FOR AEROBEE FLIGHT 4.13 GP-GT

GPO PRICE \$		
OTS PRICE(S) \$		
Hard copy (HC)	ВҮ	
Microfiche (MF)	L. C. CASTAGI	NOLA

MARCH 1965

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

COMPILATION OF CALIBRATION DATA FOR AEROBEE FLIGHT 4.13 GP-GT

 $\mathbf{B}\mathbf{y}$

L. C. Castagnola

National Aeronautics and Space Administration Goddard Space Flight Center

SUMMARY

An Aerobee 150A, designated Flight 4.13 GP-GT, was flown as an Aerobee performance vehicle and was heavily instrumented by personnel of GSFC's Sounding Rocket Instrumentation Section. This document contains a compilation of calibration data and curves for instrumentation aboard this rocket. In addition, payload telemetry channel allocations, pertaining to this report, are also contained.

TABLE OF CONTENTS

SUMMARY	j
TABLE OF CONTENTS	iii
LIST OF ILLUSTRATIONS	v
LIST OF TABLES	vii
INTRODUCTION	1
TELEMETRY REQUIREMENTS	1
CONCLUSION	2

LIST OF ILLUSTRATIONS

Figure Number	Title	Page
1	Accelerometer Frequency Response Curve	7
2	Accelerometer Assembly 1065 X-Axis (S/N1121) Calibration Curve	8
3	Accelerometer Assembly 1065 Y-Axis (S/N 1063) Calibration Curve	9
4	Accelerometer Assembly 1065 Z-Axis (S/N 1003) Calibration Curve	10
5	Inside Temperature Aft (S/N 44895) Calibration Curve	11
6	Inside Temperature Forward (S/N 47839) Calibration Curve	12
7	Fuel Bottle Temperature (S/N 47830) Calibration Curve	13
8	Aft Helium Bottle Temperature (S/N 44878) Calibration Curve	14
9	Oxidizer Bottle Temperature (S/N 44896) Calibration Curve	15
10	Fin Cuff Temperature (S/N 48792) Calibration Curve	16
11	Tail Can Bulkhead Temperature (S/N 48794) Calibration Curve	17
12	Helium Regulator Temperature (S/N 52316) Calibration Curve	18
13	Forward Skirt Helium Bottle Temperature (S/N 52313) Calibration Curve	19
14	Coolant Outlet Temperature (S/N 44893) Calibration Curve	20
15	Coolant Inlet Temperature (S/N 44894) Calibration Curve	21
16	Gas Regulator Pressure (S/N 11081) Calibration Curve	22

LIST OF ILLUSTRATIONS (con't)

Figure Number	<u>Title</u>	Page
17	Helium Tank Pressure (S/N 7411) Calibration Curve	23
18	Fuel Gas Line Pressure (S/N 11081) Calibration Curve	24
19	Fuel Line Pressure (S/N 11474) Calibration Curve	25
20	Oxidizer Line Pressure (S/N 11086) Calibration Curve	26
21	Oxidizer Injector Pressure (S/N 11090) Calibration Curve	27
22	Fuel Injector Pressure (S/N 11093) Calibration Curve	28
23	Fuel Coolant Inlet Pressure (S/N 11094) Calibration Curve	29
24	Fuel Coolant Outlet Pressure (S/N 11089) Calibration Curve	30
25	Chamber Pressure (S/N 11088) Calibration Curve	31
26	Booster Pressure (S/N 12529) Calibration Curve	32
27	Lateral Magnetometer (S/N 401) Calibration Curve	33
28	Longitudinal Magnetometer (S/N 404) Calibration Curve	34
29	Pitch Ogive Calibration Curve	35
30	Yaw Ogive Calibration Curve	36
31	Solar Aspect Sensor, Model 133E Code Reference Diagram	37
32	Solar Aspect Sensor, Model 133F Code Reference Diagram	38
33	Adcole Models 133E & F Grey Code Pulse Train .	39
34	Transducer Orientationvi	. 40

LIST OF TABLES

Table No.	<u>Title</u>	Page
1	FM/FM Telemetry System Frequency and Band Allocations	3
2	IRIG Band 13 Commutator Segment Allocations .	4
3	IRIG Band 10 Commutator Segment Allocations .	4
4	PPM Telemetry Systems Channel Allocations	5
5	SST II Channel 15 Commutator Segment Allocations	6
6	Code Table for Adcole Solar Aspect Sensors Models 133 E & F (6 sheets)	41

COMPILATION OF CALIBRATION DATA

FOR AEROBEE FLIGHT 4.13 GP-GT

INTRODUCTION

This document presents a compilation of calibration data and curves for instrumentation flown on Aerobee 150A. Flight 4.13 GP-GT. Launched from Wallops Island, Virginia on 26 September 1964, Flight 4.13's payload carried pressure and temperature transducers, solar aspect sensors, magnetometers, and a pitch-yaw ogive. Calibration curves and data (Figures 1 through 34) are supplied so that the experimenters can reduce acquired raw data.

