1. Convex Sets

Definition 1.1. Convex Set

A subset $C \subseteq \mathbb{R}^n$ is a convex set if $\forall x, y \in C, \forall \alpha \in [0, 1]$

$$(1 - \alpha)x + \alpha y \in C$$

Definition 1.2. Unit Simplex

The unit simplex $\Delta_{k-1} \subseteq \mathbb{R}^k$ is the set

$$\Delta_{k-1} = \{ \alpha \in \mathbb{R}^n_+ : \sum^k \alpha_i = 1 \}$$

Definition 1.3. Convex Combination

A convex combination of $\{x_1, x_2, ..., x_k\} \subseteq \mathbb{R}^n$ is any vector of the form

$$x = \sum_{i=1}^{k} \alpha_i x_i$$

where $\alpha = (\alpha_1, ..., \alpha_k) \in \Delta_{k-1}$

Proposition 1.1. $C \in \mathbb{R}^n$ is convex $\iff \forall x_1, ..., x_k \subseteq C, \forall \alpha \in \Delta_{k-1}, \sum^k \alpha_i x_i \in C$

Definition 1.4. Set of all possible convex combinations

For $A \in \mathbb{R}^n$, let $K(A) = \{all\ possible\ convex\ combinations\ of\ points\ in\ A\} = \{\sum^k \alpha_i x_i : k \geq 1, \{x_1, ..., x_k\} \subseteq A, \alpha \in \Delta_{k-1}\}$

Proposition 1.2. $K(A) \supseteq A$ is convex.

Proposition 1.3. If $\{C_{\alpha}\}_{{\alpha}\in A}$ is a collection of convex sets in \mathbb{R}^n , then $\bigcap_{{\alpha}\in A} C_{\alpha}\subseteq \mathbb{R}^n$ is convex.

Proposition 1.4. If $C \subseteq \mathbb{R}^n$, $D \subseteq \mathbb{R}^m$ are convex, then $C \times D \subseteq \mathbb{R}^n \times \mathbb{R}^m$ is convex

Definition 1.5. Convex Hull

For any $A \subseteq \mathbb{R}^n$, the convex hull of A is the smallest convex set that contains A. That is,

$$co(A) = \bigcap \{C \subseteq \mathbb{R}^n : C \text{ is convex}, A \subseteq C\}$$

In other words, the convex hull of A is the intersection of all convex sets that contain A. Trivially, if A is convex, then co(A) = A.

Proposition 1.5. co(A) = K(A)

- K(A) is like building the convex hull from within, while co(A) is like shrinking the set until we get the smallest convex set.

Proposition 1.6. If $\{A_{\alpha}\}$ is a collection of convex sets, then $\bigcap_{\alpha} A_{\alpha}$ is also convex, where the intersection may be over a countable or uncountable collection.

- Implication: The convex hull co(A) is well-defined and also convex, since the co(A) is the intersection of all convex sets containing A.

Theorem 1.1. (Carathéodory)

Let $A \subseteq \mathbb{R}^n$, $x \in co(A)$. Then, $\exists \{x_1, ..., x_{n+1}\} \subseteq A$ and $\alpha \in \Delta_n$ such that $x = \sum_{i=1}^{n+1} \alpha_i x_i$.

- In essence, we are starting with a convex combination and altering it such that we get the same convex combination but with one fewer point. So, if x is some convex combination of points in A, then we can find some other convex combination using one fewer vector such that we get the same point.

1

Definition 1.6. Hyperplane

A hyperplane in \mathbb{R}^n is a set

$$H(\alpha, b) = \{x \in \mathbb{R}^n : \langle \alpha, x \rangle = b, \alpha \in \mathbb{R}^n, \alpha \neq \mathbf{0}, b \in \mathbb{R}\}$$

- Recall that $\langle \alpha, x \rangle = \alpha^T x_i = \sum_{i=1}^n c_i x_i$ is the inner product.
- Equivalently, $\langle \alpha, x \rangle = \|\alpha\| \cdot \|x\| \cos \theta$, where θ is the angle between x and α .
- $x \perp \alpha \iff \langle \alpha, x \rangle = 0.$
- More intuitively, we can think of a hyperplane as an (n-1) dimensional subspace shifted up/down in \mathbb{R}^n

Proposition 1.7. Take any $x_0 \in H$. Then, $\langle \alpha, x \rangle = b$, so I can write

$$H = \{x \in \mathbb{R}^n : \langle \alpha, x - x_0 \rangle = 0, x_0 \in H\}$$

Remark 1.1.1. In the definition of a hyperplane, we call α the "normal vector", implying that α is the vector perpendicular to the hyperplane. In particular, we see this with the definition

$$H = \{x \in \mathbb{R}^n : \langle \alpha, x - x_0 \rangle = 0, x_0 \in H\}$$

We can then generate the entire hyperplane by varying the vector x and taking all of the vectors whose projection onto the space spanned by α is c.

Definition 1.7. Closed Halfspace

The space above the hyperplane and space below the hyperplane (above/below vector α), each containing the plane.

- $(1) \ H^+ = \{ x \in \mathbb{R}^n : \langle \alpha, x \rangle \ge b \}$
- $(2) H^- = \{ x \in \mathbb{R}^n : \langle \alpha, x \rangle \le b \}$

Definition 1.8. Interior of Halfspace

- (1) $int(H^+) = \{x \in \mathbb{R}^n : \langle \alpha, x \rangle > b\}$
- $(2) int(H^-) = \{x \in \mathbb{R}^n : \langle \alpha, x \rangle < b\}$

Definition 1.9. Linear Manifold

A linear manifold L is an intersection of hyperplanes. That is,

$$L = \{x \in \mathbb{R}^n : Ax = b, A \in \mathbb{R}^{m+n}, b \in \mathbb{R}^m\}$$

We can also think of a linear manifold as a translation of a linear subspace. That is, if $x_0 \in L$, implying that $Ax_0 = b$, then

$$L = \{x \in \mathbb{R}^n : A(x - x_0) = 0\} = \{x \in \mathbb{R}^n : \langle a_i^T, x - x_0 \rangle = 0\} = x_0 + null(A)$$

If there does not exist such an x_0 , then L is the empty set.

Definition 1.10. Affine Set

A set L is affine \iff L contains all lines through any two points in the set (i.e., includes all linear combinations of elements of the set). That is,

$$L = \{ \sum_{i=1}^{k} \alpha_i x_i \in L : \forall \{x_1, ..., x_k\} \subseteq L, \sum_{i=1}^{k} \alpha_i = 1, k \in \mathbb{N} \}$$

Note that this differs from the definition of a convex set by the restriction on the coefficients. For a convex set, $\sum \alpha_i = 1$, $|\alpha_i| > 0$, while for an affine set, $\sum \alpha_i = 1$, meaning that we may have negative α_i 's.

