Spatial Data and Queries

- Spatial Data
- Spatial Relationships
- Spatial Queries
- Issues in Query Processing
- The R-tree
- Spatial Query Processing
 - Spatial Selections
 - Nearest Neighbor Queries
 - Spatial Joins

Spatial Data and Queries

Spatial Data

- Spatial objects are a special case of multidimensional objects
 - Just two dimensions
 - Both dimensions are interval-scaled
 - Natural mapping of dimensions to real maps
- Spatial objects are characterized by
 - location
 - geometry (only for non-points)
- Multidimensional objects are points

Spatial Data Management

- Spatial Database Systems manage large collections of 2D/3D objects
- A spatial object (at least) one spatial attribute that describes its location and/or geometry
- A spatial dataset is an organized collection of spatial objects of the same entity (e.g. rivers, cities, road segments)

Road segments from an area in CA

ID	Name	Type	Polyline
1	Boulevard	avenue	(10023,1094),
			(9034,1567),
			(9020,1610)
2	Leeds	highway	(4240,5910),
			(4129,6012),
			(3813,6129),
			(3602,6129)
	•••	•••	•••

A spatial dataset (relation)

Spatial Data

- Spatial data can be found in many applications
 - Geographic Information Systems
 - Segmented images (e.g., objects in X-rays)
 - Components of CAD constructs or VLSI circuits
 - Stars on the sky
 - **...**
- Spatial database systems are used by
 - Users of mobile devices (find the nearest restaurant)
 - Geographers, astrologers, life scientists, army commanders, etc.

Spatial Relationships

- A spatial relationship or spatial predicate associates two objects according to their relative location and extent in space
 - Example: "My house is close to Central Park"
- Sometimes also called "spatial relation".
- Spatial relationships are classified to
 - topological relationships (for objects with geometries)
 - distance relationships (mostly for point objects)
 - directional relationships (mostly for point objects)

Topological Relationships

- Each object is characterized by the space it occupies in the universe.
 - a (finite or infinite) set of elementary points (pixels)
- Each object has a boundary and an interior
 - boundary: the set of pixels the object occupies, that are adjacent to at least one pixel not occupied by the object
 - interior: the set of pixels occupied by the object, which are not part of its boundary

- Note: in some representation models, some objects may not have interior
 - e.g., points, line segments, etc.

Topological Relationships

- A topological relationship between two objects is defined by a set of (set-based) relationships between their boundaries and interiors
 - E.g., o_1 is inside o_2 if interior(o_1) \subset interior(o_2)
- intersects (or overlap) means any of equals, inside, contains, adjacent
- intersects ⇔ ¬disjoint

Topological relationship	equivalent boundary/interior relationships
$disjoint(o_1, o_2)$	$(interior(o_1) \cap interior(o_2) = \emptyset) \land (boundary(o_1) \cap boundary(o_2) = \emptyset)$
$intersects(o_1, o_2)$ (or $overlaps(o_1, o_2)$)	$(interior(o_1) \cap interior(o_2) \neq \emptyset) \lor (boundary(o_1) \cap boundary(o_2) \neq \emptyset)$
$equals(o_1, o_2)$	$(interior(o_1) = interior(o_2)) \land (boundary(o_1) = boundary(o_2))$
$inside(o_1, o_2)$	$interior(o_1) \subset interior(o_2)$
$contains(o_1, o_2)$	$interior(o_2) \subset interior(o_1)$
$adjacent(o_1, o_2)$	$(interior(o_1) \cap interior(o_2) = \emptyset) \wedge (boundary(o_1) \cap boundary(o_2) \neq \emptyset)$

Topological Relationships

Examples of topological relationships

In fact, there is a hierarchy of topological relationships:
ANY

Distance Relationships

- Distance relationships associate two objects based on their geometric distance (typically, the minimum Euclidean distance)
- Distance is usually abstracted (i.e., discretized) into the human mind.
 - Example (distances in a city)
 - 0-100m: near
 - 100m-1km: reachable
 - 1km-10km: far
 - >10km: very far
- Distances are typically measured and then mapped to some abstract distance class (e.g., near, far)

Directional Relationships

- Directional relationships associate two objects based on their relative orientation according to a global reference system
- Example: My house is north of the river
 - relationship can also be a number:
 - e.g. house 96 degrees relative to river
- Examples of directional relationships:
 - north, south, east, west, northeast, etc.
 - left, right, above, below, front, behind, etc.
- Topological, distance, and directional relationships can be combined:
 - My house is disjoint with the park, 100 meters north of it

