MC458 — Projeto e Análise de Algoritmos I

C.C. de Souza C.N. da Silva O. Lee

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- O que vocês tem em mãos é uma versão modificada preparada para atender a meus gostos.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial o CLR ou CLRS).

Orlando I ee

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - ▶ José Coelho de Pina
 - Orlando Lee
 - Paulo Feofiloff
 - ▶ Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

• Tipicamente algoritmos gulosos são utilizados para resolver problemas de **otimização**.

- Tipicamente algoritmos gulosos são utilizados para resolver problemas de otimização.
- Uma característica comum dos problemas onde se aplicam algoritmos gulosos é a existência de subestrutura ótima, semelhante à programação dinâmica.

- Tipicamente algoritmos gulosos são utilizados para resolver problemas de otimização.
- Uma característica comum dos problemas onde se aplicam algoritmos gulosos é a existência de subestrutura ótima, semelhante à programação dinâmica.
- Programação dinâmica: os subproblemas são resolvidos <u>antes</u> de se proceder à <u>escolha</u> de um elemento que irá compor a solução ótima.

- Tipicamente algoritmos gulosos são utilizados para resolver problemas de otimização.
- Uma característica comum dos problemas onde se aplicam algoritmos gulosos é a existência de subestrutura ótima, semelhante à programação dinâmica.
- Programação dinâmica: os subproblemas são resolvidos <u>antes</u> de se proceder à <u>escolha</u> de um elemento que irá compor a solução ótima.
- Algoritmo Guloso: escolhe-se um elemento que irá compor a solução ótima e depois um subproblema é resolvido.

• Um algoritmo guloso sempre faz a escolha que parece ser a "melhor" a cada iteração usando um **critério guloso**.

- Um algoritmo guloso sempre faz a escolha que parece ser a "melhor" a cada iteração usando um critério guloso.
- Propriedade da escolha gulosa: garante que a cada iteração a escolha feita leva a uma solução ótima.

- Um algoritmo guloso sempre faz a escolha que parece ser a "melhor" a cada iteração usando um critério guloso.
- Propriedade da escolha gulosa: garante que a cada iteração a escolha feita leva a uma solução ótima.
- Em geral é fácil projetar ou descrever um algoritmo guloso.

- Um algoritmo guloso sempre faz a escolha que parece ser a "melhor" a cada iteração usando um critério guloso.
- Propriedade da escolha gulosa: garante que a cada iteração a escolha feita leva a uma solução ótima.
- Em geral é fácil projetar ou descrever um algoritmo guloso.
- O difícil é provar que ele funciona!

• $S = \{a_1, \ldots, a_n\}$: conjunto de n atividades.

- $S = \{a_1, \ldots, a_n\}$: conjunto de n atividades.
- Para todo i = 1, ..., n, a atividade a_i começa no instante s_i e termina no instante f_i , com $0 \le s_i < f_i < \infty$.

- $S = \{a_1, \ldots, a_n\}$: conjunto de n atividades.
- Para todo i = 1,..., n, a atividade a_i começa no instante s_i e termina no instante f_i, com 0 ≤ s_i < f_i < ∞.
 Ou seja, supõe-se que a atividade a_i será executada no intervalo de tempo (semi-aberto) [s_i, f_i).

- $S = \{a_1, \dots, a_n\}$: conjunto de n atividades.
- Para todo i = 1,..., n, a atividade a_i começa no instante s_i e termina no instante f_i, com 0 ≤ s_i < f_i < ∞.
 Ou seja, supõe-se que a atividade a_i será executada no intervalo de tempo (semi-aberto) [s_i, f_i).

Definição

As atividades a_i e a_j são ditas **compatíveis** se os intervalos $[s_i, f_i)$ e $[s_j, f_j)$ são disjuntos.

- $S = \{a_1, \dots, a_n\}$: conjunto de n atividades.
- Para todo i = 1,..., n, a atividade a_i começa no instante s_i e termina no instante f_i, com 0 ≤ s_i < f_i < ∞.
 Ou seja, supõe-se que a atividade a_i será executada no intervalo de tempo (semi-aberto) [s_i, f_i).

Definição

As atividades a_i e a_j são ditas **compatíveis** se os intervalos $[s_i, f_i)$ e $[s_j, f_j)$ são disjuntos.

Problema de Seleção de Atividades

Encontre em S um subconjunto de atividades mutuamente compatíveis que tenha tamanho **máximo**.

