

Tema 6: Optimización numérica.

Ejercicio 1 Calcule una aproximación del mínimo de la función

$$g(x) = x^4 - 10x^3 + 35x^2 - 40$$
 $x \in [-1, 1]$

aplicando dos iteraciones del método de la sección de oro.

Ejercicio 2 Realice dos iteraciones del método de la sección de oro para obtener una aproximación de:

$$\min_{x \in [0,2]} (x^2 - x)$$

Ejercicio 3 Dada la función $f(x) = \frac{x-1}{x^2+1}$ realice una iteración del método de la sección de oro para obtener una aproximación del mínimo de f en el intervalo [-1,1]. ¿Cuántas iteraciones garantizarían que el mínimo estuviera en un intervalo de longitud menor que 10^{-1} ?

Ejercicio 4 Realice una iteración del método de máxima pendiente para el problema de minimización

$$\min_{(x,y)\in\mathbb{R}^2} (x^2 + y^2 + 2x - y + 1)$$

partiendo del punto $\mathbf{x}^0=(1,\,0)$. Aplique una iteración del método de la sección de oro para

$$\min_{\lambda \geq 0} g(\lambda) = \min_{\lambda} f(\mathbf{x}^k + \lambda \mathbf{d}^k)$$

comenzando en el intervalo [0,1].

Ejercicio 5 Realice dos iteraciones del método del gradiente conjugado (Fletcher-Reeves) para el problema de minimización

$$\min_{(x,y)\in\mathbb{R}^2} (x^2 + y^2 + 2x - y + 1)$$

partiendo del punto $\mathbf{x}^0=(1,\,0)$. Aplique una iteración del método de la sección de oro para

$$\min_{\lambda \geq 0} g(\lambda) = \min_{\lambda} f(\mathbf{x}^k + \lambda \mathbf{d}^k)$$

comenzando en el intervalo [0,1].

Ejercicio 6 Calcule una aproximación de la solución del sistema no lineal

$$\begin{cases}
 x + y &= 2 \\
 xy &= 1
 \end{cases}$$

realizando una iteración del método de máxima pendiente sobre la función $f(x,y) = (x+y-2)^2 + (xy-1)^2$. Considere como estimación inicial $\mathbf{x}^0 = (0,0)$ y aplique una iteración del método de la sección de oro para

$$\min_{\lambda \geq 0} g(\lambda) = \min_{\lambda} f(\mathbf{x}^k + \lambda \mathbf{d}^k)$$

comenzando en el intervalo [0,1].

Ejercicio 7 Resuelva gráficamente y mediante el método de Símplex el problema de programación lineal de maximizar la función f(x,y) = 3x + 5y con restricciones $x \le 4$, $y \le 3$, $x + y \le 6$, $x \ge 0$ e $y \ge 0$.

Ejercicio 8 Un constructor construye tres tipos de pisos que en lo sucesivo se denominarán modelo I, modelo II y modelo III. La ganancia en los pisos del modelo I se estima es de 45000€, en los del modelo II de 40000€ y en los del modelo III de 35000€. La construcción anual de estos modelos de pisos está limitada por dos factores: el número de horas de trabajo cualificado que se supone es 20000 horas/año y la inversión total a realizar por año que se supone es de 3750000€. El número de horas de trabajo cualificado que requiere cada tipo de piso es 1750, 1500 y 1000 respectivamente, así como el capital que se necesita invertir en la construcción de cada tipo de piso es 37500, 30000 y 15000 respectivamente. Todos estos datos se pueden recoger en la siguiente tabla:

Recursos	Tipo I	Tipo II	Tipo III	Totales
Horas	1750	1500	1000	20000
Inversión	37500	30000	15000	3750000
Beneficio	45000	40000	35000	

Si se supone que no se venderá ningún piso antes de terminar el año y que se venderán todos los pisos construidos, calcule por el método de Símplex, cuantos pisos de cada tipo se deben construir para que el beneficio sea máximo.

