Лабораторная работа 9

Модель «Накорми студентов»

Лихтенштейн Алина Алексеевна

Содержание

1	Введение	4
2	Выполнение лабораторной работы 2.1 Упражнение	5 7
3	Выводы	12
4	Список литературы	13

Список иллюстраций

2.1	Граф сети модели «Накорми студентов»	5
2.2	Декларации модели «Накорми студентов»	6
2.3	Модель «Накорми студентов»	6
2.4	Запуск модели «Накорми студентов»	7
2.5	Пространство состояний для модели «Накорми студентов»	11

1 Введение

Цель работы

Реализовать модель "Накорми студентов" в CPN Tools.

Задание

- Реализовать модель "Накорми студентов" в CPN Tools;
- Вычислить пространство состояний, сформировать отчет о нем и построить граф.

2 Выполнение лабораторной работы

Рассмотрим пример студентов, обедающих пирогами. Голодный студент становится сытым после того, как съедает пирог.

Таким образом, имеем: - два типа фишек: «пироги» и «студенты»; - три позиции: «голодный студент», «пирожки», «сытый студент»; - один переход: «съесть пирожок».

Нарисуем граф сети. Для этого с помощью контекстного меню создаём новую сеть, добавляем позиции, переход и дуги (рис. 2.1).

Рис. 2.1: Граф сети модели «Накорми студентов»

Зададим новые декларации модели: типы фишек, начальные значения позиций, выражения для дуг. (рис. 2.2).

```
▼Declarations
▶ Standard declarations
▼ colset s=unit with student;
▼ colset p=unit with pasty;
▼ var x:s;
▼ var y:p;
▼ val init_stud = 3`student;
▼ val init_food = 5`pasty;
```

Рис. 2.2: Декларации модели «Накорми студентов»

Зададим тип s фишкам, относящимся к студентам, тип p — фишкам, относящимся к пирогам, задаём значения переменных x и у для дуг и начальные значения мультимножеств init_stud и init_food. В результате получим работающую модель (рис. 2.3).

Рис. 2.3: Модель «Накорми студентов»

Запустим модель. Фишки типа «пирожки» из позиции «еда» и фишки типа «студенты» из позиции «голодный студент», пройдут через переход «съесть пирожок», попадут в позицию «сытый студент» и преобразуются в тип «студенты» (рис. 2.4).

Рис. 2.4: Запуск модели «Накорми студентов»

2.1 Упражнение

Вычислим пространство состояний. Прежде, чем пространство состояний может быть вычислено и проанализировано, необходимо сформировать код пространства состояний. Этот код создается, когда используется инструмент Войти в пространство состояний. Сформируем отчёт о пространстве состояний и проанализируем его. Чтобы сохранить отчет, необходимо применить инструмент Сохранить отчет о пространстве состояний к листу, содержащему страницу сети и ввести имя файла отчета.

Из полученного отчета можно узнать:

- В графе 4 узла и 3 дуги (4 состояния и 3 перехода).
- Границы значений для каждого элемента: голодные студенты (максимум 3, минимум 0), сытые студенты (максимум 3, минимум 0), еда (максимум 5, минимум 2, минимальное значение 2, так как в конце симуляции
 - остаются пирожки).
- Границы мультимножеств.
- Маркировка home равная 4.
- Маркировка dead равная 4.

CPN Tools sta	te space report	for:					
/home/openmodelica/stud_eat.cpn							
Report generated: Fri May 24 02:24:03 2024							
Statistics							
State Space							
Nodes:	4						
Arcs:	3						
Secs:	0						
Status:	Full						
Scc Graph							
Nodes:	4						
Arcs:	3						
Secs:	0						
Boundedness	Properties						
Best Intege	r Bounds						
		Upper	Lower				
nakormi_	studenta'food 1	5	2				
nakormi_	studenta'hungry_	_student 1					

• Нет бесконечных последовательностей вхождений.

nakormi_studenta'satisfied_student	1
3	0
Best Upper Multi-set Bounds	
nakormi_studenta'food 1	
5`pasty	
nakormi_studenta'hungry_student 1	
3`student	
nakormi_studenta'satisfied_student	1
3`student	
Best Lower Multi-set Bounds	
nakormi_studenta'food 1	
2`pasty	
nakormi_studenta'hungry_student 1	
empty	
nakormi_studenta'satisfied_student	1
empty	
Home Properties	
Home Markings	
[4]	
Liveness Properties	

De	ad Markings
	[4]
De	ad Transition Instances None
Li	ve Transition Instances None
Fai	rness Properties
	No infinite occurrence sequences.
Пс	остроим граф пространства состояний:

Рис. 2.5: Пространство состояний для модели «Накорми студентов»

3 Выводы

В процессе выполнения данной лабораторной работы была реализована модель "Накорми студентов" в CPN Tools.

4 Список литературы

Королькова А.В., Кулябов Д.С. Моделирование информационных процессов