Lecture 22

November 5, 2018

▶ We have n observations on a response variable $y_1, ..., y_n$ and on each of p explanatory variables x_{ij} for i = 1, ..., n and j = 1, ..., p.

- ▶ We have n observations on a response variable y_1, \ldots, y_n and on each of p explanatory variables x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- GLM makes the following assumptions:

- ▶ We have n observations on a response variable y_1, \ldots, y_n and on each of p explanatory variables x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- GLM makes the following assumptions:
- \triangleright y_1, \ldots, y_n are independent with y_i having the pmf or pdf of the form

$$f(x; \theta_i, \phi_i) := h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right).$$
 (1)

- ▶ We have n observations on a response variable y_1, \ldots, y_n and on each of p explanatory variables x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- GLM makes the following assumptions:
- y_1, \ldots, y_n are independent with y_i having the pmf or pdf of the form

$$f(x; \theta_i, \phi_i) := h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right).$$
 (1)

▶ Here θ_i and ϕ_i are parameters.

- ▶ We have n observations on a response variable y_1, \ldots, y_n and on each of p explanatory variables x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- GLM makes the following assumptions:
- y_1, \ldots, y_n are independent with y_i having the pmf or pdf of the form

$$f(x; \theta_i, \phi_i) := h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right).$$
 (1)

- ▶ Here θ_i and ϕ_i are parameters.
- \bullet θ_i is the canonical parameter and ϕ_i is called the dispersion parameter.

- ▶ We have n observations on a response variable y_1, \ldots, y_n and on each of p explanatory variables x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.
- GLM makes the following assumptions:
- y_1, \dots, y_n are independent with y_i having the pmf or pdf of the form

$$f(x; \theta_i, \phi_i) := h(x, \phi_i) \exp\left(\frac{x\theta_i - b(\theta_i)}{a(\phi_i)}\right).$$
 (1)

- ▶ Here θ_i and ϕ_i are parameters.
- \bullet θ_i is the canonical parameter and ϕ_i is called the dispersion parameter.
- ▶ One often assumes that ϕ_i is the same for all i.

Let $\mu_i = \mathbb{E}(y_i)$. For an increasing function g, we model $g(\mu_i)$ as $g(\mu_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}.$

- Let $\mu_i = \mathbb{E}(y_i)$. For an increasing function g, we model $g(\mu_i)$ as $g(\mu_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}.$
- ▶ Because $\mu_i = b'(\theta_i)$, we can write $\theta_i = (b')^{-1}(\mu_i)$ where $(b')^{-1}$ is the inverse function of b'.

Let $\mu_i = \mathbb{E}(y_i)$. For an increasing function g, we model $g(\mu_i)$ as

$$g(\mu_i)$$
 as $g(\mu_i) = eta_0 + eta_1 x_{i1} + \dots + eta_p x_{ip}.$

- ▶ Because $\mu_i = b'(\theta_i)$, we can write $\theta_i = (b')^{-1}(\mu_i)$ where $(b')^{-1}$ is the inverse function of b'.
- ▶ The link function $g = (b')^{-1}$ is known as the canonical link.

Let $\mu_i = \mathbb{E}(y_i)$. For an increasing function g, we model $g(\mu_i)$ as

 $g(\mu_i) = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}.$

▶ Because
$$\mu_i = b'(\theta_i)$$
, we can write $\theta_i = (b')^{-1}(\mu_i)$ where $(b')^{-1}$ is the inverse function of b' .

- The link function $g = (b')^{-1}$ is known as the canonical link.
- The resulting GLM is called the canonical GLM. This is given by

$$(b')^{-1}(\mu_i) = \theta_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}.$$

Example One - Normal Linear Model

▶ Here y_i has the normal distribution $N(\mu_i, \sigma^2)$.

Example One - Normal Linear Model

- ▶ Here y_i has the normal distribution $N(\mu_i, \sigma^2)$.
- ► The pdf of y_i can be written in the form (1) with $\theta_i = \mu_i$ and $\phi_i = \sigma^2$ and $a(\phi_i) = \phi_i$.

Example One - Normal Linear Model

- ▶ Here y_i has the normal distribution $N(\mu_i, \sigma^2)$.
- ► The pdf of y_i can be written in the form (1) with $\theta_i = \mu_i$ and $\phi_i = \sigma^2$ and $a(\phi_i) = \phi_i$.
- The link function used is the identity link function $g(\mu_i) = \mu_i$. This is the canonical link here.

▶ Here y_i has the Bernoulli distribution with parameter p_i .

