5장. ggplot2에 의한 자료 시각화

그래픽 기법의 활용 예제: 보리자료

- 자료분석과정에서 그래프의 이용이 필수적임을 보여주는 예제
- 보리자료:
 - 1930년대 초 미네소타 주 농경학자들이 보리종류에 따른 수확량의 차이를 비교하기 위해 2년간 경작실험을 실시
 - 설명변수: 6군데 경작지, 10종류의 보리, 2년간의 경작 년도
 - 반응변수: 수확량
- 저명한 학자들에 의해서 여러 번 분석된 자료
- Cleveland가 자료에 있는 문제 발견

• 보리자료의 문제점

- 자료의 시각화: 효과적인 자료 분석 기법
- ggplot2: 가장 뛰어난 그래프 작성 방식

5.1 ggplot2 시작하기

• 패키지 ggplot2에 있는 데이터 프레임 mpg의 변수 displ과 hwy의 산점도 작성

```
> library(tidyverse)
```

> ggplot(data=mpg) +
 geom_point(mapping=aes(x=displ, y=hwy))

- 함수 ggplot(): 데이터 프레임 data 지정. 그래프가 작성될 비어있는 영역 확보
- 함수 geom_point(): 실질적인 그래프를 작성하는 geom 함수
- mapping: geom 함수 내에서 함수 aes()와 함께 시각적 요소를 데이터와 연결

- ggplot2에서 그래프 작성의 최소 요소
 - 그래프 작성을 위한 법칙이 있음: 그래프의 문법
 - 모든 그래프 작성에 일정하게 적용
 - 익숙해지면 복잡한 형태의 그래프도 어렵지 않게 작성 가능

```
그래프 작성을 위한 3가지 최소 요소:
           <Data>, <Geom_function>, <Mappings>
  qqplot(data=<Data>) +
             <Geom_function>(mapping=aes(<Mappings>)
         <Data>: 그래프 작성에 사용될 데이터 프레임 지정
         <Geom_function>: 레이어(layer) 작성을 위한 geom 함수.
                        여러 개의 geom 함수를 덧셈 기호로 연결하면 여러
                        레이어가 겹쳐진 그래프 작성
         <Mappings>: 시각적 요소(점의 크기, 모양, 색깔, ...)와 데이터 연결
```

5.2 시각적 요소와 연결: Mapping

- 시각적 요소
 - 그래프를 시각적으로 인식할 때 필요한 요소
 - 산점도의 경우, 점의 위치, 크기, 모양 및 색깔 등이 시각적 요소
 - 시각적 요소의 mapping과 setting
 - mapping: 데이터의 값과 연결되어 결정. 함수 aes() 안에서 연결
 - setting: 사용자가 일정한 값을 지정. 함수 aes() 밖에서 지정
 - 시각적 요소 mapping의 기능:
 - 기존의 그래프에 다른 변수의 정보 추가

- 예제: 데이터 프레임 mpg의 변수 displ과 hwy의 산점도에 시각적 요소와의 mapping으로 다른 변수 정보 추가
 - 변수 class를 시각적 요소 color와 mapping
 - > ggplot(data=mpg) +
 geom_point(mapping=aes(x=displ, y=hwy, color=class))

- 색의 종류(범주의 개수) 과다
- 좋은 그래프는 아님

- 변수 class: 문자형 벡터
- 변수 class의 값에 따라 다른 색 사용
- 사용된 색깔에 대한 범례는 자동으로 추가

- 변수 drv를 시각적 요소 shape와 mapping
 - > ggplot(data=mpg) +
 geom_point(mapping=aes(x=displ, y=hwy, shape=drv))

- 구분이 어려운 다른 모양의 점
- 좋은 그래프는 아님

- shape에 mapping되는 변수는 이산형
- 변수 drv: 문자형 벡터
- 변수 drv의 값에 따라 다른 모양의 점 사용
- 범례 자동 추가

- 변수 cyl을 시각적 요소 size와 mapping

```
> ggplot(data=mpg) +
    geom_point(mapping=aes(x=displ, y=hwy, size=cyl))
```


- size에 mapping되는 변수는 연속형이 좋음
- 변수 cyl: 정수형 변수
- cyl의 값에 따라 점의 크기 조절
- 범례 자동 추가

- 구분이 어려운 점 크기
- 범주의 개수 과다 → 좋은 그래프는 아님

- 여러 시각적 요소를 동시에 mapping
 - 변수 class는 color와, drv는 shape와, cyl은 size와 mapping

- 너무 많은 정보
- 그래프의 의미가 모호

- 시각적 요소의 setting
 - 함수 aes() 밖에서 사용자가 원하는 값으로 지정
 - geom 함수의 입력 요소가 됨
 - 시각적 요소 color, size, shape에 값 지정 법칙
 - 1) color: 색깔을 나타내는 문자열 지정
 - 2) size: 점 크기를 mm 단위로 지정
 - 3) shape: 점의 형태를 나타내는 0~26 사이의 숫자

