宏佳电子科技 世界上最小的 Dialog 方案 BLE 模块-HJ-580 透传模块 软件功能文档 V1.1beta

2014年12月1日

店铺地址: http://shop58019203.taobao.com/

目录

概述	4 -
~关于 HJ-580 串口透传的说明	5 -
~唤醒与休眠控制	6 -
选择进入休眠	6 -
唤醒进入全速运行	6 -
~工作模式控制	7 -
串口数据透传模式	7 -
串口指令配置模式	7 -
~连接状态指示	8 -
~串口指令集 详细说明	9 -
(一) 指令集说明和注意事项	9 -
(二) 详细指令集介绍	
(1) 复位指令	
(2) 设置波特率指令	11 -
(3) 读取波特率指令	
(4) 设置串口停止位个数	11 -
(5) 读取串口停止位个数	
(6) 设置串口校验位类型	
(7) 读取串口校验位类型	12 -
(8) 广播启动与停止指令	13 -
(9) 读取广播启停状态	13 -
(10) 设置普通广播数据	13 -
(11) 设置 Ibeacons 广播数据	14 -
(12) 设置设备名称	14 -
(13) 读取设备名称	14 -
(14) 设置厂家名称	15 -
(15) 读取厂家名称	15 -
(16) 设置软件版本	15 -
(17) 读取软件版本	15 -
(18) 设置硬件版本	16 -
(19) 读取硬件版本	16 -
(20) 设置模块 SN 号	16 -
(21)读取模块 SN 号	17 -
(22) 设置广播间隙	17 -
(23)读取广播间隙	17 -
(24) 设置最大连接间隙	17 -
(25) 读取最大连接间隙	18 -
(26) 设置最小连接间隙	18 -
(27) 读取最小连接间隙	18 -
(28) 设置连接超时时间	18 -
(29) 读取连接超时时间	- 19 -

(30)	立即断开当前连接	19 -
	查询蓝牙连接状态	
(三) 特殊打	旨令	20 -
(1)	恢复出厂设置指令	20 -
(2)	唤醒、休眠、进入配置模式和进入数据透传模式 串口数据反馈扌	旨示控制指令
		20 -
~关于 HJ580 的	UUID 定义 和 APP 相关说明	
(一) 手机	[APP 或 BLE 主机 与 HJ-580 透传模块连接通信	21 -
(-) A DI) 相关说明	23

概述

HJ-580 为宏佳电子荣誉出品的 世界上最小的 BLE 透传模块,尺寸仅仅 5*6.2MM, BLE 核心选择世界上功耗最低的 DA14580,休眠下电流仅仅 2ua,500ms 的广播间隙,最大电流 80ua 左右,在不广播的时候为 2ua,10ms 连接间隙,最大功耗仅仅 280ua 左右。退出休眠模式,全速工作后,平均电流小于 1.3ma。

HJ-580 透传版模块,能够达到完全意义的透传,在串口波特率 19200bps 以下(包括 19200bps)可以进行 无间隙大数据量数据传输,也就是说,您可以一直给我们的串口透传模块发送数据,不需要跟其他模块一样进行等待,从而从严格意义上实现真正的串口透传,以往的 BLE 透传模块都有字节数限制,无法做到无限制接受发送。

为了将尺寸缩小到极致,我们采用四层板工艺进行设计,在 5*6.2mm 的超小尺寸(这个尺寸比 TI 的 CC2541 的芯片的尺寸还小)下,我们还板载了高性能天线:在室内无遮挡,距离最远 10 米,室外最远可以 20 米;

当然我们还预留了外接天线接口,用户外接天线后,室内无遮挡最远可以到 30 米,室最远无遮挡能够大于 50 米!

本模块还有一个特点就是 普通广播 与 Ibeacons 广播共存,默认设定为每广播 2 条普通广播数据就进行切换广播 2 条 Ibeacons 数据,我们是无缝切换的,也上就是说切换的时候我们不会消耗更多的电量,您可以做对比,有无 Ibeacons 不会增加额外功耗!

