MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányjel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- 1. Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **elté- rő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül **a vizsgázó által megjelölt változat értékelhető**. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 11. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 12. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **ésszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 13. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

írásbeli vizsga 1513 3 / 22 2015. október 13.

Figyelem! Az útmutató elején olvasható **Fontos tudnivalók** című rész 2015 májusában lényegesen megváltozott. Kérjük, hogy a javítás megkezdése előtt figyelmesen tanulmányozza!

I.

1. a)		
Óránként 4, egy nap alatt tehát (24 · 4 =) 96 alkalommal történik meg a 2%-os növekedés.	1 pont	Ezek a pontok akkor is járnak, ha ezek a gondo-
Az olajfolt területe 15 perc alatt 1,02-szorosára nő,	1 pont	latok csak a megoldásból derülnek ki.
tehát egy nap múlva 400 · 1,02 ⁹⁶ ≈	1 pont	
$\approx 2677 \text{ m}^2 \text{ lett.}$	1 pont	
Összesen:	4 pont	

1. b)		
A naponta eltávolított olajfoltterületek (m²-ben mérve) egy olyan számtani sorozat szomszédos tagjai, amelynek első tagja 130, az első 31 tagjának összege pedig 12 400.	2 pont	Ez a 2 pont akkor is jár, ha ez a gondolat csak a megoldásból derül ki.
A napi növekedés legyen d (m²). Ekkor		
$\frac{(260+30d)\cdot 31}{2} = 12400.$	1 pont	
Ebből $d = 18 \text{ (m}^2).$	1 pont	
A napi növekedés tehát 18 m² volt.	1 pont	
Ellenőrzés. (A 31. napon 670 m²-rel csökkentették az olajfolt területét, tehát a 31 nap alatt $\frac{(130+670)\cdot 31}{2} = 400\cdot 31 = 12400 \text{ m²-rel csökkent az olajfolt mérete, vagyis valóban megszűnt.)}$	1 pont	
Összesen:	6 pont	

2. a)		
Az eredeti papírlap rövidebb oldala legyen x hosszú-	1	
ságú, ekkor a hosszabb oldala $\sqrt{2} x$ hosszúságú.	1 pont	
A félbevágással kapott papírlap egyik oldalának		
hossza x , a másik oldalának hossza pedig $\frac{\sqrt{2}}{2}x$ lesz.	1 pont	
(Mivel $\frac{\sqrt{2}}{2}$ < 1, ezért) $\frac{\sqrt{2}}{2}x$ a rövidebb oldal hosz-	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
szúsága.		oluustol aeral ki.
A félbevágással kapott papír méretaránya		
$x: \frac{\sqrt{2}}{2}x = \sqrt{2}$, ez valóban megegyezik az eredetivel.	1 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó konkrét és megfelelő oldalméretekkel számol, de nem említi, hogy ez nem megy az általánosság rovására, akkor ezért legfeljebb 2 pontot kaphat.

2. b) első megoldás		
(Ha a rövidebb oldal hossza x méter, akkor) a papír	1 4	
területe: $x \cdot \sqrt{2}x = 1 \text{ (m}^2\text{)}.$	1 pont	
A papír rövidebb oldala $x = \sqrt{\frac{1}{\sqrt{2}}} \approx 0.841$ (m),	1 pont	$x = \frac{1}{\sqrt[4]{2}}$
azaz 841 (mm),	1 pont	
hosszabb oldala $\sqrt{2}x \approx 1189$ (mm) hosszúságú.	1 pont	
Összesen:	4 pont	

2. b) második megoldás		
Az A0-s papírlap területe 1 000 000 mm ² .	1 pont	
(Ha a rövidebb oldal hossza x milliméter, akkor) a papír területe: $x \cdot \sqrt{2}x = 1~000~000~(\text{mm}^2)$.	1 pont	
A papír rövidebb oldala $x = \sqrt{\frac{1000000}{\sqrt{2}}} \approx 841 \text{ (mm)},$	1 pont	
hosszabb oldala $\sqrt{2}x \approx 1189$ (mm) hosszúságú.	1 pont	
Összesen:	4 pont	

Megjegyzés: Ha a vizsgázó a b) kérdésre adott válaszában kerekítési hibát vét, akkor ezért összesen 1 pontot veszítsen.