Proposition 1.8. A set L is a linear manifold \iff L is an affine set. That is,

$$\{x \in \mathbb{R}^n : \langle a_i^T, x - x_0 \rangle = 0\} = \{\sum_{i=1}^k \alpha_i x_i \in L : \forall \{x_1, ..., x_k\} \subseteq L, \sum_{i=1}^k \alpha_i = 1, k \in \mathbb{N}\}$$

$\textbf{Definition 1.11.} \ \textit{Polyhedron}$

$$S = \{x \in \mathbb{R}^n : Ax \le b\}$$

Note the similarity of the set definition of a polyhedron with that of a linear manifold. The only difference is that Ax = b for a linear manifold, while $Ax \le b$ for a polyhedron.

$\textbf{Definition 1.12.} \ \textit{Polytope}$

A polytope is a bounded polyhedron. Note that this implies that not all polyhedron are bounded.

2. Topological Properties of Convex Sets

Definition 2.1. Affine Hull

For any set $A \subseteq \mathbb{R}^n$, the affine hull of A, denoted aff(A) is the smallest linear manifold (affine set) that contains A. That is,

$$aff(A) = \bigcap \{L \supseteq A : L \text{ is a linear manifold}\} = \bigcap \{L \supseteq A : L \text{ is an affine set}\}$$

Proposition 2.1.
$$aff(A) = \{\sum^k \alpha_i x_i : \{x_1, ..., x_k\} \subseteq A, \sum^k \alpha_i = 1, k \in \mathbb{N}\}$$

Definition 2.2. Interior

The interior of a set C is the set of all points of C around which you can draw an epsilon ball and remain in C. That is,

$$int(C) = \bigcup \{A : A \subseteq S, A \text{ is open}\}\$$

Definition 2.3. Relative Interior

Let $C \subseteq \mathbb{R}^n$ be convex. The relative interior of C is defined as

$$ri(C) = \{x \in C : \exists \varepsilon > 0 \text{ s.t. } N_{\varepsilon} \cap aff(C) \subseteq C\}$$

In other words, the relative interior is the interior of the hyperplane containing C.

Definition 2.4. Closure

A closure of a set A is the set A and all of its limit points. That is,

$$cl(A) = \{x : \forall \varepsilon > 0, N_{\varepsilon} \bigcap A \neq \emptyset\}$$

Equivalently, cl(A) is the union of A and its boundary, as well as the intersection of all closed sets containing A.

Lemma 2.0.1. Let $C \subseteq \mathbb{R}^n$ be convex. Let $x_1 \in ri(C)$ and $x_2 \in cl(C)$. Then $[x_1, x_2) \subseteq ri(C)$.

- In words, if I take the ball around a point $z \in [x_1, x_2)$, then the intersection of that ball and the affine hull of A will be contained in C.
- Think of $[x_1, x_2)$ as all convex combinations of x_1 and x_2 , not including x_2 .
- Two useful claims when proving this:
 - (1) For $z \in [x_1, x_2)$, i.e. $z = \alpha x_1 + (1 \alpha)x_2$ for $\alpha \in (0, 1]$, $N_{\alpha \cdot \varepsilon} \cap aff(C) \subseteq C$.
 - (2) $\alpha y + (1 \alpha)x \in aff(C) \iff y \in aff(C)$

Corollary 2.0.1. If $C \subseteq \mathbb{R}^n$ is convex, then ri(C) is also convex.

Corollary 2.0.2. Assume that C is convex. Then,

- (1) cl(C) = cl(ri(C))
- (2) ri(C) = ri(cl(C))

Note that this is not typically true for an arbitrary set C.

Lemma 2.0.2. If C is convex, then cl(C) is also convex.

Lemma 2.0.3. If $O \subseteq \mathbb{R}^n$ is open, then co(O) is also open.

Lemma 2.0.4. If $K \subseteq \mathbb{R}^n$ is compact, then co(K) is compact.

Remark 2.0.1. If K is closed only (i.e., not bounded), then co(K) may not be closed.

3. Projection onto Convex Sets

Definition 3.1. Orthogonal Projection

Let $C \subseteq \mathbb{R}^n$ be convex and $x \in \mathbb{R}^n$. If $\exists x^* \in C$ such that $||x - x^*|| < ||x - z|| \forall z \in C$, $z \neq x^*$, then we say that x^* is the orthogonal projection of x onto C, denoted as $x^* = \mathbb{P}_C(x)$.

- Trivially, if $x \in C$, then $x^* = x$.
- Note that $||x x^*|| \le ||x z||$, $\forall z \in C, z \ne x^*$ asserts uniqueness.

Theorem 3.1. Let $C \subseteq \mathbb{R}^n$ be closed and convex. Then,

- (1) Existence: $\mathbb{P}_C(x)$ exists $\forall x \in \mathbb{R}^n$.
- (2) Uniqueness: $x^* = \mathbb{P}_C(x)$
- (3) Characterization: $x^* \in C$ and $\langle x x^*, z x^* \rangle \leq 0$, $\forall z \in C$.

In other words, the existence of $\mathbb{P}_C(x)$ implies that $\inf_{z \in C} ||x - z|| = x^*$, $x \in \mathbb{R}^n$ is attained and x^* is unique.

4. Projection onto a Linear Subspace

Remark 4.0.1. A linear subspace is convex and closed.

Corollary 4.0.1. Let $Y \subseteq \mathbb{R}^n$ be a linear subspace. Then, for any $x \in \mathbb{R}^n$,

$$x^* \in Y \iff \langle x - x^*, y \rangle = 0, \forall y \in Y$$

Definition 4.1. Orthogonal Set

Let $W \subseteq \mathbb{R}^n$. We define the orthogonal set to W as

$$W^{\perp} = \{x \in \mathbb{R}^n : \langle x, w \rangle = 0, \, \forall w \in W\}$$

Proposition 4.1. Let Y be a linear subspace. Then,

- (1) Y^{\perp} is a linear subspace
- (2) If $Y = span\{x_1, ..., x_n\}$, i.e. all linear combinations of vectors $x_1, ..., x_n$, then $Y^{\perp} = \{x \in \mathbb{R}^n : \langle x, x_i \rangle = 0, i = 1, ..., n\}$
- (3) If Y is a linear subspace, then $Y \cap Y^{\perp} = \{0\}$
- (4) If Y is a linear subspace, then $[Y^{\perp}]^{\perp} = Y$
- (5) If Y is a linear subspace, then for any $x \in \mathbb{R}^n$, there exists a unique decomposition x = y + z, where $y = \mathbb{P}_Y(x) \in Y$ and $z = \mathbb{P}_Y^{\perp}(x) \in Y^{\perp}$

Corollary 4.0.2. If $Y = span\{x_1, ..., x_n\}$, then

$$x^* = \mathbb{P}_Y(x) \iff \exists \alpha_j \in \mathbb{R}, \ j = 1, ..., n \ s.t. \ x^* = \sum_{i=1}^l \alpha_j x_j \ and \ \sum_{i=1}^r \alpha_j \langle x_j, x_i \rangle = \langle x, x_i \rangle \ \forall i = 1, ..., n$$

Note that $x^* \in Y \iff x^*$ can be written as a linear combination of the basis vectors $x_1, ..., x_n$. Also observe that the projection x^* is perpendicular to each one of the basis vectors.

