

Tutorial Business Analytics

Tutorial 2: Statistics

Decision Sciences & Systems (DSS)

Department of Informatics

TU München

What we will focus on in this tutorial:

Agenda

1. Theory: How does **Hypothesis testing** work?

2. Calculation **Example**

3. Practice: Exercises in Live Tutorial Session

Recommendations

- Use paper and a scientific calculator for the exercises (except R exercises)
- Pay attention to the theory and the example part
- Do all exercises and homework

Statistical Testing

- We are trying to validate a claim about a statistic of a population, only based upon (a) sample(s)
- This **statistical hypothesis** is tested by observing random variables
- · Common cases are
 - Sample statistic is compared against a synthetic (population) statistic
 - Two samples are compared
- A hypothesis is proposed for the statistical relationship between the two statistics; this is compared to a null hypothesis
- The comparison is denoted as statistically significant if the relationship between the statistics (i.e., drawing respective sample(s)) would be unlikely under the null hypothesis according to a threshold probability

"Test Manual" - Overview

1. i) 1 sample or 2 samples

ii) If 1 sample: σ_x known or unknown If 2 samples: dependent or independent

- 2. State H_0 and H_1 (given)
- 3. Select and calculate the test statistic
- 4. Select α (given)
- 5. Find the critical value in the table
- 6. Result

"Test Manual" – 2nd Step

There exist three possible alternative hypotheses H_1 :

Hypothesis	H _o	H ₁
Two-sided	$\mu_x = \mu_0$	$\mu_x \neq \mu_0$
One-sided	$\mu_{x} \leq \mu_{0}$	$\mu_x > \mu_0$
One-sided	$\mu_x \ge \mu_0$	$\mu_x < \mu_0$

"**Test Manual**" – **2**nd **Step:** Two-Sided Hypothesis Test

$$H_0$$
: $\mu_x = \mu_0$ H_1 : $\mu_x \neq \mu_0$

Statistical Significance

© Chair of Decision Sciences and Systems, Technical University of Munich

"Test Manual" – 2nd Step: One-Sided Hypothesis Test

"Test Manual" - 3rd Step

When to use which test? We want to make a statement about the mean of a population, μ_x , based on a sample with size n_x and mean \bar{x}

1 Sample

- σ_{χ} known \rightarrow Gauss/z-test $z_0 = \frac{\bar{x} \mu_0}{\sigma_{\chi}} \sqrt{n} \sim N(0,1)$
- σ_x unknown \rightarrow t-test $t_0 = \frac{\bar{x} \mu_o}{s_x} \sqrt{n} \sim t_{n-1}$ with $s_x^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i \bar{x})^2$

2 Samples

- independent \to Welch-test $t_0 = \frac{\bar{x} \bar{w} \mu_0}{s_{\bar{x} \bar{w}}} \sim_{\mathrm{approx}} t_{\mathrm{df}}$ with $s_{\bar{x} \bar{w}}^2 = \frac{s_x^2}{n_x} + \frac{s_w^2}{n_w}$ and
 - $s_x^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (x_i \bar{x})^2 \quad \text{(df} = \frac{\left(s_{\bar{x} \bar{w}}^2\right)^2}{\frac{s_x^4}{n_x^2(n_x 1)} + \frac{s_w^4}{n_w^2(n_w 1)}} \text{ rounded to nearest integer number)}$
- dependent \to Paired t-test $t_0=\frac{\bar{d}-\mu_0}{s_d}\sqrt{n}\sim t_{n-1}$ with $s_d^2=\frac{1}{n-1}\cdot\sum_{i=1}^n(d_i-\bar{d})^2$ and $\bar{d}=\frac{1}{n}\sum_{i=1}^nd_i=\bar{x}-\bar{w}$, $d_i=x_i-w_i$, $\mu_D=\mu_X-\mu_W$

