MEMBRANE-ASSOCIATED IMMUNOGENS OF MYCOBACTERIA

Technical Field of the Invention

The invention relates to membrane-associated polypeptides of mycobacteria and, in particular, the use of such polypeptides and the nucleic acids encoding them for use as vaccines and diagnostic reagents.

Background of the Invention

The mycobacteria are a diverse collection of acid fast, gram-positive bacteria, some of which cause important human and animal diseases. In humans, the two most common mycobacteria-caused diseases are tuberculosis (TB) and leprosy, which result from infection with M. tuberculosis and M. leprae, respectively.

of the principal all displays Tuberculosis epidemic disease. global 15 characteristics of а Currently, tuberculosis afflicts more than 35 million individuals worldwide and results in over 4 million deaths annually. In India, at any given time, almost 8 million people are reported to suffer from this disease and 500,000 deaths recorded. These figures may 20 not cover the totality of those suffering from this disease in this country. Thus, tuberculosis appears to be a problem of major concern in India as also in many other countries of the world.

矣

Tuberculosis is caused by M. tuberculosis, M. bovis, M. africanum and M. microti, the acid-fast, Gram positive, tubercle bacilli of the family Mycobacteriaceae. Some local pathogenic strains of M. tuberculosis have also been isolated from patients in Madras and other cities in India, which differ in some respects from M. tuberculosis H37Rv, which is a virulent strain.

In recent years, certain groups of individuals with AIDS have been found to have a markedly increased incidence of TB as well. It has now been shown that one group of mycobacteria which consists of M. avium, M. intracellulare and M. scrofulaceum, jointly known as MAIS complex, is responsible for disseminated disease in a large number of persons with AIDS (Kiehn et al., J. Clin. Microbiol., 21:168-173 (1985); Wong et al., Amer. J. Med., 78:35-40 (1985)).

Since Koch identified M. tuberculosis as the causative agent of tuberculosis in 1882, many scientific studies and public health efforts have been directed at 20 diagnosis, treatment and control of this disease. However, characteristics of \underline{M} . <u>tuberculosis</u> have hampered research to improve diagnosis and to develop more effective vaccines. In addition, the biochemical composition of the organism has made identification and 25 purification of the cellular constituents difficult, and many of these materials once purified, sensitivity and specificity as diagnostic reagents. As a result, diagnostic and immunoprophylactic measures for mycobacterial diseases have changed little in the The conventional methods for the 30 past half century. diagnosis of M. tuberculosis are troublesome and results are delayed.

Bacillus Calmette-Guerin (BCG), an avirulent strain of M. bovis (Calmette, A., Masson et Cie, Paris (1936)),

is used extensively as a vaccine against tuberculosis. Though numerous studies have found that it has protective efficacy against tuberculosis (Luelmo, F., Am. Rev. Respir. Dis., 125, 70-72 (1982)) BCG has failed to protect against tuberculosis in several trials (WHO, Tech. Rep. Ser., 651:1-15 (1980)) for reasons that are not entirely clear (Fine, P., Tubercle, 65:137-153 (1984); Fine, et al., Lancet, (ii):499-502 (1986)).

The eradication with vaccination, early diagnosis, and 10 efficient therapy is an important objective of the drive to combat mycobacterioses. The lacunae in the present knowledge of the biology of these pathogens their make-up, their natural history, their physiology, 15 biochemistry and immunological reactivities, highlights the need for attempts to unravel their weaknesses, so that more efficient ways to combat this disease can be devised. To develop more effective tools for the diagnosis and prevention of these diseases, 20 important to understand the immune response infection by mycobacterial The pathogens. mycobacterial components that are important eliciting the cellular immune response are not yet well The antibody and T-cell responses defined. 25 infection or inoculation with killed mycobacteria have been studied in humans and in animals. Human patients with TB or leprosy produce serum antibodies directed against mycobacterial antigens. Although antibodies may have some function in the antimycobacterial immune response, the exact function remains to be clarified since no protective role can be ascribed to these antibodies. Protection against mycobacterial diseases involves cell-mediated immunity.

Mycobacteria do not produce any directly toxic 35 substances and consequently their pathogenicity results

from multiple factors involved in their interaction with the infected host. Intracellular parasitism probably depends on host cell trophic factors; it is conceivable their that short supply 5 bacteriostatic and could play a role in the mechanism of mycobacterial dormancy.

It is generally understood that protective immunity in mycobacterial infection is mediated by specific T cells which activate macrophages into non-specific tuberculocidal activity. Evidence suggests that gammatriggers macrophages towards H₂O₂ -mediated bacterial killing, but related or other macrophage activating factor (MAF) molecules may also be involved. The causes responsible for the inadequate bactericidal function at sites of abundant T cell proliferation have not yet been explained. Dissociation between delayedtype hypersensitivity (DTH) and protective immunity led to views that T-cells of a distinct subset or specificity could be responsible for the acquired resistance to mycobacterial infection. Alternatively, 20 interference with protection may result from corollary cellular reactions, namely by suppressor T-cells and macrophages, or from the shifting of T-cells towards helper function for B-cells.

25 Unlike viral and some parasite pathogens which can evade host resistance by antigenic shift, mycobacteria have a resilient cell wall structure and can suppress immune responses by the action their of immunomodulatory cell wall constituents. Whilst the 30 of protective immunization towards other microbial pathogens mainly depends on quantitative parameters of immunity, it appears that mycobacterial immunomodulatory stimuli produce regulatory a dysfunction of the host immune system. This may not be possible to override simply by more resolute

immunization using vaccines of complex composition such as whole mycobacteria (e.g. BCG). Perhaps mycobacteria did not evolve potent "adjuvant" structures to boost the host immunity but rather to subvert host defenses towards ineffective cellular reactions operating to the advantage of the pathogen. Vaccination with an attenuated pathogen such as BCG could amplify further immune responses but with limited protection of the host, the potential scope for immunization with defined antigens is yet to be explored.

The purification and characterization of individual antigenic proteins are essential in understanding the fundamental mechanism of the DTH reaction on the The possible functional role of molecular level. 15 proteins of defined structure in the pathogenesis of mycobacterial diseases as well as for diagnostic purposes remains of great interest. Numerous groups have attempted to define mycobacterial antigens by standard biochemical and immunological techniques, and 20 common as well as species specific antigens have been reported in mycobacteria (Minden, et al., Infect. <u>Immun.</u>, 46:519-525 (1984); Closs, et al., <u>Scand. J.</u> Immunol., 12:249-263 (1980); Chaparas, et al., Am. Rev. Respir. Dis., 122:533 (1980);Daniel, et Microbiol. Rev., 42:84-113 (1978); Stanford, et al., <u>Tubercle</u>, 55:143-152 (1974); Kuwabara, S., <u>J. Biol.</u> Chem., 250:2556-2562 (1975)).

Very little information about the mycobacterial genome is available. Initially, basic studies were conducted to estimate the genome size, G+C content and the degree of DNA homology between the various mycobacterial genomes (Grosskinsky, et al., <u>Infect. Immun.</u>, 57, 5:1535-1541 (1989); Garcia, et al., <u>J. Gen. Microbiol.</u>, 132:2265-2269 (1986); Imaeda, T., <u>Int. J. Sys. Bacteriol.</u>, 35, 2:147-150 (1985); Clark-Curtiss,

15

20

25

30

35

molecules.

et al., J. Bacteriol., 161 3:1093-1102 (1985); Baess, I. et al., B., Acta. Path. Microbiol. Scand., (1978) 86:309-312; Bradley, S. G., Am. Rev. Respir. Dis., 106:122-124 (1972)). Recently, recombinant DNA 5 techniques have been used for the cloning and expression of mycobacterial genes. Genomic DNA fragments of M. tuberculosis, M. leprae and some other mycobacterial species were used for the construction of lambda gtll phage (Young, et al., Proc. Natl. Acad. Sci., U.S.A., 82:2583-2587 (1985); Young, et al., Nature (London), 316:450-452 (1985)) or other vectorbased recombinant gene libraries. These libraries were screened with murine monoclonal antibodies (Engers, et al., <u>Infect. Immun.</u>, 48:603-605 (1985); Engers, et al., Infect. Immun., 51:718-720 (1986)) as polyclonal antisera and some immunodominant antigens were identified. The principal antigen among these being five 12, 14, 19, 65 & 71 kDa of M. tuberculosis (Young et al., Proc. Natl. Acad. Sci., U.S.A., 82:2583-2587 (1985);Shinnick et al., Infect. Immun., 55(7):1718-1721 (1987); Husson and Young, Proc. Natl. Sc. Acad., 84:1679-1683 (1987); and five 12, 18, 23, 36 & 65 kDa antigens of M. leprae (Young, et al., Nature (London), 316:450-452 (1985)). A few homologues of some of these antigens were also identified in some other mycobacterial species (e.g., BCG) (Yamaquchi et al., FEB 06511, 240:115-117 (1988); Yamaguchi et al., Infect. Immun., 57:283-288 (1989); Matsuo, et al., J. Bacteriol., 170, 9:3847- 3854 (1988); Radford, et al., Infect. Immun., 56, 4:921-925 (1988); Lu, et al., Infect. Immun., 55, 10:2378-2382 (1987); Minden, et al., Infect. Immun., 53, 3:560-564 (1986); Harboe, et al., Infect. Immun., 52, 1:293-302 (1986); Thole, et al., <u>Infect. Immun.</u>, 50, 3:800-806 (1985)).

