Работу выполнил Самохин Валентин, 676 гр. под руководством Артанова А. А.

Маршрут IX № 7 5 апреля 2017 г.,

Лабораторная работа № 2.4.1:

Определение теплоты испарения жидкости

Цель работы:

- 1. измерение давления насыщенного пара жидкости при разной температуре;
- 2. вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса.

В работе используются: термостат; герметическкий сосуд, заполненный исследуемой жидкостью; отчетный микроскоп.

Теоретическая справка.

- Испарение переход вещества из жидкого в газообразное состояние.
- *Молярная теплота парообразования* количество теплоты, необходимое для изотермического испарения одного моля жидкости при внешнем давлении, равном упругости ее насыщенных паров.

Измерить теплоту испарения прямым методом сложно из-за неконтроируемых потерь тепла, которые тяжело сделать малыми. В работе используется косвенный метод, основанный на формуле Клапейрона - Клаузиуса.

Вывод формулы Клапейрона - Клаузиуса Термодинамический потенциал является функцией состояния системы и по определению

$$\Phi = U + PV + -TS \tag{1}$$

В то же время

$$dU = TdS - PdV (2)$$

Используя 1 и 2, получим

$$d\Phi = -SdT + VdP \tag{3}$$

Вывод: в термодинамической системе, состоящей из нескольких фаз, термодинамиечский потенциал остается постоянным при неизменных давлении и температуре.

Перейдем к удельным величиным. Для системы из воды и пара имеем:

$$\Phi = m_w \varphi_w + m_s \varphi_s \tag{4}$$

При фазовом переходе потенциалы Φ , φ_w , φ_s не меняются, в то время как могут меняться m_w , m_s при неизменной массе системы. Откуда

$$\begin{cases}
dm_w + dm_s = 0 \\
\varphi_w dm_w + \varphi_s dm_s = 0
\end{cases}$$
(5)

Поэтому

$$\varphi_w(P,T) = \varphi_s(P,T) \tag{6}$$

Для φ_w , φ_s по отдельности имеет место равенство 3.

$$d\varphi_w = -s_w dT + v_w dP, \quad d\varphi_s = -s_s dT + v_s dP \tag{7}$$

Из уравнений 6 и 7 получаем

$$\frac{dP}{dT} = \frac{s_w - s_s}{v_w - v_s} \tag{8}$$

При постоянной температуре

$$s_s - s_w = \frac{q}{T} \tag{9}$$

Наконец, получаем формулу Клапейрона - Клаузиуса

$$\frac{dP}{dT} = \frac{q}{T(v_s - v_w)} \tag{10}$$

Пренебрежения в опыте В ходе эксперименте мы пренебрегаем несколькими величинами.

- Объем воды на несколько порядков меньше объема пара, поэтому мы его не учитываем.
- Пользуемся моделью идеального газа, а не моделью газа Ван-дер-Ваальса, потому что пренебрежение добавками к давлению и объему сравнимо с погрешностью эксперимента.

$$\frac{dP}{dT} = \frac{L}{TV_w}$$

$$V = \frac{RT}{P}$$
(11)

Окончательная формула:

$$L = \frac{RT^2}{P} \frac{dP}{dT} = -R \frac{d(\ln P)}{d(1/T)} \tag{12}$$

В нашем опыте температура жидкости измеряется термометром, давление пара определяется при помощи манометра. Производная находится графически как угловой коэффициент кривой.

Экспериментальная установка

Рис. 1: Схема установки

Оборудование:

 $1 - (\kappa \text{ термостату})$

2 — ёмкость с водой

3 — запаянная ёмкость

4 — исследуемая жидкость

5 — ртутный манометр

6 — отсчётный микроскоп

7 — штангенциркуль

Описание установки. Заполненная водой ёмкость подключена к термостату. В неё погружена запаянная ёмкость с исследуемой жидкостью; над жидкостью находится только её насыщенный пар, давление которого определяется по манометру при помощи отсчётного микроскопа. Таким образом можно исследовать зависимость давления насыщенного пара исследуемой жидкости от температуры P(T), а затем определить L с помощью (12).

Необходимо выдерживать скорость изменения температуры не слишком большой, поскольку в противном случае не будет успевать устанавливаться равновесие между теплообменной и исследуемой жидкостью, а также между исследуемой жидкостью и её парами. В целях контроля данные измерения производятся как при нагревании, так и при охлаждении жидкости.

