FEUILLE D'EXERCICES N°4 CALCUL MATRICIEL

Rappels et compléments

Exercice 1:

Soit
$$J = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
.

Déterminer le plus petit sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ contenant J et stable par multiplication; en préciser une base.

Exercice 2:

On considère dans $\mathcal{M}_4(\mathbb{R})$ les matrices :

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

$$B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \text{ et } \quad C = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}.$$

- a) Comparer A^2, B^2, C^2 et I, puis AB, BA et C; BC, CB et A; CA, AC et B.
- b) Montrer que (I, A, B, C) est un système libre de $\mathcal{M}_4(\mathbb{R})$. On note H le sous-espace vectoriel engendré par ces quatre matrices.

- c) Montrer que la multiplication est une loi interne non commutative dans H.
- d) Soit $\phi: H \longrightarrow H$, qui a M = xI + yA + zB + tC associe $\phi(M) =$ xI - yA - zB - tC. Montrer que ϕ est un automorphisme involutif de l'espace vectoriel H. Est-ce un morphisme pour la loi \times ?
- e) Pour $M \in H$, calculer $\phi(M)M$ et $M\phi(M)$. En déduire que toute matrice non nulle de H est inversible et préciser son inverse. (H s'appelle le corps des quaternions).

Exercice 3:

Notons

$$S = \left\{ A \in \mathcal{M}_n(\mathbb{R}) \middle| \forall (i,j) \in [1:n]^2, a_{ij} \ge 0 \text{ et } \forall i \in [1:n], \sum_{j=1}^n a_{ij} = 1 \right\}$$

l'ensemble des matrices dites stochastiques. Montrer que S est stable par multiplication.

Exercice 4:

1

Soit $n \in \mathbb{N}$ avec $n \geq 2$. Pour $(a, b) \in \mathbb{R}^2$, on note

$$M(a,b) = \begin{pmatrix} a & b & \cdots & b \\ b & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ b & \cdots & b & a \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

et J la matrice carrée d'ordre n dont tous les éléments sont égaux à 1. Puis on considère l'ensemble $F = \{M(a,b) \mid (a,b) \in \mathbb{R}^2\}.$

- a) Montrer que F est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$, en préciser la dimension.
- b) Calculer le produit de deux éléments de F à l'aide de J.

- c) Calculer $M(a,b)^p$ pour tout $p \in \mathbb{N}$.
- d) Trouver des conditions nécessaires et suffisantes sur (a, b) pour que M(a,b) soit inversible et préciser alors son inverse.

Exercice 5:

Matrices centrosymétriques. On dit qu'une matrice $A=(a_{ij})\in$ $\mathcal{M}_n(\mathbb{K})$ est centro-symétrique si

$$\forall (i,j) \in [1;n]^2, a_{n+1-i,n+1-j} = a_{ij}.$$

- a) Montrer que le sous-ensemble C de $\mathcal{M}_n(\mathbb{K})$ formé des matrices centro-symétriques est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$. Préciser sa dimension.
- b) Montrer que le produit de deux matrices centro-symétriques de $\mathcal{M}_n(\mathbb{K})$ est aussi centro-symétrique.
- c) Soit A centro-symétrique et inversible. En considérant l'application $X \mapsto AX$ de C vers C, montrer que A^{-1} est centrosymétrique.

Exercice 6:

Soit $D \in \mathcal{M}_n(\mathbb{K})$ une matrice diagonale dont les éléments diagonaux sont deux à deux distincts. Montrer que $(I_n, D, D^2, \dots, D^{n-1})$ est une base de $D_n(\mathbb{K})$, sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ formé des matrices diagonales.

Exercice 7:

Soit $T \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire supérieure. Montrer que T commute avec sa transposée si et seulement si la matrice T est diagonale. Indication : procéder par récurrence sur n, et utiliser un produit par blocs.

Exercice 8:

Soit $n \geq 2$. Déterminer les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec toutes les matrices symétriques.

Exercice 9

Soit
$$A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$$
.