我们提供多达几十条串口指令,您可以轻松配置各种参数和管理模块各项功能。

~关于 HJ-580 串口透传的说明

首先从严格意义上讲,我们的 BLE 透传模块为一个基本真正意义的串口无线透传模块。

首先,我们的串口波特率支持从 4800bps 到 256000bps,串口其它参数如停止位、校验位等均可以自由设置。

其次,我们的串口参数可以动态改变,当您设置为新的串口参数后,一定要更换您的 MCU 的串口波特率,否则不能正常通行。

最后,最重要的我们的串口透传模块支持 无限制数据大小时间间隔功能, (注:该功能只支持 19200bps 以下的串口波特率)也就是说,当您唤醒模块以后, 您发送数据到 HJ-580 透传模块,可以不必考虑您发送的字节数的多少,同样也 不必考虑您发送的每个字节的间隔,您可以联系发送几千个字节,也可以连续发 送几万个字节甚至几十万个字节。

市场上大部分 BLE 透传模块,都有单次发送字节数限制,一般提供的单次最大发送的字节数为 200 个字节左右,那么如果您发送几千个字节,您必须要分成几包进行发送,通知您还要考虑接收方组包的问题,所以我们才称之为我们的透传串口是类似真正的串口。

~唤醒与休眠控制

模块默认是工作在休眠状态下,我们提供了一个 IO 用来作为休眠与唤醒的切换控制,该 IO 为 模块的 5 脚 P06,名称为 Wake Up & Sleep Select,我们规定如下:

选择进入休眠

无论模块工作在何状态,当前处于什么工作模式(如果串口正在进行数据传输,那么串口将立刻被停用,您发送任何数据给串口都将无效),只要 P06 为高电平1 (TTL 3.3V),模块立即会进入休眠模式,如果 休眠串口打印通知开启,串口会打印 <SLEEP>.

休眠后,BLE 将以您设定的广播周期进行周期性的广播和 Ibeacons 广播,在该模式下,最低消耗的电流仅仅 2ua,最大仅仅 100ua 左右。

唤醒进入全速运行

仅仅当模块处于休眠情况下,只要 P06 为低电平 0 (TTL 0V),模块立即会进入休眠模式,如果唤醒串口打印通知开启,串口会打印<\WAKEUP>.

当 P06 被拉低后,模块将在 50us 内唤醒并全速运行,此时消耗的平均工作电流为 1.2ma 左右,此时外部 16MHZ 晶体振荡器全速工作,BLE 所有的外设都全速运行起来。

只有唤醒后,您才可以通过我们的透传模块串口向 APP 或者 BLE 主机 发送数据,休眠状态下,无法通过串口向连接的 APP 或者 BLE 主机发送数据。

只有唤醒后,您才能对BLE 模块进行串口指令配置。

当然也有特例,那就是当连接状态下,APP或者蓝牙主机向BLE模块发送数据,串口会自动被使能并把数据发送出来,只有这一个特例!

~工作模式控制

HJ-580 工作模式有两种:一种为串口数据透传模式;一种为配置模式;这两种工作模式控制靠一个 IO 进行控制,这个 IO 为 P00,名称为 Config Mode.

注: 模块工作模式选择只有在唤醒状态下才有效,在休眠状态下,无论 P00 什么电平状态,模块将始终保持串口数据透传模式。

串口数据透传模式

A、当模块处于休眠状态下,模块将始终保持串口透传模式,当模块被手机 APP 或者 BLE 主机连接后,一旦有数据发送到模块,模块立即将 P03 引脚拉低,并延时 10ms 后立即将串口数据发送出去,与模块相连的 MCU即可接收主机发送过来的数据。

B、当模块处于唤醒状态下,当 P00 引脚为高电平,则模块将始终保持串口透传模式,模块本身的串口能够接收来自外部的串口数据,同时也可以综上 A 所述, 手机 APP 或者 BLE 主机发送的数据,也将通过串口正常发出!