• Pares de atividades incompatíveis: (a_1, a_2) , (a_1, a_3) , (a_5, a_9) Pares de atividades compatíveis: (a_1, a_9) , (a_4, a_8) , (a_2, a_6)

- Conjunto maximal de atividades compatíveis: (a_3, a_9, a_{11}) .
- Conjunto **máximo** de atividades compatíveis: (a_1, a_4, a_8, a_{11}) .

Observação:

As atividades estão ordenadas em **ordem crescente** de instantes de término. Isso será importante mais adiante.

 Tanto os algoritmos gulosos quanto os de programação dinâmica valem-se da propriedade de subestrutura ótima.

- Tanto os algoritmos gulosos quanto os de programação dinâmica valem-se da propriedade de subestrutura ótima.
- Primeiro mostraremos que o problema da seleção de atividades tem esta propriedade e, então, projetaremos um algoritmo por programação dinâmica.

- Tanto os algoritmos gulosos quanto os de programação dinâmica valem-se da propriedade de subestrutura ótima.
- Primeiro mostraremos que o problema da seleção de atividades tem esta propriedade e, então, projetaremos um algoritmo por programação dinâmica.
- Em seguida, mostraremos que há uma forma de resolver o problema usando um algoritmo guloso que examina um número muito menor de subproblemas.

- Tanto os algoritmos gulosos quanto os de programação dinâmica valem-se da propriedade de subestrutura ótima.
- Primeiro mostraremos que o problema da seleção de atividades tem esta propriedade e, então, projetaremos um algoritmo por programação dinâmica.
- Em seguida, mostraremos que há uma forma de resolver o problema usando um algoritmo guloso que examina um número muito menor de subproblemas.
- Este processo auxiliará no entendimento da diferença entre estas duas **técnicas de projeto de algoritmos**.

Suponha que $f_1 \le f_2 \le \ldots \le f_n$, ou seja, as atividades estão ordenadas em ordem crescente de instantes de término.

Suponha que $f_1 \le f_2 \le ... \le f_n$, ou seja, as atividades estão ordenadas em ordem crescente de instantes de término.

Definição

Seja $S_{i,j} = \{a_k \in S : f_i \le s_k < f_k \le s_j\}$, i.e o conjunto de atividades que começam depois do término de a_i e terminam antes do início de a_i .

Definição

Seja $S_{i,j} = \{a_k \in S : f_i \le s_k < f_k \le s_j\}$, i.e o conjunto de atividades que começam depois do término de a_i e terminam antes do início de a_j .

• Atividades artificiais: $a_0 \text{ com } f_0 = 0 \text{ e } a_{n+1} \text{ com } s_{n+1} = f_n$.

Definição

Seja $S_{i,j} = \{a_k \in S : f_i \le s_k < f_k \le s_j\}$, i.e o conjunto de atividades que começam depois do término de a_i e terminam antes do início de a_i .

- Atividades artificiais: $a_0 \text{ com } f_0 = 0 \text{ e } a_{n+1} \text{ com } s_{n+1} = f_n$.
- Temos que $S = S_{0,n+1}$ e, com isso, $S_{i,j}$ está bem definido para qualquer par (i,j) tal que $0 \le i,j \le n+1$.

Definição

Seja $S_{i,j} = \{a_k \in S : f_i \le s_k < f_k \le s_j\}$, i.e o conjunto de atividades que começam depois do término de a_i e terminam antes do início de a_j .

- Atividades artificiais: $a_0 \text{ com } f_0 = 0 \text{ e } a_{n+1} \text{ com } s_{n+1} = f_n$.
- Temos que $S = S_{0,n+1}$ e, com isso, $S_{i,j}$ está bem definido para qualquer par (i,j) tal que $0 \le i,j \le n+1$.
- Note que $S_{i,j} = \emptyset$ para todo $i \ge j$. (Por quê?)

Seleção de Atividades - Subestrutura Ótima

Seleção de Atividades - Subestrutura Ótima

• Considere o subproblema da seleção de atividades para $S_{i,j}$. Suponha que a_k pertence a uma solução ótima de $S_{i,j}$.

Seleção de Atividades - Subestrutura Ótima

• Considere o subproblema da seleção de atividades para $S_{i,j}$. Suponha que a_k pertence a uma solução ótima de $S_{i,j}$.