antigens, however, are either intracellular or secreted

Although \underline{M} . bovis BCG has been widely used as a vaccine against tuberculosis, the determination membrane-associated polypeptides of mycobacterium that are capable of inducing a protective immune response is desirable. The use of such a membraneassociated polypeptide or the DNA encoding it provides for the generation of recombinant vaccines, e.g., mycobacterial membrane-associated immunogens expressed in, for example, a virus or bacterium such as vaccinia virus, Salmonella, etc. used as a live carrier, or the display of non-mycobacterial immunogens on the surface of a cultivable mycobacterial strain which can be used as a live recombinant vaccine.

Accordingly, it is an object herein to provide methods for identifying and isolating nucleic acids encoding a membrane-associated polypeptide of mycobacteria.

Further, it is an object herein to provide membraneassociated polypeptides of mycobacteria and the nucleic acids encoding it.

20 Still further, it is an object herein to provide vaccines utilizing all or part of the membrane-associated polypeptide of a mycobacterium or the DNA encoding such membrane-associated polypeptide.

Still further, it is an object to provide reagents
comprising said membrane-associated polypeptide with a
mycobacterium or DNA encoding it useful in diagnostic
assays for mycobacterial infection.

Still further, it is an object to provide a promoter sequence comprising the promoter of said membrane associated polypeptide, which can direct gene expression in mycobacteria as well as in other microorganisms such as <u>E</u>. <u>coli</u>.

Summary of the Invention

In accordance with the foregoing objects, the invention includes compositions comprising nucleic acid encoding all or part of a membrane-associated polypeptide of a mycobacterium and the membrane-associated polypeptide encoded by said DNA. The membrane-associated polypeptide is characterized by the ability to detect an immune response to pathogenic mycobacteria or the mycobacteria from which the membrane associated polypeptide or part thereof is derived. mycobacteria include M. bovis, M. tuberculosis, M. leprae, M. africanum and M. microti, M. avium, M. intracellular and M. scrofulaceum and M. bovis BCG.

A particular mycobacterial membrane-associated polypeptide is a 79 kD ion-motive ATPase. Extracellular, intra-cellular and transmembrane domains are identified in this mycobacterial membrane-associated polypeptide based upon its DNA and deduced amino acid sequence.

The invention also includes vaccines utilizing all or 20 membrane-associated mycobacterial polypeptide or an expressible form of a nucleic acid encoding it. The invention also includes mycrobacterial promoter sequences capable of directing gene expression in mycobacteria as well as in other microorganisms such as E. coli. Such promoters are from mycobacterial genes encoding membrane-associated ATPases. A preferred promoter is that of the gene encoding the M. bovis BCG 79 kD membrane-associated polypeptide. This promoter sequence is especially useful to express genes of interest in mycobacteria.

Brief Description of the Drawings

Figure 1 illustrates the results of immunoscreening of recombinant colonies carrying M. bovis BCG DNA (panel A) and M. tuberculosis H37Rv DNA (panel B), using sera from TB patients in which the presence of M. bovis BCG antigens and M. tuberculosis H37Rv antigens capable of reacting with the antisera is indicated by a qualitative signal.

Figure 2 shows the comparison of restriction site maps 10 of recombinant clones carrying BCG DNA identified using the immunoscreening assay described herein (panel B) with the restriction site maps of five immunodominant antigens of M. tuberculosis and M. bovis BCG genomic DNAs, respectively, (Husson and Young, Proc. Natl. Acad. Sci., U.S.A., 84:1679-1683 (1987); Shinnick et 15 al., <u>Infect. Immun.</u>, 55:1718-1721 (1987) (panel A)). Restriction maps in each panel have been drawn to the same scale (indicated at the top), and restriction sites are indicated above the restriction maps. 20 dotted line in panel A represents the non-mycobacterial DNA. B, BamHI, E, EcoRI, G, Restriction enzymes: BglII, K, KpnI, P, PvuI, X, XhoI, H, HincII, U, PvuII, Ps, PstI, Hi, HindIII. In panel A, A is SalI and S is In panel B, S is SalI.

25 Figure 3 illustrates the results of Western blot analysis of the sonicated supernate of recombinant clone pMBB51A which carries a BCG DNA insert identified following immunoscreening of the recombinant colonies. The top panel shows reactivity of MBB51A (lane 2) and

30 <u>E. coli</u> (lane 1) with sera from TB patients. The bottom panel (part A) shows reactivity of MBB51A (lanes 1 and 2) and <u>E. coli</u> (lane 3) with anti-H37Rv sera raised in rabbits. Part B shows reactivity of MBB51A (lanes 1 and 2) and <u>E. coli</u> (lane 3) with the second

antibody alone. Arrows indicate the position of the 90 BCG protein expressed by the immunoreactive recombinant MBB51A, which was absent in the negative control.

- 5 Figure 4 illustrates the nucleotide sequence (Seq. ID No.: 1) of clone pMBB51A 3.25 kb insert DNA containing the M. bovis BCG immunoreactive MBB51A gene encoding an ion-motive ATPase, with a deduced molecular weight of 79 kD. The deduced amino acid sequence (Seq. ID No.: 2) is shown below the nucleotide sequence. 10 elements are underlined. promoter Transcription termination region is indicated inverted arrows. 5' and 3' flanking regions are also shown.
- Figure 5 illustrates a schematic model derived for the 15 79 kD protein encoded by pMBB51A which represents an ion-motive ATPase of BCG. The model considers only the structural and functional features that are prominent ion-motive ATPase the other homologs in 20 transmembrane domains of the protein. Functionally, important amino acid residues are indicated (P), proline at position 400; (D), aspartic acid at position 443; (G), glycine at position 521; and (A), alanine at position 646. Numbers indicate amino acid residues broadly defining the limits of the transmembrane 25 domains.
- Figure 6 illustrates the results of Southern blot hybridization of BamHI digest of genomic DNAs from M. bovis BCG (lane 6), M. tuberculosis H37Rv (lane 5), M. smeqmatis (lane 4) and M. vaccae (lane 3)using pMMB51A DNA insert (lane 8) as probe. Panel A shows ethidium bromide stained gel and panel B shows the results of Southern blot hybridization.

Detailed Description of the Invention

As used herein, a "membrane-associated polypeptide" of a mycobacterium is defined as any Mycobacterial membrane-associated polypeptide which is capable of 5 detecting an immune response against the wild-type mycobacterium containing the membrane-associated However, based upon the observed crosspolypeptide. reactivity of the 79 kD membrane-associated polypeptide of an M. bovis BCG with pooled anti-sera from patients 10 afflicted with tuberculosis and the cross-hybridization as between the DNA encoding the 79 kD membraneassociated polypeptide and the DNA of M. tuberculosis the membrane-associated polypeptide of the invention is not limited to that identified herein from 15 M. bovis BCG. Rather, it encompasses not only homologs to the 79 kD ion-motive ATPase but also any and all membrane-associated polypeptides of a mycobacterium that can be used to detect an immune response by the same or a different mycobacteria in which the membraneassociated polypeptide is normally found.

As used herein, "nucleic acid" includes DNA or RNA as well as modified nucleic acid wherein a detectable label has been incorporated or wherein various modifications have been made to enhance stability, e.g., incorporation of phosphorothicate linkages in the phosphoribose backbone, etc. Such nucleic acid also includes sequences encoding the anti-sense sequence of the DNA encoding the membrane-associated polypeptide such that the now well-known anti-sense technology can be used to modulate expression of such membraneassociated polypeptides.

In some aspects of the invention, the nucleic acid sequence encoding all or part of a membrane-associated polypeptide of the mycobacterium is used as a vaccine.

the nucleic acid is generally When so-used "expressible nucleic acid" that contains all necessary to expression regulation sequences transcription and translation of the nucleic acid in a designated host system. In some vaccine embodiments, the DNA encodes a chimeric polypeptide containing at least one transmembrane domain of the membraneassociated polypeptide and an "immunogenic polypeptide". The transmembrane domain is used to 10 display the immunogenic polypeptide on the surface of a particular host organism such as an attenuated live vaccine. When the membrane-associated polypeptide includes more than one transmembrane region, one or more of the transmembrane regions can be used with an 15 immunogenic polypeptide. Thus, for example, the 79 kD ion-motive ATPase as shown in Figure 5 has at least three extracellular domains into which an immunogenic polypeptide can be engineered by well-known methods involving recombinant DNA technology. Although it is preferred that more than one transmembrane region be 20 used to display an immunogenic polypeptide, one skilled in the art can readily vary the length of such a membrane-associated polypeptide to maximize immunogenic response or to minimize the amount 25 membrane-associated polypeptide used in such applications.

As used herein, "immunogenic polypeptide" comprises all or part of any polypeptide which can potentially be utilized in a vaccine or diagnostic application. Thus, the immunogenic polypeptide can comprise heterologous immunogens, i.e., immunogens from non-mycobacterial sources, e.g., Salmonella or Shigella or from different mycobacteria from which the membrane-associated polypeptide is derived, e.g., immunogens from 35 Mycobacterium tuberculosis fused to а membraneassociated polypeptide from M. bovis BCG. However, in

30

some instances homologous immunogens can be used. For example, each of the extracellular domains as set forth in Figure 5 herein can be combined and displayed by combination with one or more of the transmembrane domains from the membrane-associated polypeptide normally containing them. Alternatively, the intercellular domains can be displayed extracellularly using appropriate transmembrane regions from the same molecule.

In an alternate vaccine embodiment, all or part of the membrane-associated polypeptide of membrane, rather than the DNA encoding, is used as part of a vaccine. Such proteinaceous vaccines are formulated with well-known adjuvants and administered following well-established protocols known to those skilled in the art.

In still other embodiments, the nucleic acid encoding the membrane-associated polypeptide of the invention can be used as a diagnostic for detecting infection based upon hybridization with wild-type genes contained by the infectious mycobacterium. Such detection can comprise direct hybridization of DNA extracted from an appropriate diagnostic sample or PCR amplification using the nucleotide sequence of the nucleic acid encoding the membrane-associated polypeptide of the invention to prime amplification. If PCR amplification is primed in a conserved region the presence of mycobacteria in a diagnostic sample can be determined. If primed in, a non-conserved region which is species specific the diagnostic assay determined the specific mycobacterium causing an infection.

In addition, the membrane-associated polypeptide of the invention can also be used to detect the presence of antibodies in the sera of patients potentially infected

with mycobacteria. Such detection systems include radioimmunoassays and various modifications thereof which are well-know to those skilled in the art. In addition, the membrane-associated polypeptide of the invention can be used to detect the presence of a cell-mediated immune response in a biological sample. Such assay systems are also well-known to those skilled in the art and generally involve the clonal expansion of a sub-population of T cells responding to stimuli from the membrane-associated polypeptide. When so-used, the humoral and/or cell-mediated response of a patient can be determined and monitored over the course of the disease.

Recombinant clones encoding immunogenic protein antigens of M. bovis BCG have been isolated from a 15 genomic library of M. bovis BCG DNA. In particular, DNA fragments encoding four protein antigens of M. bovis BCG have been isolated by probing a pBR322 library of M. bovis BCG DNA with sera from TB patients, absorbed on E. coli. Restriction site maps of these 20 four recombinant clones are different from those of the five immunodominant antigens of mycobacteria (Young, et al., Proc. Natl. Acad. Sci., U.S.A., 82:2583-2587 (1987); Husson and Young, Proc. Natl. Acad. Sci., U.S.A., 84:1679-1683 (1987); Shinnick et al., <u>Infect.</u> 25 <u>Immun.</u>, 55:1718-1721 (1987)), thereby indicating that these cloned protein antigens are novel. One of the recombinant DNA clones encoded an immunoreactive protein with apparent molecular weight of 90 kD as determined by Western blot analysis. The complete 30 nucleotide sequence of the insert DNA of this clone was determined. This clone was found to carry a mycobacterial promoter and a monocistronic ORF encoding a protein of 761 amino acids with a deduced molecular weight of 79 kD. This 79 kD protein had extensive 35 homology with ion-motive ATPases of S. faecalis (Solioz

15

et al., <u>J. Biol. chem</u>, 262:7358-7362 (1987)), <u>E</u>. <u>coli</u> (Hesse et al., Proc. Natl. Acad. Sci., U.S.A., 81:4746-4750 (1984)) and several other organisms, and thus, represents an ion-motive ATPase or a putative K+ATPase Using computer algorithms, this ion-motive ATPase was determined to be a membrane protein and has homologue in M. tuberculosis H37Rv, which pathogenic in humans, but not in M. vaccae and M. smegmatis, which are non-pathogenic. As a result, novel BCG immunogens can be available which can be useful in the prevention, diagnosis and treatment of tuberculosis and other mycobacterial infections. can be used, for example, in the development of highly specific serological tests for screening patients for individuals producing antibodies to M. tuberculosis, or those infected with M. tuberculosis, in the development of vaccines against the disease, and in the assessment the efficacy of the treatment of infected individuals.

- 20 Further, based on the nucleotide sequence of the pMBB51A insert DNA, appropriate oligonucleotide primers can be used for PCR amplification using as template M. bovis BCG or M. tuberculosis H37Rv DNA. Such a PCR amplification scheme can be thus useful for the 25 detection of mycobacterial DNA in a given sample. Further, by a judicious choice of the primer design, such an amplification procedure can be adapted for taxonomic classification of mycobacterial DNAs. example, using primers to flank a heavily conserved 30 region such as the ATP-binding site, PCR amplification is common to all mycobacterial species, whereas using primers from non-conserved areas, amplification can be made species specific.

Example I

Isolation and Characterization of Genes Encoding Immogenic Protein Antigens of <u>Mycobacterium bovis</u> BCG and Mycobacterium tuberculosis H37R

A. Construction of Recombinant DNA Libraries of <u>M. bovis</u> BCG DNA and <u>Mycobacterium Tuberculosis H37Rv</u>

A recombinant DNA library of M. bovis BCG genomic DNA 10 was constructed using pBR322 a high copy number plasmid vector (Bolivar, et al., Gene, 2:95-113 (1977)) with antibiotic markers (ampicillin and tetracycline) and several unique cloning sites. M. bovis BCG cells were harvested from a culture in late logarithmic phase of 15 growth and high molecular weight DNA was isolated by the procedure of (Eisenach, et al., J. Mol. Biol., 179:125-142 (1986)) with slight modifications. BCG DNA was digested to completion with BamH I and shotgun cloning of these fragments into the BamH I site of The genomic library was pBR322 was performed. 20 transformed into E. coli strain DHI and recombinants were scored on the basis of ampicillin resistance and The aim of this approach tetracycline sensitivity. was to generate restriction fragments of a broad size range so as not to restrict the library to DNA This cloning fragments of any particular size range. strategy also ensured to a large extent that any recombinants selected for expression of mycobacterial antigens should be likely to drive expression from a mycobacterial promoter rather than the Tet promoter of pBR322.

The BCG library constructed in this manner contained 2051 clones of BCG origin. In an analogous manner, a genomic library of <u>Mycobacterium tuberculosis</u> H37Rv DNA was constructed and 1100 clones obtained.

20

25

30

The BCG DNA inserts ranged in size from 0.9 to 9.5 kb. The average size of the mycobacteria DNA fragments inserted in pBR322 was estimated to be about 4 kb. Given the genome size of BCG to be 4.5 x 10³kb (Bradley, S. G., <u>J. Bacteriol.</u>, 113:645-651 (1973); Imaeda, et al., <u>Int. J. Syst. Bacteriol.</u>, 32, 456-458 (1982)), about 1000 clones of this average insert size would represent comprehensively the entire genome of the microorganism.

10 B. Isolation of Recombinant DNA Clones Encoding BCG Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv Protein Antigens

identify recombinants order to mycobacterial antigens, a colony immunoscreening assay (CIA) to screen recombinant colonies with appropriate antisera, was established. Sera obtained from 20 diagnosed with active pulmonary patients newly tuberculosis were pooled for use in immunoscreening. None of the patients had received treatment for tuberculosis prior to this study and their sputa were positive for acid fast bacteria in all cases. sera were absorbed on a E. coli sonicate overnight at 4°C, to eliminate antibodies cross-reactive to E. coli antigens, thereby improving signal to noise ratio during the immunoscreening.

Individual recombinant colonies were grown overnight on nitrocellulose membranes and immunoscreening was carried out as described with slight modifications. The colonies were lysed in chloroform vapor to release the cloned mycobacterial antigens, immobilized on the nitrocellulose paper. The immobilized antigens were reacted with TB sera and binding of the antibody was revealed by standard procedures using a horseradish peroxidase-protein A detection system. The signals

obtained with the recombinant clones were compared with that obtained in case of E. coli colonies harbouring pBR322 vector alone, which served as the negative control, to assess the signal to noise ratio. Further, 5 to ascertain whether the immunoreactivity of the recombinant clones was due to anti-mycobacterial antibodies or due to a reaction with normal serum, components, another CIA of the selected recombinants was performed using TB sera and normal human sera NHS which had been absorbed on E. coli in a manner analogous to that described earlier for TB sera. Only those clones reacting selectively with TB sera and not were considered to be unambiguously NHS, suggestive of the presence of mycobacterial antigens. The use of this immunoscreening approach to identify recombinant colonies carrying mycobacterial DNA inserts capable of expressing mycobacterial antigens described below:

Figure 1 shows the result of immunoscreening of 20 recombinant colonies carrying M. bovis BCG DNA (panel A) or M. tuberculosis H37 Rv DNA (panel B) using sera from TB patients. The colonies were nitrocellulose paper overnight, lysed to release the cloned mycobacterial antigen and allowed to react with the antibodies. The presence of mycobacterial antigen is indicated by a qualitative signal in the recombinant clones which is absent in the negative control comprising colonies harbouring pBR322 vector alone. similar assay was repeated with normal human serum to 30 ascertain the specificity of the cloned mycobacterial 51 recombinant colonies carrying M. bovis antigens. BCG DNA inserts and 45 recombinant colonies carrying M. tuberculosis H37Rv DNA inserts were screened by the above procedure; 14 clones of BCG origin (panel A) and 2 clones of H37Rv origin (panel B) exhibited distinct 35 strong signals indicating the immunoreactivity of these

clones (Fig. 1). All these clones were also tested for immunoreactivity with NHS. However, with the exception of 3 clones which showed a slight reactivity to NHS, none of the clones reacted with NHS, thereby indicating 5 that these expressed mycobacterial antigens reacted Thus, this procedure selectively with TB sera. forthright identification resulted in the recombinant clones encoding mycobacterial antigens. applicable can be generally This strategy mycobacterial gene banks prepared in plasmid or cosmid vectors to identify genes which are expressed in \mathbf{E} . coli at least to the limit detectable by the immunoassay.

C. Restriction Mapping of Immunoreactive Mycobacterium bovis BCG DNA Recombinants

The insert DNAs of four of the immunoreactive BCG recombinant DNA clones isolated using the TB sera were mapped with restriction endonucleases. Figure 2, panel B, shows the genomic DNA restriction site maps deduced for the cloned BCG DNA in four recombinants, in which, 20 A represents Sal I, B, BamH I, E, EcoR I, G, Bgl II, K, Kpn I, P, Pvu I, S, Sac I, X, Xho I. These restriction site maps were then compared with those constructed previously for the five immunodominant antigens of M. tuberculosis/M. bovis BCG (Young, et al., Proc. Natl. 25 Acad. Sci., U.S.A., 82:2583-2587 (1985); Husson, et al., Proc. Natl. Acad. Sci., 84:1679-1683 55, 7:1718-1721 Shinnick, et al., <u>Infect. Immun.</u>, Since the restriction (1987)) (Figure 2, panel A). site maps shown in panels A and B have been drawn to 30 the same scale, the differences between the two are apparent. There are no regions of similarity between immunoreactive BCG the restriction site maps of those the previously recombinant clones and of antigens of Μ. 35 characterized immunodominant

tuberculosis/M. bovis BCG. Therefore, one can conclude that the cloned BCG DNA inserts in the four recombinants are novel.

Example II

Isolation and Characterization of a Gene Encoding a BCG Ion-motive ATPase

A. Identification of a Novel BCG Antigen

One of the four immunoreactive BCG clones, pMBB51A, revealed the presence of a protein of Mr 90 kD, on Western blot analysis using TB sera as well as anti-H37Rv polyclonal antiserum raised in rabbits (Figure 3). Similar Western blot analysis of pMBB51A with a pool of a few anti-mycobacterial monoclonal antibodies (TB 23, TB 71, TB 72, TB 68, TB 78; Engers et al., Infec. Immun., 48:603-605 (1985)) or with normal human sera did not reveal this immunoreactive protein of 90 kD. This confirms that pMBB51A encodes a BCG antigen which is different from those identified previously in BCG, thereby making it a novel antigen.

20 B. Determination of the Nucleotide Sequence of pMBB51A

In order to further characterize this novel BCG antigen, pMBB51A DNA insert was subjected to nucleotide sequencing. The BamH I-BamH I insert carried in pMBB51A was mapped for additional restriction enzyme cleavage sites. It was determined that there were at a minimum a single Pst I site and 3 Sal I sites in this sequence. Overlapping fragments derived from single and double digests of Sal I, BamH I and Sal I, BamH I and Pst I, and Pst I and Sal I, were subcloned into M13mp18 and M13mp19 vectors, in preparation for DNA sequence analysis. DNA sequencing was then carried out

THE SET CONTROL OF THE SET OF THE

using commercially available kits such as the Sequenase system and the **T7** system from Pharmacia. Oligonu ceotides derived from the determined sequence were synthesized and used as primers to complete the sequence of the larger inserts. Several areas of compression were encountered during the sequencing and these were resolved by using dITP in the sequencing reactions, and by changing the reaction conditions. The complete nucleotide sequence of the pMBB51A insert 10 DNA was determined by sequencing both the strands using dGTP as well as dITP. The DNA sequence of the pMBB51A insert was determined to be 3.25 kb long with a GC content of 67.1% and is shown in Figure 4.

The determination of the DNA sequence of the 3.25 kb insert of clone pMBB51A (Figure 4) permitted the elucidation of the amino acid sequence of the 90 kD BCG antigen. In Figure 4, nucleotides are numbered from the left end of the pMBB51A insert DNA.

A search of pMBB51A insert DNA sequence for possible
ORFs in all three reading frames revealed the longest
ORF of 2286 bp encoding a polypeptide of 761 amino
acids on one of the strands. The other strand was
found to have a smaller URF of 1047 bp capable of
encoding a polypeptide of 349 amino acids. The longest
ORF encoding a 761 amino acid long protein corresponded
to a deduced molecular weight of 79 kD which came
closest to the immunoreactive BCG protein with apparent
molecular weight of 90 kD, seen on the Western blot.
The deduced amino acid sequence for this protein is
given below the nucleotide sequence in Figure 4.

The location of this ORF on the pMBB51A insert DNA was such that there were long stretches of flanking DNA sequences, devoid of any meaningful ORFs, present on either side. This precluded the expression of this ORF

20

25

30

35

from the pBR322 Tet gene promoter and instead suggested that this ORF was being expressed from its own promoter in pMBB51A. This also suggested that <u>E</u>. <u>coli</u> may correctly utilize the <u>M</u>. <u>bovis</u> BCG transcription and translation start and stop sites in this gene.

Immediately upstream of the ORF, regulatory sequences closely matching the -35, -10 and Shine-Dalgarno' sequences of E. coli, (Rosenberg, et al., Annul. Rev. Genet., 13:319-353 (1979)) were identified. spacing between these three regulatory motifs was also very well conserved. Although the other mycobacterial promoters sequenced (Dale, et al., Molecular Biology of the Mycobacteria, chap. 8, 173-198 (1990)) show some differences from the E. coli consensus sequences in all the three regions -35, -10 and SD, the regulatory elements of pMBB51A DNA showed a maximum degree of sequence identity with E. coli in the -35 and SD sequence elements with a single mismatch in each element, and about 50% sequence identity in the Pribnow box. All the above features clearly indicated that region for the this region is the promoter mycobacterial gene contained in pMBB51A. The extent of similarity between this BCG promoter sequence and a typical E. coli promoter is remarkable and explains the functional activity of this promoter, unlike many other mycobacterial promoters, in E. coli. The translation initiation codon in this ORF was ATG at position 508 while a single translation termination codon TGA was identified at position 2790. Potential transcription termination structures capable of forming stem and loop conformations were identified in the region 3' to this The pMBB51A ORF thus represented a monocistronic gene rather than an operon. The promoter region of MBB51A gene is capable of directing gene expression in E. coli as well as in mycobacteria. This promoter sequence is useful for directing expression

mycobacterial genes in \underline{E} . $\underline{\operatorname{coli}}$. Further, this promoter sequence can also be used to express homologous and/or heterologous genes in a mycobacterium, thus providing a key element for the development of gene expression systems in mycobacteria.

