Lecture on

Lecture 12-13

Application of Laplace Transforms

A. Solution of an integral equation (IE)

An IE is of the form $u(x) = f(x) + \int K(x,t) u(t) dt$.

f(2), K(2,t) are known functions, u(t) → unknown forcing forcing forcing.

If K(x,t) is of the form K(x,t) = K, (x-t) and limits of integral-are 0 and t

i.e if the IE is of the form $u(x) = f(x) + \int_{-\infty}^{\infty} K_1(x-t)u(t) dt$

then the IE is called an IE of convolution type Laplace transform is applied to solve linear IE's of convolution type.

$$\Rightarrow = I(t)$$
, say

Sol.
$$\overline{I}(s) = \int_{0}^{\infty} e^{-st} dt - \left(\int_{0}^{\infty} \frac{\sin t x}{x(1+x^{2})} dx\right)$$

$$=\int_{-\infty}^{\infty} \frac{dz}{x(1+x^2)} \int_{0}^{\infty} e^{-st} \sin x t dt$$

$$\mathbb{I} \int_{0}^{\infty} \frac{dx}{\chi(1+\chi^{2})} \cdot \frac{\chi}{\chi^{2}+8^{2}} = \int_{0}^{\infty} \frac{1}{3^{2}-1} \left(\frac{1}{\chi^{2}+1} - \frac{1}{\chi^{2}+3^{2}}\right) d\tau.$$

$$=\frac{1}{8^{2}-1}\int_{0}^{\infty}\frac{d7}{x^{2}+1}-\frac{1}{8^{2}-1}\int_{0}^{\infty}\frac{d7}{x^{2}+8^{2}}$$

$$= \frac{1}{8^{2}-1} \left[+ an^{-1} 2 \right]^{\infty} - \frac{1}{3} tan^{-1} \frac{2}{3!} = \frac{1}{3^{2}-1} \left(\frac{\Gamma}{2} - \frac{1}{3} \frac{\Gamma}{2} \right)$$

$$= \frac{11}{2} \cdot \frac{1}{8^{2}-1} \cdot \frac{8-1}{8} = \frac{17}{2} \cdot \frac{1}{8(8+1)} = \frac{17}{2} \left[\frac{1}{3} - \frac{1}{8+1} \right]$$

$$I(t) = \frac{\pi}{2} \left(1 - e^{-t} \right)$$

2. Evaluale
$$I(t) = \int_{0}^{\infty} e^{-tx^{2}} dx$$

$$\overline{I}(s) = \int_{0}^{\infty} e^{-st} dt - \int_{0}^{\infty} e^{-tx^{2}} dx = \int_{0}^{\infty} dx \int_{0}^{\infty} e^{-(s+x^{2})t} dt - \int_{0}^{\infty} \frac{dx}{x^{2}+s} dt = \int_{0}^{\infty} tan \int_{0}^{\infty} \int_{0}^{\infty} e^{-st} dx = \int_{0}^{\infty} \frac{dx}{x^{2}+s}$$

C. Solving integro-differential equation

· In an IE the unknown appears under integral sign

In an integro-differential equation unknown appears under integral as well as differentiation sign.

Ex-1 Solve: $u(t) = a \sin t + 2 \int u'(c) \sin(t-c) dc; u(0) = 0$

[Note, like in the case of an ODE of order n, one must specify n conditions to get a particular solution.

In an integro-diff. equal-also, one must-specify n no. of conditions if the nuknown appears under nthe order differentiation.

Taking LT on both sides of (1), get-

$$\overline{u(s)} = \frac{a}{8^2 + 1} + 2 \left[u'(t) + s \ln t \right].$$

$$= \frac{a}{8^{2}+1} + 2L(u'(t))L(sint).L(t*9)$$

$$= \frac{a}{8^{2}+1} + 2L(u'(t))L(sint).L(t*9)$$

$$= \frac{\alpha}{8^{2}+1} + 2 \left\{ 8\pi(8) - \mu(0) \right\} \cdot \frac{1}{8^{2}+1}$$

$$\left(1 + \frac{28}{8^2 + 1}\right) \pi(8) = \frac{a}{8^2 + 1} = \pi(8) = \frac{a}{(8 + 1)^2}$$

u(t) = atet.

