FLUKA Update

Ethan Cline

ewcline@mit.edu

LNS Massachusetts Institute of Technology

> Simulation Meeting February 6, 2024

Electronics Hardness

All important risks of damage to electronics can be scored in FLUKA

- Cumulative damage
 - Energy deposition (ionizing)
 - Lattice displacement (1-MeV *n* equivalent fluxes, non-ionizing)
- Single event upsets
 - "High" energy hadrons (> 20 MeV), not significant with 30 MeV beam energy

Simulated Shielding

As a starting point:

- 1 cm thick lead sheet around GEMs, 10 cm high, no roof, for gammas
- 5 cm thick borated polyethylene around chamber, for neutrons

Unfortunately, exact placement of permanent magnets is still up in the air, can impact shielding

Acceptable Levels

- Non-ionizing energy loss (NIEL)
 - A quick literature search indicates a total 1 MeV n equiv. flux $\mathcal{O}(10^{14})/\text{cm}^{-2}$ has a noticeable impact on SiPM breakdown voltage
 - Dark current begins to increase $\mathcal{O}(10^{10})/\text{cm}^{-2}$, and we lose single photon resolution
- Ionizing energy loss (IEL)
 - Surface current density roughly doubles around 10⁵ Gy
 - Plastic damage at 10⁸ Gy

NIEL reference

https://www.sciencedirect.com/science/article/pii/S0168900218315055

IEL reference

https://www.sciencedirect.com/science/article/pii/S0168900213007420?via%3Dihub

FLUKA Shielding Comparisons

1 MeV n equiv. fluence and Dose estimate from FLUKA in the SpecL far SiPMs.

. Hadrice and Bose estimate from 1 Eorov in the Spo				
Pb (cm)	0	1	5	
B-PE (cm)	0	5	5	
$n_{fl} \; (\text{cm}^{-2} \; \text{hr}^{-1})$	40×10^{10}	1×10^{10}	10×10^{10}	
Dose (kGy/h)	≈10	≈6	≈4	

1 MeV n equiv. fluence and Dose estimate from FLUKA in the SpecL near SiPMs.

Pb (cm)	0	1	5
B-PE (cm)	0	5	5
$n_{fl} \text{ (cm}^{-2} \text{ hr}^{-1}\text{)}$	40×10^{10}	1×10^{10}	10×10^{10}
Dose (kGy/h)	≈6	≈3	≈7

Near and far refer to proximity to target.

FLUKA Shielding Conclusions

- ???
- Statistics limited
- Shielding clearly needed for neutrons
- ullet Shielding not making a huge difference for γ
- Need to run for additional thickness, 10 cm (?), and for 10 times more events

Additional Work - Electronics Hut

Need dimensions, location, etc. NB. Don't put it directly in the path of the proton shine.

Additional Work

Bonus: Presented on minor hot spots near experiment hall roof from γ at collab meeting. Those spots disappear completely with additional experiment shielding.

- Implement detectors in FLUKA
- Understand dark current limits
- Implement slanted lead shielding
- Talk with TRIUMF about proton beamline shine