Pytorch и обнаружение дубликатов на StackOverflow.

Хрыльченко Кирилл

Математические методы анализа текстов 2021

22 сентября, 2021

Stack Overflow¹

¹https://stackoverflow.com

Stack Overflow. Duplicates Detection

Stack overflow in a nutshell

Figure: Домашнее задание — определение дублируемых вопросов на stack overflow.

Данные

question	How to print a binary heap tree without recursion?
duplicate	How do you best convert a recursive function to an iterative
	one?
random 1	How can i use ng-model with directive in angular js?
random 2	flash: drawing and erasing
random 3	toggle react component using hide show classname

Table: Один сэмпл из валидации

question 1	question 2
converting string to list	Convert Google results object (pure js) to Python object
Which HTML 5 Canvas Javascript to use for making an interactive drawing tool?	Event handling for geometries in Three.js?

Table: Сэмплы из обучения

Подготовка данных

Что надо сделать:

- Приведение к нижнему регистру
- Удаление:
 - пунктуации, всевозможных галочек и стрелочек с помощью библиотеки re — можно попробовать оставить только латиницу
 - стопслов с помощью библиотеки nltk,
 - коротких слов
- tip: посмотрите глазами на слова, которые не нашлись в word2vec

Что еще иногда (не)делают:

- исправляют опечатки
- не приводят к нижнему регистру, т.к. он полезен e.g. определение токсичности комментариев. Cased vs uncased

Мешок² векторов

²порядок в такой модели не учитывается

Мешок векторов

Представляем каждый вопрос как вектор, усредняя векторы всех слов. Что нужно для модели:

- векторы слов, маппинг слово -> вектор
- определиться, как будем определять схожесть двух векторов

Схожесть двух векторов — скаляр:

- ullet евклидово расстояние $\|u-v\|_{l2}$. Является метрикой
- ullet скалярное произведение $\langle u,v
 angle$. Вычислительно дешевле, чем косинус
- косинус $\frac{\langle u,v\rangle}{\|u\|\|b\|}$. Меньше аффектится частотностью тех или иных слов в тексте

Определение похожих вопросов

Нашу задачу можно сформулировать двумя способами:

- классификация является ли данная пара вопросов дубликатами?
- ранжирование глядя на вопрос, отранжировать список других вопросов в порядке схожести

Метрик ранжирования много — ROC AUC, DCG, nDCG, MRR, MAP и т.д. Возьмем очень простую — HR (Hits Ratio).

Hits@k

Для сэмпла: Hits@k = предикат [правильный ответ оказался в top k]. Для выборки — это доля сэмплов, для которых правильный ответ оказался в top k.

Как оптимально посчитать hits@k сразу для нескольких k — посчитать количество сложных негативов (hard negatives), тогда hits@k = [amount of hard negatives < k].

Неизвестные слова³

Очевидная точка роста для модели — для бОльшего количества слов находить векторы (иначе слово просто не учитывается в итоговом векторе). Выучим трехбуквенную модель для слов, аппроксимируя векторы известных слов как сумму векторов его буквенных триграм:

$$d(\text{vector}(w), \frac{1}{n} \sum_{c \in w} \text{vector}(c)) \to \min,$$

где w — слово, а $\{c:c\in W\}$ — множество последовательностей из трех букв внутри этого слова.

Чар-триграммы для слова 'арбуз'

#ар, арб, рбу, буз, уз#, префикс и суффикс выделяются в отдельные триграммы

 $^{^3}$ Часто неизвестные слова обозначают как OOV (out of vocabulary) или UNK (unknown)

Результаты

После обучения триграммной модели, пробежимся по всем неизвестным словам и составим для них векторы.

В рамках работы нужно ответить на вопросы с обоснованием:

- повышает ли качество «чистка» текста
- повышает ли качество триграммная модель для неизвестных слов
- повышает ли качество использование префикса и суффикса
- что лучше работает для триграммной модели как функция *d*: евклидово расстояние, косинус, скалярное произведение
- что лучше работает для модели схожести вопросов: евклидово расстояние, косинус, скалярное произведение

О списках

Питоновский list — динамический массив, НЕ N-связный список.

