

Certification of Compliance

47 CFR Part 22(H)/ Part 24(E)

Test Report File No.	GSTL-EF13-002		■ Basic		□ Alternate
Date of Receipt	May 13, 2013	Begin of te	st date	May	y 14, 2013
Date of Issue	June 04, 2013	End of test	date	Jun	e 03, 2013

Kind of Product	Dual Band SRU	
Basic Model(s)	DBSRU-CP	
FCCID	Z69D01T4JX2	

Intelibs, Inc.		
1500 Stony Brook Road, Suite 385, Stony Brook, NY 11794, USA		
Intelibs, Inc.		
1500 Stony Brook Road, Suite 385, Stony Brook, NY 11794, USA		
23 dBm for transmitting single band		
26 dBm for transmitting dual band simultaneously		
PCS Licensed Transmitter		
GSM(EDGE)/ CDMA/ WCDMA		
FCC Part 22(H), 24(E), 2		

Tested By Reviewed By

Ci Dyun Kyu

200

U.H. Ryu

S.J.OH

Comment(s)

- -This test report consists of 59 pages with appendix.
- -The test result only responds to the tested sample. This report shall not be reproduced except in full, without the allowance of the test laboratory.
- -Information of GSTL test laboratory

635-3, Sugwang-ri, Sindun-myeon, Icheon-si, Gyeonggi-do, 467-843, Korea

Tel+82-31-634-1800/+82-1-634-2984

Fax+82-31-634-2985

TABLE OF CONTENTS	
Table of contents	2
General Information	3
Product Information	4-5
Summary	6
■ Test Report	
Summary of test	6
RF Power Output	7
Occupied Bandwidth	8-20
Out of Band Emissions at antenna terminal	21-45
Inter-modulation Test	46-52
Transmitter Spurious Radiation	53-54
Frequency Stability	55-57
Conclusion	58
ppendix A. Test equipment used for test	59

1. General Information

1.1 Test Firm

Company name : GSTL Co., Ltd.

Address : 635-3, Sugwang-ri, Shindun-myeon, Icheon-si

Gyeonggi-do, Korea, 467-843

Web site : http://www.gstl.co.kr

E-mail : <u>rf@gstl.co.kr</u>

Telephone : +82-31-634-1800

Facsimile : +82-31-634- 2984

1.2 Accredited agencies

- KCC Registration No. : KR0146

- FCC MRA Registration No. : 273444

2. PRODUCT INFORMATION

2.1 Client & Manufacturer

Company name : Intelibs, Inc.

Address : 1500 Stony Brook Road, Suite 385, Stony Brook, NY 11794, USA

Telephone : +1-917-209-5930

2.2 Equipment Under Test (EUT)

Classification : PCS Licensed Transmitter

Trade name : Intelibs

Model name : Dual Band SRU Serial number : Identification

EUT condition : Pre-production, not damaged

Downlink : 869~894MHz (GSM 850(EDGE))

1930~1990MHz (GSM 1900(EDGE))

869~894MHz (CDMA 850)
 1930~1990MHz (CDMA 1900)
 869~894MHz (WCDMA 850)
 1930~1990MHz (WCDMA 1900)

System gain : 50 dBm max. Frequency Tolerance : ±0.01 ppm

Emission Designators : F9W Power Input : 12 Vdc

• Please refer to User's Manual.

2.3 The dc voltages applied to and dc currents

- SRU (Dual Band)

Module name		The current consumption of each module (mA)			
iviodule name		12	Vdc	7	Vdc
1	Optical Module	200		100	
2	MCU Board	70			
3	Quadplexer Cavity Filter				
4	RF Transceiver			3500	
	Supply current for each voltage (mA)	270		3600	

2.4 Tested Frequency

Mode	TX (MHz)
	869.20
GSM 850_DL	881.50
	893.80
	869.70
CDMA 850_DL	881.50
	893.31
	871.40
WCDMA 850_DL	881.50
	891.60
	1930.20
GSM 1900_DL	1960.00
	1989.80
	1931.20
CDMA 1900_DL	1960.00
	1988.90
	1932.40
WCDMA 1900_DL	1960.00
	1987.60

2.5 Mode of Operation

The EUT was powered by DC 12 V using external AC/DC Adaptor. The EUT was configured for system gain, 50dB. Repeater simulators were used to provide the input signals to the EUT. Tests were performed with GSM, CDMA and WCDMA modulations. The input power was the maximum declared by the manufacturer.

