Rule Q: Preemptive transition firing

Rule Q evaluates transitions that are initially enabled and are the only consumer of all places in its pre-set. The formal description of Rule Q can be found in Figure 1. Remark that Rule Q can potentially put tokens into places which will prevent other reductions. Furthermore, it can be applied infinitely if $\exists (t_0) \leq \exists (t_0)$, or if the Petri net contains a loop.

Precondition	Update
Fix transition t_0 s.t.:	
$Q1) \ (^{\bullet}t)^{\bullet} = \{t_0\}$	UQ1) $M_0 := M_0 + E(t_0).$
$Q2) \ \exists (t_0) \le M_0 < I(t_0)$	
Q3) $({}^{\bullet}t_0 \cup t_0^{\bullet}) \cap places(\varphi) = \emptyset$	
Q4) $({}^{\bullet}t_0)^{\circ} = (t_0^{\bullet})^{\circ} = \emptyset$	

Figure 1: Rule Q: Preemptive transition firing

Theorem 1 Rule Q in Figure 1 is correct for $CTL \setminus X$.