Lemma 4.0.1. Every linear subspace of \mathbb{R}^n has an orthonormal basis, i.e. basis vectors are linearly independent with norm 1.

Proposition 4.2. For $x_1,...,x_k \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$, denoting $Y = span\{x_1,...,x_k\}$

$$x_0 - \mathbb{P}_Y(x) = \mathbf{0} \iff \langle x - x_0, x_i \rangle = 0, \forall i = 1, ..., k$$

Remark 4.0.2. In summary,

- (1) For $S \subseteq \mathbb{R}^n$, S convex, and $x \in \mathbb{R}^n$, $x_0 = \mathbb{P}_S(x) \iff \langle x x_0, y x_0 \rangle \leq 0 \ \forall y \in S$
- (2) For $Y \subseteq \mathbb{R}^n$, Y linear subspace, and $x \in \mathbb{R}^n$, $x_0 = \mathbb{P}_Y(x) \iff \langle x x_0, y \rangle = 0$, $\forall y \in Y$
- (3) For $x_1,...,x_k \in \mathbb{R}^n$, let $S = span(x_1,...,x_k)$. Then, for $x \in \mathbb{R}^n$, $x_0 \mathbb{P}_S(x) \iff \langle x x_0, x_i \rangle = 0$, $\forall i = 1,...,k$

Definition 4.2. Gram Matrix

For any $x_1,...,x_k \in \mathbb{R}^n$, we define the matrix of inner products to be the Gram Matrix as follows

$$G_{x_1,\dots,x_k} = \begin{bmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_k \rangle \\ \vdots & \ddots & \vdots \\ \langle x_k, x_1 \rangle & \cdots & \langle x_k, x_k \rangle \end{bmatrix}$$

Note that G is symmetric and has dimensions $(k \times k)$.

Definition 4.3. Linear Independence

A collection of vectors $x_1, ..., x_k$ are linearly independent if

$$\sum \lambda_i x_i = \mathbf{0} \iff \lambda_1 = \dots = \lambda_k = 0$$

Lemma 4.0.2. $G_{x_1,...,x_k}$ is invertible $\iff \{x_1,...,x_k\}$ are linearly independent.

Theorem 4.1. Let $x_1, ..., x_k \in \mathbb{R}^n$ be linearly independent vectors and take any $x \in \mathbb{R}^n$. Define $Y = span(x_1, ..., x_k)$. Then,

$$x_0 = \mathbb{P}_Y(x) \iff x_0 = \lambda_1 x_1 + \cdots + \lambda_k x_k,$$

where $\lambda = [\lambda_1, ..., \lambda_k]^T$ constitute the unique solution to the system

$$G_{x_1,...,x_k}\lambda = [\langle x_i, x \rangle]$$

and $[\langle x_i, x \rangle] = [\langle x_1, x \rangle, ..., \langle x_k, x \rangle]^T$.

Definition 4.4. Range of a Matrix

Let $A \in \mathbb{R}^{k \times n}$. Then the range of A, denoted rng(A), is

$$rnq(A) = \{Ax : x \in \mathbb{R}^n\} = span(x_1, ..., x_n)$$

where $x_1, ..., x_n$ are the column vectors of A. Note that rng(A) is a subspace of \mathbb{R}^k , since each column vector contains k elements. We can also think of rng(A) as the range of a function defined by A, since A is a linear operator.

Definition 4.5. (Column) Rank of a Matrix

Let $A \in \mathbb{R}^{k \times n}$. Then, rank(A) is the number of independent columns of A. If $rank(A) = \min(k, n)$, then we say that A is full rank.

Application 4.1. Let $A \in \mathbb{R}^{k \times n}$ and $b \in \mathbb{R}^k$. Suppose we want to solve Ax = b, but A is $(k \times n)$ and b is $(k \times 1)$ (i.e. Ax = b unsolvable). Then, we want to find the next best approximation of b in rng(A).

- Problem: Minimize ||Ax b|| with respect to x
- Solution: Least Squares
 - (1) x_0 solves this problem $\iff Ax_0 = \mathbb{P}_{rng(A)}(b)$
 - (2) $\iff \langle b Ax_0, y \rangle, y \in rng(A)$

$$(3) = \langle b - Ax_0, Ax \rangle$$

$$(4) = 0, \, \forall x \in \mathbb{R}^n$$

Proposition 4.3. For any $A \in \mathbb{R}^{k \times n}$, $y \perp rng(A) \iff (Ay)^T = \mathbf{0}$

- In essence, $rng(A)^{\perp} = null(A^T)$

Corollary 4.1.1. Following from the proposition above, $\langle b - Ax_0, Ax \rangle = 0$, $\forall x \in \mathbb{R}^n \iff A^T(b - Ax_0) = 0 \iff A^TAx_0 = A^Tb$.

Lemma 4.1.1. $A^T A$ is invertible \iff rank(A) = n, so A is full rank

- A being full rank \implies its columns are linearly independent

Theorem 4.2. If $A \in \mathbb{R}^{k \times n}$ has rank(A) = n ("identification condition"), then the solution to the problem Ax = b is $x_0 = (A^T A)^{-1} A^T b$

5. Separation by Hyperplane and Convex Cones

Theorem 5.1. Hyperplane Separation Thm. (of Closed, Convex set from Point)

Let S be a nonempty, closed, and convex set in \mathbb{R}^n . Let $x \in \mathbb{R}^n \setminus S$. Then, $\exists \alpha \in \mathbb{R}^n \setminus \{\mathbf{0}\}\$ such that $\langle \alpha, x \rangle > \sup_{y \in S} \langle \alpha, y \rangle$.

- In words, a nonempty, closed, and convex set can be strictly separated by a hyperplane from any given point that lies outside that set.
- Proof idea is to project x onto our set S to get a supporting hyperplane of S and then to shift the hyperplane up so
 that it strictly separates x from S.
- And since S is closed and convex, there exists a unique nearest point in S to a point x outside of S, namely the projection of x onto S, $\mathbb{P}_S(x)$.
- $-\langle \alpha, x \rangle > \langle \alpha, y \rangle$ just means that x and y are on different sides of the hyperplane.
- $-\alpha \in \mathbb{R} \setminus \{0\}$ is the normal vector in the definition of the hyperplane.

