اگر W یک زیرفضا از \mathbb{R}^n با پایههای متعامد \mathbb{W}_1 , ..., \mathbb{W}_p باشد و همچنین \mathbb{W}_1 , ..., \mathbb{W}_p نیز پایههای متعامد \mathbb{W}^1 باشند، آنگاه: الف) توضیح دهید که چرا \mathbb{W}_1 , ..., \mathbb{W}_p , \mathbb{W}_p , \mathbb{W}_1 , ..., \mathbb{W}_p , \mathbb{W}_p , \mathbb{W}_1 , ..., \mathbb{W}_p

ب) توضيح دهيد كه چرا مجموعه بيان شده در بخش الف، فضاى R4 را span مىكند.

 $.dim W + dim W^{\perp} = n$ پ) نشان دهید که

پاسخ)

- **a.** By hypothesis, the vectors $\mathbf{w}_1, ..., \mathbf{w}_p$ are pairwise orthogonal, and the vectors $\mathbf{v}_1, ..., \mathbf{v}_q$ are pairwise orthogonal. Since \mathbf{w}_i is in W for any i and \mathbf{v}_j is in W^{\perp} for any j, $\mathbf{w}_i \cdot \mathbf{v}_j = 0$ for any i and j. Thus $\{\mathbf{w}_1, ..., \mathbf{w}_p, \mathbf{v}_1, ..., \mathbf{v}_q\}$ forms an orthogonal set.
- **b.** For any \mathbf{y} in \mathbb{R}^n , write $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ as in the Orthogonal Decomposition Theorem, with $\hat{\mathbf{y}}$ in W and \mathbf{z} in W^{\perp} . Then there exist scalars c_1, \dots, c_p and d_1, \dots, d_q such that $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} = c_1 \mathbf{w}_1 + \dots + c_p \mathbf{w}_p + d_1 \mathbf{v}_1 + \dots + d_q \mathbf{v}_q$. Thus the set $\{\mathbf{w}_1, \dots, \mathbf{w}_p, \mathbf{v}_1, \dots, \mathbf{v}_q\}$ spans \mathbb{R}^n .
- **c**. The set $\{\mathbf w_1, \dots, \mathbf w_p, \mathbf v_1, \dots, \mathbf v_q\}$ is linearly independent by (a) and spans $\mathbb R^n$ by (b), and is thus a basis for $\mathbb R^n$. Hence $\dim W + \dim W^\perp = p + q = \dim \mathbb R^n$.