Primary objectives of Flight 4.13 GP-GT were to gather extensive propulsion data on the Aerobee 150A, as well as vehicle environment data; i.e., temperatures, pressures, and acceleration.

TELEMETRY REQUIREMENTS

Flight 4.13 GP-GT carried one FM/FM telemetry system and two Pulse Position Modulation (PPM) telemetry systems for data transmission. The FM/FM system contained 13 subcarrier frequency bands all of which were allocated to instrumentation. Table 1 provides a breakdown of IRIG frequencies and allocations of the FM/FM telemetry system, which was modulated on a frequency of 256.2 mcs. Tables 2 and 3 provide segment allocations of commutated IRIG bands on the FM/FM telemetry system. In Table 1 note that IRIG band 14 was also commutated, but since data on band 14 does not pertain to this report, segment allocations are not listed.

The PPM telemetry systems were designated as SST I and SST II, transmitting on frequencies of 240.2 mcs and 231.4 mcs, respectively. Each PPM system contained 15 channels, which were allocated as shown in Table 4. Note that Channel 15 of SST II was commutated. Segment allocations for Channel 15 are provided in Table 5.

TEMPERATURE AND PRESSURE SENSORS

Temperature and pressure sensors, flown on Aerobee 150A Flight 4.13 GP-GT are defined and located as follows:

- T_{S2} Aft Skin Temperature; measured skin temperature of aft section of sustainer and was located on the under surface of shroud III.
- T_{s1} Forward Skin Temperature; measured skin temperature of forward section of sustainer and was located on the under surface of shroud III.
- T_{fb} Fuel Bottle Temperature; measured temperature at the fuel tank and was located under shroud III.

- T_{hb2} Aft Helium Bottle Temperature; measured temperature of the aft section of the helium tank and was located under shroud III.
- Tob Oxidizer Bottle Temperature; measured temperature of the oxidizer tank and was located under shroud III.
- T_{fc} Fin Cuff Temperature; measured temperature of fin III and was located on the underside of the leading edge of the fin cuff.
- Ttp Tail Can Bulkhead Temperature; measured temperature inside the tail can and was located between shrouds II and III on the aft bulkhead.
- Thr Helium Regulator Temperature; measured temperature of the helium-fuel pipe and was mounted on the pipe.
- Thbl Forward Skirt Helium Bottle Temperature; measured the temperature of the helium tank in the forward skirt and was mounted on the top bulkhead of the tank.
- T co Coolant Outlet Temperature; measured the temperature of the coolant outlet in the tail can and was mounted on the coolant outlet pipe.
- T_{ci} Coolant Inlet Temperature; measured the temperature of the coolant inlet in the tail can and was mounted on coolant inlet pipe.
- Pgr Gas Regulator Pressure; measured the regulated helium upstream pressure of the check valve in the regulator.
- P_{gb} Helium Tank Pressure; measured the pressure from the helium bottle in the regulator.
- P_{gfl} Fuel Gas Line Pressure; measured the regulated helium downstream pressure from the check valve in the regulator.
- P_{gf2} Fuel Line Pressure; measured the fuel flow from the fuel tank in the sustainer.
- ${
 m P}_{
 m ol}$ Oxidizer Line Pressure; measured the pressure of the oxidizer line and was located in the tail can plumbing.
- P_{oj} Oxidizer Injector Pressure; measured the pressure of the oxidizer injected into the thrust chamber.
- P_{fj} Fuel Injector Pressure; measured the pressure of the fuel injected into the thrust chamber.
- P_{fci} Fuel Coolant Inlet Pressure; measured the pressure of the coolant inlet fuel to the thrust chamber.
- P_{fco} Fuel Coolant Outlet Pressure; measured the pressure of the coolant outlet fuel to the thrust chamber.
- ${\bf P}_{\rm C}$ Chamber Pressure; measured the chamber pressure in the tail can.
- P_b Booster Pressure; measured the booster chamber pressure and was located on the booster's forward bulkhead.

