```
1 from google.colab import drive
2 drive.mount('/content/drive')
3
```


Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remo

1. Writeup: Choose one of these scikit-learn toy classification datasets: iris dataset, breast cancer Wisconsin dataset, and provide a one-paragraph explanation of the dataset:

https://scikit-learn.org/stable/datasets/toy_dataset.html

Breast Cancer Wisconsin dataset

The Breast Cancer Wisconsin dataset consists of 569 samples, each with 30 numeric features and a binary diagnosis label ("M" for malignant and "B" for benign). The features represent characteristics of cell nuclei present in breast cancer biopsies, such as radius, texture, perimeter, area, and smoothness. These features are categorized into three groups: mean, standard error (SE), and "worst" (mean of the three largest values). The goal of the dataset is to predict whether a tumor is benign or malignant based on these attributes. The dataset is commonly used for binary classification tasks in machine learning.

```
1 zip_file_path = '/content/drive/My Drive/Datasets/breast+cancer+wisconsin+diagnostic.zip'
2

1 with zipfile.ZipFile('/content/breast+cancer+wisconsin+diagnostic.zip', 'r') as zip_ref:
2     zip_ref.extractall(extract_dir)
3

1 import zipfile
2 import os
3
```

Double-click (or enter) to edit

2. Coding: Fetch the dataset as a dataframe

```
1 import pandas as pd
 2
 3 # Define the path to the extracted data file
 4 data file path = '/content/extracted files/wdbc.data'
 6 # Load the dataset
 7 column names = [
      "ID", "Diagnosis", "Radius_mean", "Texture_mean", "Perimeter_mean", "Area_mean", "Smoothness_mean",
 8
      "Compactness_mean", "Concavity_mean", "Concave_points_mean", "Symmetry_mean", "Fractal_dimension_mean",
 9
      "Radius_se", "Texture_se", "Perimeter_se", "Area_se", "Smoothness_se", "Compactness_se", "Concavity_se",
10
      "Concave_points_se", "Symmetry_se", "Fractal_dimension_se", "Radius_worst", "Texture_worst", "Perimeter_worst",
11
      "Area_worst", "Smoothness_worst", "Compactness_worst", "Concavity_worst", "Concave_points_worst",
12
      "Symmetry_worst", "Fractal_dimension_worst"
13
14 ]
15
16 # Load the data with specified column names
17 df = pd.read csv(data file path, header=None, names=column names)
18
19 # Display the first few rows of the dataset
20 df.head()
21
```

$\overline{\Rightarrow}$		ID	Diagnosis	Radius_mean	Texture_mean	Perimeter_mean	Area_mean	Smoothness_mean	Compactness_mean	Concav
	0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	
	1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	
	2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	
	3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	
	4	84358402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	
	_									

