Chapter 24

Gauss's Law

Electric Flux, Φ

- Electric flux is the product of the magnitude of the
 - electric field and the surface area, *A*, perpendicular to the field
- Φ_E = EA (for a flat surface with e-field parallel to normal)

Electric Flux, General Area

- The electric flux is proportional to the number of electric field lines penetrating some surface. Units: Nm²/C
- The field lines may make some angle θ with the normal
- Then $\Phi_E = EA \cos \theta$ (for a flat surface in a uniform E-field)

Electric Flux, $\Phi_E = EA \cos \theta$

- If $\theta = 0^{\circ}$, the flux is a maximum (the surface is perpendicular to the field)
- If θ = 90°, the flux is zero (the surface is parallel to the field)
- If the field varies over the surface, $\Phi = EA \cos \theta$ is not valid.

Electric Flux, General Case

 Surface curved. E is nonuniform.

$$\Delta \Phi_E = E_i \Delta A_i \cos \theta_i = \vec{E}_i \cdot \Delta \vec{A}_i$$

In general, this becomes

$$\Phi_E = \lim_{\Delta A \to 0} \sum_i \vec{E}_i \cdot \Delta \vec{A}_i$$

$$\Phi_E = \int_{\text{surface}} \vec{E}_i \cdot d \vec{A}_i$$

Electric Flux, Closed Surface

- Assume a closed surface
- The vectors $\Delta \mathbf{A}_i$ point in different directions
 - At each point, they are perpendicular to the surface
 - By convention, they point outward

Flux Through Closed Surface, cont.

- At (1), the field lines are crossing the surface from the inside to the outside; θ < 90°, Φ is positive
- At (2), the field lines graze surface; $\theta = 90^{\circ}$, $\Phi = 0$
- At (3), the field lines are crossing the surface from the outside to the inside; $180^{\circ} > \theta > 90^{\circ}$, Φ is negative

Flux Through Closed Surface, final

- The net flux through the surface is proportional to the net number of lines leaving the surface
 - Think: number leaving the surface minus the number entering the surface

Ex) Net Flux Through a Cube

 The e-field lines are normal to sides 1 and 2, and parallel to the other four surfaces.

Karl Friedrich Gauss

- 1777 1855
- Made contributions in
 - Electromagnetism
 - Number theory
 - Statistics
 - Non-Euclidean geometry
 - Cometary orbital mechanics
 - A founder of the German Magnetic Union
 - Studies the Earth's magnetic field

Gauss's Law, Introduction

 Gauss's law: the net electric flux through a closed surface is proportional to the charge enclosed by the surface.

$$\Phi_{net} = \frac{q_{enc}}{\epsilon_0}$$

- The closed surface is called a gaussian surface
- Gauss's law can be used to find electric fields in cases with simple geometry

Gauss's Law - General

- A positive point charge,
 q, is located at the center of a sphere of radius r
- The magnitude of the electric field everywhere on the surface of the sphere is
 E = k_eq / r²

 The field lines are directed radially outward and are perpendicular to the surface at every point

$$\Phi_{E} = \iint_{\mathbf{Z}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = E \iint_{\mathbf{Z}} d\mathbf{A}$$

- This will be the net flux through the gaussian surface, the sphere of radius r
- We know $E = k_e q/r^2$ and $A_{\text{sphere}} = 4\pi r^2$,

$$\Phi_E = 4\P k_e q = \frac{q}{QE}$$

- The net flux through any closed surface surrounding a point charge, q, is given by q/ε_0 and is independent of the shape of that surface
- The net electric flux through a closed surface that surrounds no charge is zero
- Since the electric field due to many charges is the vector sum of the electric fields produced by the individual charges, the flux through any closed surface can be expressed as

$$\int \vec{E} \cdot \vec{dA} = \int (\vec{E}_1 + \vec{E}_2 + \dots) \cdot \vec{dA}$$

Gaussian Surface, Example

- Closed surfaces of various shapes can surround the charge
 - Only S₁ is spherical
- Verifies the net flux through any closed surface surrounding a point charge q is given by q/ε_o and is independent of the shape of the surface

Gaussian Surface, Example 2

 the electric flux through a closed surface that surrounds no charge is zero

Applying Gauss's Law

- To use Gauss's law, you want to choose a gaussian surface over which the surface integral can be simplified and the electric field determined
- Take advantage of symmetry
- Remember, the gaussian surface is a surface you choose, it does not have to coincide with a real surface

Conditions for a Gaussian Surface

- Try to choose a surface that satisfies one or more of these conditions:
 - The value of the electric field can be argued from symmetry to be constant over the surface
 - The dot product of $\vec{E} \cdot d\vec{A}$ can be expressed as a simple algebraic product $\vec{E} dA$ because \vec{E} and $d\vec{A}$ are parallel
 - The dot product is 0 because E and dA are perpendicular
 - The field is zero over the portion of the surface

Field Due to a Spherically Symmetric Charge Distribution

- Select a sphere as the gaussian surface
- For *r* >a

$$\Phi_{E} = \iint_{\mathbf{Z}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \iint_{\mathbf{Z}} Ed\mathbf{A} = \frac{q_{\text{in}}}{QE}$$

$$E = \frac{Q}{4 \P Q r^2} = k_e \frac{Q}{r^2}$$

- Select a sphere as the gaussian surface, r < a
- $q_{\rm in} < Q$
- $q_{in} = r (4/3\pi r^3)$

$$\Phi_{E} = \iint_{\mathbf{Z}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \iint_{\mathbf{Z}} Ed\mathbf{A} = \frac{q_{\text{in}}}{q_{\text{in}}}$$

$$E = \frac{q_{\text{in}}}{4 \cdot q_{\text{in}}^2} = k_e \frac{Q}{a^3} r$$

W004 Incream Brooks Cob.