串口指令配置模式

A、当模块处于休眠状态下,无论 P00 为什么状态,模块都将工作在串口透传模式。

B、当模块处于唤醒状态下,当 P00 引脚为低电平,模块将立即进入串口指令配置模式,此时您可以通过下面所述的串口指令集对模块进行一些列参数设置。

~连接状态指示

当模块与手机 APP 或者主机<mark>断开连接</mark>时,P11 名称为 Connect State 引脚将始终保持高电平;

当模块被手机 APP 或者主机正常连接时,P11 引脚将输出低电平,从而指示模块硬被正常连接;

~串口指令集 详细说明

特别提示:

在进行串口指令设置时,首先要保证模块处于唤醒的状态,同时一定要让模块进入"串口指令配置模式",否则您发送的指令将无效。

(一)指令集说明和注意事项

- (1) 我们为用户提供了简单易懂的 ASCII 码指令集,这些指令通过串口调试助手写入,也可以通过您的单片机串口直接发送到无线模块,可以在数据传输过程中改变参数,由于 DA14580 内部没有 FLASH 存储,所以您设置的所有参数均保存在 RAM 中,掉电即消失,所以您在初始化的时候,一定要首先配置好模块的各项参数。
- (2) <mark>说明:</mark> 所有指令必须在头尾携带 < 和 > 之间,您可以理解为指令头和尾,如果头尾不正确或者指令错误,无线模块会串口回复错误代码,提示用户错误类型。
 - (3) 模块在刚刚上电或者复位后,模块相关参数配置如下:

参数类型	参数名称	参数值
连接参数		
	广播间隙	500ms
	最小连接间隙	10ms
	最大连接间隙	10ms
	连接超时时间	5s
串口参数	串口波特率	19200
	校验位	无校验
	停止位个数	1 个停止位
广播数据	13 个字节	0x02 0x01 0x06 0x03

		0x03 0x58 0x69 0x05 0xff
		0x01 0x02 0x03 0x05
Ibeacons 数据	30 个字节	0x02 0x01 0x06 0x1A
		0xff,
		/*Apple Pre-Amble*/
		0x4C,
		0x00,
		0x02,
		0x15,
		/*DeviceUUID(16Bytes)*/
		0x52, 0x41, 0x44,
		0x49, 0x55, 0x53, 0x4e,
		0x45, 0x54, 0x57, 0x4f,
		0x52, 0x4b, 0x53, 0x43,
		0x4f,
		/*Major Value (2 Bytes)*/
		0x00, 0x01,
		/*Minor Value (2 Bytes)*/
		0x00,0x02,
		/*Measured Power*/
		0xD2
BLE 名称	10 个字节	'H','J','
		','D','A','1','4','5','8','0'

(二)详细指令集介绍

(1) 复位指令

指令	功能	响应
<reset></reset>	复位 BLE 模块	立即复位, 无返回值

(2) 设置波特率指令

指令	目标波特率	响应
<baud4800></baud4800>	4800bps	立即保存配置,但是只能 在 P00 引脚变为高电平后 生效。(目的是为了保证
<baud9600></baud9600>	9600bps	此次通信可靠) 同上
<baud19200></baud19200>	19200bps	同上
<baud38400></baud38400>	38400bps	同上
<baud57600></baud57600>	57600bps	同上
<baud115200></baud115200>	115200bps	同上
<baud256000></baud256000>	256000bps	同上

(3) 读取波特率指令

指令	功能	响应
<combaud></combaud>	读取当前波特率	返回<波特率值>,例如当前波特率为19200,那么将立即返回<19200>

(4) 设置串口停止位个数

指令	停止位个数	响应
<1SB>	1 个停止位	立即保存配置,但是只能 在 P00 引脚变为高电平后 生效。(目的是为了保证 此次通信可靠)
<2SB>	2 个停止位	同上

