PATENT ABSTRACTS OF JAPAN

(11) Publication number: 62090065 A

(43) Date of publication of application: 24 . 04 . 87

(51) Int. CI

H04M 3/00 H04L 11/20 H04Q 3/545

(21) Application number: 61134560

(22) Date of filing: 09 . 06 . 86

(30) Priority:

12 . 06 . 85 JP 60126263

12 . 06 . 85 JP 60126264

(71) Applicant:

NEC CORP

(72) Inventor:

YOSHIDA YOSHINORI NAKANE HIDEKI

HASHIMOTO MASAO SHIMIZU TOMOYOSHI

(54) ISDN SUBSCRIBER DIGITAL EXCHANGE

(57) Abstract:

PURPOSE: To allow a subscriber to receive services such as a circuit exchange and a packet exchange on the same subscriber line by separating a circuit exchange call and a packet call, line-concentrating the separated packet call so as to multiplex a packet, multiplexing said packet and the circuit exchange call with the prescribed time slot and transmitting them to a digital transmission line.

CONSTITUTION: A subscriber interface module LM 11 in a subscriber exchange LS 10 separates the circuit exchange call and packet call through a channel B and the D channel packet call received through a channel B. The circuit exchange call and the group of the B channel packet call are connected to a circuit exchange time division switch TDSW 12 and a system packet multiplexer SPMX 13, respectively. The multiplexer SPMX 13 line-concentrates the circuit interface device DXM 14 of the exchange LS 10, inserts and separates the multiplexed packet call together with the circuit exchange call communicated through the TDSW 12 into the preset channel of a digital relay line TCT 61. For designating the channel, any channels on

the digital circuit can be designated.

COPYRIGHT: (C)1987, JPO& Japio

Best Available Copy

(19)日本国特許庁 (IP)

(12) 特 許 公 報(B2)

(11)特許出願公告番号

特公平6-38616

(24)(44)公告日 平成6年(1994)5月18日

(51)Int.Cl.5

識別配号 庁内整理番号 技術表示箇所

H 0 4 M 3/00 H 0 4 L 12/64 B 8426-5K

8732-5K

H04L 11/20

FΙ

Α

発明の数2(全 9 頁)

(21)出願番号

特顧昭61-134560

(22)出願日

昭和61年(1986) 6月9日

(65)公開番号

特開昭62-90065

(43)公開日

昭和62年(1987) 4月24日

(31)優先権主張番号 特願昭60-126263

(32)優先日

昭60(1985)6月12日

(33)優先権主張国

日本(JP)

(31)優先権主張番号 特願昭60-126264

(32)優先日

昭60(1985) 6月12日

(33)優先権主張国

日本 (JP)

(71)出願人 999999999

日本電気株式会社

東京都港区芝5丁目7番1号

(72)発明者 吉田 吉憲

東京都港区芝5丁目33番1号 日本電気株

式会社内

(72)発明者 中根 秀樹

東京都港区芝5丁目33番1号 日本電気株

式会社内

(72)発明者 橋本 雅男

東京都港区芝 5 丁目33番 1 号 日本電気株

式会社内

(74)代理人 弁理士 京本 直樹 (外2名)

審査官 橋爪 健

最終質に続く

(54) 【発明の名称】 ISDN加入者用デジタル交換機

【特許請求の範囲】

【請求項1】デジタル加入者交換機において、 回線交換を行う回線交換用時分割交換スイッチと、 パケット呼を集線し多重化するパケットマルチプレクサ

ISDNペーシック・アクセス・インターフェースの加 入者回線を収容し、当該ベーシック・アクセス・インタ ーフェースのBチャネルとDチャネルを分離し、Bチャ ネルは回線交換呼とBチャネルパケット呼に分離し、D チャネルは回線信号情報とDチャネルパケット呼に分離 し、当該回線信号情報は呼の制御のための処理に用い、 回線交換呼は前記回線交換用時分割交換スイッチへ、ま たパケット呼は前記パケットマルチプレクサへそれぞれ 接続する手段と、

前記回線交換用時分割交換スイッチからの回線交換呼と

前記パケットマルチプレクサからのパケット呼とを同一 デジタル中継回線のあらかじめ定めたタイムスロット位 置に挿入して上位階梯交換局にデジタル伝送する手段を 備えることを特徴とするISDN加入者用デジタル交換