2. c) első megoldás		
Egy A4-es lap az 1 m²-es A0-s lap négyszeri félbevágásával kapható (A0→A1→A2→A3→A4),	1 pont	
ezért az A4-es lap $\frac{1}{16}$ m² területű.	1 pont	
Egy darab A4-es lap (80:16 =) 5 g tömegű,	1 pont	
tehát 1 csomag tömege: $500 \cdot 5 + 20 = 2520$ gramm,	1 pont	
azaz 2,52 kg.	1 pont	
Összesen:	5 pont	

2. c) második megoldás		
Egy A4-es lap az 1 m²-es A0-s lap négyszeri félbevágásával kapható (A0→A1→A2→A3→A4),	1 pont	
tehát 16 darab A4-es lap együttes területe 1 m ² .	1 pont	
Az 500 darab A4-es lap területe összesen 31,25 m ² .	1 pont	
Ezért 1 csomag tömege $31,25 \cdot 80 + 20 = 2520$ gramm,	1 pont	
azaz 2,52 kg.	1 pont	
Összesen:	5 pont	

3. a) első megoldás		
$x \ge 0 \text{ (és } y \ge 0)$	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
A második egyenletből $y = 2\sqrt{x}$ -et behelyettesítve az első egyenletbe: $2x = 12 - 2\sqrt{x}$.	1 pont	
(\sqrt{x} -re nézve másodfokú egyenletet kapunk.) $2x+2\sqrt{x}-12=0$	1 pont	
Az egyenlet gyökei: $(\sqrt{x})_1 = -3$ és $(\sqrt{x})_2 = 2$.	1 pont	
$\sqrt{x} = -3$ nem lehetséges.	1 pont	
Ha $\sqrt{x} = 2$, akkor $x = 4$, és így $y = 4$,	1 pont	
Ellenőrzés (például mindkét egyenletbe történő behelyettesítéssel).	1 pont	
Összesen:	7 pont	

3. a) második megoldás		
$x \ge 0 \text{ (és } y \ge 0)$	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
A két egyenlet összeadásával: $2x + 2\sqrt{x} = 12$.	1 pont	
$\sqrt{x} = 6 - x$, amiből (négyzetre emelés és rendezés után) $x^2 - 13x + 36 = 0$ adódik.	1 pont	
Az egyenlet gyökei: 4 és 9.	1 pont	
A 9 nem megoldása a $\sqrt{x} = 6 - x$ egyenletnek.	1 pont	
Tehát $x = 4$, és így $y = 4$.	1 pont	
Ellenőrzés mindkét egyenletbe történő behelyettesítéssel.	1 pont	
Összesen:	7 pont	

3. a) harmadik megoldás		
$x \ge 0 \text{ (és } y \ge 0)$	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
A második egyenletből négyzetre emelés, majd		
4-gyel való osztás után kapjuk: $x = \frac{y^2}{4}$.	1 pont	
Az első egyenletbe helyettesítve és rendezve:	1 nont	
$y^2 + 2y - 24 = 0.$	1 pont	
Az egyenlet gyökei: 4 és –6.	1 pont	

y = -6 esetén nincs megoldása az egyenletrendszernek.	1 pont	Ha $y = -6$, akkor $(2\sqrt{x} = y \text{ miatt}) \sqrt{x} = -3$, ami nem lehetséges.
y = 4 és így $x = 4$ adódik egyetlen megoldásként.	1 pont	
Ellenőrzés mindkét egyenletbe történő behelyettesítéssel.	1 pont	
Összesen:	7 pont	

3. b) első megoldás		
Értelmezési tartomány: $x \neq -2$ és $y \neq 3$.	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
Az első egyenletből: $4x - 3y = 19$.	1 pont	
A második egyenletből: $x = 3y - 11$.	1 pont	
Behelyettesítve: $4(3y - 11) - 3y = 19$.	1 pont	Az egyenlő együtthatók módszerével: $3x = 30$.
y = 7	1 pont	x = 10
x = 10	1 pont	y = 7
Ellenőrzés (például mindkét egyenletbe történő behelyettesítéssel).	1 pont	
Összesen:	7 pont	

3. b) második megoldás		
Értelmezési tartomány: $x \neq -2$ és $y \neq 3$.	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
A második egyenletből $\frac{x+2}{3} = y-3$.	1 pont	
Behelyettesítve az első egyenletbe: $y-3-\frac{y-3}{4}=3$.	1 pont	4y - 12 - (y - 3) = 12
$\boxed{\frac{3}{4}(y-3)=3}$	1 pont	3y - 9 = 12
y = 7	1 pont	
x = 10	1 pont	
Ellenőrzés (például mindkét egyenletbe történő behelyettesítéssel).	1 pont	
Összesen:	7 pont	

3. b) harmadik megoldás		
Értelmezési tartomány: $x \neq -2$ és $y \neq 3$.	1 pont	Ez a pont akkor is jár, ha a vizsgázó behelyettesí- téssel ellenőriz.
Vezessünk be új ismeretleneket:		
$a = \frac{x+2}{3}, b = \frac{y-3}{4},$		
a-b=3	1 pont	
melyekkel az egyenletrendszer: $\begin{cases} a-b=3\\ \frac{1}{a} - \frac{1}{4b} = 0 \end{cases}$		
(és a feltételek miatt $a \neq 0$ és $b \neq 0$ is teljesül).		
A második egyenletből $a = 4b$.	1 pont	
Ezt az első egyenletbe írva kapjuk: $b = 1$.	1 pont	
Ebből $y = 7$,	1 pont	
majd ($a = 4$ miatt) $x = 10$ adódik.	1 pont	
Ellenőrzés (például mindkét egyenletbe történő behelyettesítéssel).	1 pont	
Összesen:	7 pont	