- ▶ Here y_i has the Bernoulli distribution with parameter p_i .
- The pmf of y_i can be written in the form (1) with $\theta_i = \log(p_i/(1-p_i))$ and $\phi_i = 1$ and $b(\theta_i) = \log(1+e^{\theta_i})$.

- ▶ Here y_i has the Bernoulli distribution with parameter p_i .
- The pmf of y_i can be written in the form (1) with $\theta_i = \log(p_i/(1-p_i))$ and $\phi_i = 1$ and $b(\theta_i) = \log(1+e^{\theta_i})$.
- The canonical GLM is therefore

$$\theta_i = \log \frac{p_i}{1 - p_i} = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}.$$

- ▶ Here y_i has the Bernoulli distribution with parameter p_i .
- The pmf of y_i can be written in the form (1) with $\theta_i = \log(p_i/(1-p_i))$ and $\phi_i = 1$ and $b(\theta_i) = \log(1+e^{\theta_i})$.
- The canonical GLM is therefore

$$\theta_i = \log \frac{p_i}{1 - p_i} = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}.$$

► This is the *Logistic Regression Model*. $p_i/(1-p_i)$ denotes the odds of the event that $y_i = 1$.

- ▶ Here y_i has the Bernoulli distribution with parameter p_i .
- The pmf of y_i can be written in the form (1) with $\theta_i = \log(p_i/(1-p_i))$ and $\phi_i = 1$ and $b(\theta_i) = \log(1+e^{\theta_i})$.
- ► The canonical GLM is therefore

$$\theta_i = \log \frac{p_i}{1 - p_i} = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}.$$

- ► This is the *Logistic Regression Model*. $p_i/(1-p_i)$ denotes the odds of the event that $y_i = 1$.
- The interpretation of β_j is that it represents the increase in log-odds of the event that y = 1 for a unit increase in x_j when all other explanatory variables are held constant.

In other words, e^{β_j} denotes the factor by which the odds of success (response equal to one) change for a unit increase in x_i (all other explanatory variables remaining unchanged).

- In other words, e^{β_i} denotes the factor by which the odds of success (response equal to one) change for a unit increase in x_i (all other explanators variables remaining unphaged)
- success (response equal to one) change for a unit increase in x_j (all other explanatory variables remaining unchanged). The function $p \mapsto \log(p/(1-p))$ is the link function in the

Logistic Model and is called the logit function.

- ▶ In other words, e^{β_j} denotes the factor by which the odds of success (response equal to one) change for a unit increase
- in x_i (all other explanatory variables remaining unchanged).
- ▶ The function $p \mapsto \log(p/(1-p))$ is the link function in the

This is the most popular link function for Bernoulli data.

Logistic Model and is called the logit function.

Probit model

Another link function is the probit link: $g(x) = \Phi^{-1}(x)$ where Φ is the cdf of the standard normal density.

Probit model

- Another link function is the probit link: $g(x) = \Phi^{-1}(x)$ where Φ is the cdf of the standard normal density.
- ► This leads to the probit model:

$$\Phi^{-1}(p_i) = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}.$$

Fitting GLMs to data

Suppose we decide to fit a GLM to the data. How then do we estimate the parameters $\beta_0, \beta_1, \dots, \beta_p$?

Fitting GLMs to data

- Suppose we decide to fit a GLM to the data. How then do we estimate the parameters $\beta_0, \beta_1, \dots, \beta_p$?
- We shall first work this out in the case of the Logistic Regression Model. The general case will be dealt with later.

Fitting the Logistic Regression Model to Data

▶ How to estimate $\beta_0, \beta_1, \dots, \beta_p$ from the model:

$$y_i \sim^{independent} Ber(p_i)$$
 where $\log \frac{p_i}{1-p_i} = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$

for i = 1, ..., n.

Fitting the Logistic Regression Model to Data

▶ How to estimate $\beta_0, \beta_1, \dots, \beta_p$ from the model:

$$y_i \sim^{independent} Ber(p_i)$$
 where $\log \frac{p_i}{1-p_i} = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_p x_{ip}$ for $i=1,\ldots,n$.

The data is y_1, \ldots, y_n and x_{ij} for $i = 1, \ldots, n$ and $j = 1, \ldots, p$.

Fitting the Logistic Regression Model to Data

▶ How to estimate $\beta_0, \beta_1, \dots, \beta_p$ from the model:

$$y_i \sim^{independent} Ber(p_i)$$
 where $\log \frac{p_i}{1-p_i} = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}$ for $i = 1, \dots, n$.

