GSERM - St. Gallen 2023 Analyzing Panel Data

June 14, 2023

Data on Github

Download via the "Raw" button...

Can also use (e.g.) read_csv (in readr):

- > library(readr)
- > Data<-read_csv("https://github.com/PrisonRodeo/GSERM-Panel-2023/raw/main/Exercises/GSERM-APD-Exercise-June-2023.csv")

Generalized Least Squares Models

Start with a focus on residuals... For:

$$Y_{it} = \mathbf{X}_{it}\beta + u_{it}$$

i.i.d. OLS *uits* require:

$$\mathbf{u}\mathbf{u}' \equiv \mathbf{\Omega} = \sigma^2 \mathbf{I}$$

$$= \begin{pmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{pmatrix}$$

GLS Models

This means that within units:

- $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s$ (temporal homoscedasticity)
- $Cov(u_{it}, u_{is}) = 0 \ \forall \ t \neq s$ (no within-unit autocorrelation)

and between units:

- $Var(u_{it}) = Var(u_{it}) \ \forall \ i \neq j$ (cross-unit homoscedasticity)
- Cov $(u_{it}, u_{jt}) = 0 \ \forall \ i \neq j$ (no between-unit / spatial correlation)

Estimator:

$$\hat{\beta}_{\textit{GLS}} = (\mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{Y}$$

with:

$$\widehat{\mathsf{V}(\beta_{\mathit{GLS}})} = (\mathsf{X}'\Omega^{-1}\mathsf{X})^{-1}$$

Two approaches:

- Use OLS \hat{u}_{it} s to get $\hat{\Omega}$ ("feasible GLS" / "weighted least squares")
- ullet Use substantive knowledge about the data to structure Ω

Getting to Know WLS

The variance-covariance matrix is:

$$\begin{aligned} \mathsf{Var}(\hat{\beta}_{\mathit{WLS}}) &= & \sigma^2 (\mathbf{X}' \Omega^{-1} \mathbf{X})^{-1} \\ &\equiv & (\mathbf{X}' \mathbf{W}^{-1} \mathbf{X})^{-1} \end{aligned}$$

A common case is:

$$\mathsf{Var}(u_i) = \sigma^2 \frac{1}{N_i}$$

where N_i is the number of observations upon which (aggregate) observation i is based.

"Robust" Variance Estimators

Recall that, if $\sigma_i^2 \neq \sigma_i^2 \forall i \neq j$,

$$Var(\beta_{Het.}) = (X'X)^{-1}(X'W^{-1}X)(X'X)^{-1}$$
$$= (X'X)^{-1}Q(X'X)^{-1}$$

where $\mathbf{Q} = (\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})$ and $\mathbf{W} = \sigma^2 \mathbf{\Omega}$.

We can rewrite **Q** as

$$\mathbf{Q} = \sigma^{2}(\mathbf{X}'\Omega^{-1}\mathbf{X})$$
$$= \sum_{i=1}^{N} \sigma_{i}^{2}\mathbf{X}_{i}\mathbf{X}'_{i}$$

Huber's Insight

Estimate $\hat{\mathbf{Q}}$ as:

$$\widehat{\mathbf{Q}} = \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{X}_i \mathbf{X}_i'$$

Yields:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Robust}} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\widehat{\mathbf{Q}}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\
= (\mathbf{X}'\mathbf{X})^{-1} \left[\mathbf{X}' \left(\sum_{i=1}^{N} \widehat{u}_{i}^{2}\mathbf{X}_{i}\mathbf{X}_{i}' \right)^{-1} \mathbf{X} \right] (\mathbf{X}'\mathbf{X})^{-1}$$

Practical Things

"Robust" VCV estimates:

- are heteroscedasticity-consistent, but
- are biased in small samples, and
- are less efficient than "naive" estimates when $Var(u) = \sigma^2 \mathbf{I}$.

"Clustering"

Huber / White

????????

WLS / GLS

I know very little about my error variances... I know a great deal about my error variances...

"Clustering"

A common case:

$$Y_{ij} = \mathbf{X}_{ij}\boldsymbol{\beta} + u_{ij}$$

with

$$\sigma_{ij}^2 = \sigma_{ik}^2$$
.

