Curs 2

Cuprins

1 Logica propozițională PL (recap.)

2 Deducţia naturală DN

Corectitudinea şi completitudinea DN

Logica propozițională PL (recap.)

- □ O propoziție este un enunț care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

- □ O propoziție este un enunț care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

Exemplu

Fie φ propoziția:

$$(\mathtt{stark} \land \neg \mathtt{dead}) \rightarrow (\mathtt{sansa} \lor \mathtt{arya} \lor \mathtt{bran})$$

- □ O propoziție este un enunț care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

Exemplu

Fie φ propoziția:

$$(\mathtt{stark} \land \neg \mathtt{dead}) \rightarrow (\mathtt{sansa} \lor \mathtt{arya} \lor \mathtt{bran})$$

Cine este $\neg \varphi$?

- □ O propoziție este un enunț care poate fi adevărat (1) sau fals (0).
- □ Propozițiile sunt notate simbolic $(\varphi, \psi, \chi, \cdots)$ și sunt combinate cu ajutorul conectorilor logici $(\neg, \rightarrow, \lor, \land, \leftrightarrow)$.

Exemplu

Fie φ propoziția:

$$(\mathtt{stark} \land \neg \mathtt{dead}) \rightarrow (\mathtt{sansa} \lor \mathtt{arya} \lor \mathtt{bran})$$

Cine este $\neg \varphi$? Propoziția $\neg \varphi$ este:

 $\operatorname{stark} \wedge \neg \operatorname{dead} \wedge \neg \operatorname{sansa} \wedge \neg \operatorname{arya} \wedge \neg \operatorname{bran}$

```
□ Limbajul PL

□ variabile propoziţionale: Var = \{p, q, v, ...\}
□ conectori logici: ¬ (unar), →, ∧, ∨, ↔ (binari)

□ Formulele PL

var ::= p \mid q \mid v \mid ...
form ::= var \mid (\neg form) \mid form \land form \mid form \lor form
\mid form \rightarrow form \mid form \leftrightarrow form
```

- ☐ Limbajul PL
 - variabile propoziționale: $Var = \{p, q, v, ...\}$
 - \square conectori logici: \neg (unar), \rightarrow , \land , \lor , \leftrightarrow (binari)
- ☐ Formulele PL

```
var ::= p \mid q \mid v \mid \dots

form ::= var \mid (\neg form) \mid form \land form \mid form \lor form

\mid form \rightarrow form \mid form \leftrightarrow form
```

Exemplu

- Nu sunt formule: $v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$
- \square Sunt formule: $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$

- □ Limbajul PL
 - \square variabile propoziționale: $Var = \{p, q, v, \ldots\}$
 - \square conectori logici: \neg (unar), \rightarrow , \land , \lor , \leftrightarrow (binari)
- ☐ Formulele PL

```
var ::= p \mid q \mid v \mid \dots

form ::= var \mid (\neg form) \mid form \land form \mid form \lor form

\mid form \rightarrow form \mid form \leftrightarrow form
```

Exemplu

- \square Nu sunt formule: $v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$
- \square Sunt formule: $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$
- □ Notăm cu Form mulțimea formulelor.

- □ Limbajul PL
 - \square variabile propoziționale: $Var = \{p, q, v, \ldots\}$
 - \square conectori logici: \neg (unar), \rightarrow , \land , \lor , \leftrightarrow (binari)
- ☐ Formulele PL

$$var ::= p \mid q \mid v \mid \dots$$

 $form ::= var \mid (\neg form) \mid form \land form \mid form \lor form$
 $\mid form \rightarrow form \mid form \leftrightarrow form$

- □ Conectorii sunt împărțiți în conectori de bază și conectori derivați (în funcție de formalism).
- ☐ Legături între conectori:

$$\begin{array}{ccc} \varphi \lor \psi & := & \neg \varphi \to \psi \\ \varphi \land \psi & := & \neg (\varphi \to \neg \psi) \\ \varphi \leftrightarrow \psi & := & (\varphi \to \psi) \land (\psi \to \varphi) \end{array}$$

Sintaxa și semantica

Un sistem logic are două componente:

□ Sintaxa

□ Semantica

Sintaxa și semantica

Un sistem logic are două componente:

- □ Sintaxa
 - noțiuni sintactice: demonstrație, teoremă
 - \square notăm prin $\vdash \varphi$ faptul că φ este teoremă
 - $\hfill\Box$ notăm prin $\Gamma \vdash \varphi$ faptul că formula φ este demonstrabilă din multimea de formule Γ
- □ Semantica

Sintaxa și semantica

Un sistem logic are două componente:

Sintaxa
noțiuni sintactice: demonstrație, teoremă notăm prin $\vdash \varphi$ faptul că φ este teoremă notăm prin $\Gamma \vdash \varphi$ faptul că formula φ este demonstrabilă din mulțimea de formule Γ
Semantica
 noţiuni semantice: adevăr, model, tautologie (formulă universal adevărată)
\square notăm prin $\models \varphi$ faptul că φ este tautologie
\square notăm prin $\Gamma \models arphi$ faptul că formula $arphi$ este adevărată atunci cânc
toate formulele din mulţimea Γ sunt adevărate

Exemplu

Formalizați următorul raționament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

Exemplu

Formalizați următorul raționament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

O posibilă formalizare este următoarea:

p = winter is coming

q = Ned is alive

r =Robb is lord of Winterfel

Exemplu

Formalizați următorul raționament:

If winter is coming and Ned is not alive then Robb is lord of Winterfell. Winter is coming. Rob is not lord of Winterfell. Then Ned is alive.

O posibilă formalizare este următoarea:

p = winter is coming q = Ned is alive r = Robb is lord of Winterfel $\{(p \land \neg q) \to r, p, \neg r\} \models q$

■ Mulţimea valorilor de adevăr este {0,1} pe care considerăm următoarele operaţii:

$$\begin{array}{c|c} x & \neg x \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$

$$\begin{array}{c|ccccc} x & y & x \to y \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

$$x \lor y := max\{x, y\}$$

$$x \wedge y := min\{x, y\}$$

- \square o funcție $e: Var \rightarrow \{0,1\}$ se numește evaluare (interpretare)
- pentru orice evaluare $e: Var \rightarrow \{0,1\}$ există o unică funcție $e^+: Form \rightarrow \{0,1\}$ care verifică următoarele proprietăți:

oricare ar fi $v \in Var$ și φ , $\psi \in Form$.

- \square o funcție $e: Var \rightarrow \{0,1\}$ se numește evaluare (interpretare)
- pentru orice evaluare $e: Var \rightarrow \{0,1\}$ există o unică funcție $e^+: Form \rightarrow \{0,1\}$ care verifică următoarele proprietăți:

 - \square $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$

oricare ar fi $v \in Var$ și φ , $\psi \in Form$.

Exemplu

Dacă
$$e(p) = 0$$
 și $e(q) = 1$ atunci

$$e^+(p \lor (p \to q)) = e^+(p) \lor e^+(p \to q) = e(p) \lor (e(p) \to e(q)) = 1$$

Considerăm $\Gamma \cup \{\varphi\} \subseteq \mathit{Form}$.

Considerăm $\Gamma \cup \{\varphi\} \subseteq Form$.

□ O evaluare $e: Var \rightarrow \{0,1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.

Considerăm $\Gamma \cup \{\varphi\} \subseteq Form$.

