Algorithms and Analysis

Lesson 12: Use Arrays for Fast Set Algorithms

Equivalent classes, Disjoint Set, Fast Sets

Outline

- 1. Equivalent Classes
- 2. Disjoint Sets
- 3. Fast Sets

Equivalence Relations

• Given a set of elements $\mathcal{X} = \{x_1, x_2, \ldots\}$ and a binary relationship \sim with the following properties!

(Reflexivity) For every element $x \in \mathcal{X}$, $x \sim x$ (Symmetry) For every two elements $x, y \in \mathcal{X}$ if $x \sim y$ then $y \sim x$ (Transitivity) For every three elements $x, y, z \in \mathcal{X}$ if $x \sim y$

(Transitivity) For every three elements $x,y,z\in\mathcal{X}$ if $x\sim y$ and $y\sim z$ then $x\sim z$

ullet Then \sim defines a partitioning of the set into **equivalence classes**

Example of Equivalence Classes

- Although, equivalent classes sound very mathematical they often provide a useful formalisation of the real world
- E.g. Pairs of web pages with a link in each direction between them
- Consider web pages in the same equivalence class if you can get from one to the other by clicking links
- Partitions the web into linked domains
- Friendship relations in social media

Dynamic Equivalence Classes

- Finding equivalence classes is rather easy using graph traversal algorithms
- However, as our web example suggests, there are applications where equivalence classes change over time
- Adding a link could join two domains which were separate
- We will see this is a useful idea both for building mazes and (in a later lecture) for finding minimum spanning trees
- Building a data structure which finds equivalence classes where the equivalence relation changes over time is challenging, but fortunately there is an elegant solution to this.

Outline

- 1. Equivalent Classes
- 2. Disjoint Sets
- 3. Fast Sets

Union-Find

- In the union-find algorithm we have a set of objects $x \in \mathcal{S}$ which are to be grouped into subsets $\mathcal{S}_1, \mathcal{S}_2, \dots$
- Initially each object is in its individual subset (no relationships)
- We want to make the union of two subsets (add relationship between elements)
- We also want to find the subset given an element
- This is a common problem for which we will write a class
 DisjointSets to perform fast unions and finds

DisjointSets

We want to create a class

```
class DisjointSets
{
    DisjointSets(int numElements) { /* Constructor */}
    int find(int x) { /* Find root */}
    void union_(int root1, int root2) { /* Union */}

    private:
    int* s;
}
```

- Where find(x) returns a unique identifier for the subset which element x belongs to
- The array s contains labelling information to implement find(x)

The Union-Find Dilemma

- A natural algorithm to perform finds is to maintain an array returning a subset label for each element—this makes find fast
- However, every time we combine two subset we have to change all the labels in this array (taking O(n) operations)
- If we are unlucky the cost of performing n unions is $\Theta(n^2)$
- If we ensure that we relabel the smaller subset then the time complexity is $\Theta(n\log(n))$
- Fast finds seems to give slow(ish) unions
- What about the other way around?

Fast Union

- To achieve fast unions we can represent our disjoint sets as a forest (many disjoint trees)
- Every time we perform a union we make one of the trees point to the head of the other tree!
- The cost of find depends on the depth of the tree!
- To make unions efficient we make the shallow tree a subtree of the deeper tree!

Putting it Together

$$find(6)=7$$

7	0	7	7	7	7	7	-3	7	7
0	1	2	3	4	5	6	7	8	9

Smart Union

```
DisjointSets::DisjointSets(int numElements)
    s = new int[numElements];
    for(int i=0; i<numElements; i++)</pre>
                                      // roots are negative number
        s[i] = -1;
}
void DisjointSets::union_(int root1, int root2)
{
    if (s[root2] < s[root1]) { // root2 is deeper
                          // make root2 the root
        s[root1] = root2;
    } else {
        if (s[root1]==s[root2])
                                      // update height if same
            s[root1]--;
                                      // make root1 new root
        s[root2] = root1;
}
                       -A
sП
                       root1
                                           root2
```