3. Summary

3.1 Summary of test

<u>Parameter</u>	Status			
Transmitter Requirements				
RF Power Output	С			
Occupied Bandwidth	С			
Out-of-Band Emissions at antenna terminal	С			
Inter-modulation Test	С			
Transmitter Spurious Radiation	С			
Frequency Stability	С			
Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable	le			
Note 2: The data in this test report are to be tested to the ANSI/TIA-603-C-2004 standard				

3.2 Summary of test

3.2.1 RF Power Output

1) Test Procedure

The EUT RF output was connected to Power Meter. The EUT was setup to transmit continuously with maximum power. A spectrum analyzer was setup to measure peak power. Measurements were performed at three frequencies (low, middle, and high channels) with all modulations

2) Test Result

Modulation: GSM 850

	Freq. Tuned(MHz)	Power Input(dBm)	Power output(dBm)	Power Output(W)
Low	869.20	-10.00	22.53	0.18
Middle	881.50	-10.00	23.24	0.21
High	893.80	-10.00	22.21	0.17

Modulation: CDMA 850

	Freq. Tuned(MHz)	Power Input(dBm)	Power output(dBm)	Power Output(W)
Low	869.70	-10.00	23.25	0.21
Middle	881.50	-10.00	23.76	0.24
High	893.31	-10.00	23.06	0.20

Modulation: WCDMA 850

	Freq. Tuned(MHz)	Power Input(dBm)	Power output(dBm)	Power Output(W)
Low	871.40	-10.00	23.05	0.20
Middle	881.50	-10.00	23.36	0.22
High	891.60	-10.00	23.21	0.21

Modulation: GSM 1900

	Freq. Tuned(MHz)	Power Input(dBm)	Power output(dBm)	Power Output(W)
Low	1930.20	-10.00	23.17	0.21
Middle	1960.00	-10.00	23.46	0.22
High	1989.80	-10.00	22.76	0.19

Modulation: CDMA 1900

	Freq. Tuned(MHz)	Power Input(dBm)	Power output(dBm)	Power Output(W)
Low	1931.20	-10.00	23.26	0.21
Middle	1960.00	-10.00	23.09	0.20
High	1988.70	-10.00	22.82	0.19

Modulation: WCDMA 1900

	Freq. Tuned(MHz)	Power Input(dBm)	Power output(dBm)	Power Output(W)
Low	1932.00	-10.00	23.60	0.23
Middle	1960.00	-10.00	23.25	0.21
High	1988.00	-10.00	22.80	0.19

3.2.2 Occupied Bandwidth

1) Test Procedure

The EUT RF ports were connected to Spectrum analyzer. The EUT was setup to transmit maximum power. The spectrum analyzer was setup to measure the Occupied Bandwidth (defined as the 99% Power Bandwidth). The Occupied Bandwidth was measured at the output ports of the EUT at the first, middle and last channels for each type of modulation.

2) Test Result : complies

Refer to the following graphs.

Occupied Bandwidth at GSM 850

Low

Occupied Bandwidth at GSM 1900

Low Agilent R Т Freq/Channel Ch Freq 1.9302 GHz Trig Free Center Freq 1.93020000 GHz **Occupied Bandwidth** Start Freq 1.92870000 GHz Ref 30 dBm Atten 20 dB #Samp Stop Freq 1.93170000 GHz Log 10 dB/ CF Step Offst 22 300.000000 kHz Man <u>Auto</u> dΒ Freq Offset 0.00000000 Hz Center 1.93 GHz Span 3 MHz #Res BW 3 kHz #VBW 30 kHz Sweep 528.8 ms (401 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % Off x dB -26.00 dB 231.8899 kHz Scale Type Transmit Freq Error -4.440 kHz Log x dB Bandwidth 293.666 kHz*

Middle Agilent R Freq/Channel Ch Freq 1.96 GHz Trig Free Center Freq **Occupied Bandwidth** 1.96000000 GHz Start Freq 1.95850000 GHz Ref 30 dBm Atten 20 dB #Samp Stop Freq 1.96150000 GHz Log 10 dB/ CF Step Offst 300.000000 kHz <u>Auto</u> Freq Offset 0.00000000 Hz Span 3 MHz Center 1.96 GHz #Res BW 3 kHz Sweep 528.8 ms (401 pts) #VBW 30 kHz Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % x dB -26.00 dB 251.2243 kHz Scale Type Transmit Freq Error -757.580 Hz x dB Bandwidth 314.561 kHz*