- □ O evaluare $e: Var \to \{0,1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.
- \square O formulă φ este satisfiabilă dacă are un model. O mulțime Γ de formule este satisfiabilă dacă are un model.

Considerăm $\Gamma \cup \{\varphi\} \subseteq Form$.

- □ O evaluare $e: Var \rightarrow \{0,1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.
- \square O formulă φ este satisfiabilă dacă are un model. O mulțime Γ de formule este satisfiabilă dacă are un model.
- □ O formulă φ este tautologie (validă, universal adevarată) dacă $e^+(\varphi)=1$ pentru orice evaluare $e: Var \to \{0,1\}$. Notăm prin $\models \varphi$ faptul că φ este o tautologie.

Considerăm $\Gamma \cup \{\varphi\} \subseteq Form$.

- □ O evaluare $e: Var \to \{0,1\}$ este model al formulei φ dacă $e^+(\varphi) = 1$. Evaluarea e este model al lui Γ dacă $e^+(\Gamma) = \{1\}$, i.e. $e^+(\gamma) = 1$ oricare $\gamma \in \Gamma$.
- \square O formulă φ este satisfiabilă dacă are un model. O mulțime Γ de formule este satisfiabilă dacă are un model.
- □ O formulă φ este tautologie (validă, universal adevarată) dacă $e^+(\varphi) = 1$ pentru orice evaluare $e: Var \to \{0,1\}$. Notăm prin $\models \varphi$ faptul că φ este o tautologie.
- □ O formulă φ este Γ —tautologie (consecință semantică a lui Γ) dacă orice model al lui Γ este și model pentru φ , i.e. $e^+(\Gamma) = \{1\}$ implică $e^+(\varphi) = 1$ pentru orice evaluare $e : Var \to \{0,1\}$. Notăm prin $\Gamma \models \varphi$ faptul că φ este o Γ -tautologie.

Cum verificăm că o formulă este tautologie: $\models \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

Cum verificăm că o formulă este tautologie: $\models \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

v_1	<i>V</i> ₂		Vn	φ
$e_1(v_1)$	$e_1(v_2)$		$e_1(v_n)$	$e_1^+(\varphi)$
$e_{2}(v_{1})$	$e_2(v_2)$		$e_2(v_n)$	$e_2^+(arphi)$
:	:	:	:	:
$e_{2^{n}}(v_{1})$	$e_{2^n}(v_2)$		$e_{2^n}(v_n)$	$e_{2^n}^+(\varphi)$

Fiecare evaluare corespunde unei linii din tabel!

Cum verificăm că o formulă este tautologie: $\models \varphi$?

- \square Fie v_1, \ldots, v_n variabilele care apar în φ .
- \square Cele 2^n evaluări posibile e_1, \ldots, e_{2^n} pot fi scrise într-un tabel:

v_1	<i>V</i> ₂		Vn	φ
$e_1(v_1)$	$e_1(v_2)$		$e_1(v_n)$	$e_1^+(\varphi)$
$e_2(v_1)$	$e_2(v_2)$		$e_2(v_n)$	$e_2^+(arphi)$
:	:	:	:	:
$e_{2^{n}}(v_{1})$	$e_{2^n}(v_2)$		$e_{2^n}(v_n)$	$e_{2^n}^+(\varphi)$

Fiecare evaluare corespunde unei linii din tabel!

 $\square \models arphi$ dacă și numai dacă $e_1^+(arphi) = \dots = e_{2^n}^+(arphi) = 1$

☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- ☐ În cazul în care formula conțin *n* variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional, încât este irealizabilă. (Timp exponențial)

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- □ În cazul în care formula conțin *n* variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional, încât este irealizabilă. (Timp exponențial)

Este posibil să decidem problema consecinței logice în cazul propozițional printr-un algoritm care să funcționeze în timp polinomial?

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- ☐ În cazul în care formula conțin *n* variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional, încât este irealizabilă. (Timp exponențial)
- □ Problemă deschisă de un milion de dolari:

Este posibil să decidem problema consecinței logice în cazul propozițional printr-un algoritm care să funcționeze în timp polinomial?

Echivalent, este adevărată P = NP? (Institutul de Matematica Clay – Millennium Prize Problems)

- ☐ În principiu, putem verifica problema consecinței logice construind un tabel de adevăr, cu câte o linie pentru fiecare interpretare posibilă.
- ☐ În cazul în care formula conțin *n* variabile, tabelul de adevăr are 2ⁿ rânduri. Această metodă este atât de costisitoare computațional, încât este irealizabilă. (Timp exponențial)
- ☐ Problemă deschisă de un milion de dolari:

Este posibil să decidem problema consecinței logice în cazul propozițional printr-un algoritm care să funcționeze în timp polinomial?

Echivalent, este adevărată P = NP? (Institutul de Matematica Clay – Millennium Prize Problems)

□ SAT este problema satisfiabilității în calculul propozițional clasic. SAT-solverele sunt bazate pe metode sintactice.

Sintaxa PL

Sisteme deductive pentru calculul propozițional clasic:

- ☐ Sistemul Hilbert
- □ Rezoluție
- □ Deducția naturală
- ☐ Sistemul Gentzen

Sistemul Hilbert

 \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
(A3) $(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$.

 $\hfill\Box$ Regula de deducție este modus ponens: $\frac{\varphi, \ \varphi \to \psi}{\psi} {}_{\hfill}{}_{\hfill}$

Sistemul Hilbert

- \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:
 - (A1) $\varphi \to (\psi \to \varphi)$
 - (A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (A3) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$.
- \square Regula de deducție **este** modus ponens: $\frac{\varphi, \ \varphi \to \psi}{\psi}$ MP
- \square O demonstrație pentru φ este o secvență de formule $\gamma_1, \ldots, \gamma_n$ astfel încât $\gamma_n = \varphi$ și, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:
 - \square γ_i este axiomă,

- \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:
 - (A1) $\varphi \to (\psi \to \varphi)$
 - (A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
 - (A3) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$.
- \square Regula de deducție **este** modus ponens: $\frac{\varphi, \ \varphi \to \psi}{\psi}$ MP
- \square O demonstrație pentru φ este o secvență de formule $\gamma_1, \ldots, \gamma_n$ astfel încât $\gamma_n = \varphi$ și, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:
 - \square γ_i este axiomă,
 - γ_i se obţine din formulele anterioare prin мρ: există j, k < i astfel încât $\gamma_i = \gamma_k \rightarrow \gamma_i$
- \square O formulă φ este teoremă dacă are o demonstrație. Notăm prin $\vdash \varphi$ faptul că φ este teoremă.

Fie $\Gamma \cup \{\varphi\} \subseteq Form$.

