

NZ3801-AB Datasheet

(版本 V1.3)

国民技术股份有限公司 2017年5月

- 1 -

地址:深圳市南山区高新南区粤兴三道9号华中科技大学产学研基地A座

电话: +86-755-86309900 传真: +86-755-86169100 邮箱: info@nationz.com.cn 邮编: 518057

声明

国民技术股份有限公司(以下简称国民技术)保有在不事先通知而修改这份 文档的权利,国民技术认为提供的信息是准确可信的,尽管这样,国民技术对文 档中可能出现的错误不承担任何责任。在购买前请联系国民技术获取该器件说明 的最新版本,对于使用该器件引起的专利纠纷及第三方侵权国民技术不承担任何 责任。另外,国民技术的产品不建议应用于生命相关的设备和系统,在使用该器 件中因为设备或系统运转失灵而导致的损失国民技术不承担任何责任。国民技术 对本手册拥有版权等知识产权,受法律保护。未经国民技术许可,任何单位及个 人不得以任何方式或理由对本手册进行使用、复制、修改、抄录、传播等。

限制条件

强行超过一项或多项极限参数值将导致器件的永久性损坏,长期工作于极限 值将影响器件的可靠性。

注意

这是国民技术不便于披露的文件,它包含一些保密的信息。在没有签订任何 保密协议前或者在国民技术单方面要求的情况下请归还于国民技术。任何非国民 技术委托人不得使用或者参考该文件。

如果你得到了这份文件,请注意:

- 不得公开文档内容
- 不得转载全部或部分文档内容
- 不得修改全部或部分文档内容

在以下情况这份文件必须销毁

- 国民技术已经提供更新的版本
- 未签订保密协议或者保密协议已经过期
- 受委托人离职

致用户

我们一直在不断的改进我们的产品及说明文档的品质,我们努力保证这份文档的说明是准确的,但也可能存在一些我们未曾发现的失误。如果您发现了文档中有任何疑问或错失的地方请及时联系我们,您的理解及支持将使得这份文档更加完善。

1

目录

概述......5

2	应用	框图							 	6
3	关键	特性							 	6
4	管脚	排列							 	7
	4.1	封装引	脚						 	7
	4.2	引脚描	述						 	8
5	通信	功能描述	龙						 	10
	5.1	ISO/IEC	14443A	功能					 	10
	5.2	ISO/IEC	14443B	功能					 	11
6	接口								 	11
	6.1	SPI 接口	J						 	12
		6.1.1								12
		6.1.2	读数据.						 	12
		6.1.3	写数据.						<u>) </u>	12
	6.2	UART 搜								13
		6.2.1					/			13
		6.2.2								13
		6.2.3	帧格式.					<u>,/</u>	 	14
	6.3	I2C 总约								16
		6.3.1	概述						 	16
		6.3.2	数据有象	汝			• • • • • • • • • • • • • • • • • • • •		 	16
		6.3.3	起始和何	亨止条件		.,)			 	17
		6.3.4	字节格式	戋					 	17
		6.3.5		7 1 1						17
		6.3.6	7bit 景	止					 	18
		6.3.7	寄存器等	写访问					 	18
		6.3.8	寄存器i	卖访问					 	18
		6.3.9	高速模	戈					 	19
)	6.3.10	高速传统	俞					 	19
		6.3.11								19
1		6.3.12	高速模	式下的串	行数据	居传输.			 	20
7										20
8	复位	和振荡器	器启动时	间					 	20
	8.1	复位时	序要求						 	20
	8.2									20
9	寄存	器说明。							 	21
	9.1	寄存器	概述						 	21
	9.2	寄存器	描述	•••••					 	23
		9.2.1								23
		9.2.2	PAGE1:	通信					 	31
		9.2.3	PAGE2:	配置					 	38

	g	9.2.4 PAGE3:测试		44
10	命令			49
	10.1	命令概述		49
	10.2	IDLE 命令		49
	10.3	MEM 命令		49
	10.4	GENERATE RANDOMID 命令	>	49
	10.5			
	10.6	TRANSMIT 命令		50
	10.7			A
	10.8	RECEIVE 命令		50
	10.9			
	10.10			
11	测试模			
	11.1			
	11.2	测试总线		51
	11.3			
12	应用电	且路		53
13		>>数		53
	13.1			
	13.2	电流参数		54
	13.3	极限额定参数	X	54
14	封装参	>数		55
			\sim () $^{\vee}$	
		4		
		\sim		
		• ()		
	X	y		
,				
	1			
	/			

1 概述

NZ3801-AB 是国民技术公司针对移动金融支付终端应用和多卡种受理终端推出的一款低电压、体积小的非接触式读写卡芯片,符合 EMVCo 和 PBOC 相关标准。

NZ3801-AB 完全集成 13.56MHz 下所有类型的被动非接触式通信方式和协议。 支持 ISO14443A/B 的所有层应用。其内部发送器部分可驱动读写器天线与 ISO14443A/B 卡和应答机的通信,无需其它的电路。接收器部分提供一个坚固而有效的解调和解码电路,用于处理 ISO14443A/B 兼容的应答器信号。数字部分处理 ISO14443A/B 帧和错误检测(奇偶&CRC)。

NZ3801-AB 读写卡芯片与主机间的通信采用连线较少的串行通信,且可根据不同的用户需求,选取 SPI、I²C 或 UART 模式之一,有利于减少连线,缩小 PCB 板体积,降低成本。

NZ3801-AB 适用于各种基于 ISO/IEC14443 标准,并且要求低成本、小尺寸、 高性能,以及单电源的非接触式通信的应用场合。

典型应用领域:

- POS、mPOS、智能刷卡终端
- ETC OBU 终端
- 公共交通终端
- 新型社保读卡终端、身份证阅读器
- 智能门锁终端

2 应用框图

NZ3801-AB 支持可直接相连的各种微控制器接口类型,如 SPI、I2C 和 UART。可复位其接口,并可对执行了上电或硬复位的当前微控制器接口的类型进行自动检测。通过复位阶段后控制管脚上的逻辑电平来识别微控制器接口。

数据处理部分执行数据的并行一串行转换。支持的帧包括 CRC 和奇偶校验。它以完全透明的模式进行操作,支持 ISO14443A/B 的所有层。状态和控制部分允许对器件进行配置以适应环境的影响并使性能调节到最佳状态。

3 关键特性

- 高集成度的调制解调电路
- 外围器件极少
- 支持 ISO/IEC14443A 通信协议
- 支持 ISO/IEC14443B 通信协议
- 支持 ISO14443A 高传输速率的通信: 212kbit/s、424kbit/s 和 848kbit/s
- 支持的主机接口:
 - ➤ SPI 接口,支持最大传输速率 10Mbit/s
 - ▶ I²C接口,快速模式的速率为 400kbit/s
 - ▶ UART接口,支持最大传输速率 1228.8kbit/s
- 64 字节的发送和接收 FIFO 缓冲区
- 灵活的中断模式

- 可编程定时器
- 支持小尺寸电线
- 符合 EMVCo 和 PBOC 标准
- 具备硬件掉电、软件掉电和发送器掉电 3 种节电模式,可关闭内部天线驱动器,即关闭 RF 场
- 内置温度传感器,在芯片温度过高时自动停止 RF 发射
- 采用相互独立的多组电源供电,有效避免模块间的相互干扰,提高工作的稳定性
- 内置 CRC 协处理器
- 内部振荡器,连接 27.12MHz 的晶体
- 电压范围 2.5V~3.6V
- 5mm×5mm QFN32 封装

4 管脚排列

4.1封装引脚

NZ3801-AB 芯片采用 QFN32 封装, 封装引脚如图 2。

图 2 QFN32 封装引脚图

4.2引脚描述

表 1 管脚描述

	引脚序号	引脚名称	类型	引脚说明
	1	$\mathrm{L}^2\mathrm{C}$	Ι	I ² C 总线接口使能
	2	PVDD	Р	引脚供电
	3	DVDD	Р	芯片供电
7	4	DVSS	G	数字地
	G	PVSS	G	引脚地
	Y			复位/休眠 (Power Down) 控制脚 0 电平时内部电
	6	NRSTPD	I	路进入 power down 状态。当产生一个上升沿时内
				部电路复位
	7	TSIN	I	测试信号输入
	8	TSOUT	0	测试信号输出
	9	SVDD	Р	TIN、TOUT 引脚供电
	10	TVSS	G	发射电路地
	11	TX1	0	发射输出脚 1

