Післязбиральна обробка зернової маси

ПЛАН ЛЕКЦІЇ

- 1. Завдання та види технологій післязбиральної обробки вороху зерна.
 - 2. Технології очищення зернових мас.
 - 3. Вентилювання зернових мас.
 - 3.1. Функції активного вентилювання.
 - 3.2. Типи установок для активного вентилювання.
 - 4. Сушіння зернових мас:
 - 4.1. Способи сушіння.
 - 4.2. Типи сушарок.

Рекомендована література:

- 1. Подпрятов Г.І., Скалецька Л.Ф., Сеньков А.М., Хилевич В.С. Зберігання і переробка продукції рослинництва. К.: "Мета", 2002.
- 2. Лесик Б. В., Трисвятський Л. О., Снежко В. Л. Зберігання і технологія переробки сільськогосподарських продуктів. К., "Вища школа", 1980.

Післязбиральна обробка зернових мас сукупність технологічних операцій, які проводять у післязбиральний період.

Починається з оцінки якості ЗМ за показниками вологості, вмісту домішок, їх елементного складу. Тік повинен мати відкриту і закриту частини (на 1 т зерна – 1,0-1,5 м²)

ПІДВИЩИТИ ЯКІСТЬ ЗЕРНОВИХ МАС ДОВЕСТИ ДО ВИМОГ СТАНДАРТУ

ПІДВИЩИТИ СТІЙКІСТЬ ПІД ЧАС ЗБЕРІГАННЯ

Повний цикл ПЗОЗМ включає

Відповідно до вологості вороху, який надходить на тік, здійснюють:

- до 14% (16%): первинне очищення сортування;
- від 14 до 20 %: первинне очищення сушіння сортування;
- понад 20 %: первинне очищення сушіння відлежування друге сушіння сортування.

Види технологій ПЗОЗМ

Поточні лінії поділяють на:

Роздільна операції виконуються кількома окремими машинами зерноочисні агрегати вороху (ЗАВ). Південні регіони

зерноочисно-сушильні комплекси (КЗС). Полісся, Лісостеп

Поточна – доведення зерна до потрібної кондиції за один пропуск.

спеціальні лінії

Зерносушильний комплекс КЗС-20Ш з продуктивністю 20 т/год

2. Очищення зернових мас

Сепарування в потоці повітря

ґрунтується на різниці домішок І зерна за питомою масою

Сепарування на ситах

ґрунтується на різниці домішок І зерна за товщиною І шириною

Способи очищення та сортування зерна

Сепарування на трієрах

ґрунтується на різниці домішок І зерна за довжиною (вівсюжні і кукільні трієри)

Сепарування на гірках

Зерно розділяють за властивостями поверхні та її формою

Сепарування на електромагнітних установках —

циліндри, в які засипають металевий порошок (1 - 2 % від зернової маси).

Черговість проведення очищення

- Насамперед обробляють партії зерна:
- з високою вологістю і засміченістю;
- заражені шкідниками і хворобами;
- засмічені домішками, які передають насінню нехарактерний запах;
- 🛚 зерно, яке має ознаки зниження якості.

ТЕХНОЛОГІЇ ОЧИЩЕННЯ ЗЕРНОВИХ МАС

Попереднє очищення

вологість 18-40% і засміченість 10-20%.

Виділяють не менше 50% домішок (залишок домішок довжиною 50 мм – не більше 0,2%)

Первинне очищення

вологість не більше

18% і засміченість до

8%. Здійснюють на

решітних та

безрешітних машинах.