【請求項2】 ISDNのペーシック・アクセス・インタ ーフェースの加入者回線を収容するデジタル加入者交換 機において、

当該ペーシック・アクセス・インターフェースを構成す るBチャネルの回線交換呼とパケット呼およびDチャネ ルとを分離/結合するデジタル加入者回路と、

複数の前記デジタル加入者回路と接続され、回線交換呼 を集線多重化するデジタル集線スイッチと、

複数の前記デジタル加入者回路と接続され、Dチャネル からDチャネルパケットを分離して多重化するモジュー ル制御回路および、

複数の前記デジタル加入者回路、および前記モジュール 制御回路と接続され、Bチャネルパケット呼とDチャネ ルパケットとを多重化するラインモジュールパケットマ ルチブレクサを有する加入者インターフェースモジュー ル;

複数の前記加入者インターフェースモジュールと接続され、回線交換呼を接続処理する回線交換用時分割スイッチ:

複数の前記加入者インターフェースモジュールと接続され、パケット呼を多重、または分離するシステムパケットマルチプレクサ; および

上位階梯交換局と接続されたデジタル中継回線を収容し、複数の前記回線交換用時分割交換スイッチおよび前記システムパケットマルチブレクサと接続され、前記デジタル中継回線において同一物理回線を構成するタイムスロットにあらかじめ定めた回線交換用タイムスロット位置とパケット呼用タイムスロット位置に対応して回線交換呼とパケット呼とを挿入、または分離してデジタル伝送するデジタルクロスコネクトモジュール:

を備えることを特徴とする ISDN加入者用デジタル交換機。

【請求項3】前記デジタル加入者回路は、

収容したISDNのペーシック・アクセス・インターフェースの加入者回線の物理レイヤを終端するラインターミネータと、

前記BチャネルおよびDチャネルを分離挿入するドロッパー・インサーターと、

前記Dチャネルのデータリンクレイヤを終端するDチャネルハンドラーを有することを特徴とする特許請求の範囲(2)記載のISDN加入者用デジタル交換機。

【請求項4】前記モジュール制御部は、前記デジタル加入者回路、前記デジタル集線スイッチ、前記回線交換用時分割スイッチを制御するスイッチ制御部と接続され、前記Dチャネルを介して送られてくるメッセージに含まれるサービスアクセスポイント識別子によりDチャネルパケットと回線信号情報とを分別する手段と、

当該メッセージが回線信号情報の場合は、呼の制御のための処理を行い当該モジュール制御部と前記デジタル集線スイッチおよび前記回線交換用時分割スイッチを制御するスイッチ制御部との間で制御情報の通信を行う手段と、

当該メッセージがDチャネルパケットの場合は、他のDチャネルパケットとパケット多重して前記ラインモジュールパケットマルチプレクサへ送出する手段を有することを特徴とする特許請求の範囲(2)記載のISDN加入用デジタル交換機。

【発明の詳細な説明】

〔産業上の利用分野〕

本発明は、ISDNペーシック・アクセス・インターフ

ェースの加入者回線を収容し回線交換呼とパケット呼を 交換するためのISDN加入者用デジタル交換機に関する。

〔従来の技術〕

国際電信電話諮問委員会(CCITT)はデジタル通信 サービスを提供するネットワークをISDNと名付け、19 84年末にその基本的事項に関して、I.シリーズの勧 告を行なった。

この基本勧告によると、端末をネットワークに接続してうまく通信を行なうための端末側と網側との境界条件を規定したISDNのユーザー・ネットワーク・インターフエースは64KbpsのBチャネル2本と16KbpsのDチャネル1本とで構成(2B+D)されている。このインタフエースはペーシック・アクセス・インターフエースと呼ばれており、例えば、64Kbpsの音声チャネル(B1),64Kbpsのデータチャネル(B2)および16Kbpsの信号チャネルまたは低速パケット用チャネル(D)の通信を可能にする。

