Growth of Functions Analysis of Algorithms

Prof. Camilo Cubides, Ph.D.(c) eccubidesg@unal.edu.co

Prof. Fabio A. González, Ph.D. fagonzalezo@unal.edu.co

Computer and System Department Engineering School Universidad Nacional de Colombia

1st Semester 2017

Outline

- Asymptotic notation
- 2 Common functions
- 3 Examples
- Master Theorem

Outline

- Asymptotic notation
- 2 Common functions
- 3 Examples
- Master Theorem

Asymptotically No Negative Functions

Definition

f(n) is asymptotically no negative if there exist $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$, $0 \leq f(n)$.

Theta Θ

Definition

$$\Theta(g(n)) = \{ f : \mathbb{N} \to \mathbb{R}^* : (\exists C_1, C_2 \in \mathbb{R}^+) (\exists n_0 \in \mathbb{N})$$

$$(\forall n \ge n_0) (0 \le C_1 g(n) \le f(n) \le C_2 g(n)) \}$$

$$C_1 \le \lim_{n \to \infty} \frac{f(n)}{g(n)} \le C_2$$

"
$$f(n) = \Theta(g(n))$$
" $\equiv f(n) \in \Theta(g(n))$ "

f is asymptotically tight bound for g or f is of the exact order of g

- ullet Every member of $\Theta(g(n))$ is asymptotically no negative.
- The function g(n) must itself asymptotically no negative, or else $\Theta\big(g(n)\big)=\varnothing.$

Example

Lets show that

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

We have to find C_1 , C_2 and n_0 such that

$$C_1 n^2 \le \frac{1}{2} n^2 - 3n \le C_2 n^2$$

For all $n \ge n_0$, Dividing by n^2 yields

$$C_1 \le \frac{1}{2} - \frac{3}{n} \le C_2$$

We have that $\frac{3}{n}$ is a decreasing sequence

$$3, \frac{3}{2}, 1, \frac{3}{4}, \frac{3}{5}, \frac{1}{2}, \frac{3}{7}, \frac{3}{8}, \frac{1}{3}, \dots$$

and then $\frac{1}{2} - \frac{3}{n}$ is an increasing sequence

$$-\frac{5}{2}$$
, -1 , $-\frac{1}{2}$, $-\frac{1}{4}$, $-\frac{1}{10}$, 0 , $\frac{1}{14}$, ...

that is upper bounded by $\frac{1}{2}$.

The right hand inequality can be made to hold for $n \geq 1$ by choosing $C_2 \geq \frac{1}{2}$. Likewise the left hand inequality can be made to hold for $n \geq 7$ by choosing $C_1 \leq \frac{1}{14}$.

Thus, by choosing $C_1=\frac{1}{14}$, $C_2=\frac{1}{2}$ and $n_0=7$ then we can verify that

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Big O (Omicron)

Definition

$$O(g(n)) = \{ f : \mathbb{N} \to \mathbb{R}^* : (\exists C \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}) \\ (\forall n \ge n_0) (0 \le f(n) \le Cg(n)) \}$$
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \le C$$

"
$$f(n) = O(g(n))$$
" $\equiv "f(n) \in O(g(n))$ "

f is asymptotically upper bound for g or g is an asymptotic upper bound for f

ullet Oig(g(n)ig) is pronounced "big-oh of g(n)".