- □ O demonstrație din ipotezele Γ (sau Γ-demonstrație) pentru φ este o secvență de formule $\gamma_1, \ldots, \gamma_n$ astfel încât $\gamma_n = \varphi$ și, pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:
 - \square γ_i este axiomă,
 - \square $\gamma_i \in \Gamma$
 - \square γ_i se obţine din formulele anterioare prin MP: există j, k < i astfel încât $\gamma_i = \gamma_k \rightarrow \gamma_i$
- \square O formulă φ este Γ -teoremă dacă are o Γ -demonstrație. Notăm prin $\Gamma \vdash \varphi$ faptul că φ este o Γ -teoremă

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \rightarrow \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \rightarrow \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Arătați că
$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \to \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Arătați că
$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$$
 (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \text{ (ipoteza)}$

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \to \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Arătați că
$$\vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$

- (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$ (ipoteza)
- (2) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$ (ipoteza)

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \to \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Arătați că
$$\vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$

- (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$ (ipoteza)
- (2) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$ (ipoteza)
- (3) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$ (1),(2), MP

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \to \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Arătați că
$$\vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$

- (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$ (ipoteza)
- (2) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$ (ipoteza)
- (3) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$ (1),(2), MP
- (4) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi \text{ (ipoteza)}$

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \to \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Arătați că
$$\vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$

- (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$ (ipoteza)
- (2) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$ (ipoteza)
- (3) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$ (1),(2), MP
- (4) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi \text{ (ipoteza)}$
- (5) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$ (3),(4), MP

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \to \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Arătați că
$$\vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$

- (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$ (ipoteza)
- (2) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$ (ipoteza)
- (3) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$ (1),(2), MP
- (4) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi \text{ (ipoteza)}$
- (5) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$ (3),(4), MP
- (6) $\{\varphi \to \psi, \psi \to \chi\} \vdash \varphi \to \chi$ TD

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \to \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Arătați că
$$\vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$

- (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$ (ipoteza)
- (2) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$ (ipoteza)
- (3) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$ (1),(2), MP
- (4) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi \text{ (ipoteza)}$
- (5) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$ (3),(4), MP
- (6) $\{\varphi \to \psi, \psi \to \chi\} \vdash \varphi \to \chi$ TD
- (7) $\{\varphi \to \psi\} \vdash (\psi \to \chi) \to (\varphi \to \chi)$ TD

Teorema deducției TD (Herbrand, 1930)

Fie $\Gamma \cup \{\varphi\} \subseteq Form$. Atunci

$$\Gamma \vdash \varphi \to \psi$$
 dacă și numai dacă $\Gamma \cup \{\varphi\} \vdash \psi$

Arătați că
$$\vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$$

- (1) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$ (ipoteza)
- (2) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$ (ipoteza)
- (3) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$ (1),(2), MP
- (4) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi \text{ (ipoteza)}$
- (5) $\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$ (3),(4), MP
- (6) $\{\varphi \to \psi, \psi \to \chi\} \vdash \varphi \to \chi$ TD
- (7) $\{\varphi \to \psi\} \vdash (\psi \to \chi) \to (\varphi \to \chi)$ TD
- (8) $\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi))$ TD

 \square Oricare ar fi φ , ψ , $\chi \in Form$ următoarele formule sunt axiome:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2) $(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$
(A3) $(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$.

 \square Regula de deducție **este** modus ponens: $\dfrac{\varphi, \ \varphi \to \psi}{\psi}$ **MP**

Teorema de completitudine

Γ-teoremele și Γ-tautologiile coincid, i.e.

$$\Gamma \vdash \varphi$$
 dacă și numai dacă $\Gamma \models \varphi$

oricare are fi $\Gamma \cup \{\varphi\} \in Form$. În particular, $\vdash \varphi$ dacă și numai dacă $\models \varphi$.

Reguli de deducție pentru PL

O regula de deducție are forma

$$\frac{\Gamma_1 \vdash \varphi_1, \dots, \Gamma_n \vdash \varphi_n}{\Gamma \vdash \varphi}$$

A demonstra o regulă de deducție derivată revine la a deduce concluzia $\Gamma \vdash \varphi$ din premisele $\Gamma_1 \vdash \varphi_1, \ldots, \Gamma_n \vdash \varphi_n$.

Reguli de deducție pentru PL

O regula de deducție are forma

$$\frac{\Gamma_1 \vdash \varphi_1, \dots, \Gamma_n \vdash \varphi_n}{\Gamma \vdash \varphi}$$

A demonstra o regulă de deducție derivată revine la a deduce concluzia $\Gamma \vdash \varphi$ din premisele $\Gamma_1 \vdash \varphi_1, \ldots, \Gamma_n \vdash \varphi_n$.

Exemplu

Folosind teorema deducției se demonstrează regula:

$$\frac{\Gamma \cup \{\varphi\} \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

Deducția naturală DN

☐ În deducția naturală deducem (demonstrăm) formule din alte formule folosind reguli de deducție.

 $^{^1\}mbox{M}.$ Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.

- ☐ În deducția naturală deducem (demonstrăm) formule din alte formule folosind reguli de deducție.
- □ Numim secvent o expresie de forma

$$\varphi_1,\ldots,\varphi_n\vdash\psi$$

Formulele $\varphi_1, \ldots, \varphi_n$ se numesc premise, iar ψ se numește concluzie.

¹M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.

- ☐ În deducția naturală deducem (demonstrăm) formule din alte formule folosind reguli de deducție.
- □ Numim secvent o expresie de forma

$$\varphi_1,\ldots,\varphi_n\vdash\psi$$

Formulele $\varphi_1, \ldots, \varphi_n$ se numesc premise, iar ψ se numește concluzie.

□ Un secvent este valid dacă există o demonstrație folosind regulile de deducție.

¹M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.

- ☐ În deducția naturală deducem (demonstrăm) formule din alte formule folosind reguli de deducție.
- □ Numim secvent o expresie de forma

$$\varphi_1,\ldots,\varphi_n\vdash\psi$$

Formulele $\varphi_1, \ldots, \varphi_n$ se numesc premise, iar ψ se numește concluzie.

- ☐ Un secvent este valid dacă există o demonstrație folosind regulile de deducție.
- \square O teoremă este o formulă ψ astfel încât $\vdash \psi$ (adică ψ poate fi demonstrată din mulțimea vidă de ipoteze).

¹M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.

- ☐ În deducția naturală deducem (demonstrăm) formule din alte formule folosind reguli de deducție.
- □ Numim secvent o expresie de forma

$$\varphi_1,\ldots,\varphi_n\vdash\psi$$

Formulele $\varphi_1, \ldots, \varphi_n$ se numesc premise, iar ψ se numește concluzie.

- ☐ Un secvent este valid dacă există o demonstrație folosind regulile de deducție.
- \square O teoremă este o formulă ψ astfel încât $\vdash \psi$ (adică ψ poate fi demonstrată din mulțimea vidă de ipoteze).
- Pentru fiecare conector logic vom avea reguli de introducere şi reguli de eliminare.

¹M. Huth, M. Ryan, Logic in Computer Science: Modelling and Reasoning about Systems, Cambridge University Press New York, 2004.

 \Box Intuitiv, a demonstra $\varphi \wedge \psi$ revine la a demonstra φ și $\psi.$ Obținem astfel regula

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi} \ (\land i)$$

Eticheta ($\land i$) înseamnă \land -introducere deoarece \land este introdus în concluzie.

 \Box Intuitiv, a demonstra $\varphi \wedge \psi$ revine la a demonstra φ și $\psi.$ Obținem astfel regula

$$\frac{\varphi \quad \psi}{\varphi \wedge \psi}$$
 (\lambda i)

Eticheta ($\land i$) înseamnă \land -introducere deoarece \land este introdus în concluzie.

□ Regulile pentru ∧- eliminare sunt:

$$\frac{\varphi \wedge \psi}{\varphi} (\wedge e_1) \qquad \frac{\varphi \wedge \psi}{\psi} (\wedge e_2)$$

Exemplu

Demonstrați că secventul $p \land q, r \vdash q \land r$ este valid.

