Lab04-Matroid

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* If there is any problem, please contact TA Haolin Zhou.

- * Name:Beichen Yu Student ID:519030910245 Email: polarisybc@sjtu.edu.cn
- 1. Property of Matroid.
 - (a) Consider an arbitrary undirected graph G = (V, E). Let us define $M_G = (S, C)$ where S = E and $C = \{I \subseteq E \mid (V, E \setminus I) \text{ is connected}\}$. Prove that M_G is a **matroid**.

Proof. (Hereditary) If removing I does not disconnect the graph G, then removing any subset of I will not disconnect G either. So it holds hereditary.

(Exchange property) For convenience, let n = |V|. Let $A \in C$, which means $(V, E \setminus A)$ is a connected graph. So $|E \setminus A| \ge n - 1$. Consider a set B that |B| < |A|, then we have $|E \setminus B| \ge |E \setminus A|$. So $|E \setminus B| \ge n$, which means there is at least a circle in $(V, E \setminus B)$.

Because $|E \setminus B| \ge |E \setminus A|$ and both of them is connected, we can make sure that the number of edges in all circles in $(V, E \setminus B)$ is bigger than that in $(V, E \setminus A)$. So we can prove that we can find a edge e in a circle in $(V, E \setminus B)$ that is not used in $(V, E \setminus A)$.

If it is false, then the edges in circles in $(V, E \setminus B)$ is less or equal then that in $(V, E \setminus A)$, however with same number of vertices, the edges out of circles in $(V, E \setminus B)$ can not be more than in $(V, E \setminus A)$.

That means $e \in A$ while $e \notin B$, which is $e \in A \setminus B$. As e is in a circle, we can remove it from $(V, E \setminus B)$ without disconnecting the graph. So $B \cup e \in C$. That means exchange property is held.

As it holds both hereditary and exchange property, it is indeed a matroid.

(b) Given a set A containing n real numbers, and you are allowed to choose k numbers from A. The bigger the sum of the chosen numbers is, the better. What is your algorithm to choose? Prove its correctness using **matroid**.

Solution. Obviously we should sort the n real numbers in descending order at first, and then choose the first k numbers. The sum of the chosen numbers is the biggest.

Denote \mathbf{C} be the collection of all subsets of A that contains no more than k elements. Now we will try to prove that (A, \mathbf{C}) is a matroid.

(Hereditary) If $I \in \mathbb{C}$, then I contains no more then k elements. Obviously any subset of I contains no more then k elements, so (A, \mathbb{C}) is hereditary.

(Exchange property) Denote $A \in \mathbb{C}$, $B \in \mathbb{C}$ and |A| < |B|. We can find a element x that $x \in A$ and $x \notin B$ because |A| < |B|. According to the definition we have |A| < |B| < k, so |A| < k - 1. So $|A \cup x| < k$, $A \cup x \in \mathbb{C}$. That means (A, \mathbb{C}) is exchange property.

As (A, \mathbb{C}) holds both hereditary and exchange property, it is indeed a matroid.

Next we prove that our solution is just equal to Greedy-MAX algorithm.

Find the smallest element s in the A. And next we denote the weighted function $c: A \to \mathbb{R}^+$. For each element $x \in A$, we denote c(x) = x - s + 1. Then the weight function extend to subset of A by summation:

$$c(I) = \sum_{x \in I} c(x)$$

Then we can using the Greedy-MAX algorithm. First sort all elements in descending order of c(x), and add elements to the solution set S constantly until the solution set $S \notin \mathbf{C}$, which means there is already k elements in S. Because the descending order of c(x) is the same as the descending order of x, so our solution is the same as the Greedy-MAX algorithm.

- 2. Unit-time Task Scheduling Problem. Consider the instance of the Unit-time Task Scheduling Problem given in class.
 - (a) Each penalty ω_i is replaced by $80 \omega_i$. The modified instance is given in Tab. 1. Give the final schedule and the optimal penalty of the new instance using Greedy-MAX.

Table 1: Task

a_i	1	2	3	4	5	6	7
d_i	4	2	4	3	1	4	6
ω_i	10	20	30	40	50	60	70

Solution. The Greedy-MAX selects a_1 , a_2 , a_3 , a_4 , then rejects a_5 , a_6 , and finally accepts a_7 . So the final schedule is $\langle a_2, a_4, a_1, a_3, a_7, a_5, a_6 \rangle$. The final optimal penalty is $80 - \omega_5 + 80 - \omega_6 = 80 - 50 + 80 - 60 = 50$.