"Test Manual" – 5th Step

How to find the critical value in the table? For

Gauss/z-Test

→ use normal distribution

• t-Test, Welch-Test and Paired t-Test → use t-distribution

H ₁	t ^c range	t ^c value
$\mu_x \neq \mu_0$	can be any, ℝ	$\left t_{1-\frac{\alpha}{2};\mathrm{df}}^{c}\right = \left t_{\frac{\alpha}{2};\mathrm{df}}^{c}\right $
$\mu_x > \mu_0$	must be positive, $\mathbb{R}_{>0}$	$t_{1-\alpha;\mathrm{df}}^c$
$\mu_x < \mu_0$	$t_{\alpha}^{c} < \mu_{0}$ must be negative, $\mathbb{R}_{<0}$ $t_{\alpha;\mathrm{df}}^{c}$	

Tutorial 2 Business Analytics

Normal Distribution (z-table)

• If X is a normally distribution random variable with mean μ and standard deviation σ ,

$$Z = \frac{X - \mu}{\sigma}$$

is standard normally distributed

- The table contains the probabilities that a statistic is less than z, i.e., between negative infinity and z
- The values are calculated using the cumulative distribution function Φ
- Examples:
 - $\Phi(0.72) = 0.76424$
 - $\Phi(-1.48) = 1 \Phi(1.48) = 0.06944$
 - If quantile $z_{0.9}$ is needed:

$$\Phi(z_{0.9}) = 0.9 \implies z_{0.9} \approx 1.28$$

Z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55966	0.56360	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
8.0	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91308	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520

Tutorial 2 Business Analytics

t-Distribution (t-table)

- A random variable with t-distribution arises, e.g., when estimating the mean of a normally distributed population in situations with a small sample size and unknown population standard deviation
- The numbers in the body of the table, $t_{1-\alpha;\,\mathrm{df}}^c$, are the critical values needed for the t-test
 - df: degrees of freedom
 - α : significance level

cum. prob	t _{.50}	t.75	t.80	t .85	t .90	t.95	t.975	t .99	t.995	t.999	t.9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10 11	0.000	0.700 0.697	0.879 0.876	1.093 1.088	1.372 1.363	1.812 1.796	2.228 2.201	2.764 2.718	3.169 3.106	4.144 4.025	4.587 4.437
12	0.000	0.695	0.878	1.083	1.353	1.796	2.201	2.681	3.106	3.930	4.437
13	0.000	0.694	0.873	1.003	1.350	1.702	2.179	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.079	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.143	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.074	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
I	Confidence Level										

"Test Manual" – 6th Step

Reject H₀:

H ₁	p-value criterion	test statistic criterion
$\mu_x \neq \mu_0$	p < α	$ t_0 > \left t_{1-\frac{\alpha}{2}; \mathrm{df}}^c \right $
$\mu_x > \mu_0$	p < α	$t_0 > t_{1-\alpha;\mathrm{df}}^c$
$\mu_x < \mu_0$	p < α	$t_0 < t_{\alpha;\mathrm{df}}^c$

Example: Learning Method Comparison

In order to compare two learning methods, results have been measured for a group of students. Test if the students got better (higher) results using method 2. Assume the difference follows a normal distribution, (significance level of 5%, i.e., $\alpha = 0.05$).

student	1	2	3	4	5
method 1 (x)	8	6	8	8	4
method 2 (w)	10	9	7	12	7

1.) i) 2 samples

ii) dependent

2.)
$$H_0$$
: $\mu_D = \mu_X - \mu_W \ge \mu_0 = 0$

$$H_0$$
: $\mu_D = \mu_X - \mu_W \ge \mu_0 = 0$ H_1 : $\mu_D = \mu_X - \mu_W < \mu_0 = 0$

3.)
$$o$$
 Paired t-Test: $t_0 = \frac{\bar{d} - \mu_0}{s_d} \sqrt{n} \sim t_{n-1}$ with unbiased sample variance $s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2$

sample means: $\bar{x} = 6.8$, $\bar{w} = 9.0$, difference $\bar{d} = -2.2$,

$$s_d^2 = 3.7$$
, $s_d = 1.9235 \implies t_0 = -2.5574$

4.) $\alpha = 0.05$

5.)
$$\rightarrow t_{\alpha;n-1}^c = -t_{1-\alpha;n-1}^c \text{ (sym.)} \Rightarrow t_{0.05;4}^c = -t_{0.95;4}^c \stackrel{\text{table}}{=} -2.132$$