Application 5.1. How to Find a Separating Hyperplane

- (1) For existence, use hyperplane separation theorem
- (2)

Definition 5.1. Cone

A nonempty set $C \subseteq \mathbb{R}^n$ is a cone if $\lambda x \in C$ for all $x \in C$ and $\lambda \geq 0$.

Remark 5.1.1. Cones can never be bounded.

- We can conceptualize them as sets made up of rays that go between the origin and a point contained in the set C.
- A cone always contains the origin.
- A cone need not be convex.

Definition 5.2. Convex Cone

If C is a cone and a convex set, then we call C a convex cone.

Lemma 5.1.1. A set $C \subseteq \mathbb{R}^n, C \neq is$ a convex cone $\iff \forall k \in \mathbb{N}, \forall x_1, ..., x_k \in C$, and $\forall \alpha_1, ..., \alpha_k \geq 0, \sum^k \alpha_i x_i \in C$, i.e. linear combination of points from C is contained in C

Proposition 5.1. Separation of a Closed, Convex Cone from a Point via Hyperplane

Let C be a closed, convex cone in \mathbb{R}^n and let $x \in \mathbb{R}^n \setminus C$. Then, $\exists \alpha \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that

$$\langle \alpha, x \rangle > 0 = \max_{y \in C} \langle \alpha, y \rangle$$

- In words, a nonempty, closed, convex cone cane be separated from any given point that lies outside that cone by a hyperplane that goes through the origin.
- This is just a particular instance of the hyperplane separation theorem.

Definition 5.3. Conical Hull

For any $S \subseteq \mathbb{R}^n$, we define the following set as the conical hull, the smallest convex cone containing S

$$cone(S) = \bigcap \{ C \subseteq \mathbb{R}^n : C \text{ is a convex cone, } S \subseteq C \}$$

 We can think of the conical hull as refining the convex cones containing S until we reach the smallest one – building from the outside inward.

Lemma 5.1.2.

$$cone(S) = \{\sum^{k} \alpha_{i} x_{i} : k \in \mathbb{N}; x_{1}, ..., x_{k} \in S; \alpha_{1}, ..., \alpha_{k} \geq 0\}$$

Remark 5.1.2. A convex set S may have a conical hull cone(S) that is not closed. For example, tangencies to axes can yield cone(S) not closed.

Definition 5.4. Cone Generated by Set

We say that a convex cone $C \subseteq \mathbb{R}^n$ is generated by a set $S \subseteq \mathbb{R}^n$ if C = cone(S).

- In essence, convex cone C is given to you and we want to find the S that generates it.
- In other words, the cone generated by a set is the conical hull of the set.

Definition 5.5. Finitely-Generated Cone

We say that cone C = cone(S) is finitely-generated if $|S| < \infty$.

Definition 5.6. Basic Cone

We say that C = cone(S) is basic if S consists of linearly independent vectors (and thus finitely-generated, since a set of linearly independent vectors in \mathbb{R}^n can consist of at most n vectors).

Lemma 5.1.3. $cone(\{x\})$ is closed $\forall x \in \mathbb{R}^n$.

- Proof Sketch:
 - (1) We proceed by constructing a sequence (y_m) in $cone(\{x\})$, and we <u>WTS</u> that if $y_m \to y$, then it converges within the set, i.e. $y \in \mathbb{R}^n$.
 - (2) We are constructing a sequence in $cone(\{x\})$ whose elements are all scalar multiples of some fixed vector x, since the cone is generated by scaling up/down some vector x. This implies that we have a sequence of scalars that accompany each y_m .
 - (3) More formally, for every $m \in \mathbb{N}$, there exists $\lambda_m \geq 0$ such that $y_m = \lambda_m x$. Since $\|\cdot\|$ is continuous¹, $\|y_m\| \to \|y\|$ $\implies \|\lambda_m x\| \to \|y\|$ $\implies \lambda_m \|x\| \to \|y\|$ $\implies \lim_{m \to \infty} \lambda_m \|x\| \to \|y\|$ $\implies \lambda = \frac{\|y\|}{\|x\|}$
 - (4) Then, by finding that $\lambda_m \to \lambda = \frac{\|y\|}{\|x\|}$, we have $y_m = \lambda_m x \to \lambda x$, so long as $x \neq \mathbf{0}$. $\implies y = \lambda x \in cone(\{x\})$
 - (5) Note that if we did in fact have $x = \mathbf{0}$, then $cone(\{x\}) = \{\mathbf{0}\}$ is a singleton \implies any multiple of x is also $\mathbf{0}$ and we thus have a constant sequence which trivially converges to the constant, $\mathbf{0}$ in this case.

Lemma 5.1.4. Every basic cone in \mathbb{R}^n is closed.

Lemma 5.1.5. Let $x, x_1, ..., x_k \in \mathbb{R}^n$ such that $x = \sum^k \theta_i x_i$, where $\theta_i > 0$, $\forall i = 1, ..., k$. Then, x can be expressed as a nonnegative linear combination of k-1 many vectors from $\{x_1, ..., x_k\} \iff \exists \lambda \in \mathbb{R}^k \setminus \{\mathbf{0}\}$ such that $\sum^k \lambda_i x_i = 0$.

Lemma 5.1.6. For any set $S \subseteq \mathbb{R}^n$,

$$cone(S) = \bigcap \{cone(T) : T \subseteq S, \ T \ linearly \ independent \}$$

Theorem 5.2. Every finitely generated convex cone in \mathbb{R}^n is closed.

Corollary 5.2.1. Every linear subspace of \mathbb{R}^n is closed.

¹Recall that continuous functions preserve limits.

6. The Farkas Lemma

Theorem 6.1. Farkas Lemma

Let $A \in \mathbb{R}^{k \times n}$ and $b \in \mathbb{R}^k$. Then, either

$$\exists x \in \mathbb{R}^n, x \geq \mathbf{0} \text{ such that } Ax = b$$

or

$$\exists w \in \mathbb{R}^k \text{ such that } \langle w, b \rangle > 0 \text{ and } A^T w \leq \mathbf{0}$$

- This implies that if b is in the convex cone generated by the column vectors of A, cone($\{a_1,...,a_n\}$), then there exists a solution x to Ax = b. And if b sits outside the convex cone generated by the column vectors of A, then we can find a hyperplane separating b from cone($\{a_1,...,a_n\}$).
- Proving Farkas Lemma requires two parts:
 - (1) Exclusivity: Suppose both parts are true and derive a contradiction
 - (2) If not p, then q: Suppose one part fails. Show that the other must hold.
 - (3) If p, then not q: Suppose one part holds. Show the other must fail.