Example

Lets show that if a, b > 0 then

$$an + b = O(n)$$

We have to find C and n_0 such that

$$an + b \le Cn$$

For all $n \ge n_0$, dividing by n yields

$$0 \le a + \frac{b}{n} \le C$$

The inequality can be made to hold for $n \ge 1$ by choosing $C \ge a + b$. Thus by choosing $C \ge a + b$ and $n_0 = 1$ then we can verify that $0 \le an + b \le (a + b)n$, that is to say

Big Omega Ω

Definition

$$\Omega(g(n)) = \{ f : \mathbb{N} \to \mathbb{R}^* : (\exists C \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N}) \\ (\forall n \ge n_0) (0 \le Cg(n) \le f(n)) \}$$
$$C \le \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

"
$$f(n) = \Omega(g(n))$$
" $\equiv f(n) \in \Omega(g(n))$ "

f is asymptotically lower bounded for g or g is an asymptotic lower bound for f

ullet $\Omegaig(g(n)ig)$ is pronounced "big-omega of g(n)"

Example

Lets show that

$$5n^3 - 5n^2 - 2n - 3 = \Omega(n^2)$$

We have to find C and n_0 such that

$$0 \le Cn^2 \le 5n^3 - 5n^2 - 2n - 3$$

if $n \geq n_0$.

For all $n \ge n_0$, Dividing by n^2 yields

$$0 \le C \le 5n - 5 - \frac{2}{n} - \frac{3}{n^2} = 5n - \left(5 + \frac{2}{n} + \frac{3}{n^2}\right)$$

We have that $5+\frac{2}{n}+\frac{3}{n^2}$ is a decreasing sequence that takes its maximum value 10 when n=1; and therefore $5n-\left(5+\frac{2}{n}+\frac{3}{n^2}\right)$ is an increasing sequence such that is non-negative for $n\geq 2$, whence if $n_0=2$ then it is lower bounded by $\frac{13}{4}$.

Thus, by choosing $C = \frac{13}{4}$ and $n_0 = 2$ then we can verify that

$$5n^3 - 5n^2 - 2n - 3 = \Omega(n^2)$$

Little o

Definition

$$o(g(n)) = \{ f : \mathbb{N} \to \mathbb{R}^* : (\forall C \in \mathbb{R}^+) (\exists n_0 \in \mathbb{N})$$
$$(\forall n \ge n_0) (0 \le f(n) < Cg(n)) \}$$
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

"
$$f(n) = o(g(n))$$
" $\equiv f(n) \in o(g(n))$ "

f is asymptotically smaller than g

- o(g(n)) is pronounced "little-oh of g(n)".
- o(g(n)) is the set of functions that grow slower than g.

Example

Lets show that

$$n = o(n^2)$$

we only have to show

$$\lim_{n \to \infty} \frac{n}{n^2} = \lim_{n \to \infty} \frac{1}{n} = 0$$

Example

Lets show that

$$n \not\in o(3n)$$

we have

$$\lim_{n\to\infty}\frac{n}{3n}=\lim_{n\to\infty}\frac{1}{3}=\frac{1}{3}\neq 0$$

Little omega ω

Definition

$$\omega(g(n)) = \{ f : \mathbb{N} \to \mathbb{R}^* : (\forall C \in \mathbb{R}^+) (\exists n_0 \in \mathbb{N})$$
$$(\forall n \ge n_0) (0 \le Cg(n) < f(n)) \}$$
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

"
$$f(n) = \omega(g(n))$$
" $\equiv f(n) \in \omega(g(n))$ "

f is asymptotically larger than g

- $\omega(g(n))$ is pronounced "little-omega of g(n)".
- $\omega(g(n))$ is the set of functions that grow faster than g.

Example

Lets show that

$$e^n = \omega(n+1)$$

we only have to show

$$\lim_{n\to\infty}\frac{e^n}{n+1}=\lim_{n\to\infty}e^n=\infty$$

Analogy with the comparison of two real numbers

Asymptotic notation	Real numbers
$f(n) \in O(g(n))$	$f \leq g$
$f(n) \in \Omega(g(n))$	$f \ge g$
$f(n) \in \Theta(g(n))$	f = g
$f(n) \in o(g(n))$	f < g
$f(n) \in \omega(g(n))$	f > g

Trichotomy does not hold!

Not all functions are asymptotically comparable Trichotomy does not hold

Example

Following functions are asymptotically non-negative

- f(n) = n
- $q(n) = n^{1+\sin(n)}$

but, they are not comparable because $1 + \sin(n) \in [0, 2]$, the function g varies between 1 and n^2 , when $n \to \infty$.

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$$

The running time of an algorithm is $\Theta(f(n))$

if and only if

- 1 Its worst-case running time is O(f(n)), and
- ② Its best-case running time is $\Omega(f(n))$.

Properties (conti.)

Given f, g and h asymptotically no negative functions, we have:

Transitivity of O, Ω, Θ $f(n) \in \Delta(g(n))$ and $g(n) \in \Delta(h(n))$ then $f(n) \in \Delta(h(n))$, for $\Delta \in \{O, \Omega, \Theta\}$.

Reflexivity of O, Ω, Θ $f(n) \in \Delta(f(n))$, for $\Delta \in \{O, \Omega, \Theta\}$.

Symmetry of Θ $f(n) \in \Theta(g(n)) \iff g(n) \in \Theta(f(n))$.

Anti-symmetry of $O, \Omega \ \forall f(n) \notin \Theta(g(n))$,

$$f(n) \in \Delta(g(n)) \Longrightarrow g(n) \notin \Delta(f(n))$$
, for $\Delta \in \{O, \Omega\}$.

Transpose Symmetry

$$f(n) \in O(g(n)) \iff g(n) \in \Omega(f(n))$$

 $f(n) \in o(g(n)) \iff g(n) \in \omega(f(n))$

Properties (conti.)

- $f \leq g \iff f(n) \in O(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f \ge g \Longleftrightarrow f(n) \in \Omega(g(n))$ order relation
 - reflexive
 - anti-symmetric
 - transitive
- $f = g \iff f(n) \in \Theta(g(n))$ equivalence relation
 - reflexive
 - symmetric
 - transitive

Properties (conti.)

$$o(f(n)) \cap \omega(f(n)) = \emptyset$$

Relation between o and O

$$f(n) \in o(g(n)) \Longrightarrow f(n) \in O(g(n))$$

Relation between ω and Ω

$$g(n) \in \omega(f(n)) \Longrightarrow g(n) \in \Omega(f(n))$$

Asymptotic notation two variables

Definition

$$O(g(m,n)) = \{ f : \mathbb{N} \times \mathbb{N} \to \mathbb{R}^* : (\exists C \in \mathbb{R}^+) (\exists m_0, n_0 \in \mathbb{N}) \\ (\forall m \ge m_0) (\forall n \ge n_0) (f(m,n) \le Cg(m,n)) \}$$

Outline

- Asymptotic notation
- 2 Common functions
- 3 Examples
- Master Theorem

Monotonicity

```
f is monotonically increasing if: \forall x,y \in \mathbb{R}, x < y \Longrightarrow f(x) \leq f(y) f is monotonically decreasing if: \forall x,y \in \mathbb{R}, x < y \Longrightarrow f(x) \geq f(y) f is strictly increasing if: \forall x,y \in \mathbb{R}, x < y \Longrightarrow f(x) < f(y) f is strictly decreasing if: \forall x,y \in \mathbb{R}, x < y \Longrightarrow f(x) > f(y)
```


Floors and Ceilings

Definition

 $\lfloor x \rfloor$ floor of x: The greatest integer less than or equal to x.

[x] ceiling of x: The smallest integer greater than or equal to x.

$$\forall x \in \mathbb{R}, \qquad x-1 < \lfloor x \rfloor \leq x \leq \lceil x \rceil < x+1$$

$$\forall n \in \mathbb{Z}, \qquad \lfloor n \rfloor = n = \lceil n \rceil \text{ and } \lfloor n/2 \rfloor + \lceil n/2 \rceil = n$$

Properties

 $\forall x \in \mathbb{R} \text{ and } n, m \in \mathbb{Z}^+$

$$\lfloor \lfloor x/n \rfloor / m \rfloor = \lfloor x/nm \rfloor$$
$$\lceil \lceil x/n \rceil / m \rceil = \lceil x/nm \rceil$$
$$\lfloor n/m \rfloor \le (n + (m-1))/m$$
$$\lceil n/m \rceil \ge (n - (m-1))/m$$

 $\lfloor x \rfloor$ and $\lceil x \rceil$ are monotonically increasing.

Modular arithmetic

For every integer a and any possible positive integer n,

 $a \bmod n$

is the **remainder** (or **residue**) of the quotient a/n

$$a \mod n = a - \lfloor a/n \rfloor n$$

congruency or equivalence $\mod n$

If $(a \bmod n) = (b \bmod n)$ we write

$$a \equiv b \pmod{n}$$

and we say that a is **equivalent** to b module n or that a is **congruent** to b module n.

In other words $a \equiv b \pmod n$ if a and b have the same remainder when they are divided by n.

Also $a \equiv b \pmod{n}$ if and only if n is a divisor of b - a

\pmod{n}

defines a equivalence relation in \mathbb{Z} and produces a partitioned set called $\mathbb{Z}_n =$ $\mathbb{Z}_{/n} = \{0, 1, 2, \dots, n-1\}$ in which can be defined arithmetic operations

$$a+b \pmod{n}$$

$$a * b \pmod{n}$$

Example $\equiv \pmod{4}$

$$\mathbb{Z}_{/4} = \{[0], [1], [2], [3]\} = \{0, 1, 2, 3\}$$

:	:	:	:
-12	-11	-10	-9
-8	-7	-6	-5
-4	-3	-2	-1
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
:	:	:	:
↓	. ↓	. ↓	. ↓
[0]	[1]	[2]	[3]

$$4+1\pmod{4}=1$$

$$5*2\pmod{4} = 2$$

Polynomials

Given a no negative integer d, a **polynomial in** \boldsymbol{n} of degree d is a function p(n) of the form:

$$p(n) = \sum_{i=0}^{d} a_i n^i$$

Where $a_0, a_1, a_2, \ldots, a_d$ are the **coefficients** and $a_d \neq 0$, a_d is called the **main coefficient** and a_0 is called the **independent term**.

Properties

- A polynomial p(n) es asymptotically positive if and only if $a_d > 0$.
- If p(n), of degree d is asymptotically positive, we have $p(n) = \Theta(n^d)$.
- $\forall a \in \mathbb{R}$, a > 0, n^a es monotonically increasing.
- $\forall a \in \mathbb{R}$, a < 0, n^a es monotonically decreasing.
- A function f(n) is **polynomially bounded** if $f(n) = O(n^d)$ for some constant d.

Exponentials

For all reals a > 0, m and n, we have the following identities:

- $a^0 = 1$
- $a^1 = a$
- $a^{-1} = 1/a$
- $(a^m)^n = a^{mn}$
- $(a^m)^n = (a^n)^m$
- $a^m a^n = a^{m+n}$
- $\bullet \ \frac{a^n}{a^m} = a^{n-m}$

- If a>1, for all $n\in\mathbb{Z}^+$,
 - a^n is monotonically increasing
- If 0 < a < 1, for all $n \in \mathbb{Z}^+$, a^n is monotonically decreasing
- $\forall a \in \mathbb{R}$ with a > 1, as:

$$\lim_{n \to \infty} \frac{n^d}{a^n} = 0$$

then $n^d = o(a^n)$.

For all $x \in \mathbb{R}$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

- $\forall x \in \mathbb{R}, e^x \ge 1 + x$, equality holds for x = 0.
- If $|x| \le 1$, $1 + x \le e^x \le 1 + x + x^2$.
- When $x \to 0$, $e^x = 1 + x + O(x^2)$.
- $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$.

