Otimização em Várias Variáveis

©2011 Vinicius Cifú Lopes

UFABC, 2º quad. 2011

Máximos e mínimos

Apenas a reta R é ordenada:

- estudaremos $f: D \to \mathbb{R}$ (caso m = 1);
- $D \subseteq \mathbb{R}^n$ fechado e limitado (compacto; se f for contínua então assume valores extremos);
- $a \in D$.

Máximo global/absoluto: $(\forall x \in D) f(x) \leq f(a)$; diz-se: a é ponto de máximo e f(a) é valor máximo.

Mínimo global/absoluto: $(\forall x \in D) f(x) \ge f(a)$; mutatis mutandis.

(Domínio importante! Fora dele, f não está definida ou valores maiores/menores não interessam.)

Máximo local/relativo: $(\exists V \text{ vizinh. de } a)(\forall x \in V \cap D) f(x) \leq f(a)$. Mínimo local/relativo: $(\exists V \text{ vizinh. de } a)(\forall x \in V \cap D) f(x) \geq f(a)$.

Fizemos as mesmas definições em "Otimização e Comportamento de Funções"; você deverá rever os comentários anexos. Em especial, recorde que um ponto do *domínio* poderá ser "ponto de máximo ou mínimo", já sua *imagem* poderá ser "valor máximo ou mínimo".

Também revise os detalhes do roteiro que aprendemos para determinar os máximos e os mínimos de funções de uma variável:

Roteiro para FUV sufic. derivável

- (1) Determinar pontos críticos de f:
- onde f' se anula;
- onde f' não existe.

Calcular f neles.

- (2) Calcular f nas extremidades do domínio.
- (3) Comparar esses valores.

Isso determina extremos globais.

(4a) Verificar sinal de f' ao redor dos pontos críticos:

à esquerda	à direita	então
f' > 0	f' < 0	máximo local
f' < 0	f' > 0	mínimo local
outras combinações		não é extremo

Isso determina extremos locais interiores.

(Complicado, talvez desnecessário.)

(4b) Verificar sinal de f'' nos pontos críticos:

no ponto	então
f'' > 0	mínimo local (boca acima)
f'' < 0	máximo local (boca abaixo)
f'' = 0 ou não existe	possível inflexão: volte para (4a)

Isso determina extremos locais interiores.

Duas variáveis (caso n=2)

Veremos esclarecimentos depois.

Atenção: não funciona para $n \ge 3!$

Um ponto (a, b) no interior de D é crítico se

- $\frac{\partial f}{\partial x}(a,b) = 0$ e $\frac{\partial f}{\partial y}(a,b) = 0$;
- ou uma das derivadas (ou ambas) não existe.

Recorde também o hessiano:

$$H_f(a,b) = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2}(a,b) & \frac{\partial^2 f}{\partial x \partial y}(a,b) \\ \frac{\partial^2 f}{\partial y \partial x}(a,b) & \frac{\partial^2 f}{\partial y^2}(a,b) \end{vmatrix}$$

Para f de classe C^2 e (a,b) crítico:

Se $H_f(a, b) > 0...$ (Diagrama na lousa.)

Se $H_f(a,b) < 0$: ponto de sela (diagrama na lousa).

Se $H_f(a,b) = 0$: sem conclusão.

O hessiano desempenhará, aqui, papel análogo ao da segunda derivada para funções de uma variável.

Procedimento para f contínua sobre ${\cal D}$ compacto:

- (1) Determinar pontos críticos e seus f-valores.
- (2) Calcular valores extremos de f na fronteira de D.
- (3) Comparar esses valores.

Isso determina extremos globais.

(4) Verificar sinais de $H_f = \frac{\partial^2 f}{\partial x^2}$.

Isso determina extremos locais e selas, quando possível.

Note que esse procedimento é muito similar àquele para funções de uma única variável, mas cada passo será realizado de modo diferente. Trataremos (2) e (4) em vários exemplos.

Exemplo na lousa: Pontos críticos de $f(x,y) = 8x^3 - 24xy + y^3$.

Exemplo na lousa: Pontos críticos de $f(x,y) = x^2y^4$.

Exercício: Ache a menor distância do ponto (12,0,5) ao plano 2x-y-z=2.

Sugestões: minimizar a distância é minimizar seu quadrado; substitua z = 2x - y - 2 para trabalhar com duas variáveis x, y.

Exercício (Demidovich 2013): Estude

$$f(x,y) = xy\sqrt{1 - \frac{x^2}{a^2} - \frac{y^2}{b^2}}$$

na elipse

$$D = \left\{ (x, y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1 \right\}.$$

Atenção: todos os pontos dessa fronteira vão interessar!

