<u>Многоуровн</u>евый анализ альтернатив в процессе принятия решений

Лозицкий Иван Павлович, гр. 622

Санкт-Петербургский Государственный Университет Статистическое моделирование

Научный руководитель: д. ф.-м. н., проф.Сушков Ю.А.

Рецензент: к. ф.-м. н., Кушербаева В.Т.

Санкт-Петербург 2017г.

Иерархия в принятии решений

Основные понятия

Пусть S — множество качественных оценок, $\Lambda = \{\lambda_{ij}\}$ — множество чисел, поставленных в соответствие каждой качественной оценке при парном сравнении объектов, где число $\lambda_{ij} \in \Lambda$ поставлено в соответствие паре объектов с номерами i и j.

Определение (Функция шкалы и шкала)

Функция шкалы — это функция, отображающая множество Λ в множество положительных вещественных чисел: $\varphi:\Lambda\to {f R}_+$. Множество значений функции φ называется шкалой.

Определение (Матрица сравнений)

Матрица сравнений для объектов $x_1,..,x_n$ — это матрица вида: $A=\{a_{ij}\}_{i,j=1}^n=\{\varphi(\lambda_{ij})\}_{i,j=1}^n$, где число $\lambda_{ij}\in\Lambda$ поставлено в соответствие паре объектов x_i и x_j .

Основные шкалы

Определение (Шкала Саати(мультипликативная))

$$\varphi(\lambda) = (1 + |\lambda| x_s)^{sign\lambda},$$

где x_s —параметр масштабирования, $\lambda \in \Lambda$.

Определение (Шкала Брука (аддитивная))

$$\varphi(\lambda) = c_s + \lambda \cdot x_s,$$

где x_s —параметр масштабирования, c_s —центральное значение, $\lambda \in \Lambda.$

Определение (Логистическая шкала)

$$\varphi_{log}(\lambda) = \frac{2}{1 + e^{-\mu\lambda}},$$

где μ —параметр крутизны, $\lambda \in \Lambda$.

Метод анализа иерархий

качественным оценкам.

Пусть $K = \{k_1, \ldots, k_m\}$ — множество критериев, $X = \{x_1, \ldots, x_n\}$ — множество альтернатив. Пусть S — множество качественных оценок, $\Lambda = \{\lambda_{ij}\}$ — множество чисел, поставленных в соответствие

Таким образом, $\exists t: X \times X \to \Lambda$, $t(x_i, x_j) = \lambda_{ij}$, где $\lambda_{ij} \in \Lambda$, и $\exists r: K \times K \to \Lambda$, $r(k_i, k_j) = \mu_{ij}$, где $\mu_{ij} \in \Lambda$.

$$S_K = \begin{pmatrix} \mu_{11} & \dots & \mu_{1m} \\ \vdots & \mu_{ij} & \vdots \\ \mu_{m1} & \dots & \mu_{mm} \end{pmatrix} i \qquad S_X = \begin{pmatrix} \lambda_{11} & \dots & \lambda_{1n} \\ \vdots & \lambda_{ij} & \vdots \\ \lambda_{n1} & \dots & \lambda_{nn} \end{pmatrix} i$$

Матрица критериев

Матрица альтернатив

Метод анализа иерархий

 S_K — матрица критериев размерности $m,\,S_X^j$ — матрица альтернатив размерности n относительно критерия k_j , где $k_j\in K$. Пусть φ — функция шкалы.

 $A_K = \varphi(S_K)$ — матрица сравнений критериев с главным с.в. $W = (w_i)_{i=1}^m;$ $A_X^j = \varphi(S_X^j)$ — матрица сравнений альтернатив относительно критерия k_j с главным с.в. V_j , где $k_j \in K$;

 $A_X = \{A_X^1, \dots, A_X^m\}$ — множество матриц сравнений альтернатив относительно критериев, $V = \{V_1, \dots, V_m\}$ — множество главных с.в. матриц сравнений альтернатив.

