CS 331 NP Notes 1

NP Computational Intractability

- Recall: an algorithm is efficient if it has a polynomial running time.
- Certain problems are extremely hard and cannot be solved by efficient algorithms.
- We do **not** know any polynomial time algorithms for these problems, and we **cannot** prove that no polynomial time-algorithm exists.
- A large class of these problems has been characterized and has been proven to be equivalent in the following sense: a polynomial-time algorithm for any one of them would imply the existence of a polynomial time algorithm for all of them. These problems are known as the NP-Complete problems.

<u>Polynomial-Time Reduction:</u> is the basic technique that we will use to explore the space of computationally hard problems. Using reduction, we can formally express statements like, "problem X is at least as hard as problem Y."

- **Definition of Reduction:** Let *X* and *Y* be two problems.
 - $Y \leq_P X$ (meaning Y can be reduced to X in polynomial time)

if and only if an arbitrary instance of problem *Y* can be solved using a polynomial number of standard computational steps, plus a polynomial number of calls to a *black box* which solves *X* i.e. how many times you call the black box

Explanation of the definition: To solve an instance of Y, you can do polynomial amount of work (regular kind of algorithm to create an instance of X) but you are able to call a black box that can solve instances of X.

- The black box is sometimes called the *oracle* -- is not a realistic model of computation.
 - The oracle submits the question and receives the answer
 - Question must be asked in a "yes" or "no" format
 - What we call a *decision version* of a problem
 - Instead of returning the complete solution we simply return whether a solution exists or not
- Other notes about $Y \leq_p X$
 - This means *Y* is polynomially-reducible to *X*
 - Also means *X* is at least as hard as *Y*
 - Also means Y can be solved using a polynomial number of steps plus a computational number of calls to X's black box.

NP-Complete Example: Independent Set

- **Problem Definition:** Given a graph G = (V, E), we say that a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge, i.e., nodes in S are not adjacent.
- Note that finding small independent sets in a graph is easy but finding **the largest independent set** is hard.
- **Goal:** Find the largest independent set

- o i.e. find the maximum number of nodes such that no two nodes are joined by an edge.
- We need to rephrase our problem as a decision problem so that it can communicate with the oracle

- Independent Set
 - Does *G* contain an independent set of size at least *k*?
 if k=2, then the answer is Yes.
 if k=4, then the answer is No.

To illustrate the basic strategy for relating hard problems to one another, we consider another fundamental graph problem for which no efficient algorithm is known.

Vertex Cover

- **Problem Definition:** Given a graph G = (V, E), we say that a set of nodes $S \subseteq V$ is a Vertex Cover if every edge $e \in E$ has at least one end in S, i.e., S covers all edges.
- Note that finding largest Vertex cover in a graph is easy but finding the smallest Vertex cover set is hard.
- **Goal:** Minimize the number of vertices used to cover *E*.
 - i.e. minimize the number of nodes which can successfully account for every edge in the graph
- Decision version
 - Does G contain a vertex cover of size at most k?
 if k=3, the answer is Yes.
 if k=4, the answer is also Yes (we can also consider the node at the bottom left).

Relationship Between Independent Set and Vertex Cover

Note: we do not know how to solve either Independent Set (IS) or Vertex Cover (VC) in polynomial time; but what can we say about their relative difficulty? We will show that they are equivalently hard: $IS \leq_P VC$ and $VC \leq_P IS$.

<u>Lemma 8.1:</u> Suppose $Y \leq_P X$. If X can be solved in polynomial time, then Y can be solved in polynomial time

• This makes sense, since we have a polynomial number of steps in our reduction and a polynomial number of calls to X then it stands to reason that for some P; $P^A \cdot P^B \cdot P^C = P^{A+B+C}$ Where P^A is the time taken for the reduction, P^B is the number of calls to X and P^C is the time taken for X to run IF X runs in polynomial time.

<u>Lemma 8.2:</u> Suppose $Y \leq_P X$. If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time

• Since $Y \leq_P X$ is equivalent to "X is at least as hard as Y" then it must be the case that if Y cannot be solved polynomially then X cannot be solved polynomially either since the two are equally hard. I.e. the "hardness" spreads from Y to X. Note that Lemma 8.2 is the contrapositive of Lemma 8.1. [the cotrapositive of $p \to q$ is $\sim q \to \sim p$].

<u>Lemma 8.3</u>: Let G = (V, E) be a graph, then S is an independent set **if and only if** V - S is a vertex cover.

Proof:

 \rightarrow

- First, suppose that S is an independent set.
- Let e = (u, v) be an arbitrary edge in G.
- Since S is independent, it cannot be the case that both u and v are in S as that would contradict the claim that S is an independent set.

- Therefore, one of the endpoints of e must lie in the set V S.
- Therefore, since S is an independent set, it follows that this must be true $\forall_e \in G$. i.e., every edge has at least one end in V-S. By definition, V-S is a vertex cover.

 \leftarrow

- Suppose V S is a vertex cover.
- Consider any two nodes u and $v \in S$.
- If u and v were joined by an edge, then not both ends of the edge would lie in V-S, contradicts our assumption that V-S is a Vertex Cover.
- No two nodes in S are joined by an edge.
- So, S is an independent set.

We can conclude that IS and VC are closely related to each other. ■

Is Independent Set \leq_P Vertex Cover?

- i.e. can independent set be reduced to vertex cover in polynomial time?
 - To find out we need to show:
 - The problems are strongly related
 - Need to apply the definition

Reduction $I.S. \rightarrow V.C.$

According to the graph above, the relationship between V.C. and I.S. is such that |V.C.| + |I.S.| = VTherefore, |V.C.| = V - |I.S.|

To show that VC is reducible in polynomial time to IS, we have to satisfy the definition.

- Come up with an arbitrary instance of VC: a graph G, a target K
- Compute k' = |V| k
- Call the black box for IS
- With input G, k', the black box returns either Yes or No (it says whether there is an IS in G of size k' or not).
- If the returned answer is ("yes" or "no") for independent set..

This is the algorithm for solving VC if we have a have (able to find) a black box that can solve instance of IS.

The time of the algorithm is polynomial.

- -k' = |V| k polynomial time
- call black box polynomial time, we only called it once.
- receive output (yes or no)- polynomial

8.4: IS≤_P VC **8.5:** VC≤_P IS