Versão do Python

```
!python --version

→ Python 3.11.11
```

Intalando as biblotecas

```
!pip install pandas numpy matplotlib seaborn requests beautifulsoup4 scikit-learn joblib
```

```
Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (2.2.2)
    Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (1.26.4)
    Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (3.10.0)
    Requirement already satisfied: seaborn in /usr/local/lib/python3.11/dist-packages (0.13.2)
    Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (2.32.3)
    Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.11/dist-packages (4.13.3)
    Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-packages (1.6.1)
    Requirement already satisfied: joblib in /usr/local/lib/python3.11/dist-packages (1.4.2)
    Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas) (2.8.2)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas) (2025.1)
    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas) (2025.1)
    Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.3.1)
    Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (0.12.1)
    Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (4.55.8)
    Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.4.8)
    Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (24.2)
    Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (11.1.0)
    Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (3.2.1)
    Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests) (3.4.1)
    Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests) (3.10)
    Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests) (2.3.0)
    Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests) (2025.1.31)
    Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.11/dist-packages (from beautifulsoup4) (2.6)
    Requirement already satisfied: typing-extensions>=4.0.0 in /usr/local/lib/python3.11/dist-packages (from beautifulsoup4) (4.12.2)
    Requirement already satisfied: scipy>=1.6.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (1.13.1)
    Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (3.5.0)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)
```

1. Faça uma análise exploratória dos dados (EDA), demonstrando as principais características entre as variáveis e apresentando algumas hipóteses de negócio relacionadas.

Análise Exploratória dos Dados (EDA)

Para realizar uma análise exploratória dos dados (EDA) do arquivo teste_precificacao.csv, vamos explorar as principais características das variáveis e formular algumas hipóteses de negócio relacionadas.

Importação e Inspeção Inicial dos Dados

Primeiro, vamos importar as bibliotecas necessárias e carregar o conjunto de dados:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Carregar o conjunto de dados
df = pd.read_csv('teste_precificacao.csv')
```

Agora, vamos dar uma olhada nas primeiras linhas do conjunto de dados:

```
print(df.head())
```

```
id nome host_id \
0 2595 Skylit Midtown Castle 2845
1 3647 THE VILLAGE OF HARLEM....NEW YORK ! 4632
2 3831 Cozy Entire Floor of Brownstone 4869
```

```
3 5022
        Entire Apt: Spacious Studio/Loft by central park
                                                               7192
4 5099
                Large Cozy 1 BR Apartment In Midtown East
                                                               7322
     host_name bairro_group
                                   bairro latitude
                                                     longitude
0
                                  Midtown
                                           40.75362
                                                      -73.98377
      Jennifer
                  Manhattan
     Elisabeth
                  Manhattan
                                   Harlem
                                           40.80902
                                                      -73.94190
1
2
                   Brooklyn
                             Clinton Hill
                                           40.68514
                                                      -73.95976
  LisaRoxanne
                              East Harlem 40.79851
3
                                                     -73.94399
         Laura
                  Manhattan
4
        Chris
                  Manhattan
                              Murray Hill 40.74767
                                                     -73.97500
         room_type
                   price
                           minimo_noites
                                          numero_de_reviews ultima_review
0
  Entire home/apt
                      225
                                       1
                                                          45
                                                                2019-05-21
      Private room
                      150
                                       3
                                                           0
                                                                       NaN
   Entire home/apt
                       89
                                       1
                                                         270
                                                                2019-07-05
  Entire home/apt
                       80
                                      10
                                                           9
                                                                2018-11-19
4
  Entire home/apt
                      200
                                                          74
                                                                2019-06-22
                                       3
                                                    disponibilidade 365
   reviews_por_mes calculado_host_listings_count
0
              0.38
1
               NaN
                                                 1
                                                                    365
              4.64
2
                                                 1
                                                                    194
3
              0.10
                                                 1
                                                                      a
4
              0.59
                                                 1
                                                                    129
```

Descrição Estatística das Variáveis Numéricas

Vamos analisar as estatísticas descritivas das variáveis numéricas:

print(df.describe())

_		id	host_id	latitude	longitude	price	١
	count	4.889400e+04	4.889400e+04	48894.000000	48894.000000	48894.000000	
	mean	1.901753e+07	6.762139e+07	40.728951	-73.952169	152.720763	
	std	1.098288e+07	7.861118e+07	0.054529	0.046157	240.156625	
	min	2.595000e+03	2.438000e+03	40.499790	-74.244420	0.000000	
	25%	9.472371e+06	7.822737e+06	40.690100	-73.983070	69.000000	
	50%	1.967743e+07	3.079553e+07	40.723075	-73.955680	106.000000	
	75%	2.915225e+07	1.074344e+08	40.763117	-73.936273	175.000000	
	max	3.648724e+07	2.743213e+08	40.913060	-73.712990	10000.000000	
		<pre>minimo_noites</pre>	numero_de_re	views reviews	_por_mes \		
	count	48894.000000	48894.00	00000 3884	2.000000		
	mean	7.030085	23.2	74758	1.373251		
	std	20.510741	44.5	50991	1.680453		
	min	1.000000	0.0	00000	0.010000		
	25%	1.000000	1.00	00000	0.190000		
	50%	3.000000	5.00	00000	0.720000		
	75%	5.000000	24.00	00000	2.020000		
	max	1250.000000	629.00	00000 5	58.500000		
		calculado_hos	t_listings_cou	nt disponibil	idade_365		
	count		48894.0000	00 488	94.000000		
	mean		7.1440	05 1	12.776169		
	std		32.9528	55 1	31.618692		
	min		1.0000	00	0.000000		
	25%		1.0000	00	0.000000		
	50%		1.0000	00	45.000000		
	75%		2.0000	00 2	27.000000		
	max		327.0000	00 3	65.000000		

price: O preço médio por noite é de aproximadamente \$152, com um desvio padrão de \$240. O preço mínimo é \$0 e o máximo é \$10,000. minimo_noites: A média de noites mínimas é de aproximadamente 7, com um desvio padrão de 20. O mínimo é 1 e o máximo é 1,250. numero_de_reviews: A média de avaliações é de aproximadamente 23, com um desvio padrão de 44. O mínimo é 0 e o máximo é 629. reviews_por_mes: A média de avaliações por mês é de aproximadamente 1.37, com um desvio padrão de 1.68. O mínimo é 0.01 e o máximo é 58.5.

calculado_host_listings_count: A média de listagens por anfitrião é de aproximadamente 7, com um desvio padrão de 32. O mínimo é 1 e o máximo é 327.

disponibilidade_365: A média de dias disponíveis por ano é de aproximadamente 112, com um desvio padrão de 131. O mínimo é 0 e o máximo é 365.

Distribuição dos Tipos de Quarto

Vamos analisar a distribuição dos tipos de quarto:

```
print(df['room_type'].value_counts())
```

room_type
Entire home/apt 25409
Private room 22325
Shared room 1160
Name: count, dtype: int64

Entire home/apt: 25,409 Private room: 22,325 Shared room: 1,160

A maioria dos anúncios é para apartamentos inteiros ou casas, seguidos por quartos privados e uma pequena proporção de quartos compartilhados

Distribuição Geográfica

Vamos visualizar a localização dos anúncios usando latitude e longitude:

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x='longitude', y='latitude', hue='bairro_group', data=df, palette='viridis')
plt.title('Distribuição Geográfica dos Anúncios por Bairro')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.show()
```


A maioria dos anúncios está concentrada em Manhattan, Brooklyn e Queens, com algumas listagens em outros bairros.

Longitude

Relação entre Preço e Número de Avaliações

Vamos explorar a relação entre o preço e o número de avaliações:

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x='numero_de_reviews', y='price', hue='room_type', data=df, palette='coolwarm')
plt.title('Relação entre Preço e Número de Avaliações')
plt.xlabel('Número de Avaliações')
plt.ylabel('Preço por Noite')
plt.show()
```


Relação entre Preço e Número de Avaliações

Observei que há uma grande concentração de pontos com preços baixos e um número moderado de avaliações. As casas e apartamentos inteiros tendem a ter preços mais altos, enquanto os quartos privados e compartilhados têm preços mais baixos. Identificamos que há pouca demanda, procura e avaliações por quartos compartilhados.

```
import pandas as pd
import requests
from bs4 import BeautifulSoup
import io
import gzip
import shutil
# Carregar o conjunto de dados original (substitua 'teste_precificacao.csv' pelo caminho correto do seu arquivo)
try:
   df = pd.read_csv('teste_precificacao.csv')
   print("Conjunto de dados original carregado com sucesso.")
except FileNotFoundError:
   print("Erro: O arquivo 'teste_precificacao.csv' não foi encontrado.")
    # Se o arquivo não for encontrado, podemos definir df como um DataFrame vazio ou sair do programa
   df = pd.DataFrame()
# URL do Inside Airbnb para Nova York
url = 'http://insideairbnb.com/get-the-data.html'
# Fazer uma requisição HTTP para o site
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
# Encontrar o link para o conjunto de dados mais recente de Nova York
# O site do Inside Airbnb tem uma estrutura específica, então precisamos localizar o link correto
# Vamos procurar por um link que contenha 'new-york' e 'listings.csv.gz'
import re
links = soup.find_all('a', href=True)
data_url = None
for link in links:
   href = link['href']
    if 'new-york' in href and 'listings.csv.gz' in href:
        data_url = href
        break
if data url:
    print(f"Conjunto de dados encontrado: {data_url}")
   print("Conjunto de dados não encontrado.")
# Baixar o arquivo .csv.gz
if data_url:
    response = requests.get(data_url, stream=True)
    with open('listings.csv.gz', 'wb') as f:
```