In order to derive information about the possible biological function of the MBB51A protein, the amino acid sequence of this protein was used to search for homology against available sequences in the PIR Protein 10 Database Release 20 (Table I) and a Genebank Nucleic Acid Database (Table II) using the Fast A suite of programmes written by (Lipman and Pearson, Proc. Natl. Acad. Sci., USA, 85:2 (1988)). The MBB5lA protein sequence exhibited homology to a family of ion-motive ATPases from different organisms, ranging from bacteria 15 The 13 best scores from a search with to mammals. ktuple 2 are shown in the upper panel of Table I and 10 best scores from a search with ktuple 1 are shown in the lower panel. In each case, MBB51A protein exhibited maximum homology (75.9% homology in a 593 20 amino acid overlap with 31.9% identity to a transporting ATPase of S. faecalis (Solioz et al., 1987). The next best homology was observed with the Bchain of K+ transporting ATPase of E. coli (Hesse, et 25 al., Proc. Natl. Acad. Sci., U.S.A., 81:4746-4750 (1984)) (68.8% homology in a 397 amino acid overlap with 24.2% identity). A lesser extent of homology was also seen with H+, Ca++ and Na+-ATPases from different The results of homology search thus organisms. 30 indicated that MBB51A protein is an ion-motive ATPase of M. bovis BCG and is closely related to the other bacterial ion-motive ATPases. This is the first report of the cloning and identification of such an ATPase in mycobacteria. The BCG ion-motive ATPase showed 35 homologies with other ion-motive ATPases with overlapping regions ranging in size from 593 amino

acids in case of S. faecalis to 82 amino acids as in case of L. donovani, (Meade, et al., Mol. Cell Biol., 7, 3937-3946 (1987)), though most of the regions of sequence identity or conservation were localized in the 5 C-terminal half of the MBB51A protein. Further, a region of 30 amino acids in the C-terminal half of MBB51A protein was found to be shared with most of these ATPases, thereby suggesting the functional importance of this region. Detailed alignment of MBB51A protein with the K+ ATPases of S. faecalis and E. coli also indicated that several residues were conserved between the three ATPases, including the ones that are invariant in all ATPases from bacteria to man.

TABLE I

15 RESULTS OF HOMOLOGY SEARCH OF MBB51A AMINO ACID SEQUENCE AGAINST PIR PROTEIN DATABASE

	ktuple :	: 2		
	LOCUS	SHORT DEFINITION	initn	opt
	>A29576	Potassium - transporting ATPase Streptococcus	547	792
20	>PWECBK	Potassium - transporting ATPase, β chain - E.coli	314	270
	>A25939	Proton - transporting ATPase - Neurospora	168	186
	>A25823	Proton - transporting ATPase - Yeast	166	184
	>PWRBFC	Calcium - transporting ATPase, fast twitch skele	152	158
	>PWRBSC	Calcium - transporting ATPase, slow twitch skele	135	157
25	>A25344	Potassium - transporting ATPase - Rat	78	155
	>RDEBHA	Mercuric reductase -Shigella flexneri plasmid	99	142
	>RDPSHA	Mercuric reductase (transposon Tn501)	74	124
	>RGPSHA	Mercuric resistance operon regulatory p	79	109
	>A24639	Sodium/potassium-transporting ATPase, alpha	92	. 82
30	>A24414	Sodium/potassium-transporting ATPase, alpha	92	82
		Sodium/potassium-transporting ATPase, beta	83 '	82

The PIR protein data base (2378611 residues in 9124 sequences) was scanned with the FASTA program. The mean of the original initial score was 27.2 with a standard deviation of 6.9. Initial scores (initn) higher than 75.6 are 6 standard deviations above the average, a level of significance that usually indicates biological relatedness. Optimization '(opt) generally will improve the initial score of related proteins by introducing gaps in the

ĨΨ

sequence. Unrelated sequences usually do not have their scores improved by optimization.

ktuple : 1

	>A29576	potassium-transporting ATPase - Streptococcus	744	792
5	>PWECBK	potassium-transporting ATPase, \$ chain - Esche	386	270
	>A25939	Proton -transporting ATPase - Neurospora crassa	310	186
	>A25823	proton-transporting ATPase -Yeast (Saccharomy)	317	184
10	>B24639	Sodium/potassium-transporting ATPase, alpha (+	158	163
	>A24639	Sodium/potassium-transporting ATPase, alpha ch	175	160
	>C24639	Sodium/potassium-transporting ATPase, alpha (II	192	159
	>PWRBFC	Calcium-transporting ATPase, fast twitch skele	240	158
	>PWSHNA	Sodium/potassium-transporting ATPase, alpha skele	214	158
	>A24414	Sodium/potassium-transporting ATPase, alpha chain	214	158

TABLE II

RESULTS OF HOMOLOGY SEARCH OF MBB51A AMINO ACID SEQUENCE AGAINST GENBANK NUCLEIC ACID SEQUENCE DATABASE

	ktuple : 2			
	Locus	SHORT DEFINITION	initn	opt
	>STRATPK	S.faecalis K+ ATPase, complete cds.	537	800
20	>ECOKDPABC	E.coli kdpABC operon coding for Kdp-ATpase	314	270
	>YSPPMA1A	S.pombe H+ ATPase, complete cds.	135	188
	>NEUATPASE	N.crassa plasma membrane ATPase, complete	133	186
	>NEUATPPM	Neurospora crassa plasma membrane H+ ATPase	131	186
	>YSCPMA1	Yeast PMA1 for plasma membrane ATPase	166	184
25	>M17889	Figure 2. N of L.donovani ATPase and	166	170
	>M12898	Rabbit fast twitch skeletal muscle Ca++ ATPas	140	158
	>RABATPAC	Rabbit Ca + Mg dependent Ca++ ATPase mRNA, co	142	157
	>NR1MER	Plasmid NR1 mercury resistance (mer) operon.	100	143
,	ktuple : 1			
30	>STRATPK	S.faecalis K+ ATPase gene, complete cds.	744	800
	>SYNCATPSB	Cyanobacterium Synechococcus 6301 DNA for AT	379	422
	>ECOKDPABC	E.coli kdpABC operon coding for Kdp-ATPase p	379	270
	>YSPPMA1A	S.pombe H+ ATPase gene, complete cds.	275	188
	>NEUATPASE	N.crassa plasma membrane ATPase gene, comple	311	186
35	>NEUATPPM	Neurospora crassa plasma membrane H+ ATPase	302	186
	>YSCPMA1	Yeast PMA1 gene for plasma membrane ATPase	317	184
	>J04004	Leishmania donovani, cation transporting ATP	322	170
	>M17889	Figure 2. Nucleotide seguence of L.donovani	306	170
	>RATATPA2	Rat Na+,K+ ATPase alpha (+) isoform catalytic	158	163

40 * * *

The KdpB protein of \underline{E} . \underline{coli} and possibly the \underline{S} . $\underline{faecalis}$ K+ ATPase are members of E1E2-ATPases which are known to form an aspartyl phosphate intermediate, with cyclic transformation of the enzyme between

15

20

phosphorylated and dephosphorylated species. By analogy to other ATPases, the phosphorylated Asp residue (D) (Furst, et al., J. Biol. Chem., 260:50-52 (1985)) was identified at position 443 in the MBB51A ATPase. residue is the first of a pentapeptide sequence DKTGT that has been conserved in ATPases from bacteria to man, and must form an essential element of the catalytic site. Similarly, proline (P) at position 400 in MBB51A ATPase was found to be an invariant amino acid in other ATPases and is predicted to be located in a membrane spanning domain. Such membrane buried proline residues have been hypothesized to be required for the reversible conformational changes necessary for the regulation of a transport channel (Brandl, et al., Proc. Natl. Acad. Sci., U.S.A., 83:917-921 (1986)). In other sequence motifs believed to addition, functionally important in other ion-motive ATPases were also found to be conserved in the MBB51A ATPase. These include a Gly (G) (Farley and Faller, J. Biol. Chem., 260:3899-3901 (1985)) at position 521 and Ala (A) (Ohta, et al., Proc. Natl. Acad. Sci., U.S.A., 83:2071-2075 (1986)) at position 646, and are shown in Figure 5.