Выполнение работы

Работа состояла из двух частей. Сначала мы производили измерение температуры и показаний манометра при возрастании, а затем при убывании температуры (табл. 1, 2). Подсчеты было предложено произвести двумя способами: используя график P(T)(рис. 2) или используя график $\ln P(1/T)$, где $P=\rho g \Delta x$

				1 5	4 /ED 4 /TT	
$t,^{\circ}C$	x_1 , cm	x_2 , cm	$P, \Pi a$	$\ln P$	1/T, $1/K$	
23	3,1	7,2	5535 8,61		0,003378	
24	2,9	7,6	6345	8,75	003367	
25	2,72	7,69	6710	8,81	0,003356	
26	2,5	7,84	7209	8,88	0,003344	
27	2,44	7,88	7344	8,9	0,003333	
28	2,32	8,16	7884	8,97	0,003322	
29	2,09	8,23	8289	9,02	0,003311	
30	1,93	8,5	8869,5	9,09	0,0033	
31	1,73	8,73	9450	9,15	0,003289	
32	1,52	8,85	9895	9,2	0,003279	
33	1,34	9,14	10530	9,26	0,003268	
34	0,96	9,4	11394	9,34	0,003257	
35	0,82	9,63	11893	9,38	0,003247	
36	0,6	9,85	12488	9,43	0,003236	
37	0,29	10,04	13162	9,49	0,003226	
38	1,76	12,02	13851	9,54	0,003215	
33	0,52	9,39	11975	9,31	0,003268	
32	1,42	8,97	10193	9,23	0,003279	
30,5	1,62	8,6	9423	9,15	0,003295	
30	1,84	8,58	9099	9,12	0,0033	
29	1,98	8,36	8613	9,06	0,003311	
28	2,18	8,13	8032	8,99	0,003322	
27	2,43	7,96	7465	8,92	0,003333	
26	2,6	7,82	7047	8,86	0,003344	
25	2,7	7,65	6682	8,81	0,003356	
24	2,85	7,52	6304	8,75	0,003367	
23	3,02	7,35	5845	8,67	0,003378	

Таблица 1: Показания манометра и данные для графиков

Для определения погрешности в первом случае будем использовать формулу

$$\sigma_L = L \cdot \left(\left(\frac{\sigma_P}{P} \right)^2 + 3 \left(\frac{\sigma_T}{T} \right)^2 + \left(\frac{\sigma_{y'}}{a_y} \right)^2 \right)^{\frac{1}{2}}.$$

Во втором случае:

$$\sigma_L = L \cdot \frac{\sigma_{y'}}{y'}$$

$$y = 11,69x^{2} - 6557,3x + 922511$$
$$y' = 23,38x - 6557,3$$
$$\sigma_{y'} = 0,06x$$

$$y = 16,79x^2 - 9597,8x + 1375782$$

$$y' = 32,58x - 9597,8$$

$$\sigma_{y'} = 0,06x$$

Рис. 2: График зависимости давления насыщенного пара жидкости P (Πa) от времени T (K)

По уравнению касательной к графику P(T) и используя уравнение 12 получим следующие значения L.

T, °C	L, Дж/моль
23	47770 ± 140
24	44660 ± 120
25	45100 ± 120
26	44600 ± 110
27	46510 ± 120
28	45850 ± 120
29	46030 ± 110
30	45320 ± 100
31	44710 ± 100
32	44810 ± 90
33	44110 ± 90
34	42640 ± 80
35	42670 ± 80
36	42390 ± 80
37	41890 ± 80
38	41430 ± 80

 $\overline{L}=\overline{(44,4\pm0,1)}\ \kappa$ Дж/моль

Таблица 2: Результаты при увеличении температуры

Теперь посчитаем L вторым способом.

	9.6	****						× Bo	зр.	
	9.4		* **	HXE!				× Во × Уб:	ыв.	
$\ln P$	9.2			**	**************************************	Ĕ l. ₩ \				
II	9					***	承			
	8.8						120	***	A	
	8.6	.2	3.25		3.	.3	3.	35	3.	4
					1/T,	1/K		.1	0^{-3}	

Рис. 3: График зависимости давления насыщенного пара жидкости $ln\ P\ (\Pi a)$ от времени $T\ (K)$

T, °C	L, Дж/моль
33	47620 ± 100
32	48850 ± 110
30,5	48230 ± 110
30	48390 ± 120
29	47820 ± 110
28	47790 ± 120
27	4710 ± 120
26	46670 ± 120
25	45180 ± 120
24	43660 ± 120
23	42690 ± 120

Таблица 3: Результаты при уменьшении температуры

$$y=-5376, 7x+26, 835$$
 $y'=-5370$ $\sigma_{y'}=7$ $L=44, 67\pm0, 06\ \kappa$ Дже/моль

$$y=-5670x+27,847$$
 $y'=-5670$ $\sigma_{y'}=7$ $L=47,11\pm0,06$ кДже/моль

Вывод

Сравнивая табличное значение теплоты испарения спирта (48 кДж/моль) и полученные в результате работы значения, можно сказать, что они близки, но тем не менее есть неточности. Возможно, это связано с неаккуратным выполнением работы