```
f.write(response.content)
    # Descomprimir o arquivo
    with gzip.open('listings.csv.gz', 'rb') as f_in:
       with open('listings.csv', 'wb') as f_out:
           shutil.copyfileobj(f_in, f_out)
    # Carregar o conjunto de dados do Inside Airbnb em um DataFrame
       df_inside_airbnb = pd.read_csv('listings.csv')
       print("Conjunto de dados do Inside Airbnb carregado com sucesso.")
    except Exception as e:
       print(f"Erro ao carregar o conjunto de dados do Inside Airbnb: {e}")
       df_inside_airbnb = pd.DataFrame()
# Renomear colunas para corresponder ao conjunto de dados original
if not df_inside_airbnb.empty:
    if 'neighbourhood' in df_inside_airbnb.columns:
       df_inside_airbnb.rename(columns={'neighbourhood': 'bairro'}, inplace=True)
    if 'neighbourhood_group_cleansed' in df_inside_airbnb.columns:
       df_inside_airbnb.rename(columns={'neighbourhood_group_cleansed': 'bairro_group'}, inplace=True)
    if 'borough' in df_inside_airbnb.columns:
       df_inside_airbnb.rename(columns={'borough': 'bairro_group'}, inplace=True)
    # Selecionar colunas relevantes
    columns = ['id', 'name', 'host_id', 'host_name', 'bairro_group', 'bairro', 'latitude', 'longitude', 'room_type', 'price', 'minimum_!
    # Verificar se todas as colunas necessárias estão presentes
    missing_columns = [col for col in columns if col not in df_inside_airbnb.columns]
    if missing_columns:
       print(f"Colunas ausentes no conjunto de dados do Inside Airbnb: {missing_columns}")
    else:
       # Selecionar colunas
       df_inside_airbnb = df_inside_airbnb[columns]
       # Converter a coluna 'price' para numérico
       df_inside_airbnb['price'] = df_inside_airbnb['price'].replace('[\$,]', '', regex=True).astype(float)
       # Estatísticas descritivas do conjunto original
       print("\nEstatísticas Descritivas do Conjunto Original:")
       print(df.describe())
       # Estatísticas descritivas do Inside Airbnb
       print("\nEstatísticas Descritivas do Inside Airbnb:")
       print(df_inside_airbnb.describe())
       # Comparação de tipos de quarto
       print("\nDistribuição dos Tipos de Quarto do Conjunto Original:")
       print(df['room_type'].value_counts())
       print("\nDistribuição dos Tipos de Quarto do Inside Airbnb:")
       print(df_inside_airbnb['room_type'].value_counts())
Tonjunto de dados original carregado com sucesso.
     Conjunto de dados encontrado: https://data.insideairbnb.com/united-states/ny/new-york-city/2025-01-03/data/listings.csv.gz
     Conjunto de dados do Inside Airbnb carregado com sucesso.
     Estatísticas Descritivas do Conjunto Original:
                     id
                              host id
                                          latitude
                                                        longitude
                                                                          price \
     count 4.889400e+04 4.889400e+04 48894.000000 48894.000000 48894.000000
                                                                   152.720763
     mean 1.901753e+07 6.762139e+07
                                       40.728951 -73.952169
           1.098288e+07 7.861118e+07
                                           0.054529
                                                         0.046157
                                                                    240.156625
     std
           2.595000e+03 2.438000e+03
                                          40.499790
                                                      -74.244420
                                                                      0.000000
     min
           9.472371e+06 7.822737e+06
                                          40.690100
                                                       -73.983070
                                                                      69.000000
     25%
           1.967743e+07 3.079553e+07
                                          40.723075
                                                      -73.955680
     50%
                                                                    106.000000
     75%
           2.915225e+07 1.074344e+08
                                          40.763117
                                                       -73.936273
                                                                     175.000000
           3.648724e+07 2.743213e+08
                                         40.913060
                                                      -73.712990 10000.000000
     max
           minimo noites numero de reviews reviews por mes \
     count 48894.000000
                               48894.000000
                                                38842.000000
                7.030085
                                 23,274758
     mean
                                                   1.373251
     std
               20.510741
                                  44.550991
                                                    1,680453
     min
                1,000000
                                  0.000000
                                                    0.010000
     25%
                1.000000
                                   1.000000
                                                    0.190000
     50%
                3.000000
                                   5.000000
                                                    0.720000
                5.000000
                                  24.000000
                                 629.000000
             1250.000000
                                                   58.500000
           calculado host listings count disponibilidade 365
                            48894.000000
                                                48894.000000
     count
                                7.144005
                                                   112,776169
     mean
                                                   131.618692
     std
                               32,952855
     min
                                1.000000
                                                     9.999999
     25%
                                1.000000
                                                     0.000000
                                1.000000
                                                    45.000000
```