도형에 색깔 지정 방법

- 1) 0~14의 외곽선 및 15~20의 도 형 색: color 사용
- 2) 21~25의 외곽선: color 사용
- 3) 21~25의 내부 색: fill 사용

https://www.r-graph-gallery.com/colors

- 시각적 요소 color의 setting: 모든 점을 빨간 색으로

> ggplot(data=mpg) +
 geom_point(mapping=aes(x=displ, y=hwy), color="red")

- color를 함수 aes() 밖에서 지정
- 함수 geom_point()의 입력 요소

- 여러 시각적 요소를 동시에 setting

- 점의 모양: shape=21
- 점의 내부 색: 빨간색
- 점의 외곽선 색: 파란색
- 점의 크기 확대: size=3
- 점의 외곽선 두께 조절: stroke=2

• 함수 aes() 안에서 시각적 요소에 특정 값을 setting한 경우의 결과

Setting

> ggplot(data=mpg)+ geom_point(mapping=aes(x=displ, y=hwy), color="blue")

Mapping

> ggplot(data=mpg) + geom_point(mapping=aes(x=displ, y=hwy, color="blue"))

- mapping은 변수와의 연결을 의미 "blue"라는 값을 갖는 변수 생성

5.3 그룹별 그래프 작성: Facet

- 범주형 변수가 다른 변수에 미치는 영향력을 그래프로 확인하는 방법
 - 1) 시각적 요소에 범주형 변수를 mapping
 - 2) 범주형 변수로 그룹 구성하고, 각 그룹별 그래프 작성: faceting
 - facet을 적용하기 위한 함수
 - ① facet_wrap(): 한 변수에 의한 facet
 - ② facet_grid(): 한 변수 또는 두 변수에 의한 facet

- 함수 facet_wrap()에 의한 faceting
 - 데이터를 구분하는 변수가 하나인 경우: facet_wrap(~ x)
 - 데이터 프레임 mpg의 변수 displ과 hwy의 산점도를 class의 범주별로 작성
 - > ggplot(data=mpg) +
 geom_point(mapping=aes(x=displ, y=hwy)) +
 facet_wrap(~ class)

- 패널 '2seater'에는 적은 수의 데이터 존재
- class가 '2seater'인 케이스 제거 후 다시 작성

• 데이터 프레임 mpg의 변수 displ과 hwy의 산점도를 class의 범주별로 작성 (2seater 케이스 제외)

```
> mpg %>%
    filter(class != "2seater") %>%
    ggplot() +
    geom_point(mapping=aes(x=displ, y=hwy)) +
    facet_wrap(~ class)
```


- 패널 배치 조절
 - 2×3 패널 패치를 3×2 배치로 수정: ncol=2
 - 패널에 그래프 배치 순서를 열 단위로 수정: dir="v"

```
> pp <- mpg %>%
    filter(class != "2seater") %>%
    ggplot() +
    geom_point(mapping=aes(x=displ, y=hwy))
```

두 그래프에 공통적 으로 적용되는 내용 을 개체에 할당

```
> pp + facet_wrap(~ class, ncol=2)
> pp + facet_wrap(~ class, ncol=2, dir="v")
```


- 함수 facet_grid()에 의한 faceting
 - 한 변수에 의한 faceting:
 하나의 행으로 패널 배치: facet_grid(x ~ x)
 하나의 열로 패널 배치: facet_grid(x ~ .)
 - 두 변수에 의한 faceting: facet_grid(y ~ x)
 행 범주: 변수 y의 범주
 열 범주: 변수 x의 범주

• 데이터 프레임 mpg에서 변수 drv와 cyl의 범주별로 displ과 hwy의 산점도 작성. 단, drv가 "r"인 자료와 cyl이 5인 자료는 제외

```
> my_plot <- mpg %>%
    filter(cyl != 5, drv != "r") %>%
    ggplot() +
    geom_point(mapping=aes(x=displ, y=hwy))
```


drv='4'

drv='f'

> my_plot + facet_grid(. ~ cyl)

> my_plot + facet_grid(drv ~ cyl)

drv='4'

drv='f'

- 연속형 변수에 의한 faceting
 - 연속형 변수를 범주형 변수로 변환 후 faceting
 - 유용한 함수
 - ① cut_interval(x, n, length): 벡터 x를 길이가 length인 n개의 구간으로 구분
 - ② cut_width(x, width, boundary): 벡터 x를 길이가 width인 구간으로 구분. 옵션 boundary는 구간의 시작점 지정.
 - ③ cut_number(x, n): 벡터 x를 n개의 구간으로 구분하되 각 구간에 속한데이터의 개수가 대략 동일하도록 구분

