Machine Learning

Session 3: Generative Models

- 1. Introduction to Generative models
- 2. The generative Gaussian Model: ML estimator
- 3. Review of linear algebra for the Gaussian Model
- 4. Properties of the Gaussian Model

Bibliography:

- Bishop: 1.2.4, 2.3 (almost up to 2.3.1, this excluded), Appendix C, Eigenvector equation
- See (up to Applications) the link below, with lot of code: https://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-data-science-388a54be95d

Generative Models for Clustering

Problems with clustering by K-means:

- Elongated (non isotropic) clusters give us problems
- Different priors (different number of points in each cluster)
- Is not clear the meaning of clustering

New idea: we imagine the data of each cluster is generated by a model.

- We then adjust the model parameters to maximize the probability that it produce exactly the data we observed (parameter inference).
- This approach give us a method for different priors, a measure of how good are the clusters
- From the model we can predict and generate new data
- We will do in two parts: Gaussian Model (today) and Mixture of Gaussian model

DATA come from a MODEL ->Interpret the model characteristics from the data

1D Gaussian Model:

$$\mathcal{N}_1(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

From the data $\mathcal{D} = \{x^{(1)}, ..., x^{(N)}\}$ we can compute the Maximum Likelihood of a 1D Gaussian model:

$$\mu_{ML} = E(x) = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

$$\sigma_{ML}^{2} = E\{(x - E(x))^{2}\} = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \mu_{ML})^{2}$$

Statistic Deviation is also very useful

$$\mathcal{N}(\mathbf{x}|\mu, \mathbf{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}$$
Determinant

$$\mathcal{N}_1(x|\mu,\sigma) = rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

From $\mathcal{D} = \{\mathbf{x}^{(1)}, ..., \mathbf{x}^{(N)}\}$, each $\mathbf{x}^{(N)} \in \mathbb{R}^D$ we can compute the Maximum Likelihood of a multi-variate Gaussian model:

$$\boldsymbol{\mu} = E\{\mathbf{x}\} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)}$$

$$\boldsymbol{\Sigma} = E\left\{ \left(\mathbf{x} - E(\mathbf{x}) \right)^{2} \right\} = E\left\{ \left(\mathbf{x} - E(\mathbf{x}) \right) \left(\mathbf{x} - E(\mathbf{x}) \right)^{\mathsf{T}} \right\}$$

$$= \frac{1}{N} \sum_{n=1}^{N} [\mathbf{Y} \mathbf{Y}^{\mathsf{T}} - \boldsymbol{\mu} \boldsymbol{\mu}^{\mathsf{T}}]$$

Where **Y** is a $D \times D$ matrix with $\mathbf{x}^{(n)}$ as columns

Sometimes (if *N* is small) we correct the bias of variance (covariance) using:

$$\frac{N}{N-1}\Sigma$$

The covariance matrix for 2 or more dimensions:

• Remember than the vectors $\mathbf{x}^{(n)}$ n=1,...,N are column vectors:

$$\mathbf{x}^{(n)} = \begin{pmatrix} x_1^{(n)} \\ \vdots \\ x_i^{(n)} \\ \vdots \\ x_j^{(n)} \\ \vdots \\ x_n^{(n)} \end{pmatrix} \qquad \Longrightarrow \qquad \boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_i \\ \vdots \\ \mu_j \\ \vdots \\ \mu_D \end{pmatrix} \qquad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix}$$

- The mean of this set of vectors is $\mathbf{\mu} = (\mu_1, ..., \mu_D)^{\mathsf{T}}$
- The covariance between the i-th and the j-th coordinates measures their (linear) relation:

- Let Y be the matrix with the data points as column vectors (design matrix transposed)
 - We calculate $\mathbf{Z} = \mathbf{Y} \mathbf{\mu}$
 - $\Sigma = \frac{1}{N} \mathbf{Z} \mathbf{Z}^{\mathsf{T}}$: to obtain Σ_{ij} multiply all the i-th values for all j-th values
 - Σ is a symmetric matrix: cov(i, j) = cov(j, i)
- We define the correlation corr(i,j)= $\rho_{ij}=\frac{\sigma_{ij}}{\sigma_i\sigma_j}$ with $\sigma_{i}=\sqrt{\sigma_{ii}}$ with $-1\leq\rho_{ij}\leq1$

Exercice: Assume N=4 examples in three dimensions

$$\mathbf{Y} = \begin{pmatrix} 2 & 3 & 5 & 6 \\ 2 & 4 & 4 & 6 \\ 4 & 6 & 2 & 4 \end{pmatrix}$$

