Problem Set 05: Advanced Proofs

Blingblong

CS/MATH 113 Discrete Mathematics Habib University Spring 2025

In this problem set you may be using needing the following definitions and theoremstyle

Definition 1. An integer p > 1 is called a prime number, or simply a prime, iff $\forall x \in \mathbb{Z}^+$, $x|p \implies x = 1$ or x = p. In other words an integer p > 1 is prime, if its only positive divisors are 1 and p. An integer greater than 1 that is not a prime is termed composite.

Definition 2. A real number $r \in \mathbb{R}$ is called rational, if there exists $p, q \in \mathbb{Z}$, such that $r = \frac{p}{q}$ where $q \neq 0$. A real number that is not rational is called irrational.

Definition 3 (Divisor and GCD). Let $a, b \in \mathbb{Z}$, $a \neq 0$ is said to divide b or b is divisible by a (denoted as $a \mid b$), if there exists an integer k such that b = ak. If no such k exists then we say a doesn't divide b (denoted by $a \nmid b$).

For integers a and b, d is the greatest common divisor of a and b (denoted as gcd(a, b) = d), if $d \mid a$ and $d \mid b$ and $\forall c \in \mathbb{Z}$, $c \mid a$ and $c \mid b \implies c \leq d$.

Definition 4 (Multiple and LCM). For integers a and b, a positive integer m is the least common multiple of a and b (denoted as lcm(a,b)=m), if $a\mid m$ and $b\mid m$ and $\forall c\in\mathbb{Z}^+$, $a\mid c$ and $b\mid c\implies m\leq c$.

Theorem 1 (Division algorithm). If $a, b \in \mathbb{Z}$, where b > 0, then there exists unique $q, r \in \mathbb{Z}$, a = bq + r where, $0 \le r < b$

Theorem 2 (Bezout's Lemma). For any integers a and b there exist integers s and t such that gcd(a,b) = as + bt

Corollary 1 (Corollary of Bezout's Lemma). If a and b are relatively prime then as + bt = 1

Theorem 3 (Fundamental Theorem of Arithmetic). Every integer N > 1 has a prime factorization, meaning either N is itself prime or can be written as a product of prime numbers.

Problems

- 1. Prove or disprove the following claim: $x \in \mathbb{Z}$. If 7x + 9 is even, then x is odd.
- 2. Prove or disprove the following claim: there exists irrational numbers a and b such that a^b is rational.
- 3. Prove or disprove the following claim: if n is an integer and n^2 is divisible by 4, then n is divisible by 4.
- 4. Prove or disprove the following claim: if a is a positive integer and $\sqrt[n]{a}$ is rational, then $\sqrt[n]{a}$ must be an integer.
- 5. Prove Euclid's Lemma: if p is a prime number that divides ab then p divides a or p divides b.
- 6. Show that \sqrt{p} is irrational for any prime number p.
- 7. Show that for all positive integers a and b show that gcd(a, b)lcm(a, b) = ab.