Ejercicio 9 Una pequeña empresa tiene tres empleados que trabajan durante 40 horas semanales cada uno en la elaboración de dos tipos de productos P_1 y P_2 . El producto del tipo P_1 requiere tres horas de trabajo mientras que el P_2 requiere para su elaboración 4 horas de trabajo. Además se tiene decidido que no se elaborarán más de 32 unidades semanales del producto P_1 y 12 del producto P_2 . La ganancia proporcionada por cada unidad del producto P_1 es de seis unidades monetarias, mientras que cada unidad del producto P_2 deja unas ganancias de tres unidades monetarias. Todos estos datos se pueden recoger en la siguiente tabla:

Recursos	Producto I	Producto II	Totales
Máximo 1	1	0	32
Máximo 2	0	1	12
Horas	3	4	120
Beneficio	6	3	

Resuelva gráficamente y por el método de Símplex dicho problema.

Si en las mismas condiciones se contrata un nuevo empleado (40 horas más de trabajo disponibles a la semana), ¿qué ganancia adicional supone esto para la empresa?

Ejercicio 10 Resuelva gráficamente los siguientes problemas de programación lineal:

(a) Maximizar $z = 3x_1 + x_2$, estando las variables sometidas a las restricciones $x_1 + x_2 \ge 3$; $-2x_1 + x_2 \le 3$; $4x_1 + x_2 \le 9$; $x_1 \ge 0$; $x_2 \ge 0$.

(b) Minimizar $z = 3x_1 + 5x_2$, estando las variables sometidas a las restricciones $4x_1 + x_2 \ge 21$; $3x_1 + 2x_2 \ge 27$; $2x_1 + 3x_2 \ge 23$; $x_1 \ge 2$; $x_2 \ge 1$.

Ejercicio 11 La empresa Cornsa fabrica dos tipos de harina: normal e integral. Cada saco producido, tanto de normal como de integral, requiere la utilización de dos tipos diferentes de máquinas, M_1 y M_2 . Un saco de harina normal requiere 2 horas de la máquina M_1 y 1 hora de la máquina M_2 , mientras que un saco de harina integral requiere la utilización de la máquina M_1 durante una hora y treinta minutos y de 15 minutos de la máquina M_2 . Teniendo en cuenta las máquinas disponibles de ambos tipos, se establece que a lo largo de la semana se podrán conseguir 1200 horas de trabajo con la máquina M_1 y 376 con la M_2 . Además se supone que todas los sacos producidos durante la semana se venden, dejando cada unidad de harina normal un beneficio de 600 unidades monetarias y cada unidad de harina integral, 300 unidades monetarias. Todos estos datos se pueden recoger en la siguiente tabla:

Recursos	Normal	Integral	Totales	
Máquina 1	2	1.5	1200	
Máquina 2	1	0.25	376	
Beneficio	600	300		

Resuelva gráficamente y por el método de Símplex dicho problema.

Ejercicio 12 Un artesano fabrica en su casa dos tipos de juguetes: camiones y trenes. Entre otros materiales utiliza tornillos, bloques de plástico y ruedas, de los cuales, y para la semana próxima, dispone de las cantidades 8000, 6000 y 6300 unidades respectivamente. Para la construcción de los trenes hacen falta 10 tornillos, 15 bloques de plástico y 18 ruedas y para los camiones 20 tornillos, 10 bloques de plástico y 6 ruedas. El artesano no tiene ningún problema para vender todo lo que produzca semanalmente, obteniendo un beneficio neto de $80 \in$ por cada tren y $70 \in$ por cada camión. Todos estos datos se pueden recoger en la siguiente tabla:

Recursos	Trenes	Camiones	Totales
Tornillos	10	20	8000
Plástico	15	10	6000
Ruedas	18	6	6300
Beneficio	80	70	

Resuelva gráficamente y por el método de Símplex dicho problema.

Ejercicio 13 Tras aplicar el algoritmo del simplex a dos problemas de cálculo del máximo de una función con variables principales x_1 y x_2 se obtiene las tablas siguientes:

Índices	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	=	mín
0	0	-1	0	1	0	7	
5	0	-1	2	-1	1	1	
2	0	-1	1	1	0	1	
1	1	-1	-1	1	0	5	

Índices	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	=	mín
0	0	0	0	2	0	7	
5	0	0	3	-1	1	1	
2	0	1	2	1	0	2	
1	1	0	-1	1	0	1	

Tabla 1 Tabla 2

Explica en cada caso si existe solución y resuelve el problema en caso de que sea posible.