Spherically Symmetric Distribution, final

- Inside the sphere, E
 varies linearly with r
 - $E \rightarrow 0$ as $r \rightarrow 0$
- The field outside the sphere is equivalent to that of a point charge located at the center of the sphere

Field at a Distance from a Line of Charge

- Select a cylindrical charge distribution
 - The cylinder has a radius of r and a length of l
- E is constant in magnitude and perpendicular to the surface at every point on the curved part of the surface

(a)

Field Due to a Line of Charge, cont.

- The end view confirms the field is perpendicular to the curved surface
- The field through the ends of the cylinder is 0 since the field is parallel to these surfaces

Field Due to a Line of Charge, final

Use Gauss's law to find the field

$$F_{E} = \overrightarrow{\beta} E \times d\overrightarrow{A} = \overrightarrow{\beta} E dA = \frac{q_{in}}{QE}$$

$$E(2\P r\ell) = \frac{\ell}{2}$$

$$E = \frac{r}{2 \sqrt{r}} = 2k_e \frac{r}{r}$$

Field Due to a Plane of Charge

- E must be perpendicular to the plane and must have the same magnitude at all points equidistant from the plane
- Choose a small cylinder whose axis is perpendicular to the plane for the gaussian surface

Field Due to a Plane of Charge, cont

- **E** is parallel to the curved surface and there is no contribution to the surface area from this curved part of the cylinder
- The flux through each end of the cylinder is EA and so the total flux is 2EA

Field Due to a Plane of Charge, final

- The total charge in the surface is σA
- Applying Gauss's law

$$\Phi_E = 2EA = \frac{A}{QE}$$
 and $E = \frac{A}{2QE}$

- Note, this does not depend on r
- Therefore, the field is uniform everywhere

 When there is no net motion of charge within a conductor, the conductor is said to be in electrostatic equilibrium

Properties of a Conductor in Electrostatic Equilibrium

- The electric field is zero everywhere inside the conductor
 - Whether the conductor is solid or hollow
- If an isolated conductor carries a charge, the charge resides on its surface
- The electric field just outside a charged conductor is perpendicular to the surface and has a magnitude of σ/ϵ_{\cap}
 - σ is the surface charge density at that point
- On an irregularly shaped conductor, the surface charge density is greatest at locations where the radius of curvature is the smallest

Property 1: Field_{inside} = 0

- Consider a conducting slab in an external field E
- If the field inside the conductor were not zero, free electrons in the conductor would experience an electrical force
- These electrons would accelerate
- These electrons would not be in equilibrium
- Therefore, there cannot be a field inside the conductor

Property 1: Field_{inside} = 0, cont.

- Before the external field is applied, free electrons are distributed throughout the conductor
- When the external field is applied, the electrons redistribute until the magnitude of the internal field equals the magnitude of the external field
- There is a net field of zero inside the conductor
- This redistribution takes about 10⁻¹⁶s and can be considered instantaneous

Property 2: Charge Resides on the Surface

- Choose a gaussian surface inside but close to the actual surface
- The electric field inside is zero (prop. 1)
- There is no net flux through the gaussian surface
- Because the gaussian surface can be as close to the actual surface as desired, there can be no charge inside the surface

Property 2: Charge Resides on the Surface, cont

- Since no net charge can be inside the surface, any net charge must reside on the surface
- Gauss's law does not indicate the distribution of these charges, only that it must be on the surface of the conductor

Property 3: Field's Magnitude and Direction

- Choose a cylinder as the gaussian surface
- The field must be perpendicular to the surface
 - If there were a parallel component to E, charges would experience a force and accelerate along the surface and it would not be in equilibrium

& Thompor Higher Education

Property 3: Field's Magnitude and Direction, cont.

- The net flux through the gaussian surface is through only the flat face outside the conductor
 - The field here is perpendicular to the surface
- Applying Gauss's law

$$\Phi_E = EA = \frac{A}{QE}$$
 and $E = \frac{A}{QE}$

- Conceptualize
 - Similar to the sphere example
 - Now a charged sphere is surrounded by a shell
 - Note charges
- Categorize
 - System has spherical symmetry
 - Gauss' Law can be applied

PLAY ACTIVE FIGURE

Sphere and Shell Example

- Analyze
 - Construct a Gaussian sphere between the surface of the solid sphere and the inner surface of the shell
 - The electric field lines must be directed radially outward and be constant in magnitude on the Gaussian surface

Sphere and Shell Example, 3

- Analyze, cont
 - The electric field for each area can be calculated

$$E_{1} = k_{e} \frac{Q}{a^{3}} r \quad (for \ r < a)$$

$$E_{2} = k_{e} \frac{Q}{r^{2}} \quad (for \ a < r < b)$$

$$E_{3} = 0 \quad (for \ b < r < c)$$

$$E_{4} = -k_{e} \frac{Q}{r^{2}} \quad (for \ r > c)$$

Sphere and Shell Example

- Finalize
 - Check the net charge
 - Think about other possible combinations
 - What if the sphere were conducting instead of insulating?