(5) 读取串口停止位个数

指令	功能	响应
<stopbit></stopbit>	读取当前串口设置的停 止位个数	当串口停止位为1个时, 返回 <stopbit1>;</stopbit1>
		当串口停止位为 2 个时, 返回 <stopbit2>;</stopbit2>

(6) 设置串口校验位类型

指令	校验类型	响应
<peven></peven>	偶校验	立即保存配置,但是只能 在 P00 引脚变为高电平后 生效。(目的是为了保证 此次通信可靠)
<podd></podd>	奇校验	同上
<pno></pno>	无校验	同上

说明: 串口校验位与之通信的主 MCU 串口校验类型必须一致, 否则将无法 正常通信。

(7) 读取串口校验位类型

指令	功能	响应
<parity></parity>	读取当前串口校验位类 型	如果当前串口无校验时,返回 <nop>; 当串口为偶校验时,返回 <evenp>; 当为奇校验时,返回 <oddp>;</oddp></evenp></nop>

(8) 广播启动与停止指令

指令	功能	响应
<stopadv></stopadv>	关闭模块广播	立即执行
<startadv></startadv>	打开模块广播(上电默认 状态)	立即执行

(9) 读取广播启停状态

指令	功能	响应
<advstate></advstate>	查询当前广播启停状态	如果广播开启,返回 <advon>; 如果广播关闭,返回 <advoff>;</advoff></advon>

广播开启状态下,模块将按照您设置好的广播间隙进行广播,BLE 主机或者 手机 APP 都能够扫描搜索到模块,您可以进行连接操作;

如果广播关闭下,模块将进入超低功耗模式,不对外进行广播,但是模块仍然可以被唤醒、配置等操作,此时整机功耗<=2ua。

(10) 设置普通广播数据

指令	功能	响应
<advdataxxxxxxxxxx></advdataxxxxxxxxxx>	设置模块的广播数据(x 为您要设置的广播数据(x),广播数据做多可以设置22个字节数据。	下一个广播周期的开始

上述指令中,小写字母 x 代表您要写入的广播数据,由于 BLE 协议限制,我们在这里只提供最多 22 个字节广播数据,如果超过字节数,我们会反馈错误提示您,数据设置成功后,将返回<OK>。

(11) 设置 Ibeacons 广播数据

指令	功能	响应
<ibaconxxxxxxxxxx></ibaconxxxxxxxxxx>	设置模块的 Ibeacons 广播数据(x 为您要设置的广播数据),Ibeacons 广播数据固定长度为 25 个字节。	Ibeacons 广播数据立即被设置,在下一个广播周期的开始广播数据将被更新。

上述指令中,小写字母 x 代表您要写入的广播数据,苹果指定 Ibeacons 协议规定,Ibeacons 数据固定长度为 25 个字节,如果超过字节数,我们会反馈错误提示您,数据设置成功后,将返回<OK>。

(12) 设置设备名称

指令	功能	响应
<namexxxxxx></namexxxxxx>	设置模块的设备名称,名 称最长为18个字节,均 为字符数据。	如果模块在连接状态下 设置,那么在下一次重新 连接后生效;
		如果模块在断开连接状 态下,立即生效;

(13) 读取设备名称

指令	功能	响应
<mname></mname>	读取设备名称	如果设备名称为 DA14580,则读取会返回 <da14580>;</da14580>

(14) 设置厂家名称

指令	功能	响应
<facxxxxxx></facxxxxxx>	设置模块的厂家名称,名 称最长为18个字节,均 为字符数据。	如果模块在连接状态下 设置,那么在下一次重新 连接后生效;
		如果模块在断开连接状 态下,立即生效;

(15) 读取厂家名称

指令	功能	响应
<fname></fname>	读取厂家名称	如果厂家名称为 HongJia,则读取会返回
		<hongjia>;</hongjia>

(16) 设置软件版本

指令	功能	响应
<softxxxxxx></softxxxxxx>	设置模块的软件版本,最 长为 18 个字节,均为字 符数据。	如果模块在连接状态下 设置,那么在下一次重新 连接后生效;
		如果模块在断开连接状 态下,立即生效;

