MIT OpenCourseWare http://ocw.mit.edu

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Functions of several variables.

Recall: for a function of 1 variable, we can plot its graph, and the derivative is the slope of the tangent line to the graph.

Plotting graphs of functions of 2 variables: examples z = -y, $z = 1 - x^2 - y^2$, using slices by the coordinate planes. (derived carefully).

Contour plot: level curves f(x,y) = c. Amounts to slicing the graph by horizontal planes z = c.

Showed 2 examples from "real life": a topographical map, and a temperature map, then did the examples z = -y and $z = 1 - x^2 - y^2$. Showed more examples of computer plots $(z = x^2 + y^2, z = y^2 - x^2)$, and another one).

Contour plot gives some qualitative info about how f varies when we change x, y. (shown an example where increasing x leads f to increase).

Partial derivatives.

$$f_x = \frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$
; same for f_y .

Geometric interpretation: f_x, f_y are slopes of tangent lines of vertical slices of the graph of f (fixing $y = y_0$; fixing $x = x_0$).

How to compute: treat x as variable, y as constant.

Example: $f(x,y) = x^3y + y^2$, then $f_x = 3x^2y$, $f_y = x^3 + 2y$.

18.02 Lecture 9. - Thu, Sept 27, 2007

Handouts: PS3 solutions, PS4.

Linear approximation

Interpretation of f_x , f_y as slopes of slices of the graph by planes parallel to xz and yz planes.

Linear approximation formula: $\Delta f \approx f_x \Delta x + f_y \Delta y$.

Justification: f_x and f_y give slopes of two lines tangent to the graph:

$$y = y_0$$
, $z = z_0 + f_x(x_0, y_0)(x - x_0)$ and $x = x_0$, $z = z_0 + f_y(x_0, y_0)(y - y_0)$.

We can use this to get the equation of the tangent plane to the graph:

$$z = z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

Approximation formula = the graph is close to its tangent plane.

Min/max problems.

At a local max or min, $f_x = 0$ and $f_y = 0$ (since (x_0, y_0) is a local max or min of the slice). Because 2 lines determine tangent plane, this is enough to ensure that tangent plane is horizontal (approximation formula: $\Delta f \simeq 0$, or rather, $|\Delta f| \ll |\Delta x|, |\Delta y|$).

Def of critical point: (x_0, y_0) where $f_x = 0$ and $f_y = 0$.

A critical point may be a local min, local max, or saddle.

Example: $f(x,y) = x^2 - 2xy + 3y^2 + 2x - 2y$.

Critical point: $f_x = 2x - 2y + 2 = 0$, $f_y = -2x + 6y - 2 = 0$, gives $(x_0, y_0) = (-1, 0)$ (only one critical point).

1

Is it a max, min or saddle? (pictures shown of each type). Systematic answer: next lecture.

For today: observe $f = (x - y)^2 + 2y^2 + 2x - 2y = (x - y + 1)^2 + 2y^2 - 1 \ge -1$, so minimum.

Least squares.

Set up problem: experimental data (x_i, y_i) (i = 1, ..., n), want to find a best-fit line y = ax + b (the unknowns here are a, b, not x, y!)

Deviations: $y_i - (ax_i + b)$; want to minimize the total square deviation $D = \sum_i (y_i - (ax_i + b))^2$.

 $\frac{\partial D}{\partial a} = 0$ and $\frac{\partial D}{\partial b} = 0$ leads to a 2 × 2 linear system for a and b (done in detail as in Notes LS):

$$\left(\sum x_i^2\right)a + \left(\sum x_i\right)b = \sum x_i y_i$$
$$\left(\sum x_i\right)a + nb = \sum y_i$$

Least-squares setup also works in other cases: e.g. exponential laws

 $y = ce^{ax}$ (taking logarithms: $\ln y = \ln c + ax$, so setting $b = \ln c$ we reduce to linear case); or quadratic laws $y = ax^2 + bx + c$ (minimizing total square deviation leads to a 3×3 linear system for a, b, c).

Example: Moore's Law (number of transistors on a computer chip increases exponentially with time): showed interpolation line on a log plot.

18.02 Lecture 10. - Fri, Sept 28, 2007

Second derivative test.

Recall critical points can be local min $(w = x^2 + y^2)$, local max $(w = -x^2 - y^2)$, saddle $(w = y^2 - x^2)$; slides shown of each type.

Goal: determine type of a critical point, and find the global min/max.

Note: global min/max may be either at a critical point, or on the boundary of the domain/at infinity.