- 데이터 프레임 airquality에서 변수 Ozone, Solar.R, Wind의 관계 탐색
 - 1) 변수 Wind를 4개의 구간으로 구분하되 속한 자료의 개수가 비슷하도록
 - 2) 4개의 구간에서 Ozone과 Solor.R의 산점도 작성

```
> air_1 <- airquality %>%
    mutate(Wind_d=cut_number(Wind, n=4))
> air_1 %>%
    ggplot() +
    geom_point(mapping=aes(x=Solar.R,y=Ozone)) +
    facet_wrap(~Wind_d)
```


- 변수 Wind가 큰 값을 가질수록 두 변수의 관계는 점점 미약해지고 있음
- 세 연속형 변수의 관계 탐색 방법 중 하나

- 한 그래프에 함께 작성

5.4 기하 객체: Geometric object

- Base graphics에서 그래프 작성 방식: pen on paper
 - 높은-수준의 그래프 함수: 좌표축과 주요 그래프 작성
 - 낮은-수준의 그래프 함수: 점, 선, 문자 등을 추가하여 원하는 그래프 작성
- ggplot2에서 그래프 작성 방식
 - 작성하고자 하는 그래프: 몇몇 유형의 그래프(점 그래프, 선 그래프 등등)
 를 겹쳐 놓은 것
 - 몇몇 유형의 그래프를 각기 따로 작성
 - 작성된 그래프를 겹쳐 놓음으로써 원하는 그래프 작성

● ggplot2 시스템

원하는 유형의 그래프(점 그래프, 선 그래프 등등) 작성

↔ 해당되는 기하 객체(geom)를 사용하여 그래프 작성

- 기하 객체의 사용
 - 해당되는 geom 함수의 실행
 - geom 함수 실행 → 해당 유형의 그래프가 작성된 layer 생성
 - 여러 개의 geom 함수 실행: 여러 layer 생성되고 이것들이 겹쳐져서 원하는 그래프 완성

- 동일 자료에 다른 geom 적용
 - mpg의 변수 displ과 hwy를 대상으로 point geom과 smooth geom 적용
 - point geom: 점 그래프 작성
 - smooth geom: 비모수 회귀곡선 작성
 - > ggplot(data=mpg) +
 geom_point(mapping=aes(x=displ, y=hwy))
 - > ggplot(data=mpg) +
 geom_smooth(mapping=aes(x=displ, y=hwy))

- geom 함수 리스트
 - 현재 대략 30개 이상의 geom 함수가 있음
 - 한 변수에 대한 함수: geom_bar(), geom_histogram(), geom_density(), geom_dotplot() 등등
 - 두 변수에 대한 함수: geom_point(), geom_smooth(), geom_text(), geom_line(), geom_boxplot() 등등
 - 세 변수에 대한 함수: geom_contour(), geom_tile() 등등
 - geom 함수의 리스트: R studio의 메뉴에서 'Help > Cheatsheets > Data Visualization with ggplot2' 에서 확인 가능

- 글로벌 매핑과 로컬 매핑
 - 글로벌 매핑: 함수 ggplot()에서의 매핑. 해당 그래프 작성에 참여한 모든 geom 함수에 적용
 - 로컬 매핑: geom 함수에서의 매핑. 해당 geom 함수로 작성되는 layer에만 적용. 해당 layer에서는 글로벌 매핑보다 우선해서 적용됨.

```
ggplot(data, mapping=aes()) +
   geom_*(mapping=aes()) +
   geom_*(mapping=aes())
```

글로벌 매핑

로컬 매핑

• 예: mpg의 변수 displ과 hwy의 산점도에 비모수 회귀곡선 추가

- 두 geom 함수에 동일한 내용의 매핑이 중복 입력 되는 상황

```
> ggplot(data=mpg) +
    geom_point(mapping=aes(x=displ, y=hwy)) +
    geom_smooth(mapping=aes(x=displ, y=hwy))
```

- 글로벌 매핑으로 중복 입력 문제 해결

```
> ggplot(data=mpg, mapping=aes(x=displ, y=hwy)) +
    geom_point() +
    geom_smooth()
```

• 예: mpg의 변수 displ과 hwy의 비모수 회귀곡선 작성. 그 위에 산점도 추가하되 drv의 값에 따라 점의 색을 구분.

