

Live Session 04

Randomness and Public Key Cryptography

CS 7349

Spring 2024

World Changers Shaped Here

SMU.

Shaibal Chakrabarty

Contents

- Security News of the Week
- House Keeping
- Class Presentation Special Topic
- Concepts: Randomness, PRNGs and Stream Ciphers
- PRFs and Public Key Cryptography

House Keeping

- Status of Teams for Term Paper? Topic?
- Term Paper Topic, team, due by 01/28/2024; Checkpoint on 01/29, 01/31
- Submit Quiz 1 and start on Quiz 2
- Quiz 1, 1 week; Homework 1, 2 weeks
- RED ALERT on Research Paper! Teams & Topic NOW!!

Time is of the Essence

Security News of the Week – Spring 2024

- https://www.wsj.com/tech/cybersecurity/microsoft-reportshack-by-nation-state-actor-Offd57ca?mod=cybersecurity_news_article_pos2
 - A nation-state actor breached the emails of MSFT/HPE senior leadership
- https://techcrunch.com/2023/12/04/23andme-confirmshackers-stole-ancestry-data-on-6-9-million-users/
 - ~7M users breached, more and longer than previously thought
- https://www.cio.com/article/1298075/a-new-era-of-cybersecurity-with-ai-predictions-for-2024.html
 - Sponsored report detailing the rise of AI in cyberattacks and mitigation

New Urban Dictionary terms

- SIM swapping
- Maryland woman loses \$17K in SIM card swap scam despite two-factor authentication | I-Team | WJLA
 - 17k drained from BoA account after Verizon SIM swap

CS 7349 – Tying it all together

INTRODUCTION TO CS7349 AND THE THREAT LANDSCAPE

INTRODUCTION TO NETWORKS

SYMMETRIC KEY CRYPTO

USING SYMMETRIC KEY CIPHERS

RANDOMNESS AND PSEUDORANDOM NUMBERS

PUBLIC KEY CRYPTO/Team Paper

HASH FUNCTIONS

MESSAGE AUTHENTICATION CODES

KEY MANAGEMENT

IDENTITY AND ACCESS MANAGEMENT

NETWORK SECURITY

SECURITY – CLOUD, WIRELESS/5G, DDoS, SASE, IoT, SDN, Smart Cities

FRAMEWORKS, STANDARDS, OPERATIONS, Governance/Risk/Compliance

REVIEW/ADDITIONAL TOPICS

Confidentiality

Integrity A

Availability

Networks/Application

Spring schedule

Date	Week/Unit	Learning Material	Assignment
01/17/2024	1/1	Intro to Data and Network Security	Stallings Ch 1; Quiz#1;Start project team, select project and inform instructor
Jan 22, 24	2/2	Intro to Computer Networks	Submit Quiz #2; Project team confirms problem with instructor/Homework 1 issued/Term paper checkpoint
Jan 29, 31	3/3	Symmetric Key Cryptography	Stallings Ch 2-3; Submit Quiz #3; First Project Draft (Title, authors, abstract and Intro)/
Feb 5, 7	4/4	Using Symmetric Key Ciphers	Stallings Ch 3-6; Submit Quiz#4 (ch03 and ch06); Homework #2 issued
Feb 12, 14	5/5	Randomness and Pseudorandom Numbers	Stallings Ch 7; Submit Quiz #5/Term Paper Checkpoint
Feb 19, 21	6/6	Public Key Cryptography	Stallings Ch 9-10; Submit Quiz #6/Case Study Due/
Feb 26, 28	7/7	Hash Functions/	Stallings Ch 11; Submit Quiz #7; Paper Interim Draft; Exam 1 issued
Mar 4, 6	8/8	Message Authentication Codes	Stallings Ch 12; Submit Quiz#8;
Mar 11, 13	9/9	SPRING BREAK!!!	
Mar 18, 20	03/10	Key Management and Key Distribution	Stallings Ch 14; Submit Quiz #10/Term paper checkpoint/Start on project presentation/Case Study
Mar 25, 27	04/11	User Authentication	Stallings Ch 15; Submit Quiz #11/
Apr 1, 3	12/12	Network Security	Stallings Ch 17; Submit Quiz #12; Presentation check/Exam #2
Apr 8, 10	13/13,14	Privacy, Security Ethics	
Apr 15, 17	14	Applications: Al and Quantum Computing	Submit Final Project Paper
Apr 22, 24	15	Open	Presentations of Term Project by class/
Apr 29		Wrap up and Review	

This schedule is subject to changes. All assignments are due by 11:59pm of the due date. Earlier submissions are encouraged and welcome. Do not wait till the last moment.