We start with the case of $w = ax^2 + bxy + cy^2$, at (0,0).

Example from Tuesday: $w = x^2 - 2xy + 3y^2$: completing the square, $w = (x - y)^2 + 2y^2$, minimum.

If
$$a \neq 0$$
, then $w = a(x^2 + \frac{b}{a}xy) + cy^2 = a(x + \frac{b}{2a}y)^2 + (c - \frac{b^2}{4a})y^2 = \frac{1}{4a}(4a^2(x + \frac{b}{2a}y)^2 + (4ac - b^2)y^2)$.

3 cases: if $4ac - b^2 > 0$, same signs, if a > 0 then minimum, if a < 0 then maximum; if $4ac - b^2 < 0$, opposite signs, saddle; if $4ac - b^2 = 0$, degenerate case.

This is related to the quadratic formula: $w = y^2 \left(a(\frac{x}{y})^2 + b(\frac{x}{y}) + c\right)$.

If $b^2-4ac < 0$ then no roots, so at^2+bt+c has a constant sign, and w is either always nonnegative or always nonpositive (min or max). If $b^2-4ac > 0$ then at^2+bt+c crosses zero and changes sign, so w can have both signs, saddle.

General case: second derivative test.

We look at second derivatives: $f_{xx} = \frac{\partial^2 f}{\partial x^2}$, f_{xy} , f_{yx} , f_{yy} . Fact: $f_{xy} = f_{yx}$.

Given f and a critical point (x_0, y_0) , set $A = f_{xx}(x_0, y_0)$, $B = f_{xy}(x_0, y_0)$, $C = f_{yy}(x_0, y_0)$, then:

- if $AC B^2 > 0$ then: if A > 0 (or C), local min; if A < 0, local max.
- if $AC B^2 < 0$ then saddle.

- if $AC - B^2 = 0$ then can't conclude.

Checked quadratic case $(f_{xx} = 2a = A, f_{xy} = b = B, f_{yy} = 2c = C, \text{ then } AC - B^2 = 4ac - b^2).$

General justification: quadratic approximation formula (Taylor series at order 2):

$$\Delta f \simeq f_x(x-x_0) + f_y(y-y_0) + \frac{1}{2}f_{xx}(x-x_0)^2 + f_{xy}(x-x_0)(y-y_0) + \frac{1}{2}f_{yy}(y-y_0)^2.$$

At a critical point, $\Delta f \simeq \frac{A}{2}(x-x_0)^2 + B(x-x_0)(y-y_0) + \frac{C}{2}(y-y_0)^2$. In degenerate case, would need higher order derivatives to conclude.

NOTE: the global min/max of a function is not necessarily at a critical point! Need to check boundary / infinity.

Example: $f(x,y) = x + y + \frac{1}{xy}$, for x > 0, y > 0.

$$f_x = 1 - \frac{1}{x^2 y} = 0$$
, $f_y = 1 - \frac{1}{xy^2} = 0$. So $x^2 y = 1$, $xy^2 = 1$, only critical point is $(1, 1)$.

$$f_{xx} = 2/x^3y$$
, $f_{xy} = 1/x^2y^2$, $f_{yy} = 2/xy^3$. So $A = 2$, $B = 1$, $C = 2$.

Question: type of critical point? Answer: $AC - B^2 = 2 \cdot 2 - 1 > 0$, A = 2 > 0, local min.

What about the maximum? Answer: $f \to \infty$ near boundary $(x \to 0 \text{ or } y \to 0)$ and at infinity.

18.02 Lecture 11. - Tue, Oct 2, 2007

Differentials.

Recall in single variable calculus: $y = f(x) \Rightarrow dy = f'(x) dx$. Example: $y = \sin^{-1}(x) \Rightarrow x = \sin y$, $dx = \cos y \, dy$, so $dy/dx = 1/\cos y = 1/\sqrt{1-x^2}$.

Total differential: $f = f(x, y, z) \Rightarrow df = f_x dx + f_y dy + f_z dz$.

This is a new type of object, with its own rules for manipulating it (df) is not the same as Δf ! The textbook has it wrong.) It encodes how variations of f are related to variations of f, f. We can use it in two ways:

- 1. as a placeholder for approximation formulas: $\Delta f \approx f_x \Delta x + f_y \Delta y + f_z \Delta z$.
- 2. divide by dt to get the **chain rule**: if x = x(t), y = y(t), z = z(t), then f becomes a function of t and $\frac{df}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} + f_z \frac{dz}{dt}$

Example: $w = x^2y + z$, $dw = 2xy dx + x^2 dy + dz$. If x = t, $y = e^t$, $z = \sin t$ then the chain rule gives $dw/dt = (2te^t) 1 + (t^2) e^t + \cos t$, same as what we obtain by substitution into formula for w and one-variable differentiation.

