Computer Network

1. What is a Computer Network?

A Computer Network is when two or more computers are connected to share data, resources, or communication.

Real Life Example: WhatsApp and Instagram work because millions of devices (phones, servers) are connected via networks.

Benefits of Networking:

- File sharing
- Internet access
- Communication (chat, email)
- Resource sharing (printers, servers)

2. Types of Networks

Type	Full Form	Range	Example
LAN	Local Area Network	Within a building or room	Home Wi-Fi
MAN	Metropolitan Area Network	City-wide	College Campus Wi-Fi
WAN	Wide Area Network	Country or world-wide	The Internet
PAN	Personal Area Network	Very short range	Bluetooth, Hotspot

3. Network Topologies

Topology = How devices are connected

Topology	Description	Pros	Cons
Bus	All devices in a line	Easy setup	One failure affects all
Star	All connect to a central hub	Easy to manage	Hub failure affects all
Ring	Devices in a circle	Predictable	If one breaks, all fail
Mesh	All devices connected to all others	Very reliable	Expensive
Hybrid	Mix of all	Flexible	Complex

Day 1: OSI Model – The Backbone of Networking

What is the OSI Model?

OSI stands for Open Systems Interconnection.

It's a **conceptual framework** that shows how data travels from one computer to another over a network. It divides the process into **7 layers**, each with a specific role.

🧮 7 Layers of the OSI Model (Top to Bottom)

Layer	Layer Name	What It Does (Simple)	Example
7	Application	Interface for the user	WhatsApp, Gmail
6	Presentation	Converts data formats (encrypt, compress)	JPEG ↔ PNG, Encryption
5	Session	Manages sessions (start, end communication)	Logging in to a server
4	Transport	Ensures reliable delivery (TCP/UDP)	Splits data into chunks
3	Network	Routes data using IP addresses	$Google.com \to IP$
2	Data Link	Transfers frames between two directly connected devices	MAC Address
1	Physical	Actual hardware and transmission (cables, signals)	Ethernet cable, Wi-Fi

Real-Life Analogy: Sending a Parcel

Imagine sending a parcel:

- 1. **Application** You write the letter.
- 2. **Presentation** You translate it (e.g., Hindi to English).
- 3. **Session** You call the post office to schedule pickup.
- 4. Transport They pack and label it.
- 5. **Network** They choose the best route (road, air).
- 6. Data Link Truck loads it and drives it locally.
- 7. **Physical** The wheels move the parcel physically.

Remember Like This (Mnemonic):

"All People Seem To Need Data Processing"

(A = Application, P = Presentation, S = Session, T = Transport, N = Network, D = Data Link, P = Physical)

Daily CN Lesson – Day 2: TCP/IP Model

f The real-world version of the OSI model, used by the internet today.

What is the TCP/IP Model?

TCP/IP stands for Transmission Control Protocol / Internet Protocol.

It is the **practical model** that the internet and most modern networks use to communicate. While the OSI model is a reference framework, **TCP/IP** is the actual implementation.

Layers of the TCP/IP Model (4 Layers Only!)

Layer	OSI Equivalent	Role (Simple)	Example
4. Application	OSI Layer 5–7	Provides services to user	HTTP, FTP, SMTP
3. Transport	OSI Layer 4	Ensures reliable or fast delivery	TCP, UDP
2. Internet	OSI Layer 3	Handles addressing & routing	IP, ICMP
1. Network Access	OSI Layer 1–2	Sends bits physically	Ethernet, Wi-Fi

Key Differences: OSI vs TCP/IP

Feature	OSI Model	TCP/IP Model
Layers	7	4
Use	Conceptual	Practical (used in real world)
Developed By	ISO	DARPA (U.S. Dept. of Defense)
Popularity	Learning/Exams	Real-world Networking

Real-Life Analogy:

Let's say you want to send a message using WhatsApp:

- 1. **Application Layer** \rightarrow You type the message.
- 2. **Transport Layer** → The message is broken into packets.
- 3. **Internet Layer** → The address of the destination is added.
- 4. **Network Access Layer** → Message physically sent via Wi-Fi.

★ Common Protocols in TCP/IP

Layer	Protocols
Application	HTTP, HTTPS, FTP, SMTP, DNS
Transport	TCP, UDP
Internet	IP (IPv4, IPv6), ICMP
Network Access	Ethernet, Wi-Fi, ARP

Daily CN Lesson – Day 3: IP Addressing +Subnetting Basics

What is an IP Address?

