Demand Estimation

MIXTAPE SESSION

Jeff Gortmaker and Ariel Pakes

Who Am I?

• A fifth-year Economics PhD candidate at Harvard University.

Who Am I?

- A fifth-year Economics PhD candidate at Harvard University.
- Making BLP-style estimation more accessible to researchers.
 - → Best practices papers (Conlon and Gortmaker, 2020, 2023).
 - \rightarrow Open-source Python package (PyBLP).
 - \rightarrow This course!

This Course

- Three days, 6pm-9pm.
 - 1. Today: BLP model, pure logit, price endogeneity.
 - 2. Wednesday: Mixed logit, identification, numerical best practices.
 - 3. Friday: Micro BLP, consumer survey data, other extensions.

This Course

- Three days, 6pm-9pm.
 - 1. Today: BLP model, pure logit, price endogeneity.
 - 2. Wednesday: Mixed logit, identification, numerical best practices.
 - 3. Friday: Micro BLP, consumer survey data, other extensions.
- Ask questions in the Discord chat!
 - ightarrow I might not be able to answer all them in real time, but I'll stick around after.

This Course

- Three days, 6pm-9pm.
 - 1. Today: BLP model, pure logit, price endogeneity.
 - 2. Wednesday: Mixed logit, identification, numerical best practices.
 - 3. Friday: Micro BLP, consumer survey data, other extensions.
- Ask questions in the Discord chat!
 - \rightarrow I might not be able to answer all them in real time, but I'll stick around after.
- Three coding exercises, one after each day.
 - ightarrow Try these on your own or with your classmates' help. Use Discord rooms!
 - ightarrow I'll do the first two exercises live at the start of days 2 and 3. We'll post solutions.

• There are a lot of possible references for how to do BLP-style estimation.

- There are a lot of possible references for how to do BLP-style estimation.
- Modern guides:
 - 1. Berry and Haile (2021)
 - 2. Conlon and Gortmaker (2020)
 - 3. Conlon and Gortmaker (2023)

- There are a lot of possible references for how to do BLP-style estimation.
- Modern guides:
 - 1. Berry and Haile (2021)
 - 2. Conlon and Gortmaker (2020)
 - 3. Conlon and Gortmaker (2023)
- Foundational guides:
 - 1. Berry, Levinsohn and Pakes (1995)
 - 2. Nevo (2000)
 - 3. Petrin (2002)
 - 4. Berry, Levinsohn and Pakes (2004)

- There are a lot of possible references for how to do BLP-style estimation.
- Modern guides:
 - 1. Berry and Haile (2021)
 - 2. Conlon and Gortmaker (2020)
 - 3. Conlon and Gortmaker (2023)
- Foundational guides:
 - 1. Berry, Levinsohn and Pakes (1995)
 - 2. Nevo (2000)
 - 3. Petrin (2002)
 - 4. Berry, Levinsohn and Pakes (2004)
- None of these are required for the course, but I recommend taking a look afterwards.

Running Example

- BLP can be used to better understand all sorts of decisions.
 - → Product purchases, hospital visits, school choice, voting behavior, etc.

Running Example

- BLP can be used to better understand all sorts of decisions.
 - → Product purchases, hospital visits, school choice, voting behavior, etc.
- Typically used for counterfactual analysis of something that hasn't happened.
 - \rightarrow Need a structural model when we can't just estimate a treatment effect.

Running Example

- BLP can be used to better understand all sorts of decisions.
 - → Product purchases, hospital visits, school choice, voting behavior, etc.
- Typically used for counterfactual analysis of something that hasn't happened.
 - \rightarrow Need a structural model when we can't just estimate a treatment effect.
- Running example: What if we halved an important product's price?
 - → Practitioners: Increased sales vs. cannibalization?
 - \rightarrow Regulators: Revenue loss from eliminating a tax?
 - → Academics: Welfare consequences?