"Robust, clustered" estimator:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Clustered}} = (\mathbf{X}'\mathbf{X})^{-1} \left\{ \mathbf{X}' \left[\sum_{i=1}^{N} \left(\sum_{j=1}^{n_j} \hat{u}_{ij}^2 \mathbf{X}_{ij} \mathbf{X}_{ij}' \right) \right]^{-1} \mathbf{X} \right\} (\mathbf{X}'\mathbf{X})^{-1}$$

Robust / Clustered SEs: A Simulation

url_robust <- "https://raw.githubusercontent.com/IsidoreBeautrelet/economictheoryblog/master/robust_summary.R" eval(parse(text = getURL(url_robust, ssl.verifypeer = FALSE)), envir=.GlobalEnv) > set.seed(3844469) > X <- rnorm(10) > Y <- 1 + X + rnorm(10) > df10 <- data.frame(ID=seq(1:10),X=X,Y=Y) > fit10 <- lm(Y~X,data=df10) > summary(fit10) Call: lm(formula = Y ~ X, data = df10) Residuals: Min 1Q Median Max -1.318 -0.766 0.195 0.378 1.590 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.954 0.311 3.06 0.016 * Y 0.589 0.291 2.03 0.077 . Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Residual standard error: 0.985 on 8 degrees of freedom Multiple R-squared: 0.339, Adjusted R-squared: 0.257 F-statistic: 4.11 on 1 and 8 DF, p-value: 0.0772 > rob10 <- vcovHC(fit10,type="HC1") > sqrt(diag(rob10))

(Intercept)

0 285

Robust / Clustered SEs: A Simulation (continued)

```
> # "Clone" each observation 100 times:
> df1K <- df10[rep(seq_len(nrow(df10)),each=100),]
> df1K <- pdata.frame(df1K, index="ID")
> fit1K <- lm(Y~X.data=df1K)
> summary(fit1K)
Call.
lm(formula = Y ~ X, data = df1K)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        0.0279
                                  34.2 <2e-16 ***
(Intercept) 0.9536
             0.5893
                        0.0260
                                 22.6 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.882 on 998 degrees of freedom
Multiple R-squared: 0.339, Adjusted R-squared: 0.339
F-statistic: 513 on 1 and 998 DF, p-value: <2e-16
> summary(fit1K, cluster="ID")
Call:
lm(formula = Y ~ X, data = df1K)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              0.954
                         0.297
                                  3.21
                                         0.0014 **
Y
              0.589
                         0.269
                                  2.19 0.0286 *
Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.882 on 998 degrees of freedom
Multiple R-squared: 0.339, Adjusted R-squared: 0.339
F-statistic: 4.8 on 1 and 9 DF, p-value: 0.0561
```

Serial Residual Correlation

Example:

$$Y_t = \beta_0 + \beta_1 X_t + u_t$$

$$u_t = \rho u_{t-1} + e_t$$

with $e_t \sim i.i.d. N(0, \sigma_u^2)$ and $\rho \in [-1, 1]$ (typically).

 \rightarrow "First-order autoregressive" ("AR(1)") errors.

Serially Correlated Errors and OLS

Detection

- Plot of residuals vs. lagged residuals
- Runs test (Geary test)
- Durbin-Watson d
 - · Calculated as:

$$d = \frac{\sum_{t=2}^{N} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{N} \hat{u}_t^2}$$

- · Non-standard distribution $(d \in [0, 4])$
- · Null: No autocorrelation
- · Only detects first-order autocorrelation

Serially Correlated Errors and OLS

What to do about it?

- GLS, incorporating ρ / $\hat{\rho}$ into the equation
- First-difference models (regressing changes of Y on changes of X)
- Cochrane-Orcutt / Prais-Winsten:
 - 1. Estimate the basic equation via OLS, and obtain residuals
 - 2. Use the residuals to consistently estimate $\hat{\rho}$ (i.e. the empirical correlation between u_t and u_{t-1})
 - 3. Use this estimate of $\hat{\rho}$ to estimate the difference equation:

$$(Y_t - \rho Y_{t-1}) = \beta_0 (1 - \rho) + \beta_1 (X_t - \rho X_{t-1}) + (u_t - \rho u_{t-1})$$

- 4. Save the residuals, and use them to estimate $\hat{\rho}$ again
- 5. Repeat this process until successive estimates of $\hat{\rho}$ differ by a very small amount

Running Example Redux

The World Development Indicators:

- Cross-national country-level time series data
- N = 215 countries, T = 72 years (1960-2021) + missingness
- Full descriptions are listed in the Github repo here

Regression model:

$$\begin{aligned} \mathsf{WBLI}_{it} &= \beta_0 + \beta_1 \mathsf{Population} \; \mathsf{Growth}_{it} + \beta_2 \mathsf{Urban} \; \mathsf{Population}_{it}^2 + \beta_3 \mathsf{Fertility} \; \mathsf{Rate}_{it} + \\ \beta_4 \mathsf{In} \big(\mathsf{GDP} \; \mathsf{Per} \; \mathsf{Capita}\big)_{it} + \beta_5 \mathsf{Natural} \; \mathsf{Resource} \; \mathsf{Rents}_{it} + \beta_6 \mathsf{Cold} \; \mathsf{War}_t + u_{it} \end{aligned}$$