Spatial Queries

- Applied on one (or more) spatial datasets
- Retrieve objects (or combinations of objects) satisfying some spatial relationships
 - between them or
 - with a reference query object

Examples:

- Nearest neighbor query: What is the nearest city to my current location?
- Spatial join: Find all pairs of hotels and restaurants within 100m distance from each other

Spatial Queries

Range query (spatial selection, window query)
 e.g. find all cities that *intersect* window W
 Answer set: {c₁, c₂}

Nearest neighbor query

e.g. find the city closest to the forest F *Answer*: c₂

Spatial join

e.g. find all pairs of cities and rivers that intersect *Answer set*: $\{(r_1,c_1), (r_2,c_2), (r_2,c_5)\}$

Spatial Queries for points

- For point data, the typical queries are
 - Range queries where the range can be:
 - A rectangular window
 - A circular range around a reference point
 - Nearest neighbor queries
 - Find k-nearest points
 - Spatial distance joins
 - Find pairs that are near each other
 - Find the closest pairs

Spatial Data Management

Issues in Spatial Data Management

Data dimensionality

- There is no total ordering of objects in the multidimensional space that preserves proximity

z-curve

- Example: space-filling curves
 - Two nearby points could be far in curve order
 - Neighboring values in curve could be far in space
- Geometries of non-point objects
 - adds to the complexity of partitioning the objects for indexing purposes
- Hence, traditional indexing and search techniques for 1D data are not applicable

Two-step Spatial Query Processing

- Complex geometries of spatial objects are approximated by their minimum bounding rectangles (MBR)
- A spatial query is then processed in two steps:
 - □ Filter step: The MBR is tested against the query predicate
 - Refinement step: The exact geometry of objects that pass the filter step is tested for qualification

(a) objects and a query

(b) object MBRs

(c) candidates and results

The Filter-and-Refine Paradigm

- Reduce the search space
- Cheap filter techniques

- Remove false positives
- Verify results

Indexing techniques for points

- Spatial point objects in applications:
 - GPS locations
 - Points of Interest on maps
 - Scientific applications (e.g., astronomy)
- Indexes for points
 - space-filling curves
 - grid
 - k-d-tree
 - quadtree
- All of them can be generalized for multidimensional points

Z-order curve (Morton curve)

- Reading:
 - https://en.wikipedia.org/wiki/Z-order_curve
- Maps multi-dimensional points to 1D values
 - Space is discretized, coordinates are converted to integers
 - Applies bit-interleaving to the binary representations of coordinates
- A multi-dimensional range query is equivalent to finding the points in a set of 1D ranges on the Zorder curve
- See also: Hilbert space-filling curve

Z-order curve (Morton curve)

	x: 0 000	1 001	2 010			5 101		7 111
y: 0 000	000000	000001	000100	000101	010000	010001	010100	010101
1 001	000010	000011	000110	000111	010010	010011	010110	010111
2 010	001000	001001	001100	001101	011000	011001	011100	011101
3 011	001010	001011	001110	001111	011010	011011	011110	011111
4 100	100000	100001	100100	100101	110000	110001	110100	110101
5 101	100010	100011	100110	100111	110010	110011	110110	110111
6 110	101000	101001	101100	101101	111000	111001	111100	111101
7 111	101010	101011	101110	101111	111010	111011	111110	111111

Example: (x,y) = (3,6)

$$x = 0b011$$
 $y = 0b110$ $z = 0b101101 = 45$

Example: z = 14

$$z = 0b001110$$

 $x = 0b010$ $y = 0b011$

Z-order curve (Morton curve)

	x: 0 000	1 001	2 010	3 011			6 110	
y: 0 000	000000	000001	000100	000101	010000	010001	010100	010101
1 001	000010	000011	000110	000111	010010		010110	
2 010	001000	001001	001100	001101	011000			
3 011	001010	0 01011	001110	001111	011010	011011	011110	011 111
4 100	100000	100001	100100	100101	110000	110001	110100	110101
5 101	100010	100011	100110	100111	110010	110 011	110110	110111
6 110	101000	101001	10110 0	101101	111000	111001	111100	111101
7 111	101010	101011	101110	101111	111010	111011	111110	111111

Range query

x in [4,5] y in [2,5]

Can be converted to 1D ranges:

[0b011000, 0b011011] [0b110000, 0b111011]

