

Inteligência Artificial

Introdução às Redes Neurais Artificiais Inspiração biológica e aplicações

Profº - Dr. Thales Levi Azevedo Valente thales.l.a.valente@gmail.com.br

Grupo da turma 2024.2

https://chat.whatsapp.com/JFB6CgOI7IMCoYmoIKEK62

Sejam Bem-vindos!

Os celulares devem ficar no silencioso ou desligados

Pode ser utilizado apenas em caso de emergência

Boa tarde/noite, por favor e com licença DEVEM ser usados

Educação é essencial

Tradicional vs Deep Learning

Aprendizado de Máquina Tradicional	Deep Learning	
Baixos requisitos de hardware no computador: Dado o uso limitado de computação, o computador geralmente não precisa de uma GPU para computação paralela	Altos requisitos de hardware no computador: Para executar operações matriciais em dados massivos, o computador precisa de uma GPU para realizar computação paralela	
Aplicável a treinamentos com pequenas quantidades de dados e cujo desempenho não pode ser melhorado continuamente à medida que a quantidade de dados aumenta	O desempenho pode ser alto quando há parâmetros de peso de alta dimensão e grandes quantidades de dados de treinamento disponíveis	
Extração manual de características	Extração automática de características baseada em algoritmos	
Manual feature selection	Seleção automática	
Características fáceis de explicar	Características difíceis de explicar	

Tradicional vs Deep Learning

Alguns principais fatos históricos

Conceitos

■ Definição por Hecht Nielsen (pesquisador renomado de redes neurais – EUA)

✓ Sistema computacional composto por elementos de processamento simples e altamente interconectados, que processam informações por meio de uma resposta dinâmica a entradas externas.

Outras definições

- ✓ Sistema de processamento de informações projetado para imitar a estrutura e as funções do cérebro humano com base em sua origem, características e explicações.
- ✓ Formada por neurônios artificiais conectados entre si, a rede neural extrai e simplifica a microestrutura e as funções do cérebro humano.

Conceitos - Processamento neural

- Consiste em todo processo em que a rede neural é executada
- Divido em duas etapas
 - ✓ Learning: consiste na atualização dos pesos sinápticos.
 - ✓ Sem atualização dos pesos, sem aprendizado

Conceitos - Processamento neural

- Consiste em todo processo em que a rede neural é executada
- Divido em duas etapas
 - ✓ Recall: resposta da rede mediante a apresentação de um padrão de entrada.
 - ✓ Refere-se a recuperação da informação ou inferência
 - ✓ Não há atualização dos pesos, apenas resposta

Conceitos - Processamento neural - Learning

- Corresponde ao treinamento da rede
- Considere uma criança hipotética que nunca viu gatos
- Imagine que você irá ensinar a ela o que é um gato. De forma smplificada, este processo poderia consistir em
 - ✓ Apresentar algum animal a ela
 - ✓ Perguntar se é um gato
 - ✓ Resposta correta: não há ajuste do conhecimento
 - ✓ Resposta errada: ela aprende que o dado exemplo não ou é um gato baseado nas características que ela observou

Conceitos - Processamento neural - Recall

- Corresponde a inferência da rede
- A criança ensinada a reconhecer gatos identificará corretamente com maior probabilidade futuros gatos apresentados se, dado um conjunto de exemplos
 - ✓ Mais exemplos diferentes de gatos apresentar a ela
 - ✓ Mais exemplos difíceis apresentar, ou seja, amostras de classes semelhantes a classe gato (exemplo: outros felinos onça-pintada, seval, gato-leopardo)

Conceitos - Camadas

Entrada

- ✓ Função: recebe os sinais de entrada (características, pixels).
- ✓ Número de neurônios: quantidade de sinais de entrada.
- ✓ Número de camadas: 1 camada