(17) 读取软件版本

指令	功能	响应
<sver></sver>	读取软件版本	如果软件版本为 VER1.1,则读取会返回 <sver1.1>;</sver1.1>

(18) 设置硬件版本

指令	功能	响应
<hardxxxxxx></hardxxxxxx>	设置模块的硬件版本,最 长为 18 个字节,均为字 符数据。	如果模块在连接状态下 设置,那么在下一次重新 连接后生效;
		如果模块在断开连接状 态下,立即生效;

(19) 读取硬件版本

指令	功能	响应
<hver></hver>	读取硬件版本	如果硬件版本为 VER1.0,则读取会返回 <hver1.0>;</hver1.0>

(20) 设置模块 SN 号

指令	功能	响应
<snxxxxxx></snxxxxxx>	设置模块的 SN,最长为 18 个字节,均为字符数 据。	如果模块在连接状态下 设置,那么在下一次重新 连接后生效;
		如果模块在断开连接状 态下,立即生效;

(21) 读取模块 SN 号

指令	功能	响应
<msn></msn>	读取模块 SN	如果硬件版本为 56789, 则读取会返回 <n56789>;</n56789>

(22) 设置广播间隙

指令	功能	响应
<advgap32> 至</advgap32>	设置广播间隙,数值范围	立即生效
<advgap16000></advgap16000>	32-16000,对应时间为	
	20ms - 10s.	

(23) 读取广播间隙

指令	功能	响应
<agap></agap>	读取广播间隙	如果广播间隙为 32, 那么 将返回 <a32></a32>

(24) 设置最大连接间隙

指令	功能	响应
<conmax6> 至 <conmax3200></conmax3200></conmax6>	设置最大连接间隙,数值 范围 6-3200,对应时间为	立即生效
	7.5ms - 4s.	

最大连接间隙除了要满足范围外,最大连接间隙必须大于等于最小连接间隙。

(25) 读取最大连接间隙

指令	功能	响应
<maxcgap></maxcgap>	读取最大连接间隙	如果最大连接间隙为 600,那么将返 <cx600></cx600>

(26) 设置最小连接间隙

指令	功能	响应
<conmin6> 至</conmin6>	设置最小连接间隙,数值	立即生效
<conmin3200></conmin3200>	范围 6-3200, 对应时间为	
	7.5ms - 4s.	

最小连接间隙除了要满足范围外,最小连接间隙必须小于等于最大连接间隙。

(27) 读取最小连接间隙

指令	功能	响应
<mincgap></mincgap>	读取最小连接间隙	如果最小连接间隙为 60,那么将返 <cn60></cn60>

(28) 设置连接超时时间

指令	功能	响应
<timeout10> 至</timeout10>	设置最小连接间隙,数值	立即生效
<timeout3200></timeout3200>	范围 10-3200, 对应时间	
	为 100ms - 32s.	

连接超时时间如果您的系统为IOS或者安卓,那么连接超时时间不能超过6s。

(29) 读取连接超时时间

指令	功能	响应
<ctimeout></ctimeout>	读取连接超时时间	如果连接超时时间为 100,那么将返 <t100></t100>

(30) 立即断开当前连接

指令	功能	响应
<disconnect></disconnect>	立即断开当前连接	如果当前处于连接状态, 那么发送该指令后,将立 即断开当前连接。

当处于连接状态下,发送该指令,将立即断开当前连接; 当处于非连接状态下,发送该指令无效。

(31) 查询蓝牙连接状态

指令	功能	响应
<state></state>	查询当前连接状态	如果处于连接状态,则返回 <connected>; 如果处于非连接状态,则 返回<disconnected></disconnected></connected>

(三)特殊指令

(1) 恢复出厂设置指令

指令	功能	响应
<factory></factory>	串口参数和连接参数回 复出厂设置	立即生效

说明: 执行该指令后,无线所有参数恢复到出厂设置。

恢复如下:

申口波特率: 19200bps
申口停止位: 1 个停止位
● 申口校验位: 无校验
广播间隙: 500ms
最大连接间隙: 10ms
最小连接间隙: 10ms
连接超时时间: 5s

(2) 唤醒、休眠、进入配置模式和进入数据透传模式 串口数据反馈指示控制指令

该功能主要是用来在您控制唤醒与休眠、进入配置模式与进入串口透传模式下,串口自动反馈当前状态的功使能位。

指令	功能	响应
<wsmon></wsmon>	使能反馈状态提示	立即生效
<wsmoff></wsmoff>	禁用反馈状态提示	立即生效

当使能该功能后,在以下四个状态切换的时候,串口会自动的发送确认反馈信息给连接的串口设备:

- A、当进入休眠模式后,串口会打印 <SLEEP> 通知进入休眠模式;
- B、当唤醒模块后,串口会打印<WAKEUP>通知已经唤醒模块;

- C、当模块进入配置模式后,串口会打印<CONFIG MODE>;
- D、当退出配置模式,进入数据透传模式后,串口会打印<DATA MODE>;

~关于 HJ580 的 UUID 定义 和 APP 相关说明

(一) 手机 APP 或 BLE 主机 与 HJ-580 透传模块连接通信

当您用手机连接上 HJ-580 后(这里我们采用 IOS 环境下的 LightBlue 软件进行连接),您可以看到如下界面:

第一个图片为扫描数据,包括设备的名称,广播信道信息还有发射功率信息;第二个图片为设备信息,包括软硬件版本、设备名称、厂家名称、设备 ID、设备 MAC 地址和 PnP ID 码。(这些信息,我们都提供了接口进行更改,注:这些都不保存,在重启后,都将恢复默认值。)

第三个图片为设备的数据通道,主服务 UUID 为 0XFFF0,主服务下面一共有 3 个子服务,分别为 BLE 数据通道 0XFFF1、APP 或者主机数据通道 0XFFF2 和配置数据通道 0XFFF3(该通道暂时未使用)。

通道名	UUID	HANDLE	服务属性	备注
		值		
BLE DATA BUFF	0XFFF1	0X21	只读、通知	说明 1
	0XFFF1	0X22	读写	BLE 数据通道通 知使能位
CENTER DATA BUFF	0XFFF2	0X25	读写	说明 2
BLE DATA CONFIG	0XFFF3	0X28	读写	说明 3

说明 1:

BLE DATA BUFF 为 BLE 模块即 HJ-580 串口透传的数据通道,也就是说,通过 HJ-580 接收到的外部串口数据,都将以通知的方式(前提是通知要打开)返回到 APP 或者主机,也就是返回到以 0XFFF1 为 UUID 的数据通道,字节数最大为 20 个字节;如果有多于 20 个字节的数据通知发出,那么 HJ-580 会自动分包发送到该通道!

红色部分为通知使能的 UUID 和对应的 HANDLE 值,如果您是 IPHONE 或者安卓手机作为主机,那您只需要通过输入 UUID 0XFFF1 到系统指定的通知使能函数,即可 打开通知,打开通知是接收 HJ-580 串口数据上传的前提!

说明 2:

CENTER DATA BUFF 为手机 APP 端或者 BLE 主机发送数据的通道,也就是说,手机 APP 或者主机向 HJ-580 模块发送数据要通过该通道,单次发送最大字节数为 20 个字节,如果需要发送多于 20 字节的数据,请分成多包发送,HJ-580接收到数据后,会陆续通过自身的串口 TX 发送出来,供外部设备接收!

说明 3:

该通道暂时未使用, 无任何功能!

(二) APP 相关说明

HJ-580 BLE 4.0 透传模块,支持安卓 4.3 (最好是安卓 4.4 系统)以上系统,苹果 IPHONE 4s 以上手机或具备 BLE 功能的 Ipad。