Chapter 12

Parametric and Polar Curves

Shuwei Chen

swchen@swjtu.edu.cn

Parametric equations

- ✓ to represent curves and trajectories in threedimensional space (Chapter 13)
- Polar coordinate system
 - ✓ to work with objects that have circular, cylindrical, or spherical shapes
- Conic sections
 - ✓ areas of regions bounded by curves, e.g., ellipses, parabolas, and hyperbolas, in polar coordinates

12.1

Parametric Equations

Basic Ideas

Example. A motor boat travels counterclockwise around a circular course with a radius of 4 miles, completing one lap every 2π hours at a constant speed

Parametric equations

$$x = 4 \cos t$$

$$y = 4 \sin t$$

The third variable *t* is called a parameter

In general, parametric equations

$$x = f(t), y = g(t)$$

Parametric curve consists of the points in the plane

$$(x,y) = (f(t),g(t)), \text{ for } a \le t \le b$$

The corresponding curve unfolds in a particular direction as the parameter increases.

DEFINITION Positive Orientation

The direction in which a parametric curve is generated as the parameter increases is called the **positive orientation** of the curve (and is indicated by arrows on the curve).

EXAMPLE 2 Parametric circle Graph and analyze the parametric equations

 $x = 4\cos 2\pi t$, $y = 4\sin 2\pi t$, for $0 \le t \le 1$.

In general,

$$x = x_0 + a \cos bt$$
, $y = y_0 + a \sin bt$

describes all or part of the circle

$$(x - x_0)^2 + (y - y_0)^2 = a^2$$

centered at (x_0, y_0) with radius |a|.

The circle is traversed once as t varies over any interval of length $2\pi/|b|$.

If b > 0 (< 0), then the circle is generated in the counterclockwise (clockwise) direction.

EXAMPLE 3 Circular path A turtle walks with constant speed in the counterclockwise direction on a circular track of radius 4 ft centered at the origin. Starting from the point (4, 0), the turtle completes one lap in 30 minutes. Find a parametric description of the path of the turtle at any time $t \ge 0$, where t is measured in minutes.

SUMMARY Parametric Equation of a Line

The equations

$$x = x_0 + at$$
, $y = y_0 + bt$, for $-\infty < t < \infty$,

where x_0 , y_0 , a, and b are constants with $a \neq 0$, describe a line with slope $\frac{b}{a}$ passing through the point (x_0, y_0) . If a = 0 and $b \neq 0$, the line is vertical.

The parametric description of a given line is not unique.

EXAMPLE 4 Parametric equations of lines

- **a.** Consider the parametric equations x = -2 + 3t, y = 4 6t, for $\ne < t < \ne$, which describe a line. Find the slope-intercept form of the line.
- **b.** Find two pairs of parametric equations for the line with slope $\frac{1}{3}$ that passes through the point (2, 1).
- **c.** Find parametric equations for the line segment starting at P(4,7) and ending at Q(2,-3).

EXAMPLE 5 Parametric equations of curves A common task (particularly in upcoming chapters) is to parameterize curves given either by Cartesian equations or by graphs. Find a parametric representation of the following curves.

- **a.** The segment of the parabola $y = 9 x^2$, for $-1 \le x \le 3$
- **b.** The complete curve $x = (y 5)^2 + \sqrt{y}$
- c. The piecewise linear path connecting P(-2, 0) to Q(0, 3) to R(4, 0) (in that order), where the parameter varies over the interval $0 \le t \le 2$

EXAMPLE 6 Rolling wheels The path of a light on the rim of a wheel rolling on a flat surface (Figure 10.11a) is a cycloid, which has the parametric equations

$$x = a(t - \sin t)$$
, $y = a(1 - \cos t)$, for $t \ge 0$,

where a > 0. Use a graphing utility to graph the cycloid with a = 1. On what interval does the parameter generate the first arch of the cycloid?