Corollary 6.1.1. We can also state Farkas Lemma as follows:

For any $A \in \mathbb{R}^{k \times n}$ and $b \in \mathbb{R}^k$

$$\exists x \geq \mathbf{0} \text{ such that } Ax = b \iff \forall w \in \mathbb{R}^k, \text{ either } \langle w, b \rangle \leq 0, \text{ or } A^T w > \mathbf{0} \text{ or both } \langle w, b \rangle \leq 0 \& A^T w > 0$$

Theorem 6.2. Fredholm Alternative Thm.

Let $A \in \mathbb{R}^{k \times n}$ and $b \in \mathbb{R}^k$. Then, either

$$\exists x \in \mathbb{R}^n \text{ such that } Ax = b$$

or

$$\exists w \in \mathbb{R}^k \text{ such that } \langle w, b \rangle \neq 0 \text{ and } A^T w = \mathbf{0}$$

Corollary 6.2.1. *Note that for any* $(k \times n)$ *matrix* A,

$$\exists x \in \mathbb{R}^n \ s.t. \ Ax = b \implies b \in range(A)$$

On the other hand,

$$\exists w \in \mathbb{R}^k \text{ such that } \langle w, b \rangle \neq 0 \text{ and } A^T w = \mathbf{0} \implies b \notin null(A^T)^{\perp}$$

Therefore, the Fredholm Alternative Theorem tells us that either

$$b \in rng(A)$$

 \mathbf{or}

$$b \notin null(A^T)^{\perp}$$

And this holds if and only if $rng(A) = null(A^T)^{\perp}$. The latter equality holds as a consequence of the projection theorem.

Remark 6.2.1. Every vector x can be expressed as the difference between two nonnegative vectors $u, v \ge 0$. Thus, if Ax = b, then there exist $u, v \in \mathbb{R}^n$, where $u, v \ge 0$, such that x = u - v.

- We can manipulate Farkas Lemma by using this fact and introducing slack/surplus variables.

Corollary 6.2.2. Let $A \in \mathbb{R}^{k \times n}$ and $b \in \mathbb{R}^k$. Then, either

$$\exists x \in \mathbb{R}^n \text{ such that } Ax > b$$

$$\exists w \in \mathbb{R}^k, w \geq \mathbf{0}, \text{ such that } \langle w, b \rangle > 0 \text{ and } A^T w = \mathbf{0}$$

- Proof Sketch:

- (1) We first need to figure out a way to construct an analogous system of equations that (i) holds with equality (i.e. get rid of \geq) and (ii) guarantees a nonnegative solution vector so that we can apply Farkas Lemma.
- (2) Let $y_1, y_2, y_3 \in \mathbb{R}^n$. Let $x = y_1 y_2$. Then, $Ax = b \implies A(y_1 y_2) \ge b$. This holds with equality if we choose some nonnegative vector y_3 and subtract it from the LHS. In particular, we choose slack variable such that $y_3 = Ax b$.

$$\implies A(y_1 - y_2) - y_3 = b$$

- (3) By constructing an augmented matrix, we can reinterpret this as a system of equations $\implies [A A I]z = b$, where z is a 3n vector, $z \ge 0$, and [A A I] is an augmented matrix.
- (4) Note that each of our k equations takes the form: $a_iy_1 a_iy_2 y_3 = b$ for a_i row vectors of A for i = 1, ..., k.
- (5) Now we have our new system of equations that agrees with the structure of Farkas Lemma.
- (6) Furthermore, suppose $Ax \ngeq b$, i.e. part (i) is false. We <u>WTS</u> that part (ii) must hold.
- (7) $Ax \neq b \implies [A A I]z \neq b$. Therefore, we may apply Farkas Lemma to conclude that for some $w \in \mathbb{R}^k$, $\langle b, w \rangle > 0 \& [A A I]^T w \leq 0$ $\implies \langle b, w \rangle > 0 \& A^T w = 0 \& w \geq \mathbf{0}$ for some $w \in \mathbb{R}^k$
 - Side-note: we know that $w \ge 0$ since if $\langle b, w \rangle > 0$, then neither b nor w can be 0.

Lemma 6.2.1. Stiemke Lemma

Let $A \in \mathbb{R}^{k \times n}$ and $b \in \mathbb{R}^k$. Then, either

$$Ax = \mathbf{0}$$
, for some $x \in \mathbb{R}^n$, $x >> \mathbf{0}$

or

$$A^T w > \mathbf{0}$$
, for some $w \in \mathbb{R}^k$

- Proof Sketch:

- (1) To prove this lemma, we need to introduce slack variables and construct an augmented matrix as in the proof of the corollary above.
- (2) Note that Ax = 0 for some x >> 0 is the same as saying that Ax = 0 for some $x \ge 1$.
 - If all components of x are strictly positive, we could always scale the vector by some constant λ so that all values of the vector are strictly greater than 1. In other words, we don't have to worry about the case in which $x_i = 0 \implies \lambda x_i 0$ for $\lambda > 0$.
- (3) $x \ge 1 \implies -x \le (-1, -1, ..., -1) \implies -x + y = -1 \text{ for some } y \in \mathbb{R}^n$
- (4) Therefore, $Ax = \mathbf{0} \iff Ax = \mathbf{0} \& -x + y = -1 \text{ for some } x, y \in \mathbb{R}^n, \ x, y \ge 0$ $\implies a_i x = 0 \text{ for row vectors } a_1, ..., a_k \& -x + y = -1$
- (5) Thus, our Ax = b system becomes:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ a_{k1} & \cdots & a_{kn} & 0 & \cdots & 0 \\ -1 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -1 & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \\ y_1 \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ -1 \end{bmatrix}$$

And now our new system has the structure that Farkas Lemma requires, where A refers to the augmented version above and $b = [0, ..., 0, -1, ..., -1]^T \in \mathbb{R}^{k+n}$.