Главный вектор приоритетов: $G = \sum_{j=1}^m w_j V_j$;

Постановка задачи

Дано:

```
K=\{k_1,\ldots,k_m\} — множество критериев, X=\{x_1,\ldots,x_n\} — множество альтернатив, S — множество качественных оценок, F=\{\varphi_i\}_{i=1}^p — множество функций шкал.
```

Задача:

- Провести анализ на двух уровнях: на уровне альтернатив и на уровне шкал и выявить закономерности, связывающие параметры метода.
- Построить критерии выбора шкалы и множества оценок на основе матриц сравнений.
- Создать рекомендательную систему на основе полученных результатов.

Ошибки при выборе множества Λ

Задано эталонное ранжирование объектов $x_1 \succ ... \succ x_n$.

Цель: исследовать шкалы с точки зрения:

ullet ошибок при выборе чисел, поставленных в соответствие качественным оценкам, то есть при выборе множества $\Lambda.$

Предмет исследования: вероятность совпадения эталонного и итогового ранжирований, дисперсия первого элемента в ранжировании.

Метод: моделирование процесса принятия решений на основе метода анализа иерархий.

Устойчивость итогового ранжирования

 $\Lambda = -5:5$, элементы $\lambda_{ij} \in \Lambda$ — целые числа.

Пусть λ_{ij} — независимые реализации дискретной случайной величины, имеющей равномерное распределение на Λ .

Ошибка: $arepsilon_{ij}$, имеет равномерное распределение на [0;1].

Количество реализаций: 1000; Количество альтернатив: n=5

Шкала: логистическая.

Исследуемые значения параметра крутизны $\mu:0.3,0.7,1.0,5.0.$

Устойчивость итогового ранжирования

Рис.: Моделирование ошибки выбора элементов множества Λ для логистической шкалы с параметром $\mu=0.3$

Вероятность совпадения ранжирований: 0.9, общее количество вариантов ранжирования — 2.

Устойчивость итогового ранжирования. Результаты

Таблица: Оценки вероятности появления ранжирований при наличии ошибок в выборе элементов множества Λ .

Логистическая шкала, $\mu=0.3$	
Ранжирование	Оценка вероятности
$x_1 \succ x_2 \succ x_3 \succ x_4 \succ x_5$	0.9
$x_1 \succ x_2 \succ x_3 \succ x_5 \succ x_4$	0.1

Логистическая шкала, $\mu=1.5$	
Упорядочивание	Оценка вероятности
$x_1 \succ x_2 \succ x_3 \succ x_4 \succ x_5$	0.3
$x_1 \succ x_2 \succ x_3 \succ x_5 \succ x_4$	0.1
$x_2 \succ x_1 \succ x_3 \succ x_5 \succ x_4$	0.25
$x_2 \succ x_1 \succ x_3 \succ x_4 \succ x_5$	0.35

Влияние множества оценок на итоговое ранжирование

Фиксируем эталонное ранжирование объектов $x_1\succ ... \succ x_n$, $\Lambda=-10:10$ — множество чисел, поставленных в соответствие качественным оценкам, и некоторое множество $\Delta\subset\Lambda$.

Строим матрицы сравнений, состоящие из элементов множества $\Lambda \setminus \Delta$. Количество реализаций: 1000. Шкалы: логистическая шкала и шкала Саати.

Цель: оценить дисперсию веса первого элемента в ранжировании исходя из разных вариантов множества Δ .

План: сгенерировать всевозможные варианты множества Δ размерности от 1 до 5, оценить вероятности совпадения ранжирований и дисперсию веса первого элемента.

Влияние множества оценок на итоговое ранжирование

Рис.: Логистическая шкала с множеством Δ из 2 элементов.

Рис.: Логистическая шкала с множеством Δ из 5 элементов.

Влияние множества оценок на итоговое ранжирование

0.00015 Дисперсия веса 0.00010 0.00005 0.0000.0 100 200 250 Варианты множества Δ

Рис.: Шкала Саати с множеством Рис.: Шкала Саати с множеством Δ из 2 элементов.

 Δ из 5 элементов.