4. a)		
Az $y = 4 - x^2$ egyenletű parabola a (-2; 0), illetve a (2; 0) pontban metszi az abszcisszatengelyt (és az emblémát határoló parabolaív az x tengely fölött van).	1 pont	
A parabolaszelet területe: $\int_{-2}^{2} (4 - x^2) dx =$	1 pont	$2 \cdot \int\limits_0^2 (4 - x^2) dx =$
$= \left[4x - \frac{x^3}{3}\right]_{-2}^2 =$	1 pont*	$=2\cdot\left[4x-\frac{x^3}{3}\right]_0^2=$
$\left(= 8 - \frac{8}{3} - \left(-8 + \frac{8}{3} \right) \right) = \frac{32}{3}.$	1 pont	$\left(=2\cdot\left(8-\frac{8}{3}-0\right)\right)=\frac{32}{3}$
A kör egyenletét átalakítva: $x^2 + (y-1,3)^2 = 1,3^2$,	1 pont	
ebből a kör sugara 1,3, területe pedig 1,69 π (\approx 5,31).	1 pont	
A kör és a parabolaszelet területének aránya: $1,69\pi:\frac{32}{3} (\approx 0,4977)$.	1 pont	<i>Kerekitett értékekkel:</i> 5,31 : 10,67 (≈ 0,4977)
A kör területe (a kért kerekítéssel) a parabolaszelet területének 50%-a.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen	8 pont	

^{*}Megjegyzés: Ez a pont akkor is jár, ha a vizsgázó a határozott integrál értékét számológéppel számítja ki.

írásbeli vizsga 1513 8 / 22 2015. október 13.

4. b) első megoldás		
A lejátszott mérkőzések száma $\binom{18}{2}$ = 153,	1 pont	
tehát a Zöld Iskola teniszezőinek összesen $\frac{1}{3} \cdot 153 =$ = 51 megnyert mérkőzése volt.	2 pont	
Ennek a 8 tanulónak az egymás közötti mérkőzései mindig a 8 tanuló valamelyikének győzelmével végződtek,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$\operatorname{ez} \binom{8}{2} (=28)$ győzelmet jelent.	1 pont	
A Zöld Iskola tanulói az 51 győztes mérkőzésük közül tehát (51 – 28 =) 23-at nyertek a Piros Iskola tanulói ellen.	1 pont	
Összesen	6 pont	

4. b) második megoldás		
A lejátszott mérkőzések száma $\binom{18}{2}$ = 153.	1 pont	
A Zöld Iskola 8 tanulójának egymás közötti mérkőzései mindig a 8 tanuló valamelyikének győzelmével végződtek,	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$\left(ez {8 \choose 2} \right) (= 28)$ győzelmet jelent.	1 pont*	
Ha a Zöld Iskola tanulói x mérkőzést nyertek a Piros Iskola tanulói ellen, akkor megnyert mérkőzéseik száma összesen $x + 28$, a Piros Iskola tanulói által nyert mérkőzések száma pedig $(153 - (x + 28) =) 125 - x$.	1 pont*	
A szöveg szerint $125 - x = 2(x + 28)$, amiből $x = 23$.	1 pont	
A Zöld Iskola tanulói 23 mérkőzést nyertek a Piros Iskola tanulói ellen.	1 pont	
Összesen	6 pont	

A *-gal jelölt 3 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó:

A Piros Iskola 10 tanulójának egymás közötti mérkő- zései mindig a 10 tanuló valamelyikének győzelmé- vel végződtek,	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$\operatorname{ez} \binom{10}{2} (=45)$ győzelmet jelent.	1 pont	
A két iskola tanulói egymás ellen $(8 \cdot 10 =) 80$ mérkőzést játszottak. Ha ebből a Zöld Iskola tanulói x mérkőzést nyertek, akkor megnyert mérkőzéseik száma összesen $x + 28$, a Piros Iskola tanulói által nyert mérkőzések száma pedig $45 + (80 - x) = 125 - x$.	1 pont	

II.

