Tools & Models for Data Science Relational Algebra

Chris Jermaine & Risa Myers

Rice University

Relational Calculus vs. Algebra

- In Relational Calculus
 - You say what you want
 - And not how to compute it
- But obviously...
 - This needs to be compiled into an actual computational plan
 - And in relational DBs, the plan is expressed in relational algebra
- RA is the "abstract machine" of relational databases

What Is An Algebra?

- Many Definitions!
 - Simplest: it is a set (domain) with a number of operations
 - The domain is closed under those operations
- In RA...
 - The domain is the set of all valid relations
 - The set of operations includes $\pi, \sigma, \times, \bowtie, \cup, \cap, -$
- Now let's go through the operations!

Projection

- Projection removes attributes
- \blacksquare $\pi_A(R)...$
 - \blacksquare A is a set of attributes of relation R
 - This simply removes all attributes not in *A* from *R*
 - Note: cardinality of output can differ from R
 - Output is a relation

Projection Example

COURSE(CRN, NAME, DOW, STARTTIME, ENDTIME)

1 Return course names $\pi_{name}(\text{COURSE})$ {('Comp430'), ('Comp140'), ...}

2 Return course name and days of the week when courses meet $\pi_{name,dow}(\text{COURSE})$ {('Comp430', 'MWF'), ('Comp140', 'TR'), ...)}

Projection Visualization

COURSE

CRN	NAME	DOW	STARTTIME	ENDTIME
12809	COMP 430	MWF	14:00:00	14:50:00
12810	COMP 533	MWF	14:00:00	14:50:00
10396	COMP 140	TR	10:50:00	12:05:00
13970	COMP 436	WF	14:30:00	15:45:00

$\pi_{name,dow}(COURSE)$

NAME	DOW	
COMP 430	MWF	
COMP 533	MWF	
COMP 140	TR	
COMP 436	WF	

Selection

- Selection removes tuples
- \bullet $\sigma_B(R)...$
 - \blacksquare B is a boolean predicate that can be applied to a single tuple from R
 - This simply removes all tuples not accepted by B
 - Again: output is a relation

FREQUENTS

DRINKER	CAFE
Risa	JL
Risa	ВН
Chris	ВН
Chris	DT

$\sigma_{DRINKER='Risa'}(FREQUENTS)$

DRINKER	CAFE	
Risa	JL	
Risa	BH	

Selection Example

COURSE(CRN, NAME, DOW, STARTTIME, ENDTIME)

1 Which courses have name 'Comp 533'? $\sigma_{name='\text{Comp }533'}(\text{COURSE}) \\ \{ (12810,\text{Comp }533,\text{ MWF, }14:00:00,\text{ }14:50:00) \}$

2 Which courses meet for less than an hour at a time? $\sigma_{endTime-startTime \leq 1:00}(COURSE) \\ \{(12809,Comp 430, MWF, 14:00:00,14:50:00), (12810,Comp 533, MWF, 15:00:00,15:50:00), \\ \cdots \}$

Selection Visualization

COURSE

CRN	NAME	DOW	STARTTIME	ENDTIME
12809	COMP 430	MWF	14:00:00	14:50:00
12810	COMP 533	MWF	14:00:00	14:50:00
10396	COMP 140	TR	10:50:00	12:05:00
13970	COMP 436	WF	14:30:00	15:45:00

$\sigma_{\textit{endTime}-\textit{startTime}} \leq_{1:00} (COURSE)$

CRN	NAME	DOW	STARTTIME	ENDTIME
12809	COMP 430	MWF	14:00:00	14:50:00
12810	COMP 533	MWF	14:00:00	14:50:00

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

? Query: Who likes 'Cold Brew' coffee?

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

- Query: Who likes 'Cold Brew' coffee?
 - $\pi_{\text{DRINKER}}(\sigma_{\text{COFFEE}='\text{Cold Brew'}}(\text{LIKES}))$

COURSE(CRN, NAME, DOW, STARTTIME, ENDTIME)

- ? What are the name and days of the week for classes that meet at 1 PM?
- ? What are the names of courses that meet for less than an hour at a time?

COURSE(CRN, NAME, DOW, STARTTIME, ENDTIME)

- What are the name and days of the week for classes that meet at 1 PM? $\pi_{name,dow}(\sigma_{startTime=13:00:00}(COURSE))$
- What are the names of courses that meet for less than an hour at a time? $\pi_{name}(\sigma_{endTime-startTime<1:00}(COURSE))$

Rename ρ

$$\rho_{A/B}(R)$$

- Renames attribute B to A in relation R
- Output is a relation

$$\rho_{S(A_1...A_n)}(R)$$

- Renames relation R to S and renames all attributes as specified
- Output is a relation

Example

- ? Rename attribute 'name' in COURSE to 'courseName'
- ightharpoonup $ho_{courseName/name}(COURSE)$

Assignment \leftarrow

- X ← (relational algebra statement)
- Assigns the relation to a temporary variable
- For convenience

Example

- ? Assign the courses that meet on Monday-Wednesday-Friday to the variable MWF
- MWF \leftarrow ($\sigma_{dow='MWF'}$ (COURSE))

Join: Cartesian Product

- Join combines tuples
- Simplest join is Cartesian product (aka: cross product)
- Used to match up tuples from different relations
- \blacksquare $R \times S$ is equivalent to

```
for r in R
for s in S
output r • s
```

■ "•" is concatenation

What is the output cardinality?

A |R|

B |S|

 $C |R| \times |S|$

D |R| + |S|

Cartesian Product Example

on		codeA	codeB
0	×	Α	Χ
1		В	Υ
	J I		

on	codeA	codeB	color
0	Α	X	red
0	Α	X	blue
0	Α	X	green
0	В	Υ	red
0	В	Υ	blue
0	В	Υ	green
1	Α	X	red
1	Α	X	blue
1	Α	X	green
1	В	Υ	red
1	В	Υ	blue
1	В	Υ	green

What is a Join?

- Concatenates attributes from one relation to another
- Returns a new relation
- Cartesian product/ cross product
 - Every possible pairing
- Natural or Theta joins
 - Based on predicates
- Left / Right Outer joins
 - All tuples from one relation and matching relations from the other

Join: Theta Join

LIKES (DRINKER, COFFEE) FREQUENTS (DRINKER, CAFE) SERVES (CAFE, COFFEE)

- Often you want $\sigma_B(R \times S)$
- Shorthand for this is $R \bowtie_B S$
- ? Query: Who likes a coffee that 'Risa' likes?

Join: Theta Join

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

- Often you want $\sigma_B(R \times S)$
- Shorthand for this is $R \bowtie_B S$
- Query: Who likes a coffee that 'Risa' likes?
 - TEMP (d_1, c_1, d_2, c_2) \leftarrow LIKES $\bowtie_{\text{COFFEE}=\text{COFFEE}} (\sigma_{\text{DRINKER}=\text{'Risa'}}(\text{LIKES}))$
 - \blacksquare $\pi_{d_1}(\mathsf{TEMP})$

Theta Join Example

TEACHES(<u>netId</u>, <u>crn</u>, <u>semester</u>, year)

? What is the netid for people who have taught the same class in more than 1 year?

Theta Join Example

TEACHES(netId, crn, semester, year)

- What is the netid for people who have taught the same class in more than 1 year?
- π_{netid} $\Big(\rho_{sem1(...)} (\text{TEACHES}) \bowtie_{sem1.netId = sem2.netId} \land sem1.crn = sem2.crn \land sem1.year < sem2.year$ $\rho_{sem2(...)} (\text{TEACHES}) \Big)$

Theta Join Example

TEACHES(netld, crn, semester, year)

- What is the netid for people who have taught the same class in more than 1 year?
- π_{netid} $\Big(\rho_{sem1(...)} (\text{TEACHES}) \bowtie_{sem1.netId = sem2.netId} \land sem1.crn = sem2.crn \land sem1.year < sem2.year$ $\rho_{sem2(...)} (\text{TEACHES}) \Big)$
- Why "sem1.year < sem2.year"?

Toy Examples

- Sometimes, you need to try things out
- Pencil & paper
- Relations & data

Join: Natural Join

- Often you want to join two relations
 - Using an equality check on all attributes having the same name
 - Then project away redundant attributes
- Shorthand for this is R * S

Join: Natural Join Example

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

? Who goes to a cafe serving a coffee that they like?

Join: Natural Join Example

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

- Who goes to a cafe serving a coffee that they like?
 - \blacksquare $\pi_{DRINKER}(LIKES * FREQUENTS * SERVES)$

Set-Based Operations

- Can use standard set operations as well: \cup , \cap , -
 - Types and numbers of input attributes must match
 - By convention, attribute names come from LHS
 - \blacksquare $R \cup S$: all tuples in R or in S
 - \blacksquare $R \cap S$: all tuples in R and in S
 - \blacksquare R-S: all tuples in R and not in S

Set-Based Operations

Union

- ? What is the maximum number of tuples in $R \cup S$?
 - A |R|
 - 3 |S|
 - $C |R| \times |S|$
 - D |R| + |S|

Union Example

FACULTY (<u>NETID</u>, LASTNAME, FIRSTNAME, HIREDATE, TERMDATE) STUDENT (NETID, LASTNAME, FIRSTNAME)

? What are the names of all the people at Rice?

Union Example

FACULTY (<u>NETID</u>, LASTNAME, FIRSTNAME, HIREDATE, TERMDATE) STUDENT (<u>NETID</u>, LASTNAME, FIRSTNAME)

- What are the names of all the people at Rice?
- $\pi_{lastname,firstname}(STUDENT) \cup \pi_{lastname,firstname}(FACULTY)$

Union Example

FACULTY (<u>NETID</u>, LASTNAME, FIRSTNAME, HIREDATE, TERMDATE) STUDENT (<u>NETID</u>, LASTNAME, FIRSTNAME)

- What are the names of all the people at Rice?
- $\pi_{lastname,firstname}(STUDENT) \cup \pi_{lastname,firstname}(FACULTY)$
- ? Why do we project out lastname, firstname?

