Практичне завдання N_{2} 6

циклічні коди

6.1. Згідно з варіантами, поданими в табл. 6.1, закодувати циклічними кодами для заданих параметрів d_{\min} двійкову послідовність m довжиною k інформаційних елементів. Твірний поліном визначити з табл. 6.3. Визначити надлишковість коду та показати процес виправлення однократної помилки (для коду з $d_{\min} = 3$) зазначеним способом або виявлення будь якої трикратної помилки (для коду з $d_{\min} = 4$) у прийнятих двійкових послідовностя, наведених у 4-7 стовпчиках табл. 6.1.

Таблиця 6.1.

Варіант	$m: d_{\min}=3$	$m: d_{\min}=4$	<i>b</i> : <i>d</i> _{min} =3 (<i>g</i>) (I)	$b: d_{\min} = 3 (g) (II)$	$b: d_{\min} = 4(g)$	$b: d_{\min} = 4(g)$
1	11100000001	111000000	1011110110111 (31)	001101010110000010 (73)	0101101001100101 (65)	11000001001001 (53)
2	1111000	00111100110	111011110111010 (23)	001111001110111111101 (45)	00110001110001 (65)	10101010101111010 (53)
3	0011011	100111111	0101011100110 (31)	01110101010000110011 (51)	0100000011111010 (53)	01001010101100 (65)
4	001111000	0001000	011011111011000100 (67)	001111011111010000011 (51)	11101010001010 (53)	0111011110011001 (65)
5	10011110001	01011110010	11111000101101111011 (51)	11111011110 (31)	11110000010001 (65)	1000000100101101 (53)
6	11101101000	001110101	11010100000 (23)	1010001000110 (31)	1110000011010010 (65)	01100100000000 (53)
7	1110000	01011001101	01110001110100011110 (45)	0111000100101 (23)	10001000111100 (53)	00000000000010011 (65)
8	11111000100	111011011	111101100110001 (23)	11011011110 (31)	01010010000001 (53)	0000110110100010 (65)
9	1001110	01110101011	1001101011111 (23)	000110110000000 (23)	1100110111100010 (53)	01000011110100 (65)
10	00100011001	11010100001	0110110010000 (31)	110101001000110000 (67)	10000100101101 (65)	0001110111001010 (53)
11	0000110	11000001110	001101100100010001 (73)	1011100101001 (31)	1001010011001110 (53)	10110011000010 (65)
12	100101001	01111000000	01010001011001000111 (75)	01010001011101100100 (51)	1100000101001100 (65)	01111001111000 (53)
13	000001000	1110100	01110011100011011110 (67)	111100100110101 (31)	01100101111001 (65)	0111110011001010 (53)
14	011101110	000100001	111101001010000001 (73)	0011011011001 (23)	11011010000101 (53)	0000101110100000 (65)
15	0111001	0111011	101100001010111011 (75)	11110010000 (23)	1000001011111011 (65)	11000100110010 (53)
16	01111100010	011111101	011111100110111010 (75)	110011110011111 (31)	11111110000010 (53)	0100011111000010 (65)

6.2. Згідно з варіантами, поданими в табл. 6.2, за довжиною коду та твірним поліномом, поданим у вигляді вісімкового числа, побудувати твірну та перевірну матриці циклічного коду здатного виправляти однократні помилки $(d_{\min} = 3)$

Таблиця 6.2.

Варіант	Твірна матриця: п	Твірна матриця: д	Перевірна матриця: п	Перевірна матриця: g
1	19	51	15	23
2	13	31	15	31
3	14	23	17	75
4	12	23	13	23
5	17	51	19	67
6	18	73	20	67
7	17	45	12	31
8	20	73	20	67
9	20	75	18	51
10	18	67	9	23
11	11	23	17	67
12	17	45	15	23
13	13	31	18	51
14	17	45	20	67
15	17	75	18	51
16	12	23	15	23

Таблиця 6.3.

Кількість перевірних елементів	Твірний поліном g(x)	Вісімковий запис твірного полінома	Двійковий запис твірного полінома	
3	$1 + x + x^3$	64	110100	
3	$1 + x^2 + x^3$	54	101100	
4	$1 + x + x^4$	62	110010	
4	$1 + x^3 + x^4$	46	100110	
5	$1 + x^2 + x^5$	51	101001	
5	$1 + x^3 + x^5$	45	100101	
5	$1 + x + x^2 + x^3 + x^5$	75	111101	
5	$1 + x + x^2 + x^4 + x^5$	73	111011	
5	$1 + x + x^3 + x^4 + x^5$	67	110111	