Review for Math 2033 Final Exam

Definition Remember this!

a., az, az, ... is a Cauchy sequence iff

YE70 3 KEN such that

m,n 2 K => |am-an|< E.

Review on Caudy Sequences

To prove a sequence $\{x_n\}$ is Cauchy

- telescoping expansion (for recurrent sequences) $\{x_m-x_n\}=\{(x_m-x_{m-1})+(x_{m-1}-x_{m-2})+\dots+(x_{m+1}-x_m)\}$ $\{x_m-x_n\}=\{(x_m-x_{m-1})+(x_{m-1}-x_{m-2})+\dots+(x_{m+1}-x_m)\}$ - use mean value theorem (for $x_m=f(t_m)$, $\{f(t_m)\}=\{f(t_m), f(t_m)\}=\{f(t_m), f(t_m)\}=\{f(t_m)$

- use boundedness of given Cauchy sequences (See Step1 on right half of p.58 of transparencies)

Practice Exercise 108

If fxn3 is a sequence such that |xx+1 xx|< 2k for k=1,2,3,..., then prove fx,1 is a Cauchy Sequence. Sketch Say manzk 1xm-xn1 = |xm-xm-1+xm-7xm-2+ ...+ xn | < |xm-xm-1 + |xm-1 xm-2 + ... + |xn+1 - xn | € 2m-1 + 2m-2 + ... + 2n k> (-(luE)/(luZ)

Solution $\forall E > 0$, by Archimedian principle, $\exists K \in \mathbb{N}$ Such that K > 1 - (lue)(lue). By sketch above, $m, n \ge K \Rightarrow |x_m - x_n| < E$.

 $(m=n \Rightarrow |x_m-x_n|=0 < \varepsilon)$ (m > n > m are similar cases.) Problem 2 Let a., az, az, ... be a Cauchy sequence of real numbers. Let bn = Sin² (ant azn).

Prove that b1, bz, bz, ... is a Cauchy sequence by checking the definition of Cauchy sequence.

Scratch Work

 $|b_n-b_m|=|\sin^2(a_n+a_{2n})-\sin^2(a_m+a_{2m})|$ $=|\sin(a_n+a_{2n})+\sin(a_m+a_{2m})|\sin(a_n+a_{2n})-\sin(a_n+a_{2m})|$ $\leq 2|(a_n+a_{2n})-(a_m+a_{2m})|$ $\leq 2(|a_n-a_m|+|a_{2n}-a_{2m}|)$

Solution $\forall \varepsilon > 0$, since fand is Cauchy, $\exists k \in \mathbb{N}$ such that $n,m \ge k \Rightarrow |a_n - a_m| < \varepsilon/4$. Then $n,m \ge k \Rightarrow n,m, zn, zm \ge k$ $\Rightarrow |b_n - b_m| < 2(|a_n - a_m| + |a_{zn} - a_{zm}|)$

く2(音+を)=を.

Variation Let $f(x) = \sin^2 x$, then $f(x) = 2\sin x \cos x$ By mean-value theorem, |f(c)-f(d)|=|f'(0)(c-d)| $\leq 2|(c-d)|$ |bn-bm|=|f(antazn)-f(amtazm)| $\leq 2|(antazn)-(antazm)|\leq 2|(an-am)|$ $\leq 2|(antazn)-(antazm)|\leq 2|(an-am)|$

Example If fxn3 is Cauchy, then prove fxn3 is Cauchy.

Solution fxn3 Cauchy > 1xn3 bounded, say |xn1 < C.

Since fxn1 is Cauchy,

 $\forall \epsilon > 0 \exists K \in \mathbb{N} \text{ such that } m, n \ge K \Rightarrow |x_m - x_n| < \frac{\epsilon}{2C}$. Then $m, n \ge K \Rightarrow |x_m^2 - x_n^2| = |x_m + x_n| |x_m - x_n|$

> $\leq (|x_m|+|x_n|)|x_m-x_n|$ $\leq 2C|x_m-x_n|$ $\leq 2C\frac{\epsilon}{2C}=\epsilon$.

