$11n_{38} (K11n_{38})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle b - u, 5u^4 + u^3 + 33u^2 + 14a + 10u + 11, u^5 + 6u^3 - u^2 - u - 1 \rangle$$

$$I_2^u = \langle b + u, -u^3 - u^2 + a - 3u - 2, u^4 + u^3 + 3u^2 + 2u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 9 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle b - u, 5u^4 + u^3 + 33u^2 + 14a + 10u + 11, u^5 + 6u^3 - u^2 - u - 1 \rangle$

(i) Arc colorings

a) Are colorings
$$a_1 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -\frac{5}{14}u^4 - \frac{1}{14}u^3 + \dots - \frac{5}{7}u - \frac{11}{14} \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -\frac{4}{7}u^4 - \frac{5}{7}u^3 + \dots - \frac{15}{7}u - \frac{6}{7} \\ \frac{1}{14}u^4 + \frac{31}{14}u^3 + \dots + \frac{1}{7}u - \frac{6}{14} \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -\frac{4}{7}u^4 - \frac{5}{7}u^3 + \dots - \frac{15}{10}u - \frac{6}{7} \\ \frac{3}{14}u^4 + \frac{9}{14}u^3 + \dots + \frac{15}{10}u + \frac{6}{14} \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -\frac{4}{7}u^4 - \frac{2}{7}u^3 + \dots + \frac{22}{7}u + \frac{6}{7} \\ -0.357143u^4 + 0.928571u^3 + \dots - 0.714286u - 0.785714 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -0.785714u^4 - 0.357143u^3 + \dots - 2.57143u + 0.0714286 \\ \frac{9}{14}u^4 - \frac{1}{14}u^3 + \dots + \frac{2}{7}u + \frac{3}{14} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} -u \\ u^3 + u \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} -u^3 - 2u \\ u^3 + u \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} -u^3 - 2u \\ u^3 + u \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} -u^3 - 2u \\ u^3 + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-\frac{23}{7}u^4 + \frac{1}{7}u^3 \frac{135}{7}u^2 + \frac{31}{7}u + \frac{18}{7}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^5 - 5u^4 + 20u^2 - u + 1$
c_2	$u^5 + 25u^4 + 198u^3 + 390u^2 - 39u + 1$
c_3, c_6	$u^5 + 4u^4 + 38u^3 + 40u^2 - 40u + 16$
c_5,c_9	$u^5 + 2u^4 + 2u^3 - u^2 - u - 1$
c_7, c_8, c_{10} c_{11}	$u^5 + 6u^3 + u^2 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^5 - 25y^4 + 198y^3 - 390y^2 - 39y - 1$
c_2	$y^5 - 229y^4 + 19626y^3 - 167594y^2 + 741y - 1$
c_3, c_6	$y^5 + 60y^4 + 1044y^3 - 4768y^2 + 320y - 256$
c_5, c_9	$y^5 + 6y^3 - y^2 - y - 1$
c_7, c_8, c_{10} c_{11}	$y^5 + 12y^4 + 34y^3 - 13y^2 - y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.695222		
a = -2.52902	-2.84858	-4.39070
b = 0.695222		
u = -0.281458 + 0.392024I		
a = -0.401414 + 0.226060I	0.206446 - 1.108910I	2.91822 + 5.88873I
b = -0.281458 + 0.392024I		
u = -0.281458 - 0.392024I		
a = -0.401414 - 0.226060I	0.206446 + 1.108910I	2.91822 - 5.88873I
b = -0.281458 - 0.392024I		
u = -0.06615 + 2.48427I		
a = 0.165924 - 1.354820I	10.26500 - 4.12490I	-3.22285 + 1.83437I
b = -0.06615 + 2.48427I		
u = -0.06615 - 2.48427I		
a = 0.165924 + 1.354820I	10.26500 + 4.12490I	-3.22285 - 1.83437I
b = -0.06615 - 2.48427I		

II.
$$I_2^u = \langle b+u, -u^3-u^2+a-3u-2, u^4+u^3+3u^2+2u+1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + u^{2} + 3u + 2 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u^{2} + 3u + 2 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + u^{2} + 3u + 2 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $2u^3 + 2u^2 + 7u + 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4$
c_2, c_4	$(u+1)^4$
c_3, c_6	u^4
c_5	$u^4 + u^3 + u^2 + 1$
c_{7}, c_{8}	$u^4 + u^3 + 3u^2 + 2u + 1$
c_9	$u^4 - u^3 + u^2 + 1$
c_{10}, c_{11}	$u^4 - u^3 + 3u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_6	y^4
c_5, c_9	$y^4 + y^3 + 3y^2 + 2y + 1$
c_7, c_8, c_{10} c_{11}	$y^4 + 5y^3 + 7y^2 + 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.395123 + 0.506844I		
a = 0.95668 + 1.22719I	-1.43393 - 1.41510I	-1.48175 + 2.96122I
b = 0.395123 - 0.506844I		
u = -0.395123 - 0.506844I		
a = 0.95668 - 1.22719I	-1.43393 + 1.41510I	-1.48175 - 2.96122I
b = 0.395123 + 0.506844I		
u = -0.10488 + 1.55249I		
a = 0.043315 + 0.641200I	-8.43568 - 3.16396I	-3.01825 + 2.83489I
b = 0.10488 - 1.55249I		
u = -0.10488 - 1.55249I		
a = 0.043315 - 0.641200I	-8.43568 + 3.16396I	-3.01825 - 2.83489I
b = 0.10488 + 1.55249I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^4(u^5 - 5u^4 + 20u^2 - u + 1)$
c_2	$(u+1)^4(u^5+25u^4+198u^3+390u^2-39u+1)$
c_3, c_6	$u^4(u^5 + 4u^4 + 38u^3 + 40u^2 - 40u + 16)$
c_4	$(u+1)^4(u^5 - 5u^4 + 20u^2 - u + 1)$
c_5	$(u^4 + u^3 + u^2 + 1)(u^5 + 2u^4 + 2u^3 - u^2 - u - 1)$
c_{7}, c_{8}	$(u^4 + u^3 + 3u^2 + 2u + 1)(u^5 + 6u^3 + u^2 - u + 1)$
c_9	$(u^4 - u^3 + u^2 + 1)(u^5 + 2u^4 + 2u^3 - u^2 - u - 1)$
c_{10}, c_{11}	$(u^4 - u^3 + 3u^2 - 2u + 1)(u^5 + 6u^3 + u^2 - u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y-1)^4(y^5 - 25y^4 + 198y^3 - 390y^2 - 39y - 1)$
c_2	$(y-1)^4(y^5 - 229y^4 + 19626y^3 - 167594y^2 + 741y - 1)$
c_3, c_6	$y^4(y^5 + 60y^4 + 1044y^3 - 4768y^2 + 320y - 256)$
c_5, c_9	$(y^4 + y^3 + 3y^2 + 2y + 1)(y^5 + 6y^3 - y^2 - y - 1)$
c_7, c_8, c_{10} c_{11}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)(y^5 + 12y^4 + 34y^3 - 13y^2 - y - 1)$