|            |         |         |         |         | _       |          |            |            |
|------------|---------|---------|---------|---------|---------|----------|------------|------------|
| Total Avg. | 174-180 | 168-174 | 162-168 | 156-162 | 150-156 | interval | six-minute | 2/2/01, 14 |
| 0          | 0       | 0       | 0       | 0       | 0       | average  | six-minute | 1435-1505  |

# ANDREWS AFB, MD HOSPITAL WASTE INCINERATOR – BUILDING 1055



# VISIBLE EMISSION OBSERVATION FORM 1

| Method (Grae One) Method 2004 2008 Other.  Company Name  Andrews AFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 1        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Andrews AFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Angrews APD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\neg$     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\dashv$   |
| Hospital Incinerator - Bldg. 1055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |
| City A A A ST State A ST Zip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _          |
| Andrews AFB MD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| waste incin eration Unit Operating Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Control Equipment Scrubber Coerotting Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Describe Emission Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| southernnest stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Height of Erriss, Pt. Height of Erriss, Pt. Rel. to Observer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Start 30' End Sawe Start 25' End Sawe Distance to Emiss. Pt. Direction to Emiss. Pt. (Degrees)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _          |
| Stort 60' and Signe Stort 35'NE and Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Vernical Angle to Obs. Pt.  Start 20 End Sance Start Start 35 NE End Sance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Distance and Direction to Observation Point from Emission Point Start /5 4544e End 8744e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Describe Emissions (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| stort hane (steam) End Same Ernsmon Color (Wolfer Drophet Phurne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Start End SQUE Attached Detached No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>№</b> 🔲 |
| Describe Plumę Background -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| sa Sky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| Stort Sky End Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Start 5 ky Bockground Colol Sty Conditions Start June great End Same Start Di County End Same What Speed J What Direction J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Start Jky  Bockground Colol  Stort Jule grey End Seune  What Speed  What Speed  What Speed  What Speed  What Speed  What Speed  What Speed  What Speed  What Speed  What Speed  What Speed  What Speed  What Speed  Were Bulb lemp.  Were Bulb lemp.  Ref Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Start 5 ky Background Colol Stort June great End Seine Start Pi Cleudy End Seine What Speed J What Direction J Start 1-3 End Seine Start NE End Seine Ambiens lemp. Start End Seine Wei Bub lemp. RH Percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Start Sky Bockground Colol Start JUR GRAM End Same Start JUR GRAM End Same What Speed J What Direction Start L-3 End Same Start NE End Same Ambient lemp. Start End Same Source Layout Sketch  Draw North A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Start 5 ky Background Colol Stort JURGHAY End SAME Start Pi Claudy End SAME What Speed J What Direction J Start 1-3 End SAME Start NE End SAME Ambert lemp. Start End SAME Source Layout Sketch Draw North A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Start Sky Bockpround Colol Start JUA GRAM End Sauna Start Pickendy End Sauna What Speed J What Direction Start 1-3 End Sauna Start NE End Sauna Ambient Temp. Start End Sauna Wet Buib Temp. RH Percent Start End Sauna  Source Layout Sketch Draw North A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Start Sky Bockpround Colol Start JUA GRAM End Sauna Start Pickendy End Sauna What Speed J What Direction Start 1-3 End Sauna Start NE End Sauna Ambient Temp. Start End Sauna Wet Buib Temp. RH Percent Start End Sauna  Source Layout Sketch Draw North A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Start 5 ky Bockground Colol Stort JUA GRAY End SAME Start Pi County End SAME What Speed J Start 1-3 End SAME Start NE End SAME Ambert lemp. Start End SAME Source Layout Sketch  The County End SAME  Source Layout Sketch  The County End SAME  Source Layout Sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Start 5 ky Bockground Colol Stort JUA GRAY End SAME Start Pi County End SAME What Speed J Start 1-3 End SAME Start NE End SAME Ambert lemp. Start End SAME Source Layout Sketch  The County End SAME  Source Layout Sketch  The County End SAME  Source Layout Sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Start 5 k.y  Background Colol  Stort JUAR GRAM End SAME  Start Di Caudy End SAME  White Direction  Start 1-3 End SAME  Start NE End SAME  Ambert lemp.  Start End SAME  Source Layout Sketch  The Draw North A  Source Layout Sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Start Sky Bockground Colol Start JUA-GULAY End SAME Start Pi Cleady End SAME What Speed J Stark Start Pi Cleady End SAME What Speed J Stark Start NE End SAME Ambert lemp. Start End Same  Source Layout Sketch  The Percent  X Observation Paint  X Observation Paint  Start FEET  FEET  Character Start Same  Start Sketch  The Percent Start Sketch  The Percent Start Sketch  The Percent Start Sketch  The Percent Start Sketch  The Percent Sketch  Start Sketch  The Percent Sketch  The Percent Sketch  Start Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sketch  The Percent Sket |            |
| Start 5 ky Bockground Colol Stort JUN-GULM End SAME Start Pi Cleady End SAME What Speed J Stark Start Pi Cleady End SAME What Speed J Stark Start NE End SAME Ambert lemp. Start End Same  Source Layout Sketch  The Percent  X Observation Point  X Observation Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| Start 5 ky Bockground Colol Stort JUM-GNAM End SAME Start Pi Cleady End SAME What Speed J Stark Start Pi Cleady End SAME Start 1-3 End SAME Start NE End SAME Ambert lemp. Start End SAME Start NE End SAME Start Bub lemp. RH Percent  Source Layout Sketch  The The Test  Character's Position  Stack With Pilling Start Start  Start Pi Cleady End SAME End SAME FRET  The Test  Start Pi Cleady End SAME FRET  Start Percent  Start Pi Cleady End SAME FRET  Start Pi Cleady End SAME FRET  FET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  Start Pi Cleady End SAME FRET  Start Pi Cleady End SAME FRET  Start Pi Cleady End SAME FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  Start Pi Cleady End SAME FRET  FRET  FRET  Start Pi Cleady End SAME FRET  FRET  FRET  FRET  FRET  Start Pi Cleady End SAME FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  FRET  |            |
| Scot Sky Background Colol Stort JUM GNAM Bind Same Start Pi Cleady Bind Same Which Speed J Which Direction Start Pi Cleady Bind Same Which Speed J Start Start Pi Cleady Bind Same Which Speed J Start Start NE Bind Same Ambert lemp.  Stort Bind Same Wet Build lemp. RH Percent  Stort Bind Same  Source Layout Sketch  TIN A  X Observation Point  X Observation Point  Start Pett  FEET  FEET  Start View  Stort With Plume Sun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )          |
| Start 5 k.y Bockground Colol Start JUM-gully End Same Start Pi Couldy End Same What Speed 1 Stark Start NE End Same Ambert Temp. Start End Same Start NE End Same Ambert Temp. Start End Same  Source Layout Sketch  The Percent  X Observation Paint  X Observation Paint  Start Same  Characteristics  Start NE End Same  No Sf  X Observation Paint  Start Same  Start Same  Characteristics  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start Same  Start | )          |
| Start Sky Bockground Colol Start July Gull End Saune Start Pi Couldy End Saune What Speed I Stare Start NE End Saune Ambert lemp. Start End Saune Start NE End Saune Ambert lemp. Start End Saune Start NE End Saune Wet Buib lemp.  Source Layout Sketch  The Ind Saune  X Observation Point  X Observation Point  Stack View  Sinck View  Sinck View  Sun Location Line  Whith  Whith  Sun Location Line  Whith  Whith  Sun Location Line  Whith  Whith  Sun Location Line  Whith  Whith  Sun Location Line  Whith  Whith  Sun Location Line  Whith  Whith  Sun Location Line  Whith  Whith  Sun Location Line  Whith  Whith  Whith  Sun Location Line  Whith  Whith  Whith  Sun Location Line  Whith  Whith  Sun Location Line  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Whith  Wh | )          |

| Form Number    | 1 1     |        |   | i        | Fage | OI |  |  |
|----------------|---------|--------|---|----------|------|----|--|--|
| Continued on \ | ÆO Form | Number | ! | <u> </u> | 1    | T  |  |  |

| Downvor | on Dage |     | ime Zon | 9  | Start Time<br>1440 | 15/0     |   |
|---------|---------|-----|---------|----|--------------------|----------|---|
| Sec     | 0       | 15  | 30      | 45 |                    | Comments | ٦ |
| 1       |         |     | ס       | io |                    |          | ٦ |
| 2       | 0       | 5   | ٥       | Ö  |                    |          | ٦ |
| 3       | 0       | 0   | 0       | 0  |                    |          | ٦ |
| 4       | G       | 8   | 0       | 0  |                    |          | ٦ |
| 5       | O       | . a | ٥       | 0  |                    | -        |   |
| 6       | d       | 3   | 0       | 0  |                    |          |   |
| 7       | 0       | 0   | 0       | 0  |                    |          |   |
| . 8     | 0       | ٥   | 0       | ٥  |                    |          |   |
| Q       | ರ       | 0   | 0       | 0  |                    |          |   |
| 10      | 0       | 6   | 0       | G  |                    | ,        |   |
| 11      | o       | 0   | 0       | 0  |                    |          |   |
| 12      | O       | ٥   | 0       | 0. |                    |          |   |
| 13      | 0       | 0   | ک       | 0  |                    |          |   |
| 14      | 0       | 0   | 0       | D  |                    |          |   |
| 15      | 0       | C   | 0       | 0  |                    |          |   |
| 16      | 0       | ۵   | 0       | 8  |                    |          |   |
| 17      | ٥       | 0   | 0       | 0  |                    |          |   |
| 18      | 0       | 0   | 0       | ٥  |                    |          |   |
| 19      | 0       | ٥   | 0       | ٥  |                    |          |   |
| 20      | 0.      | ٥   | 0       | δ  |                    |          |   |
| 21      | O       | 0   | 0       | 0  |                    | ·        |   |
| 22      | b       | 0   | D       | 0  |                    |          |   |
| 23      | d       | 0   | 0       | 0  |                    | •        |   |
| 24      | ٥       | 0   | 0       | ٥  |                    |          |   |
| 25      | 0       | 0   | 0       | 0  |                    |          |   |
| 26      | d       | 0   | 0       | 0  |                    |          |   |
| 27      | 0       | 8   | 0       | 0  |                    |          |   |
| 28      | O       | å   | 0       | 0  |                    |          |   |
| 29      | 0       | 0   | 8       | 0  |                    |          |   |
| 30      | 0       | 0   | 0       | ٥  |                    |          |   |

| Observers Name (Arm) Rill Dunstan Jr. |          |
|---------------------------------------|----------|
| Willian Dunstifr                      | 2/1/01   |
| Pairfix Environmental Services        |          |
| Eastern Technical Associates          | 10/18/00 |

# 'ISIBLE EMISSION OBSERVATION FORM 1

| Memog Lives (Ora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e One)             |           |              |               |                       |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|--------------|---------------|-----------------------|----------|
| Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 203A               | 2038      | Other        |               |                       |          |
| ompany Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |           |              |               |                       |          |
| Faculty Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Andrews            | AFB       | , ,          |               |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hospital I         |           |              | PIL.          | INEE                  |          |
| ree1 Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101/1/04 3         | ·CINC     | 12(0)        | Blag.         | 103 3                 |          |
| Oty .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |           | State        |               |                       |          |
| Andrews                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AFB                |           | M            | D             | ΣÞ                    |          |
| FOC BES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |           | lunit #      | I             |                       |          |
| waste inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ineration          |           |              | Operating     | MOGE                  | 1        |
| Control Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scrubber           | _         |              | Operating     | Mode                  |          |
| Describe Emisson F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |           |              |               |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Southerny          | tion      | stack        |               |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |           | 7,000        |               |                       |          |
| teight of Emiss. Pt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |           | Height of E  | rniss, Pt. Re | I. to Observe         |          |
| Store 30'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | End Sam            | ٧         | Stort 7      | 5'            | Ford Cash             |          |
| Son 60'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | End Same           | L_        | Start 3      | SNE           | (Degrees)<br>End Skm  |          |
| Vernical Angle to C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |           |              | o Obs. Pt. (  |                       |          |
| Start 20°<br>Distance and Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | End Same           |           | Start 3      | 5 NE          | Degrees)<br>End Salk- | . 1      |
| Start 15 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion to Observa    | non Poini |              | on Point      |                       | -        |
| Descabe Emissons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |           | 60 0.        | 744           |                       |          |
| sor him                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (steam)            | 1         | End 5        | ane           |                       |          |
| Ermanon Color<br>Stort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | End Same           |           | Water Dro    | clet Plume    |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |           | IAttached    | Ø Dete        | oched                 | None     |
| Start Sky Bockground Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |           | End C        |               |                       | ·        |
| soon have great                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |           | Say Cond     | Hone          |                       |          |
| Wha Speed 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | End Sam            | <u> </u>  | Start Pi &   |               | End Silv              | 4        |
| Start (~ 5<br>Ambient lemp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | End Say            | <u> </u>  | Start N      |               | Find Sala             | ne_      |
| Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | End Sam            |           |              |               | MIL POICO             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |           |              |               |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sc                 | rurce La  | yout Sketc   | ch            |                       | MN TIME  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /u                 | 1507      |              |               |                       | 7        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                  | 159/      |              |               | . ( ,                 | ( )      |
| i ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |           |              |               | . (                   | <i>S</i> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / X                | Observo   | Mon Point    |               |                       |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |           |              |               |                       | ·        |
| }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                  |           |              | lΠt           |                       | FETT     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |           |              | 1             |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -         |              | -             |                       | .FEET    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | COSONO    | r's Position | <u> </u>      | Stack                 |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140                |           |              |               | With                  | 0        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****************** |           |              |               | a.n                   | <b>Φ</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sun Local          | ion Line  |              |               | Wind                  |          |
| Longitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lot                | tude      |              | Deci          | nation                |          |
| O de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l |                    |           |              | L_            |                       |          |
| Additional Inform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | altion .           |           |              |               |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |           |              |               |                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |           |              |               |                       | ,        |

| om Number                  | i Page | Y |              |
|----------------------------|--------|---|--------------|
| Casa                       |        |   | <del>,</del> |
| Continued on VEO form Numb | er     |   |              |

|        |         |    |          |    |            |     | L     |      |              |
|--------|---------|----|----------|----|------------|-----|-------|------|--------------|
| Domeno | on Daye |    | îme zone |    | Start Time |     | End I | 1540 |              |
| 2/     |         |    | EST      |    | 1510       |     |       |      | <del>,</del> |
| Mn     | 0 .     | 15 | 30       | 45 |            | Com | ment  |      |              |
| 1      | ٥       | 0  | ٥        | ð  | -          |     |       |      |              |
| 2      | ٥       | 0  | c        | 0  |            |     |       |      |              |
| 3      | ٥       | ٥  | 0        | 5  |            |     |       |      |              |
| 4      | 0       | 0  | 0        | 0  |            |     |       |      |              |
| 5      | 0       | .0 | 0        | ٥  |            |     |       |      |              |
| ٥      | 0       | o  | 0        | υ  |            |     |       |      |              |
| 7      | 0       | 0  | 0        | 0  |            |     |       |      |              |
| . 8    | ٥       | 0  | 0        | 0  |            |     |       |      |              |
| 9      | Φ       | ٥  | 0        | ٥  |            |     |       |      |              |
| 10     | 0       | 0  | Ö        | 0  |            |     |       |      |              |
| 11     | 0       | 0  | 0        | 0  |            |     |       |      |              |
| 12     | 0       | 0  | 0        | 0  |            |     |       |      |              |
| 13     | 0       | 0  | 0        | 0  |            |     |       |      |              |
| 14     | 6       | 0  | 0        | 0  |            |     |       |      |              |
| 15     | O       | 0  | 0        | 0  |            |     |       |      |              |
| 16     | 6       | 0  | 0        | 0  |            |     |       |      | ····         |
| 17     | 0       | 0  | 6        | 0  |            |     |       |      |              |
| 18     | 0       | 0  | 0        | 0  | <u> </u>   |     |       |      |              |
| 19     | Ö       | 0  | 0        | 0  |            |     |       |      |              |
| 20     | 0       | 0  | 0        | D  |            |     |       |      |              |
| 21     | 0.      | 6  | 0        | 0  | ·          | • . |       |      |              |
| 22     | 0       | Q  | 0        | 9  |            |     |       |      |              |
| 23     | 0       | 0  | O        | 0  |            |     | ٠     |      |              |
| 24     | ö       | ō  | 8        | 0  |            |     |       |      |              |
| 25     | 0       | 0  | o        | 8  |            |     |       |      |              |
| 26     | 0       | 0  | 8        | 0  |            |     |       |      |              |
| v      | 0       | σ  | 8        | 0  |            |     |       |      |              |
| 28     | 0       | 0  | G        | 0  |            |     |       |      |              |
| 29     | 0       | 0  | ث        | 0  |            |     |       |      |              |
| 30     | 0       | ට  | ٥        | Ð  | ·          |     |       | ٠    |              |
|        |         |    |          |    |            |     |       |      |              |

| Observer's Harme (Pite) Rill Duncton IV |          |
|-----------------------------------------|----------|
| Bill Duncton IV. William Dunstage       | 2/1/01   |
| Pacific Environmental Services          |          |
| Eastern Technical Associates            | 10/18/00 |

# VISIBLE EMISSION OBSERVATION FORM 1

| Mercog Used (Circle One)                    |                       |                  |                  |
|---------------------------------------------|-----------------------|------------------|------------------|
| Methody 203A 2038                           | Other.                |                  | <b>\</b>         |
|                                             |                       |                  |                  |
| Company Name                                |                       |                  |                  |
| Andrew AGE                                  |                       |                  | 1                |
| Andrews AFB                                 |                       |                  |                  |
| 11 -41 +                                    | +.                    | 201              |                  |
| Hospital Inciner                            | alor -                | 5/dg. 10         | 5.5              |
| Sireet Address                              |                       | 0                |                  |
|                                             |                       |                  |                  |
| City A A ASS                                | State                 | Zt               |                  |
| Andrews AFB                                 | MI                    |                  |                  |
|                                             |                       |                  |                  |
|                                             | Unit #                | perating M       | XX99             |
| waste incineration                          |                       |                  |                  |
| Control Equipment                           | C                     | perating M       | ocie             |
| Scrubber                                    |                       |                  |                  |
|                                             |                       |                  |                  |
| Descabe Errisson Point                      | 1 1                   | 1                |                  |
| Southern                                    | unit sta              | ck               | ŀ                |
|                                             |                       |                  |                  |
|                                             |                       |                  |                  |
| Height of Ernss. Pt.                        | Height of En          | iss. Pt. Red. to | Observer         |
| Stort 30' End Same                          | Stort 25              | /                | d Same           |
| Distance to Erniss, Pt.                     | Direction to          | Emiss. Pt (Da    | erreal)          |
| STON 80' END SOME                           | Start 30              |                  | •                |
| SS. NO VINCE                                | Jaican JC             | VIC B            | d Same           |
| Vertical Angle to Obs. Pt.                  | Direction to          | Ohe DI (De       | (2004)           |
| Sion 20° and Same                           | Sen 32                |                  |                  |
| Distance and Direction to Observation Point |                       |                  | to Sqine         |
| Start 15' above                             |                       |                  |                  |
| (Sidi /) ACOUT                              | End 844               | <u> </u>         |                  |
| Descape Erressors                           |                       |                  |                  |
|                                             | - 54                  |                  |                  |
| Francisco Color Steam                       | End 54                | ***              | ·                |
|                                             |                       | -                |                  |
| Stort End Sake                              | Affached              | M Detoc          | hed None         |
| Descape Pume Background                     |                       |                  |                  |
| Chu                                         |                       |                  | •                |
| Bockground Color                            | Snd Sa<br>Sky Condtik | me               |                  |
|                                             |                       |                  |                  |
| White Speed (                               | son fich              | MAY E            | nd same          |
| 1-2                                         | Wnd Direct            | ion J            |                  |
| Amberi lemo.                                | Start Me              |                  | nd same          |
|                                             | Wet Buth le           | mp.              | RH Percent       |
| Stort End Store                             |                       |                  | •                |
|                                             |                       |                  |                  |
|                                             |                       |                  | Draw North Arrow |
| Source fo                                   | yout Sketcl           | 1                |                  |
|                                             |                       |                  | □IN □MN          |

|           | Source Layout Sketch | Drow North Arrow       |
|-----------|----------------------|------------------------|
|           | X Observation Paint  |                        |
|           | Observer's Position  | FET Son View           |
|           | 140                  | Stock<br>With<br>Plume |
|           | Sun Location Line    | Wnd                    |
| Longitude | Lottude              | Declination            |

| om vumber                    | 1 1 | • |     |  |
|------------------------------|-----|---|-----|--|
|                              |     |   |     |  |
| Continued on VEO form Number |     |   | 1 1 |  |

| 2   | on Dage | t        | Time Zon    | ×9 | start time<br>1540 | End lime |             |
|-----|---------|----------|-------------|----|--------------------|----------|-------------|
| Sec | 0       | 15       | 30          | 45 | 1                  | Comments |             |
| 1   | 0       | j.       |             | 0  |                    |          |             |
| 2   | 0       | 0        | 0           | 0  |                    |          |             |
| 3   | 0       | 0        | 0           | 0  |                    |          |             |
| 4   | 0       | 0        | 0           | 0  |                    |          |             |
| 5   | 0       | 0        | 0           | 0  |                    |          |             |
| ٥   | o       | 0        | 0           | O  |                    |          |             |
| 7   | 0       | 9        | D           | 0  |                    |          |             |
| 8   | D       | 0        | 0           | 0  |                    |          |             |
| 9   | 0       | ٥        | 0           | 0  |                    |          |             |
| 10  | 0       | 0        | 0           | 9  |                    |          |             |
| 11  | 0       | 0        | 0.          | B  |                    |          |             |
| 12  | 0       | 0        | 0           | 0  | ·                  |          |             |
| 13  | 0       | 0        | 0           | 1  | >                  |          |             |
| 14  | ٥       | 0        | 0           | 0  |                    |          |             |
| 15  | D       | 6        | 0           | 6  |                    |          |             |
| 16  | 0       | 0        | 0           | ā  |                    |          |             |
| 17  | ð       | 0        | 0           | 0  | ·                  |          |             |
| 18  | 0       | 8        | 0           | 0  |                    |          |             |
| 19  | 0       | 0        | 0           | *  |                    |          |             |
| 20  | 0.      | 8        | 8           | 0  |                    | ···-     |             |
| 21  | 0       | 0        | 0           | P  |                    | -        |             |
| 22  | 0       | 0        | -           | 1  |                    |          | ·           |
| 23  | 0       | 0        | <del></del> | -  |                    |          |             |
| 24  | 0       | +-       | _           |    | »                  |          |             |
| 25  | 0       | $\dashv$ | <del></del> |    | 3                  |          |             |
| 27  |         | -        |             | _  |                    | •        | <del></del> |
| 28  | +-      | 0        | -           |    | 2                  | ·        |             |
| 29  | - 6     |          | -           | _  | ·                  |          | <del></del> |
| 30  | +       | -        |             |    | <u> </u>           |          |             |
|     |         | 2 6      | 5 6         | ,  | 8                  |          |             |

| ئة |
|----|
|    |
| _  |

# ISIBLE EMISSION OBSERVATION FORM 1

|                                           |                      |              | TTT OKIVI I              |
|-------------------------------------------|----------------------|--------------|--------------------------|
| Methodo 203A 2038                         | Othe                 |              |                          |
| 200                                       | Olino                | <u> </u>     |                          |
| ompany Name A                             |                      |              |                          |
| FOOTHY NOTE AND AFE                       | >                    |              |                          |
| Haratal To                                | +.                   | CUL          |                          |
| Hospital Incine                           | rator -              | · Blag.      | 105 5                    |
|                                           |                      | 0            |                          |
| City A A A A S                            | State                |              | Ζp                       |
| Andrews AFB                               | /                    | D            |                          |
| roces ,                                   | lunit #              | Operating    | Mode                     |
| waste incineration                        |                      | Spandin U    | mode                     |
| Control Equipment .                       |                      | Operating    | Mode                     |
| <u>5crubber</u>                           |                      |              |                          |
| Describe Ernssion Point                   |                      |              |                          |
| Sinthernm                                 | 55                   | ck           |                          |
|                                           |                      |              |                          |
| leight of Erriss, Pt.                     | Height of            | rries De D-  | I, to Observer           |
| Stort 30' End Same                        | Start 25             | -/           | Ford Came                |
| Distance to Erriss. Pt.                   | Direction t          | o Emis. Pt.  | (Degrees)                |
| stort 80' End Style                       | Start 3              | 8°NE         | End Skime                |
| Vernical Angle to Obs. Pt.                | Direction 1          | o Obs. Pt. ( | Degreet)                 |
| Ston 20° End Same                         | 2                    | AL AFT.      | End Same                 |
| Stance and Direction to Observation Point |                      | on Point     |                          |
|                                           | End 8º               | me           |                          |
| Descabe Errassors                         | _                    |              |                          |
| STOT MAKE (STEAM)                         | End 5                | plet Pume    |                          |
| STON - END STATE                          | Affached             | 773          | oched None               |
| Describe Plume Background                 |                      |              | ALTEGOL NOTE             |
| son Sky                                   |                      |              |                          |
| pocadionua (raio)                         | End S                | RANG.        |                          |
| Star blue anous and Same                  | Start Pr C           | loudy        | End Skine                |
| sor 1-3 see can                           |                      |              |                          |
| Stor -3 End Same                          | Start N<br>Wet Build | ernp.        | End Source<br>RH Percent |
| Stort End Same                            |                      |              |                          |
|                                           |                      |              |                          |
| Source La                                 | yout Sketc           | ±h           | Draw North Allow         |
|                                           |                      |              | □IN □MN                  |
| LEST!                                     |                      |              |                          |
|                                           |                      |              | $(\ \ \ \ \ )$           |
|                                           | _                    |              |                          |
| X Observa                                 | Hon Point            |              |                          |
|                                           |                      |              |                          |
| 1                                         |                      |              |                          |
|                                           |                      |              |                          |
|                                           |                      | 1            |                          |
|                                           |                      | -            |                          |
| Observer                                  | 's Poeltion          | <u> </u>     | Side View                |
| 1,000                                     |                      |              | Stack<br>With            |
| 1                                         |                      | _            | Purne                    |
| Sun Location Line                         | **********           |              | an ⊕                     |
|                                           |                      |              | Wnd                      |
| Longitude                                 |                      | Deck         | nation                   |
| ·                                         |                      |              |                          |
| Additional information                    |                      |              |                          |
|                                           |                      |              |                          |
|                                           |                      |              |                          |
|                                           |                      |              |                          |

| I 19Omun mo     |          | 1 1      | : iPage | (   | )t  |     |
|-----------------|----------|----------|---------|-----|-----|-----|
|                 | i        | 1 1      |         | `   |     |     |
| 1               |          |          |         |     |     |     |
| continued on VE | D form ( | Number . |         | - 1 | - 1 | 1 1 |

|          |    |     |                  |    |                    | 1   |                  |   |
|----------|----|-----|------------------|----|--------------------|-----|------------------|---|
| Observan |    | ) ( | ime Zone<br>ES 1 |    | Start Time<br>/6/č |     | 6nd lime<br>/640 |   |
| Sec      | 0  | 15  | 30               | 45 |                    | Com | ments            | ٦ |
| 1        | 0  | D   | 0                | б  |                    |     |                  | ٦ |
| 2        | Ø. | 0   | 0                | 0  |                    |     |                  | ٦ |
| 3        | 0  | 0   | 0                | o  |                    |     |                  | ٦ |
| 4        | 0  | С   | ć                | 0. |                    |     |                  |   |
| 5        | 0  | 0   | رح               | 0  |                    |     |                  |   |
| 6        | 0  | 0   | Э                | 0  |                    |     |                  |   |
| 7        | ٥  | ઇ   | 0                | 0  |                    |     |                  |   |
| . 8      | c  | 0   | 0                | ٥  |                    |     |                  |   |
| 9        | 0  | 8   | ٥                | 0  |                    |     |                  |   |
| 10       | 0  | 8   | 0                | 0  |                    |     |                  |   |
| 11       | Ó  | 0   | 6                | 0  |                    |     |                  |   |
| 12       | o  | 9   | 0                | 0  |                    |     |                  |   |
| 13       | 0  | 0   | ٥                | ٥  |                    |     | -                |   |
| 14       | Q  | 0   | G                | 6  |                    |     |                  |   |
| 15       | 0  | 9   | 0                | ٥  |                    |     |                  |   |
| 16       | 8  | 0   | 0                | 0  | <u> </u>           |     |                  |   |
| 17       | σ  | ٥   | 0                | 0. |                    |     |                  |   |
| 18       | 0  | d   | 0                | 0  |                    |     |                  |   |
| 19       | 0  | 0   | 0                | 0  |                    |     |                  |   |
| 20       | 0. | 0   | Ò                | 0  |                    |     |                  |   |
| 21       | 6  | 0   | a                | 0  |                    | •   |                  |   |
| 22       | 0  | 0   | ó                | 0  |                    |     |                  |   |
| 23       | 2  | 0   | 1 3              | 0  | _                  |     |                  |   |
| 24       | 0  | 0   | 0.               | 0  |                    |     |                  |   |
| 25       | 0  | 8   | 0                | 0  |                    |     |                  |   |
| 26       | 0  | 0   | 0                | 0  |                    |     |                  |   |
| v        | 0  | 0   | ð                | 0  |                    |     |                  |   |
| 20       | 0  | 0   | 0                | 0  |                    |     |                  |   |
| 29       | 0  | 0   | 0                | 0  |                    |     |                  |   |
| 30       | 0  | 0   | 0                | δ  |                    |     | ٠                |   |

| Commers Norma (Arri)  Bill Dunstan Jr.  Commers Sorices |          |
|---------------------------------------------------------|----------|
| William Dunstedor.                                      | 2/1/01   |
| Pacific Environmental Services                          |          |
| Eastern Technical Associates                            | 10/18/00 |

# VISIBLE EMISSION OBSERVATION FORM 1

| Aemos Less (Orde             | One)           |               |             |               |                  |
|------------------------------|----------------|---------------|-------------|---------------|------------------|
| Methoop9                     | 203A           | 2038          | Other       | :             |                  |
|                              |                |               |             |               |                  |
| Company Name                 | Jul            | ACP           |             |               |                  |
|                              | Indrews        |               |             |               |                  |
| 4                            | ospital:       | Theire        | rator-      | DIL.          | INEE             |
| reet Address                 | extury "       | <u> retre</u> | 12101       | Blag.         | (C 2 2)          |
|                              |                |               |             | •             |                  |
| OTY .                        |                |               | State       |               | Δp               |
| Andrews                      | AFB            |               | M           | $\mathcal{D}$ |                  |
|                              |                |               |             |               | <u> </u>         |
| roces                        | ٠.             |               | Unit #      | Operating     | Mode             |
| waste inci                   | nerallon       |               |             |               |                  |
| 20 IIIO EQUIPMEN             | Scrubbe        |               |             | Operating     | Mode             |
|                              | 2 C1 W602      |               |             | <u> </u>      | *******          |
| Descabe Emisson Po           | in and         |               | L           |               |                  |
|                              | South          | nernu         | * stacl     | (             |                  |
|                              |                |               |             |               |                  |
|                              |                |               |             |               |                  |
| teight of Erniss. Pt.        |                |               |             |               | i, to Observer   |
| ton 30 /                     | End Sal        | me            | Start 2     | 5'            | End Same         |
| 1- /                         | •              |               | Direction t | o Erniss. Pl. | (Decreas)        |
| on 108"                      | End Cou        | <u>u</u>      | istor 55    | Y NW          | End Skime        |
| errical Angle to Ot          | x. Pt.         |               | Direction   | o Obs. Pt. (  | (Decrees)        |
| 101 20°                      | End San        | e             |             | NE.           | End Saula        |
| Sationce and Direct          | ion to Observe | ation Point   | from Emissi |               | ON DAME          |
| 70-30                        | 1=             |               | End 8       | the           |                  |
| Descape Emissions            |                |               |             |               |                  |
|                              | steam)         |               |             | ( n           |                  |
| Emission Color               |                |               | End S       | CIME PLITTE   |                  |
| 901                          | End Sak        | ,             |             | ⊠ Del         |                  |
|                              |                |               |             | 7 001         | Wind None        |
| Describe Purne Box           | *ground ·      |               |             |               |                  |
| son SKY<br>Bockground, Color |                |               | End S       | ane           |                  |
| son Hue Whit                 |                |               |             |               |                  |
| Who Speed                    | r no 7th       | <u>u</u>      | Start P. (  | TOO           | End Same         |
| son 1-3                      | End Sau        | <b></b>       | son E       |               | End same         |
| Ambent lemp.                 |                | <u> </u>      | Wet Build   | етр.          | RH Percent       |
| ston 10°C                    | End San        | Ne            |             |               |                  |
|                              |                |               |             |               |                  |
|                              | s              | ource La      | yout Sketc  | -h            | Draw North Arroy |
|                              |                |               |             |               | DIN DWN          |
|                              |                |               | HOSP        |               |                  |
|                              | 7              | ~             | 7050        | 7             | (7)              |
|                              | 3              |               | 1           | /             | . \ / /          |
| (                            |                |               | $\sim$      |               |                  |
| `                            | \ <b>&gt;</b>  | Observo       | Man Point   |               |                  |
|                              | $\setminus$    |               |             |               | ,                |
|                              |                |               |             |               |                  |
|                              |                |               |             | I∏t           | FET              |
|                              |                |               |             | H             |                  |
|                              |                | _             | _           | IT            | FEET             |
|                              |                |               | -           |               |                  |
|                              |                | Observe       | 's Position |               | Sce Vew          |
|                              |                | >             |             |               | Stock            |
|                              | -14            |               |             |               | With O           |
|                              |                |               |             |               | an 🕁             |
|                              | Suntoc         | cilon Line    |             | ~~~~~~        | +                |
| Longitude                    | 1              | -             |             | 12            | Wnd              |
| U.C.                         | الم            | attude        |             | Dec           | inction          |
| <u> </u>                     |                |               | -           |               |                  |
| Additional Fromo             | non            |               |             |               |                  |
|                              |                |               |             |               |                  |
|                              |                |               |             |               |                  |
|                              |                |               |             |               |                  |
|                              |                |               |             |               |                  |

| orm Number                   | Page | Ot |     |
|------------------------------|------|----|-----|
| Continued on VEO form Number |      |    | 1 1 |
|                              |      |    | 1 1 |

| bservar | on Daye |    | lime Zone |    | Start Time |     | End Time |
|---------|---------|----|-----------|----|------------|-----|----------|
| 21      | 2/0     |    | EST       |    | 945        |     | 1015     |
| An Sec  | 0 .     | 15 | 30        | 45 |            | Com | menti    |
| 1       | 0       | 0  | 0         | O  |            |     |          |
| 2       | 0       | o  | 0         | 0  | ·          |     |          |
| 3       | 0       | 0  | 0         | 0  |            |     |          |
| 4       | 0       | C  | O         | 0  |            |     |          |
| 5       | 6       | Ø  | 0         | 0  |            |     |          |
| ٥       | 0       | 0  | 0         | 0  |            |     |          |
| 7       | 0       | 0  | 0         | Q  |            |     |          |
|         | ٥       | 0  | 0         | 0  |            |     |          |
| 9       | 0       | 0  | Ð         | B  |            |     |          |
| 10      | 0       | 0  | 0         | 0  |            |     |          |
| 11      | 6       | ٥  | 0         | 0  |            |     |          |
| 12      | 0       | S  | 0         | 0  | ·          |     |          |
| 13      | 8       | 0  | 0         | ٥  |            |     |          |
| 14      | 2       | 0  | 0         | 0  |            |     |          |
| 15      | a       | 0  | 0         | 0  |            |     |          |
| 16      | 0       | 0  | 0         | 0  |            |     |          |
| 17      | 0       | 0  | 0         | 0  |            |     |          |
| 18      | 0       | ٥  | 0         | 0  |            |     |          |
| 19      | 0       | 0  | 8         | 0  |            |     | ,        |
| 20      | ۵.      | 0  | 0         | 8  |            |     |          |
| 21      | 0       | 0  | 0         | 0  | -          | ٠.  |          |
| 22      | 0       | D  | 0         | 0  |            |     |          |
| 23      | ٥       | ٥  | 0         | 0  |            |     |          |
| 24      | 0       | 0  | 0         | a  |            |     |          |
| 25      | 0       | 0  | 0         | 0  |            |     |          |
| 26      | 0       | 0  | 0         | ٥  |            |     |          |
| 27      | 0       | 0  | 0         | 0  |            |     |          |
| 26      | ٥       | 0  | 0         | 0  |            |     |          |
| 29      | 0       | 6  | .0        | 0  |            |     | •        |
| 30      | 0       | 0  | 0         | 2  | ,          |     |          |

| Observers Name (Arre)  Rill Duncton IV  Observers sonous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| William Dunstafra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/2/01     |
| Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition Priorition |            |
| Eastern Technical Associates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/18/2000 |

# ISIBLE EMISSION OBSERVATION FORM

| ISIBLE EMISSION O                           | R2FIK A       | AHO           | N FOI         | 5M 1         |
|---------------------------------------------|---------------|---------------|---------------|--------------|
| Memoral Lead (Orde One)                     |               |               |               |              |
| Melhood 203A 2038                           | Other.        |               |               |              |
| ompany Name                                 |               |               |               |              |
| Andrew: AER                                 | 5             |               |               | 1            |
|                                             |               | 2:1           |               |              |
| Hospital Incine                             | ralor -       | Bldg.         | 1055          |              |
| 1                                           |               |               |               |              |
| Andrews AFB                                 | State M       |               | Δp            |              |
| WINN HLD                                    | M             | $\nu$         |               |              |
| Toces                                       | Unit #        | Operating     | Мосте         |              |
| waste incineration                          |               |               |               |              |
| 5 crubber                                   |               | Oberating     | Mode          |              |
|                                             |               |               |               |              |
| Describe Emission Point Jaw herh w          | + +.          | 1             |               |              |
| general in the                              | wi slace      | ck            |               |              |
|                                             |               |               |               |              |
| Start (20 End Same                          |               | TESS. Pt. Red | , 10 Observer |              |
| Distance to Emiss. Pt.                      | Start 25      |               | End Same      |              |
| start 100' End Come                         | Start 344     | 7 4 4 4 1     | End Skime     |              |
| Vernical Angle to Obs. Pt.                  |               |               |               |              |
| Ston 2.50° For Sane                         | an 10         | NE NE         |               |              |
| Distance and Direction to Observation Point | from Ernissio | n Point       | End Same      |              |
| 301 20-30 E                                 | End 84        | me            |               |              |
| Describe Erresors                           |               |               |               |              |
| Start hone (steem)                          | End SA        | me            |               |              |
| Stort - End Same                            | Affached      |               | ched          | None 🗌       |
| Describe Purne Bockground                   |               |               | CHOOL         | None         |
| son Sky                                     | 6             |               |               |              |
| Background Color                            | Sky Condti    |               |               |              |
| Stort blue white End Same                   | Stort D. C    | يد المنها     | End Selec     |              |
| sion 1-3 and same                           | Who Direct    | tion (/       | ctu           |              |
| Ambers lemp.                                | Wet Bub le    | mp.           | RH Percent    | <u> </u>     |
| Stor 4 C End Same                           |               |               |               |              |
|                                             |               |               | D- Alam       |              |
| source ro                                   | yout Sketch   | h             | Draw North    |              |
| 1 ,                                         | 111           |               |               |              |
| 1                                           | HOSP          | ,             | -(7)          | 1)           |
| $1 - \chi$                                  | 7             |               | · V           | ノ            |
| X Observo                                   | Con Dring     |               |               |              |
| \ \ \                                       | MULTURE E     |               |               |              |
|                                             |               |               |               |              |
| 1                                           |               | ΙΠt           |               | o            |
| 1                                           |               | 10            |               |              |
| -                                           | _             |               |               | ET .         |
| Observer                                    | a Position    | '             | Scto View     | . 1          |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\      |               |               | Stock<br>With |              |
| -141-                                       |               | _             | Rume          |              |
| Sun Location Line                           |               |               | 9.n           | <del>+</del> |
| with complete                               |               |               |               |              |

Wnd

Declination

| orm Number                 | Fage | Of |   |
|----------------------------|------|----|---|
|                            |      |    |   |
| onthued on VEO form Number |      |    | T |

| Observat | 2/0 | ) 1 | lime Zone<br>EST | 2  | lar lime | End     | 1045        |
|----------|-----|-----|------------------|----|----------|---------|-------------|
| Sec      | 0   | 15  | 30               | 45 |          | Comment |             |
| 1        | 0   | 0   | 0                | С  |          |         |             |
| 2        | 8   | 0   | ٥                | 0  |          |         |             |
| 3        | 0   | 0   | 0                | D  |          |         |             |
| 4        | ۵   | 0   | Ð                | 0. |          |         |             |
| · 5      | Q   | ō   | 0                | 0  |          |         |             |
| ٥        | 6   | O   | 0                | Ø  |          |         |             |
| 7        | o   | D   | 0                | 6  |          |         |             |
| . 8      | 0   | 0   | 0                | G  |          |         |             |
| 9        | 0   | 0   | Ö                | 6  |          |         |             |
| 10       | 0   | 0   | 6                | P  |          |         |             |
| 11       | 0   | ь   | e                | 0  |          |         |             |
| 12       | 0   | 0   | 0                | 0  |          |         |             |
| 13       | 0   | 0   | 0                | 0  |          |         |             |
| 14       | 0   | 0   | 0                | 0  |          |         |             |
| 15       | 0   | 0   | 0                | 0  | <u> </u> |         |             |
| 16       | 0   | 0   | 6                | 0  | <u> </u> |         |             |
| 17       | 0   | 0   | 8                | 9. | ·        |         |             |
| 18       | 6   | 0   | 0                | 0  |          |         |             |
| 19       | 6   | G   | 0                | 8  | ļ        |         |             |
| 20       | ٥.  | 0   | Ö                | 0  |          |         |             |
| 21       | 0   | D   | b                | 0  |          | · ·     |             |
| 22       | 0   | _   | 9                | 0  |          |         | ·           |
| 23       | Q   | 9   | 0                | 0  |          | -       |             |
| 24       | 0   | ٥   | O                | 0  |          |         |             |
| 25       | 0   | 0   | 0                | 0  |          |         | <del></del> |
| 26       | 0   | 0   | 0                | 10 | -        | •       |             |
| 27       | 6   | 0   | 0                | 10 | -        |         |             |
| 28       | 0   | 0   | 0                | 0  |          |         |             |
| 29       | 0   | 0   | 0                | 0  | ļ        |         |             |
| 30       | 6   | 0   | 0                | 0  |          | •       |             |

| Bill Dunstan IV.  William Dieust Are |          |
|--------------------------------------|----------|
| Willian Dienster                     | 2/2/01   |
| Pacific Environmental Services       |          |
| Eastern Technical Associates         | 10/18/00 |

Additional Information

Longitude

Lattude

# VISIBLE EMISSION OBSERVATION FORM 1

| Method9                           | One)<br>203A            | 2038         | Other       | :                   |                  |
|-----------------------------------|-------------------------|--------------|-------------|---------------------|------------------|
| Company Name                      |                         |              |             |                     |                  |
| - A                               | Indrew                  |              |             |                     |                  |
| Н                                 | ospital                 | Incine       | rator -     | Bldg.               | 1055             |
|                                   |                         |              |             | 0                   | ·                |
| Andrews                           | AFB                     |              | State M     | D                   | Ζp               |
| Proc ess                          |                         |              | Unit #      | Operating           | . Wasai          |
| waste inch                        | neration                | n            |             |                     |                  |
|                                   | 5crubb.                 | er           |             | Operating           | Mode             |
| Describe Emission Po              | *ni _                   | .+           | , 1         |                     |                  |
|                                   | <u> </u>                | ithern       | most sta    | rek_                | -                |
| Height of Erness, Pt.             |                         |              | Height of E | rries Pl De         | . to Observer    |
| Start 30 / Distance to Ermiss, Pl | End So                  | ine          | sion 2      | 5′                  | End Same         |
| son RO'                           | End Cal                 | ne           | Stort 30    | o Emilia. Pi.<br>NE | End Same         |
| Vernca Ange to Ot                 |                         |              | Olrection i | o Obs. Pt. (        | Degrees)         |
| Start 20°                         | End SAM<br>son to Obsen | vation Point | Stort 4     | SPNE<br>on Point    | End Same         |
| ston 15 E                         |                         |              |             | me                  |                  |
| Stort Nake (                      | steam                   |              |             | <b>(14.</b>         |                  |
| Ernesson Color                    | ,,,,,,                  | <del></del>  | Water Dro   | CML<br>plot Purno   | <u> </u>         |
| 301                               | End Sala                | يو           | Attached    | Det                 | oched None       |
| Start Sky                         | okground ·              |              | End S       | den e               |                  |
| Bockground Color                  | End Sav                 |              | Sky Cond    | tions ;             |                  |
| Wha Speed                         |                         |              |             | ction               |                  |
| Ambert lemp.                      | End Sa                  |              | Stort Bulb  | lemp.               | RH Percent       |
| Stor 110                          | End Sa                  | me.          |             |                     |                  |
|                                   |                         | Source La    | yout Sketc  | ⇒h                  | Draw North Arrow |
|                                   | Ti.                     | laco         | 7           |                     | DIN DWN          |
|                                   | 1                       | IOSP         |             |                     |                  |
| ·                                 |                         | •            |             |                     |                  |
|                                   |                         | X Observa    | llan Paint  |                     |                  |
|                                   |                         |              |             |                     |                  |
|                                   |                         | )            | -           | 1                   |                  |
|                                   |                         |              |             | ۔ ا                 | FEET             |
|                                   |                         | Observer     | 's Position |                     | Scie View        |
| _                                 |                         | 40           |             |                     | Stock<br>With    |
|                                   |                         | ·····        |             |                     | Sun +            |
|                                   | Suntoc                  | cation tine  |             |                     | Wnd              |
| Longitude                         | · ·                     | citiude      |             | Dec                 | incition         |
| Additional Informa                | ean                     |              |             |                     |                  |
|                                   |                         |              |             |                     |                  |
| 1                                 |                         |              |             |                     |                  |

| Form Number      |        | 1 1   | Of |  |  |  |  |
|------------------|--------|-------|----|--|--|--|--|
|                  |        |       |    |  |  |  |  |
| Continued on VEC | Form N | umber |    |  |  |  |  |

|           |          |     |           |    |         |      |    | 1       |       |    | 1_  |             | ١ |
|-----------|----------|-----|-----------|----|---------|------|----|---------|-------|----|-----|-------------|---|
|           | non Daje |     | lime Zone | )  | Stort   | Time | 7- | <i></i> | End I | me | :31 |             | ٦ |
| 21        | 2/0      | 1   | EST       |    | _       | /    | LL |         |       |    | 16. | 2           | 4 |
| Sec<br>Mn | 0        | 15  | 30        | 45 | _       |      |    |         | ment  | 1  |     |             |   |
| 1         | C        | 0   | ь         | ro | _       |      |    |         |       |    |     |             |   |
| 2         | 0        | 0   | 0         | 0  |         |      |    |         |       |    |     |             |   |
| 3         | 0        | 0   | 6         | ð  |         |      |    |         |       |    |     |             |   |
| 4         | Ö        | ٥   | ٥         | ٥. |         |      |    |         |       |    |     |             |   |
| 5         | 0        | . 0 | 0         | 0  |         |      |    |         |       |    |     |             |   |
| ò         | 0        | ٥   | ъ         | 0  |         |      |    |         |       |    |     |             |   |
| 7         | 0        | 0   | 0         | 0  |         |      |    |         |       |    |     |             |   |
| 8         | σ        | 0   | 0         | 8  | $\perp$ |      |    |         |       |    |     |             |   |
| 9         | 0        | a   | c         | 0  | 1       |      |    |         |       |    |     |             |   |
| 10        | 0        | ð   | 0         | 0  | _       |      |    |         |       |    |     |             |   |
| 11        | O        | 0   | 2         | 0  | $\perp$ |      |    |         |       |    |     |             |   |
| 12        | 5        | 0   | 0         | 0  | 1       |      |    |         |       |    | ٠   |             | • |
| 13        | æ        | 0   | 0         | 0  | 1       |      |    |         |       |    |     |             |   |
| 14        | 8        | ٥   | 0         | 0  | 1       |      |    |         |       |    |     |             |   |
| 15        | 0        | 0   | 0         | 0  | 1       |      |    |         |       |    |     |             | _ |
| 16        | 0        | 0   | 0         | 0  | $\perp$ |      |    |         |       |    |     | _           |   |
| 17        | 0        | 0   | 0         | 0  | $\bot$  |      |    |         |       | -  |     |             |   |
| 18        | 8        | 0   | 0         | D  | $\bot$  |      |    |         |       |    |     |             |   |
| 19        | 0        | 0   | 0         | 0  | _       |      |    |         |       |    |     |             | _ |
| 20        | 10       | 0   | 0         | 0  | 4       |      |    |         |       |    |     |             |   |
| 21        | 0        | 3   | 0         | 0  | -+      |      |    | •       |       |    |     |             | _ |
| 22        | 0        | 0   | 0         | 0  | -+      |      |    |         |       |    |     |             |   |
| 23        | 0        | 0   | 0         | 0  | -       | _    |    |         |       | •  |     |             | _ |
| 24        | σ        | 0   | 0         | 0  | -       |      |    |         |       |    |     |             |   |
| 25        | σ        | 0   | 0         | 0  | _       |      |    |         |       |    |     |             |   |
| 26        | 0        | 0   | 0         | 0  | _       |      |    |         | •     |    |     |             | _ |
| 20        | 0        | 0   | 0         | 0  |         |      | _  |         |       |    |     |             |   |
| 28        | 0        | 0   | 0         | 10 | 2       |      |    |         |       |    |     |             |   |
| 27        | 10       | 0   | .00       | t  | 2       | ·    |    |         |       |    |     | <del></del> |   |
| 30        | 0        | 0   | 0         | 10 | >_      |      |    | • •     |       |    |     |             |   |

| Observers Home (Print)  Rill Duncton IV: | •       |
|------------------------------------------|---------|
| Bill Duncton In<br>William Dunst fro     | 2/2/01  |
| Pairfic Environmental Services           |         |
| Eastern Technical Associates             | u/18/00 |

# ISIBLE EMISSION OBSERVATION FORM 1

| Methodo 203A                              | 2038       | Other                     |               |                       |
|-------------------------------------------|------------|---------------------------|---------------|-----------------------|
| Andrews                                   | AFR        |                           |               |                       |
| Hospital I                                |            |                           | Rida          | 1055                  |
| Oity Address                              |            |                           | - J           |                       |
| Andrews AFB                               |            | Note M                    | D             | Дρ                    |
| waste incineration                        |            | Unit #                    | Operating     | Mode                  |
| 5 Crubber                                 |            |                           | Operating     | Mode                  |
| Describe Emission Point Southern          | nmost      | stack                     |               |                       |
| eight of Erriss, Pt.                      |            | Height of E               | rriss, Pt. Re | I. to Observer        |
| Stort 30' End Same                        |            |                           | o Emiss. Pt.  | End Same<br>(Degrees) |
| Vertical Angle to Obs. Pt.                | L          |                           | 0 Obs. Pl. (  | End Skime             |
| Store 20 End Salut                        |            | Start 4                   | 5 NE          | End SAME              |
| Not 15 C                                  |            | End 8                     | me            |                       |
| Promon Color                              |            | Water Dro                 | (M.E.         |                       |
| Start End Sauce Describe Plume Background |            | Affached                  | Defe          | oched None            |
| Bockground Color                          |            | and S                     | ane<br>Ions   | ·                     |
| Who speed Same Start 1-3 End Same         |            | Stort D', 1<br>Who Direct | cloudy        | End Same              |
| Ambers Jemp.                              |            | Wet Bub T                 | emp.          | RH Percent            |
| So                                        | urcelay    | out Sketc                 | eh            | Draw North Arrow      |
| 1                                         | OSP        | ]                         |               |                       |
| ×                                         | Observati  | ion Point                 |               |                       |
|                                           |            |                           |               |                       |
| ·                                         |            | •                         |               |                       |
|                                           | Observer   | i Paillan                 | -             | Side View             |
| 140                                       | $\nearrow$ |                           |               | Stack<br>With<br>Pume |
| Sun Locali                                | on Line    | **********                |               | an +                  |
| Longitude Lott                            | lucie      |                           | Deci          | nation                |
| Additional Information                    |            |                           |               |                       |
|                                           |            |                           |               |                       |
|                                           |            |                           |               |                       |

|           | i iFOQ0     | Oi.         |             |             |
|-----------|-------------|-------------|-------------|-------------|
|           |             |             |             |             |
| om Number |             |             |             | T           |
|           | form Number | form Number | form Number | form Number |

| Stort   Ime                                                                                                                      |         |         |   |             |              |            |     |           |      |
|----------------------------------------------------------------------------------------------------------------------------------|---------|---------|---|-------------|--------------|------------|-----|-----------|------|
| MAN                                                                                                                              | Observo | OO Octo |   | Time Zone   |              | Stort lime |     | Fort Time |      |
| MAN                                                                                                                              | 21      | 2/0     |   | EST         |              |            | 5   | 13        | 25   |
| 1                                                                                                                                | Sec     |         |   |             |              |            | Com | ments     |      |
| 2                                                                                                                                | 1       | n       | D | 0           | 0            |            |     |           |      |
| 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                          | 2       |         | か |             | 0            |            |     |           |      |
| 4                                                                                                                                | 3       |         | D | 0           | Ć            |            |     |           |      |
| 5                                                                                                                                | 4       |         |   | 6           | 0            |            |     |           |      |
| 6                                                                                                                                | 5       |         |   |             |              |            |     |           |      |
| 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                          | ٥       |         |   | 0           |              |            |     |           | -    |
| 8                                                                                                                                | 7       | 0       |   | O           | 0            |            |     |           | ···· |
| 10 0 6 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0                                                                                       | . 8     | 0       | 0 | 5           | d            |            |     |           |      |
| 11                                                                                                                               | 9       | 0       | 0 | 0           | 0            |            | _   |           |      |
| 12 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1                                                                                         | 10      | 0       | 0 | 0           | ð            |            |     |           |      |
| 13                                                                                                                               | 11      |         | 0 | 9           | 0            |            |     |           |      |
| 14                                                                                                                               | 12      | 0       | 0 | ٥           | 0            |            |     |           |      |
| 15                                                                                                                               | 13      | 0       | 0 | 6           | 0            |            |     |           |      |
| 10 0 0 0 0 0 10 10 10 10 10 10 10 10 10                                                                                          | 14      | 0       | 0 | 0           | 0            | <u> </u>   |     |           |      |
| 17 0 0 8 0  18 0 0 0 0  19 0 0 0 0  20 0 0 0 0  21 0 0 0 0  22 0 0 0 0  23 0 0 0 0  24 0 0 0 0  25 0 0 0 0  26 0 0 0  27 0 0 0 0 | 15      | 0       | 0 | 0           | 0            | <u>.</u>   |     |           |      |
| 18                                                                                                                               |         | 0       | 0 | 8           | 0            |            |     |           |      |
| 19 0 0 0 0 0 0 0 20 20 0 0 0 0 0 0 0 0 0                                                                                         |         | 0       | 0 | 8           | 0            |            |     |           |      |
| 20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                         | -       | 0       | 0 |             | 0            |            |     |           |      |
| 21 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                        | 19      | 0       | 0 | 0           | 0            |            |     |           |      |
| 22 0 6 6 0<br>23 0 6 6 0<br>24 0 6 6 0<br>25 6 0 6 0<br>26 0 6 0                                                                 | 20      | ٥.      | 0 | D           | 0            |            |     |           |      |
| 23 0 0 6 0<br>24 0 0 6 0<br>25 6 0 0 0<br>26 0 0 0                                                                               | 21      | 5       | 0 | 6           | 0            | •          | · . |           |      |
| 24 0 6 6 0<br>25 6 0 6 0<br>26 0 0 0 0<br>27 8 6 6 0                                                                             |         | 0       | 0 | ٥           | 0            |            |     |           |      |
| 25 6 0 6 0<br>26 0 0 0 0<br>27 8 6 6 0                                                                                           |         | 0       | 0 | 6           | 0            |            |     | •         |      |
| 26 0 0 0 0<br>27 8 6 6 0                                                                                                         |         | 0       | 0 | <del></del> |              |            |     |           |      |
| 7 6 6 0                                                                                                                          |         | 0       | 0 |             | <del> </del> | _          |     |           |      |
|                                                                                                                                  |         | 0       | 0 |             |              |            |     |           |      |
| 0000                                                                                                                             |         | _       | 0 | -           |              |            |     |           |      |
|                                                                                                                                  |         |         | + |             |              |            |     |           |      |
| 29 0 0 0                                                                                                                         | -       | +       | 0 |             |              | <u> </u>   |     |           |      |
| 30 0 0 0                                                                                                                         | 30      | 0       | 0 | ٥           | 0            |            |     |           |      |

| Bill Duncton IK                |               |
|--------------------------------|---------------|
| WINDAM DILUSTATOR              | 2/2/01        |
| Pacific Environmental Services |               |
| Eastern Technical Associates   | Date (8/18/00 |

# VISIBLE EMISSION OBSERVATION FORM 1

| Mercoaltea (Orde One)                            | DOLK           | AHONTORWIT                           |
|--------------------------------------------------|----------------|--------------------------------------|
| (Methodo 2004 2008                               | Other          |                                      |
| Company Name Andrews AFI                         | 3              |                                      |
| Fooding Name Hospital Incine                     | erator -       | RIda 1055                            |
| Street Address                                   |                | 131-131                              |
| Andrews AFB                                      | Sicile M       |                                      |
| waste incineration                               | Unit #         | Operating Mode                       |
| Contra Equipment  Scrubber                       |                | Operating Mode                       |
| Descabe Emission Point                           |                |                                      |
| swithernm                                        | rost sta       | ck                                   |
| Height of Erriss, Pt.                            | Height of E    | rriss. Pt. Rel. to Observer          |
| Start 30 End Same Distance to Emiss. Pt.         | Ston 2         | 2 End Same<br>o Emiss. Pt. (Degrees) |
| son 80' and some                                 | ston 30        | NE and Same                          |
| Vertical Angle to Obs. Pt. Start 20° End Sake    | la- 110        | O Obs. Pt. (Degrees)                 |
| Distance and Direction to Observation Pointstant | from Emissi    | on Point                             |
| Describe Emissons                                |                |                                      |
| From NoMe (Steam)                                | Find 5         | (M.L. pet Pume                       |
| Start End Salve  Describe Purps Background       | Affoched       | Detached None                        |
| Start Sky<br>Bocagraina Color                    | End S          | ame                                  |
| Stort blue and Same                              | Start C. C     | cloudy for reme                      |
| Start 1-3 End Same                               | Start E        | End Same                             |
| Ston 11'C End Same                               | Wei Bud        | emp. RH Percent                      |
| Source Lo                                        | yout Sketc     | Drow North Arrow                     |
| T.                                               | -              | DIN DWN                              |
| HOSE                                             | 1              |                                      |
| X Observe                                        | Offices Davies |                                      |
| 1                                                |                |                                      |
|                                                  |                | /fet                                 |
|                                                  | $\overline{}$  | PEET                                 |
| Observe                                          | r's Position   | Scin View                            |
| 140                                              |                | Stock<br>With<br>Pume                |
| Sun Location Line                                |                | an 💠                                 |
| Longitude Lottlude                               |                | Wnd                                  |
|                                                  | <del></del>    |                                      |
| Additional information                           |                |                                      |
|                                                  |                |                                      |

| Form Number      |             | Fooe | Of |                  |
|------------------|-------------|------|----|------------------|
| Continued on VEO | form Number |      |    | $\neg \neg \neg$ |

| Opena | 2/0 |    | îme zone | 2   | Stort lime |
|-------|-----|----|----------|-----|------------|
| Sec   |     | 1  | EST      | - 1 | 1405 1435  |
| Mn    | 0 . | 15 | 30       | 45  | Comments   |
| 1     | 0   | 0  | 0        | 6   |            |
| 2     | 0   | ٥  | Ø        | 0   | ·          |
| 3     | 0   | D  | 0        | 0   |            |
| 4     | 0   | 0  | ρ        | D.  |            |
| · 5   | Ð   | 0  | 0        | 0   |            |
| 6     | 0   | ٥  | 0        | 0   |            |
| 7     | 0   | Q  | ٥        | 0   | ·          |
| . 8   | 6   | ٥  | ٥        | 0   |            |
| ٥     | 0   | ٥  | D        | o   |            |
| 10    | 0   | 0  | D.       | ٥   |            |
| 11    | O   | 0  | 0        | P   |            |
| 12    | ٥   | 0  | 6        | 6   |            |
| 13    | 0   | ٥  | 0        | 0   |            |
| 14    | S   | 6  | 0        | 0   |            |
| 15    | 0   | 0  | 0        | 0   |            |
| 16    | 2   | 0  | 0        | 0   |            |
| 17    | 0   | 0  | 0        | 0   |            |
| 18    | 0   | ٥  | 0        | 0   |            |
| 19    | 0   | 8  | 0        | 0   |            |
| 20    | 0.  | ð  | 0        | Ø   |            |
| 21    | 0   | 0  | O        | 0   |            |
| 22    | D   | 0  | 0        | 0   |            |
| 23    | Ø   | 0  | 0        | 0   | ·          |
| 24    | 0   | 0  | 6        | 0   |            |
| 25    | 0   | 0  | ٥        | 0   |            |
| 26    | 0   | ۵  | 0        | 0   |            |
| 27    | 0   | d  | 0        | 0   |            |
| 28    | ٥   | 0  | . 0      | 0   |            |
| 29    | 0   | 0  | .0       | 0.  |            |
| 30    | o   | 0  | 0        | 0   |            |

| Observer's Norma (Pitre) Bill Duncton IV |          | _ |
|------------------------------------------|----------|---|
| William Dunstide                         | 2/2/01   |   |
| Pairfie Environmental Services           |          |   |
| Eastern Technical Associates             | (2 18 00 |   |

# 'ISIBLE EMISSION OBSERVATION FORM 1

| Methodo 203A 203B                                                                                                                                                 | ~                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 2000                                                                                                                                                              | Othe                                                                     | эг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| ompany Name                                                                                                                                                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| FOORTY NOTICE AND APB                                                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Hospital Incin                                                                                                                                                    | erator-                                                                  | - Bldg. 1055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                   |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| City A. A ASS                                                                                                                                                     | Sicile                                                                   | Ap Dp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| THANKWI APB                                                                                                                                                       | Andrews AFB MD D                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| TOC ess                                                                                                                                                           | Unit #                                                                   | Operating Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| waste incineration                                                                                                                                                |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Scrubber Operating Mode                                                                                                                                           |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Describe Emisson Point                                                                                                                                            |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Southern                                                                                                                                                          | most star                                                                | ck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                   |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| teight of Emiss. Pt.                                                                                                                                              | Height of                                                                | Erriss, Pl. Rel. to Observer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Start 35' End Same                                                                                                                                                | Start _                                                                  | 5' Fred Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Dar 80' End Come                                                                                                                                                  | Start 3                                                                  | 10 Erniss, Pt. (Degrees)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Vertical Angle to Obs. Pt.                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Stort 20' Fort Same                                                                                                                                               | 100 L                                                                    | to Obs. Pt. (Degrees) 5° NE. Frod Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Distance and Direction to Observation Poin                                                                                                                        | from Emiss                                                               | ion Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                                                                                                                   | End &                                                                    | rne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Describe Errissons                                                                                                                                                |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| From Mone (steam)                                                                                                                                                 | End Same<br>Water Dioplet Plume                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| SON END SAME                                                                                                                                                      |                                                                          | Detached None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Describe Pume Bookground                                                                                                                                          |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                   |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| son Sky                                                                                                                                                           | End S                                                                    | ame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| BOCKGROUND COLOR STOR LY                                                                                                                                          | Sky Cond                                                                 | Hore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Start SKY Bockground Color Start blue End Same What Speed                                                                                                         | Start A Wind Dire                                                        | cloudy and same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Start SKY Bockpround Color Start Nue End Seune What Speed Stort 1-3 End Seune Ambert lemp.                                                                        | Stort A                                                                  | cloudy and some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Start Sky Bockpround Color Start blue End Same Who Speed Start 1-3 Foot Call a                                                                                    | Sky Cond<br>Start A Wind Dire                                            | cloudy and some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Start SKY Bockpround Color Start blue End Seune What Speed Start   -3 End Seune Ambert Hemp. Start   / **L End Seune                                              | Start A Wind Direction & Wind Direction & West Bulb                      | cloudy and same can be same for same same for same same same same same same same same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| Start SKY Bockground Color Start Live End Sevel Wind Speed Start 1-3 End Sevel Ambert lemp.                                                                       | Start A Wind Direction & Wind Direction & West Bulb                      | ch Draw North Arrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Start SKY Bockground Color Start J. What Speed Start J. 3 End Same Ambert lemp. Start 1/1 End Same Source La                                                      | Sty Cond<br>Start A C<br>What Dire<br>Start E<br>Wet Bulb                | ch Draw North Arrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Start SKY Bockpround Color Start blue End Seune What Speed Start   -3 End Seune Ambert Hemp. Start   / **L End Seune                                              | Sty Cond<br>Start A C<br>What Dire<br>Start E<br>Wet Bulb                | ch Draw North Arrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Start SKY Bockground Color Start J. What Speed Start J. 3 End Same Ambert lemp. Start 1/1 End Same Source La                                                      | Sty Cond<br>Start A C<br>What Dire<br>Start E<br>Wet Bulb                | ch Draw North Arrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Start SKY Bockground Color Start J. What Speed Start J. 3 End Same Ambert lemp. Start 1/1 End Same Source La                                                      | Sty Cond<br>Start A (<br>What Direction<br>Start E<br>Wet Bulb           | ch Draw North Arrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Start SKY Bockpround Color Start Mule End Same What Speed Start 1-3 End Same Ambert lemp. Start 11"L End Same  Kost                                               | Sty Cond<br>Start A (<br>What Direction<br>Start E<br>Wet Bulb           | ch Draw North Arrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Start SKY Bockpround Color Start Mule End Same What Speed Start 1-3 End Same Ambert lemp. Start 11"L End Same  Kost                                               | Sty Cond<br>Start A (<br>What Direction<br>Start E<br>Wet Bulb           | ch Draw North Arrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Start SKY Bockpround Color Start Mule End Same What Speed Start 1-3 End Same Ambert lemp. Start 11"L End Same  Kost                                               | Sty Cond<br>Start A (<br>What Direction<br>Start E<br>Wet Bulb           | ch Draw North Arrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Start SKY Bockpround Color Start Mule End Same What Speed Start 1-3 End Same Ambert lemp. Start 11"L End Same  Kost                                               | Sty Cond<br>Start A (<br>What Direction<br>Start E<br>Wet Bulb           | ch Draw North Arrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Start SKY Bockpround Color Start Hull End Salme What Speed Stort 1-3 End Salme Ambert lemp. Stort 11"L End Salme  X Observer                                      | Sty Cond<br>Start A (<br>What Direction<br>Start E<br>Wet Bulb           | Cloudy End State Cloudy End State Chord Find State Ch Drow North Arrow Ch Drow North Arrow Ch FEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Start SKY Bockpround Color Start Hull End Salme What Speed Stort 1-3 End Salme Ambert lemp. Stort 11"L End Salme  X Observer                                      | Sty Cond<br>Start A (<br>What Dire<br>Start E<br>Wet Bulb<br>Tyout Sketa | Cloudy End State Cloudy End State End State Internet Percent  Drow North Arrow ITN MN  FET  FET  Soo Year  Stock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Start SKY Bockpround Color Start Hull End Salme What Speed Stort 1-3 End Salme Ambert lemp. Stort 11"L End Salme  X Observer                                      | Sty Cond<br>Start A (<br>What Dire<br>Start E<br>Wet Bulb<br>Tyout Sketa | Scover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Start SKY Bockpround Color Start Hull End Salme What Speed Stort 1-3 End Salme Ambert lemp. Stort 11"L End Salme  X Observer                                      | Sty Cond<br>Start A (<br>What Dire<br>Start E<br>Wet Bulb<br>Tyout Sketa | FIET Scarce  State  FIET  Scarce  State  FIET  Scarce  State  FIET  Scarce  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  State  Sta |  |  |  |
| Start SKY Bockpround Color Start Hulle End SAME What Speed Start I - 3 End SAME Ambert Iemp. Start I I'll End SAME  X Observe  Laboration line Sun Location line  | Sty Cond<br>Start A (<br>What Dire<br>Start E<br>Wet Bulb<br>Tyout Sketa | Cloudy End State Charley End State Find State Internal Percent  Draw North Arrow ITN MN  FET  Sche View  Stack With Pume Sun  Whod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Start SKY Bockpround Color Start Hull End Saune What Speed Start 1-3 End Saune Ambert lemp. Start 1/°C End Saune  X Observe  Sun Location Line  Sun Location Line | Sty Cond<br>Start A (<br>What Dire<br>Start E<br>Wet Bulb<br>Tyout Sketa | Couly End Save Cloudy End Save Feet Feet Feet Sack With Pume San Draw Feet Feet Feet Feet Feet Feet Feet Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Start SKY Bockpround Color Start Muse End Sauns What Speed Start 1-3 End Sauns Ambert lemp. Start 1/°C End Sauns  X Observe  Longitude Longitude                  | Sty Cond<br>Start A (<br>What Dire<br>Start E<br>Wet Bulb<br>Tyout Sketa | Cloudy End State Charley End State Find State Internal Percent  Draw North Arrow ITN MN  FET  Sche View  Stack With Pume Sun  Whod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Start SKY Bockpround Color Start Muse End Seams What Speed Start 1-3 End Seams Ambert lemp. Start 1/12 End Same  X Observe  Laboration time  Sun Location time    | Sty Cond<br>Start A (<br>What Dire<br>Start E<br>Wet Bulb<br>Tyout Sketa | Cloudy End State Charley End State Find State Internal Percent  Draw North Arrow ITN MN  FET  Sche View  Stack With Pume Sun  Whod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Start SKY Bockpround Color Start Muse End Saune What Speed Stort 1-3 End Saune Ambient lemp. Stort 1/1 End Saune  X Observe  Longitude Longitude                  | Sty Cond<br>Start A (<br>What Dire<br>Start E<br>Wet Bulb<br>Tyout Sketa | Cloudy End State Charley End State Find State Internal Percent  Draw North Arrow ITN MN  FET  Sche View  Stack With Pume Sun  Whod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |

|                              | _     | ,, |   |   |
|------------------------------|-------|----|---|---|
| Continued on VEO Form Number | <br>T |    | 1 | Г |

| Observa | on Daye |    | me žone |    | and lime | . Enc | lime          |    |          |
|---------|---------|----|---------|----|----------|-------|---------------|----|----------|
| 2/      | 2/0     | 1  | EST     |    | /435     |       | 1 ime<br>  15 | 05 |          |
| Mn      | 0 .     | 15 | 30      | 45 | C        | ommer | nts .         |    | _        |
| 1       | D       | ٥  | 0       | 0  |          |       |               |    |          |
| 2       | 0       | 2  | 0       | 0  |          |       |               |    |          |
| 3       | 0       | 0  | 0       | D  |          |       |               |    |          |
| 4       | 0       | 0  | 0       | 0. |          |       |               |    |          |
| 5       | 2       | 0  | 0       | 0  |          |       |               |    |          |
| ٥       | 0       | 0  | 0       | ٥  |          |       |               |    |          |
| 7       | 0       | 0  | 0       | Ð  |          |       |               |    | $\neg$   |
| . 9     | 0       | 0  | 0       | 2  |          |       |               |    |          |
| 9       | Ġ       | D  | 0       | 0  |          |       |               |    | $\dashv$ |
| 10      | Q       | 0  | 0       | 0  |          | -     |               |    |          |
| 11      | 0       | O  | 0       | D  |          |       |               |    | $\neg$   |
| 12      | ٥       | 0  | 0       | 0  |          |       |               |    |          |
| 13      | 0       | D  | 0       | 6  |          |       |               |    |          |
| 14      | 6       | ٥  | 0       | Ö  |          |       |               |    |          |
| 15      | ٥       | さ  | D       | 0  |          |       |               |    |          |
| 16      | ٥       | 5  | 0       | 0  |          |       |               |    |          |
| 17      | 0       | 0  | 0       | 0  |          |       |               |    |          |
| 18      | 0       | 0  | O       | 0  |          |       |               |    |          |
| 19      | ٥       | 0  | 0       | 0  |          |       |               |    |          |
| 20      | 0       | ٥  | 5       | 0  |          |       |               |    |          |
| 21      | 0       | 8  | ठ       | 0  |          |       |               |    |          |
| 22      | 0       | 0  | 9       | 0  |          |       |               |    |          |
| 23      | 0       | 0  | 0       | 6  |          |       |               |    |          |
| 24      | O       | 0  | 0       | 0  |          |       |               | -  |          |
| 25      | 0       | ٥  | ٥       | 0  |          |       |               |    |          |
| 26      | 0       | 0  | a       | 0  |          |       |               |    |          |
| 27      | ٥       | 0  | 0       | 0  |          |       |               |    |          |
| 28      | ن       | 0  | 0       | 0  |          |       |               |    |          |
| 29      | 0       | Q  | .0      | 0  |          |       |               |    |          |
| 30      | 0       | 0  | 0       | 0  |          |       |               |    |          |
| -       |         | -  | *       |    |          |       |               |    |          |

| Observer's Name (Pint)             |               |
|------------------------------------|---------------|
| Bill Dunstan IV. William Dunstafra | 2/2/01        |
| Pacific Environmental Services     |               |
| Eastern Technical Associates       | Date 10/18/00 |

# APPENDIX C ANALYTICAL DATA

# Appendix C.1 Analytical Data Particulate Matter/Metals (M29) Hydrogen Chloride (M26)



Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709-2077 (919) 941-0333 FAX: (919) 941-0234

# SAMPLE ANALYSIS FORM FOR FILTERABLE PARTICULATE

| Plant: Andrews AFB | MD Medica  | al Waste Incinerator      | Run ID: | M29-1 |    |  |
|--------------------|------------|---------------------------|---------|-------|----|--|
| Sample Location:   | Incinerato | r Outlet                  |         |       |    |  |
| Analytical Balance | S/P 182    | Lab Relative Humidity: 30 | O% Amb. | Temp. | 75 |  |

| RINSE CONTAINER I    | D: M29-1-     | AR             |                  | Rin                       | nse Beaker ID | •          | 1          |
|----------------------|---------------|----------------|------------------|---------------------------|---------------|------------|------------|
| Lab Added Vol., ml   | <u>75</u>     | Densit         | ty of            | Acetone (ρ <sub>a</sub> ) | 0.7848        | g/ml       |            |
| Container Final Wt   | <u>234.3</u>  | Acetone Bl     | ank (            | Concent (C <sub>a</sub> ) | 0.00000084    | g/g        | ok         |
| Container Initial Wt | <u>168.4</u>  | Acetone Ri     | nse V            | /olume (V <sub>aw</sub> ) | <u>159</u>    | ml         | _ 0        |
| Net Volume Wt., g    | 65.9          |                | W <sub>a</sub> = | $= C_a V_{aw} \rho_a =$   | 0.00011       | g          | 0.0001% ok |
| Weighing Date        | 2/8/01        | Time 16        | 645              | Gross Wt                  | 108.8239      | g          |            |
| Last Weighing Date   | 2/9/01        | Time 09        | 910              | Gross Wt                  | 108.8237      | g          |            |
| Average of           | 2 Consecu     | tive Weighings | s Mee            | eting Criteria            | 108.8238      | g          |            |
| Blank Beaker ID      | 4             | - Rinse        | e Bea            | aker Tare Wt              | 108.8209      | g          |            |
| Acetone Volume, ml   | <u>150.99</u> | - Ace          | etone            | Blank (Wa)                | 0.0001        | <b>_</b> g |            |
| Acetone Residue, g   | 0.0001        | Weight in Ac   | etone            | e Rinse (ma)              | 0.0028        | g          |            |
|                      |               | = Weight in Ac | etone            | e Rinse (ma)              | 2.79          | mg         |            |

| FILTER SAMPLE ID: N | 129-1-F  |          |                  | Filter/                     | Container ID | : 1 | 04-007 |
|---------------------|----------|----------|------------------|-----------------------------|--------------|-----|--------|
| Weighing Date       | 2/6/01   | Time     | 1700             | Gross Wt                    | 34.5242      | g   |        |
| Last Weighing Date  | 2/7/01   | Time     | 920              | Gross Wt                    | 34.5237      | g   |        |
| Average of 2        | Consecut | ive Weig | hings Me         | eting Criteria              | 34.52395     | g   |        |
|                     |          | - Filte  | r & Conta        | iner Tare Wt_               | 34.5204      | _g  |        |
|                     |          | =        | = Weight         | on Filter (mf)              | 0.00355      | g   |        |
|                     |          | :        | = Weight         | on Filter (mf)              | 3.55         | mg  |        |
|                     |          |          | ) A / = : = != ! | [:l/a= /ma \                | 0.55         |     |        |
| SUMMARY             |          |          | vveignt          | on Filter (m <sub>f</sub> ) | 3.55         | mg  |        |
|                     | +        | Weight   | in Aceton        | e Rinse (ma)                | 2.79         | mg  |        |
|                     |          | =        | Total Pa         | rticulate (mn)              | 6.34         | mg  |        |

v1.0 10/15/00

| Signature of Analyst | Signature of Reviewer |
|----------------------|-----------------------|
|----------------------|-----------------------|



Central Park West 5001 South Miaml Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709-2077 (919) 941-0333 FAX: (919) 941-0234