- ► The data is $y_1, ..., y_n$ and x_{ij} for i = 1, ..., n and i = 1, ..., p.
- ► The model can alternatively be written as

$$y_i \sim Ber\left(rac{\exp(eta_0 + \sum_{j=1}^p eta_j x_{ij})}{1 + \exp(eta_0 + \sum_{j=1}^p eta_j x_{ij})}
ight)$$

with y_1, \ldots, y_n being independent.

▶ How to estimate β_0, \ldots, β_p ?

- ▶ How to estimate β_0, \ldots, β_p ?
- ► One simply uses Maximum Likelihood.

- ▶ How to estimate β_0, \ldots, β_p ?
- ► One simply uses Maximum Likelihood.
- The likelihood of y_1, \ldots, y_n is

$$\prod_{i=1}^{n} p_{i}^{y_{i}} (1-p_{i})^{1-y_{i}} \text{ with } p_{i} = \frac{\exp(\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{p}x_{ip})}{1 + \exp(\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{p}x_{ip})}.$$

- ▶ How to estimate β_0, \ldots, β_p ?
- ► One simply uses Maximum Likelihood.
- The likelihood of y_1, \ldots, y_n is

$$\prod_{i=1}^{n} p_{i}^{y_{i}} (1-p_{i})^{1-y_{i}} \text{ with } p_{i} = \frac{\exp(\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{p}x_{ip})}{1 + \exp(\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{p}x_{ip})}.$$

This likelihood is simply a function of β_0, \ldots, β_p and so it can be maximized to yield estimates of β_0, \ldots, β_p .

- ▶ How to estimate β_0, \ldots, β_p ?
- ► One simply uses Maximum Likelihood.
- ▶ The likelihood of y_1, \ldots, y_n is

$$\prod_{i=1}^{n} p_{i}^{y_{i}} (1-p_{i})^{1-y_{i}} \text{ with } p_{i} = \frac{\exp(\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{p}x_{ip})}{1 + \exp(\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{p}x_{ip})}.$$

- ► This likelihood is simply a function of β_0, \ldots, β_p and so it can be maximized to yield estimates of β_0, \ldots, β_p .
- It is easier to work with the log-likelihood.

► The log-likelihood is given by

► The log-likelihood is given by

 $\ell(\beta) = \sum_{i=1}^{n} (y_i \log p_i + (1 - y_i) \log(1 - p_i))$

The log-likelihood is given by

$$\ell(\beta) = \sum_{i=1}^n (y_i \log p_i + (1-y_i) \log (1-p_i))$$

 $= \sum_{i=1}^n \left[y_i (\beta_0 + \beta_1 x_{i1} \cdots + \beta_p x_{ip}) - \right]$

 $\log(1+\exp(\beta_0+\beta_1x_{i1}\cdots+\beta_px_{ip})).$

The log-likelihood is given by

$$\ell(\beta) = \sum_{i=1}^{n} (y_i \log p_i + (1 - y_i) \log(1 - p_i))$$

=
$$\sum_{i=1}^{n} [y_i (\beta_0 + \beta_1 x_{i1} \cdots + \beta_p x_{ip}) - \log(1 + \exp(\beta_0 + \beta_1 x_{i1} \cdots + \beta_p x_{ip}))].$$

• Unfortunately, one cannot write down the minimizer for $\ell(\beta)$ in closed form. One therefore uses Newton's method.

▶ Suppose we have a candidate solution $\beta^{(m)}$.

- Suppose we have a candidate solution $\beta^{(m)}$.
- Then we can use Taylor's approximation of $\ell(\beta)$ around $\beta^{(m)}$:

$$\tilde{\ell}(\beta) \\
:= \ell(\beta^{(m)}) + \nabla \ell(\beta^{(m)})^{\mathsf{T}} (\beta - \beta^{(m)}) + \frac{(\beta - \beta^{(m)})^{\mathsf{T}} H \ell(\beta^{(m)})(\beta - \beta^{(m)})}{2}$$

- Suppose we have a candidate solution $\beta^{(m)}$.
- ► Then we can use Taylor's approximation of $\ell(\beta)$ around $\beta^{(m)}$:

$$\tilde{\ell}(\beta) \\
:= \ell(\beta^{(m)}) + \nabla \ell(\beta^{(m)})^{\mathsf{T}} (\beta - \beta^{(m)}) + \frac{(\beta - \beta^{(m)})^{\mathsf{T}} H \ell(\beta^{(m)})(\beta - \beta^{(m)})}{2}$$

