Orbit-Stablizer Theorem

Introduction

Setting

- Let S be a set, $s \in S$.
- Let G be a *permutaion group* on S, (or we say G acts on S). That means G is isomorphic to a subgroup of permutations on S, $G \approx H \leq Perm(S)$. We can see every $x \in G$ as a bijection from S to S, so the symbol x(s) means the image of $S \in S$ under function $S \in S$.

Definitions

• The *stablizer* of s in G, denoted by $Stab_G(s)$, is

$$Stab_G(s) = \{x \in G : xs = s\}$$

In words, they are all the permutations x in G that leaves s as it is (so they all 'stablize' s).

• The *orbit* of *s* under *G* is,

$$Orb_G(s) = \{xs : x \in G\}$$

That is, orbit of *s* is the set of all the destinations it can go.

Theorem

• $Stab_G(s) \leq G$, and

$$|G| = |Orb_G(s)| \cdot |Stab_G(s)|$$

note that $Stab_G(s)$ is a subset (or further, subgroup) of G, while $Orb_G(s)$ is subset of S, sort of nothing to do with G.

Interpretation

The theorem suggests that there might be a one-to-one mapping between pairs of indices (i,j), $\mathbf{l'd}$ call them

 Orb_Index and $Stab_Index$, and elements in G. We can visualize them in a table, where the columns correspond to $Stab_Index$ and rows being Orb_Index :

	1	2	 j	 $ Stab_G(s) $
1	1			
2				
i			х	
$ Orb_G(s) $				

Any $x \in G$ can be identified by a cell (i,j) in this table. Let $t = t_i \in S$ denote the destination of s under $x = x_{i,j}$ and let v denote the pre-image of s under s:

$$t = x(s)$$

$$v = x^{-1}(s)$$

and let h_i denote the mapping in G that only swap s and v, leaving others as it is. i.e.:

$$h_i(s) = v$$

$$h_i(v) = s$$

$$h_i(u) = u \text{ for } u \neq s \text{ or } v$$

and let $g_j \in Stab_G(s)$ represents mapping that stablizes s (as it is in $Stab_G(s)$), maps v to t, while preserve the other mappings of x except s and v:

$$g_j(s) = s$$

$$g_j(v) = t$$

$$g_j(u) = x(u)$$
 otherwise

Under this setting, x is a composition of h_i and g_j :

$$x = g_i \circ h_i$$

This concept may be better illustrated by:

II

