Métodos Bayesianos en modelos RKHS para regresión funcional

Borrador de ideas y resultados preliminares

Antonio Coín José R. Berrendero Antonio Cuevas

16 de diciembre de 2021

Universidad Autónoma de Madrid Departamento de Matemáticas

Bayesiana

Regresión Lineal Funcional

Bayesiana

Regresión Lineal Funcional

Marco teórico

Planteamiento Bayesiano

Modelo RKHS: $Y = \alpha_0 + \Psi_X^{-1}(\alpha) + \epsilon$, donde $\alpha \in \mathcal{H}_K$ y $\epsilon \sim \mathcal{N}(0, \sigma^2)$, i.e.:

$$Y_i \mid \theta, X_i = x_i \sim \mathcal{N}\left(\alpha_0 + \sum_{j=1}^p \beta_j x_i(\tau_j), \ \sigma^2\right).$$

Distribuciones a priori:

$$egin{aligned} \pi(lpha_0,\log\sigma)&\propto 1,\ & au&\sim \mathcal{U}([0,1]^p),\ eta&\mid au,\sigma^2&\sim \mathcal{N}\left(b_0,g\sigma^2\left[\mathcal{X}_ au'\mathcal{X}_ au+\eta\lambda_{\sf max}(\mathcal{X}_ au'\mathcal{X}_ au)
ight]^{-1}
ight), \end{aligned}$$

Log-posterior:

$$egin{aligned} \log \pi(eta, au,lpha_0,\log\sigma\mid oldsymbol{Y}) &\propto rac{1}{2}\log|G_{ au}|-(p+n)\log\sigma \ &-rac{1}{2\sigma^2}\left(\|oldsymbol{Y}-lpha_0oldsymbol{1}-\mathcal{X}_{ au}eta\|^2+rac{1}{g}(eta-b_0)'G_{ au}(eta-b_0)
ight) \end{aligned}$$

Modelo Bayesiano

Figura 1: Relaciones entre los parámetros del modelo.

Aproximación de la posteriori

Procedimiento: Utilizar métodos MCMC para aproximar la distribución a posteriori. En concreto, se barajan tres alternativas:

- Affine-Invariant Ensemble Sampler (emcee). Conjunto de cadenas que se influencian mutuamente para dar cada paso.
- NUTS. Algoritmo que utiliza información del gradiente de la función objetivo para dar cada paso.
- Metropolis. Algoritmo estándar de markov chain monte carlo.

Los resultados entre NUTS y emcee son similares.

Estimación de máxima verosimilitud

Una primera aproximación consiste en estimar directamente los parámetros por máxima verosimilitud mediante un enfoque computacional.

- Usamos el algoritmo estocástico basin-hopping, un método de dos fases que combina minimización local con un procedimiento de salto global.
- ullet Como algoritmo de minimización local escogemos el método quasi-Newton *L-BFGS-B*, que permite especificar restricciones para au.
- Como el algoritmo implica aleatoriedad, hacemos varias ejecuciones independientes y elegimos la estimación que proporcione un mayor valor del likelihood.

Model checking

- Análisis de la traza de las cadenas y de la distribución a posteriori de los parámetros. Se obtienen **intervalos creíbles** para los parámetros.
- En cada paso obtenemos una estimación $\tilde{\theta}_m$, y podemos generar $Y^{(m)*} \mid \theta_m, X$ siguiendo el modelo asumido.
- Bayesian p-values: p = P(T(Y*) ≤ T(Y) | Y) para ciertas elecciones de T: mínimo, máximo, mediana, media. Se calcula contando la proporción de muestras generadas que cumplen la desigualdad, y se espera que esté en torno a 0.5.

Model checking II

Figura 2: Posterior predictive checks bajo un modelo RKHS.

Predicciones

Estimación puntual: Se resume la distribución a posteriori de los parámetros $\theta \mid Y$ mediante un estimador puntual (media, mediana, moda), y se utilizan para predecir según el modelo:

$$\hat{Y}_i = \hat{\alpha}_0 + \sum_{j=1}^p \hat{\beta}_j x_i(\hat{\tau}_j), \quad i = 1, \ldots, n.$$

Estimación distribucional: Se utiliza la media de todas las muestras generadas de Y^* como predicción:

$$\hat{Y} = \frac{1}{M} \sum_{m=1}^{M} Y^{(j)*}.$$

En ambos casos se puede considerar solo una de cada k muestras.

7

Predicciones II

Podemos hacer también una selección de p variables usando los estimadores puntuales de $\tau \mid Y$, y después aplicar cualquier algoritmo de regresión lineal.

