Algebra e Logica Matematica

Relazioni

Esercizio 1.1. Sia A l'insieme delle persone presenti nell'aula (oss: se fate l'esercizio a casa, A sarà l'insieme delle persone presenti il giorno del primo compitino). Definiamo su A una relazione ρ nel modo seguente:

 $a \rho b \iff$ i cognomi di a e di b cominciano con la stessa lettera.

Dimostrare che ρ è una relazione d'equivalenza. Precisare le classi di equivalenza.

Esercizio 1.2. Sia A l'insieme delle persone di cui si può decidere il colore di almeno un occhio. Definiamo su A la relazione ρ seguente:

 $a\,\rho\,b\iff a$ ha un occhio dello stesso colore di un occhio di b.

Di quali proprietà gode ρ ?

Esercizio 1.3. Sia f un'applicazione da un insieme X in un insieme Y. Definiamo una relazione \sim_f su X da $a \sim_f b \iff f(a) = f(b)$. Verificare che \sim_f è un'equivalenza. Reciprocamente, sia \sim una relazione di equivalenza su un'insieme X. Sia $Y = X/\sim$ e f la proiezione canonica (cioè f(x) è la classe di x in Y). Verificare che \sim_f è la relazione \sim .

Esercizio 1.4. Sia ρ la relazione su \mathbb{R} definita da

$$x \rho y \iff x^2 - y^2 = x - y.$$

Dimostrare che ρ è una relazione d'equivalenza. Calcolare la classe di equivalenza di un elemento $x \in \mathbb{R}$.

Esercizio 1.5. Sia σ la relazione su \mathbb{R} definita da

$$x \sigma y \iff (x^3 + 2)(y^2 + 1) = (y^3 + 2)(x^2 + 1).$$

Dimostrare che σ è una relazione d'equivalenza.

Esercizio 1.6. Verificare che se ρ è una relazione riflessiva su un insieme E tale che

$$\forall (x; y; z) \in E^3(x \rho y e y \rho z) \Rightarrow z \rho x$$

allora ρ è una relazione d'equivalenza.

Esercizio 1.7. Siano dati gli insiemi $A = \{2, 3, 4\}$ e $B = \{5, 6, 9\}$ e sia $\rho \in A \times B$ la relazione definita da $x \rho y \iff x \mid y$ per $x \in A$ e $y \in B$. Costruire l'insieme delle coppie, il diagramma, la matrice di incidenza di ρ e la relazione inversa ρ^{-1} .

Esercizio 1.8. Siano $X = \{1, 2, 3, 4, 5\}$ e $Y = \{a, b\}$ due insiemi.

- a) Sia $\rho \in X \times Y$ la relazione definita da $\rho = \{(2; a), (2; b), (3; b)\}$. Calcolare ρ^{-1} e verificare che $\rho \cdot \rho^{-1} \neq I_X$.
- b) Nel caso in cui $\sigma = \{(2; a), (3; b)\}$, verificare che $\sigma \cdot \sigma^{-1} \subsetneq I_X$.
- c) (più avanzato) Siano A e B due insiemi. Chiamiamo supporto di una relazione $\tau \in A \times B$ e notiamo Supp τ , l'insieme degli $a \in A$ tali che esiste $b \in B$ tale che $a \tau b$. Verificare che $I_{\operatorname{Supp} \tau} \subseteq \tau \cdot \tau^{-1}$.

Esercizio 1.9. Siano $A, B \in C$ i seguenti insiemi:

$$A = \{1, 2, 3\}$$
$$B = \{a, b\}$$
$$C = \{\alpha, \beta, \gamma\}$$

e siano $\rho \in A \times B$ e $\sigma \in B \times C$ le seguenti relazioni:

$$\rho = \{(2; a), (3; b)\}
\sigma = \{(a; \alpha), (a; \beta), (b; \beta), (b; \beta), (b; \gamma)\}.$$

Calcolare la relazione $\rho \cdot \sigma \in A \times C$. Scrivere le matrici d'incidenza di ρ , σ e $\rho \cdot \sigma$ e verificare che $M_{\rho \cdot \sigma} = M_{\rho} M_{\sigma}$ dove il prodotto è fatto con la solita regola riga per colonna con la sola eccezione che 1 + 1 = 1 (non si può superare 1).