Exemplu

Demonstrați că secventul $p \land q, r \vdash q \land r$ este valid.

Putem scrie demonstrația ca un arbore

$$\frac{\frac{p \wedge q}{q} (\wedge e_2) \quad r}{q \wedge r} (\wedge i)$$

Exemplu

Demonstrați că secventul $p \land q, r \vdash q \land r$ este valid.

Putem scrie demonstrația ca un arbore

$$\frac{\frac{p \wedge q}{q} (\wedge e_2) \quad r}{q \wedge r} (\wedge i)$$

sau putem scrie demonstrația într-un mod liniar astfel:

$$\begin{array}{ccc} 1 & p \wedge q & \textit{premisa} \\ 2 & r & \textit{premisa} \end{array}$$

Exemplu

Demonstrați că secventul $p \land q, r \vdash q \land r$ este valid.

Putem scrie demonstrația ca un arbore

$$\frac{\frac{p \wedge q}{q} (\wedge e_2) \quad r}{q \wedge r} (\wedge i)$$

sau putem scrie demonstrația într-un mod liniar astfel:

$$\begin{array}{ccc} 1 & p \wedge q & \textit{premisa} \\ 2 & r & \textit{premisa} \\ 3 & q & (\land e_2), 1 \end{array}$$

Exemplu

Demonstrați că secventul $p \land q, r \vdash q \land r$ este valid.

Putem scrie demonstrația ca un arbore

$$\frac{\frac{p \wedge q}{q} (\wedge e_2) \quad r}{q \wedge r} (\wedge i)$$

sau putem scrie demonstrația într-un mod liniar astfel:

$$\begin{array}{cccc} 1 & p \wedge q & premisa \\ 2 & r & premisa \\ 3 & q & (\land e_2), 1 \\ 4 & q \wedge r & (\land i), 3, 2 \end{array}$$

□ Regulile ¬¬-introducere și ¬¬-eliminare sunt:

$$\frac{\neg \varphi}{\varphi} (\neg \neg e) \qquad \frac{\varphi}{\neg \neg \varphi} (\neg \neg i)$$

□ Regulile ¬¬-introducere și ¬¬-eliminare sunt:

$$\frac{\neg \neg \varphi}{\varphi} (\neg \neg e) \qquad \frac{\varphi}{\neg \neg \varphi} (\neg \neg i)$$

Example

Demonstrați că secventul $\neg\neg(q \land r) \vdash \neg\neg r$ este valid.

□ Regulile ¬¬-introducere și ¬¬-eliminare sunt:

$$\frac{\neg \neg \varphi}{\varphi} (\neg \neg e) \qquad \frac{\varphi}{\neg \neg \varphi} (\neg \neg i)$$

Example

Demonstrați că secventul $\neg\neg(q \land r) \vdash \neg\neg r$ este valid.

$$\begin{array}{ccc} 1 & \neg\neg(q\wedge r) & \textit{premisa} \\ 2 & q\wedge r & (\neg\neg\textit{ei}),1 \\ 3 & r & (\land\textit{e}_2),2 \end{array}$$

□ Regulile ¬¬-introducere și ¬¬-eliminare sunt:

$$\frac{\neg \neg \varphi}{\varphi} (\neg \neg e) \qquad \frac{\varphi}{\neg \neg \varphi} (\neg \neg i)$$

Example

Demonstrați că secventul $\neg\neg(q \land r) \vdash \neg\neg r$ este valid.

$$\begin{array}{ccc} 1 & \neg\neg(q\wedge r) & \textit{premisa} \\ 2 & q\wedge r & (\neg\neg\textit{ei}),1 \\ 3 & r & (\land\textit{e}_2),2 \\ 4 & \neg\neg r & (\neg\textit{i}),3 \end{array}$$

Regulile pentru implicație: →-eliminare

□ Regula de →-eliminare o stiți deja:

Regulile pentru implicație: →-eliminare

□ Regula de →-eliminare o stiți deja: este *modus ponens*:

$$\frac{\varphi \qquad \varphi \to \psi}{\psi} \ (\to e)$$

Regulile pentru implicație: →-introducere

□ Intuitiv, a demonstra $\varphi \to \psi$ revine la a demonstra ψ în ipoteza φ , i.e. presupunem temporar φ și demonstrăm ψ .

Regulile pentru implicație: →-introducere

□ Intuitiv, a demonstra $\varphi \to \psi$ revine la a demonstra ψ în ipoteza φ , i.e. presupunem temporar φ și demonstrăm ψ . Acest lucru se reprezintă astfel:

Regulile pentru implicație: →-introducere

□ Intuitiv, a demonstra $\varphi \to \psi$ revine la a demonstra ψ în ipoteza φ , i.e. presupunem temporar φ și demonstrăm ψ . Acest lucru se reprezintă astfel:

- □ Cutia (chenarul) are rostul de a marca scopul ipotezei φ : numai deducțiile din interiorul cutiei pot folosi φ .
- \Box În momentul în care am obținut ψ , închidem cutia și deducem $\varphi \to \psi$ în afara cutiei.
- □ O ipoteză nu poate fi folosită în afara scopului său.

Exemplu

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Exemplu

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

$$p \wedge q$$

Exemplu

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

$$\overline{ \frac{p \wedge q}{p} } (\wedge e_1)$$

Exemplu

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

$$\frac{p \wedge q}{p} \ (\wedge e_1)$$

Exemplu

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

$$\frac{\boxed{\frac{p \wedge q}{p} \ (\wedge e_1)}}{p \wedge q \to p} \ (\to i)$$

Exempli

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Putem scrie demonstrația într-un mod liniar în felul următor:

1
$$p \wedge q$$
 ipoteza

Exemplu

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Putem scrie demonstrația într-un mod liniar în felul următor:

$$\begin{array}{ccc} 1 & \begin{array}{ccc} p \wedge q & & ipoteza \\ 2 & & \\ \end{array} \\ p & & (\wedge e_1), 1 \end{array}$$

Exemplu

Demonstrați teorema $\vdash (p \land q) \rightarrow p$

Putem scrie demonstrația într-un mod liniar în felul următor:

$$\begin{array}{c|cccc} 1 & & p \wedge q & & ipoteza \\ 2 & & p & & (\wedge e_1), 1 \\ 3 & & p \wedge q \rightarrow p & & (\rightarrow i), 1-2 \end{array}$$

Exemplu

Demonstrați teorema $\vdash p \rightarrow p$

Exemplu

Demonstrați teorema $\vdash p \rightarrow p$

$$\begin{array}{ccc} 1 & \boxed{p & ipoteza} \\ 2 & p \rightarrow p & (\rightarrow i), 1 \end{array}$$

Exemplu

Demonstrații teorema $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

Exemplu

Demonstrații teorema $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

2

p o q	ipoteza
$q \rightarrow r$	ipoteza
p	ipoteza

Exemplu

Demonstrații teorema $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

p o q	ipoteza
q o r	ipoteza
p	ipoteza
q	(→e),1,3
	(→e),2,4

Exemplu

Demonstrații teorema dash (p o q) o ((q o r) o (p o r))

p o q	ipoteza
$q \rightarrow r$	ipoteza
p	ipoteza
	(→e),1,3
r	(→e),2,4
$p \rightarrow r$	(→i),3-5

Demonstrații teorema $\vdash (p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$

p o q	ipoteza
q o r	ipoteza
p	ipoteza
q	(→e),1,3
r	(→e),2,4
$p \rightarrow r$	(→ <i>i</i>),3−5
$(q \rightarrow r) \rightarrow (p \rightarrow r)$	(→ <i>i</i>),2−6

Exemplu

Demonstrații teorema dash (p o q) o ((q o r) o (p o r))

p o q	ipoteza
q o r	ipoteza
p	ipoteza
	(→e),1,3
	(→e),2,4
$p \rightarrow r$	(→ <i>i</i>),3−5
(q ightarrow r) ightarrow (p ightarrow r)	$(\to i), 2-6$
	$(\rightarrow i), 1-7$

□ O cutie marchează scopul unei ipoteze temporare, ce poate fi folosită pentru a demonstra formulele din interiorul cutiei.