Roadmap

The BLP Model

Pure Logit Estimation

Price Endogeneity

Coding Exercise 1

- Model of individuals making a discrete choice from different alternatives.
 - ightarrow Original BLP (1995) also modeled firm price-setting. We'll focus on demand.

- Model of individuals making a discrete choice from different alternatives.
 - → Original BLP (1995) also modeled firm price-setting. We'll focus on demand.
- Choices are made in markets denoted by $t \in \mathcal{T}$.

- Model of individuals making a discrete choice from different alternatives.
 - → Original BLP (1995) also modeled firm price-setting. We'll focus on demand.
- Choices are made in markets denoted by $t \in \mathcal{T}$.
 - → Time periods, geographic regions, etc.
- Each market has individuals with types denoted by $i \in \mathcal{I}_t$.
 - → Different demographics and preferences.

- Model of individuals making a discrete choice from different alternatives.
 - → Original BLP (1995) also modeled firm price-setting. We'll focus on demand.
- Choices are made in markets denoted by $t \in \mathcal{T}$.
 - \rightarrow Time periods, geographic regions, etc.
- Each market has individuals with types denoted by $i \in \mathcal{I}_t$.
 - → Different demographics and preferences.
- Individuals are faced with choices denoted by $j \in \mathcal{J}_t$.
 - ightarrow Products, hospitals, candidates, etc.
 - \rightarrow Outside option j=0: no purchase, no treatment, no vote, etc.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - ightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - \rightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.
- Will help to decompose utility into three parts.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - \rightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.
- Will help to decompose utility into three parts.
 - 1. Mean utility δ_{jt} : Average preference across all individuals in the market.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - \rightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.
- Will help to decompose utility into three parts.
 - 1. Mean utility δ_{jt} : Average preference across all individuals in the market.
 - 2. Systematic heterogeneity μ_{ijt} : Different preferences, e.g. due to different demographics.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - \rightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.
- Will help to decompose utility into three parts.
 - 1. Mean utility δ_{jt} : Average preference across all individuals in the market.
 - 2. Systematic heterogeneity μ_{ijt} : Different preferences, e.g. due to different demographics.
 - 3. Idiosyncratic heterogeneity ε_{ijt} : Superimposed noise that accommodates estimation.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- Individuals choose an alternative to maximize (indirect) utility u_{ijt} .
 - \rightarrow We will specify a function for u_{ijt} and use revealed preference to estimate it.
- Will help to decompose utility into three parts.
 - 1. Mean utility δ_{jt} : Average preference across all individuals in the market.
 - 2. Systematic heterogeneity μ_{ijt} : Different preferences, e.g. due to different demographics.
 - 3. Idiosyncratic heterogeneity ε_{ijt} : Superimposed noise that accommodates estimation.
- We will parameterize δ_{jt} and μ_{ijt} and make a convenient assumption about ε_{ijt} .

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

• Assume a convenient distribution for ε_{ijt} : iid type I extreme value.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{ijt} = \mathbb{P}_{\varepsilon_{it}} \Big(u_{ijt} \geq u_{ikt} \text{ for all } k \in \mathcal{J}_t \cup \{0\} \Big)$$

- Assume a convenient distribution for ε_{ijt} : iid type I extreme value.
 - ightarrow "Logit shocks" are convenient because they give multinomial logit choice probabilities s_{ijt} .

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{ijt} = \frac{\exp(\delta_{jt} + \mu_{ijt})}{\sum_{k \in \mathcal{J}_t \cup \{0\}} \exp(\delta_{kt} + \mu_{ikt})}$$

- ullet Assume a convenient distribution for $arepsilon_{ijt}$: iid type I extreme value.
 - ightarrow "Logit shocks" are convenient because they give multinomial logit choice probabilities s_{ijt} .

