Sample Solutions for Tutorial 5

Question 1.

(a) Take $u_n = \frac{n}{2n+1}$. Then

$$u_m - u_n = \frac{m}{2m+1} - \frac{n}{2n+1}$$

$$= \frac{m(2n+1) - n(2m+1)}{(2m+1)(2n+1)}$$

$$= \frac{m-n}{(2m+1)(2n+1)}$$

Since (2m+1)(2n+1) > 0, $u_m - u_n > 0$ if and only if m > n, showing that $(u_n)_{n \in \mathbb{N}}$ is monotonically increasing.

(b) Take $u_n = \frac{2^n}{n^2}$. Then $u_n > 0$ for all $n \in \mathbb{N}^*$, and

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{(n+1)^2} \frac{n^2}{2^n} = \frac{2n^2}{(n+1)^2}$$

Thus $u_{n+1} > u_n$ if and only if $(n+1)^2 < 2n^2$, that is, $n^2 - 2n - 1 > 0$, or $(n-1)^2 - 2 > 0$. This occurs if and only if $n \ge 2$. Thus $(u_n)_{n \in \mathbb{N}}$ is not monotonic. Explicitly,

$$u_1 = 2$$
, $u_2 = 1$, $u_3 = \frac{8}{9}$, $u_4 = 1$, $u_5 = \frac{32}{25}$,

so that $u_1 > u_2 > u_3 < u_4 < u_5$.

(c) Take $u_n = a + (n-1)d$ for $a, d \in \mathbb{R}$. [This sequence is an arithmetic progression because each term (except the first) is the arithmetic mean of its predecessor and it successor.] Then

$$u_{n+1} - u_n = (a + nd) - (a + (n-1)d) = d.$$

Thus $(u_n)_{n\in\mathbb{N}}$ is monotonic. It is increasing if d>0 and decreasing if d<0.

(d) Take $u_n = ar^{n-1}$ for $a, r \in \mathbb{R}$ [This sequence is an *geometric progression* because each term (except the first) is the geometric mean of its predecessor and it successor.]

If a = 0 or r = 0, then $u_n = 0$ for all $n \in \mathbb{N}$.

Otherwise

$$\frac{u_{n+1}}{u_n} = \frac{ar^{n+1}}{ar^n} = r$$

Consequently,

- (i) the sequence $(u_n)_{n\in\mathbb{N}}$ alternates if r<0;
- (ii) $u_{n+1} > u_n$ if 0 < r < 1 and $u_n < 0$, that is, a < 0 and 0 < r < 1;
- (iii) $u_{n+1} < u_n$ if 0 < r < 1 and $u_n > 0$, that is, a > 0 and 0 < r < 1;
- (iv) $u_{n+1} < u_n$ if r > 1 and $u_n < 0$, that is, a < 0 and r > 1;
- (v) $u_{n+1} > u_n$ if r > 1 and $u_n > 0$, that is, a > 0 and r > 1;

Summarising, if $a, r \neq 0$, the sequence $(ar^n)_{n \in \mathbb{N}}$ is

- (α) monotonically increasing when either a < 0 and 0 < r < 1, or a > 0 and r > 1;
- (β) monotonically decreasing when either a > 0 and 0 < r < 1, or a < 0 and r > 1;
- (γ) constant if r=1;
- (δ) alternating if < 0.

Question 2.

- (a) Let $u_n = a + (n-1)d$.
 - (i) $S_n = a + (a+d) + (a+2d) + \dots + (a+(n-2)d) + (a+(n-1)d)$

Writing the terms in reverse order, we obtain

$$S_n = (a + (n-1)d) + (a + (n-2)d) + \dots + a + d + a$$

Adding corresponding terms, we obtain

$$2S = (2a + (n-1)d) + (2a + (n-1)d) + \dots + (2a + (n-1)d) = n(2a + (n-1)d)$$
, so that

$$S_n = na + \frac{n(n-1)}{2}d$$

(ii) Alternatively, $S_1 = a = 1a + 0d$, anchoring a proof by induction. Now suppose that $S_n = na + \frac{n(n-1)}{2}d$. Then

$$S_{n+1} = S_n + u_{n+1}$$

$$= (na + \frac{n(n-1)}{2}d) + (a+nd)$$

$$= (n+1)a + \frac{n^2 - n + 2n}{2}d$$

$$= (n+1)a + \frac{(n+1)n}{2}d,$$

completing the proof by induction.