- □ O cutie marchează scopul unei ipoteze temporare, ce poate fi folosită pentru a demonstra formulele din interiorul cutiei.
- Cutiile pot fi incluse una în alta; se pot deschide cutii noi după închiderea celor vechi.

- O cutie marchează scopul unei ipoteze temporare, ce poate fi folosită pentru a demonstra formulele din interiorul cutiei.
- Cutiile pot fi incluse una în alta; se pot deschide cutii noi după închiderea celor vechi.
- Linia care urmează după închiderea unei cutii trebuie să conțină concluzia regulii pentru care a fost utilizată cutia.

- □ O cutie marchează scopul unei ipoteze temporare, ce poate fi folosită pentru a demonstra formulele din interiorul cutiei.
- Cutiile pot fi incluse una în alta; se pot deschide cutii noi după închiderea celor vechi.
- □ Linia care urmează după închiderea unei cutii trebuie să conțină concluzia regulii pentru care a fost utilizată cutia.
- ☐ Într-un punct al unei demonstrații se pot folosi formulele care au apărut anterior, cu excepția celor din interiorul cutiilor închise.

- □ La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- □ La un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

- ☐ La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- □ La un pas al unei demonstraţii nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

Exemplu

Demonstrați teorema $\vdash p
ightarrow (q
ightarrow p)$

- □ La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- □ La un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

Exemplu

Demonstrați teorema $\vdash p
ightarrow (q
ightarrow p)$

1 p ipoteza 2 q ipoteza

- □ La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- ☐ La un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

Exemplu

Demonstrați teorema $\vdash p \rightarrow (q \rightarrow p)$

2

р	ipoteza
q	ipoteza
р	copiere 1

- ☐ La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior
- ☐ La un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

Exemplu

Demonstrați teorema $\vdash p \rightarrow (q \rightarrow p)$

2 3

р		ipoteza	
q		ipoteza	
p		copiere 1	
q ·	$\rightarrow p$	(→i),2−3	

- ☐ La un pas al unei demonstrații poate fi copiată orice formulă demonstrată anterior.
- ☐ La un pas al unei demonstrații nu pot fi copiate formule din interiorul cutiilor care sunt închise în acel moment.

Demonstrați teorema $\vdash p \rightarrow (q \rightarrow p)$

	р	ipoteza
	q	ipoteza
	p	copiere 1
	q o p	(→ <i>i</i>),2−3
Τ	$p \rightarrow (q \rightarrow p)$	$(\rightarrow i).1-4$

Г	р	ipoteza	
	q	ipoteza	
	р	copiere 1	
	q o p	(→i),2−3	
_	$p \rightarrow (q \rightarrow$	$p)$ $(\rightarrow i), 1-4$	

Regulile pentru disjuncție: V-introducere

 $\ \square$ Intuitiv, a demonstra $\varphi\lor\psi$ revine la a demonstra φ sau ψ . În consecință, regulile de \lor -introducere sunt

$$\frac{\varphi}{\varphi \vee \psi} (\vee i_1) \quad \frac{\psi}{\varphi \vee \psi} (\vee i_2)$$

Regulile pentru disjuncție: V-introducere

 \square Intuitiv, a demonstra $\varphi \lor \psi$ revine la a demonstra φ sau ψ . În consecință, regulile de \lor -introducere sunt

$$\frac{\varphi}{\varphi \vee \psi} (\vee i_1) \quad \frac{\psi}{\varphi \vee \psi} (\vee i_2)$$

Exemplu

Demonstrați că secventul $q \rightarrow r \vdash q \rightarrow (r \lor p)$ este valid.

Regulile pentru disjuncție: V-introducere

 \square Intuitiv, a demonstra $\varphi \lor \psi$ revine la a demonstra φ sau ψ . În consecință, regulile de \lor -introducere sunt

$$\frac{\varphi}{\varphi \vee \psi} (\vee i_1) \quad \frac{\psi}{\varphi \vee \psi} (\vee i_2)$$

Exemplu

Demonstrați că secventul $q \rightarrow r \vdash q \rightarrow (r \lor p)$ este valid.

1	q o r	premisa
2	q	ipoteza
3	r	$(\rightarrow e),1,2$
4	$r \lor p$	$(\vee i_1),3$
5	$q \rightarrow (r \lor p)$	$(\rightarrow i),2-4$

Regulile pentru disjuncție: V-eliminare

- \Box Cum procedăm pentru a demonstra χ știind $\varphi \lor \psi$?
 - Trebuie să analizăm două cazuri:
 - lacksquare presupunem arphi și demonstrăm χ
 - lacksquare presupunem ψ și demonstrăm χ

Astfel, dacă am demonstrat $\varphi \lor \psi$ putem să deducem χ deoarece cazurile de mai sus acoperă toate situațiile posibile.

Regulile pentru disjuncție: V-eliminare

- \square Cum procedăm pentru a demonstra χ știind $\varphi \lor \psi$?
 - Trebuie să analizăm două cazuri:
 - presupunem φ și demonstrăm χ presupunem ψ și demonstrăm χ

Astfel, dacă am demonstrat $\varphi \lor \psi$ putem să deducem χ deoarece cazurile de mai sus acoperă toate situațiile posibile.

□ Regula ∨-eliminare reflectă aceast argument:

Regulile pentru disjuncție

Exemplu

Demonstrați că secventul $q \to r \vdash (p \lor q) \to (p \lor r)$ este valid.

1	q o r	premisa
2	$p \lor q$	ipoteza
3	p	ipoteza
4	$p \lor r$	$(\vee i_1),3$
5	q	ipoteza
6	r	(→e),1,5
7	p ∨ r	(∨ <i>i</i> ₂),6
8	$p \lor r$	(∨e),2,3-4,5-7
9	$p \lor q \rightarrow p \lor r$	(→i),2−8

Regulile pentru negație

 \square Pentru orice φ , formulele $\varphi \land \neg \varphi$ și $\neg \varphi \land \varphi$ se numesc contradicții. O contradicție arbitrară va fi notată \bot .