The mean is:
$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$$
 and $\mathbf{Z} = \mathbf{Y} - \mu = \begin{pmatrix} -2 & -1 & 1 & 2 \\ -2 & 0 & 0 & 2 \\ 0 & 2 & -2 & 0 \end{pmatrix}$

$$\mathbf{\Sigma} = \frac{1}{4} \mathbf{Z} \mathbf{Z}^{\top} = \frac{1}{4} \begin{pmatrix} -2 & -1 & 1 & 2 \\ -2 & 0 & 0 & 2 \\ 0 & 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} -2 & -1 & 1 & 2 \\ -2 & 0 & 0 & 2 \\ 0 & 2 & -2 & 0 \end{pmatrix}^{T} = \frac{1}{4} \begin{pmatrix} 10 & 8 & -4 \\ 8 & 8 & 0 \\ -4 & 0 & 8 \end{pmatrix} = \begin{pmatrix} 5/2 & 2 & -1 \\ 2 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

Correlations:
$$\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$$
 $\sigma_i = \sqrt{\sigma_{ii}}$

$$\rho_{11} = 1; \text{ Why?}$$

$$\rho_{12} = \frac{2}{\sqrt{5/2}\sqrt{2}} = 0.89;$$

$$\rho_{13} = \frac{-1}{\sqrt{5/2}\sqrt{2}} = -0.45$$

$$\begin{pmatrix} 1 & 0.89 & -0.45 \\ 0.89 & 1 & 0 \\ -0.45 & 0 & 1 \end{pmatrix}$$

Interpretation of the covariance (and correlation):

Given the following samples from a 3D distribution

- Compute the covariance matrix (done!)
- Generate scatter plots for every pair of variables
- Can you observe any relationships between the covariance and the scatterplots?

Design Matrix: as in DataBases

	Variables (or features)		
Examples	X ₁	X ₂	X ₃
1	2	2	4
2	3	4	6
3	5	4	2
4	6	6	4

$$\Sigma = \begin{pmatrix} 5/2 & 2 & -1 \\ 2 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

(linear) correlations:

$$\rho_{12} = \frac{2}{\sqrt{5/2}\sqrt{2}} = 0.89$$

$$\rho_{32} = \frac{0}{\sqrt{2}\sqrt{2}} = 0$$

$$\rho_{31} = \frac{-1}{\sqrt{5/2}\sqrt{2}} = -0.45$$

- The Parameters of the Gaussian Model are useful:
 - The covariance matrix indicates the tendency of each pair of features to co-vary
 - The covariance matrix has several important properties:

$$\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$$

$$\sigma_i = \sqrt{\sigma_{ii}}$$

- If x_i and x_j tend to increase together, then $\sigma_{ij} > 0$
- $\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$ If x_i tends to decrease when x_j increases, then $\sigma_{ij} < 0$ If x_i and x_j are uncorrelated, then $\sigma_{ij} = 0$ $\sigma_{ii} = \sigma_{i}^2 = \operatorname{Var}(x_i)$

 - The covariance terms can be expressed as: $\sigma_{ij} = \rho_{ij} \sigma_i \sigma_j$
 - Data Normalization: make all features equally centered and on the same scale Share mean and variance: $x_i' = \frac{x_i - \mu_i}{\sqrt{\sigma_{ij}}}$

$$\sigma_{ij} = -\sigma_i \sigma_j$$

$$\rho_{ij} = -1$$

$$\sigma_{ij} = -\frac{1}{2}\sigma_i\sigma_j$$

$$\rho_{ij} = -\frac{1}{2}$$

$$\sigma_{ij} = 0$$

$$\rho_{ij} = 0$$

$$\sigma_{ij} = \frac{1}{2}\sigma_i\sigma_j^X$$

$$\rho_{ij} = \frac{1}{2}$$

$$\sigma_{ij} = \sigma_i \sigma_j$$
$$\rho_{ij} = 1$$

- The parameters of the Gaussian Model (up to now):
 - Mean of the 'cluster'
 - Explain how the features co-variate (important information)
- This is not enough for clustering:
 - We need the orientation of the cluster (not only spherical!)
 - Given new points
 - we need to predict which cluster they belong to, i.e., probability density at that point under that cluster
 - The model gives us much more than the co-variation of features.