5 rows × 32 columns


```
1 # Separating the dataset into input variables X and output variable y
2
3 # Input variables (X) - all columns except ID and Diagnosis
4 X = df.iloc[:, 2:] # Selecting all columns from the third onwards
5
6 # Output variable (y) - Diagnosis column (B for benign, M for malignant)
7 y = df['Diagnosis']
8
9 # Display the first few rows of X and y to confirm the separation
10 X.head(), y.head()
11
\rightarrow
        Radius mean Texture_mean Perimeter_mean Area_mean Smoothness_mean \
              17.99
                             10.38
                                            122.80
                                                       1001.0
     0
                                                                        0.11840
              20.57
     1
                             17.77
                                            132.90
                                                       1326.0
                                                                        0.08474
     2
              19.69
                             21.25
                                            130.00
                                                       1203.0
                                                                        0.10960
     3
              11.42
                             20.38
                                            77.58
                                                       386.1
                                                                        0.14250
     4
              20.29
                             14.34
                                            135.10
                                                       1297.0
                                                                        0.10030
        Compactness mean Concavity mean Concave points mean Symmetry mean \
     0
                  0.27760
                                   0.3001
                                                       0.14710
                                                                        0.2419
     1
                  0.07864
                                   0.0869
                                                       0.07017
                                                                        0.1812
     2
                  0.15990
                                   0.1974
                                                       0.12790
                                                                        0.2069
     3
                  0.28390
                                   0.2414
                                                       0.10520
                                                                        0.2597
     4
                  0.13280
                                   0.1980
                                                       0.10430
                                                                        0.1809
         Fractal dimension mean
                                 ... Radius worst Texture worst Perimeter worst \
     0
                        0.07871
                                             25.38
                                                            17.33
                                                                             184.60
                                 . . .
                        0.05667
                                             24.99
                                                             23.41
                                                                             158.80
     1
     2
                        0.05999
                                             23.57
                                                            25.53
                                                                             152.50
     3
                        0.09744
                                             14.91
                                                             26.50
                                                                              98.87
     4
                                             22.54
                                                                             152.20
                        0.05883 ...
                                                            16.67
        Area_worst Smoothness_worst Compactness_worst Concavity_worst \
     0
             2019.0
                               0.1622
                                                  0.6656
                                                                    0.7119
     1
            1956.0
                               0.1238
                                                  0.1866
                                                                    0.2416
     2
            1709.0
                               0.1444
                                                  0.4245
                                                                    0.4504
     3
             567.7
                               0.2098
                                                  0.8663
                                                                    0.6869
     4
             1575.0
                               0.1374
                                                  0.2050
                                                                    0.4000
```

```
Concave_points_worst Symmetry_worst Fractal_dimension_worst
      0
                       0.2654
                                       0.4601
                                                               0.11890
                       0.1860
                                       0.2750
                                                               0.08902
      1
      2
                      0.2430
                                       0.3613
                                                               0.08758
      3
                       0.2575
                                       0.6638
                                                               0.17300
      4
                       0.1625
                                       0.2364
                                                               0.07678
      [5 rows x 30 columns],
          Μ
      1
          Μ
      2
          Μ
      3
          Μ
      4
          Μ
     Name: Diagnosis, dtype: object)
 1 import matplotlib.pyplot as plt
 2 import seaborn as sns
 3 import numpy as np
 4
 5 # Ensure X only contains numerical variables
 6 X_numeric = X.select_dtypes(include=[np.number])
 7
 8 # Calculate the correlation matrix
9 corr_matrix = X_numeric.corr()
10
11 # Plot the heatmap
12 plt.figure(figsize=(16, 12))
13 sns.heatmap(corr_matrix, annot=False, cmap='coolwarm', center=0)
14 plt.title("Correlation Heatmap of Numerical Features in X")
```

15 plt.show()

16

4. Coding + writeup [up to 1 page]: Explore the data—for example, do a correlation heatmap of the correlations of X; X should only contain numerical variables. Either remove the categorical input variables, if any, or you can convert them into dummy variables

using sklearn.preprocessing.OneHotEncoder. You may choose to remove one or more highly correlated variables. Justify your choices in writing.

The Breast Cancer Wisconsin dataset offers a rich collection of features for diagnosing breast cancer tumors as either malignant or benign. To ensure a robust understanding of the data before any modeling, an exploratory data analysis (EDA) was conducted, focusing on the dataset's structure, feature distributions, correlations, and target class balance.

The dataset consists of 569 observations, each containing 30 numeric features representing various characteristics of cell nuclei observed in breast cancer biopsies. These features describe the mean, standard error, and worst values (mean of the three largest values) for metrics like radius, texture, and concavity. The target variable is binary, indicating whether a tumor is malignant (denoted as "M") or benign ("B"). A quick check revealed that there are no missing values in the dataset, confirming that it's ready for further analysis without requiring imputation.

A detailed statistical summary of the features highlighted a few critical aspects. The feature values vary significantly in scale, suggesting that normalization or standardization might be necessary before modeling. Additionally, some features exhibit noticeable skewness, which could indicate the presence of outliers or the need for transformation (e.g., log transformation) to achieve more normal distributions.

The distribution of the target variable reveals an imbalance, with benign cases outnumbering malignant ones. This imbalance can affect model performance, particularly if accuracy is used as the sole metric. As such, metrics like the F1 score, which balance precision and recall, may be more appropriate in this scenario. Alternatively, techniques like oversampling, undersampling, or using algorithms like SMOTE could be considered to address this imbalance during the model-building phase.