An **IP** (Internet Protocol) address is a unique identifier for every device on a network — like a phone number for your computer.

It helps:

- Identify a device on the internet or network
- · Send and receive data to/from the right place

Types of IP Addresses

Type	Description	Example
IPv4	32-bit address, widely used	192.168.1.1
IPv6	128-bit address, newer, more space	2001:0db8:85a3:0000:0000:8a2e:0370:7334

★ IPv4 Format

- 32 bits (divided into 4 sections or octets)
- Written in dotted decimal form: 192.168.0.1
- Each section (octet) ranges from 0 to 255

Example:

11000000.10101000.00000000.00000001 = 192.168.0.1

Public vs Private IP Addresses

Туре	Used Where?	Example
Private	Inside home or office network	192.168.x.x, 10.x.x.x, 172.16.x.x
Public	Globally on the internet	Your mobile/ISP-assigned IP

Private IPs can't be accessed directly from outside the network.

What is Subnetting?

Subnetting = Breaking a large network into smaller **sub-networks** (**subnets**).

Why?

- Helps in efficient IP allocation
- Improves performance and security
- Reduces broadcast traffic

Subnet Mask

A subnet mask defines which part of the IP address is the network and which part is the host.

Common example:

- IP: 192.168.1.10
- Subnet Mask: 255.255.255.0

That means:

- 192.168.1 = Network part
- .10 = Host (device) part

© CIDR Notation

Instead of writing the whole mask:

• 192.168.1.10/24 → Means first 24 bits are for the network.

Daily CN Lesson – Day 4: IP Address Classes + Default Subnets + Practice

Why IP Address Classes?

Back in early networking days, the internet needed a way to organize IP addresses for different **sizes of networks**. That's how **IP Classes** were introduced.

IPv4 addresses are divided into 5 classes based on their starting bits and range.

IP Address Classes (A to E)

Class	Starting Bit(s)	Range (1st Octet)	Default Subnet Mask	Use
Α	0xxxxxxx	1 – 126	255.0.0.0 (/8)	Large networks
В	10xxxxxx	128 – 191	255.255.0.0 (/16)	Medium networks
С	110xxxxx	192 – 223	255.255.255.0 (/24)	Small networks
D	1110xxxx	224 – 239	N/A	Multicast
E	1111xxxx	240 – 255	N/A	Research only (Experimental)

Note: 127.x.x.x is reserved for loopback (localhost)

© Default Subnet Masks

Class	Subnet Mask	CIDR Notation	Usable Hosts
Α	255.0.0.0	/8	~16 million
В	255.255.0.0	/16	~65,000
С	255.255.255.0	/24	254

Usable hosts = $2^n - 2$ (n = number of host bits)

Day 5: Static vs Dynamic IP + DHCP + DNS + Real-World Workflow

1. Static vs Dynamic IP

Туре	Description	Example Use Case
Static IP	Manually assigned IP that never changes	Servers, printers
Dynamic IP	Automatically assigned by DHCP	Home Wi-Fi, mobile data

Key Differences

Feature	Static IP	Dynamic IP
Assigned by	Admin manually	DHCP server automatically
Changes?	Never (unless manually changed)	Yes, can change any time
Cost	Usually paid	Free
Example	192.168.1.10	192.168.1.100 (changes)

If you're hosting a website or game server, static IP is better.

2. What is DHCP (Dynamic Host Configuration **Protocol)?**

DHCP automatically assigns:

- IP address
- Subnet mask
- Gateway
- DNS

Without DHCP, every device must be configured manually.

DHCP Workflow (Real World Example):

1. Device joins network

(e.g., You connect your phone to Wi-Fi)

- 2. Device sends a **DHCPDISCOVER**
- 3. DHCP server replies with **DHCPOFFER**
- 4. Device sends **DHCPREQUEST**
- 5. Server confirms with **DHCPACK**
- Your phone now has an IP and can access the internet!

3. What is DNS (Domain Name System)?

DNS = Phonebook of the internet

It converts domain names to IP addresses.

DNS Resolution Flow (Simplified)

- 1. You type www.example.com
- 2. Your device asks a DNS Resolver
- 3. Resolver checks:
 - Local Cache
 - Root Server → TLD Server → Authoritative Server
- 4. Gets IP address → sends it to your browser
- 5. Browser connects to server via IP

Real-Life Network Flow Summary

You → Connect to Wi-Fi

- → DHCP assigns IP, DNS
- → You open google.com
- → DNS translates domain to IP
- → Browser connects via IP
- → Server sends response
- → You see Google homepage

Day 6: Core Protocols (TCP, UDP, HTTP, FTP, ICMP, ARP) Explained with Real Examples

Why Protocols?