Slide 3 - 16

Derivatives and Parametric Equations

The rate of change of y with respect to x at a point on a parametric curve: $\frac{dy}{dx}$

The Chain Rule:

$$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$$

THEOREM 1 Derivative for Parametric Curves

Let x = f(t) and y = g(t), where f and g are differentiable on an interval [a, b]. Then the slope of the line tangent to the curve at the point corresponding to t is

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{g'(t)}{f'(t)},$$

provided $f'(t) \neq 0$.

$$x = f(t + \Delta t)$$

$$y = g(t + \Delta t)$$

$$x = f(t)$$

$$y = g(t)$$

$$\Delta y$$

$$y = g(t)$$

$$\Delta x \approx f'(t) \Delta t$$

EXAMPLE 8 Slopes of tangent lines Find $\frac{dy}{dx}$ for the following curves. Interpret the result and determine the points (if any) at which the curve has a horizontal or a vertical tangent line.

a.
$$x = f(t) = t, y = g(t) = 2\sqrt{t}$$
, for $t \ge 0$

b. $x = f(t) = 4\cos t$, $y = g(t) = 16\sin t$, for $0 \le t \le 2\pi$

Arc Length

 $|\Delta x_k|$

So,
$$L \approx \sum_{k=1}^{n} \sqrt{|\Delta x_k|^2 + |\Delta y_k|^2}$$

By Mean Value Theorem

$$\frac{\Delta x_k}{\Delta t_k} = \frac{f(t_k) - f(t_{k-1})}{t_k - t_{k-1}} = f'(t_k^*)$$

i.e., $\Delta x_k = f'(t_k^*) \Delta t_k$ Similarly, $\Delta y_k = f'(\hat{t}_k) \Delta t_k$

So,
$$L \approx \sum_{k=1}^{n} \sqrt{(f'(t_k^*)\Delta t_k)^2 + (f'(\hat{t}_k)\Delta t_k)^2}$$

= $\sum_{k=1}^{n} \sqrt{(f'(t_k^*)\Delta t_k)^2 + (f'(\hat{t}_k)\Delta t_k)^2} \Delta t_k$

Take limit,
$$L = \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{\left(f'(t_k^*)\right)^2 + \left(f'(\hat{t}_k)\right)^2} \Delta t_k$$
$$= \int_{a}^{b} \sqrt{\left(f'(t)\right)^2 + \left(f'(t)\right)^2} dt$$

DEFINITION Arc Length for Curves Defined by Parametric Equations

Consider the curve described by the parametric equations x = f(t), y = g(t), where f' and g' are continuous, and the curve is traversed once for $a \le t \le b$. The **arc length** of the curve between (f(a), g(a)) and (f(b), g(b)) is

$$L = \int_{a}^{b} \sqrt{f'(t)^{2} + g'(t)^{2}} dt.$$

EXAMPLE 7 Circumference of a circle Prove that the circumference of a circle of radius a > 0 is $2\pi a$.

EXAMPLE 7 More rolling wheels The path of a point on circle A with radius a/4 that rolls on the inside of circle B with radius a (Figure 10.12) is an **astroid** or a **hypocycloid**. Its parametric equations are

$$x = a\cos^3 t$$
, $y = a\sin^3 t$, for $0 \le t \le 2\pi$.

Graph the astroid with a = 1 and find its equation in terms of x and y.

b. Find the arc length of the astroid with a = 1.

12.2

Polar Coordinates

Defining Polar Coordinates

Polar coordinate system, in which the coordinates are constant on circles and rays, is better suited for studying circular objects

Defining Polar Coordinates

Pole: the origin of the coordinate system

Polar axis: the positive x-axis

Point P in polar coordinates have the form (r, θ)

Radial coordinate r describes the signed (or directed) distance from the origin to P.

Angular coordinate θ describes an angle whose initial side is the positive x-axis and whose terminal side lies on the ray passing through the origin and P.

Positive angles are measured counterclockwise from the positive x-axis

Points in polar coordinates have more than one representation for two reasons.