Regulile pentru negație

- □ Pentru orice φ , formulele $\varphi \land \neg \varphi$ și $\neg \varphi \land \varphi$ se numesc contradicții. O contradicție arbitrară va fi notată \bot .
- ☐ Faptul că dintr-o contradicție se poate deduce orice este reprezentat printr-o regulă specială:

$$\frac{\perp}{\varphi}$$
 ($\perp e$)

Regulile pentru negație

- □ Pentru orice φ , formulele $\varphi \land \neg \varphi$ și $\neg \varphi \land \varphi$ se numesc contradicții. O contradicție arbitrară va fi notată \bot .
- □ Faptul că dintr-o contradicție se poate deduce orice este reprezentat printr-o regulă specială:

$$\frac{\perp}{\varphi}$$
 (\perp e)

□ Regulile de ¬-eliminare și ¬-introducere sunt:

Regulile pentru negație

Exemplu

Demonstrați că secventul $p \to \neg p \vdash \neg p$ este valid.

Regulile DN

38 / 55

Reguli derivate

☐ Următoarele reguli pot fi derivate din regulile deducției naturale:

$$\frac{\varphi \to \psi \ \neg \psi}{\neg \varphi} \ \text{MT} \qquad \frac{\vdots}{\bot} \\ \varphi \ \text{RAA} \qquad \frac{}{\varphi \vee \neg \varphi} \ \text{TNE}$$

Reguli derivate: TND

Exemplu

Regula — TND este derivată în deducția naturală.

Reguli derivate: TND

 $(\forall i_2),5 \\ (\neg e),6,1 \\ (\neg i),1-7 \\ (\neg \neg e),8$

MT și RAA sunt exerciții pentru seminar!

Corectitudinea și completitudinea DN

Teoremă

Deducția naturală este corectă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \vdash \varphi$$
 este valid atunci $\varphi_1, \ldots, \varphi_n \models \varphi$

oricare ar fi $n \geq 0$ și formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Teoremă

Deducția naturală este corectă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \vdash \varphi$$
 este valid atunci $\varphi_1, \ldots, \varphi_n \models \varphi$

oricare ar fi $n \geq 0$ și formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstrație

Din ipoteză știm că există o demonstrație pentru φ din ipotezele $\varphi_1,\ldots,\,\varphi_n$ folosind regulile deducției naturale.

Teoremă

Deducția naturală este corectă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \vdash \varphi$$
 este valid atunci $\varphi_1, \ldots, \varphi_n \models \varphi$

oricare ar fi $n \geq 0$ și formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstrație

Din ipoteză știm că există o demonstrație pentru φ din ipotezele $\varphi_1,\ldots,\,\varphi_n$ folosind regulile deducției naturale.

Fie *k* numărul de linii dintr-o demonstrație în forma liniară.

Teoremă

Deducția naturală este corectă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \vdash \varphi$$
 este valid atunci $\varphi_1, \ldots, \varphi_n \models \varphi$

oricare ar fi $n \geq 0$ și formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstrație

Din ipoteză știm că există o demonstrație pentru φ din ipotezele $\varphi_1,\ldots,\,\varphi_n$ folosind regulile deducției naturale.

Fie k numărul de linii dintr-o demonstrație în forma liniară. Prin inducție după $k \geq 1$ vom arăta că

oricare ar fi $n \ge 0$ și $\varphi_1, \dots, \varphi_n, \varphi$ formule, dacă $\varphi_1, \dots, \varphi_n \vdash \varphi$ are o demonstrație de lungime $k \ge 1$ atunci $\varphi_1, \dots, \varphi_n \models \varphi$,

(orice secvent care are o demonstrație de lungime k este corect).

Demonstrație (cont.)

Atenție! Facem inducție după lungimea demonstrației, numărul de premise este arbitrar.

Demonstrație (cont.)

Atenție! Facem inducție după lungimea demonstrației, numărul de premise este arbitrar. $\it Cazul~k=1$. În acest caz demonstrația este

1
$$\varphi$$
 premisa

ceea ce înseamnă că secventul inițial este $\varphi \vdash \varphi$.

Este evident că $\varphi \models \varphi$

Demonstrație (cont.)

Cazul de inducție. Vom presupune că:

oricare ar fi $\varphi_1, \dots, \varphi_n, \varphi$, dacă $\varphi_1, \dots, \varphi_n \vdash \varphi$ are o demonstrație de lungime < k atunci $\varphi_1, \dots, \varphi_n \models \varphi$

și vom demonstra că proprietatea este adevărată pentru secvenți cu demonstrații de lungime k.

Demonstrație (cont.)

Cazul de inducție. Vom presupune că:

oricare ar fi $\varphi_1, \dots, \varphi_n, \varphi$, dacă $\varphi_1, \dots, \varphi_n \vdash \varphi$ are o demonstrație de lungime < k atunci $\varphi_1, \dots, \varphi_n \models \varphi$

și vom demonstra că proprietatea este adevărată pentru secvenți cu demonstrații de lungime k.

Fie (R) ultima regulă care se aplică în demonstrație, adică

$$\begin{array}{cccc} 1 & & \varphi_1 & \textit{premisa} \\ & \vdots & & \\ n & & \varphi_n & \textit{premisa} \\ & \vdots & & \\ k & & \varphi & & (\textit{R}) \end{array}$$

Demonstrație (cont.)

Presupunem că ultima regulă a fost (\(\wideti\)i). Aceasta înseamnă că

$$\varphi=\psi\wedge\chi$$

Demonstrație (cont.)

Presupunem că ultima regulă a fost (\(\wideti\)i). Aceasta înseamnă că

$$\varphi = \psi \wedge \chi$$

Demonstrație (cont.)

Presupunem că ultima regulă a fost (\(\wideti\)). Aceasta înseamnă că

$$\varphi = \psi \wedge \chi$$

Demonstrație (cont.)

Presupunem că ultima regulă a fost (\(\wideti\)). Aceasta înseamnă că

$$\varphi = \psi \wedge \chi$$

Se observă că secvenții $\varphi_1, \ldots, \varphi_n \vdash \psi$ și

 $\varphi_1,\ldots,\varphi_n\vdash\chi$

au demonstrații de lungime < k.

Din ipoteza de inducție rezultă

$$\varphi_1, \dots, \varphi_n \models \psi$$
 și $\varphi_1, \dots, \varphi_n \models \chi$

Demonstrație (cont.)

Presupunem că ultima regulă a fost (\lambda i). Aceasta înseamnă că

$$\varphi=\psi\wedge\chi$$

1	$arphi_1$ premisa	Se observă că secvenții $\varphi_1, \ldots, \varphi_p \vdash \psi$ și
n	: φ_n premisa .	$\varphi_1, \ldots, \varphi_n \vdash \chi$ au demonstrații de lungime $< k$.
k_1	ψ :	Din ipoteza de inducție rezultă $\varphi_1, \dots, \varphi_n \models \psi$ și
k_2	X	$\varphi_1, \dots, \varphi_n \models \chi$ deci $\varphi_1, \dots, \varphi_n \models \psi \land \chi$
k	$\psi \wedge \chi$ ($\wedge i$) k_1, k_2	

Demonstrație (cont.)

Presupunem că ultima regulă a fost (\rightarrow i). Aceasta înseamnă că $\varphi = \psi \rightarrow \chi$

și ca în demonstrație există o cutie.

Demonstrație (cont.)

Presupunem că ultima regulă a fost $(\rightarrow i)$. Aceasta înseamnă că

$$\varphi = \psi \to \chi$$

și ca în demonstrație există o cutie.

1	$arphi_1$	premisa
n	$arphi_n$	premisa
k_1	ψ	ipoteza
k ₂	: X	
k	,	$(\rightarrow i)k_1-k_2$

Demonstrație (cont.)