Calculer $(A + I_3)^3$; en déduire que A est inversible et préciser son inverse.

Exercice 10:

Résoudre l'équation $X^2 = A$ où $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 4 & 2 \\ 0 & 0 & 16 \end{pmatrix}$ (on remarquera

que, si X est solution, alors A et X commutent)

Exercice 11:

Soit

$$A = \begin{pmatrix} 1 & a & 0 & \dots & 0 \\ 0 & 1 & a & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & a \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Calculer A^p pour $p \in \mathbb{N}$, A^{-1} et A^p pour $p \in \mathbb{Z}$.

Exercice 12:

Soit

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

Dire pourquoi A est inversible et calculer A^{-1} .

Exercice 13:

Justifier que la matrice

$$A = \begin{pmatrix} 1 & -1 & -1 & \cdots & -1 \\ 0 & 1 & -1 & \cdots & -1 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 1 & -1 \\ 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$

est inversible et déterminer A^{-1} .

Exercice 14:

Soit

$$A = \begin{pmatrix} \binom{0}{0} & \binom{1}{0} & \cdots & \binom{n}{0} \\ 0 & \binom{1}{1} & \cdots & \binom{n}{1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \binom{n}{n} \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R}).$$

Calculer A^p pour $p \in \mathbb{N}$, A^{-1} et A^p pour $p \in \mathbb{Z}$. Indication : Considérer A comme la matrice d'un endomorphisme de $\mathbb{R}_n[X]$ que l'on précisera.

Exercice 15:

Soient $n \in \mathbb{N} \setminus \{0,1\}$ et $\omega = \exp\left(\frac{2i\pi}{n}\right)$. On pose :

$$A = \left(\omega^{(k-1)(\ell-1)}\right)_{1 \le k, \ell \le n} \in \mathcal{M}_n(\mathbb{C}).$$

Calculer le produit $A\overline{A}$. En déduire que A est inversible et calculer A^{-1} .

Exercice 16:

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices telles que AB = A + B. Montrer que $(A - I_n) \in GL_n(\mathbb{K})$ et calculer $(A - I_n)^{-1}$.

Exercice 17:

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice vérifiant $A^k = I_n$ avec $k \in \mathbb{N}^*$. On pose $B = I + A + A^2 + \cdots + A^{k-1}$, et on note u, v les endomorphismes de \mathbb{K}^u canoniquement associés à A et B. Montrer que $\operatorname{Ker}(u-Id) = \operatorname{Im} v$, $\operatorname{Im}(u-Id) = \operatorname{Ker} v, K^n = \operatorname{Ker} v \oplus \operatorname{Im} v \text{ et tr } B = k \operatorname{rg} B.$

Exercice 18:

- a) On suppose que $A, B \in \mathcal{M}_n(\mathbb{K})$ commutent et que A est inversible. Montrer que les matrices A^{-1} et B commutent.
- b) Montrer que si $N \in \mathcal{M}_n(\mathbb{K})$ est nilpotente alors la matrice $I_n + N$ est inversible.
- c) Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ où B est nilpotente et commute avec A. Montrer que :

A inversible $\iff A + B$ inversible.

Exercice 19:

Théorème de Hadamard. Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{C})$, telle que :

$$\forall i \in [1; n], \sum_{j=1, j \neq i}^{n} |a_{ij}| < |a_{ii}|$$

(une telle matrice est dite à diagonale strictement dominante).

Montrer que A est inversible (on pourra raisonner par l'absurde, en supposant qu'il existe $X \neq 0$ tel que AX = 0).

Soit
$$A = \frac{1}{3} \begin{pmatrix} 1 & 2 & 6 \\ \frac{1}{2} & 1 & 3 \\ \frac{1}{6} & \frac{1}{3} & 1 \end{pmatrix}$$
. Montrer que l'application linéaire cano-

niquement associée à A est un projecteur, et préciser ses éléments caractéristiques.