 \blacktriangleright So instead of maximizing $\ell(\beta)$ we can maximize $\tilde{\ell}(\beta)$ which has gradient

$$\nabla \tilde{\ell}(\beta) = \nabla \ell(\beta^{(m)}) + H\ell(\beta^{(m)})(\beta - \beta^{(m)})$$

- Suppose we have a candidate solution $\beta^{(m)}$.
- Then we can use Taylor's approximation of $\ell(\beta)$ around $\beta^{(m)}$:

$$\tilde{\ell}(\beta)
:= \ell(\beta^{(m)}) + \nabla \ell(\beta^{(m)})^{\mathsf{T}} (\beta - \beta^{(m)}) + \frac{(\beta - \beta^{(m)})^{\mathsf{T}} H \ell(\beta^{(m)})(\beta - \beta^{(m)})}{2}$$

 \blacktriangleright So instead of maximizing $\ell(\beta)$ we can maximize $\tilde{\ell}(\beta)$ which has gradient

$$\nabla \tilde{\ell}(\beta) = \nabla \ell(\beta^{(m)}) + H\ell(\beta^{(m)})(\beta - \beta^{(m)})$$

▶ And so $\nabla \tilde{\ell}(\beta) = 0$ if only if

- Suppose we have a candidate solution $\beta^{(m)}$.
- ► Then we can use Taylor's approximation of $\ell(\beta)$ around $\beta^{(m)}$:

$$\tilde{\ell}(\beta) = \ell(\beta^{(m)}) + \nabla \ell(\beta^{(m)})^{\mathsf{T}}(\beta - \beta^{(m)}) + \frac{(\beta - \beta^{(m)})^{\mathsf{T}} H \ell(\beta^{(m)})(\beta - \beta^{(m)})}{2}$$

▶ So instead of maximizing $\ell(\beta)$ we can maximize $\tilde{\ell}(\beta)$ which has gradient

$$\nabla \tilde{\ell}(\beta) = \nabla \ell(\beta^{(m)}) + H\ell(\beta^{(m)})(\beta - \beta^{(m)})$$

▶ And so $\nabla \tilde{\ell}(\beta) = 0$ if only if

$$\beta = H\ell(\beta^{(m)})^{-1} \left(H\ell(\beta^{(m)})\beta^{(m)} - \nabla \ell(\beta^{(m)}) \right)$$

- ▶ Suppose we have a candidate solution $\beta^{(m)}$.
- ► Then we can use Taylor's approximation of $\ell(\beta)$ around $\beta^{(m)}$:

$$\tilde{\ell}(\beta)
:= \ell(\beta^{(m)}) + \nabla \ell(\beta^{(m)})^{\mathsf{T}} (\beta - \beta^{(m)}) + \frac{(\beta - \beta^{(m)})^{\mathsf{T}} H \ell(\beta^{(m)})(\beta - \beta^{(m)})}{2}$$

▶ So instead of maximizing $\ell(\beta)$ we can maximize $\tilde{\ell}(\beta)$ which has gradient

$$\nabla \tilde{\ell}(\beta) = \nabla \ell(\beta^{(m)}) + H\ell(\beta^{(m)})(\beta - \beta^{(m)})$$

▶ And so $\nabla \tilde{\ell}(\beta) = 0$ if only if

$$\beta = H\ell(\beta^{(m)})^{-1} \left(H\ell(\beta^{(m)})\beta^{(m)} - \nabla \ell(\beta^{(m)}) \right)$$

= $\beta^{(m)} - H\ell(\beta^{(m)})^{-1} \nabla \ell(\beta^{(m)}).$

Newton's method uses the iterative scheme

$$\beta^{(m+1)} = \beta^{(m)} - \left(H\ell(\beta^{(m)})\right)^{-1} \nabla \ell(\beta^{(m)}) \tag{2}$$

where $\nabla \ell(\beta)$ and $H\ell(\beta)$ denote the gradient and Hessian of the function $\ell(\beta)$ respectively:

Newton's method uses the iterative scheme

$$\beta^{(m+1)} = \beta^{(m)} - \left(H\ell(\beta^{(m)})\right)^{-1} \nabla \ell(\beta^{(m)}) \tag{2}$$

where $\nabla \ell(\beta)$ and $H\ell(\beta)$ denote the gradient and Hessian of the function $\ell(\beta)$ respectively:

▶ $\nabla \ell(\beta) := (\partial \ell(\beta)/\partial \beta_0, \dots, \partial \ell(\beta)/\partial \ell(\beta_p))^T$ and $H\ell(\beta)$ is the $(p+1) \times (p+1)$ matrix whose entries are second order derivatives of $\ell(\beta)$.