Saída

- ✓ Função: fornece a resposta da rede dado as regras de processamento aplicadas desde a camada de entrada.
- ✓ número de neurônios:
 - ✓ classificação binária (2 classes): 1 neurônio
 - ✓ classificação não-binária: quantidade de classes
- ✓ número de camadas: 1 camada geralmente

Conceitos - Camadas

 Ilustração simplificada de uma rede neural com as camadas de entrada e saída. Por simplificação, consideramos que a camada de saída realiza

Conceitos - Camadas

Escondida ou intermediária

- ✓ Função: realizar um mapeamento não-linear dos dados. Nessa camada é realizada a maior parte do processamento da rede
- ✓ Número de neurônios
 - ✓ Depende do problema
 - ✓ Pode ser determinado através de heurísticas
- ✓ Número de camadas
 - ✓ Normalmente 1 ou 2
 - ✓ OBS: já foi provado matematicamente que duas camadas resolve qualquer problema

Conceitos - Camadas

Escondida ou intermediária

Conceitos – Tipos de Arquiteturas

Feedfoward

- ✓ Fluxo de dados é sempre em uma única direção ("esquerda para direita")
- ✓ Neurônios de uma camada enviam sinais apenas para neurônios da camada seguinte. "Neurônio da camada c para c+1"
- ✓ Tipos
 - ✓ Camada simples / monocamadas: não possui camadas intermediárias
 - ✓ Múltiplas camadas: possui pelo menos 1 camada intermediária

<u>Conceitos – Tipos de Arquiteturas</u>

Recorrentes

- ✓ Fluxo de dados em várias direções
- ✓ Neurônios de uma camada podem enviar sinais tanto para neurônios da camada seguinte, quanto da mesma camada ou camada anterior

Propagação do sinal

- O sinal se propaga na rede de um neurônio para outro através de conexões
 - ✓ Sinapses ponderadas.
- O neurônio receptor realiza uma combinação linear das saídas de cada neurônio emissor com os pesos das conexões sinápticas
 - ✓ Normalmente é utilizado algum mecanismo de inicialização de pesos
 - ✓ A combinação linear determina o potencial de ativação do neurônio receptor e é dada por: $\begin{bmatrix} w_1 \end{bmatrix}$

$$p(j) = egin{bmatrix} w_1 \ w_2 \ \dots \ w_n \end{bmatrix} imes [x_1 \quad x_2 \quad \dots \quad x_n] = [w_1x_1 + w_2x_2 + \dots w_nx_n]$$

$$p(j) = \sum_{i=1}^{n} (w_i \cdot x_i)$$

Propagação do sinal

✓ A combinação linear determina o potencial de ativação do neurônio receptor e é dada por: $[w_1]$

$$p(j) = egin{bmatrix} w_1 \ w_2 \ \dots \ w_n \end{bmatrix} imes [x_1 \quad x_2 \quad \dots \quad x_n] = [w_1x_1 + w_2x_2 + \dots w_nx_n]$$

✓ x representa o sinal de cada neurônio emissor

$$p(j) = \sum_{i=1}^n (w_i \cdot x_i)$$

- \checkmark x_i representa o i-ésimo neurônio emissor
- \checkmark **n** é o número de neurônios emissores
- \checkmark w_i representa o peso da conexão entre o i-ésimo neurônio emissor e o neurônio receptor
- ✓ j representa o j-ésimo neurônio receptor
- \checkmark p(j) representa o potencial de ativação do j-ésimo neurônio receptor

- **Definição:** é uma função matemática aplicada em todos os neurônios de uma rede neural, exceto nos neurônios da camada de entrada.
- Normalizam os valores de saída dentro de um determinado intervalo (exemplo: [-1,1][-1,1] ou [0,1][0,1]).
- Introduzem não linearidade, essencial para aprender relações complexas
- Influenciam a convergência e estabilidade do treinamento da rede neural