(b) Show how to determine in time O(|A|) whether or not a given set A of tasks is independent. (**Hint**: You can use the lemma of equivalence given in class)

Solution. According to the lemma of equivalence given in class, the set A is independent means for $t = 0, 1, 2, \dots, n, N_t(A) \leq t$. We can assume that there are n elements in set A.

First of all, we should use an array a[t] to record the number of tasks whose deadline is t. This step takes O(n) to finish.

Then we should calculate the partial sum of a[t] and record it in b[t]. The value recorded in b[t] is in fact the value of $N_t(A)$. It takes another O(n).

Finally we need to check for $t = 0, 1, 2, \dots, n$, whether $b[t] \leq t$, and it takes O(n) as well. So the time complexity is equal to O(n + n + n) = O(n) = O(|A|).

3. MAX-3DM. Let X, Y, Z be three sets. We say two triples (x_1, y_1, z_1) and (x_2, y_2, z_2) in $X \times Y \times Z$ are disjoint if $x_1 \neq x_2$, $y_1 \neq y_2$, and $z_1 \neq z_2$. Consider the following problem:

Definition 1 (MAX-3DM). Given three disjoint sets X, Y, Z and a non-negative weight function $c(\cdot)$ on all triples in $X \times Y \times Z$, **Maximum 3-Dimensional Matching** (MAX-3DM) is to find a collection \mathcal{F} of disjoint triples with maximum total weight.

- (a) Let $D = X \times Y \times Z$. Define independent sets for MAX-3DM.
- (b) Write a greedy algorithm based on Greedy-MAX in the form of pseudo code.

- (c) Give a counter-example to show that your Greedy-MAX algorithm in Q. 3b is not optimal.
- (d) Show that: $\max_{F \subseteq D} \frac{v(F)}{u(F)} \le 3$. (Hint: you may need Theorem 1 for this subquestion.)

Solution. (a) A set $I \subset D$ is an independent set if and only if for any two triples in I are disjoint.

(b)

Algorithm 1: Greedy-MAX

- 1 Sort all the triples in D by weight function $c(\cdot)$ so that $c(d_1) \geqslant c(d_2) \geqslant \dots \geqslant c(d_m);$
- $\mathbf{2} \ S \leftarrow \varnothing;$
- з for i=1 to m do
- if for any triple d in S, d and d_i are disjoint then $S \leftarrow S \cup \{d_i\}$
- 6 return S;
- (c) We set $A = \{1, 2\}, B = \{3, 4\}, C = \{5, 6\}, \text{ and } c(2, 3, 5) = 4, c(1, 3, 5) = 3, c(2, 4, 6) = 2,$ and for any other triple $d \in D$, c(d) = 0. If using the Greedy-MAX algorithm, we will choose c(2,3,5) = 4 and c(1,4,6) = 0 with total weight is equal to 4. However if we choose c(1, 3, 5) = 3, c(2, 4, 6) = 2, and the total weight is 5.
- (d) For $i \in \{1, 2, 3\}$, we denote that a set F_i is an i-th independent set if and only if for any two triples in F_i , the the numbers in the i-th dimension are not equal. We denote \mathcal{I}_i as a collect of all i-th independent set. Then we try to prove that $M_i = (D, \mathcal{I}_i)$ is a matroid.

(Hereditary) A set $A \in \mathcal{I}_i$ means $\forall d$ in A, the numbers in the i-th dimension are not equal. So for any subset of A, the numbers in the i-th dimension are not equal as well. So M_i satisfies hereditary.

(Exchange property) Suppose $A, B \in \mathcal{I}_i$ and |A| < |B|. We can make sure that there must be a triple d in B that is different with any triple in A in the i-th dimension, otherwise we will find $|A| \leq |B|$. Then we have $A \cap d \in \mathcal{I}_i$ because in the i-th dimension d is different with any triple in A. Then M_i satisfies hereditary.

So $M_i = (D, \mathcal{I}_i)$ is indeed a matroid.

If we the independent set we defined in (a) I, then we get an independent system (D, \mathcal{I}) . Obviously $\mathcal{I} = \mathcal{I}_1 \cup \mathcal{I}_2 \cup \mathcal{I}_3$. Now according to **Theorem 1**, we have $\max_{F \subset D} \frac{v(F)}{u(F)} \leq 3$.

Theorem 1. Suppose an independent system (E,\mathcal{I}) is the intersection of k matroids (E,\mathcal{I}_i) , $1 \leq i \leq k$; that is, $\mathcal{I} = \bigcap_{i=1}^k \mathcal{I}_i$. Then $\max_{F \subseteq E} \frac{v(F)}{u(F)} \leq k$, where v(F) is the maximum size of independent subset in F and u(F) is the minimum size of maximal independent subset in F.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.