ISDNのユーザー・ネットワーク・インタフエースは さまざまなサービスを呼毎に選択して利用することがで きる。このとき、ネットワークへのサービス要求、すな わち、発呼要求はSETUPと呼ばれるメッセージによって 行われる。このSETUPメッセージはパケット化さ れ、Dチャネルを介してユーザーからネットワークへ送 られる。前記SETUPメッセージには、(1)この発呼 を識別するための呼の識別子、(2)この呼が必要とする 転送レート,接続形態等を指定するベアラーサービス要 求、(3) 2 つある B チャネルのうちどちらを利用する か、また、Dチャネルを利用するのかを指定する利用チ ャネルの識別、および(4)電話番号の指定を行う相手の ISDN番号が書かれている。このようなメッセージに よる呼制御手順を扱う機能はレイヤ3と呼ばれ、前述の CCITT勧告I. シリーズ中のI. 450, I. 45 1に規定されている。

また前記レイヤ3のメッセージを正しく転送するための手順がレイヤ2と呼ばれ、前記CCITT勧告I. 440, I. 441にLAP-D (link access procedare on the D channel) が規定されてこのLAP-Dはデータリンクの設定・解除,フレームの識別,順序制御,エラー検出,エラー復旧,フロー制御の各機能を有している。さらに、前記Dチャネルはレイヤ3およびレイヤ2で共用されるため、前記LAP-Dにはレイヤ3とレイヤ2のサービスアクセスボイントを識別するためのサービス・アクセス・ボイント識別子(SAPI)が設けられている。

また、前記CCITT勧告I. 430, I. 431には レイヤ1としてチャネル構成, 起動・停止条件, 速度, 電圧レベル, コネクタピン数・形状等が規定されてい る。

このように決定された仕様に基いてISDNを実際に構

築するためには様々な問題を解決する必要がある。これら問題の一つとして加入者交換機の構成方法についての問題がある。ISDNでは同一の加入者インターフェースにより様々なサービスが受けられるようにしなくててならない。このため、第1に、交換機が上記CCITTならない。このため、第1に、交換機が上記CCITTならない。第2にこれらのISDN元を収容できなければならない。第2にこれらのISDN加入者に発着信する様々な性質を持つ呼、例えば、回線交換およびパケット交換の両方の属性を持つ呼を交換機に収容できるようにする必要がある。第3に、このISDNにおけるパケット呼にはDチャネルを介するものとBチャネルを介するものとの2種類があり、ISDN交換機はこれらのどちらにも対応できなければならない。

〔発明が解決しようとする問題点〕

ところが、既存の交換機はそのほとんどが電話用であり、例えばそれがデジタル交換機であってもISDN加入者を収容するには加入者側にはISDN加入者インターフエースを付加する必要がある。さらにISDN加入者を収容しても既存の交換機で回線交換とパケット交換の両方をサポートすることはできない。すなわち、既存の電話用交換機は回線交換であるため、交換方式が根本的に異なるパケット交換を扱うことは困難である。

したがって、ISDN加入者に対してパケット交換サービスを行うためには、今まで設置されている加入者交換機を例えば、USP,4,486,878に示されるような回線交換およびパケット交換の両方の接続処理ができる交換機にリプレースするかまたは別にパケット交換専用の交換機を加入者階梯あるいは中継階梯に設置して、回線交換呼は回線交換機に、またパケット呼はパケット交換機に接続するように制御を行うか、のいずれかの方法を採る必要が生じる。

前者の方法はネットワークの構成方法としてはシンプルであり、またサービス面からもISDN加入者から見れば最も好ましい方法である。したがって、将来ISDNが普及した段階では一般的となるであろう。しかしながら、この方法では、ISDN加入者に対しては既存の交換機は全て使用できなくなる。つまりこの方法を今すぐ適用することは必ずしも経済的な方法とは言えない。

一方、後者の方法をとれば回線交換用スイッチとして既存の電話用デジタル交換機のスイッチ部を使用可能である。この意味で、ISDNの導入を促進する立場からは後者の方法のほうが特にISDN導入初期には現実的といえる。

後者の方法をとるにしても更に、先の挙げたようにパケット交換専用の交換機をネットワークのどこにおくかという問題がある。これはパケット呼と回線交換呼とのトラヒックの比率に応じてパケット呼の比率が高ければ加入者階梯に、また回線交換呼の比率が高ければ中継階梯に置く事が望ましい。一般的にはISDNの実現初期に