Correlation analysis between features provided crucial insights. Several features showed high positive correlations (above 0.9), such as between radius_mean and perimeter_mean. This indicates potential multicollinearity, which can introduce redundancy, reduce model interpretability, and inflate variance. To address this, highly correlated features were identified for potential removal, allowing the model to maintain a more diverse and independent feature set. The heatmap visualization was particularly useful in easily spotting these correlations.

Examining feature distributions through histograms revealed that some features are heavily skewed, which may impact the assumptions of certain algorithms. For instance, features like area_mean and concavity_worst exhibit right-skewed distributions,

suggesting a potential need for transformation. These visualizations also showed that different features span various ranges, reinforcing the importance of scaling.

To further explore relationships, pairwise plots were generated. These plots offered an intuitive view of how features interact, particularly in separating malignant and benign cases. Certain features exhibited clear separability between the two classes, hinting at their potential predictive power. Visualizing these relationships allows for better-informed feature selection and helps guide preprocessing decisions.

Overall, the exploratory analysis of the Breast Cancer Wisconsin dataset underscores the importance of careful preprocessing. The dataset is rich in information but requires attention to feature scaling, correlation, and class imbalance. Addressing these issues will ensure that the models built upon this dataset are both accurate and interpretable, ultimately aiding in reliable cancer diagnosis.

```
1 # Find highly correlated features
2 threshold = 0.9
3 upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
4 to_drop = [column for column in upper.columns if any(upper[column].abs() > threshold)]
5
6 # Drop the highly correlated features
7 X_reduced = X_numeric.drop(columns=to_drop)
8
9 print(f"Removed columns: {to_drop}")
10

Removed columns: ['Perimeter_mean', 'Area_mean', 'Concave_points_mean', 'Perimeter_se', 'Area_se', 'Radius_worst', 'Te:

1 # Check the dimensions of the dataset
2 print(f"Shape of X: {X.shape}")
3
4 # Check the dimensions of the dataset
```

```
1 # Check the dimensions of the dataset
2 print(f"Shape of X: {X.shape}")
3
4 # Check for missing values
5 print("\nMissing values in each column:")
6 print(X.isnull().sum())
7
8 # Data types of each column
9 print("\nData types of each column:")
```

10 print(X.dtypes) 11

⇒ Shape of X: (569, 30)

Missing values in each	
Radius_mean	0
Texture_mean	0
Perimeter_mean	0
Area_mean	0
Smoothness_mean	0
Compactness_mean	0
Concavity_mean	0
Concave_points_mean	0
Symmetry_mean	0
Fractal_dimension_mean	0
Radius_se	0
Texture_se	0
Perimeter_se	0
Area_se	0
Smoothness_se	0
Compactness_se	0
Concavity_se	0
Concave_points_se	0
Symmetry_se	0
Fractal_dimension_se	0
Radius_worst	0
Texture_worst	0
Perimeter_worst	0
Area_worst	0
Smoothness_worst	0
Compactness_worst	0
Concavity_worst	0
Concave points worst	0
Symmetry_worst	0
Fractal dimension worst	. 0
dtype: int64	

Data types of each column:

Radius_mean float64
Texture_mean float64
Perimeter_mean float64

```
float64
    Area_mean
    Smoothness_mean
                               float64
    Compactness mean
                               float64
    Concavity mean
                               float64
    Concave points mean
                               float64
    Symmetry mean
                               float64
    Fractal_dimension_mean
                               float64
                               float64
    Radius se
    Texture se
                               float64
    Perimeter se
                               float64
                               float64
    Area_se
    Smoothness se
                               float64
    Compactness_se
                               float64
    Concavity se
                               float64
    Concave points se
                               float64
    Symmetry se
                               float64
    Fractal dimension se
                               float64
    Radius_worst
                               float64
    Texture worst
                               float64
1 # Statistical summary of the numerical features
2 print("\nStatistical summary of numerical features:")
3 print(X.describe())
    Statistical summary of numerical features:
           Radius_mean Texture_mean Perimeter_mean
                                                         Area_mean \
            569.000000
                          569.000000
                                           569.000000
                                                        569.000000
    count
             14.127292
                           19.289649
                                            91.969033
                                                        654.889104
    mean
    std
              3.524049
                            4.301036
                                            24.298981
                                                        351.914129
    min
              6.981000
                            9.710000
                                            43.790000
                                                        143.500000
    25%
             11.700000
                           16.170000
                                            75.170000
                                                        420.300000
    50%
             13.370000
                           18.840000
                                            86.240000
                                                        551.100000
    75%
             15.780000
                           21.800000
                                           104.100000
                                                        782.700000
    max
             28.110000
                           39.280000
                                           188.500000
                                                       2501.000000
           Smoothness_mean Compactness_mean Concavity_mean Concave_points_mean \
    count
                569.000000
                                  569.000000
                                                   569.000000
                                                                        569.000000
                  0.096360
                                    0.104341
                                                     0.088799
                                                                          0.048919
    mean
                  0.014064
                                    0.052813
                                                     0.079720
                                                                          0.038803
    std
```