Exercice 21:

Soit
$$f \in \mathcal{L}(\mathbb{R}^4)$$
, de matrice $A = \begin{pmatrix} 2 & 1 & 3 & -1 \\ 3 & -1 & 2 & 0 \\ 1 & 3 & 4 & -2 \\ 4 & -3 & 1 & 1 \end{pmatrix}$ dans la base

canonique.

- a) Calculer le rang de f. Former un système d'équations de Im f et en donner une base.
- b) Former un système d'équations de Kerf et en donner une base.
- c) Déterminer l'image et l'image réciproque par f du sous-espace d'équation x - y + z - 2t = 0.

Exercice 22:

On considère les sous-espaces vectoriels supplémentaires de \mathbb{R}^3 suivants:

$$P = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y - z = 0\}$$

et

$$D = Vect(w)$$
 où $w = (1, 0, -1)$.

On note \mathcal{B} la base canonique de \mathbb{R}^3 . On note p la projection vectorielle sur P parallèlement à D, q celle sur D parallèlement à P, et enfin, s la symétrie vectorielle par rapport à P et parallèlement à D.

- a) Former la matrice de p dans \mathcal{B} .
- b) En déduire les matrices dans \mathcal{B} de q et de s.

Exercice 23:

Soit
$$E = \mathcal{M}_2(\mathbb{R})$$
, et $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. On considère l'application $u: \begin{cases} E & \longrightarrow E \\ M & \longmapsto MA \end{cases}$

Montrer que $u \in \mathcal{L}(E)$, trouver son image et son noyau, préciser sa matrice dans la base canonique de E.

Exercice 24:

Soient $f, g \in \mathcal{L}(\mathbb{R}^2)$ tel que $f^2 = g^2 = 0$ et $f \circ g = g \circ f$. Calculer $f \circ q$ (Indication : utiliser la matrice de f dans une « bonne » base).

Exercice 25:

Soit f un endomorphisme non nul d'un \mathbb{R} -espace vectoriel E de dimension 3 vérifiant $f^3 + f = 0$.

a) Montrer que:

$$E = \operatorname{Ker} f \oplus \operatorname{Ker} (f^2 + Id).$$

- b) Prouver que : dim Ker $(f^2 + Id) > 1$. Montrer que, si $x \in \text{Ker}(f^2 + Id)$ Id) \ {0} alors (x, f(x)) est une famille libre de Ker $(f^2 + Id)$.
- c) Que vaut $\det(-Id_E)$? En déduire $\dim \operatorname{Ker}(f^2 + Id) = 2$.
- d) Montrer qu'il existe une base de E dans laquelle la matrice de f est:

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Exercice 26:

Soit E un K-espace vectoriel de dimension 3 muni d'une base $\mathcal{B} =$ $(e_1, e_2, e_3).$

Soit $f \in \mathcal{L}(E)$ dont la matrice dans la base \mathcal{B} est $A = \begin{pmatrix} 0 & 2 & 1 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

On pose $\varepsilon_1 = e_1 + e_3$, $\varepsilon_2 = e_1 + e_2$ et $\varepsilon_3 = e_1 + e_2 + e_3$.

- a) Montrer que $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ forme une base de E et déterminer la matrice de f dans \mathcal{B}' .
- b) Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 27:

Les matrices $A = \begin{pmatrix} 1 & -1 & 1 \\ 4 & 0 & -3 \\ 0 & -1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ sont-elles

semblables? Si oui, déterminer $P \in GL_3(\mathbb{R})$ telle que $B = P^{-1}AP$

Exercice 28:

Soient $A \in \mathcal{M}_{3,2}(\mathbb{R})$ et $B \in \mathcal{M}_{2,3}(\mathbb{R})$ telles que la matrice produit AB soit semblable à la matrice :

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix}.$$

Calculer BA.

Exercice 29:

Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que $A^2 \neq 0$ et $A^3 = 0$.

a) Montrer que A est semblable à la matrice :

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

b) Montrer que $E = \{X \in \mathcal{M}_3(\mathbb{R}) \mid AX = XA\}$ est le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ engendré par (I, A, A^2) .