비모수 회귀곡선: 전체 자료 대상

각 그룹별로 추정된 비모수 회귀

> ggplot(data=mpg, mapping=aes(x=displ, y=hwy)) +
 geom_point(mapping=aes(color=drv)) +
 geom_smooth(se=FALSE)

x, y: 글로벌 매핑 color: 로컬 매핑

> ggplot(data=mpg, mapping=aes(x=displ, y=hwy, color=drv))+
 geom_point()+
 geom_smooth(se=FALSE)

x, y, color: 글로벌 매핑

- 예: mpg의 변수 displ과 hwy의 비모수 회귀곡선 작성하되 drv에 의해 구분되는 그룹별 각각 추정하여 선의 종류를 다르게 표시. 그 위에 산점 도 추가하되 drv의 값에 따라 점의 색을 구분, 점의 크기 확대.
 - > ggplot(data=mpg, mapping=aes(x=displ, y=hwy)) +
 geom_point(mapping=aes(color=drv), size=2) +
 geom_smooth(mapping=aes(linetype=drv), se=FALSE)

linetype: 선의 종류를 나타내는 시각적 요소

- 예: 다음의 그래프 작성
 - 변수 drv의 그룹별로 따로 비모수 회귀곡선 작성하되, 선의 색과 종류는 같은 것을 사용
 - > ggplot(data=mpg, mapping=aes(x=displ, y=hwy)) +
 geom_point() +
 geom_smooth(mapping=aes(group=drv), se=FALSE)

group: 그룹을 구성하는 시각적 요소

- 각 geom 함수에서 다른 데이터 사용
 - 각 geom 함수로 작성되는 layer마다 다른 데이터로 그래프 작성 가능
 - 예: mpg의 변수 displ과 hwy의 산점도. drv에 따라 점의 색 구분. 비모수 회귀곡선 추가하되 drv가 4인 데이터만을 대상으로 추정.

5.5 통계적 변환: Statistical transformation

- 그래프 작성에 사용되는 자료
 - 1) 입력된 자료: 산점도
 - 2) 입력된 자료를 대상으로 통계적 변환 과정을 거쳐 생성된 자료: 비모수 회귀곡선 그래프
- 통계적 변환(stat)
 - 입력된 데이터 프레임 자료의 변환을 의미
 - 각 그래프 유형별 대응되는 stat 존재
 - ▶ 산점도: stat="identity"
 - ▶ 비모수 회귀곡선: stat="smooth"
 - ▶ 막대 그래프: stat="count"
 - 각 geom 함수마다 대응되는 디폴트 stat 존재
 - ▶ geom_point() → geom_point(stat="identity")
 - ▶ geom_smooth() → geom_smooth(stat="smooth")
 - ▶ geom_bar() → geom_bar(stat="count")

- stat 함수
 - geom 함수 대신 stat 함수로 그래프 작성 가능
 - 각 stat 함수마다 디폴트 geom 존재
 - · stat_identity() → stat_identity(geom="point")
 - stat_smooth() → stat_smooth(geom="smooth")
 - stat_count() → stat_count(geom="bar")
 - 예: mpg의 변수 trans의 막대 그래프 작성

- > ggplot(data=mpg, mapping=aes(x=trans)) +
 geom_bar()
- > ggplot(data=mpg, mapping=aes(x=trans)) +
 stat_count()
- 그래프 작성은 geom 함수 또는 stat 함수 모두 가능
- 사용자가 선택할 사항
- geom 함수의 사용이 비교적 더 명확함

- stat으로 계산된 변수의 이용
 - stat 함수: 입력된 데이터 프레임을 대상으로 변환을 실시하여 그래프 작성에 필요한 변수로 이루어진 데이터 프레임을 내부적으로 생성
 - 생성된 변수를 사용자가 직접 지정해서 사용 가능
 - 예: 함수 geom_bar() 혹은 stat_count()에서 계산된 변수
 - · 변수 count: 각 범주의 빈도
 - · 변수 prop: 그룹별 비율
 - 계산된 변수를 사용자가 지정할 때에는 변수를 ".." 기호로 감싸야 함
 - · 원래 데이터 프레임에 있는 변수와 혼동 방지
 - · 예: ..count.. 또는 ..prop..
 - 최근에는 ".." 기호로 감싸는 방법 대신 함수 stat() 사용
 - · stat(count) 또는 stat(prop)

- 예: mpg의 변수 trans의 막대 그래프를 상대 도수로 작성
 - 변수 stat(prop)를 이용하여 막대 그래프 작성
 - > ggplot(data=mpg) +
 geom_bar(mapping=aes(x=trans, y=stat(prop)))

- stat_count()에서 생성된 자료

	trans	count	prop	group
1	auto(av)	5	1	1
2	auto(13)	2	1	2
3	auto(14)	83	1	3
4	auto(15)	39	1	4
5	auto(16)	6	1	5
6	auto(s4)	3	1	6
7	auto(s5)	3	1	7
8	auto(s6)	16	1	8
9	manual(m5)	58	1	9
10	manual(m6)	19	1	10

- 변수 stat(prop) : 그룹별 비율
- 모든 범주를 하나의 그룹으로 구성

- 상대 도수 막대 그래프 작성

```
> ggplot(data=mpg) +
    geom_bar(mapping=aes(x=trans, y=stat(prop), group=1))
```