2009 Midterm

D'Let a, az, az, ... be a Cauchy sequence of positive real numbers. For n=1,2,3,..., let

bn= Sin(an2)+ 3/7an.

Prove that bi, bz, bz, ... is a Cauchy sequence by Checking the definition of Cauchy sequence.

Solution. Observe that $|b_n-b_m|=|\sin(a_n^2)-\sin(a_m^2)+\sqrt{7}a_n-\sqrt{7}a_m|$ $\leq |\sin(a_n^2)-\sin(a_m^2)|+|\sqrt{3}7a_n-\sqrt{7}a_m|$ $\leq |a_n^2-a_m^2|+\sqrt{3}\sqrt{7}a_n-7a_m|$ $\leq |a_n+a_m||a_n-a_m|+\sqrt{3}\sqrt{7}a_n-a_m|$.

For lantaml, we need to use fand bounded

(Continued on next page)

Since fand is Cauchy, $\exists M>0$ such that $\forall n \in \mathbb{N}$, $|a_n| \leq M$.

Also, $\forall \varepsilon > 0$, $\exists K \in \mathbb{N}$ such that $n, m \geq K$, implies $|a_n - a_m| < \frac{\varepsilon}{4M}$ and $\exists K_2 \in \mathbb{N}$ such that $n, m \geq K_2$ implies $|a_n - a_m| < \frac{\varepsilon^3}{56}$.

Let $K = \max_i K_i$, $K_2 i$, $K_3 i$, $K_4 i$, $K_5 i$, $K_6 i$, $K_6 i$, $K_7 i$, $K_8 i$, $K_$

Review on Limit of Functions

Solutions to Math 202 Exam 2 (Spring2006)

(a) f(x) converges to L as x tends to x_0 iff $\forall \epsilon > 0 \exists \delta > 0$ such that for every $x \in S$, $0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \epsilon$.

① (b) $f:(0.5,+\infty) \rightarrow \mathbb{R}$, $f(x) = \sqrt{x+\frac{1}{x}}$. Prove $\lim_{x \to 1} f(x) = \sqrt{2}$ by checking definition.

> $\forall \xi > 0$, let $\delta = \xi/\sqrt{2} > 0$ $\forall x \in (0.5, +\infty)$, Use $|\sqrt{a} - \sqrt{b}| \le |\sqrt{a} - b|$ $0 < |x - 1| < \delta \Rightarrow |\sqrt{x + \frac{1}{x}} - \sqrt{2}| \le |\sqrt{x + \frac{1}{x}} - 2|$ $= |\sqrt{x^2 - 2x + 1}| = |\sqrt{x + 1}|^2$ $= |x - 1| < \sqrt{2}|x - 1| < \xi$ $|x > 0.5 = \frac{1}{2}|x < \sqrt{2}|$

Practice Exercise (69 (2005 Spring Final)

Prove $\lim_{x\to 2} \frac{2+3x}{x^2+4} = 1$ by checking the $\xi-\delta$ definition.

Solution Observe that if |x-2|<1, then $x\in(1,3)$ and $|x-1\in(0,2)|$ |x-2|<1 |x-2|<1

Example Prove $\lim_{x\to 2} (\frac{2}{x^2} + \frac{3x}{4}) = 2$ by checking definition. Sketch $x \Rightarrow z \Rightarrow \frac{3}{x^2} \Rightarrow \frac{3}{2}$ $|(\frac{2}{x^2} + \frac{3x}{4}) - 2| = |(\frac{2}{x^2} - \frac{1}{2}) + (\frac{3x}{4} - \frac{3}{2})| \le |\frac{2}{x^2} - \frac{1}{2}| + |\frac{3x}{4} - \frac{3}{2}|$ $= |\frac{x^2 + 1}{2x^2}| + \frac{3|x - 2|}{4} = |\frac{x + 2||x - 2|}{2x^2} + \frac{3|x - 2|}{4} = |\frac{x + 2||x - 2|}{2x^2} + \frac{3|x - 2|}{4} = |\frac{3|x - 2|}{4} = |\frac{$

