Geometric Measure Theory

An Introduction to the Theory of Inconvenient Surfaces

Saturday, December 10, 2022

Course Website

largoscv.github.io

Element.io LaTeX Integration

5:47PM

Let Σ be a smooth oriented surface in ${\bf R}^3$ with boundary $\partial \Sigma$. If a vector field ${\bf F}(x,y,z)=(F_x(x,y,z),F_y(x,y,z),F_z(x,y,z))$ is defined and has continuous first order partial derivatives in a region containing Σ , then

$$\iint_{\Sigma} (
abla imes F) \cdot d^2 \Sigma = \oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{\Gamma}$$

With the above notation, if ${f F}$ is any smooth vector field on ${f R}^3$, then

$$\oint_{\partial \Sigma} \mathbf{F} \cdot d\mathbf{\Gamma} = \iint_{\Sigma}
abla imes \mathbf{F} \cdot d^2 \Sigma$$
 (edited)

@ 27182818284tropy

$$\forall X \ (\forall \varnothing \ (\forall t \ (t \not\in \varnothing) \Rightarrow \varnothing \not\in X) \Rightarrow \exists f \ (\forall e \ (e \in f \Rightarrow \exists a \ (a \in X \land \exists b \ (\exists edited))) \}$$

To Enable LaTeX Rendering:

- 1. Navigate to:
 - Linux:cd ~/.config/Element/
 - Windows:C:/Users/user/Appdata/Roaming/Element
 - MacOS:~/Library/Application Support/Element
- 2. Add/replace config.json with contents in

https://pastebin.com/8wV9nGR3

3. Restart Element (Task Manager). Then go to All Settings > Labs > "Render LaTeX Maths"

Basic Outline

GMT Part 1: 10 December 2022 to 21 January 2023

- 6 week course in general measure theory a la Carathéorory
- Concepts from geometric measure theory & applications (minimal surfaces) taught in lecture
- 6 homework assignments, first HW due 17 December (3:30pm EST)
- Pace: One section of Federer a week (~10-15 pgs/wk)

Saturday

10
December

- Introduction to GMT
- Relations & Orders
- Transfinite Induction
- Ordinals and Cardinals

Wednesday

14

December

Study Session

Saturday

17

December

- Hausdorff Measure
- Densities
- Approximate limits
- Approximate continuity

Geometric Measure Theory

Joseph-Louis Lagrange (1736-1813)

• Given a smooth closed curve γ in \mathbb{R}^3 , does there exist a surface S of least area such that

$$\partial S = \operatorname{graph}(\gamma)$$
?

- ❖ Such minimal surfaces may be modeled using soap films, as done by Joseph Plateau (1801-1883). Hence, this problem is known as **Plateau's Problem**.
- ❖ Solved by Douglas & Rado (1930) under topological restrictions, Federer & Fleming (1960) used the theory of currents to solve the problem without topological restrictions (orientable version).

Plateau's Problem in Higher Dimensions

❖ Any solution of Plateau's Problem in R³ is a "convenient surface" (no corners, tangent plane that exists everywhere).

 \bullet In higher dimensions, i.e., \mathbb{R}^n , there are solutions of Plateau's Problems that have singularities (points with no tangent space)

- \bullet To study Plateau's Problem in \mathbb{R}^n , we need:
 - Theory of Caccioppoli Sets (De Giorgi)
 - Theory of Rectifiable Currents (Federer & Fleming)

Claudio Arezzo, 2019

GMT Sans Minimal Surfaces

- Partial Differential Equations (Evans)
- Several Complex Variables (Krantz)
- Calculus of Variations
- Differential & Riemannian Geometry

- Continuum Mechanics, Cauchy's Stress Theory (Falach, 2013)
- Analysis of Soft Matter Surfaces (Alvarado et. al., 2020)

Background on ZFC Set Theory

Binary Relations

Given sets X and Y, the Cartesian product $X \times Y$ is the set

$$\{(x, y): x \in X \text{ and } y \in Y\}$$

A **binary relation** over X and Y is a subset $R \subseteq X \times Y$.

If $(x, y) \in R$, we may write xRy.

Let *A* be a non-empty set and \leq , \prec be binary relations on *A*.

The relation ≤ is...