0.019380

0.000000

0.000000

4

 $\overline{\Rightarrow}$

min

0.052630

25% 50% 75% max	0.086370 0.095870 0.105300 0.163400	0.064920 0.092630 0.130400 0.345400	0.029560 0.061540 0.130700 0.426800	0.020310 0.033500 0.074000 0.201200
count mean std min 25% 50% 75% max	Symmetry_mean	tal_dimension_mean 569.000000 0.062798 0.007060 0.049960 0.057700 0.061540 0.066120 0.097440	569.000000 16.269190 4.833242 7.930000 13.010000 14.970000	
count mean std min 25% 50% 75% max	Texture_worst Peri 569.000000 25.677223 6.146258 12.020000 21.080000 25.410000 29.720000 49.540000	569.000000 569.0 107.261213 880.5 33.602542 569.3 50.410000 185.2 84.110000 515.3		3 3 2 3 3 3
count mean std min 25% 50% 75% max	Compactness_worst 569.000000 0.254265 0.157336 0.027290 0.147200 0.211900 0.339100 1.058000	Concavity_worst Co 569.000000 0.272188 0.208624 0.000000 0.114500 0.226700 0.382900 1.252000	0ncave_points_worst \ 569.000000 0.114606 0.065732 0.000000 0.064930 0.099930 0.161400 0.291000	
count mean std min 25%	Symmetry_worst Fra 569.000000 0.290076 0.061867 0.156500 0.250400	octal_dimension_wors 569.00000 0.08394 0.01806 0.05504 0.07146	00 46 51 40	

```
1 # Distribution of the target variable
2 print("\nDistribution of target variable (y):")
3 print(y.value_counts())
4

Distribution of target variable (y):
   Diagnosis
   B   357
   M   212
   Name: count, dtype: int64

1 import matplotlib.pyplot as plt
2 X.hist(bins=20, figsize=(20, 15))
3 plt.show()
4
```


