0.1. Introducción

En esta sección se implementó una compuerta **NOT** utilizando diversas tecnologías, siendo estas TTL (Transistor-Transistor-Logic), RTL (Resistor-Transistor-Logic) mediante transistores BJT (Bipolar Junction Transistor) y finalmente una variación de RTL utilizando un transistor MOSFET (Metal Oxide Semiconductor Field Efect Transistor).

0.2. Comparación tecnologías.

Usaremos dos tipos de transistores, siendo estos BJT y MOSFET.

- Los BJT son controlados por corriente, mientras que los MOS son controlados por tensión.
- Los BJT tienen una respuesta mas veloz ante un cambio en su modo de funcionamiento¹ que los MOS dado a que poseen una menor capacidad.
- Los transistores MOS tienen una mayor estabilidad frente a la temperatura que los BJT.
- Los transistores BJT cuentan con una corriente de polarización de base que los MOS no tienen $(I_g = 0)$.
- La impedancia de entrada de los MOS es mucho mayor que la de los BJT.

0.3. Circuitos Propuestos.

Los circuitos propuestos son los siguientes:

Figura 1: Circuitos Propuestos.

0.4. Diseño PCB.

Se implementó en un único PCB los 3 circuitos, que corresponden al siguiente esquemático:

¹Satuación y corte

Figura 2: Esquemático.

Figura 3: PCB.

0.5. Observables de interés.

Se seleccionaron como observables de interés los siguientes parámetros:

- \blacksquare High-level input voltage
- \blacksquare Low-level input voltage
- High-level output voltage
- \blacksquare Low-level output voltage
- Noise Margin
- \bullet Popagation delay High to Low
- Popagation delay Low to High
- \bullet Transition delay High to Low

- \bullet Transition delay Low to High
- \blacksquare Maximum output current

0.6. Análisis de resultados.

Para realizar una comparación entre los modelos propuestos, se utilizarán los observables de interés definidos en la sección (0.5) utilizando la siguiente tabla: