Processamento Paralelo e Distribuído

Marcelo Trindade Rebonatto

Introdução & Modelos de Arquiteturas Paralelas

Processamento Paralelo e Distribuído - Prof.: Marcelo Trinda Rebonatto

Roteiro

- Introdução
- Histórico
- Modelos de arquiteturas paralelas
 - → Pelo fluxo de instruções / fluxo de dados ☆ Mecanismo de controle
 - → Pelo espaço de endereçamento de memória
- Máquinas comerciais

Processamento Paralelo e Distribuído - Prof.: Marcelo Triñdade Rebonatto

Conceitos Iniciais

- Evolução dos computadores
 - → Demanda crescente por desempenho ☆Viabilizar aplicações com elevada taxa de computações
- Aplicações que necessitam de horas/dias de processamento em computador convencional
- Tempo de resposta do computador muito superior ao desejado pelo usuário

Processamento Paralelo e Distribuído - Prof.: Marcelo Triñdale Rebonatto

Alternativas ● Para diminuir o tempo de resposta das aplicações, pode-se: ■ Aumentar o desempenho do processador ☆ Limites ☆ Custos ■ Utilizar vários processadores ☆ Aumento da complexidade ☆ Comunicação Processamento Paralelo e Distribuído - Prof.: Marcelo Tribuña Rebonatto 5/44

Melhorar o desempenho dos processadores • Aumentar a velocidade do relógio (clock) • Melhorias na tecnologia de construção de CI • Problemas com super-aquecimento • Limite: velocidade da luz • Melhorar a arquitetura • Processadores RISC, vetoriais e superescalares • Melhorar o acesso a memória • Hierarquia de memória (cache) Processamento Paralelo e Distribuído - Prof.: Marcelo Triadase Rebonatto 6/44

Utilização de vários processadores • Dividir a execução do programa entre os processadores → Taxa anual de ganho de desempenho: ☆Supercomputadores, minicomputadores, mainframes: abaixo de 20% ao ano ☆Microprocessadores: ± 35% ao ano → Número de processadores ☆Dezenas a centenas Computação paralela Processamento Paralelo e Distribuído - Prof.: Marcelo Triñda Rebonatto Áreas da Computação Paralela • Projeto de computadores paralelos Projeto de algoritmos paralelos eficientes Métodos para avaliação de algoritmos paralelos Linguagens de programação para ambientes

Abrangência da Computação Paralela

 Praticamente todas as áreas que necessitam de alto desempenho

• Ferramentas para a programação paralela

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindade Rebonatto

Programas paralelos portáveis Compiladores paralelos

- Aplicações em algoritmos numéricos
 - → Manipulação de grandes matrizes, sistemas de equações lineares, transformadas de Fourrier, ...
- Aplicações em algoritmos não-numéricos
 - Classificação, processamento gráfico, busca, otimização, ...
- Possibilidade de novas áreas de aplicação da informática

Processamento Paralelo e Distribuído - Prof.: Marcelo Trifidade Rebonatto

Aplicações paralelas atuais Pesquisa geofísica, prospecção de petróleo Previsão de tempo Pesquisa genética (DNA) Mecânica dos fluídos (construção de aeronaves e barcos) Simulações Desenvolvimento processadores Processamentos de imagens de satélite Monitoramento de poluição ... Processamento Paralelo e Distribuído - Prof.: Marcelo Triandade Rebonatto

Processamento paralelo/distribuído

- Computação paralela: aplicações que buscam alto desempenho
- Computação distribuída: aplicações funcionalmente distribuídas
 - → Aumento de desempenho
 - → Tolerância a falhas
 - → Aumento da funcionalidade
 - → Distribuição inerente

Processamento Paralelo e Distribuído - Prof.: $Marcelo\ Tr$ ibida Rebonatto

Processamento paralelo/distribuído

- Computação paralela/distribuída
 - → Uso de máquinas potencialmente ociosas
 - → Custo reduzido
 - → Crescimento incremental
- Desvantagens
 - → Pouco software de alto nível
 - → Dificuldades de evitar acessos indevidos
 - → Rede de interconexão pode ser um gargalo

Processamento Paralelo e Distribuído - Prof.: Marcelo Tri20448e Rebonatto

Motivação para paralelismo

- Paralelismo: tão antigo quanto computadores eletrônicos
 - → Trabalhos de von Neumann (década de 40): discussão AP → equações diferenciais
 - ► MODEL V (1944 e 1947, Sibitz e Williams): 2 processadores e 3 posições de I/O
 - → ILLIAC IV (década de 60): Universidade de Illinois: 64 processadores

Processamento Paralelo e Distribuído - Prof.: Marcelo Trisdade Rebonatto 13/

Aumento de interesse

- Mudança gradual de conceitos
- Técnicas de paralelismo sendo desenvolvidas e aplicadas ao longo dos anos
 - → Marco: processadores de I/O (canais) → 2a geração de computadores
 - → Conceitos de concorrência, comunicação e sincronização
 - → Utilização de sistemas com 2 ou mais CPUs: questão de tempo