5. a) első megoldás		
A <i>B</i> futószalagra került darabok tömege 49 g, 48 g,	1 pont	
53 g és 54 g.	1 pont	
A 4-4 tömeg átlaga:		
$\frac{51+52+47+46}{4} = \frac{196}{4} = 49$ (g), illetve		
${4} = {4} = 49(g), \text{ metve}$	1 pont	
$\frac{49+48+53+54}{4} = \frac{204}{4} = 51$ (g).		
4 -31 (g).		Ezek a pontok akkor is
A 4-4 tömeg szórása:		járnak, ha a vizsgázó az
$\sqrt{\frac{(49-51)^2+(49-52)^2+(49-47)^2+(49-46)^2}{4}} =$		átlagot és a szórást (vagy annak közelítő értékét)
4		számológéppel helyesen
$=\sqrt{6.5}$ (g), illetve	2 pont	határozza meg.
$\sqrt{\frac{(51-49)^2+(51-48)^2+(51-53)^2+(51-54)^2}{4}} =$		
4		
$=\sqrt{6.5} \text{ (g)}.$		
A kát átlag tahát valában különhöző, a kát szárás na		Ha a szórások pontos ér-
A két átlag tehát valóban különböző, a két szórás pedig egyenlő.	1 pont	téke nem szerepel, akkor
dig egyenio.		ez a pont nem jár.
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó a szórásnégyzetek egyenlőségét látja be, de nem említi, hogy ekkor a szórások is megegyeznek, akkor ezért 1 pontot veszítsen.

5. a) második megoldás		
A <i>B</i> futószalagra került darabok tömege 49 g, 48 g, 53 g és 54 g.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
(Az A futószalagra került darabok tömege csökkenő sorrendben 52 g, 51 g, 47 g és 46 g, a B futószalagra került darabok tömege pedig 54 g, 53 g, 49 g, 48 g, tehát) a B futószalagra került darabok tömege rendre 2 grammal nagyobb, mint a megfelelő, A futószalagra került darabé.	1 pont	
Ha egy adatsokaság minden adatához <i>c</i> -t hozzá-adunk, akkor a sokaság átlaga <i>c</i> -vel változik, a szórása pedig változatlan marad.	2 pont	
Tehát a két futószalagra került darabok tömegének átlaga különböző (a különbség $c=2$ gramm), szórása pedig egyenlő.	1 pont	
Összesen:	5 pont	

5. b)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 pont	Ez a pont jár, ha a vizs- gázó ábra nélkül vagy ke- vésbé részletezett ábrával helyesen számol.
A 30°-os szög helyes értelmezése (például a szög jelölése az ábrán).	1 pont	
Az ABC egyenlőszárú háromszög AB oldalához tartozó magassága (Pitagorasz-tétellel): $TC = 3$.	1 pont	
Az S sík a CC' élt a H pontban metszi. A TCH derékszögű háromszögből: $tg30^{\circ} = \frac{CH}{TC}$,	1 pont	
ahonnan $CH = (TC \cdot \text{tg } 30^\circ =) 3 \cdot \frac{\sqrt{3}}{3} = \sqrt{3}$.	1 pont	
Az ABC lapot tartalmazó rész egy tetraéder, melynek ABC lapjához tartozó magassága CH.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$(T_{ABC} = 6, \text{ ezért}) \ V_{ABCH} = \frac{T_{ABC} \cdot CH}{3} = 2\sqrt{3} \ (\approx 3,46).$	1 pont	
A másik rész térfogatát megkapjuk, ha az első rész térfogatát levonjuk az eredeti hasáb térfogatából.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$V_{ABCAB'C'} = T_{ABC} \cdot CC' = 12\sqrt{3} \ (\approx 20,78)$	1 pont	
$V_{ABHAB'C'} = 12\sqrt{3} - 2\sqrt{3} = 10\sqrt{3} \ (\approx 17,32)$	1 pont	
$\frac{V_{ABCH}}{V_{ABHA'B'C'}} = \frac{2\sqrt{3}}{10\sqrt{3}} = \frac{1}{5}$	1 pont	Ez a pont akkor is jár, ha a vizsgázó az arányt kö- zelítő értékekkel írja fel helyesen.
Összesen:	11 pont	

6. a)		
Az állítás hamis.	1 pont	
Ellenpélda: a nyolcpontú egyszerű gráf két négypontú teljes gráf egyesítése.	2 pont	
Összesen:	3 pont	

6. b)		
A megfordítás: Ha egy (nyolcpontú egyszerű) gráf összefüggő, akkor a gráf minden pontjának fokszáma legalább 3.	1 pont	
A megfordított állítás hamis.	1 pont	
Bármilyen jó ellenpélda.	1 pont	Például:
Összesen:	3 pont	

6. c) első megoldás		
Rögzítsük <i>A</i> és <i>B</i> színét, például pirosra és kékre.	1 pont	
Ekkor <i>C</i> , <i>D</i> és <i>E</i> (ebben a sorrendben) a következő- képpen színezhető: pkz, pzk, zpz, zpk, zkz.	2 pont*	
Mivel A és B színe $(3 \cdot 2 =)$ 6-féleképpen választható meg,	1 pont	
ezért összesen $(5 \cdot 6 =) 30$ különböző színezés lehetséges.	1 pont	
Összesen	5 pont	

Megjegyzés: Hibának számít, ha a felsorolt esetek között rossz is szerepel, egy lehetséges esetet többször felsorol vagy egy lehetséges esetet nem ad meg a vizsgázó. Egy hiba esetén a *-gal jelölt 2 pontból 1 pontot veszítsen, egynél több hiba esetén nem jár pont erre a részre.