Since the MBB51A ATPase was homologous to membrane associated ATPases, characterization of the membrane associated helices in MBB51A protein was performed by computer algorithms. Using a hydropathy profile (Rao, et al., Biochem. Biophys. Acta., 869:197-214 (1986)), seven transmembrane domains in the MBB51A protein were identified and are shown in Table III and Figure 5. Nearly the same transmembrane domains were also identified using the hydrophobic moment plot (Eisenberg et al., J. Mol. Biol., 179:125-142 (1984)) and are also shown in Table III and Figure 5. The average size of a transmembrane domain is around 21 residues, because 21 residues coil into an α-helix approximately the

thickness of the apolar position of a lipid bilayer (32 This size of a transmembrane domain is, however, flexible within the range of a few amino acids, as determined by the functional properties of a given 5 membrane-associated protein. The transmembrane domains identified in MBB51A protein, range in size from 20-37 residues. The first six transmembrane domains span the membrane only once, as indicated by both the hydropathy profile and the hydrophobic moment plot. The seventh transmembrane domain may traverse the membrane twice. These features along with the membrane buried proline (P) at position 400, are in accordance with the channel transport functions of ion-motive ATPases, involving a in the conformation reversible change Such transmembrane domains further define 15 proteins. the intracellular and extracellular domains of this molecule. See Figure 5.

		Table III	
20	Transmembrane Domain in Fig. 5	Eisenberg Method	Rao & Argos Method
	. 1	102 - 122	98 - 125
	2	129 - 149	127 - 147
	3	164 - 184	164 - 185
	4	199 - 219	198 - 220
25	5	361 - 381	360 - 382
	6	387 - 407	387 - 419

The hydropathy profile of MBB51A protein was nearly superimposable over that of S. faecalis K+ ATPase, even though the MBB51A ATPase has at the N-terminus, 154 extra amino acids, which were absent in S. faecalis. This clearly puts in evidence the strong evolutionary conservation of the broad domain structure between these two proteins, making it more likely for the two

703 - 723

7

10

695 - 732

20

25

30

proteins to have a similar three dimensional structural organization.

Based on the hydropathy profile and secondary structure predictions, a schematic model of the MBB51A ATPase is This model comprises at least presented in Figure 5. seven transmembrane domains which span the membrane once are indicated along with the respective amino acid positions in Figure 5. This model further defines extracellular and intracellular domains of the MBB51A protein. Many of the residues which have been shown to be functionally important in other ion-motive ATPases and are also conserved in the MBB51A protein, are also Of these, proline (P) at position 400 is membrane-buried whereas as aspartic acid(D) at 443, glycine (G) at 521 and alanine (A) at 646, face the cytoplasm.

In order to determine whether the gene encoding MBB51A ion-motive ATPase is present in other mycobacterial strains related or unrelated to BCG, like the virulent strain M. tuberculosis H37Rv and other non-tuberculous, non-pathogenic mycobacteria like M. vaccae and M. smegmatis, Southern blot hybridization with genomic DNA from the above species was performed, using as probe BCG insert DNA from pMBB51A. As shown in Figure 6, DNA hybridizable with the pMBB51A insert DNA was also present in M. tuberculosis H37Rv DNA but not in M. smegmatis and M. vaccae. This indicated that the M. tuberculosis H37Rv homologue of the pMBB51A gene has a similar genetic organization as seen in M. bovis BCG DNA, and is present on a 3.25 kb BamH I fragment.

The availability of novel <u>Mycobacterium bovis</u> BCG and/or <u>Mycobacterium tuberculosis</u> H37Rv antigens make it possible to address basic biochemical, immunological, diagnostic and therapeutic questions

15

still unanswered about tuberculosis and Mycobacterium tuberculosis. For example, Mycobacterium tuberculosis specific antigenic determinants can be used to develop simple and specific seroepidemiological tests to screen human populations. Such serological tests are highly specific because of the use of antigenic determinants determined by the approaches described above and known' to be unique to Mycobacterium tuberculosis H37Rv. Such serological tests are useful for early diagnosis of tuberculosis, thus permitting early treatment and limiting transmission of the disease from infected individuals to others.

Resistance to tuberculosis is provided by cell mediated immunity. The antigens identified here can be further used to determine which segments of these antigens are recognized by Mycobacterium tuberculosis specific Tcells. A mixture of peptides recognized by helper Tcells provides a specific skin test antigen for use in assessing the immunological status of patients and 20 their contacts. A mixture of such peptides is also useful in evaluating rapidly the immunological efficacy of candidate vaccines. In addition peptides recognized by Mycobacterium tuberculosis specific T-cells can be components of a vaccine against the disease.

25 Knowledge of the complete nucleotide sequence of pMBB51A DNA insert provides a rich source of sequence information which can be used to design appropriate primers for PCR amplification of mycobacterial genomic DNA fragments. The ion-motive ATPase of BCG has areas 30 of heavily conserved sequences (for, e.g., the ATP binding site) which are expected to be the same for all mycobacterial species and areas of sequence divergence (for, e.g., the N-terminal region) which are different in different mycobacterial species. Based on this knowledge primers can be designed either from the 35

conserved regions or from the diverged regions to identify whether in a given sample the target DNA is mycobacterial versus non-mycobacterial, and in case of mycobacterial DNA, which mycobacterial species the DNA belongs.

useful for the amplification schemes are development of highly sensitive and specific PCR procedures for amplification based diagnostic mycobacteria. The observation that the 3.25kb pMBB51A DNA insert is present in Mycobacterium tuberculosis 10 H37Rv and Mycobacterium bovis BCG and is absent in Mycobacterium avirulent Mycobacterium vaccae and smeqmatis, which have bearing on other aspects of the biological differences between these species, manifest in terms of virulence, growth characteristics and metabolism.

Recombinant vaccines can also be constructed incorporating the DNA encoding all or part of the membrane-associated polypeptides of the invention into an appropriate vaccine vehicle. 20 For example, all or part of the DNA encoding the 79kD Mycobacterium bovis BCG protein or a portion of the protein can be a vaccine vehicle capable into incorporated expressing the said DNA. Such a vaccine vehicle could be a virus for, e.g., vaccinia virus, etc., or a 25 bacterium, e.g., mycobacteria, Salmonella, Vibrio, Bacillus, Yersinia, Bordetella, etc. to produce a vaccine capable of conferring long-lasting immunity on individuals to whom it is administered.

A special feature of the 79kD BCG ion-motive ATPase is that it is a membrane bound antigen. Therefore, it can be used to link foreign DNA sequences encoding antigenic epitopes (B-cell epitopes or T-cell epitopes) of interest, with this gene or a portion of this gene

in a manner which causes the foreign epitope to be used as an immunogen. Such linkages can be engineered into extracellular or intracellular domains of MBB51A or into a combination of both types of protein, Engineering of immunogenic foreign epitopes domains. into MBB51A DNA is accomplished by standard recombinant DNA methods known to those skilled in the art. Some of, these methods involve use of unique restriction sites, in vitro mutagenesis and/or PCR-related methods. such convenient method involves the use of a unique NdeI site at position 1090 in the MBB51A DNA where foreign DNA can be inserted. Grafting of epitopes on the cell surface induces rapid antibody response by virtue of the epitope being well-exposed on the leads to direct 15 bacterial cell, which in turn activation of B cells. In addition, intracellular localization of an epitope induces B cell memory and a Examples of epitopes of proficient T cell response. interest known to be involved in the immune response to 20 various pathogens include epitopes from E. coli LT toxin, foot and mouth disease virus, HIV, cholera toxin, etc.