D. Solution of differential equations.

DI. Solving Initial Value Peroblem (IVP)

Note. LT is widely used to solve differential equations where the independent variable is time. The problems where conditions are prescribed at time t = 0 (initial value) are known as IVP. Also, if for the range of the independent variable (a) is [a, b], say and if the condition is given at one end point (mainly at left that is also treated as. IVP.

Ext Solve.
$$y''' - 3y'' + 3y' - y = t^2t' - (1)$$
.

Y(0) = 1, $y'(0) = 0$, $y''(0) = -2$. Note: Here coefficients of $y''' = 0$, $y'' =$

 o_{1}^{2} $(s^{3}-3s^{2}+3s-1) + (s) - s^{2}+2+3s-3 = \frac{2}{(s-1)^{3}}$ $(s^{2}-3s^{2}+3s-1) + \frac{2}{(s-1)^{3}}$

$$\frac{(s-1)^{2}-8+1-1}{(s-1)^{3}} + \frac{2}{(s-1)^{6}}$$

$$= \frac{(s-1)^{2}-8+1-1}{(s-1)^{2}} + \frac{2}{(s-1)^{6}}$$

$$= \frac{1}{s-1} - \frac{1}{(s-1)^{2}} + \frac{2}{(s-1)^{6}} - \frac{1}{(s-1)^{3}}$$

$$\frac{1}{3} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{2} + \frac{t^{5}}{60}\right] / (s-1)^{3}$$

$$\frac{1}{4} \cdot y(t) = e^{t} \left[1-t-\frac{t^{2}}{4} + \frac{t^{5}}{4} + \frac{t^{5$$

D2. Solving boundary value problems. (BVP)

ABVP is a problem of solving a DE, when

the conditions are prescribed at two end

(boundary) points.

Ex. Solve: $\frac{d^3y}{dt^2} + 9y = 18t$, $0 \le t \le \frac{\pi}{2}$ with the boundary conditions y(0) = 0, $y(\frac{\pi}{2}) = 0$ 8ol. Take LT on both sides, y(0) = 0, $y(\frac{\pi}{2}) = 0$ y(0) = 0, $y(\frac{\pi}{2}) = 0$

62, (8^2+9) $\sqrt{5}$ $-A = \frac{18}{82}$, there $A = \sqrt{6}$, not given.

 $\frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{A}{5^{2} \cdot 1} + \frac{1}{5^{2}} \cdot \frac{1}{5^{2} \cdot 1} = \frac{A}{5^{2} \cdot 1} + \frac{2}{5^{2}} - \frac{2}{5^{2} \cdot 1}$

:. $y(t) = L^{-1} \left(\frac{t-2}{s^2+9} \right) + 2 L^{-1} \left(\frac{1}{s^2} \right) = \frac{A-2}{3} sin 3 L^{-1} + 2 L^{-1}$

A can be determined by using the condition $y(\frac{\pi}{2})=0$, which is $\frac{\pi}{2}$ so far unused.

$$0 = 4\left(\frac{\pi}{2}\right) = \frac{A-2}{3} \sin \frac{3\pi}{2} + \pi = -\frac{A-2}{3} + \pi$$

.. $A-2=3\Pi \implies A=3\Pi+2$.

:. y (t) = 17 soin 3t + 2t.

D3. Solving system of diff. equations. Initial conditions: $\frac{d^{2}y}{dt^{2}} - 3y - 4z = 0$ 4(0)=0 =2(0) y'(0) = 2, x'(0) = 0 $\frac{d^2x}{dx^2} + 4 + 2 = 0.$ Sol. Take LT of (1) & (2) w. r. lo the variable t. This gives, 827 (8) - 34(0) - 4(0) - 37(3) - 42(3)=0 $(8)^{2} = (8)^{2} - 8 \times (6) - 2'(6) + 7(8) = 0$ $(8^{2}-3) F(8) - 4 Z(8) = 2 \longrightarrow (3)$ y(8)+(82+1) \(\bar{\gamma}(8)=0. \rightarrow(4) Mult. (4) by (82-3) & subtracting from (3) gel- $(8^{2}-3)$ $\sqrt{(8)}-4$ $\sqrt{(8)}=$ $(83^2-3)/4(8)+(8^2+1)(8^2-3)\pi(8)=0.$ $-(8^{4}-28^{2}-3+4)^{2(8)}=2$ =) $(84-28^2+1)^{(38)} = -2 = 7 \pi(8) = -\frac{2}{(8^2-1)^2}$ $\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{(3-1)^{2} - (3+1)^{2}}{(3-1)^{2}} = \frac{1}{(3-1)^{2}} \cdot \frac{1}{(3+1)^{2}} \cdot \frac{1}{(3+1)^{2}$ $=\frac{1}{2} \cdot \frac{(8+1)-(5-1)}{(5-1)(5+1)^2} - \frac{1}{2} \cdot \frac{(8+1)-(5-1)}{(8+1)(5-1)^2}$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{(8+1)^{2}} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{(8+1)^{2}} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{$$