- Angles are determined up to multiples of 2π radians
- The radial coordinate may be negative
- E.g., $(r, \theta \pi)$, $(-r, \theta + \pi)$ and $(-r, \theta \pi)$ all refer to the same point

EXAMPLE 1 Points in polar coordinates Graph the following points in polar coordinates: $Q(1, \frac{5\pi}{4}), R(-1, \frac{7\pi}{4})$, and $S(2, -\frac{3\pi}{2})$. Give two alternative representations for each point.

Converting Between Cartesian and Polar Coordinates

The conversion equations:

$$\cos\theta = \frac{x}{r}, \sin\theta = \frac{y}{r}$$

PROCEDURE Converting Coordinates

A point with polar coordinates (r, θ) has Cartesian coordinates (x, y), where

$$x = r \cos \theta$$
 and $y = r \sin \theta$.

A point with Cartesian coordinates (x, y) has polar coordinates (r, θ) , where

$$r^2 = x^2 + y^2$$
 and $\tan \theta = \frac{y}{x}$.

EXAMPLE 2 Converting coordinates

- **a.** Express the point with polar coordinates $P(2, \frac{3\pi}{4})$ in Cartesian coordinates.
- **b.** Express the point with Cartesian coordinates Q(1, -1) in polar coordinates.

Basic Curves in Polar Coordinates

A curve in polar coordinates is the set of points that satisfy an equation in r and θ .

EXAMPLE 3 Polar to Cartesian coordinates Convert the polar equation $r = 10 \cos \theta + 24 \sin \theta$ to Cartesian coordinates and describe the corresponding graph.

$$\underline{r^2} = \underbrace{10r\cos\theta}_{10x} + \underbrace{24r\sin\theta}_{24y}$$

$$(x-5)^2+(y-12)^2=169$$

SUMMARY Circles in Polar Coordinates

The equation r = a describes a circle of radius |a| centered at (0, 0).

The equation $r = 2a \cos \theta + 2b \sin \theta$ describes a circle of radius $\sqrt{a^2 + b^2}$ centered at (a, b).

Two important special cases: b = 0 or a = 0.

Graphing in Polar Coordinates

Equations in polar coordinates often describe curves that are difficult to represent in Cartesian coordinates.

The easiest graphing method is to choose several values of θ , calculate the corresponding r-values, and tabulate the coordinates.

EXAMPLE 4 Plotting a polar curve Graph the polar equation $r = f(\theta) = 1 + \sin \theta$.

Table 3	
$\boldsymbol{ heta}$	$r = 1 + \sin \theta$
0	1
$\pi/6$	3/2
$\pi/2$	2
$5\pi/6$	3/2
π	1
$7\pi/6$	1/2
$3\pi/2$	0
$11\pi/6$	1/2
2π	1

Cardioid $r = 1 + \sin \theta$

Cartesian-to-Polar Method

PROCEDURE Cartesian-to-Polar Method for Graphing $r = f(\theta)$

- 1. Graph $r = f(\theta)$ as if r and θ were Cartesian coordinates with θ on the horizontal axis and r on the vertical axis. Be sure to choose an interval for θ on which the entire polar curve is produced.
- **2.** Use the Cartesian graph in Step 1 as a guide to sketch the points (r, θ) on the final *polar* curve.

EXAMPLE 5 Plotting polar graphs Use the Cartesian-to-polar method to graph the polar equation $r = 1 + \sin \theta$ (Example 4).

r and θ as Cartesian coordinates

Symmetry

SUMMARY Symmetry in Polar Equations

Symmetry about the x-axis occurs if the point (r, θ) is on the graph whenever $(r, -\theta)$ is on the graph.

Symmetry about the y-axis occurs if the point (r, θ) is on the graph whenever $(r, \pi - \theta) = (-r, -\theta)$ is on the graph.

Symmetry about the origin occurs if the point (r, θ) is on the graph whenever $(-r, \theta) = (r, \theta + \pi)$ is on the graph.

EXAMPLE 6 Plotting polar graphs Graph the polar equation $r = 3 \sin 2\theta$.