# SAMPLE ANALYSIS FORM FOR FILTERABLE PARTICULATE

| Plant: Andrews AFB   | MD Medical    | Waste I   | ncinerato | r                           | Run ID:        | M29-2  |            |
|----------------------|---------------|-----------|-----------|-----------------------------|----------------|--------|------------|
| Sample Location:     | Incinerator   | Outlet    |           |                             |                |        |            |
| Analytical Balance   | S/P 182       | Lab Rela  | ative Hum | nidity: 30%                 | Amb.           | Temp.  | 75         |
| RINSE CONTAINER      | ID: M29-2-    | AR        |           | Ri                          | nse Beaker ID  |        | 2          |
| Lab Added Vol., ml   | <u>75</u>     |           | Density o | f Acetone (ρ <sub>a</sub> ) | 0.7848         | g/ml   |            |
| Container Final Wt   | <u>252.4</u>  | Aceto     | ne Blank  | Concent (C <sub>a</sub> )   | 0.00000084     | g/g    | ok         |
| Container Initial Wt | <u>167.9</u>  | Aceto     | ne Rinse  | Volume (V <sub>aw</sub> )   | 182.7          | mi     |            |
| Net Volume Wt., g    | 84.5          |           | Wa        | $= C_a V_{aw} \rho_a =$     | 0.00012        | g      | 0.0001% ok |
| Weighing Date        | 2/8/01        | Time      | 1645      | Gross Wt                    | 101.4551       | g      |            |
| Last Weighing Date   | 2/9/01        | Time      | 0910      | Gross Wt                    | 101.4551       | g      |            |
| Average o            | f 2 Consecu   | tive Weig | hings Me  | eting Criteria              | 101.4551       | g      |            |
| Blank Beaker ID      | 4             | -         | Rinse Be  | aker Tare Wt                | 101.4507       | g      |            |
| Acetone Volume, ml   | <u>150.99</u> |           | - Aceton  | e Blank (Wa)_               | 0.0001         | g      |            |
| Acetone Residue, g   | <u>0.0001</u> | Weight    | in Acetor | ne Rinse (ma)               | 0.0043         | -<br>g |            |
|                      | =             | Weight    | in Acetor | e Rinse (ma)                | 4.28           | mg     |            |
| FILTER SAMPLE ID:    | M29-2-F       |           |           | Filter                      | /Container ID: | 104-   | -003       |
| Weighing Date        | 2/6/01        | Time      | 1700      | Gross Wt                    | 34.9589        | g      |            |
| Last Weighing Date   | 2/7/01        | Time      | 920       | Gross Wt                    | 34.9585        | g      |            |
| Average of           | 2 Consecut    | ive Weig  | hings Me  | eting Criteria              | 34.9587        | g      |            |
|                      |               | - Filte   | r & Conta | niner Tare Wt_              | 34.888         | _g     |            |
|                      |               | -         | = Weight  | on Filter (mf)              | 0.0707         | g      |            |
|                      |               | :         | = Weight  | on Filter (mf)              | 70.7           | mg     |            |
| SUMMARY              |               |           | Weight    | on Filter (m <sub>f</sub> ) | 70.7           | mg     |            |
|                      | +             | Weight i  | n Aceton  | e Rinse (ma)                | 4.28           | mg     |            |
| v1.0 10/15/00        |               | =         | Total Par | rticulate (mn)              | 75.0           | mg     |            |
|                      | e of Analyst  |           |           | Ci                          | an of Davids   |        |            |
| Olgrialui e          | , or Arialyst |           |           | Signatu                     | re of Reviewer |        |            |

Signature of Reviewer



Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709-2077 (919) 941-0333 FAX: (919) 941-0234

### SAMPLE ANALYSIS FORM FOR FILTERABLE PARTICULATE

| Plant: Andrews | s AFB MD | ) Medical V | Vaste Incinerator | Run ID: | M29-3                                   |  |
|----------------|----------|-------------|-------------------|---------|-----------------------------------------|--|
|                |          |             |                   |         | *************************************** |  |

Sample Location: Incinerator Outlet

Analytical Balance S/P 182 Lab Relative Humidity: 30% Amb. Temp. 75

| RINSE CONTAINER I    | D: M29-3-     | AR        |           | Rii                              | nse Beaker ID | );   | 3          |
|----------------------|---------------|-----------|-----------|----------------------------------|---------------|------|------------|
| Lab Added Vol., ml   | <u>75</u>     |           | ensity o  | f Acetone (ρ <sub>a</sub> )      | 0.7848        | g/ml |            |
| Container Final Wt   | <u>219.4</u>  | Aceto     | ne Blank  | Concent (C <sub>a</sub> )        | 0.00000084    | g/g  | ok         |
| Container Initial Wt | <u>167.6</u>  | Acetor    | ne Rinse  | Volume (V <sub>aw</sub> )        | <u>141</u>    | ml   |            |
| Net Volume Wt., g    | 51.8          |           | W         | $_{a} = C_{a} V_{aw} \rho_{a} =$ | 0.00009       | g    | 0.0001% ok |
| Weighing Date        | 2/8/01        | Time      | 1645      | Gross Wt                         | 105.0907      | g    |            |
| Last Weighing Date   | 2/9/01        | Time      | 0910      | Gross Wt                         | 105.0907      | g    |            |
| Average of           | 2 Consecu     | tive Weig | hings Me  | eeting Criteria                  | 105.0907      | g    |            |
| Blank Beaker ID      | 4             | - 1       | Rinse Be  | eaker Tare Wt                    | 105.0856      | g    | m          |
| Acetone Volume, ml   | <u>150.99</u> |           | - Acetor  | ne Blank (Wa)                    | 0.00009       | g    |            |
| Acetone Residue, g   | <u>0.0001</u> | Weight    | in Acetoi | ne Rinse (ma)                    | 0.00501       | g    |            |
|                      | =             | = Weight  | in Acetoi | ne Rinse (ma)                    | 5.01          | mg   |            |

| FILTER SAMPLE ID: N | /129-3-F                 |          |             | Filter/        | Container II | ): 104-005 |  |
|---------------------|--------------------------|----------|-------------|----------------|--------------|------------|--|
| Weighing Date       | 2/7/01                   | Time     | 0920        | Gross Wt       | 35.1023      | g          |  |
| Last Weighing Date  | 2 <i>[</i> 7 <i>[</i> 01 | Time     | 1705        | Gross Wt       | 35.1024      | g          |  |
| Average of 2        | Consecut                 | ive Weig | hings Mee   | eting Criteria | 35.10235     | g          |  |
|                     |                          | - Filte  | er & Contai | iner Tare Wt_  | 35.0363      | g          |  |
|                     |                          | :        | = Weight o  | on Filter (mf) | 0.06605      | g          |  |
|                     |                          |          | = Weight o  | on Filter (mf) | 66.05        | mg         |  |

| SUMMARY | Weight on Filter (m <sub>f</sub> ) | 66.05 | mg |
|---------|------------------------------------|-------|----|
|         | + Weight in Acetone Rinse (ma)     | 5.01  | mg |
|         | = Total Particulate (mn)           | 71.06 | mg |

v1.0 10/15/00

| Signature of Analyst | Signature of Reviewer |
|----------------------|-----------------------|
|                      |                       |

| The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                                      |          |             |                                                   |                   |                      |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|-------------|---------------------------------------------------|-------------------|----------------------|---------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   | A.                | search Triangle Park | Research Triangle Park, North Carolina 27709-2077 |
| /// PACIFIC ENVIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PACIFIC ENVIRONMENTAL SERVICES, INC. | _0       | L WEIGHT I  | FINAL WEIGHT DATA SHEET                           |                   | (919) 941            | -0333 FAX: (919) 941-0234                         |
| Project Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F181.001                             | Plant:   | Andrews AFB | <br>  Plant: Andrews AFB Medical Waste Ininerator | <br>te Ininerator |                      | <br> tem Weiahed                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      | 11.17                                             |
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | 10/9/ a  | 10/9/2      | 70/6/2                                            | 2/4/01            |                      |                                                   |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | 1100     | 35          | 0420                                              | 1705              |                      |                                                   |
| Relative Humidity (%):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (%):                                 | 282      | 318         | 30                                                | 32.5              |                      |                                                   |
| Temperature (°F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 78.8     | シキ          | 4.44                                              | 75.7              |                      |                                                   |
| Standard Weight (g):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t (g):                               | 140-8000 | 866564      | 94.996                                            | 50.000            |                      |                                                   |
| Analyst:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | MON      | wow         | Imm                                               | Jugur             |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          | W           | WEIGHINGS                                         |                   |                      | Average of                                        |
| IN Nimber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ci olamoo Pioid                      | 164      | Sud         | 3rd                                               | ı                 | 442                  | Consecutive                                       |
| ייין אמוווספו                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M70 1                                | 24 < 159 | 20 67 96    | 50 <72                                            | 40.               | Inc                  | Constant Wts                                      |
| 104 - 805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M79-3                                | 35.1053  | 35.1031     | \$5.1023                                          | 55.1024           |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2- PCM                               | 34.9605  | 34 9539     | 34.9585                                           |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |          |             |                                                   |                   |                      |                                                   |



Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709-2077 (919) 941-0333 FAX: (919) 941-0234

**Method 5 Tare Weights** 

| F181.00T                |          | ,       |          |     | Item Weighed: | hed: | Beakers |     |            |                           |
|-------------------------|----------|---------|----------|-----|---------------|------|---------|-----|------------|---------------------------|
| 10/6/2                  | 기        | 2       | 13/01    |     |               |      |         |     |            |                           |
| 0250                    |          |         | 705      |     |               |      |         |     |            |                           |
| 3                       |          | -       | 325      |     |               |      |         |     |            |                           |
| 77.4                    |          |         | 8:8      |     |               |      |         |     |            |                           |
| 160.0002                |          |         | 100.00d  |     |               |      |         |     |            |                           |
| MAM                     |          |         | MOW      |     |               |      |         |     |            | Average Filter            |
|                         |          | _       |          |     |               |      |         |     | Difference | Difference Tare Weight(s) |
| Field Sample ID No. 1st |          |         | Snd      | 3rd | 4th           | 5th  | eth     | 7th | (ma)       | (mn)                      |
|                         | +        | 100     | 108.6211 |     |               |      |         | T   | 0          | /8                        |
|                         | 10       | 101     | 4508     |     |               |      |         |     | C          |                           |
| M29-3 105.089           | 4        | (0,     | F.0857   |     |               |      |         |     | 0          |                           |
|                         | 2        | 3       | . Bo 76  |     |               |      |         |     |            |                           |
| 5995,301                | n        | 8       | 950E.    |     |               |      |         |     | ٥          |                           |
| 100.028                 | 8        | 5       | 1926.    |     |               |      |         |     | 0          |                           |
| 106,0642                | 2        | )<br>() | . Code   |     |               |      |         |     | 0          |                           |
| 111.6062                | 2        | 11.     | 111.6066 |     |               |      |         |     | 0          |                           |
|                         | $\dashv$ |         |          |     |               |      |         |     | 0          |                           |
|                         | $\dashv$ |         |          |     |               |      | ,       |     | 0          |                           |
|                         | $\dashv$ |         |          |     |               |      |         |     | 0          |                           |
|                         | $\dashv$ |         |          |     |               |      |         |     | 0          |                           |
|                         | +        |         |          |     |               |      |         |     | 0          |                           |
|                         | ヿ        |         | 1        |     |               |      |         |     | 0          |                           |
|                         | 7        |         |          |     |               |      |         |     | 0          |                           |
|                         | 1        |         |          |     |               |      |         |     | 0          |                           |
|                         | $\dashv$ |         |          |     |               |      |         |     | 0          |                           |
|                         |          |         |          |     |               |      |         |     | 0          |                           |
|                         | I        |         |          |     | -             |      |         |     | 0          |                           |
|                         |          |         |          |     |               |      |         |     | 0          |                           |
|                         | $\neg$   |         |          |     |               |      |         |     | 0          |                           |
|                         |          |         |          |     |               |      |         |     |            |                           |

355

METHOD 5 TARE WEIGHT

Item Weighed:

Project Number: 5-181-00

| Date        |              | 11/1/10  |          |     |     |     |         |         |            |
|-------------|--------------|----------|----------|-----|-----|-----|---------|---------|------------|
| R.H. (%)    |              | 2000     |          |     |     |     |         |         |            |
| Temp. ( .F) |              | 71.9     | 71.9     |     |     |     |         |         |            |
| Std. Wt.    |              | 10.001   | -        |     |     |     |         |         |            |
| Analyst     |              | חסט      | 1309     |     |     |     |         |         |            |
| TO Number   | Pield Sample |          |          |     |     |     | Final   | Tare    | Difference |
| 100-170     | 107          | 10.      | DU7      | 3rd | 4th | 5th | Wt. (g) | Wt. (g) | (mg)       |
| 3           |              | 35.85.21 | 35.827   |     |     |     | •       |         |            |
| 600- 401    |              | 35.0533  | 35.0525  |     |     |     |         |         |            |
| 104-003     | M29-2        | 34.8880  |          |     |     |     |         |         |            |
| 104-004     |              | 35.5645  | \$5.5645 |     |     |     |         |         |            |
| 200-401     | M29-3        | 35.0363  | 35.036.5 |     |     |     |         |         |            |
| 200-601     |              | 36.0069  | 36.0069  |     |     |     |         |         |            |
| 10%-007     | 17- PZW      | 34.5004  | 34.500%  |     |     |     |         |         |            |
| B00-100     |              | 357565   |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              | •        |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     | -       |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         |         |            |
|             |              |          |          |     |     |     |         | 7       | 1          |

PACIFIC ENVIRONMENTAL SERVICES, INC.

# First Analytical Laboratories ANALYSIS REPORT

Method 29: Multi-Metals Method 26A: HCl

Project # 104-01-0048

### Prepared for:

Pacific Environmental Services, Inc. 5001 South Miami Blvd. Research Triangle Park, NC 27709

Reviewed and Approved by:

William H. Wadlin, Ph. D.
Laboratory Manager

February 19, 2001

# First Analytical Laboratories

# **CASE NARRATIVE**

Project #: 10204

Report Date: 19-Feb-01

Client: Pacific Environmental Services

Client Project ID: 101-01-0048

### Samples:

Four sets of Method 29 Multi-Metals Trains were submitted, one of which was the blank set. The elements of interest were cadmium, lead and mercury. In addition, four samples were submitted for determination of HCl by Method 26A. All of the samples were hand delivered in good condition, with no apparent leakage or damage.

### Preparation:

The metals samples were all prepared and analyzed according to EPA Method 29, Determination of Metals Emissions from Stationary Sources. The Method 26A samples did not require any sample preparation.

### Analysis:

Cadmium and lead were determined by Graphite Furnace Atomic Absorption Spectrophotometry (GFAA). Mercury was determined by Cold Vapor Atomic Absorption Spectrophotometry (CVAA). HCl was determined as chloride by Ion Chromatography with conductivity detection (IC).

### Results:

The metals results are presented as total micrograms of element found in the whole analytical fraction listed, for each such fraction specified in the method. The HCl results are given as total milligrams present in the whole original sample. All of the target elements were measurable in all of the runs. The highest levels found were for lead, at about 500  $\mu$ g per run. The mercury levels found decreased exponentially with run number from about 73  $\mu$ g to 0.6  $\mu$ g.

### **Quality Control**:

None of the target elements were found in the blanks. All of the spike recoveries were within the normal range of 75% to 125%. All of the samples were analyzed in duplicate. Whenever the sample levels were at least five times the detection limit, the duplicates agreed within the normal range of 20%.

5001 South Miami Boulevard, P.O. Box 12 Research Triangle Park, North Carolina 27709-2 (919) 941-0333 FAX: (919) 941-0

# Chain of Custody Record

| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project Num |             | Driver Name           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |                  |   |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------------------|---|--------------|
| Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 200 000     |                       | A LANGE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR |    |    | Analysis Reguest |   |              |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ł           | 100.101     |                       | Andrews AFB Medical Waste Incinerator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |    |                  |   |              |
| Time   Field Sample   Description   Time   Field Sample Description   Time   Field Sample   Description   Time   Field Sample   Description   Time   Field Sample   Description   Time   Field Sample   Time   Field Sample   Time   Field Sample   Time   Time   Field Sample   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time |             |             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |                  |   |              |
| Time         Field Sample ID         Sample Description         QS         QB         Contents of Imps. 1-3 and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and DI Rinses         Contents of Imps. 1-3 and 0.1 N HNO, Rinse         Contents of Imps. 1-3 and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and DI Rinses         Contents of Imps. 5-6, KMnO, and DI Rinses         Contents of Imps. 5-6, KMnO, and DI Rinses         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         Contents of Imps. 5-6, KMnO, and 0.1 N HNO, Rinse         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | DO Holzschy | h, J Falank, MD Maret |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |    |                  |   | Remarks      |
| 0.945       M/29-1-1       Filler, dry         0.945       M/29-1-2       Front Half Acetone Dry-down residue       / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date        | Time        | Field Sample ID       | Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PO | qd | 6н               |   |              |
| 1 0945       M29-1-2       Front Half Acetone Dry-down residue       / / / /         1 0945       M29-1-3       0.1 N HNO, Front Half rinse       / / / /         1 0945       M29-1-4       Contents of Imps. 1-3 and 0.1 N HNO, Rinse       / / / /         1 0945       M29-1-5A       Contents of Imps. 5-6 KMnO, and DI Rinses       / / / /         1 0945       M29-1-5B       Contents of Imps. 5-6, KMnO, and DI Rinses       / / / /         1 0345       M29-1-5C       Imps. 5-6 BN HCI Rinse       / / / /         1 1230       M29-2-3       Front Half Acetone Dry-down residue       / / / /         1 230       M29-2-3       Confents of Imps. 1-3 and 0.1 N HNO, Rinse       / / / /         1 230       M29-2-4       Confents of Imps. 5-6, KMnO, and DI Rinses       / / / /         1 230       M29-2-5       Confents of Imps. 5-6, KMnO, and DI Rinses       / / / / /         1 230       M29-2-5       Front Half Tinse       / / / / /         1 230       M29-2-5       Confents of Imps. 5-6, KMnO, and DI Rinses       / / / / / /         1 230       M29-2-5       Front Half Acetone Dry-down residue       / / / / / / /         1 230       M29-3-5       Front Half Acetone Dry-down residue       / / / / / / / /         1 2405       M29-3-3       O. 1 N HNO,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2/2/01      | 0945        | M29-1-1               | Filler, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5  | 5  | `                | L |              |
| 1 0945         MZ9-1-3         0.1 N HNO, Front Half rinse         / / /           1 0945         MZ9-1-4         Contents of Imps. 1-3 and 0.1 N HNO, Rinse         / / /           1 0945         MZ9-1-5A         Contents of Imps. 5-6, KMnO, and DI Rinses         / / /           1 0945         MZ9-1-5B         Contents of Imps. 5-6, KMnO, and DI Rinses         / / /           1 0945         MZ9-1-5C         Imps. 5-6 8N HCI Rinse         / / /           1 1230         MZ9-2-1         Filler, dry         / / /           1 1230         MZ9-2-2         Front Half Acetone Dry-down residue         / / /           1 1230         MZ9-2-3         0.1 N HNO, Front Half rinse         / / /           1 1230         MZ9-2-5A         Contents of Imps. 5-6, KMnO, and DI Rinses         / / /           1 1230         MZ9-2-5A         Contents of Imps. 5-6, KMnO, and O.1 N HNO, Rinse         / / /           1 1240         MZ9-2-5B         Contents of Imps. 1-3 and 0.1 N HNO, Rinse         / / /           1 1250         MZ9-3-5C         Front Half Front Half rinse         / / /           1 1250         MZ9-3-5A         Contents of Imps. 5-6, KMnO, and O.1 N HNO, Rinse         / / /           1 1250         MZ9-3-5A         Contents of Imps. 5-6, KMnO, and O.1 N HNO, Rinse         / / / <td>2/2/01</td> <td>0945</td> <td>M29-1-2</td> <td>Front Half Acetone Dry-down residue</td> <td>&gt;</td> <td>\</td> <td> </td> <td></td> <td>Beaker No. 1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/2/01      | 0945        | M29-1-2               | Front Half Acetone Dry-down residue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >  | \  |                  |   | Beaker No. 1 |
| 0945         M29-14         Contents of Imps. 1-3 and 0.1 N HNO, Rinse         / / / /           0945         M29-1-5A         Contents of Imps. 5-6, KMnO, and DI Rinses         / / / /           0945         M29-1-5B         Contents of Imps. 5-6, RMnO, and DI Rinses         / / / /           1230         M29-2-1         Filter, dry         / / / /           1230         M29-2-3         0.1 N HNO, Front Half rinse         / / / /           1230         M29-2-4         Contents of Imps. 1-3 and 0.1 N HNO, Rinse         / / / /           1230         M29-2-4         Contents of Imps. 5-6, KMnO, and DI Rinses         / / / /           1230         M29-2-5A         Contents of Imps. 5-6, KMnO, and DI Rinses         / / / /           1230         M29-2-5B         Contents of Imps. 5-6, KMnO, and DI Rinses         / / / /           1230         M29-2-5B         Contents of Imps. 1-3 and 0.1 N HNO, Rinse         / / / /           1405         M29-3-5         Front Half Acetone Dry-down residue         / / / / /           1405         M29-3-5         Front Half Acetone Dry-down residue         / / / /           1405         M29-3-5         Front Half Acetone Dry-down residue         / / / /           1405         M29-3-5         Contents of Imps. 1-3 and 0.1 N HNO, Rinse         / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/2/01      | 0945        | M29-1-3               | 0.1 N HNO <sub>3</sub> Front Half rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >  | \  | ,                |   |              |
| 0945         M29-1-5A         Contents of Imps 4 and 0.1 N HNO <sub>3</sub> Rinse         /         /           1 0945         M29-1-5B         Contents of Imps 5-6, KMnO <sub>4</sub> and DI Rinses         /         /         /           1 0945         M29-1-5C         Imps. 5-6 BN HCI Rinse         /         /         /           1 230         M29-2-1         Filler, dry         /         /         /         /           1 230         M29-2-2         Front Half Acetone Dry-down residue         /         /         /         /           1 230         M29-2-4         Confents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/2/01      | 0945        | M29-1-4               | Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | -  |                  | _ |              |
| 0945         M29-1-5B         Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses         /         /           1230         M29-2-1         Filter, dry         /         /         /         /           1230         M29-2-2         Front Half Acetone Dry-down residue         /         /         /         /           1230         M29-2-3         0.1 N HNO <sub>5</sub> Front Half rinse         /         /         /         /         /           1230         M29-2-4         Contents of Imps. 1-3 and 0.1 N HNO <sub>5</sub> Rinse         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/2/01      | 0945        | M29-1-5A              | Conlents of Imp 4 and 0.1 N HNO <sub>3</sub> Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | \  | \<br>\           |   |              |
| 0945       M29-1-5C       Imps. 5-6 8N HCI Rinse       / / / /         1230       M29-2-1       Filter, dry       / / / /         1230       M29-2-2       Front Half Acetone Dry-down residue       / / / /         1230       M29-2-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1230       M29-2-4       Confents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / / /         1230       M29-2-5A       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / / /         1230       M29-2-5C       Imps. 5-6 8N HCI Rinse       / / / /         1405       M29-3-3       Finet Half Acetone Dry-down residue       / / / /         1405       M29-3-3       D.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1405       M29-3-3       D.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1405       M29-3-5       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / / /         1405       M29-3-5       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / / /         1405       M29-3-5       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/2/01      | 0945        | M29-1-5B              | Contents of Imps. 5-6, KMnO, and DI Rinses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L  | >  | \<br>\           |   |              |
| 1230 M29-2-1 Filter, dry 1230 M29-2-2 Front Half Acetone Dry-down residue 1230 M29-2-3 0.1 N HNO <sub>3</sub> Front Half rinse 1230 M29-2-4 Contents of Imps 1-3 and 0.1 N HNO <sub>3</sub> Rinse 1230 M29-2-5A Contents of Imps 5-6, KMnO <sub>4</sub> and DI Rinses 1230 M29-2-5B Contents of Imps 5-6, KMnO <sub>4</sub> and DI Rinses 1230 M29-2-5C Imps 5-6 8N HCI Rinse 1230 M29-2-5C Imps 5-6 8N HCI Rinse 1405 M29-3-3 Front Half rinse 1405 M29-3-3 0.1 N HNO <sub>3</sub> Front Half rinse 1405 M29-3-3 0.1 N HNO <sub>3</sub> Front Half rinse 1405 M29-3-5A Contents of Imps 1-3 and 0.1 N HNO <sub>3</sub> Rinse 1405 M29-3-5A Contents of Imps 5-6, KMnO <sub>4</sub> and DI Rinses 1405 M29-3-5C Imps 5-6 8N HCI Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/2/01      | 0945        | M29-1-5C              | Imps. 5-6 8N HC! Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >  | \  | `                | _ |              |
| 1230       M29-2-2       Front Half Acetone Dry-down residue       / / / / / /         1230       M29-2-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / / / /         1230       M29-2-4       Confents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / / / /         1230       M29-2-5A       Confents of Imp 4 and 0.1 N HNO <sub>3</sub> Rinse       / / / / /         1230       M29-2-5B       Confents of Imp 5-6, KMnO <sub>4</sub> and DI Rinses       / / / / /         1405       M29-3-1       Filter, dry       / / / / /         1405       M29-3-2       Front Half Acetone Dry-down residue       / / / / /         1405       M29-3-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / / / / /         1405       M29-3-4       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / / / / /         1405       M29-3-5A       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / / / / /         1405       M29-3-5A       Contents of Imps. 5-6, RMnO <sub>4</sub> and DI Rinses       / / / / / /         1405       M29-3-5C       Imps. 5-6 8N HCI Rinse       / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/2/01      | 1230        | M29-2-1               | Filler, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >  | >  | `                |   |              |
| 1230       M29-2-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1230       M29-2-4       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / / /         1230       M29-2-5A       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / / /         1230       M29-2-5B       Contents of Imps. 5-6 8N HCI Rinse       / / / /         1405       M29-3-1       Filter, dry       / / / /         1405       M29-3-2       Front Half Acetone Dry-down residue       / / / /         1405       M29-3-3       D.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1405       M29-3-4       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / / /         1405       M29-3-5A       Contents of Imp 4 and 0.1 N HNO <sub>3</sub> Rinse       / / / /         1405       M29-3-5B       Contents of Imp 4 and 0.1 N HNO <sub>3</sub> Rinses       / / / /         1405       M29-3-5C       Imps. 5-6 8N HCI Rinse       / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2/2/01      | 1230        | M29-2-2               | Front Half Acetone Dry-down residue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | `  | >  |                  |   | Beaker No. 2 |
| 1230       M29-2-4       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / /         1230       M29-2-5A       Contents of Imp 4 and 0.1 N HNO <sub>3</sub> Rinse       / / /         1230       M29-2-5B       Contents of Imps. 5-6 KMnO <sub>4</sub> and DI Rinses       / / /         1230       M29-2-5C       Imps. 5-6 8N HCI Rinse       / / /         1405       M29-3-1       Filter, dry       / / /         1405       M29-3-2       Front Half Acetone Dry-down residue       / / /         1405       M29-3-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / /         1405       M29-3-4       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / /         1405       M29-3-5A       Contents of Imp 4 and 0.1 N HNO <sub>3</sub> Rinse       / / /         1405       M29-3-5A       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / /         1405       M29-3-5C       Imps. 5-6 8N HCI Rinse       / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 272/01      | 1230        | M29-2-3               | 0.1 N HNO <sub>3</sub> Front Half rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >  | >  | \<br>\           |   |              |
| 1230       M29-2-5A       Contents of Imp 4 and 0.1 N HNO <sub>3</sub> Rinse       / / / /         1230       M29-2-5B       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / / /         1230       M29-2-5C       Imps. 5-6 8N HCI Rinse       / / / /         1405       M29-3-1       Filter, dry       / / / /         1405       M29-3-2       Front Half Acetone Dry-down residue       / / / /         1405       M29-3-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1405       M29-3-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1405       M29-3-5A       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / / /         1405       M29-3-5B       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / / /         1405       M29-3-5C       Imps. 5-6 8N HCI Rinse       / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/2/01      | 1230        | M29-2-4               | Contents of Imps. 1-3 and 0.1 N HNO3 Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >  | \  | \<br>\           |   |              |
| 1230       M29-2-5B       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /       /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/2/01      | 1230        | M29-2-5A              | Contents of Imp 4 and 0.1 N HNO <sub>3</sub> Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | `  | >  | \                | - |              |
| 1230       M29-2-5C       Imps. 5-6 8N HCl Rinse       / / / /         1405       M29-3-1       Filter, dry       / / / /         1405       M29-3-2       Front Half Acetone Dry-down residue       / / / /         1405       M29-3-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1405       M29-3-5A       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / / /         1405       M29-3-5A       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / / /         1405       M29-3-5C       Imps. 5-6 8N HCl Rinse       / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/2/01      | 1230        | M29-2-5B              | Contents of Imps. 5-6, KMnO, and DI Rinses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | `  | >  | \<br>\           |   |              |
| 1405       M29-3-1       Filter, dry       / / / /         1405       M29-3-2       Front Half Acetone Dry-down residue       / / / /         1405       M29-3-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1405       M29-3-4       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / / /         1405       M29-3-5A       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / / /         1405       M29-3-5C       Imps. 5-6 8N HCI Rinse       / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/2/01      |             | M29-2-5C              | Imps. 5-6 8N HCI Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >  | -  | >                |   |              |
| 1405       M29-3-2       Front Half Acetone Dry-down residue       / / / /         1405       M29-3-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1405       M29-3-4       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / / /         1405       M29-3-5A       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / / /         1405       M29-3-5C       Imps. 5-6 8N HCI Rinse       / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/2/01      | 1405        | M29-3-1               | Filter, dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | `  | `  | `                |   |              |
| 1405       M29-3-3       0.1 N HNO <sub>3</sub> Front Half rinse       / / / /         1405       M29-3-5A       Contents of Imp 4 and 0.1 N HNO <sub>3</sub> Rinse       / / /         1405       M29-3-5A       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / /         1405       M29-3-5C       Imps. 5-6 RN HCI Rinse       / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2/2/01      |             | M29-3-2               | Front Half Acetone Dry-down residue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >  | >  | >                |   |              |
| 1405       M29-3-4       Contents of Imps. 1-3 and 0.1 N HNO <sub>3</sub> Rinse       / / /         1405       M29-3-5A       Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses       / / /         1405       M29-3-5C       Imps. 5-6 8N HCI Rinse       / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/2/01      |             | M29-3-3               | 0.1 N HNO <sub>3</sub> Front Half rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >  | `  | ,                |   | Beaker No. 3 |
| 1405         M29-3-5A         Contents of Imp 4 and 0.1 N HNO <sub>3</sub> Rinse         /         /           1405         M29-3-5B         Contents of Imps. 5-6, KMnO <sub>4</sub> and DI Rinses         /         /           1405         M29-3-5C         Imps. 5-6 8N HCI Rinse         /         /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/2/01      |             | M29-3-4               | Contents of Imps. 1-3 and 0.1 N HNO3 Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | `  | 5  | \                |   |              |
| 1405         M29-3-5B         Contents of Imps. 5-6, KMnO, and DI Rinses         /         /           1405         M29-3-5C         Imps. 5-6 8N HCI Rinse         /         /         /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/2/01      |             | M29-3-5A              | Contents of Imp 4 and 0.1 N HNO3 Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >  | \  | \                |   |              |
| 1405 M29-3-5C Imps. 5-6 8N HCI Rinse / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/2/01      |             | M29-3-5B              | Contents of Imps. 5-6, KMnO, and DI Rinses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >  | \  |                  |   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/2/01      |             | M29-3-5C              | Imps. 5-6 8N HCI Rinse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >  | 1  | `                |   |              |

Pros 1/2

IC ENVIRONMENTAL SERVICES, INC.

Central Park W 5001 South Miami Boulevard, P.O. Box 12( Research Triangle Park, North Carolina 27709-2( (919) 941-0333 FAX: (919) 941-0;

Chain of Custody Record

ENVIRONMENTAL SERVICES, INC.

|                              |                |                                  | Olego To History                                                 | and record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                       |
|------------------------------|----------------|----------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|
| Project Numb                 |                | Project Name                     |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              | F181.001       |                                  | Andrews AFB Medical Waste Incinerator                            | Analysis requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                       |
| Samplers                     |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           |                       |
|                              | OD Holzschul   | OD Holzschuh, J Falank, MD Maret |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Remarks               |
| Date                         | Time           | Field Sample ID                  | Sample Description                                               | CI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                       |
| 1/31/01                      | 1045           | 1045 M26-1                       | Acid Impinger Contents and Rinses                                | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Run 1                 |
| 2/1/01                       | 0910           | 0910 M26-2                       | Acid Impinger Contents and Rinses                                | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Run 2                 |
| 2/1/01                       | 0945           | 0945 M26-3                       | Acid Impinger Contents and Rinses                                | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Run 3                 |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
| Refinaurand                  | 1:             | ) Date/Time                      | Received by: (Signature)                                         | A TOWNS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR | 1 1 1 1 1 1 | 17 Charles 45 Charles |
|                              | 7              | 19/1/2                           |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              | 000            |                                  | the feet of the same of the same of                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |
|                              |                |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | And the second        |
| Relinquished by: (Signature) | r. (Signalure) | Date/Time                        | Date/Time   Received for lab by: (Signature)   REMARKS   Z/(2/n) | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                       |
|                              |                | ( , , , )                        | WANDER                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Page L of C           |
|                              | 3              |                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                       |

OH TEN COL

SCTOTBRETET !

06.11

TO/ON/FO

# First Analytical Laboratories 1126 Burning Tree Dr. Chapel Hill, NC 27514

Tel. (919) 942-8607 (919) 929-8688 FAX

### **ANALYSIS REPORT**

Project #: 10204

**Client: Pacific Environmental Services** 

Client Project ID: 104-01-0048

Report Date:

19-Feb-01

Date Received: 12-Feb-01

# **Total Micrograms in Analytical Fraction**

| Sample      | Cd     | Pb   |
|-------------|--------|------|
|             | μg     | μg   |
| M29-1 Front | 1.86   | 427  |
| M29-1 Back  | 1.69   | 7.1  |
| M29-2 Front | 6.22   | 550  |
| M29-2 Back  | 0.44   | 4.4  |
| M29-3 Front | 6.09   | 480  |
| M29-3 Back  | 0.24   | 1.2  |
| Blank Front | <0.02  | <0.5 |
| Blank Back  | < 0.03 | <0.6 |

#### QC SUMMARY

| Front Spike, %Recov. | 101% | 100% |
|----------------------|------|------|
| Back Spike, %Recov.  | 105% | 104% |



# First Analytical Laboratories 1126 Burning Tree Dr. Chapel Hill, NC 27514

Tel. FAX

(919) 942-8607 (919) 929-8688

### **ANALYSIS REPORT**

Project #: 10204

Client: Pacific Environmental Services

Client Project ID:

Report Date:

15-Feb-01

Date Received: 12-Feb-01

# **Total Micrograms Mercury in Analytical Fraction**

| Sample | Frac1 | Frac2B | Frac3A | Frac3B | Frac3C | Total |
|--------|-------|--------|--------|--------|--------|-------|
| Blank  | <0.40 | <0.95  | <0.10  | <0.12  | <0.58  | <2.15 |
| M29-1  | <0.40 | 58.8   | 1.09   | 3.98   | 9.17   | 73.0  |
| M29-2  | <0.40 | 3.85   | <0.12  | 0.56   | <1.12  | 4.41  |
| M29-3  | <0.40 | <2.28  | 0.10   | 0.45   | <1.12  | 0.55  |

### QC SUMMARY

Back Spike, %Recov.

106%

Tel. (919) 942-8607 FAX (919) 929-8688

### **ANALYSIS REPORT**

Project #: 10204

Client: Pacific Environmental Services

Client Project ID: 104-01-0048

Report Date: 19-Feb-01 Date Received: 12-Feb-01

### **Total Milligrams in Sample**

|                   | HCl<br>mg |
|-------------------|-----------|
| M26A-1            | 2.8       |
| M26A-1 2 All      | 0.3       |
| M26A-3/3 A        | 1.1       |
| Blank             | 8.0       |
| Spike. % Recovery | 116%      |

# CADMIUM GFAA ANALYSIS RUN SUMMARY AND CALCULATION WORKSHEET

Client: Pacific Environmental Services

Proj. #: 10204

Date: 19-Feb-01

IDL =

0.2 μg/L

Postdig'n spike conc. =

 $5.0 \mu g/L$ 

| Sample<br>Client<br>FRONT HALV                  | FAL                                                        | Test<br>Sol'n<br>μg/L        | Digte<br>Conc<br>µg/L           | FV<br>ml                 | Dil'n<br>Factor    | Total<br>Volume<br>ml    | Volume<br>Digʻd<br>ml    |   | Total<br>μg                  |
|-------------------------------------------------|------------------------------------------------------------|------------------------------|---------------------------------|--------------------------|--------------------|--------------------------|--------------------------|---|------------------------------|
| Blank<br>M29-1<br>M29-2<br>M29-3                | 10204.B-1<br>10204.1-1<br>10204.2-1<br>10204.3-1           | 0.06<br>3.71<br>6.22<br>6.09 | 0.06<br>18.55<br>62.20<br>60.90 | 100<br>100<br>100<br>100 | 1<br>5<br>10<br>10 |                          |                          | < | 0.02<br>1.86<br>6.22<br>6.09 |
| BACK HALVE:<br>Blank<br>M29-1<br>M29-1<br>M29-3 | \$<br>10204.B-2A<br>10204.1-2A<br>10204.2-2A<br>10204.3-2A | 0.05<br>2.86<br>3.74<br>1.97 | 0.05<br>14.30<br>3.74<br>1.97   | 100<br>100<br>100<br>100 | 1<br>5<br>1        | 238<br>641<br>631<br>570 | 188<br>541<br>531<br>470 | < | 0.03<br>1.69<br>0.44<br>0.24 |
| FRONT SPIKE<br>BACK SPIKE                       | 10204.1-1S<br>10204.1-2AS                                  | 8.78<br>8.09                 |                                 |                          |                    | % REC =<br>% REC =       | 101.4%<br>104.6%         |   |                              |

### **Calibration Data**

|                           | True conc., μg/L | Abs.     |      |
|---------------------------|------------------|----------|------|
| Blank                     | 0.0              | 0.000    |      |
| Standard 1                | 0.5              | 0.042    |      |
| Standard 2                | 2.0              | 0.150    |      |
| Standard 3                | 5.0              | 0.361    |      |
| Standard 4                | 10.0             | 0.644    |      |
| Calibration Verifications |                  |          |      |
| ICV = 5                   | 5.17             | CCV2 = 5 | 5.41 |
| ICB = 0                   | 0.05             | CCB2 = 0 | 0.02 |
| CCV1 = 5                  | 5.35             |          |      |
| CCB1 = 0                  | 0.07             |          |      |



LEAD
GFAA ANALYSIS RUN SUMMARY AND CALCULATION WORKSHEET

**Client: Pacific Environmental Services** 

Proj. #: 10204

Date: 19-Feb-01

IDL =

 $5 \mu g/L$ 

Postdig'n spike conc. =

100 μg/L

| Sample<br>Client<br>FRONT HALV                  | FAL                                                  | Test<br>Sol'n<br>μg/L          | Digte<br>Conc<br>μg/L             | FV<br>ml                 | Dil'n<br>Factor     | Total<br>Volume<br>ml    | Volume<br>Dig'd<br>ml    |   | Total<br>μg                    |
|-------------------------------------------------|------------------------------------------------------|--------------------------------|-----------------------------------|--------------------------|---------------------|--------------------------|--------------------------|---|--------------------------------|
| Blank<br>M29-1<br>M29-2<br>M29-3                | 10204.B-1<br>10204.1-1<br>10204.2-1<br>10204.3-1     | 3.3<br>106.7<br>137.6<br>119.9 | 3.3<br>4268.0<br>5504.0<br>4796.0 | 100<br>100<br>100<br>100 | 1<br>40<br>40<br>40 |                          |                          | < | 0.5<br>426.8<br>550.4<br>479.6 |
| BACK HALVES<br>Blank<br>M29-1<br>M29-1<br>M29-3 | 10204.B-2A<br>10204.1-2A<br>10204.2-2A<br>10204.3-2A | 0.1<br>59.8<br>36.8<br>9.9     | 0.1<br>59.8<br>36.8<br>9.9        | 100<br>100<br>100<br>100 | 1<br>1<br>1         | 238<br>641<br>631<br>570 | 188<br>541<br>531<br>470 | < | 0.6<br>7.1<br>4.4<br>1.2       |
| FRONT SPIKE<br>BACK SPIKE                       | 10204.1-1S<br>10204.1-2AS                            | 206.9<br>164.0                 |                                   |                          |                     | % REC =<br>% REC =       | 100.2%<br>104.2%         |   |                                |

### **Calibration Data**

| True conc., μg/L | Abs.                                   |                                                                                |
|------------------|----------------------------------------|--------------------------------------------------------------------------------|
| 0.0              | 0.000                                  |                                                                                |
| 10               | 0.031                                  |                                                                                |
| 50               | 0.133                                  |                                                                                |
| 100              | 0.254                                  |                                                                                |
| 200              | 0.449                                  |                                                                                |
|                  |                                        |                                                                                |
| 103.2            | CCV2 = 100                             | 106.0                                                                          |
| 1.1              | CCB2 = 0                               | 1.0                                                                            |
| 104.5            |                                        |                                                                                |
| 0.7              |                                        |                                                                                |
|                  | 10<br>50<br>100<br>200<br>103.2<br>1.1 | 0.0 0.000 10 0.031 50 0.133 100 0.254 200 0.449  103.2 CCV2 = 100 1.1 CCB2 = 0 |

# MERCURY CVAA ANALYSIS RUN SUMMARY AND CALCULATION WORKSHEET

Client: Pacific Environmental Services

 $IDL = 0.2 \mu g/L$ 

Proj. #: 10204

Postdig'n spike conc. =

5.0 μg/L

Date: 14-Feb-01

| Sample ID   |             | Test  | Dig'te |     | Dil'n  |        | Digsťd |   |       |
|-------------|-------------|-------|--------|-----|--------|--------|--------|---|-------|
| Client      | FAL         | Sol'n | Conc   | FV  | Factor | Volume | Vol.   |   | Total |
|             |             | μg/L  | μg/L   | ml  |        | ml     | ml     |   | μg    |
| FRONT HALVI | ES          |       |        |     |        |        |        |   |       |
| Blank       | 10204.B-1   | -0.13 | -0.13  | 100 | 1      | 100    | 5      | < | 0.40  |
| M29-1       | 10204.1-1   | -0.10 | -0.10  | 100 | 1      | 100    | 5      | < | 0.40  |
| M29-2       | 10204.2-1   | -0.02 | -0.02  | 100 | 1      | 100    | 5      | < | 0.40  |
| M29-3       | 10204.3-1   | 0.16  | 0.16   | 100 | 1      | 100    | 5      | < | 0.40  |
|             |             |       |        |     |        |        |        |   |       |
| FRACTIONS 2 | В           |       |        |     |        |        |        |   | •     |
| Blank       | 10204.B-2B  | -0.13 | -0.13  | 100 | 1      | 238    | 5      | < | 0.95  |
| M29-1       | 10204.1-2B  | 2.75  | 2.75   | 100 | 1      | 641    | 3      |   | 58.76 |
| M29-2       | 10204.2-2B  | 0.31  | 0.31   | 100 | 1      | 631    | 5      |   | 3.85  |
| M29-3       | 10204.3-2B  | 0.18  | 0.18   | 100 | 1      | 570    | 5      | < | 2.28  |
|             |             |       |        |     |        |        |        |   |       |
| BACK SPK    | 10204.1-2BS | 8.05  |        |     |        | %REC = | 106.0% |   |       |
| •           |             |       |        |     |        |        |        |   |       |
| FRACTIONS 3 | A           |       |        |     |        |        |        |   |       |
| Blank       | 10204.B-3A  | 0.11  | 0.11   | 100 | 1      | 50     | 10     | < | 0.10  |
| M29-1       | 10204.1-3A  | 1.88  | 1.88   | 100 | 1      | 58     | 10     |   | 1.09  |
| M29-2       | 10204.2-3A  | 0.15  | 0.15   | 100 | 1      | 59     | 10     | < | 0.12  |
| M29-3       | 10204.3-3A  | 0.27  | 0.27   | 100 | 1      | 39     | 10     |   | 0.10  |
|             |             |       |        |     |        |        |        |   |       |
| FRACTIONS 3 | 8           |       |        |     |        |        |        |   |       |
| Blank       | 10204.B-3B  | 0.07  | 0.07   | 100 | 1      | 118    | 20     | < | 0.12  |
| M29-1       | 10204.1-3B  | 1.89  | 1.89   | 100 | 1      | 421    | 20     |   | 3.98  |
| M29-2       | 10204.2-3B  | 0.25  | 0.25   | 100 | 1      | 446    | 20     |   | 0.56  |
| M29-3       | 10204.3-3B  | 0.21  | 0.21   | 100 | 1      | 432    | 20     |   | 0.45  |
|             |             |       |        |     |        |        |        |   |       |
| FRACTIONS 3 | C           |       |        |     |        |        |        |   |       |
| Blank       | 10204.B-3C  | 0.13  | 0.13   | 100 | 1      | . 144  | 5      | < | 0.58  |
| M29-1       | 10204.1-3C  | 1.62  | 1.62   | 100 | 1      | 284    | 5      |   | 9.17  |
| M29-2       | 10204.2-3C  | 0.17  | 0.17   | 100 | 1      | 281    | 5      | < | 1.12  |
| M29-3       | 10204.3-3C  | 0.11  | 0.11   | 100 | 1      | 279    | 5      | < | 1.12  |
|             |             |       |        |     |        |        |        |   |       |

# MERCURY CVAA ANALYSIS RUN SUMMARY AND CALCULATION WORKSHEET

Client: Pacific Environmental Services

Proj. #: 10204 Date: 14-Feb-01

| Calibration Data  |            |       | Run1             |          |       |
|-------------------|------------|-------|------------------|----------|-------|
|                   |            | Abs.  | True conc., µg/L |          |       |
|                   | Blank      | 0.000 | 0.00             |          |       |
| ·                 | Standard 1 | 0.007 | 0.50             |          |       |
|                   | Standard 2 | 0.018 | 1.00             |          |       |
|                   | Standard 3 | 0.044 | 2.00             |          |       |
|                   | Standard 4 | 0.107 | 5.00             |          |       |
|                   | Standard 5 | 0.208 | 10.00            |          |       |
| Calibration Verif | ications   |       |                  |          |       |
|                   | ICV = 5    | 5.30  |                  | CCV2 = 5 | 5.13  |
|                   | ICB = 0    | -0.15 |                  | CCB2 = 0 | -0.04 |
|                   | CCV1 = 5   | 5.40  |                  | CCV3 = 5 | 5.15  |
|                   | CCB1 = 0   | -0.21 |                  | CCB3 = 0 | 0.13  |

Element File: CD.GEL Element: Cd Wavelength: 228.8 Time: 08:24 Slit: 0.70 L Date: 02/09/81 Data File: 10204CD.DAT ID/Wt File: 10204.IDW Lamp Current: 5 Energy: 42 Calib. Type: Nonlinear Technique: HGA Seq. No.: 00001 A/S Pos.: 0 Date: 02/09/8 Cd ID: BLANK Time: 08:24 Replicate 1 Peak Height (A): 0.019 Peak Area (A-s): -0.001 Background Pk Area (A-s): 0.007 Background Pk Height (A): 0.014 Blank Corrected Pk Area (A-s): -0.001 Time: 08:28 Replicate 2 Peak Height (A): 0.017 Peak Area (A-s): -0.005 Background Pk Height (A): 0.031 Background Pk Area (A-s): 0.056 Blank Corrected Pk Area (A-s): -0.005 RSD(%): 83.54 Mean Pk Area (A-s): -0.003 ' SD: 0.0028 Auto-zero performed. Seq. No.: 00002 A/S Pos.: 1 Date: 02/09/8 Cd ID: 0.5 PPB CD Time: 08:31 Replicate 1 Peak Height (A): 0.083 Peak Area (A-s): 0.038 Background Pk Height (A): 0.040 Background Pk Area (A-s): 0.081 Blank Corrected Pk Area (A-s): 0.041 Time: 08:34 Replicate 2 Peak Area (A-s): 0.039 Peak Height (A): 0.087 Background Pk Height (A): 0.043 Background Pk Area (A-s): 0.086 Blank Corrected Pk Area (A-s): 0.043 SD: 0.0011 RSD(%): 2.74 Mean Pk Area (A-5): 0.042 Standard number 1 applied. [0.50] Slope: 0.0839 Correlation coefficient: 1.00000 Seq. No.: 00003 A/S Pos.: 2 Date: 02/09/4 Cd ID: 2 PPB CD Time: 08:37 Replicate 1 Peak Height (A): 0.280 Peak Area (A-5): 0.146 Background Pk Area (A-s): 0.110 Background Pk Height (A): 0.053 Blank Corrected Pk Area (A-s): 0.150 Concentration (ug/L ): 1.78

Replicate 2

Peak Area (A-s): 0.147

Background Pk Area (A-s): 0.111

Blank Corrected Pk Area (A-s): 0.150

Concentration (ug/L ): 1.79

Mean Conc (ug/L ): 1.79

SD: 0.005

Time: 08:40

Peak Height (A): 0.297

Background Pk Height (A): 0.045

RSD(%): 0.30

Standard number 2 applied. [2.00]



OK ID: ICV Sea. No.: 00006 A/S Pos.: 5 Date: 02/09/ Replicate 1 Time: 08:58 Concentration (ug/L ): 5.22 Replicate 2 Time: 09:01 Concentration (ug/L ): 5.11 Mean Conc (ug/L ): 5.17 SD: 0.084 RSD(%): 1.62 QC sample is within range Cd ID: ICB Seq. No.: 00007 A/S Pos.: 0 Date: 02/05 Replicate 1 Time: 09:04 Concentration (ug/L ): 0.06 Replicate 2 Time: 09:08 Concentration (ug/L ): 0.03 Mean Conc (ug/L ): 0.05 SD: 0.020 RSD(%): 44.02 QC sample is within range Cd ID: 10204.B-1 Seq. No.: 00008 A/S Pos.: 6 Date: 02/05 Replicate 1 Time: 09:11 Concentration (ug/L ): 0.04

Time: 09:14

Replicate 2

Concentration (ug/L ): 0.08 Mean Conc (ug/L ): 0.06 SD: 0.029 RSD(%): 45.11 Cd ID: 10204.1-1 X20 Seq. No.: 00009 A/S Pos.: 7 Date: 02/09/ Time: 09:17 Replicate 1 Concentration (ug/L ): 0.97 Corrected Conc (ug/L ): 19.4 Cd ID: 10204.1-1 X5 Seq. No.: 00010 A/S Pos.: 7 Date: 02/09/ Time: 09:25 Replicate 1 Concentration (ug/L ): 3.64 Corrected Conc (ug/L ): 18.2 Replicate 2 Time: 09:28 Concentration (ug/L ): 3.78 Corrected Conc (ug/L ): 18.88 3.71 SD: 0.098 RSD(%): 2.65 Mean Conc (uo/L ): Corrected Conc (ug/L ): 18.5

Cd ID: 10204.1-1 X5 Seq. No.: 00011 A/S Pos.: 7 Date: 02/09/

Replicate 1 Time: 09:32 Concentration (ug/L ): 8.73 Corrected Conc (ug/L ): 43.7

Replicate 2 Time: 09:35
Concentration (ug/L ): 8.82 Corrected Conc (ug/L ): 44.1

Mean Conc (ug/L ): 8.78 SD: 0.062 RSD(%): 0.71 Corrected Conc (ug/L ): 43.9

Recovery is 101.4%

Sample abs. is greater than that of the largest standard.

Replicate 1 Time: 09:38

Concentration (ug/L ): 12.08 Corrected Conc (ug/L ): 60.4

Cd ID: 10204.2-1 X10 Seq. No.: 00014 A/S Pos.: 8 Date: 02/09/

Replicate 1 Time: 09:45

Replicate 2 Time: 09:49

Concentration (ug/L ): 6.06 Corrected Conc (ug/L ): 60.6

Mean Conc (ug/L ): 6.22 SD: 0.223 RSD(%): 3.59

Corrected Conc (ug/L ): 62.2

Cd ID: 10204.3-1 X10 Seq. No.: 00015 A/S Pos.: 9 Date: 02/09/

```
Time: 09:52
Concentration (ug/L ): 6.14
                            Corrected Conc (ug/L ): 61.4
Replicate 2
                            Time: 09:55
Concentration (ug/L ): 6.05
                            Corrected Conc (ug/L ): 60.5
Mean Conc (ug/L ):
                   6.09
                            SD: 0.061
                                              RSD(%): 1.01_
Corrected Conc (ug/L ): 60.9
Cd ID: CCV
                    Seq. No.: 00016 A/S Pos.: 3
                                             Date: 02/09 (
Replicate 1
                            Time: 09:59
Concentration (ug/L ): 5.30
Replicate 2
                            Time: 10:02
Concentration (ug/L ): 5.39
Mean Conc (ug/L ): 5.35 SD: 0.066
                                              RSD(%): 1.23
QC sample is within range
<u></u>
Cd ID: CCB
                     Seq. No.: 00017 A/S Pos.: 0
                                             Date: 02/094
Replicate 1
                            Time: 10:05
Concentration (uq/L ): 0.04
Replicate 2
                            Time: 10:08
Concentration (ug/L ): 0.09
Mean Conc (ug/L ): 0.07
                       SD: 0.033
                                             RSD(%): 50.2
QC sample is within range
ID: 10204.B-2A
                    Seq. No.: 0001B A/S Pos.: 10 Date: 02/09/
Replicate 1
                            Time: 10:11
Concentration (up/L ): -0.07
Replicate 2
                            Time: 10:15
Concentration (ug/L ): 0.16
Mean Conc (ug/L ): 0.05
                            SD: 0.162
                                             RSD(%): 342.5
ID: 10204.1-2A
                    Seq. No.: 00019 A/S Pos.: 11
                                              Date: 02/09 *
Sample abs. is greater than that of the largest standard.
Replicate 1
                           Time: 10:18
Concentration (ug/L ): 13.89
Cd ID: 10204.1-2A X5 Seq. No.: 00020 A/S Pos.: 11
                                              Date: 02/0° '
Replicate 1
                            Time: 10:24
Concentration (ug/L ): 2.94
                            Corrected Conc (ug/L ): 14.7
```

Replicate

Replicate 2
Concentration (ug/L ): 2.79

Mean Conc (ug/L ): 2.86

Time: 10:28
Corrected Conc (ug/L ): 13.9

RSD(%): 3.81

Corrected Conc (ug/L ): 14.3

Cd ID: 10204.1-2A X5 Seq. No.: 00021 A/S Pos.: 11 Date: 02/09/8

Replicate 1 Time: 10:31

Concentration (ug/L ): 8.14 Corrected Conc (ug/L ): 40.7

Replicate 2 Time: 10:34

Concentration (ug/L ): 8.04 Corrected Conc (ug/L ): 40.2

Mean Conc (ug/L ): B.09 SD: 0.067 RSD(%): 0.83

Corrected Conc (ug/L ): 40.5

Recovery is 104.5%

Cd ID: 10204.2-2A X5 Seq. No.: 00022 A/S Pos.: 12 Date: 02/09/8

Replicate 1 Time: 10:37

Cd ID: 10204.2-2A Seg. No.: 00023 A/S Pos.: 12 Date: 02/09/

Replicate 1 Time: 10:41

Concentration (ug/L ): 3.62

Replicate 2 Time: 10:45

Concentration (ug/L ): 3.86

Mean Conc (ug/L ): 3.74 SD: 0.170 RSD(%): 4.54

Cd ID: 10204.3-2A Seq. No.: 00024 A/S Pos.: 13 Date: 02/09/

Replicate 1 Time: 10:48

Concentration (ug/L ): 2.05

Replicate 2 Time: 10:51

Concentration (ug/L ): 1.90

Mean Conc (ug/L ): 1.97 SD: 0.106 RSD(%): 5.39

Cd ID: CCV Seq. No.: 00025 A/S Pos.: 3 Date: 02/09/

Replicate 1 Time: 10:54

Concentration (ug/L ): 5.43

Replicate 2 Time: 10:57

Concentration (ug/L ): 5.39

Mean Conc (ug/L ): 5.41 SD: 0.031 RSD(%): 0.57

QC sample is within range

Cd ID: CCB Seo. No.: 00026 A/S Pos.: 0 Date: 02/09

Replicate 1 Time: 11:01

Concentration (ug/L ): 0.06

Replicate 2 Time: 11:04

Concentration (ug/L ): -0.03

Mean Conc (ug/L ): 0.02 SD: 0.062 RSD(%): 408.

QC sample is within range

Wavelenoth: 283.3 Element: Pb Flement File: PB.GEL Slit: 0.70 L Time: 07:59 Date: 02/08/81 ID/Wt File: 20203.IDW Lamp Current: 10 Data File: Calib. Type: Nonlinear Energy: 47 Technique: HGA A/S Pos.: 0 Date: 02/08/8 Seq. No.: 00001 ID: BLANK Pb Time: 07:59 Replicate 1 Peak Height (A): 0.014 Peak Area (A-s): 0.002 Background Pk Height (A): 0.044 Background Pk Area (A-s): 0.039 Blank Corrected Pk Area (A-s): 0.002 Time: 08:02 Replicate 2 Peak Height (A): 0.016 Peak Area (A-s): 0.000 Background Pk Height (A): 0.032 Background Pk Area (A-s): 0.025 Blank Corrected Pk Area (A-s): 0.000 RSD(%): 88.39 SD: 0.0010 Mean Pk Area (A-s): 0.001 Auto-zero performed. Seg. No.: 00002 A/S Pos.: 1 Date: 02/08/8 Ph ID: 10 PPB PB Time: 08:06 Replicate 1 Peak Height (A): 0.064 Peak Area (A-s): 0.033 Background Pk Height (A): 0.122 Background Pk Area (A-s): 0.058 Blank Corrected Pk Area (A-s): 0.031 Time: 08:09 Replicate 2 Peak Height (A): 0.083 Peak Area (A-s): 0.032 Background Pk Height (A): 0.039 Background Pk Area (A-s): 0.027 Blank Corrected Pk Area (A-s): 0.031 RSD(%): 0.52 Mean Pk Area (A-s): 0.031 SD: 0.0002 Standard number 1 applied. [10.0] Slope: 0.0031 Correlation coefficient: 1.00000 Seq. No.: 00003 A/S Pos.: 2 Date: 02/08/ Pb ID: 50 PPB PB Time: 08:12

Replicate 1
Peak Area (A-s): 0.134
Background Pk Area (A-s): 0.050
Blank Corrected Pk Area (A-s): 0.133
Concentration (ug/L ): 42.4

Peak Height (A): 0.333
Background Pk Height (A): 0.071

Replicate 2
Peak Area (A-s): 0.133
Background Pk Area (A-s): 0.050
Blank Corrected Pk Area (A-s): 0.132
Concentration (ug/L ): 42.3

Peak Height (A): 0.329
Background Pk Height (A): 0.072

Mean Conc (ug/L ): 42.3 SD: 0.03 RSD(%): 0.08

Time: 08:16

Standard number 2 applied. [50.0]



```
OK
                        Sea. No.: 0000B
                                       A/S Pos.: 5
                                                     Date: 02/08/8
Replicate 1
                                Time: 08:45
Concentration (ug/L ): 99.7
Replicate 2
                                Time: 08:48
Concentration (ug/L ): 106.7
Mean Conc (ug/L ): 103.2 SD: 4.93
                                                    RSD(%): 4.77
QC sample is within range 79.5 - 120.49
    ID: ICB
                        Seq. No.: 00009 A/S Pos.: 0
                                                     Date: 02/08 (
Replicate 1
                                Time: 08:52
Concentration (ug/L ): 1.7
Replicate 2
                                Time: 08:55
Concentration (ug/L ): 0.5
Mean Conc (ug/L ):
                  1.1
                               SD: 0.83
                                                    RSD(%): 74.89
QC sample is within range -5.49 - 5.49
 ID: 20203.LB1
                       Seq. No.: 00010
                                       A/S Pos.: 6
                                                     Date: 02/0E (
```

Time: 08:58

Time: 09:02

. 4

Replicate

Replicate 2

Concentration (ug/L ): 1.1

Concentration (ug/L ): 1.1

Concentration (ug/L ): 144.8 Time: 14:57 Replicate 2 Concentration (ug/L ): 144.1 RSD(%): 0.33 Mean Conc (ug/L ): 144.5 SD: 0.48 Seg. No.: 00064 A/S Pos.: 26 Date: 02/08/8 ID: 20203.30-3 Replicate 1 Time: 15:01 Concentration (ug/L ): 142.4 Time: 15:04 Replicate 2 Concentration (ug/L ): 143.5 RSD(%): 0.54 Mean Conc (ug/L ): 143.0 SD: 0.77 Pb ID: 20203.30-4 Seq. No.: 00065 A/S Pos.: 27 Date: 02/08/8 Replicate 1 Time: 15:07 Concentration (ug/L ): 153.3 Replicate 2 Time: 15:11 Concentration (ug/L ): 152.1 Mean Conc (ug/L ): 152.7 SD: 0.84 RSD(%): 0.55 ID: 20203.30-6 Seg. No.: 00066 A/S Pos.: 28 Date: 02/08/8 Time: 15:14 Replicate 1 Concentration (ug/L ): 137.5 Replicate 2 Time: 15:17 Concentration (ug/L ): 136.8 Mean Conc (ug/L ): 137.2 SD: 0.50 RSD(%): 0.37Pb ID: 20203.30-7 Seg. No.: 00067 A/S Pos.: 29 Date: 02/08/E Replicate 1 Time: 15:21 Concentration (ug/L ): 3.0 Replicate 2 Time: 15:24 Concentration (ug/L ): 1.3 Mean Conc (ug/L ): 2.1 SD: 1.19 RSD(%): 56.46 Pb ID: CCV Seq. No.: 0006B A/S Pos.: 3 Date: 02/08/E Replicate Time: 15:27 Concentration (ug/L ): 104.3 Replicate 2 Time: 15:31

Concentration (ug/L ): 104.8

Mean Conc (ug/L ): 104.5 SD: 0.34 RSD(%): 0.33

QC sample is within range 79.5 - 120.49

---^^^^^^^^^^^

Pb ID: CCB Seq. No.: 00069 A/S Pos.: 0 Date: 02/08/6

Replicate 1 Time: 15:34

Concentration (ug/L ): 1.2

Replicate 2 Time: 15:38

Concentration (ug/L ): 0.3

Mean Conc (ug/L ): 0.7 SD: 0.65 RSD(%): 90.3~

QC sample is within range -5.49 - 5.49

Replicate 1 Time: 15:44

Concentration (ug/L ): 3.1

Replicate 2 Time: 15:48

Concentration (ug/L ): 3.4

Mean Conc (ug/L ): 3.3 SD: 0.22 RSD(%): 6.64

Pb ID: 10204.1-1 X20 Seq. No.: 00071 A/S Pos.: 7 Date: 02/0B/{

Replicate 1 Time: 15:51

Concentration (ug/L ): 204.6 Corrected Conc (ug/L ): 4092.

Pb ID: 10204.1-1 X40 Seq. No.: 00072 A/S Pos.: 7 Date: 02/08/8

Replicate 1 Time: 15:57

Concentration (ug/L ): 108.1 Corrected Conc (ug/L ): 4322.

Replicate 2 Time: 16:00

Concentration (ug/L ): 105.4 Corrected Conc (ug/L ): 4216.

Mean Conc (ug/L ): 106.7 SD: 1.88 RSD(%): 1.76

Corrected Conc (ug/L ): 4269.

Pb ID: 10204.1-1 X40 Seq. No.: 00073 A/S Pos.: 7 Date: 02/08

Replicate 1 Time: 16:04

Concentration (ug/L ): 209.8 Corrected Conc (ug/L ): 8390.

Replicate 2 Time: 16:07

Concentration (ug/L ): 204.1 Corrected Conc (ug/L ): 8164.

Mean Conc (ug/L ): 206.9 SD: 3.99 RSD(%): 1.93\_

Corrected Conc (ug/L ): 8277.

Recovery is 100.2%

A/S Pos.: B Sea. No.: 00074 Date: 02/08/8 ID: 10204.2-1 X40 РЬ Time: 16:11 Replicate 1 Corrected Conc (ug/L ): 5529. Concentration (ug/L ): 138.2 Time: 16:14 Replicate 2 Corrected Conc (ug/L ): 5480. Concentration (ug/L ): 137.0 RSD(%): 0.63 Mean Conc (ug/L ): 137.6 SD: 0.86 Corrected Conc (ug/L ): 5505. ID: 10204.3-1 X40 Seq. No.: 00075 A/S Pos.: 9 Date: 02/08/8 Time: 16:17 Replicate 1 Corrected Conc (ug/L ): 4863. Concentration (ug/L ): 121.6 Time: 16:21 Replicate 2 Corrected Conc (ug/L ): 4731. Concentration (ug/L ): 118.3 RSD(%): 1.95 SD: 2.34 Mean Conc (ug/L ): 119.9 Corrected Conc (ug/L ): 4797. Seo. No.: 00076 A/S Pos.: 10 Date: 02/08/8 Pb ID: 10204.B-2A Time: 16:24 Replicate 1 Concentration (ug/L ): 0.7 Time: 16:27 Replicate 2 Concentration (ug/L ): -0.4 SD: 0.77 RSD(%): 595.48 Mean Conc (ug/L ): 0.1 Sec. No.: 00077 A/S Pos.: 11 Date: 02/08/6 Pb ID: 10204.1-2A Time: 16:31 Replicate 1 Concentration (ug/L ): 59.2 Time: 16:34 Replicate 2 Concentration (ug/L ): 60.3 RSD(%): 1.38 SD: 0.82 Mean Conc (ug/L ): 59.8 Seq. No.: 00078 A/S Pos.: 11 Pb ID: 10204.1-2A Date: 02/08/ Time: 16:38 Replicate 1 Concentration (ug/L ): 165.0 Time: 16:41 Replicate 2

Mean Conc (ug/L ): 164.0 SD: 1.45 RSD(%): 0.88

Recovery is 104.3%

Concentration (ug/L ): 163.0

Pb ID: 10204.2-2A Seo. No.: 00079 A/S Pos.: 12 Date: 02/08.3 Replicate 1 Time: 16:44 Concentration (ug/L ): 37.5 Replicate 2 Time: 16:48 Concentration (ug/L ): 36.0 Mean Conc (ug/L ): 36.8 SD: 1.08 RSD(%): 2.94 Seq. No.: 00080 A/S Pos.: 13 Date: 02/08/E ID: 10204.3-2A Replicate 1 Time: 16:51 Concentration (ug/L ): 10.4 Replicate 2 Time: 16:54 Concentration (ug/L ): 9.4 Mean Conc (ug/L ): 9.9 SD: 0.69 RSD(%): 6.99 Pb ID: CCV Seq. No.: 00081 A/S Pos.: 3 Date: 02/08/5 Replicate 1 Time: 16:58 Concentration (ug/L ): 105.2 Replicate 2 Time: 17:01 Concentration (ug/L ): 106.7 Mean Conc (ug/L ): 106.0 SD: 1.05 RSD(%): 0.99 QC sample is within range 79.5 - 120.49 Pb ID: CCB Seo. No.: 00082 A/S Pos.: 0 Date: 02/08/8 Replicate 1 ' Time: 17:04 Concentration (ug/L ): 1.9 Replicate 2 Time: 17:08 Concentration (ug/L ): 0.2 Mean Conc (ug/L ): 1.0 SD: 1.24

QC sample is within range -5.49 - 5.49

RSD(%): 119. (

9.94 5.STANDARD



|             |                      |      |                               |       |             |                         |                               | . — — — — —                       |
|-------------|----------------------|------|-------------------------------|-------|-------------|-------------------------|-------------------------------|-----------------------------------|
| HG<br>MAIN: | IcV<br>5.30          | UG/L | AA-BG<br>PA 2.157<br>PH 0.111 | 0.244 | HG<br>MAIN: | ICB<br>-0.15 UG/L       | AA-BG<br>PA-0.021<br>PH-0.003 | 0.208                             |
| HG<br>MAIN: | <b>B-2B</b><br>-0.13 | UG/L | AA-BG<br>PA-0.015<br>PH-0.003 | 0.183 | HG<br>MAIN: | -0.13 UG/L              | AA-BG<br>PA 0.003<br>PH-0.003 | 0.217                             |
| HG<br>MAIN: | 1-2B<br>2.73         | UG/L | AA-BG<br>PA 1.150<br>PH 0.057 | 0.241 | HG<br>MAIN: | 2.77 UG/L               | AA-BG<br>PA 1.217<br>PH 0.058 | 0.235                             |
| HG<br>MAIN: | 1-285<br>B. 01       | UG/L | AA-BG<br>PA 3.245<br>PH 0.168 | 0.243 | HG<br>MAIN: | 8.09 UG/L               | AA-BG<br>PA 3.301<br>PH 0.170 | 0.223                             |
| HG<br>MAIN: | 2-28<br>0.38         | UG/L | AA-BG<br>PA 0.165<br>PH 0.008 | 0.152 |             | 0.23 UG/L               | AA-BG<br>FA 0.161<br>PH 0.005 | 0.226                             |
| HG<br>MAIN: | 3-2B<br>0.21         | UG/L | AA-BG<br>PA 0.143<br>PH 0.004 | 0.238 | HG<br>MAIN: | 0.15 UG/L               | AA-BG<br>PA 0.141<br>PH 0.003 | BG<br>0.176<br>0.001              |
| HG<br>MAIN: | <b>B-1</b><br>-0.13  | UG/L | AA-BG<br>PA-0.026<br>PH-0.003 | 0.244 | HG<br>MAIN: | -0.13 UG/L              | AA-BG<br>PA 0.010<br>PH-0.003 | 0.215                             |
|             | /-/<br>-0.10         | UG/L | AA-BG<br>PA 0.022<br>PH-0.002 | 0.239 |             | -0.10 UG/L              | AA-BG<br>PA 0.020<br>PH-0.002 |                                   |
| HG<br>MAIN: | 2-1                  | UG/L | AA-BG<br>PA-0.009<br>PH-0.002 | 0.260 | HG<br>MAIN: | <i>CCV</i><br>5.40 UG/L | AA-BG<br>PA 2.297<br>PH 0.113 | BG ** 0.222 0.002                 |
| HG<br>MAIN: | CCB<br>-0.21         |      | AA-BG<br>PA-0.035<br>PH-0.004 | 0.148 |             |                         |                               | AND STATE STATE STATE AND ALLEY . |

| A | 1100 | 91/02/14 | PAGE | π, |
|---|------|----------|------|----|
| 7 | 1100 | G1/02/14 | FAGE | 0  |

AUTOZERO BG HG 3-1 boul AA-BG BG 2-/ AA-BG HG 0.101 MAIN: 0.21 UG/L PA 0.114 0.058 0.06 UG/L MAIN: PA 0.042 PH 0.004 -0.000 PH 0.001 0.002 3-1 HG AA-BG 0.11 UG/L PA 0.080 0.070 MAIN: 0.001 PH 0.002 AA-BG HG BG AA-BG HG MAIN: 0.10 UG/L PA 0.029 -0.038 0.11 UG/L PA 0.042 0.083 MAIN: PH 0.002 -0.002 PH 0.002 0.003 1-3A BG HG AA--BG HG AA-RG BG 0.114 MAIN: 1.91 UG/L PA 0.802 1.85 UG/L PA 0.746 0.107 PH 0.040 0.000 PH 0.039 0.002 2-3A AA-BG BG BG AA-BG HG HG 0.101 MAIN: 0.15 UG/L PA 0.076 0.15 UG/L PA 0.052 0.102 PH 0.003 PH 0.003 0.000 0.000 3-3A AA-BG BG AA-BG BG PA 0.114 MAIN: 0.34 UG/L 0.090 0.014 0.19 UG/L PA 0.094 PH 0.007 PH 0.004 -0.000 . AA-BG BG BG HG HG AA-BG MAIN: 0.02 UG/L PA 0.034 0.088 MAIN: 0.11 UG/L PA 0.036 0.089 PH 0.002 0.000 PH 0.000 -0.000 HG 1-38 BG AA-BG HG AA-BG BG MAIN: 1.95 UG/L PA 0.773 0.073 MAIN: 1.83 UG/L PA 0.742 0.136 PH 0.038 PH 0.041 0.002 AA-BG BG HG CCB CCV AA-BG BG HG 5.13 UG/L PA 2.166 -0.056 MAIN: -0.04 UG/L PA-0.004 0.016 MAIN: PH-0.001 0.004 PH 0.108 0.006 2-38 BG AA-BG HG AA-BG 0.29 UG/L MAIN: 0.21 UG/L PA 0.115 -0.092 PA 0.122 -0.208 PH 0.006 -0.000 PH 0.004 0.003 BG AA-BG HG AA-BG MAIN: 0.23 UG/L PA 0.106 -0.254 MAIN: 0.19 UG/L PA 0.077 -0.220 PH 0.005 0.003 PH 0.004 -0.000 B-3c AA-BG BG HG HG AA-BG 5 ml MAIN: 0.19 UG/L PA 0.058 -0.106 MAIN: 0.06 UG/L PA 0.022 -0.648 PH 0.004 PH 0.001 -0.001 HG 1-3C BG AA-BG HG AA-BG PA 0.682 -0.195 MAIN: 1.68 UG/L PA 0.687 -0.359 MAIN: 1.55 UG/L PH 0.035 0.016 PH 0.032 -0.001 2-30 AA-BG BG HG AA-BG MAIN: 0.17 UG/L PA 0.084 -0.488 MAIN: 0.17 UG/L PA 0.074 0.011 PH 0.004 0.003 PH 0.004 0.012 3-3C BG BG AA-BG HG AA-BG MAIN: 0.08 UG/L MAIN: 0.13 UG/L PA 0.041 -0.265 PA 0.019 0.004 PH 0.003 0.013 PH 0.002 0.000

PERKIN-ELMER

PERKIN-ELMER M 1100 **0**1/02/14 PAGE 4 CCB CCV HG BGAA-BG HG AA-BG BG 5.15 UG/L MAIN: PA 2.200 MAIN: 0.13 UG/L 0.026 PA 0.054 0.056 -PH 0.108 0.003 PH 0.003 0.000

Appendix C.2
Analytical Data
Dioxins/Furans (M23)

#### 25 FEB 2001

Michael Maret PES 5001 South Miami Blvd Research Triangle Park, NC 27703

Ph.: 919-941-0333 Fax: 919-941-0234

#### Dear Mike:

Attached to this narrative are the analytical results you requested on samples submitted for the determination of polychlorinated dibenzo-p-dioxins and dibenzofurans. The insert below summarizes the relevant information pertaining to your project. In particular, the QC annotations bring to your attention specific analytical observations and assessments made during the sample handling and data interpretation phases. A brief description of the report's components is provided on the next page.

Your Project No.:

AAP Project No.:

Analytical Protocol:

No. of Samples Submitted:

No. of Samples Analyzed:

No. of Lab Method Blanks (MB):

No. of OPRs:

F181.001

P1388

Method 23

4 (RB on hold)

3

#### QC Annotations:

- The data meet QA/QC requirements.
- An "A" data qualifier is used for analytes with a concentration falling below the calibration curve.
- 3. Sample "M23-1" required additional cleanup to produce data of acceptable quality.

Alta Analytical Perspectives remains committed to serving you in the most effective manner. Should you have any questions or need additional information and technical support, please, do not hesitate to contact us at the telephone numbers shown below. We wanted to thank you for choosing Alta Analytical Perspectives as part of your analytical support team.