Figura 3: Distribución a posteriori estimada para los puntos de impacto.

En cualquier caso, medimos el error usando el MSE como métrica.

Regresión Lineal Funcional Bayesiana

Dayesiana

Experimentos

Datos sintéticos

Se consideran 150 ejemplos de $X \sim GP(0, K(s, t))$ y tres posibles variantes de K: movimiento browniano fraccional (H = 0.8), Ornstein-Uhlenbeck y kernel RBF.

Se genera la respuesta Y acorde a dos modelos, RKHS y L^2 . Concretamente, se elige

$$Y_i \sim \mathcal{N}(5 - 5X_i(0.1) + 10X_i(0.8), 0.5)$$

ó

$$Y_i \sim \mathcal{N}\left(5 + \int_0^1 \log(1+4t)X_i(t) dt, \ 0.5\right).$$

Consideramos una malla regular de N=100 puntos en [0,1], y un reparto de 100 ejemplos para entrenamiento y 50 para evaluación.

Datos reales

Se consideran dos conjuntos de datos reales.

- **Tecator:** Contiene 215 ejemplos de mediciones de *absorbancia* en muestras de carne para intentar predecir su contenido en grasa.
- Aemet: Contiene 73 ejemplos de curvas de temperatura, a partir de las cuales se intenta predecir la precipitación total.

En ambos casos hacemos una división 80 % - 20 % para entrenamiento y *test*.

Preprocesado de los datos

- Se centran los regresores para que tengan media 0. Opcionalmente, se pueden estandarizar en cada punto de la malla.
- Se permite sustituir los datos X_i por su desarrollo en una base de Fourier, con un número determinado de coeficientes. De esta forma realizamos un suavizado de las curvas.

Algoritmos de comparación

Regresión lineal multivariante: Regresión Lineal estándar, Lasso (L^1), Ridge (L^2).

Regresión no lineal multivariante: SVM con kernel RBF.

Regresión lineal funcional: Modelo L^2 , KNN Funcional.

Reducción de dimensión: PCA Funcional (proyección sobre coeficientes).

Selección de variables: Aleatoria.

Se entrenan todos ellos sobre el conjunto de entrenamiento, haciendo 5-fold cross validation para escoger los mejores hiperparámetros en cada caso (valor de regularización, número de componentes, ...).

Metodología experimental

- Para cada conjunto de datos consideramos tres posibles valores de p y cuatro posibles valores de η:
 - $p \in \{2,3,4\}$ para los datos sintéticos y $p \in \{3,4,5\}$ para los datos reales.
 - $\eta \in \{0.01, 0.1, 1.0, 10.0\}.$
- Para aumentar la estabilidad hacemos 5 repeticiones de cada modelo.
 Es decir, entrenamos un total de 60 modelos sobre el conjunto de entrenamiento
- Con el **mejor modelo obtenido** se realiza también una selección de variables basada en los valores de τ estimados mediante los distintos estimadores puntuales.

Además, repetimos este proceso con los datos suavizados en una base de Fourier con 11 elementos (también con los algoritmos de comparación).

Metodología experimental II

Fijamos algunos hiperparámetros:

- Número de cadenas: 64.
- Número de pasos: 100 + 1000.
- Movimientos: elección aleatoria (ponderada) entre dos de los recomendados, stretch y walk.
- Inicialización: Entorno aleatorio del MLE + muestras de las distribuciones a priori.
- Prior de β : b_0 se elige como el MLE de β , y fijamos g=5 (recomendado en *Grollemund et al. (2019)*).

Nota: El valor de g no parece afectar al resultado, por lo que podríamos eliminar este parámetro.

Resultados RKHS

Sin base

Kernel	Victoria	Victoria sel. variables
fBM	✓	✓
O-U	1	✓
RBF	✓	✓

Base Fourier(11)

Kernel	Victoria	Victoria sel. variables
fBM	✓	✓
O-U	✓	X
RBF	✓	✓

Resultados RKHS II

Figura 4: MSE de los 5 mejores modelos en cada caso con el modelo subyacente RKHS y sin usar suavizado con bases. Distinguimos los algoritmos de comparación, nuestro algoritmo Bayesiano (emcee), y nuestra selección de variables Bayesiana.

Resultados RKHS III

Figura 5: MSE de los 5 mejores modelos en cada caso con el modelo subyacente RKHS y con base de Fourier.