You will have 2 weeks to complete most assignments.

Book: Cryptography and Network Security by William Stallings, 8th edition

Class Presentation - Special Topic

- Any topic of your interest: Work, school, play
 - Can be a question/answer, wonderment, information
 - Security related; NOT term paper related; NO course topic
 - Strict time limits 5 mins + 3 mins Q&A
- Schedule as per roster
 - Adu, Aliliele, Braden, Cho, Dominguez, Garcia, Garza, Gibbs, Guo, Hennes, Jackson, Kharwadhkar, Kucera, Lei, Liang, Lim, Lin, Liu, Magee, Mandalaneni, Mathew, Miller, Nagamanickam, DPatel, PPatel, Pittman, Sanaboyina, Singh, Skochdopole, Swigart, Taghavi, Wang, Werth, Zhai

Project Timeline (For 9 page paper)

- Jan: First project draft 1 page, basically your Introduction section, plus title, authors and abstract, some references
- <u>Feb</u>: Interim draft 3 pages, basically your intro and related work, plus basic description of your solution
- Mar: Draft 6 pages. Detailed solution, analysis, references
- Apr: Final paper 9 pages. Submit, with presentation

A LaTex template and example paper will be provided

Project – 1st deliverable

- Team projects (3 per team)
- Choose topic (from topic list or your own)*
- Within topic, identify problem to be addressed (no survey projects, only problem solving projects - survey is a part of your problem solution and is contained in the final paper)
- Confirm problem with professor

InfoSec, CIA, Threats

Network Security Basics

The IT Security Chain

Upwork[™]

The more links in your network's chain—databases, cloud-based servers, APIs, and mobile applications—the more potential vulnerabilities you face. Here's an overview of areas of IT security to consider.

Randomness & Pseudorandom Numbers

CS 7349

Spring 2024

World Changers Shaped Here

Randomness

- Burning questions?
- Why randomness? Why so important?
 - Confusion and Diffusion
- Randomness: Uniform, Independent, Unpredictable
- PRNG: Efficient, Deterministic, Periodic
 - Cryptographically secure PRNG, PRFs (Hash Functions)
- TRNG: Not efficient, non-deterministic, non-periodic

Modes of Operation – remember?

PRNG

Purpose-built Algorithms

- Linear Congruential Generator:
 - $X_{n+1}=(aX_n+c) \mod m$
- BBS Generator: CSPRBG, purpose-built
- PRGA for RC4 stream cipher

Based on existing crypto algorithms

- Symmetric Block Ciphers: OFB, CTR (NIST, ANSI, IETF)
- Asymmetric Ciphers: factoring a prime*
- Hash Functions/Message Authentication Codes: PRFs

PRNG

(a) CTR Mode

(b) OFB Mode

PRNG Mechanisms Based on Block Ciphers

ANSI X9.17 Pseudorandom Number Generator

Intel Processor Chip with Random Number Generator

Blum Blum Shub Block Diagram

Game Time! - Generate Random Numbers

Generate a sequence of 100 bits and write down the results. Judges will decide which sequence is random.

- Group 1 = Judges
- Group 2 = Human bit generator (members will generate 0, 1 from their mind)
- Group 3 = Coin Flips generate bits (heads 0, Tails 1)
- Post your results on the wall
- Judges to decide which sequence is random.