Exercise Problems.

A1. Solve the IE:

$$\phi(t) = 1 - sinh t + \int_{0}^{t} (1+u) \phi(t-u) du$$
Ans: $\phi(t) = Cosh t$.

A2. Solve the IF'.

$$\phi(t) = 2t - 4 \int \phi(u) (t-u) du$$

$$\phi(t) = 8 in 2t$$

B1. Evaluate
$$\int_{\chi}^{\infty} \frac{\sin t \chi}{\chi} d\chi$$
 using LT. Ans. $\frac{11}{2}$

B2.

3) $\int_{\chi}^{\infty} \frac{\cos t \chi}{\chi^2 + a^2} d\chi$

3) LT Ans. $\frac{11}{a}$

C1 Solve
$$\frac{d4}{dt} + 5 \int 4(u) \cos 2(t-u) du = 10$$
; $4(0) = 2$
Ans. $4(t) = \frac{1}{9} \left(8 + 40t + 10 \cos 3t + \frac{50}{3} \sin 3t\right)$

Ans.
$$f(t) = \frac{1}{q}$$

(2. Solve $f(t) = 2 \sin t + 2 \int_{0}^{t} f'(u) \sin(t-u) du$; $f(0) = 6$

Ans. $f(t) = 2 t e^{t}$

DII.
$$\frac{solor}{dt^2} + n^2y = a soin (nt+2); y(0) = 0, y'(0) = 0$$

Ans. $\frac{a}{2n^2} \left[\cos 2 \cdot sin nt - nt \cos (nt+2) \right]$

DI2. Solve:
$$\frac{d^3y}{dt^3} - 3\frac{d^2y}{dt^2} + 3\frac{dy}{dt} - y = t^2t$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = -2$.

DI3.
$$t \frac{dy}{dt^2} + (1-2t) \frac{dy}{dt} - 24 = 0$$
; $y(0) = 1$, $y'(0) = 2$
Ans. $y(t) = 2^{2t}$.

DI4. Solve:
$$t \frac{d^3t}{dt^2} + 2 \frac{d^3t}{dt} + t^4 = 0$$
; $y(0) = 1, y(\pi) = 0$
Ans. $y(t) = \frac{9\sin t}{t}$.

D21 Solve the BVP:
$$\frac{1}{dt^2} + 4x(t) = -8t^2$$
, $x(0) = 3$
Ans. $x(t) = 2 \cos 2t + (\frac{\pi^2}{8} - 1) \sin 2t + 1 - 2t^2$.

D22. Solve the BVP:
$$y''(0) = 16y = 30 \text{ sint}$$

Ans: $y(t) = -\frac{1}{8}e^{2t}$
 $y''(0) = 0$, $y'''(0) = -18$
 $y''(0) = -18$
 $y''(0) = 0$, $y'''(0) = -18$

D31. Solve:
$$\chi(t) - \frac{d^2y}{dt^2} + \gamma(t) = -e^{-t} - 1$$
 $\chi(0) = 0, \gamma(0) = 1$ $\frac{d\chi}{dt} + \frac{dy}{dt} - \gamma(t) = -3e^{-t} + t$ $\chi'(0) = -2$

D32. Solve.
$$3\frac{d^2}{dt} + \frac{d^4}{dt} + 22 = 1$$
 $(0) = 0 = 7(0)$ $(0) = 0 = 7(0)$

Ans.
$$\gamma(t) = \frac{1}{10} \left(5 - 3e^{-\frac{6}{11}t} - 2e^{-t} \right)$$

 $\gamma(t) = \frac{1}{5} \left(e^{-t} - e^{-\frac{6}{11}t} \right)$.