11주 3강

근거리 통신망의 분류

전재, 배포, 전송, 대여 등을 금합니다. *사용서체: 나눔글꼴

숭실사이버대학교

- ◆ LAN의 분류
 - LAN은 네트워크를 구성하는 기하학적인 형태
 - 하나의 채널에 여러 단말기가 접근하는 방식과 채널에 데이 터를 싣는 방식에 따라 다음 표와 같이 분류

표 6-5 LAN의 분류

분류	종류
네트워크 형태(토폴리지)	성형, 버스형, 링형, 트리형
접근 방식	CSMA/CD, 토큰 링, 토큰 버스
전송 방식	베이스밴드 LAN, 브로드밴드 LAN

- ◆ LAN의 분류
 - 네트워크 형태에 따른 분류

• 네트워크를 구성하는 노드 간의 연결 상태를 기하학적으로 배치하여 분류 표6-6 네트워크 형태에 때로 LAN의 분류

종류	형태	전송매체	특징
성형		꼬임선, 광섬유 케이블	중앙의 네트워크 제어 장치를 중심으로 각 노드를 점-대-점 방식으로 연결 장점 : 설치 비용 저렴 단점 : 중앙 제어장치가 고장 나면 전체가 마비
버스형		동축 케이블	 전송매체 하나에 노드 여러 개를 연결 장점: 설치 간단, 노드 추가 용이, 특정 노드가 고장 나도 해당 노드만 제한하면 되고 다른 노드에는 영향 없음 단점: 망 전체를 제어하는 장치가 없어 잡음 감지가 어렵고 비효율적임
୍ଥାଷ୍ଟ		꼬임선, 광섬유 케이블, 동축 케이블	전송매체가 원형을 이루며, 노드가 그 원형에 순차 적으로 연결 장점 : 총 선로 길이를 짧게 구성 가능 단점 : 노드의 추가, 삭제가 복잡
트리형		동축 케이블	버스형을 확장한 형태 장단점은 버스형과 유사

- ◆ LAN의 분류
 - 접근 방식에 따른 분류
 - 다중 충돌 접근 기법(CSMA/CD)
 - 유선에서 사용하며 채널을 사용하기 전에 다른 이용자가 해당 채널을 사용하는지 점검하는 것으로 채널 상태를 확인해 패킷 충돌을 피하는 방식
 - 1976년 미국 제록스에서 이더넷을 처음 개발한 후 제록스, 인텔, DEC가 공동으로 발표한 규격
 - 1982년 IEEE802.3위원회에서 부분 수정하여 CSMA/CD로 발표

- ◆ LAN의 분류
 - 접근 방식에 따른 분류
 - 다중 충돌 접근 기법(CSMA/CD)

그림 6-24 CSMA/CD 방식

- ◆ LAN의 분류
 - 접근 방식에 따른 분류
 - 다중 충돌 접근 기법(CSMA/CD)
 - 다중 충돌 접근 기법은 버스형에서 많이 사용하며, 이 방식을 채택한 대표적인 제품으로는 제록스의 이더넷이 있음
 - 채널로 전송된 프레임을 모든 노드에서 수신할 수 있으며, 통신 제어 기능이 단순하여 적은 비용으로도 네트워크화할 수 있음
 - 노드 수가 많고 각 노드에서 전송하는 데이터 량이 많을 경우, 패킷 충돌이 많아져 데이터 손실이 발생

- ◆ LAN의 분류
 - 접근 방식에 따른 분류
 - 다중 충돌 접근 기법(CSMA/CD)

표 6-7 CSMA/CD를 MAC 프로토콜로 사용하는 LAN의 종류

구분	10Base-5 이더넷	10Base-2 CheaperNet	1Base-5 StarLAN	10Broad-36	10Base-T
전송매체	동축 케이블 (50 Ω)	동축 케이블 (50 Ω)	이중 나선 (Unshield)	동축 케이블 (75 Ω)	이중 나선 (Unshield)
신호 전송	베이스밴드	베이스밴드	베이스밴드	브로드밴드	베이스밴드
전송속도	10Mbps	10Mbps	1Mbps	10Mbps	10Mbps
세그먼트	500m	185m	500m	1,800m	100m
네트워크의 최대 거리	3,500m	925m	2,500m	3,600m	1,000m

- ◆ LAN의 분류
 - 접근 방식에 따른 분류
 - 토큰 링
 - 1969년 뉴홀 링에서 링 제어 기법을 적용하여 각 네트워크에 사용 하던 방식 (뉴홀 링 이라고도 함)
 - IBM에서 1982년 3월 토큰 링 규격을 정리하여 IEEE∞2위원회에 제출하였고, IEEE∞25위원회에서 표준으로 채택
 - 논리적으로는 링 형태이지만, 물리적으로는 모든 노드를 мы 장치에 연결하여 하나의 네트워크를 구성하는 구조
 - 토큰 링 : 토큰 패싱
 - 채널을 통제해 충돌이 발생하지 않도록 고유 채널을 사용하는 권한을 균등하게 부여하여 토큰을 확보했을 경우에 데이터를 전송할 수있게 하는 방식
 - 토큰 패싱 방식에서는 전송 데이터가 없는데도 토큰이 전송로를 회 전하여 낭비되는 요소가 발생