Principais tipos de funções de ativação

■ Funções de Ativação Lineares

- ✓ São usadas apenas em saídas quando se deseja prever valores contínuos (ex.: regressão).
- ✓ Problema: Se usada em camadas ocultas, a rede neural se comporta como um modelo linear, perdendo sua capacidade de aprender relações complexas

$$f(x) = ax + b$$

Principais tipos de funções de ativação

Funções de Ativação Não Lineares

- ✓ Essas funções são essenciais para capturar padrões não lineares nos dados
- ✓ O que significa "Introduzir Não Linearidade" em Redes Neurais?
 - ✓ Funções de ativação introduzirem não linearidade se refere à capacidade da rede neural de aprender relações complexas nos dados
 - ✓ Sem essas funções a rede neural seria apenas uma combinação linear de pesos e entradas
 - ✓ Se a rede tiver várias camadas, a saída ainda será uma combinação linear das entradas iniciais, ou seja

$$y = W_3(W_2(W_1x + b_1) + b_2) + b_3$$

✓ Se aplicarmos apenas operações lineares, qualquer número de camadas se reduz a uma única camada, pois a soma e a multiplicação de matrizes continuam sendo transformações lineares

Funções de ativação não lineares mais comuns

Sigmoid (Logística)

- ✓ Intervalo: (0,1)
- ✓ Vantagem: Suaviza a saída e é útil para problemas de classificação binária.
- ✓ Problema: Pode sofrer de vanishing gradients, onde os gradientes se tornam muito pequenos para atualizar os pesos corretamente.
- ✓ Usada para: Modelos que exigem saída entre 0 e 1, como classificação binária

$$f(x) = \frac{1}{1 + e^{-x}}$$

Funções de ativação não lineares mais comuns

■ Tanh (Tangente Hiperbólica)

- ✓ Intervalo: (-1,1)
- ✓ Vantagem: Mais centrada em zero que a Sigmoid, tornando-a melhor para camadas ocultas.
- ✓ Problema: Ainda pode sofrer com vanishing gradients.
- ✓ Usada para: Modelos onde é importante ter saídas centradas em zero

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Funções de ativação não lineares mais comuns

ReLU (Rectified Linear Unit)

- ✓ Intervalo: $(0, +\infty)$
- ✓ Vantagem: resolve o problema do vanishing gradient para valores positivos.
- ✓ Problema: Neurônios podem "morrer" quando x<0 (neurônios mortos).
- ✓ Usada para: A maioria das redes profundas devido à sua eficiência computacional

$$f(x) = \begin{cases} 0, & x < 0 \\ x, & x \ge 0 \end{cases}$$

Funções de ativação não lineares mais comuns

ReLU (Rectified Linear Unit)

✓ Se a entrada (x) for positiva ou zero, a saída é x (linear)

- ✓ ☑ Evita o problema do vanishing gradient presente em funções como Sigmoid e Tanh.
- ✓ Computacionalmente eficiente (não envolve exponenciais, apenas comparação).
- ✓ ✓ Funciona bem para redes profundas, permitindo o aprendizado de representações complexas.

✓ <u>Se a entrada for negativa, a saída é zero.</u>

- ✓ X Isso significa que, para alguns neurônios, os pesos podem ser ajustados de forma que eles nunca mais ativem durante o treinamento.
- ✓ Como o gradiente da ReLU para x<0 é zero, os pesos desses neurônios não são mais atualizados, tornando-os "neurônios mortos"
- ✓ O problema é crítico se muitos neurônios morrerem no início do treinamento, pois partes inteiras da rede deixam de contribuir

Funções de ativação não lineares mais comuns

Leaky ReLU (ReLU com vazamento)

- ✓ Intervalo: $(-\infty, +\infty)$
- ✓ Vantagem: evita o problema dos neurônios mortos na ReLU pura.
- ✓ Problema: Pode introduzir um pequeno viés na saída da rede.
- ✓ Usada para: Modelos onde ReLU apresentar problemas de neurônios inativos

$$f(x) = \begin{cases} \alpha x, & x < 0 \\ x, & x \ge 0 \end{cases}$$
 onde é um valor pequeno e positivo (ex: 0.01)