Exercice 30:

Soit $n \in \mathbb{N}^*$, $(A, B, C, D) \in \mathcal{M}_n(\mathbb{K})^4$ et $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$.

On suppose M, A, D inversibles. Exprimer M^{-1} sous forme de blocs.

Exercice 31:

Soit E un R-espace vectoriel de dimension finie $n \geq 1$, et $f \in \mathcal{L}(E)$ non nul tel que $f^2=0$. Montrer qu'il existe une base ${\mathscr B}$ de E telle que la matrice de f dans \mathcal{B} soit de la forme

$$\begin{bmatrix} 0 & I_r \\ 0 & 0 \end{bmatrix}.$$

Exercice 32:

Soit E un \mathbb{R} -espace vectoriel de dimension finie $n \geq 1$, et $u \in \mathcal{L}(E)$ tel que $u^2 = -Id_E$.

- a) Montrer que, pour tout $x \in E \{0_E\}$, la famille $\{x, u(x)\}$ est libre.
- b) Montrer que, pour tout entier p tel que $2 \le 2p \le n$, il existe un p-uplet de vecteurs (a_1, a_2, \dots, a_p) tel que le système $(a_1,\ldots,a_p,u(a_1),\ldots,u(a_p))$ soit libre.
- c) Montrer que n est pair, et que, si l'on pose n=2m, il existe une base \mathcal{B} de E dans laquelle la matrice de u s'écrit (par blocs) :

$$\begin{bmatrix} 0_m & -I_m \\ I_m & 0_m \end{bmatrix}.$$

Exercice 33:

Soit E un K-espace vectoriel de dimension 3n $(n \in \mathbb{N}^*)$, et u un endomorphisme de E tel que :

$$rg u = 2n \text{ et } u^3 = 0.$$

- a) Montrer que Ker $u = \text{Im } u^2$.
- b) Montrer qu'il existe une base \mathcal{B} de E dans laquelle la matrice de u s'écrit (par blocs) :

$$\begin{bmatrix} 0_n & 0_n & 0_n \\ I_n & 0_n & 0_n \\ 0_n & I_n & 0_n \end{bmatrix}$$

Exercice 34:

- a) Soit $A \in M_{p,q}(\mathbb{K})$ et $B \in M_{q,r}(\mathbb{K})$. Comparer $\operatorname{rg}(AB)$, $\operatorname{rg}(A)$ et $\operatorname{rg}(B)$. Préciser dans le cas A ou B inversible.
- b) Existe-il $A \in M_{3,2}(\mathbb{R})$ et $B \in M_{2,3}(\mathbb{R})$ telles que

$$AB = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}?$$

Exercice 35:

Soient $n \in \mathbb{N}^*$ et $M \in M_{i_n}(\mathbb{R})$ définie par

$$M = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

- a) Donner le rang de M.
- b) Préciser noyau et image de M.
- c) Calculer M^n pour $n \in \mathbb{N}$.

Exercice 36:

a) Soit $M \in \mathcal{M}_{p+q}(\mathbb{K})$ une matrice écrite par blocs : $M = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$ avec $A \in \mathcal{M}_p(\mathbb{K})$, $B \in \mathcal{M}_q(\mathbb{K})$. Montrer que rg(M) = rg(A) + rg(B).

b) Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $B = \begin{bmatrix} A & 0 & \cdots & 0 \\ 0 & A & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & A \end{bmatrix}$, décomposée en p

blocs, élément de $\mathcal{M}_{pn}(\mathbb{K})$. Comparer rg(A) et rg(B).