6.)
$$t_0 = -2.557 < -2.132 = t_{0.05;4}^c \Rightarrow \text{Reject } H_0: \text{Learning method 2 is significantly better.}$$

Example: Learning Method Comparison – step 3 details

In order to compare two learning methods, results have been measured for a group of students. Test if the students got better (higher) results using method 2. Assume the difference follows a normal distribution, (significance level of 5%, i.e., $\alpha = 0.05$).

student	1	2	3	4	5
method 1 (x)	8	6	8	8	4
method 2 (w)	10	9	7	12	7

3.)

sample means:
$$\bar{x} = \frac{1}{5}(8+6+8+8+4) = 6.8$$
, $\bar{w} = \frac{1}{5}(10+9+8+12+7) = 9.0$

difference:
$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \bar{x} - \bar{w} = -2.2$$

sample variance:
$$s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2$$
, $d_i = x_i - w_i$,

$$s_d^2 = \frac{1}{4} \left((8 - 10 + 2.2)^2 + (6 - 9 + 2.2)^2 + (8 - 7 + 2.2)^2 + (8 - 12 + 2.2)^2 + (4 - 7 + 2.2)^2 \right) = 3.7$$

$$s_d = 1.9235$$

Confidence Intervals

Find confidence intervals for μ_x , which—under H_0 —contain the true value μ_x with a probability of at least $1 - \alpha$ (confidence level). We differentiate two cases:

• σ_x known:

confidence interval:

$$[I_u(x), I_o(x)] = \left[\bar{x} - z_{1-\frac{\alpha}{2}}^c \frac{\sigma_x}{\sqrt{n}}, \ \bar{x} + z_{1-\alpha/2}^c \frac{\sigma_x}{\sqrt{n}}\right]$$

• σ_x unknown, use s_x as estimate instead:

confidence interval:
$$[I_u(x), I_o(x)] = \left[\bar{x} - t_{1-\frac{a}{2}; n-1}^c \frac{s_x}{\sqrt{n}}, \bar{x} + t_{1-\frac{a}{2}; n-1}^c \frac{s_x}{\sqrt{n}}\right]$$

- Values of μ_0 within the confidence interval cannot be rejected regarding a significance level of α
 - \rightarrow Reject H_0 if μ_0 is not in the confidence interval

Exercise 2.1

The consumption per person is measured in index values, where a high index value represents a high consumption. The following table embodies index values for 10 individuals before and after a tax increase.

Individual number, <i>i</i>	Index	Difference,	
	previous to tax increase, \boldsymbol{a}	after tax increase, $\it b$	d = a - b
1	27	40	-13
2	31	36	-5
3	23	43	-20
4	35	34	1
5	26	25	1
6	27	41	-14
7	26	32	-6
8	18	29	-11
9	22	21	1
10	21	36	-15

- a) Determine if there is a significant difference in consumption prior to the tax increase and after, utilizing a hypothesis test (significance level $\alpha=0.05$). The difference is assumed to be normally distributed.
- b) Check your result by applying t.test() in R.

Exercise 2.1

- 1.) i) 2 samples ii) dependent
- 2.) $\mu_D = \mu_{\text{before}} - \mu_{\text{after}}$

$$H_0$$
: $\mu_{\text{before}} = \mu_{\text{after}} \iff H_0$: $\mu_D = \mu_0 = 0$ H_1 : $\mu_{\text{before}} \neq \mu_{\text{after}} \iff H_1$: $\mu_D \neq \mu_0 = 0$

$$H_1$$
: $\mu_{\text{before}} \neq \mu_{\text{after}} \iff H_1$: $\mu_D \neq \mu_0 = 0$

3.)
$$\rightarrow$$
 Paired t-Test: $t_0 = \frac{\bar{d} - \mu_0}{s_d} \sqrt{n} \sim t_{n-1}$ and $s_d^2 = \frac{1}{n-1} \cdot \sum_{i=1}^n (d_i - \bar{d})^2$

average Difference, $ar{d}$	standard deviation of differences, s_d
-8.1	7.5931

$$t_0 = \frac{\bar{d} - \mu_0}{s_d} \sqrt{n} = \frac{-8.1 - 0}{7.5931} \sqrt{10} = -3.3734$$

- 4.) $\alpha = 0.05$
- $\rightarrow t_{1-\frac{\alpha}{3}; n-1}^{c} = t_{0.975; 9}^{c} = 2.262$ 5.)
- $|t_0| = 3.3734 > 2.262 = t_{0.975:9}^c$ 6.)