CONCLUSION

This document is a preliminary issue for raw data reduction. Documents pertaining to performance instrumentation engineering and instrumentation flight are forthcoming. The instrumentation performance engineering report will detail the engineering requirements to provide precise acceleration, temperature, and pressure devices. Flight performance reports detail the background of the payload instrumentation; personnel participating in the program; detailed discussions of the experiment, telemetry, instrumentation, and other payload areas as applicable; timer sequences; integration operations; and field operations.

Table 1. FM/FM Telemetry System Frequency and Band Allocations

FREQUENCY	IRIG BAND	ALLOCATION
70 kcs	18	Solar aspect information
52.5 kcs	17	Accelerometer X-Axis
40 kcs	16	Accelerometer Y Axis
30 kcs	15	Accelerometer Z-Axis
22 kcs	14	Commutated (not provided in this report)
14.5 kcs	13	Commutated (see Table 2)
10.5	12	Sodium Hot oven
7.35 kcs	11	Sodium Cold oven
5.4 kcs	10	P _b , switched to commutator at T +3 seconds (see Table 3)
3.9 kcs	9	Nike valve monitor, switched at T +3 seconds to ACS roll position
3.0 kcs	8	Helium Regulator Temperature (T _{hr})
2.3 kcs	7	Forward Skirt Helium Bottle Temperature (Thbl)
1.7 kcs	6	Coolant Outlet Temperature (T _{CO})

Table 2. IRIG Band 13 Commutator Segment Allocations

SEGMENT	ALLOCATION
1. 4	Ground
2	2.5 volts calibration level
3	5.0 volts calibration level
5, 6, 11, 12, 16, 17, 18, 22, 23, 24 (cross-strapped)	Yaw ogive
7, 8, 13, 14, 15, 19, 20, 21, 25, 26 (cross-strapped)	Pitch ogive
9, 10, 27, 28 (cross- strapped)	Tip eject monitor valve
29, 30	5-volt pedestal (sync)

Table 3. IRIG Band 10 Commutator Segment Allocations

	SEGM	ENT	ALLOCATION
1,	2, 11,	12, 13 (cross-strapped)	Inside Temperature Forward (T _{s1})
3,	4, 14,	15, 16 (cross-strapped)	Inside Temperature Aft (T _{s2})
5,	6, 17,	18 (cross-strapped)	Aft Helium Bottle Temperature (T _{hb2})
7,	8, 20,	21, 22 (cross-strapped)	Fuel Bottle Temperature (T _{fb})
9,	10, 23	(cross-strapped)	Oxidizer Bottle Temperature (T _{ob})
	19)	Ground
	29		500 ohms calibration level
	30	<u> </u>	1100 ohms calibration level

Table 4. PPM Telemetry Systems Channel Allocations

	ALLOCATIONS		
CHANNEL	SST I	SST II	
1	Gas Bottle Pressure (Pgb)	High Energy Rate Output	
2	Gas Regulator Pressure (Pgr)	Low Energy Rate Output	
3	Fuel Line Pressure (Pgf2)	High Energy Rate Output	
4	Gas Line Pressure (Pgfl)	Low Energy Rate Output	
5	Fuel Coolant Inlet Pressure (P _{fci})	High Energy Rate Output	
6	Fuel Coolant Outlet Pressure (P_{fco})	Low Energy Rate Output	
7	Fuel Injector Pressure (Pfj)	High Energy Rate Output	
8	Chamber Pressure (P _c)	Low Energy Rate Output	
9	Oxidizer Line Pressure (P _{o1})	High Energy Rate Output	
10	Oxidizer Injector Pressure (Poj)	Low Energy Rate Output	
11	Load Cell A/switched to ACS at burnout	Longitudinal Magnetometer	
12	Load Cell B/switched to ACS at burnout	Lateral Magnetometer	
13	Load Cell C/switched to ACS at burnout	High Energy Rate Output	
14	Load Cell D/switched to g-reduction timer at burnout	Low Energy Rate Output	
15	Coolant Inlet Temperature (T _{ci})	Commutated (see Table #5)	
f	frequency response (SST II).		
f	hannels 2, 6, 10 and 14 were requency response (SST II).	cross-strapped to increase	

Table 5. SST II Channel 15 Commutator Segment Allocations

SEGMENT	ALLOCATIONS
1, 4	150 ohms calibration level
2	100 ohms calibration level
3	50 ohms calibration level
5, 7, 11, 13, 15, 17, 19, 21, 23, 25 (cross-strapped) 6, 8, 10, 12, 14, 16, 18,	Fin Cuff Temperature $(T_{ ext{fc}})$
20, 22, 24, 26, 28 (cross-strapped)	Tail Can Bulkhead Temperature (T _{tp})
9	Ground
29	50 ohms calibration level
30	130 ohms calibration level
27	Open