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{ijt} = \frac{\exp(\delta_{jt} + \mu_{ijt})}{\sum_{k \in \mathcal{J}_t \cup \{0\}} \exp(\delta_{kt} + \mu_{ikt})}$$

- Assume a convenient distribution for ε_{ijt} : iid type I extreme value.
 - ightarrow "Logit shocks" are convenient because they give multinomial logit choice probabilities s_{ijt} .
- Want μ_{ijt} to be sufficiently flexible that this convenient assumption matters little.
 - \rightarrow Possible to eliminate ε_{ijt} but computation gets difficult (Berry and Pakes, 2007).

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{ijt} = \frac{\exp(\delta_{jt} + \mu_{ijt})}{\sum_{k \in \mathcal{J}_t \cup \{0\}} \exp(\delta_{kt} + \mu_{ikt})}$$

- Assume a convenient distribution for ε_{ijt} : iid type I extreme value.
 - ightarrow "Logit shocks" are convenient because they give multinomial logit choice probabilities s_{ijt} .
- Want μ_{ijt} to be sufficiently flexible that this convenient assumption matters little.
 - \rightarrow Possible to eliminate ε_{ijt} but computation gets difficult (Berry and Pakes, 2007).
- ullet Each type i is a share w_{it} of the population. Aggregating over them gives market shares.

$$s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot s_{ijt}$$

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{ijt} = \frac{\exp(\delta_{jt} + \mu_{ijt})}{\sum_{k \in \mathcal{J}_t \cup \{0\}} \exp(\delta_{kt} + \mu_{ikt})}$$

- Assume a convenient distribution for ε_{ijt} : iid type I extreme value.
 - ightarrow "Logit shocks" are convenient because they give multinomial logit choice probabilities s_{ijt} .
- Want μ_{ijt} to be sufficiently flexible that this convenient assumption matters little.
 - \rightarrow Possible to eliminate ε_{ijt} but computation gets difficult (Berry and Pakes, 2007).
- ullet Each type i is a share w_{it} of the population. Aggregating over them gives market shares.

$$s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot s_{ijt}$$

• We'll match these to observed quantities $q_{jt} = s_{jt} \cdot M_t$ in our data.

- In our data, we observe quantities $q_{jt} = s_{jt} \cdot M_t$.
 - \rightarrow Need to divide by some market size M_t to get our model's market shares s_{it} .
 - ightarrow Issue here is that we often don't observe the quantity of outside choices q_{0t} .

- In our data, we observe quantities $q_{jt} = s_{jt} \cdot M_t$.
 - ightarrow Need to divide by some market size M_t to get our model's market shares s_{jt} .
 - ightarrow Issue here is that we often don't observe the quantity of outside choices q_{0t} .
- Sometimes the choice of market size is straightforward.
 - ightarrow Market size for drugs to treat a condition is how many people have that condition.

- In our data, we observe quantities $q_{jt} = s_{jt} \cdot M_t$.
 - ightarrow Need to divide by some market size M_t to get our model's market shares s_{jt} .
 - \rightarrow Issue here is that we often don't observe the quantity of outside choices q_{0t} .
- Sometimes the choice of market size is straightforward.
 - ightarrow Market size for drugs to treat a condition is how many people have that condition.
- But typically, the choice of market size is neither easy nor innocuous.
 - ightarrow E.g. how many choices of which cereal to buy are made every day in a specific city?
 - ightarrow Population imes max cereals per day? Foot traffic estimate imes max cereals per trip?

- In our data, we observe quantities $q_{jt} = s_{jt} \cdot M_t$.
 - ightarrow Need to divide by some market size M_t to get our model's market shares s_{jt} .
 - ightarrow Issue here is that we often don't observe the quantity of outside choices q_{0t} .
- Sometimes the choice of market size is straightforward.
 - ightarrow Market size for drugs to treat a condition is how many people have that condition.
- But typically, the choice of market size is neither easy nor innocuous.
 - ightarrow E.g. how many choices of which cereal to buy are made every day in a specific city?
 - ightarrow Population imes max cereals per day? Foot traffic estimate imes max cereals per trip?
- You should try different assumptions and see how they change your results.
 - ightarrow In general, the bigger the market size, the more substitution to the outside good.
 - ightarrow We'll learn how to discipline these assumptions with data on day 3.

