Karnaugh maps

Olli-Pekka Hämäläinen

Simplification of a logic circuit

- During the previous lecture we learned how to construct logic functions for the circuits in SOP- and POS-form & how to simplify them using Boolean algebra
- We noticed, that if there are less zeros than ones (or vice versa) in a truth table, these standard forms produce a quite simple starting point and the simplification using Boolean algebra is "fairly easy"
- If the truth table is more balanced, algebraic simplification is rather hard task
- In these cases it's a good idea to use a Karnaugh map
 - This tool takes advantage of the human perception
 - Also few other pros (let's get back to this later)
 - Construction is done according to the Gray code

The binary number problem

- So far we've preferred to construct truth tables by writing the rows in binary order
- ► For example, in a three-variable circuit this order produces a problem: after combination 011 comes combination 100
 - Truth values of each variable change!
 - This is undesirable, because in reality, truth values of variables don't change immediately, but there's a short transition state in between
 - Truth values also don't change fully synchronized
 - So, the change from 011 to 100 can actually happen for example like this:

$$011 \to 111 \to 101 \to 100$$

Gray code

- Beforementioned problem can be avoided in such a way that we reorder the combinations to an order where only one bit changes at a time
- This kind of ordering is called reflected binary code (RBC) or Gray code (according to its inventor Frank Gray)

Decimal	Binary	Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101

Gray code

- Gray code follows a simple logic:
 - Start from numbers 0, 1
 - ▶ Reflect the numbers of the previous column so, write the numbers one below another, but in reverse order
 - Write new numbers in front of old ones in such a way that in front of original numbers we put 0 and in front of new numbers we put 1

A Karnaugh map in constructed (in its most common form) for 4 variables in such a way that the combinations are ordered in Gray code order - starting from top left corner and in "zig-zag formation"

A Karnaugh map in constructed (in its most common form) for 4 variables in such a way that the combinations are ordered in Gray code order - starting from top left corner and in "zig-zag formation"

CD AB	00	01	11	10
00	0000	0100	1100	1000
01	0001	0101	1101	1001
11	0011	0111	1111	1011
10	0010	0110	1110	1010

A Karnaugh map in constructed (in its most common form) for 4 variables in such a way that the combinations are ordered in Gray code order - starting from top left corner and in "zig-zag formation"

- After this we mark the truth values (0s and 1s) of the combinations in respective cells
- The construction of the K-map is easiest to learn via an example, so let's consider the example 2 from previous lecture (we didn't simplify this using Boolean algebra, since it would've taken a lot of time)
 - After we've done the K-map, we can simplify!
- The truth table for this example problem looked like this:

- After this we mark the truth values (0s and 1s) of the combinations in respective cells
- The construction of the K-map is easiest to learn via an example, so let's consider the example 2 from previous lecture (we didn't simplify this using Boolean algebra, since it would've taken a lot of time)
 - After we've done the K-map, we can simplify!
- The truth table for this example problem looked like this:

A	В	С	D	F
0	0	0	0	1
0	0	0	1	1
	0	1	0	1
0	0	1	1	1
	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

First let's order the combinations in the map

CD AB	00	01	11	10
00	0000	0100	1100	1000
01	0001	0101	1101	1001
11	0011	0111	1111	1011
10	0010	0110	1110	1010

A	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Then we write the truth values of the logic function F to respective combinations:

CD AB	00	01	11	10
00	1	0	0	0
01	1	1	1	1
11	1	0	0	0
10	1	1	1	1

A	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Simplifying via Karnaugh

- Karnaugh map can be simplified either in SOP form (finding 1s) or in POS form (finding 0s)
- Let's now consider SOP-simplification (since it's the most common one)
 - ▶ POS simplification can be done using the same principles
- Adjacent 1s (vertically and horizontally; not in diagonal direction) give the opportunity to simplify the function if the following conditions are met:
 - ▶ The area formed by the 1s must be a rectangle
 - The area must be a power of 2 (1, 2, 4, 8, ...)
 - Areas may overlap each other
 - Map is connected at edges, so the areas can "continue over the boundary"
 - Areas are referred to by abbreviations, which depict the truth values of variables on that area