Logarithms

Notations:

- $\lg n = \log_2 n$
- $\ln n = \log_e n$
- $\lg^k n = (\lg n)^k$
- $\lg \lg n = \lg(\lg n)$

Logarithm function will only apply to next term in the formula:

$$\lg n + k = (\lg n) + k$$

For b > 1 constant and n > 0,

 $\log_b n$

is strictly increasing.

For all reals a > 0, b > 0, c > 0 and n, we have the following identities:

- $a = b^{\log_b a}$
- $\bullet \log_c(ab) = \log_c a + \log_c b$
- \bullet $\log_a(a/b) = \log_a(a) \log_a(b)$
- $\bullet \log_b a^n = n \log_b a$
- $\log_b a = \frac{\log_c a}{\log_c b}$
- $\bullet \log_b(1/a) = -\log_b a$
- $\bullet \log_b a = \frac{1}{\log_a b}$
- $a^{\log_b c} = c^{\log_b a}$
- \bullet $\frac{d}{dx}(\log_a u) = \frac{1}{\ln a} \cdot \frac{1}{u} \frac{du}{dx}$

For $x \in \mathbb{R}$, if |x| < 1 then:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}x^i}{i}$$

- When x > -1, $\frac{x}{1+x} \le \ln(1+x) \le x$.
- For x > -1, equality holds for x = 0.

A function f(n) is **polylogaritmically** bounded if

$$f(n) = O(\lg^k n)$$
 for some constant k

We have the following relation between polynomials and polylogarithms:

$$n^d = 2^{\lg n^d} = 2^{d(\lg n)} = (2^d)^{\lg n}$$

$$\lim_{n \to \infty} \frac{\lg^k n}{n^d} = \lim_{n \to \infty} \frac{\lg^k n}{(2^d)^{\lg n}} = 0$$

then $\lg^k n = o(n^k)$.

Factorials

Given $n \in \mathbb{N}$, factorial of n is defined as:

Definition (No recursive)

$$n! = \begin{cases} 1, & \text{if } n = 0; \\ \prod_{i=1}^{n} i, & \text{if } n > 0. \end{cases}$$

Definition (Recursive)

$$n! = \begin{cases} 1, & \text{if } n = 0; \\ n \cdot (n-1)!, & \text{if } n > 0. \end{cases}$$

Weak upper bound

$$n! \le n^n$$

Stirling's approximation

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left[1 + \Theta\left(\frac{1}{n}\right)\right]$$

then

$$\begin{split} n! &= o \left(n^n \right) \\ n! &= \omega \left(2^n \right) \\ \lg (n!) &= \Theta(n \lg n) \\ n! &= \sqrt{2\pi n} \left(\frac{n}{e} \right)^n e^{\alpha_n}, \qquad \text{where } \frac{1}{12n+1} \leq \alpha_n \leq \frac{1}{12n} \end{split}$$

Functional iteration

Definition

Given a function f(n) the *i*-th functional iteration of f is defined as:

$$f^{i} = \begin{cases} I, & \text{if } i = 0; \\ f \circ f^{(i-1)}, & \text{if } i > 0. \end{cases}$$

with I the identity function.

For a particular n, we have:

$$f^{i}(n) = \begin{cases} n, & \text{if } i = 0; \\ f(f^{(i-1)}(n)), & \text{if } i > 0. \end{cases}$$

Examples

- **1** f(n) = 2n then $f^{(i)}(n) = 2^{i}n$
- $f(n) = n^2$ then:

$$f^{(2)}(n) = (n^2)^2 = (n^2)(n^2) = n^{2*2} = n^4$$

$$f^{(3)}(n) = (n^{2*2})^2 = n^{2*2*2} = n^8$$

$$f^{(4)}(n) = (n^{2*2*2})^2 = n^{2*2*2*2} = n^{16}$$

$$\vdots$$

$$f^{(i)}(n) = n^{2^i}$$

Example

$$f(n) = n^n$$
 then

$$f^{(2)}(n) = n^{n^n}$$

$$f^{(3)}(n) = n^{n^{n^n}}$$

$$f^{(4)}(n) = n^{n^{n^{n^n}}}$$

$$\vdots$$

$$f^{(i)}(n) = n^{n^{n^{n^{n^n}}}}$$

Iterated logarithm

Definition

The iterated logarithm of n, denoted $\lg^* n$ ("log star of n") is defined as:

$$\lg^* n = \min \{ i \ge 0 : \lg^{(i)} n \le 1 \}$$

 $\lg^* n$, is a very slowly growing function

$$\lg^* 1 = 0
 \lg^* 2 = 1
 \lg^* 4 = 2
 \lg^* 16 = 3
 \lg^* 65536 = 4
 \lg^* (65536)^2 = 5$$

In general

Summary

```
O(n \lg n) \in O(n^2)
O(n \lg n)
O(n \lg n)
      \in O(\sqrt{n}) \in O(n)
 O(\lg n)
\in
```


Outline

- Asymptotic notation
- Common functions
- 3 Examples
- Master Theorem

Example

Α	В		
$5n^2 + 100n$	$3n^2 + 2$	$A\in\Theta(B)$	
$\log_3\left(n^2\right)$	$\log_2\left(n^3\right)$	$A\in\Theta(B)$	
$n^{\lg 4}$	$3^{\lg n}$	$A\in\omega(B)$	
$\lg n$	$n^{1/2}$	$A \in o(B)$	
$\lg n$ denotes $\log_2 n$.			

$$5n^2 + 100n$$
 $3n^2 + 2$ $A \in \Theta(B)$
 $A \in \Theta(n^2), n^2 \in \Theta(B) \Longrightarrow A \in \Theta(B)$

$$\log_3(n^2) \log_2(n^3) \quad A \in \Theta(B) \\ \log_b a = \log_c a / \log_c b; A = 2 \lg n / \lg 3, B = 3 \lg n; A/B = 2/(3 \lg 3)$$

$$n^{\lg 4} \qquad 3^{\lg n} \qquad \mathbf{A} \in \omega(\mathbf{B})$$

$$a^{\log b} = b^{\log a}; B = 3^{\lg n} = n^{\lg 3}; \mathbf{A}/\mathbf{B} = n^{\lg(4/3)} \to \infty \text{ as } n \to \infty$$

$$\lg n \qquad n^{1/2} \qquad \mathbf{A} \in o(\mathbf{B}) \\
\lim_{n \to \infty} \left(\log_a n / n^b \right) = 0, \text{ here } a = 2 \text{ and } b = 1/2 \Longrightarrow \mathbf{A} \in o(\mathbf{B})$$

Outline

- Asymptotic notation
- 2 Common functions
- 3 Examples
- Master Theorem

Master Theorem I

Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + c$$

whenever n is divisible by b, where $a \ge 1$, b is an integer greater than 1, and c is a positive real number. Then

$$f(n) \text{ is } \begin{cases} O(n^{\log_b a}) \text{ if } a > 1, \\ O(\log n) \text{ if } a = 1. \end{cases}$$

Furthermore, when $n = b^k$ and $a \neq 1$, where k is a positive integer,

$$f(n) = C_1 n^{\log_b a} + C_2,$$

where $C_1 = f(1) + c/(a-1)$ and $C_2 = -c/(a-1)$.

Figure: Master Theorem first version.

Master Theorem II

MASTER THEOREM Let f be an increasing function that satisfies the recurrence relation

$$f(n) = af(n/b) + cn^d$$

whenever $n=b^k$, where k is a positive integer, $a \ge 1$, b is an integer greater than 1, and c and d are real numbers with c positive and d nonnegative. Then

$$f(n) \text{ is } \begin{cases} O(n^d) & \text{if } a < b^d, \\ O(n^d \log n) & \text{if } a = b^d, \\ O(n^{\log_b a}) & \text{if } a > b^d. \end{cases}$$

Figure: Master Theorem second version.

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Figure: Master Theorem full version.