2WB05 Simulation Lecture 5: Random-number generators

Marko Boon http://www.win.tue.nl/courses/2WB05

It is important to be able to efficiently generate independent random variables from the uniform distribution on (0, 1), since:

- Random variables from all other distributions can be obtained by transforming uniform random variables;
- Simulations require many random numbers.

A 'good' random-number generator should satisfy the following properties:

- Uniformity: The numbers generated appear to be distributed uniformly on (0, 1);
- **Independence:** The numbers generated show no correlation with each other;
- Replication: The numbers should be replicable (e.g., for debugging or comparison of different systems).
- Cycle length: It should take long before numbers start to repeat;
- **Speed:** The generator should be fast;
- Memory usage: The generator should not require a lot of storage.

A 'good' random-number generator should satisfy the following properties:

- Uniformity: The numbers generated appear to be distributed uniformly on (0, 1);
- Independence: The numbers generated show no correlation with each other;
- Replication: The numbers should be replicable (e.g., for debugging or comparison of different systems).
- Cycle length: It should take long before numbers start to repeat;
- **Speed:** The generator should be fast;
- Memory usage: The generator should not require a lot of storage.

Cryptographically secure

Most random-number generators are of the form:

Start with z_0 (seed) For n = 1, 2, ... generate

$$z_n = f(z_{n-1})$$

and

$$u_n = g(z_n)$$

f is the *pseudo-random generator g* is the *output function*

 $\{u_0, u_1, \ldots\}$ is the sequence of uniform random numbers on the interval (0, 1).

Midsquare method

Start with a 4-digit number z_0 (seed)

Square it to obtain 8-digits (if necessary, append zeros to the left)

Take the *middle 4 digits* to obtain the next 4-digit number z_1 ; then square z_1 and take the middle 4-digits again and so on.

We get uniform random number by placing the decimal point at the left of each z_i (i.e., divide by 10000).

Midsquare method

Examples

- For $z_0 = 1234$ we get 0.1234, 0.5227, 0.3215, 0.3362, 0.3030, 0.1809, 0.2724, 0.4201, 0.6484, 0.0422, 0.1780, 0.1684, 0.8361, 0.8561, 0.2907, ...
- For $z_0 = 2345$ we get 0.2345, 0.4990, 0.9001, 0.0180, 0.0324, 0.1049, 0.1004, 0.0080, 0.0064, 0.0040, ... Two succesive zeros behind the decimal will never disappear.
- For $z_0 = 2100$ we get 0.2100, 0.4100, 0.8100, 0.6100, 0.2100, 0.4100, ... Already after four numbers the sequence starts to repeat itself.

Clearly, random-number generators involve a lot more than doing 'something strange' to a number to obtain the next.

Linear congruential generators

Most random-number generators in use today are *linear congruential generators*. They produce a sequence of integers between 0 and m-1 according to

$$z_n = (az_{n-1} + c) \mod m, \qquad n = 1, 2, \dots$$

a is the multiplier, c the increment and m the modulus. To obtain uniform random numbers on (0, 1) we take

$$u_n = z_n/m$$

A good choice of a, c and m is very important.

Linear congruential generators

A linear congruential generator has full period (cycle length is m) if and only if the following conditions hold:

- The only positive integer that exactly divides both m and c is 1;
- If q is a prime number that divides m, then q divides a-1;
- If 4 divides m, then 4 divides a-1.

Linear congruential generators

Examples:

- For (a, c, m) = (1, 5, 13) and $z_0 = 1$ we get the sequence 1, 6, 11, 3, 8, 0, 5, 10, 2, 7, 12, 4, 9, 1, ... which has full period (of 13).
- For (a, c, m) = (2, 5, 13) and $z_0 = 1$ we get the sequence 1, 7, 6, 4, 0, 5, 2, 9, 10, 12, 3, 11, 1, ... which has a period of 12. If we take $z_0 = 8$, we get the sequence 8, 8, 8, ... (period of 1).

Multiplicative congruential generators

These generators produce a sequence of integers between 0 and m-1 according to

$$z_n = az_{n-1} \mod m, \qquad n = 1, 2, \dots$$

So they are linear congruential generators with c=0.

They cannot have full period, but it is possible to obtain period m-1 (so each integer 1, ..., m-1 is obtained exactly once in each cycle) if a and m are chosen carefully. For example, as a=630360016 and $m=2^{31}-1$.

Additive congruential generators

These generators produce integers according to

$$z_n = (z_{n-1} + z_{n-k}) \mod m, \qquad n = 1, 2, \dots$$

where $k \geq 2$. Uniform random numbers can again be obtained from

$$u_n = z_n/m$$

These generators can have a long period upto m^k .