Вторинне очищення

(для насінного зерна) Насіння за чистотою повинно відповідати вимогам стандарту

За будовою робочих органів зерноочисні машини поділяють на:

- повітряні (безрешітні)
- повітряно-решітні
- 💌 трієрні
- повітряно-решітно-трієрні

Машини для очищення зерна

Зерноочисна машина видаляє органічні домішки, пил, пісок перед завантаженням зерна у сушарку

МЗУ 40 — компактний повітряно решітний сепаратор з двома решітними станами і двома пневмосепараторами. Може бути використаний і для вторинного очищення

Машина вторинної очистки зерна стаціонарна МС-4,5С

СЕПАРАТОР САД

Загальний вигляд

Принцип роботи

3. Ветилювання зернових мас

(можливе завдяки шпаруватості)

За інтенсивністю та характером руху повітря в насипу розрізняють вентилювання

Пасивне (провітрювання)

характеризується малим повітрообміном Активне характеризується інтенсивним повітрообміном у насипу

Активне вентилювання — примусова подача повітря через зернову масу без її переміщення. Застосовується, якщо зовнішнє повітря холодніше за зерно і його відносна вологість не перевищує 75%.

Активне вентилювання атмосферним повітрям доцільно проводити лише тоді, коли фактична вологість зерна перевищує рівноважну на 1 % і більше.

Визначають необхідну подачу повітря, висоту насипу, тривалість процесу вентилювання.

Питома подача повітря — кількість витрат його на вентилювання 1 т зерна протягом 1 год. Залежить від культури, вологості зернової маси і мети вентилювання; коливається від 30 до 200 м³/т/год при висоті насипу зерна 1,5 - 3,5 м.

Функції активного вентилювання

Профілактичне вентилювання Питома подача повітря— 30 - 50 м³/т/год Вентилювання для охолодження зерна Питома подача повітря— 50 - 80 м³/т/год

Вентилювання для сушіння зерна (200 - 600 м³/т/год) Вентилювання для ліквідації самозігрівання (більше 200 м³/т/год)

Вентилювання насінного зерна Вентилювання для газації та дегазації

Найбільші питомі подачі повітря застосовують для вентилювання з метою підсушування зернової маси або ліквідації в ній процесу самозігрівання

Бункерні установки

Призначені для активного вентилювання зерна (часто для сушіння) і є стаціонарними установками циліндричної форми з конусоподібним дном

Рис. Охолодження зерна у вентилюємих бункерах із вертикальним та горизонтальним поділом повітряного потоку

Рис. Бункер для активного вентилювання БВ-25

Мандева разла: 2 корпус: 3 регулитор вологості; І вантавини. 5 — влачан. 6 — розподлични, зерна: 5 — труба повітророзпо-дітвевальна: 8 — вентилитор з электродингуння: 9 — влектрак злодифер: 10 — опори карпуст; 11 — регулювальне кітале

Бункер активного вентилювання БВ-25

Підлогова переносна установка "Промзернопроект"

Рис. Підлогова переносна установка та її складові: 1 – вентилятор; 2 – дифузор; 3 – повітророзподільна решітка

Телескопічна вентиляційна установка ТВУ-2

Рис. Розміщення ТВУ–2 в насипах типового складу та їх виймання з-під провентильованого зерна

1 — насип; 2 — вентилятор; 3 — пристрій ТВУ-2; 4 струмінь повітря; 5 — зовнішні дверцята; 6 — рамка

Відстань між трубами установки ТВУ-2 залежно від висоти насипу і вологості зерна

Висота насипу, м	Відстань між трубами (м) при вологості зерна (%)						
	14	16	18	20	22	24	26
1,5	8,0	8,0	8,0	7,0	5,5	4,0	3,0
2,0	8.0	8,0	8,0	6,5	4,9	3,5	2,5
2,5	8,0	8,0	7,0	5,3	4,0	2,9	2,0
3,0	8,0	8,0	6,0	4,0	3,0	2,3	1,6
3,5	8,0	7,3	5,5	3,7	2,7	2,0	3800
4,0	8,0	6,5	5,0	3,4	2,4	1,7	(#X)
4,5	7,5	7,0	4,4	3,0	2,2	880	(2 5)

BAT "Завод iM. Фрунзе" виготовля€ перфоровані канали активного для зерна. Канал має форму вентилювання половини труби і встановлюється на рівну підлогу зерноскладу. Спосіб збирання максимально розбирання простий, шо дозволяє легко розбирати канал вручну в процесі розвантаження зерносклада. У звязку iЗ нерівностями повехні зерносховища конструкція забезпечує гнучкість каналу у місцях з'єднання секцій і одночасно не дозволяє зерну засипатися в середину каналу. Секцій з'єднують із перекриванням 25 мм.