(b) Let $u_n = ar^n$ with $a, r \in \mathbb{R} \setminus \{0\}$. $S_n = a + ar + ar^2 + \dots + ar^{n-1}$

Multiplying by r, we obtain

$$rS_n = ar + ar^2 + \dots + ar^{n-1} + ar^n$$

Hence,
$$S - rS = a - ar^n$$
, or $(1 - r)S_n = a(1 - r^n)$, or $S_n = a\frac{1 - r^n}{1 - r}$ if $r \neq 1$.

Since
$$n(n-1) \to \infty$$
 as $\to \infty$, the arithmetic series converges if and only if $a = d = 0$.
As far as the geometric series is concerned, $S_n = a \frac{1-r^n}{1-r} = \frac{a}{1-r} - \frac{ar^n}{1-r}$.
Now $r^n \to 0$ if $|r| < 1$ and $|r^n| \to \infty$ if $|r| > 1$. If $r = 1$, $S_n = na$ is unbounded, whence

the series diverges. Finally, if r = -1, Sn = a if n is odd, and 0 if n is even, so the series does not converge.

Hence the series $\sum ar^n$ converges if and only if |r| < 1.

Question 3. $u_n = \frac{1}{n^2}$ $n \ge 1$. Clearly, $u_n > 0$ for every n, so that $(S_n)_{n \in \mathbb{N}^*}$ is monotonically increasing. Moreover,

$$\begin{split} S_n &= 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} + \frac{1}{2^2} \cdot \cdot \cdot + \frac{1}{n^2} \\ &= 1 + \frac{1}{2^2} + \frac{1}{3^2} \right) + \left(\frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \frac{1}{7^2} \right) + \cdot \cdot \cdot + \frac{1}{n^2} \\ &\leq 1 + \left(\frac{1}{2^2} + \frac{1}{2^2} \right) + \left(\frac{1}{4^2} + \frac{1}{4^2} + \frac{1}{4^2} + \frac{1}{4^2} \right) + \cdot \cdot \cdot + \frac{1}{n^2} \\ &= 1 + \frac{2}{2^2} + \frac{4}{4^2} + \cdot \cdot \cdot + \frac{1}{n^2} \\ &= 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{n^2} \\ &= 1 + \frac{1}{2} + \left(\frac{1}{2} \right)^2 + \frac{1}{n^2} \end{split}$$

We formulate this more precisely.

Since $(n+j)^2 > n^2$ for j > 0, $0 < \frac{1}{(n+j)^2} < \frac{1}{n^2}$.

Taking $n = 2^m$ we obtain

$$\frac{1}{(2^m)^2} + \frac{1}{(2^m+1)^2} + \dots + \frac{1}{(2^m+2^m-1)^2} \le \frac{1}{(2^m)^2} + \dots + \frac{1}{(2^m)^2} = 2^m \frac{1}{(2^m)^2} = \frac{1}{2^m} = (\frac{1}{2})^m$$

or, equivalently,

$$\sum_{j=0}^{2^m-1} \frac{1}{(2^m+j)^2} \le \sum_{j=0}^{2^m-1} \frac{1}{(2^m)^2} = 2^m \frac{1}{(2^m)^2} = \frac{1}{2^m}$$

Thus,

$$S_{2^{m+1}-1} = \sum_{r=1}^{2^{m+1}-1} \frac{1}{r^2}$$

$$= \sum_{k=1}^{m} \sum_{j=0}^{2^k-1} \frac{1}{(2^k+j)^2}$$

$$\leq \sum_{k=1}^{m} \frac{1}{2^k}$$

By the Comparison test, since $\sum \frac{1}{2^k}$, so does $\sum \frac{1}{n^2}$.