Funções de ativação não lineares mais comuns

Leaky ReLU (ReLU com vazamento)

- ✓ Se a entrada (x) for positiva, ela funciona exatamente como a ReLU
- \checkmark Para valores negativos, em vez de zerar a saída, ela permite um pequeno valor negativo (αx), evitando o problema dos neurônios mortos
 - ✓ ☑ Evita o problema dos neurônios mortos, pois valores negativos ainda contribuem para a atualização dos pesos.
 - ✓ ✓ Melhor estabilidade no aprendizado, pois mantém gradientes pequenos para entradas negativas.
 - ✓ ✓ Melhor desempenho em algumas redes profundas, pois permite que a rede use mais neurônios de forma eficiente..
 - \checkmark X O valor de α precisa ser escolhido com cuidado. Se for muito pequeno, pode não resolver completamente o problema da ReLU.
 - ✓ X Não é garantido que seja melhor que ReLU em todos os casos. Em alguns datasets, ReLU ainda pode funcionar melhor.

Funções de ativação não lineares mais comuns

Softmax

- ✓ Intervalo: (0, 1), garantindo que a soma de todas as saídas seja 1
- ✓ Usada para: Classificação com múltiplas classes (exemplo: reconhecimento de imagens).
- ✓ A função Softmax para um conjunto de entradas x1,x2,..., xn é definida como:

$$f(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

✓ Onde:

 \checkmark e^{x_i} é a exponencial do logit xi e a soma de todas as exponenciais no denominador garante a normalização dos valores.

Funções de ativação não lineares mais comuns

Softmax

- ✓ Conversão de valores brutos em probabilidades: facilita a interpretação dos resultados.
- ✓ ✓ Ótima para classificação multiclasse: usada na última camada de redes neurais para prever a classe mais provável.
- ✓ ☑ Diferenciação clara entre as classes: amplifica as diferenças entre os logits.
- ✓ X Sensível a valores extremos: se um logit for muito grande, ele pode dominar os outros, gerando uma probabilidade muito alta para uma única classe.
- ✓ X Não é ideal para classificação binária: para problemas binários, o Sigmoid é mais eficiente.
- ✓ X Não lida bem com outliers: se os logits tiverem diferenças muito grandes, a Softmax pode produzir distribuições enviesadas.

Funções de ativação não lineares mais comuns

■ Softmax – exemplo numérico

- ✓ Se tivermos os logits x=[2.0,1.0,0.1].
- ✓ Aplicamos a Softmax
 - ✓ Calculamos as exponenciais e2=7.389,e1=2.718,e0.1=1.105
 - Somamos os valores: 7.389+2.718+1.105=11.212
 - Dividimos cada valor pela soma total:

$$\frac{7.389}{11.212} = 0.659,$$
 $\frac{2.718}{11.212} = 0.242,$ $\frac{1.105}{11.212} = 0.099$

- Resultado: [0.659,0.242,0.099]
- ✓ A classe 0 tem o maior logit, ou maior probabilidade (65.9%).

Como escolher as funções?

- Classificação Binária: Sigmoid (saída)
- Classificação Multiclasse: Softmax (saída)
- Redes Profundas: ReLU (ocultas), Leaky ReLU se houver neurônios mortos
- Séries Temporais: Tanh ou ReLU, dependendo do modelo
- ReLU vs Leaky ReLU
 - ✓ Se a rede estiver funcionando bem com ReLU, continue usando.
 - ✓ Se houver neurônios mortos, experimente Leaky ReLU.
 - ✓ Para redes muito profundas, a Leaky ReLU pode ser mais estável.
 - ✓ Algumas variantes como Parametric ReLU (PReLU) e Exponential Linear Unit (ELU) podem ser alternativas