- (6) Now, suppose that part (i) fails, i.e. $Ax \neq \mathbf{0}$. Then, $\nexists x, y \in \mathbb{R}^n$, $x, y \geq \mathbf{0}$ s.t. the augmented system above holds. Farkas Lemma tells us that there instead exists some vector $w \in \mathbb{R}^{k+n}$ such that $\langle b, w \rangle > 0$ & $A^T w \leq \mathbf{0}$.
- (7) Since $b \in \mathbb{R}^{k+n}$, we know that w is the concatenation of some $(k \times 1)$ vector u and some $(n \times 1)$ vector v. Thus, $b = [u \ v]^T$, so we can rewrite the Farkas Lemma condition (ii): $\langle b, w \rangle = \langle [u \ v]^T, [\mathbf{0} \ -\mathbf{1}]^T \rangle > 0$.

$$\implies b_1 w_1 + \dots + b_k w_k + b_{k+1} w_{k+1} + \dots + b_{k+n} w_{k+n} = -v_1 - \dots - v_n > 0$$

$$\implies -v_1 - \dots - v_n > 0$$

$$\implies v_1 + \dots + v_n < 0$$

(8) $A^Tw \leq \mathbf{0}$ in the context of the Farkas Lemma $\implies A^Tu - v \leq 0$ & $v \leq \mathbf{0}$, since our A^Tw in the context of this problem is:

$$\begin{bmatrix} A^T & -\mathbf{1} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \le 0$$

$$\implies A^T u - v \le 0 \& v \le \mathbf{0} \implies A^T u \le v \le \mathbf{0}$$

- (9) $v_1 + ... + v_n < 0$ and $v \leq \mathbf{0} \implies v < \mathbf{0}$
- (10) Therefore, $A^T u \le v < \mathbf{0} \implies A^T u < \mathbf{0}$

Remark 6.2.2. $x >> \mathbf{0}$ means that x has all strictly positive components, so $x_i \neq 0$, $\forall i$. On the other hand, $x \geq \mathbf{0}$ means that x has all nonnegative components.

- And note that the converse of $x \geq 0$, i.e. $x \not\geq 0$, is that <u>at least one</u> x_i is not nonnegative.

7. Concavity

Definition 7.1. Concave

Let S be a nonempty, convex subset of \mathbb{R}^n . We say that a function $f: S \to \mathbb{R}$ is concave if $\forall \alpha \in (0,1), \forall x,y \in S, x \neq y$

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y)$$

Definition 7.2. Convex

Let S be a nonempty, convex subset of \mathbb{R}^n . We say that $f: S \to \mathbb{R}$ is convex if $\forall \alpha \in (0,1), \forall x,y \in S, x \neq y$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Put more concisely, we say that a f is convex if -f is concave.

Definition 7.3. Affine

A function f is affine if it is convex and concave, i.e. $\forall \alpha \in (0,1), \forall x,y \in S, x \neq y$

$$f(\alpha x + (1 - \alpha)y) = \alpha f(x) + (1 - \alpha)f(y)$$

Proposition 7.1. Let S and T be two nonempty convex subsets of \mathbb{R}^n with $T \subseteq S$. If $f: S \to \mathbb{R}$ is a (strictly) concave function, then the restriction of f to T, $f|_T: T \to \mathbb{R}$, is (strictly) concave on T

Proposition 7.2. For any nonempty convex subset $S \subseteq \mathbb{R}^n$, a map $f: S \to \mathbb{R}$ is concave $\iff \{(x,t) \in \mathbb{R}^{n+1} : t \leq f(x)\}$ is a convex set.

- Geometrically, concavity (convexity) of a real map f on an interval I means that the line segment between any two 2-vectors of the form (x, f(x)) and (y, f(y)) lies everywhere below (above) the graph of f. Put differently: f is concave if and only if the area below (above) the graph of f constitutes a convex subset of \mathbb{R}^2 .

Example 7.1. $f: S \to \mathbb{R}: x \mapsto \min_{i=1,...,n} x_i$ is a concave function.

- Proof:

$$f(\alpha x + (1 - \alpha)y) = \min_{i} \alpha x_{i} + (1 - \alpha)y_{i}$$

$$\geq \min_{i} \alpha x_{i} + \min_{i} (1 - \alpha)y_{i}$$

$$= \alpha \min_{i} x_{i} + (1 - \alpha) \min_{i} y_{i}$$

$$= \alpha f(x) + (1 - \alpha)f(y)$$

Example 7.2. $f: S \to \mathbb{R}: x \mapsto \max_{i=1,...,n} x_i$ is a convex function.

Proposition 7.3. Inverses of Convex Functions

Let I be an interval and $f: I \to \mathbb{R}$ a strictly increasing and (strictly) convex function. Then, f^{-1} is a (strictly) concave function on f(I).

- Proof Sketch:
 - (1) Take any $x, y \in f(I)$ and $\alpha \in (0,1)$. Then, $\exists z, w \in I$ such that f(z) = x and f(w) = y. Then, by convexity of f

$$f(\alpha z + (1 - \alpha)w) \le \alpha f(z) + (1 - \alpha)w = \alpha x + (1 - \alpha)y$$

Since f and hence f^{-1} are strictly increasing, we can apply f^{-1} to both sides and preserve the inequality to get

$$\alpha z + (1 - \alpha)w \le f^{-1}(\alpha x + (1 - \alpha)y)$$

And because $\alpha z + (1 - \alpha)w = \alpha f(x) + (1 - \alpha)f(y)$

$$\alpha f^{-1}(x) + (1 - \alpha)f^{-1}(y) \le f^{-1}(\alpha x + (1 - \alpha)y)$$

thereby proving that f^{-1} is concave.

Example 7.3. Let T be a closed and convex set in \mathbb{R}^n . Then, $dist(x,T) = \inf_{t \in T} ||x-t||$ is a convex function.

- Proof: Let $x, y \in \mathbb{R}^n$ & $0 < \alpha < 1$. Set $x' = \mathbb{P}_T(x)$ and $y' = \mathbb{P}_T(y)$. Then,

$$\begin{aligned} dist(\alpha x + (1 - \alpha)y, T) &= \inf_{z \in T} \|\alpha x + (1 - \alpha)y - z\| \\ &\leq \|\alpha x + (1 - \alpha)y - \alpha x' + (1 - \alpha)y'\| \\ &\leq \alpha \|x - x'\| + (1 - \alpha)\|y - y'\| \\ &= \alpha \operatorname{dist}(x, T) + (1 - \alpha)\operatorname{dist}(y, T) \end{aligned}$$

- Note that $dist(x,T) = \inf_{t \in T} ||x-t|| = ||x-\mathbb{P}_T(x)||$, since by definition, the projection of x onto a set T is the distance between x and the point in T closest to x.

Example 7.4. Convexity of Norms

Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Then, $\|\cdot\|$ is a convex function, since we know that $\|\alpha x + (1-\alpha)y\| \le \alpha \|x\| + (1-\alpha)\|y\|$.

- In fact, whatever norm you use on \mathbb{R}^n is a convex function (all strictly convex aside from $\|\cdot\|_{\infty}$).

Example 7.5. Linearity of Inner Product

The inner product with one of its arguments fixed $\langle \cdot, c \rangle$ is a linear function, and thus both convex and concave, since the inner product is linear in each of its arguments.