CD AB	00	01	11	10
00	1	0	0	0
01	1	1	1	1
11	1	0	0	0
10	1	1	1	1

CD AB	00	01	11	10	
00	1	0	0	0	
01	1	1	1	1	C D
11	1	0	0	0	
10	1	1	1	1	

The simplest SOP-form is then

$$F = \overline{A}\overline{B} + \overline{C}D + C\overline{D}$$

- In case of three variables, the lowest 2 rows are left out
- Otherwise the operating principle hasn't changed

C AB	00	01	11	10
0	000	010	110	100
1	001	011	111	101

Example: simplify the logic function F by using this truth table

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- Move the truth values from table to map
 - Notice: you don't need to remember the order of Gray code by heart very far, if you remember that the ordering of rows and columns follows Gray code!

C AB	00	01	11	10
0	000	010	110	100
1	001	011	111	101

- Move the truth values from table to map
 - Notice: you don't need to remember the order of Gray code by heart very far, if you remember that the ordering of rows and columns follows Gray code!

C AB	00	01	11	10
0	000	010	110	100
1	001	011	111	101

A	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- Move the truth values from table to map
 - Notice: you don't need to remember the order of Gray code by heart very far, if you remember that the ordering of rows and columns follows Gray code!

C AB	00	01	11	10
0	1	0	1	1
1	1	0	0	1

A	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- Find the areas that have 1s:
 - Remember that the map is connected at its borders!

C AB	00	01	11	10
0	1	0	1	1
1	1	0	0	1

	1		
A	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- Find the areas that have 1s:
 - Remember that the map is connected at its borders!

C AB	00	01	11 A	<u>C</u> 10
0	1	0	1	1
1	1	0	0	1

	1		
A	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- Find the areas that have 1s:
 - Remember that the map is connected at its borders!

- Find the areas that have 1s:
 - Remember that the map is connected at its borders!
- ► The simplest logic function is therefore

$$F = \overline{B} + A\overline{C}$$

- In case of 5 variables we need two "overlapping*" 4x4-maps, of which the first one depicts combination BCDE when A = 0 and the latter depicts combination BCDE when A = 1
- In addition to regular adjacence also overlapping cells are considered "adjacent"
- Not nearly as easy as it is for 3 or 4 variables

^{*} Usually these maps are drawn side by side.

- Karnaugh map can also be used in order to simplify the function in POS-form
- Now we just make a corresponding grouping for combinations which have a truth value of 0
- As a result we get a negation of the logic function (F') using product-like terms, so now we have to take a negation of this using De Morgan's II law
- After this the product-form terms can be broken down to sum-form terms using De Morgan's I law
- An example will (hopefully) make things clearer

Define the simplified POS-form function for the truth table shown below.

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Let's move the truth values from table to the map and search for 0s:

C AB	00	01	11	10
0	1	1	1	1
1	0	1	0	0

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Let's move the truth values from table to the map and search for 0s:

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Let's move the truth values from table to the map and search for 0s:

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- Let's move the truth values from table to the map and search for 0s:
- The negation of the logic function is $\overline{F} = AC + \overline{B}C$

$$\overline{F} = AC + \overline{B}C$$

Let's then define the logic function from the negation and simplify it to POS-form:

$$\overline{F} = AC + \overline{B}C$$
 Negation from left and right

Let's then define the logic function from the negation and simplify it to POS-form:

$$\overline{F} = AC + \overline{B}C$$

Negation from left and right

$$F = \overline{(AC + \overline{B}C)}$$

De Morgan II:
$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

Karnaugh map, POS-form

Let's then define the logic function from the negation and simplify it to POS-form:

$$\overline{F} = AC + \overline{B}C$$

Negation from left and right:

$$F = \overline{(AC + \overline{B}C)}$$

$$\overline{X + A} = \underline{X} \cdot \underline{A}$$

$$=(\overline{AC})(\overline{\overline{BC}})$$

$$X \cdot A = X + A$$

Karnaugh map, POS-form

Let's then define the logic function from the negation and simplify it to POS-form:

$$\overline{F} = AC + \overline{B}C$$
 Negation from left and right: $F = \overline{(AC + \overline{B}C)}$ De Morgan II: $\overline{X + Y} = \overline{X} \cdot \overline{Y}$ $= (\overline{AC})(\overline{\overline{B}C})$ De Morgan I: $\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$ $= (\overline{A} + \overline{C})(\overline{\overline{B}} + \overline{C})$ Double negation:

Karnaugh map, POS-form

Let's then define the logic function from the negation and simplify it to POS-form:

$$\overline{F} = AC + \overline{B}C$$
 Negation from left and right $F = \overline{(AC + \overline{B}C)}$ De Morgan II: $\overline{X + Y} = \overline{X} \cdot \overline{Y}$ $= (\overline{AC})(\overline{\overline{B}C})$ De Morgan I: $\overline{X} \cdot \overline{Y} = \overline{X} + \overline{Y}$ $= (\overline{A} + \overline{C})(\overline{\overline{B}} + \overline{C})$ Double negation $= (\overline{A} + \overline{C})(B + \overline{C})$

"Don't care" conditions

- Sometimes we may have situations, where our truth table includes variable combinations that are not of our interest
- Reasons for disinterest may spring i.e. from
 - ► The variable combination being unrealistic
 - The variable combination is irrelevant regarding the purpose of the circuit
- This kind of combinations can be marked in the truth table (and hence also to Karnaugh map) as "don't care" conditions - usually marked by "X"
- This "X" can be 0 or 1 whichever is more favorable considering the simplification

Define a simplified SOP-form for a logic function that fulfills the following truth table.

A	В	С	F
0	0	0	1
0	0	1	X
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	X
1	1	0	1
1	1	1	0

C AB	00	01	11	10
0	1	1	1	0
1	X	1	0	X

	1 1		
A	В	С	F
0	0	0	1
0	0	1	Χ
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	Χ
1	1	0	1
1	1	1	0

	1 1		
A	В	С	F
0	0	0	1
0	0	1	Χ
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	Χ
1	1	0	1
1	1	1	0

	1 1		
A	В	С	F
0	0	0	1
0	0	1	Χ
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	Χ
1	1	0	1
1	1	1	0

	1		
A	В	С	F
0	0	0	1
0	0	1	Χ
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	Χ
1	1	0	1
1	1	1	0

- Mark the truth values to Karnaugh map and find 1-areas:
- Simplified logic function is then

$$F = \overline{A} + B\overline{C}$$

"Race hazard"

- Logic function's terms may contain some overlap in which combinations they include
- One could think that this is a bad thing, but in reality, it's the other way round
- If the terms of the logic function represent areas which are adjacent on the map but contain no overlap, the continuity of the logic function may be compromised
 - ► Changes are not immediate, remember?
 - This is known as race condition or race hazard
- To tackle the problem, we may want to add redundant terms to our logic function
 - Common especially in problems where the simplicity of the function is not a value on its own
 - Less common when physical gates are used

"Race hazard"

For example in the following Karnaugh map there's such a danger:

$$F = \overline{A}\overline{B} + B\overline{C}\overline{D}$$

"Race hazard"

For example in the following Karnaugh map there's such a danger:

$$F = \overline{A}\overline{B} + B\overline{C}\overline{D} + \overline{A}\overline{C}\overline{D}$$

Dangerous continuity problem can be avoided by adding a redundant term $\overline{A}\overline{C}\overline{D}$ in the function.

Thank you!