Raciocínios sobre o procedimento

Situação: $f: D \to \mathbb{R}^1$, $D \subseteq \mathbb{R}^n$ $(\forall n)$

Pontos de fronteira — exemplos simples: uma ogiva limitada, um plano inclinado limitado. (Diagramas na lousa.)

Uso do sinal do hessiano: precisamos do

Teorema Espectral para matrizes $n \times n$: Se M é simétrica, então existe U com $U^t = U^{-1}$ tal que

$$UMU^{-1} = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} \text{ matriz diagonal}.$$

 $(\lambda_1, \ldots, \lambda_n \text{ são os autovalores de } M.)$

Escreva o polinômio de Taylor de ordem 2:

$$f(x) \approx f(a) + \langle \nabla f(a) | x - a \rangle + \frac{1}{2} (x - a)^t \underbrace{\left[\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right]_{i,j}}_{M \text{ simétrica por Schwarz}} (x - a)$$

Assuma $\forall i \frac{\partial f}{\partial x_i}(a) = 0$, donde

$$f(x) \approx f(a) + \frac{1}{2}(x-a)^t U^t \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{bmatrix} U(x-a) =$$

$$= f(a) + \frac{1}{2}[U(x-a)]^t \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{bmatrix} [U(x-a)] =$$

$$= f(a) + \frac{1}{2} \sum_{i=1}^n \lambda_i \underbrace{(i\text{-\'esima coord. } U(x-a))^2}_{\geqslant 0}$$

Assim:

• $\forall i \lambda_i > 0 \Rightarrow f(x) \geqslant f(a)$, mínimo local;

• $\forall i \ \lambda_i < 0 \Rightarrow f(x) \leqslant f(a)$, máximo local;

• mistura ⇒ multisela (convexa nuns eixos, côncava noutros);

• $\exists i \ \lambda_i = 0 \Rightarrow \text{termo \'e } 0 \text{ e polinômio \'e impreciso, nada a concluir.}$

Note:

$$H_f(a) = \det M = \det U^{-1} \det \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} \det U = \lambda_1 \dots \lambda_n$$

Se n=2, então $H_f(a)=\lambda_1\lambda_2$ e

• $H_f(a) > 0 \Rightarrow \lambda_1, \lambda_2$ mesmo sinal \Rightarrow máximo ou mínimo local;

• $H_f(a) < 0 \Rightarrow \lambda_1, \lambda_2 \text{ sinais opostos} \Rightarrow \text{sela};$

• $H_f(a) = 0 \Rightarrow \text{algum } \lambda_i = 0 \Rightarrow \text{inconclusivo}$.

Também $H_f = \frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2$. Se $H_f > 0$ então

$$\frac{\partial^2 f}{\partial x^2} \cdot \frac{\partial^2 f}{\partial y^2} > \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 \geqslant 0,$$

donde $\frac{\partial^2 f}{\partial x^2}$ e $\frac{\partial^2 f}{\partial y^2}$ têm mesmo sinal (basta verificar um).

Se $H_f \leqslant 0$ então podem ou não ter mesmo sinal.

Para $n \geqslant 3$, precisa calcular autovalores ou outra técnica.

Método dos mínimos quadrados

Objetivo: ajustar uma curva ou superfície a dados experimentais.

Método: minimizar diferença entre valores esperados e experimentais.

Forma do erro cometido? Para $\bar{x} = \frac{1}{k} \sum_{i=1}^{k} x_i$:

- (a) $\sum_{i=1}^{k} (x_i \bar{x}) = 0$ sempre! (b) $\sum_{i=1}^{k} |x_i \bar{x}| > 0$ exceto se $x_1 = \ldots = x_k$ mas módulo é difícil de derivar. (c) $\sum_{i=1}^{k} (x_i \bar{x})^2 > 0$ exceto se $x_1 = \ldots = x_k$.

Portanto, queremos minimizar os quadrados das diferenças.

Os parâmetros da curva a ajustar são nossas variáveis.

Exemplo (Kepler): Sendo T o período da órbita e R o raio, qual é a curva $T = xR^y$ que melhor aproxima estes dados? (x, y constantes > 0 a determinar.)

i	R_i	T_i
Vênus	0,7	0,6
Terra	1,0	1,0
Marte	1,5	1,9
Júpiter	5,2	11,9
Saturno	9,5	29,5

(Resolução em aula.)

Exercício: Encontre a reta $y = \alpha x + \beta$ que melhor aproxima os pontos (1, 2), (3, 3), (5, 3),(7,4). (Atenção: variáveis α,β .) Verifique que (α,β) minimiza a função estudada. Faça um gráfico da reta obtida e marque os pontos dados.

Multiplicadores de Lagrange

Objetivo: maximizar/minimizar f sobre dominio

$$\{x \in \mathbb{R}^n \mid g(x) = C\},\$$

onde $g: \mathbb{R}^n \to \mathbb{R}$ e $C \in \mathbb{R}$ (é superfície de nível).