Occupied Bandwidth at CDMA 850

Low Agilent R Т Freq/Channel Ch Freq 869.7 MHz Trig Free Center Freq **Occupied Bandwidth** 869.700000 MHz Start Freq 868.200000 MHz Ref 30 dBm Atten 20 dB #Samp Stop Freq Log 871.200000 MHz 10 dB/ CF Step Offst 22 300.000000 kHz Man <u>Auto</u> dΒ Freq Offset 0.00000000 Hz Span 3 MHz Center 869.7 MHz #Res BW 3 kHz #VBW 30 kHz Sweep 528.8 ms (401 pts) Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % Off x dB -26.00 dB 1.2473 MHz Scale Type Transmit Freq Error 6.657 kHz Log x dB Bandwidth 1.382 MHz³

Occupied Bandwidth at CDMA 1900

Low

Occupied Bandwidth at WCDMA 850

Low

Occupied Bandwidth at WCDMA 1900

Low

3.2.3 Out-of -Band Emission at antenna terminal

1) Requirement

The power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least (43 + 10 log P) dB. Note: That corresponds to the level of -13 dBm for any out-of-band and spurious emissions.

2) Test Procedure

The EUT RF output was connected to spectrum analyzer. The EUT was setup to transmit the maximum power. The spectrum analyzer resolution bandwidth (RBW) was set to 1 MHz in the PCS band and 100 kHz in the Cell band. For measurements at the band edges, the resolution bandwidth (RBW) was set to 100 kHz. Measurements were performed at three frequencies at the low, middle, and high channels for all modulations types. Intermodulation was performed by injecting two modulated signals into the EUT. One signal was set at the bandedge of Down Link band and the other signal was set 6 MHz away.

3) Test Result : complies

Refer to the following graphs.

Antenna Terminal Spurious Emission at GSM 850

Low

Low

High

Antenna Terminal Spurious Emission at GSM 1900

Low

Low

Middle

High

Antenna Terminal Spurious Emission at CDMA 850

Low

Low

Middle

High

Antenna Terminal Spurious Emission at CDMA 1900

Low

Low

Middle

Antenna Terminal Spurious Emission at WCDMA 850

Low

Low

Antenna Terminal Spurious Emission at CDMA 1900

Low

Low

Middle

Middle

Band Edge Emission at GSM 850

Low

Band Edge Emission at GSM 1900

#Res BW 3 kHz

Low Agilent R Т Marker Mkr1 1.9299950 GHz -24.58 dBm Ref 20 dBm Atten 10 dB Select Marker Peak <u>2</u> <u>3</u> Log 10 dB/ Normal Offst 22 dB Delta DI -13.0 dBm Delta Pair (Tracking Ref) ef <u>Delta</u> Ref M1 S2 Span Pair S3 FC Span Center AA Off More Center 1.93 GHz Span 1 MHz 1 of 2

#VBW 10 kHz

Sweep 114.4 ms (401 pts)

Band Edge Emission at CDMA 850

Low

Band Edge Emission at CDMA 1900

Low

Band Edge Emission at WCDMA 850

Low

Band Edge Emission at WCDMA 1900

#Res BW 3 kHz

Low Agilent R Т Marker Mkr1 1.930000 GHz Ref 20 dBm Atten 10 dB -41.97 dBm Select Marker Peak <u>2</u> <u>3</u> Log 10 dB/ Normal Offst 22 dB Delta DI -13.0 dBm Delta Pair (Tracking Ref) ef <u>Delta</u> Ref M1 S2 Mum Span Pair S3 FC Span Center AA Off More Center 1.93 GHz Span 10 MHz 1 of 2

Sweep 1.144 s (401 pts)

#VBW 10 kHz

3.2.4 Inter-Modulation

1) Requirement

The power of any emission shall be attenuated below the transmitter power (P) by at least 43 +10 log (P) dB. The limit of emission equal to -13dBm.

3) Test Procedure

Two RF signals set as inputs. The frequencies of both RF signals shall be within the repeater's operating band. The spacing between both RF signals shall be the minimum possible spacing applied in a network. The level of both RF input signals shall be increased, until the maximum rated output power per channel, as declared by the manufacturer, is reached.

4) Test Result : complies

Refer to the following graphs.