We will work to:

- Estimate the new vector basis from Covariance matrix
- Express the points in the new basis: for example, to say the points out of the ellipse, are rejected

Eigendecomposition of a covariance matrix

Review: Eigendecomposition: Standard eigenvalue problem

• Given a $n \times n$ matrix **A**, find a scalar λ and a nonzero vector **v** s.t.:

$$A\mathbf{v} = \lambda \mathbf{v}$$

 λ is the eigenvalue and ${\bf v}$ is corresponding eigenvector

- $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ is equivalent to solve $(\mathbf{A} \lambda \mathbf{I})\mathbf{v} = 0$ (I identity matrix)
- Nonzero solution of \mathbf{v} if and only if the matrix $(\mathbf{A} \lambda \mathbf{I})$ is singular $\det(\mathbf{A} \lambda \mathbf{I}) = 0$
- The eigenvalues are the zeros of the characteristic polynomial $\det(\mathbf{A} \lambda \mathbf{I}) = 0$ in λ of degree n
- If the matrix A is symmetric, all the eigenvalues are Real

Eigendecomposition of a covariance matrix

Example: eigenvalues and eigenvectors of the matrix $\mathbf{A} = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$

• Characteristic polynomial:

$$\det\begin{bmatrix} \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} = \det\begin{bmatrix} \begin{pmatrix} 3 - \lambda & -1 \\ -1 & 3 - \lambda \end{pmatrix} \end{bmatrix} = (3 - \lambda)(3 - \lambda) - 1 = \lambda^2 - 6\lambda + 8$$
Solve $\lambda^2 - 6\lambda + 8 = 0$

- **Eigenvalues** will be: $\lambda = \frac{6 \pm \sqrt{36-32}}{2} = \frac{6 \pm 2}{2}$ so $\lambda_1 = 4$ and $\lambda_2 = 2$
- Eigenvectors x, $(A \lambda I)v = 0$,

For
$$\lambda_1 = 4$$
: $\begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$, so $-v_1 - v_2 = 0$; $v_2 = -v_1$

$$\binom{v_1}{v_2} = \binom{v_1}{-v_1}; \binom{1}{-1} \text{ making it of unit norm, } \mathbf{v}^{(1)} = \binom{1/\sqrt{2}}{-1/\sqrt{2}}$$

For
$$\lambda_2 = 2$$
: $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$, so $v_1 - v_2 = 0$; $v_2 = v_1$

$$\binom{v_1}{v_2} = \binom{v_1}{v_1}; \binom{1}{1} \text{ making it of unit norm, } \mathbf{v}^{(2)} = \binom{1/\sqrt{2}}{1/\sqrt{2}}$$

Note that both vectors are orthonormal

- The vector $\mathbf{v}^{(1)}$ is the "direction of maximum variance" If each point \mathbf{x} is perpendicularly projected onto this line, the variance of this projected values is maximized
- The vector $\mathbf{v}^{(2)}$ is the "direction of second maximum variance"
- The Eigendecomposition of Σ gives us:
 - Eigenvectors: the vectors v⁽ⁱ⁾
 - Eigenvalues: $\lambda_i = \text{Var}(\mathbf{u}^{(i)})$, $\text{std}(\mathbf{u}^{(i)}) = \sqrt{\lambda_i}$

- The vector $\mathbf{v}^{(1)}$ is the "direction of maximum variance" If each point \mathbf{x} is perpendicularly projected onto this line, the variance of this projected values is maximized
- The vector $\mathbf{v}^{(2)}$ is the "direction of second maximum variance"
- The Eigendecomposition of Σ gives us:
 - Eigenvectors: the vectors v⁽ⁱ⁾
 - Eigenvalues: $\lambda_i = \text{Var}(\mathbf{u}^{(i)})$, $\text{std}(\mathbf{u}^{(i)}) = \sqrt{\lambda_i}$

Diagonal Covariance Matrix (zero off-diagonal elements)

- The vector $\mathbf{v}^{(1)}$ is the "direction of maximum variance" If each point \mathbf{x} is perpendicularly projected onto this line, the variance of this projected values is maximized
- The vector $\mathbf{v}^{(2)}$ is the "direction of second maximum variance"
- The Eigendecomposition of Σ gives us:
 - Eigenvectors: the vectors v⁽ⁱ⁾
 - Eigenvalues: $\lambda_i = \text{Var}(\mathbf{u}^{(i)})$, $\text{std}(\mathbf{u}^{(i)}) = \sqrt{\lambda_i}$

Non-Diagonal Covariance Matrix (not axis aligned anymore)

Covariance matrix as a linear transformation

Remember the Gaussian Model:

$$f_{x}(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

- The expression $\Delta^2=(x-\mu)^T\Sigma^{-1}(x-\mu)$ Is the squared Mahalanobis Distance between x and μ
- The points at the same **Mahalanobis Distance** to the center have the same probability and form an ellipse (in 2D)

Covariance matrix as a linear transformation

Start from the unit covariance

$$\Sigma = \begin{bmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Covariance matrix as a linear transformation

