Fourier Transforms for Circuit and LTI Systems Analysis

Colophon

An annotatable worksheet for this presentation is available as <u>Worksheet 14</u> (https://cpjobling.github.io/eg-247-textbook/fourier_transform/3/worksheet14.html).

- The source code for this page is <u>content/fourier_transform/3/ft3.ipynb</u> (https://github.com/cpjobling/eg-247-textbook/blob/master/content/fourier_transform/3/ft3.ipynb).
- You can view the notes for this presentation as a webpage (<u>HTML (https://cpjobling.github.io/eg-247-textbook/fourier_transform/3/ft3.html)</u>).
- This page is downloadable as a <u>PDF (https://cpjobling.github.io/eg-247-textbook/fourier_transform/3/ft3.pdf)</u> file.

In this section we will apply what we have learned about Fourier transforms to some typical circuit problems. After a short introduction, the body of this chapter will form the basis of an examples class.

Agenda

- The system function
- Examples

The System Function

System response from system impulse response

Recall that the convolution integral of a system with impulse response h(t) and input u(t) is

$$h(t) * u(t) = \int_{-\infty}^{\infty} h(t - \tau)u(\tau) d\tau.$$

We let

$$g(t) = h(t) * u(t)$$

Then by the time convolution property

$$h(t) * u(t) = g(t) \Leftrightarrow G(\omega) = H(\omega). U(\omega)$$

The System Function

We call $H(\omega)$ the system function.

We note that the system function $H(\omega)$ and the impulse response h(t) form the Fourier transform pair $h(t) \Leftrightarrow H(\omega)$

Obtaining system response

If we know the impulse resonse h(t), we can compute the system response g(t) of any input u(t) by multiplying the Fourier transforms of $H(\omega)$ and $U(\omega)$ to obtain $G(\omega)$. Then we take the inverse Fourier transform of $G(\omega)$ to obtain the response g(t).

- 1. Transform $h(t) \rightarrow H(\omega)$
- 2. Transform $u(t) \rightarrow U(\omega)$
- 3. Compute $G(\omega) = H(\omega)$. $U(\omega)$
- 4. Find $\mathcal{F}^{-1}\left\{G(\omega)\right\} \to g(t)$

Examples

Example 1

Karris example 8.8: for the linear network shown below, the impulse response is $h(t)=3e^{-2t}$. Use the Fourier transform to compute the response y(t) when the input $u(t)=2[u_0(t)-u_0(t-3)]$. Verify the result with MATLAB.

Matlab verification of example 1

```
In [1]: syms t w
        U1 = fourier(2*heaviside(t),t,w)
        U1 =
        2*pi*dirac(w) - 2i/w
In [2]: H = fourier(3*exp(-2*t)*heaviside(t),t,w)
        H =
        3/(2 + w*1i)
In [3]: Y1=simplify(H*U1)
        Y1 =
        3*pi*dirac(w) - 6i/(w*(2 + w*1i))
In [4]: | y1 = simplify(ifourier(Y1,w,t))
        y1 =
        (3*exp(-2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2
```

Get y2

Substitute t - 3 into t.

```
In [5]: y2 = subs(y1,t,t-3)

y2 = (3*exp(6 - 2*t)*(sign(t - 3) + 1)*(exp(2*t - 6) - 1))/2
```

```
In [6]: y = y1 - y2

y = (3*exp(-2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2 - (3*exp(6 - 2*t)*(sign(t - 3) + 1)*(exp(2*t - 6) - 1))/2
```

Plot result

```
In [7]: ezplot(y)
    title('Solution to Example 1')
    ylabel('y(y)')
    xlabel('t [s]')
    grid
```


See ft3_ex1.m (https://cpjobling.github.io/eg-247-textbook/fourier_transform/3/ft3_ex1.m)

Result is equivalent to:

y = 3*heaviside(t) - 3*heaviside(t - 3) + 3*heaviside(t - 3)*exp(6 - 2*t) - 3*exp(-2*t)*heaviside(t)

Which after gathering terms gives

$$y(t) = 3(1 - 3e^{-2t})u_0(t) - 3(1 - 3e^{-2(t-3)})u_0(t-3)$$

Example 2

Karris example 8.9: for the circuit shown below, use the Fourier transfrom method, and the system function $H(\omega)$ to compute $V_L(t)$. Assume $i_L(0^-)=0$. Verify the result with Matlab.