ТОВ «Шмельцер» виготовляє перфорованіканали різноманітних типорозмірів, які витримують навантаженнязерна до 10 м.

Вентиляційні списи для зерна

Переносные вентилирующие установки - (5 видов)- в зависимости от производительности и кол-ва фаз, а также от длины и перфорации перфорированной части вентилирующего ствода

Вентиляційні стовпи Air-Pillar

Висота насипу до 5 м

Телескопічні вентиляційні труби ТОВ «Шмельцер»

Довжина від 4 до 30 м. Максимальна висота завантаження 6 м

4. Возможно извлечение в наполненном состоянии

6. Очистка

 установить вентиляционную трубу в собранном состоянии вертикально

Очистка завершена

4. Сушіння зерна

Сорбційне сушіння (контактне, хімічне) —

контакт зерна чи насіння з вологовіднімаючими твердими засобами (суха тирса, мірабіліт, активоване вугілля, сульфат натрію). Використовують для сушіння насіннєвих партій бобових культур. При вологості зерна 20% на 1 т додають 60 кг Na_2SO_4 , при V – 25 % - 120 кг.

Повітряно-сонячне сушіння (радіаційне)

використовують в районах з сухим теплим кліматом, для невеликих партій зерна. Сушити краще на дерев'яній або асфальтовій площадці з нахилом 6°, шаром: насіння злакових — 10–20 см, зернобобових — 10–15, проса, льону - 4–5 см.

За світловий день можна зняти від 1 до 3 % вологи.

Теплове сушіння (конвективне)

Щоб організувати сушіння необхідно враховувати:

- Максимально допустиму температуру нагріву зерна;
- Оптимальну температуру агента сушіння (повітря);
- Особливості сушіння зерна в сушарках різних конструкцій.

Максимально допустима температура нагрівання зерна залежить від:

- КУЛЬТУРИ (пшениця, ячмінь продовольчий до 45°С, пшениця зі слабкою клейковиною 50-55°С, овес 50°С, жито 60°С, зернобобові 36-38°С).
- цільового призначення (зерно, яке використовують для виготовлення солоду не > 40°С, насіннєве зерно не > 45°С).
- початкової вологості (чим вища вологість тим нижча температура нагріву). Насіння з високою вологістю (понад 20%) пропускають через сушарки двічі, а то й тричі. Якщо вологість насіння у межах 17%, то роблять один пропуск.

Зерно обезводнюється за 40-60 хв, температура повітря 55-75°C Придатні для будь-якого зерна, будь-якого цільового призначення, але воно повинно бути очищеним. Чистота насіння перед сушінням повинна бути не меншою 98-99 %, вміст соломистих домішок — не більше 0,5 % (СЗШ-8, СЗШ-16, СЗСШ-16Р, СЗПЖ-8, Т-662 та ін.). За один пропуск вологість знижується на 4-6 %.

Барабанні сушарки

- Можна сушити не зовсім очищене зерно. Недолік зерно подається в зону високих температур (обезводнюється за 20 – 30 хв., t агента 110-130°C).
- Не можна використовувати для сушіння насіння бобових культур, рису, кукурудзи.
- За один пропуск знижують вологість продовольчого зерна максимально на 6%, насіннєвого на 4%.

КАМЕРНА СУШАРКА для сушіння кукурудзи

У камеру подається повітря, дерев'яні решета під які подається тепло. Використовують для сушіння кукурудзи в качанах, яка знаходиться 1-2 доби, t агента 45 °C, сушать за 1 пропуск.

Рециркуляційні сушарки

Зерно подається підвішеному стані (падає у вигляді дощу). Змішують кількість певну сирого зерна великою - сухого, відбувається теплообмін рециркуляція. Зерно обезводнюється 12 с., t агента 250-350°С, вологість знімається на 1 - 2%.

Конструкція сушарки безперевної дії TORNUM