Sincerely,

Yves Tondeur, Ph.D.



| Sample Summary      | =           | ALTA ANALYTICAL PERBFECTIVES |        | Method M23 |
|---------------------|-------------|------------------------------|--------|------------|
| Analyte             | 0_275_MB001 | M23-1                        | M23-2  | M23-3      |
|                     | bd          | bd                           | bd     | Вd         |
| 2,3,7,8-TCDD        | [1.29]      | (0.792)                      | 0.945  | (0.58)     |
| 1,2,3,7,8-PeCDD     | (0.997)     | [1.74]                       | 2.44   | (1.63)     |
| 1,2,3,4,7,8-HxCDD   | (1.68)      | 4.56                         | [1.96] | 2.54       |
| 1,2,3,6,7,8-HxCDD   | (1.87)      | 7.58                         | [5.04] | 4.63       |
| 1,2,3,7,8,9-HxCDD   | (1.68)      | 4.64                         | 2.76   | [2.25]     |
| 1,2,3,4,6,7,8-HpCDD | [4.9]       | 27.3                         | 21.5   | 20.5       |
| OCDD                | 12.9        | 74.4                         | 57.1   | 63.3       |
| 2,3,7,8-TCDF        | (1.27)      | 11,3                         | 8.77   | 7.39       |
| 1,2,3,7,8-PeCDF     | (1.84)      | 20.9                         | 15.2   | 11.6       |
| 2,3,4,7,8-PeCDF     | (1.81)      | 46.6                         | 36.1   | 26.5       |
| 1,2,3,4,7,8-HxCDF   | 1.69        | 48.9                         | 40     | 28.9       |
| 1,2,3,6,7,8-HxCDF   | (0.552)     | 54.6                         | 45.7   | 35.5       |
| 2,3,4,6,7,8-HxCDF   | (0.586)     | 87.3                         | 73.7   | 60.2       |
| 1,2,3,7,8,9-HxCDF   | (0.67)      | 13.7                         | 11.1   | 8.99       |
| 1,2,3,4,6,7,8-HpCDF | 1.86        | 234                          | 208    | 172        |
| 1,2,3,4,7,8,9-HpCDF | (2.03)      | 26.5                         | 22.2   | 18.8       |
| OCDF                | (2.83)      | 145                          | 118    | 113        |
| Totals & TEQs       |             |                              |        |            |
| TCDDs               | Q.          | 17.3                         | 13     | 3.93       |
| Pecdos              | Q           | 41.3                         | 31.3   | 18.8       |
| HXCDDs              | 2           | 68.2                         | 42.9   | 38.9       |
| HpCDDs              | 1.83        | 55.6                         | 44.4   | 41.5       |
| TCDFs               | Q           | 345                          | 265    | 205        |
| PecDFs              | 2           | 451                          | 354    | 277        |
| HxCDFs              | 1.69        | 517                          | 441    | 345        |
| HpCDFs              | 1.86        | 370                          | 328    | 274        |
| Total PCDD/Fs       | 18.3        | 2090                         | 1690   | 1380       |
| TEQ (ND=0)          | 0.200       | 20.7                         | 41.9   | 30.9       |
| TEQ (ND=DL/2)       | 1.38        | 51.1                         | 41.9   | 31.6       |





| Sample ID:                                             | 0_275_MB001            | 101                                      |             |                                                                |                             | Me                                                  | Method M23                   |
|--------------------------------------------------------|------------------------|------------------------------------------|-------------|----------------------------------------------------------------|-----------------------------|-----------------------------------------------------|------------------------------|
| Cllent Data<br>Name:<br>Project ID:<br>Date Collected: | PES<br>F181.001<br>n/a | Sample Data<br>Matrix:<br>Weight/Volume: | Air<br>1    | Laboratory Data<br>Project No.:<br>Sample ID:<br>QC Batch No.: | P1388<br>0_275_MB001<br>275 | Date Received:<br>Date Extracted:<br>Date Analyzed: | n/a<br>8-Feb-01<br>14-FEB-01 |
| Analyte                                                | Conc.                  | DL                                       | EMPC        | Qualifier                                                      |                             | Recoveries                                          |                              |
|                                                        | bd                     | pg                                       | bd          |                                                                | SI                          | SS                                                  | AS                           |
| 2,3,7,8-TCDD                                           | EMPC                   |                                          | 1.29        | ¥                                                              | 9'66                        | 98.2                                                | 85.4                         |
| 1,2,3,7,8-PeCDD                                        | 2                      | 0.997                                    |             |                                                                | 100                         | 96.4                                                | 85.4                         |
| 1,2,3,4,7,8-HxCDD                                      | 2 :                    | 1.68<br>1.68                             |             |                                                                | 100                         | 97.1                                                | 85.4                         |
| 1,2,3,6,7,8-HxCDD                                      | 2 2                    | 1.87                                     |             | 77-                                                            | 000                         | 97.1                                                | 85.4                         |
| 1,2,3,4,6,7,8-HpCDD                                    | EMPC                   |                                          | 6.1         |                                                                | 8 6                         | 99.1                                                | 85.4                         |
| осор                                                   | 12.9                   |                                          |             | <b>∀</b>                                                       | 95.7                        | 99.1                                                | 85.4                         |
| 2,3,7,8-TCDF                                           | Q                      | 1.27                                     |             | 2.22                                                           | 100                         | 98.2                                                | 85.4                         |
| 1,2,3,7,8-PeCDF                                        | Q                      | 1.84                                     |             |                                                                | 93.6                        | 96.4                                                | 85.4                         |
| 2,3,4,7,8-PeCDF                                        | 2                      | <del>2</del> .                           |             | · .                                                            | 93.6                        | 96.4                                                | 85.4                         |
| 1,2,3,4,7,8-HxCDF                                      | 1.69                   |                                          |             | ∢                                                              | 86.5                        | 97.3                                                | 85.4                         |
| 1,2,3,6,7,8-HxCDF                                      | 2                      | 0.552                                    |             | -:                                                             | 86.5                        | 97.3                                                | 85.4                         |
| 2,3,4,6,7,8-HxCDF                                      | 2 !                    | 0.586                                    |             |                                                                | 86.5                        | 97.3                                                | 85.4                         |
| 1,2,3,7,8,9-HxCDF                                      | 2                      | 0.67                                     |             | •                                                              | 86.5                        | 97.3                                                | 85.4                         |
| 1,2,3,4,6,7,8-HpCDF                                    | 1.86                   |                                          | 5           | ∢ .                                                            | 88                          | 99.1                                                | 85.4                         |
| 1,2,3,4,7,8,9-HpCDF                                    | 2 :                    | 2.03                                     |             |                                                                | 88                          | 99.1                                                | 85.4                         |
| OCDF                                                   | QN                     | 2.83                                     |             |                                                                | 91                          | 99.1                                                | 85.4                         |
| Totals & TEQs                                          |                        |                                          |             |                                                                | •                           |                                                     |                              |
| TCDDs                                                  | Q                      |                                          | 1.29        |                                                                | ALTA /                      | ALTA ANALYTICAL PERSPECTIVES                        | RSPECTIVES                   |
| PeCDDs                                                 | 2 :                    | 0.997                                    |             |                                                                |                             |                                                     |                              |
| HxCDDs                                                 | 2                      | 1./4                                     |             |                                                                | N                           | 2714 Exchange Drive                                 | <u></u>                      |
| HpCDDs                                                 | .83                    |                                          | 3.73        |                                                                |                             | Wilmington                                          |                              |
| TODE                                                   | S                      | 1.97                                     |             |                                                                | 2                           | North Carolina 28405                                | o.                           |
| PecDFs                                                 | 2                      | . 83                                     |             |                                                                |                             | 5                                                   |                              |
| HXCDFs                                                 | 1.69                   |                                          |             |                                                                |                             | Tel: 910 794-1613                                   |                              |
| HpCDFs                                                 | 1.86                   |                                          |             |                                                                |                             | Fax: 910 794-3919                                   |                              |
| Total PCDD/Fs                                          | 18.3                   |                                          | 21.5        | !                                                              | <b>е-</b> п                 | e-mail: ytondeur@cs.com                             | шо                           |
| TEQ (ND=0)                                             | 0.200                  |                                          | 1.5<br>2.68 |                                                                | wel                         | web: www.ultratrace.com                             | Eo                           |
| /===                                                   |                        |                                          |             |                                                                |                             |                                                     |                              |

Reviewer Co Date 25 Ftb.01

| Sample ID:                     | M23-1                 |                |                                         |                            |                 | Me                           | Method M23 |
|--------------------------------|-----------------------|----------------|-----------------------------------------|----------------------------|-----------------|------------------------------|------------|
| Cilent Data                    |                       | Sample Data    |                                         | Laboratory Data            |                 |                              |            |
| Name:                          | PES                   | Matrix:        | Air                                     | Project No.:               | P1388           | Date Received:               | 6-Feb-01   |
| Project ID:<br>Date Collected: | F181.001<br>31-Jan-01 | Weight/Volume: | -                                       | Sample ID:<br>OC Batch No: | P1388_275_001CU |                              | 8-Feb-01   |
| Analyte                        | Conc.                 | DF             | EMPC                                    | Qualifler                  |                 | Recoveries                   | 10-0-1-65  |
|                                | bd                    | pg             | bd                                      |                            | SI              | SS                           | AS         |
| 2,3,7,8-TCDD                   | S.                    | 0.792          |                                         |                            | 102             | 90                           | 07.0       |
| 1,2,3,7,8-PeCDD                | EMPC                  |                | 1.74                                    | ۷                          | 99.7            | 90.3                         | 97.9       |
| 1,2,3,4,7,8-HxCDD              | 4.56                  |                |                                         | . ∢                        | 104             | 1.10                         | 97.9       |
| 1,2,3,6,7,8-HxCDD              | 7.58                  |                |                                         | < <                        | 104             | 91.1                         | 6.76       |
| 1,2,3,7,8,9-HxCDD              | 4.64                  |                |                                         | ∢.                         | 104             | 91.1                         | 97.9       |
| 1,2,3,4,6,7,8-HpCDD            | 27.3                  |                |                                         | AB                         | 96.5            | 90.3                         | 97.9       |
| ocpo                           | 74.4                  |                |                                         | ΑB                         | 83.6            | 90.3                         | 6.76       |
| 2,3,7,8-TCDF                   | 11.3                  |                |                                         |                            | 100             | 96.5                         | 6 26       |
| 1,2,3,7,8-PeCDF                | 20.9                  |                |                                         | 4                          | 91.1            | 93.1                         | 97.9       |
| 2,3,4,7,8-PeCDF                | 46.6                  |                |                                         | ∢                          | 91.1            | 93.1                         | 97.9       |
| 1,2,3,4,7,8-HxCDF              | 48.9                  |                | :                                       | AB                         | 2.06            | 6.96                         | 97.9       |
| 1,2,3,6,7,8-HxCDF              | 54.6                  |                |                                         |                            | 2.06            | 6.96                         | 97.9       |
| 2,3,4,6,7,8-HXCDF              | 87.3                  | 3              |                                         | 4                          | 2.06            | 6.96                         | 6.76       |
| 1,2,3,1,6,9-DXCUF              | 13.7                  |                |                                         | ∢ (                        | 200             | 6.96                         | 97.9       |
| 1.2,3,4,0,7,8-HPCDF            | 234<br>20 F           |                |                                         | m •                        | 98              | 90.3                         | 97.9       |
| OCDF                           | 145                   |                | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ∢                          | 86              | 90.3                         | 97.9       |
| Totale & TEOs                  | 2                     |                |                                         |                            | 5.10            | 90.3                         | 97.9       |
|                                |                       |                |                                         |                            |                 |                              |            |
| TCDDs                          | 17.3                  |                |                                         |                            | ALTA A          | ALTA ANALYTICAL PERSPECTIVES | RSPECTIVES |
| PeCDDs                         | 41.3                  |                | 48.5                                    |                            |                 |                              |            |
| HXCDDS                         | 68.2                  |                |                                         |                            | 27              | 2714 Exchange Drive          |            |
| HpCDDs                         | 55.6                  |                |                                         |                            |                 | Wilmington                   |            |
| TCDFs                          | 345                   |                | 010                                     |                            | Š               | North Carolina 28405         |            |
| PecDFs                         | 451                   |                | 456                                     |                            |                 | USA                          |            |
| HxCDFs                         | 517                   |                |                                         | -                          | <b>I</b>        | Tel: 910 794-1613            |            |
| HpCDFs                         | 370                   |                |                                         |                            | · Œ             | Fax: 910 794-3919            |            |
| Total PCDD/Fs                  | 2090                  |                | 2120                                    |                            | e-ma            | e-mail: ytondeur@cs.com      | Ę          |
| TEO (ND=0)                     | 50.7                  |                | 51.5                                    | TEF                        | web:            | web: www.ultratrace.com      | Ε          |
| IEW (ND=DL/Z)                  | 1.10                  |                | - : . <b>I</b>                          | 1111                       |                 |                              |            |

Reviewer C人 Date 25 RPダロ

| Sample ID:                     | M23-2        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |             | Met                          | Method M23 |
|--------------------------------|--------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------|------------------------------|------------|
| Client Data<br>Name:           | PES          | Sample Data<br>Matrix:    | Air<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Laboratory Data<br>Project No.: | P1388       | Date Received:               | 6-Feb-01   |
| Project ID:<br>Date Collected: | 31-Jan-01    | Weight Volume.            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QC Batch No.:                   | 275         |                              | 14-FEB-01  |
| Analyte                        | Conc.        | D.                        | EMPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Qualifier                       |             | Recoveries                   |            |
|                                | Pg           | bd                        | бd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | SI          | SS                           | AS         |
| 2,3,7,8-TCDD                   | 0.945        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | АВ                              | 86          | 102                          | 86.2       |
| 1,2,3,7,8-PeCDD                | 2.44         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∢                               | 108         | 105                          | 86.2       |
| 1,2,3,4,7,8-HxCDD              | EMPC         |                           | 1.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ∢ •                             | 97.4        | 102                          | 86.2       |
| 1,2,3,6,7,8-HxCDD              | EMPC         |                           | 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ∢ •                             | 97.4        | 102                          | 86.2       |
| 1,2,3,7,8,9-HxCDD              | 2.76         |                           | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | ∀ ¥                             | 97.4        | 102                          | 86.2       |
| осор                           | 57.1         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AB                              | 91.3        | 104                          | 86.2       |
| 2,3,7,8-TCDF                   | 8.77         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∢                               | 94          | 102                          | 86.2       |
| 1,2,3,7,8-PeCDF                | 15.2         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                               | 95.4        | 105                          | 86.2       |
| 2,3,4,7,8-PeCDF                | 36.1         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∢                               | 95.4        | 105                          | 86.2       |
| 1,2,3,4,7,8-HxCDF              | 40           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΑВ                              | 85.9        | 104                          | 86.2       |
| 1,2,3,6,7,8-HxCDF              | 45.7         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∢                               | 85.9        | 104                          | 86.2       |
| 2,3,4,6,7,8-HxCDF              | 73.7         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <                               | 85.0<br>0 0 | 104                          | 86.2       |
| 1,2,3,7,8,9-HxCDF              | 11.1<br>906  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < α                             | 85.9        | 104                          | 86.2       |
| 1,2,3,4,6,7,6-HPCDF            | 200          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o ⊲                             | 85.4        | 5 5                          | 96.2       |
| 1,2,3,4,7,8,9-Hpcur<br>OCDF    | 118          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                               | 88.0        | 401                          | 86.2       |
| Totals & TEQs                  |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |             |                              |            |
|                                |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |             |                              |            |
| TCDDs                          | 13           |                           | 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | WEIV !      | ALIA ANALTIICAL PERSPECITVES | RSPECTIVES |
| HYCHOS                         | 61.3<br>42.9 |                           | 49.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | ~           | 2714 Exchange Drive          | g          |
| HpCDDs                         | 44.4         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |             | Wilmington                   | )          |
|                                |              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |             | North Carolina 28405         | 15         |
| TCDFs                          | 265          |                           | Cac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |             | OSA                          |            |
| HXCDFs                         | 441          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                              |             | Tel: 910 794-1613            |            |
| HpCDFs                         | 328          |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |             | Fax: 910 794-3919            |            |
| Total PCDD/Fs                  | 1690         |                           | 1710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . •                             | й-ө         | e-mail: ytondeur@cs.com      | mo:        |
| TEQ (ND=0)                     | 61.9         | #1<br>13<br>13<br>14<br>2 | 42.6<br>42.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11EF                            | We          | web: www.ultratrace.com      | Eo         |
| I EG (ND=DL/Z)                 | D:   +       |                           | 14:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |             |                              |            |

Reviewer Classification Date 25 Reb 61

**C**1

| Sample ID:          | M23-3    |                |              |                 |               | Mei                     | Method M23   |
|---------------------|----------|----------------|--------------|-----------------|---------------|-------------------------|--------------|
| Client Data         |          | Sample Data    |              | Laboratory Data |               |                         |              |
| Name:               | PES      | Matrix:        | Air          | Project No.:    | P1388         | Date Received:          | 6-Eah-01     |
| Project ID:         | F181.001 | Weight/Volume: | <b>-</b>     | Sample ID:      | P1388_275_003 | Date Extracted:         | 8-Feb-01     |
| Date Collected:     | 1-Feb-01 |                |              | QC Batch No.:   | 275           | Date Analyzed:          | 14-FEB-01    |
| Analyte             | Conc.    | 70             | EMPC         | Qualifier       |               | Recoveries              |              |
|                     | bd       | bd             | bd           |                 | SI            | SS                      | AS           |
| 2,3,7,8-TCDD        | Q        | 0.58           | WE SELECTION |                 | 103           | 84                      | 8 98         |
| 1,2,3,7,8-PeCDD     | 2        | 1.63           |              |                 | 111           | 83.5                    | 89.8         |
| 1,2,3,4,7,8-HxCDD   | 2.54     |                |              | ٧               | 102           | 84.1                    | 89.8         |
| 1,2,3,6,7,8-HxCDD   | 4.63     |                |              | ٧               | 102           | 84.1                    | 83.8         |
| 1,2,3,7,8,9-HxCDD   | EMPC     |                | 2.25         | ∢               | 102           | 84.1                    | 89.8         |
| 1,2,3,4,6,7,8-HpCDD | 20.5     |                |              | AB              | 103           | 85.7                    | 89.8         |
| OCDD                | 63.3     |                |              | АВ              | 94.1          | 85.7                    | 89.8         |
| 2,3,7,8-TCDF        | 7.39     |                |              | ∢               | 98.5          | 84                      | 8 68         |
| 1,2,3,7,8-PeCDF     | 11.6     |                |              | ∢               | . 66          | 83.5                    | 86.8         |
| 2,3,4,7,8-PeCDF     | 26.5     |                |              | ∢               | 99.5          | 83.5                    | 89,8         |
| 1,2,3,4,7,8-HxCDF   | 28.9     |                |              | AB              | 90.2          | 82.3                    | 89.8         |
| 1,2,3,6,7,8-HxCDF   | 35.5     |                |              | ∢               | 90.2          | 82.3                    | 89.8         |
| 2,3,4,6,7,8-HxCDF   | 60.2     |                |              |                 | 90.2          | 82.3                    | 89.8         |
| 1,2,3,7,8,9-HxCDF   | 8.99     |                |              | ∢               | 90.2          | 82.3                    | 89.8         |
| 1,2,3,4,6,7,8-HpCDF | 172      |                | :            | В               | 87.7          | 85.7                    | 89.8         |
| 1,2,3,4,7,8,9-HpCDF | 18.8     |                |              | ⋖               | 87.7          | 85.7                    | 89.8         |
| OCDF                | 113      |                |              |                 | 90.4          | 85.7                    | 89.8         |
| Totals & TEQs       |          |                |              |                 |               |                         |              |
|                     |          |                |              |                 |               | •                       |              |
| TCDDs               | 3.93     |                | 6.91         |                 | ALTA A        | ALTA ANALYTICAL PER     | PERSPECTIVES |
| recous              | 18.8     |                |              |                 |               |                         |              |
| HXCDUS              | 38.9     |                | 43           |                 | 27            | 2714 Exchange Drive     |              |
| HpCDDs              | 41.5     |                |              |                 |               | Wilmington              |              |
|                     |          |                |              |                 | ž             | North Carolina 28405    |              |
| TCDFs               | 205      |                |              |                 |               | NSA                     |              |
| PecDFs              | 277      |                |              |                 |               |                         |              |
| HXCDFs              | 345      |                |              |                 |               | Tel: 910 794-1613       |              |
| HpcDFs              | 274      |                |              |                 | ш             | Fax: 910 794-3919       |              |
| Total PCDD/Fs       | 1380     |                | 1390         |                 | e-ms          | e-mail: ytondeur@cs.com | E            |
| TEQ (ND=0)          | 30.9     |                | 31.1         | 1 1 1 1         | web:          | web: www.ultratrace.com | Ε            |
| 2/10-01             | 0110     |                | 01.0         | HEL             |               |                         |              |

Reviewer CL Bate 25 Rb ØL

ALTA ANALYTICAL PERSPECTIVES

### PART 2

# SAMPLE PATH

DOCUMENTATION FOR THE ANALYSIS

Щ С POLYCHLORINATED DIBENZO-PDIOXINS & DIBENZOFURANS

ALTA ANALYTICAL PERSPECTIVES

### SAMPLE PATH

P1388 AAP PROJECT NO.: PROTOCOL: 23

### SAMPLE PROCESSING

图 SDS 图 Extraction Standards (11C<sub>11</sub>-PCDD / F) "IS "& "SS " Extraction

国 Injection Standards "RS" 国 HRGC/HRMS 国 12-H Performance Checks Multi-Column Cleanup (ASECS) Alternate Standards "AS " Final Extract D D D Analysis Fractionation 50 %

12-H Performance Checks Interpretation

E ID Criteria
E Detection Limits
E Recoveries Recoveries

DATA VALIDATION:

### **QC PROFILE**

ONLY

OPR

FOR

100 PG (10 µL; 0.01 NG/µL)

SPIKE PROFILE

/4 NG (25 µL; 0.16 NG/µL) 4 NG (25 µL; 0.16 NG/µL) 2 NG (10 µL; 0.2 NG/µL)

AS & 55:

RS:

S.

ij

**ALWAYS REQUIRED ALWAYS REQUIRED** 

OPR: LMB:

> AP-SP-CU AP-SP-A

FRACTIONATION:

ANALYSIS:

EXTRACTION:

AP-SP-E

SOPs

AP-SP-F AP-SP-R

AP-SP-N

CONCENTRATION:

FORTIFICATION:

REPORTING PLATFORM

PLATINUM Ξ LEVEL:

SAMPLE ANALYSIS

SAMPLE EXTRACTION

Malth

Solid

SDS

Split 1:

Archites

\* ;

SPECIAL

FTRADECANE 13807 B REQUIREMENTS SUPPLIES IDS BASE SILICA ACID SILICA TOLUENE FLORISIL HEXANE CH2CL2 SILICA SAND 8 P.M. Blank Calibration -Standards Extract Report  $g_{\mathcal{C}}$ 8 A.M. MS

\$10025110 020020

05/199

003597

ASECS

RSPI

YTIC.

**1LTA** 

hrmsgenprepair.rpt

SAMPLE ALTA ANALYTICAL PERSPECTIVES

SAMPLE PATH

AAP PROJECT NO.: P1388
PROTOCOL: 23

# COMMUNICATIONS

P 25Feb & (

### Sample Inventory Report: MM5 Sampling Train

Project No.: P1388

Project Name: General Analytical HRMS

Date Rec.: 6-Feb-01

| Lab. Sample ID | Collection Date | Clent Sample ID | Component ID |
|----------------|-----------------|-----------------|--------------|
| 001            | 31-Jan-01 -     | M23-1           | Ace/Me       |
|                | 31-Jan-01       |                 | Filter       |
|                | 31-Jan-01       |                 | XAD          |
| 002            | 31-Jan-01       | M23-2           | Ace/Me       |
|                | 31-Jan-01       |                 | Filter       |
|                | 31-Jan-01       |                 | XAD          |
| 003            | 1-Feb-01        | M23-3           | Ace/Me       |
|                | 1-Feb-01 /      |                 | Filter       |
|                | 1-Feb-01        |                 | XAD          |
| 004            | 1-Feb-01        | Reagent Blk     | Ace/Me       |
|                | 1-Feb-01        | 1080            | Toluene      |
|                | 1-Feb-01        |                 | XAD          |

eh Light

### PROCESS SHEET

Project No.-AR:

P1388-1 of 1

**Project Due:** 

2/27/01

Client:

Pacific Environmental Services (PAENC01A)

TAT:

21

Client Manager:

Yves Tondeur

**Extraction Due:** 

3/2/01

Method: EPA Method 23 Extraction Type: EPA Method 23

Matrix: Split Type:

MM5 1:2

Component: PCDD/F (Tetra - Octa)

| LabID | Client-ID | Component Type                 | Client Component ID     | Date Receiv                | ed SLoc           |
|-------|-----------|--------------------------------|-------------------------|----------------------------|-------------------|
| 001   | M23-1     | Filter#1<br>Solvent#1<br>XAD#1 | Filter<br>Ace/Me<br>XAD | 2/6/01<br>2/6/01<br>2/6/01 | F-2<br>F-2<br>F-2 |
| 002   | M23-2     | Filter#1<br>Solvent#1<br>XAD#1 | Filter<br>Ace/Me<br>XAD | 2/6/01<br>2/6/01<br>2/6/01 | F-2<br>F-2<br>F-2 |
| 003   | M23-3     | Filter#1<br>Solvent#1<br>XAD#1 | Filter<br>Ace/Me<br>XAD | 2/6/01<br>2/6/01<br>2/6/01 | F-2<br>F-2<br>F-2 |

| Instructions: | <br> |   |  |  |
|---------------|------|---|--|--|
|               |      |   |  |  |
|               |      | • |  |  |
|               |      |   |  |  |

### Report Options

Report Level: 1

EDD Type:

Vial Box ID:

Date Requested:

2/20/01 HRMSAirAR.rpt

PACIFIC ENVIRONMENTAL SERVICES, INC.

Central Park west 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709-2077 (919) 941-0333 FAX: (919) 941-0234

|                              |             |                                  |                             | Chain of Ct                                | of Custody Record             | ecord    |                                |                    |                  |                          |                   |
|------------------------------|-------------|----------------------------------|-----------------------------|--------------------------------------------|-------------------------------|----------|--------------------------------|--------------------|------------------|--------------------------|-------------------|
| Project Numb                 | F181.001    | Project Name                     |                             | Andrews AFB Medical Waste Incinerator      |                               |          | Ana                            | Analysis Requested | _                |                          |                   |
| Samplers:<br>DC              | ) Holzschuh | DD Holzschuh, J Falank, MD Maret | Maret                       |                                            |                               |          |                                |                    |                  | E S                      |                   |
| Date                         | Time        | Field Sample ID                  | Ol elqt                     | Sample Description                         |                               | CDD      | CDE                            |                    |                  |                          |                   |
| 1/31/01                      | 1000        | 1000 M23-1-1                     | ,                           | Filter, dry                                |                               |          |                                |                    |                  |                          |                   |
| 1/31/01                      | 1000        | 1000 M23-1-2                     | `                           | XAD Sorbent Module                         |                               |          | -                              |                    |                  |                          |                   |
| 1/31/01                      | 1000        | 1000 M23-1-3                     | ,                           | Front Half Back Half Acetone/Toluene rince | ene rince                     |          |                                |                    |                  |                          |                   |
| 1/31/01                      | 1000        | 1000 M23-1-4A                    | ١                           | Impinger Contents Fraction 1               |                               |          |                                |                    |                  |                          | ,,                |
| 1/31/01                      | 1000        | 1000 M23-1-4B                    | ١                           |                                            |                               |          | -                              |                    |                  |                          | i.<br>An i' de ti |
| 1/31/01                      | 1500        | 1500 M23-2-1                     | \                           | Filter, dry                                |                               |          |                                |                    |                  |                          | edit it           |
| 1/31/01                      | 1500        | 1500 M23-2-2                     | `                           | XAD Sorbent Module                         |                               |          |                                |                    |                  |                          | مد الد            |
| 1/31/01                      | 1500        | 1500 M23-2-3                     | `                           | Front Half Back Half Acetone/Toluene rince | ane rince                     |          |                                |                    |                  |                          |                   |
| 1/31/01                      | 1500        | 1500 M23-2-4A                    | ١                           | Impinger Contents Fraction 1               |                               |          |                                |                    |                  |                          |                   |
| 1/31/01                      | 1500        | 1500 M23-2-4A                    | >                           |                                            |                               |          |                                |                    |                  |                          | -                 |
| 2/1/01                       | 0060        | 0900 M23-3-1                     | ٥                           | Filter, dry                                |                               |          |                                |                    |                  |                          |                   |
| 2/1/01                       | 0060        | 0900 M23-3-2                     | ۲                           | XAD Sorbent Module                         |                               |          |                                |                    |                  |                          |                   |
| 2/1/01                       | 0060        | 0900 M23-3-3                     | 7                           | Front Half Back Half Acetone/Tolu          | ne/Toluene rince              |          |                                |                    |                  |                          | . 7               |
| 2/1/01                       | 0060        | 0900 M23-3-3A                    | 木                           | Front Half Back Half Acetone/Toluene rince | ne rince                      | •        |                                |                    | 1                | F. 8570 Lat Could (23.3  | TH(BH             |
| 2/1/01                       | 0060        | 0900 M23-3-4A                    | 1                           | Impinger Contents Fraction 1               |                               |          |                                |                    |                  |                          | NIT.              |
| 2/1/01                       | 0060        | 0900 M23-3-4B                    | ١                           | Impinger Contents Fraction 2               |                               | •        |                                |                    |                  |                          |                   |
| 2/1/01                       | 1400        | 1400 M23-B-2                     | ,                           | XAD Sorbent Module                         |                               |          |                                |                    | Archive          | ive                      |                   |
| 2/1/01                       | 1400        | 1400 M23-DI                      |                             | HPLC Water Reagent                         |                               | •        |                                |                    | Archive          | ive                      |                   |
| 2/1/01                       | 1400        | 1400 M23-A                       | ٠                           | Acetone Reagent Blank                      |                               | •        |                                |                    | Archive          | ive                      |                   |
| 2/1/01                       | 1400        | 1400 M23-T                       |                             | Toluene Reagent Blank                      |                               | •        | •                              |                    | Archive          | ive                      |                   |
| Relinguished by:             | (Signature) | 1                                | Date/Time<br>2/6/cd<br>(C20 | Received by (Signalule)                    | Relinguiened by               |          | enter de la compunió y la pays |                    | Date Time Receiv | Received by (Signature)  |                   |
| Relinquished by: (Signature) | (Signature) |                                  | Date Time<br>3 - 5 - 0 /    | Received by: (Signifiturie) Re             | Reliriquished by: (Signature) | (Signatu | æ.                             | Date               | Date/Tilme Recel | Received by: (Signature) |                   |
| Relinguished by: (           | (Signature) | - 76                             | Date/Time ( $\frac{1}{2}$   | d for lab by: (Signature)                  | REMARKS                       |          |                                |                    |                  |                          |                   |
| <del> </del><br> -           |             |                                  |                             |                                            |                               |          |                                |                    |                  | rage.                    |                   |



.

### STANDARD OPERATING PROCEDURE



Attachment 1

### ALTA ANALYTICAL PERSPECTIVES Project No.: P 1388

| _   |                                                                                                               |               |         |
|-----|---------------------------------------------------------------------------------------------------------------|---------------|---------|
|     | Sample Log-In Checklist                                                                                       | Yes           | No      |
| 1.  | Date Samples Arrived: 02 - 06 - 07 Initials: 34                                                               |               |         |
| 2.  | Time / Date logged in: 1:38 62-66-6/ Location F - 2 Initials                                                  | :: <b>3</b> 4 |         |
| 3.  | Samples Arrived By: (circle one) Airborne Express Federal Express UPS Freezer Truck Company Courier DHL Other | Emery         |         |
| 4.  | Shipping Preservation: (circle) lce / Blue lce / Dry lce None Temp °C /96                                     |               |         |
| 5.  | Shipping Documentation Present? (circle one) Shipping Label                                                   |               |         |
|     | Airbill Tracking Number                                                                                       |               |         |
| 6.  | Shipping Container(s) Intact? If no, describe condition below.                                                | /             |         |
| 7.  | Container Custody Seals Present and Intact? If not intact, describe condition below.                          |               | _       |
| 8.  | Sample Custody Seals Present and Intact? If not intact, describe condition below.                             |               |         |
|     | No. of Seals or Seal No.                                                                                      |               |         |
| 9.  | Sample Container Intact? If no, indicate sample condition below.                                              |               |         |
| 10. | Chain of Custody (COC) or other Sample Documentation Present?                                                 |               |         |
| 11. | COC/Documentation Acceptable? If no, complete COC Anomaly Form.                                               | /             |         |
| 12. | Shipping Container: (circle) ALTA NALYTICAL PERSPECTIVES Return or Retain                                     | in) or [      | Dispose |
|     | Client Return or Retain or Dispose                                                                            |               |         |
| 13. | Container and/or Bottles Requested?                                                                           |               |         |
| 14. | Sample Control Check In/Out Log Completed?                                                                    | /             |         |
| 15. | Drinking Water Sample? If yes, Acceptable Preservation? (circle) Y or N                                       |               |         |
| 16. | Imported Soil? If yes, apply appropriate label.                                                               |               |         |
| Nar | Date Samples Reconcile                                                                                        | ed:           |         |

Comments:

|                            | 1                                            | <u> </u>                |                                                                                                                                                                                                                                                                                                                                               | >                  |
|----------------------------|----------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                            | Page 1 of 1                                  | Acq time                |                                                                                                                                                                                                                                                                                                                                               | 13:52:50           |
|                            |                                              | Analyst Acq date        | 14-FEB-01<br>14-FEB-01<br>14-FEB-01<br>14-FEB-01<br>14-FEB-01<br>14-FEB-01<br>23-FEB-01<br>23-FEB-01                                                                                                                                                                                                                                          | 23-FEB-01          |
|                            | GC Column ID: db-5                           | Analyst                 | GAG<br>GAG<br>GAG<br>GAG<br>GAG<br>GAG<br>GAG<br>GAG                                                                                                                                                                                                                                                                                          | GAG                |
| Page 1                     | Run file: 010214P1                           | Sample ID (Chrom. Text) | DB5 CPSM / M23 CS3 — G 0 275 OPR001 — G 0 275 MB001 — G 0 275 MB001 — G 0 275 MB001 — G P1388 275 001 M23-1 Air Train D10 Processed G P1388 275 003 M23-2 Air Train — G P1388 275 003 M23-3 Air Train — G DB5 CPSM / M23 CS3 — G SOLVENT BLANK G P1388 275 001 M23-1 Air Train CU — G G G SOLVENT BLANK G G G G G G G G G G G G G G G G G G G | DB5 CPSM / M23 CS3 |
| OPUSquan 23-FEB-2001 15:57 | Alta Analytical Perspectives - Injection Log | Vial# Lab ID            | 3 CS3RC — 76 0_275_OPR001 — 77 0_275_MB001 — 78 P1388_275_001D10                                                                                                                                                                                                                                                                              | 3 CS3RC            |
| 23-FE                      | ytical                                       | *S                      |                                                                                                                                                                                                                                                                                                                                               | 4                  |
| OPUSquan                   | Alta Anal                                    | Data file               | 010214P1<br>010214P1<br>010214P1<br>010214P1<br>010214P1<br>010214P1<br>010223P1<br>010223P1                                                                                                                                                                                                                                                  | 01022371           |

OPUSquan 23-FEB-2001 15:57

resolution plot for function Sofr Gson 14 Rebbl not printed (Slos communication 10st while centrolding function 5 - System had to rebooked)

ALTA ANALYTICAL PERSPECTIVES

## PART 3

# ANALYTICAL RESULTS

DOCUMENTATION FOR THE ANALYSIS

L T POLYCHLORINATED DIBENZO-PDIOXINS & DIBENZOFURANS

| Sample ID:          | 0_275_MB001   | 100                                                                                         |                 |                 |                | Mo                      | Mothod May  |
|---------------------|---------------|---------------------------------------------------------------------------------------------|-----------------|-----------------|----------------|-------------------------|-------------|
| Client Data         |               | Sample Date                                                                                 |                 | 1 - 1 - 1       |                | DIAI                    | CAIN DOIN   |
| Name:               | DHQ.          | Matrix:                                                                                     | ;; <del>•</del> | Laboratory Data |                |                         |             |
| Project ID:         | F181.001      | Weight/Volume:                                                                              | Alf<br>-        | Project No.:    | P1388          | Date Received:          | п/а         |
| Date Collected:     | n/a           |                                                                                             | -               | QC Batch No.:   | 0_2/5_MB001    | Date Extracted:         | 8-Feb-01    |
| Analyte             | Conc.         | DL                                                                                          | EMPC            | Qualifier       |                | Recoveries              | 14-120-01   |
|                     | bd            | pg                                                                                          | Đơ.             |                 | S              | 00                      |             |
| 2,3,7,8-TCDD        | EMD           |                                                                                             |                 |                 |                | 3                       | AS          |
| 1.2.3.7.8-PeCnn     | ביים<br>ביים  |                                                                                             | 1.29            | <b>X</b>        | 9.66           | 98.2                    | 85.4        |
| 1.2.3.4.7.8-HxCDD   |               | 0.997                                                                                       |                 |                 | 100            | 96.4                    | 85.4        |
| 1.2.3.6.7.8-HxCDD   | 2 2           | 20.                                                                                         |                 |                 | 100            | 97.1                    | 85.4        |
| 1,2,3,7,8,9-HxCDD   | € €           | 1.87                                                                                        |                 |                 | 100            | 97.1                    | 85.4        |
| 1,2,3,4,6,7,8-HpCDD | Q W L         | 1.58                                                                                        |                 |                 | 100            | 97.1                    | 85.4        |
| OCDD                | רואון<br>ס כי |                                                                                             | <b>1</b> .0     | ∢               | 100            | 99.1                    | 85.4        |
|                     | 6.7           |                                                                                             |                 | Y               | 95.7           | 99.1                    | 85.4        |
| 2,3,7,8-TCDF        | QN            | 1 27                                                                                        |                 |                 |                |                         |             |
| 1,2,3,7,8-PeCDF     | S             | 184                                                                                         |                 |                 | 100            | 98.2                    | 85.4        |
| 2,3,4,7,8-PeCDF     | S             | 10.1                                                                                        |                 |                 | 93.6           | 96.4                    | 85.4        |
| 1,2,3,4,7,8-HxCDF   | 9 -           | 9                                                                                           |                 |                 | 93.6           | 96.4                    | 85.4        |
| 1,2,3,6,7,8-HxCDF   | S             | 0 559                                                                                       |                 | ∢               | 86.5           | 97.3                    | 85.4        |
| 2,3,4,6,7,8-HxCDF   | 2             | 0.586                                                                                       |                 |                 | 86.5           | 97.3                    | 85.4        |
| 1,2,3,7,8,9-HxCDF   | S             | 0.000                                                                                       |                 |                 | 86.5           | 97.3                    | 85.4        |
| 1,2,3,4,6,7,8-HpCDF | 1.86          | 200                                                                                         |                 |                 | 86.5           | 97.3                    | 85.4        |
| 1,2,3,4,7,8,9-HpCDF | S             | - 5 N2                                                                                      |                 | ◀               | 88             | 99.1                    | 85.4        |
| OCDF                | 2             | 2.83                                                                                        |                 |                 | 88             | 99.1                    | 85.4        |
| Totals & TEQs       |               |                                                                                             |                 |                 | 91             | 99.1                    | 85.4        |
|                     |               |                                                                                             |                 |                 | 4              |                         |             |
| CDDs                | 2             |                                                                                             | 1.29            |                 | ALTA A         | ALTA ANALYTICAL PER     | DEBSECTIVES |
| Pecoos              | 2             | 0.997                                                                                       |                 |                 |                |                         |             |
| 2                   | <b>Q</b>      | 1.74                                                                                        |                 |                 | 7.6            | 2714 Exchange Drive     |             |
| SOOOdu .            | 1.83          |                                                                                             | 3.73            |                 | i              | Wilmington              |             |
| TCDFs               |               |                                                                                             |                 |                 | No             | North Carolina 28405    |             |
| Pecdes              | 2 5           | 1.83                                                                                        |                 |                 |                | USA                     |             |
| HxCDFs              | 1.69          | 3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |                 |                 |                |                         |             |
| HpCDFs              | 1.86          |                                                                                             |                 |                 | <del>-</del> ι | Tel: 910 794-1613       |             |
| Total PCDD/Fs       | 18.3          |                                                                                             | 21.5            |                 | T W            | Fax: 910 794-3919       |             |
| TEQ (ND=0)          | 0.200         |                                                                                             | 1.5             | ITEF            | weh:           | web: www.ultratrace.com | <br>E (     |
| ובת (אח=חר/2)       | 1.38          |                                                                                             | 2.68            | ITEF            |                | www.ditalace.com        | =           |
|                     |               |                                                                                             |                 |                 |                |                         |             |

Reviewer *Q*Date 25 Rb ØL

|                     |                                               |                      |                                                |                   |                   |                   |            |         |              |                 | 7               |                   |                   |                   |                     |                     |         |      |                     |                     |                    |                     |                    |                       |                    |               |                   |                    |                  |                     |                       |                         |          |                  |                     |                       |                         |          |        |                     |                  |              |                   |                         |                       |                         |                       |
|---------------------|-----------------------------------------------|----------------------|------------------------------------------------|-------------------|-------------------|-------------------|------------|---------|--------------|-----------------|-----------------|-------------------|-------------------|-------------------|---------------------|---------------------|---------|------|---------------------|---------------------|--------------------|---------------------|--------------------|-----------------------|--------------------|---------------|-------------------|--------------------|------------------|---------------------|-----------------------|-------------------------|----------|------------------|---------------------|-----------------------|-------------------------|----------|--------|---------------------|------------------|--------------|-------------------|-------------------------|-----------------------|-------------------------|-----------------------|
|                     | Page 3 of 3                                   |                      |                                                | ,                 | ٥                 | Kevlewer:         | ノロトレス      | מבו רבו |              |                 |                 |                   |                   |                   |                     |                     |         |      |                     |                     |                    |                     |                    |                       |                    |               |                   |                    |                  |                     |                       |                         |          |                  |                     |                       |                         |          |        |                     | 777              | Analyst: 0/6 | . 1               | 122/26/01               |                       |                         |                       |
|                     | 010214P1-<br>010214P1-                        | \                    |                                                |                   |                   | Kevi              |            | Date    |              |                 |                 |                   |                   |                   |                     |                     |         | EMPC | 1.29                | •                   | *                  | 3.73                | *                  | *                     | •                  | 0.00          | 1.09              | ٦ ;                | 99.61            |                     | 100                   | 1001                    | 95.7     | 1001             | 93.6-               | 86.5                  |                         | 91.0 /   |        | 1 1                 |                  |              | 98.2              | 96.4                    | 97.3                  | 99.1                    | 85.4                  |
|                     | ConCal:<br>EndCal:                            | DL<br>0.685          | · ·                                            | ٦.                |                   | -                 | 8          |         | ч.           | г.              |                 |                   |                   |                   | •                   | . 2                 | 2.83    |      | 0.685               | Ö                   | _                  |                     | -                  | ~                     | 1.83               | 0             | 1 86              | 1.00               |                  |                     |                       |                         |          |                  |                     |                       |                         |          |        |                     |                  |              |                   |                         |                       |                         |                       |
|                     | 000                                           | noise Fac<br>837 2.5 | 596 2.5                                        | 4 (               | 4 (               | 4 (               | 700 2.5    |         | 1614 2.5     | 2               | N (             | 700 7 5           | 4 0               | 4 6               | 4 0                 | 1 0                 | 962 2.5 |      | 837 2.5             |                     | 1072 2.5           | ~                   | ~                  | 1804 2.5              | 1607 2.5           | •             | 1564 2 5          | 204 7              |                  |                     |                       |                         |          |                  |                     |                       |                         |          |        |                     |                  |              |                   |                         |                       |                         |                       |
| \                   | 12:49:16<br>wt/vol: 1                         | if. CDE              |                                                |                   |                   |                   |            |         |              |                 |                 |                   |                   |                   |                     |                     |         |      |                     |                     |                    |                     |                    |                       |                    |               |                   |                    |                  |                     |                       |                         | •        |                  |                     |                       |                         |          |        |                     |                  |              |                   |                         | •                     |                         |                       |
| \                   | 3 Acq: 14-FEB-01<br>ICal: MM1_M23_0*          | Conc Qualif          | 1.                                             | ) !               | ١.                | 1.90              | . 7        |         | * •          | * ·             |                 | 1.69              |                   | . •               | 1.86                | •                   | •       |      | *                   | *                   | *                  | 1.83                | *                  | <b>4</b> .            | * 6                | 0.00          | 1.09              |                    | 1980             | 4010                | 4000                  | 4010                    | 3830     | 4000             | 3740                | 3460                  | 3520                    | 3640     | 000    | 4000                | 4000             |              | 3930              | 0820                    | 3890                  | 3970                    | 3420                  |
|                     | S: 3<br>ICa                                   | RT<br>27:45          | NotF.                                          | Notr              | NOTE:             | NOTE:             | 46:51      |         | NotF         | NotF            | Notr            | 30:08             | Note:             | NOLF.             | 30.53               | Notes               | NotF    |      | NotF.               | NotF.               | NotF.              | 40:19               | NotF               | NotF                  | NotF               |               | 30108             | 20162              | 27:43            | 33:11               | 37:12                 | 41:30                   | 46:50    | 26:50            | 31:42               | 36:15                 | 39:52                   | 47:09    |        | 25.28               | 37:31            |              | 27:45             | 32150                   | 36:06                 | 42:19                   | 37:55                 |
| 1                   | 010214P1<br>ID: db-5                          | RRF 1.26             | 1.01                                           | 1.14              | 70.1              | 1.14              | 1.03       |         | 1.05         | 1.04            | 1.05            | 1.13              | 1.24              | 1.10              | 1.54                | 1.30                | 1,15    |      | 1.26                | 1.01                | 1.10               | 1.13                | 1.05               | 1.05                  | 1.05               | :             | 1.14              | 1.42               | 1,13             | 0.93                | 0.93                  | 0.91                    | 0.73     | 1.06             | 96.0                | 1.28                  | 0.00                    | 0.81     |        | 00.1                | 1.00             |              | 0.51              |                         | 0.91                  | 0.85                    | 1.07                  |
| Page                | Filename: 01<br>GC Column II                  | RA<br>0.39/n         | ) <u>.                                    </u> | د :<br>• •        | E .               | 4 4 4 E           | )          |         | *            | # ·             |                 | 1.13 ye           |                   | = f               | 1 00 1              |                     | *       | :    | *                   | #                   | #<br>#             | 1.04 y              |                    | <b>E</b>              | ۵<br>*             |               | 1.13 y            | 1.05 y             | 70 07            | 1.58 V              |                       |                         |          | 0.77 y           |                     |                       | 0.44 y                  |          |        | /X 6/.0             | 1.26 ×           | •            |                   | 1.55 Y                  |                       | 0.43 Y                  |                       |
|                     | Ff                                            | Resp<br>2.88e+04     | *                                              | •                 |                   |                   | 1.23e+05   |         | *            | *               | •               | 2.81e+04          | • •               | •                 | 3 020+04            | * *                 | *       |      | *                   | *                   | *                  | 2.49e+04            | *                  | *                     | *                  |               | 2.81e+04          | 3.02e+04           | 7 110+07         | 5.84e+07            | 4.96e+07              | 4.82e+07                | 3.73e+07 | 8.92e+07         | 7.53e+07            | 5.89e+07              | 4.22e+07                | 3.92e+07 | 101000 | 6.29e+07            | 5.31e+07         |              | 3.59e+07          | 7.06e+07                | 5.21e+07              | 3.57e+07                | 4.85e+07              |
| 1 23-FEB-2001 19:34 | Client ID: 0_275_MB001<br>Lab ID: 0_275_MB001 | Name<br>2,3,7,8-TCDD | 1,2,3,7,8-PeCDD                                | 1,2,3,4,7,8-HxCDD | 1,2,3,6,7,8-HxCDD | 1,2,3,7,8,9-HXCDD | GCDD OCCDD |         | 2,3,7,8-TCDF | 1,2,3,7,8-PeCDF | 2,3,4,7,8-PecDF | 1,2,3,4,7,8-HXCDF | 1,2,3,6,7,8-HXCDF | 2,3,4,0,/,0-EXCUE | 1 2 3 4 6 7 B-BACDE | 1.2.3.4.7.8.9-HDCDF |         |      | Total Tetra-Dioxins | Total Penta-Dioxins | Total Hexa-Dioxins | Total Hepta-Dioxins | Total Tetra-Furans | 1st Fnc. Penta-Furans | Total Penta-Furans | PeCDF Totals: | Total Hexa-Furans | Total Hepta-Furans | 13C-2 3 7 8-#CDD | 13C-1.2.3.7.8-PACDD | 13C-1,2,3,6,7,8-HxCDD | 13C-1,2,3,4,6,7,8-HpCDD | 13C-0CDD | 13C-2,3,7,8-TCDF | 13C-1,2,3,7,8-PeCDF | 13C-1,2,3,6,7,8-HxCDF | 13C-1,2,3,4,6,7,8-HpCDF | 13C-OCDF |        | 13C-1, 2, 3, 4-TCDD | 13C-1,2,3,4=1CDF |              | 37C1-2,3,7,8-TCDD | 13C-2, 3, 4, 7, 8-PecDF | 13C-1,2,3,4,7,8-EACDE | 13C-1,2,3,4,7,8,9-HpCDF | 13C-1,2,3,7,8,9-HxCDF |
| OPUSquan            | Clier<br>Lab 1                                |                      |                                                |                   |                   |                   |            |         |              |                 |                 |                   |                   |                   |                     |                     |         |      |                     |                     |                    |                     |                    | •••                   |                    |               |                   |                    | ŭ                | S +                 | SI                    |                         |          | IS               | IS                  |                       |                         | IS       | 100    | RS/RT               | RS/RT            |              | PS                | ខ្លួ                    |                       |                         |                       |

( )

| OPUSquan 23-FEB-2001 19:26 Page 1                                                                                                       |                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                                                                                                         | Page 2 of 18                                      |
| Totals class: TCDD EMPC File Name: 010214P1 Sample #: 3 Sample text: 0_275_MB001                                                        |                                                   |
| Acquired: 14-FEB-01 12:49:16 Processed: 20-FEB-01 12:06:57                                                                              |                                                   |
| Total Conc.: 1.2852 Unnamed Conc.: *                                                                                                    |                                                   |
| RT ml Resp mod. m2 Resp mod. RA Resp Adj_Resp S/N                                                                                       | Conc. Name                                        |
| 27:45 1.254e+04 y 3.230e+04 n 0.39(n 3.484e+04 2.882e+04 1.07e+01 y                                                                     | 1.29 2,3,7,8-TCDD<br>Page 4 of 18                 |
| Totals class: PeCDD EMPC Function: 2 Run #: 10 File Name: 010214P1 Sample #: 3 Sample text: 0_275_MB001                                 |                                                   |
| Acquired: 14-FEB-01 12:49:16 Processed: 20-FEB-01 12:06:57                                                                              |                                                   |
| Total Conc.: * Unnamed Conc.: *                                                                                                         |                                                   |
| RT ml Resp mod. m2 Resp mod. RA Resp Adj_Resp S/N                                                                                       | Conc. Name                                        |
| NotF: *n *n *n * n                                                                                                                      |                                                   |
| Totals class: HxCDD EMPC Function: 3 Run #: 10<br>File Name: 010214P1 Sample #: 3 Sample text: 0_275_MB001                              | rage b of 18                                      |
| Acquired: 14-FEB-01 12:49:16 Processed: 20-FEB-01 12:06:57                                                                              |                                                   |
| Total Conc.: * Unnamed Conc.: *                                                                                                         |                                                   |
| RT ml Resp mod. m2 Resp mod. RA Resp Adj_Resp S/N                                                                                       | Conc. Name                                        |
| NotF, *n *n * n                                                                                                                         | * Page 8 of 18                                    |
| Totals class: HpCDD EMPC Function: 4 Run #: 10 File Name: 010214Pl Sample #: 3 Sample text: 0_275_MB001                                 |                                                   |
| Acquired: 14-FEB-01 12:49:16 Processed: 20-FEB-01 12:06:57                                                                              |                                                   |
| Total Conc.: 3.7295 Unnamed Conc.: 1.832                                                                                                |                                                   |
| RT ml Resp mod. m2 Resp mod. RA Resp Adj_Resp S/N                                                                                       | Conc. Name                                        |
| 40:19 1.273e+04 y 1.221e+04 y 1.04 y,2.494e+04 2.494e+04 2.95e+00 y 41:31 1.854e+04 y 1.266e+04 y 1.46 m 3.120e+04 2.583e+04 2.38e+00 n | 1.83<br>1.90 1,2,3,4,6,7,8-HpCDD<br>Page 10 of 18 |
| Totals class: TCDF EMPC Function: 1 Run #: 10                                                                                           |                                                   |
|                                                                                                                                         |                                                   |

• ..

.. -

. ,

. .

. ..

- -

• :

a í

. .

• •

| OPUSquan 23-FEB-2001 19:26 Page 2                                                                               |                                         |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| File Name: 010214Pl Sample #: 3 Sample text: 0_275_MB001                                                        |                                         |
| Acquired: 14-FEB-01 12:49:16 Processed: 20-FEB-01 12:06:57                                                      |                                         |
| Total Conc.: * Unnamed Conc.: *                                                                                 |                                         |
| RT ml Resp mod. m2 Resp mod. RA Resp Adj_Resp S/N Conc. Name                                                    |                                         |
| NotF* * n * n * n *                                                                                             | Page 12 of 18                           |
| Totals class: 1st Fnc.PeCDF EMPC Function: 1 Run #: 10 File Name: 010214Pl Sample #: 3 Sample text: 0_275_MB001 | •                                       |
| Acquired: 14-FEB-01 12:49:16 Processed: 20-FEB-01 12:06:57                                                      |                                         |
| Total Conc.: * Unnamed Conc.: *                                                                                 |                                         |
| RT ml Resp mod. m2 Resp mod. RA Resp Adj_Resp S/N Conc. Name                                                    |                                         |
| NotF, *n *n *n * n *                                                                                            | Page 14 of 18                           |
| Totals class: PeCDF EMPC Function: 2 Run #: 10 File Name: 010214Pl Sample #: 3 Sample text: 0_275_MB001         |                                         |
| Acquired: 14-FEB-01 12:49:16 Processed: 20-FEB-01 12:06:57                                                      |                                         |
| Total Conc.: * Unnamed Conc.: *                                                                                 |                                         |
| RT ml Resp mod. m2 Resp mod. RA Resp Adj_Resp S/N Conc. Name                                                    |                                         |
| NotF, * n * n * n * 1,2,                                                                                        | * 1,2,3,7,8-PeCDF<br>Page 16 of 18      |
| Totals class: HxCDF EMPC Function: 3 Run #: 10 File Name: 010214Pl Sample #: 3 Sample text: 0_275_MB001         |                                         |
| Acquired: 14-FEB-01 12:49:16 Processed: 20-FEB-01 12:06:57                                                      |                                         |
| Total Conc.: 1.6885 Unnamed Conc.: *                                                                            |                                         |
| RT m1 Resp mod. m2 Resp mod. RA Resp Adj_Resp S/N Conc. Name                                                    | Q1                                      |
| 36:08 X.490e+04 y 1.322e+04 y 1.13 y/2.813e+04 2.813e+04 5.10e+00 y 1.69 1,2,                                   | 1.69 1,2,3,4,7,8-HxCDF<br>Page 18 of 18 |
| Totals class: HpCDF EMPC Function: 4 Run #: 10 File Name: 010214Pl Sample #: 3 Sample text: 0_275_MB001         |                                         |
| Acquired: 14-FEB-01 12:49:16 Processed: 20-FEB-01 12:06:57                                                      |                                         |
|                                                                                                                 |                                         |

|                            |                     | Conc. Name                      | n 1.86 1.2.3.4.6.7.8-HPCDF                                          |
|----------------------------|---------------------|---------------------------------|---------------------------------------------------------------------|
|                            |                     |                                 | 1 00                                                                |
|                            |                     | S/N                             | 2.35e                                                               |
|                            |                     | Resp Adj_Resp S/N               | e+04                                                                |
|                            | :                   | Adj                             | 3.023                                                               |
| Page 3                     | Unnamed Conc.: *    | Resp                            | 39:53 X.546e+04 y 1.477e+04 y 1.05 y X.023e+04 3.023e+04 2.35e+00 n |
|                            | 5                   | \$                              | 1.05 3                                                              |
|                            |                     | pow d                           | Α.                                                                  |
| 9:26                       |                     | n2 Rea                          | 177e+0                                                              |
| 001 1                      | 8583                | mod.                            | у 1.                                                                |
| -FEB-                      | Total Conc.: 1.8583 | RT ml Resp mod. m2 Resp mod. RA | Se+04                                                               |
| 23                         | 1 Con               | m1                              | 1.54                                                                |
| OPUSquan 23-FEB-2001 19:26 | Tota                | RT                              | 39:53                                                               |

.

797

.

ş -t







A. 1.7.24

•

.4

\* or. \*\*

5 ∰4 ~

--













| ⊏.                                                                                                                                  | ImaE                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Sample# 3 Text: 0 275 MB001 V1al# // File Text: AAF D5<br>441.7428 S:3 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Exp | Expt: OCDD Noise: 118                             |
| #00                                                                                                                                 | 47110<br>A2.0454                                  |
|                                                                                                                                     | 11 2.9 53                                         |
|                                                                                                                                     | aid.                                              |
| 46138<br>403<br>A1.35E3 46153                                                                                                       | 47W62 1 47                                        |
| A ANS WAS ASSESSED ASSESSED AND AND AND AND AND AND AND AND AND AN                                                                  | AN 18.9 WAI : 1783 A WAY                          |
| 45,00                                                                                                                               | 49:00 49:00 Time                                  |
| 443.7398 S:3 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt:                                                         | OCDD Noise: 178                                   |
|                                                                                                                                     | 47:10<br>81 7284                                  |
| 100                                                                                                                                 |                                                   |
| 00                                                                                                                                  |                                                   |
| AE.00 AE.10 AE.40                                                                                                                   | 47:15 47:35 47:46 13:25 48:25 48:46               |
| 44:53 44:32E3 A1:48E3 A4:48E3 AP:65E3 A3:40E3                                                                                       | A5.18E3 A1.60E3 A1.32E3 A2.53E3                   |
| My My My My Man Man Man Man Man Man Man Man Man Man                                                                                 | Mrry 1 1 2 1 2 MM rand man Mark May Washing 0.000 |
| l                                                                                                                                   |                                                   |
| B(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F)                                                                                   | Expt: OCDD Noise: 95                              |
|                                                                                                                                     | 47109<br>Al.84E7                                  |
|                                                                                                                                     | ( 5.156                                           |
|                                                                                                                                     | 11.656                                            |
|                                                                                                                                     |                                                   |
| 202                                                                                                                                 |                                                   |
|                                                                                                                                     | 0.0                                               |
| 45:00 45:00 46:00 46:00 46:00 EXDE:                                                                                                 | 447:00 48:00 48:00 Time 49:00 Time                |
| ( - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                             | 478                                               |
| 100%                                                                                                                                |                                                   |
| 708                                                                                                                                 | 1.956                                             |
| 100                                                                                                                                 | 1.256                                             |
| 202                                                                                                                                 | (9.02)                                            |
| 0                                                                                                                                   | 47:00 48:00 49:00 Time                            |
| 08,750.0,0.00%,F,F)                                                                                                                 | Noise: 82                                         |
| 401.53<br>100k                                                                                                                      | F1.7E3                                            |
| 8008                                                                                                                                | 47:06 1.4E3                                       |
|                                                                                                                                     |                                                   |
| 2003 MARA MARKANALLAN CHAMMANAMANAMANAMANAMANAMANAMANAMANAMANAM                                                                     | my my my month was and my man and my man 3.422    |
| 45:00                                                                                                                               | 49:                                               |
|                                                                                                                                     |                                                   |

| Sample ID:           | M23-1           |             |      |                             |                                                    |                                              | 7011         |
|----------------------|-----------------|-------------|------|-----------------------------|----------------------------------------------------|----------------------------------------------|--------------|
| Cilent Data          |                 | Sample Data |      | I oberes                    |                                                    | ME                                           | Method M23   |
| Name:<br>Project ID: | PES<br>F181,001 | Matrix:     | Air  | Project No.:                | P1388                                              | Date Received:                               | 6-Feb-01     |
| Date Collected:      | 31-Jan-01       |             |      | Sample ID:<br>QC Batch No.: | P1388_275_001CU Date Extracted: 275 Date Analyzed: | Date Extracted:                              | 8-Feb-01     |
| Analyte              | Conc.           | DF          | EMPC | Qualifier                   |                                                    | Becoveries                                   | 23-FEB-01    |
|                      | bd              | pg          | bd   |                             | S                                                  | Societa                                      | 0.4          |
| 2,3,7,8-TCDD         | Q               | 607.0       |      |                             | 2                                                  | 200                                          | AS           |
| 1,2,3,7,8-PeCDD      | EMPC            | 70.10       | 1.77 |                             | 102                                                | 96.5                                         | 97.9         |
| 1,2,3,4,7,8-HxCDD    | 4.56            |             |      |                             | 99.7                                               | 93.1                                         | 6.76         |
| 1,2,3,6,7,8-HxCDD    | 7.58            |             |      | C <                         | 40.                                                | 91.1                                         | 6.76         |
| 1,2,3,7,8,9-HxCDD    | 4.64            |             |      | < <                         | 400                                                | 91.1                                         | 97.9         |
| 1,2,3,4,6,7,8-HpCDD  | 27.3            |             |      | A A                         | 104<br>06 F                                        | 91.1                                         | 97.9         |
|                      | 74.4            |             |      | AB                          | 83.6                                               | 90.00<br>80.00                               | 97.9         |
| 2,3,7,8-TCDF         | 7               |             |      |                             |                                                    | 0.00                                         | 6.78         |
| 1,2,3,7,8-PeCDF      | 5.00            |             |      |                             | 100                                                | 96.5                                         | 6.26         |
| 2,3,4,7,8-PeCDF      | 46.6            |             |      | ∢ :                         | 91.1                                               | 93.1                                         | 97.9         |
| 1,2,3,4,7,8-HxCDF    | 48.9            |             |      | ۷ ;                         | 91.1                                               | 93.1                                         | 97.9         |
| 1,2,3,6,7,8-HxCDF    | 54.6            |             |      | o<br>V                      | 90.7                                               | 6.96                                         | 6.76         |
| 2,3,4,6,7,8-HxCDF    | 87.3            |             |      |                             | 90.7                                               | 6.96                                         | 97.9         |
| 1,2,3,7,8,9-HxCDF    | 13.7            |             |      |                             | 90.7                                               | 6.9                                          | 97.9         |
| 1,2,3,4,6,7,8-HpCDF  | 234             |             |      | ζ α                         | 7.06                                               | 96.9                                         | 6.76         |
| 1,2,3,4,7,8,9-HpCDF  |                 |             |      |                             | ည္ မွ                                              | 600.3                                        | 97.9         |
| UCDF                 | 145             |             |      |                             | 21.3                                               | 90.00<br>00.00                               | 97.9         |
| l otals & TEOs       |                 |             |      |                             | 0.10                                               | 90.3                                         | 97.9         |
| TCDDs                | 0 1             |             |      |                             |                                                    |                                              |              |
| Pecdos               | 5.74            |             | ů,   |                             | ALTA AN                                            | ALTA ANALYTICAL PER                          | PERSPECTIVES |
| HxCDDs               | 68.2            |             |      |                             |                                                    | 1                                            |              |
| НрСDDs               | 55.6            |             |      |                             | 271                                                | 2714 Exchange Drive                          |              |
|                      |                 |             |      |                             |                                                    | vviimington                                  |              |
| PecDFs               | 345             |             | 370  |                             |                                                    | USA                                          |              |
| HxCDFs               | 517             |             | 420  |                             |                                                    |                                              |              |
| HpCDFs               | 370             |             |      |                             | - L                                                | lel: 910 794-1613                            |              |
| TEO (ND-0)           | 2090            |             | 2120 |                             | e-mail                                             | rax: 910 794-3919<br>6-mail: vtondeur@cs.com |              |
| TEQ (ND=DL/2)        | 51.1            |             | 51.5 | ITEF                        | web: v                                             | web: www.ultratrace.com                      |              |
|                      |                 |             | 8.1c | ITEF                        |                                                    |                                              |              |

