Moritz Eissenhauer

Lösung zu Übungsblatt XX

Lösung zu Aufgabe 2

a)

$$I(\sigma) = \{(1,3), (1,7), (3,7), (4,5), (4,7), (4,8), (5,7), (5,8), (6,7), (6,8)\}$$

b)

$$\sigma = n, n-1, n-2, ..., 1$$
 hat $\frac{(n-1)(n-2)}{2}$ Fehlstände

 \mathbf{c})

$$ZZ$$
. $I(\sigma) \neq \emptyset \Rightarrow \exists 1 \leq i < n : (i, i+1) \in I(\sigma)$

Beweis. Durch widerspruch:

WA: $I(\sigma) \neq \emptyset \land \neg \exists 1 \leq i < n : (i, i + 1) \in I(\sigma)$

$$\Rightarrow \forall 1 \leq i < n : (i, i + 1) \notin I(\sigma)$$

$$\Rightarrow \forall 1 \leq i < n : \sigma(i) \leq \sigma(i + 1)$$

$$\Rightarrow \forall 1 \leq i < j < n : \sigma(i) \leq \sigma(j)$$

$$\Rightarrow \sigma = \{1, 2, ..., n\}$$

$$\Rightarrow I(\sigma) = \emptyset$$

$$\Rightarrow \text{Widerspruch zu WA}$$

$$(1)$$

Da WA zum Widerspruch führ muss ZZ gelten.

d) ZZ. Insertsort mit $A = [\sigma(1), \sigma(2), ..., \sigma(n)]$ hat laufzeit $\mathcal{O}(n + |I(\sigma)|)$

Beweis. Beweis Induktiv:

IA: $I(\sigma) = \emptyset \Rightarrow$ Es gibt keine Fehlstände. Das heißt A ist schon sortiert und die Laufzeit von Insertsort ist $T = c_1 n + c_2 \in \mathcal{O}(n)$

IV: ZZ gelte für ein beliebiges $K = I(\sigma)$.

IS: Sei $K' = K \cup \{(k, l)\}$ mit $1 \le k < l \le n$.

Falls $(k, l) \in K$ ist K' = K und die Laufzeit verändert sich nicht.

Falls $(k, l) \notin K$ verändert sich die Iterationszahl des for-Loops nicht. Die des while-Loops veränders sich auch nicht für i < l, da alle Vergleiche gleih ausfallen wie bei K.