- group에 하나의 값 지정 어떤 값도 가능

	trans	count	prop	group
1	auto(av)	5	0.021367521	1
2	auto(13)	2	0.008547009	1
3	auto(14)	83	0.354700855	1
4	auto(15)	39	0.166666667	1
5	auto(16)	6	0.025641026	1
6	auto(s4)	3	0.012820513	1
7	auto(s5)	3	0.012820513	1
8	auto(s6)	16	0.068376068	1
9	manual(m5)	58	0.247863248	1
10	manual(m6)	19	0.081196581	1

- geom 함수에서 stat을 따로 지정해야 하는 경우
 - geom 함수의 디폴트 stat이 아닌 다른 stat을 사용해야 하는 경우
 - 예: 도수분포표로 막대 그래프를 작성하는 경우
 - mpg의 trans를 auto(av)에서 auto(s6)를 auto로, manual(m5)와 manual(m6)를 manual로 통합. 도수분포표 작성. 막대 그래프 작성.
 - 통합된 범주의 도수분포 tibble 작성

```
> mpg_am <- mpg %>%
    mutate(am=substr(trans, 1, nchar(trans)-4)) %>%
    count(am)
```

- 도수분포표로 막대 그래프 작성

```
> ggplot(data=mpg_am) +
    geom_bar(mapping=aes(x=am, y=n), stat="identity")
```


5.6 위치 조정: Position adjustments

- 그래프 요소들의 위치 조정
 - 연속형 자료: 산점도의 점이 겹쳐지는 경우
 - 범주형 자료: 이변량 막대 그래프 작성
- 산점도의 점이 겹치는 문제
 - 산점도 작성의 가장 큰 문제
 - 해결 방안
 - ▶ 반올림 처리 등으로 같은 값이 많은 자료의 경우: 자료에 약간의 난수 추가로 점의 위치 조정(jittering)
 - 대규모의 자료가 좁은 구역에 몰려서 한 무리를 형성하는 경우: 추후에 다룰 예정
- 이변량 막대 그래프
 - 쌓아 올린 막대 그래프 / 옆으로 붙여 놓은 막대 그래프

- 산점도에서 점이 겹쳐지는 문제 해결
 - 예: mpg에서 변수 cty와 hwy의 산점도 작성
 - > ggplot(data=mpg, mapping=aes(x=cty, y=hwy)) +
 geom_point()

- 산점도에 나타난 점의 개수가 전체 데이터 개수인 234개에 훨씬 못 미쳐 보임
- 두 변수의 값이 반올림 처리 되어 같은 값이 많아짐

jittering

- 자료에 약간의 난수 추가
- $(x,y) \rightarrow (x + \varepsilon, y + \varepsilon)$ $\varepsilon \sim Unif(-\alpha, \alpha)$

- jittering 실시

> ggplot(data=mpg, mapping=aes(x=cty, y=hwy)) +
 geom_point(position="jitter")

- 작성되는 그래프마다 미세한 차이 발생
- 추가되는 난수의 크기를 조절하고자 하는 경우에는 함수 geom_jitter() 사용

- 함수 geom_jitter()

 - > ggplot(data=mpg, mapping=aes(x=cty, y=hwy))+
 geom_jitter(width=0.05, height=0.4)

- 예: diamonds에서 변수 carat과 price의 산점도
 - > ggplot(data=diamonds) +
 geom_point(mapping=aes(x=carat, y=price))

- 너무 많은 점들이 밀집되어 있는 상황
- 두 변수의 정확한 관계 파악이 어려운 그래프
- Jittering으로는 문제 해결이 불가능
- 다른 방법이 필요함(9장에서 살펴볼 예정)

- 이변량 막대 그래프 작성
 - 막대 그래프 작성: geom_bar()
 - 이변량 막대 그래프: 함수 geom_bar()에 시각적 요소 x와 fill, position 사용
 - 예제: mpg에서 trans의 범주를 auto와 manual로 통합한 변수 am 생성 변수 cyl이 5인 케이스 제거 후 am과 cyl의 이변량 막대 그래프 작성
 - 자료 준비

```
> mpg_1 <- mpg %>%
    mutate(am=substr(trans,1,nchar(trans)-4)) %>%
    filter(cyl!=5)
```

- 쌓아 올린 막대 그래프와 옆으로 붙여 놓은 막대 그래프 작성

디폴트 position="stack"

ggplot(mpg_1, aes(x=cyl, fill=am))을 실행하면 어떤 문제가 있는가?

- 옆으로 붙여 놓은 막대 그래프

> p_1 + geom_bar(position="dodge")

> p_1 + geom_bar(position="dodge2")

- 조건부 확률로 쌓아 올린 막대 그래프

cyl을 조건으로 하는 cyl과 am의 조건부 확률

am
cyl auto manual
4 0.5061728 0.4938272
6 0.7088608 0.2911392
8 0.8285714 0.1714286

- 나란히 서 있는 상자그림
 - geom_boxplot()
 - 필요한 시각적 요소: x=그룹을 구성하는 변수(요인) y=연속형 변수
 - > ggplot(data=mpg_1, mapping=aes(x=as.factor(cyl), y=hwy)) +
 geom_boxplot() +
 xlab("Number of Cylinders")

- 시각적 요소 x에 요인이 아닌 숫자형 변수인 cyl을 매핑하면 어떤 그래프가 작성되는가?

