заны в дальнейшем (см. замену переменного в интеграле, п.18.3).

Если F – какая-либо первообразная функции f на промежутке Δ , то, согласно формуле (18.4), под знаком интеграла стоит дифференциал функции F:

$$dF(x) = F'(x)dx = f(x)dx.$$

По определению будем считать, что этот дифференциал под знаком интеграла можно записывать в любом из указанных видов, т.е. согласно этому соглашению,

$$\int f(x)dx = \int F'(x)dx = \int dF(x). \tag{18.5}$$

18.2 Основные свойства интеграла

Все рассматриваемые в этом пункте функции определены на некотором фиксированном промежутке Δ .

 1^{0} . Если функция F дифференцируема на некотором промежутке, то на нем $\int dF' = F(x) + C$ или, что то же самое, $\int F' dx = F(x) + C$.

Это сразу следует из определения неопределенного интеграла как совокупности всех дифференцируемых функций, дифференциал которых стоит под знаком интеграла.

 2^{0} . Пусть функция f имеет первообразную на промежутке Δ , тогда для всех $x \in \Delta$ имеет место равенство

$$d \int f(x)dx = f(x)dx. \tag{18.6}$$

Отметим, что в этом равенстве под интегралом $\int f(x)dx$ понимается произвольная первообразная F функции f. Поэтому равенство (18.6) можно записать в виде

$$dF(x) = f(x)dx,$$

справедливость последнего равенства следует из того, что F – первообразная f.

 3^{0} . Если функции f_{1} и f_{2} имеют первообразные на промежутке Δ , то и функция $f_{1}+f_{2}$ имеет первообразную на этом промежутке, причем

$$\int (f_1(x) + f_2(x))dx = \int f_1(x)dx + \int f_2(x)dx.$$
 (18.7)

Это равенство выражает собой совпадение двух множеств функций и означает, что сумма каких-либо первообразных для функций f_1 и f_2 является первообразной для функции f_1+f_2 и, наоборот, всякая первообразная для функции f_1+f_2 является суммой некоторых первообразных для функций f_1 и f_2 .

Свойство интеграла, выражаемое формулой (18.7), называется аддитивностью интеграла относительно функций.

Доказательство. Пусть F_1 и F_2 – первообразные соответственно функций f_1 и f_2 , т.е. в каждой точке $x \in \Delta$ выполняются равенства $F_1'(x) = f_1(x), F_2'(x) = f_2(x)$. Положим $F(x) = F_1(x) + F_2(x)$; тогда функция F является первообразной для функции $f_1 + f_2$, так как

$$F'(x) = F_1'(x) + F_2'(x) = f_1(x) + f_2(x), x \in \Delta$$

Следовательно, интеграл $\int (f_1(x) + f_2(x))dx$ состоит из функций $F(x) + C = F_1(x) + F_2(x) + C$, а сумма интегралов $\int f_1(x)dx + f_2(x)dx = F_1(x) + C_1 + F_2(x) + C_2$. Поскольку C, C_1 и C_2 – произвольные постоянные, оба эти множества, т.е. левая и правая части равенства (18.7), совпадают. \square

 4^{0} . Если функция f имеет первообразную на промежутке Δ и κ – число, то функция κf также имеет на Δ первообразную, причем при $\kappa \neq 0$ справедливо равенство

$$\int \kappa(f(x)dx = \kappa \int f1(x)dx.$$
 (18.8)

Это равенство, также как равенство (18.8), является равенством множеств.

Доказательство. Пусть F – первообразная фукнции f, т.е. $F'(x)=f(x), x\in \Delta$. Тогда функция κF является первообразной функции κf на промежутке Δ при любом $\kappa\in R$, так как $(\kappa F(x))'=\kappa F'(x)=\kappa f(x), x\in \Delta$. Поэтому интеграл $\int \kappa f(x)dx$ состоит из всевозможных функций вида $\kappa F+C$, а интеграл $\kappa\int f(x)dx$ – из всевозможных функций $\kappa(F+C)=\kappa F+\kappa C$. В силу произвольности постоянной C, при условии $k\neq 0$, обе совокупности функций совпадают. Это и означает справедливость равенства (18.8). \square