

Componentes da Bancada FESTO

Circuitos Hidráulicos e Pneumáticos (CHP)

Departamento de Engenharia de Controle e Automação Instituto de Ciência e Tecnologia – UNESP – Campus Sorocaba

Prof. Dr. Dhiego Fernandes Carvalho

dhiego.fernandes@unesp.br

Objetivos

- Ensinar onde atuam os circuitos pneumáticos e eletropneumáticos na indústria.
- Explicar como funciona os componentes dos circuitos pneumáticos e eletropneumáticos da Bancada FESTO.
- Preparação para atividades práticas em laboratório.

Índice

- Introdução
- Componentes da Bancada FESTO
 - Compressor e Reservatório de Ar
 - Filtros, Reguladores e Lubrificadores
 - Tubos e Conexões
 - Simbologia das Válvulas
 - Válvulas Pneumáticas
 - Cilindros Pneumáticos
 - Válvulas Eletropneumáticas
 - Sensores
 - Controlador Lógico Programável (CLP)
- Conclusões

Introdução

- Os circuitos pneumáticos e eletropneumáticos são comumente encontrados em várias indústrias, como manufatura, automotiva e construção, devido à sua segurança, confiabilidade, velocidade e eficiência.
- Os principais componentes de circuitos pneumáticos e eletropneumáticos incluem o compressor, o reservatório de ar, válvulas, atuadores, tubos e conexões, filtros, reguladores, lubrificadores, sensores e CLPs.

Introdução

 Cada componente da Bancada FESTO desempenha um papel essencial, seja para gerar, armazenar, controlar, distribuir ou utilizar a energia do ar comprimido.

Componentes da Bancada FESTO

- **Compressor:** Este é o coração de qualquer sistema pneumático. Ele é responsável por comprimir o ar e elevar sua pressão.
- Reservatório de ar: Armazena o ar comprimido produzido pelo compressor. Isso permite que haja ar comprimido disponível quando necessário.

Compressor e Reservatório de Ar

Filtros, Reguladores e Lubrificadores

- Esses componentes garantem que o ar comprimido seja limpo, na pressão correta e adequadamente lubrificado.
- Os filtros removem contaminantes do ar, os reguladores ajustam a pressão do ar e os lubrificadores adicionam uma névoa de óleo ao ar comprimido.

Filtros, Reguladores e Lubrificantes

- No laboratório não tem o lubrificante.
- conjunto de filtro, regulador de pressão, manômetro e válvula de fechamento.
- pressão de operação: de 0 a 12 bar (<u>ideal</u> de 4 a 5 bar nas atividades em laboratório).

Tubos e conexões

Tubo Flexível para conexões de engate rápido: usado para direcionar o ar às válvulas e atuadores.

Conexão Rápida em T: usado para distribuir o ar em mais de uma direção.

Simbologia das Válvulas

- Aqui é importante destacar os símbolos que são usados para descrever cada válvula.
- Dessa forma é possível identificar o número de posições e vias, tipo de acionamento, e estado inicial (Normalmente Aberta ou Fechada).

Número de Posições

• Este é o número de estados distintos que a válvula pode assumir. As válvulas mais comuns são de duas ou três posições.

PASSAGEM

Número de Estados D2 POSIÇÕES O3 POSIÇÕES

Número de Vias

 Este é o número de portas ou conexões na válvula. As válvulas podem ter duas, três, quatro, cinco ou até mais vias. Uma válvula de duas vias, por exemplo, tem uma entrada e uma saída. Uma válvula de três vias tem uma entrada, uma saída e um escape.

Quantidade de Vias

Estado das Vias

Tipo de Acionamento

- O tipo de acionamento de uma válvula de controle direcional define a sua aplicação no circuito.
- Estes acionamentos podem ocorrer por força muscular, mecânica, pneumática, hidráulica ou elétrica.

Estado Inicial das Válvulas

Os termos Normalmente Aberto (NA) e Normalmente Fechado (NF) são amplamente utilizados para descrever o estado de uma válvula em sua condição de repouso.

Exemplos de Simbologia de Válvulas

1	Válvula direcional 4/2 vias acionamento por alavanca e retorno por mola.
2	Válvula direcional 3/2 vias NF acionamento por ação muscular e retorno por mola.
3	Válvula direcional 3/2 vias NF acionamento por rolete escamoteável e retorno por mola
4	Válvula direcional 3/2 vias NF acionamento por rolete simples e retorno por mola.