Comparação das Funções de Ativação

Característica	ReLU Leaky ReLU		
Definição	$f(x) = \max(0, x)$	$f(x) = \max(\alpha x, x) \operatorname{com} \alpha > 0$	
Saída para x<0	Sempre zero 🗙	Pequeno valor negativo 🔽	
Neurônios Mortos?	Sim 🗙	Não 🔽	
Computacionalmente Eficiente?	Sim 🔽	Sim 🔽	
Melhor para redes profundas?	Às vezes 🗶	es 🗙 Às vezes 🗙	
Usado frequentemente em	CNNs, redes profundas gerais	rais Quando a ReLU apresenta problemas	

Comparação das Funções de Ativação

Função	Intervalo de Saída	Vantagem	Problema	Uso Ideal
Sigmoid	(0,1)	Boa para probabilidade	Vanishing gradient	Classificação binária
Tanh	(-1,1)	Melhor que Sigmoid, centrada em zero	Ainda sofre de vanishing gradient	Camadas ocultas
ReLU	[0, +∞)	Simples e eficiente	Neurônios podem morrer	Redes profundas
Leaky ReLU	(-∞, +∞)	Evita neurônios mortos	Pequeno viés nos valores negativos	Redes profundas com problemas de ReLU
Softmax	(0,1) (soma = 1)	Probabilidades para múltiplas classes	Não usada em camadas ocultas	Classificação multiclasse

Como escolher as funções?

- Em redes neurais, a função custo mede o erro entre as previsões do modelo e os valores reais
- O objetivo do treinamento é minimizar essa função, ajustando os pesos da rede
- Cada tipo de problema requer uma função custo apropriada, que depende da função de ativação da última camada

Função custo da ativação Linear

- Mede a diferença quadrática entre os valores reais e as previsões
- Como os valores podem assumir qualquer número real, a função custo mais comum é o Erro Quadrático Médio (MSE)
 - ✓ ✓ Fácil de calcular e interpretar.
 - ✓ ✓ Penaliza erros grandes de forma mais intensa.
 - ✓ X Não funciona bem para classificação!
 - ✓ X Sensível a outliers, o que pode afetar o treinamento da redes

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Função custo da ativação Sigmoid

- Também chamada de Entropia cruzada binária (BCE)
- Ideal para classificação binária, onde a saída representa a probabilidade de pertencer à classe positiva)
 - ✓ Vantagem: Penaliza fortemente previsões erradas com alta confiança.
 - \checkmark X Problema: Se \hat{y}_i for muito próximo de 0 ou 1, pode levar a problemas numéricos.

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - \hat{y}_i) \log(1 - \hat{y}_i)]$$

Função custo da ativação Sigmoid

- A ilustração mostra como o custo muda em função da previsão usando BCE.
 - ✓ Linha Vermelha (y_{true} =1): O custo é alto quando ŷ está próximo de 0, pois o modelo está errando com alta confiança.
 - ✓ Linha Azul (y_{true} =0): O custo é alto quando ŷ está próximo de 1, pois o modelo está errando com alta confiança.

 Função Custo Entropia Cruzada Binária
 - ✓ Interpretação
 - ✓ A entropia cruzada penaliza mais fortemente erros de alta confiança
 - ✓ Isso força a rede neural a ajustar os pesos rapidamente, garantindo um aprendizado mais eficiente.

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} [y_i \log(\hat{y}_i) + (1 - \hat{y}_i) \log(1 - \hat{y}_i)]$$

Função custo da ativação Sigmoid

Por que MSE não é ideal para classificação?

- ✓ Problema 1: Gradientes Pequenos na sigmoid
 - ✓ Se usarmos Sigmoid como ativação na saída e MSE como função custo, os gradientes podem ser muito pequenos em algumas regiões.
 - ✓ Isso pode levar a aprendizado muito lento (ineficiente), especialmente quando a saída está muito próxima de 0 ou 1
- ✓ Problema 2: Penalização Simétrica de Erros
 - ✓ O MSE trata todos os erros de maneira simétrica, enquanto entropia cruzada foca em previsões muito erradas

Função custo da ativação Sigmoid

■ Por que MSE não é ideal para classificação?