Intersection Example

FACULTY (<u>NETID</u>, LASTNAME, FIRSTNAME, HIREDATE, TERMDATE) STUDENT (<u>NETID</u>, LASTNAME, FIRSTNAME)

? Who has been both a student and a faculty member?

Intersection Example

FACULTY (<u>NETID</u>, LASTNAME, FIRSTNAME, HIREDATE, TERMDATE) STUDENT (<u>NETID</u>, LASTNAME, FIRSTNAME)

- Who has been both a student and a faculty member?
- $\pi_{lastname,firstname}(STUDENT) \cap \pi_{lastname,firstname}(FACULTY)$

Difference Example

FACULTY (<u>NETID</u>, LASTNAME, FIRSTNAME, HIREDATE, TERMDATE) STUDENT (NETID, LASTNAME, FIRSTNAME)

- \blacksquare $\pi_{lastname,firstname}(FACULTY) \pi_{lastname,firstname}(STUDENT)$
- ? What does this expression represent (in English)?

Difference Example

FACULTY (<u>NETID</u>, LASTNAME, FIRSTNAME, HIREDATE, TERMDATE) STUDENT (<u>NETID</u>, LASTNAME, FIRSTNAME)

- $\pi_{lastname,firstname}(FACULTY) \pi_{lastname,firstname}(STUDENT)$
- Faculty who have never been students

Set-Based Operations

LIKES (DRINKER, COFFEE) FREQUENTS (DRINKER, CAFE) SERVES (CAFE, COFFEE)

? Who does not like 'Cold Brew' coffee?

Set-Based Operations

LIKES (DRINKER, COFFEE) FREQUENTS (DRINKER, CAFE) SERVES (CAFE, COFFEE)

- Who does not like 'Cold Brew' coffee?
 - CBGOOD $\leftarrow \pi_{DRINKER}(\sigma_{COFFEE='Cold\ Brew'}(LIKES))$
 - $(\pi_{DRINKER}(FREQUENTS)) CBGOOD$
- ? Why use FREQUENTS instead of LIKES?

LIKES (DRINKER, COFFEE) FREQUENTS (DRINKER, CAFE) SERVES (CAFE, COFFEE)

- 1 Which cafes serve Cold Brew?
- 2 Who goes to cafes serving Cold Brew?
- 3 Who goes to a cafe that both Risa and Chris go to?
- 4 Who avoids Risa at all costs?

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

1 Which cafes serve Cold Brew?

$$\pi_{CAFE}(\sigma_{COFFEE='Cold\ Brew'}(SERVES))$$

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

Who goes to cafes serving Cold Brew?

 $\pi_{DRINKER}(\sigma_{COFFEE='Cold\ Brew'}(SERVES*FREQUENTS))$

```
LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)
```

Who goes to a cafe that both Risa and Chris go to?

```
C \leftarrow \pi_{CAFE}(\sigma_{DRINKER='Risa'}(FREQUENTS)) \\ \cap \pi_{CAFE}(\sigma_{DRINKER='Chris'}(FREQUENTS)) \\ \pi_{DRINKER}(FREQUENTS * C)
```

LIKES (DRINKER, COFFEE) FREQUENTS (DRINKER, CAFE) SERVES (CAFE, COFFEE)

4 Who avoids Risa at all costs?

Want: Cafes each person goes to - cafes Risa goes to

 $RCAFES \leftarrow \pi_{CAFE}(\sigma_{DRINKER='Risa'}(FREQUENTS))$

 $\pi_{DRINKER}(FREQUENTS) - \pi_{DRINKER}(FREQUENTS * RCAFES)$

Complicated Set-Based Example

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

- Who only goes to cafes where they can get a coffee they like?
 - Use 'all people' 'those who go to a cafe where they can't get a coffee they like'
 - ALLPEEPS $\leftarrow \pi_{DRINKER}(FREQUENTS)$
 - How about 'those who go to a cafe where they can't get a coffee they like'?
 - Use FREQUENTS 'DRINKER, CAFE combos where the person can get a coffee they like'
 - GOODCOFFEE $\leftarrow \pi_{DRINKER,CAFE}(LIKES * SERVES)$
- Then the answer is
 - ALLPEEPS $-\pi_{DRINKER}$ (FREQUENTS GOODCOFFEE)

Review

- 1 If R has 3 tuples and S has 2 tuples, $R \times S$ returns how many tuples?
 - A 2
 - B 3
 - **C** 6
 - D None of the above

True / False

- The most commonly used type of join is Cartesian product
- 3 Attribute names must match to join relations on them
- 4 When you perform a join, the join column is always duplicated
- 5 Each relation may be used at most 1 time per query
- 6 Union and Intersection can operate on relations with different numbers or types of attributes

Wrap up

- What is Relational Algebra?
- 2 Why does it matter?
- ? How can we use what we learned today?

? What do we know now that we didn't know before?