9			
12	TVDD	Р	发射电路供电
13	TX2	0	发射输出脚 2
14	TVSS	G	发射电路地
15	AVDD	Р	模拟电路供电
16	VMID	Р	内部参考电压
17	RX	Ι	射频输入引脚
18	AVSS	G	模拟地
19	AUX1	0	测试输出 1
20	AUX2	0	测试输出 2
21	OSCIN	Ι	27.12M 晶振输入,也作外部时钟输入
22	OSCOUT	0	27. 12M 晶振输出
23	IRQ	0	中断输出
	SDA	10	I2C 总线数据 I0 脚
24	NSS	Ι	SPI 接口使能
	URX	Ι	UART 接口数据输入
25	D1	10	测试口
25	ADR5	Ι	I2C 总线地址 bit5
9.0	D2	10	测试口
26	ADR4	Ι	I2C 总线地址 bit4
27	D3	10	测试口
21	ADR3	Ι	I2C 总线地址 bit3
28	D4	10	测试口
20	ADR2	Ι	I2C 总线地址 bit2
	D5	10	测试口
29	ADR1	Ι	I2C 总线地址 bit1
29	SCK	Ι	SPI 接口时钟输入
	DTRQ	0	UART 请求输出给 mcu
	D6	10	测试口
30	ADR0	I	I2C 总线地址 bit0
30	MOSI	10	SPI接口 master输出 slave输入
	MX	0	UART 输出到 mcu
Y	D7	10	测试口
21) SCL	10	I2C 总线时钟线
\ \delta \delta \ \de	MISO	10	SPI接口 master输入 slave输出
70	UTX	0	UART 接口数据输出
32	EA	Ι	I2C 总线地址模式
-		_	

注:管脚类型,I-输入,O-输出,P-电源,IO-输入输出,G-地

5 通信功能描述

NZ3801-AB 的传输模块支持 ISO/IEC 14443 A 与 ISO/IEC 14443 B 的多种传输 速率与调制方式的读写模式。

图 3 NZ3801-AB 通信读/写模式示意

5.1 ISO/IEC 14443A 功能

NZ3801-AB 的读写器模式遵循 ISO 14443A 规范的卡通信协议,下图描述了物理层上的通信方式。

图 4 TypeA 物理层通信方式

表 2 NZ3801-AB 读写模式参数

通信方向	信号类型	传输速率					
迪 伯刀叫	佰与失坐	106kbit/s	212kbit/s	424kbit/s	848kbit/s		
数据从	读卡器到卡 调制	100% ASK	100% ASK	100% ASK	100% ASK		
NZ3801-AB	位编码	Miller 编码	Miller 编码	Miller 编码	Miller 编码		
发送到卡	位长度	128	64	32	16		
	型队及	(13.56us)	(13.56us)	(13.56us)	(13.56us)		
NZ3801-AB	卡到读卡器 方向调制	副载波调制	副载波调制	副载波调制	副载波调制		
接收卡的 数据	副载波 频率	13.56MHz/16	13.56MHz/16	13.56MHz/16	13.56MHz/16		
	位编码	Manchester 编码	BPSK	BPSK	BPSK		

106kbit/s 14443 A 帧

图 5 数据编码和帧格式

5.2 ISO/IEC 14443B 功能

NZ3801-AB 支持 ISO 14443 B 完整通信协议,具体参数可以参考"ISO 14443 reference documents Identification cards – Contactless integrated circuit cards – Proximity cards (parts 1-4)"

6 接口

NZ3801-AB 支持可直接连接的各种微处理器接口类型,如 SPI,I2C 和串行 UART,NZ3801-AB 可以复位其接口,并对执行了上电或硬复位的当前微处理器接口类型自动检测。通过复位阶段后控制管脚上的逻辑点评来识别微处理器接口,每种接口有固定的管脚连接组合。

管脚	接口类型						
E DAP	UART	SPI	I2C				
SDA	RX	NSS	SDA				
I2C	0	0	1				
EA	0	1	EA				
D7	TX	MISO	SCL				
D6	MX	MOSI	ADR_0				
D5	DTRQ	SCK	ADR_1				
D4	-	-	ADR_2				
D3	-	-	ADR_3				
D2	-	-	ADR_4				
D1	-	-	ADR_5				

表 3 不同数字接口类型的连接协议

6.1 SPI 接口

6.1.1 概述

通过 SPI 接口可以使 NZ3801-AB 和外部微处理器高速通讯,与标准 SPI 接口兼容。

在 SPI 通讯中,NZ3801-AB 作为从机。SPI 时钟 SCK 由主机产生,数据通过 MOSI 从主机传输到从机,数据通过 MISO 从 NZ3801-AB 发送回主机。

MOSI 和 MISO 传输每个设备均是高位在前,MOSI 上的数据在 SCK 上升沿保持不变,下降沿改变,MISO 与之类似,在 SCK 的下降沿,MISO 上的数据由 NZ3801-AB 提供,在上升沿数据保持不变。

6.1.2 读数据

通过 SPI 接口可能读出 n 个字节数据,字节顺序如下:

Byte0 Byte1 Byte2 Byte n Byte n+1 MOSI 地址 0 地址1 地址1 地址 n 00 MISO Χ 数据 0 数据1 数据 n-1 数据 n

表 4 数据读取

6.1.3 写数据

对应 1 个地址,可能写入 n 个数据,字节顺序如下:

表 5 写入数据

	Byte0	Byte1	Byte2	 Byte n	Byte n+1
MOSI	地址 0	数据 0	数据 1	 数据 n-1	数据 n

MISO >	Х	Х		Х	Х
--------	---	---	--	---	---

6.2 UART 接口

6.2.1 连接主机

图 7 UART MCU 接口

6.2.2 选择传输数据率

默认传输速率 9.6kbps,数据率支持范围 (7.2kbps~1228.8kbps),若改变数据率,需由主机配置新的数据率后生效 (修改 BR_T0,BR_T1 寄存器)。

表 6 BR_T0 与 BR_T1 设置

BR_Tn	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7
参数 BR_T0	1	1	2	4	8	16	32	64
范围 BR_T1	1~32	33 ~ 64	33 ~ 64	33 ~ 64	33 ~ 64	33 ~ 64	33 ~ 64	33 ~ 64

可选择的传输速率如下。

表 7 UART 传输数据率

传输速率	寄存	传输速率精度	
(kbit/s)	十进制	十六进制	(%)
7.2	250	0xFA	-0.25
9.6	235	0xEB	0.32
14.4	218	0xDA	-0.25
19.2	203	0xCB	0.32
38.4	171	0xAB	0.32
57.6	154	0x9A	-0.25
115.2	122	0x7A	-0.25
128	116	0x74	-0.06
230.4	90	0x5A	-0.25
460.8	58	0x3A	-0.25

921.6	28	0x1C	1.45
1228.8	21	0x15	0.32

可通过下面公式计算得到:

若 BR_T0 = 0,传输率 = 27.12MHz/(BR_T1+1)

若 BR_TO 〉 0,传输率 = 27.12MHz/(BR_T1+33)/2^(BR_T0-1)

不支持大于 1228.8kbit/s 传输率。

6.2.3 帧格式

对于数据位和地址位先发送 LSB, 发送数据时不使用奇偶校验, 帧格式如下:

表 8 UART 帧格式

	•	
	长度	值
起始位	1 bit	0
数据位	6 bit	数据
停止位	1 bit	1

■ 读数据

使用下述描述结构读出数据。

表 9 数据读出方式

	Byte0	Byte1
RX	地址	
TX		数据

图 8 UART 读数据时序图

■ 写数据

使用下述描述结构写入数据。

表 10 写数据方式

	Byte0	Byte1
RX	地址	数据 0
TX		地址 0

图 9 UART 写数据时序图

■ 地址字节

地址字节按照下面描述格式传输。第一个 byte 的 MSB 设置使用模式。MSB=1 时,NZ3801 读出数据,MSB=1 时,数据写入 NZ3801。第 6bit 保留,bit[5: 0]定义地址。

丰	11	t#ntnt	hv:to0	寄存器
衣	TT	ᄣᄺ	byteu	台仔品

地址	Bit7,MSB	Bit[6]	Bit[5: 0]
Ryte()	1: 读	REV	地址
Byte0	0: 写	ILL V	가뜨게.

