Ramakrishna Mission Vivekananda Educational and Research Institute

PO Belur Math, Howrah, West Bengal 711 202

School of Mathematical Sciences Department of Computer Science

 MSc BDA : Batch 2020-22, Semester III, MidSem Exam

DA311: Time Series
Dr. Sudipta Das

Student Name (in block letters):

Student Roll No:

Signature:

Date: 18 Nov 2021

Max Marks: 80 Time: 2.5hrs

Answers must be properly justified to deserve full credits.

- 1. (16 points) Explain why
 - (a) (4 points) the log differencing is sometimes, preferred over ordinary differencing in time series analysis
 - (b) (4 points) ACF and PACF plots are useful in time series analysis.
 - (c) (4 points) unit root test is used in time series analysis
 - (d) (4 points) one should not remove deterministic trend of a time series by the method of differencing.
- 2. (16 points) If A and B are uncorrelated random variables with mean 0 and variance 1 and ω is a fixed frequency in the interval $[0, \pi]$, then show that the process

$$X_t = A\cos(\omega t) + B\sin(\omega t), t = 0, \pm 1, \dots,$$

is stationary and find its mean and autocovariance function.

3. (16 points) Suppose that $\{X_t\}$ is the noninvertible MA(1) process

$$X_t = Z_t + \theta Z_{t-1}, \{Z_t\} \sim WN(0, \sigma^2),$$

where $|\theta| > 1$. Define a new process $\{W_t\}$ as

$$W_t = \sum_{j=0}^{\infty} (-\theta)^{-j} X_{t-j}.$$

and

- (a) (8 points) Show that $\{W_t\} \sim WN(0, \sigma_w^2)$ and express σ_w^2 in terms of θ and σ^2 .
- (b) (8 points) Show that $\{X_t\}$ has the invertible representation (in terms of $\{W_t\}$)

$$X_t = W_t + \frac{1}{\theta} W_{t-1}.$$

4. (16 points) Show that the value at lag 2 of the partial ACF of the MA(1) process

$$X_t = Z_t + \theta Z_{t-1}, \ t = 0, \pm 1, \dots,$$

where
$$\{Z_t\} \sim WN(0, \sigma^2)$$
, is $\alpha(2) = -\theta^2/(1 + \theta^2 + \theta^4)$.

5. (16 points) Given two observations x_1 and x_2 from the causal AR(1) process satisfying

$$X_t = \phi X_{t-1} + Z_t, \{Z_t\} \sim WN(0, \sigma^2),$$

and assuming that $|x_1| \neq |x_2|$, find the maximum likelihood estimates of ϕ and σ^2 .