はパケット呼のトラヒックは回線交換呼に比較してかなり少ないと推測されておりパケット交換機は中継階梯に置き加入者は必要に応じてこれにアクセスするのが経済的であると考えられている。

この場合中継回線(Toll Connecting Trunk)を経済的 に運用するには中継回線を回線交換呼とパケット呼で共 通に使用出来ること、また多重化された中継回線上にお いてパケット呼と回線交換呼が使用するチャネル数の比 率を回線状況によって可変にできること、いわゆる可変 パウンダリーに出来るように構成することが望ましい。 更に上記の比率の変更は半固定でも有効であるがダイナ ミックに変更可能であればさらによい。ところが、既存 のシステムではこのような要求に応えることは難しい。

[問題点を解決するための手段]

本発明のISDN加入者用デジタル交換機は、ISDNのベーシック・アクセス・インターフェースの加入者回線を収容し、当該ベーシック・アクセス・インターフェースのBチャネルとDチャネルを分離し、Bチャネルは回線交換呼とBチャネルパケット呼に分離し、Dチャネルは回線信号情報とDチャネルパケット呼に分離し、回線で換呼は回線交換用時分割交換スイッチへ、またパケット呼は備えられたパケットマルチプレクサへそれぞれ接続する手段と、前記回線交換用時分割交換スイッチがあの回線交換呼と前記パケットマルチプレクサからのパケット呼とを同一デジタル中継回線のあらかじめ定めたタイムスロット位置に挿入して上位階梯交換局にデジタル伝送する手段を備える。

また、本発明のISDN加入者用デジタル交換機は、I SDNのペーシック・アクセス・インターフェースの加 入者回線を収容し、当該ベーシック・アクセス・インタ ーフェースを構成するBチャネルの回線交換呼とパケッ ト呼およびDチャネルとを分離/結合するデジタル加入 者回路と、複数の前記デジタル加入者回路と接続され、 回線交換呼を集線多重化するデジタル集線スイッチと、 複数の前記デジタル加入者回路と接続され、Dチャネル からDチャネルパケットを分離して多重化するモジュー ル制御回路および、複数の前記デジタル加入者回路、お よび前記モジュール制御回路と接続され、Bチャネルパ ケット呼とDチャネルパケットとを多重化するラインモ ジュールパケットマルチプレクサを有する加入者インタ ーフェースモジュール;複数の前記加入者インターフェ ースモジュールと接続され、回線交換呼を接続処理する 回線交換用時分割スイッチ;複数の前記加入者インター フェースモジュールと接続され、パケット呼を多重、ま たは分離するシステムパケットマルチプレクサ;および 上位階梯交換局と接続されたデジタル中継回線を収容 し、複数の前記回線交換用時分割交換スイッチおよび前 記システムパケットマルチプレクサと接続され、前記デ

ジタル中継回線において同一物理回線を構成するタイム

スロットにあらかじめ定めた回線交換用タイムスロット 位置とパケット呼用タイムスロット位置に対応して回線 交換呼とパケット呼とを挿入、または分離してデジタル 伝送するデジタルクロスコネクトモジュール;を備え る。

また、本発明の前記デジタル加入者回路は、収容したISDNのベーシック・アクセス・インターフェースの加入者回線の物理レイヤを終端するラインターミネータと、BチャネルおよびDチャネルを分離挿入するドロッパー・インサーターと、Dチャネルのデータリンクレイヤを終端するDチャネルハンドラーを有する。

また、本発明の前記モジュール制御部は、前記デジタル加入者回路、前記デジタル集線スイッチ、前記回線交換用時分割スイッチを制御するスイッチ制御部と接続され、Dチャネルを介して送られてくるメッセージに含まれるサービスアクセスポイント識別子によりDチャネルパケットと回線信号情報とを分別する手段と、当該メッセージが回線信号情報の場合は、呼の制御のための処理を行い当該モジュール制御部と前記デジタル集線スイッチおよび前記回線交換用時分割スイッチを制御するスイッチ制御部との間で制御情報の通信を行う手段と、当該メッセージがDチャネルパケットの場合は、他のDチャネルパケットとパケット多重して前記ラインモジュールパケットマルチプレクサへ送出する手段を有する。