Como $f_i \leq s_k < f_k \leq s_j$, uma solução ótima para $S_{i,j}$ que contém a_k é composta pelas atividades de uma solução ótima de S_{ik} , pelas atividades de uma solução ótima de S_{kj} e por a_k . Por quê?

• **Definição**: para todo $0 \le i, j \le n+1$, seja c[i,j] o valor ótimo do problema de seleção de atividades de $S_{i,j}$.

- **Definição**: para todo $0 \le i, j \le n+1$, seja c[i,j] o valor ótimo do problema de seleção de atividades de $S_{i,j}$.
- Deste modo, o valor ótimo do problema de seleção de atividades para instância $S = S_{0,n+1}$ é c[0,n+1].

- **Definição**: para todo $0 \le i, j \le n+1$, seja c[i,j] o valor ótimo do problema de seleção de atividades de $S_{i,j}$.
- Deste modo, o valor ótimo do problema de seleção de atividades para instância $S = S_{0,n+1}$ é c[0,n+1].
- Fórmula de recorrência:

$$c[i,j] = \begin{cases} 0 & \text{se } S_{i,j} = \emptyset \\ \max_{i < k < j: a_k \in S_{i,j}} \{c[i,k] + c[k,j] + 1\} & \text{se } S_{i,j} \neq \emptyset \end{cases}$$

- **Definição**: para todo $0 \le i, j \le n+1$, seja c[i,j] o valor ótimo do problema de seleção de atividades de $S_{i,j}$.
- Deste modo, o valor ótimo do problema de seleção de atividades para instância $S = S_{0,n+1}$ é c[0,n+1].
- Fórmula de recorrência:

$$c[i,j] = \begin{cases} 0 & \text{se } S_{i,j} = \emptyset \\ \max_{i < k < j: a_k \in S_{i,j}} \{c[i,k] + c[k,j] + 1\} & \text{se } S_{i,j} \neq \emptyset \end{cases}$$

Agora é fácil escrever o algoritmo de programação dinâmica. (Exercício.)

 No algoritmo de programação dinâmica (ou na recorrência), precisamos primeiro resolver os subproblemas e depois fazer a escolha da atividade a acrescentar à nossa solução.

- No algoritmo de programação dinâmica (ou na recorrência), precisamos primeiro resolver os subproblemas e depois fazer a escolha da atividade a acrescentar à nossa solução.
- Seria possível escolher uma atividade que garantidamente pertence a alguma solução ótima? Alguma sugestão?

- No algoritmo de programação dinâmica (ou na recorrência), precisamos primeiro resolver os subproblemas e depois fazer a escolha da atividade a acrescentar à nossa solução.
- Seria possível escolher uma atividade que garantidamente pertence a alguma solução ótima? Alguma sugestão?
- Intuitivamente, uma escolha gulosa óbvia para o problema S é escolher uma atividade m com menor instante de término f_m , ou seja, a_1 .

• Seja $S_k = \{a_i \in S : s_i \geq f_k\}$. Ou seja, S_k é o conjunto de atividades de S que começam depois de f_k , o instante em que a_k termina.

- Seja $S_k = \{a_i \in S : s_i \ge f_k\}$. Ou seja, S_k é o conjunto de atividades de S que começam depois de f_k , o instante em que a_k termina.
- Seja a_m a atividade com menor instante de término de S_k .

- Seja $S_k = \{a_i \in S : s_i \ge f_k\}$. Ou seja, S_k é o conjunto de atividades de S que começam depois de f_k , o instante em que a_k termina.
- Seja a_m a atividade com menor instante de término de S_k .
- A subestrutura ótima diz que se a_m pertence a uma solução ótima A de S_k , então $A \{a_m\}$ é uma solução ótima de S_m .

- Seja $S_k = \{a_i \in S : s_i \ge f_k\}$. Ou seja, S_k é o conjunto de atividades de S que começam depois de f_k , o instante em que a_k termina.
- Seja a_m a atividade com menor instante de término de S_k .
- A subestrutura ótima diz que se a_m pertence a uma solução ótima A de S_k , então $A \{a_m\}$ é uma solução ótima de S_m .
- Nossa intuição nos diz que a_m pertence a <u>alguma</u> solução ótima.
 Como podemos provar isto?

Teorema (Escolha Gulosa).

Considere um subproblema não-vazio S_k , e seja a_m uma atividade de S_k com o menor instante de término, i.e:

$$f_m = \min\{f_j : a_j \in S_k\}.$$

Então existe um subconjunto máximo de atividades mutuamente compatíveis de S_k que contém a_m .