Descriptive Statistics:

	vars	n	mean	sd	min	max	range	se
WomenBusLawIndex	1	8100	60.69	18.95	17.50	100.00	82.50	0.21
PopGrowth	2	8100	1.65	1.54	-16.88	19.36	36.24	0.02
UrbanPopulation	3	8100	51.56	23.82	2.85	100.00	97.16	0.26
FertilityRate	4	8100	3.61	1.90	0.77	8.61	7.83	0.02
${\tt NaturalResourceRents}$	5	8100	7.04	10.77	0.00	88.59	88.59	0.12
ColdWar	6	8100	0.30	0.46	0.00	1.00	1.00	0.01
lnGDPPerCap	7	8100	8.29	1.44	5.04	11.64	6.60	0.02

How Much Autocorrelation in X?

Note that:

$$d = 2(1 - \rho)$$

which means that we can calculate:

$$\rho=1-\frac{d}{2}.$$

Autocorrelation in the Predictors

	Variable	Rho
1	Population Growth	0.852
2	Urban Population	0.974
3	Fertility Rate	0.966
4	GDP Per Capita	0.977
5	Natural Resource Rents	0.911
6	Cold War	0.916

Baseline Model: OLS (+ D-W Test)

```
> OLS<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilitvRate+log(GDPPerCapita)+NaturalResourceRents+ColdWar.
         data=WDI.model="pooling")
> summary(OLS)
Coefficients:
                   Estimate Std. Error t-value
                                                Pr(>|t|)
(Intercept)
                  60.4325
                                1 6861
                                         35.8
                                                 < 2e-16 ***
PopGrowth
                   -2.3630
                                0.1306 -18.1 < 2e-16 ***
UrbanPopulation
                  -0.0587
                               0.0105 -5.6 0.000000022 ***
FertilityRate
                    -2.5215
                               0.1592 -15.8 < 2e-16 ***
log(GDPPerCapita)
                     2.6533
                               0.1936 13.7 < 2e-16 ***
NaturalResourceRents -0.3398
                                0.0155 -21.9 < 2e-16 ***
ColdWar
                                0.3715 -29.5 < 2e-16 ***
                   -10.9584
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                       2910000
Residual Sum of Squares: 1450000
R-Squared:
              0.501
Adj. R-Squared: 0.501
F-statistic: 1354.19 on 6 and 8093 DF, p-value: <2e-16
> pdwtest(OLS)
Durbin-Watson test for serial correlation in panel models
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
DW = 0.14, p-value <2e-16
alternative hypothesis: serial correlation in idiosyncratic errors
```

Example: Prais-Winsten

```
> PraisWinsten<-panelAR(WomenBusLawIndex~PopGrowth+UrbanPopulation+
               FertilityRate+log(GDPPerCapita)+NaturalResourceRents+
               ColdWar, data=WDI,panelVar="ISO3",timeVar="YearNumeric",
               autoCorr="ar1",panelCorrMethod="none",
               rho.na.rm=TRUE)
> summary(PraisWinsten)
Panel Regression with AR(1) Prais-Winsten correction and homoskedastic variance
Unbalanced Panel Design:
Total obs.:
                  8100 Avg obs. per panel 43.316
Number of panels: 187 Max obs. per panel 52
 Number of times: 52 Min obs. per panel 1
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                  70.366002 2.977666 23.63 < 2e-16 ***
PopGrowth
                 -0.038660 0.039708 -0.97 0.33028
UrbanPopulation
                 -0.000807 0.024026 -0.03 0.97321
             -5.250651 0.233565 -22.48 < 2e-16 ***
FertilityRate
log(GDPPerCapita) 1.237712 0.345964 3.58 0.00035 ***
NaturalResourceRents -0.008431 0.007950 -1.06 0.28892
ColdWar
                   -0.965160 0.216238 -4.46 0.0000082 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
R-squared: 0.3266
Wald statistic: 1094.4684, Pr(>Chisq(6)): 0
> PraisWinsten$panelStructure$rho
[1] 0.9521
```

Better in a Table

	OLS	Prais-Winsten
Intercept	60.43*	70.36*
	(1.69)	(2.98)
Population Growth	-2.36*	-0.04
	(0.13)	(0.04)
Urban Population	-0.06*	-0.0008
	(0.01)	(0.02)
Fertility Rate	-2.52*	-5.25*
	(0.16)	(0.24)
In(GDP Per Capita)	2.65*	1.24*
	(0.19)	(0.35)
Natural Resource Rents	-0.34*	-0.01
	(0.02)	(800.0)
Cold War	-10.96*	-0.97^{*}
	(0.37)	(0.22)
$\hat{\rho}$		0.95
R^2	0.501	0.33
Adj. R ²	0.501	
NT	8100	8100
N panels		187
*p < 0.05		

p < 0.0

Some Panel Data Challenges

Consider the error terms in the model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + u_{it}$$

