A PERSONAL TRAINER APP TO SELF-TRAIN AND IMPROVE PRESENTATION SKILLS

21_22-J 02

OUR TEAM

Dr. Shyam MehraajSupervisor

Ms. Samanthi Siriwardene Co-Supervisor

IT18229912 Wanigasinghe N.T.

IT18227750 Wandana R.A.K.

IT17535090 Wedage C.V.

- The goal of doing a presentation is to attract the attention of the audience through a good delivery.
- A good presentation should be written and delivered in errorfree and comprehensible English, and the presenter should look well-prepared and rehearsed.

INTRODUCTION CONT.

- People are accustomed to practicing presentations beforehand, preferably with a friend, roommate, or teammate who will listen.
- The proposed system "Presently" will self-evaluate the presentation skills of an individual.

Is there a mechanism in place to evaluate presentation skills in advance?

RESEARCH PROBLEM

- •Audio analyzing
- PRONUNCIATION& VOCABULARYERRORS

- •Audio analyzing
- •MIS MATCH & MATCH OF TOPIC TONE

- Video analyzing
 - EMOTIONDETECTION

- Content analyzing
- **-SLIDE QUALITY**

MAIN OBJECTIVE

To develop a Mobile Responsive Web Application to evaluate the presentation skills.

SUB OBJECTIVES

- To provide a user with incorrect pronunciation and vocabulary mistakes and to detect the user what emotions and enhancements used to present the story.
- To detect user, the match or mismatch between topic tone and emotions used to present the story.
- To/check the grammar and spellings in presentation slides
- To suggest the user how to attract audience effectively by analyzing slides for accuracy of content and aesthetics using computer vision and rules of design-best-practices.

METHODOLOGY

Upload the video, audio and slides

Extract features

Analyze them

ProvideFeedbacks

SYSTEM OVERVIEW SLIIT SLIIT FACULTY OF COMPUTING

PRESENTLY

IT18205152 | Shehara

Specializing in Software Engineering

Provide incorrect pronunciation and vocabulary mistakes

BACKGROUND

Rehearse before the presentation.

 For effective communication, everyone should have a good vocabulary & correct pronunciation

RESEARCH QUESTION

- Identifying possible pronunciation issues that could arise throughout the presentation
- Evaluation of grammatical mistakes
 in enhancing the audience's
 understanding of the presentation

 Detection of the pronunciation mistakes that will occur during the presentation.

 Analyzation of vocabulary errors to make the presentation more accurate to the audience.

PRESENTLY

RESEARCH METHODOLOGY

PROGRESS

- Converted Speech to Text
 - Converted Text to speech
- Audio Signal Analysis

COMPLETED(50%)

- Audio Comparison
- Vocabulary Error Detection

90% Progress Presentation

- Generating Feedbacks
- System
 Integration

Final Presentation

CURRENT PROGRESS

1.Converted Speech to Text and Text to Speech

Environment setup to create Google cloud project Enable Speech to Text Google APIs Enable Text To Speech Google APIs Creation of Service Account

2. Audio Preprocessing

Pre-emphasis of voice signal
Framing and windowing of voice signals
Applying Fourier-Transform and Power Spectrum to audio signals
Mel Frequency Cepstrum Coefficient Array computing filter banks

ACHIEVEMENTS


```
In [7]: # Perform the text-to-speech request on the text input with the selected
    # voice parameters and audio file type
    response = client.synthesize_speech(
        input=synthesis_input, voice=voice, audio_config=audio_config
)

In [8]: # The response's audio_content is binary.
    with open("output.mp3", "wb") as out:
        # Write the response to the output file.
        out.write(response.audio_content)
        print('Audio content written to file "output.mp3" ')

Audio content written to file "output.mp3"
```

```
config = speech.RecognitionConfig(
    encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
    sample_rate_hertz=16000,
    language_code="en-US",
)

In [7]: # Detects speech in the audio file
    response = client.recognize(config=config, audio=audio)

for result in response.results:
    print("Transcript: {}".format(result.alternatives[0].transcript))

Transcript: how old is the Brooklyn Bridge
```


TASKS TO BE COMPLETED

- Audio Comparison
- Vocabulary Error Detection
 - Audio Extraction
 - Feedback Generation
 - System Integration

TOOLS & TECHNOLOGIES

- Google API
- Python 3.9
- TensorFlow

FUNCTIONAL REQUIREMENTS

NON-FUNCTIONAL REQUIREMENTS

- ✓ The system will check for pronunciation and vocabulary issues using the audio file.
- ✓ The system will provide feedback on the presenter's pronunciation and vocabulary errors.

- ✓ Performance
- ✓ Correctness
- ✓ Availability

IT18229912 | Wanigasinghe

Specializing in Software Engineering

Suggest the match or mismatch between topic tone and emotions

BACKGROUND

- Should maintain tone, pitch and emotions controlled.
- Performs the emotions and prosody naturalness of the presenter.

RESEARCH QUESTION

- Inability of finding the match and mis match between the tone of the speaker.
- Void of a system to detect the emotions during the presentation.

 Implement more accurate and intelligent application to identify presenters' emotion and prosody levels.

 Analyse the match or mismatch between topic tone and emotions used to present the story.