Reviewer C RP Ø L

1.3

| 1/2 |  |
|-----|--|
|     |  |

|                            |                         |            |          |                   |      | -             |          |          |        |            |                 | <u> </u>         |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
|----------------------------|-------------------------|------------|----------|-------------------|------|---------------|----------|----------|--------|------------|-----------------|------------------|-------|---------|--------------|------------|---------|---------------------|---------------------|--------------------|---------------------|--------------------|--------------|--------------|-------------------|--------------------|----|------------------|------------|-------------------------|------------|------------------|-----------------------|-----------|---------|----------|------------------|----------|----------|------|------------------|-------------------------|-----------------------|--|
| £ 10                       |                         |            |          |                   |      | ı             |          | <u>~</u> | -      |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  |          | 1        | 1    | $\tilde{\Omega}$ |                         |                       |  |
| 6                          |                         |            |          |                   |      |               |          | 0        |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  | (        | 4        |      | ğ                |                         |                       |  |
| age                        |                         |            |          |                   | ć    | ۲             |          | なっな      |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  |          | Ž        | 1    | てあるこ             |                         |                       |  |
| l g                        |                         |            |          |                   | •    |               |          | S        |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  | 1        | 9        |      | 7                |                         |                       |  |
|                            |                         |            |          |                   |      | wer           |          | 0        |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  |          | st:      | ~    | 77               |                         |                       |  |
|                            |                         |            |          |                   |      | Reviewers     |          | Date     |        |            |                 |                  |       |         |              |            | EMPC    | 7.3                 | 3.5                 | 3.2                | 9                   | 270                |              | . u          | 517               | -                  |    |                  |            |                         |            |                  |                       |           |         |          |                  | ,        | Analyst: |      | ate              |                         |                       |  |
| 01022391-                  | 3P1.                    |            |          |                   |      | ž             |          | ã        |        |            |                 |                  |       |         |              |            | Ē       | i                   | 4                   | 9                  | ָרָי י              | .,                 | 4            | •            |                   | 1 (*)              | υ  | !!               |            | ·in                     | Ĩ          |                  | 1                     | j         | 1       |          |                  |          |          | ١    | ۲,               | ۱ ا                     | 1_1                   |  |
| .022                       | 022                     |            |          |                   |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    | Re | 102              | 104        | 96                      | 83.        | 100              | 90.7                  | 86.0      | 81.3    | •        | •                | '        | 96.      | 93.1 | •                | 90.06                   |                       |  |
|                            | 101                     | \          |          |                   |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           | _       |          |                  |          | -        | •    |                  | . 0.                    | 0.                    |  |
| Sal.                       | Cal.                    | DI         | 7 / 7    | 1.30              | 1.45 | 6.1           | 2.16     | ŗ        |        | 6          |                 | 27.7             | 893   | .02     |              | 1.32       | *       | 792                 | . 70                | . 35               | .16                 | 11                 | 3,50         | ,            | 91                | .20                |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
| ConCal                     | End                     | •          | <b>S</b> |                   | _    |               |          | •        | _      |            | ٦,              |                  |       | _       |              | - ,        | ,       | 0                   | -                   | ~                  | N ·                 | -                  | 4 -          | 7            | 0                 | -                  |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
|                            |                         | .0         | •        |                   | •    | •             | •        | •        | •      | •          | •               | •                |       |         | •            | 2 .5       |         |                     | •                   | •                  | •                   |                    | v . c        | •            |                   | 2.5                |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
| 1                          |                         | 9 0        | 2 12     | 67                | 29   | 67            | 202      | 0        |        |            |                 |                  |       |         |              | 208        |         | 0                   | 'n                  | _                  | 0                   |                    |              | 0            | 0                 | 8                  |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
|                            | 000.                    | noise F    | <b>1</b> | 9                 | 6    | 6             | 12       | 0        | 15     | 18         | 18              | 12               | 12    | 12      | 12           | 12         | 1       | 111                 | 11                  | 96                 | 12                  | 15                 | 4 -          | Ö            | 12                | 120                |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
|                            | -                       | CDE        |          |                   |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
| 91110                      | wt/vol:                 | ប៊         |          |                   |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
| 1   2                      | t/v                     |            |          |                   |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
| '   -                      | 3                       | Qualif.    |          |                   |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
| FEB-0                      | ė,                      | Š/         |          |                   |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
| 23-FE                      | M23                     | ,          | . 4      | . 9               | 8    | • 64          | ٠.<br>م  | •        | ۳,     | ن ر        | ٥               | h 4              | . m   | .7      | 4 .          | ים ע       | 2       | ۴.                  | ٣                   | 7                  | <u>.</u> و          | n o                | יו ס         | n -          | 1                 | 0                  |    | 0 0              | 0          | 0                       | 0          | <b>.</b>         | . 0                   | 20        | 0       | 0        | 0                | 0        | 0        | 0    | 0 0              | , 0                     | 0                     |  |
|                            |                         | Conc       |          | 4                 | 7    | 4.            | 74       | r        | = :    | 0 1        | 90              | 0 4              | 87    | 3       | 2            | 26.        | 4       | 7                   | _                   | œ 1                | 55.                 | £ 4                | 40.4         | 1, 4<br>2 ft | 517               | 37                 |    | 325              | 332        | 3090                    | 268        | 320              | 2900                  | 275       | 9       | 320      | 3200             | 320      | 309      | 298  | 291              | 2890                    | 313                   |  |
| Acq                        | Cal: MM1                |            |          |                   |      |               |          |          |        | ,          |                 |                  |       |         |              |            | ·       |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            |                         |            |                  |                       |           |         |          |                  |          |          |      |                  |                         |                       |  |
|                            | Cal                     | RH         | . (*)    | : =               | 8    | <b>@</b> \    | o w      | 2        | 80     | <u>ن</u> و | 9 6             | · -              | ! =   | ņ       | <b>6</b> 0 1 | ر<br>د م   |         | 00                  | y ·                 | σ,                 | ın v                | ه د                | ۰ د          | 4            | 0                 | 89                 |    | - 4              | <b>.</b> . | 2                       | 4 (        | χο α             |                       | 7         | m       | -        | S                | 9        | 7        | 20   | ۰ ۵              | 4.                      | 0                     |  |
| 8.1                        | _                       | - 1        | 33 t 1   | 37:01             | 37.0 | 37 12         | 46132    | •        | 614    | 1113       | 32:46           | 16.1             | 6:51  | 1715    | •            | 4211       | :       | 315                 | 3013                | 5:1                | 10:                 | 11:4               | 30.22        | 7 2          | 4 1 4             | 9:4                |    | 7:4              | 7:0        | 1:2                     | 614        | 0 1 4            | 36:10                 | 9:4       | 710     | 7        | S                | 7        | 7:4      | 2:4  | 0.0              | 42:14                   | 7 15                  |  |
|                            | 2                       |            |          |                   |      | ,             | • •      |          |        | ., .       | -, ,,           | , .              | ,,    | 61      | ***          | 4 4        | •       | 7                   | (7)                 | ינים               | 47                  |                    | <b>4</b> (*  | י            | m                 | m                  | •  | 71 6             | ) (°)      | 4                       | ₹ (        | 7 "              | ייי                   | m         | 4       | 7        | 7                | m        | 7        | m    |                  | ) <b>4</b>              | m                     |  |
| 010223P1                   | <del>d</del>            | RRF        | 0.10     | =                 | .02  | 7:            | 1 6      |          | 0      | 0 0        | .05             | 24               | .16   | .02     | .54          | 5 .        | 2       | .26                 | .01                 | .10                | .13                 | 0.0                | ט<br>נ       | 5            | .14               | .42                |    | .13              | . 69       | .91                     | .73        | 9                | .28                   | .90       | 83      | 0        | 00.              | 00       | .51      | .97  | .92              | .85                     | .07                   |  |
| 102                        | ë                       | •          | -        |                   | -    | ٠,            | <b>-</b> | 1        | ~ ·    | ٦,         | 7,              | -                | ΄,    | 7       |              | <br>. ,    |         | -                   | -                   |                    | ٠,                  | ٦,                 | - ٦          | 4            | -                 | -                  | •  | با د<br>ر        |            | 0                       | ۰ ۰        |                  | -                     | 0         | Ö       |          | 7                | -        |          | 0    | 0 0              | 0                       | _                     |  |
|                            |                         | <b>4</b> + | ع اد     | 7                 | ×    | <b>&gt;</b> : | >        |          | 4      | 7          | > :             | \<br>\<br>\<br>\ |       | >       |              | > >        | 7       |                     |                     |                    |                     |                    | > >          | 71           |                   | >                  |    | ×,:              | - >        | _                       | 7          | > ?              | \ >                   | >         | 7       |          | 7                |          |          | 2    | × ;              | 7                       | >                     |  |
| P. P.                      | olur<br>olur            | ₹,         | 2.02     | 1.38              | 1.33 | E .           | 7 0      |          |        | 1.49       | 1.55            | 1.25             | 1.20  | 1.34    | 1.01         | 40.0       | •       | 0.79                | 1.60                | 1.31               | 1.03                | 77.                | 1.51         | •            | .20               | .01                |    | 0.80             | 1.25       | 1.04                    | 68 6       | 7.7              | 0.52                  | . 44      | .88     | .79      | . 78             | . 25     |          | .58  | .25              | 0.43                    | .52                   |  |
| Pac                        | GC Column               |            |          |                   |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              | -                 |                    | •  | o <del>-</del>   |            |                         |            | - د              |                       | 0         | 0       | 0        | 0                | -        |          |      |                  |                         |                       |  |
| 1 1                        | G                       | Resp       | +04      | 7.04e+04          | +05  | +04           | 5.76e+U3 | 3        | +02    | 4.68e+05   | 904             | 1.100+06         | 5e+06 | +05     | 90+          | 4 6 5      | 3       | 4.54e+05            | +02                 | 90+                | 102                 | 904                | 9 9          | 2            | ÷06               | .97e+06            |    | 107              | 107        | 3.91e+07                | 201        | 2 6              | 107                   | 107       | 107     | 107      | F07              | 107      | 107      | 107  | 0,4              | 2.68e+07                | -07                   |  |
|                            |                         | Æ          | 936      | 046               | 05e  | 20e           | 7.46     | 5        | .09e+0 | 68e        | 000             | 10e              | 65e   | 2.27e+0 | 3.91e+06     | 3./4e+U    | )<br> - | 54e                 | 97e                 | 02e                | 67e                 | 9 4 6              | 146          | 2            | 999               | 5.97e+0            | ;  | 6.67e+0          | 4.34e+0    | 91e                     | 74e        | 6.53e+07         | 5.20e+07              | 3.47e+0   | 2.95e+0 | 5.78e+07 | .91e+07          | 4.47e+07 | 31e      | 26e  | 64e              | 68e                     | 68e₁                  |  |
|                            |                         |            | 2        |                   | ÷    | ٠.            | n 4      |          |        |            |                 |                  |       |         |              | , -        | •       | 4                   | ý                   | <del>-</del>       |                     | · -                | -            | •            | 9                 | 5.                 | •  | . r              | 4          | m                       | ٠,<br>د    |                  | 'n                    | щ.        | 7       | 'n       | 7                | 4        | ٣        | 9    | m 4              | 7                       | 4.                    |  |
| 8                          |                         | Name       |          | 1,2,3,4,7,8-HXCDD | 200  | 9 8           |          |          | DF     | DF.        | 2,3,4,7,8-PecDF | 10.              | D.    | DF      | D.           | b co       |         | nB                  | n B                 | n.                 | 8 1                 | 8 9                |              | 18:          | 90                | 801                | 1  | 8 6              | 2 2        | 00                      | 8          | 1 2              | i i                   | DF        | DF      | QQ       | DF               | QQ       | 00       | DF   |                  | D.                      | DF                    |  |
| 15:46                      | 100                     | ŽÈ         | 94       | -EX               | -HX  | XH-           | Ę č      | 5        | 9-T    | -Pe(       | i Pe            | X                | Ή×    | -HXC    | Ä.           | Y-HPCDF    | 5       | Total Tetra-Dioxins | Total Penta-Dioxins | Total Hexa-Dioxins | Total Hepta-Dioxins | Total Tetra-Furans | Fenta-Furang | PecDF Totals | Total Hexa-Furans | Total Hepta-Furans | ì  | - TC             | N X        | HP                      | 130-000    | 13C-2,3,7,8-TCDF | EX.                   | 7,8-HPCDF | 8       | -13      | 110              | HXC      | J.       | Pec  | E XC             | HPC                     | HXC                   |  |
| 2 B                        | 8                       | r          | . 6      | 7,8               | 7,8  | ໝູ່ ເ<br>ດັ່ວ | ė.       |          | 7,     | , r        | , c             | 0                | 8,7   | 3,9     | , e          | y.         |         | 1-D                 | 1-D                 | <u>-</u> 0         | -                   | 6                  | 1 8          | 7 E          | . E               | - B                | ì  | ,                | 6          | 9,                      | 133        |                  | 8                     | ۴,        | 130     | 3,4      | 3,4              | -6,      | 7,8      | 8    | <b>p</b> 4       | 9                       | -6'                   |  |
| 24-FEB-2001<br>D: M23-1 CU | 275                     | ,          | 3 6      | 4                 | 9,   | ر<br>د        | 0        |          | 2,3    | ٠,         | 4               |                  | 9     | ,7,     | 6 1          | 2,3,4,1,8, |         | atra                | ente                | exe.               | pt                  | reti               |              | Control      | He                | lept               | •  | ເຄີ              | 9          | 6,7                     | ٠          | 3                | 6,1                   | 6,7       |         | 1,2,     | 1,2,             | 7,8      | , 3,     | 4,7  | 4,4              | 7,8                     | 7,8                   |  |
| FEB<br>M23                 | 88                      |            | 1.2      | 2,3               | 2,3  | 2,3           | 4,       |          |        | 7,7        | 2,0             | 2 6              | 3,4   | 2,3     | ۵, د<br>م    | 4          |         | ı,                  | 1 P                 | 7                  | H 1                 |                    |              |              | tal,              | 11                 | ,  | <u> </u>         | 9 6        | 3,4,                    | ,          | 2                | m                     | 3,4,      |         |          | 2                | m'       | :1-2     | 3,   | س ر<br>د         | 4                       | ,3,                   |  |
| 24-FEB-2                   | P13                     |            |          | 1,                | -    | , i           | 171      |          |        |            | -               | -                | 7     | 1,      | 7,           | 171        |         | ota                 | ota                 | rot.               | Ota.                | rot.               | Total        | 3            | To                | Pot                | •  | ַן ד             | 7          | 12,                     | •          | ي ا              | 7                     | 2,        |         | Ħ        | =                | -1,      | 370      | 3C-2 |                  | 2,3                     | 1,2                   |  |
| - t                        | <u>:</u>                |            |          |                   |      | •             | 7        |          |        |            |                 |                  |       |         | .i.          | 1          |         | Ě                   | É                   | 1                  | Η,                  | 1                  | Total        |              |                   | •                  |    | 13C-2,3,7,8-TCDD | 130        | 13C-1,2,3,4,6,7,8-HpCDD |            | -                | 13C-1,2,3,6,7,8-HXCDF | C-1,      |         |          | 13C-1,2,3,4-TCDF | 130      |          | i    | <u> </u>         | 17                      | 13C-1,2,3,7,8,9-HXCDF |  |
| Squan                      | Lab ID: P1388_275_001CU |            |          |                   |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    |                  |            | Ţ                       |            |                  |                       | 13        |         |          |                  |          |          |      | . •              | 13C-1,2,3,4,7,8,9-HpCDF | •                     |  |
| OPUSquan                   | Ã                       |            |          |                   |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    | 9  | n in             | , io       | S                       | <u>က</u> ( | מ מ              | IS                    | ន         | တ       | RS/RT    | RS               | RS/RT    |          |      |                  | 52                      |                       |  |
| <u> </u>                   |                         |            |          | _                 |      |               |          |          |        |            |                 |                  |       |         |              |            |         |                     |                     |                    |                     |                    |              |              |                   |                    |    | _                |            | -                       |            | _                | . H                   | _         | _       | II.      | 14               | -        | - Д      | E74  | <u>μ</u> υ       | , Α,                    | Κ.                    |  |

```
Page 4 of 18
                         of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 oĘ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          16.8
3.33
4.56 1,2,3,4,7,8-HxCDD
                         ~
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1,2,3,7,8-PeCDD
                        Page
                                                                                                                                                  Conc. Name
                                                                                                                                                                                                                                                                                                                                                                        Conc. Name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Conc. Name
                                                             C
                                                                                                                                                                                                                                                                                 5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Function: 3 Run #: 16
Sample text: P1388_275_001 M23-1 Air Train CU
                                                                                                                                                                           4.96
2.80
1.99
4.08
                                                                                                                                                                                                                                                                                                                                                                                                                                                 4.86
                                                                                                                                                                                                                                                                                                                                                                                                                                     2.01
                                            Function: 1 Run #: 16
Sample text: P1388_275_001 M23-1 Air Train
                                                                                                                                                                                                                                                                                                                                                                                                              2.08
                                                                                                                                                                                                                                                                                                                                                                                                                          8.86
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            4.88
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.49
                                                                                                                                                                                                                                                                  Function: 2 Run #: 16
Sample text: P1388_275_001 M23-1 Air Train
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     9.41
                                                                                                                                                                             >>>>>
                                                                                                                                                                                                                                                                                                                                                                                                   *****
                                                                                                                                                                                                                              8.18e+00
                                                                                                                                                                           1.40e+01
                                                                                                                                                                                        7.55e+00
                                                                                                                                                                                                      6.00e+00
                                                                                                                                                                                                                  9.81e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                      5.06e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                    9.15e+00
                                                                                                                                                                                                                                                                                                                                                                                                 1.49e+01
                                                                                                                                                                                                                                                                                                                                                                                                             3.23e+00
                                                                                                                                                                                                                                                                                                                                                                                                                          1.30e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                               6.62e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            8.90e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         7.53e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.02e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4.04e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        7.59e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.71e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.42e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.64e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.07e+01
                                                                                   Processed: 23-FEB-01 14:56:00
                                                                                                                                                                                                                                                                                                        Processed: 23-FEB-01 14:56:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Processed: 23-FEB-01 14:56:00
                                                                                                                                                  S/N
                                                                                                                                                                                                                                                                                                                                                                        S/N
                                                                                                                                                                                                                                                                                                                                                                                                                       1.67 y/1.497e+05 1.497e+05 1.21 (m.3.777e+04 3.398e+04 1.64 y/9.208e+04 8.208e+04 1.44 y/9.564e+04 8.554e+04 1.29 (m.5.85e+04 5.899e+04 1.29 (m.5.85e+04 5.899e+04 1.29 (m.5.899e+04 5.899e+04 1.29 (m.5.899e+04 5.899e+04
                                                                                                                                                 Adj_Resp
                                                                                                                                                                                   0.81 y 7.361e+04 7.361e+04 0.69 y 5.234e+04 5.234e+04 0.83 y 1.072e+05 1.072e+05 0.77 y 5.049e+04 9.049e+04
                                                                                                                                                                           1.303e+05
                                                                                                                                                                                                                                                                                                                                                                      Adj_Resp
                                                                                                                                                                                                                                                                                                                                                                                                 2.151e+05
                                                                                                                                                                                                                                                                                                                                                                                                           3.509e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2.02 Ø3.472e+04 2.935e+04 1.64 y4.702e+04 4.702e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Adj_Resp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.24 y 2.506e+05 2.506e+05
1.36 y 4.973e+04 4.973e+04
1.38 y 7.041e+04 7.041e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.31 y/1.405e+05 1.405e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.33 y 2.634e+05 2.634e+05
                                                                                                            Unnamed Conc.: 17.275
                                                                                                                                                                                                                                                                                                                                 Unnamed Conc.: 46.781
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Unnamed Conc.: 51.453
                                                                                                                                                 Resp
                                                                                                                                                                                                                                                                                                                                                                       Resp
                                                                                                                                                                         y~1.303e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Resp
                                                                                                                                                                                                                                                                                                                                                                                                 y/2.151e+05
                                                                                                                                                                                                                                                                                                                                                                                                            1.72 y/3.509e+04
    Page
                                                                                                                                                                          0.79
                                                                                                                                                 Z
                                                                                                                                                                                                                                                                                                                                                                       Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Ş
                                                                                                                                                ml Resp mod. m2 Resp mod.
                                                          m
                                                                                 Acquired: 23-FEB-01 13:01:16
                                                                                                                                                                                                                                                                               Sample #: 3
                                                                                                                                                                                                                                                                                                                                                                        mod.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Sample #1 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          mod.
                                                                                                                                                                                                                                                                                                       Acquired: 23-FEB-01 13:01:16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Acquired: 23-FEB-01 13:01:16
                                                                                                                                                                         7.279e+04 y
4.072e+04 y
3.106e+04 y
5.857e+04 y
5.103e+04 y
                                                                                                                                                                                                                                                                                                                                                                                                                                   1.711e+04 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                >>>>
                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.112e+04 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.510e+04 y
                                                         Sample
                                                                                                                                                                                                                                                                                                                                                                       Reap
                                                                                                                                                                                                                                                                                                                                                                                                                          5.601e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2.107e+04
2.953e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           3.418e+04
                                                                                                                                                                                                                                                                                                                                                                                                 8.277e+04
                                                                                                                                                                                                                                                                                                                                                                                                            1.291e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2.776e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.151e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1.782e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         mod. m2 Resp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   6.088e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.132e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.118e+05
  14:26
                                                                                                                                                                                                                                                                  Totals class: PeCDD EMPC
                                              EMPC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Totals class: HxCDD EMPC
                                                                                                                                                                                                                                                                                                                                                                      ml Resp mod. m2
                                            Totals class: TCDD E
File Name: 01022391
                                                                                                         Total Conc.: 17.275
 25-FEB-2001
                                                                                                                                                                                                                                                                                                                                Total Conc.: 48.519
                                                                                                                                                                                                                                                                              File Name: 010223P1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Total Conc.: 68.237
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              File Name: 010223P1
                                                                                                                                                                                                                                                                                                                                                                                                                      31:41 9.365e+04 y 31:52 2.066e+04 y 31:59 5.095e+04 y 32:14 5.054e+04 y
                                                                                                                                                                           > >
                                                                                                                                                                                                   \rightarrow
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     = > > > >
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 35:19 7.959e+04 n
35:58 1.502e+05 y
36:16 1.388e+05 y
36:23 2.866e+04 y
                                                                                                                                                                                                  24:46 2.128e+04
25:50 4.864e+04
                                                                                                                                                                       23:58 8.749e+04
                                                                                                                                                                                   24:20 A.290e+04
                                                                                                                                                                                                                         27:25 $3.946e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     33:07 3.585e+04
                                                                                                                                                                                                                                                                                                                                                                                              30:36 1.324e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               33:34 / 2.919e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Resp
                                                                                                                                                                                                                                                                                                                                                                                                            2.218e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        32:37 /4.816e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 37:01 4.088e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          E
                                                                                                                                                                                               24:46
OPUSquan
                                                                                                                                                                                                                                                                                                                                                                                                            31:08
                                                                                                                                              RT
                                                                                                                                                                                                                                                                                                                                                                      RT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         R
```

```
Page 10 of 18
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Page 12 of 18
                                                                                                                                                                                                                                                                  27.3 1,2,3,4,6,7,8-HpCDD
                                                                    Page 8 of
                      7.58 1,2,3,6,7,8-HxCDD
4.30
                                                    4.64 1,2,3,7,8,9-HxCDD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          2,3,7,8-TCDF
                                                                                                                                                                                                                          Conc. Name
                                                                                                                                                                                                                                                                                                                                                                                                                                             Conc. Name
                                                                                                 Function: 4 Run #: 16
Sample text: P1388_275_001 M23-1 Air Train CU
                                                                                                                                                                                                                                                                                                                                 Sample text: P1388_275_001 M23-1 Air Train CU
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       11.3
                                                                                                                                                                                                                                                       28.3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   27.8
13.3
5.94
8.76
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              22.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              2.01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      7.99
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      41.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 11.2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              64.7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                13.3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             20.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           16.4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2.22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Sample text: P1388_275_001 M23-1 Air Train
                                                                                                                                                                                                                                                          > >
                                      8.25e+00
                                                    7.91e+00
                                                                                                                                                                                                                                                     3.19e+01
                                                                                                                                                                                                                                                                    3.05e+01
                       1.19e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.82e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4.65e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                6.19e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               .33e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4.43e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .82e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        6.01e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .35e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   6.48e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        .39e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .68e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .51e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     .18e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2.57e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   .40e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .81e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2.33e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 8.16e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                .77e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .07e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4.75e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .51e+01
                                                                                                                                               Processed: 23-FEB-01 14:56:00
                                                                                                                                                                                                                                                                                                                                                                  Processed: 23-FEB-01 14:56:00
                                                                                                                                                                                                                                                                                                                   Function: 1 Run #: 16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Function: 1 Run #: 16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.75 y 3.644e+05 3.644e+05
0.68 y 5.511e+04 5.511e+04
0.71 y 2.821e+05 2.821e+05
0.70 y 5.612e+05 5.612e+05
0.80 y 6.090e+05 6.090e+05
0.64 (1.4.994e+05 4.489e+05
0.69 y 7.093e+05 3.093e+05
0.74 y 7.045e+06 1.045e+06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   5 y 2.192e+05 2.192e+05 2 y 3.794e+05 3.794e+05 4 y 1.142e+06 1.142e+06 6 y 7.634e+05 7.634e+05
                                                                                                                                                                                                                                                      40:15 J.979e+05 n 1.927e+05 n 1.03 a 3.906e+05 3.906e+05 41:26 1.957e+05 n 1.804e+05 n 1.09 y 3.761e+05 3.761e+05
                     37:08 6.002e+04 y 4.510e+04 y 1.33 y 4.051e+05 1.051e+05 37:21 3.341e+04 y 3.075e+04 y 1.09 y 6.416e+04 6.416e+04 37:28 4.083e+04 n 3.114e+04 y 1.31 y 7.197e+04 7.197e+04
                                                                                                                                                                                                                         Resp Adj_Resp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      y 2.838e+05 2.838e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 y 3.653e+05 3.653e+05
A1.815e+05 1.628e+05
y2.402e+05 2.402e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.74 Y 3.059e+05 3.059e+05 0.77 Y 6.170e+05 6.170e+05 0.76 Y 2.774e+06 1.774e+06
                                                                                                                                                                                                                                                                                                                                                                                                                                             Adj_Resp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0.57(n)7.297e+04 6.088e+04
0.79 y-6.894e+04 6.894e+04
0.71 y 7.502e+04 7.502e+04
                                                                                                                                                                                                                                                                                                                                                                                              Unnamed Conc.: 358.236
                                                                                                                                                                             Unnamed Conc.: 28.312
                                                                                                                                                                                                                                                                                                                                                                                                                                              Resp
  Page
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.75
0.72
0.74
0.76
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.64
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.76
                                                                                                                                                                                                                                                                                                                                                                                                                                           Ş
                                                                                                                                                                                                                         ml Resp mod. m2 Resp mod. RA
                                                                                                                                                                                                                                                                                                                                                                                                                                             m2 Resp mod.
                                                                                                                 Sample #1 3
                                                                                                                                                                                                                                                                                                                                 Sample #: 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              m
                                                                                                                                               Acquired: 23-FEB-01 13:01:16
                                                                                                                                                                                                                                                                                                                                                                Acquired: 23-FEB-01 13:01:16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Totals class: 1st Fnc.PecDF EMPC File Name: 010223Pl Sample #: 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.653e+05 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.250e+05 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2.202e+05 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 6.572e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4.326e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.998e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.107e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            3.275e+04 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3.392e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.760e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.654e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.364e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.484e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.007e+06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2.080e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .041e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3.303e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.827e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      6.020e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       4.648e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .847e+04
25-FEB-2001 14:26
                                                                                                 Totals class: HpCDD EMPC File Name: 010223P1 Sar
                                                                                                                                                                                                                                                                                                                   Totals class: TCDF EMPC
                                                                                                                                                                                                                                                                                                                                                                                                                                             ml Resp mod.
                                                                                                                                                                             Total Conc.: 55.576
                                                                                                                                                                                                                                                                                                                                                                                              Total Conc.: 369.52
                                                                                                                                                                                                                                                                                                                                 File Name: 010223P1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    23:01 1.592e+05 n
23:32 4.850e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         21:46 / 1.185e+05 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  3.308e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               24:21 1.655e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              26:01 -2.236e+04 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        26:35 2.698e+05 y
26:42 1.953e+05 y
26:48 1.266e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   27:26 72.648e+04 y
27:43 3.046e+04 n
28:51 3.107e+04 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      22:212/9.414e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                24:40 1.038e+05
25:03 1.299e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  .081e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              25:11 2.686e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 .666e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             25:54 1.564e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              26:11 1.167e+05
26:23 2.310e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   27:11 4.434e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             25:25/7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 24:30 /7
OPUSquan
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    23:55
                                                                                                                                                                                                                         RT
                                                                                                                                                                                                                                                                                                                                                                                                                                             RT
```

```
Page 14 of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              48.9 1,2,3,4,7,8-HxCDF
54.6 1,2,3,6,7,8-HxCDF
10.7
                                                                                                                                                                                                                                                                                                                                                                                      1,2,3,7,8-PeCDF
                                                                                                                                                                                                                                                                                                                                                                                                                                          2,3,4,7,8-PeCDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Page 16
                                                                                     Conc. Name
                                                                                                                                                                                                                                                           Conc. Name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Conc. Name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Function: 3 Run #: 16
Sample text: P1388_275_001 M23-1 Air Train CU
                                                                                                                46.8
                                                                                                                                                                                                                                                                                                                                                                                     20.9
39.5
4.09
                                                                                                                                                                                                                                                                                                                                   8.56
                                                                                                                                                                                                                                                                                                                        4.66
                                                                                                                                                                                                                                                                                                                                                                                                                                         46.6
                                                                                                                                                                                                                                                                                                                                                  13.9
                                                                                                                                                                                                                                                                                                                                                               61.4
                                                                                                                                                                                                                                                                                                                                                                           14.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.75
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             128
                                                                                                                                                             Sample text: P1388_275_001 M23-1 Air Train
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         17.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     8.34
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    61.7
                                                                                                                >
                                                                                                                                                                                                                                                                                    ---
                                                                                                                                                                                                                                                                                                                        ....
                                                                                                                                                                                                                                                                                                                                                                           c
                                                                                                               2.00e+01
                                                                                                                                                                                                                                                                                    .00e+00
                                                                                                                                                                                                                                                                                                9.67e-01
                                                                                                                                                                                                                                                                                                           3.49e-01
                                                                                                                                                                                                                                                                                                                        1.23e-01
                                                                                                                                                                                                                                                                                                                                                             1.04e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.21e-01
                                                                                                                                                                                                                                                                                                                                    1.83e-01
                                                                                                                                                                                                                                                                                                                                                4.36e-01
                                                                                                                                                                                                                                                                                                                                                                          3.71e-01
                                                                                                                                                                                                                                                                                                                                                                                       2.89e+01
                                                                                                                                                                                                                                                                                                                                                                                                   6.52e-01
                                                                                                                                                                                                                                                                                                                                                                                                               1.18e-01
                                                                                                                                                                                                                                                                                                                                                                                                                            1.57e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                        5.69e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.03e-01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   9.80e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2.55e+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.58e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.19e+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2.20e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          3.36e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.10e+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2.22e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               9.07e+01
                    Processed: 23-FEB-01 14:56:00
                                                                                                                                                                                         Processed: 23-FEB-01 14:56:00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Processed: 23-FEB-01 14:56:00
                                                                                                                                                    Function: 2 Run #: 16
                                                                                     S/N
                                                                                                                                                                                                                                                           S/N
                                                                                                                                                                                                                                                                                                        1.50 y 2.288e+05 3.288e+05
1.59 y 1.051e+05 1.051e+05
1.50 y 4.933e+05 1.933e+05
1.46 y 3.129e+05 3.129e+05
1.49 y 1.387e+06 1.387e+06
                                                                                                           3.996e+05 n 1.64 y/.055e+06 1.055e+06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.26 y 3.146e+05 3.146e+05
1.30 y 4.543e+05 1.543e+05
1.28 y 1.141e+06 1.141e+06
1.18 y 8.988e+05 8.988e+05
1.25 y 4.099e+06 1.099e+06
                                                                                     Resp Adj_Resp
                                                                                                                                                                                                                                                         Adj_Resp
                                                                                                                                                                                                                   Unnamed Conc.: 341.683
                                                                                                                                                                                                                                                                                                1.290e+06
                                                                                                                                                                                                                                                                                                                                                                         1.50 y 3.178e+05 3.178e+05
                                                                                                                                                                                                                                                                                                                                                                                                            1.61 y/9.243e+04 9.243e+04
1.50 y/1.394e+06 1.394e+06
                                                                                                                                                                                                                                                                                                                                                                                     y/4.685e+05 4.685e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.28 ml.125e+05 1.038e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Adj_Resp
                                                                                                                                                                                                                                                                                                                                                                                                   8.914e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                        1.059e+06 1.059e+06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.44 y 8.458e+04 8.458e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  y 2.367e+06 2.367e+06
y 2.314e+05 2.214e+05
                                             Unnamed Conc.: 46.757
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Unnamed Conc.: 312.763
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1.981e+05 1.981e+05
                                                                                                                                                                                                                                                                                                                                                                                                 y 8.914e+05
                                                                                                                                                                                                                                                           Reap
                                                                                                                                                                                                                                                                                             y 1.290e+06
                                                                                                                                                                                                                                                                                y4.212e+06
   Page
                                                                                                                                                                                                                                                                                  1.51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.19
                                                                                   m! Resp mod. m2 Resp mod. RA
                                                                                                                                                                                                                                                          æ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.19
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          æ
                                                                                                                                                                                                                                                         ml Resp mod. m2 Resp mod.
                                                                                                                                                               Sample #: 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Sample #: 3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          mod.
                   Acquired: 23-FEB-01 13:01:16
                                                                                                                                                                                        Acquired: 23-FEB-01 13:01:16
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Acquired: 23-FEB-01 13:01:16
                                                                                                                                                                                                                                                                                                         1.316e+05 y
                                                                                                                                                                                                                                                                                                                                             1.270e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.082e+06 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1.393e+05 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   6.709e+04 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 5.010e+05 n
                                                                                                                                                                                                                                                                                                                     4.067e+04 y
                                                                                                                                                                                                                                                                                                                                  7.743e+04 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.012e+05 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            c c
                                                                                                                                                                                                                                                                                            5.026e+05
                                                                                                                                                                                                                                                                                                                                                          5.571e+05
                                                                                                                                                                                                                                                                                  4.825e+05
                                                                                                                                                                                                                                                                                                                                                                         1.274e+05
                                                                                                                                                                                                                                                                                                                                                                                     1.882e+05
                                                                                                                                                                                                                                                                                                                                                                                                   3.629e+05
                                                                                                                                                                                                                                                                                                                                                                                                                         5.586e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ml Resp mod. m2 Resp
                                                                                                                                                                                                                                                                                                                                                                                                              3.548e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                       4.151e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                   4.942e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 3.472e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   4.299e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4.120e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           4.891e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         8.865e+04
 25-FEB-2001 14:26
                                                                                                                                                  Totals class: PeCDF EMPC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Totals class: HxCDF EMPC
                                           Total Conc.: 46.757
                                                                                                                                                                                                                  Total Conc.: 409.15
                                                                                                                                                              File Name: 010223P1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Total Conc.: 517.26
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 File Name: 010223P1
                                                                                                            28:50 / 6.559e+05 n
                                                                                                                                                                                                                                                                                  7.295e+05 y
7.874e+05 y
                                                                                                                                                                                                                                                                                                       1,972e+05 y
                                                                                                                                                                                                                                                                                                                   .448e+04 y
                                                                                                                                                                                                                                                                                                                               30:58 1.158e+05 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ----
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     35:06...202e+05 n
35:17 1.753e+05 n
35:30 2.724e+04 n
35:56 6.400e+05 n
36:03 4.868e+05 n
36:11 6.100e+05 n
36:21 1.094e+05 n
                                                                                                                                                                                                                                                                                .295e+05
                                                                                                                                                                                                                                                                                                                                           31:07 -1.859e+05
                                                                                                                                                                                                                                                                                                                                                      31:13 8.298e+05
31:27 1.904e+05
                                                                                                                                                                                                                                                                                                                                                                                 31:39 2.803e+05
                                                                                                                                                                                                                                                                                                                                                                                                31:56 5.285e+05
32:30 5.696e+04
                                                                                                                                                                                                                                                                                                                                                                                                                         8.356e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                      6.440e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                  33:06 6.309e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 34:40 1.285e+05
                                                                                                                                                                                                                                                                                                                   30:44 6
                                                                                                                                                                                                                                                                                                                                                                                                                    32 139
                                                                                                                                                                                                                                                                                         30:31
                                                                                                                                                                                                                                                                                                                                                                                                                                  32:46
OPUSquan
                                                                                                                                                                                                                                                                                                       30:38
                                                                                                                                                                                                                                                        RI
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        RT
```

46%

4 11

| T                                                                                |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             | PCDF                                                                                                                                                                                                                                                                                                                                                                                             | <b>PCDF</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8-HXC<br>9-HXC                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,8-H                                                                                                                                                                                                                                                                                                                                                                                            | 1,2,3,4,7,8,9-HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ,6,7,<br>,7,8,                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,4,6,                                                                                                                                                                                                                                                                                                                                                                                            | ,4,7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,3,4                                                                            | 5                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           | Vame                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,3                                                                                                                                                                                                                                                                                                                                                                                            | 1,2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.7                                                                              | in ct                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           | nc. h                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  | 26.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8-                                                                               | r Tra                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           | ပ္ပ                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 4                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ***                                                                              | -1 Aİ                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             | >> >> >>                                                                                                                                                                                                                                                                                                                                                                                         | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| e+01<br>e+01<br>e+02<br>e+02                                                     | 1 M23.                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9+02<br>9+01<br>9+01                                                                                                                                                                                                                                                                                                                                                                             | 9+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.30<br>1.85<br>1.67                                                             | ft 16<br>75_00:                                                                                                                                                                                         | 15610                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                           | S/N                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.57                                                                                                                                                                                                                                                                                                                                                                                             | 2.95e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| e+05<br>e+05<br>e+06<br>e+06                                                     | Run 388_2                                                                                                                                                                                               | 01 14                                                                                                                                                                                                                                                                                                                                                                | .495                                                                                                                                                                                                                                                                                                                                                                                                                      | Resp                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8+06<br>8+05<br>8+05                                                                                                                                                                                                                                                                                                                                                                             | 9+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.376<br>2.061<br>1.652<br>2.274                                                 | t: P1:                                                                                                                                                                                                  | -FEB-                                                                                                                                                                                                                                                                                                                                                                | 109                                                                                                                                                                                                                                                                                                                                                                                                                       | Adj_I                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.911(                                                                                                                                                                                                                                                                                                                                                                                           | 3.743e+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                  | ction                                                                                                                                                                                                   | 1 23-                                                                                                                                                                                                                                                                                                                                                                | onc.                                                                                                                                                                                                                                                                                                                                                                                                                      | евр                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .376e<br>.061e<br>.652e<br>.274e                                                 | Fun                                                                                                                                                                                                     | essed                                                                                                                                                                                                                                                                                                                                                                | med C                                                                                                                                                                                                                                                                                                                                                                                                                     | æ                                                                                                                                                                                                                                                                                                                                                                                                                                           | .911e<br>.263e<br>.620e                                                                                                                                                                                                                                                                                                                                                                          | .743e+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                  | Ø                                                                                                                                                                                                       | Proc                                                                                                                                                                                                                                                                                                                                                                 | Unna                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                           | * * * *                                                                                                                                                                                                                                                                                                                                                                                          | ¥ 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.3                                                                              | m                                                                                                                                                                                                       | ب                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                           | d. R                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.06                                                                                                                                                                                                                                                                                                                                                                                             | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 05 n<br>05 n<br>05 n                                                             | le #1                                                                                                                                                                                                   | :01:1                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                           | om ďs                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 086e+<br>713e+<br>522e+<br>724e+                                                 | Samp                                                                                                                                                                                                    | 01 13                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                           | n2 Rei                                                                                                                                                                                                                                                                                                                                                                                                                                      | 348e+1                                                                                                                                                                                                                                                                                                                                                                                           | 1.832e+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                  | OF EN                                                                                                                                                                                                   | FEB-(                                                                                                                                                                                                                                                                                                                                                                | .68                                                                                                                                                                                                                                                                                                                                                                                                                       | nod. n                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1+05 r<br>1+05 r<br>1+05 r<br>1+05 r                                             | 1 HpC                                                                                                                                                                                                   | 1 23-                                                                                                                                                                                                                                                                                                                                                                | 1 369                                                                                                                                                                                                                                                                                                                                                                                                                     | esp m                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 e 0 e 2 e 2 e                                                                  | 88                                                                                                                                                                                                      | red                                                                                                                                                                                                                                                                                                                                                                  | й.                                                                                                                                                                                                                                                                                                                                                                                                                        | 7<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                      | 962e<br>577e<br>927e                                                                                                                                                                                                                                                                                                                                                                             | 1.911e+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| .19                                                                              | cle<br>me                                                                                                                                                                                               | Tn.                                                                                                                                                                                                                                                                                                                                                                  | ೪                                                                                                                                                                                                                                                                                                                                                                                                                         | =                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 36:29 / 1.290e+05<br>36:37 / 1.190e+05<br>36:51 / 9.000e+05<br>37:53 / 1.302e+05 | tals cla<br>le Name:                                                                                                                                                                                    | Acqui                                                                                                                                                                                                                                                                                                                                                                | otal Co                                                                                                                                                                                                                                                                                                                                                                                                                   | RT                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39:48 1.<br>40:15 4.                                                                                                                                                                                                                                                                                                                                                                             | 42:15~1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                  | n 1.086e+05 n 1.19 y 2.376e+05 2.376e+05 2.30e+01 n 8.713e+04 n 1.37 y 2.061e+05 2.061e+05 1.85e+01 n 7.522e+05 n 1.20 y 7.652e+06 1.652e+06 1.67e+02 n 9.724e+04 n 1.34 y 2.274e+05 2.274e+05 1.60e+01 | n 1.086e+05 n 1.19 y 2.376e+05 2.30e+01 y 12.8<br>n 8.713e+04 n 1.37 y 2.061e+05 2.061e+05 1.85e+01 y 11.1<br>n 7.522e+05 n 1.20 y 2.52e+06 1.652e+06 1.67e+02 y 87.3 2,3,4,6,7,8-HxCDF<br>n 9.724e+04 n 1.34 y 2.274e+05 2.274e+05 1.60e+01 y 13.7 1,2,3,7,8,9-HxCDF<br>code EMPC  Function: 4 Run #: 16  Sample #: 3 Sample text: P1388_275_001 M23-1 Air Train CU | n 1.086e+05 n 1.19 y 2.376e+05 2.30e+01 y 12.8<br>n 8.713e+04 n 1.37 y 2.061e+05 2.061e+05 1.85e+01 y 11.1<br>n 7.522e+05 n 1.20 y 2.652e+06 1.652e+06 1.67e+02 y 87.3 2,3,4,6,7,8-HxCDF<br>n 9.724e+04 n 1.34 y 2.274e+05 2.274e+05 1.60e+01 y 13.7 1,2,3,7,8,9-HxCDF<br>CDF EMPC  Function: 4 Run #: 16  3921 Sample #: 3 Sample text: P1388_275_001 M23-1 Air Train CU  FEEB-01 13:01:16 Processed: 23-FEB-01 14:56:00 | n 1.086e+05 n 1.19 y 2.376e+05 2.30e+01 y 12.8<br>n 8.713e+04 n 1.37 y 2.061e+05 2.061e+05 1.85e+01 y 11.1<br>n 7.522e+05 n 1.20 y 7.652e+06 1.652e+06 1.67e+02 y 87.3 2,3,4,6,7,8-HxCDF<br>n 9.724e+04 n 1.34 y 2.274e+05 2.274e+05 1.60e+01 y 13.7 1,2,3,7,8,9-HxCDF<br>CDF EMPC<br>CDF EMPC<br>Function: 4 Run #: 16<br>:3P1 Sample #: 3 Sample text: P1388_275_001 M23-1 Air Train CU<br>:FEB-01 13:01:16 Processed: 23-FEB-01 14:56:00 | n 1.086e+05 n 1.19 y 2.376e+05 2.30e+01 y 12.8<br>n 8.713e+04 n 1.37 y 2.061e+05 2.061e+05 1.85e+01 y 11.1<br>n 7.522e+05 n 1.20 y 2.652e+06 1.652e+06 1.67e+02 y 87.3 2,3,4,6,7,8-HxCDF<br>n 9.724e+04 n 1.34 y 2.274e+05 2.274e+05 1.60e+01 y 13.7 1,2,3,7,8,9-HxCDF<br>cDF EMPC<br>Function: 4 Run #: 16<br>:9.68 Unnamed Conc.: 109.495<br>mod. m2 Resp mod. RA Resp Adj_Resp S/N Conc. Name | n 1.086e+05 n 1.19 y 2.376e+05 2.30e+01 y 12.8<br>n 8.713e+04 n 1.37 y 2.061e+05 2.061e+05 1.85e+01 y 11.1<br>n 7.522e+05 n 1.20 y 2.652e+06 1.652e+06 1.67e+02 y 87.3 2,3,4,6,7,8-HxCDF<br>n 9.724e+04 n 1.34 y 2.274e+05 2.274e+05 1.60e+01 y 13.7 1,2,3,7,8,9-HxCDF<br>cDF EMPC<br>Sample #: 3 Sample text: P1388_275_001 M23-1 Air Train CU<br>1-FEB-01 13:01:16 Processed: 23-FEB-01 14:56:00<br>9.68 Unnamed Conc.: 109.495<br>mod. m2 Resp mod. RA Resp Adj_Resp S/N Conc. Name<br>n 1.948e+06 n 1.01 y 3.911e+06 3.57e+02 y 60.1<br>n 4.686e+05 n 0.98 y 9.263e+05 7.27e+01 y 49.4<br>n 3.693e+05 n 1.06 y 2.620e+05 7.24e+01 y 49.4 |



<u>دُ</u> غ

. .







£ \_1







|                                                                                                                                                                                                                          | 28;50 A6.56E5 1.4E5 | 1.2ES<br>1.0ES<br>8.7E4                   | 7.2E4<br>E5.8E4 | 4.3E4<br>2.9E4<br>1.4E4 | 26:00 27:00 28:00 29:00 29:00                                                | 28:49 A4.00E5 B.4E4 E7.5E4 E6.7E4 E5.9E4 | 2.564<br>2.254<br>2.554<br>2.554<br>2.554<br>8.483 | 26:00 27:00 28:00 28:00 29:00                       | 25:09 25:29 26:11 26:37 27:20 27:41 28:23 29:04 1.4E7 1.3E7 1.1E7 1.1E7 1.1E7 1.1E7 1.1E7 1.1E7 1.1E7 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 1.1E6 | 26:00 27:00 28:00 29:00 Time  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------|-----------------|-------------------------|------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| File: 010223Pl Acq: 23-FEB-2001 13:01:16 GC EI+ Voltage SIR Autospec-UltimaE Sample# 3 Text: P1388 275 001 M23-1 Air Train CU Vial# 65 File Text: AAP DB5 339.8597 S:3 BSUB(10000,15,-3.0) PRD(5,5,3.0,10* 750.0,000 FF. |                     | 70 <u>-</u><br>60 <u>-</u><br>50 <u>-</u> | 30              | 10<br>0                 | 341.8568 S:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F.F) Expt: OCDD | 1008<br>901<br>801<br>701<br>601         | 20                                                 | 0344 4 5:3 Expt: OCDD 22:00 23:00 24:00 25:00 25:00 | 100% 20,06 70 80 80 80 80 80 80 80 80 80 80 80 80 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21:00 22:00 23:00 24:00 25:00 |





: .il

.

.

. .

. .

\* •

e 1

.

2.3

•

|                                                                                 | 3.7E5<br>3.0E5<br>2.2E5<br>1.5E5                  | 39:00 Time                                                        | 1.9ES<br>1.3ES<br>6.4E4                                            | 39:00 Time                                                              | 5.1E6<br>4.1E6<br>3.0E6<br>2.0E6        | 39:00 Time                                                    | 9.786<br>7.786<br>5.886<br>3.986 | 39:00 Time                                      | 38:47<br>A1:10E3<br>5.0E2                                   |
|---------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------|----------------------------------|-------------------------------------------------|-------------------------------------------------------------|
|                                                                                 | 37:54<br>A1.30E5                                  | 38:00                                                             | 37:52<br>A9.72E4                                                   | 38:00                                                                   | 37:50<br>A1.60E7                        | 38:00                                                         | 37:50<br>A3.08E7                 | 38100                                           | A2.24F3 A1.59E3<br>A2.24F3 A1.59E3<br>A A2.24F3 AMA A1.22E3 |
| <pre>* Autospec-UltimaE File Text: AAP DB5 00%,F,F) Expt: OCDD Noise: 355</pre> | 36:50<br>A9.00E5                                  | 37:00<br>Expt: OCDD Noise: 259                                    | 36:51<br>A7.52E5                                                   | 37:00<br>Expt: OCDD Noise: 2124                                         |                                         | 37100<br>Expt: OCDD Noise: 1526                               |                                  | 37:00<br>Expt: OCDD Noise: 104<br>A7:68E3       | 15.6                                                        |
| GC EI+ Voltage SIR<br>Frain CU Vial# 65<br>5,5,3,0.10%,750.0,0.                 | 35:56 36:11<br>A6.40E5 A6.10E5<br>A A 109E5 36:29 | 36:00<br>5,5,3,0.10%,750.0,0.00%,E,F)                             | 35:56 36:11<br>A5.01E5 A4.89E5<br>AB 86E4 36:29<br>AB 86E4 A1.09E5 | 36:00<br>5,5,3,0.10%,750.0,0.00%,F,F)<br>36:02 36:10<br>81.55E7 81.79E7 |                                         | 35:00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) |                                  | 36:00<br>-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) | 35:49<br>Many Many MAMANNAM                                 |
| cq: 23-FEB-2001 13:<br>P1388 275 001 M23-1<br>BSUB(10000,15,-3.0)               | 35:05 35:17 35:31<br>A.20E5 Al.75E5 A8.72E4       | 35:00<br>3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,7<br>4:52<br>.98E6 | A1.01E5 35:18 35:31<br>A1.01E5 A1.39E5 A6.71E4                     | 35:00<br>3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,7                        |                                         | 35:00<br>3 BSUB(10000,15,-3.0) PKD(5                          |                                  | 35:00<br>BSUB(10000,15,                         | 84:57<br>B55.54<br>Mmn/mn/mn/m/m/m/m/m/m/m/m/m/m/m/m/m/m/m/ |
| : 010223<br>1e# 3 T<br>8207 S:3                                                 | 100% A1.40<br>60 34:40<br>40 A5.16E5              | 375.8178 S:3 F:3                                                  | 805<br>605<br>405<br>405<br>A4.30E5<br>205<br>0                    |                                                                         | 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 385.8610 St3 Ft3                                              | 8 8 4 8<br>0 0 0 0 0             | 445.7555 S:3 F:3                                | 40<br>20<br>20<br>0                                         |





| Sample ID:           | M23-2           |                           |          |                                   |                      | MoM                                          | Mothod Mos   |
|----------------------|-----------------|---------------------------|----------|-----------------------------------|----------------------|----------------------------------------------|--------------|
| Client Data          |                 | Sample Data               |          | I shoretony Date                  |                      | DIAI.                                        | מווסמ ואובט  |
| Name:<br>Project ID: | PES<br>F181.001 | Matrix:<br>Weight/Volume: | Air<br>+ | Project No.:                      | P1388                | Date Received:                               | 6-Feb-01     |
| Date Collected:      | 31-Jan-01       |                           | -        | QC Batch No.:                     | P1388_275_002<br>275 | Date Extracted:<br>Date Analyzed:            | 8-Feb-01     |
| Analyte              | Conc.           | ٥٢                        | EMPC     | Qualifier                         |                      | Recoveries                                   |              |
|                      | pg              | bd                        | bg       |                                   | SI                   | SS                                           | AS           |
| 2,3,7,8-TCDD         | 0.945           |                           |          | AB                                | 86                   | 102                                          | 96.2         |
| 1,2,3,7,8-PeCDD      | 2.44            | :                         |          | <                                 | 108                  | 105                                          | 2.00         |
| 1,2,3,4,7,8-HXCDD    | EMPC            |                           | 1.96     | <b>A</b>                          | 97.4                 | 102                                          | 200          |
| 1,2,3,7,8,9-HxCDD    | 2.76<br>2.76    |                           | 5.04     | ∢ •                               | 97.4                 | 102                                          | 86.2         |
| 1,2,3,4,6,7,8-HpCDD  | 21.5            |                           |          | ∢ ₹                               | 97.4                 | 102                                          | 86.2         |
| осрр                 | 57.1            |                           |          | A A B                             | 98.1                 | 104                                          | 86.2         |
| 2.3.7 R.TCDE         | 1               |                           |          | )<br>)<br>)<br>()<br>)<br>()<br>) | 2                    | 5                                            | 86.2         |
| 1,2,3,7,8-PeCDF      | 15.0            |                           |          | Ą                                 | 94                   | 102                                          | 86.2         |
| 2,3,4,7,8-PeCDF      | 36.1            |                           |          | <b>→</b>                          | 95.4                 | 105                                          | 86.2         |
| 1,2,3,4,7,8-HxCDF    |                 |                           |          | A                                 | 95.4                 | 105                                          | 86.2         |
| 1,2,3,6,7,8-HxCDF    | 45.7            |                           |          | AB                                | 85.9                 | 104                                          | 86.2         |
| 2,3,4,6,7,8-HxCDF    | 73.7            |                           |          |                                   | 85.9                 | 104                                          | 86.2         |
| 1,2,3,7,8,9-HxCDF    |                 |                           |          |                                   | 82.9                 | 104                                          | 86.2         |
| 1,2,3,4,6,7,8-HpCDF  | 208             |                           |          | ζ α                               | 85.9                 | 104                                          | 86.2         |
| 1,2,3,4,7,8,9-HpCDF  |                 |                           |          | A                                 | 85.4                 | 40.0                                         | 86.2         |
| Totals a Tros        | 118             |                           |          |                                   | 88.9                 | 101                                          | 86.2<br>86.2 |
| lotals & leds        |                 |                           |          |                                   |                      |                                              | 1            |
| TCDDs                | . <b>Ç</b>      |                           |          |                                   |                      |                                              |              |
| PecDDs               | 31.3            |                           | 15.6     |                                   | WELV A               | ANALYTICAL PER                               | PERSPECTIVES |
| HxCDDs               | 42.9            |                           | 49.9     |                                   | .40                  |                                              |              |
| HpCDDs               | 44.4            |                           |          |                                   | 72                   | zz 14 Exchange Urive<br>Wilmington           |              |
|                      |                 |                           |          |                                   | S.                   | North Carolina 28405                         |              |
| Pecors               | 265             |                           |          |                                   |                      | USA                                          |              |
| HxCDFs               | 441             |                           | ဂဇ္ဇာ    | 3.1<br>3.1<br>3.1                 | 1                    |                                              |              |
| HpCDFs               | 328             |                           |          |                                   | <u>- 1</u>           | Tel: 910 794-1613                            |              |
| Total PCDD/Fs        | 1690            |                           | 1710     |                                   | e-mai                | Fax: 910 794-3919<br>e-mail: vtondeur@cs.com | E            |
| TEO (ND=0)           | 61.9            |                           | 42.6     | TEF                               | web:                 | web: www.ultratrace.com                      |              |
|                      | P               |                           | 42.6     | TEF STATE                         |                      |                                              |              |

Reviewer CL Date ZS RbØ1

3 . £

|                       | lin.                                      |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Page 5 of                                 | er: 7                                                                                                                                  | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 108 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       | 010214P1-<br>010214P1-                    | Reviewer: C                                                                                                                            | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EMPC<br>15.6<br>33.9<br>49.9<br>44.4<br>265<br>37.3<br>360<br>441<br>380<br>98.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108 — 97.4 — 98.1 — 98.1 — 98.1 — 98.3 — 95.4 — 95.4 — 98.9 — 98.9 — 98.9 — 98.9 — 98.9 — 98.9 — 98.2 — 104.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | ConCal;<br>EndCal;                        | 0.408<br>0.925<br>1.92<br>2.14<br>1.91<br>2.46                                                                                         | 0.22.11.1.1.1.0.0.0.0.0.0.0.0.0.0.0.0.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       |                                           | noise Fac<br>461 2.5<br>589 2.5<br>1208 2.5<br>1208 2.5<br>1208 2.5<br>1157 2.5                                                        | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| \                     | 14:32:45<br>  wt/vol: 1.000               | if. CDE                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| \                     | 5 Acq: 14-FEB-01<br>ICal: MM1_M23_0*      | Conc Qualif<br>0.903<br>2.44<br>1.96<br>5.04<br>2.76<br>21.5<br>57.1                                                                   | 8.77<br>15.2<br>36.1<br>46.0<br>45.7<br>73.7<br>11.1<br>208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4330<br>39900<br>39500<br>39650<br>39650<br>39650<br>39700<br>40000<br>40000<br>41150<br>39180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | S: 5<br>ICal                              | RT<br>27:44<br>33:11<br>37:06<br>37:13<br>37:32<br>41:31                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 3 3 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33:11<br>44:12<br>44:12<br>26:50<br>26:50<br>31:49<br>33:12<br>47:03<br>37:49<br>37:49<br>37:49<br>37:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | 010214P1<br>ID: db-5                      | RRF<br>1.26<br>1.01<br>1.14<br>1.02<br>1.14<br>1.13                                                                                    | 1.05<br>1.05<br>1.05<br>1.13<br>1.16<br>1.02<br>1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.26<br>1.01<br>1.10<br>1.10<br>1.10<br>1.05<br>1.05<br>1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.93<br>0.93<br>0.73<br>1.06<br>0.96<br>0.90<br>0.91<br>0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Page 1                | Filename: 01<br>GC Column ID              | 524-10-11-15-15-15-15-15-15-15-15-15-15-15-15-                                                                                         | 11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12.00<br>11.12. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75.11<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75.01<br>75 |
|                       | FI                                        | Resp<br>1.91e+04<br>3.73e+04<br>2.77e+04<br>6.38e+04<br>3.90e+05<br>5.34e+05                                                           | 1.86e+05<br>2.93e+05<br>2.93e+05<br>6.78e+05<br>8.49e+05<br>1.29e+06<br>1.69e+05<br>3.37e+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.55e+05<br>4.79e+05<br>5.87e+05<br>6.07e+05<br>5.62e+06<br>7.27e+05<br>6.17e+06<br>5.12e+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.05e+07<br>4.95e+07<br>3.65e+07<br>8.12e+07<br>7.45e+07<br>6.00e+07<br>3.93e+07<br>8.14e+07<br>5.45e+07<br>7.61e+07<br>7.61e+07<br>7.51e+07<br>7.51e+07<br>7.51e+07<br>7.51e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| uan 24-FEB-2001 13:22 | Client ID: M23-2<br>Lab ID: P1388_275_002 | Name 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0,2,3,4,6,7,8-HpCDD 0,00DD | 2,3,7,8-TCDF<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-HXCDF<br>1,2,3,4,6,7,8-HXCDF<br>1,2,3,4,6,7,8-HXCDF<br>1,2,3,4,6,7,8-HXCDF<br>1,2,3,4,6,7,8-HXCDF<br>1,2,3,4,6,7,8-HXCDF<br>1,2,3,4,6,7,8-PECDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13C-1,2,3,7,8-PeCDD<br>13C-1,2,3,6,7,8-HxCDD<br>13C-1,2,3,6,7,8-HxCDD<br>13C-1,2,3,7,8-PeCDF<br>13C-1,2,3,7,8-PeCDF<br>13C-1,2,3,6,7,8-HxCDF<br>13C-1,2,3,4,6,7,8-HxCDF<br>13C-1,2,3,4,6,7,8-HxCDF<br>13C-1,2,3,4,6,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,7,8,9-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD<br>13C-1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OPUSquan              | CI                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

```
of
                                                                                                                                                                                                                                                                                           Page 4 of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Jo
                        7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         1,2,3,7,8-PeCDD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               9
                       Page
                                                                                                                                                                                                                                                                0.903 2,3,7,8-TCDD
                                                                                                                                                   Conc. Name
                                                                                                                                                                                                                                                                                                                                                                                                                       Name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Conc. Name
                                                                                                                                                                           2.68
                                                                                                                                                                                                                          1.68
1.15
2.22
                                                                                                                                                                                                  1.59
                                                                                                                                                                                                              2.91
                                                                                                                                                                                                                                                                                                                                                                                                                      Conc.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      6.51
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                3.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.44
                                            Function: 1 Run #: 12
Sample text: Pl388_275_002 M23-2 Air Train
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3.55
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.34
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 6.87
                                                                                                                                                                                                                                                                                                                          Sample text: P1388_275_002 M23-2 Air Train
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Sample text: P1388_275_002 M23-2 Air Train
                                                                                                                                                                                                  8.93e+00
                                                                                                                                                                                                                1.25e+01
                                                                                                                                                                                                                            1.09e+01
                                                                                                                                                                                                                                        8.11e+00
                                                                                                                                                                                                                                                                             7.31e+00
                                                                                                                                                                         1.51e+01
                                                                                                                                                                                       1.21e+01
                                                                                                                                                                                                                                                     1.21e+01
                                                                                                                                                                                                                                                                 1.80e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                              1.65e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                          5.25e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  8.29e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  9.42e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              9.42e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        6.28e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5.25e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                4.37e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.58e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.19e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                7.63e+00
                                                                                   Processed: 20-FEB-01 12:06:58
                                                                                                                                                                                                                                                                                                                                                       Processed: 20-FEB-01 12:06:58
                                                                                                                                                                                                                                                                                                                  Function: 2 Run #: 12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Processed: 20-FEB-01 12:06:58
                                                                                                                                                  S/N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Function: 3 Run #: 12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      N/S
                                                                                                                                                                                  0.90 (m) 3.401e+04 3.170e+04 0.72 y-5.363e+04 6.164e+04 0.87 y-5.164e+04 6.164e+04 0.91 (m) 2.640e+04 2.447e+04 0.82 y-4.702e+04 4.702e+04 0.25 (m) 4.11e+04 1.915e+04 0.73 y-2.045e+04 2.045e+04
                                                                                                                                                 Adj_Resp
                                                                                                                                                                           5.681e+04
                                                                                                                                                                                                                                                                                                                                                                                                                    Adj_Resp
                                                                                                                                                                                                                                                                                                                                                                                                                                               1.286e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Adj_Resp
                                                                                                                                                                                                                                                                                                                                                                                                                                                          2.672e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       9.979e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   3.007e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5.667e+04
                                                                                                             Unnamed Conc.: 14.692
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 4.588e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          5.444e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3.733e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.053e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.898e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                9.374e+04
                                                                                                                                                                                                                                                                                                                                                                                 Unnamed Conc.: 31.445
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Unnamed Conc.: 40.154
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                8 ¥3.007e+04 3
9 ¥4.588e+04 4
5 ¥5.667e+04 5
5 ¥5.444e+04 5
4 ¥4.733e+04 3
1 10.2.255e+04 2
                                                                                                                                                 Resp
                                                                                                                                                                                                                                                                                                                                                                                                                     Resp
                                                                                                                                                                       v 5.681e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                             1.71 yA.286e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.43 y 2.672e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       y 9.979e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Resp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.24 yos.374e+04
                                                                                                                                                                         0.72
                                                                                                                                                 S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.65
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   . 68
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.59
                                                                                                                                                                                                                                                                                                                                                                                                                     Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      ml Resp mod. m2 Resp mod. RA
                                                                                                                                                ml Resp mod. m2 Resp mod.
                                                                                                                                                                                                                                                                                                                               Sample #: 5
                                                                                                                                                                                                                                                                                                                                                                                                                     m2 Resp mod.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 'n
                                                                                 Acquired: 14-FEB-01 14:32:45
                                                                                                                                                                                                                                                                                                                                                       Acquired: 14-FEB-01 14:32:45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Acquired: 14-FEB-01 14:32:45
                                                                                                                                                                                                                                                                                                                                                                                                                                             4.749e+04 y
1.101e+04 y
3.768e+04 y
1.122e+04 y
1.773e+04 y
2.142e+04 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Sample #:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    >>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                >
                                                         Sample
                                                                                                                                                                                                                                                   2.588e+04
3.278e+04
                                                                                                                                                                        3.309e+04
                                                                                                                                                                                                1.952e+04
                                                                                                                                                                                                              3.29le+04
                                                                                                                                                                                                                          1.998e+04
                                                                                                                                                                                     1.791e+04
                                                                                                                                                                                                                                       1.383e+04
                                                                                                                                                                                                                                                                            1.180e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                            4.749e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.527e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.007e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               7.442e+03
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              4.180e+04
24-FEB-2001 13:22
                                                                                                                                                                                                                                                                                                              Totals class: PecDD EMPC
                                           Totals class: TCDD EMPC
File Name: 010214P1 S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Totals class: HxCDD EMPC
                                                                                                           Total Conc.: 15.595
                                                                                                                                                                                                                                                                                                                                                                                                                     mod.
                                                                                                                                                                                                                                                                                                                                                                               Total Conc.: 33.882
                                                                                                                                                                                                                                                                                                                           File Name: 010214P1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             File Name: 010214P1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Total Conc.: 49.906
                                                                                                                                                                                                           25:52 2.873e+04 y 26:04 / 1.571e+04 y
                                                                                                                                                                                                                                                                          28:04 / 8.657e+03 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     > >
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               >
                                                                                                                                                                                            24:48 7.411e+04
                                                                                                                                                                                                                                  26:15 1.258e+04
27:26 2.114e+04
                                                                                                                                                                       2.372e+04
                                                                                                                                                                                                                                                           27:44 8.330e+03
                                                                                                                                                                                  24:22 1.610e+04
                                                                                                                                                                                                                                                                                                                                                                                                                   ml Resp
                                                                                                                                                                                                                                                                                                                                                                                                                                           30:39 8.110e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                       31:12_1.570e+04
31:45_6.211e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              31:57 1.885e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          32:03 2.815e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       32:19 3.524e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   32:41 3.312e+04
33:11 2.206e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.248e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             33:39 1.451e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              5.194e+04
OPUSquan
                                                                                                                                                                       24:00/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                33:17
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              35:23
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     RI
```

8

'n

٤.

```
Page 10 of 18
                                                                                                                                                                                                       22.9
21.5 1,2,3,4,6,7,8-HpCDD
                                                                                   Page 8 of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          of
                                                    1,2,3,6,7,8-HxCDD
                                                                       2.76 1,2,3,7,8,9-HxCDD
                                           1.96 1,2,3,4,7,8-HxCDD
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Page 12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2,3,7,8-TCDF
                                                                                                                                                                                    Conc. Name
                                                   5.04
                                                                                                                                                                                                                                                                                                                                                                                                                     6.52
                                                                                                                                                                                                                                                                                                                                                                                                                                7.66
                                                                                                                                                                                                                                                                                                                                                                                                                                                              27.3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           7.75
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 8.77
                               2.37
                                                                                                                                                                                                                                                                                                                                                7.21
5.71
8.66
                                                                                                                                                                                                                                                                                                                                                                             30.0
                                                                                                                                                                                                                                                                                                                                                                                      20.3
                                                                                                                                                                                                                                                                                                                                                                                                  9.75
                                                                                                                                                                                                                                                                                                                                                                                                            5.45
                                                                                                                                                                                                                                                                                                                                                                                                                                                     13.5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.99
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               9.91
                                                                                                      Function: 4 Run #: 12
Sample text: P1388_275_002 M23-2 Air Train
                                                                                                                                                                                                                                                      Sample text: P1388_275_002 M23-2 Air Train
                                                                                                                                                                                                                                                                                                                                                                                                                       ***********
                ****
                                                                                                                                                                                                        > >
                                                                                                                                                                                                                                                                                                                                                   5.53e+00
3.71e+00
                                                                                                                                                                                                       2.93e+01
2.29e+01
                                           3.95e+00
                                                                        3.63e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      4.21e+00
                                 2.89e+00
                                                                                                                                                                                                                                                                                                                                                 1.38e+01
                                                                                                                                                                                                                                                                                                                                                           1.12e+01
                                                                                                                                                                                                                                                                                                                                                                    1.58e+01
                                                                                                                                                                                                                                                                                                                                                                              3.29e+01
                                                                                                                                                                                                                                                                                                                                                                                        2.30e+01
                                                                                                                                                                                                                                                                                                                                                                                                  1.89e+01
                                                                                                                                                                                                                                                                                                                                                                                                            1.37e+01
                                                                                                                                                                                                                                                                                                                                                                                                                       .41e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                  1.50e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                            3.52e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.22e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                               5.50e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .06e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4.70e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2.11e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3.39e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               4.02e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         .10e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  2.34e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            6.59e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                5.28e+00
                        1.29e+01
                                                                                                                                  Processed: 20-FEB-01 12:06:58
                                                                                                                                                                                                                                                                            Processed: 20-FEB-01 12:06:58
                                                                                                                                                                                                                                              Function: 1 Run #: 12
                                                                                                                                                                                    S/N
                              1.23 x 3.241e+04 3.241e+04 1.04 x 3.008e+04 2.766e+04 1.50 x 7.118e+04 6.381e+04 1.21 y 3.802e+04 3.904e+04 1.07 y 3.904e+04 3.904e+04
                                                                                                                                                                                   Resp Adj_Resp
                                                                                                                                                                                                     1.04 y 3.124e+05 3.124e+05 1.03 y 2.944e+05
                                                                                                                                                                                                                                                                                                                              Adj_Resp
                                                                                                                                                                                                                                                                                                                                                                                                                                          3.28le+05
                       1.995e+05
                                                                                                                                                                                                                                                                                                                                                y/1.532e+05 1.532e+05
                                                                                                                                                                                                                                                                                                                                                          A.212e+05 1.212e+05
                                                                                                                                                                                                                                                                                                                                                                    1.840e+05
                                                                                                                                                                                                                                                                                                                                                                              6.377e+05
                                                                                                                                                                                                                                                                                                                                                                                        4.315e+05
                                                                                                                                                                                                                                                                                                                                                                                                  2.071e+05
                                                                                                                                                                                                                                                                                                                                                                                                            1.158e+05
                                                                                                                                                                                                                                                                                                                                                                                                                       1.386e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                 1.627e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                     2.878e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                               5.794e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.111e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4.220e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.645e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    3.096e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.505e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2.638e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.863e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             6.624e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                4.165e+04
                                                                                                                                                                                                                                                                                                Unnamed Conc.: 255.748
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      3.954e+04
                                                                                                                                                      Unnamed Conc.: 22.863
                                                                                                                                                                                                                                                                                                                                                                                                  2.071e+05 2
                                                                                                                                                                                                                                                                                                                                                                                                                                           y 3.281e+05
y/2.878e+05
                                                                                                                                                                                                                                                                                                                                                                                       y/4.315e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                y/1.627e+05
                                                                                                                                                                                                                                                                                                                                                                                                                     y 1.386e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        2.638e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              y/4.165e+04
             .844e+05
               1.35 y 4.844e+05
1.41 y 1.995e+05
                                                                                                                                                                                                                                                                                                                                                                     1.840e+05
                                                                                                                                                                                                                                                                                                                                                                              6.377e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                               5.794e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2.111e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  4.220e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.645e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      y >3.096e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               3.505e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.863e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             6.624e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      y 3.954e+04
                                                                                                                                                                                                                                                                                                                                                                                                 89.0
                                                                                                                                                                                                                                                                                                                                                                                                            0.78
                                                                                                                                                                                                                                                                                                                                                                                                                                99.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.72
                                                                                                                                                                                                                                                                                                                                                                    0.72
                                                                                                                                                                                                                                                                                                                                                                                                                       0.71
                                                                                                                                                                                                                                                                                                                                                                                                                                         0.73
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.71
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.71
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.68
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.79
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.69
                                                                                                                                                                                   ml Resp mod. m2 Resp mod. RA
                                                                                                                                                                                                                                                                                                                              mod. RA
                                                                                                                 'n
                                                                                                                                                                                                                                                         Sample #: 5
                                                                                                                                  Acquired: 14-FEB-01 14:32:45
                                                                                                                                                                                                                                                                             Acquired: 14-FEB-01 14:32:45
                                                                                                                 Sample #:
                                                                                                                                                                                                        E 6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             > =
                                                      > > >
                                                                                                                                                                                                                                                                                                                                                   c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \rightarrow
                                                   2.849e+04
                                                                         1.888e+04
                                                                                                                                                                                                        1.529e+05
                                 1.453e+04
                                                               1.718e+04
                                                                                                                                                                                                                1.452e+05
                                                                                                                                                                                                                                                                                                                               ml Resp mod. m2 Resp
                                                                                                                                                                                                                                                                                                                                                                               3.706e+05
                                                                                                                                                                                                                                                                                                                                                                                         2.571e+05
                                                                                                                                                                                                                                                                                                                                                                                                    1.229e+05
                                                                                                                                                                                                                                                                                                                                                                                                                        8.109e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                   9.819e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                            1.893e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.676e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                3.325e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             9.639e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1.834e+05
                       8.288e+04
                                          1.477e+04
                                                                                                                                                                                                                                                                                                                                                   9.160e+04
                                                                                                                                                                                                                                                                                                                                                            7.249e+04
                                                                                                                                                                                                                                                                                                                                                                     1.073e+05
                                                                                                                                                                                                                                                                                                                                                                                                             6.493e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          1.221e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.516e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2.08le+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1.539e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.007e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3.718e+05
               7.841e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2.214e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2.467e+04
                                                                                                       Totals class: HpCDD EMPC
                                                                                                                                                                                                                                               Totals class: TCDF EMPC
                                                                                                                                                       Total Conc.: 44.412
                                                                                                                                                                                                                                                                                                  Total Conc.: 264.52
                               36:28 1.700
37:06 1.531e+04 y 37:13 4.270e+04 y 083e+04 y
                                                                                                                File Name: 010214P1
                                                                                                                                                                                                                                                         File Name: 010214P1
24-FEB-2001
                                                                                                                                                                                              40:19 1.595e+05 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        26:51 8.F.
                                                                       37:32-2.016e+04 y
                                                                                                                                                                                                                                                                                                                                                   c
               1.060e+05
                      36:19 1.166e+05
                                                                                                                                                                                                                                                                                                                                                                   23:04~ 7.674e+04
                                                                                                                                                                                                                                                                                                                                                                            23:33 -2.671e+05
                                                                                                                                                                                                                                                                                                                                                                                       23:58 1.743e+05
                                                                                                                                                                                                                                                                                                                                                                                                 24:24 8.418e+04
                                                                                                                                                                                                                                                                                                                                                                                                             24:32 5.088e+04
24:42 5.749e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                   6.451e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                   25:22 1.202e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                               25:29 2.469e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    26:25 1.262e+05
                                                                                                                                                                                                                                                                                                                                                   6.158e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                            1.388e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          25:56 8.901e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   26:03 -1.704e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             6.814e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           27:14 2.906e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     27:28 1.740e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.698e+04
                                                                                                                                                                                                                                                                                                                                                           22:24 4.874e+04
                                                                                                                                                                                                                                                                                                                                                                                                           24132
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          26113 6
                                                                                                                                                                                                                                                                                                                                                                                                                                 25:05
                                                                                                                                                                                                                                                                                                                                                                                                                                          25:13
               36:03/
OPUSquan
                                                                                                                                                                                    RT
                                                                                                                                                                                                                                                                                                                               R
```

```
of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      of
                                                                                                                                                                                                                                                                                                                                                                                                                                                       1,2,3,7,8-PeCDF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           36.1 2,3,4,7,8-PeCDF
                                                                                                                   Conc. Name
                                                                                                                                                                                                                                                                                                          Conc. Name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Conc. Name
                                                                                                                                              37.3
                                                                                                                                                                                                                                                                                                                                                                                                                                                   15.2
                                                                                                                                                                                                                                                                                                                                                               12.3
                                                                                                                                                                                                                                                                                                                                                  46.1
                                                                                                                                                                                                                                                                                                                                                                                           6.80
                                                                                                                                                                                                                                                                                                                                                                                                           8.10
                                                                                                                                                                                                                                                                                                                                                                                                                       46.9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 28.9
                                                                                                                                                                                                                                                                                                                                                                                                                                      9.61
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2.48
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              3.12
            Sample text: P1388_275_002 M23-2 Air Train
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         41.6
115
9.93
14.7
                                                                                                                                                                                                     Sample text: P1388_275_002 M23-2 Air Train
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Sample text: P1388_275_002 M23-2 Air Train
                                                                                                                                              2.82e+01
                                                                                                                                                                                                                                                                                                                                    3.62e+01
                                                                                                                                                                                                                                                                                                                                                  3.44e+01
                                                                                                                                                                                                                                                                                                                                                               1.44e+01
                                                                                                                                                                                                                                                                                                                                                                              4.58e+00
                                                                                                                                                                                                                                                                                                                                                                                            5.91e+00
                                                                                                                                                                                                                                                                                                                                                                                                           1.20e+01
                                                                                                                                                                                                                                                                                                                                                                                                                      3.56e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                      1.12e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.94e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2.04e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               2.86e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              5.14e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        3.70e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.80e+00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             5.95e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           3.66e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         5.37e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.39e+02
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.07e+01
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1.76e+01
                                                                                                                                                                                                                                 Processed: 20-FEB-01 12:06:58
                                           Processed: 20-FEB-01 12:06:58
   Run #: 12
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Processed: 20-FEB-01 12:06:58
                                                                                                                                                                                       Function: 2 Run #: 12
                                                                                                                   S/N
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Function: 3 Run #: 12
                                                                                                                                          28:52 4.599e+05 n 2.671e+05 n 1.72 y 7.270e+05 7.270e+05
                                                                                                                  Resp Adj_Resp
                                                                                                                                                                                                                                                                                                       Adj_Resp
                                                                                                                                                                                                                                                                                                                                y&.540e+05 8.540e+05
                                                                                                                                                                                                                                                               Unnamed Conc.: 270.944
                                                                                                                                                                                                                                                                                                                                                  y 8.984e+05 8.984e+05
                                                                                                                                                                                                                                                                                                                                                                                       y/1.324e+05 1.324e+05
                                                                                                                                                                                                                                                                                                                                                               2.396e+05
                                                                                                                                                                                                                                                                                                                                                                              7.282e+04
                                                                                                                                                                                                                                                                                                                                                                                                       y1.576e+05 1.576e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       yJ.094e+05 7.094e+05
                                                                                                                                                                                                                                                                                                                                                                                                                       9.137e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                      1.871e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                    2.933e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  5.627e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.048e+06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Resp Adj_Resp
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                4.822e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             6.077e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         6.225e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    y 3.915e+04 3.915e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.23 y/7.104e+05 7.104e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.21 y/1.965e+06 1.965e+06
1.23 y 2.695e+05 1.695e+05
1.17 y/2.509e+05 2.509e+05
                                                                       Unnamed Conc.: 37.331
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Unnamed Conc.: 270.352
   Function: 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.28 m 5.229e+04 4
1.28 m 5.229e+04 4
1.20 m 6.766e+04 6
                                                                                                                                                                                                                                                                                                         Resp
                                                                                                                                                                                                                                                                                                                                                                            y/7.282e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                  y 2.933e+05
                                                                                                                                                                                                                                                                                                                                                               y 2.396e+05
                                                                                                                                                                                                                                                                                                                                                                                                                       .137e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                    .871e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            .048è+06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      .225e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .54 Y
                                                                                                                ml Resp mod. m2 Resp mod. RA
                                                                                                                                                                                                                                                                                                                                                                                                          1.46
                                                                                                                                                                                                                                                                                                                                                                                            1.36
                                                                                                                                                                                                                                                                                                       RA
                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.39
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            m! Resp mod. m2 Resp mod. RA
               Sample #1 5
                                                                                                                                                                                                      Sample #: 5
                                                                                                                                                                                                                                                                                                      ml Resp mod. m2 Resp mod.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Sample #1 5
Totals class: 1st Fnc. PecDF EMPC
                                          Acquired: 14-FEB-01 14:32:45
                                                                                                                                                                                                                                  Acquired: 14-FEB-01 14:32:45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Acquired: 14-FEB-01 14:32:45
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    1.551e+04 y
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 c
                                                                                                                                                                                                                                                                                                                                  3.587e+05
                                                                                                                                                                                                                                                                                                                                                 3.622e+05
                                                                                                                                                                                                                                                                                                                                                                                           5.606e+04
                                                                                                                                                                                                                                                                                                                                                                                                          6.412e+04
                                                                                                                                                                                                                                                                                                                                                               9.719e+04
                                                                                                                                                                                                                                                                                                                                                                             3.028e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                     .756e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 .250e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2.298e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     .600e+04
                                                                                                                                                                                                                                                                                                                                                                                                                       3.760e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                   .199e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .118e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          .878e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     3.188e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             .073e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  7.599e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    8.895e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.158e+05
                                                                                                                                                                                     Totals class: PecDF EMPC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Totals class: HxCDF EMPC
           File Name: 010214P1
                                                                     Total Conc.: 37.331
                                                                                                                                                                                                                                                             Total Conc.: 322.27
                                                                                                                                                                                                    File Name: 010214P1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      File Name: 010214P1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Total Conc.: 440.85
                                                                                                                                                                                                                                                                                                                                                                                        31:02 7.632e+04 y
31:10 9.352e+04 y
31:17 5.377e+05 y
31:30 1.096e+05 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  34:44 3.916e+05 n
34:56 1.075e+06 n
35:10 9.354e+04 n
35:22 1.351e+05 n
                                                                                                                                                                                                                                                                                                                                                                                                                                                   ¤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                >>>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        32:50 4.216e+05 y
                                                                                                                                                                                                                                                                                                                                 30:26 4.9536+05
                                                                                                                                                                                                                                                                                                                                            30:35 5.362e+05
                                                                                                                                                                                                                                                                                                                                                             30:41~ 1.425e+05
                                                                                                                                                                                                                                                                                                                                                                            30:47-4.254e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                 31:43~1.734e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                32:00 3.377e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           32:10 2.931e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     32:43 6.357e+05
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  33:56 2.364e+04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          32:35 / 3.694e+04
                                                                                                                 R
                                                                                                                                                                                                                                                                                                      RT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           R
```

**e** 2

24-FEB-2001 13:22

JSguan

|                            |                               | 1,2,3,4,7,8-HxCDF             | 45.7 1,2,3,6,7,8-HXCDF     |                               |                               |                            | 2,3,4,6,7,8-HxCDF             | 11.1 1,2,3,7,8,9-HxCDF     | Page 18 of 18 |                          |                                 |                                 |                       | Conc. Name                        | 208 1,2,3,4,6,7,8-HpCDF       |                            |                               | 22.4 1,2,3,4,1,8,9-HPCDF      |
|----------------------------|-------------------------------|-------------------------------|----------------------------|-------------------------------|-------------------------------|----------------------------|-------------------------------|----------------------------|---------------|--------------------------|---------------------------------|---------------------------------|-----------------------|-----------------------------------|-------------------------------|----------------------------|-------------------------------|-------------------------------|
|                            | 7.45                          | 40.0                          | 45.7                       | 8.60                          | 10.6                          | 9.57                       | 73.7                          | 11.1                       |               |                          | ir Train                        |                                 |                       | Conc.                             | 208                           | 54.2                       | 42.7                          | 77.7                          |
|                            | > >                           | <b>~</b> >                    | >                          | 7                             | >                             | >                          | ^                             | >                          |               |                          | 1-2 A                           |                                 |                       |                                   | >                             | >                          | <b>&gt;</b>                   | >                             |
|                            | 9.47e+00                      | 4.77e+01                      | 6.45e+01                   | 9.54e+00                      | 1.29e+01                      | 1.23e+01                   | 8.62e+01                      | 8.15e+00                   |               | # 12 ·                   | 75_002 M23                      | 106:58                          |                       | S/N                               | 3.76e+02                      | 8.62e+01                   | 6.70e+01                      | 3.086+01                      |
| Page 4                     | 1.35 y/1.271e+05 1.271e+05    | 1.20 y/6.783e+05 6.783e+05    | 1.20 y P.488e+05 8.488e+05 | 1.15 y 1.468e+05 1.468e+05    | 1.22 y 4.816e+05 1.816e+05    | 1.14 ¥ 1.634e+05 1.634e+05 | 1.21 y.A.287e+06 1.287e+06    | 1.27 y 1.695e+05 1.695e+05 |               | Function: 4 Run #: 12    | Sam                             | 5 Processed: 20-FEB-01 12:06:58 | Unnamed Conc.: 96.887 | d. RA Resp Adj_Resp               | 1.01 y/3.375e+06 3.375e+06    | 0.96 y/8.081e+05 8.081e+05 | 1.08 y 6.367e+05 6.367e+05    | 1.15 y 3.029e+05 3.029e+05    |
| OPUSquan 24-FEB-2001 13:22 | 35:35 7.291e+04 n 5.418e+04 n | 36:07 3.707e+05 n 3.076e+05 n |                            | 36:25-7.853e+04 n 6.828e+04 n | 36:34 9.969e+04 n 8.190e+04 n |                            | 36:55 7:060e+05 n 5.812e+05 n |                            |               | Totals class: HoCDF EMPC | File Name: 010214P1 Sample #: 5 | Acquired: 14-FEB-01 14:32:45    | Total Conc.: 327.58   | RT . ml Resp mod. m2 Resp mod. RA | 39:53 1.698e+06 n 1.677e+06 n | •                          | 40:34 3.310e+05 n 3.057e+05 n | 42:20 1.617e+05 n 1.412e+05 n |

. . .

11

a g

**s** 3

.





٠ (

--

LĚ



| 1 Acq: 14-reb-2001 14                   | age SIR                                                                                                                                                           | Autospec-UltimaE           |                   |                    |            |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|--------------------|------------|
| 1388 275 002 M23-<br>SUB(10000,15,-3.0  | Sample# 5 Text: Pi388 275 002 M23-2 Air Train Vial# 79 File Text: AAP DB5<br>457.7377 S:5 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt:<br>A6.51 | AP DB5 Expt: OCDD Noise:   | 212               |                    |            |
|                                         | <b>d</b>                                                                                                                                                          | A2.50E5                    |                   |                    | 3.5E4      |
|                                         |                                                                                                                                                                   | ~                          |                   |                    | 2.854      |
|                                         |                                                                                                                                                                   |                            |                   |                    | E1.4E4     |
|                                         |                                                                                                                                                                   | 47:12<br>A7.49E3           |                   |                    | E7.0E3     |
| 45:00<br>5 BSUB(10000,15,-3.0           | 45:00<br>F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F)                                                                                                 | 47:00<br>Expt: OCDD Noise: | 122 48:00         | <b>7</b>           | 49:00 Time |
|                                         | ~                                                                                                                                                                 | 46:52<br>A2.84E5           |                   |                    | 4.254      |
|                                         |                                                                                                                                                                   | _                          |                   |                    | 3.454      |
|                                         |                                                                                                                                                                   |                            |                   |                    | £2.5E4     |
|                                         | *                                                                                                                                                                 | 47:01<br>A4.68E3           |                   |                    | 8.4E3      |
| 45:00<br>45:00<br>F:5 BSUB(10000.153.0) | 46:00<br>PKD(5.5.3.0.10%.750.0.00%.F.F)                                                                                                                           | 47:00<br>Expt: OCDD Nofse: | 48:00             | *                  | 49:00 Time |
|                                         | A                                                                                                                                                                 |                            |                   |                    | 2.256      |
|                                         |                                                                                                                                                                   |                            |                   |                    | 1.856      |
|                                         |                                                                                                                                                                   |                            |                   |                    | 1.3E6      |
|                                         |                                                                                                                                                                   | J                          |                   |                    | 4.5E5      |
| 45:00<br>5 BSUB(10000,15,-3.0)          | 45:00<br>F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F)                                                                                                 | OCDD Noise:                | 48:00             | 4                  | 49:00 Time |
|                                         | A A1                                                                                                                                                              | 46:50<br>A1.23E7           |                   |                    | F2.6E6     |
|                                         |                                                                                                                                                                   |                            |                   |                    | 2.156      |
|                                         |                                                                                                                                                                   |                            |                   |                    | 1.056      |
|                                         |                                                                                                                                                                   |                            |                   |                    | 5.285      |
| 45:00<br>5 Expt: OCDD                   | 46:00                                                                                                                                                             | 47:00                      | 48:00             | 4                  | 49:00 Time |
|                                         | 45:37 45:50 46:03 46:14 46:24 46:40                                                                                                                               | 46:58 47:09                | 47:34 47:46 47:58 | 48:19 48:38 48:517 | 2.857      |
|                                         |                                                                                                                                                                   |                            |                   | <b>\</b>           | 2.2E7      |
|                                         |                                                                                                                                                                   |                            |                   |                    | E1.1E7     |
| 45:00                                   | 46:00                                                                                                                                                             | 47:00                      | 48:00             | 4                  | 49:00 Time |

٠.