Влияние множества оценок на итоговое ранжирование. Результаты

- По сравнению со стандартным методом анализа иерархий, его модификация, основанная на «неиспользовании» определенных качественных оценок позволяет получить более устойчивое решение в большинстве случаев.
- Выбор шкалы и ее параметров не влияет на то, при каких вариантах множества Δ достигаются локальные минимумы дисперсии.
- ullet Увеличение размерности множества Δ приводит к увеличению дисперсии.
- Логистическая шкала позволяет получить более устойчивое решение в модифицированном варианте метода по сравнению со стандартным вариантом и по сравнению со шкалой Саати.

Трансформация шкалы. Постановка задачи

Дано множество $\Lambda=-10:10$, элементы $\lambda_{ij}\in \Lambda$ — целые числа, и некоторое множество «неиспользуемых» оценок $\Delta\subset \Lambda.$

Будем «трансформировать» элементы множества $\Lambda \setminus \Delta$ разными способами и в условиях предыдущего эксперимента считать дисперсию веса первого элемента в ранжировании.

Например:

 $\Lambda=-10:10,\ \Delta=\{-1,-3,-7,-9,1,3,7,9\}.$ В множестве $\Lambda\setminus\Delta$ будем определенным образом варьировать элементы, и на основе полученного множества моделируем матрицы попарных сравнений и считаем дисперсию веса первого элемента в ранжировании.

Трансформация шкалы. Пример

Тип трансформации: попеременное сужение и расширение интервалов между оценками на величину ϵ .

Рис.: Трансформация «сужение-расширение» при $\epsilon=0.25$

Синий цвет - без трансформации, желтый - «сужение-расширение», зеленый - «расширение-сужение».

Трансформация шкалы. Результаты

- При последовательном попарном сужении и расширении интервалов дисперсия увеличивается на величину, которая зависит величины сужения.
- При последовательном попарном расширении и сужении интервалов дисперсия уменьшается на величину, которая зависит величины расширения.
- При попарном последовательном сужении интервалов дисперсия увеличивается прямо пропорционально величине расширения.
- При попарном сужении с последовательным расширением интервалов дисперсия не меняется.
- При сдвиге всех элементов важен либо первый сдвиг влево, либо порядок сдвига.

Локальная трансформация шкалы

Тип трансформации: локальная трансформация - варьирование одного из элементов множества $\Lambda \setminus \Delta$. Например, $L^+ = \{1, X, 3, ..., 10\}, X = \{2.1, 2.25, 2.5, 2.8\};$

Локальная трансформация шкалы. Результаты

- Каждый параметр меняет дисперсию на соответствующем участке использования данного параметра. Чем ближе к средней оценке альтернативы, тем слабее влияет изменение соответствующего параметра на дисперсию.
- Параметр шкалы существенно не влияет на поведение дисперсии — важно лишь относительное расположение и разница между оценками.

Рекомендательная система «Alternate 1.0»

Рекомендательная система:

- дает рекомендацию в выборе наилучшей альтернативы в виде упорядоченного списка альтернатив с точки зрения предпочтительности выбора;
- предлагает другие варианты упорядоченного списка альтернатив, с учетом ограничений, наложенных пользователем на систему, а также параметров, которые мог выбрать пользователь (но по каким-то причинам не выбрал).

Рекомендательная система «Alternate 1.0»

Итог Ваша цель: Цель Вы произвели сравнения альтернатив: Альтернатива 1, Альтернатива 2, Альтернатива 3, относительно следующих критериев: Измененный критерий, Критерий 2, Критерий 3, Итоговое упорядочивание альтернатив с точки зрения предпочтительности выбора: Альтернатива 3 Альтернатива 1 Альтернатива 2 Если вы хотите получить расширенные дополнительные рекомендации:

Рис.: Рекомендация системы «Alternate 1.0»

https://alternate10.github.io/

Результаты

- Изучены основные свойства и особенности метода анализа иерархий.
- Сформированы критерии выбора шкал, параметров и альтернатив в заданных условиях и ограничениях.
- Выявлены закономерности при варьировании множества используемых оценок.
- Получены статистические данные, позволяющие оперативнее принимать оптимальное решение в конкретных условиях.
- Создана система принятия решений «Alternate 1.0» с функциями рекомендации и подбора оптимального решения при варьировании ограничений.

Спасибо за внимание!