Thus, the 79 kD antigen is useful in the design of recombinant vaccines against different pathogens. Such 25 vaccines comprise a recombinant vaccine vehicle capable of expressing all or part of the 79 kD membraneassociated protein of mycobacteria, into which foreign epitopes have been engineered, such that the foreign epitopes are expressed on the outer surface and/or on 30 the inner side of the cell membrane, thereby rendering the foreign epitopes immunogenic. The vaccine vehicle for this purpose may be a cultivable mycobacterium for, In these applications, the BCG ion-motive e.g., BCG. ATPase gene can be borne on a mycobacterial shuttle alternately the foreign DNA encoding or antigenic epitopes of the immunogenic polypeptides can

inserted into the mycobacterial genome homologous recombination in the ion-motive ATPase gene or random integration. Such a process yields stable recombinant mycobacterial strains capable of expressing 5 on their surface and/or in the cytoplasm antigenic sequences of interest, which can, for example, provide protection against a variety of infectious pathogens. Targeting of recombinant antigens to the cell-wall is attractive not only because of the high immunogenicity 10 of mycobacterial cell-walls but, in addition, because of concerns with the introduction of a live vaccine in populations with а high prevalence HIV seropositivity. Additionally, based on the MBB51A protein, a non-living but immunogenic recombinant cell 15 surface subunit vaccine can also be developed to a useful alternative to live vaccines. provide Alternately, other bacterial, viral or protozoan vaccine vehicles could be transformed to generate such recombinant vaccines. Examples of potential vaccine vaccinia virus, 20 vehicles include pox-viruses, Salmonella, Yerisinia, Vibrio, Bordetella, Bacillus, etc.

Further, 'using such an approach, multivalent recombinant vaccines which allow simultaneous expression of multiple protective epitopes/antigens of different pathogens, could also be designed.

Equivalents

Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation,

many equivalents to the specific materials and components described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims.

SEQUENCE LISTING

(1) GENERAL INFORMATION: (i) APPLICANT: Kapoor, Archana Munshi, Anil (ii) TITLE OF INVENTION: Membrane-Associated Immunogens of Mycobacteria (iii) NUMBER OF SEQUENCES: 2 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Richard F. Trecartin (B) STREET: 4 Embarcadero Center, Suite 3400 (C) CITY: San Francisco (D) STATE: California (E) COUNTRY: USA (F) ZIP: 94111 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM P compatible (C) OPERATING SYSTEM\ PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (vi) CURRENT APPLICATION DATA (A) APPLICATION NUMBER: US (B) FILING DATE: 29-JUL-1992 (C) CLASSIFICATION: (viii) ATTORNEY/AGENT INFORMATION: (A) NAME: Trecartin, Richard 1 (B) REGISTRATION NUMBER: 31,80) (C) REFERENCE/DOCKET NUMBER: A-\$7004/RFT (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (415) 781-1989 (B) TELEFAX: (415) 398-3249 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3250 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 508..2790

5 UB

THE COUNTY OF THE COUNTY COUNT

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

(x1) SEQUENCE DESCRIPTION. SEQ 1D No.1.	
GGATCCCGCG GTCATCGATC GGGTCAAACA CCGCCTCGAC GGGTTCACGC TGGCGCCGCT	60
GTCCACCGCC GCGGGAGGTG GTGGCCGGCA GCCACGCATC TACTACGGCA CCATCCTGAC	120
CGGTGACCAA TACCTTCACT GCGAGCGCAC CCGCAACCGG CTGCACCACG AACTCGGCGG	180
TATGGCCGTC GAAATGGAAG GCGGTGCGGT GGCGCAAATC TGCGCGTCCT TCGATATCCC	240
ATGGCTGGTC ATTCGCGCGC TCTCCGATCT CGCCGGAGCC GATTCGGGGG TGGACTTCAA	300
TCGGTTTGTC GGCGAGGTGG CGGCCAGTTC GGCCCGCGTT CTGCTGCGCT TGCTGCCGGT	360
GTTGACGGCC TGTTGAAGAC GACTATCCGC CGGTGCGTTC ACCGCGTCAG GCGGCTTCGG	420
TGAGGTGAGT AATTTGGTCA TTAACTTGGT CATGCCGCCG CCGATGTTGA GCGGAGGCCA	480
CAGGTCGGCC GGAAGTGAGG AGCCACG ATG ACG GCG GCC GTG ACC GGT GAA Met Thr Ala Ala Val Thr Gly Glu	531
1 5	
CAC CAC GCG AGT GTG CAG CGG ATA CAA CTC AGA ATC AGC GGG ATG TCG His His Ala Ser Val Gln Arg Ile Gln Leu Arg Ile Ser Gly Met Ser	579
10 15 20	
TGC TCT GCG TGC GCC CAC CGT GTG GAA TCG ACC CTC AAC AAG CTG CCG Cys Ser Ala Cys Ala His Arg Val Glu Ser Thr Leu Asn Lys Leu Pro	627
25 30 35 40	
GGG GTT CGG GCA GCT GTG AAC TTC GGC ACC CGG GTG GCA ACC ATC GAC Gly Val Arg Ala Ala Val Asn Phe Gly Thr Arg Val Ala Thr Ile Asp	675
45 50 55	
ACC AGC GAG GCG GTC GAC GCT GCC GCG CTG TGC CAG GCG GTC CGC CGC Thr Ser Glu Ala Val Asp Ala Ala Ala Leu Cys Gln Ala Val Arg Arg	723
60 65. 70	
GCG GGC TAT CAG GCC GAT CTG TGC ACG GAT GAC GGT CGG AGC GCG AGT Ala Gly Tyr Gln Ala Asp Leu Cys Thr Asp Asp Gly Arg Ser Ala Ser	771
75 80 85	
GAT CCG GAC GCC GAC CAC GCT CGA CAG CTG CTG ATC CGG CTA GCG ATC Asp Pro Asp Ala Asp His Ala Arg Gln Leu Leu Ile Arg Leu Ala Ile	819
90 95 100	
GCC GCC GTG CTG TTT GTG CCC GTG GCC GAT CTG TCG GTG ATG TTT GGG Ala Ala Val Leu Phe Val Pro Val Ala Asp Leu Ser Val Met Phe Gly	867
105 110 115 120	
GTC GTG CCT GCC ACG CGC TTC ACC GGC TGG CAG TGG GTG CTA AGC GCG Val Val Pro Ala Thr Arg Phe Thr Gly Trp Gln Trp Val Leu Ser Ala	915
125 130 135	

٠

CTG GCA CTG CCG GTC GTG ACC TGG GCG GCG TGG CCG TTT CAC CGC GTT Leu Ala Leu Pro Val Val Thr Trp Ala Ala Trp Pro Phe His Arg Val

140

963

350

										-3						
GTG Val	TTT Phe	GTT Val	CCC Pro	GCT Ala 365	GTG Val	TTG Leu	GTT Val	ATC Ile	GCG Ala 370	GCA Ala	CTA Leu	ACC Thr	GCA Ala	GCC Ala 375	GGA Gly	1635
TGG Trp	CTA Leu	ATC Ile	GCC Ala 380	GGG Gly	GGA Gly	CAA Gln	CCC Pro	GAC Asp 385	CGT Arg	GCC Ala	GTC Val	TCG Ser	GCC Ala 390	GCA Ala	CTC Leu	1683
GCC Ala	GTG Val	CTT Leu 395	GTC Val	ATC Ile	GCC Ala	TGC Cys	CCG Pro 400	TGT Cys	GCC Ala	CTG Leu	GGG Gly	CTG Leu 405	GCG Ala	ACT Thr	CCG Pro	1731
ACC Thr	GCG Ala 410	ATG Met	ATG Met	GTG Val	GCC Ala	TCT Ser 415	GGT Gly	CGC Arg	GGT Gly	GCC Ala	CAG Gln 420	CTC Leu	GGA Gly	ATA Ile	TTT Phe	1779
CTG Leu 425	AAG Lys	GGC Gly	TAC Tyr	AAA Lys	TCG Ser 430	TTG Leu	GAG Glu	GCC Ala	ACC Thr	CGC Arg 435	GCG Ala	GTG Val	GAC Aṣp	ACC Thr	GTC Val 440	1827
GTC Val	TTC Phe	GAC Asp	AAG Lys	ACC Thr 445	GGC Gly	ACC Thr	CTG Leu	ACG Thr	ACG Thr 450	GGC Gly	CGG Arg	CTG Leu	CAG Gln	GTC Val 455	AGT Ser	1875
GCG Ala	GTG Val	ACC Thr	GCG Ala 460	GCA Ala	CCG Pro	GGC Gly	TGG Trp	GAG Glu 465	GCC Ala	GAC Asp	CAG Gln	GTG Val	CTC Leu 470	GCC Ala	TTG Leu	1923
			GTG Val												ATC Ile	1971
GCC Ala	GCG Ala 490	GCA Ala	ACG Thr	ACT Thr	CGG Arg	CGA Arg 495	GAC Asp	GCG Ala	GTC Val	ACC Thr	GAC Asp 500	Phe	CGC Arg	GCC Ala	ATA Ile	2019
	G1y					Gly					Arg				CTG Val 520	2067
					Ile					Cys					CGC	2115
				His					Gly					Phe	GTC Val	2163
GAG Glu	GTC Val	GAC Asp 555	Gly	GAA Glu	CCA Pro	TGC Cys	GGG G1y 560	Val	ATC	GCC Ala	GTC Val	GCC Ala 565	Asp	GCC Ala	C GTC Val	2211
		Ser					Val					a Asp			CTG Leu	2259

Ĭ.

