Assignment-1

刘行逸

20250916

1

$$\begin{vmatrix} 1 & \alpha \\ \alpha & 4 \end{vmatrix} = 1 > 0$$

$$\begin{vmatrix} 1 & \alpha \\ \alpha & 4 \end{vmatrix} = 4 - \alpha^2 > 0, \ \alpha \in (-2, 2)$$

$$\begin{vmatrix} 1 & \alpha & -1 \\ \alpha & 4 & 2 \\ -1 & 2 & 4 \end{vmatrix} = 1 \times 4 \times 4 + (-1) \times 2\alpha + (-1) \times 2\alpha$$

$$- (-1) \times 4 \times (-1) - 4\alpha^2 - 1 \times 2 \times 2$$

$$= -4\alpha^2 - 4\alpha + 8$$

$$= -4(\alpha^2 + \alpha - 2) > 0, \ \alpha \in (-2, 1)$$

 $\alpha \in (-2,1)$

2

(a)

 $x = 10, \ y = 50,$ $\max f = 250 \times 10 + 75 \times 50$ = 6250

(b)

 $x = 30, \ y = 0,$ $\max f = 4 \times 30 + 0$ = 120 minimize
$$f = 5x + 7y$$

s.t.
$$\begin{cases} 2x + y \ge 8 \\ x + 2y \ge 10 \\ x, y \ge 0 \end{cases}$$