Can justify the chain rule in 2 ways:

- 1. dx = x'(t) dt, dy = y'(t) dt, dz = z'(t) dt, so substituting we get $dw = f_x dx + f_y dy + f_z dz = f_x x'(t) dt + f_y y'(t) dt + f_z z'(t) dt$, hence dw/dt.
- 2. (more rigorous): $\Delta w \simeq f_x \Delta x + f_y \Delta y + f_z \Delta z$, divide both sides by Δt and take limit as $\Delta t \to 0$.

Applications of chain rule:

Product and quotient formulas for derivatives: f = uv, u = u(t), v = v(t), then $d(uv)/dt = f_u u' + f_v v' = vu' + uv'$. Similarly with g = u/v, $d(u/v)/dt = g_u u' + g_v v' = (1/v) u' + (-u/v^2) v' = (u'v - uv')/v^2$.

Chain rule with more variables: for example w = f(x,y), x = x(u,v), y = y(u,v). Then $dw = f_x dx + f_y dy = f_x(x_u du + x_v dv) + f_y(y_u du + y_v dv) = (f_x x_u + f_y y_u) du + (f_x x_v + f_y y_v) dv$. Identifying coefficients of du and dv we get $\partial f/\partial u = f_x x_u + f_y y_u$ and similarly for $\partial f/\partial v$. It's not legal to "simplify by ∂x ".

Example: polar coordinates: $x = r \cos \theta$, $y = r \sin \theta$. Then $f_r = f_x x_r + f_y y_r = \cos \theta f_x + \sin \theta f_y$, and similarly f_θ .

18.02 Lecture 12. - Thu, Oct 4, 2007

Handouts: PS4 solutions, PS5.

Gradient.

Recall chain rule: $\frac{dw}{dt} = w_x \frac{dx}{dt} + w_y \frac{dy}{dt} + w_z \frac{dz}{dt}$. In vector notation: $\frac{dw}{dt} = \nabla w \cdot \frac{d\vec{r}}{dt}$.

Definition: $\nabla w = \langle w_x, w_y, w_z \rangle$ - GRADIENT VECTOR.

Theorem: ∇w is perpendicular to the level surfaces w = c.

Example 1: w = ax + by + cz, then w = d is a plane with normal vector $\nabla w = \langle a, b, c \rangle$.

Example 2: $w = x^2 + y^2$, then w = c are circles, $\nabla w = \langle 2x, 2y \rangle$ points radially out so \perp circles.

Example 3: $w = x^2 - y^2$, shown on applet (Lagrange multipliers applet with g disabled).

 ∇w is a vector whose value depends on the point (x,y) where we evaluate w.

Proof: take a curve $\vec{r} = \vec{r}(t)$ contained inside level surface w = c. Then velocity $\vec{v} = d\vec{r}/dt$ is in the tangent plane, and by chain rule, $dw/dt = \nabla w \cdot d\vec{r}/dt = 0$, so $\vec{v} \perp \nabla w$. This is true for every \vec{v} in the tangent plane.

Application: tangent plane to a surface. Example: tangent plane to $x^2 + y^2 - z^2 = 4$ at (2, 1, 1): gradient is $\langle 2x, 2y, -2z \rangle = \langle 4, 2, -2 \rangle$; tangent plane is 4x + 2y - 2z = 8. (Here we could also solve for $z = \sqrt{x^2 + y^2 - 4}$ and use linear approximation formula, but in general we can't.)

(Another way to get the tangent plane: dw = 2x dx + 2y dy - 2z dz = 4dx + 2dy - 2dz. So $\Delta w \approx 4\Delta x + 2\Delta y - 2\Delta z$. The level surface is $\Delta w = 0$, its tangent plane approximation is $4\Delta x + 2\Delta y - 2\Delta z = 0$, i.e. 4(x-2) + 2(y-1) - 2(z-1) = 0, same as above).

Directional derivative. Rate of change of w as we move (x, y) in an arbitrary direction.

Take a unit vector $\hat{u} = \langle a, b \rangle$, and look at straight line trajectory $\vec{r}(s)$ with velocity \hat{u} , given by $x(s) = x_0 + as$, $y(s) = y_0 + bs$. (unit speed, so s is arclength!)