Identification and Normalizations

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- We will estimate our utility function with revealed preference.
 - ightarrow Holding μ_{ijt} fixed, a higher quantity $q_{jt}>q_{kt}$ implies a higher mean utility $\delta_{jt}>\delta_{kt}$.

Identification and Normalizations

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- We will estimate our utility function with revealed preference.
 - \rightarrow Holding μ_{ijt} fixed, a higher quantity $q_{jt}>q_{kt}$ implies a higher mean utility $\delta_{jt}>\delta_{kt}$.
- Utility is invariant to positive affine transformations. Need two normalizations.

$$u_{ijt} > u_{ikt} \quad \stackrel{b>0}{\Longleftrightarrow} \quad a + b \cdot u_{ijt} > a + b \cdot u_{ikt}$$

Identification and Normalizations

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- We will estimate our utility function with revealed preference.
 - ightarrow Holding μ_{ijt} fixed, a higher quantity $q_{jt}>q_{kt}$ implies a higher mean utility $\delta_{jt}>\delta_{kt}$.
- Utility is invariant to positive affine transformations. Need two normalizations.
 - a. Level: We will normalize $u_{i0t} = \varepsilon_{i0t}$, i.e. $\delta_{0t} = \mu_{i0t} = 0$
 - ⇒ Estimates are relative to outside option utility.

Identification and Normalizations

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- We will estimate our utility function with revealed preference.
 - ightarrow Holding μ_{ijt} fixed, a higher quantity $q_{jt}>q_{kt}$ implies a higher mean utility $\delta_{jt}>\delta_{kt}$.
- Utility is invariant to positive affine transformations. Need two normalizations.
 - a. Level: We will normalize $u_{i0t} = \varepsilon_{i0t}$, i.e. $\delta_{0t} = \mu_{i0t} = 0$
 - ⇒ Estimates are relative to outside option utility.
 - b. Scale: We already normalized $\mathbb{V}(\varepsilon_{ijt}) = \pi^2/6$ when deriving choice probabilities.
 - ⇒ Estimates are relative to scale of noise.

Identification and Normalizations

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- We will estimate our utility function with revealed preference.
 - ightarrow Holding μ_{ijt} fixed, a higher quantity $q_{jt}>q_{kt}$ implies a higher mean utility $\delta_{jt}>\delta_{kt}$.
- Utility is invariant to positive affine transformations. Need two normalizations.
 - a. Level: We will normalize $u_{i0t} = \varepsilon_{i0t}$, i.e. $\delta_{0t} = \mu_{i0t} = 0$
 - ⇒ Estimates are relative to outside option utility.
 - b. Scale: We already normalized $\mathbb{V}(\varepsilon_{ijt}) = \pi^2/6$ when deriving choice probabilities.
 - ⇒ Estimates are relative to scale of noise.
- Now that our model can in theory be identified, how do we estimate it?

Roadmap

The BLP Mode

Pure Logit Estimation

Price Endogeneity

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt}^{0} + \varepsilon_{ijt}$$

• Start with the simplest case: no heterogenous utility. We'll add μ_{ijt} back on day 2.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \frac{\exp \delta_{jt}}{\sum_{k \in \mathcal{J}_t \cup \{0\}} \exp \delta_{kt}}$$

- Start with the simplest case: no heterogenous utility. We'll add μ_{ijt} back on day 2.
- Market shares simplify. No aggregation over individual types.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \frac{\exp \delta_{jt}}{1 + \sum_{k \in \mathcal{J}_t} \exp \delta_{kt}}$$

- Start with the simplest case: no heterogenous utility. We'll add μ_{ijt} back on day 2.
- Market shares simplify. No aggregation over individual types.
 - \rightarrow The 1 in the denominator is from our level normalization $u_{i0t} = \varepsilon_{i0t}$, i.e. $\delta_{it} = 0$.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \frac{\exp \delta_{jt}}{1 + \sum_{k \in \mathcal{J}_t} \exp \delta_{kt}} \quad \Longrightarrow \quad \log \frac{s_{jt}}{s_{0t}} = \delta_{jt}$$