- ✓ Exemplo: Suponha que temos um problema de classificação binária, onde a classe correta é 1 (y=1).O modelo faz uma previsão de 90% de certeza de que a classe é 1 (y{hat}=0.9).
 - ✓ Agora, calculamos os custos:

$$MSE = (y_i - \hat{y}_i)^2 = (1 - 0.9)^2 = 0.01$$

$$BCE = -[y_i \log(\hat{y}_i) + (1 - \hat{y}_i) \log(1 - \hat{y}_i)]$$

$$= -[1 \log(0.9) + (1 - 1) \log(1 - 0.9)]$$

$$= -\log(0.9) = 0.105$$

- ✓ MSE dá um erro pequeno (0.01), pois trata os erros de forma simétrica. Isso significa que o modelo pode não se esforçar tanto para melhorar essa previsão.
- ✓ BCE penaliza mais o erro (0.105), incentivando ajustes maiores para o mesmo erro. Isso força a rede neural a ajustar mais seus pesos para tornar a predição ainda mais próximo de 1.

Função custo da ativação Softmax

- Também chamada de Entropia cruzada categórica (BCC)
 - ✓ Ela mede a diferença entre a distribuição real das classes e as previsões da rede neural
- Ideal para classificação multiclasses, onde a saída representa os valores das probabilidades de pertencer à cada classe

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{c=1}^{C} y_{i,c} \log(\hat{y}_{i,c}) \quad y_{i,c} \to \text{Probabilidade prevista pelo modelo para a classe } c \text{ (one-hot encoding)}.$$
Se a previsão estiver correta e com alta configuea (\hat{y} próximo de 1), o

 $n \rightarrow N$ úmero de exemplos no conjunto de dados.

 $C \rightarrow$ Número total de classes possíveis.

 $y_{i,c} \rightarrow$ Indica se a amostra *i* pertence à classe *c*c (one-hot encoding).

Se a previsão estiver correta e com alta confiança (ŷ próximo de 1), o custo será baixo.

Se o modelo prever com alta confiança a classe errada, o custo é alto.

Função custo da ativação Softmax

- ✓ ✓ Penaliza previsões incertas ou erradas com alta confiança.
- ✓ ✓ Incentiva a rede a prever com mais certeza a classe correta.
- ✓ ✓ Funciona muito bem quando combinada com a Softmax, pois gera probabilidades normalizadas para cada classe.
- ✓ X Se um modelo prevê 99% de certeza para a classe errada, o custo será extremamente alto.
 - ✓ Isso pode levar a ajustes bruscos nos pesos durante o treinamento, tornando a convergência instável.
 - ✓ Uma estratégia para mitigar isso é usar label smoothing, que adiciona uma pequena regularização nas probabilidades para evitar certeza extrema.
- ✓ Exemplo: modelo prever a distribuição (0.7, 0.2, 0.1) onde y=1, a penalização será pequena, pois a previsão está correta e confiante. Se a previsão for (0.1, 0.1, 0.8), a penalização será muito maior.

Função custo da ativação Softmax

✓ Exemplo: modelo prever a distribuição (0.7, 0.2, 0.1) onde y=1, a penalização será pequena, pois a previsão está correta e confiante. Se a previsão for (0.1, 0.1, 0.8), a penalização será muito maior.

```
y_pred_multi = np.array([
    [0.7, 0.2, 0.1], # Modelo confiante e correto (classe 1)
    [0.4, 0.3, 0.3], # Modelo incerto
    [0.1, 0.1, 0.8], # Modelo confiante, mas errado)
])

✓ y_true_multi = np.array([
    [1, 0, 0], # Classe 1 correta
    [1, 0, 0], # Classe 1 correta
    [1, 0, 0], # Classe 1 correta
```


Dúvidas?

Até a próxima...

Apresentador

Thales Levi Azevedo Valente

E-mail:

thales.l.a.valente@gmail.com