Issues:

In Words:	<u>In a Formula:</u>				
<u>Variances</u> :					
Unit-Wise Heteroscedasticity	$Var(u_{it}) \neq Var(u_{jt})$				
Temporal Heteroscedasticity	$Var(u_{it}) \neq Var(u_{is})$				
Covariances:					
Contemporary Cross-Unit Correlation	$Cov(u_{it},u_{jt}) \neq 0$				
Within-Unit Serial Correlation	$Cov(u_{it}, u_{is}) \neq 0$				
Non-Contemporaraneous Cross-Unit Correlation	$Cov(u_{it}, u_{js}) \neq 0$				

Parks' (1967) Approach

Assume:

- $Var(u_{it}, u_{jt}) = \sigma^2$ or σ_i^2 (Common or unit-specific error variances)
- $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s$ (Temporal homoscedasticity)
- $Cov(u_{it}, u_{it}) = \sigma_{ii} \ \forall \ i \neq j$ (Pairwise contemporaneous cross-unit correlation)
- Cov $(u_{it}, u_{is}) = \rho$ or ρ_i (Common or unit-specific temporal correlation)
- Cov $(u_{it}, u_{js}) = 0 \ \forall \ i \neq j, t \neq s$ (No non-contemporaneous cross-unit correlation)

(B&K: "panel error assumptions").

Then:

- 1. Use OLS to generate \hat{u} s $ightarrow \hat{
 ho}$ ($ightarrow \hat{m{\Omega}}$),
- 2. Use $\hat{\rho}$ for Prais-Winsten.

This method was widely used prior to Beck & Katz (1995)

Parks' Problems

$$\boldsymbol{\Omega} = \begin{pmatrix} \boldsymbol{\Sigma} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{\Sigma} \end{pmatrix} = \boldsymbol{\Sigma} \otimes \boldsymbol{I}_{\mathcal{T}}$$

where

$$\sum_{N\times N} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1N} & \sigma_{2N} & \cdots & \sigma_N^2 \end{pmatrix}$$

Means:

- $\frac{N(N-1)}{2}$ distinct contemporaneous covariances σ_{ij} ,
- NT observations,
- ightarrow 2T/(N+1) observations per $\hat{\sigma}$

More Parks Problems

From PROC PANEL in SAS:

Standard Corrections

For the PARKS option, the first-order autocorrelation coefficient must be estimated for each cross section. Let ρ be the $N \times 1$ vector of true parameters and $R = (r_1, \dots, r_N)'$ be the corresponding vector of estimates. Then, to ensure that only range-preserving estimates are used in PROC PANEL, the following modification for R is made:

$$r_i = \begin{cases} r_i & \text{if} \quad |r_i| < 1\\ \max(.95, \text{rmax}) & \text{if} \quad r_i \ge 1\\ \min(-.95, \text{rmin}) & \text{if} \quad r_i \le -1 \end{cases}$$

where

$$\operatorname{rmax} = \begin{cases} 0 & \text{if} \quad r_i < 0 \quad \text{or} \quad r_i \ge 1 \quad \forall i \\ \max_j [r_j : 0 \le r_j < 1] & \text{otherwise} \end{cases}$$

and

$$\mathrm{rmin} = \begin{cases} 0 & \text{if} \quad r_i > 0 \quad \text{or} \quad r_i \leq -1 \quad \forall i \\ \max_j [r_j: -1 < r_j \leq 0] & \text{otherwise} \end{cases}$$

Whenever this correction is made, a warning message is printed.

Panel-Corrected Standard Errors

Key to PCSEs:

$$\hat{\sigma}_{ij} = \frac{\sum_{t=1}^{T} \hat{u}_{it} \hat{u}_{jt}}{T}$$

Define:

$$\mathbf{U}_{T \times N} = \begin{pmatrix} \hat{u}_{11} & \hat{u}_{21} & \cdots & \hat{u}_{N1} \\ \hat{u}_{12} & \hat{u}_{22} & \cdots & \hat{u}_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{u}_{1T} & \hat{u}_{2T} & \cdots & \hat{u}_{NT} \end{pmatrix}$$

$$\mathbf{\hat{\Sigma}} = \frac{(\mathbf{U}'\mathbf{U})}{T}$$

$$\hat{\Omega}_{\textit{PCSE}} = \frac{\left(\textbf{U}'\textbf{U}\right)}{\textit{T}} \otimes \textbf{I}_{\textit{T}}$$

Panel-Corrected Standard Errors

Correct formula:

$$\mathsf{Cov}(\hat{eta}_{PCSE}) = (\mathbf{X}'\mathbf{X})^{-1}[\mathbf{X}'\mathbf{\Omega}\mathbf{X}](\mathbf{X}'\mathbf{X})^{-1}$$

