Test 2

Dmitrii, Maksimov maksimov.dmitrii.m@gmail.com

February 17, 2023

Exercise 1

- a) $Q = \{x \in \mathbb{R}^n | \sum_{i=1}^n x_i^2 = 1 \text{ and } x_i \ge 0 \ \forall i = 1, ..., n\}$ Let $x = (1, 0)^T$, $y = (0, 1)^T \in Q$ and $z = (0.5, 0.5)^T \in \{\alpha x + (1 - \alpha)y\}$, where $\alpha = 0.5$, then $z \notin Q$. This is because $\sum_{i=1}^2 z_i \ne 1$ - non-convex
- b) $Q = \mathbb{R}^n$ convex
- c) $Q = \{x \in \mathbb{R}^n | \sum_{i=1}^n x_i < 0 \ \forall i = 1, ..., n\}$ Let $x, y \in Q$ and $z = \alpha x + (1 - \alpha)y$, then $z \in Q$. This is because $\sum_{i=1}^n z_i = \alpha \sum_{i=1}^n x_i + (1 - \alpha) \sum_{i=1}^n y_i < 0$ - convex
- d) $Q = \{0\}$ a single point is a convex set

Answer: a

Exercise 2

Answer: c

Exercise 3

- f(x) L-smooth and μ -strongly convex
 - a) if f(x) twice differentiable, then $\lambda_{min}(\nabla^2 f(x)) \ge \mu$ and $\lambda_{max}(\nabla^2 f(x)) \le L$ From lectures: $0 \le \nabla^2 f(x) \le LI_d$ and $\nabla^2 f(x) \ge \mu I_d$ - True
 - b) It can be that $L = \frac{\mu}{2}$ the answer is False, but I don't understand, could you explain?
 - c) $\forall x, y \ f(y) \le f(x) \langle \nabla f(x), y x \rangle + \frac{L}{2} ||y x||_2^2$ and $f(y) \ge f(x) - \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||_2^2$ - False $(+\langle \nabla f(x), y - x \rangle)$
 - d) $\forall x, y \ \langle \nabla f(y) \nabla f(x), y x \rangle \ge \frac{1}{\mu} ||\nabla f(x) \nabla f(y)||_2^2$ and $\langle \nabla f(y) \nabla f(x), y x \rangle \ge L ||x y||_2^2$. The first inequality should be $\frac{1}{L}$ rather than $\frac{1}{\mu}$ and the second one \le rather than \ge False.

Answer: a

Exercise 4

The function is convex, but not strictly convex since there are linear parts which are non-strictly convex.

Answer: b

Exercise 5

The function is L-smooth with $L=3\Rightarrow \max \nabla f(x)=3$. However, I don't understand what "for L < 3 the function is not L-smooth" means. Could you explain it?

Answer: d