- ◆ LAN의 분류
 - 접근 방식에 따른 분류
 - 토큰 링

그림 6-25 토큰 링의 구조

(b) 물리적 구조

- ◆ LAN의 분류
 - 접근 방식에 따른 분류
 - 토큰 링
 - 성형에서 많이 사용하며, 전송매체로는 동축 케이블, 광섬유 케이블 등이 있으며 전송속도는 4~16Mbps
 - 전송 권한마다 정해진 대기 시간이 있어 과부하가 걸려도 CSMA/CD보다 성능이 크게 떨어지지 않음
 - 토큰 링 운용 방식이 복잡하고, 전송 데이터가 없는데도 토큰이 전 송로에서 회전하여 낭비요소가 있음
 - 대표 제품으로는 3270 터미널, 8775 디스플레이 터미널, 3275 FEP 프라임 컴퓨터, 아폴로, IBM 제품 등이 있음

- ◆ LAN의 분류
 - 접근 방식에 따른 분류
 - 토큰 링

- 노드 A가 프레임을 송신하려고 자유 토큰을 기다린다.
- 보통 토큰에는 01111111처럼 8비트 정보가 있다.

- 노드 A는 자유 토큰을 사용 토큰으로 바꾼 후 그 토큰 패턴 에 정보 프레임을 포함시켜 노드 C로 전송한다.
- 노드 B는 노드 A가 전송한 데이터 프레임의 수신 주소로
 자신에게 전송된 것이 아님을 확인하고, 노드 C에 전달한다.

 노드 C는 노드 A가 전송한 데이터 프레임의 수신 주소로 자신에게 전송된 것임을 확인하고, 노드 C 내부에 내용을 복사하고 수신 비트를 설정하여 노드 D에 전달한다

그림 6-26 토큰 링의 작동 원리

- 노드 D는 도착한 데이터 프레임을 노드 A에 전달한다.
- 노드 A는 도착한 데이터 프레임의 수신 비트로 노드 C가 데이터를 정확히 수신했는지 확인하여 제어 토큰을 노드 B에 전송한다.

- ◆ LAN의 분류
 - 접근 방식에 따른 분류
 - 토큰 버스
 - 토큰 링 방식과 CSMA/CD 방식을 결합한 형태
 - LAN 액세스 제어 방법에서 통신회선에 대한 제어 신호가 논리적으로 형성된 공통선상에서 번호를 할당함에 따라 각 노드 간을 옮겨가면서 데이터를 전송하는 방식
 - 낮은 가격으로도 구성할 수 있고 설치가 쉬운 편이며, 토큰 회전 시간을 예측할 수 있어 실시간으로 처리할 수 있음
 - 노드를 추가하거나 삭제하고 오류를 처리하는 과정이 복잡
 - 통신량이 적을 때는 토큰을 전달하는 오버헤드가 상대적으로 커져 평균 대기 시간이 길어짐
 - 토큰 버스를 이용하는 대표적인 제품으로는 데이터포인트의 ARCNet이 있음

- ◆ LAN의 분류
 - 접근 방식에 따른 분류
 - 토큰 버스

그림 6-27 토큰 버스의 작동 원리

- ◆ LAN의 분류
 - 전송 방식에 따른 분류
 - 베이스밴드 방식
 - 0과 1로 출력되는 직류 신호를 변조하지 않고 디지털 형태 그대로 전송하는 방식
 - 전송매체에 채널을 하나만 형성하여 전송
 - 장거리 전송에는 적합하지 않고, 컴퓨터와 단말기 사이의 통신과 근거리 통신 등에 사용
 - CSMA/CD와 토큰 링에서 채택

그림 6-28 베이스밴드 방식의 LAN

- ◆ LAN의 분류
 - 전송 방식에 따른 분류
 - 브로드밴드 방식
 - 디지털 정보를 아날로그 신호로 변환하여 전송하는 방식
 - 전송매체에 채널을 여러 개 형성하여 전송
 - 모뎀의 기능인 디지털 변조를 사용해 송신 측에서는 직류 신호를 교류 신호로 변환하여 전송하고, 수신 측에서는 교류 신호를 직류 신호로 변환하여 데이터를 전송
 - 토큰 버스에서 채택

그림 6-29 브로드밴드 방식의 LAN

◆ LAN의 분류

■ 전송 방식에 따른 분류- 베이스밴드와 브로드밴드 비교

표 6-8 베이스밴드와 브로드밴드 방식 비교

분류 베이스밴드 방식		브로드밴드 방식	
채널 수	1개(단일 채널/단일 케이블)	20~30개(다수 채널/단일 케이블)	
신호 전송	디지털 신호 전송	아날로그 신호 전송	
전송매체	트랜시버(저가)	모뎀(고가)	
접근 방식	CSMA/CD, 토큰 링	토큰 버스	
전송 거리	근거리(수 km 이내)	좀 더 원거리(수십 km 이내)	
전송 케이블	꼬임선 동축 케이블	동축 케이블, 광섬유 케이블	
규모	중소 규모	대규모	
데이터 전송	텍스트 위주로 전송	멀티미디어 전송	
설치와 보수	쉬움	어려움	
망 형태	버스형	버스형이나 트리형	
전송 방향	양방향 전송	단방향 전송	
다중화 기능성	주파수 분할 다중화(FDM) 불기능	주피수 분할 다중화(FDM) 가능	
용도	빌딩	대도시 통신망	
응용	소규모 데이터 전송	대규모 멀티미디어 데이터 전송	
장점	단순 기술, 저비용	원거리 전송 가능	
단점	제한된 서비스, 전송 거리 제약	복잡한 기술, 고비용	
전송속도	500Mbps 이하	수백 Mbps 이상	

수고하셨습니다.