6. c) második megoldás		
A P B C C K P D P C C K C C C C C C C C C C C C C C C C	1 pont	
a <i>C</i> -ig 4, a <i>D</i> -ig 8-féle színezés lehetséges.	2 pont	
Az <i>E</i> csúcsnál csak akkor van két színezési lehetőség, ha a <i>D</i> csúcs piros volt, így az <i>E</i> -ig 10-féle színezés van.	1 pont	
Az A csúcs színe háromféleképpen választható meg, tehát az ötszögnek $(3 \cdot 10 =) 30$ megfelelő színezése van.	1 pont	
Összesen	5 pont	

írásbeli vizsga 1513 12 / 22 2015. október 13.

6. c) harmadik megoldás		
Színezzük az <i>A</i> csúcsot például pirosra és a vele szomszédos <i>B</i> és <i>E</i> csúcsot például kékre. Ekkor a <i>C</i> és <i>D</i> színezése piros-zöld vagy zöld-piros lehet. Tehát 2 ilyen színezés van.	1 pont	
Ha tehát olyan színezést választunk, amelyben az A -val szomszédos B és E csúcsok színe azonos, akkor ennek a három csúcsnak a színezését $3 \cdot 2 = 6$ -féleképpen választhatjuk meg. Ezért ilyen színezésből $3 \cdot 2 \cdot 2 = 12$ darab van.	1 pont	
Ha az A csúcs például piros, a B és az E pedig különböző színűek, például a B csúcs kék, és az E csúcs zöld, akkor a C és a D színe (ebben a sorrendben) lehet piros-kék, zöld-kék vagy zöld-piros. Vagyis 3 lehetőség van a színezésre.	1 pont	
Az A , B , E csúcsok színezését 3 különböző színnel $3! = 6$ különböző módon választhatjuk meg, tehát ilyen színezésből $6 \cdot 3 = 18$ darab van.	1 pont	
A lehetséges színezések száma tehát 12 + 18 = 30. Összesen	1 pont 5 pont	

6. c) negyedik megoldás		
Egy adott színt legfeljebb kétszer használhatunk szí-		
nezésre (mert nem tudunk az öt csúcsból három, pá-	1 pont	
ronként nem szomszédos csúcsot kiválasztani).		
Az öt csúcs színezésére tehát mindhárom színt fel		
kell használnunk: így biztosan (lesz 2 olyan szín,		
amivel éppen 2 csúcsot és) lesz 1 olyan szín, amivel	1 pont	
1 csúcsot színezünk, tehát ennek a csúcsnak <i>egyedi</i>		
színe lesz.		
Az egyedi szín 3-féle lehet, és az 5 csúcs bármelyike		
lehet egyedi színű, tehát 15 választási lehetőség van	1 pont	
az egyedi színnel színezésre.		
Ha az <i>egyedi színt</i> rögzítettük (például az <i>A</i> csúcs pi-		
ros), akkor a másik két színt csak felváltva használ-	1 pont	
hatjuk, de kétféle sorrendben (B kék, C zöld, D kék,	ı pont	
E zöld, vagy fordítva: B zöld, C kék, D zöld, E kék).		
Összesen (15 · 2 =) 30 lehetőség van.	1 pont	
Összesen	5 pont	

Megjegyzés: A vizsgázó teljes pontszámot kap, ha a 30 lehetséges színezést hibátlanul megadja (például felsorolja). Hibának számít, ha a felsorolt színezések között rossz is szerepel, egy lehetséges színezést többször ad meg, vagy egy lehetséges színezést kihagy a vizsgázó: minden hibáért 1 pontot veszítsen.

6. d)		
Egy négypontú teljes gráfnak $\binom{4}{2}$ = 6 éle van.	1 pont	
Ezek közül 4 élt $\binom{6}{4}$ = 15-féleképpen lehet kiválasztani. (Ez az összes esetek száma.)	1 pont	
Ha a zöld élek kört alkotnak, akkor a 2 nem zöld él a gráf két-két különböző pontját köti össze.	1 pont	Ha a gráf csúcsai A, B, C és D, akkor a kör csúcsai
A két nem zöld él kiválasztása 3-féleképpen történhet; ez a kedvező esetek száma. (Ha a gráf csúcsai <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> , akkor a megfelelő kiválasztások: <i>AB-CD</i> , <i>AC-BD</i> , <i>AD-BC</i> .)	1 pont	egy körüljárás szerint ABCDA, ABDCA, ACBDA lehetnek. A kedvező esetek száma tehát 3.
A keresett valószínűség: $p = \frac{3}{15} = 0.2$.	1 pont	
Összesen:	5 pont	

