

Indian Institute of Technology Patna

End Semester Exam. (Autumn 2016) Electrical Sciences (EE101)

Time: 3 Hrs

MM: 50

There are 8 questions in this paper. Answer all parts of a question at one place.

Figures in the right hand margin indicate marks. In case of a missing parameter value assume a suitable one.

Q No.	Questions	Marks
1.	(a) A cylindrically shaped section of n-type Si has a 1mm length and 0.1 mm ² cross-sectional area. Calculate its conductivity and resistance (a) when it is purely intrinsic material, and (b)	3
	when it has a free electron density of 8×10 ¹³ /cm ³ . (b) Compare the I-V plots of Si and Ge made diodes.	2
2.	(a) Explain the origin of the barrier voltage at a p-n junction. Discuss the effect of barrier voltage on drift and diffusion currents.	2
	(b) By how much does the built in voltage change if either side of impurity doping concentration is increased by a factor of 10.	1.5
	(c) Why built in voltage of a p-n junction diode can't be measured by a voltmeter?	1.5
3.	(a) Assuming the diodes to be ideal, describe the transfer characteristics of the circuit shown below	3
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(6
	(b) Draw the circuits for positive and negative voltage doublers. Explain the working.	2
4.	(a) Sketch and clearly label the waveforms of v_0^{\dagger} and v_0^{\dagger} . Consider Vs=5 sin 120 πt .	3
	$ \begin{array}{c} $	
	v_{o}	
	(b) A 9.1 V Zener diode exhibits its nominal voltage at a test current of 28mA. At this current the incremental resistance is specified as 5Ω . Find V_{z0} of the zener model. Find the Zener voltage at a current of 10mA and at 100mA.	

5. (a) With the help of a neat diagram explain the transistor action of npn BJT. 3 (b) Draw and explain the input and output characteristics of CE configuration of BJT. (c) What is early effect? 2 1 6. (a) What is the transistor biasing? 2 (b) The pnp transistor of the circuit given below (Fig 6.1) has β =50. Find the value of $R_{\it C}$ to obtain $V_C=5V$. What happens if the transistor is replaced with another with β =100. 2 Fig 6.1 (c) For the circuit of Fig 6.2, find V_B , V_C and V_E for $R_B=10k\Omega$ and $\beta=100$. 2 7. (a) Draw a neat circuit of Instrumentation amplifier and also explain the working principle? Design an instrumentation amplifier for differential voltage gain of 20. (b) Using Ideal Op-amps, implement the input output relationship $V_o = 4V_1 + 3V_2 + 5V_3$. 2 (c) What is the slew rate? Determine the maximum peak output voltage obtainable from an Op-amp circuit with a 100 kHz signal frequency. Slew rate is $0.5 V/\mu s$. 2 (a) Derive the expression for 3-dB frequency in a first-order low pass filter circuit. 8. (b) Draw the gain and phase responses for a first-order high pass filter circuit. 2 Find the transfer function and 3-dB frequency for the circuit given below.

(d) Using operational amplifier, design a current amplifier with a current gain of 10.

relationship $V_o = V_2/V_1$.

(e) Design an analog circuit which has two inputs (V_1 and V_2) and one output (V_0) with input-out

3

2