The Min Cost Flow Problem

The Min Cost Flow problem

- We want to talk about multi-source, multi-sink flows than just "flows from s to t".
- We want to impose *lower bounds* as well as capacities on a given arc. Also, arcs should have costs.
- Rather than maximize the value (i.e. amount) of the flow through the network we want to minimize the cost of the flow.

Flow Networks with Costs

- Flow networks with costs are the problem instances of the min cost flow problem.
- A flow network with costs is given by
 - 1) a *directed graph* G = (V, E)
 - 2) capacities $c: E \rightarrow \mathbb{R}$.
 - 3) *balances* $b: V \rightarrow \mathbb{R}$.
 - 4) costs $k: V \times V \rightarrow \mathbf{R}. \ k(u,v) = -k(v,u).$
- Convention: c(u,v)=0 for (u,v) not in E.

Feasible Flows

- Given a flow network with costs, a feasible flow is a feasible solution to the min cost flow problem.
- A feasible flow is a map $f: V \times V \rightarrow \mathbf{R}$ satisfying

capacity constraints: $\forall (u,v)$: $f(u,v) \leq c(u,v)$.

Skew symmetry: $\forall (u,v): f(u,v) = -f(v,u).$

Balance Constraints: $\forall u \in V$: $\sum_{v \in V} f(u, v) = b(u)$

Cost of Feasible Flows

• The *cost* of a feasible flow f is $cost(f) = \frac{1}{2} \sum_{(u,v) \in V \times V} k(u,v) f(u,v)$

 The Min Cost Flow Problem: Given a flow network with costs, find the feasible flow f that minimizes cost(f).

Max Flow Problem vs. Min Cost Flow Problem

Max Flow Problem

Problem Instance:

 $c: E \rightarrow \mathbf{R}^+$.

Special vertices *s*,*t*.

Feasible solution:

 $\forall u \in V - \{s,t\}: \sum_{v \in V} f(u,v) = 0$

Objective:

Maximize |f(s, V)|

Min Cost Flow Problem

Problem Instance:

 $c: E \rightarrow \mathbf{R}$.

Maps b,k.

Feasible solution:

 $\forall u \in V$: $\sum_{v \in V} f(u, v) = b(u)$

Objective:

Minimize cost(f)

Negative Capacities

- c(u,v) < 0.
- Let I(v, u) = -c(u, v).
- $f(u,v) \leq c(u,v)$ iff $f(v,u) \geq -c(u,v) = l(v,u)$.
- I(v,u) is a *lower bound* on the net flow from v to u for any feasible flow.

Balance Constraints

• Vertices u with b(u)>0 are **producing** flow.

Vertices u with b(u)<0 are consuming
 flow

• Vertices u with b(u)=0 are **shipping** flow.

Can we solve the max-flow problem using software for the min-cost flow problem?

All other costs 0, all balances 0.

Circulation networks

• Flow networks with $b \equiv 0$ are called *circulation networks*.

 A feasible flow in a circulation network is called a feasible *circulation*.

Integrality theorem for min cost flow

If a flow network with costs has integral capacities and balances and a feasible flow in the network exists, then there is a minimum cost feasible flow which is integral on every arc.

(shown later by "type checking")

Assignment problem

Given integer weight matrix

$$(w(i,j)), 1 \le i,j \le n.$$

Find a permutation π on {1,..,n}
 maximizing

$$\sum_{i} W(i,\pi(i)).$$

Min cost flow model of Ahuja et al

 Ahuja operates with non-reduced flows, we work with reduced flows (net flows). They do not require flows and costs to be skew-symmetric.

Unreduced vs net flows

Edmonton

.....8---7

Unreduced flow

Edmonton

Calgary

Net flow

Min cost flow model of Ahuja

- Ahuja operates with non-reduced flows, we work with reduced flows (net flows). They do not require flows and costs to be skew symmetric.
- The difference matters only bidirectional arcs (an arc from u to v and an arc from v to u) with positive capcity in each direction.
- One can translate (reduce) the Ahuja version to our version (exercise).

Tanker Scheduling Problem

Ship- ment	Origin	Desti- nation	Delivery date
1	Port A	Port C	3
2	Port A	Port C	8
3	Port B	Port D	3
4	Port B	Port C	6

(a)

Figure 6.8 Data for the tanker scheduling problem: (a) shipment characteristics; (b) shipment transit times; (c) return times.

Capacity 4, Cost 1

All balances 0

Capacity 1, Lower Bound 1, Cost 0

Hopping Airplane Problem

- An airplane must travel from city 1, to city 2, to city 3, .., to city n. At most p passengers can be carried at any time.
- b_{ij} passengers want to go from city i to city j and will pay f_{ij} for the trip.
- How many passengers should be picked up at each city in order to maximize profits?

Local Search Pattern

```
LocalSearch(ProblemInstance x)

y := \text{feasible solution to } x;

\text{while } \exists z \in N(y) : v(z) < v(y) \text{ do}

y := z;

\text{od};

\text{return } y;
```

N(y) is a **neighborhood** of y.