Start from the unit covariance

Each of the previous examples can be obtained by a linear transformation of the data D

$$D' = T D$$
 $T = R S.$ $R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ $S = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$

Covariance matrix as a linear transformation

• Example: scale the data in the x-direction by a factor 4

No rotation

$$D' = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} D \qquad \qquad \Sigma' = \begin{bmatrix} \sigma_x^2 & 0 \\ 0 & \sigma_y^2 \end{bmatrix} = \begin{bmatrix} 16 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad T = \sqrt{\Sigma'} = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}.$$

Covariance matrix as a linear transformation

In general, Eigendecomposition (in matrix form)

$$\sum V = V L$$
 Columns of V are eigenvectors of Σ Diagonal matrix L with eigenvalues

- Covariance matrix Σ can be decomposed as $\Sigma = V L V^{-1}$
- Equivalently $\Sigma = R S S R^{-1}$

R represents a rotation matrix $S = \sqrt{L}$ represents a scaling matrix

- Linear transformation T = RSSince S is diagonal, $S = S^{T}$ Since R is orthogonal, $R^{-1} = R^{T}$
- Therefore $T^{\mathsf{T}} = (RS)^{\mathsf{T}} = S^{\mathsf{T}}R^{\mathsf{T}} = SR^{-1}$

$$\Sigma = RSSR^{-1} = TT^{\mathsf{T}}$$

Covariance matrix as a linear transformation

• If we apply the linear transformation defined by T=RS to the original white data, we obtain the rotated and scaled data with covariance

$$TT^{\mathsf{T}} = \Sigma' = RSSR^{-1}$$

In 2D: we want to see the points from the basis $\langle \mu, v^{(1)}, v^{(2)} \rangle$

We know $\mathbf{x} = \mathbf{\mu} + \mathbf{x}_{\mu}$ then: $\mathbf{x}_{\mu} = \mathbf{x} - \mathbf{\mu}$, but:

- In which basis is expressed \mathbf{x}_{μ} ?
 - Canonical basis: $e^{(1)}$, $e^{(2)}$
 - $x_{\langle e \rangle}$ means the vector x with respect to the basis $\langle e^{(1)}, e^{(2)} \rangle$

$$\mathbf{x}_{\langle \mathbf{e} \rangle} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 \mathbf{e}^{(1)} + x_2 \mathbf{e}^{(2)}$$

The vectors, before doing operations in coordinates, always in the same basis.

In 2D: we want to see the points from the basis $\langle \mu, v^{(1)}, v^{(2)} \rangle$

We know $\mathbf{x} = \mathbf{\mu} + \mathbf{x}_{\mu}$ then: $\mathbf{x}_{\mu} = \mathbf{x} - \mathbf{\mu}$, but:

- In which basis is expressed \mathbf{x}_{μ} ?
 - Canonical basis: $e^{(1)}$, $e^{(2)}$
 - $\mathbf{x}_{\langle \mathbf{e} \rangle}$ means the vector \mathbf{x} with respect to the basis $\langle \mathbf{e}^{(1)}, \mathbf{e}^{(2)} \rangle$

$$\mathbf{x}_{\langle \mathbf{e} \rangle} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 \mathbf{e}^{(1)} + x_2 \mathbf{e}^{(2)}$$

The vectors, before doing operations in coordinates, always in the same basis.

Given $\mathbf{x}_{\langle \mathbf{e} \rangle}$, how to calculate $\mathbf{x}_{\mu_{\langle \mathbf{v} \rangle}}$?

To achieve it, we need to express:

$$\mathbf{x}_{\mu_{\langle \mathbf{e} \rangle}} = x_1 \mathbf{e}^{(1)} + x_2 \mathbf{e}^{(2)} \text{ as } \mathbf{x}_{\mu_{\langle \mathbf{v} \rangle}} = w_1 \mathbf{v}^{(1)} + w_2 \mathbf{v}^{(2)}$$

Note that the vector $\mathbf{X}\mu_{(e)}$ can be translated to the origin

(simplified): given $y_{(e)}$, calculate $y_{(v)}$

To achieve it, we need to express the same point:

$$\mathbf{y}_{\langle \mathbf{e} \rangle} = y_1 \mathbf{e}^{(1)} + y_2 \mathbf{e}^{(2)} \text{ as } \mathbf{y}_{\langle \mathbf{v} \rangle} = w_1 \mathbf{v}^{(1)} + w_2 \mathbf{v}^{(2)}$$

Example: Obtain the vector $\mathbf{y}_{\langle \mathbf{e} \rangle} = \begin{pmatrix} 1 \\ 7 \end{pmatrix}$ in the new basis $\mathbf{v}^{(1)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\mathbf{v}^{(2)} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$