Presupunem că ultima regulă a fost $(\rightarrow i)$. Aceasta înseamnă că

$$\varphi = \psi \to \chi$$

și ca în demonstrație există o cutie.

1	$arphi_1$	premisa
	:	
n	$arphi_n$	premisa
	:	
k_1	ψ	ipoteza
	:	
k_2	χ	
1.	-/	

Se observă că

$$\varphi_1,\ldots,\varphi_n,\psi\vdash\chi$$

are demonstrația de lungime < k.

Demonstrație (cont.)

Presupunem că ultima regulă a fost $(\rightarrow i)$. Aceasta înseamnă că

$$\varphi = \psi \to \chi$$

și ca în demonstrație există o cutie.

1	$arphi_1$	premisa
n	φ_n	premisa
	:	
k_1	ψ	ipoteza
k_2	: χ	
k	$\psi \to \chi$	$(\rightarrow i)k_1 - k_2$

Se observă că

$$\varphi_1,\ldots,\varphi_n,\psi\vdash\chi$$

are demonstrația de lungime < k.

Din ipoteza de inducție rezultă

$$\varphi_1,\ldots,\varphi_n,\psi\models\chi$$
 (*)

Demonstrație (cont.)

Putem acum să demonstrăm că $\varphi_1, \ldots, \varphi_n, \models \varphi$.

Demonstrație (cont.)

Putem acum să demonstrăm că $\varphi_1, \ldots, \varphi_n, \models \varphi$.

Fie $e: Var \to \{0,1\}$ o evaluare astfel încât $e^+(\varphi_1) = \cdots = e^+(\varphi_n) = 1$. Vrem să arătăm că $e^+(\varphi) = 1$.

Deoarece $\varphi = \psi \to \chi$ considerăm două cazuri.

Dacă $e^+(\psi)=0$ atunci $e^+(\varphi)=0 o e^+(\chi)=1.$

Demonstrație (cont.)

Putem acum să demonstrăm că $\varphi_1, \ldots, \varphi_n, \models \varphi$.

Fie $e: Var \to \{0,1\}$ o evaluare astfel încât $e^+(\varphi_1) = \cdots = e^+(\varphi_n) = 1$. Vrem să arătăm că $e^+(\varphi) = 1$.

Deoarece $\varphi = \psi \rightarrow \chi$ considerăm două cazuri.

Dacă
$$e^+(\psi)=0$$
 atunci $e^+(\varphi)=0 o e^+(\chi)=1$.

Dacă $e^+(\psi)=1$ atunci e^+ este un model pentru formulele $\varphi_1,\ldots,\varphi_n,\,\psi.$ Din (*) rezultă ca $e^+(\chi)=1$, deci $e^+(\varphi)=1\to 1=1.$

Demonstrație (cont.)

Putem acum să demonstrăm că $\varphi_1, \ldots, \varphi_n \models \varphi$.

Fie $e: Var \to \{0,1\}$ o evaluare astfel încât $e^+(\varphi_1) = \cdots = e^+(\varphi_n) = 1$. Vrem să arătăm că $e^+(\varphi) = 1$.

Deoarece $\varphi = \psi \to \chi$ considerăm două cazuri.

Dacă $e^+(\psi)=0$ atunci $e^+(\varphi)=0 o e^+(\chi)=1$.

Dacă $e^+(\psi)=1$ atunci e^+ este un model pentru formulele $\varphi_1,\ldots,\varphi_n,\,\psi$. Din (*) rezultă ca $e^+(\chi)=1$, deci $e^+(\varphi)=1\to 1=1$.

Am demonstrat că regula $(\rightarrow i)$ este corectă.

Demonstrație (cont.)

Putem acum să demonstrăm că $\varphi_1, \ldots, \varphi_n, \models \varphi$.

Fie $e: Var \to \{0,1\}$ o evaluare astfel încât $e^+(\varphi_1) = \cdots = e^+(\varphi_n) = 1$. Vrem să arătăm că $e^+(\varphi) = 1$.

Deoarece $\varphi = \psi \to \chi$ considerăm două cazuri.

Dacă
$$e^+(\psi)=0$$
 atunci $e^+(\varphi)=0 o e^+(\chi)=1$.

Dacă $e^+(\psi)=1$ atunci e^+ este un model pentru formulele $\varphi_1,\ldots,\varphi_n,\,\psi$. Din (*) rezultă ca $e^+(\chi)=1$, deci $e^+(\varphi)=1\to 1=1$.

Am demonstrat că regula $(\rightarrow i)$ este corectă.

Pentru a finaliza demonstrația trebuie sa arătăm că fiecare din celelalte reguli ale deducției naturale este corectă.

Notații

Pentru a demonstra ca DN este completă pentru PL facem următoarele notații:

Notații

Pentru a demonstra ca DN este completă pentru PL facem următoarele notații:

 \square Fie $e: Var \rightarrow \{0,1\}$ evaluare. Pentru orice $v \in Var$ definim

$$v^{
m e} := \left\{ egin{array}{ll} v & {\sf dacă} \; e(v) = 1 \
eg v & {\sf dacă} \; e(v) = 0 \end{array}
ight.$$

 \square $Var(\varphi) := \{v \in Var \mid v \text{ apare în } \varphi\}$ oricare φ formulă.

Completitudinea DN - rezultate ajutătoare

Propoziția 1

Fie φ este o formulă și $Var(\varphi) = \{v_1, \dots, v_n\}$. Pentru orice evaluare $e: Var \to \{0, 1\}$ sunt adevărate:

- \Box $e^+(\varphi) = 1$ implică $\{v_1^e, \dots, v_n^e\} \vdash \varphi$ este valid,
- \square $e^+(\varphi) = 0$ implică $\{v_1^e, \dots, v_n^e\} \vdash \neg \varphi$ este valid.

Completitudinea DN - rezultate ajutătoare

Propoziția 1

Fie φ este o formulă și $Var(\varphi) = \{v_1, \dots, v_n\}$. Pentru orice evaluare $e: Var \to \{0, 1\}$ sunt adevărate:

- \Box $e^+(\varphi) = 1$ implică $\{v_1^e, \dots, v_n^e\} \vdash \varphi$ este valid,
- \square $e^+(\varphi) = 0$ implică $\{v_1^e, \dots, v_n^e\} \vdash \neg \varphi$ este valid.

Propoziția 2

Oricare ar fi formulele
$$\varphi_1, \ldots, \varphi_n, \varphi$$
, dacă $\varphi_1, \ldots, \varphi_n \models \varphi$ atunci $\models \varphi_1 \to (\varphi_2 \to (\cdots \to (\varphi_n \to \varphi) \cdots))$.

Completitudinea DN - rezultate ajutătoare

Propoziția 1

Fie φ este o formulă și $Var(\varphi) = \{v_1, \dots, v_n\}$. Pentru orice evaluare $e: Var \to \{0, 1\}$ sunt adevărate:

- \Box $e^+(\varphi) = 1$ implică $\{v_1^e, \dots, v_n^e\} \vdash \varphi$ este valid,
- $\ \square \ e^+(\varphi) = 0 \ \mathrm{implica} \ \{v_1^e, \dots, v_n^e\} \vdash \neg \varphi \ \ \mathrm{este} \ \mathrm{valid}.$

Propoziția 2

Oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$, dacă $\varphi_1, \ldots, \varphi_n \models \varphi$ atunci $\models \varphi_1 \to (\varphi_2 \to (\cdots \to (\varphi_n \to \varphi) \cdots))$.