Disadvantage:

Consider the case k=2 (the *Fibonacci* generator). If we take three consecutive numbers u_{n-2} , u_{n-1} and u_n , then it will never happen that

$$u_{n-2} < u_n < u_{n-1}$$
 or $u_{n-1} < u_n < u_{n-2}$

whereas for true uniform variables both of these orderings occurs with probability 1/6.

- Linear (or mixed) congruential generators
- Multiplicative congruential generators
- Additive congruential generators

• ...

Question 1: How secure are pseudorandom numbers? **Question 2:** How random are pseudorandom numbers?

How (cryptographically) secure are pseudorandom numbers?

Desirable properties:

- given only a number produced by the generator, it is impossible to predict previous and future numbers;
- the numbers produced contain no known biases;
- the generator has a large period;
- the generator can seed itself at any position within that period with equal probability.

For example, when using the generator to produce a session ID on a web server: we don't want user n to predict user n + 1's session ID.

How (cryptographically) secure are pseudorandom numbers?

Desirable properties:

- given only a number produced by the generator, it is impossible to predict previous and future numbers;
- the numbers produced contain no known biases;
- the generator has a large period;
- the generator can seed itself at any position within that period with equal probability.

For example, when using the generator to produce a session ID on a web server: we don't want user n to predict user n + 1's session ID.

In Java, use java.security.SecureRandom.

Disadvantage: 20-30 times slower than java.util.Random.

Choosing the initial seed

We need to find *entropy* or "genuine randomness" as the seed starting point for generating other random numbers. Some typical sources that in principle we may be able to access in software include:

- time between key presses,
- positions of mouse movements,
- amount of free memory,
- CPU temperature.

In practice: Operating Systems collect information and help to generate the random seed using

- time (wall-clock and since boot),
- performance and CPU counter data,
- timings of context switches and other software interrupts.

Choosing the initial seed

Reliable method: java.security.SecureRandom has a method called generateSeed (int nrOfBytes)

java.util.Random is a Linear Congruential Generator using a 48-bit seed. (Meaning that $m=2^{48}$, the other parameters are chosen such that the generator has maximum period.)

Old versions of this class used System.currentTimeMillis() as default random seed. Disadvantage: two instances created in the same millisecond generate the same sequence of pseudo-random numbers.

How random are pseudorandom numbers?

The random numbers generated by LCGs have the following undesirable property: randomness depends on the bit position!

In more detail: lower bits will be "less random" than the upper bits. For this reason, Random.nextInt() uses the top 32 bits of the 48-bit random seed.

How random are pseudorandom numbers?

bit 1

bit 32

How random are pseudorandom numbers?

Try to test two main properties:

- Uniformity;
- Independence.

Uniformity or goodness-of-fit tests

Let X_1, \ldots, X_n be n observations. A goodness-of-fit test can be used to test the hyphothesis:

 H_0 : The X_i 's are i.i.d. random variables with distribution function F.

Two goodness-of-fit tests:

- Kolmogorov-Smirnov test
- Chi-Square test

Kolmogorov-Smirnov test

Let $F_n(x)$ be the empirical distribution function, so

$$F_n(x) = \frac{\text{number of } X_i' s \le x}{n}$$

Then

$$D_n = \sup_{x} |F_n(x) - F(x)|$$

has the Kolmogorov-Smirnov (K-S) distribution.

Now we reject H_0 if

$$D_n > d_{n,1-\alpha}$$

where $d_{n,1-\alpha}$ is the $1-\alpha$ quantile of the K-S distribution.

Here α is the *significance level* of the test:

The probability of rejecting H_0 given that H_0 is true.

For $n \ge 100$,

$$d_{n,0.95} \approx 1.3581/\sqrt{n}$$

In case of the uniform distribution we have

$$F(x) = x, \qquad 0 \le x \le 1.$$

Chi-Square test

Divide the range of F into k adjacent intervals

$$(a_0, a_1], (a_1, a_2], \ldots, (a_{k-1}, a_k]$$

Let

$$N_i = \text{number of } X_i$$
's in $[a_{i-1}, a_i)$

and let p_j be the probability of an outcome in $(a_{j-1}, a_j]$, so

$$p_j = F(a_j) - F(a_{j-1})$$

Then the test statistic is

$$\chi^{2} = \sum_{i=1}^{k} \frac{(N_{j} - np_{j})^{2}}{np_{j}}$$

If H_0 is true, then np_j is the expected number of the n X_i 's that fall in the j-th interval, and so we expect χ^2 to be small.

If H_0 is true, then the distribution of χ^2 converges to a chi-square distribution with k-1 degrees of freedom as $n \to \infty$.