- элементы списка находятся в одной области памяти, последовательно
- ullet O(1) операции: индексация, добавление и удаление из конца списка
- \bullet проверка на вхождение: a in mylist O(n)!
- mylist[i:j] копирует список, т.е. O(n) в худшем случае
- ullet mylist1+ mylist2- копирует оба списка в новый, т.е. O(m+n)
- динамический массив для списка выделена память с запасом (table doubling), выделенная память идет по степеням двойки
- nltk.stopwords список
- список + [элемент] копирует
- первый список += второй список добавляет (копирует) элементы второго списка в конец первого списка

⁴копирование - не глубокое, т.е. shallow сору

Базовая работа с текстом

Модель работает с тензорами. Слова нужно пронумеровать, глядя на имеющуюся коллекцию текста. Как создать словарь:

- Считаем частоты слов с помощью $Counter^5$, убираем редкие слова
- сохраняем список со словами vocab почему не нужен словарь id2vocab?
- создаем словарь vocab2id, в котором по слову можно найти его индекс (номер в списке)

Про словари:

ullet добавление, удаление, проверка на вхождение за O(1)

Переводим предложение в индексы как:

• [vocab2id.get(word, UNK) for word in doc if word in vocab2id]

⁵двойные циклы — Counter(word for doc in corpus for word in doc)

Подготовка батча

Трансформация батча⁶:

- Был список документов: ["А и Б сидели на трубе", "А в каком случае Р = NP?", ...]
- Теперь есть список списков индексов слов: [[1 5 2 3 19 4], [1 8 6 100 ...], [...], ...]

Модели нужен тензор — все списки должны быть одной длины. Для этого используем:

- паддинг дополняем справа все объекты индексом паддинга до фиксированной длины max length.
- nn.EmbeddingBag склеиваем все индексы в один большой список, запоминая сдвиги⁷ в другом списке

⁶набор входных данных для модели, передаваемый "одним пакетом" ⁷offsets

Bucket sequencing

Подобрать общую длину для всех сэмплов можно по гистограмме:

Figure: Гистограмма распределения длин документов

Но существуют и более оптимальные практики.

Bucket sequencing

Будем для каждого батча подбирать свою длину. Одинаковые длины для разных батчей нам не нужны. Один батч — один тензор, который пойдет в модель.

Figure: Два батча.

Как выбрать длину для батча:

- как максимальную длину среди всех сэмплов в батче
- обрезать по квантилю

Для наиболее оптимальных длин батчей на инференсе сортируйте данные.

15 / 27

Преобразование триграмм

```
class TrigramTokenizer:
   def init (self, words):
        # формируем множество всевозможных триграмм, встречающихся в словах из words
        # делаем маппинг триграм в индексы
       pass
   @property
   def vocab size(self):
        # возвращаем количество триграмм, которые мы положили в наш маппинг
       pass
   @staticmethod
   def get trigrams(word):
        # возвращаем список триграмм для слова word
       pass
   def call (self, word):
        # возвращаем список индексов триграмм для слова word
       pass
```

Для get trigrams удобно использовать генератор.

Dataset

```
from torch.utils.data import Dataset

class TrainTrigramDataset(Dataset):

def __init__(self, vocab, w2v_embeddings, tri_tokenizer):
    # формируем выборку для обучения триграммной модели
    # ЗАРАНЕЕ считаем маппинг в список индексов для всех известных слов
    pass

def __len__(self):
    # возвращает размер датасета - количество объектов в выборке, т.е. известных слов
    pass

def __getitem__(self, idx):
    # возвращает список индексов триграмм для idx-го слова в выборке, а также w2v вектор этого слова
    pass
```

Dataset с точки зрения питона — массив. Можем узнать его длину len(ds), а также проиндексировать (вытащить пронумерованный элемент с помощью ds[i])

DataLoader

DataLoader помогает сформировать батч из выборки:

[dataset[i] for i in ids],

где ids — номера документов в датасете. Фактически, это итератор по батчам.

Он устроен чуть сложнее:

- Умеет работать параллельно num workers. Полезно при тяжелом getitem,
- Может каждую эпоху перемешивать выборку $^8-shuffle=True^9$,
- Может игнорировать последний батч, если он меньше, чем предыдущие

⁸для более интересных махинаций смотрите **Sampler**'ы

⁹не забывайте выключать эту опцию на валидации

Dataset + DataLoader = Success

Фундамент любого пайплайна:

- Создаем датасет, из которого можно быстро доставать нужные нам объекты
- Создаем даталоадер, который эти объекты достаёт
- Ловим объекты у даталоадера

```
dataset = MyDataset(my_data)
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)

for obj, target in dataloader:
    # итерируясь по даталоадеру, получаем сразу подготовленные батчи
    # делаем шаг градиентного спуска, подсчитав лосс для батча
    pass
```

Важно: цикл проходит каждый объект единожды. Это одна эпоха.

collate fn

Внутри даталоадера собирается список объектов: $[dataset[i] \ for \ i \ in \ ids]$, затем передается специальной функции $collate \ fn$.

```
def collate_fn(batch):
    # принимает на вход список элементов из датасета [ds[idx] for idx in [1, 5, 2, 3, 4]]
    words, trigrams = zip(*batch)
    words = torch.tensor(words, dtype=torch.float)

offsets = ...
    trigrams = ...

# итерируясь по даталоадеру, мы получаем выход именно этой функции в цикле как objb
    return words, trigrams, offsets
```

В нашем случае (для триграмм):

- words эмбеддинги из w2v
- trigrams списки индексов и сдвигов для триграмм

Чтобы использовать nn.EmbeddingBag, нужно склеить списки индексов в один и запомнить сдвиги. Для bucket sequencing (если решили паддить) можно использовать torch.nn.utils.rnn.pad sequence

Модель

Модель — та самая нейронная сеть.