GSM 850

GSM 1900

CDMA 850

CDMA 1900

WCDMA 850

WCDMA 1900

Low

3.2.5 Transmitter Spurious Radiation

1) Requirement

The power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least (43 + 10 log P) dB. Note: That corresponds to the level of -13 dBm for any radiated out-of-band and spurious emissions.

2) Test Procedure

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The frequency range up to 10-th harmonic of each of the three fundamental frequencies (low, middle, and high channels) was investigated. The worst case of emission was reported. For spurious emissions attenuation, the substitution method was used. The EUT was substituted by a reference antenna (half-wave dipole - below 1 GHz, or Horn antenna - above 1GHz), connected to a signal generator. The signal generator output level (Vg in dBm) was adjusted to obtain the same reading as from EUT. The EIRP at the spurious emissions frequency was calculated as follows.

EIRP(dBm) = Vg + G (dBi)

The EUT output port was connected to a 50 Ω termination load.

3) Test Result : complies

* EIRP is calculated as: EIRP(dBm)= Vg(dBm) + G (dBi)
All other emissions not reported are more than 20 dB below the limit.

Fransmitte	r Spurious R	adiated Emissions – GSM 850			
Frequency SA Reading [dBuV/m]		Signal Generator Output required to have the same SA Reading as from EUT [dBm]	EIRP [dBm]	Limit [dBm]	Margin [dB]
	All othe	er emissions not reported are more than	20 dB below th	ne limit	
	7th Othe	r emissions not reported are more than	20 db below ti	ic iiiiii.	
Fransmitte	r Spurious R	adiated Emissions – GSM 1900			
Frequency SA Reading [MHz] [dBuV/m]		Signal Generator Output required to have the same SA Reading as from EUT [dBm]	EIRP [dBm]	Limit [dBm]	Margin [dB]
	All othe	er emissions not reported are more than	20 dB below th	ne limit.	
Fransmitte	r Spurious R	adiated Emissions – CDMA 850)		
Frequency SA Reading [dBuV/m]		Signal Generator Output required to have the same SA Reading as from EUT [dBm]	EIRP [dBm]	Limit [dBm]	Margin [dB]
All other emissions not reported are more than 20 dB below the limit.					
	7 01.1.0		20 42 20.011 1.		
Fransmitte	r Spurious R	adiated Emissions – CDMA 190	0		
Frequency [MHz]	SA Reading [dBuV/m]	Signal Generator Output required to have the same SA Reading as from EUT [dBm]	EIRP [dBm]	Limit [dBm]	Margin [dB]
	All othe	er emissions not reported are more than	20 dB below th	ae limit	
	All othe	er emissions not reported are more than	20 db below ti	ie iiiiit.	
Transmitte:	r Spurious R	adiated Emissions – WCDMA 8	50		
Frequency [MHz]	SA Reading [dBuV/m]	Signal Generator Output required to have the same SA Reading as from EUT [dBm]	EIRP [dBm]	Limit [dBm]	Margin [dB]
	All othe	er emissions not reported are more than	20 dB below th	ne limit	
	7.11 0.1116	sssions not reported are more than	to ab bolow ti		
Transmitte	r Spurious R	adiated Emissions – WCDMA 1	900		
		Signal Generator Output required to have the same SA Reading as from EUT [dBm]	EIRP [dBm]	Limit [dBm]	Margin [dB]
	ملام الم	r omiociono not roncutad que uscur the	20 dD halaw #	an limit	
	All othe	er emissions not reported are more than	∠o an pelow ti	ne ilmit.	

3.2.5 Frequency Stability

1) Requirement

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

2) Test Procedure

The EUT was placed inside the temperature chamber. The RF output port was connected to a spectrum analyzer. The EUT was setup to transmit the maximum power. After the temperature stabilized for approximately 20 minutes, the transmitting frequency was measured by the spectrum analyzer and recorded. At room temperature, the frequency was measured when the EUT was powered with the nominal voltage and with 85% and 115% of the nominal voltage.

3) Test Result : complies

Refer to the next page.