Reflexive if $(\forall a \in A)(a \leq a)$

Transitive if $(\forall a, b, c \in A)$,

$$(a \le b) \land (b \le c) \Rightarrow (a < c)$$

Weakly antisymmetric if $(\forall a, b \in A)$,

$$((a \le b) \land (b \le a) \Rightarrow (a = b)$$

A **pre-order** on *A* satisfies the first two properties. A **partial order** satisfies all three.

The relation \prec is...

Irreflexive if $(\forall a \in A)(\neg(a \prec a))$

Antisymmetric if $(\forall a, b \in A)$,

$$(a < b) \Rightarrow (\neg(b < a))$$

A **strict partial order** on *A* is an irreflexive, transitive, and antisymmetric relation.

Examples

Total Orders

A partial order \leq on a set A is called **total** (or a linear order) if it satisfies the additional property

$$(\forall a, b \in A)(a \leq b \lor b \leq a)$$

A strict partial order \prec on a set A is a (strict) total order if the associated partial ordering \leq is total.

Well Orders

A **well-order** on *A* is a total order \prec on *A* such that every non-empty subset of *A* has a \prec -least element. That is,

$$(\forall B \subseteq A \text{ nonempty})(\exists x \in B)(\forall b \in B)$$

Well-Ordering Theorem:

Every set can be equipped with a well-order.

(Equivalent to the Axiom of Choice)

Initial Segments

Given a set A equipped with a well order \prec , a set $I \subseteq A$ is...

 \Leftrightarrow An **initial segment** of A if

$$(\forall i \in I)(\forall a \in A)(a < i \Rightarrow a \in I)$$

\Leftrightarrow A **proper initial segment** if *I* is an initial segment and $I \neq A$.

Induction on Well Orderings

Theorem. Given a set A equipped with a strict well order \prec , and $\Psi(x)$ a property defined for all $x \in A$. If for all $a \in A$, we have that

$$(\forall b < a) \big(\Psi(b) \big) \Rightarrow \Psi(a)$$

then $(\forall a \in A)(\Psi(a))$ holds true.

Proof. Straightforward.

The Regularity Axiom:

$$(\forall x)[x \neq \emptyset \Rightarrow (\exists y \in x)(x \cap y = \emptyset)]$$

(Every non-empty set contains an element that is disjoint from it)

Ordinals

A set α is called an **ordinal** if

1. α is transitive, i.e., $(\forall \beta \in \alpha)(\beta \subseteq \alpha)$, and

2.
$$(\forall \beta, \gamma \in \alpha)(\beta = \gamma \lor \beta \in \gamma \lor \gamma \in \beta)$$

Theorem. A set α is an ordinal if and only if α is a transitive set and (α, \in) constitutes a well-ordering.

Proof. Regularity axiom.

Properties of Ordinals I

Properties of Ordinals II

For ordinals α , β , we write $\alpha < \beta$ whenever $\alpha \in \beta$.

Natural numbers

Naturals are finite ordinals defined by the recursive rule

$$0 = \emptyset, \qquad n+1 = n \cup \{n\}$$

The first infinite ordinal is called ω_0 and it is

$$\omega_0 = \{0, 1, 2, 3, 4, \dots\}$$

The first uncountable ordinal is called ω_1 , and the first uncountable ordinal which is not equinumerous with ω_1 is called ω_2 .

In terms of cardinality, we call those sets \aleph_0 , \aleph_1 , and \aleph_2 respectively.

Ordinal Arithmetic

The **successor ordinal** β of an ordinal α is given by

$$\beta = \alpha \cup \{\alpha\} = \alpha + 1$$

An ordinal β is called a **limit ordinal** if $\beta \neq 0$ and β is not a successor.

Example

Transfinite Induction

Theorem. Let $\Psi(x)$ be a property defined for all ordinals α . If we have that, for every ordinal α ,

 $\Psi(\beta)$ is true for all $\beta < \alpha \Rightarrow \Psi(\alpha)$ is true

Then Ψ holds for all ordinals.

How to Induct Transfinitely

To prove a property Ψ on ordinals:

1. Base case: Prove that $\Psi(0)$ holds.

- 2. Successor case: Prove that for any successor ordinal $\alpha + 1$, $\Psi(\alpha) \Rightarrow \Psi(\alpha + 1)$
- 3. Limit case: Prove that for any limit ordinal β , $\Psi(\beta)$ follows from $\Psi(\alpha)$ for all $\alpha < \beta$.