Student Online Teaching Advice Notice

The materials and content presented within this session are intended solely for use in a context of teaching and learning at Trinity.

Any session recorded for subsequent review is made available solely for the purpose of enhancing student learning.

Students should not edit or modify the recording in any way, nor disseminate it for use outside of a context of teaching and learning at Trinity.

Please be mindful of your physical environment and conscious of what may be captured by the device camera and microphone during videoconferencing calls.

Recorded materials will be handled in compliance with Trinity's statutory duties under the Universities Act, 1997 and in accordance with the University's policies and procedures.

Further information on data protection and best practice when using videoconferencing software is available at https://www.tcd.ie/info_compliance/data-protection/.

© Trinity College Dublin 2020

2 Predicate logic and Quantifiers

Task: Understand enough predicate logic to make sense of quantified statements.

In predicate logic, propositions depend on variables x, y, z, so their truth value may change depending on which values these variables assume: P(x), Q(x, y), R(x, y, z)

2.1 Introduce quantifiers

2.1.1 \exists existential quantifier

Syntax: $\exists x P(x)$

Definition: $\exists x P(x)$ is true if P(x) is true for some value of x. It is false otherwise.

2.1.2 \forall universal quantifier

Syntax: $\forall x P(x)$

Definition: $\forall x P(x)$ is true if P(x) is true for all allowable values of x. It is false otherwise.

2.1.3 ∃! for one and only one (additional quantifier standard in maths)

Syntax: $\exists !xP(x)$

Definition: $\exists !xP(x)$ is true if P(x) is true for exactly one value of x and false for all other values of x; otherwise, $\exists !xP(x)$ is false.

Example: P(x): x is/was the pope and x is Argentine.

(Compound statement; two sentences with connector \land between them)

 $\exists !xP(x)$ is true with x being Pope Francis.

Now, set Q(x): x is/was the pope and x is Brazilian.

 $\exists !xQ(x)$ is false as there has not been a Brazilian pope so far.

In fact, $\exists x Q(x)$ is also false.

2.2 Alternation of Quantifiers

 $\forall x \exists y \forall z \quad P(x, y, z)$ **NB:** The order <u>cannot</u> be exchanged as it might modify the truth value of the statement (think of examples with two quantifiers).

2.3 Negation of Quantifiers

$$\neg(\exists x P(x)) \quad \leftrightarrow \quad \forall x \neg P(x)$$
$$\neg(\forall x P(x)) \quad \leftrightarrow \quad \exists x \neg P(x)$$