Let's begin at 9:05 PM

L91
Bellman Ford & Floyd Warshall Algorithms

RECAP

Let's begin with Bellman Ford Algorithm

Why study Bellman Ford Algorithm?

Single source shortest path with negative weight edges

given that there are NO negative cycles.

Max no of nodes in the shortest path of src 2 dest? >> N

 $(1)^{-1}(2)^{-1}(3)-(N_1)^{-2}(N)$

Introduction to the Algorithm

After Kth phase, d[i] will represent chartest distance from src to 2 there are at-most X edges in the path.

d[src] = 0,
$$d[---] = int$$

for $(x = 1; K = N-1, ++K) \le$

for $(Edge e : edges) \le //U > V (N)$
 $d[V] = min (d[V], d[V]+W);$

}

Time > O(N*M)

(N tearnYar

min (dr. [A) + WAD, dr. [B] + WBD, dr. [C] + WcD)

Bearnyan

Bellman Ford can discover only those nez. cycles which impact the shortest distance of some node from the LearnYard

Practice Problem (Best Path)

Floyd Warshall Algorithm

Why study Floyd Warshall Algorithm?

- « Velfs in building déstance from i toji
- · Capable of dealing with neg. weights
- . Easy to implement

Introduction to the Algorithm

d_k[i][j] will represent S.D. from i to j s.t. only the nodes \{ 1, 2, 3 - - k} be intermediary nodes. are allowed to

$$(i) \cdot \cdot - \Rightarrow - \rightarrow - - \rightarrow - \rightarrow (j)$$

d[i][i] = 0, d[i][j]·inf

for (e: edgus)

d[e-v][e-v] - min(d[e-v][e-v], e-w).

 $d_{k}[i][j] = \min \begin{cases} d_{k-1}[i][j] \\ d_{k-1}[i][k] + d_{k-1}[k][j] \end{cases}$ extinct the proof of the p

Practice Problem (Leetcode 1334)

Check if node i is a part of nog.

cycle!

Yinally.

Johnwise, NO.

thue is an X s.t. d[i][x] < inf ll d[x][i] < inf 12 d(x)(x) <0 d[i][j] **U** LearnYard

Thank You!

Reminder: Going to the gym & observing the trainer work out can help you know the right technique, but you'll muscle up only if you lift some weights yourself.

So, PRACTICE, PRACTICE!