7. a)		
(Az f egy nyílt intervallumon deriválható függvény, ezért) az f függvénynek ott lehet szélsőérték-helye, ahol az első deriváltfüggvényének zérushelye van.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$f'(x) = 4x^3 + 24x^2 - 540x$	1 pont	
(Mivel $4x^3 + 24x^2 - 540x = x(4x^2 + 24x - 540)$, ezért) az f' egyik zérushelye a 0,	1 pont	
további két zérushelyét a $4x^2 + 24x - 540 = 0$ egyenlet gyökei adják: 9 és –15.	1 pont	
A (harmadfokú) deriváltfüggvény –15-ben és 9-ben negatívból pozitívba megy át, ezért ezek lokális minimumhelyei, 0-ban pedig pozitívból negatívba megy át, ezért ez lokális maximumhelye a függvénynek.	2 pont	Ez a 2 pont akkor is jár, ha a vizsgázó a második derivált előjelével indo- kol.
Mivel $f(-15) = -36850 < f(9) = -9202$,	1 pont	
továbbá a $]-\infty$; -15[intervallumon szigorúan monoton csökkenő, a $]9$; + ∞ [intervallumon pedig szigorúan monoton növekedő az f függvény, ezért a -15 valóban abszolút minimumhelye f -nek.	2 pont	Ez a 2 pont jár annak bármilyen helyes indoklá- sáért, hogy a két lokális minimumhely egyike egy- ben abszolút minimum- hely is.
Összesen:	9 pont	

írásbeli vizsga 1513 14 / 22 2015. október 13.

7. b)		
$f''(x) = 12x^2 + 48x - 540 \ (x \in \mathbf{R})$	1 pont	
Az $f''(x) = 0$ egyenletnek két gyöke van: -9 és 5.	1 pont	
Az f'' grafikonja egy "felfelé nyíló parabola", ezért a két zérushely között az f'' negatív.	1 pont	
Mivel az f " függvény a]–9; 5[intervallumon negatív, ezért az f függvény itt konkáv.	1 pont	
Összesen:	4 pont	

Megjegyzés: Az f grafikonjának egy részletét mutatja az ábra.

7. c)		
$\int_{0}^{5} f(x)dx = \left[\frac{x^{5}}{5} + 2x^{4} - 90x^{3} + 275x\right]_{0}^{5} =$	1 pont	
$= (625 + 1250 - 11\ 250 + 1375) - 0 =$	1 pont	
=-8000	1 pont	
Összesen:	3 pont	

Megjegyzés: A végeredmény indoklás nélküli közléséért nem jár pont.

8. a) első megoldás		
P(legalább 3 találat) = = 1 - [$P(0 \text{ találat}) + P(1 \text{ találat}) + P(2 \text{ találat})$]	1 pont	
$P(0 \text{ találat}) = 0.75^{8} (\approx 0.1001)$ $P(1 \text{ találat}) = {8 \choose 1} \cdot 0.25 \cdot 0.75^{7} (\approx 0.2670)$ $P(2 \text{ találat}) = {8 \choose 2} \cdot 0.25^{2} \cdot 0.75^{6} (\approx 0.3115)$	3 pont	
$P(\text{legalább 3 találat}) \approx 0,321.$	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	5 pont	Ch/

8. a) második megoldás		
$P(3 \text{ találat}) = {8 \choose 3} \cdot 0.25^3 \cdot 0.75^5 \approx 0.2076$	2 pont	
$P(4 \text{ találat}) \approx 0.0865, P(5 \text{ találat}) \approx 0.0231, P(6 \text{ találat}) \approx 0.0038, P(7 \text{ találat}) \approx 0.0004, P(8 \text{ találat}) \approx 0.0000$	2 pont	Ha a vizsgázó egy hibát vét, akkor 1 pontot veszít- sen, több hiba esetén erre a részre nem kap pontot.
A legalább 3 találat valószínűsége a fenti számok összege (0,3214, ami három tizedesjegyre kerekítve): 0,321.	1 pont	Ez a pont nem jár, ha a vizsgázó nem kerekít, vagy rosszul kerekít.
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó az a) feladat megoldása során az egyes valószínűségek három tizedesjegyre kerekített értékével jól számol, akkor 0,322 is elfogadható.

8. b)		
P(legalább 1 találat) = 1 - P(0 találat)	1 pont	
$1 - 0.75^n \ge 0.95$	1 pont	
rendezve $0.75^{n} \le 0.05$.	1 pont	
$n \cdot \lg 0.75 \le \lg 0.05$	1 pont	A 0,75 alapú logaritmus- függvény szigorúan mo- noton csökkenő, ezért $n \ge \log_{0.75} 0.05$.
(Mivel lg 0,75 < 0, így) $n \ge \frac{\lg 0,05}{\lg 0,75} \approx 10,41$.	1 pont	
Daninak legalább 11 lövésre van szüksége.	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó egyenlőtlenség helyett egyenlettel dolgozik, s azt jól megoldva helyes következtetésre jut, akkor maximális pontszámot kap.