Válvulas Pneumáticas

Válvula Distribuidora

- Possui 8 saídas de ar comprimido com conexões de engate rápido com retenção, tipo quick star, para tubos flexíveis com Ø externo de 4 mm
- Montado sobre base de fixação rápida no tampo do painel, sem o uso de ferramentas

Válvula direcional de 3/2 vias NF (botão pulsador)

- 3 vias de trabalho.
- 2 posições de comando posição normal fechada (NF).
- Acionamento por botão pulsador liso
- Retorno por mola.

Válvula direcional de 3/2 vias NF (botão giratório com trava)

- 3 vias de trabalho.
- 2 posições de comando posição normal fechada (NF).
- Acionamento por botão seletor giratório
- Detente para travamento nas 2 posições.
- Retorno por mola.

Válvula direcional de 3/2 vias NF (botão cogumelo com trava)

- 3 vias de trabalho
- 2 posições de comando
- posição normal fechada (NF)
- acionamento por botão de emergência tipo cogumelo.
- detente para travamento nas 2 posições.
- Retorno por mola.

Válvula direcional de 3/2 vias NA (botão pulsador)

- 3 vias de trabalho
- 2 posições de comando
- Posição normal aberta (NA)
- Acionamento por botão pulsador liso e servopiloto.
- Retorno por mola.

Válvula direcional de 3/2 vias NF (rolete mecânico)

- 3 vias de trabalho
- 2 posições de comando
- Posição normal fechada (NF)
- Acionamento por rolete mecânico
- Reposicionamento por mola
- Usado como "sensor" de início e fim de curso

Válvula direcional de 3/2 vias NF (gatilho)

- 3 vias de trabalho
- 2 posições de comando
- Posição normal fechada (NF)
- Acionamento por rolete escamoteável (gatilho)
- Reposicionamento por mola.
- Usado na sobreposição de circuitos pneumáticos (A+B+B-A-).

Válvula direcional de 3/2 vias NF (simples piloto)

- 3 vias de trabalho
- 2 posições de comando
- Posição normal fechada (NF)
- Acionamento por pressão piloto direta.
- Reposicionamento por mola.

Válvula direcional de 3/2 vias NA (simples piloto)

- 3 vias de trabalho
- 2 posições de comando
- Posição normal aberta (NA)
- Acionamento por pressão piloto direta
- Reposicionamento por mola

Válvula temporizadora de 3/2 vias NF

- 3 vias de trabalho
- 2 posições de comando
- posição normal fechada (NF)
- Acionamento pneumático por pressão piloto direta.
- Retorno por mola.
- Botão de regulagem com escala graduada.
- Ajuste manual progressivo de 0 a 30 segundos.

Válvula direcional de 4/2 vias (botão giratório com trava)

- 4 vias de trabalho
- 2 posições de comando
- acionamento por botão seletor giratório e servocomando
- detente para travamento nas 2 posições.
- Retorno por mola.

Válvula direcional de 5/2 vias (simples piloto)

- 5 vias de trabalho
- 2 posições de comando
- Acionamento pneumático por pressão piloto direta
- Retorno por mola

Válvula direcional de 5/2 vias (duplo piloto)

- 5 vias de trabalho.
- 2 posições de comando.
- Acionamento por pulso de pressão piloto direta, de ambos os lados.
- Acionamento manual auxiliar.
- Comportamento de memória (bi-estável).

Válvula alternadora (elemento OU)

- Pressão de trabalho: de 1 a 10 bar
- Vazão nominal: 500 lpm
- temperatura de trabalho: de -10 a +60°C
- O ar passa pela saída quando uma ou mais entradas recebem ar.

Válvula de simultaneidade (elemento E)

- Pressão de trabalho: de 1 a 10 bar.
- O ar passa pela saída quando duas entradas recebem ar ao mesmo tempo.

Válvula de escape rápido

- Aumenta em até 30% a velocidade do cilindro
- Pressão de trabalho: de 0,5 a 10 bar.

Válvula reguladora de fluxo unidirecional

- Estrangulamento em uma única direção
- Retenção incorporada para permitir retorno livre
- Ajuste manual progressivo por meio de parafuso de cabeça recartilhada

Bloco de comando passo a passo (4 TAA)

- Conjunto com 4 módulos seqüenciais passo a passo do tipo TAA.
- Válvula direcional de impulsos de 3/2 vias do tipo memória.
- Válvula direcional de 3/2 vias NF, com piloto pneumático e retorno por mola.
- Elemento OU.
- Acionamento manual auxiliar
- Indicador óptico de operação.

Bloco de comando passo a passo (3 TAA + 1 TAB)

- Conjunto com 3 módulos seqüenciais passo a passo do tipo
 TAA e 1 TAB para comando de até 4 movimentos
- Válvula direcional de impulsos de 3/2 vias do tipo memória.
- Válvula direcional de 3/2 vias NF, com piloto pneumático e retorno por mola.
- Elemento OU.
- Acionamento manual auxiliar.
- Indicador óptico de operação.