OPERATING FREQUENCY : 881,520,072 Hz

CHANNEL : <u>384(Mid)</u>

REFERENCE VOLTAGE : 9 VDC DEVIATION LIMIT : ± 0.00010 % or 1 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (dB)	FREQ (Hz)	Deviation (%)
100%	9	+20(Ref)	881,520,072	0.000000
100%		-30	881,520,029	-0.000005
100%		-20	881,520,018	-0.000006
100%		-10	881,520,010	-0.000007
100%		0	881,520,043	-0.000003
100%		+10	881,520,063	-0.000001
100%		+20	881,520,072	0.000000
100%		+25	881,520,115	0.000005
100%		+30	881,520,118	0.000005
100%		+40	881,520,184	0.000013
100%		+50	881,520,197	0.000014
100%		+60	881,520,155	0.000009
85%	7.65	+20	881,520,086	0.000002
115%	10.35	+20	881,520,082	0.000001

OPERATING FREQUENCY: 1,960,000,917 Hz

CHANNEL: 661(Mid)

REFERENCE VOLTAGE : 9 VDC

DEVIATION LIMIT : ± 0.00010 % or 1 ppm

VOLTAGE (%)	POWER (VDC)	TEMP (dB)	FREQ (Hz)	Deviation (%)
100%	9	+20(Ref)	1,960,000,917	0.000002
100%		-30	1,960,001,314	0.000018
100%		-20	1,960,001,268	0.000016
100%		-10	1,960,001,075	0.000006
100%		0	1,960,001,094	0.000007
100%		+10	1,960,001,083	0.000006
100%		+20	1,960,001,112	0.000008
100%		+25	1,960,001,098	0.000007
100%		+30	1,960,000,843	-0.000006
100%		+40	1,960,000,813	-0.000008
100%		+50	1,960,000,822	-0.000007
100%		+60	1,960,000,786	-0.000009
85%	7.65	+20	1,960,000,937	-0.000001
115%	10.35	+20	1,960,000,920	-0.000002

www.gsti.co.kr
3.3 CONCLUSION
The data collected shows that Intelibs, Inc. Dual Band SRU FCC ID: Z69D01T4JX2 complies with all the requirements of Parts 2, 22, 24 of the FCC Rules.

Appendix A Test Equipment Used for test

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Spectrum Analyzer	E4407B	US39010161	Agilent	1 year	2013-03-29
2	Spectrum Analyzer	R3273	121000578	Advantest	1 year	2013-05-14
3	Signal Generator	E4438C	MY44270255	Agilent	1 year	2013-03-29
4	Signal Generator	E4438C	MY45094263	Agilent	1 year	2013-05-10
5	CDMA Mobile Station test set	E8285A	US39220991	Agilent	1 year	2013-03-29
6	Synthesized Sweeper	83752A	3610AA01480	Agilent	1 year	2013-03-29
7	Attenuator	8494B	MY41110957	Agilent	1 year	2013-03-29
8	Attenuator	8496B	US00340476	Agilent	1 year	2013-03-29
9	Horn Antenna	3115	102292	ETS-Lindgren	2 year	2012-04-10
10	RF Amplifier	TS-PA2	1020007	TESTEK	1 year	2012-10-07
11	RF Amplifier	8447D	2944A10704	НР	1 year	2012-10-07
12	Test Receiver	ESVD	836108/010	R&S	1 year	2013-03-14
13	Test Receiver	ESCS30	834115/019	R&S	1 year	2012-07-10
14	Log Periodic Antenna	VULP 9168	9168-485	Schwarz Beck	2 year	2012-05-10
15	Power Divider	11636B	54379	Agilent	1 year	2013-03-29
16	Dual Directional Coupler	11682D	1212A02230	НР	1 year	2013-03-29
17	Dual Directional Coupler	778D-012	15738	НР	1 year	2013-03-29
18	DC Power Supply	E3632A	KR75305602	НР	1 year	2013-03-29
19	Power Meter	E4416A	GB41050492	Agilent	1 year	2013-03-29
20	Power Sensor	E9327A	US40441493	Agilent	1 year	2013-03-29
21	Function Generator	33250A	US40000357	Agilent	1 year	2013-03-29
22	Modulation Analyzer	8901B	3438A05222	Agilent	1 year	2013-03-29
23	Audio Analyzer	3903B	3514A15367	Agilent	1 year	2013-03-29
24	Frequency Counter	5315B	3049A01558	НР	1 year	2013-03-29
25	Terminator	2001-6005-00	None	OMNISPECTRA	1 year	2013-03-29
26	TEMP & HUMIDITY Chamber	EN-VT-150	EN-090402	ENEX Scientific	1 year	2013-03-29