Reject H_0 : difference is significant at $\alpha = 0.05$ (tax has an effect on consumption)

Exercise 2.1

b) Check your result by applying t.test() in R.

```
#use paired=T
a <- c(27,31,23,35,26,27,26,18,22,21)
b <- c(40,36,43,34,25,41,32,29,21,36)
t.test(a,b,alternative = "two.sided", paired=T)

#<=> test if difference is significantly different from zero
d <- c(-13,-5,-20,1,1,-14,-6,-11,1,-15)
t.test(d)</pre>
```

Output:

```
Paired t-test

data: before and after
t = -3.3734, df = 9, p-value = 0.008213
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-13.531795 -2.668205
sample estimates:
mean of the differences
-8.1
```

 H_0 is rejected!

Exercise 2.2

According to the information supplied by the manufacturer of a certain type of car, its gas consumption in city traffic is approximately normally distributed with expected value $\mu=9.5\ell/100 {\rm km}$. The standard deviation $\sigma=2.5\ell/100 {\rm km}$ is commonly known (to the general public and the manufacturer). In order to review the manufacturer's prediction, a consumer organization has performed a test on 25 cars which yielded the following result:

Average gas consumption: $\bar{x} = 10.5\ell/100 \text{km}$

Check the manufacturer's statement with a suitable test at significance level of $\alpha = 0.05$ and a second time with $\alpha = 0.01$.

Exercise 2.2 (using test statistics criterion)

1.) i) One sample

- ii) σ_{x} known
- H_0 : $\mu_x = \mu_0 = 9.5$ (manufacturer's information correct) 2.)

 H_1 : $\mu_x \neq \mu_0 = 9.5$ (manufacturer's information not correct)

3.) → Gauss Test:

$$z_0 = \frac{\bar{x} - \mu_0}{\sigma_x} \sqrt{n}$$

$$= \frac{10.5 - 9.5}{2.5} \sqrt{25}$$
 (inserting values of exercise)
$$= 2$$

Significance level: a) $\alpha = 0.05$ b) $\alpha = 0.01$

a)
$$\alpha = 0.05$$

b)
$$\alpha = 0.01$$

5.)

Since it is two-sided test we use $\alpha/2$ to find the critical value :

a)
$$1 - \alpha/2 = 1 - 0.025 = 0.975$$
; $z^c = z_{0.975} \approx 1.96$

$$z^c = z_{0.975} \approx 1.96$$

b)
$$1 - \alpha/2 = 1 - 0.005 = 0.995$$
; $z^c = z_{0.995} \approx 2.58$

$$z^c = z_{0.995} \approx 2.58$$

6.)

a)
$$z_0 = 2 > 1.96 \approx z^c$$
 $\rightarrow H_0$ is rejected

$$\rightarrow H_0$$
 is rejected

b)
$$z_0 = 2 < 2.58 \approx z^c$$
 $\rightarrow H_0$ is not rejected

$$\rightarrow H_0$$
 is not rejected

Summary of a) $\alpha = 0.05$

Exercise 2.2 (using p-value criterion)

1.) i) One sample

- ii) σ_{x} known
- H_0 : $\mu_x = \mu_0 = 9.5$ (manufacturer's information correct) 2.)

 H_1 : $\mu_x \neq \mu_0 = 9.5$ (manufacturer's information not correct)

3.) → Gauss Test:

$$z_0 = \frac{\bar{x} - \mu_0}{\sigma_x} \sqrt{n}$$

$$= \frac{10.5 - 9.5}{2.5} \sqrt{25} \quad \text{(inserting values of exercise)}$$

$$= 2$$

Summary of a) $\alpha = 0.05$

- Significance level: a) $\alpha = 0.05$ b) $\alpha = 0.01$ 4.)
- 5.) Calculating p value corresponding to the test statistic:

$$\frac{p}{2} = 1 - \phi(z_0) \approx 1 - 0.97725 = 0.02275 \approx 0.023$$

(Note: since it is two sided test what we get from the test statistic is p/2)

