Data Mining: Introduction

ISBN-13 **978-027376922**

ISBN 978-0-12-381479-1

ISBN 9781139058452

ISBN 9781492032649

Large-scale Data is Everywhere!

- There has been enormous data growth in both commercial and scientific databases due to advances in data generation and collection technologies
- New mantra
 - Gather whatever data you can whenever and wherever possible.
- **Expectations**
 - Gathered data will have value either for the purpose collected or for a purpose not envisioned.

Cyber Security

E-Commerce

Traffic Patterns

Sensor Networks

Social Networking: Twitter

Computational Simulations

Why Data Mining? Commercial Viewpoint

- Lots of data is being collected and warehoused
 - Web data
 - Google has Peta Bytes of web data
 - Facebook has billions of active users
 - purchases at department/ grocery stores, e-commerce
 - Amazon handles millions of visits/day
 - Bank/Credit Card transactions
- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an edge (e.g. in Customer Relationship Management)

Why Data Mining? Scientific Viewpoint

- Data collected and stored at enormous speeds
 - remote sensors on a satellite
 - NASA EOSDIS archives over petabytes of earth science data / year
 - telescopes scanning the skies
 - Sky survey data
 - High-throughput biological data
 - scientific simulations
 - terabytes of data generated in a few hours

fMRI Data from Brain

Sky Survey Data

Gene Expression Data

- Data mining helps scientists
 - in automated analysis of massive datasets
 - In hypothesis formation

Great opportunities to improve productivity in all walks of life

McKinsey Global Institute

Big data: The next frontier for innovation, competition, and productivity

Great Opportunities to Solve Society's Major Problems

Improving health care and reducing costs

Finding alternative/ green energy sources

Predicting the impact of climate change

Reducing hunger and poverty by increasing agriculture production

What is Data Mining?

Many Definitions

- Non-trivial extraction of implicit, previously unknown and potentially useful information from data
- Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

Origins of Data Mining

- Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems
- Traditional techniques may be unsuitable due to data that is
 - Large-scale
 - High dimensional
 - Heterogeneous
 - Complex
 - Distributed

A key component of the emerging field of data science and data-driven discovery

Data Mining Tasks

- Prediction Methods
 - Use some variables to predict unknown or future values of other variables.

- Description Methods
 - Find human-interpretable patterns that describe the data.

Data Mining Tasks ...

Predictive Modeling: Classification

 Find a model for class attribute as a function of the values of other attributes
 Model for predicting credit

01-00

				<u> </u>
Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes

Classification Example

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Undergrad	7	?
2	No	Graduate	3	?
3	Yes	High School	2	?

Examples of Classification Task

- Classifying credit card transactions as legitimate or fraudulent
- Classifying land covers (water bodies, urban areas, forests, etc.)
 using satellite data
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying intruders in the cyberspace
- Predicting tumor cells as benign or malignant
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil

Classification: Application 1

- Fraud Detection
 - Goal: Predict fraudulent cases in credit card transactions.
 - Approach:
 - Use credit card transactions and the information on its accountholder as attributes.
 - When does a customer buy, what does he buy, how often he pays on time, etc
 - Label past transactions as fraud or fair transactions. This forms the class attribute.
 - Learn a model for the class of the transactions.
 - Use this model to detect fraud by observing credit card transactions on an account.

Classification: Application 2

- Churn prediction for telephone customers
 - Goal: To predict whether a customer is likely to be lost to a competitor.

– Approach:

- Use detailed record of transactions with each of the past and present customers, to find attributes.
 - How often the customer calls, where he calls, what time-of-the day he calls most, his financial status, marital status, etc.
- Label the customers as loyal or disloyal.
- Find a model for loyalty.

Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Extensively studied in statistics, neural network fields.
- Examples:
 - Predicting sales amounts of new product based on advertising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Time series prediction of stock market indices.

Clustering

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

- Custom profiling for targeted marketing
- Group related documents for browsing
- Group genes and proteins that have similar functionality
- Group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

Use of K-means to partition Sea Surface Temperature (SST) and Net Primary Production (NPP) into clusters that reflect the Northern and Southern Hemispheres.

Courtesy: Michael Eisen

Clustering: Application 1

Market Segmentation:

 Goal: subdivide a market into distinct subsets of customers where any subset may conceivably be selected as a market target to be reached with a distinct marketing mix.

Approach:

- Collect different attributes of customers based on their geographical and lifestyle related information.
- Find clusters of similar customers.
- Measure the clustering quality by observing buying patterns of customers in same cluster vs. those from different clusters.

Clustering: Application 2

- Document Clustering:
 - Goal: To find groups of documents that are similar to each other based on the important terms appearing in them.
 - Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.

Enron email dataset

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

Table 1.1. Market basket data.

Transaction ID	Items	
1	{Bread, Butter, Diapers, Milk}	
2	{Coffee, Sugar, Cookies, Salmon}	
3	{Bread, Butter, Coffee, Diapers, Milk, Eggs}	
4	{Bread, Butter, Salmon, Chicken}	
5	5 {Eggs, Bread, Butter}	
6	{Salmon, Diapers, Milk}	
7	{Bread, Tea, Sugar, Eggs}	
8	{Coffee, Sugar, Chicken, Eggs}	
9	{Bread, Diapers, Milk, Salt}	
10	{Tea, Eggs, Cookies, Diapers, Milk}	

Association Analysis: Applications

- Market-basket analysis
 - Rules are used for sales promotion, shelf management, and inventory management
- Telecommunication alarm diagnosis
 - Rules are used to find combination of alarms that occur together frequently in the same time period
- Medical Informatics
 - Rules are used to find combination of patient symptoms and test results associated with certain diseases

Deviation/Anomaly/Change Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion
 Detection
 - Identify anomalous behavior from sensor networks for monitoring and surveillance.
 - Detecting changes in the global forest cover.

Motivating Challenges

- Scalability
- High Dimensionality
- Heterogeneous and Complex Data
- Data Ownership and Distribution
- Non-traditional Analysis