Osservazione: la domanda: « Abbiamo $\rho \cdot \sigma = \sigma \cdot \rho$? » non ha senso perché $\sigma \cdot \rho$ non è definita, per cui la commutatività dell'operazione di prodotto non si pone neanche. Comunque, anche se A = C (caso in cui $\sigma \cdot \rho$ è definito) $\rho \cdot \sigma$ e $\sigma \cdot \rho$ sono rispettivamente in $A \times A$ e $B \times B$ per cui non sono confrontabili. Nel caso in cui A = B = C l'uguaglianza tra $\rho \cdot \sigma$ e $\sigma \cdot \rho$ è una domanda lecita ma la risposta è: di solito non sono uguali.

Esercizio 1.10. Siano $X = \{1, 2, 3\}$ e $Y = \{a, b\}$. Si considerino le due relazioni tra X e Y definite da

$$\rho = \{(1; a), (2; a), (1; b)\}$$

$$\sigma = \{(2; a), (3; a)\}$$

a) Calcolare $\rho \cap \sigma$ e $\rho \cup \sigma$ e scrivere le matrici d'incidenza delle quattro relazioni considerate. Verificare che $M_{\rho \cup \sigma} = M_{\rho} + M_{\sigma}$ con la somma maggiorata e che $M_{\rho \cap \sigma}$ è la matrice prodotto termine a termine di M_{ρ} per M_{σ} . Osservate che queste operazioni sulle matrici sono commutative (al contrario del prodotto di matrici) e ciò si riflette nel fatto che $\rho \cap \sigma = \sigma \cap \rho$ e $\rho \cup \sigma = \sigma \cup \rho$.

- b) Calcolare i quattro inversi e verificare che
 - $\bullet (\rho \cap \sigma)^{-1} = \rho^{-1} \cap \sigma^{-1}$
 - $\bullet \ (\rho \cup \sigma)^{-1} = \rho^{-1} \cup \sigma^{-1}$

Esercizio 1.11. Siano X, Y e Z tre insiemi e $\rho \in X \times Y$ e $\sigma, \tau \in Y \times Z$ tre relazioni. Dimostrare che valgono

- a) $\rho(\sigma \cap \tau) \subseteq (\rho \sigma) \cap (\rho \tau)$
- b) $\rho(\sigma \cup \tau) = (\rho \sigma) \cup (\rho \tau)$

Costruire un esempio in cui $\rho(\sigma \cap \tau) \neq (\rho \sigma) \cap (\rho \tau)$.

Esercizio 1.12. Sia X un insieme, $\rho \in X^2$ e $M = (m_{ij})$ la matrice d'incidenza di ρ . Ricordiamo le proprietà che può avere ρ e come si vedono sulla matrice.

ρ riflessiva	$I_X \subseteq \rho$	$\forall i, m_{ii} = 1$
ρ simmetrica	$\rho = \rho^{-1}$	$M = {}^tM$
ρ antisimmetrica	$\rho \cap \rho^{-1} \subseteq I_X$	$\forall i, j, \ i \neq j \Rightarrow m_{ij} m_{ji} = 0$
ρ transitiva	$ \rho^2 \subseteq \rho $	$\forall i, j, k, \ m_{ik} m_{kj} \leqslant m_{ij}$

- a) Verificare che la relazione definita in $\mathbb N$ da $x \rho y \iff x+y \geqslant 10$ è simmetrica ma non ha nessun'altra proprietà.
- b) Verificare che la relazione definita in \mathbb{N} da $x \rho y \iff \exists z \in \mathbb{N}/x^2 + 3y^2 = z^2$ è riflessiva ma non ha nessun'altra proprietà.
- c) Costruire una relazione che non abbia nessuna delle proprietà.
- d) Dimostrare che una relazione definita in un insieme X che è simmetrica e antisimmetrica è anche transitiva.