6.3 I2C 总线接口

NZ3801-AB 的 I2C 接口只工作在从机模式, NZ3801-AB 不产生 I2C 接口用时钟, 也不执行接口仲裁。

图 10 I2C 总线接口

6.3.1 概述

NZ3801 的 I2C 接口可作为从接收器或从发射器使用。

SDA 是双向数据线,通过一个电流源或上拉电阻连接到正电压。如果不传输数据,SDA 和 SCL 均为高电平。同时有一个三态输出,用于执行线与功能。

标准模式下传输速率为 100kbps, 快速模式下 400kbps, 高速模式下 3.4Mbps I2C 接口的 SCL 和 SDA pin 都有尖峰脉冲抑制功能。

6.3.2 数据有效

SDA 线上数据在时钟周期高电平内保持不变。只有当 SCL 时钟信号为低时,数据线上的状态才会改变。

图 11 I2C BIT 传输协议

6.3.3 起始和停止条件

要处理 I2C 总线的数据传输,必须定义起始和停止条件。

- ▶ 起始条件定义为 SCL 高电平时间内, SDA 线上高到低的跳变。
- ▶ 停止条件定义为 SCL 高电平时间内, SDA 线上低到高的跳变。

起始和停止条件通常由主机产生。起始条件后主机被认为 busy 状态;主机 在停止条件结束一段时间后被认为重新回到空闲状态。

如果产生的是重复起始(Sr)条件而非停止条件,则总线仍然处于忙状态,这时,起始条件和重复起始(Sr)条件的功能完全相同。

图 12 I2C 开始与结束判决条件

6.3.4 字节格式

1个 byte 由 8 个 bit 组成。每个 byte 后面跟 1 个应答位。数据传输时高位在前。一次数据传输发送的字节数不限,但必须符合读/写周期格式。

6.3.5 应答

应答是在1个数据 byte 结束后强制产生的。应答的时钟脉冲由主机产生。

在应答时钟脉冲周期内,数据发送器释放 SDA,接收器拉低 SDA 线,使 SDA 线在这个时钟脉冲的高电平时间内保持低电平。

6.3.6 7bit 寻址

在 I2C 总线寻址的过程中,起始条件后的第一个字节用来确定主机选择的通信从机。

在有多个保留地址的情况除外,此时,在其间配置过程中,用户必须确定器件地址不会与保留的多个地址冲突。

6.3.7 寄存器写访问

帧的第一个字节是器件地址,第二个字节是寄存器地址,接下来是 n 个数据字节。

在 1 帧中,所有 n 个数据字节都被写入相同的存储器地址。这种方法用于 FIFO 的快速访问。

读写标志应当清零。

图 13 寄存器写访问示意图

6.3.8 寄存器读访问

帧的第一个字节写入器件地址,第二个字节是寄存器地址,不需要增加数据 字节。

读写标志应当清零。

图 14 寄存器读访问示意图

6.3.9 高速模式

高速(HS)模式下,数据率为 3.4Mbps。

在混合速率的总线系统中,向下兼容快速或标准模式(F/S)的双向通信。

6.3.10 高速传输

为获得高达 3.4Mbps 的传输速率,对常规 I2C 总线进行了优化。

- ➤ 高速模式下具有尖峰抑制功能,SDAH 和 SCLH 输入有施密特触发器,与 F/S 模式相比有不同的时序常数
- 高速模式下输出可控制 SDAH 和 SCL 信号的下降沿斜率, 与 F/S 模式相比有不同的时序常数

6.3.11 高速模式下的串行数据传输

只有满足以下条件, 高速模式传输才能启动:

- 起始条件(S)
- 8位主机代码(00001XXX)

● 非应答位(A)

在 7bit 从地址和 R/W 位后,主机再发送一个重复起始条件(SR),从选择的 NZ3801-AB 中接收一个应答位(A)。

下一个重复起始条件(SR)后继续执行高速模式的数据传输,停止条件(P)后切换回 F/S 模式,为降低主机代码开销,逐级可以将大量高速模式的传输连接到一起,这些传输通过起始条件分隔。

6.3.12 高速模式下的串行数据传输

复位和初始化后,NZ3801-AB工作在快速模式(F/S),连接的NZ3801-AB识别到S0001XXXA时,将内部电路从快速模式切换为高速模式。NZ3801-AB执行以下操作:

- 根据 HS 模式的尖峰脉冲一直要求来调整 SDAH 和 SCLH 的输入滤波器
- 调整 SDAH 输出级的斜率控制

7 中断请求

NZ3801-AB 通过设置寄存器的 IRQ 位来表明有中断事件发生,如果中断使能则反映到 IRQ 引脚上。主控芯片可以利用 IRQ 引脚上的中断信号进行中断处理,从而提高主控芯片 CPU 的软件工作效率。

8 复位和振荡器启动时间

8.1复位时序要求

复位信号必须经过滤波抑制小于 10ns 的信号。 为了实现复位,复位信号至少需保持低电平 100ns。

8.2振荡器启动时间

NZ3801-AB 处于低功耗模式或使用 VDDx 供电时对振荡器的启动时序如下。

Tstart: 晶体振荡器启动时间,由晶体本身决定。

Td: 时钟信号稳定后, NZ3801-AB 的内部延迟时间, 该延迟过后 NZ3801-AB 才能正常工作, 该延时的计算为 Td = 1024/27=37.74us。

Tosc: 为上述两者之和。

9 寄存器说明

9.1寄存器概述

表 12 寄存器列表

地址 (HEX)	寄存器名称	功能描述
	PAC	GEO: 命令和状态
0x00	Reserved	保留
0x01	CommandReg	执行启动和停止命令
0x02	ComlEnReg	中断请求控制
0x03	DivlEnReg	中断请求控制
0x04	ComIrqReg	中断请求标志
0x05	DivIrqReg	中断请求标志
0x06	ErrorReg	错误标志,以及上个命令执行后的错误状态
0x07	Status1Reg	通信状态
0x08	Status2Reg	接收器/发送器状态
0x09	FIFODataReg	64 字节 FIFO
0x0A	FIFOLevelReg	指示 FIFO 中储存的字节数
ОхОВ	WaterLevelReg	定义 FIFO 上溢和下溢的深度
0x0C	ControlReg	其他控制寄存器

0x0D	BitFramingReg	帧调整控制		
0x0E	CollReg	RF 接口上检测到第一个 bit 位的位置		
0x0F	Reserved	保留		
		PAGE1: 通信		
0x10	Reserved	保留		
0x11	ModeReg	定义发送接收的常用模式		
0x12	TxModeReg	定义发送数据率		
0x13	RxModeReg	定义接收数据率		
0x14	TxControlReg	控制天线驱动器 pin 的逻辑特性		
0x15	TxASKReg	定义发射时的调制模式		
0x16	TxSelReg	选择天线驱动器的内部源		
0x17	RxSelReg	选择接收器设置		
0x18	RxThresholdReg	选择位译码器的阈值		
0x19	DemodReg	定义解调器的设置		
0x1A	Reserved	保留		
0x1B	Reserved	保留		
0x1C	Reserved	保留		
0x1D	Reserved	保留		
0x1E	TypeBReg	控制 ISO 14443 B 模式功能		
0x1F	SerialSpeedReg	选择串行 UART 接口速率		
		PAGE2: 配置		
0x20	Reserved	保留		
0x21	CRCResultReg	esultReg CRC 计算结果的 MSB 和 LSB		
0x22	CRCResultReg (CRC 计算结果的 MSB 和 LSB		
0x23	Reserved	保留		
0x24	ModWidthReg	ModWidth 的设置		
0x25	Reserved	保留		
0x26	RFCfgReg	配置接收器增益		
0x27	GsNReg	定义天线驱动器 pin 的调制电导		
0x28	CWGsPReg	定义在不工作期间 p-driver 的电导		
0x29	ModGsPReg	定义在工作期间 p-driver 的电导		
0x2A	TModeReg	定义内部定时器		
0x2B	TPrescalerReg	定义内部定时器		
0x2C	TReloadReg	定时器 16bit reload 值		
0x2D	TReloadReg	定时器 16bit reload 值		
0x2E	TCounterValReg	定时器实际值		
0x2F	TCounterValReg	定时器实际值		
		PAGE3: 测试		
				