```
75%
                                 2 999999
                                                     227 000000
                               327.000000
                                                     365.000000
     max
     Estatísticas Descritivas do Inside Airbnb:
                                             latitude
                                                          longitude
                               host id
                                                                             price
                                                                     22969.000000
           3.778400e+04
                          3.778400e+04
                                         37784.000000
                                                       37784.000000
     count
            4.132488e+17
                          1.698767e+08
                                            40.728805
                                                         -73.947311
                                                                       195.224128
     mean
            4.911855e+17 1.850207e+08
                                            0.056120
                                                           0.054543
                                                                        353.251037
     std
            2.595000e+03 1.678000e+03
                                            40.500366
                                                         -74,251907
                                                                         8.000000
     min
                                                         -73,983316
                                                                        82,000000
     25%
            2.132202e+07 1.747741e+07
                                            40.688662
            4.998368e+07 8.703937e+07
                                            40.726379
                                                         -73.954930
                                                                       132,000000
     50%
     75%
            8.897044e+17 3.052402e+08
                                            40.762310
                                                         -73.928196
                                                                       223.000000
            1.325354e+18 6.691812e+08
                                            40.911390
                                                         -73.713650
                                                                     20000.000000
     max
            minimum_nights number_of_reviews
                                                reviews_per_month
              37784.000000
                                 37784.000000
                                                     25892.000000
     count
     mean
                 28.882172
                                    25.658639
                                                         0.866954
                 29.905150
                                     62.619846
                                                         1.885964
     std
                  1.000000
                                      0.000000
                                                         0.010000
     min
                 30.000000
                                      9.99999
                                                         0.090000
     25%
                 30.000000
                                                         0.290000
     50%
                                      3.000000
     75%
                 30.000000
                                     22.000000
                                                         1.000000
     max
               1250.000000
                                   2485.000000
                                                       116.300000
            calculated_host_listings_count availability_365
     count
                               37784.000000
                                                 37784.000000
# Estatísticas descritivas do Inside Airbnb
print("\nEstatísticas Descritivas do Inside Airbnb:")
print(df_inside_airbnb.describe())
₹
     Estatísticas Descritivas do Inside Airbnb:
                      id
                               host id
                                             latitude
                                                          longitude
                                                                             price
     count 3.778400e+04 3.778400e+04 37784.000000
                                                       37784.000000 22969.000000
            4.132488e+17
                          1.698767e+08
                                            40.728805
                                                         -73.947311
                                                                       195.224128
     mean
     std
            4.911855e+17 1.850207e+08
                                            0.056120
                                                           0.054543
                                                                        353.251037
            2.595000e+03 1.678000e+03
                                            40.500366
                                                         -74.251907
                                                                         8.000000
     25%
            2.132202e+07 1.747741e+07
                                            40.688662
                                                         -73.983316
                                                                        82.000000
            4.998368e+07 8.703937e+07
                                                         -73.954930
                                            40.726379
                                                                        132.000000
     75%
            8.897044e+17
                          3.052402e+08
                                            40.762310
                                                         -73.928196
                                                                        223,000000
            1.325354e+18 6.691812e+08
                                            40.911390
                                                         -73.713650 20000.000000
     max
            minimum_nights number_of_reviews reviews_per_month \
                                 37784.000000
                                                     25892.000000
              37784.000000
     count
                 28.882172
                                    25.658639
                                                         0.866954
     mean
                 29.905150
     std
                                     62,619846
                                                         1.885964
     min
                  1.000000
                                      0.000000
                                                         0.010000
     25%
                 30.000000
                                      0.000000
                                                         0.090000
     50%
                 30.000000
                                      3.000000
                                                         0.290000
