Midterm Exam for Natural Language Processing

March 9, 2017

Name:	
Net ID	

Instructions

There are 7 questions, each will be worth 15 points for a total of 105 points. You will have approximately 1:15 minutes to complete this test.

The test materials will include this printout and, optionally, one blank blue-covered booklet. I suggest that you fill in all answers directly on this printout. The blue booklet is available if you would like scrap paper, or if you run out of space on the test and need somewhere else to write your answers. You also have the option of putting all your answers in the blue booklet, if you prefer. Whatever you do, please make it clear. Write me notes about where to find particular questions if necessary. As long as I can find and understand your answers, it's fine. If you use the blue booklet, please write your name on this as well, so I can identify it as yours if it gets separated from this printout.

This test is an open book/open notes test: Please feel free to bring your text book, your notes, copies of class lectures and other reading material to the test. A calculator is also permitted and it is OK to look at materials on the web in order to read helpful information, being mindful of the time limit. Just don't use a program that solves a problem for you, e.g., do not find a part of speech tagger and run it if asked to manually annotate mark parts of speech – that WOULD be cheating.

Answer all questions on the test. If you show your work and you make a simple arithmetic mistake, but it is clear you knew how to do it, you will get partial credit.

Question 1. Write a regular expression to identify names of kings, queens and other names of people holding royal titles. Your expression should match person names accompanied by an adjacent royal title—the title should either: (a) immediately precede the name; or (b) immediately follow the name and a comma. The expression should match all the examples below and generalize to cover some other royal names. It should also be specific enough that it does not match most non-royal names. In particular, it should not match any part of the strings: a) *My dog Prince*, b) *Disney Princess bedroom set*, or c) *Queens, Prince, and Kings*

- 1. King David
- 2. Princess Mononoke
- 3. Queen Amidala
- 4. King Yoganarendra Malla
- 5. Emperor Sun Zhi
- 6. Empress Dowager Cixi
- 7. King George III
- 8. Duke Boleslaw Krzywousty
- 9. Diana, Princess of Wales
- 10. Henry Plantagenet, Duke of Normandy
- 11. Seth, Emperor of Azania
- 12. Prince Edward, Duke of Kent
- 13. George I, King of the Hellenes

```
### all on one line with no spaces between lines
    the first two lines are one disjunct and the
    third line is the second disjunct ###

(((King|Queen|Duke|Prince|Princess|Dutchess|Emperor|Empress) )?([A-Z][a-z.]*)
(( [A-Z][a-z]+)|( [IVX]*))*, (King|Queen|Duke|Prince|Princess|Dutchess|
Emperor|Empress)+ *of *(the *)?[A-Z][a-z]+)|
((King|Queen|Duke|Prince|Princess|Dutchess|Emperor|Empress)
( [A-Z][a-z.]*)+([IVX]*))
```

Tag	Description	Tag	Description
CC	Coordinating conjunction	RB	Adverb
CD	Cardinal number	RBR	Adverb, comparative
DT	Determiner	RBS	Adverb, superlative
EX	Existential there	RP	Particle
FW	Foreign word	SYM	Symbol
IN	Preposition or subordinating conjunction	TO	to
JJ	Adjective	UH	Interjection
JJR	Adjective, comparative	VB	Verb, base form
JJS	Adjective, superlative	VBD	Verb, past tense
LS	List item marker	VBG	Verb, gerund or present participle
MD	Modal	VBN	Verb, past participle
NN	Noun, singular or mass	VBP	Verb, non-3rd person singular present
NNS	Noun, plural	VBZ	Verb, 3rd person singular present
NNP	Proper noun, singular	WDT	Wh-determiner
NNPS	Proper noun, plural	WP	Wh-pronoun
PDT	Predeterminer	WP\$	Possessive wh-pronoun
POS	Possessive ending	WRB	Wh-adverb
PRP	Personal pronoun	PU	Punctuation
PRP\$	Possessive pronoun		

Table 1: Penn Treebank POS tags

Question 2. Manually process the following sentence in two ways, filling in the columns in the chart below:

It was a shy nocturnal creature with the appearance of a medium-size dog, except for its abdominal pouch and dark stripes.¹

I have tokenized this sentence and placed the tokens in the first column in the table below. Fill in the second column with PENN TREEBANK parts of speech (POS) tags, as per Table 1 (unlike conventional Penn Treebank Tags, all punctuation is marked PU). In the third column, enter a BIO tag indicating whether a token is beginning a noun group (B), inside a noun group (I) or outside of a noun group (O). Remember not to include right modifiers as noun groups are not full NPs. If you are uncertain about any part of speech assignment, include a short note why you chose the tag you did.

