Project Report

After the stock data is extracted and downloaded from Alpha Vantage API considering EFOI and EGRX companies, I merge the dataframes and following is the dataframe structure. For gathering the data, I have written a separate script alphavantage_service.py

10]:		Date	Symbol	Close	Open	Low	High	Volume	AdjustedClose	Change
	0	2014-02-12	EGRX	12.83	15.5	12.75	16.44	5.94826e+06	12.83	-0.708409
	1	2014-02-13	EGRX	13.22	12.51	12.47	13.48	487358	13.22	0.0303975
	2	2014-02-14	EGRX	12.8	13.2	12.76	13.59	107162	12.8	-0.03177
	3	2014-02-18	EGRX	12.94	13	12.6	13.07	81656	12.94	0.0109375
	4	2014-02-19	EGRX	12.14	12.71	11.74	12.95	273287	12.14	-0.0618238
	4086	2022-06-08	EFOI	2.7	2.98	2.3101	3.12	4.6515e+07	2.7	1.14286
	4087	2022-06-09	EFOI	2.29	2.46	2.21	2.56	5.50007e+06	2.29	1.14019
	4088	2022-06-10	EFOI	2.52	2.39	2.22	2.729	4.57433e+06	2.52	1.8404
	4089	2022-06-13	EFOI	2.45	2.45	2.3062	2.54	4.83945e+06	2.45	1.75963
	4090	2022-06-14	EFOI	2.04	2.51	1.96	2.6	2.32734e+06	2.04	-0.167347

4091 rows × 9 columns

Stock prices over time

Simple Moving Average variations

	Change	
count	2101.000000	
mean	0.034039	
std	0.367559	
min	-0.810404	
25%	-0.021548	
50%	0.001021	
75%	0.023666	
max	4.246269	
	Change	•
count	1992.000000	
mean	0.590368	
std	3.620128	
min	-0.973425	
25%	-0.036596	
50%	-0.001446	
75%	0.036154	

The standard deviation for EFOI is higher (3.52) meaning the variance is higher!

The daily return is normally distributed

From the above histogram we see that daily return is normally distributed

After creating the daily_returns feature, based on the adjusted closed price, it was possible to plot the relation between expected Return and Risk. When the Risk and Volatile graph was visualized, it showed that EGRX Eagle Pharma stocks had lesser risk and more returns

Choice of Algorithm and Techniques

For the feature engineering, I created few more features such as diff, lag and rolling average

Random Forest Regressor: A simple algorithm that used the above mentioned 3 features to create a baseline model. n_estimators= 1000 means 100 decision trees

Real Price vs Predicted Price using Random Forest Regressor

AWS DeepAR: A forecasting algorithm from AWS.We don't have to do feature engineering process as it uses scalar time series data. The DeepAR creates feature time series based on frequency of the target time series, example day of the month, day of the year. One can see the prediction deviation from the real price.

Since the DeepAR demands input in JSON format, couple of methods were created to save the train and test data in json format and uploaded to S3

Real Price vs Predicted Price using AWS DeepAR-Forecasting for EFOI stock

LSTM: It is indeed a worth to try on time series data as we know from many examples that LSTM performance is promising on time series data. On Stocks data, it performed quite well

Real Price vs Predicted Price using LSTM with Tensor Flow

For Evaluations, I have used MAE and RMSE

	RMSE	MAE
Random Forest	21.650	18.500
DeepAR	812.370	794.722
LSTM	35.988	22.542

Conclusion

The Random Forest performed very well without any hyperparameters, The next closer performance was by LSTM. The DeepAR didn't perform that well. The further steps would be to tune LSTM and also experiment with Convolutional Neural Networks.

Furthermore, one can build REST APIs like an web interface application to get predictions and moving averages visualisations

Comparing the Results of Models with the Real Price