8. c)		
(Ha a második félév végén Dani egy lövésből p valószínűséggel ért el találatot, akkor három lövésből a pontosan egy vagy pontosan két találat valószínűsége) $P(1 \text{ találat}) + P(2 \text{ találat}) = 3p^2(1-p) + 3p(1-p)^2 =$	1 pont	1 – P(3 találat) – P(0 ta-
=3p(1-p)=0.72.	1 pont	$l\acute{a}lat) = 1 - p^{3} - (1 - p)^{3}$ $1 - p^{3} - 1 + 3p - 3p^{2} + p^{3} = 0.72$
$0 = 3p^2 - 3p + 0.72$	1 pont	
Ebből $p = 0,4$ vagy $p = 0,6$.	1 pont	
A második félév végén tehát egy lövésből Dani 0,4 vagy 0,6 valószínűséggel (azaz $\frac{8}{20}$ vagy $\frac{12}{20}$ esélylyel) ért el találatot.	1 pont	
Összesen:	5 pont	

írásbeli vizsga 1513 16 / 22 2015. október 13.

9. a)		
Azt állítjuk, hogy $\frac{ab}{a+c} = \frac{ac-a^2}{b}$ igaz $(a, b, c > 0)$.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Mindkét oldalt <i>a</i> -val osztva, majd $b(c + a)$ -val szorozva: $b^2 = (c - a)(c + a)$.	1 pont	
Átalakítva: $a^2 + b^2 = c^2$, ami a Pitagorasz-tétel miatt minden derékszögű háromszögre igaz.	1 pont	
Az alkalmazott átalakítások ekvivalensek voltak,	1 pont	
ezért az eredeti $\frac{ab}{a+c} = \frac{ac-a^2}{b}$ állítás is igaz (tehát $R_A = R_P$).	1 pont	
Összesen:	5 pont	

9. b) első megoldás		
C C C C C C C C C C	1 pont	
A derékszögű háromszög területét kétféleképpen is felírhatjuk: $T = \frac{ab}{2}, \text{ illetve } T = T_{KCB\Delta} + T_{KAB\Delta} = \frac{aR}{2} + \frac{cR}{2}.$	1 pont	
Tehát $ab = aR + cR$,	1 pont	
vagyis $R = \frac{ab}{a+c}$. (Ezt kellett bizonyítani.)	1 pont	
Összesen:	4 pont	

9. b) második megoldás		
C C C C C C C C C C	1 pont	
Ha P -vel jelöljük az átfogón a félkör érintési pontját, akkor a szögek egyenlősége miatt $ABC\Delta \sim AKP\Delta$.	1 pont	
Tehát (a megfelelő oldalak arányának egyenlősége miatt) $\frac{b-R}{R} = \frac{c}{a}$.	1 pont	
Ebből $R(a+c) = ab$, ami ekvivalens az állítással. (Ezt kellett bizonyítani.)	1 pont	
Összesen:	4 pont	

9. b) harmadik megoldás		
C C C C C C C C C C	1 pont	
A félkör <i>K</i> középpontját a <i>B</i> csúcshoz tartozó belső szögfelező félegyenes metszi ki a <i>b</i> befogóból.	1 pont	
A szögfelező tétel szerint $\frac{b-R}{R} = \frac{c}{a}$.	1 pont	
Átalakítva: $R(a + c) = ab$, ami ekvivalens az eredeti állítással. (Ezt kellett bizonyítanunk.)	1 pont	
Összesen:	4 pont	

9. b) negyedik megoldás		
C C C C C C C C C C	1 pont	
Tükrözzük az <i>ABC</i> derékszögű háromszöget a <i>b</i> befogó egyenesére! Az <i>R</i> sugarú kör a <i>BAB</i> ′ háromszög beírt köre.	1 pont	
A BAB' háromszög területe egyrészt ab , másrészt (a $T = Rs$ képletből) $R(a + c)$.	1 pont	
Tehát $R(a + c) = ab$, ami ekvivalens az eredeti állítással. (Ezt kellett bizonyítanunk.)	1 pont	
Összesen:	4 pont	

9. b) ötödik megoldás		
A $b-R$ R C	1 pont	
Ha P -vel jelöljük az átfogón a félkör érintési pontját, akkor a szögek egyenlősége miatt $ABC\Delta \sim AKP\Delta$.	1 pont	
Az AP szakasz hossza $c - a$, így igaz a következő egyenlőség: $\frac{c - a}{R} = \frac{b}{a}$.	1 pont*	
Ebből $R = \frac{ac - a^2}{b}$, tehát igaz Petra képlete, de ekkor (az a) feladat szerint) Andrea képlete is. (Ezt kellett bizonyítanunk.)	1 pont*	
Összesen:	4 pont	