RC4 Stream Cipher

https://www.coursera.org/learn/crypto/lecture/mQAkP/real-world-

stream-ciphers

- 1. Initialize an array of 256 bytes.
- 2. Run the Key Scheduling Algorithm (KSA)
- 3. Run the PRGA on the KSA output to generate Key stream.
- 4. XOR data with key stream

```
j = 0;
for i = 0 to 255
    do

KSA     j = (j + S[i] + T[i]) mod
    256;
    Swap (S[i], S[j]);
```


Security Design Errors

- Weakness in Microsoft PPTP and in WEP by Boneh
- https://www.coursera.org/learn/crypto/lecture/euFJx/attackson-stream-ciphers-and-the-one-time-pad (starting at 4:29-13:35)
- Paper on WEP Attacks
 - http://www.isaac.cs.berkeley.edu/isaac/mobicom.pdf

802.11b WEP

WEP Vulnerability Summary

- 1. Industry-driven committee, open standard with no public review.
- Access point to mobile stations: same symmetric key (like a password for the whole company)
- Integrity check with CRC. Erroneous bits are detected. Deliberate errors not detected. PACKET MODIFICATION
- No state information. So REPLAY attacks can be launched. Modified packets can be replayed.
- 24-bit IV concatenated with 104-bit key.IV initialized with 0 (predictable, not random). 24-bit IV has collisions after 2^24 packets. Lack of randomness. Small key size. Susceptible to MITM
- 6. RC4 was prohibited for use in ALL versions of TLS by RFC7465 (https://www.rfc-editor.org/info/rfc7465)

Public Key Cryptography

CS 7349

Spring 2024

World Changers Shaped Here

Public Key Crypto

- Burning questions?
- The math behind PKC?
 - https://www.youtube.com/watch?v=oR0_LPbWxe4 (start, 3:19)
 - http://simonsingh.net/media/online-videos/cryptography/the-science-ofsecrecy-going-public/
 - Concepts (integers, exponent, 1024/2048-bit keys)

Public private keypair – PuttyGen

RSA

- RSA makes use of an expression with exponentials
- Plaintext is encrypted in blocks with each block having a binary value less than some number n
- Encryption and decryption are of the following form, for some plaintext block M and ciphertext block C

 $C = M^e \mod n$ $M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$

- Both sender and receiver must know the value of n
- The sender knows the value of e, and only the receiver knows the value of d
- This is a public-key encryption algorithm with a public key of PU={e,n} and a private key of PR={d,n}
- https://www.cs.drexel.edu/~jpopyack/IntroCS/HW/RSAWorksheet.html

Public Key Crypto/RSA Vulnerabilities

- Vulnerabilities
 - Somebody's generating large primes and making a table
 - Brute force attack (use larger keys. Reduces usability. Key Exchange and signature applications)
 - Probable message attack
 - Mitigate: pad with extra bits Optimal Asymmetric Encryption Padding
 - Unproven if private key can be derived from public key
 - Trapdoor One Way Function reversal
- RSA: Brute force, timing and DPA, Factoring, hardware and CCA (chosen ciphertext attack)

Public Key Crypto

- Question asked in class: How do we know if there are collisions?
- Answer: You DON'T
- Of great interest in number theory is the growth rate of the prime-counting function. [3][4] It was conjectured in the end of the 18th century by Gauss and by Legendre to be approximately $\frac{x}{\ln(x)}$
- Source: Wikipedia, https://eprint.iacr.org/2012/064.pdf
 - 12720 of 4.7 million distinct 1024-bit RSA moduli had a single large prime factor in common
 - 26965 of 11.4 million RSA moduli are vulnerable, including ten 2048-bit ones

Public Key Crypto

- 1024 bits $\sim 2^{1024} = 1.8^{308}$
- 2048 bits $\sim 2^{2048} = 3.2^{616}$
- Chances of collision for random picks?
 - 1 or 2 prime numbers to factor N
 - 4 out of every 1,000 public keys protecting webmail, online banking, and other sensitive online services provide no cryptographic security