Symmetric about the x -axis, the y-axis, and the origin

Four-leaf rose

EXAMPLE 7 Plotting polar graphs Graph the polar equation $r^2 = 9 \cos \theta$. Use a graphing utility to check your work.

EXAMPLE 8 Matching polar and Cartesian graphs The butterfly curve is described by the equation

$$r = e^{\sin \theta} - 2\cos 4\theta$$
, for $0 \le \theta \le 2\pi$,

which is plotted in Cartesian and polar coordinates in Figure 30. Follow the Cartesian graph through the points A, B, C, \ldots, N, O and mark the corresponding points on the polar curve

Polar graph of $r = e^{\sin \theta} - 2 \cos 4\theta$, for $0 \le \theta \le 2\pi$

Using Graphing Utilities

EXAMPLE 9 Plotting complete curves Consider the closed curve described by $r = \cos(2\theta/5)$. Give an interval in θ that generates the entire curve and then graph the curve.

12.3

Calculus in Polar Coordinates

Slopes of Tangent Lines

For function y = f(x), the slope of its tangent line is $\frac{dy}{dx}$, f'(x)

Question: Is the slope of a curve described by the polar equation $r = f(\theta)$ also $\frac{dr}{d\theta} = f'(\theta)$?

Unfortunately not that simple!

How to solve this problem?

1. Write the polar equation $r = f(\theta)$ in parametric form with θ as a parameter

$$x = r \cos \theta = f(\theta) \cos \theta$$
, $y = r \sin \theta = f(\theta) \sin \theta$

2. Consider derivative about parametric equation $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$, applying Product Rule

$$\frac{dy}{dx} = \underbrace{\frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta}}^{dy/d\theta}.$$

1. The graph passes through the origin for angle θ_0 , $f(\theta_0) = 0$, $f'(\theta_0) \neq 0$, $\cos \theta_0 \neq 0$, then $\frac{dy}{dx} = \frac{\sin \theta_0}{\cos \theta_0} = \tan \theta_0$.

The tangent line is simply $\theta = \theta_0$.

2. If $f(\theta_0) = 0$, $f'(\theta_0) \neq 0$, $\cos \theta_0 = 0$, the graph has a vertical tangent line at the origin

THEOREM 2 Slope of a Tangent Line

Let f be a differentiable function at θ_0 . The slope of the line tangent to the curve $r = f(\theta)$ at the point $(f(\theta_0), \theta_0)$ is

$$\frac{dy}{dx} = \frac{f'(\theta_0)\sin\theta_0 + f(\theta_0)\cos\theta_0}{f'(\theta_0)\cos\theta_0 - f(\theta_0)\sin\theta_0},$$

provided the denominator is nonzero at the point. At angles θ_0 for which $f(\theta_0) = 0$, $f'(\theta_0) \neq 0$, and $\cos \theta_0 \neq 0$, the tangent line is $\theta = \theta_0$ with slope $\tan \theta_0$.

EXAMPLE 1 Slopes on a circle Find the slopes of the lines tangent to the circle $r = f(\theta) = 10$.

$$\frac{dy}{dx} = \frac{f'(\theta)\sin\theta + f(\theta)\cos\theta}{f'(\theta)\cos\theta - f(\theta)\sin\theta} = -\frac{\cos\theta}{\sin\theta} = -\cot\theta.$$

OP, whose slope is $\tan \theta$, is perpendicular to the tangent line at all points P on the circle.

EXAMPLE 2 Vertical and horizontal tangent lines Find the points on the interval $-\pi \le \theta \le \pi$ at which the cardioid $r = f(\theta) = 1 - \cos \theta$ has a vertical or horizontal tangent line.

Area of Regions Bounded by Polar Curves

How about the general case?

