

Appendix 2

Quantum Numbers (量子数)

➤ Quantum Numbers (量子数)

- ❖ In general, quantum numbers describe values of **conserved quantities** in the dynamics of a quantum system. (广义定义)
- ❖ In particular, quantum numbers can be defined as a set of numerical values that fully specify the quantum states of electrons in atoms. (狭义定义)
- ❖ In an atom, the electronic states can be fully determined by 4 quantum numbers:
 - 1) the principal quantum number n; 2) the azimuthal quantum number l,
 - 3) the magnetic quantum number m_i ; 4) the spin quantum number m_s .
- \clubsuit The 4 quantum numbers correspond to **a CSCO of the system**, i.e., \widehat{H} , \widehat{L}^2 , \widehat{L}_z , and \widehat{s}_z .

➤ Principal Quantum Number (主量子数)

ightharpoonup The principal quantum number (n) corresponds to the eigenvalues of total energy (\widehat{H}) by considering only the radial coordinates.

In the case of hydrogen atom:

$$E_n = \frac{E_1}{n^2} = \frac{-13.6 \text{ eV}}{n^2}$$

➤ Azimuthal Quantum Number (角量子数)

lacktriangle The azimuthal (angular) quantum number ($m{l}$) corresponds to the eigenvalues of **angular** momentum (\widehat{L}^2)

$$\widehat{L}^2\psi=\hbar^2l(l+1)\psi,$$

$$l = 0, 1, 2, \dots n - 1$$
 (*n* total)

Angular Momentum Quantum Number, ℓ	Name of Subshell	Shape	
0	s	Sphere	
1	р	Dumbbell	
2	d	Complex/double dumbbell	
3	f	More complex/ multiple lobes	

- ➤ Magnetic Quantum Number (磁量子数)
 - \clubsuit The magnetic quantum number (m) corresponds to the eigenvalues of the **angular** momentum in the z direction (\widehat{L}_z)

$$\widehat{L}_z \psi = m \hbar \psi$$

$$m = -l, \cdots, 0, \cdots, l \quad (2l + 1 \text{ total})$$

➤ Magnetic Quantum Number (磁量子数)

- ➤ Spin Quantum Number (自旋量子数)
 - ightharpoonup The spin quantum number (m_s) corresponds to the eigenvalues of the spin momentum in the z direction (\hat{s}_z)

$$\hat{s}_z \psi = m_s \hbar \psi$$
, $m_s = -s, \dots, s \ (2s + 1 \text{ total })$

➤ Atomic Orbitals (原子轨道)

➤ Electron Configuration (电子排布)

Aufbau Principle