Семинар 5

С решениями

Общая информация:

- Напомню, что стандартным скалярным произведением на \mathbb{R}^n называется $(x,y) = x^t y$.
- Через $\mathbb{R}[x]_{\leqslant n}$ обозначается пространство многочленов степени не более n, то есть $\mathbb{R}[x]_{\leqslant n} = \{a_0 + a_1x + \dots + a_nx^n \mid a_i \in \mathbb{R}\}.$

Задачи:

1. Опишите все ортогональные матрицы порядка n, состоящие из неотрицательных элементов.

Решение. Ответ: Это матрицы перестановок.

2. В пространстве многочленов $\mathbb{R}[x]_{\leq n}$ задана квадратичная форма Q(f) = f(1)f(2). Найдите ее сигнатуру (число положительных, отрицательных и нулевых чисел на диагонали в диагональном виде).

Решение. Ответ: Одно положительное, одно отрицательное, все остальные нули.

3. Рассмотрим евклидово пространство $\mathbb{R}[x]_{\leqslant 3}$ со скалярным произведением $(f,g)=\int\limits_{-1}^{1}f(x)g(x)\,dx$. Методом Грама-Шмидта ортогонализуйте базис $1,x,x^2,x^3$.

Решение. Давайте пройдемся по алгоритму. В начале положим

$$v_1 = 1;$$

Теперь по формулам

$$v_2 = x - \frac{(x, v_1)}{(v_1, v_1)} v_1 = -\frac{1}{2} + x$$

Теперь следующий вектор

$$v_3 = x^2 - \frac{(x^2, v_1)}{(v_1, v_1)} v_1 - \frac{(x^2, v_2)}{(v_2, v_2)} v_2 = \frac{1}{6} - x + x^2$$

И последний вектор

$$v_4 = x^3 - \frac{(x^3, v_1)}{(v_1, v_1)}v_1 - \frac{(x^3, v_2)}{(v_2, v_2)}v_2 - \frac{(x^3, v_3)}{(v_3, v_3)}v_3 = -\frac{1}{20} + \frac{3}{5}x - \frac{3}{2}x^2 + x^3$$

Ответ: $1, -\frac{1}{2} + x, \frac{1}{6} - x + x^2, -\frac{1}{20} + \frac{3}{5}x - \frac{3}{2}x^2 + x^3.$

4. Найти длины сторон и внутренние углы треугольника ABC в пространстве \mathbb{R}^5 со стандартным скалярным произведением, где

$$A = \begin{pmatrix} 2\\4\\2\\4\\2 \end{pmatrix}, \quad B = \begin{pmatrix} 6\\4\\4\\4\\6 \end{pmatrix}, \quad C = \begin{pmatrix} 5\\7\\5\\7\\2 \end{pmatrix}$$

Решение. Найдем векторы сторон

$$AB = B - A = \begin{pmatrix} 4 \\ 0 \\ 2 \\ 0 \\ 4 \end{pmatrix}, \quad BC = C - B = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 3 \\ -4 \end{pmatrix}, \quad AC = C - A = \begin{pmatrix} 3 \\ 3 \\ 3 \\ 3 \\ 0 \end{pmatrix}$$

1

Теперь найдем длины сторон по формуле $|v| = \sqrt{(v,v)}$, где $(v,v) = x^t v$ – стандартное скалярное произведение и увидим, что все длины равны 6, то есть |AB| = |BC| = |AC| = 6. Получился равносторонний треугольник. Но в равностороннем треугольнике мы знаем, что все углы равны между собой и равны 60° .

Ответ: |AB| = |BC| = |AC| = 6, все углы 60° .

5. Пусть $U \subseteq \mathbb{R}^4$ — векторное подпространство заданное следующим образом $U = \langle v_1, v_2, v_3, v_4 \rangle$, где

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 4 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 5 \\ 5 \\ 8 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -2 \\ 6 \\ -2 \\ 24 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 2 \\ -4 \\ 3 \\ -19 \end{pmatrix}$$

Задайте это подпространство в виде $U = \{ y \in \mathbb{R}^4 \mid Ay = 0 \}$ для некоторой матрицы $A \in \mathrm{M}_{m\,4}(\mathbb{R})$. (Подумайте с чего эта задача дается на тему про скалярные произведения).

6. Пусть в пространстве \mathbb{R}^3 задано стандартное скалярное произведение $(x,y)=x^ty$ и пусть заданы три вектора:

$$p_1 = \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}, p_2 = \begin{pmatrix} -1 \\ 4 \\ 4 \end{pmatrix} \text{ If } p_3 = \begin{pmatrix} 6 \\ 8 \\ 0 \end{pmatrix}$$

Пусть L – гиперплоскость, проходящая через точки p_1, p_2, p_3 . Выясните на каком расстоянии от гиперповерхности L лежат следующие векторы

$$w_1 = \begin{pmatrix} 1\\3\\5 \end{pmatrix}$$
и $w_2 = \begin{pmatrix} 3\\8\\3 \end{pmatrix}$

По одну ли сторону от гиперповерхности L они лежат?

Решение. (a) В качестве точки p подойдет любая точка с поверхности L. Возьмем, например, в качестве такой $p=p_1$. Плоскость L получается из подпространства натянутого на векторы p_2-p_1 и p_3-p_1 сдвигом на точку $p=p_1$. Тогда вектор v ищется как вектор ортогональные этим. То есть

$$A = (p_2 - p_1|p_3 - p_1) = \begin{pmatrix} -2 & 5\\ 0 & 4\\ 4 & 0 \end{pmatrix}$$

Решаем систему $A^t x = 0$, получаем вектор v = (4, -5, 2).

(b) Чтобы проверить с какой стороны от поверхности находятся векторы и посчитать расстояние до них, надо сдвинуть начало координат в точку p. А именно, надо заменить векторы w_1 и w_2 на w_1-p и w_2-p , получим

$$v_1 = w_1 - p = \begin{pmatrix} 0 \\ -1 \\ 5 \end{pmatrix}, \quad v_2 = w_2 - p = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$

Теперь посчитаем

$$\frac{(v_1,v)}{|v|} = \sqrt{5}$$
 и $\frac{(v_2,v)}{|v|} = -\frac{2}{\sqrt{5}}$

Модули этих чисел равны расстояниям до L, а знаки показывают, что они находятся по разные стороны от поверхности. Первое число положительное, значит оно находится по ту сторону от L куда показывает вектор v, второй вектор находится с противоположной стороны.

Ответ: а) v = (4, -5, 2), p = (1, 4, 0), b) расстояние до w_1 есть $\sqrt{5}$, расстояние до w_2 есть $\frac{2}{\sqrt{5}}$. Вектор w_1 находится по ту сторону от L, куда смотрит v, а w_2 находится с противоположной стороны.

7. Существует ли скалярное произведение на пространстве матриц $n \times n \ (n > 1)$, относительно которого матрица из всех единиц была бы ортогональна любой верхнетреугольной матрице?