Предисловие

Как и обещал, вот приведённые рассчёты на тему ядерной осени и зимы. Сразу две очень больших просьбы:

- 1. озвучь результаты на стриме
- 2. дочитай до конца, прежде чем критиковать

Тут все неочевидные термины будут иметь гиперссылки на википедию. И везде будут сноски на источники.

По итогу рассчёт Альбедо даже не понадобился, я пошёл через оптическую толщу, но всё будет оставлено в том виде и порядке, в каком проходили мои размышления

Изначальные допущения:

- 1. Объём кратера считается как объём сегмента сферы.
- 2. Берём достаточно равномерную потерю тепла атмосферой
- 3. Считаем именно изменение температуры
- 4. При подсчёте излучения считаем все тела АЧТ
- 5. Землю мы считаем шаром, а не геоидом(Не берём в рассчёт разницу полярного и экваториального радиуса)
- 6. Все рассчёты по итогу будут в СИ.
- 7. Орбита Земли круговая
- 8. Большую полуось считаем средним расстоянием от Земли до Солнца

Подсчёт потерь тепла нашей планетой

Итак, посчитаем сначала, сколько тепла излучает поверхность нашей планеты. Радиус <u>Земли</u> R = 6371 **км**. Средняя температура <u>Земли</u> T = 287.15 . Тогда её площадь $S = 4\pi R^2 = 5.1*10^{14}$ **м**². Формула для рассчёта излучения 1 AЧТ $L = \underline{\sigma}ST^4 = 1.97*10^{17}$ **Вт**.

Теперь посчитаем, сколько к нам приходит излучения от Солнца. Полное излучение Солнца $L = 3,828 \cdot 10^{26} \, \text{Вт}$. Радиус орбиты Земли $r = 1,496*10^{11} \, \text{м}$. На орбите Земли плотность излучения $E = L/4\pi r^2 = 1361 \, \text{Вт/м}^2$. Тогда на всю Землю приходится $L_n = \pi R^2 E = 1.74*10^{17} \, \text{Вт}$. Учтём Альбедо Земли A = 0.367 тогда $L_n*(1-A) = 1.1*10^{17} \, \text{Вт}$. Так мы только что на пальцах доказали глобальное потепление(Но это лишь побочный эффект этих рассчётов)

Изменение отражающей способности планеты

Так как взрыв раскидывает очень много всего, возьмём Альбедо песка A = 0.45. Песок выбран как что-то среднее между всем, что взрыв может поднять в атмосферу. Возьмём размер одной песчинки d = 0.15 мм = 1.5*10⁻⁴ м. Далее нам нужно узнать, сколько же всего было выброшено в атмосферу. Изначально считаем уничтожение всех шахт РФ из рассчёта 2 боеголовки на пусковую с наземным

подрывом. Потом добавим по одной на все передвижные комплексы с подрывом на высоте 500 м.

<u>Кратер</u> от боеголовки W-88 мощностью 455 **кт** будет диаметром d = 120 **м** и глубиной h = 70 **м**. Выведем формулу рассчёта объёма сегмента сферы

Пока писал я случайно взял радиус на 30м меньше, что сильно уменьшит количество выброшенной земли. Но, насколько я понял, это не должно кардинально изменить рассчёты

Тогда объём выброшенного грунта составит V = $2.1*10^6$ м³. Средняя плотность Земли 5500 кг/м³

Всего в РФ <u>122</u> ракеты шахтного базирования на который потратят 244 боеголовки. Тогда получаем 1.16*10¹⁰ кг выброшенной породы в виде мелкозернистой взвеси от одного взрыва и 2.82*10¹² кг для всех взрывов. Далее нам нужно понять распределения этого песка в стратосфере

↑ Mushroom cloud altitude: 17.1 km

- Mushroom cloud head height: 8.49 km

Для этого будет логично взять формулу для подсчёта <u>оптической толщи</u>. τ =I* σ *n для однородной среды, какой мы будем считать атмосферу спустя какое-то кол-во времени.

Считаем, какой объём пепла по формуле V= $(\pi/3)^*((R+h1)^3 - (R+h2)^3)$, где R - радиус Земли, h1 = 17.1**км**, h2 = 8.6**км**; V = 1.15*10¹⁸ **м³**. Их концентрация будет n=m/V = 2.5*10⁻⁶ **кг/м³** тогда взяв оптическую толщу на 1 **м²**, тк мы приходящее излучение измеряем в **Вт/м²**, мы получаем оптическую толщу 0.221 далее по формуле τ + τ ₀ = ln(E₁/E₂), τ ₀ = 0,3 это оптическая толща чистой атмосферы, при которой E₂= 1008 **Вт/м²** и получаем новое E₂ = 986 **Вт/м²**.

Итак мы получили некоторые цифры, пора узнать, как же они повлияют на жизнь на этой планете.

У нас в недавней истории была вулканическая осень из-за извержения вулкана <u>Кракатау</u> и можно найти приблизительные подсчёты объёма выброшенного пепла в $18*10^9$ **м**³ и при аналогичных подсчётах мы получим, что масса пепла будет $9.9*10^{12}$ **кг**, а концентрация $8.6*10^{-6}$ **кг/м**³. По той же формуле оптическая толща будет 0.07, а $E_2 = 937$ **Вт/м**²

Как можно увидеть, разница приходящей энергии существенной, а эффект есть. А это лишь начало...

Сноски

- 1. Астрадь формула 3.6
- Источники
 - Астрадь Astrad.pdf