- 그룹을 구성하는 변수가 두 개인 경우의 상자그림

```
> ggplot(data=mpg_1, mapping=aes(x=as.factor(cyl), y=hwy)) +
    geom_boxplot(mapping=aes(fill=am)) +
    xlab("Number of Cylinders")
```


- 변수 am에 따라 다른 색이 채워져 있고 두 상자그림이 옆에 붙어 있다
- 필요한 시각적 요소: x, y, fill, position
- position="dodge"가 디폴트로 적용됨

- 그룹을 구성하는 변수가 두 개인 경우의 상자그림

```
> ggplot(data=mpg_1, mapping=aes(x=as.factor(cyl), y=hwy)) +
    geom_boxplot() +
    xlab("Number of Cylinders") +
    facet_wrap(~am)
```


5.7 좌표계: Coordinate system

- 좌표계: 시각적 요소 x와 y를 근거로 그래프의 각 요소의 2차원 위치를 결정하는 체계
- 좌표계의 종류
 - coord_cartesian(): 디폴트
 - coord_flip()
 - coord_polar()

- coord_cartesian()의 활용: XY축 범위 조정
 - 예: mpg에서 displ과 hwy의 산점도에 비모수 회귀곡선 추가한 그래프 작성. X축의 범위를 (3,6)으로 축소한 그래프 작성.

> p <- ggplot(data=mpg, mapping=aes(x=displ,y=hwy)) +
 geom_point() + geom_smooth()</pre>

> p

> p + coord_cartesian(xlim=c(3,6))

- scale에 의한 XY축 범위 조정
 - scale: 자료와 시각적 요소의 매핑 및 XY축과 범례 등의 내용 조정을 의미
 - 대부분의 경우 디폴트 상태에서 그래프 작성
 - XY축 범위 조정, XY축 라벨 변경이 필요한 경우에는 scale 함수를 사용하여 조정
 - scale 함수의 일반적인 형태: scale_*1*_*2*()
 - *1*: 수정하고자 하는 시각적 요소; color, x, y, fill 등등
 - *2*: 적용되는 scale 지칭; discrete, continuous 등등
 - 예: 연속형 X 변수의 범위 (3,6)으로 수정: scale_x_continuous(limits=c(3,6)) 연속형 X축의 라벨 변경: scale_x_continuous(name="Engine")
 - 간편 함수:
 - XY 축 범위 조정: xlim(3,6), ylim(0,1)
 - XY축 라벨 변경: xlab("Engine"), ylab(), labs(x="Engine")

- 예: XY축 조정 비교
 - 1) 함수 xlim()에 의한 조정

범위를 벗어난 자료: 삭제

> p + xlim(3,6) + xlab("Engine Displacement")

Warning messages:

- 1: Removed 105 rows containing non-finite values (stat_smooth).
- 2: Removed 105 rows containing missing values (geom_point).
- 2) 함수 coord_cartesian()에 의한 조정
- > p + coord_cartesian(xlim=c(3,6)) +
 xlab("Engine Displacement")

- 함수 coord_flip()의 활용: 평행한 상자그림 작성
 - 대부분의 geom 함수: 주어진 x 값에 대한 y의 분포 표현
 - 상자그림: 수직 방향의 작성되는 것이 디폴트
 - 수평 방향 상자그림: 디폴트 방향으로 작성하고, 그래프의 좌표를 90° 회전
 - 함수 coord_flip(): 작성된 그래프의 좌표 회전

- 예: mpg에서 class의 그룹별로 hwy의 상자그림 작성
 - 상자그림: geom_boxplot()
 - x 변수=class, y 변수=hwy

 - > ggplot(data=mpg, mapping=aes(x=class, y=hwy)) +
 geom_boxplot() +
 coord_flip()

- 예: 한 변수(hwy)의 상자그림 작성
 - 함수 geom_boxplot()에는 x와 y 모두 필요
 - x에는 하나의 값, y에는 연속형 변수 매핑

```
> ggplot(data=mpg, mapping=aes(x="", y=hwy)) +
    geom_boxplot() +
    xlab("")
```

```
> ggplot(data=mpg, mapping=aes(x="", y=hwy)) +
    geom_boxplot() +
    xlab("") +
    coord_flip()
```


- 함수 coord_polar()의 활용: 파이 그래프 작성
 - 극좌표(polar coordinate): 2차원 공간의 어느 한 점의 위치를 원점에서 의 거리와 각도로 표현
 - 함수 coord_polar(): 데카르트 좌표를 극좌표로 전환
 - 변수 theta: 시각적 요소 x와 y 중 각도로 전환할 요소 지정(디폴트는 theta="x")
 - 함수 coord_polar()를 활용하여 막대 그래프에서 변형된 그래프
 - 1) Coxcomb 또는 Wind rose 그래프
 - 2) 파이 그래프
 - 3) Bullseye 그래프