- принимает на вход: тензор из всех объектов в батче
- выдает: предсказания для всех объектов в батче

Для триграмм — принимает два параметра. Тензор индексов триграмм и тензор сдвигов.

Оптимизация

Функционалы ошибки:

- для триграммной модели nn.MSELoss, nn.CosineSimilarty
- ullet для классификации nn.BCELoss 10 и nn.BCEWithLogits 11 . Второй вариант постабильней
- кастомный функционал ошибки слой, на выходе из которого скаляр

Оптимизатор — torch.optim.Adam. При создании, передаем:

- параметры модели
- шаг обучения learning rate
- weight decay I₂ регуляризация

¹⁰если есть сигмоида в конце модели

¹¹сигмоида входит в лосс, на выходе модели голые логиты

Пайплайн

Датасет и даталоадер, модель, функционал, оптимизатор — всё, что нужно для простого пайплайна.

```
criterion = nn.MSELoss()
model = TrigramModel()
optimizer = torch.optim.Adam(model.parameters())
model.train() # переводим модель в режим обучения (нужно для всяких сложных слоёв, типа dropout и нормализаций)
for word_embeddings, trigrams, offsets in dataloader:
tri_embeddings = model(trigrams, offsets) # скармливаем батч модели
loss = ... # считаем лосс между триграммным вектором и исходным вектором из word2vec

loss.backward() # считаем градиенты
optimizer.step() # делаем шаг спуска - обновляем параметры
optimizer.zero grad() # обнуляем посчитанные градиенты
```

Регуляризация

Модель быстро переобучается. Что делать:

- Dropout между слоями
- SpatialDropoput зануляем измерения в исходных эмбеддингах слов или триграмм
- ограничиваем max norm в слое эмбеддингов
- batch, instance, layer нормализация (последняя популярней всего в текстах)
- l_2 регуляризация определенных (или всех) слоёв сети
- gradient clipping¹² torch.nn.utils.clip grad norm
- фриз слоёв например, предобученных эмбеддингов
- большой batch size
- маленький learning rate
- gradual unfreezing
- энтропия как функционал

¹²против взрыва градиентов

model.train vs model.eval:

- model.train работает дропаут и считаются статистики по батч нормализации
- model.eval отключается дропаут (детерминированный выход в сети), статистики по батч норме фиксируются как скользящее среднее статистик из батчей

Для BCEWithLogits и BCELoss (бинарной кросс-энтропии) — таргеты должны быть torch.float! Можно подавать вероятности (приближать другое распределение), смягчать метки, чтобы делать модель более "неуверенной".

Работа с GPU:

- всё либо на GPU, либо на CPU
- model.cuda(), затем для каждого батча obj.cuda(), target.cuda()
- лучше использовать переменную **device** и делать model.to(device) и obj.to(device)

- Для ускорения можно использовать mixed precision например, библиотеку **apex**.
- ullet broadcasting: torch.einsum 13 позволяет делать сложные операции с тензорами чуть быстрее
- Рандом в Python очень медленный. Используйте библиотеку fastrand, генерируйте случайные числа наперёд большими массивами, используйте внутренние генераторы случайных чисел pytorch'a
- Используйте tensorboard, чтобы отслеживать обучение нейронной сети
- Когда не обучаете модель (на валидации, инференсе) используйте контекстный менеджер with torch.no grad!
- не повторяйте одни и те же операции например, векторизацию текста

¹³аналогично пр.einsum

Обучение полноценной модели определения дубликатов вопросов

Используем предобученные векторные представления, а хочется обучить векторы под нашу задачу. Это сильно бустит качество!

Metric learning

Выучивание «схожести» объектов — metric learning. Отображаем объекты в одно «семантическое пространство» (превращаем объекты в векторы) и выучиваем «метрику схожести» — например, косинус между векторами.

Распространенные техники: contrastive loss, triplet loss, NT-Xent 14 . Почти всегда не имеем явных негативов, приходится их «майнить».

¹⁴Improved Deep Metric Learning with Multi-class N-pair Loss Objective, Kihyuk Sohn