Evaluate query ranges if z-order values of points are indexed by a B+-tree

Alternative approach using a BST:

Tropf, H.; Herzog, H. (1981), "Multidimensional Range Search in Dynamically Balanced Trees" Angewandte Informatik, 2: 71–77

Grid Indexing

- Simple and suitable for highly dynamic data
- Space is divided by a uniform grid to disjoint cells

23

- Each grid cell defines a space partition
- Each point is assigned to one partition
 - Cell that contains the point is found in O(1) using algebraic operations
- Supports fast insert/delete and search in main memory
 - Not as good for disk
- Range queries, NN queries and joins also fast
- Does not support skewed data well

Grid Indexing – range queries

- \Box Find cells that intersect W in O(1) using range extent at each dimension at each dimension
- Empty cells are disregarded
- Cells totally covered by *W* need no comparisons

k-d tree

- Reading: https://en.wikipedia.org/wiki/K-d_tree
- A binary tree for points in a k-dimensional space
- Root uses one point (median) to divide the space into two subspaces using one dimension
 - sort a sample to find median
- Each node uses a point to divide its subspace in two parts
- Dimensions alternate per level

k-d tree – range queries

- □ Case 1: W entirely before node-point in splitting dimension
 - recursive call for left son
- Case 2: W entirely after node-point in splitting dimension
 - recursive call for right son
- Case 3: W covers node-point in splitting dimension
 - report node if in W; recursive call for left and right son

Point-region (PR) quadtree

- Reading: https://en.wikipedia.org/wiki/Quadtree
- Each non-leaf divides its area to four quadrants
- Each leaf has points (up to a max capacity)
 - Leaves that exceed the max capacity are split
- Various tree representations
 - Traditional: use pointers to link nodes
 - Implicit: use z-order curve addressing
- Quadtree may not be balanced
- Quadtrees are also used for approximating regions or images

Point-region (PR) quadtree - queries

- Visit nodes that overlap with query range recursively
- Can use bit-interleaving and prefixes of query bounds to guide search at non-leaf nodes
 - That is, prefixes of z-order codes of query range

Spatial Access Methods

- Point access methods are not effective for extended objects
 - They divide the space into disjoint partitions
 - Objects may need to be clipped into several parts which leads to data redundancy and affects performance negatively

Spatial Access Methods

Object clipping can be avoided if we allow the regions of object groups to overlap

The R-tree

- Groups object MBRs to disk (or memory) blocks hierarchically
- Each group of objects (a block) is a leaf of the tree
- The MBRs of the leaf nodes are grouped to form nodes at the next level
- Grouping is recursively applied at each level until a single group (the root) is formed

The R-tree

- Leaf node entries: <MBR, object-id>
- Non-leaf node entries: <MBR, ptr>
- The MBR of a non-leaf node entry is the MBR of all entries in the node pointed by it
- Parameters (except root):
 - M (max no of entries per node)
 - m (min no of entries per node)
 - m <= M/2
 - usually m=0.4M
- Root has at least two children
- All leaves in same level (balanced tree)
- □ 1 node → 1 disk block

The R-tree - example

The R-tree - example

The R-tree - example

Spatial Query Evaluation

Range searching using an R-tree

- Range_query(query W, R-tree node n):
 - If n is not a leaf node
 - For each index entry e in n such that e.MBR intersects W
 - visit node n' pointed by e.ptr
 - Range_query(W, n')
 - If n is a leaf
 - For each index entry e in n such that e.MBR intersects W
 - visit object o pointed by e.object-id
 - test range query against exact geometry of o; if o intersects
 W, report o
- May follow multiple paths during search
- Different search predicates are used for different relationships with W.
 - What if we want to find all objects inside W?

□ Traverse tree

- Top-down
- Visit nodes whose MBRs qualify predicate

- Traverse tree
 - Top-down
 - Visit nodes whose MBRs qualify predicate
- E.g., find points inside *W*

- □ Traverse tree
 - Top-down
 - Visit nodes whose MBRs qualify predicate
- E.g., find points inside *W*

- Traverse tree
 - Top-down
 - Visit nodes whose MBRs qualify predicate
- E.g., find points inside *W*

- Traverse tree
 - Top-down
 - Visit nodes whose MBRs qualify predicate
- E.g., find points inside *W*

R-tree Construction

Construction of the R-tree

- Dynamically constructed/maintained
- Insertions/deletions interleave with search operations
- Insertion similar to B+-tree
 - However special optimization algorithms have to be designed for
 - choosing the path where a new MBR is inserted
 - splitting overflown nodes
- Underflows in deletions are handled by
 - deleting the underflown leaf node
 - re-inserting the remaining entries