¹Adapted from Wikipedia article about creatures known as a thylacines, aka, "Tasmanian Tigers."

Token	POS Tag	BIO Tag
It	PRP	В
was	VBD	О
a	DT	В
shy	JJ	I
nocturnal	JJ	I
creature	NN	I
with	IN	О
the	DT	В
appearance	NN	I
of	IN	О
a	DT	В
medium	JJ	I
size	NN	I
dog	NN	I
except	IN	О
for	IN	O
its	PRP\$	В
abdominal	JJ	I
pouch	NN	I
and	CC	О
dark	JJ	В
stripes	NNS	I
	PU	0

Question 3. Draw a Phrase Structure Tree analyzing the same sentence you analyzed in Question 2, i.e.,

It was a shy nocturnal creature with the appearance of a medium-size dog, except for its abdominal pouch.

You should assume the same POS tags you used in Question 2. Assume that the words *except* and *for* together form a unit that "acts" like a single preposition. Note that the sentence has been shortened slightly (leaving out the words "and dark stripes")

Question 4: Fill in the CKY chart below for sentence

Hope springs eternal

assuming the rules below. Remember that the rows of the chart represent start positions and the columns represent end positions.

- 1. $S \rightarrow NP VP$
- 2. $NP \rightarrow NN$
- 3. $NP \rightarrow NNS$
- 4. $NP \rightarrow NNP$
- 5. $NP \rightarrow NN NN$
- $6. \ \textbf{NP} \rightarrow \textbf{NN NNS}$
- 7. $\mathbf{VP} \rightarrow \mathbf{VB}$
- 8. $VP \rightarrow VBZ$
- 9. $\mathbf{VP} \rightarrow \mathbf{VBZ} \mathbf{JJ}$
- 10. $NN \rightarrow hope$
- 11. $NNP \rightarrow hope$
- 12. $VB \rightarrow hope$
- 13. NNS \rightarrow springs
- 14. $VBZ \rightarrow springs$
- 15. $JJ \rightarrow eternal$

	hope	springs	eternal
	1	2	3
0	NN, NNP, VB, NP, VP	NP, S	S
1	XXXXXXXXXXXXXXXXX	NNS, VBZ, NP, VP	VP
1	XXXXXXXXXXXXXXXXX	NNS, VBZ, NP, VP	VP
	XXXXXXXXXXXXXXXXXX		
	XXXXXXXXXXXXXXXX		
	XXXXXXXXXXXXXXXX		
2	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	JJ
	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	
	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX	
	XXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	
	XXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXX	

There was an old person from Rome

assuming the following language model, using frequencies of words in a copy of *Edward Lear's Book of Nonsense* available through Project Gutenberg:

- The probability of a sentence is the product of the probability of all the tokens in that sentence and the probability that the sentence ends (probability of an end_sentence token). Thus if N is the length of the sentence, multiply N+1 factors for the total probability.
- The probability of each token is computed based on the bigram, unigram and out of vocabulary frequencies found in the training corpus.
- The following backoff model is assumed:
 - Use the bigram probability of each token, given the previous token, if available. If the previous token is OOV, take the bigram of the current token given that the previous token is OOV.
 - Otherwise, use the unigram probability of the token, if available.
 - Otherwise, use the unigram OOV probability.

Use the following information to calculate these probabilities:

• Bigram frequencies for bigrams ending with tokens in the sentence. Each bullet lists bigrams beginning with the same first token. B_Sentence represents the beginning of the sentence and *oov* represents out of vocabulary words.²

```
B_Sentence + *oov* → 124; B_sentence + and → 35; B_sentence + but → 35; B_sentence + he → 37; B_sentence + she → 20; B_sentence + so → 19; B_sentence + that → 46; B_sentence + there → 113; B_sentence + till → 11; B_sentence + to → 11; B_sentence + whon → 26; B_sentence + which → 25; B_sentence + who → 65; B_sentence + whose → 30
there + was → 113
are + *oov* → 3; are + of → 1; are + you → 2
old + *oov* → 3; old + derry → 1; old + lady → 4; old + man → 91; old + person → 42
person + of → 51; person + whose → 1
from + *oov* → 2; from + his → 1; from + the → 2; from + this → 1; from + turkey → 1
*oov* + ! → 13; *oov* + *oov* → 67; *oov* + , → 147; *oov* + . → 117; *oov* + ; → 69; *oov* + ? → 5; *oov* + a → 7; *oov* + all → 5; *oov* + and → 15; *oov* + by → 9; *oov* + E_sentence → 5; *oov* + from → 5; *oov* + her → 5; *oov* + his → 12; *oov* + the → 6; *oov* + of → 26; *oov* + old → 24; *oov* + that → 17; *oov* + the → 9; *oov* + to → 17; *oov* + was → 9; *oov* + with → 9; *oov* + young → 6;
```