	·
Reserved	保留
TestSel1Reg	常用测试信号配置
TestSel2Reg	常用测试信号配置及 PRBS (伪随机码) 控制
TestPinEnReg	D1~D7 pin 输出使能控制
TestPinValueReg	定义 D1 ~ D7 pin 作为 I/O bus 时的值
TestBusReg	内部测试总线状态
AutoTestReg	自测试控制
VersionReg	版本
AnalogTestReg	控制 AUX1 和 AUX2 pin
TestDAC1Reg	定义 DAC1 测试值
TestDAC2Reg	定义 DAC2 测试值
TestADCReg	ADC IQ 通路值
Reserved	保留
	TestSel1Reg TestSel2Reg TestPinEnReg TestPinValueReg TestBusReg AutoTestReg VersionReg AnalogTestReg TestDAC1Reg TestDAC2Reg TestADCReg Reserved Reserved Reserved

9.2 寄存器描述

9.2.1 PAGEO: 命令和状态

9.2.1.1RFU (0x00)

7	6 ,	5	4	3	2	1	0
REV							
	1		RI	U			

位	名称	功能
7-0	REV	保留

9.2.1.2CommandReg (0x01), Default value: 0x20h

命令启动和停止。

7	6	5	4	3	2	1	0
REV	REV REV RcvOff	Power	Command				
IXLV	IVE	RcvOff	Down		Com	IIaiiu	

RFU RFU R/W DY DY	
-------------------	--

位	名称	功能		
7-6	REV	保留		
		接收器模拟前端控制:		
5	RcvOff	0: 连接		
		1: 关断		
		软 Power Down 模式:		
	4 Power Down	0: Active		
4		1: Power Down		
4		当该未清零时,启动唤醒过程,在唤醒过程中该位保持为1,		
		当为0时表示完成唤醒过程,可以开始工作,如果命令		
		SoftReset 已经被激活,Power Down 就不能被置位		
3-0	Command	根据命令代码激活命令,通过读取该寄存其来了解实际正在执		
3-0	Command	行的命令		

注: 指令代码简述

命令	命令代码	描述
Idle	0000	取消当前执行的命令
CalcCRC	0011	激活 CRC 协处理器或执行自测试
Transmit	0100	发送缓冲区命令
NoCmd	0111	用于修改命令寄存器的不同位,但又不会触发其他命令
Change		
Receive	1000	激活接收机
		若 ControlReg: Initiator = 1,则将 FIFO 数据发送至天线,并且
Transceive	1100	在接收完成后自动激活接收机
		若 ControlReg: Initiator = 0,则接收数据,并自动激活发送器
Soft Reset	1111	复位

9.2.1.3CommIEnReg (0x02), Default value: 0x80h

7	6	5	4	3	2	1	0
IRqInv	TxIEn	RxIEn	IdleIEn	HiAlertIEn	LoAlertIEn	ErrlEn	TimerIEn
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

位	名称	功能
		0: IRQ Pin 上值与寄存器 StatusIReg 位值相反
7	IRqInv	1: IRQ Pin 上值与寄存器 StatusIReg 位值相同
		当 DivlEnReg: IrqPushPull=1,则 IRQ Pin 输出三态

	I	
		发送器中断请求使能
6	TxIEn	0: 不使能
		1: 使能
		接收器中断请求使能
5	RxIEn	0: 不使能
		1: 使能
		IDLE 中断请求使能
4	IdleIEn	0: 不使能
		1: 使能
		High Alert 中断请求使能
3	HiAlertlEn	0: 不使能
		1: 使能
		Low Alert 中断请求使能
2	LoAlertIEn	0: 不使能
		1: 使能
		错误中断请求使能
1	ErrlEn	0: 不使能
		1: 使能
		定时器中断请求使能
0	TimerIEn	0: 不使能
		1: 使能

9.2.1.4DivIEnReg (0x03), Default value: 0x0h

中断请求使能控制。

7	6 5	4	3	2	1	0
IRQPushPull	REV	TSINActIEn	REV	CRCIEn	R	EV
R/W	Y	R/W		R/W		

位	名称	功能
7	IRQPushPull	0: IRQ pin 作为开漏出处
Y		1: 标准 CMOS 输出
6-5	REV	保留
4	TSINActlEn	保留
3	REV	保留
		CRC 中断使能
2	CRCIEn	0: 不使能
		1: 使能

1-0 REV	保留
---------	----

9.2.1.5 CommIRqReg (0x04), Default value: 0x4h

中断请求标志。

7	6	5	4	3	2	1	0
Set1	TxIRq	RxIRq	IdleIRq	HiAlertIRq	LoAlertIRq	ErrlRq	TimerIRq
W	DY	DY	DY	DY	DY	DY	DY

位	名称	功能
7	Set1	0: 屏蔽位清零 1: 屏蔽位置位
	TylDe	
6	TxIRq	发送完成后立即置位
5	RxIRq	接收完成后置位
		当 RxModReg:RxNoErr=1,且 FIFO 有可用数据时,该位置位
		当一个命令 IDLE,该位置位
4	4 IdleIRq	如果启动一个未知命令,CommandReg 值为空闲命令,由微
		控制器启动的 IDLE 命令不会置位该位
3	Hi Alort IDa	StautusReg: High alert 置位时置位
5	HiAlertIRq	HiAlertIRq 将保持此中断事件,直到 Set1 清零
2	Lo AloutiDa	StautusReg: Low alert 置位时置位
	LoAlertIRq	LoAlertiRq 将保持此中断事件,直到 Set1 清零
1	ErrlRq	只要 ErrorReg 任何一个错误标志被置位,该位置位
0	TimerlRq	定时器 TimerValue 寄存器值递减到 0,该位置位

注:每 1bit 都可以通过软件清零。

9.2.1.6DivIRqReg (0x05), Default value: 0x0h

中断请求标志。

7	6	5	4	3	2	1	0
Set2	RE	V	TSINActIRq	REV	CRCIRq	RI	EV
W			DY		DY		

位	名称	功能
7	Set2	0: 屏蔽位清零 1: 屏蔽位置位
6-5	REV	保留

4	TSINActIRq	保留
3	REV	保留
2	CRCIRq	CRC 命令有效,且数据被处理完成时置位
1-0	REV	保留

注:每 1bit 都可以通过软件清零。

9.2.1.7ErrorReg (0x06), Default value: 0x0h

错误标志寄存器,上个执行的命令的错误状态。

7	6	5	4	3	2	1	0
WrErr	TempErr	REV	BufferOvFl	CollErr	CRCErr	ParityErr	ProtocolErr
	R		R	R	R	R	R

<i>1</i> :	わまし	TH ALL
位	名称	功能
7	WrErr	保留
6	TempErr	温度传感器检测温度过高,置位
0	Теттретт	天线驱动器自动关断
5	REV	保留
4	BufferOvFl	当 FIFO 已满,微控制器或内部状态机仍向 FIFO 写数据,该位置位
		检测到位冲突时置位,在接收机启动阶段自动清除.
3	CollErr	该位仅在 106kbps 的位良好防冲突机制中有效.
		在 212/424kbps 通讯机制下无效,该标志始终为 0.
2	CRCErr	若 RxModReg:RxCRCEn 置位,且 CRC 计算出错,该位置位. 在接收
2	CRCEIT	机启动阶段自动清除.
1	Do situ Fra	若奇偶校验出错,该位置位,在接收机启动阶段自动清除.
1	ParityErr	该位仅在 106kbps 的 ISO14443A 通信中有效
		在下述情况将置位
0	ProtocolErr	a. SOF 出错,该位置位. 在接收机启动阶段自动清除.该位仅在
		106kbps 的位良好防冲突机制中有效.

注:执行命令时处 TempErr 之外的所有错误标志将被清除,这些标志不能通过软件置位.

