Question 1

Answer

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Optimal value of alpha for ridge regression: 500

Optimal value of alpha for lasso regression: 1000

	Metric	Linear Regression	Ridge Regression	Lasso Regression
0	R2 Score (Train)	9.075931e-01	8.535234e-01	8.621632e-01
1	R2 Score (Test)	-2.180534e+25	8.517594e-01	8.474452e-01
2	RSS (Train)	6.263394e+11	9.928270e+11	9.342663e+11
3	RSS (Test)	5.285871e+37	3.593528e+11	3.698109e+11
4	MSE (Train)	2.476806e+04	3.118343e+04	3.024980e+04
5	MSE (Test)	3.473931e+17	2.864333e+04	2.905714e+04

Doubled alpha for ridge regression: 1000

Doubled alpha for lasso regression: 2000

	Metric	Linear Regression	Ridge Regression	Lasso Regression
0	R2 Score (Train)	9.075931e-01	8.316451e-01	8.359384e-01
1	R2 Score (Test)	-2.180534e+25	8.359191e-01	8.250896e-01
2	RSS (Train)	6.263394e+11	1.141120e+12	1.112020e+12
3	RSS (Test)	5.285871e+37	3.977514e+11	4.240033e+11
4	MSE (Train)	2.476806e+04	3.343126e+04	3.300223e+04
5	MSE (Test)	3.473931e+17	3.013483e+04	3.111341e+04

For ridge regression the most important predictor variables after the changes is:

zoning_FV 9.6

PavedDrive_Y 9.3

Neighborhood_ClearCr 8.7

GarageType_Attchd 8.8

BsmtCond_Gd 7.82

HouseStyle_2Story 7.76

LandContour Lvl 7.5

RoofMatl_Membran 7.4

GrLivArea 7.3

Electrical_SBrkr 7.2

For lasso regression the most important predictor variables after the changes is:

GrLivArea 26380

Neighborhood_NridgHt 12643

GarageCars 11379

Neighborhood_NoRidge 8878

TotalBsmtSF 7648

BsmtExposure_Gd 6762

BsmtFinType1_GLQ 5380

RoofMatl_WdShngl 5379

SaleType_New 4401

Foundation_PConc 4112

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Answer

I would choose ridge over lasso because of several factors:

- 1. ridge has lesser alpha therefore lesser penalty and regularization as more regularization occurs the more the model is closer to underfitting
- 2. r2 score of ridge is lesser.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Answer

Before:

GrLivArea 26974.716924

Neighborhood_NridgHt 12751.967853

GarageCars 9729.528831

Neighborhood_NoRidge 9702.718035

BsmtExposure_Gd 7153.316067

After:

2ndFlrSF 20358.139141

1stFlrSF 16156.906414

TotalBsmtSF 9392.504423

GarageArea 8719.892347

RoofMatl_WdShngl 7308.885343

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Answer

- 1. By eliminating extreme outliers the dataset
- 2. By having a threshold in the dataset
- 3. By making sure you are using the right model for the dataset

These optional steps will bridge the gap closer between train and test data metrics such as accuracy, rss, rmse, etc.

A model is more robust and generalizable when train and test metrics are closer in value.