Figure 1. Accelerometer Frequency Response Curve

Figure 2. Accelerometer Assembly 1065 X-Axis (S/N 1121) Amplitude Calibration Curve

Figure 3. Accelerometer Assembly 1065 Y-Axis (S/N 1063) Amplitude Calibration Curve

Figure 4. Accelerometer Assembly 1065 Z-Axis (S/N 1003) Amplitude Calibration Curve

Figure 5. Skin Temperature Aft (S/N 44895) Calibration Curve

Figure 6. Skin Temperature Forward (5/N 47839) Calibration Curve

Figure 7. Fuel Bottle Temperature (S/N 47830) Calibration Curve

Figure 8. Aft Helium Bottle Temperature (S/N 44878) Calibration Curve

Figure 9. Oxidizer Bottle Temperature (S/N 44896) Calibration Curve

Figure 10. Fin Cuff Temperature (S/N 48792) Calibration Curve

Figure 11. Tail Can Bulkhead Temperature (S/N 48794) Calibration Curve

Figure 12. Helium Regulator Temperature (S/N 52316) Calibration Curve

Figure 13. Forward Skirt Helium Bottle Temperature (S/N 52313) Calibration Curve

Figure 14. Coolant Outlet Temperature (S/N 44893) Calibration Curve

Figure 15. Coolant Inlet Temperature (S/N 44894) Calibration Curve

Figure 16. Gas Regulator Pressure (S/N 11081) Calibration Curve

Figure 17. Helium Tank Pressure (S/N 7411) Calibration Curve

Figure 18. Fuel Gas Line Pressure (S/N 11081) Calibration Curve

Figure 19. Fuel Line Pressure (S/N 11474) Calibration Curve

Figure 20. Oxidizer Line Pressure (S/N 11086) Calibration Curve

Figure 21. Oxidizer Injector Pressure (S/N 11090) Calibration Curve

Figure 22. Fuel Injector Pressure (S/N 11093) Calibration Curve

Figure 23. Fuel Coolant Inlet Pressure (S/N 11094) Calibration Curve

Figure 24. Fuel Coolant Outlet Pressure (S/N 11089) Calibration Curve

Figure 25. Chamber Pressure (S/N 11088) Calibration Curve

Figure 26. Booster Pressure (S/N 12529) Calibration Curve

Figure 27. Lateral Magnetometer (S/N 401) Calibration Curve

Figure 28. Longitudinal Magnetometer (S/N 404) Calibration Curve

Figure 29. Pitch Ogive Calibration Curve

Figure 30. Yaw Ogive Calibration Curve

Figure 31. Solar Aspect Sensor, Model 133 E Code Reference Diagram

Figure 32. Solar Aspect Sensor, Model 133 F Code Reference Diagram

Figure 33. Adcole Models 133E and F Grey Code Pulse Train

Figure 34. Transducer Orientation

Table 6. Code Table For Adcole Solar Aspect Sensors Models 133 E & F
(Sheet 1 of 6)

0000000		+63.5°
0000001		+62.5°
0000010	••••••	+60.5°
0000011	•••••	+61.5°
0000100	•••••	+56.5°
0000101	•••••	+57.5°
0000110	• • • • • • • • • • • • • • • • • • • •	+59.5°
0000111	•••••	+58.5°
0001000	• • • • • • • • • • • • • • • • • • • •	+48.5°
0001001	•••••	+49.5°
0001010	• • • • • • • • • • • • • • • • • • • •	+51.5°
0001011	• • • • • • • • • • • • • • • • • • • •	+50.5°
0001100	• • • • • • • • • • • • • • • • • • • •	+55.5°
0001101	•••••	+54.5°
0001110	• • • • • • • • • • • • • • • • • • • •	+52.5°
0001111	• • • • • • • • • • • • • • • • • • • •	+53.5°
0010000	• • • • • • • • • • • • • • • • • • • •	+32.5°
0010001	•••••	+33.5°
0010010	• • • • • • • • • • • • • • • • • • • •	+35.5°
0010011		+34.5°
0010100		+39.5°
0010101	• • • • • • • • • • • • • • • • • • • •	+38.5°
0010110		+36.5°
0010111		+37.5°
	41	