9.2.1.8Status1Reg (0x07), Default value: 0x21h

CRC,中断和 FIFO 缓冲区的状态标志。

7	6	5	4	3	2	1	0
REV	CRCOk	CRCReady	IRq	TRunning	REV	HiAlert	LoAlert

位	名称	功能
7	REV	保留
6	CRCOk	CRC 结果为 0 时置位.发送和接收数据时不定义
6	Chcok	CRCok,CRCok 用来指示 CRC 协处理器的状态.
5	CDCDoody	CRC 计算完成后该位置位,指示 CRC 协处理器的
5	CRCReady	状态.
4	IRq	用来显示请求中断的中断源
3	TRunning	Timer 工作时置位
2	REV	保留
1	HiAlert	当 FIFO 中字节数满足下述时,置位
1		HiAlert = (64 - FIFOLength) <= WaterLevel
0	LoAlort	当 FIFO 中字节数满足下述时,置位
0	LoAlert	HiAlert = FIFOLength <= WaterLevel

9.2.1.9Status2Reg (0x08), Default value: 0x00h

包含接收机,发射机和数据模式检测器的状态标志。

7	6	5 4	3	2	1	0
TempSensClear	I2CForceHS	REV	REV	Мо	odemSt	ate
R/W	R/W				R	

位	名称	功能
7	TempSensClear	内部温度传感器关闭时置位
	O y	I2C 输入滤波器配置
		I2C 输入滤波器设置成与 I2C 协议无关的高速模
6	I2CForceHS	式时该位置位
		I2C 输入滤波器设置成使用的 I2C 协议时该位清
		零
5-4	REV	保留
3	REV	保留
		显示 Rx/Tx 状态机状态
		000:IDLE
2-0	ModemState	001:等待 BitFramingReg:StartSend 的设置
2-0		010:TxWait
		011:发送数据
		100:RxWait

	101:等待数据
	110:接收数据

9.2.1.10 FIFODataReg (0x09), Default value: 0x00h

64 字节 FIFO 缓冲区。

7	6	5	4	3	2	1	0
FIFOData							
DY							

位	名称	功能
7-0	FIFOData	内部 64 字节 FIFO 缓冲区. 作用于所有数据流的输入和输出

9.2.1.11 FIFOLevelReg (0x0A), Default value: 0x00h

64 字节 FIFO 缓冲区保存的字节数。

7	6	5	4 3 2 1	0
FlushBuffer	FIFOLevel			
W			R	

位	名称	功能
		该位置位时,内部 FIFO 的读写指针以及
7	FlushBuffer	ErrReg:BufferOvfl 标志立即清零
		该位被读出时返回0
6-0	FIFOLevel	只是 FIFO 缓冲区保存的字节数

9.2.1.12 WaterLevelReg (0x0B), Default value: 0x08h

64 字节 FIFO 缓冲区上溢下溢的深度。

7	6	5	4	3	2	1	0		
R	EV			WaterLevel	WaterLevel				
		R/W							

位	名称	功能
7-6	REV	保留
5-0	WaterLevel	定义 FIFO 上溢下溢报警深度,影响 Status1Reg:

HiAlert/LoAlert	
-----------------	--

9.2.1.13 ControlReg (0x0C), Default value: 0x20h

控制位。

7	6	5	4	3	2	1	0
TStopNow	TStartNow	REV			RxLastBits		
W	W					R	

位	名称	功能
7	TStopNow	置位时 Timer 停止工作。读出该位返回 0
6	TStartNow	置位时 Timer 开始工作。读出该位返回 0
5-3	REV	保留
2-0	RxLastBits	显示最后接收到的字节有效位的数量,若为 0,则整个字节有效

9.2.1.14 BitFramingReg (0x0D), Default value: 0x00h

面向 Bit 的帧调节。

					/ "					
7	6	5		4		3	2	1	0	
StartSend	RxAlign					REV	TxLastBits			
W	R/W					R/W				

位	名称	功能
7	StartSend	置位时启动数据发送
/	Startsend	和收发命令一起使用才有效
	6-4 RxAlign	用于面向 Bit 的帧接收,定义了第一个接收到的 bit
C 4		在 FIFO 中存放的位置。
0-4		只在 106kbps 的位良好的防冲突机制中有效,其它
		模式设置为0
3	REV	保留
		用于面向 bit 的帧发送,定义了发送的最后一个字节
2-0	TxLastBits	的位数。000 表示最后一个字节的所有 bit 都应该发
		送

9.2.1.15 CollReg (0x0E), Default value: 0xXXh

定义在 RF 接口上的第一个位冲突。

7	6	5 4		3	2	1	0
ValueAfterColl	REV	CollPosNotValid	CollPos				
R/W		R	R				

位	名称	功能
7	ValueAfterColl	设置为 0,泽所有接收的 bit 在冲突后将被清除
		只有在 106kbps 的位良好的防冲突机制中有效,
		其它模式设置为1
6	REV	保留
5	CollPosNotValid	未检测到冲突或发生冲突的位置超出 CollPos 的
		范围,则该位置位
4-0	CollPos	显示接收帧中检测到第一个冲突的位置。
		只有 CollPosNotValid 清零时才能被识别

9.2.1.16 RFU (0x0F), Default value: 0x00h

保留。

			, ,						
7	6	5	4	3	2	1	0		
REV									
	RFU								

位	名称	功能
7-0	REV	保留

9.2.2 PAGE1: 通信

9.2.2.1RFU (0x10), Default value: 0x00h

7	6	5	4	3	2	1	0		
REV									
	RFU								

位	名称	功能
7-0	REV	保留

9.2.2.2ModeReg (0x11) , Default value: 0x3Fh

定义发送接收的常用模式。

7	6	5	4	3	2	1	0
MSBFirst	REV	TxWaitRF	REV	Polsigin	REV	CRCPreset	
R/W		R/W	W R/W			• R/	w

	T	
位	名称	功能
7	MSBFirst	CRC 协处理器工作从 MSB 开始
6	REV	保留
5	TxWaitRF	如果 RF 场产生,则 TxWaitRF 置位,发射机只能 在此时被启动
4	REV	保留
3	PolTSIN	定义 TSIN pin 极性 1: 高电平有效 0: 低电平有效
2	REV	保留
1-0	CRCPreset	定义 CRC 协处理器 CalCRC 命令阈值 注意通行过程中,预设值根据模式定义自动选择 00: 0000 01: 6363 10: A671 11: FFFF

9.2.2.3TxModeReg (0x12), Default value: 0x00h

定义发射时的数据率。

7	6	5	4	3	2	1	0
TxCRCEn	TxSpeed			InvMod	TxFraming		
R/W	D			R/W	DY		

位	名称	功能		
7	TxCRCEn	该位置位,则在发送过程中产生 CRC		

		只有在 106kbps 速率下能够被置位
		发送速率
		000: 106kbps
6-4	TxSpeed	001: 212kbps
0-4	rxspeed	010: 424kbps
		011: 848kbps
		Other: 保留
3	InvMod	置位时,发送数据的调制反向
		定义发送的帧格式
		00: ISO 14443A
2-0	TxFraming	01: 保留
		10: 保留
		11: ISO 14443B

9.2.2.4RxModeReg (0x13), Default value: 0x00h

定义发射时的数据率。

7	6	5	4	3	2	1	0
RxCRCEn		RxSpeed		RxNoErr	RxMultiple	RxFra	nming
R/W		D	>	R/W	R/W	D	Υ

位	名称	功能				
7	RxCRCEn	该位置位,则在接收过程中产生 CRC				
'	RXCRCEII	只有在 106kbps 速率下能够被置位				
		接收速率				
		000: 106kbps				
6.4	Di Cha a d	001: 212kbps				
6-4	RxSpeed	010: 424kbps				
	\circ	011: 848kbps				
		Other: 保留				
2	5	忽略接收到的无效数据流(接收到的数据小于 4bir),接收				
3	RxNoErr	机仍保持有效				
2	D. M. J.: J.	0:接收数据帧完成后关闭接收机				
2	RxMultiple	1: 可连续接收多个数据帧,仅在 106kbps 数据率下有效				
		定义接收的帧格式				
1.0	Du Francisco	00: ISO 14443A				
1-0	RxFraming	01: 保留				
		10: 保留				

11: ISO 14443B

9.2.2.5TxControlReg (0x14), Default value: 0x80h

控制天线驱动 pin Tx1 和 Tx2。

7	6	5	4	3	2	1	0
InvTx2RF	InvTx1RF	InvTx2RF	InvTx1RF	Tx2CW	REV	Tx2RFEn	Tx1RFEn
On	On	Off	Off	IXZCVV	KEV	IXZNFEII	IXTINE
R/W	R/W	R/W	R/W	R/W		R/W	R/W

位	名称	功能
7	InvTx2RFOn	如果 Tx2 被使能,该位置位,pin Tx2 输出反向
6	InvTx1RFOn	如果 Tx1 被使能,该位置位,pin Tx1 输出反向
5	InvTx2RFOff	如果 Tx2 被禁能,该位置位,pin Tx2 输出反向
4	InvTx1RFOff	如果 Tx1 被禁能,该位置位, pin Tx1 输出反向
3	Tx2CW	该位置位时,pin Tx2 输出为未调制的 13.56M 载波
3		该位清零时,Tx2CW 使能调制 13.56M 的载波
2	REV	保留
1	Tx2RFEn	该位置位时,pin Tx2 输出经发送数据调制的 13.56M 载
1		波
0	Tv1DEEn	该位置位时,pin Tx1 输出经发送数据调制的 13.56M 载
U	Tx1RFEn	波