RESEARCH METHODOLOGY

PROGRESS

- Emotion Recognition model building
- Train the model and predict emotions

COMPLETED(50%)

- Improve Data Augmentation
- Overall accuracy increase
- Build model for prosody checking

90% Progress Presentation

- Build frontend for output
- System integration for overall feedback

Final Presentation

- Identified Datasets for emotions
- UI implement for user input
- Select feature extraction and create model
- Train model
- Take prediction
- Evaluate and improvements

ACHIEVEMENTS

TASKS TO BE COMPLETED

- Model creation for prosody checking
- Model combination
- Improve accuracy
- API creation and deployment
- Build frontend for overall output

TOOLS & TECHNOLOGIES

- Python 3.9
- Google Colab
- Praat
- Python Django
- Bootstrap
- TensorFlow
- Google API
- Fast API

TensorFlow

FUNCTIONAL REQUIREMENTS

NON-FUNCTIONAL REQUIREMENTS

✓ Using the audio analysis system will provide the tonality and prosody errors.

- ✓ Performance
- ✓ Correctness
- ✓ Availability

IT18227750 | Wandana R.A.K

Specializing in Data Science

Suggest the user what emotions and enhancements used to present the story

BACKGROUND

- Emotions, body language, eye contact, maintaining a confident posture is important.
- Speakers need to engage more with the audience and be confident during the presentation.

RESEARCH QUESTION

Inability to self-evaluate presenting emotions and body language postures due to a lack of an appropriate method or instrument.

- To correctly extract the related emotions and body language postures.
- Check whether the emotions and body language are presentation related.

RESEARCH METHODOLOGY

PROGRESS

- Emotion
 Classification
 model building
- Framewise emotion detection in video

COMPLETED(50%)

- Shoulder movements detection from the video
- Unrelated emotion detection

90% Progress Presentation

- Generating Feedbacks
- System Integration

Final Presentation

- Identified datasets for facial emotions
- Emotion Classification Model Building using Convolutional Neural Network (CNN)
- Detect Basic seven emotions from the video
- Getting the most used Emotion in the video

ACHIEVEMENTS

```
Epoch 1/48
Epoch 2/48
Epoch 3/48
Epoch 4/48
Epoch 5/48
Epoch 6/48
Epoch 7/48
Epoch 8/48
Epoch 9/48
Epoch 10/48
Epoch 11/48
Epoch 12/48
Epoch 13/48
Restoring model weights from the end of the best epoch.
```


TASKS TO BE COMPLETED

- Improve model accuracy
- Detecting unrelated emotions for the presentation
- Detecting shoulder movements from the video to recognize the emotions
- Feedback generation for the video
- System Integration

TOOLS & TECHNOLOGIES

- Google Colab
- Python 3.9
- Open CV
- TensorFlow
- Keras

FUNCTIONAL REQUIREMENTS

NON-FUNCTIONAL REQUIREMENTS

- ✓ System will extract features from the uploaded video.
- ✓ Using video analysis system will detect presenters' emotions and body gestures.

- ✓ Performance
- ✓ Correctness
- ✓ Availability

IT17535090 | Wedage C.V

Specializing in Data Science

analyzing slides for accuracy of content and aesthetics

BACKGROUND

 Slides keep an audience's attention during a presentation to provide additional supporting.

Checking the aesthetic quality of the slides and create textual error free quality slide.

RESEARCH QUESTION

- To create self-train web application to cater personal coach to check presentation slide quality by analyzing input pptx.
- Detect mistakes by Checking the accuracy of the content using grammar checker.

- Do the proofreading and check the presentation slides accuracy.
- Aesthetic-aware slides to image synthesis.
- As optional check the relevancy of the presentation topic with the content of the slides.

PRESENTLY

RESEARCH METHODOLOGY METHODOLOGY

PROGRESS

- Colors Detection
- Generate ratios
- Quantify sharpness
- Grammar checker
- Identify color contrast

COMPLETED(50%)

- Grammar Checker
- Expert system for generate feedback

90% Progress Presentation

System Integration

Final Presentation

CURRENT PROGRESS

- Detect colors from input presentation slides and Generate ratios according to the detected colors.
- Completed color cube accuracy according to WCAG levels, get the output values with most legible pairs and hoover text.
- Checked contrast for the background and foreground.
- According to Web Content Accessibility Guidelines (WCAG) 2.0, text and images of text should have a minimum contrast ratio of 4.5:1 (Level AA), while large text should have minimum contrast ratio of 3:1.
 - Quantify sharpness using quantify sharpness algorithm and get the score.

ACHIEVEMENTS

TASKS TO BE COMPLETED

- Advanced grammar checker
 - Feedback Generation
 - System Integration

TOOLS & TECHNOLOGIES

- Google Colab
- NLP with Python NLTK
- Python 3.9
- TensorFlow
- /Bootstrap

FUNCTIONAL REQUIREMENTS

NON-FUNCTIONAL REQUIREMENTS

- ✓ Obtain a presentation slide to get aesthetic analysis.
- ✓ Received final feedback (output) for the uploaded presentation and slides.

- ✓ Performance
- ✓ Correctness
- ✓ Availability

COMMERCIALIZATION

- Target Audience
 Employees in any industry
 University Students and lecturers
- Free Application
 Free Access to the application

1 Stage Free

2 Stage

Advertisement Fee

Thank You!

Tea

21_22-J 02

FACULTY OF COMPUTING

Any Questions?

Tea

21_22-J 02