Example 7.6. Let S be a nonempty convex subset of \mathbb{R}^n and let k be a positive integer. If $f_1, ..., f_k$ are (strictly) concave functions on S, then for any $\lambda_1, ..., \lambda_k > 0$,

$$\lambda_1 f_1 + ... + \lambda_k f_k$$

is a (strictly) concave function on S.

Example 7.7. Let S be a nonempty convex subset of \mathbb{R}^n and define $h: S \to \mathbb{R}$ by

$$h(x) = ||x||^2$$

Then, h is a convex function.

- Note that $h = g \circ f$, where $f: S \to [0, \infty): x \mapsto ||x||$ and $g: [0, \infty) \to \mathbb{R}]: x \mapsto x^2$. Since f is convex, and g is increasing and convex, we can conclude that h is convex.

Example 7.8. Concavity of Quadratic Forms

Let Q be a symmetric $(n \times n)$ matrix, and let $f : \mathbb{R}^n \to \mathbb{R} : x \mapsto \langle Qx, x \rangle$. Let x, y be two arbitrarily chosen n-vectors, and let $\alpha \in (0,1)$. Then,

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y)$$

$$\iff \alpha(\alpha - 1) < \langle Q(x - y), x - y \rangle \ge 0$$

$$\implies \langle Qz, z \rangle \le \forall z \in \mathbb{R}^n$$

- (1) f is concave \iff Q is negative semidefinite, i.e. $\langle Qz,z\rangle \leq 0, \ \forall z\in\mathbb{R}^n$ (all eigenvalues are nonpositive; visually, diagonal has all nonpositive values)
- (2) f is strictly concave $\iff Q$ is negative definite, i.e. $\langle Qz,z\rangle < 0, \ \forall z\in\mathbb{R}^n\setminus\{0\}$

Proposition 7.4. Let $f: S \to \mathbb{R}$ and I is an interval such that $f(S) \subseteq I$, and $g: I \to \mathbb{R}$. In addition, let f be concave and let g be concave and strictly increasing. Then, $g \circ f$ is concave.

- Strictly increasing and concave transformation of a concave function yields a concave function

Proposition 7.5. Let \mathfrak{F} be the set of affine real functions on S. Assume that $\inf_{f \in \mathfrak{F}} f(x) > \infty$, $\forall x \in S$. Then, $x \mapsto \inf_{f \in \mathfrak{F}} f(x)$ is a concave function.

- Pointwise infimum of functions is concave.
- The converse is also true: If $\inf_{f \in \mathfrak{F}} f(x) < \infty \ \forall x \in S$, then we can get a set of affine real functions that approximates our function.
- At the kinks of $\inf_{f \in \mathfrak{F}} f(x)$, use hyperplane separation theorem.

Theorem 7.1. Jensen's Inequality

$$f: S \to \mathbb{R}$$
 is concave $\iff \forall k \geq 2, \ \forall x_1, ..., x_k \in S, \ and \ \forall \alpha \in \Delta^{k-1}, \ f(\sum^k \alpha_i x_i) \geq \sum^k \alpha_i f(x_i)$

Definition 7.4. Quasiconcavity

Let S be a nonempty convex subset of \mathbb{R}^n . We say that a function $f: S \to \mathbb{R}$ is quasiconcave if

$$f(\alpha x + (1 - \alpha)y) \ge \min\{f(x), f(y)\}\$$

for any distinct $x, y \in S$ and any $\alpha \in (0,1)$

Remark 7.1.1. Strictly increasing and concave transformations preserve concavity of a function. Strictly increasing transforms preserve quasiconcavity. And concave implies quasiconcavity, but the converse not generally true.

Remark 7.1.2. For a concave function, if you look at the area <u>below</u> the graph, the area (set) will be convex. Similarly, for a convex function, look at the area above the graph, and the area (set) will be convex.

8. Continuity of Concave Functions

Remark 8.0.1. A concave function on a convex set need not be continuous. However, discontinuities can occur only at the boundary points of the domain of the function.

Lemma 8.0.1. Locally Bounded

Let O be a nonempty, open and convex subset of \mathbb{R}^n and let $f: O \to \mathbb{R}$ be a concave function. Then, for every $x \in O$, $\exists \varepsilon, K > 0$ such that for every $y \in B(x, \varepsilon)$,

$$\mid f(y) \mid \leq K$$

Theorem 8.1. Locally Lipschitz

Let $f: O \to \mathbb{R}$ where $O \subseteq \mathbb{R}^n$ is open and convex. Let f be a concave function. Then, $\forall x \in O, \exists \varepsilon > 0 \& K_x > 0$ such that

$$| f(a) - f(b) | \le K_x ||a - b||, \forall a, b \in B(x, \varepsilon)$$

- In words, concave functions are locally Lipschitz in \mathbb{R}^n (or more generally, on an open and convex set), and since the locally Lipschitz condition subsumes continuity, concave functions are implicitly continuous.

Corollary 8.1.1. Let S be a nonempty convex subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ a concave function. Then, f is continuous on int(S).

- Follows from the implication that a concave f is locally Lipschitz on int(S), since the interior of a convex set in \mathbb{R}^n is also convex and the interior of a set is open by definition.

Corollary 8.1.2. If $f: O \to \mathbb{R}$ for $O \subseteq \mathbb{R}^n$ and f concave $\Longrightarrow f$ is continuous.

Proposition 8.1. Let I be an open interval (and thus convex, since intervals are convex by def'n). Let $f: I \to \mathbb{R}$ be a concave function. Then,

- (1) f is left-differentiable (i.e. left derivative exists everywhere)
- (2) f is right-differentiable (i.e. right derivative exists everywhere)
- (3) For any $x, y \in I, x > y$,

$$f'_{+}(x) \le f'_{-}(x) \le \frac{f(y) - f(x)}{y - x} \le f'_{+}(y) \le f'_{-}(y)$$

where $f'_{-}(x)$ denotes the left derivative at x, etc.

(4) f'_{-} and f'_{+} are decreasing functions; and if f is twice differentiable, f'' < 0

Corollary 8.1.3. For an open interval $I \subseteq \mathbb{R}$, let $f: I \to \mathbb{R}$, differentiable (or twice-differentiable). Then, f is concave $\iff f'$ is decreasing (or $f'' \le 0$ given that f'' exists).

Proposition 8.2. Let f, g be concave functions and g increasing. Then, $g \circ f$ is concave.

- Proof:
 - (1) $g \circ f(\lambda x + (1 \lambda)y) \ge \lambda g \circ f(x) + (1 \lambda)g \circ f(y)$
 - (2) Since f is concave, $f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$
 - (3) Since g is increasing, we can apply $g(\cdot)$ to both sides and preserve the inequality $g(f(\lambda x + (1-\lambda)y)) \ge g(\lambda f(x) + (1-\lambda)f(y))$
 - (4) By the concavity of g, $g(\lambda f(x) + (1 - \lambda)f(y)) \ge \lambda g \circ f(x) + (1 - \lambda)g \circ f(y)$ $\implies g \circ f(\lambda x + (1 - \lambda)y) > \lambda g \circ f(x) + (1 - \lambda)g \circ f(y)$

Proposition 8.3. Let $F: C \to \mathbb{R} \setminus \{-\infty\}$. If $F(x) = \inf\{f(x) : f \in A \subseteq affine functions\}$, then F is concave. Furthermore, if F is concave and continuous, then $\exists A \subseteq affine functions$ such that $F(x) = \inf\{f : f \in A, A \subseteq affine functions\}$.

- Proof uses supporting hyperplanes to construct our set of affine functions (since hyperplanes are affine) which approximate our concave function.

9. Optimization

Definition 9.1. Differentiable

Let $O \subseteq \mathbb{R}^n$ be an open and convex set. $f: O \to \mathbb{R}$ is differentiable at $x \in O$ if for $f(y) = f(x) + \langle \nabla f(x), y - x \rangle + E(y - x)$,

$$\frac{E(y-x)}{\|y-x\|} \to 0 \text{ as } \|y-x\| \to 0,$$

where $E(y-x) = f(x+z) - f(x) - \langle \nabla f(x), z \rangle$ is the error function and $\nabla f(x)$ is the vector of partials evaluated at x. Therefore, the error E(y-x) has to go to 0 faster than ||y-x|| does.

Remark 9.0.1. If f is differentiable, then $\nabla f(x)$ is a vector of partials, but even if f is not differentiable, the vector of partials may still be well-defined.

Theorem 9.1. Let $f: O \to \mathbb{R}$ be a (continuously) differentiable function. Then, f is concave $\iff f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle, \ \forall x, y \in O, \ x \neq y.$

- If $O \subseteq \mathbb{R}$, then this is just like saying the first derivative is decreasing.
- We have a strict inequality if f is strictly concave.

Definition 9.2. Local Maximizer

Let $f: O \to \mathbb{R}$ be any function. We say that $x^* \in O$ is a local maximizer of f if $\exists \varepsilon > 0$ such that $f(x^*) \geq f(x) \ \forall x \in B(x, \varepsilon)$

Definition 9.3. Global Maximizer

Similarly, we say that x^* is a global maximizer if $f(x^*) \ge f(x) \ \forall x \in O$.

Theorem 9.2. Let $f: O \to \mathbb{R}$ be a function differentiable at x^* . If x^* is a local maximizer of f, then $\nabla f(x^*) = \mathbf{0}$.

Lemma 9.2.1. Suppose $f: O \to \mathbb{R}$ is concave. Then, every local maximizer of f is a global maximizer (if convex, then global minimizer).

Theorem 9.3. Let $f: O \to \mathbb{R}$ be concave. Suppose f is differentiable at $x^* \in O$. Then, x^* is a global maximizer of $f \iff \nabla f(x^*) = \mathbf{0}$.

Theorem 9.4. KKT for Concave Programming

Suppose we are interested in the following maximization problem:

$$\max f(x) \ s.t. \ h_i(x) \ge 0 \ \forall i = 1, ..., k$$

Let O be a nonempty, open, and convex set in \mathbb{R}^n . Let $f, h_1, ..., h_k : O \to \mathbb{R}$ be differentiable, concave real-valued functions on O. Assume $\exists x \in O$ such that $h_i(x) > 0 \ \forall i = 1, ..., k$; i.e., there is at least one point in the interior of the constraint set (closed since concave implies continuous) for which all constraints hold strictly—<u>Slater's Condition</u>. Then, for any $x^* \in O$, we have

$$x^* \in \arg\max\{f(x) : x \in O \& h_i(x) \ge 0 \ \forall i\} \iff \exists \lambda^* \in [0,\infty)^k \ such \ that$$

1.
$$\nabla f(x^*) + \sum_{i=1}^{k} \lambda_i^* \nabla h_i(x^*) = \mathbf{0}$$
 [FOC]
2. $\lambda_i^* h_i(x) = 0 \forall i = 1, ..., k$

- Note that Slater's condition simply requires that we have some point x in the interior of the constraint set in which all constraints hold with strict inequality, i.e. $h_i(x) > 0 \ \forall i$.
- The condition of concave constraint functions implies that we have a convex constraint set. More generally, we just care that we have a convex constraint set $\bigcap h_i(X)$ (i.e. concavity of constraint functions not necessary).

- In words, the theorem tells us that if we have a solution x^* for a maximization problem with concave constraints $h_1, ..., h_k$ and a concave objective function f in which Slater's condition holds, then the KKT conditions (1) and (2) must also hold.
- And conversely, if we have a maximization problem with a convex constraint set and a concave objective function in which Slater's condition holds, then if the KKT conditions hold, then we have a solution x*.
- Note that a solution x* to a general maximization need not satisfy the KKT conditions (or Slater's condition for that matter).
 - <u>e.g.</u> Consider $\max x$ s.t. $x^2 \le 0$. Slater's condition does not hold. By looking at the objective function, we can tell that x = 0 is an optimum, but we can't use the FOC since $1 + \lambda^* 0 = 1 \ne 0$.
 - e.g. Consider $\max -(x_1^2 + x_2^2)$ such that $(x_1 1)^3 x_2 \ge 0$.

Lemma 9.4.1. Directional Derivative

If $f: O \to \mathbb{R}$ is differentiable at $x \in O$, then $\partial_z f(x) = \langle \nabla f(z), z \rangle \ \forall z \in \mathbb{R}^n$

Lemma 9.4.2. Let constraint set $A \subseteq \mathbb{R}^n$ be a nonempty, convex set. Let $O \subseteq \mathbb{R}^n$ be an open convex set such that $A \subseteq O$. Let $f: O \to \mathbb{R}$ be a concave function. Then, $x^* \in \arg\max\{f(x): x \in A\} \iff \partial_y f(x^*) \leq 0 \ \forall y \in \mathbb{R}^n$ such that $\exists T > 0$ with $x^* + ty \in A \ \forall t \in (0,T)$

- The "then" part (ii) of the lemma just says that in any direction $y \in \mathbb{R}^n$ from proposed optimum x^* (so y is a vector of directions), we're moving downward/decreasing. And in particular, we are testing the behavior of the objective function f near x^* by seeing what f does when we perturb the input x^* with a perturbation of "magnitude" t and direction y, i.e. $x^* + ty$. The condition that $x^* + ty \in A$ just ensures that our perturbation is meaningful; i.e., the perturbed value still lives in the constraint set and is thus feasible.