¥ - ₹





75.25

63

- 4



| \ |                                                                                                                                                             | 2.4E5<br>E1.9E5<br>E1.4E5                    | 4.854            | 39:00 Time                                               | F 2.0E5      | 1.255                               | 4.004                          | 39:00 Time                                                        | 5.6E6                    | 4.5E6                                           | 2.356 | 39:00 rime                                    | E1.1E7        | E8.9E6           | 4.426 | 19:00 Time                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38:57<br>A4.28E3<br>38:36 | A2.14E3 W 59.7E2          | 39:00 Time |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|----------------------------------------------------------|--------------|-------------------------------------|--------------------------------|-------------------------------------------------------------------|--------------------------|-------------------------------------------------|-------|-----------------------------------------------|---------------|------------------|-------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|------------|
|   |                                                                                                                                                             |                                              | 37:58<br>A7.05E4 | 38:00                                                    |              |                                     | 37158<br>A6.32E4               | 38:00                                                             |                          | 37:54<br>A1.65E7                                |       | 38:00                                         |               | 37:54<br>A3.20E7 |       | 38:00                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38:24<br>A980.61          | Ahman Mhumah              | 38:00      |
|   | SC EI+ Voltage SIR Autospec-UltimaE<br>iin Vial# 80 File Text: AAP DB5<br>OCDD Noise: 239                                                                   | 36:00 36:15 36:56<br>A3.91E5 A3.61E5 A5.48E5 | - 1              | 36:00<br>OCDD Noise: 224                                 | 36:55        | 36:00 A4.76E5 A3.15E5 36:16 A4.76E5 | 36:25 36:41<br>A4.76E4 A6.44E4 | 36:00<br>,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 1755         | 36:06 A1.98E7<br>A1.50E7 |                                                 |       | 36:00                                         | 36:16 A3.87E7 |                  |       | 36:00 37:00                                         | orester by the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta |                           | whenhalment when I what I | 36100      |
|   | File: 010214Pl Acq: 14-FEB-2001 15:24:32 GC EI<br>Sample# 6 Text: P1388 275 003 M23-3 Air Train<br>373.8207 S:6 F:3 BSUB(10000,15,-3.0) Expt: OCDD<br>34:56 | 34:44<br>3096                                | AZ               | 35:00<br>8178 S:6 F:3 BSUB(10000,15,-3.0) Expt:<br>34:56 | 100% A6.67E5 |                                     | 203 A6.18E4 A8.40E4            | 35:00<br>383.8639 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750 | 1008                     | 77777<br>00 00 00 00 00 00 00 00 00 00 00 00 00 | 203   | 385.8610 S:6 F:3 BSUB(10000,15,-3.0) PKD(5,5, | 100%<br>803   |                  | 2001  | 35:00<br>445.7555 S:6 F:3 BSUR(10000.153.0) DED/5 5 | #00<br>#00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | MUNITALITY OBES A438 33   | 35i00      |

í

| ur<br>Ex                                                                                              | 2.2E5<br>1.7E5 | 1.1E5<br>5.6E4           | Time                                             | 2.7E5  | 1.625<br>1.125<br>5.424                  | Time                                             | 2.5E6            | .2.0E6           | 1.0E6<br>5.0E5 | .o.ogo<br>Time                                   | 5.7E6            | .4.5E6<br>.3.4E6 | 2.356 | 0.000 | Time                                             | .2.4E3                             | 1.2E3<br>6.0E2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.050 |
|-------------------------------------------------------------------------------------------------------|----------------|--------------------------|--------------------------------------------------|--------|------------------------------------------|--------------------------------------------------|------------------|------------------|----------------|--------------------------------------------------|------------------|------------------|-------|-------|--------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ·                                                                                                     |                | <u> </u>                 | 44:00                                            | 2 2 2  | <u>ਜੋ ਜੇ ਲੰ</u>                          | 44:00                                            | F <sup>2</sup> , | 1.1.             | ਜ<br>ਜ         | 44:00                                            | الم              | * m              | 2     |       | 44:00                                            | A2.94E3 A3.07E3 E2.                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44.00 |
|                                                                                                       |                |                          | 43:00                                            |        |                                          | 43:00                                            |                  |                  |                | 43:00                                            |                  |                  |       |       | 43:00                                            | 42:56 43:<br>A2.33E3 43:0          | MM 100 E 3 CE 3 CE 3 CE 3 CE 3 CE 3 CE 3 CE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42,00 |
| Text: AAP DB5<br>(*,F,F) Expt: OCDD Noise: 145                                                        |                | 42:20<br>A1.23E5         | 42:00<br>Expt: OCDD Noise: 93                    |        | 42:20<br>A1.20E5                         | 42:00<br>Expt: OCDD Noise: 643                   |                  | 42:19<br>A8.89E6 |                | 42:00<br>Expt: OCDD Noise: 827                   |                  | 42:19<br>A2.04E7 |       |       | 42:00<br>Expt: OCDD Noise: 238                   |                                    | 14 158 42 1 12 MM MAL WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY WALLEY W |       |
| .0,0.00                                                                                               |                | io.                      | 41:00<br>0.10%,750.0,0.00%,F,F)                  |        | 51                                       | 41:00<br>0.10%,750.0,0.00%,F,F)                  |                  |                  |                | 41:00<br>0.10%,750.0,0.00%,F,F)                  |                  |                  |       |       | 41:00<br>0.10%,750.0,0.00%,F,F)<br>41:30         | A41:37                             | My homen all his                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| P1388 275 003 M23-3 Air Train Vial# 80<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750<br>39:53<br>Al.33E6 |                | 40:21<br>A3.22E5 A2.71E5 | 41:00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750 | 1.33E6 | 40:19 40:34<br>A3.32E5 A2.54E5           | 40:00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750 | 33:52<br>A1.22E7 |                  |                | 40:00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750 | 39:52<br>A2.78E7 |                  |       |       | 41:00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750 | 3 40:09 40:21<br>3 A2.93E3 A4.45E3 | 39:513<br>42:7383<br>7.74 400 WWW.MARAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 407.7818 S:6 F:4 BSUB(1<br>3                                                                          |                | 20000                    | .7788 S:6 F:4                                    |        | 20 00 00 00 00 00 00 00 00 00 00 00 00 0 | .8253 St6 Ft4                                    | w 777            | 603              | 20 40          | 8220 S:6 F:4                                     |                  | 60               | 401   | 0     | 7165 S16 F14                                     | 803 39:43<br>603 A4 28E3           | Mh. A. A. 195.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |



ALTA ANALYTICAL PERSPECTIVES

# PART 4

# SYSTEM PERFORMANCE

MS & GC CONCAL DOCUMENTATION FOR THE ANALYSIS

С П POLYCHLORINATED DIBENZO-PDIOXINS & DIBENZOFURANS

| OPUSquan | OPUSquan 20-FEB-2001 12:07 | Page 1      |
|----------|----------------------------|-------------|
|          |                            |             |
|          |                            | Page 1 of 1 |

## PCDD/PCDF CALIBRATION VERIFICATION

#### Alta Analytical Perspectives

| Initial Calibration Date: 10/05/00                                      | Reviewer:  |
|-------------------------------------------------------------------------|------------|
| nstrument ID: MM-1 GC Column ID: DB-5                                   | Date: 1250 |
| VER Data Filename: 010214Pl S#1 Analysis Date: 14-FEB-01 Time: 11:05:47 |            |

| VER Data Filename: 010214P1                                 | : 010214P1                    | S#1 An                 | S#1 Analysis Date: 14-FEB-01 Time: 11:05:47 | 14-FEB-0 | 1 Time: 1               | 1:05:47                                   |  |
|-------------------------------------------------------------|-------------------------------|------------------------|---------------------------------------------|----------|-------------------------|-------------------------------------------|--|
| NATIVE ANALYTES                                             | M/Z'S<br>FORMING<br>RATIO     | ION<br>ABUND.<br>RATIO | QC<br>LIMITS                                | PASS     | CONC.<br>FOUND          | CONC.<br>RANGE<br>(ng/mL)                 |  |
| 2,3,7,8-TCDD                                                | M/M+2                         | 0.77                   | 0.65-0.89                                   | ۲        | 5.38                    | 3.75 - 6.25                               |  |
| 1,2,3,7,8-PeCDD                                             | M+2/M+4                       | 1.57                   | 1.32-1.78                                   | γ        | 26.24                   | 18.75-31.25                               |  |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD | M+2/M+4<br>M+2/M+4<br>M+2/M+4 | 1.25                   | 1.05-1.43<br>1.05-1.43<br>1.05-1.43         | * * *    | 25.21 ~ 25.49 ~ 24.67 / | 18.75-31.25<br>18.75-31.25<br>18.75-31.25 |  |
| 1,2,3,4,6,7,8-HpCDD M+2/M+4                                 | M+2/M+4                       | 1.03                   | 0.88-1.20                                   | >1       | 25.05/                  | 18.75-31.25                               |  |
| осър                                                        | M+2/M+4                       | 0.88                   | 0.76-1.02                                   | ٨        | 51.12                   | 37 - 65                                   |  |
| 2,3,7,8-TCDF                                                | M/M+2                         | 0.75                   | 0.65-0.89                                   | ۲        | 4.54                    | 3.75 - 6.25                               |  |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF                          | M+2/M+4<br>M+2/M+4            | 1.53                   | 1.32-1.78                                   | * *      | 23.76 / 23.32 /         | 18.75-31.25<br>18.75-31.25                |  |
| 1,2,3,4,7,8-HxCDF                                           | M+2/M+4                       | 1.23                   | 1.05-1.43                                   | ٨        | 24.39                   | 18.75-31.25                               |  |
| 1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF                      | M+2/M+4<br>M+2/M+4            | 1.19                   | 1.05-1.43                                   | ۸ >      | 24.08/                  | 18.75-31.25                               |  |
| 1,2,3,7,8,9-HxCDF                                           | M+2/M+4                       | 1.25                   | 1.05-1.43                                   | ۸ ،      | 24.51/                  | 18.75-31.25                               |  |
| 1,2,3,4,6,7,8-HpCDF M+2/M+4<br>1,2,3,4,7,8,9-HpCDF M+2/M+4  | M+2/M+4<br>M+2/M+4            | 1.02                   | 0.88-1.20<br>0.88-1.20                      | A A      | 23.56 / 23.07/          | 18.75-31.25<br>18.75-31.25                |  |
| OCDF                                                        | M+2/M+4                       | 0.89                   | 0.76-1.02                                   | *        | 47.99                   | 35 - 65                                   |  |
|                                                             |                               |                        |                                             |          |                         |                                           |  |

Analyst: 6AE
Date: 20 Feb 2/

öf Page 1 不ひめ Date: 30 Febol Analyst: 64G J Date: 24 Reviewer: 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 75.0 - 125.0 75.0 - 125.0 75.0 - 125.0 75.0 - 125.0 75.0 - 125.0 75.0 - 125.0 (ng/mF) RANGE S#1 Analysis Date: 14-FEB-01 Time: 11:05:47 101.3 1 100.7 1 104.1 1 93.7 / 99.6 / 97.7 / 92.1 / 93.3 / 92.9 / 94.5 82.8 83.3 87.3 86.8 FOUND PCDD/PCDF CALIBRATION VERIFICATION Alta Analytical Perspectives Pass >>>> > 1.05-1.43 0.43-0.59 0.37-0.51 0.65-0.89 1.05-1.43 0.65-0.89 0.37-0.51 0.76-1.02 0.43-0.59 0.43-0.59 QC LIMITS Page GC Column ID: DB-5 ABUND. RATIO 1.23 1.03 0.89 0.77 NOI 1.55 1.29 0.52 0.43 0.52 0.78  $\begin{array}{c} 1.54 \\ 0.52 \\ 0.44 \\ 0.89 \end{array}$ Initial Calibration Date: 10/05/00 M/M+2 M+2/M+4 M+2/M+4 M+2/M+4 M+2/M+4 M/M+2 M/M+2 M+2/M+4 M+2/M+4 M+2/M+4 M+2/M+4 VER Data Filename: 010214P1 M/Z'S FORMING RATIO M/M+2 M/M+2 M/M+2 M/M+2 20-FEB-2001 12:07 37C1-2,3,7,8-TCDD 13C-2,3,4,7,8-PeCDF M 13C-1,2,3,4,7,8-HxCDD H 13C-1,2,3,4,7,8-HxCDF M 13C-1,2,3,4,7,8,9-HpCDF M 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF Instrument ID: MM-1 13C-1,2,3,7,8,9-HxCDF LABELED COMPOUNDS 13C-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-0CDD OPUSquan 13C-OCDF

| ### Contrainer   October   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Par | P CPSM / M23 CS3  Name Res  2,3,7,8-TCDD 4,34e+0  2,3,7,8-ECDD 1.40e+0  3,4,7,8-EXCDD 1.27e+0  3,7,8,9-EXCDD 1.27e+0  CCDD 1.25e+0  CCDD 1.25e+0  CCDD 1.26e+0  2,3,7,8-ECDF 1.82e+0  1,4,7,8-ECDF 1.82e+0  1,4,7,8-EXCDF 1.69e+0  1,4,7,8-EXCDF 1.69e+0  1,6,7,8-EXCDF 1.69e+0  1,6,7,8-EXCDF 1.69e+0  1,6,7,8-EXCDF 1.60e+0  1,7,8,9-EXCDF 1.70e+0  1, | ** ****      | S     | M23 0: WE/VOI: |                                         | 010214F1<br>010214F1                                                                                           | 7    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|----------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|------|
| 1,25e-07   1.29   1.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.10   2.1   | 2,3,7,8-TCDD 4.34e+06 3,4,7,8-PECDD 1.47e+07 3,4,7,8-PECDD 1.40e+07 3,6,7,8-PECDD 1.27e+07 4,6,7,8-PECDF 1.92e+07 2,3,7,8-PECDF 1.92e+07 3,4,7,8-PECDF 1.83e+06 3,4,7,8-PECDF 1.82e+07 3,4,7,8-PECDF 1.82e+07 3,4,7,8-PECDF 1.69e+07 4,6,7,8-HXCDF 1.69e+07 4,6,7,8-HXCDF 1.69e+07 4,6,7,8-HXCDF 1.69e+07 4,6,7,8-PECDF 1.69e+07 4,6,7,8-PECDF 1.69e+07 4,6,7,8-PECDF 1.69e+07 4,6,7,8-PECDF 1.92e+07 4,7,8,9-PECDF 1.20e+07 4,6,7,8-PECDF 1.20e+07 4,6,7,8-PECDF 1.20e+07 4,6,7,8-PECDF 1.20e+07 4,6,7,8-PECDF 1.20e+07 4,6,7,8-PECDF 1.20e+07 4,7,8,9-PECDF 1.20e+07 4,7,8,9-PECDF 1.20e+07 4,7,8,9-PECDF 1.20e+07 FETTA-DIOXINS 3.92e+07 FETTA-FUTANS 1.76e+07 FETTA-FUTANS 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ****         |       |                |                                         | ż                                                                                                              |      |
| 1,75e+70   1.77   1.10   1.117   2.15   1.117   2.15   1.117   1.10   1.117   1.10   1.117   1.10   1.117   1.10   1.117   1.10   1.117   1.10   1.117   1.10   1.117   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10   1.10      | 2,3,7,8-PECDD 1.47e+07 3,6,7,8-PECDD 1.47e+07 3,6,7,8-PECDD 1.27e+07 3,7,8-PECDD 1.27e+07 3,7,8-PECDD 1.26e+07 CCDD 1.26e+07 2,3,7,8-PECDF 1.83e+07 3,4,7,8-PECDF 1.82e+07 3,4,7,8-PECDF 1.69e+07 4,6,7,8-PECDF 1.69e+07 4,6,7,8-PECDF 1.60e+07 4,6,7,8-PECDF 1.20e+07 4,7,8,9-PECDF 1.20e+07 4,6,7,8-PECDF 1.20e+07 4,7,8,9-PECDF 1.20e+07 4,7,8-PECDF 1.20e | 2~2~2        | ~ ;   | Qualif.        | oise Fac                                | 70                                                                                                             |      |
| 1,000-607   1,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,3,7,8-HXCDD 1.20e+07 3,7,8-HXCDD 1.27e+07 3,7,8-HXCDD 1.27e+07 2,3,7,8-HYCDD 1.26e+07 2,3,7,8-PCDF 1.83e+06 2,3,7,8-PCDF 1.83e+07 3,4,7,8-HXCDF 1.57e+07 3,4,7,8-HXCDF 1.57e+07 3,6,7,8-HXCDF 1.69e+07 4,6,7,8-HXCDF 1.60e+07 4,6,7,8-HYCDF 1.20e+07 4,7,8,9-HYCDF 1.20e+07 4,7,8 | ***          | 27:45 | 5. de          | 7 2.5 0                                 | 0253                                                                                                           |      |
| 1.376+07 1.25 V 1.02 37113 25:5 24.7 2400 25:0 0.0442 1.25 V 1.03 V 1.13 41312 25:0 2400 25:0 0.0442 1.25 V 1.13 41313 25:0 24.7 2400 25:0 0.0442 1.25 V 1.13 41313 25:0 24.7 2400 25:0 0.0442 1.25 V 1.13 41313 25:0 24.7 2400 25:0 0.0442 1.25 V 1.13 41313 25:0 24.7 2400 25:0 0.0442 1.25 V 1.13 41313 25:0 24.1 2448 25:0 0.0442 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25 V 1.25  | 2,3,7,8-EXCDD 1.27e+07 3,7,8,9-EXCDD 1.27e+07 CDD 1.92e+07 2,3,7,8-EQDD 1.92e+07 3,4,7,8-PCDF 1.83e+07 3,4,7,8-EXCDF 1.83e+07 3,6,7,8-EXCDF 1.69e+07 4,6,7,8-EXCDF 1.69e+07 4,6,7,8-EXCDF 1.60e+07 3,7,8,9-EXCDF 1.20e+07 4,6,7,8-EXCDF 1.20e+07 4,6,7,8-EXCDF 1.20e+07 4,6,7,8-EXCDF 1.20e+07 4,6,7,8-EXCDF 1.20e+07 4,6,7,8-EXCDF 1.20e+07 4,6,7,8-EXCDF 1.20e+07 4,6,7,8-DIOXINS 1.76e+07 FETTA-DIOXINS 2.32e+07 FETTA-FURANS 1.76e+07 FETTA-FURANS 1.76e+07 FETTA-FURANS 1.76e+07 FETTA-FURANS 1.76e+07 FETTA-FURANS 1.76e+07 FETTA-FURANS 1.76e+07 FETTA-FURANS 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . ~ }        | 37:06 | 26.2           | 400 2 5                                 | 4.04                                                                                                           |      |
| 1.376+07 1.23 y 1.14 37122 24.7 2450 25.9 0.0552 Reviewers Company 1.226+07 0.089 y 1.03 46151 25.0 137 24.7 2450 25.9 0.137 24.7 2450 25.9 0.137 24.7 2450 25.9 0.137 24.7 2450 25.9 0.137 24.9 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9 0.137 25.9  | 2,3,7,8,9-HxCDD 1.37e+07 CCDD 1.26e+07 CCDD 1.26e+07 2,3,7,8-FCDF 3.83e+06 2,3,7,8-PCDF 1.83e+07 3,4,7,8-HxCDF 1.57e+07 3,6,7,8-HxCDF 1.69e+07 4,6,7,8-HxCDF 1.69e+07 4,6,7,8-HxCDF 1.20e+07 4,6,7,8-HxCDF 1.20e+07 6,7,8-HxCDF 1.20e+07 7,8,9-HyCDF 1.20e+07 7,8,9-HyCDF 1.20e+07 4,6,7,8-HyCDF 1.20e+07 4,6,7,8-HyCDF 1.20e+07 4,6,7,8-HyCDF 1.20e+07 4,7,8,9-HyCDF 1.70e+07 4,7,9,9-HyCDF 1.70e+07  | 7            | 37:13 | 25.5           | 400 2.5                                 |                                                                                                                |      |
| 1.26e+07 1.03 y 1.13 41131 25.0 1242 2.5 0.137 1.26e+07 1.03 y 1.13 41131 25.0 1242 2.5 0.137 1.27 1.27 1.03 y 1.10 2141 23.3 11.3 12.5 11.3 12.5 0.137 1.28 1.27 1.03 21.13 21.13 23.3 11.4 2.6 0.144 2.5 0.0448 1.28 1.27 1.23 y 1.10 214.3 24.1 248 2.5 0.0448 1.28 1.28 1.29 x 1.24 35.16 24.1 248 2.5 0.0594 1.28 1.28 1.29 x 1.24 35.16 24.1 248 2.5 0.0594 1.28 1.28 1.29 x 1.24 35.16 24.2 248 2.5 0.0594 1.28 1.28 1.29 x 1.20 27.15 27.15 27.15 2.5 0.0595 1.28 1.28 1.28 1.29 1.20 27.1 20 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,3,7,8-HpCDD 1.26e+07  2,3,7,8-TCDF 3.83e+06  2,3,7,8-PCDF 1.83e+07  3,4,7,8-PCDF 1.82e+07  3,4,7,8-HxCDF 1.57e+07  4,6,7,8-HxCDF 1.69e+07  4,6,7,8-HyCDF 1.60e+07  4,6,7,8-HyCDF 1.20e+07  4,6,7,8-HyCDF 1.20e+07  4,6,7,8-HpCDF 1.20e+07  4,7,8,9-HpCDF 1.20e+07  4,7,8,9-HpCDF 1.20e+07  Tetra-Dioxins 1.74e+07  Hexa-Dioxins 3.92e+07  Hexa-Dioxins 2.32e+07  Tetra-Furans 9.58e+06  Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •            | 37:32 | 24.7           | 400 2.5                                 | Reviewer                                                                                                       | γ,   |
| 1.32e-07 0.88 y 1.03 46551 51.1 1515 2.5 0.139 Date: 24 1.32e-07 0.88 y 1.05 20551 4.54 147 2.5 0.0452 1.32e-07 1.53 y 1.05 2151 23.3 1447 2.5 0.0452 1.32e-07 1.53 y 1.05 2151 23.3 1447 2.5 0.0452 1.32e-07 1.13 y 1.13 36108 24.4 2488 2.5 0.0623 1.32e-07 1.13 y 1.13 36108 24.1 2488 2.5 0.0623 1.32e-07 1.13 y 1.13 36108 24.2 248 2.5 0.0623 1.32e-07 1.13 y 1.13 36108 24.2 248 2.5 0.0623 1.32e-07 1.13 y 1.15 315 23.5 24.2 248 2.5 0.0623 1.32e-07 1.12 y 1.14 36109 21.6 24.1 248 2.5 0.0623 1.32e-07 1.02 y 1.12 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0.13 2.15 0 | 2,3,7,8-TCDF 3.83e+06 2,3,7,8-PECDF 1.83e+07 3,4,7,8-PECDF 1.83e+07 3,4,7,8-HXCDF 1.57e+07 3,6,7,8-HXCDF 1.69e+07 4,6,7,8-HXCDF 1.60e+07 4,6,7,8-HYCDF 1.20e+07 4,7,8,9-HYCDF 1.20e+07 4,7,8-HYCDF 1.20e+0 | × 1          | 41:31 | 25.0           | 426 2.5                                 | _                                                                                                              |      |
| 3.88e+06 0.75 y 1.05 26:51 4.54 1470 1.55 0.0493 1.88e+07 1.53 y 1.04 3143 23:8 1447 25: 0.0493 1.86e+07 1.53 y 1.04 3143 23:8 1447 25: 0.0493 1.86e+07 1.53 y 1.03 36:08 24.3 24.2 24.2 24.8 2.5 0.0494 1.69e+07 1.23 y 1.03 36:08 24.3 24.2 24.8 2.5 0.0594 1.69e+07 1.23 y 1.03 36:08 24.5 24.2 24.8 2.5 0.0593 1.46e+07 1.02 y 1.54 39:53 24.2 24.2 24.8 2.5 0.0593 1.46e+07 1.02 y 1.54 39:53 24.2 22.6 27.15 2.5 0.0553 1.20e+07 1.02 y 1.54 39:53 24.2 22.6 27.15 2.5 0.0353 1.20e+07 1.02 y 1.54 39:53 24.2 22.6 27.15 2.5 0.0353 1.20e+07 1.02 y 1.56 24:0 2.16 27.15 2.5 0.0353 1.20e+07 1.02 y 1.56 24:0 2.16 2.16 2.16 2.16 2.16 2.16 2.16 2.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,3,7,8-PCDF 3.83e+06 3,4,7,8-PECDF 1.83e+07 3,4,7,8-HXCDF 1.87e+07 3,6,7,8-HXCDF 1.57e+07 3,6,7,8-HXCDF 1.69e+07 4,6,7,8-HXCDF 1.60e+07 3,7,8,9-HXCDF 1.42e+07 4,6,7,8-HCDF 1.20e+07 4,7,8,9-HPCDF 1.20e+07 4,7,8,9-HPCDF 1.20e+07 Fetra-Dioxins 1.74e+07 Hexta-Dioxins 3.92e+07 Hexta-Dioxins 3.92e+07 Fetra-Furans 9.58e+06 Penta-Furans 1.76e+07 Fetra-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.           | 46151 | 51.1           | 515 2.5 0                               | 5                                                                                                              |      |
| 1.83 = 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,3,7,8-PeCDF 1.83e+07 3,4,7,8-PeCDF 1.82e+07 3,4,7,8-HxCDF 1.57e+07 3,6,7,8-HxCDF 1.69e+07 4,6,7,8-HxCDF 1.60e+07 3,7,8,9-HxCDF 1.20e+07 4,6,7,8-HyCDF 1.20e+07 4,7,8,9-HyCDF 1.20e+07 A,7,8,9-HyCDF 1.20e+07 Hexa-Dioxins 1.74e+07 Hexa-Dioxins 3.92e+07 Hexa-Dioxins 3.92e+07 Hexa-Dioxins 2.32e+07 Penta-Furans 9.58e+06 Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 1.0        | 9     | 'n             | 69 2.5 0.                               | A97 Date!                                                                                                      |      |
| 1.82e+07 1.54 7 1.05 32151 23.3 1447 2.5 0.0428 1.57e+07 1.13 7 1.13 36:18 24.4 24.8 25.0 0.0428 1.57e+07 1.13 7 1.14 36:18 24.1 24.8 2.5 0.0428 1.60e+07 1.12 9 1.14 36:18 24.1 24.8 2.5 0.0529 1.42e+07 1.12 9 1.14 36:18 24.5 24.5 24.8 2.5 0.0529 1.42e+07 1.02 9 1.16 36:15 24.5 24.5 24.8 2.5 0.0529 1.42e+07 1.02 9 1.10 37:19 2.5 0.0253 2.02e+07 0.89 9 1.15 47:10 22.1 27.15 2.5 0.0253 3.92e+07 1.02 9 1.13 40:19 46.0 21.6 1127 2.5 0.0253 3.92e+07 1.26 9 1.10 35:24 78.0 22.6 24:0 2.5 0.0374 4.19e+07 1.03 9 1.01 35:24 78.0 22.6 24:0 2.5 0.0374 4.19e+07 1.26 9 1.10 35:24 78.0 22.6 24:0 2.5 0.0431 3.92e+07 1.26 9 1.10 35:24 78.0 22.6 0.0374 4.19e+07 1.26 9 1.10 35:24 78.0 22.6 0.0374 4.19e+07 1.26 9 1.10 35:24 78.0 22.6 0.0374 4.19e+07 1.27 9 1.05 28:51 22.6 24:0 2.5 0.0431 2.56e+07 1.28 9 1.05 28:51 22.6 24:0 2.5 0.0431 2.56e+07 1.27 9 1.03 37:12 97.7 46.8 22.6 25:0 0.0431 2.56e+07 1.23 9 0.93 37:12 97.7 46.8 22.1 22.6 0.0819 3.56e+07 0.77 9 1.06 26:50 92.9 3.3 46:50 0.03 3.8 8.07e+07 0.52 9 0.93 38:15 82.8 4.02e+07 0.52 9 0.93 37:12 100 5.34e+07 0.77 9 1.00 25:27 100 5.34e+07 0.77 9 1.00 25:27 100 5.34e+07 0.77 9 1.00 25:27 100 5.34e+07 0.77 9 1.00 25:27 100 5.34e+07 0.77 9 1.00 25:27 100 5.34e+07 0.77 9 1.00 25:27 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 25:27 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+07 0.77 9 1.00 37:31 100 5.34e+ | 3,4,7,8-PeCDF 1.82e+07 3,4,7,8-HxCDF 1.57e+07 3,6,7,8-HxCDF 1.69e+07 4,6,7,8-HxCDF 1.60e+07 3,7,8,9-HxCDF 1.42e+07 4,6,7,8-HpCDF 1.20e+07 4,7,8,9-HpCDF 1.20e+07 4,7,8,9-HpCDF 1.20e+07 Fetra-Dioxins 1.74e+07 Hexa-Dioxins 3.92e+07 Hexa-Dioxins 2.32e+07 Tetra-Furans 9.58e+06 Penta-Furans 1.56e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . >          |       | m              | 47 2.5 0.                               | 43                                                                                                             |      |
| 1.57e+07 1.123 ÿ 1.13 36108 24.4 2488 2.5 0.0544 1.60e+07 1.123 ÿ 1.124 36116 24.1 2488 2.5 0.0544 1.60e+07 1.129 ÿ 1.124 36115 24.2 24.2 24.8 2.5 0.0525 1.40e+07 1.125 ÿ 1.126 24.1 224.2 24.8 2.5 0.0625 1.40e+07 1.125 ÿ 1.126 24.1 22.6 22.6 22.1 2488 2.5 0.0625 1.20e+07 1.02 ÿ 1.126 24.1 22.6 22.6 22.6 22.1 2715 2.5 0.0253 1.20e+07 1.02 ÿ 1.124 24.1 22.6 22.6 22.6 22.1 2715 2.5 0.0253 1.20e+07 1.02 ÿ 1.126 24.1 22.6 22.6 22.6 22.1 2715 2.5 0.0253 2.20e+07 1.02 ÿ 1.126 24.1 22.6 22.6 22.6 22.6 22.6 22.6 22.6 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,4,7,8-HxCDF 1.57e+07 3,6,7,8-HxCDF 1.69e+07 4,6,7,8-HxCDF 1.60e+07 3,7,8,9-HxCDF 1.42e+07 4,7,8,9-HpCDF 1.46e+07 4,7,8,9-HpCDF 1.20e+07 CCDF 2.08e+07 Tetra-Dioxins 1.74e+07 Hexa-Dioxins 3.92e+07 Hexa-Dioxins 2.32e+07 Tetra-Furans 9.58e+06 Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>,</u>     | 32:51 | ຕ              | 447 2.5 0.                              | 428                                                                                                            |      |
| 1.69e+07   1.19 y   1.24   36116   24.1   2488 2.5 0.0498     1.60e+07   1.23 y   1.24   36116   24.2   2488 2.5 0.0622     1.42e+07   1.23 y   1.16   36155   24.2   2488 2.5 0.0622     1.42e+07   1.02 y   1.54   39153   23.6   23.6     1.20e+07   1.02 y   1.30   42120   48.0   2715   2.5 0.0755     1.20e+07   1.02 y   1.30   42120   48.0   12715   2.5 0.0755     1.20e+07   1.02 y   1.13   42120   48.0   12715   2.5 0.0755     1.20e+07   1.03 y   1.13   42120   48.0   2400   2.5 0.0434     1.20e+07   1.03 y   1.13   42120   48.0   2400   2.5 0.0431     1.20e+07   1.03 y   1.13   4214   46.0   2462 2.5 0.0431     1.20e+07   1.23 y   1.05   21150   11.3   22.6     1.70e+07   1.23 y   0.93   3311   99.6   33.7     2.61e+07   1.23 y   0.93   3311   99.6   33.3     2.61e+07   1.23 y   0.93   3311   99.6   33.3     3.61e+07   1.23 y   0.93   3312   93.7     3.61e+07   1.23 y   0.93   3312   93.7     3.61e+07   1.23 y   0.93   3312   93.3     3.61e+07   1.23 y   0.93   3312   93.3     3.61e+07   1.23 y   0.93   3313   93.3     3.61e+07   1.23 y   0.93   3313   100     3.61e+07   1.23 y   0.90   3315   300     3.61e+07   1.23 y   0.90   3713   100     3.61e+07   1.23 y   0.90   3713   100     3.61e+07   1.23 y   0.90   3715   80.6     3.71e+07   1.23 y   0.90   3715   80.6     3.71e+07   1.23 y   0.90   3015   300     3.71e+07   1.23 y   0.90   3015   300     3.71e+07   1.23 y   0.90   3015   300     3.71e+07   1.23 y   0.90   3015   300     3.71e+07   1.23 y   0.90   3015   300     3.71e+07   1.23 y   0.90   3015   300     3.71e+07   1.23 y   0.90   300     3.71e+07   1.25 y   0.90   300     3.71e+07   1.25 y   0.90   300     3.71e+07   1.25 y   0.90   300     3.71e+07   1.25 y   0.90     3.71e+07   1.25 y   0.90     3.71e+07     | 3,6,7,8-HxCDF 1.69e+07 4,6,7,8-HxCDF 1.60e+07 3,7,8,9-HxCDF 1.42e+07 4,7,8,9-HpCDF 1.20e+07 4,7,8,9-HpCDF 1.20e+07 CCDF 2.08e+07 Tetra-Dioxins 1.74e+07 Hexa-Dioxins 3.92e+07 Hexa-Dioxins 2.32e+07 Tetra-Furans 9.58e+06 Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۸,           | 36:08 | -              | 488 2.5 0.                              | 544                                                                                                            |      |
| 1.60e+07 1.23 y 1.16 36:55 24.2 2468 2.5 0.0529 1.42e+07 1.02 y 1.54 37:56 24.5 24.5 24.5 2488 2.5 0.0655 1.20e+07 1.02 y 1.54 37:56 24.5 24.5 24.5 27:5 2.0055 1.20e+07 1.02 y 1.54 37:10 48.0 21.6 1127 2.5 0.0896 1.32e+07 1.55 y 1.02 y 1.13 47:10 48.0 21.6 1127 2.5 0.0873 1.32e+07 1.55 y 1.10 35:124 78.0 2400 2.5 0.0977 1.76e+07 1.55 y 1.10 35:124 78.0 24.5 2.0637 1.76e+07 1.58 y 1.05 21:50 11.3 40:19 46.0 2426 2.5 0.037 1.76e+07 1.58 y 1.05 21:50 11.3 40:19 46.8 2.5 0.0431 1.76e+07 1.24 y 1.14 34:44 100 246.8 2.5 0.0431 2.32e+07 1.53 y 1.05 21:50 93.3 37:12 97.7 46.8 2.5 0.0819 2.46e+07 1.24 y 1.13 27:43 93.7 5.66 40.9 27:5 0.0819 2.67e+07 1.23 y 0.93 33:11 99.6 4.8 2.5 0.0819 2.67e+07 0.77 y 1.00 25:0 92.9 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,6,7,8-HxCDF 1.60e+07 3,7,8,9-HxCDF 1.42e+07 4,6,7,8-HpCDF 1.46e+07 4,7,8,9-HpCDF 1.20e+07 CCDF 2.08e+07 Tetra-Dioxins 1.74e+07 Hexa-Dioxins 3.92e+07 Hexa-Dioxins 4.19e+07 Tetra-Furans 9.58e+06 Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -            | 36:16 | -              | 488 2.5 0.                              | . 0                                                                                                            |      |
| 1.42e+07 1.25 y 1.02 37:56 24.5 24.5 2488 2.5 0.0665 24.6 1.20e+07 1.02 y 1.30 47:10 48.0 23.1 27:15 2.5 0.0655 25.08e+07 1.02 y 1.30 47:10 48.0 123.6 27:15 2.5 0.0875 2.08e+07 1.02 y 1.30 47:10 48.0 123.6 27:15 2.5 0.0875 2.08e+07 1.02 y 1.30 47:10 48.0 123.6 27:15 2.5 0.0875 2.08e+07 1.02 y 1.01 30:39 69.9 10:15 2.09 2.0 10:13 2.09 2.0 10:13 2.09 2.0 10:13 2.09 2.0 10:13 2.09 2.09 2.0 10:13 2.09 2.0 10:13 2.09 2.0 10:13 2.09 2.0 10:13 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,7,8,9-HxCDF 1.42e+07<br>4,6,7,8-HpCDF 1.46e+07<br>4,7,8,9-HpCDF 1.20e+07<br>CCDF 2.08e+07<br>Tetra-Dioxins 1.74e+07<br>Penta-Dioxins 3.92e+07<br>Hexa-Dioxins 4.19e+07<br>Hexa-Dioxins 2.32e+07<br>Tetra-Furans 9.58e+06<br>Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , ,          | 36155 | -              | 488 2.5 0.                              | •                                                                                                              |      |
| 1.46e+07 1.02 y 1.54 39153 23.6 2715 2.5 0.0755 2.08e+07 1.02 y 1.15 47110 4810 23.1 2715 2.5 0.0875 2.08e+07 1.02 y 1.15 47110 4810 23.1 1591 2.5 0.0896 2.5 0.0897 2.32e+07 1.03 y 1.01 30139 69.9 1019 2.5 0.0834 4.19e+07 1.26 y 1.01 35124 78.0 21.6 1127 2.5 0.0834 4.19e+07 1.26 y 1.01 35124 78.0 21.6 1127 2.5 0.0934 4.19e+07 1.26 y 1.01 35124 78.0 21.6 1127 2.5 0.0937 2.83e+07 1.03 y 1.03 2143 46.0 21.6 2426 2.5 0.0937 2.83e+07 1.03 y 1.05 2144 100 2163 2.5 0.0431 89.3 1.76e+07 1.53 y 1.05 2143 86.6 1447 2.5 0.0431 89.5 5.5e+07 1.23 y 0.93 3311 99.6 2.1 248 2.5 0.0819 2.5 0.0819 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0919 2.5 0.0 | 4,6,7,8-HPCDF 1.46e+07 4,7,8,9-HPCDF 1.20e+07 OCDF 2.08e+07 Tetra-Dioxins 1.74e+07 Hexa-Dioxins 3.92e+07 Hexa-Dioxins 4.19e+07 Tetra-Furans 9.58e+06 Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>,</u>     | 37:56 | -              | 488 2.5 0.                              | 603                                                                                                            |      |
| 1.20e+07 1.02 y/ 1.30 42:20 23.1 2715 2.5 0.0896 2.08e+07 0.89 y/ 1.15 47:10 .48.0 1591 2.5 0.0896 1.74e+07 0.89 y/ 1.15 47:10 .48.0 1591 2.5 0.0253 3.92e+07 1.26 y/ 1.03 39 69.9 10.25 3.00374 4.19e+07 1.26 y/ 1.03 y/ 1.03 40:19 46.0 2400 2.5 0.0977 2.32e+07 1.26 y/ 1.03 y/ 1.03 40:19 46.0 2400 2.5 0.0434 2.32e+07 1.03 y/ 1.05 21:50 21:50 21:60 2.5 0.0432 2.5 0.0435 2.5 0.0435 2.5 0.0431 89.3 1.76e+07 1.24 y/ 1.05 21:43 66.6 1447 2.5 0.0431 2.64e+07 1.24 y/ 1.42 39:53 46.8 27.5 0.0431 2.64e+07 1.27 y/ 1.02 y/ 1.42 39:53 46.8 27.5 0.0819 2.5 0.0431 2.66e+07 0.77 y/ 0.93 37:12 97.7 2.66e+07 0.77 y/ 0.93 37:12 97.7 2.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.90 39:52 83.3 3.66e+07 0.77 y/ 0.90 39:52 83.3 3.66e+07 0.77 y/ 0.90 39:52 83.3 3.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.09 39:52 83.3 3.66e+07 0.77 y/ 0.09 37:31 100 2.66000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4,7,8,9-HpCDF 1.20e+07 OCDF 2.08e+07 Tetra-Dioxins 1.74e+07 Hexa-Dioxins 3.92e+07 Hexa-Dioxins 4.19e+07 Tetra-Furans 9.58e+06 Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y 1          | 39153 | m              | 715 2.5 0.                              | 755                                                                                                            |      |
| 2.08e+07 0.89 y/ 1.15 47:10 .48.0 1591 2.5 0.122 1.74e+07 0.80 y 1.26 24:00 21.6 1127 2.5 0.0253 3.92e+07 1.53 y 1.01 30:39 69.9 1019 2.5 0.0434 4.19e+07 1.26 y 1.10 35:24 78.0 2406 2.5 0.0434 2.32e+07 1.26 y 1.10 35:24 78.0 2466 2.5 0.0437 2.32e+07 1.27 y 1.05 21:50 11:3 22.6 2466 2.5 0.0431 1.76e+07 1.58 y 1.05 21:50 11:3 22.6 2634 2.5 0.0431 1.76e+07 1.58 y 1.05 28:51 22.6 2634 2.5 0.0431 2.67e+07 1.24 y 1.14 34:44 100 27:43 89.3 6.46e+07 1.24 y 1.14 34:44 100 27:43 89.3 6.46e+07 0.77 y 0.93 33:11 99.6 6.40e+07 0.77 y 1.06 26:50 93.3 8.07e+07 0.77 y 1.06 26:50 93.3 8.07e+07 0.77 y 1.00 27:03 100 8.20e+07 0.77 y 1.00 27:03 100 8.20e+07 0.77 y 1.00 27:03 100 8.20e+07 0.77 y 1.00 27:03 100 8.20e+07 0.77 y 1.00 27:03 100 8.30e+07 0.77 y 0.93 32:50 101 8.30e+07 0.77 y 0.93 32:50 101 8.30e+07 0.77 y 0.93 32:50 101 8.30e+07 0.77 y 0.93 32:50 101 8.30e+07 0.77 y 0.93 32:50 101 8.30e+07 0.77 y 0.93 37:51 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OCDF 2.08e+07  Tetra-Dioxins 1.74e+07  Hexa-Dioxins 3.92e+07  Hexa-Dioxins 2.32e+07  Tetra-Furans 9.58e+06  Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 1.3        | ~     | ~              | 715 2.5 0.                              | 6                                                                                                              |      |
| 1.74e+07 0.80 y 1.26 24:00 21.6 1127 2.5 0.0253 3.92e+07 1.53 y 1.01 30:39 69.9 59.9 1019 2.5 0.0434 4.19e+07 1.26 y 1.01 35:24 78.0 2400 2.5 0.0977 2.32e+07 1.03 y 1.13 40:19 46.0 246.0 2.5 0.0977 2.32e+07 1.03 y 1.13 40:19 46.0 246.0 2.5 0.0977 2.32e+07 1.53 y 1.05 28:51 22.6 21.3 2169 2.5 0.0431 89.3 1.76e+07 1.53 y 1.05 31:43 66.6 1447 2.5 0.0431 89.3 2.64e+07 1.24 y 1.14 34:44 100 2.16 2.15 0.0819 2.5 0.0819 2.67e+07 1.23 y 0.93 33:11 99.6 2.715 2.5 0.0819 2.56e+07 1.23 y 0.93 33:11 99.6 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tetra-Dioxins 1.74e+07  Hexa-Dioxins 4.19e+07  Hepta-Dioxins 2.32e+07  Tetra-Furans 9.58e+06  Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y/ 1.1       | 7:1   | æ              | 591 2.5 0                               | 122                                                                                                            |      |
| 3.92e+07 1.53 y 1.01 30.39 69.9 1127 2.5 0.0253 4.19e+07 1.55 y 1.01 35:24 78.0 2400 2.5 0.0377 2.32e+07 1.03 y 1.13 40:19 46.0 2400 2.5 0.0377 2.32e+07 1.03 y 1.13 40:19 46.0 2426 2.5 0.037 1.76e+07 1.58 y 1.05 21:50 11.3 2169 2.5 0.0431 2.56+07 1.58 y 1.05 21:50 11.3 2169 2.5 0.0431 2.17e+07 1.58 y 1.05 21:43 66.6 1447 2.5 0.0431 2.67e+07 1.53 y 1.05 31:43 46.8 24.8 2.5 0.0431 2.67e+07 1.24 y 1.14 34:44 100 2715 2.5 0.0819 2.67e+07 1.02 y 1.42 39:53 37:12 97.7 27:15 2.5 0.0819 2.5 5.44e+07 1.23 y 0.93 37:12 97.7 27:15 2.5 0.0819 2.5 5.44e+07 1.23 y 0.93 37:12 97.7 27:12 2.5 0.0819 2.5 5.44e+07 1.23 y 0.94 41:30 92.1 27:12 2.5 0.0819 2.5 5.44e+07 1.23 y 0.96 31:42 94.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Penta-Dioxins 3.92e+07 Hexa-Dioxins 4.19e+07 Hepta-Dioxins 2.32e+07 Tetra-Furans 9.58e+06 Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 00.45 |                |                                         |                                                                                                                |      |
| 4.19e+07 1.26 y 1.10 35.12 90.97 2410 2.5 0.0977 1.56+07 1.03 y 1.13 40.19 46.0 2426 2.5 0.137 95.88+06 0.15 y 1.05 2150 11.3 226+07 1.03 y 1.13 40.19 46.0 2426 2.5 0.0492 17.76+07 1.58 y 1.05 2155 22.6 22.6 2634 2.5 0.0492 2.176+07 1.58 y 1.05 2154 2.5 0.0492 2.176+07 1.58 y 1.05 2144 46.8 2.5 0.0431 89.3 6.46e+07 1.24 y 1.14 34:44 46.8 24.8 2.5 0.0431 89.3 6.46e+07 1.24 y 1.14 34:44 46.8 2715 2.5 0.0819 2.5 5.46e+07 1.23 y 0.93 37:12 97.7 27.5 2.5 0.0819 2.5 5.46e+07 1.23 y 0.93 37:12 97.7 92.9 2.1 28 33:13 93.7 92.9 2.1 28 36:15 92.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hexa-Dioxins 4.19e+07 Hepta-Dioxins 2.32e+07 Tetra-Furans 9.58e+06 Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \ -<br>\ \ \ | 30.39 |                | 0 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 503                                                                                                            |      |
| 2.32e+07 1.03 y 1.13 40119 40.0 2.58e+06 0.75 y 1.05 21150 11.3 2.58e+06 0.75 y 1.05 21150 11.3 2.58e+06 0.75 y 1.05 21150 11.3 2.58e+06 0.75 y 1.05 21150 11.3 2.58e+06 0.75 y 1.05 21150 11.3 2.17e+07 1.53 y 1.05 21143 66.6 2.46e+07 1.24 y 1.14 34144 100 2.46e+07 1.24 y 1.14 34144 100 2.46e+07 1.02 y 1.42 39153 46.8 2.54e+07 1.27 y 0.93 33111 99.6 4.87e+07 0.78 y 0.93 33112 99.7 4.46e+07 1.03 y 0.93 33112 99.7 4.46e+07 1.03 y 0.93 33112 99.7 4.46e+07 0.89 y 0.73 46150 92.9 3.66e+07 0.77 y 1.06 26150 92.9 5.67e+07 0.77 y 1.00 27103 100 5.67e+07 0.79 y 1.00 27103 100 5.34e+07 0.79 y 1.00 27103 100 5.34e+07 0.79 y 1.00 37131 100 5.34e+07 0.79 y 0.92 37105 101 4.53e+07 0.52 y 0.92 37105 101 4.53e+07 0.52 y 0.92 37105 101 4.53e+07 0.52 y 0.92 37105 101 5.37e+07 0.52 y 0.92 37105 101 5.37e+07 0.52 y 0.92 37105 104 4.53e+07 0.52 y 0.92 37105 104 4.56e+07 0.52 y 0.97 37155 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hepta-Dioxins 2.32e+07 Tetra-Furans 9.58e+06 Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~ F          | 35.24 | 0.00           | 0 13 6 00 0                             | יים של היים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אינים אי |      |
| 9.58e+06 0.75 y 1.05 21:50 11.3 9.58e+06 0.75 y 1.05 21:50 11.3 1.76e+07 1.58 y 1.05 21:50 11.3 5.17e+07 1.58 y 1.05 21:50 11.3 6.46e+07 1.54 y 1.05 31:44 100 6.40e+07 1.24 y 1.14 34:44 100 6.40e+07 1.24 y 1.13 27:43 93.7 5.54e+07 1.57 y 0.93 33:11 99.6 4.46e+07 1.57 y 0.93 33:12 97.7 4.87e+07 1.57 y 0.93 37:12 97.7 4.87e+07 1.57 y 0.93 37:12 97.7 4.87e+07 0.78 y 1.13 27:43 92.1 8.07e+07 0.77 y 1.06 26:50 92.9 7.42e+07 0.78 y 0.99 31:42 94.5 5.67e+07 0.79 y 1.00 27:27 100 8.20e+07 0.77 y 1.00 27:27 100 8.20e+07 0.77 y 1.00 27:27 100 8.20e+07 0.77 y 1.00 27:31 100 8.20e+07 0.77 y 1.00 27:31 100 8.20e+07 0.77 y 1.00 37:31 100 8.20e+07 0.77 y 1.00 37:31 100 8.20e+07 0.77 y 1.00 37:31 100 8.20e+07 0.77 y 1.00 37:31 100 8.20e+07 0.52 y 0.92 37:05 101 8.30e+07 0.52 y 0.92 37:05 101 8.30e+07 0.52 y 0.92 37:05 104 8.30e+07 0.52 y 1.07 37:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tetra-Furans 9.58e+06 Penta-Furans 1.76e+07 Ponta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \<br>\       | 40.10 | 0.07           | 400 2.5 0.4                             | 116                                                                                                            |      |
| 1.76e+07 1.58 y 1.05 28:51 22.6 56.6 1447 2.5 0.0785 5.17e+07 1.53 y 1.05 31:43 66.6 1447 2.5 0.0785 5.17e+07 1.53 y 1.05 31:44 100 24.68 1447 2.5 0.0541 2.67e+07 1.02 y 1.42 39:53 46.8 2715 2.5 0.0819 2.67e+07 1.02 y 1.42 39:53 46.8 2715 2.5 0.0819 2.54e+07 1.02 y 1.43 27:43 93.7 27:5 2.5 0.0819 2.5 5.46e+07 1.03 y 0.93 37:11 99.6 25.9 2.1 37:40 92.1 37:40 92.1 37:40 93.3 33:11 99.6 37.7 4.6e+07 1.03 y 0.91 41:30 92.9 37.7 4.6e+07 1.03 y 0.91 41:30 92.9 37.7 4.6e+07 0.77 y 1.06 26:50 92.9 37.3 36:40 0.95 31:42 94.5 5.67e+07 0.52 y 1.28 82.8 82.8 82.0e+07 0.77 y 1.00 27:03 100 87.3 37:31 100 25:37 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 100 37:31 37:55 86.8 82.8 42.8 42.8 42.8 42.8 42.8 42.8 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Penta-Furans 1.76e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , >          | 4 10  | 11.3           | 169 2.5 0.                              |                                                                                                                |      |
| 5.17e+07 1.53 y 1.05 31:43 66.6 6.46e+07 1.24 y 1.14 34:44 100 2.67e+07 1.24 y 1.14 34:44 100 2.67e+07 1.02 y 1.42 39:53 46.8 6.40e+07 0.78 y 1.13 27:43 93.7 6.40e+07 0.78 y 1.13 27:43 93.7 6.40e+07 1.57 y 0.93 33:11 99.6 4.46e+07 1.03 y 0.93 37:12 97.7 4.46e+07 1.03 y 0.93 37:12 97.7 4.66e+07 0.89 y 0.73 46:50 92.9 8.07e+07 0.77 y 1.06 26:50 92.9 7.42e+07 0.52 y 1.28 36:15 82.8 4.02e+07 0.44 y 0.96 31:42 94.5 5.67e+07 0.89 y 0.81 47:09 87.3 6.02e+07 0.77 y 1.00 27:03 100 5.34e+07 1.23 y 1.00 25:27 100 5.34e+07 1.55 y 0.97 32:50 101 4.53e+07 0.52 y 0.97 32:50 101 4.53e+07 0.52 y 0.91 33:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Donte Burness C 170101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , ,          |       | 22.6           | 634 2.5 0.                              | 1.0                                                                                                            |      |
| 6.46e+07 1.24 y 1.14 34:44 100 2468 2.5 0.0541 2.67e+07 1.02 y 1.42 39:53 46.8 2715 2.5 0.0819 6.40e+07 0.78 y 1.13 27:43 93.7 5.54e+07 1.57 y 0.93 33:11 99.6 4.87e+07 1.57 y 0.93 33:12 97.7 4.46e+07 1.03 y 0.93 33:12 97.7 4.46e+07 0.78 y 0.93 33:12 97.7 4.46e+07 0.78 y 0.93 33:12 97.7 4.46e+07 0.78 y 0.93 33:12 97.7 4.46e+07 0.78 y 0.93 33:12 97.7 4.66e+07 0.78 y 0.99 33:12 97.7 4.66e+07 0.79 y 0.96 31:42 94.5 5.67e+07 0.52 y 1.28 36:15 82.8 4.02e+07 0.79 y 0.90 39:52 83.3 3.78e+07 0.79 y 1.00 27:03 100 5.34e+07 0.77 y 1.00 25:27 100 5.34e+07 0.77 y 1.00 37:31 100 4.53e+07 0.52 y 0.97 32:50 101 4.53e+07 0.52 y 0.97 32:50 101 4.53e+07 0.52 y 0.93 37:05 101 4.53e+07 0.52 y 0.93 37:05 104 3.43e+07 0.43 y 0.85 42:20 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | renta-ratails 3.1/e+0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , Y          | -     | 9.99           | 447 2.5 0.                              | 31                                                                                                             |      |
| 6.46e+07 1.24 y 1.14 34:44 100 2488 2.5 0.0541 2.67e+07 1.02 y 1.42 39:53 46.8 2715 2.5 0.0819 6.40e+07 0.78 y 1.42 39:53 46.8 2715 2.5 0.0819 5.54e+07 1.57 y 0.93 33:11 99:6 4.87e+07 1.23 y 0.93 37:12 97.7 4.46e+07 1.03 y 0.91 41:30 92.1 97.7 4.46e+07 1.03 y 0.91 41:30 92.1 92.9 8.07e+07 0.77 y 1.06 26:50 92.9 94.5 94.5 94.5 94.5 94.5 94.5 94.5 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |       | 89.3           |                                         | 89                                                                                                             |      |
| 2.67e+07       1.02 y       1.42       39:53       46.8       2715 2.5 0.0819         6.40e+07       0.78 y       1.13       27:43       93.7         5.54e+07       1.57 y       0.93       33:11       99.6         4.46e+07       1.23 y       0.93       37:12       97.7         4.46e+07       1.03 y       0.91       41:30       92.1         3.66e+07       0.89 y       0.73       46:50       92.9         8.07e+07       0.77 y       1.06       26:50       92.9         8.07e+07       0.77 y       1.06       26:50       92.9         5.67e+07       0.77 y       1.08       36:15       82.8         5.67e+07       0.44 y       0.90       39:52       83.3         3.78e+07       0.44 y       0.90       39:52       83.3         3.78e+07       0.89 y       0.81       47:09       87.3         6.02e+07       0.77 y       1.00       27:03       100         5.34e+07       1.23 y       1.00       37:31       100         5.34e+07       1.25 y       0.97       37:05       101         4.53e+07       1.25 y       0.97       37:05       101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.46e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y 1.1        | 4:4   | 100            | 88 2.5 0.                               |                                                                                                                |      |
| 6.40e+07 0.78 y 1.13 27:43 93.7<br>5.54e+07 1.57 y 0.93 33:11 99.6<br>4.87e+07 1.23 y 0.93 37:12 97.7<br>4.46e+07 1.03 y 0.91 41:30 92.1<br>3.66e+07 0.89 y 0.73 46:50 92.9<br>7.42e+07 0.77 y 1.06 26:50 92.9<br>7.42e+07 0.77 y 1.06 26:50 92.9<br>7.42e+07 0.52 y 1.28 36:15 82.8<br>4.02e+07 0.44 y 0.90 39:52 83.3<br>3.78e+07 0.89 y 0.81 47:09 87.3<br>6.02e+07 0.77 y 1.00 27:03 100<br>8.20e+07 0.77 y 1.00 25:27 100<br>5.34e+07 1.23 y 1.00 25:27 100<br>5.34e+07 1.25 y 0.91 32:50 101<br>4.53e+07 1.29 y 0.92 37:05 101<br>4.53e+07 0.52 y 0.91 36:06 104<br>3.43e+07 0.52 y 0.91 36:06 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.67e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y 1.4        | 915   | 46.8           | 15 2.5 0.                               | 9 47                                                                                                           |      |
| 5.54e+07 1.57 y 0.93 33:11 99.6 4.87e+07 1.23 yy 0.93 37:12 97.7 4.46e+07 1.03 y 0.93 37:12 97.7 4.46e+07 1.03 y 0.91 41:30 92.1 3.66e+07 0.89 yy 0.73 46:50 92.9 7.42e+07 0.77 y 1.06 26:50 92.9 5.67e+07 0.52 y 1.28 36:15 82.8 4.02e+07 0.44 yy 0.90 39:52 83.3 3.78e+07 0.89 yy 0.81 47:09 87.3 6.02e+07 0.77 y 1.00 27:03 100 8.20e+07 0.77 y 1.00 25:27 100 5.34e+07 1.23 yy 1.00 37:31 100 5.34e+07 1.25 yy 0.91 32:50 101 4.53e+07 0.52 y 0.91 36:06 104 5.343e+07 0.52 y 0.91 36:06 104 5.343e+07 0.52 y 0.95 37:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.406+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1          | 4     |                |                                         | Rec<br>3 7 1                                                                                                   |      |
| 4.87e+07 1.23 y 0.93 37:12 97.7 4.46e+07 1.03 y 0.91 41:30 92.1 3.66e+07 0.89 y 0.73 46:50 92.9 7.42e+07 0.77 y 1.06 26:50 92.9 7.42e+07 0.77 y 1.06 26:50 92.9 5.67e+07 0.52 y 1.28 36:15 82.8 4.02e+07 0.44 y 0.90 39:52 83.3 3.78e+07 0.89 y 0.81 47:09 87.3 6.02e+07 0.77 y 1.00 27:03 100 5.34e+07 1.23 y 1.00 25:27 100 5.34e+07 1.23 y 1.00 25:27 100 5.34e+07 1.25 y 0.91 36:06 101 4.53e+07 1.29 y 0.92 37:05 101 5.37e+07 0.52 y 0.91 36:06 104 5.37e+07 0.52 y 0.91 36:06 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.540+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 33,11 |                |                                         | 1.66                                                                                                           |      |
| 4.46e+07 1.03 y 0.91 41:30 92.1 3.66e+07 0.89 y 0.73 46:50 93.3 8.07e+07 0.77 y 1.06 26:50 92.9 7.42e+07 1.54 y 0.96 31:42 94.5 5.67e+07 0.52 y 1.28 36:15 82.8 4.02e+07 0.44 y 0.90 39:52 83.3 3.78e+07 0.89 y 0.81 47:09 87.3 6.02e+07 0.77 y 1.00 27:03 100 5.34e+07 1.23 y 1.00 25:27 100 5.34e+07 1.23 y 1.00 25:27 100 3.40e+07 0.52 y 0.91 36:06 101 4.53e+07 1.29 y 0.92 37:05 101 5.37e+07 0.52 y 0.91 36:06 104 3.43e+07 0.52 y 0.91 36:06 104 3.43e+07 0.52 y 0.91 36:06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.87e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 37:12 | ۱r             |                                         | 10000                                                                                                          |      |
| 3.66e+07 0.89 y 0.73 46:50 93.3<br>8.07e+07 0.77 y 1.06 26:50 92.9<br>7.42e+07 1.54 y 0.96 31:42 94.5<br>5.67e+07 0.52 y 1.28 36:15 82.8<br>4.02e+07 0.44 y 0.90 39:52 83.3<br>3.78e+07 0.89 y 0.81 47:09 87.3<br>6.02e+07 0.79 y 1.00 27:03 100<br>8.20e+07 0.77 y 1.00 25:27 100<br>5.34e+07 1.23 y 1.00 25:27 100<br>3.40e+07 0.51 27:45 103<br>7.32e+07 1.29 y 0.91 32:50 101<br>4.53e+07 1.29 y 0.92 37:05 101<br>5.37e+07 0.52 y 0.91 36:06 104<br>3.43e+07 0.52 y 0.91 36:06 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.46e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . >          | 41:30 | . 0            |                                         | 1:10                                                                                                           |      |
| 8.07e+07 0.77 y 1.06 26:50 92.9 7.42e+07 1.54 y 0.96 31:42 94.5 5.67e+07 0.52 y 1.28 36:15 82.8 4.02e+07 0.44 y 0.90 39:52 83.3 3.78e+07 0.89 y 0.81 47:09 87.3 6.02e+07 0.79 y 1.00 27:03 100 8.20e+07 0.77 y 1.00 25:27 100 5.34e+07 1.23 y 1.00 37:31 100 3.40e+07 0.51 27:45 103 7.32e+07 1.29 y 0.92 37:05 101 4.53e+07 0.52 y 0.91 36:06 104 5.37e+07 0.52 y 0.85 42:20 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.66e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ``\          | 46:50 | 1 (7)          |                                         | 1.70                                                                                                           |      |
| 7.42e+07 1.54 y 0.96 31:42 94.5 5.67e+07 0.52 y 1.28 36:15 82.8 4.02e+07 0.44 y 0.90 39:52 83.3 3.78e+07 0.89 y 0.81 47:09 87.3 6.02e+07 0.79 y 1.00 27:03 100 8.20e+07 0.77 y 1.00 25:27 100 5.34e+07 1.23 y 1.00 37:31 100 3.40e+07 0.51 27:45 103 7.32e+07 1.29 y 0.92 37:05 101 4.53e+07 1.29 y 0.92 37:05 101 5.37e+07 0.52 y 0.91 36:06 104 5.33e+07 0.52 y 0.85 42:20 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.07e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . >          | .53   | ~              |                                         | 92.9                                                                                                           |      |
| 5.67e+07 0.52 y 1.28 36:15 82.8 4.02e+07 0.44 y/ 0.90 39:52 83.3 3.78e+07 0.89 y/ 0.81 47:09 87.3 6.02e+07 0.79 y/ 1.00 27:03 100 8.20e+07 0.77 y 1.00 25:27 100 5.34e+07 1.23 y/ 1.00 37:31 100 3.40e+07 0.51 27:45 103 7.32e+07 1.55 y/ 0.97 32:50 101 4.53e+07 1.29 y 0.92 37:05 101 5.37e+07 0.52 y/ 0.91 36:06 104 3.43e+07 0.52 y/ 0.85 42:20 99.9 3.43e+07 0.52 y/ 1.07 37:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.42e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1            | 1.4   | 4              |                                         | 18.46                                                                                                          |      |
| 4.02e+07       0.44 y/ 0.90       39:52       83.3       8         3.78e+07       0.89 y/ 0.81       47:09       87.3       8         6.02e+07       0.79 y/ 1.00       27:03       100         8.20e+07       0.77 y/ 1.00       25:27       100         5.34e+07       1.23 y/ 1.00       37:31       100         3.40e+07       0.51       27:45       101         4.53e+07       1.55 y/ 0.97       32:50       101         4.53e+07       0.52 y/ 0.92       37:05       101         5.37e+07       0.52 y/ 0.91       36:06       104         3.43e+07       0.52 y/ 0.95       42:20       99.9         4.96e+07       0.52 y/ 1.07       37:55       86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.67e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,            | Ξ     | 2              |                                         | 82.8                                                                                                           |      |
| 3.78e+07 0.89 y/ 0.81 47:09 87.3 6.02e+07 0.79 y/ 1.00 27:03 100 5.34e+07 0.77 y 1.00 25:27 100 3.40e+07 1.23 y/ 1.00 37:31 100 7.32e+07 1.55 y/ 0.51 27:45 103 7.32e+07 1.55 y/ 0.97 32:50 101 4.53e+07 0.52 y/ 0.92 37:05 104 5.37e+07 0.43 y/ 0.85 42:20 99.9 4.96e+07 0.52 y/ 1.07 37:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.02e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | `            | 5     | 3              |                                         | 83.3                                                                                                           |      |
| 6.02e+07 0.79 yr 1.00 27:03 100.  8.20e+07 0.77 y 1.00 25:27 100  5.34e+07 1.23 yr 1.00 37:31 100  3.40e+07 0.51 27:45 103  7.32e+07 1.55 yr 0.97 32:50 101  4.53e+07 1.29 y 0.92 37:05 101  5.37e+07 0.52 yr 0.91 36:06 104  3.43e+07 0.52 yr 0.95 42:20 99:9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.78e+07 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 89 X/ 0.     | 7:0   | 2              |                                         | 7.3                                                                                                            |      |
| 8.20e+07 0.77 y 1.00 25:27 100<br>5.34e+07 1.23 y 1.00 37:31 100<br>3.40e+07 1.25 y 0.51 27:45 103<br>7.32e+07 1.55 y 0.97 32:50 101<br>4.53e+07 1.29 y 0.92 37:05 101<br>5.37e+07 0.52 y 0.91 36:06 104<br>3.43e+07 0.43 yr 0.85 42:20 99.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.02e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7            | -     | 100            |                                         | •                                                                                                              |      |
| 5.34e+07 1.23 y/ 1.00 37:31 100 3.40e+07 1.25 y/ 0.51 27:45 103 7.32e+07 1.55 y/ 0.97 32:50 101 4.53e+07 1.29 y/ 0.92 37:05 101 5.37e+07 0.52 y/ 0.91 36:06 104 3.43e+07 0.43 y/ 0.85 42:20 99.9 4.96e+07 0.52 y/ 1.07 37:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.20e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , A          | 10    | 100            |                                         | 1                                                                                                              |      |
| 3.40e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.34e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × 1          | 7     | 100            |                                         |                                                                                                                |      |
| 3.40e+07 1.55 y 0.51 2/145 103 7.32e+07 1.55 y 0.97 32:50 101 4.53e+07 1.29 y 0.92 37:05 101 5.37e+07 0.52 y 0.91 36:06 104 3.43e+07 0.43 y 0.85 42:20 99.9 4.96e+07 0.52 y 1.07 31:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | •     |                |                                         |                                                                                                                | 4    |
| 4.56=407 0.52 y 0.97 31:55 101<br>5.37e+07 0.52 y 0.91 36:06 104<br>4.96e+07 0.52 y 1.07 31:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.40e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | }            | 27:45 | 103            |                                         | •                                                                                                              | )    |
| 5.37e+07 0.52 y 0.91 36:06 104<br>5.343e+07 0.43 yr 0.85 42:20 99.9<br>4.96e+07 0.52 y 1.07 31:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.530+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>≿</b> ;   | 37:05 | 101            |                                         | 101                                                                                                            | 1000 |
| 3.43e+07 0.43 yr 0.85 42:20 99.9 99.9 4.96e+07 0.52 vr 1.07 37:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.370+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .\           | 36.06 | 701            |                                         | 101 Date: AC                                                                                                   | 3    |
| 4.96e+07 0.52 v/1.07 37:55 86.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.43e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٠, ১         | 42:20 | *OT 6          |                                         |                                                                                                                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.96e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : >          | S     | 8 9            |                                         |                                                                                                                |      |

<u>F</u>

3:

Ł

**8**. c

20-FEB-2001 12:32 OPUSquan

Page 1

Page 7 of

FORM 5
PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS

Lab Name: Alta Analytical Perspectives Episode No.:

Contract No.

SAS No. 1

Instrument ID: MM-1

Initial Calibration Date: 10/5/00

RT Window Data Filename: 010214Pl S#1 Analysis Date: 14-FEB-01 Time: 11:05:47

DB-5 IS Data Filename: 010214Pl S#1 Analysis Date: 14-FEB-01 Time: 11:05:47

Time:

Analysis Date: DB\_225 IS Data Filename:

Date: 24 Fcb & Reviewer

|  | ABSC | OLUTE |  | ABSOLUTE |
|--|------|-------|--|----------|

|                         | ABSOLUTE |                         | ABSOLUTE |
|-------------------------|----------|-------------------------|----------|
|                         | RT       | ISOMERS                 | RT       |
| 1,3,6,8-TCDD (F)        | 24:00    | 1,3,6,8-TCDF (F)        | 21:50    |
| 1,2,8,9-TCDD (L)        | 28:45    | 1,2,8,9-TCDF (L)        | 28:54    |
| 1,2,4,7,9-PeCDD (F)     | 30 139   | 1,3,4,6,8-PeCDF (F)     | 28:51    |
| 1,2,3,8,9-PeCDD (L)     | 33:39 /  | 1,2,3,8,9-PeCDF (L)     | 33:56    |
| 1,2,4,6,7,9-HXCDD (F)   | 35:24    | 1,2,3,4,6,8-HxCDF (F)   | 34 144 ~ |
| 1,2,3,7,8,9-HxCDD (L)   | 37:32    | 1,2,3,7,8,9-HxCDF (L)   | 37:56    |
| 1,2,3,4,6,7,9-HpCDD (F) | 40:19    | 1,2,3,4,6,7,8-HpCDF (F) | 39153    |
| 1,2,3,4,6,7,8-HpCDD (L) | 41:31/   | 1,2,3,4,7,8,9-HpCDF (L) | 42:20    |
|                         |          |                         |          |

(F) = First eluting isomer (DB-5); (L) = Last eluting isomer (DB-5).

ISOMER SPECIFICITY (IS) TEST STANDARD RESULTS

COMPARED PEAKS (1) & VALLEY HEIGHT BETWEEN

<25%

Analyst: 646

Date: 30 Fcb 01



•

\*





Volts 0.4570 Volts 0.6236 393.01534 355.01475 354.97925 392.97604 392.93675 354.94375 PPM 200 PPM 200 Volts 0.8582 Volts 1.0178 Volts 0.2335 343.01355 381.01414 417.01774 Peak Locate Examination:14-FEB-2001:11:02 File:010214P1 Experiment:0CDD Function:2 Reference:PFK2 342.97925 380.97604 416.97604 3 342.94495 380.93795 416.93435 PPM 200 PPM 200 PPM 200 Volts 1.1364 Volts 0.3424 Volts 0.4733 331.01235 405.01654 367.01595 330.97925 366.97925 404.97604 Z 330.94615 366.94255 404.93555 PPM 200 PPM 200 PPM 200











7

w.d







...



7 - 1



| \ |                                                                                                                                                                                                                               | 1.586      | 281.6   | 3.025 | 44:00 Time                                | 1.526            | 1.256            | 6.085 | 3.0   | 44:00 Time                       | 2.6E6  | 1.556   | 5.155 | 44:00 Time                                | 926.53  | E4.7E6           | 2.456                                    | 44:00 Time                                | 3.483                          | 43:32<br>A785-991                                                   | WALLEAU WINNEY TO WAY TO OBE |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-------|-------------------------------------------|------------------|------------------|-------|-------|----------------------------------|--------|---------|-------|-------------------------------------------|---------|------------------|------------------------------------------|-------------------------------------------|--------------------------------|---------------------------------------------------------------------|------------------------------|
|   |                                                                                                                                                                                                                               |            |         |       | 43:00                                     |                  |                  |       |       | 43:00                            |        |         |       | 43:00                                     |         |                  |                                          | 43:00                                     | •                              | MANA A MAL A STATE                                                  | 43.00                        |
|   | tospec-UltimaE<br>Expt: OCDD Noise: 376                                                                                                                                                                                       | 42,20      | A8:0/58 |       | 42:00<br>Expt: OCDD Noise: 389            |                  | 42:20<br>A5.97E6 |       |       | Expt: OCDD Noise: 519            | 42,20  | AI:03E/ |       | 42:00<br>Expt: OCDD Noise: 849            |         | 42:19<br>A2.40E7 |                                          | 42:00<br>Expt: OCDD Noise: 313            | 31<br>3E4                      | 41:56 42:19<br>A1:44E3 A2:08E8<br>WMM M M M M M                     | 42:00                        |
|   | GC E1+ Voltage SIR Au<br># 3 File Text: AAP DB5<br>3,0.10%,750.0,0.00%,F,F)                                                                                                                                                   |            |         |       | 41:00<br>PKD(5,5,3,0.10%,750.0,0.00%,F,F) |                  |                  |       | 00,11 | PKD(5,5,3,0.10%,750.0,0.00%,F,F) |        |         |       | 41:00<br>PKD(5,5,3,0.10%,750.0,0.00%,F,F) |         |                  |                                          | 41:00<br>PKD(5,5,3,0.10%,750.0,0.00%,F,F) | 41:<br>40:58 Al.3<br>A2.61E3 I | -                                                                   | 41100                        |
| \ | File: 010214P1 Acq: 14-FEB-2001 11:05:47 GC EI+ Voltage SIR Autospec-UltimaE<br>Sample# 1 Text: DB5 CPSM / M23 CS3 Vial# 3 File Text: AAP DB5<br>407.7818 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD | A7.37E6    |         |       | 0:                                        | 39153<br>A7.23E6 |                  |       | 40:00 | 6                                | AI. 4E |         |       | 40:00<br>BSUB(10000,15,-3.0) PKD(5,5,3    | A2.78E7 |                  |                                          | 40:00<br>BSUB(10000,15,-3.0) PKD(5,5,3    |                                | AS: 37.83 AS: 5883 AZ: 3583 AND AND AND AND AND AND AND AND AND AND | 40,00                        |
|   | File: 010214P1<br>Sample# 1 Text<br>407.7818 F:4 BS1                                                                                                                                                                          | #001<br>08 | 40      | 20-   | 409.7788 F:4 BSU                          | 100%             | 600              | 40.   | 0     | 417.8253 F:4 BSU                 | 80     | 40      | 20-   | 8220 F:4                                  | 100%    | 09               | 20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | .7165 F:4                                 | 1008<br>803                    | A1 39124                                                            | A MAN AS A PO                |

<del>.</del>

.

40, 1

.

.

# 4 .

\$..}

**8.7** 

| 1.4E6<br>1.1E6<br>1.1E6<br>1.8.3E5<br>1.5.E5<br>1.8E5                                                                                                                                                                                                       | 49:00 Time 1.6E6 1.3E6 9.5E5 6.3E5 0.0E0                                                   | 49:00 Time<br>2.5E6<br>2.0E6<br>1.5E6<br>5.0E5       | 49:00 Time 2.8E6 2.3E6 1.7E6 1.1E6 5.7E5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49:00 Time<br>9.8E4<br>7.9E4<br>5.9E4<br>5.9E4                                                | 49:00 Time |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                                                             | 48:00                                                                                      | 48:00                                                | 48:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48:00                                                                                         | 48:00      |
| ge SIR Autospec-UltimaE .: AAP DB5 0.00%,F,F) Expt: OCDD Noise: 181 47:10 A9.79E6                                                                                                                                                                           | Expt: OCDD Noise: 273 47:10 A1:11E7                                                        | Expt: OCDD Noise: 114 47:09 A1:78E7                  | Expt: OCDD Noise: 1887 47:09 A2.01E7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47:00<br>Expt: OCDD Noise: 94                                                                 | 47:00      |
| 05:47 GC EI+ Voltage SIR Auto<br>Vial# 3 File Text: AAP DB5<br>(5,5,3,0.10%,750.0,0.00%,F,F)                                                                                                                                                                | 0.00%, F, F)                                                                               | 46:00 PKD(5,5,3,0.10%,750.0,0.00%,F,F)               | 0.00%, F, F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00%, F, F)                                                                                  | 46:00      |
| File: 010214Pl Acq: 14-FEB-2001 ll:05:47 GC EI+ Volta<br>Sample# 1 Text: DB5 CPSM / M23 CS3 Vial# 3 File Text<br>441.7428 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,<br>100%<br>80_<br>60_<br>60_<br>60_<br>60_<br>60_<br>60_<br>60_<br>60_<br>60_<br>6 | 443.7398 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,10%,750.0) PKD(5,5,3,0.10%,750.0,40 | 453.7830 F:5 BSUB(10000,15,-3.0) PKD( 1008 603 403 0 | 455.7801 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100% | 46i00<br>513.6775 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,<br>100%<br>803<br>603<br>403 | 45:00      |

| _           | 1                                  |                    |                                    |                     |                                         | <u> </u>                  |              |                 |                                                             |                             |           |              |                                    |                                                                                  |                                            |           |              |                |
|-------------|------------------------------------|--------------------|------------------------------------|---------------------|-----------------------------------------|---------------------------|--------------|-----------------|-------------------------------------------------------------|-----------------------------|-----------|--------------|------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------|-----------|--------------|----------------|
|             | Page 7 of 7                        |                    |                                    |                     |                                         |                           |              |                 |                                                             |                             |           |              |                                    |                                                                                  |                                            |           |              |                |
|             |                                    |                    | Reviewer:                          | Date: 24 Rb Ø1      |                                         |                           |              |                 |                                                             |                             |           |              |                                    |                                                                                  |                                            |           | Analyst: Off | Date: 20   PSD |
|             |                                    |                    |                                    |                     | 6:16:11                                 | CONC.<br>RANGE<br>(ng/mL) | 3.75 - 6.25  | 18.75-31.25     | 18.75-31.25<br>18.75-31.25<br>18.75-31.25                   | 18.75-31.25                 | 37 - 65   | 3.75 - 6.25  | 18.75-31.25<br>18.75-31.25         | 18.75-31.25<br>18.75-31.25<br>18.75-31.25<br>18.75-31.25                         | 18.75-31.25<br>18.75-31.25                 | 35 - 65   |              |                |
|             | ATION                              | .ves               |                                    |                     | Analysis Date: 14-FEB-01 Time: 16:16:11 | CONC.<br>FOUND            | 5.20         | 26.07           | 25.54 / 25.48 / 25.82 / 25.82                               | 24.53 /                     | 50.91     | 4.50         | 23.69 / 23.63 /                    | 24.61/<br>24.34/<br>24.75/<br>24.73/                                             | 23.58                                      | 47.75 /   |              |                |
|             | VERIFIC                            | Perspectives       |                                    |                     | 91 14-F                                 | Pass                      | γ            | Α.              | > > >                                                       | <b>&gt;</b>                 | 7         | Y            | > >                                | <b>&gt;</b> > > >                                                                | >> >                                       | γ         |              |                |
| Page 1      | PCDD/PCDF CALIBRATION VERIFICATION | Alta Analytical Pe |                                    | GC Column ID: DB-5  | alysis Dat                              | QC<br>LIMITS              | 0.65-0.89    | 1.32-1.78       | 1.05-1.43<br>1.05-1.43<br>1.05-1.43                         | 0.88-1.20                   | 0.76-1.02 | 0.65-0.89    | 1.32-1.78                          | 1.05-1.43<br>1.05-1.43<br>1.05-1.43<br>1.05-1.43                                 | 0.88-1.20<br>0.88-1.20                     | 0.76-1.02 |              |                |
|             | )/PCDF C                           | Alta An            | 00/50,                             | Column              | S#7 A                                   | ION<br>ABUND.<br>RATIO    | 0.78         | 1.52            | 1.25                                                        | 1.03                        | 0.88      | 97.0         | 1.53                               | 1.22<br>1.22<br>1.21<br>1.21                                                     | 1.02                                       | 0.88      |              |                |
| 01 12:36    | PCDI                               |                    | Initial Calibration Date: 10/05/00 |                     | e: 010214P1                             | M/Z'S<br>FORMING<br>RATIO | M/M+2        | M+2/M+4         | M+2/M+4<br>M+2/M+4<br>M+2/M+4                               | M+2/M+4                     | M+2/M+4   | M/M+2        | M+2/M+4<br>M+2/M+4                 | M+2/M+4<br>M+2/M+4<br>M+2/M+4<br>M+2/M+4                                         | M+2/M+4<br>M+2/M+4                         | M+2/M+4   |              |                |
| 20-FEB-2001 |                                    |                    | al Calibrat                        | Instrument ID: MM-1 | VER Data Filename: 010214P1             | NALYTES                   | -TCDD        | , 8-PeCDD       | 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD | 1,2,3,4,6,7,8-HpCDD M+2/M+4 |           | TCDF         | 8-PecDF<br>8-PecDF                 | 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF | 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF |           |              |                |
| OPUSquan    |                                    |                    | Initi                              | Instr               | VER DA                                  | NATIVE ANALYTES           | 2,3,7,8-TCDD | 1,2,3,7,8-PeCDD | 1,2,3,4, 1,2,3,6,                                           | 1,2,3,4,                    | осър      | 2,3,7,8-TCDF | 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF | 1,2,3,4,1,2,3,6,1,2,3,4,6,1,2,3,7,6                                              | 1,2,3,4,                                   | OCDF      |              |                |

ł

i. .

ps. 148

• •

. ..