Processamento Paralelo e Distribuído - Prof.: Marcelo Trividade Rebonatto 14/44

Computadores sequenciais

- Máquinas convencionais
 - ➤ Modelo de "Von Neumann": computador de programa armazenado

→ Evolução	Processador	Memória

Processador Cache Memória	
Processador Cache Memória	
$f_0 \to f_1 \to f_2 \to \dots \to f_{n-1}$	
pagasamenta Daralala a Distribuída - Drof : Manada Tul.5/49la Bahanatta - 15/	/4

teturas paralelas

Paralelismo em Hardware

- Transferência entre registradores
- Realização de operações lógicas
- Múliplas unidades funcionais
- Pipeline
- VLIW

Processamento Paralelo e Distribuído - Prof.: Marcelo Trividade Rebonatto

16/44

eturas paralela

Máquinas paralelas

- Processamento paralelo
- Classificações
 - → Classificação pelo fluxo de instruções
 ☆Pelo mecanismo de controle
 - ➡ Classificação pelo fluxo de dados
 - Classificação pelo espaço de endereçamento de memória
- Classes de algoritmos paralelos

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindade Rebonatto

Fluxo de Instruções e Dados

	SD (Single Data)	MD (Multiple Data)
SI (Single Instruction)	SISD Máquinas monoprocessadas	SIMD Máquinas Vetoriais
MI (Multiple Instruction)	MISD Sem representante (até agora)	MIMD Multiprocessadores/ Multicomputadores

Processamento Paralelo e Distribuído - Prof.: Marcelo Trividade Rebonatto 18/44

SISD Um fluxo de instruções atuam sobre um fluxo de dados Máquinas monoprocessadas Microcomputadores pessoais: PC, Mac Estações de trabalho: Worksation Sun Instruções Processamento Paralelo e Distribuído - Prof.: Marcelo Trimanse Rebonatio 19/44

• Múltiplos fluxos de instruções atuariam sobre um fluxo de dados • Sem sentido e impraticável: classe vazia • Processamento Paralelo e Distribuído - Prof.: Marcelo Trabalado Rebonatio 20/44

SIMD • Uma instrução é executada ao mesmo tempo sobre múltiplos dados • Máquinas array e Vetorias: Cray 1, CM-2 Processamento Paralelo e Distribuído - Prof.: Marcelo Tribulada Rebonatio 21/44

MIMD Instruções diferentes sobre dados diversos a cada vez Conjuntos de máquinas SISD Servidores com múltiplos processadores, ... Processamento Paralelo e Distribuído - Prof.: Marcelo Trâdilæle Rebonatto 22/44

Mecanismos de Controle

• Controle único: SIMD

- → A mesma instrução é executada por todas as unidades processadoras, de forma síncrona
- ➤ Execução de um único programa ao mesmo tempo
- Controle múltiplo: MIMD
 - Cada processador é capaz de executar um programa diferente
 - → Divisão quanto ao compartilhamento de memória ☆Multicomputadores
 - Multiprocessadores

Processamento Paralelo e Distribuído - Prof.: $Marcelo\ Tr2nd48e\ Rebonatto$

SIMD x MIMD

• SIMD

- → Menos hardware
- → Menos memória
- → Hardware específico

• MIMD

- → Aparentemente maior custo
 - ☆Pode-se usar microprocessadores de propósito geral
- → Hardware extra para obter sincronização rápida

Processamento Paralelo e Distribuído - Prof.: Marcelo Tr24d48le Rebonatto 24/

uiteturas paralelas

Compartilhamento de memória

- Memória compartilhada shared memory
 - → Único espaço de endereçamento
 - → Comunicação: load e store
- Memória não compartilhada
 - ➤ Múltiplos espaços de endereçamento multiple private address spaces
 - ☆Um para cada processador
 - → Comunicação: send e receive

Processamento Paralelo e Distribuído - Prof.: Marcelo Trandade Rebonatto

25/44

iiteturas paralela

Localização da memória

- Memória distribuída
 - → Vários módulos
 - → Cada módulo próximo ao processador: menor tempo de acesso
- Memória centralizada
 - → Memória a mesma distância de todos os processadores
 - → Um ou vários módulos

Processamento Paralelo e Distribuído - Prof.: $Marcelo\ Tr$ 26d48de Rebonatto

26/44

iteturas paralelas

Divisão quanto acesso a memória

- Multiprocessadores
 - → Memória compartilhada entre os processadores
 - ➡ Replicação apenas do processador
 - **→** Múltiplos processadores
- Multicomputadores
 - → Memória não compartilhada entre os processadores
 - → Replicação de toda a arquitetura convencional
 - **→ Múlti**plos computadores