2011 Math 202 Spring Midterm Problem 1 Let f: [0, +00) -> IR be defined by f(x)=sin (++1x) Prove that $\lim_{x \to 1} f(x) = \sin^2 \frac{1}{2}$ by checking E-S definition. Solution YE>0, let 6= E4>0. Then $\forall x \in [0,+\infty)$, $0 < |x-1| < \delta$ implies | sin (1+trx)-sin 2 |= | sin (1大文)+sin 2 | sin (1+大文) -sin 2 $\leq 2 \left| \frac{1}{1+\sqrt{1}x} - \frac{1}{2} \right| = 2 \left| \frac{1-\sqrt{1}x}{2(1+\sqrt{1}x)} \right|$ = 2 $\frac{|1-\sqrt[4]{x}|}{2(1+\sqrt[4]{x})} \le \frac{|1-\sqrt[4]{x}|}{1+0} \le \frac{4}{1+0} \le \frac{4}{1+0}$ Variation $\frac{1-\sqrt[4]{x}}{1+\sqrt[4]{x}} = \frac{(1-\sqrt[4]{x})(1+\sqrt[4]{x})}{(1+\sqrt[4]{x})} = \frac{(1-\sqrt[4]{x})}{(1+\sqrt[4]{x})^2} \frac{(1+\sqrt[4]{x})}{(1+\sqrt[4]{x})}$ $=\frac{(1+\sqrt{1}x)^{2}(1+\sqrt{1}x)}{(1+\sqrt{1}x)^{2}(1+\sqrt{1}x)} \leq \frac{(1-x)}{(1+0)^{2}(1+0)} = |1-x| < 8$ Let $S = \Sigma$ in this case.

Review on Continuous Functions

Intermediate Value Theorem Let $f: [a,b] \rightarrow \mathbb{R}$ be continuous. c between $f(a), f(b) \Rightarrow \exists xo \in [a,b]$ such that $f(x_0) = c$.

- Use to show equation has solution:
#63 f(x) = x fixed point (=> g(x) = f(x) - x = 0

#112 f(x) = f(x+1) = f(x) = f(x) - f(x+1) = 0- Use to show f is constant function by showing

the range is countable. This is because

if f is not constant, then range of f contains

#113(6),61

(house range is a till)

- use to show f surjective in special situation.

Extreme Value Thoosen Let $f:[a,b] \Rightarrow \mathbb{R}$ be continuous. Then $\exists x_0, x_i \in [a,b]$ such that $f(x_0) = \min ff(x): x \in [a,b]$ $f(x_i) = \max ff(x): x \in [a,b]$ and the range of f is $f((a,b)) = [f(x_0), f(x_i)]$. Let $f: [0,1] \rightarrow \mathbb{R}$ be continuous. Prove that $\exists c \in [0,1]$ such that $f(c) = \sqrt[3]{\int_0^1 f^3(t) dt}$.

Solution. Since f is continuous, by the extreme Value theorem, $\exists a \in [0,1]$ and $b \in [0,1]$ Such that $f(a) = \max\{f(x) : x \in [0,1]\}$ and $f(b) = \min\{f(x) : x \in [0,1]\}$. Now $f(b) \leq f(t) \leq f(a)$ for all $t \in [0,1]$. Then $f(b) = \iint f(b) dt \leq \iint f(a) dt = \iint f(a)$

By the intermediate value theorem, $\exists c \in [0,1] \text{ such that}$ $f(c) = \sqrt[3]{\int_0^1 f(t) dt}$