Matlab verification of example 2

```
In [8]: syms t w
H = j*w/(j*w + 2)

H = (w*1i)/(2 + w*1i)
```

Plot result

```
In [12]: ezplot(vout)
    title('Solution to Example 2')
    ylabel('v_{out}(t) [V]')
    xlabel('t [s]')
    grid
```


See ft3 ex2.m (https://cpjobling.github.io/eg-247-textbook/fourier_transform/3/ft3 ex2.m)

Result is equivalent to:

$$vout = -5*exp(-3*t)*heaviside(t)*(2*exp(t) - 3)$$

Which after gathering terms gives

$$v_{\text{out}} = 5 \left(3e^{-3t} - 2e^{-2t} \right) u_0(t)$$

Example 3

Karris example 8.10: for the linear network shown below, the input-output relationship is:

$$\frac{d}{dt}v_{\text{out}} + 4v_{\text{out}} = 10v_{\text{in}}$$

where $v_{\rm in}=3e^{-2t}$. Use the Fourier transform method, and the system function $H(\omega)$ to compute the output $v_{\rm out}$. Verify the result with Matlab.

Matlab verification of example 3

```
In [13]: syms t w

H = 10/(j*w + 4)

H = 10/(4 + w*1i)
```

Plot result

```
In [17]: ezplot(vout)
    title('Solution to Example 3')
    ylabel('v_{out}(t) [V]')
    xlabel('t [s]')
    grid
```


See ft3 ex3.m (https://cpjobling.github.io/eg-247-textbook/fourier_transform/3/ft3 ex3.m)

Result is equiavlent to:

$$15*\exp(-4*t)*heaviside(t)*(exp(2*t) - 1)$$

Which after gathering terms gives

$$v_{\text{out}}(t) = 15 \left(e^{-2t} \right) - e^{-4t} \right) u_0(t)$$

Example 4

Karris example 8.11: the voltage across a 1 Ω resistor is known to be $V_R(t)=3e^{-2t}u_0(t)$. Compute the energy dissipated in the resistor for $0 < t < \infty$, and verify the result using Parseval's theorem. Verify the result with Matlab.

Note from tables of integrals (https://en.wikipedia.org/wiki/Lists_of_integrals)

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \arctan \frac{x}{a} + C.$$

Solut	ion to	examp	ole 4

Matlab verification of example 4

```
In [18]: syms t w
```

Calcuate energy from time function

Calculate using Parseval's theorem

```
In [22]: Wr=2/(2*pi)*int(Fw2,w,0,inf)
Wr =
```

(51607450253003931*pi)/72057594037927936

See ft3 ex4.m (https://cpjobling.github.io/eg-247-textbook/fourier_transform/3/ft3 ex4.m)

Solutions

- Example 1: ft3-ex1.pdf (https://cpjobling.github.io/eg-247-textbook/fourier_transform/solutions/ft3-ex1.pdf)
- Example 2: ft3-ex2.pdf (https://cpjobling.github.io/eg-247-textbook/fourier_transform/solutions/ft3-ex2.pdf)
- Example 3: ft3-ex3.pdf (https://cpjobling.github.io/eg-247-textbook/fourier_transform/solutions/ft3-ex4.pdf)
- Example 3: ft3-ex4.pdf (https://cpjobling.github.io/eg-247-textbook/fourier_transform/solutions/ft3-ex4.pdf)