Processamento Paralelo e Distribuído - Prof.: Marcelo Tr270448e Rebonatto

Multiprocessadores • NUMA - non-uniform memory access → Acesso não uniforme a memória → Memória distribuída → Espaço de endereçamento único Memória Compartilhada M M M M P P P P Rede de Interconexão Processamento Paralelo e Distribuído - Prof.: Marcelo Tradale Rebonatto

uiteturas paralelas

Multiprocessadores - NUMA

- NCC-NUMA non-cache-coherent
 - → Não possui coerência de cache em hardware
- CC-NUMA cache-coherent
 - → Coerência da cache em *hardware*
- SC-NUMA software-coherent
 - → Coerência da cache em software
 - → DSM (Distributed Shared Memory)

Processamento Paralelo e Distribuído - Prof.: Marcelo Trividade Rebonatto

31/44

uiteturas paralela

Multiprocessadores - NUMA

- COMA cache-only memory architectture
 - → Memórias Cache com grande capacidade
 - → Replicação de cache em *hardware*
 - ► Máquinas caras e complexas de implementar

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindade Rebonatto

32/44

iteturas paralelas

Multicomputadores

- Máquinas paralelas com memória distribuída e não compartilhada
- NORMA non remote memory access
 - → Sem acesso remoto a memória
 - → Cada processador possui acesso apenas a sua memória local

Processamento Paralelo e Distribuído - Prof.: Marcelo Trindalle Rebonatto

Multicomputadores: classificações

• Fortemente acoplados

- ➡ Redes especiais de interconexão
- → Alto desempenho
- → Comunicação confiável por hardware
- Fracamente acoplados
 - → Máquinas em rede local
 - → Comunicação confiável com adição de software
- Muito fracamente acoplados
 - → Máquinas em redes não locais
 - → Comunicação lenta e menos confiável: roteadores, linhas de variada capacidade

Processamento Paralelo e Distribuído - Prof.: Marcelo Triadade Rebonatto

34/44

Máquinas comerciais - MIMD Máquinas vetoriais (PVP) Processadores de vários pipelines vetoriais Poucas unidades processadoras Ligação através de chaves de alta velocidade Memória compartilhada Cray Y-MP e NEC Pr. Vetorial Pr. Vetorial Chave crossbar Memória Compartilhada Processamento Paralelo e Distribuído - Prof.: Marcelo Trâdinae Rebonatio 36/44

Máquinas comerciais - MIMD Multiprocessadores Simétricos (SMP) Microprocessadores 2 ou mais unidades processadoras Barramento de alta velocidade Memória Compartilhada DEC Alpha Server 8400 e SGI Power Challenge Processador Processador Barramento de alta velocidade Memória Compartilhada Processamento Paralelo e Distribuído - Prof.: Marcelo Trimana a 37/44

Máquinas comerciais - MIMD Multiprocessadores com memória compartilhada distribuída (DSM) Microprocessadores Rede de interconexão de alta velocidade Memória compartilhada Fisicamente distribuída Cray T3D Processamento Paralelo e Distribuído - Prof.: Marcelo Transale Rebonatto 39/44

Máquinas comerciais - MIMD Multiprocessadores com memória compartilhada distribuída (DSM) Mem. 1 Mem. 2 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 2 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 1 Mem. 2 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 1 Mem. 2 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 1 Mem. 1 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 1 Mem. 1 Mem. 1 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 1 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 2 Mem. 3 Mem. 1 Mem. 2 Mem. 3 Mem. 2 Mem. 3 Mem. 2 Mem. 3 Mem. 3 Mem. 2 Mem. 3 Mem. 3 Mem. 4 Mem. 1 Mem. 2 Mem. 3 Mem. 4 Me

Máquinas comerciais - MIMD ■ Estações de trabalho em rede (NOW) ■ Ligação de computadores comuns em rede ☆ Máquinas completas com todos os periféricos ■ Nodos podem possuir mais de um processador ☆ Máquinas Dual ou Quad: SMP ■ Berkley NOW e Beowulf

Máquinas comerciais - MIMD NOW Cluster Computing: Agregados computacionais Redes de interconexão + Baixo custo + Alto desempenho: Baixa latência + Myrinet, SCI Placas de rede especiais para o processamento paralelo Cluster fornecidos pelos principais fabricantes através da agregação de computadores Processamento Paralelo e Distribuído - Prof.: Marcelo Tri⊅AM∂e Rebonatio 42/44

Processamento Paralelo e Distribuído - Prof.: Marcelo Tr#id#8e Rebonatto

	M	láquinas	comerc	ciais - Ml	MD
Arquiteturas paralelas	Tipo	Interconexão	Processador	Endereçamento	Acesso a memória
ara	PVP	Chave crossbar	Específico	Único	UMA
ls p	SMP	Barramento ou crossbar	Específico ou comum	Único	UMA
tura	MPP	Rede específica	Específico	Múltiplo	NORMA
rite	DSM	Rede específica	Específico	Único	NUMA
Arg	NOW	Rede comum ou específica	Comum	Múltiplo	NORMA
	Processan	nento Paralelo e Di	stribuído - Prof.: <i>M</i>	arcelo Tr ividio le Rebo	onatto 44/44