Resultados L²

Sin base

Kernel	Victoria	Victoria sel. variables
fBM	Х	Х
O-U	X	X
RBF	X	X

Base Fourier(11)

Kernel	Victoria	Victoria sel. variables
fBM	✓	✓
O-U	✓	✓
RBF	X	X

Resultados L² II

Figura 6: MSE de los 5 mejores modelos en cada caso con el modelo subyacente L^2 y sin usar suavizado con bases.

Resultados L² III

Figura 7: MSE de los 5 mejores modelos en cada caso con el modelo subyacente L^2 y con base de Fourier.

Resultados datos reales

Sin base

Dataset	Victoria	Victoria sel. variables
Tecator	Х	X
Aemet	X	✓

Base Fourier(11)

Dataset	Victoria	Victoria sel. variables
Tecator	X	Х
Aemet	X	✓

Resultados datos reales II

Figura 8: MSE de los 5 mejores modelos en cada caso con datos reales y sin usar suavizado con bases.

Resultados datos reales III

Figura 9: MSE de los 5 mejores modelos en cada caso con datos reales y con base de Fourier.

Algunas observaciones

- Por cada modelo entrenado obtenemos 4 estimadores y 3 estrategias de selección de variables.
- En general, se obtienen mejores resultados con el uso de la base.
- El tiempo medio de entrenamiento de cada modelo es de unos 20-30 segundos.
- En ocasiones, nuestro algoritmo supera con holgura a todos los algoritmos de comparación. Cuando pierde, suele ser frente a uno o dos de ellos (y por poco), pero sigue superando al resto.
- Se puede considerar como algoritmo de comparación el estimador de máxima verosimilitud de los parámetros. En casi todas las pruebas experimentales, el desempeño de nuestro algoritmo supera al del MLE.

Dificultades

- Hay multitud de grados de libertad: estandarización de regresores y/o variable respuesta, elección o no de una base (¿cuál?,) algoritmo de estimación del MLE, número, longitud y movimientos de las cadenas MCMC, elección de distribuciones a priori, elección de g, b₀ y η, etc.
- El algoritmo MCMC es costoso, y en conjuntos de datos grandes las estrategias de cross-validation para seleccionar parámetros pueden no ser viables.
- Es necesario un procedimiento para seleccionar el valor de p (BIC, WAIC, WBIC, cross-validation, ...).
- Debido a la aleatoriedad del algoritmo, los resultados pueden variar sustancialmente de una ejecución a otra.
- La distribución a priori para β depende en gran medida del valor de b₀ escogido. Si su estimación inicial no es buena, el algoritmo no funciona demasiado bien.

Dificultades II

- Hay un problema de identificabilidad de los coeficientes (son intercambiables), que se agudiza especialmente al usar varias cadenas.
- En el caso en el que el modelo subyacente es RKHS, es posible que no se recuperen los verdaderos valores de los parámetros debido a interacciones entre los coeficientes (si p es mayor que el número real de componentes).
- El uso de distribuciones a priori impropias implica comprobar que $\int_{\Theta} \pi(Y\mid\theta)\pi(\theta)\,d\theta<\infty.$

Alternativas

- Explorar el concepto de online learning aplicado a esta situación, por ejemplo usando como priori de nuevos datos la posteriori aprendida.
 Estudiar la consistencia de la distribución a posteriori.
- Utilizar otras herramientas de suavizado en lugar de bases de Fourier.
- ullet Sustitutir la distribución a priori de eta por otra que requiera menos hiperparámetros.
- Sustituir las distribuciones impropias por otras propias.

Bayesiana

Regresión Logística Funcional

Bayesiana

Marco teórico

Regresión Logística Funcional

Planteamiento Bayesiano

Modelo: Cada Y_i se puede ver como una variable aleatoria de Bernoulli $\mathcal{B}(p(x_i))$, con

$$p_i \equiv p(x_i) = \mathbb{P}(Y_i = 1 \mid X_i = x_i) = \frac{1}{1 + \exp\left\{-\alpha_0 - \sum_{j=1}^p \beta_j x_i(\tau_j)\right\}}.$$

Distribuciones a priori: Igual que en regresión lineal.

Log-posterior:

$$\begin{split} \log \pi \big(\beta, \tau, \alpha_0, \log \sigma \mid Y \big) &\propto \\ &\sum_{i=1}^n \left[\left(\alpha_0 + \Psi_{x_i}^{-1}(\alpha) \right) y_i - \log \left(1 + \exp \left\{ \alpha_0 + \Psi_{x_i}^{-1}(\alpha) \right\} \right) \right] \\ &+ \frac{1}{2} \log |G_{\tau}| - p \log \sigma - \frac{1}{2g\sigma^2} (\beta - b_0)' G_{\tau} (\beta - b_0). \end{split}$$

Model checking

Figura 10: Posterior predictive checks bajo un modelo RKHS.

