DSP Assignment 1 (Fall 2020) – 5Th Semester

Q.1 Consider the analog signal,

CLO-1

$$x_a(t) = 2\sin(120\pi t)$$

- a) Sketch the signal $x_a(t)$ in the interval $0 \le t \le 40$
- b) If the signal $x_a(t)$ is sampled with sampling frequency $F_s = 360$ hertz, find the frequency of the resultant discrete time signal $x(n) = x_a(nT_s)$, $T_s = \frac{1}{F_s}$. Is the signal x(n) periodic?
- c) Sketch the samples of x(n) on the diagram with of $x_a(t)$ developed in part(a). What is the period of x(n) in number of samples N and time in milli-seconds.

Q.2

An analog signal contains frequencies up to 10 kHz.

- (a) What range of sampling frequencies allows exact reconstruction of this signal from its samples?
- (b) Suppose that we sample this signal with a sampling frequency $F_s = 8$ kHz. Examine what happens to the frequency $F_1 = 5$ kHz.
- (c) Repeat part (b) for a frequency $F_2 = 9$ kHz.

Q.3

An analog signal $x_a(t) = \sin(480\pi t) + 3\sin(720\pi t)$ is sampled 600 times per second.

- (a) Determine the Nyquist sampling rate for $x_a(t)$.
- (b) Determine the folding frequency.
- (c) What are the frequencies, in radians, in the resulting discrete time signal x(n)?
- (d) If x(n) is passed through an ideal D/A converter, what is the reconstructed signal $y_a(t)$?

Q.4

The discrete-time signal $x(n) = 6.35 \cos(\pi/10)n$ is quantized with a resolution (a) $\Delta = 0.1$ or (b) $\Delta = 0.02$. How many bits are required in the A/D converter in each case?

This assignment is due on Wednesday 16th December 2020, 10:00am and its associated quiz will also be on Wednesday 16th December 2020, 02:00pm.