9.2.2.6TxASKReg (0x15), Default value: 0x00h

控制调制方式。

7	6	5	4	3	2	1	0
REV	Force100ASK	REV					
< ()	R/W						

位	名称	功能					
7	REV	保留					
6	Force100ASK	强制 100% ASK 调制方式					
5-0	REV	保留					

9.2.2.7 Tx SelReg (0x16), Default value: 0x10h

选择模拟部分内部源。

7	6	5	4	3	2	1	0
RI	REV DriverSel		TSOUTSel				
		R/W		R/W			

位	名称	功能
7-6	REV	保留
		选择 pin Tx1 和 Tx2 的输入 00: 三态,若配置为三态软下电后仍处于三态
5-4	DriverSel	01: 内部编码器的调制信号
		10: 保留
		11: 高电平
	TSOUTSel	Pin TSOUT 的输入
		0000: 三态
		0001: 低电平
		0010: 高电平
3-0		0011: TestBusBitSel 寄存器定义的测试总线信号
3-0		0100: 内部编码器的调制信号
		0101: 发送的串行数据
		0110: 保留
		0111: TestBusBitSel 寄存器定义的接收到的串行数据流
		Other: 保留

9.2.2.8RxSelReg (0x17) , Default value: 0x84h

选择内部接收机设置。

	7	6	5	4	3	2	1	0
1	UARTSel		RxWait					
	R/W				R/	W		

位	名称	功能
	UARTSel	选择非接触式的 UART 输入
		00: 固定低电平
7-6		01: pin TSin 输入的曼侧斯特编码调制后的载波
		10: 内部模拟部分的调制信号
		11: pin TSin 输入的 NRZ 编码

		数据发送后,接收机的启动会延迟 RxWait 个 bit 始终,
5-0	RxWait	在这段"帧保护时间"内,Rx pin 上的所有信号都被忽
		略。

9.2.2.9RxThresholdReg (0x18), Default value: 0x84h

选择位译码器设置。

7	6	5	4	3	2	1	0
MinLevel				REV		CollLevel	
R/W						R/W	(0)

位	名称	功能
7-4	MinLevel	定义接收机译码器输入的最小信号强度, 低于此
7-4	Wintever	阈值的信号被忽略
3	REV	保留
		定义译码器输入的最小信号强度,曼彻斯特编码
2-0	CollLevel	的信号的弱半位必须达到这个强度,用于产生与
		强半位的幅度相关的一个位冲突

9.2.2.10 TxControlReg (0x19), Default value: 0x4Dh

定义解调器设置。

7	6	5	4	3	2	1	0
Ado	diQ	FixIQ	TPrescal Even	Tau	Rcv	Taus	Sync

位	名称	功能			
		定义接收过程中的 I/Q Ch			
400		注意要是下述有效 FixIQ 必须=0			
7.6	V 4 410	00: 选择更强的 ch			
7-6	AddIQ	01: 选择更强的 ch, 冻结通信中选择的 ch			
		10: 保留			
		11: 保留			
		下述以 FixIQ=1,为前提			
5	FixIQ	AddIQ[0]=0,接收固定使用 l ch			
		AddIQ[0]=1,接收固定使用 Q ch			
4	TPrescal Even	0: 按下述公式操作			

		Ftimer = 13.56M/(2* TPrescal +1) 1: 按下述公式操作
		Ftimer = 13.56M/ (2* TPrescal +2)
3-2	TauRcv	更改数据接收过程中内部 PLL 的时间常数
1-0	TauSync	更改突发过程中内部 PLL 的时间常数

9.2.2.11 RFU (0x1A), Default value: 0x00h

7	6	5	4	3	2	1	0
REV							

位	名称	功能				
7-0	REV	保留				

9.2.2.12 RFU (0x1B), Default value: 0x00h

7	6	5	4	3	2	1	0	
REV								
RFU								

位	名称	功能		
7-0	REV	保留		

9.2.2.13 RFU (0x1C), Default value: 0x62h

保留。

9.2.2.14 RFU (0x1D), Default value: 0x00h

保留。

9.2.2.15 TypeBReg (0x1E), Default value: 0x00h

配置 ISO/IEC 14443B 功能。

7	6	5	4	3	2	1	0
RxSOFReq	RxEOFReq	REV	EOFSOF Width	NoTxSOF	NoTxEOF	TXEGT[1:0]	
R/W	R/W	-	R/W	R/W	R/W	R/W	

位	名称	功能			
7	RxSOFReq	1: 需要 SOF; 0: 允许没有 SOF			
6	RxEOFReq	1: 需要 EOF; 0: 允许没有 EOF			
5	REV	保留			
4	EOFSOF	定义 EOF 与 SOF 数据长度			
4	Width	上文 EUF 与 SUF 数据长度			
3	NoTxSOF	SOF 被抑制			
2	NoTxEOF	EFO 被抑制			
1-0	TXEGT[1:0]	定义 EGT 数据长度			

9.2.2.16 SerialSpeedReg (0x1F), Default value: 0xEBh

选择 UART 串口速度。

7	6	5	4	3	2	1	0	
BR_T0[2:0] BR_			BR_T1[4:0]					
R/W			R/W					

位	名称	功能			
7-5	BR_T0[2:0]	通过 BR_TO 调整传输速度			
4-0	BR_T1[4:0]	通过 BR_T1 调整传输速度			

9.2.3 PAGE2: 配置

9.2.3.1RFU (0x20), Default value: 0x00h

7	6	5	4	3	2	1	0	
REV								
RFU								

位	名称	功能
7-0	REV	保留

9.2.3.2CRCResultReg (0x21, 0x22), Default value: 0xFFh

CRC 实际计算值寄存器,分为 MSB 和 LSB 两个 8bit 寄存器。

7	6	5	4	3	2	1	0		
CRCResultMSB									
	R								

位	名称	功能
7-0	CRCResultMSB	保存 CRC 计算值的高 8bit。 只有寄存器 Staus1Reg: CRCReady 位置位时,
		CRCResultMSB 的内容才有效

7	6	5	4	3	2	1	0
CRCResultLSB							
R							

位	名称	功能
7-0	CRCResultLSB	保存 CRC 计算值的低 8bit。 只有寄存器 Staus1Reg: CRCReady 位置位时, CRCResultMSB 的内容才有效

9.2.3.3RFU (0x23), Default value: 0x00h

7	6	5	4	3	2	1	0
REV							
RFU							

位	名称	功能
7-0	REV	保留

9.2.3.4ModWidthReg (0x24), Default value: 0x26h

7	6	5	4	3	2	1	0
ModWidth							
R/W							

位	名称	功能

		Miller 调制宽度定义成载波频率的倍数
7-0	ModWidth	ModWidth+1/fc
		最大值是半个位周期

9.2.3.5RFU (0x25), Default value: 0x00h

7	6	5	4	3	2	1	0
REV							
RFU							

位	名称	功能	^	
7-0	REV	保留	X.	Y

9.2.3.6RFCfgReg (0x26), Default value: 0x48h

7	6	5	4	3	2	1	0
REV	RxGain			REV			
	R/W			X,			

位	名称	功能
7	REV	保留
		定义接收增益控制倍数(dB)
	1	000: 18
		001: 23
		010: 18
6-4	RxGain	011: 23
		100: 33
X	Y	101: 38
		110: 43
		111: 48
3-0	REV	保留

$9.2.3.7 GsNReg \quad (0x27)$, Default value: 0x88h

定义Tx1、Tx2N驱动天线的电导。

7	6	5	4	3	2	1	0
	CWGsN				Mod	lGsN	

R/W	R/W

位	名称	功能				
		定义 N 输出驱动的电导,用于调节输出功率以及				
7.4	CWGsN	功耗和工作距离				
7-4		电导值用二进制计量				
		在软掉电模式中最高位强制为1				
3.0	NA NI	定义N输出驱动的电导,用于时间调制,用于调				
3-0	ModGsN	节调制系数				

9.2.3.8GsPReg (0x28), Default value: 0x20h

定义 Tx1、Tx2 P 驱动天线的电导。

7	6	5	4	3	2 1	0
	REV	GWGsP				
		R/W				

位	名称	功能
7-6	REV	保留
5-0	GWGsP	定义 P 输出驱动的电导,用于调节输出功率以及功耗和工作距离 电导值用二进制计量 在软掉电模式中最高位强制为 1