Predicciones

- Fijamos un umbral en 0.5 para establecer la pertenencia a las clases.
- Los estimadores puntuales y la selección de variables son análogos al caso de regresión lineal.
- Tenemos ahora dos estimadores basados en la distribución a posteriori (similares a los ensembles de clasificadores):
 - Basado en el voto mayoritario de las muestras Y^* generadas.
 - Basado en la media de las probabilidades p_i* generadas (con aplicación posterior del umbral).
- Se usa el *accuracy* (precisión) para evaluar los modelos.

Experimentos

Bayesiana

Regresión Logística Funcional

Datos sintéticos

Seguimos la misma estrategia de generación de datos antes. Se consideran las mismas tres funciones de covarianza y se genera la respuesta tanto con un modelo RKHS como L2, i.e.:

$$Y_i \sim \mathcal{B}\left(\frac{1}{1 + \exp\left\{0.5 + 5X_i(0.1) - 10X_i(0.8)\right\}}\right)$$

ó

$$Y_i \sim \mathcal{B}\left(rac{1}{1+\exp\left\{0.5-\int_0^1\log(1+4t)X_i(t)\,dt
ight\}}
ight).$$

Se introduce un pequeño ruido aleatorio en las etiquetas, y además se intenta que ambas clases estén balanceadas.

Datos reales

Se consideran dos conjuntos de datos reales.

- Medflies: Contiene 534 ejemplos de mediciones del número de huevos diario puesto por una serie de moscas, para intentar predecir si viven mucho o poco.
- **Growth**: Contiene 93 ejemplos de curvas de altura en niños y niñas.

En ambos casos hacemos una división 80% - 20% para entrenamiento y *test*.

Algoritmos de comparación

Clasificación lineal multivariante: Regresión Logística, SVM lineal.

Clasificación no lineal multivariante: SVM con kernel RBF.

Clasificación funcional: *Maximum Depth, Nearest Centroid* Funcional, KNN Funcional.

Reducción de dimensión: PCA Funcional (proyección sobre coeficientes).

Selección de variables: Aleatoria, *Recursive Maxima Hunting*, *RKVS* (Mahalanobis).

Mismo preprocesado y metodología experimental que en el caso de regresión lineal, utilizando esta vez 9 coeficientes de Fourier.

Resultados RKHS

Sin base

Kernel	Victoria	Victoria sel. variables
fBM	Х	Х
O-U	X	✓
RBF	1	X

Base Fourier(9)

Kernel	Victoria	Victoria sel. variables
fBM	✓	✓
O-U	✓	\checkmark
RBF	✓	✓

Resultados RKHS II

Figura 11: Precisión de los 5 mejores modelos en cada caso con el modelo subyacente RKHS y sin usar suavizado con bases. Distinguimos los algoritmos de comparación, nuestro algoritmo Bayesiano (emcee), y nuestra selección de variables Bayesiana.

Resultados RKHS III

Figura 12: Precisión de los 5 mejores modelos en cada caso con el modelo subyacente RKHS y con base de Fourier.

Resultados L²

Sin base

Kernel	Victoria	Victoria sel. variables
fBM	Х	Х
O-U	1	X
RBF	✓	✓

Base Fourier(9)

Kernel	Victoria	Victoria sel. variables
fBM	X	✓
O-U	X	\checkmark
RBF	✓	✓

Resultados L² II

Figura 13: Precisión de los 5 mejores modelos en cada caso con el modelo subyacente L^2 y sin usar suavizado con bases.

Resultados L² III

Figura 14: Precisión de los 5 mejores modelos en cada caso con el modelo subyacente L^2 y con base de Fourier.

Resultados datos reales

Sin base

Dataset	Victoria	Victoria sel. variables
Medflies	Х	X
Growth	✓	✓

Base Fourier(9)

Dataset	Victoria	Victoria sel. variables
Medflies	X	Х
Growth	✓	✓

Tanto en las victorias como en las derrotas, la precisión es muy similar. Podemos considerar un empate en ambos conjuntos.

Resultados datos reales II

Figura 15: Precisión de los 5 mejores modelos en cada caso con datos reales y sin usar suavizado con bases.

Resultados datos reales III

Figura 16: Precisión de los 5 mejores modelos en cada caso con datos reales y con base de Fourier.