$$\frac{g}{g} = \frac{1}{2\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} dx = 0 \text{ because area obove cancels with area below}$$

$$\frac{g}{g} = \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} dx = 0 \text{ because area obove cancels with area below}$$

$$\frac{g}{g} = \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \cos nx dx = \frac{1}{\pi} \int_{0}^{\infty} - \cos nx dx + \int_{0}^{\pi} \cos nx dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \cos nx dx = \frac{1}{\pi} \int_{0}^{\infty} - \cos nx dx + \int_{0}^{\pi} \cos nx dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx = \frac{1}{\pi} \int_{0}^{\infty} - \sin (nx) dx + \int_{0}^{\pi} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx = \frac{1}{\pi} \int_{0}^{\infty} - \sin (nx) dx + \int_{0}^{\pi} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx = \frac{1}{\pi} \int_{0}^{\infty} \frac{f(x)}{f(x)} dx + \int_{0}^{\pi} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx = \frac{1}{\pi} \int_{0}^{\infty} \frac{f(x)}{f(x)} dx + \int_{0}^{\pi} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx = \frac{1}{\pi} \int_{0}^{\infty} \frac{f(x)}{f(x)} dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx = \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx = \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx + \int_{0}^{\pi} \frac{f(x)}{f(x)} \sin (nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} \frac{$$

3i)
$$P(x) = X$$

$$= \frac{1}{n} \int_{-\pi}^{\pi} x \cos nx \, dx$$

$$= \frac{1}{n} \int_{-\pi}^{\pi} (-\sin nx) \int_{-\pi}^{\pi} x \cos nx + \sin nx + \cos nx + \sin nx + \cos nx +$$

4c f(x)=x far -12x41 period = 2 L=1 half the period. $Q_0 = \frac{1}{L^2 I} \int_{-1}^{L-1} \int_{-1}^{2-1} f(x) dx = 0 \text{ by area argument}$ SINNIX $a_n = \frac{1}{L} \int_{-L}^{L} x \sin(\frac{n\pi x}{L}) dx = \frac{1}{L} \int_{-L}^{L} x \sin(\frac{n\pi x}{L}) dx$ - 1 | GOOD (NITX)/WIR +O HSIN (MIXX/MI)2 $= -\frac{X \cos(n\pi x)}{n\pi} + \frac{\sin n\pi x}{\sin n\pi} = 0$ $x=1 \qquad x=-1$ $\sin n\pi = 0$ $\sin n\pi = 0$ $\sin n\pi = 0$ $\sin n\pi = 0$ $= \left(\frac{1}{\sqrt{1000}} \right) - \left(\frac{x = -1}{\sqrt{-(-1)(\cos(-n\pi))}} \right) = \frac{-1}{\sqrt{100}} \left(\frac{(-1)^{n} + (-1)^{n}}{\sqrt{1000}} \right)$ $b_1 = \frac{2}{4\pi}$ $b_2 = \frac{2}{2\pi}$ $b_3 = \frac{2}{3\pi}$ $b_4 = \frac{2}{4\pi}$ $b_5 = \frac{2}{5\pi}$ $P(x) = 0 + \frac{2}{\pi} \sin(i\pi x) = \frac{2}{2\pi} \sin(2\pi x) + \frac{2}{3\pi} \sin(3\pi x) - \frac{2}{4\pi} \sin(4\pi x)$

Comparto 3'i