The area of the region R bounded by the graph of $r = f(\theta)$ between the two rays $\theta = \alpha$ and $\theta = \beta$

Area of circle $= \pi r^2$ Area of $\Delta \theta / (2\pi)$ of a circle

$$= \left(\frac{\Delta\theta}{2\pi}\right)\pi r^2 = \frac{1}{2}r^2\Delta\theta$$

Slice-and-sum strategy

1. Slice the region in the radial direction, creating wedge-shaped slices. Interval $[\alpha, \beta]$ is partitioned into n subintervals

$$\alpha = \theta_0 < \theta_1 < \theta_2 < \dots < \theta_k < \dots < \theta_n = \beta$$

- 2. Approximation. Let $\Delta \theta_k = \theta_k \theta_{k-1}$, $\theta_k^* \in [\theta_{k-1}, \theta_k]$. The kth slice is approximated by the sector of a circle swept out by an angle $\Delta \theta_k^*$ with radius $f(\theta_k^*)$, whose area is $\frac{1}{2}f(\theta_k^*)^2\Delta \theta_k$
- 3. Sum the areas of these slices to get the approximate area of R

$$\sum_{k=1}^{n} \frac{1}{2} f(\theta_k^*)^2 \Delta \theta_k$$

4. Take limit. The exact area is

$$\int_{\alpha}^{\beta} \frac{1}{2} f(\theta)^2 d\theta = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{2} f(\theta_k^*)^2 \Delta \theta_k$$

More generally, the area of a region R bounded by two curves, $r = f(\theta)$ and $r = g(\theta)$ between the rays $\theta = \alpha$ and $\theta = \beta$ Assume that f and g are continuous and $f(\theta) \ge g(\theta) \ge 0$ on $[\alpha, \beta]$

DEFINITION Area of Regions in Polar Coordinates

Let R be the region bounded by the graphs of $r = f(\theta)$ and $r = g(\theta)$, between $\theta = \alpha$ and $\theta = \beta$, where f and g are continuous and $f(\theta) \ge g(\theta) \ge 0$ on $[\alpha, \beta]$. The area of R is

$$\int_{\alpha}^{\beta} \frac{1}{2} \left(f(\theta)^2 - g(\theta)^2 \right) d\theta.$$

EXAMPLE 3 Area of a polar region Find the area of the four-leaf rose $r = f(\theta) = 2 \cos 2\theta$.

EXAMPLE 4 Areas of polar regions Consider the circle r = 1 and the cardioid $r = 1 + \cos \theta$ (Figure 38).

- **a.** Find the area of the region inside the circle and inside the cardioid.
- **b.** Find the area of the region inside the circle and outside the cardioid.

EXAMPLE 5 Points of intersection Find the points of intersection of the circle $r = 3 \cos \theta$ and the cardioid $r = 1 + \cos \theta$ (Figure 40).

EXAMPLE 6 Computing areas Example 5 discussed the points of intersection of the curves $r = 3\cos\theta$ (a circle) and $r = 1 + \cos\theta$ (a cardioid). Use those results to compute the areas of the following non-overlapping regions in Figure 41.

- **a.** region A **b.** region B **c.** region C

Arc Length of a Polar Curve

Question: Given function $r = f(\theta)$, what is the length of the corresponding curve for $\alpha \le \theta \le \beta$?

Idea: Express the polar equation as a set of parametric equations in Cartesian coordinates, i.e.,

 $x = r \cos \theta = f(\theta) \cos \theta$, and $y = r \sin \theta = f(\theta) \sin \theta$ where $\alpha \le \theta \le \beta$.

Then the arc length formula is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} d\theta$$

$$\frac{dx}{d\theta} = f'(\theta)\cos\theta - f(\theta)\sin\theta, \frac{dy}{d\theta} = f'(\theta)\sin\theta + f(\theta)\cos\theta.$$

Arc Length of a Polar Curve

Let f have a continuous derivative on the interval $[\alpha, \beta]$. The **arc length** of the polar curve $r = f(\theta)$ on $[\alpha, \beta]$ is

$$L = \int_{\alpha}^{\beta} \sqrt{f(\theta)^2 + f'(\theta)^2} d\theta.$$

EXAMPLE 7 Arc length of polar curves

- **a.** Find the arc length of the spiral $r = f(\theta) = \theta$, for $0 \le \theta \le 2\pi$ (Figure 12.43).
- **b.** Find the arc length of the cardioid $r = 1 + \cos \theta$ (Figure 12.44).