A **protocol** is a set of rules that decide **how data is transferred** over a network. Just like people need a common language to communicate, devices need protocols.

Type of protocols:

- TCP
- UDP
- HTTP
- FTP
- ICMP
- ARP

TCP (Transmission Control Protocol)

- CP is **like a phone call** both sides connect, talk in order, and confirm delivery.
- It uses:
 - Three-Way Handshake (SYN \rightarrow SYN-ACK \rightarrow ACK)
 - Sequencing (arrange data chunks)
 - Acknowledgement (confirm delivery)
 - Retransmission (if data is lost)
- Key Port: Depends on the application (e.g., HTTP uses TCP port 80)

Feature	Description	
Туре	Connection-oriented	
Reliability	Guarantees data delivery, order, and error checking	
Use Cases	Web (HTTP), Email, File Transfers	

Real Example:

When you open Gmail in a browser, the page must load completely and correctly — TCP ensures that every bit of data arrives in the correct order.

UDP (User Datagram Protocol)

- Ø UDP is like sending a letter no confirmation if it arrived.
- Fast, lightweight, but doesn't guarantee:
 - Delivery
 - Order
 - Duplicate protection
- Key Port: Varies (e.g., DNS uses UDP port 53)

Feature	Description	
Туре	Connectionless	
Reliability	No guarantee of delivery or order	
Use Cases	Video streaming, VoIP, Gaming	

Real Example:

When you watch a YouTube video or play PUBG, missing one data packet doesn't matter — speed is more important than reliability.

HTTP (HyperText Transfer Protocol)

Protocol used to send webpages, images, text, etc.

- Based on TCP
- Stateless: Every request is independent
- Secure version: HTTPS (adds encryption via SSL/TLS)

Feature	Description
Used for	Browsing websites (text, images, HTML)
Port	80 (unencrypted), 443 (HTTPS – encrypted)
Protocol Type	Application Layer

Real Example:

Typing www.google.com and seeing the homepage — HTTP handles this text/image transfer from server to your browser.

FTP (File Transfer Protocol)

- Used to upload or download files between client and server
- Two modes:
 - Active mode (client opens port, server connects back)
 - Passive mode (server opens a port, client connects)

Requires login: via username/password or anonymously

Ports: 20 (data) and 21 (command)

Feature	Description		
Used for	Uploading/downloading files		
Port	20, 21		
Login	Requires username/password (sometimes anonymous)		

Real Example:

Developers uploading code to a server, or downloading data from a remote site — FTP is commonly used here.

ICMP – Internet Control Message Protocol

- Used for sending network status messages, not data
- Used in diagnostic tools:
 - ping → Tests reachability
 - traceroute → Shows path to a destination

Key Idea: ICMP reports issues (like "host unreachable" or "TTL expired")

Feature	Description		
Purpose	Sends control/error messages (e.g., unreachable host)		
Used by	ping, traceroute		
Туре	Network Layer		

Real Example:

When you use the ping command to test if a server is up, ICMP sends the echo request and receives the reply.

ARP (Address Resolution Protocol)

- Helps your system find the MAC address of another device using its IP.
- Used within LANs (Local Area Networks)
- Maintains an ARP table to store resolved MACs

Example:

Laptop wants to send data to 192.168.0.20

- → It checks ARP table
- → If not found, it broadcasts: "Who has 192.168.0.20?"
- → The device replies with its MAC address
- → Now the laptop can send Ethernet frame directly

Feature	Description	
Purpose	Maps IP address to MAC address	
Works at	Data Link Layer	
Role	Helps local delivery of packets within LAN	

Real Example:

When your laptop sends a packet to your printer (on the same network), it uses ARP to find the printer's MAC address first.

Day 7: MAC Address, ARP Table, NAT & IP-to-IP Translation Explained

1. What is a MAC Address?

- It's a unique hardware address assigned to every device's network interface card (NIC)
- MACs work at the Data Link Layer (Layer 2) of the OSI model
- Format: 6 pairs of hexadecimal → e.g., AA:BB:CC:DD:EE:FF

Real Analogy:

If an IP address is like your home address, your MAC address is like the **door number inside a big** apartment.