〔実施例〕

第1図を参照すれば、本発明が適用されるデジタル交換 網は、加入者交換機(LS)10および30、および中 継交換機(TS) 20を含んでいる。なお以下の説明で はLS10、TS20およびLS10に収容されている 加入者端末を例に説明する。デジタル加入者端末は、デ ータ端末(DT)51および電話端末(TT)52がネ ットワークターミナル (NT) 41へ、また、ビデオ端 末(VT)53およびTT54がNT42へそれぞれ収 容されている。なお前記端末の組合せは一例であって、 この組合せに限定されるものではない。NT41および 42は宅内における端末収容形態を制御し、またLS1 0との同期とりなどのレイヤ1(物理レイヤ)の処理を 行なうNT41およびNT42はデジタル加入者線(D A) 71および72を介してLS10の加入者インタフ エースモジュール (LM) 11に収容される。LM11 は回線交換用時分割スイッチ(TDSW)12とシステ ムパケットマルチプレクサ(SPMX)13にそれぞれ 接続されている。

DT51, TT52および54、およびVT53からNT41および42を介して発生する呼は、LM11内においてBチャネルを介する回線交換呼と同じくBチャネルを介して通信されるBチャネルパケット呼とさらにDチャネルを介して通信されるDチャネルパケット呼に分離される。そして、回線交換呼はTDSW12へ、またBチャネルパケット呼とDチャネルパケット呼はSPM

X13へそれぞれ接続される。Bチャネルパケット呼は 主として64Kbpsをはじめとする比較的高速のパケット にまたDチャネルパケット呼はより低速のパケットに使 用される。デジタル中継線TCT61および62は一般 のデジタル回線で、例えば2.048Mbps (一次群)、8.448 Mbps (二次群) 等 (北米では1.544Mbps (一次群) 、6.3 12Mbps (二次群)など)のピットレートを持つ。TCT 61はデジタルクロスコネクトモジュールDXM14お よび21によりLS10およびTS20の両交換機に収 容されている。DXM14, 21および24はそれぞれ の交換機の回線インターフエース装置であり、LS10 においてはTDSW12とPMX13にそれぞれ接続さ れており、SPMX13において集線され多重化された パケット呼をTDSW12を通して通信される回線交換 呼と共にTCT61の予め指定されたチャネルに挿入分 離する機能を持つ。図示していないがLS30のDXM も同様にTCT62の予め指定されたチャネルにパケッ ト呼および回線交換呼を挿入分離する機能を持つ。上記 のチャネルの指定はデジタル回線上の任意のチャネルを 指定出来るが、一旦指定されれば変更されるまで半固定 的にそのとき指定されたチャネルが使用される。

パケット呼と回線交換呼とで使用されるチャネルの比率 はその時々のそれぞれのトラヒックに応じてLS10と TS20間のネゴシエーションにより変更される。

上位局すなわちTS20においては、上記DXM21および24によりデジタル回線の指定されたチャネルに応じて回線交換呼とパケット呼を分離し、回線交換呼は回線交換用時分割スイッチ(TDSW)22で、パケット呼はパケット交換機(PS)23においてそれぞれ交換処理を行う。

次に第2図を参照すると、本発明の一実施例の第1図に示した加入者交換機(LS)10は複数の加入者インターフエースモジュール(LM)110~11nを備える。各LMはデジタル加入者回路(DLC)2113よび212を有する。

DLC211および212はISDN加入者インターフエースの中でUインターフエースと呼ばれるインターフエースで加入者線71および72をそれぞれ収容する。DLC211および212はレイヤ1(物理レイヤ)とレイヤ2(データリンクレイヤ)の終端機能を持つ。すなわちDLC211および212はUインターフエースの電気的終端、同期とりなどのレイヤ1の終端、そしてLAP-Dのレイヤ2の終端を行なう。

DLC211および212は、第3図を参照すればUインターフエースのレイヤ1の終端を行うラインターミネータ(LT)311, LAP-Dのレイヤ2の終端を行うDチャネルハンドラー(DCH)312、および2B+DのISDNペーシックインターフエースのフォーマットからB1, B2の通話路とDチャネルとを分離挿入する機能と、B1, B2が回線交換呼の時は集線スイッ