- Start with the simplest case: no heterogenous utility. We'll add μ_{ijt} back on day 2.
- Market shares simplify. No aggregation over individual types.
 - \rightarrow The 1 in the denominator is from our level normalization $u_{i0t} = \varepsilon_{i0t}$, i.e. $\delta_{it} = 0$.
- We can recover mean utilities from observed market shares (Berry, 1994).
 - ightarrow If we specify a function for δ_{jt} , we'll have a linear regression!

Pure Logit Estimating Equation

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt}$$

- Running example: What if we halved an important product's price?
 - \rightarrow In your exercise, products j are breakfast cereals; markets t are city-quarters.
 - \rightarrow If we estimate the model, we can change p_{it} and estimate how consumers react.

Pure Logit Estimating Equation

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Running example: What if we halved an important product's price?
 - \rightarrow In your exercise, products j are breakfast cereals; markets t are city-quarters.
 - \rightarrow If we estimate the model, we can change p_{it} and estimate how consumers react.
- Specify δ_{jt} as a function of price p_{jt} and other product characteristics x_{jt} .
 - ightarrow In your exercise, p_{jt} is per serving; x_{jt} includes a constant, a "mushy" dummy, etc.

Pure Logit Estimating Equation

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Running example: What if we halved an important product's price?
 - \rightarrow In your exercise, products j are breakfast cereals; markets t are city-quarters.
 - \rightarrow If we estimate the model, we can change p_{it} and estimate how consumers react.
- Specify δ_{jt} as a function of price p_{jt} and other product characteristics x_{jt} .
 - \rightarrow In your exercise, p_{jt} is per serving; x_{jt} includes a constant, a "mushy" dummy, etc.
- Interpret the regression error ξ_{it} as unobserved product quality not in our data.
 - ightarrow Unobserved characteristics, advertising, average taste variation, "demand shocks," etc.

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

Let's say we estimate this equation. How to interpret our parameter estimates?

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Let's say we estimate this equation. How to interpret our parameter estimates?
- Prices are in dollars, so the units of α are "utils" per dollar. Not very helpful.

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Let's say we estimate this equation. How to interpret our parameter estimates?
- Prices are in dollars, so the units of α are "utils" per dollar. Not very helpful.
 - → Instead, report own-price elasticities, or a quantity-weighted average/median.
 - ightarrow You can derive elasticities by differentiating the multinomial logit expression for s_{jt} .

$$\eta_{jjt} = \frac{\partial \log q_{jt}}{\partial \log p_{jt}} = \frac{\partial q_{jt}}{\partial p_{jt}} \frac{p_{jt}}{q_{jt}} = \frac{\partial s_{jt}}{\partial p_{jt}} \frac{p_{jt}}{s_{jt}} = \alpha \cdot p_{jt} \cdot (1 - s_{jt})$$

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Let's say we estimate this equation. How to interpret our parameter estimates?
- Prices are in dollars, so the units of α are "utils" per dollar. Not very helpful.
 - → Instead, report own-price elasticities, or a quantity-weighted average/median.
 - ightarrow You can derive elasticities by differentiating the multinomial logit expression for s_{jt} .

$$\eta_{jjt} = \frac{\partial \log q_{jt}}{\partial \log p_{jt}} = \frac{\partial q_{jt}}{\partial p_{jt}} \frac{p_{jt}}{q_{jt}} = \frac{\partial s_{jt}}{\partial p_{jt}} \frac{p_{jt}}{s_{jt}} = \alpha \cdot p_{jt} \cdot (1 - s_{jt})$$

• If x_{jt} is a "mushy" cereal dummy, β is "utils" from mushyness. Again, not helpful.