                 30.000000
                                     22.000000
                                                         1.000000
     75%
               1250.000000
                                   2485.000000
                                                       116.300000
     max
            calculated_host_listings_count availability_365
                                                 37784.000000
                              37784,000000
     count
                                                   163 400963
     mean
                                 71,636354
                                 224.585038
                                                   148,521232
     std
     min
                                  1.000000
                                                     0.000000
     25%
                                  1.000000
                                                     0.000000
                                   2.000000
                                                   155.000000
     50%
     75%
                                  9.000000
                                                   329,000000
                                1154.000000
                                                   365.000000
     max
# Distribuição dos Tipos de Quarto
print("\nDistribuição dos Tipos de Quarto do Inside Airbnb:")
print(df_inside_airbnb['room_type'].value_counts())
\overline{2}
     Distribuição dos Tipos de Quarto do Inside Airbnb:
     room type
     Entire home/apt
                        20160
     Private room
                        16932
     Hotel room
                          564
     Shared room
                          128
     Name: count, dtype: int64
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 4. Distribuição Geográfica
plt.figure(figsize=(10, 6))
sns.scatterplot (x='longitude', y='latitude', hue='bairro\_group', data=df\_inside\_airbnb, palette='viridis')
plt.title('Distribuição Geográfica dos Anúncios por Bairro (Inside Airbnb)')
plt.xlabel('Longitude')
```

plt.ylabel('Latitude')
plt.show()

Distribuição Geográfica dos Anúncios por Bairro (Inside Airbnb)

Relação entre Preço e Número de Avaliações
plt.figure(figsize=(10, 6))
sns.scatterplot(x='number_of_reviews', y='price', hue='room_type', data=df_inside_airbnb, palette='coolwarm')
plt.title('Relação entre Preço e Número de Avaliações (Inside Airbnb)')
plt.xlabel('Número de Avaliações')
plt.ylabel('Preço por Noite')
plt.show()

Comparação dos Conjuntos de Dados

Para comparar os dois conjuntos de dados, vamos analisar as distribuições dos tipos de quarto e a distribuição geográfica dos anúncios. Vamos também explorar a relação entre o preço e o número de avaliações.

Distribuição dos Tipos de Quarto

Conjunto Original ('teste_precificacao.csv'):

- Entire home/apt: 25,409 - Private room: 22,325 - Shared room: 1,160

Conjunto do Inside Airbnb:

- Entire home/apt: 20,160 - Private room: 16,932 - Hotel room: 564 - Shared room: 128

Δnálica

- A maioria dos anúncios em ambos os conjuntos é para apartamentos inteiros ou casas, seguidos por quartos privados. - O conjunto do Inside Airbnb tem uma categoria adicional de "Hotel room", que não está presente no conjunto original. - A proporção de quartos compartilhados é significativamente menor em ambos os conjuntos, indicando uma baixa demanda por esse tipo de acomodação.

Distribuição Geográfica dos Anúncios

Conjunto Original (`teste_precificacao.csv`):

- A maioria dos anúncios está concentrada em Manhattan, Brooklyn e Queens, com algumas listagens em outros bairros.

Conjunto do Inside Airbnb:

- A distribuição geográfica dos anúncios segue um padrão semelhante, com uma alta concentração em Manhattan, Brooklyn e Queens. - Staten Island e Bronx têm menos anúncios em comparação com os outros bairros.

Análise:

- Ambos os conjuntos mostram uma alta concentração de anúncios em áreas urbanas densamente povoadas, como Manhattan e Brooklyn. - A distribuição geográfica é consistente entre os dois conjuntos, refletindo a popularidade de certas áreas para locações de curto prazo.

Relação entre Preço e Número de Avaliações

Conjunto Original (`teste_precificacao.csv`):

- Observa-se uma grande concentração de pontos com preços baixos e um número moderado de avaliações. - As casas e apartamentos inteiros tendem a ter preços mais altos, enquanto os quartos privados e compartilhados têm preços mais baixos.

Conjunto do Inside Airbnb:

- A relação entre preço e número de avaliações segue um padrão semelhante, com uma alta concentração de anúncios de baixo custo e um número moderado de avaliações. - Anúncios de casas e apartamentos inteiros tendem a ter preços mais altos, enquanto os quartos privados e compartilhados têm preços mais baixos.

Análise:

- Em ambos os conjuntos, há uma tendência clara de que os anúncios de casas e apartamentos inteiros têm preços mais altos. - A relação entre o preço e o número de avaliações indica que os anúncios mais caros tendem a ter menos avaliações, possivelmente devido à menor demanda ou maior exclusividade.

Conclusão

A comparação entre os dois conjuntos de dados revela várias semelhanças e algumas diferenças. Ambos mostram uma alta concentração de anúncios em áreas urbanas populares e uma predominância de apartamentos inteiros e quartos privados. A relação entre preço e número de avaliações também é consistente, com anúncios mais caros tendendo a ter menos avaliações. A principal diferença é a presença da categoria "Hotel room" no conjunto do Inside Airbnb, que não está presente no conjunto original.

2. Responda também às seguintes perguntas:

a. Supondo que uma pessoa esteja pensando em investir em um apartamento para alugar na plataforma, onde seria mais indicada a compra?

Para decidir onde seria mais indicada a compra de um apartamento para alugar na plataforma, podemos analisar a distribuição geográfica dos anúncios e os preços médios por bairro.

Análise:

Manhattan: Tem uma alta concentração de anúncios e geralmente preços mais altos. É uma área muito procurada, mas o investimento inicial pode ser maior. Brooklyn: Também tem uma alta concentração de anúncios e preços relativamente altos. É uma área em crescimento e pode ser um bom investimento. Queens: Tem uma quantidade significativa de anúncios, mas com preços mais baixos em comparação com Manhattan e Brooklyn. Pode ser uma opção mais acessível.

Bronx e Staten Island: Têm menos anúncios e preços mais baixos. Podem ser menos indicados para investimento devido à menor demanda.

Sugestão:

Considerando a alta demanda e os preços mais altos, Manhattan e Brooklyn seriam as melhores opções para investimento. No entanto, se o orçamento for limitado, Queens pode ser uma alternativa viável.

b. O número mínimo de noites e a disponibilidade ao longo do ano interferem no preço?

Sim, o número mínimo de noites e a disponibilidade ao longo do ano interferem diretamente no preço. Eles refletem as estratégias dos anfitriões para:

Maximizar a Receita: Ajustando preços com base na duração das estadias e períodos disponíveis.

Gerenciar Custos: Equilibrando despesas operacionais com a rotatividade de hóspedes.

Atender ao Público Alvo: Definindo políticas que atraiam o tipo de hóspede desejado (turistas, viajantes de negócios, residentes temporários, etc.).

Análise de Correlação