X	π (x)	
10	4	
10 ²	25	
10 ³	168	
10 ⁴	1,229	
10 ⁵	9,592	
10 ⁶	78,498	
10 ⁷	664,579	
10 ⁸	5,761,455	
10 ⁹	50,847,534	
10 ¹⁰	455,052,511	
10 ¹¹	4,118,054,813	
10 ¹²	37,607,912,018	
10 ¹³	346,065,536,839	
10 ¹⁴	3,204,941,750,802	
10 ¹⁵	29,844,570,422,669	
10 ¹⁶	279,238,341,033,925	
10 ¹⁷	2,623,557,157,654,233	
10 ¹⁸	24,739,954,287,740,860	
10 ¹⁹	234,057,667,276,344,607	
10 ²⁰	2,220,819,602,560,918,840	
10 ²¹	21,127,269,486,018,731,928	
10 ²²	201,467,286,689,315,906,290	
10 ²³	1,925,320,391,606,803,968,923	
10 ²⁴	18,435,599,767,349,200,867,866	
10 ²⁵	176,846,309,399,143,769,411,680	
10 ²⁶	1,699,246,750,872,437,141,327,603	

Diffie-Hellman Key Exchange

- First published public-key algorithm
- A number of commercial products employ this key exchange technique
- Purpose is to enable two users to securely exchange a key that can then be used for subsequent symmetric encryption of messages
- The algorithm itself is limited to the exchange of secret values
- Its effectiveness depends on the difficulty of computing discrete logarithms

Figure 10.1 Diffie-Hellman Key Exchange

Key Exchange Protocols

- Users could create random private/public Diffie-Hellman keys each time they communicate
- Users could create a known private/public Diffie-Hellman key and publish in a directory, then consulted and used to securely communicate with them
- Vulnerable to Meet-in-the-Middle-Attack
- Authentication of the keys is needed

Figure 10.2 Man-in-the-Middle Attack

El-Gamal Public Key Cryptography

Announced in 1984 by T. Elgamal

Public-key scheme based on discrete logarithms closely related to the Diffie-Hellman technique Used in the digital signature standard (DSS) and the S/MIME e-mail standard

Global elements are a prime number *q* and *a* which is a primitive root of *q*

Security is based on the difficulty of computing discrete logarithms

Elliptic Curve Arithmetic

- Most of the products and standards that use public-key cryptography for encryption and digital signatures use RSA
 - The key length for secure RSA use has increased over recent years and this has put a heavier processing load on applications using RSA
- Elliptic curve cryptography (ECC) is showing up in standardization efforts including the IEEE P1363 Standard for Public-Key Cryptography
- Principal attraction of ECC is that it appears to offer equal security for a far smaller key size
- Confidence level in ECC is not yet as high as that in RSA

Security of Elliptic Curve Cryptography

- Depends on the difficulty of the elliptic curve logarithm problem
- Fastest known technique is "Pollard rho method"
- Compared to factoring, can use much smaller key sizes than with RSA
- For equivalent key lengths computations are roughly equivalent
- Hence, for similar security ECC offers significant computational advantages

Thank You!

Project Reports

- Use the LaTex template provided for your project paper submissions.
- Read the Sample paper and follow its directions as appropriate in writing your paper.
- Your paper is expected to be publishable
 - High quality research, well written, reproducible results based on paper contents.
- https://scholar.google.com/ for references (NOT cnn.com, foxnews.com, cnbc.com; YES ietf.org, ieee.org,...itu-t)

Project Abstract and Intro

- Abstract structure (100 word limit for 6 pages)
 - start with statement of what is presented
 - motivate the problem
 - discuss details of what is done at a high level
 - state the main conclusions
- Introduction basic structure (the rest of page 1):
 - motivate the problem further
 - state the problem in detail
 - state the basic work done/approach taken
 - State the contributions of your paper
 - state the outline for the rest of the paper
 - Conclusions are not stated in the introduction.

Project Paper

- Use the LaTex template provided for all of your project paper submissions.
- Your paper is expected to be publishable
 - High quality research, well written, reproducible results based on paper contents. 9 pages exactly. No more, no less
 - https://scholar.google.com/ for references (NOT cnn.com, foxnews.com, cnbc.com; YES ietf.org, ieee.org,...itu-t)
 - <u>https://www.overleaf.com/read/brpdfvsxsjww#8886a4</u> ←Paper template

