

Potential and Limitations of Commercial Sentiment Detection Tools

Fatih Uzdilli

joint work with Mark Cieliebak and Oliver Dürr

03.12.2013 @ ESSEM'13

About Me

Fatih Uzdilli

Institute of Applied Information Technology (InIT)

ZHAW, Winterthur, Switzerland

Email: uzdi@zhaw.ch, more about me: home.zhaw.ch/~uzdi

Research Interest

Information Retrieval, Machine Learning, Sentiment Analysis

Background

Software Engineer, Social Media Monitoring, Search Technologies

Evaluation of 9 commercial sentiment tools on approx. 30'000 short texts.

Best commercial tools have accuracy of only 60%.

Combining all tools using Random Forest improved the accuracy.

Motivation

Scientific results for sentiment detection:

«very good performance: > 80% accuracy»

Blog posts about commercial tools:

«very poor quality, unusable»

Motivation

Scientific results for sentiment detection:

Blog ost at ommercial tools:
 «very poor quality, unusable»

How good is commercial Sentiment Detection?

Is there potential for improvement?

Evaluation Setup

- 7 Public Text Corpora
 - Single Statements
 - Different Media Types
 - Tweet, News, Review,
 Speech Transcript
 - Total: 28653 Texts

- 9 Commercial APIs
 - Stand-alone
 - Free for this evaluation
 - Arbitrary Text

Tool Accuracy

Tool Accuracy

Further Findings

Longer texts are hard to classify

Corpus annotations might be erroneous

Can a Meta-Classifier do better?

- 1st Approach: Majority Classifier
 - Sentiment with most votes chosen

Illustration:

	api1	api2	api3	api4	api5	api6	api7	Majority
Text 1	+	+	-	0	-	+	0	+
Text 2	-	+	+	-	-	-	-	-
Text 3	-	0	+	+	+	+	-	+
Text n	0	0	+	0	-	0	0	0

Tool Accuracy

Majority Classifier beats Average

2nd Approach: Random-Forest

	api1	api2	api3	 api n	annotation		
Text 1	+	-	+	 0	+	Train	
Text 2	-	+	0	 +	- [Train	Random Forest
Text 3	-	0	-	 +	-	Train	Classifier
Text 4	+	0	+	 -	+	Train	
Text 5	+	0	+	 0	0	Train	
Text 6	+	0	0	 -	0	Train	
Text 7	+	-	+	 0	unknown	Predict	+
Text 8	+	+	0	 -	unknown	Predict	+
Text 9	0	-	+	 0	unknown	Predict	0

Before Random Forest

Random Forest Beats Best Single Tool

Summary

- Best Tool: 59% Accuracy
- Random Forest combination: Up to 9% improvement