- Given a static set S of rectangles, build an R-tree that indexes S.
- Method 1: iteratively insert rectangles into an initially empty tree
 - tree reorganization is slow
 - tree nodes are not as full as possible: more space occupied for the tree
- Method 2: bulk-load the rectangles into the tree using some fast (sort or hash-based) process
 - R-tree is built fast
 - good space utilization

- Method 1: Sort using only one axis
 - sort rectangles using the x-coordinate of their center
 - pack M consecutive rectangles in leaf nodes
 - build tree bottom-up

50

- Method 1 results in leaf nodes that are have long stripes as MBRs
- Method 2: use a space-filling curve to order the rectangles
 - much better structure, but still the nodes have large overlap

- Method 3: Sort using one axis first and then groups of sqrt(n) rectangles using the other axis
- Usually the best structure compared to bulkloading methods

R-tree leaf nodes by different construction methods

Nearest Neighbor Queries

Nearest neighbor search

Basic problem:

- Given a spatial relation R and a query object q, find the nearest neighbor of q in R
- Formally:
 - □ NN(q,R) = o ∈ R: dist(q,o) ≤ dist(q,o'), \forall o' ∈ R

Note:

- We can have more than one NN (with equal minimum distance)
- Break ties arbitrarily

Nearest neighbor search

Generalized problem:

- Given a spatial relation R, a query object q, and a number k < |R|, find the k-nearest neighbors of q in R
- Formally:
 - □ $NN(q,k,R) = S \subset R : |S| = k, dist(q,o) \le dist(q,o'), \forall o \in S \forall o' \in R-S$

Note:

 We can have more than one k-NN sets (with multiple possible equidistant furthest points in them)

Simplification

- NN (and k-NN) operations return any NN (and k-NN sets)
- We usually focus on point-sets

Distance measures and MBRs

- Distances between R-tree node MBRs lower-bound the distances between the entries in them
 - $dist(MBR(n_i), MBR(n_j)) \leq dist(e_i.MBR, e_j.MBR),$ $\forall e_i \in n_i, e_j \in n_j$

Distance measures and MBRs

- The distance between a query object q and an Rtree node MBR lower-bounds the distances between q an the objects indexed under this node
 - $dist(q,MBR(n)) \le dist(q,o) \forall o indexed under n$

Using MBR distances to guide/prune search in an R-tree

- Problem: find the NN of q
- Do we need to look for it in node M if we know dist(q,p)?

- Start from the root and visit the first entry.
- Continue recursively, until a leaf node n₁ is visited.
- \blacksquare Find the NN of q in n_1 .
- Continue visiting other nodes after backtracking as long there are nodes closer to q than the current NN.
 - Do not visit a node, if the nearest distance between q and the node's MBR exceeds the current $dist(q,o_{NN})$

Recursive function (for data points only)

```
Initially: n is tree's root
                                                          Initially:
DFNN(query point q, nodé n, point o_{NN})
                                                          - o<sub>NN</sub>=null
 if n is a leaf node then
                                                          - dist(q, o_{NN}) = \infty
    for each entry e in n do
        if dist(q,e)<dist(q,o_{NN}) then
            oNN = e // found closest point than current NN
 else
    for each entry e in n do
        if dist(q,e.MBR)<dist(q,o<sub>NN</sub>) then
           DFNN(q, e.ptr, o_{NN}) // recursive call for node pointed by e
```


Notes on Depth-first NN search

- Large space can be pruned by avoiding visiting Rtree nodes and their sub-trees
- Can order the entries of a node in increasing distance from q to maximize potential for a good NN found fast
- Can be easily adapted for k-NN search (how?)
- Requires at most one tree path to be currently in memory – good for small memories / caching
 - Characteristic of all depth-first search algorithms
 - Recall that the range search algorithm is also DF
- However, does not visit the least possible number of nodes
- Also, not incremental more on this later...