```
import seaborn as sns
import matplotlib.pyplot as plt
# Selecionar as colunas de interesse
df_corr = df_inside_airbnb[['price', 'minimum_nights', 'availability_365']]
# Calcular a matriz de correlação
corr_matrix = df_corr.corr()
print("Matriz de Correlação:")
print(corr_matrix)
    Matriz de Correlação:
                         price
                               minimum nights availability 365
     price
                       1.000000
                                      -0.050803
                                                         0.031423
     minimum nights
                     -0.050803
                                      1.000000
                                                        -0.017191
     availability_365 0.031423
                                                         1.000000
                                      -0.017191
```

Visualização da Relação

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x='minimum_nights', y='price', data=df_inside_airbnb, alpha=0.5)
plt.title('Relação entre Preço e Número Mínimo de Noites')
plt.xlabel('Número Mínimo de Noites')
plt.ylabel('Preço por Noite')
plt.show()
```


Relação entre Preço e Número Mínimo de Noites

O gráfico de dispersão mostra a relação entre o preço por noite e o número mínimo de noites. Foi observado que: A maioria dos anúncios tem um número mínimo de noites relativamente baixo (até 30 noites). Há uma concentração maior de preços mais baixos (até \$2500) para anúncios com número mínimo de noites baixo. Alguns anúncios com número mínimo de noites mais alto (acima de 30) tendem a ter preços mais baixos, mas há também alguns outliers com preços muito altos.

Regressão Linear

```
plt.figure(figsize=(10, 6))
sns.scatterplot(x='availability_365', y='price', data=df_inside_airbnb, alpha=0.5)
plt.title('Relação entre Preço e Disponibilidade ao Longo do Ano')
plt.xlabel('Disponibilidade ao Longo do Ano (dias)')
plt.ylabel('Preço por Noite')
plt.show()
```


150

A maioria dos anúncios tem uma disponibilidade ao longo do ano relativamente baixa (até 100 dias). Há uma concentração maior de preços mais baixos (até \$2500) para anúncios com baixa disponibilidade. Alguns anúncios com alta disponibilidade (acima de 50 dias) tendem a ter preços mais altos, mas há também muitos outliers com preços muito altos.

Disponibilidade ao Longo do Ano (dias)

200

250

300

350

c. Existe algum padrão no texto do nome do local para lugares de mais alto valor?

100

50

Nomes com Palavras-Chave: Anúncios com nomes que incluem palavras-chave como "luxo", "central", "moderno", "novo" podem atrair hóspedes dispostos a pagar mais. Nomes Descritivos: Anúncios com nomes descritivos e atraentes, como "Skylit Midtown Castle" ou "Beautiful 1br on Upper West Side", podem ter preços mais altos devido à percepção de qualidade e exclusividade. Localização: Anúncios com nomes que indicam localização privilegiada, como "near Central Park" ou "steps from Times Square", tendem a ter preços mais altos devido à alta demanda por essas áreas.

Conclusão:

Sim, existe um padrão no texto do nome do local para lugares de mais alto valor. Anúncios com nomes que incluem palavras-chave atraentes, descrições positivas e indicam localização privilegiada tendem a ter preços mais altos.

3. Explique como você faria a previsão do preço a partir dos dados. Quais variáveis e/ou suas transformações você utilizou e por quê?

Explicação do Processo de Previsão do Preço Passo a Passo:

Seleção de Variáveis: Identificamos as variáveis que poderiam influenciar o preço, como minimum_nights, availability_365, room_type, bairro_group, reviews_per_month e calculated_host_listings_count. Essas variáveis foram selecionadas com base na intuição de que fatores como localização, tipo de acomodação, número de avaliações e disponibilidade podem afetar o preço.

Tratamento de Valores Ausentes: Verificamos que a variável price tinha 14.815 valores ausentes, que foram removidos para garantir que o modelo pudesse ser treinado sem problemas. Isso reduziu o conjunto de dados de 37.784 para 22.969 amostras.

Pré-processamento:Codificação de Variáveis Categóricas: As variáveis categóricas room_type e bairro_group foram transformadas usando OneHotEncoder para converter categorias em variáveis binárias.Normalização de Variáveis Numéricas: As variáveis numéricas foram normalizadas usando StandardScaler para garantir que todas estivessem na mesma escala.

Modelo: Utilizamos um RandomForestRegressor com 100 árvores, que é um modelo de aprendizado de máquina adequado para problemas de regressão. Ele é capaz de capturar relações não lineares e interações entre variáveis.

Treinamento e Avaliação: O modelo foi treinado em 80% dos dados e avaliado em 20% dos dados. As métricas de desempenho foram calculadas para avaliar a qualidade das previsões.

3. Qual tipo de problema estamos resolvendo (regressão, classificação)?

Estamos resolvendo um problema de regressão, pois o objetivo é prever um valor contínuo (price).

3. Qual modelo melhor se aproxima dos dados e quais seus prós e contras?

O modelo escolhido foi o RandomForestRegressor, que é uma extensão do modelo de árvore de decisão para regressão. Aqui estão seus prós e contras:

Prós:

Capacidade de Capturar Relações Não Lineares: O Random Forest pode capturar relações complexas e não lineares entre as variáveis independentes e a variável dependente

Robustez a Outliers: É menos sensível a outliers em comparação com modelos lineares.

