Notes on Charles Pinter's book of abstract algebra

Unathi Skosana March 31, 2020

These are notes taken while reading Charles Pinter's 'A Book Of Abstract Algebra'

Contents

Operations

Exercises

Operations

Question 1. What is an operation on a set A?

Definitions 2 (Informal definition). An operation is any rule which assigns to each ordered pair of elements of *A* a unique element in *A*.

Definitions 3 (Formal definition). Let *A* be any set:

An operation * on A is a rule which assigns to each ordered pairs (a, b) of elements of A exactly one a * b in A

- a * b is defined for *every* ordered pair (a, b) of elements of A. ¹
- *a* * *b* must be *uniquely* defined. ²
- If $a, b \in A$, then $a * b \in A$. ³

Definitions 4 (Superfluous properties). • An operation * is said to be *commutative* if it satisfies

$$a * b = b * a \tag{1}$$

for any two elements *a* and *b* in *A*.

• An operation * is said to be associative if it satisfies

$$(a*b)*c = a*(b*c)$$
 (2)

for any three elements *a*, *b* and *c* in *A*.

• The *identity* element *e* with respect to the operation * has the property that:

$$e * a = a \quad \text{and} \quad a * e = a \tag{3}$$

for every element in *a* in *A*.

• The inverse of any element a, denoted by a^{-1} has the property that;

$$a * a^{-1} = e$$
 and $a^{-1} * a = e$ (4)

¹ In \mathbb{R} , division does not qualify as operation since it does not satisfy this condition. i.e. the ordered pair (a, 0) has undefined quotient a/0.

² If \diamond is defined on (a,b) to be the number whose square is ab. In \mathbb{R} , \diamond does not qualify as an operation since $2 \diamond 2$ could be either 2,

 3 A is closed under the operation *

Exercises

A. For each rule, is it an operation, if not, why?

- 1. $a*b = \sqrt{|ab|}$, on the set \mathbb{Q} No. If a = b = 1, then $1*1 = \sqrt{2} \notin \mathbb{Q}$
- 2. $a * b = a \ln b$, on the set $\{x \in \mathbb{R} : x > 0\}$. No. It is not closed under *, e.g 0 < b < 1, then $a * b = a \ln b < 0$
- 3. a*b is a root of the equation, $x^2=a^2b^2$, on the set $\mathbb R$ No. The operation isn't uniquely defined. $x^2=a^2b^2$ has to two roots, namely +ab and -ab
- 4. Subtraction, on the set \mathbb{Z} . Yes.
- 5. Subtraction, on the set $\{n \in \mathbb{Z} : n \ge 0\}$. No. e.g. b = a + 1 then a * b = -1 which is not in the set.
- 6. a*b=|a-b|, on the set $\{n\in\mathbb{Z}:n\geq 0\}$ Yes. (distance metric)