Osservazione: si può costruire in un insieme a tre elementi $X = \{a, b, c\}$ relazioni che abbiano nessuna, una sola, esattamente due, esattamente tre e tutte le proprietà, con la sola condizione che è stata dimostrata in d). Ci sono 1+4+(6-1)+(4-1)+1=14 casi, potete provare a farne alcuni (o tutti).

Esercizio 1.13. Siano X un insieme e ρ una relazione riflessiva in X.

- a) Dimostrare che $\forall n \geq 1, \rho^n \subseteq \rho^{n+1}$. (Si potrebbe includere il caso n=0 con la convenzione che $\rho^0=I_X$).
- b) Dimostrare che ρ è transitiva se e solo se $\rho^2 = \rho$.
- c) Supponiamo ρ transitiva, dimostrare che per ogni intero $n \ge 1$, si ha $\rho^n = \rho$.

Esercizio 1.14. Dimostrare che la relazione di congruenza in \mathbb{Z} è una relazione di equivalenza.

Esercizio 1.15. Dimostrare che la relazione ρ su \mathbb{R} definita da $x \rho y \iff \sin^2 x + \cos^2 y = 1$ è una relazione di equivalenza.

Esercizio 1.16. Sia X un insieme e siano ρ e σ due relazioni su X.

- a) Dimostrare che se ρ e σ sono riflessive (risp. simmetriche, antisimmetriche, transitive) allora $\rho \cap \sigma$ è riflessiva (risp. simmetrica, antisimmetrica, transitiva).
- b) Se $X = \mathbb{Z}$ e ρ (risp. σ) è la relazione di congruenza modulo 5 (risp. 11), qual è la relazione $\rho \cap \sigma$?
- c) Nel caso in b), mostrare che $\rho \cup \sigma$ non è transitiva.
- d) Nel caso in b), mostrare che $\rho \sigma$ è la relazione universale in \mathbb{Z} . Dedurne che la chiusura transitiva $(\rho \cup \sigma)^+$ di $\rho \cup \sigma$ è la relazione universale in \mathbb{Z} .

Esercizio 1.17. Consideriamo le relazioni $\rho_1, ..., \rho_4$ definite sull'insieme X indicato da

- 1) $a \rho_1 b \iff a = -b$, per $X = \mathbb{Z}$.
- 2) $a \rho_2 b \iff a \mid b \in b \mid a, \text{ per } X = \mathbb{Z}.$
- 3) $a \rho_3 b \iff a \mid b \circ b \mid a, \text{ per } X = \mathbb{Z}.$
- 4) $a \rho_A b \iff \exists x \in \mathbb{R}^\times, ax = b, \text{ per } X = \mathbb{R}.$

Indicare quali sono relazioni di equivalenza. Per ogni relazione di equivalenza determinare le classi di equivalenza.

Esercizio 1.18. Sia $X = \{a, b, c, d, e\}$ e ρ la relazione su X data da

$$\rho = \{(a; a), (d; e), (c; d), (a; b), (b; d)\}.$$

Determinare la minima relazione di equivalenza che contiene ρ .

Esercizio 1.19. Sia S un insieme e A un suo sottoinsieme. Sia ρ la relazione definita su $\mathcal{P}(S)$ (l'insieme delle parti di S) da

$$\forall (X;Y) \in \mathcal{P}(S)^2, X \ \rho \ Y \iff X \cap A = Y \cap A.$$

- a) Dimostrare che ρ è una relazione di equivalenza.
- b) Nel caso in cui $S = \{1, 2, 3, 4\}$ e $A = \{1, 2\}$ scrivere quali sono le classi di equivalenza.
- c) Torniamo al caso generale. Dimostrare che le classi di equivalenza di ρ sono in biiezione con $\mathcal{P}(A)$.

d) Dimostrare che ogni classe per ρ è in biiezione con $\mathcal{P}(S \backslash A)$ (dove $S \backslash A = \{x \in S / x \notin A\}$).

Esercizio 1.20. (Esempio di uso delle relazioni di equivalenza)

Sia in $X = \mathbb{N} \times \mathbb{N}$ la relazione ρ definita da

$$(a;b) \rho(c;d) \iff a+d=b+c.$$

Mostrare che è di equivalenza.