A *-gal jelzett 2 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

Az AKP derékszögű háromszögben a Pitagorasztételt felírva: $R^2 + (c-a)^2 = (b-R)^2$.	1 pont	
Ebből rendezés, majd 2 <i>b</i> -vel való osztás után $R = \frac{ac - a^2}{b}$ adódik, tehát igaz Petra képlete, de ekkor (az a) feladat szerint) Andrea képlete is. (Ezt kellett bizonyítanunk.)	1 pont	

9. c) első megoldás		
(Az ábra jelöléseit használjuk.)		
A $b=6$ R_b R_b R_a	1 pont	
A deltoid két oldalának hossza: $R_b = \frac{ab}{a+c} = \frac{48}{18} = \frac{8}{3} \text{ (cm)},$	1 pont	
másik két oldalának hossza: $R_a = \frac{ab}{b+c} = \frac{48}{16} = 3$ (cm).	1 pont	
A derékszögű deltoid területe: $R_a \cdot R_b = 8 \text{ (cm}^2)$.	1 pont*	
Ezt a területet kiszámíthatjuk az átlók segítségével is: $\frac{x \cdot K_a K_b}{2} = 8.$	1 pont*	
A K_aCK_b derékszögű háromszögből Pitagorasz- tétellel: $K_aK_b \left(= \sqrt{3^2 + \left(\frac{8}{3}\right)^2} = \frac{\sqrt{145}}{3} \right) \approx 4,01 \text{ (cm)}.$	1 pont*	
A CM távolság: $x = \frac{16}{K_a K_b} \left(= \frac{48}{\sqrt{145}} \right) \approx 3,99 \text{ (cm)}.$	1 pont*	
Összesen:	7 pont	

A *-gal jelölt 4 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

A *-gai jeioit 4 pontot az alabbi gonaolatmenetert is me	гдкирпици	i a vizsgazo.
A K_aK_b átló a deltoid szögfelezője (mert szimmetria- átló), amely az F pontban merőlegesen felezi a CM		
szakaszt.		
$b=6 \\ K_b \\ R_b \\ C \\ R_a \\ K_a \\ a=8 $	1 pont	A pont az ábra megrajzo- lása nélkül is jár.
Legyen $\varphi = \frac{MK_aC \triangleleft}{2}$.	1	
Például a K_aCK_b derékszögű háromszögből szög-	1 pont	
függvénnyel: $tg \varphi = \frac{R_b}{R_a} = \frac{8}{9}$, amiből $\varphi \approx 41,63^\circ$		
A CFK _a derékszögű háromszögben		
$CF = \frac{x}{2} = R_a \cdot \sin \phi \approx 3 \cdot \sin 41,63^\circ.$	1 pont	
Tehát a <i>CM</i> távolság:	1	_
$x \approx 6 \cdot \sin 41,63^{\circ} \approx 3,99$ (cm).	1 pont	

9. c) második megoldás		
Helyezzük el a derékszögű háromszöget és a két kört		
az ábra szerint derékszögű koordináta-rendszerben.		
(Az egység legyen 1 cm hosszú.)		
6 4(0;6)		
5		
4		
3	1 pont	
	1 point	
B(8; 0)		
-3 -2 -1 C 0 1 2 3 4 5 6 7 8 x		
-1		
-2		
-3		
A két kör sugara:		
$R_a = \frac{ab}{b+c} = \frac{48}{16} = 3,$ $R_b = \frac{ab}{a+c} = \frac{48}{18} = \frac{8}{3}.$	1 pont	
" b+c 16 '		
$R_{L} = \frac{ab}{a} = \frac{48}{8} = \frac{8}{8}$.	1 pont	
^b a+c 18 3	- P	
A körök egyenlete:		
$x^2 + y^2 - 6x = 0$, illetve	1 pont	
$x^2 + y^2 - \frac{16}{3}y = 0.$	1 point	
3		
A két kör egyenletéből alkotott egyenletrendszer		Kát timadagiamyna kanakit
megoldása megadja az M pontot: $M\left(\frac{384}{145}, \frac{432}{145}\right)$.	2 pont	Két tizedesjegyre kerekítve: M(2,65; 2,98).
145, 145).		ve. m(2,03, 2,70).
$(284^2 + 422^2 + 40)$		A CM távolság:
A <i>CM</i> távolság: $\left(\sqrt{\frac{384^2 + 432^2}{145^2}} = \frac{48}{\sqrt{145}}\right) \approx 3,99 \text{ (cm)}.$	1 pont	$(\sqrt{2,65^2+2,98^2} \approx)$
(V 145)		\approx 3,99 (cm).
Összesen:	7 pont	
	·	