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Let's say we estimate this equation. How to interpret our parameter estimates?
- Prices are in dollars, so the units of α are "utils" per dollar. Not very helpful.
 - → Instead, report own-price elasticities, or a quantity-weighted average/median.
 - ightarrow You can derive elasticities by differentiating the multinomial logit expression for s_{jt} .

$$\eta_{jjt} = \frac{\partial \log q_{jt}}{\partial \log p_{jt}} = \frac{\partial q_{jt}}{\partial p_{jt}} \frac{p_{jt}}{q_{jt}} = \frac{\partial s_{jt}}{\partial p_{jt}} \frac{p_{jt}}{s_{jt}} = \alpha \cdot p_{jt} \cdot (1 - s_{jt})$$

- If x_{jt} is a "mushy" cereal dummy, β is "utils" from mushyness. Again, not helpful.
 - ightarrow Instead, report eta/lpha, the dollar willingness to pay for mushyness.

Roadmap

The BLP Mode

Pure Logit Estimation

Price Endogeneity

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

• In your coding exercise, you'll run an OLS regression of δ_{jt} on p_{jt} and x_{jt} .

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- In your coding exercise, you'll run an OLS regression of δ_{jt} on p_{jt} and x_{jt} .
- As usual, if a regressor is correlated with the error, then its coefficient is biased.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- In your coding exercise, you'll run an OLS regression of δ_{jt} on p_{jt} and x_{jt} .
- As usual, if a regressor is correlated with the error, then its coefficient is biased.
- Typically, we expect price to be strongly correlated with unobserved quality.
 - \rightarrow Firms know more than us about demand when setting prices.
 - \rightarrow Often, $\mathbb{C}(p_{jt}, \xi_{jt}) > 0$, so $\hat{\alpha} < 0$ is biased towards zero. \mathbb{C} means covariance.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- In your coding exercise, you'll run an OLS regression of δ_{jt} on p_{jt} and x_{jt} .
- As usual, if a regressor is correlated with the error, then its coefficient is biased.
- Typically, we expect price to be strongly correlated with unobserved quality.
 - \rightarrow Firms know more than us about demand when setting prices.
 - \rightarrow Often, $\mathbb{C}(p_{jt}, \xi_{jt}) > 0$, so $\hat{\alpha} < 0$ is biased towards zero. \mathbb{C} means covariance.
- Today we'll focus on handling just price endogeneity for simplicity.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Adding product and market fixed effects to x_{it} can eliminate a lot of bias.
 - \rightarrow E.g. if p_{jt} is correlated with fixed effects ξ_j and/or ξ_t in $\xi_{jt} = \xi_j + \xi_t + \Delta \xi_{jt}$.
 - ightarrow But do need multiple observations per product and market to add ξ_j and ξ_t .

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Adding product and market fixed effects to x_{it} can eliminate a lot of bias.
 - \rightarrow E.g. if p_{jt} is correlated with fixed effects ξ_j and/or ξ_t in $\xi_{jt} = \xi_j + \xi_t + \Delta \xi_{jt}$.
 - \rightarrow But do need multiple observations per product and market to add ξ_j and ξ_t .
 - \rightarrow Aside: Related to dynamic panel approach. Let $\xi_{it} = \rho \xi_{it-1} + \Delta \xi_{it}$, estimate ρ .