What is the meaning of
$$\binom{w_1}{w_2}$$
 in $\binom{1}{7} = \binom{1}{2} - \binom{1}{2} \binom{w_1}{w_2}$?

$$\binom{1}{2} \quad \frac{-2}{1} \binom{w_1}{w_2} = \binom{w_1 - 2w_2}{2w_1 + w_2} = w_1 \binom{1}{2} + w_2 \binom{-2}{1} = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2$$

So, we need to solve the system: $A\mathbf{y}_{\langle \mathbf{v} \rangle} = \mathbf{y}_{\langle \mathbf{e} \rangle}$

Multiplying each side by the inverse matrix:

$$\binom{w_1}{w_2}_{\text{}} = \binom{1}{2} \quad \binom{-2}{1}^{-1} \binom{1}{7} = \frac{1}{5} \binom{1}{-2} \quad \binom{1}{7} = \binom{3}{1}$$

(simplified): given $y_{(e)}$, calculate $y_{(v)}$

To achieve it, we need to express the same point:

$$\mathbf{y}_{\langle \mathbf{e} \rangle} = y_1 \mathbf{e}^{(1)} + y_2 \mathbf{e}^{(2)} \text{ as } \mathbf{y}_{\langle \mathbf{v} \rangle} = w_1 \mathbf{v}^{(1)} + w_2 \mathbf{v}^{(2)}$$

$$\mathbf{y} = \begin{cases} \mathbf{y}_{\langle \mathbf{e} \rangle} = \begin{pmatrix} 1 \\ 7 \end{pmatrix}_{\langle \mathbf{e} \rangle} \\ \mathbf{y}_{\langle \mathbf{v} \rangle} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}_{\langle \mathbf{v} \rangle} \end{cases}$$

A unique point expressed in two different coordinates systems

Rule:

- 1. Construct the matrix **A** with the basis vectors in columns
- 2. Calculate A^{-1}
- 3. The new coordinates are: $\mathbf{y}_{\langle \mathbf{v} \rangle} = \mathbf{A}^{-1} \mathbf{y}_{\langle \mathbf{e} \rangle}$
- Important: If the matrix \mathbf{A} is orthonormal, then $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$ Orthonormal means: $\|\mathbf{v}_i\| = 1$ and $\mathbf{v}_i^{\mathsf{T}} \mathbf{v}_j = \delta_{ij}$ for all i, j

$$\mathbf{A} = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \text{ is orthonormal, } \mathbf{A}^{-1} = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}$$

• We take the vector $\mathbf{x}_{\mu} = \mathbf{x} - \mathbf{\mu}$ expressed in the $\langle \mathbf{e} \rangle$ basis and transform it to the $\langle \mathbf{\mu}, \mathbf{v} \rangle$ basis

– The multivariate Normal distribution $\mathcal{N}(\mu, \Sigma)$ is defined as

$$f_{\chi}(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

- By Maximum likelihood we can estimate covariance Σ and μ from the data
- For a single dimension, this expression is reduced to

$$f_{x}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Effects of the covariance matrix on the plot:

$$\mu = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 25 & 0 \\ 0 & 9 \end{pmatrix}$$

$$\mu = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 10 & 5 \\ 5 & 5 \end{pmatrix} \quad \lambda_1 = 13.09$$

$$\lambda_2 = 1.9$$

Variance in 1st direction is λ_1 and λ_2 in 2nd

$$f_{\chi}(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

$$\Delta^2 = (\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})$$

Squared Mahalanobis distance from x to μ

All the points at the same Mahalanobis distance from $\boldsymbol{\mu}$ have the same probability

 λ_i is the variance along the axis \mathbf{v}_i

We know SVD: $\Sigma = VDV^T$

Properties:

1.
$$\Sigma = \sum_{i=1}^{D} \lambda_i \mathbf{v}^{(i)} \mathbf{v}^{(i)^{\mathsf{T}}}$$
 (spectral decomposition)

$$\begin{split} \Sigma &= \text{VDV}^{\text{T}} = \begin{pmatrix} v_1^{(1)} & v_1^{(2)} \\ v_2^{(1)} & v_1^{(2)} \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} v_1^{(1)} & v_2^{(1)} \\ v_1^{(2)} & v_1^{(2)} \end{pmatrix} = \\ &= \begin{pmatrix} \lambda_1 v_1^{(1)} v_1^{(1)} + \lambda_2 v_1^{(2)} v_1^{(2)} & \lambda_1 v_1^{(1)} v_2^{(1)} + \lambda_2 v_1^{(2)} v_2^{(2)} \\ \lambda_1 v_2^{(1)} v_1^{(1)} + \lambda_2 v_2^{(2)} v_1^{(1)} & \lambda_1 u_2^{(1)} u_2^{(1)} + \lambda_2 v_2^{(2)} v_2^{(2)} \end{pmatrix} = \end{split}$$

