Instrumente des Finanzmanagements, Tutorium 6

HENRY HAUSTEIN

Aufgabe 19.2: Eigenkapitalfinanzierung in Privatunternehmen

(a) Es muss gelten:

$$KW = -i_0 + \sum_{i=1}^{10} \frac{FCF_i}{(1+r)^i} \stackrel{!}{=} 0$$
$$0 = -80 + \frac{400}{(1+r)^{10}}$$
$$r = 17.46\%$$

(b) Es muss gelten:

$$KW = -i_0 + \sum_{i=1}^{10} \frac{FCF_i}{(1+r)^i} \stackrel{!}{=} 0$$
$$0 = -100 + \frac{400 - 0.2(400 - 100)}{(1+r)^{10}}$$
$$r = 13.02\%$$

Aufgabe 19.10: Seasoned Equity Offerings

- (a) 5 Mio. Aktien · 42.40 €/Aktie · 0.95 = 201.4 Mio. €
- (b) 3 Mio. Aktien · 42.40 €/Aktie · 0.95 = 120.84 Mio. €

Aufgabe 19.12: Seasoned Equity Offerings

- (a) 10 Millionen Bezugsrechte entsprechen 2 Mio.
neue Aktien für einen Preis von 40 € \Rightarrow 80 Mio.
 € Einnahmen
- (b) Das Unternehmen ist nun 40 €/Aktie·10 Mio. Aktien + 80 Mio. € = 480 Mio. € wert. Dieser Wert verteilt sich auf 12 Mio. Aktien, also kostet eine Aktie $\frac{480 \text{ Mio.}}{12 \text{ Mio. Aktien}} = 40 \text{ €/Aktie.}$
- (c) 10 Millionen Bezugsrechte entsprechen 10 Mio. neue Aktien für einen Preis von 8 \in \Rightarrow 80 Mio. \in Einnahmen
- (d) Das Unternehmen ist nun 40 €/Aktie · 10 Mio. Aktien + 80 Mio. € = 480 Mio. € wert. Dieser Wert verteilt sich auf 20 Mio. Aktien, also kostet eine Aktie $\frac{480 \text{ Mio.}}{20 \text{ Mio. Aktien}} = 24 \text{ €/Aktie.}$
- (e) zweite Methode: Aktie wird *rabattiert*, aber wegen dem Kursverlust ist es für den Investor eigentlich egal. Der Investor ist genau so reich wie vorher.

Aufgabe 2K189: Projektbewertung

(a) Wir wissen $\frac{D}{E}=0.761,$ damit D=0.761 und E=1. Also:

$$r_U = \frac{0.761}{1 + 0.761} \cdot 5\% + \frac{1}{1 + 0.761} \cdot 15\% = 10.68\%$$

$$r_{WACC} = \frac{0.761}{1 + 0.761} \cdot 5\% \cdot (1 - 0.4) + \frac{1}{1 + 0.761} \cdot 15\% = 9.81\%$$

(b) Tabelle:

	Jahr 0	Jahr 1	Jahr 2	Jahr 3
Umsatz	0,00	120,00	108,00	97,20
- var. Kosten	- 0.00	- 30.00	-27.00	- 24.30
- fixe Kosten	- 0.00	- 25.00	- 25.00	- 25.00
- Abschreibungen	- 0.00	- 40.00	- 40.00	- 40.00
= EBIT	0.00	25.00	16.00	7.90
- Steuern ($\tau = 40\%$)	- 0.00	- 10.00	- 6.40	- 3.16
+ Abschreibungen	0.00	40.00	40.00	40.00
- Investitionen	- 120.00	- 0.00	- 0.00	- 0.00
= FCF	-120.00	55.00	49.60	44.74

(c) Der Projektwert ist

$$V_0 = \frac{55}{1.0981} + \frac{49.6}{1.0981^2} + \frac{44.74}{1.0981^3}$$
$$= 125.0088$$

Dieser Wert ist größer als die Investitionen, damit ist diese Investition sinnvoll.

(d) Es gilt:

$$V_0 = \sum_{i=1}^{3} \frac{FCF_i}{(1+r_U)^i} + \sum_{i=0}^{3} \frac{TS_i}{(1+r_U)^i}$$

$$= \sum_{i=1}^{3} \frac{FCF_i}{(1+r_U)^i} + \sum_{i=1}^{3} \frac{D_i \cdot r_D \cdot \tau}{(1+r_U)^i}$$

$$= \frac{55}{1.1068} + \frac{49.6}{1.1068^2} + \frac{44.74}{1.1068^3} + 0 + \frac{2.7009 \cdot 0.4}{1.1068} + \frac{1.7575 \cdot 0.4}{1.1068^2} + \frac{0.8734 \cdot 0.4}{1.1068^3}$$

$$= 124.9911$$

- (e) Weil L konstant ist. Fremdkapital ist risikobehaftet, also muss ein adäquater Zinssatz gewählt werden.
- (f) Reverse Floater = Anleihe, deren Kupon negativ mit dem Zins korreliert