General Issues:

- PCSEs do not fix unit-level heterogeneity (a la "fixed" / "random" effects)
- They also do not deal with dynamics
- They depend critically on the "panel data assumptions" of Park / Beck & Katz

Panel Assumptions and Numbers of Parameters

Panel Assumptions	No AR(1)	Common $\hat{ ho}$	Separate $\hat{ ho}_i$ s
$\sigma_i^2 = \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) = 0$	k+1	k + 2	k + N + 1
$\sigma_i^2 \neq \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) = 0$	k + N	k + N + 1	k + 2N
$\sigma_i^2 \neq \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) \neq 0$	$\frac{N(N-1)}{2} + k + N$	$\frac{N(N-1)}{2} + k + N + 1$	$\frac{N(N-1)}{2} + k + 2N$

Example: GLS with Homoscedastic AR(1) Errors

```
> GLS<-gls(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+NaturalResourceRents+ColdWar,
          data=WDI,correlation=corAR1(form=~1|ISO3),na.action="na.omit")
> summarv(GLS)
Generalized least squares fit by REML
 Model: WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+NaturalResourceRents+ColdWar
 Data: WDI
   AIC BIC logLik
 38070 38133 -19026
Correlation Structure: AR(1)
Formula: ~1 | ISO3
Parameter estimate(s):
  Phi
0 9897
Coefficients:
                   Value Std.Error t-value p-value
(Intercept)
                   50.72
                             3.986 12.724 0.0000
PopGrowth
                  -0.01 0.037 -0.228 0.8194
UrbanPopulation
                  0.25 0.041 6.245 0.0000
FertilityRate
                 -3.64 0.293 -12.422 0.0000
log(GDPPerCapita) 1.37 0.420 3.262 0.0011
NaturalResourceRents 0.02 0.007 2.500 0.0124
                   -0.46 0.204 -2.261 0.0238
ColdWar
Residual standard error: 16.92
Degrees of freedom: 8100 total; 8093 residual
```

Example: PCSEs

Coefficients:

	Estimate	Std. Effor	t varue	PF(> t)	
(Intercept)	70.366002	4.482539	15.70	<2e-16	***
PopGrowth	-0.038660	0.044896	-0.86	0.3892	
UrbanPopulation	-0.000807	0.025989	-0.03	0.9752	
FertilityRate	-5.250651	0.365619	-14.36	<2e-16	***
log(GDPPerCapita)	1.237712	0.464299	2.67	0.0077	**
NaturalResourceRents	-0.008431	0.012149	-0.69	0.4877	
ColdWar	-0.965160	0.586562	-1.65	0.0999	
Signif. codes: 0 '*	**' 0.001	** 0.01 '*	, 0.05	., 0.1 '	' 1

Parameter Chair Parameter 12.1. Par(NI+1)

R-squared: 0.3266

Wald statistic: 400.9446, Pr(>Chisq(6)): 0

> PCSE\$panelStructure\$rho

Model Comparisons

Dynamics!

Time Series: Stationarity

Stationarity: A constant d.g.p. over time.¹

Mean stationarity:

$$E(Y_t) = \mu \ \forall \ t$$

Variance stationarity:

$$Var(Y_t) = E[(Y_t - \mu)^2] \equiv \sigma_Y^2 \ \forall \ t$$

Covariance stationarity:

$$Cov(Y_t, Y_{t-s}) = E[(Y_t - \mu)(Y_{t-s} - \mu)] = \gamma_s \ \forall \ s$$

 $^{^1}A$ stricter form of stationarity requires that the joint probability distribution (in other words, all the moments) of series of observations $\{Y_1,Y_2,...Y_t\}$ is the same as that for $\{Y_{1+s},Y_{2+s},...Y_{t+s}\}$ for all t and s.

The "ARIMA" Approach

"ARIMA" = Autoregressive Integrated Moving Average...

A (first-order) integrated series ("random walk") is:

$$Y_t = Y_{t-1} + u_t, \ u_t \sim i.i.d.(0, \sigma_u^2)$$

...a/k/a a "random walk":

$$Y_{t} = Y_{t-2} + u_{t-1} + u_{t}$$

$$= Y_{t-3} + u_{t-2} + u_{t-1} + u_{t}$$

$$= \sum_{t=0}^{T} u_{t}$$

I(1) Series Properties

I(1) series are not stationary.

Variance:

$$Var(Y_t) \equiv E(Y_t)^2 = t\sigma^2$$

Autocovariance:

$$\mathsf{Cov}(Y_t, Y_{t-s}) = |t - s|\sigma^2.$$

Both depend on t...

