Computational Complexity of Computing Symmetries in Finite-Domain Planning

Alexander Shleyfman and Peter Jonsson

Language for Planning: FDR

An FDR Planning task is 5-tuple $\langle V, A, cost, I, G \rangle$:

- \bullet V: finite set of multi-valued (finite-domain) state variables
- *A*: finite set of actions of form \(\rho \text{pre}, \text{eff} \) \(\text{preconditions/effects; partial variable assignments} \)
- $cost: A \mapsto \mathbb{R}^{0+}$ captures action cost
- *I*: initial state (variable assignment)
- *G*: goal description (partial variable assignment)

Symmetries

Let $\langle N_1, E_1 \rangle$ and $\langle N_2, E_2 \rangle$ be two graphs. The map $\rho: N_1 \to N_2$ is an isomorphism if ρ is an edge-preserving bijection. If $N_1 = N_2 \ \rho$ is an automorphism.

Results

Let Π be a planning task.

Computing the structural symmetries group of Π is GI-complete.

If Π has a bounded domain and a bounded-degree causal grpah than the structural symmetries group of Π can be computed in poly-time.

Given two states s and s' in the transition graph \mathcal{T}_{Π} of Π , determining whether s and s' are symmetric is PSPACE-complete.

Symmetry Groups (FDR)

Planning Description Graph (PDG)

Graph Isomorphism Problem

The graph isomorphism problem (GI) is the computational problem of determining whether two finite graphs are isomorphic.

For a graph with n vertices

- 1. $2^{O(\sqrt{n}\log^2 n)}$ Babai (1983), Babai & Luks (1983)
- 2. $2^{O(\sqrt{n \log n})}$ Zemlyachenko et al. (1985)

Quasi-polynomial claim Babai announced an algorithm with running time $2^{O(\log n)^3}$.

Equivalent Classes

- CGI GI for connected undirected graphs;
- DGI GI for directed graphs;
- AGEN– returns a set of generators for the graphs automorphism group;
- CAGEN AGEN for colored graphs..
 - 1. $GI =_p CGI =_p DGI Zemlyachenko et al.$ (1985)
 - 2. $GI =_p IMAP =_p AGEN$ Mathon^a (1979)
 - 3. $GI =_p CAGEN$ Ghosh and Kurur^b (2014)

^aThe proof is incomplete.

Adding Cycles

Aut(PDG) – Lower Bound

Constructing a PDG from a directed graph while preserving the automorphism group.

Aut(PDG) – Upper Bound

Planning Tasks: Two to One

The state-transition graph of the direct union of structures \mathcal{T}_{Π} and $\mathcal{T}_{\Pi'}$. The dots to the right represent mixed states.

100 110 101 111 000 010 001 011

The state-transition graph of structure \mathcal{T}_{Π} with an k-var. hole attached at (b_1, \ldots, b_m) . $s_0 = (b_1, \ldots, b_m, 0, \ldots, 0, 0)$ The dots to the right represent mixed states.

Proof

G is symmetric to $G' \iff \Pi$ is unsolvable.

^bThe provided proof sketch is wrong, and we have a counter example.