▶ Newton's method uses the iterative scheme

$$\beta^{(m+1)} = \beta^{(m)} - \left(H\ell(\beta^{(m)})\right)^{-1} \nabla \ell(\beta^{(m)}) \tag{2}$$

where $\nabla \ell(\beta)$ and $H\ell(\beta)$ denote the gradient and Hessian of the function $\ell(\beta)$ respectively:

- ▶ $\nabla \ell(\beta) := (\partial \ell(\beta)/\partial \beta_0, \dots, \partial \ell(\beta)/\partial \ell(\beta_p))^T$ and $H\ell(\beta)$ is the $(p+1) \times (p+1)$ matrix whose entries are second order derivatives of $\ell(\beta)$.
- For example, the (1,1)th entry of $H\ell(\beta)$ is $\partial^2 \ell(\beta)/\partial \beta_0^2$, the (1,2)th entry is $\partial^2 \ell(\beta)/\partial \beta_0 \partial \beta_1$ and so on.

▶ It is quite easy to write down $\nabla \ell(\beta)$ and $H\ell(\beta)$.

- ▶ It is quite easy to write down $\nabla \ell(\beta)$ and $H\ell(\beta)$.
- Check that

$$\nabla \ell(\beta) = \sum_{i=1}^{n} (y_i - p_i)(1, x_{i1}, \dots, x_{ip})^T$$

- ▶ It is quite easy to write down $\nabla \ell(\beta)$ and $H\ell(\beta)$.
- Check that

$$\nabla \ell(\beta) = \sum_{i=1}^{n} (y_i - p_i)(1, x_{i1}, \dots, x_{ip})^T$$

and

$$H\ell(\beta) = -\sum_{i=1}^{n} p_i (1-p_i)(1, x_{i1}, \dots, x_{ip})^T (1, x_{i1}, \dots, x_{ip}).$$

- ▶ It is quite easy to write down $\nabla \ell(\beta)$ and $H\ell(\beta)$.
- Check that

$$\nabla \ell(\beta) = \sum_{i=1}^{n} (y_i - p_i)(1, x_{i1}, \dots, x_{ip})^T$$

and

$$H\ell(\beta) = -\sum_{i=1}^{n} p_i (1-p_i)(1, x_{i1}, \ldots, x_{ip})^T (1, x_{i1}, \ldots, x_{ip}).$$

These expression look much nicer in matrix notation. As before, Y denotes the vector of response values $(y_1, \ldots, y_n)^T$ and X denotes the $n \times (p+1)$ matrix whose first column is 1 and the remaining columns correspond to the explanatory variables.

Let β denote the vector $(\beta_0, \dots, \beta_p)^T$. Let p denote the vector $(p_1, \dots, p_n)^T$ and let W denote the $n \times n$ diagonal matrix whose ith diagonal element is $p_i(1-p_i)$.

- Let β denote the vector $(\beta_0, \dots, \beta_p)^T$. Let p denote the vector $(p_1, \dots, p_n)^T$ and let W denote the $n \times n$ diagonal matrix whose ith diagonal element is $p_i(1 p_i)$.
- Check that

$$abla \ell(eta) = X^{T}(Y - p)$$

Let β denote the vector $(\beta_0, \dots, \beta_p)^T$. Let p denote the vector $(p_1, \dots, p_n)^T$ and let W denote the $n \times n$ diagonal matrix whose ith diagonal element is $p_i(1 - p_i)$.

 $H\ell(\beta) = -X^T W X$.

► Check that

$$abla \ell(eta) = X^{\mathcal{T}}(Y - oldsymbol{
ho})$$

and

- Let β denote the vector $(\beta_0, \dots, \beta_p)^T$. Let p denote the vector $(p_1, \dots, p_n)^T$ and let W denote the $n \times n$ diagonal matrix whose ith diagonal element is $p_i(1 p_i)$.
- Check that

$$\nabla \ell(\beta) = X^{\mathsf{T}}(Y - p)$$

▶ and

$$H\ell(\beta) = -X^T W X.$$

▶ The iterative scheme (2) therefore becomes

$$\beta^{(m+1)} = \beta^{(m)} + (X^T W X)^{-1} X^T (Y - p).$$

► This can be rewritten as

$$\beta^{(m+1)} = (X^T W X)^{-1} X^T W Z$$

(3)

where

$$Z = X\beta^{(m)} + W^{-1}(Y - p).$$