I(1) series (continued)

More generally:

- $|\rho| > 1$
 - Series is nonstationary / explosive
 - Past shocks have a greater impact than current ones
 - Uncommon
- $|\rho| < 1$
 - Stationary series
 - Effects of shocks die out exponentially according to ρ
 - Is mean-reverting
- $|\rho|=1$
 - Nonstationary series
 - Shocks persist at full force
 - Not mean-reverting; variance increases with t

Time Series Types, Illustrated

I(1) Series: Differencing

For an I(1) series:

$$Y_t - Y_{t-1} = u_t$$

which we often write in terms of the difference operator Δ (or sometimes ∇):

$$\Delta Y_t = u_t$$

The differenced series is just the (stationary, ergoditic) white-noise process u_t .

Unit Root Tests Review: Dickey-Fuller

Two steps:

- Estimate $Y_t = \rho Y_{t-1} + u_t$,
- test the hypothesis that $\hat{\rho} = 1$, but
- this requires that the us are uncorrelated.

But suppose:

$$\Delta Y_t = \sum_{i=1}^p d_i \Delta Y_{t-i} + u_t$$

which yields

$$Y_t = Y_{t-1} + \sum_{i=1}^{p} d_i \Delta Y_{t-i} + u_t.$$

D.F. tests will be incorrect.

Unit Root Alternatives

Augmented Dickey-Fuller Tests:

Estimate

$$\Delta Y_t = \rho Y_{t-1} + \sum_{i=1}^{p} d_i \Delta Y_{t-i} + u_t$$

• Test $\hat{\rho} = 1$

Phillips-Perron Tests:

• Estimate:

$$\Delta Y_t = \alpha + \rho Y_{t-1} + u_t$$

- Calculate modified test statistics (Z_ρ and Z_t)
- Test $\hat{\rho} = 0$

Issues with Unit Roots in Panel Data

- Short series + Asymptotic tests → "borrow strength"
- Requires uniform unit roots across cross-sectional units
- Many tests require balanced panels...
- Various alternatives:
 - Maddala and Wu (1999)
 - Hadri (2000)
 - Levin, Lin and Chu (2002)
 - Im, Pesaran, and Shin (2003)
- What to do?
 - Difference the data...
 - · Error-correction models

Panel Unit Root Tests: R

```
[data wrangling...]
> purtest(WBLI.W,exo="trend",test="levinlin",pmax=2)
Levin-Lin-Chu Unit-Root Test (ex. var.: Individual Intercepts and Trend)
data: WBLT.W
z = -2.7, p-value = 0.004
alternative hypothesis: stationarity
> purtest(WBLI.W,exo="trend",test="hadri",pmax=2)
Hadri Test (ex. var.: Individual Intercepts and Trend) (Heterosked. Consistent)
data: WBLT.W
z = 197, p-value <2e-16
alternative hypothesis: at least one series has a unit root
> purtest(WBLI.W,exo="trend",test="madwu",pmax=2)
Maddala-Wu Unit-Root Test (ex. var.: Individual Intercepts and Trend)
data: WBLI.W
chisq = 364, df = 376, p-value = 0.7
alternative hypothesis: stationarity
> purtest(WBLI.W,exo="trend",test="ips",pmax=2)
Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual Intercepts and Trend)
data: WBLI.W
Wtbar = 2.8, p-value = 1
alternative hypothesis: stationarity
```

A Better Table

	Test	Alternative	Statistic	Estimate	P-Value
1	Levin-Lin-Chu Unit-Root Test	stationarity	z	-2.672	0.0038
2	Hadri Test	at least one series has a unit root	Z	196.75	< 0.0001
3	Maddala-Wu Unit-Root Test	stationarity	χ^2	363.89	0.6635
4	Im-Pesaran-Shin Unit-Root Test	stationarity	\bar{W}_t	2.77	0.9972

Note: All assume individual intercepts and trends.

Lagged Y?

"Lagged dependent variable":

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta}_{LDV} + \epsilon_{it}$$

If ϵ_{it} is perfect, then:

- $\hat{\beta}_{LDV}$ is biased (but consistent),
- O(bias) = $\frac{-1+3\beta_{LDV}}{T}$

If ϵ_{it} is autocorrelated...

- $\hat{\beta}_{LDV}$ is biased and inconsistent
- IV is one (bad) option...

Lagged Ys and GLS-ARMA

Can rewrite:

$$Y_{it} = \mathbf{X}_{it} \boldsymbol{\beta}_{AR} + u_{it}$$

 $u_{it} = \phi u_{it-1} + \eta_{it}$

as

$$Y_{it} = \mathbf{X}_{it}\beta_{AR} + \phi u_{it-1} + \eta_{it}$$

$$= \mathbf{X}_{it}\beta_{AR} + \phi(\mathbf{Y}_{it-1} - \mathbf{X}_{it-1}\beta_{AR}) + \eta_{it}$$

$$= \phi \mathbf{Y}_{it-1} + \mathbf{X}_{it}\beta_{AR} + \mathbf{X}_{it-1}\psi + \eta_{it}$$

where $\psi = \phi \beta_{AR}$ and $\psi = 0$ (by assumption).