$$=\lambda_1 \begin{pmatrix} v_1^{(1)}v_1^{(1)} & v_1^{(1)}v_2^{(1)} \\ v_2^{(1)}v_1^{(1)} & v_2^{(1)}v_2^{(1)} \end{pmatrix} + \lambda_2 \begin{pmatrix} v_1^{(2)}v_1^{(2)} & v_1^{(2)}v_2^{(2)} \\ v_2^{(2)}v_1^{(2)} & v_2^{(2)}v_2^{(2)} \end{pmatrix} =$$

$$= \lambda_1 \begin{pmatrix} v_1^{(1)} \\ v_2^{(1)} \end{pmatrix} (v_1^{(1)} v_2^{(1)}) + \lambda_2 \begin{pmatrix} v_1^{(2)} \\ v_2^{(2)} \end{pmatrix} (v_1^{(2)} v_2^{(2)}) =$$

$$= \lambda_1 \mathbf{v}^{(1)} \mathbf{v}^{(1)^{\mathsf{T}}} + \lambda_2 \mathbf{v}^{(2)} \mathbf{v}^{(2)^{\mathsf{T}}}$$
26

$$f_{\chi}(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

$$\Delta^2 = (\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})$$

Squared Mahalanobis distance from x to μ

All the points at the same Mahalanobis distance from $\boldsymbol{\mu}$ have the same probability

 λ_i is the variance along the axis \mathbf{v}_i

We know SVD: $\Sigma = VDV^T$

Properties:

1.
$$\Sigma = \sum_{i=1}^{D} \lambda_i \mathbf{v}^{(i)} \mathbf{v}^{(i)^{\mathsf{T}}}$$
 (spectral decomposition)

2.
$$\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{v}^{(i)} \mathbf{v}^{(i)^{\mathsf{T}}}$$

$$\Sigma = VDV^T$$
 so

$$\begin{split} \Sigma^{-1} &= (VDV^{\mathsf{T}})^{-1} = V^{-1}D^{-1}(V^{\mathsf{T}})^{-1} = V^{\mathsf{T}}D^{-1}V \\ &= V \begin{pmatrix} 1/\lambda_1 & 0 \\ 0 & 1/\lambda_2 \end{pmatrix} V^{\mathsf{T}} = \frac{1}{\lambda_1} \mathbf{v}^{(1)} \mathbf{v}^{(1)^{\mathsf{T}}} + \frac{1}{\lambda_2} \mathbf{v}^{(2)} \mathbf{v}^{(2)^{\mathsf{T}}} \end{split}$$

Note that
$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^{-1} = \begin{pmatrix} 1/a & 0 \\ 0 & 1/b \end{pmatrix}$$

$$f_{\chi}(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

$$\Delta^2 = (\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})$$

Squared Mahalanobis distance from x to μ

All the points at the same Mahalanobis distance from $\boldsymbol{\mu}$ have the same probability

 λ_i is the variance along the axis \mathbf{v}_i

We know SVD: $\Sigma = VDV^T$

Properties:

1.
$$\Sigma = \sum_{i=1}^{D} \lambda_i \mathbf{v}^{(i)} \mathbf{v}^{(i)^{\mathsf{T}}}$$
 (spectral decomposition)

2.
$$\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{v}^{(i)} \mathbf{v}^{(i)^{\mathsf{T}}}$$

3. $y_i = \mathbf{v}_i^{\mathsf{T}} (\mathbf{x} - \mathbf{\mu})$ is the projection of $(\mathbf{x} - \mathbf{\mu})$ onto the vector $\mathbf{v}^{(i)}$

$$f_{\chi}(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

$$\Delta^2 = (\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu}) \quad \mathsf{sq}$$

Squared Mahalanobis distance from x to μ

All the points at the same Mahalanobis distance from μ have the same probability

 λ_i is the variance along the axis \mathbf{v}_i

4. The squared Mahalanobis distance: $\Delta^2 = \sum_{i=1}^{D} \frac{y_i}{\lambda_i}$

$$\Delta^{2} = (\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mathbf{\mu}) =$$

$$= (\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \left(\frac{1}{\lambda_{1}} \mathbf{v}^{(1)} \mathbf{v}^{(1)^{\mathsf{T}}} + \frac{1}{\lambda_{2}} \mathbf{v}^{(2)} \mathbf{v}^{(2)^{\mathsf{T}}} \right) (\mathbf{x} - \mathbf{\mu})$$

$$= \frac{1}{\lambda_{1}} (\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{v}^{(1)} \mathbf{v}^{(1)^{\mathsf{T}}} (\mathbf{x} - \mathbf{\mu})$$

$$+ \frac{1}{\lambda_{2}} (\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{v}^{(2)} \mathbf{v}^{(2)^{\mathsf{T}}} (\mathbf{x} - \mathbf{\mu})$$

$$= \frac{1}{\lambda_{1}} y_{1} y_{1} + \frac{1}{\lambda_{2}} y_{2} y_{2} = \frac{y_{1}^{2}}{\lambda_{1}} + \frac{y_{2}^{2}}{\lambda_{2}}$$

Note that:
$$(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{v}^{(1)} = (\mathbf{v}^{(1)^{\mathsf{T}}} (\mathbf{x} - \mathbf{\mu}))^{\mathsf{T}} = y_i^{\mathsf{T}} = y_i$$

Remember:

- 1. Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are the points at Mahalanobis Distance 1 are the ellipse with axis $\sqrt{\lambda_1}$, $\sqrt{\lambda_2}$
- 2. $\Delta^2 = 4$ are the points of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 4$. That is $\frac{x^2}{4a^2} + \frac{y^2}{4b^2} = 1$ with axes 2a, 2b

$$f_{\chi}(\mathbf{x}) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

$$\Delta^2 = (\mathbf{x} - \mathbf{\mu})^{\mathsf{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})$$

Squared Mahalanobis distance from ${\it x}$ to ${\it \mu}$

All the points at the same Mahalanobis distance from $\boldsymbol{\mu}$ have the same probability

 λ_i is the variance along the axis \mathbf{v}_i

We know SVD: $\Sigma = VDV^T$

Properties:

1.
$$\Sigma = \sum_{i=1}^{D} \lambda_i \mathbf{v}^{(i)} \mathbf{v}^{(i)^{\mathsf{T}}}$$
 (spectral decomposition)

2.
$$\Sigma^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{v}^{(i)} \mathbf{v}^{(i)^{\mathsf{T}}}$$

3.
$$y_i = \mathbf{v}_i^{\mathsf{T}} (\mathbf{x} - \boldsymbol{\mu})$$
 is the projection of $(\mathbf{x} - \boldsymbol{\mu})$ onto the vector $\mathbf{v}^{(i)}$

4. The *squared* Mahalanobis distance

$$\Delta^2 = \sum_{i=1}^{D} \frac{y_i^2}{\lambda_i}$$

- Ellipse with all the points with the same probability.
- Length axis $i = \sqrt{\lambda_i}$ $\lambda_i = Var(\mathbf{v}^{(i)})$

Applications of the Gaussian Model

Up to now the algebraic part

- Imagine you are client of a bank. Imagine also that each month you have a money assignation and you perhaps finish the month with a small saving.
- To the Data Scientist of the bank, you are interesting for three reasons (at least)
 - your each month savings
 - the money you do not use during the month
 - the cluster you belong to
 - with month savings: possible consumer of new products
 - No savings: special offers, discount tickets
 - Not only those, see the plot

- First, covariance positive: more incomes, more savings
- Clustering offer more:
 - x and z have the same probability different sign projection (to u₁)
 - x don't waste money (offer products!, new features: age?)
 - z few savings, Special Offers
 - n outlier: consider apart

Summary

- Data in the space appears generating some clouds
- Covariance Matrix helps to extract the geometrical properties of these structures
- We can better understand the covariance matrix using eigenvectors, eigenvectors and the Mahalanobis distance.
- The Gaussian Model is very useful:
 - for its clear geometrical properties
 - with few parameters we can summarize lot of points
 - gives a probability, so we can exploit that for prediction (new cases, not seen before).
 - It is a generative model.

Exercises

Solution

b)

Example (Exam June 2018)

- 1. Consider a Gaussian centered in $\vec{\mu}_1 = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$ and with covariance matrix $\Sigma = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$. Another Gaussian with the same covariance has the center in $\vec{\mu}_2 = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$.
 - (a) (1pt) What is the inverse of the matrix Σ ?. Write the expression that give us the Mahalanobis distance from one point $\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ to the first Gaussian.
 - (b) (0.5pt) Plot the curves that are at a Mahalanobis distance of 1 and 2 for each Gaussian.
 - (c) (0.5pt) Give a point that is equidistant (in the Euclidean sense) from the two centers and closest to the first Gaussian using the Mahalanobis distance.

$$\Sigma^{-1} = \begin{pmatrix} 1/4 & 0 \\ 0 & 1/9 \end{pmatrix}$$

$$D_1(\vec{x}) = \sqrt{(\vec{x} - \mu_1)^\top \Sigma^{-1} (\vec{x} - \mu_1)^\top} = \sqrt{\frac{x^2}{4} + \frac{(y - 4)^2}{9}}$$

c) The point (0,0), since it is at distance 4/3 from the first Gaussian and 2 from the second one. (0,0) is closer to N_1 in the Mahalanobis sense.