Notation:
$$\frac{dw}{ds}_{|\hat{u}}$$
.

Geometrically: slice of graph by a vertical plane (not parallel to x or y axes anymore). Directional derivative is the slope. Shown on applet (Functions of two variables), with $w = x^2 + y^2 + 1$, and rotating slices through a point of the graph.

Know how to calculate
$$dw/ds$$
 by chain rule: $\frac{dw}{ds}_{|\hat{u}} = \nabla w \cdot \frac{d\vec{r}}{ds} = \nabla w \cdot \hat{u}$.

Geometric interpretation: $dw/ds = \nabla w \cdot \hat{u} = |\nabla w| \cos \theta$. Maximal for $\cos \theta = 1$, when \hat{u} is in direction of ∇w . Hence: direction of ∇w is that of fastest increase of w, and $|\nabla w|$ is the directional derivative in that direction. We have dw/ds = 0 when $\hat{u} \perp \nabla w$, i.e. when \hat{u} is tangent to direction of level surface.

18.02 Lecture 13. - Fri, Oct 5, 2007 (estimated - written before lecture)

Practice exams 2A and 2B are on course web page.

Lagrange multipliers.

Problem: min/max when variables are constrained by an equation g(x, y, z) = c.

Example: find point of xy = 3 closest to origin? I.e. minimize $\sqrt{x^2 + y^2}$, or better $f(x,y) = x^2 + y^2$, subject to g(x,y) = xy = 3. Illustrated using Lagrange multipliers applet.

Observe on picture: at the minimum, the level curves are tangent to each other, so the normal vectors ∇f and ∇g are parallel.

So: there exists λ ("multiplier") such that $\nabla f = \lambda \nabla g$. We replace the constrained min/max problem in 2 variables with equations involving 3 variables x, y, λ :

$$\begin{cases} f_x = \lambda g_x \\ f_y = \lambda g_y \\ g = c \end{cases}$$
 i.e. here
$$\begin{cases} 2x = \lambda y \\ 2y = \lambda x \\ xy = 3. \end{cases}$$

In general solving may be hard and require a computer. Here, linear algebra: $\begin{cases} 2x - \lambda y = 0 \\ -\lambda x + 2y = 0 \end{cases}$ requires either x = y = 0 (impossible, since xy = 3), or $\det = 4 - \lambda^2 = 0$. So $\lambda = \pm 2$. No solutions for $\lambda = -2$, while $\lambda = 2$ gives $(\sqrt{3}, \sqrt{3})$ and $(-\sqrt{3}, -\sqrt{3})$. (Checked on applet that $\nabla f = 2\nabla g$ at minimum).

Why the method works: at constrained min/max, moving in any direction along the constraint surface g=c should give df/ds=0. So, for any \hat{u} tangent to $\{g=c\}$, $\frac{df}{ds}|_{\hat{u}}=\nabla f\cdot\hat{u}=0$, i.e. $\hat{u}\perp\nabla f$. Therefore ∇f is normal to tangent plane to g=c, and so is ∇g , hence the gradient vectors are parallel.

Warning: method doesn't say whether we have a min or a max, and second derivative test doesn't apply with constrained variables. Need to answer using geometric argument or by comparing values of f.

Advanced example: surface-minimizing pyramid.

Triangular-based pyramid with given triangle as base and given volume V, using as little surface area as possible.

Note: $V = \frac{1}{3}A_{base}h$, so height h is fixed, top vertex moves in a plane z = h.

We can set up problem in coordinates: base vertices $P_1 = (x_1, y_1, 0)$, P_2 , P_3 , and top vertex P = (x, y, h). Then areas of faces $= \frac{1}{2} |\vec{PP_1} \times \vec{PP_2}|$, etc. Calculations to find critical point of function of (x, y) are very hard.

Key idea: use variables adapted to the geometry, instead of (x,y): let $a_1, a_2, a_3 =$ lengths of sides of the base triangle; $u_1, u_2, u_3 =$ distances in the xy-plane from the projection of P to the sides of the base triangle. Then each face is a triangle with base length a_i and height $\sqrt{u_i^2 + h^2}$ (using Pythagorean theorem).

So we must minimize $f(u_1, u_2, u_3) = \frac{1}{2}a_1\sqrt{u_1^2 + h^2} + \frac{1}{2}a_2\sqrt{u_2^2 + h^2} + \frac{1}{2}a_3\sqrt{u_3^2 + h^2}$.