- 예제: mpg의 변수 class의 파이 그래프 작성
 - 1) 막대 그래프 작성
 - 각 막대마다 다른 색 사용
 - 쌓아 올린 형태로 작성
 - 막대의 폭을 X축 전체 구간으로 확장

```
> b2 <- ggplot(data=mpg, mapping=aes(x="", fill=class)) +
    geom_bar(width=1) +
    labs(x="",y="")
> b2
```


2) theta="y"로 함수 coord_polar() 실행: 파이 그래프 작성

- 각 조각의 각도: 막대의 높이에 비례
- 각 조각의 반지름: 막대의 폭에 비례

- 연습문제
 - 1. 패키지 lattice에 있는 데이터 프레임 barley는 미네소타 주 농경학자들이 보리 종류에 따른 수확량의 차이를 비교하기 위해 2년간 경작하여 얻은 자료이다. 설명변수로는 6군데 경작지(site), 10종류의 보리 (variety), 경작 년도(year)이고 반응변수는 수확량(yield)이다.
 - 1) 세 설명변수의 조합에 따른 수확량의 분포를 알아보는 다음의 그래 프를 작성해 보자.


```
> data(barley, package="lattice")
> barley %>%
    ggplot(mapping=aes(x=yield, y=variety, color=year)) +
    geom_point() +
    facet_wrap(~ site)
```

2) 보리 종류(variety)에 따른 수확량(yield)의 비교분석에서 경작지(site) 와 년도(year)의 효과를 단순 반복으로 처리한 다음의 그래프를 작성해 보자.

> barley %>%
 ggplot(mapping=aes(x=yield, y=variety, color=site, shape=year)) +
 geom_point()

3) 각 보리종류(variety)의 평균 수확량을 계산하여 다음과 같이 크기 순으로 나타내자.

```
> barley %>%
  group_by(variety) %>%
  summarise(mean_yield=mean(yield)) %>%
  arrange(desc(mean_yield))
```

# A tibble: 10 x 2	
variety	mean_yield
<fct></fct>	<dbl></dbl>
1 Trebi	39.4
2 Wisconsin No. 38	39.4
3 No. 457	35.8
4 No. 462	35.4
5 Peatland	34.2
6 Glabron	33.3
7 Velvet	33.1
8 No. 475	31.8
9 Manchuria	31.5
10 Svansota	30.4

- 2. 데이터 프레임 mpg의 변수 hwy는 자동차의 고속도로 연비를 나타낸다. 범주형 변수인 fl(연료 종류), trans(변속기 종류)에 따른 hwy의 분포를 알아보자.
 - 1) 변수 fl의 종류별 빈도를 다음과 같이 구하라.

>	mpg	%>% count(f1)		
#	A t	ibble: 5 x 2		
	f1	n		
	<chr> <int></int></chr>			
1	С	1		
2	d	5		
3	e	8		
4	р	52		
5	r	168		

2) 변수 f1에서 c(CNG), d(Diesel), e(Ethanol)는 제외하고 p(Premium)와 r(Regular)만을 대상으로 상대도수에 의한 막대 그래프를 작성해 보자.

```
> mpg_1 <- mpg %>% filter(fl %in% c("p","r"))
> mpg_1 %>%
    ggplot() +
    geom_bar(mapping=aes(x=fl, y=stat(prop), group=1))
```


3) 2)에서 사용된 데이터 프레임을 대상으로 변수 trans의 종류별 빈도를 다음과 같이 구하라.

> mpg_1 %>% count(trans)

# 4	A tibble: í	10 x 2
	trans	n
	<chr></chr>	<int></int>
1	auto(av)	5
2	auto(13)	2
3	auto(14)	78
4	auto(15)	33
5	auto(16)	6
6	auto(s4)	3
7	auto(s5)	3
8	auto(s6)	16
9	manual(m5)	56
10	manual(m6)	18

4) 2)에서 사용된 데이터 프레임을 대상으로 변수 trans의 범주를 'auto' 와 'manual'로 통합한 변수 am을 생성하고 변수 f1과의 관계를 다음과 같은 막대 그래프로 나타내 보자.

```
> mpg_2 <- mpg_1 %>%
    mutate(am=substr(trans,1,nchar(trans)-4))
> mpg_2 %>%
    ggplot() +
    geom_bar(mapping=aes(x=fl,fill=am), position="fill")
```


5) 2)에서 사용된 데이터 프레임을 대상으로 변수 f1에 따른 hwy의 분포를 상자그림으로 나타내 보자.

```
> mpg_2 %>%
    ggplot() +
    geom_boxplot(mapping=aes(x=fl,y=hwy))
```