12.4

Conic Sections

Conic sections: Slice a double cone with a plane

Standard ones: *ellipses*, *parabolas*, and *hyperbolas*

Degenerate conic sections (*lines* and *points*), produced when a plane passes through the vertex of the cone

Parabolas

A parabola is the set of points in a plane that are equidistant from a fixed point F (called the focus) and a fixed line (called the directrix)

$$\underbrace{\sqrt{x^2 + (y - p)^2}}_{|PF|} = \underbrace{y + p}_{|PL|}$$

The equation: $x^2 = 4py$

Equations of Four Standard Parabolas

Let p be a real number. The parabola with focus at (0, p) and directrix y = -p is symmetric about the y-axis and has the equation $x^2 = 4py$. If p > 0, then the parabola opens upward; if p < 0, then the parabola opens downward.

The parabola with focus at (p, 0) and directrix x = -p is symmetric about the x-axis and has the equation $y^2 = 4px$. If p > 0, then the parabola opens to the right; if p < 0, then the parabola opens to the left.

Each of these parabolas has its vertex at the origin (Figure 44).

Slide 3 - 69

EXAMPLE 1 Graphing parabolas Find the focus and directrix of the parabola $y^2 = -12x$. Sketch its graph.

EXAMPLE 2 Equations of parabolas Find the equation of the parabola with vertex (0,0) that opens downward and passes through the point (2,-3).

Reflection Property

Particle approaching a parabola on any line parallel to the axis of the parabola is reflected on a line that passes through the focus Useful in the design of reflectors and transmitters

Ellipses

An ellipse is the set of points in a plane whose distances from two fixed points have a constant sum that we denote 2a. Each of the two fixed points is a focus (plural foci)

The equation of an ellipse is simplest if the foci are on the x-axis at $(\pm c, 0)$ or on the y-axis at $(0, \pm c)$.

Major axis is vertical: $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$

Equations of Standard Ellipses

An ellipse centered at the origin with foci F_1 and F_2 at $(\pm c, 0)$ and vertices V_1 and V_2 at $(\pm a, 0)$ has the equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, where $a^2 = b^2 + c^2$.

An ellipse centered at the origin with foci at $(0, \pm c)$ and vertices at $(0, \pm a)$ has the equation

$$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$$
, where $a^2 = b^2 + c^2$.

In both cases, a > b > 0 and a > c > 0, the length of the long axis (called the **major axis**) is 2a, and the length of the short axis (called the **minor axis**) is 2b.

EXAMPLE 3 Graphing ellipses Find the vertices, foci, and length of the major and minor axes of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Graph the ellipse.

EXAMPLE 4 Equation of an ellipse Find the equation of the ellipse centered at the origin with its foci on the y-axis, a major axis of length 8, and a minor axis of length 4. Graph the ellipse.

Hyperbolas

A hyperbola is the set of points in a plane whose distances from two fixed points have a constant difference, either 2a or -2a. The two fixed points are called **foci**.

Major axis vertical:
$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

Equations of Standard Hyperbolas

A hyperbola centered at the origin with foci F_1 and F_2 at $(\pm c, 0)$ and vertices V_1 and V_2 at $(\pm a, 0)$ has the equation

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, where $b^2 = c^2 - a^2$.

The hyperbola has **asymptotes** $y = \pm bx/a$.

A hyperbola centered at the origin with foci at $(0, \pm c)$ and vertices at $(0, \pm a)$ has the equation

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$
, where $b^2 = c^2 - a^2$.

The hyperbola has **asymptotes** $y = \pm ax/b$.

In both cases, c > a > 0 and c > b > 0.