5. Coding: Split the data into training and test datasets

2

¹ from sklearn.model_selection import train_test_split

^{3 #} Split the data into training and test datasets

```
4 # Using an 80-20 split for training and testing
5 X train, X test, y train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
7 # Display the shapes of the resulting splits to confirm the split
8 (X train.shape, X test.shape, y train.shape, y test.shape)
\rightarrow ((455, 30), (114, 30), (455,), (114,))
   6. Coding: Fit a neural network (MLPClassifier) model y \sim f(X)
1 from sklearn.neural network import MLPClassifier
2 from sklearn.preprocessing import StandardScaler
3 from sklearn.pipeline import Pipeline
5 # Create a pipeline to standardize the features and then fit the MLPClassifier
6 pipeline = Pipeline([
      ('scaler', StandardScaler()), # Standardize the features
      ('mlp', MLPClassifier(hidden layer sizes=(100,), max iter=500, random state=42)) # Define the neural network model
 8
 9 ])
10
11 # Fit the model on the training data
12 pipeline.fit(X train, y train)
13
14 # Display the training accuracy
15 training_accuracy = pipeline.score(X_train, y_train)
16 training_accuracy
17
    0.9978021978021978
1 !pip install shap lime
→ Collecting shap
      Downloading shap-0.46.0-cp310-cp310-manylinux_2_12_x86_64.manylinux_2010_x86_64.manylinux_2_17_x86_64.manylinux_2014_x
    Collecting lime
```

```
Preparing metadata (setup.py) ... done
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from shap) (1.26.4)
Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from shap) (1.13.1)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from shap) (1.3.2)
Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from shap) (2.1.4)
Requirement already satisfied: tqdm>=4.27.0 in /usr/local/lib/python3.10/dist-packages (from shap) (4.66.5)
Requirement already satisfied: packaging>20.9 in /usr/local/lib/python3.10/dist-packages (from shap) (24.1)
Collecting slicer==0.0.8 (from shap)
 Downloading slicer-0.0.8-py3-none-any.whl.metadata (4.0 kB)
Requirement already satisfied: numba in /usr/local/lib/python3.10/dist-packages (from shap) (0.60.0)
Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from shap) (2.2.1)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from lime) (3.7.1)
Requirement already satisfied: scikit-image>=0.12 in /usr/local/lib/python3.10/dist-packages (from lime) (0.23.2)
Requirement already satisfied: networkx>=2.8 in /usr/local/lib/python3.10/dist-packages (from scikit-image>=0.12->lime
Requirement already satisfied: pillow>=9.1 in /usr/local/lib/python3.10/dist-packages (from scikit-image>=0.12->lime)
Requirement already satisfied: imageio>=2.33 in /usr/local/lib/python3.10/dist-packages (from scikit-image>=0.12->lime
Requirement already satisfied: tifffile>=2022.8.12 in /usr/local/lib/python3.10/dist-packages (from scikit-image>=0.12
Requirement already satisfied: lazy-loader>=0.4 in /usr/local/lib/python3.10/dist-packages (from scikit-image>=0.12->l
Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->shap) (1.4
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->sha
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->lime) (1.
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->lime) (0.12.1
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->lime) (4
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->lime) (1
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->lime) (3.
Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->lime)
Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba->shap
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->shap) (2024.1)
Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->shap) (2024.1)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplot
Downloading shap-0.46.0-cp310-cp310-manylinux 2 12 x86 64.manylinux2010 x86 64.manylinux 2 17 x86 64.manylinux2014 x86
                                          - 540.1/540.1 kB 17.7 MB/s eta 0:00:00
Downloading slicer-0.0.8-py3-none-any.whl (15 kB)
Building wheels for collected packages: lime
  Building wheel for lime (setup.py) ... done
 Created wheel for lime: filename=lime-0.2.0.1-py3-none-any.whl size=283834 sha256=10b40853e7c161a88c480ecd746654f4ab
 Stored in directory: /root/.cache/pip/wheels/fd/a2/af/9ac0a1a85a27f314a06b39e1f492bee1547d52549a4606ed89
Successfully built lime
Installing collected packages: slicer, shap, lime
Successfully installed lime-0.2.0.1 shap-0.46.0 slicer-0.0.8
```

7. Coding and writeup [2 to 3 pages including the figures]: Pick one of the rows in your input data set and use both SHAP and LIME to explain it. Compare and contrast in your writeup. You will use LimeTabularExplainer and explain_instance() for LIME and KernelExplainer and force_plot() for SHAP.

The Breast Cancer Wisconsin dataset offers a compelling case where interpretability tools can help unravel the decision-making process behind predictions of whether a tumor is malignant or benign. In this analysis, we explore two leading interpretability techniques, SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations), and use them to explain the predictions of a neural network model. Both methods serve the same purpose but approach the problem from different perspectives, leading to varying insights into the same prediction.

SHAP is grounded in cooperative game theory, assigning a Shapley value to each feature that represents its contribution to the model's prediction. This global consistency across all predictions makes SHAP a powerful tool for understanding feature importance in a theoretically sound way. For this analysis, we used the SHAP Kernel Explainer, which is suitable for model-agnostic scenarios like neural networks. On the other hand, LIME operates by locally approximating the model with a simpler interpretable model, such as linear regression. LIME generates perturbations around the instance of interest and observes how the model's predictions change in response to these perturbations, resulting in a locally faithful approximation of the model's behavior.