- ★ MAC addresses:
- Don't change
- Are used for communication inside a local network (LAN)

2. What is an ARP Table?

ARP = Address Resolution Protocol

- ARP maps IP addresses to MAC addresses within the same network
- When a device wants to send data to an IP, it asks:
 - "Who has this IP? Give me their MAC!"
- The ARP table stores this mapping temporarily

Example of an ARP Table:

IP Address	MAC Address	
192.168.0.5	AA:BB:CC:11:22:33	
192.168.0.10	44:55:66:77:88:99	

You can see it in your system using:

Windows: arp -a

Linux/Mac: ip neigh or arp

3. What is NAT (Network Address Translation)?

NAT translates private IPs to a public IP so multiple devices can access the internet using one IP.

Without NAT, every device at your home would need a public IP — which are limited and costly.

Why NAT?

- Saves public IPs
- Adds a layer of security
- Enables many-to-one mapping (multiple devices to one IP)

© Example:

- Your laptop (IP: 192.168.0.5) → Router
- Router NATs it to public IP: 103.21.55.200
- Website sees: request from 103.21.55.200, not your private IP

Types of NAT

Туре	Description
SNAT	Source NAT – changes sender's IP (e.g., local to public)
DNAT	Destination NAT – changes destination IP (e.g., port forwarding)
PAT	Port Address Translation – many-to-one using ports

IP-to-IP Translation Flow (with ARP & NAT)

```
Device: 192.168.0.5

↓

ARP: Resolve MAC of 192.168.0.1 (router)

↓

Sends data → router

↓

Router NATs: 192.168.0.5 → 103.21.55.200

↓

Sends to destination server on Internet
```

Summary

Concept	Works At	What It Does	
MAC Address	MAC Address Layer 2 (Data Link) Uniquely identifies a device's NIC		
ARP Table	Layer 2 ↔ 3	Maps IP to MAC inside LAN	
NAT	Router Level	Converts private IP to public IP	
IP Translation	Network Flow	Enables communication from LAN to Internet	

Day 8 - Network Devices (Router, Switch, Hub, Bridge, Gateway)

† Why Do We Need These Devices?

These devices act like traffic managers for networks.

Each one has a unique job to do — from **connecting devices**, **forwarding data**, to **linking entire networks or the internet**.

1. Hub – "The Dumb Distributor"

What it is:

- Basic device that simply broadcasts data to all connected devices
- Doesn't know who should receive it no intelligence

How it works:

Sends incoming data to every port, even if it's not needed

Analogy:

Like shouting in a room hoping the right person hears you

X Downsides:

- Wastes bandwidth
- Not secure (everyone sees everything)
- Rarely used today

2. Switch – "The Smart Distributor"

What it is:

- More intelligent than a hub
- Can learn MAC addresses and send data only to the right device

How it works:

- Has a MAC address table
- When data comes in, it checks the destination MAC and forwards it only to that port

Analogy:

Like calling someone by name in a room and giving only them the message

Why it's better:

- Faster
- Secure

- · Reduces network collisions
 - ★ Used in LANs, almost everywhere today

3. Bridge – "The Divider & Connector"

What it is:

- Used to connect two different LANs or divide one into segments
- Works at the Data Link Layer (Layer 2)

How it works:

- · Filters traffic based on MAC addresses
- Can reduce collisions and segment networks logically

Analogy:

Like a bouncer who checks if someone belongs on one side of the club or the other

4. Router – "The Internet Connector"

What it is:

- Used to connect different networks (LAN to WAN, home to internet)
- Works at the Network Layer (Layer 3)
- Forwards packets based on IP addresses

How it works:

- Has a routing table
- Decides the best path to send data to a remote network

Analogy:

Like Google Maps — it checks the best route for your data to reach its destination

Examples:

- Home Wi-Fi routers
- Internet gateways in companies

5. Gateway – "The Protocol Converter"

What it is:

- Connects networks using different protocols
- Works from Layer 4 to Layer 7
- Translates data between different systems

Analogy:

Like a translator between two people speaking different languages

Use case:

Connecting a LAN using TCP/IP to a network using a different protocol

Summary Table

Device	Layer	Intelligence	Main Job	Use Case
Hub	Physical (L1)	× None	Broadcasts to all	Old LANs
Switch	Data Link (L2)	MAC-based	Sends to correct device	All LANs today
Bridge	Data Link (L2)	Segments LAN	Joins/splits LANs	Reduces collision
Router	Network (L3)	✓ IP-based	Connects networks	LAN ↔ Internet
Gateway	L4-L7	Protocol-based	Translates protocols	Enterprise/Hybrid networks