Lagged Ys and World Domination

In:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta}_{LDV} + \epsilon_{it}$$

Achen: Bias "deflates" $\hat{\beta}_{LDV}$ relative to $\hat{\phi}$, "suppress" the effects of **X**...

Keele & Kelly (2006):

- Contingent on ϵ s having autocorrelation
- Key: In LDV, long-run impact of a unit change in X is:

$$\hat{eta}_{LR} = rac{\hat{eta}_{LDV}}{1 - \hat{\phi}}$$

Long-Run Impact for $\hat{\beta}=1$

Lagged Ys and Unit Effects

Consider:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + \alpha_i + u_{it}.$$

If we omit the unit effects, we have:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + u_{it}^*$$

with

$$u_{it}^* = \alpha_i + u_{it}$$

Lagging yields:

$$Y_{it-1} = \phi Y_{it-2} + \mathbf{X}_{it-1} \boldsymbol{\beta} + \alpha_i + u_{it-1}$$

which means

$$Cov(Y_{it-1}, u_{it}^*) \neq 0. \rightarrow bias in \hat{\phi}, \hat{\beta}$$

"Nickell" Bias

Bias in $\hat{\phi}$ is

- toward zero when $\phi > 0$,
- increasing in ϕ .

Including unit effects still yields bias in $\hat{\phi}$ of $O(\frac{1}{T})$, and bias in $\hat{\beta}$.

Solutions:

- Difference/GMM estimation
- Bias correction approaches

First Difference Estimation

$$Y_{it} - Y_{it-1} = \phi(Y_{it-1} - Y_{it-2}) + (\mathbf{X}_{it} - \mathbf{X}_{it-1})\beta + (\alpha_i - \alpha_i) + (u_{it} - u_{it-1})$$

$$\Delta Y_{it} = \phi\Delta Y_{it-1} + \Delta \mathbf{X}_{it}\beta + \Delta u_{it}$$

Anderson/Hsiao: If \nexists autocorrelation, then use ΔY_{it-2} or Y_{it-2} as instruments for ΔY_{it-1} ...

- Consistent in theory,
- in practice, the former is preferred, and both have issues if ϕ is high;
- both are inefficient.

$A&H \rightarrow A&B$

Arellano & Bond (also Wawro): Use *all* lags of Y_{it} and \mathbf{X}_{it} from t-2 and before.

- "Good" estimates, better as $T \to \infty$,
- Easy to handle higher-order lags of Y,
- Easy software (plm in R , xtabond in Stata).
- Model is fixed effects...
- \mathbf{Z}_i has T-p-1 rows, $\sum_{i=p}^{T-2} i$ columns \rightarrow difficulty of estimation declines in p, grows in T.

Bias-Correction Models

Kiviet (1995, 1999; Bun and Kiviet 2003; Bruno 2005a,b): Derive the bias in $\hat{\phi}$ and $\hat{\beta}$, then correct it...

- \bullet More accurate than the instrumental-variables/GMM estimators of A&H/A&B...
- ...especially when T is small; but not as T gets reasonably large $(T \approx 20)$

Some Dynamic Models

	Lagged Y	First Difference	FE	$Lagged\;Y+FE$
Intercept	2.139*	0.629*		
	(0.319)	(0.039)		
Lagged WBLI	0.986*			0.953*
	(0.002)			(0.003)
Population Growth	-0.061^*	0.003	-0.089	-0.064*
	(0.023)	(0.036)	(0.095)	(0.028)
Urban Population	0.003	-0.019	0.306*	0.013*
	(0.002)	(0.064)	(0.020)	(0.006)
Fertility Rate	-0.073*	-0.833^{*}	-2.033*	-0.244*
	(0.028)	(0.335)	(0.162)	(0.049)
In(GDP Per Capita)	-0.034	0.502	8.723*	0.148
	(0.035)	(0.445)	(0.300)	(0.095)
Natural Resource Rents	-0.009*	0.023*	0.065*	-0.003
	(0.003)	(0.007)	(0.017)	(0.005)
Cold War	-0.295*	-0.062	-6.869*	-0.408*
	(0.069)	(0.201)	(0.296)	(0.090)
R ²	0.985	0.002	0.532	0.958
Adj. R ²	0.985	0.002	0.521	0.957
Num. obs.	7996	7913	8100	7996

p < 0.05

Anderson-Hsiao, Arellano-Bond, etc.