(Por exemplo: achar extremos de f sobre uma fronteira!)

Assumiremos f, g de classe C^1 (derivadas parciais contínuas).

Procedimento:

- (1) Verificar que $\nabla g(x)$ nunca se anula no domínio.
- (2) Escrever o sistema

$$\begin{cases} \nabla f(x) = \lambda \nabla g(x) \\ g(x) = C \end{cases}$$

(n+1) equações e variáveis).

- (3) Resolver para $x_1, \ldots, x_n, \lambda$: soluções x são candidatos a extremo.
- (4) Comparar f-valores.

A nova variável λ é o que se chama multiplicador de Lagrange.

Note bem que esse método não permite classificar os pontos obtidos: podem ser de máximo, de mínimo ou de sela; de fato, se f está definida fora daquela superfície de nível de g, os pontos sequer precisam ser críticos. Para determinar seu caráter corretamente, é preciso fazer uma análise suplementar, por exemplo, esboçando o gráfico de f ou calculando alguns de seus valores em uma vizinhança do ponto.

Geometricamente: suponha a ponto de extremo.

A superfície de nível

$$\{ x \mid f(x) = f(a) \}$$

é a última a intersectar a superfície de nível

$$\{ x \mid g(x) = C \}.$$

(Diagrama na lousa.)

Então $\nabla f(a) \parallel \nabla g(a)$.

Exemplo: Ache novamente, desta vez com Lagrange, a menor distância do ponto (12,0,5) ao plano 2x-y-z=2.

Temos:

- $f(x, y, z) = (x 12)^2 + y^2 + (z 5)^2$;
- g(x, y, z) = 2x y z;
- C = 2.
- (1) $\nabla g(x, y, z) = (2, -1, -1)$ nunca zera no plano 2x y z = 2.
- (2) $\nabla f(x, y, z) = (2x 24, 2y, 2z 10)$; sistema

$$\begin{cases} 2x - 24 = \lambda 2 \\ 2y = \lambda(-1) \\ 2z - 10 = \lambda(-1) \\ 2x - y - z = 2 \text{ (Não esqueça! Pto. no plano/domínio!)} \end{cases}$$

(3) Solução por eliminação (use $\lambda = -2y, z = y + 5$):

$$x = 19/3, \ y = 17/6, \ z = 47/6, \ \lambda = -17/3.$$

É a única solução: não há 4° passo.

É importante determinar o valor de λ explicitamente, tanto para conferir a validade da solução calculada, como no cálculo de variação que aprenderemos abaixo.

Exercício: Minimize o custo do material para fabricar uma lata cilíndrica de metal (com base e tampa) de volume 800cm³. Quais as dimensões da lata?

(Custo é proporcional à superfície.)

Exercício: Se x é gasto em maquinário e y em funcionários, uma fábrica produz $50x^{2/5}y^{3/5}$. Como alocar capital de 150 unidades de modo a maximizar a produção? Qual é esse máximo?

Valor extremo V = f(a) depende da constante C.

Heuristicamente, $\Delta V = \lambda . \Delta C$.

Exercício: No exercício anterior, quanto seria aprox. a produção otimizada com o capital de 151 unidades?

Mais exemplos

 $Mec \hat{a}nica~Qu \hat{a}ntica:$ Partícula de massa m confinada em paralelepípedo retângulo de dimensões x,y,z tem energia de repouso

$$E = \frac{k^2}{8m} \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} \right)$$

(k constante). Minimize E com x, y, z > 0, dado V = xyz constante.

Médias aritmética e geométrica: Dados $x_1, \ldots, x_n \geqslant 0$, temos

$$A = \frac{1}{n}(x_1 + \ldots + x_n) \in G = (x_1 \ldots x_n)^{1/n}.$$

Mostre $G \leq A$.

Preferências do consumidor: Marcas de feijão preto X e Y custam ambas, no atacado, R\$ 2 por saco de 1kg. Supermercado vende por x e y reais, resp. Número de sacos vendidos:

$$X: 40 - 50x + 40y$$

$$Y: 20 + 60x - 70y$$

Maximize o lucro.

Nesse exemplo, a função lucro é

$$f(x,y) = (x-2)(40-50x+40y) + (y-2)(20+60x-70y).$$

As expressões para os números de sacos vendidos são justificadas assim: o preço de cada produto afugenta alguns consumidores para a outra marca, subtraindo parte das vendas; também atrai certos consumidores da outra marca, acrescentando vendas.

Substituição maléfica: Achar distância mínima da origem ao parabolóide $z=4-x^2-4y^2$.

(Esse exemplo é devido a H. R. Bailey.)