Let $f, g: [a,b] \rightarrow \mathbb{R}$ be continuous and f g,

Sup $\{f(x): x \in [a,b]\} = \sup\{g(x): x \in [a,b]\}$ Prove $\exists x \in [a,b]$ such that $f(x_0) = g(x_0)$. $x_1 \quad x_2$

Solution Since f, g are continuous, by the extreme Value theorem, $\exists x_1, x_2 \in [a,b]$ such that $f(x_1) = \sup\{f(x): x \in [a,b]\} = \sup\{g(x): x \in [a,b]\} = g(x_2)$. Let f(x) = f(x) - g(x), then $f(x) = \inf\{f(x) - g(x)\} \ge f(x_1) - g(x_2) = 0$. $f(x_1) = f(x_1) - g(x_2) \le f(x_1) - g(x_2) = 0$. By the intermediate value theorem, $\exists x_0$ between $f(x_1) = f(x_2) = g(x_2)$. So $f(x_0) = g(x_0)$.

Let $f: [0,1] \rightarrow \mathbb{R}$ be continuous such that f(0) = f(1). Vie IN, prove that $\exists t \in [0,1-\frac{1}{n}]$ such that $f(t+\frac{1}{n}) = f(t)$.

Solution Define F: $[0, 1-\frac{1}{3}] \rightarrow \mathbb{R}$ by $F(x) = f(x+\frac{1}{3}) - f(x)$.

Then F is continuous. We will show $\exists t \in [0, 1-\frac{1}{h}]$ Such that F(t) = 0.

Assume $F(t) \neq 0$. By the contrapositive of the intermediate value theorem,

either F(x)>0 for all xe [0,1- +]

or F(x)<0 for all x ∈ [0, 1-1,].

In the former case, $f(x+\frac{1}{n}) > f(x)$ holds for all $x \in [0,1-\frac{1}{n}]$. Then

 $f(0) < f(\frac{1}{2}) < f(\frac{2}{2}) < \cdots < f(1)$ take x=0 take $x=\frac{1}{2}$...

this contradicts f(0) = f(1).

The latter case is similar (by reversing inequality signs).

(3) Let f: [0,2] -> R be continuous and f(2)=0. If $\lim_{x \to 1} \frac{f(x)-2}{\sqrt{x}-1} = 1$, then prove that $\exists x \in [0,2]$ Such that $f(x) = x^2$. (2012 Spring Midferm)

Solution

Let $g(x) = f(x) - x^2$. Then g is Continuous on [0,2]Since f is continuous on [0,2]. $g(2) = f(2) - 2^2 = 0 - 4 < 0$

Next, $f(x)-2 = \frac{f(x)-2}{\sqrt{x}-1}(\sqrt{x}-1)$ for $x \neq 1$. Then $f(1)-2 = \lim_{x \to 1} (f(x)-2) = \lim_{x \to 1} \frac{f(x)-2}{\sqrt{x}-1} \cdot \lim_{x \to 1} (\sqrt{x}-1)$

f(1)=2 = 1.0=0

Then g(1)=f(1)-1=2-1>0.

By intermediate value theorem, 3x ∈ [1,2] such that g(x) = 0, so $f(x) = x^c$.

Let $f: [0,1] \rightarrow [0,+\infty)$ be continuous. If for every $x \in [0,1]$, $e^{-\sqrt{f(x)}} \in \mathbb{Q}$, then prove that f is a constant function.

Solution Assume f is not a constant function. Then $\exists 0 \le a < b \le 1$ such that $f(a) \neq f(b)$. Since Tx is strictly increasing, If(a) + If(6) Since ex is strictly decreasing, e ofast e of 160 Since f, Jx, e x are continuous, so composing them $g(x) = e^{-Jf(x)}$ is continuous. Now $g(a) \neq g(b)$. So the range of g contains the interval I with g(a) and g(b) as endpoints. By density of irrational, 3 irrational Win I. By the intermediate value theorem, w is between g(a) and $g(b) \Rightarrow w = g(x)$ for some $x \in [a, b]$. Then $e^{-\sqrt{f(x)}} = g(x) = w \notin Q$, Contradiction. -. f is a constant function.