Constraint? (asked using flashcards; this was a bad choice, very few students responded at all.) Decomposing base into 3 smaller triangles with heights u_i , we must have $g(u_1, u_2, u_3) = \frac{1}{2}a_1u_1 + \frac{1}{2}a_2u_2 + \frac{1}{2}a_3u_3 = A_{base}$.

Lagrange multiplier method: $\nabla f = \lambda \nabla g$ gives

$$\frac{a_1}{2} \frac{u_1}{\sqrt{u_1^2 + h^2}} = \lambda \, \frac{a_1}{2}, \quad \text{similarly for } u_2 \text{ and } u_3.$$

We conclude $\lambda = \frac{u_1}{\sqrt{u_1^2 + h^2}} = \frac{u_2}{\sqrt{u_2^2 + h^2}} = \frac{u_3}{\sqrt{u_3^2 + h^2}}$, hence $u_1 = u_2 = u_3$, so P lies above the incenter.

18.02 Lecture 14. - Thu, Oct 11, 2007

Handouts: PS5 solutions, PS6, practice exams 2A and 2B.

Non-independent variables.

Often we have to deal with non-independent variables, e.g. f(P, V, T) where PV = nRT.

Question: if g(x, y, z) = c then can think of z = z(x, y). What are $\partial z/\partial x$, $\partial z/\partial y$?

Example: $x^2 + yz + z^3 = 8$ at (2,3,1). Take differential: $2x dx + z dy + (y+3z^2) dz = 0$, i.e. 4 dx + dy + 6 dz = 0 (constraint g = c), or $dz = -\frac{4}{6} dx - \frac{1}{6} dy$. So $\partial z/\partial x = -4/6 = -2/3$ and $\partial z/\partial y = -1/6$ (taking the coefficients of dx and dy). Or equivalently: if y is held constant then we substitute dy = 0 to get dz = -4/6 dx, so $\partial z/\partial x = -4/6 = -2/3$.

In general: $g(x, y, z) = c \Rightarrow g_x dx + g_y dy + g_z dz = 0$. If y held fixed, get $g_x dx + g_z dz = 0$, i.e. $dz = -g_x/g_z dx$, and $\partial z/\partial x = -g_x/g_z$.

Warning: notation can be dangerous! For example:

f(x,y) = x + y, $\partial f/\partial x = 1$. Change of variables x = u, y = u + v then f = 2u + v, $\partial f/\partial u = 2$. x = u but $\partial f/\partial x \neq \partial f/\partial u$!!

This is because $\partial f/\partial x$ means change x keeping y fixed, while $\partial f/\partial u$ means change u keeping v fixed, i.e. change x keeping y-x fixed.

When there's ambiguity, we must precise what is held fixed: $\left(\frac{\partial f}{\partial x}\right)_y = \text{deriv.} / x \text{ with } y \text{ held}$

fixed, $\left(\frac{\partial f}{\partial u}\right)_v = \text{deriv.} / u \text{ with } v \text{ held fixed.}$

We now have $\left(\frac{\partial f}{\partial u}\right)_v = \left(\frac{\partial f}{\partial x}\right)_v \neq \left(\frac{\partial f}{\partial x}\right)_u$.

In above example, we computed $(\partial z/\partial x)_y$. When there is no risk of confusion we keep the old notation, by default $\partial/\partial x$ means we keep y fixed.

Example: area of a triangle with 2 sides a and b making an angle θ is $A = \frac{1}{2}ab\sin\theta$. Suppose it's a right triangle with b the hypothenuse, then constraint $a = b\cos\theta$.

3 ways in which rate of change of A w.r.t. θ makes sense:

- 1) view $A = A(a, b, \theta)$ independent variables, usual $\frac{\partial A}{\partial \theta} = A_{\theta}$ (with a and b held fixed). This answers the question: a and b fixed, θ changes, triangle stops being a right triangle, what happens to A?
- 2) constraint $a = b \cos \theta$, keep a fixed, change θ , while b does what it must to satisfy the constraint: $\left(\frac{\partial A}{\partial \theta}\right)_a$.
- 3) constraint $a = b \cos \theta$, keep b fixed, change θ , while a does what it must to satisfy the constraint: $\left(\frac{\partial A}{\partial \theta}\right)_b$.

How to compute e.g. $(\partial A/\partial \theta)_a$? [treat A as function of a and θ , while $b = b(a, \theta)$.]