- The unigram frequencies of each token, including *oov* and E_sentence (end of sentence). Unigram frequencies are: B_sentence → 688; there → 113; are → 6; old → 141; person → 52; from → 7; *oov* → 701; E_sentence → 688
- There are a total of 5884 words (tokens) in the corpus.

²For bigrams such that the first item is B_Sentence, only bigrams with frequency greater than 10 are included. For bigrams where the first item is *oov*, only bigrams with frequency greater than 5 are included.

Answer to Question 5

- B_sentence + there 113/688 (sentence-initial *there* divided by number of sentences)
- there + was 113/113 (all instances of *there* are followed by *was*)
- was + an 67/701 (both are OOV, bigram of *oov* when followed byr *oov*)
- an + old -24/701 (24 of the 701 instances of *oov* are followed by *old*)
- old + person 42/141 (42 of the 141 instances of *old* are followed by *person*)
- person + from -7/5884 (unigram for *from*)
- from + Rome 2/7 (2 out of 7 of the instances of *from* are followed by *oov*)
- Rome + E_Sentence 5/701 (5 out of 701 instances of *oov* are followed by E_sentence).

Total: $113/688 \times 1 \times 67/701 \times 24/701 \times 42/141 \times 7/5884 \times 2/7 \times 5/701 = 3.88 \times 10^{-10}$

Question 6. Using the Viterbi algorithm with the transition and likelihood probabilities below: (a) calculate the probability that the sequence of words *free ducks* will be assigned the parts of speech: VB NNS (as in the command telling someone to let some ducks free); (b) calculate the probability that the sequence will be assigned the parts of speech: JJ NNS, as in the noun phrase that refers to ducks that do not cost any money. **Hint: You do not have to fill out the entire table to calculate these two probabilities.**

Likelihood Probabilities			
POS	free	ducks	
NNS	0	.0000835	
VB	.000151	0	
VBP	.0080000	0	
VBZ	0	.0000461	
JJ	.00158	0	

Transition Probabilities

Viterbi Table					
	START	free	ducks	END	
START					
NNS					
VB					
VBP					
VBZ					
JJ					
END					

Answer to Question 6

- 6a. Transitions: start \rightarrow VB = .25; VB \rightarrow NNS = .85; NNS \rightarrow end = . 4 Likelihoods: VB free = .000151; NNS ducks = .0000835. Total = .25 \times .000151 \times .85 \times .0000835 \times .4 = 1.072 \times 10⁻⁰⁹
- 6b. Transitions: start \to JJ = .25; JJ \to NNS = .6; NNS \to end = . 4 Likelihoods: JJ free = 00158; NNS ducks = .0000835. Total = .25 \times .00158 \times .6 \times .0000835 * .4 = 7.92×10^{-09}

Question 7. Computer precision, recall and F-measure given the following answer and system output: **Answer Key**

- 1. King David
- 2. Princess Mononoke found
- 3. Queen Amidala found
- 4. King Yoganarendra Malla
- 5. Emperor Sun Zhi found
- 6. Empress Dowager Cixi found
- 7. King George III
- 8. Duke Boleslaw Krzywousty found
- 9. Diana, Princess of Wales found
- 10. Henry Plantagenet, Duke of Normandy
- 11. Seth, Emperor of Azania
- 12. Prince Edward, Duke of Kent found
- 13. George I, King of the Hellenes

System Output

- 1. Princess Mononoke correct
- 2. King Kong
- 3. Queen Amidala correct
- 4. Disney Princess Bedroom Set
- 5. Emperor Sun Zhi correct
- 6. Empress Dowager Cixi correct
- 7. Duke Boleslaw Krzywousty correct
- 8. Diana, Princess of Wales correct
- 9. Prince Edward, Duke of Kent correct
- 10. King Kullen Supermarket

Answer Question 7:

- 10 system answers, 13 items in answer key, 7 correct (intesection of system and answer key)
- Recall = 7/13 = 53.8
- Precision = 7/10 = 70.0
- F-measure = 2/((13/7) + (10/7)) = 60.9