Mostraremos que existe uma solução ótima de S_k que contém a_m .

Mostraremos que existe uma solução ótima de S_k que contém a_m .

Seja A um conjunto de atividades mutuamente compatíveis de tamanho máximo em S_k . Se $a_m \in A$ então nada há a fazer. Suponha então que $a_m \notin A$.

Mostraremos que existe uma solução ótima de S_k que contém a_m .

Seja A um conjunto de atividades mutuamente compatíveis de tamanho máximo em S_k . Se $a_m \in A$ então nada há a fazer. Suponha então que $a_m \notin A$.

Seja $a_j \in A$ com menor f_j .

Mostraremos que existe uma solução ótima de S_k que contém a_m .

Seja A um conjunto de atividades mutuamente compatíveis de tamanho máximo em S_k . Se $a_m \in A$ então nada há a fazer. Suponha então que $a_m \notin A$.

Seja $a_j \in A$ com menor f_j . Seja $A' = A - \{a_j\} \cup \{a_m\}$.

Mostraremos que existe uma solução ótima de S_k que contém a_m .

Seja A um conjunto de atividades mutuamente compatíveis de tamanho máximo em S_k . Se $a_m \in A$ então nada há a fazer. Suponha então que $a_m \notin A$.

Seja $a_j \in A$ com menor f_j . Seja $A' = A - \{a_j\} \cup \{a_m\}$. Então A' também é um conjunto de atividades mutuamente compatíveis de tamanho máximo. (Por quê?)

Mostraremos que existe uma solução ótima de S_k que contém a_m .

Seja A um conjunto de atividades mutuamente compatíveis de tamanho máximo em S_k . Se $a_m \in A$ então nada há a fazer. Suponha então que $a_m \notin A$.

Seja $a_j \in A$ com menor f_j . Seja $A' = A - \{a_j\} \cup \{a_m\}$. Então A' também é um conjunto de atividades mutuamente compatíveis de tamanho máximo. (Por quê?)

Técnica muito importante!

Modificar uma solução ótima *genérica* para obter uma solução ótima com a escolha gulosa. **Tenho que me lembrar disso!**

Suponha que estamos tentando resolver o problema para S_k .

• Pelo Teorema, existe um conjunto máximo de atividades mutuamente compatíveis que contém a_m , o intervalo com menor instante de término de S_k .

- Pelo Teorema, existe um conjunto máximo de atividades mutuamente compatíveis que contém a_m , o intervalo com menor instante de término de S_k .
- Pela subestrutura ótima do problema sabemos que uma tal solução ótima é composta por a_m e uma solução ótima para S_m , o conjunto de intervalos compatíveis com a_m .

- Pelo Teorema, existe um conjunto máximo de atividades mutuamente compatíveis que contém a_m , o intervalo com menor instante de término de S_k .
- Pela subestrutura ótima do problema sabemos que uma tal solução ótima é composta por a_m e uma solução ótima para S_m , o conjunto de intervalos compatíveis com a_m .
- Assim, basta encontrar uma coleção máxima de atividades mutuamente compatíveis de S_m e juntar a_m a ela para obter uma solução ótima para S_k .

- Pelo Teorema, existe um conjunto máximo de atividades mutuamente compatíveis que contém a_m , o intervalo com menor instante de término de S_k .
- Pela subestrutura ótima do problema sabemos que uma tal solução ótima é composta por a_m e uma solução ótima para S_m , o conjunto de intervalos compatíveis com a_m .
- Assim, basta encontrar uma coleção máxima de atividades mutuamente compatíveis de S_m e juntar a_m a ela para obter uma solução ótima para S_k .
- Note que S_m é uma instância (menor) do mesmo tipo de S_k . Logo, podemos usar a mesma escolha gulosa para S_m e repetir o processo (recursivamente ou iterativamente).

• Suponha que estamos tentando resolver S_k .

- Suponha que estamos tentando resolver S_k .
- Determine a atividade a_m com menor instante de término em S_k .

- Suponha que estamos tentando resolver S_k .
- Determine a atividade a_m com menor instante de término em S_k .
- Resolva o subproblema S_m e junte a_m à solução obtida na recursão. Devolva este conjunto de atividades.