4- 3

## PCDD/PCDF CALIBRATION VERIFICATION

#### Alta Analytical Perspectives

Initial Calibration Date: 10/05/00

GC Column ID: DB-5 Instrument ID: MM-1

VER Data Filename: 010214Pl S#7 Analysis Date: 14-FEB-01 Time: 16:16:11

Date: 24 E56

Reviewer:

| ě.                      | M/Z'S<br>FORMING | ION<br>ABUND. | 8         |             | CONC.  | CONC.<br>RANGE      |  |
|-------------------------|------------------|---------------|-----------|-------------|--------|---------------------|--|
| LABELED COMPOUNDS       | RATIO            | RATIO         | LIMITS    | Pass        | FOUND  | (ng/mr)             |  |
| 13C-2,3,7,8-TCDD        | M/M+2            | 0.79          | 0.65-0.89 | <b>&gt;</b> | 95.8   | 70.0 - 130.0        |  |
| 13C-1,2,3,7,8-PeCDD     | M+2/M+4          | 1.55          | 1.32-1.78 | >           | 99.7   | 70.0 - 130.0        |  |
| 13C-1,2,3,6,7,8-HxCDD   | M+2/M+4          | 1.26          | 1.05-1.43 | >           | 91.9 / | 70.0 - 130.0        |  |
| 13C-1,2,3,4,6,7,8-HpCDD | M+2/M+4          | 1.04          | 0.88-1.20 | <b>&gt;</b> | 94.5   | 70.0 - 130.0        |  |
| 13C-0CDD                | M+2/M+4          | 0.90          | 0.76-1.02 | <b>&gt;</b> | 95.8   | 70.0 - 130.0        |  |
| 13C-2, 3, 7, 8-TCDF     | M/M+2            | 0.77          | 0.65-0.89 | · ^         | 92.1   | 70.0 - 130.0        |  |
| 13C-1,2,3,7,8-PeCDF     | M+2/M+4          | 1.55          | 1.32-1.78 | <b>&gt;</b> | 92.4/  | 70.0 - 130.0        |  |
| 13C-1,2,3,6,7,8-HxCDF   | M/M+2            | 0.52          | 0.43-0.59 | · >-        | 80.4   |                     |  |
| 13C-1,2,3,4,6,7,8-HpCDF | M/M+2            | 0.44          | 0.37-0.51 | <b>&gt;</b> | 82.3   |                     |  |
| 13C-OCDF                | M+2/M+4          | 0.89          | 0.76-1.02 | ^           | 89.4   | 70.0 - 130.0        |  |
|                         |                  |               |           |             |        |                     |  |
| 37C1-2,3,7,8-TCDD       |                  |               |           |             | 102.4  | 75.0 - 125.0        |  |
| 13C-2,3,4,7,8-PeCDF     | M+2/M+4          | 1.56          | 1.32-1.78 | ٨           | 103.1  | 75.0 - 125.0        |  |
| 13C-1,2,3,4,7,8-HxCDD   | M+2/M+4          | 1.25          | 1.05-1.43 | <b>&gt;</b> | 105.1  | 75.0 - 125.0        |  |
| 13C-1,2,3,4,7,8-HxCDF   | M/H+2            | 0.51          | 0.43-0.59 | <b>&gt;</b> | 106.5  | 75.0 - 125.0        |  |
| 13C-1,2,3,4,7,8,9-HpCDF | M/M+2            | 0.44          | 0.37-0.51 | ٨           | 105.2  | 75.0 - 125.0        |  |
|                         |                  |               |           |             |        |                     |  |
| 13C-1,2,3,7,8,9-HxCDF   | M/M+2            | 0.51          | 0.43-0.59 | *           | 88.0 / | 88.0 / 75.0 - 125.0 |  |

Analyst: 6H5

Date: 30 Fe 60/

| OPUSquan      | 20-FEB-2001 12:37                        |                              | Page 1                          |                      |                | ١                                    | \                         |                        |                 |                        |             |
|---------------|------------------------------------------|------------------------------|---------------------------------|----------------------|----------------|--------------------------------------|---------------------------|------------------------|-----------------|------------------------|-------------|
| Client ID; DB | ID: DB5 CPSM / M23 CS3                   |                              | Filename: 0102<br>GC Column ID: | 010214P1<br>ID: db-5 | S: 7<br>ICal   | 7 Acq: 14-FEB-01<br>ICal: MM1_M23_0: | 16:16:11<br>wt/vol: 1.000 | 0                      | Concal          | 010214P1-<br>010214P1- | Page 7 of 7 |
|               | Name<br>2,3,7,8-TCDD<br>1,2,3,7,8-PeCDD  | Resp<br>4.10e+06<br>1.40e+07 | RA<br>0.78 y<br>1.52 y          | RRF<br>1.26<br>1.01  | RT 27:44 33:11 | Conc Qualif<br>5.20<br>26.1          | . CDE                     | 18e<br>793<br>726      | DL DL DL 0.0176 |                        |             |
|               | 1,2,3,6,7,8-HxCDD                        |                              |                                 | 1.02                 | 37:13          | 25.5<br>25.8                         |                           | 945<br>945<br>245<br>2 |                 | Roufower               | 3           |
|               | 1,2,3,4,6,7,8-HpCDD ocdD                 | 1.18e+07<br>1.83e+07         |                                 | 1.13                 | 41:30          | 24.5                                 |                           | 100                    |                 | 2.4                    | Tab of      |
|               | 2,3,7,8-TCDF                             | 3.57e+06                     | 0.76 ×                          | 1.05                 | 26151          | 4.50                                 |                           | 1398 2.5               |                 | Date                   | }           |
|               | 2,3,4,7,8-PeCDF                          |                              |                                 | 1.05                 | 32:50          | 23.6                                 |                           | 77                     | 0.0395          |                        |             |
|               | 1,2,3,6,7,8-HXCDF                        |                              | 1.22 y                          | 1.24                 | 36:15          | 24.3                                 |                           | 3321 2.5<br>3321 2.5   |                 |                        |             |
|               | 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF   | 1.48e+07                     | 1.21 y                          | 1.16                 | 36155          | 24.7                                 | . •                       | 2 0                    |                 |                        |             |
|               | 1,2,3,4,6,7,8-HpCDF                      |                              | , A                             | 1.54                 | 39:52          | 23.6                                 |                           | 7 7                    |                 |                        |             |
| →             | , 2, 3, 4, 1, 8, 9-HPCDF<br>OCDF         | 1.14e+07<br>1.98e+07         |                                 | 1.30                 | 42:20<br>47:09 | 23.6                                 |                           | 3009 2.5<br>1658 2.5   |                 |                        |             |
| Ě             | Total Tetra-Dioxing                      | 1.640+07                     | v 77 v                          | 1.26                 | 23.60          | 9                                    |                           |                        |                 | EMPC                   |             |
| Ť             | Total Penta-Dioxing                      | 3.71e+07                     | .54                             | 1.01                 |                | 0.69                                 |                           | , ,                    | 0.0319          | 69.2                   |             |
| Ė             | Total Hexa-Dioxing                       | 3.75e+07                     | >-                              | 1.10                 | 35:23          | 79.6                                 | 1                         | 945 2.                 | 0.0909          | 80.1                   |             |
| 1             | Total Tetra-Furans                       | 9.06e+06                     | > >                             | 1.13                 | 40:19          | 11.4                                 | 7                         | 2277 2.5<br>1398 2.5   | 0.152           | 45.7                   |             |
| 1st           | Fnc.                                     | 1.66e+07                     |                                 | 1.05                 | ŭ              | 23.1                                 | . 2                       | 814 2.                 | 0.0872          | 23.2                   |             |
|               | Total Penta-Furans<br>PeCDF Totals:      | 4.81e+07                     |                                 | 1.05                 | 31:43          | 66.9<br>90.0                         | П                         | 2.                     | 0.0398          | r<br>0                 |             |
| r             | Total Hexa-Furans<br>Total Hepta-Furans  | 5.94e+07<br>2.49e+07         | 1.22 y 1                        | 1.14                 | 34:44          | 102                                  | .,, (**                   | 3321 2.5               | 0.0813          | 102                    |             |
|               |                                          |                              | ,                               |                      | ١.             |                                      | •                         | •                      | •               | Rec 47.0               |             |
| •             | 13C-2,3,7,8-TCDD                         | 6.26e+07                     | 1                               |                      | 27:43          | 95.8                                 |                           |                        |                 |                        |             |
| 130-          | 13C-1,2,3,6,7,8-FECDD                    | 4.28e+07                     | 1.26 V 0                        | 56.0                 | ש ה            | 99.7                                 |                           |                        |                 | 12.66                  |             |
| 13C-1,        | 13C-1,2,3,4,6,7,8-HpCDD                  |                              | <b>*</b> >-                     |                      | 41:29          | 94.5                                 |                           |                        |                 | 94.5                   |             |
|               | 13C-0CDD                                 |                              | >                               | .73                  | 46:49          | 95.8                                 |                           |                        |                 | 95.8                   |             |
| 13            | 13C-1,2,3,7,8-TCDF                       | 7.58e+07                     | × >                             | 90*                  | 26:49          | 92.1                                 |                           |                        |                 |                        |             |
| 13C-          | .1,2,3,6,7,8-HXCDF                       |                              |                                 | .28                  | 36:14          | 80.4                                 |                           |                        |                 | 92.4                   |             |
| 130-1,        | 13C-1,2,3,4,6,7,8-HpCDF                  |                              | ۲,                              | .90                  | 39:51          | 82.3                                 |                           |                        |                 | 82.3                   |             |
|               | 13C-0CDF                                 | 3.62e+07                     |                                 | .81                  | 47:08          | 89.4                                 |                           |                        |                 |                        |             |
| RS/RT         | 13C-1,2,3,4-TCDD                         | .76e+07                      | 0.80 yr 1                       | . 00                 | 27:03          | 100                                  |                           |                        |                 |                        |             |
| RS/RT 13C-    | 13C-1,2,3,4-TCDF                         | 7.76e+07<br>4.99e+07         | ~>                              | 8 8                  | 25:26          | 100                                  |                           |                        |                 | ı                      |             |
|               |                                          |                              | •                               |                      |                | 9                                    |                           |                        |                 | Analyst: 6             | 0,40        |
| 13            | 37C1-2,3,7,8-TCDD<br>13C-2,3,4,7,8-PeCDF | 3.30e+07<br>6.90e+07         | ¥                               | 0.51 2               | 37:44          | 102                                  |                           |                        |                 | 102                    |             |
| 130-          | 1,2,3,4,7,8-HxCDD                        | 4.15e+07                     | 1.25 y 0                        |                      | 37:05          | 105                                  |                           |                        |                 | 105 Date: 20FC601      | 1090        |
| 130-1         | 1,2,3,4,7,8-HXCDF<br>2,3,4,7,8,9-HpCDF   | 4.98e+07<br>3.33e+07         | 。。<br>〉                         | .91                  | 36:06          | 106<br>105                           |                           |                        |                 | 1061                   | -           |
| 13C-          | 1,2,3,7,8,9-HXCDF                        | 4.69e+07                     | .51 2/ 12                       | .07                  | 17:54          | 88.0                                 |                           |                        |                 | 88.0 /                 |             |
|               |                                          |                              |                                 |                      |                |                                      |                           |                        |                 |                        |             |

. .

6 4

. .

\* 1

e 2

•-

- :









e i





|                                                                                                                                                                                                             | 1.856                  | 1.586 | 1.126 | 7.325 | 3.755 | _       | 39:00 Time |                                           | 1.486 | 2 1 |     | E5.7E5 | £2.9E5           | 20,00 |                                                    | 742   | 0 4 F | 3.886 | 2 4 5 5 | 1 386 | 0 60 0 | 39:00 Time |                                           | F5.2E6          | £4.2E6 | 3.1E6 | £2.1E6 | 1.086 | 39:00 Time | 3                           | 38:37 38:59 4.0E7            | 3.257    |    | 1.657 | 8.056 | 20.0E0 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|-------|-------|-------|---------|------------|-------------------------------------------|-------|-----|-----|--------|------------------|-------|----------------------------------------------------|-------|-------|-------|---------|-------|--------|------------|-------------------------------------------|-----------------|--------|-------|--------|-------|------------|-----------------------------|------------------------------|----------|----|-------|-------|--------|
|                                                                                                                                                                                                             |                        |       |       |       |       |         | 38:00      |                                           |       |     |     |        |                  | 00,00 | 00.00                                              |       |       |       |         |       |        | 38:00      |                                           |                 |        |       |        |       | 18,00      |                             | 38:05 38:27                  |          | •  |       |       | 00,00  |
| maE<br>CCDD Noise: 371                                                                                                                                                                                      | 37:06<br>A6.91E6 37:31 |       |       |       |       |         |            | EXPC: OCUP NOIBE: 304                     |       |     |     |        |                  |       | OCDD Noise: 254                                    | 37:05 |       |       |         |       |        | 37:00      | OCDD Noise:                               | A1.84E7 A2.23E7 |        |       |        |       | 327.00     |                             | 37:0537:19 37:28 37:43 37:58 |          |    |       |       | 00,11  |
| <pre>2214P1 Acq: 14-FEB-2001 16:16:11 GC EI+ Voltage SIR Autospec-UltimaE 7 Text: DBS CPSM / M23 CS3 Vial# 3 File Text: AAP DBS S:7 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OC</pre> |                        |       |       |       |       |         |            | , O. UU&, F, F)                           |       |     |     |        |                  |       | 36:00<br>0.10%,750.0,0.00%,F,F) Expt:              |       |       |       |         |       |        |            | 10%,750.0,0.00%,F,F) Expt:                |                 |        |       |        |       | 20,00      |                             | 36:09 36:25 36:41 36:48      | <b>}</b> |    |       |       |        |
| EB-2001 16:16:11 GC EI+<br>/ M23 CS3 Vial# 3 File<br>00,15,-3.0) PKD(5,5,3,0.1                                                                                                                              |                        |       |       |       | 35:23 | A/.3463 | 36         | BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,/50.0 |       |     |     |        | 35:23<br>A5.61E5 | -     | 35:00<br>BSUB(10000,15,~3,0) PKD(5,5,3,0,10%,750.0 |       |       |       |         |       |        | 36         | BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0 |                 |        |       |        |       | 36         |                             | 35:34 35:42 35:59            |          |    |       |       |        |
| File: 010214Pl Acq: 14-Fl<br>Sample# 7 Text: DB5 CPSM<br>389.8156 S:7 F:3 BSUB(100                                                                                                                          | 100%                   | E08   | 09    | 40    | 203   | -0      | . 1        | 8127 St7 Ft3                              | 1008  | 708 | Ę09 | 404    | 203              | 0     | 35:00<br>401.8559 S:7 F:3 BSUB(1000                |       | 100%  | F08   | F0.0    | 707   | 205    | -          | 403.8530 S:7 F:3 BSUB(100                 | 100%            | 80=    | 09    | 40     | 203   | 0.3        | 380,9760 Si7 Fi3 Expt: OCDD | 34.40                        |          | 09 | £0.   | 203   | 0      |

7

| 1.1E6<br>8.4E5<br>6.3E5<br>4.2E5<br>2.1E5                                                                              | 49                                                          | 6.                                                            | 66                                                                           | 48:12 48:36 48:454                                                         | 00 .0E0 |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------|
| 312                                                                                                                    | 160                                                         | 130 48:00                                                     | 105                                                                          | 24 47:45 47:59                                                             | 48:00   |
| AAP DBS .0,0.00%,F,F) Expt: OCDD Noise: 46:50 A8.56E6                                                                  | 47:00<br>0,0.00%,F,F) Expt: OCDD Noise:<br>46:51<br>A9.75E6 | 47:00<br>0,0.00%,F,F) Expt: OCDD Noise: 1<br>46:49<br>A1.66E7 | 47:00<br>Expt: OCDD Noise:<br>46:49<br>Al.84E7                               | 46:38 46:53 47:047:12 47:24                                                | 47:00   |
| 3 Vial# 3 File Text: AA.                                                                                               | 45:00<br>F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0    | 08,750.                                                       | 45:00<br>F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F.F)            | 45:51 01 46:09                                                             | 46:00   |
| Sample# 7 Text: DB5 CPSM / M23 CS3 Vial# 3 File Text: 457.7377 S:7 F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.10%,000 | 45:00<br>.7348 S:7 F:5 BSUB(10000,15,-3.0                   | 3(10000,15,                                                   | 45:00<br>471.7750 S:7 F:5 BSUB(10000,15,-3.0<br>100%<br>80<br>60<br>40<br>20 | 454.9728 S:7 F:5 Expt: OCDD  1008 44:42 45:00 45:09 45:27  803 603 403 603 | 45:00   |

| 21:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| A1.5466  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.1400  A2.   | ziwri Acq: 14-FEB-2001 leiteill GC El+ Voltage SlR Autospec-UltimaE<br>Text: DBS CPSM / M23 CS3 Vial# 3 File Text: AAP DBS<br>S:7 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                  |
| 21100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28:54<br>Al.73E6 | 4.055            |
| A21150 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 2.455            |
| 21100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1.6E5            |
| A250256  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A273855  A27385  A273855  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385  A27385     | 21:00 22:00 23:00 23:00 24:00 25:00 25:00 26:00 27:00 8:7 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,00%,F,F) Expt: OCDD Noise: 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29:00            | Time             |
| 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28:54<br>A2.25E6 | 5.385            |
| 21100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100 22100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 4.3E5            |
| 21100 22100 22100 23100 24100 24100 25100 25100 27100 27100 28100 29100 29100 29100 29100 2010 20100 2010 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | £2.1E5<br>£1.1E5 |
| 25.22 21100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  22100  221   | 21:00 22:00 23:00 24:00 24:00 25:00 25:00 26:00 27:00 S:7 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29:00            | Time             |
| 21100 22100 22100 24100 24100 8364 817 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F.F) Expt. CCDD Noise: 568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25:26<br>A3.36E7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 7.9E6            |
| 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100 21100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | £6.3E6<br>£4.7E6 |
| 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100 25100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 3.156            |
| 21100 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) Expt. OCDD Noise: 7 406 Si7 BSUB(10000,15,-3.0) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,750.0,0.004,F,F) PRD(5,5,3,0.104,F,F) PRD   | 21:00 22:00 23:00 24:00 25:00 26:00 25:00 25:00 27:00 8:7 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750,0.00%,F.F) Expt: OCDD Noise: 568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29:00            | Time             |
| Si7 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt. OCDD Noise: 74  Si7 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt. OCDD Noise: 74  A2.16E3 A2.46E3  A2.16E3 A2.46E3  A2.16E3 A2.16E3 A3.16E3  A2.16E3 A3.16E3  A3.16E3 A3   | 25:26<br>A4.40E7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | F 1.0E7          |
| 21:00  S:7 BSUB(1000, 15, -3.0) PRD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 74  S:7 BSUB(1000, 15, -3.0) PRD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 74  A26:21  A26:21  A26:21  A26:21  A26:38  A37:43  A37:43  A37:48  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43  A77:43    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 6.186            |
| 21:00 22:26<br>8:7 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 74  8:3 20:55 21:16  82:22 25  82:22 25  82:22 25  82:22 25  82:22 25  82:22 25  82:22 25  82:22 25  82:22 25  82:22 25  82:22 25  82:22 25  82:22 25  82:22 25  82:20 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25:00 25: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | -4.0E6           |
| 20:55 21:16 A2:44E3 A2:44E3 A1:09E3 A1:09E3 A1:09E3 A1:53E3 A1:09E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1:53E3 A1   | 21:00 21:00 22:00 23:00 24:00 25:00 25:00 25:00 27:00 S:7 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29:00            | Time             |
| 20:555 21:162<br>A1:40E3 A836.22  A1:40E3 A836.22  A1:40E3 A1:55E3  A1:05E3 A1:55E3  A1:05E3 A1:55E3  A1:05E3 A1:55E3  A1:05E3 A1:55E3  A1:05E3 A1:55E3  A1:05E3 A1:55E3  A1:05E3 A1:05E3 A1:05E3  A1:05E3 A1:05E3 A1:05E3  A1:05E3 A1:05E3 A1:05E3  A1:05E3 A1:05E3 A1:05E3  A1:05E3 A1:05E3 A1:05E3  A1:05E3 A1:05E3 A1:05E3  A1:05E3 A1:05E3 A1:05E3  A1:05E3 A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:05E3  A1:05E3 A1:0 | 22126<br>3.2 4.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \                | E 1.7E3          |
| 21:00 22:00 23:00 23:00 24:00 25:00 25:00 25:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20:55 21:16 A3.16E3 A3.09E3 A1.09E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.53E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1.55E3 A1 |                  | 1.083            |
| 22:00 23:00 24:00 25:00 26:00 27:00 28:00 29:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Albert Miller Strategie Com Mandell Mandell Mandell Mandell Complex Strategies Strategies Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Comp | And Moreon from  | 3.352            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22:00 23:00 24:00 25:00 26:00 27:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29:00            | .                |

|                                                                                                                                                                                                               | 2.586             | 2.326 | 2.0E6 | 1.5E6 | 1.326 | 1.056         | E7.6E5 | E 5.0E5 | 2.5E5<br>E0.0E0 | Time                                     | 1.656            | -1.5E6 | 1.3E6 | 1.156 | 9.855      | E 6.5E5 | 4.985 | 3.385 | 1.655 | Time                    | 1.587                        | 1.287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.157 | 7.7E6 | 6.256   | 3.126 | 1.586 | Time  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------|-------|-------|-------|---------------|--------|---------|-----------------|------------------------------------------|------------------|--------|-------|-------|------------|---------|-------|-------|-------|-------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------|-------|-------|-------|
|                                                                                                                                                                                                               | 28151<br>Al. 02E7 |       |       |       |       |               |        |         |                 | 29:00                                    | 28150<br>A6.45E6 |        |       |       |            |         |       |       |       | 29:00                   | 37 28:57                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |         |       |       | 29:00 |
|                                                                                                                                                                                                               |                   |       |       |       |       |               |        |         |                 | 28:00                                    |                  |        |       |       |            |         |       |       |       | 28:00                   | 27:51 28:11<br>27:29 P 28:11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |         |       |       | 28:00 |
|                                                                                                                                                                                                               |                   |       |       |       |       |               |        |         |                 | 27:00                                    |                  |        |       |       |            |         |       |       |       | 27:00                   | 26149                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |         |       |       | 27:00 |
| E<br>Noise: 71                                                                                                                                                                                                |                   |       |       |       |       |               |        |         |                 | 26:00<br>Noise: 148                      |                  |        |       |       |            |         |       |       |       | 26100                   | 25:20<br>25:27 7 26:09       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |         |       |       | 26:00 |
| ospec-UltimaE<br>Expt: OCDD No                                                                                                                                                                                |                   |       |       |       |       |               |        |         |                 | 25:00<br>Expt: OCDD No                   |                  |        |       |       |            |         | ı     |       |       | 25:00                   | 24:12 24:36 25:01 25         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |         |       |       | 25:00 |
| oltage SIR Aut<br>ext: AAP DB5<br>0.0,0.00%,F,F)                                                                                                                                                              |                   |       |       |       |       |               |        |         |                 | 24:00                                    |                  |        |       |       |            |         |       |       |       | 24:00                   | 23,41                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |         |       |       | 24:00 |
| 5:11 GC EI+ Vo<br>/1a1# 3 File 1<br>5,5,3,0.10%,750                                                                                                                                                           |                   |       |       |       |       |               |        |         |                 | 22:00 23:00<br>-3.0) PKD(5.5,3.0,10%,750 |                  |        |       |       |            |         |       |       |       | 23:00                   | 22:36 23:15                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |         |       |       | 23:00 |
| -FEB-2001 16:10<br>SM / M23 CS3 7<br>,15,-3.0) PKD(                                                                                                                                                           |                   |       |       |       |       |               |        |         |                 | 22:00<br>153.0) PKD(                     |                  |        |       |       |            |         |       |       |       | 22:00                   |                              | and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a survival and a |       |       |         |       |       | 22,00 |
| 010214PI Acq: 14-FEB-2001 16:16:11 GC EI+ Voltage SIR Autospec-UltimaE<br>e# 7 Text: DBS CPSM / M23 CS3 Vial# 3 File Text: AAP DBS<br>597 S:7 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD |                   |       |       |       |       |               |        |         |                 | 21:00<br>S:7 BSUB(10000.15.              |                  |        |       |       |            |         |       |       |       | 21:00<br>S:7 Expt: OCDD | •                            | 20:48 41:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |         |       |       | 21100 |
| File: 0102<br>Sample# 7<br>339.8597 S                                                                                                                                                                         | 100%              | 06    | 90 F  | 0.09  | 501   | <b>4</b><br>0 | 30     | 204     | 10              | 8568                                     |                  | 06     | 80    | 70-   | •09<br>•09 | 50 S    | 30    | 20-   | 10    | 316.9824 S              | •                            | 803 My My mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70    | 50    | . 4<br> | 30-1  | 10    | 0     |

\



•

.

- 4

~ **5** 

1.8

8-18



|                                                                          | 1.4E6<br>E1.1E6<br>E8.3E5<br>E5.5E5<br>E2.8E5 | 44:00 Time 1.4E6 1.1E6                                      | 44:00 Time                                         | 1.3E6<br>1.3E6<br>1.3E6<br>1.5E5<br>14.5E5 | 5.256<br>64.156<br>13.156<br>1.056     | 44:00 F0.0E0                              | 44.27<br>44.27<br>2.8E3<br>9E3<br>1.1E3<br>1.1E2<br>1.1E2                                              |
|--------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|--------------------------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                                                          |                                               |                                                             | -                                                  |                                            |                                        |                                           | 108 43:28 43:<br>43:1753 43:28 AL.7<br>43:1754 A.7053                                                  |
| D Noise: 335                                                             | 42,20<br>A5.71E6                              | 43:00 Noise: 328 43:00 42:20 A5:66E6                        | Noise: 424 43:00                                   | A1.01E7                                    | Noise: 733                             | 43:00<br>Noise: 234                       | 42:26<br>42:2<br>1.83:8<br>1.83:3                                                                      |
| cage SIR Autospec-UltimaE<br>ixt: AAP DBS<br>750.0,0.00%,F,F) Expt: OCDD |                                               | 750.0,0.00%,F,F) Expt: OCDD                                 | 0<br>50.0,0.00%,F,F) Expt: OCDD                    | 42:00                                      | Expt: OCD                              | 42:00<br>.00%,F,F) Expt: OCDD             | A1:27<br>A1:16E4<br>A2:34E3<br>A2:34E3<br>A2:68E3<br>A3:78E3<br>A4:58E3                                |
| # 3 File Te<br>5,5,3,0.10%                                               |                                               | A1:00<br>PKD(5,5,3,0.10%,750.0,                             | 41:00<br>-3.0) PKD(5,5,3,0.10%,750.0,0             | 41,00                                      | -3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) | 41:00<br>PKD(5,5,3,0.10%,750.0,0.00%,F,F) | 40:37<br>40:54<br>M.04E3 A1:62E3                                                                       |
| DBS CPSM / M23 CS3<br>BSUB(10000,15,-3.0)                                | Ab. (8Eb                                      | BSUB(10000,15,-3.0) 39:52 A6.68E6                           | 40:00<br>BSUB(10000,15,-3.0) 1<br>39:51<br>Al.,227 | 40:00                                      | •                                      | ,-3.0)                                    | 3 AE 90E3<br>9:39 AE 90E3<br>03E3 MWWWWWWWWWW                                                          |
| Sample# 7 Text: 407.7818 S:7 F:4                                         | 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0        | 409.7788 S:7 F:44 100% 80================================== | 8253 S:7 F:4                                       | ļ                                          | 419.8220 S:7 F:4 E 1008 80 60 40 20    | 7165 S:7 F:4                              | 100k<br>80<br>80<br>39:29<br>40<br>40<br>20<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>03<br>0 |

•

÷ 4

## PCDD/PCDF CALIBRATION VERIFICATION

## Alta Analytical Perspectives

Initial Calibration Date: 10/05/00

Instrument ID: MM-1

GC Column ID: DB-5

Date: 24 Fcb Ø

Reviewer:

VER Data Filename: 010223F1 S#1 Analysis Date: 23-FEB-01 Time: 11:17:52

| NATIVE ANALYTES                                             | M/Z'S<br>FORMING<br>RATIO     | ION<br>ABUND.<br>RATIO | QC<br>LIMITS                        | Pass          | CONC.<br>FOUND          | CONC.<br>RANGE<br>(ng/mL)                 |  |
|-------------------------------------------------------------|-------------------------------|------------------------|-------------------------------------|---------------|-------------------------|-------------------------------------------|--|
| 2,3,7,8-TCDD                                                | M/M+2                         | 0.79                   | 0.65-0.89                           | ۶,            | 5.81/                   | 3.75 - 6.25                               |  |
| 1,2,3,7,8-PeCDD                                             | M+2/M+4                       | 1.58                   | 1.32-1.78                           | >             | 27.34                   | 18.75-31.25                               |  |
| 1,2,3,4,7,8-HXCDD<br>1,2,3,6,7,8-HXCDD<br>1,2,3,7,8,9-HXCDD | M+2/M+4<br>M+2/M+4<br>M+2/M+4 | 1.24<br>1.26<br>1.26   | 1.05-1.43<br>1.05-1.43<br>1.05-1.43 | >> >> >>      | 26.17<br>26.81<br>26.29 | 18.75-31.25<br>18.75-31.25<br>18.75-31.25 |  |
| 1,2,3,4,6,7,8-HpCDD M+2/M+4                                 | M+2/M+4                       | 1.03                   | 0.88-1.20                           | ٨             | 25.50                   | 18.75-31.25                               |  |
| осор                                                        | M+2/M+4                       | 0.89                   | 0.76-1.02                           | Y             | 53.07                   | 37 - 65                                   |  |
| 2,3,7,8-TCDF                                                | M/M+2                         | 0.75                   | 0.65-0.89                           | <b>X</b>      | 4.88                    | 3.75 - 6.25                               |  |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF                          | M+2/M+4<br>M+2/M+4            | 1.52                   | 1.32-1.78                           | >>            | 24.99                   | 18.75-31.25<br>18.75-31.25                |  |
| 1,2,3,4,7,8-HXCDF                                           | M+2/M+4                       | 1.21                   | 1.05-1.43                           | <b>&gt;</b> : | 24.01                   | 18.75-31.25                               |  |
| 1,2,3,7,8,9-HXCDF                                           | M+2/M+4<br>M+2/M+4            | 1.20                   | 1.05-1.43                           | ×             | 23.46                   | 18.75-31.25<br>18.75-31.25<br>18.75-31.25 |  |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF                  | M+2/M+4<br>M+2/M+4            | 1.02                   | 0.88-1.20<br>0.88-1.20              | × ×           | 23.60                   | 18.75-31.25<br>18.75-31.25                |  |
| OCDF                                                        | M+2/M+4                       | 0.87                   | 0.76-1.02                           | ۸             | 49.37                   | 35 - 65                                   |  |

Analyst: 616

| Con De Follo                 | #44  PCDD/PCDF CALI  PCDD/PCDF CALI  Alta Analy  Alta Analy  GC Column ID:  GC Column ID:  M/Z'S ION  RMING ABUND.  RATIO RATIO  H+2/M+4 1.57  M+2/M+4 1.57  M+2/M+4 1.57  M+2/M+4 1.05  M+2/M+4 1.05  M+2/M+4 1.05  M+2/M+4 1.05  M+2/M+4 1.05  M+2/M+4 1.05  M+2/M+4 1.05  M+2/M+4 1.05  M+2/M+4 1.05  M+2/M+4 1.05  M+2/M+4 1.05  M+2/M+4 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90  M/M+2 0.90 | Analy Analy O O                                          | VERIFICATIO VERIFICATIO  VERIFICATIO  S 2 3 - FEB-0  Pass  Pass  Pass  Y 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | IFICATION  23-FEB-01 Time: 11:17:52  CONC. RANG FOUND (ng/m) 94.77 70.0 96.17 70.0 96.17 70.0 96.17 70.0 96.17 70.0 97.00 96.17 70.0 96.17 70.0 96.17 70.0 96.17 70.0 97.00 96.17 70.0 | CONC. RANGE (ng/mL) 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 70.0 - 130.0 | Reviewer! G. Date: 24 FCD & | Page 8 of 8 |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------|
| DF<br>XCDD<br>XCDF<br>-HpCDF | M+2/M+4 1.58<br>M+2/M+4 1.31<br>M/M+2 0.52<br>M/M+2 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 1.32-1.78<br>1 1.05-1.43<br>2 0.43-0.59<br>3 0.37-0.51 | 4 4 4 4                                                                                                        | 100.9                                                                                                                                                                                  |                                                                                                                                                                    |                             |             |

Analyst: 646 Date: 24 Febol

75.0 - 125.0

70.96

0.43-0.59

0.53

M/M+2

13C-1,2,3,7,8,9-HxCDF

| 1,2,1,7,1,8,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Clian | Juan 23-FEB-2001 17:44                    | 44    |          | Page     | 11        |          | \           | \      |       |         |                      |          | Γ   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|-------|----------|----------|-----------|----------|-------------|--------|-------|---------|----------------------|----------|-----|
| 1,2,3,7,4=7000   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,394-71   1,3     | تّ ز  | thent ID: DBS CDBM / M2                   | 3 CS3 | E (      | llename: | 010223    | S        | 23-FEB-01   | 17152  |       | Conce   | ,46550               |          | - 1 |
| 1,2,17,16, Percon   1,2447   1,249   1,141   1,125   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141   1,141       |       |                                           |       | <b>ಹ</b> | Column   | IDi<br>db |          | M23_0*      | -      |       | Endcal: | 010223P1<br>010223P1 | <b>ω</b> | 80  |
| 1,2,3,4,7,8=epec   1,39=epec   1,39=epec   1,39=epec   1,39=epec   1,30=epec     |       | Nan<br>2.3.7.8                            |       | Resp     | R.       | ,         |          | ouc         |        | 8e Fa |         |                      |          |     |
| 1,2,3,4,7,5,enkero   1,26   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10   1,10        |       | 1,2,3,7,8-Pec                             | , -   | 199407   |          |           |          | 5.81        |        | 52 2  | 0.0     |                      |          |     |
| 1,2,3,7,6,2,=texton   1,2,2,   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2   1,1,2     |       | 1,2,3,4,7,8-HXCI                          |       | 000+00   | 1 24 5   | ٦.        |          | 27.3        | S      | 1.4   |         |                      |          |     |
| 1,2,1,7,1,8-pcop   1,0,4+or   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5   1,0,5      |       | 1,2,3,6,7,8-HXCI                          |       | 23e+06   | 1.26 0   |           |          | 26.2        | 22     | ~     |         |                      |          |     |
| 1,2,3,4,6,7,8-HCDD 8.79e+66 1.03 y 1.13 4125 25.1 2240 2.5 0.126 Reviewer 1.23,37,8-TCD 1.23e+70 1.03 y 1.13 4125 25.1 25.0 0.238 1.23 0.126 1.23 0.126 1.23 0.126 1.23 0.126 1.23 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 1,2,3,7,8,9-HxCI                          |       | 01e+07   | 1.26 4   |           | 2 5      | 26.8        | 22     | ~     |         |                      | (        | _   |
| 1,2,3,7,6=recor   1,58=r)   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63   1,63        |       | 1,2,3,4,6,7,8-HpCD                        |       | 79e+06   | 1.03 v   | _         | 7 4      | 26.3        | 22     | ~     | 0       | Revie                |          |     |
| 1,2,3,7,8-TCDP 1,68e-00 0.75 y 1.05 26+45 4.89 21,23,7,6-TCDP 1,68e-00 0.75 y 1.05 26+45 4.89 21,23,7,6-TCDP 1,68e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,59e-00 1,   |       | 900                                       |       | 23e+07   | 0.89 y   | -         | 46       | 53.1        | 23     | 2     | 0       |                      |          | _   |
| 1,2,3,4,7,8,9,9ecroproperor   1,594   1,09   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594   1,594       |       | 6                                         |       |          |          |           |          | 1           | 77     | 7     | 0       |                      |          | _   |
| 1,2,3,4,7,8=PeCDP 1,539+07 1,537 1,104 31137 25.0 6785 2.5 0.2253 1,2,3,4,7,8=PeCDP 1,539+07 1,123 1,113 36.12 24.0 1,133 2.5 0.0253 1,2,3,4,7,8=PeCDP 1,2,294 1,113 36.12 24.0 1,133 2.5 0.0264 1,2,3,4,6,7,8=PeCDP 1,2,294 1,124 3,115 36.12 24.0 1,133 2.5 0.0364 1,2,3,4,6,7,8=PeCDP 1,2,2,4,7,12,2 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,124 1,12   |       | 2,3,7,8-TCD                               |       | 58e+06   |          |           |          | 8           | 7.4    | r     |         | Dater                | 5        |     |
| 1,2,3,4,7,6=HRCDP   1,55=407   1,53 y   1,05   32,45   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   6785   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   25,0   2     |       | 1,2,3,/,8-PeCD                            |       | 59e+07   | 1.52 y   | _         |          | 5           | 4.4    | 4 6   | 90.0    |                      |          |     |
| 1,2,3,4,6,7,8=RKCDF 1,23e+70 1,121 1,13 36102 24.0 1782 25.00503 1,2,3,4,6,7,8=RKCDF 1,26e+70 1,129 1,115 3612 24.0 1783 25.00503 1,2,3,4,6,7,8=RKCDF 1,100e+70 1,129 1,116 3615 23.5 1783 25.00503 1,2,3,4,6,7,8=REDDF 1,000e+70 1,129 1,134 3014 22.4 1783 25.00503 1,2,3,4,6,7,8=REDDF 1,000e+70 1,129 1,134 3014 22.4 1783 25.00503 1,2,3,4,6,7,8=REDDF 1,000e+70 1,129 1,134 3014 22.4 1783 25.00503 1,2,3,4,6,7,8=READD 1,100e+70 1,129 1,134 4,134 3014 1,2,3,4,6,7,8=READD 1,100e+70 1,129 1,134 4,134 3013 1,2,3 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,134 1,13   |       | 1.2 3 4 7 9 m.cm                          |       | 51e+07   | 1.53 y   | _         |          | 5           | 70     | 4 0   | 2 0     |                      |          |     |
| 1.2, 3, 4, 5, 7, 8 - RECEP 1.29 4 1.24 36.11 24.3 31.10 24.3 11783 2.5 0.0453 1.2, 3, 4, 5, 7, 8 - RECEP 1.109 407 1.129 4 1.10 36.10 23.5 1.109 2.5 0.0453 1.2, 3, 4, 6, 7, 8 - RECEP 1.100 407 1.129 4 1.10 2.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 1 2 3 6 7 9 m.c.                          |       | 2e+07    |          | -         |          | <b>QUIT</b> | 7.     | 4 6   | 7.0     |                      |          |     |
| 1,2,3,7,8,9,8,EEPP 1,004-07 1,23 y 1,16 36,59 23.5 1783 25.0,0584 1,23,4,5,7,8,9,8,EEPP 1,004-07 1,23 y 1,54 39,47 23.5 1783 25.0,0584 1,23,4,5,7,8,9,8,EEPP 1,004-07 1,23 y 1,54 39,47 23.5 1783 25.0,0584 1,23,4,5,7,8,9,8,EEPP 1,004-07 1,02 y 1,54 39,47 23.6 23.1 1783 25.0,0952 1,0041 Penta-Dioxins 3,146+07 0,67 y 1,15 47,9 1,26 21,16 23.3 1,29 2.4 20,112 5.0,197 1,0041 Penta-Dioxins 3,146+07 1,25 y 1,10 30,13 72.8 1,208 2.5 0,130 1,0041 Penta-Dioxins 3,064-07 1,25 y 1,10 30,13 1,27 2.5 0,130 1,0041 Penta-Dioxins 3,064-07 1,25 y 1,10 30,13 1,20 2.5 1,20 2,2 1,20 2,2 1,20 2,2 1,20 2,2 1,20 2,2 1,20 2,2 1,20 2,2 1,20 2,2 1,20 2,2 1,20 2,2 1,20 2,2 1,20 2,2 1,20 2,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 23 4 6 7 9 HACD                           |       | 19e+07   | ~        |           |          | 24.3        | 171    | 4 0   | 0.0     |                      |          |     |
| 1,2,3,4,5,7,8=Percell   1,000   1,02   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,12   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,13   1,1     |       | 1 2 2 7 9 9 HXCD                          |       | 6e+07    | -        | -         |          | 23.5        | 171    | , ,   | 0.0     |                      |          |     |
| 1,2,3,4,7,6,7,6,7,6,7,6,7,6,7,6,7,7,6,7,6,7,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 1.2 3 4 6 7 9 E.C.                        |       | 06+07    | ~        |           | 37:51    | 23.5        | 121    | , ,   |         |                      |          | _   |
| Total Tetra-Dioxins 1.49e+70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 1,2,3,4,6,7,8-HPCD                        |       | 7e+07    |          | -         | 39:47    | 23.6        | 100    | , ,   | 0.05    |                      |          | _   |
| Total Tetra-Dioxins 1.49e+0 0.87 y 1.15 47103 49.4 1292 2.5 0.147  Total Tetra-Dioxins 1.49e+0 0.77 y 1.26 2116 23.3 1252 2.5 0.0365  Total Tetra-Dioxins 1.49e+0 0.77 y 1.26 2116 23.3 1228 2.5 0.0365  Total Herac-Dioxins 1.6e+0 1.125 y 1.01 3519 82.7 2240 2.5 0.130  Total Herac-Dioxins 1.6e+0 1.125 y 1.01 3519 82.7 2240 2.5 0.130  Total Herac-Dioxins 1.34e+0 1.02 y 1.13 3519 82.7 2240 2.5 0.130  Total Penta-Furans 1.31e+0 1.64 y 1.05 2013 12.0 240 2.5 0.130  Total Herac-Purans 1.31e+0 1.64 y 1.05 2013 12.0 2013  Total Herac-Purans 1.31e+0 1.15 y 1.14 34139 98.3 1703 6785 2.5 0.257  Total Herac-Purans 5.17e+0 1.12 y 1.13 2713 91.5 2013 2.5 0.0870  13G-12,3,7,8-PeDD 5.08e+0 1.05 y 0.93 33106 94.7 2013 2.5 0.0870  13G-12,3,4,6,7,8-HEDD 5.08e+0 1.05 y 0.93 33106 94.7 2013 2.5 0.0870  13G-12,3,4,6,7,8-HEDD 5.08e+0 1.05 y 0.93 33106 94.7 2013 2.5 0.0870  13G-12,3,4,6,7,8-HEDD 5.08e+0 1.05 y 0.90 39146 87.2 2010 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.00 2.13 1.   |       | 000                                       |       | 8e+06    |          | -         | 2:1      | 22.4        | 100    | , ,   |         |                      |          | _   |
| Total Tetra-Dioxins 1.49e+07 0.77 y 1.26 21116 23.3 1252 2.5 0.0365  Total Tetra-Dioxins 3.16e+07 1.56 y 1.01 30133 72.8 120888 2.5 7.34  Total Tetra-Dioxins 3.16e+07 1.56 y 1.01 3519 82.7 2240 2.5 0.130  Total Tetra-Dioxins 1.36e+07 1.02 y 1.01 3519 82.7 2240 2.5 0.130  Total Hexa-Dioxins 1.36e+07 1.02 y 1.03 2113 12.0 29.5 2013 12.0 29.1 2.5 0.102  Total Tetra-Purans 9.06e+06 0.84 y 1.05 20145 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                                           | 1     | /n+ar    |          | -         | 7:0      | 6           | 129    | 2     | 0.14    |                      |          | _   |
| Total Heater-Dioxins 3.16e+07 1.156 7 1.10 3513 72.8 120888 2.5 0.136 Total Heater-Dioxins 3.06e+07 1.25 7 1.10 3513 72.8 120888 2.5 0.136 Total Heater-Dioxins 1.06e+07 1.25 7 1.10 3519 82.7 2240 2.5 0.136 Total Heater-Dioxins 1.06e+07 1.02 7 1.13 40113 47.6 2342 2.5 0.136 184 Fno. Pentar-Furans 9.06e+06 0.84 7 1.05 20113 12.0 2015 2241 2.5 0.0638 Total Penta-Furans 1.31e+07 1.64 7 1.05 20113 12.0 2015 2281 2.5 0.137 2013 12.0 2015 2281 2.5 0.137 2013 12.0 2015 2281 2.5 0.137 2013 12.0 2015 2281 2.5 0.137 2013 2015 2015 2015 2015 2015 2015 2015 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Total Tetra-Dioxing                       | 1     | 96+07    | 77       | 1 36      |          | •           |        |       |         | EMDC                 |          | _   |
| Total Hexta-Dioxins 3.06e+07 1.25 7 1.10 35119 82.7 1240 2.5 0.130  Total Tetza-Purans 1.64e+07 1.02 7 1.13 40113 47.6 2340 2.5 0.130  Ist For Penta-Furans 9.06e+06 0.64 7 1.05 20113 12.0 2240 2.5 0.130  Ist For Penta-Furans 1.31e+07 1.64 7 1.05 28145 20.5 2688 2.5 0.130  Total Hepta-Furans 1.31e+07 1.64 7 1.05 28145 20.5 2688 2.5 0.130  Total Hesta-Furans 1.31e+07 1.64 7 1.05 28145 20.5 20.63 24812 2.5 0.0638  Total Hesta-Furans 1.31e+07 1.13 7 1.14 34139 98.3 1788 2.5 0.257  Total Hesta-Furans 5.17e+07 1.13 7 1.14 34139 98.3 1788 2.5 0.0508  13C-1,2,3,7,8-PecDp 4.29e+07 1.20 7 0.93 3707 96.1 20.5 172 2.5 0.0870  13C-1,2,3,6,7,8-HECDD 2.26e+07 1.05 7 0.91 4124 89.9 1.5 13C-1,2,3,6,7,8-HECDD 2.26e+07 0.90 7 0.73 4.642 80.3 1.00 80.1 1.20 90.9 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Total Penta-Dioxing                       | m     | 6e+07    |          | 1.20      | <u> </u> | 23.3        |        | 7     | 0.0365  | 23.5                 |          | _   |
| Total Hepta-Dioxina 1.66e+7 1.02 7 1.13 40113 47.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | Total Hexa-Dioxing                        |       | 5e+07    |          | 10        | 25.10    | 8.7/        | $\sim$ | 8 2.  | 7.34    | 73.1                 |          | _   |
| Second Pertal Pertal   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Second   Secon     |       | Total Hepta-Dioxing                       |       | 1e+07    |          | 1.13      | 40.13    | 82.7        | 224    | 2.    | 0.130   | 83.2                 |          |     |
| Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second      |       | Total Tetra-Furans                        |       | Se+06    |          | 10.1      | 20.13    | 47.6        | 239    | 2.    | 0.193   | 48.2                 |          | _   |
| Total Penta-Fuzans 4.49e+07 1.52 y 1.05 3137 70.3 2667 2.5 0.102  Total Herta-Fuzans 4.49e+07 1.52 y 1.05 3137 70.3 6785 2.5 0.102  Total Herta-Fuzans 1.95e+07 1.02 y 1.14 34139 90.8 1783 2.5 0.0870  Total Herta-Fuzans 1.95e+07 1.02 y 1.14 34139 90.8 1783 2.5 0.0870  13C-1,2,3,7,8-PCDD 5.08e+07 0.80 y/ 1.13 27437 91.5 2071 2.5 0.0870  13C-1,2,3,7,8-PCDD 3.06e+07 0.80 y/ 1.00 96.1 40.24 89.9 13C-1,2,3,7,8-PCDD 3.06e+07 0.90 y/ 4642 80.3 37107 96.1 13C-1,2,3,7,8-PCDD 2.26e+07 0.90 y/ 7 0.95 3116 84.6 10.0 96.1 13C-1,2,3,7,8-PCDD 6.11e+07 0.90 y/ 0.96 3116 84.6 10.0 96.1 13C-1,2,3,4,6-PCDD 6.11e+07 0.80 y/ 0.90 3116 84.6 10.0 96.1 13C-1,2,3,4-PCDD 7.5e+07 0.81 y/ 0.90 3116 81.8 108  13C-1,2,3,4-PCDD 7.8e+07 0.81 y/ 0.00 25:20 100 10.1 13C-1,2,3,4-PCDD 7.5e+07 0.81 y/ 0.91 3116 81.8 108  13C-1,2,3,4,7,8-PCDD 7.8e+07 0.81 y/ 0.97 3144 105  13C-1,2,3,4,7,8-PCDD 3.9e+07 0.81 y/ 0.93 37100 10.1 13C-1,2,3,4,7,8-PCDD 3.9e+07 0.82 y/ 0.93 37100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.82 y/ 0.93 37100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.82 y/ 0.93 37100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.82 y/ 0.93 37100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.82 y/ 0.93 37100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.82 y/ 0.93 37100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.82 y/ 0.82 4213 96.1 100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.82 y/ 0.82 4213 96.1 100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.82 y/ 0.82 4213 96.1 100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.82 y/ 0.82 4213 96.1 100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.83 y/ 0.85 4213 96.1 100 10.1 13C-1,2,3,4,7,8-PCDD 7.8e+07 0.83 y/ 0.85 4213 96.1 100 10.1 10.1 10.1 10.1 10.1 10.1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                           |       | 1e+07    |          | 1.05      | 28.45    | 30.5        | 242    | 7     | 0.0638  | 12.5                 |          |     |
| Total Hexar-Purans 5.17e+07 1.19 y 1.14 34:39 90.8 1763 2.5 0.257 Total Hexar-Purans 5.17e+07 1.19 y 1.14 34:39 90.8 17683 2.5 0.0870 13C-2,3,7,8-PecDD 4.29e+07 1.02 y 1.42 39:47 46.3 2071 2.5 0.0870 13C-1,2,3,7,8-PecDD 3.36e+07 1.02 y 1.13 27:37 91.5 13C-1,2,3,7,8-PecDD 3.36e+07 1.05 y 0.93 37:07 94.7 13C-1,2,3,4,6,7,8-PecDD 3.36e+07 1.05 y 0.91 41:24 89.9 13C-2,3,7,8-PecDF 7.20e+07 0.99 y 0.73 46:42 82.3 13C-2,3,7,8-PecDF 7.20e+07 0.99 y 0.96 31:36 84.6 13C-1,2,3,7,8-PecDF 7.20e+07 0.43 y 0.96 31:36 84.6 13C-1,2,3,4-FecDF 7.20e+07 0.43 y 0.96 31:36 84.6 13C-1,2,3,4-FecDF 7.20e+07 0.81 y 1.00 25:20 100 100 100 100 100 100 100 100 100 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                                           |       | 7e+07    |          | 1.05      | 31:37    | 70.3        | 268    | 5     | 0.102   | 20.5                 |          |     |
| Tocal Hexa-Furans 5.17e+07 1.19 y 1.14 34;39 98.3  Total Hepta-Furans 1.95e+07 1.02 y 1.42 39;47 46.3  Total Hepta-Furans 1.95e+07 1.02 y 1.42 39;47 46.3  13C-1,2,3,7,8-TCDD 5.08e+07 0.80 y 1.13 27;37 91.5  13C-1,2,3,6,7,8-HECDD 3.36e+07 1.20 y 0.93 33;06 94.7  13C-1,2,3,4,6,7,8-HECDD 3.05e+07 1.20 y 0.93 33;06 96.1  13C-1,2,3,7,8-TCDF 7.20e+07 0.90 y 0.73 46;42 82.3  13C-1,2,3,7,8-TCDF 7.20e+07 0.90 y 0.96 31;36 84.6  13C-1,2,3,6,7,8-HECDF 6.11e+07 0.80 y 1.06 26;43 90.0  13C-1,2,3,6,7,8-HECDF 6.11e+07 0.81 y 0.90 39;46 87.2  13C-1,2,3,4,6,7,8-HECDF 7.99 0.90 39;46 87.2  13C-1,2,3,4,6,7,8-HECDF 7.99 0.90 39;46 87.2  13C-1,2,3,4,6,7,8-HECDF 7.99 0.90 39;46 87.2  13C-1,2,3,4,6,7,8-HECDF 7.99 0.90 39;46 87.2  13C-1,2,3,4,6,7,8-HECDF 7.99 0.90 39;46 87.2  13C-1,2,3,4,6,7,8-HECDF 7.99 0.91 y 1.00 26;57 100  13C-1,2,3,4,7,8-HECDF 7.98 0.91 37;46 105  13C-1,2,3,4,7,8-HECDF 7.98 0.91 37;46 105  13C-1,2,3,4,7,8-HECDF 7.98 0.91 36;02 102  13C-1,2,3,4,7,8-HECDF 7.98 0.91 36;02 102  13C-1,2,3,4,7,8-HECDF 7.98 0.91 36;01 96:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | PecDF Totals                              | ••    |          | •        |           |          | 0 0         | 8/9    | 7     | . 25    |                      |          |     |
| 13C-1,2,3,7,8-TCDD 5.08e+07 0.80 yr 1.13 27137 91.5 13C-1,2,3,4,6,7,8-HCDD 4.29e+07 1.57 y 0.93 33106 94.7 13C-1,2,3,4,6,7,8-HCDD 3.05e+07 1.05 y 0.91 41124 99.9 13C-1,2,3,4,6,7,8-HCDD 2.26e+07 0.90 y 1.13 27137 91.5 13C-1,2,3,7,8-HCDD 2.26e+07 0.90 y 1.06 26.43 90.0 13C-1,2,3,7,8-HCDF 7.20e+07 0.79 y 1.06 26.43 90.0 13C-1,2,3,7,8-HCDF 6.11e+07 1.58 y 0.96 33136 84.6 13C-1,2,3,4,6,7,8-HCDF 6.11e+07 1.58 y 0.90 39146 87.2 13C-1,2,3,4,6,7,8-HCDF 7.90 y 0.91 47.01 81.8 13C-1,2,3,4,6,7,8-HCDF 7.90 y 0.90 39146 87.2 13C-1,2,3,4,6,7,8-HCDF 7.90 y 0.90 39146 100 13C-1,2,3,4,6,7,8-HCDF 7.80 y 0.90 39146 100 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39146 100 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8-HCDF 7.80 y 0.90 39140 101 13C-1,2,3,4,7,8,9-HCDF 7.80 y 0.90    |       | Total Hexa-Furans                         |       | 7e+07    |          | ٦:        | 4        | 0.00        | 6      | ,     | •       | $\vdash$             |          | _   |
| 13C-1,2,3,7,8-PCDD 5.08e+07 0.80 y 1.13 27:37 91.5  13C-1,2,3,7,8-PCDD 4.29e+07 1.57 y 0.93 33:06  13C-1,2,3,4,6,7,8-PECDD 3.36e+07 1.05 y 0.93 37:07 96.1  13C-1,2,3,4,6,7,8-PECDD 3.05e+07 1.05 y 0.91 41:24 89.9  13C-2,3,7,8-PCDD 7.20e+07 0.99 y 1.06 26:43 80.0  13C-1,2,3,7,8-PCDF 6.11e+07 1.58 y 0.96 31:36 84.6  13C-1,2,3,4,6,7,8-PECDF 6.11e+07 1.58 y 0.96 31:36 84.6  13C-1,2,3,4,6,7,8-PECDF 7.56e+07 0.52 y 1.28 36:10 96:1  13C-1,2,3,4-TCDF 7.54e+07 0.81 y 1.00 26:57 100  13C-1,2,3,4-TCDF 7.54e+07 0.81 y 1.00 25:20 100  13C-1,2,3,7,8-PECDF 6.24e+07 1.26 y 1.00 27:26 100  37C1-2,3,7,8-PECDF 6.24e+07 1.26 y 0.97 32:44 105  13C-1,2,3,4,7,8-PECDF 6.24e+07 1.31 y 0.92 37:00 101  13C-1,2,3,4,7,8-PECDF 7.42e+07 0.53 y 1.00 37:26 103  37C1-2,3,4,7,8-PECDF 7.42e+07 0.53 y 1.07 37:50 96:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 10tal hepta-furans                        |       | e+07     |          | 4         | 9        | 46.3        | 0 0    | 0.2   | , ,     | <b>ω</b> 1           |          | _   |
| 13C-1,2,3,4,7,8-PeCDD 3.36e+07 0.80 y 1.13 27:37 91.5  13C-1,2,3,4,7,8-PeCDD 3.36e+07 1.57 y 0.93 33:06 94.7  13C-1,2,3,4,7,8-PECDD 3.36e+07 1.57 y 0.93 33:06 94.7  13C-1,2,3,4,7,8-PECDD 2.26e+07 0.99 y 0.91 41:24 89.9  13C-2,3,7,8-PECDF 6.11e+07 0.99 y 0.91 41:24 89.9  13C-1,2,3,7,8-PECDF 6.11e+07 0.52 y 1.06 26:43 90.0  13C-1,2,3,4,6,7,8-PECDF 6.11e+07 0.52 y 0.90 39:46 87.2  13C-1,2,3,4-PECDF 2.95e+07 0.81 y 0.90 39:46 87.2  13C-1,2,3,4-PECDF 7.54e+07 0.81 y 1.00 26:57 100  13C-1,2,3,4-PECDF 6.24e+07 0.77 y 1.00 25:20 100  37C1-2,3,7,8-PECDF 6.24e+07 0.77 y 0.91 36:02 100  37C1-2,3,7,8-PECDF 6.24e+07 0.52 y 0.91 36:02 102  37C1-2,3,7,8-PECDF 6.24e+07 0.52 y 0.91 36:02 102  37C1-2,3,4,7,8-PECDF 6.24e+07 0.52 y 0.91 36:02 102  37C1-2,3,4,7,8-PECDF 7.31 y 0.92 37:00 101  33C1-2,3,4,7,8-PECDF 7.32 y 0.91 36:02 102  37C1-2,3,4,7,8-PECDF 7.32 y 0.91 36:02 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 130-2 2 2 0 11011                         |       |          |          |           |          |             | 5      |       | •       | 46                   |          | _   |
| 13C-1,2,3,4,6,7,8-HxCDD 3.36e+07 1.50 y 0.93 33:06 94.7  13C-1,2,3,4,6,7,8-HxCDD 3.36e+07 1.50 y 0.91 37:07 96.1  13C-1,2,3,4,6,7,8-HyCDD 3.05e+07 0.90 y 0.73 46:124 89.9  13C-1,2,3,7,8-PPCDF 6.11e+07 1.58 y 0.96 31:36 84.6  13C-1,2,3,4,6,7,8-HyCDF 2.95e+07 0.43 y 0.96 31:36 84.6  13C-1,2,3,4,6,7,8-HyCDF 2.95e+07 0.43 y 0.90 39:10 96.1  13C-1,2,3,4,7,8-HyCDF 2.95e+07 0.81 y 1.00 26:57 100  13C-1,2,3,4-TCDF 7.54e+07 0.81 y 1.00 25:20 100  13C-1,2,3,4-TCDF 7.54e+07 0.77 y 1.00 25:20 100  13C-1,2,3,4,7,8-PPCDF 6.24e+07 1.58 y 0.91 33:00 101  13C-1,2,3,4,7,8-PPCDF 6.24e+07 1.31 y 0.92 37:00 101  13C-1,2,3,4,7,8-PPCDF 7.54e+07 0.52 y 0.91 36:02 102  37C1-2,3,4,7,8-PPCDF 7.54e+07 0.52 y 0.91 36:02 102  37C1-2,3,4,7,8-PPCDF 7.54e+07 0.52 y 0.91 36:02 102  33C1-2,3,4,7,8-PPCDF 7.54e+07 0.52 y 0.91 36:02 102  33C1-1,2,3,4,7,8-PPCDF 7.54e+07 0.53 y 1.07 37:50 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 13C-1, 2, 2, 7, 8-1CDD                    |       |          |          | 1.13      | 27:37    | 91.5        |        |       |         | Kec /                |          |     |
| 13C-1,2,3,4,6,7,8-HyCDD 3.05e+07 1.05 y 0.91 41:24 89.9  13C-2,3,7,8-TCDF 7.20e+07 0.99 y 0.73 46:42 82.3  13C-1,2,3,7,8-PECDF 6.11e+07 0.59 y 1.06 26:43 90.0  13C-1,2,3,7,8-PECDF 6.11e+07 1.58 y 0.96 31:36 84.6  13C-1,2,3,4,6,7,8-HyCDP 2.95e+07 0.84 y 0.96 31:36 84.6  13C-1,2,3,4-TCDD 4.89e+07 0.81 y 1.00 26:57 100  13C-1,2,3,4-TCDD 4.89e+07 0.81 y 1.00 26:57 100  13C-1,2,3,7,8-PCDF 7.54e+07 0.77 y 1.00 25:20 100  37C1-2,3,7,8-PCDD 2.82e+07 0.51 27:38 108  13C-1,2,3,4,7,8-PCDF 6.24e+07 1.58 y 0.97 32:44 105  13C-1,2,3,4,7,8-HyCDF 2.42e+07 0.52 y 0.91 36:02 102  37C1-2,3,4,7,8-HyCDF 2.42e+07 0.52 y 0.91 36:02 102  13C-1,2,3,4,7,8-HyCDF 2.38e+07 0.53 y 0.95 37:00 101  31C-1,2,3,4,7,8-HyCDF 2.32e+07 0.53 y 0.95 37:00 96:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 13C-1,2,3,6,7,0-recup                     |       |          | > `      | 0.93      | 33:06    | 94.7        |        |       |         | 71.0                 |          |     |
| 13C-1,2,3,7,8-PECDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _     | 3C-1-2-3 4 6 7 9 month                    |       |          | ¥        | 0.93      | 37:07    | 96.1        |        |       |         | 1.50                 |          | _   |
| 13C-1,2,3,7,8-PECDF 6.11e+07 1.58 y/ 0.96 26143 90.0  13C-1,2,3,7,8-PECDF 6.11e+07 1.58 y/ 0.96 31:36 84.6  13C-1,2,3,4,7,8-PECDF 7.20e+07 0.79 y 1.06 26143 90.0  13C-1,2,3,4,7,8-PECDF 7.5e+07 0.52 y 1.28 36:10 96.1  13C-1,2,3,4-7,8-PECDF 2.95e+07 0.81 y/ 0.91 39:46 87.2  13C-1,2,3,4-7,8-PECDF 7.54e+07 0.81 y/ 1.00 26:57 100  13C-1,2,3,4-7,8-PECDF 7.54e+07 0.77 y 1.00 26:57 100  37C1-2,3,7,8-PECDF 6.24e+07 1.26 y/ 1.00 37:26 100  13C-1,2,3,4,7,8-PECDF 6.24e+07 1.58 y/ 0.97 32:44 105  13C-1,2,3,4,7,8-PECDF 7.54e+07 0.53 y/ 0.91 36:02 102  13C-1,2,3,4,7,8-PECDF 7.54e+07 0.53 y/ 0.91 36:02 102  13C-1,2,3,4,7,8-PECDF 7.54e+07 0.53 y/ 0.91 36:02 102  13C-1,2,3,4,7,8-PECDF 7.5e+07 0.53 y/ 1.07 37:50 96:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •     | 130 Oct                                   | 3.05  |          | >        | 0.91      | 41:24    | 89.9        |        |       |         | 96.1                 |          |     |
| 13C-1,2,3,7,8-PeCDF 6.11e+07 1.58 y 0.96 31:36 84.6  13C-1,2,3,4,6,7,8-PECDF 6.11e+07 1.58 y 0.96 31:36 84.6  13C-1,2,3,4,6,7,8-PECDF 2.95e+07 0.43 y 0.90 39:46 87.2  13C-1,2,3,4,6,7,8-PECDF 2.95e+07 0.81 y 0.91 37:26  13C-1,2,3,4,7,8-PECDF 7.54e+07 0.77 y 1.00 25:20 100  37C1-2,3,7,8,9-PECDF 6.24e+07 1.58 y 0.97 32:44 105  13C-1,2,3,4,7,8-PECDF 7.54e+07 1.31 y 0.92 37:00 101  37C1-2,3,4,7,8-PECDF 6.24e+07 1.31 y 0.92 37:00 101  33C1-2,3,4,7,8-PECDF 6.24e+07 0.83 y 0.85 42:13 96:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 130-001                                   |       |          | Z        | 0.73      | 46:42    | 82.3        |        |       |         | £ .                  |          | _   |
| 13C-1,2,3,7,8-PeCDF 6.11e+07 1.58 y/ 0.96 31:36 84.6  13C-1,2,3,4,6,7,8-HXCDF 4.62e+07 0.52 y 1.28 36:10 96:1  13C-1,2,3,4,6,7,8-HPCDF 2.95e+07 0.84 y/ 0.91 47:01 81.8  13C-1,2,3,4-TCDD 4.89e+07 0.84 y/ 0.01 26:57 100  13C-1,2,3,7,8,9-HXCDD 3.75e+07 0.77 y 1.00 25:20 100  37C1-2,3,7,8-TCDD 2.82e+07 0.51 27:38 108  13C-1,2,3,7,8-HXCDF 3.75e+07 1.58 y/ 0.97 32:44 105  13C-1,2,3,4,7,8-HXCDF 3.13e+07 1.31 y 0.92 37:00 101  3C-1,2,3,4,7,8-HXCDF 4.30e+07 0.52 y/ 0.91 36:02 102  3C-1,2,3,4,7,8,9-HYCDF 2.42e+07 0.53 y/ 1.07 37:50 96:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 13C 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       |          |          | 1.06      | 26:43    | 0.06        |        |       |         | 82.3                 |          | _   |
| 13C-1,2,3,4,6,7,8-HXCDF 4.62e+07 0.52 y 1.28 36:10 96:1  13C-1,2,3,4,6,7,8,9-HYCDD 2.85e+07 0.81 y 0.90 39:46 87.2  13C-1,2,3,4-TCDD 4.89e+07 0.81 y 1.00 26:57 100  13C-1,2,3,7,8,9-HXCDD 2.82e+07 0.77 y 1.00 25:20 100  37C1-2,3,7,8,9-HXCDF 0.81 y 0.97 32:44 105  13C-1,2,3,4,7,8-HXCDF 0.81 y 0.91 36:02 102  37C1-2,3,4,7,8,9-HYCDF 0.81 y 0.81 y 0.81 y 0.92 37:00 101  37C1-2,3,4,7,8,9-HYCDF 0.81 y 0.82 42:13 96:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 13C 1 2 2 4 4 PecDF                       |       |          |          | 9         | 31:36    | 84.6        |        |       |         | 0.06                 |          | _   |
| 13C-1,2,3,4,6,7,8,9-HpCDF 2.95e+07 0.43 y 0.90 39;46 87.2  13C-2,2,3,4-TCDD 4.89e+07 0.81 y 1.00 26;57 100  13C-1,2,3,7,8,9-HxCDD 3.75e+07 0.51 y 1.00 25;20 100  37C1-2,3,7,8,9-HpCDF 6.24e+07 1.26 y 1.00 37;26 105  13C-1,2,3,4,7,8-HxCDP 3.13e+07 1.31 y 0.92 37;00 101  3C-1,2,3,4,7,8,9-HpCDF 2.42e+07 0.53 y 0.91 36;02 102  3C-1,2,3,4,7,8,9-HpCDF 2.42e+07 0.53 y 1.07 37;50 96:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •     | 13C-1,2,3,6,7,8-HxCDF                     |       |          |          | ~         | 36:10    | 96.1        |        |       |         | 84.6                 |          | _   |
| 13C-1,2,3,4-TCDD 4.89e+07 0.84 \$\cdot \text{O} \text{CoEP} = 2.49e+07 0.84 \$\cdot \text{V} \text{O} \text{O} \text{O} \text{B} \text{O} \text{S} \text{O} \text{COEP} \text{O} \text{O} \text{B} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} \text{O} | 4     | 3C-1,2,3,4,6,7,8-HpCDF                    |       |          |          | ۰         | 39146    | 87.5        |        |       |         | 96.1                 |          |     |
| 13C-1,2,3,4-TCDD 4.89e+07 0.81 y 1.00 26:57 100 13C-1,2,3,7,8,9-HXCDD 3.75e+07 0.77 y 1.00 25:20 100 37C1-2,3,7,8-TCDD 2.82e+07 1.26 y 1.00 37:26 100 37C1-2,3,7,8-PCDD 2.82e+07 0.51 27:38 108 13C-2,3,4,7,8-PCDF 6.24e+07 1.58 y 0.97 32:44 105 13C-1,2,3,4,7,8-HXCDD 3.13e+07 1.31 y 0.92 37:00 101 3C-1,2,3,4,7,8-HXCDF 2.42e+07 0.53 y 0.91 36:02 102 3C-1,2,3,4,7,8,9-HXCDF 2.42e+07 0.43 y 0.85 42:13 96:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 13C-0CDF                                  | 7     |          |          | æ         | 7        | 81.8        |        |       |         | 87.2                 |          |     |
| 13C-1,2,3,4-TCDF 7.54e+07 0.77 y 1.00 26:57 100  13C-1,2,3,7,8,9-HXCDD 3.75e+07 1.26 y 0.51 27:38 108  13C-2,3,4,7,8-FECDF 6.24e+07 1.58 y 0.97 32:44 105  13C-2,3,4,7,8-HXCDD 3.13e+07 1.31 y 0.92 37:00 101  13C-1,2,3,4,7,8-HXCDF 4.30e+07 0.52 y 0.91 36:02 102  3C-1,2,3,4,7,8,9-HPCDF 2.42e+07 0.53 y 0.85 42:13 96:1  13C-1,2,3,7,8,9-HXCDF 3.85e+07 0.53 y 1.07 37:50 96:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ę     | 13C-1.2.3.4-monn                          |       |          |          | 4         |          |             |        |       |         | 81.8                 |          |     |
| 13C-1,2,3,7,8,9-HxCDD 3.75e+07 1.26 \( \begin{array}{c} \begin{array}{c} 37c1-2,3,7,8-TCDD 2.82e+07 \end{array} \) 0.51 \( 27i38 \end{array} \) 100  37C1-2,3,7,8-TCDD 2.82e+07 1.58 \( \begin{array}{c} y & 0.57 & 27i38 & 108 \end{array} \) 13C-2,3,4,7,8-HxCDD 3.13e+07 1.31 \( y & 0.92 & 37i00 & 101 \end{array} \) 13C-1,2,3,4,7,8-HxCDF 4.30e+07 0.52 \( y & 0.91 & 36i02 & 102 \end{array} \) 36-1,2,3,4,7,8,9-HxCDF 2.42e+07 0.43 \( y & 0.85 & 42i13 & 96:1 \end{array} \) 96.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 13C-1.2.3.4-#CDF                          |       |          |          | 1.00      | 26:57    | 100         |        |       |         |                      |          |     |
| 2.82e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ę     | 13C-1,2,3,7,8,9-HxCDD                     |       |          |          | 1.00      | 25120    | 100         |        |       |         | ' '                  |          |     |
| 2.82e+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                           |       |          |          | 7.00      | 3/126    | 100         |        |       |         |                      | •        | _   |
| 6.24e+07 1.58 y 0.97 32:44 105<br>3.13e+07 1.31 y 0.92 37:00 101<br>4.30e+07 0.52 y 0.91 36:02 102<br>2.42e+07 0.43 y 0.85 42:13 96.1<br>3.85e+07 0.53 y 1.07 37:50 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 37C1-2,3,7,8-TCDD                         |       |          |          | .51       | 27,38    | 108         |        |       |         | Analyst              | 040      |     |
| 3.13e+07 1.31 y 0.92 37:00 101<br>4.30e+07 0.52 y 0.91 36:02 102<br>2.42e+07 0.43 y 0.85 42:13 96.1<br>3.85e+07 0.53 y 1.07 37:50 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 13C-1,3,4,/,8-PecDF                       |       |          | 58 y/    | .97       | 32:44    | 105         |        |       |         | 108/                 |          |     |
| 4.30e+0/ 0.52 y' 0.91 36:02 102<br>2.42e+07 0.43 y' 0.85 42:13 96.1<br>3.85e+07 0.53 y' 1.07 37:50 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 13C-1,2,3,4,7,8-HXCDD                     |       |          | .31 y    | .92       | 37:00    | 101         |        |       |         | 105/                 | 100/05/  |     |
| 3.85e+07 0.53 y 1.07 37:50 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13    | C-1,2,3,4,7,8,9-HPCDF                     | 4.30e |          | .52 y    | .91       | 36:02    | 102         |        |       |         | 101 Cate: 0          | いかめり     |     |
| 6 0.55 1.50 96.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 13C-1,2,3,7,8,9-HxCDF                     | 3.856 |          |          | .85       | 42:13    | 96.1        |        |       |         | 717                  |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                           |       | •        |          |           | 06176    | 96.0        |        |       |         | /0.96                |          |     |

الافراق مراز تها

\$

a bride way

\$200 cm

distribution of the second

| OPUSquan 23-FEB-2001   | -2001 17:50                                         | Page                             | e 1                                                         |                                        |                  |               |
|------------------------|-----------------------------------------------------|----------------------------------|-------------------------------------------------------------|----------------------------------------|------------------|---------------|
|                        |                                                     |                                  |                                                             |                                        |                  | Page 10 of 10 |
|                        | PCDD/PCDF RT WIN                                    | FO<br>VDOW AND ISOM              | FORM 5 PCDD/PCDF RT WINDOW AND ISOMER SPECIFICITY STANDARDS |                                        |                  |               |
| Lab Name               | Lab Name: Alta Analytical Perspectives Episode No.: | Perspectives                     | Episode No. :                                               |                                        |                  |               |
| Contract No.           | No. 1                                               | SAS No.1                         |                                                             |                                        | 3                |               |
| Instrume               | Instrument ID: MM-1                                 | Initial                          | Calibration Date: 10/5/00                                   |                                        | Reviewer         |               |
| RT Windo               | RT Window Data Filename: 010223P1 S#1               | 110223P1 S#1                     | Analysis Date: 23-FEB-01                                    | 23-FEB-01 Time: 11:17:52               | Date: 24 146 Ø 1 |               |
| DB-5 IS                | DB-5 IS Data Filename: 010223P1                     | )223P1 S#1                       | Analysis Date: 23-FEB-01                                    | Time: 11:17:52                         |                  |               |
| DB_225 I               | DB_225 IS Data Filename:                            |                                  | Analysis Date:                                              | Time:                                  |                  |               |
|                        | DB-5                                                | DB-5 RT WINDOW D                 | DEFINING STANDARDS RESULTS                                  |                                        |                  |               |
| ISOMERS<br>1,3,6,8     | ISOMERS<br>1,3,6,8-TCDD (F)<br>1,2,8,9-TCDD (L)     | ABSOLUTE<br>RT<br>23:52<br>28:38 | ISOMERS<br>1,3,6,8-TCDF (F)<br>1,2,8,9-TCDF (L)             | ABSOLUTE<br>RT<br>21:41                |                  |               |
| 1,2,4,7                | 1,2,4,7,9-PeCDD (F)<br>1,2,3,8,9-PeCDD (L)          | 30:33                            | 1,3,4,6,8-PeCDF (F)<br>1,2,3,8,9-PeCDF (L)                  | 28:45                                  |                  |               |
| 1,2,4,6                | 1,2,4,6,7,9-HxCDD (F)<br>1,2,3,7,8,9-HxCDD (L)      | 35:19                            | 1,2,3,4,6,8-HxCDF (F)<br>1,2,3,7,8,9-HxCDF (L)              | 34:39                                  |                  |               |
| 1,2,3,4                | 1,2,3,4,6,7,9-HpCDD (F)<br>1,2,3,4,6,7,8-HpCDD (L)  | 40:13                            | 1,2,3,4,6,7,8-HpCDF (F)<br>1,2,3,4,7,8,9-HpCDF (L)          | 39:47                                  |                  |               |
| (F) = F1               | <ul> <li>First eluting isomer</li> </ul>            | (DB-5); (L)                      | - Last eluting isomer (DB-5)                                | -5).                                   |                  |               |
| 机酸铂 朴社 红 拉拉 医角状 化铁铁铁 內 | ISOMER SPECIFICITY                                  |                                  | (IS) TEST STANDARD RESULTS                                  | 11 11 11 11 11 11 11 11 11 11 11 11 11 |                  |               |
|                        | \$ VALLEY HEIGHT<br>BETWEEN<br>COMPARED PEAKS (1)   | (GHT)                            |                                                             |                                        |                  |               |
|                        | <258                                                |                                  |                                                             |                                        |                  |               |
| <u> </u>               |                                                     |                                  |                                                             |                                        |                  | •             |
|                        |                                                     |                                  |                                                             |                                        | Analyst:         |               |
|                        |                                                     |                                  |                                                             |                                        | Date:            |               |
|                        |                                                     |                                  |                                                             |                                        |                  |               |



si .

**?** 

. .

.

Action of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the se

. .