Path Compression

 To speed up find we relabel all nodes we visit during find by the root label

Mazes

- Union-Find is a data structure which can occur in very different applications
- One application is building a maze
- Start from a complete lattice
- Remove a randomly chosen edge if it connects two unconnected regions
- Stop when the start and end cell are connected
- Or better after all cells are connected

0	1	2	3	4	
		7		l l	
10	11	12	13	14	
15	16	17	18	19	
20	21	22	23	24	
25	26	27	28	29	
30	31	32	33	34	
35	36	37	38	39	
40	$\left 41\right $	42	43	44	
45	46	47	48	49	

Time Complexity of Union-Find

- If we perform M finds and N unions then the time complexity is $O\big(M\log_2^*(N)\big)$.
- Where $\log_2^*(N)$ is the number of times you need to apply the logarithm function before you get a number less than 1
- In practice $\log_2^*(N) \le 5$ for all conceivable N

The proof of this time complexity is rather involved

Outline

- 1. Equivalent Classes
- 2. Disjoint Sets
- 3 Fast Sets

Comparison of Sets

- Binary Search Trees: $O(\log_2(n))$, general purpose
- Hash tables: O(1), but need to compute hash, slow iterator when sparse, general purpose
- B-trees: $O((k-1)\log_k(n))$ very complicated, used for large amounts of data
- Tries: $O(\log_k(n))$ for large k expensive in memory, complicated to code efficiently

What Set to Use?

- A PhD student and I were working on writing a fast solver for a combinatorial optimisation problem
- We had to choose one variable to change out of a small number of possible variables
- Each time we changed a variable then we had to update the list of possible variables (remove some variables add others)
- We wanted a data structure which had quick add and remove and where we could choose a variable at random—what should we use?

Bounded Set

- One special feature is that we knew we only wanted the set to contain integers between 0 and n (where n might be 100 000)
- This allowed us to use an array to represent whether an integer belong to that set
- But how do we find a random element of the set quickly?
- Use another array of course!

FastSet

eddfed(9)(9)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 -1
 -3
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1

 4
 9
 7
 1
 1
 1
 1
 1

Implementation

```
class FastSet {
  private:
    int* indexArray;
    int* memberArray;
    int noMembers;
  public:
    FastSet(int n) {
      indexArray = new int[n];
      memberArray = new int[n];
      for (int i=0; i<n; i++) {</pre>
           indexArray [i] = -1;
      noMembers = 0;
  }
  int size() {
     return noMembers;
  }
```

Add and Remove

```
bool add(int i) {
   if (indexArray[i]>-1)
      return false;
   memberArray[noMembers] = i;
   indexArray[i] = noMembers;
   ++noMembers;
   return true;
}
bool remove(int i) {
   if (indexArray[i]==-1)
         return false;
   --noMembers;
   memberArray[indexArray[i]] = memberArray[noMembers];
   indexArray[memberArray[noMembers]] = indexArray[i];
   indexArray[i] = -1;
   return true;
}
```

Collection Methods

```
void clear() {
   for(int i=0; i<noMembers; i++) {</pre>
      indexArray[memberArray[i]] = -1;
   noMembers = 0;
}
bool isEmpty() {
   return noMembers==0;
}
int* begin() {return &memberArray[0];}
int* end() {return &memberArray[noMembers];}
}
```

And Random?

 We can add additional methods taking advantage of the classes strength

Need to use FastSet signature to use this

```
FastSet fastSet(n);
int r = fastSet.getRandomElement();
```

Speed Up

- We compared our algorithm to a very highly regarded "state-of-the-art" algorithm
- For large problems we were over 10 times faster because of this data structure
- The competitor algorithm used a complex tree structure instead of the simple array.
- Why? The array solution isn't in the books

Lessons

- If you have a bounded set then using an array is usually going to be very fast O(1) (or $O(\log^*(n))$)
- These data structures are not general purpose for solving every day problems (c.f. vector<T>, set<T> and map<T>)
- They are "back pocket" data structures that solve problems that come up often enough that they are worth knowing about
- Sometimes good algorithms are not documented, but it doesn't mean they don't exist