Seleção-Atividades-Rec(s, f, k, n)

- 1. $m \leftarrow k + 1$;
- 2. **enquanto** m < n **e** $s_m < f_k$ **faça** \triangleright acha a_m com menor f_m
- 3. $m \leftarrow m + 1$;
- 4. se $m \le n$ então
- 5. **devolva** $\{a_m\} \cup \text{SeleçÃo-Atividades-Rec}(s, f, m, n)$
- 6. **devolva** ∅

Seleção-Atividades-Rec(s, f, k, n)

- 1. $m \leftarrow k + 1$;
- 2. **enquanto** m < n **e** $s_m < f_k$ **faça** \triangleright acha a_m com menor f_m
- 3. $m \leftarrow m + 1$;
- 4. se $m \le n$ então
- 5. **devolva** $\{a_m\} \cup \text{SeleçÃo-Atividades-Rec}(s, f, m, n)$
- 6. **devolva** ∅

Seleção-Atividades-Rec(s, f, k, n) devolve uma solução ótima de S_k .

SELEÇÃO-ATIVIDADES-REC(s, f, k, n)

- 1. $m \leftarrow k + 1$;
- 2. **enquanto** m < n **e** $s_m < f_k$ **faça** \triangleright acha a_m com menor f_m
- 3. $m \leftarrow m + 1$;
- 4. se $m \le n$ então
- 5. **devolva** $\{a_m\} \cup \text{SeleçÃo-Atividades-Rec}(s, f, m, n)$
- 6. **devolva** ∅

SELEÇÃO-ATIVIDADES-REC(s, f, k, n) devolve uma solução ótima de S_k .

Note que a_k foi a atividade previamente escolhida para fazer parte da solução.

Assim, as linhas 2–3 encontram a atividade a_m com menor f_m que seja compatível com a_k (ou seja, está em S_k).

• A chamada inicial é Seleção-Atividades-Rec(s, f, 0, n).

- A chamada inicial é Seleção-Atividades-Rec(s, f, 0, n).
- Complexidade: Θ(n).
 Ao longo de todas as chamadas recursivas,cada atividade é examinada exatamente uma vez no laço da linha 2.

- A chamada inicial é Seleção-Atividades-Rec(s, f, 0, n).
- Complexidade: ⊖(n).
 Ao longo de todas as chamadas recursivas,cada atividade é examinada exatamente uma vez no laço da linha 2.
- Como Seleção-Atividades-Rec usa recursão caudal, é trivial escrever uma versão iterativa do mesmo.

Seleção de Atividades - Iterativo

```
SELEÇÃO-ATIVIDADES-GULOSO(s, f, n)
1. A \leftarrow \{a_1\};
2. k \leftarrow 1;
3. para m \leftarrow 2 até n faça
4. se s_m \geq f_k então
5. A \leftarrow A \cup \{a_m\};
6. k \leftarrow m;
7. devolva A.
```

Seleção de Atividades - Iterativo

```
SELEÇÃO-ATIVIDADES-GULOSO(s, f, n)
1. A \leftarrow \{a_1\};
2. k \leftarrow 1;
3. para m \leftarrow 2 até n faça
4. se s_m \geq f_k então
5. A \leftarrow A \cup \{a_m\};
6. k \leftarrow m;
7. devolva A.
```

Complexidade: $\Theta(n)$.

Seleção de Atividades – Corretude

Seleção de Atividades - Corretude

• Observe que no início da linha 3, a_k é a última atividade que foi colocada em A. Como as atividades estão em ordenadas pelo instante de término, temos que:

$$f_k = \max\{f_j : a_j \in A\},$$

ou seja, f_k é o maior instante de término de uma atividade em A.

Seleção de Atividades - Corretude

• Observe que no início da linha 3, a_k é a última atividade que foi colocada em A. Como as atividades estão em ordenadas pelo instante de término, temos que:

$$f_k = \max\{f_j : a_j \in A\},\,$$

ou seja, f_k é o maior instante de término de uma atividade em A.

• Nas linhas 4–6 procura-se a próxima atividade a_m (menor f_m) que seja compatível com a_k e toma-se esta como a nova atividade a_k .

Seleção de Atividades - Corretude

• Observe que no início da linha 3, a_k é a última atividade que foi colocada em A. Como as atividades estão em ordenadas pelo instante de término, temos que:

$$f_k = \max\{f_j : a_j \in A\},\,$$

ou seja, f_k é o maior instante de término de uma atividade em A.