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Adding product and market fixed effects to x_{it} can eliminate a lot of bias.
 - \rightarrow E.g. if p_{jt} is correlated with fixed effects ξ_j and/or ξ_t in $\xi_{jt} = \xi_j + \xi_t + \Delta \xi_{jt}$.
 - \rightarrow But do need multiple observations per product and market to add ξ_i and ξ_t .
 - \rightarrow Aside: Related to dynamic panel approach. Let $\xi_{jt}=
 ho\xi_{jt-1}+\Delta\xi_{jt}$, estimate ho.
- Modern grocery scanner datasets have many thousands of products/markets.
 - ightarrow Dummies take too much memory, so we "absorb" them, i.e. iteratively de-mean.
 - ightarrow Stata: Reghdfe. R: Fixest. Python: PyFixest. Coding exercise: PyBLP via PyHDFE.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Adding product and market fixed effects to x_{it} can eliminate a lot of bias.
 - \rightarrow E.g. if p_{jt} is correlated with fixed effects ξ_j and/or ξ_t in $\xi_{jt} = \xi_j + \xi_t + \Delta \xi_{jt}$.
 - ightarrow But do need multiple observations per product and market to add ξ_j and ξ_t .
 - \rightarrow Aside: Related to dynamic panel approach. Let $\xi_{jt}=
 ho\xi_{jt-1}+\Delta\xi_{jt}$, estimate ho.
- Modern grocery scanner datasets have many thousands of products/markets.
 - ightarrow Dummies take too much memory, so we "absorb" them, i.e. iteratively de-mean.
 - ightarrow Stata: Reghdfe. R: Fixest. Python: PyFixest. Coding exercise: PyBLP via PyHDFE.
- Helpful but insufficient: ξ_{jt} typically varies by product and market.
 - ightarrow And if prices don't, then we don't have any variation left to estimate lpha.

Instrumental Variables

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- With or without fixed effects, a carefully-chosen IV can be a good solution.
 - ightarrow Relevance: $\mathbb{C}(p_{jt},z_{jt}) \neq 0$. Exclusion: $\mathbb{C}(\xi_{jt},z_{jt}) = 0$.

Instrumental Variables

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- With or without fixed effects, a carefully-chosen IV can be a good solution.
 - \rightarrow Relevance: $\mathbb{C}(p_{jt}, z_{jt}) \neq 0$. Exclusion: $\mathbb{C}(\xi_{jt}, z_{jt}) = 0$.
- Always run a first-stage regression of p_{jt} on z_{jt} and x_{jt} .
 - \rightarrow Does the sign of the coefficient on z_{it} make sense?
 - $\,\rightarrow\,$ Is the instrument strong, or should you worry about weak instruments?

Instrumental Variables

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- With or without fixed effects, a carefully-chosen IV can be a good solution.
 - \rightarrow Relevance: $\mathbb{C}(p_{jt}, z_{jt}) \neq 0$. Exclusion: $\mathbb{C}(\xi_{jt}, z_{jt}) = 0$.
- Always run a first-stage regression of p_{jt} on z_{jt} and x_{jt} .
 - \rightarrow Does the sign of the coefficient on z_{jt} make sense?
 - ightarrow Is the instrument strong, or should you worry about weak instruments?
- Many places to look. I'll discuss the most common ones.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.
 - $\,\rightarrow\,$ We want valid instruments that shift costs and/or markups.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.
- Cost-shifters: Measures of input prices, tariffs, etc.
 - ightarrow Consumers should only care about them through their effect on prices.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.
- Cost-shifters: Measures of input prices, tariffs, etc.
- Hausman: Current price of the same product averaged across other locations.
 - ightarrow Need costs to be correlated across locations, but not unobserved quality.
 - → Helpful that retailers tend to do "uniform pricing" (DellaVigna and Gentzkow, 2019).

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.
- Cost-shifters: Measures of input prices, tariffs, etc.
- Hausman: Current price of the same product averaged across other locations.
- Waldfogel: Average consumer characteristics in *nearby* locations.
 - ightarrow With uniform pricing, your neighbors' demographics will affect your prices.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.
- Cost-shifters: Measures of input prices, tariffs, etc.
- Hausman: Current price of the same product averaged across other locations.
- Waldfogel: Average consumer characteristics in *nearby* locations.
- BLP: Average characteristics x_{kt} of competing products $k \neq j$.
 - ightarrow Characteristics of competing products affect markups.
 - ightarrow We'll come back to these later, since they can also serve a different purpose.

$$\delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- Typically, prices are marginal costs plus a markup term.
- Cost-shifters: Measures of input prices, tariffs, etc.
- Hausman: Current price of the same product averaged across other locations.
- Waldfogel: Average consumer characteristics in *nearby* locations.
- BLP: Average characteristics x_{kt} of competing products $k \neq j$.
- I recommend starting with just one. A straightforward cost-shifter if you have it.

