- 1. Connect each number with its prime factors. $O(n \cdot factor(U))$.
- 2. Preprocess an arbitrary prime factor for each number in $1, \ldots, U$ using sieve. For each input number, connect all its prime factors. $O(U + n \cdot \frac{\log U}{\log \log U})$. (we can use sieve with sublinear time complexity, e.g. Wheel factorization [2] or Sieve of Atkin [1] in $O(\frac{U}{\log \log U})$ time.)

The running time is also $O(U \log \log U)$ using the sieve of Eratosthenes, because $\sum_i \frac{U}{p_i} = O(U \log \log U)$. Remark. There could be other running time tradeoffs between n and U.

Accepted Solutions Runtime Distribution

 $\label{eq:Zoomarea by dragging across this chart} Zoom area by dragging across this chart Runtime: 60 ms, faster than 100.00\% of C++ online submissions for Largest Component Size by Common Factor.$

Memory Usage: $25.8\,$ MB, less than 97.08% of C++ online submissions for Largest Component Size by Common Factor.

References

- [1] Arthur Atkin and Daniel Bernstein. Prime sieves using binary quadratic forms. *Mathematics of Computation*, 73(246):1023–1030, 2004.
- [2] Paul Pritchard. Explaining the wheel sieve. Acta Informatica, 17:477–485, 1982.