Propoziția 3

Oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$, dacă $\vdash \varphi_1 \to (\varphi_2 \to (\cdots \to (\varphi_n \to \varphi) \cdots))$ este valid, atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid.

Completitudinea DN

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Completitudinea DN

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstrație

Pasul 1. Dacă $\models \varphi$ atunci $\vdash \varphi$ este valid.

Completitudinea DN

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstrație

Pasul 1. Dacă $\models \varphi$ atunci $\vdash \varphi$ este valid.

Pasul 2. Presupunem că $\varphi_1, \ldots, \varphi_n \models \varphi$.

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstratie

Pasul 1. Dacă $\models \varphi$ atunci $\vdash \varphi$ este valid.

Pasul 2. Presupunem că $\varphi_1, \ldots, \varphi_n \models \varphi$.

Din *Propoziția 2* deducem că $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\cdots \rightarrow (\varphi_n \rightarrow \varphi) \cdots))$.

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstratie

Pasul 1. Dacă $\models \varphi$ atunci $\vdash \varphi$ este valid.

Pasul 2. Presupunem că $\varphi_1, \ldots, \varphi_n \models \varphi$.

Din *Propoziția 2* deducem că $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\cdots \rightarrow (\varphi_n \rightarrow \varphi) \cdots))$.

Aplicând *Pasul 1* obținem că $\vdash \varphi_1 \to (\varphi_2 \to (\cdots \to (\varphi_n \to \varphi) \cdots))$ este valid

Teoremă

Deducția naturală este completă, i.e.

dacă
$$\varphi_1, \ldots, \varphi_n \models \varphi$$
 atunci $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid

oricare ar fi formulele $\varphi_1, \ldots, \varphi_n, \varphi$.

Demonstratie

Pasul 1. Dacă $\models \varphi$ atunci $\vdash \varphi$ este valid.

Pasul 2. Presupunem că $\varphi_1, \ldots, \varphi_n \models \varphi$.

Din *Propoziția 2* deducem că $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\cdots \rightarrow (\varphi_n \rightarrow \varphi) \cdots))$.

Aplicând Pasul 1 obținem că $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\cdots \rightarrow (\varphi_n \rightarrow \varphi) \cdots))$ este

valid. În consecință $\varphi_1, \ldots, \varphi_n \vdash \varphi$ este valid din *Propoziția 3*.

Demonstrație (cont.)

În continuare demonstrăm Pasul 1.

Fie φ o tautologie, i.e. $\models \varphi$, astfel încât $Var(\varphi) = \{p_1, \dots, p_n\}$.

Demonstrație (cont.)

În continuare demonstrăm Pasul 1.

Fie φ o tautologie, i.e. $\models \varphi$, astfel încât $Var(\varphi) = \{p_1, \dots, p_n\}$.

Oricare ar fi $e: Var \to \{0,1\}$ știm că $e^+(\varphi) = 1$ deci, din *Propoziția 1*, rezultă că secventul $\{p_1^e, \ldots, p_n^e\} \vdash \varphi$ este valid.

Demonstrație (cont.)

În continuare demonstrăm Pasul 1.

Fie φ o tautologie, i.e. $\models \varphi$, astfel încât $Var(\varphi) = \{p_1, \dots, p_n\}$.

Oricare ar fi $e: Var \to \{0,1\}$ știm că $e^+(\varphi) = 1$ deci, din *Propoziția 1*, rezultă că secventul $\{p_1^e, \ldots, p_n^e\} \vdash \varphi$ este valid.

Deoarece există 2^n evaluări, i.e., tabelul de adevăr are 2^n linii, obținem 2^n demonstrații pentru φ , fiecare din aceste demonstrații având n premise.

Demonstrație (cont.)

În continuare demonstrăm Pasul 1.

Fie φ o tautologie, i.e. $\models \varphi$, astfel încât $Var(\varphi) = \{p_1, \dots, p_n\}$.

Oricare ar fi $e: Var \to \{0,1\}$ știm că $e^+(\varphi) = 1$ deci, din *Propoziția 1*, rezultă că secventul $\{p_1^e, \ldots, p_n^e\} \vdash \varphi$ este valid.

Deoarece există 2^n evaluări, i.e., tabelul de adevăr are 2^n linii, obținem 2^n demonstrații pentru φ , fiecare din aceste demonstrații având n premise.

Vom arăta în continuare, pe un exemplu simplu, cum se pot combina aceste 2^n demonstrații cu premise pentru a obține o demonstrație fără premise pentru φ .

Demonstrație (cont.)

Considerăm $\models \varphi$ și n = 2, i.e. $Var(\varphi) = \{p_1, p_2\}$.

De exemplu, puteți considera $arphi=p_1\wedge p_2 o p_1$

Demonstrație (cont.)

Considerăm $\models \varphi$ și n = 2, i.e. $Var(\varphi) = \{p_1, p_2\}$.

De exemplu, puteți considera $arphi=p_1\wedge p_2 o p_1$

Din *Propoziția 1* știm că următorii secvenți sunt valizi:

$$\begin{array}{ccc} p_1, p_2 & \vdash \varphi \\ p_1, \neg p_2 & \vdash \varphi \\ \neg p_1, p_2 & \vdash \varphi \\ \neg p_1, \neg p_2 & \vdash \varphi \end{array}$$

Demonstrație (cont.)

Considerăm $\models \varphi$ și n = 2, i.e. $Var(\varphi) = \{p_1, p_2\}$.

De exemplu, puteți considera $\varphi = p_1 \wedge p_2 \rightarrow p_1$

Din Propoziția 1 știm că următorii secvenți sunt valizi:

$$\begin{array}{ccc}
p_1, p_2 & \vdash \varphi \\
p_1, \neg p_2 & \vdash \varphi \\
\neg p_1, p_2 & \vdash \varphi \\
\neg p_1, \neg p_2 & \vdash \varphi
\end{array}$$

deci există demonstrațiile:

$$p_1$$
 ipoteza p_2 ipoteza \vdots φ

$$egin{array}{ll} p_1 & \textit{ipoteza} \\ \neg p_2 & \textit{ipoteza} \\ dots \\ arphi \\ arphi \end{array}$$

$$\neg p_1$$
 ipoteza p_2 ipoteza \vdots φ

$\neg p_1$	ipoteza
$\neg p_2$	ipoteza
1:	

Demonstrație (cont.)

Demonstrație (cont.)

$$\begin{array}{c|c} p_1 \lor \neg p_1 & TND \\ \hline p_1 & ipoteza \\ \hline \end{array} \quad \begin{array}{c|c} TND \\ \hline \hline \end{array}$$

Demonstrație (cont.)

Demonstrație (cont.)

Demonstrație (cont.)

Demonstrație (cont.)

Combinăm cele patru demonstrații astfel:

Am obținut o demonstrație pentru φ fără ipoteze.

Deducția naturală DN

- □ este un sistem deductiv corect și complet pentru logica clasică,
- stabilește reguli de deducție pentru fiecare operator logic,
- o demonstrație se construiește prin aplicarea succesivă a regulilor de deducție,
- □ în demonstrații putem folosi ipoteze temporare, scopul acestora fiind bine delimitat.

Pe săptămâna viitoare!