EXAMPLE 5 Graphing hyperbolas Find the equation of the hyperbola centered at the origin with vertices V_1 and V_2 at $(\pm 4, 0)$ and foci F_1 and F_2 at $(\pm 6, 0)$. Graph the hyperbola.

Eccentricity and Directrix

Eccentricity-directrix approach, a single unified way to define parabolas, ellipses, and hyperbolas

Directrix is a line l, focus F is a point not on l, and eccentricity is a real number e > 0.

Ellipse:
$$\frac{|PF|}{|PL|} = e$$
, $0 < e < 1$

Hyperbola:
$$\frac{|PF|}{|PL|} = e > 1$$

THEOREM 3 Eccentricity-Directrix Theorem

Suppose ℓ is a line, F is a point not on ℓ , and e is a positive real number. Let C be the set of points P in a plane with the property that $\frac{|PF|}{|PL|} = e$, where |PL| is the perpendicular distance from P to ℓ .

- **1.** If e = 1, C is a parabola.
- **2.** If 0 < e < 1, *C* is an **ellipse**.
- **3.** If e > 1, C is a hyperbola.

SUMMARY Properties of Ellipses and Hyperbolas

An ellipse or a hyperbola centered at the origin has the following properties.

	Foci on x-axis	Foci on y-axis
Major-axis vertices:	$(\pm a,0)$	$(0, \pm a)$
Minor-axis vertices (for ellipses):	$(0,\pm b)$	$(\pm b, 0)$
Foci:	$(\pm c, 0)$	$(0,\pm c)$
Directrices:	$x = \pm d$	$y = \pm d$
Eccentricity: $0 < e < 1$ for ellipse	es, $e > 1$ for hyperl	oolas.

Given any two of the five parameters a, b, c, d, and e, the other three are found using the relations

$$c = ae$$
, $d = \frac{a}{e}$,

$$b^2 = a^2 - c^2$$
 (for ellipses), $b^2 = c^2 - a^2$ (for hyperbolas).

EXAMPLE 6 Equations of ellipses Find the equation of the ellipse centered at the origin with foci F_1 and F_2 at $(0, \pm 4)$ and eccentricity $e = \frac{1}{2}$. Give the length of the major and minor axes, the location of the vertices, and the directrices. Graph the ellipse.

Polar Equations of Conic Sections

Conic sections have a natural representation in polar coordinates, provided the eccentricity-directrix approach.

A single polar equation covers parabolas, ellipses, and hyperbolas.

Placing one focus *F* at the origin and taking a directrix perpendicular to the *x*-axis through (d, 0), d > 0. |PF| = r, $|PL| = d - r \cos \theta$ The condition $\frac{|PF|}{|PL|} = e$ implies that $r = e(d - r \cos \theta)$, i.e., Slide 3 - 86

THEOREM 4 Polar Equations of Conic Sections

Let d > 0. The conic section with a focus at the origin and eccentricity e has the polar equation

$$r = \frac{ed}{1 + e \cos \theta} \quad \text{or} \quad r = \frac{ed}{1 - e \cos \theta}.$$
if one directrix is $x = d$ if one directrix is $x = -d$

The conic section with a focus at the origin and eccentricity e has the polar equation

$$r = \frac{ed}{1 + e \sin \theta} \quad \text{or} \quad r = \frac{ed}{1 - e \sin \theta}.$$
if one directrix is $y = d$ if one directrix is $y = -d$

If 0 < e < 1, the conic section is an ellipse; if e = 1, it is a parabola; and if e > 1, it is a hyperbola. The curves are defined over any interval in θ of length 2π .

EXAMPLE 7 Conic sections in polar coordinates Find the vertices, foci, and directrices of the following conic sections. Graph each curve and check your work with a graphing utility.

a.
$$r = \frac{8}{2 + 3\cos\theta}$$
 b. $r = \frac{2}{1 + \sin\theta}$

b.
$$r = \frac{2}{1 + \sin \theta}$$

Chapter 12

Parametric and Polar Curves

Shuwei Chen

swchen@swjtu.edu.cn