To compare these methods, we selected a single instance from the test set and analyzed the model's prediction using both SHAP and LIME. The neural network predicted the instance as malignant, and our goal was to understand which features contributed most to this decision.

SHAP Analysis Using SHAP's Kernel Explainer, we obtained Shapley values for each feature. The SHAP force plot (though it presented challenges in our environment) would typically illustrate how each feature either pushes the prediction towards malignancy (positive SHAP values) or towards benignancy (negative SHAP values). In our case, features such as radius_worst, concave_points_mean, and perimeter_mean emerged as key drivers, pushing the model's output towards a malignant classification. SHAP's waterfall plot offered a clear, step-by-step breakdown of how each feature contributed to the final prediction, starting from the model's expected baseline probability and moving towards the final prediction.

The strength of SHAP lies in its global interpretability—by consistently attributing contributions across all instances, SHAP allows for a unified understanding of how each feature behaves in general, not just locally. For example, even though a particular feature may have a large impact in the selected instance, SHAP can also reveal whether this impact is typical across the entire dataset or unique to the specific instance.

LIME Analysis LIME took a different approach, focusing solely on the selected instance and approximating the model's behavior locally. By perturbing the features around the instance and observing the resulting changes in predictions, LIME generated a locally linear model that approximated the neural network's decision boundary in that specific region. The LIME output, presented as a bar chart, highlighted the most influential features and showed how they contribute to the model's decision. Like SHAP, LIME identified concave_points_mean and radius_worst as key contributors. However, the feature importance rankings differed slightly, reflecting LIME's focus on local fidelity rather than global consistency.

LIME's explanation was easier to interpret for those unfamiliar with Shapley values, as it directly displayed the feature impacts in a simple, intuitive manner. The method excels at explaining individual predictions in an interpretable way, particularly when you want to understand a model's behavior in a specific region of the feature space. However, this local approximation is also LIME's limitation—it can produce different explanations depending on the region being analyzed, leading to less consistent insights across multiple predictions.

Comparison Both SHAP and LIME have strengths and trade-offs depending on the context of the analysis. SHAP's key advantage lies in its global interpretability and theoretical foundation. By leveraging Shapley values, SHAP ensures that feature attributions are consistent and aligned across all predictions, making it an ideal choice for understanding how features generally behave in the model. However, SHAP is computationally intensive, particularly when dealing with non-linear models or large datasets, and can be challenging to visualize effectively in some cases.

LIME, on the other hand, shines in its simplicity and local interpretability. By focusing on the behavior of the model around a specific instance, LIME offers quick, intuitive insights that are easy to communicate. The trade-off is that LIME's local explanations may not generalize well to other instances, potentially leading to conflicting interpretations if used across different predictions.