Exercises

Example (Exam June 2019)

We have a random variable $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ normally distributed according to $\mathcal{N}(\boldsymbol{\mu}, \Sigma)$ with mean $\boldsymbol{\mu} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ and covariance matrix Σ given by the eigenvectors $\mathbf{u}_1 = \begin{pmatrix} 1/2 \\ \frac{\sqrt{3}}{2} \end{pmatrix}$ and $\mathbf{u}_2 = \begin{pmatrix} -\frac{\sqrt{3}}{2} \\ 1/2 \end{pmatrix}$, with eigenvalues 4 and 2 respectively.

1. (0.5pt) Calculate the covariance matrix Σ .

Solution: We give three solutions

(a)
$$\Sigma = UDU^T = \begin{pmatrix} 1/2 & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & 1/2 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1/2 & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{(3)}}{2} & 1/2 \end{pmatrix} = \begin{pmatrix} 5/2 & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & 7/2 \end{pmatrix}$$

(b)
$$\Sigma = 4\mathbf{u}_1 * \mathbf{u}_1^T + 2\mathbf{u}_2 * \mathbf{u}_2^T$$

- (c) Σ is a symmetric matrix with 3 unknows: $\Sigma = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ and we know the eigenvectors and eigenvalues. Using $\begin{pmatrix} a-4 & b \\ b & c-4 \end{pmatrix}$ $\mathbf{u}_1 = \mathbf{0}$ and $\begin{pmatrix} a-2 & b \\ b & c-2 \end{pmatrix}$ $\mathbf{u}_2 = \mathbf{0}$. Then Σ is obtained after solving the resulting four linear equations.
- 2. (0.5pt) Indicate how you can use this to estimate the Σ^{-1} . What are its eigenvalues?

Solution: $\Sigma^{-1} = (UDU^T)^{-1} = UD^{-1}U^T = \begin{pmatrix} 0.44 & -0.10 \\ 0.10 & 0.31 \end{pmatrix}$ where $D^{-1} = \begin{pmatrix} 1/4 & 0 \\ 0 & 1/2 \end{pmatrix}$.

From the last expression, the eigenvectors are the same as for Σ and the eigenvalues are $\lambda_1 = 1/4$ and $\lambda_2 = 1/2$.

Exercises

Example (Exam June 2019)

...

3. (0.5pt) Draw the points that are at Mahalanobis distance from μ equal to 1 according to the distribution $\mathcal{N}(\mu, \Sigma)$. The same at distance 2. [Remember the Mahalanobis distance is defined as $d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^T \Sigma^{-1} (\mathbf{x} - \mathbf{y})}$].

Solution: The points \mathbf{x} such that $d(\mathbf{x}, \boldsymbol{\mu}) = 1$ are $1^2 = (\mathbf{x} - \boldsymbol{\mu})^T \, \Sigma^{-1} \, (\mathbf{x} - \boldsymbol{\mu}) = (\mathbf{x} - \boldsymbol{\mu})^T \, U D^{-1} U^T \, (\mathbf{x} - \boldsymbol{\mu})$. Then $U^T \, (\mathbf{x} - \boldsymbol{\mu}) = \begin{pmatrix} x' \\ y' \end{pmatrix}$ defines a vector with coordinates of \mathbf{x} in the new coordinate system $\langle \boldsymbol{\mu}, \mathbf{u}_1, \mathbf{u}_2 \rangle$ then $1^2 = \begin{pmatrix} x' \ y' \end{pmatrix} \begin{pmatrix} \frac{1/4}{0} & 0 \\ 0 & 1/2 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$, so $1 = \frac{x'^2}{4} + \frac{y'^2}{2}$.

The solution is given by the points of the ellipse centered in μ and long axis the direction \mathbf{u}_1 with major axis 2, and minor axis $\sqrt{2}$.

The same with $2^2 = \frac{x'^2}{4} + \frac{y'^2}{2}$, so $1 = \frac{x'^2}{16} + \frac{y'^2}{8}$ and the solution is given by the points of the ellipse centered in μ and long axis the direction \mathbf{u}_1 with major axis 4, and minor axis $2\sqrt{2}$.