- Nas linhas 4–6 procura-se a próxima atividade a_m (menor f_m) que seja compatível com a_k e toma-se esta como a nova atividade a_k .
- Assim, Seleção-Atividades-Guloso faz as mesmas escolhas de Seleção-Atividades-Rec. Portanto, está correto.

Mostre que o problema tem subestrutura ótima.

- Mostre que o problema tem subestrutura ótima.
- Mostre que se a foi a primeira escolha do algoritmo, então existe alguma solução ótima que contém a.

Segue então por indução e pela subestrutura ótima que o algoritmo sempre faz escolhas corretas. (Por quê?)

- Mostre que o problema tem subestrutura ótima.
- Mostre que se a foi a primeira escolha do algoritmo, então existe alguma solução ótima que contém a.

Segue então por indução e pela subestrutura ótima que o algoritmo sempre faz escolhas corretas. (Por quê?)

Rascunho:

- Mostre que o problema tem subestrutura ótima.
- Mostre que se a foi a primeira escolha do algoritmo, então existe alguma solução ótima que contém a.

Segue então por indução e pela subestrutura ótima que o algoritmo sempre faz escolhas corretas. (Por quê?)

Rascunho:

Por (2) segue que a_1 pertence a alguma solução ótima A.

- Mostre que o problema tem subestrutura ótima.
- Mostre que se a foi a primeira escolha do algoritmo, então existe alguma solução ótima que contém a.

Segue então por indução e pela subestrutura ótima que o algoritmo sempre faz escolhas corretas. (Por quê?)

Rascunho:

Por (2) segue que a_1 pertence a alguma solução ótima A.

Por (1) segue que $A' := A - \{a_1\}$ é uma solução ótima de S_1 e portanto, A' pode ser encontrada recursivamente/indutivamente.

 Para alguns problemas, a definição de subproblema é um pouco mais sutil; não basta eliminar "itens" que não podem ser usados. Veremos um exemplo disto no problema do Código de Huffman.

- Para alguns problemas, a definição de subproblema é um pouco mais sutil; não basta eliminar "itens" que não podem ser usados. Veremos um exemplo disto no problema do Código de Huffman.
- Resumo da ópera. Para mostrar que um algoritmo guloso está correto, você deve mostrar que
 - o problema tem subestrutura ótima, e
 - 2 a escolha gulosa do algoritmo de fato pertence a alguma solução ótima.

- Para alguns problemas, a definição de subproblema é um pouco mais sutil; não basta eliminar "itens" que não podem ser usados. Veremos um exemplo disto no problema do Código de Huffman.
- Resumo da ópera. Para mostrar que um algoritmo guloso está correto, você deve mostrar que
 - o problema tem subestrutura ótima, e
 - 2 a escolha gulosa do algoritmo de fato pertence a alguma solução ótima.
- Obviamente, esses dois passos dependem do problema.

Exercícios

Exercício. Você trabalha para a IMF (Impossible Mission Force) e acabou de invadir uma fortaleza super-protegida sem ser detectado! Você está diante do computador central da instalação e precisa copiar os arquivos que estão no HD. Você tem à sua disposição um super-pendrive de capacidade W, mas ao contrário dos filmes, ele não é grande o suficiente para copiar todos os arquivos. Suponha que os n arquivos tenham tamanho w_1, \ldots, w_n . Você deve tentar copiar o maior número possível de arquivos para seu pendrive e get the hell out of there!

Formalmente, sejam n+1 inteiros positivos w_1,\ldots,w_n e W. Projete um algoritmo de complexidade $o(n^2)$ para encontrar o maior subconjunto $I\subseteq\{1,\ldots,n\}$ tal que $\sum_{i\in I}w_i\leq W$ e |I| é máximo. Justifique a complexidade e a corretude do seu algoritmo.

Exercícios

Exercício. Suponha agora que em vez de maximizar o número de arquivos copiados, você quer copiar arquivos de modo a maximizar o espaço ocupado do seu pendrive. Formalmente, queremos encontrar um subconjunto $I \subseteq \{1, \ldots, n\}$ tal que $\sum_{i \in I} w_i \leq W$ e $\sum_{i \in I} w_i$ é máximo.

Isto pode ser visto como o problema da mochila em que o valor de cada item é igual ao seu peso. Proponha alguns algoritmos gulosos para o problema. Para cada um deles encontre uma instância para o qual ele falha!