The chi-square distribution with k-1 degrees of freedom is the same as the Gamma distribution with parameters (k-1)/2 and 2.

Hence, we reject H_0 if

$$\chi^2 > \chi^2_{k-1,1-\alpha}$$

where $\chi^2_{k-1,1-\alpha}$ is the $1-\alpha$ quantile of the chi-square distribution with k-1 degrees of freedom.

Chi-square test for U(0, 1) random variables

We divide (0, 1) into k subintervals of equal length and generate U_1, \ldots, U_n ; it is recommended to choose $k \ge 100$ and $n/k \ge 5$. Let N_j be the number of the n U_i 's in the j-th subinterval.

Then

$$\chi^2 = \frac{k}{n} \sum_{j=1}^k \left(N_j - \frac{n}{k} \right)^2$$

Example:

Consider the linear congruential generator

$$z_n = a z_{n-1} \mod m$$

with a = 630360016, $m = 2^{31} - 1$ and seed

$$z_0 = 1973272912$$

Generating $n = 2^{15} = 32768$ random numbers U_i and dividing (0, 1) in $k = 2^{12} = 4096$ subintervals yields

$$\chi^2 = 4141.0$$

Since

$$\chi_{4095,0.9} \approx 4211.4$$

we do not reject H_0 at level $\alpha = 0.1$.

Serial test

This is a 2-dimensional version of the chi-square test to test independence between successive observations.

We generate U_1, \ldots, U_{2n} ; if the U_i 's are really i.i.d. U(0, 1), then the nonoverlapping pairs

$$(U_1, U_2), (U_3, U_4), \ldots, (U_{2n-1}, U_{2n})$$

are i.i.d. random vectors uniformly distributed in the square $(0, 1)^2$.

- Divide the square $(0, 1)^2$ into k^2 subsquares;
- Count how many outcomes fall in each subsquare;
- Apply a chi-square test to these data.

This test can be generalized to higher dimensions.

Permutation test

Look at *n* successive *d*-tuples of outcomes

$$(U_0, \ldots, U_{d-1}), (U_d, \ldots, U_{2d-1}),$$

 $\ldots, (U_{(n-1)d}, \ldots, U_{nd-1});$

Among the *d*-tuples there are *d*! possible orderings and these orderings are equally likely.

- Determine the frequencies of the different orderings among the *n d*-tuples;
- Apply a chi-square test to these data.

Runs-up test

Divide the sequence U_0, U_1, \ldots in blocks, where each block is a subsequence of *increasing* numbers followed by a number that is *smaller* than its predecessor.

Example: The realization 1,3,8,6,2,0,7,9,5 can be divided in the blocks (1,3,8,6), (2,0), (7,9,5).

A block consisting of j + 1 numbers is called a run-up of length j. It holds that

$$P(\text{run-up of length } j) = \frac{1}{j!} - \frac{1}{(j+1)!}$$

- Generate n run-ups;
- Count the number of run-ups of length $0, 1, 2, \ldots, k-1$ and $\geq k$;
- Apply a chi-square test to these data.

Correlation test

Generate U_0, U_1, \ldots, U_n and compute an estimate for the (serial) correlation

$$\hat{\rho}_1 = \frac{\sum_{i=1}^n (U_i - \bar{U}(n))(U_{i+1} - \bar{U}(n))}{\sum_{i=1}^n (U_i - \bar{U}(n))^2}$$

where $U_{n+1} = U_1$ and $\bar{U}(n)$ the sample mean.

If the U_i 's are really i.i.d. U(0, 1), then $\hat{\rho}_1$ should be close to zero. Hence we reject H_0 is $\hat{\rho}_1$ is too large.

If H_0 is true, then for large n,

$$P(-2/\sqrt{n} \le \hat{\rho}_1 \le 2/\sqrt{n}) \approx 0.95$$

So we reject H_0 at the 5% level if

$$\hat{\rho}_1 \notin (-2/\sqrt{n}, 2/\sqrt{n})$$

High quality generator

If you still have problems with java.util.Random you can use the code given in the Numerical recipes (combining two XORShift generators with an LCG and a multiply with carry generator).

```
private long u;
private long v = 4101842887655102017L;
private long w = 1;
public long nextLong() {
  u = u * 2862933555777941757L + 7046029254386353087L;
  v ^= v >>> 17;
  v ^= v << 31;
  v ^= v >>> 8;
  w = 4294957665L * (w & Oxffffffff) + (w >>> 32);
  long x = u ^ (u << 21);
  x ^= x >>> 35;
  x ^= x << 4;
  long ret = (x + v) ^ w;
  return ret;
```