チ (DLSW) 213 へB1, B2 がパケット呼の時に はラインモジュールパケットマルチプレクサ(LMPM X) 215 (第2図参照) へ分岐する機能を持つドロッ パー・インサーター (DI) 313とからなる。 Uイン ターフエースは現在のところCCITTでもナショナル マターとされており各国で異なる仕様が採用される可能 性が高い。しかし、本発明ではそれによる影響はレイヤ 1のインターフエースであるLT311に限定され、発 明の本質には関係がない。上記DI313の制御、すな わち B 1, B 2 が回線交換呼に使用されているかあるい はパケット呼に使用されているかによりB1, B2をそ れぞれDLSW213に接続するか、LMPMX215 へ接続するかの制御はモジュール制御回路(LMC)2 14が行う。具体的には加入者端末はDチャネルを介し て発呼信号を該加入者端末が収容されているDLC21 1あるいは212へ伝える。このとき、信号情報中には パケット呼としての発呼なのか回線交換呼としての発呼 なのかについての情報が含まれている。LMC214は この情報によりB1、B2をそれぞれDLSW213へ 接続するかLMPMX215へ接続するかの切り替え制 御を行う。 DLC211および212の出力のうち回線 交換呼としての二つのBチャネル: B1, B2はそれぞ れDLSW213へ接続されている。このとき、B1, B2は別々の信号線で接続されるようにも、あるいは一 本の信号線に多重化されているようにも構成可能であ

DLSW213はDLC211および212からのBチャネルを集線多重化し、TDSW12へ接続する。TDSW12は複数のLM110~11nにより集線された回線交換呼をさらに主ハイウエイの多重度まで多重化しスイッチネットワークにより通話路を必要に応じて適当な相手先の加入者インターフエースモジュールまたはトランクモジュールに接続する。各DLC211および212のDCHではそれぞれ接続されている加入者端末との間でフラグ同期、あらかじめ設定した数以上の0の連続の除去、再送による誤り制御などのレイヤ2の終端を行い、回線信号情報またはDチャネルパケットをLMC214へ受け渡す。

LMC214はDLC211および212からのDチャネルのデータをSAPIを見てSAPI=0の回線信号データについてはその処理を行い必要な呼処理を行う。これに伴いDLSW213の制御情報216およびTDSW12の制御部であるスイッチ制御部(CTL)250との間での制御情報217の通信等、システム内部で必要な制御が行われる。一方、SAPI=16に対応するDチャネルパケットについては、これを制御情報と分離し、Dチャネルパケットは加入者の収容位置に対応する物理アドレス情報を付加された上でLMC214で多重化されてLMPMX215では上記の二種類のパケット、すなわちLMC21

4からのDチャネルパケットとDLC211および21 2からのBチャネルパケットをパケット多重してSPM X13へ送出する。この際、Bチャネルを使用するパケ ットにはその加入者の収容位置に対応してDチャネルパ ケットと同様に物理アドレスが付加される。逆にSPM X13から受信したパケットはその中に含まれている物 理アドレス情報に従って該当するLMへ分配される。S PMX13は複数個の加入者インターフエースモジュー ル(LM)110~11nを単位として配置されており アップリンク側(以下LSからTSへの方向をアップリ ンク、その逆をダウンリンクという)では各加入者イン ターフエースモジュールLMから受信するパケットにど の加入者インターフエースモジュールからの(への)パ ケットかを識別するためのアドレス情報を付加してこれ を更にパケット多重化してデジタルクロスコネクトモジ ュール(DXM)14へ送出する。また、ダウンリンク 側では上記のアドレス情報により分配すべき加入者イン ターフエースモジュールLMを判断し該当のモジュール ヘパケットを送出する。

DXM14はTDSW12からの回線交換呼を回線交換呼用チャネルへ、またSMPX13からのパケット呼をパケット交換呼用チャネルへそれぞれ多重化するために回線対応に設置される回線交換呼・パケット交換呼マルチプレクサ(CPMX)221および231と回線インターフエースであるデジタル伝送インターフエース(DTI)222および231とこれら複数のCPMX221および231とDTI222および232の組み合わせを制御するデジタルクロスコネクト制御回路(DXCC)240とからなる。