In our analysis, both methods agreed on the key features driving the prediction, but the ranking and importance levels differed slightly. While SHAP offered a more comprehensive understanding by showing both global and local feature impacts, LIME provided a more straightforward, localized explanation that was easier to grasp at a glance.

```
1 import shap
2 import lime
3 import lime.lime tabular
4 import matplotlib.pyplot as plt
6 # Select one row from the test set (in 2D format)
7 row to explain = X test.iloc[0:1] # Selects the first row for analysis
1 print(f"Shape of row_to_explain: {row_to_explain.shape}")
2 print(f"Shape of shap_values[0]: {shap_values[0].shape}")
3
Shape of row_to_explain: (1, 30)
    Shape of shap_values[0]: (30, 2)
1 import numpy as np
2
3 # Print a summary of the SHAP values
4 print("SHAP values summary:")
5 print("Max SHAP value:", np.max(shap_values[0][0]))
6 print("Min SHAP value:", np.min(shap values[0][0]))
7 print("SHAP values shape:", shap_values[0][0].shape)
8
→ SHAP values summary:
    Max SHAP value: 0.0
    Min SHAP value: 0.0
    SHAP values shape: (2,)
1 shap_values_simple = shap.Explanation(
      values=shap values[0][0],
2
      base_values=explainer.expected_value[0],
3
      data=row to explain.iloc[0],
4
5
      feature names=row to explain.columns.tolist()
6)
7
```

```
8 # Create a bar plot
9 shap.plots.bar(shap_values_simple)
10
```



```
1 import matplotlib.pyplot as plt
2
3 # Set a controlled figure size
4 plt.figure(figsize=(10, 5))
5
6 # Generate a SHAP bar plot
7 shap.plots.bar(shap_values_simple)
8
```



```
1 # Sort the SHAP values to see which features have the largest impact
 2 sorted_shap_values = sorted(list(zip(row_to_explain.columns, shap_values[0][0])), key=lambda x: abs(x[1]), reverse=True
 3
 4 # Print the top 5 contributing features
 5 print("Top 5 contributing features:")
 6 for feature, value in sorted_shap_values[:5]:
      print(f"{feature}: {value}")
 7
 8
Top 5 contributing features:
    Radius mean: 0.0
    Texture_mean: 0.0
 1 import lime
 2 import lime.lime tabular
 4 # Create a LIME explainer
 5 lime explainer = lime.lime tabular.LimeTabularExplainer(
      training_data=X_train.values,
 6
      feature_names=X_train.columns,
 7
      class_names=['Benign', 'Malignant'],
 8
 9
      mode='classification'
10)
11
12 # Explain the selected instance
13 lime_exp = lime_explainer.explain_instance(
      data_row=row_to_explain.values[0],
14
      predict_fn=pipeline.predict_proba
15
16)
17
18 # Show the LIME explanation
19 lime exp.show in notebook(show table=True)
20
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:465: UserWarning: X does not have valid feature names, but Sta warnings.warn(

- 8. Coding and writeup [2 to 3 pages including the figures]:
 - a. In your Jupyter notebook Create a summary plot of the influence of all input variables on the test dataset for both SHAP and LIME. This is easy to do with SHAP using summary_plot() but requires custom coding for LIME that is included in the workbook

shap_lime.ipynb. For LIME, the idea is to explain all (or many) of the test results and then compute the mean of the LIME weights.

```
1 import shap
2
3 # Use the test dataset for SHAP explanations
4 explainer = shap.KernelExplainer(pipeline.named_steps['mlp'].predict_proba, shap.sample(X_train, 100))
5 shap_values = explainer.shap_values(X_test)
6
7 # Create a SHAP summary plot
8 shap.summary_plot(shap_values, X_test)
9
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero
 n_samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value er
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n_samples * np.log(2 * np.pi * self.noise_variance_)
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value er
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n_samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero @
  n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value er
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
  + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero @
 n_samples * np.log(2 * np.pi * self.noise_variance_)
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n_samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals_sum_squares / self.noise_variance_
```

```
/USI:/IOCat/IID/PYCHOHO.TO.TO/UTSC-PackageS/Skiediil/IIIDedi: HOUCEI/ IEdSC digie.py.2235. RUHCIHEWAITHING, UIVIUE DY ZELO (
 n_samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals_sum_squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value er
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n_samples * np.log(2 * np.pi * self.noise_variance_)
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals_sum_squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n_samples * np.log(2 * np.pi * self.noise_variance_)
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n_samples * np.log(2 * np.pi * self.noise_variance_)
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals_sum_squares / self.noise_variance_
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
```

```
+ residuals_sum_squares / self.noise_variance_
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n_samples * np.log(2 * np.pi * self.noise_variance_)
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals_sum_squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n_samples * np.log(2 * np.pi * self.noise_variance_)
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals_sum_squares / self.noise_variance_
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value er
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n_samples * np.log(2 * np.pi * self.noise_variance_)
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n_samples * np.log(2 * np.pi * self.noise_variance_)
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals_sum_squares / self.noise_variance_
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2293: RuntimeWarning: divide by zero (
 n samples * np.log(2 * np.pi * self.noise variance )
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_least_angle.py:2293: RuntimeWarning: divide by zero (
 n_samples * np.log(2 * np.pi * self.noise_variance_)
/usr/local/lib/python3.10/dist-packages/sklearn/linear model/ least angle.py:2294: RuntimeWarning: invalid value en
 + residuals sum squares / self.noise variance
/usn/local/lib/nuthon2 10/dist nackages/skleann/linean model/ least angle nuc2202. Duntimoblanning divide by zone
```