Continuous Injection Theorem On any nonempty interval,

Continuity + Injectivity => Strictly monotoneity.

Use when a continuous function or inequality

#62,65,155 > Satisfies an equation and equation => injective

2006 -> derivative is never zero

HW3 prob 3

Exercise 62

Is there a continuous function $g: [-1, 1] \rightarrow [-1, 1]$ Such that $g(g(x)) = -x^9$ for all $x \in [-1, 1]$?

Solution Assume \exists Continuous $g: [-1,1] \rightarrow [-1,1]$ such that $g(g(x)) = -x^9 \forall x \in [-1,1]$.

Then g is injective because

$$g(a) = g(b) \implies g(g(a)) = g(g(b)) \implies -a^9 = -b^9$$

 $\Rightarrow a = b$.

Now g is Continuous and injective.

By continuous injection-theorem, Dg is strictly increasing or Dg is strictly decreasing.

Ug strictly increasing

⇒
$$a < b ⇒ g(a) < g(b) ⇒ g(g(a)) < g(g(b))$$

⇒ $-a^{q} < -b^{q}$
⇒ $a > b$, contradiction.

(2) g strictly docreasing $\Rightarrow a < b \Rightarrow g(a) > g(b) \Rightarrow g(g(a)) < g(g(b))$ $\Rightarrow -a^{9} < -b^{9}$ $\Rightarrow a > b, contradiction$

i. no such g exists.

i. ∀ x ∈ [0,1], f (x) = x.

3 (This is Similar to g(g(x)) = -x problem) #62 f: [0,1] -> [0,1] continuous f(0)=0, f(1)=1 $f(f(x)) = x \quad \forall x \in [0,1]$ Prove f(x) = x \ \x \in (0,1) f is injective since $f(a) = f(b) \Rightarrow f(f(a)) = f(f(b))$ By continuous injection theorem, f is strictly monotone. Since flo)=0, f(1)=1, f is strictly increasing. $\chi \leq f(x) \Rightarrow f(x) \leq f(f(x)) = \chi \Rightarrow \chi = f(x)$ $f(x) \le \chi \Rightarrow f(f(x)) \le f(x) \Rightarrow f(x) = \chi$.

2012-2013 Spring Homework 3 #5

Let a < b and $f: [a,b] \rightarrow \mathbb{R}$ be differentiable.

If f'(a) < w < f'(b), then prove that $\exists c \in (a,b)$ Such that f'(c) = w. (Hint: Consider w = 0 first.)

Solution

Case 1 (w=0) Assume no $C \in (a,b)$ satisfy f(c)=0.

Then $f'(x) \neq 0$ for all $x \in [a,b]$. This imply f is continuous and injective f(x)

$$(x_0+x_1) \Rightarrow f(x_0)-f(x_1)=f(0)(x_0-x_1)+0 \Rightarrow f(x_0)+f(x_0)$$
in [a,b] $\Rightarrow f(x_0)-f(x_1)=f(0)(x_0-x_1)+0 \Rightarrow f(x_0)+f(x_0)$

By continuous injection theorem, f is strictly increasing or f is strictly decreasing.

Then $f'(x) \ge 0$ for all $x \in [a,b]$ or $f'(x) \le 0$ for all $x \in [a,b]$.

This contradicts flas < w=0 < f(6).

i. 3ce(a,b) such that fic)=0.

Case 2 (w +0). Let g(x) = f(x) - wx. Then g'(x) = f'(x) - w. $f'(a) < w < f'(b) \Leftrightarrow f'(a) - w < 0 < f(b) + w$ By case 1, $\exists c \in (a,b)$ such that g'(c) = 0.

Finally, $g'(c) = 0 \Leftrightarrow f'(c) = w$.