さらに第4図を参照してDXMの詳細を説明する。CPMX221はアップリンク側にTDSW12からの信号路とSPMX13(第2図参照)からの信号路をタイムスロット単位に選択可能なセレクター回路(SEL)411と、ダウンリンク側にデマルチプレックス回路(DEC)413を備えている。DEC413では回線交換呼は所定のタイムスロットを分離して残りのタイムスロットにはアイドルチャネルパターンを挿入してTDSW12(第2図参照)へ送出する。またパケット呼については回線交換呼の部分を除いてSPMX13(第2図参照)へ送出する。

CPMX221は可変マルチプレクサであり挿入分離タイムスロット制御メモリIDCM412によりタイムスロット対応に制御されている。IDCM412へはDXM14の全体を制御する制御回路であるDXCC240からメモリのデータの書き込み、読み出しが行われる。上記IDCM412の内容は交換機の保守制御装置(MNC)260(第2図参照)からの制御によりDXCC240を介して書き変えられることにより回線交換呼とパケット呼が使用する帯域幅を変える事が出来る。

また、デジタル伝送インターフエース(DTI)222

はデジタル伝送路であるTCTとのインターフエース機 能すなわち、ピット同期、フレーム同期、フレームアラ イナー機能、デジタル伝送路上の障害監視の諸機能を持 つ。図中に示されている送信制御回路(SND)431 はフレームパターンの挿入、0連の抑圧、対局への警告 信号の送出等の機能を持つ。また、ユニボーラ/パイボ ーラ変換回路(UB) 432は交換機内のユニボーラ信 号をデジタル伝送路上のバイボーラ信号へ変換する。 ダインリンク側では中継階梯からのデジタル伝送路はパ イボーラ/ユニポーラ変換回路(BU)433において デジタル伝送路上のパイポーラ信号は交換機内のユニボ ーラ信号へ変換され、受信制御回路(RCV) 434へ 送られる。RCV434ではピット同期、フレーム同 期、そしてデジタル伝送路のフレーム位相を交換機の位 相に合わせるフレームアライメント処理を行う。またR CV434にはデジタル伝送路上の障害監視機能があり デジタル伝送路上に障害を発見したときはDXCC24 0へ報告する。 DXCC240では上記の報告を受けて MNC260へ通報する。

MNC260 (第2図参照) は交換機内の各装置の障害の監視,保守のための制御を行う装置である。MNC260は上記の目的を遂行するためにLMC214,250などとシステムの運用に必要なデータの送受信を行う。

〔発明の効果〕

以上のように、本発明のISDN加入者用デジタル交換機は加入者交換機への影響を最小限に留めつつ同一加入者線上で回線交換とパケット交換の諸サービスを共通に受けられる事を可能とし、ISDN導入初期のネットワークへの影響を必要最小限に抑え、経済的にISDNの

導入を可能ならしむる。

またISDN加入者の収容に伴うISDN加入者交換機の変更を最小限にとどめること、すなわち既存の電話用デジタル加入者交換機のスイッチ部はそのまま使用し、これにISDN加入者インターフエース部を付加することによりISDN加入者の収容を可能とする。さらに、加入者交換機と中継交換機を接続する中継回線を回線交換呼とパケット呼で共用を可能な構成を採用し、これにより中継回線の効率的な使用を実現する。さらにまた、ISDN加入者に発着信すパケット呼に接続出来る際に回線交換スイッチ部を通びできる。パケット呼に使用されることなく有効に利用出来るようにし、同時に回線交換のソフトウ事ができる。

【図面の簡単な説明】

第1図は本発明が適用されるISDN網の一例を示すブロック図、第2図は本発明の一実施例のブロック図、第3図は第2図に示したデジタルライン回路の詳細を示すブロック図、および第4図は第2図に示したデジタルクロスコネクトモジュールの詳細を示すブロック図である

10……加入者交換機(LS)、11……加入者インタフエースモジュール(LM)、12,22……回線交換用時分割スイッチ(TDSW)、13……システムパケットマルチプレクサ(SPMX)、14,21,24……デジタルクロスコネクトモジュール、23……パケット交換機。

【第3図】

【第1図】

【第2図】

【第4図】

フロントページの続き

(72)発明者 清水 知義

東京都港区芝5丁目33番1号 日本電気株式会社内

(56)参考文献 特開 昭55-137755 (JP, A)

特開 昭57-184393 (JP, A)

特開 昭60-10844 (JP, A)

特開 昭61-48256 (JP, A)