In R:

- Anderson-Hsiao can be fit using Im or (more easily) plm in the plm package
- Arellano-Bond is most easily fit using pgmm ("panel gmm") in the plm package
- See Criossant and Millo (2018, Chapter 7) for statistics + code details
- This post is also useful...

Stata:

- xtabond / xtdpdsys / xtdpd fit both A-H and A-B / Blundell-Bond models (among others)
- This is also a good (slightly dated) reference

Trends!

What if Y is trending over time?

- First Question: Why?
 - · Organic growth (e.g., populations)
 - · Temporary / short-term factors
 - · Covariates...
- Second question: Should we care? (A: Yes, usually... \rightarrow "spurious regressions")
- Third question: What to do?
 - · Ignore it...
 - Include a counter / trend term...

In general, adding a trend term will decrease the magnitudes of $\hat{\beta}$...

Trends Matter, Illustrated

Data generating processes:

$$Y_{1t} = 10 + (1 \times X_t) + u_t$$

$$Y_{2t} = 5 + (1 \times X_t) + (0.5 \times T) + u_t$$

	Y_1	Y ₂		
		No Trend	Trend	
X	0.921***	-0.382	0.874***	
	(0.245)	(0.786)	(0.255)	
т			0.482***	
			(0.026)	
Constant	10.300***	20.200***	5.860***	
	(0.917)	(2.950)	(1.200)	
Observations	40	40	40	
R ²	0.272	0.006	0.905	
Adjusted R ²	0.253	-0.020	0.900	
Residual Std. Error	1.800 (df = 38)	5.790 (df = 38)	1.810 (df = 37)	

Trends Matter, Part II

Table: FE Models of WBLI

	FE	FE.trend	FE.intx
Population Growth	-0.089	-0.266***	-0.227***
	(0.095)	(0.080)	(0.079)
Urban Population	0.306***	0.019	0.037**
	(0.020)	(0.017)	(0.017)
Fertility Rate	-2.033***	1.276***	1.206***
	(0.162)	(0.146)	(0.146)
In(GDP Per Capita)	8.723***	2.069***	1.855***
, , ,	(0.300)	(0.274)	(0.274)
Natural Resource Rents	0.065***	0.034**	0.037***
	(0.017)	(0.014)	(0.014)
Cold War	-6.869***	1.760***	8.688***
	(0.296)	(0.286)	(0.927)
Trend (1950=0)		0.745***	0.770***
, ,		(0.013)	(0.013)
Cold War x Trend			-0.202***
			(0.026)
Observations	8,100	8,100	8,100
R^2	0.532	0.676	0.678
Adjusted R ²	0.521	0.668	0.670
F Štatistic	1,501.000*** (df = 6; 7907)	2,354.000*** (df = 7; 7906)	2,083.000*** (df = 8; 7905)

 $^{^*}p<0.1;$ $^{**}p<0.05;$ $^{***}p<0.01$

Another Approach: Orthogonalization

Note: We're rarely substantively interested in the fixed effects $\hat{\alpha}$...

- \rightarrow reparameterize the α s so that they are *information-orthogonal* to the other parameters in the model (including the β s and ϕ)
- Key idea: Transform the α s so that (for example):

$$\mathsf{E}\left(\frac{\partial^2 L_i}{\partial \alpha \partial \beta}\right) = 0$$

- Can do this via imposition of priors, in a Bayesian framework...
- In general, this approach is less assumption-laden and more efficient than the IV/GMM-based approaches discussed above.
- Provides consistent-in-N estimates for T as low as 2...

References:

- Lancaster, T. 2002. "Orthogonal Parameters and Panel Data." Review of Economic Studies 69:647-666.
- Pickup et al. (2017) [the "orthogonalized panel model" ("OPM")]

FE + Dynamics Using Orthogonalization

- > library(OrthoPanels)
- > set.seed(7222009)

OPM Results: Short- and Long-Run Effects

For $\hat{\phi} \approx 0.98$:

Parameter	Short-Run	Long-Run
Population Growth	-0.0526	-5.5623
Urban Population	0.0012	0.1468
Fertility Rate	-0.1864	-20.1788
In(GDP Per Capita)	-0.2303	-25.5141
Natural Resource Rents	-0.0075	-0.8048
Cold War	-0.1697	-18.3407

Dynamic Models: Software

R:

- the plm package (purtest for unit roots; plm for first-difference models; pgmm for Arellano-Bond)
- the panelAR package (GLS-ARMA models)
- the gls package (GLS)
- the dynpanel package (A&H, A&B; minimal...)

Stata:

- xtgls (GLS)
- xtpcse (PCSEs)
- xtabond / xtdpd (A&H A&B dynamic models)

Final Thoughts: Dynamic Panel Models

Things to consider:

- N vs. T...
- Are dynamics nuisance or substance?
- What problem(s) do you *really* care about?