Parking

Valerija parkolósegédként dolgozik egy előkelő étteremben. A munkája abból áll, hogy az érkező vendégeket illendően köszönti, majd elkéri a kocsikulcsukat és leparkolja az autójukat a közeli parkolóban. Miután végeztek a vendégek, gondoskodik róla, hogy mindenki épségben visszakapja a saját járművét és elégedetten távozzon a helyszínről.

Egy este, miután az összes autót leparkolta, egy rendkívül érdekes dolgot vett észre: a parkolóban lévő, összesen 2N darab gépkocsi mindegyike N darab szín valamelyikével van befestve, ráadásul mindegyik színhez pontosan két autó tartozik. Az N-féle színt a továbbiakban az 1 és N közti egészekkel jelöljük.

A parkoló M darab szomszédos parkolóhelyet tartalmaz, melyeket 1-től M-ig sorszámozunk. Minden parkolóhelyen legfeljebb két autó parkolhat, de a parkolóhelynek csak egyetlen bejárata van. A bejárathoz közelebb álló járművet felső autónak, a távolabb állót alsó autónak nevezzük. Az alsó autó nem tudja elhagyni a parkolóhelyet, ha ott felső autó is tartózkodik. Valerija úgy parkolja le az autókat, hogy minden parkolóhely

- · vagy üres,
- · vagy pontosan egy autót tartalmaz, ami alsó autó,
- vagy tele van, azaz alsó és felső autót is tartalmaz.

Valerija szeretné átrendezni az autókat úgy, hogy minden azonos színű gépkocsipár ugyanazon a parkolóhelyen álljon. Nem számít, hogy melyik parkolóhelyen melyik színű pár fog állni, vagy hogy a két azonos színű autó közül melyik lesz a felső és melyik az alsó autó. Az átrendezést *átparkolások* sorozatával szeretné megvalósítani. Minden átparkolás során kiválaszt egy autót, ami képes elhagyni a jelenlegi parkolóhelyét, és átáll vele egy olyan parkolóhelyre, ami

- vagy üres: ekkor a kiválasztott autót alsó autóként parkolja le;
- vagy egyetlen, a kiválasztott autóval azonos színű autót tartalmaz: ekkor a kiválasztott autót felső autóként parkolja le.

Az első példában szereplő elrendezés, az egyetlen szabályos átparkolással.

Valerija szeretné minimalizálni az átparkolások számát. Feladatod, hogy segíts neki megtalálni a legrövidebb átparkolássorozatot, mely eredményeként minden azonos színű gépkocsipár azonos parkolóhelyre kerül, vagy jelezd, hogy ilyen sorozat nem létezik.

Bemenet

Az első sor két, szóközzel elválasztott egész értéket tartalmaz, N és M értékét.

A következő M sor közül az i-edik két, szóközzel elválasztott egész értéket tartalmaz, az i-edik parkolóhely leírását. Az első szám, b_i $(0 \le b_i \le N)$ a parkolóhelyen álló alsó autó színét adja meg, ha a parkolóhely tartalmaz alsó autót; egyébként b_i értéke 0. A második szám, t_i $(0 \le t_i \le N)$ a parkolóhelyen álló felső autó színét adja meg, ha a parkolóhely tatalmaz felső autót; egyébként t_i értéke 0. Garantált, hogy ha a parkolóhely nem tartalmaz alsó autót, akkor nem tartalmaz felső autót sem, azaz ha $b_i = 0$, akkor $t_i = 0$ is teljesül.

Kimenet

Ha nem létezik átparkolások olyan sorozata, mely teljesíti Valerija célkitűzését, akkor a programodnak egyetlen sorba -1-et kell kiírnia.

Egyébként a kimenet első sorába K értéke kerüljön, ahol K a legrövidebb átparkolássorozat hossza, amivel teljesíthető a célkitűzés.

A következő K sor közül az i-edik sorba az i-edik átparkolás leírását kell kiírni. Pontosabban, az i-edik sorba két egész szám, x_i és y_i kerüljön $(1 \le x_i, y_i \le M, x_i \ne y_i)$, ahol Valerijának az x_i parkolóhelyen álló, azt elhagyni képes autóval kell átparkolnia az y_i parkolóhelyen. Értelemszerűen, az átparkolás végrehajtása előtt az x_i parkolóhelyen legalább egy autónak kell állnia, és az x_i parkolóhelyet elhagyó autónak képesnek kell lennie átparkolni az y_i parkolóhelyre (vagyis y_i vagy üres, vagy egyetlen, az átparkoló autóval azonos színű autót tartalmaz!).

Pontozás

Minden részfeladatban $1 \le N \le M \le 200\,000$ teljesül.

Ha a programod helyesen meghatározza és kiírja K értékét egy részfeladat összes tesztesetére, de az átparkolások leírását hibásan adja meg (vagy egyáltalán nem írja ki), akkor a részfeladatra szerezhető pontok 20%-át kapja meg.

Részfeladat	Pontszám	Korlátok
1	10	$M \le 4$
2	10	$2N \le M$
3	25	$N \leq 1000$ és kezdetben minden parkolóhely vagy üres, vagy tele van.
4	15	Kezdetben minden parkolóhely vagy üres, vagy tele van.
5	25	$N \le 1000$
6	15	Nincsenek további korlátok.

Példák

input	input	input
4 5	4 5	5 7
1 0	0 0	1 0
2 0	2 1	2 1
1 3	3 1	2 3
4 4	3 4	4 3
3 2	2 4	5 4
		5 0
output	output	0 0
3	-1	output
3 5 2	-1	output
	-1	output 6
5 2	-1	
5 2 3 5	-1	6
5 2 3 5	-1	6 2 1
5 2 3 5	-1	6 2 1 3 7
5 2 3 5	-1	6 2 1 3 7 4 7
5 2 3 5	-1	6 2 1 3 7 4 7 2 3
5 2 3 5	-1	6 2 1 3 7 4 7 2 3 5 4

Az első példa magyarázata: A feladatleírásban szereplő ábra a parkolóhelyek kezdeti állapotát mutatja. Látható, hogy ebben a példában az átparkolások egyértelműek, vagyis az első és a második átparkolás egyetlen megengedett módon történhet csak, a harmadik átparkolásra pedig két ekvivalens lehetőség kínálkozik, és mindkettő teljesíti a célkitűzést.