- 6.) We compare p/2 with $\alpha/2$:
 - \Rightarrow p < α \Rightarrow H_0 is rejected $p/2 \approx 0.023 < 0.025 = \alpha/2$ a)
 - $p > \alpha$ $\Rightarrow H_0$ is not rejected $p/2 \approx 0.023 > 0.005 = \alpha/2$ b)

Exercise 2.3

During a recent study project, a friend of yours asked 8 men and 10 women how many hours per day they wear a mask during the ongoing COVID-19 pandemic. The following table shows their answers. Afterwards he/she set the hypothesis to "On average, women wear their mask longer per day".

- a) Test the hypothesis "by hand" with significance level $\alpha = 0.05$ and 16 degrees of freedom.
- b) Find out how to solve this exercise using R.

Individual no. i	Hours per day	Gender
1	4	female
2	2	female
3	3	female
4	5	female
5	7	female
6	2	female
7	7	female
8	3	female
9	5	female
10	2	female
11	2	male
12	1	male
13	5	male
14	3	male
15	1	male
16	3	male
17	2	male
18	3	male

Exercise 2.3 a)

1.) i) Two samples ii) independent

2.)
$$H_0$$
: $\mu_D = \mu_f - \mu_m \le \mu_0 = 0$

$$H_1$$
: $\mu_D = \mu_f - \mu_m > \mu_0 = 0$

3.) → Welch Test:

$$\begin{split} t_0 &= \frac{\overline{x}_f - \overline{x}_m - \mu_0}{s_{\overline{f} - \overline{m}}} \text{ and } s_{\overline{x} - \overline{w}}^2 = \frac{s_f^2}{n_f} + \frac{s_m^2}{n_m} \\ \overline{x}_f &= \frac{4 + 2 + 3 + 5 + 7 + 2 + 7 + 3 + 5 + 2}{10} = 4 \text{ and } \overline{x}_m = \frac{2 + 1 + 5 + 3 + 1 + 3 + 2 + 3}{8} = 2.5 \\ s_f^2 &= \frac{(4 - 4)^2 + (2 - 4)^2 + (3 - 4)^2 + (5 - 4)^2 + (7 - 4)^2 + (2 - 4)^2 + (3 - 4)^2 + (5 - 4)^2 + (2 - 4)^2}{10 - 1} \\ &= \frac{0^2 + (-2)^2 + (-1)^2 + 1^2 + 3^2 + (-2)^2 + 3^2 + (-1)^2 + 1^2 + (-2)^2}{9} = 3.778 \\ s_m^2 &= \frac{(-0.5)^2 + (-1.5)^2 + 2.5^2 + 0.5^2 + (-1.5)^2 + 0.5^2 + (-0.5)^2 + 0.5^2}{7} = 1.714 \\ s_{\overline{f} - \overline{m}}^2 &= \frac{3.778}{10} + \frac{1.714}{8} = 0.592 \quad \Rightarrow \quad s_{\overline{f} - \overline{m}} = 0.769 \end{split}$$

4.)

Significance level: $\alpha = 0.05$

$$\alpha = 0.05$$

5.)

$$t_{0.95\cdot16}^{c} = 1.746$$

6.)

 $t_0 = 1.949 > 1.746 = t^c \rightarrow H_0$ can be rejected.

 $t_0 = \frac{1.5}{0.760} = 1.949$

→ Regarding a significance level of it can be concluded that on average, women wear their mask longer.

but can also be calculated by hand

 $df = \frac{\left(s_{\bar{f}-\bar{m}}^2\right)^2}{\frac{s_f^4}{n^2(n_{-}-1)} + \frac{s_m^4}{n^2(n_{-}-1)}}$

Exercise 2.3 b)

The same result can be achieved by using R as follows:

```
> female <- c(4,2,3,5,7,2,7,3,5,2)
> male <- c(2,1,5,3,1,3,2,3)
> t.test(female, male, alternative="greater", paired=F)
```

Output:

```
Welch Two Sample t-test
data: female and male
t = 1.9494, df = 15.637, p-value = 0.03471
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
0.1547037 Inf
```