Question 1:0,375

Dans cette nouvelle série de questions, on va s'interesser à la représentation des réels avec une virgule flottante. Dans cette question on utilise une représentation des réels sur 10 bits,

1 bit de signe
4 bits d'exposant
5 bits pour la pseudo mantisse
On veut représenter le réel dont l'écriture en base dix est 0,0375

Que vaut le bit de signe ?

Question 2: 0,375

Cette question est la suite de la précédente... Dans cette question on utilise une représentation des réels sur 10 bits,

- 1 bit de signe4 bits d'exposant
- 5 bits pour la pseudo mantisse
 On veut représenter le réel dont l'écriture en base dix est 0,0375

Que valent les 4 bits qui codent l'exposant ?

Question 3: 0,375

Que valent les 5 bits de la pseudo mantisse ?

Cette question est la suite de la précédente... Dans cette question on utilise une représentation des réels sur 10 bits,

- 1 bit de signe4 bits d'exposant

5 bits pour la pseudo mantisse
On veut représenter le réel dont l'écriture en base dix est 0,0375

Question 4: 0,375

Cette question est la suite de la précédente...

Dans cette question on utilise une représentation des réels sur 10 bits,

1 bit de signe

4 bits d'exposant

5 bits pour la pseudo mantisse
On représente donc le réel dont l'écriture en base dix est 0,0375 par

0 0010 00110

quelle est en fait la "vraie" valeur représentée ?

Question 5 : Et zéro

On continue à utiliser une représentation des réels sur 10 bits,

- 1 bit de signe4 bits d'exposant5 bits pour la pseudo mantisse

Quel est le codage de zéro ?

Question 6: C'est qui le plus grand?

On continue à utiliser une représentation des réels sur 10 bits,

- 1 bit de signe
 4 bits d'exposant
 5 bits pour la pseudo mantisse

Question 7 : On peut sous-titrer?

Quel est l'écriture en base 10 du plus grand réel normalisé ?

Question 8 : Passage simple précision double précision

Un réel non nul peut être codé comme un flottant normalisé en simple précision sans qu'il n'y ait eu d'arrondi à faire. On note s₁ son signe (1 bit), e₁ son exposant (8 bits), m₁ sa pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant en double précision. On note s_2 son signe (1 bit), e_2 son exposant (11 bits), e_2 son pseudo mantisse (64-1-12 =52 bits).

s2 est

ça dépend

☐ toujours égal à s₁

Question 9 : Passage simple précision double précision

Un réel non nul peut être codé comme un flottant normalisé en simple précision sans qu'il n'y ait eu d'arrondi à faire. On note s_1 son signe (1 bit), e_1 son exposant (8 bits), m_1 sa pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant en double précision.

On note s_2 son signe (1 bit), e_2 son exposant (11 bits), m_2 sa pseudo mantisse (64-1-12 =52 bits).

e₂ est

Question 10 : Passage simple précision double précision

Un réel non nul peut être codé comme un flottant normalisé en simple précision sans qu'il n'y ait eu d'arrondi à faire. On note s₁ son signe (1 bit), e₁ son exposant (8 bits), m₁ sa pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant en double précision.

On note s_2 son signe (1 bit), e_2 son exposant (11 bits), m_2 sa pseudo mantisse (64-1-12 =52 bits).

Les 23 premiers bits de m2 sont

- ça dépend
- ☐ jamais égaux à ceux de m₁

Question 11 : Passage simple précision double précision

Un réel non nul est codé comme un flottant normalisé en simple précision avec un arrondi. On note s_1 son signe (1 bit), e_1 son exposant (8 bits), m_1 sa pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant en double précision.

On note s₂ son signe (1 bit), e₂ son exposant (11 bits), m₂ sa pseudo mantisse (64-1-12 =52 bits).

s₂ est

☐ jamais égal à s₁

☐ toujours égal à s₁

Question 12 : Passage simple précision double précision Un réel non nul est codé comme un flottant normalisé en simple précision avec un arrondi. On note s₁ son signe (1 bit) , e₁ son exposant (8 bits), m₁ sa pseudo mantisse (32-1-8 =23 bits). On code le même réel comme un flottant en double précision. On note s₂ son signe (1 bit) , e₂ son exposant (11 bits), m₂ sa pseudo mantisse (64-1-12 =52 bits). e₂ est toujours égal à e₁ ça dépend

☐ jamais égal à e₁

Question 13 : Passage simple précision double précision

Un réel non nul est codé comme un flottant normalisé normalisé en simple précision avec un arrondi. On note s₁ son signe (1 bit), e₁ son exposant (8 bits), m₁ sa pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant normalisé en double précision. On note s₂ son signe (1 bit), e₂ son exposant (11 bits), m₂ sa pseudo mantisse (64-1-12 =52 bits).

Les 23 premiers bits de m₂ sont

☐ jamais égaux à ceux de m₁

Question 14 : Passage simple précision double précision

Un réel non nul est codé comme un flottant normalisé normalisé en simple précision avec un arrondi. On note s_1 son signe (1 bit), e_1 son exposant (8 bits), e_1 son pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant normalisé en double précision.

On note s₂ son signe (1 bit), e₂ son exposant (11 bits), m₂ sa pseudo mantisse (64-1-12 =52 bits).

Les 23 premiers bits de m₂ :

ont toujours un prefixe commun avec m₁

 $\ \square$ peuvent être tous différents des bits correspondant de m_1

Question 15 : Passage simple précision double précision

Un réel non nul est codé comme un flottant normalisé en simple précision avec un arrondi. On note s_1 son signe (1 bit), e_1 son exposant (8 bits), e_1 son pseudo mantisse (32-1-8 =23 bits).

On code le même réel comme un flottant en double précision. On note s₂ son signe (1 bit), e₂ son exposant (11 bits), m₂ sa pseudo mantisse (64-1-12 =52 bits).

n₁ l'entier relatif codé par e₁, et soit n₂ l'entier relatif codé par e₂

On a toujours n₁-127=n₂-1023?

Question 16: Double

On code ici les réels comme des flottants en double précision.

L'entier X₁=2 ⁶⁵+2⁶³ est codé avec :s= , e=

et sa pseudomantisse comporte

1 dont le premier est en position 2 et le dernier en

position 2

Question 17: Double

On code ici les réels comme des flottants en double précision.

L'entier X₂=2 10 est codé avec :s= , e=10000001001 et la pseudo mantisse m comporte 0 1

Question 18: Double

On code ici les réels comme des flottants en double précision. Le réel X₃=2 -10 est codé avec :s=

, e=011111110101 et la pseudo mantisse m comporte 0 1

Question 19: Addition de double

On additionne X₁ et X₂.

Le résultat sera arrondi?

Question 20 : Addition de double

On additionne X₁ et X₃. Le résultat sera arrondi ?

Question 21 : Addition de double

On additionne X₂ et X₃. Le résultat sera arrondi?

Question 22 : NaN

On effectue des opérations arithmétiques sur des flottants, le résultat de l'opération est NaN si

on multiplie 0 et + l'infini

on divise l'infini par l'infini

on divise 0 par 0

un des opérandes au moins est NaN

on essaye de calculer la racine carré de moins un

on additionne + l'infini et moins l'infini

on soutrait + l'infini de + l'infini