- 0) Substitution: $a = b \cos \theta$ so $b = a \sec \theta$, $A = \frac{1}{2}ab \sin \theta = \frac{1}{2}a^2 \tan \theta$, $(\frac{\partial A}{\partial \theta})_a = \frac{1}{2}a^2 \sec^2 \theta$. (Easiest here, but it's not always possible to solve for b)
- 1) Total differentials: da = 0 (a fixed), $dA = A_{\theta}d\theta + A_{a}da + A_{b}db = \frac{1}{2}ab\cos\theta d\theta + \frac{1}{2}b\sin\theta da + \frac{1}{2}a\sin\theta db$, and constraint $\Rightarrow da = \cos\theta db b\sin\theta d\theta$. Plugging in da = 0, we get $db = b\tan\theta d\theta$

and then

$$dA = \left(\frac{1}{2}ab\cos\theta + \frac{1}{2}a\sin\theta b\tan\theta\right)d\theta, \quad \left(\frac{\partial A}{\partial \theta}\right)_a = \frac{1}{2}ab\cos\theta + \frac{1}{2}a\sin\theta b\tan\theta = \frac{1}{2}ab\sec\theta.$$

2) Chain rule: $(\partial A/\partial \theta)_a = A_{\theta}(\partial \theta/\partial \theta)_a + A_a(\partial a/\partial \theta)_a + A_b(\partial b/\partial \theta)_b = A_{\theta} + A_b(\partial b/\partial \theta)_a$. We find $(\partial b/\partial \theta)_a$ by using the constraint equation. [Ran out of time here]. Implicit differentiation of constraint $a = b \cos \theta$: we have $0 = (\partial a/\partial \theta)_a = (\partial b/\partial \theta)_a \cos \theta - b \sin \theta$, so $(\partial b/\partial \theta)_a = b \tan \theta$, and hence

 $\left(\frac{\partial A}{\partial \theta}\right)_a = \frac{1}{2}ab\cos\theta + \frac{1}{2}a\sin\theta \, b\tan\theta = \frac{1}{2}ab\sec\theta.$

The two systematic methods essentially involve calculating the same quantities, even though things are written differently.

18.02 Lecture 15. - Fri, Oct 12, 2007

Review topics.

- Functions of several variables, contour plots.
- Partial derivatives, gradient; approximation formulas, tangent planes, directional derivatives.

Note: partial differential equations (= equations involving partial derivatives of an unknown function) are very important in physics. E.g., heat equation: $\partial f/\partial t = k(\partial^2 f/\partial x^2 + \partial^2 f/\partial y^2 + \partial^2 f/\partial z^2)$ describes evolution of temperature over time.

- Min/max problems: critical points, 2nd derivative test, checking boundary. (least squares won't be on the exam)
 - Differentials, chain rule, change of variables.
 - Non-independent variables: Lagrange multipliers, and constrained partial derivatives.

Re-explanation of how to compute constrained partials: say f = f(x, y, z) where g(x, y, z) = c. To find $(\partial f/\partial z)_y$:

- 1) using differentials: $df = f_x dx + f_y dy + f_z dz$. We set dy = 0 since y held constant, and want to eliminate dx. For this we use the constraint: $dg = g_x dx + g_y dy + g_z dz = 0$, so setting dy = 0 we get $dx = -g_z/g_x dz$. Plug into df: $df = -f_x g_z/g_x dz + g_z dz$, so $(\partial f/\partial z)_y = -f_x g_z/g_x + g_z$.
 - 2) using chain rule: $\left(\frac{\partial f}{\partial z}\right)_y = \frac{\partial f}{\partial x} \left(\frac{\partial x}{\partial z}\right)_y + \frac{\partial f}{\partial y} \left(\frac{\partial y}{\partial z}\right)_y + \frac{\partial f}{\partial z} \left(\frac{\partial z}{\partial z}\right)_y = f_x \left(\frac{\partial x}{\partial z}\right)_y + f_z$, while $0 = \left(\frac{\partial g}{\partial z}\right)_y = \frac{\partial g}{\partial x} \left(\frac{\partial x}{\partial z}\right)_y + \frac{\partial g}{\partial y} \left(\frac{\partial y}{\partial z}\right)_y + \frac{\partial g}{\partial z} \left(\frac{\partial z}{\partial z}\right)_y = g_x \left(\frac{\partial x}{\partial z}\right)_y + g_z$

which gives $(\partial x/\partial z)_y$ and hence the answer.