3 TAA + 1 TAB

Cilindros Pneumáticos

- Cilindro de ação simples
 - Avanço pneumático e retorno por mola.
 - Camisa de aço inoxidável e haste microrroletada.
 - Êmbolo magnético para detecção por sensores sem contato físico.
 - Pressão máxima de trabalho: 10 bar

Cilindro de Ação Dupla

- Avanço e retorno pneumáticos
- Camisa de aço inoxidável e haste microrroletada
- Êmbolo magnético para detecção por sensores sem contato físico
- Amortecimento regulável nas posições finais de curso
- Pressão máxima de trabalho: 10 bar

Válvulas Eletropneumáticas

- Eletroválvula direcional de 3/2 vias NF
 - 3 vias de trabalho.
 - 2 posições de comando.
 - Normalmente Fechada.
 - Acionamento por servocomando, elétrico por solenoíde de 24 Vcc e piloto.
 - Retorno por mola.
 - Possibilidade de acionamento manual de emergência.
 - LED indicador de operação.

Eletroválvula direcional de 5/2 vias, com mola de reposição

- 5 vias de trabalho
- 2 posições de comando.
- Acionamento por servocomando, elétrico por solenoíde de 24 Vcc e piloto.
- Retorno por mola.
- Possibilidade de acionamento manual de emergência.
- LED indicador de operação.

Eletroválvula direcional de 5/2 vias, tipo memória

- 5 vias de trabalho.
- 2 posições de comando.
- Acionamento por duplo servocomando, elétrico por solenoídes de 24 Vcc e piloto.
- Possibilidade de acionamento manual de emergência.
- LEDs indicadores de operação.

Sensores

- Sensor de fim de curso
 - Microrruptor fim de curso.
 - Contato comutator
 - Acionado por rolete mecânico.
 - Reposicionamento por mola
 - Corrente: 5A.

Sensor de Proximidade Indutivo

- Distância de sensorização: 5 mm
- Tensão de Alimentação: 10 a 30 Vcc.
- Sinal de Saída: 24 Vcc PNP.
- Led indicador de operação.
- Cabo elétrico equipados com pinos tipo banana 4mm
 - Positivo: vermelho
 - Negativo: azul
 - Saída PNP: preto.

Sensor de Proximidade Capacitivo

- Distância de sensorização: 50 mm
- Tensão de Alimentação: 10 a 30 Vcc.
- Sinal de Saída: 24 Vcc PNP.
- Led indicador de operação.
- Cabo elétrico equipados com pinos tipo banana 4mm
 - Positivo: vermelho
 - Negativo: azul
 - Saída PNP (0): preto.
 - Saída NPN (1): verde.

Sensor de Proximidade Óptico

- Distância de sensorização: até 300 mm
- Tensão de Alimentação: 10 a 30 Vcc.
- Sinal de Saída: 24 Vcc PNP.
- Led indicador de operação.
- Cabo elétrico equipados com pinos tipo banana 4mm
 - Positivo: vermelho
 - Negativo: azul
 - Saída PNP: preto.

Sensor de Proximidade Magnético

- Sensorização de êmbolos magnéticos de cilindros, sem contato físico.
- Contato tipo reed switch.
- Tensão de comutação: de 12 a 27 Vcc.
- Intensidade máxima da corrente: 500 mA.
- Led indicador de operação.
- Cabo elétrico equipado com pinos do tipo banana 4mm
 - Positivo: vermelho
 - Negativo: azul
 - Saída PNP: preto.

Controlador Lógico Programável (CLP)

- 24 entradas digitais de 24 Vcc.
- 16 saídas digitais a relê, protegidas contra curto circuito.
- 256 contadores crescentes e decrescentes (de 0 a 65535).
- 256 temporizadores (0 a 655 segundos) com precisão 0,01s.
- 256 registradores.
- Capacidade de memória de 256 Kb.
- Leds indicadores de operação.
- Software de programação por diagramas de contato (ladder)
- Interface serial (padrão RS232c) interligada ao PC por meio de cabo PS1-SM4.
- Memória Flash RAM para armazenamento de Programas.

Conclusões

- Nesta aula foi ensinado o papel dos circuitos pneumáticos e eletropneumáticos.
- Foi demonstrado a bancada FESTO e seus principais componentes pneumáticos e eletropneumáticos.
- A partir da aula de hoje, é possível entender como cada componente da bancada FESTO funciona. Desta forma, pode-se iniciar a criar circuitos pneumáticos e eletropneumáticos em bancada.

DÚVIDAS?

Exercícios

• Crie um acionamento pneumático usando um cilindro simples ação.