2.5

: 5

-



Peak Locate Examination: 23-FEB-2001:11:15 File: 010223P1 Experiment: OCDD Function: 1 Reference: PFK2



Peak Locate Examination:23-FEB-2001:11:16 File:010223P1 Experiment:0CDD Function:2 Reference:PFK2



Volts Volts 0.3829 393.01534 431,01594 392.97604 430.97284 392,93675 430.92974 PPM 200 PPM 200 Peak Locate Examination:23-FEB-2001:11:16 File:010223P1 Volts 0.5282 Volts Volts 0.2428 Experiment: OCDD Function: 3 Reference: PFK2 0.1952 381.01414 417.01774 455.01834 380.97604 416.97604 454.97284 380,93795 416.93435 454.92734 PPM 200 PPM 200 PPM 200 Volts Volts Volts 0.2617 367,01595 405.01654 443.01714 366.97925 404.97604 442.97284 366.94255 404.93555 442.92854 PPM 200 PPM 200 PPM 200

Volts 0.3630 Volts 0.1609 431.01594 467.01954 430.97284 466.97284 466.92614 430.92974 PPM 200 PPM 200 Volts Volts 0.3527 Experiment: OCDD Function: 4 Reference: PFK2 417.01774 455.01834 416.97604 454.97284 416.93435 454.92734 PPM 200 PPM 200 Volts Volts Volts 0.1994 405.01654 443.01714 481.01776 404.97604 442.97284 480.96967 404.93555 442.92854 480.92157 PPM 200 PPM 200 PPM 200

Peak Locate Examination: 23-FEB-2001:11:16 File: 010223P1

Volts Volts 0.2366 0.3281 455.01834 493.01896 454.97284 492.96967 454.92734 492.92037 PPM 200 PPM 200 Peak Locate Examination:23-FEB-2001:11:17 File:010223P1 Volts 0.2686 Volts Experiment: OCDD Function: 5 Reference: PFK2 Volts 0.1522 443.01714 481.01776 517.02136 442.97284 480.96967 516.96967 442.92854 480.92157 516.91797 PPM 200 PPM 200 PPM 200 Volts Volts 0.1587 Volts 0.2535 431,01594 467.01954 505.02016 430.97284 466.97284 504.96967 430.92974 466.92614 504.91917 PPM 200 PPM 200 PPM 200

i 3







| P. 18. (11777B) N.C. 37 BER 1177 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                            |                         |                              |                |
|---------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|----------------|
| 1e# 1 Text: DB5 CPSM / M23 CS3 Vial# 3 File Text: 7767 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.0      |                         |                              |                |
| 100s A3.82E6 A4.46E6                                                                                          |                         |                              | 8.1E5          |
| 40                                                                                                            |                         |                              | 4.855          |
| 203                                                                                                           |                         |                              | 1.625          |
| 41:00                                                                                                         | 43:00                   | 44:00                        | Time           |
| 40:13<br>A3.74E6 A4.33E6                                                                                      |                         |                              | 7.9E5          |
| 09                                                                                                            |                         |                              | 6.385          |
| 201                                                                                                           |                         |                              | 3.255          |
| 42:00                                                                                                         | 43:00                   | 44:00                        | E0.0E0         |
| *33.64.07 F'* BSUB(10000,12,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 1140<br>41:23<br>A1:56E7 |                         |                              | 0 0 0          |
| 609                                                                                                           |                         |                              | 2.386          |
| 20                                                                                                            |                         |                              | 1.256          |
| 42:00<br>437.8140 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 586              | 43:00                   | 44:00                        | £0.0E0         |
| 100% 41:23<br>804 804                                                                                         |                         |                              | 2.7E6          |
| 60-                                                                                                           |                         |                              | 1.6E6          |
| 07                                                                                                            |                         |                              | 5.585          |
| 430.9728 F:4 Expt: OCDD 42:00 41:00 42:00                                                                     | 43:00                   | 44:00                        | Time           |
| 39:05 39:24 39:48 40:10 40:22 40:40 40:56 41:21 41:30 41:50 42:15 42:24                                       | 42:43 43:06 43:19 43:37 | 37 43:48<br>37 7 44:00 44:18 | 2.757          |
|                                                                                                               |                         |                              | E2.2E7         |
| 202                                                                                                           |                         |                              | 5.486          |
| 40:00 41:00 42:00                                                                                             | 43:00                   | 44:00                        | LO.OEO<br>Time |
|                                                                                                               |                         |                              |                |















| OPUSquan 23-FEB-2001                                                             | 001 17:53                                |                              | Page 1                                           |                               |                         |                                                          |                 | Γ     |
|----------------------------------------------------------------------------------|------------------------------------------|------------------------------|--------------------------------------------------|-------------------------------|-------------------------|----------------------------------------------------------|-----------------|-------|
|                                                                                  | PCI                                      | OD/PCDF C                    | PCDD/PCDF CALIBRATION VERIFICATION               | VERIFICATI                    | NO                      |                                                          | Page 10 of 1    | 10    |
|                                                                                  |                                          | Alta An                      | Alta Analytical Pe                               | Perspectives                  |                         |                                                          |                 |       |
| Initial Calibrat                                                                 | Calibration Date: 10/05/00               | /02/00                       |                                                  |                               |                         |                                                          | Reviewer:       |       |
| Instrument ID: MM-1                                                              |                                          | GC Column ID: DB-5           | ID: DB-5                                         |                               |                         |                                                          | 24 62 67        | ·.    |
| VER Data Filename: 010223P1                                                      | e: 010223P1                              | S#4 A                        | Analysis Dat                                     | ate: 23-FEB-0] Time: 13:52:50 | 1 Time: 1               | 3:52:50                                                  | 1               |       |
| NATIVE ANALYTES                                                                  | M/Z'S<br>FORMING<br>RATIO                | ION<br>ABUND.<br>RATIO       | QC<br>LIMITS                                     | 2000                          | CONC.<br>FOUND          | CONC.<br>RANGE<br>(ng/ml)                                |                 | 7,    |
| 2,3,7,8-TCDD                                                                     | M/M+2                                    | 0.77                         | 0.65-0.89                                        | >-                            | 5.72                    | 3.75 - 6.25                                              |                 |       |
| 1,2,3,7,8-PeCDD                                                                  | M+2/M+4                                  | 1.56                         | 1.32-1.78                                        | ٨                             | 27.30                   | 18.75-31.25                                              |                 |       |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD                      | M+2/M+4<br>M+2/M+4<br>M+2/M+4            | 1.25<br>1.26<br>1.24         | 1.05-1.43<br>1.05-1.43<br>1.05-1.43              | >> >> >>                      | 25.77<br>26.57<br>26.94 | 18.75-31.25<br>18.75-31.25<br>18.75-31.25                |                 | ····· |
| 1,2,3,4,6,7,8-HpCDD M+2/M+4                                                      | M+2/M+4                                  | 1.03                         | 0.88-1.20                                        | ۶.                            | 25.37                   | 18.75-31.25                                              |                 |       |
|                                                                                  | M+2/M+4                                  | 0.88                         | 0.76-1.02                                        | ٨                             | 52.15                   | 37 - 65                                                  |                 |       |
| 2,3,7,8-TCDF                                                                     | M/M+2                                    | 0.74                         | 0.65-0.89                                        | <b>&gt;</b>                   | 4.75                    | 3.75 - 6.25                                              |                 |       |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF                                               | M+2/M+4<br>M+2/M+4                       | 1.54                         | 1.32-1.78                                        | » »                           | 25.15                   | 18.75-31.25<br>18.75-31.25                               |                 |       |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF | M+2/M+4<br>M+2/M+4<br>M+2/M+4<br>M+2/M+4 | 1.23<br>1.22<br>1.22<br>1.22 | 1.05-1.43<br>1.05-1.43<br>1.05-1.43<br>1.05-1.43 | ***                           | 24.69<br>24.52<br>24.09 | 18.75-31.25<br>18.75-31.25<br>18.75-31.25<br>18.75-31.25 |                 |       |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7;8,9-HpCDF                                       | M+2/M+4<br>M+2/M+4                       | 1.02                         | 0.88-1.20<br>0.88-1.20                           | <b>&gt;</b> >                 | 24.26                   | 18.75-31.25<br>18.75-31.25                               |                 |       |
|                                                                                  | M+2/M+4                                  | 0.89                         | 0.76-1.02                                        | γ                             | 49.06 /                 | 35 - 65                                                  |                 |       |
|                                                                                  |                                          |                              |                                                  |                               |                         |                                                          | Analyst: 646    | _     |
|                                                                                  |                                          |                              |                                                  |                               |                         |                                                          | Date: 23 FC6 D( |       |

Page 1 23-FEB-2001 17:53 OPUSquan

Page 10 of 10

PCDD/PCDF CALIBRATION VERIFICATION

Alta Analytical Perspectives

Initial Calibration Date: 10/05/00

GC Column ID: DB-5 Instrument ID: MM-1

24 1200

Date

Reviewer:

S#4 Analysis Date: 23-PEB-01 Time: 13:52:50 VER Data Filename: 010223P1

| CONC. RANGE<br>FOUND (ng/mL) | 95.07 70.0 - 130.0<br>103.97 70.0 - 130.0<br>92.47 70.0 - 130.0<br>90.47 70.0 - 130.0<br>93.07 70.0 - 130.0<br>90.37 70.0 - 130.0<br>87.77 70.0 - 130.0<br>82.17 70.0 - 130.0                                                   | 107.3 75.0 - 125.0<br>104.8 75.0 - 125.0<br>102.4 75.0 - 125.0<br>105.0 75.0 - 125.0                                  | 90.8 / 75.0 - 125.0   |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------|
| Pass                         | ******                                                                                                                                                                                                                          | ***                                                                                                                   | λ.                    |
| OC<br>LIMITS                 | 0.65-0.89<br>1.32-1.78<br>1.05-1.43<br>0.88-1.20<br>0.76-1.02<br>0.65-0.89<br>1.32-1.78<br>0.43-0.59<br>0.37-0.51                                                                                                               | 1.32-1.78<br>1.05-1.43<br>0.43-0.59<br>0.37-0.51                                                                      | 0.43-0.59             |
| ION<br>ABUND.<br>RATIO       | 0.79<br>1.55<br>0.85<br>0.79<br>0.52<br>0.52<br>0.88                                                                                                                                                                            | 1.56<br>1.26<br>0.52                                                                                                  | 0.52                  |
| M/Z'S<br>FORMING<br>RATIO    | M/M+2<br>H+2/M+4<br>H+2/M+4<br>H+2/M+4<br>M+2/M+2<br>M+2/M+4<br>M/M+2<br>M/M+2<br>M/M+2<br>M/M+2                                                                                                                                | M+2/M+4<br>M+2/M+4<br>M/M+2<br>M/M+2                                                                                  | M/M+2                 |
| FC LABELED COMPOUNDS         | 13C-2,3,7,8-TCDD<br>13C-1,2,3,7,8-PeCDD<br>13C-1,2,3,6,7,8-RxCDD<br>13C-1,2,3,4,6,7,8-HpCDD<br>13C-0CDD<br>13C-2,3,7,8-TCDF<br>13C-1,2,3,7,8-PeCDF<br>13C-1,2,3,7,8-PeCDF<br>13C-1,2,3,4,6,7,8-HpCDF<br>13C-1,2,3,4,6,7,8-HpCDF | 37C1-2,3,7,8-TCDD<br>13C-2,3,4,7,8-PeCDF<br>13C-1,2,3,4,7,8-HXCDD<br>13C-1,2,3,4,7,8-HXCDF<br>13C-1,2,3,4,7,8,9-HpCDF | 13C-1,2,3,7,8,9-HxCDF |

Analyst, CHE

Date: 24 Fabol

| 1 St 4 Acq: 23-FEB-01 13:52:50 Concal: 010223Pl- Page 10 Endcal: MM1_M23_0; wt/vol: 1.000 Endcal: 010223Pl- | _M23_0; wt/vol: 1.000 EndCal: 010223F1<br>onc Qualif. CDE noise Fac DL | 858 2.5 0.       | 2428 2.5          | 2428 2.5 0.112       | 28 2.5 0.101 Revlewer: 94 2.5 0.157 | 50 2.5 0.0960 | 265 2.5 0.0266 | 6 2.5                | 215 2.5 0.06      | 215 2.5 0.05 | 215 2.5 0.06 | 2.5 0.1             | 299 2.5                     | 7.0 0.1   | 8 2.5 0.0191  | 2.5 12.4                                  | 5 0.104             | 5 0.0266           | .5 0.137 20.5 | 0.250                        | 92.2<br>0.0647 101<br>0.109 48.2        | Rec                                     | 95.0                | 92.4     | 90.4                    | 3.0              | 90.3                                         | 82.17                   | 82.4     | 1 1                                  |          | 107 -             |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------|-------------------|----------------------|-------------------------------------|---------------|----------------|----------------------|-------------------|--------------|--------------|---------------------|-----------------------------|-----------|---------------|-------------------------------------------|---------------------|--------------------|---------------|------------------------------|-----------------------------------------|-----------------------------------------|---------------------|----------|-------------------------|------------------|----------------------------------------------|-------------------------|----------|--------------------------------------|----------|-------------------|
| S: 4 Acq: 23-FEB-01 13:52:50 ConCal: ICal: MM1_M23_0; wt/vol: 1.000 EndCal:                                 | _M23_0; wt/vol: 1.000 EndCal: 010223F1<br>onc Qualif. CDE noise Fac DL | 858 2.5 0.       | 2428 2.5          | 2428 2.5 0.112       | 94 2.5 0.157                        | 50 2.5 0.0960 | 265 2.5 0.0266 | 276 2.5 0.25         | 215 2.5 0.06      | 215 2.5 0.05 | 215 2.5 0.06 | 299 2.5 0.1         | 299 2.5 0.1                 | 091.0 6.2 | 8 2.5 0.0191  | 2.5 12.4                                  | 5 0.104             | 5 0.0266           | 5 0.137       | 0.250                        | 0.0647<br>0.109 4                       | Rec                                     | 0.4                 | 92.4     | 14.06                   | 3.0              | 90.3                                         | 82.17                   | 82.4     | 1 1                                  |          | Anal.             |
| S: 4 Acg: 23-FEB-01 13:52:50<br>ICal: MMI_M23_0: wt/vol: 1.000                                              | _M23_0's wt/vol: 1.000<br>onc Qualif. CDE noise Fac                    | 858 2.5 0.       | 2428 2.5          | 2428 2.5 0           | 94 2.5 0                            | 50 2.5 0.     | 265 2.5 0.026  | 276 2.5 0.25         | 215 2.5 0.06      | 215 2.5 0.05 | 215 2.5 0.06 | 299 2.5 0.1         | 299 2.5 0.1                 | 7.0 0.1   | 8 2.5 0.01    | 2.5                                       | ů, n                | הייני              | ່             | 0                            | •                                       | •                                       |                     |          |                         |                  |                                              |                         |          |                                      |          |                   |
| S: 4 Acq: 23-FEB-01 13:52:50<br>ICal: MM1_M23_0; wt/vol: 1                                                  | _M23_0* wt/vol: 1.000<br>onc Qualif. CDE noise F                       | 858 2            | 2428 2            | 2428 2               | 94 2                                | 50 2          | 265 2.         | 276 2.               | 215 2.            | 215 2.       | 215 2.       | 299 2.              | 299 2.                      |           | 8 2.          | 7                                         |                     |                    | ini           | 10                           |                                         |                                         |                     |          |                         |                  |                                              |                         |          |                                      |          |                   |
| S: 4 Acq: 23-FEB-01 13:52:50<br>ICal: MM1_M23_0; wt/vol: 1                                                  | _M23_0, wt/vol: 1.000<br>onc Qualif. CDE no                            |                  |                   |                      | 2 2                                 | w             | 12             | 88 8<br>8 8          | 328               | 32           | 32           | 32                  | 2 5                         |           |               | 9                                         | NO                  | 4 10               | 412           | 76 2.                        | 15 2.5<br>99 2.5                        | i                                       |                     |          |                         |                  |                                              |                         |          |                                      |          |                   |
| S: 4 Acq: 23-FEB-01<br>ICal: MM1_M23_0;                                                                     | _M23_U* wt/vol<br>onc Qualif.                                          | 5.72             |                   |                      |                                     |               |                |                      |                   |              |              |                     | m -                         | 7         |               | 3117                                      | 24                  | 12                 | 4.5           | 82                           | 321                                     |                                         |                     |          |                         |                  |                                              |                         |          |                                      |          |                   |
| S: 4 Acq: 23-FEB-01<br>ICal: MM1_M23_0;                                                                     | _M23_0*<br>onc Quali                                                   | 5.72             | . ~               |                      |                                     |               |                |                      |                   |              |              |                     |                             |           |               |                                           |                     |                    |               |                              |                                         |                                         |                     |          |                         |                  |                                              |                         |          |                                      |          |                   |
| St 4 Acqt                                                                                                   | MMI_M23_                                                               | 5.72             | . ~               |                      |                                     |               |                |                      |                   |              |              |                     |                             |           |               |                                           |                     |                    |               |                              |                                         |                                         |                     |          |                         |                  |                                              |                         |          |                                      |          |                   |
| ŝ                                                                                                           | Σ                                                                      |                  | 25                | 26.6                 | 25.3                                | 52.1          | 4.75           | 25.2                 | 24.7              | 24.5         | 24.1         | 24.3                | 23.3                        |           | 22.6          | 71.5                                      | 46.8                | 12.0               | 20.5          | 71.4                         | 100                                     |                                         | 95.0<br>104         | 92.4     | 90.4                    | · ~              | 90.3                                         | 82.1                    | 82.4     | 100                                  | 100      | 107               |
| ŝ                                                                                                           | E CAL                                                                  | <b>60 V</b>      |                   | <b>~</b> v           |                                     | _             | 4.1            | r 4                  |                   | _            |              |                     |                             |           |               |                                           |                     |                    |               |                              |                                         |                                         |                     |          |                         |                  |                                              |                         |          |                                      |          |                   |
| 1 1 - 10                                                                                                    |                                                                        | 33:0             | 37:0              | 37:0                 | 41123                               | 4614          | 2614           | 32:44                | 36:01             | 36:10        | 37:49        | - 6                 | 42:12                       | :         | 23:52         | 30:33                                     | 40:12               | 21:10              | 28:44         | 31:37                        | 34:38                                   |                                         | 33:04               | 37:06    | 41:22                   | 26:43            | 31:36                                        | 39:45                   | 47:00    | 26:56<br>25:19                       | 7        | 27:38             |
| 0223P                                                                                                       | RRF                                                                    |                  | -                 | 1.02                 | 1.13                                | 1.03          | 1.05           | 1.04                 | • •               | 2 .          |              |                     | 1.30                        | •         | 1.26          | 1.01                                      | 1.13                | 1.05               | 1.05          | 1.05                         | 1.14                                    | •                                       | 0.93                | 6.       | 0.91                    |                  | 0.96                                         | 0.90                    |          | 1.00                                 | •        | 0.51              |
| 1 60 1                                                                                                      |                                                                        | N 9              | 1.25 y            | 1.26 y               | 1.03 y                              | 0.88 ×        | 0.74 y/        | 54 Y                 | 23 Y              |              | 22 ×         |                     | .02 %                       |           |               |                                           | 7 × ×               |                    |               | 4 y                          | 2 y<br>y                                |                                         | , ,<br>, ,          | 1        | * >                     | , »              | 2 Y                                          | ' >                     |          | 7 % / %                              | 7 ×      | ,                 |
| Pag<br>Filename:<br>GC Column                                                                               | ים כפד<br>מר כפד                                                       | 0 -              |                   |                      |                                     |               | 9.             |                      |                   |              | 1.22         |                     |                             | •         | ۰,            | -                                         |                     |                    |               |                              | 1.26                                    |                                         | 1.56                |          |                         |                  | 1.59                                         | 0.45                    | 0.8      | 0.82                                 | 1.2      | -                 |
|                                                                                                             | y des                                                                  | .69e+0<br>.60e+0 | 1.43e+07          | 1.32e+07<br>1.50e+07 | 1.32e+07                            | 1.92e+07      | .36e+0         | 2.01e+07<br>2.03e+07 | 1.77e+07          | 1.92e+07     | 1.57e+07     | 1.56e+07            | 1.27e+07<br>2.12e+07        |           | .86e+07       | 4.20e+07                                  | 2.44e+07            | 1.10e+07           | .65e+07       | .74e+07                      | 7.24e+07<br>2.83e+07                    | F00+07                                  | 5.80e+07            | 4.86e+07 | 4.61e+07                | 8.76e+07         | 7.68e+07<br>6.34e+07                         | 4.18e+07                | 3.77e+07 | 6.03e+07<br>8.88e+07                 | 5.64e+07 | 3.59e+07          |
| 53<br>123 CS3                                                                                               |                                                                        | ~                |                   |                      |                                     | OCDD 1        |                |                      |                   |              |              |                     | 7                           | 1         | -             |                                           |                     |                    |               | ın                           |                                         |                                         |                     |          |                         |                  |                                              |                         |          |                                      |          | 3.                |
| -2001 17:53<br>CPSM / M23                                                                                   | 2 (                                                                    | 7,8-Pe           | 1,2,3,4,7,8-BxCDD | 7,8-HX<br>8,9-HX     | 7,8-Hp                              | 5             | 2,3,7,8-TCDF   | 7,8-Pe               | 1,2,3,4,7,8-HXCDF | 7,8-HX(      | 8,9-HX(      | 1,2,3,4,6,7,8-HpCDF | 1,2,3,4,7,8,9-HpCDF<br>OCDF |           | Tetra-Dioxins | Total Penta-Dioxing<br>Total Heva-Dioxing | Total Hepta-Dioxins | Total Tetra-Furans | Penta-Furans  | Penta-Furans<br>Pechr Totala | Total Hexa-Furans<br>Total Hepta-Furans | 7E-0                                    | , 8-Pec             | , 8-HXC  | , 8-HPCDD               | 13C-2,3,7,8-TCDF | ,8-PeC                                       | , 8-нрс                 | 13C-0CDF | 3,4-TC                               | , 9-HxCl | 7,8-TCI           |
| ماھ                                                                                                         | ` ;                                                                    | 2,3<br>1,2,3,    | 2,3,4,            | 2,3,7,               | 3,4,6,                              |               | 2,3            | 2,3,4,               | 2,3,4,            | 2,3,6,       | 2,3,7,1      | 3,4,6,              | 3,4,7,                      |           | Tetra         | Henta                                     | Hepta               | 1 Tetr             |               |                              | al Hex                                  | 2,                                      | ,2,3,7              | ,3,6,7   | 14,0,1                  | C-2,3,           | ,2,3,7                                       | ,4,6,7                  |          | C-1,2,<br>C-1,2,                     | ,3,7,8   | 1-2,3,            |
| 1 7 5                                                                                                       |                                                                        |                  | 1,                | 1 1                  | 1,2,                                |               |                | , •                  | -1.               | 1,0          | , ,          | 1,2,                | 1,2,                        |           | Total         | Total                                     | Total               | Tota               | 1st Fnc.      | Total                        | Tot                                     | ======================================= | 13C-1,2,3,7,8-PeCDD | 130-1,2  | 13C-1,2,3,4,6,7,8-HpCDD | 13               | 13C-1,2,3,7,8-PeCDF<br>13C-1,2,3,6,7,8-HxCDF | 13C-1,2,3,4,6,7,8-HPCDF |          | 13C-1,2,3,4-TCDD<br>13C-1,2,3,4-TCDF | 3C-1,2   | 37C1-2,3,7,8-TCDD |
| OPUSquan<br>Client<br>Lab Il                                                                                |                                                                        |                  |                   |                      |                                     |               |                |                      |                   |              |              |                     |                             |           |               |                                           |                     |                    | 1             |                              |                                         | v.                                      |                     | ;        | 15<br>15                | 70               |                                              | IS 13C                  |          |                                      | RS/RT 1  | PS                |

Volts 0.1622 Volts 0.1905 317.01415 355.01475 316.98245 354.97925 316.95075 354.94375 PPM 200 PPM 200 Peak Locate Examination:23-FEB-2001:14:59 File:RES\_CHECK Experiment:0CDD Function:1 Reference:PFK2\_ Volts 0.2879 Volts Volts 0.1361 305,01295 343.01355 381.01414 304.98245 342.97925 380.97604 M 304.95195 342.94495 380.93795 PPM 200 PPM 200 PPM 200 Volts Volts 0.7636 Volts 293,01175 331.01235 367.01595 292.98245 330,97925 366.97925 292.95315 330.94615 366.94255 PPM 200 PPM 200 PPM 200

Peak Locate Examination:23-FEB-2001:15:00 File:RES\_CHECK Experiment: OCDD Function: 2 Reference: PFK2



Volts 0.2345 Volts 0.3177 431.01594 393.01534 430.97284 392.97604 392,93675 430.92974 PPM 200 PPM 200 Volts Volts 0.1556 Volts 0.1470 417.01774 455,01834 Experiment: OCDD Function: 3 Reference: PFK2 381.01414 416.97604 380.97604 454.97284 380,93795 416.93435 454.92734 PPM 200 PPM 200 PPM 200 Volts 0.1539 Volts 0.2848 Volts 367.01595 405.01654 443.01714 366.97925 404.97604 442.97284 366.94255 404.93555 442.92854 PPM 200 PPM 200 PPM 200

١

Peak Locate Examination: 23-FEB-2001:15:00 File: RES\_CHECK

Volts 0.2726 Volts 0.1236 431.01594 467.01954 430.97284 466.97284 430.92974 466.92614 PPM 200 PPM 200 Peak Locate Examination: 23-FEB-2001:15:00 File: RES\_CHECK Volts Volts 0.2762 0.1426 Experiment: OCDD Function: 4 Reference: PFK2 417.01774 455.01834 416.97604 454.97284 416.93435 454.92734 PPM 200 PPM 200 Volts Volts Volts 0.1316 405.01654 443.01714 404.97604 442.97284 404.93555 442.92854 480.92157 PPM 200 PPM 200 PPM 200

481.01776

480.96967

Volts 0.1768 Volts 0.2649 455.01834 493.01896 454.97284 492.96967 454.92734 492.92037 PPM 200 PPM 200 Peak Locate Examination:23-FEB-2001:15:01 File:RES\_CHECK Experiment:OCDD Function:5 Reference:PFK2\_ Volts 0.2299 Volts 0.1731 Volts 481.01776 443.01714 517.02136 442.97284 480.96967 516.96967 ₹ 3 442.92854 480.92157 516.91797 200 PPM PPM 200 PPM 200 Volts 0.2255 Volts 0.1338 Volts 431.01594 467.01954 505.02016 430.97284 466.97284 504.96967 430.92974 466.92614 504.91917 PPM 200 PPM 200 PPM 200







| • |                                                                                                                                                                                                         | 96    | 8.685  | 6.585 | 4.325 | 2.225 | Time  |                       | -1.026           | 8.355 | £ 6.2E5 | £4.1E5 | 2.1E5 | Time  |                                      | 3.826            | 3.086 | 2.356 | 1.586 | E7.5E5 | E0.0E0 | ттше                   | 3.5E6            | £2.8E6 | £2.1E6 | E1.4E6 | -7.0E5 | Time  |                   | T                 | 2.3E7 | 1,187 | 5.756 | E0.0E0 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------|-------|-------|-------|-----------------------|------------------|-------|---------|--------|-------|-------|--------------------------------------|------------------|-------|-------|-------|--------|--------|------------------------|------------------|--------|--------|--------|--------|-------|-------------------|-------------------|-------|-------|-------|--------|
|   |                                                                                                                                                                                                         |       |        |       |       |       | 44:00 |                       |                  |       | •       |        |       | 44:00 |                                      |                  |       |       |       |        | 44.00  | 000                    |                  |        |        |        |        | 44:00 | 43:41 43:41 44:05 | 43151             | `     |       |       | 44:00  |
|   |                                                                                                                                                                                                         |       |        |       |       |       | 43:00 |                       |                  |       |         |        |       | 43:00 |                                      |                  |       |       |       |        | 43.00  | 00:5                   |                  |        |        |        |        | 43:00 | 42304 42013 4     | 4317              |       |       |       | 43:00  |
|   | :-UltimaE<br>Expt: OCDD Noise: 442                                                                                                                                                                      |       |        |       |       |       |       | Expt: OCDD Noise: 454 |                  |       |         |        |       | ł     | Expt: OCDD Noise: 1332               |                  |       |       |       |        | 00,07  | Expt: OCDD Noise: 984  |                  |        |        |        |        | 42:00 | 42.0142:18 42:30  | }                 |       |       | -     | 42:00  |
|   | lo<br>o                                                                                                                                                                                                 |       | 0350   |       |       | _     | 00    | 750.0,0.00%,F,F)      | A6.48E6          |       |         |        | _     | 00    | 750.0,0.00%,F,F)                     | 41:21<br>A2.37E7 |       |       |       | _      |        | 750.0,0.00%,F,F)       | 41:21<br>A2.25E7 |        |        |        | _      | 00    | 41.74             | 102 41124 41141   |       |       |       | 00     |
| \ | 3:52:50 GC EI+ Vo.<br>3 Vial# 3 File Te<br>0) PKD(5,5,3,0.10%;                                                                                                                                          |       | 0      |       |       |       |       | 0) PKD(5,5,3,0.10%,   | 2<br>E6          |       |         |        |       | 41100 | BSUB(10000,15,-3.0) PKD(5,5,3,0.10%, |                  |       |       |       |        | 00:11  | -3.0) PKD(5,5,3,0.10%, |                  |        |        |        |        | 4116  | 40.48             | 14 40178 40148 41 |       |       |       | 4110   |
|   | File: 010223P1 Acq: 23-FEB-2001 [3:52:50 GC EI+ Voltage SIR Autosp Sample# 4 Text: DB5 CPSM / M23 CS3 Vial# 3 File Text: AAP DB5 423.7767 S:4 F:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F.F.) | 40:11 | A3.6/1 |       |       |       |       | BSUB(10000,           | 40:12<br>A5.49E6 |       |         |        |       | 40:00 |                                      |                  |       |       |       |        | 00,00  | BSUB(10000,15,         |                  |        |        |        |        | 40:00 | Expt: OCDD        | 39:43 40:09       |       |       |       | 40,00  |
|   | File: 010223F1<br>Sample# 4 Text:<br>423.7767 S:4 F:4                                                                                                                                                   | 400   |        | 09    | 40    | 20    |       | 425.7737 St4 Ft4      | 100%             | 80    | 60      | 40     | 20-   | 0     | 435.8169 S:4 F:4                     | 100%             | 80    | 603   | 40    | 20-    | 0.3    | 437.8140 S:4 F:4       | 100%             | 80     | Ę09    | 40     | 20-    | 0 3   | 9728 S:4<br>39:07 | <u>√</u> }        | 80    | 0.0   | 20    | 0      |

· Comment

€.

~

**5**7

. . .

W- 20

1:

. 8-3



|                                                                                                                                                                                                        | 2.7E6<br>2.4E6<br>2.2E6<br>11.9E6<br>1.4E6<br>11.1E6<br>8.1E5<br>5.4E5     | 1.6E6<br>1.5E6<br>1.3E6<br>1.1E6<br>1.1E6<br>1.1E6<br>1.1E6<br>1.1E5<br>1.6E5<br>1.6E5 | Time                | 1.8E7<br>1.5E7<br>1.3E7<br>1.1E7<br>1.1E7<br>1.1E7<br>1.2E6<br>5.5E6<br>1.8E6 | E0.0E0 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------|--------|
|                                                                                                                                                                                                        | 28:44<br>A1:02E7                                                           | 29:00<br>28:44<br>A6.29E6                                                              | 29:00               | 143 29:03                                                                     | 29:00  |
|                                                                                                                                                                                                        |                                                                            | 28 : 00                                                                                | 28:00               | 27:39 28:16<br>                                                               | 28:00  |
|                                                                                                                                                                                                        |                                                                            | 27:00                                                                                  | 27:00               | 26:55 <sup>27:25</sup> 27                                                     | 27:00  |
| 3e: 63                                                                                                                                                                                                 |                                                                            |                                                                                        | 26:00               | 25:39<br>26:08<br>26:25                                                       | 26:00  |
| spec-UltimaE<br>Expt: OCDD Noise:                                                                                                                                                                      |                                                                            | Expt: OCDD Noise:                                                                      | 25:00               | 24:47 <sup>25:20</sup> 25:                                                    | 25:00  |
| age SIR Autos<br>t: AAP DB5<br>,0.00%,F,F) E                                                                                                                                                           |                                                                            | 24:00<br>0.00%, F, F)                                                                  | 24:00               | 24:27 2                                                                       | 24:00  |
| 0223P1 Acq: 23-FEB-2001 13:52:50 GC EI+ Voltage SIR Autospec-UltimaE<br>4 Text: DB5 CPSM / M23 CS3 Vial# 3 File Text: AAP DB5<br>S:4 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD 1 |                                                                            | 22:00 23:00<br>-3.0) PKD(5,5,3,0.10%,750.0,                                            | 23:00               | 22:59 23:21                                                                   | 23:00  |
| 5B-2001 13:52:<br>/ M23 CS3 V14<br>5,-3.0) PKD(5,5                                                                                                                                                     |                                                                            | l •                                                                                    | 22:00               | 21,56<br>21,39<br>21,39<br>22,111                                             | 22:00  |
| JPI Acq: 23-F]<br>Gat: DBS CPSM<br>BSUB(10000,15                                                                                                                                                       |                                                                            | 21:00<br>BSUB(10000,15                                                                 | 21:00<br>Expt: OCDD | 413<br>413                                                                    | 21:00  |
| File: 010223P1<br>Sample# 4 Tex<br>339.8597 S:4 B                                                                                                                                                      | 100%<br>800<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 341.8568 S:4<br>9008<br>900<br>700<br>600<br>400<br>100                                | 316.9824 S:4        | 20:08<br>700<br>600<br>600<br>100<br>100<br>100<br>100<br>100<br>1            |        |

•

. ,







| `     |                                                                                                                                                                                              | 1.286   | 7.125             | 2.4E5 | 48:00 Time                        | 926-13           | 1.186 | 5.355 | 48:00 49:00 Time | F2.1E6           | 1.756                  | 8.655 | 020.03 | 48:00 49:00 Time         | F 2.486          | -1.9Eb | 19.785 | 48:00 49:00 Time                                                      | 2.3E3<br>E1.8E3  | 1.4E3 | Monday Many Manney                         | 49             |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|-------|-----------------------------------|------------------|-------|-------|------------------|------------------|------------------------|-------|--------|--------------------------|------------------|--------|--------|-----------------------------------------------------------------------|------------------|-------|--------------------------------------------|----------------|
|       | Acq: 23-FEB-2001 13:52:50 GC E1+ Voltage SIR Autospec-UltimaE<br>DBS CPSM / M23 CS3 Vial# 3 File Text: AAP DBS<br>BSUB(10000,15,-3.0) PKD(5,5,3,0:10%,750.0,0:00%,F,F) Expt: OCDD Noise: 138 | A9.99E6 |                   |       | Noise: 289                        | 47:00<br>A1.12E7 |       |       | Noise: 172       | 47:00<br>A1.76E7 |                        |       |        | Noise: 1461              | 47:00<br>A2.00E7 |        |        | 46:00<br>,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 99 | 45:53<br>A1:90E3 |       | the wild of which I'm Under the Marker the | 46:00 47:00 48 |
| 13.56 | : 010223F1<br>1e# 4 Text:<br>7428 S:4 F:5                                                                                                                                                    | 800     | 600<br>400<br>400 | 203   | 45:00<br>443.7398 S:4 F:5 BSUB(10 | 100%             | 09    | 20    | 7830 S:4         | 100%             | # 80<br>80<br>90<br>90 | 403   | -      | 455.7801 S:4 F:5 BSUB(10 | 100%             | 60     | 200    | 45:00<br>513.6775 S:4 F:5 BSUB(10000,15                               | 100%<br>80=      | A     | 20 Thy hay how his                         | 45:00          |

á

. p

.

ALTA ANALYTICAL PERSPECTIVES

# PART 4D

# SYSTEM PERFORMANCE

"INITIAL CALIBRATION"

DOCUMENTATION FOR THE ANALYSIS

П

POLYCHLORINATED DIBENZO-PDIOXINS & DIBENZOFURANS

| Г                    | Τ                                      | <del></del>         | <u>.</u>                |          |              |                 |                   | _                 | <br>+             |                     |        |              | 3                 | 2                   |                   |                   |                        |                   |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                     |                       |                         |          |                     |                     |                            |          |                |                  |                  |                       |                   |                    |                       |                       |                         |                         | _                                       |
|----------------------|----------------------------------------|---------------------|-------------------------|----------|--------------|-----------------|-------------------|-------------------|-------------------|---------------------|--------|--------------|-------------------|---------------------|-------------------|-------------------|------------------------|-------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|-----------------------|-------------------------|----------|---------------------|---------------------|----------------------------|----------|----------------|------------------|------------------|-----------------------|-------------------|--------------------|-----------------------|-----------------------|-------------------------|-------------------------|-----------------------------------------|
|                      |                                        |                     |                         |          |              | Membra          | CAOSIST           | 02 / 1004         | 20 (2             |                     | #2#J   |              | San Carried San C | 2(3 3(44)           |                   | O & OCTOM         | )                      |                   |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 7                   | 2                     | ,                       | 1.1      | T                   | 1.                  | 12000                      |          |                |                  |                  |                       |                   |                    |                       |                       |                         |                         |                                         |
|                      | Page 1 of 1                            |                     | Samp# 9<br>500          | RRF#7    | ,            | 1.26            | D                 | 1.20              | 10.1              | 1.22                | 1.01   |              | 20.1              | 1.00                | 0.7               | 1.1/              | 1.17                   | 1.04              | 1.58                | 1,38                | 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 1.13                | 1.00                  | 0.92                    | 0.80     |                     | 1.00                |                            |          | œ              | 5                | 00.              | 1.00                  |                   | 0.53               | 0.93                  | 06.0                  | 0.87                    | 0.85                    | 1.00                                    |
|                      |                                        |                     | Samp# 8                 | RRF#6    |              | 1.27            |                   | 0 47              | 1,09              | 1.10                | 1.08   |              | •                 | •                   |                   | 91.1              |                        | 96.0              | 1.50                | 1.23                | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Ţ                   | 0.99                  | ů.                      | ÿr       | 1.11                | . 0                 | m                          | 0.90     | •              | 1,00             | •                | 1.00                  |                   | 0.52               | 96.0                  | 0.93                  | 0.88                    | 0.86                    | 1.06                                    |
|                      |                                        | IM-1                | Samp# 7<br>50           | RRF#5    | 1 27         | 7 2 1           | 1.21              | 1.07              | 1.20              | 1.19                | 1.08   | 30.1         | 00.1              | 1.12                | 1 20              | 1.29              | 1.25                   | 1.10              | 1.63                | 1.39                | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | '                | ፣ '                 | 96.0                  | , c                     | , ,      | ٠.                  | 6                   | ۳.                         | 0.92     |                | 1.00             | 1.00             | 1.00                  |                   | 20 (               | ė.                    | 0.93                  | ٥.                      | 0.86                    | 1.10                                    |
|                      |                                        | Inst. ID. MM-1      | Samp# 6                 | RRF#4    | 1 27         | 1.06            | 1.19              | 1.07              | 1.21              | 1.17                | 1.08   | 1.04         | 00.1              | 1.12                | 1.20              | 1.29              | 1.24                   | 1.09              | 1.63                | 1.39                | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 100                 | 200                   |                         | 99.0     | 1.01                | 0.91                | 1.21                       | 0.85     | <b>#</b> / • 0 | 1.00             | 1.00             | 1.00                  |                   | 0.52               | 10.1                  | 0.93                  | 0.94                    | 68.0                    | 1.06                                    |
|                      | ectives                                | 0919                | Samp# 5                 | RRF#3    | 1.25         | 66.0            | 1.12              | 1.03              | 1.12              | 1.07                | 0.99   | 0.98         | 9                 | 1.03                | 1,13              | 1.23              | 1.15                   | 1.01              | 1.51                | 1.27                | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                | 1.12                | 8.0                   | 94                      | ۱ r      |                     | 0.89                | 1.28                       | 0.94     | •              | 1.00             | 1.00             | 1.00                  |                   | 0.51               | 66.0                  | 0.93                  | 0.92                    | 0.85                    | 1.09                                    |
|                      | lta Analytical Perspectives            | mm1_m23_000919      | Samp# 4<br>0.50         | RRF#2    | 1.21         | 0.93            | 1.08              | 0.97              | 1.10              | 1.05                | 0.95   | 0.97         | 0.98              | 1.01                | 1.05              | 1.20              | 1.11                   | 0.97              | 1.45                | 1.19                | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٠                | 7.17                | . 0                   | 88.0                    | 0.71     | 1.11                | 0.97                | 1.31                       | 0.90     |                | 1.00             | 1.00             | 1.00                  | 1                 | 0.51               |                       | 0.93                  | 0.91                    | 0.83                    | 1.08                                    |
|                      | ita Analyt                             | Calr                | Samp# 3<br>0.25         | RRF#1    | 1.30         | 0.98            | 1.08              | 1.04              | 1.11              | 1.10                | 1.00   | 1.01         | 1.02              | 1.01                | 1.11              | 1.21              | 1.16                   | 0.97              | 1.49                | 1.24                | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | 100                 | 0.95                  | 96.0                    | 0.77     | 1.05                | 06.0                | 1.31                       | 96.0     | 5              | 1.00             |                  | 1.00                  |                   | 0.50               | 0.00                  | 0.00                  | 26.0                    | 0.85                    | 1.00                                    |
| Page 1               | ×                                      | Analyte: m23mm1_cal |                         | RSD      | 2.04 %       | 5.08            | 5.15 %-           | *                 | 4.26 %            | .87                 | 5.02 % | 7.26 %       | 4.06 %            |                     | 5.67 %            | 4.10 %-           |                        | 5.76 \$-          |                     | .39                 | 4.37 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.53.57          | •                   | 2.49 %                | -                       | *        | 3.69 1              | *                   | 3.33 %                     | 4.81 %   |                | 0.00             | 00.0             | 0.00                  | •                 | 2.54 \$            |                       | •                     |                         | 2.09 4 7                | TT.C                                    |
|                      | Summary (                              | Analyte:            |                         | Mean RRF | 1.26         | 1.01            | 1.14              | 1.02              | 1.14              | 1.13                | 1.03   | 1.05         | 1.04              | 1.05                | 1.13              | 1.24              | 1.16                   | 1.02              | 1.54                | 1.30                | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.13             | 0.93                | 0.93                  | 0.91                    | 0.73     | 1.06                | 96.0                | 1.28                       | 0.90     |                | 1.00             | 1.00             | 1.00                  |                   | 16.0               |                       | 20.0                  | 1 2 0                   | 1.07                    | •                                       |
| OPUSquan 16-OCT-2000 | Initial Calibration RRF Summary (ICAL) | Run: 001005P1       | Data filename: 001005P1 | Name     | 2,3,7,8-TCDD | 1,2,3,7,8-PeCDD | 1,2,3,4,7,8-HxCDD | 1,2,3,6,7,8-HxCDD | 1,2,3,7,8,9-HxCDD | 1,2,3,4,6,7,8-HpCDD |        | 2,3,7,8-TCDF | 1,2,3,7,8-PeCDF   | 2, 3, 4, 7, 8-PeCDF | 1,2,3,4,7,8-HxCDF | 1,2,3,6,7,8-HXCDF | 2, 3, 4, 6, 7, 8-HXCDF | 1,2,3,7,8,9-HXCDF | 1,2,3,4,6,7,8-HpcDF | 1,2,3,4,7,8,9-HpCDF | JOSO TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PR | 13C-2,3,7,8-TCDD | 13C-1,2,3,7,8-PecDD | 13C-1,2,3,6,7,8-BxCDD | 13C-1,2,3,4,6,7,8-HpCDD | 13C-OCDD | 13C-2, 3, 7, 8-TCDF | 13C-1,2,3,7,8-PeCDF | 13C-1, 2, 3, 6, 7, 8-BXCDF | 13C-0CDF |                | 13C-1,2,3,4-TCDD | 13C-1,2,3,4-TCDF | 13C-1,2,3,7,8,9-HxCDD | 37C1_2 3 7 8_TCDD | 13C-2,3,4,7,8-1CDD | 13C-1.2.3.4.7.8-B×CDD | 13C-1,2,3,4,7,8-0xCDF | 13C-1.2.3.4.7.8.9-Brons | 13C-1,2,3,4,7,8,9-HWCDF | *************************************** |

1

9-4

. .

ALTA ANALYTICAL PERSPECTIVES

## PART 4E

# SYSTEM PERFORMANCE

"ON-GOING PRECISION & ACCURACY"

DOCUMENTATION FOR THE ANALYSIS

С П POLYCHLORINATED DIBENZO-PDIOXINS & DIBENZOFURANS

Page 2 of 2 # 275\_OPR\_23,TIF 24 Reb Ø Analyst: 646 Reviewer: Date:\_ Time: 11:57:29 ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT. 18.8 - 31.2 18.8 - 31.2 - 31.2 - 31.2 - 31.2 - 31.2 - 31.2 - 31.2 18.8 - 31.2 18.8 - 31.2 3.75 - 6.25 18.8 - 31.2 37.5 - 62.5 18.8 - 31.2 18.8 - 31.2 - 6.25 37.5 - 62.5 OPR CONC. LIMITS (ng/mL) OPR Data Filename: 010214P1-2 PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR) 18.8 18.8 18.8 3.75 18.8 Analysis Date: 14-FEB-01 22.5 7 23.9 7 23.1 Alta Analytical Perspectives 22.2 / 47.9 4.23 / 24.9 / 24.5/ EPA METHOD 23 / TO9A / 428 4.94 25.4 / 23.6 23.17 44.4 22.37 (ng/mT) CONC. FOUND Page 1 (ng/mr) SPIKE CONC. 5.0 5.0 25 25 20 25 25 25 25 25 20 25 Shift: 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 23-FEB-2001 19:14 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HXCDF 1,2,3,6,7,8-HXCDF 2,3,4,6,7,8-HXCDF 1,2,3,7,8,9-HXCDF NATIVE ANALYTES 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 2,3,7,8-TCDD 2,3,7,8-TCDF Matrix (MM5/PUF): OCDD OCDF Ext. Date: OPUSquan

| OPUSquan 23-FEB-2001 19:14                                              | Paç                                            | Page 1                        |                                |              |             |
|-------------------------------------------------------------------------|------------------------------------------------|-------------------------------|--------------------------------|--------------|-------------|
| EPA                                                                     | EPA METHOD 23 / TO9A                           | T09A / 428                    |                                |              | Page 2 of 2 |
| PCDD/PCDF ONG                                                           | PCDD/PCDF ONGOING PRECISION AND RECOVERY (OPR) | IND RECOVER                   | r (OPR)                        |              |             |
| Alta                                                                    | Alta Analytical Persp                          | Perspectives                  |                                | J            |             |
| Matrix (MM5/PUF):                                                       | OPR Data F                                     | OPR Data Filename: 010214P1-2 | 10214P1-2                      | Reviewer     |             |
| Ext. Date: Shift:                                                       | Analysis D                                     | Analysis Date: 14-FEB-01      | 3-01 Time: 11:57:29            | Date: 2 1700 |             |
| ALL CONCENTRATIONS REPORTED ON THIS FORM ARE CONCENTRATIONS IN EXTRACT. | D ON THIS FORM A                               | RE CONCENT                    | ATIONS IN EXTRACT.             |              |             |
|                                                                         | SPIKE<br>CONC.<br>(ng/mL) (                    | CONC.<br>FOUND<br>(ng/mL)     | OPR CONC.<br>LIMITS<br>(ng/mL) |              |             |
| LABELED COMPOUNDS                                                       |                                                |                               |                                |              |             |
| 13C-2,3,7,8-TCDD                                                        | 200                                            | 201                           | 80.0 - 260                     |              |             |
| 13C-1,2,3,7,8-PeCDD                                                     | 200                                            | 214 /                         | 80.0 - 260                     |              |             |
| 13C-1,2,3,6,7,8-HxCDD                                                   | 200                                            | 198 /                         | 80.0 - 260                     |              |             |
| 13C-1,2,3,4,6,7,8-HpCDD                                                 | 200                                            | 199 🗸                         | 80.0 - 260                     |              |             |
| 13C-0CDD                                                                | 200                                            | 183 /                         | 80.0 - 260                     |              |             |
| 13C-2,3,7,8-TCDF                                                        | 200                                            | 196                           | 80.0 - 260                     |              |             |
| 13C-1,2,3,7,8-PeCDF                                                     | 200                                            | 202                           | 80.0 - 260                     |              |             |
| 13C-1,2,3,6,7,8-HxCDF                                                   | 200                                            | 179                           | 80.0 - 260                     |              |             |
| 13C-1,2,3,4,6,7,8-HpCDF                                                 | 200                                            | 180 /                         | 80.0 - 260                     |              |             |
| 13C-0CDF                                                                | 200                                            | 178/                          | 80.0 - 260                     |              |             |
|                                                                         |                                                |                               |                                |              |             |

Analyst: 546 Date: 34 Fe501

| OPTICALISA       |                                              |          |                        |                      |        |                                      | ,                   |           |           |           |                 |
|------------------|----------------------------------------------|----------|------------------------|----------------------|--------|--------------------------------------|---------------------|-----------|-----------|-----------|-----------------|
| or orduan        | 43-FEB-2001 19:14                            |          | Page                   | 1                    |        | \                                    | \                   |           |           |           |                 |
| Client<br>Lab ID | Client ID: 0 275 OPR001 Lab ID: 0 275 OPR001 | E 0      | Filename:<br>GC Column | 010214P1<br>ID: db-5 | S      | 2 Acq: 14-FEB-01<br>ICal: MM1 M23 0* | 11:57:29<br>wt/vol: | 1.000     | Concal    | 010214P1- | Page 2 of       |
|                  | 2                                            |          |                        |                      | 1      | 1                                    |                     | )<br>)    | מימים     | 14617010  |                 |
|                  | 2 . 3 . 7 . BTCDI                            | dsay c   | 4 6                    |                      | RT     | Conc Qualif                          | lif. CDE            | noise F   | ac<br>ac  |           |                 |
|                  | 1.2.3.7.8-PACUD                              | 4 5      | 7 000                  | 1.20                 | 27:44  | 4.94                                 |                     | æ         | 0.03      |           |                 |
|                  | 1.2.3.4.7.8-HYCDI                            |          |                        | 1017                 | 33:12  | 24.9                                 |                     | 9         | 5 0.04    |           |                 |
|                  | 1.2.3.6.7.8-H×CDI                            |          |                        | 1.14                 | 37 106 | 25.4                                 |                     | 774 2     | 5 0.2     |           |                 |
|                  | 1.2.3.7.8.9-8×00                             |          | 1.26 y                 | 1.02                 | 37:13  | 24.5                                 |                     | 2         | 5 0.2     |           | ,               |
|                  | 1.2.3.4.6.7.8-HPCDD                          | 5 969+06 | 1.50                   | 1.14                 | 3/132  | 24.3                                 |                     | 774 2     | 5 0.2     | Reviewers | ي<br>ک          |
|                  | •                                            | 8.430+06 |                        | 1.13                 | 41131  | 23.0                                 |                     | 433 2     | .5 0.270  |           | 1               |
|                  |                                              |          |                        | 60.4                 | 0 1 0  | 4.14                                 |                     | 2         | 0.1       |           | 27下20日          |
|                  | 2,3,7,8-TCDF                                 | 1.850+06 | 0.75 4                 | -                    | 26.61  | •                                    |                     |           |           | Date      |                 |
|                  | 1.2.3.7.8-PACDE                              | 8 95e+0  |                        | ٠,                   | 10107  | . (                                  |                     | 9         | 0         |           |                 |
|                  | 2.3.4.7.8-Decor                              | 0.30610  | 1.34 V                 | ٠,                   | 31143  | $\sim$                               |                     | 090 2     | 0         |           |                 |
|                  | 1 2 3 4 7 B HACDE                            |          |                        |                      | 32:51  | $\sim$                               |                     | 0 2       | 5         |           |                 |
|                  | 1 2 2 6 7 0 HILLDE                           |          |                        | 1.13                 | 36:07  | 22.5                                 |                     | 199 2     | 5         |           |                 |
|                  | 2.3.4.6.7 B-HXCDF                            | 8.6/e+06 |                        | 1.24                 | 36:16  | c                                    |                     | 199 2     | 0         |           |                 |
|                  | 1.2.3.7.8.9.HVCDF                            |          |                        | 1.16                 | 36155  | 23.1                                 |                     | 199 2     | 5 0.      |           |                 |
|                  | 1.2.3.4.6.7.8-HDCDE                          |          | 1.20 7                 | 1.02                 | 37:56  | ro o                                 |                     | 199 2     | 5 0.      |           |                 |
|                  | 1,2,3,4,7,8,9-HDCDF                          |          |                        | 1.04                 | 39153  | 22.3                                 |                     | 7         | 2         |           |                 |
|                  | OCDF                                         |          | 7.02 y                 | 1.30                 | 42:20  | 0                                    |                     | 301       | 5         |           |                 |
|                  |                                              | •        |                        | 7117                 | T:/    | 44.4                                 |                     | 119 2     | 2         |           |                 |
| ٠.               |                                              | 2.09e+06 |                        | 1.26                 | 21:51  | 4.95                                 |                     | ,         | •         | EMPC      |                 |
|                  | Total Penta-Dioxing                          | 7.32e+06 | 1.56 y                 | 0                    | 33112  | . 4                                  |                     | 308 2.    | <u> </u>  | 2.00      |                 |
|                  | Total Hexa-Dioxins                           | 1.92e+07 |                        | 1.10                 | 37:06  | 74.1                                 |                     | 000       | . ,       | 25.1      |                 |
| ••               | Total Hepta-Dioxing                          | 6.09e+06 | V 06.0                 | 1.13                 | 40:20  | 23.5                                 |                     | 2 6 6 6 7 | ٠,        | 74.4      |                 |
| •                |                                              | 1.89e+06 | 0.78 y                 | 1.05                 | 25:28  | 4.32                                 |                     | 1510 2    | 9         | 23.9      |                 |
| IST              |                                              | *        | ۳<br>*                 | 0                    | NotF,  | *                                    |                     | 200       | , ,       | 4.09      |                 |
|                  | Total Penta-Furans                           | 1.84e+07 | 1.70 y                 | 1.05                 | 30:35  | 5                                    |                     | 090 2     | .5 0.0610 | 612.0     |                 |
|                  | Total Howard                                 |          |                        | 1                    |        | δ.                                   |                     |           |           |           |                 |
|                  | Total Henta-Furance                          | 3.09e+0/ | 1.22 y                 | 1.14                 | 6 : 0  | 2                                    |                     | •         | 5 0.0876  |           |                 |
|                  | יסכתי יוכ"סרמיינ חדמוופ                      | 1.286+0/ | 1.03 y                 | 4.                   | 39153  |                                      |                     | 2         | 0.1       | 4         |                 |
|                  | 13C-2.3.7.8-TCDD                             | 6.690+07 | 7. 07.0                |                      | ~      |                                      |                     |           |           | Rec       |                 |
|                  | 13C-1,2,3,7,8-PeCDD                          | 5.816+07 | 1.54                   | 200                  | 22.10  | 201                                  |                     |           |           | 101       |                 |
| 13               | 13C-1,2,3,6,7,8-HxCDD                        | 4.71e+07 | 1.25                   | 6.0                  | 37:12  | 109                                  |                     |           |           | 107       |                 |
| 13               | 13C-1,2,3,4,6,7,8-HpCDD                      | 4.59e+07 | 1.06 v                 |                      | 41:30  | 100                                  |                     |           |           | 0.        |                 |
|                  | 13C-OCDD                                     | 3.43e+07 | 7                      |                      | 46:50  | 183                                  |                     |           |           | 9.5       |                 |
|                  | 13C-2,3,7,8-TCDF                             | 8.34e+07 | 0.78 y                 |                      | 26:49  | 196                                  |                     |           |           | 11.       |                 |
|                  | 3C-1,2,3,7,8-PeCDF                           | 7.77e+07 | 1.56 y                 |                      | 31:42  | 202                                  |                     |           |           |           |                 |
|                  | 13C-1,2,3,6,7,8-HxCDF                        | 5.86e+07 | 0.51 y                 | 1.28                 | 36:15  | 179                                  |                     |           |           | 1 101 0   |                 |
|                  | 12,3,4,6,7,8-HpCDF                           | 4.14e+07 |                        |                      | 39:52  | 180                                  |                     |           |           | , ,       |                 |
| 2                | 13C-0CDF                                     | 3.68e+07 | 0.88 y/                |                      | 47:09  | 178                                  |                     |           |           | 2.6       |                 |
| RS/RT            | 13C-1,2,3,4-TCDD                             | 5.878+07 | 70                     | 5                    | 27.03  | c c                                  |                     |           |           | ١.        |                 |
|                  | 13C-1,2,3,4-TCDF                             | 8.02e+07 | 0.77 %                 | 1.00                 | 25.27  | 200                                  |                     |           |           | •         |                 |
| RS/RT 13C-       | 13C-1,2,3,7,8,9-HxCDD                        | 5.10e+07 | .25 y                  | 1.00                 | 37:31  | 200                                  |                     |           |           | 1         |                 |
|                  |                                              |          | ı                      |                      |        |                                      |                     |           |           |           | JAC . 1001 100  |
|                  | 3/C1-2,3,7,8-TCDD<br>13C-2,3,4.7,8-PeCDF     | 2.31e+04 | *                      |                      | 27:44  | 0.134                                |                     |           | 0         | .0672     | 0 10            |
|                  | -1,2,3,4,7,8-HxCDD                           | *        | •                      |                      | NOTE:  | <b>k</b> 4                           |                     |           |           | _ \       | 1.1.1.          |
| PS 13C-          | -1,2,3,4,7,8-HXCDF                           | 1.38e+05 |                        | 10.                  | 36.06  |                                      |                     |           |           |           | Date: of 4 Fobo |
|                  | 13C-1,2,3,4,7,8,9-HpCDF                      | 1.35e+05 | 0.44 V                 | 85                   | 42:20  | 76                                   |                     |           | _/        | 9.259     |                 |
| AS 13C-          | 1,2,3,7,8,9-HXCDF                            | 4.96e+07 |                        | .07                  | ~      | •                                    |                     |           | \         | 0.383     |                 |
|                  |                                              |          | ,                      |                      |        | ,                                    |                     |           |           | ) n.16    |                 |
|                  |                                              |          |                        |                      |        |                                      |                     |           |           |           |                 |

. .

• ?

- -

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | '                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                   |                                                          |                                 |                                         |                             |                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------|----------------------------------------------------------|---------------------------------|-----------------------------------------|-----------------------------|-------------------------|
| File: 010214Pl Acq: 14-FEB-2001 11:57:29 GC EI+ Voltage SIR Aut<br>Sample# 2 Text: 0 275 OPR001 Vial# 76 File Text: AAP DB5<br>319.8965 S:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F.F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B-2001 II:57:2<br>001 Vial# 76<br>,-3.0) PKD(5,5 | 9 GC EI+ Volta<br>File Text: AAP<br>,3,0.10%,750.0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ige SIR Auto<br>DBS<br>0.00%,F,F) | SIR Autospec-UltimaE<br>15<br>108,F,F) Expt: OCDD | Noise: 224                                               |                                 |                                         |                             |                         |
| 100%<br>801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | 9                                                 |                                                          |                                 | 27:44<br>A9.28E5                        |                             | E 2.2E5                 |
| 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | ון                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * 401 bo. 7                       |                                                   | 1.26×1.000                                               | 1<br>9.5<br>5.5                 |                                         |                             | 1.355                   |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                   |                                                          | .J                              |                                         |                             | 4.4E4                   |
| 21:00<br>321.8936 S:2 BSUB(10000,15,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | 22:00 23:00<br>-3.0) PKD(5,5,3,0.10%,750.0,0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24:00<br>0%, F, F)                | 25:00<br>Expt: OCDD                               | 26:00<br>Noise: 144                                      | 27:00                           | 28:00                                   | 29:00                       | Time                    |
| 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                   |                                                          |                                 | 27:45<br>Al.16E6                        |                             | -2.8E5                  |
| 60-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                   |                                                          |                                 |                                         |                             | 2.2E5                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                   |                                                          |                                 |                                         |                             | 1.125                   |
| 21:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22:00                                            | 22:00 23:00 3:00 3:00 3:00 3:00 3:00 3:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24:00                             | 25,00                                             | 26:00                                                    | 27:00                           | 28:00                                   | 29:00                       | Time                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cirlary (Sec.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41.7160                           |                                                   |                                                          |                                 | 27:45<br>A2.31E4                        |                             | F7.9E3                  |
| 60<br>60<br>40<br>40<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31<br>20:31 | 21:42<br>A4.79E3 A3.5                            | 22:51<br>A3.51E3 23:18<br>AAM M ALAM MANANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24:29<br>24:05<br>A3:90E3         | 24:59<br>A1.04E4<br>A24:48                        | 25:20 26:18 7<br>73:6553 73:3953 7<br>1. MAJA M. PGA9:23 | 26:50<br>E3 A1.12E4<br>23.4//// | 27:48<br>A8:40E3 28:                    | 8:25 28:44<br>-53E3 A4:14E3 | 6.4E3<br>4.8E3<br>3.2E3 |
| S S 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22:00<br>,-3.0) PKD(5,5,                         | 21:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 23:00 | 24:00<br>0%, F, F)                | 25:00<br>Expt: OCDD                               | Noise: 1370                                              | 27:00                           | 28:00                                   | 29:00                       | Time                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                   |                                                          | 27:04<br>A2.60E7                | 27:43<br>A2.96E7                        |                             | 7.2E6                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                   |                                                          |                                 |                                         |                             | 4.356                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                                   |                                                          |                                 |                                         |                             | 2.9E6<br>1.4E6          |
| 21:00<br>333.9339 S:2 BSUB(10000,15,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22:00<br>-3.0) PKD(5,5,                          | 22:00 23:00 -3.0) PKD(5,5,3,0.10%,750.0,0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14:00<br>0%,F,F)                  | 25:00<br>Expt: OCDD                               | 26:00<br>Noise: 846                                      | 27:00                           | 28:00                                   | 29:00                       | Time                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                   |                                                          | 27:04<br>A3.27E7                | 27:43<br>A3.74E7                        |                             | 9.286                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                   |                                                          |                                 |                                         |                             | -7.4E6                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                   |                                                          |                                 |                                         |                             | 3.756                   |
| 21,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22:00                                            | 23:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24:00                             | 25:00                                             | 26:00                                                    | 27:00                           | 28:00                                   | 29:00                       | E0.0E0                  |
| >> 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ^^.                                              | >> > > > > > > > > > > > > > > > > > > >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ****                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,           | >> -> -> -> -> -> -> -> -> -> -> -> -> -                 | ****                            | *************************************** | 20.04                       | A.41110                 |

| late: 0.001%; Addi 18-255-2001 11:57:29 GC EIT VOLCAGE SIK AUCOSPO SAmple# 2 Text: 0.275_0PR01 Vial# 76 File Text: AAP DB5 189.8156 S:2 F:3 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.0%,F.F.) 100% | Autospec-UltimaE<br>)*,F,F) Expt: OCDD Noise: 375<br>37:06<br>A3.80E6 37:32 | 920.1                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|
|                                                                                                                                                                                                       |                                                                             | 6.1ES<br>6.1ES<br>4.0ES<br>2.0ES    |
| 35:00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F)                                                                                                                                         | 37:00<br>F) Expt: OCDD Noise: 314<br>37:06<br>A3.00E6 A2.88E6               | - 16E                               |
|                                                                                                                                                                                                       |                                                                             | 66.285<br>44.685<br>13.185<br>1.585 |
| 35:00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F)                                                                                                                                         | 37:00<br>37:12<br>37:12<br>37:31<br>A2.61E7 A2.83E7                         | 96                                  |
| 35!00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F)                                                                                                                                         | 37:00<br>F) Expt: OCDD Noise: 272<br>37:12<br>A2:10E7 A2:27E7               | 391                                 |
| 35:00<br>Expt: OCDD<br>35:06 35:14 35:31 <sup>35:49</sup> 35:55 <sup>36:11</sup> 36:17                                                                                                                | 37:00 38:00 38:00 38:00 38:00 38:00                                         | 38:13 38:20 38:51 5.0E7             |
|                                                                                                                                                                                                       |                                                                             | 3.0E7<br>2.0E7<br>2.0E7<br>9.9E6    |
| 35:00                                                                                                                                                                                                 | 37:00                                                                       | 398                                 |

\

| 5.455<br>[4.3E5<br>[3.2E5<br>[2.1E5]                    | 5.3E5<br>4.2E5<br>3.2E5<br>2.1E5                                                  | 4.2E6<br>4.2E6<br>3.4E6<br>2.5E6<br>1.7E6<br>8.4E5 | 4.0E6<br>E3.2E6<br>E2.4E6<br>E1.6E6                                                        | 7                                                 | 10.0E6 |
|---------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------|--------|
|                                                         | 44:00                                                                             | 44:00                                              | 44:00                                                                                      | 43:47 44:07 44:27                                 |        |
|                                                         | 43:00                                                                             | 43:00                                              | 43:00                                                                                      | 43:05 43:26                                       |        |
| Expt: OCDD Noise: 270                                   | 42:00<br>Expt: OCDD Noise: 203                                                    | 42:00<br>Expt: OCDD Noise: 1532                    | 42:00<br>Expt: OCDD Noise: 957                                                             | 1157 42:21 42:29 42:43                            |        |
| <b>16</b>                                               | 1 1                                                                               | 50.0,0.00%,F,F) Expt 41:30 A2.36E7                 |                                                                                            | 42:0                                              |        |
| 1137;23 GC E1+ VOITAGE SIR Autosp<br>111                | 40;00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F)<br>41;31<br>A2:98E6 | 41:00                                              | 41:00<br>PKD(5,5,3,0.10%,75                                                                | 40:31 40:5141:0                                   |        |
| 0 275 TO 0 275 DE 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 40:00<br>BSUB(10000,15,-3.0                                                       | 40:00<br>BSUB(10000,15,                            | 41:00<br>41:00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F)<br>41:30<br>A2.23E7 | 39:42 40:08:20                                    | 00,04  |
| Sample# 2 Text; 423.7767 S;2 F;4 100% 80 60 40 20       | 425.7737 S:2 F:4 100% 803 603 400                                                 | 435.8169 S;2 F;4 1008 803 603 403 203              | 437.8140 S:2 F:4 100\$ 80 60 20 20                                                         | 430.9728 S:2 F:4 1008 39:20 37 803 403 403 203 39 | F0     |

\

ę 1

|                                                                                                                    | 5.3E5<br>[4.2E5<br>[3.2E5<br>[2.1E5<br>[1.1E5 | 6.3E5<br>5.0E5<br>3.8E5<br>2.5E5<br>1.3E5                             | 49:00 Time<br>49:00 Time<br>1.8E6<br>1.3E6<br>8.9E5<br>4.4E5      | 49:00 Time<br>2.4E6<br>1.9E6<br>1.5E6<br>9.7E5 | 48:32 48:44 55 3.3E7 2.0E7 2.0E7 2.0E7 6.5E6           | 49:00 Time |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|------------|
|                                                                                                                    |                                               | 48:00                                                                 | 48:00                                                             | 48:00                                          | 48:00<br>47:39 47:56 48:05 48:22 4                     | 48:00      |
| tospec-UltimaE<br>F.F. Expt: OCDD Noise: 273                                                                       |                                               | 47:00<br>7.F) Expt: OCDD Noise: 137<br>46:51<br>A4.50E6               | 47:00<br>47:00<br>46:50<br>Al.63E7                                | 47:00<br>46:50<br>Al.80E7                      | 46:41 46:59 47:20                                      | 47:00      |
| 57:29 GC EI+ Voltage SIR Autospec-UltimaE<br>76 File Text: AAP DB5<br>PKD(5,5,3,0.10%,750.0,0.00%,F.F) Expt: OC    |                                               | 46:00<br>PKD(5,5,3,0.10%,750.0,0.00%,F,F)                             | 45:00<br>F:5 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F.F) | 46:00<br>PKD(5,5,3,0.10%,750.0,0.00%,F,F)      | 46:17                                                  | 46:00      |
| File: 010214Pl Acq: 14-FEB-2001 117:<br>Sample# 2 Text: 0 275 OPR001 Vial#<br>457.7377 S:2 F:5 BSUB(10000,15,-3.0) | 100%<br>803<br>603<br>403<br>203              | 459.7348 S:2 F:5 BSUB(10000,15,-3.0) PKD(5, 1008, 803, 603, 403, 203, | 45.7780 S:2 F:5 BSUB(10000,15,-3.0) 1008 803 603 403              | 45:00<br>100%<br>80<br>60<br>40                | 454.9728 Si2 Fi5 Expt: OCDD  1008 44:34  803  603  400 | 45:00      |

|                                               | 1.9E5<br>1.5E5<br>1.1E5 | 7.4E4<br>3.7E4<br>0.0E0                    | F.2.4            | 2.0E5<br>1.5E5<br>9.8E4 | 29:00 Time                            | 8.8E6<br>E7.0E6    | 5.3E6 | 29:00 Time                                   | F 1.1E7          | 59.1E6<br>6.8E6<br>54.6E6 | 29:00 Time                              | 5.3E3<br>[4.3E3<br>[3.2E3<br>[2.1E3]                     |
|-----------------------------------------------|-------------------------|--------------------------------------------|------------------|-------------------------|---------------------------------------|--------------------|-------|----------------------------------------------|------------------|---------------------------|-----------------------------------------|----------------------------------------------------------|
|                                               |                         | 28100                                      |                  |                         | 28:00                                 |                    |       | 28:00                                        |                  |                           | 28:00 29                                |                                                          |
| 26151                                         | A7.90E5                 | 27:00                                      | 26:51<br>A1.06E6 |                         | 27:00                                 | 26:49<br>A3.65E7   |       | 27:00                                        | 26:49<br>A4.69E7 |                           | 27:00                                   | 26:15<br>A1.28E3                                         |
| DD Noise: 168                                 |                         |                                            | Noise:           |                         | 0 26100<br>D Noise: 483               | 25:27<br>A3.50E7   |       | 26:00<br>D Noise: 910                        | 25:27<br>A4.52E7 |                           | 26:00<br>Noise: 73                      | 25:49 26:<br>A1.53E3 A1.                                 |
| F,F) Expt: OCDD                               |                         |                                            | f,f) Expt: OCDD  |                         | 30 25:00<br>F,F) Expt: OCDD           |                    |       | 0 25:00<br>',F) Expt: OCDD                   |                  |                           | ,F) Expt: OCDD                          | A1.97E3 24:43 A1.97E3 A2.25E3                            |
| .le Text: AAP DB5<br>0.10%,750.0,0.00%,F,F)   |                         |                                            |                  |                         | 23:00 24:00<br>1.10%,750.0,0.00%,F,F) |                    |       | 23:00 24:00<br> -108,750.0,0.00%,F,F)        |                  |                           | 23:00 24:00<br>3,0.10%,750.0,0.00%,F,F) | A1.0                                                     |
| 5,-3.0) PKD(5,5,3,                            |                         | 22:00 23:00<br>-3 0) DED/F E 3 0 106 120 0 |                  |                         | 22:00<br>-3.0) PKD(5,5,3,0            |                    |       | 22:00 23:00<br>-3.0) PKD(5,5,3,0.10%,750.0,0 |                  |                           | 22:00 2<br>-3.0) PKD(5,5,3,0.           | ash was balled as some                                   |
| S:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0 |                         | 21:00<br>S:2 BSUB(10000.15                 |                  |                         | 21:00<br>:2 BSUB(10000,15,            |                    |       | 21:00<br>BSUB(10000,15,                      |                  |                           | 21:00<br>BSUB(10000,15,                 | 20:37 20:59<br>A2.53E3 A1.81E3<br>20:30<br>A1.37E3 21:09 |
| 303.9016 S                                    | 80<br>60<br>40          | 203<br>0<br>305.8987 S                     | 100%<br>803      | 400<br>200<br>0         | 315.9419 S:2                          | 100%<br>804<br>604 | 0 0 0 | 317.9389 S:2                                 | 300m             | 601<br>2011<br>2011       | 375.8364 St2                            | 3                                                        |

- <u>-</u>



| \                                                                                           |                                                                             | 1.6E6<br>1.3E6<br>9.5E5 | 6.3E5<br>3.2E5<br>0.0E0                            | 1.1E6<br>E8.6E5<br>E4.4E5 | £2.1E5<br>0.0E0<br>Time                                     | 1.1E7<br>8.0E6<br>5.4E6<br>2.7E6<br>0.0E0                        | 8.5E6<br>E.8E6<br>E.1E6<br>E.3.4E6<br>E.7E6<br>E.0.0E0 | 4.0E3<br>3.2E3<br>53 2.4E3<br>1.6E3<br>7.9E2<br>7.9E2         |
|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------|----------------------------------------------------|---------------------------|-------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|
|                                                                                             |                                                                             |                         | 34,00                                              |                           | 34:00                                                       | 34:00                                                            | 34:00                                                  | 34:16<br>A1.69E3<br>MAM (2.13E3                               |
|                                                                                             |                                                                             |                         |                                                    |                           |                                                             |                                                                  |                                                        | 33:31<br>A2:07                                                |
|                                                                                             |                                                                             | 99                      | 33:00                                              | . 99                      | 33:00                                                       | 33;00                                                            | 33:00                                                  | 33:10<br>A1.08E4<br>B3:00<br>B8E3 A1.32E3<br>A1.32E3<br>B3:00 |
|                                                                                             | Noiset 209                                                                  | 32:50<br>A5.51E6        | 000                                                |                           | Noise: 740                                                  | Noise: 325                                                       |                                                        | E E                                                           |
|                                                                                             | QQ                                                                          |                         | 000                                                |                           | t: ocbb                                                     | ocpp                                                             | - Cabo                                                 | 32:17<br>A5.10E3                                              |
|                                                                                             | )<br>1                                                                      | 31:43<br>A5.43E6        | m _                                                |                           | 33                                                          | 32:00<br>0%.F.F. Expt:                                           | 31:42<br>A3.03E7<br>32:00                              | 32                                                            |
|                                                                                             | AP DBS                                                                      | ~                       | F. F. 800.0.0.0.7.                                 | ď                         | 50.0,                                                       | 30:00<br>F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F |                                                        | 31:20 A2:<br>A1:32E3                                          |
| \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | 0.275 OPR001 Vial# 76 File Text: Al<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%, |                         | 30:00<br>F:2 BSUB(10000,15,-3.0) PKD(5,5,3.0.10%.7 |                           | 30:00<br>31:00<br>F:2 BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,7 | 31:00                                                            | 31100<br>31100<br>3100 10# 75                          | 11E3 A                                                        |
| 7<br>3-71 1002-8:                                                                           | 0,15,-3.0) H                                                                |                         | 0,15,-3.0)                                         |                           | ),15,-3.0) PI                                               | ,15,-3.0) PR                                                     | · ·                                                    |                                                               |
|                                                                                             | an CA                                                                       |                         | 30:00<br>:2 BSUB(1000                              |                           | 30:00<br>:2 BSUB(10000                                      | 30:00<br>:2 BSUB(10000                                           | 30,00<br>30,00<br>15.2 BSUB(1000,15                    | 53<br>MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM                    |
| 01021491                                                                                    | Sample# 2 Text:<br>339.8597 S:2 F:2                                         |                         | 203<br>0341.8568 S:2 F:                            |                           | 351.9000 S:2 F:2<br>803                                     | 602<br>402<br>203<br>0                                           | 100%<br>805<br>60<br>40<br>0                           | 7 E                                                           |

ţ



| 7.4E5<br>6.0E5<br>4.5E5<br>3.0E5 | 44:00                                                                 | 44:00 Time Time 2.6E6                                                               | 44:00 Time Time 5.7E6                                        | 3 43:36 44:05 E2.8E3 A1.90E3 A1.87E3 E1.4E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | 43:00                                                                 | 43:00                                                                               | 43:00                                                        | 43:00<br>43:05<br>42:54<br>A2.75E3<br>A2.41E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 39:53<br>A3:60E6                 | 41:00<br>-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 273 | 40:00<br>BSUB(10000,15,-3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 559 | -3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 819 | -3.0) PKD(5,5,3,0.10%,750.0,0.00%,F,F) Expt: OCDD Noise: 297 09 41:31 40:26 42:17 A5.72E3 40:46 60:59 41:12 A1:31 A1.31E3 A3.54E3 A1.96E3 A3.64E3 A2:13 A2:24 A3.55E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 A3.64E3 |
| 39 ± 83<br>A 3.56 OE 6           | 40:00<br>F:4 BSUB(10000,15,-3.<br>39:53<br>A3:51E6                    | 40:00<br>39:52<br>Al.27E7                                                           | 40:00<br>83:52<br>A2.87E7                                    | 40:00<br>39:36<br>A1.71E3<br>40:09<br>39:46<br>A3.23E3<br>A3.33.33E3<br>A3.33.31E3<br>A3.33.31E3<br>A3.33.31E3<br>A3.33.31E3<br>A3.33.31E3<br>A3.33.31E3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

. .

| NW Land NW 4.352              | A1.29E3 A8:44 1.3E3 | / E <sup>2.2E3</sup> | 49:00 Time                                    |     | 11.120 | 1.756 | 2.3E6 | F2.9E6           | 49:00 Time                                |   | F1.0E6 | £1.5E6 | E2.0E6 | 2.5RA | 49:00 Time                                            | _ | 1.525   | 2.985 |     | F 7.385 |                                  | 49:00 Time | 1.355 | £2.6E5          | 5.355 | 6.6E5            |                                          |                                 |
|-------------------------------|---------------------|----------------------|-----------------------------------------------|-----|--------|-------|-------|------------------|-------------------------------------------|---|--------|--------|--------|-------|-------------------------------------------------------|---|---------|-------|-----|---------|----------------------------------|------------|-------|-----------------|-------|------------------|------------------------------------------|---------------------------------|
| M.M.M.                        |                     |                      | 48:00                                         |     |        |       |       |                  | 48:00                                     |   |        |        |        |       | 48:00                                                 |   |         |       |     |         |                                  | 48:00      |       |                 |       |                  |                                          |                                 |
| Munitime Meller               | -                   |                      | 47:00<br>Expt: OCDD Noise: 92                 |     |        |       |       | 47:09<br>A1-96E7 | 47:00<br>Expt: OCDD Noise: 1318           |   |        |        | 135    | 1,109 | 47:00<br>Expt: OCDD Noise: 198                        |   | <i></i> |       |     | A4.96E6 | Expt: OCDD Noise: 279            | 47:00      |       |                 |       | 47:10<br>A4.42E6 | 60                                       | Autospec-III timaE              |
| ATRECIA<br>Many Many May Mary |                     |                      | 46:00<br>PKD(5,5,3,0.10%,750.0,0.00%,F.F)     |     |        |       |       |                  | 46:00<br>PKD(5,5,3,0.10%,750.0,0.00%,F,F) |   |        |        |        |       | 46:00<br>,5,3,0.10%,750.0,0.00%,F,F)                  |   |         |       |     |         | PKD(5,5,3,0.10%,750.0,0.00%,F,F) | 46:00      |       |                 |       |                  | Text: AAP DB5<br>3,0.10%,750.0,0.00      | GC FIT VOITAGE STR AUTOBRE      |
| warde My May war              | _                   |                      | 45:00<br>5 BSUB(10000,15,-3.0) PKD(5          |     |        |       |       |                  |                                           |   |        |        |        |       | 45:00 46:00<br>F:5 BSUB(1000,15,-3.0) PKD(5,5,3,0.10% |   |         |       |     |         | -3.0)                            | 45,00      |       |                 |       |                  | 0275 OPR001 Vial#<br>BSUB(10000,15,-3.0) | ACA: 14-FEB-2001 11:57:29       |
| _                             | 609                 | ,                    | 45:00<br>513.6775 S:2 F:5 BSUB(10000,15,-3.0) | 200 | E0 %   | 09    | 80    | 100%             | 455.7801 S:2 F:5 BSUB(10000,15,-3.0)      | 0 | 40     |        | 100m   | •     | .7830 8:2                                             |   | 203     | 4 0 0 | 108 | 100%    | (10000,15,                       | 45,00      | 203   | 60 <del>1</del> |       | 100%             | e# 2 Text:<br>428 S:2 F:5                | F1 6: 0102 4D1 4CG: 14-FEB-2001 |

.