Osservazione: si può definire la somma in X nel modo naturale: (a;b)+(c;d)=(a+c;b+d). Questa somma è compatibile con ρ in quanto se $x \rho x'$ e $y \rho y'$ allora $(x+y) \rho (x'+y')$. Quindi questa somma definisce una somma anche sulle classi di equivalenza. L'insieme quoziente X/ρ può essere identificato con \mathbb{Z} e la classe di un elemento $(a;b) \in X$ sarà identificata con $a-b \in \mathbb{Z}$.

Esercizio 1.21. In $Y = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ sia σ la relazione definita da

$$(a;b) \sigma(c,d) \iff ad = bc.$$

Dimostrare che è una relazione di equivalenza.

Osservazione: la somma in questo caso sarebbe (a;b)+(c;d)=(ad+bc;bd) e il prodotto naturale $(a;b)\cdot(c;d)=(ac;bd)$. Il quoziente Y/σ può essere identificato con \mathbb{Q} .

Si possono costruire i numeri complessi dai numeri reali con una costruzione simile, mentre la costruzione dei reali dai razionali è più difficile (ma usa comunque un insieme "grosso" con una relazione di equivalenza).

Esercizio 1.22. Sia ρ la relazione di equivalenza definita su $X=\mathbb{Z}\times\mathbb{Z}$ da

$$(a;b) \rho(c;d) \iff ab = cd.$$

- 1) Dimostrare che ρ è una relazione di equivalenza.
- 2) Dimostrare che esiste in X una ed una sola classe di equivalenza per ρ che sia infinita (pensare alla decomposizione in prodotto di numeri primi).

Esercizio 1.23. Sia S un insieme e consideriamo su $\mathcal{P}(S)$ la relazione ρ definita da $X \rho Y \iff X \subseteq Y$. Mostrare che ρ è una relazione di ordine. Dimostrare che $(\mathcal{P}(S), \rho)$ è un reticolo.

Esercizio 1.24. Stessa cosa per la relazione | (divide) sull'insieme \mathbb{N} .

Esercizio 1.25. Siano definite su \mathbb{Z} le seguenti relazioni:

$$a \rho_1 b \iff \text{M.C.D}(a, b) = 1,$$

 $a \rho_2 b \iff \text{M.C.D}(a, b) = a,$
 $a \rho_3 b \iff a - b \geqslant 0,$
 $a \rho_4 b \iff a = 3b.$

Dire quali sono relazioni di ordine.

Esercizio 1.26. Sia $X = \{a, b, c, d, e\}$ e sia ρ la relazione definita da

$$\rho = \{(a; a), (b; b), (c; c), (d; d), (e; e), (a; c), (b; c), (d; e)\} \subseteq X \times X.$$

Mostrare che ρ è una relazione di ordine, non totale, in X.

Esercizio 1.27. Sia ρ una relazione riflessiva e transitiva su un insieme X. Definiamo la relazione \sim da

$$a \sim b \iff a \rho b \in b \rho a$$

- a) Verificare che \sim è una relazione di equivalenza in X.
- b) Ponendo $X^* = X/\sim$, verificare che la relazione \leq definita in X^* da

$$[a] \leqslant [b] \iff a \rho b$$

- è ben definita ed è una relazione di ordine in X^* .
- c) Nel caso in cui ρ sia anche simmetrica o antisimmetrica, cosa diventano \sim e \leq ?

Esercizio 1.28. Sia $X = \mathbb{N} \setminus \{0\}$. Scegliamo come relazione di ordine su X la relazione definita da $a \leq b \iff a \mid b$. Determinare i maggioranti, i minoranti, il sup e l'inf e gli eventuali massimo e minimo di T nei casi seguenti:

- a) $T = \{3, 5, 6, 15\}$
- b) $T = \{2, 4, 6, 8\}$
- c) $T = \{2, 3, 6\}$
- d) $T = \{100, 120, 200, 500, 750, 1010\}$
- e) $T = \{3\} \cup \{2^n/n \ge 1\}$