- A more efficient algorithm
 - Performs fewer comparisons
 - Visits the smallest possible number of R-tree nodes, for a given query q
- Uses a priority queue to organize seen entries and prioritize the next node to be visited
- Can be used for k-NN search and incremental NN search

Observation about DF-search:

- The closest entry to q in the current node is "opened" and control is passed to the node pointed by it
- However the entries in that node may not be the closest entries to q from those seen so far

Idea of BF search:

- Put all entries in a priority queue and always "open" the closest one, independently of the node that contains it
- Thus the best (i.e., closest) entry is always visited first

Best-first NN search using an R-tree

For data points only

```
BFNN(query point q, R-tree R)

add all entries of R.root into a min-heap Q — Heap's key:
while Q is not empty

e = Q.top; remove e from Q

if e is a leaf entry // point

return e // first removed data point is guaranteed to be the NN

n = node of R pointed by e

for each entry e in n do

Q.enheap(e)
```


Step 1: put all entries of root on heap Q

 $Q = M_1(1), M_2(\sqrt{2}), M_3(\sqrt{8})$

distance from q

Step 2: get closest entry (top element of Q):

 $M_1(1)$. Visit node M_1 . Put all entries of

visited node on heap Q

$$Q = M_2(\sqrt{2}), m_1(\sqrt{5}), m_3(\sqrt{5}), M_3(\sqrt{8}), m_2(3)$$

Step 3: get closest entry (top element of Q):

 $M_2(\sqrt{2})$. Visit node M_2 . Put all entries of

visited node on heap Q

 $Q = m_4(\sqrt{2}), m_1(\sqrt{5}), m_3(\sqrt{5}), M_3(\sqrt{8}), m_2(3), m_5(\sqrt{13}), m_6(\sqrt{17})$

Step 4: get closest entry (top element of Q): $m_4(\sqrt{2})$. Visit node m_4 . Put all entries of visited node on heap Q

 $Q = k(\sqrt{2}), m_1(\sqrt{5}), m_3(\sqrt{5}), M_3(\sqrt{8}), m_2(3), i(\sqrt{10}), j(\sqrt{13}), m_5(\sqrt{13}), m_6(\sqrt{17})$

Step 5: get closest entry (top element of Q):

 $k(\sqrt{2})$. Since k is a data point, search stops and k is returned as the NN of q

$$Q = m_1(\sqrt{5}), m_3(\sqrt{5}), M_3(\sqrt{8}), m_2(3), i(\sqrt{10}), j(\sqrt{13}), m_5(\sqrt{13}), m_6(\sqrt{17})$$

Notes on Best-first NN search

- In the previous example, we have visited fewer nodes compared to DF-NN algorithm
 - Only nodes whose MBR intersects the disk centered at q with radius the real NN distance are visited (see if you can you prove this)
- The algorithm can be used for incremental NN search
 - After having found the NN, we can continue, until the next data point is de-heaped (the next NN) and so on without having to start the algorithm from the beginning
- The algorithm can be used for k-NN search
 - Continue the algorithm until k data points are de-heaped
- Drawback of best-first NN algorithm:
 - The heap can grow very large
 - In the worst case, all R-tree entries are en-heaped before the NN is found

Why incremental NN search?

- Example 1: find the nearest large city (>10,000 residents) to my current position
 - Solution 1:
 - find all large cities
 - apply NN search on the result
 - could be slow if many such cities
 - also R-tree may not be available for large cities only
 - Solution 2:
 - incrementally find NN and check if the large city requirement is satisfied; if not get the next NN
- Example 2: find the nearest hotel; see if you like it; if not get the next one; see if you like it; ...
- Also: similarity search in multimedia databases

Spatial Intersection Joins

□ Input:

- two spatial relations R, S (e.g., R=cities, S=rivers)
- \blacksquare a spatial relationship θ (e.g., θ =intersects)

Output:

- \blacksquare {(r,s): r∈R, s∈S, r θ s is true}
- Example: find all pairs of cities and rivers that intersect

Spatial Joins based on distances

- Distance join: Find pairs of hotels, restaurants close to each other (with distance smaller than 100m)
- Closest pairs: Find the closest pair of hotels, restaurants
- All-NN join: For each hotel find the nearest restaurant
- Iceberg distance join: Find hotels close to at least 10 restaurants

Spatial Join Algorithms

- Take advantage of existing indexes as much as possible
 - R-tree join
- Inspired from relational join algorithms
 - Spatial hash join
- Details are out of scope

Summary

- Spatial Data are ubiquitous
- Two main types of spatial data
 - Points
 - Extended objects
- Queries based on spatial relationships
 - topological, distance, directional
- Main query types
 - range selection, nearest neighbor search, spatial joins
- Indexes for points and/or extended objects
 - R-tree is the dominant index
- Spatial query algorithms for range and NN queries
 - Also applicable for multidimensional points