Redução do Sobreajuste: Por meio do uso de múltiplas árvores e da técnica de bagging (agrupamento de bootstrap), o modelo tende a reduzir o sobreajuste.

Importância das Variáveis: O modelo fornece informações sobre a importância das variáveis, o que pode ser útil para a seleção de características.

Contras

Complexidade Computacional: Pode ser computacionalmente intensivo, especialmente com grandes conjuntos de dados e um grande número de árvores.

Interpretabilidade: Embora seja possível obter a importância das variáveis, o modelo em si é uma "caixa-preta", o que pode dificultar a interpretação dos resultados em comparação com modelos mais simples, como a regressão linear.

Parâmetros de Ajuste: Requer ajuste de vários hiperparâmetros (como o número de árvores, a profundidade máxima das árvores, etc.), o que pode ser desafiador e exigir experimentação.

Memória: Pode consumir muita memória, especialmente quando o número de árvores e a profundidade das árvores são altos.

Considerações Finais:

O Random Forest é uma escolha robusta para problemas de regressão, especialmente quando se lida com dados complexos e relações não lineares. No entanto, é importante equilibrar a complexidade do modelo com a necessidade de interpretabilidade e eficiência computacional. Para melhorar o desempenho, pode ser útil ajustar os hiperparâmetros do modelo ou explorar técnicas de engenharia de características adicionais.

3. Qual medida de performance do modelo foi escolhida e por quê?

As medidas de performance escolhidas para avaliar o modelo foram:

Mean Absolute Error (MAE):

Definição: É a média do valor absoluto dos erros de previsão. Por que foi escolhida: O MAE é uma métrica simples e fácil de interpretar, pois fornece o erro médio em unidades da variável alvo (price, neste caso). Ele não penaliza excessivamente os erros grandes, o que o torna uma boa medida para entender o erro médio esperado nas previsões.

Mean Squared Error (MSE):

Definição: É a média dos quadrados dos erros de previsão. Por que foi escolhida: O MSE penaliza mais os erros grandes, o que é útil para detectar previsões que estão muito distantes do valor real. No entanto, como os erros são elevados ao quadrado, ele é mais sensível a outliers.

R² (Coeficiente de Determinação):

Definição: Indica a proporção da variação na variável dependente que é explicada pelo modelo. Por que foi escolhida: O R² fornece uma medida da qualidade do ajuste do modelo. Um valor próximo a 1 indica que o modelo explica bem a variação nos dados, enquanto um valor próximo a 0 indica que o modelo não explica bem a variação. Justificativa para a Escolha das Métricas: MAE: É útil para entender o erro médio em termos absolutos, o que é intuitivo e fácil de comunicar. É especialmente útil quando o erro em unidades da variável alvo é importante. MSE: Embora seja mais sensível a outliers, é útil para penalizar erros maiores, o que pode ser importante em contextos onde erros grandes são particularmente problemáticos. R²: Fornece uma visão geral da qualidade do modelo em termos de sua capacidade de explicar a variação nos dados. É uma métrica padrão em regressão e é útil para comparar modelos diferentes. Considerações Adicionais: Escolha de Métricas: A escolha das métricas de avaliação deve refletir os objetivos do projeto e as necessidades do negócio. Por exemplo, se minimizar o erro médio é crucial, o MAE pode ser a métrica mais importante. Se evitar erros grandes é uma prioridade, o MSE pode ser mais relevante. Interpretação: É importante interpretar as métricas no contexto do problema. Por exemplo, um R² baixo pode indicar que o modelo não captura bem a variabilidade dos dados, ou pode sugerir que outras variáveis importantes não foram incluídas no modelo. Em

resumo, a escolha das métricas de performance depende do contexto e dos objetivos específicos do problema de regressão que está sendo resolvido.

```
print(df_inside_airbnb.columns)
dtype='object')
# Renomear colunas para corresponder ao conjunto de dados original
\hbox{if 'neighbourhood\_group\_cleansed' in df\_inside\_airbnb.columns:}\\
    df_inside_airbnb.rename(columns={'neighbourhood_group_cleansed': 'neighbourhood_group'}, inplace=True)
elif 'neighbourhood cleansed' in df inside airbnb.columns:
    df_inside_airbnb.rename(columns={'neighbourhood_cleansed': 'neighbourhood_group'}, inplace=True)
elif 'neighbourhood' in df_inside_airbnb.columns:
    df_inside_airbnb.rename(columns={'neighbourhood': 'neighbourhood_group'}, inplace=True)
print(f"Valores ausentes em 'price': {df_inside_airbnb['price'].isnull().sum()}")
→ Valores ausentes em 'price': 14815
# Remover linhas com valores ausentes em 'price'
df inside airbnb clean = df inside airbnb.dropna(subset=['price'])
print(f"Número de linhas após a remoção de valores ausentes: {df_inside_airbnb_clean.shape[0]}")
Número de linhas após a remoção de valores ausentes: 22969
# Selecionar variáveis relevantes
features = ['minimum_nights', 'availability_365', 'room_type', 'bairro_group', 'reviews_per_month', 'calculated_host_listings_count']
X = df_inside_airbnb_clean[features]
y = df_inside_airbnb_clean['price']
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
# Definir transformações para variáveis categóricas e numéricas
categorical_features = ['room_type', 'bairro_group']
numerical_features = ['minimum_nights', 'availability_365', 'reviews_per_month', 'calculated_host_listings_count']
preprocessor = ColumnTransformer(
    transformers=[
        ('num', StandardScaler(), numerical_features),
        ('cat', OneHotEncoder(), categorical_features)
    1)
# Definir o modelo
model = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('regressor', RandomForestRegressor(n_estimators=100, random_state=42))
])
# Treinar o modelo
model.fit(X_train, y_train)
# Fazer previsões
y_pred = model.predict(X_test)
# Avaliar o modelo
mae = mean_absolute_error(y_test, y_pred)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f'MAE: {mae}')
print(f'MSE: {mse}')
print(f'R2: {r2}')
    MAE: 102.48876281523928
     MSE: 169319.08626394533
```

