ahiz 1 - sample For the following "nidget" dataset, compute a) decision me b) error rate on training set using the IR algorithm. 2. For the same dataset, but using the naive Bayes algorithm, compute a) decision rule only for "normal, laud"
widgets b) what is the probability that a "normal, love" midget is "bad"? c) clearly identify the prior probabilities, likelihoods, and posterior probabilities you used for (a) + (b). d) what specific independence assumption did you use to answer (a) + (b)?

Data set for midgets:

2000212000	sound	class	
appearance	Souriu	Class	
normal	quiet	good	
normal	quiet	good	
deformed	quiet	bad	
deformed	loud	bad	
normal	quiet	bad	
deformed	quiet	good	
normal	quiet	good	
normal	quiet	good	
normal	loud	bad	
normal	loud	bad	
normal	loud	bad	
deformed	quiet	bad	
normal	loud	good	
normal	quiet	good	
normal	quiet	good	
normal	quiet	good	

Solution:

(.	IR for appearance	: appearance	good	Sad deuisbu	erors
	- 11	normal	8	4 good	4/12
		deformed	[4 good 3 Jack	1/4
				total eros	
	10 Cc ().		/	1 -/	
	IR for sound:	sound	good for	deersion	2/11
		gwet			
		loud	1 4	Sad	
				fotal eross:	4/16
	a) decisión	$\sim \sim $	ite (ou	ind) has 1	napt
	01) 0 (00.5,10	wor rate, s	in Magle	Host) (حد) (
	1	inle is: min	et ->	and	
		ule is: qui		bad	
		[00]			

6) error rotte on training set: 4/16 (ie. 1/4).

2. Need to compute P(G|N,L) and P(B|N,L)using Bayes' Rule; assuming independence of features: $P(G|N,L) = P(N,L|G) \times P(G) / P(N,L)$ $= P(N|G) \times P(L|G) \times P(G) / P(N,L)$ $P(B|N,L) = P(N,L|B) \times P(B) / P(N,L)$ $= P(N|B) \times P(L|B) \times P(B) / P(N,L)$

summary statistics we will need: 16 instances: good : normal a good: normal + bod: 4 loud + good: loud - bad: probability estimates: 9/16 P(B) = 7/16 P(N|G) = 8/9 P(N|B) = 4/7 P(L|G) = 1/9

plugging
$$h$$
:

$$P(G|N,L) = \frac{8}{9} \times \frac{1}{9} \times \frac{9}{16} \qquad P(N,L)$$

$$= \frac{1}{18} \qquad P(N,L) = 0.055 \qquad P(N,L)$$

$$= \frac{1}{18} \qquad P(N,L) = 0.036 \qquad P(N,L)$$

$$= \frac{1}{18} \qquad P(N,L) = 0.036 \qquad P(N,L)$$
These 2 probabilities must sum to 1, so we know immediately that $P(N,L) = \frac{1}{18} + \frac{1}{28} = 0.091$
So,
$$P(G|N,L) = \frac{0.055}{0.091} = 0.61$$

$$P(B|N,L) = \frac{0.036}{0.091} = 0.39$$
So (Good) has higher posterior probability for normal, lower unalgets
i.e. decision rule is
noisy, loud \rightarrow good.

- b) prob that normal, loud malget is Earl = P(B/N,L)=0.39
- c) Prior probs P(G), P(B)

Likelihoods - P(N/a), P(N/B), P(L/B)

Postenors - P(G(N,L), P(B/N,L)

d) 2 independence assumptions:

P(N,L|G) = P(N|G) P(L|G)P(N,L|B) = P(N|B) P(L|B)