Local search checklist

Design:

- How do we find the first feasible solution?
- Neighborhood design?
- Which neighbor to choose?

Analysis:

- Partial correctness? (termination ⇒correctness)
- Termination?
- Complexity?

The first feasible flow?

- Because of negative capacities and balance constraints, finding the first flow is non-trivial.
- The zero flow may not work and there may not be any feasible flow for a given instance.
- We can find the first feasible flow, if one exists, by reducing this problem to a max flow problem.

Neighborhood design

 Given a feasible flow, how can we find a slightly different (and hopefully slightly better) flow?

All other costs 0, all balances 0.

The residual network

- Let G=(V,E,c,b,k) be a flow network with costs and let f be a flow in G.
- The residual network G_f is the flow network with costs inherited from G and edges, capacities and balances given by:

$$E_f = \{(u, v) \in V \times V | f(u, v) < c(u, v)\}$$

 $c_f(u, v) = c(u, v) - f(u, v) \ge 0$
 $b_f(u) = 0$

Lemma 3

Let

- G=(V,E,c,b,k) be a flow network with costs
- f be a feasible flow in G
- *G_f* be the residual network
- f' be a feasible flow in G_f

Then

 f+f' is a feasible flow in G with cost(f+f)=cost(f)+cost(f')

Lemma 4

Let

- G=(V,E,c,b,k) be a flow network with costs
- f be a feasible flow in G
- f' be a feasible flow in G

Then

• f'-f is a feasible flow in G_f

Cycle Flows

- Let $C = (u_1 \rightarrow u_2 \rightarrow u_3 \dots \rightarrow u_k = u_1)$ be a simple cycle in G.
- The *cycle flow* γ_C^δ is the circulation defined by

$$\gamma_{C}^{\delta}(u_{i}, u_{i+1}) = \delta$$

$$\gamma_{C}^{\delta}(u_{i+1}, u_{i}) = -\delta$$

$$\gamma_{C}^{\delta}(u, v) = 0 \text{ otherwise.}$$

Augmenting cycles

Let G be a flow network with costs and G_f
 the residual network.

An augmenting cycle

$$C=(u_1, u_2, ..., u_r = u_1)$$
 is a simple cycle in G_f for which $cost(\gamma_C^{\delta})<0$ where δ is the minimum capacity $c_f(u_i, u_{i+1})$, $i=1...r-1$

Klein's algorithm for min cost flow

MinCostFlow(G)

Using max flow algorithm, find feasible flow *f* in G (if no such flow exist, abort).

```
while \exists augmenting cycle C in G_f) { \delta = \min\{c_f(e) \mid e \text{ on } C\} f := f + \gamma_C^\delta }
```

output f

Klein's algorithm

• If Klein's algorithm terminates it produces a feasible flow in *G* (by Lemma 3).

Is it partially correct?

Does it terminate?

Circulation Decomposition Lemma

Let *G* be a circulation network with no negative capacities. Let *f* be a feasible circulation in *G*. Then, *f* may be written as a sum of cycle flows:

$$f = \gamma_{C_1}^{\delta_1} + \gamma_{C_2}^{\delta_2} + \dots + \gamma_{C_m}^{\delta_m}$$

where each cycle flow is a feasible circulation in *G*.

CDL ⇒ Partial Correctness of Klein

- Suppose f is **not** an minimum cost flow in G. We should show that G_f has an augmenting cycle.
- Let f* be a minimum cost flow in G.
- f^* f is a feasible circulation in G_f of strictly negative cost (Lemma 4).
- f^* f is a sum of cycle flows, feasible in G_f (by CDL).
- At least one of them must have strictly negative cost.
- The corresponding cycle is an augmenting cycle.

Termination

- Assume integer capacities and balances.
- For any feasible flow f occurring in Klein's algorithm and any u,v, the flow f(u,v) is an integer between -c(v,u) and c(u,v).
- Thus there are only finitely many possibilities for f.
- In each iteration, f is improved thus we never see an old f again.
- Hence we terminate.

Integrality theorem for min cost flow

If a flow network with costs has integral capacities and balances and a feasible flow in the network exists, then there is a minimum cost feasible flow which is integral on every arc.

Proof by "type checking" Klein's algorithm

Complexity

 How fast can we perform a single iteration of the local search?

How many iterations do we have?

Complexity of a single iteration

An iteration is dominated by finding an augmenting cycle.

• An augmenting cycle is a cycle $(u_1, u_2, \dots u_r=u_1)$ in G_f with $\sum_i k(u_i, u_{i+1}) < 0$

How to find one efficiently? Exercise 7.

Number of iterations

 As Ford-Fulkerson, Klein's algorithm may use an exponential number of iterations, if care is not taken choosing the augumentation (Exercise 6).

• *Fact:* If the cycle with minimum *average* edge cost is chosen, there can be at most $O(|E|^2 |V| \log |V|)$ iterations.

Generality of Languages