6) 변수 am과 f1에 따른 hwy의 분포 비교를 위해 상자그림을 작성해 보자.

```
> mpg_2 %>%
    ggplot() +
    geom_boxplot(mapping=aes(x=fl,y=hwy)) +
    facet_wrap(~am, ncol=1) +
    coord_flip()
```


3. airquality

1) 월별 Ozone의 결측값 비율 그래프

```
> airs <- as_tibble(airquality)
> airs %>%
    mutate(Missing=is.na(Ozone)) %>%
    ggplot(aes(x=Month, fill=Missing)) +
    geom_bar(position="fill") +
    labs(y="Proportion of missing data")
```


2) Ozone의 월별 평균값 막대 그래프

```
> airs %>%
    group_by(Month) %>%
    summarise(m.Oz=mean(Ozone, na.rm=TRUE)) %>%
    ggplot(aes(x=Month, y=m.Oz)) +
    geom_bar(stat="identity", fill="steelblue") +
    labs(y="Mean Ozone")
```


- 3) Ozone과 Solar.R의 그룹별 산점도
 - Wind의 값이 평균값 이상인 그룹과 이하인 그룹
 - Temp의 값이 평균값 이상인 그룹과 이하인 그룹

4. mtcars

1) 변수 mpg와 disp, wt와 행의 이름을 변수로 변환한 변수 model만으로 이루어진 mtcars_t를 생성하고 처음 5개 케이스를 다음과 같이 출력하 라. 단, 변수 mpg의 값이 가장 작은 자동차부터 출력하되 mpg의 값이 같은 케이스는 변수 disp의 값이 큰 자동차가 먼저 나타나도록 하자.

```
> mtcars_t <- mtcars %>%
    rownames_to_column(var="model") %>%
    as_tibble() %>%
    select(model,mpg,disp,wt) %>%
    arrange(mpg, desc(disp)) %>%
    print(n=5)
```

- 2) disp와 mpg의 그룹별 산점도 작성
 - wt가 중앙값 이상인 그룹과 이하인 그룹
 - > p1 <- mtcars_t %>%
 mutate(gp_wt=if_else(wt>=median(wt),"Heavy","Not heavy")) %>%
 ggplot(aes(x=disp, y=mpg))
 - > p1 + geom_point(aes(color=gp_wt), size=2) +
 geom_smooth(aes(color=gp_wt), se=FALSE, method="lm")
 - > p1 + geom_point(size=2) + geom_smooth(se=FALSE, method="lm") +
 facet_wrap(~gp_wt)

5. mpg

- 1) 다음의 조건을 만족하는 데이터 프레임 mpg_1을 생성하고, 처음 다섯 케이스를 출력해 보자.
 - 변수 cyl이 4인 케이스만 선택하고, 변수 year는 요인으로 변환
 - 변수는 model, year, displ, cty, hwy만으로 이루어져 있으며, 케이스는 year가 작은 값부터 배열하되, year의 값이 같은 케이스는 displ이 큰 값부터 배열하고, 또한 displ의 값이 같은 케이스는 cty가 작은 값부터 배열해 보자.

```
# A tibble: 81 x 5
model year displ cty hwy
<chr> <fct> <fct> <dbl> <int> <int> <
1 4runner 4wd 1999 2.7 15 20
2 toyota tacoma 4wd 1999 2.7 15 20
3 4runner 4wd 1999 2.7 16 20
4 toyota tacoma 4wd 1999 2.7 16 20
5 forester awd 1999 2.5 18 25
# ... with 76 more rows
```

```
> mpg_1 <- mpg %>%
    filter(cyl==4) %>%
    mutate(year=factor(year)) %>%
    select(model, year, displ, cty, hwy) %>%
    arrange(year, desc(displ), cty) %>%
    print(n=5)
```

2) 변수 displ이 2.0 이상인 그룹과 미만인 그룹으로 구분하고 각 그룹별로 다른 색을 사용하여 변수 cty와 hwy의 산점도를 작성하되, year에 따라 두 그룹으로 구분하여 따로 작성하고 위아래로 배치해 보자. 단, 두 변수는 같은 값은 갖는 케이스가 많기 때문에 jittering을 실시하고 산점도를 작성해야 한다.

```
> p2 <- mpg_1 %>%
    mutate(gp_displ=if_else(displ>=2.0, "Large", "Small")) %>%
    ggplot()
```

> p2 + geom_jitter(aes(x=cty, y=hwy, color=gp_displ), size=2) +
 facet_wrap(~year, ncol=1)

3) 변수 displ이 2.0 이상인 그룹과 미만인 그룹으로 구분하여 변수 hwy의 상자그림을 작성하되, year에 따라 두 그룹으로 구분하여 따로 작성하고 옆으로 배치해 보자

> p2 + geom_boxplot(aes(x=gp_displ, y=hwy)) +
 facet_wrap(~year)

