Name: Aishwarya Autkar

Roll No: COTA06

```
In [1]: import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.preprocessing import LabelEncoder, StandardScaler
    from sklearn.model_selection import train_test_split, GridSearchCV
    from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
    import warnings
    warnings.filterwarnings('ignore')
    %matplotlib inline
```

```
In [4]: data = pd.read_csv('Hr.csv')
```

```
In [5]: data.columns
```

In [6]: data.head()

Out[6]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRo
0	E1001000	32	Male	Marketing	Single	Sales	Sales Executive
1	E1001006	47	Male	Marketing	Single	Sales	Sales Executive
2	E1001007	40	Male	Life Sciences	Married	Sales	Sales Executive
3	E1001009	41	Male	Human Resources	Divorced	Human Resources	Manager
4	E1001010	60	Male	Marketing	Single	Sales	Sales Executive

5 rows × 28 columns

In [7]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1200 entries, 0 to 1199
        Data columns (total 28 columns):
        EmpNumber
                                         1200 non-null object
        Age
                                         1200 non-null int64
                                         1200 non-null object
        Gender
        EducationBackground
                                         1200 non-null object
        MaritalStatus
                                         1200 non-null object
                                         1200 non-null object
        EmpDepartment
        EmpJobRole
                                         1200 non-null object
                                         1200 non-null object
        BusinessTravelFrequency
        DistanceFromHome
                                         1200 non-null int64
                                         1200 non-null int64
        EmpEducationLevel
                                         1200 non-null int64
        EmpEnvironmentSatisfaction
        EmpHourlyRate
                                         1200 non-null int64
        EmpJobInvolvement
                                         1200 non-null int64
                                         1200 non-null int64
        EmpJobLevel
        EmpJobSatisfaction
                                         1200 non-null int64
        NumCompaniesWorked
                                         1200 non-null int64
        OverTime
                                         1200 non-null object
        EmpLastSalaryHikePercent
                                         1200 non-null int64
        EmpRelationshipSatisfaction
                                         1200 non-null int64
        TotalWorkExperienceInYears
                                         1200 non-null int64
        TrainingTimesLastYear
                                         1200 non-null int64
        EmpWorkLifeBalance
                                         1200 non-null int64
        ExperienceYearsAtThisCompany
                                         1200 non-null int64
        ExperienceYearsInCurrentRole
                                         1200 non-null int64
        YearsSinceLastPromotion
                                         1200 non-null int64
        YearsWithCurrManager
                                         1200 non-null int64
        Attrition
                                         1200 non-null object
                                         1200 non-null int64
        PerformanceRating
        dtypes: int64(19), object(9)
        memory usage: 262.6+ KB
In [8]:
        dept = data.iloc[:,[5,27]].copy()
        dept_per = dept.copy()
In [9]: | dept_per.groupby(by='EmpDepartment')['PerformanceRating'].mean()
Out[9]: EmpDepartment
        Data Science
                                   3.050000
        Development
                                   3.085873
        Finance
                                   2.775510
        Human Resources
                                   2.925926
        Research & Development
                                   2.921283
                                   2.860590
        Sales
        Name: PerformanceRating, dtype: float64
```

```
In [10]: plt.figure(figsize=(10,4.5))
    sns.barplot(dept_per['EmpDepartment'],dept_per['PerformanceRating'])
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7f70544a2c90>

In [11]: dept_per.groupby(by='EmpDepartment')['PerformanceRating'].value_counts()

Out[11]:	EmpDepartment	PerformanceRating	
	Data Science	3	17
		4	2
		2	1
	Development	3	304
		4	44
		2	13
	Finance	3	30
		2	15
		4	4
	Human Resources	3	38
		2	10
		4	6
	Research & Development	3	234
		2	68
		4	41
	Sales	3	251
		2	87
		4	35

Name: PerformanceRating, dtype: int64

```
In [12]: department = pd.get_dummies(dept_per['EmpDepartment'])
    performance = pd.DataFrame(dept_per['PerformanceRating'])
    dept_rating = pd.concat([department,performance],axis=1)
```

```
In [13]: plt.figure(figsize=(15,10))
   plt.subplot(2,3,1)
   sns.barplot(dept_rating['PerformanceRating'],dept_rating['Sales'])
   plt.subplot(2,3,2)
   sns.barplot(dept_rating['PerformanceRating'],dept_rating['Development'])
   plt.subplot(2,3,3)
   sns.barplot(dept_rating['PerformanceRating'],dept_rating['Research & Development'])
   plt.subplot(2,3,4)
   sns.barplot(dept_rating['PerformanceRating'],dept_rating['Human Resources'])
   plt.subplot(2,3,5)
   sns.barplot(dept_rating['PerformanceRating'],dept_rating['Finance'])
   plt.subplot(2,3,6)
   sns.barplot(dept_rating['PerformanceRating'],dept_rating['Data Science'])
  plt.show()
```



```
In [15]: enc = LabelEncoder()
    for i in (2,3,4,5,6,7,16,26):
        data.iloc[:,i] = enc.fit_transform(data.iloc[:,i])
        data.head()
```

Out[15]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRo
0	E1001000	32	1	2	2	5	13
1	E1001006	47	1	2	2	5	13
2	E1001007	40	1	1	1	5	13
3	E1001009	41	1	0	0	3	8
4	E1001010	60	1	2	2	5	13

5 rows × 28 columns

In [16]: data.corr()

Out[16]:

	Age	Gender	EducationBackground	MaritalStatus	En
Age	1.000000	-0.040107	-0.055905	-0.098368	- 0.
Gender	-0.040107	1.000000	0.009922	-0.042169	-0.
EducationBackground	-0.055905	0.009922	1.000000	-0.001097	- 0.
MaritalStatus	-0.098368	-0.042169	-0.001097	1.000000	0.0
EmpDepartment	-0.000104	-0.010925	-0.026874	0.067272	1.0
EmpJobRole	-0.037665	0.011332	-0.012325	0.038023	0.5
BusinessTravelFrequency	0.040579	-0.043608	0.012382	0.028520	-0.
DistanceFromHome	0.020937	-0.001507	-0.013919	-0.019148	0.0
EmpEducationLevel	0.207313	-0.022960	-0.047978	0.026737	0.0
EmpEnvironmentSatisfaction	0.013814	0.000033	0.045028	-0.032467	-0.
EmpHourlyRate	0.062867	0.002218	-0.030234	-0.013540	0.0
EmpJobInvolvement	0.027216	0.010949	-0.025505	-0.043355	-0.
EmpJobLevel	0.509139	-0.050685	-0.056338	-0.087359	0.1
EmpJobSatisfaction	-0.002436	0.024680	-0.030977	0.044593	0.0
NumCompaniesWorked	0.284408	-0.036675	-0.032879	-0.030095	-0.
OverTime	0.051910	-0.038410	0.007046	-0.022833	-0.
EmpLastSalaryHikePercent	-0.006105	-0.005319	-0.009788	0.010128	- 0.
EmpRelationshipSatisfaction	0.049749	0.030707	0.005652	0.026410	- 0.
TotalWorkExperienceInYears	0.680886	-0.061055	-0.027929	-0.093537	0.0
TrainingTimesLastYear	-0.016053	-0.057654	0.051596	0.026045	0.0
EmpWorkLifeBalance	-0.019563	0.015793	0.022890	0.014154	0.0
ExperienceYearsAtThisCompany	0.318852	-0.030392	-0.009887	-0.075728	0.0
ExperienceYearsInCurrentRole	0.217163	-0.031823	-0.003215	-0.076663	0.0
YearsSinceLastPromotion	0.228199	-0.021575	0.014277	-0.052951	0.0
YearsWithCurrManager	0.205098	-0.036643	0.002767	-0.061908	0.0
Attrition	-0.189317	0.035758	0.027161	0.162969	0.0
PerformanceRating	-0.040164	-0.001780	0.005607	0.024172	- 0.

27 rows × 27 columns

In [17]: data.drop(['EmpNumber'],inplace=True,axis=1)

In [18]: data.head()

Out[18]:

	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRole	Business
0	32	1	2	2	5	13	2
1	47	1	2	2	5	13	2
2	40	1	1	1	5	13	1
3	41	1	0	0	3	8	2
4	60	1	2	2	5	13	2

5 rows × 27 columns

In [19]: y = data.PerformanceRating

In [20]: X = data.iloc[:,[4,5,9,16,20,21,22,23,24]]

In [21]: X.head()

Out[21]:

	EmpDepartment	EmpJobRole	EmpEnvironmentSatisfaction	EmpLastSalaryHikePercent	Em
0	5	13	4	12	2
1	5	13	4	12	3
2	5	13	4	21	3
3	3	8	2	15	2
4	5	13	1	14	3

In [22]: X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3,random_state=1

In [23]: sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test)

In [24]: X_train.shape

Out[24]: (840, 9)

In [25]: X_test.shape

Out[25]: (360, 9)

```
In [26]: # Training the model
         from sklearn.ensemble import RandomForestClassifier
         classifier_rfg=RandomForestClassifier(random_state=33,n_estimators=23)
         parameters=[{'min_samples_split':[2,3,4,5],'criterion':['gini','entropy'],'min_sampl
         es leaf':[1,2,3]}]
         model_gridrf=GridSearchCV(estimator=classifier_rfg, param_grid=parameters, scoring
         ='accuracy')
         model_gridrf.fit(X_train,y_train)
Out[26]: GridSearchCV(cv=None, error score='raise',
                estimator = Random Forest Classifier (bootstrap = True, class\_weight = None, criterio
         n='gini',
                     max_depth=None, max_features='auto', max_leaf_nodes=None,
                     min_impurity_decrease=0.0, min_impurity_split=None,
                     min_samples_leaf=1, min_samples_split=2,
                     min_weight_fraction_leaf=0.0, n_estimators=23, n_jobs=1,
                     oob_score=False, random_state=33, verbose=0, warm_start=False),
                fit params=None, iid=True, n_jobs=1,
                param_grid=[{'min_samples_split': [2, 3, 4, 5], 'criterion': ['gini', 'entro
         py'], 'min_samples_leaf': [1, 2, 3]}],
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='accuracy', verbose=0)
In [27]: model_gridrf.best_params_
Out[27]: {'criterion': 'entropy', 'min_samples_leaf': 2, 'min_samples_split': 2}
In [28]: y_predict_rf = model_gridrf.predict(X_test)
In [29]: print(accuracy_score(y_test,y_predict_rf))
         print(classification_report(y_test,y_predict_rf))
         0.93055555556
                                    recall f1-score
                      precision
                                                       support
                   2
                                      0.89
                                                0.90
                           0.92
                                                            63
                           0.94
                                      0.97
                   3
                                                0.96
                                                           264
                   4
                           0.83
                                      0.73
                                                0.77
                                                            33
         avg / total
                           0.93
                                      0.93
                                                0.93
                                                           360
In [30]: | confusion_matrix(y_test,y_predict_rf)
Out[30]: array([[ 56,
                        7,
                             0],
                  4, 255,
                            5],
                   1,
                        8,
                             24]])
```