Roadmap

The BLP Mode

Pure Logit Estimation

Price Endogeneity

- Try to do the first exercise before day 2's class, when I'll do it live.
 - 1. Getting set up with Python and PyBLP.
 - 2. Pure logit estimation.
 - 3. Running the price cut counterfactual.

- Try to do the first exercise before day 2's class, when I'll do it live.
 - 1. Getting set up with Python and PyBLP.
 - 2. Pure logit estimation.
 - 3. Running the price cut counterfactual.
- When doing the exercise, think critically about the pure logit model's limitations.
 - $\,\rightarrow\,$ Do the substitution patterns you estimate seem reasonable?

- Try to do the first exercise before day 2's class, when I'll do it live.
 - 1. Getting set up with Python and PyBLP.
 - 2. Pure logit estimation.
 - 3. Running the price cut counterfactual.
- When doing the exercise, think critically about the pure logit model's limitations.
 - \rightarrow Do the substitution patterns you estimate seem reasonable?
- If you have time, try the supplemental exercises.
 - \rightarrow Statistical inference.
 - \rightarrow Modeling the supply side.

References I

- **Bergé, Laurent**, "Fixest: Fast fixed-effects estimations." Available at https://github.com/lrberge/fixest.
- **Berry, Steven**, "Estimating discrete-choice models of product differentiation," *The RAND Journal of Economics*, 1994, pp. 242–262.
- _ and Ariel Pakes, "The pure characteristics demand model," International Economic Review, 2007, 48 (4), 1193–1225.
- _ , James Levinsohn, and Ariel Pakes, "Automobile prices in market equilibrium," Econometrica, 1995, 63 (4), 841–890.
- __, __, and __, "Differentiated products demand systems from a combination of micro and macro data: The new car market," *Journal of Political Economy*, 2004, 112 (1), 68–105.

References II

- **Berry, Steven T and Philip A Haile**, "Foundations of demand estimation," in "Handbook of industrial organization," Vol. 4 2021, pp. 1–62.
- **Conlon, Christopher and Jeff Gortmaker**, "Best practices for differentiated products demand estimation with PyBLP," *The RAND Journal of Economics*, 2020, *51* (4), 1108–1161.
- _ and _ , "Incorporating micro data into differentiated products demand estimation with PyBLP," 2023.
- _ and _ , "PyBLP: BLP Demand Estimation with Python." Available at https://github.com/jeffgortmaker/pyblp.
- **Correia, Sergio**, "Reghdfe: Linear regressions with multiple fixed effects." Available at https://github.com/sergiocorreia/reghdfe.

References III

- **DellaVigna, Stefano and Matthew Gentzkow**, "Uniform pricing in US retail chains," *The Quarterly Journal of Economics*, 2019, *134* (4), 2011–2084.
- **Fischer, Alexander**, "PyFixest: Fast high-dimensional fixed effects regression in Python following fixest-syntax." Available at https://github.com/s3alfisc.
- **Gortmaker, Jeff and Anya Tarascina**, "PyHDFE: High dimensional fixed effect absorption with Python." Available at https://github.com/jeffgortmaker/pyhdfe.
- **Hausman, Jerry A**, "Valuation of new goods under perfect and imperfect competition," in "The economics of new goods," University of Chicago Press, 1996, pp. 207–248.
- **Nevo, Aviv**, "A practitioner's guide to estimation of random-coefficients logit models of demand," *Journal of economics & management strategy*, 2000, 9 (4), 513–548.

References IV

Petrin, Amil, "Quantifying the benefits of new products: The case of the minivan," *Journal of political Economy*, 2002, 110 (4), 705–729.

Waldfogel, Joel, "Preference externalities: An empirical study of who benefits whom in differentiated-product markets," *The RAND Journal of Economics*, 2003, 34 (3), 557.