9.2.3.9ModGsPReg (0x29), Default value: 0x20h

定义 Tx1、Tx2 P 驱动天线的电导。

7 6	5	4	3	2	1	0
REV	ModGsP					
	R/W					

位	名称	功能					
7-6	REV	保留					
5-0	ModGsP	定义 P 输出驱动的电导,用于时间调制,用于调节调制系数					

$9.2.3.10 \quad TModeReg \ and \ TPrescalerReg \quad (0x2A/0x2B) \ \ , Default$

value: 0x00h/0x00h

7	6	5	4	3	2	1	0
TAuto	TGa	ated	TAutoRestart	TPrescaler			
R/W	W R/W		R/W		R/W		

位	名称	功能
7	TAuto	该位置位时,定时器在发送结束时启动。 在接收到第一个数据位后定时器停止运行 该位清零时,表明定时器不受通讯协议影响
6-5	TGated	内部定时器工作在门控模式。在门控模式下,当定时器通过寄存器被使能时,TRunning 位置位,该 bit 不受门控信号影响 00: 非门控模式 01: TSIN 用作门控信号 10: AUX1 用作门控信号 11: 保留
4	TAutoRestart	该位置位时,定时器自动重新从 TReloadValue 开始递减计数,而不是从 0 开始该位清零时,定时器递减计数至 0,TimerlRq 设置为 1
3-0	TPrescaler	定义 TPrescaler 的高 4 位 利用下述公式计算 ftimer ftimer=6.78MHz / TPrescaler

7	6	5	4	3	2	1	0
×	TPrescaler_Lo						
R/W							

位	名称	功能
>		定义 TPrescaler 的低 8 位
7-0	TPrescaler_Lo	利用下述公式计算 ftimer
		ftimer=6.78MHz / TPrescale

9.2.3.11 TreloadReg (0x2C, 0x2D) , Default value: 0x00h, 0x00h

定义 16bit 定时器重装值。

7	6	5	4	3	2	1	0	
TReloadVal_Hi								
R/W								

位	名称	功能
		定义 TreloadReg 的高 8bit
7-0	TReloadVal_Hi	当一个事件启动时,TReload 的值加载至定时器,
		只有在下次事件启动时,该寄存器的值才会改变

7	6	5	4	3	2	1	0
TReloadVal_Lo							
R/W							

位	名称	功能
		定义 TreloadReg 的低 8bit
7-0	TReloadVal_Lo	当一个事件启动时,TReload 的值加载至定时器,
		只有在下次事件启动时,该寄存器的值才会改变

9.2.3.12 TCounterValReg (0x2E, 0x2F), Default value: 0x00h, 0x00h

16bit 定时器当前值。

	< 1/\)	6	5	4	3	2	1	0
7	TCounterVal_Hi							
	R/W							

位	名称	功能
7-0	TCounterVal_Hi	定时器当前值的高 8bit

7	6	5	4	3	2	1	0
TReloadVal_Lo							

R/W

位	名称	功能
7-0	TCounterVal_Lo	定时器当前值的低 8bit

9.2.4 PAGE3: 测试

9.2.4.1RFU (0x30), Default value: 0x00h

7	6	5	4	3	2	1	0
REV							
RFU							

位	名称	功能
7-0	REV	保留

9.2.4.2TestSel1Reg (0x31), Default value: 0x00h

常用测试信号配置。

7		_			2	2	1	0
/	ь	5	4		3	2	1	U
REV					TstBusBitSel			
1							R/W	

位	名称	功能
7-3	REV	保留
2-0	TstBusBitSel	从测试总线选择 TstBusBit

9.2.4.3TestSel2Reg (0x32), Default value: 0x00h

7	6	5	4	3	2	1	0
TstBusFlip	PRBS9	PRBS15	TestBusSel				
R/W	R/W	R/W	R/W				

位	名称	功能
7	Tc+Duc Elin	该位置位,测试总线按下面顺序映射到并行端口
/	7 TstBusFlip	TstBusBit4/3/2/6/5/0
6	PRBS9	根据 ITU-TO150 来启动和使能 PRBS9 序列。

		所有相关的发送数据的寄存器必须先配置好再进入
		PRBS9 模式
		定义序列的数据发送通过发送命令来启动
		根据 ITU-TO150 来启动和使能 PRBS15 序列。
5	PRBS15	所有相关的发送数据的寄存器必须先配置好再进入
5	LKD313	PRBS9 模式
		定义序列的数据发送通过发送命令来启动
4-0	TestBusSel	选择测试总线

9.2.4.4TestPinEnReg (0x33), Default value: 0x80h

定义测试端口使能。

7	6	5	4	3	2	1	0
RS232LineEn	TestPinEn					REV	
R/W			R/	W	XC)	

位	名称	功能
7	RS232LineEn	RS232 模式使能
/	R5232LineEn	串行 UART 的 MX 和 DTRQ 被关闭
		使能 D1-D7 的 pin 输出驱动
6-1	TestPinFn	Ex:
0-1	lestrinen	置位 bit1,即使能 D1
	1	如果使用 SPI,则只有 D1-D4 可以使用
0	REV	保留

9.2.4.5TestPinValueReg (0x34), Default value: 0x00h

定义测试端口作为IO时的值。

(7)	6	5	4	3	2	1	0
UselO	TestPinValue					REV	
R/W	R/W						

位	名称	功能
7	UselIO	如果使用了串行接口,该位置位来使能测试端口的 IO 功能
6-1	TestPinValue	如果测试端口用于 IO 口,则该字段用于定义端口值

0 REV	保留
-------	----

9.2.4.6TestBusReg (0x35), Default value: 0x00h

显示内部测试总线状态。

7	6	5	4	3	2	1	0
TestBus							
R							

位	名称	功能	
7-0	TestBus	显示内部测试总线状态	

9.2.4.7AutoTestReg (0x36), Default value: 0x40h

7	6	5	4	3	2	1	0
REV	AmpRcv	REV	EOFSOF Adjust	c^	Self	Test	
	R/W		R/W		R/	W	

位	名称	功能
7	REV	保留
6	AmpRcv	增强通讯距离,在 106Kbps 模式下使用
5	REV	保留
4	EOFSOF Adjust	若该位=0,且 EOFSOF 宽度被设置为 1
3-0	SelfTest	使能数字自测模式,自测试配置为1001

9.2.4.8VerSionReg (0x37), Default value: 0x00h

显示软件版本。

7	6	5	4	3	2	1	0
Version							
R							

位	名称	功能
7-0	Version	显示软件版本

9.2.4.9AnalogTestReg (0x38), Default value: 0x00h

控制管脚 AUX1 和 AUX2。

7	6	5	4	3	2	1	0
	Analog	SelAux1			Analog	SelAux2	

位	名称	功能
		控制 AUX1 pin
		0000: 3 态
		0001: TestDAC1 的输出(AUX1)
		TestDAC2 的输出(AUX2)
		0010: 测试信号 Corr1
		0011: 保留
		0100: DAC: 测试信号 MinLevel
		0101: DAC: 测试信号 ADC_I
		0110: DAC: 测试信号 ADC_Q
		0111: 保留
		1000: 保留
		1001: 保留
7-4	AnalogSelAux1	1010: high
		1011: low
		1100: TxActive , 106 时在起始位,数据位和 CRC
	1.	传输过程中为高电平; 212/424 时,在数据和 CRC
	~`\	传输过程中为高电平
	1	1101: RxActive, 106 时在起始位,数据位和 CRC
•	() y	传输过程中为高电平; 212/424 时, 在数据和 CRC
_		传输过程中为高电平
X	7	1110: subcarrier detected,106 时不适用; 212
1 (A)		和 424 在最后部分的数据和 CRC 传输过程中为高
7.0		电平
		1111: Test bus,测试总线寄存器定义的测试总线
2.0	A 1 6 IA 2	位 分表 ALIVa
3-0	AnalogSelAux2	参考 AUX1

$9.2.4.10 \quad TestDAC1Reg \quad (0x39) \ \ , Default \ value: 0x00h$

定义 DAC1 测试值。

7	6	5	4	3	2	1	0
RE	V			TestDAC1			
		R/W					

位	名称	功能
7-6	REV	保留
5-0	TestDAC1	定义 TestDAC1 的测试值。通过将 AnalogSelAux1 设置为 0001 可以使 DAC1 的输出切换成 AUX1