#### APPENDIX D CALCULATIONS

#### Summary of Stack Gas Parameters and Test Results Malcolm Grow Medical Center - Andrews AFB, MD US EPA Test Method 29 - Multiple Metals Page 1 of 2

|                     | RUN NUMBER                                     | M29-1            | M29-2            | M29-3            |          |
|---------------------|------------------------------------------------|------------------|------------------|------------------|----------|
|                     | RUN DATE                                       | W129-1<br>2/2/01 | W 29-2<br>2/2/01 | M 29-3<br>2/2/01 | Average  |
|                     | RUNTIME                                        | 0945-1050        | 1230-1335        | 1405-1510        | Average  |
|                     |                                                |                  | 1200 1000        | 1400-1010        |          |
|                     | MEASURED DATA                                  |                  |                  |                  |          |
| γ                   | Meter Box Correction Factor                    | 0.995            | 0.995            | 0.995            | 0.995    |
| ΔΗ                  | Avg Meter Orifice Pressure, in. H <sub>2</sub> | 1.71             | 1.69             | 1.74             | 1.71     |
| $P_{bar}$           | Barometric Pressure, inches Hg                 | 29.90            | 29.90            | 29.90            | 29.90    |
| $V_{m}$             | Sample Volume, ft <sup>3</sup>                 | 43.850           | 42.030           | 46.450           | 44.110   |
| T <sub>m</sub>      | Average Meter Temperature, °F                  | 102              | 103              | 103              | 103      |
| P <sub>static</sub> | Stack Static Pressure, inches H <sub>2</sub> O | 0.15             | 0.2              | 0.15             | 0.15     |
| $T_s$               | Average Stack Temperature, °F                  | 171              | 172              | 172              | 172      |
| $V_{lc}$            | Condensate Collected, ml                       | 354.9            | 339.1            | 356.4            | 350.1    |
| CO <sub>2</sub>     | Carbon Dioxide content, % by volu              | 6.3              | 7.2              | 6.0              | 6.5      |
| $O_2$               | Oxygen content, % by volume                    | 11.6             | 11.9             | 12.3             | 11.9     |
| $N_2$               | Nitrogen content, % by volume                  | 82.1             | 80.9             | 81.7             | 81.6     |
| $C_p$               | Pitot Tube Coefficient                         | 0.84             | 0.84             | 0.84             | 0.84     |
| Δp <sup>1/2</sup>   | Average Square Root Δp, (in. H <sub>2</sub> O) | 0.5844           | 0.5811           | 0.5893           | 0.5849   |
| Θ                   | Sample Run Duration, minutes                   | 60               | 60               | 60               | 60       |
| $D_n$               | Nozzle Diameter, inches                        | 0.310            | 0.310            | 0.310            | 0.310    |
|                     | CALCULATED DATA                                |                  |                  |                  |          |
| $A_n$               | Nozzle Area, ft <sup>2</sup>                   | 0.000524         | 0.000524         | 0.000524         | 0.000524 |
| $V_{m(std)}$        | Standard Meter Volume, ft <sup>3</sup>         | 41.144           | 39.309           | 43.496           | 41.316   |
| $V_{m(std)}$        | Standard Meter Volume, m <sup>3</sup>          | 1.165            | 1.113            | 1.232            | 1.170    |
| $Q_{m}$             | Average Sampling Rate, dscfm                   | 0.686            | 0.655            | 0.725            | 0.689    |
| $P_{s}$             | Stack Pressure, inches Hg                      | 29.91            | 29.91            | 29.91            | 29.91    |
| $B_{ws}$            | Moisture, % by volume                          | 28.9             | 28.9             | 27.8             | 28.5     |
| $B_{ws(sat)}$       | Moisture (at saturation), % by volu            | 42.0             | 42.3             | 42.1             | 42.1     |
| $V_{wstd}$          | Standard Water Vapor Volume, ft <sup>3</sup>   | 16.705           | 15.961           | 16.776           | 16.481   |
| 1-B <sub>ws</sub>   | Dry Mole Fraction                              | 0.711            | 0.711            | 0.722            | 0.715    |
| M <sub>d</sub>      | Molecular Weight (d.b.), lb/lb•mole            | 29.47            | 29.63            | 29.45            | 29.52    |
| Ms                  | Molecular Weight (w.b.), lb/lb•mole            | 26.16            | 26.27            | 26.26            | 26.23    |
| $V_s$               | Stack Gas Velocity, ft/s                       | 37.7             | 37.4             | 37.9             | 37.7     |
| Α                   | Stack Area, ft <sup>2</sup>                    | 1.289            | 1.289            | 1.289            | 1.289    |
| Q <sub>a</sub>      | Stack Gas Volumetric flow, acfm                | 2,916            | 2,894            | 2,934            | 2,915    |
| $Q_s$               | Stack Gas Volumetric flow, dscfm               | 1,733            | 1,719            | 1,769            | 1,740    |
| $Q_s$               | Stack Gas Volumetric flow, dscmm               | 49.1             | 48.7             | 50.1             | 49.3     |
|                     | Isokinetic Sampling Ratio, %                   | 97.3             | 93.7             | 100.8            | 97.3     |

#### Summary of Stack Gas Parameters and Test Results Malcolm Grow Medical Center - Andrews AFB, MD US EPA Test Method 29 - Multiple Metals Page 2 of 2

|                   |                 |                                            |           |           | •         |         |
|-------------------|-----------------|--------------------------------------------|-----------|-----------|-----------|---------|
|                   |                 | RUN NUMBER                                 | M29-1     | M29-2     | M29-3     |         |
|                   |                 | RUN DATE                                   | 2/2/01    | 2/2/01    | 2/2/01    | Average |
|                   |                 | RUN TIME                                   | 0945-1050 | 1230-1335 | 1405-1510 |         |
|                   |                 | EMISSIONS DATA                             |           |           |           |         |
|                   |                 | Particulate Matter                         |           |           |           |         |
|                   | РМ              | Target Catch, g                            | 0.0063    | 0.0750    | 0.0711    | 0.0508  |
|                   | C <sub>PM</sub> | Concentration, gr/dscf                     | 0.00236   | 0.0294    | 0.0252    | 0.0190  |
| C <sub>PM</sub>   | @ 7% O          | Concentration, gr/dscf @ 7% O <sub>2</sub> | 0.0035    | 0.0455    | 0.0408    | 0.0299  |
|                   | C <sub>PM</sub> | Concentration, mg/dscm                     | 5.41      | 67.4      | 57.7      | 43.5    |
| C <sub>PM</sub>   | @ 7% O          | Concentration, mg/dscm @ 7% $O_2$          | 8.08      | 104.1     | 93.3      | 68.5    |
|                   | E <sub>PM</sub> | Emission Rate, lb/hr                       | 0.0351    | 0.434     | 0.383     | 0.284   |
|                   | E <sub>PM</sub> | Emission Rate, kg/hr                       | 0.0159    | 0.197     | 0.174     | 0.129   |
|                   |                 | Cadmium                                    |           |           |           |         |
|                   | Cd              | Target Catch, µg                           | 3.55      | 6.7       | 6.33      | 5.51    |
|                   | $C^{Cq}$        | Concentration, mg/dscm                     | 0.00305   | 0.00598   | 0.00514   | 0.00472 |
| C <sub>Cd</sub> ( | @ 7% O          | Concentration, mg/dscm @ 7% O <sub>2</sub> | 0.00455   | 0.00924   | 0.00831   | 0.00737 |
|                   | E <sub>Cd</sub> | Emission Rate, g/hr                        | 0.00897   | 0.0175    | 0.0154    | 0.0140  |
|                   |                 | Lead                                       |           |           |           |         |
|                   | Pb              | Target Catch, µg                           | 434.1     | 554       | 481.2     | 489.9   |
|                   | $C_{Pb}$        | Concentration, mg/dscm                     | 0.373     | 0.498     | 0.391     | 0.420   |
| C <sub>Pb</sub> ( | @ 7% O₂         | Concentration, mg/dscm @ 7% O <sub>2</sub> | 0.557     | 0.769     | 0.631     | 0.653   |
|                   | E <sub>Pb</sub> | Emission Rate, g/hr                        | 1.10      | 1.45      | 1.17      | 1.24    |
|                   |                 | Mercury                                    |           |           |           |         |
|                   | Hg              | Target Catch, µg                           | 73.0      | 4.41      | 0.55      | 25.99   |
|                   | C <sub>Hg</sub> | Concentration, mg/dscm                     | 0.0627    | 0.00396   | 0.000447  | 0.0224  |
| -                 |                 | Concentration, mg/dscm @ 7% O <sub>2</sub> | 0.094     | 0.00612   | 0.000722  | 0.0335  |
|                   | E <sub>Hg</sub> | Emission Rate, g/hr                        | 0.184     | 0.0116    | 0.00134   | 0.0658  |

## Summary of Stack Gas Parameters and Test Results Malcolm Grow Medical Center - Andrews AFB, MD US EPA Test Method 23 - PCDD / PCDF Medical Waste Incinerator Stack Page 1 of 6

|                      | RUN NUMBER                                                  | M-23-1    | M-23-2    | M-23-3    |              |
|----------------------|-------------------------------------------------------------|-----------|-----------|-----------|--------------|
|                      | RUN DATE                                                    | 1/31/01   | 1/31/01   | 2/1/01    | Average      |
|                      | RUN TIME                                                    | 1026-1450 | 1610-2040 | 0910-1330 |              |
|                      | MEASURED DATA                                               |           |           |           |              |
| γ                    | Meter Box Correction Factor                                 | 0.995     | 0.995     | 0.995     |              |
| ΔΗ                   | Avg Meter Orifice Pressure, in. H <sub>2</sub> O            | 1.57      | 1.785     | 1.751     | 0.995        |
| P <sub>bar</sub>     | Barometric Pressure, inches Hg                              | 29.90     | 29.90     | 29.90     | 1.70         |
| $V_{m}$              | Sample Volume, ft <sup>3</sup>                              | 172.731   | 182.040   | 180.182   | 29.9         |
| T <sub>m</sub>       | Average Meter Temperature, °F                               | 90        | 105       | 100.102   | 178.31       |
| P <sub>static</sub>  | Stack Static Pressure, inches H <sub>2</sub> O              | 0.15      | 0.15      | 0.2       | 9            |
| Ts                   | Average Stack Temperature, *F                               | 171       | 172       | 172       | 0.1          |
| V <sub>Ic</sub>      | Condensate Collected, ml                                    | 1390.2    | 1256.9    | 1315.4    | 173          |
| CO <sub>2</sub>      | Carbon Dioxide content, % by volu                           | 6.0       | 5.9       | 5.4       | 1320.8       |
| O <sub>2</sub>       | Oxygen content, % by volume                                 | 11.4      | 12.1      | 10.8      | 5.8          |
| N <sub>2</sub>       | Nitrogen content, % by volume                               | 82.6      | 82.0      | 83.8      | 11.4<br>82.8 |
| $C_p$                | Pitot Tube Coefficient                                      | 0.84      | 0.84      | 0.84      |              |
| Δp <sup>1/2</sup>    | Average Square Root Dp, (in. H <sub>2</sub> O) <sup>1</sup> | 0.5945    | 0.5783    | 0.5919    | 0.8<br>0.588 |
| Θ                    | Sample Run Duration, minutes                                | 240       | 240       | 240       |              |
| $D_n$                | Nozzle Diameter, inches                                     | 0.310     | 0.310     | 0.310     | 240<br>0.310 |
|                      | CALCULATED DATA                                             |           |           |           |              |
| A <sub>n</sub>       | Nozzle Area, ft²                                            | 0.00052   | 0.00052   | 0.00052   | 0.00052      |
| $V_{m(std)}$         | Standard Meter Volume, dscf                                 | 165.499   | 169.914   | 169.629   | 168.347      |
| $V_{m(std)}$         | Standard Meter Volume, dscm                                 | 4.686     | 4.811     | 4.803     | 4.767        |
| Ps                   | Stack Pressure, inches Hg                                   | 29.91     | 29.91     | 29.91     | 29.91        |
| $B_{ws}$             | Moisture, % by volume                                       | 28.3      | 25.8      | 26.7      | 27.0         |
| B <sub>ws(sat)</sub> | Moisture (at saturation), % by volu                         | 41.9      | 42.4      | 42.4      | 42.2         |
| $V_{wstd}$           | Standard Water Vapor Volume, ft <sup>3</sup>                | 65.437    | 59.162    | 61.916    | 62.172       |
| 1-B <sub>ws</sub>    | Dry Mole Fraction                                           | 0.717     | 0.742     | 0.733     | 0.730        |
| $M_d$                | Molecular Weight (d.b.), lb/lb•mole                         | 29.42     | 29.43     | 29.30     | 29.38        |
| $M_s$                | Molecular Weight (w.b.), lb/lb•mole                         | 26.18     | 26.48     | 26.28     | 26.31        |
| $V_s$                | Stack Gas Velocity, ft/s                                    | 38.3      | 37.1      | 38.1      | 37.8         |
| Α                    | Stack Area, ft <sup>2</sup>                                 | 1.289     | 1.289     | 1.289     | 1.289        |
| $Q_a$                | Stack Gas Volumetric flow, acfm                             | 2,965     | 2,869     | 2,947     | 2,927        |
| $Q_s$                | Stack Gas Volumetric flow, dscfm                            | 1,776     | 1,777     | 1,803     | 1,785        |
| Q <sub>s(cmm)</sub>  | Stack Gas Volumetric flow, dscmm                            | 50.3      | 50.3      | 51.1      | 50.6         |
| 1                    | Isokinetic Sampling Ratio, %                                | 95.5      | 98.0      | 96.4      | 96.6         |

#### Summary of Stack Gas Parameters and Test Results Malcolm Grow Medical Center - Andrews AFB, MD US EPA Test Method 23 - PCDD / PCDF Baghouse Inlet Page 2 of 6

|           | RUN NUMBER                        | M-23-1     | M-23-2     | M-23-3     |            |
|-----------|-----------------------------------|------------|------------|------------|------------|
|           | RUN DATE                          | 36922      | 36922      | 36923      | Average    |
|           | RUN TIME                          | 1026-1450  | 1610-2040  | 0910-1330  |            |
|           | EMISSIONS DATA                    |            |            |            |            |
|           | DIOXINS:                          |            |            |            |            |
|           | 2378 TCDD                         |            |            |            |            |
| (ng)      | Catch, ng                         | (0.000792) | 0.000945   | (0.000580) | (0.000315  |
| (ng/dscm) | Concentration, ng/dscm, as measur | (0.000169) | 0.000196   | (0.000121) | (0.0000655 |
| (µg/hr)   | Emission Rate, μg/hr              | (0.000510) | 0.000593   | (0.000370) | (0.000198  |
|           | Total TCDD                        |            |            |            |            |
| (ng)      | Catch, ng                         | 0.0173     | 0.013      | 0.00393    | 0.0114     |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.00369    | 0.00270    | 0.000818   | 0.0024     |
| (µg/hr)   | Emission Rate, µg/hr              | 0.0111     | 0.00816    | 0.00251    | 0.0072     |
|           | 12378 PeCDD                       |            |            |            |            |
| (ng)      | Catch, ng                         | {0.00174}  | 0.00244    | (0.001630) | (0.00139   |
| (ng/dscm) | Concentration, ng/dscm, as measur | {0.000371} | 0.000507   | (0.000339) | (0.000293  |
| (µg/hr)   | Emission Rate, µg/hr              | {0.00112}  | 0.00153    | (0.00104)  | (0.000884  |
|           | Total PeCDD                       |            |            |            |            |
| (ng)      | Catch, ng                         | 0.0413     | 0.0313     | 0.0188     | 0.030      |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.00881    | 0.00651    | 0.00391    | 0.0064     |
| (µg/hr)   | Emission Rate, μg/hr              | 0.0266     | 0.0196     | 0.0120     | 0.019      |
|           | 123478 HxCDD                      |            |            |            |            |
| (ng)      | Catch, ng                         | 0.00456    | {0.00196}  | 0.00254    | {0.0030    |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.000973   | {0.000407} | 0.000529   | {0.00063   |
| (µg/hr)   | Emission Rate, μg/hr              | 0.00294    | {0.00123}  | 0.00162    | {0.0019    |
|           | 123678 HxCDD                      |            |            |            |            |
| (ng)      | Catch, ng                         | 0.00758    | {0.00504}  | 0.00463    | {0.0057    |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.00162    | {0.00105}  | 0.000964   | {0.0012    |
| (µg/hr)   | Emission Rate, µg/hr              | 0.00488    | {0.00316}  | 0.00295    | {0.0036    |

<sup>()</sup> Not Detected. Value shown is the detection limit. ND values are used as zero (0) in totals and averages.

<sup>{}</sup> Estimated Maximum Possible Concentration. EMPC values ARE included in totals and averages.

### Summary of Stack Gas Parameters and Test Results Malcolm Grow Medical Center - Andrews AFB, MD US EPA Test Method 23 - PCDD / PCDF Baghouse Inlet Page 3 of 6

|           | RUN NUMBER                        | M-23-1    | M-23-2    | M-23-3     |                  |
|-----------|-----------------------------------|-----------|-----------|------------|------------------|
|           | RUN DATE                          | 36922     | 36922     | 36923      | Average          |
|           | RUN TIME                          | 1026-1450 | 1610-2040 | 0910-1330  |                  |
|           | EMISSIONS DATA -Continued         |           |           |            |                  |
|           | DIOXINS - Continued               |           |           |            |                  |
|           | 123789 HxCDD                      |           |           |            |                  |
| (ng)      | Catch, ng                         | 0.00464   | 0.00276   | {0.00225}  | {0.00322}        |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.000990  | 0.000574  | {0.000468} | {0.000677}       |
| (µg/hr)   | Emission Rate, µg/hr              | 0.00299   | 0.00173   | {0.00144}  | {0.00205}        |
|           | Total HxCDD                       |           |           |            | •                |
| (ng)      | Catch, ng                         | 0.0682    | 0.0429    | 0.0389     | 0.0500           |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.0146    | 0.00892   | 0.0389     | 0.0500<br>0.0105 |
| (µg/hr)   | Emission Rate, μg/hr              | 0.0439    | 0.0269    | 0.0248     | 0.0105           |
|           | 1234678 HpCDD                     |           |           |            |                  |
| (ng)      | Catch, ng                         | 0.0273    | 0.0215    | 0.0205     | 0.0231           |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.00583   | 0.00447   | 0.00427    | 0.0231           |
| (µg/hr)   | Emission Rate, μg/hr              | 0.0176    | 0.0135    | 0.0131     | 0.0147           |
|           | Total HpCDD                       |           |           |            |                  |
| (ng)      | Catch, ng                         | 0.0556    | 0.0444    | 0.0415     | 0.0472           |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.01186   | 0.00923   | 0.00864    | 0.00991          |
| (µg/hr)   | Emission Rate, μg/hr              | 0.0358    | 0.0279    | 0.0265     | 0.0300           |
|           | 12346789 OCDD                     |           |           |            |                  |
| (ng)      | Catch, ng                         | 0.0744    | 0.0571    | 0.0633     | 0.0649           |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.0159    | 0.0119    | 0.0132     | 0.0136           |
| (µg/hr)   | Emission Rate, µg/hr              | 0.0479    | 0.0358    | 0.0404     | 0.0414           |
|           | Total PCDD                        |           |           |            |                  |
| (ng)      | Catch, ng                         | 0.2568    | 0.1887    | 0.16643    | 0.2040           |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.0548    | 0.0392    | 0.0346     | 0.0429           |
| (µg/hr)   | Emission Rate, µg/hr              | 0.165     | 0.118     | 0.106      | 0.130            |

<sup>()</sup> Not Detected. Value shown is the detection limit. ND values are used as zero (0) in totals and averages.

<sup>{}</sup> Estimated Maximum Possible Concentration. EMPC values ARE included in totals and averages.

#### Summary of Stack Gas Parameters and Test Results Malcolm Grow Medical Center - Andrews AFB, MD US EPA Test Method 23 - PCDD / PCDF Baghouse Inlet Page 4 of 6

|           | RUN NUMBER                        | M-23-1    | I-M23-2 | I-M23-3 |         |
|-----------|-----------------------------------|-----------|---------|---------|---------|
|           | RUN DATE                          | 36922     | I-M23-2 | I-M23-3 | Average |
|           | RUN TIME                          | 1026-1450 | I-M23-2 | I-M23-3 |         |
|           | EMISSIONS DATA - Continued        |           |         |         |         |
|           | FURANS                            |           |         |         |         |
|           | 2378 TCDF                         |           |         |         |         |
| (ng)      | Catch, ng                         | 0.0113    | 0.00877 | 0.00739 | 0.00915 |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.00241   | 0.00182 | 0.00154 | 0.00192 |
| (µg/hr)   | Emission Rate, µg/hr              | 0.00727   | 0.00550 | 0.00471 | 0.00583 |
|           | Total TCDF                        |           |         |         |         |
| (ng)      | Catch, ng                         | 0.345     | 0.265   | 0.205   | 0.272   |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.0736    | 0.0551  | 0.0427  | 0.0571  |
| (µg/hr)   | Emission Rate, µg/hr              | 0.222     | 0.166   | 0.131   | 0.173   |
|           |                                   |           |         |         |         |
|           | 12378 PeCDF                       |           |         |         |         |
| (ng)      | Catch, ng                         | 0.0209    | 0.0152  | 0.0116  | 0.0159  |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.00446   | 0.00316 | 0.00241 | 0.00334 |
| (µg/hr)   | Emission Rate, µg/hr              | 0.0135    | 0.00954 | 0.00740 | 0.0101  |
|           | 23478 PeCDF                       |           |         |         |         |
| (ng)      | Catch, ng                         | 0.0466    | 0.0361  | 0.0265  | 0.0364  |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.00994   | 0.00750 | 0.00552 | 0.00765 |
| (µg/hr)   | Emission Rate, µg/hr              | 0.0300    | 0.0227  | 0.0169  | 0.0232  |
|           | Total PeCDE                       |           |         |         |         |
| (ng)      | Catch, ng                         | 0.451     | 0.354   | 0.277   | 0.3607  |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.0962    | 0.0736  | 0.0577  | 0.07583 |
| (µg/hr)   | Emission Rate, µg/hr              | 0.290     | 0.222   | 0.177   | 0.2297  |
|           |                                   |           |         |         |         |
|           | 123478 HxCDF                      |           |         |         |         |
| (ng)      | Catch, ng                         | 0.0489    | 0.04    | 0.0289  | 0.0393  |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.0104    | 0.00831 | 0.00602 | 0.00825 |
| (µg/hr)   | Emission Rate, μg/hr              | 0.0315    | 0.0251  | 0.0184  | 0.0250  |

<sup>()</sup> Not Detected. Value shown is the detection limit. ND values are used as zero (0) in totals and averages.

<sup>{}</sup> Estimated Maximum Possible Concentration. EMPC values ARE included in totals and averages.

## Summary of Stack Gas Parameters and Test Results Malcolm Grow Medical Center - Andrews AFB, MD US EPA Test Method 23 - PCDD / PCDF Baghouse Inlet Page 5 of 6

|           | RUN NUMBER                        | M-23-1    | M-23-2    | M-23-3    |         |
|-----------|-----------------------------------|-----------|-----------|-----------|---------|
|           | RUN DATE                          | 36922     | 36922     | 36923     | Average |
|           | RUN TIME                          | 1026-1450 | 1610-2040 | 0910-1330 |         |
|           | EMISSIONS DATA - Continued        |           |           |           |         |
|           | Furans - Continued                |           |           |           |         |
|           | 123678 HxCDF                      |           |           |           |         |
| (ng)      | Catch, ng                         | 0.0546    | 0.0457    | 0.0355    | 0.045   |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.011651  | 0.009     | 0.00739   | 0.00951 |
| (µg/hr)   | Emission Rate, μg/hr              | 0.03515   | 0.03      | 0.023     | 0.0288  |
|           | 234678 HxCDF                      |           |           |           |         |
| (ng)      | Catch, ng                         | 0.0873    | 0.0737    | 0.0602    | 0.0737  |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.0186    | 0.0153    | 0.0125    | 0.0155  |
| (µg/hr)   | Emission Rate, µg/hr              | 0.0562    | 0.0463    | 0.0384    | 0.0470  |
|           | 123789 HxCDF                      |           |           |           |         |
| (ng)      | Catch, ng                         | 0.0137    | 0.0111    | 0.00899   | 0.0113  |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.00292   | 0.00231   | 0.00187   | 0.00237 |
| (µg/hr)   | Emission Rate, μg/hr              | 0.00882   | 0.00697   | 0.00573   | 0.00717 |
|           | Total HxCDF                       |           |           |           |         |
| (ng)      | Catch, ng                         | 0.517     | 0.441     | 0.345     | 0.434   |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.110     | 0.0917    | 0.0718    | 0.0913  |
| (µg/hr)   | Emission Rate, µg/hr              | 0.333     | 0.277     | 0.220     | 0.277   |
|           | 1234678 HpCDF                     |           |           |           |         |
| (ng)      | Catch, ng                         | 0.234     | 0.208     | 0.172     | 0.205   |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.0499    | 0.0432    | 0.0358    | 0.0430  |
| (µg/hr)   | Emission Rate, μg/hr              | 0.151     | 0.131     | 0.110     | 0.130   |
|           | 1234789 HpCDF                     |           |           |           |         |
| (ng)      | Catch, ng                         | 0.0265    | 0.0222    | 0.0188    | 0.0225  |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.00565   | 0.00461   | 0.00391   | 0.00473 |
| (µg/hr)   | Emission Rate, µg/hr              | 0.0171    | 0.0139    | 0.0120    | 0.0143  |

<sup>()</sup> Not Detected. Value shown is the detection limit. ND values are used as zero (0) in totals and averages.

<sup>{}</sup> Estimated Maximum Possible Concentration. EMPC values ARE included in totals and averages.

#### Summary of Stack Gas Parameters and Test Results Malcolm Grow Medical Center - Andrews AFB, MD US EPA Test Method 23 - PCDD / PCDF Baghouse Inlet Page 6 of 6

|           |                                   |           | ·····     |           |         |
|-----------|-----------------------------------|-----------|-----------|-----------|---------|
|           | RUN NUMBER                        | M-23-1    | M-23-2    | M-23-3    |         |
|           | RUN DATE                          | 36922     | 36922     | 36923     | Average |
|           | RUN TIME                          | 1026-1450 | 1610-2040 | 0910-1330 |         |
|           | EMISSIONS DATA - Continued        |           | -         |           |         |
|           | Furans - Continued                |           |           |           |         |
|           | Total HpCDF                       |           |           |           |         |
| (ng)      | Catch, ng                         | 0.37      | 0.328     | 0.274     | 0.324   |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.0790    | 0.0682    | 0.0570    | 0.0681  |
| (µg/hr)   | Emission Rate, µg/hr              | 0.238     | 0.206     | 0.175     | 0.206   |
|           | 12346789 OCDF                     |           |           |           |         |
| (ng)      | Catch, ng                         | 0.145     | 0.118     | 0.113     | 0.125   |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.0309    | 0.0245    | 0.0235    | 0.0263  |
| (µg/hr)   | Emission Rate, µg/hr              | 0.0934    | 0.0741    | 0.0721    | 0.0798  |
|           | Total PCDF                        |           |           |           |         |
| (ng)      | Catch, ng                         | 1.828     | 1.506     | 1.214     | 1.516   |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.390     | 0.313     | 0.253     | 0.319   |
| (µg/hr)   | Emission Rate, µg/hr              | 1.18      | 0.945     | 0.774     | 0.965   |
|           | Total PCDD + PCDF                 |           |           |           |         |
| (ng)      | Catch, ng                         | 2.085     | 1.695     | 1.380     | 1.720   |
| (ng/dscm) | Concentration, ng/dscm, as measur | 0.445     | 0.352     | 0.287     | 0.361   |
| (µg/hr)   | Emission Rate, μg/hr              | 1.34      | 1.06      | 0.881     | 1.10    |

<sup>()</sup> Not Detected. Value shown is the detection limit. ND values are used as zero (0) in totals and averages.

<sup>{}</sup> Estimated Maximum Possible Concentration. EMPC values ARE included in totals and averages.

### CDD/CDF Corrected Stack Gas Concentrations and 2378 TCDD Toxic Equivalent Concentrations Malcolm Grow Medical Center - Andrews AFB, MD US EPA Test Method 23 - CDD/CDF Medical Waste Incinerator Stack

|                         | 1 .        |              | NTRATION   |            | !          | 2           | 378 TOXIC E  | QUIVALENCI                              | ES         |
|-------------------------|------------|--------------|------------|------------|------------|-------------|--------------|-----------------------------------------|------------|
| RUN NUMBER              |            | g/dscmm, adj |            | 02)        | 2378-TCDD  |             | ng/dscmm, ad |                                         |            |
| RUN DATE                | M-23-1     | M-23-2       | M-23-3     |            | Toxic      | M-23-1      | M-23-2       | M-23-3                                  |            |
| RUN TIME                | 1/31/01    | 1/31/01      | 2/1/01     | Average    | Equivalent | 1/31/01     | 1/31/01      | 2/1/01                                  | Average    |
|                         | 1026-1450  | 1610-2040    | 0910-1330  |            | Factor     | 1026-1450   | 1610-2040    | 0910-1330                               |            |
| DIOXINS:                |            |              |            |            |            |             |              |                                         |            |
| 2378 TCDD               | (0.000247) | 0.000310     | (0.000166) | (0.000096) | 1.000      | (0.000247)  | 0.000310     | (0.000166)                              | (0.000096  |
| Total TCDD              | 0.00540    | 0.00427      | 0.00113    | 0.00353    |            |             |              | (0.000100)                              | (0.000030  |
| 12378 PeCDD             | {0.000543} | 0.000801     | (0.000467) | (0.000430) | 0.500      | {0.000272}  | 0.000401     | (0.000234)                              | (0.000245  |
| Total PeCDD             | 0.0129     | 0.0103       | 0.00539    | 0.0094     |            |             | 0.000101     | (0.000234)                              | (0.000215  |
| 123478 HxCDD            | 0.00142    | {0.000643}   | 0.000728   | {0.000934} | 0.100      | 0.000142    | ###########  | 0.0000729                               | ########   |
| 123678 HxCDD            | 0.00237    | {0.00165}    | 0.0013     | {0.00178}  | 0.100      | 0.000237    | {0.000165}   | 0.0000728                               |            |
| 123789 HxCDD            | 0.00145    | 0.000906     | {0.000645} | {0.000995} | 0.100      | 0.000145    | •            | ####################################### | {0.000178  |
| Total HxCDD             | 0.0213     | 0.0141       | 0.0111     | 0.0155     |            |             | 0.0000000    | ************                            | ********** |
| 1234678 HpCDD           | 0.00852    | 0.00706      | 0.00587    | 0.00713    | 0.010      | 0.0000852   | 0.0000706    | 0.0000587                               | 0.0000713  |
| Total HpCDD             | 0.0174     | 0.0146       | 0.0119     | 0.0146     |            |             | 0.5000100    | 0.0000367                               | 0.000071   |
| 12346789 OCDD           | 0.0232     | 0.0187       | 0.0181     | 0.0200     | 0.001      | 0.0000232   | 0.0000187    | 0.0000181                               |            |
| Total CDD               | 0.0802     | 0.0619       | 0.0477     | 0.0630     |            | {0.000904}  | {0.00112}    | {0.000347}                              | 0.0000200  |
|                         |            |              |            |            |            | (Citaboo I) | (0.00112)    | (0.000347)                              | {0.000773  |
| FURANS:                 |            |              |            |            |            |             |              |                                         |            |
| 2378 TCDF               | 0.00353    | 0.00288      | 0.00212    | 0.00283    | 0.100      | 0.000353    | 0.000288     | 0.000040                                | 0.000000   |
| Total TCDF              | 0.108      | 0.0870       | 0.0587     | 0.0839     |            | 0.00000     | 0.000200     | 0.000212                                | 0.000283   |
| 12378 PeCDF             | 0.00653    | 0.00499      | 0.00332    | 0.00491    | 0.050      | 0.000326    | 0.000250     | 0.000400                                |            |
| 23478 PeCDF             | 0.0145     | 0.0119       | 0.00759    | 0.0112     | 0.500      | 0.00727     | 0.000250     | 0.000166                                | 0.000246   |
| otal PeCDF              | 0.141      | 0.116        | 0.0794     | 0.111      | 0.000      | 0.00121     | 0.00593      | 0.00380                                 | 0.00562    |
| 123478 HxCDF            | 0.0153     | 0.0131       | 0.0083     | 0.0121     | 0.100      | 0.00153     | 0.00131      | 0.000000                                |            |
| 123678 HxCDF            | 0.0170     | 0.0150       | 0.0102     | 0.0140     | 0.100      | 0.00170     |              | 0.000828                                | 0.00121    |
| 234678 HxCDF            | 0.0273     | 0.0242       | 0.0172     | 0.0227     | 0.100      | 0.00170     | 0.00150      | 0.00102                                 | 0.00140    |
| 23789 HxCDF             | 0.00428    | 0.00364      | 0.00258    | 0.00348    | 0.100      |             | 0.00242      | 0.00172                                 | 0.00227    |
| otal HxCDF              | 0.161      | 0.145        | 0.0988     | 0.134      | 0.100      | 0.000428    | 0.000364     | 0.000258                                | 0.000348   |
| 234678 HpCDF            | 0.0731     | 0.0683       | 0.0493     | 0.0631     | 0.010      | 0.000724    | 0.000000     | 0.000                                   |            |
| 234789 HpCDF            | 0.00827    | 0.00729      | 0.00539    | 0.00694    |            | 0.000731    | 0.000683     | 0.000493                                | 0.000631   |
| otal HpCDF              | 0.116      | 0.108        | 0.0785     | 0.100      | 0.010      | 0.0000827   | 0.0000729    | 0.0000539                               | 0.0000694  |
| 2346789 OCDF            | 0.0453     | 0.0387       | 0.0324     | 0.100      | 0.004      | 0.0000450   | 0.000555     |                                         |            |
| otal CDF                | 0.571      | 0.494        | 0.348      | 0.468      | 0.001      |             |              |                                         | 0.0000387  |
| otal CDD + CDF          | 0.651      | 0.556        |            |            |            | 0.0152      | 0.0129       | 0.00858                                 | 0.0121     |
| Indicates value in pare |            |              | 0.396      | 0.531      |            | {0.0161}    | {0.0140}     | {0.00893}                               | {0.0130}   |

<sup>()</sup> Indicates value in parentheses is based on the Detection Limit (sample was Not Detected). A total or average value in parentheses means the value includes one or more zero (0) values used in place of the detection limit based value.

<sup>{}</sup> Indicates the value is based on an EMPC value. The value is used as is in totals and averages.

### Summary of Stack Gas Parameters and Test Results Air Emissions Test Malcolm Grow Medical Center - Andrews AFB, MD US EPA Test Method 26 - HCI Medical Waste Incinerator Stack Page 1 of 1

|                      | RUN NUMBER                             | M26-1                | M26-3               | M26-4               | A       |
|----------------------|----------------------------------------|----------------------|---------------------|---------------------|---------|
|                      | RUN DATE<br>RUN TIME                   | 1/31/01<br>1045-1145 | 2/1/01<br>0910-1010 | 2/2/01<br>0945-1045 | Average |
|                      | MEASURED DATA                          |                      |                     |                     |         |
| γ                    | Meter Box Correction Factor            | 1.004                | 1.004               | 1.004               | 1.004   |
| $P_{bar}$            | Barometric Pressure, inches Hg         | 29.90                | 29.90               | 29.90               | 29.90   |
| $V_{m}$              | Sample Volume, ft <sup>3</sup>         | 120.100              | 119.810             | 120.440             | 120.117 |
| ΔΗ                   | Avg Meter Orifice Pressure, in. H      | 2.20                 | 2.20                | 2.20                | 2.20    |
| T <sub>m</sub>       | Average Meter Temperature, °F          | 89.6                 | 109.3               | 90                  | 96.2    |
| CO <sub>2</sub>      | Carbon Dioxide content, % by vol       | 5.8                  | 6.1                 | 6.3                 | 6.1     |
| O <sub>2</sub>       | Oxygen content, % by volume            | 11.3                 | 11.9                | 11.6                | 11.6    |
| Θ                    | Sample Run Duration, minutes           | 60                   | 60                  | 60                  | 60      |
|                      | CALCULATED DATA                        |                      |                     |                     |         |
| $V_{sc}$             | Standard Meter Volume, liters          | 116.347              | 112.056             | 116.659             | 115.021 |
| V <sub>m(std)</sub>  | Standard Meter Volume, ft <sup>3</sup> | 4.109                | 3.957               | 4.120               | 4.062   |
| V <sub>m(std)</sub>  | Standard Meter Volume, m <sup>3</sup>  | 0.116                | 0.112               | 0.117               | 0.115   |
| $Q_{m}$              | Average Sampling Rate, Ipm             | 1.94                 | 1.87                | 1.94                | 1.92    |
|                      | EMISSIONS DATA                         |                      |                     |                     |         |
|                      | Chlorides as HCI                       |                      |                     |                     |         |
|                      | Catch Mass, mg                         | 2.8                  | 0.3                 | 1.1                 | :       |
| F <sub>Wt</sub>      | Formula Weight, lb/lb-mol              | 36.47                | 36.47               | 36.47               |         |
| $C_{ppmvd}$          | Concentration, ppm by volume           | 15.9                 | 1.77                | 6.22                | 7.95    |
| C <sub>ppm7%O2</sub> | Concentration, ppm by vol. at 7%       | 23.0                 | 2.73                | 9.29                | 11.7    |

### APPENDIX E QA/QC DATA

Pacific Environmental Services

Central Park West 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709-2077 (919) 941-0333 FAX: (919) 941-0234

PACIFIC ENVIRONMENTAL SERVICES, INC.

ະໄດ້ເປັນຢູ່ເປັນງ່ຽວຮັໄທeter Galibration Form (∃nglish ປິດຖິຣ)

Date: 1/22/01 P<sub>bar</sub>, in Hg 30.00

Calibrator: DDH Meter Box (DGM) No.:

**RMB-15** 

Reference Meter Correction Factor: 1.0077 (10/5/97, 09/28/98, & 09/10/99)

| ΔH =  | 0.5      |         |          |                   | Dry Gas      | Meter R | MR-15 |          |       |      |
|-------|----------|---------|----------|-------------------|--------------|---------|-------|----------|-------|------|
|       | Trial    | Gas     | Volume ( | ft <sup>3</sup> ) |              |         |       | eratures | (°F)  |      |
| Trial | Duration |         |          | }                 | Inlet Outlet |         |       |          |       |      |
| 11101 | (min)    | Initial | Final    | Net               | Initial      | Final   | Avg.  | Initial  | Final | Avg. |
| 2     | 15       | 464.354 | 470.464  | 6.110             | 72           | 73      | 72.5  | 70       | 70    | 70   |
| 3     | 15<br>15 | 470.464 | 476.579  | 6.115             | 72           | 73      | 72.5  | 70       | 70    | 70   |
|       | 15       | 476.579 | 482.679  | 6.100             | 72           | 75      | 73.5  | 70       | 71    | 70.5 |

|                             |                                          | Reference                                                | Meter                                                                          |                                                                                                                                                                         | DGM Correction                                                                                                                                                                                                                                                   | Reference                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Gas Volume (ft³) Meter Temperatures (°F) |                                                          |                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            | Orifice Press                                                                                                                                                                                                                                                                                                                                                    |
|                             | Final                                    | Net                                                      | Initial Final Avg.                                                             |                                                                                                                                                                         |                                                                                                                                                                                                                                                                  | γ                                                                                                                                                                                                                                                                                                                                                                          | ΔH <sub>@</sub> (in. H <sub>2</sub> O)                                                                                                                                                                                                                                                                                                                           |
| 567.537                     | 573.492                                  | 5.955                                                    | 64                                                                             | 64                                                                                                                                                                      | 64                                                                                                                                                                                                                                                               | 0.995                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                  |
| 573.492                     | 579.425                                  | 5.933                                                    | 64                                                                             | 64                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            | 1.719                                                                                                                                                                                                                                                                                                                                                            |
| 579.425 585.363 5.938 64 64 |                                          |                                                          |                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                            | 1.732<br>1.726                                                                                                                                                                                                                                                                                                                                                   |
|                             | Initial<br>567.537<br>573.492            | Gas Volume Initial Final 567.537 573.492 573.492 579.425 | Gas Volume (ft³) Initial Final Net 567.537 573.492 5.955 573.492 579.425 5.933 | Initial         Final         Net         Initial           567.537         573.492         5.955         64           573.492         579.425         5.933         64 | Gas Volume (ft³)         Meter Temperature           Initial         Final         Net         Initial         Final           567.537         573.492         5.955         64         64           573.492         579.425         5.933         64         64 | Gas Volume (ft³)         Meter Temperatures (°F)           Initial         Final         Net         Initial         Final         Avg.           567.537         573.492         5.955         64         64         64           573.492         579.425         5.933         64         64         64           579.425         5.933         64         64         64 | Gas Volume (ft³)         Meter Temperatures (°F)         Factor γ           Initial         Final         Net         Initial         Final         Avg.         γ           567.537         573.492         5.955         64         64         64         0.995           573.492         579.425         5.933         64         64         64         0.990 |

| ΔH =         | 0.75     |         |          |                   | Dry Gas | Meter RI | MB-15    |          |       |      |  |
|--------------|----------|---------|----------|-------------------|---------|----------|----------|----------|-------|------|--|
|              | Trial    | Gas     | Volume ( | ft <sup>3</sup> ) |         | Me       | ter Temp | eratures | (°F)  |      |  |
| <b>~</b> · . | Duration |         |          |                   |         | inlet    |          | Outlet   |       |      |  |
| Trial        | (min)    | Initial | Final    | Net               | Initial | Final    | Avg.     | Initial  | Final | Avg. |  |
| 1            | 15       | 499.123 | 506.571  | 7.448             | 74      | 74       | 74       | 72       | 72    | 72   |  |
| 2            | 15       | 506.571 | 514.037  | 7.466             | 74      | 74       | 74       | 72       | 72    |      |  |
| 3            | 15       | 514.037 | 521.456  | 7.419             | 74      | 75       | 74.5     | 72       | 71    | 72   |  |

|        |                             | Reference                                                   | Meter                                                                             |                                                                                                          | DGM Correction                                                                                                            | Reference                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-----------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                             | (ft <sup>3</sup> )                                          | Meter Te                                                                          | emperatu                                                                                                 |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                 | Orifice Press                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | Final                       | Net                                                         | Initial                                                                           | Final                                                                                                    | Avg.                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                 | $\Delta H_{\mathfrak{C}}$ (in. $H_2O$ )                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 96.489                      | 7.255                                                       | 64                                                                                | 64                                                                                                       | 64                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 03.728                      | 7.239                                                       | 64                                                                                | 64                                                                                                       |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                 | 1.733                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .728 6 | 10.967                      | 7.239                                                       | 64                                                                                | 64                                                                                                       | 64                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 | 1.740<br>1.740                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | itial<br>0.234 5<br>0.489 6 | Gas Volume<br>itial Final<br>2.234 596.489<br>3.489 603.728 | Gas Volume (ft³)<br>itial Final Net<br>0.234 596.489 7.255<br>0.489 603.728 7.239 | Gas Volume (ft³) Meter Te<br>itial Final Net Initial<br>0.234 596.489 7.255 64<br>0.489 603.728 7.239 64 | Gas Volume (ft³) Meter Temperatu<br>itial Final Net Initial Final<br>234 596.489 7.255 64 64<br>3.489 603.728 7.239 64 64 | Gas Volume (ft³)         Meter Temperatures (°F)           itial         Final         Net         Initial         Final         Avg.           .234         596.489         7.255         64         64         64           .489         603.728         7.239         64         64         64           .728         610.967         7.230         64         64         64 | Gas Volume (ft³)         Meter Temperatures (°F)         Factor γ           itial         Final         Net         Initial         Final         Avg.         γ           .234         596.489         7.255         64         64         64         0.997           .489         603.728         7.239         64         64         64         0.992           .728         610.967         7.239         0.992         0.992 |

| ΔH =  | 1.0      |         |          |                   | Dry Gas                 | Meter R | MB-15 |         |       | Dry Gas Meter RMB-15 |  |  |  |  |  |  |  |  |  |
|-------|----------|---------|----------|-------------------|-------------------------|---------|-------|---------|-------|----------------------|--|--|--|--|--|--|--|--|--|
|       | Trial    | Gas     | Volume ( | ft <sup>3</sup> ) | Meter Temperatures (°F) |         |       |         |       |                      |  |  |  |  |  |  |  |  |  |
| Trial | Duration |         |          |                   | Inlet                   |         |       | Outlet  |       |                      |  |  |  |  |  |  |  |  |  |
| Trial | (min)    | Initial | Final    | Net               | Initial                 | Final   | Avg.  | Initial | Final | Avg.                 |  |  |  |  |  |  |  |  |  |
| -     | 10       | 540.356 | 546.014  | 5.658             | 74                      | 75      | 74.5  | 72      | 72    | 72                   |  |  |  |  |  |  |  |  |  |
| - 2   | 10       | 546.014 | 551.686  | 5.672             | 74                      | 75      | 74.5  | 72      | 72    | 72                   |  |  |  |  |  |  |  |  |  |
| 3     | 10       | 551.686 | 557.344  | 5.658             | 74                      | 76      | 75    | 72      | 72    | 72                   |  |  |  |  |  |  |  |  |  |

|       |               |                                | Reference | DGM Correction     | Reference |          |        |                                       |
|-------|---------------|--------------------------------|-----------|--------------------|-----------|----------|--------|---------------------------------------|
| Trial | Ga<br>Initial |                                | ` '       | Meter To           |           | res (°F) | Factor | Orifice Press                         |
| 11101 |               | Final                          | Net       | Initial Final Avg. |           |          | γ      | $\Delta H_{\mathbf{Q}}$ (in. $H_2O$ ) |
|       | 621.021       | 626.53                         | 5.509     | 64                 | 64        | 64       | 0.996  | 1.781                                 |
| 3     | 626.530       | 632.000                        | 5.470     | 64                 | 64        | 64       | 0.987  | 1.806                                 |
|       | 632.000       | 632.000 637.500 5.500 64 64 64 |           |                    |           |          |        | 1.786                                 |



Central Park West 5001 South Miami Boulevard, P.O. Box 12077

Research Triangle Park, North Carolina 27709-2077

PACIFIC ENVIRONMENTAL SERVICES, INC.

(919) 941-0333 FAX: (919) 941-0234

### Infielday@esMeer@illordonform(English Units)

Date:

1/22/01

Calibrator: DDH

Meter Box (DGM) No.:

**RMB-15** 

P<sub>bar</sub>, in Hg 30.00 Reference Meter Correction Factor: 1.0077 (10/5/97, 09/28/98, & 09/10/99)

| ΔH =  | 2.0      |         | Dry Gas Meter RMB-15 |                   |         |       |          |                |       |      |  |  |  |
|-------|----------|---------|----------------------|-------------------|---------|-------|----------|----------------|-------|------|--|--|--|
|       | Trial    | Gas     | Volume (             | ft <sup>3</sup> ) |         | Me    | ter Temp | peratures (°F) |       |      |  |  |  |
|       | Duration |         |                      |                   | Inlet   |       |          | Outlet         |       |      |  |  |  |
| Trial | (min)    | Initial | Final                | Net               | Initial | Final | Avg.     | Initial        | Final | Avg. |  |  |  |
| 1     | 7        | 568.937 | 574.407              | 5.470             | 68      | 67    | 67.5     | 67             | 67    | 67   |  |  |  |
| 2     | 7        | 574.407 | 579.882              | 5.475             | 68      | 67    | 67.5     | 67             | 67    | 67   |  |  |  |
| 3     | 7        | 579.882 | 585.360              | 5.478             | 68      | 67    | 67.5     | 67             | 67    | 67   |  |  |  |

|       |         |          | Reference          | Meter              |               |    | DGM Correction | Reference                        |
|-------|---------|----------|--------------------|--------------------|---------------|----|----------------|----------------------------------|
|       | Ga      | s Volume | (ft <sup>3</sup> ) | Factor             | Orifice Press |    |                |                                  |
| Trial | Initial | Final    | Net                | Initial Final Avg. |               |    | γ              | $\Delta H_{\odot}$ (in. $H_2O$ ) |
| 1     | 645.018 | 650.368  | 5.350              | 64                 | 62            | 63 | 0.989          | 1.869                            |
| 2     | 650.368 | 655.738  | 5.370              | 64                 | 62            | 63 | 0.992          | 1.855                            |
| 3     | 655.738 | 661.113  | 5.375              | 64                 | 62            | 63 | 0.992          | 1.852                            |

| ΔH =  | 4.0      |         |                                                       |       | Dry Gas | Meter R | MB-15 |         |        |      |
|-------|----------|---------|-------------------------------------------------------|-------|---------|---------|-------|---------|--------|------|
|       | Trial    | Gas     | Gas Volume (ft <sup>3</sup> ) Meter Temperatures (°F) |       |         |         |       |         |        |      |
|       | Duration |         |                                                       |       |         | Inlet   |       |         | Outlet |      |
| Trial | (min)    | Initial | Final                                                 | Net   | Initial | Final   | Avg.  | Initial | Final  | Avg. |
| 1     | 5        | 600.198 | 605.660                                               | 5.462 | 74      | 74      | 74    | 72      | 73     | 72.5 |
| 2     | 5        | 605.660 | 611.129                                               | 5.469 | 74      | 74      | 74    | 72      | 73     | 72.5 |
| 3     | 5        | 611.129 | 616.609                                               | 5.480 | 74      | 73      | 73.5  | 72      | 73     | 72.5 |

|       |         |          | Reference              | Meter  |               |    | DGM Correction | Reference                              |  |
|-------|---------|----------|------------------------|--------|---------------|----|----------------|----------------------------------------|--|
|       | Ga      | s Volume | (ft³)                  | Factor | Orifice Press |    |                |                                        |  |
| Trial | Initial | Final    | Net Initial Final Avg. |        |               |    | γ              | ΔH <sub>@</sub> (in. H <sub>2</sub> O) |  |
| 1     | 680.287 | 685.679  | 5.392                  | 64     | 64            | 64 | 1.003          | 1.873                                  |  |
| 2     | 685.679 | 691.070  | 5.391                  | 64     | 64            | 64 | 1.001          | 1.873                                  |  |
| 3     | 691.070 | 696.461  | 5.391                  | 64     | 64            | 64 | 0.999          | 1.874                                  |  |

### Calibration Results

| ΔΗ   | γ     | ΔH <sub>Q</sub> |
|------|-------|-----------------|
| 0.50 | 0.993 | 1.73            |
| 0.75 | 0.996 | 1.74            |
| 1.0  | 0.992 | 1.79            |
| 2.0  | 0.991 | 1.86            |
| 4.0  | 1.001 | 1.87            |

### Dry Gas Meter RMB-15 on 01/22/01

| Meter Box Calibration Factor         | 0.995 |  |
|--------------------------------------|-------|--|
| Meter Box Reference Orifice Pressure | 1.80  |  |
|                                      |       |  |



Central Park West (919) 941-0333 FAX: (919) 941-0234 5001 South Miami Boulevard, P.O. Box 12077 Research Triangle Park, North Carolina 27709-2077

# Posttest Dry Gas Meter Calibration Form (English Units)

(10/5/97, 09/28/98, & 09/10/99) 1.0077 29.90 0.995 P<sub>bar</sub>, in Hg Reference Meter Correction Factor System Vacuum Setting, (in Hg) Pretest Calibration Factor 2/8/01

Calibrator: D. Holzschuh

Meter Box No.: RMB-15

| _                    | L-                                            |                    | _        | _        | _        |
|----------------------|-----------------------------------------------|--------------------|----------|----------|----------|
|                      | Avg. Outlet                                   | (°F)               | 75       | 75       | 75       |
|                      | Initial, Outlet   Final, Outlet   Avg. Outlet | (°F)               | 74       | 74       | 7.4      |
|                      | Initial, Outlet                               | (°F)               | 9/       | 92       | 76       |
| r RMB-15             | Avg. Inlet                                    | (°F)               | 75.5     | 75.5     | 75       |
| Dry Gas Meter RMB-15 | Initial, Inlet Final, Inle                    | (°F)               | 75       | 75       | 74       |
| ٥                    | Initial, Inlet                                | (°F)               | 9/       | 9/       | 9/       |
|                      | Net                                           | (ft <sup>3</sup> ) | 7.720    | 7.695    | 7.698    |
|                      | Final                                         | (ft³)              | 1005.909 | 1013.604 | 1021.302 |
|                      | Initial                                       | (ft³)              | 998.189  | 1005.909 | 1013.604 |
| 1.8                  | Duration                                      | (min)              | 10       | 10       | 10       |
| = HV                 |                                               | Trial              | 1        | 2        | က        |
|                      |                                               |                    |          | _        |          |

|       |         |            | Reference Meter | e Meter       | •               |      | Meter Box  |
|-------|---------|------------|-----------------|---------------|-----------------|------|------------|
|       | )       | Gas Volume |                 | Mete          | Meter Temperatu | ure  | Correction |
|       | Initial | Final      | Net             | Initial       | Final           | Avg. | Factor     |
| Trial | (ft³)   | (ft³)      | (ft³)           | ( <b>°</b> F) | (°F)            | (F)  | ٨          |
| 1     | 945.198 | 952.898    | 7.700           | 74            | 74              | 74   | 1.003      |
| 2     | 952.898 | 960.579    | 7.681           | 74            | 74              | 74   | 1.004      |
| 3     | 960.579 | 968.264    | 7.685           | 74            | 74              | 74   | 1.003      |



Printed: 2/13/01



Central Park West Research Triangle Park, North Carolina 27709-2077 (919) 941-0333 FAX: (919) 941-0234 5001 South Miami Boulevard, P.O. Box 12077

# Vost Pretest Dry Gas Meter Calibration Form (English Units)

1.004 06/08/00 P<sub>bar</sub>, in Hg Reference Meter Correction Factor System Vacuum Setting, (in Hg) Pretest Calibration Factor Date:

Calibrator: DDH 30.00

X X က

9-/ Meter Box No.:

|       | -        |         | Vost   | Vost DGM, liters |     |     |     | Buck Meter, cc/min | r, cc/min |     |
|-------|----------|---------|--------|------------------|-----|-----|-----|--------------------|-----------|-----|
|       | Duration | Initial | Final  | Net              | ဥ   | ည   | ပ္ပ | ပ္ပ                | ည         | ပ္ပ |
| Trial | (min)    | Liters  | Liters | Liters           |     |     |     |                    |           |     |
| 1     | 10       | 0       | 9.712  | 9.712            | 979 | 972 | 973 | 974                | 046       | 971 |
| 2     | 10       | 9.712   | 19.348 | 9.636            | 981 | 126 | 968 | 973                | 971       | 972 |
| 3     | 10       | 19.348  | 28.939 | 9.591            | 226 | 226 | 696 | 928                | 967       | 978 |

|       |     |     | Refe    | Reference Meter       | ڀ    |        |         |       |
|-------|-----|-----|---------|-----------------------|------|--------|---------|-------|
|       |     |     | Gas Vol | Gas Volume, cc/minute | nute |        |         |       |
|       |     |     |         |                       |      | AVG    | Average |       |
| Trial | သ   | ည   | သ       | ည                     | ပ္ပ  | CC/min | lpm     | γ     |
| 1     | 972 | 980 | 696     | 972                   | 977  | 973.55 | 9.735   | 1.002 |
| 2     | 981 | 985 | 586     | 286                   | 026  | 976.27 | 9.763   | 1.013 |
| က     | 886 | 981 | 886     | 066                   | 974  | 976.55 | 9.765   | 1.018 |

• • • % Change SARRIAR



### CALIBRATION DATA SHEET 2 Type S Pitot Tube Inspection









Degree indicating level position for determining  $\beta_1$  and  $\beta_2$ .





Degree indicating level position for determining (4)



| Level and Perpendicular?                    | Yes   |
|---------------------------------------------|-------|
| Obstruction?                                | No    |
| Damaged?                                    | 14.0  |
| $a_1 (-10^{\circ} \le a_1 \le +10^{\circ})$ | O     |
| $a_2 (-10^{\circ} \le a_2 \le +10^{\circ})$ |       |
| 8, (-5° × 8, × +5°)                         | 0     |
| & (-5° 5 & 5 5 +5°)                         |       |
| y                                           | 0     |
| 0                                           | 0     |
| z = A tan y (≤ 0.125°)                      | O     |
| w = A tan θ (≤ 0.03125°)                    | . 0   |
| D, (3/16" \$ D, \$ 3/8")                    | 3/8   |
| Α .                                         | . 935 |
| A/2D, $(1.05 \le P_A/D, \le 1.5)$           | 1.25  |

Teem Leeder (Signature/Date)





| QA/QC Check<br>Completeness |                                                      | A -            |                              |                         |
|-----------------------------|------------------------------------------------------|----------------|------------------------------|-------------------------|
| Cartification               | consulty                                             | Accuracy       | Specifications               | Reasonableness          |
| I certify that th           | ne Type S pitot tube/pro<br>applicable design featur | be IDF RF-   4 | meets or exceed              | is all specifications,  |
| Certified by: _             | . D Brown                                            | 7-14-48        | pitot tube calbration factor | C <sub>p</sub> of 0.84. |
|                             | Personnel (Signa                                     | iture/Date)    | T                            |                         |

### TEMPERATURE SENSOR CALIBRATION FORM

Temperature Sensor No. RT-6 Sensor Type K TYPE Length 97

Ambient Temp. °F 68 Barometric Pressure, "Hg 29.95

Reference Temp. Sensor: 68

| Date     | Ref.<br>Point | Temp.<br>Source | Ten            | np. °F         | Temp.   | Within        | Calibrated |
|----------|---------------|-----------------|----------------|----------------|---------|---------------|------------|
|          | No.           |                 | Ref.<br>Sensor | Test<br>Sensor | Diff. % | Limits<br>Y/N | Ву         |
| 02/14/59 | 1             | TLE             | 32             | 3.5            | 0       | 7             | наа        |
|          | 2             | ANSTER<br>AIR   | 71             | <b>C8</b>      | 7.65    | Ÿ             | Haid       |
|          | 3             | Briting<br>Nao  | حرد            | 210            | 6       | y             | DOH        |
|          | 1             |                 |                |                |         |               |            |
|          | 2             | ·               |                |                |         |               |            |
|          | 3             |                 |                |                |         |               |            |
|          | 1             |                 |                |                |         |               |            |
|          | 2             |                 |                | •              |         |               |            |
|          | 3             |                 | ·              |                |         |               |            |
|          | 1             |                 |                |                |         |               |            |
|          | 2             |                 |                |                |         |               |            |
|          | 3             |                 |                |                |         |               |            |
|          | 1             |                 |                |                |         |               |            |
| ·        | 2             |                 |                |                |         |               |            |
|          | 3             |                 |                |                |         |               |            |
|          | 1             |                 |                |                |         |               |            |
|          | 2             |                 |                |                |         |               |            |
|          | 3             |                 |                |                |         |               |            |

<sup>%</sup> Temp. Diff =  $\frac{(Ref. Temp + 460) - (Test Temp. + 460)}{(Ref. Temp. + 460)} \times 100 \le 1.5$ %



3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811 Shipped From: 80 Industrial Drive • Alpha, NJ 08865



| CERTIFICATE | OF AI | VAL | YSIS |
|-------------|-------|-----|------|
|-------------|-------|-----|------|

**EPA PROTOCOL MIXTURE** 

PROCEDURE #: G1

CUSTOMER:

Pacific Env. Services Inc.

CYLINDER #:

CC88665

SGI ORDER #:

147414

CYLINDER PRES: 2000 PSIG

ITEM#:

**CGA OUTLET:** 

350

P.O.#:

104-00-0061/62/63

**CERTIFICATION DATE: 11/02/99** 

**EXPIRATION DATE:** 

11/02/2002

### **CERTIFICATION HISTORY**

| COMPONENT       | DATE OF<br>ASSAY     | MEAN CONCENTRATION     | CERTIFIED CONCENTRATION | ANALYTICAL<br>ACCURACY |
|-----------------|----------------------|------------------------|-------------------------|------------------------|
| Carbon Monoxide | 10/26/99<br>11/02/99 | 30.42 ppm<br>30.09 ppm | 30.2 ppm                | +/- 1%                 |
|                 |                      |                        |                         |                        |
|                 |                      |                        |                         |                        |
|                 |                      |                        |                         |                        |

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

### REFERENCE STANDARDS

| COMPONENT       | SRM/NTRM#  | CYLINDER# | CONCENTRATION |
|-----------------|------------|-----------|---------------|
| Carbon Monoxide | NTRM-81679 | CC88366   | 97.4 ppm      |
|                 |            |           |               |
|                 |            |           |               |
|                 |            |           |               |

### INSTRUMENTATION

| COMPONENT       | MAKE/MODEL     | SERIAL#   | DETECTOR | CALIBRATION<br>DATE(S) |
|-----------------|----------------|-----------|----------|------------------------|
| Carbon Monoxide | Horiba VIA-510 | 570423011 | NDIR     | 10/26/99               |
|                 |                |           |          |                        |

THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:

DATE: 11/02/99



3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811 Shipped From: 80 Industrial Drive • Alpha, NJ 08865



| CEDTIE | ICAT | re o |      | A   | 1 / 1 | VC    | 10 |
|--------|------|------|------|-----|-------|-------|----|
| CERTIF | IUA  |      | IF A | ı١١ | IAL   | _ 1 3 | IJ |

**EPA PROTOCOL MIXTURE** 

PROCEDURE #: G1

CUSTOMER:

Pacific Env. Services Inc.

CYLINDER #:

CC88530

SGI ORDER #:

147414

CYLINDER PRES: 2000 PSIG

**CGA OUTLET:** 

350

ITEM#: P.O.#:

104-00-0061/62/63

**CERTIFICATION DATE: 11/02/99** 

**EXPIRATION DATE:** 

11/02/2002

### **CERTIFICATION HISTORY**

| ASSAY    | CONCENTRATION | CONCINICAL RATE OF A |          |
|----------|---------------|----------------------|----------|
|          |               | CONCENTRATION        | ACCURACY |
| 10/26/99 | 59.64 ppm     | 59.5 ppm             | +/- 1%   |
| 11/02/99 | 59.31 ppm     |                      |          |
|          |               |                      |          |
|          |               |                      |          |
|          |               |                      |          |
|          |               |                      |          |
|          |               |                      |          |
|          |               |                      | '        |
|          |               |                      |          |

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

### DEEDENCE CTANDADDO

| COMPONENT       | SRM/NTRM#  | CYLINDER# | CONCENTRATION |
|-----------------|------------|-----------|---------------|
| Carbon Monoxide | NTRM-81679 | CC88366   | 97.4 ppm      |
|                 |            |           |               |
|                 |            |           |               |
|                 |            |           |               |

### INSTRUMENTATION

| COMPONENT       | MAKE/MODEL     | SERIAL#   | DETECTOR | CALIBRATION<br>DATE(S) |
|-----------------|----------------|-----------|----------|------------------------|
| Carbon Monoxide | Horiba VIA-510 | 570423011 | NDIR     | 10/26/99               |
|                 | -              |           |          |                        |
|                 | <del> </del>   |           |          |                        |

THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 160 PSIG.

ANALYST: FRED PIKULA

DATE: 11/02/99



3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811 Shipped From: 80 Industrial Drive • Alpha, NJ 08865



|  | CERTI | FICA. | TE C | FA | NA | LYSIS |
|--|-------|-------|------|----|----|-------|
|--|-------|-------|------|----|----|-------|

**EPA PROTOCOL MIXTURE** 

PROCEDURE #: G1

CUSTOMER:

Pacific Env. Services Inc.

CYLINDER #:

CC88495

SGI ORDER #:

147414

CYLINDER PRES: 2000 PSIG

ITEM#:

5

CGA OUTLET:

350

P.O.#:

104-00-0061/62/63

**CERTIFICATION DATE: 11/02/99** 

11/02/33

EXPIRATION DATE:

11/02/2002

### **CERTIFICATION HISTORY**

| COMPONENT       | DATE OF<br>ASSAY     | MEAN<br>CONCENTRATION    | CERTIFIED CONCENTRATION | ANALYTICAL<br>ACCURACY |
|-----------------|----------------------|--------------------------|-------------------------|------------------------|
| Carbon Monoxide | 10/26/99<br>11/02/99 | 89.79 ppm .<br>89.60 ppm | 89.7 ppm                | +/- 1%                 |
|                 |                      |                          |                         |                        |
| •               |                      |                          |                         |                        |
|                 |                      |                          |                         |                        |

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

### REFERENCE STANDARDS

| COMPONENT       | SRM/NTRM#  | CYLINDER# | CONCENTRATION |
|-----------------|------------|-----------|---------------|
| Carbon Monoxide | NTRM-81679 | CC88366   | 97.4 ppm      |
|                 |            |           | '\            |
|                 |            |           |               |
|                 |            |           | ·             |

### INSTRUMENTATION

| COMPONENT       | MAKE/MODEL     | SERIAL#   | DETECTOR | CALIBRATION<br>DATE(S) |
|-----------------|----------------|-----------|----------|------------------------|
| Carbon Monoxide | Horiba VIA-510 | 570423011 | NDIR     | 10/26/99               |
|                 |                |           |          |                        |

THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

| ANALYST: | /)//-         |   |
|----------|---------------|---|
|          | FRED PIKITI A | • |

| DA. | TE: | 1 | 1 | /0 | 2/ | 99 |
|-----|-----|---|---|----|----|----|
|     |     |   |   |    |    |    |



3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811 Shipped From: 80 Industrial Drive • Alpha, NJ 08865



### **CERTIFICATE OF ANALYSIS**

**EPA PROTOCOL MIXTURE** 

PROCEDURE #: G1

CUSTOMER:

Pacific Env. Services Inc.

CYLINDER #:

CC114216

SGI ORDER #:

162038

ITEM#:

CGA OUTLET:

CYLINDER PRES: 2000 PSIG

P.O.#:

590

104-01-0017

**CERTIFICATION DATE: 12/28/2000** 

EXPIRATION DATE:

12/28/2003

### **CERTIFICATION HISTORY**

| COMPONENT      | DATE OF<br>ASSAY | MEAN CONCENTRATION | CERTIFIED CONCENTRATION | ANALYTICAL ACCURACY |
|----------------|------------------|--------------------|-------------------------|---------------------|
| Oxygen         | 12/28/2000       | 12.53 %            | 12.53 %                 | +/- 1%              |
| Carbon Dioxide | 12/28/2000       | 10.04 %            | 10.04 %                 | +/- 1%              |
|                |                  |                    |                         |                     |
|                |                  |                    |                         |                     |

BALANCE

Nitrogen

**PREVIOUS CERTIFICATION DATES: None** 

### REFERENCE STANDARDS

| COMPONENT      | SRM/NTRM#   | CYLINDER# | CONCENTRATION |
|----------------|-------------|-----------|---------------|
| Oxygen         | NTRM-82659x | CC83908   | 22.8 %        |
| Carbon Dioxide | NTRM-82745x | CC79944   | 20.00 %       |
|                |             |           |               |
|                |             |           |               |

### INSTRUMENTATION

| MAKE/MODEL     | SERIAL#   | DETECTOR | CALIBRATION DATE(S) |
|----------------|-----------|----------|---------------------|
| Horiba MPA-510 | 570694081 | PM       | 12/15/2000          |
| Horiba VIA-510 | 571417045 | NDIR     | 12/6/2000           |
|                |           |          |                     |

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

| ANALYST: | 7/.         |
|----------|-------------|
|          | FRED PIKULA |

DATE: 12/28/2000





3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811 Shipped From: 80 Industrial Drive • Alpha, NJ 08865

| CERTIFICATE | OF ANALYSIS |
|-------------|-------------|
|-------------|-------------|

**EPA PROTOCOL MIXTURE** 

PROCEDURE #: G2

CUSTOMER:

Pacific Env. Services Inc.

CYLINDER #: \*

CC91083

SGI ORDER #:

147409

CYLINDER PRES: 2000 PSIG

ITEM#:

**CGA OUTLET:** 

590

P.O.#:

104-00-0063/0064

**CERTIFICATION DATE: 10/27/99** 

**EXPIRATION DATE:** 

10/27/2002

### **CERTIFICATION HISTORY**

| COMPONENT      | DATE OF<br>ASSAY | MEAN CONCENTRATION | CERTIFIED CONCENTRATION | ANALYTICAL<br>ACCURACY |
|----------------|------------------|--------------------|-------------------------|------------------------|
| Oxygen         | 10/27/99         | 22.4 %             | 22.4 %                  | +/- 1%                 |
| Carbon Dioxide | 10/27/99         | 22.4 %             | 22.4 %                  | +/- 1%                 |
|                |                  |                    |                         |                        |
|                |                  |                    |                         |                        |

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

### REFERENCE STANDARDS

| COMPONENT      | SRM/NTRM#   | CYLINDER# | CONCENTRATION |
|----------------|-------------|-----------|---------------|
| Oxygen         | NTRM-82659X | CC83900   | 22.80 %       |
| Carbon Dioxide | NTRM-82745x | CC79944   | 20.00 %       |
|                |             |           |               |
|                |             |           |               |

### INSTRUMENTATION

| COMPONENT      | MAKE/MODEL     | SERIAL#   | DETECTOR | CALIBRATION<br>DATE(S) |
|----------------|----------------|-----------|----------|------------------------|
| Oxygen         | Horiba MPA-510 | 570694081 | PM       | 10/26/99               |
| Carbon Dioxide | Horiba VIA-510 | 571417045 | NDIR     | 10/27/99               |
|                |                |           |          |                        |
|                |                |           |          |                        |

THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:

**DATE**: 10/27/99



3434 Route 22 West • Branchburg, NJ 08876 USA Tel.: (908) 252-9300 • (800) 932-0624 • Fax: (908) 252-0811 Shipped From: 80 Industrial Drive • Alpha, NJ 08865



| CF     | RT | FI | CA. | TF | OF     | Al | V | AI | Y | S      | S |
|--------|----|----|-----|----|--------|----|---|----|---|--------|---|
| $\sim$ |    |    | -   |    | $\sim$ |    |   |    |   | $\sim$ | _ |

**EPA PROTOCOL MIXTURE** 

PROCEDURE #: G1

CUSTOMER:

Cherokee Instruments Inc.

CYLINDER #:

CC55783

SGI ORDER #:

156722 CYLINDER PRES: 2000 PSIG

ITEM#:

6

CGA OUTLET: 660

P.O.#:

3818

**CERTIFICATION DATE: 8/10/2000 EXPIRATION DATE:** 

8/10/2002

CERTIFICATION HISTORY

| COMPONENT      | DATE OF<br>ASSAY      | MEAN CONCENTRATION     | CERTIFIED CONCENTRATION | ANALYTICAL<br>ACCURACY |
|----------------|-----------------------|------------------------|-------------------------|------------------------|
| Sulfur Dioxide | 8/2/2000<br>8/10/2000 | 45.04 ppm<br>45.17 ppm | 45.1 ppm                | +/- 1%                 |
|                |                       |                        |                         |                        |
|                |                       |                        |                         |                        |
|                |                       |                        |                         |                        |

BALANCE

Nitrogen

**PREVIOUS CERTIFICATION DATES: None** 

REFERENCE STANDARDS

| COMPONENT      | SRM/NTRM#  | CYLINDER# | CONCENTRATION |
|----------------|------------|-----------|---------------|
| Sulfur Dioxide | NTRM-81694 | CC55796   | 96.0 ppm      |
|                |            |           |               |
|                |            |           |               |
|                |            |           |               |

### INSTRUMENTATION

| COMPONENT      | MAKE/MODEL     | SERIAL#   | DETECTOR | CALIBRATION<br>DATE(S) |
|----------------|----------------|-----------|----------|------------------------|
| Sulfur Dioxide | Horiba VIA-510 | 851221093 | NDIR     | 7/28/2000              |
|                |                |           |          |                        |
|                |                | ****      |          |                        |

THIS STANDARD WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST: FRED PIKULA

DATE: 8/10/2000

For Technical Information Call 1-800-752-1597 Air Products and Chemicals, Inc. \* 12722 S. Wentworth Avenue, Chicago, IL 50628

PRODUCTS

### ISO CERTIFICATION: 9002

# EPA PROTOCOL GAS STANDARI **SERTIFICATE OF ANALYSIS:**

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

AIR PRODUCTS AND CHEMICALS, INC. NC 27709 4822 INDUSTRY LAND UDI BUSINESS FARK Customers DURHAM

Order No: C85-190592-01 Batch No: 861-59105 Releaser Ž

क्राम Cert Cy11 Ber

| EG9119904BAL<br>DWJ098 | 2000 ps1g<br>06/26/1999<br>06/26/2001                |
|------------------------|------------------------------------------------------|
| Inder Nos              | Inder Pressurets<br>Lification Dates<br>Lation Dates |

| CERTIFIED CA   | Certified Concentration             | KET             | Keperizace standaeds | e dan         | •              | AKALYZICAL INSTRUMENTATION | THE TRUBERY | LEIOH                            |
|----------------|-------------------------------------|-----------------|----------------------|---------------|----------------|----------------------------|-------------|----------------------------------|
|                | Certified                           | Cyl Inder       | Standard             | Standerd      | Instrument     | Serial                     | 1,350       | Kebsurenent                      |
| Component      | Concentration                       | Kurber          | Type                 | Concentration | Make/Model     | Kaber                      | Celibration | Principal                        |
| SULFUR DIOXIDE | 91.7 ±1.7 PPM                       | SC91509688AL    | MTRN 81661X          | 169.7 PPM     | HORIBA VIA-510 | 85079208                   | 69/18/99    | 05/16/99 NON DISPERSIVE INFRARED |
| HI TROCEIL     | Palarive Oas                        |                 |                      |               |                |                            |             |                                  |
| * STANDARD     | * STANDARD SECULD NOT BE USED BELOW | E USED BELOW 1! | 150 PBIG             |               |                |                            |             |                                  |



Analysti

(16921

drand Fry

### RATA CLASS



### Scott Specialty Gases

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

### CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

TROY,MI 48083

P.O. No.:

103-00-292

Project No.: 05-70839-002

Customer

PACIFIC ENVIRONMENTAL SERVICES.INC

**BRUCE SAVEN** 

7209 E. KEMPER RD

CINCINNATI OH 45249-1030

**ANALYTICAL INFORMATION** 

SCOTT SPECIALTY GASES

1290 COMBERMERE STREET

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1; September, 1997.

Cylinder Number:

ALM031852

Certification Date:

12/14/00

Exp. Date: 12/13/2002

Cylinder Pressure \*\*\*: 1900 PSIG

**ANALYTICAL** 

TRACEABILITY

COMPONENT NITRIC OXIDE **CERTIFIED CONCENTRATION (Moles)** 

ACCURACY\*\* +/- 1%

Direct NIST and NMi

NITROGEN - OXYGEN FREE

254.13 PPM

BALANCE

Reference Value Only

TOTAL OXIDES OF NITROGEN

254.9

PPM

"" Do not use when cylinder pressure is below 150 paig.

\*\* Analytical accuracy is based on the requirements of EPA Protocal procedure G1, September 1997.

Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards.

REFERENCE STANDARD

TYPE/SRM NO. NTRM 1687

3/01/03

EXPIRATION DATE . CYLINDER NUMBER

ALM024630

CONCENTRATION

COMPONENT

NITRIC OXIDE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

BECKMAN/951/010177

DATE LAST CALIBRATED

1000. PPM

12/14/00

**ANALYTICAL PRINCIPLE** 

CHEMILUMINESCENCE

**ANALYZER READINGS** 

(Z = Zero Gas

R = Reference Gas T = Test Gas r = Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

Calibration Curve

Concentration = A + Bx + Cx2 + Dx3 + Ex4

NITRIC OXIDE

Date:12/06/00 Response Unit:MV

Z1 - 0.00000 R1 = 100.0000RZ - 100,0000

22 = 0.00000

T3 ~ 101.E000

T1 = 101,7000 T2 = 101.5000 R3 = 100.0000

Avg. Concentration:

23 = 0.00000

253.4

Date: 12/14/00 Response Unit: MV

Z1 = 0.00000R1 = 100,0000 T1 = 51.60000

R2 = 100.0000

ZZ-0.00000 T2 = 51.60000

Z3 = 0,00000 73 - 51.50000 R3 - 100.0000

Avg. Concentration:

r=.999992785 1686

COMMINANTS A=1.220822425

8-10.000876060

E=0

APPROVED BY:



14:01

### RATA CLASS



### Scott Specialty Gases

### **Dual-Analyzed Calibration Standard**

290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fex: 248-589-2134

### **CERTIFICATE OF ACCURACY: EPA Protocol Gas**

Assay Laboratory

TROY, MI 48083

P.O. No.:

103-00-292

Project No.: 05-70839-003

PACIFIC ENVIRONMENTAL SERVICES, INC

BRUCE SAVEN

7209 E. KEMPER RD

CINCINNATI OH 45249-1030

**ANALYTICAL INFORMATION** 

SCOTT SPECIALTY GASES

1290 COMBERMERE STREET

his certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1; September, 1997.

Cylinder Number: Cylinder Pressure\*\*\*: AAL18927

1900 PSIG

Certification Date:

12/14/00

Exp. Date: 12/14/2002

ANALYTICAL

COMPONENT

CERTIFIED CONCENTRATION (Moles)

ACCURACY\*\*

TRACEABILITY

NITRIC OXIDE

472.4 PPM

+/- 1%

Direct NIST and NMi

NITROGEN - OXYGEN FREE

TOTAL OXIDES OF NITROGEN

473.1

PPM

BALANCE

Reference Value Only

\*\*\* Do not use when cylinder pressure is below 150 psig.

\*\* Analytical accuracy is based on the requirements of EPA Protocal procedure G1, September 1997.

Product certified as +/- 1% analytical accuracy is directly traceable to NIST or NMI standards.

REFERENCE STANDARD

TYPE/SRM NO.

**EXPIRATION DATE** 

CYLINDER NUMBER

CONCENTRATION

COMPONENT

NTRM 1687

3/01/03

ALM024630

1000. PPM

NITRIC OXIDE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

DATE LAST CALIBRATED

**ANALYTICAL PRINCIPLE** 

BECKMAN/951/010177

12/14/00

CHEMILUMINESCENCE

**ANALYZER READINGS** 

(Z = Zero Gas

R=Reference Gas T=Test Gas

r = Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

Calibration Curve

Concentration = A + Bx + Cx2 + Dx3 + Ex4

NITRIC OXIDE

Dete:12/06/00 R2 = 100.0000

Avg. Concentration:

Response Unit:MV

472.1

21 - 0.00000 R1 = 100.0000

Z3 = 0.00000

Z2 = 0.00000 T3-47.00000

R3 = 100,0000 PPM

T1 = 47.00000 T2 = 47.00000 Date: 12/14/00

Response Unit: MV

R1 = 100.0000

Z1 = 0.00000 R2 = 100,0000 Z2-0.00000

T2-47.10000

Z3-0.00000

Avg. Concentration:

T3-47.10000 . R3-100.0000 472.8

A=1.220822425

B = 10.000876060

--- -998992785

Constants:

C=0

E=0