CGC Arg 585	ACC Thr	ATG Met	CTG Leu	TTG Leu	ACC Thr 590	GGT Gly	GAC Asp	AAT Asn	CCC Pro	GAA Glu 595	TCG Ser	GCG Ala	GCG Ala	GCC Ala	GTG Val 600	2307
												ATC Ile				2355
												GGA Gly				2403
												CTG Leu 645				2451
												GCG Ala				2499
												GTA Val				2547
												CTC Leu				2595
															GGA Gly	2643
													Ser		TTC Phe	2691
		Val										Gly			CCG Pro	2739
	Gly					Gly					Thr				TCC Ser 760	2,787
GCG Ala		TGCG	TTG	TCGG	GCAA	CA C	GATA	TCGG	G CT	CAGC	GGCG	ACC	GCAT	CCG		2840
GTC	TCGG	CCG	AGGA	CCAG	AG G	CGCT	TCGC	C AC	ACCA	TGAT	TGC	CAGO	ACC	GCGC	CCGATCA	2900
CCA	cccc	CAG	ATGA	GTCA	AA A	TCCG	CGTG	G TO	CTGA	cccc	GCC	CGGAC	CAGC	GCAT	CCACAA	2960
TCA	CATA	GCC	GGTC	AGTA	TG G	CGAC	GAAC	G CC	GTCA	GAAC	ACC	cgcc	CAGG	CCG	GCGCCGG	3020
CGC	TCGG	CCA	TAGO	GCCG	CG C	CCAC	CATG	A TO	CACAC	CGAG	G CGC	CAAT	CGAC	CAC	GACGTGA	3080

The Hard Hann Hand Hand Hade HI rette with their Hinn Hand Hand Hade Hann Hand Hand Hade have been a seen to the

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 761 amino acids

ACGTCGCCAG GTCATCGGTG AATGTTGCCG CCGCGGCGCC CGGCGGATCC

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Thr Ala Ala Val Thr Gly Glu His His Ala Ser Val Gln Arg Ile
1 5 10 15

Gln Leu Arg Ile Ser Gly Met Ser Cys Ser Ala Cys Ala His Arg Val 20 25 30

Glu Ser Thr Leu Asn Lys Leu Pro Gly Val Arg Ala Ala Val Asn Phe
35 40 45

Gly Thr Arg Val Ala Thr Ile Asp Thr Ser Glu Ala Val Asp Ala Ala 50 55 60

Ala Leu Cys Gln Ala Val Arg Arg Ala Gly Tyr Gln Ala Asp Leu Cys 65 70 75 80

Thr Asp Asp Gly Arg Ser Ala Ser Asp Pro Asp Ala Asp His Ala Arg.
85 90 95

Gln Leu Leu Ile Arg Leu Ala Ile Ala Ala Val Leu Phe Val Pro Val 100 105 110

Ala Asp Leu Ser Val Met Phe Gly Val Val Pro Ala Thr Arg Phe Thr

Gly Trp Gln Trp Val Leu Ser Ala Leu Ala Leu Pro Val Val Thr Trp 130 135 140

Ala Ala Trp Pro Phe His Arg Val Ala Met Arg Asn Ala Arg His His 145 150 155 160

Ala Ala Ser Met Glu Thr Leu Ile Ser Val Gly Ile Thr Ala Ala Thr 165 170 175

Ile Trp Ser Leu Tyr Thr Val Phe Gly Asn His Ser Pro Ile Glu Arg 180 185 190

Ser Gly Ile Trp Gln Ala Leu Leu Gly Ser Asp Ala Ile Tyr Phe Glu 195 200 205 Val Ala Ala Gly Val Thr Val Phe Val Leu Val Gly Arg Tyr Phe Glu 210 215 220

Ala Arg Ala Lys Ser Gln Ala Gly Ser Ala Leu Arg Ala Leu Ala Ala 225 230 235 240

Leu Ser Ala Lys Glu Val Ala Val Leu Leu Pro Asp Gly Ser Glu Met 245 250 255

Val Ile Pro Ala Asp Glu Leu Lys Glu Gln Gln Arg Phe Val Val Arg
260 265 270

Pro Gly Gln Ile Val Ala Ala Asp Gly Leu Ala Val Asp Gly Ser Ala 275 280 285

Ala Val Asp Met Ser Ala Met Thr Gly Glu Ala Lys Pro Thr Arg Val 290 295 300

Arg Pro Gly Gly Gln Val Ile Gly Gly Thr Thr Val Leu Asp Gly Arg 305 310 315 320

Leu Ile Val Glu Ala Ala Ala Val Gly Ala Asp Thr Gln Phe Ala Gly 325 330 335

Met Val Arg Leu Val Glu Gln Ala Gln Ala Gln Lys Ala Asp Ala Gln 340 345 350

Arg Leu Ala Asp Arg Ile Ser Ser Val Phe Val Pro Ala Val Leu Val 355 360 365

Ile Ala Ala Leu Thr Ala Ala Gly Trp Leu Ile Ala Gly Gly Gln Pro 370 375 380

Asp Arg Ala Val Ser Ala Ala Leu Ala Val Leu Val Ile Ala Cys Pro 385 390 395 400

Cys Ala Leu Gly Leu Ala Thr Pro Thr Ala Met Met Val Ala Ser Gly
405 410 415

Arg Gly Ala Gln Leu Gly Ile Phe Leu Lys Gly Tyr Lys Ser Leu Glu 420 425 430

Ala Thr Arg Ala Val Asp Thr Val Val Phe Asp Lys Thr Gly Thr Leu 435 440 445

Thr Thr Gly Arg Leu Gln Val Ser Ala Val Thr Ala Ala Pro Gly Trp
450 455 460

Glu Ala Asp Gln Val Leu Ala Leu Ala Ala Thr Val Glu Ala Ala Ser 465 470 475 480

Glu His Ser Val Ala Leu Ala Ile Ala Ala Ala Thr Thr Arg Arg Asp
485
490
495

Ala Val Thr Asp Phe Arg Ala Ile Pro Gly Arg Gly Val Ser Gly Thr 500 505 510

Val Ser Gly Arg Ala Val Arg Val Gly Lys Pro Ser Trp Ile Gly Ser 515 520 525

Ser Ser Cys His Pro Asn Met Arg Ala Ala Arg Arg His Ala Glu Ser 530 535 540

Leu Gly Glu Thr A a Val Phe Val Glu Val Asp Gly Glu Pro Cys Gly
545 550 555 560

Val Ile Ala Val Ala Asp Ala Val Lys Asp Ser Ala Arg Asp Ala Val 565 570 575

Ala Ala Leu Ala Asp Arg Cly Leu Arg Thr Met Leu Leu Thr Gly Asp
580 585 590

Asn Pro Glu Ser Ala Ala Ala Val Ala Thr Arg Val Gly Ile Asp Glu
595 605

Val Ile Ala Asp Ile Leu Pro Gly Cly Lys Val Asp Val Ile Glu Gln 610 615 620

Leu Arg Asp Arg Gly His Val Val Ala Met Val Gly Asp Gly Ile Asn 625 630 635 640

Asp Gly Pro Ala Leu Ala Arg Ala Asp Deu Gly Met Ala Ile Gly Arg 645 650 655

Gly Thr Asp Val Ala Ile Gly Ala Ala Asp Tle Ile Leu Val Arg Asp
660 665 670

His Leu Asp Val Val Pro Leu Ala Leu Asp Leu Ala Arg Ala Thr Met 675 680 685

Arg Thr Val Lys Leu Asn Met Val Trp Ala Phe Gly Tyr Asn Ile Ala 690 695 700

Ala Ile Pro Val Ala Ala Ala Gly Leu Leu Asn Pro Leu Val Ala Gly
705 710 715 720

Ala Ala Met Ala Phe Ser Ser Phe Phe Val Val Ser Asn Ser Leu Arg
725 730 735

Leu Arg Lys Phe Gly Arg Tyr Pro Leu Gly Cys Gly Thr Val Gly Gly
740 745 750

Pro Gln Met Thr Ala Pro Ser Ser Ala 755 760