Math 307 E - Summer 2011 Mid-Term Exam July 20, 2011

N T	0, 1, , 1
Name:	Student number:

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	3*	
Total	60+	

- Complete all questions.
- You may use a scientific calculator during this examination. Other electronic devices (e.g. cell phones) are not allowed, and should be turned off for the duration of the exam.
- You may use one hand-written 8.5 by 11 inch page of notes.
- Show all work for full credit.
- You have 60 minutes to complete the exam.

.

- 1. Solve for y(t):
 - (a) (5 points)

$$y' = 1 + t + y + ty,$$
 $y(0) = 0.$

(b) (5 points)

$$ty' = 1 - y.$$
 $y(1) = 0, t > 0.$

- 2. Find the general solution to:
 - (a) (5 points)

$$x^{2} \frac{dy}{dx} = (x - y)^{2} + 3xy, \quad x, y > 0.$$

(b) (5 points)

$$e^{y-x}(\cos(x) - \sin(x)) - \sin(x) + \sin(x)e^{y-x}\frac{dy}{dx} = 0.$$

Hint: Integrate N(x, y) with respect to y.

3.	A tank initially contains 9 gal of water with 5 lb of salt in solution. A solution containing
	a constant concentration of γ lb salt per gallon runs into the tank at a rate of 1 gal/min;
	the well-mixed solution drains from the tank at the rate of γ^2 gal/min.

(a) (5 points) Set up the initial value problem that models Q(t), the amount of salt in pounds at time t for $0 \le t < \frac{9}{\gamma^2}$.

(b) (5 points) Solve this linear differential equation for $\mathcal{Q}(t)$ using an integrating factor.

4.	Jill has a saving's account with a balance of $S(t)$ dollars at time t . Assume that her credit is outstanding, so that any negative balance is acceptable to her bank and represents a loan. Assume that Jill's account earns interest at an annual rate of r compounded continuously. Furthermore, assume that Jill continuously withdraws money from her account at a rate proportional to the cube of her balance, with proportionality constant r^3 .
	(a) (4 points) Write down a differential equation modeling $S(t)$.
	(b) (4 points) Find the equilibrium solutions, and classify as stable, unstable or semistable.
	(c) (2 points) If Jill has saved any money at $t=0$, how much money do you expect her to have in her account for large values of t if $r=1\%$?

- 5. Find the general solution to the following second-order differential equations:
 - (a) (3 points)

$$\frac{1}{2}y'' + 2y' + \frac{5}{2}y = 0.$$

(b) (3 points)

$$16y'' + 8y' + y = 0.$$

(c) (4 points)

$$y'' - y' - 2y = 0.$$

6. Consider the differential equation

$$y'' + 2y' + \left(1 - \frac{3}{4t^2}\right)y = 0 \qquad t > 0.$$

Following the reduction of order technique, assume that $y_1(t)$ is a solution and guess that $y_2(t) = w(t) \cdot y_1(t)$.

(a) (3 points) Show that if $y_2(t)$ is a solution, then w(t) must satisfy

$$\frac{w''}{w'} = -2\left(\frac{y_1'}{y_1} + 1\right).$$

Hint: You do not need to know what $y_1(t)$ is, only that it is a solution.

(b) (7 points) It is true (and you may assume) that $y_1(t)=t^{3/2}e^{-t}$ satisfies the equation. Find w(t) using the formula from part (a); write down the general solution as a linear combination of $y_1(t)$ and $y_2(t)$.

7. (3 bonus points) Assume that $y_1(t)=e^{t^2/2}\cos(t)$ is a solution to the differential equation $y''-2ty'+t^2y=0.$

Find another independent solution. (Just guessing will not earn all points.) *Hint:* Derive a similar formula as in problem 6 part (a), or use a trick.