EXPERIMENT – 1

(A) VERIFICATION OF OHM'S LAW

1. **AIM**:

To verify Ohm's law for a given resistive network.

2. APPARATUS REQUIRED:

S. No	Apparatus Name	Range	Type	Quantity
1	RPS			
2	Ammeter			
3	Voltmeter			
4	Resistor			
5	Rheostat			
6	Bread Board			
7	Connecting Wires			

3. **CIRCUIT DIAGRAM:**

Fig – 2.1 Circuit Diagram

4. **PROCEDURE:**

- 1. Make the connections as per circuit diagram.
- 2. Switch ON the power supply to RPS and apply a voltage (say 10V) and take the reading of voltmeter and ammeter.
- 3. Adjust the rheostat in steps and take down the readings of ammeter and voltmeter.
- 4. Plot a graph with **V** along x-axis and **I** along y-axis.
- 5. The graph will be a straight line which verifies Ohm's law.
- 6. Determine the slope of the V-I graph. The reciprocal of the slope gives resistance of the wire.

5. OBSERVATIONS:

S. No.	Voltage (V)	Current (mA)

6. MODEL GRAPH:

Fig: 2.2 Voltage and Current Characteristics

7. PRECAUTIONS:

- 1. Take care to connect the ammeter and voltmeter with their correct polarity.
- 2. Make sure of proper color coding of resistors.
- 3. The terminal of the resistance should be properly connected.

8. **RESULT:**

9. PRE LAB QUESTIONS:

- 1. What is current?
- 2. What is voltage?
- 3. Define charge.
- 4. Define power.

- 5. What is the resistance?
- 6. What is ohm's law?

10. POST LAB QUESTIONS:

- 1. What do you mean by junction?
- 2. What is the colour coding of resistors?
- 3. What are the precautions to be taken while doing the experiment?
- 4. What is the range of ammeters and voltmeters you used in this experiment?
- 5. What are the limitations of ohm's law?
- 6. What is the condition of ohm's law?

(B) VERIFICATION OF KIRCHHOFF'S CURRENT AND VOLTAGE LAWS

1. **AIM**:

To verify Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL) in a passive resistive network

2. APPARATUS REQUIRED:

S. No	Apparatus Name	Range	Type	Quantity
1	RPS			
2	Ammeter			
3	Voltmeter			
4	Resistors			
5	Bread Board			
6	Connecting Wires			

3. **CIRCUIT DIAGRAMS:**

Circuit to verify KVL:

Figure - 1

To Verify KCL:

Figure - 2

4. **PROCEDURE:**

To Verify KVL

- 1. Connect the circuit diagram as shown in Figure 1.
- 2. Switch ON the supply to RPS.
- 3. Apply the voltage (say 5v) and note the voltmeter readings.
- 4. Sum up the voltmeter readings (voltage drops), that should be equal to applied voltage.
- 5. Thus KVL is verified practically.

To Verify KCL

- 1. Connect the circuit diagram as shown in Figure 2.
- 2. Switch ON the supply to RPS.
- 3. Apply the voltage (say 5v) and note the ammeter readings.
- 4. Sum up the Ammeter readings $(I_1 \text{ and } I_2)$, that should be equal to total current (I).
- 5. Thus KCL is verified practically.

5. OBSERVATIONS:

For KVL

Applied Voltage	V ₁ (volts)		V ₂ (volts)		V ₃ (volts)		V ₁ +V ₂ +V ₃ (volts)	
V (volts)	Theoretical	Practical	Theoretical	practical	Theoretical	practical	Theoretical	practical

For KCL

Applied Voltage	I(A)		I ₁ (A)		I ₂ (A)		I ₁ +I ₂ (A)	
_	Theoretical	Practical	Theoretical	practical	Theoretical	practical	Theoretical	practical

6. PRECAUTIONS:

- 1. Check for proper connections before switching ON the supply.
- 2. Make sure of proper color coding of resistors.
- 3. The terminal of the resistance should be properly connected.

7. **RESULT:**

8. PRE LAB VIVA QUESTIONS:

- 1. What is current?
- 2. What is voltage?

- 3. What is resistance?
- 4. What is ohm's law?
- 5. What is KCL and KVL?

1.9 POST LAB VIVA QUESTIONS:

- 1. What do you mean by junction?
- 2. What directions should be assumed for KCL?
- **3.** What are the positive and negative signs in KVL?
- **4.** What is the colour coding of resistors?
- **5.** What are the precautions to be taken while doing the experiment?
- **6.** What is the range of ammeters and voltmeters you used in this experiment?

EXPERIMENT-2 VERIFICATION OF MESH ANALYSIS

1. **AIM**:

To verify Mesh analysis for a given passive resistive network

2. APPARATUS REQUIRED:

S. No	Apparatus Name	Range	Type	Quantity
1	RPS			
2	Ammeter			
3	Voltmeter			
4	Resistors			
5	Bread Board			
6	Connecting Wires			

3. **CIRCUIT DIAGRAMS:**

Figure – 1

4. PROCEDURE

- 1. Connect the circuit diagram as shown in Figure-1.
- 2. Switch ON the supply of RPS.
- 3. Apply the voltage (say 15v) gradually in steps.
- 4. With the help of ammeters, find the mesh currents I_1 , I_2 and I_3 .
- 5. Verify the practical results obtained with theoretical results

5. CALCULATION:

6. OBSERVATIONS:

Applied Voltage V (volts)	Loop current(I1)		Loop cur	rent (I ₂)	Loop current(I ₃)	
	Theoretical	Practical	Theoretical	Practical	Theoretical	Practical

7. PRECAUTIONS:

- 1. Check for proper connections before switching ON the supply
- 2. Make sure of proper color coding of resistors
- 3. The terminal of the resistance should be properly connected.

8. **RESULT:**

9. PRE LAB VIVA QUESTIONS:

- 1. On which law is the mesh analysis based?
- 2. What is mesh analysis?
- 3. When do we go for super mesh analysis?
- 4. What is the equation for determining the number of independent loop equations in mesh current method?

10. POST LAB VIVA QUESTIONS:

- 1. How do we calculate branch currents from loop currents?
- 2. How do we calculate branch voltages from loop currents?