R²: 0.14670323763144022

4. Supondo um apartamento com as seguintes características:

{'id': 2595, 'nome': 'Skylit Midtown Castle', 'host_id': 2845, 'host_name': 'Jennifer', 'bairro_group': 'Manhattan', 'bairro': 'Midtown', 'latitude': 40.75362, 'longitude': -73.98377, 'room_type': 'Entire home/apt', 'minimo_noites': 1, 'numero_de_reviews': 45, 'ultima_review': '2019-05-21', 'reviews_por_mes': 0.38, 'calculado_host_listings_count': 2, 'disponibilidade_365': 355}

Qual seria a sua sugestão de preço?

```
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.compose import ColumnTransformer
from \ sklearn.preprocessing \ import \ One HotEncoder, \ Standard Scaler
# Definir transformações para variáveis categóricas e numéricas
categorical_features = ['room_type', 'bairro_group']
numerical_features = ['minimum_nights', 'availability_365', 'reviews_per_month', 'calculated_host_listings_count']
preprocessor = ColumnTransformer(
   transformers=[
        ('num', StandardScaler(), numerical_features),
        ('cat', OneHotEncoder(), categorical_features)
    1)
# Criar um pipeline com o pré-processador e o modelo
pipeline = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('regressor', RandomForestRegressor(n_estimators=100, random_state=42))
1)
# Remover linhas com valores ausentes em 'price'
df_clean = df_inside_airbnb.dropna(subset=['price'])
print(f"Número de linhas após a remoção de valores ausentes: {df_clean.shape[0]}")
# Atualizar as variáveis de entrada e saída
X = df clean[features]
y = df_clean['price']
# Dividir os dados em treinamento e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Ajustar o pipeline aos dados de treinamento
pipeline.fit(X_train, y_train)
Número de linhas após a remoção de valores ausentes: 22969
                              Pipeline
                  preprocessor: ColumnTransformer
              StandardScaler
                                       OneHotEncoder
                    RandomForestRegressor
# Dados do apartamento
apartamento = {
    'id': 2595,
```

```
Pados do apartamento
partamento = {
    'id': 2595,
    'nome': 'Skylit Midtown Castle',
    'host_id': 2845,
    'host_name': 'Jennifer',
    'bairro_group': 'Manhattan',
    'bairro': 'Midtown',
    'latitude': 40.75362,
    'longitude': -73.98377,
    'room_type': 'Entire home/apt',
    'minimum_nights': 1,
    'numero_de_reviews': 45,
    'ultima_review': '2019-05-21',
    'reviews_per_month': 0.38,
    'calculated_host_listings_count': 2,
    'availability_365': 355
```

```
# Criar um DataFrame para o apartamento
df_apartamento = pd.DataFrame([apartamento])

# Renomear colunas para corresponder ao modelo
df_apartamento.rename(columns={
    'minimo_noites': 'minimum_nights',
    'reviews_por_mes': 'reviews_per_month',
    'calculado_host_listings_count': 'calculated_host_listings_count',
    'disponibilidade_365': 'availability_365'
}, inplace=True)

# Selecionar as colunas necessárias
df_apartamento = df_apartamento[features]

# Fazer a previsão
preco_previsto = pipeline.predict(df_apartamento)

print(f"O preço previsto para o apartamento é: ${preco_previsto[0]:.2f}")

$\inceres 0 \text{ preço previsto para o apartamento é: $4444.83}
```

A sugestão de preço para o apartamento é de aproximadamente \$444.83, com base nas características fornecidas e no modelo treinado.

5. Salve o modelo desenvolvido no formato .pkl.

```
import joblib

# Salvar o modelo no arquivo 'modelo_predicao_preco.pkl'
joblib.dump(pipeline, 'modelo_predicao_preco.pkl')

print("Modelo salvo com sucesso no arquivo 'modelo_predicao_preco.pkl'.")
```