Exercice 37:

Soit $M \in \mathcal{M}_{p+q}(\mathbb{K})$ une matrice partitionnée par blocs : $M = \begin{bmatrix} A & 0 \\ B & C \end{bmatrix}, \text{ avec } A \in \mathcal{M}_p(\mathbb{K}), B \in \mathcal{M}_{q,p}(\mathbb{K}) \text{ et } C \in \mathcal{M}_q(\mathbb{K}).$

- a) Montrer que : $rg(M) \ge rg(A) + rg(C)$.
- b) Montrer que, si A est inversible, il y a égalité.
- c) Soient $A \in \mathcal{M}_p(\mathbb{K})$, $C \in \mathcal{M}_q(\mathbb{K})$ telles que, pour toute $B \in \mathcal{M}_{q,p}(\mathbb{K})$, on ait :

$$\operatorname{rg}\left(\begin{bmatrix} A & 0 \\ B & C \end{bmatrix}\right) = \operatorname{rg}(A) + \operatorname{rg}(C).$$

Montrer que A ou C est inversible.

Exercice 38:

Soit M une matrice partitionnée par blocs : $M = \begin{bmatrix} A & 2A \\ 3A & 4A \end{bmatrix}$, où $A \in \mathcal{M}_n(\mathbb{K})$. Déterminer le rang de M en fonction de celui de A.

Exercice 39:

Soit M une matrice partitionnée par blocs : $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$. Montrer que : rgM < rgA + rgB + rgC + rgD.

Exercice 40:

Soit $A \in GL_n(\mathbb{K}), B \in \mathcal{M}_{n,p}(\mathbb{K}), C \in \mathcal{M}_{p,n}(\mathbb{K}), D \in \mathcal{M}_p(\mathbb{K})$ et $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \mathcal{M}_{n+p}(\mathbb{K}).$

Montrer que : $\operatorname{rg}(M) = n + \operatorname{rg}(CA^{-1}B - D)$ (on multipliera M à gauche par une matrice convenable).

Exercice 41:

Matrices de rang 1. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée de rang 1.

- a) Établir l'existence de colonnes $X,Y\in\mathcal{M}_{n,1}(\mathbb{K})$ vérifiant A= X^TY . Réciproquement, que peut-on dire d'une matrice de cette forme?
- b) En déduire l'existence de $\lambda \in \mathbb{K}$ tel que $A^2 = \lambda A$.

Exercice 42:

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$, données avec $trA \neq 0$. Résoudre l'équation d'inconnue $M \in \mathcal{M}_n(\mathbb{K}) : tr(A)M - tr(M)A = B$.

Exercice 43:

Soient $A, B \in \mathcal{M}_n(\mathbb{C}), A \neq 0$. Résoudre l'équation : X + tr(X)A =B, d'inconnue $X \in \mathcal{M}_n(\mathbb{C})$.

Exercice 44:

Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$ telle que :

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{K})^2, \varphi(AB) = \varphi(BA).$$

Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que :

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \varphi(A) = \lambda tr(A).$$

Exercice 45:

Soit $U \in \mathcal{M}_n(\mathbb{K})$ telle que, pour tout $V, W \in \mathcal{M}_n(\mathbb{K})$, on ait tr(UVW) = tr(VUW). Montrer que U est une matrice scalaire.

Exercice 46:

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $\phi : \left\{ \begin{array}{l} \mathcal{M}_n(\mathbb{K}) & \longrightarrow \mathcal{M}_n(\mathbb{K}) \\ X & \longmapsto AX + XA \end{array} \right.$ Montrer que ϕ est un endomorphisme de $\mathcal{M}_n(\mathbb{K})$, et calculer sa trace en fonction de celle de A.

Exercice 47:

Projecteurs. Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- 1) Soit $(p_i)_{1 \le i \le k}$ une famille de projecteurs de E. Démontrer l'équivalence des propriétés suivantes :
 - a) $i \neq j \Rightarrow p_i \circ p_j = 0$.
 - b) $p = \sum_{i=1}^{k} p_i$ est un projecteur.
- 2) Soit $(p_i)_{1 \le i \le k}$ une famille d'endomorphismes de E, tels que

$$\sum_{i=1}^{k} p_i = Id_E.$$

Démontrer l'équivalence des propriétés suivantes :

- a) $i \neq j \Rightarrow p_i \circ p_i = 0$.
- b) pour tout $i \in [1; k]$, p_i est un projecteur.