AI1103: Assignment 2

Amaan - EP20BTECH11003

Download all python codes from

https://github.com/amaan28/Assignment2/blob/main/Assignment2/codes/Assignment2.py

and latex-tikz codes from

https://github.com/amaan28/Assignment2/blob/main/Assignment2/Assignment2.tex

GATE 2012 EE Q.47

A fair coin is tossed till head appears for the first time. The probability that the number of required tosses is odd, is,

- 1) $\frac{1}{3}$
- 2) 3)

GATE 2012 EE Q.47 - SOLUTION

Given, a fair coin is tossed till heads turns up.

$$p = \frac{1}{2}, q = \frac{1}{2} \tag{47.1}$$

Let us define a Markov chain $\{X_0, X_1, X_2 ...\}$, where $X_n \in S = \{1, 2, 3, 4\}$ where $n \in \{0, 1, 2, ...\}$,

TABLE 1: Definition of Random Variables

R.V	Definition	
X	tosses done till now is $even(X = 0)/odd(X = 1)$	
Y	coin face right now, heads($Y = 0$)/tails($Y = 1$)	

TABLE 2: Markov states and Notations

Notation	State
S = 1	(X,Y) = (0,1)
S=2	(X,Y) = (1,1)
S = 3	(X,Y) = (0,0)
S=4	(X,Y) = (1,0)

Markov chain diagram

Definition 1. The standard form of a state transition

matrix is,

$$\mathbf{P} = \begin{array}{cc} A & N \\ A & \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{R} & \mathbf{Q} \end{bmatrix} \end{array}$$
(47.2)

where,

TABLE 3: Notations and their meanings

Notation	Meaning
A	Absorbing states (3,4)
N	Non-absorbing states (1,2)
I	Identity matrix
О	Zero matrix
R, Q	Other sub-matrices

Corollary 0.1. The state transition matrix for the above Markov chain is,

$$\mathbf{P} = \begin{bmatrix} 3 & 4 & 1 & 2 \\ 3 & 1 & 0 & 0 & 0 \\ 4 & 0 & 1 & 0 & 0 \\ 0 & 0.5 & 0 & 0.5 \\ 2 & 0.5 & 0 & 0.5 & 0 \end{bmatrix}$$
(47.3)

From (47.3),

$$\mathbf{R} = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}, \mathbf{Q} = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix} \tag{47.4}$$

Definition 2. The limiting matrix for absorbing Markov chain is,

$$\bar{\mathbf{P}} = \begin{bmatrix} \mathbf{I} & \mathbf{O} \\ \mathbf{FR} & \mathbf{O} \end{bmatrix} \tag{47.5}$$

where,

$$\mathbf{F} = (\mathbf{I} - \mathbf{Q})^{-1} \tag{47.6}$$

is called the fundamental matrix of P.

Corollary 0.2. Limiting Matrix of the Markov chain

under observation is,

$$\mathbf{\bar{P}} = \begin{bmatrix} 3 & 4 & 1 & 2 \\ 3 & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ 2 & \frac{2}{3} & \frac{1}{3} & 0 & 0 \end{bmatrix}$$
(47.7)

Definition 3. A element \bar{p}_{ij} of $\bar{\mathbf{P}}$ denotes the absorption probability in state j, starting from state i

Corollary 0.3. The required probability is,

$$P = \bar{p}_{14} \tag{47.8}$$

From (47.7) and (47.8),

$$P = \frac{2}{3} \tag{47.9}$$

Therefore, option 3 is correct.