Table 6. Code Table For Adcole Solar Aspect Sensors Models 133 E & F
(Sheet 2 of 6)

			,
0011000		+47.5°	(;
0011001		+46.5°	
0011010		+44.5°	
0011011		+45.5°	
0011100		+40.5°	
0011101	• • • • • • • • • • • • • • • • • • • •	+41.5°	
0011110		+43.5°	
0011111		+42.5°	
0100000		+0.5°	
0100001		+1.5°	
0100010		+3.5°	
0100011		+2.5°	
0100100		+7.5°	
0100101		+6.5°	
0100110		+4.5°	
0100111		+5.5°	
0101000		+15.5°	
0101001		+14.5°	
0101010		+12.5 $^{\circ}$	
0101011		+13.5°	
0101100		+8.5°	
0101101		+9.5°	
0101110		+11.5°	
0101111		+10.5°	

							•	
Table	6.	Code	Table	For Adcole	Solar A	spect Sensors	Models 133	E & F
			011000	00	• • • • • • •	+31.5°	(Sheet 3 of	6)
•			011000	01	• • • • • • •	+29.5°		
			011001	10	• • • • • • • •	+27.5°		
			011001	11	• • • • • • •	+28.5°		
			011010	00	• • • • • • • •	+24.5°		
			011010	01	• • • • • • • • •	+25.5°		
			011011	10	• • • • • • • • •	+26.5°		
			011011	11		+25.5°		
			011100	00	• • • • • • • •	+16.5°		
			011100	01	• • • • • • • •	+17.5°		
			011101	10	•••••	+19.5°		
			011101	11	• • • • • • • •	+18.5°		
			011110	00	• • • • • • • •	+23.5°		
			011110	01	• • • • • • •	+22.5°		
			011111	10	• • • • • • • •	+20.5°		
			011111	11		+21.5°		
			100000	00	• • • • • • • •	-63.5°		
			100000	01	• • • • • • •	-62.5°		
			100001	10		-60.5°		
			100001	l1	• • • • • • • •	-61.5°	,	
			100010	00		-56.5°		
			100010)1		-57.5°		
			100011	١٥		-59.5°		
			100011			-58.5°		
			100100	00		-48.5°		

Table 6. Code Table For Adcole Solar Aspect Sensors Models 133 E & F (Sheet 4 of 6)

1001001	• • • • • • • • • • • • • • • • • • • •	-49.5°
1001010	• • • • • • • • • • • • • • • • • • • •	-51.5°
1001011		-50.5°
1001100	• • • • • • • • • • • • • • • • • • • •	-55.5°
1001101	• • • • • • • • • • • • • • • • • • • •	-54.5°
1001110	• • • • • • • • • • • • • • • • • • • •	-52.5°
1001111	• • • • • • • • • • • • • • • • • • • •	-53.5°
1010000		-32.5 $^{\circ}$
1010001		-33.5°
1010010		-35.5°
1010011		-34.5°
1010100		-39.5°
1010101		-38.5°
1010110	• • • • • • • • • • • • • • • • • • • •	-36.5°
1010111		-37.5°
1011000	• • • • • • • • • • • • • • • • • • • •	-47.5 $^{\circ}$
1010001	• • • • • • • • • • • • • • • • • • • •	-46.5°
1011010		-44.5°
1011011		-45.5°
1011100		-40.5 $^{\circ}$
1011101		-41.5°
1011110		-43.5 $^{\circ}$
1011111		-42.5 $^{\circ}$
1100000	•••••	-0.5°

Table 6. Code Table For Adcole Solar Aspect Sensors Models 133 E & F
(Sheet 5 of 6)

1100001		-1.5°
1100010		-3.5°
1100011		-2.5°
1100100		-7.5°
1100101		-6.5°
1100110		-4.5°
1100111		-5.5°
1101000		-15.5°
1101001		-14.5°
1101010		-12.5°
1101011		-13.5°
1101100		-8.5°
1101101		-9.5°
1101110		-11.5°
1101111		-10.5°
1110000		-31.5°
1110001		-30.5°
1110010		-28.5°
1110011		-29.5°
1110100		-24.5°
1110101		-25.5°
1110110		-27.5°
1110111		-26.5°
1111000		-16.5°
	45	

Table 6. Code Table For Adcole Solar Aspect Sensors Models 133 E & F (Sheet 6 of 6)

NOTE:

Extreme right-hand digit is Most Significant Digit (MSD)
Extreme left-hand digit is Least Significant Digit (LSD)