9.2.4.11 TestDAC2Reg (0x3A), Default value: 0x00h

定义 DAC1 测试值。

7	6	5	4	3	2	1	0		
RE	EV .					TestDAC2			
		R/W							

位	名称	功能
7-6	REV	保留
5-0	TestDAC2	定义 TestDAC2 的测试值。通过将 AnalogSelAux2 设置为 0001 可以使 DAC2 的输出切换成 AUX2

9.2.4.12 TestADCReg (0x3B), Default value: 0x00h

显示ADCI和Q通道的实际值。

7	6 5	4	3	2	1	0		
	ADC_I			ADC_Q				
R				F	₹			

位	名称	功能
7-4	ADC_I	显示 ADC I 通道的实际值
3-0	ADC_Q	显示 ADC Q 通道的实际值

9.2.4.13 RFU (0x3C - 0x3F), Default value: 0x00h

7	6	5	4	3	2	1	0
REV							
RFU							

位	名称	功能
7-0	REV	保留

10 命令

10.1 命令概述

命令	命令代码	描述
Idle	0000	取消当前执行的命令
Mem	0001	存储 25 个 byte 至内部 buffer
Generate RandomID	0010	产生 10byte 长度随机 ID number
CalcCRC	0011	激活 CRC 协处理器或执行自测试
Transmit	0100	发送缓冲区命令
NoCmd Change	0111	用于修改命令寄存器的不同位,但又不会触发其他命令
Receive	1000	激活接收机
Transceive	1100	若 ControlReg: Initiator = 1,则将 FIFO 数据发送至天线,并且在接收完成后自动激活接收机若 ControlReg: Initiator = 0,则接收数据,并自动激活发送器
Soft Reset	1111	复位

10.2 IDLE 命令

NZ3801-AB 处于空闲模式。该命令也用于终止正在执行的命令。

10.3 MEM 命令

从 FIFO 搬移 25 个 byte 至内部 buffer。或从内部 buffer 搬移 25 个 byte,此时必须保证 FIFO 处于 empty 状态。

10.4 Generate RandomID 命令

产生 10 个 byte 的 random number,储存在内部 buffer,产生的 10 个 byte

会覆盖之前内部 buffer 里的 25 个 byte。

10.5 CalcCRC 命令

FIFO 的内容被传输到 CRC 协处理器并执行 CRC。计算结果储存在 CRCResultReg 中。CRC 无需限制字节数量。当在数据流过程中 FIFO 为 empty 状态时,计算也不会停止。写入 FIFO 的下个字节增加到计算当中。

CRC 的预置值由寄存器的 ModeReg 的 CRCOreset 位控制,该值在命令启动时加载至 CRC 协处理器。

这个命令必须通过命令寄存器写入任何一个命令来软件清除。如果寄存器 AutoTestReg 的 SelfTest 位 i 设置正确。则芯片处于自测模式,启动 CalCRC 命令执行一次数字自测。自测结果写入 FIFO。

10.6 Transmit 命令

发送 FIFO 的内容。在发送 FIFO 的内容之前必须对相关寄存器进行设置。该命令在 FIFO 变为 empty 状态后自动终止。

10.7 NoCmdChange 命令

该命令不会影响 CommandReg 寄存器重正在执行的任何命令。它可以用于 修改 CommandReg 寄存其中除命令位外的任何位。

10.8 Receive 命令

激活接收通路,等待接收任何数据流。

该命令在接受到的数据流结束时自动终止。根据所选的帧和速度,通过帧模式技术或长度字节指示。

10.9 Transceive 命令

该循环命令重复发送 FIFO 数据,并不断接收 RF 场数据。第一个动作是发送,发送结束后命令变为接收数据。

每个发送过程都在 BitFramingReg 寄存器重的 StartSend 位置置位时动。 该命令通过向命令寄存其写入任何一个命令来软件清除。

10.10 Soft Reset 命令

用来执行一次芯片复位。内部 buffer 的配置数据不变。 所有寄存器都设置成复位值。命令完成后自动终止。

11 测试模式

11.1 自测试模式

- 1、向 01H 写入 Softset 命令(00001111)后,芯片执行复位。
- 2、向 09HFIFODataReg 写 25 字节的 00H,可以观察到数据写入 FIFO。
- 3、向 01H 写入 Mem 命令(00000001),观察到芯片中 FIFO 中的 25 字节的 00H 转移到 internal buffer 中。
 - 4、写 09H 到 AutoTestReg 中,可观察到相关控制变化。
 - 5、向 09HFIFODataReg 写 1 个字节的 00H,可以观察到数据写入 FIFO。
- 6、向 01H 写入 CalcCRC 命令(00000011), 观察到 CRC 模块开始工作, FIFO 存储 64 字节后, CRC 模块停止工作。

11.2 测试总线

测试总线用于执行器件测试,测试总线允许使用内部信号通向数字借口。测试总线通过 TestSel2Reg 寄存器的 TestBusSel 来选择。

TestBusSel[4: 0] = 0x07

管脚	测试信号	描述		
D6	S_data	实际接收值		
D5	S_coll 是否检测到冲突(106kbit/s 模式)			
D4	S_valid	S_data 和 S_coll 是否有效		
D3	S_over	检测到停止位		
D2	Rcv_reset	是否复位		

D1

TestBusSel[4: 0] = 0x0D

管脚	测试信号	描述
D6	Clkstable	振荡器是否稳定
D5	Clk27/18	振荡器输出8分频
D4 to D3	-	保留
D2	Clk27	振荡器输出信号
D1	-	保留

11.3 AUX 管脚描述

AnalogSelAuxn[3: 0]	描述
0000	三态
0001	DAC: 寄存器 TestDAC1/2
0010	测试信号 corr1
0011	保留
0100	DAC: 测试信号最小电平
0101	DAC: ADC_I
0110	DAC: ADC_Q
0111	保留
1000	保留
1001	保留
1010	高
1011	低
1100	TxActive
1101	RxActive
1110	副载波侦测
1111	TstBusBit

12 应用电路

图 15 典型应用电路

13 电气参数

13.1 电压参数

表 13 电压参数

符号	参数	条件	最小	典型	最大	单位
DVDD	数字电源电压	DIVEC DIVEC AVEC TIVEC OV				
AVDD	模拟电源电压	PVSS=DVSS=AVSS=TVSS=0V PVDD≤DVDD=AVDD=TVDD	2.5	3.3	3.6	V
TVDD	发送器电源电压	PVUUSUVUU-AVUU-IVUU				
SVDD	TSIN 和 TSOUT	VSSA = VSSD = VSS(PVSS) =	1.6		3.6	V
3000	管脚电压	VSS(TVSS) = 0 V	1.0	-	3.0	V
PVDD	管脚电源电压	PVSS=DVSS=AVSS=TVSS=0V	1.6	1.8	3.6	V
FVDD		PVDD<=DVDD=AVDD=TVDD	1.0	1.0	3.0	V

13.2 电流参数

表 14 电流参数

符号	参数	条件	最小	典型	最大	单位
IHPD4	硬掉电电流	SVDD=AVDD=DVDD=TVDD=PVDD=3V		0.6		
ІПРО4	쨏7早电电/加	hard power down	-	0.6	•	uA
ISPD4	软掉电电流	SVDD=AVDD=DVDD=TVDD=PVDD=3V		1.7		à. Λ
13704	扒拌电电机	soft power down	-	1.7	-	uА
IIDI E	空闲模式	SVDD=AVDD=DVDD=TVDD=PVDD=3V		2 -		Α.Δ.
IIDLE	全	idle mode	- 3.5		-	mA

13.3 极限额定参数

表 15 电流参数

参数	最小值	最大值	单位
工作电压	-0.4	4	V
可靠工作温度	-40	+85	°C
ESD		2	KV
(HBM 1500Ω 100pF)		2	NV NV

14 封装参数

NZ3801-AB 封装类型为 QFN,尺寸为 5mm×5mm。

SIde Vlew

Cumbal	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035	
A1	0.000	0.050	0.000	0.002	
A3	0.203REF.		0.008	REF.	
D	4.924	5.076	0.194	0.200	
E	4.924	5.076	0.194	0.200	
D1	3.300	3.500	0.130	0.138	
E1	3.300	3.500	0.130	0.138	
k	0.200MIN.		0.008	BMIN.	
b	0.180	0.300	0.007	0.012	
е	0.500	TYP.	0.020	TYP.	
L	0.324	0.476	0.013	0.019	

图 16 封装尺寸